Proposition de sujet TER-MMK1

Modélisation du transfert thermique et de masse de la pyrolyse du bois - PART 1

L. Godard-Cadillac, T.-H. Nguyen-Bui

ludovic.godard-cadillac@u-bordeaux.fr than h-ha.nguyen-bui@u-bordeaux.fr

On propose d'étudier un modèle décrivant la pyrolyse du bois en tenant compte des trois principales phase de combustion : formation du charbon, des gaz et de la vapeur d'eau due au séchage du bois.

1 Modèle mathématique de la pyrolyse du bois

Figure 1: Multi-reactions de la pyrolyse du bois humide.

1.1 Equations de conservation de la masse

Les équations de conservation de masse pour le bois, le charbon, les gaz, le liquide et la vapeur sont données comme suit :

$$\begin{cases}
\frac{\partial \rho_b}{\partial t} = -(k_1 + k_2)\rho_b, \\
\frac{\partial \rho_c}{\partial t} = k_1\rho_b, \\
\frac{\partial \rho_g}{\partial t} = k_2\rho_b, & t \in [0, t_M], \\
\frac{\partial \rho_l}{\partial t} = -k_3\rho_l, \\
\frac{\partial \rho_v}{\partial t} = k_3\rho_l
\end{cases} \tag{1}$$

 k_1, k_2, k_3 sont les taux des réactions chimiques de la pyrolyse,

 ρ_b , ρ_c , ρ_g , ρ_l , ρ_v sont les densités du bois, du charbon, du gaz, du liquide et la vapeur, respectivement. t(s) représente le temps, t_M le temps maximum de l'étude.

Les taux des réactions chimiques, k_i , de la pyrolyse du bois humide sont régis par la loi d'Arrhenius au premier ordre :

$$k_i = A_i \exp\left(\frac{-E_i}{RT}\right), \quad i = 1, 2, 3, \tag{2}$$

où T(K) étant la température,

 A_i sont des constantes de réaction,

 E_i les énergies d'activation (J/mol),

R la constante universelle des gaz (8.31442618 (J/(mol.K)).

La masse volumique initiale du bois humide contient un pourcentage de celle de l'eau:

$$\rho_0 = (1 - \chi)\rho_{b0} + \chi \rho_{l0},\tag{3}$$

avec χ le pour centage de masse de l'humidité contenue dans le bois.

	$A (s^{-1})$	$\frac{E}{(kJ \text{mol}^{-1})}$
$\begin{array}{c} \hline Pyrolysis\ reactions \\ Wood \xrightarrow{k1} Char \\ Wood \xrightarrow{k2} Gas \end{array}$	7.38×10^5 1.44×10^4	106.5 88.6
Drying process Moisture $\xrightarrow{k3}$ Vapor	5.13×10^{10}	88

Figure 2: Paramètres de la Cinétique chimique.

Species	Mongolian oak	White birch	Aspens	Spruce	White pine	Masters larch
Density (kg m ⁻³)	888	740	582	469	360	469
Moisture content (%)	14.9	15.3	14.4	14.1	14.6	14.2

Figure 3: Masse volumique de quelques bois humides.