```
import numpy as np
import pandas as pd
import seaborn as sns
```

▼ load dataset

```
df=pd.read_csv("/content/abalone.csv")
df.head()
```

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

perform statistics values

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	41
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	
4							•

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):
```

Column Non-Null Count Dtype

```
0 Sex 4177 non-null object
1 Length 4177 non-null float64
2 Diameter 4177 non-null float64
3 Height 4177 non-null float64
4 Whole weight 4177 non-null float64
5 Shucked weight 4177 non-null float64
6 Viscera weight 4177 non-null float64
7 Shell weight 4177 non-null float64
8 Rings 4177 non-null float64
8 Rings 4177 non-null int64
dtypes: float64(7), int64(1), object(1)
memory usage: 293.8+ KB
```

check missing values

```
df.isna().sum()

Sex
Length
Diameter
Height
Whole weight
Shucked weight
Viscera weight
Shell weight
Rings
dtype: int64

df.isna().sum().sum()
```

check catogorical columns

```
df. get numeric data()
```

		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
	1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
df.shape									
	(4177,	9)							

Univariant analysis

4174 0.600 0.475 0.205 1.1760 0.5255 0.2875 0.3080 9 sns.barplot(df.Rings)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fa5de716750>

sns.jointplot(df.Rings)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<seaborn.axisgrid.JointGrid at 0x7fa5de6c8510>

→ Bivariant analysis

sns.jointplot(df.Rings,df.Height)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<seaborn.axisgrid.JointGrid at 0x7fa5de7a8850>

sns.barplot(df.Rings,df.Length)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fa5de0d62d0>

Multivariant analysis

sns.pairplot(df)

input varaible


```
from sklearn.preprocessing import MinMaxScaler
scalar=MinMaxScaler()
df_new=df.iloc[:, :-1]
df_new1=df_new.iloc[:, 1:]
```

df_new1

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550

split depandant and indepandant variable

	4172	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490
x=df_ y=df[new1 'Rings']						
	71/7	0.000	U.+1 J	0.200	1.1700	U.UZUU	U.ZUI J	0.0000

▼ split test and train data

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
```

build KNN model

```
from sklearn.neighbors import KNeighborsClassifier
knn= KNeighborsClassifier()

predict the data

def knn_alg(X_train, y_train, X_test, y_test, N):
    knn = KNeighborsClassifier(n_neighbors=N)
    knn.fit = (X_train, y_train)

try:
    knn.predict(X_test)
    except NotFittedError as e:
        print(repr(e))
```

evaluate our model

from sklearn.metrics import accuracy_score,confusion_matrix

accuracy_score(y_test,pred)
confusion_matrix(y_test,pred)

+ Code —

+ Text

Colab paid products - Cancel contracts here