Министерство образования Республики Беларусь Белорусский государственный университет информатики и радиоэлектроники Кафедра информатики

ОТЧЕТ

по лабораторной работе №1

Симметричная криптография. Двойной и тройной DES

Выполнил:

Проверил:

студент гр. 653501

Артемьев В. С.

Шинкевич Г. С.

ЗАДАНИЕ:

Реализовать программные средства шифрования и дешифрования текстовых файлов при помощи алгоритмов двойной и тройной DES.

Алгоритм DES

Одной из наиболее известных криптографических систем с закрытым ключом является DES — Data Encryption Standard. Эта система первой получила статус государственного стандарта в области шифрования данных. Она разработана специалистами фирмы IBM и вступила в действие в США 1977 году. Алгоритм DES по-прежнему широко применяется и заслуживает внимания при изучении блочных шифров с закрытым ключом.

Стандарт DES построен на комбинированном использовании перестановки, замены и гаммирования. Шифруемые данные должны быть представлены в двоичном виде.

DES является классической сетью Фейстеля с двумя ветвями. Данные шифруются 64-битными блоками, используя 56-битный ключ. Алгоритм преобразует за несколько раундов 64-битный вход в 64-битный выход. Длина ключа равна 56 битам. Процесс шифрования состоит из четырех этапов. На первом из них выполняется начальная перестановка (ІР) 64-битного исходного текста (забеливание), во время которой биты переупорядочиваются в соответствии со стандартной таблицей. Следующий этап состоит из 16 раундов одной и той же функции, которая использует операции сдвига и подстановки. На третьем этапе левая и правая половины выхода последней (16-й) итерации меняются местами. Наконец, на результата, выполняется перестановка IP^{-1} четвертом этапе IP^{-1} этапе. Перестановка полученного третьем на начальной перестановке.

Рисунок 1 Общая схема DES

Шифрование

Начальная перестановка

перестановка Начальная ee инверсия определяются И стандартной таблицей. Если M- это произвольные 64 бита, то X = IP (М)-переставленные 64 бита. Если применить обратную функцию = IP⁻¹ Y (X)(IP(M)),перестановки получится TO первоначальная последовательность бит.

50	42	34	26	18	10	2	60	52	44	36	28	20	12	4
54	46	38	30	22	14	6	64	56	48	40	32	24	16	8
49	41	33	25	17	9	1	59	51	43	35	27	19	11	3
53	45	37	29	21	13	5	63	55	47	39	31	23	15	7
	54 49	54 46 49 41	54 46 38 49 41 33	54 46 38 30 49 41 33 25	54 46 38 30 22 49 41 33 25 17	54 46 38 30 22 14 49 41 33 25 17 9	54 46 38 30 22 14 6 49 41 33 25 17 9 1	54 46 38 30 22 14 6 64 49 41 33 25 17 9 1 59	54 46 38 30 22 14 6 64 56 49 41 33 25 17 9 1 59 51	54 46 38 30 22 14 6 64 56 48 49 41 33 25 17 9 1 59 51 43	54 46 38 30 22 14 6 64 56 48 40 49 41 33 25 17 9 1 59 51 43 35	54 46 38 30 22 14 6 64 56 48 40 32 49 41 33 25 17 9 1 59 51 43 35 27	54 46 38 30 22 14 6 64 56 48 40 32 24 49 41 33 25 17 9 1 59 51 43 35 27 19	50 42 34 26 18 10 2 60 52 44 36 28 20 12 54 46 38 30 22 14 6 64 56 48 40 32 24 16 49 41 33 25 17 9 1 59 51 43 35 27 19 11 53 45 37 29 21 13 5 63 55 47 39 31 23 15

Рисунок 2 - DES. Начальная перестановка

8	48	16	56	24	64	32	39	7	47	15	55	23	63	31
6	46	14	54	22	62	30	37	5	45	13	53	21	61	29
4	44	12	52	20	60	28	35	3	43	11	51	19	59	27
2	42	10	50	18	58	26	33	1	41	9	49	17	57	25
		6 46 4 44	$\begin{array}{cccc} 6 & 46 & 14 \\ 4 & 44 & 12 \end{array}$	6 46 14 54 4 44 12 52	6 46 14 54 22 4 44 12 52 20	6 46 14 54 22 62 4 44 12 52 20 60	6 46 14 54 22 62 30 4 44 12 52 20 60 28	6 46 14 54 22 62 30 37 4 44 12 52 20 60 28 35	6 46 14 54 22 62 30 37 5 4 44 12 52 20 60 28 35 3	6 46 14 54 22 62 30 37 5 45 4 44 12 52 20 60 28 35 3 43	6 46 14 54 22 62 30 37 5 45 13 4 44 12 52 20 60 28 35 3 43 11	6 46 14 54 22 62 30 37 5 45 13 53 4 44 12 52 20 60 28 35 3 43 11 51	6 46 14 54 22 62 30 37 5 45 13 53 21 4 44 12 52 20 60 28 35 3 43 11 51 19	6 46 14 54 22 62 30 37 5 45 13 53 21 61 4 44 12 52 20 60 28 35 3 43 11 51 19 59

Рисунок 3 - DES. Заключительная перестановка

Последовательность преобразований отдельного раунда

Теперь рассмотрим последовательность преобразований, используемую в каждом *раунде*.

64-битный входной блок проходит через 16 раундов, при этом на каждой итерации получается промежуточное 64-битное значение. Левая и правая части каждого промежуточного значения трактуются как отдельные 32-битные значения, обозначенные L и R. Каждую итерацию можно описать следующим образом:

$$L_i = R_{i-1}$$

 $R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$

Где ⊕обозначает операцию XOR.

Таким образом, выход левой половины L_i равен входу правой половины R_{i-1} . Выход правой половины R_i является результатом применения операции XOR к L_{i-1} и функции F, зависящей от R_{i-1} и K_i .

Рассмотрим функцию F более подробно.

 R_i , которое подается на вход функции F, имеет длину 32 бита. Вначале R_i расширяется до 48 бит, используя таблицу, которая определяет перестановку плюс расширение на 16 бит. Расширение происходит следующим образом. 32 бита разбиваются на группы по 4 бита и затем расширяются до 6 бит, присоединяя крайние биты из двух соседних групп. Например, если часть входного сообщения

то в результате расширения получается сообщение

... defghi hijklm lmnopq ...

После этого для полученного 48-битного значения выполняется операция XOR с 48-битным *подключом* K_i . Затем полученное 48-битное значение подается на вход функции подстановки, результатом которой является 32-битное значение.

Подстановка состоит из восьми *S-boxes*, каждый из которых на входе получает 6 бит, а на выходе создает 4 бита. Эти преобразования определяются специальными таблицами. Первый и последний биты входного значения *S-box* определяют номер строки в таблице, средние 4 бита определяют номер столбца. Пересечение строки и столбца определяет 4-битный выход. Например, если входом является 011011, то номер строки равен 01 (строка 1) и номер столбца равен 1101 (столбец 13). Значение в строке 1 и столбце 13 равно 5, т.е. выходом является 0101.

								מודה	מס׳ ע)						
שורה	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
								S	1							
0 1 2 3	14 0 4 15	4 15 1 12	13 7 14 8	1 3 8 2	2 14 13 4	15 2 6 9	11 13 2 1	8 1 11 7	3 10 15 5	10 6 12 11	6 12 9 3	12 11 7 14	5 9 13 10	9 5 10 0	0 3 5 6	7 8 0 13
								_	2							
0 1 2 3	15 3 0 13	1 13 14 8	8 4 7 10	14 7 11 1	6 15 10 3	11 2 4 15	3 8 13 4	4 14 1 2	9 12 5 11	7 0 8 6	2 1 12 7	13 10 6 12	12 6 9 0	0 9 3 5	5 11 2 14	10 5 15 9
	40	0	_	4.1	,	-	4.5		3	4.7	40	-	4.4	,	-	
0 1 2 3	10 13 13	0 7 6 10	9 0 4 13	14 9 9 0	6 3 8 6	3 4 15 9	15 6 3 8	5 10 0 7	1 2 11 4	13 8 1 15	12 5 2 14	7 14 12 3	11 12 5 11	4 11 10 5	2 15 14 2	8 1 7 12
	\$4															
0 1 2 3	7 13 10 3	13 8 6 15	14 11 9 0	3 5 0 6	0 6 12 10	6 15 11 1	9 0 7 13	10 3 13 8	1 4 15 9	2 7 1 4	8 2 3 5	5 12 14 11	11 1 5 12	12 10 2 7	4 14 8 2	15 9 4 14
								S	5							
0 1 2 3	2 14 4 11	12 11 2 8	4 2 1 12	1 12 11 7	7 4 10 1	10 7 13 14	11 13 7 2	6 1 8 13	8 5 15 6	5 0 9 15	3 15 12 0	15 10 5 9	13 3 6 10	0 9 3 4	14 8 0 5	9 6 14 3
								S	6							
0 1 2 3	12 10 9 4	1 15 14 3	10 4 15 2	15 2 5 12	9 7 2 9	2 12 8 5	6 9 12 15	8 5 3 10	0 6 7 11	13 1 0 14	3 13 4 1	4 14 10 7	14 0 1 6	7 11 13 0	5 3 11 8	11 8 6 13
									7							
0 1 2 3	4 13 1 6	11 0 4 11	2 11 11 13	14 7 13 8	15 4 12 1	0 9 3 4	8 1 7 10	13 10 14 7	3 14 10 9	12 3 15 5	9 5 6 0	7 12 8 15	5 2 0 14	10 15 5 2	6 8 9 3	1 6 2 12
								1,000	8							
0 1 2 3	13 1 7 2	2 15 11 1	8 13 4 14	4 8 1 7	6 10 9 4	15 3 12 10	11 7 14 8	1 4 2 13	10 12 0 15	9 5 6 12	3 6 10 9	14 11 13 0	5 0 15 3	0 14 3 5	12 9 5 6	7 2 8 11

Рисунок 5 - S-boxes

Далее полученное 32-битное значение обрабатывается с помощью перестановки P, целью которой является максимальное переупорядочивание бит, чтобы в следующем payhde шифрования с большой вероятностью каждый бит обрабатывался другим S-box.

16	7	20	21	29	12	28	17	1	15	23	26	5	18	31	10	-
2	8	24	14	32	27	3	9	19	13	30	6	22	11	4	25	

Рисунок 6 - Перестановка с помощью Р-блоков

Создание подключей

Ключ для отдельного раунда K_i состоит из 48 бит. Ключи K_i получаются по следующему алгоритму. Для 56-битного ключа, используемого на входе алгоритма (если используется 64-битный ключ, то, как видно из рис. 5 убираются биты 64, 56, 48, 40, 32, 16, 8), вначале выполняется перестановка в соответствии с таблицей Permuted Choice 1 (PC-1).

Рисунок 7 - Схема Permuted Choice

Полученный 56-битный ключ разделяется на две 28-битные части, обозначаемые как C_0 и D_0 соответственно. На каждом *раунде* C_i и D_i независимо циклически сдвигаются влево на 1 или 2 бита, в зависимости от номера *цикла*.

Номер цикла	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Сдвиг (бит)	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

Рисунок 8 - Сдвиг ключа в зависимости от номера цикла

Полученные значения являются входом следующего *раунда*. Они также представляют собой вход в Permuted Choice 2 (PC-2),

который создает 48-битное выходное значение, являющееся входом функции $F(R_{i-1}, K_i)$

Дешифрование

Процесс дешифрования аналогичен процессу шифрования. На входе алгоритма используется зашифрованный текст, но ключи K_i используются в обратной последовательности. K_{16} используется на первом payhde, K_1 используется на последнем payhde.

3DES (Triple DES, TDES) - тройной DES. Усовершенствованный блочный алгоритм DES. Симметричный блочный криптографический алгоритм, созданный на основе алгоритма DES с целью устранения главного недостатка — малой длины ключа (56 бит), который может быть взломан методом перебора ключа.

Принцип работы 3DES не отличается от применяемого в DES; криптостойкости было наращивание достигнуто благодаря трехкратному (triple) шифрованию одного блока DES. Три 56разрядных ключа, используемых в данном процессе, объединяются алгоритмом в один 168-разрядный ключ. Хотя время атаки перебором при обычных ресурсах компьютера составляет несколько миллиардов машинолет, что говорит хорошей стойкости O алгоритма, в некоторых публикациях описаны способы сокращения времени атаки — до уровня перебора 108-разрядного ключа.

В варианте, известном как EEE, данную операцию можно описать следующим образом: DES (k3;DES (k2;DES (k1; M))), где М— блок исходных данных, k1, k2, и k3— ключи DES. Более распространен вариант EDE, в котором серединное шифрование DES с ключом k2 заменяется операцией дешифрования с тем же ключом (k2): DES(k3;DES — 1(k2; DES (k1; M))).

Таким образом, длина ключа алгоритма 3DES равна 156 битам (3-х ключей DES). Сегодня также существуют варианты Triple DES с «двойным» DES ключом размером 112 бит, «тройным» DES-ключом, которые стали применяться чаще (3DES, TDES, TDEA, 2TDEA, 3TDEA и т.д.).

ДЕМОНСТРАЦИЯ РАБОТЫ

Initial text: bla-bla (626C612D626C61)

Encrypted text(DES): 60BE093A7E65868A

Decrypted text(DES): bla-bla (626C612D626C61)

Encrypted text(2DES): 499A96A878C5AB6CCB12A48C6B54C99E

Decrypted text(2DES): bla-bla (626C612D626C61)

Encrypted text(3DES): 6945B8FAF2B652FEB21BC3BE8308D0F4241BC91E5E55B3D6

Decrypted text(3DES): bla-bla (626C612D626C61)

вывод

В результате лабораторной работы была написана программа для шифрования и дешифрования текстовых файлов с помощью алгоритмов DES, 2DES и 3DES.

ЛИСТИНГ ПРОГРАММЫ

from enum import Enum

```
INITIAL PERMUTATION = [58, 50, 42, 34, 26, 18, 10, 2,
               60, 52, 44, 36, 28, 20, 12, 4,
               62, 54, 46, 38, 30, 22, 14, 6,
               64, 56, 48, 40, 32, 24, 16, 8,
               57, 49, 41, 33, 25, 17, 9, 1,
               59, 51, 43, 35, 27, 19, 11, 3,
               61, 53, 45, 37, 29, 21, 13, 5,
               63, 55, 47, 39, 31, 23, 15, 7]
EXPAND TABLE = [32, 1, 2, 3, 4, 5,
          4, 5, 6, 7, 8, 9,
          8, 9, 10, 11, 12, 13,
          12, 13, 14, 15, 16, 17,
          16, 17, 18, 19, 20, 21,
          20, 21, 22, 23, 24, 25,
          24, 25, 26, 27, 28, 29,
          28, 29, 30, 31, 32, 1]
P TABLE = [16, 7, 20, 21, 29, 12, 28, 17,
       1, 15, 23, 26, 5, 18, 31, 10,
       2, 8, 24, 14, 32, 27, 3, 9,
       19, 13, 30, 6, 22, 11, 4, 25]
FINAL PERMUTATION = [40, 8, 48, 16, 56, 24, 64, 32,
              39, 7, 47, 15, 55, 23, 63, 31,
             38, 6, 46, 14, 54, 22, 62, 30,
              37, 5, 45, 13, 53, 21, 61, 29,
              36, 4, 44, 12, 52, 20, 60, 28,
             35, 3, 43, 11, 51, 19, 59, 27,
             34, 2, 42, 10, 50, 18, 58, 26,
             33, 1, 41, 9, 49, 17, 57, 25]
KEY TABLE 1 = [57, 49, 41, 33, 25, 17, 9,
          1, 58, 50, 42, 34, 26, 18,
          10, 2, 59, 51, 43, 35, 27,
          19, 11, 3, 60, 52, 44, 36,
         63, 55, 47, 39, 31, 23, 15,
         7, 62, 54, 46, 38, 30, 22,
```

```
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4]
```

KEY_TABLE_2 = [14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,

 $KEY_SHIFT_TABLE = [1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1]$

```
41, 52, 31, 37, 47, 55, 30, 40,
          51, 45, 33, 48, 44, 49, 39, 56,
          34, 53, 46, 42, 50, 36, 29, 32]
S BOX = [
  [[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7],
   [0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8],
   [4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0],
   [15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13],
   ],
  [[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10],
   [3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5],
   [0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15],
   [13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9],
  [[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8],
   [13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1],
   [13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7],
   [1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12],
   ],
  [[7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15],
   [13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9],
   [10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4],
   [3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14],
   ١,
  [[2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9],
   [14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6],
   [4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14],
   [11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3],
  [[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11],
   [10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8],
   [9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6],
   [4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13],
   ],
  [[4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1],
```

```
[13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6],
   [1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2],
   [6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12],
   ],
   [[13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7],
   [1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2],
   [7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8],
   [2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11],
]
class Action(Enum):
   DECRYPT = 0
   ENCRYPT = 1
def str to bin(text, size=8):
   return ".join(format(ord(char), 'b').zfill(size) for char in text)
def bin to hex(binary string):
   return \frac{1}{0}*X' \frac{1}{0} ((len(binary string) + 3) \frac{1}{4}, int(binary string, 2))
def str to hex(text):
   return bin to hex(str to bin(text))
def substitute(s):
   blocks = split(s, 6)
   result = []
   for i in range(len(blocks)):
     block = blocks[i]
      a = int(str(block[0]) + str(block[5]), 2)
     b = int(".join([str(x) for x in block[1:][:-1]]), 2)
      val = S BOX[i][a][b]
      val bin = str to bin(chr(val), 4)
     result += [int(x) \text{ for } x \text{ in val bin}]
   return result
def xor(a, b):
   return [x \land y \text{ for } x, y \text{ in } zip(a, b)]
```

```
def shift(a, b, n):
  return a[n:] + a[:n], b[n:] + b[:n]
def split(s, n):
  return [s[i:i+n] for i in range(0, len(s), n)]
def permutate(block, table):
  return [block[x - 1] for x in table]
def string to bit array(string):
  array = []
  for char in string:
     val bin = str to bin(char)
     array.extend([int(x) for x in list(val bin)])
  return array
def bit array to string(array):
  return ".join([chr(int(y, 2)) \text{ for y in } [".join(<math>[str(x) \text{ for x in bytes}]) \text{ for bytes in }]
split(array, 8)]])
def generate keys(key):
  keys = []
  key = string to bit array(key)
  key = permutate(key, KEY TABLE 1) # 56 bit
  1, r = split(key, 28)
  for i in range(16): # 16 keys
     1, r = shift(1, r, KEY SHIFT TABLE[i])
     key = 1 + r
     keys.append(permutate(key, KEY TABLE 2)) # 48 bit
  return keys
def get padding(text):
  padding len = 8 - (len(text) \% 8)
  return padding len * chr(padding len)
```

```
def remove padding(text):
  padding len = ord(text[-1])
  return text[:-padding len]
def des(key, text, action):
  if len(key) < 8:
    raise Exception("Key is too small")
  elif len(key) > 8:
    key = key[:8]
  if action == Action.ENCRYPT:
    text += get padding(text)
  keys = generate keys(key)
  text blocks = split(text, 8)
  result = []
  for block in text blocks:
     block = string to bit array(block)
    block = permutate(block, INITIAL_PERMUTATION) # 64 bit
    1, r = \text{split(block, 32)}
    for i in range(16): # 16 rounds
       r expanded = permutate(r, EXPAND TABLE) # 48 bit
       if action == Action.ENCRYPT:
         r xor = xor(keys[i], r expanded)
       else:
         r xor = xor(keys[15 - i], r expanded)
       r sbox = substitute(r xor)
       r p = permutate(r sbox, P TABLE)
       r p = xor(1, r p)
       1 = r
       r = r p
    result += permutate(r + l, FINAL PERMUTATION)
  result = bit array to string(result)
  if action == Action.DECRYPT:
    return remove padding(result)
  else:
    return result
def encrypt(key, text):
  return des(key, text, Action.ENCRYPT)
```

```
def decrypt(key, text):
  return des(key, text, Action.DECRYPT)
def encrypt 2(key 1, key 2, text):
  return des(key 2, des(key 1, text, Action.ENCRYPT), Action.ENCRYPT)
def decrypt 2(key 1, key 2, text):
  return des(key 1, des(key 2, text, Action.DECRYPT), Action.DECRYPT)
def encrypt 3(key 1, key 2, key 3, text):
  return des(key 3, des(key 2, des(key 1, text, Action.ENCRYPT),
Action.ENCRYPT), Action.ENCRYPT)
def decrypt 3(key 1, key 2, key 3, text):
  return des(key 1, des(key 2, des(key 3, text, Action.DECRYPT),
Action.DECRYPT), Action.DECRYPT)
if name == ' main ':
  with open("data.txt", 'r') as file:
    t = file.read()
  k = "12345678"
  k2 = "87654321"
  k3 = "abcdefgh"
  print("Initial text: {} ({})".format(t, str to hex(t)))
  print()
  e = encrypt(k, t)
  print("Encrypted text(DES): {}".format(str to hex(e)))
  d = decrypt(k, e)
  print("Decrypted text(DES): {} ({})".format(d, str to hex(d)))
  print()
  e2 = encrypt \ 2(k, k2, t)
  print("Encrypted text(2DES): {}".format(str to hex(e2)))
  d2 = decrypt 2(k, k2, e2)
  print("Decrypted text(2DES): {} ({})".format(d2, str to hex(d2)))
  print()
  e3 = encrypt \ 3(k, k2, k3, t)
  print("Encrypted text(3DES): {}".format(str to hex(e3)))
  d3 = decrypt \ 3(k, k2, k3, e3)
  print("Decrypted text(3DES): {} ({})".format(d3, str to hex(d3)))
  print()
```