Clustering

CURE Algorithm

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Limitations of BFR Algorithm

- Makes strong assumptions:
 - (1) Clusters normally distributed in each dimension
 - (2) Axes are fixed ellipses at an angle are **not** OK

CURE Algorithm

- CURE (Clustering Using REpresentatives):
 - Assumes a Euclidean distance
 - Allows clusters to assume any shape
 - Uses a collection of representative points to represent clusters

Example: Stanford Salaries

Starting CURE

Pass 1 of 2:

- Pick a random sample of points that fit in main memory
- Cluster sample points hierarchically to create the initial clusters
- Pick representative points:
 - For each cluster, pick k (e.g., 4) representative points, as dispersed as possible
 - Move each representative point a fixed fraction (e.g., 20%) toward the centroid of the cluster

Example: Initial Clusters

Example: Pick Dispersed Points

Example: Pick Dispersed Points

Finishing CURE

Pass 2 of 2:

- Now, rescan the whole dataset and visit each point p in the data set
- Place it in the "closest cluster"
 - Normal definition of "closest": that cluster with the closest (to p) among all the representative points of all the clusters
- And that's it!

Summary

- Clustering: Given a set of points, with a notion of distance between points, group the points into some number of clusters
- Algorithms:
 - Agglomerative hierarchical clustering
 - Centroid and clustroid
 - k-means
 - BFR
 - CURE