

BINARY CODES AND BINARY STORAGE

DIGITAL LOGIC DESIGN

Iqra Chaudhary (Lecturer CS dept. NUML)

Iqra chaudhary CS, NUML

Binary codes

Digital system use signals that have two distinct values.

- > Data is encoded with 0's and 1's
- Need codes for
 - Decimal number
 - > Text characters
 - Floating point numbers
 - > Images
 - > Programs...
- "An n-bit binary code is a group of n bits that assume up to 2ⁿ distinct combinations of 1's and 0's, with each combination representing one element of the set that is being coded."

CS, NUML

Non-numeric Binary Codes

- Given n binary digits (called bits), a binary code is a mapping from a set of <u>represented elements</u> to a subset of the <u>2</u>ⁿ binary numbers.
- Example: A binary code for the seven colors of the rainbow
- Code 100 is not used

Color	Binary Number
Red	000
Orange	001
Yellow	010
Green	011
Blue	101
Indigo	110
Violet	111

Questions

- How many bits are required to represent in a binary code?
 - decimal digits
 - Hexadecimal digits
 - No. of dresses you own
 - Books you have read
 - Books in a library
 - No. of organs in your body

BINARY CODES FOR DECIMAL DIGITS

There are over 8,000 ways that you can chose 10 elements from the 16 binary numbers of 4 bits.

Iqra chaudhary CS, NUML

Binary Codes for Decimal Digits

- > BCD code
- > Excess-3 code
- > 8421
- Gray code

Decimal	8,4,2,1	Excess3	Excess3 8,4, -2, -1	
0	0000	0011	0000	0000
1	0001	0100	0111	0100
2	0010	0101	0110	0101
3	0011	0110	0101	0111
4	0100	0111	0100	0110
5	0101	1000	1011	0010
6	0110	1001	1010	0011
7	0111	1010	1001	0001
8	1000	1011	1000	1001
9	1001	1100	1111	1000

Binary Codes: BCD Code/binary coded decimal

- BCD Code/binary coded decimal
 - Binary Code to represent decimal digits 0-9
 - A decimal number in BCD is the same as its equivalent binary number only when the number is between 0 and 9.
 - The binary combinations 1010 through 1111 are not used and have no meaning in BCD.

Decimal Symbol	BCD Digit	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	

Binary Codes: BCD Code/binary coded decimal

- A number with k decimal digits will require 4k bits in BCD.
- Decimal 396 is represented in BCD with 12bits as 0011 1001 0110, with each group of 4 bits representing one decimal digit.

Warning: Conversion or Coding?

 Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a BINARY CODE.

Example:

```
13_{10} = 1101_2 (This is conversion)
13 0001 0011 (This is coding)
```

Consider decimal 185 and its corresponding value in BCD and binary:

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (10111001)_2$$

Binary Codes: BCD Code/binary coded decimal

Example (BCD): 0000 1000 0001 1001 0010 0001 0000 0011 0001 0001 0100 0001 0010 0101 0001 0011 0110 0001 0100 0111 15 0001 0101

Binary Codes: Excess-3 code

- Non weighted code
- Excess-3 code was used on some older computers and hand-held portable electronic calculators of the 1970s, among other uses.
- > Excess-3 code start from 3(0011)

Table 1

Digit	Excess code
0	0011
1	0100
2	0101
3	0110
4	0111
5	1000
6	1001
7	1010
8	1011
9	1100

Binary Codes: Excess-3 code

```
EXAMPLE (Note: 2 digits represented by 2 4 bit
 numbers)
12 to excess-3 = 1+3=4 2+3=5
       5
 0100 0101
29 to excess-3 = 2+3=5 9+3=12
       12
 0101 1100
```

Binary Codes: Gray Code

- The advantage is that only bit in the code group changes in going from one number to the next.
 - Representation of analog data.
 - Error detection.

Table 1.6 Gray Code

Gray Code	Decimal Equivalent		
0000	0		
0001	1		
0011	2		
0010	3		
0110	4		
0111	5		
0101	6		
0100	7		
1100	8		
1101	9		
1111	10		
1110	11		
1010	12		
1011	13		
1001	14		
1000	15		

Binary Codes: Gray Code

Binary Codes: Gray Code and binary code for 0-7 decimal

Decimal	Gray	Binary
0	000	000
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

ASCII Character Codes

- American Standard Code for Information Interchange A popular code used to represent information sent as character-based data.
- Numbers, Characters, Symbols
- It uses 7-bits to represent:
 - 94 Graphic printing characters.
 - 34 Non-printing characters.
- Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return).
- Other non-printing characters are used for flow control (e.g. STX and ETX start and end text areas).

Alphanumeric Code

- 10 Numbers (0-9)
- 26 Lower Case Characters (a-z)
- 26 Upper Case Characters (A-Z)
- 32 Control Characters
- Punctuation and Symbols

Alphanumeric Code

■ American Standard Code for Information Interchange (ASCII) Character Code

Table 1.7 *American Standard Code for Information Interchange (ASCII)*

				b7b6b5				
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P		p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	•	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	у
1010	LF	SUB	35	:	J	Z	j	Z
1011	VT	ESC	+	;	K]	k	{
1100	FF	FS	,	<	L	\	1	Ì
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	O	_	O	DEI

Iqra chaudhary

Binary Storage and Registers

Registers

- A binary cell is a device that possesses two stable states and is capable of storing one of the two states.
- A register is a group of binary cells. A register with n cells can store any discrete quantity of information that contains n bits.

n cells 2ⁿ possible states

A binary cell

- Two stable state
- Store one bit of information
- Examples: flip-flop circuits, ferrite cores, capacitor

A register

- A group of binary cells
- AX in x86 CPU

Register Transfer

- A transfer of the information stored in one register to another.
- One of the major operations in digital system.
- An example in next slides.

A Digital Computer Example

Transfer of information

CS, NUML Figure 1.1 Transfer of information among register

Transfer of information

- The other major component of a digital system
 - Circuit elements to manipulate individual bits of information
 - Load-store machine

```
LD R1;
LD R2;
ADD R3, R2, R1;
SD R3;
```

lgra charge 1.2 Example of binary information processing

Thank You