Group quiz

EE24BTECH11038 - M.B.S Aravind

Forward Euler method:- Given an ODE and an initial value $y(x_0) = y_0$, Euler's method yield's approximate solution values at equidistant x-values $x_0, x_1 = x_0 + h, x_2 = x_0 + 2h, ...$ namely

$$y_1 = y_0 + h f(x_0, y_0) \tag{0.1}$$

$$y_2 = y_1 + h f(x_1, y_1) (0.2)$$

In general

$$y_n = y_{n-1} + hf(x_{n-1}, y_{n-1})$$
(0.3)

where the step h equals, e.g., 0.1 or 0.2 or a smaller value for greater accuracy

Analysis of parameter variations

Given differential equation is

$$\frac{di}{dt} = \frac{v(t) - Ri}{L} \tag{0.4}$$

$$i_{n+1} = i_n + h \frac{v(t) - Ri}{L} \tag{0.5}$$

· Varying R

- Let the values of L,T, α be 1H, 1 sec, 0.5 respectively.
- The plot of i vs. time (for different values of R is given by)

Fig. 0.1: Caption

1

$- R=0.1\Omega$

- 1) The current reaches a high peak value as a result of minimal resistance restricting the flow.
- 2) The decay phase is slow because the inductor dominates, storing energy and releasing it gradually.

$- R=1\Omega$

- 1) Slower current buildup than in the low resistance case.
- 2) The peak current is lower, as more energy is dissipated in the resistor.

$- R=10\Omega$

- 1) The peak current is significantly lower because the resistor limits current flow.
- 2) The response stabilizes much faster, as energy is quickly dissipated.

Varying L

- Let the values of R,T, α be 1 Ω , 1 sec, 0.5 respectively.

- L=0.1H

- 1) Faster current response.
- 2) Smaller time constant ($\tau = L/R$), leading to a quicker rise and fall.

- L=1H

- 1) Balanced response between resistive and inductive behavior.
- 2) Current change is neither too abrupt nor too slow.

- L=10H

- 1) Smoother transitions as the inductor resists rapid current changes.
- 2) Larger time constant, leading to slow response and gradual decay.
- 3) The inductor stores more energy, resulting in a lagged response.
- The plot of i vs. time (for different values of L is given by)

Fig. 3.1: Caption

Error analysis

The error in the forward Euler method can be analyzed using a Taylor series expansion. Given a general differential equation:

$$\frac{dy}{dt} = f(t, y) \tag{3.1}$$

with an exact solution y(t), we expand it around t_n using the Taylor series:

$$y(t_{n+1}) = y(t_n) + h\frac{dy}{dt} + h^2\frac{dy}{dt} + O(h^3)$$
 (3.2)

Substituting the differential equation $\frac{dy}{dt} = f(t, y)$ and using the Euler approximation:

$$y_{n+1} = y_n + h f(t_n, y_n)$$
 (3.3)

The local truncation error is given by the omitted higher-order terms:

$$E_n = \frac{h^2}{2} \frac{d^2 y}{dt^2} + O(h^3) \tag{3.4}$$

Plotting the response using the Euler method for different values of h where R,L,T, α are 1Ω ,1H,1 sec, 0.5 respectively

Fig. 3.2: Caption

h value	Deviation in 1st step	Deviation in 2nd step
0.01	0.000498	0.000986
0.1	0.048	0.087
0.4	0.7032	-0.5149

TABLE 3: Caption

There is a noticeable deviation for every value of h, and as h increases, the deviation also increases. This indicates that the Euler method is not stable for larger values of h