数据结构

深圳技术大学 大数据与互联网学院

第七章图

- 7.1 图的定义和术语
- 7.2 图的存储结构
- 7.3 图的遍历
- 7.4 图的连通
- 7.5 有向无环图及其应用
- 7.6 最短路径

上节复习

- 最短路径:求两个顶点之间距离最短的路径
- 迪杰斯特拉(Dijkstra)算法
 - □ 求v0到其他顶点的所有最短路径
 - □ 算法流程
 - 1、初始化,将v0加入已搜索顶点集合
 - 2、找出离v0最近的顶点v,加入集合
 - 3、比较v0到其他顶点、v0到v再到其他顶点的路径,从而更新其他顶点的最短路径
 - 4、重复步骤2

练习

已知带权有向图如下,请求出顶点0到其他顶点的最短路径和长度,要求使用迪杰斯特拉算法写出求解过程

- 一. 有向无环图
- 有向无环图(DAG:Directed Acycline Graph)是图中无 环的有向图

- 一. 有向无环图
- 有向图中,可以用深度优先搜索(DFS),找出是否存在环:从某个顶点v出发,进行DFS,如果存在一条从顶点u到v的回边,则有向图中存在环
 - □ 下图DFS: 0, 1, 2, 4, 3

- 一. 有向无环图
- DAG图用于表达式的共享
 - □ 表达式((a +b) * (b * (c + d)) + (c + d) * e) * ((c + d) * e), 用二 叉树表示

- 一. 有向无环图
- DAG图用于表达式的共享
 - □ 表达式((a +b) * (b * (c + d)) + (c + d) * e) * ((c + d) * e),
 DAG图表示.
 - □ 可以节省存储空间

- 一. 有向无环图
- 有向无环是一类具有代表性的图,主要用于研究工程项目的工序问题、工程时间进度问题等。
- 一个工程(project)都可分为若干个称为活动(active)的子工程(或工序),各个子工程受到一定的条件约束:某个子工程必须开始于另一个子工程完成之后;整个工程有一个开始点(起点)和一个终点。
- 一个工程活动可以用有向无环图来描述

- 二. 拓扑排序
- 偏序关系
- 若集合X上的关系R是:
 - 自反的: x R x
 - 反对称的: x R y and y R x => x=y
 - □ 传递的: xRy & yRz => xRz
 - □ 则称R是集合X上的偏序关系,例如小于等于关系
 - □ 若P是A上的一个偏序关系,我们用a≤b来表示(a,b) ∈P

- 二. 拓扑排序
- 设关系R是集合X上的偏序,如果对每个x,y∈X, 必有xRy或者yRx,则称R是X上的全序关系
- ■偏序指集合中仅有部分成员之间可比较
- 全序指集合中全体成员之间均可比较
 - □ 下图是一个偏序关系,因为1,3没有先后关系
 - □ 如果人为地增加1,3先后关系,如1先于3,则右图变为全序,称为拓扑有序
 - □ 从图来说,全序表示任意两点之间至少存在一条路径

- 二. 拓扑排序
- 从偏序得到的全序称为拓扑有序
- ■由偏序得到拓扑有序的操作称为拓扑排序
- 拓扑排序算法:
 - (1) 在有向图中选一个没有前驱的顶点且输出之
 - (2) 从图中删除该顶点和所有以它为尾的弧重复(1)(2)两步,直到所有顶点输出为止
- 关系:通过拓扑排序操作得到拓扑有序序列

- 二. 拓扑排序
- 拓扑排序举例,最后输出拓扑排序结果: 0,1,3,2,4

- 二. 拓扑排序
- 拓扑排序程序算法:给出有向图邻接矩阵,求拓扑有序序列
 - (1) 逐列扫描矩阵,找出入度为0且编号最小的顶点v
 - (2) 输出v,并标识v已访问
 - (3) 把矩阵第v行全清0

重复上述步骤, 直到所有顶点输出为止

0	1	0	1	1
0	0	1	0	0
0	0	0	0	1
0	0	1	0	0
0	0	0	0	0

二. 拓扑排序

- 拓扑排序的作用:我们可以通过求解一个DAG图的拓扑有序序列,来求得一个项目中各个子活动之间的次序关系
 - □ 例如软件专业的学生必须学习一系列课程,某些课程是其他课程的 先修课,即课程之间有先后关系,求学生修课顺序

课程编号	课程名称	先决条件
$\mathbf{C_1}$	程序设计基础	无
C_2	离散数学	C_1
C_3	数据结构	C_1 , C_2
$\mathbf{C_4}$	汇编语言	C_1
C_5	语言的设计和分析	C_3 , C_4
C_6	计算机原理	C_{11}
\mathbf{C}_{7}	编译原理	C_3 , C_5
C_8	操作系统	C_3 , C_6
C_{o}	高等数学	 无
C_{10}	线性代数	C_{9}
C_{11}	普通物理	C_9
C_{12}	数值分析	C_9 , C_{10} , C_1

- 二. 拓扑排序
- 拓扑排序的作用
 - □根据表格得到课程之间优先 关系图
 - □根据DAG图,求得拓扑有序 序列

- 1. (C1, C2, C3, C4, C5, C7, C9, C10, C11, C6, C12, C8)
- 2. (C9, C10, C11, C6, C1, C12, C4, C2, C3, C5, C7, C8)

二. 拓扑排序

```
Status TopologicalSort (ALGraph G) (
   // 有向图G采用邻接表存储结构。
   // 若G无回路,则输出G的顶点的一个拓扑序列并返回 OK,否则 ERROR
   FindInDegree(G, indegree); // 对各顶点求入度 indegree[0..vernum -1]
   InitStack(S);
   // 建零入度顶点栈 S
   for (i=0; i<G.vexnum; ++ i)</pre>
       if (!indegree[i]) Push(S,i); // 入度为0者进栈
   count = 0; // 对输出顶点计数
   while (!StackEmpty(S)) {
       Pop(S, i);
       printf(i, G.vertices[i].data);
       ++count; // 输出i号顶点并计数
       for (p=G.vertices[i].firstarc; p; p=p->nextarc) {
          k = p-adjvex; // 对 i号顶点的每个邻接点的入度减1
          if(!(--indegree[k])) Push(S,k);// 若入度减为0,则入栈)
       } // for
   } // while
   if (count<G.vexnum) return ERROR; // 该有向图有回路
   else return OK;-
 //TopologicalSort
```

- 对工程的活动加以抽象:图中顶点表示活动,有向边表示活动之间的优先关系,这样的有向图称为顶点表示活动的网(Activity On Vertex Network, AOV网)。
- 与AOV网对应的还有AOE网,即以边表示活动的网
- 对于工程活动人们关心:
 - □ 工程能否顺利完成?影响工程的关键活动是什么?
 - □ 估算整个工程完成所必须的最短时间是多少?
 - □ 因此常采用AOE网估算工程的进度

- 图中顶点表示事件(Event),每个事件表示在其前的所有活动已经完成,其后的活动可以开始;弧表示活动,弧上的权值表示相应活动所需的时间或费用
 - 工程完成最短时间:从起点到终点的最长路径长度(路径上各活动 持续时间之和)
 - 长度最长的路径称为关键路径,关键路径上的活动称为关键活动。 关键活动是影响整个工程的关键

- 求AOE网中完成最短时间和关键路径
 - □ 设v₀是起点,从v₀到v_i的最长路径长度称为事件v_i的最早发生时间, 即是以v_i为尾的所有活动的最早发生时间
 - □ e(i):表示活动a_i的最早开始时间
 - \Box I(i): 在不影响进度的前提下,表示活动ai的最晚开始时间
 - □ *1*(i)-e(i)表示活动ai的时间余量,若*1*(i)-e(i)=0,表示活动ai是 关键活动
 - □ ve(i):表示事件vi的最早发生时间,即从起点到顶点vi的最长路 径长度;
 - □ v1(i):表示事件vi的最晚发生时间,即从终点到顶点vi的最短路 径长度;

- 求AOE网中完成最短时间和关键路径
 - □ 假设活动i由弧<j, k>表示,则j和k表示两个顶点
 - □ 顶点表示事件,即事件j表示活动i的开始,事件k表示活动i的结束
 - e(i)、I(i)、ve(j)、vI(k)的关系
 e(i) = ve(j)
 1(i) = v1(k) −dut(⟨j, k⟩)
 - 以顶点k为弧头的多条弧 $\langle j, k \rangle$, $j=0,1,\dots$, 存在公式 $ve(k) = Max\{ve(j) + dut(\langle j, k \rangle)\}$
 - □ 以顶点j为弧尾的多条弧<j, k>, k=0, 1, ·····, 存在公式 v1(j) = Min{v1(k) − dut(<j, k>)}

- 求完成最短时间和关键路径的方法
 - □ 利用拓扑排序求出AOE网的一个拓扑序列;
 - □ 从拓扑排序的序列的第一个顶点(源点)开始,按拓扑顺序依次计算每个事件的最早发生时间ve(i);
 - □ 从拓扑排序的序列的最后一个顶点(汇点)开始,按逆拓 扑顺序依次计算每个事件的最晚发生时间v/(i);

- 求完成最短时间和关键路径
 - □ 拓扑排序序列: (V₀, V₁, V₂, V₃, V₄, V₅, V₆, V₇, V₈)
 - □ 计算各个事件的ve(i)和v/(i)值

顶点	V ₀	V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	V ₇	V ₈
ve(i)	0	3	10	12	22	17	20	28	33
v <i>I</i> (i)	0	9	10	23	22	17	31	28	33

□ 计算各个活动的e(i)和/(i)值

边	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
E(i)	0	0	3	3	10	10	12	12	22	17	20	28
L(i)	6	0	14	9	10	10	24	24	22	17	31	28

- 三. 关键路径
- 求完成最短时间和关键路径的方法
 - □ 根据 *I*(i)-e(i)=0找出关键路径 (v₀, v₂, v₄, v₇, v₈) 和(v₀, v₂, v₅, v₇, v₈)
 - 关键路径活动
 <V₀, V₂>, <V₂, V₄>, <V₂, V₅>, <V₄, V₇>, <V₅, V₇>, <V₅, V₈>
- 用AOE网估算工程完成时间是非常有用的,并可以提高几 条关键活动的速度来缩短工期

```
Status TopologicalOrder (ALGraph G, Stack &T) {
// 有向网G 采用邻接表存储结构,求各顶点事件的最早发生时间 ve(全局变量).
// T为拓扑序列顶点栈, S 为零入度顶点栈。
// 若G无回路,则用栈T返回G的一个拓扑序列,且函数值为 OK,否则为 ERROR
   FindInDegree(G, indegree);
   // 对各顶点求入度 indegree[0..vernum-1], 建零入度顶点栈 S;
   InitStack(T); count=0; ve[o..G.vexnum-1]=0; // 初始化
   while(!stackEmpty(S)){
   Pop(s, j); Push(T, j); ++count; //j号顶点人T栈并计数
   for (p=G.vertices[j].firstarc; p; p=p->nextarc) {
       k = p-adjvex;
       if(--indegree[k]==0) Push(s, k); // 若入度减为0,则入栈
       if(ve[j]+*(p->info)>ve[k]) ve[k]=ve[j]+*(p->info);
   if(count<G.vexnum) return ERROR;</pre>
      else return OK;
```

```
Status CriticalPath (ALGraph G) {
   if(!TopologicalOrder(G, T)) return ERROR;
   vl[0..G.vexnum-1] = ve[G.vexnum-1];
   // 初始化各顶点事件的最迟发生时间
   while(!stackEmpty(T)) // 按拓扑逆序求各顶点的vl值
   for(Pop(T, j), p=G.vertices[j].firstarc; p; p=p->nextarc){
       k=p-adjvex; dut=*(p->info);
       if(vl[k]-dut<vl[j]) v[j]=vl[k]-dut;</pre>
   for(j=0; j<G.vexnum; ++j) // 求ee, el和关键活动
       for(p=G.vertices[j].firstarc; p; p=p->nextarc) {
           k=p-adjvex; dut=*(p->info);
           ee=ve[jl]; el=vl[k]-dut;
           tag=(ee == el)?'*': \';
           printf(j,k, dut, ee, el, tag); // 输出关键活动
  //CriticalPath
```

练习

- 假设一个工程的进度计划用AOE网表示,如图所示
 - ① 求出每个事件的最早发生时间和最晚发生时间。
 - ② 该工程完工至少需要多少时间?
 - ③ 求出所有关键路径和关键活动。

顶点	v ₀	V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	V ₇	V ₈	V 9
ve(i)	0	5	6	18	21	21	23	25	28	30
v/(i)	0	15	6	18	22	26	23	26	28	30

第七章总结

- 图的数据结构: G=(V, E), V是顶点, E是边或弧
 - □ 无向图的边(x, y),有向图的弧(x, y),带权值的图称为网
- 图的术语:
 - □ 度、入度、出度的计算
 - □ 路径、回路(环)、简单路径、连通、生成树
- 图的存储结构:
 - □ 邻接矩阵、邻接表和逆邻接表
 - □ 十字链表、邻接多重表
- 图的遍历:深度优先搜索、广度优先搜索
- 生出树: DFS生成树和BFS生成树
- 最小生成树:
 - □ 普里姆(Prim)算法,从点出发
 - □ 克鲁斯卡尔(Kruskal)算法,从边中选择
- 拓扑排序,根据AOV网求拓扑有序序列
- 关键路径,根据AOE图求关键路径、最早和最晚开始时间
- 最短路径:迪杰斯特拉(Dijkstra)算法