Unitat 1. Ampliació de geometria plana

ACTIVITATS (pàgines 27 i 28 del llibre de l'alumne)

Angles, circumferència i arc capaç

1. Tracem la secant ATB de la figura 1; els angles ATM i BTN, inscrits a cadascuna de les circumferències, són iguals perquè estan oposats pel vèrtex. Per tant, també són iguals els angles AOM i BO'N, i, atès que tenen un costat comú, l'altre ha de ser paral·lel; és a dir, els radis AO i BO' són paral·lels.

Com que la tangent sempre és perpendicular al radi traçat en el punt de tangència, si els radis anteriors són paral·lels, també ho seran les tangents $\mathbf{t_1}$ i $\mathbf{t_2}$ traçades pels punts \mathbf{A} i \mathbf{B} de tangència.

2. L'angle ABE és l'angle exinscrit que es descriu a l'enunciat; el seu valor és igual a la suma dels angles ABT i TBE. El segon d'aquests angles, TBE, és igual a l'angle T'BD, perquè estan oposats pel vèrtex; per tant, l'angle ABE és igual a la suma dels angles semiinscrits ABT i T'BD; si poséssim cadascun d'aquests angles en funció de l'angle central corresponent, tindríem que l'angle ABE és igual a la semisuma dels arcs AB i BD, com es diu a l'enunciat de l'exercici.

3. Construïm els arcs capaços de 45º en relació amb els punts **A** i **B**, i de 15º en relació amb els punts **B** i **C**; la intersecció de tots dos ens dóna la posició **X** del punt que es demana.

4. Construïm el triangle a partir dels tres costats donats; el punt que es demana el trobem com a intersecció de dos llocs geomètrics: la bisectriu de l'angle que formen els costats **a** i **b**, i l'arc capaç de 60° en relació amb el costat **c**.

Transformacions isomètriques

5. Les mediatrius dels segments **PP**' i **QQ**' es tallen en el punt **O**, el centre de gir que transforma el primer segment en el segon.

6. La posició del nou centre, $\mathbf{O_2}$, serà a la intersecció de la paral·lela a \mathbf{r} a una distància $\mathbf{R_1}$ igual al radi de la circumferència, amb l'arc de centre \mathbf{O} i radi igual a la distància fins a $\mathbf{O_1}$.

7. La posició del nou centre, $\mathbf{O_2}$, serà a la intersecció de la paral·lela a \mathbf{r} a una distància $\mathbf{R_1}$ igual al radi de la circumferència, amb la paral·lela a la direcció \mathbf{d} traçada pel centre $\mathbf{O_1}$.

8. Situem un punt B qualsevol sobre la recta s i amb aquest centre girem la recta t un angle de 60°, amb la qual cosa obtenim la recta t'; la intersecció de t' amb la recta r ens dóna la posició del vèrtex A del triangle equilàter. Coneguts A i B, determinem el tercer vèrtex C, equidistant dels dos anteriors i situat sobre la tercera de les rectes paral·leles.

Homologia

9. Respecte al triangle ABC, situem el triangle PQR amb el vèrtex Q col·locat en el costat AB; traslladem el triangle PQR en la direcció del costat AB perquè tingui dos vèrtexs situats sobre dos costats més del triangle ABC. Apliquem una homotècia de centre B per obtenir el triangle P'Q'R' que compleix les condicions que es demanen a l'enunciat.

10. Com que els costats homòlegs s'han de tallar a l'eix de l'homologia, prolonguem AB fins a tallar l'eix i unim aquest punt amb A'. Sobre la recta anterior, a la seva intersecció amb OB, hi ha el punt B'. D'una manera similar, determinem el vèrtex C', homòleg de C.

11. Mitjançant rectes homòlogues, definim una nova parella de punts homòlegs, \mathbf{P} i \mathbf{P}' ; les rectes homòlogues que passen per \mathbf{P} i \mathbf{P}' i per \mathbf{B}' ens permeten trobar la posició \mathbf{B} que es demana.

12. El vèrtex de l'homologia és a la intersecció de la recta **AA**' amb la paral·lela en el costat **AB** traçada pel punt en què la recta **A'B** talla la recta límit. Conegut el vèrtex **V**, l'aplicació de les propietats d'aquesta transformació permet determinar els altres dos vèrtexs (el **B** és homòleg de si mateix).

Afinitat

13. Les rectes d'unió de punts afins són paral·leles a **AA**' i els costats afins es tallen en punts de l'eix d'afinitat; així, determinem **B**', afí de **B**, i tot seguit, **C**'.

14. La parella de punts afins **B** i **B**' defineixen la direcció d'afinitat que ens permet trobar la recta de punts afins; fem servir rectes afins que es tallen en punts de l'eix d'afinitat.

15. A la circumferència inicial, tracem els dos diàmetres perpendiculars **AB** i **CD**, dels quals determinem els afins. Trobem **O**′, afí del centre de la circumferència, en la direcció donada, i fent servir la raó de –3/2 (el punt **O**′ a l'altre costat de l'eix i amb la relació de distàncies a l'eix que s'indiquen a la raó).

Inversió

16. Mitjançant els punts donats, **A**, **A**' i **P**, construïm la circumferència de punts dobles que passa pels tres punts. Unim **P** amb el centre d'inversió **O** i prolonguem el segment fins a tallar la circumferència en el punt **P**', invers de **P**.

17. Si el punt **O**, extrem d'un diàmetre de la circumferència, és el centre d'inversió, la figura inversa d'aquesta circumferència és una recta tangent a la circumferència a l'altre extrem del diàmetre.

18. Unim cada punt amb el seu invers per determinar el centre **O** d'inversió. La figura inversa d'una circumferència que no passa pel centre d'inversió és una altra circumferència que tampoc no hi passa; determinem aquesta circumferència coneixent tres dels seus punts, inversos de tres punts més de la circumferència inicial. **A**' i **B**' són dos d'aquests punts.

Per determinar una nova parella de punts inversos, unim \mathbf{O} amb el centre $\mathbf{O_1}$ i determinem l'invers de l'extrem \mathbf{N} del diàmetre \mathbf{MN} . Com que dues parelles de punts inversos no alineats sempre es troben sobre una mateixa circumferència, tracem la que passa per \mathbf{A} , \mathbf{A}' i \mathbf{N} ; la recta que uneix \mathbf{N} amb \mathbf{O} ens determina \mathbf{N}' .

Finalment, la circumferència inversa de la inicial passa per N', A' i B'.

OBJECTIU UNIVERSITAT (pàgines 29 i 30 del llibre de l'alumne)

Angles, circumferència i arc capaç

19. El punt **P** és a la intersecció de dos arcs capaços: un de 120° respecte dels punts **A** i **B**, i un altre de 45° respecte dels punts **B** i **C**.

20. Respecte del segment F₁F₂ que defineix la posició dels dos fars, tracem l'arc capaç de 60°; sobre d'aquest, amb dos arcs de centres, F₁ i F₂, determinem els punts A i B. A l'escala 1:100.000, les distàncies de 5 km i 3 km equivalen a 5 cm i 3 cm.

Transformacions isomètriques

21. Respecte a la recta **s**, tracem la simètrica **r**' de la recta **r**; els punts en què **r**' talla la circumferència són vèrtexs dels quadrats sol·licitats. A partir d'aquests i perpendicularment a **s**, determinem els vèrtexs situats a l'altra recta. Coneguts dos vèrtexs de cada quadrat, podem determinar els que estan situats a la recta **s**.

22. Dibuixem un hexàgon auxiliar ABCDEF amb el costat CD sobre la recta s i el traslladem en la direcció de s fins que el vèrtex B es trobi sobre la recta r'; així tindrem l'hexàgon intermedi A'B'C'D'E'F'. El punt d'intersecció entre r' i s és el centre d'una homologia; unim aquest centre amb A' fins a tallar la recta r en el punt A'', homòleg de l'anterior. La paral·lela a A'B' traçada des de A'' determina a la recta r' el vèrtex B'' i el costat de l'hexàgon que busquem (el podem completar per homologia).

Homologia

23. El punt en què la diagonal AC talla l'eix és un punt doble pel qual també passarà la diagonal A'C'. La recta que passa per aquest punt i per A' intercepta sobre la recta que uneix C i el centre O de l'homologia, la posició de C'. Els vèrtexs B i D són punts dobles.

24. Les rectes **CC**' i **BB**' es tallen en el vèrtex **V** de l'homologia. Les rectes **BC** i **B**'C' es tallen en un punt que, amb el punt doble **A-A**', defineix l'eix de l'homologia. Amb això, disposem dels elements necessaris per determinar els homòlegs dels dos altres eixos.

Afinitat

25. La intersecció entre els costats homòlegs **AC** i **A'C'**, i **AB** i **A'B'** defineix dos punts pels quals passa l'eix de l'afinitat. Les bisectrius del triangle **ABC** permeten traçar la circumferència inscrita, en què tracem els diàmetres perpendiculars **ED** i **FG**. Respecte de la mateixa afinitat, determinem els homòlegs **E'**, **D'**, **F'** i **G'**, amb la qual cosa podem traçar l'el·lipse afí de la circumferència inscrita.

26. El segment **BO** representa 2/3 parts de la mitjana que passa pel vèrtex **B**; portant-ne 1/3 a partir de **O**, completem la seva longitud i el punt mitjà del costat **AC**; així, tenim el triangle **ABC**. Com que **AB** és paral·lel a l'eix, el seu homòleg també ho serà; tracem un segment auxiliar **DE** paral·lel a l'eix i, respecte d'aquest, l'arc capaç de 90°; des de **C** i en la direcció d'afinitat, determinem **F**. La paral·lela a **FD** traçada pel punt en què **AC** talla l'eix ens determina **A**' i **C**'; a partir d'aquests, **B**' completa l'exercici.

Inversió

27. Tracem la circumferència que passa per A, A' i B; la recta que passa per aquest últim punt i pel centre d'aquesta circumferència la talla en el punt B'. La intersecció de la circumferència que passa per B, B' i C amb la recta que passa per O i C, determina la posició C'.

