Interrogation écrite n°07

NOM: Prénom: Note:

1. Soit $x \in \mathbb{R}$. Montrer que $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$.

Comme exp est de classe \mathcal{C}^{∞} sur \mathbb{R} , d'après l'inégalité de Taylor-Lagrange appliquée entre 0 et x,

$$\left| e^{x} - \sum_{k=0}^{n} \frac{\exp^{(k)(0)}}{k!} x^{k} \right| \le \max_{[0,x]} \left| \exp^{(n+1)} \right| \cdot \frac{|x|^{n+1}}{(n+1)!}$$

 $Or \exp^{(k)} = \exp pour tout \ k \in \mathbb{N} \ donc$

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} x^k \right| \le \max_{[0,x]} \exp \left| \cdot \frac{|x|^{n+1}}{(n+1)!} \right|$$

Par croissances comparées, $\lim_{n \to +\infty} \frac{|x|^{n+1}}{(n+1)!} = 0$ donc

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!} = e^x$$

ou encore

$$e^{x} = \sum_{n=0}^{+\infty} \frac{x^{n}}{n!}$$

2. L'ensemble A = $\{(x, y) \in \mathbb{R}^2, y^2 = x(1 - x)\}$ est-il une partie compacte de \mathbb{R}^2 ?

L'application $f:(x,y) \in \mathbb{R}^2 \mapsto y^2 - x(1-x)$ est polynomiale donc continue. Ainsi A est fermé comme image réciproque du fermé $\{0\}$ par l'application continue f. Soit $(x,y) \in A$. Alors $x(1-x)=y^2 \ge 0$ donc $x \in [0,1]$. De plus,

$$y^2 = x(1-x) = x - x^2 = \frac{1}{4} - \left(x - \frac{1}{2}\right)^2 \le \frac{1}{4}$$

 $donc \ y \in \left[-\frac{1}{2}, \frac{1}{2} \right].$

Finalement $A \subset [0,1] \times \left[-\frac{1}{2}, \frac{1}{2}\right]$ donc A est borné.

Comme \mathbb{R}^2 est de dimension finie, A est compact comme fermé borné de \mathbb{R}^2 .

REMARQUE. On peut aussi remarquer que

$$\forall (x,y) \in \mathbb{R}^2, \ y^2 = x(1-x) \iff \left(x - \frac{1}{2}\right)^2 + y^2 = \left(\frac{1}{2}\right)^2$$

Ainsi A est la sphère de centre (0,0) et de rayon $\frac{1}{2}$ pour la norme euclidienne usuelle sur \mathbb{R}^2 et il est notoire que les sphères sont fermées et bornées.

3. Soit E un ℝ-espace vectoriel normé. Montrer que toute partie convexe de E est connexe par arcs.

Soit C une partie convexe de E. Soit $(a,b) \in \mathbb{C}^2$. Notons $\gamma : t \in [0,1] \mapsto (1-t)a + tb$. Alors

- γ est continue sur [0,1];
- $\gamma(0) = a \ et \ \gamma(1) = b$;
- par convexité de C, $\gamma(t) \in C$ pour tout $t \in [0,1]$.

Ainsi C est connexe par arcs.

4. On pose $u_n = \sum_{k=1}^n \frac{1}{k+n}$ pour $n \in \mathbb{N}^*$. Déterminer la limite de (u_n) .

Remarquons que pour tout $n \in \mathbb{N}^*$,

$$u_n = \frac{1}{n} \cdot \frac{1}{1 + \frac{k}{n}} = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)$$

en posant $f: x \in [0,1] \mapsto \frac{1}{1+x}$. Comme f est continue sur [0,1], le résultat sur les sommes de Riemann affirme que,

$$\lim_{n \to +\infty} u_n = \int_0^1 f(t) \, dt = \left[\ln(1+t) \right]_0^1 = \ln(2)$$

5. Soit E un espace euclidien, I un intervalle de \mathbb{R} et $f: I \to E$ dérivable et ne s'annulant pas sur I. On note $\|\cdot\|$ la norme euclidienne associée au produit scalaire de E. Montrer que $\varphi: t \in I \mapsto \|f(t)\|$ est dérivable et calculer sa dérivée.

Remarquons que $\varphi(t) = \sqrt{\langle f(t), f(t) \rangle}$ pour tout $t \in I$. Le produit scalaire est bilinéaire et f est dérivable sur I donc ψ : $t \in I \mapsto \langle f(t), f(t) \rangle$ est dérivable sur I à valeurs dans \mathbb{R}_+^* et $\psi'(t) = 2\langle f'(t), f(t) \rangle$ pour tout $t \in I$. Enfin, $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* de dérivée $x \mapsto \frac{1}{2\sqrt{x}}$. Par composition, $\varphi = \sqrt{\psi}$ est dérivable sur I et

$$\forall t \in I, \ \varphi'(t) = \frac{\psi'(t)}{2\sqrt{\psi(t)}} = \frac{\langle f'(t), f(t) \rangle}{\|f(t)\|}$$