ЛЕКЦІЯ 5

Відношення порядку

Відношення

Нехай дана множина:

$$A = \{3, 6, 1, 5, 2, 4\}$$

На множині A задаємо відношення R :

$$R \subset A \times A$$

предикатом

$$R = \{(1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6)\}$$

$$R = \left\{ \left(a, b \right) \middle| a < b; \ a, b \in A \right\}$$

R - відношення порядку задане на множині A, якщо

$$A = \{1, 2, 3, 4, 5, 6\}$$

Відношення порядку

Це відношення, що визначають порядок розташування елементів множини.

1. Умова відношення, коли елементами множини *T* є стани динамічної системи:

$$T = \left\{t_0, t_1, t_2, t_3, ..., t_{n-1}\right\}$$
,

де
$$t_0 < t_1 < t_2 < t_3 < \ldots < t_{n-1}$$
.

Предикат 1. « t_i < t_j »- t_j слідує за t_i при i < j.

<u>Предикат 2</u>. « t_i < t_j »- t_i передує t_j при i < j.

Символи «<» «>» використовують для порівняння величин відрізків часу, вимірюваних від початку відліку.

Задамо це відношення предикатом:

$$R_1 = \left\{ \left(t_i, t_j\right) \middle| t_i < t_j$$
 при $i < j \right\}$

2. Умова відношення, коли елементами множини $A \in$ числа або об'єкти, що мають властивість, виражену

числа або обекти, що мають властивість, виражену числом:
$$A = \left\{a_0, a_1, a_2, ..., a_i, ..., a_j, ..., a_n\right\}$$
, де $a_0 < a_1 < a_2 < ... < a_i < ... < a_j < ... < a_n$. Предикат1. « $a_j > a_i$ »- $a_j >$ більше a_i Предикат2. « $a_i < a_j$ »- a_i менше a_j

Символами «>» або «<» користуються для порівняння чисел.

Задамо відношення R предикатом $R \subset A \times A$.

$$R_1 = \left\{ \left(a_i, a_j \right) \middle| a_i < a_j \ npu \ i < j \right\}$$

3. Умова відношення, коли елементами множини $A \in M$ множини:

$$A = \left\{ A_0, A_1, \dots, A_i, \dots, A_j, \dots, A_n \right\}.$$

$$\operatorname{\textit{\textbf{«}}} A_i \subseteq A_i$$
 »- A_i входить в A_i ,

де

$$A_0 \subseteq A_1 \subseteq \ldots \subseteq A_i \subseteq \ldots \subseteq A_j \subseteq \ldots \subseteq A_n$$

або

«
$$A_i \subset A_j$$
» - A_i строго входить в A_j

$$A_0 \subset A_1 \subset \ldots \subset A_i \subset \ldots \subset A_j \subset \ldots \subset A_n \, .$$

Задамо відношення R предикатом, задане $R \subset A \times A$.

$$R_1 = \left\{ \left(A_i, A_j \right) \middle| A_i \subseteq A_j \ npu \ i < j \right\} \ R_2 = \left\{ \left(A_i, A_j \right) \middle| A_i \subset A_j \ npu \ i < j \right\}$$

У всіх випадках можна розташувати елементи множин у деякому порядку або, інакше кажучи, ввести відношення порядку на множині.

Визначення відношень порядку

Відношення порядку на множині A поділяють на:

- відношення строгого порядку;
- відношення нестрогого порядку.

Визначення 1. Відношення R називають **відношенням строгого порядку** на множині A, якщо воно має властивості:

- антирефлексивності, тобто якщо xRy то $x \neq y$.
- антисиметричності, тобто, якщо xRy і yRx, то x=y.
- *транзитивності,* тобто, якщо xRy і yRz, то xRz.

Визначення 2. Відношення R називають **відношенням нестрогого порядку** на множині A, якщо воно має властивості:

- рефлексивності, тобто, xRx .
- антисиметричності, тобто, якщо xRy і yRx, то x=y
- *транзитивності,* тобто, якщо xRy і yRz, то xRz.

Термінологія та позначення

- 1. Відношення нестрогого порядку позначають символом « \leq » за аналогією з відношенням «менше або дорівнює» на множині дійсних чисел. При цьому, якщо $a\leq b$, те говорять, що елемент a не перевищує b або елемент a підпорядкований b.
- 2. Відношення строгого порядку. Якщо $a \neq b$, то пишуть a < b і говорять, що елемент a менший b або, елемент a строго підпорядкований b.

3. Загальний випадок відношень.

Відношення порядку на множинах: «⊆ » і «⊂ »

Від відношення порядку на числах: «≤» і «<»

Від відношення порядку в часі: «< » і «<»

Приклад. Відношення порядку в R^n

1. Відношення нестрогого порядку для кортежів:

$$(a_1,...,a_{i-1},a_i,a_{i+1},...,a_n) \le (b_1,...,b_{i-1},b_i,b_{i+1},...,b_n)$$

справедливе за умови, що

$$a_1 \leq b_1, ..., a_{i-1} \leq b_{i-1}, a_i \leq b_i, a_{i+1} \leq b_{i+1}, ..., a_n \leq b_n$$

Однак для встановлення нестрогого порядку достатньо, щоб умова $a_i \leq b_i$ була виконана хоча б по одній координаті, тобто

$$(a_1,...,a_{i-1},a_i,a_{i+1},...,a_n) \leq (b_1,...,b_{i-1},b_i,b_{i+1},...,b_n),$$

ЯКЩО

$$a_1 < b_1, ..., a_{i-1} < b_{i-1}, a_i \le b_i, a_{i+1} < b_{i+1}, ..., a_n < b_n$$

2. Відношення строгого порядку для кортежів:

$$(a_1,...,a_{i-1},a_i,a_{i+1},...,a_n) < (b_1,...,b_{i-1},b_i,b_{i+1},...,b_n),$$

справедливе за умови, що

$$a_1 < b_1,...,a_{i-1} < b_{i-1},a_i < b_i,a_{i+1} < b_{i+1},...,a_n < b_n$$

Приклад. Відношення порядку в R²

 $(a_1, a_2) \le (b_1, b_2)$ - відношення нестрогого порядку

Це відношення справедливе, якщо $a_1 \le b_1$, $a_2 \le b_2$

$$(1,5) \le (1,7) \to 1 = 1$$
 і $5 < 7$; $(1,5)$? $(7,1)$ непорівнювані

 $(a_1, a_2) < (b_1, b_2)$ - відношення строгого порядку

$$(1,5)<(2,7)\to(1<2)$$
 і $5<7$; $(1,5)$? $(7,2)$ непорівнювані

Приклад. Відношення порядку в R³

$$(a_1, a_2, a_3) \le (b_1, b_2, b_3)$$
- відношення нестрогого порядку

Це відношення справедливе, якщо $a_1 \leq b_1$, $a_2 \leq b_2$, $a_3 \leq b_3$

$$(1,2,3) \le (1,2,4) \rightarrow 1 = 1, 2 = 2, 3 < 4$$

$$(a_1,a_2,a_3)$$
 < (b_1,b_2,b_3) - відношення строгого порядку

Це відношення справедливе, якщо $a_1 < b_1$, $a_2 < b_2$, $a_3 < b_3$

$$(1,2,3)<(2,3,4) \rightarrow 1<2, 2<3, 3<4$$
 (2,1,3) ? (4,2,1)

Види відношень порядку:

1. Строгий повний порядок

Відношення строгого порядку задане на всіх елементах упорядкованої множини.

2. Строгий частковий порядок

Відношення строгого порядку задане не на всіх елементах упорядкованої множини.

3. Нестрогий повний порядок

Відношення нестрогого порядку задане на всіх елементах упорядкованої множини.

4. Нестрогий частковий порядок

Відношення нестрогого порядку задане не на всіх елементах упорядкованої множини.

Основні поняття про впорядковані множини

Упорядковані множини утворюють одинфундаментальних типів математичних структур.

Визначення впорядкованої множини

(множина + відношення порядку)

Упорядкованою множиною називають непусту множину X разом із заданим на ній бінарним <u>нестрогим</u> відношенням порядку « \leq », яке за визначенням:

- 1) рефлексивне: $a \le a$;
- **2)**антисиметричне: $a < b \land b < a \Rightarrow a = b$ (для будь-яких a, b, X).
- 3) транзитивне: $a \le b \le c \Rightarrow a \le c$;
- або <u>строгим</u> «<» відношенням порядку, яке за визначенням:
- 1) антирефлексивне: $a < b \Rightarrow a \neq b$;
- 2) антисиметричне: $a < b \land b < a \Rightarrow a = b$
- 3) транзитивне: $a \le b \le c \Rightarrow a \le c$;

Визначення порівнюваності упорядкованих множин. Елементи a і b упорядкованої множини називають порівнюваними, якщо a < b, a = b або a > b. Знаки <, =, > мають звичайний зміст, якщо $a,b \in R$

Визначення лінійно впорядкованої множини (ланцюга).

<u>Упорядкована</u> множина X називається *лінійно впорядкованою*, або *ланцюгом*, якщо будь-які два її елементи порівнювані.

і на ній задане відношення лінійного порядку, тобто $\forall a,b: (aRb \lor bRa)$, включаючи a=b

Отже, відношення лінійного порядку – це відношення, яке має властивість рефлексивності.

Такий порядок завжди повний та нестрогий.

Приклад лінійно впорядкованих множин

$$A = \left\{1, 1, 2, 3, 4, 1234, 4567, 4567\right\} \quad R = \left\{\left(a_i, a_j\right) \middle| a_i \leq a_j \text{ при } i < j\right\}$$

$$B = \left\{a, b, b, c, d, d\right\} \quad R = \left\{\left(b_i, b_j\right) \middle| b_i \prec b_j \text{ при } i < j\right\}$$

Ланцюг та антиланцюг

- 1.Ланцюг лінійно впорядкована множина.
- 2. Ланцюг лінійно впорядкована підмножина частково впорядкованої множини

Приклади лінійно впорядкованих множин (ланцюгів)

Натуральні числа — найменша лінійно впорядкована множина, що не має верхньої межі.

$$A = \{1, 2, 3, 4,\}$$
- найменша

Цілі числа — найменша лінійно впорядкована множина, що не має ні верхньої, ні нижньої межі.

$$A = \{....-4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$$

Антиланцюг — упорядкована множина, у якій жодні два різні елементи не є порівнюваними.

$$A = \{a, 1, \exists\}$$

Властивості лінійно впорядкованих множин

1. Покриття

Нехай X – довільний ланцюг. Якщо a < b при $a \in X, b \in X$ і не існує елемента $c \in X$ з умовою a < c < b (розташованого між a і b), то співвідношення a < b називають локриттям.

Приклад. $X = \{a, b, c, d, e, f\}.$

Покриття: a < b, b < c, c < d, d < e, e < f

Не є покриттями: a < c, оскільки a < b < c; b < d, оскільки b < c < d

2. Взаємне положення елементів: $X = \{a, b, c, d, e, f\}$

Елемент a називають попереднім для b Елемент b називають наступним за a.

Елемент ланцюга, у якого немає попереднього або наступного елемента, називають *граничним елементом.*

Приклад: Нехай $X = \{1, 2, 3, 4, 5\}$. Тоді $1 \in X$ та $5 \in X$ -граничні елементи множини X.

3. Щільний ланцюг

Ланцюг називають *щільним*, якщо в ньому немає покриттів. У щільних ланцюгах між будь-якими елементами a < b лежить нескінченна кількість елементів.

Приклад. Множина дійсних чисел в просторі R

Не ε покриттями: 1 < 1.4, оскільки 1 < 1.2 < 1.4;

1.4 < 2.345, оскільки 1.4 < 2 < 2.345 і т.д.

4. Повний зверху ланцюг

Ланцюг називають *повним зверху,* якщо його довільна непуста підмножина має sup (<u>супремум</u>).

5. Повний знизу ланцюг

Ланцюг називають *повним знизу,* якщо його довільна непуста підмножина має inf (<u>інфімум</u>).

6. Повний ланцюг

Ланцюг називають *повним,* якщо він повний зверху і знизу одночасно.

Цілком упорядкована множина

Найважливіший клас ланцюгів утворюють цілком упорядковані множини

Визначення.

Ланцюг називають *цілком упорядкованою множиною*, якщо будь-яка його непуста підмножина має найменший елемент.

Приклад1. Ланцюг усіх натуральних чисел N $N = \{1, 2, 3, 4,\}$

цілком упорядкованою множиною, оскільки найменший елемент – 1.

Приклад 2. Усі скінченні ланцюги є прикладами цілком упорядкованих множин.

Приклад 3. Будь-яка непуста підмножина цілком упорядкованої множини цілком упорядкована.

Частково впорядкована множина Визначення відношення часткового порядку.

Бінарне відношення R на множині X називають відношенням **часткового порядку**, якщо для деяких $a \in X$, $b \in X$ не виконується ні відношення aRb, ні відношення bRa.

Визначення частково впорядкованої множини.

Упорядковану множину називають частково впорядкованою, якщо на ній задане відношення часткового порядку.

Приклад: Нехай $X = \{x, y, z, 1, 2, 3\}$. Букви розміщені у алфавітному порядку, числа упорядковані за величиною, але букви і числа є непорівнянними. Отже X - частково упорядкована множина.

Властивості частково впорядкованих множин (строгий та нестрогий порядок)

Визначення для нестрогого порядку.

Відношення R на X є відношенням нестрогого часткового порядку, якщо воно має властивості:

рефлексивності - $\forall a (aRa)$, антисиметричності - $\forall a, b (aRb) \land (bRa) \Rightarrow a = b$ транзитивності - $\forall a, b, c (aRb) \land (bRc) \Rightarrow aRc$.

Визначення для строгого порядку.

Відношення R на X є відношенням строгого часткового порядку, якщо воно має властивості:

антирефлексивності - $\forall a,b(aRb) \Rightarrow a \neq b$, антисиметричності - $\forall a,b(aRb) \land (bRa) \Rightarrow a = b$ транзитивності - $\forall a,b,c(aRb) \land (bRc) \Rightarrow aRc$.

Приклад частково впорядкованої множини Приклад 1. Нехай задано:

1. Нехай A- множина натуральних чисел від 1 до 30. $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ..., 29, 30\}.$

2. Відношення « \leq », згідно якого m і n ϵ порівнюваними: $m \leq n$ за умови, що n ділиться на m націло.

Нехай n=30 і m=5. Тоді n і m — є порівнюваними, оскільки 30 ділиться на 5 націло.

Нехай n=30 і m=7. Тоді n і m — непорівнювані, оскільки 30 не ділиться на 7 націло.

$$R = \{ (m,30) | m \le 30 \land 30\% m == 0 \}$$

Висновок.

- 1. Задане відношення порядку «≤ » на множині *А* є відношенням часткового порядку.
- 2. Множина $A \in$ частково упорядкованою множиною на заданому відношенні.

$$T_1 = \{1, 2, 3, 5, 6, 10, 15, 30\}$$
 $T_2 = \{4, 7, 8, 9, 11, 12, 13, 14, 16, \dots 29\}$.

Розбиття частково впорядкованої множини на ланцюзі

Нехай є деяка множина A. Говорять, що множина A розбита на підмножини $A_1, A_2, A_3, \dots A_m$, якщо:

1.
$$A_i \neq \emptyset$$
, $(i = 1, 2, ..., m)$;

2.
$$A_i\cap A_j=\varnothing$$
 , якщо $i\neq j$ для всіх $i,j\in \left\{1,2,3,...,m\right\}$;

$$3. A = \bigcup_{i=1}^{m} A_i$$

Нехай A ε частково впорядкованою множиною.

Розбиття множини A на ланцюзі називають *найменшим*, якщо воно має найменше число елементів m у порівнянні з іншими розбиттями A на ланцюзі.

Таке розбиття також називають <u>мінімальним ланцюговим</u> розбиттям (МЛР) множини A.

Приклад мінімального ланцюгового розбиття (МЛР)

Нехай дана множина A:

$$A = \{1, \boldsymbol{a}, \angle, \boldsymbol{\delta}, 2, 7, \boldsymbol{\epsilon}, \triangle, 1245, \Box, \boldsymbol{\delta}\},\$$

на якій задані такі відношення часткового порядку:

$$R_1 = \{(a,b) | a \le b\}$$
 $R_2 = \{(a,b) | "a$ слідує в алфавітному порядку за b " $\}$
 $R_3 = \{(a,b) | "a$ має больше куті в, ніж b " $\}$

Побудуємо розбиття цієї множини на ланцюзі

$$A_{1} = \{1, 2\}; A_{2} = \{7, 1245\}; A_{3} = \{a, 6\}; A_{4} = \{e, o\}; A_{5} = \{\angle, \triangle, \Box\}$$

$$m = 5 \quad A = \bigcup_{i=1}^{5} A_{i}, A_{i} \neq \emptyset (i = 1, ..., 5),$$

$$A_i\cap A_j=arnothing$$
 якщо $i
eq j$ для всіх $i,j\in \left\{1,2,3,4,5
ight\}.$

$$m = 3$$
 $A_1 = \{1, 2, 7, 1245\}; A_2 = \{a, \delta, e, \delta\}; A_3 = \{\angle, \triangle, \Box\}$

Отже, розбиття $A_{\!_{1}}, A_{\!_{2}}, A_{\!_{3}}$ - МЛР

Визначення найбільшого елемента множини

Найбільшим елементом <u>лінійно впорядкованої множини X</u> відносно строгого «< » або нестрогого « \leq » упорядкування будемо називати такий елемент $a \in X$, що для будь-якого $x \in X$ вірно x < a або $x \leq a$.

Теорема про єдиність найбільшого елемента.

Якщо існує найбільший елемент лінійно впорядкованої множини, то він є єдиним.

Доведення.

Припустимо а-найбільший елемент і а'- також найбільший елемент.

Тоді для будь-якого x виконується $x \le a$ і $x \le a'$.

Зокрема, $a \le a'$ або $a' \le a$.

За властивістю антисиметричності, то з $(aRa') \land (a'Ra)$ слідує a = a'.

Оскільки a = a', то якщо існує найбільший елемент, то він єдиний.

Тому, якщо говорять про найбільший елемент множини, то мають на увазі **цілком визначений** її елемент.

Приклад. Необхідно знайти найбільший елемент лінійно впорядкованої множини $X = \{1,2,15,18\}$, заданої на відношенні нестрогого порядку $a \le b$.

Згідно з визначенням:

- 1. **Усі** елементи даної множини **повинні бути меншими** або дорівнювати найбільшому.
- 2. Найбільший елемент єдиний.

Порівняємо елементи множини X:

- **1)** $1 \ge 1, 1 \ne 2, 1 \ne 15, 1 \ne 18.$
- **2)** $2 \ge 1, 2 \ge 2, 2 \ge 15, 2 \ge 18.$
- 3) $15 \ge 1$, $15 \ge 2$, $15 \ge 15$, $15 \ge 18$.
- **4)** $18 \ge 1$, $18 \ge 2$, $18 \ge 15$, $18 \ge 18$.

Необхідним умовам відповідає тільки елемент 18.

Визначення максимального елемента множини

Максимальним елементом <u>частково</u> впорядковано<u>ї</u> множини X відносно строгого «<» (нестрогого « \le ») порядку називають такий $\ddot{\text{ii}}$ елемент $a \in X$, для якого наявна одна із двох ситуацій:

- або $x < a \ (x \le a)$,
- або *а* і *х* непорівнювані.

Зауваження

На одній і тій же множині можуть бути задані **різні відношення** порядку.

За одним з них множина може бути лінійно впорядкованою, а за іншим – частково впорядкованою.

Приклад: Студенти групи упорядковані за списком і за одержаними оцінками по контрольній роботі.

Тоді за першим відношенням будемо говорити **про найбільший елемент**, а за другим – **про максимальний**.

Визначення найменшого і мінімального елементів множини

Найменшим елементом <u>лінійно</u> впорядкованої множини X відносно строгого «<» (нестрогого «< ») впорядкування будемо називати такий елемент $a \in X$, що для всіх $x \in X$ вірно a < x ($a \le x$).

Мінімальним елементом <u>частково</u> впорядкованої множини X відносно строгого «<» або нестрогого «< » впорядкування називають такий його елемент $a \in X$, для якого наявна одна з двох ситуацій:

- або $a < x, (a \le x)$
- або *а* і *х* непорівнювані.

Зауваження.

Якщо на множині існує найменший елемент, то він є єдиним мінімальним.

Аналогічно, якщо на множині існує найбільший елемент, то він є єдиним максимальним.

Приклад. На множині точок $X \subset R^2$, обмеженій трикутником OAB, задаємо відношенням порядку: $(a,b) \leq (c,d)$ яке справедливе тоді і тільки тоді, коли $a \leq c$ і $b \leq d$. Мінімальний елемент множини X— єдиний і збігається з найменшим елементом.

$$X_1 = \{(0,0), (0,1), (0,2), ..., (0,A)\}; X_2 = \{(0,0), (1,0), (2,0), ..., (A,0)\}$$

Точка (0,0) є найменшим елементом даної множини.

$$\begin{split} X_3 &= \big\{ \big(1,1\big), \big(1,2\big), \dots \big(1,7.5\big) \big\} \,; \\ X_4 &= \big\{ \big(2,2\big), \big(2,3\big), \big(2,6.5\big) \big\} \end{split}$$

Максимальними елементами множини $X \in \text{ всі точки, що лежать на стороні } AB$ трикутника OAB.

Найбільший елемент множини X не існує.

Визначення верхньої та нижньої граней множини Визначення верхньої грані

Якщо A є частково впорядкована множина і $B\subseteq A$, то елемент $a\in A$ називають верхньою гранню множини B, якщо для кожного $b\in B$ існує нерівність $b\le a$.

$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
, $B = \{3, 4, 5\}$. Верхні грані: 5,6,7,8,9

Визначення нижньої грані

Якщо A є частково впорядкована множина і $B\subseteq A$, то елемент $a\in A$ називають нижньою гранню множиниB, якщо для кожного $b\in B$ існує нерівність $a\le b$.

$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
, $B = \{5, 6, 7\}$. Нижні грані: 1,2,3,4,5

Визначення точної верхньої грані множини Елемент $a \in A$ називають точною верхньою гранню,

якщо $a = \min_i a_i$, де a_i – верхня грань множини B.

А В Точна верхня грань Елементи верхньої грані
$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
, $B = \{3, 4, 5\}$, $a = \min\{5, 6, 7, 8, 9\} = 5$

Найменший елемент a множини всіх верхніх граней називають точною верхньою гранню або *супремумом* і позначають $\sup B$.

$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, B = \{3, 4, 5\}.$$
 sup $B = 5$

Супремум є така верхня грань множини, яка є нижньою гранню множини всіх її верхніх граней.

Визначення точної нижньої грані множини

Елемент $a \in A$ називають **точною нижньою гранню,** якщо $a = \max_i a_i$, де a_i – нижня грань множини B.

Елементи нижньої грані Точна нижня грань В А

$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
, $B = \{5, 6, 7\}$. $a = \max\{1, 2, 3, 4, 5\} = 5$

Найбільший елемент множини всіх нижніх граней називають точною нижньою гранню або iнфімумом і позначають $\inf B$.

$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, B = \{5, 6, 7\}. \text{ inf } B = 5.$$

Інфімумом є така нижня грань множини, яка є верхньою гранню множини всіх її нижніх граней.

Приклад. Розглянемо множину A точок прямокутника із заданим відношенням порядку на підмножині B:

 $(a,b) \le (c,d)$ тоді і тільки тоді, коли $a \le c$ і $b \le d$.

Точка $o \in$ точною нижньою гранню $\inf B \in A$.

Точка c ε точною верхньою гранню $\sup B \in A$.

3 рисунка видно, що обидві точки належать множині A.

Приклад. Розглянемо множину F точок трапеції

ABNM із заданим відношенням порядку: $(a,b) \leq (c,d)$ тоді і тільки тоді, коли $a \leq c$ і $b \leq d$.

Приклад показує, що існує точна верхня грань $\sup F$ і точна нижня грань $\inf F$.

Однак жодна 3 граней не належить множині F . $\sup F \not\in F \quad \inf F \not\in A, \quad F \subset A$

Діаграма Хассе

Для графічного представлення впорядкованої множини R використовують діаграму Хассе.

Цю діаграму будують у такий спосіб:

- Кожному елементу множини X ставлять у відповідність точку (вершину графа) на площині.
- Якщо aRb, то вершину, яка відповідає елементові a, розташовують нижче від вершини, яка відповідає елементові b.
- Вершини $a \in X$ і $b \in X$ з'єднують лінією (ребром), якщо aRb і не існує елемента $c \in X$ такого, що aRc й cRb.

Приклад. Нехай дана множина $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$, на якій задано відношення

$$R = \{(1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (2,5), (2,7), (2,8), (3,5), (3,6), (3,8), (4,6), (4,7), (4,8), (5,8), (6,8), (7,8)\}$$

Діаграма Хассе даного відношення представлена на рисунку.

Приклад. Нехай
$$M=\big\{x,y,z\big\}$$
,а 2^M- булеан множини M : $2^M=\big\{\varnothing,\big\{x\big\},\big\{y\big\},\big\{z\big\},\big\{x,y\big\},\big\{y,z\big\},\big\{z,x\big\},\big\{z,y,z\big\}\big\}$ $T\in 2^M$, $V\in 2^M$ -елементи булеана

Визначимо відношення R:

$$R=ig\{(T,V)ig|T\subseteq Vig\}$$
 Наприклад, $ig\{y\},ig\{x,y\}ig)\in R$, оскільки $ig\{y\}\subseteq ig\{x,y\}$. Однак $ig(\{y,z\},ig\{z\}ig)
ot\in R$, оскільки $ig\{y,z\}
ot\subset ig\{z\}$.

Побудувавши відношення R, можна легко перевірити,

що $(2^M,R)$ — частково упорядкована множина.

Приклад.

На рисунку представлений частковий порядок, породжений бінарним відношенням

$$R = \{ (a_1, a_2), (a_1, a_3), (a_1, a_5), (a_4, a_2), (a_5, a_2) \}.$$

Діаграма Хассе допомагає краще розуміти взаємозв'язок елементів, що належать одній і тій же впорядкованій множині (наприклад, приналежність одного і того ж ланцюга або одного і того ж антиланцюга).