1 Mathematics of Flat Linkage Mechanisms

1.1 Introduction

Suppose that a linkage mechanism ABCDEF is given, with each linkage having a known length. Some hinges are fixed and some are allowed to move. Suppose that A and E are fixed, and have coordinates (0,0) and (1,0) respectively, while moving points B,C,D and F have coordinates $(x_1,y_1),(x_2,y_2),(x_3,y_3)$ and (x_4,y_4) .

The configuration space of a linkage mechanism can be defined as a topological space, with a standard euclidean metric. Since the links between each hinge are straight lines, we can easily write the equations describing the relations between $\{x_i\}$ and $\{y_i\}$.

Problem (Direct Problem).

What can we say about classes of configuration spaces from classes of linkage mechanisms up to homeomorphisms?

Problem (Inverse Problem).

Given a class of configuration spaces, what can we say about the corresponding class of linkage mechanisms?

Theorem 1.1 (Thurston)

There exists a flat linkage mechanism such that its configuration space is your signature.

Definition 1.2. L is a linkage mechanism in a general position if $\epsilon_1 l_1 + \epsilon_2 l_2 + \cdots + \epsilon_n l_n \neq 0$ for all $\epsilon_i \in \{-1, 1\}$.

Definition 1.3. For polyhedral linkage mechanisms in a general position, defined by a set $\{l_1, l_2, \ldots, l_n\}$ of lengths

Exercise 1.4. The configuration space ConfL is unique up to the order of linkages.

Theorem 1.5

For all g there exists L_g such that $ConfL = M_g^2$, where M_g is a manifold of genus g.

Theorem 1.6

For all *n*-dimensional smooth oriented manifolds M^n there exists L_M such that $ConfL_M = \sqcup^k M^n$, where k is some finite positive integer.

Theorem 1.7

For all algebraic varieties X in \mathbb{R}^n there exists L_X there exists $ConfL_X = \sqcup^k X$, where k is some finite positive integer.