Multímetros

14 de Octubre del 2021

Amperímetro	Voltímetro
Permite medir la intensidad de corriente que circula en un conductor	Permite medir la diferencia de potencial (tensión) entre dos puntos de un circuito
	••••••••••••••••••••••••••••••••••••••
	A B B

En el módulo 1, vimos que tenía dos modos: **DC** [V] / **AC** [V]

En el módulo 1, vimos que tenía dos modos: **DC** [V] / **AC** [V]

Pero la clase pasada vimos varias tensiones más!!! Entonces cuáles mide? y cómo?

$$V_{DC} = \frac{1}{T} \int_0^T v(t) \, dt$$

Valor medio de tensión

$$V_{DC} = \frac{1}{T} \int_0^T v(t) dt$$

$$V_{AC} = \sqrt{\frac{1}{T}} \int_0^T (v(t) - V_{DC})^2 dt$$

Tensión eficaz de alterna

$$V_{ef} = \sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) dt} = \sqrt{V_{DC}^{2} + V_{AC}^{2}}$$

Tensión eficaz total

Vamos a ver tres tipos de multímetros

Vamos a ver tres tipos de multímetros

Multimetro TRUE RMS

Multimetro: TRUE RMS

Multimetro: TRUE RMS

Es un tipo de multímetro que permite medir:

$$V_{DC} = \frac{1}{T} \int_0^T v(t) dt$$

Multimetro: TRUE RMS

Es un tipo de multímetro que permite medir:

$$V_{DC} = \frac{1}{T} \int_0^T v(t) dt$$

$$V_{AC} = \sqrt{\frac{1}{T}} \int_0^T (v(t) - V_{DC})^2 dt$$

<u>Verdadero</u> Valor Eficaz ¿Por qué Verdadero?

TRUE RMS (modo DC)

$$V_{DC} = \frac{1}{T} \int_0^T v(t) \, dt$$

TRUE RMS (modo AC)

$$V_{AC} = \sqrt{\frac{1}{T} \int_{0}^{T} (v(t) - V_{DC})^{2} dt}$$

Operación complicada!

TRUE RMS (modo AC)

$$V_{AC} = \sqrt{\frac{1}{T} \int_{0}^{T} (v(t) - V_{DC})^2 dt}$$

Operación complicada! → Entonces...

Vamos a ver tres tipos de multímetros

Multimetro TRUE RMS - AC+DC

TRUE RMS <u>AC+DC</u>

¿Qué diferencia tiene con un True-RMS convencional?

EL true-RMS [AC+DC] puede calcular directamente el valor eficaz total (Vef)

TRUE RMS <u>AC+DC</u> (modo AC+DC) $V_{ef} = \sqrt{\frac{1}{T}} \int_0^T v^2(t) dt$

$$V_{ef} = \sqrt{\frac{1}{T}} \int_0^T v^2(t) dt$$

Operación complicada!

TRUE RMS <u>AC+DC</u> (modo AC+DC)

Es un tipo de multímetro que puede medir directamente el Valor eficaz total:

$$V_{ef} = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt} = \sqrt{V_{DC}^2 + V_{AC}^2}$$

TRUE RMS <u>AC+DC</u> (modo AC+DC)

Es un tipo de multímetro que puede medir **directamente** el Valor eficaz total:

$$V_{ef} = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt} = \sqrt{V_{DC}^2 + V_{AC}^2}$$

TRUE RMS <u>AC+DC</u> (modo AC+DC)

Es un tipo de multímetro que puede medir **directamente** el Valor eficaz total:

$$V_{ef} = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt} = \sqrt{V_{DC}^2 + V_{AC}^2}$$

Vamos a ver tres tipos de multímetros

"DE VALOR MEDIO"

Multimetro: "De valor medio"

Es un tipo de multímetro que "sólo sabe" calcular valor medio

Los multímetros de **valor medio** son el tipo más común en la vida cotidiana (i.e., outside FIUBA).

"Mult. de Valor Medio" (modo DC)

$$V_{DC} = \frac{1}{T} \int_0^T v(t) dt$$

$$V_{AC} = \sqrt{\frac{1}{T}} \int_{0}^{T} (v(t) - V_{DC})^2 dt$$

Primero restamos la continua VDC...

$$V_{AC} = \sqrt{\frac{1}{T}} \int_{0}^{T} (v(t) - V_{DC})^2 dt$$

Primero restamos la continua VDC...

$$V_{AC} = \sqrt{\frac{1}{T}} \int_{0}^{T} (v(t) - V_{DC})^2 dt$$

Segundo, rectificamos...

$$V_{AC} = \sqrt{\frac{1}{T}} \int_{0}^{T} (v(t) - V_{DC})^2 dt$$

Tercero, calculamos valor medio...

$$V_{AC} = \sqrt{\frac{1}{T}} \int_0^T (v(t) - V_{DC})^2 dt$$

Cuarto, multiplicamos por el factor de forma

$$V_{AC} = \sqrt{\frac{1}{T}} \int_{0}^{T} (v(t) - V_{DC})^2 dt$$

Quinto, se muestra lectura en el display

"Mult. de Valor Medio" (modo AC)

$$V_{AC} = \sqrt{\frac{1}{T}} \int_{0}^{T} (v(t) - V_{DC})^2 dt$$

Quinto, se muestra lectura en el display

"Mult. de Valor Medio" (modo AC)

Rectificador

bloque circuital que permite implementar fácilmente la operación de módulo (*rectificador de onda completa*):

"Mult. de Valor Medio" (modo AC) Valor medio rectificado

Definición: el valor medio rectificado es el resultado de calcular el promedio de una señal alterna rectificada.

"Mult. de Valor Medio" (modo AC)

Los fabricantes de estos multímetros suponen que la mayoría de las veces se usará para medir señales senoidales

Ejemplo: 220 V de la red eléctrica

"Mult. de Valor Medio" (modo AC)

¿Cuál es el valor medio de la senoidal rectificada?

$$V_{mr} = \frac{1}{T} \int_0^T |Asen(\omega \cdot t)| dt$$

¿Cuál es el valor medio de la senoidal rectificada?

$$V_{mr} = \frac{1}{T} \int_{0}^{T} |Asen(\omega \cdot t)| dt$$

... (tarea para el hogar)

$$=\frac{2}{T}\cdot\left[\left.\frac{-Acos(\omega\cdot t)}{\omega}\right|_0^{\frac{T}{2}}\right]=\frac{2}{T}\cdot\left[\frac{A}{\omega}+\frac{A}{\omega}\right]=\frac{2}{T}\cdot\left[\frac{2\cdot A}{\omega}\right]=\frac{4A}{\omega\cdot T}=\frac{4A}{2\pi}=\frac{2}{\pi}\cdot A$$

Notar lo siguiente: ambos, *Vmr* y *Vac*, dependen de la amplitud.

$$V_{mr} = \frac{2}{\pi} \cdot A$$

Valor medio rectificado

$$V_{AC} = \frac{A}{\sqrt{2}}$$

Valor eficaz de alterna (teórico)

Notar lo siguiente: ambos, *Vmr* y *Vac*, dependen de la amplitud.

$$V_{mr} = rac{2}{\pi} \cdot A$$
 Valor medio rectificado

$$V_{AC} = \frac{A}{\sqrt{2}}$$

Valor eficaz de alterna (teórico)

Podemos entonces calcular *Vac* en función de *Vmr*

$$V_{AC} = \alpha \cdot V_{mr}$$

Entonces, definimos el **Factor de Forma**:

$$\alpha = \frac{V_{AC}}{V_{mr}}$$

Es el cociente entre el valor eficaz verdadero de una señal y su valor medio rectificado.

¿Cuál es el factor de forma de una senoidal?

$$\alpha_{senoidal} = \frac{V_{AC_{senoidal}}}{V_{mr_{senoidal}}} = \frac{\pi}{2\sqrt{2}} \simeq 1,11$$

Cada forma de onda tiene su propio factor de forma. En una senoidal es 1,11.

Volvamos a nuestro diagrama en bloques..

"Mult. de Valor Medio" (modo AC) $V_{AC} = \sqrt{\frac{1}{T}} \int_0^T (v(t) - V_{DC})^2 dt$

$$V_{AC} = \sqrt{\frac{1}{T}} \int_{0}^{T} (v(t) - V_{DC})^2 dt$$

"Mult. de Valor Medio" (modo AC) $V_{AC} = \sqrt{\frac{1}{T}} \int_0^T (v(t) - V_{DC})^2 dt$

$$V_{AC} = \sqrt{\frac{1}{T}} \int_{0}^{T} (v(t) - V_{DC})^2 dt$$

$$V_{AC}^* = 1,11 \times \frac{1}{T} \int_0^T |v(t) - V_{DC}| dt$$

Asume que estamos midiendo una senoidal

Atención!

El Multímetro de Valor Medio está configurado para medir **SÓLO** señales **SENOIDALES**.

FF=1,11

Resumen

"TENER EN CUENTA LAS ESPECIFICACIONES"

Multimetro "ESPECIFICACIÓN DE LA RESOLUCIÓN"

Multimetro "ESPECIFICACIÓN DE ANCHO DE BANDA"

- Mediría correctamente la tensión eficaz si la señal es de 0.1 Hz (periodo 10 s)?
- Mediría correctamente la tensión eficaz si la señal es de 100 GHz?

Multimetro "ESPECIFICACIÓN DE ANCHO DE BANDA"

- Mediría correctamente la tensión eficaz si la señal es de 0.1 Hz (periodo 10 s)?
- Mediría correctamente la tensión eficaz si la señal es de 100 GHz?

Hay que verificar el manual del fabricante!

Ejercicio

Ejercicio

Se desea medir la forma de onda de la figura, donde la amplitud del pulso es de 50 V y el periodo T = 10 ms, usando un MMD de 3 3/4 dígitos con escalas VDC (0,3 % lect. + 1 díg.) y VAC (45 Hz a 1 kHz), (1,9 % lect. + 2 díg.).

- a) ¿Cuál es el resultado de la medición en VDC y en VAC con un multímetro de valor medio?
- b) ¿Cuál sería la lectura de un voltímetro de verdadero valor eficaz?