MATH 220 DISCRETE MATHEMATICS AND CRYPTOGRAPHY

Tutorial 4 Solutions

1. Now $1001 = 7 \times 11 \times 13$ (prime factorisation), so

$$\phi(1001) = (7-1)(11-1)(13-1) = 720.$$

Similarly, $1000 = 2^3 \times 5^3$, so

$$\phi(1000) = (2^3 - 2^2)(5^3 - 5^2) = 400.$$

2. Let

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

so that

$$n^m = p_1^{m\alpha_1} p_2^{m\alpha_2} \cdots p_k^{m\alpha_k}$$

and

$$\phi(n^m) = (p_1^{m\alpha_1} - p_1^{m\alpha_1 - 1}) (p_2^{m\alpha_2} - p_2^{m\alpha_2 - 1}) \cdots (p_k^{m\alpha_k} - p_k^{m\alpha_k - 1}).$$

Now take out a factor of the form $p_i^{(m-1)\alpha_i}$ from each product term on the right. Then

$$\phi(n^m) = p_1^{(m-1)\alpha_1} p_2^{(m-1)\alpha_2} \cdots p_k^{(m-1)\alpha_k} \left(p_1^{\alpha_1} - p_1^{\alpha_1 - 1} \right) \left(p_2^{\alpha_2} - p_2^{\alpha_2 - 1} \right) \cdots \left(p_k^{\alpha_k} - p_k^{\alpha_k - 1} \right)$$

$$= n^{m-1} \phi(n)$$

as required.

3. By the previous question,

$$\phi(1000) = \phi(10^3) = 10^2 \phi(10) = 10^2 \phi(5 \times 2) = 10^2 \times 4 \times 1 = 400.$$

4. Now 110 = 64 + 32 + 8 + 4 + 2. Next calculate

$$9^1 \equiv 9 \bmod 19$$

$$9^2 \equiv 81 \equiv 5 \mod 19$$

$$9^4 \equiv 25 \equiv 6 \bmod 19$$

$$9^8 \equiv 36 \equiv 17 \bmod 19$$

$$9^{16} \equiv 289 \equiv 4 \bmod 19$$

$$9^{32} \equiv 16 \bmod 19$$

$$9^{64} \equiv 256 \equiv 9 \bmod 19$$

Therefore

$$9^{110} = 9^{64} \times 9^{32} \times 9^8 \times 9^4 \times 9^2$$
$$\equiv 9 \times 16 \times 17 \times 6 \times 5 \mod 19$$
$$\equiv 5 \mod 19$$

Fermat's Little Theorem says that

$$9^{18} \equiv 1 \bmod 19.$$

Since $110 = 18 \times 6 + 2$,

$$9^{110} = (9^{18})^6 \times 9^2$$
$$\equiv 9^2 \mod 19$$
$$\equiv 5 \mod 19$$

5. Taking powers of 2 mod 11 gives

$$2^{1} = 2, 2^{2} = 4, 2^{3} = 8, 2^{4} = 5, 2^{5} = 10, 2^{6} = 9, 2^{7} = 7, 2^{8} = 3, 2^{9} = 6, 2^{10} = 1.$$

From this, we can write out the discrete log table as

a	$dlog_2 a$
1	10
2 3	1
3	8
4	2
5 6	4
6	9
7	7
8 9	3
9	6
10	5

It is easily checked that 3 is not a generator for \mathbb{Z}_{11}^* . For example, $3^x \equiv 7 \mod 11$ has no solution, and therefore dlog₃ 7 is not defined in \mathbb{Z}_{11} .

6. (a) In the RSA scheme, if e is the *exponent* and n the *modulus*, then m encrypts to e where

$$c \equiv m^e \mod n$$
.

So, in this case with e=3 and n=12091, m=2107 encrypts to

$$c \equiv 2107^3 \mod 12091$$
$$= 7077$$

(b) Since $n = 12091 = 107 \times 113$ as a product of primes, the decryption key is the pair of primes $\{107, 113\}$.

Alternatively, you could say that it is $d = e^{-1}$ in $\mathbb{Z}_{\phi(n)}$, which can be calculated when you know the primes 107 and 113.

(c) To decrypt c back to m,

$$m \equiv c^d \bmod n$$
,

where d is the inverse of e in $\mathbb{Z}_{\phi(n)}$.

In this case, $n = 12091 = 107 \times 113$. So $\phi(n) = 106 \times 112 = 11872$.

Since e = 3, we can apply Euclid's Algorithm to find 3^{-1} in \mathbb{Z}_{11872} .

$$11872 = 3 \times 3957 + 1$$

so
$$d = 3^{-1} = -3957 = 7915$$
 in \mathbb{Z}_{11872} .

Finally, if c = 9812, then c decrypts to

$$m \equiv 9812^{7915} \mod 12091$$

= 142

(A quick way to calculate powers in modular arithmetic is to use the Maple command $n\$ mod m; which calculates, very efficiently, $n^k \mod m$.)

7. Public modulus is pq = 47233. The decryption exponent d satisfies

$$ed \equiv 1 \mod \phi(n),$$

where e = 71 and $\phi(n) = (149 - 1)(317 - 1) = 46768$. After a little work using Euclid's Algorithm, we get d = 28983.

8. Since e_1 and e_2 are relatively prime, that is $gcd(e_1, e_2) = 1$, it follows by Euclid's Algorithm that Eve can find integers x and y such that

$$xe_1 + ye_2 = 1.$$

But then

$$(c_1)^x \cdot (c_2)^y \equiv (m^{e_1})^x \cdot (m^{e_2})^y \mod n$$
$$\equiv m^{xe_1 + ye_2} \mod n$$
$$\equiv m \mod n$$
$$\equiv m \mod n$$

Thus, as Eve knows e_1, e_2, x, y, n , Eve knows $m \equiv (c_1)^x \cdot (c_2)^y \mod n$.

9. First, we know the factors of n = 713, in particular, $713 = 23 \times 31$. (Recall that we start by choosing two primes to get n so factorisation is not an issue in practice.)

Let p=23 and q=31. We next have to find the square roots of $c=200 \bmod p$ and mod q.

$$m_p^2 \equiv 200 \mod 23$$

 $\equiv 16 \mod 23$

So

$$m_p \equiv \pm 4 \bmod 23$$

giving $m_p = 4$ or $m_p = 19$.

Similarly,

$$m_q^2 \equiv 200 \mod 31$$

 $\equiv 14 \mod 31$

giving $m_q = 13$ or $m_q = 18$ (from the hint).

We now need to find u and v such that pu + qv = 1, that is, 23u + 31v = 1. Using Euclid's Algorithm, we obtain a solution u = -4 and v = 3.

Finally, we calculate the four numbers $\pm pum_q \pm qvm_p \mod n$. That is,

$$\pm (23)(-4)(13) \pm (31)(3)(4) \equiv \pm 1196 \pm 372 \mod 713$$

 $\equiv 1568, 824, -1568, -824 \mod 713$
 $\equiv 142, 111, 571, 602 \mod 713$

These are the four possible messages.

10. (a) m is encrypted to

$$c \equiv m^2 \mod n$$
$$\equiv 17^2 \mod 65$$
$$\equiv 289 \mod 65$$
$$\equiv 29 \mod 65,$$

so c = 29.

(b) First we need to calculate

$$m_p \equiv \sqrt{c} \bmod 5$$

and

$$m_q \equiv \sqrt{c} \bmod 13$$

with c = 29.

This means that we have to solve the equations

$$m_p^2 \equiv 29 \mod 5$$

 $\equiv 4 \mod 5$

and

$$m_q^2 \equiv 29 \mod 13$$

 $\equiv 3 \mod 13$.

Running through the possibilities, gives $m_p = 2$ and $m_q = 4$.

Second, we need to find integers u and v such that 5u + 13v = 1. We can either guess or use Euclid's Algorithm as follows:

$$13 = 2 \times 5 + 3$$

 $5 = 1 \times 3 + 2$
 $3 = 1 \times 2 + 1$

Working backwards,

$$1 = 3 - 1 \times 2$$

$$= 3 - 1 \times (5 - 1 \times 3) = 2 \times 3 - 1 \times 5$$

$$= 2 \times (13 - 2 \times 5) - 1 \times 5$$

$$= 2 \times 13 - 5 \times 5.$$

So we can take u = -5 and v = 2. (Note that other solutions exist, for example, u = 8 and v = -3. The general solution is of the form

$$u = -5 + 13t$$
$$v = 2 - 5t,$$

where $t \in \mathbb{Z}$. The decryption does not depend on the choice of u and v.)

Finally, we calculate the four numbers

$$\pm pum_q \pm qvm_p \mod n$$
,

that is,

$$\pm 5 \times (-5) \times 4 \pm 13 \times 2 \times 2 \mod 65$$

or

$$\pm 100 \pm 52 \mod 65$$

giving the four possible values for m as 17, 22, 43, and 48.

11. Suppose $a \equiv b \mod n$. Then a = b + kn for some $k \in \mathbb{Z}$. As n = pq, we have

$$a = b + k(pq),$$

and so a = b + (kq)p and a = b + (kp)q. In turn, this implies

$$a \equiv b \bmod p$$

and

$$a \equiv b \bmod q$$
.

We will prove the converse for when $p \neq q$. The proof for p = q is similar. Suppose that $a \equiv b \mod p$ and $a \equiv b \mod q$. Then

$$a = b + kp \tag{1}$$

and

$$a = b + \ell q \tag{2}$$

for some $k, \ell \in \mathbb{Z}$. This implies that $kp = \ell q$, in particular $p \mid \ell q$. By Corollary 2.5, either $p \mid \ell$ or $p \mid q$. Since $p \neq q$, it follows that p does not divide q, and so $p \mid \ell$. Thus there is a $t \in \mathbb{Z}$ such that $pt = \ell$. Substituting into (2), we get

$$a = b + (pt)q = b + t(pq) = b + tn,$$

that is, $a \equiv b \mod n$.

12. We first show that

$$\left(a^{\frac{p+1}{4}}\right)^2 \equiv a \bmod p.$$

Now

$$\left(a^{\frac{p+1}{4}}\right)^2 \equiv a^{\frac{p-1}{2}+1} \equiv \left(a^{p-1}\right)^{\frac{1}{2}} \cdot a^1 \equiv a \bmod p$$

as $a^{p-1} \equiv 1 \mod p$ by Fermat's Little Theorem. Thus $a^{\frac{p+1}{4}}$ is a square root of $a \mod p$. To see that p-x is also a square root:

$$\left(p - \left(a^{\frac{p+1}{4}}\right)\right)^2 \equiv p^2 - 2p\left(a^{\frac{p+1}{4}}\right) + \left(a^{\frac{p+1}{4}}\right)^2 \equiv a \bmod p.$$