Corrigé du CC2

Exercice 1. a) Calculer la fonction dérivée de $f: x \mapsto \cos(x^2)$.

f est définie et dérivable sur \mathbb{R} , $f = \cos \circ u$, où $u : x \mapsto x^2$.

$$\forall x \in \mathbb{R}, \ f'(x) = u'(x)\cos'(u(x)) = 2x\cos'(x^2) = -2x\sin(x^2).$$

b) Déterminer $\lim_{x \to \sqrt{\pi}} \frac{\cos(x^2) + 1}{x - \sqrt{\pi}}$.

 $f(\sqrt{\pi}) = \cos(\pi) = -1$ donc $\frac{\cos(x^2) + 1}{x - \sqrt{\pi}} = \frac{f(x) - f(\sqrt{\pi})}{x - \sqrt{\pi}}$ est le taux de variation de la fonction f entre $\sqrt{\pi}$ et x. Donc

$$\lim_{x \to \sqrt{\pi}} \frac{\cos(x^2) + 1}{x - \sqrt{\pi}} = f'(\sqrt{\pi}) = -2\sqrt{\pi}\sin(\pi) = 0.$$

Exercice 2. a) Résoudre l'inéquation $\ln(4x+1) > 2$.

Remarquons qu'on doit avoir 4x + 1 > 0 pour que $\ln(4x + 1)$ soit défini. La fonction ln étant strictement croissante sur $]0, +\infty[$, on a

$$\ln(4x+1) > 2 \iff \ln(4x+1) > \ln(e^2) \iff 4x+1 > e^2 \iff x > \frac{e^2-1}{4}$$
.

L'ensemble des solutions de l'inéquation est $S = \left[\frac{e^2 - 1}{4}, +\infty\right[$.

b) Résoudre l'équation ln(x+1) + ln(x) = 0.

On doit avoir x > 0 pour que $\ln(x+1) + \ln(x)$ soit défini. Pour x > 0,

$$\ln(x+1) + \ln(x) = 0 \iff \ln(x(x+1)) = 0 \iff x(x+1) = 1 \iff x^2 + x - 1 = 0$$

Le discriminant de l'équation du second degré

$$(1) x^2 + x - 1 = 0$$

est $\Delta = 1 + 4 = 5 > 0$. L'équation (1) a deux solutions, qui sont

$$x_1 = \frac{-1 - \sqrt{5}}{2}$$
 et $x_2 = \frac{-1 + \sqrt{5}}{2}$.

Seule la deuxième solution de (1) vérifie la condition x > 0. L'équation de départ a donc une unique solution, qui est $\frac{-1+\sqrt{5}}{2}$.

Exercice 3. On considère la fonction $g:]0,+\infty[\to\mathbb{R}$ définie par

$$\forall x \in]0, +\infty[\,, \ g(x) = \frac{e^x}{x}\,.$$

a) Quelles est la limite de g en 0 (à droite)?

Lorsque x tend vers 0 (à droite) 1/x tend vers $+\infty$ et e^x tend vers 1, donc $\lim_{x\to 0} g(x) = +\infty$.

b) Calculer g'(x) et étudier son signe. Dresser le tableau de variation de la fonction g. On rappelle que $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$.

On a $g = \frac{u}{v}$, avec $u(x) = e^x$ et v(x) = x, $u'(x) = e^x$ et v'(x) = 1; g est dérivable sur son ensemble de définition et

$$\forall x \in]0, +\infty[, g'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{e^x x - e^x}{x^2} = \frac{e^x (x-1)}{x^2}.$$

Pour $x \in]0, +\infty[$, g'(x) est du signe de x-1, car $e^x > 0$ et $x^2 > 0$: g'(1) = 0, g'(x) < 0 si $x \in]0, 1[$ et g'(x) > 0 si $x \in]1, +\infty[$. D'où le tableau de variation

x	0		1		$+\infty$
g'(x)		_	0	+	
	$+\infty$				$+\infty$
g(x)		\searrow		7	
			e		

c) La fonction g admet-elle un minimum global? Un maximum global?

D'après son tableau de variation, la fonction g admet un minimum global, atteint en 1 et valant e. Elle n'a pas de maximum global (elle n'est pas majorée puisque sa limite en 0 est $+\infty$).

d) Trouver une condition nécessaire et suffisante sur le réel λ pour que l'équation $e^x = \lambda x$ ait au moins une solution dans l'intervalle $]0, +\infty[$.

L'équation $e^x = \lambda x$ dans l'intervalle $]0, +\infty[$ est équivalente à $g(x) = \lambda$. D'après le tableau de variation de g:

- si $\lambda < e$, cette équation n'a pas de solution car $g(x) \ge e$ pour tout $x \in]0, +\infty[$;
- si $\lambda \geq e$, cette équation a au moins une solution. En effet, g étant continue et vérifiant g(1) = e, $\lim_{x \to +\infty} g(x) = +\infty$, d'après le théorème des valeurs intermédiaires l'équation $g(x) = \lambda$ a au moins une solution pour tout réel $\lambda \geq e$.

La CNS cherchée est $\lambda \geq e$.

Exercice 4. On considère la fonction $h: x \mapsto (1+x)^{1/4}$.

- a) Quel est l'ensemble de définition de h?
- $(1+x)^{1/4}$ est défini si $1+x \ge 0$, donc $D_h = [-1, +\infty[$.
- b) Calculer la fonction dérivée et la fonction dérivée seconde de h, et préciser l'ensemble de définition de chacune de ces fonctions.

$$h'(x) = \frac{1}{4}(1+x)^{\frac{1}{4}-1} = \frac{1}{4}(1+x)^{-3/4} \quad , \qquad h''(x) = \frac{1}{4} \times \left(-\frac{3}{4}\right)(1+x)^{-\frac{3}{4}-1} = -\frac{3}{16}(1+x)^{-7/4} \, .$$

 $D_{h'} = D_{h''} =]-1, +\infty[.$

c) Ecrire la formule de Taylor-Young en 0 à l'ordre 2 pour la fonction h.

Cette formule s'écrit :

$$h(x) = h(0) + h'(0)x + \frac{h''(0)}{2!}x^2 + x^2\epsilon(x)$$
, avec $\lim_{x \to 0} \epsilon(x) = 0$.

On a h(0)=1 et d'après b), $h'(0)=\frac{1}{4}$ et $h''(0)=-\frac{3}{16}$. D'où

$$(1+x)^{1/4} = 1 + \frac{1}{4}x - \frac{3}{32}x^2 + x^2\epsilon(x)$$
, avec $\lim_{x \to 0} \epsilon(x) = 0$.

d) Déterminer $\lim_{x\to 0} \frac{4(1+x)^{1/4} - 4 - x}{x^2}$.

La formule de c) donne

$$4(1+x)^{1/4} - 4 - x = 4\left(1 + \frac{1}{4}x - \frac{3}{32}x^2 + x^2\epsilon(x)\right) - 4 - x = -\frac{3}{8}x^2 + 4x^2\epsilon(x) = x^2\left(-\frac{3}{8} + 4\epsilon(x)\right),$$

avec $\lim_{x\to 0} \epsilon(x) = 0$. Donc

$$\lim_{x \to 0} \frac{4(1+x)^{1/4} - 4 - x}{x^2} = \lim_{x \to 0} -\frac{3}{8} + 4\epsilon(x) = -\frac{3}{8}.$$