Question.3-13

Linear regression을 위한 dataset이 다음과 같이 주어졌다.

$$D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}\$$

이때, dataset은 y = ax에서부터 만들어졌다.

따라서 linear regression을 통해 predictor를 학습시킬때,

model은 $\hat{y} = \theta x$, loss는 square error, cost는 MSE를 사용할 수 있다.

heta를 update하기 위해 2개의 data sample를 이용할때, 1번의 iteration에 대해 heta가 dataset을 잘 표현하는 heta로 update되는 과정을 설명하시오.

단, forward/backward propagation을 설명하기 위해 각 연산은 basic building node들을 이용하시오.

Omodel setting

의의 상황에서 이를 update하기 위해 고개의 data rample을 이용하기 때문에 control 대한 gradient descent method을 사용해야한다. 전각서 국미권 상황을 Canic Childing node로 포현하면 작은과 골착.

의 update에 필요한 partial derivative 를 검색 다음 같다.

यभेत में नेहेंग वार्ष chain sulce वहाने हेंदे.

$$\frac{\partial J}{\partial z_{i}^{(0)}} = \frac{\partial J}{\partial z_{i}^{(0)}} \cdot \frac{\partial J}{\partial z_{i}^{(0)}} = \frac{1}{2} \cdot 2(\mathcal{Y}^{(0)} - \hat{\mathcal{Y}}^{(0)}) \qquad \frac{\partial J}{\partial z_{i}^{(0)}} = \frac{\partial J}{\partial z_{i}^{(0)}} \cdot \frac{\partial J}{\partial z_{i}^{(0)}} = \frac{1}{2} \cdot 2(\mathcal{Y}^{(0)} - \hat{\mathcal{Y}}^{(0)}) \qquad \frac{\partial J}{\partial z_{i}^{(0)}} = \frac{\partial J}{\partial z_{i}^{(0)}} \cdot \frac{\partial J}{\partial z_{i}^{(0)}} = \frac{1}{2} \cdot (-2(\mathcal{Y}^{(0)} - \hat{\mathcal{Y}}^{(0)})) \qquad \frac{\partial J}{\partial \theta} = \frac{\partial J}{\partial z_{i}^{(0)}} \cdot \frac{\partial Z_{i}^{(0)}}{\partial \theta} = \frac{1}{2} \cdot (-2(\mathcal{Y}^{(0)} - \hat{\mathcal{Y}}^{(0)})) \qquad \frac{\partial J}{\partial \theta} = \frac{\partial J}{\partial z_{i}^{(0)}} \cdot \frac{\partial Z_{i}^{(0)}}{\partial \theta} = \frac{1}{2} \cdot (-2(\mathcal{Y}^{(0)} - \hat{\mathcal{Y}}^{(0)}))$$

ख्येन वभ

$$\frac{\partial \mathcal{J}}{\partial \theta} = \frac{1}{2} \left(-2\chi^{(1)} (\chi^{(2)} - \hat{\chi}^{(1)}) \right) + \frac{1}{2} \left(-2\chi^{(2)} (\chi^{(2)} - \hat{\chi}^{(2)}) \right)$$

$$= \frac{1}{2} \left[\left(-2\chi^{(1)} (\chi^{(2)} - \hat{\chi}^{(1)}) \right) + \left(-2\chi^{(2)} (\chi^{(2)} - \hat{\chi}^{(2)}) \right) \right]$$

가 된다. 여러 각 term들은 $(\chi^{(i)}, \chi^{(i)})$, $(\chi^{(2)}, \chi^{(2)})$ 이 대해 $\frac{\partial \chi^{(i)}}{\partial \theta}$, $\frac{\partial \chi^{(2)}}{\partial \theta}$ 는

$$\frac{\partial \mathcal{I}^{(i)}}{\partial \theta} = -2\chi^{(i)}(\mathcal{A}^{(i)} - \theta \cdot \chi^{(i)}) \qquad \frac{\partial \mathcal{I}^{(i)}}{\partial \theta} = -2\chi^{(i)}(\mathcal{A}^{(i)} - \theta \cdot \chi^{(i)})$$

$$\frac{\partial \mathcal{I}}{\partial \theta} = \frac{1}{2} \left[\frac{\partial \mathcal{I}^{(i)}}{\partial \theta} + \frac{\partial \mathcal{I}^{(i)}}{\partial \theta} \right]$$

ठायः इ, coats अध्येष 0s update सम् (xo), yon), (xo), yon) वंभ 0) update ग्रह अध्यास्त्र अध्यास्त्र

Deprodient descent method । अवेष On वार्ट updates अवेष

of 512 Band 20 20 and 1991

$$0:0+\frac{2}{2}\frac{3}{2}\frac{3}{10}$$

가 된다. 여러 권보 권(i) 등이 평균상이와 가 가 하다 이 나 가 가 하다.

Question. 3-09014 4882 (90 35842 2413 38834.