

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 797 043 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
24.09.1997 Bulletin 1997/39

(51) Int Cl. 6: F16S 1/02, B23K 20/12
// B23K101:18

(21) Application number: 97301870.8

(22) Date of filing: 19.03.1997

(84) Designated Contracting States:
DE FR GB IT SE

- Takenaka, Tsuyoshi
Kumage-gun, Yamaguchi-Ken (JP)
- Ishimaru, Yasuo
Kudamatsu-Shi, Yamaguchi-Ken (JP)

(30) Priority: 19.03.1996 JP 62491/96

(71) Applicant: HITACHI, LTD.
Chiyoda-ku, Tokyo 100 (JP)

(74) Representative: Paget, Hugh Charles Edward et al
MEWBURN ELLIS
York House
23 Kingsway
London WC2B 6HP (GB)

(72) Inventors:

- Aota, Kinya
Kudamatsu-Shi, Yamaguchi-Ken (JP)

(54) Panel structure, a friction welding method, and a panel

(57) This invention provides a configuration of a joint that allows a satisfactory welded joint to be formed with reduced deformation of the joint region when two-face structures (panels) are friction-welded end to ends. The panels 31, 32 each have two substantially parallel plates 33, 34 and a third member 35 connecting the two plates

33, 34. The end portions of the plates 33, 34 of one panel 32 are friction-welded to the end portions of the plates 33, 34 of the other panel 32. At least one of the panels has a plate 36 at its end for connecting the plates 33 and 34 and has a rigidity to support a pressing force produced during the friction welding.

FIG. 1

Description**FIELD OF THE INVENTION**

The present invention relates to a friction welding method that is suitably applied to panel welding used, for example, in aluminum alloys railway cars and buildings.

A two-face structure (panel) for railway cars using hollow shape members is disclosed in Japanese Patent Laid-Open No. 246863/1990, and another using laminated panels such as honeycomb panels is disclosed in Japanese Patent Laid-Open No. 106661/1994.

Friction stir welding is performed by rotating a round tool inserted in a joint region to heat and plasticize the joint region thus forming a weld. This welding is applied to a butt joint and a lap joint. This is described in wo 93/10935 (which is the same as wo 0615480B1 and the Published Japanese Translation of PCT Patent Application from another country No. 505090/1995) and the Welding & Metal Fabrication, January 1995, pp. 13-16. Reference should be made to these documents for explanation of friction stir welding, which is employed in the present invention.

In friction stir welding, the reaction of the plasticized metal being extruded from immediately beneath the rotating tool (round rod) to the surface during the welding results in a downward force acting on the joint region. Thus, when this welding method is applied to a two-face structure (panel), this downward force causes the joint material at the joint region to flow downward, deforming the joint. This makes it impossible to produce a satisfactory weld.

Two-face structures (panels) include hollow shape members made of extruded aluminum alloy and honeycomb panels. Joining such panels has been accomplished by MIG welding and TIG welding. When the friction welding is applied to such a joint, the joint is bent down or the material in the joint region is forced to flow down by a downward force produced during the friction welding.

The inventor has found the above phenomena in a variety of experiments.

Preferably, it is a first object to provide a satisfactory welded joint by minimizing deformation of the joint region when two faces are friction-welded.

Preferably, it is a second object to provide a satisfactory welded joint when one face is friction-welded.

It is a third object to enable two faces to be welded together in a short time with little deformation.

Preferably, it is a third object to enable two faces to be welded together in connecting member that joins two plates forming two faces.

The second object is realized by providing the members at the joint region with a raised portion that protrudes toward the friction welding tool side.

The third object is realized by disposing rotary tools for friction welding on both sides of the objects to be

welded, placing the rotation center of one of the tools on an extension of the rotation center of the other tool, and performing friction welding simultaneously.

Figure 1 is a vertical cross section of one embodiment of this invention.

Figure 2 is a vertical cross section of Figure 1 after friction welding.

Figure 3 is a vertical cross section of another embodiment of this invention.

Figure 4 is a vertical cross section of Figure 3 after friction welding.

Figure 5 is a vertical cross section of another embodiment of this invention.

Figure 6 is a vertical cross section of Figure 5 after friction welding.

Figure 7 is a vertical cross section of still another embodiment of this invention.

Figure 8 is a vertical cross section of Figure 7 after friction welding.

Figure 9 is a vertical cross section showing the procedure of friction welding of a further embodiment of this invention.

Figure 10 is a vertical cross section of a further embodiment of this invention.

Figure 11 is a vertical cross section of a further embodiment of this invention.

Figure 12 is a vertical cross section of a further embodiment of this invention.

Figure 13 is a vertical cross section of a further embodiment of this invention.

Figure 14 is a vertical cross section of a further embodiment of this invention.

Figure 15 is a perspective view of a structural body of a railway car.

35 DESCRIPTION OF THE PREFERRED EMBODIMENTS

The embodiment shown in Figure 1 has a joint configuration of abutting type between hollow shape members 31, 32 as panels. The hollow shape members 31, 32 have vertical plates 36, 36 at their ends in the width direction. Before the welding, the vertical plates 36, 36 are disposed immediately beneath a rotary tool 50. The vertical plates 36, 36 are opposed to each other in contact. If they are spaced apart, the distance is small and approximately 1 mm. On the extension of the interface between the vertical plates 36, 36 lies the center of a projection 52. The vertical plates 36, 36 have a stiffness strong enough to sustain the downward force mentioned earlier. The vertical plates 36 are perpendicular to two plates 33, 34. The hollow shape members 31, 32 are formed by extruding aluminum alloy. The upper and lower faces of the hollow shape member 31 are flush with the corresponding upper and lower faces of the hollow shape member 32. That is, the hollow shape members 31, 32 have the same thickness. This is true also of the succeeding embodiments. During the friction welding,

the boundary 53 between a large-diameter portion 51 and the projection 52 of a small-diameter portion of the rotary tool 50 is situated above the upper surfaces of the hollow shape members 31, 32. Numeral 35 designates a plurality of members that are arranged in trusses to connect the two plates 36, 36. The hollow shape members 31, 32 each have bilaterally symmetrical end portions. The hollow shape members 31, 32 are mounted on a bed (not shown) and fixed immovably. The bed also lies under the vertical plates 36, 36.

Friction stir welding is performed by rotating the tool 50, plunging the projection 52 into the joint region of the hollow shape members 31, 32, and moving the projection 52 along the joint region. The rotating center of the projection 52 is between the two vertical plates 36, 36.

Figure 2 shows the two panels after they are friction-welded. Reference number 45 denotes the shape of a weld bead after welding. On the extension of the border line between the vertical plates 36, 36 is situated the width center of the weld bead 45. The bead 45 lies in an area on the extension of the thickness of the vertical plates 36, 36. The depth of the weld bead 45 is determined by the height of the projection 52 at the lower end of the rotary tool 50 inserted in the joint region.

With this construction, because the vertical plates 36, 36 perpendicular to the plates 33, 34 sustain the vertical force produced during the friction welding, the joint region does not bend, offering a satisfactory joint as shown in Figure 2. The vertical plate 36 is made vertical to the plates 33, 34 as much as possible.

The vertical plate 36 may be holed for a lighter weight. This is true also of the succeeding embodiments.

Welding of the lower side is done by turning the hollow shape members upside down.

The embodiment of Figure 3 has a vertical plate 36 at the end of one hollow shape member 31 but not at the opposing end of the other hollow shape member 32. Corners in the vertical direction of the vertical plate 36 of the hollow shape member 31 are recessed so as to receive the ends of projecting pieces 38, 38 of the hollow shape member 32. These recessed portions are open in a direction of thickness of the hollow shape member 31 and in a direction perpendicular to the thickness direction (toward the hollow shape member 32 side). When the projecting pieces 38 are placed (superposed) on the recessed portions, there is actually a clearance between them although they are in contact with each other in the figure. There is also a gap between the front ends of these members (i.e., between the projecting pieces 38, 38 and the corners 33a, 34b). The abutting joint portions on the upper face side of the two hollow shape members 31, 32 and the vertical plate 36 are situated directly below the center of the rotary tool 50. The rotating center of the projection 52 of the welding tool 50 is disposed on an extension of the center line of the thickness of the vertical plate 36. That is, the joint region of the plate 33 (34) and plate 33 (34) is situated on the

extension of the center line of the thickness of the vertical plate 36. The corners 33b, 34b extending from the plates 33, 34 to the recessed portions lie on an extension of the center line of the thickness of the vertical plate 36. Considering the gap between the corners 33b, 34b and the projecting pieces 38, the corners 33b, 34b are situated slightly to the left of the extension of the center line of the thickness of the vertical plate 36. The vertical plate 36 has a rigidity to support the downward force.

- 5
 - 10
 - 15
 - 20
 - 25
 - 30
 - 35
 - 40
 - 45
 - 50
 - 55
- The horizontal gap between the front ends of the projecting pieces 38 and the hollow shape member 31 is similar to that shown in Figure 1. The height of the projection 52 of the welding tool 50 is approximately equal to the thickness of the projecting piece 38. The region that is plastic and fluid extends below the projecting piece 38, and comes to have an area larger than the diameter of the projection 52, and the two hollow shape members 31, 32 are friction-welded. It is desirable that the friction weld be so formed as to extend beyond the contact area between the underside of the projecting piece 38 and the vertical plate 36.

Figure 4 shows the state of the joint after being welded. The weld bead 45 is formed such that the width center of the weld bead 45 is situated on an extension of the thickness center of the vertical plate 36.

To support the vertical force, it is desirable that the rotating center of the tool 50 be located on the extension of the center line of the thickness of the vertical plate 36. To make the quantity of joint of the left and right hollow shape members 31, 32 equal, it is desirable that the corners 33b, 34b be situated on the extension of the thickness center line of the vertical plate 36. While the projection 52 of the tool 50 should preferably be placed in the range between extension lines of thickness of the vertical plate 36, the thickness of the vertical plate 36 is determined by the vertical force, the position of the projection 52 and the strength of the vertical plate 36. Hence, there may be a case that the thickness of the plate 36 is smaller than the diameter of the projection 52. In view of the possible errors of the position of the rotary tool 50 and those of the corners 33b, 34b, it is desirable that the corners 33b, 34b be positioned in the range between extension lines of thickness of the vertical plate 36, and at least a part of the projection 52 of the tool 50 be situated in the range. This arrangement enables the vertical plate 36 to receive at least a part of the vertical force, substantially preventing the deformation of the joint. As a result, a satisfactory joint can be formed. When the bead 45 is taken as a reference, although the bead 45 is slightly larger than the projection 52, the same as above can be said. This is true also of the other embodiments.

Compared with the case of Figure 1, this joint configuration can minimize the surface sink of the joint region even when the horizontal gap between the projecting piece 38 and the hollow shape member 31 is large. As a result, the joint has a good appearance and requires a reduced amount of putty for painting. This is

because the gap between the two members is terminated at a depth equal to the thickness of the projecting piece 38. It is also considered that this joint configuration can reduce the weight. Further, because one of the hollow members is fitted into the other, the positioning in the height direction of the two members can be accomplished easily.

The ends of the hollow shape member 31 are bilaterally symmetrical in shape. The hollow shape member 32 are also bilaterally symmetrical. Alternatively, the hollow shape member 31 has one end shaped as shown in Figure 3 and the other end shaped like the end of the hollow shape member 32 of Figure 3.

In the embodiment of Figure 5, there is virtually no vertical plate 36 immediately below the corners 33b, 34b of the recessed portion of the hollow shape member 31. The right end of the vertical plate 36 lies on the extension of the corners 33b, 34b. On this extension is the rotating center of the tool 50. The end portion of the hollow shape member 31 is given a rigidity to sustain the vertical force by making the lower projecting piece 37 at the joint thicker and increasing the size of the arcs extending from the front ends of the projecting pieces 37 to the plate 36. The projecting pieces 38 of the other hollow shape member 32 are received in the recessed portions of the projecting pieces 37, as in the preceding embodiment of Figure 3. The second hollow shape member 32 has a vertical plate 36 near the projections 38 for connecting the upper and lower plates 33, 34. This arrangement prevents the joint region from being defective even when there is no vertical plate 36 directly below the corners of the recessed portions. It is noted, however, that below the range of bead 45 there is a vertical plate 36 of the panel 31. Figure 6 shows the state after welding.

In the embodiment of Figure 5, the plate 36 of the hollow shape member 32 may be removed.

Figure 7 shows another embodiment, a variation of the preceding embodiment of Figure 5, in which the joint region of the two hollow shape members 31, 32 is provided with raised portions 37a, 38a protruding outside. This makes the joint region thick. The heights of the raised portions 37a, 38a are equal. Other parts are similar to those of Figure 5, except that the vertical plate 36 and the projections 37 are slightly thinner.

With this configuration, if there is a gap between the raised portions 37a and 38a before welding, the gap is filled with the material of the raised portions 37a, 38a, when welded, improving the appearance and reducing the amount of putty required.

In conventional welded joints, the weld bead has a sink corresponding to the volume of the lost material 41 that has flowed down by the downward force. In the joint configuration of Figure 7, the rotary tool 50 plasticizes the raised portions 37a, 38a and forces them downward making up for the lost volume of the material 41. Thus, formation of sink can be prevented, providing a satisfactory welded joint. Figure 8 shows the shape of bead 45 after welding. After welding, unnecessary parts, if any,

are cut off as shown.

The raised portions 37a, 38a can also be applied to Figure 1, 3 and 5 and to the subsequent embodiments.

Figure 9 shows a further embodiment, which allows 5 welding at the upper and lower faces from only one side. The ends of the hollow shape members 31, 32 on the lower side have projecting pieces 34a, 34a protruding flush with the lower plates 34, 34 greatly toward the opposing hollow shape member sides. The front ends of 10 the projecting pieces 34a, 34a are virtually in contact with each other. The front ends of the upper plates 33, 33 are back from the front ends of the lower plates 34a, 34a. The front ends of the upper plates 33, 33 are connected to the lower plates 34, 34 through the vertical 15 plates 36, 36. The vertical plates 36, 36 are connected to intermediate portions of the lower plates 34. The top portions of the vertical plates 36, 36 are provided with recessed portions 39, 39 that receive a joint 60. When mounted on the recessed portions 39, 39, the upper surface of the joint 60 is flush with the upper face of the upper plates 33, 33. The distance between the two vertical plates 36, 36 is long enough for the rotary tool 50 to be inserted and is as short as possible. The relation 20 between the vertical plates 36 and the recessed portions 39 is the same as explained in the embodiments of Figure 5 and Figure 7.

The welding procedure will be described below. In the state of Figure 9(A), the front ends of the lower plates 34a, 34a are welded by the rotary tool 50. At this time, 30 the hollow shape members 31, 32, including the joint region of the plates 34a, 34a, are mounted on a bed. The upper surface of the bed (that backs the bead) is flat. The height of the projection 52 of the rotary tool 50 is smaller than the thickness of the plates 34a, 34a. This 35 design ensures that the bottom surface after welding is flat. Thus, the bottom side can easily be used as an outer surface of the structure of a railway car or a building (the outer surface being the surface on which no decorative plate is mounted). Generally, the upper face of the friction welded joint tends to be uneven (at a boundary portion 51).

Next, as shown in Figure 9(B), the joint 60 is mounted between the two hollow shape members 31, 32. The joint 60 is T-shaped in vertical cross section. When both 45 ends of the joint 60 are placed on the recessed portions 39, 39, the lower end of a vertical portion 61 has a clearance between it and the weld bead on the lower plate. The vertical portion 61 may be omitted.

Next, as shown in Figure 9(C), the joint portion between the joint 60 and the hollow shape member 31 is 50 friction-welded by the rotary tool 50. The rotary tool 50 need not be the same as used in Figure 9(A).

Then, as shown in Figure 9(D), the joint portion between the joint 60 and the hollow shape member 32 is 55 friction-welded by the rotary tool 50.

This procedure allows the welding to be performed from one side and eliminates the inversion work. With the inversion work eliminated, there is an advantage that

the time required for inversion and positioning and the inversion device are unnecessary; and even the assembly precision is improved.

Figure 10 shows another embodiment, in which both the upper and lower sides of the hollow shape members 51, 52 are friction-welded at the same time. A rotary tool 50a for the lower side is vertically below the welding tool 50 for the upper side. The projection 52 of the second welding tool 50a faces up. The two welding tools 50, 50a facing each other are moved at the same speed to perform friction welding. Denoted 70, 70 are beds (tables). The rotating centers of the tools 50 and 50a are on the same line, on which is the joint region of the hollow shape members 31, 32.

Because with this arrangement the rotating center of the second tool 50a is positioned on the extension of the rotating center of the first tool 50, forces balance with each other allowing the joint to be welded in a short time with little deformation. Further, because there is no need to invert the hollow shape members 31, 32, the welding can be performed in a short time with little deformation of the joint.

This embodiment can be applied other embodiments.

The preceding embodiments have used hollow shape members as panels to be joined. The following embodiments show the friction welding applied to honeycomb panels. As shown in Figure 11, the honeycomb panels 80a, 80b comprise two surface plates 81, 82, core members 83 having honeycomb-like cells, and edge members 84 arranged along the edges of the surface plates 81, 82, with the core members 83 and the edge members 84 soldered to the surface plates 81, 82 to form integral structures. The surface plates 81, 82, the core members 83 and the edge members 84 are made of aluminum alloy. The edge members 84 are made by extrusion and have a rectangular cross section. All sides of this rectangular cross section is larger in thickness than the surface plates 81, 82. The vertical sides of the mutually contacting edge members 84, 84 have the same thickness as shown in Figure 1. The two honeycomb panels 80a, 80b have the same thickness.

The embodiment of Figure 11 corresponds to the one shown in Figure 1. The height of the projection 52 of the rotary tool 50 is larger than the thickness of the face plates 81, 82. This allows the face plates 81, 82 and the edge members 84, 84 to be welded. The load acting on the panels 80a, 80b is transmitted mainly by the edge members 84. After being fabricated, the panels 80a, 80b are assembled and friction-welded.

The embodiment of Figure 12 corresponds to the one shown in Figure 3. The edge member 84 of the honeycomb panel 80a has a generally rectangular cross section and has recesses at the corners. The edge member 84 of the honeycomb panel 80b is like a channel, with its opening facing the honeycomb panel 80a. The open ends of the edge member 84 are put on the recessed portions of the edge member 84 of the honey-

comb panel 80a.

The honeycomb panel corresponding to Figure 5 can be fabricated in a similar manner.

Figure 13 shows still another embodiment that corresponds to Figure 7. After two honeycomb panels 80a, 80b are assembled, a plate 86 is placed on the face plates 81, 81 and temporarily welded to them. The plate 86 makes up for the material that is plasticized and flows out. In Figure 12, one vertical piece of the edge member 10 of the honeycomb panel 80a is removed. The vertical force is supported by the thickness of the horizontal piece of the edge member 84 and the surrounding parts.

Figure 14 shows a further embodiment of this invention. The preceding embodiments up to Figure 13 includes panels having two faces (face plates), whereas the embodiment of Figure 14 includes panels 91, 92 having virtually a single face (face plates 94, 94). Friction welding is performed at two locations, at the abutting ends of the panels 91, 92, the outside with face plates 94 and the inner side with no face plates. Therefore, the joint regions on the inner side are provided with narrow face plates (face plates 93, 93). The narrow face plates 93, 93 are supported by vertical plates 96, 96. In this example, too, the vertical plates 96 are virtually perpendicular to the face plates 93, 94. The face plates 93, 94 are provided with raised portions 37a, 38a similar to the ones shown in Figure 7. The face plates 94, 94 have a plurality of reinforcing ribs (plates) 95, 95 at specified intervals. The ribs 95 are T-shaped in cross section. The top surfaces of the ribs 95 are flush with those of the face plates 93 of the joint region. To the top surfaces reinforcing members (such as pillars) may be welded, or the top surfaces serve as mounting seats for articles. Further, the face plates also 93, 93 serve as a seat for controlling the height of the tool 50. A movable body carrying the tool 50 travels along the face plates 93, 93. Because of the provision of the face plates 93, 94, the panels 91, 92 can also be said to form a two-face structure. The panels 91, 92 are extruded shape members.

While Figure 14 shows the vertical plates 96, 96 of the panels 91 and 92 opposing each other at the joint region, as in the configuration of Figure 1, it is possible to place one of the vertical plates over the other, as shown in Figure 3, 5 and 7.

Figure 15 shows an example of application of this embodiment to the structural body of a railway car. The structural body has side bodies 101, a roof-body 102, a floor body 103, and gable bodies 104 at the ends in the longitudinal direction. The side bodies 101 and the roof body 102 have panels 31, 32, 80a, 80b, 91, 92 whose long sides are oriented in the longitudinal direction of the car. The joining between the side bodies 101 and the roof body 102 and between the side bodies 101 and the floor body 103 is accomplished by MIG welding. The roof body 102 and the side bodies 101 are often shaped into arcs in cross section. When the panels 91, 92 are used for the side bodies 101, the side having the vertical plates 96 and ribs 96 is made to face to the interior of

the car and the reinforcing members constitute pillars.

The panels 31, 32 of Figure 9 may be combined in a mirror-image arrangement. The end of the projecting plate 34a of each panel is placed on the recessed portion 39 of the plate 33 of the other panel. This obviates the use of the joint 60 and allows the simultaneous friction welding of the joint region both from above and below. The plates 33, 34a can be provided with raised portions, as shown in Figure 7.

Claims

1. A panel structure in which a second panel (32, 80b, 92) is welded to a first panel (30, 80a, 91), characterized in that:

the first panel comprises a first plate (33, 81, 93), a second plate (34, 82, 94) substantially parallel to the first plate, and a third plate (36, 84, 96) connecting the first plate and the second plate at their ends, the third plate being substantially perpendicular to the first plate and the second plate;

the second panel comprises a first plate- (33, 81, 93), a second plate (34, 82, 94) substantially parallel to the first plate, and a third plate (35, 36, 83, 84, 95, 96) connecting the first plate and the second plate;

the first plate and the second plate of the second panel are welded to the first plate and the second plate at the end of the first panel; and at least at the joint region of the first plates or at the joint region of the second plates, a bead of the joint region lies in a range on an extension line of thickness of the third plate of the first panel.

2. A panel structure according to claim 1, wherein the first plate or the second plate of the second panel is in the range on the extension line of thickness of the third plate of the first panel.

3. A panel structure according to claim 2, wherein

an end portion (37) of the first panel on the inner side theréof protrudes toward the second panel more than an end portion of the third plate of the first panel, and

the protruding portion is parallel to the first plate or second plate of the second panel connected to the bead.

4. A panel structure according to claim 2, wherein the third plate of the first panel is on an extension of the center in the width direction of the bead.

5. A panel structure according to claim 1, wherein

the second panel has the third plate (36, 84, 96) at end portions of the first plate and the second plate,

the third plate of the first panel faces the third plate of the second panel, and
the bead lies in a range on an extension line of thickness of each of the third plates.

6. A panel structure according to claim 1, wherein the first plates are welded to each other, and the second plates are welded to each other, and the beads at the joint regions lie in ranges on extension lines of thickness of the third plate of the first panel.

7. A panel structure according to claim 6, wherein the first and second panels each have the first and second plates disposed virtually parallel, and a plurality of fourth plates (35, 83) are provided between the first plate and the second plates.

8. A panel structure according to claim 6, wherein the first and second panels have a plurality of fourth plates (95) connected only to the first plate, not to the second plate.

9. A panel structure in which two panels (31, 32) are welded to each other, characterized in that

the panels each have a first plate (33), a second plate (34) substantially parallel to the first plate, a plurality of third plates (35) connecting the first plate and the second plate, and a fourth plate (36) substantially perpendicular to the first plate at an end portion thereof and connected to an intermediate portion of the second plate; the fourth plate is substantially perpendicular to the first plate and the second plate; end portions of the second plates are welded together;

an end portion of the first plate of one panel is welded to an end portion of the first plate of the other panel though a fifth plate (60); and at each of the joint regions between the fifth plate and the first plates, a bead (45) of the joint region lies in a range on the extension line of thickness of each of the fourth plates.

10. A panel structure in which two panels (31, 32) are welded to each other, characterized in that the panels each have a first plate (33), a second plate (34) substantially parallel to the first plate, a plurality of third plates (35) connecting the first plate and the second plate, and a fourth plate (36) substantially perpendicular to the first plate at an end portion thereof and connected to an intermediate portion of the second plate;

the second plate of one panel is connected to

- an end portion of the first plate of the other panel;
the second plate of the other panel is connected to an end portion of the first plate of the one panel; and
at each of joint regions between the one panel and the other panel, a bead (45) lies in a range on the extension line of thickness of each of the four plates.
11. A method of friction-welding two panels (31, 32, 80a, 80b, 91, 92), characterized in that
the panels each have a first plate (33, 81, 93), a second plate (34, 82, 94) substantially parallel to the first plate and a third plate (36, 96) connecting the first and second plates at their end portions;
the third plate is substantially perpendicular to the first and second plates;
the two panels are so disposed that the third plates are opposed to each other; and
the first plates are friction-welded from outside the panels.
12. A method of friction-welding panels according to claim 11, wherein rotary tools (50, 50a) for friction welding are disposed on the outside of the first plates and on the outside of the second plates, the rotating center of one of the rotary tools is disposed substantially on an extension of the rotation center of the other rotary tool and, in this state, the first plates are friction-welded to each other and the second plates are friction-welded to each other simultaneously.
13. A method of friction-welding a first panel (31, 80a, 91) and a second panel (32, 80b, 92), characterized in that
the first panel has a first plate (33, 81, 93), a second plate (34, 82, 94) substantially parallel to the first plate, and a third plate (36, 84, 96) connecting the first and second plates at their end portions;
the third plate is substantially perpendicular to the first and second plates;
recessed portions are formed at connection portions between the third plate and the first plate and between the third plate and the second plate and are open in the direction of thickness of the panel and in the direction perpendicular to the thickness direction;
the second panel has a first plate (33, 81), a second plate (34, 82) substantially parallel to the first plate and a third plate (35, 84, 36) connecting the first and second plates;
end portions of the first plate and the second
- 5 plate of the second panel are placed on the recessed portions of the first panel; and
the superposed portions are friction-welded from outside along an extension of the third plate of the first panel.
14. A method of friction-welding panels according to claim 13, wherein rotary tools 50, 50a for friction welding are disposed on the outside of the first plates and on the outside of the second plates,
and the rotation center of one of the rotary tools is disposed substantially on an extension of the rotation center of the other rotary tool and, in this state, the first plates are friction-welded to each other the second plates are friction-welded to each other simultaneously.
15. A method of friction-welding two panels (31, 32), characterized in that
the two panels each have a first plate (33), a second plate (34) substantially parallel to the first plate, a plurality of third plates (35) connecting the first plate and the second plate, and a fourth plate (36) substantially perpendicular to the first plate at an end portion thereof and connected to an intermediate portion of the second plate;
a recessed portion (39) are formed at a connection portion between the fourth plate and the first plate and are open in the direction of thickness of the panel and in the direction perpendicular to the thickness direction;
the second plate of one panel is placed on the recessed portion of the other panel and the second plate of the other panel is placed on the recessed portion of the one panel; and
the superposed portions are friction-welded from outside along an extension of the third plate.
16. A method of friction-welding panels according to claim 15, wherein the first plates are friction-welded to each other and the second plates are friction-welded to each other simultaneously from the outside of the first plates and from the outside of the second plates.
17. A method of friction-welding two panels (31, 32), characterized in that
the two panels each have a first plate (33), a second plate (34) substantially parallel to the first plate, a plurality of third plates (35) connecting the first plate and the second plate, and a fourth plate (36) is substantially perpendicular to the first plate at an end portion thereof and connected to an intermediate portion of the sec-

- ond plate;
the second plates of the two panels are friction-welded from the first plate side, the first plate being disposed above the second plate; and a fifth plate 60 is then placed on each of the fourth plates and the fourth plates are friction-welded from above the fifth plates.
18. A panel comprising a first plate (33, 81, 93), a second plate (34, 82, 94) substantially parallel to the first plate, and a third plate (36, 96) connecting the first plate and the second plate at their end portions, characterized in that
 the third plate is substantially perpendicular to the first plate and the second plate; that at least at one of the connection portions between the third plate and the first plate and between the third plate and the second plate, a recessed portion (39) is formed in a range on an extension line of thickness of the third plate; and the recessed portion is open in the direction of thickness of the panel and in the direction perpendicular to the thickness direction.
19. A panel according to claim 18, wherein at the recessed portion there is a projection (37) protruding parallel to the first plate and the second plate toward the end side of the panel more than the third plate.
20. A panel according to claim 18, wherein on an extension of the center of the thickness of the third plate, there is a corner (33a, 34a) extending from the recessed portion to the first plate or the second plate.
21. A panel according to claim 18, wherein at an area from the recessed portion to the first plate or the second plate, there is a raised portion (37a, 38a) projecting outwardly in the direction of thickness of the panel.
22. A panel according to claim 18, wherein the recessed portion is formed at both connection portions between the third plate and the first plate and between the third plate and the second plate.
23. A panel according to claim 22, wherein at each of the recessed portions, there is a projection (37) protruding parallel to the first plate and the second plate toward the end side of the panel more than the third plate.
24. A panel according to claim 22, wherein on an extension of the center of the thickness of the third plate, there are comers (33b, 34b) from the recessed portions to the first to second plates.
- 5 25. A panel according to claim 22, wherein at areas from the recessed portions to the first and second plates, there are raised portions (37a, 38a) projecting outwardly in the direction of thickness of the panel.
- 10 26. A panel comprising two substantially parallel plates (33, 34) and a third plate (35, 36) connecting the two plates, characterized in that raised portions (37a, 38a) are formed at end portions of the two plates and project outwardly in the direction of thickness of the panel.
- 15 27. A panel comprising a first plate (33), a second plate (34) substantially parallel to the first plate, a plurality of third plates (35) connecting the first plate and the second plate, and a fourth plate (36) connected at an end portion of the first plate to an intermediate portion of the second plate, characterized in that
 the fourth plate is substantially perpendicular to the first plate;
 at the connection portion between the fourth plate and the first plate, a recessed portion (39) is formed in a range on an extension line of thickness of the third plate; and the recessed portion is open in the direction of thickness of the panel and in the direction perpendicular to the thickness direction.
- 20 28. A panel comprising a plate (33, 34, 81, 82, 93, 94), a plurality of second plates (35, 36, 83, 95, 96) protruding from one side of the plate, and raised portions (37a, 38a) protruding at ends of the plate from the other face of the plate.
- 25 29. A method of friction-welding two members (31, 32, 80a, 80b, 91, 92), characterized in that
 two members each have a raised portion (37a, 38a) disposed at one longitudinal end and protruding from one side in the direction of thickness; and
 raised portions are abutted against each other and friction-welded from the raised portion side.
- 30 30. A method of friction-welding two members (80a, 80b), characterized in that a third member 86 is placed on an abutting portion of two members; and with the third member fixed to the abutting members, the two abutting members are friction-welded from above the third member.
- 35 31. A method of friction-welding two panels (31, 32, 80a, 80b, 91, 92), characterized in that
 two panels each have two substantially parallel

- plates (33, 34, 81, 82, 93, 94), a third member (35, 36, 83, 84, 95, 96) connecting the two plates, and a raised portion (37a, 38a) disposed at an end portion of at least one of the two plates and protruding outwardly in the direction of thickness of the panels more than the two plates; and
 the end portions of the panels are friction-welded from outside in the direction of thickness of the panels.
32. A method of friction-welding two members (31, 32, 80a, 80b, 91, 92), characterized in that two friction welding rotary tools (50, 50a) are disposed over joint regions of the two members, one of the tools on the upper face side and the other on the lower face side of members to be welded;
 the rotation center of one of the rotary tools is disposed substantially on an extension of the rotation center of the other rotary tool; and
 the two rotary tools are rotated and moved simultaneously.
33. A panel structure comprising first and second metal panels (31, 32, 80a, 80b, 91, 92) joined together edge-to-edge by at least one weld joint,
 each said panel having at one side a first face sheet (33, 81; 94) and at its opposite side a web (34; 82; 93) parallel to and spaced from said first face sheet, and having at least one cross-member (36; 94) connecting said face sheet and said web,
 said first face sheets (38; 81; 94) of respectively said first and second panels being joined directly by said weld joint which has a welding bead formed of metal of both panels which was not melted in the formation of the weld joint,
 said cross-member (36; 94) of at least one of said panels constituting a weld-support cross-member which has one end located at the edge of the panel at which said weld joint is provided, extends across the panel in a transverse direction which is at an angle to said first face sheet of the panel, and has a thickness and location such that said welding bead (45) lies at least partly in the projection area of said cross-member in said transverse direction.
34. A panel structure according to claim 33 wherein said first and second panels (38; 81; 94) both have a said weld-support cross-member (36; 94) at their respective edges at which said weld joint is provided, the respective weld-support cross-members lying alongside each other.
35. A panel structure according to claim 34 having two
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165
 170
 175
 180
 185
 190
 195
 200
 205
 210
 215
 220
 225
 230
 235
 240
 245
 250
 255
 260
 265
 270
 275
 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335
 340
 345
 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405
 410
 415
 420
 425
 430
 435
 440
 445
 450
 455
 460
 465
 470
 475
 480
 485
 490
 495
 500
 505
 510
 515
 520
 525
 530
 535
 540
 545
 550
 555
 560
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890
 895
 900
 905
 910
 915
 920
 925
 930
 935
 940
 945
 950
 955
 960
 965
 970
 975
 980
 985
 990
 995
 1000
 1005
 1010
 1015
 1020
 1025
 1030
 1035
 1040
 1045
 1050
 1055
 1060
 1065
 1070
 1075
 1080
 1085
 1090
 1095
 1100
 1105
 1110
 1115
 1120
 1125
 1130
 1135
 1140
 1145
 1150
 1155
 1160
 1165
 1170
 1175
 1180
 1185
 1190
 1195
 1200
 1205
 1210
 1215
 1220
 1225
 1230
 1235
 1240
 1245
 1250
 1255
 1260
 1265
 1270
 1275
 1280
 1285
 1290
 1295
 1300
 1305
 1310
 1315
 1320
 1325
 1330
 1335
 1340
 1345
 1350
 1355
 1360
 1365
 1370
 1375
 1380
 1385
 1390
 1395
 1400
 1405
 1410
 1415
 1420
 1425
 1430
 1435
 1440
 1445
 1450
 1455
 1460
 1465
 1470
 1475
 1480
 1485
 1490
 1495
 1500
 1505
 1510
 1515
 1520
 1525
 1530
 1535
 1540
 1545
 1550
 1555
 1560
 1565
 1570
 1575
 1580
 1585
 1590
 1595
 1600
 1605
 1610
 1615
 1620
 1625
 1630
 1635
 1640
 1645
 1650
 1655
 1660
 1665
 1670
 1675
 1680
 1685
 1690
 1695
 1700
 1705
 1710
 1715
 1720
 1725
 1730
 1735
 1740
 1745
 1750
 1755
 1760
 1765
 1770
 1775
 1780
 1785
 1790
 1795
 1800
 1805
 1810
 1815
 1820
 1825
 1830
 1835
 1840
 1845
 1850
 1855
 1860
 1865
 1870
 1875
 1880
 1885
 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925
 1930
 1935
 1940
 1945
 1950
 1955
 1960
 1965
 1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 2025
 2030
 2035
 2040
 2045
 2050
 2055
 2060
 2065
 2070
 2075
 2080
 2085
 2090
 2095
 2100
 2105
 2110
 2115
 2120
 2125
 2130
 2135
 2140
 2145
 2150
 2155
 2160
 2165
 2170
 2175
 2180
 2185
 2190
 2195
 2200
 2205
 2210
 2215
 2220
 2225
 2230
 2235
 2240
 2245
 2250
 2255
 2260
 2265
 2270
 2275
 2280
 2285
 2290
 2295
 2300
 2305
 2310
 2315
 2320
 2325
 2330
 2335
 2340
 2345
 2350
 2355
 2360
 2365
 2370
 2375
 2380
 2385
 2390
 2395
 2400
 2405
 2410
 2415
 2420
 2425
 2430
 2435
 2440
 2445
 2450
 2455
 2460
 2465
 2470
 2475
 2480
 2485
 2490
 2495
 2500
 2505
 2510
 2515
 2520
 2525
 2530
 2535
 2540
 2545
 2550
 2555
 2560
 2565
 2570
 2575
 2580
 2585
 2590
 2595
 2600
 2605
 2610
 2615
 2620
 2625
 2630
 2635
 2640
 2645
 2650
 2655
 2660
 2665
 2670
 2675
 2680
 2685
 2690
 2695
 2700
 2705
 2710
 2715
 2720
 2725
 2730
 2735
 2740
 2745
 2750
 2755
 2760
 2765
 2770
 2775
 2780
 2785
 2790
 2795
 2800
 2805
 2810
 2815
 2820
 2825
 2830
 2835
 2840
 2845
 2850
 2855
 2860
 2865
 2870
 2875
 2880
 2885
 2890
 2895
 2900
 2905
 2910
 2915
 2920
 2925
 2930
 2935
 2940
 2945
 2950
 2955
 2960
 2965
 2970
 2975
 2980
 2985
 2990
 2995
 3000
 3005
 3010
 3015
 3020
 3025
 3030
 3035
 3040
 3045
 3050
 3055
 3060
 3065
 3070
 3075
 3080
 3085
 3090
 3095
 3100
 3105
 3110
 3115
 3120
 3125
 3130
 3135
 3140
 3145
 3150
 3155
 3160
 3165
 3170
 3175
 3180
 3185
 3190
 3195
 3200
 3205
 3210
 3215
 3220
 3225
 3230
 3235
 3240
 3245
 3250
 3255
 3260
 3265
 3270
 3275
 3280
 3285
 3290
 3295
 3300
 3305
 3310
 3315
 3320
 3325
 3330
 3335
 3340
 3345
 3350
 3355
 3360
 3365
 3370
 3375
 3380
 3385
 3390
 3395
 3400
 3405
 3410
 3415
 3420
 3425
 3430
 3435
 3440
 3445
 3450
 3455
 3460
 3465
 3470
 3475
 3480
 3485
 3490
 3495
 3500
 3505
 3510
 3515
 3520
 3525
 3530
 3535
 3540
 3545
 3550
 3555
 3560
 3565
 3570
 3575
 3580
 3585
 3590
 3595
 3600
 3605
 3610
 3615
 3620
 3625
 3630
 3635
 3640
 3645
 3650
 3655
 3660
 3665
 3670
 3675
 3680
 3685
 3690
 3695
 3700
 3705
 3710
 3715
 3720
 3725
 3730
 3735
 3740
 3745
 3750
 3755
 3760
 3765
 3770
 3775
 3780
 3785
 3790
 3795
 3800
 3805
 3810
 3815
 3820
 3825
 3830
 3835
 3840
 3845
 3850
 3855
 3860
 3865
 3870
 3875
 3880
 3885
 3890
 3895
 3900
 3905
 3910
 3915
 3920
 3925
 3930
 3935
 3940
 3945
 3950
 3955
 3960
 3965
 3970
 3975
 3980
 3985
 3990
 3995
 4000
 4005
 4010
 4015
 4020
 4025
 4030
 4035
 4040
 4045
 4050
 4055
 4060
 4065
 4070
 4075
 4080
 4085
 4090
 4095
 4100
 4105
 4110
 4115
 4120
 4125
 4130
 4135
 4140
 4145
 4150
 4155
 4160
 4165
 4170
 4175
 4180
 4185
 4190
 4195
 4200
 4205
 4210
 4215
 4220
 4225
 4230
 4235
 4240
 4245
 4250
 4255
 4260
 4265
 4270
 4275
 4280
 4285
 4290
 4295
 4300
 4305
 4310
 4315
 4320
 4325
 4330
 4335
 4340
 4345
 4350
 4355
 4360
 4365
 4370
 4375
 4380
 4385
 4390
 4395
 4400
 4405
 4410
 4415
 4420
 4425
 4430
 4435
 4440
 4445
 4450
 4455
 4460
 4465
 4470
 4475
 4480
 4485
 4490
 4495
 4500
 4505
 4510
 4515
 4520
 4525
 4530
 4535
 4540
 4545
 4550
 4555
 4560
 4565
 4570
 4575
 4580
 4585
 4590
 4595
 4600
 4605
 4610
 4615
 4620
 4625
 4630
 4635
 4640
 4645
 4650
 4655
 4660
 4665
 4670
 4675
 4680
 4685
 4690
 4695
 4700
 4705
 4710
 4715
 4720
 4725
 4730
 4735
 4740
 4745
 4750
 4755
 4760
 4765
 4770
 4775
 4780
 4785
 4790
 4795
 4800
 4805
 4810
 4815
 4820
 4825
 4830
 4835
 4840
 4845
 4850
 4855
 4860
 4865
 4870
 4875
 4880
 4885
 4890
 4895
 4900
 4905
 4910
 4915
 4920
 4925
 4930
 4935
 4940
 4945
 4950
 4955
 4960
 4965
 4970
 4975
 4980
 4985
 4990
 4995
 5000
 5005
 5010
 5015
 5020
 5025
 5030
 5035
 5040
 5045
 5050
 5055
 5060
 5065
 5070
 5075
 5080
 5085
 5090
 5095
 5100
 5105
 5110
 5115
 5120
 5125
 5130
 5135
 5140
 5145
 5150
 5155
 5160
 5165
 5170
 5175
 5180
 5185
 5190
 5195
 5200
 5205
 5210
 5215
 5220
 5225
 5230
 5235
 5240
 5245
 5250
 5255
 5260
 5265
 5270
 5275
 5280
 5285
 5290
 5295
 5300
 5305
 5310
 5315
 5320
 5325
 5330
 5335
 5340
 5345
 5350
 5355
 5360
 5365
 5370
 5375
 5380
 5385
 5390
 5395
 5400
 5405
 5410
 5415
 5420
 5425
 5430
 5435
 5440
 5445
 5450
 5455
 5460
 5465
 5470
 5475
 5480
 5485
 5490
 5495
 5500
 5505
 5510
 5515
 5520
 5525
 5530
 5535
 5540
 5545
 5550
 5555
 5560
 5565
 5570
 5575
 5580
 5585
 5590
 5595
 5600
 5605
 5610
 5615
 5620
 5625
 5630
 5635
 5640
 5645
 5650
 5655
 5660
 5665
 5670
 5675
 5680
 5685
 5690
 5695
 5700
 5705
 5710
 5715
 5720
 5725
 5730
 5735
 5740
 5745
 5750
 5755
 5760
 5765
 5770
 5775
 5780
 5785
 5790
 5795
 5800
 5805
 5810
 5815
 5820
 5825
 5830
 5835
 5840
 5845
 5850
 5855
 5860
 5865
 5870
 5875
 5880
 5885
 5890
 5895
 5900
 5905
 5910
 5915
 5920
 5925
 5930
 5935
 5940
 5945
 5950
 5955
 5960
 5965
 5970
 5975
 5980
 5985
 5990
 5995
 6000
 6005
 6010
 6015
 6020
 6025
 6030
 6035
 6040
 6045
 6050
 6055
 6060
 6065
 6070
 6075
 6080
 6085
 6090
 6095
 6100
 6105
 6110
 6115
 6120
 6125
 6130
 6135
 6140
 6145
 6150
 6155
 6160
 6165
 6170
 6175
 6180
 6185
 6190
 6195
 6200
 6205
 6210
 6215
 6220
 6225
 6230
 6235
 6240
 6245
 6250
 6255
 6260
 6265
 6270
 6275
 6280
 6285
 6290
 6295
 6300
 6305
 6310
 6315
 6320
 6325
 6330
 6335
 6340
 6345
 6350
 6355
 6360
 6365
 6370
 6375
 6380
 6385
 6390
 6395
 6400
 6405
 6410
 6415
 6420
 6425
 6430
 6435
 6440
 6445
 6450
 6455
 6460
 6465
 6470
 6475
 6480
 6485
 6490
 6495
 6500
 6505
 6510
 6515
 6520
 6525
 6530
 6535
 6540
 6545
 6550
 6555
 6560
 6565
 6570
 6575
 6580
 6585
 6590
 6595
 6600
 6605
 6610
 6615
 6620
 6625
 6630
 6635
 6640
 6645
 6650
 6655
 6660
 6665
 6670
 6675
 6680
 6685
 6690
 6695
 6700
 6705
 6710
 6715
 6720
 6725
 6730
 6735
 6740
 6745
 6750
 6755
 6760
 6765
 6770<br

42. A method according to claim 40 wherein said rib is a separate piece (86) connected to said member on which it is provided prior to the welding.
43. A method according to claim 40,41 or 42 wherein both said members have said ribs. 5
44. A method according to claim 40,41 or 42 wherein said rib (86) on one said member extends over said outer face of the other said member when said members are arranged for welding, and said probe (52) penetrates through said rib when inserted into the members. 10

15

20

25

30

35

40

45

50

55

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

