Оспови програмувания 1. Алгериин та структури

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 7 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів» Варіант 17

Виконав студент <u>Ш-15 Куркчі Юрій</u> (шифр, прізвище, ім'я, по батькові)

Перевірив

(прізвище, ім'я, по батькові)

Лабораторна робота 7 Дослідження лінійного пошуку в послідовностях

Мета — дослідити методи послідовного пошуку у впорядкованих і невпорядкованих послідовностях та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 17

№	Вираз для обчислення елемента		Знайти	
	1-го масиву	2-го масиву		
17	5 * i + 25	55 - 5 * i	Добуток елементів, коди яких менше 82	

Постановка задачі

Заданий алгоритм повинен:

- 1. Створити три змінні індексованого типу з 10 символьних значеннь.
- 2. Ініціювати перші 2 змінні за формулами 5i+25 та 55-5i, де $i\in[1,10]$.
- 3. Ініціювати трерю змінну спільними значеннями двох попередніх.
- 4. Знайти добуток елементів з третьої змінної, коди яких менше 82.

Побудова математичної моделі

Таблиця змінних

Змінна	Тип	Ім'я	Призначення
Розмірність масивів	Натуральний	size	Початкові дані
Перший масив	Символьний	F	Проміжні дані
Другий масив	Символьний	S	Проміжні дані
Третій масив	Символьний	thirdArray	Проміжні дані
Додатковий масив	Символьний	newArray	Проміжні дані

Добуток кодів	Натуральний	product	Проміжні дані
Рівність елементів	Логічний	match	Проміжні дані
Результат добутку	Логічний	result	Кінцеві дані

Використані функції

- char(x) повертає символьне значення числа
- int(x) повертає числове значення символу
- а% b повертає остачу від ділення числа а на число b.

Власні функції

- generateFirstArray(ціле число) повертає перший символьний масив
- generateFirstArray(ціле число) повертає другий символьний масив
- generateFirstArray(одновимірний символьний масив, одновимірний символьний масив, ціле число) повертає третій символьний масив згенерований на основі перших двух.
- product(одновимірний символьний масив, ціле число) повертає добуток елементів, коди яких менше 82.
- 1. Згенеруємо перші 2 масиви за формулами 5i + 25 та 55 5i.
- 2. Згенеруємо третій масив шляхом перевірки кожної пари елементів на рівність та їх внесення до масиву. Інші елементи заповнимо нулями.
- 3. Розрахуємо добуток ненульових елементів третього масиву.

Розв'язання

- 1. Визначимо основні дії.
- 2. Деталізуємо дію визначення першого масиву.
- 3. Деталізуємо дію визначення другого масиву.
- 4. Деталізуємо дію визначення третього масиву.
- 5. Деталізуємо дію обрахунку добутків ненульових елементів третього масиву.
- 6. Деталізуємо дію визначення елементів першого масиву за допомогою ітераційної форми повторення.
- 7. Деталізуємо дію визначення елементів другого масиву за допомогою ітераційної форми повторення.
- 8. Деталізуємо дію визначення елементів третього масиву за допомогою ітераційної форми повторення, умовної та альтернативної форм вибору.

Ochobit hporpaniybanisi 1. A. nophtimi ta orpyktypii

9. Деталізуємо дію обрахунку добутків елементів третього масиву за допомогою ітераційної форми повторення.

Псевдокод алгоритму

Крок 1 Початок

size:=10

Визначення першого масиву

Визначення другого масиву

Визначення третього масиву

Обрахунок добутків елементів третього масиву

Виведення result

Кінець

Підпрограма

generateFirstArray(size)

newArray[size]

Визначення елементів першого масиву

повернути newArray Все підпрограма

Підпрограма

generateSecondArray(size)

newArray[size]

Визначення елементів першого масиву **повернути** newArray **Все підпрограма**

Підпрограма

generateThirdArray(firstArray, secondArray,

size)

newArray[size]

Визначення елементів третього масиву

повернути newArray Все підпрограма

```
Підпрограма
    product(thirdArray,
                                 size)
product:=1
    Обрахунок добутку елементів
повернути char(product) Все
підпрограма
Крок 2
Початок
    size := 10
    firstArray[size]=generateFirstArray(size)
    Визначення другого масиву
    Визначення третього масиву
    Обрахунок добутків елементів третього масиву
    Вивелення result
Кінець
Підпрограма
    generateFirstArray(size)
newArray[size]
    Визначення елементів першого масиву
повернути newArray Все підпрограма
Підпрограма
    generateSecondArray(size)
newArray[size]
    Визначення елементів першого масиву
повернути newArray Все підпрограма
Підпрограма
    generateThirdArray(firstArray,
                                         secondArray,
                                                             size)
newArray[size]
    Визначення елементів третього масиву
повернути newArray Все підпрограма
```

size)

Підпрограма

product:=1

product(thirdArray,

Обрахунок добутку елементів повернути char(product) Все підпрограма

Сепови програмувания 1. Автеритии та структури

size:=10 firstArray[size]=generateFirstArray(size) secondArray[size]=generateSecondArray(size) Крок 3

Початок

Визначення третього масиву

Обрахунок добутків елементів третього масиву

Виведення result

Кінець

Підпрограма

generateFirstArray(size)

newArray[size]

Визначення елементів першого масиву

повернути newArray Все підпрограма

Підпрограма

generateSecondArray(size)

newArray[size]

Визначення елементів першого масиву

повернути newArray Все підпрограма

Підпрограма

generateThirdArray(firstArray, secondArray, size)

newArray[size]

Визначення елементів третього масиву

повернути newArray Все підпрограма

Підпрограма

product(thirdArray, size)

product:=1 обрахунок добутку

елементів повернути

char(product) Все підпрограма

third Array [size] = generate Third Arra

y(size) <u>Обрахунок добутків</u>

елементів третього масиву

Сепори програмувания—1. Азп оритинг та структури

Крок 4

Початок

size := 10

firstArray[size]=generateFirstArray(size) secondArray[size]=generateSecondArray(size)

Виведення result

Кінець

Підпрограма

generateFirstArray(size)

newArray[size]

Визначення елементів першого масиву

повернути newArray Все підпрограма

Підпрограма

generateSecondArray(size)

newArray[size]

Визначення елементів першого масиву

повернути newArray Все підпрограма

Підпрограма

generateThirdArray(firstArray, secondArray, size)

newArray[size]

Визначення елементів третього масиву

повернути newArray Все підпрограма

Підпрограма

product(thirdArray, size)

product:=1 обрахунок добутку

елементів повернути

char(product) Все підпрограма

thirdArray[size]=generateThirdArra

y(size)

result=product(thirdArray, size)

Виведення result

Кінець

Підпрограма

generateFirstArray(size)

newArray[size]

Сепори програмувания—1. Азп оритинг та структури

Крок 5

Початок

size = 10

firstArray[size]=generateFirstArray(size)

secondArray[size]=generateSecondArray(size)
Визначення елементів першого масиву

повернути newArray Все підпрограма

Підпрограма

generateSecondArray(size)

newArray[size]

Визначення елементів першого масиву

повернути newArray Все підпрограма

Підпрограма

generateThirdArray(firstArray, secondArray, size)

newArray[size]

Визначення елементів третього масиву

повернути newArray Все підпрограма

Підпрограма

product(thirdArray,

size)

product:=1

Обрахунок добутку елементів

повернути char(product) Все

підпрограма

thirdArray[size] = generateThirdArra

y(size)

result=product(thirdArray, size)

Виведення result

Кінець

Підпрограма

generateFirstArray(size)

newArray[size] повторити

для і від 1 до size

newArray[i]:=char(25+5*i)

повернути newArray Bce

підпрограма

Підпрограма

Сепори програмувания 1. 1 оритми те структури

Крок 6

Початок

size = 10

firstArray[size]=generateFirstArray(size)

secondArray[size]=generateSecondArray(size)

generateSecondArray(size)

newArray[size]

Визначення елементів першого масиву

повернути newArray Все підпрограма

Підпрограма

generateThirdArray(firstArray, secondArray, size)

newArray[size]

Визначення елементів третього масиву

повернути newArray Все підпрограма

Підпрограма

product(thirdArray, size)

product:=1

Обрахунок добутку елементів

повернути char(product) Все

підпрограма

thirdArray[size]=generateThirdArra

y(size)

result=product(thirdArray, size)

Виведення result

Кінець

Підпрограма

generateFirstArray(size)

newArray[size] повторити

для і від 1 до size

newArray[i]:=char(25+5*i)

все повторити повернути

newArray Все підпрограма

Підпрограма

generateSecondArray(size)

newArray[size]

повторити для і від 1 до

size newArray[i]:=char(55-

Сепери преграмувания 1. Алг оритин те структури

Крок 7

Початок

size := 10

firstArray[size]=generateFirstArray(size)
secondArray[size]=generateSecondArray(size)

5*i) все повторити повернути newArray Все підпрограма

Підпрограма

generateThirdArray(firstArray, secondArray, size)

newArray[size]

<u>Визначення елементів третього масиву</u> **повернути** newArray **Все підпрограма**

Підпрограма

product(thirdArray, size)

newArray[size]

Обрахунок добутку елементів

повернути char(product)

Все підпрограма

thirdArray[size]=generateThirdArra y(size)

result=product(thirdArray, size)

Виведення result

Кінець

Підпрограма

generateFirstArray(size)

newArray[size] повторити

для і від 1 до size

newArray[i]:=char(25+5*i)

все повторити повернути newArray Все підпрограма

Підпрограма

generateSecondArray(size)

newArray[size] повторити

для і від 1 до size

newArray[i]:=char(55-5*i)

все

Сепери програмувания 1. Али оригинг га структури

Крок 8

Початок

size:=10 firstArray[size]=generateFirstArray(size) secondArray[size]=generateSecondArray(size) повторити повернути newArray Все підпрограма

```
Ochobii iiporpanybamiz 1. Am opiirim ta orpykrypi
```

```
Підпрограма
```

generateThirdArray(firstArray, secondArray, size)

newArray[size]

повторити для і від

1 до size

match=false

повторити для ј

від 1 до size

якщо firstArray[i]==secondArray[j]

T0

match:=true **Bce**

якщо все

повторити якщо

match==true

T0

newArray[i]:=firstArray[i]

інакше

newArray[i]:=char(0)

все якщо все повторити все повторити повернути пеwArray Все підпрограма

Підпрограма

product(thirdArray, size)

product:=1

Обрахунок добутку

елементів повернути

char(product) Все підпрограма

Крок 9

Початок

size:=10

firstArray[size]=generateFirstArray(size) secondArray[size]=generateSecondArray(size) thirdArray[size]=generateThirdArray(size) result=product(thirdArray, size)

Вивелення result

Кінець

Підпрограма

generateFirstArray(size)

newArray[size] повторити для і від 1 до size

newArray[i]:=char(25+5*i)

все повторити повернути newArray Все підпрограма

Підпрограма

generateSecondArray(thirdArray, size)

newArray[size]

повторити для і від 1 до

size

newArray[i]:=char(55-5*i)

все повторити повернути newArray Все підпрограма

```
Підпрограма
generateThirdArray(firstArray, secondArray, size)
```

newArray[size]
повторити для і від
1 до size
match=false

повторити для ј

від 1 до size

якщо firstArray[i]==secondArray[j]

T0

match:=true **Bce**

якщо все

повторити якщо

match==true

T0

newArray[i]:=firstArray[i]

інакше

newArray[i]:=char(0)

все якщо все повторити все повторити повернути пеwArray Все підпрограма

Підпрограма

product(thirdArray, size)

product:=1 повторити для і від 1 до size якщо thirdArray[i]!=0

T0

product*=int(thirdArray)

все якщо product%=256

повернути char(product) Все

підпрограма Блок-схема алгоритму

There general relevoyces periodicing according to the product of t

Код програми

Кінець generateThirdArray

```
#include <iostream>
using namespace std;
  void generateFirstArray(char[], int); //генерує 1 масив void generateSecondArray(char[], int); //генерує 2 масив void generateThirdArray(char[], char[], char[], int); // генерує масив однакових елементів char product(char[], int); //добуток елементів void outputArray(char[], int); //виведення масиву
            //renepaulis macusis
generateFirstArray(firstArray, size);
generateSecondArray(secondArray, size);
generateThirdArray(thirdArray, firstArray, secondArray, size);
//secondarraysesis
            //виведення масивів
cout << "First array:\n";
outputArray(firstArray, size);
cout << "Second array:\n";
outputArray(secondArray, size);
cout << "Third array:\n";
outputArray(thirdArray, size);
//обрахунок та виведення резуль:
            //обрахунок та виведения результату
result = product(thirdArray, size);
cout <<"Product: \n"<< result;
void generateThirdArray(char newArr[], char firstArr[], char secondArr[], int size)
                             for (int j = 0; j < size; j++) {
    if (firstArr[i] == secondArr[j])</pre>
                             if (match)
```

```
| Solution | Solution
```

Випробування алгоритму

Блок	Дія	
	Початок	
1.	size:=10	
2.	firstArray[size]=generateFirstArray(size)	
3.	i=1,i<=10,i++	
4.	newArray:=char(30)='RS'	
5.	i=2,i<=10,i++	
6.	newArray:=char(35)='#'	

	— Основи програмувания — 1. Алгоритми та структури
7.	i=3, i <= 10, i++
8.	newArray:=char(40)='('
9.	i=4,i<=10,i++
10.	newArray:=char(45)='-'
11.	i=5, i <= 10, i++
12.	newArray:=char(50)='2'
13.	i=6,i<=10,i++
14.	newArray:=char(55)='7'
15.	i=7,i<=10,i++
16.	newArray:=char(60)='<'
17.	i=8, i<=10, i++
18.	newArray:=char(65)='A'
19.	i=9, i<=10, i++
20.	newArray:=char(70)='F'
21.	i=10, i <=10, i++
22.	newArray:=char(75)='K'
23.	i=11,i>=10
24.	$FirstArray:=\{RS,\#,(,-,2,7,<,A,F,K\}\}$
<u> </u>	secondArray[size]=generateSecondArray(size)
26.	i=1,i<=10,i++
27.	newArray:=char(50)='2'
28.	i=2,i<=10,i++
29.	newArray:=char(45)='-'
30.	i=3,i<=10,i++
31.	newArray:=char(30)='('
32.	i=4,i<=10,i++
33.	newArray:=char(35)='#'
34.	i=5,i<=10,i++
35.	newArray:=char(30)='RS'
36.	i=6,i<=10,i++
37.	newArray:=char(25)='EM'
38.	i=7, i <= 10, i++
39.	newArray:=char(20)='NAK' i=8, i <=10, i++
40.	
41.	newArray:=char(15)='SI'
42.	i=9,i<=10,i++
43.	newArray:=char(10)='LF'
4.4	1.401.401

42.	1=9,1<=10,1++
43.	newArray:=char(10)='LF'
44.	i=10, i <=10, i++
45.	newArray:=char(5)='ENQ'
46.	i=11,i>=10

	Оспори програмувания 1. Авторитии та структури
47.	secondArray:={2,-,(,#,RS,EM,NAK,SI,LF,ENQ}
	thirdArray=generateThirdArray(firstArray,secondArray,size)
49.	i=1,i<=10,i++
50.	match=false
51.	j=1,j<=10,j++
52.	'RS'!='2'
53.	j=2,j<=10,j++
54.	'RS'!='-'
55.	j=3,j<=10,j++
56.	'RS'!='('
57.	j=4,j<=10,j++
58.	'RS'!='#'
59.	j=5, j<=10, j++
60.	'RS'=='RS'
61.	match:=true
62.	j=6,j<=10,j++
63.	'RS'!='EM'
64.	j=7, j<=10, j++
65.	'RS'!='NAK'
66.	j=8, j<=10, j++
67.	'RS'!='SI'
68.	j=9,j<=10,j++
69.	'RS'!='LF'
70.	j=10, j<=10, j++
71.	'RS'!='ENQ'
72.	j=11,j>10
73.	match==true
74.	newArray[1]=firstArray[1]
75.	i=2, i <= 10, i++
76.	match=false
77.	j=1,j<=10,j++
78.	'#'!='2'
79.	j=2, j<=10, j++
80.	`#`!=`-`
81.	j=3,j<=10,j++
82.	'#'!='('
83.	j=4,j<=10,j++
84.	·#'=='#'
85.	match:=true
86.	j=5,j<=10,j++

```
'#'!='RS'
87.
88.
     j=6,j<=10,j++
89.
    '#'!='EM'
    j=7, j<=10, j++
90.
91.
    '#'!='NAK'
    j=8, j<=10, j++
92.
    '#'!='SI'
93.
   j=9,j<=10,j++
94.
95. '#'!='LF'
96. j=10,j<=10,j++
    '#'!='ENQ'
97.
98. j=11,j>10
99.
   match==true
100 newArray[2]=firstArray[2]
101 i=3,i<=10,i++
102 match=false
103
    j=1,j<=10,j++
104 '('!='2'
105 j=2,j<=10,j++
106 '('!='-'
107 j=3,j<=10,j++
108 '('=='('
109 match:=true
110 j=4,j<=10,j++
111 '('!='#'
112 j=5,j<=10,j++
113 '('!='RS'
114 j=6,j<=10,j++
115 '('!='EM'
116 j=7, j<=10, j++
117 '('!='NAK'
118 j=8, j<=10, j++
119 '('!='SI'
120 j=9,j<=10,j++
121 '('!='LF'
122 j=10, j <=10, j++
123 '('!='ENQ'
124 j=11, j>10
125
    match==true
126 newArray[3]=firstArray[3]
127
    i=4,i<=10,i++
```

```
— <del>Основи програмувания — 1. Алгоритын та структурн</del>
128 match=false
129 j=1,j<=10,j++
130 '-'!='2'
    j=2,j<=10,j++
```

131

132 '-'=='-'
133 $j=3, j<=10, j++$
134 '-'!='('
135 j=4,j<=10,j++
136 '-'!='#'
137 j=5,j<=10,j++
138 '-'!='RS'
139 j=6,j<=10,j++
140 '-'!='EM'
141 j=7,j<=10,j++
142 '-'!='NAK'
143 j=8,j<=10,j++
144 '-'!='SI'
145 j=9,j<=10,j++
146 '-'!='LF'
147 $j=10, j <=10, j++$
148 '-'!='ENQ'
149 j=11,j>10
150 match:=true
151 newArray[4]=firstArray[4]
152 i=5,i<=10,i++
153 match=false
154 $j=1, j <=10, j++$
155 '2'=='2'
156 match:=true
157 j=2,j<=10,j++
158 '2'!='-'
159 j=3,j<=10,j++
160 '2'!='('
161 j=4,j<=10,j++
162 '2'=='#'
163 j=5,j<=10,j++
164 '2'!='RS'
165 j=6,j<=10,j++
166 '2'!='EM'
167 $j=7,j<=10,j++$

```
| 168 '2'!='NAK'
| 169 | j=8,j<=10,j++
| 170 '2'!='SI'
| 171 | j=9,j<=10,j++
| 172 '2'!='LF'
| 173 | j=10,j<=10,j++
| 174 '2'!='ENQ'
| 175 | j=11,j>10
| 176 | match==true
```

```
177 newArray[5]=firstArray[5]
i=6, i<=10, i++
179 match=false
180 j=1,j<=10,j++
181 '7'!='2'
182 j=2,j<=10,j++
183 '7'!='-'
184 j=3,j<=10,j++
185 '7'!='('
186 j=4, j<=10, j++
187 '7'!='#'
188 j=5, j<=10, j++
189 '7'!='RS'
190 j=6,j<=10,j++
191 '7'!='EM'
192 j = 7, j < =10, j++
193 '7'!='NAK'
194 j=8,j<=10,j++
195 '7'!='SI'
196 j=9,j<=10,j++
197 '7'!='LF'
198 j=10,j<=10,j++
199 '7'!='ENQ'
200 j=11, j>10
201
    match!=true
202 newArray[6]=char(0)='NUL'
203 i=7, i <=10, i++
204 match=false
205 j=1,j<=10,j++
206 '<'!='2'
207 j=2,j<=10,j++
```

	— Сепови програмувания 1. 1 в поритми та структури
208	`<'!='-'
209	j=3,j<=10,j++
210	`<`!=`(`
211	j=4,j<=10,j++
212	`<`!=`#`
213	j=5,j<=10,j++
214	'<'!='RS'
215	j=6,j<=10,j++
216	'<'!='EM'
217	j=7, j<=10, j++
218	'<'!='NAK'
219	j=8,j<=10,j++
220	'<'!='SI'

221

j=9,j<=10,j++

```
222 '<'!='LF'
223 j=10, j < =10, j++
224 '<'!='ENQ'
225 j=11,j>10
226 match!=true
227
    newArray[7]=char(0)='NUL'
228 i=8,i<=10,i++
229 match=false
230 j=1,j<=10,j++
231 'A'!='2'
232 j=2,j<=10,j++
233 'A'!='-'
234 j=3,j<=10,j++
235 'A'!='('
236 j=4,j<=10,j++
237 'A'!='#'
238 <u>j=5,j<=10,j++</u>
239 'A'!='RS'
240 j=6, j<=10, j++
241
    'A'!='EM'
242 j=7,j<=10,j++
243 'A'!='NAK'
244 j=8,j<=10,j++
245 'A'!='SI'
246 j=9,j<=10,j++
     'A'!='LF'
247
```

```
Основи програмувания 1. Авторитми та структури
```

248	j=10,j<=10,j++
249	'A'!='ENQ'
250	j=11,j>10
251	match!=true
252	newArray[8]=char(0)='NUL'
253	i=9, i<=10, i++
254	match=false
255	j=1,j<=10,j++
256	'F'!='2'
257	j=2,j<=10,j++
258	'F'!='-'
259	j=3,j<=10,j++
260	'F'!='('
261	j=4,j<=10,j++
262	'F'!='#'
263	j=5,j<=10,j++
264	'F'!='RS'
265	j=6,j<=10,j++
266	'F'!='EM'

267	j=7, j<=10, j++
268	'F'!='NAK'
269	j=8, j<=10, j++
270	'F'!='SI'
271	j=9,j<=10,j++
272	'F'!='LF'
273	j=10,j<=10,j++
274	'F'!='ENQ'
275	j=11,j>10
276	match!=true
277	newArray[9]=char(0)='NUL'
278	i=10,i<=10,i++
279	match=false
280	j=1, j <=10, j++
281	'K'!='2'
282	j=2, j<=10, j++
283	'K'!='-'
284	j=3, j<=10, j++
	'K'!='('
286	j=4, j<=10, j++
287	'K'!='#'

	— Осмови програмувания — 1. Алт оритын та структури
288	j=5,j<=10,j++
289	'K'!='RS'
290	j=6,j<=10,j++
291	'K'!='EM'
292	j=7,j<=10,j++
293	'K'!='NAK'
294	j=8,j<=10,j++
295	'K'!='SI'
296	j=9, j<=10, j++
297	'K'!='LF'
298	j=10,j<=10,j++
299	'K'!='ENQ'
300	j=11,j>10
301	match!=true
302	newArray[10]=char(0)='NUL'
303	i=11,i>10
	hirdArray={RS,#,(,-,2,NUL, NUL, NUL, NUL, NUL}
305r	esult:=product(thirdArray, size)
306	product:=1
307	i=1, i <= 10, i++
	'RS'!='NUL'
309	1
310	i=2,i<=10,i++
311	'#'!='NUL'
312	product*=35=1050
313	i=3,i<=10,i++
314	'('!='NUL'
315	product*=40=4200
316	i=4,i<=10,i++
317	'-'!='NUL'
318	product*=45=1890000
319	i=5,i<=10,i++
320	'2'!='NUL'
321	product*=50=94500000
322	i=6,i<=10,i++
323	'NUL' == 'NUL'
324	i=7,i<=10,i++ (NIIII,, NIIII,
325	'NUL' == 'NUL'
-	i=8,i<=10,i++ 'NUL' =='NUL'
327	
328	i=9, i <= 10, i++

_	Оспори програмувания — 1. Алг оритми та структури
329	'NUL'=='NUL'
330	i=10, i <=10, i++
331	'NUL'=='NUL'
332	i=11,i>10
333	product%=256=160
334r	esult:=char(160)=á
335E	Виведення а
F	Сінець

Висновки

Протягом виконання цієї лабораторної роботи я набув навичок використання методів послідовного пошуку у невпорядкованих послідовностях та практичних навичок їх використання під час складання програмних специфікацій. Маючи формули задання елементів двох одновимірних символьних масивів, я склав програму яка успішно знаходить масив, який складається з спільних елементів попередніх масивів та добуток його ненульових елементів.