Data Visualization of gene variant transcriptions groups

```
In [1]: import pandas as pd
          # Read the CSV file into a pandas DataFrame
          df = pd.read csv('serialdat.csv')
          #str(df["10^x copies"])
          # Display the first 5 rows of the DataFrame
          print(df.head())
                SUMOvar 10<sup>x</sup> copies Replicate 1 Replicate 2 Replicate 3 Average Cq
         0 S1V1-10^6 6.0 16.27132 16.19231
1 S1V1-10^5 5.0 20.14263 20.12184
2 S1V1-10^4 4.0 23.07819 23.10269
3 S1V1-10^3 3.0 25.53921 25.51511
4 S1V1-10^2 2.0 26.05758 25.99988
                                                                            16.36603 16.276553
                                                                            20.05466
                                                                                         20.106377
                                                                            22.86079 23.013890
                                                                            25.41548 25.489933
                                                                            26.04024
                                                                                         26.032567
         df['10^x copies'] = df['10^x copies'].astype(str)
In [2]:
In [3]: df = df.dropna()
In [7]:
          df['SUMOvar'] = df['SUMOvar'].astype(str).apply(lambda x: x.split('-')[0])
In [8]: df
```

Out[8]:		SUMOvar	10^x copies	Replicate 1	Replicate 2	Replicate 3	Average Cq
	0	S1V1	6.0	16.271320	16.192310	16.366030	16.276553
	1	S1V1	5.0	20.142630	20.121840	20.054660	20.106377
	2	S1V1	4.0	23.078190	23.102690	22.860790	23.013890
	3	S1V1	3.0	25.539210	25.515110	25.415480	25.489933
	4	S1V1	2.0	26.057580	25.999880	26.040240	26.032567
	5	S1V1	1.0	26.236200	26.034280	26.190770	26.153750
	6	S1V2	6.0	14.905530	14.873300	14.865100	14.881310
	7	S1V2	5.0	18.454010	18.364780	18.328960	18.382583
	8	S1V2	4.0	21.788040	21.759100	21.684900	21.744013
	9	S1V2	3.0	23.998260	23.602960	23.823790	23.808337
	10	S1V2	2.0	24.337950	24.543700	24.265880	24.382510
	11	S1V2	1.0	24.662130	24.597340	23.805100	24.354857
	12	S1V3	6.0	13.820926	13.788557	13.837119	13.815534
	13	S1V3	5.0	17.668800	17.628487	17.950822	17.749369
	14	S1V3	4.0	20.957602	21.086240	21.153529	21.065790
	15	S1V3	3.0	23.448480	24.064225	24.190202	23.900969
	16	S1V3	2.0	25.373289	25.979688	26.097752	25.816910
	17	S1V3	1.0	25.413550	25.861247	25.787894	25.687564
	18	S2V1	6.0	10.366014	9.732389	8.798607	9.632337
	19	S2V1	5.0	13.664237	11.998538	12.035592	12.566122
	20	S2V1	4.0	25.902147	15.753241	15.826444	19.160610
	21	S2V1	3.0	21.818239	19.740060	19.752652	20.436984
	22	S2V1	2.0	24.170059	23.652029	23.189184	23.670424
	23	S2V1	1.0	25.749917	25.395615	25.104794	25.416775
	24	S2V2	6.0	10.056137	9.069710	9.118771	9.414873
	25	S2V2	5.0	13.795135	12.453789	12.724051	12.990992
	26	S2V2	4.0	19.550902	16.350932	16.346928	17.416254
	27	S2V2	3.0	20.895418	19.882332	20.057618	20.278456
	28	S2V2	2.0	23.183559	22.600623	22.616847	22.800343
	29	S2V2	1.0	24.644120	23.055101	23.411640	23.703620
	30	S3V1	6.0	11.327868	9.977722	9.838526	10.381372
	31	S3V1	5.0	14.700754	13.563679	13.574665	13.946366

32

33

S3V1

S3V1

4.0

3.0

19.026552

21.254102

17.262518

20.444505

17.185991

20.480660

17.825021

20.726422

	SUMOvar	10^x copies	Replicate 1	Replicate 2	Replicate 3	Average Cq			
34	S3V1	2.0	20.833690	22.809750	22.670585	22.104675			
35	S3V1	1.0	21.715993	23.749074	23.168936	22.878001			
36	S3V2	6.0	13.564612	10.315584	10.325927	11.402041			
37	S3V2	5.0	16.972926	13.871555	14.024527	14.956336			
38	S3V2	4.0	21.097947	17.789011	17.797498	18.894818			
39	S3V2	3.0	23.750201	21.055004	21.140170	21.981792			
40	S3V2	2.0	24.850817	23.634807	23.225069	23.903565			
41	S3V2	1.0	24.634719	25.343952	25.277707	25.085460			
<pre>df['10^x copies'].unique()</pre>									
array(['6 0' '5 0' '4 0' '3 0' '2 0' '1 0'] dtyne=object)									

```
In [5]:
         array(['6.0', '5.0', '4.0', '3.0', '2.0', '1.0'], dtype=object)
Out[5]:
In [89]:
         df.dtypes
         SUMOvar
                         object
Out[89]:
         10^x copies
                         object
         Replicate 1
                        float64
         Replicate 2
                        float64
         Replicate 3
                        float64
                        float64
         Average Cq
         dtype: object
 In [6]:
         import pandas as pd
In [10]:
         import seaborn as sns
         import matplotlib.pyplot as plt
         # List of groups to plot
         replicate =['6.0', '5.0', '4.0', '3.0', '2.0', '1.0']
         fig, ax = plt.subplots(figsize=(10, 8))
         # Iterate through the groups
         for i in replicate:
             # Subset to the airline
             subset = df[df['10^x copies'] == i]
             # Draw the density plot
             sns.distplot(subset['Average Cq'], hist = False, kde = True,
                           kde_kws = {'linewidth': 2},
                           label = i)
         # Plot formatting
         plt.legend(prop={'size': 8}, title = 'Gene variant groups')
         plt.title('Density Plot of gene variant transcriptions')
         plt.xlabel('Average replications of the variant transcriptions')
         plt.ylabel('Density')
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarni ng: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarni ng: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarni ng: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarni ng: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarni ng: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarni ng: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

Out[10]:

Text(0, 0.5, 'Density')

Density Plot of gene variant transcriptions

From the above plots of the groups, As you move from Group 6 to group 1, you will notice the desity of the average replication value increase as the replication value increase. And I noticed an overlap in the second peaks of group 6 with the first peak of group 5, same with group 5 and 4, 4 and 3, 3 and 2 but 2 and 1 have just one peak.

```
In [11]: plt.figure(figsize=(8,6))
# create boxplots of the three rplicates using seaborn
sns.boxplot(data=df[["Replicate 1","Replicate 2","Replicate 3"]])

# set title and axis labels
plt.title("Boxplots of Three Replicates")
plt.ylabel("Values")

# show the plot
plt.show()
plt.show()
```


From the above plot, there seems to be no significant difference between the three replicates. Though replicate one seems to be slightly different from the replicate 2 and 3.

25.0 - 22.5 - 20.0 - 20

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

sns.set_style("whitegrid")
sns.set_palette("Set2")
```

```
fig, ax = plt.subplots(figsize=(10, 8))
sns.boxplot(x='10^x copies', y='Average Cq', data=df,ax=ax)
sns.swarmplot(x='10^x copies', y='Average Cq', data=df, color='black',ax=ax)
ax.set_xlabel("Groups",fontsize=14)
ax.set_ylabel("Values",fontsize=14)
ax.set_title("Distribution of Values for Different Groups",fontsize=16)
plt.show()
```

