# 《数字系统设计》

並

# Chapter 1 数制与码制

### 1、常用数制与转换

|              | 转换                                                    | 例                                                         |
|--------------|-------------------------------------------------------|-----------------------------------------------------------|
| N进制→十<br>进制  | $(k_n k_{n-1} \dots k_0)_N = (\sum_0^n k_i N^i)_{10}$ | $(101)_2 = (1*1+0*2+1*4)_{10} = (5)_{10}$                 |
| 十进制→N<br>进制  | 整数部分短除法,小数部分乘N向<br>下取整                                | $(173.8125)_{10} = (10101101.1101)_2$                     |
| 二进制↔十<br>六进制 | 4位等分                                                  | $(0101.1011)_2 = (5.B)_{16} \ (8.C)_{16} = (1000.1100)_2$ |
| 二进制↔八<br>进制  | 3位等分,方法同上                                             | /                                                         |

#### 2、二进制算术运算

首位为符号位(正数为0,负数为1)

|    | 定义                 | 6    | -6   |
|----|--------------------|------|------|
| 原码 | 符号位+二进制数           | 0110 | 1110 |
| 反码 | 符号位+正数不变,负数0、1互换   | 0110 | 1001 |
| 补码 | 符号位+正数不变,负数为反码末位加1 | 0110 | 1010 |

(1000表示-8的补码)

#### 3、几种常用编码

十进制代码

(1) 8421BCD码: 恒权代码,每一个二进制代码的1都代表一个固定数值。

- (2) 余3码:对应十进制数加3的二进制码。非恒权代码,两个相加为9的十进制数的代码互为反码。
  - (3) 2421码: 恒权代码,两个相加为9的十进制数的代码互为反码。

格雷码

右数第N位数以 
$$\underbrace{00...0011...1100...00}_{2^{N-1} + 0}$$
 的顺序循环变化(第4位只有半个循环)

优点: 相邻代码只有一位发生变化,不产生过渡噪声。

# Chapter 2 逻辑代数基础

#### 1、基本运算

|    | 算式          | 门        |
|----|-------------|----------|
| 与  | $A\cdot B$  | &        |
| 或  | A+B         | $\geq 1$ |
| 非  | $ar{A}$     | 1        |
| 异或 | $A\oplus B$ | =1       |
| 同或 | $A\odot B$  | =        |

#### 2、常用公式

(1) 
$$A + BC = (A + B)(A + C) \rightarrow A + \overline{A}B = A + B$$

(2) 
$$AB + \bar{A}C + BC = AB + \bar{A}C$$

#### 3、基本定理

- (1) 代入定理: 在任何一个包含变量 A 的逻辑等式中,若以另外一个逻辑式代人式中所有 A 的位置,则等式仍然成立。
  - (2) 反演定理: 取反时,与或互换,01互换,原反互换,由外而内。

#### 4、逻辑函数标准形式

最小项

$$Y(A,B,C,D)=\sum m(m_1,m_2,\ldots,m_n)$$
  $m$  为乘积项  
所有最小项之和为  $1$  ,任意两个最小项之积为  $0$ 

最大项

$$Y(A,B,C,D) = \prod M(M_1,M_2,\ldots,M_n)$$
  $M$  为和项  
所有最大项之积为  $0$  ,任意两个最大项之和为  $1$ 

最小项与最大项的关系

$$\sum m_i = \prod M_k \qquad i \neq k$$
 即互为对偶式

# Chapter 3 门电路

## 1、CMOS 门电路

无论 G 端接多大电阻, 电平始终与接入处状态相同, 且无法悬空。

漏极开路输出门电路(OD门)

满足输出电平变换、吸收大负载电流与实现线与连接需要



传输门

$$C=1,ar{C}=0$$
 通 $C=0,ar{C}=1$  截止



三态门

$$EN=1$$
  $Y=ar{A}$   $EN=0$   $Y=Z($ 高阻态 $)$ 



#### 2、TTL 门电路

漏极开路输出门电路(OC门)

满足输出电平变换、吸收大负载电流与实现线与连接需要



三态门

同 CMOS 三态门

# Chapter 4 组合逻辑

#### 1、编码器

十进制转二进制

普通编码器

任何时刻只允许输入一个编码信号

优先编码器

允许输入多个编码信号,但只对优先度最高的一个进行编码 $(7>6>\cdots>0)$ 

| S'(选通信<br>号) | Y <sub>S</sub> '(附加输出<br>信号) | Y <sub>EX</sub> '(附加输出<br>信号) | 状态   | 芯片图                                                                            |
|--------------|------------------------------|-------------------------------|------|--------------------------------------------------------------------------------|
| 1            | 1                            | 1                             | 不工作  |                                                                                |
| 0            | 1                            | 0                             | 工作,有 | $\frac{S'}{S} \circ \left( \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| U            | 0                            | 1                             | 工作,无 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                          |

# 2、译码器

十进制转十进制,即输出最小项 $ar{Y}_i = ar{m}_i$ 

#### 二进制译码器

| 片选输入端 |                  | 岩                | 1D-+-      |                                                                                                                                       |  |
|-------|------------------|------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| $S_1$ | S <sub>2</sub> ' | S <sub>3</sub> ' | 状态         | 芯片图                                                                                                                                   |  |
| 1     | 0                | 0                | 正常工作       | $\begin{bmatrix} & & & & & & \\ A_0 & A_1 & A_2 & & S_1 & S_2 & S_3 \end{bmatrix}$                                                    |  |
|       | 反之               |                  | 输出Yi'均为高电平 | 74HC138(1)<br>Y <sub>0</sub> Y <sub>1</sub> Y <sub>2</sub> Y <sub>3</sub> Y <sub>4</sub> Y <sub>5</sub> Y <sub>6</sub> Y <sub>7</sub> |  |

#### 二-十进制译码器

拒绝了伪码 1010 - 1111

#### 3、数据选择器

双四选一数据选择器

$$Y_i = (D_{i0}\bar{A}_1\bar{A}_0 + D_{i1}\bar{A}_1A_0 + D_{i2}A_1\bar{A}_0 + D_{i3}A_1A_0) \cdot S_i$$

| S <sub>i</sub> ' | 状态                  | 芯片图                                                                                    |
|------------------|---------------------|----------------------------------------------------------------------------------------|
| 0                | 正常工作                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                  |
| 1                | 输出Y <sub>i</sub> =0 | $ \begin{array}{c c} S_2' \\ S_2 \\ D_{20} \\ D_{21} \\ D_{22} \\ D_{23} \end{array} $ |

#### 4、一位加法器

S 为输出,CO 为向高位的进位,CI 为来自低位的进位

半加器

不考虑 CI  $\begin{cases} S = A \oplus B \\ CO = A \cdot B \end{cases}$ 



全加器

考虑 CI



### 5、多位加法器

超前进位加法器

快但复杂。



串行进位加法器

慢但简单。



### 6、数值比较器

一位数值比较器

用来比较两个一位二进制数的大小。



多位数值比较器

从高位比起, 只有高位相等, 才比较下一位。



I为来自低位的比较结果。

## 7、组合逻辑中的竞争-冒险现象

成因

门电路的两个输入同时向相反的逻辑电平变化,称为"竞争"。

因"竞争"而可能在输出端产生尖峰脉冲的现象,称为"竞争-冒险"

判断

输出为 $Y = A + \bar{A}$ 或 $Y = A \cdot \bar{A}$ 型

消除方法

- (1) 接入滤波电容
- (2) 引入选通脉冲
- (3)添加冗余项: 如  $Y=AB+\bar{A}C$ ,当 B=C=1时, $Y=A+\bar{A}$ 。稳态下 Y=1 且存在竞争-冒险现象。

则添加冗余项 BC (即在 B=C=1 时使得 Y 恒为 1) ,此时  $Y=AB+\bar{A}C+BC$  即可消除。

#### 8 Verilog HDL

基本结构

#### 定义

#### 门原语

```
      <门原语> <门名称> (<端口名>)
      // 端口名为输出在前,输入在后

      and,nand,or,nor,xor,xnor
      // 与,与非,或,或非,异或,同或
```

#### 位运算符

| 取反 | 按位与 | 按位或 | 按位异或 | 按位同或 |
|----|-----|-----|------|------|
| ~  | &   |     | ۸    | ^~   |

即把某些信号的某些位详细地列出来,中间用逗号分开,最后用大括号来表示一个整体信号。

知: 
$$\{a,b[3:0],w,3'b101\}=\{a,b[3],b[2],b[1],b[0],w,1'b1,1'b0,1'b1\}$$
  $\{b,\{3\{a,b\}\}\}=\{b,a,b,a,b,a,b\}$ 

# Chapter 5 半导体储存电路

#### 1、SR锁存器

 $S_D$ : 置1输入端;  $R_D$ : 置0输入端。



特点:在任何时刻,输入都能直接改变输出的状态,即使输入信号消失,输出也保持。但需满足 $S_D \cdot R_D = 0$ 。

#### 2、触发器

|      |                 | 特点                                                    | 次态表达式      | 电路图                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|-----------------|-------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 电平   | SR触<br>发器       | CLK=1时,输入端的任何变<br>化                                   | Q*=S+R'Q   | CLK $Q'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 发    | D触发<br>器        | 都会引起输出状态的变化                                           | Q*=D       | CLK $Q'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 脉冲触  | 主从<br>SR触<br>发器 | CLK=1时,"主"翻转,"从"<br>不变<br>CLK↓时,"从"翻转,"主"不<br>变       | Q*=S+R'Q   | 5 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 发    | 主从JK<br>触发器     | CLK=1期间,"主"只允许翻<br>转一次                                | Q*=JQ'+K'Q | STATION BILLIAN STATION STATIO |
| 边沿触发 | /               | 触发器的次态仅取决于CLK<br>上升或下降沿到<br>达时刻输入信号的状态,而<br>与之前之后状态无关 | /          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

触发器按逻辑功能分类

| 触发器    | 特性方程                        |
|--------|-----------------------------|
| SR 触发器 | $Q^* = S + ar{R}Q$          |
| JK 触发器 | $Q^* = Jar{Q} + ar{K}Q$     |
| T 触发器  | $Q^* = T\bar{Q} + \bar{T}Q$ |
| D触发器   | $Q^* = D$                   |

#### 2、随机存储器

静态随机存储器SRAM

由存储矩阵、地址译码器、读写控制电路组成。容量="(字数)×(每个字的位数)"。

动态随机存储器DRAM

利用了MOS电容可以存储电荷的原理

#### 3、只读存储器ROM

由存储矩阵、地址译码器、输出缓冲器组成。字线与位线每一个交点都是一个存储单元,接二极管: 存1; 没接: 存0。

#### 掩模ROM

出厂时数据已固化,适合大量生产

#### 可编程PROM

只能写入一次(写入时将0的存储单元熔丝烧断),无法修改

可擦除的可编程PROM

雪崩写入,紫外线擦除

#### 4、存储器容量的扩展

| 扩展方<br>式 | 接法                                          | 电路图                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 位扩展      | 将各片的地址线、读写线、片选线并<br>联                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 字扩展      | 将 $A_9$ 、 $A_8$ 译成 $Y_0'-Y_3'$ 分别接4片的 $CS'$ | IO <sub>0</sub>   IO |

地址数=字数=2^地址线数

位数=读写线/数据线数

 $egin{aligned} Y_1 &= \sum m(2,3,6,7) \ Y_2 &= \sum m(6,7,10,14) \ Y_3 &= \sum m(4,14) \ Y_4 &= \sum m(2,15) \end{aligned}$ 



# Chapter 6 时序电路

## 1、移位寄存器

4位双向移位寄存器

 $D_3-D_0$ : 数据输入端  $D_{IR}$ : 右移串行输入  $D_{IL}$ : 左移串行输入  $Q_3-Q_0$ : 输出端

| R <sub>D</sub> ' | $S_1$ | $S_0$ | 工作状态 | 芯片图                                                                           |
|------------------|-------|-------|------|-------------------------------------------------------------------------------|
| 0                | /     | /     | 置零   |                                                                               |
|                  | 0     | 0     | 保持   | $\begin{bmatrix} D_{IR} D_0 D_1 D_2 D_3 D_{IL} \\ S_1 & CLK \\ \end{bmatrix}$ |
| 1                | 1     | 0     | 左移   | 74LS194A B                                                                    |
| 1                | 0     | 1     | 右移   | $\begin{bmatrix} S_0 & O_1 O_2 O_3 \end{bmatrix}$                             |
|                  | 1     | 1     | 并行输入 |                                                                               |

# 2、同步计数器

同步二进制加法计数器

 $D_3 - D_0$ : 数据输入端(预置数端)  $Q_3 - Q_0$ : 输出端

 $0000 
ightarrow 0001 
ightarrow \cdots 
ightarrow 1111 
ightarrow 0000 ($   $\Box$   $\Box$   $C=1) 
ightarrow \ldots$ 

| CLK | R <sub>D</sub> ' | LD' | EP | ET | 工作状态                                           | 芯片图                                                                                                                           |
|-----|------------------|-----|----|----|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| /   | 0                | /   | /  | /  | 置零                                             |                                                                                                                               |
| 1   |                  | 0   | /  | /  | 预置数<br>D <sub>3</sub> ~D <sub>0</sub> (同<br>步) | EP D <sub>0</sub> D <sub>1</sub> D <sub>2</sub> D <sub>3</sub> C                                                              |
| /   | 1                | 1   | 0  | 1  | 保持(包括<br>C)                                    | $-ET \qquad 74161 \qquad LD \triangleright -$ $->CLK \qquad \qquad R_D \triangleright -$ $Q_0  Q_1  Q_2  Q_3 \qquad \qquad -$ |
| /   |                  | 1   | /  | 0  | 保持(C=0)                                        |                                                                                                                               |
| 1   |                  | 1   | 1  | 1  | 计数                                             |                                                                                                                               |

#### 3、异步计数器

|              | 特性                              | 电路图                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 二进制加法计<br>数器 | 在 n 位 1 到 0 跳变时, n+1 位<br>翻转。   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 二进制减法计数器     | 在 n 位 0 到 1 跳变时, n + 1 位<br>翻转。 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 十进制加法计<br>数器 | 跳过 1010~1111 四个状态。              | $Q_0$ $Q_1$ $Q_2$ $Q_3$ $Q_3$ $Q_4$ $Q_5$ |

#### 4、任意进制计数器的构成方法(N进制 → M进制)

N>M

设法跳过 N-M 个状态

- (1) 置零: 进入  $S_M$  状态后利用置零端  $R_D'$  立即进入  $S_0$  状态
- (2) 置数:任意状态均可利用置数端  $L_D'$

M>N

若M能拆成两个数 $N_1$ 、 $N_2$ 的乘积,则可接成 $N_1$ 进制与 $N_2$ 进制计数器。

- (1) 并行进位: 同一时间信号 CLK, 低位输出作为高位的计数控制信号。
- (2) 串行进位: 低位输出作为高位的时间信号 CLK, 同时处于计数状态。

若 M 为质数,则寻找一  $M'=N_1'\times N_2'$  (M'>M) ,接成  $N_1'$  进制与  $N_2'$  进制计数器,进行置零或置位。

#### 5、移位寄存器计数器

环形计数器

实现数据循环右移:  $1000 \rightarrow 0100 \rightarrow 0010 \rightarrow 0001 \rightarrow 1000 \rightarrow \dots$ 



能自启动的:



 $0000 \rightarrow 1000 \rightarrow 1100 \rightarrow 1110 \rightarrow 1111 \rightarrow 0111 \rightarrow 0011 \rightarrow 0001 \rightarrow 0000 \rightarrow \dots$ 



能自启动的:



# Chapter 7 控制器设计

#### 1、状态机

状态机的类型

米里状态机:输出与当前状态和输入信号有关。

莫尔状态机:输出仅与当前状态有关。

算法状态机 ASM

|     | 符号                                                                              |
|-----|---------------------------------------------------------------------------------|
| 状态框 | S1     000       AX       S2     001       B=0     C=1       S3     010       Z |
| 判断框 | が<br>条件安慰 0                                                                     |
| 条件框 | S1     000       X1     0       X1     0       X2     001                       |

### 2、控制器

- (1) 设置状态变量
- (2) 画出 ASM 图

- (3) 列出状态编码的现态 (PS) 与次态 (NS) 真值表
- (4) 写出控制信号关于状态编码的表达式
- (5) 画出电路图

#### 计数器型控制器

按给定的 ASM 流程图构造一个状态发生电路,使它具有 ASM 中所需的全部状态,并能依照控制算法条件进行状态转移和条件输出。

n 个触发器最多可代表  $2^n$  个状态。将所要求的控制状态按一定原则进行编码分配,就可设计出一种状态计数型的控制器,通常称之为计数器型控制器。

通过状态转移表求得次态激励方程,利用D触发器/JK触发器输出控制信号,画出电路图。

#### 多路选择器型控制器

按控制算法要求, 为其对应的触发器生成次态激励函数。

状态转移数据表比通常的状态转移表多了一栏:转换条件。转换条件栏的数据或表达式,也就是对应的多路选择器的数据输入值。

通过状态转移表求得 MUX 的数据输入端,用状态编码现态 PS 和转换条件 C 作为 MUX 的地址输入,最后利用 D 触发器输出控制信号,画出电路图。

#### 定序型控制器

一对一: 触发器的数目代表了状态数,并依赖一组最新的代码实现状态转换。

通过状态转移表,可按照  $NS = \sum PS \cdot C$  求得次态激励方程,利用 D 触发器输出控制信号,画出电路图。

#### 3、微码控制器

#### 微指令

微指令除给出微命令信息外,还应给出测试判别信息。一旦出现此信息,执行这条微指令时要对系统的有关"状态标志"进行测试,从而实现控制算法流程图的条件分支。微指令中还包含一个下址字段,该字段将指明 *ROM* 中下一条微指令的地址。



长条框内的符号×表示一个二进制位 (bit)。其中微命令字段用于操作控制;×编码为 1 时表示有微命令,×编码为 0 时表示无微命令。测试判别字段和下址字段一起实现顺序控制:当测试判别字段无效时(×编码为 0),下址字段信息即是下条微指令的地址;当测试判别字段有效时(×编码为 1,可以有多个测试),根据反馈线来的"状态"信息对下址字段信息进行修改,修改后的地址即为下条微指令的地址。

#### 微程序控制器

主要由控制存储器、微地址寄存器、微码命令寄存器和地址转移逻辑等部分组成。微地址寄存器和微命令寄存器两者的总长度即为一条微指令的长度,所以两者合在一起称为微指令寄存器。为便于说明形成下一条微指令的地址,特意将微指令的下址字段独立出来,称为微地址寄存器。



图 8.32 微程序控制器结构框图

n 位微地址寄存器长度对应  $2^n$  条微指令, n 位微指令对应 n 位控制存储器 ROM 字长。

#### 4、算法与流水结构

设数据流中元素个数为n 运算段个数为L 每段运算时间为 $\Delta t$ 

顺序(串行)算法结构

在执行算法的整个过程中,同一时间只进行一种或一组相关的子运算。

$$T_s = n \cdot L \cdot \Delta t$$

并行算法结构

指在同一时间段中,有多条路径在同时进行运算,在这些同时执行的子运算操作之间是相互独立的。

$$T_p = n \cdot L' \cdot \Delta t$$
 ( $L' << L$ , 因此加快了速度)

流水线算法结构

把整个运算过程分解为若干个段,系统在同一时间可对先后输入的数据流元素进行不同段的同时运算。

$$T = L \cdot \Delta t + (n-1)\Delta t$$

# Chapter 8 验证与测试

#### 1、测试过程

首先把预先确定的测试矢量装入能够向被测器件(deviceundertest,DUT)提供激励并采集相应响应的测试设备。测试矢量由测试程序来定义,它描述了所应用的波形、电平、时钟频率以及所期望得到的响应。需要用一个探针卡或DUT板把测试仪的输入和输出连到芯片或封装相应的引线上。

生产测试可按测试目的分为以下几类:

| 测试类型 | 测试目的                                                       |
|------|------------------------------------------------------------|
| 诊断测试 | 用在芯片和板级调试期间,其目的是对于<br>一个给定的失效部件识别和指出失效的部位。                 |
| 功能测试 | 确定一个制造出的元件是否能工作。每一个制造出来的芯片都要<br>经过这一测试,直接影响芯片成本,应当尽可能简单快速。 |
| 参数测试 | 在各种工作条件(如温度和电源电压)下检查许多非离散参数,<br>一般分为静态和动态测试。               |

#### 2、可测性设计

组合电路属于易观察和可控制的电路。时序电路的可测试设计方法划分成3类:

| 测试类型        | 特点                                                                                       |
|-------------|------------------------------------------------------------------------------------------|
| 专门测试        | 集合了一些可用来提高一个设计的可观察性和可控性的技术,同应用类型相关。                                                      |
| 扫描测试 (边界扫描) | 把一个板上个部件的输入-输出引线连接成一条串联的扫描链,<br>并且此方法已经被标准化以确保在不同厂商之间的兼容性。<br>可以利用各种控制模块来测试各个部件以及板上的互连线。 |
| 自测试         | 测试规则结构(如存储器)时极为有用                                                                        |

# Chapter 9 脉冲电路

稳态时电阻两端初始电压相等。电容两端电压不突变,当电阻两端出现电压差时,高电压端放电,低电压端充电。

$$x(t) = x(\infty) + [x(0) - x(\infty)]e^{-t/ au} \qquad t = RClnrac{V_R(\infty) - V_R(0)}{V_R(\infty) - V_{TH}}$$

### 1、施密特触发电路

| $V_{TH}$           | $V_{T+}$                   | $V_{T-}$                   | $\Delta V$                   | 传输特性                                              | 门电路组成                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|----------------------------|----------------------------|------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $rac{1}{2}V_{DD}$ | $(1+rac{R_1}{R_2})V_{TH}$ | $(1-rac{R_1}{R_2})V_{TH}$ | $2\cdotrac{R_1}{R_2}V_{TH}$ | $v_0$ $-\Delta V_T$ $O$ $V_T$ $V_{T^*}$ $V_{T^*}$ | $v_1$ $v_2$ $v_3$ $v_4$ $v_5$ $v_6$ $v_7$ $v_8$ $v_8$ $v_9$ |

特点:内部正反馈使得波形边沿很陡。

即输入电压上升到  $V_{T+}$  时,输出电压才会 $\uparrow$ ;下降到  $V_{T-}$  时,输出电压才会 $\downarrow$ 。

#### 2、单稳态电路

|     | $V_{TH}$           | 脉冲宽度 $t_w$                                                        | 门电路组成                                                                                   |
|-----|--------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 微分型 | $rac{1}{2}V_{DD}$ | RCln2                                                             | $v_1 \xrightarrow{C_d} v_d \xrightarrow{G_1} v_{01} \xrightarrow{V_{DD}} v_0$           |
| 积分型 | $rac{1}{2}V_{DD}$ | $(R_0+R)Clnrac{V_{OL}-V_{OH}}{V_{OL}-V_{TH}} \ R_0$ : $G_1$ 內部电阻 | $v_1$ $C$ $v_2$ $v_3$ $v_4$ $v_5$ $v_6$ $v_7$ $v_8$ $v_9$ $v_9$ $v_9$ $v_9$ $v_9$ $v_9$ |

特点: (1) 两个工作状态; (2) 暂稳态维持时间长短取决于电路本身参数 集成单稳态电路

| 触发方式                                         | 脉冲宽度                                  | 芯片图                                                    |  |
|----------------------------------------------|---------------------------------------|--------------------------------------------------------|--|
| B=1: A <sub>1</sub> A <sub>2</sub> 下降沿触发     | R <sub>ext</sub> C <sub>ext</sub> ln2 | C <sub>cut</sub> R <sub>cut</sub> V <sub>cc</sub>   10 |  |
| A <sub>1</sub> =0 或 A <sub>2</sub> =0:B上升沿触发 | ivext €ext <sup>III</sup> 2           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |  |

# 3、多谐振荡电路

|          | 振荡周期                                                              | 门电路组成                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 对称式      | $2R_EClnrac{V_E-V_{IK}}{V_E-V_{TH}}$                             | $v_{11}$ $C_2$ $C_2$ $C_1$ $C_1$ $C_2$ $C$ |
| 非对称式     | $2R_FCln3$                                                        | $v_{11}$ $R_p$ $G_1$ $v_{02}$ $G_2$ $V_{02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 环形       | $2nt_{pd}$ $n\geq 3$ 且为奇数                                         | $v_{\text{tl}}$ $G_1$ $G_2$ $G_n$ $G_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 施密特触发器构成 | $RClnrac{V_{DD}-V_{T-}}{V_{DD}-V_{T+}}\cdotrac{V_{T}+}{V_{T}-}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# 4、555定时器

| 输入               |                      | 输出                    |                | 芯片图                   |                                                                                                                                                                                                                                                                                                           |
|------------------|----------------------|-----------------------|----------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R <sub>D</sub> ' | v <sub>I1</sub> (TH) | v <sub>I2</sub> (TR') | v <sub>o</sub> | T <sub>D</sub> 状<br>态 | V <sub>CC</sub> R' <sub>D</sub>                                                                                                                                                                                                                                                                           |
| 0                | /                    | /                     | 低              | 导通                    | $(TH) \qquad \qquad \downarrow 5 \text{ k}\Omega$ $v_{11} \qquad \qquad \downarrow 6 \qquad \qquad \downarrow V_{C1}$                                                                                                                                                                                     |
|                  | >2V <sub>CC</sub> /3 | >1V <sub>CC</sub> /3  | 低              | 导通                    | $V_{\text{CO}}$ $(\text{CTRL})$ $S \times M\Omega$ |
| 1                | <2V <sub>CC</sub> /3 | >1V <sub>CC</sub> /3  | 不变             | 不变                    | $ \begin{array}{c cccc} (TR') & V_{R2} & C_2 \\ v_{12} & 2 & V_{C2} \end{array} $ (DISC) $7$                                                                                                                                                                                                              |
|                  | <2V <sub>CC</sub> /3 | <1V <sub>CC</sub> /3  | 高              | 截止                    | \$5 kΩ T <sub>D</sub>                                                                                                                                                                                                                                                                                     |
|                  | >2V <sub>CC</sub> /3 | <1V <sub>CC</sub> /3  | 高              | 截止                    | (GND)                                                                                                                                                                                                                                                                                                     |

 $V_{CO}$  为控制端:

悬空时  $V_{R1} = \frac{2}{3} V_{CC} V_{R2} = \frac{1}{3} V_{CC}$ 

接电压时  $V_{R1}=V_{CO}$   $V_{R2}=rac{1}{2}V_{CO}$ 

|           | 特点                                                                                                                     | 芯片图 | 波形图                                                      |
|-----------|------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------|
| 施密特触发器    | $V_{I1}$ 与 $V_{I2}$ 接在一起作为 $V_{I}$ $V_{T+}=rac{2}{3}V_{CC}$ $V_{T-}=rac{1}{3}V_{CC}$ $\Delta V_{T}=rac{1}{3}V_{CC}$ |     | O 1/3 V <sub>cc</sub> 2/3 V <sub>cc</sub> v <sub>1</sub> |
| 単稳态<br>电路 | $t_w = RCln3$<br>不可重复触发                                                                                                |     | No. 1                                                    |
| 多谐振荡电路    | 充电: $T_1=(R_1+R_2)Cln2$<br>放电: $T_2=R_2Cln2$<br>周期: $T=(R_1+2R_2)Cln2$<br>占空比: $q=rac{R_1+R_2}{R_1+2R_2}$             |     | V <sub>1</sub>                                           |

# Chapter 10 微处理器设计

#### 1、微处理器结构

|            | 特点                                        |
|------------|-------------------------------------------|
| 冯诺依曼结<br>构 | 将程序存储和数据存储放在同一物理存储空间,具有更好的硬件效率。           |
| 哈佛结构       | 将程序存储和数据存储分别放在不同的物理存储空间,具有更好的灵活性和稳定<br>性。 |

冯诺依曼结构主要包括:输入、输出、存储器、微处理器。

微处理器又分为控制单元与数据通路。

控制单元的指令周期:取指、译指、执行指令。

数据通路主要包括运算单元、存储单元(寄存器)。

## 2、微处理器指令集

MIPS 架构的四个原则: (1) 简洁规整; (2) 加快经常性事件的速度; (3) 较小的速度更快; (4) 好的设计要求良好的妥协。

汇编语言

|               | 指令                                                                                                                |                                                                                             |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| 加法            | High-Level Code a = b + c;                                                                                        | MIPS Assembly Code add a, b, c                                                              |  |  |
| 减法            | High-Level Code  a = b - c;                                                                                       | MIPS Assembly Code                                                                          |  |  |
| 复杂运算          | <pre>High-Level Code a = b + c - d;  // single-line comment</pre>                                                 | MIPS Assembly Code sub t, c, d # t = c - d add a, b, t # a = b + t                          |  |  |
| 寄存器操作         | High-Level Code a = b + c;                                                                                        | MIPS Assembly Code<br># \$s0 = a, \$s1 = b, \$s2 = c<br>add \$s0, \$s1, \$s2 # a = b + c    |  |  |
| $load\ word$  | # This assembly code (unlike MIPS) assumes word-addressable memory lw \$s3, 1(\$0) # read memory word 1 into \$s3 |                                                                                             |  |  |
| $store\ word$ | # This assembly code (unlike MIPS) assumes word-addressable memory sw \$s7, 5(\$0) # write \$s7 to memory word 5  |                                                                                             |  |  |
| 立即数操<br>作     | High-Level Code  a = a + 4; b = a - 12;                                                                           | # \$s0 = a, \$s1 = b<br>addi \$s0, \$s0, 4 # a = a + 4<br>addi \$s1, \$s0, -12 # b = a - 12 |  |  |

#### 机器语言

MIPS 采用 32 位指令,定义了三种指令格式:R 型、I 型、J 型。

| 指令格式                  | 特点                                   |
|-----------------------|--------------------------------------|
| R型<br>(寄存器类型)         | 使用三个寄存器作为操作数:两个作为源,一个作为目标。如 sub、add。 |
| <i>I</i> 型<br>(立即数类型) | 使用两个寄存器操作数和一个立即数。如 $lw$ 、 $sw$ 。     |
| <i>J</i> 型<br>(跳转型)   | 只用跳转指令使用。有一个 26 位的立即数,无寄存器           |