Question-10.3.2.3.1

EE24BTECH11030 - J.KEDARANANDA

Question

On comparing the ratios $\frac{a_1}{a_2}$, $\frac{b_1}{b_2}$ and $\frac{c_1}{c_2}$, find out whether the following pair of linear equations are consistent, or inconsistent.

$$3x + 2y = 5; 2x - 3y = 7 (1)$$

Theoretical Solution

Theoritical solution: To determine whether the given pair of linear equations is consistent or inconsistent, we compare the ratios $\frac{a_1}{a_2}$, $\frac{b_1}{b_2}$, and $\frac{c_1}{c_2}$, where:

$$a_1x + b_1y = c_1$$
 and $a_2x + b_2y = c_2$ (2)

From the equations:

$$3x + 2y = 5$$
 and $2x - 3y = 7$, (3)

we identify:

$$a_1 = 3, b_1 = 2, c_1 = 5, a_2 = 2, b_2 = -3, c_2 = 7.$$
 (4)

Now calculate the ratios:

$$\frac{a_1}{a_2} = \frac{3}{2}, \quad \frac{b_1}{b_2} = \frac{2}{-3}, \quad \frac{c_1}{c_2} = \frac{5}{7}.$$
 (5)

Since:

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2},\tag{6}$$

Computational Solution

by the equations are **intersecting**. Therefore, the system of equations has a unique solution.

Solution using LU Factorization:

Given the system of linear equations:

$$3x + 2y = 5, (7)$$

$$2x - 3y = 7.$$
 (8)

We rewrite the equations as:

$$x_1 = x, (9)$$

$$x_2 = y, (10)$$

giving the system:

$$3x_1 + 2x_2 = 5, (11)$$

$$2x_1 - 3x_2 = 7. (12)$$

Step-by-Step Procedure for LU Factorization

Step-by-Step Procedure:

- **1** Initialization:
 - Start by initializing ${\bf L}$ as the identity matrix ${\bf L}={\bf I}$ and ${\bf U}$ as a copy of ${\bf A}$.
- Iterative Update:
 - For each pivot $k = 1, 2, \dots, n$:
 - Compute the entries of U using the first update equation.
 - ullet Compute the entries of $oldsymbol{L}$ using the second update equation.
- Result:
 - After completing the iterations, the matrix \boldsymbol{A} is decomposed into $\boldsymbol{L}\cdot\boldsymbol{U}$, where \boldsymbol{L} is a lower triangular matrix with ones on the diagonal, and \boldsymbol{U} is an upper triangular matrix.

Update Equations for LU Factorization

1. Update for $U_{k,i}$ (Entries of U)

For each column $j \ge k$, the entries of **U** in the k-th row are updated as:

$$U_{k,j} = A_{k,j} - \sum_{m=1}^{k-1} L_{k,m} \cdot U_{m,j}, \text{ for } j \ge k.$$

This computes the elements of the upper triangular matrix **U** by eliminating the lower triangular portion.

2. Update for $L_{i,k}$ (Entries of L)

For each row i > k, the entries of **L** in the k-th column are updated as:

$$L_{i,k} = \frac{1}{U_{k,k}} \left(A_{i,k} - \sum_{m=1}^{k-1} L_{i,m} \cdot U_{m,k} \right), \quad \text{for } i > k.$$

This equation computes the elements of the lower triangular matrix L, where each entry in the column is determined by the values in the rows above it

LU Factorization and Forward Substitution

We decompose A as:

$$A = LU, (13)$$

where L is a lower triangular matrix and U is an upper triangular matrix. By running the iteration code, we get the L and U matrices:

$$L = \begin{bmatrix} 1 & 0 \\ \frac{2}{3} & 1 \end{bmatrix},\tag{14}$$

$$U = \begin{bmatrix} 3 & 2\\ 0 & -\frac{13}{3} \end{bmatrix}. \tag{15}$$

We solve:

$$L\mathbf{y} = \mathbf{b} \quad \text{or} \quad \begin{bmatrix} 1 & 0 \\ \frac{2}{3} & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}.$$
 (16)

From the first row:

$$y_1 = 5.$$
 (17)

Forward and Backward Substitution

From the second row:

$$\frac{2}{3}y_1 + y_2 = 7 \implies \frac{2}{3} \cdot 5 + y_2 = 7 \implies y_2 = \frac{11}{3}.$$
 (18)

Thus:

$$\mathbf{y} = \begin{bmatrix} 5\\\frac{11}{3} \end{bmatrix}. \tag{19}$$

We solve:

$$U\mathbf{x} = \mathbf{y} \quad \text{or} \quad \begin{bmatrix} 3 & 2 \\ 0 & -\frac{13}{3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ \frac{11}{3} \end{bmatrix}.$$
 (20)

From the second row:

$$-\frac{13}{3}x_2 = \frac{11}{3} \implies x_2 = -\frac{11}{13}.$$
 (21)

From the first row:

$$3x_1 + 2x_2 = 5 \implies 3x_1 + 2\left(-\frac{11}{13}\right) = 5.$$
 (22)

Solution Completion: Backward Substitution and Final Solution

From the first row:

$$3x_1 - \frac{22}{13} = 5 \implies 3x_1 = 5 + \frac{22}{13} = \frac{65}{13} + \frac{22}{13} = \frac{87}{13}, \quad (23)$$
$$x_1 = \frac{87}{39} = \frac{29}{13}. \quad (24)$$

Thus:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{29}{13} \\ -\frac{11}{13} \end{bmatrix}. \tag{25}$$

The solution is:

$$x = \frac{29}{13},\tag{26}$$

$$y = -\frac{11}{13}. (27)$$

As we can clearly see, there is a solution for the given lines, so the system of equations is **consistent**.

Diagram

