VCU Discrete Mathematics Seminar

Reconfiguration of Colorings and List Colorings

Prof Dan Cranston (VCU!)

Wednesday, Mar. 5 1:00-1:50 EDT

In person! in 4145 Harris Hall. And on Zoom:

https://vcu.zoom.us/j/92975799914 password=graphs2357

A *proper* k-coloring of a graph G assigns to each vertex v a color $\alpha(v)$, with $\alpha(v) \in \{1, \ldots, k\}$ such that $\alpha(v) \neq \alpha(w)$ for every edge vw. (A *list coloring* is similar, except that distinct vertices may have distinct lists of allowable colors.)

A recoloring step in a graph G for a coloring α recolors some vertex ν with a color allowable for ν that is not used by α on any neighbor of ν , yielding a new proper coloring. Given proper colorings α and β of G, we ask questions like: Can we transform α to β by a sequence of recoloring steps? And: Over all α and β , what is the longest that a shortest sequence from α to β can be?

In this talk we survey results on reconfiguration of colorings and list colorings. We end with a few conjectures.

For the DM seminar schedule, see:

https://go.vcu.edu/discrete