4.7: Optimization Problems

The methods from Sections 4.1 and 4.3 for finding extreme values can be used to find *optimal* solutions to many real-world problems. We will see a number of these as well as some abstract examples in this section. A general approach for solving optimization problems is to

- 1. Identify given and unknown quantities and draw a diagram if possible,
- 2. Write an equation for the quantity to be optimized in terms of a single variable,
- 3. Use methods from Sections 4.1 and 4.3 to find the absolute maximum or minimum.

Example 1. A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

Example 2. A cylindrical can is to be made to hold 1 L of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can.

First Derivative Test for Absolute Extreme Values: Suppose that c is a critical number of a continuous function f defined on an interval.

- (a) If f'(x) > 0 for all x < c and f'(x) < 0 for all x > c, then f(c) is the absolute maximum value of f.
- (b) If f'(x) < 0 for all x < c and f'(x) > 0 for all x > c, then f(c) is the absolute minimum value of f.

Example 3. Find the point on the parabola $y^2 = 2x$ that is closest to the point (1,4).

Example 4. A man launches his boat from point A on a bank of a straight river, 3 km wide, and wants to reach point B, 8 km downstream on the opposite bank, as quickly as possible (see Figure below). He could row his boat directly across the river to point C and then run to B, or he could row directly to B, or he could row to some point D between C and B and then run to B. If he can row 6 km/h and run 8 km/h, where should he land to reach B as soon as possible? (We assume that the speed of the water is negligible compared with the speed at which the man rows.)

Example 5. Find the area of the largest rectangle that can be inscribed in a semicircle of radius r.

Example 6. A farmer with 750 ft of fencing wants to enclose a rectangular area and then divide it into four pens with fencing parallel to one side of the rectangle. What is the largest possible total area of the four pens?

Example 7. A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide, by cutting out a square from each of the four corners and bending up the sides. Find the

largest volume that such a box can have.

Example 8. Find the points on the ellipse $4x^2 + y^2 = 4$ that are farthest away from the point (1,0).

Example 9. Find the area of the largest rectangle that can be inscribed in the ellipse $x^2/a^2+y^2/b^2=1$.

Example 10. A poster is to have an area of 180 in with 1-inch margins at the bottom and sides and a 2-inch margin at the top. What dimensions will give the largest printed area?

Example 11. A right circular cylinder is inscribed in a sphere of radius r. Find the largest possible volume of such a cylinder.

Example 12. Find an equation of the line through the point (3,5) that cuts off the least area from the first quadrant.