Trees

Categories of Data Structures

Linear Ordered

Non-linear Ordered

Not Ordered

Lists

Trees

Sets

Stacks

Graphs

Tables/Maps

Queues

Trees

A tree is a rooted, directed, acyclic structure. It has three properties: one root; each node has one parent; and no cycles.

Use Cases

- Family Trees
- Decision Trees
- File Systems
- Expression Trees
- Search Trees

https://commons.wikimedia.org/wiki/File:Black family
tapestry as seen at Harry Potter Experience.jpg

Root

The node at the top is called the root.

Children

Successors of a node are called children.

Parent

Predecessors of a node are called parent.

Grandparent

Predecessors of a node's parent are called grandparent.

Sibling

All nodes that have the same parent node are siblings.

Ancestor

All nodes that can be reached by moving only in an upward

direction in the tree.

25
25, 51 are ancestors of 14

Descendent

Nodes that can be reached by moving only in a downward

direction in the tree.

25

14 is a descendant of 25 and 51

5 11 14 is a descendant of 25 and 51

Leaf

Nodes with no children are called leaf nodes or external nodes.

Subtree

A subtree of a node is a tree whose root is a child of that node.

Level (Depth)

The level of a node is the distance of that node from the root.

Height - O based height (based on edges)

The height of a tree is the number of nodes in the longest path

from the root node to a leaf node

```
If tree has just the root,
Height = 0
```

If tree has more than the root,
Height = 1 + max(Height(children))

Height - 1 based height (based on nodes)

The height of a tree is the number of nodes in the longest path

from the root node to a leaf node

```
If tree has just the root,
          Height = 1

If tree has more than the root,
Height = 1 + max(Height(children))
```


Tree Types

N-Ary Tree

- A tree with each node consisting of at most n children.
- Tree has three properties:
 one root; each node has
 one parent; and no cycles.

Binary Tree

A tree with each node
 consisting of at most two
 children.

Full Binary Tree

 A full binary tree is a binary tree where all nodes have either 2 children or 0 children (the leaf nodes)

Perfect Binary Tree

- A perfect binary tree is a full binary tree of height h with exactly 2^{h+1} 1 nodes. Here, h is O-based (height of a tree with one node is O).
- In a perfect binary tree with n nodes, the height of the tree is log₂ (n+1) 1.

h = 2 and
$$2^{h+1} - 1 = 7$$

n = 7 and $log_2(7+1) - 1 = 2$

Complete Binary Tree

A complete binary tree is a
 perfect binary tree through level
 h - 1 with some extra leaf nodes
 at level h (the tree height), all
 towards the left

The height of a complete binary
 tree is also ceil(log₂ (n+1) - 1)

Binary Search Tree (BST)

 A binary tree in which all values of a node's left subtree or descendants to the left are less than the node and all values of a node's right subtree are greater than the node.

An ordered binary tree.

Trees Representation

Trees: Representation

Trees: Representation

Array Representation

Trees: Representation

(1) Array Representation

(2) Linked Representation

```
1. class TreeNode
2. {
3.    public:
4.         int val;
5.         TreeNode *left;
6.         TreeNode *right;
7.         TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
8. };
```


Binary Search Trees

Binary Search Tree (BST): Dictionary

Binary Search Tree: C++ Node Class

```
1. class TreeNode
2. {
3.    public:
4.         int val;
5.         TreeNode *left;
6.         TreeNode *right;
7.         TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
8. };
```


Binary Search Tree Search

```
return null (target is not found)

else if the target matches the root node's data
return the data stored at the root node

else if the target is less than the root node's data
return the result of searching the left subtree of the root

else

return the result of searching the right subtree of the root
```


Binary Search Tree Insertion

Recursive Algorithm for Insertion in a Binary Search Tree

- if the root is null
- Replace empty tree with a new tree with the item at the root and return true.
- else if the item is equal to root.data
- The item is already in the tree; return false.
- else if the item is less than root.data
- Recursively insert the item in the left subtree.
- else
- 8. Recursively insert the item in the right subtree.

Binary Search Tree: C++ Insert

```
class TreeNode
         public:
             int val;
             TreeNode *left;
             TreeNode *right;
             TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
8.
     };
     TreeNode* insert(TreeNode* root, int key)
10.
11.
         if (root == nullptr)
12.
             return new TreeNode(key);
13.
         if (key < root->val)
             root->left = insert(root->left, key);
14.
15.
         else
16.
             root->right = insert(root->right, key);
17.
         return root;
18.
```

Binary Search Tree: C++ Insert Example


```
insert(root<sub>25</sub>, 15)
```


Binary Search Tree: C++ Insert Example


```
1. TreeNode* insert(TreeNode* root, int key)
2. {
3.      if (root == nullptr)
4.          return new TreeNode(key);
5.     if (key < root->val)
6.          root->left = insert(root->left, key);
7.      else
8.          root->right = insert(root->right, key);
9.          return root;
10.     }
```

```
insert(root<sub>12</sub>, 15)

insert(root<sub>25</sub>, 15)
```


Binary Search Tree: C++ Insert Example

Insert 15

```
1. TreeNode* insert(TreeNode* root, int key)
2. {
3.      if (root == nullptr)
4.          return new TreeNode(key);
5.     if (key < root->val)
6.          root->left = insert(root->left, key);
7.      else
8.          root->right = insert(root->right, key);
9.      return root;
10. }
```

```
1. TreeNode* insert(TreeNode* root, int key)
2. {
3.     if (root == nullptr)
4.         return new TreeNode(key);
5.     if (key < root->val)
6.         root->left = insert(root->left, key);
7.     else
8.         root->right = insert(root->right, key);
9.     return root;
10. }
```

```
1. TreeNode* insert(TreeNode* root, int key)
2. {
3.         if (root == nullptr)
4.              return new TreeNode(key);
5.         if (key < root->val)
6.              root->left = insert(root->left, key);
7.         else
8.              root->right = insert(root->right, key);
9.              return root;
10.     }
```

```
insert(root<sub>14</sub>, 15)
```

```
insert(root<sub>12</sub>, 15)
```

```
insert(root<sub>25</sub>, 15)
```


Binary Search Tree Deletion

Recursive Algorithm for Removal from a Binary Search Tree if the root is null The item is not in tree - return null. Compare the item to the data at the local root. 4. if the item is less than the data at the local root 5. Return the result of deleting from the left subtree. 6. else if the item is greater than the local root Return the result of deleting from the right subtree. else // The item is in the local root 9. Store the data in the local root in deletedReturn. 10. if the local root has no children 11. Set the parent of the local root to reference null. 12. else if the local root has one child 13. Set the parent of the local root to reference that child. 14. else // Find the inorder predecessor 15. if the left child has no right child it is the inorder predecessor 16. Set the parent of the local root to reference the left child. 17. else 18. Find the rightmost node in the right subtree of the left child. Copy its data into the local root's data and remove it by 19. setting its parent to reference its left child.

Delete 14: No child

Delete 14: No child

At the parent of 14, set the child with value 14 to null.

Delete 51: One child

Delete 51: One child

At the parent of 51, set the pointer with the child value 51 to the pointer of the node 51's child.

Delete 25: Two children

Delete 25: Two children

Change the value of the node to be deleted to the value of inorder successor or predecessor. Then delete the successor or predecessor value at the subtree.

Delete 25: Two children

Change the value of the node to be deleted to the value of inorder successor or predecessor. Then delete the successor or predecessor value at the subtree.

Successor: right subtree's leftmost child

Delete 25: Two children

Change the value of the node to be deleted to the value of inorder successor. Then delete the successor or predecessor value at the subtree.

Delete 25: Two children

Change the value of the node to be deleted to the value of inorder successor. Then delete the successor or predecessor value at the subtree.

Traversals

BST Traversals

Visiting each node in the tree

- Depth First Strategy
 - Inorder
 - Preorder
 - Postorder
- Breadth First Strategy

Traversal vs Search

 Traversal requires you to visit each node; Not necessarily in search

BST Traversals: Inorder

Strategy

- Visit Left Subtree
- Visit Root
- Visit Right Subtree

Algorithm for Inorder Traversal

- if the tree is empty
- Return.

- Inorder traverse the left subtree.
- Visit the root.
- Inorder traverse the right subtree.

BST Traversals: Inorder

Strategy

- Visit Left Subtree
- Visit Root
- Visit Right Subtree

Algorithm for Inorder Traversal

- if the tree is empty
- Return.

- Inorder traverse the left subtree.
- Visit the root.
- Inorder traverse the right subtree.

Binary Search Tree: C++ Inorder Traversal

```
class TreeNode
         public:
              int val;
              TreeNode *left;
              TreeNode *right;
              TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     };
     void inorder(TreeNode* head)
10.
11.
         if(head == nullptr)
              cout << "";
         else
              inorder(head->left);
15.
              cout << head->val << " ";</pre>
              inorder(head->right);
18.
19.
```

BST Traversals: Preorder

Strategy

- Visit Root
- Visit Left Subtree
- Visit Right Subtree

Algorithm for Preorder Traversal

- if the tree is empty
- Return.

- Visit the root.
- Preorder traverse the left subtree.
- Preorder traverse the right subtree.

BST Traversals: Preorder

Strategy

- Visit Root
- Visit Left Subtree
- Visit Right Subtree

Algorithm for Preorder Traversal

- 1. if the tree is empty
- Return.

- Visit the root.
- Preorder traverse the left subtree.
- Preorder traverse the right subtree.

BST Traversals: Postorder

Strategy

- Visit Left Subtree
- Visit Right Subtree
- Visit Root

Algorithm for Postorder Traversal

- if the tree is empty
- . Return.

- Postorder traverse the left subtree.
- Postorder traverse the right subtree.
- Visit the root.

BST Traversals: Postorder

Strategy

- Visit Left Subtree
- Visit Right Subtree
- Visit Root

Algorithm for Postorder Traversal

- 1. if the tree is empty
- Return.

- Postorder traverse the left subtree.
- Postorder traverse the right subtree.
- Visit the root.

BST Traversals: Euler Tour

Visiting each node in the tree

- Depth First Strategy
 - Preorder (down arrow)
 - Inorder (horizontal arrow)
 - Postorder (up arrow)

BST Traversals: Level Order

Strategy

Traverse all nodes in Level 0 upto n-1

Use Cases of Traversal

Binary Tree: Sum of Right Leaves

Binary Tree: Sum of Right Leaves

```
void sumOfRightLeaves(TreeNode* root)
     queue<TreeNode*> q;
     int sum = 0;
     if(root != NULL)
          q.push(root);
     while (!q.empty())
10.
11.
12.
13.
          if (q.front()->left != NULL)
            q.push(q.front()->left);
15.
          if (q.front()->right != NULL)
            q.push(q.front()->right);
          q.pop();
18.
19.
     cout << sum;
20.}
```

Binary Tree: Sum of Right Leaves

```
void sumOfRightLeaves(TreeNode* root)
     queue<TreeNode*> q;
     int sum = 0;
     if(root != NULL)
          q.push(root);
     while (!q.empty())
10.
11.
         if (q.front()->right != NULL && q.front()->right->right == NULL && q.front()->right->left == NULL)
12.
            sum += q.front()->right->val;
         if (q.front()->left != NULL)
13.
14.
            q.push(q.front()->left);
15.
          if (q.front()->right != NULL)
            q.push(q.front()->right);
          q.pop();
18.
19.
     cout << sum;
20.}
```

- Preorder Traversal
 - Printing Directory Listings

Preorder Traversal

Printing Directory Listings

- Preorder Traversal
 - Printing Directory Listings

```
preorder/
    1/
        b.txt
2/
        c.txt
        d.txt
3/
    a.txt
```


Postorder Traversal

Gathering File Sizes

```
1/
100
2/
200
300
3/
500
postorder/
```


Postorder Traversal

Gathering File Sizes

```
1/
100
2/
200
300
3/
500
postorder/
```


- Postorder Traversal
 - Gathering File Sizes

```
1/
100
2/
200
300
3/
500
postorder/
```


Binary Search Tree: Size of directories

```
class TreeNode {
1.
2.
             public:
3.
               int size;
4.
               char name;
5.
               TreeNode *left;
6.
               TreeNode *right;
               TreeNode(char n, int s) : size(s), name(n), left(nullptr), right(nullptr) {}
7.
8.
        };
9.
10.
        int postOrder(TreeNode* head)
11.
12.
           if(head == NULL)
13.
                return 0;
14.
           int total = 0;
15.
           total += postOrder(head->left);
16.
17.
           total += postOrder(head->right);
           total += head -> size;
18.
           return total;
19.
20.
```

Trees Traversal: Other Use Cases

- Postorder Traversal
 - Managing memory when deleting a tree
- Preorder Traversal
 - Creating a copy of a tree

Mentimeter

Questions

n-Ary Tree: Level Order Traversal

```
void levelOrder(Node* root) {
02
        int level = 1;
03
        queue<Node*> q;
04
        q.push(root);
05
06
        while (!q.empty())
07
            vector<int> vec;
98
            int size = q.size();
            for (int i = 0; i < size; i++)
10
11
12
                Node* temp = q.front();
13
                vec.push back(temp->val);
14
                q.pop();
15
                 for (auto element : temp->children)
16
                        q.push(element);
17
            cout << "Level: " << level++ << endl;</pre>
18
19
            for (int i = 0; i < vec.size(); i++ )
                 cout << vec[i] << " ";</pre>
20
21
            cout << endl;</pre>
22
23
```

More Properties Related to Height

Trees: Terminology

Height

The height of a tree is the number of nodes in the longest path

from the root node to a leaf node

```
If tree has just the root,
    Height = 1

If tree has more nodes than the root,
    Height = 1 + max(Height(children))
```


Trees: Terminology

Height of a Node

The height of a node is the number of nodes in the longest

path from the node to a leaf node

Minimum number of Nodes in a Tree with Height, h

Minimum number of Nodes in a Tree with Height, h

If height = h, at least one node at each level, therefore

Number of Nodes, n = h

Maximum number of Nodes in a Tree with Height, h

Maximum number of Nodes in a Tree with Height, h

If height = h, all possible node at each level, therefore

Number of Nodes,
$$n = 1 + 2 + 4 + ... + 2^{h-1} = 2^h - 1$$

Number of Nodes is between h and 2h - 1

```
h \le n \le 2^{h} - 1
n + 1 \le 2^{h}
\log (n + 1) \le \log (2^{h})
\log (n + 1) \le \log (2^{h})
\log (n + 1) \le h
```

Height of a Tree, h is between log₂ (n+1) and n

Trees Height: Takeaway

 Trees with n nodes can have a height that is proportional to n or proportional to log (n).

 For good performance we want a tree that is as perfect as possible or as "bushy" as possible, i.e. height ~ log (n)

BST Performance

BST Insertion

n! different ways to insert n elements

BST Insert, Delete and Search

BST Insert, Delete and Search

BST Insert, Delete and Search

How do we fix the Worst Case?

Questions

