各單元重點公式整理

壹、統計概論

■ 統計學的分類

■ 母體的分類

■ 樣本的分類

■ 資料的分類

■ 四種量尺之關係

■ 各種量尺資料資與運算法之整理

種類	四則運算	統計量數	具固定零點
名義量尺	*	眾數	×
順序量尺	*	眾數、中位數	×
區間量尺	加減	眾數、中位數、平均數、標準差	×
比率量尺	加減乘除	眾數、中位數、平均數、標準差	✓

貳、常用的統計圖表

常用的統計圖與表總整理

■ 史塔基法則 STURGE'S rule:

組數: $k = 1 + 3.322 \log n$

冬、常用的統計量數

■ 單峰分配的四大表徵數

◆ 集中趨勢量數

▼ 朱十翅芳里数				
名稱	資料型態	公式		
算術平均數	非組距型	$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$, $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$		
异侧十均数	組距型	$\mu = \frac{1}{N} \sum_{i=1}^{k} f_{i} m_{i} , \overline{x} = \frac{1}{n} \sum_{i=1}^{k} f_{i} m_{i}$		
加權平均數		$\frac{\sum_{i=1}^{k} w_i x_i}{\sum_{i=1}^{k} w_i}$		
幾何平均數	非組距型	$G = \sqrt[n]{\prod_{i=1}^{n} x_i}$		
	組距型	$G = \sqrt[n]{\prod_{i=1}^{n} x_i}$		
調和平均數	非組距型	$H = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$		
	組距型	$H = \frac{n}{\sum_{i=1}^{k} \frac{f_k}{m_k}}$		

◆ k分位數

▼ 11 7 Land					
	非	組距型資料	組距型資料		
中 分 申 (Ma)	$\frac{n}{2} \notin Z$	$Me = x_{\frac{1+n}{2}}$			
中位數 (Me)	$\frac{n}{2} \in Z$	$Me = \frac{x_{\frac{n}{2}} + x_{\frac{n}{2}+1}}{2}$			
四分位數	$\frac{in}{4} \notin Z$	$Q_i = x_{\left(\left[\frac{in}{4}\right]+1\right)}$			
(Q_1,Q_2,Q_3)	$\frac{in}{4} \in Z$	$Q_i = \frac{x_{(\frac{in}{4})} + x_{(\frac{in}{4}+1)}}{2}$	利用內插公式		
十分位數	$\frac{in}{10} \notin Z$	$D_i = x_{\left(\left[\frac{in}{10}\right]+1\right)}$	小山山上山田公工		
(D_1, D_2, \cdots, D_9)	$\frac{in}{10} \in Z$	$D_i = \frac{x_{(\frac{in}{10})} + x_{(\frac{in}{10}+1)}}{2}$	(1 / 2		
百分位數	$\frac{in}{100} \notin Z$	$P_i = x_{\left(\left[\frac{in}{100}\right]+1\right)}$			
(P_1,P_2,\cdots,P_{99})	$\frac{in}{100} \in Z$	$P_{i} = \frac{x_{(\frac{in}{100})} + x_{(\frac{in}{100} + 1)}}{2}$	7		

◆ 眾數(mode)

◆ 絕對離差量數

名稱	資料型態	公式
全距	非組距型	$R = x_{\text{max}} - x_{\text{min}}$
土旺	組距型	$R = U_{ m max} - L_{ m min}$
四分位距		$IQR = Q_3 - Q_1$
四分位差		$Q.D. = \frac{Q_3 - Q_1}{2}$
平均差	非組距型	$\mathbf{M.A.D} = \frac{1}{n} \sum_{i=1}^{n} x_i - \overline{x} $
十万庄	組距型	$MAD = \frac{1}{n} \sum_{i=1}^{k} f_i \left m_i - \overline{x} \right $
総田 単行	非組距型	$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - \mu^{2}$ $s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2} - \frac{n}{n-1} \overline{x}^{2}$
變異數	組距型	$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{k} f_{i} (m_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{k} f_{i} m_{i}^{2} - \mu^{2}$ $s^{2} = \frac{1}{n-1} \sum_{i=1}^{k} f_{i} (m_{i} - \overline{x})^{2} = \frac{1}{n-1} \sum_{i=1}^{k} f_{i} m_{i}^{2} - \frac{n}{n-1} \overline{x}^{2}$
標準差		$\sigma = \sqrt{\sigma^2}, s = \sqrt{s^2}$

◆ 相對離差量數

變異係數	$CV = \frac{\sigma}{\mu} \times 100\% $
Z分數	$Z_i = \frac{x_i - \overline{x}}{s} \text{if} Z_i = \frac{x_i - \mu}{\sigma}$

- ◆ 偏態量數(skewness)
 - 偏態係數

$$\beta_1 = \frac{M_3}{\sigma^3}$$

● Pearson 偏態係數

$$SK = \frac{\mu - Mo}{\sigma} = \frac{3(\mu - Me)}{\sigma}$$

- ◆ 峰態量數(kurtosis)
 - 峰態係數

$$\beta_2 = \frac{m_4}{s^4}$$

- 動差(moment)
 - ◆ r 階原動差

$$m_r = \frac{1}{n} \sum_{i=1}^n x_i^r$$
 , $r = 1, 2, 3, \dots$

◆ r階主動差

$$M_r = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^r$$
, $r = 1, 2, 3, \dots$

◆ 主動差與原動差之關係

$$M_1 = 0$$

$$M_2 = m_2 - (m_1)^2$$

$$M_3 = m_3 - 3m_2m_1 + 2(m_1)^3$$

$$M_4 = m_4 - 4m_3m_1 + 6m_2(m_1)^2 - 3(m_1)^4$$

■ Chebyshev 不等式

$$P(|X - \mu| \le k\sigma) \ge 1 - \frac{1}{k^2}, k > 1$$

◆ Chebyshev 之變形式

$$P(|\overline{x} - \mu| \le k\sqrt{\frac{\sigma^2}{n}}) \ge 1 - \frac{1}{k^2}, k > 1$$

$$P(|\hat{p} - p| \le k\sqrt{\frac{pq}{n}}) \ge 1 - \frac{1}{k^2}, k > 1$$

■ 經驗法則

約有 68%的觀測值落於 $(\bar{x}-s,\bar{x}+s)$ 的區間內。 約有 95%的觀測值落於 $(\bar{x}-2s,\bar{x}+2s)$ 的區間內。 約有 99.7%的觀測值落於 $(\bar{x}-3s,\bar{x}+3s)$ 的區間內。

■ 盒鬚圖

■ 共變異數

$$\sigma_{xy} = \frac{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)}{N} = \frac{\sum_{i=1}^{N} x_i y_i - N \mu_x \cdot \mu_y}{N}$$

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1} = \frac{\sum_{i=1}^{n} x_i y_i - n \overline{x} \cdot \overline{y}}{n-1}$$
**By

■ 皮爾森相關係數

$$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y} \quad r_{xy} = \frac{s_{xy}}{s_x s_y}$$

可以衡量兩變數間的直線相關程度

肆、機率論

■ 集合的基本概念

名稱	定義
聯集	$A \cup B = \{x x \in A \lor x \in B\}$
交集	$A \cap B = \{x x \in A \land x \in B\}$
餘集合	$A^C = \{x \mid x \in S \land x \notin A\} = S - A$
差集	$A - B = \{ x \mid x \in A \land x \notin B \}$
上	$=A-(A\cap B)=(A\cup B)-B$

■ 集合基本運算法則

交換律	$A \cup B = B \cup A \ , \ A \cap B = B \cap A$
結合律	$(A \cup B) \cup C = A \cup (B \cup C)$
和口律	$(A \cap B) \cap C = A \cap (B \cap C)$
分配律	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
刀配手	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
排容原理	A' = S - A
互補律	(A')' = A
DalManagaria Larry	$A' \cap B' = (A \cup B)' = S - (A \cup B)$
De'Morgan's Law	$A' \cup B' = (A \cap B)' = S - (A \cap B)$

■ 集合元素的計數

- $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(B \cap C) n(C \cap A)$ $+ n(A \cap B \cap C)$

- ♦ De'Morgan's Law

$$n(A' \cap B') = n(A \cup B)' = n(S) - n(A \cup B)$$

$$n(A' \cup B') = n(A \cap B)' = n(S) - n(A \cap B)$$

- 條件機率
 - ◆ 定義

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

◆ 性質

$$P(A'|C) = 1 - P(A|C)$$

$$P(A \cup B|C) = P(A|C) + P(B|C) - P(A \cap B|C)$$

$$P(A \cap B) = P(A)P(B|A)$$

$$P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)$$

■ 乘法原理

$$P(A \cap B) = P(A)P(B|A)$$

$$P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)$$

$$P(A \cap B \cap C \cap \cdots \cap Y \cap Z) = P(A)P(B|A)P(C|A \cap B) \cdots P(Z|A \cap B \cap \cdots \cap Y)$$

- 獨立與互斥
 - ◆ 兩事件獨立

$$P(A|B) = P(A) \stackrel{\text{def}}{\boxtimes} P(A \cap B) = P(A) \cdot P(B)$$

- ◆ 三事件獨立 *A,B,C* 兩兩獨立 *P(A∩B∩C)=P(A)·P(B)·P(C)*
- ◆ 互斥事件

$$P(A \cap B) = 0$$

若 $A \cdot B$ 獨立則A'與 $B' \cdot A'$ 與 $B \cdot A$ 與B'皆獨立

- 串聯與並聯系統
 - ◆ 串聯系統(series)

博碩統計學

◆ 並聯系統

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = 1 - \prod_{i=1}^n P(E_i')$$

■ 聯合機率

$$P(A_i \cap B_j) \ge 0, \forall i = 1, 2, ..., r; j = 1, 2, ..., c$$

$$\sum_{j=1}^{c} \sum_{i=1}^{r} P(A_i \cap B_j) = 1$$

■ 邊際機率

$$P(A_i) = \sum_{i=1}^{c} P(A_i \cap B_j)$$
 , $i = 1, 2, ..., r$

$$P(B_j) = \sum_{i=1}^{r} P(A_i \cap B_j)$$
 , $j = 1, 2, ..., c$

i=1						
B A	B_1	B_2		B_r	A 的邊際機率	
A_1	$P(A_1 \cap B_1)$	$P(A_1 \cap B_2)$	V:	$P(A_1 \cap B_c)$	$P(A_1)$	
A_2	$P(A_2 \cap B_1)$	$P(A_2 \cap B_2)$		$P(A_2 \cap B_c)$	$P(A_2)$	4 よい自びないか
:	:	1/7	-		:	→ A_2 的邊際機率
A_r	$P(A_r \cap B_1)$	$P(A_r \cap B_2)$) ;	$P(A_r \cap B_c)$	$P(A_r)$	
B的邊際機率	$P(B_1)$	$P(B_2)$		$P(B_r)$	總和=1	

 B_1 的邊際機率

■ 全機率定理

$$P(B) = \sum_{i=1}^{n} P(A_i) \cdot P(B|A_i)$$

■ 貝士定理

$$P(A_k \mid B) = \frac{P(A_k \cap B)}{P(B)} = \frac{P(A_k) \cdot P(B \mid A_k)}{\sum_{i=1}^{n} P(A_i) \cdot P(B \mid A_i)}$$

五、機率分配

- 機率分配
 - ◆ 離散型隨機變數 $0 \le f(x), -\infty < x < \infty$ $\int_{-\infty}^{\infty} f(x) dx = 1$
 - ◆ 連續隨機變數的機率分配 $0 \le f(x), -\infty < x < \infty$ $\int_{-\infty}^{\infty} f(x) dx = 1$
- 累積分配函數
 - ◆ 離散型隨機變數

$$F(x) = f(X \le x) = \sum_{X \le x} f(X)$$

◆ 連續隨機變數的機率分配

$$F(x) = f(X \le x) = \int_{-\infty}^{x} f(x)dx$$

■ 機率分配的重要參數

名稱	離散機變數	連續機變數
HIT 这一结	$E(x) = \sum_{x} x f(x)$	$E(x) = \int_{x} x f(x) dx$
期望值	$E(g(x)) = \sum_{x} g(x)f(x)$	$E(g(x)) = \int_{x} g(x)f(x)dx$
中位數	$f(x \le \eta) = \sum_{x = -\infty}^{\eta} f(x) = \frac{1}{2}$	$P(X \le \eta) = \int_{-\infty}^{\eta} f(x) dx = \frac{1}{2}$
	$F(\eta) = \frac{1}{2}$	$F(\eta) = \frac{1}{2}$
分位數	$P(X \le x_p) = \sum_{x=0}^{x_p} f(x) = p$	$P(X \le x_p) = \int_{0}^{x_p} f(x) dx = p$
73 (1111)	$F(x_p) = p$	$F(x_p) = p$
罗姆	兩面逼近法 f(x) > f(x + 1) 日	$f'(m) = 0 \coprod f''(m) < 0$
眾數	$f(x) \ge f(x+1) \perp 1$ $f(x) \ge f(x-1)$	$f(m) = 0 \pm J(m) < 0$
	$V(x) = E[(x - E(x))^2]$	$V(x) = E\Big[(x - E(x))^2\Big]$
變異數	$=\sum_{x}(x-\mu)^2f(x)$	$= \int (x - \mu)^2 f(x) dx$
	$V(x) = E(x^2) - [E(x)]^2$	$V(x) = E(x^{2}) - [E(x)]^{2}$
偏態係數	$\beta_1 = E[(\frac{x-\mu}{\sigma})^3]$	$\beta_1 = E[(\frac{x-\mu}{\sigma})^3]$
峰態係數	$\beta_2 = E[(\frac{x-\mu}{\sigma})^4]$	$\beta_2 = E[(\frac{x-\mu}{\sigma})^4]$

■ 期望值的性質

- E(c) = c , c 為常數
- $\bullet \quad E[c \cdot g(x)] = c \cdot E[g(x)]$
- $\bullet \quad E[c+g(x)] = c + E[g(x)]$
- $E[c_1g_1(x)+c_2g_2(x)]=c_1E[g_1(x)]+c_2E[g_2(x)]$,此關係稱為線性運算關係。
- 若y = ax + b,則E(y) = aE(x) + b
- 期望值不一定存在(Petersbury 反論)

■ 變異數的性質

- $V(x) \ge 0$
- V(C) = 0
- $V(ax \pm b) = a^2 V(x)$

陸、二元隨機變數

- 聯合機率函數
 - ◆ 離散型隨機變數

$$0 \le f(x_i, y_i) \le 1$$

$$\sum_{x} \sum_{y} f(x, y) = 1$$

◆ 連續型隨機變數

$$0 \le f(x_i, y_i)$$

$$\iint_{x} f(x, y) dy dx = 1$$

邊際機率函數

X的邊際機率分配	離散型	$f_X(x) = \sum_{y} f(x, y)$
	連續型	$f_X(x) = \int_{y} f(x, y) dy$
Y的邊際機率分配	離散型	$f_Y(y) = \sum_{x} f(x, y)$
	連續型	$f_{Y}(y) = \int_{x} f(x, y) dx$

- 邊際機率與聯合機率分配之關係
 - 離散型隨機變數

$$\sum_{x} \sum_{y} f(x, y) = \sum_{x} f_{X}(x) = \sum_{y} f_{Y}(y)$$

連續型隨機變數

$$\iint\limits_{x} f(x, y) dy dx = \int\limits_{x} f_X(x) dx = \int\limits_{y} f_Y(y) dy$$

- 累積分配函數
 - ◆ 離散型隨機變數

$$F(x, y) = f(X \le x, Y \le y) = \sum_{x=-\infty}^{x} \sum_{y=-\infty}^{y} f(x, y)$$

◆ 連續型隨機變數

$$F(x,y) = f(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x,y) dx dy$$

■ 條件機率分配函數與獨立性

$$f(x|y) = \frac{f(x,y)}{f_Y(y)}, \quad f(y) \neq 0$$
$$f(y|x) = \frac{f(x,y)}{f_X(x)}, \quad f(x) \neq 0$$

隨機變數X與Y互為獨立

$$f(x|y) = f_X(x) \otimes f(y|x) = f_Y(y)$$
$$\Rightarrow f(x,y) = f_X(x)f_Y(y)$$

■ 聯合機率分配函數的重要參數 /

	X47				
期望值	離散型 $E(x) = \sum_{x} \sum_{y} xf(x, y) = \sum_{x} xf_{X}(x)$ $E(Y) = \sum_{x} \sum_{y} yf(x, y) = \sum_{y} yf_{Y}(y)$				
	連續型	$E(x) = \iint_{x} xf(x, y) dxdy = \iint_{x} xf_{X}(x) dx$ $E(y) = \iint_{x} yf(x, y) dxdy = \iint_{y} yf_{Y}(y) dy$			
變異數		$V(x) = E(x^{2}) - [E(x)]^{2}$ $V(y) = E(y^{2}) - [E(y)]^{2}$			
條件期望值	離散型	$E(x y) = \sum_{x} xf(x y)$ $E(y x) = \sum_{y} yf(y x)$			
	連續型	$E(x y) = \int_{x} xf(x y)dx$ $E(y x) = \int_{y} yf(y x)dy$			
條件變異數		$E(x y)^{2} = E(x^{2} y) - [E(x y)]^{2}$ $E(y x)^{2} = E(y^{2} x) - [E(y x)]^{2}$			

博碩統計學

■ 期望值的性質

- $E(c \times g(x, y)) = c \times E(g(x, y)), c$ 為常數。
- $\bullet E(c_1g_1(x, y) + c_2g_2(x, y)) = c_1E(g_1(x, y)) + c_2E(g_2(x, y))$
- $\bullet E(ax + by + c) = aE(x) + bE(y) + c$
- 若 $X \cdot Y$ 為兩獨立隨機變數,則 $E(xy) = E(x)E(y); E(\frac{x}{y}) = E(x)E(\frac{1}{y})$

■ 條件期望值的性質

- E[(ax+by)|z] = aE(x|z) + bE(y|z)
- E[E(yx)] = E(y), E[E(x|y)] = E(x)

■ 共變異數

$$Cov(x, y) = E[(x - E(x))(y - E(y))]$$
$$= E(xy) - E(x)E(y)$$

◆ 共變異數的性質

- Cov(x,a) = 0, Cov(a,a) = 0
- \bullet Cov(x,x) = V(x)
- $Cov(x \pm y, x) = Cov(x, z) \pm Cov(y, z)$
- Cov(x+y,z-w) = Cov(x,z) Cov(x,w) + Cov(y,z) Cov(y,w)
- $Cov(ax, y) = a \cdot Cov(x, y)$
- $Cov(ax, by) = ab \cdot Cov(x, y)$
- $V(ax \pm by) = a^2V(x) \pm 2abCov(x, y) + b^2V(y)$
- 若兩隨機變數 X,Y 獨立,則 Cov(x, y) = 0

■ 相關係數

$$\rho_{xy} = \frac{Cov(x, y)}{\sqrt{V(x)V(y)}}$$

■ 獨立之判斷法則

- 兩事件獨立: P(A|B) = A或 $P(A \cap B) = P(A)P(B)$
- 兩隨機變數之獨立: f(x|y) = f(x)或 f(x,y) = f(x)f(y)
- 期望值之獨立: E(x|y) = E(x)或 E(xy) = E(x)E(y)
- 母體分配未知之兩變數獨立檢定:卡方獨立檢定

■ 馬可夫不等式

$$P(x \ge c\mu) \le \frac{1}{c} \stackrel{\text{deg}}{\Rightarrow} P(x \le c\mu) \ge 1 - \frac{1}{c}$$

■ 柴比雪夫不等式

- ◆ 柴比雪夫不等式的變形

柒、(略)

捌、動差與動差母函數

- r階原動差
 - 離散型隨機變數

$$E(x^r) = \sum_{x} x^r f(x)$$

連續隨機變數

$$E(x^n) = \int_x x^n f(x) dx$$

- r階主動差
 - 離散型隨機變數

$$E[(x-\mu)^r] = \sum_{x} (x-\mu)^r f(x)$$

連續隨機變數

$$E[(x-\mu)^r] = \int_x (x-\mu)^r f(x) dx$$
$$E[x(x-1)(x-2)\cdots(x-r+1)]$$

階乘動差

$$E[x(x-1)(x-2)\cdots(x-r+1)]$$

- 動差母函數
 - 用途
 - 可用來求期望值、變異數、偏態與峰態係數。
 - 可判斷母體的機率函數為何種分配。
 - 隨機變數的轉換
 - 定義

$$M(t) = E(e^{tx})$$

$$E(x^r) = \frac{d^r}{dt^r} M(t) \bigg|_{t=0}$$

與期望值變異數之關係

$$\mu = E(x) = \frac{d}{dt}M(t)\Big|_{t=0}$$

$$V(x) = E(x^{2}) - \left[E(x)\right]^{2} \Rightarrow V(x) = \frac{d^{2}}{dt^{2}} M(t) \Big|_{t=0} - \left(\frac{d}{dt} M(t)\Big|_{t=0}\right)^{2}$$

對數運算法

$$E(x) = \frac{d}{dt} \ln \left(M(t) \right) \Big|_{t=0} , V(x) = \frac{d^2}{dt^2} \ln \left(M(t) \right) \Big|_{t=0}$$

- 機率母函數
 - ◆ 性質

$$P_X(t) = E[t^x]$$

$$\left. \frac{d^n P_X(t)}{dt^n} \right|_{t=1} = E[x(x-1)\cdots(x-n+1)]$$

九、常用的機率分配

分配	機率函數	期望值	變異數	動差母函數	再生性	無記憶性
均勻	$f(x) = \frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^t(1-e^{nt})}{n(1-e^t)}$	×	×
伯努力	$f(x) = p^x q^{1-x}$	p	pq	(pe^t+q)	×	*
二項	$f(x) = C_x^n p^x q^{n-x}$	пр	npq	$(pe^t+q)^n$	0	×
多項	$f(x) = C_{x_1, x_2, \dots, x_k}^n p_1^{x_1} p_2^{x_2} \dots p_k^{x_k}$	np_i	np_iq_i	$(p_1e^{t_1} + p_2e^{t_2} + \dots + p_ke^{t_k})^n$	×	×
超幾何	$f(x) = \frac{C_x^S C_{n-x}^{N-S}}{C_n^N}$	пр	$npq \cdot \frac{N-n}{N-1}$		×	×
幾何	$f(x) = q^{x-1}p$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^t}{1 - qe^t}$	×	0
負二 項	$f(x) = C_{r-1}^{x-1} p^r q^{x-r}$	$\frac{r}{p}$	$\frac{rq}{p^2}$	$\left(\frac{pe^t}{1-qe^t}\right)^r$	0	×
Poisson	$f(x) = \frac{e^{-\lambda} \lambda^x}{x!}$	λ	λ	$e^{\lambda(e^t-1)}$	0	×
多維超幾何	$f(x_1, x_2, \dots, x_k) = \frac{C_{x_1}^{N_1} C_{x_2}^{N_2} \cdots C_{x_k}^{N_k}}{C_n^N}$	np_i	$np_iq_i\cdot \frac{N-n}{N-1}$		*	×

十、常見的連續型機率分配

■ 連續型機率函數的重要參數

分配	機率函數	期望值	變異數	動差母函數
均勻	$f(x) = \frac{1}{b - a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{t(b-a)}, t \neq 0$
常態	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$	μ	σ^2	$e^{\mu t + \frac{\sigma^2}{2}t^2}$
標準常態	$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$	0	1	$e^{\frac{t^2}{2}}$
指數	$f(x) = \frac{1}{\mu} e^{-\frac{x}{\mu}}$	μ	μ^2	$\frac{1}{1-\mu t}$
Gamma	$f(x) = \frac{1}{\beta \Gamma(\alpha)} \left(\frac{x}{\beta}\right)^{\alpha - 1} e^{-\frac{x}{\beta}}$	αβ	$\alpha \beta^2$	$\left(\frac{1}{1-\beta t}\right)^{\alpha}$
卡方	$f(x) = \frac{1}{2\Gamma(\frac{\nu}{2})} \left(\frac{x}{2}\right)^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}$	ν	2 <i>v</i>	$\left(\frac{1}{1-2t}\right)^{\frac{\nu}{2}}$

■ 各種分配之關係

■ 各種分配之加法性

X_i 之分配	Y之分配	限制條件	加法性
伯努力 Ber(1, p)	B(n,p)		無
二項 $B(n_i,p)$	$B(\sum_{i=1}^n n_i, p)$	p 相同	有
幾何 <i>G</i> (p)	NB(n, p)		無
負二項 NB(n _i , p)	$NB(\sum_{i=1}^n n_i, p)$	p 相同	有
Poisson $Pio(\lambda_i)$	$Pio(\sum_{i=1}^n \lambda_i)$	無限制	有
常態 $N(\mu_i,\sigma_i^2)$	$N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$	無限制	有
指數 $Exp(\beta)$	$Gamma(n, \beta)$		無
Gamma $G(\alpha_i, \beta)$	$G(\sum_{i=1}^n lpha_i,eta)$	β相同	有
卡方 $\chi^2_{\nu_i}$	$\mathcal{X}^2_{\sum\limits_{i=1}^n u_i}$	無限制	有

■ 無記憶性

只有幾何分配與指數分配具有無記憶性的特質,其餘分配皆不具無記憶性

拾壹、抽樣與抽樣分配

■ 常用的抽樣方法

■ 影響抽樣分配的因素

- 母體本身的分配形狀。
- 所採用的樣本統計量
- 樣本大小

■ 大數法則

從一母體平均數為 μ 的母體中隨機抽取n個樣本,當樣本數 $n \to \infty$ 時,則樣本平均數會趨近於母體平均數

■ 中央極限定理

有一母體的平均數為 μ ,變異數為 σ^2 ,自該母體隨機抽取n個樣本,當樣本數n夠大時,則樣本平均數 \bar{x} 的抽樣分配會近似常態分配

■ 常態母體的四大抽樣分配

■ 常見的抽樣分配題型之期望值與變異數(大樣本情況)

一 市光的抽探力品及至之朔主直兴发共级(八保本情况)				
	12/	變	異數	
名稱	平均數 期望值	無限母體 $\frac{n}{N} \le 0.05$ 或有限母體且取出歸還	有限母體且取出不歸還	
////	,			
x 的抽樣分配	μ	$\frac{\sigma^2}{n}$	$\frac{\sigma^2}{n} \cdot \frac{N-n}{N-1}$	
樣本和的抽樣分配	nμ	$n\sigma^2$	$n\sigma^2 \cdot \frac{N-n}{N-1}$	
p̂ 的抽樣分配	p	$\frac{pq}{n}$	$\frac{pq}{n} \cdot \frac{N-n}{N-1}$	
$\bar{x}_1 - \bar{x}_2$ 的抽樣分配	$\mu_1 - \mu_2$	$\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$	$\frac{\sigma_1^2}{n_1} \frac{N_1 - n_1}{N_1 - 1} + \frac{\sigma_2^2}{n_2} \frac{N_2 - n_2}{N_2 - 1}$	
$\hat{p}_1 - \hat{p}_2$ 的抽樣分配	$p_1 - p_2$	$\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}$	$\frac{p_1 q_1}{n_1} \frac{N_1 - n_1}{N_1 - 1} + \frac{p_2 q_2}{n_2} \frac{N_2 - n_2}{N_2 - 1}$	

【若母體變異數未知,則以樣本變異數取代】

■ 卡方、F、t統計量的公式

統計量	定義公式	實用公式
卡方	$\chi_{\nu}^{2} = \sum_{i=1}^{n} \left(\frac{x_{i} - \mu}{\sigma}\right)^{2}$	$\chi_{n-1}^2 = \frac{(n-1)s^2}{\sigma^2}$
F	$F_{ u_1, u_2} = rac{{\chi_1^2}/{ u_1}}{{\chi_2^2}/{ u_2}}$	$F_{n_1-1,n_2-1} = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$
t	$t_{v} = \frac{z}{\sqrt{\frac{\chi_{v}^{2}}{v}}}$	$t_{n-1} = \frac{\overline{x} - \mu}{\sqrt{\frac{s^2}{n}}}$

■ Z、卡方、F、t 分配的期望值與變異數

統計量	期望值	變異數
Z	0	1
卡方	ν	2ν
F	$\frac{v_2}{v_2 - 1}, v_2 > 2$	$\frac{2v_2^2(v_1+v_2-2)}{v_1(v_2-2)^2(v_2-4)}, v_2 > 4$
t	0	$\frac{\nu}{\nu-2}, \nu > 2$

- 卡方、t、F分配與常態分配之關係
- 重要查表性質

$$F_{\alpha,\nu_1,\nu_2} = \frac{1}{F_{1-\alpha,\nu_2,\nu_1}}$$

■ F分配與另外三個分配間的轉換關係

分母 分子 41	1	$ u_{ m l}$	8
1	$\frac{z_1^2}{z_2^2}$	$\frac{1}{t^2(v_1)}$	$\frac{1}{z^2}$
V_2	$t^2(v_2)$	$F(v_1, v_2)$	$\frac{v_2}{\chi^2(v_2)}$
∞	z^2	$\frac{\chi^2(\nu_1)}{\nu_1}$	1

- 以F統計量為主,查表轉換公式

 - $\bullet \qquad t(\nu) = \sqrt{F(1,\nu)}$

p̂ 的抽樣分配

■ 常見抽樣分配題型的標準化公式

無限母體 $\frac{n}{N} \le 0.05$ 大樣本 $n \ge 30$ \overline{x} 的抽樣分配 小樣本母體常態 有限母體且 取出不放回 $\overline{x} - \mu$ $\sigma^2 N - n$ $\sqrt{n} N-1$ 無限母體 $\frac{n}{N} \le 0.05$ 大樣本 $n \ge 30$ S的抽樣分配 小樣本母體常態 $\frac{S - n\mu}{\sqrt{n\sigma^2}}$ 有限母體且 取出不放回 $S-n\mu$ $\sqrt{n\sigma^2 \frac{N-n}{N-1}}$ 無限母體 $\frac{n}{N} \le 0.05$ $np \ge 5 \coprod nq \ge 5$

有限母體且 取出不放回 $\frac{\hat{p}-p}{\sqrt{\frac{pq}{n}\frac{N-n}{N-1}}}$

$\bar{x}_1 - \bar{x}_2$ 的抽樣分配 大樣本 $n_1, n_2 \ge 30$ 小樣本母體常態	無限母體 $\frac{n}{N} \le 0.05$ $\frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ 有限母體且 取出不放回 $\frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} \frac{N_1 - n_1}{N_1 - 1} + \frac{\sigma_2^2}{n_2} \frac{N_2 - n_2}{N_2 - 1}}}$	
$\hat{p}_1 - \hat{p}_2$ 的抽樣分 $n_1 p_1 \ge 5 \coprod n_1 q_1 \ge 5$ $n_2 p_2 \ge 5 \coprod n_2 q_2 \ge 5$	無限母體 $\frac{n}{N} \le 0.05$ $\frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}}}$ 有限母體且 取出不放回	□ 2
	$\frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} \frac{N_1 - n_1}{N_1 - 1} + \frac{p_2 q_2}{n_2} \frac{N_2 - n_2}{N_2 - 1}}}$	

拾貳、估計

■ 估計式

用來估計母體參數的樣本統計量,通式以 $\hat{ heta}$ 表示

■ 估計式的評斷標準

- ◆ 不偏性
- ◆ 有效性
 - 絕對有效性
 - 相對有效性
 - 最小變異不偏性
 - 漸進不偏性
- ◆ 一致性
- ◆ 充分性

■ 評斷標準的定義

評斷標準		定義
不偏性		$E(\hat{\theta}) = \theta$
	絕對	$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$,為所有估計式中最小者
有效性	相對	$\frac{\textit{MSE}(\hat{ heta}_1)}{\textit{MSE}(\hat{ heta}_2)} < 1$ 表 $\hat{ heta}_1$ 相對 $\hat{ heta}_2$ 具相對有效性
最小變異不偏性		$E(\hat{\theta}) = \theta \Box V(\hat{\theta})$ 小於其他不偏估計式的變異數
漸進不偏性		$\lim_{n \to \infty} E(\hat{\theta}_n) = \theta \stackrel{\text{red}}{=} \lim_{n \to \infty} \left[E(\hat{\theta}_n) - \theta \right] = 0$
云九小	強則	$P(\lim_{n\to\infty}\hat{\theta}_n=\theta)=1$
一致性弱則		$\lim_{n \to \infty} P(\left \hat{\theta}_n - \theta \right < \varepsilon) = 1, \forall \varepsilon > 0$
充分性		x_1, x_2, \dots, x_n 的分配與母體參數無關,由這組樣本所求 得的統計量稱為充分統計量
/ / >		

■ 常用的估計式的偏誤情況

-		
	樣本取出放回	樣本取出不放回
\bar{x} 估計 μ	不偏	不偏
s^2 估計 σ^2	不偏	偏誤
s 估計 σ	偏誤	偏誤
\hat{p} 估計 p	不偏	不偏
$\hat{p}\hat{q}$ 估計 pq	偏誤	偏誤
$\hat{p}_1 - \hat{p}_2$ 估計 $p_1 - p_2$	不偏	不偏

■ 點估計的方法

名 稱	方法
最小平方法	$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (x_i - \hat{\theta})^2 = Min \sum_{i=1}^{n} (x_i - E(x \theta))^2$
動差法	$\mu_r = E(x^r)$, $r = 1, 2, 3, \dots$, $m_r = \frac{1}{n} \sum_{i=1}^n x_i^r$, $r = 1, 2, 3, \dots$ $m_r = \mu_r$, $r = 1, 2, 3, \dots$, p
最大概似法	$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_l) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_l)$ $\frac{\partial}{\partial \theta_i} \ln L = 0$

■ 點估計式尋找方法的性質

	不偏性	最小變異	漸進不	一致	有效性	充分	需已知母
		不偏性	偏性	性		性	體分配
最小平方法	✓	✔(線性)		4			×
動差估計式				4	10		✓
最大概似法			*	✓	✔(漸進)		✓

拾參、區間估計

■ 信賴水準

區間包含母體參數的信心或可靠度,信賴水準的大小等於 $1-\alpha$ 。

■ 信賴區間

在一個給定的信賴水準 $(1-\alpha)$ 下所構成的一個區間。它是由樣本統計量以及抽樣誤差所構成的一個包含上限、下限的區間

■ 母數的信賴區間

◆ 第一類

使	戸用時機		雙 尾 信 賴 區 間		
大棒木		² 已知	$\mu = \overline{x} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma^2}{n}}$		
/\/\/\	σ^2 未知		$\mu = \overline{x} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{s^2}{n}}$		
小樣本母體		2 已知	$\mu = \overline{x} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma^2}{n}}$		
常態	σ	²未知	$\mu = \overline{x} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{s^2}{n}}$		
-	體の	2 已知	$\mu = \overline{x} \pm \sqrt{\frac{1}{\alpha}} \sqrt{\frac{\sigma^2}{n}}$		
-			$p = \hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$		
1 126.14		己知	$\mu_1 - \mu_2 = (\overline{x}_1 - \overline{x}_2) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$		
八塚平	σ^2 未知		$\mu_1 - \mu_2 = (\overline{x}_1 - \overline{x}_2) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$		
	σ^2 已知		$\mu_1 - \mu_2 = (\overline{x}_1 - \overline{x}_2) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$		
$-\mu_2$		扣签	$\mu_1 - \mu_2 = (\overline{x}_1 - \overline{x}_2) \pm t_{\frac{\alpha}{2}, n_1 + n_2 - 2} \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$		
小樣本		10.77	$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$		
与 版	σ^2 未 知		$\mu_1 - \mu_2 = (\overline{x}_1 - \overline{x}_2) \pm t_{\frac{\alpha}{2}, \nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$		
			$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{s_2^2}{n_2}\right)^2}$		
	大	大標本 σ σ σ σ σ σ σ σ σ	大樣本 σ² 已知 小樣本學問題 σ² 已知 小樣本學問題 σ² 已知 大樣本 σ² 已知 大樣本 σ² 已知 大樣本 σ² 未知 小樣本學問題 σ² 未知 小樣本學問題 相等 小母體態 σ² 未知		

種 類	使用時機		雙 尾 信 賴 區 間
$p_1 - p_2$	大樣本	母體變異數 相等	$p_1 - p_2 = (\hat{p}_1 - \hat{p}_2) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$
		母體變異數 不相等	$p_1 - p_2 = (\hat{p}_1 - \hat{p}_2) \pm z_{\frac{\alpha}{2}} \sqrt{(\frac{\overline{pq}}{n_1} + \frac{\overline{pq}}{n_2})}$
			$\overline{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$
μ_d	母體常態 大樣本	母體變異數 未知	$\mu_d = \overline{d} \pm t_{\frac{\alpha}{2}, n-1} \sqrt{\frac{s_d^2}{n}}$

註:上述若為有限母體,必須補上有限母體修正因子

◆ 第二類

種 類	使用時機	雙 尾 信 賴 區 間
σ^2	μ 已知	$\frac{(n-1)s^{2}}{\chi_{\frac{\alpha}{2},n-1}^{2}} \le \sigma^{2} \le \frac{(n-1)s^{2}}{\chi_{1-\frac{\alpha}{2},n-1}^{2}}$
	μ未知	$\frac{n\hat{\sigma}^2}{\chi^2_{\frac{\alpha}{2},n}} \le \sigma^2 \le \frac{n\hat{\sigma}^2}{\chi^2_{1-\frac{\alpha}{2},n}}$
$rac{\sigma_{1}^{2}}{\sigma_{2}^{2}}$		$\frac{{s_1^2}/{s_2^2}}{F_{n_1-1,n_2-1,\alpha/2}} \le \frac{{\sigma_1^2}}{{\sigma_2^2}} \le \frac{{s_1^2}/{s_2^2}}{F_{n_1-1,n_2-1,1-\alpha/2}}$

■ 影響信賴區間長的因素 信賴水準 樣本數 估計式的選擇

拾肆、假設檢定I、II

兩種錯誤的機率

型 I 的錯誤

當 H_0 為真 $(H_1$ 為偽),拒絕 H_0 所發生的錯誤,稱為型I的錯誤。型I錯 誤中最大者稱為 α 錯誤,也稱為 α 風險或顯著水準。

$$\alpha = Max P$$
(拒絕 $H_0 | H_0$ 為真)

型Ⅱ的錯誤

當 H_1 為真(H_0 為偽),拒絕 H_1 所發生的錯誤,稱為型II的錯誤,又稱為 β 錯 誤、 β 風險。

$$\beta = P(拒絕 H_1 | H_1 為真)$$

整理

真實狀況	決策		
共貝叭儿	不拒絕 H_0	拒絕 H_0	
H_0 為真	正確 機率:1-α	型 I 錯誤 機率: α	
H_0 為僞	型Ⅱ錯誤 機率:β	正確 機率:1-β	

型II錯誤β的推導

左尾檢定

$$C = \mu_0 - z_{\alpha} \sqrt{\frac{\sigma^2}{n}} = \mu_1 + z_{\beta} \sqrt{\frac{\sigma^2}{n}}$$

右尾檢定

◆ 雙尾檢定

$$C = \mu_0 + z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma^2}{n}} = \mu_1 - z_{\beta} \sqrt{\frac{\sigma^2}{n}} \implies C = \mu_0 - z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma^2}{n}} = \mu_1 + z_{\beta} \sqrt{\frac{\sigma^2}{n}}$$

- 給定誤差α、β的條件下,所需樣本數
 - ◆ 單尾檢定

$$n = \frac{\sigma^2 (z_{\alpha} + z_{\beta})^2}{(\mu_1 - \mu_0)^2}$$

◆ 雙尾檢定

$$n = \frac{\sigma^2 (z_{\alpha/2} + z_{\beta})^2}{(\mu_1 - \mu_0)^2}$$

■ 檢定力

■ 檢定力函數

$$f(\theta) = 1 - \beta(\theta)$$

- 影響檢定力的因素
 - 樣本大小
 - 顯著水準
 - 檢定統計量的選擇
 - 決策法則之決定
- 作業特性曲線

在所有可能的母體平均數之下,將其對應所犯型 II 錯誤的機率 β 繪成的曲線

博碩統計學

■ 錯誤曲線

在所有可能母體參數 θ 情況下,可能犯錯機率的曲線

$$\text{EC=} \begin{cases} PFC, & \theta \in H_0 \\ OCC, & \theta \in H_1 \end{cases}$$

■ 標準檢定法

◆ 單母體平均數的檢定

若為有限母體,且取出不放回,標準誤部分需加有限母體修正因子 $\sqrt{\frac{N-n}{N-1}}$

◆ 單母體比例的檢定

若為有限母體,且取出不放回,標準誤部分需加有限母體修正因子 $\sqrt{\frac{N-n}{N-1}}$

◆ 單母體變異數的檢定

◆ 兩母體平均數差的檢定-獨立樣本

◆ 兩母體平均數差的檢定-成對樣本

◆ 兩母體比例差的檢定

■ 四種檢定法

- ◆ 信賴區間法
- ◆ 臨界值法
- ◆ 標準檢定法
- ◆ P值法

拾陸、變異數分析

- 單因子變異數分析(完全隨機)
 - ◆ 變異之計算 SST= SSA+SSE

$$SST = \sum_{i=1}^{n_i} \sum_{j=1}^{k} (x_{ij} - \overline{x})^2 = \sum_{i=1}^{n_i} \sum_{j=1}^{k} x_{ij}^2 - n_T \overline{x}^2 = n_T \sigma^2$$

$$SSA = \sum_{i=1}^{n_i} \sum_{j=1}^{k} (\overline{x}_j - \overline{x})^2 = \sum_{j=1}^{k} n_j \overline{x}_j^2 - n_T \overline{x}^2 = n_T \sigma_{\overline{x}}^2$$

$$SSE = \sum_{i=1}^{n_i} \sum_{j=1}^{k} (x_{ij} - \overline{x}_j)^2 = SST - SSA = \sum_{j=1}^{k} (n_j - 1) s_j^2$$

◆ 變異數分析表

變異來源	平方和(SS)	自由度(DF)	平均平方和(MS)	(檢定統計量)F
因子	SSA	<i>k</i> −1	$MSA = \frac{SSA}{k-1}$	MCA
隨機	SSE	$n_T - k$	$MSE = \frac{SSE}{n_T - k}$	$F^* = \frac{MSA}{MSE}$
總和	SST	$n_T - 1$	11/10	

若
$$F^* > F_{\alpha,k-1,n_T-k}$$
 或 P -value= $P(F_{k-1,n_T-k} > F^*) < \alpha \Rightarrow$ 拒絕 H_0

- 單因子變異數分析隨機集區設計、雙因子未重複
 - ◆ 變異之計算 SST=SSA+SSB+SSE

$$SST = \sum_{i=1}^{r} \sum_{j=1}^{c} (x_{ij} - \overline{x})^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij}^{2} - n_{T} \overline{x}^{2} = n_{T} \sigma^{2}$$

$$SSA = \sum_{i=1}^{r} \sum_{j=1}^{c} (\overline{A}_{j} - \overline{x})^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \overline{A}_{j}^{2} - n_{T} \overline{x}^{2} = r \sum_{i=1}^{c} \overline{A}_{j}^{2} - n_{T} \overline{x}^{2} = n_{T} \sigma_{\overline{A}_{j}}^{2}$$

$$SSB = \sum_{i=1}^{r} \sum_{j=1}^{c} (\overline{B}_{i} - \overline{x})^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \overline{B}_{i}^{2} - n_{T} \overline{x}^{2} = c \sum_{j=1}^{c} \overline{B}_{i}^{2} - n_{T} \overline{x}^{2} = n_{T} \sigma_{\overline{B}_{i}}^{2}$$

$$SSE = \sum_{i=1}^{r} \sum_{j=1}^{c} (x_{ij} - \overline{A}_{j} - \overline{B}_{i} + \overline{x})^{2} = SST - SSA - SSB$$

◆ 變異數分析表

變異來源	平方和	自由度	平均平方和	F值
A 因子	SSA	c-1	$MSA = \frac{SSA}{c - 1}$	$F_A^* = \frac{MSA}{MSE}$
B因子	SSB	r-1	$MSB = \frac{SSB}{r - 1}$	$F_B^* = \frac{MSB}{MSE}$
隨機	SSE	(c-1)(r-1)	$MSE = \frac{SSE}{(c-1)(r-1)}$	
總變異	SST	$n_T - 1$		

檢定 A 因子是否有影響,若 $F_A^* > F_{\alpha,(c-1),(r-1)(c-1)}$ ⇒拒絕 H_0 檢定 B 因子是否有影響,若 $F_B^* > F_{\alpha,(r-1),(r-1)(c-1)}$ ⇒拒絕 H_0

雙因子重複

變異之計算

SST=SSA+SSB+SSAB+SSE

$$SST = \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{n} (x_{ijk} - \overline{x})^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{n} x_{ijk}^{2} - n_{T} \overline{x}^{2} = n_{T} \sigma_{T}^{2}$$

$$SSA = rn \sum_{j=1}^{c} (\overline{A}_{j} - \overline{x})^{2} = rn \sum_{j=1}^{c} \overline{A}_{j}^{2} - n_{T} \overline{x} = n_{T} \sigma_{\overline{A}_{j}}^{2}$$

$$SSB = cn \sum_{i=1}^{r} (\overline{B}_{i} - \overline{x})^{2} = cn \sum_{i=1}^{r} \overline{B}_{i}^{2} - n_{T} \overline{x} = n_{T} \sigma_{\overline{B}_{j}}^{2}$$

$$SSE = \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{n} (x_{ijk} - \overline{A}_{j} \overline{B}_{i})^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{n} x_{ijk}^{2} - n \sum_{i=1}^{r} \sum_{j=1}^{c} \overline{A}_{j} \overline{B}_{i}^{2}$$

$$SSAB = \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{n} (\overline{A}_{j} \overline{B}_{i} - \overline{A}_{j} - \overline{B}_{j} + \overline{x})^{2} = SST - SSA - SSB - SSE$$
變異數分析表

	2071207177			
變異來源	平方和	自由度	平均平方和	F值
A 因子	SSA	c-1	$MSA = \frac{SSA}{c - 1}$	$F_A^* = \frac{MSA}{MSE}$
B因子	SSB	r-1	$MSB = \frac{SSB}{r - 1}$	$F_B^* = \frac{MSB}{MSE}$
交互作用	SSAB	(c-1)(r-1)	$MSAB = \frac{SSAB}{(c-1)(r-1)}$	$F_{AB}^* = \frac{MSAB}{MSE}$
隨機	SSE	rc(n-1)	$MSE = \frac{SSE}{rc(n-1)}$	
總變異	SST	$n_T - 1$		

檢定 A 因子是否有影響

若 $F_A^* > F_{\alpha,(c-1),rc(n-1)}$ ⇒拒絕 H_0 ,表A因子對依變數具有影響。

檢定 B 因子是否有影響

 $\Xi F_B^* > F_{\alpha,(r-1),rc(n-1)}$ ⇒拒絕 H_0 ,表B因子對依變數具有影響。

檢定 AB 因子是否有交互影響

若 $F_{AB}^* > F_{\alpha,(r-1)(c-1),rc(n-1)}$ ⇒拒絕 H_0 ,表 $A \cdot B$ 因子對依變數具有交

互作用。

- 多重比較程序
 - ◆ Fisher 最小顯著差異法

$$LSD = t_{\frac{\alpha}{2}, n_T - k} \sqrt{\frac{MSE}{n_i} + \frac{MSE}{n_j}}$$

 $\left| \overline{x}_{i} - \overline{x}_{j} \right| \ge LSD \Rightarrow$ 表示 μ_{i} 與 μ_{j} 有顯著差異

◆ Bonferroni 法

$$\mu_i - \mu_j = (\overline{x}_i - \overline{x}_j) \pm t_{n_T - k, \frac{\alpha}{2m}} \sqrt{\frac{MSE}{n_i} + \frac{MSE}{n_j}}$$

◆ Scheffe 法

$$\mu_i - \mu_j = (\overline{x}_i - \overline{x}_j) \pm \sqrt{(k-1)F_{\alpha, k-1, n_T - k}} \sqrt{\frac{MSE}{n_i} + \frac{MSE}{n_j}}$$

◆ Tukey 公正顯著差異法

$$HSD = q_{\alpha,k,n_T-k} \sqrt{\frac{MSE}{n} + \frac{MSE}{n}}$$

 $\left| \overline{x}_{i} - \overline{x}_{j} \right| > HSD$,則拒絕虛無假設

◆ Tukey-Karamer 檢定程序

$$\omega = \frac{q_{\alpha,k,n_T-k}}{\sqrt{2}} \sqrt{\frac{MSE}{n_i} + \frac{MSE}{n_j}}$$

當 $|\bar{x}_i - \bar{x}_j| > \omega$ 則拒絕虛無假設

■ 共同母體變異數的信賴區間

$$\frac{(n_T - k)MSE}{\chi_{\frac{\alpha}{2}, n_T - k}^2} \le \sigma^2 \le \frac{(n_T - k)MSE}{\chi_{1 - \frac{\alpha}{2}, n_T - k}^2}$$

- 多個母體變異數之檢定
 - ◆ Hartley 檢驗法

$$H^* = \frac{\max s_i^2}{\min s_i^2}$$

當
$$H^* > H_{\alpha,k,n}$$
 ⇒拒絕 H_0

◆ Bartlett 檢定法

$$B = \frac{2.3026}{C} (n_T - k) (\log \frac{MSE}{GMSE}), C = 1 + \frac{1}{3(k-1)} \left(\sum_{i=1}^k \frac{1}{n_i - 1} - \frac{1}{n_T - k} \right)$$

拾柒、簡單線性迴歸與相關分析

■ 簡單線性迴歸的五個重要式子

• 迴歸模型: $y = E(y|x) + \varepsilon = \mu_{y|x} + \varepsilon = \alpha + \beta x + \varepsilon$

• 母體迴歸線: $E(y|x) = \mu_{y|x} = \alpha + \beta x$

• 誤差: $\varepsilon = y - E(y|x) = y - \mu_{y|x} = y - \alpha - \beta x$

● 樣本迴歸線: $\hat{y} = \hat{\alpha} + \hat{\beta}x$

• 殘差: $e = y - \hat{y} = y - \hat{\alpha} - \hat{\beta}x$

■ 簡單線性迴歸模型的基本假設

- $E(\varepsilon_i) = 0$
- $V(\varepsilon_i) = \sigma^2$
- $Cov(\varepsilon_i, \varepsilon_j) = 0$

■ 樣本迴歸係數公式

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{\sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y}}{\sum_{i=1}^{n} x_i^2 - n \overline{x}^2} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) y_i}{\sum_{i=1}^{n} x_i^2 - n \overline{x}^2} = \frac{\sum_{i=1}^{n} x_i (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x}) x_i} = \frac{s_{xy}^2}{s_x^2}$$

$$\hat{\alpha} = \overline{y} - \hat{\beta} \overline{x}$$

■ 變異之計算

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2 = (n-1)s_y^2 = n\hat{\sigma}_y^2$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 = \hat{\beta}^2 \sum_{i=1}^{n} (x_i - \overline{x})^2 = \hat{\beta}^2 \left(\sum_{i=1}^{n} x_i^2 - n\overline{x}^2\right) = \hat{\beta}^2 (n-1)s_x^2 = \hat{\beta}^2 \cdot n\hat{\sigma}_x^2$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} y_i^2 - \hat{\alpha} \sum_{i=1}^{n} y_i - \hat{\beta} \sum_{i=1}^{n} x_i y_i$$

■ 變異數分析表

變異來源	平方和	自由度	平均平方和	F
迴歸	SSR	1	$MSR = \frac{SSR}{1}$	MCD
誤差	SSE	n-2	$MSE = \frac{SSE}{n-2}$	$F^* = \frac{MSR}{MSE}$
總和	SST	n-1		

若檢定統計量 $F^* > F_{1,n-2,\alpha}$ 則拒絕 H_0

■ 判定係數

博碩統計學

$$R^{2} = \frac{SSR}{SST} = \frac{\sum (\hat{y}_{i} - \overline{y})^{2}}{\sum (y_{i} - \overline{y})^{2}} = \hat{\beta}^{2} \cdot \frac{s_{x}^{2}}{s_{y}^{2}} = \hat{\beta}^{2} \cdot \frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{y}^{2}}$$

■ 斜率項的檢定

雙尾檢定
$$\begin{cases} H_0: \beta = 0 \\ H_1: \beta \neq 0 \end{cases}$$

◆ 檢定統計量

$$t^* = \frac{\hat{\beta} - \beta_0}{s_{\hat{\beta}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{\sum (x_i - \overline{x})^2}}}$$

♦ β的1-α信賴區間

$$\hat{\beta} - t_{\frac{\alpha}{2}, n-2} \sqrt{\frac{MSE}{\sum (x_i - \overline{x})^2}} \le \beta \le \hat{\beta} + t_{\frac{\alpha}{2}, n-2} \sqrt{\frac{MSE}{\sum (x_i - \overline{x})^2}}$$

- 截距項的檢定
 - ◆ 檢定統計量

$$t^* = \frac{\hat{\alpha} - \alpha_0}{s_{\hat{\alpha}}} = \frac{\hat{\alpha}}{\sqrt{\frac{\sum x_i^2}{n} \cdot \frac{MSE}{\sum (x_i - \overline{x})^2}}}$$

■ 截距項的1-α信賴區間

$$\hat{\alpha} - t_{\frac{\alpha}{2}, n-2} \sqrt{\frac{\sum x_i^2}{n} \frac{MSE}{\sum (x_i - \overline{x})^2}} \le \alpha \le \hat{\alpha} + t_{\frac{\alpha}{2}, n-2} \sqrt{\frac{\sum x_i^2}{n} \frac{MSE}{\sum (x_i - \overline{x})^2}}$$

■ $E(y|x_0)$ 的信賴區間

$$E(y|x_0) = \hat{y}_0 \pm t_{\frac{\alpha}{2}, n-2} \sqrt{MSE\left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum (x_i - \overline{x})^2}\right]}$$

■ y₀的預測區間

$$y_0 = \hat{y}_0 \pm t_{\frac{\alpha}{2}, n-2} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum (x_i - \overline{x})^2}} MSE$$

- 影響信賴區間與預測區間長度的因素
 - 顯著水準越大 t 值越小,信賴區間越短。
 - *MSE* 越大則信賴區間越長。
 - x_0 離 \bar{x} 越遠,信賴區間越長。
 - 樣本數n越大,信賴區間越短。

■ 率項 β 與樣本相關係數 r_{xv}之關係

$$r_{xy} = \hat{\beta} \frac{s_x}{s_y}$$

■ 相關係數與判定係數間的關係

$$r_{xy} = \pm \sqrt{R^2}$$

正負號與斜率項相同

■ 虚無假設 $\rho_{xy} = 0$ 情況下的統計推論

$$t^* = \frac{r_{xy}}{\sqrt{\frac{1 - r_{xy}^2}{n - 2}}}$$

■ 虚無假設 $\rho_{xy} = \rho_0(\rho_0 \neq 0)$ 情況下的統計推論

$$z^* = \frac{\frac{1}{2}\ln(\frac{1+r_{xy}}{1-r_{xy}}) - \frac{1}{2}\ln(\frac{1+\rho_0}{1-\rho_0})}{\sqrt{\frac{1}{n-3}}}$$

◆ 母體相關係數的信賴區間

$$\frac{1}{2}\ln(\frac{1+\rho_{xy}}{1-\rho_{xy}}) = \frac{1}{2}\ln(\frac{1+r_{xy}}{1-r_{xy}}) \pm z_{\frac{\alpha}{2}}\sqrt{\frac{1}{n-3}} \Rightarrow \rho_{xy}$$

◆ 簡單線性迴歸模型的建購流程

■ 線性模式適合度的檢定

◆ 變異的分解

$$SSE = SSL + SSPE$$

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \hat{y}_i)^2, SSL = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\hat{y}_i - \overline{y}_i)^2, SSPE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_i)^2$$

◆ 變異數分析表

變異來源	平方和	自由度	均方和	F
缺適性	SSL	<i>k</i> – 2	$MSL = \frac{SSL}{k - 2}$	F* _ MSL
純誤差	SSPE	n-k	$MSPE = \frac{SSPE}{n-k}$	$\Gamma = \frac{1}{MSPE}$
誤差	SSE	n-2		1/7/

拾捌、多元迴歸

- 多元迴歸模型的基本假設
 - 依變數為常態隨機變數,而自變數為選定之控制變數。
 - 對不同的 x 值,誤差的期望值為 0,即 $E(\varepsilon_i) = 0$
 - 具變異數齊一性,即 $E(\varepsilon_i) = \sigma^2$ 或 $\sigma^2_{\gamma|x_i,x_2,\cdots,x_k} = \sigma^2$ 。
 - ε 相互獨立,即 $Cov(\varepsilon_i, \varepsilon_i) = 0, i \neq j$ 。
 - ε 與自變數 x 無關, 即 $Cov(\varepsilon_i, x_i) = 0$ 。
- 二元線性迴歸方程係數的推導

$$\begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} S_{1y} \\ S_{2y} \end{bmatrix}$$
$$\hat{\alpha} = \overline{y} - \hat{\beta}_1 \overline{x}_1 - \hat{\beta}_2 \overline{x}_2$$

$$\alpha = y - \beta_1 x_1 - \beta_2 x_2$$

$$S_{11} = \sum_{i=1}^{n} (x_{1i} - \overline{x}_1)^2 = \sum_{i=1}^{n} x_{1i}^2 - n\overline{x}_1^2 = n\sigma_{x_1}^2$$

$$S_{22} = \sum_{i=1}^{n} (x_{2i} - \overline{x}_2)^2 = \sum_{i=1}^{n} x_{2i}^2 - n\overline{x}_2^2 = n\sigma_{x_2}^2$$

$$S_{12} = S_{21} = \sum_{i=1}^{n} (x_{1i} - \overline{x}_1)(x_{2i} - \overline{x}_2) = \sum_{i=1}^{n} x_{1i} x_{2i} - n\overline{x}_1 \overline{x}_2 = Cov(x_1, x_2)$$

$$S_{1y} = \sum_{i=1}^{n} (x_{1i} - \overline{x}_1)(y_i - \overline{y}) = \sum_{i=1}^{n} x_{1i} y_i - n\overline{x}_1 \overline{y} = Cov(x_1, y)$$

$$S_{2y} = \sum_{i=1}^{n} (x_{2i} - \overline{x}_2)(y_i - \overline{y}) = \sum_{i=1}^{n} x_{2i} y_i - n\overline{x}_2 \overline{y} = Cov(x_2, y)$$

- 二元迴歸的統計推論 ◆ 變異的分解

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2 = n\sigma_y^2 = (n-1)s_y^2$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 = \hat{\beta}_1 S_{1y} + \hat{\beta}_2 S_{2y} = SST - SSE$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} y_i^2 - \hat{\alpha} \sum_{i=1}^{n} y_i - \hat{\beta}_1 \sum_{i=1}^{n} y_i x_{1i} - \hat{\beta}_2 \sum_{i=1}^{n} y_i x_{2i} = SST - SSR$$

變異數分析表

變異來源	平方和	自由度	均方和	F
迴歸	SSR	2	$MSR = \frac{SSR}{2}$	MCD
誤差	SSE	n-3	$MSE = \frac{SSE}{n-3}$	$F^* = \frac{MSR}{MSE}$
總和	SST	n-1		

博碩統計學

$$F^* > F_{\alpha,2,n-3}$$
 時⇒拒絕虛無假設

- 二元迴歸的迴歸係數統計推論
 - ϕ β 的檢定

$$t^* = \frac{\hat{\beta}_1}{\sqrt{\frac{S_{22}}{S_{11}S_{22} - S_{12}^2} MSE}}$$

 ϕ β 的信賴區間

$$\beta_1 = \hat{\beta}_1 \pm t_{\frac{\alpha}{2}, n-3} \sqrt{\frac{S_{22}}{S_{11}S_{22} - S_{12}^2} MSE}$$

 ϕ β , 的檢定

$$t^* = \frac{\hat{\beta}_2}{\sqrt{\frac{S_{11}}{S_{11}S_{22} - S_{12}^2}MSE}}$$

◆ β_2 的信賴區間

$$\beta_2 = \hat{\beta}_2 \pm t_{\frac{\alpha}{2}, n-3} \sqrt{\frac{S_{11}}{S_{11}S_{22} - S_{12}^2} MSE}$$

◆ α的檢定

$$t^* = \frac{\hat{\alpha}}{\sqrt{(\frac{\overline{x}_1^2 S_{22} - 2\overline{x}_1 \overline{x}_2 S_{12} + \overline{x}_2^2 S_{11}}{S_{11} S_{22} - S_{12}^2} + \frac{1}{n})MSE}}$$

◆ α的信賴區間

$$\alpha = \hat{\alpha} \pm t_{\frac{\alpha}{2}, n-3} \sqrt{(\frac{\overline{x}_1^2 S_{22} - 2\overline{x}_1 \overline{x}_2 S_{12} + \overline{x}_2^2 S_{11}}{S_{11} S_{22} - S_{12}^2} + \frac{1}{n}) MSE}$$

■ 二元迴歸依變數的1-α信賴區間

$$\mu_{y_0|x_{10},x_{20}} = \hat{y}_0 \pm t_{\frac{\alpha}{2},n-3} \sqrt{\left(\frac{x_{10}^2 S_{22} - 2x_{10}x_{20}S_{12} + x_{20}^2 S_{11}}{S_{11}S_{22} - S_{12}^2} + \frac{1}{n}\right) MSE}$$

■ 二元迴歸依變數的1-α預測區間區間

$$y_0 = \hat{y}_0 \pm t_{\frac{\alpha}{2}, n-3} \sqrt{\left(\frac{x_{10}^2 S_{22} - 2x_{10} x_{20} S_{12} + x_{20}^2 S_{11}}{S_{11} S_{22} - S_{12}^2} + \frac{1}{n} + 1\right) MSE}$$

k個自變數的多元迴歸

整體迴歸適合度的檢定

部分項的檢定

- 使用 ANOVA 表
 - 變異的分解

$$SST = SSR + SSE$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

遞減模式ANOVA表

ANOVA 表

變異來源	平方和	自由度	均方和	F
迴歸	SSR	k	$MSR = \frac{SSR}{k}$	MCD
誤差	SSE	n-k-1	$MSE = \frac{SSE}{n - k - 1}$	$F^* = \frac{MSR}{MSE}$
總和	SST	n-1		

$$F^* > F_{\alpha,k,n-k-1}$$
 時⇒拒絕虛無假設

使用複相關係數

相關係數
$$t^* = \frac{r_{y\hat{y}}}{\sqrt{\frac{1 - r_{y\hat{y}}^2}{n - k - 1}}}, r_{y\hat{y}} = \frac{\sum (y_i - \overline{y})(\hat{y}_i - \overline{\hat{y}})}{\sqrt{\sum (y_i - \overline{y})^2} \sqrt{\sum (\hat{y}_i - \overline{\hat{y}})^2}}$$

■ 調整判定係數

$$R_a^2 = 1 - (1 - R^2) \frac{n - 1}{n - k - 1}$$

■ 部分項的檢定

◆ 變異數分析表

完整模式 ANOVA 表

變異來源	平方和	自由度
迴歸	SSR_F	k
誤差	SSE_F	n-k-1
總和	SST	n-1

遞減模式 ANOVA 表

變異來源	平方和	自由度
迴歸	SSR_R	q
誤差	SSE_R	n-q-1
總和	SST	n-1

$$F_p^* = \frac{\frac{SSR_F - SSR_R}{q}}{\frac{SSE_F}{n - k - 1}}$$

 $F_p^* > F_{\alpha,q,n-k-q-1}$ 時,拒絕虛無假設,表示遞減模式並未顯著的較完整模式好

◆ 迴歸係數的統計推論

$$t^* = \frac{\hat{\beta}_i}{s_{\hat{\beta}_i}}$$

 $\left|t^{*}\right| > t_{\frac{\alpha}{2},n-k-1}$ 時,拒絕虛無假設,表示該自變數對依變數y具解釋力

◆ 迴歸係數的1-α信賴區間

$$\hat{\beta}_i - t_{\underline{\alpha}, n-k-1} s_{\hat{\beta}_i} \le \beta_i \le \hat{\beta}_i + t_{\underline{\alpha}, n-k-1} s_{\hat{\beta}_i}$$

■ 偏判定係數

引進自變數 x_2 後, x_2 對y的偏判定係數

$$R_{y2.1}^{2} = \frac{SSR(x_{2}|x_{1})}{SSE(x_{1})}$$

引進自變數 x_3 後, x_3 對y的偏判定係數

$$R_{y3.12}^2 = \frac{SSR(x_3 | x_1, x_2)}{SSE(x_1, x_2)}$$

■ 偏相關係數

在 x, 固定的條件下, x, 與 y 的偏相關係數

$$r_{y1.2} = \frac{r_{yx_1} - r_{yx_2} \cdot r_{x_1 x_2}}{\sqrt{1 - r_{yx_2}^2} \sqrt{1 - r_{x_1 x_2}^2}}$$

■ 偏判定係數與偏相關係數之關係

博碩統計學

$$r_{y_{1.2}} = \pm \sqrt{R_{y_{1.2}}^2}$$
 (正負號與 $\hat{\beta}_1$ 相同)

$$r_{y3.21} = \pm \sqrt{R_{y3.21}^2}$$
 (正負號與 $\hat{\beta}_3$ 相同)

- 偏相關係數的檢定
 - ◆ 引進自變數 x₂
 - F 檢定

$$F^* = \frac{MSR(x_2 | x_1)}{MSE(x_1, x_2)}$$

當 $F^* > F_{\alpha,1,n-3}$ 時拒絕虛無假設

t 檢定

$$t^* = \frac{r_{y2.1}}{\sqrt{\frac{1 - r_{y2.1}^2}{n - 3}}} \, \vec{E} \, \vec{k} \, t^* = \frac{\hat{\beta}_2}{s_{\hat{\beta}_2}}$$

當 $\left|t^*\right| > r_{\frac{\alpha}{2},n-3}$ 時拒絕虛無假設

- ◆ 引進自變數 x₃
 - F 檢定

$$F^* = \frac{MSR(x_3 | x_1, x_2)}{MSE(x_1, x_2, x_3)}$$

 $F^* > F_{\alpha,1,n-4}$ 時拒絕虛無假設。

● *t* 檢定

$$t^* = \frac{r_{y3.12}}{\sqrt{\frac{1 - r_{y3.12}^2}{n - 4}}} \; \vec{x}_i t^* = \frac{\hat{\beta}_3}{s_{\hat{\beta}_3}}$$

當 $\left|t^*\right| > t_{\frac{\alpha}{2},n-3}$ 時拒絕虛無假設

拾玖、類別資料的分析

- 卡方檢定用在類別型態資料的檢定
 - ◆ 母體適合度檢定 檢定母體是否服從某種分配,一般而言,卡方檢定可適用於任何分配形 狀的母體。
 - ◆ 獨立性檢定 檢定兩分類型態的變數是否具相關性,並且衡量相關程度。
 - ◆ 卡方齊一性檢定 檢定兩個或兩個以上隨機樣本,是否來自同一個多項分配,或百分比一 致。
 - ◆ **改變顯著性檢定** 以列聯表的方式,檢定兩母體比例差是否相等、大於或等於 0
- 關聯性的衡量
 - ◆ ∮相關係數列聯表為2×2時

$$\phi = \sqrt{\frac{\chi^{2^*}}{n}}$$

◆ 列聯係數:

列聯表為3×3,4×4,5×5,…,呈方陣形式者

$$C = \sqrt{\frac{\chi^{2^*}}{\chi^{2^*} + n}}$$

◆ Crame's V_c :
列聯表的行數與列數不相等時

$$V_c = \sqrt{\frac{\phi^2}{\min(i-1, j-1)}}$$

貳拾、無母數統計

■ 整理

■ 母數與無母數統計之方法對照表

檢定		母數統計	無母數統計
7777		$H_0: \mu (\leq \overline{y} = \overline{y} \geq) \mu_0$	$H_0: \eta (\leq \vec{y} = \vec{y} \geq) \eta_0$
	中央趨勢	z 檢定	符號檢定
		<i>t</i> 檢定	Wilcoxon 符號檢定
單		H_0 : p (≤或=或≥) p_0	$H_0: p(\leq $ 或=或 $\geq)p_0$
	母體比例	z 檢定	F 檢定
母		以二項分配求 P_value	,,,,,
體		H_0 : σ^2 (≤或=或≥) σ_0^2	A
	母體變異數	卡方檢定	3-17
	[25+96-14-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		H ₀ : 樣本為隨機樣本
	隨機性檢定		連檢定
		$H_0: \mu_1$ (\leq 或 $=$ 或 \geq) μ_2	$H_0:\eta_1(\leq$ 或 $=$ 或 $\geq)\eta_2$
		$H_0: \mu_d$ (≤或=或≥)0	成對:
		z 檢定	符號檢定
	中央趨勢	<i>t</i> 檢定	Wilcoxon 符號檢定
			獨立:
		W_	Wilcoxon 等級和檢定
		. 42	Mann-Whitney U 檢定
		$H_0: p_1 (\leq $ 或=或 $\geq) p_2$	$H_0: p_1 = p_2$
		z 検定	獨立:
	母體比例		卡方齊一性檢定
<u></u>			不獨立:
母			改變顯著性檢定
體	母體變異數	$H_0: \sigma_1^2 (\leq $ 或=或 $\geq) \sigma_2^2$	
•	子が必ずいく	F檢定	
	7:173/		H_0 : 樣本分配與特定分配相同
	合度檢定		卡方適合度檢定
			K-S 檢定
			Lilliefor 常態性檢定
		$H_0: \rho_{xy}(\leq $ 或 $=$ 或 $\geq)0$	$H_0: A$ 類別與 B 類別無關
	相關性檢定	Person 相關性檢定	卡方獨立性檢定(類別變項)
	1019011100		$H_0: \rho_s$ (\leq 或 $=$ 或 \geq) 0
			等級相關檢定(順序量尺)
		$H_0: \mu_1 = \mu_2 = \mu_3 = \dots$	$H_0: \eta_1 = \eta_2 = \eta_3 = \dots$
H	中央趨勢	變異數分析⇒F 檢定	中位數檢定
多	1 /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		K-W 檢定
多母體			Friedman 檢定
	母體比例		$H_0: p_{1j} = p_{2j} = \cdots$
	- サカ豆レロ 17寸		卡方齊一性檢定

母體變異數 Hartley 檢定
Bartelett 檢定

- 單母體中位數的檢定
 - ◆ 符號檢定
 - 小樣本的符號檢定
 - ◎ 右尾檢定

$$P-value = f(x \ge k) = \sum_{x=k}^{n} C_{x}^{n} (0.5)^{x} (0.5)^{n-x}$$

P – value < α ⇒ 拒絕虛無假設。

◎ 左尾檢定

$$P-value = f(x \le k) = \sum_{x=0}^{k} C_x^n (0.5)^x (0.5)^{n-x}$$

P – value < α ⇒ 拒絕虛無假設。

◎ 雙尾檢定

1.
$$k > \frac{n}{2}$$
 時

$$P-value = 2f(x \ge k) = 2\sum_{x=k}^{n} C_{x}^{n} (0.5)^{x} (0.5)^{n-x}$$

P – value < α ⇒ 拒絕虛無假設。

2.
$$k < \frac{n}{2}$$
 時

$$P-value = 2f(x \le k) = 2\sum_{x=0}^{k} C_x^n (0.5)^x (0.5)^{n-x}$$

P – value < α ⇒ 拒絕虛無假設

● 大樣本的符號檢定

$$z^* = \frac{\hat{p} - 0.5}{\sqrt{\frac{0.5 \times 0.5}{n}}}$$

- ◆ Wilcoxon 符號等級檢定
 - 小樣本檢定

$$R^{*} = \min(R^{+}, R^{-})$$

$$R^{+} = \sum_{D_{i}>0} Rank(|D_{i}|), R^{-} = \sum_{D_{i}<0} Rank(|D_{i}|)$$

● 大樣本檢定

$$z^* = \frac{R^* - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}}$$

■ 成對母體中位數檢定 與單母體中位數的檢定法相同

- 兩獨立母體中位數的檢定
 - ◆ Wilcoxon 等級和檢定
 - 小樣本檢定

 $W^* =$ 樣本數較小的那組等級和

● 大樣本檢定

$$z^* = \frac{W^* - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}}}$$

- ◆ Mann-Whitney U 檢定
 - 小樣本檢定

$$\begin{split} U^* &= \min(U_1, U_2) \\ U_1 &= n_1 n_2 + \frac{n_1(n_1+1)}{2} - W_1 . U_2 = n_1 n_2 + \frac{n_2(n_2+1)}{2} - W_2 \\ \\ \mathfrak{GE} & \colon P_value = P(U < U^*) < \frac{\alpha}{2} \; , \; 則拒絕虛無假設 \end{split}$$

單尾: $P_value < \alpha$,則拒絕虛無假設

大樣本檢定

$$z^* = \frac{U^* - \frac{n_1 n_2}{2}}{\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}}$$

- 多母體檢定中位數中位數的檢定
 - ◆ 中位數檢定

$$\chi^{2^*} = \sum_i \sum_j \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$
 當 $\chi^{2^*} > \chi^2_{\alpha,(r-1)(c-1)}$ 時,拒絕 H_0

◆ 、Kruskal-Wallis (K-W) 檢定

$$K^* = \frac{SSA}{SST/n - 1} = \frac{12}{n(n+1)} \sum_{j=1}^k \frac{R_j^2}{n_j} - 3(n+1)$$

$$\stackrel{\cong}{\cong} K^* > \chi^2_{(k-1),\alpha} \Rightarrow \stackrel{\cong}{\rightleftharpoons} H_0$$

$$SST = \sum_{i=1}^{n_i} \sum_{j=1}^k R_{ij}^2 - n\overline{R}^2 = \frac{1}{6}n(n+1)(2n+1) - n \times \frac{1}{4}(n+1)^2 = \frac{n(n+1)(n-1)}{12}$$

$$SSA = \sum_{i=1}^k n_j (\overline{R}_j - \overline{\overline{R}})^2 = \sum_{j=1}^k \frac{R_j^2}{n_j} - \frac{n(n+1)^2}{4}$$

◆ Friedman 檢定

$$F_r^* = \frac{12}{rc(c+1)} \sum_{j=1}^{c} R_j^2 - 3r(c+1)$$
 當 $F_r^* > \chi_{\alpha,c-1}^2$ 時,拒絕虛無假設

博碩統計學

$$SST = \sum_{i=1}^{r} \sum_{j=1}^{c} (R_{ij} - \overline{R})^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} R_{ij}^{2} - rc\overline{R}^{2} = \frac{rc(c+1)(c-1)}{12}$$
$$SSA = \sum_{i=1}^{r} \sum_{j=1}^{c} (\overline{R}_{j} - \overline{\overline{R}})^{2} = r\sum_{i=1}^{c} (\overline{R}_{j} - \overline{\overline{R}})^{2} = \frac{1}{r} \sum_{i=1}^{c} R_{j}^{2} - \frac{rc(c+1)^{2}}{4}$$

- 母體分配檢定
 - ◆ Kolomogrov-Smirnov (K-S)檢定

$$D^* = \max |F(x_i) - S(x_i)|$$
 若 $D^* > D_{\frac{\alpha}{2},n}$ ⇒ 拒絕 H_0

◆ Lilliefor 常態性檢定

$$D^* = \max |F(x_i) - S(x_i)|$$
 若 $D^* > D_{\frac{\alpha}{2},n}$ ⇒ 拒絕 H_0

- 隨機性檢定-連檢定
 - ◆ 小様本(n₁+n₂<20)

$$R^*$$
 = 資料相鄰且符號相同的個數

$$(1) R^* \ge \frac{2n_1n_2}{n_1 + n_2} + 1 \stackrel{\pm}{\text{H}}_{5}^{\pm}$$

$$P - value = 2 \times P(R \ge R^*)$$

$$(2) R^* < \frac{2n_1n_2}{n_1 + n_2} + 1$$

$$P - value = 2 \times P(R \le R^*)$$

 $P-value < \alpha$ 時,拒絕虛無假設。

◆ 大様本(n₁,n₂≥10)

$$z^* = \frac{R^* - \frac{2n_1n_2}{n_1 + n_2} + 1}{\sqrt{\frac{2n_1n_2(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}}}$$

- Spearman 等級相關檢定
 - $4 \le n \le 30$

$$r_s^* = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2 - 1)}$$

♦ 10 ≤ *n* < 30

$$t^* = \frac{r_s}{\sqrt{\frac{1 - r_s^2}{n - 2}}}$$

♦ $n \ge 30$

$$z^* = \frac{r_s}{\sqrt{\frac{1}{n-1}}}$$