1

Document on Question 28 Exercise(8.1)

Pothukuchi Siddhartha

Abstract

This a simple document explaining a question about the concept of similar triangles.

Download all python codes from

svn co https://github.com/SiddharthPh/Summer2020/trunk/document/codes

QUESTION

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that:

- a) $\triangle AMC \cong \triangle BMD$
- b) $\triangle DBC$ is a right angle.
- $c)\triangle DBC \cong \triangle ABC$
- d)CM = $\frac{1}{2}$ AB

SOLUTION

The python code for the figure is

./code/traingle.py

The latex- tikz code is

./figs/triangle.tex

The above latex code can be compiled as standalone document

./figs/triangle_fig.tex

(b) By Latex-tikz

Fig. 1: Obtained by executing the above codes.

Sol.a)

From the above figure,

$$C = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, A = \begin{pmatrix} 0 \\ b \end{pmatrix}, B = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

As, M is the midpoint of AB

$$M = \begin{pmatrix} a/2 \\ b/2 \end{pmatrix}$$

Therefore Coordinates of D are

$$D = \begin{pmatrix} a \\ b \end{pmatrix}$$

 $\triangle AMC$ and $\triangle DMB$ are congruent to each other by SAS congruency.

- (i) Side AM is equal to the corresponding side BM [As M is midpoint of AB]
- (ii)Side CM of is equal to corresponding side DM [As M is midpoint of DC]
- (iii) $\angle AMC = \angle DMB$ [Vertically Opposite Angles]

Sol.b)

In $\triangle ACB$

 $(AB)^2 = a^2 + b^2$ Since $\angle ACB = 90^{\circ}$ [Pythagorus theorem]

In $\triangle DBC$ [DB = D-B = b]

$$cos \angle DBC = [((a^2 + b^2 - (DC)^2)/2ab)]$$

By using distance formula i.e $\sqrt{(x1-x2)^2+(y1-y1)^2}$ we get that AB=DC from the given coordinates.

$$\cos \angle DBC = [((a^2 + b^2 - (AB)^2)/2ab)]$$

$$cos \angle DBC = 0$$

Therefore, $\angle DBC$ is right angle

Sol.c)

 $\triangle ACB$ and $\triangle DCB$ are congruent to each other in SAS congruency. (i)Both the triangles have a common base , a.

- (ii)AC = DB by using distance formula
- (iii) $\angle ACB = \angle DBC = 90^{\circ}$ [From Solution b]

Sol.d)

Since M is the midpoint of CD

 $CM = \frac{1}{2}DC$ From Solution b) it is clear that DC=AB

Therefore $CM = \frac{1}{2}AB$

Hence Proved.