МОДЕЛОВАЊЕ АУТОМАТА СА ДВА СТАБИЛНА СТАЊА

1. Логичка кола

Логичка кола обављају основне логичке функције које у оквиру структуре дигиталних кола. Велика вецина електронских уређаја који су данас у употреби имају различите врсте логичких кола у себи. Ниихов значај је нарочито изражен у дигиталној електроници (меморијски уређаји, регистри и слично). Логичке кола раде на основу комбинације дигиталних сигнала који долазе са његових улаза. Углавном логичка кола имају два улаза и један излаз, а њихов принцип рада заснива се на Буловој алгебра (тачно или нетачно). Тако се у било ком тренутку на улазима односно излазу налази једно од два бинарна стања тачно "1" или нетачно "0".

У зависности од врсте логичког кола која се употребљава као и одговарајуће комбинације улаза, бинарни излаз се разликује. Разматраћемо само основна логичка кола:

1.1 Инвертор (NE коло)

Инвертор представља заправо негацију логичких стања (слика 1). Познат је под називом "NE" коло. У алгебарској математици се негација означава цртом изнад променљиве $(Z = \overline{X})$.

Слика 1. Логичка шема, график и комбинациона табела "NE" кола

1.2 Логичко "І" коло

Видимо на основу слике 2, да се логичко коло І понаша по правилима операције коњункције..

 $Z = X \cdot Y$

Слика 2. Логичка шема, график и комбинациона табела "I" кола

1.3 Логичко "NI" коло

На слици 3 налази се логичко NI коло које се понаша инверзно правилима операције коњункције.

Слика 3. Логичка шема, график и комбинациона табела "NI" кола

1.4 Логичко "ILI" коло

Слика 4 интерпретира логичко ILI коло које се понаша по правилима операције дисјункције.

Слика 4. Логичка шема, график и комбинациона табела "ILI" кола

1.5 Логичко "NILI" коло

Слика 5 представља логичко NILI коло које се понаша по инверзним правилима операције дисјункције..

Слика 5. Логичка шема, график и комбинациона табела "NILI" кола

2. Бистабилна кола (флип-флоп)

Бистабилна кола (познатија као флип-флоп) врше меморисање бита. Они су заправо секвенцијална кола која могу да буду у два стабилна стања, 0 или 1, из тог разлога је и

њихов назив бистабили односно флип-флопови. Бистабил има један улаз и вредност сигнала на њему, заједно са његовим стањем (сигнал на излазу), одређује његово ново стање, тј. вредност излаза.

2.1 RS флип-флоп

RS флип-флоп чини укрштена веза два логичка кола. Веза се реализује као на слици 6, излаз првог логичког кола спојамо на улаз другог, а излаз другог на улаз првог. На овај начин остварена је позитивна повратна спрега која је потребна при промени стабилних стања. Структуру RS флип-флопа, чине укрштена два двоулазна NI или NILI кола. На основу конвенције, усвојено је да се стање флип-флопа представља логичком вредношћу једном излазу, који се назива главни излаз флип-флопа и најчешће се означава са Q или "1". Други излаз увек је комплемент првог односно $\bar{\mathbf{O}}$ или "0", уколико се користи,. Као почетно стање флип-флопа усвојено је стање логичке "0" на главном излазу, $\mathbf{Q} = \mathbf{0}$.

Слика 6. Логичка и блок шема RS флип-флоп

Стање Q(t+1) представља стање флип-флопа у које ће флип-флоп прећи у наредном тренутку (t+1) а то не зависи само од улазних сигнала S(t) і R(t) већ и од стања флип-флопа Q(t) у посматраном тренутку т. Комбинациона табела на слици 7, у потпуности представља рад RS флип-флоп.

R(t)	S(t)	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	-
1	1	1	1

Слика 7. Табела прелаза стања РС флип-флопа.

Највише је у употреби RS флип-флоп са додатним прикључком за сигнал дозволе С и постављање Q на 1 (SET) или на 0 (CLR), слика 8. (табела прелаза стања и блок шема).

C	R	S	Q	SET
1	0	0	Q	s Q
1	0	1	1	>c
1	1	0	0	$R \subset \overline{\mathbb{Q}}$
0	X	X	Pred. stanj	OLIV.

Слика 8. Табела прелаза стања и блок шема RS флип-флопа.

2.2 D флип-флоп

D флип-флоп представља синхронизован бистабил са једним улазом D. Принцип рада заснива се на тај начин што вредност са улаза прелази на излаз Q, синхронизовано са тактним сигналом. Пример: ако је улаз D=1, наиласком јединичног синхронизационог такт импулса T=1 улази S и R имаће следеће вредности S=0, R=1 а излази Q=1 и $\bar{O}=0$, односно каже се флип-флоп се сетује. На слици Q0, налази се табела прелаза стања и блок шема Q0 флип-флопа.

Слика 9. Табела прелаза стања и блок шема D флип-флопа.

На основу табеле прелаза примећујемо да излаз Q у потпуности прати улаз D, али са одређеним кашњењем од једног интервала периоде такт импулса.

2.3 ЈК флип-флоп

ЈК флип-флоп представља надограђену верзију RS флип-флопа (Ј и К одговарају улазима S и R), слика 10. У случају да су оба улаза на јединици стање флип-флопа се мења. Табела прелаза стања, структура и блок шема ЈК флип-флопа приказаи су на слици 10.

Слика 10. Табела прелаза стања и блок шема ЈК флип-флопа.

3. Моделовање аутомата

Реализовати синхрони управљачки аутомат дијаграма стања приказаног на слици 11 користећи D флип флоп.

Слика 11. Дијаграма стања аутомата

Обзиром да имамо два стања у дијаграму биће нам потребна и два D флип флопа.

На почетку дефинишемо табелу (слика 12) која ће да чини сва могућа стања (прве две колоне Q_B и Q_A), затим стања у која ће управљачки аутомат да пређе у наредном кораку (Q_B 'и Q_A '). На крају стања флип-флопа на основу којих желимо да реализујемо управљачки аутомат (D_B і D_A).

Q _B	Q _A	Q _B ′	Q _A ′	D _B	D _A

Slika 12. Izgled tabele za modelovanje automata

Прве две колоне Q_B и Q_A попунајвамо уписујући редом бинарне бројеве од 00 до 11 (tj. 00, 01,10,11), табела 1. Друге две колоне Q_B ' и Q_A ' попуњавамон на основу прве две и дијаграма стања на следећи начин: Прву врсту Q_B і Q_A чине бр. 00. Сада гледамо дијаграм стања, где стање 00 прелази у 11. Тако да пишемо за Q_B ' и Q_A ' прву врсту 11. На даље, друга врста Q_B и Q_A чине бр. 01, на основу дијаграма стања 01 прелази у стање 10. Тако редом до краја, 10 прелази у 00, а 11 прелази у 01.

Q _B	Q _A	Q _B ′	Q _A ′	D _B	D _A
0	0	1	1		
0	1	1	0		
1	0	0	0		
1	1	0	1		

Табела 1. Функционална табела на основу дијаграма стања

Колоне D_B и D_A попуњавамо на основу табеле понашања D flip flopa, флип флопа, слика 13. У нашем случају за колону D_B , Q_B биће Q_n а Q_B ' биће Q_{n+1} . Попуњавање D_B и D_A колона вршимо на следећи начин (слика 14): У првом случају имамо $\mathbf{0}$ која треба да пређе у стање $\mathbf{1}$ (тј. Q_B =0 а Q_B ' =1, односно гледајући табелу Q_n =0 а Q_{n+1} =1). За први елеменат колоне D_B уписујемо $\mathbf{1}$, на основу друге врсте у табели понашања. Настављамо тако редом попуњавати колону D_B (преостали елемети колоне: 1, 0, 0) па D_A (1, 0, 0, 1), до последењег елемента, слика 15.

Q_n	Q_{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

Слика 13. Табела понашања D флип флопа.

	Q _B	Q _A	Q _B ′	Q_A'	D _B	D _A
	0	9	- 1_	_1_	-1	
$Q_n Q_{n+1} D$	6	1	1	0		
	1	0	0	0		
1 1 1	1	1	0	1		

Слика 14. Попуњавање D_B и D_A колона функционалне табеле.

Q _B	Q _A	Q _B ′	Q _A ′	D _B	D _A
0	0	1	1	1	1
0	1	1	0	1	0
1	0	0	0	0	0
1	1	0	1	0	1

Slika 15. Izgled popunjene funkcionalne tabele.

Након попуњавања функционалне табеле следи фаза дефинисања одговарајућих вредности на улазе флип флопова (D_B и D_A). Направимо табелу од 4 поља (табела 2) где обележимо вредности (0 и 1) и променљиве (Q_B и Q_A). Затим табелу попунимо на основу вредности колона D_B и D_A , али за сваку колону посебна табела.

$Q_B \stackrel{Q}{\searrow}$	۹ 0	1
0	Prvi broj kolone D _B	Drugi broj kolone D _B
1	Treći broj kolone D _B	Četvrti broj kolone D _B

Табела 2. Начин попуњавања Карноове табеле за улазе флип флопова D_B и D_A .

За колону D_B табела ће бити попуњена као у табели 3 (тј. редом пишемо бројеве колоне D_B прво у два горња поља табеле а затим у доња). D_A попуњавамо на исти начин.

Q_{B}	0	1
0	1	1
1	0	0

Табела 3. Изглед Карноове табела за улаз флип флопа $D_{B.}$

Сада вршимо минимизацију табела D_B и D_A . Посматрамо табелу 4b за улаз флип флопа D_B и гледамо да ли негде имамо удружене двојке или четворке (тј. 2 јединице (само ако су по вертикали или хоризонтали табеле) или 4 јединице у табели). У D_B имам јединице по хоризонтали (прва два поља табеле 4 b) здружујемо их и очитавамо вредност (у складу са правилом минимизације Карноових мапа). Очитана вредност добија се ако посматрамо Q_B

и Q_A вредност у пољима табеле 4а. Имамо у прва два поља наше јединице из колоне D_B и гледамо која вредност Q_B и Q_A се не мења у оба поља (односно да је константна).

Видимо да је вредност за Q_A у првом пољу 0 а у другом 1. Док је за Q_B у првом пољу 0 а у другом исто 0. Тако закључујемо да је Q_B константно у оба поља и пишемо као резултат $D_B = \overline{Q}_B$ али стављамо комплемент од Q_B због смисла функционисања самог аутомата (да је вредност Q_B била 1 не бисмо стављали комплемент).

Tabela 4. Minimizacija Karnoove tabela za ulaz flip flopa D_B

У пољима из колоне D_A . имамо јединице али по дијагонали (табела 5). По условима Карноових мапа њих не можемо да здружимо већ само очитамо вредности. Обзиром да је реч о првом и четвртом пољу очитане вредности биће $\overline{\overline{Q}_B}\overline{\overline{Q}_A}$ за прво поље (има комплемент јер су обе вредности 0), док ће за четврто бити Q_B Q_A без комплемента јер су обе вредности у пољу 1.

Коначан запис гласиће:

$$D_A = \overline{Q}_B \overline{Q}_A + Q_B Q_A$$

У пољу користимо операцију коњункције (тачка) а између поља дисјункцију (+).

Табела 5. Минимизација Карноове табела за улаз флип флопа D_A.

Коначан графички изглед на основу блок шема, моделованог аутомата са два стања применом D флип флопова приказан је на слици 16.

Слика 16. Графички изглед моделованог аутомата (помоћу D флип флопова)

ЗАДАТАК

Потребно је извршити моделовање аутомата са два стања на тај начин што на слици 11 треба само изршити замену редоследа места било која два стања у аутомату (нпр. замена места стања 00 и 11, слика 17).

Слика 17. Изглед блок дијаграма аутомата након замене стања