EART60702: Earth and Environmental Data Science Project 2

Sanghoon Choi 10327738

Variable Name	Explanation
TREFMXAV_U	Urban daily maximum of average 2-m temperature
FLNS	Net longwave flux at surface
FSNS	Net solar flux at surface
PRECT	Total (convective and large-scale) precipitation rate (liq + ice)
PRSN	Snowfall_flux
QBOT	Lowest model level water vapor mixing ratio
TREFHT	Reference height temperature
UBOT	Lowest model level zonal wind
VBOT	Lowest model level meridional wind
lat	Latitude
lon	Longitude

Model - DNN

Train

Train

Result - 1

Each member is different.

Generally, it is harder to predict in a more future climate.

Result - 2

Error grows as leadtime gets longer.

Harder to predict in a more future climate.

Result - 3

Using multiple members for training helps.

Conclusion

- DNN approach works for TREFMXAV_U prediction
- Each ensemble member shows different prediction
- Lower performance for future climate
- Use of multiple scenarios for training was helpful