

Matching-space Stereo Networks for Cross-domain Generalization

Changjiang Cai¹, Matteo Poggi², Stefano Mattoccia², Philippos Mordohai¹

Stevens Institute of Technology, ²University of Bologna

Code: https://github.com/ccj5351/MS-Nets

1. Motivation

- Annotated data for stereo matching is challenging to collect
 - > Expensive LiDAR, Stereo Camera Rig
 - > Ground truth depth is sparse
- SOTA deep networks generalize poorly to unseen domain
- ➤ E.g., PSMNet suffers large accuracy drops moving from synthetic (pretrained on Scene Flow) to real scenes (KT15)

Left Image

Disparity Map by PSMNet

Domain generalization

- Methods that generalizes well without adaptation is a solution
- ➤ Effective in continuously changing environments, e.g. autonomous driving, without re-training or adaptation

Goal

Sacrifice as little accuracy as possible to attain generalization

2. Over-specialization to Color Space

- Learning process is driven by image content
- Better generalization can be achieved by choosing a representation insensitive to common variations of RGBs

3. Matching Space Stereo Networks

- Replace learning-based feature extraction from RGB with matching functions and confidence measures
- Move learning from color space to Matching Space (MS), avoiding overspecialization to domain specific features
- Modify GCNet and PSMNet architectures to accept MS inputs
- PSMNet allocates 63.5% of parameters to unary feature extraction
- GCNet allocates 88.5% of parameters to 3D convolutions

(b) Our Matching Space (MS) End-to-End Stereo Networks for Cross-domain Generalization

4. Matching Functions and Confidences

- Four matching functions and the associated confidence scores
- Matchers include
- normalized cross correlation (NCC)
- zero-mean sum of absolute differences (ZSAD)
- census transform (CENSUS)
- absolute differences of the horizontal Sobel operator (SOBEL)
- Confidence scores
- each matcher's likelihood, a confidence measure of each disparity for a given pixel
- obtained by converting the cost curve to a probability density function for each disparity under consideration

$$L_z(x_L, y, d) = \frac{\exp\left(-\frac{(C_z(x_L, y, d) - C_{z,min})^2}{2\sigma_z^2}\right)}{\sum_i \exp\left(-\frac{(C_z(x_L, y, d_i) - C_{z,min})^2}{2\sigma_z^2}\right)}$$

5. Experimental Results

Domain Generalization Training and Evaluation

- Networks are trained in source domain Scene Flow
- ➤ Evaluated in target domains (KITTI 2012&2015, Middlebury 2014 and ETH3D Low-res two view datasets) without finetuning or adaptation

Sim2Real (sf-all → real)

Target	Models (Sim2Real)							
domains	GCNet	MS-GCNet(Ours)	PSMNet	MS-PSMNet(Ours)				
KT12	6.22	5.51	27.02	13.97				
KT15	14.68	6.21	26.62	7.76				
MB	30.42	18.52	26.92	19.81				
ETH3D	8.03	8.84	18.91	16.84				

Evaluation on Real Benchmark KITTI 2015

Madala		All-D1 %		Noc-D1 %			
Models	bg	fb	all	bg	fg	All	
MS-GCNet(Ours)	2.58	6.83	3.29	2.19	5.59	2.75	
GC-Net	2.21	6.16	2.87	2.02	5.58	2.61	
MS-PSMNet(Ours)	2.15	5.01	2.63	1.99	4.52	2.41	
PSM-Net	1.86	4.62	2.32	1.71	4.31	2.14	

Qualitative Results on Middlebury

Comparison with SOTA 2D and 3D architectures

Target Domains	MAD- Net	Disp- Net	CRL	iRes- Net	Seg- Stereo	Edge- Stereo	GWC- Net	GA- Net	HD3	DSM- Net	MS- GCNet	MS- PSMNet
KT12	39.17	12.54	9.07	7.90	12.80	12.27	20.20	10.10	23.60	6.20	5.51	13.97
KT15	43.98	12.88	8.88	7.42	11.23	12.47	22.70	11.70	26.50	6.50	6.21	7.76