

TEC0001 – Teoria da Computação Aula 04 Variantes da Máquina de Turing (1)

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2016

Sumário

Variantes da Máquina de Turing

Máquina de Turing com movimento estacionário

Máquina de Turing Multifitas

Karina G. Roggia 2016 TEC0001 - Aula04 2 / 16

Variantes da Máquina de Turing

- Acréscimo do movimento estacionário
- Acréscimo de mais fitas
- Fita infinita para ambos os lados
- Não determinísmo
- Acréscimo de dispositivo de saída

Mudança no poder computacional?

Máquina de Turing com movimento estacionário

Definição (Máquina de Turing com movimento estacionário)

Uma máquina de Turing com movimento estacionário é uma estrutura algébrica $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita} \rangle$ onde Q, Σ, Γ são conjuntos finitos e

- Q é o conjunto de estados
- \bullet Σ é o alfabeto de entrada
- Γ é o alfabeto da fita sendo que $\square \in \Gamma$, $\square \notin \Sigma$ e $\Sigma \subseteq \Gamma$
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{E, D, P\}$ é a função de transição
- q₀ é o estado inicial
- q_{aceita} é o estado de aceitação
- $q_{rejeita}$ é o estado de rejeição onde $q_{aceita} \neq q_{rejeita}$

Máquina de Turing com movimento estacionário

Seja
$$q_i,q_j\in Q$$
, $x,y\in \Gamma$, $u,v\in \Gamma^*$ e a configuração

$$u q_i xv$$

Caso
$$\delta(q_i, x) = (q_i, y.P)$$
, a configuração resultante será

$$u q_j yv$$

Karina G. Roggia 2016 TEC0001 - Aula04 5 / 16

$\overline{\mathsf{MT} \Leftrightarrow \mathsf{MT+P}}$

Teorema: A classe de Máquinas de Turing com movimento estacionário é equivalente à classe das Máquinas de Turing.

Ou seja, dada uma MT M deve-se ter uma MT+P M_P que reconheça a mesma linguagem de M \mathbf{e} , dada uma MT+P P deve-se ter uma MT P_M que reconheça a mesma linguagem de P.

Prova:

⇒ Óbvia.

$\mathsf{MT} \Leftrightarrow \mathsf{MT} + \mathsf{P}$

construiremos uma MT P_M que reconheça L(P).

$$P_M = \langle Q_M, \Sigma, \Gamma, \delta_M, q_0, q_{aceita}, q_{rejeita} \rangle$$

onde
$$\delta_M = (\delta_P \setminus \delta_{\{P\}}) \cup \delta_{DE}$$

Sendo, para $q_i, q_j \in Q, x, y \in \Gamma$:
 $\delta_{\{P\}} = \{\langle (q_i, x), (q_j, y, P) \rangle\} \subseteq \delta_P$
 $\delta_{DE} = \{\langle (q_i, x), (q_{k_i}, y, D) | \langle (q_i, x), (q_j, y, P) \rangle \in \delta_P \} \cup \{\langle (q_{k_i}, \gamma), (q_j, \gamma, E) \rangle | \langle (q_i, x), (q_j, y, P) \rangle \in \delta_P \text{ e } \forall \gamma \in \Gamma \}$
E $Q_M = Q \cup \{q_{k_i} | \text{ para cada } \langle (q_i, x), (q_j, y, P) \rangle \in \delta_P \}$

Karina G. Roggia 2016 TEC0001 - Aula04

$\overline{\mathsf{MT} \Leftrightarrow \mathsf{MT+P}}$

Explicando...

Cada transição "fique parado"

$$\delta_P(q_i,x)=(q_j,y,P)$$

será substituída por $|\Gamma| + 1$ transições:

• uma para a direita

$$\delta_M(q_i,x)=(q_{k_i},y,D)$$

onde q_{k_i} é um novo estado de Q_M

• |Γ| transições para a esquerda

$$\delta_{M}(q_{k_{i}},\gamma)=(q_{j},\gamma,E)$$

uma para cada símbolo $\gamma \in \Gamma$.

Karina G. Roggia 2016 TEC0001 - Aula04 8 / 16

Máquina de Turing Multifitas

- Número fixo e predefinido de fitas (denotaremos por MTk a MT com k fitas).
- Cada fita tem sua própria cabeça de leitura e escrita.
- Entrada é colocada na primeira fita, sendo as demais inicializadas somente com brancos.

Karina G. Roggia 2016 TEC0001 - Aula04 9 / 10

Máquina de Turing Multifitas

Definição (Máquina de Turing Multifitas)

Uma máquina de Turing com k fitas é uma estrutura algébrica $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita} \rangle$ onde Q, Σ, Γ são conjuntos finitos e

- Q é o conjunto de estados
- Σ é o alfabeto de entrada
- Γ é o alfabeto da fita sendo que $\square \in \Gamma$, $\square \notin \Sigma$ e $\Sigma \subseteq \Gamma$
- $\delta: Q \times \Gamma^{k} \to Q \times \Gamma^{k} \times \{E, D\}^{k}$ é a função de transição
- q₀ é o estado inicial
- *q_{aceita}* é o estado de aceitação
- $q_{rejeita}$ é o estado de rejeição onde $q_{aceita} \neq q_{rejeita}$

Karina G. Roggia 2016 TEC0001 - Aula04 10 / 16

Máquina de Turing Multifitas

A expressão

$$\delta(q_i, x_1, x_2, \dots, x_k) = (q_j, y_1, y_2, \dots, y_k, \underbrace{E, D, \dots, E}_{k \text{ movimentos}})$$

significa

- se a máquina está
 - no estado q_i
 - a fita 1 lendo x₁
 - a fita 2 lendo x₂
 - ...
 - a fita k lendo x_k
- então a máquina
 - irá para o estado q_i
 - ullet escreverá y_1 na fita 1 e moverá a cabeça 1 para a esquerda
 - escreverá y₂ na fita 2 e moverá a cabeça 2 para a direita
 - ...
 - ullet escreverá y_k na fita k e moverá a cabeça k para a esquerda

$\overline{\mathsf{MT}} \Leftrightarrow \mathsf{MTk}$

Teorema: A classe de Máquinas de Turing Multifitas é equivalente à classe das Máquinas de Turing.

Ou seja, dada uma MT M deve-se ter uma MTk M_k que reconheça a mesma linguagem de M \mathbf{e} , dada uma MTk K deve-se ter uma MT K_M que reconheça a mesma linguagem de K.

Prova:

⇒ Óbvia.

$\mathsf{MT} \Leftrightarrow \mathsf{MTk}$

 \sqsubseteq Dada uma MTk $K = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita} \rangle$ construiremos uma MT K_M que reconheça L(K).

- O alfabeto da fita de K_M será $\Gamma \cup \{\#\} \cup \{\stackrel{\bullet}{\gamma} \mid \gamma \in \Gamma\}$, sendo $\# \notin \Gamma$.
- O símbolo # servirá como um delimitador entre as fitas de K.
- A marcação de ponto acima de um símbolo, $\mathring{\gamma}$, indica que a cabeça da fita de K está posicionada sobre aquele símbolo.
- Tendo-se $w = w_1 w_2 \dots w_n$, K_M iniciará com o seguinte conteúdo na fita

$$\# w_1 w_2 \dots w_n \# \underline{\cdot} \# \underline{\cdot} \# \dots \#$$

Karina G. Roggia 2016 TEC0001 - Aula04 13 / 16

$MT \Leftrightarrow MTk$

$\overline{\mathsf{MT}} \Leftrightarrow \mathsf{MTk}$

 \bullet K_M inicia com a fita

$$\#w_1 w_2 \dots w_n \#^{\bullet} \#^{\bullet} \# \dots \#$$

- **2** K_M varre a fita do primeiro ao (k+1)-ésimo # determinando quais símbolos estão marcados com o posicionamento das k cabeças de fita
- $oldsymbol{\mathfrak{S}}$ K_M faz uma segunda passagem na fita, atualizando os símbolos conforme o estabelecido pela função de transição de K
- Se K_M move uma das cabeças virtuais para um símbolo #, isto significa que tal cabeça se moveu para um símbolo em branco da fita correspondente. Então K_M escreve um símbolo branco e desloca o conteúdo da fita a partir do # para uma posição à direita. Volta a posição do símbolo branco colocado e substitui por ♣, continuando a simulação.

Exercício

Defina uma variante da Máquina de Turing que não permite a escrita do símbolo — em sua função programa e prove que é equivalente à classe das Máquinas de Turing.

Karina G. Roggia 2016 TEC0001 - Aula04 16 / 16