CHAPTER 3

PRODUCT MEASURES

3.1 Product Algebras

Definition 3.1.1. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces. We define the *product* σ -algebra $\mathcal{A} \otimes \mathcal{B}$ by the σ -algebra generated by sets of the form $A \times B$, where $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Definition 3.1.2. Let X and Y be sets and let $E \subseteq X \times Y$. For $x \in X$, we define the x-section of E by the set

$$E_x = \{ y \in Y \mid (x, y) \in E \},\$$

and for $y \in Y$, the y-section of E by the set

$$E^y = \{ x \in X \mid (x, y) \in E \}.$$

Lemma 3.1.3. Let X and Y be sets and let $E \subseteq X \times Y$. Then,

- 1. for $x \in X$ and $y \in Y$, $(E_x)^c = (E^c)_x$ and $(E^y)^c = (E^c)^y$;
- 2. for a sequence of subsets $(E_n)_{n=1}^{\infty}$ in $X \times Y$,

$$\left(\bigcup_{n=1}^{\infty} E_n\right)_x = \bigcup_{n=1}^{\infty} (E_n)_x \qquad \left(\bigcap_{n=1}^{\infty} E_n\right)_x = \bigcap_{n=1}^{\infty} (E_n)_x$$

$$\left(\bigcup_{n=1}^{\infty} E_n\right)_y = \bigcup_{n=1}^{\infty} (E_n)_y \qquad \left(\bigcap_{n=1}^{\infty} E_n\right)_y = \bigcap_{n=1}^{\infty} (E_n)_y.$$

Proof.

1. Let $x \in X$. For $y \in Y$, we have

$$y \in (E_x)^c \iff y \notin E_x$$

 $\iff (x,y) \notin E$
 $\iff (x,y) \in E^c$
 $\iff y \in (E^c)_x$.

Hence, $(E_x)^c = (E^c)_x$. Similarly, $(E^y)^c = (E^c)^y$.

2. Let $x \in X$. For $y \in Y$, we have

$$y \in \left(\bigcup_{n=1}^{\infty} E_n\right)_x \iff \exists n \in \mathbb{Z}_{\geq 1} \text{ s.t. } (x,y) \in E_n$$
$$\iff \exists n \in \mathbb{Z}_{\geq 1} \text{ s.t.} y \in (E_n)_x$$
$$\iff y \in \bigcup_{n=1}^{\infty} (E_n)_x.$$

П

Pete Gautam

Also, for $y \in Y$, we have

$$y \in \left(\bigcap_{n=1}^{\infty} E_n\right)_x \iff \forall n \in \mathbb{Z}_{\geq 1}, (x, y) \in E_n$$
$$\iff \forall n \in \mathbb{Z}_{\geq 1}, y \in (E_n)_x$$
$$\iff y \in \bigcap_{n=1}^{\infty} (E_n)_x.$$

Hence,

$$\left(\bigcup_{n=1}^{\infty} E_n\right)_x = \bigcup_{n=1}^{\infty} (E_n)_x \qquad \left(\bigcap_{n=1}^{\infty} E_n\right)_x = \bigcap_{n=1}^{\infty} (E_n)_x.$$

Similarly,

$$\left(\bigcup_{n=1}^{\infty} E_n\right)^y = \bigcup_{n=1}^{\infty} (E_n)^y \qquad \left(\bigcap_{n=1}^{\infty} E_n\right)^y = \bigcap_{n=1}^{\infty} (E_n)^y.$$

Proposition 3.1.4. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces and $E \in \mathcal{A} \otimes \mathcal{B}$. Then, for all $x \in X$ and $y \in Y$, $E_x \in \mathcal{B}$ and $E^y \in \mathcal{A}$.

Proof. Let

2

$$\mathcal{M} = \{ S \in \mathcal{A} \otimes \mathcal{B} \mid S_x \in \mathcal{B} \ \forall x \in X, S^y \in \mathcal{A} \ \forall y \in Y \}.$$

We show that \mathcal{M} is a σ -algebra.

- We have $\emptyset \in \mathcal{M}$ since $\emptyset_x = \emptyset \in \mathcal{B}$ and $\emptyset^y = \emptyset \in \mathcal{A}$ for all $x \in X$ and $y \in Y$.
- Let $S \in \mathcal{M}$. Then, for all $x \in X$ and $y \in Y$,

$$(S^c)_x = (S_x)^c \in \mathcal{B}, \qquad (S^c)^y = (S^y)^c \in \mathcal{A}$$

since \mathcal{A} and \mathcal{B} are σ -algebras.

• Let $(S_n)_{n=1}^{\infty}$ be a sequence in \mathcal{M} . Then, for all $x \in X$ and $y \in Y$,

$$\left(\bigcup_{n=1}^{\infty} S_n\right)_x = \bigcup_{n=1}^{\infty} (S_n)_x \in \mathcal{B}, \qquad \left(\bigcup_{n=1}^{\infty} S_n\right)^y = \bigcup_{n=1}^{\infty} (S_n)^y \in \mathcal{A}$$

since \mathcal{A} and \mathcal{B} are σ -algebras.

Hence, \mathcal{M} is a σ -algebra. Now, let $A \in \mathcal{A}$ and $B \in \mathcal{B}$. For $x \in X$ and $y \in Y$, we have

$$(A \times B)_x = \begin{cases} B & x \in A \\ \emptyset & \text{otherwise,} \end{cases}$$
 $(A \times B)^y = \begin{cases} A & y \in B \\ \emptyset & \text{otherwise.} \end{cases}$

So, $A \times B \in \mathcal{M}$. Since $\mathcal{A} \otimes \mathcal{B}$ is generated by $\mathcal{A} \times \mathcal{B}$, we find that $\mathcal{M} = \mathcal{A} \times \mathcal{B}$. That is, for all $E \in \mathcal{A} \otimes \mathcal{B}$, $E_x \in \mathcal{B}$ and $E^y \in \mathcal{A}$.

, -

Definition 3.1.5. Let X and Y be sets and let $f: X \times Y \to \mathbb{R} \cup \{\pm \infty\}$ be a function. For $x \in X$, define the function $f_x: Y \to \mathbb{R} \cup \{\pm \infty\}$ by $f_x(y) = f(x, y)$, and for $y \in Y$, define the function $f_y: X \to \mathbb{R} \cup \{\pm \infty\}$ by $f_y(x) = f(x, y)$.

Lemma 3.1.6. Let X and Y be sets and let $f: X \times Y \to \mathbb{R} \cup \{\pm \infty\}$ be a function. Then, for $a \in \mathbb{R}$, $x \in X$ and $y \in Y$,

$$(f_x)^{-1}(a,\infty] = (f^{-1}(a,\infty])_x, \qquad (f_y)^{-1}(a,\infty] = (f^{-1}(a,\infty])_y.$$

Proof. Let $a \in \mathbb{R}$ and $x \in X$. For $y \in Y$, we find that

$$y \in (f_x)^{-1}(a, \infty] \iff f(x, y) = f_x(y) \in (a, \infty]$$

 $\iff (x, y) \in f^{-1}(a, \infty]$
 $\iff y \in (f^{-1}(a, \infty])_x.$

Hence, $(f_x)^{-1}(a,\infty]=(f^{-1}(a,\infty])_x$ for all $x\in X$. Similarly, $(f_y)^{-1}(a,\infty]=(f^{-1}(a,\infty])^y$ for all $y\in Y$. \square

Proposition 3.1.7. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces and $f: X \times Y \to \mathbb{R} \cup \{\pm \infty\}$ be measurable with respect to $\mathcal{A} \otimes \mathcal{B}$. Then, for all $x \in X$, f_x is measurable with respect to \mathcal{B} and for all $y \in Y$, f_y is measurable with respect to \mathcal{A} .

Proof. Let $a \in \mathbb{R}$. Since f is measurable, we find that

$$S = f^{-1}(a, \infty] \in \mathcal{A} \otimes \mathcal{B}.$$

Now, let $x \in X$ and $y \in Y$. We have shown above that $S_x \in \mathcal{B}$ and $S^y \in \mathcal{A}$. In that case,

$$(f_x)^{-1}(a,\infty] = S_x \in \mathcal{B}, \qquad (f_y)^{-1}(a,\infty] = S^y \in \mathcal{A}.$$

This implies that f_x is measurable with respect to \mathcal{B} , and f_y is measurable with respect to \mathcal{A} .

Definition 3.1.8. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces. Define the set \mathcal{E} by the elements in $X \times B$ that are a finite union of elements in $\mathcal{A} \times \mathcal{B}$.

Proposition 3.1.9. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces. Then, \mathcal{E} is an algebra.

Proof.

- We have $\emptyset \in \mathcal{E}$ since $\emptyset \in \mathcal{A} \times \mathcal{B}$.
- Let $E, F \in \mathcal{E}$. Then, E and F are both finite union of elements in $\mathcal{A} \times \mathcal{B}$. Hence, their union $E \times F$ is a finite union of elements in \mathcal{A} .
- Let $A \in \mathcal{A}$ and $B \in \mathcal{B}$. For $(x, y) \in X \times Y$, we have

$$(x,y) \in (A \times B)^c \iff (x,y) \notin A \times B$$

 $\iff x \notin A \text{ or } y \notin B$
 $\iff (x \in A^c \text{ and } y \in B) \text{ or } (x \in A^c \text{ and } y \in B^c)$
or $(x \in A \text{ and } y \in B^c)$
 $\iff (x,y) \in (A^c \times B) \cup (A \times B^c) \cup (A^c \times B^c).$

3

Hence,

$$(A \times B)^c = (A^c \times B) \cup (A \times B^c) \times (A^c \times B^c),$$

where each of the 3 subsets is disjoint. This implies that $(A \times B)^c \in \mathcal{E}$. We know that \mathcal{E} is closed under the union of finite intervals from above, so in general, for all $E \in \mathcal{E}$, $E^c \in \mathcal{E}$.

So, \mathcal{E} is an algebra.

Proposition 3.1.10. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces. Define the map $\mu \otimes \nu \colon \mathcal{A} \times \mathcal{B} \to [0, \infty]$ by

$$(\mu \otimes \nu) \left(\bigcup_{k=1}^{n} A_k \times B_k \right) = \sum_{k=1}^{n} \mu(A_k) \cdot \mu(B_k)$$

whenever $(A_k \times B_k)_{k=1}^n$ is pairwise disjoint. Then, $\mu \otimes \nu$ is a measure.

Proof.

• We first show that $\mu \otimes \nu$ is well-defined. So, let $(A_i \times B_i)_{i=1}^n$ and $(C_j \times D_j)_{j=1}^m$ be disjoint sequences of sets in $\mathcal{A} \times \mathcal{B}$ such that

$$\bigcup_{i=1}^{n} A_i \times B_i = \bigcup_{j=1}^{m} C_j \times D_j.$$

Proposition 3.1.11. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces. Then, there exists a measurable functions $\mu \otimes \nu$ on $\mathcal{A} \otimes \mathcal{B}$ such that for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$,

$$(\mu \otimes \nu)(A \otimes B) = \mu(A) \cdot \nu(B).$$

Proof. By Caratheodory Extension Theorem, we know that the measure $\mu \otimes \nu$ extends to the σ -algebra generated by $\mathcal{A} \times \mathcal{B}$, i.e. $\mathcal{A} \otimes \mathcal{B}$.

Proposition 3.1.12. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces and $A \in \mathcal{A}$, $B \in \mathcal{B}$. If there exists a sequence of disjoint subsets $(A_n \times B_n)_{n=1}^{\infty}$ such that

$$A \times B = \bigcup_{n=1}^{\infty} A_n \times B_n,$$

then

$$(\mu \otimes \nu)(A \otimes B) = \mu(A) \cdot \nu(B) = \sum_{n=1}^{\infty} (\mu \otimes \nu)(A_n \otimes B_n).$$

Proof.

Lemma 3.1.13. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ -finite measure spaces and $E \in \mathcal{A} \otimes \mathcal{B}$. Then, the functions $f: X \to [0, \infty]$ and $g: Y \to [0, \infty]$ defined by $f(x) = \nu(E_x)$ and $g(x) = \mu(E_y)$ are measurable with

$$(\mu \otimes \nu)(E) = \int_X f \ d\mu = \int_Y g \ d\nu,$$

meaning that

$$(\mu \otimes \nu)(E) = \int_X \nu(E_x) \ d\mu(x) = \int_Y \mu(E^y) \ d\nu(y).$$

Proof. Let

$$\mathcal{M} = \left\{ E \in \mathcal{A} \otimes \mathcal{B} \mid (\mu \otimes \nu)(E) = \int_{X} \nu(E_x) \ d\nu(x) = \int_{Y} \mu(E^y) \ d\mu(y) \right\}.$$

We claim that \mathcal{M} is a σ -algebra containing $\mathcal{A} \times \mathcal{B}$.

• We have

$$\mu(\varnothing) = 0$$

$$\int_X \nu(\varnothing_x) \ d\mu(x) = \int_X 0 \ d\mu(x) = 0$$

$$\int_Y \mu(\varnothing_y) \ d\nu(y) = \int_Y 0 \ d\nu(y) = 0.$$

So, $\varnothing \in \mathcal{M}$.

• Let $(E_n)_{n=1}^{\infty}$ be a sequence of disjoint sets in \mathcal{M} . We have

$$\int_X \nu \left(\bigcup_{n=1}^\infty (E_n)_x \right) d\mu(x) = \int_X \sum_{n=1}^\infty \nu((E_n)_x) d\mu(x)$$

since ν is a measure. Since $\nu((E_n)_x) \geq 0$, Monotone Convergence Theorem tells us that

$$\int_{X} \sum_{n=1}^{\infty} \nu((E_n)_x) \ d\mu(x) = \sum_{n=1}^{\infty} \int_{X} \nu((E_n)_x) \ d\mu(x).$$

Since $E_n \in \mathcal{M}$ for all $n \in \mathbb{Z}_{>1}$,

$$\sum_{n=1}^{\infty} \int_{X} \nu((E_n)_x) \ d\mu(x) = \sum_{n=1}^{\infty} (\mu \otimes \nu)((E_n)_x).$$

Now, since $\mu \otimes \nu$ is a measure, we find that

$$\sum_{n=1}^{\infty} (\mu \otimes \nu)((E_n)_x) = (\mu \otimes \nu)(\bigcup_{n=1}^{\infty} E_n)_x.$$

Hence,

$$\int_{X} \nu \left(\bigcup_{n=1}^{\infty} (E_{n})_{x} \right) d\mu(x) = (\mu \otimes \nu) (\bigcup_{n=1}^{\infty} E_{n})_{x}.$$

Similarly,

$$\int_Y \mu\left(\bigcup_{n=1}^\infty (E_n)^y\right) d\nu(y) = (\mu \otimes \nu)(\bigcup_{n=1}^\infty E_n)^y.$$

This implies that

$$\bigcup_{n=1}^{\infty} E_n \in \mathcal{M}.$$

- ullet By Dynkin's Lemma, we find that ${\mathcal M}$ is closed under complements.
- Now, let $A \in \mathcal{A}$ and $B \in \mathcal{B}$, and denote $E = A \times B$. We know that for all $x \in X$,

$$\nu(E_x) = \begin{cases} \nu(B) & x \in A \\ 0 & x \in B. \end{cases}$$

Hence,

$$\int_X \nu(E_x) \ d\mu(x) = \int_X \chi_A \nu(B) \ d\mu(x) = \nu(B) \cdot \mu(X) = (\mu \otimes \nu)(A \times B).$$

Similarly,

$$\int_Y \mu(E^y) \ d\nu(y) = \int_Y \chi_B \mu(A) \ d\nu(y) = (\mu \otimes \nu)(A \times B).$$

This implies that $E \in \mathcal{M}$.

So, since \mathcal{M} is a σ -algebra containing $\mathcal{A} \times \mathcal{B}$, we find that $\mathcal{M} = \mathcal{A} \otimes \mathcal{B}$. Hence,

$$(\mu \otimes \nu)(E) = \int_X \nu(E_x) \ d\mu(x) = \int_Y \mu(E^y) \ d\nu(y)$$

for all $E \in \mathcal{A} \otimes \mathcal{B}$.

Theorem 3.1.14 (Tonelli's Theorem). Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ -finite measure spaces and let $f: X \times Y \to [0, \infty]$ be integrable with respect to $\mu \otimes \nu$. Then, for $F: X \to [0, \infty]$ and $G: Y \to [0, \infty]$ given by

$$F(x) = \int_{Y} f(x,y) \ d\nu(y), \qquad G(y) = \int_{Y} f(x,y) \ d\mu(x)$$

are ν - and μ -measurable respectively. Then, f is integrable,

$$\int_{X\times Y} f\ d(\mu\otimes\nu) = \int_X F\ d\mu = \int_Y G\ d\nu.$$

Proof. Let $E \in \mathcal{A} \otimes \mathcal{B}$. We first show that $f = \chi_E$ satisfies the result. For $x \in X$ and $y \in Y$, we have

$$(\chi_E)_x(y) = \chi_E(x,y) = \begin{cases} 1 & (x,y) \in E \\ 0 & \text{otherwise} \end{cases} = \chi_{E_x}(y),$$

so $(\chi_E)_x = \chi_{E_x}$. Similarly, $(\chi_E)^y = \chi_{E^y}$. This implies that

$$F(x) = \int_{Y} f_x \ d\nu(y) = \int_{Y} \chi_{E_x} \ d\nu = \nu(E_x),$$

and

$$G(y) = \int_X f^y \ d\mu(y) = \int_X \chi_{E^y} \ d\mu = \mu(E^y).$$

П

By the result above, we know that

$$\int_X F \ d\mu = \int_X \nu(E_x) \ d\mu(x) = (\mu \otimes \nu)(E)$$
$$\int_Y G \ d\nu = \int_Y \mu(E^y) \ d\nu(y) = (\mu \otimes \nu)(E).$$

Now, the result follows for a simple measurable function- it is a linear combination of characteristic functions on measurable sets.

Next, let $f \geq 0$ be measurable. We know that there exists a sequence of (monotone) simple functions $(s_n)_{n=1}^{\infty}$ with $s_n \to f$. We find that

$$\int_{Y} F_n(x) \ d\nu(y) \to \int_{Y} F \ d\nu(y)$$
$$\int_{X} G_n(y) \ d\mu(x) \to \int_{X} G \ d\mu(x)$$

by Monotone Convergence Theorem. Again, by MCT.

$$\int_X F_n \ d\mu(x) = \int_X \int_Y s_n \ d\mu \otimes \nu \to \int_X F(x) \ d\mu(x)$$
$$\int_X G_n \ d\mu(x) = \int_Y \int_X s_n \ d\mu \otimes \nu \to \int_Y G(y) \ d\nu(y).$$

Since

$$\int_X \int_Y s_n \ d\mu \otimes \nu = \int_Y \int_X s_n \ d\mu \otimes d\nu,$$

we find that

$$\int_X F \ d\mu(x) = \int_Y G \ d\nu(y) = \int_{X \times Y} f \ d\mu \otimes d\nu.$$

Theorem 3.1.15 (Fubini's Theorem). Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ -finite measure spaces and let $f: X \times Y \to \mathbb{R} \cup \{\pm \infty\}$ be integrable with respect to $\mu \otimes \nu$. Then,

- 1. for μ -almost all x, the function $f_x \colon Y \to \mathbb{R} \cup \{\pm \infty\}$ given by $f_x(y) = f(x,y)$ is ν integrable; for ν -almost all y, the function $f_y \colon X \to \mathbb{R} \cup \{\pm \infty\}$ given by $f_y(x) = f(x,y)$ is μ integrable.
- 2. for $F: X \to \mathbb{R} \cup \{\pm \infty\}$ and $G: Y \to \mathbb{R} \cup \{\pm \infty\}$ defined by

$$F(x) = \int_{Y} f(x, y) \ d\nu(y), \qquad G(y) = \int_{X} f(x, y) \ d\mu(x),$$

F is μ -integrable and G is ν -integrable.

3.

$$\int_{X\times Y} f\ d(\mu\otimes\nu) = \int_{Y} F\ d\mu = \int_{Y} G\ d\nu.$$

Proof. This follows from Tonelli's Theorem, taking $f = f_+ + f_-$.