

COVID-19:

Statistisches Praktikum WiSe21/22

VORHERSAGE DER HOSPITALISIERUNGSRATE

Projektpartner:

Yeganeh Khazaei Statistisches Beratungslabor StaBLab der LMU Institut für Statistik

Gruppe: Alexander Marquard Johannes Pfeifer Phu Nguyen Qian Feng

AGENDA

ALLGEMEINE INFORMATIONEN

• Hintergrund:

Als Leitkriterium für Maßnahmen gegen die weitere Ausbreitung des Virus dienen sinnvolle Auswertungen der Datengrundlage und der Bestimmung von Maßzahlen (wie z.B die Reproduktionszahl, die Inzidenz bzw. Hospitalisierungsinzidenz)

Aufgabe:

Hospitalisierungsrate eine Woche in der Zukunft vorhersagen, dabei zeitliche und räumliche Faktoren miteinbeziehen

Definition:

Hospitalisierungsrate: die Anzahl der zur Behandlung aufgenommenen Covid-19 Patienten innerhalb einer Woche

KRANKHEITSVERLAUF BEI COVID-19 PATIENTEN

FINALER DATENSATZ

Jahrwoche	Hospitalisierung	Neuerkrankung	Lag1_Neuerkrankung	Lag2_Neuerkrankung	Bundesland	Altersgruppe	Jahreszeit	Impfquote	Lockdown
2021 – 01	1660	7378	6499	7578	Nordrhein- Westfalen	60+	Winter	1.57e-06	1
2021 – 02	508	15977	19873	15309	Nordrhein- Westfalen	00 - 59	Winter	8.08e-05	1
2021 – 02	1377	6058	7378	6499	Nordrhein- Westfalen	60+	Winter	3.01e-05	1
2021 – 03	429	13498	15977	19873	Nordrhein- Westfalen	00 – 59	Winter	3.50e-05	1
2021 – 03	1343	5443	6058	7378	Nordrhein- Westfalen	60+	Winter	8.79e-05	1

HOSPITALISIERUNG NACH LOCKDOWNSTATUS

HOSPITALISIERUNG NACH ALTERSGRUPPEN

HOSPITALISIERUNG NACH JAHRESZEITEN

KORRELATION NEUERKRANKUNG - HOSPITALISIERUNG

MODELLVORSTELLUNG

$$\label{eq:log(Hospitalisiert)} \begin{split} \log(\text{Hospitalisiert})_i &= \beta_0 + \beta_1 * (\text{Altersgruppe}_i = "60+") + \\ \beta_2 * I(\text{season}_i = "\text{Autumn"}) + \\ \beta_3 * I(\text{season}_i = "\text{Spring"}) + \\ \beta_4 * I(\text{season}_i = "\text{Winter"}) + \\ \beta_5 * \log(\text{Neuerkrankte_lag1})_i + \\ \beta_6 * \log(\text{Neuerkrankte_lag2})_i + \\ \epsilon_i \end{split}$$

Multiple R-squared: 0.9512 Adjusted R-squared: 0.9495

PREDICTION GRAPH

AUSBLICK

- Infektion aufteilen in geimpft und ungeimpft
- Tiefergehende Datenanalyse bzgl. Interaktionseffekten und weiterer Kovariablen
- Testen von GAM
- Diagnose des aktuellen Modells

ANHANG

Beta Koeffizienten

Coefficients:

	Estimate	Pr(> t)
(Intercept)	-1.83770	< 2e-16 ***
Altersgruppe (60+)	1.66400	< 2e-16 ***
season Autumn	-0.11828	0.14855
season Spring	0.23664	0.00387 **
season Winter	0.09325	0.36223
log (Neuerkrankte_lag_1)	1.37197	< 2e-16 ***
log (Neuerkrankte_lag_2)	-0.57622	< 2e-16 ***

VERTEILUNG HOSPITALISIERUNG INNERHALB EINER WOCHE

HOSPITALISIERUNGSINZIDENZ NACH ALTERSGRUPPEN UND IMPFSTATUS


```
Call:
lm(formula = log(sum_hosp_nowcast) ~ Altersgruppe + season +
   log(lag_1) + log(lag_2), data = final_df_wo_impfung, weights = w_i)
Weighted Residuals:
   Min
            10 Median
                                  Max
-4.0716 -1.0576 0.0505 1.2128 3.7856
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     -1.75040
                               0.15620 -11.206 < 2e-16 ***
Altersgruppe(59, Inf) 1.73129
                               0.04968 34.849 < 2e-16 ***
                     -0.07033
                               0.08130 -0.865 0.3882
seasonAutumn
seasonSpring
                     0.17661
                               0.08052 2.193 0.0296 *
seasonWinter
                     0.10310
                               0.08598 1.199 0.2321
log(lag_1)
                     1.29604
                               0.06722 19.281 < 2e-16 ***
log(lag_2)
                     -0.51538
                                0.06724 -7.665 1.28e-12 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.636 on 171 degrees of freedom
Multiple R-squared: 0.9561. Adjusted R-squared: 0.9546
F-statistic: 621.4 on 6 and 171 DF, p-value: < 2.2e-16
```

DIAGNOSEPLOTS

