

FULLY PROTECTED HIGH SIDE POWER MOSFET SWITCH

Features

- Over temperature protection (with auto-restart)
- Short-circuit protection (current limit)
- Active clamp
- E.S.D protection
- Status feedback
- Open load detection
- · Logic gound isolated from power ground

Description

The IPS511G/IPS512G/IPS514G are fully protected five terminal high side switches with built in short-circuit, over-temperature, ESD protection, inductive load capability and diagnostic feedback. The output current is controlled when it reaches I_{lim} value. The current limitation is activated until the thermal protection acts. The over-temperature protection turns off the high side switch if the junction temperature exceeds Tshutdown. It will automatically restart after the junction has cooled 7°C below Tshutdown. A diagnostic pin is provided for status feedback of short-circuit, over-temperature and open load detection. The double level shifter circuitry allows large offsets between the logic ground and the load ground.

Product Summary

150mΩ (max)
50V
5A
3V

Truth Table

Op. Conditions	In	Out	Dg
Normal	Н	Н	Н
Normal	L	L	L
Open load	Н	Н	Н
Open load	L	Н	Н
Over current	Н	L (limiting)	L
Over current	L	L	L
Over-temperature	Н	L (cycling)	L
Over-temperature	L	L	L

Typical Connection

+ VCC Output pull-up resistor Status feedback Dg control Logic Rdg Out Rin Gnd In Load Logic signal Logic Gnd Load Gnd

Available Package

International IOR Rectifier

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to GROUND lead. ($T_j = 25^{\circ}C$ unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units	Test Conditions
V _{out}	Maximum output voltage	V _{cc} -50	V _{CC} +0.3		
Voffset	Maximum logic ground to load ground offset	V _{cc} -50	V _{cc} +0.3	V	
V _{in}	Maximum Input voltage	-0.3	5.5		
lin, max	Maximum IN current	-5	10	mA	
V _{dg}	Maximum diagnostic output voltage	-0.3	5.5	V	
Idg, max	Maximum diagnostic output current	-1	10	mA	
I _{sd cont.}	Diode max. continuous current (1)				
	(IPS511G)	_	1.4		
	(per leg/both legs ON - IPS512G)	_	0.8	Α	
	(per leg/all legs ON - IPS514G)	_	0.7	А	
Isd pulsed	Diode max. pulsed current (1)	_	10		
ESD1	Electrostatic discharge voltage (Human Body)	_	4	kV	C=100pF, R=1500Ω,
ESD2	Electrostatic discharge voltage (Machine Model)	_	0.5	ΚV	C=200pF, R=0Ω, L=10μH
Pd	Maximum power dissipation				
	(rth=125°C/W) IPS511G	_	1	W	
	(rth=85°C/W, both legs on) IPS512G	_	1.5		
	(rth=50°C/W, all legs on) IPS514G	_	2.5		
T _j max.	Max. storage & operating junction temp.	-40	+150	°C	
Vcc max.	Maximum Vcc voltage	_	50	V	

Thermal Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{th1}	Thermal resistance with standard footprint	_	100	_		O.L. and COIC
R _{th2}	Thermal resistance with 1" square footprint		80			8 Lead SOIC
R _{th1}	Thermal resistance with standard footprint					
(2 mos on)	(2 mosfets on)		85	_		
Rth2 (1)	Thermal resistance with standard footprint					16 Lead SOIC
(1 mos on)	(1 mosfet on)	_	100	l		
Rth2	Thermal resistance with 1" square footprint					
(2 mos on)	(2 mosfets on)	_	50	1		
R _{th1}	Thermal resistance with standard footprint	_	60		°C/W	
Rth2	Thermal resistance with standard footprint				0,11	
(2 mos on)	(2 mosfets on)	_	55			
Rth3	Thermal resistance with standard footprint					
(4 mos on)	(4 mosfets on)	_	50	_		001 1 0010
Rth1	Thermal resistance with 1" square footprint	_	45		Ī	28 Lead SOIC
Rth2	Thermal resistance with 1" square footprint					
(2 mos on)	(2 mosfets on)	_	40	_		
Rth3	Thermal resistance with 1" square footprint	·				
4 mos on)	(4 mosfets on)	_	35	_		

⁽¹⁾ Limited by junction temperature (pulsed current limited also by internal wiring)

International Rectifier

IPS511G/IPS512G/IPS514G

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Continuous V _{CC} voltage	5.5	35	
VIH	High level input voltage	4	5.5	V
VIL	Low level input voltage	-0.3	0.9	
lout	Continuous output current			
Tamb=85°C	(TAmbient = 85°C, Tj = 125°C, rth = 100°C/W) IPS511G	_	1.4	
lout	Continuous output current per leg			•
Tamb=85°C	(TAmbient = 85° C, Tj = 125° C R _{th} = 85° C/W both legs on) IPS512G	_	1.0	Α
lout	Continuous output current per leg			
Tamb=85°C	(TAmbient = 85°C, Tj = 125°C Rth = 60°C/W all legs on) IPS514G	_	0.85	
Rin	Recommended resistor in series with IN pin	4	6	
Rdg	Recommended resistor in series with DG pin	10	20	$k\Omega$

Static Electrical Characteristics

 $(T_j = 25^{\circ}C, V_{CC} = 14V \text{ unless otherwise specified.})$

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{ds(on)} @Tj=25°C	ON state resistance T _j = 25°C	_	130	150		V _{in} = 5V, I _{out} = 2.5A
R _{ds(on)} (V _{cc} =6V)	ON state resistance @ V _{CC} = 6V	_	130	150	mΩ	$V_{in} = 5V$, $I_{out} = 1A$
Rds(on) @Tj=150°C	ON state resistance Tj = 150°C	_	220	_		$V_{in} = 5V$, $I_{out} = 2.5A$
V _{cc oper.}	Operating voltage range	5.5	_	35		
V clamp 1	Vcc to OUT clamp voltage 1	50	56	_	[,, [Id = 10mA (see Fig.1 & 2)
V clamp 2	V _{CC} to OUT clamp voltage 2	_	58	65	V	$I_d = I_{Sd}$ (see Fig.1 & 2)
Vf	Body diode forward voltage	_	0.9	1.2		$I_d = 2.5A, V_{in} = 0V$
I _{cc} off	Supply current when OFF	_	16	50	μΑ	$V_{in} = 0V, V_{out} = 0V$
Icc on	Supply current when ON	_	0.7	2	mA	Vin = 5V
Icc ac	Ripple current when ON (AC RMS)	_	20	_	μΑ	Vin = 5V
Vdgl	Low level diagnostic output voltage	_	0.15	0.4	V	ldg = 1.6 mA
loh	Output leakage current	_	60	120		$V_{out} = 6V$
lol	Output leakage current	0	_	25	μΑ	$V_{out} = 0V$
ldg					μΑ	
leakage	Diagnostic output leakage current	_	_	10		$V_{dg} = 5.5V$
Vih	IN high threshold voltage	_	2.3	3	V	
Vil	IN low threshold voltage	1	2		_ v	
lin, on	On state IN positive current		70	200	μΑ	V _{in} = 5V
In, hyst.	Input hysteresis	0.1	0.25	0.5	V	

International

TOR Rectifier

Switching Electrical Characteristics

 V_{CC} = 14V, Resistive Load = 5.6 Ω , T_i = 25°C, (unless otherwise specified).

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
T _{don}	Turn-on delay time		7	50		
T _{r1}	Rise time to $V_{Out} = V_{CC} - 5V$		10	50	μs	
T _{r2}	Rise time from the end of Tr1 to					See figure 3
	$V_{out} = 90\%$ of V_{CC}	_	45	95		
dV/dt (on)	Turn ON dV/dt	_	1.3	4	V/µs	
Eon	Turn ON energy		400	_		
T _{doff}	Turn-off delay time		15	50	μs	See figure 4
Tf	Fall time to V _{out} = 10% of V _{CC}		10	50]	
dV/dt (off)	Turn OFF dV/dt		2	6	V/µs	
Eoff	Turn OFF energy	_	80	_	μJ	
Tdiag	Vout to Vdiag propagation delay	_	5	15	μs	See figure 6

Protection Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
llim	Internal current limit	3	5	7	Α	$V_{out} = 0V$
	Over-temp. positive going threshold	_	165	_	°C	See fig. 2
T _{sd} -	Over-temp. negative going threshold	_	158	_	°C	See fig. 2
V _{sc}	Short-circuit detection voltage (3)	2	3	4	V	See fig. 2
Vopen load	Open load detection threshold	2	3	4	V	

⁽³⁾ Referenced to V_{CC}

Lead Assignments

Functional Block Diagram

All values are typical

Figure 2 - Protection timing diagram

International

Rectifier

Figure 3 - Switching times definition (turn-on)
Turn on energy with a resistive or an
inductive load

Figure 4 - Switching times definition (turn-off)

Figure 5 - Active clamp test circuit

Figure 6 - Diagnostic delay definitions

International TOR Rectifier

IPS511G/IPS512G/IPS514G

Figure 7 - $R_{ds(on)}$ (m Ω) Vs V_{CC} (V)

Figure 8 - Normalized R_{ds(on)} (%) Vs T_j (°C)

Figure 9 - Rds(on) (m Ω) Vs I $_{out}$ (A)

Figure 10 - Max. $I_{\mbox{out}}$ (A) Vs Load Inductance (uH)

Figure 11a - Max load current (A) Vs Tamb (°C) IPS511G

Figure 11b - Max load current (A) Vs Tamb (°C) IPS512G

Figure 11c - Max load current (A) Vs Tamb $\,$ (°C) IPS514G

Figure 12a - Transient Thermal Impedance (°C/W) Vs Time (S) - IPS511G/IPS512G

International Rectifier

IPS511G/IPS512G/IPS514G

Figure 12b - Transient Thermal Impedance (°C/W) Vs Time (S) - IPS514G

Figure 13 - I_{lim} (A) Vs T_j (°C)

Figure 14 - Eon, Eoff (µJ) vs I (A)

Figure 15 - E_{ON} (μ J) Vs Load Inductance (μ H) (see Fig. 3)

International

TOR Rectifier

Figure 16 - Diag Blanking time (μ S) Vs I_{OUt} (A) (resistive load - see Fig. 6)

Figure 17 - Icc (mA) Vs Vcc (V)

Case Outline - IPS511G

Case Outline - IPS512G

Case Outline - IPS514G

International Ten Postifier

I≎R Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd., Whyteleafe, Surrey CR3 0BL, United Kingdom Tel: ++ 44 (0) 20 8645 8000

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 8133 983 0086 IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon Hong Kong Tel: (852) 2803-7380

Data and specifications subject to change without notice. 4/17/2000