CSED601 Dependable Computing Lecture 9

Jong Kim
Dept. of CSE
POSTECH

Copyright, 2018 © JKim POSTECH HPC

Review of Previous Lecture

- Code types
 - Cyclic code, Cyclic Redundancy Check (CRC)
 - Arithmetic Code
 - AN code, Residue code, Inverse residue code, RNS
 - Berger code
 - Horizontal and Vertical parity code
 - Hamming Error Correcting code
 - Code selection issues
 - Error model

Time Redundancy

Concept

- The penalty paid is time.
- Attempt to reduce the amount of extra hardware at the expense of using additional time
- Time redundancy can detect a permanent fault with a minimum extra hardware
- The selection of a particular type of redundancy is very dependant upon the application

Methods

- Retry
- Alternating logic
- Re-computing with shifted operands (RESO)
- Re-computing with swapped operands (RWSO)
- Re-computing with duplication with comparison (REDWC)

Retry

- Concept
 - Used to detect transient fault
 - Repeat the same computation
- Methods
 - Method 1:
 - The repetition of computations in ways that allow faults to be detected.
 - Perform the same computation two or more times and compare the results to determine if a discrepancy exists.
 - Method 2:
 - The detection of fault is done by using other mechanism
 - Time redundancy is employed to distinguish between the permanent and the transient fault
 - Problem: Assure that the system has the same data to manipulate whenever it performs a computation redundantly.
 - Combine time and information redundancy
 - Use 3N and 5N codes for repetitive tries

Alternating Logic

Concept

- Compute with original data and compute with complemented data
- Applied to the transmission of digital data over wire media
- The concept can be applied to to general combinational logic circuit.

Alternating logic

- Using the self-duality
 - If the circuit possesses the property of self-duality, then f(x) = f'(x')
 - Full-adder is a self-dual circuit.
- Advantage
 - Any circuit can be transformed into a self-dual circuit by adding one more variable.

Re-computing with shifted operands (RESO)

Concept

- Developed as a method to provide concurrent error detection in ALUs
- Encoding function: left-shift operation
- Decoding function: right-shift operation
- Assume bit-sliced hardware
- Eg.: Ripple carry adder with additional bit slice

Problem

- Additional hardware is required
- Lack of coverage provided in the shifters
- Comparators should be TSC (totally self-checking circuit)

Re-computing with shifted operands (RESO)

Model

- When bit i is faulty,
 [0, 2ⁱ, 2⁽ⁱ⁺¹⁾, 3x2ⁱ]
- When two bits are shifted
 [0, 2⁽ⁱ⁻²⁾, 2⁽ⁱ⁻¹⁾, 3x2⁽ⁱ⁻²⁾]

Re-computing with Swapped Operands (RWSO)

Concept

- First: normal operation
- Second: computation with swapped operands

When bit i is faulty,

$$[0, 2^{(i+r+1)}, 2^{(i+r+2)}]$$

Re-computing with Duplication with Comparison (REDWC)

Concept

- Error detection resembles that of duplication with comparison
- First calculation: compute lower half using lower and upper part of ALUs and compare it.

Re-computing with Duplication with Comparison (REDWC)

- Characteristics
 - Same ability to detect a fault with duplication with comparison
 - Single fault is confined to one half of the adder

Re-computation for errorcorrection

- Concept
 - Repeated computation with shift
 - Can detect errors and locate the faulty unit
 - Only works for the independent unit
 - The adjacent bits are not independent.