

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 2005

Электронный журнал, рег. N П23275 от 07.03.97

 $\label{limit} \begin{array}{l} http://www.neva.ru/journal\\ e\text{-}mail:\ diff@osipenko.stu.neva.ru \end{array}$

Оптимальное управление

УДК 517.977.58

ОПТИМАЛЬНОЕ ПО МИНИМУМУ РАСХОДА РЕСУРСОВ УПРАВЛЕНИЕ НЕЛИНЕЙНЫМИ СИСТЕМАМИ СПЕЦИАЛЬНОГО ВИДА

Г.В.ШЕВЧЕНКО

Россия, 630090, Новосибирск, пр. Акад. Коптюга,4 Институт математики им. С. Л. Соболева Сибирского отделения РАН, отдел теоретической кибернетики, e-mail: shevch@math.nsc.ru

Аннотация.

Предлагается итерационный метод решения нелинейных задач минимизации расхода ресурсов. Он является обобщением метода решения линейных задач минимизации ресурсов [1] на класс нелинейных систем с разделенной по состоянию и управлению правой частью, линейной по управлению.

1 Постановка задачи и геометрическая интерпретация

Пусть управляемый объект описывается системой обыкновенных дифференциальных уравнений вида

$$\dot{x}(t) = f(x) + B(t)u(t), \quad x(0) = x^{0}, \tag{1}$$

где $x \in \mathbb{R}^n$ — фазовый вектор состояния объекта, $f(x) = (f_1(x_1, \dots, x_n), \dots, f_n(x_1, \dots, x_n))$ — непрерывно дифференцируемая вектор-функция, f(0) = 0 и $f(x) \neq 0$ при $x \neq 0$, B(t) — непрерывная матрица размера $n \times s$, $u \in \mathbb{R}^s$ — кусочно-непрерывное управление, стесненное ограничением

$$|u_j(t)| \leqslant 1 \quad (j = \overline{1, s}). \tag{2}$$

Задача. Требуется найти допустимое управление $u^0(t)$ ($t \in [0,T]$), переводящее систему (1) из начального состояния $x(0) = x^0$ за время T в начало координат и минимизирующее функционал

$$I(u) = \int_{0}^{T} \sum_{j=1}^{s} \alpha_{j} |u_{j}(t)| dt,$$
 (3)

где $\alpha_j\geqslant 0$ — заданные действительные числа, причем $\sum_{j=1}^s \alpha_j \neq 0$.

Предполагается, что система (1) управляема в начало координат и $T>T_{\rm ont}$, где $T_{\rm ont}$ — время оптимального по быстродействию перевода системы (1) из состояния $x(0)=x^0$ в начало координат.

Обозначим через $\Re(T)$ область достижимости системы (1) из начального состояния $x(0)=x^0$ за время T всевозможными допустимыми управлениями. В силу того, что $T>T_{\text{опт}},\ f(x)\neq 0$ при $x\neq 0$ и f(0)=0, имеет место включение $0\in \operatorname{int}\Re(T)$. Через $\operatorname{int}A$ здесь и далее обозначается внутренность множества A. В силу непрерывности правой части системы (1) для поставленной задачи область достижимости $\Re(T)$ компактна и непрерывно зависит от T. Более того, поскольку предполагается, что система (1) управляема в начало координат, то $\Re(T)$ тело.

Введём согласно принципу максимума Л. С. Понтрягина [2] сопряжённую систему

$$\dot{\psi}_i = -\sum_{j=1}^n \frac{\partial f_j(x)}{\partial x_i} \psi_j(t), \quad i = \overline{1, n}$$
(4)

и выпишем гамильтониан задачи

$$H(\psi(t), x(t), u(t)) = -\sum_{j=1}^{s} \alpha_j |u_j(t)| + (\psi(t), f(x(t)) + (\psi(t), B(t)u(t)).$$
 (5)

Тогда для оптимальности управления $u^*(t), (t \in [0,T])$ и траектории $x^*(t) (t \in [0,T])$ необходимо и достаточно существования такой ненулевой

вектор-функции $\psi^*(t)$, являющейся решением сопряжённой системы (4) при некотором вполне определённом граничном условии

$$\psi(T) = c^*,$$

что при почти всех $t \in [0,T]$ функция $H(\psi^*(t), x^*(t), u)$ по переменной

$$u \in U = \{u \in \mathbb{R}^s | |u_j| \leqslant 1 (j = \overline{1,s})\}$$

достигает в точке $u = u^*(t)$ максимума, т.е.

$$H(\psi^*(t), x^*(t), u^*(t)) = \max_{u \in U} H(\psi^*(t), x^*(t), u).$$

Отсюда следует, что оптимальное управление имеет следующий вид

$$u_{j}(t) = \begin{cases} -1, (\psi(t), B_{j}(t)) < -\alpha_{j}, \\ 0, -\alpha_{j} \leq (\psi(t), B_{j}(t)) \leq \alpha_{j}, \ j = \overline{1, s}, \\ 1, (\psi(t), B_{j}(t)) > \alpha_{j}, \end{cases}$$
(6)

где $B_j(t)$ – j-й столбец матрицы B(t) ($j=\overline{1,s}$), $\psi(t)$ – решение сопряжённой системы (4) с граничным условием

$$\psi(T) = c. (7)$$

Здесь $c \in \mathbb{R}^n$ – некоторый ненулевой вектор.

В силу однородности системы (4) в дальнейшем можно ограничиться рассмотрением только граничных условий (7) с единичными нормами ||c|| = 1, заменив (6) на следующие выражения

$$u_{j}(t) = \begin{cases} -1, & (\psi(t), B_{j}(t)) < -\mu\alpha_{j}, \\ 0, -\mu\alpha_{j} \leqslant (\psi(t), B_{j}(t)) \leqslant \mu\alpha_{j}, & (j = \overline{1, s}) \\ 1, & (\psi(t), B_{j}(t)) > \mu\alpha_{j}, \end{cases}$$
(8)

где $\mu \geqslant 0$ – действительное число.

Замечание. Если $T=T_{\text{опт}}$, оптимальное управление будет релейным. А это в силу (8) и непрерывности выражений $(\psi(t), B_j(t))$, $(j=\overline{1,s})$ означает, что $\mu=0$. Но тогда соответствующее ему $\psi(T)=c$ для (6) имеет норму $\|c\|=\infty$. Поэтому при $T>T_{\text{опт}}$, но близких к $T_{\text{опт}}$, возникают большие трудности, связанные c очень большими нормами граничных условий сопряжённой системы при использовании представления (6). Представление (8) позволяет обойти эти трудности.

Пусть вектор-функции $\overline{\psi}=\overline{\psi}(t),\ \overline{x}=\overline{x}(t)$ и допустимое управление $\overline{u}=\overline{u}(t)$ таковы, что справедливы равенства

$$\begin{cases} \dot{\overline{x}}(t) = f(\overline{x}) + B(t)\overline{u}(t), \\ \dot{\overline{\psi}}_i = -\sum_{j=1}^n \frac{\partial f_j(\overline{x})}{\partial x_i} \overline{\psi}_j(t), \ i = \overline{1, n}, \end{cases}$$
(9)

$$\overline{x}(0) = x^0, \quad \overline{\psi}(T) = c,$$

$$\overline{u}_j(t) = \begin{cases} -1, & (\overline{\psi}(t), B_j(t)) < -1, \\ 1, & (\overline{\psi}(t), B_j(t)) \geqslant 1, \end{cases}, j = \overline{1, s},$$

$$(10)$$

при любом $t \in [0,T]$. Обозначим через $u(t,c,\mu)$ управление, компоненты которого удовлетворяют (8) при $\psi = \overline{\psi}$ и действительном числе $\mu \geqslant 0$. Из (8) тогда следует, что для $\alpha_j > 0$ при $\mu \geqslant \mu_j(c) \stackrel{\triangle}{=} \frac{1}{\alpha_j} \max_{0 \leqslant t \leqslant T} |(\overline{\psi}(t), B_j(t))|$ имеет место тождество $u_j(t,c,\mu) \equiv 0$ ($t \in [0,T]$). А при $\mu \geqslant \mu(c) \stackrel{\triangle}{=} \max_{j \in \{i=\overline{1,s}|\alpha_i>0\}} \mu_j(c)$, все компоненты вектор-функции $u(t,c,\mu)$, для которых соответствующие $\alpha_j > 0$, тождественно равны нулю.

Рассмотрим функцию

$$G(c,\mu) = I(u(t,c,\mu)) = \int_{0}^{T} \sum_{j=1}^{s} \alpha_j |u_j(t,c,\mu)| dt$$
 (11)

при фиксированном $c \in \mathbb{R}^n$ ($\|c\| = 1$). Функция $G(c, \mu)$ на интервале $[0, \mu(c)]$ является непрерывной по μ в силу (8). Более того, если $\mu_1 > \mu_2$, $\mu_1, \ \mu_2 \in [0, \mu(c)]$, то $G(c, \mu_1) > G(c, \mu_2)$. Таким образом, функция $G(c, \mu)$ на $[0, \mu(c)]$ строго убывает по μ . Следовательно, при любом фиксированном $c \in \mathbb{R}^n$ ($\|c\| = 1$) и любом положительном числе $\mathfrak{I} \leqslant \mathfrak{I}_{\max} \stackrel{\triangle}{=} \sum_{j=1}^s \alpha_j \cdot T$ существует единственное число $\mu_*(c) \in [0, \mu(c)]$, такое, что $G(c, \mu_*(c)) = \mathfrak{I}$.

Пусть $\Omega(\mathfrak{I})$ — множество точек, в которые можно попасть из начального состояния $x(0)=x^0$ допустимыми управлениями за время T со значением функционала (3) меньшим или равным \mathfrak{I} . Другими словами,

$$\Omega(\mathfrak{I}) = \{ x \in \mathfrak{R}(T) \mid x = x(T, v), v = v(t) \in U, t \in [0, T], I(v) \leqslant \mathfrak{I} \},$$

где x(T,v) — решение системы (1) в момент времени t=T при допустимом управлении u=v. Очевидно, что $\Omega(\mathfrak{I}_1)\subset\Omega(\mathfrak{I}_2)$ при $\mathfrak{I}_1<\mathfrak{I}_2$.

Как отмечалось выше, начало координат пространства \mathbb{R}^n является внутренней точкой области достижимости $\mathfrak{R}(T)$. В свою очередь, область достижимости $\mathfrak{R}(T)$ совпадает с $\Omega(\mathfrak{I}_{max})$. Поэтому существует единственное такое число \mathfrak{I}_{min} , $0 < \mathfrak{I}_{min} < \mathfrak{I}_{max}$, при котором 0 лежит на границе множества $\Omega(\mathfrak{I}_{min})$. Таким образом, исходная задача (1)–(3) эквивалентна задаче поиска такого числа \mathfrak{I}_{min} .

Для решения поставленной задачи предлагается итеративный метод. Он основан на симплексных покрытиях множеств $\Omega(\mathfrak{I})$. Описание и обоснование предлагаемого метода требует введения некоторых понятий.

Пусть $z^1,\ldots,z^{n+1}\in\mathbb{R}^n$ — такие различные точки, что линейная выпуклая оболочка $\sigma=[z^1,\ldots,z^{n+1}]$ этих точек является телом в \mathbb{R}^n . Будем называть множество σ n-мерным симплексом с вершинами z^1,\ldots,z^{n+1} . Два n-мерных симплекса $\sigma^1=[z^1,\ldots,z^{n+1}]$ и $\sigma^2=[v^1,\ldots,v^{n+1}]$ называются смежными, если у них n общих веришн и их пересечение есть (n-1)-мерный симплекс. Из определения следует, что их пересечение является общей гранью максимальной размерности симплексов σ^1 и σ^2 .

Пусть $\Omega\subset\mathbb{R}^n$ — компактное тело, $\sigma^0=[z_0^1,\ldots,z_0^{n+1}]$ есть n-мерный симплекс с вершинами, лежащими на границе Ω . По каждой его грани максимальной размерности $\sigma_j^0=[z_0^1,\ldots,z_0^{j-1},z_0^{j+1},\ldots,z_0^{n+1}]$ $(j=\overline{1,n+1})$ строим смежный ему симплекс с вершинами $z_0^1,\ldots,z_0^{j-1},\widetilde{z}^j,z_0^{j+1},\ldots,z_0^{n+1},$ у которого "новая" вершина \widetilde{z}^j является граничной точкой Ω , максимально удалена от гиперплоскости, проходящей через остальные вершины, и расположена по разные стороны с точкой z_0^j относительно этой гиперплоскости. Это означает, что для построенного симплекса выполнены следующие условия: существуют такое число $d\neq 0$ и такой вектор коэффициентов $\widetilde{c}^j\in\mathbb{R}^n$ указанной гиперплоскости, что

$$\begin{split} &(\widetilde{c}^j, z_0^i) = d, \ (i = \overline{1, n+1}, i \neq j), \\ &(\widetilde{c}^j, z_0^j) < d, \\ &(\widetilde{c}^j, \widetilde{z}^j) = \max_{x \in \Omega} (\widetilde{c}^j, x) > d, \quad \widetilde{z}^j \in \partial \Omega. \end{split}$$

Назовем построенные симплексы, которые смежны симплексу σ^0 симплексами 1-го слоя, а симплекс σ^0 будем считать симплексом 0-го слоя.

Затем для каждого симплекса 1-го слоя строим по его (n-1)-мерным граням, которые не являются общими с (n-1)-мерными гранями симплекса σ^0 , по той же схеме смежные симплексы. Построенные симплексы составят 2-ой слой. Ясно, что во втором слое содержится ровно n(n+1) симплекс.

Аналогично для каждого симплекса k-го слоя $(k\geqslant 2)$ строятся смежные ему симплексы (k+1)-го слоя.

Обозначим через \mathfrak{S}_k — объединение всех симплексов k-го слоя. Ясно, что в k-м слое будет $n^{k-1}(n+1)$ симплексов. По построению в силу компактности Ω видно, что

$$co \Omega = \bigcup_{k=0}^{\infty} \mathfrak{S}_k,$$

где со Ω — выпуклая оболочка множества Ω .

Таким образом, множество Ω оказывается покрытым n-мерными симплексами с вершинами на границе Ω . (В дальнейшем, говоря о покрытии n-мерными симплексами, мы подразумеваем построенное покрытие.) Имеет место, следовательно,

Теорема 1 (о покрытии). Внутренность любого компактного тела Ω в \mathbb{R}^n можно покрыть n-мерными симплексами c вершинами на границе Ω .

Из теоремы вытекает

Следствие 1. Пусть Ω — компактное тело в \mathbb{R}^n и $z^0 \in \operatorname{int} \Omega$. Тогда для любого покрытия $\mathfrak{S} = \bigcup_{k=0}^{\infty} \mathfrak{S}_k$ тела Ω существуют такое конечное $k_0 \geqslant 0$ и такой n-мерный симплекс $\sigma \in \mathfrak{S}_{k_0}$, что $z^0 \in \sigma$.

Область достижимости при сделанных предположениях о линейности по управлению правой части и телесности множества U является компактным телом в \mathbb{R}^n . Следовательно, к ней применима теорема о покрытии и ее следствие.

Предлагаемый метод решения основан на построении последовательности симплексов $\{\sigma^k\}$ с вершинами, лежащими на границе множеств $\Omega(\mathfrak{I})$. Перед его полным формальным описанием дадим краткое.

Полагаем $\mathfrak{I}:=\mathfrak{I}_{\max}$. На первом этапе строится последовательность смежных симплексов $\{\sigma^k\}$, $\rho(\sigma^k)\geqslant \rho(\sigma^{k+1})$, где $\rho(\sigma^k)$ — расстояние от симплекса σ^k до начала координат, с вершинами, лежащими на границе области достижимости $\mathfrak{R}(T)$, до момента, когда очередной построенный симплекс σ^{k_0} будет содержать 0.

Отметим, что в силу следствия 1 эта последовательность конечна. Вершины симплексов построенной последовательности являются решениями задачи Коши (1) при некоторых вполне определенных релейных управлениях.

Пусть $z^i = x(T,u^i)$ — вершины симплекса σ^{k_0} (здесь и далее через $x(T,u^i)$

обзначается решение задачи Коши (1) в момент времени t=T при воздействии управления $u=u^i$); $u^i=u^i(t),\ t\in[0,T],$ — релейное допустимое управление, т. е.

$$u_j^i(t) = \max_{u \in U}(\psi^i(t), B_j(t)), \quad j = \overline{1, s},$$

где $\psi(t)$ — решение сопряженной системы (4) с начальным условием $\psi(0)=\widetilde{c}^i,$ $i=\overline{1,n+1};\ \lambda_1^0,\dots,\lambda_{n+1}^0$ — решение следующией системы линейных алгебраческих уравнений

$$\sum_{i=1}^{n+1} \lambda_i z^i = 0, \quad \sum_{i=1}^{n+1} \lambda_i = 1.$$
 (12)

Так как $0 \in \operatorname{int} \sigma^{k_0}$, то все $\lambda_i^0 \geqslant 0$, $i = \overline{1, n+1}$.

Второй этап. Полагаем $\overline{c}:=\sum_{i=1}^{n+1}\lambda_i^0\widetilde{c}^i$ и находим решение системы (9) с начальными условиями $\overline{x}(0)=x^0,\,\overline{\psi}(0)=\overline{c}$ при управлении (10) $\overline{u}=\overline{u}(t)=(\overline{u}_1(t),\,\overline{u}_1(t))$ $t\in [0,T]$ Затем полагаем $c:=\overline{\psi}(T)$ и находим такое число

начальными условиями $x(0) = x^{\circ}$, $\psi(0) = c$ при управлении (10) $u = u(t) = (\overline{u}_1(t), \dots, \overline{u}_s(t))$, $t \in [0, T]$. Затем полагаем $c := \overline{\psi}(T)$ и находим такое число $\mu_0(c)$, $0 \le \mu_0(c) < \mu(c)$, при котором выполнено равенство

$$(c, x(T, u(t, c, \mu_0(c)))) = 0. (13)$$

Пусть $z^* = x(T, u(t, c, \mu_0(c)))$. Если $||z^*|| \leq \varepsilon$, где $\varepsilon > 0$ — необходимая точность попадания в начало координат, то процесс вычислений заканчивается. Полученное управление $u(t, c, \mu_0(c))$, $t \in [0, T]$, — приближенно оптимально, а $I(u(t, c, \mu_0(c)))$ — приближенно оптимальное значение функционала (3).

Если $||z^*|| > \varepsilon$, то среди точек z^i , $i = \overline{1, n+1}$ выбираем n точек таких z^{i_1}, \ldots, z^{i_n} , при которых симплексу $\sigma^* = [z^{i_1}, \ldots, z^{i_n}, z^*]$ принадлежит 0. Точки $z^{i_1}, \ldots, z^{i_n}, z^*$ и соответствующие им параметры $(\widetilde{c}^{i_1}, \ldots, \widetilde{c}^{i_n}, \widetilde{c}^{i_{n+1}} = \overline{c})$ перенумеровываются по порядку и с симплексом σ^* аналогично симплексу σ^{k_0} выполняются операции второго этапа

2 Вычислительный алгоритм решения задачи (1)-(3)

Введем следующие обозначения:

• $c^{(k)} - k$ -е приближение оптимальных значений начальных условий для сопряженной системы (4).

• $u_0^k = u_0^k(t), \, t \in [0,T],$ — допустимое управление вида

$$u_0^k(t) = \arg\max_{u \in U} (\overline{\psi}_k(t), B(t)u),$$

где $\overline{\psi}_k$ — решение сопряженной системы (4) с начальным условием $\psi(0)=c^{(k)}.$

• $\mu^1, \, \mu^2$ — нижняя и верхняя граница локализации решения μ уравнения (см. (13))

$$(\overline{\psi}_k(T), x(T, u(t, c^{(k)}, \mu)) = 0.$$
 (14)

 \bullet k — номер итерации.

Алгоритм

- 1. Полагаем $k := 1; c^{(k)} := -x^0/\|x^0\|;$ и p := 1.
- 2. Интегрируя совместно прямую и сопряженную системы (1) и (4) с начальными условиями $x(0)=x^0$ и $\psi(0)=c^{(k)}$ при управлении $u=u_0^k$ по t от 0 до T, находим их решения $x(T,u_0^k)$ и $\overline{\psi}_k(T)$ в момент времени t=T и полагаем $z^p:=x(T,u_0^k),\ \widetilde{c}^p:=c^{(k)}/\|c^{(k)}\|$ и k:=k+1.
- 3. Если $p\leqslant n$ и система линейных алгебраических уравнений

$$(c, z^i) = -1, \quad i = \overline{1, p}, \tag{15}$$

совместна, то, найдя ее решение \widetilde{c} , переходим к шагу 7.

4. Находим решение $\lambda^0 = (\lambda^0_1, \dots, \lambda^0_p)$ системы линейных алгебраических уравнений

$$\sum_{i=1}^{p} \lambda_i z^i = 0, \quad \sum_{i=1}^{p} \lambda_i = 1.$$
 (16)

Если мощность множества индексов $\Lambda = \{i : \lambda_i^0 < 0\}$ равна 1, то полагаем $i_0 := i \in \Lambda$ и переходим к шагу 6. Если множество Λ пусто, то переходим к шагу 8.

5. Находим решение $\eta^* = (\eta_1^*, \dots, \eta_p^*)$ задачи квадратичного программирования с линейными ограничениями

$$\min_{\substack{\sum \\ i=1 \ \eta_i=1, \ \eta_i \geqslant 0}} \frac{1}{2} \left\| \sum_{i=1}^p \eta_i z^i \right\|^2.$$
 (17)

(Заметим, что задачу (17) можно решить с помощью конечного метода [3].) Берем любой индекс $i_0 \in \{i: \eta_i^* = 0\} \cap \{i: \lambda_i^0 < 0\}$.

- 6. Полагаем $z^i:=z^{i+1},\ \widetilde{c}^i:=\widetilde{c}^{i+1}\ (i=\overline{i_0,p-1});\ p:=p-1$ и переходим к шагу 4.
- 7. Интегрируем совместно системы (1), (4) в обратном времени от T до 0 с граничными условиями $x(T)=z^p, \ \psi(T)=\widetilde{c}$ при управлении $u=u^p$. Полагаем $c^{(k)}:=\psi(0), \ p:=p+1$ и переходим к шагу 2.
- 8. Полагаем $c^* := \sum_{i=1}^{n+1} \lambda_i^0 \widetilde{c}^i \bigg/ \left\| \sum_{i=1}^{n+1} \lambda_i^0 \widetilde{c}^i \right\|.$
- 9. Интегрируя совместно прямую и сопряженную системы (1) и (4) с начальными условиями $x(0) = x^0$ и $\psi(0) = c^*$ при управлении $u = \overline{u}$ (см. (10)) по t от 0 до T, находим решение сопряженной системы (4) $\overline{\psi}(t)$, $t \in [0,T]$. Полагаем $\overline{c} := \overline{\psi}(T)$, $\mu^1 := 0$, $\mu^2 := \mu(\overline{c})$.
- 10. Полагаем $\mu:=0.5*(\mu^1+\mu^2)$ и находим управление $u(t,\overline{c},\mu),\,t\in[0,T]$ и соответствующий этому управлению правый конец траектории системы (1), т. е. $z_\mu=x(T,\,u(t,c,\mu)).$
- 11. Если $||z_{\mu}|| \leq \varepsilon$, то процесс вычислений заканчивается. Полученное управление $u(t, \bar{c}, \mu), t \in [0, T]$, приближенно оптимально, а $I(u(t, \bar{c}, \mu))$ приближенно оптимальное значение функционала (3).
- 12. Если $(\bar{c}, z_{\mu}) > 0$, то полагаем $\mu^1 := \mu$, иначе $\mu^2 := \mu$.
- 13. Находим решение системы линейных алгебраических уравнений

$$\sum_{i=1}^{n+1} \lambda_i z^i = z_{\mu}, \quad \sum_{i=1}^{n+1} \lambda_i = 1.$$
 (16*)

Пусть ее решение $\lambda_1^*, \dots, \lambda_{n+1}^*$.

14. Если все $\lambda_i^*\geqslant 0,\ i=\overline{1,n+1},$ то полагаем $i_0:=\arg\min_{\{i=\overline{1,n+1}:\,\lambda_i^*>0\}}\lambda_i^0/\lambda_i^*,$ $\gamma:=\lambda_{i_0}^0/\lambda_{i_0}^*,$ в противном случае переходим к шагу 15. Далее полагаем $z^{i_0}:=z_\mu,\ \widetilde{c}^{i_0}:=c^*,\ \lambda_i^0:=\lambda_i^0-\gamma\lambda_i^*,\ i=\overline{1,n+1}\ \mathrm{u}\ i\neq i_0,\ \lambda_{i_0}^0:=\gamma.$ Если $\lambda_{i_0}^0=0,$ полагаем $k:=k+1,\ c^*:=\widetilde{c}^j,$ где $j=\arg\max_{i=\overline{1,n+1}}\lambda_i^0,$ и переходим к шагу 9. Если $|\lambda_{i_0}^*-1|>\varepsilon_0,$ где $\varepsilon_0>0$ — заданное достаточно малое число, полагаем k:=k+1 и переходим к шагу 8. Если хотя бы для одного $i,1\leqslant i\leqslant n+1,$ величина λ_i^0 равна нулю, переходим к шагу 10. В

противном случае находим решение \widetilde{c} системы линейных алгебраических уравнений

$$(c, \widetilde{x} + 0.5 * (z^i - \widetilde{x})) = -1, i \neq i_1, 1 \leq i \leq n + 1,$$

где $i_1=\arg\min_{i=\overline{1,n+1}}\lambda_i^0,\,\widetilde{x}$ — правый конец траектории свободного движения системы (1) (при управлении $u=u(t)\equiv 0,\,t\in[0,T]$), и нормируем его. Если $(\widetilde{c},\widetilde{x})<0$, меняем знак у вектора \widetilde{c} . Интегрируем совместно системы (1), (4) в обратном времени от T до 0 с граничными условиями $x(T)=z_\mu,\,\psi(T)=\widetilde{c}$ при управлении $u=u(t,c^*,\mu)$. Далее полагаем $k:=k+1,\,c^*:=(\psi(0)+\lambda_{i_1}^0\widetilde{c}^{i_1}+\lambda_{j}^0\widetilde{c}^{j})/\|\psi(0)+\lambda_{i_1}^0\widetilde{c}^{i_1}+\lambda_{j}^0\widetilde{c}^{j}\|$, где $j=\arg\max_{i=\overline{1,n+1}}\lambda_i^0$, и переходим к шагу 9.

- 15. Если $|(\bar{c}, z_{\mu})| > \varepsilon_1$, где ε_1 заданная априори точность выполнения равенства (14), то переходим к шагу 10.
- 16. Находим минимальное такое число τ , $0 < \tau \leqslant 1$, что для каждого $i = \overline{1, n+1}$: $\tau \lambda_i^0 + (1-\tau)\lambda_i^* \geqslant 0$. Далее, полагаем $\lambda_i^* := \tau \lambda_i^0 + (1-\tau)\lambda_i^*$, $i = \overline{1, n+1}$, $i_0 := \arg\min_{\{i = \overline{1, n+1}: \lambda_i^* > 0\}} \lambda_i^0/\lambda_i^*$, $z^{i_0} := z_\mu$, $\widetilde{c}^{i_0} := c^*$. Затем находим решение $(\lambda_1^0, \ldots, \lambda_{n+1}^0)$ системы уравнений (16) и переходим к шагу 8.

Сделаем некоторые замечания к алгоритму.

Отметим, что не требуется хранить все симплексы генерируемой алгоритмом последовательности симплексов. Сохраняется только последний построенный симплекс, точнее его вершины.

Ясно, что шаги 1–7 алгоритма — это первый этап, шаги 8–16 — второй этап (см. предыдущий раздел, краткое описание алгоритма). Отметим, что оно несколько отличается от формального описания алгоритма. В нем описана операция перенумерации точек и им соответствующих сопряженных параметров. Но, очевидно, можно их и не перенумеровывать, что и сделано при формальном описании алгоритма (см. шаг 14).

На первом этапе для построения "новой" вершины симплекса требуются:

- а) задание граничного условия $\psi(T)$ сопряженной системы (4) (см. шаг 3);
- б) интегрирование в обратном времени (см. шаг 7) сопряженной системы (4) вдоль траектории системы (1), полученной на предыдущей итерации, для того, чтобы получить начальное условие $c^{(k)}$ (отметим, что запоминания всей траектории системы (1) не требуется. Запоминаются лишь точки переключения соответствующего ей допустимого релейного управления.);

в) интегрирование совместно прямой (1) и сопряженной (4) систем в прямом времени при соответствующем допустимом управлении u_k^0 (см. шаг 2).

Исключением является первая итерация, на которой начальное условие $c^{(k)}$ задается на шаге 1 и поэтому пункты а и б не требуются.

На втором этапе для построения "новой" вершины симплекса требуются:

- а) задание граничного условия $\psi(0)$ сопряженной системы (4) (см. шаги 8 и 14);
- б) интегрирование совместно прямой (1) и сопряженной (4) систем в прямом времени при соответствующем допустимом управлении \overline{u} (см. шаг 9 и (10)) для того, чтобы получить решение сопряженной системы (4) $\overline{\psi}(t)$, $t \in [0,T]$;
- в) поиск решения уравнения (14). Этот поиск эквивалентен многократному нахождению управления $u(t,c,\mu)$ при различных μ и соответствующего ему конца траектории z_{μ} системы (1) (см. шаг 10). Поиск решения уравнения (14) осуществляется на шагах 10–15 алгоритма;
- г) замена одной из вершин симплекса на точку z_{μ} (см. шаги 14 и 16 алгоритма).

Теперь перейдем к доказательству сходимости предлагаемого итерационного алгоритма.

3 Доказательство сходимости

Пусть $\sigma=[z^1,\ldots,z^p]-(p-1)$ -мерный симплекс, где $z^i\in\mathbb{R}^n,$ $(i=\overline{1,p};\,p\leqslant n+1).$

Лемма 1 [1]. Система линейных алгебраических уравнений (15) несовместна тогда и только тогда, когда совместна система линейных алгебраических уравнений (16).

Лемма 2 [1]. Пусть $(\lambda_1^0,\ldots,\lambda_p^0)$ — решение системы (16), причем $\lambda_{i_0}^0<0$ $(i_0\in\{1,\ldots,p\})$. Тогда точки z^{i_0} и 0 лежат в разных полупространствах относительно любой гиперплоскости вида (c,x)=-1, проходящей через точки $z^i,\ (i\neq i_0;i=\overline{1,p})$.

Лемма 3 [1]. Пусть $\rho(\sigma) = \|x^*\|$, $x^* \in \sigma$, $x^* = \sum_{i=1}^p \eta_i^* z^i$, $\sum_{i=1}^p \eta_i^* = 1$, $\eta_i^* \geqslant 0$, и пусть $(\lambda_1^0, \dots, \lambda_p^0)$ решение системы (16), причем $\lambda_{i_1}^0, \dots, \lambda_{i_l}^0 < 0$. Тогда среди $\eta_{i_1}^*, \dots, \eta_{i_l}^*$ найдется по крайней мере одно равное нулю.

Лемма 4. Пусть $0 \in \operatorname{int} \sigma$, где $\sigma = [z^1, \dots, z^{n+1}] - n$ -мерный симплекс, $z^* \neq 0$ — произвольная точка из \mathbb{R}^n . Тогда среди вершин симплекса σ найдется такой набор z^{i_1}, \dots, z^{i_n} длины n, что $0 \in \sigma^* = [z^{i_1}, \dots, z^{i_n}, z^*]$.

Доказательство. Достаточно показать, что существует такое целое число $j,\,1\leqslant j\leqslant n+1,$ при котором система линейных алгебраических уравнений

$$\sum_{i=1, i \neq j}^{n+1} \lambda_i z^i + \lambda_j z^* = 0, \quad \sum_{i=1}^{n+1} \lambda_i = 1$$
 (18)

имеет неотрицательное решение $\lambda_1^{(j)}, \dots, \lambda_{n+1}^{(j)},$ т. е. $\lambda_i^{(j)} \geqslant 0, i = \overline{1, n+1}.$

Рассмотрим отдельно два случая: $z^* \in \operatorname{int} \sigma$ и $z^* \notin \operatorname{int} \sigma$. Пусть $z^* \in \operatorname{int} \sigma$. Это означает, что решение $\lambda_1^*,\dots,\lambda_{n+1}^*$ системы линейных алгебраических уравнений

$$\sum_{i=1}^{n+1} \lambda_i z^i = z^* \quad \sum_{i=1}^{n+1} \lambda_i = 1$$

неотрицательно. Подставив это представление точки z^* в (18), получим

$$\sum_{i=1, i \neq j}^{n+1} \lambda_i^{(j)} z^i + \lambda_j^{(j)} z^* = \sum_{i=1, i \neq j}^{n+1} (\lambda_i^{(j)} + \lambda_j^{(j)} \lambda_i^*) z^i + \lambda_j^{(j)} \lambda_j^* z^* = 0.$$
 (19)

Далее, пусть $\lambda_1^0,\dots,\lambda_{n+1}^0$ — решение системы (16). Тогда из (19) получаем равенства

$$\lambda_i^0 = \lambda_i^{(j)} + \lambda_j^{(j)} \lambda_i^*, \ i \neq j, \ \lambda_j^0 = \lambda_j^{(j)} \lambda_j^*.$$

Отсюда следует, что $\lambda_i^{(j)} = \lambda_i^0 - \lambda_j^{(j)} \lambda_i^*, \ i \neq j, \ \text{и} \ \lambda_j^{(j)} = \lambda_j^0/\lambda_j^*.$ Взяв $j = \arg\min_{i=\overline{1,n+1}} \lambda_i^0/\lambda_i^*, \ \text{получим} \ \lambda_i^{(j)} = \lambda_i^0 - \lambda_j^{(j)} \lambda_i^* \geqslant \lambda_i^{(j)} = \lambda_i^0 - (\lambda_i^0/\lambda_i^*) \lambda_i^* = 0,$ $i \neq j, \ \text{и} \ \lambda_j^{(j)} > 0, \ \text{так как} \ 0 \in \sigma \ \text{и} \ \text{в силу выбора числа} \ j.$ При выбранном j система (18) имеет неотрицательное решение.

Рассмотрим второй случай, а именно, $z^* \not\in \text{int } \sigma$. Так как $0 \not\in \text{int } \sigma$, существует действительное число β , $0 < \beta \leqslant 1$, при котором точка $\beta z^* \in \partial \sigma$, где $\partial \sigma$ — граница симплекса σ . Для точки βz^* , как показано выше существует набор z^{i_1}, \ldots, z^{i_n} длины n, что $0 \in \sigma_{\beta}^* = [z^{i_1}, \ldots, z^{i_n}, \beta z^*]$. С другой стороны,

 $\sigma_{\beta}^* \subset \sigma^*$. Следовательно, и в этом случае утверждение леммы имеет место. Лемма 4 доказана.

Пусть $\{\sigma^k\}$, $\sigma^k=[z_k^1,\ldots,z_k^{n+1}]$, последовательность симплексов, сгенерированная алгоритмом. Обозначим через x_k^* точку, принадлежащую симплексу σ^k , с нормой $\|x_k^*\|=\rho_k\equiv\rho(\sigma^k)$, а через y_k — точку с минимальной нормой на гиперплоскости, проходящей через все вершины симплекса σ^k , кроме вершины $z_k^{i_0}$ (индекс i_0 определяется на шаге 4 (случай $|\Lambda|=1$) или 5 алгоритма (случай $|\Lambda|>1$)).

Вначале покажем, что через конечное число итераций $k=k_0$ будет иметь место включение $0\in \operatorname{int}\sigma^{k_0}$. Далее будет установлена сходимость по функционалу к оптимуму, т. е. слабая сходимость алгоритма.

В силу леммы 3 и шагов 4 и 5 алгоритма при любом k>n+1 имеет место неравенство

$$\rho_{k+1} \leqslant \rho_k. \tag{20}$$

Покажем, что из последовательности $\{\rho_k\}$ можно выделить строго убывающую подпоследовательность. Предположим противное, т.е., что, начиная с некоторого номера итерации k_0 , соотношение (20) выполняется как равенство для всех $k \geqslant k_0$, причём $\rho_{k_0} \neq 0$.

По построению выполнены следующие соотношения: $(\tilde{c},z_k^i)=-d_k$ $(i=\overline{1,n})$ и $(\tilde{c},z_{k+1}^{n+1})>0$, где $d_k>0$ — некоторое действительное число. Отсюда и из определений точек $x_{k_0}^*$ и y_k следует, что $\|x_{k_0}^*-y_k\|>\|x_{k_0}^*-y_{k+1}\|$.

С другой стороны, имеют место равенства

$$||x_{k_0}^*||^2 = ||y_k||^2 + ||x_{k_0}^* - y_k||^2$$

Но тогда $||y_k|| < ||y_{k+1}||$ и последовательность $\{||y_k||\}$ ограничена сверху нормой $||x_{k_0}^*||$. Последовательность смежных симплексов $\{\sigma^k\}$, которым соответствует последовательность $\{||y_k||\}$, входит естественным образом в покрытие области достижимости $\Re(T)$ n-мерными смежными симплексами. По предположению $T > T_{\text{опт}}$. Поэтому $0 \in \operatorname{int} \Re(T)$ и тогда в силу следствия 1 на некоторой конечной итерации $k_1 \geqslant k_0$ выполнено неравенство

$$(x_{k_0}^*, z_{k_1}^{n+1}) < (x_{k_0}^*, x_{k_0}^*). (21)$$

Рассмотрим выражение $\|\zeta x_{k_0}^* + (1-\zeta)z_{k_1}^{n+1}\|^2$. Минимум по ζ это выражение достигает при

$$\zeta = \zeta^* = \frac{(z_{k_1}^{n+1}, z_{k_1}^{n+1} - x_{k_0}^*)}{(z_{k_1}^{n+1} - x_{k_0}^*, z_{k_1}^{n+1} - x_{k_0}^*)}.$$

Отсюда в силу неравенства (21)

$$\zeta^* < \frac{(z_{k_1}^{n+1}, z_{k_1}^{n+1} - x_{k_0}^*) - (x_{k_0}^*, z_{k_1}^{n+1} - x_{k_0}^*)}{(z_{k_1}^{n+1} - x_{k_0}^*, z_{k_1}^{n+1} - x_{k_0}^*)} = 1.$$

Последнее означает, что

$$||x_{k_0}^*|| = \rho_{k_0} > ||\bar{\zeta}^* x_{k_0}^* + (1 - \bar{\zeta}^*) z_{k_1}^{n+1}|| \geqslant \rho_{k_1},$$

где $\bar{\zeta}^* = \max(0, \zeta^*)$. Противоречие с предположением, что при $k \geqslant k_1$ выражение (20) является равенством.

Следовательно, из последовательности $\{\rho_k\}$ можно выделить строго убывающую подпоследовательность $\{\rho_{k_j}\}$, которая ограничена снизу нулём. В силу следствия 1 последовательности $\{\rho_k\}$ и $\{\rho_{k_j}\}$ конечны и их общий последний элемент равен нулю.

Пусть $\Lambda_k = \{i: \lambda_i^0 < 0\}$, где $(\lambda_1^0, \dots, \lambda_{n+1}^0)$ — решение системы (16) при $z^i = z_k^i \ (i = \overline{1, n+1})$. Как показано выше, найдется такое $k_0 \geqslant 1$, что $\rho_{k_0} = \rho(\sigma^{k_0}) = 0$. Это означает, что $0 \in \sigma^{k_0}$. Поэтому $\Lambda_{k_0} = \emptyset$ и $\Lambda_k \neq \emptyset$ при $k < k_0$.

В силу шагов 8–16 алгоритма при любом $k \geqslant k_0$ имеет место включение $0 \in \sigma^k$. Это означает, что множество $\Lambda_k = \emptyset$ при любом $k \geqslant k_0$.

Пусть $k\geqslant k_0$ фиксировано. На k-й итерации при поиске решения μ_k уравнения (14) методом дихотомии возможны два случая: 1. $z_\mu\in\sigma^k$ при некоторой очередной аппроксимации μ решения μ_k или 2. $z_{\mu_k}\not\in\sigma^k$.

Рассмотрим случай 1. В силу леммы 4 среди вершин симплекса σ^k найдется такой набор вершин $z_k^1,\dots,z_k^{i_0-1},z_k^{i_0+1},\dots,z_k^{n+1}$, что $0\in\sigma^{k+1}=[z_k^1,\dots,z_k^{i_0-1},z_k^{i_0+1},\dots,z_k^{n+1},z_\mu]$, где $i_0=i_0(k)$ — индекс, определяемый на шаге 14 алгоритма. По построению имеем $\sigma^{k+1}\subset\sigma^k$, поэтому

$$\sigma^{k+1} \cap \sigma^k = \sigma^{k+1}.$$

В случае 2 аналогично случаю 1 среди вершин симплекса σ^k найдется такой набор вершин $z_k^1,\dots,z_k^{i_0-1},z_k^{i_0+1},\dots,z_k^{n+1}$, что $0\in\sigma^{k+1}=[z_k^1,\dots,z_k^{i_0-1},z_k^{i_0-1},z_k^{i_0+1},\dots,z_k^{i_0+1},z_{\mu_k}]$, где $i_0=i_0(k)$ — индекс, определяемый на шаге 16 алгоритма. Так как $z_{\mu_k}\not\in\sigma^k$, пересечение $\sigma^{k+1}\cap\sigma^k\neq\sigma^{k+1}$ и σ^{k+1} содержит внутри 0.

Предположим, что существует такой конечный номер $k_1\geqslant k_0$, что $i_0=i_0(k)$ не зависит от номера итерации k при $k\geqslant k_1$. Обозначим через \widetilde{c}_k^i соответствующие вектора \widetilde{c}_k^i , $i=\overline{1,n+1}$, на k-й итерации. Тогда очевидно, что $z_k^i\equiv z_{k_1}^i,\,\widetilde{c}_k^i\equiv \widetilde{c}_{k_1}^i,\,i=\overline{1,n+1},\,i\neq i_0$, для любого $k\geqslant k_1$.

Пусть $\lambda^{0,k}=(\lambda^{0,k}_i,\dots,\lambda^{0,k}_{n+1})$ и $\lambda^{*,k}=(\lambda^{*,k}_i,\dots,\lambda^{*,k}_{n+1})$ — решения соответственно систем линейных алгебраических уравнений (16) и (16*) при $z^i=z^i_k$, $i=\overline{1,n+1}$. Покажем, что $\lambda^{0,k_1}_{i_0}>0$. Предположим противное, т.е. $\lambda^{0,k_1}_{i_0}=0$. Тогда при любом μ , $0\leqslant\mu\leqslant\mu(\overline{c})$, за исключением такого $\mu=\mu'$, при котором $z^j=z_{\mu'}$, где $j=\arg\max_{i=\overline{1,n+1}}\lambda^0_i$ (см. шаг 14 алгоритма), вектор $\lambda^{*,k}$ имеет по меньшей мере одну отрицательную компоненту. Это означает, что на (k_1+1) -й итерации мы попадаем на шаг 16 алгоритма. Так как $z^i_{k_1+1}=z^i_{k_1}$, $i=\overline{1,n+1}$, $i\neq i_0$ и $\lambda^{0,k_1}_{i_0}=0$, то и $\lambda^{0,k_1+1}_{i_0}=0$. Но тогда $\tau=1$ и λ^{*,k_1}_{i} станут равными $\lambda^{0,k_1}_{i_0}$, $i=\overline{1,n+1}$. Отсюда в силу того, что $\lambda^{0,k_1+1}_{i_0}=0$, получаем $i_0(k_1+1)\neq i_0=i_0(k_1)$. Это противоречит предположению о том, что при $k\geqslant k_1$ величина $i_0=i_0(k)$ не зависит от k. Следовательно, $\lambda^{0,k_1}_{i_0}>0$. Нетрудно видеть, что величина $\lambda^{0,k}_{i_0}>0$ для любого $k\geqslant k_1$ Поэтому для любого $k\geqslant k_1$ найдется такое $\mu=\mu(k)$, что система (16*) имеет неотрицательное решение λ^* , т.е. $\lambda^*_i\geqslant 0$, $i=\overline{1,n+1}$. Так как $\lambda^{0,k}_{i_0}>0$, величина $\gamma=\lambda^{0,k}_{i_0}/\lambda^{*,k}_{i_0}$ также положительна. Поэтому (см. шаг 14 алгоритма) справедливы неравенства

$$\lambda_i^{0,k+1} = \lambda_i^{0,k} - \gamma \lambda_i^{*,k} \leqslant \lambda_i^{0,k} \tag{22}$$

при $i, 1 \le i \le n+1, i \ne i_0$. Отсюда следует, что

$$\lambda_{i_0}^{0,k+1} = 1 - \sum_{i=1, i \neq i_0}^{n+1} \lambda_i^{0,k+1} \geqslant 1 - \sum_{i=1, i \neq i_0}^{n+1} \lambda_i^{0,k} = \lambda_{i_0}^{0,k}.$$

Так как $\lambda_{i_0}^{*,k} < 1$, по крайней мере при одном $i \neq i_0, 1 \leqslant i \leqslant n+1$, неравенство (22) является строгим. Но тогда

$$\lambda_{i_0}^{0,k} < \lambda_{i_0}^{0,k+1}. \tag{22*}$$

Последовательность $\{\lambda_{i_0}^{0,k}\}$ строго возрастающая и ограничена сверху единицей. Поэтому существует предел $\lim_{k\to\infty}\lambda_{i_0}^{0,k}=\overline{\lambda}_{i_0}^0$. Но тогда существуют пределы $\lim_{k\to\infty}\lambda_i^{0,k}=\overline{\lambda}_i^0,\,i=\overline{1,n+1},\,i\neq i_0$ и $\lim_{k\to\infty}\lambda_i^{*,k}=\overline{\lambda}_i^*,\,i=\overline{1,n+1}.$

Далее, справедливы равенства

$$\overline{\lambda}_{i}^{0} = \lim_{k \to \infty} \lambda_{i}^{0,k+1} = \lim_{k \to \infty} (\lambda_{i}^{0,k} - \gamma_{k} \lambda_{i}^{*,k}) = \overline{\lambda}_{i}^{0} - \lim_{k \to \infty} \gamma_{k} \cdot \lim_{k \to \infty} \lambda_{i}^{*,k}$$
$$= \overline{\lambda}_{i}^{0} - \gamma^{*} \overline{\lambda}_{i}^{*}, \ 1 \leqslant i \leqslant n+1, \ i \neq i_{0},$$

где
$$\gamma_k = \lambda_{i_0}^{0,k}/\lambda_{i_0}^{*,k}, \ \gamma^* = \lim_{k \to \infty} \gamma_k.$$

Отсюда, так как величина $\lambda_{i_0}^{0,k}>0$ для любого $k\geqslant k_1$, следует, что $\gamma^*>0$ и все $\overline{\lambda}_i^*=0,\ 1\leqslant i\leqslant n+1,\ i\neq i_0$. Но тогда $\overline{\lambda}_{i_0}^*=1$. Это означает, что найдется такое конечное $k=k(\varepsilon_0)$, при котором $|\lambda_{i_0}^{*,k(\varepsilon_0)}-1|\leqslant \varepsilon_0$.

Покажем, что не существует такого i_2 , $1\leqslant i_2\leqslant n+1$, что $\lambda_{i_2}^{0,k}=0$ при всех $k\geqslant k(\varepsilon_0)$. Легко видеть, что $i_2\neq i_0$, так как $\lambda_{i_0}^{0,k}>0$ для любого $k\geqslant k_1$. В данном случае алгоритм на $k(\varepsilon_0)$ -й итерации продолжит поиск решения $\mu_{k(\varepsilon_0)}$ уравнения (14) (см. шаг 14). Полученная точка $z_{\mu_{k(\varepsilon_0)}}$ такова, что решение системы линейных алгебраических уравнений (16*) при $\mu=\mu_{k(\varepsilon_0)}$ имеет по меньшей мере одну отрицательную компоненту. И, так как точки $z_{i_1}^{i_2}$ и $z_{\mu_{k(\varepsilon_0)}}$ лежат по разные стороны относительно гиперплоскости, проходящей через точки $z_{k(\varepsilon_0)}^i$, $1\leqslant i\leqslant n+1, i\neq i_2$, величина $\lambda_{i_2}^{*,k(\varepsilon_0)}<0$ (см. лемму 2). Отсюда в силу равенства $\lambda_{i_2}^{0,k(\varepsilon_0)}=0$ получаем на шаге 16 алгоритма, что величина $\tau=1$. Поэтому точка $z_{k(\varepsilon_0)}^{i_0}$ будет заменена на точку $z_{\mu_{k(\varepsilon_0)}}$. На $(k(\varepsilon_0)+1)$ -й итерации решение $\lambda^{0,k(\varepsilon_0)+1}$ системы линейных алгебраических уравнений (16) будет таково, что $\lambda_{i_2}^{0,k(\varepsilon_0)+1}>0$. Следовательно, число нулевых компонент в решении системы (16) на $(k(\varepsilon_0)+1)$ -й итерации уменьшилось по меньшей мере на единицу по сравнению с $k(\varepsilon_0)$ -й итерацией. При этом поскольку по предположению $i_0=i_0(k)$ постоянна при $k\geqslant k_1$ величина $\lambda_{i_0}^{0,k}>0$.

Так как число нулевых компонент решения системы (16) убывает, то найдется такой номер $k_2 \geqslant k(\varepsilon_0)$, при котором все компоненты этого решения будут положительны, т. е. такого i_2 , $1 \leqslant i_2 \leqslant n+1$, что $\lambda_{i_2}^{0,k(\varepsilon_0)} = 0$ не существует.

Пусть все $\lambda_i^{0,k(arepsilon_0)}>0,\ i=\overline{1,n+1}.$ Тогда на $(k(arepsilon_0)+1)$ -й итерации величина

$$\gamma = \arg\min_{i \in \{i: \lambda_i^{*,k(\varepsilon_0)+1} > 0\}} \lambda_i^{0,k(\varepsilon_0)+1} / \lambda_i^{*,k(\varepsilon_0)} > 0,$$

а $|\lambda_i^{*,k(arepsilon_0)+1}-1|\leqslant arepsilon_0$. Очевидно, что при $k=k(arepsilon_0)$ имеет место строгое включение

$$\sigma^{k+1} \subset \sigma^k. \tag{23}$$

Далее на шаге 14 получаем вектор c^* , который существенно отличается от вектора $\widetilde{c}_{k(\varepsilon_0)+1}^{i_0}$, полученного на $k(\varepsilon_0)$ -й итерации на шаге 8. При $k=k(\varepsilon_0)+2$ либо справедливо неравенство

$$|\lambda_i^{*,k} - 1| > \varepsilon_0, \tag{24}$$

либо осуществляется переход к шагу 16.

Пусть при $k=k(\varepsilon_0)+2$ справедливо неравенство (24). Предположив, что это не так, приходим к выводу, что точка $z_{\mu_{k(\varepsilon_0)+2}}$ совпадает с вершиной $z_{k(\varepsilon_0)+1}^{i_0}$ симплекса $\sigma^{k(\varepsilon_0)+1}$, что противоречит тому, что вектор c^* существенно отличается от $\widetilde{c}_{k(\varepsilon_0)+1}^{i_0}$. Поэтому, поскольку все $\lambda_i^{0,k(\varepsilon_0)+2}>0,\ i=\overline{1,n+1}$, при $k=k(\varepsilon_0)+1$ имеет место строгое включение (23).

Переход к шагу 16 алгоритма возможен только тогда, когда при поиске методом дихотомии решения системы (14) с необходимой точностью все выбираемые значения μ из интервала $[0,\mu(c^*)]$ таковы, что решение системы (16*) имеет по меньшей мере одну отрицательную компоненту. Величина $\tau_k = \tau$, определяемая на этом шаге, положительна и строго меньше единицы, поскольку $\lambda_i^{0,k} > 0$, $i = \overline{1,n+1}$ при $k \geqslant k(\varepsilon_0)$. Но тогда $\tau_k \lambda_{i_0}^{0,k} + (1-\tau_k) \lambda_{i_0}^{*,k} > 0$ в силу определения величины i_0 и того, что $i_0 = i_0(k)$ не зависит от номера итерации k по предположению. Пусть

$$l_k = \arg\min_{1 \le i \le n+1} \{ \tau_k \lambda_i^{0,k} + (1 - \tau_k) \lambda_i^{*,k} \}.$$

Тогда в силу определения точки z_{μ_k} и того, что симплекс $\sigma^{k+1}=[z_k^1,\ldots,z_k^{i_0-1},z_{\mu_k},z_k^{i_0+1},\ldots,z_k^{i_0+1}]$ содержит начало координат пространства \mathbb{R}^n внутри по построению, справедливы неравенства $(\overline{c}_k,z_k^{l_k})>0$ и $(\overline{c}_k,z_k^{i_0})>0$, либо неравенства противоположного знака $(\overline{c}_k,z_k^{l_k})<0$ и $(\overline{c}_k,z_k^{i_0})<0$, где $\overline{c}_k=\overline{c},\overline{c}$ определено на k-й итерации (см. шаг 9 алгоритма). Поэтому на (k+1)-й итерации решение $\lambda^{0,k+1}$ системы (16) таково, что

$$\lambda_{i_0}^{0,k+1} > \lambda_{i_0}^{0,k}. \tag{25}$$

Предположим, что на каждой итерации $k \geqslant k(\varepsilon_0)+2$ происходит переход к шагу 16 алгоритма. Тогда в силу (25) последовательность $\{\lambda_{i_0}^{0,k}\}$ имеет предел. Пусть $\lim_{k\to\infty}\lambda_{i_0}^{0,k}=\overline{\lambda}_{i_0}^{0,k}$. Очевидно, что существуют и пределы $\lim_{k\to\infty}\lambda_i^{0,k}=\overline{\lambda}_i^{0,k},\ i\neq i_0,\ 1\leqslant i\leqslant n+1$. Взяв на шаге 8 в качестве c^* вектор $\sum_{i=1}^{n+1}\overline{\lambda}_i^0\widetilde{c}^i\Big/\Big\|\sum_{i=1}^{n+1}\overline{\lambda}_i^0\widetilde{c}^i\Big\|$, получим точку z_{μ_k} , которая совпадает с i_0 -й вершиной предельного симплекса. Отсюда следует, что система (16*) имеет неотрицательное решение. Противоречие с предположением о том, что на каждой итерации $k\geqslant k(\varepsilon_0)+2$ происходит переход к шагу 16 алгоритма. Следовательно, найдется такой конечный номер $k=k_2\geqslant k(\varepsilon_0)+2$, при котором система (16*) будет иметь неотрицательное решение. А тогда выполнено (24) и имеет место строгое включение (23).

В силу (23) нетрудно видеть, что не существует таких номеров $k' \geqslant k_1$ и k'' > k', что $\sigma^{k'} \subseteq \sigma^{k''}$. Отсюда и того, что $0 \in \sigma^k$ при всех $k \geqslant k_0$, следует, что последовательность симплексов $\{\sigma^k\}$ сходится. Ее «точкой сгущения» является некоторый предельный симплекс $\sigma^* = [z_*^1, \ldots, z_*^{n+1}]$, вершина $z_*^{i_0}$ которого совпадает с началом координат пространства \mathbb{R}^n . Поэтому найдется такой конечный номер $k_3 \geqslant k_1$, что $\|z_{k_3}^{i_0}\| \leqslant \varepsilon$.

Пусть $I_k = \max_{1 \le i \le n+1} I(u^{i,k})$, где $u^{i,k}$ — управление, соответствующее i-й вершине симплекса σ^k . Последовательность чисел $\{I_k\}$ сходится к вполне определённому пределу, поскольку сходится последовательность $\{\sigma^k\}$. Когда выполнено (23), то $I_k > I_{k+1}$, поскольку $z_\mu \in \operatorname{int} \sigma^k$. Более того, последовательность чисел $\{I_k\}$ ограничена снизу 0. Следовательно, она имеет единственный предел, совпадающий с \mathfrak{I}_{\min} .

Таким образом, сходимость алгоритма в случае, когда $i_0 = i_0(k)$ не зависит от k, доказана. Аналогично с некоторыми упрощениями доказывается сходимость для случая зависимости от номера итерации.

Сходимость алгоритма доказана.

Список литературы

- [1] Shevchenko G.V. Algorithm for Solving Linear Problem of Minimizing Resources Consumption// Proceedings of the IASTED International Conference "Automation, Control, and Information Technology" ACIT 2002. Anaheim—Calgary—Zurich: ACTA Press, 2002, P. 224—229.
- [2] Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Физматгиз, 1982.
- [3] von Hohenbalken B. A finite algorithm to maximize certain pseudoconcave functions on polytopes// Math. Program., 1975, V. 9, P. 189–206.