

Spatially regularized NMF for population genetic applications

Kevin Caye

Outline

Method to estimate individual ancestry coefficients from population genetic and spatial data

> Graph regularized non-negative matrix factorization

> Alternating least squares algorithm

> Results

Genotypic data

- > Single nucleotide polymorphism (SNP)
 - single nucleotide variation occurring commonly within a population

> Data matrix: L loci for n individuals ($n{\sim}10^2-10^3$, $L{\sim}10^6-10^7$)

Our data

 Genotypic matrix for diploid individuals: number of mutations observed for each individual and locus (0, 1 or 2)

$$X = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & X_{i,l} & \vdots \\ 2 & \cdots & 1 \end{pmatrix}$$

$$L \text{ loci}$$

> Geographic data for each individual

n ind

Goal: Estimating individual ancestry coefficients

Definition of ancestry coefficients

- > We assume there are *K* ancestral populations (*K* unknown)
- The observed allele frequencies are a convex combination of ancestral frequencies

$$P(X_{i,l}=j) = \sum_{k=1}^{K} Q_{i,k} F_{k,l}(j), \quad \forall i, l, j$$

 $Q_{i,k}$ = the fraction of individual i's genome that originates from ancestral population k

State of the art

- > Estimation of ancestry coefficients without spatial information:
 - Bayesian method: Structure (Pritchard et al. 2000)
 - sparse NMF: sNMF (Frichot et al. 2014)
- > With spatial information:
 - Bayesian method: Tess (Durand et al. 2009)

Least square minimization

> Graph regularized NMF (Cai et al. 2011)

$$\min_{Q \ge 0, F \ge 0} ||X - QF||^2 + \alpha \frac{1}{2} \sum_{m,r}^{N} ||Q_{m,:} - Q_{r,:}||^2 W_{m,r}$$

 $W \in \mathbb{R}^{N \times N}$: weight coefficients

> Additional constraints

$$\sum_{k=1}^{K} Q_{i,k} = 1$$
, $\sum_{j=0}^{2} F_{l,k}(j) = 1$, $\forall i, l, k$

Our approach

> Rewriting the error functional as follows

$$||X - QF^T||^2 + \alpha ||\Gamma Q||^2$$

 $\Gamma \in \mathbb{R}^{N \times N}$: Cholesky decomposition of the graph Laplacian matrix

> Rewriting the error functional to use Alternating least squares

$$\left\| \begin{pmatrix} Vec(X^T) \\ 0 \end{pmatrix} - \begin{pmatrix} Id \otimes F \\ \sqrt{\beta}(\Gamma \otimes Id) \end{pmatrix} Vec(Q^T) \right\|^2$$

Numerical algorithm

- Alternating non-negativity-constrained least squares using the active set method (Kim and Park 2011)
- > Computing F by solving

$$\min_{F \ge 0} ||X - QF^{T}||^{2}$$

$$\sum_{j=0}^{2} F_{l,k}(j) = 1$$

Computing Q by solving

$$\min_{Q \ge 0} \left\| \begin{pmatrix} Vec(X^T) \\ 0 \end{pmatrix} - \begin{pmatrix} Id \otimes F \\ \sqrt{\beta}(\Gamma \otimes Id) \end{pmatrix} Vec(Q^T) \right\|^2$$

$$\sum_{k=1}^{K} Q_{i,k} = 1$$

Simulation study

> Simulation of 2 populations with an admixture event

Statistical error comparison with Tess

$$RMSE(Q^{TRUE}, Q) = \sqrt{\frac{1}{nK} \sum_{i,k} (Q_{i,k}^{TRUE} - Q_{i,k})^2}$$

Benefit of the least square approach

> Run time analysis: spatial NMF about 10-100 fold faster

Statistic to detect local adaptation

- After computing Q and F
 - q_k is the mean value of $Q_{i,k}$ over all individuals
 - $F_{k,j}$ is the allele frequence of the locus j in the ancestral population k

$$\sigma_{T,j}^2 = \left(\sum_{k} q_k F_{k,j}\right) \left(1 - \sum_{k} q_k F_{k,j}\right)$$
$$\sigma_{S,j}^2 = \sum_{k} q_k F_{k,j} (1 - F_{k,j})$$

$$Fst_j = \frac{\sigma_{T,j}^2 - \sigma_{S,j}^2}{\sigma_{T,j}^2}$$
, $\forall j locus$

Simulation of local adaptation

- > Simulation of neutral loci:
 - Migration rate: m = 40%
 - Proportion: 95%
- > Simulation of outlier loci:
 - Migration rate: m = 0.1%
 - Proportion: 5%

Detection of local adaptation on simulation

> Control of false discovery rate with Benjamini Hochberg procedure

Manhattan Plot (FDR = .05)

Analysis of Arabidopsis thaliana data

> Popular model organism in plant biology

> 170 European individuals genotyped at 230 000 loci (Atwell et al. 2010)

> Three spatially consistent ancestral populations in Europe (Francois et al. 2008):

Ancestry map results (K = 3)

Western ancestral population coefficient

Scandinavian ancestral population coefficient

Discussion

> Graph regularized NMF combines spatial and genetic data

> We rewrote the problem of graph NMF to use ALS algorithm

 We observed that Tess and our method provide close estimations

> The algorithm is much faster than Bayesian methods

Acknowledgments

> Timo Deist, Eric Frichot, Olivier Francois, Olivier Michel

> This Ph.D is funded by the labex Persyval-lab

Schedule

- > Tess update:
 - Article
 - Documentation
 - Release command-line software
- Method article: What do we want to expose?
 - Estimating population structure with graph : models and algorithms (spatial NMF, Achetypal anilysis with spatial)
 - Graph regularized NMF algorithm (ALS, MU)
- > Develop R package with spatial NMF and visualization tools
- > And then?
 - Lfmm: fdr on association study
 - Hypothesis testing on linear mixed model