Department of Mathematical Sciences

Rajiv Gandhi Institute Of Petroleum Technology, Jais

REAL ANALYSIS & CALCULUS (MA 111)

Week 2 / August 2023

Problem Set 2

GR

Real Analysis

Real sequences

■ Tutorial Problems

- 1. Using the definition of limit, show that $\lim_{n\to\infty} \left(\sqrt{n^2+1}-n\right)=0$.
- 2. Find $\lim_{n\to\infty} \sqrt{n} \left(\sqrt{n+1} \sqrt{n} \right)$.
- (i) Give two examples of sequences of rational numbers that converge to irrational numbers.
 - (ii) Give two examples of sequences of irrational numbers that converge to rational numbers.
 - (iii) Give an example of divergent sequences $\{u_n\}$ and $\{v_n\}$ such that the sequence $\{u_n + v_n\}$ is convergent.
 - (iv) Give an example of divergent sequences $\{u_n\}$ and $\{v_n\}$ such that the sequence $\{u_nv_n\}$ is convergent.
- 4. Use Sandwich theorem to prove that
 - (i) $\lim (2^n + 3^n)^{\frac{1}{n}} = 3$,
 - (ii) $\lim (\sqrt{n+1} \sqrt{n}) = 0$.
- 5. Show that
 - (i) $\lim \sqrt[n]{n+1} = 1$,
 - (ii) $\lim_{n\to 1} \sqrt{n} = 1$,
 - (iii) $\lim \frac{(n+1)^{2n}}{(n^2+1)^n} = e^2$,
 - (iv) $\lim_{n \to \infty} \left\{ \left(1 + \frac{1}{n^2} \right) \left(1 + \frac{2}{n^2} \right) \left(1 + \frac{3}{n^2} \right) \right\}^{n^2} = e^6.$

[Hint. Use $\lim n^{\frac{1}{n}} = 1$, $\lim \left(1 + \frac{1}{n}\right)^n = e$. If $x_n > 0$ and $\lim x_n = x > 0$ for all $n \in \mathbb{N}$ and $\lim y_n = y$, then $\lim (x_n)^{y_n} = x^y$.]

6. A sequence $\{u_n\}$ is defined by $u_1 > 0$ and $u_{n+1} = \sqrt{6 + u_n}$ for $n \ge 1$. Show that

- (i) the sequence $\{u_n\}$ is monotone increasing if $0 < u_1 < 3$;
- (ii) the sequence $\{u_n\}$ is monotone decreasing if $0 < u_1 > 3$.

Find $\lim u_n$.

7. Prove that the sequence $\{x_n\}$ defined by $x_1 = \sqrt{7}$ and $x_{n+1} = \sqrt{7 + x_n}$ for all $n \ge 1$ converges to the positive root of the equation $x^2 - x - 7 = 0$.

[Hint. Monotone increasing and bounded above implies convergent.]

8. If $x_1 > 0$ and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{9}{x_n} \right)$ for all $n \ge 1$. Prove that the sequence $\{x_n\}$ converges to 3.

[Hint. Monotone decreasing and bounded below implies convergent.]

- 9. A sequence $\{u_n\}$ is defined by $u_n > 0$ and $u_{n+1} = \frac{6}{1+u_n}$ for all $n \in \mathbb{N}$.
 - (i) Prove that the sub-sequences $\{u_{2n+1}\}$ and $\{u_{2n}\}$ converges to a common limit.
 - (ii) Find $\lim u_n$.
- 10. Establish the convergence and find the limits of the following sequences

(i)
$$\left(1 + \frac{1}{3n+1}\right)^n$$
,

(ii)
$$\left(1 + \frac{1}{n^2 + 2}\right)^{n^2}$$
.

[Hint. Approach through sub-sequence.]

- 11. Let $\{u_n\}$ be a bounded sequence and $\lim v_n = 0$. Prove that $\lim u_n v_n = 0$. Utilise this to prove that
 - (i) $\lim \frac{\sin n}{n} = 0$.
 - (ii) $\lim \frac{(-1)^n n}{n^2 + 1} = 0$.
- 12. Prove that
 - (i) $\lim n^{\frac{1}{n}} = 1$.
 - (ii) $\lim \frac{(n!)^{\frac{1}{n}}}{n} = \frac{1}{e}$.

[Hint. Use the **Theorem**: Let $\{u_n\} > 0$ for all $n \in \mathbb{N}$ and $\lim \frac{u_{n+1}}{u_n} = \ell$ (finite or infinite). Then $\lim \sqrt[n]{u_n} = \ell$]

■ Assignment Problems

- 1. Prove that the sequence $\{u_n\}$ defined by
 - (i) $0 < u_1 < u_2$ and $u_{n+2} = \frac{2u_{n+1} + u_n}{3}$ for $n \ge 1$, converges to $\frac{u_1 + 3u_2}{4}$,
 - (ii) $0 < u_1 < u_2$ and $u_{n+2} = \frac{u_{n+1} + 2u_n}{3}$ for $n \ge 1$, converges to $\frac{2u_1 + 3u_2}{5}$

[Hint. Observe that $u_3 - u_2 = \left(-\frac{1}{3}\right)(u_2 - u_1), \dots, u_n - u_{n-1} = \left(-\frac{1}{3}\right)^{n-2}(u_2 - u_1)$. Add all these equations and get $u_n - u_1 = \frac{3}{4}(u_2 - u_1)\left[1 - \left(-\frac{1}{3}\right)^{n-1}\right]$]

- 2. Prove that the sequence $\{u_n\}$ defined by
 - (i) $0 < u_1 < u_2$ and $u_{n+2} = \sqrt{u_{n+1}u_n}$ for $n \ge 1$, converges to the limit $\sqrt[3]{u_1u_2^2}$,
 - (ii) $0 < u_1 < u_2$ and $\frac{2}{u_{n+2}} = \frac{1}{u_{n+1}} + \frac{1}{u_n}$ for $n \ge 1$, converges to the limit $\frac{3}{\left(\frac{1}{u_1} + \frac{2}{u_2}\right)}$.