Chapitre 2 Cheminement dans les Graphes

Présenté par :

H. BENKAOUHA

Bureau 222, Département Informatique, USTHB hbenkaouha@usthb.dz haroun.benkaouha@gmail.com

H. BENKAOUHA

Chaîne

- <u>Chaîne</u> dans un graphe non orienté (resp. orienté) G=(X, E) (resp. G=(X, U)):
- ⇒Suite alternée de sommets et d'arêtes (resp. d'arcs) :
 - $-\mu = x_0 e_1 x_1 \dots x_{k-1} e_k x_k$
 - (resp. $\mu = x_0 u_1 x_1 ... x_{k-1} u_k x_k$)
- Tel que pour i de 1 à k,
 - $-x_{i-1}$ et x_i sont extrémités de l'arête e_i (resp. de l'arc u_i).
- On dit que μ est une chaîne joignant les sommets x_0 et x_k de longueur k.

H. BENKAOUHA

Chaîne - Remarque

- La notion de chaîne est une notion non orientée .
- Mais on peut l'appliquer sur les graphes orientés.
- Il suffit de ne pas prendre en considération le sens des arcs.
- C'est-à-dire, on peut prendre un arc dans le sens inverse.

. BENKAOUHA

Chaîne - Exemples • $\mu_1 = 8 \ l \ 4 \ i \ 3 \ e \ 2$ - Chaîne dans G_1 - Joignant $8 \ et \ 2$ - De longueur 3

Chemin - Exemples

- $\gamma_3 = 4 i 6 m 7 n 1 b 2 d 3$
 - Chemin dans G_2
 - Allant de 4 vers 3
 - De longueur 5

H BENKAOLIHA

Propriétés Chaînes/Chemins

- Chaîne / Chemin simple
 - Si tous les arcs ou les arêtes les composant sont distincts.
- Chaîne / Chemin élémentaire
 - Si tous les sommets les composant sont distincts.

H. BENKAOUHA

UHA 1

Propriétés Chaînes - Exemple

- $\mu_1 = 814i3e2$
 - Simple et élémentaire
- $\mu_2 = 7 \ q \ 6 \ m \ 5 \ j \ 4 \ k \ 6 \ m \ 5 \ p \ 8 \ l \ 4$
 - Non simple et non élémentaire
- $\mu_3 = 6 b 1 a 2 d 3 h 3 i 4$
 - Simple mais non élémentaire

H. BENKAOUHA

AOUHA

Propriétés Chaînes - Exemple

- $\mu_4 = 4 \, g \, 2 \, d \, 3 \, h \, 4 \, g \, 2 \, b \, 1$
 - Non simple et non élémentaire
- $\mu_5 = 7 \circ 5 p 7 n 1 a 1 c 6 i 4$
 - Simple mais non élémentaire
- $\mu_6 = 6 k 5 j 4 h 3 d 2 b 1 n 7$
 - Simple et élémentaire

H. BENKAOUHA

Propriétés Chemins - Exemple

- $\gamma_1 = 611 a 1 b 2 d 3$
 - Simple mais non élémentaire
- $\gamma_2 = 7 \circ 5 j \cdot 4 i \cdot 6 m \cdot 7 p \cdot 5 j \cdot 4 g \cdot 2$
 - Non simple et non élémentaire
- $\gamma_3 = 4 i 6 m 7 n 1 b 2 d 3$
 - Simple et élémentaire

H. BENKAOUHA

Remarques (Chaînes/Chemins)

- Longueur d'1 chaîne (chemin) simple = nombre d'arêtes (arcs) formant cette chaîne (chemin).
- Si \exists chemin d'1 sommet x vers 1 sommet y, on note : $x \alpha y$.
- Toute chaîne (ou chemin) élémentaire est aussi simple. L'inverse n'est pas toujours vrai.

H. BENKAOUHA

Remarques (Chaînes/Chemins)

- Dans un graphe simple, une chaîne ou un chemin peuvent être déterminés juste en énumérant la suite des sommets qui les composent.
- Un chemin peut être déterminé juste en énumérant la suite des sommets qui le composent si le graphe est un 1-graphe

Chemin - Exemples

- $\gamma_4 = 4 i 6 m 7 n 1 b 2 d 3 f 3$
- $\gamma_4 = 4671233$
- Chemin dans G_3
 - Allant de 4 vers 3
 - De longueur 5
 - Simple, non élémentaire
 - Il n'y a qu'une seule possibilité pour passer d'un sommet à un autre car c'est un 1-graphe

Chaîne fermée / Chemin fermé

- Un chemin dont les extrémités sont confondues est dit chemin fermé.
- Une chaîne dont les extrémités sont confondues est dite chaîne fermée.

Chaîne fermée - Exemples

- $\mu_7 = 814i3e2d3i4j5p8$
 - Chaîne fermée dans G₁
 - De longueur 7
 - Non simple, non élémentaire

Chaîne fermée - Exemples

- $\mu_8 = 1 \ b \ 6 \ m \ 5 \ o \ 7 \ g \ 2 \ a \ 1$
 - Chaîne fermée dans G_1
 - De longueur 5
 - Simple, non élémentaire

• $\gamma_5 = 7 \, n \, 1 \, c \, 6 \, m \, 7 \, n \, 1 \, b \, 2 \, e \, 7$

- - Chemin fermée dans G_1
 - De longueur 6
 - Non simple, non élémentaire

Cycle

- On appelle <u>cycle</u> dans un graphe non orienté (resp. orienté) G=(X, E) (resp. G=(X, U)), toute chaîne fermée simple :
- $\mu = x_0 e_1 x_1 \dots x_{k-1} e_k x_k$ (resp. $\mu = x_0 u_1 x_1 \dots x_{k-1} u_k x_k$) Tel que k > 0, et $x_0 = x_k$.
- On dit que μ est un cycle de longueur k.

H. BENKAOUHA

Cycle - Exemples

• $\mu_7 = 8 \ l \ 4 \ i \ 3 \ e \ 2 \ d \ 3 \ i \ 4 \ j \ 5 \ p \ 8$ - Chaîne fermée mais pas cycle

• $\mu_8 = 1 \ b \ 6 \ m \ 5 \ o \ 7 \ g \ 2 \ a \ 1$ - Cycle dans G_1 - De longueur 5

Circuit

- On appelle <u>circuit</u> dans un graphe orienté *G*=(*X*, *U*), tout chemin fermé simple :
- $\gamma = x_0 u_1 x_1 ... x_{k-1} u_k x_k$ Tel que k > 0, et $x_0 = x_k$.
- On dit que μ est un circuit de longueur k.

IKAOUHA

Circuit - Exemples • $\gamma_5 = 7 \, n \, 1 \, c \, 6 \, m \, 7 \, n \, 1 \, b \, 2 \, e \, 7$ - Chemin fermée mais pas circuit • $\gamma_6 = 1 \, a \, 1 \, b \, 2 \, e \, 7 \, o \, 5 \, k \, 6 \, m \, 7 \, n \, 12$ - Circuit dans G_1 - De longueur 7

Cycle / Circuit élémentaire

- On dit qu'un cycle ou circuit est <u>élémentaire</u> si tous les sommets qui les composent sont distincts.
- On ne regarde pas la répétition due à la fermeture.
- Le cycle (resp. circuit) élémentaire est une chaîne (resp. un chemin) fermée non élémentaire.

BENKAOUHA

Remarques (Cycles/Circuits) 1/2

- Longueur cycle ou circuit élémentaire = nombre de sommets formant ce cycle ou circuit.
- Dans un graphe simple, un cycle ou un circuit peuvent être déterminés juste en énumérant la suite des sommets qui les composent.

. BENKAOUHA

Remarques (Cycles/Circuits) 2/2

- Une boucle est un cycle élémentaire de longueur 1.
- Une boucle dans un graphe orienté est un circuit élémentaire de longueur 1.
- Tout cycle est aussi chaîne. Tout circuit est aussi chemin. Tout circuit est aussi cycle. Tout chemin est aussi chaîne.

H. BENKAOUHA

UHA

Propositions

- Soit G=(X, E) un graphe non orienté. De toute chaîne joignant deux sommets x et y ∈ X, on peut extraire 1 chaîne élémentaire joignant x et y.
- Soit *G*=(*X*, *U*) un graphe orienté. De tout chemin allant du sommet *x* ∈ *X* vers le sommet *y* ∈ *X*, on peut extraire 1 chemin élémentaire allant de *x* à *y*.
- Il suffit de supprimer les cycles (resp. circuits) intermédiaires

IKAOUHA

Propositions

- Soit G=(X, E) un graphe non orienté (resp. G=(X, U) un graphe orienté). De tout cycle (resp. circuit) passant par 1 arête $e \in E$ (resp. 1 arc $u \in U$), on peut extraire 1 cycle (resp. circuit) élémentaire passant par e (resp. u).
- Il suffit de supprimer les cycles (resp. circuits) intermédiaires qui ne passent pas par *e* (resp. par *u*)

ENKAOUHA 34

Chaîne - Exemples • μ₂ = 7 q 6 m 5 j 4 k 6 m 5 p 8 l 4 • μ₂ = 7 q 6 m 5 j 4 k 6 m 5 p 8 l 4 • μ₂' = 7 q 6 m 5 p 8 l 4 • μ₂' = 7 q 6 m 5 p 8 l 4

Existence d'un cycle

- Si *G* est un graphe vérifiant $\delta(G) \ge k \ge 2$ Alors *G* contient un cycle.
- Si de plus G est simple alors G admet un cycle élémentaire de longueur $\geq k+1$ et une chaine élémentaire de longueur $\geq k$.
- · Conséquence :
 - Si m ≥ n (m étant le nombre d'arcs ou arêtes et n le nombre de sommets dans G) alors G admet un cycle.

H. BENKAOUHA

Existence d'un circuit

- Si G est un graphe vérifiant $\delta^+(G) \ge k \ge 1$ (resp. $\delta^-(G) \ge k \ge 1$) Alors G contient un circuit.
- Si de plus G est simple alors G admet un circuit élémentaire de longueur $\geq k+1$ et un chemin élémentaire de longueur $\geq k$.

AOUHA

Matrice de fermeture transitive

- Soit G=(X, U) un 1-graphe orienté d'ordre n.
- A partir de sa matrice d'adjacence M (doit être booléenne), on peut calculer la matrice de fermeture transitive de G
- Notée \hat{M}
- Chaque élément : $\hat{m}_{ij} = \begin{cases} 1 \text{ si } \exists i \text{ oj} \\ 0 \text{ sinon} \end{cases}$

H. BENKAOUHA

Calcul Matriciel Direct (1/2)

• On peut avoir la matrice de fermeture transitive par calcul matriciel comme suit :

$$M = \bigvee_{l=1}^{n} M^{[l]}$$

• Où chaque matrice $M^{[I]}$ se calcule par récurrence (sur I) à travers le produit matriciel booléen comme suit :

$$\begin{cases} M^{[1]} = M \\ M^{[l+1]} = M^{[l]} * M \end{cases}$$

H. BENKAOUHA

Calcul Matriciel Direct (2/2)

• Chaque élément de *M*^[/] :

$$m_{ij}^{[l]} = \bigvee_{k=1}^{n} (m_{ik}^{[l-1]} \wedge m_{kj})$$

de 2 à n.

– où *l* varie de 2 à *n*.

• La matrice $M^{[l]}$ représente tous les chemins dans G de longueur l.

H. BENKAOUHA

CAOUHA 4

Algorithme de Warshall (1/2)

```
Algorithme Warshall
Début

Pour j de 1 à n Faire

Pour i de 1 à n Faire

Si M[i,j] = 1 Alors

Pour k de 1 à n Faire

M[i,k] = M[i,k] \times M[j,k]

Fait;

fSi;

Fait;

Fait;

Fin.
```

H. BENKAOUHA

Algorithme de Warshall (2/2)

- Le calcul direct de $\stackrel{\wedge}{M}$ nécessite trop d'opérations matricielles.
- L'algorithme de Warshall permet un gain considérable en nombre d'opérations :
 n² tests et au plus n³ opérations ∨,
- \Rightarrow algorithme en $O(n^3)$

BENKAOUHA

Exploration (Parcours) d'un graphe

- L'exploration d'un graphe est un parcours (via les arcs ou les arêtes)
- Permettant d'examiner de façon exhaustive (visiter) les sommets.
- L'exploration d'un graphe permet d'étudier une ou plusieurs propriétés du graphe tel que :
 - la connexité, la forte connexité, biparti, ...

Algorithme d'exploration (1/2)

- Principe:
 - Consiste à déterminer l'ordre dans lequel seront visités les sommets.
 - Le parcours commence d'un sommet de départ r qu'on appelle racine
 - Il donne comme résultat une liste ordonnée de sommets où r apparaît en premier et les autres sommets apparaissent une seule fois.

H. BENKAOUH/

Algorithme d'exploration (2/2)

```
P ← Ø ;
L ← {r};
Tant que ((L ≠ Ø) et (P ≠ X)) Faire
  Choisir_extraire (i∈L);
Pour (tout (i, j)∈U) Faire
   Si (j∉P) Alors Ajouter j à L ; fSi;
Fait;
Pour (tout (j, i)∈U) Faire
   Si (j∉P) Alors Ajouter j à L ; fSi;
Fait;
Ajouter i à la fin de P ;
Fait
```

Remarques: Algo. d'exploration

- Nous supposons que la fonction choisir_extraire existe et qui consiste à choisir de façon déterministe un sommet de L puis le supprime de L.
- Nous expliquons après les différentes implémentations de cette fonction.
- Il est possible d'appliquer cet algorithme sur un graphe non-orienté.

BENKAOUHA 62

Exploration en largeur

- · Consiste à parcourir le graphe
 - à partir du sommet de départ la racine (r)
 - puis ses voisins
 - puis les voisins des voisins non explorés
 - et ainsi de suite jusqu'à la fin.
- Nous pouvons utiliser l'algorithme d'exploration en déclarant
 - *L* comme une liste FIFO (premier arrivé, premier sorti)
 - La fonction ${\tt choisir_extraire}$ devient ${\tt defiler}$
 - La fonction Ajouter devient enfiler.

AOUHA

Exploration en largeur - Exemple

• Sommet de départ (racine) : 1

• File: 1

• Parcours:

IKAOUHA

• File: 267 • Parcours: 1

Exploration en largeur - Exemple • File: 67347 • Parcours: 12

Exploration en profondeur

- · Consiste à parcourir le graphe
 - à partir du sommet de départ la racine (r)
 - puis tracer une chaîne à partir de ce sommet
 - puis choisir un autre sommet (parmi les voisins des sommets de cette chaîne dans l'ordre) et faire de même jusqu'à la fin.
- Nous pouvons utiliser l'algorithme d'exploration en déclarant
 - L comme une pile (dernier arrivé, premier sorti)
 - La fonction choisir_extraire devient depiler
 - La fonction Ajouter devient empiler.

OUHA

Connexité

- Un graphe est dit connexe s'il existe
 - une chaîne joignant chaque paire de sommets x et y ($x \neq y$).
- · Dessin:
 - On le voit comme une seule entité.

BENKAOUHA

Composante Connexe (CC)

- Soit un graphe G = (X, E) (resp. G = (X, U)):
 - Le sous graphe engendré par un sommet isolé est considéré comme une composante connexe de G.
 - Si le sous graphe engendré par un ensemble de sommets $S \subseteq X$ (G_S) est connexe et tout sous graphe engendré par $S \cup \{x\}$ et $x \notin S$ n'est pas connexe Alors G_S est une composante connexe de G.
- Un graphe connexe contient une seule composante connexe.

H. BENKAOUHA

HA 93

Algorithme de connexité (1/2)

- Nous pouvons utiliser l'algorithme d'exploration afin de vérifier la connexité.
- Il s'agit juste de vérifier si la sortie P = X.
- Il existe aussi d'autres algorithmes permettant de vérifier la connexité.
- · Le suivant utiliser les marquages.

NKAOUHA

Algorithme de connexité (2/2)

```
C ← {r};
Pour (tout i ∈ X) Marque[i] ← faux;
Tant que (∃ i∈C tel que Non(Marque[i]))
Pour (tout (i, j)∈U)
C ← C ∪ {j};
Pour (tout (j, i)∈U)
C ← C ∪ {j};
Marque[i] ← vrai;
Si C=X Alors Connexe ← Vrai;
Sinon Connexe ← Faux;
```


Algorithme de calcul des CC k ← 1; Tant que X ≠ φ Faire Choisir r ∈ X; C[k] ← Connexité (G, r); // Ici, on considère que l'algorithme précédent ou // l'algorithme d'exploration comme fonction qui a // en entrée le graphe et un sommet de départ et // retourne une CC C ou le parcoures P X ← X − C[k]; k ← k + 1; Fait;

Algorithme de Connexité − Exemple2 G₃ C₂ = {2, 3, 4, 7, 8} X = {} On s'arrête car X est vide. On a 2 CC.

Forte Connexité

- Un graphe orienté G=(X, U) est <u>fortement</u> <u>connexe</u> (f.c.) s'il existe entre chaque paire de sommets x et $y \in X$ ($x \neq y$):
 - un chemin de $x \grave{a} y (x \alpha y)$

et

– un chemin de $y \ge x (y \alpha x)$.

Composante Fortement Connexe (CFC)

- Soit G=(X, U) un graphe orienté :
 - Le sous graphe engendré par un sommet $x \in X$ tel que $d_G^+(x) = 0$ ou $d_G^-(x) = 0$ forme une composante fortement connexe de G.
 - − Si le sous graphe engendré par un ensemble de sommets $S\subseteq X$ (G_S) est fortement connexe et le sous graphe engendré par $S\cup \{x\}$ et $x\not\in S$ n'est pas fortement connexe Alors G_S est une composante fortement connexe de G.

NKAOUHA

Ascendants / Descendants

- Soit *G*=(*X*, *U*) un graphe orienté,
- On définit pour chaque sommet $x \in X$,
- 2 ensembles:
 - L'ensemble des descendants de x :

```
D(x) = \{ y \in X / x \alpha y \}
```

– L'ensemble des ascendants de x :

$$A(x) = \{ y \in X / y \alpha x \}$$

ENKAOUHA

Algorithme de calcul des CFCs

```
D ← {r};
Pour (tout i ∈ X) Marque[i] ← faux;
Tant que ((∃ i ∈ D) et (Marque[i]=faux))
    Marque[i] ← vrai;
    Pour (tout (i, j) ∈ U) D ← D ∪ {j};
A ← {r};
Pour (tout i ∈ X) Marque[i] ← faux;
Tant que ((∃ i ∈ A) et (Marque[i]=faux))
    Marque[i] ← vrai;
    Pour (tout (j, i) ∈ U) A ← A ∪ {j}
CFC ← D ∩ A
```

Algorithme de calcul des CFCs à partir de la matrice de fermeture transitive

```
Tout sommet i ayant m<sub>ii</sub>=0
seul dans une CFC

Les autres sommets
Sommets ayant :
lignes identiques
et
colonnes identiques
dans la même CFC
```

H. BENKAOUHA

KAOUHA 123

Exemple - CFC

	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1
3	0	0	1	0	0	0	0
4	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1
6	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1

•Lignes identiques : L₁ = {1, 2, 4, 5, 6, 7, 8}

 $L_1 = \{1, 2, 4, 5, 6, 7, 8\}$ $L_2 = \{3\}$ •Les CFCs: $CFC_1 = \{1, 2, 4, 5, 6, 7, 8\}$

 $CFC_2 = \{3\}$

•Colonnes identiques : $C_1 = \{1, 2, 4, 5, 6, 7, 8\}$ $C_2 = \{3\}$

Graphe réduit

- A tout graphe orienté *G*=(*X*, *U*) on associe le graphe simple *G*_R=(*X*_R, *U*_R) appelé graphe réduit de *G* défini comme suit :
 - $-X_R = \{ A \text{ chaque c.f.c. de } G \text{ correspond un sommet } C_i \}$
- $-U_R = \{(C_p, C_j) / i \neq j \text{ et } \exists x \in C_i \text{ et } \exists y \in C_j \text{ et } (x, y) \in U\}$ Un graphe fortement connexe possède une seule
- C.F.C.
- Le graphe réduit d'un graphe ne possède pas de circuits.

H. BENKAOUHA

Parcours Euleriens

- Un parcours Eulerien passe une fois et une seule fois par chaque arête (resp. arc) du graphe.
- Le parcours peut être une chaîne, un chemin, un cycle ou un circuit.
- Soit G un graphe contenant m arêtes (resp. m arcs):
- Une chaîne simple, un chemin simple, un cycle ou un circuit de longueur m est appelé Eulérien.

H. BENKAOUHA

127

Théorème d'Euler (1766)

- Un multigraphe *G* admet une <u>chaîne</u> Eulérienne
- Si et seulement si
 - il est connexe (à des sommets isolés près)
 et
 - le nombre de sommets de degré impair est 0 ou 2.

H. BENKAUUHA

12

Théorème d'Euler (1766)

- Conséquences
 - Un graphe G admet une chaîne Eulérienne d'un sommet x à un sommet y ($x \neq y$) si et seulement si $d_G(x)$ et $d_G(y)$ sont impairs et $\forall z$ sommet de G ($z \neq x$ et $z \neq y$), on a $d_G(z)$ pair.
 - − Un graphe G admet un cycle Eulérien si et seulement $\forall x$ sommet de G, on a $d_G(x)$ pair.

H. BENKAOUHA

AHL

Détermination d'une chaîne Eulerienne

- Choisir sommet *a* de degré impair (Si pas de sommets de degrés impairs, choisir n'importe quel sommet).
 - On construit une chaîne à partir de *a* comme suit :
- A chaque étape k
- On obtient une chaîne de longueur k
- $-G_k$ correspond au graphe partiel de G engendré par l'ensemble des arêtes (resp. d'arcs) initial auquel on supprime ceux faisant partie de la chaîne.
- A chaque étape *k*, en arrivant à un sommet *x*,
 - Il faut éviter de prendre toute arête (resp. arc) qui est isthme dans G_{k} .
 - Sauf s'il s'agit de la seule et unique possibilité, on la prend.
- G_k graphe constitué de sommets isolés \Rightarrow Fin.

H. BENKAOUHA

...

Exemple

- Sommets de degrés impairs :
 - 6 et 7

• $\mu = 6$

Exemple

- $\mu = 6$
- On a {6,7} ou {6,4} ou {6,5}
- {6,7} déconnecte le graphe, on la prend pas
- On prend par exemple {6,4}
- $\mu = 6.4$

H. BENKAOUHA

Exemple • $\mu = 64567123$ • On a {3,7} · On la prend • $\mu = 645671237$ Chaîne Eulérienne

Circuit Eulérien

- Proposition
 - Un graphe G=(X, U) admet un circuit Eulérien Si et seulement si
 - Pour tout sommet x, on a $d^+_G(x) = d^-_G(x)$.
 - − On dit que *G* est pseudo-symétrique.

Graphe Eulérien / semi-Eulérien

- G admet un cycle Eulérien
- \Rightarrow *G* est Eulérien.
- *G* admet une chaîne Eulérienne mais pas de cycle Eulérien
- \Rightarrow *G* est semi-Eulérien.

Parcours Hamiltonien (1/2)

- Un parcours Hamiltonien passe une fois et une seule fois par chaque sommet du graphe.
- Le parcours peut être une chaîne, un chemin, un cycle ou un circuit.

Parcours Hamiltonien (2/2)

- Soit *G* un graphe d'ordre *n* :
- Une chaîne (resp. un chemin) élémentaire de longueur *n*-1 est appelé <u>chaîne Hamiltonienne</u> (resp. chemin Hamiltonien).
- Un cycle (resp. circuit) élémentaire de longueur n est appelé cycle (resp. circuit) Hamiltonien.

Exemple

- 1 a 2 e 3 i 4 k 6 q 7 o 5 p 8
- · Chaîne Hamiltonienne
- 1 a 2 d 3 i 4 l 8 p 5 o 6 p 7 c 1
- Cycle Hamiltonien

Exemple

- 5 *j* 4 *i* 6 *m* 7 *n* 1 *b* 2 *d* 3
- · Chemin Hamiltonien
- Il n'y a pas de circuit Hamiltonien car *G* n'est pas fortement connexe.

H. BENKAOUHA

Exemple

- Si on rajoute un arc (3, 5) au graphe précédent, on obtient Un circuit Hamiltonien
- 5j4i6m7n1b2d3q5

. BENKAOUHA

Graphe Hamiltonien / semi-Hamiltonien

- Un graphe qui contient un cycle Hamiltonien ⇒ graphe Hamiltonien.
- Un graphe semi-Hamiltonien : contient une chaîne Hamiltonienne, mais pas de cycle Hamiltonien.
- Le plus petit graphe Hamiltonien d'ordre n est le graphe cycle (Graphe connexe non-orienté à n arêtes. Il est 2-régulier)

H. BENKAOUHA

147

Graphe Hamiltonien - Propositions

- Un graphe complet d'ordre n≥3 est Hamiltonien.
- Tout graphe tournoi (un graphe orienté simple et complet) d'ordre n, noté T_n contient un chemin Hamiltonien.
- Tout tournoi d'ordre $n(T_n)$ fortement connexe contient un circuit Hamiltonien.

H. BENKAOUHA

148

Graphe Hamiltonien - Théorème

- Utilisé pour démontrer qu'un graphe n'est pas Hamiltonien (ne contient pas de cycle Hamiltonien).
- Si G=(X,E) est un graphe Hamiltonien, alors pour tout ensemble de sommets $S \subset X$, on a :
 - $-p(G_{X-S}) \leq |S|$
 - où $p(G_{X:S})$ est le nombre de composantes connexes du sous graphe de G induit par l'ensemble X-S

H. BENKAOUHA

149