

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Centro Tecnológico - Departamento de Engenharia Elétrica

Disciplina: Instalações Elétricas I - ELE 3670/ELE 8512 Curso: Eng. Elétrica/ Computação

Professor: Hélio Marcos André Antunes E-mail: helio@ele.ufes.br

Lista de Exercícios 1– Unidade 04

 As relações abaixo correspondem a duas condições que devem ser satisfeitas para a proteção de circuitos em instalações elétricas:

 $lp \le ln \le lz$ e $l_2 \le 1,45.lz$

Associe corretamente os símbolos das grandezas apresentadas nas condições acima com os seus significados.

	Símbolo	Significado
1)	lp a)	Capacidade de condução de corrente dos condutores vivos do circuito.
2)	In b)	Corrente que assegura efetivamente a atuação do dispositivo de proteção.
3)	lz c)	Corrente nominal do dispositivo de proteção.
4)	1 ₂ d)	Corrente de projeto do circuito.
	1-b; 2-a; 3-d; 1-c; 2-b; 3-a; 1-d; 2-a; 3-b;	4-c 4-d 4-c

- Considere as seguintes proposições referentes a dispositivos de proteção.
 - Os disjuntores devem possuir câmaras de extinção de arcos.
 - II. Fusíveis e disjuntores possuem funções semelhantes, sem que, em determinados casos, a presença de um elimine a do outro.
 - III. Normalmente a capacidade de ruptura dos fusíveis de baixa tensão tipo NH é maior do que a de disjuntores.

Está correto o que se afirma em

- (A) I, somente.
- (B) II, somente.
- (C) I e II, somente.
- (D) I e III, somente.
- (E) I, II e III.

- 3) Em instalações elétricas em que há a possibilidade de ocorrer incêndios por causa de correntes de fuga à terra, é correto utilizar um dispositivo de interrupção de corrente de fuga como elemento de proteção. Na NBR 5410 esse dispositivo é designado por
 - (A) disjuntor diferencial-residual.
 - (B) disjuntor termomagnético.
 - (C) fusível SILIZED/SITOR.
 - (D) fusível NEOZED.
 - (E) fusível NH.
- Considere as seguintes proposições referentes à proteção contra sobrecargas em instalações elétricas de baixa tensão.
 - Os dispositivos de proteção contra correntes de sobrecarga podem apresentar capacidade de interrupção inferior à corrente de curto-circuito presumida no ponto de instalação.
 - Admite-se omitir a proteção contra sobrecargas em linhas que possuam exclusivamente tomadas de corrente.
 - III. Os dispositivos de proteção contra correntes de sobrecarga possuem, geralmente, característica de atuação a tempo inverso.

Está correto o que se afirma em

- (A) I, apenas.
- (B) I e II, apenas.
- (C) I e III, apenas.
- (D) II e III, apenas.
- (E) I, II e III.
- 5) O dispositivo de proteção a corrente diferencial residual (DR) é utilizado para interromper o circuito em que esteja ligado, na situação em que haja uma corrente de fuga. Nesse caso, é correto afirmar que a utilização do disjuntor termomagnético:
 - (A) não é necessária.
 - (B) é sempre necessária, pois ele atua no caso do DR falhar.
 - (C) é sempre necessária, pois ele atua na proteção de retaguarda do DR.
 - (D) é sempre necessária, pois ele atua na presença de correntes de fuga elevadas.
 - (E) é sempre necessária, pois ele atua na presença de sobre-corrente e corrente de curto-circuito.

- 6) A respeito de disjuntores de baixa tensão e de fusíveis, usados como dispositivos de proteção em uma instalação elétrica de baixa tensão, julgue os itens que se seguem.
 - Disjuntores de baixa tensão são, simultaneamente, dispositivos de proteção e de manobra em uma instalação elétrica.

Fusíveis são dimensionados conforme suas curvas características de tempo de fusão *versus* corrente, que podem variar de acordo com o fabricante.

Os disjuntores de baixa tensão mais comuns operam somente com disparadores térmicos.

- 7) Conforme a norma NBR 5410:2004, o uso de dispositivo diferencial-residual de alta sensibilidade como proteção adicional NÃO é obrigatório no seguinte caso:
 - (A) circuitos que sirvam a pontos de utilização situados em locais contendo banheira ou chuveiro;
 - (B) circuitos que alimentem tomadas de corrente situadas em áreas externas à edificação;
 - (C) circuitos que sirvam a pontos de tomada situados em cozinhas, copas-cozinhas, lavanderias, áreas de serviço e garagens;
 - (D) circuitos que alimentem aparelhos de iluminação posicionados a uma altura igual ou superior a 2,5m;
 - (E) circuitos de tomadas de corrente situadas em áreas internas que possam vir a alimentar equipamentos no exterior.
- 8) Para um circuito elétrico, estimou-se uma corrente de curto-circuito simétrica de 5 kA. O condutor do circuito é de cobre com área da seção reta de 50 mm² e com isolamento de PVC. O circuito encontra-se operando na temperatura máxima de serviço contínuo. Supondo aquecimento adiabático, qual é o tempo máximo, em segundos, para que o condutor, submetido à corrente de curto, alcance a temperatura limite suportável pelo isolamento? (Dado: Fator K da integral de Joule para isolamento de PVC: K=115)

(A) 0,86

(B) 0,98

(C) 1,15

(D) 1,32

(E) 1,47

- Sobre a utilização de dispositivos DR, considere as afirmativas a seguir.
 - O uso do dispositivo DR torna opcional a utilização do condutor de proteção.
 - No momento de sua atuação, o dispositivo DR deverá seccionar apenas as fases do circuito protegido.
 - III Para utilizar dispositivos DR nos esquemas de aterramento TN-C, antes do seu ponto de instalação, o esquema de aterramento deve ser convertido para TN-C-S.

Está correto APENAS o que se afirma em

- (A) I.
- (B) II.
- (C) III.
- (D) I e II.
- (E) II e III.

10) Utilizando-se a Tabela abaixo:

SEÇÃO CIRCULAR DO CONDUTOR (mm²)	#95	#50	#35	#25	#16	#10	#6
CORRENTE MÁXIMA ADMISSÍVEL (A)	184	144	119	96	76	57	41

Deseja-se dimensionar um alimentador trifásico para um quadro geral, 380V, 60Hz, com 23kW de carga instalada e barramentos de Neutro e de Terra. Qual o disjuntor deverá ser utilizado? Adote o fp do alimentador igual a 0,8.

- (A) 4 x 1 #50mm² + 1 #50mm² e DISJ. TRIPOLAR de 175 A;
- (B) 4 x 1 #16mm² + 1 #10mm² e DISJ. TRIPOLAR de 70 A;
- (C) 4 x 1 #25mm² + 1 #16mm² e DISJ. TRIPOLAR de 90 A;
- (D) $4 \times 1 \#10 \text{mm}^2 + 1 \#10 \text{mm}^2 \text{ e DISJ. TRIPOLAR de } 50 \text{ A};$
- (E) $4 \times 1 #50 \text{mm}^2 + 1 #25 \text{mm}^2 \text{ e DISJ. TRIPOLAR de } 150 \text{ A}.$

A figura acima mostra o esquema de montagem de um modelo genérico de um dispositivo de proteção. Esse dispositivo corresponde a um

- (A) disjuntor magnético.
- (B) disjuntor termomagnético.
- (C) interruptor termomagnético.
- (D) supressor de descargas atmosféricas.
- (E) dispositivo DR.

12)

O tipo de dispositivo mais adequado para proteger um motor elétrico contra correntes de curto circuito é:

- a) fusível rápido
- b) fusível retardado
- c) contator
- d) relé de sobrecorrente

- 13) Considere as proposições abaixo em relação aos fusíveis.
 - I. Os fusíveis de ação rápida destinam-se, normalmente, a circuitos com cargas motoras, para evitar que possíveis correntes de partida de valores elevados causem danos à instalação elétrica; já os fusíveis de ação retardada são mais indicados a circuitos com cargas resistivas, em que não há diferença entre corrente de partida e de regime.
 - II. O fusível DIAZED é inviolável, ou seja, a tentativa de troca do elo de fusão exigiria a remoção da tampa de fechamento do corpo de porcelana, o que danificaria o dispositivo e impediria a sua reposição. Além disso, uma das tampas metálicas tem um diâmetro diferente para cada corrente nominal, evitando que um fusível seja substituído por outro de valor maior na mesma base.
 - III. O fusível NH é indicado principalmente à proteção de instalações residenciais, onde o fator de potência é quase unitário. Eles são instalados antes dos medidores de energia para fazer a proteção geral.

É correto o que se afirma em

- (A) I, apenas.
- (B) I e II, apenas.
- (C) II, apenas.
- (D) II e III, apenas.
- (E) I, II e III.
- Na instalação elétrica em **BT**, em área residencial, comercial e industrial, para a proteção contra contatos diretos e indiretos, é utilizado o dispositivo diferencial residual (**DRs**) de 30 mA. O projetista deve ficar atento porque o **DRs** não deve atuar para as correntes de fugas naturais da isolação do circuito elétrico protegido, e também porque o **DRs** pode atuar para uma corrente menor que a sua corrente ajustada de 30 mA.

Em relação ao dispositivo **DRs**, assinale a alternativa que dá o valor limite admissível das fugas de corrente do circuito protegido e da corrente limite inferior que o **DRs** é capaz de atuar.

- a. () 05 mA e 15 mA
- b. () 10 mA e 15 mA
- c. () 12 mA e 30 mA
- d. () 15 mA e 20 mA
- e. () 20 mA e 25 mA
- 15) A figura a seguir apresenta a característica (I².t) = f(I) típica de um disjuntor eletromagnético.

Sobre essa figura, é correto afirmar que

- (A) quando $I > I_{CN}$ o disjuntor não deve ser utilizado.
- (B) quando $I_N < I \le I_{CN}$ atua o disparador magnético do disjuntor.
- (C) quando $I_M < I \le I_{CN}$ atua o disparador térmico do disjuntor.
- (D) quando $I \le I_N$ o disjuntor não deve ser utilizado.
- (E) os tempos de atuação na região (II) são menores do que os tempos de atuação na região (III).

- Sobre os tipos e utilizações de disjuntores, informe se é verdadeiro (V) ou falso (F) o que se afirma abaixo e depois assinale a alternativa que apresenta a seqüência correta.
 - () Disjuntores não devem ser utilizados em circuitos onde a ocorrência de curto-circuito é freqüente.
 - A proteção contra curto-circuito é realizada por um atuador magnético, que abre o circuito com o surto de corrente.
 - A proteção contra sobrecarga é realizada por um atuador térmico, que abre o circuito quando a corrente permanece acima do normal por um determinado tempo.
 - () Disjuntor diferencial deve ser utilizado quando a corrente de sobrecarga supera a nominal em 2 ou mais vezes.
 - a) V V V V.
 - $b) \qquad F V V F.$
 - V-F-F-F.
 - d) F-F-F-V.
- 17) Sobre os tipos e utilizações de fusíveis, informe se é verdadeiro (V) ou falso (F) o que se afirma abaixo e depois assinale a alternativa que apresenta a seqüência correta.
 - () Fusíveis de ação rápida são mais indicados para proteção de motores e outros cargas reativas.
 -) Fusíveis Diazed são do tipo cartucho, colocados em uma base e presos com uma tampa com rosca.
 - () Fusíveis Neozed são do tipo faca para alta corrente, montados em geral juntos às chaves seccionadoras.
 - A corrente convencional de não-fusão é a corrente nominal de operação do fusível.
 -) V-F-V-V
 - b) F-V-F-F.
 - c) V-V-V-F.
 - d) F-F-F-V.
- A figura abaixo mostra as características *l*².*t* de um condutor de cobre com isolação de PVC, seção 1,5 mm² e também duas curvas *l*².*t* de disjuntores, uma referente ao disjuntor unipolar de 20A e outra dos disjuntores unipolares de 25A e 30A. Todas as curvas possuem características de atuação térmica a quente. A partir dessas curvas, considere as afirmações a

- Com o disjuntor de 25A ou 30A, o condutor está totalmente protegido contra corrente de sobrecarga.
- Com o disjuntor de 20A, o condutor está protegido contra corrente curto-circuito de até 2,3 kA.
- Com o disjuntor de 20A, o condutor está protegido contra sobrecarga entre 16A e 25A.
- Com o disjuntor de 25A ou 30A, o condutor não está protegido contra sobrecarga entre os pontos B e A.

Está(ão) correta(s), apenas:

- A) 3 e 4.
- B) 1 e 4.
- C) 2.
- D) 1, 2 e 3.
- E) 2 e 3.

19) Dimensione o dispositivo de proteção termomagnética (mini-disjuntor NBR IEC 60898) para o circuito de tomada de uso específico (Chuveiro) da figura abaixo. O circuito é constituído de condutores unipolares de cobre com isolação de PVC, está instalado em eletroduto de PVC embutido em alvenaria (30° C) e a corrente presumida de curto-circuito no ponto de instalação do referido dispositivo de proteção é de 1 kA.

20) Dimensione o dispositivo de proteção termomagnética (mini-disjuntor NBR IEC 60898) para o circuito de tomada de uso geral número 2 (dois) da figura abaixo. O circuito é constituído de condutores unipolares de cobre (seção 2,5 mm²) com isolação de PVC, está instalado em eletroduto de PVC embutido em alvenaria (temperatura 35° C) e a corrente presumida de curto-circuito no ponto de instalação do referido dispositivo de proteção é de 500 A.

- 21) A figura ao lado apresenta um visão interna das principais partes constituintes de um mini-disjuntor termomagnético. Este dispositivo atende a norma NBR IEC 60898, e tem aplicação em instalações elétricas com tensão inferior a 400 Vca e corrente menor ou igual a 125 A. A cerca deste dispositivo pergunta-se:
- a) Quais são as principais funções de um mini-disjuntor termomagnético? Como é a curva característica de atuação deste dispositivo elétrico?
- b) Identifique na figura ao lado as principais partes constituintes do mini- disjuntor, associando com sua respectiva função.
- c) Explique o princípio de funcionamento do mini-disjuntor.
- 22) A figura abaixo apresenta um dispositivo fusível do tipo Diazed. A respeito deste dispositivo pergunta-se:
- a) Quais são as principais funções deste dispositivo elétrico? Qual a aplicação deste dispositivo?
- b) Cite as principais partes constituintes do fusível Diazed. Quais são os acessórios necessários para a instalação deste dispositivo?
- c) Explique o principio de funcionamento do dispositivo fusível Diazed. Identifique a curva de atuação deste dispositivo.
- 23) Os dispositivos diferenciais residuais (DDR) tornaram-se obrigatórios nas instalações elétricas cobertas pela NBR 5410/2004 a partir de 2005. Pergunta-se:
 - a) Quais são as principais funções de um dispositivo diferencial residual?
- b) Explique o principio básico de funcionamento de um dispositivo diferencial residual, por meio do digrama funcional ilustrado ao lado de um DDR bipolar.
- c) Qual a diferença entre um interruptor diferencial residual e um disjuntor diferencial residual?
- d) Explique como atua um DDR evitando que uma pessoa sofra um choque elétrico.

24) A figura abaixo ilustra um diagrama unifilar de uma instalação elétrica residencial. O diagrama unifilar permite tanto ao engenheiro eletricista quanto ao eletricista obter uma visão mais ampla do projeto, de forma a facilitar a execução do projeto elétrico como um todo. Pergunta-se:

- a) Se ocorrer um curto-circuito (fase-neutro) a jusante do circuito 6 (seis), com uma corrente de 500 A, qual o tempo de atuação do disjuntor do circuito terminal? Caso o disjuntor do circuito terminal falhe, qual o tempo de atuação do disjuntor geral no medidor? Utilize a curva do disjuntor termomagnético (DTM) abaixo.
- b) Analisando a curva do disjuntor termomagnético abaixo, qual a classe de atuação deste dispositivo? Justifique sua resposta.
- c) A partir do diagrama unifilar podemos notar que no QDC existe um interruptor diferencial residual (IDR), tetrapolar de alta sensibilidade (30 mA) e com capacidade nominal de 63A. Se ocorrer um curtocircuito a jusante do IDR, este dispositivo irá atuar?
- d) Cite uma vantagem e desvantagem de como foi feita a instalação do dispositivo diferencial residual no quadro de distribuição de circuitos.
- e) Se ocorrer uma fuga de corrente de 5 mA no circuito de TUG número 3, o interruptor diferencial atuará seccionando a alimentação dos circuitos? E com uma corrente de fuga de 20 mA o IDR atuaria? Justifique sua resposta mostrando o tempo de atuação do dispositivo, por meio da curva do IDR abaixo.

