Programme	B.Tech	June 2022		
C T: 1	DIFFERENTIAL EQUATIONS AND	Semester	Winter Semester 2021-22	
Course Title	TRANSFORMS	10000	BMAT102L	
Faculty Name	Prof. Kalyani Desikan	Slot	A1+TA1+TAA1	
Time			CH2021222300663	
Time	3 Hours	Max. Marks	100	

PART A (10 X 10 Marks)

Answer any 10 questions

1. Solve
$$(5+2x)^2 \frac{d^2y}{dx^2} - 6(5+2x) \frac{dy}{dx} + 12y = 4x$$
. [10]

2.6 Solve the partial differential equation
$$(yz + 2y)p - (2x + 3z)q + xy - 3y = 0$$
. [10]

(i) If
$$f(t) = \begin{cases} \sin t, \ 0 < t < \pi \\ 0, \ t > \pi \end{cases}$$
, then find $L[f(t)]$.

(i) If
$$f(t) = \begin{cases} \sin t, \ 0 < t < \pi \\ 0, \ t > \pi \end{cases}$$
, then find $L[f(t)]$.

(ii) If $f(t) = \begin{cases} e^{-2(t-1)}, \ 1 < t < 3 \\ t^2, \ t \ge 3 \end{cases}$ and $g(t) = e^{4t} \cdot \delta(t-2)$, then find $L(f(t)) = \frac{g(t)}{e^{4t}}$.

Solve the system of first order differential equation
$$\frac{dx_1}{dt} + x_2 = e^{-t}$$

$$\frac{dx_2}{dt} - x_1 = 3e^{-t}$$
using Laplace temperature with $x_1(t) = x_2(t)$. (10)

using Laplace transform with $x_1(0) = 0$ and $x_2(0) = 1$.

Find Fourier series of the function
$$f(x) = \frac{x}{2}$$
 for $-\pi \le x \le \pi$, where $f(x + 2\pi) = f(x)$ and hence prove that $1 + \frac{1}{4} + \frac{1}{9} + \ldots = \frac{\pi^2}{6}$.

6. Find the half range sine series for
$$f(x) = x(\pi - x)$$
 in $(0, \pi)$ and hence deduce [10]
$$\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} + \ldots = \frac{\pi^3}{32}$$
 using Parseval's theorem.

7. 5(i) Find the Fourier cosine transform of
$$f(x) = e^{-ax}$$
, $a > 0$ and hence evaluate $\int_0^\infty \frac{\cos sx}{s^2 + a^2} ds$. [10] (ii) Find the Fourier sine transform of xe^{-ax} .

Find the Fourier transform of
$$f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & |x| \ge 1 \end{cases}$$
 and hence evaluate $\int_0^\infty \left(\frac{\sin t}{t}\right)^4 dt$. [10]

9.4 (i) If
$$u_n = 2\left(\frac{1}{2}\right)^n - \left(\frac{1}{4}\right)^n$$
, $n = 0, 1, 2, 3...$, then find the Z-transform of u_n . [10] (ii) Find the inverse Z-transform of $F(z) = \frac{2z}{(z-1)(z^2+1)}$.

16. Solve the difference equation
$$u_{n+2} - 3u_{n+1} + 2u_n = 0$$
, given $u_0 = 0$ and $u_1 = 1$ by using Z-transform. [10]

Solve
$$(2D^2 - 7D + 3)y = 3\cos x$$
. [10] Use the method of partial fraction to find the Inverse Laplace transform of $F(s) = \frac{5s}{(s^2 + 4s + 4)}$

12. (i) Form the partial differential equation by eliminating the arbitrary function from
$$z = x^2 + xf(x + e^y)$$
.

(ii) Solve the first order partial differential equation using Laplace transform $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = x^5$

with the boundary conditions u(0,t) = 0 and u(x,0) = 0.

0000

Final Assessment Test (FAT) - June 2022

Programme	B.Tech	Semester	Winter Semester 2021-22
Course Title	DIFFERENTIAL EQUATIONS AND TRANSFORMS	Course Code	
Faculty Name	Prof. Muthunagai	Slot	A2+TA2+TAA2
		Class Nbr	CH2021222300672
Time	3 Hours	Max. Marks	100

PART A (10 X 10 Marks) Answer any 10 questions

- Solve $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = e^x \tan x$ by the method of variation of parameters. [10]
- 2 Reduce the following partial differential equation to one of the standard forms and find the complete integral and singular integral (if it exists) $x^3p^3 3yz^2q = z^3$.
- 3. (i) Suppose f(t) = |t-3| + |t+3|. Find L(f(t)). [10] Find $L(f(t)) = \begin{cases} \sin t, & 0 < t < 2 \\ t, & t \ge 2 \end{cases}$ and $g(t) = \cos t \cdot \delta(t-5)$, then find $L\left[f(t) + \frac{g(t)}{\cos(5)}\right]$.
- Solve y'' + 3y' 28y = u(t-2), y(0) = 2, y'(0) = -3 by Laplace transform. [10]
- Find the Fourier series expansion of $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ and hence show that $\frac{1}{12} + \frac{1}{22} + \frac{1}{52} + \dots = \frac{\pi^2}{8}.$
 - 6. Obtain a half range cosine and sine series for f(x) = 1 + x in the interval $0 \le x \le \pi$ and hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \ldots = \frac{\pi^2}{8}$.
- Find the Fourier transform of $f(x) = \begin{cases} a^2 x^2, & |x| < a \\ 0, & |x| > a > 0 \end{cases}$, hence deduce
 - (i) $\int_0^\infty \frac{\sin s s \cos s}{s^3} \cos \left(\frac{s}{2}\right) ds = \frac{3\pi}{16}$
 - (ii) $\int_0^\infty \left(\frac{\sin s s \cos s}{s^3}\right)^2 ds = \frac{\pi}{15}.$
- %. Find the Fourier transform of $e^{-a^2x^2}$ and hence find the Fourier transform of $xe^{-a^2x^2}$. [10]
- 9. (i) Find inverse Z-transform of $F(z) = \frac{z^2}{(z-5)^2}$ by using convolution theorem. [10]
 - (ii) Find $Z(u_{n+1})$ and $Z(u_{n+2})$ if $Z(u_n) = \frac{z}{z-2} + \frac{z}{z^2+2}$.
- 10. Find the Z-transform of $\sin(2n+3)$. [10]
- 11. Suppose that the spring with a mass of 2 kg has natural length 0.5 m. A force of 25.6 N is required to maintain it stretched to a length of 0.7 m. The spring is immersed in a fluid with damping constant c = 40. Find the position of the mass at any time t if it starts from the equilibrium position and is given a push to start with an initial velocity of 0.6 m/s.
 - Solve the partial differential equation $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial t} = 3x$, u(x,0) = 0, u(0,t) = 0 using Laplace transform.
- 12. (i) Find the complete integral and singular integral (if it exists) of the partial differential equation $z = px + qy p^3 3q^2$. [10]
 - (iii) Find the inverse Laplace transform using the partial fractions for $G(s) = \frac{2s+12}{(s^2+6s+13)}$.

The State of Sections of Sections

Final Assessment Test (FAT) - June 2022

100		Semester	Winter Semester 2021-22
	B.Tech DIFFERENTIAL EQUATIONS AND TRANSFORMS	Course Code	BMAT102L
	Prof. Revathi G K	Slot	C1+TC1+TCC1
		Class Nbr	CH2021222300560
	3 Hours	Max. Marks	100

Part A (10 X 10 Marks) Answer any 10 questions

- 1. Solve the initial value problem by the method of undetermined coefficients $y'' 5y' + 6y = e^x (2x 3), \ y(0) = 1 \ and \ y'(0) = 3.$ [10]
- Find the complete solution of the partial differential equation $p^2 + q^2 = z^2(x^2 + y^2)$. Find the singular solution, if it exists. [10]
- 3. (a) Find the Laplace transform of the square wave function of a period T defined as: [10]

$$f(t) = \begin{cases} 1 & \text{for } 0 < t < \frac{T}{2} \\ -1 & \text{for } \frac{T}{2} < t < T \end{cases}$$
 (5 Marks)

- (b) Find the Laplace transform of $f(t) = \cos(t)u(t-3) 5\delta(t-3)$ (5 Marks)
- 4. Solve the following simultaneous differential equations by using Laplace transform: $y_1' = 3y_2 e^t, y_2' = -2y_1 + e^t \text{ with } y_1(0) = 0, y_2(0) = 2.$
- 5. Find the Fourier sine transform of $e^{-|x|}$ and hence evaluate $\int_0^\infty \frac{x \sin(mx)}{(1+x^2)} dx$, m > 0 [10]
- 6. (a) Evaluate the Fourier transform of xf(x) if $f(x) = \begin{cases} 1, & for |x| < 1 \\ 0, & for |x| > 1 \end{cases}$ (4 marks)
 - (b) Evaluate $\int_0^\infty \frac{x^2 dx}{(x^2+1)(x^2+b^2)}$ using Fourier transform. (6 marks)
- 7. Express $f(x) = \begin{cases} x, & \text{for } 0 < x < \pi \\ 2\pi x, & \text{for } \pi < x < 2\pi \end{cases}$ as Fourier series, where $f(x + 2\pi) = f(x)$. Hence find the value of $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ [10]
- 8. Find the half range cosine series of $f(x) = (\pi x)^2$, $0 < x < \pi$ and hence deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^4}$.
- 9. (a) Find the Z-transform of n+2 (5 marks) [10]
 - (b). Find the inverse Z transform of $\frac{2z^2+5z}{(z+2)(z-4)}$ (5 marks)
- 10. Solve the difference equations using Z-transform $u(n+2) + 5u(n+1) + 3u(n) = 3^n$, [10] given that u(0) = 0 and u(1) = 0.
- 1). (a) Using Convolution theorem, find the inverse Laplace transform of $F(s) = \frac{3}{s^3(s^2-3)}$ [10]
 - (5 Marks) (b) Solve the partial differential equation $3p^2 - 2q^2 = 4pq$. Find the singular solution, if it exists. (5 Marks)
- exists. (5 Marks)

 2. (a) A series of LCR circuit consists of an inductance of 0.05 H, a resistance of 5 Ω and a capacitance of 4 × 10⁻⁴ F. Find the current flowing through the circuit. (5 Marks)
 - (b) Solve the PDE using Laplace transform $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = 2t$ with u(0,t) = 0, u(x,0) = 0. (5 marks)

Final Assessment Test (FAT) - June 2022

Programme	B.Tech	Semester	1401
Course Title	DIFFERENTIAL EQUATIONS AND	Semester	Winter Semester 2021-22
Time Time	TRANSFORMS	Course Code	BMAT102L
Faculty Name	Prof. Dr.Balaji S	Slot	C2+TC2+TCC2
-	100	AND DESCRIPTION OF THE PARTY OF	CH2021222300655
· · · · · ·	3 Hours	Max. Marks	100

Part A (10 X 10 Marks)

Answer any 10 questions	
Solve $(D^2 + 2D + 1)y = \frac{1}{12}$ by the method of variation of parameter	1100
2. Solve $(z^2 - 2yz - y^2)p + (xy + zx)q = xy - zx$	[10]
2 1P + (2y + 2x)q = xy - zx	1101

- 10 (a) Find the Laplace transform of the saw tooth wave function of a period. T defined as $f(t) = \frac{100t}{T}$, for 0 < t < T. (5 marks) [10]
 - (b) Find the Laplace transform of $f(t) = e^t u(t-2) + t\delta(t-3)$ (5 marks)
- Solve the following initial value problem by using Laplace transform: $2\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 2y = e^{-2x}$ [10] with y(0) = 1 and y'(0) = 1
- Verify Parseval's identity for $f(x) = e^{-x}, x > 0$ in Fourier transform [10]
- 10
- 6. Using transform techniques, evaluate $\int_{-\infty}^{\infty} \frac{x^i dx}{(x^i + 25)(x^2 + 49)}$.

 Express the function $f(x) = \begin{cases} 0, & for -\pi < x < 0 \\ 1 & for \ 0 < x < \pi \end{cases}$ as Fourier series where 10
- $f(x+2\pi) = f(x) \text{ Hence find the value of } \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ Express the function $f(x) = x^2$ in (0,a) as a Fourier series and hence find the value of the [16] series $\frac{1}{12} + \frac{1}{22} + \frac{1}{32} + \dots$
- 9. (a) Find the Z-transform of $f(k) = \sin(\alpha k), k \ge 0$. (5 Marks) [10] (b) Find the inverse Z-transform of the function $\frac{z}{(z+3)^2(z-2)}$, |z| > 3 (5 Marks)
- 10. Solve the difference equations y(k+2) 5y(k+1) + 6y(k) = kby using using Z-10 transform with y(0) = 0, y(1) = 0
- 11. (a) Solve the following partial differential equations using Laplace transform 10 $\frac{\partial y}{\partial t} + \frac{\partial y}{\partial x} + y = 0$, for x > 0, t > 0 with $y(0, t) = \sin(t)$ and y(x, 0) = 0 (5 marks)
 - (b) Using convolution theorem find f(t) if $L(f(t)) = \frac{1}{(s+1)(s^2+4)}$ (5 marks)
- 12. (a) Solve $(5+2x)^2 \frac{d^3y}{dx^2} 6(5+2x)\frac{dy}{dx} + 8y = 0$ (5 Marks) [10]
 - (b) Form the partial differential equation by eliminating f from $z^2 2xy = f(x^2 + y^2 + z^2)$ (5 marks)