### **Model Evaluation**

Chenghua Lin

Department of Computing Science

University of Aberdeen

## Outline

- Confusion matrix
- Accuracy
- Recall, precision and F-measure
- ROC curve
- Cross validation

## **Confusion Matrix**

- The four possible outcomes of a binary classifier are usually shown in a confusion matrix
- A number of performance metrics defined using these counts

Predicted Class



## **Confusion Matrix**

|        |          | Positive' | negative' | Predicted Class |
|--------|----------|-----------|-----------|-----------------|
| Actual | positive | TP        | FN        |                 |
| Class  | negative | FP        | TN        |                 |
|        |          |           |           |                 |

- True Positives (TP)
  - # of correct predictions that an instance is positive
- True Negatives (TN)
  - # of correct predictions that an instance is negative
- False Positives (FP)
  - # of incorrect predictions that an instance is positive
- False Negatives (FN)
  - # of incorrect of predictions that an instance negative

# Accuracy

|        |          | Positive' | negative' | Predicted Class |
|--------|----------|-----------|-----------|-----------------|
| Actual | positive | TP        | FN        |                 |
| Class  | negative | FP        | TN        |                 |
|        |          |           |           |                 |

- Accuracy of the positive class: the proportions of positive class instances have been correctly predicted
  - Acc\_pos = TP / (TP + FN)
- Accuracy of the negative class: the proportions of negative class instances have been correctly predicted
  - Acc\_pos = TN / (FP + TN)
- Overall accuracy: the proportion of the total number of predictions that were correct
  - Acc = (TP + TN) / (TP + FP + FN + TN)

# Confusion Matrix: Example1

|                      | Spam<br>(Predicted) | Non-Spam<br>(Predicted) | Accuracy |
|----------------------|---------------------|-------------------------|----------|
| Spam<br>(Actual)     | 27                  | 6                       | 81.81    |
| Non-Spam<br>(Actual) | 10                  | 57                      | 85.07    |
| Overall<br>Accuracy  |                     |                         | 84       |

#### The spam dataset:

- Contains 100 instances
- 33 instances are spam
- 67 instances are non-spam

#### Accuracy:

- Acc(spam) = 27/(27 + 6) = 81.81%
- Acc(non-spam) = 57/(10 + 57) = 85.07%
- Overall\_acc = (27 + 57) / (27+6+10+57) = 84%

# Confusion Matrix: Example 2

|                      | Spam<br>(Predicted) | Non-Spam<br>(Predicted) | Accuracy |
|----------------------|---------------------|-------------------------|----------|
| Spam<br>(Actual)     | 0                   | 10                      | ??       |
| Non-Spam<br>(Actual) | 0                   | 990                     | ??       |
| Overall<br>Accuracy  |                     |                         | ??       |

#### The spam dataset:

- 10 patterns are spam
- 990 pattern are non-spam

#### Accuracy:

- Acc(spam) = 0/10 = 0%
- Acc(non-spam) =990/990 = 100%
- Overall\_acc = (0+990)/(0+10+0+990) = 99%

# Issues with accuracy

- The confusion matrix tells us how the classifier is behaving for individual classes.
- Accuracy
  - Work well for (more or less) balanced dataset (e.g.,
     100 positive and 100 negative data instances)
  - Cannot capture true classifier performance when dataset is highly unbalanced.

## Beyond accuracy...

#### Recall

- Aka True Positive rate (TP), or sensitivity
- Recall = TP/(TP+FN)

#### Precision

- The proportion of the predicted positive instance that were correct (positive predictive value)
- Precision = TP/(TP + FP)

#### F-measure

- Aka F1- score, is the harmonic mean of precision and recall
- Suitable for cases where one of the classes is rare
- F1=2x(recall x precision) / (recall + precision)

# Confusion Matrix: example3

|                      | Positive<br>(Predicted) | Negative<br>(Predicted) |
|----------------------|-------------------------|-------------------------|
| Positive<br>(Actual) | 100                     | 50                      |
| Negative<br>(Actual) | 150                     | 9700                    |

#### The dataset:

- 150 positive class instances
- 9850 negative class instances

#### Accuracy:

- Overall\_acc = (100+9700)/(100+50+150+9700) = 0.98
- Recall = 100/(100+50) = 0.667
- Precision = 100/(100+150) = 0.4
- $F1 = 2 \times (0.667 \times 0.4) / (0.667 + 0.4) = 0.5$

## **ROC - Receiver Operating Characteristic**

- Particularly a plot of TPR on y-axis against FPR on x axis is known as ROC
- A, B, C, D and E are five classifiers with different TPR and FPR values
- A is the ideal classifier because it has TPR = 1.0 and FPR = 0
- E is on the diagonal which stands for random guess
- C performs worse than random guess
  - But inverse of C which is B is better than D
- Classifiers should aim to be in the northwest



# ROC curve comparison



AUC: area under the curve

# Summary

#### Best Test:



The distributions don't overlap at all

# Testing Classifier

- Testing the classifier on training data is not useful
  - Performance figures from such testing will be optimistic
  - Because the classifier is trained from the very same data
- Ideally, a new data set called 'test set' needs to be used for testing
  - If test set is large performance figures will be more realistic
  - Creating test set needs experts' time and therefore creating large test sets is expensive
  - After testing, test set is combined with training data to produce a new classifier
  - Sometimes, a third data set called 'validation data' used for fine tuning a classifier or to select a classifier among many
- In practice several strategies used to make up for lack of test data
  - Holdout procedure a certain proportion of training data is held as test data and remaining used for training
  - Cross-validation
  - Leave-one-out cross-validation

# **Cross-validation**

## Outline

- Test-set cross-validation
- Leave-one-out cross-validation
- k-fold cross-validation

# A Regression Problem



#### Regression

 a statistical process for estimating the relationships among variables.

### Regression vs. classification

- Regression: the output variable takes continuous values.
- <u>Classification</u>: the output variable takes class labels.

# A Regression Problem



$$y = f(x) + noise$$

Can we learn **f** from this data?

Let's consider three methods

- Linear regression
- Quadratic regression
- Linear non-parametric regression

# Linear Regression



#### **Linear regression:**

 an approach to model the relationship between a scalar dependent variable y and one or more explanatory variables denoted X

# **Quadratic Regression**



#### **Quadratic regression:**

 the process of finding the equation of the parabola that fits best for a set of data

## Join-the-dots



Also known as piecewise linear nonparametric regression

## Which is best?



How to choose the method with the best fit to the data?

# What do we really want?



How to choose the method with the best fit to the data?

How well a model is going to predict future data drawn from the same distribution?

# Mean Squared Error

#### Mean Squared Error (MSE)

- one of many ways to quantify the difference between values implied by a model (aka estimator) and the true values of the quantity being estimated
- Commonly used in regression analysis

MSE = 
$$\frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$$
.



- 1. Randomly choose 30% of the data to be in a test set
- 2. The remainder is a training set



- 1. Randomly choose 30% of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set

(Linear regression example)



(Linear regression example)
Mean Squared Error = 2.4

- 1. Randomly choose 30% of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the test set



(Quadratic regression example)
Mean Squared Error = 0.9

- 1. Randomly choose 30% of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the test set



(Join the dots example)

Mean Squared Error = 2.2

- 1. Randomly choose 30% of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the test set

#### Good news

- Very very simple
- Can then simply choose the method with the best test-set score

#### Bad news

- Wastes data: we get an estimate of the best method to apply to 30% less data
- If we don't have much data, our test-set might just be lucky or unlucky





#### For k=1 to R

- 1. Let  $(x_k, y_k)$  be the  $k^{th}$  record
- 2. Temporarily remove  $(x_k, y_k)$  from the dataset



#### For k=1 to R

- 1. Let  $(x_k, y_k)$  be the  $k^{th}$  record
- 2. Temporarily remove  $(x_k, y_k)$  from the dataset
- Train on the remaining R-1 datapoints



#### For k=1 to R

- 1. Let  $(x_k, y_k)$  be the  $k^{th}$  record
- 2. Temporarily remove  $(x_k, y_k)$  from the dataset
- Train on the remaining R-1 datapoints
- 4. Note your error  $(x_k, y_k)$



# LOOCV for Quadratic Regression



## LOOCV for Non-Parametric Regression



# Which kind of validation?

|                   | Downside                                            | Upside             |
|-------------------|-----------------------------------------------------|--------------------|
| Test-set          | Variance: unreliable estimate of future performance | Cheap              |
| Leave-<br>one-out | Expensive.                                          | Doesn't waste data |



Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)



Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.



Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.



Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.



Linear Regression  $MSE_{3FOLD}=2.05$ 

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error



Quadratic Regression *MSE*<sub>3FOLD</sub>=1.11

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error



Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error

## Which kind of validation

|                   | Downside                                                      | Upside                                                            |
|-------------------|---------------------------------------------------------------|-------------------------------------------------------------------|
| Test-set          | Variance: unreliable estimate of future performance           | Cheap                                                             |
| Leave-<br>one-out | Expensive.                                                    | Doesn't waste data                                                |
| 10-fold           | Wastes 10% of the data. 10 times more expensive than test set | Only wastes 10%. Only 10 times more expensive instead of R times. |
| 3-fold            | Wastier than 10-fold. Expensivier than test set               | Slightly better than test-<br>set                                 |
| R-fold            | Identical to Leave-one-out                                    |                                                                   |

#### Cross-validation for classification

- Instead of computing the sum squared errors on a test set, you should compute
  - The total number of misclassifications on a testset.
  - E.g., the test set has 10 data
    points (4 data point -> positive,
    6 data point -> negative)
  - Your classifier somehow
     predicted them all as positive ...



## Summary

#### What you should know

- Accuracy
- Precision, recall, F-measure
- ROC curve
- when to use accuracy or F-measure
- Why you can't use "training-set-error" to estimate the quality of your learning algorithm on your data, or to choose the learning algorithm
- Test-set cross-validation
- Leave-one-out cross-validation
- k-fold cross-validation