Lecture 5: ARMA Models and the Wold's Decomposition

Raul Riva

FGV EPGE

October, 2025

Intro

Intro

- So far, we learned what MA and AR models are;
- Very different ways of modelling dependence over time;
- ◆ An ARMA model combines both ways of modelling dependence ⇒ very flexible model;
- We will talk about forecasting with ARMA models as well really useful in the real world!
- Wold's Decomposition: ARMA models are the class of stationary processes you should worry about!

$\mathbf{ARMA}(p,q) \ \mathbf{Models}$

$\mathsf{ARMA}(p,q)$ Models

- Let ε_t be a white noise with variance σ^2 ;
- ullet An ARMA(p,q) process y_t satisfies the following dynamics:

$$y_t = \mu + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q}$$

Equivalently:

$$\phi(L)y_t = \mu + \theta(L)\varepsilon_t$$

where $\phi(L)=1-\phi_1L-...-\phi_pL^p$ and $\theta(L)=1+\theta_1L+...+\theta_qL^q$;

$\mathsf{ARMA}(p,q)$ Models

- Let ε_t be a white noise with variance σ^2 ;
- ullet An ARMA(p,q) process y_t satisfies the following dynamics:

$$y_t = \mu + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q}$$

• Equivalently:

$$\phi(L)y_t=\mu+\theta(L)\varepsilon_t$$
 where $\phi(L)=1-\phi_1L-...-\phi_pL^p$ and $\theta(L)=1+\theta_1L+...+\theta_qL^q;$

ullet What conditions will ensure that y_t is stationary?

When is an ARMA(p,q) stationary?

- If the roots of $\phi(L)$ are outside of the unit circle, then $\phi^{-1}(L)$ is well-defined;
- We can invert $\phi(L)$ to get:

$$y_t = \frac{\mu}{1-\phi_1-\ldots-\phi_p} + \theta(L)\varepsilon_t = \frac{\mu}{1-\phi_1L-\ldots-\phi_pL^p} + \psi(L)\varepsilon_t$$

where
$$\psi(L) = \theta(L)\phi^{-1}(L)$$
;

ullet The stationarity of y_t depends only on the roots of $\phi(L)$, not on the roots of $\theta(L)$;

When is an ARMA(p,q) stationary?

- If the roots of $\phi(L)$ are outside of the unit circle, then $\phi^{-1}(L)$ is well-defined;
- We can invert $\phi(L)$ to get:

$$y_t = \frac{\mu}{1-\phi_1-\ldots-\phi_p} + \theta(L)\varepsilon_t = \frac{\mu}{1-\phi_1L-\ldots-\phi_pL^p} + \psi(L)\varepsilon_t$$

where
$$\psi(L) = \theta(L)\phi^{-1}(L)$$
;

- ullet The stationarity of y_t depends only on the roots of $\phi(L)$, not on the roots of $\theta(L)$;
- \bullet From here, it is clear that: $\mathbb{E}[y_t] = \frac{\mu}{1 \phi_1 \ldots \phi_p}$

What kind of autocovariance structure do we get?

• Notice that if j > q, then:

$$\gamma_j = \phi_1 \gamma_{j-1} + \ldots + \phi_p \gamma_{j-p}$$

ullet Roots of $\phi(L)$ are outside the unit circle $\implies \gamma_j \to 0$ as $j \to \infty$ (exponentially fast!);

What kind of autocovariance structure do we get?

• Notice that if j > q, then:

$$\gamma_j = \phi_1 \gamma_{j-1} + \ldots + \phi_p \gamma_{j-p}$$

- ullet Roots of $\phi(L)$ are outside the unit circle $\implies \gamma_j \to 0$ as $j \to \infty$ (exponentially fast!);
- ullet For $j \leq q$, things are way more complicated (see Section 3.3 in Brockwell and Davis);
- ullet The reason is that the q last shocks can impose very complex dynamics without affecting stationarity!

What kind of autocovariance structure do we get?

• Notice that if j > q, then:

$$\gamma_j = \phi_1 \gamma_{j-1} + \ldots + \phi_p \gamma_{j-p}$$

- ullet Roots of $\phi(L)$ are outside the unit circle $\implies \gamma_j \to 0$ as $j \to \infty$ (exponentially fast!);
- For $j \leq q$, things are way more complicated (see Section 3.3 in Brockwell and Davis);
- ullet The reason is that the q last shocks can impose very complex dynamics without affecting stationarity!

What is important here:

After lag q the decay should be fast and exponential. The MA part will never create trouble for stationarity.

Simulated Example: $y_t=0.9y_{t-1}+\varepsilon_t-0.8\varepsilon_{t-1}+0.6\varepsilon_{t-2}+0.4\varepsilon_{t-3}+0.8\varepsilon_{t-4}$

Theoretical vs Estimated ACF

Let's repeat it with $\phi_1 = 0.4$

Example for ARMA(1,1)

• Consider an ARMA(1,1) process:

$$y_t = \mu + \phi_1 y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}, \qquad |\phi_1| < 1$$

- \bullet We already know that $\gamma_2=\phi_1\gamma_1$;
- ullet More generally, $\gamma_j=\phi_1\gamma_{j-1}$ for $j\geq 2$. We just need to find γ_0 and γ_1 ;

Example for ARMA(1,1)

• Consider an ARMA(1,1) process:

$$y_t = \mu + \phi_1 y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}, \qquad |\phi_1| < 1$$

- ullet We already know that $\gamma_2=\phi_1\gamma_1$;
- $\bullet \ \ \text{More generally, } \gamma_j = \phi_1 \gamma_{j-1} \ \text{for } j \geq 2. \ \ \text{We just need to find } \gamma_0 \ \text{and } \gamma_1;$

$$\begin{split} \gamma_0 &= \phi_1 \gamma_1 + Cov(\varepsilon_t, y_t) + \theta_1 Cov(\varepsilon_{t-1}, y_t) = \phi_1 \gamma_1 + \sigma^2 + \theta_1 \phi_1 \sigma^2 + \theta_1^2 \sigma^2 \\ \gamma_1 &= \phi_1 \gamma_0 + Cov(\varepsilon_t, y_{t-1}) + \theta_1 Cov(\varepsilon_{t-1}, y_{t-1}) = \phi_1 \gamma_0 + \theta_1 \sigma^2 \end{split}$$

Example for ARMA(1,1)

• Consider an ARMA(1,1) process:

$$y_t = \mu + \phi_1 y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}, \qquad |\phi_1| < 1$$

- ullet We already know that $\gamma_2=\phi_1\gamma_1$;
- $\bullet \ \ \text{More generally, } \gamma_j = \phi_1 \gamma_{j-1} \ \text{for } j \geq 2. \ \ \text{We just need to find } \gamma_0 \ \text{and } \gamma_1;$

$$\begin{split} \gamma_0 &= \phi_1 \gamma_1 + Cov(\varepsilon_t, y_t) + \theta_1 Cov(\varepsilon_{t-1}, y_t) = \phi_1 \gamma_1 + \sigma^2 + \theta_1 \phi_1 \sigma^2 + \theta_1^2 \sigma^2 \\ \gamma_1 &= \phi_1 \gamma_0 + Cov(\varepsilon_t, y_{t-1}) + \theta_1 Cov(\varepsilon_{t-1}, y_{t-1}) = \phi_1 \gamma_0 + \theta_1 \sigma^2 \end{split}$$

Now we can solve this linear system!

Example of ARMA(1,1)

• Just solve the linear system:

$$\begin{split} \gamma_0 &= \frac{(1+\theta_1^2+2\theta_1\phi_1)\sigma^2}{1-\phi_1^2} \\ \gamma_1 &= \left[\theta+\phi+\frac{(\theta+\phi)^2\phi}{1-\phi^2}\right]\sigma^2 \\ \gamma_j &= \phi_1^{j-1}\gamma_1, \quad j \geq 2 \end{split}$$

Example of ARMA(1,1)

• Just solve the linear system:

$$\begin{split} \gamma_0 &= \frac{(1+\theta_1^2+2\theta_1\phi_1)\sigma^2}{1-\phi_1^2} \\ \gamma_1 &= \left[\theta+\phi+\frac{(\theta+\phi)^2\phi}{1-\phi^2}\right]\sigma^2 \\ \gamma_j &= \phi_1^{j-1}\gamma_1, \quad j\geq 2 \end{split}$$

 \bullet Wait a minute... what would happen if $\theta_1 = -\phi_1$?

The Minimal Representation

 \bullet In that case y_t would be white noise!!!

The Minimal Representation

- In that case y_t would be white noise!!!
- In fact, ARMA models can be overparameterized;
- Remember that we can always factor the lag polynomials:

$$\phi(L) = (1-\phi_1L)(1-\phi_2L)\dots(1-\phi_pL)$$

$$\theta(L) = (1+\theta_1 L)(1+\theta_2 L)\dots(1+\theta_q L)$$

The Minimal Representation

- In that case y_t would be white noise!!!
- In fact, ARMA models can be overparameterized;
- Remember that we can always factor the lag polynomials:

$$\phi(L)=(1-\phi_1L)(1-\phi_2L)\dots(1-\phi_pL)$$

$$\theta(L) = (1+\theta_1 L)(1+\theta_2 L)\dots(1+\theta_q L)$$

- ullet If there are common roots that cancel out, we can have the exact same correlation structure with p-1 lags of y_t and q-1 lags of ε_t ;
- ullet This is a theoretical justification to prefer small values of p and q when estimating an ARMA model!
- When we write "ARMA(p,q)" we implicitly mean the minimal representation!

- ARMA models are extremely useful for forecasting;
- They are a simple way to capture complicated dynamics;

- ARMA models are extremely useful for forecasting;
- They are a simple way to capture complicated dynamics;
- ullet Our job: compute conditional expectations of some process y_t ;
- \bullet Our data: $\{y_1,y_2,\dots,y_{T-1},y_T\} \implies$ a strip of one realized path with T observations;

- ARMA models are extremely useful for forecasting;
- They are a simple way to capture complicated dynamics;
- \bullet Our job: compute conditional expectations of some process $y_t;$
- \bullet Our data: $\{y_1,y_2,\dots,y_{T-1},y_T\} \implies$ a strip of one realized path with T observations;
- Exact forecasts will depend on the infinite past of the process;
- We will use the available information to compute the approximate forecasts;

• Let's say you have a stationary ARMA model and has already computed the $MA(\infty)$ representation:

$$y_t - \mu = \psi(L)\varepsilon_t = \sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i} = \epsilon_t + \sum_{i=1}^{\infty} \psi_i \epsilon_{t-i}$$

 \bullet As usual: $\psi(L)=\sum_{i=0}^\infty \psi_i L^i$, with $\psi_0=1$ and $\sum_{i=0}^\infty |\psi_i|<\infty$;

• Let's say you have a stationary ARMA model and has already computed the $MA(\infty)$ representation:

$$y_t - \mu = \psi(L)\varepsilon_t = \sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i} = \epsilon_t + \sum_{i=1}^{\infty} \psi_i \epsilon_{t-i}$$

- \bullet As usual: $\psi(L)=\sum_{i=0}^{\infty}\psi_{i}L^{i}$, with $\psi_{0}=1$ and $\sum_{i=0}^{\infty}|\psi_{i}|<\infty$;
- \bullet Let's say you want to compute $\mathbb{E}[y_{t+s}|\varepsilon_t,\varepsilon_{t-1},\ldots];$
- Just using the definition:

$$y_{t+s} - \mu = \varepsilon_{t+s} + \psi_1 \varepsilon_{t+s-1} + \ldots + \psi_{s-1} \varepsilon_{t+1} + \psi_s \varepsilon_t + \sum_{i=s+1}^{\infty} \psi_i \varepsilon_{t+s-i}$$

• Let's say you have a stationary ARMA model and has already computed the $MA(\infty)$ representation:

$$y_t - \mu = \psi(L)\varepsilon_t = \sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i} = \epsilon_t + \sum_{i=1}^{\infty} \psi_i \epsilon_{t-i}$$

- As usual: $\psi(L) = \sum_{i=0}^{\infty} \psi_i L^i$, with $\psi_0 = 1$ and $\sum_{i=0}^{\infty} |\psi_i| < \infty$;
- Let's say you want to compute $\mathbb{E}[y_{t+s}|\varepsilon_t,\varepsilon_{t-1},...];$
- Just using the definition:

$$y_{t+s} - \mu = \varepsilon_{t+s} + \psi_1 \varepsilon_{t+s-1} + \dots + \psi_{s-1} \varepsilon_{t+1} + \psi_s \varepsilon_t + \sum_{i=s+1}^{\infty} \psi_i \varepsilon_{t+s-i}$$

 \bullet This implies: $\mathbb{E}[y_{t+s}|\varepsilon_t,\varepsilon_{t-1},\ldots] = \mu + \sum\limits_{i=s}^\infty \psi_i \varepsilon_{t+s-i}$

• There is a shorthand notation that is useful here. Notice that:

$$\frac{\psi(L)}{L^s} = L^{-s} + \psi_1 L^{1-s)} + \psi_2 L^{2-s} + \ldots + \psi_{s-1} L^{-1} + \psi_s + \psi_{s+1} L + \psi_{s+2} L^2 \ldots$$

• The annihilation operator denoted by $[.]_+$ only considers the positive powers of L:

$$\left[\frac{\psi(L)}{L^s}\right]_+ \equiv \psi_s + \psi_{s+1}L + \psi_{s+2}L^2 + \dots$$

• Now we can write:

$$\mathbb{E}[y_{t+s}|\varepsilon_t,\varepsilon_{t-1},\ldots] = \mu + \left[\frac{\psi(L)}{L^s}\right]_+ \varepsilon_t$$

Wait, this feels like cheating...

 \bullet We never really observe the shocks $\varepsilon_t.$ How can this be useful?

Wait, this feels like cheating...

- We never really observe the shocks ε_t . How can this be useful?
- Sometimes we can actually back them out from infinite data!
- \bullet Let's go back to the $\mathsf{ARMA}(p,q)$ representation: $\phi(L)(y_t \mu) = \theta(L)\varepsilon_t$
- $\bullet \ \phi(L) = 1 \phi_1 L \ldots \phi_p L^p \ \text{and} \ \theta(L) = 1 + \theta_1 L + \ldots + \theta_q L^q;$
- If all roots of $\phi(L)$ are outside the unit circle, then $\phi^{-1}(L)$ is well-defined;
- ullet If all roots of heta(L) are outside the unit circle, then $heta^{-1}(L)$ is well-defined as well!

Wait, this feels like cheating...

- We never really observe the shocks ε_t . How can this be useful?
- Sometimes we can actually back them out from infinite data!
- \bullet Let's go back to the $\mathsf{ARMA}(p,q)$ representation: $\phi(L)(y_t-\mu)=\theta(L)\varepsilon_t$
- $\bullet \ \phi(L) = 1 \phi_1 L \ldots \phi_p L^p \ \text{and} \ \theta(L) = 1 + \theta_1 L + \ldots + \theta_q L^q;$
- If all roots of $\phi(L)$ are outside the unit circle, then $\phi^{-1}(L)$ is well-defined;
- If all roots of $\theta(L)$ are outside the unit circle, then $\theta^{-1}(L)$ is well-defined as well!
- In this case we can write:

$$\theta(L)^{-1}\phi(L)(y_t-\mu) = \varepsilon_t \implies \varepsilon_t = \eta(L)(y_t-\mu)$$

where
$$\eta(L) = \theta^{-1}(L)\phi(L) = \eta_0 + \eta_1 L + \eta_2 L^2 + ...$$

The General Formula

• So, for an ARMA(p,q) process with all roots outside the unit circle:

$$\mathbb{E}[y_{t+s}|y_t,y_{t-1},\ldots] = \mu + \left[\frac{\psi(L)}{L^s}\right]_+ \eta(L)(y_t - \mu)$$

- In practice, a computer will do the necessary algebra to get the coefficients;
- But it is really important to understand why a computer can do that!
- This is also called the Wiener-Kolmogorov prediction formula;
- The crucial assumptions are stationarity and invertibility, i.e., roots of $\phi(L)$ and $\theta(L)$ must be outside the unit circle!

- Assume that $(1 \phi L)y_t = \varepsilon_t$ with $|\phi| < 1$;
- Then we know that $\psi(L)=\phi(L)^{-1}=1+\phi L+\phi^2 L^2+\dots$ and $\eta(L)=\phi(L)=1-\phi L$;

- Assume that $(1 \phi L)y_t = \varepsilon_t$ with $|\phi| < 1$;
- Then we know that $\psi(L)=\phi(L)^{-1}=1+\phi L+\phi^2L^2+\dots$ and $\eta(L)=\phi(L)=1-\phi L$;
- The annihilation operator gives:

$$\left[\frac{\psi(L)}{L^s}\right]_+ = \phi^s + \phi^{s+1}L + \phi^{s+2}L^2 + \dots = \phi^s(1 + \phi L + \phi^2 L^2 + \dots) = \phi^s\left(\frac{1}{1 - \phi L}\right)$$

- Assume that $(1 \phi L)y_t = \varepsilon_t$ with $|\phi| < 1$;
- Then we know that $\psi(L)=\phi(L)^{-1}=1+\phi L+\phi^2L^2+\dots$ and $\eta(L)=\phi(L)=1-\phi L$;
- The annihilation operator gives:

$$\left[\frac{\psi(L)}{L^s}\right]_+ = \phi^s + \phi^{s+1}L + \phi^{s+2}L^2 + \dots = \phi^s(1 + \phi L + \phi^2 L^2 + \dots) = \phi^s\left(\frac{1}{1 - \phi L}\right)$$

• So we get:

$$\mathbb{E}[y_{t+s}|y_t,y_{t-1},\ldots] = \mu + \phi^s(y_t-\mu)$$

- Assume that $(1 \phi L)y_t = \varepsilon_t$ with $|\phi| < 1$;
- Then we know that $\psi(L)=\phi(L)^{-1}=1+\phi L+\phi^2L^2+\dots$ and $\eta(L)=\phi(L)=1-\phi L$;
- The annihilation operator gives:

$$\left[\frac{\psi(L)}{L^s}\right]_+ = \phi^s + \phi^{s+1}L + \phi^{s+2}L^2 + \dots = \phi^s(1 + \phi L + \phi^2 L^2 + \dots) = \phi^s\left(\frac{1}{1 - \phi L}\right)$$

• So we get:

$$\mathbb{E}[y_{t+s}|y_t,y_{t-1},\ldots] = \mu + \phi^s(y_t-\mu)$$

- What happens when $s \to \infty$? What's the intuition for this result?
- You will do the AR(p) case in the problem set!

Example: MA(q)

- \bullet Now let's assume that $y_t=\mu+\varepsilon_t+\theta_1\varepsilon_{t-1}+\ldots+\theta_q\varepsilon_{t-q};$
- \bullet Then $\psi(L)=\theta(L)=1+\theta_1L+\ldots+\theta_qL^q$, and $\eta(L)=\theta(L)^{-1};$
- If s > q, then the annihilation operator gives 0;
- In that case: $\mathbb{E}[y_{t+s}|y_t,y_{t-1},...]=\mu$. What's the intuition for this result?

Example: MA(q)

- $\bullet \ \ \text{Now let's assume that} \ y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q};$
- Then $\psi(L)=\theta(L)=1+\theta_1L+\ldots+\theta_qL^q$, and $\eta(L)=\theta(L)^{-1}$;
- If s > q, then the annihilation operator gives 0;
- In that case: $\mathbb{E}[y_{t+s}|y_t,y_{t-1},...] = \mu$. What's the intuition for this result?
- In case $s \leq q$, then:

$$\left[\frac{\psi(L)}{L^s}\right]_+ = \theta_s + \theta_{s+1}L + \ldots + \theta_qL^{q-s}$$

• The final forecast is:

$$\mathbb{E}[y_{t+s}|y_t, y_{t-1}, \ldots] = \mu + \frac{(\theta_s + \theta_{s+1}L + \ldots + \theta_qL^{q-s})}{\theta(L)^{-1}}(y_t - \mu)$$

Forecasting with Finite Data

Forecasting with Finite Data

- Bad news about what we did: we assumed we had infinite data. That is never the case...
- There are two main ways of dealing with this problem:
 - 1. Create an "approximate" forecast;
 - 2. Use some method that explictly accounts for "missing data";
- The most common method for (2) is something called the "Kalman Filter";
- We don't have time to cover it, but it's super useful in Macro/Finance/estimation of DSGE models, etc!
- Most statistical software use (2) as the method to construct forecasts;
- ullet But learning (1) is instructive and yields the same results is T is large!

• Consider an ARMA(p,q) process:

$$y_t - \mu = \phi_1(y_{t-1} - \mu) + \ldots + \phi_p(y_{t-p} - \mu) + \varepsilon_t + \theta_1\varepsilon_{t-1} + \ldots + \theta_q\varepsilon_{t-q}$$

- We have data $\{y_1, y_2, \dots, y_T\}$ and we want to forecast y_{T+h} for h > 0.
- ullet The main issue is that we only observe finite data and never observe ε_t ;

• Consider an ARMA(p,q) process:

$$y_t - \mu = \phi_1(y_{t-1} - \mu) + \ldots + \phi_p(y_{t-p} - \mu) + \varepsilon_t + \theta_1\varepsilon_{t-1} + \ldots + \theta_q\varepsilon_{t-q}$$

- We have data $\{y_1, y_2, \dots, y_T\}$ and we want to forecast y_{T+h} for h > 0.
- ullet The main issue is that we only observe finite data and never observe ε_t ;
- \bullet Main trick: use the equatio above to back out a series of "estimated" shocks $\hat{\varepsilon}_t;$
- Assume that $\varepsilon_t = 0$ for $t \leq$ (before the sample);
- \bullet Also assume that $y_t = \mathbb{E}[y_t] = \mu$ for $t \leq 0$ (before the sample);

Now we can back out the shocks recursively:

$$\begin{split} \hat{\varepsilon}_1 &= y_1 - \mu \\ \hat{\varepsilon}_2 &= y_2 - \mu - \phi_1(y_1 - \mu) - \theta_1 \hat{\varepsilon}_1 \\ \hat{\varepsilon}_3 &= y_3 - \mu - \phi_1(y_2 - \mu) - \phi_2(y_1 - \mu) - \theta_1 \hat{\varepsilon}_2 - \theta_2 \hat{\varepsilon}_1 \\ &\vdots \\ \hat{\varepsilon}_q &= y_q - \mu - \phi_1(y_{q-1} - \mu) - \dots - \phi_{q-1}(y_1 - \mu) - \theta_1 \hat{\varepsilon}_{q-1} - \dots - \theta_{q-1} \hat{\varepsilon}_1 \\ &\vdots \\ \hat{\varepsilon}_T &= y_T - \mu - \phi_1(y_{T-1} - \mu) - \dots - \phi_p(y_{T-p} - \mu) - \theta_1 \hat{\varepsilon}_{T-1} - \dots - \theta_q \hat{\varepsilon}_{T-q} \end{split}$$

• Essentially, we are doing $\hat{\varepsilon}_t \equiv y_t - \hat{y}_{t|t-1}$, where $y_{t|t-1}$ denotes the conditional expectation of y_t given the past observations and given that we set presample data to the unconditional mean.

- From here on, you can just iterate forward;
- In general (see equation 4.2.25 from Hamilton's book):

$$\hat{y}_{t+h|t} - \mu = \begin{cases} \phi_1(y_{t+h-1|t} - \mu) + \phi_2(y_{t+h-2|t} - \mu) + \dots + \phi_p(y_{t+h-p|t} - \mu) \\ + \theta_h \hat{\varepsilon}_t + \dots + \theta_q \hat{\varepsilon}_{t+s-q} \\ \phi_1(y_{t+h-1|t} - \mu) + \phi_2(y_{t+h-2|t} - \mu) + \dots + \phi_p(y_{t+h-p|t} - \mu) \end{cases} \quad \text{if } h \leq p$$

- From here on, you can just iterate forward;
- In general (see equation 4.2.25 from Hamilton's book):

$$\hat{y}_{t+h|t} - \mu = \begin{cases} \phi_1(y_{t+h-1|t} - \mu) + \phi_2(y_{t+h-2|t} - \mu) + \ldots + \phi_p(y_{t+h-p|t} - \mu) & \text{if } h \leq p \\ + \theta_h \hat{\varepsilon}_t + \ldots + \theta_q \hat{\varepsilon}_{t+s-q} & \\ \phi_1(y_{t+h-1|t} - \mu) + \phi_2(y_{t+h-2|t} - \mu) + \ldots + \phi_p(y_{t+h-p|t} - \mu) & \text{if } h > p \end{cases}$$

• In practice, compute $y_{t+1|t}$, then $y_{t+2|t}$, then $y_{t+3|t}$, and so on;

- From here on, you can just iterate forward;
- In general (see equation 4.2.25 from Hamilton's book):

$$\hat{y}_{t+h|t} - \mu = \begin{cases} \phi_1(y_{t+h-1|t} - \mu) + \phi_2(y_{t+h-2|t} - \mu) + \ldots + \phi_p(y_{t+h-p|t} - \mu) & \text{if } h \leq p \\ & + \theta_h \hat{\varepsilon}_t + \ldots + \theta_q \hat{\varepsilon}_{t+s-q} \\ \phi_1(y_{t+h-1|t} - \mu) + \phi_2(y_{t+h-2|t} - \mu) + \ldots + \phi_p(y_{t+h-p|t} - \mu) & \text{if } h > p \end{cases}$$

- In practice, compute $y_{t+1|t}$, then $y_{t+2|t}$, then $y_{t+3|t}$, and so on;
- \bullet Notice that, as $h\to\infty$ the forecast approaches μ exponentially fast;
- What's the intuition for this result?
- What is ensuring that the forecast will not explode exponentially fast, by the way?

Example: ARMA(1,2)

Example: ARMA(1,2) - Small vs Large Sample Forecasts

• Why have we paid so much attention to ARMA models?

- Why have we paid so much attention to ARMA models?
- The Wold Decomposition Theorem is a powerful result;
- ullet It essentially says that any stationary process has an MA(∞) representation;

- Why have we paid so much attention to ARMA models?
- The Wold Decomposition Theorem is a powerful result;
- ullet It essentially says that any stationary process has an MA(∞) representation;
- ullet By playing with p and q, we can approximate any stationary process **arbitrarily well**;
- In a certain sense, ARMA models are "dense" in the space of stationary processes!
- For example: computers approximate real numbers using rationals all the time!

Formal Statement

Theorem (Wold's Decomposition)

Let y_t be a zero-mean covariance-stationary process. Define $\mathcal{P}_{t-m}[y_t]$ as the linear projection of y_t into $\{y_{t-m}, y_{t-m-1}, ...\}$. Also, let $e_t = y_t - \mathcal{P}_{t-1}[y_t]$ be the projection error. Then, there exists a unique representation of y_t as:

$$Y_t = \mu_t + \sum_{j=0}^{\infty} \psi_j e_{t-j} \tag{1}$$

where e_t is a white noise process, $\psi_0=1$, $\mu_t=\lim_{m\to\infty}\mathcal{P}_{t-m}[Y_t]$, and $\sum_{j=1}^\infty \psi_j^2<\infty$.

- A powerful result: linear representations are the way to go for stationary processes;
- ARMA methodology: approximate $\phi(L)=1+\phi_1L+\phi_2L^2+...$ by a ratio of two polynomials;

Formal Statement

Theorem (Wold's Decomposition)

Let y_t be a zero-mean covariance-stationary process. Define $\mathcal{P}_{t-m}[y_t]$ as the linear projection of y_t into $\{y_{t-m}, y_{t-m-1}, \ldots\}$. Also, let $e_t = y_t - \mathcal{P}_{t-1}[y_t]$ be the projection error. Then, there exists a unique representation of y_t as:

$$Y_t = \mu_t + \sum_{j=0}^{\infty} \psi_j e_{t-j} \tag{1}$$

where e_t is a white noise process, $\psi_0=1$, $\mu_t=\lim_{m\to\infty}\mathcal{P}_{t-m}[Y_t]$, and $\sum_{j=1}^\infty \psi_j^2<\infty$.

- A powerful result: linear representations are the way to go for stationary processes;
- ARMA methodology: approximate $\phi(L)=1+\phi_1L+\phi_2L^2+...$ by a $\it ratio$ of two polynomials;
- "Any covariance-stationary process is an ARMA process"? True of False?

References

- Chapter 3 from Hamilton's book for and the basics of ARMA models;
- Chapter 4 from Hamilton's book for Forecasting and Wold's Decomposition;