Ninja Warrior - Part 1

Approximately many times would you say the 'Salmon Ladder' was used?

Whole Population

```
Control Truncated Logarithmic N 70.0000000 70.0000000 6.700000e+01 Min. 40.0000000 40.0000000 9.000000e+00 1st Qu. 41.0000000 41.0000000 3.500000e+01 Median 41.0000000 41.0000000 3.500000e+01 Mean 41.2071429 41.3535714 1.492539e+13 3rd Qu. 42.0000000 42.0000000 4.050000e+01 Max. 45.0000000 45.0000000 1.0000000e+15 Var 0.7427019 0.7527045 1.492537e+28
```

Control - Language comparison

```
Whole Pop R Python
N 70.0000000 38.0000000 32.0000000
Min. 40.0000000 40.0000000 40.0000000
1st Qu. 41.0000000 41.0000000 41.0000000
Median 41.0000000 41.4868421 40.8750000
3rd Qu. 42.0000000 42.0000000 41.0000000
Max. 45.0000000 43.0000000 45.0000000
Var 0.7427019 0.4119844 0.9516129
```

Truncated - Language comparison

```
Whole Pop R Python
N 70.0000000 38.0000000 32.0000000
Min. 40.0000000 40.0000000 40.0000000
1st Qu. 41.0000000 41.0000000 41.0000000
Median 41.3535714 41.5657895 41.1015625
```

```
3rd Qu. 42.000000 42.000000 41.2500000
Max. 45.000000 45.000000 44.0000000
Var 0.7527045 0.7590683 0.6486265
```

Logarithmic - Language comparison

	Whole Pop	R	Python
N	6.700000e+01	38.00000	2.900000e+01
Min.	9.000000e+00	30.00000	9.000000e+00
1st Qu.	3.000000e+01	35.00000	1.200000e+01
Median	3.500000e+01	35.00000	1.500000e+01
Mean	1.492539e+13	39.73684	3.448279e+13
3rd Qu.	4.050000e+01	40.00000	5.000000e+01
Max.	1.000000e+15	120.00000	1.000000e+15
Var	1.492537e+28	206.95590	3.448276e+28

Control - Degree comparison

```
STEM Humanities Social Sci Arts Business NA 29.0000000 3.000000 30.0000000 2.00 4.0000000 1 Min. 40.0000000 40.000000 41.00 40.0000000 41 1st Qu. 41.0000000 40.500000 41.0000000 41.25 40.7500000 41 Median 41.0000000 41.333333 41.2333333 41.50 41.2500000 41 3rd Qu. 42.000000 42.000000 41.0000000 41.75 42.0000000 41 Max. 42.0000000 43.000000 45.0000000 42.00 42.0000000 41 Var 0.5517241 2.333333 0.9436782 0.50 0.9166667 NA
```

Truncated - Degree comparison

	STEM	${\tt Humanities}$	Social Sci	Arts	Business	NA
N	29.0000000	3.00	31.000000	2	4.0000000	1
Min.	40.0000000	42.00	40.000000	42	40.0000000	41
1st Qu.	41.0000000	42.25	41.000000	42	40.7500000	41
Median	41.0000000	42.50	41.000000	42	41.5000000	41
Mean	41.0775862	42.50	41.483871	42	41.2500000	41
3rd Qu.	41.0000000	42.75	42.000000	42	42.000000	41
Max.	42.0000000	43.00	45.000000	42	42.0000000	41
Var	0.2638547	0.25	1.120565	0	0.9166667	NA

Logarithmic - Degree comparison

	STEM	Humanities	Social Sci	Arts	Business	NA
N	28.00000	3.00000	3.000000e+01	2.00	4.0000	1
Min	10 00000	9 00000	1 000000e+01	33 00	10 0000	NΑ

```
1st Qu. 26.25000
                   21.50000 3.400000e+01 34.75 10.3750
                                                       NA
                   34.00000 3.850000e+01 36.50 10.7500
Median
        35.00000
Mean
        34.46429
                   26.33333 3.333337e+13 36.50 16.6250 NaN
3rd Qu. 40.00000
                   35.00000 5.375000e+01 38.25
                                               17.0000
                                                       NA
       120.00000
                   36.00000 1.000000e+15 40.00
Max.
                                               35.0000 NA
NA's
                    9.00000 1.000000e+01 33.00 10.0000
        10.00000
                                                         1
       422.10979 226.33333 3.333333e+28 24.50 150.2292 NA
Var
```

Num skills - log

	uni	sp_aware	obs_skl	${\tt num_skl}$	log_1	log_2	log_3	log_4
101	Technology	4	4	3	Don't know	4	2	0.5
121	None	4	3	3	Next to none.	1	1	5
102	Social Sciences	5	5	4	10^15	5	3	0.85
84	psychology	3	5	1	10^9	3	2	0.9

Shapiro Tests - Whole

```
Shapiro-Wilk normality test
```

```
data: control_1
```

W = 0.81359, p-value = 5.596e-08

Shapiro-Wilk normality test

data: truncated_1

W = 0.82679, p-value = 1.327e-07

Shapiro-Wilk normality test

data: logarithmic_1

W = 0.10138, p-value < 2.2e-16

Symmetry Tests - Whole

```
m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
```

data: control_1

Test statistic = 3.3278, p-value = 0.006

alternative hypothesis: the distribution is asymmetric.

sample estimates:

```
bootstrap optimal m
                 15
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: truncated 1
Test statistic = 5.5016, p-value < 2.2e-16
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 24
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: logarithmic_1
Test statistic = 8.6444, p-value < 2.2e-16
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 23
Shapiro Tests - Language comp
    Shapiro-Wilk normality test
data: control 1 r
W = 0.80497, p-value = 1.322e-05
   Shapiro-Wilk normality test
data: truncated_1_r
W = 0.77542, p-value = 3.428e-06
   Shapiro-Wilk normality test
data: logarithmic_1_r
W = 0.43931, p-value = 6.923e-11
```

Shapiro-Wilk normality test

data: control 1 py W = 0.67942, p-value = 4.341e-07Shapiro-Wilk normality test data: truncated 1 py W = 0.82735, p-value = 0.0001392 Shapiro-Wilk normality test data: logarithmic 1 py W = 0.18384, p-value = 1.315e-11 symmetry Tests - Language comp m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006) data: control 1 r Test statistic = 5.875, p-value < 2.2e-16 alternative hypothesis: the distribution is asymmetric. sample estimates: bootstrap optimal m 17 m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006) data: truncated 1 r Test statistic = 5.713, p-value < 2.2e-16 alternative hypothesis: the distribution is asymmetric. sample estimates: bootstrap optimal m 19 m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006) data: logarithmic 1 r

Test statistic = 5.3265, p-value < 2.2e-16 alternative hypothesis: the distribution is asymmetric. sample estimates: bootstrap optimal m

30

median of x

41

```
m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: control_1_py
Test statistic = -1.3276, p-value = 0.346
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 16
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: truncated_1_py
Test statistic = 1.2732, p-value = 0.334
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 20
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: logarithmic_1_py
Test statistic = 5.6872, p-value < 2.2e-16
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 18
Sign tests - Whole pop
    One-sample Sign-Test
data: control_1
s = 22, p-value = 0.1214
alternative hypothesis: true median is not equal to 41
95 percent confidence interval:
41 41
sample estimates:
```

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9278	41	41
Interpolated CI	0.9500	41	41
Upper Achieved CI	0.9586	41	41

One-sample Sign-Test

data: truncated_1

s = 28, p-value = 0.002563

alternative hypothesis: true median is not equal to 41

95 percent confidence interval:

41.00 41.25

sample estimates:

median of x

41

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9278	41	41.25
Interpolated CI	0.9500	41	41.25
Upper Achieved CI	0.9586	41	41.25

One-sample Sign-Test

data: logarithmic_1

s = 15, p-value = 1.572e-05

alternative hypothesis: true median is not equal to 41

95 percent confidence interval:

34.00546 40.00000

sample estimates:

 ${\tt median} \ {\tt of} \ {\tt x}$

35

Achieved and Interpolated Confidence Intervals:

	${\tt Conf.Level}$	L.E.pt	U.E.pt
Lower Achieved CI	0.9136	35.0000	40
Interpolated CI	0.9500	34.0055	40
${\tt Upper\ Achieved\ CI}$	0.9502	34.0000	40

Dependent-samples Sign-Test

data: control_1 and truncated_1
S = 14, p-value = 0.1877
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
 0 0
sample estimates:
median of x-y
 0

Achieved and Interpolated Confidence Intervals:

Sign tests - Lang comp

One-sample Sign-Test

data: control_1_r
s = 18, p-value = 7.629e-05
alternative hypothesis: true median is not equal to 41
95 percent confidence interval:
 41 42
sample estimates:
median of x
 41

Achieved and Interpolated Confidence Intervals:

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9270 41 42
Interpolated CI 0.9500 41 42
Upper Achieved CI 0.9664 41 42

One-sample Sign-Test

data: truncated_1_r
s = 18, p-value = 0.0004025

alternative hypothesis: true median is not equal to 41 95 percent confidence interval:

41 42

sample estimates:

median of x

41

Achieved and Interpolated Confidence Intervals:

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9270 41 42
Interpolated CI 0.9500 41 42
Upper Achieved CI 0.9664 41 42

One-sample Sign-Test

data: logarithmic_1_r
s = 5, p-value = 1.291e-05

alternative hypothesis: true median is not equal to 41

95 percent confidence interval:

35 40

sample estimates:

median of x

35

Achieved and Interpolated Confidence Intervals:

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9270 35 40
Interpolated CI 0.9500 35 40
Upper Achieved CI 0.9664 35 40

One-sample Sign-Test

data: control_1_py
s = 4, p-value = 0.1185

alternative hypothesis: true median is not equal to 41

95 percent confidence interval:

40 41

sample estimates:

median of x

41

Achieved and Interpolated Confidence Intervals:

	${\tt Conf.Level}$	L.E.pt	U.E.pt
Lower Achieved CI	0.9499	40	41
Interpolated CI	0.9500	40	41
Upper Achieved CI	0.9799	40	41

Wilcox tests - Py

Wilcoxon signed rank test with continuity correction

data: truncated_1_py
V = 84.5, p-value = 0.7188
alternative hypothesis: true location is not equal to 41

Wilcoxon signed rank test with continuity correction

data: logarithmic_1_py
V = 194, p-value = 0.6187

alternative hypothesis: true location is not equal to 41

Wilcox tests - lang comp

Wilcoxon rank sum test with continuity correction

data: control_1_r and control_1_py
W = 908.5, p-value = 0.0001161

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: truncated_1_r and truncated_1_py
W = 791, p-value = 0.02163

alternative hypothesis: true location shift is not equal to 0

First Plot Comp

Control Truncated Logarithmic
N 25.000000 23.000000 2.200000e+01
Min. 40.000000 40.000000 9.000000e+00
1st Qu. 41.000000 41.000000 3.075000e+01

```
Median 41.000000 41.250000 3.750000e+01
Mean 41.160000 41.695652 4.545455e+14
3rd Qu. 41.000000 42.000000 4.375000e+01
Max. 45.000000 45.000000 1.000000e+16
Var 1.056667 1.192935 4.545455e+30
```

Wilcoxon rank sum test with continuity correction

```
data: con_first_1 and trn_first_1 W = 184.5, p-value = 0.02354 alternative hypothesis: true location shift is not equal to 0
```

Approximately how much more than 'Log Grip' would you say 'Salmon Ladder' was was used?

Whole pop summary

```
Control Truncated Logarithmic
N 70.000000 70.000000 70.000000
Min. 3.000000 1.000000 1.000000
1st Qu. 4.250000 5.000000 2.250000
Median 5.000000 6.000000 3.500000
Mean 5.357143 5.871429 3.671429
3rd Qu. 6.000000 7.000000 5.000000
Max. 7.000000 7.000000 7.000000
Var 1.334369 1.997723 2.745549
```

Shapiro tests

```
Shapiro-Wilk normality test

data: control_2
W = 0.90456, p-value = 5.895e-05

Shapiro-Wilk normality test

data: truncated_2
W = 0.76579, p-value = 3.263e-09

Shapiro-Wilk normality test
```

```
data: logarithmic_2
W = 0.93942, p-value = 0.002105
```

Symmetry tests

```
m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: control 2
Test statistic = 3.297, p-value = 0.002
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 11
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: truncated 2
Test statistic = -1.1525, p-value = 0.356
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 19
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: logarithmic 2
Test statistic = 1.071, p-value = 0.442
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 11
```

Pairwise Sign Tests

Dependent-samples Sign-Test

```
data: control_2 and truncated_2
S = 7, p-value = 0.0001911
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
```

```
-1 0 sample estimates: median of x-y 0
```

Achieved and Interpolated Confidence Intervals:

Dependent-samples Sign-Test

```
data: control_2 and logarithmic_2
S = 51, p-value = 2.047e-11
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
    1 2
sample estimates:
median of x-y
    2
```

Achieved and Interpolated Confidence Intervals:

Wilcoxon rank sum test with continuity correction

```
data: logarithmic_2 and truncated_2
W = 751.5, p-value = 6.669e-13
alternative hypothesis: true location shift is not equal to 0
```

Whole pop bars

Responses selected Over the Whole Population

Control - Lang comp

Control - Lang comp

	[,1]	[,2]	[,3]
N	70.000000	38.000000	32.000000
Min.	3.000000	3.000000	3.000000
1st Qu.	4.250000	5.000000	4.000000
Median	5.000000	6.000000	5.000000
Mean	5.357143	5.500000	5.187500
3rd Qu.	6.000000	6.000000	6.000000
Max.	7.000000	7.000000	7.000000
Var	1.334369	1.283784	1.383065

Wilcoxon rank sum test with continuity correction

data: control_2_r and control_2_py

W = 709.5, p-value = 0.2199

alternative hypothesis: true location shift is not equal to 0

Truncated - Lang comp

```
Whole Pop R Python
N 70.000000 38.000000 32.000000
Min. 1.000000 1.000000 1.000000
1st Qu. 5.000000 5.000000 5.750000
Median 6.000000 6.000000 6.000000
Mean 5.871429 5.894737 5.843750
3rd Qu. 7.000000 7.000000 7.000000
Max. 7.000000 7.000000 7.000000
Var 1.997723 1.772404 2.329637
```

Wilcoxon rank sum test with continuity correction

```
data: truncated_2_r and truncated_2_py
W = 598.5, p-value = 0.9105
```

alternative hypothesis: true location shift is not equal to 0

Logarithmic - Lang comp

```
Whole Pop R Python
N 70.000000 38.000000 32.000000
Min. 1.000000 1.000000 1.000000
1st Qu. 2.250000 3.000000 2.000000
Median 3.500000 5.000000 3.000000
Mean 3.671429 4.263158 2.968750
3rd Qu. 5.000000 5.750000 4.000000
Max. 7.000000 7.000000 7.000000
Var 2.745549 2.523471 2.160282
```

Wilcoxon rank sum test with continuity correction

```
data: logarithmic_2_r and logarithmic_2_py W = 884, p-value = 0.0009649 alternative hypothesis: true location shift is not equal to 0
```

R bars

Py bars

Responses selected by the Python Subgroup

Control - Degree comparison

	STEM	${\tt Humanities}$	Social Sci	Arts	${\tt Business}$	NA
N	29.000000	3.000000	31.000000	2.0	4.000000	1
Min.	4.000000	3.000000	3.000000	4.0	4.000000	7
1st Qu.	5.000000	4.000000	4.500000	4.5	4.750000	7
Median	5.000000	5.000000	5.000000	5.0	5.500000	7
Mean	5.344828	4.333333	5.419355	5.0	5.500000	7
3rd Qu.	6.000000	5.000000	6.500000	5.5	6.250000	7
Max.	7.000000	5.000000	7.000000	6.0	7.000000	7
Var	1.019704	1.333333	1.584946	2.0	1.666667	NA

Truncated - Degree comparison

	STEM	Humanities	Social Sci	Arts	Business	NA
N	29.000000		31.000000		_	1
Min.	1.000000	4.000000	1.000000	4.0	7	7
1st Qu.	5.000000	5.000000	5.500000	4.5	7	7
Median	6.000000	6.000000	6.000000	5.0	7	7
Mean	5.655172	5.333333	6.000000	5.0	7	7

3rd Qu.	7.000000	6.000000	7.000000	5.5	7	7
Max.	7.000000	6.000000	7.000000	6.0	7	7
Var	2.376847	1.333333	1.866667	2.0	0	NA

Logarithmic - Degree comparison

```
STEM Humanities Social Sci Arts Business NA
N 29.000000 3.000000 1.000000 2.00 4.0000000 1
Min. 1.000000 3.000000 1.000000 2.00 1.0000000 1
1st Qu. 2.000000 3.000000 4.000000 2.75 1.7500000 1
Median 4.000000 3.000000 4.000000 3.50 2.00000000 1
Mean 3.827586 3.666667 3.838710 3.50 2.0000000 1
3rd Qu. 5.000000 4.000000 5.000000 4.25 2.2500000 1
Max. 6.000000 5.000000 7.000000 5.00 3.0000000 1
Var 3.004926 1.333333 2.539785 4.50 0.6666667 NA
```

First Plot Comp

	${\tt Control}$	Truncated	Logarithmic
N	25.00	23.000000	22.000000
Min.	4.00	1.000000	1.000000
1st Qu.	5.00	5.000000	3.000000
Median	6.00	6.000000	5.000000
Mean	5.56	5.565217	4.136364
3rd Qu.	7.00	7.000000	5.750000
Max.	7.00	7.000000	6.000000
Var	1.34	2.166008	3.075758

Wilcoxon rank sum test with continuity correction

```
data: con_first_2 and trn_first_2
W = 271.5, p-value = 0.7411
```

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

```
data: con_first_2 and log_first_2
W = 400, p-value = 0.00669
```

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: log_first_2 and trn_first_2
W = 129.5, p-value = 0.004323

alternative hypothesis: true location shift is not equal to 0

Approximately how much more than 'Quintuple Steps' would you say 'Salmon Ladder' was used?

Whole Population

	Control	Truncated	Logarithmic
N	70.000000	70.000000	70.000000
Min.	1.000000	2.000000	1.000000
1st Qu.	2.000000	3.000000	1.000000
Median	3.000000	4.000000	2.000000
Mean	3.128571	3.771429	2.228571
3rd Qu.	4.000000	4.750000	3.000000
Max.	7.000000	7.000000	6.000000
Var	1.157143	1.309317	1.599172

Responses selected Over the Whole Population

Shapiro tests

```
Shapiro-Wilk normality test
data: control 3
W = 0.86962, p-value = 2.966e-06
    Shapiro-Wilk normality test
data: truncated_3
W = 0.92078, p-value = 0.0002851
    Shapiro-Wilk normality test
data: logarithmic 3
W = 0.84623, p-value = 5.102e-07
Symmetry tests
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: control_3
Test statistic = 1.5593, p-value = 0.226
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 49
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: truncated 3
Test statistic = -2.2802, p-value = 0.056
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 19
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: logarithmic 3
```

```
Test statistic = 2.142, p-value = 0.108
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
39
```

Pairwise Sign Tests

```
Dependent-samples Sign-Test
```

```
data: control_3 and truncated_3
S = 8, p-value = 9.248e-06
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
-1 0
sample estimates:
median of x-y
-1
```

Achieved and Interpolated Confidence Intervals:

Wilcoxon rank sum test with continuity correction

```
data: control_3 and logarithmic_3
W = 3542.5, p-value = 2.633e-06
alternative hypothesis: true location shift is not equal to 0
```

Dependent-samples Sign-Test

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9278	-2	-1
Interpolated CI	0.9500	-2	-1
Upper Achieved CI	0.9586	-2	-1

R Population

Python Population

Responses selected by the Python Subgroup

Control - Lang comp

	[,1]	[,2]	[,3]
N	70.000000	38.000000	32.0000000
Min.	1.000000	2.000000	1.0000000
1st Qu.	2.000000	2.250000	2.0000000
Median	3.000000	3.000000	3.0000000
Mean	3.128571	3.342105	2.8750000
3rd Qu.	4.000000	4.000000	3.0000000
Max.	7.000000	7.000000	5.0000000
Var	1.157143	1.474395	0.6935484

Wilcoxon rank sum test with continuity correction

data: $control_3_r$ and $control_3_py$

W = 725, p-value = 0.1465

alternative hypothesis: true location shift is not equal to 0

Truncated - Lang comp

```
Whole PopRPythonN70.00000038.00000032.000000Min.2.0000002.0000002.0000001st Qu.3.0000003.0000003.000000Median4.0000004.0000004.000000Mean3.7714293.7631583.7812503rd Qu.4.7500004.7500004.250000Max.7.0000006.0000007.000000Var1.3093171.3748221.273185
```

Wilcoxon rank sum test with continuity correction

```
data: truncated_3_r and truncated_3_py
W = 604.5, p-value = 0.9708
alternative hypothesis: true location shift is not equal to 0
```

Logarithmic - Lang comp

	Whole Pop	R	Python
N	70.000000	38.000000	32.000000
Min.	1.000000	1.000000	1.000000
1st Qu.	1.000000	1.000000	1.000000
Median	2.000000	2.000000	2.000000
Mean	2.228571	2.500000	1.906250
3rd Qu.	3.000000	3.000000	2.250000
Max.	6.000000	6.000000	5.000000
Var	1.599172	1.932432	1.055444

Wilcoxon rank sum test with continuity correction

```
data: logarithmic_3_r and logarithmic_3_py
W = 754, p-value = 0.07378
alternative hypothesis: true location shift is not equal to 0
```

First Plot Comp

	Control	Truncated	Logarithmic
N	25.00	23.0000000	22.000000
Min.	2.00	2.0000000	1.000000
1st Qu.	2.00	3.0000000	1.250000
Median	3.00	3.0000000	2.500000
Mean	3.08	3.4782609	2.681818

```
3rd Qu.4.004.0000004.000000Max.7.005.00000006.000000Var1.410.98814232.132035
```

Differences in means for Q2 and Q3

All

```
Control Truncated Logarithmic Control 0.0000000 -0.5142857 1.685714 Truncated 0.5142857 0.0000000 2.200000 Logarithmic -1.6857143 -2.2000000 0.0000000
```

Shapiro tests

```
Shapiro-Wilk normality test

data: control_2
W = 0.90456, p-value = 5.895e-05

Shapiro-Wilk normality test

data: truncated_2
W = 0.76579, p-value = 3.263e-09

Shapiro-Wilk normality test

data: logarithmic_2
W = 0.93942, p-value = 0.002105
```

Symmetry tests

```
m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: control_2

Test statistic = 3.297, p-value = 0.008

alternative hypothesis: the distribution is asymmetric.

sample estimates:

bootstrap optimal m

15
```

Pairwise Sign Tests

sample estimates:
bootstrap optimal m

Dependent-samples Sign-Test

19

```
data: control_2 and truncated_2
S = 7, p-value = 0.0001911
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
-1 0
sample estimates:
median of x-y
0
```

Achieved and Interpolated Confidence Intervals:

Dependent-samples Sign-Test

data: control_2 and logarithmic_2

S = 51, p-value = 2.047e-11
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
 1 2
sample estimates:
median of x-y
 2

Achieved and Interpolated Confidence Intervals:

Dependent-samples Sign-Test

data: logarithmic_2 and truncated_2
S = 5, p-value = 3.066e-12
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
 -3 -1
sample estimates:
median of x-y

Achieved and Interpolated Confidence Intervals:

Pairwise Wilcox Tests

-2

Wilcoxon rank sum test with continuity correction

data: control_2 and truncated_2
W = 1732.5, p-value = 0.002002
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

```
data: control_2 and logarithmic_2
W = 3828.5, p-value = 5.303e-09
```

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

```
data: logarithmic_2 and truncated_2
W = 751.5, p-value = 6.669e-13
```

alternative hypothesis: true location shift is not equal to 0

Shapiro tests

```
Shapiro-Wilk normality test
```

data: control_3_py
W = 0.87891, p-value = 0.001877

Shapiro-Wilk normality test

data: truncated_3_py
W = 0.90666, p-value = 0.009193

Shapiro-Wilk normality test

data: logarithmic_3_py
W = 0.80872, p-value = 5.969e-05

Symmetry tests

```
m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
```

data: control_3_py
Test statistic = -1.3276, p-value = 0.222
alternative hypothesis: the distribution is asymmetric.
sample estimates:

```
bootstrap optimal m
20

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: truncated_3_py
Test statistic = -1.5488, p-value = 0.144

alternative hypothesis: the distribution is asymmetric.

sample estimates:

bootstrap optimal m
14

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: logarithmic_3_py
Test statistic = -0.7169, p-value = 0.558

alternative hypothesis: the distribution is asymmetric.

sample estimates:

bootstrap optimal m
22
```

Pairwise Sign Tests

Dependent-samples Sign-Test

```
data: control_3_py and truncated_3_py
S = 2, p-value = 0.0001211
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
-1 0
sample estimates:
median of x-y
-1
```

Achieved and Interpolated Confidence Intervals:

Dependent-samples Sign-Test

data: control_3_py and logarithmic_3_py
S = 21, p-value = 0.0009105

alternative hypothesis: true median difference is not equal to ${\tt 0}$

95 percent confidence interval:

0 2

sample estimates:

median of x-y

1

Achieved and Interpolated Confidence Intervals:

Dependent-samples Sign-Test

data: logarithmic 3 py and truncated 3 py

S = 1, p-value = 8.047e-07

alternative hypothesis: true median difference is not equal to $\boldsymbol{0}$

95 percent confidence interval:

-3 -1

sample estimates:

median of x-y

-2

Achieved and Interpolated Confidence Intervals:

Pairwise Wilcox Tests

Wilcoxon rank sum test with continuity correction

data: control_3_py and truncated_3_py

W = 274, p-value = 0.0008548

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: control_3_py and logarithmic_3_py
W = 794, p-value = 8.105e-05

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: logarithmic_3_py and truncated_3_py
W = 117, p-value = 6.224e-08

alternative hypothesis: true location shift is not equal to 0

\mathbf{R}

Control Truncated Logarithmic Control 0.0000000 -0.3947368 1.236842 Truncated 0.3947368 0.0000000 1.631579 Logarithmic -1.2368421 -1.6315789 0.000000

Shapiro tests

Shapiro-Wilk normality test

data: control_2_r W = 0.90334, p-value = 0.003172

Shapiro-Wilk normality test

data: truncated_2_r
W = 0.78345, p-value = 4.896e-06

Shapiro-Wilk normality test

data: logarithmic_2_r
W = 0.92234, p-value = 0.01159

Symmetry tests

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

```
data: control_2_r
Test statistic = -3.5341, p-value = 0.04
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 19
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: truncated 2 r
Test statistic = -0.72335, p-value = 0.566
alternative hypothesis: the distribution is asymmetric.
sample estimates:
\verb|bootstrap| optimal m
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: logarithmic_2_r
Test statistic = -3.6457, p-value = 0.004
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 19
```

Pairwise Sign Tests

median of x-y

0

Dependent-samples Sign-Test

```
data: control_2_r and truncated_2_r
S = 4, p-value = 0.01921
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
   -1 0
sample estimates:
```

Achieved and Interpolated Confidence Intervals:

Conf.Level L.E.pt U.E.pt

```
Lower Achieved CI 0.9270 -1 0
Interpolated CI 0.9500 -1 0
Upper Achieved CI 0.9664 -1 0
```

Dependent-samples Sign-Test

Achieved and Interpolated Confidence Intervals:

```
Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9270 1.0000 2
Interpolated CI 0.9500 0.4175 2
Upper Achieved CI 0.9664 0.0000 2
```

Dependent-samples Sign-Test

Achieved and Interpolated Confidence Intervals:

Conf.Level	L.E.pt	U.E.pt
0.9270	-2	-1
0.9500	-2	-1
0.9664	-2	-1
	0.9270 0.9500	0.9500 -2

```
Control Truncated Logarithmic Control 0.0000000 -0.4210526 0.8421053 Truncated 0.4210526 0.0000000 1.2631579
```

```
Logarithmic -0.8421053 -1.2631579 0.0000000
```

Shapiro tests

```
Shapiro-Wilk normality test
data: control_3_r
W = 0.86888, p-value = 0.000377
    Shapiro-Wilk normality test
data: truncated_3_r
W = 0.91674, p-value = 0.007836
    Shapiro-Wilk normality test
data: logarithmic_3_r
W = 0.88157, p-value = 0.0008004
Symmetry tests
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: control_3_r
Test statistic = 2.5646, p-value = 0.01
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 12
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: truncated_3_r
Test statistic = -1.674, p-value = 0.176
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 21
```

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

Pairwise Wilcox Tests

Wilcoxon rank sum test with continuity correction

data: control_3_r and truncated_3_r W = 560.5, p-value = 0.08416 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: control_3_r and logarithmic_3_r
W = 991.5, p-value = 0.004125
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: logarithmic_3_r and truncated_3_r
W = 351, p-value = 8.635e-05
alternative hypothesis: true location shift is not equal to 0

$\mathbf{P}\mathbf{y}$

Shapiro tests

Shapiro-Wilk normality test

data: control_2_py
W = 0.88651, p-value = 0.002858

```
Shapiro-Wilk normality test
data: truncated_2_py
W = 0.75295, p-value = 5.976e-06
    Shapiro-Wilk normality test
data: logarithmic_2_py
W = 0.92098, p-value = 0.02211
Symmetry tests
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: control_2_py
Test statistic = 1.1948, p-value = 0.286
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: truncated_2_py
Test statistic = -0.90517, p-value = 0.426
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 18
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: logarithmic_2_py
Test statistic = -0.17069, p-value = 0.866
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
```

20

Pairwise Sign Tests

```
Dependent-samples Sign-Test
```

```
data: control_2_py and truncated_2_py S = 3, p-value = 0.007538 alternative hypothesis: true median difference is not equal to 0 95 percent confidence interval: -1 0 sample estimates: median of x-y 0
```

Achieved and Interpolated Confidence Intervals:

Dependent-samples Sign-Test

```
data: control_2_py and logarithmic_2_py
S = 26, p-value = 2.98e-08
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
    1 3
sample estimates:
median of x-y
    2
```

Achieved and Interpolated Confidence Intervals:

```
Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9499 1 3
Interpolated CI 0.9500 1 3
Upper Achieved CI 0.9799 1 3
```

Dependent-samples Sign-Test

```
data: logarithmic_2_py and truncated_2_py
S = 3, p-value = 8.43e-06
```

```
alternative hypothesis: true median difference is not equal to 0 95 percent confidence interval:
-4 -2 sample estimates:
median of x-y
-3
```

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9499	-4	-2
Interpolated CI	0.9500	-4	-2
Upper Achieved CI	0.9799	-4	-2

Pairwise Wilcox Test

Wilcoxon rank sum test with continuity correction

```
data: logarithmic_2_py and truncated_2_py
W = 105, p-value = 3.168e-08
alternative hypothesis: true location shift is not equal to 0
```

Pairwise T-Test

Welch Two Sample t-test

```
data: logarithmic_2_py and truncated_2_py
t = -7.6753, df = 61.912, p-value = 1.461e-10
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -3.623795 -2.126205
sample estimates:
mean of x mean of y
    2.96875    5.84375
```

$\mathbf{Q3}$

	Control	Truncated	Logarithmic
Control	0.00000	-0.90625	0.96875
Truncated	0.90625	0.00000	1.87500
Logarithmic	-0.96875	-1.87500	0.00000

Shapiro tests

```
Shapiro-Wilk normality test
data: control 3 py
W = 0.87891, p-value = 0.001877
    Shapiro-Wilk normality test
data: truncated_3_py
W = 0.90666, p-value = 0.009193
    Shapiro-Wilk normality test
data: logarithmic 3 py
W = 0.80872, p-value = 5.969e-05
Symmetry tests
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: control_3_py
Test statistic = -1.3276, p-value = 0.212
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 14
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: truncated_3_py
Test statistic = -1.5488, p-value = 0.174
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 18
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: logarithmic 3 py
```

```
Test statistic = -0.7169, p-value = 0.512 alternative hypothesis: the distribution is asymmetric. sample estimates: bootstrap optimal m

16
```

Pairwise Sign Tests

Dependent-samples Sign-Test

```
data: control_3_py and truncated_3_py
S = 2, p-value = 0.0001211
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
-1 0
sample estimates:
median of x-y
-1
```

Achieved and Interpolated Confidence Intervals:

Dependent-samples Sign-Test

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9499	0	2
Interpolated CI	0.9500	0	2
Upper Achieved CI	0.9799	0	2

Dependent-samples Sign-Test

```
data: logarithmic_3_py and truncated_3_py
S = 1, p-value = 8.047e-07
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
    -3 -1
sample estimates:
median of x-y
    -2
```

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9499	-3	-1
Interpolated CI	0.9500	-3	-1
Upper Achieved CI	0.9799	-3	-1

Ninja Warrior - Part 2

###How large would you say the difference between 'Jumping spider' and 'Salmon Ladder' is?

	Default	Narrow	Wide
N	70.000000	70.0000000	70.000000
Min.	4.0000000	3.0000000	2.000000
1st Qu.	5.0000000	6.0000000	5.000000
Median	6.0000000	6.0000000	6.000000
Mean	5.9142857	6.1285714	5.357143
3rd Qu.	7.0000000	7.0000000	6.000000
Max.	7.0000000	7.0000000	7.000000
Var	0 7751553	0.8672878	1.363354

Shapiro tests

```
Shapiro-Wilk normality test
```

data: default_1
W = 0.85456, p-value = 9.371e-07

Shapiro-Wilk normality test

data: narrow_1 W = 0.79448, p-value = 1.709e-08

Shapiro-Wilk normality test

data: wide_1

W = 0.89767, p-value = 3.141e-05

Symmetry tests

```
m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: default 1
Test statistic = -1.2049, p-value = 0.256
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 55
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: narrow 1
Test statistic = 1.692, p-value = 0.124
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 24
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: wide 1
Test statistic = -6.1171, p-value < 2.2e-16
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 22
Pairwise Sign Tests
    Dependent-samples Sign-Test
data: default 1 and narrow 1
S = 8, p-value = 0.01612
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
0 0
sample estimates:
median of x-y
            0
```

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9278	0	0
Interpolated CI	0.9500	0	0
Upper Achieved CI	0.9586	0	0

Dependent-samples Sign-Test

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9278	0	1
Interpolated CI	0.9500	0	1
Upper Achieved CI	0.9586	0	1

Dependent-samples Sign-Test

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9278	-1	0
Interpolated CI	0.9500	-1	0
Upper Achieved CI	0.9586	-1	0

Lang comp - Default

	Whole Pop	R	Python
N	70.0000000	38.0000000	32.0000000
Min.	4.0000000	5.0000000	4.0000000
1st Qu.	5.0000000	6.0000000	5.0000000
Median	6.0000000	6.0000000	6.0000000
Mean	5.9142857	6.0789474	5.7187500
3rd Qu.	7.0000000	7.0000000	6.0000000
Max.	7.0000000	7.000000	7.0000000
Var	0.7751553	0.5611664	0.9828629

Lang comp - Narrow

	Whole Pop	R	Python
N	70.0000000	38.000000	32.000000
Min.	3.0000000	5.000000	3.000000
1st Qu.	6.0000000	6.000000	5.000000
Median	6.0000000	6.000000	6.000000
Mean	6.1285714	6.368421	5.843750
3rd Qu.	7.0000000	7.000000	7.000000
Max.	7.0000000	7.000000	7.000000
Var	0.8672878	0.455192	1.232863

Lang comp - Wide

	Whole Pop	R	Python
N	70.000000	38.0000000	32.000000
Min.	2.000000	3.0000000	2.000000
1st Qu.	5.000000	5.0000000	4.000000
Median	6.000000	6.0000000	5.000000
Mean	5.357143	5.7105263	4.937500
3rd Qu.	6.000000	6.0000000	6.000000
Max.	7.000000	7.0000000	7.000000
Var	1.363354	0.8598862	1.673387

Shapiro tests

```
Shapiro-Wilk normality test
```

data: default_1_r
W = 0.80887, p-value = 1.593e-05

Shapiro-Wilk normality test

data: narrow_1_r
W = 0.76209, p-value = 1.927e-06

Shapiro-Wilk normality test

data: wide_1_r W = 0.84858, p-value = 0.0001207

Symmetry tests

```
m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: default_1_r
Test statistic = 0.93002, p-value = 0.39
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 12
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: narrow 1 r
Test statistic = 4.1428, p-value = 0.01
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 19
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: wide 1 r
Test statistic = -3.1136, p-value = 0.048
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 21
Pairwise Sign Tests
    Dependent-samples Sign-Test
data: default 1 r and narrow 1 r
S = 1, p-value = 0.006348
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
0 0
sample estimates:
median of x-y
            0
```

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9270	0	0
Interpolated CI	0.9500	0	0
Upper Achieved CI	0.9664	0	0

Dependent-samples Sign-Test

Achieved and Interpolated Confidence Intervals:

Dependent-samples Sign-Test

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9270	-1	0
Interpolated CI	0.9500	-1	0
Upper Achieved CI	0.9664	-1	0

Shapiro tests

```
Shapiro-Wilk normality test
data: default_1_py
W = 0.85878, p-value = 0.0006465
    Shapiro-Wilk normality test
data: narrow_1_py
W = 0.84044, p-value = 0.0002593
    Shapiro-Wilk normality test
data: wide 1 py
W = 0.93019, p-value = 0.03965
Symmetry tests
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: default_1_py
Test statistic = -2.3377, p-value = 0.032
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 14
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: narrow_1_py
Test statistic = -1.1948, p-value = 0.228
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 14
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: wide 1 py
```

Test statistic = -0.39828, p-value = 0.732 alternative hypothesis: the distribution is asymmetric. sample estimates: bootstrap optimal m

	Default	Narrow	Wide
N	23.0000000	22.0000000	23.0000000
Min.	3.0000000	5.0000000	3.0000000
1st Qu.	5.0000000	5.2500000	5.0000000
Median	5.0000000	6.0000000	5.0000000
Mean	5.2173913	6.0454545	5.2173913
3rd Qu.	6.0000000	7.0000000	6.0000000
Max.	7.0000000	7.0000000	7.0000000
Var	0.9960474	0.6168831	0.9960474

##How large would you say the difference between 'Log Grip' and 'Floating Steps' is?

	Default	Narrow	Wide
N	70.000000	70.000000	70.0000000
Min.	2.000000	1.000000	1.0000000
1st Qu.	2.000000	2.000000	2.0000000
Median	3.000000	3.000000	3.0000000
Mean	3.057143	3.214286	3.0571429
3rd Qu.	4.000000	4.000000	4.0000000
Max.	7.000000	7.000000	5.0000000
Var	1.301035	1.214286	0.8662526

Shapiro tests

Shapiro-Wilk normality test

data: default_2
W = 0.82288, p-value = 1.023e-07

Shapiro-Wilk normality test

data: narrow_2
W = 0.89138, p-value = 1.801e-05

Shapiro-Wilk normality test

data: wide_2

W = 0.88477, p-value = 1.022e-05

Symmetry tests

```
m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: default 2
Test statistic = 0.60937, p-value = 0.636
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 31
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: narrow 2
Test statistic = 2.4098, p-value = 0.05
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 11
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: wide 2
Test statistic = 0.73632, p-value = 0.532
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 55
Pairwise Sign Tests
    Dependent-samples Sign-Test
data: default 2 and narrow 2
S = 14, p-value = 0.243
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
0 0
sample estimates:
median of x-y
            0
```

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9278	0	0
Interpolated CI	0.9500	0	0
Upper Achieved CI	0.9586	0	0

Dependent-samples Sign-Test

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9278	0	0
Interpolated CI	0.9500	0	0
Upper Achieved CI	0.9586	0	0

Dependent-samples Sign-Test

```
data: wide_2 and narrow_2
S = 17, p-value = 0.7428
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
    0 0
sample estimates:
median of x-y
    0
```

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9278	0	0
Interpolated CI	0.9500	0	0
Upper Achieved CI	0.9586	0	0

Pairwise Wilcox Tests

Wilcoxon rank sum test with continuity correction

data: default_2 and wide_2
W = 2319.5, p-value = 0.5688

alternative hypothesis: true location shift is not equal to 0

	Whole Pop	R	Python
N	70.000000	38.000000	32.00000
Min.	2.000000	2.000000	2.00000
1st Qu.	2.000000	2.000000	2.00000
Median	3.000000	3.000000	3.00000
Mean	3.057143	3.026316	3.09375
3rd Qu.	4.000000	3.750000	4.00000
Max.	7.000000	6.000000	7.00000
Var	1.301035	1.215505	1.44254

Responses selected by the R Subgroup

Shapiro tests

Shapiro-Wilk normality test

data: default_2_r
W = 0.82519, p-value = 3.556e-05

Shapiro-Wilk normality test

data: narrow_2_r
W = 0.88751, p-value = 0.001153

Shapiro-Wilk normality test

data: wide_2_r W = 0.85259, p-value = 0.0001502

Symmetry tests

```
m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: default_2_r
Test statistic = 0.21, p-value = 0.782
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 17
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: narrow_2_r
Test statistic = 2.3101, p-value = 0.056
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 15
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: wide 2 r
Test statistic = 0.67346, p-value = 0.588
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 15
Pairwise Wilcox Tests
    Wilcoxon rank sum test with continuity correction
data: default_2_r and narrow_2_r
W = 607, p-value = 0.2138
alternative hypothesis: true location shift is not equal to 0
    Wilcoxon rank sum test with continuity correction
data: narrow_2_r and wide_2_r
W = 796, p-value = 0.4254
```

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: wide_2_r and default_2_r
W = 765.5, p-value = 0.6389

alternative hypothesis: true location shift is not equal to 0

Shapiro tests

Shapiro-Wilk normality test

data: default_2_py

W = 0.81676, p-value = 8.555e-05

Shapiro-Wilk normality test

data: narrow_2_py

W = 0.86709, p-value = 0.0009957

Shapiro-Wilk normality test

data: wide_2_py

W = 0.88958, p-value = 0.003397

Symmetry tests

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: default_2_py

Test statistic = 0.66379, p-value = 0.52

alternative hypothesis: the distribution is asymmetric.

sample estimates:
bootstrap optimal m

14

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: narrow_2_py

Test statistic = 0.99569, p-value = 0.4

```
alternative hypothesis: the distribution is asymmetric.

sample estimates:

bootstrap optimal m

16

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: wide_2_py

Test statistic = 0.31443, p-value = 0.828

alternative hypothesis: the distribution is asymmetric.

sample estimates:

bootstrap optimal m

12
```

Pairwise Sign Tests

Dependent-samples Sign-Test

Achieved and Interpolated Confidence Intervals:

```
Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9499 0.0000 0
Interpolated CI 0.9500 -0.0034 0
Upper Achieved CI 0.9799 -1.0000 0
```

Dependent-samples Sign-Test

```
data: default_2_py and wide_2_py
S = 8, p-value = 1
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
    0 0
sample estimates:
```

```
median of x-y 0
```

Achieved and Interpolated Confidence Intervals:

	${\tt Conf.Level}$	L.E.pt	U.E.pt
Lower Achieved CI	0.9499	0	0
Interpolated CI	0.9500	0	0
Upper Achieved CI	0.9799	0	0

Dependent-samples Sign-Test

data: wide_2_py and narrow_2_py

S = 10, p-value = 1

alternative hypothesis: true median difference is not equal to 0

95 percent confidence interval:

0.00000000 0.00341068

sample estimates:

median of x-y

0

Achieved and Interpolated Confidence Intervals:

Pairwise Wilcox Tests

Wilcoxon rank sum test with continuity correction

data: default_2_py and wide_2_py

W = 490, p-value = 0.76

alternative hypothesis: true location shift is not equal to 0

	Default	Narrow	Wide
N	23.0000000	22.0000000	23.0000000
Min.	2.0000000	2.0000000	2.0000000
1st Qu.	3.0000000	2.0000000	3.0000000
Median	3.0000000	3.0000000	3.0000000
Mean	3.3043478	3.0000000	3.3043478
3rd Qu.	4.0000000	3.0000000	4.0000000

Max. 5.0000000 5.0000000 5.0000000 Var 0.8577075 0.8571429 0.8577075

Differences in means for Q1 and Q2

All

Default Narrow Wide

Default 0.0000000 -0.2142857 0.5571429

Narrow 0.2142857 0.0000000 0.7714286

Wide -0.5571429 -0.7714286 0.0000000

Default Narrow Wide

Default 0.0000000 -0.1571429 0.0000000

Narrow 0.1571429 0.0000000 0.1571429

Wide 0.0000000 -0.1571429 0.0000000

\mathbf{R}

Default Narrow Wide
Default 0.0000000 -0.2894737 0.3684211
Narrow 0.2894737 0.0000000 0.6578947
Wide -0.3684211 -0.6578947 0.0000000

Default Narrow Wide
Default 0.00000000 -0.2631579 -0.05263158
Narrow 0.26315789 0.0000000 0.21052632
Wide 0.05263158 -0.2105263 0.00000000

$\mathbf{P}\mathbf{y}$

Default Narrow Wide Default 0.00000 -0.12500 0.78125 0.12500 0.00000 0.90625 Narrow Wide -0.78125 -0.90625 0.00000 Default Narrow Wide Default 0.00000 -0.03125 0.06250 0.03125 0.00000 0.09375 Narrow Wide -0.06250 -0.09375 0.00000

##How many times would you say 'Floating Steps' were used?

Whole Population

```
Default Narrow Wide
N 70.0000000 70.0000000 70.000000
Min. 26.0000000 23.0000000 24.000000
1st Qu. 27.1250000 27.0000000 27.000000
Median 28.0000000 28.0000000 28.000000
Mean 27.9714286 27.3857143 28.035714
3rd Qu. 28.0000000 28.0000000 29.000000
Max. 33.0000000 29.0000000 30.000000
Var 0.9774327 0.8708075 1.929865
```

Shapiro tests

```
Shapiro-Wilk normality test

data: default_3
W = 0.73638, p-value = 6.81e-10

Shapiro-Wilk normality test

data: narrow_3
W = 0.68453, p-value = 5.579e-11

Shapiro-Wilk normality test

data: wide_3
W = 0.89126, p-value = 1.782e-05
```

Symmetry tests

```
m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: default_3

Test statistic = -0.46504, p-value = 0.77

alternative hypothesis: the distribution is asymmetric.

sample estimates:
bootstrap optimal m

49
```

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: wide_3
Test statistic = 0.32725, p-value = 0.824
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m

Pairwise Sign Tests

Dependent-samples Sign-Test

data: default_3 and narrow_3
S = 24, p-value = 0.00018
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
 0 0
sample estimates:
median of x-y

Achieved and Interpolated Confidence Intervals:

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9278 0 0
Interpolated CI 0.9500 0 0
Upper Achieved CI 0.9586 0 0

Dependent-samples Sign-Test

data: default_3 and wide_3
S = 17, p-value = 0.6271

alternative hypothesis: true median difference is not equal to 0

```
95 percent confidence interval:

0 0

sample estimates:

median of x-y
```

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9278	0	0
Interpolated CI	0.9500	0	0
Upper Achieved CI	0.9586	0	0

Dependent-samples Sign-Test

```
data: wide_3 and narrow_3
S = 32, p-value = 0.0009407
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
    0 1
sample estimates:
median of x-y
```

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved CI	0.9278	0	1
Interpolated CI	0.9500	0	1
Upper Achieved CI	0.9586	0	1

Pairwise Wilcox Tests

Wilcoxon rank sum test with continuity correction

```
data: default_3 and wide_3
W = 2252, p-value = 0.378
alternative hypothesis: true location shift is not equal to 0
```

Default - Language comparison

```
Whole Pop R Python N 70.0000000 38.000000 32.0000000
```

```
Min. 26.0000000 26.000000 27.0000000 1st Qu. 27.1250000 28.000000 27.0000000 Median 28.0000000 28.000000 28.0000000 3rd Qu. 28.0000000 28.0000000 28.0000000 Max. 33.0000000 33.000000 30.00000000 Var 0.9774327 1.053343 0.9183468
```

Narrow - Language comparison

```
Whole Pop
                            R
                                 Python
        70.0000000 38.0000000 32.000000
N
Min.
        23.0000000 24.0000000 23.000000
1st Qu. 27.0000000 27.0000000 27.000000
Median 28.0000000 28.0000000 27.000000
       27.3857143 27.5000000 27.250000
Mean
3rd Qu. 28.0000000 28.0000000 28.000000
      29.0000000 28.0000000 29.000000
Max.
Var
        0.8708075 0.6891892 1.080645
```

Wide - Language comparison

```
Whole PopRPythonN70.00000038.000000032.000000Min.24.00000025.000000024.0000001st Qu.27.00000027.250000027.000000Median28.00000028.000000028.500000Mean28.03571427.815789528.2968753rd Qu.29.00000028.000000030.000000Max.30.00000030.000000030.000000Var1.9298650.74893313.271925
```

Shapiro tests

```
Shapiro-Wilk normality test

data: default_3_r
W = 0.59978, p-value = 5.639e-09

Shapiro-Wilk normality test
```

```
data: narrow_3_r
W = 0.63037, p-value = 1.482e-08
```

```
Shapiro-Wilk normality test
data: wide_3_r
W = 0.8221, p-value = 3.046e-05
Symmetry tests
    m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: default_3_r
Test statistic = -0.38295, p-value = 0.924
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 19
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: narrow_3_r
Test statistic = -6.5102, p-value < 2.2e-16
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 34
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: wide_3_r
Test statistic = -2.3985, p-value = 0.102
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 17
Pairwise Wilcox Tests
    Wilcoxon rank sum test with continuity correction
data: default_3_r and narrow_3_r
```

W = 889.5, p-value = 0.03838

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: narrow_3_r and wide_3_r
W = 585, p-value = 0.101

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: wide_3_r and default_3_r
W = 698.5, p-value = 0.7788

alternative hypothesis: true location shift is not equal to 0

Shapiro tests

Shapiro-Wilk normality test

data: default_3_py
W = 0.79971, p-value = 4.024e-05

Shapiro-Wilk normality test

data: narrow_3_py

W = 0.69403, p-value = 7.086e-07

Shapiro-Wilk normality test

data: wide_3_py

W = 0.84294, p-value = 0.0002928

Symmetry tests

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: default_3_py

Test statistic = -0.28448, p-value = 0.894

alternative hypothesis: the distribution is asymmetric.

sample estimates:
bootstrap optimal m

28

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: narrow_3_py

Test statistic = 2.3897, p-value = 0.162

alternative hypothesis: the distribution is asymmetric.

sample estimates:
bootstrap optimal m

18

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: wide_3_py

Test statistic = -0.80066, p-value = 0.584

alternative hypothesis: the distribution is asymmetric.

sample estimates:
bootstrap optimal m

32

Pairwise Sign Tests

Dependent-samples Sign-Test

data: default 3 py and narrow 3 py

S = 12, p-value = 0.01294

alternative hypothesis: true median difference is not equal to 0

95 percent confidence interval:

0 1

sample estimates:

median of x-y

0

Achieved and Interpolated Confidence Intervals:

Dependent-samples Sign-Test

Achieved and Interpolated Confidence Intervals:

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9499 -1.0000 0
Interpolated CI 0.9500 -1.0034 0
Upper Achieved CI 0.9799 -2.0000 0

Dependent-samples Sign-Test

data: wide_3_py and narrow_3_py
S = 19, p-value = 0.02896
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
 0.000000 2.501705

0.000000 2.501705 sample estimates: median of x-y 1.5

Achieved and Interpolated Confidence Intervals:

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9499 0 2.5000
Interpolated CI 0.9500 0 2.5017
Upper Achieved CI 0.9799 0 3.0000

Pairwise Wilcox Tests

Wilcoxon rank sum test with continuity correction

data: default_3_py and wide_3_py
W = 417, p-value = 0.1904

alternative hypothesis: true location shift is not equal to ${\tt 0}$

Default - Degree comparison

	STEM	${\tt Humanities}$	Social	Sci	Arts	Business	NA
N	0	0		0	0	0	0
Min.	NA	NA		NA	NA	NA	NA
1st Qu.	NA	NA		NA	NA	NA	NA
Median	NA	NA		NA	NA	NA	NA
Mean	NaN	NaN		NaN	NaN	NaN	NaN
3rd Qu.	NA	NA		NA	NA	NA	NA
Max.	NA	NA		NA	NA	NA	NA
Var	NA	NA		NA	NA	NA	NA

Narrow - Degree comparison

	STEM	Humanities	Social Sci	Arts	${\tt Business}$	NA
N	29.0000000	3.000000	31.0000000	2	4.0	1
Min.	26.0000000	23.000000	24.0000000	28	25.0	28
1st Qu.	27.0000000	24.500000	27.0000000	28	26.5	28
Median	28.0000000	26.000000	27.0000000	28	27.5	28
Mean	27.5517241	25.666667	27.3870968	28	27.0	28
3rd Qu.	28.0000000	27.000000	28.0000000	28	28.0	28
Max.	28.0000000	28.000000	29.0000000	28	28.0	28
Var	0.3275862	6.333333	0.6951613	0	2.0	NA

Wide - Degree comparison

Max. 30.000000 28.000000 30.000000 Var 1.999012 1.445887 1.999012

	STEM	Humanities	Social Sci	Arts	Business	NA
N	29.000000	3.0	31.000000	2.0	4.0	1
Min.	1.000000	2.0	1.000000	1.0	1.0	1
1st Qu.	1.000000	2.0	1.000000	1.5	1.0	1
Median	2.000000	2.0	2.000000	2.0	1.0	1
Mean	2.206897	3.0	2.322581	2.0	1.5	1
3rd Qu.	3.000000	3.5	3.000000	2.5	1.5	1
Max.	6.000000	5.0	5.000000	3.0	3.0	1
Var	1.669951	3.0	1.559140	2.0	1.0	NA
	Default	Narrow	Wide			
N	23.000000	22.000000	23.000000			
Min.	24.000000	23.000000	24.000000			
1st Qu.	27.250000	27.000000	27.250000			
Median	28.000000	28.000000	28.000000			
Mean	27.891304	27.272727	27.891304			
3rd Qu.	28.500000	28.000000	28.500000			

Ratio Comparison questions - All

	${\tt Default}$	${\tt Narrow}$	Wide
Most aesthetically pleasing?	37	14	18
Easiest to read and interpret?	36	15	19
Hardest to read and interpret?	20	20	30

Ratio Comparison questions - R

	Α	В	С
Most aesthetically pleasing?	14	14	9
Easiest to read and interpret?	16	9	13
Hardest to read and interpret?	2	18	18

Ratio Comparison questions - Py

	Α	В	C
Most aesthetically pleasing?	12	11	9
Easiest to read and interpret?	14	8	10
Hardest to read and interpret?	12	9	11

Ninja Warrior - Part 3

##How many times would you say 'Floating Steps' were used in the Finals (Regional/City) round?

Whole pop summary

	Stacked	Grouped
N	70.00000	70.00000
Min.	9.00000	10.00000
1st Qu.	10.00000	11.00000
Median	11.00000	11.00000
Mean	14.32857	11.80000
3rd Qu.	14.00000	12.00000
Max.	35.00000	40.00000
Var	54.83251	13.14783

R population

	Stacked	Grouped
N	38.00000	38.0000000
Min.	9.00000	10.0000000
1st Qu.	10.00000	11.0000000
Median	10.00000	11.0000000

```
Mean 13.15789 11.2368421
3rd Qu. 12.00000 12.0000000
Max. 35.00000 12.0000000
Var 45.37980 0.4018492
```

Py population

```
Stacked Grouped
N 32.00000 32.0000000
Min. 9.00000 10.0000000
1st Qu. 10.00000 11.0000000
Median 11.50000 11.0000000
Mean 15.71875 12.4687500
3rd Qu. 16.25000 12.0000000
Max. 35.00000 40.00000000
Var 45.37980 0.4018492
```

Shapiro and symmetry tests for the responses for the stacked bar plot

```
Shapiro-Wilk normality test

data: stacked_1
W = 0.63951, p-value = 7.897e-12

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: stacked_1
Test statistic = 6.75, p-value < 2.2e-16
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m

55

Shapiro-Wilk normality test

data: stacked_1_r
W = 0.53859, p-value = 9.347e-10

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
```

```
data: stacked 1 r
Test statistic = 6.4034, p-value < 2.2e-16
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 19
    Shapiro-Wilk normality test
data: stacked 1 py
W = 0.73207, p-value = 2.722e-06
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: stacked_1_py
Test statistic = 4.5565, p-value < 2.2e-16
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 32
```

Shapiro and symmetry tests for the responses for the grouped bar plot

```
Shapiro-Wilk normality test

data: grouped_1
W = 0.29757, p-value < 2.2e-16

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: grouped_1
Test statistic = 6.3437, p-value < 2.2e-16
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m

24
```

Shapiro-Wilk normality test

```
data: grouped 1 r
W = 0.7742, p-value = 3.25e-06
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: grouped_1_r
Test statistic = 3.4466, p-value = 0.028
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 21
    Shapiro-Wilk normality test
data: grouped_1_py
W = 0.38626, p-value = 1.833e-10
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: grouped_1_py
Test statistic = 4.603, p-value < 2.2e-16
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 28
```

Sign tests for the responses for the stacked bar plot

Achieved and Interpolated Confidence Intervals:

One-sample Sign-Test

	${\tt Conf.Level}$	L.E.pt	U.E.pt
Lower Achieved CI	0.9278	10	12
Interpolated CI	0.9500	10	12
Upper Achieved CI	0.9586	10	12

One-sample Sign-Test

data: stacked_1_r
s = 12, p-value = 0.1214
alternative hypothesis: true median is not equal to 11
95 percent confidence interval:
 10 11
sample estimates:
median of x
 10

Achieved and Interpolated Confidence Intervals:

One-sample Sign-Test

data: stacked_1_py
s = 16, p-value = 0.5716
alternative hypothesis: true median is not equal to 11
95 percent confidence interval:
 10 15
sample estimates:
median of x
 11.5

Achieved and Interpolated Confidence Intervals:

	${\tt Conf.Level}$	L.E.pt	U.E.pt
Lower Achieved CI	0.9499	10	15
Interpolated CI	0.9500	10	15
Upper Achieved CI	0.9799	10	15

Sign test for the responses for the grouped bar plot

```
One-sample Sign-Test
data: grouped_1
s = 28, p-value = 0.009475
alternative hypothesis: true median is not equal to 11
95 percent confidence interval:
11 12
sample estimates:
median of x
         11
Achieved and Interpolated Confidence Intervals:
                  Conf.Level L.E.pt U.E.pt
Lower Achieved CI
                      0.9278
                                 11
                                        12
                      0.9500
                                 11
                                        12
Interpolated CI
                                        12
Upper Achieved CI
                      0.9586
                                 11
    One-sample Sign-Test
data: grouped_1_r
s = 13, p-value = 0.04904
alternative hypothesis: true median is not equal to 11
95 percent confidence interval:
11.00000 11.58254
sample estimates:
median of x
         11
Achieved and Interpolated Confidence Intervals:
                  Conf.Level L.E.pt U.E.pt
Lower Achieved CI
                      0.9270
                                11 11.0000
Interpolated CI
                      0.9500
                                 11 11.5825
Upper Achieved CI
                      0.9664 11 12.0000
```

One-sample Sign-Test

data: grouped_1_py

s = 15, p-value = 0.1338

```
alternative hypothesis: true median is not equal to 11 95 percent confidence interval: 11 12 sample estimates: median of x 11
```

Achieved and Interpolated Confidence Intervals:

```
Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9499 11 12
Interpolated CI 0.9500 11 12
Upper Achieved CI 0.9799 11 12
```

##How many times would you say 'Log Grip' was used in the Finals (Regional/City) round?

Whole pop summary

	Stacked	Grouped
N	70.00000	70.000000
Min.	6.00000	2.000000
1st Qu.	8.00000	8.000000
Median	9.00000	9.000000
Mean	10.57143	9.057143
3rd Qu.	10.00000	10.000000
Max.	25.00000	15.000000
Var	23.92961	1.967702

R population

	Stacked	Grouped
N	38.00000	38.0000000
Min.	6.00000	7.000000
1st Qu.	8.00000	9.0000000
Median	9.00000	9.0000000
Mean	10.10526	9.0526316
3rd Qu.	10.00000	10.0000000
Max.	23.00000	10.0000000
Var	18.36700	0.6458037

Py population

	Stacked	Grouped
N	32.000	32.0000000
Min.	6.000	2.0000000

```
1st Qu. 8.000 8.0000000
Median 9.000 9.0000000
Mean 11.125 9.0625000
3rd Qu. 10.000 10.0000000
Max. 25.000 15.0000000
Var 18.367 0.6458037
###Shapiro tests for the responses for the stacked bar plot
    Shapiro-Wilk normality test
data: stacked 2
W = 0.66339, p-value = 2.179e-11
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: stacked_2
Test statistic = 4.9088, p-value < 2.2e-16
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 17
    Shapiro-Wilk normality test
data: stacked_2_r
W = 0.60137, p-value = 5.922e-09
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: stacked_2_r
Test statistic = 3.1794, p-value = 0.01
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 15
    Shapiro-Wilk normality test
data: stacked_2_py
W = 0.71251, p-value = 1.345e-06
```

```
m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: stacked_2_py
Test statistic = 3.6271, p-value < 2.2e-16
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
###Shapiro test for the responses for the grouped bar plot
    Shapiro-Wilk normality test
data: grouped_2
W = 0.7287, p-value = 4.611e-10
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: grouped 2
Test statistic = 0.63113, p-value = 0.664
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 70
    Shapiro-Wilk normality test
data: grouped 2 r
W = 0.84122, p-value = 8.138e-05
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: grouped 2 r
Test statistic = 0.59183, p-value = 0.662
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
                 17
```

Shapiro-Wilk normality test

```
data: grouped_2_py
W = 0.7515, p-value = 5.65e-06
   m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
data: grouped 2 py
Test statistic = 0.35142, p-value = 0.788
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m
###Sign tests for the responses for the stacked bar plot
    One-sample Sign-Test
data: stacked 2
s = 11, p-value = 7.556e-09
alternative hypothesis: true median is not equal to 11
95 percent confidence interval:
8.000000 9.720922
sample estimates:
median of x
          9
Achieved and Interpolated Confidence Intervals:
                  Conf.Level L.E.pt U.E.pt
                    0.9278 8 9.0000
Lower Achieved CI
Interpolated CI
                     0.9500
                                8 9.7209
                  0.9586 8 10.0000
Upper Achieved CI
    One-sample Sign-Test
data: stacked 2 r
s = 4, p-value = 1.084e-06
alternative hypothesis: true median is not equal to 11
95 percent confidence interval:
 8 10
sample estimates:
median of x
```

9

Achieved and Interpolated Confidence Intervals:

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9270 8 10
Interpolated CI 0.9500 8 10
Upper Achieved CI 0.9664 8 10

One-sample Sign-Test

data: stacked_2_py

s = 7, p-value = 0.002102

alternative hypothesis: true median is not equal to 11

95 percent confidence interval:

8 10

sample estimates:

median of x

9

Achieved and Interpolated Confidence Intervals:

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9499 8 10
Interpolated CI 0.9500 8 10
Upper Achieved CI 0.9799 8 10

###Sign test for the responses for the grouped bar plot

One-sample Sign-Test

data: grouped_2

s = 2, p-value < 2.2e-16

alternative hypothesis: true median is not equal to 11

95 percent confidence interval:

9 9

sample estimates:

median of x

9

Achieved and Interpolated Confidence Intervals:

Conf.Level L.E.pt U.E.pt

```
      Lower Achieved CI
      0.9278
      9
      9

      Interpolated CI
      0.9500
      9
      9

      Upper Achieved CI
      0.9586
      9
      9
```

One-sample Sign-Test

```
data: grouped_2_r
s = 0, p-value = 7.276e-12
alternative hypothesis: true median is not equal to 11
95 percent confidence interval:
    9 9
sample estimates:
median of x
    9
```

Achieved and Interpolated Confidence Intervals:

```
Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9270 9 9
Interpolated CI 0.9500 9 9
Upper Achieved CI 0.9664 9 9
```

One-sample Sign-Test

```
data: grouped_2_py
s = 2, p-value = 2.463e-07
alternative hypothesis: true median is not equal to 11
95 percent confidence interval:
   8.996589 10.000000
sample estimates:
median of x
   9
```

Achieved and Interpolated Confidence Intervals:

```
Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9499 9.0000 10
Interpolated CI 0.9500 8.9966 10
Upper Achieved CI 0.9799 8.0000 10
```

Please select the statement you feel applies to the bar chart above.

Whole pop

	Equal	Less	More
${\tt Stacked}$	27	31	11
Grouped	60	5	2

R pop

	Equal	Less	More
${\tt Stacked}$	11	20	6
Grouped	29	4	2

Python pop

	Equal	Less	More
${\tt Stacked}$	16	11	5
Grouped	31	1	31

Which obstacle do you think was used MORE in Finals (Regional/City) rounds, 'Log Grip' or 'Floating Steps'?

Whole pop

	Floating	Steps	Log	${\tt Grip}$	Both	the	same
Stacked		56		2			12
Grouped		57		4			9

\mathbf{R}

	Floating	Steps	Log	${\tt Grip}$	${\tt Both}$	the	same
${\tt Stacked}$		30		8			0
Grouped		32		1			5

$\mathbf{P}\mathbf{y}$

	Floating	Steps	Log	Grip	Both	the	same
Stacked		26		2			4
Grouped		25		3			4

Which bar chart do you feel is easiest to read and interpret?**

Whole	Population	32	38
R		17	21
Pythor	n	15	17

	Colour	Set	Main	Colour	Palette	Secondary	Colour	Pallette
1		Α			Viridis			Default
2		В			Default			Viridis
3		C			Default		(Greyscale
4		D		Gi	reyscale			Default
5		Ε			Viridis		(Greyscale
6		F		Gı	reyscale			Viridis

By colours - Whole pop

		Α	В	A Colour	B Colour
Set	Α	3	10	Viridis	Default
Set	В	1	11	Default	Viridis
Set	С	9	1	Default	Greyscale
Set	D	1	11	${\tt Greyscale}$	Default
Set	E	8	3	Viridis	Greyscale
Set	F	10	2	Greyscale	Viridis

By colours - R

		Α	В	A Colour	B Colour
Set	Α	2	6	Viridis	Default
Set	В	6	6	Default	Viridis
Set	С	4	1	Default	Greyscale
Set	D	1	6	Greyscale	Default
Set	E	4	1	Viridis	Greyscale
Set	F	6	1	Greyscale	Viridis

By colours - Py

		٨	D	A Colour	D Colour
		Α	Б	A Colour	B Colour
Set	A	1	4	Viridis	Default
Set	В	1	5	Default	Viridis
Set	С	5	5	Default	Greyscale
Set	D	5	5	Greyscale	Default
Set	E	4	2	Viridis	Greyscale
Set	F	4	1	Greyscale	Viridis

Which colour scheme do you find most aesthetically pleasing?

Whole pop

```
A B
           A Colour B Colour
      3 10
                       Default
Set A
             Viridis
Set B
      1 11
             Default
                       Viridis
Set C
      9 1
             Default Greyscale
Set D 1 11 Greyscale
                       Default
Set E 8 3
             Viridis Greyscale
Set F 10 2 Greyscale
                       Viridis
```

\mathbf{R}

		Α	В	A Colour	B Colour
Set	Α	2	6	Viridis	Default
Set	В	0	6	Default	Viridis
Set	С	4	1	Default	${\tt Greyscale}$
Set	D	1	6	Greyscale	Default
Set	E	4	1	Viridis	Greyscale
Set	F	6	1	Greyscale	Viridis

$\mathbf{P}\mathbf{y}$

```
A B A Colour B Colour
Set A 1 4 Viridis Default
Set B 1 5 Default Viridis
Set C 5 0 Default Greyscale
Set D 0 5 Greyscale Default
Set E 4 2 Viridis Greyscale
Set F 4 1 Greyscale Viridis
```

Do you feel that one of the colour schemes makes it easier to read and interpret? If so, please select which one.

Whole Pop

```
B A Colour B Colour
     None A
Set A
        3
          7 3 Viridis
                            Default
Set B
        1 11 1
                  Default
                            Viridis
Set C
          1
                  Default Greyscale
Set D
        2 10 2 Greyscale
                            Default
Set E
                  Viridis Greyscale
       11 11 11
           2 9 Greyscale
Set F
                            Viridis
```

\mathbf{R}

		None	Α	В	A Colour	B Colour
Set	Α	0	5	3	Viridis	Default
Set	В	1	5	0	Default	Viridis
Set	С	0	4	1	Default	Greyscale
Set	D	0	1	6	Greyscale	Default
Set	E	0	5	0	Viridis	Greyscale
Set	F	1	2	4	Greyscale	Viridis

$\mathbf{P}\mathbf{y}$

		None	A	В	A Colour	B Colour
Set	Α	3	2	0	Viridis	Default
Set	В	0	6	0	Default	Viridis
Set	С	0	5	0	Default	Greyscale
Set	D	0	1	4	Greyscale	Default
Set	E	0	6	0	Viridis	Greyscale
Set	F	0	0	5	Greyscale	Viridis

Sales - Part 1

How much would you say sales of each company increased between January and December? [Company A]

```
Min.1.0000001.0000001.0000001st Qu.2.0000002.0000001.000000Median3.0000002.0000001.000000Mean3.0434782.4142861.3714293rd Qu.4.0000003.0000001.750000Max.7.0000007.0000003.000000
```

How much would you say sales of each company increased between January and December? [Company B]

```
Min.1.0000001.0000001.0000001st Qu.4.0000004.0000002.000000Median5.0000006.0000002.000000Mean4.8260875.1449282.4782613rd Qu.6.0000007.0000003.000000Max.7.0000007.0000006.000000
```

How large would you say the drop in sales between April and July of Company A is?

```
Min.1.0000001.0000001.0000001st Qu.3.0000002.0000001.000000Median4.0000003.0000001.000000Mean4.0285712.8142861.5714293rd Qu.5.0000003.0000002.000000Max.7.0000007.0000006.000000
```

Sales - Part 2

Based on the above graph, how large would you say the difference is between the number of sales Company C makes and the number of sales Company D makes?

	Truncated	Zeroed
Min.	2.000000	1.0
1st Qu.	4.000000	2.0
Median	4.000000	3.0
Mean	4.271429	2.7
3rd Qu.	5.000000	3.0
Max.	7.000000	5.0

90APPROXIMATELY MANY TIMES WOULD YOU SAY THE 'SALMON LADDER' WAS USED