metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

A new Ag^I complex based on 1-[(1Hbenzimidazol-1-yl)methyl]-1*H*-1,2,4-triazole

Yan-zhi Wang,^a Jun Zhang,^b Huai-xia Yang^a and Xiang-ru Meng^{b*}

^aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and ^bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China Correspondence e-mail: mxr@zzu.edu.cn

Received 8 November 2011; accepted 15 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.007$ Å; R factor = 0.043; wR factor = 0.095; data-to-parameter ratio = 11.9.

In the title complex, bis $\{\mu$ -1-[(1H-benzimidazol-1-yl)methyl]-1*H*-1,2,4-triazole}disilver(I) dinitrate, $[Ag_2(C_{10}H_9N_5)_2]$ - $(NO_3)_2$, the Ag^I ion is nearly linearly coordinated [N-Ag-N angle is $155.72 (14)^{\circ}$ by two 1-[(1*H*-benzimidazole-1vl)methyl]-1*H*-1,2,4-triazole (bmt) ligands. In addition, two bmt ligands link two Ag^I ions, forming a dinuclear unit with an Ag...Ag distance of 5.0179 (15) Å. The whole complex is generated by an inversion centre. The dinuclear units and the NO₃⁻ counter-ions are connected by N-H···O hydrogen bonds and weak Ag···O interactions [2.831 (5), 2.887 (5) and 2.908 (5) Å], leading to a three-dimensional structure.

Related literature

For background to complexes based on benzimidazole or triazole and their derivatives, see: Yang et al. (2010); Li et al. (2010); Tian et al. (2011); Zhang et al. (2011).

Experimental

Crystal data

 $[Ag_2(C_{10}H_9N_5)_2](NO_3)_2$ V = 1192.1 (4) \mathring{A}^3 $M_r = 738.20$ Z = 2Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 9.4947 (19) Å $\mu = 1.71 \text{ mm}^$ b = 13.569 (3) ÅT = 293 Kc = 10.174 (2) Å $0.19 \times 0.17 \times 0.14 \text{ mm}$ $\beta = 114.56 (3)^{\circ}$

Data collection

Rigaku Saturn diffractometer 9572 measured reflections Absorption correction: multi-scan 2158 independent reflections (CrystalClear; Rigaku/MSC, 1952 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.034$ $T_{\min} = 0.737, T_{\max} = 0.796$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ 181 parameters $wR(F^2) = 0.095$ H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.70 \text{ e Å}^{-3}$ S = 1.09 $\Delta \rho_{\rm min} = -0.28~{\rm e}~{\rm \mathring{A}}^{-3}$ 2158 reflections

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ \cdots A	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N2−H2 <i>B</i> ···O2	0.86	2.08	2.849 (6)	148

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Science and Technology Department of Henan Province (082102330003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2136).

References

Li, Y., Yang, H., Ding, Y. & Meng, X. (2010). Acta Cryst. E66, m1155. Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tian, L., Yan, L. & Liu, S. Y. (2011). J. Coord. Chem. 64, 2945-2952. Yang, H.-X., Zhang, J., Ding, Y.-N. & Meng, X.-R. (2010). Acta Cryst. E66,

Zhang, P., Li, D. S., Zhao, J., Wu, Y. P., Li, C., Zou, K. & Lu, J. Y. (2011). J. Coord. Chem. 64, 2329-2341.

supplementary m	aterials	

Acta Cryst. (2011). E67, m1788 [doi:10.1107/S1600536811048501]

A new Ag^I complex based on 1-[(1*H*-benzimidazol-1-yl)methyl]-1*H*-1,2,4-triazole

Y. Wang, J. Zhang, H. Yang and X. Meng

Comment

Many complexes based on benzimidazole or triazole and their derivatives have been synthesized and characterized owing to the strong coordination abilities of these multidentate N-heterocyclic ligands and the interesting properties and potential applications of these complexes (Yang *et al.*, 2010; Li *et al.*, 2010; Tian *et al.*, 2011; Zhang *et al.*, 2011). We are engaged in the synthesis of unsymmetrical N-heterocyclic ligands and have synthesized the compound 1-[(1*H*-benzimidazole-1-yl)methyl]-1*H*-1,2,4-triazole (bmt). In this work, we selected this compound as ligand and generated a new complex [Ag₂(C₁₀H₉N₅)₂](NO₃)₂, (I), which is reported here.

In complex (I) each Ag^I ion is two-coordinated by two N atom from one triazole group and one benzimidazole group of two different 1-[(1*H*-benzimidazole-1-yl)methyl]-1*H*-1,2,4-triazole ligands and the nitrate anion does not coordinate to the Ag^I ion (Fig. 1). Two bmt ligands bridge two Ag^I ions leading to a dinuclear unit [$Ag_2(C_{10}H_9N_5)_2$] with $Ag_1-Ag_1^I$ distance of 5.0179 (15) Å (symmetry code: (i) -*x*-1, -*y*+2, -*z*). [$Ag_2(C_{10}H_9N_5)_2$] units and NO_3^- groups are linked through weak Ag_3-O interactions and N_3-O hydrogen bonds (Table 1) resulting in a three-dimensional packing in solid state.

Experimental

The ligand 1-[(1*H*-benzimidazole-1-yl)methyl]-1*H*-1,2,4-triazole (0.1 mmol) in methanol (4 ml) was added dropwise to an aqueous solution (3 ml) of AgNO₃ (0.1 mmol). The resulting solution was allowed to stand at room temperature in the dark. After four weeks good quality colorless crystals were obtained from the filtrate and dried in air.

Refinement

H atoms are positioned geometrically and refined as riding atoms, with C-H = 0.93 (aromatic) and 0.97 (CH₂) Å and N-H = 0.86 Å and with $U_{iso}(H) = 1.2 \ U_{eq}(C,N)$.

Figures

Fig. 1. View of the title complex showing labeling and 30% probability displacement ellipsoids. Hydrogen bonds are indicated by dashed lines. Symmetry code: (i) -x - 1, -y + 2, -z.

bis{µ-1-[(1*H*-benzimidazol-1-yl)methyl]-1*H*-1,2,4- triazole}disilver(I) dinitrate

Crystal data

 $[Ag_2(C_{10}H_9N_5)_2](NO_3)_2$ F(000) = 728

 $M_r = 738.20$ $D_x = 2.057 \text{ Mg m}^{-3}$

Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc Cell parameters from 3140 reflections

 a = 9.4947 (19) Å $\theta = 2.4-27.9^{\circ}$

 b = 13.569 (3) Å $\mu = 1.71 \text{ mm}^{-1}$

 c = 10.174 (2) Å T = 293 K

 $\beta = 114.56 (3)^{\circ}$ Prism, colourless

 $V = 1192.1 (4) \text{ Å}^3$ $0.19 \times 0.17 \times 0.14 \text{ mm}$

Z = 2

Data collection

Rigaku Saturn diffractometer 2158 independent reflections

Radiation source: fine-focus sealed tube 1952 reflections with $I > 2\sigma(I)$

graphite $R_{\text{int}} = 0.034$

Detector resolution: 28.5714 pixels mm⁻¹ $\theta_{\text{max}} = 25.3^{\circ}, \, \theta_{\text{min}} = 2.4^{\circ}$

 ω scans $h = -11 \rightarrow 10$

Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006) $k = -16 \rightarrow 16$

 $T_{\min} = 0.737, T_{\max} = 0.796$ $l = -12 \rightarrow 11$

9572 measured reflections

Refinement

Refinement on F^2 Primary atom site location: structure-invariant direct

methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

 $R[F^2 > 2\sigma(F^2)] = 0.043$ Hydrogen site location: inferred from neighbouring

sites

 $wR(F^2) = 0.095$ H-atom parameters constrained

S = 1.09 $W = 1/[\sigma^2(F_0^2) + (0.0419P)^2 + 1.7006P]$

where $P = (F_0^2 + 2F_c^2)/3$

2158 reflections $(\Delta/\sigma)_{\text{max}} = 0.001$

181 parameters $\Delta \rho_{\text{max}} = 0.70 \text{ e Å}^{-3}$

0 restraints $\Delta \rho_{min} = -0.28 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations

between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$
Ag1	-0.34103 (4)	0.89095 (3)	0.20814 (4)	0.04938 (17)
N1	-0.0927 (4)	0.9097 (2)	0.3164 (4)	0.0326 (8)
N2	0.1479 (4)	0.9666 (3)	0.3996 (4)	0.0354 (8)
H2B	0.2248	1.0035	0.4080	0.043*
N3	-0.1878 (4)	1.0476 (2)	0.0747 (4)	0.0320(8)
N4	-0.1943 (5)	0.9813 (3)	-0.0280 (4)	0.0449 (10)
N5	-0.4205 (4)	1.0613 (3)	-0.0931 (4)	0.0374 (8)
N6	0.3779 (5)	1.1840 (3)	0.4722 (5)	0.0470 (10)
O1	0.3112 (6)	1.1880 (4)	0.3398 (4)	0.0877 (14)
O2	0.3944 (6)	1.1033 (3)	0.5326 (5)	0.0818 (14)
O3	0.4245 (5)	1.2605 (3)	0.5397 (5)	0.0801 (13)
C1	0.0033 (5)	0.8484 (3)	0.4281 (4)	0.0320 (9)
C2	-0.0334 (6)	0.7641 (3)	0.4866 (5)	0.0387 (10)
H2A	-0.1339	0.7396	0.4515	0.046*
C3	0.0871 (6)	0.7193 (3)	0.5989 (5)	0.0446 (12)
Н3А	0.0670	0.6633	0.6409	0.054*
C4	0.2383 (6)	0.7552 (3)	0.6518 (5)	0.0454 (12)
H4A	0.3158	0.7223	0.7277	0.055*
C5	0.2760 (5)	0.8380(3)	0.5946 (5)	0.0415 (11)
H5A	0.3769	0.8618	0.6295	0.050*
C6	0.1542 (5)	0.8840(3)	0.4813 (5)	0.0345 (10)
C7	-0.0011 (5)	0.9789 (3)	0.3042 (4)	0.0306 (9)
C8	-0.0451 (5)	1.0643 (3)	0.2027 (4)	0.0352 (10)
H8A	-0.0574	1.1222	0.2528	0.042*
H8B	0.0379	1.0774	0.1732	0.042*
C9	-0.3227 (5)	1.0931 (3)	0.0341 (5)	0.0353 (10)
Н9А	-0.3452	1.1409	0.0881	0.042*
C10	-0.3371 (6)	0.9929 (4)	-0.1265 (5)	0.0450 (11)
H10A	-0.3772	0.9569	-0.2120	0.054*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0295 (2)	0.0625 (3)	0.0471 (3)	0.00013 (17)	0.00685 (17)	0.00857 (18)
N1	0.0290 (19)	0.0329 (19)	0.0328 (19)	0.0005 (16)	0.0098 (16)	-0.0039 (15)
N2	0.030(2)	0.038(2)	0.036(2)	-0.0027 (16)	0.0114 (16)	-0.0009 (16)
N3	0.0292 (19)	0.0302 (17)	0.0335 (19)	0.0019 (15)	0.0100 (16)	0.0020 (15)

N4	0.040(2)	0.046(2)	0.047(2)	0.0002 (19)	0.016(2)	-0.0166 (19)
N5	0.030(2)	0.041(2)	0.036(2)	0.0014 (17)	0.0097 (17)	0.0027 (17)
N6	0.036(2)	0.056(3)	0.047(3)	-0.007(2)	0.015(2)	-0.004(2)
O1	0.103 (4)	0.097(3)	0.048(2)	0.023(3)	0.016(2)	-0.003 (2)
O2	0.089(3)	0.060(3)	0.088(3)	-0.008(2)	0.029(3)	0.028(2)
O3	0.067(3)	0.064(3)	0.094(3)	-0.025(2)	0.019(2)	-0.029(2)
C1	0.033(2)	0.032(2)	0.028(2)	0.0053 (18)	0.0098 (18)	-0.0064 (18)
C2	0.040(3)	0.034(2)	0.040(2)	0.000(2)	0.014(2)	-0.0028 (19)
C3	0.060(3)	0.033(2)	0.037(3)	0.004(2)	0.018(2)	0.000(2)
C4	0.055(3)	0.041(3)	0.034(2)	0.018(2)	0.012(2)	0.001(2)
C5	0.034(3)	0.049(3)	0.035(2)	0.005(2)	0.008(2)	-0.007(2)
C6	0.036(3)	0.035(2)	0.031(2)	0.0020 (19)	0.013(2)	-0.0054 (18)
C7	0.030(2)	0.031(2)	0.028(2)	-0.0005 (18)	0.0106 (18)	-0.0052 (17)
C8	0.031(2)	0.034(2)	0.036(2)	-0.0011 (19)	0.0093 (19)	-0.0042 (19)
C9	0.037(3)	0.037(2)	0.032(2)	0.003(2)	0.015(2)	0.0031 (19)
C10	0.040(3)	0.049(3)	0.043 (3)	-0.007(2)	0.014(2)	-0.010(2)
Geometric į	parameters (Å, °)					
Ag1—N1		2.163 (4)	N6-	-O2	1.23	33 (5)
Ag1—N5 ⁱ		2.171 (4)	C1—	-C6	1.39	00 (6)
N1—C7		1.321 (5)	C1—	-C2	1.399 (6)	
N1—C1		1.397 (5)	C2—			77 (6)
N2—C7		1.353 (5)		-H2A	0.93	
N2—C6		1.382 (5)	C3—			95 (7)
N2—H2B		0.8600		-H3A	0.93	
N3—C9		1.325 (5)	C4—			30 (7)
N3—N4		1.361 (5)		-H4A	0.93	
N3—C8		1.454 (5)	C5—			06 (6)
N4—C10		1.318 (6)		-H5A	0.93	
N5—C9		1.313 (6)	C7—			02 (6)
N5—C10		1.352 (6)		-H8A	0.97	
N5—Ag1 ⁱ		2.171 (4)		-H8B	0.97	
N6—O3		1.222 (5)		-H9A	0.93	
N6—O1		1.229 (5)		—H10A	0.93	
N1—Ag1—	N5 ⁱ	155.72 (14)	C4—	-С3—Н3А	118.	.9
C7—N1—C	1	105.5 (4)	C5—	-C4—C3	121	.9 (4)
C7—N1—A	g1	131.1 (3)	C5—	-C4—H4A	119.	.1
C1—N1—A	g1	123.3 (3)	C3—	-C4—H4A	119.	.1
C7—N2—C	6	107.6 (4)	C4—	-C5—C6	116.	2 (4)
C7—N2—H	2B	126.2	C4—	-C5—H5A	121	.9
C6—N2—H	2B	126.2	C6—	-C5—H5A	121	.9
C9—N3—N	4	109.8 (4)	N2-	-C6C1	105	.5 (4)
C9—N3—C	8	128.8 (4)	N2-	-C6C5	132	.3 (4)
N4—N3—C	8	121.2 (3)	C1—	-C6—C5	122	.2 (4)
C10—N4—1	N3	102.1 (4)	N1-	-C7N2	112.	2 (4)
C9—N5—C	10	103.0 (4)	N1-	-C7C8	127	.7 (4)
C9—N5—A	g1 ⁱ	125.8 (3)	N2-	-C7C8	120	.1 (4)

C10—N5—Ag1 ⁱ	131.1 (3)		N3—C8—C7		112.8 (3)
O3—N6—O1	118.6 (5)		N3—C8—H8A		109.0
O3—N6—O2	122.2 (5)		C7—C8—H8A		109.0
O1—N6—O2	119.1 (5)		N3—C8—H8B		109.0
C6—C1—N1	109.2 (4)		C7—C8—H8B		109.0
C6—C1—C2	121.1 (4)		H8A—C8—H8B		107.8
N1—C1—C2	129.7 (4)		N5—C9—N3		110.5 (4)
C3—C2—C1	116.5 (4)		N5—C9—H9A		124.8
C3—C2—H2A	121.8		N3—C9—H9A		124.8
C1—C2—H2A	121.8		N4—C10—N5		114.6 (4)
C2—C3—C4	122.2 (4)		N4—C10—H10A		122.7
C2—C3—H3A	118.9		N5—C10—H10A		122.7
N5 ⁱ —Ag1—N1—C7	-24.9 (5)		C4—C5—C6—N2		179.8 (4)
N5 ⁱ —Ag1—N1—C1	149.8 (3)		C4—C5—C6—C1		-0.4 (6)
C9—N3—N4—C10	0.5 (5)		C1—N1—C7—N2		0.3 (4)
C8—N3—N4—C10	-176.4 (4)		Ag1—N1—C7—N2		175.7 (3)
C7—N1—C1—C6	0.1 (4)		C1—N1—C7—C8		-178.8 (4)
Ag1—N1—C1—C6	-175.7 (3)		Ag1—N1—C7—C8		-3.3 (6)
C7—N1—C1—C2	179.6 (4)		C6—N2—C7—N1		-0.7(5)
Ag1—N1—C1—C2	3.7 (6)		C6—N2—C7—C8		178.5 (3)
C6—C1—C2—C3	0.2(6)		C9—N3—C8—C7		114.0 (5)
N1—C1—C2—C3	-179.2 (4)		N4—N3—C8—C7		-69.8 (5)
C1—C2—C3—C4	-0.4(6)		N1—C7—C8—N3		-23.6 (6)
C2—C3—C4—C5	0.1 (7)		N2—C7—C8—N3		157.4 (4)
C3—C4—C5—C6	0.3 (6)		C10—N5—C9—N3		0.7 (5)
C7—N2—C6—C1	0.7 (4)		Ag1 ⁱ —N5—C9—N3		178.7 (3)
C7—N2—C6—C5	-179.5 (4)		N4—N3—C9—N5		-0.8(5)
N1—C1—C6—N2	-0.5(4)		C8—N3—C9—N5		175.8 (4)
C2—C1—C6—N2	180.0 (4)		N3-N4-C10-N5		0.0 (5)
N1—C1—C6—C5	179.6 (4)		C9—N5—C10—N4		-0.4 (5)
C2—C1—C6—C5	0.1 (6)		Ag1 ⁱ —N5—C10—N4		-178.3 (3)
Symmetry codes: (i) $-x-1$, $-y+2$, $-z$.					
Hydrogen-bond geometry (Å, °)					
D— H ··· A		<i>D</i> —Н	$H\cdots A$	D··· A	D— H ··· A
N2—H2B···O2		0.86	2.08	2.849 (6)	148.

Fig. 1

