Scilab Textbook Companion for Fluid Power Theory & Applications by J. Sullivan¹

Created by
Kukunuri Venkata Phani Pradeep
Fluid mechanics
Chemical Engineering
IIT Bombay
College Teacher
Parth Goswami
Cross-Checked by
Ganesh R

May 23, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

 ${\bf Title:} \ \, {\bf Fluid} \, \, {\bf Power} \, \, {\bf Theory} \, \, \& \, \, {\bf Applications}$

Author: J. Sullivan

Publisher: Reston Publishing Company

Edition: 4

Year: 2007

ISBN: 0137555881

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
2	Applying Hydraulic Principles To Single Acting Linear Systems	5	
3	Determining the properties of fluids	9	
4	applications and testing of seals and packings	14	
5	Accounting for the energy in hydraulic systems	16	
6	Characteristics of rotary pumps	23	
7	Valves in hydraulic transmission control	26	
8	Characteristics of Actuators	27	
9	Hydraulic system components	33	
11	Introduction to Pneumatics	37	

List of Scilab Codes

Exa 2.1	Horsepower expended	5
Exa 2.2	time required	5
Exa 2.3	Pressure within the system	6
Exa 2.4	Fluid horsepower	6
Exa 2.5	overall efficiency	7
Exa 2.6	Slip	7
Exa 2.7	Electro-mechanical efficiency	8
Exa 3.1	weight	9
Exa 3.2	density	10
Exa 3.3	specific weight	10
Exa 3.4	Pressure	11
Exa 3.5	Force	11
Exa 3.6	Pressure	11
Exa 3.7	head	12
Exa 3.8	kinematic viscosity	12
Exa 3.9	equivalent viscosity	12
Exa 3.11	coefficient of friction	13
Exa 4.1	Groove diameter	14
Exa 4.2	thickness	14
Exa 4.3	final available squeeze	15
Exa 5.1	velocity of fluid in the conductor	16
Exa 5.2	minnimum diameter	16
Exa 5.3	veloctity	17
Exa 5.4	pressure	17
Exa 5.5	energy exptracted from the fluid	18
Exa 5.6	velocty of the fluid	18
Exa 5.7	friction coefficient for the orifice	19
Eva 5.8	Reynolds number	10

Exa 5.9	Critical velocity	9
Exa 5.10	Pressure drop	20
Exa 5.11		20
Exa 5.12		21
Exa 5.13		21
Exa 6.1	input torque	23
Exa 6.2		23
Exa 6.3		24
Exa 6.4		24
Exa 6.5		25
Exa 7.1	flow coefficient	26
Exa 8.1		27
Exa 8.2		27
Exa 8.3		28
Exa 8.4		28
Exa 8.5	total force decessary to decelarate the load	29
Exa 8.6	pressure in the cylinder	29
Exa 8.7		30
Exa 8.8		30
Exa 8.9		30
Exa 8.10		31
Exa 8.11		31
Exa 8.12		32
Exa 9.1		3
Exa 9.2		33
Exa 9.3	Stroke length	34
Exa 9.4		34
Exa 9.5	percentage difference in volume	35
Exa 9.6		35
Exa 11.1		37
Exa 11.2	volume the heated gas will occupy	37
Exa 11.3		8
Exa 11.4		8
Exa 11.5		39
Exa 11.6		39
Exa 11.7	*	10
Exa 11.8		10

Applying Hydraulic Principles To Single Acting Linear Systems

Scilab code Exa 2.1 Horsepower expended

```
1 clc
2 //initialisation of variables
3 F= 1500 //lb
4 L= 54 //IN
5 t= 12 //sec
6 //CALCULATIONS
7 hp= F*L/(t*6600)
8 //RESULTS
9 printf ('Horsepower expended at the output = %.2 f hp ',hp)
```

Scilab code Exa 2.2 time required

```
1 clc
```

```
2  //initialisation of variables
3  F= 1500  //lb
4  t1= 10  //sec
5  F1= 1200  //lb
6  //CALCULATIONS
7  t2= F*t1/F1
8  //RESULTS
9  printf ('time required to raise the load = %.1f sec', t2)
```

Scilab code Exa 2.3 Pressure within the system

```
1 clc
2 //initialisation of variables
3 d= 2 //in
4 F= 1000 //lb
5 t= 10 //sec
6 L= 48 //in
7 S= 24 //in
8 //CALCULATIONS
9 ohp= F*L/(t*6600)
10 Ac= %pi*d^2/4
11 P= ohp*t*6600/(S*Ac)
12 //RESULTS
13 printf ('Pressure within the system = %.f psi',P)
```

Scilab code Exa 2.4 Fluid horsepower

```
1 clc
2 //initialisation of variables
3 P= 1000 //psi
4 Q= 3 //gpm
5 //CALCULATIONS
```

```
6 Fhp= P*Q/(1714)
7 //RESULTS
8 printf ('Fluid horsepower = %.2 f hp',Fhp)
```

Scilab code Exa 2.5 overall efficiency

```
1 clc
2 //initialisation of variables
3 Fi= 25 //lb
4 li= 12 //in
5 ni= 30
6 ti= 60 //sec
7 F0= 1000 //lb
8 Lo= 6 //in
9 to= 60 //sec
10 //CALCULATIONS
11 lhp= Fi*li*ni/(ti*6600)
12 Ohp= F0*Lo/(to*6600)
13 eo= Ohp*100/lhp
14 //RESULTS
15 printf ('overall efficiency = %.f percent',eo)
```

Scilab code Exa 2.6 Slip

```
1 clc
2 //initialisation of variables
3 vp= 0.75 //in^3
4 n= 9 //strokes
5 t= 10 //sec
6 d= 2 //in
7 Sc= 2 //in
8 //CALCULATIONS
9 Qt= vp*n/(t*3.85)
```

```
10  Ac= %pi*d^2/4
11  Qa= Ac*Sc/(t*3.85)
12  s= Qt-Qa
13  s1= (1-(Qa/Qt))*100
14  ev= Qa*100/Qt
15    //RESULTS
16  printf ('Slip = %.3 f gpm',s)
17  printf ('\n Slip perecentage= %.f percent',s1)
18  printf ('\n volumetric efficiency = %.f perecnt',ev
)
```

Scilab code Exa 2.7 Electro-mechanical efficiency

```
1 clc
2 //initialisation of variables
3 eo= 87
4 em= 94
5 //CALCULATIONS
6 ee= eo*100/em
7 //RESULTS
8 printf ('Electro-mechanical efficiency = %.f percent ',ee)
```

Determining the properties of fluids

Scilab code Exa 3.1 weight

```
1 clc
 2 //initialisation of variables
3 \text{ M} = 5//\text{slug}
4 g= 32 // ft / sec^2
5 \text{ M1} = 10 //\text{kg}
6 g1= 9.8 //m/sec^2
7 \text{ M2} = 15 \text{ //gm}
8 g2= 980 //\text{cm/sec}^2
9 //CALCULATIONS
10 \quad W = M * g
11 \text{ W1= M1*g1}
12 \text{ W2= M2*g2}
13 //RESULTS
14 printf ('weight = \%.f lb', W)
15 printf ('\n weight = \%. f N', W1)
16 printf ('\n weight = \%. f dyn', W2)
```

Scilab code Exa 3.2 density

```
1 clc
2 //initialisation of variables
3 M= 20 //grams
4 V= 25 //mm^3
5 //CALCULATIONS
6 d= M/V
7 d1= M*0.001/(V*0.000001)
8 d2= M*0.0022/(V*0.00003531)
9 //RESULTS
10 printf ('density = %.2 f gm/cm^3',d)
11 printf ('\n density = %.f kg/m^3',d1)
12 printf ('\n density = %.1 f slugs/ft^3',d2)
```

Scilab code Exa 3.3 specific weight

```
1 clc
 2 //initialisation of variables
 3 \text{ W} = 7200 //1b
4 V= 120 // ft^3
5 \text{ W1} = 3600 // \text{lb}
6 \text{ V1= } 50 \text{ } //\text{m}^3
 7 \text{ W2} = 500 //\text{dyn}
8 \text{ V2} = 7000 //\text{cm}^3
9 //CALCULATIONS
10 s = W/V
11 	 s1 = W1/V1
12 \text{ s2= W2/V2}
13 //RESULTS
14 printf ('specific weight = \%. f lbs/ft<sup>3</sup>',s)
15 printf ('\n specific weight = \%. f N/m<sup>3</sup>',s1)
16 printf ('\n specific weight = \%.4 \,\mathrm{f} \,\mathrm{dyn/cm^3}',s2)
```

Scilab code Exa 3.4 Pressure

```
1 clc
2 //initialisation of variables
3 F= 200 //lb
4 A= 4 //in^2
5 //CALCULATIONS
6 P= F/A
7 //RESULTS
8 printf ('Pressure = %. f psi', P)
```

Scilab code Exa 3.5 Force

```
1 clc
2 //initialisation of variables
3 P= 1500 //psi
4 A= 2//in^2
5 //CALCULATIONS
6 F= P*A
7 //RESULTS
8 printf ('Force = %. f lb',F)
```

Scilab code Exa 3.6 Pressure

```
1 clc
2 //initialisation of variables
3 s= 0.85
4 h= 50 //ft
5 //CALCULATIONS
```

```
6 P= s*h*0.433
7 //RESULTS
8 printf ('Pressure = %.1 f psi',P)
```

Scilab code Exa 3.7 head

```
1 clc
2 //initialisation of variables
3 P= 1500 //psi
4 d= 0.78
5 //CALCULATIONS
6 h= P*2.31/d
7 //RESULTS
8 printf ('head = %.1 f ft',h)
```

Scilab code Exa 3.8 kinematic viscosity

```
1 clc
2 //initialisation of variables
3 k= 0.1200
4 t= 225 //sec
5 d= 0.82
6 //CALCULATIONS
7 v= t*k
8 u= v*d
9 //RESULTS
10 printf ('kinematic viscosity = %.1 f cP',u)
```

Scilab code Exa 3.9 equivalent viscosity

```
1 clc
2 //initialisation of variables
3 t= 80 //sec
4 //CALCULATIONS
5 v= 0.226*t-(195/t)
6 v1= 0.00035*t-(0.303/t)
7 //RESULTS
8 printf ('equivalent viscosity = %.2 f cst',v)
9 printf ('\n equivalent viscosity = %.3 f newtons',v1)
)
```

Scilab code Exa 3.11 coefficient of friction

```
1 clc
2 //initialisation of variables
3 F= 45 //gm
4 L= 20000//gm\
5 r= 7.86
6 s= 1.27
7 //CALCULATIONS
8 CF= (F/L)*(r/s)*2*sqrt(2)
9 //RESULTS
10 printf ('coefficient of friction = %.3f', CF)
```

applications and testing of seals and packings

Scilab code Exa 4.1 Groove diameter

```
1 clc
2 //initialisation of variables
3 d= 4 //in
4 p= 20 //percent
5 d1= 0.140
6 //CALCULATIONS
7 Gd= d-2*((100-20)*d1/100)
8 Gw= d1+2*(p*d1/100)
9 //RESULTS
10 printf ('Groove diameter = %.3 f in',Gd)
11 printf ('\n Groove width = %.3 f in',Gw)
12 printf ('\n outside diameter = %. f in',d)
```

Scilab code Exa 4.2 thickness

```
1 clc
```

```
2 //initialisation of variables
3 D= 2 //in
4 S= 10 //in
5 s= 10000 //strokes
6 V= 231 //in^3
7 //CALCULATIONS
8 di= V/(S*s*D*%pi)
9 //RESULTS
10 printf ('thickness = %.7f in',di)
```

Scilab code Exa 4.3 final available squeeze

```
1 clc
2 //initialisation of variables
3 d= 0.275 //in
4 p= 15
5 p1= 20
6 p3= 8
7 //CALCULATIONS
8 Fs= (d*p/100)+(d*p1/100)-(d*p3/100)
9 Fs1= Fs*100/d
10 //RESULTS
11 printf ('final available squeeze = %.2f percent', Fs1)
```

Accounting for the energy in hydraulic systems

Scilab code Exa 5.1 velocity of fluid in the conductor

```
1 clc
2 //initialisation of variables
3 Q= 40 //gpm
4 d= 2 //in
5 d1= 4 //in
6 //CALCULATIONS
7 v1= Q*4/(%pi*d^2*3.12)
8 v2= %pi*v1*4/(%pi*d1^2)
9 //RESULTS
10 printf ('velocity of fluid in the conductor = %.2 f fps',v1)
11 printf ('\n velocity of fluid in a manifled = %.2 f fps',v2)
```

Scilab code Exa 5.2 minnimum diameter

```
1 clc
2 //initialisation of variables
3 Q= 18 //gpm
4 d= 2 //in
5 v2= 10 //fps
6 //CALCULATIONS
7 v1= Q*4/(%pi*d^2*3.12)
8 d2= sqrt(4*Q/(%pi*v2*3.12))
9 //RESULTS
10 printf ('minnimum diameter = %.3 f in',d2)
```

Scilab code Exa 5.3 veloctity

```
1 clc
2 //initialisation of variables
3 Q= 10 //gpm
4 d= 1 //in
5 //CALCULATIONS
6 v= Q*4/(%pi*d^2*3.12)
7 //RESULTS
8 printf ('veloctity = %.1 f fps',v)
```

Scilab code Exa 5.4 pressure

```
1 clc
2 //initialisation of variables
3 S= 0.91
4 g= 32.2 //ft/sec^2
5 P1= 1000 //psi
6 Q= 500 //gpm
7 d= 3 //in
8 d1= 1 //in
9 //CALCULATIONS
```

```
10 v1= Q*4/(3.12*%pi*d^2)

11 v2= Q*4/(%pi*d1^2*3.12)

12 P2= ((P1*2.31/S)+(v1^2/(2*g))-(v2^2/(2*g)))*(S/2.31)

13 //RESULTS

14 printf ('pressure = %. f psi', P2-1)
```

Scilab code Exa 5.5 energy exptracted from the fluid

```
1 clc
2 //initialisation of variables
3 P1= 1000 //psi
4 S= 0.85
5 P2= 350 //psi
6 H1= 679.41 //ft
7 //CALCULATIONS
8 Ha= P1*2.31/S
9 He= Ha-(P2*2.31/S)-H1
10 //RESULTS
11 //RESULTS
12 printf ('energy exptracted from the fluid = %.2f ft', He)
```

Scilab code Exa 5.6 velocty of the fluid

```
1 clc
2 //initialisation of variables
3 g= 32 //ft/sec^2
4 h= 40 //ft
5 //CALCULATIONS
6 v= sqrt(2*g*h)
7 //RESULTS
8 printf ('velocty of the fluid = %.1 f fps',v)
```

Scilab code Exa 5.7 friction coefficient for the orifice

Scilab code Exa 5.8 Reynolds number

```
1 clc
2 //initialisation of variables
3 Q= 100 //gpm
4 d= 1 //in
5 kv= 0.05 //N
6 //CALCULATIONS
7 v= Q*4/(3.12*%pi*d^2)
8 Nr= (12*v*d)/kv
9 //RESULTS
10 printf ('Reynolds number = %.f ',Nr+5)
```

Scilab code Exa 5.9 Critical velocity

```
1 clc
2 //initialisation of variables
3 v= 27 //cp
4 s= 0.85
5 d= 1 //in
6 //CALCULATIONS
7 V= v/s
8 V1= V*0.001552
9 V2= 2000*V1/(12*d)
10 V3= 4000*V1/(12*d)
11 //RESULTS
12 printf ('Critical velocity = %.2 f fps', V3)
```

Scilab code Exa 5.10 Pressure drop

```
1 clc
2 //initialisation of variables
3 Q= 200 //gpm
4 d= 2 //in
5 S= 0.91
6 f= 0.05
7 L= 800 //ft
8 g= 32.2 //ft/sec^2
9 //CALCULATIONS
10 v= Q*4/(%pi*3.12*d^2)
11 h= 2.598*S*f*L*v^2/(2*g)
12 //RESULTS
13 printf ('Pressure drop = %.f psi',h)
```

Scilab code Exa 5.11 Pressure drop

```
1 clc
2 //initialisation of variables
```

```
3 Q= 15 //gpm
4 d= 1 //in
5 s= 0.85
6 v= 0.08 //N
7 L= 400 //ft
8 //CALCULATIONS
9 V= Q*4/(%pi*d^2*3.12)
10 Nr= 12*V*2*d/v
11 h= .43*s*v*L*V/d^2
12 //RESULTS
13 printf ('Pressure drop = %.2 f psi',h)
```

Scilab code Exa 5.12 Pressure drop

```
1 clc
2 //initialisation of variables
3 Q= 1000 //gpm
4 d= 2 //in
5 V= 0.30 //N
6 L= 500 //ft
7 f= 0.034
8 S= 0.85
9 g= 32.2 //ft/sec^2
10 //CALCULATIONS
11 v= Q*4/(%pi*3.12*d^2)
12 Nr= (12*v*d)/V
13 h= 2.598*S*f*L*v^2/(2*g)
14 //RESULTS
15 printf ('Pressure drop = %.f psi',h+5)
```

Scilab code Exa 5.13 equivalent length

```
1 clc
```

```
2 //initialisation of variables
3 Q= 500 //gpm
4 d= 2 //in
5 S= 0.91
6 kv= 0.25 //N
7 r= 0.0012
8 K= 3
9 f= 0.04
10 //CALCULATIONS
11 v= Q*4/(%pi*d^2*3.12)
12 Nr= (v*d*12)/kv
13 Rr= 12*r/d
14 Le= K*d/(f*12)
15 //RESULTS
16 printf ('equivalent length = %.1 f ft', Le)
```

Characteristics of rotary pumps

Scilab code Exa 6.1 input torque

```
1 clc
2 //initialisation of variables
3 P= 2500 //psi
4 Q= 3 //gpm
5 p= 5 //Bhp
6 N= 1725 //rpm
7 //CALCULATIONS
8 eo= P*Q*100/(1714*p)
9 To= p*5250/N
10 //RESULTS
11 printf ('input torque = %.2 f lb-ft', To)
```

Scilab code Exa 6.2 volumetric efficiency

```
1 clc
2 //initialisation of variables
3 Q= 52 //gpm
4 v= 3.75 //in^3
```

```
5 N= 3300 //rpm
6 //CALCULATIONS
7 ev= 231*Q*100/(v*N)
8 //RESULTS
9 printf ('volumetric efficiency = %.2 f percent',ev)
```

Scilab code Exa 6.3 mechanical efficiency

```
1 clc
2 //initialisation of variables
3 eo= 87 //percent
4 ev= 94 //percent
5 p= 10 //bhpi
6 //CALCULATIONS
7 em= eo/ev
8 em1= em*100
9 Fhp= p*(1-em)
10 //RESULTS
11 printf ('frictional horsepower = %.1 f hp', Fhp+0.1)
12 printf (' \n mechanical efficiency = %.2 f percent', em1)
```

Scilab code Exa 6.4 volume flow rate

```
1 clc
2 //initialisation of variables
3 n= 9
4 N= 3000 //rpm
5 s= 0.75 //inch
6 d= 0.5 //inch
7 //CALCULATIONS
8 Q= n*N*s*%pi*d^2/(4*231)
9 //RESULTS
```

```
10 printf ('volume flow rate = \%.1 \,\mathrm{f} gpm',Q)
```

Scilab code Exa 6.5 minimum size of the reservoir

```
1 clc
2 //initialisation of variables
3 d= 6 //in
4 N= 120 //in
5 Q= 5 //gpm
6 //CALCULATIONS
7 Vc= %pi*d^2*N/(4*231)
8 //RESULTS
9 printf ('minimum size of the reservoir = %.2f gpm', Vc)
```

Valves in hydraulic transmission control

Scilab code Exa 7.1 flow coefficient

```
1 clc
2 //initialisation of variables
3 Q= 30 //gpm
4 dp= 300 //psi
5 S= .85
6 Cv= 5.41 //
7 //CALCULATIONS
8 Cv1= Q/(sqrt(dp/S))
9 dp1= S*Q^2/Cv^2
10 //RESULTS
11 printf ('flow coefficient = %.3 f gpm', Cv1)
12 printf (' \n pressure drop = %. f psi', dp1)
```

Characteristics of Actuators

Scilab code Exa 8.1 size of the cylinder postion

```
1 clc
2 //initialisation of variables
3 F= 80000 //lbs
4 P= 1600 //psi
5 //CALCULATIONS
6 db= sqrt(4*F/(%pi*P))
7 //RESULTS
8 printf ('size of the cylinder postion = %.f in',db)
```

Scilab code Exa 8.2 Cylinder velocity

```
1 clc
2 //Initialization ogf variables
3 Q=25 //gpm
4 A=.533 //in^2
5 //Calculations
6 nu=Q*19.25/(A*60) //Fluid velocity
7 nucylinder=Q*19.25/12.56 //Cylinder velocity
```

```
8 //Results
9 printf ('Fluid velocity = %.2f',nu)
10 printf ('\n Cylinder velocity = %.2f',nucylinder)
```

Scilab code Exa 8.3 length of the stop tube

```
1 clc
2 //initialisation of variables
3 d= 3 //in
4 P= 2000 //psi
5 s= 20 //strokes
6 //CALCULATIONS
7 Cl= s*d/2
8 F= P*%pi*d^2/4
9 stl= (Cl-40)/10
10 //RESULTS
11 printf ('length of the stop tube= %.f in',Cl)
12 printf ('\n thrust on the rod= %.f lb',F+3)
13 printf ('\n Stop Tube length= %.f stl',stl)
```

Scilab code Exa 8.4 total force decessary to decelarate the load

```
1 clc
2 //initialisation of variables
3 v= 120 //ft/min
4 S= 1.5 //in
5 w= 8000 //lb
6 //CALCULATIONS
7 ga= v^2*0.0000517/S
8 F= w*ga
9 //RESULTS
10 printf ('total force decessary to decelarate the load= %. f lb',F-3)
```

Scilab code Exa 8.5 total force decessary to decelarate the load

```
1 clc
2 //initialisation of variables
3 P= 750 //psi
4 d= 3 //in
5 w= 1500 //lb
6 ga= 0.172
7 f= 0.12
8 v= 50 //ft/min
9 s= 0.75 //in
10 //CALCULATIONS
11 Fa= P*%pi*d^2/4
12 F= w*(ga-f)+Fa
13 //RESULTS
14 printf ('total force decessary to decelarate the load= %. f lb', F-2)
```

Scilab code Exa 8.6 pressure in the cylinder

```
1 clc
2 //initialisation of variables
3 d= 3 //in
4 d1= 1.5 //in
5 F= 7500 //lb
6 //CALCULATIONS
7 A1= (%pi/4)*(d^2-d1^2)
8 P= F/A1
9 //RESULTS
10 printf ('pressure in the cylinder = %. f psi',P-1)
```

Scilab code Exa 8.7 Theotrical torque

```
1 clc
2 //initialisation of variables
3 P= 2000 //psi
4 Vm= 0.5 //in^3
5 //CALCULATONS
6 T= P*Vm*0.16
7 //RESULTS
8 printf ('Theotrical torque = %.f lb-in',T)
```

Scilab code Exa 8.8 Theotrical speed of fluid power

Scilab code Exa 8.9 effective flow rate

```
1 clc
2 //initialisation of variables
3 Vm= 0.55 //in^3
4 N= 3400 //rpm
```

```
5 //CALCULATIONS
6 Q= Vm*N/231
7 //RESULTS
8 printf ('effective flow rate = %.2 f gpm',Q)
```

Scilab code Exa 8.10 overall efficiency

```
1 clc
2 //initialisation of variables
3 T= 32 //lb-ft
4 N= 1200 //rpm
5 P= 2000 // psi
6 Q= 7.5 //gpm
7 //CALCULATIONS
8 eo= T*N*100/(P*Q*3.06)
9 //RESULTS
10 printf ('overall efficiency = %.f percent',eo)
```

Scilab code Exa 8.11 Case drain loss

```
1 clc
2 //initialisation of variables
3 Vm= 0.6 //in^3
4 N= 2400 //rpm
5 Qa= 6.5 //gpm
6 p= 50
7 //CALCULATIONS
8 ev= Vm*N*100/(Qa*231)
9 Tf= (100-ev)*Qa/100
10 Cl= p*Tf/100
11 //RESULTS
12 printf ('Case drain loss = %.3 f gpm',C1)
```

Scilab code Exa 8.12 mechanical efficency

```
1 clc
2 //initialisation of variables
3 eo= 88 //perecent
4 ev= 97 //percent
5 //CALCULATIONS
6 em= eo*100/ev
7 //RESULTS
8 printf ('mechanical efficency = %.2 f percent',em)
```

Hydraulic system components

Scilab code Exa 9.1 total Btu heat loss

```
1 clc
2 //initialisation of variables
3 t= 4 //hr
4 Ihp= 8 //ihp
5 Ohp= 5 //hp
6 //CALCULATIONS
7 H1= t*2544*(Ihp-Ohp)
8 //RESULTS
9 printf ('total Btu heat loss over a period of 4hr = %. f Btu', H1)
```

Scilab code Exa 9.2 rise in temperature of the fluid

```
1 clc
2 //initialisation of variables
3 t= 1 //sec
4 P= 1000 //psi
5 Q= 3 //gpm
```

Scilab code Exa 9.3 Stroke length

```
1 clc
2 //initialisation of variables
3 P= 1500 //psi
4 d= 12 //in
5 V= 50 //gal
6 //CALCULATIONS
7 F= P*(%pi*d^2/4)
8 S= V*231*4/(%pi*d^2)
9 //RESULTS
10 printf ('Weight = %. f lb',F)
11 printf ('Stroke length = %.1 f in',S)
```

Scilab code Exa 9.4 Size of accumulator

```
1 clc
2 //initialisation of variables
3 P= 1500 //psig
4 V= 5 //gal
5 P1= 3000 //psig
6 P2= 2000 //psig
7 //CALCULATIONS
```

```
8 V2= V*231*(P2+14.7)/(P1-P2)

9 V1= V2*(P1+14.7)/((P+14.7)*231)

10 //RESULTS

11 printf ('Size of accumulator = %.2 f gal', V1)
```

Scilab code Exa 9.5 percentage difference in volume

```
1 clc
2 //Initialization of variables
3 \text{ beta=} 1.4
4 p3=2000+14.7 //non guage
5 p2=3000+14.7 //non guage
6 p1=1500+14.7 //non guage
7 \text{ deltav} = 1155
8 // Calculations
9 \ v2=(p3/p2)^(1/beta) *(deltav) /(1-(p3/p2)^(1/beta))
10 v1=v2*(p2/p1)^(1/beta)
11 perdiff = (v1-4627.25)*100/v1
12 //Results
13 printf ('volume 2 = \%.1 \, \text{f'}, v2)
14 printf('\n volume 1 = \%.1 \, \text{f',v1})
15 printf('\n percentage difference in volume = \%.2 \,\mathrm{f}',
      perdiff)
```

Scilab code Exa 9.6 Wall theikness

```
1 clc
2 //initialisation of variables
3 Fr= 20 //gpm
4 P= 2500 //psi
5 sf= 4
6 Ts= 55000 //psi
7 V= 15 //fps
```

```
8 //CALCULATIONS
9 A= Fr*0.3208/V
10 ID= 2*sqrt(A/%pi)
11 Wt= P*ID/(2*(Ts-P))
12 Wt1= Wt*sf
13 //RESULTS
14 printf ('Wall thcikness = %.3 f in', Wt1)
```

Introduction to Pneumatics

Scilab code Exa 11.1 Guage pressure

```
1 clc
2 //initialisation of variables
3 V1= 20 //gal
4 P1= 20 //psi
5 n= 2
6 //CALCULATIONS
7 V2= V1/n
8 P2= (P1+14.7)*V1*231/(V2*231)
9 P3= P2-14.7
10 //RESULTS
11 printf ('Guage pressure = %.1 f psi',P3)
```

Scilab code Exa 11.2 volume the heated gas will occupy

```
1 clc
2 //initialisation of variables
3 V1= 1500 //in^3
4 T= 80 //F
```

Scilab code Exa 11.3 guage pressure

```
1 clc
2 //initialisation of variables
3 P1= 2000 //in^3
4 T= 80 //F
5 T1= 250 //F
6 //CALCULATIONS
7 P2= (P1+14.7)*(460+T1)/(T+460)
8 P3= P2-14.7
9 //RESULTS
10 printf ('guage pressure = %.f psi',P3)
```

Scilab code Exa 11.4 guage pressure

```
1 clc
2 //initialisation of variables
3 P1= 2000//psi
4 V1= 1500 //in^3
5 T2= 250 //F
6 T1= 75 //F
7 V2= 1000 //in^3
8 //CALCULATIONS
9 P2= (P1+14.7)*V1*(T2+460)/((T1+460)*V2)
10 P3= P2-14.7
11 //RESULTS
```

```
12 printf ('guage pressure = %.f psi',P3)
```

Scilab code Exa 11.5 air consumption in cfm of free air

```
1 clc
2 //initialisation of variables
3 s= 10 //stroke
4 d= 2 //in
5 r= 40 //cpm
6 P1= 80 //psi
7 //CALCULATIONS
8 V1= %pi*d^2*s*r/(4*1728)
9 V2= (P1+14.7)*V1/14.7
10 //RESULTS
11 printf ('air consumption in cfm of free air = %.2 f cfm free air', V2)
```

Scilab code Exa 11.6 Pressure drop

```
1 clc
2 //initialisation of variables
3 V= 650 //cfm
4 Cr= 250 //psi
5 d= 2 //in
6 L= 500 //ft
7 //CALCULATIONS
8 CR= (Cr+14.7)/14.7
9 pf= 0.1025*L*(V/60)^2/(CR*d^(5.31))
10 //RESULTS
11 printf ('Pressure drop = %. f psi',pf-1)
```

Scilab code Exa 11.7 Amount of air passing thorugh orifice

```
1 clc
2 //initialisation of variables
3 d= 1 //in
4 P= 100 //psi
5 C= 1
6 T= 70 //F
7 s= 0.07494 //lb/ft^3
8 //CALCULATIONS
9 Qw= (0.5303*%pi*d^2*(P+14.7))/(4*sqrt(T+460))
10 Qv= Qw*60/s
11 //RESULTS
12 printf ('Amount of air passing thorugh orifice = %.1 f cfm', Qv)
```

Scilab code Exa 11.8 Size of reservoir

```
1 clc
2 //initialisation of variables
3 t= 5 //min
4 Qr= 10 //cfm
5 P1= 125 //psi
6 P2= 100 //psi
7 //CALCULATIONS
8 Vr= Qr*t*14.7/(P1-P2)
9 //RESULTS
10 printf ('Size of reservoir = %.1 f ft^3', Vr)
```