

Machine Learning with Python

Cognitive Class ML0101ENv3

You are taking "Final Exam" as a timed exam. The timer on the right shows the time remaining in the exam.

End My Exam

0:36:19

- ▶ Welcome!
- About this course
- Module 1 Machine Learning
- ► Module 2 Regression
- Module 3 -Classification
- Module 4 -Clustering
- Module 5 -Recommender Systems
- **▼** Final Exam

Instructions

Course Survey

Final Exam

Timed Exam

•

Certificates and Badges

Final Exam Instructions

- 1. Time allowed: 1 hour
- 2. Attempts per question:
 - One attempt For True/False questions
 - Two attempts For any question other than True/False
- 3. Clicking the "**Final Check**" button when it appears, means your submission is **FINAL**. You will **NOT** be able to resubmit your answer for that question ever again

IMPORTANT: Do not let the time run out and expect the system to grade you automatically. You must explicitly submit your answers, otherwise they would be marked as incomplete.

QUESTION 1 (1/1 point)

You can define Jaccard as the size of the intersection divided by the size of the union of two label sets.

● True	~				
O False					

You have used 1 of 1 submissions

QUESTION 2 (1/1 point)

When building a decision tree, we want to split the nodes in a way that increases entropy and decreases information gain.

O True					
False	~				

$QUESTION \ 3 \ \ {\scriptsize (1/1\,point)}$

Which of the following statements are true?	(Select all that apply.)
---	--------------------------

	ch of the following statements are true? (Select all that apply.)
•	K needs to be initialized in K-Nearest Neighbor.
~	Supervised learning works on labelled data.
	A high value of K in KNN creates a model that is over-fit
	KNN takes a bunch of unlabelled points and uses them to predict unknown points.
•	Unsupervised learning works on unlabelled data.
~	
You	n have used 2 of 2 submissions
	JESTION 4 (1/1 point)
Ql To ca	
QU To ca pred	JESTION 4 (1/1 point) alculate a model's accuracy using the test set, you pass the test set to your model to
QU To ca pred	JESTION 4 $(1/1 \text{point})$ alculate a model's accuracy using the test set, you pass the test set to your model to lict the class labels, and then compare the predicted values with actual values.
QU To ca pred	JESTION 4 (1/1 point) alculate a model's accuracy using the test set, you pass the test set to your model to lict the class labels, and then compare the predicted values with actual values. True
QU To ca pred	JESTION 4 (1/1 point) alculate a model's accuracy using the test set, you pass the test set to your model to lict the class labels, and then compare the predicted values with actual values. True

$QUESTION \ 5 \ {\tiny (1/1\,point)}$

Which is the definition of entropy?

OHECTION O

QUESTION 8 (1/1 point)
Which of the following statements are true about linear regression? (Select all that apply)
☑ With linear regression, you can fit a line through the data.
✓ y=a+b_x1 is the equation for a straight line, which can be used to predict the continuous value y.
\Box In y=θ^T.X, θ is the feature set and X is the "weight vector" or "confidences of the equation", with both of these terms used interchangeably.
✓
Var have used 2 of 2 submissions
You have used 2 of 2 submissions
QUESTION 9 (1/1 point)
QUESTION 9 (1/1 point) The Sigmoid function is the main part of logistic regression, where Sigmoid of $\theta^T.X$, gives
QUESTION 9 (1/1 point) The Sigmoid function is the main part of logistic regression, where Sigmoid of $\theta^T.X$, gives us the probability of a point belonging to a class, instead of the value of y directly.
QUESTION 9 (1/1 point) The Sigmoid function is the main part of logistic regression, where Sigmoid of $\theta^T.X$, gives us the probability of a point belonging to a class, instead of the value of y directly. • True
QUESTION 9 (1/1 point) The Sigmoid function is the main part of logistic regression, where Sigmoid of $\theta^T.X$, gives us the probability of a point belonging to a class, instead of the value of y directly. • True

You have used 1 of 1 submissions

QUESTION 10 (1 point possible)
In comparison to supervised learning, unsupervised learning has:
Less tests (evaluation approaches)
More models
A better controlled environment
More tests (evaluation approaches), but less models
You have used 2 of 2 submissions
QUESTION 11 (1/1 point)
The points that are classified by Density-Based Clustering and do not belong to any cluster, are outliers.
● True ✔
○ False

Machine Learning with Python

Cognitive Class ML0101ENv3

QUESTION 12 (1/1 point)

Which of the following is false about Simple Linear Regression?

It does not require tuning parameters
O It is highly interpretable
O It is fast
● It is used for finding outliers

QUESTION 13 (1/1 point)

You have used 2 of 2 submissions

Which one of the following statements is the most accurate?

- Machine Learning is the branch of Al that covers the statistical and learning part of artificial intelligence.
- O Deep Learning is a branch of Artificial Intelligence where computers learn by being explicitely programmed.
- O Artificial Intelligence is a branch of Machine Learning that covers the statistical part of Deep Learning.
- O Artificial Intelligence is the branch of Deep Learning that allows us to create models.

You have used 1 of 1 submissions

QUESTION 14 (1/1 point)

Which of the following are types of supervised learning?

	Classification
~	Regression
~	KNN
	K-Means
	Clustering
~	
You	have used 2 of 2 submissions
QU	JESTION 15 (1/1 point)
	tom-Up version of hierarchical clustering is known as Divisive clustering. It is a more lar method than the Agglomerative method.
0	True
•	False ✓
	False
You	
_{You}	have used 1 of 1 submissions
<i>You</i> QU Selec	have used 1 of 1 submissions JESTION 16 (1/1 point)
You QU Gelec	have used 1 of 1 submissions ${\tt IESTION~16} \ \ {\tt (1/1~point)}$ t all the true statements related to Hierarchical clustering and K-Means.
You QU Selecc ✓	have used 1 of 1 submissions IESTION 16 (1/1 point) t all the true statements related to Hierarchical clustering and K-Means. Hierarchical clustering does not require the number of clusters to be specified. Hierarchical clustering always generates different clusters, whereas k-Means

OUESTION 17 (1 point possible)

QUESTIVITY IT (1 point possible)
What is a content-based recommendation system?
O Content-based recommendation system tries to recommend items to the users based on their profile built upon their preferences and taste.
 Content-based recommendation system tries to recommend items based on similarity among items.
O Content-based recommendation system tries to recommend items based on the similarity of users when buying, watching, or enjoying something.
You have used 1 of 1 submissions
QUESTION 18 (1/1 point)
Before running Agglomerative clustering, you need to compute a distance/proximity matrix, which is an n by n table of all distances between each data point in each cluster of your dataset.
● True ✔
○ False
You have used 1 of 1 submissions
QUESTION 19 (1/1 point)
Which of the following statements are true about DBSCAN? (Select all that apply)
☑ DBSCAN can be used when examining spatial data.
☑ DBSCAN can be applied to tasks with arbitrary shaped clusters, or clusters within clusters.
□ DBSCAN is a hierarchical algorithm that finds core and border points.

✓
You have used 2 of 2 submissions
QUESTION 20 (1/1 point)
In recommender systems, "cold start" happens when you have a large dataset of users who have rated only a limited number of items.
O True
● False ✔
You have used 1 of 1 submissions