# Market Entry Analysis Project

-Submitted By Shruti Desai

### **PROBLEM STATEMENT:**

- This Project is based on a mobile company 'XYZ Mobiles', a fictional China-based mobile company .
- XYZ Mobiles believes that the Indian market is very similar to China, in which the company currently operates.
- Before entering the new market, the company wants to be sure that the whole process will be profitable for them.

Hence, we are given the task to check for the following conditions that must be fulfilled in the Indian market for the company to enter:

- Sale of a minimum of 12,000 phones over the sample data in one year .
- Collection of at least Rs. 20 crores over the sample data in one year.

### T1: JUSTIFICATION DURING MODEL DEVELOPMENT:

- Gender was classified into binary data as male (1) and female(0). The annual income was converted into INR for matching the situation of Indian currency.
- From the Chinese customer data it is clear that purchase decision depends on 4 factors. Customer age, Gender, last phone life, and annual income. The following changes were made on the raw data
- The phone life was classified into 4 category as below:

| Days    | Segment |
|---------|---------|
| <200    | 1       |
| 200-360 | 2       |
| 360-500 | 3       |
| >500    | 4       |

- Then after dataset is converted into training and test set with 70:30 Rule and then K-Means Clustering Modelling Is Performed On both of them.
- And then ROC Curve, Beta Values and Conversion Matrix (Including Accuracy, Sensitivity, Precision etc.) Is Computed from train and test data through K-means Clustering.

### T1: PIVOT ANALYSIS AFTER CLEANING OF DATASET:

#### Table: 1

| GENDER | SUM OF PURCHASE | COUNT OF<br>LEAD | CONVERSION<br>RATE |
|--------|-----------------|------------------|--------------------|
| 0      | 9836            | 17715            | 55.52              |
| 1      | 13195           | 22285            | 59.21              |

#### Table: 2

| PHONE AGE CATEGORY    |                 |                  |                    |
|-----------------------|-----------------|------------------|--------------------|
| PHONE AGE<br>CATEGORY | SUM OF PURCHASE | COUNT OF<br>LEAD | CONVERSION<br>RATE |
| 1                     | 2351            | 6459             | 36.40              |
| 2                     | 7023            | 16545            | 42.45              |
| 3                     | 9208            | 11697            | 78.72              |
| 4                     | 4449            | 5299             | 83.96              |

#### Note:

- 1. From Table 1 we came to know that conversion rate for Males is High As Compared to Females that is, **59.21** %.
- 2. From Table 2 we can analyze that category 4 (i.e., Phone Age > 500) is having highest Conversion Rate that is, 83.96 %.

# T1: CLASSIFICATION MODEL BASED ON CHINESE DATASET:

- The logistic regression was made on the formatted data by considering the factors like age, gender, income, phone life and purchase.
- The coefficients B0 to B4 and ROC Curve of training Data are computed as follows:

| Coefficients |                    |  |
|--------------|--------------------|--|
|              |                    |  |
| В0           | -1.518413636915270 |  |
| <b>B</b> 1   | -0.011855741664086 |  |
| B2           | 0.217181358351312  |  |
| В3           | 0.000002250497046  |  |
| B4           | 0.004185135548266  |  |

| Conversion Matrix |           |         |  |
|-------------------|-----------|---------|--|
| Actual            | Predicted |         |  |
| Actual            | Class 0   | Class 1 |  |
| Class 0           | 6381      | 5585    |  |
| Class 1           | 3612      | 12422   |  |
|                   |           |         |  |
| Accuracy          | 0.672     |         |  |
| Precision         | 0.690     |         |  |
| Recall            | 0.775     |         |  |
| F1-Score          | 0.730     |         |  |
| Sensitivity       | 0.775     |         |  |
| Specificity       | 0.533     |         |  |
| TPR               | 0.775     |         |  |
| FPR               | 0.467     |         |  |
|                   |           |         |  |



# T1: CLASSIFICATION MODEL BASED ON CHINESE DATASET AND METRICS ASSOCIATED:

• The coefficients B0 to B4 and ROC Curve of test Data are computed as follows:

| Coefficients |          |  |
|--------------|----------|--|
|              |          |  |
| В0           | -1.65777 |  |
| <b>B</b> 1   | -0.01239 |  |
| B2           | 0.251535 |  |
| В3           | 2.73E-06 |  |
| <b>B</b> 4   | 0.004235 |  |
|              |          |  |

| Conversion Matrix |           |         |  |
|-------------------|-----------|---------|--|
| Actual            | Predicted |         |  |
| Actual            | Class 0   | Class 1 |  |
| Class 0           | 2622      | 2381    |  |
| Class 1           | 1459      | 5538    |  |
|                   |           |         |  |
| Accuracy          | 0.680     |         |  |
| Precision         | 0.699     |         |  |
| Recall            | 0.791     |         |  |
| F1-Score          | 0.743     |         |  |
| Sensitivity       | 0.791     |         |  |
| Specificity       | 0.524     |         |  |
| TPR               | 0.791     |         |  |
| FPR               | 0.476     |         |  |



- From the coefficient it is clear that age has a negative impact. Old people are less likely to buy a phone.
- Gender plays a significant role, which is evident in the pivot analysis.
- The annual income plays an insignificant role as the coefficient is very small.
- The phone life also plays an important role and the categorial variation has an impact of its own.

#### I TI COUITI OF FOILITHAL COSTONILIAS HA HADIA

### **BASED ON MODEL:**

- The data set is formatted such that gender is converted into a binomial model and the phone age is calculated by considering the purchase date as 1st July 2019.
- The phone life is converted into 4 categories as follow:

| DAYS    | SEGMENT |
|---------|---------|
| <200    | 1       |
| 200-360 | 2       |
| 360-500 | 3       |
| >500    | 4       |

• The probability is computed based on coefficients (B0 to B4) obtained from the Chinese dataset and the no of potential customers in India based on a cut-off 0.5 is 31573 with a conversion ratio of 45.10%.

### T2: JUSTIFICATION DURING CLUSTERING:

- Clustering is Performed on 3 & 4 Clusters and their error terms (For more scaled and standardized data) is also found and with that centroid values were generated.
- In our analysis 3 clusters results were taken for further analysis and predicting results and then EDA is performed on each cluster & Centroid values and following results were obtained:

| Centroid values (For Potential Customers) |            |             |             |  |  |
|-------------------------------------------|------------|-------------|-------------|--|--|
| 1 2 3                                     |            |             |             |  |  |
| CURR_AGE                                  | 44.294     | 49.241      | 42.919      |  |  |
| GENDER                                    | 0.437      | 0.610       | 0.477       |  |  |
| ANN_INCOME                                | 696419.447 | 1655736.147 | 1151544.670 |  |  |
| AGE_PHN                                   | 574.391    | 578.841     | 575.751     |  |  |
|                                           |            |             |             |  |  |
|                                           |            |             |             |  |  |
| Centroid values (Error Terms)             |            |             |             |  |  |
|                                           | 1          | 2           | 3           |  |  |
| CURR_AGE                                  | 0.460      | -1.212      | 0.525       |  |  |
| GENDER                                    | 0.998      | -0.072      | -1.002      |  |  |
| ANN_INCOME                                | 0.343      | -0.539      | 0.086       |  |  |
| AGE_PHN                                   | -0.002     | -0.004      | 0.005       |  |  |

From the table above, **centroid value 2** is to be taken for business decision and and It has error terms in negative as well which is good **so most peoples were clustered (i.e., their centroid) around with current age of 49, Annual income around 1655736 and age of phone around 579 days is to target For through our Clustering analysis and EDA analysis of that is also done in further slides.** 

## T2: EDA ANALYSIS:







# T2: EDA ANALYSIS:







# T3: JUSTIFICATION FOR FINAL RESULTS: Now we need to segment our customers through their ages to check for our final results i.e.,

|           | Segments | Age Criteria |
|-----------|----------|--------------|
| Young Age | 1        | 25-35        |
| Mid Age   | 2        | 35-55        |
| Old Age   | 3        | 55-65        |

- Sale of a minimum of 12,000 phones over the sample data in one year .
- Collection of at least Rs. 20 crores over the sample data in one year .

## T3: JUSTIFICATION FOR FINAL RESULTS:

From the table below we can Conclude that revenue collection is way over Rs. 20 Crores for all 3 segment customers (that is Young, Mid and Old):

| Young Aged Customers |                                               |           |     |  |  |
|----------------------|-----------------------------------------------|-----------|-----|--|--|
|                      | Average Revenue Expected Revenue IF >20 CRORE |           |     |  |  |
| Low Income           | <8000                                         | 252584000 | YES |  |  |
| Medium Income        | 10000                                         | 315730000 | YES |  |  |
| High Income          | 12500                                         | 394662500 | YES |  |  |
|                      | Average                                       | 320992167 |     |  |  |

| Mid Aged Customers |                                               |           |     |  |  |
|--------------------|-----------------------------------------------|-----------|-----|--|--|
|                    | Average Revenue Expected Revenue IF >20 CRORE |           |     |  |  |
| Low Income         | 12500                                         | 394662500 | YES |  |  |
| Medium Income      | 22375                                         | 706445875 | YES |  |  |
| High Income        | 31250                                         | 986656250 | YES |  |  |
|                    | Average                                       | 695921542 |     |  |  |

| Old Aged Customers |                 |                         |              |  |  |
|--------------------|-----------------|-------------------------|--------------|--|--|
|                    | Average Revenue | <b>Expected Revenue</b> | IF >20 CRORE |  |  |
| Low Income         | 9500            | 299943500               | YES          |  |  |
| Medium Income      | 22375           | 706445875               | YES          |  |  |
| High Income        | 31250           | 986656250               | YES          |  |  |
|                    | Average         | 664348541.7             |              |  |  |

## T3: JUSTIFICATION FOR FINAL RESULTS:

From the Table Below we can conclude that Customer Age Segment 2 ,count of purchase is 15283 which is way over our required result that is minimum 12000 Phones, sum of their ages is very high as 30566 and their Conversion rate is also high of 47.67 % in INDIA as compared to other segments so XYZ company must target Middle aged customers and so, yes they can enter in INDIAN market as there is no loss for XYZ Mobile Company.

| Customer Age Segments | Count of Purchase | Sum of Customers Age Segmented | Conversion Rate |
|-----------------------|-------------------|--------------------------------|-----------------|
| 1                     | 7660              | 7660                           | 11.95           |
| 2                     | 15283             | 30566                          | 47.67           |
| 3                     | 8630              | 25890                          | 40.38           |