

Λ	25	ıım	CMOS	C3E	Process	Daram	ators
U.	. 30	um	CINIO2	C35	Process	Param	eters

Document Number: ENG -182

Revision #: 6.0

Company Confidential

Table of Contents

1	INT	RODUCTION	5
	1.1	REVISION	5
	1.2	PROCESS FAMILY	
	1.3	RELATED DOCUMENTS	
2	GEN	IERAL	8
	2.1	Wafer Cross – Section	8
	2.2	OPERATING CONDITIONS	9
	2.2.	1 Temperature Range	9
	2.2	2 Operating Voltage Range	9
	2.3	Current Densities	. 11
3	PRC	OCESS CONTROL PARAMETERS	. 12
	3.1	Introduction	10
	3.2	CMOS Core Module Parameters.	
	3.2.		
	3.2.		
	3.2.		
	3.2.		
	3.2.		
	3.2.	•	
	3.2.		
	3.2.		
	3.3		
	3.3.		
	3.3		
	3.3.		
	3.3.	4 High Precision Poly2 Sheet Resistance: RPOLY2P	. 27
	3.3.	5 POLY1-POLY2 Capacitor: CPOLY	. 27
	3.3.	6 Capacitances	. 28
	3.4	METAL2-METALC CAPACITOR MODULE PARAMETERS	. 29
	3.4.	1 Structural and Geometrical Parameters	. 29
	3.4	2 METC Sheet Resistance	. 29
	3.4.	3 Contact Resistance	. 29
	3.4.	4 Metal2-MetalC Capacitor: CMIM	. 29
	3.5	5 Volt Module Parameters	
	3.5.		
	3.5.		
	3.5.	· · · · · · · · · · · ·	
	3.6	Low VTH Module Parameters	
	3.6.		
	3.6		
	3.6.		
	3.6.	,	
	3.7	5 Volt Low VTH Module Parameters	. 36

ENG – 182 Rev. 6.0

0.35 µm CMOS C35 Process Parameters

3.7.2 Low VTH MOS 5V P-Channel Electrical Parameters: PMOSML 3.7.3 Low VTH MOS N-Channel High Voltage Electrical Parameters: NMOSMHL 3.7.4 Capacitances 3.8 METAL 4 MODULE PARAMETERS 3.8.1 Structural and Geometrical Parameters 3.8.2 Sheet Resistances	
3.7.4 Capacitances	
3.8 Metal 4 Module Parameters	
3.8.1 Structural and Geometrical Parameters	
3.8.2 Sheet Resistances	39
3.8.3 Capacitances	
3.9 THICK METAL MODULE PARAMETERS	4′
3.9.1 Structural and Geometrical Parameters	
3.9.2 Sheet Resistances	
3.9.3 Capacitances	
3.10 HIGH RESISTIVE POLY MODULE PARAMETERS	
3.10.1 High Precision Poly2 Sheet Resistance: RPOLY2PH	
3.11 Low TC Poly Module Parameters	
3.12 SCHEMATIC DESCRIPTION OF GEOMETRICAL PARAMETERS	
3.13 Notes / Measurement Conditions	47
4 SIMULATION MODEL	57
4.1 Introduction	£-
4.1 INTRODUCTION	
4.3 MOS TRANSISTOR MODEL:	
4.3.1 MOS Transistor Model Features:	
4.3.2 MOS Transistor Model Limitations and Restrictions:	
4.3.3 MOS Transistor Worst Case Corner Model:	
4.4 HV MOS TRANSISTOR MODEL:	
4.4.1 HV MOS Transistor Model Features:	
4.4.2 HV MOS Transistor Model Limitations and Restrictions:	
4.4.3 HVMOS Transistor Worst Case Corner Model:	
4.5 BIPOLAR TRANSISTOR MODEL:	
4.5.1 Bipolar Transistor Model Features:	
4.5.1 Bipolar Transistor Model Features:	60
4.5.1 Bipolar Transistor Model Features:	6
 4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 	6 6
4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 4.6 WELL RESISTOR MODEL:	
4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 4.6 WELL RESISTOR MODEL: 4.6.1 Well Resistor Model Features:	
 4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 4.6 WELL RESISTOR MODEL: 4.6.1 Well Resistor Model Features: 4.6.2 Well Resistor Model Limitations and Restrictions: 	
 4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 4.6 Well Resistor Model: 4.6.1 Well Resistor Model Features: 4.6.2 Well Resistor Model Limitations and Restrictions: 4.6.3 Well Resistor Worst Case Model: 	
 4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 4.6 Well Resistor Model: 4.6.1 Well Resistor Model Features: 4.6.2 Well Resistor Model Limitations and Restrictions: 4.6.3 Well Resistor Worst Case Model: 4.7 DIFFUSION RESISTOR MODEL: 	
 4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 4.6 WELL RESISTOR MODEL: 4.6.1 Well Resistor Model Features: 4.6.2 Well Resistor Model Limitations and Restrictions: 4.6.3 Well Resistor Worst Case Model: 4.7 DIFFUSION RESISTOR MODEL: 4.7.1 Diffusion Resistor Model Features: 	
 4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 4.6 WELL RESISTOR MODEL: 4.6.1 Well Resistor Model Features: 4.6.2 Well Resistor Model Limitations and Restrictions: 4.6.3 Well Resistor Worst Case Model: 4.7 DIFFUSION RESISTOR MODEL: 4.7.1 Diffusion Resistor Model Features: 4.7.2 Diffusion Resistor Model Limitations and Restrictions: 4.7.3 Diffusion Resistor Worst Case Model: 4.8 POLY2 AND HIGH RESISTIVE POLY RESISTOR MODEL: 	
4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 4.6 Well Resistor Model: 4.6.1 Well Resistor Model Features: 4.6.2 Well Resistor Model Limitations and Restrictions: 4.6.3 Well Resistor Worst Case Model: 4.7 DIFFUSION RESISTOR MODEL: 4.7.1 Diffusion Resistor Model Features: 4.7.2 Diffusion Resistor Model Limitations and Restrictions: 4.7.3 Diffusion Resistor Worst Case Model:	
 4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 4.6 WELL RESISTOR MODEL: 4.6.1 Well Resistor Model Features: 4.6.2 Well Resistor Model Limitations and Restrictions: 4.6.3 Well Resistor Worst Case Model: 4.7 DIFFUSION RESISTOR MODEL: 4.7.1 Diffusion Resistor Model Features: 4.7.2 Diffusion Resistor Model Limitations and Restrictions: 4.7.3 Diffusion Resistor Worst Case Model: 4.8 POLY2 AND HIGH RESISTIVE POLY RESISTOR MODEL: 4.8.1 Poly2 and high resistive poly Resistor Model Features: 4.8.2 Poly2 and high resistive poly Resistor Model Limitations and Restrictions: 	
 4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 4.6 WELL RESISTOR MODEL: 4.6.1 Well Resistor Model Features: 4.6.2 Well Resistor Model Limitations and Restrictions: 4.6.3 Well Resistor Worst Case Model: 4.7 DIFFUSION RESISTOR MODEL: 4.7.1 Diffusion Resistor Model Features: 4.7.2 Diffusion Resistor Model Limitations and Restrictions: 4.7.3 Diffusion Resistor Worst Case Model: 4.8 POLY2 AND HIGH RESISTIVE POLY RESISTOR MODEL: 4.8.1 Poly2 and high resistive poly Resistor Model Features: 4.8.2 Poly2 and high resistive poly Resistor Model Limitations and Restrictions: 4.8.3 Poly2 and high resistive poly Resistor Worst Case Model: 	
 4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 4.6 WELL RESISTOR MODEL: 4.6.1 Well Resistor Model Features: 4.6.2 Well Resistor Model Limitations and Restrictions: 4.6.3 Well Resistor Worst Case Model: 4.7 DIFFUSION RESISTOR MODEL: 4.7.1 Diffusion Resistor Model Features: 4.7.2 Diffusion Resistor Model Limitations and Restrictions: 4.7.3 Diffusion Resistor Worst Case Model: 4.8 POLY2 AND HIGH RESISTIVE POLY RESISTOR MODEL: 4.8.1 Poly2 and high resistive poly Resistor Model Features: 4.8.2 Poly2 and high resistive poly Resistor Model Limitations and Restrictions: 4.8.3 Poly2 and high resistive poly Resistor Worst Case Model: 4.9 LOW TC POLY RESISTOR MODEL: 	
4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Worst Case Corner Model: 4.6.3 Bipolar Transistor Worst Case Corner Model: 4.6.1 Well Resistor Model Features: 4.6.2 Well Resistor Model Limitations and Restrictions: 4.6.3 Well Resistor Worst Case Model: 4.7 DIFFUSION RESISTOR MODEL: 4.7.1 Diffusion Resistor Model Features: 4.7.2 Diffusion Resistor Model Limitations and Restrictions: 4.7.3 Diffusion Resistor Worst Case Model: 4.8 POLY2 AND HIGH RESISTIVE POLY RESISTOR MODEL: 4.8.1 Poly2 and high resistive poly Resistor Model Limitations and Restrictions: 4.8.2 Poly2 and high resistive poly Resistor Model Limitations and Restrictions: 4.8.3 Poly2 and high resistive poly Resistor Model Limitations and Restrictions: 4.8.3 Poly2 and high resistive poly Resistor Worst Case Model: 4.9 Low TC Poly Resistor Model Features:	
 4.5.1 Bipolar Transistor Model Features: 4.5.2 Bipolar Transistor Model Limitations and Restrictions: 4.5.3 Bipolar Transistor Worst Case Corner Model: 4.6 WELL RESISTOR MODEL: 4.6.1 Well Resistor Model Features: 4.6.2 Well Resistor Model Limitations and Restrictions: 4.6.3 Well Resistor Worst Case Model: 4.7 DIFFUSION RESISTOR MODEL: 4.7.1 Diffusion Resistor Model Features: 4.7.2 Diffusion Resistor Model Limitations and Restrictions: 4.7.3 Diffusion Resistor Worst Case Model: 4.8 POLY2 AND HIGH RESISTIVE POLY RESISTOR MODEL: 4.8.1 Poly2 and high resistive poly Resistor Model Features: 4.8.2 Poly2 and high resistive poly Resistor Model Limitations and Restrictions: 4.8.3 Poly2 and high resistive poly Resistor Worst Case Model: 4.9 LOW TC POLY RESISTOR MODEL: 	

4.10 F	POLY AND MIM CAPACITOR MODEL:	65
4.10.1	Poly and MIM Capacitor Model Features:	65
4.10.2	Poly and MIM Capacitor Model Limitations and Restrictions:	65
4.10.3	Poly and MIM Capacitor Worst Case Model:	65
4.11 N	MOS Capacitor Model:	65
4.11.1	MOS Capacitor Model Features:	65
4.11.2	MOS Capacitor Model Limitations and Restrictions:	65
4.11.3	MOS Capacitor Worst Case Model:	65
4.12 N	MOS Varactor Model:	66
4.13 E	DIODE MODEL:	66
4.13.1	Diode Model Features:	66
4.13.2	Diode Model Limitations and Restrictions:	66
4.13.3	Diode Worst Case Model:	66
4.14 2	ZENER DIODE MODEL:	66
4.14.1	Diode Model Features:	66
4.14.2	Diode Model Limitations and Restrictions:	66
4.14.3	Zener Diode Worst Case Model:	66
4.15 N	MODEL FEATURE OVERVIEW TABLE	67
4.16	SUMMARY OF SIMULATION MODELS	68
4.17	CIRCUIT SIMULATORS AND MODELS	71
CHARA	CTERISTIC CURVES	72
5.1 INT	RODUCTION	72
5.2 MO	S Transistor Characteristics	73
5.2.1	3.3V MOS Transistor Characteristics	
5.2.2	3.3V HV-MOS Transistor Characteristics	77
5.2.3	5V MOS Transistor Characteristics	78
5.2.4	5V HV-MOS Transistor Characteristics	82
5.2.5	3.3V Low VT MOS Transistor Characteristics	
5.2.6	5V Low VT MOS Transistor Characteristics	87
5.3 BIP	OLAR TRANSISTOR CHARACTERISTICS	91
5.4 WE	LL RESISTOR CHARACTERISTICS	92
5.5 Poi	LY RESISTOR TEMPERATURE CHARACTERISTICS	93
5.6 CAF	PACITOR CHARACTERISTICS	94
SUPPOI	RT	95
CODVD	ICUT	0.0

Introduction

1.1 Revision

Ctatus of D

Change S	Status of Pages	(including short description of change)			
Rev. 1	Affected pages:	1 to 63	(March 2002)		
Subject o	f change: first version of process parameter specification	ation	-		
Rev. 2	Affected pages:	1 to 62	(Feb. 2003)		
Changed	: Parameters throughout the document due to param Chapter "Matching Parameter" taken out. All inform Matching Parameters document Eng – 228. SPICE Modeling.		0.35µm CMOS		
Added:	Tick metal module, MIM capacitor module, Poly fus MOS transistor threshold voltage measured in linea MIM capacitor in Wafer Cross Section.				
Rev. 3	Affected pages:	1 to 62	(August 2004)		
	: Parameters throughout the document due to param Narrower specification for: RNWELL, RDIFFN, RDIFFP, RMET, RMET2, RMEd:XJNW, Zener diode and poly fuse parameter withdrapper through the corresponding metal capacitances. Accommodation of all influenced SPICE models. New SPICE models: RPOLY2, RDIFFN, RDIFFP, F	T3, CMIM (TMIM), RPOLY, RPOLYH rawn,			
Added:	JMETT, JPOLYH, TCMET, TCPOLY2W				
Rev. 4	Affected pages:	1 to 79	(November 2005)		
Corrected	d: TILDDIFF (metal1-poly oxide thickness (active reging TMP2FOXP1 (metal1-poly2 oxide thickness (field region)) TPOX, TMIM calculated from measured CPOX and	egion, with poly1))			
Pass/Fail	Parameters with reduced specification limits: RMET	Т			
Added:	Schematic Description of Geometrical Parameters				

Low VT Module

RPOLY1 resistor

Changed: Diode leakage parameter for all diodes (JS, JSW)

Add processes C35A3B0, C35B3C3, C35B3L3, C35B4C0, C35B4M6

junction current temperature exponent coefficient for all diodes (XTI)

Temperature & voltage coefficients RPOLY2, RPOLYH

Change Status of Pages

(including short description of change)

Rev. 5		Affected pages:		1 to 89	(Jan. 2007)				
Corrected: WPOLY1, VERT10 SPICE model temperature coefficient.									
Added:	ded: Poly Fuse and Zener diode electrical parameter specification Descriptions of features and limitations of all SPICE models. Listing of worst case SPICE parameter Model feature overview table.								
Changed	, ,	DLY2 and RPOLYH SPICE PMOSL, NMOSML, PMOS							
Rev. 6		Affected pages:		1 to 95	(Nov. 2008)				
Added:	Added: Low TC Poly Module, electrical Parameters and SPICE model Note for thick metal module (Polyimide is mandatory for processes with thick top metal) Add process C35B4Z1, C35B4T1 Add high precision poly resistors: RPOLY2P and RPOLY2PH								

1.2 Process Family

This document is valid for the following 0.35um CMOS processes:

Process name	No. of masks	Core module	PIP capacitor	5V gate	high resistive	low TC poly	Metal 4 module	Thick metal	MIM capacitor	Low VT
			module	module	poly module	module		module	module	module
C35A3B0	13	Х								
C35B3C0	14	Х	Х							
C35B3C1	17	Х	Х	Х						
C35B3C3	18	Х	Х	Х	Х					
C35B3L3	20	Х	Х	Х	Х					Х
C35B4C0	16	Х	Х				Х			
C35B4C3	20	Х	Х	Х	Х		Х			
C35B4T1	20	Х	Х	Х				Х		
C35B4M3	22	Х	Х	Х	Х			x**	Х	
C35B4M6	18	Х	Х		Х		Х		Х	
C35B4O1*	19	Х	Х	Х			Х			
C35B4Z1	20	X	Х	X		Х	Х			

Core module: p-substrate, 1-poly, 3-metal, 3.3 Volt CMOS process.

PIP capacitor module: poly1-poly2 capacitor, RPOLY2 resistor, RPOLY2P resistor

5V gate module: 5V mid-oxide for MOSFETs

High resistive poly module: High resistive poly resistor RPOLYH, RPOLY2PH resistor

Low TC Poly Module Parameters: Low TC poly resistor RPOLYZ

Metal 4 module: Thin metal 4
Thick metal module: Thick metal 4

MIM capacitor module: MET2-METCAP capacitor Low VT module: Low threshold 3.3V and 5V MOSFETs

*)C35B4O1: opto process with ARC layer.

1.3 Related Documents

Description	Document Number
0.35µm CMOS C35 Design Rules	Eng - 183
0.35µm CMOS C35 Noise Parameters	Eng - 189
0.35µm CMOS C35 RF SPICE Models	Eng – 188
0.35µm CMOS Matching Parameters	Eng - 228
0.35µm CMOS C35O Process Parameters	Eng - 248
C35 ESD Design Rules	ENG-236
Standard Family Cells	ENG-42
Assembly Related Design Rules	ASSY-15

^{**)}Polyimide is mandatory for processes with thick top metal

2 General

2.1 Wafer Cross - Section

2.2 Operating Conditions

2.2.1 Temperature Range

The process described in this document is qualified in the Temperature range -40°C <=Tj<=125°C.

Temperature dependent parameters are extracted in the temperature range 25°C< Tj <125°C.

SPICE models are valid in the temperature range -40°C< Tj <180°C.

(Tj specified as junction temperature)

2.2.2 Operating Voltage Range

The maximum operating voltages are specified in absolute values.

Note: The values in brackets denote absolute maximum ratings. These ratings are stress ratings only. Functional operation of the device at these conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability (e.g. hot carrier degradation, oxide breakdown).

MOS Transistors	Device- name	max. VGS [V]	max. VDS [V]	max. VGB [V]	max. VDB [V]	max. VSB [V]	max. VBpsub [V]
3.3 Volt NMOS	NMOS	3.6 (5)	3.6 (5)	3.6 (5)	3.6 (5)	3.6 (5)	-
3.3 Volt PMOS	PMOS	3.6 (5)	3.6 (5)	3.6 (5)	3.6 (5)	3.6 (5)	5.5 (7)
5 Volt NMOS	NMOSM	5.5 (7)	5.5 (7)	5.5 (7)	5.5 (7)	5.5 (7)	-
5 Volt PMOS	PMOSM	5.5 (7)	5.5 (7)	5.5 (7)	5.5 (7)	5.5 (7)	5.5 (7)
high voltage NMOS (gate oxide)	NMOSH	3.6 (5)	15 (17)	3.6 (5)	15 (17)	3.6 (5)	-
high voltage NMOS (midoxide)	NMOSMH	5.5 (7)	15 (17)	5.5 (7)	15 (17)	5.5 (7)	-

MOS Transistors	Device- name	max. VGS [V]	max. VDS [V]	max. VGB [V]	max. VDB [V]	max. VSB [V]	max. VBpsub [V]
Low VT 3.3 V NMOS	NMOSL	3.6 (5)	3.6 (5)	3.6 (5)	3.6 (5)	3.6 (5)	-
Low VT 3.3 V PMOS	PMOSL	3.6 (5)	3.6 (5)	3.6 (5)	3.6 (5)	3.6 (5)	5.5 (7)
Low VT 5 V NMOS	NMOSML	5.5 (7)	5.5 (7)	5.5 (7)	5.5 (7)	5.5 (7)	-
Low VT 5 V PMOS	PMOSML	5.5 (7)	5.5 (7)	5.5 (7)	5.5 (7)	5.5 (7)	5.5 (7)
Low VT 3.3 V high voltage NMOS (gate oxide)	NMOSHL	3.6 (5)	15 (17)	3.6 (5)	15 (17)	3.6 (5)	-
Low VT 5 V high voltage NMOS (mid-oxide)	NMOSMHL	5.5 (7)	15 (17)	5.5 (7)	15 (17)	5.5 (7)	-

Operating Voltage Range (continued)

PNP Bipolar Transistors	Device- name	max. VCE [V]	max. VEC [V]	max. VEB [V]	max. VBS [V]
vertical PNP (C = S)	VERT10	3.6 (5)	-	3.6 (5)	-
lateral PNP	LAT2	3.6 (5)	3.6 (5)	3.6 (5)	3.6 (5)

Capacitors	Device- name	max.Vterm-bulk [V]	max. Vterm1-term2 [V]
poly1-poly2	CPOLY	20 (30)*	5.5 (7)
MOS-Varactor	CVAR	3.6 (5)	3.6 (5)
metal2-metalC	CMIM	20 (30)*	5.5 (7)

Resistors	Device- name	max. Vterm-bulk [V]
poly1	RPOLY1	20 (30)*
poly2	RPOLY2	20 (30)*
poly2	RPOLY2P RPOLY2PH	20 (30)*
high resistive poly2	RPOLYH	20 (30)*
low TC poly2	RPOLYZ	20 (30)*
p+ diffusion	RDIFFP, RDIFFP3	5.5 (7)
n+ diffusion	RDIFFN, RDIFFN3	5.5 (7)
Low voltage n-well	RNWELL	13 (15)

^{*)} An inversion layer is formed in the bulk underneath the poly if the poly-to-bulk voltage exceeds the field threshold voltage. The field threshold voltages are specified in section "3 Process Control Parameters".

Parasitics have the same maximum operating voltage as the primitive device they exist within. Please refer to section "2.3 Current Densities" as well.

2.3 Current Densities

Important application note:

The maximum allowed DC-current densities at 110°C are derived from reliability experiments. The specified values are also applicable as effective AC-current densities (RMS-values). In addition, the peak AC-current densities must not exceed 30 times the specified DC-value.

Parameter	Symbol	Min	Тур	Max	Unit
POLY1 current density	JPOLY			0.5	mA/μm
POLY2 current density	JPOLY2			0.3	mA/µm
high resistive poly current density	JPOLYH			0.1	mA/µm
low TC POLY2 current density	JPOLYZ			0.2	mA/µm
MET1 current density	JMET			1.0	mA/µm
MET2 current density	JMET2			1.0	mA/µm
MET3 current density valid for triple metal process	JMET3T			1.6	mA/µm
MET3 current density valid for quadruple metal process	JMET3			1.0	mA/µm
MET4 current density	JMET4			1.6	mA/µm
METT thick metal current density	JMETT			5.0	mA/µm
CNT current density 0.4x0.4µm²	JCNT			0.94	mA/cnt
VIA current density 0.5x0.5µm²	JVIA			0.6	mA/via
VIA2 current density 0.5x0.5µm² valid for triple metal process	JVIA2T			0.9	mA/via
VIA2 current density 0.5x0.5µm² valid for quadruple metal process	JVIA2			0.6	mA/via
VIA3 current density 0.5x0.5µm²	JVIA3			0.96	mA/via
stack CNT/VIA current density	JSTCNTVIA			0.6	mA/via
0.4x0.4μm² / 0.5x0.5μm²					
stack VIA1/2 current density 0.5x0.5µm²	JSTVIA12			0.4	mA/via
stack VIA2/3 current density 0.5x0.5µm²	JSTVIA23			0.64	mA/via
stack VIA1/2/3 current density 0.5x0.5µm²	JSTVIA123			0.64	mA/via

3 Process Control Parameters

3.1 Introduction

This section contains geometrical and electrical parameters, which are measured for process control purposes. All the other measurements are done at

 $T0 = 27^{\circ}C.$

Process parameters are assigned to one of the following categories:

1. PASS/FAIL PARAMETERS

Pass/fail parameters are used for wafer selection during respectively after the wafer fabrication process. These parameters are extracted either from measurements within the fabrication process or from special process monitor test chips placed along the scribe line.

2. INFORMATION PARAMETERS

Information parameters are provided in order to increase the knowledge about the process behaviour. These parameters do not lead to wafer reject in case of failure.

CHARACTERIZATION PARAMETERS are a special group of information parameters. They are not under 100% statistical control because they require extra large test structures (e.g. parasitic capacitors) or time consuming measurement procedures (e.g. temperature coefficients). These data are extracted from special process control monitor (PCM) test structures.

Note: A design shall rely only on pass/fail parameters only.

The electrical parameters are regularly extracted from the scribe line monitor (SLM) test structures on every wafer. This socalled MAP (Manufacturing Acceptance Parameters) data can be obtained from the Foundry Engineering group of austriamicrosystems AG in order to estimate if the fab run is more or less close to the typical mean process condition.

Important Note: The process control transistor parameters must not be used for circuit simulation purposes. They are extracted from simplified model equations in order to increase the speed of the measurements. Special circuit-simulation transistor parameters are related to section "4. Simulation Model". Those are extracted from the complete set of model equations in order to give the best fit of the entire characteristic for all operating points. Therefore, process control transistor parameters may differ from their corresponding circuit simulation transistor parameters.

3.2 CMOS Core Module Parameters

3.2.1 Structural and Geometrical Parameters

Please refer to chapter "3.12 Schematic Description" for a general overview of the backend of the 0.35um process.

Parameter	Symbol	Min	Тур	Max	Unit	Note
field oxide thickness	TFOX	260	290	320	nm	1
gate oxide thickness	TGOX	7.1	7.6	8.1	nm	2
poly1 thickness	TPOLY1	264	282	300	nm	1
metal1-poly oxide thickness (field region)	TILDFOX	395	645	895	nm	1
metal2-metal1 oxide thickness	TIMD1	620	1000	1380	nm	1
metal3-metal2 oxide thickness	TIMD2	620	1000	1380	nm	1
metal1 thickness	TMET1	565	665	765	nm	3
metal2 thickness	TMET2	540	640	740	nm	3
metal3 thickness (top metal)	TMET3T	775	925	1075	nm	3
passivation thickness 1	TPROT1	930	1030	1130	nm	1
passivation thickness 2	TPROT2	800	1000	1200	nm	1
INFORMATION PARAMETERS						
metal1-poly oxide thickness (active region)	TILDDIFF	791	918	1045	nm	1
n+ junction depth	XJN		0.2		μm	4
p+ junction depth	XJP		0.2		μm	4
n-well junction depth	XJNW		3.5		μm	4
wafer substrate resistivity (non epi)	RSWAF	14	19	24	Ω cm	5
wafer thickness	TWAF	710		740	μm	5

3.2.2 MOS Electrical Parameters

3.2.2.1 MOS 3.3V N-Channel Electrical Parameters : NMOS

Parameter	Symbol	Min	Тур	Max	Unit	Note
threshold voltage long channel 10x10	VTO10X10N	0.36	0.46	0.56	V	6
threshold voltage short channel 10x0.35	VTO10X035N	0.40	0.50	0.60	V	6
threshold voltage short channel 10x0.35 (measured in linear region)	VT_N3	0.49	0.59	0.69	V	6
threshold voltage poly on field 0.75µm	VTFPN	15	> 20		V	9
effective channel length 0.35µm	LEFF035N	0.30	0.38	0.46	μm	10
effective channel width 0.4µm	WEFF04N	0.20	0.35	0.50	μm	11
body factor long channel 10x10	GAMMAN	0.48	0.58	0.68	V ¹ / ₂	12
gain factor	KPN	150	170	190	μΑ/V²	7
drain-source breakdown 0.35µm	BVDS035N	7	> 8		V	14
saturation current 0.35µm	IDS035N	450	540	630	μΑ/μm	15
substrate current 0.35µm	ISUB035N		1.5	3	μΑ/μm	16
subthreshold leakage current 0.35µm	SLEAK035N		0.5	2	pA/µm	17
gate oxide breakdown	BVGOXN	7	> 8		V	18
INFORMATION PARAMETERS						
active channel length 0.35µm	LACT035N		0.29		μm	26
threshold voltage narrow channel 0.4x10	VTO04X10N		0.46		V	6
threshold voltage small channel 0.4x0.35	VTO04X035N		0.48		V	6
threshold voltage temperature coefficient	TCVTON		-1.1		mV/K	13
effective substrate doping	NSUBN		212		10 ¹⁵ /cm ³	12
effective mobility	UON		370		cm²/Vs	8
mobility exponent	BEXN		-1.8		-	13

3.2.2.2 MOS 3.3V P-Channel Electrical Parameters : PMOS

Negative values are considered as absolute values for their Min/Max limits.

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
threshold voltage long channel 10x10	VTO10X10P	-0.58	-0.68	-0.78	V	6
threshold voltage short channel 10x0.35	VTO10X035P	-0.55	-0.65	-0.75	V	6
threshold voltage short channel 10x0.35 (measured in linear region)	VT_P3	-0.62	-0.72	-0.82	V	6
threshold voltage poly on field 0.75µm	VTFPP	-15	< -20		V	9
effective channel length 0.35µm	LEFF035P	0.42	0.50	0.58	μm	10
effective channel width 0.4µm	WEFF04P	0.20	0.35	0.50	μm	11
body factor long channel 10x10	GAMMAP	-0.32	-0.40	-0.48	V ¹ / ₂	12
gain factor	KPP	48	58	68	μΑ/V²	7
drain-source breakdown 0.35µm	BVDS035P	-7	< -8		V	14
saturation current 0.35µm	IDS035P	-180	-240	-300	μΑ/μm	15
subthreshold leakage current 0.35µm	SLEAK035P		-0.5	-2	pA/µm	17
gate oxide breakdown	BVGOXP	-7	< -8		V	18
INFORMATION PARAMETERS						
active channel length 0.35µm	LACT035P		0.31		μm	26
threshold voltage narrow channel 0.4x10	VTO04X10P		-0.90		V	6
threshold voltage small channel 0.4x0.35	VTO04X035P		-0.68		V	6
threshold voltage temperature coefficient	TCVTOP		1.8		mV/K	13
effective substrate doping	NSUBP		101		10 ¹⁵ /cm ³	12
effective mobility	UOP		126		cm²/Vs	8
mobility exponent	BEXP		-1.30		-	13

3.2.2.3 MOS N-Channel High Voltage Electrical Parameters: NMOSH

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
threshold voltage 3µm	VTO3NH	0.34	0.44	0.54	V	6
drain-source breakdown 3µm	BVDS3NH	15	19		V	14
on-resistance 3µm	RON3NH	9	13	17	kΩ μm	19
INFORMATION PARAMETERS						
saturation current 3µm	IDS3NH	160	200	240	μΑ/μm	15
substrate current 3µm	ISUB3NH		1.5	3	μA/μm	16

3.2.3 Sheet Resistances

3.2.3.1 NWELL - Resistor: RNWELL

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
NWELL field sheet resistance	RNWELL	0.9	1.0	1.1	kΩ/□	20
NWELL field eff. width 1.7 μm	WNWELL	0.35	0.55	0.75	μm	20
INFORMATION PARAMETERS						
NWELL field temp. coefficient	TCNWELL		6.2		10-₃/K	22

3.2.3.2 RPOLY1 Sheet resistor: RPOLY1

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
POLY1 sheet resistance	RPOLY	5	8	11	Ω/□	20
POLY1 effective width 0.35 μm	WPOLY	0.20	0.30	0.40	μm	20
INFORMATION PARAMETERS						
POLY1 temperature coefficient	TCPOLY		0.9		10-₃/K	22

Sheet Resistances (continued)

INFORMATION PARAMETERS				
POLY1 gate sheet resistance (NMOS)	RGATEN	7	Ω/□	20
POLY1 gate sheet resistance (PMOS)	RGATEP	11	Ω/□	20
POLY1 gate effective width 0.35 μm (NMOS)	WGATEN	0.35	μm	20
POLY1 gate effective width 0.35 µm (PMOS)	WGATEP	0.35	μm	20

3.2.3.3 Diffusion Resistor: RDIFFN

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
NDIFF sheet resistance	RDIFFN	65	75	85	Ω/□	20
NDIFF effective width 0.3 µm	WDIFFN	0.25	0.40	0.55	μm	20
INFORMATION PARAMETERS						
NDIFF temperature coefficient	TCDIFFN		1.5		10 ⁻³ /K	22

3.2.3.4 Diffusion Resistor: RDIFFP

PASS/FAIL PARAMETERS						
PDIFF sheet resistance	RDIFFP	115	140	165	Ω/□	20
PDIFF effective width 0.3 µm	WDIFFP	0.25	0.40	0.55	μm	20
INFORMATION PARAMETERS						
PDIFF temperature coefficient	TCDIFFP		1.5		10 ⁻³ /K	22

3.2.3.5 Metal Resistors

PASS/FAIL PARAMETERS					
MET1 sheet resistance	RMET	70	120	mΩ/□	21
INFORMATION PARAMETERS					
MET1 effective width 0.5 μm	WMET	0.5		μm	20
MET1 temperature coefficient	TCMET	3.3		10-³/K	22
PASS/FAIL PARAMETERS					
MET2 sheet resistance	RMET2	70	120	mΩ/□	21
INFORMATION PARAMETERS					
MET2 effective width 0.6 μm	WMET2	0.5		μm	20
MET2 temperature coefficient	TCMET2	3.4		10-³/K	22
PASS/FAIL PARAMETERS					
MET3 sheet resistance (top metal)	RMET3T	40	100	mΩ/□	21
INFORMATION PARAMETERS					
MET3 effective width 0.6 µm (top metal)	WMET3T	0.6		μm	20
MET3 temperature coefficient (top metal)	TCMET3T	3.5		10 ⁻³ /K	22

Please refer to section "2.3 Current Densities" as well.

3.2.4 Contact Resistances

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
MET1-NDIFF cont. resistance 0.4x0.4µm²	RCNTMDN		30	100	Ω/cnt	23
MET1-PDIFF cont. resistance 0.4x0.4µm²	RCNTMDP		60	150	Ω/cnt	23
MET1-POLY1 cont. resistance 0.4x0.4µm²	RCNTMP		2	10	Ω/cnt	23
VIA resistance 0.5x0.5µm²	RVIA		1.2	3	Ω/via	23
VIA2 resistance 0.5x0.5µm²	RVIA2		1.2	3	Ω/via	23

Please refer to section "2.3 Current Densities" as well.

3.2.5 Capacitances

Capacitance values except CGOX are characterisation parameters (refer to section "1 Introduction").

3.2.5.1 MOS Varactor: CVAR

INFORMATION PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
Capacitance at -1.0V	CVARM	1.06	1.33	1.59	fF/µm²	47
Capacitance at 0.0V	CVAR0	2.40	3.00	3.61	fF/µm²	47
Capacitance at +1.0V	CVARP	3.90	4.88	5.86	fF/µm²	47
quality factor W/L=317/0.65, 2.4 GHz	QMIN		43		-	43
tuning range	gamma		57		%	44

Capacitances (continued)

Parameter	Symbol	Min	Тур	Max	Unit	Note
POLY1 - DIFF (gate oxide)						
POLY1 - DIFF area	CGOX	4.26	4.54	4.86	fF/µm²	2
INFORMATION PARAMETERS						
POLY1 - DIFF (gate oxide)						
GATE – NDIFF overlap	CGSDON	0.105	0.120	0.134	fF/µm	26
GATE - PDIFF overlap	CGSDOP	0.075	0.086	0.096	fF/µm	26
GATE - BULK overlap	CGBO	0.10	0.11	0.12	fF/µm	27
POLY1 – LDD (gate oxide)						
GATE – LDD overlap	CGSDLN	0.115	0.131	0.147	fF/µm	26
GATE – LDD overlap	CGSDLP	0.095	0.108	0.121	fF/µm	26
POLY1 – WELL (field oxide)						
POLY1 – WELL (field oxide) area	CPFOX	0.108	0.119	0.133	fF/µm²	24
POLY1 – WELL (field oxide) perimeter	CPFOXF	0.051	0.053	0.055	fF/µm	25
MET1 - WELL (active region)						
MET1 - WELL (active region) area	CMDIFF	0.026	0.030	0.034	fF/µm²	24
MET1 - WELL (active region) perimeter	CMDIFFF	0.042	0.044	0.047	fF/µm	25
MET1 – WELL (field region)						
MET1 – WELL (field region) area	CMFOX	0.023	0.029	0.038	fF/µm²	24
MET1 – WELL (field region) perimeter	CMFOXF	0.040	0.044	0.049	fF/µm	25
MET1 - POLY1 (active region), MET1 - P	OLY2 (active region, v	vithout POLY	′1)			
MET1 - POLY1 (active region) area	CMPDIFF	0.034	0.039	0.045	fF/µm²	24
MET1 - POLY1 (active region) perimeter	CMPDIFFF	0.045	0.048	0.052	fF/µm	25
MET1 - POLY1 (field region), MET1 - PO	LY2 (field region, with	out POLY1)				
MET1 - POLY1 (field region) area	CMPFOX	0.040	0.055	0.090	fF/µm²	24
MET1 - POLY1 (field region) perimeter	CMPFOXF	0.047	0.053	0.063	fF/µm	25

Capacitances (continued)

1 ,						
MET2 – WELL						
MET2 – WELL area	CM2FOX	0.010	0.012	0.017	fF/µm²	24
MET2 – WELL perimeter	CM2FOXF	0.032	0.035	0.039	fF/µm	25
MET2 - POLY1, MET2 – POLY2 (withou	t POLY1)					
MET2 - POLY1 area	CM2P	0.012	0.016	0.023	fF/µm²	24
MET2 - POLY1 perimeter	CM2PF	0.034	0.037	0.042	fF/µm	25
MET2 - MET1						
MET2 - MET1 area	CM2M	0.026	0.036	0.059	fF/µm²	24
MET2 - MET1 perimeter	CM2MF	0.042	0.048	0.056	fF/µm	25
MET3T – WELL						
MET3T – WELL area	CM3TFOX	0.006	0.008	0.011	fF/µm²	24
MET3T – WELL perimeter	CM3TFOXF	0.029	0.032	0.036	fF/µm	25
MET3T – POLY1, MET3 – POLY2 (witho	out POLY1)					
MET3T – POLY1 area	CM3TP	0.007	0.009	0.013	fF/µm²	24
MET3T – POLY1 perimeter	CM3TPF	0.030	0.034	0.038	fF/µm	25
MET3T - MET1						
MET3T - MET1 area	СМЗТМ	0.010	0.014	0.020	fF/µm²	24
MET3T - MET1 perimeter	CM3TMF	0.034	0.039	0.044	fF/µm	25
MET3T - MET2						
MET3T - MET2 area	CM3TM2	0.026	0.036	0.059	fF/µm²	24
MET3T - MET2 perimeter	CM3TM2F	0.046	0.053	0.062	fF/µm	25
COUPLING CAPACITANCES						
POLY1 - POLY1 coupling	CP1P1		0.039		fF/µm	28
MET1 - MET1 coupling	CM1M1		0.087		fF/µm	28
MET2 - MET2 coupling	CM2M2		0.084		fF/µm	28
MET3T - MET3T coupling (top metal)	CM3TM3T		0.096		fF/µm	28

3.2.6 Diode Parameters

Diode parameters except breakdown voltage parameters are characterisation parameters (refer to section "Introduction").

NDIFF - PWELL

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
breakdown voltage	BVN	7	9		V	30
INFORMATION PARAMETERS						
area junction capacitance	CJN		0.84		fF/µm²	29
area grading coefficient	MJN		0.34		-	29
junction potential	PBN		0.69		V	29
sidewall junction capacitance	CJSWN		0.25		fF/µm	29
sidewall grading coefficient	MJSWN		0.23		-	29
area leakage current	JSN		0.51		aA/µm²	31
junction current temperature exponent coefficient	XTIND_NL		2.03		-	31
sidewall leakage current	JSSWN		0.61		aA/µm	31

PDIFF - NWELL

PASS/FAIL PARAMETERS					
breakdown voltage	BVP	-7	-9	V	30
INFORMATION PARAMETERS					
area junction capacitance	CJP		1.36	fF/µm²	29
area grading coefficient	MJP		0.54	-	29
junction potential	PBP		1.02	V	29
sidewall junction capacitance	CJSWP		0.35	fF/µm	29
sidewall grading coefficient	MJSWP		0.46	-	29
area leakage current	JSP		0.28	aA/µm²	31
junction current temperature exponent coefficient	XTIND_PL		1.97	-	31
sidewall leakage current	JSSWP		0.37	aA/µm	31

Diode Parameters (continued)

NWELL - PWELL/PSUB

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
breakdown voltage	BVNW	25	34		V	30
INFORMATION PARAMETERS						
area junction capacitance	CJNW		0.08		fF/µm²	29
area grading coefficient	MJNW		0.39		-	29
junction potential	PBNW		0.53		V	29
sidewall junction capacitance	CJSWNW		0.51		fF/µm	29
sidewall grading coefficient	MJSWNW		0.27		-	29
area leakage current	JSNW		2.8		aA/µm²	31
junction current temperature exponent coefficient	XTIND_NWL		1.47		-	31
sidewall leakage current	JSSWNW		7.6		aA/µm	31

3.2.7 Bipolar Parameters

3.2.7.1 Lateral PNP Bipolar Transistor: LAT2

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
lateral PNP base-emitter voltage 2x2µm²@1µA	VBEL	600	650	700	mV	37
lateral PNP current gain 2x2µm²@1µA	BETAL1	30	140	380	-	37
INFORMATION PARAMETERS						
lateral PNP current gain 2x2µm²@10µA	BETAL10		30		-	37
lateral PNP Early voltage 2x2µm²	VAFL	8	15		V	38
lateral PNP - parasitic vertical current gain 2x2µm²	BETAVL		14		-	37

3.2.7.2 Vertical PNP Bipolar Transistor: VERT10

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
vertical PNP base-emitter voltage 10x10μm²	VBEV	650	680	710	mV	36
vertical PNP current gain 10x10μm²@10μΑ	BETAV	2.0	5.0	8.0	-	36
INFORMATION PARAMETERS						
vertical PNP Early voltage 10x10µm²	VAFV		>80		V	38
vertical PNP half gain current 10x10µm²	ICHBV		120		μA	36

3.2.8 OPT Electrical Parameter

The aim of the Poly Fuse and Zener diode electrical parameters is to inforamation about the poly1 resistor fuse, the burn transistor parameters and the Zener diode parameter only. The poly fuse is only indented to use in the qualifed cells. It is not allowed to use it in any other application.

3.2.8.1 Poly Fuses Parameters

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
poly1 resistance fuse (1.8x0.35µm)	RPFUSE0	25	45	65	Ω	48
poly1 resistance fuse burnt (1.8x0.35µm)	RPFUSE1	0.1	20		МΩ	49
Idsat of burne transistor (150x0.35µm)	IDSMOS_PF	47	67	87	mA	50
INFORMATION PARAMETERS						
Vt of burne transistor (150x0.35)	VTMOS_PF	0.32	0.40	0.48	V	6

3.2.8.2 Zener Diode Parameters: ZD2SM24

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
Zener breakdown voltage 2µA	VZENER2	0.7	1.6	2.5	V	51
INFORMATION PARAMETERS						
Zener breakdown voltage 50µA	VZENER50	2.0	3.0	4.0	V	51
Zener diode leakage current	LZENER		0.2		μΑ	52
zapped Zener diode voltage	VZAP			100	mV	53
Zener breakdown voltage 50µA temperature coefficient	TCVZENER50		-2.4		mV/K	54

3.3 Poly1-Poly2 Capacitor Module Parameters

Please refer to "1.2 Process Family" for information on the processes where this module is implemented.

3.3.1 Structural and Geometrical Parameters

Please refer to chapter "3.12 Schematic Description" for a general overview of the backend of the 0.35um process.

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
CPOLY equivalent oxide thickness	TPOX	36.88	41.16	45.39	nm	2
poly2 thickness	TPOLY2	185	200	215	nm	1
INFORMATION PARAMETERS						
poly2-well oxide thickness (field region)	TP2FOX	480	727	974	nm	1
metal1-poly2 oxide thickness (field region, with poly1)	TMP2FOXP1	135	404	673	nm	1

3.3.2 Poly2 Sheet Resistance: RPOLY2

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
POLY2 sheet resistance	RPOLY2	40	50	60	Ω/□	20
POLY2 effective width 0.65 μm	WPOLY2	0.30	0.40	0.50	μm	20
INFORMATION PARAMETERS						
POLY2 sheet resistance temp. coefficient linear term W > 4 µm	TC1POLY2		0.59		10 ⁻³ /K	22
POLY2 sheet resistance temp. coefficient quatratic term	TC2POLY2		7.7		10-7/K ²	22

3.3.3 Contact Resistance

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
MET1-POLY2 cont. resistance 0.4x0.4μm²	RCNTMP2		20	40	Ω/cnt	23

3.3.4 High Precision Poly2 Sheet Resistance: RPOLY2P

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
POLY2 sheet resistance	RPOLY2P	42	47	52	Ω/□	20
POLY2 effective width 0.65 μm	WPOLY2P	0.30	0.40	0.50	μm	20
INFORMATION PARAMETERS						
POLY2 sheet resistance temp. coefficient linear term W > 4 µm	TC1POLY2P		0.59		10-³/K	22
POLY2 sheet resistance temp. coefficient quatratic term	TC2POLY2P		7.7		10 ⁻⁷ /K ²	22

The values specified for RPOLY2P are only valid for the poly1-poly2 module.

3.3.5 POLY1-POLY2 Capacitor: CPOLY

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
CPOLY area capacitance	CPOX	0.78	0.86	0.96	fF/µm²	2
CPOLY breakdown voltage high voltage on POLY2	BVPOX	15	30		V	39
CPOLY breakdown voltage high voltage on POLY1	BVPOXH	15	30		V	39
INFORMATION PARAMETERS						
CPOLY perimeter capacitance	CPOXF	0.083	0.086	0.089	fF/µm	25
CPOLY linearity	VCPOX		85		ppm/V	40
CPOLY leakage current	LKCPOX			1	aA/µm²	42
CPOLY temperature coefficient	TCPOX		0.03		10 ⁻³ /K	41

The values specified above are only valid for the poly1-poly2 module.

3.3.6 Capacitances

INFORMATION PARAMETERS	6 1 1		-			N
Parameter	Symbol	Min	Тур	Max	Unit	Note
POLY2 - WELL (field region)	_					
POLY2 - WELL (field region) area	CP2FOX	0.095	0.105	0.117	fF/µm²	24
POLY2 - WELL (field region) perimeter	CP2FOXF	0.049	0.050	0.052	fF/µm	25
MET1 - POLY2 (field region, with POLY	1)					
MET1 - POLY2 area	CMP2FOXP1	0.053	0.088	0.262	fF/µm²	24
MET1 - POLY2 perimeter	CMP2FOXP1F	0.050	0.060	0.082	fF/µm	25
MET2 - POLY2 (field region, with POLY	1)					
MET2 - POLY2 area	CM2P2FOXP1	0.013	0.017	0.027	fF/µm²	24
MET2 - POLY2 perimeter	CM2P2FOXP1F	0.036	0.040	0.045	fF/µm	25
MET3T – POLY2 (field region, with POL	.Y1)					
MET3T(top metal) – POLY2 area	CM3TP2FOXP1	0.007	0.010	0.014	fF/µm²	24
MET3T(top metal) – POLY2 perimeter	CM3TP2FOXP1F	0.031	0.035	0.036	fF/µm	25
COUPLING CAPACITANCES	•					
POLY2 - POLY2 coupling	CP2P2		0.016		fF/µm	28
	1	L		l	L	L

3.4 Metal2-MetalC Capacitor Module Parameters

Please refer to "1.2 Process Family" for information on the processes where this module is implemented.

3.4.1 Structural and Geometrical Parameters

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
CMIM equivalent oxide thickness	TMIM	23.80	27.61	32.87	nm	2
INFORMATION PARAMETERS						
METC thickness	TMETC		150		nm	3

3.4.2 METC Sheet Resistance

INFORMATION PARAMETERS				
METC sheet resistance	RMETC	8.0	Ω/□	21
METC effective width 4µm	WMETC	4.0	μm	20

3.4.3 Contact Resistance

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
MET3-METC via resistance 0.5x0.5µm²	RVIA2C		1.75	6	Ω/via	23

3.4.4 Metal2-MetalC Capacitor: CMIM

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
CMIM area capacitance	СМІМ	1.05	1.25	1.45	fF/µm²	2
CMIM breakdown voltage high voltage on MET2	BVM2	10	40		V	18
CMIM breakdown voltage high voltage on METC	BVMC	10	40		V	18
INFORMATION PARAMETERS						
CMIM perimeter capacitance	CMIMF	0.110	0.114	0.117	fF/µm	25
CMIM linearity, 1st order	VC1MIM		-26		ppm/V	40
CMIM linearity, 2 nd order	VC2MIM		13		ppm/V²	40
CMIM leakage current	LKCMIM		10		aA/µm²	42
CMIM temperature coefficient	TCMIM		30		ppm/K	41

3.5 5 Volt Module Parameters

Please refer to "1.2 Process Family" for information on the processes where this module is implemented. The transistors NMOSM, PMOSM and NMOSMH use mid-oxide as gate insulator.

3.5.1 Structural and Geometrical Parameters

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
Mid-oxide thickness	TMOX	14	15	16	nm	2

3.5.2 MOS Electrical Parameters

3.5.2.1 MOS 5V N-Channel Electrical Parameters: NMOSM

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
threshold voltage long channel 10x10	VTO10X10NM	0.60	0.70	0.80	V	6
threshold voltage short channel 10x0.5	VTO10X05NM	0.60	0.70	0.80	V	6
threshold voltage short channel 10x0.5 (measured in linear region)	VT_5N3	0.69	0.79	0.89	V	6
effective channel length 0.5µm	LEFF05NM	0.35	0.45	0.55	μm	10
effective channel width 0.4µm	WEFF04NM	0.20	0.35	0.50	μm	11
body factor long channel 10x10	GAMMANM	0.90	1.05	1.20	V¹/2	12
gain factor	KPNM	80	100	120	μΑ/V²	7
drain-source breakdown 0.5µm	BVDS05NM	7	> 9		V	14
saturation current 0.5µm	IDS05NM	400	470	540	μΑ/μm	15
substrate current 0.5µm	ISUB05NM		2	5	μA/μm	16
subthreshold leakage current 0.5µm	SLEAK05NM		0.1	1	pA/µm	17
gate oxide breakdown	BVGOXNM	12	> 15		V	18

MOS 5V N-Channel Electrical Parameters: NMOSM (continued)

INFORMATION PARAMETERS				
active channel length 0.5µm	LACT05NM	0.30	μm	26
threshold voltage narrow channel 0.4x10	VTO04X10NM	0.63	V	6
threshold voltage small channel 0.4x0.5	VTO04X05NM	0.63	V	6
threshold voltage temperature coefficient	TCVTONM	-1.5	mV/K	13
effective substrate doping	NSUBNM	173	10 ¹⁵ /cm ³	12
effective mobility	UONM	435	cm²/Vs	8
mobility exponent	BEXNM	-1.76	-	13

3.5.2.2 MOS 5V P-Channel Electrical Parameters: PMOSM

Negative values are considered as absolute values for their Min/Max limits.

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
threshold voltage long channel 10x10	VTO10X10PM	-0.85	-0.97	-1.09	V	6
threshold voltage short channel 10x0.5	VTO10X05PM	-0.85	-0.97	-1.09	V	6
threshold voltage short channel 10x0.5 (measured in linear region)	VT_5P3	-0.88	-1.03	-1.18	V	6
effective channel length 0.5µm	LEFF05PM	0.58	0.68	0.78	μm	10
effective channel width 0.4µm	WEFF04PM	0.20	0.35	0.50	μm	11
body factor long channel 10x10	GAMMAPM	-0.53	-0.63	-0.73	V ¹ / ₂	12
gain factor	KPPM	25	31	37	μA/V²	7
drain-source breakdown 0.5µm	BVDS05PM	-7	< -8		V	14
saturation current 0.5µm	IDS05PM	-150	-200	-250	μΑ/μm	15
subthreshold leakage current 0.5µm	SLEAK05PM		-0.01	-0.1	pA/µm	17
gate oxide breakdown	BVGOXPM	-12	< -15		V	18

MOS 5V P-Channel Electrical Parameters: PMOSM (continued)

INFORMATION PARAMETERS				
active channel length 0.5µm	LACT05PM	0.45	μm	26
threshold voltage narrow channel 0.4x10	VTO04X10PM	-1.25	V	6
threshold voltage small channel 0.4x0.5	VTO04X05PM	-0.90	V	6
threshold voltage temperature coefficient	TCVTOPM	2.0	mV/K	13
effective substrate doping	NSUBPM	63	10 ¹⁵ /cm ³	12
effective mobility	UOPM	135	cm²/Vs	8
mobility exponent	BEXPM	-1.3	-	13

3.5.2.3 MOS N-Channel High Voltage Electrical Parameters: NMOSMH

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
threshold voltage 3µm	VTO3NMH	0.55	0.67	0.79	V	6
drain-source breakdown 3µm	BVDS3NMH	17	22		V	14
on-resistance 3µm	RON3NMH	7	11	15	kΩ μm	19
INFORMATION PARAMETERS						
saturation current 3µm	IDS3NMH	180	220	260	μA/μm	15
substrate current 3µm	ISUB3NMH		1	5	μΑ/μm	16

3.5.3 Capacitances

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
POLY1 - DIFF (mid-oxide) area	CMOX	2.16	2.30	2.46	fF/µm²	2
INFORMATION PARAMETERS						
POLY1 - DIFF (mid-oxide)						
GATE – NDIFF overlap	CGSDOMN	0.095	0.108	0.121	fF/µm	26
GATE - PDIFF overlap	CGSDOMP	0.080	0.091	0.102	fF/µm	26
GATE - BULK overlap	CGBOM	0.10	0.11	0.12	fF/µm	27
POLY1 – LDD (mid oxide)						
GATE – LDD overlap	CGSDLMN	0.200	0.227	0.254	fF/µm	26
GATE – LDD overlap	CGSDLMP	0.052	0.060	0.068	fF/µm	26

3.6 Low VTH Module Parameters

Please refer to "1.2 Process Family" for information on the processes where this module is implemented.

3.6.1 Low VT MOS 3.3V N-Channel Electrical Parameters: NMOSL

Parameter	Symbol	Min	Тур	Max	Unit	Note
threshold voltage long channel 10x10	VTO10X10NL	0.33	0.41	0.49	V	6
threshold voltage short channel 10x0.35	VTO10X035NL	0.32	0.40	0.48	V	6
threshold voltage short channel 10x0.35 (measured in linear region)	VT_N3L	0.37	0.45	0.53	V	6
threshold voltage poly on field 0.75µm	VTFPNL	15	> 20		V	
effective channel length 0.35µm	LEFF035NL	0.30	0.38	0.46	μm	10
effective channel width 0.4µm	WEFF04NL	0.20	0.35	0.50	μm	11
body factor long channel 10x10	GAMMANL	0.42	0.52	0.62	V ¹ / ₂	12
gain factor	KPNL	156	176	196	μΑ/V²	7
drain-source breakdown 0.35µm	BVDS035NL	7	> 8		V	14
saturation current 0.35µm	IDS035NL	480	580	680	μΑ/μm	15
substrate current 0.35µm	ISUB035NL		1.2	3	μΑ/μm	16
subthreshold leakage current 0.35µm	SLEAK035NL		4	160	pA/µm	17
gate oxide breakdown	BVGOXNL	7	> 8		V	18
INFORMATION PARAMETERS						
active channel length 0.35µm	LACT035NL		0.27		μm	26
subthreshold leakage current 0.35µm @ 125 C	SLNL125		1.7	10.0	nA/µm	17
threshold voltage narrow channel 0.4x10	VTO04X10NL		0.42		V	6
threshold voltage small channel 0.4x0.35	VTO04X035NL		0.42		V	6
threshold voltage temperature coefficient	TCVTONL		-1.0		mV/K	13
effective substrate doping	NSUBNL		166		1015/cm3	12
effective mobility	UONL		387		cm²/Vs	8
mobility exponent	BEXNL		-1.7		-	13

3.6.2 Low VT MOS 3.3V P-Channel Electrical Parameters: PMOSL

Negative values are considered as absolute values for their Min/Max limits.

Parameter	Symbol	Min	Тур	Max	Unit	Note
	VTO10X10PL	-0.37	-0.45	-0.53	V	6
threshold voltage long channel 10x10			****			
threshold voltage short channel 10x0.35	VTO10X035PL	-0.37	-0.45	-0.53	V	6
threshold voltage short channel 10x0.35 (measured in linear region)	VT_P3L	-0.50	-0.58	-0.66	V	6
threshold voltage poly on field 0.75µm	VTFPPL	-15	< -20		V	
effective channel length 0.35µm	LEFF035PL	0.42	0.50	0.58	μm	10
effective channel width 0.4µm	WEFF04PL	0.20	0.35	0.50	μm	11
body factor long channel 10x10	GAMMAPL	-0.39	-0.47	-0.55	V½	12
gain factor	KPPL	48	58	68	μA/V²	7
drain-source breakdown 0.35µm	BVDS035PL	-6	< -7		V	14
saturation current 0.35µm	IDS035PL	-200	-270	-350	μΑ/μm	15
subthreshold leakage current 0.35µm	SLEAK035PL		-250	-4500	pA/µm	17
gate oxide breakdown	BVGOXPL	-7	< -8		V	18
INFORMATION PARAMETERS						
active channel length 0.35µm	LACT035PL		0.28		μm	26
subthreshold leakage current 0.35µm @ 125 C	SLPL125		-50	-250	nA/µm	17
threshold voltage narrow channel 0.4x10	VTO04X10PL		-0.47		V	6
threshold voltage small channel 0.4x0.35	VTO04X035PL		-0.50		V	6
threshold voltage temperature coefficient	TCVTOPL		1.86		mV/K	13
effective substrate doping	NSUBPL		136		10 ¹⁵ /cm ³	12
effective mobility	UOPL		126		cm²/Vs	8
ellective mobility	00. 2					_

3.6.3 Low VTH MOS N-Channel High Voltage Electrical Parameters: NMOSHL

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
threshold voltage 3µm	VTO3NHL	0.29	0.39	0.49	V	6
drain-source breakdown 3µm	BVDS3NHL	15	19		V	14
on-resistance 3µm	RON3NHL	8	12	16	kΩ μm	19
INFORMATION PARAMETERS						
saturation current 3µm	IDS3NHL	170	210	250	μA/μm	15
substrate current 3µm	ISUB3NHL		1.2	3	μΑ/μm	16

3.6.4 Capacitances

INFORMATION PARAMETERS							
POLY1 - DIFF (gate oxide)							
NMOS GATE – NDIFF overlap	CGSDONL	0.011	0.012	0.013	fF/µm	26	
PMOS GATE - PDIFF overlap	CGSDOPL	0.050	0.056	0.062	fF/µm	26	
NMOS GATE - BULK overlap	CGBONL	0.10	0.11	0.12	fF/µm	27	
PMOS GATE - BULK overlap	CGBOPL	0.10	0.11	0.12	fF/µm	27	
POLY1 – LDD (gate oxide)							
GATE – LDD overlap	CGSDLNL	0.30	0.35	0.40	fF/µm	26	
GATE – LDD overlap	CGSDLPL	0.21	0.24	0.27	fF/µm	26	

3.7 5 Volt low VTH Module Parameters

Please refer to "1.2 Process Family" for information on the processes where this module is implemented. The transistors NMOSML and PMOSML use mid-oxide as gate insulator.

3.7.1 Low Voltage MOS 5V N-Channel Electrical Parameters: NMOSML

Parameter	Symbol	Min	Тур	Max	Unit	Note
threshold voltage long channel 10x10	VTO10X10NML	0.47	0.57	0.67	V	6
threshold voltage short channel 10x0.5	VTO10X05NML	0.41	0.51	0.61	V	6
threshold voltage short channel 10x0.5 (measured in linear region)	VT_5N3L	0.52	0.62	0.72	V	6
effective channel length 0.5µm	LEFF05NML	0.35	0.45	0.55	μm	10
effective channel width 0.4µm	WEFF04NML	0.20	0.35	0.50	μm	11
body factor long channel 10x10	GAMMANML	0.79	0.94	1.09	V ^{1/2}	12
gain factor	KPNML	85	105	125	μΑ/V²	7
drain-source breakdown 0.5µm	BVDS05NML	7	> 9		V	14
saturation current 0.5µm	IDS05NML	440	520	600	μΑ/μm	15
substrate current 0.5µm	ISUB05NML		2	5	μΑ/μm	16
subthreshold leakage current 0.5µm	SLEAK05NML		4	75	pA/µm	17
gate oxide breakdown	BVGOXNML	12	> 15		V	18
INFORMATION PARAMETERS						
active channel length 0.5µm	LACT05NML		0.25		μm	26
subthreshold leakage current 0.5µm @ 125 C	SLNML125		1.5	14.0	nA/µm	17
threshold voltage narrow channel 0.4x10	VTO04X10NML		0.51		V	6
threshold voltage small channel 0.4x0.5	VTO04X05NML		0.48		V	6
threshold voltage temperature coefficient	TCVTONML		-1.4		mV/K	13
effective substrate doping	NSUBNML		174		10 ¹⁵ /cm ³	12
effective mobility	UONML		435		cm²/Vs	8
mobility exponent	BEXNML		-1.72		-	13

3.7.2 Low VTH MOS 5V P-Channel Electrical Parameters: PMOSML

Negative values are considered as absolute values for their Min/Max limits.

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
threshold voltage long channel 10x10	VTO10X10PML	-0.55	-0.65	-0.75	V	6
threshold voltage short channel 10x0.5	VTO10X05PML	-0.57	-0.67	-0.77	V	6
threshold voltage short channel 10x0.5 (measured in linear region)	VT_5P3L	-0.63	-0.73	-0.83	V	6
effective channel length 0.5µm	LEFF05PML	0.58	0.68	0.78	μm	10
effective channel width 0.4µm	WEFF04PML	0.20	0.35	0.50	μm	11
body factor long channel 10x10	GAMMAPML	-0.57	-0.67	-0.77	V ¹ / ₂	12
gain factor	KPPML	25	31	37	μA/V²	7
drain-source breakdown 0.5µm	BVDS05PML	-7	< -8		V	14
saturation current 0.5µm	IDS05PML	-170	-235	-300	μΑ/μm	15
subthreshold leakage current 0.5µm	SLEAK05PML		-0.12	-3	pA/µm	17
gate oxide breakdown	BVGOXPML	-12	< -15		V	18
INFORMATION PARAMETERS						
active channel length 0.5µm	LACT05PML		0.41		μm	26
subthreshold leakage current 0.5µm @ 125 C	SLPML125		-0.4	-2.5	nA/µm	17
threshold voltage narrow channel 0.4x10	VTO04X10PML		-0.54		V	6
threshold voltage small channel 0.4x0.5	VTO04X05PML		-0.6		V	6
threshold voltage temperature coefficient	TCVTOPML		2.2		mV/K	13
effective substrate doping	NSUBPML		71		10 ¹⁵ /cm ³	12
effective mobility	UOPML		135		cm²/Vs	8
mobility exponent	BEXPML		-1.2		-	13

3.7.3 Low VTH MOS N-Channel High Voltage Electrical Parameters: NMOSMHL

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
threshold voltage 3µm	VTO3NMHL	0.43	0.53	0.63	V	6
drain-source breakdown 3µm	BVDS3NMHL	17	21		V	14
on-resistance 3µm	RON3NMHL	7	11	15	kΩ μm	19
INFORMATION PARAMETERS						
saturation current 3µm	IDS3NMHL	200	240	280	μA/μm	15
substrate current 3µm	ISUB3NMHL		0.7	5	μA/μm	16

3.7.4 Capacitances

INFORMATION PARAMETERS						
POLY1 - DIFF (mid-oxide)						
NMOS GATE – NDIFF overlap	CGSDOMNL	0.0008	0.001	0.0012	fF/µm	26
PMOS GATE - PDIFF overlap	CGSDOMPL	0.056	0.064	0.072	fF/µm	26
NMOS GATE - BULK overlap	CGBOMNL	0.10	0.11	0.12	fF/µm	27
GATE - BULK overlap	CGBOMPL	0.10	0.11	0.12	fF/µm	27
POLY1 – LDD (mid oxide)						
NMOS GATE – LDD overlap	CGSDLMNL	0.381	0.434	0.486	fF/µm	26
PMOS GATE – LDD overlap	CGSDLMPL	0.140	0.160	0.180	fF/µm	26

3.8 Metal 4 Module Parameters

Please refer to "1.2 Process Family" for information on the processes where this module is implemented.

Important application note:

Implementation of metal 4 module results in changing of several CMOS core module parameters. Parameters of this section override corresponding parameters of section "3.2 CMOS Core Module Parameters".

3.8.1 Structural and Geometrical Parameters

Please refer to chapter "3.12 Schematic Description" for a general overview of the backend of the 0.35um process.

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
metal3 thickness	TMET3	540	640	740	nm	3
metal3-metal4 metal oxide thickness	TIMD3	620	1000	1380	nm	1
metal4 thickness	TMET4	775	925	1075	nm	3

3.8.2 Sheet Resistances

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
MET3 sheet resistance	RMET3		70	120	mΩ/□	21
MET4 sheet resistance	RMET4		40	100	mΩ/□	21
VIA3 resistance 0.5x0.5µm²	RVIA3		1.2	3	Ω/via	23
INFORMATION PARAMETERS						
MET3 effective width 0.6 μm	WMET3		0.5		μm	20
MET4 effective width 0.6 μm	WMET4		0.6		μm	20
MET3 temperature coefficient	TCMET3		3.4		10-₃/K	22
MET4 temperature coefficient	TCMET4		3.5		10-³/K	22

3.8.3 Capacitances

Parameter	Symbol	Min	Тур	Max	Unit	Note
MET3 – WELL		1	l	l	l	
MET3 – WELL area	CM3FOX	0.006	0.008	0.011	fF/µm²	24
MET3 – WELL perimeter	CM3FOXF	0.028	0.031	0.034	fF/µm	25
MET3 - POLY1/POLY2						
MET3 - POLY1/POLY2 area	СМЗР	0.007	0.009	0.013	fF/µm²	24
MET3 - POLY1/POLY2 perimeter	CM3PF	0.029	0.032	0.036	fF/µm	25
MET3 - MET1						
MET3 - MET1 area	СМЗМ	0.010	0.014	0.020	fF/µm²	24
MET3 - MET1 perimeter	CM3MF	0.033	0.036	0.041	fF/µm	25
MET3 - MET2						
MET3 - MET2 area	CM3M2	0.026	0.036	0.059	fF/µm²	24
MET3 - MET2 perimeter	CM3M2F	0.043	0.048	0.056	fF/µm	25
MET4 – WELL						
MET4 – WELL area	CM4FOX	0.005	0.006	0.008	fF/µm²	24
MET4 – WELL perimeter	CM4FOXF	0.027	0.029	0.032	fF/µm	25
MET4 - POLY1/POLY2						
MET4 - POLY1/POLY2 area	CM4P	0.005	0.006	0.009	fF/µm²	24
MET4 - POLY1/POLY2 perimeter	CM4PF	0.027	0.030	0.034	fF/µm	25
MET4 - MET1						
MET4 - MET1 area	CM4M	0.006	0.008	0.012	fF/µm²	24
MET4 - MET1 perimeter	CM4MF	0.030	0.033	0.037	fF/µm	25
MET4 - MET2						
MET4 - MET2 area	CM4M2	0.010	0.014	0.020	fF/µm²	24
MET4 - MET2 perimeter	CM4M2F	0.034	0.039	0.044	fF/µm	25

Capacitances (continued)

INFORMATION PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
MET4 – MET3		•				
MET4 – MET3 area	CM4M3	0.026	0.036	0.059	fF/µm²	24
MET4 – MET3 perimeter	CM4M3F	0.046	0.053	0.062	fF/µm	25
COUPLING CAPACITANCES		•				
MET3 – MET3 coupling	CM3M3		0.085		fF/µm	28
MET4 – MET4 coupling	CM4M4		0.097		fF/µm	28

3.9 Thick Metal Module Parameters

Please refer to "1.2 Process Family" for information on the processes where this module is implemented.

Important application note:

Implementation of thick metal module results in changing of several CMOS core module and metal 4 module parameters. Parameters of this section override corresponding parameters of section "3.2 CMOS Core Module Parameters" and of section "3.8 Metal 4 Module Parameters".

3.9.1 Structural and Geometrical Parameters

Please refer to chapter "3.12 Schematic Description" for a general overview of the backend of the 0.35um process.

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
metal3 thickness	TMET3	540	640	740	nm	3
thick metal-metal3 oxide thickness	TIMDT	600	1000	1200	nm	1
thick metal thickness	TMETT	2500	2800	3100	nm	3

3.9.2 Sheet Resistances

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
MET3 sheet resistance	RMET3		70	120	mΩ/□	21
METT sheet resistance	RMETT		10	15	mΩ/□	21
VIA3 resistance 0.5x0.5µm²	RVIA3T		1.2	3	Ω/via	23
INFORMATION PARAMETERS						
MET3 effective width 0.6 μm	WMET3		0.5		μm	20
MET3 temperature coefficient	TCMET3		3.4		10-³/K	22
METT effective width 2.5µm	WMETT		2.5		μm	20
METT temperature coefficient	TCMETT		3.5		10-³/K	22

3.9.3 Capacitances

INFORMATION PARAMETERS								
Parameter	Symbol	Min	Тур	Max	Unit	Note		
MET3 – WELL								
MET3 – WELL area	CM3FOXT	0.006	0.008	0.011	fF/µm²	24		
MET3 – WELL perimeter	CM3FOXFT	0.029	0.032	0.035	fF/µm	25		
MET3 – POLY1								
MET3 – POLY area	CM3PT	0.007	0.009	0.013	fF/µm²	24		
MET3 - POLY perimeter	CM3PFT	0.030	0.033	0.037	fF/µm	25		
MET3 - MET1								
MET3 - MET1 area	СМЗМТ	0.010	0.014	0.020	fF/µm²	24		
MET3 - MET1 perimeter	CM3MFT	0.034	0.037	0.042	fF/µm	25		
MET3 - MET2								
MET3 - MET2 area	СМ3М2Т	0.026	0.036	0.059	fF/µm²	24		
MET3 - MET2 perimeter	CM3M2FT	0.043	0.048	0.057	fF/μm	25		

Capacitances (continued)

INFORMATION PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
METT – WELL	•	·	•		•	
METT – WELL area	CMTFOX	0.005	0.006	0.008	fF/µm²	24
METT – WELL perimeter	CMTFOXF	0.033	0.037	0.043	fF/µm	25
METT - POLY1/POLY2						
METT - POLY area	CMTP	0.005	0.006	0.009	fF/µm²	24
METT - POLY perimeter	CMTPF	0.034	0.038	0.046	fF/µm	25
METT - MET1						
METT - MET1 area	СМТМ	0.007	0.008	0.012	fF/µm²	24
METT - MET1 perimeter	CMTMF	0.037	0.042	0.050	fF/µm	25
METT - MET2						
METT - MET2 area	CMTM2	0.011	0.014	0.021	fF/µm²	24
METT - MET2 perimeter	CMTM2F	0.043	0.050	0.060	fF/µm	25
METT – MET3						
METT – MET3 area	CMTM3	0.030	0.036	0.061	fF/µm²	24
METT – MET3 perimeter	CMTM3F	0.061	0.068	0.083	fF/µm	25
COUPLING CAPACITANCES	•	•			•	•
MET3 – MET3 coupling	CM3M3		0.085		fF/µm	28
METT – METT coupling	CMTMT		0.099		fF/µm	28

3.10 High Resistive Poly Module Parameters

Please refer to "1.2 Process Family" for information on the processes where this module is implemented.

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
RPOLYH sheet resistance	RPOLYH	1.0	1.2	1.4	kΩ/□	20
RPOLYH effective width 0.8 µm	WPOLYH	0.50	0.60	0.70	μm	20
MET1-RPOLYH contact resistance 0.4x0.4µm²	RCNTMPH		70	150	Ω/cnt	23
INFORMATION PARAMETERS						
RPOLYH temperature coefficient linear term W > 4 μm	TC1POLYH		-0.75		10 ⁻³ /K	22
RPOLYH temperature coefficient quadratic term	TC2POLYH		3.82		10-6/K²	22
RPOLYH voltage coefficient	VCRPOLYH		-0.8		10-3/V	45
RPOLYH extrinsic sheet resistance (contact region)	RPOLYHE		150		Ω/□	20

3.10.1 High Precision Poly2 Sheet Resistance: RPOLY2PH

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
POLY2 sheet resistance	RPOLY2PH	44	50	56	Ω/□	20
POLY2 effective width 0.65 µm	WPOLY2PH	0.30	0.40	0.50	μm	20
INFORMATION PARAMETERS						
POLY2 sheet resistance temp. coefficient linear term W > 4 μm	TC1POLY2PH		0.59		10 ⁻³ /K	22
POLY2 sheet resistance temp. coefficient quatratic term	TC2POLY2PH		7.7		10 ⁻⁷ /K ²	22

The values specified for RPOLY2PH are only valid for the high resistive poly module.

3.11 Low TC Poly Module Parameters

Please refer to "1.2 Process Family" for information on the processes where this module is implemented.

PASS/FAIL PARAMETERS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
RPOLYZ sheet resistance	RPOLYZ	540	650	760	Ω/□	20
RPOLYZ effective width 0.8 µm	WPOLYZ	0.47	0.57	0.67	μm	20
MET1-RPOLYZ contact resistance 0.4x0.4µm²	RCNTMPZ		70	150	Ω/cnt	23
INFORMATION PARAMETERS						
RPOLYZ temperature coefficient linear term	TC1POLYZ		-56	-120	10-6/K	22
RPOLYZ temp. coefficient quadratic term	TC2POLYZ		1.7		10-6/K	22
RPOLYZ ∆R for T=-40°C to +150°C	DRRPZ		2.7	4.5	%	55
RPOLYZ effective length 3 µm	LPOLYZ		3.36		μm	20
RPOLYZ voltage coefficient W=0.8µm	VCRPOLYZ		-0.7		10-3/V	45

3.12 Schematic Description of Geometrical Parameters

Fig.3.9: Schematic cross section of the backend for the 0.35um process

3.13 Notes / Measurement Conditions

Note 1 Oxide, nitride and polysilicon thickness monitoring

is performed by optical interference or ellipsometry at large area structures within the wafer process or on monitor wafers. The parameter values describe the oxide, nitride and polysilicon thickness of fully prepared wafers.

Passivation thickness measured on planar surfaces larger 10x10µm².

Note 2 Oxide capacitance / oxide thickness

The capacitance per area COX of a large area capacitor is measured. The oxide thickness TOX is calculated from:

$$TOX = \frac{\epsilon_0 \cdot \epsilon_{ox}}{COX}$$

with $\epsilon_{FOX,GOX,MOX,MIM} = 3.9$, $\epsilon_{POX} = 4.0$, $\epsilon_0 = 8.85.10^{-12}$ F/m

Note 3 Metal thickness

is monitored by resistivity on monitor wafer or by mechanical step measurement. The specified value describes the thickness of all layers which finally generate the corresponding metal layer.

Note 4 Junction depth

is extracted from SIMS or SRS measurements. The measurements are performed on fully processed wafers.

Note 5 Wafer substrate resistivity and wafer thickness

Wafer substrate resistivity and wafer thickness is given in reference to wafer supplier specification.

Note 6 Threshold voltage VTO10X10, VTO10X035, VTO04X10, VTO04X035, VTO10X05, VTO04X05

The linearly extrapolated threshold voltage with zero substrate bias is measured in saturation: Gate and drain are connected to one voltage source, source and bulk are connected to ground. The voltage is swept in order to find the maximum slope of the square root of the drain current as a function of the gate voltage. A linear regression is performed around this operating point:

$$\sqrt{IDS} = \sqrt{\frac{KP}{2} \cdot \frac{Weff}{Leff}} \cdot (VGS - VTO)$$

Threshold voltage VT_N3, VT_P3, VT_5N3, VT_5P3

The linearly extrapolated threshold voltage with zero substrate bias is measured in the linear region: Source and bulk are connected to ground, drain is set to VD=0.1V. The gate voltage is swept in order to find the maximum gm

$$IDS = KP \cdot \frac{Weff}{Leff} \cdot VDS \cdot \left(VGS - VTH - \frac{VDS}{2}\right)$$

The voltage sweep is positive for n-channel devices and negative for p-channel devices. The intercept with the x-axis is taken as VTO.

0.35 µm CMOS C35 Process Parameters

Note 7 Gain factor

KP is measured from the slope of the large transistor, where Weff / Leff ~ W/L.

The drain voltage is forced to 0.1V, source and bulk are connected to ground. The gate voltage is swept to find the maximum slope of the drain current as a function of the gate voltage. A linear regression is performed around this operating point:

$$IDS = KP \cdot \frac{Weff}{I \text{ eff}} \cdot VDS \cdot (VGS - VTO - \frac{VDS}{2})$$

The voltage sweep is positive for n-channel devices and negative for p-channel devices.

Note 8 Mobility

The mobility UO is calculated from KP (refer to note 7) and COX (refer to note 2):

$$UO = \frac{KP}{COX}$$

Note 9 Field threshold

Drain is set to 3.3V. Source and bulk are connected to ground. The voltage at the gate is swept in a binary search within the voltage limits $10V \le VTFP(N/P) \le 50V$ until the current reaches $10nA/\mu m$.

The voltage sweep is positive for n-channel devices and negative for p-channel devices.

Note 10 Effective channel length

The effective channel length is calculated from two wide transistors of different length.

Drain is set to $V_d = 0.1V$, source and bulk are connected to ground.

The gate Voltage V_{gm} is determined, where the slope of drain current I_d on gate voltage V_g is a maximum. Then the gate is forced to $V_g = V_{gm}$, $(V_{gm} + V_{cc})/2$, and V_{cc} respectively, and the drain current I_{ds} is recorded.

From a fit to

$$I_{DS} = \frac{\eta (V_{GS} - V_{TH}) \cdot V_{DS}}{1 + \alpha (V_{GS} - V_{TH})}$$

the parameters $\eta,~\alpha$ and V_{th} are obtained. The effective channel length L_{eff} and source-drain resistance R_{DS} is calculated by

$$\mathsf{L}_{\mathsf{eff}} = \frac{\eta_{\mathsf{L}}(\mathsf{L}_{\mathsf{S}} - \mathsf{L}_{\mathsf{L}})}{\eta_{\mathsf{L}} - \eta_{\mathsf{S}}} \qquad \qquad \mathsf{R}_{\mathsf{DS}} = \frac{\alpha_{\mathsf{L}} - \alpha_{\mathsf{S}}}{\eta_{\mathsf{L}} - \eta_{\mathsf{S}}}$$

with subscript L and S denoting the long and short transistor respectively

Note 11 Effective channel width

The effective gain factor $KP' = KP \cdot Weff / Leff$ is measured for a W - array of long transistors according to threshold voltage measurement (refer to note 7 and note 6). The width reduction DW = W - Weff is calculated from the x-intercept of the linear regression:

$$KP' = \frac{KP}{Leff} \cdot (W - DW)$$

0.35 µm CMOS C35 Process Parameters

Note 12 Body effect and effective substrate doping concentration

The threshold voltages VTH as a function of substrate bias voltage from 0 to -2V (+2V for p-channel) are extracted by linear regressions as described in note 6. The body factor GAMMA is then extracted from the slope of VTH as a function of (2 PHI - VBS)^{1/2} by another linear regression:

$$VTH = VTO + GAMMA \cdot \left(\sqrt{2 \cdot PHI - VBS} - \sqrt{2 \cdot PHI}\right)$$

The effective substrate doping concentration NSUB is calculated from GAMMA and COX (refer to note 2):

$$GAMMA = \frac{\sqrt{2 \cdot \epsilon_0 \cdot \epsilon_{si} \cdot q \cdot NSUB}}{COX}$$
 $\epsilon_{Si} = 11.7$

The surface potential PHI is a function of the doping concentration NSUB and the intrinsic carrier concentration NI

$$PHI = \frac{kT}{q} ln \left(\frac{NSUB}{NI} \right)$$

PHI is recalculated using the extracted value of NSUB. This updated value of PHI is then used again in the extraction of GAMMA and NSUB in an iterative procedure.

Note 13 Temperature coefficient of threshold voltage

Temperature exponent of mobility

The threshold voltage VTO (refer to note 6) and the gain factor KP (refer to note 7) are measured as a function of the temperature T from 25°C to 125°C. The temperature coefficient of the threshold voltage TCV and the temperature exponent of the mobility BEX are calculated from the slope of the following linear regressions:

$$VTO(T) = VTO(T0) + TCV \cdot (T - T0)$$

$$ln[KP(T)] = ln[KP(T0)] + BEX \cdot [ln(T) - ln(T0)]$$

Note 14 Drain-source breakdown voltage

Gate, source and bulk are connected to ground. The drain voltage is swept until the current reaches 10 nA/µm (referred to transistor width) at the breakdown voltage BVDS or until the voltage limit is reached.

Note 15 Saturation current

Source and bulk are connected to ground. Gate and drain are set to

gate: 3.3V drain: 3.3V for NMOS and NMOSL gate: -3.3V drain: -3.3V for PMOS and PMOSL gate: 5V drain: 5V for NMOSM and NMOSML gate: -5V drain: -5V for PMOSM and PMOSML gate: 3.3V drain: 15V for NMOSH and NMOSHL gate: 5V drain: 15V for NMOSMH and NMOSMHL

The transistor saturation current IDS is measured at the drain. IDS is specified per drawn transistor width.

0.35 µm CMOS C35 Process Parameters

Note 16 Substrate current

Source and bulk are forced to 0V. The drain is set to

3.3V for NMOS and NMOSL5V for NMOSM and NMOSML

15V for NMOSH, NMOSHL, NMOSHL and NMOSMHL

The gate voltage is swept within the allowed operating range in order to find the maximum substrate current ISUB. ISUB is specified per drawn transistor width.

Note 17 Sub-threshold leakage current

The drain is set to 3.3V, source and bulk are connected to ground. The drain current as a function of VGS is measured within the sub-threshold region. A linear regression of log(ID)=f(VGS) is performed. The intercept with log(ID)-axis is taken as SLEAK. SLEAK is specified per drawn transistor width.

Note 18 Gate oxide breakdown

The voltage at the capacitor is swept until a current of 10 nA/µm² is reached at the breakdown voltage BV.

Note 19 On-resistance

The drain is set to 0.2V, the gate is forced to 3.3V for NMOSH and NMOSHL and 5V for NMOSMH and NMOSMHL, source and bulk are connected to ground. The drain current IDS is measured. The drain resistance RON = 0.2V/IDS is calculated. RON is referred to drawn transistor width.

Note 20 Sheet resistance and effective resistor width and length

A voltage VRES is applied to one terminal. The second terminal is connected to ground. In case of diffusion or well resistor measurements substrate or well is also connected to ground. The current IRES is measured at the first terminal. The measurements are performed for an array of widths W for Weff measurement of long resistors (Leff ~ L) and array of L for Leff measurements for width resistors (Weff~W). The sheet resistance per square R is calculated from the slope and the width reduction DW = W - Weff and DL = L-Leff is calculated from the x-intercept of the linear regression:

$$\frac{IRES}{VRES} = \frac{1}{R \cdot Leff} \cdot (W - DW); \frac{IRES}{VRES} = \frac{Weff}{R \cdot (L - DL)}$$

Note 21 Metal sheet resistance

A minimum width metal line (width Wmin and length L) over most critical topography is measured and the resistance RMET is calculated by dividing the total resistor value RM by the number of drawn squares:

RMET = RM / (L / Wmin)

Note 22 Temperature coefficient of sheet resistance

The sheet resistance R (refer to note 20 and 21) is measured as a function of the temperature T from 25°C to 125°C generally. For RPOLY2, RPOLY2PH and RPOLYH the temperature range is -40°C to 180°C. The temperature coefficient of the resistance TCR is calculated from the slope of the following linear regression:

$$\frac{R(T)}{R(T0)} = 1 + TCR1 \cdot (T - T0) + TCR2 \cdot (T - T0)^2$$

0.35 µm CMOS C35 Process Parameters

Temperature coefficient of rpolyz

The resistance R is measured as a function of the temperature T from -40°C to 180°C for diverse geometries. The temperature coefficient is calculated from global fitting of the whole resistance model described below:

Sheet resistance:

$$R_0 = RSH \cdot \frac{l - LD}{w - WD}$$

Linear voltage coefficient:

$$RVL = \frac{l}{w} \cdot RVLN$$

Temperature depended quadratic voltage coefficient:

$$RVQ = \frac{1}{R_0} \cdot \left[RTH \cdot TCR1 \cdot \left(\frac{l}{w} \right)^{WEX} \cdot (T - T_0) + RT0W \right]$$

$$\mbox{Voltage dependecy: } \textit{RnV} = \textit{R}_0 \Bigg[1 + \textit{RVL} \bigg(\frac{\textit{V}}{\textit{l}} \bigg) + \textit{RVQ} \bigg(\frac{\textit{V}}{\textit{l}} \bigg)^2 \Bigg]$$

Temperature dependcy:
$$RT = RnV \Big[1 + TCR1 \cdot \big(T - T_0\big) + TCR2 \cdot \big(T - T_0\big)^2 \Big]$$

Note 23 Contact resistances

The contact resistances RCNTMDN, RCNTMDP, RCNTMP, RCNTMP2 and RCNTMPZ are measured on single contacts. The contact resistances RVIA, RVIA2, RVIA3 and RVIA2C are calculated from the resistance of a long contact string divided by the number of contacts.

Note 24 Area capacitance

The dielectric thickness TOX is measured optically (refer to note 1). The capacitance per area COX of a large area capacitor is calculated from:

$$COX = \frac{\epsilon 0 \cdot \epsilon o x}{TOX}$$

with

 ε_{ox} = 3.9 ... TFOX, TPROT1

 ε_{ox} = 4.0 ... TILDFOX, TILDDIFF, TPOX

 ε_{ox} = 4.1 ... TIMD1, TIMD2, TIMD3

 ϵ_{ox} = 7.9 ... TPROT2

 $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \text{F/m}$

Note 25 Fringing capacitance

The fringing capacitance per length (one edge) of a single minimum width interconnect line is calculated with the FEM simulator SCAP (Institute for Microelectronics, University Vienna). Adjacent structures reduce this value.

Note 26 Active channel length and MOS overlap capacitance to source/drain

The bias dependent lightly doped source/drain MOS overlap capacitance CGSDL and the bias independent non LDD MOS overlap capacitance CGSDO per width (one edge) is extracted from gate to source/drain capacitance C_{Gate-SD} measurements of long perimeter gate structures (W/L >> 1).

$$\left(C_{\text{Gate-SD}} \right) \! \big|_{\text{VGS=VFB}} - \left(C_{\text{Gate-SD}} \right) \! \big|_{\text{Accumulation}} = 2 \cdot W \cdot L_{\text{ov}} \cdot C_{\text{OX'}} \cdot \frac{\gamma_{\text{ov}}}{\gamma_{\text{ov}} + \sqrt{2 \cdot \varphi_{t}}}$$

$$\gamma_{ov} = \frac{\sqrt{2 \cdot q \cdot N_{LDD} \epsilon_0 \epsilon_{Si}}}{C_{OX'}} \qquad \qquad \gamma_{ov(NMOS)} = 3.326 \text{ V}^{-1/2} \text{ } \gamma_{ov \text{ (PMOS)}} = 1.159 \text{ V}^{-1/2}$$

$$\gamma_{\text{ov (NMOSM)}}$$
 =2.229 V^{-1/2} $\gamma_{\text{ov (PMOSM)}}$ =2.301 V^{-1/2}

$$C_{GSDL} = C_{OX'} \cdot L_{OV}$$

$$C_{\text{GSDO}} = \frac{1}{2} \big(C_{\text{Gate-SD}} \big) \big|_{\text{Accumulation}}$$

$$L_{ACTIVE} = L - 2 \cdot L_{ov}$$

0.35 µm CMOS C35 Process Parameters

Note 27 MOS overlap capacitance to bulk

The MOS overlap capacitance per length (both edges) is calculated from:

$$CGBO = 2 \cdot (WD \cdot CPFOX + CPFOXF)$$

The results are in conformity with experimental capacitance measurements of long perimeter gate structures (W/L <<1).

Note 28 Coupling capacitance

The coupling capacitance per length of adjacent metal or poly lines with minimum spacing and minimum width is calculated by using the FEM simulator SCAP (Institute for Microelectronics, University Vienna).

Note, that in case of adjacent lines the fringing capacitance (refer to note 25) is reduced by about 80% (of the coupling capacitance, if the coupling capacitance is less than the fringing capacitance).

Note 29 Junction capacitances

The junction capacitances C of an array of diodes with different area to perimeter ratios are measured as a function of the reverse bias voltage V. The junction capacitance per drawn area CJ, the junction capacitance per drawn perimeter CJSW, the junction potential PB, the area junction grading coefficient MJ and the sidewall junction grading coefficient MJSW are then extracted from:

$$C = \frac{W \cdot L \cdot CJ}{\left(1 + \frac{V}{PB}\right)^{MJ}} + \frac{2 \cdot (W + L) \cdot CJSW}{\left(1 + \frac{V}{PB}\right)^{MJSW}}$$

Note 30 Diode breakdown voltage

The diode reverse voltage is swept until the diode reverse current reaches 10 nA/µm² at the breakdown voltage BV.

Note: The well to substrate breakdown is dominated by the diffusion to substrate breakdown if the well enclosure of the diffusion is not sufficient.

Note 31 Diode leakage

Leakage currents IS of a large area diode (W=L) and of a long perimeter diode (W<<L) are measured at 3.3 V reverse bias voltage. The leakage current density per drawn area JS and the leakage current density per drawn perimeter JSSW are calculated from

$$IS = JS \cdot W \cdot L + JSSW \cdot (2 \cdot W + 2 \cdot L)$$

0.35 µm CMOS C35 Process Parameters

Note 36 Vertical PNP

The current gain of the CMOS vertical PNP bipolar transistor (PDIFF - NWELL - p-substrate) with the specified emitter area is measured as follows:

Base and substrate are connected to 0 V. A current IE = 10μ A is forced into the emitter. The base-emitter voltage VBEV is measured. The current IB is measured at the base. The current gain BETAV is calculated:

$$BETAV = -\frac{IE}{IB} - 1$$

The emitter current is then swept to higher values until current gain is reduced to half of the value of BETA. The half gain collector current ICHB is calculated from:

Note 37 Lateral PNP

The current gain of the CMOS lateral PNP bipolar transistor (PDIFF - NWELL - PDIFF) with the specified emitter area is measured as follows:

Base, collector and substrate (= vertical parasitic collector) are connected to 0 V. The GATE is connected to 2V. The specified emitter current IE is forced into the emitter. The base-emitter voltage VBEL is measured. The current IB is measured at the base and the current IC is measured at the collector. The current gain BETAL is calculated from:

$$BETAL = \frac{IC}{IB}$$

The parasitic vertical current gain at IE = 1μ A is calculated from:

$$BETAVL = -\frac{IE}{IB} - BETAL - 1$$

Note 38 Early voltage

The current IB, which has been measured for the calculation of the current gain BETA is forced into the base. The substrate is connected to 0V. The collector is connected to 0V and the gate is connected to 3.3V for the lateral transistor. The emitter voltage is swept to find the minimum slope of the emitter current as a function of the emitter voltage. The Early voltage VAF is taken from the x-intercept of a linear regression, which is performed around this operating point.

Note 39 Capacitor oxide breakdown

The voltage at the capacitor is swept until a current of 10 nA/µm² at the breakdown voltage BV is reached.

0.35 µm CMOS C35 Process Parameters

Note 40 Capacitance linearity

The terminal voltage is swept from –5V to +5V and the corresponding capacitance value C is measured at f=100kHz. The linearity is calculated from:

$$\frac{C}{C(0V)} = 1 + VC1 \cdot V + VC2 \cdot V^2$$

Note 41 Capacitance temperature dependence

Capacitance is measured from 0°C to 175°C and the slope TCPOX is calculated by linear regression method.

$$TCPOX = \frac{d(\Delta C)}{dT} \cdot \frac{1E6}{C(25^{\circ}C)}$$

Note 42 Capacitor leakage

Leakage current ILEAK of a large area capacitor is measured at ±3.3V at T=125°C. The leakage current density per drawn area LKCPOX is calculated from:

$$LKCPOX = \frac{ILEAK}{A}$$

Note 43 Varactor CVAR: quality factor QF

The quality factor QF for 1 pF is extracted from 2 port s-parameter measurements at 2.4 GHz:

$$QF = \frac{Im|Z_1|}{Re|Z_1|}$$

Note 44 Varactor CVAR: tuning range gamma

The tuning range gamma for 1 pF is extracted from 2 port s-parameter measurements at 2.4 GHz:

$$gamma = \frac{C_{max} - C_{min}}{C_{max} + C_{min}} \cdot 100$$

Note 45 Voltage coefficient

The voltage coefficient of a poly resistor is measured by applying bias voltage on to the bulk substrate. The slope of RPOLYx is then calculated by linear regression method.

Note 47 MOS varactor

The MOS Varactor capacitance is measured. "Poly 1" is connected to ground, "Ndif" is biased and substrate is floating . Biase Voltages are -1,0,1 (CVARM Bias V=-1, CVAR0 Bias V=0V, CVARP Bias V=+1V

0.35 µm CMOS C35 Process Parameters

Note 48 Resistance Fuse

A current of 200 µA is forced into the unfused poly resistor. From the voltage drop across the fuse the resistance is calculated.

Note 49 Resistance Fuse burnt

To fuse the resistor, one side of the resistor is connected to ground, the other side is connected the source of the fusing transistor. Drain is connected to 3.3V. A pulse of 3.3V height and 10µs length is applied to the gate to open the transistor and provide the fusing current to the fuse. A backup capacitor should be used to support the current sources.

A voltage of 10mV is applied to the fused poly resistor. From the current measured through the resistor the resistance is calculated.

Note 50 Idsat of burned transistor

Source and substrate are connected to ground, drain and gate are set to 3.3V. The current IDS_PF is measured at the drain.

Note 51 Zener diode breakdown voltage

The diode reverse voltage is swept until the diode reverse current reaches 50 µA (2 µA) at the breakdown voltage VZENER.

Note 52 Zener diode reverse leakage

The Zener diode reverse leakage current LZENER is measured at 1 V reverse bias voltage.

Note 53 Zapped Zener diode voltage

The Zener diode is zapped according to the zapping conditions specified in doc. 9991070. The reverse voltage VZAP of the zapped Zener diode is measured at 50 µA reverse current.

Note 54 Temperature coefficient Zener diode breakdown voltage

VZENER50 is measured as a function of temperature from 25°C to 125°C as described in note 51. TCVZENER50 is calculated from the slope of the following linear regression:

VZENER50(T) = VZENER50(T0) + TCVZENER50*(T-T0)

Note 55 RPOLYZ resistance variation in percentage over temperature range (T=-40°C to +150°C) for geometries L=3 to 1000 @ W=0.8 to max. 48μm for a typical wafer.

4 Simulation Model

4.1 Introduction

This section presents a summary of circuit simulation models for MOS transistors, CMOS compatible bipolar transistors, resistors and capacitors.

The simulation parameters are intended for use with the following circuit simulators: Spectre, Eldo, HSPICE, SMASH, ADS or any other simulation program, which contains SPICE compatible models. Technology files for other circuit simulation tools are available on request.

All parameters and technology files can be downloaded from the technical web server: http://asic.austriamicrosystems.com.

The information in this document is not exhaustive and does not intend to cover all possible limitations.

4.2 Parameter Extraction

High precision mixed analog and digital circuit simulation requires good parameter extraction strategies and accurate models. In general, the quality of a parameter extraction procedure depends on the selection of measured data (1), on the parameter extraction program (2) and on the simulation model (3).

The Input Data

We use measured current-voltage and conductance-voltage characteristics of a matrix of element geometry under all operating conditions. The geometry and the operating points are carefully selected in order to fulfill the requirements of typical mixed analog-digital design applications.

The Parameter Extraction Program

This program contains tools for extracting and optimizing the SPICE model parameters. The non-linear least-square-fit routine can optimize multiple devices with respect to multiple bias conditions in order to reduce the error between the simulated data and the measured data.

4.3 MOS Transistor Model:

We supply SPICE parameters for the BSIM3v3.2 model. They are applicable for analog design because of a special parameter extraction strategy, which includes gm, gds and gmb fitting as well as operating points in weak inversion.

In particular, the moderate inversion region and the transition from linear to saturation region are modeled more accurately.

4.3.1 MOS Transistor Model Features:

- Modeling for ids, gm and gds for all MOS transistor operation regions up to the maximum operating conditions.
- Modeling of impact ionization including body current and the resulting additional drain current.
- Modeling of the bias dependent and bias independent overlap capacitances.
- Use of the BSIM3v3 1/f and thermal noise equation. Please refer to document "0.35μm CMOS C35 Noise Parameters"
 Eng 189.
- Device mismatch modeling for threshold voltage and mobility. Please refer to document "0.35μm CMOS Matching Parameters" Eng – 228.
- Modeling temperature range validity -40°C up to 180°C

4.3.2 MOS Transistor Model Limitations and Restrictions:

- The MOS transistor model is valid within the specified operation conditions only.
- The SPICE models for the devices listed in this document are intended for analog/mixed signal applications only. For RF applications dedicated devices and corresponding models are supported. They are defined in the RF-SPICE Modeling Document (refer to "1.3 Related Documents").
- MOS transistor models are valid only up to a frequency of 1GHz for minimum channel length. For higher frequencies special RF-models are available and documented in the RF SPICE Models document. Please refer to document "0.35µm CMOS C35 RF SPICE Models" Eng 188.
- The model does not include poly depletion effects or finite thickness charge layer effects.

4.3.3 MOS Transistor Worst Case Corner Model:

We supply typical mean (TM) parameters, which have been extracted from typical wafers. Additionally, the worst case tolerances of the main parameters are given. They can be used to establish worst case parameter sets. Four predefined worst case parameter sets are available: WP=worst case power=fast NMOS & fast PMOS, WS=worst case speed=slow NMOS & slow PMOS, WO=worst case one=fast NMOS & slow PMOS, WZ=worst case zero=slow NMOS & fast PMOS. Statistical parameter sets for Monte Carlo simulations (MC) are available on request.

Please note that parameters do not vary independently:

NMOS and PMOS transistors of the same wafer should have the same TOX, XW, etc.

Even for one type of transistor, most parameters are correlated. In principle only the four parameters TOX, XL, XW and VTH0 are linearly independent and their tolerances are related to process variations. We have additionally specified the tolerances of the first-order parameters NSUB, NCH and UO although they are correlated with VTH0. On the other hand we have neglected all variations of parameters describing second order effects.

The worst case tolerances of K1 and K2 are calculated from the worst case tolerances of TOX, NSUB, and NCH.

Note: The circuit simulation parameters are extracted from the complete set of model equations in order to give the best fit of the entire characteristic for all operating points. The process control parameters are extracted from simplified model equations. Hence, circuit simulation parameters may differ from their corresponding process control transistor parameters.

Following BSIM3v3 SPICE parameters are varied within the worst case parameter sets

tox gate oxide thickness

vth0 threshold voltage large transistor

u0 carrier mobility

xl channel length offset parameter xw channel width offset parameter

nsub, nch

Substrate and channel doping concentration

cgsl, cgdl

light doped source/drain-gate overlap capacitance

cgbo gate-bulk overlap capacitance
rsh drain-source diffusion resistance
cj, cjsw area and sidewall junction capacitance

4.4 HV MOS Transistor Model:

The high voltage transistor is only intended for use in periphery cells. It is modeled as a sub-circuit of MOS transistors and resistors in order to include the n-well drain resistor.

We supply SPICE parameters for the BSIM3v3.2 sub-circuit model which is available for the fixed layout.

4.4.1 HV MOS Transistor Model Features:

- Modeling for ids, gm and gds for all HV MOS transistor operation regions up to the maximum operating conditions for the specified layout.
- Use of the SPICE 1/f and thermal noise equation. Please refer to document "0.35μm CMOS C35 Noise Parameters" Eng – 189.
- Modeling temperature range validity -40°C up to 180°C

4.4.2 HV MOS Transistor Model Limitations and Restrictions:

- The MOS transistor model is valid within the specified operating conditions only.
- The SPICE models for the devices listed in this document are intended for analog/mixed signal applications only. RF modeling is not supported.
- The model does not include poly depletion effects or finite thickness charge layer effects.
- Modeling of impact ionization and the resulting body and drain current is not including.
- Self heating is not modeled.

4.4.3 HVMOS Transistor Worst Case Corner Model:

Following HV MOS BSIM3v3 SPICE parameters are varied within the worst case corner parameter sets

tox gate oxide thickness (related to TGOX)

vth0 threshold voltage large transistor (related to VTO3N)

u0 carrier mobility (related to KP)

xI channel length offset parameter (related to LEFF) xw channel width offset parameter (related to WEFF)

nsub, nch Substrate and channel doping concentration (related to GAMMA and TGOX)

cgsl, cgdl light doped source/drain-gate overlap capacitance(related to TOX)

cgbo gate-bulk overlap capacitance (related to TOX)
rhv drain-source diffusion resistance (related to ron)

cj, cjsw area and sidewall junction capacitance (maximum value is used)

4.5 Bipolar Transistor Model:

Two parasitic bipolar devices are inherently available for design in any CMOS technology: VERT10 and LAT2

We supply SPICE parameters for the standard SPICE Gummel Poon model for VERT10 and a special sub-circuit for LAT2 (s. Fig. 4.5) for the fixed layout

LAT# SCHEMATIC

Figure 4.5 Equivalent circuit of the lateral bipolar transistor (LAT2)

The vertical bipolar transistor (VERT10) uses the substrate as the (common) collector, the well as the base and diffusion as the emitter.

The CMOS-compatible lateral bipolar transistor (LAT2) consists of a diffusion square as the emitter, a diffusion ring around it as the collector and a well as the base. Emitter and collector are separated by gate area. The Lat2 transistor model consists of a vertical and a lateral part (Figure 4.1). Both the vertical collector current as well as the parasitic substrate current is modeled.

Note: The circuit simulation parameters are extracted from the complete set of model equations in order to give the best fit of the entire characteristic for all operating points. The process control parameters are extracted from simplified model equations. Hence, the circuit simulation parameters BF, IKF and VAF may differ from their corresponding process control transistor parameters BETA, ICHB and VAF.

4.5.1 Bipolar Transistor Model Features:

- Modeling temperature range validity -40°C up to 180°C
- 1/f noise modeling for VERT10
- VERT10 mismatch modeling for forward gain current beta and saturation current IS. Please refer to document "0.35μm CMOS Matching Parameters" Eng 228.

4.5.2 Bipolar Transistor Model Limitations and Restrictions:

- The collector current of LAT2 (lateral PNP bipolar transistor) is a function of the gate voltage. The circuit simulation parameters are valid for a positive gate-emitter voltage VGE of about 1 V. For zero or negative gate-emitter voltages, the collector current is increased considerably by the parasitic MOS current. This effect is not included in the circuit simulation model.
- Lateral and vertical PNP transistor models are valid only up to a frequency of 800MHz.
- 1/f noise and mismatch parameters are not available for LAT2

4.5.3 Bipolar Transistor Worst Case Corner Model:

We supply parameters, which represent the typical mean (TM) process condition. Additionally, the worst case tolerances of the main parameters are available. They can be used to establish worst case parameter sets. Three predefined worst case parameter sets are available: HS = high speed & high beta, LB = low speed & low beta, HB = low speed & high beta. Statistical parameter sets for Monte Carlo simulations (MC) are also available on request.

VERT10: Following Gummel - Poon SPICE parameters are varied within the worst case corner parameter sets

is saturation current
bf current gain
vaf Early voltage

cje e-b junction capacitance cjc b-c junction capacitance

ikf forward beta high current roll off

rb base resistor

rbm minimum base resistor at high currents

re emitter resistor
rc collector resistor

tf ideal forward transit time

Lat2: Following Gummel - Poon SPICE parameters are varied within the worst case corner parameter sets

is saturation current bf forward current gain

bfv forward current gain for vertical pnp

vaf Early voltage

cje e-b junction capacitance
cjc b-c junction capacitance
betav current gain of the parasitic pnp
ikf forward beta high current roll off

rb base resistor

rbm minimum base resistor at high currents

re emitter resistor rc collector resistor

tf ideal forward transit time

4.6 Well Resistor Model:

The following non-linear resistor is available for design:

RNWELL

Field well resistors (covered by field oxide) are available for design. Well resistors have a non-linear terminal-voltage and bulk-voltage dependence of their resistance due to the resistor-to-bulk diodes, which cannot be described by the 2-terminal resistor model in SPICE.

4.6.1 Well Resistor Model Features:

- We supply model parameters for the 3-terminal SPICE JFET model. The substrate is the gate of the JFET.
- Modeling temperature range validity -40°C up to 180°C

4.6.2 Well Resistor Model Limitations and Restrictions:

- RNWELL is a field n-well resistor (covered by field oxide). Device n-well resistors (covered by gate oxide) are not supported.
- The JFET noise model in SPICE is only valid in saturation. Therefore, it is recommended to replace n-well resistors by standard resistors for correct simulation of the thermal noise.
- The model is only valid up to |5V|.
- The model is valid for L/W > 5 only
- 1/f noise and mismatch modeling is not included

4.6.3 Well Resistor Worst Case Model:

Following SPICE parameters are varied within the worst case corner parameter sets:

beta sheet resistance (related to RNWELL)
wd width reduction (related to WNWELL)
cj, cjsw area and sidewall junction capacitance

4.7 Diffusion Resistor Model:

Model parameters for the diffusion resistors RDIFFN3 and RDIFFP3 are available. These resistors are only intended for use in periphery cells.

4.7.1 Diffusion Resistor Model Features:

- We supply model parameters for the 3-terminal SPICE JFET model. The model includes the parasitic temperature dependent leakage current and the junction capacitances. The substrate is the gate of the JFET.
- Modeling temperature range validity -40°C up to 180°C

4.7.2 Diffusion Resistor Model Limitations and Restrictions:

- The model is valid for L/W > 5 only
- 1/f noise and mismatch modeling is not included

4.7.3 Diffusion Resistor Worst Case Model:

Following resistor SPICE parameters are varied within the worst case corner parameter sets:

rsh sheet resistance (related to RDIFFN/RDIFFP)
wd width reduction (related to WDIFFN/WDIFFP)
cj, cjsw area and sidewall junction capacitance

4.8 Poly2 and High Resistive Poly Resistor Model:

The voltage and temperature modeling of RPOLY2, RPOLY2P, RPOLY2PH and RPOLYH is taken into account wih following equations:

$$\frac{R(T)}{R(T0)} = 1 + TCR1 \cdot \left(T - T0\right) + TCR2 \cdot \left(T - T0\right)^2 \\ Voltage dependent modeling: \\ R_{T_0}\left(W, L, V\right) = RSH \cdot \frac{L - LD}{W - WD} \cdot \left[1 + RV(W) \cdot \left(\frac{V}{L}\right)^2\right] \\ R_{T_0}\left(W\right) = TCR1 \cdot RTH \cdot W^{WEX}$$

· /

4.8.1 Poly2 and high resistive poly Resistor Model Features:

- Modeling temperature range validity -40°C up to 180°C
- Voltage and temperature dependency in first and second order
- Width dependency model
- Device mismatch modeling
 Please refer to document "0.35µm CMOS Matching Parameters" Eng 228.
- Special RF-models are available and documented in the RF SPICE Models document. Please refer to document "0.35µm CMOS C35 RF SPICE Models" Eng – 188.

4.8.2 Poly2 and high resistive poly Resistor Model Limitations and Restrictions:

- The model is valid for L/W > 5 only
- 1/f noise modeling is not included
- Parasitic capacitances are not included in the RPOLY1, RPOLY2, RPOLY2P, RPOLY2PH and RPOLYH model.
- The extended voltage and temperature model for RPOLY2, RPOLY2P, RPOLY2PH and RPOLYH is applied for the following circuit simulators: Spectre, ELDO, HSPICE and SMARTSPICE.
- The extended voltage and temperature model is not supported for poly1
- Self heating is not modeled

4.8.3 Poly2 and high resistive poly Resistor Worst Case Model:

Following resistor SPICE parameters are varied within the worst case corner parameter sets:

rsh sheet resistance (related to RPOLY/RPOLY2/RPOLY2P/RPOLYH/RPOLY2PH) width reduction (related to WPOLY/WPOLY2/WP2HP/WPOLYH/WP2HP2)

4.9 Low TC Poly Resistor Model:

The voltage and temperature modeling of RPOLYZ is taken into account wih following equations:

$$RT = RnV \left[1 + TCR1 \cdot \left(T - T_0 \right) + TCR2 \cdot \left(T - T_0 \right)^2 \right] \qquad \text{RT} \qquad \text{temperature dependent resistor} \\ L \qquad \qquad \text{drawn resistor length} \\ RnV = R_0 \left[1 + RVL \left(\frac{V}{l} \right) + RVQ \left(\frac{V}{l} \right)^2 \right] \qquad \qquad W \qquad \qquad \text{drawn resistor width} \\ WD \qquad \qquad \text{width reduction parameter} \\ LD \qquad \qquad \text{length reduction parameter} \\ \text{linear temperature coefficient} \\ RVL = \frac{l}{w} \cdot RVLN \qquad \qquad \text{TCR2} \qquad \qquad \text{quadratic temperature coefficient} \\ WEX \qquad \qquad \text{width exponent} \\ RV \qquad \qquad \text{width dependent voltage coefficient} \\ RVQ = \frac{1}{R_0} \cdot \left[RTH \cdot TCR1 \cdot \left(\frac{l}{w} \right)^{WEX} \cdot \left(T - T_0 \right) + RT0W \right]$$

4.9.1 Low TC Poly Resistor Model Features:

- Modeling temperature range validity -40°C up to 180°C
- · Voltage and temperature dependency in first and second order
- Width dependency model
- Device mismatch modeling
 Please refer to document "0.35µm CMOS Matching Parameters" Eng 228.

4.9.2 Low TC Poly Resistor Model Limitations and Restrictions:

- The model is valid for L > 3um and $0.8\mu m < W < 48um$ only
- 1/f noise modeling is not included
- Parasitic capacitances are not included in the model.
- The extended voltage and temperature model is applied for the following circuit simulators: Spectre, ELDO, HSPICE and SMARTSPICE.
- Self heating is not modeled
- RF model is not supported.

4.9.3 Low TC Poly Resistor Model Worst Case Model:

Following resistor SPICE parameters are varied within the worst case corner parameter sets:

rsh sheet resistance wd width reduction ld length reduction

TCR1 linear temperature coefficient
TCR2 quadratic temperature coefficient

4.10 Poly and MIM Capacitor Model:

Voltage dependency (VCPOX, VCMIM) and thermal modeling (TCPOX, TCMIM) for PiP capacitor CPOLY and MIM capacitor CMIM is applied for the following circuit simulators: Spectre, ELDO and ADS.

4.10.1 Poly and MIM Capacitor Model Features:

- area and perimeter proportion.
- voltage and temperature dependency.
- Modeling temperature range validity -40°C up to 180°C
- Device mismatch modeling
 Please refer to document "0.35µm CMOS Matching Parameters" Eng 228.

4.10.2 Poly and MIM Capacitor Model Limitations and Restrictions:

- frequency dependency is modeled in the RF model only
- · parasitic capacitance is modeled in the RF model only

4.10.3 Poly and MIM Capacitor Worst Case Model:

Following capacitance SPICE parameters are varied within the worst case corner parameter sets:

- ca area capacitance (related to CPOX/CMIM)
- cp perimeter capacitance (related to CPOX/CMIM)

4.11 MOS Capacitor Model:

4.11.1 MOS Capacitor Model Features:

Modeling of area and perimeter cap.

4.11.2 MOS Capacitor Model Limitations and Restrictions:

• The MOS capacitor model is simplified to an area and perimeter gate cap and do not include any MOS transistor parasitic capacitances, voltage, temperature, noise or mismatch dependency.

4.11.3 MOS Capacitor Worst Case Model:

- ca area capacitance (related to COX)
- cp perimeter capacitance (related to COX)

4.12 MOS Varactor Model:

The MOS Varactor model is supported mainly as RF device. Therefore it is described in the RF SPICE modeling document in detail. Please refer to document "0.35µm CMOS C35 RF SPICE Models" Eng – 188 for features and limitations.

4.13 Diode Model:

4.13.1 Diode Model Features:

- We support a reverse diode model including area and perimeter capacitance the diode leakage current and temperature coefficient.
- Modeling temperature range validity -40°C up to 180°C

4.13.2 Diode Model Limitations and Restrictions:

- Diode models are only intended for the simulation of reverse leakage current and junction capacitance. It is not recommended to use ND, PD and NWD in forward operation.
- 1/f noise modeling and mismatch modeling is not included.

4.13.3 Diode Worst Case Model:

The diode model does not include any corner parameters.

4.14 Zener Diode Model:

4.14.1 Diode Model Features:

- A p-diffusion to n-diffusion in n-well Zener diode is available as a programmable element. It is modeled as a subcircuit of four diodes and a voltage source.
- The model includes the parasitic n-well diode and a series resistor plus a programmable parallel resistor for zapping.

4.14.2 Diode Model Limitations and Restrictions:

 The Zener diode ZD2SM24 is available as a programmable element. ZD2SM24 must not be used as a voltage reference.

4.14.3 Zener Diode Worst Case Model:

RZ zap resistor

RS seriesresistor of diode

BV reverse breakdown of "dbvt"

ISF saturation current for "dfor"

ISR saturation current for "drev"

ISR2 saturation current for "drev2"

CJ0 junction capacitor

4.15 Model Feature Overview Table

Device	Geometry scalable model	1/f Noise Model	Temp. Modeling -40 °C 125°C	WC Model	MC Model	Mismatch Parameter	1/f Noise Corner Model	RF Model
NMOS	Х	Х	X*	Х	Х	Х	Х	Х
PMOS	Х	Х	X*	Х	Х	Х	Х	Х
NMOSH		Х	X*	Х	Х			
VERT10		Х	X*	Х	Х	Х		
LAT2			X*	Х	Х			
SUBDIODE	Х		X*					
WELLDIODE	Х		X*					
NWD	Х		X*					
NGATECAP	Х							
CVAR	Х		Х	Х	Х			Х
RDIFFP, RDIFFP3	Х		X*	Х	Х			
RDIFFN, RDIFFN3	Х		X*	Х	Х			
RNWELL	X		X*	Х	Х			
RPOLY1	Х		Х	Х	Х			
ZD2SM24			Х	Х	Х			
RPOLY2 RPOLY2P RPOLY2PH	X		X*	Х	Х	Х		Х
CPOLY	Х			Х	Х	Х		Х
RPOLYH	Х		X*	Х	Х	Х		Х
RPOLYZ	Х		X*	Х	Х	Х		
CMIM	Х		Х	Х	Х	Х		Х
NMOSM	Х	Х	X*	Х	Х	Х	Х	
PMOSM	Х	Х	X*	Х	Х	Х	Х	
NMOSMH		Х	X*	Х	Х			
NMOSL	Х	Х	Х	Х	Х	Х		
PMOSL	Х	Х	Х	Х	Х	Х		

^{*)} Temperature modeling is supported up to 180°C.

Model Features								
Device	Geometry scalable model	1/f Noise	Temp. Modeling -40 °C-125°C	WC Model	MC Model	Mismatch Parameter	1/f Noise Corner Model	RF Model
NMOSML	Х	Х	Х	Х	Х	Х		
PMOSML	Х	Х	Х	Х	Х	Х		
NMOSHL		Х	Х	Х	Х			
NMOSMHL		Х	Х	Х	Х			

4.16 Summary of Simulation Models

Please refer to further application notes within the actual model files.

The following devices are available for design:

CORE PROCESS			
Device	Device Name	Model Name	Model Rev.
3.3 Volt NMOS	NMOS	modn	4.0
3.3 Volt PMOS	PMOS	modp	4.0
high voltage NMOS (gate oxide)	NMOSH	modnh	4.0
Vertical PNP bipolar transistor	VERT10	vert10	5.0
Lateral PNP bipolar transistor	LAT2	lat2	4.0
Diode NDIFF / PSUB	SUBDIODE	nd	4.0
Diode PDIFF / NWELL	WELLDIODE	pd	4.0
Diode NWELL / PSUB	NWD	nwd	4.0
POLY1-DIFF capacitor	NGATECAP	ngatecap	4.0
MOS Varactor	CVAR	cvar	4.0
PDIFF resistor	RDIFFP, RDIFFP3	rdiffp (model R) rdiffp3 (model JFET)	4.0
NDIFF resistor	RDIFFN, RDIFFN3	rdiffn (model R) rdiffn3 (model JFET)	4.0
NWELL resistor	RNWELL	rnwell	4.0
POLY1 resistor	RPOLY1	rpoly1	5.0
Zener diode	ZD2SM24	zd2sm24	1.0

CPOLY MODULE			
Device	Device Name	Model Name	Model Rev.
POLY2 resistor	RPOLY2	rpoly2	5.0
POLY2 resistor	RPOLY2P	rpoly2p	1.0
CPOLY capacitor	CPOLY	cpoly	4.0

High resistive poly MODULE			
Device	Device Name	Model Name	Model Rev.
POLY2 resistor	RPOLY2PH	rpoly2ph	1.0
POLYH resistor	RPOLYH	rpolyh	5.0

Low TC resistive MODULE			
Device	Device Name	Model Name	Model Rev.
POLYZ resistor	RPOLYZ	rpolyz	1.0

CMIM MODULE			
Device	Device Name	Model Name	Model Rev.
METAL2-METALC capacitor	СМІМ	cmim	4.0

5 VOLT MODULE			
Device	Device Name	Model Name	Model Rev.
5 Volt NMOS	NMOSM	modnm	4.0
5 Volt PMOS	PMOSM	modpm	4.0
high voltage NMOS (mid-oxide)	NMOSMH	modnmh	4.0

Low VT MODULE			
Device	Device Name	Model Name	Model Rev.
Low VT 3.3 V NMOS	NMOSL	modnl	5.0
Low VT 3.3 V PMOS	PMOSL	modpl	5.0
Low VT 5 V NMOS	NMOSML	modnml	5.0
Low VT 5 V PMOS	PMOSML	modpml	5.0
Low VT 3.3 V high voltage NMOS	NMOSHL	modnhl	4.0
Low VT 5 V high voltage NMOS	NMOSMHL	modnmhl	4.0

Note: Minor changes of the simulation models might be generated due to continuous improvement of device and circuit simulation. Minor changes of models are described within the actual model data files and within the intranet austriamicrosystems AG.

4.17 Circuit Simulators and Models

The models are supported and qualified for the specified simulator revision. Previous simulator versions are also supported, for detailled questions please contact us at support@austriamicrosystems.com.

Simulator	MOS Model		
	BSIM3v3 level 53	Monte Carlo & Matching	
Eldo	6.5.2	6.5.2	
Spectre	5.1.41	5.1.41	
HSPICE	2003.4		
Smash	4.3.5 (level 8)	-	
Smartspice	2.6.4.R	-	
Agilent - ADSsim	2004a	-	

The following models are supported for all simulators mentioned above:

bipolar transistors: BJT Gummel-Poon

diodes : D level 1

resistors : R / JFET level 1

capacitors : C

Updates of model revision:

http://asic.austriamicrosystems.com/hitkit/parameters/index.html

Updates of netlist format:

http://asic.austriamicrosystems.com/hitkit/circuit_sim/netlist_format.html

Updates of simulation parameters/download area:

http://asic.austriamicrosystems.com/download/parameters.html

5 Characteristic Curves

5.1 Introduction

This section contains characteristic curves for MOS transistors, CMOS compatible bipolar transistors, well resistors and the poly1 - poly2 capacitor which have been measured on typical wafers. The circuit simulation parameters for the typical mean process condition (refer to section "4. Simulation Model") have been extracted from the same wafers.

The characteristic curves are intended for checking the correct implementation of the SPICE models and SPICE parameters in a particular simulator. In addition, the accuracy of the different models is compared and the quality of the parameter extraction is shown.

MOS Transistors

Output and transfer characteristics of several transistor geometries for zero bulk voltage and several gate voltages are shown. The figures contain the measured and the simulated drain current for the BSIM3 version 3 model.

Note: The characteristics of all transistor geometries have been simulated with a single set of SPICE parameters.

The accuracy of the on-resistance for high VGS and the output conductance in saturation for small VGS are important requirements for typical mixed analog-digital applications. Due to a special parameter extraction strategy, the modeled characteristics are especially accurate in these operating regions. As a trade-off, the maximum error of the model occurs if both VGS and VDS are high which is a relatively non-critical operating region.

Bipolar Transistors

Gummel plots and current gain plots of vertical and lateral bipolar transistors for several collector voltages are shown. The figures contain the measured and the simulated current for the SPICE Gummel-Poon model.

Well Resistors

Resistance characteristics of several resistor geometries for several bulk voltages are shown. The figures contain the measured and the simulated resistance for the SPICE JFET model.

Poly1-Poly2 and Metal2-MetalC capacitors

The linearity of the CPOLY and CMIM capacitor characteristics of several temperatures is shown. The figures contain the measured and the extracted capacitances.

5.2 MOS Transistor Characteristics

5.2.1 3.3V MOS Transistor Characteristics

Fig.5.1 NMOS output characteristic of a typical wafer. W/L = 10/10, VGS=0.9,1.5,2.1,2.7,3.3 V; VBS = 0 V, + = measured, — = BSIM3v3 model

PMOS output characteristic of a typical wafer. W/L = 10/10, VGS=-1.4,-1.875,-2.35,-2.825,-3.3 V; VBS = 0 V, + = measured, — = BSIM3v3 model

Fig. 5.3 NMOS transfer characteristic of a typical wafer. W/L = 10/10, $VBS = 0, -0.9, -1.8, -2.7, -3.6 \text{ V}, VDS = 0.1 \text{ V} \\ + = \text{measured}, \qquad = \text{BSIM3v3 model}$

Fig. 5.4 PMOS transfer characteristic of a typical wafer. W/L = 10/10, VBS = 0,0.9,1.8,2.7,3.6 V, VDS = -0.1 V + = measured, — = BSIM3v3 model

Fig. 5.5 NMOS output characteristic of a typical wafer. W/L = 10/0.35, VGS=0.9,1.5,2.1,2.7,3.3 V; VBS = 0 V, + = measured, — = BSIM3v3 model

Fig. 5.7 NMOS transfer characteristic of a typical wafer. W/L = 10/0.35, VBS = 0,-0.9,-1.8,-2.7,-3.6 V, VDS = 0.1 V + = measured, — = BSIM3v3 model

PMOS transfer characteristic of a typical wafer. W/L = 10/0.35,

VBS =0,0.9,1.8,2.7,3.6 V, VDS = -0.1 V

+ = measured, — = BSIM3v3 model

Fig. 5.8

PMOS output characteristic of a typical wafer. W/L = 0.4/10, VGS=-1.4,-1.875,-2.35,-2.825,-3.3 V; VBS = 0 V, + = measured, — = BSIM3v3 model

Fig. 5.11 NMOS transfer characteristic of a typical wafer. W/L = 0.4/10, VBS = 0.-0.9, -1.8, -2.7, -3.6 V, VDS = 0.1 V + = measured, — = BSIM3v3 model

Fig. 5.12 PMOS transfer characteristic of a typical wafer. W/L = 0.4/10, VBS = 0,0.9,1.8,2.7,3.6 V, VDS = -0.1 V + = measured, — = BSIM3v3 model

Fig. 5.13 NMOS output characteristic of a typical wafer. W/L = 0.8/1.0, VGS=0.9,1.5,2.1,2.7,3.3 V; VBS = 0 V, + = measured, — = BSIM3v3 model

Fig. 5.14 PMOS transfer characteristic of a typical wafer. W/L = 0.8/1.0, VBS = 0,0.9,1.8,2.7,3.6 V, VDS = -0.1 V + = measured, — = BSIM3v3 model

Fig. 5.16

Fig. 5.15 NMOS transfer characteristic of a typical wafer. W/L = 0.8/1.0, VBS = 0,-0.9,-1.8,-2.7,-3.6 V, VDS = 0.1 V + = measured, — = BSIM3v3 model

PMOS output characteristic of a typical wafer. W/L = 0.8/1.0, VGS=-1.4,-1.875,-2.35,-2.825,-3.3 V; VBS = 0 V, + = measured, — = BSIM3v3 model

5.2.2 3.3V HV-MOS Transistor Characteristics

Fig. 5.17 NMOSH output characteristic of a typical wafer. W/L = 100/3, VGS = 0.9, 1.5, 2.1, 2.7, 3.3 V, VBS = 0 V

+ = measured, — = BSIM3v3 model

Fig. 5.18 NMOSH output characteristic of a typical wafer. W/L = 100/3, VGS = 0.9,1.5,2.1,2.7,3.3 V, VBS = 0 V + = measured, — = BSIM3v3 model

5.2.3 5V MOS Transistor Characteristics

Fig. 5.19 NMOSM output characteristic of a typical wafer. W/L = 10/10, VGS = 1.4,2.3,3.2,4.1,5 V, VBS = 0 V + = measured, — = BSIM3v3 model

Fig. 5.20 PMOSM output characteristic of a typical wafer. W/L = 10/10, VGS = -1.4,-2.3,-3.2,-4.1,-5 V, VBS = 0 V + = measured, — = BSIM3v3 model

Fig. 5.21 NMOSM transfer characteristic of a typical wafer. W/L = 10/10, $VBS = -1, -2, -3, -4 \text{ V}, VDS = 0.1 \text{ V} \\ + = \text{measured}, --- = BSIM3v3 \text{ model}$

Fig. 5.22 PMOSM transfer characteristic of a typical wafer. W/L = 10/10, VBS =1,2,3,4 V, VDS =-0.1 V + = measured, — = BSIM3v3 model

+ = measured, — = BSIM3v3 model

Fig. 5.25 NMOSM transfer characteristic of a typical wafer. W/L = 10/0.5, VBS =-1,-2,-3,-4 V, VDS = 0.1 V

+ = measured, — = BSIM3v3 model

PMOSM transfer characteristic of a typical wafer. W/L = 10/0.5, Fig. 5.26 VBS =1,2,3,4 V, VDS =-0.1 V + = measured, — = BSIM3v3 model

Fig. 5.27 NMOSM output characteristic of a typical wafer. W/L = 0.4/10, VGS = 1.4,2.3,3.2,4.1,5 V, VBS = 0 V + = measured, — = BSIM3v3 model

Fig. 5.28 PMOSM output characteristic of a typical wafer. W/L = 0.4/10, VGS = -1.4,-2.3,-3.2,-4.1,-5 V, VBS = 0 V + = measured, — = BSIM3v3 model

Fig. 5.29 NMOSM transfer characteristic of a typical wafer. W/L = 0.4/10, $VBS = -1, -2, -3, -4 \text{ V, VDS} = 0.1 \text{ V} \\ + = \text{measured, } \longrightarrow = \text{BSIM3v3 model}$

Fig. 5.31 NMOSM output characteristic of a typical wafer. W/L = 0.8/1.0, VGS = 1.4,2.3,3.2,4.1,5 V, VBS = 0 V + = measured, — = BSIM3v3 model

Fig. 5.32 PMOSM output characteristic of a typical wafer. W/L = 0.8/1.0, VGS = -1.4,-2.3,-3.2,-4.1,-5 V, VBS = 0 V + = measured, — = BSIM3v3 model

Fig. 5.33 NMOSM transfer characteristic of a typical wafer. W/L = 0.8/1.0, VBS =-1,-2,-3,-4 V, VDS = 0.1 V + = measured, — = BSIM3v3 model

Fig. 5.34 PMOSM transfer characteristic of a typical wafer. W/L = 0.8/1.0, VBS =1,2,3,4 V, VDS =-0.1 V + = measured, --- = BSIM3v3 model

5.2.4 5V HV-MOS Transistor Characteristics

Fig. 5.35 NMOSMH output characteristic of a typical wafer. W/L = 100/3, VGS = 1.4,2.4,3.4,4.4,5.4 V, VBS = 0 V + = measured, — = BSIM3v3 model

Fig. 5.36 NMOSMH output characteristic of a typical wafer. W/L = 100/3, $VGS = 1.4, 2.4, 3.4, 4.4, 5.4 \text{ V, VBS} = 0 \text{ V} \\ + = \text{measured, } \longrightarrow = \text{BSIM3v3 model}$

5.2.5 3.3V Low VT MOS Transistor Characteristics

Fig.5.37 NMOSL output characteristic of a typical wafer. W/L = 10/10, VGS=0.9,1.38,1.86,2.34,2.82,3.3 V; VBS = 0 V, + = measured, — = BSIM3v3 model

Fig. 5.38 PMOSL output characteristic of a typical wafer. W/L = 10/10, VGS=-0.9,-1.38,-1.86,-2.34,-2.82,-3.3 V; VBS = 0 V, + = measured, — = BSIM3v3 model

Fig. 5.39 NMOSL transfer characteristic of a typical wafer. W/L = 10/10, $VBS = 0, -0.3, -0.6, -0.9, -1.2, -1.5 \text{ V, VDS} = 0.1 \text{ V} \\ + = \text{measured, } \longrightarrow = \text{BSIM3v3 model}$

Fig. 5.40 PMOSL transfer characteristic of a typical wafer. W/L = 10/10, $VBS = 0, 0.3, 0.6, 0.9, 1.2, 1.5 \text{ V, VDS} = -0.1 \text{ V} \\ + = \text{measured, } \longrightarrow = \text{BSIM3v3 model}$

2.5 2.5 2.5 2.5 3 1.5 0.5 1 1 1 1.5 2 2 2.5 3 3.5

Fig. 5.41 NMOSL output characteristic of a typical wafer. W/L = 10/0.35, VGS=0.9,1.38,1.86,2.34,2.82,3.3 V; VBS = 0 V, + = measured, — = BSIM3v3 model

Fig. 5.42 PMOSL output characteristic of a typical wafer. W/L = 10/0.35, VGS=-0.9,-1.38,-1.86,-2.34,-2.82,-3.3 V; VBS = 0 V, + = measured, — = BSIM3v3 model

Fig. 5.43 NMOSL transfer characteristic of a typical wafer. W/L = 10/0.35, VBS =0,-0.3,-0.6,-0.9,-1.2,-1.5 V, VDS = 0.1 V + = measured, — = BSIM3v3 model

Fig. 5.44 PMOSL transfer characteristic of a typical wafer. W/L = 10/0.35, VBS = 0,0.3,0.6,0.9,1.2,1.5 V, VDS = -0.1 V + = measured, — = BSIM3v3 model

Fig. 5.47 NMOSL transfer characteristic of a typical wafer. W/L = 0.8/10, Fig. 5.48 PMOSL transfer characteristic of a typical wafer. W/L = 0.8/10, VBS = 0,-0.3,-0.6,-0.9,-1.2,-1.5 V, VDS = 0.1 V VBS = 0,0.3,0.6,0.9,1.2,1.5 V, VDS = 0.1 V + = measured, — = BSIM3v3 model + = measured, — = BSIM3v3 model

5.2.6 5V Low VT MOS Transistor Characteristics

Fig. 5.51 NMOSML output characteristic of a typical wafer. W/L = 10/10, VGS = 1,1.8,2.6,3.4,4.2,5 V, VBS = 0 V $+ = \text{measured, } \longrightarrow = \text{BSIM3v3 model}$

Fig. 5.53 NMOSML transfer characteristic of a typical wafer. W/L = 10/10, VBS = 0,-0.5,-1,-1.5,-2 V, VDS = 0.1 V + = measured, — = BSIM3v3 model

+ = measured, — = BSIM3v3 model

5.3 Bipolar Transistor Characteristics

Fig. 5.65 Gummel plot of vertical PNP bipolar transistor (VERT10) for a typical wafer.

VBC = 0,0.5,1,1.5,2 V, + = measured, --- = SPICE model

Fig. 5.66 Current gain of vertical PNP bipolar transistor (VERT10) for a typical wafer.

VBC = 0,0.5,1,1.5,2 V, + = measured, --- = SPICE model

Fig. 5.67 Gummel plot of lateral PNP bipolar transistor (LAT2) for a typical wafer.

VBC = 0,1.0,2.0 V, += measured, — = SPICE model

Current gain of lateral PNP bipolar transistor (LAT2) for a typical wafer.

VBC = 0,1.0,2.0 V, += measured, — = SPICE model

Fig. 5.68

5.4 Well Resistor Characteristics

Fig. 5.70 N-well resistor characteristic of a typical wafer. W/L = 3/200 -VBS = 0.2.4.6.8.10 V, + = measured, — = SPICE JFET model

5.5 Poly Resistor Temperature Characteristics

Fig. 5.71 Poly resistor temperatuer characteristic for RPOLY2 (RP2), RPOLYH (RPH) and RPOLYZ (RPZ). Symbols = measured, — = SPICE Resistor model for different geometries

5.6 Capacitor Characteristics

6 Support

For questions on process parameters please refer to:

austriamicrosystems AG

A 8141 Schloss Premstätten, Austria T. +43 (0) 3136 500 0 F. +43 (0) 3136 525 01

E-mail: tips@austriamicrosystems.com
Technical Webserver: http://asic.austriamicrosystems.com
Homepage: http://www.austriamicrosystems.com

7 Copyright

Copyright © 2008 austriamicrosystems. Trademarks registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. To the best of its knowledge, austriamicrosystems asserts that the information contained in this publication is accurate and correct.