37nC

International IOR Rectifier

IRF7490PbF

HEXFET® Power MOSFET

Applications

- High frequency DC-DC converters

High frequency DC-DC converters	V_{DSS}	R _{DS(on)} max
Lead-Free	100V	$39 \text{m}\Omega @V_{GS} = 10V$

Benefits

- Low Gate-to-Drain Charge to Reduce **Switching Losses**
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	100	V
V _{GS}	Gate-to-Source Voltage	± 20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	5.4	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	4.3	А
I _{DM}	Pulsed Drain Current①	43	
P _D @T _A = 25°C	Maximum Power Dissipation	2.5	W
P _D @T _A = 70°C	Maximum Power Dissipation	1.6	
	Linear Derating Factor	20	mW/°C
T _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		20	
$R_{\theta JA}$	Junction-to-Ambient @		50	°C/W

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA ③
R _{DS(on)}	Static Drain-to-Source On-Resistance		33	39	mΩ	V _{GS} = 10V, I _D = 3.2A ③
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 100V, V_{GS} = 0V$
DSS	Brain to obdice Leakage ourient			250	μΛ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 125$ °C
1	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200	11/4	V _{GS} = -20V

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9 _{fs}	Forward Transconductance	8.0			S	$V_{DS} = 50V, I_D = 3.2A$
Qg	Total Gate Charge		37	56		I _D = 3.2A
Q _{gs}	Gate-to-Source Charge		8.0		nC	$V_{DS} = 50V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		10			$V_{GS} = 10V$,
t _{d(on)}	Turn-On Delay Time		13			V _{DD} = 100V
t _r	Rise Time		4.2		ns	$I_D = 3.2A$
t _{d(off)}	Turn-Off Delay Time		51			$R_G = 9.1\Omega$
t _f	Fall Time		11			V _{GS} = 10V ③
C _{iss}	Input Capacitance		1720			V _{GS} = 0V
Coss	Output Capacitance		220			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		25		pF	f = 1.0MHz
Coss	Output Capacitance		1650			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		130			$V_{GS} = 0V, V_{DS} = 80V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		250			V _{GS} = 0V, V _{DS} = 0V to 80V ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		91	mJ
I _{AR}	Avalanche Current①		3.2	А

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			2.3		MOSFET symbol
	(Body Diode)			2.3	Α	showing the
I _{SM}	Pulsed Source Current			43		integral reverse
	(Body Diode) ①			43		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 3.2A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		67	100	ns	$T_J = 25$ °C, $I_F = 3.2A$
Q _{rr}	Reverse RecoveryCharge		220	330	nC	di/dt = 100A/µs ③

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International IOR Rectifier

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

Fig 14a&b. Basic Gate Charge Test Circuit and Waveform

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

6

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 17. Gate Charge Waveform

International

Rectifier

SO-8 Package Outline

DIM	INC	HES	MILLIM	ETERS	
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
р	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e1	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	

NOTES

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

SO-8 Tape and Reel

- 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 17mH $R_G=25\Omega,\ I_{AS}=3.2A.$
- When mounted on 1 inch square copper board
- $\ensuremath{\mathbb{G}}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.09/04

9