Homework 3

Christophe Hunt February 18, 2017

Contents

1	Problem : Page 113: 2	2
2	Problem : Page 121: 2.a	2
3	Problem : Page 127: 10	3
4	Problem : Page 136: 7	4
5	Problem : Page 146: 5	4
6	Problem : Page 157: 4	4
7	Problem : Page 169: 11	4
8	Problem : Page 181: 5	4

1 Problem : Page 113: 2

The following table gives the elongation e in inches (in./in.) for a given stress S on a steel wire measured in pounds per square inch (lb/in.²). Test the models $e = c_1 S$ by plotting the data. Estimate c_1 graphically.

$$S(x10^{-3})$$
 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | $e(x10^5)$ | 0 | 19 | 57 | 94 | 134 | 173 | 216 | 256 | 297 | 343 | 390 |

```
library(ggplot2)
S <- c(5,10,20,30,40,50,60,70,80,90,100)
e <- c(0,19,57,94,134,173,216,256,297,343,390)
ggplot(data = as.data.frame(cbind(S,e)), aes(x = S, y = e)) +
    geom_point() +
    geom_abline(slope = 3.6, color = 'blue') +
    geom_abline(intercept = -20, slope = 4, color = 'red')</pre>
```


Above is the graph of the elongation \$e% versus stress S x 10^{-1}. By eyeballing the results of several plots we can give the estimate of ~3.6 for c_1 for the model $e=c_1S$ (this is the blue line). However, do see a much better fit with ~4 for c_1 , if we provide an intercept of -20. These are simply best guesses.

2 Problem : Page 121: 2.a

For each of the following data sets, formulate the mathematical model that minimizes the largest deviation between the data and the line y = ax + b. If a computer is available solve for the estimates of a and b.

```
x \leftarrow c(1,2.3,3.7,4.2,6.1,7.0)

y \leftarrow c(3.6, 3.0, 3.2, 5.1, 5.3, 6.8)
```

```
mean.x <- mean(x)
mean.y <- mean(y)

x.i <- (x - mean.x)
y.i <- (y - mean.y)

x.i.y.i <- (x.i * y.i)
x.i.2 <- (x.i^2)

m <- sum(x.i.y.i) / sum(x.i.2)
b <- mean.y - m*mean.x

y2 <- y - (m*x + b)</pre>
```

The model y = ax + b for this date = y = 0.56x+2.21.

3 Problem: Page 127: 10

Data For planets

Body	Period (sec)	Distance from sun (m)
Mercury	7.60 x 10^6	5.79 x 10^10
Venus	1.94 x 10^7	1.08 x 10^11
Earth	3.16 x 10^7	1.5 x 10^11
Mars	5.94 x 10^7	2.28 x 10^11
Jupiter	3.74 x 10^8	7.79 x 10^11
Saturn	9.35 x 10^8	1.43 x 10^12
Uranus	2.64 x 10^9	2.87 x 10^12
Neptune	5.22 x 10^9	4.5 x 10^12

Fit the model $y = ax^{3/2}$

Least square solution to the formula $y = An^x$, for the model $y = an^{3/2}$.

```
a <- sum(period^(3/2) * distances)/sum((period^2)^(3/2))
a</pre>
```

```
## [1] 0.01320756
```

Resulting in the form $y = 0.0132n^{3/2}$.

4 Problem: Page 136: 7

a. In the following data, W represents the weight of a fish (bass) and l represents its length. Fit the model $W=kl^3$ to the data using the least-squares criterion.

The least-squares fit of $W=kl^3$ is $W=0.008437l^3$. The sum of the squares of the deviations as 12.1683418 so D=1.2333056. As the largest absoulte deviation is 2.305, c_{max} can be bound as follows:

$$D = 1.2333056 \le c_{max} \le 2.305 = d_{max}$$

b. In the following data, g represents the girth of a fish. Fit the model W = klg^2 to the data using the least squares criterion

Length, I (in.)	14.5	12.5	17.25	14.5	12.625	17.75	14.125	12.625
Girthm g (in)			11	9.75	8.5	12.5	9.0	8.5
Weight, W (oz)	27	17	41	26	17	49	23	16

5 Problem: Page 146: 5

Solve Problems 1 - 4 with the model $V = m(\log P) + b$. Compare the errors with those computed in Problem 4. Compare the two models. Which is better?

6 Problem: Page 157: 4

7 Problem : Page 169: 11

8 Problem : Page 181: 5