PROBLEM STATEMENT:-

TO PREDICT THE RAIN FALL BASED ON VARIOUS FEATURES OF THE DATASET

Importing All The Required Libraries

In [1]:

import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
import matplotlib.pyplot as plt
import seaborn as sns

STEP-1:Data Collection

In [2]:

df=pd.read_csv(r"C:\Users\thara\Downloads\RainFall.csv")
df

Out[2]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	Α
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	27
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	42
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	46
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	42
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	71
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	52
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	63
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	35
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	59
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	21

641 rows × 19 columns

STEP-2:Data Cleaning And Preprocessing

In [3]:

df.head()

Out[3]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0
4											•

In [4]:

df.tail()

Out[4]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AU
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217
4										•

In [5]:

```
df.describe()
```

Out[5]:

	JAN	FEB	MAR	APR	MAY	JUN	JUL
count	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000
mean	18.355070	20.984399	30.034789	45.543214	81.535101	196.007332	326.033697
std	21.082806	27.729596	45.451082	71.556279	111.960390	196.556284	221.364643
min	0.000000	0.000000	0.000000	0.000000	0.900000	3.800000	11.600000
25%	6.900000	7.000000	7.000000	5.000000	12.100000	68.800000	206.400000
50%	13.300000	12.300000	12.700000	15.100000	33.900000	131.900000	293.700000
75%	19.200000	24.100000	33.200000	48.300000	91.900000	226.600000	374.800000
max	144.500000	229.600000	367.900000	554.400000	733.700000	1476.200000	1820.900000
4							•

In [6]:

df.shape

Out[6]:

(641, 19)

In [7]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 641 entries, 0 to 640
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	STATE_UT_NAME	641 non-null	object
1	DISTRICT	641 non-null	object
2	JAN	641 non-null	float64
3	FEB	641 non-null	float64
4	MAR	641 non-null	float64
5	APR	641 non-null	float64
6	MAY	641 non-null	float64
7	JUN	641 non-null	float64
8	JUL	641 non-null	float64
9	AUG	641 non-null	float64
10	SEP	641 non-null	float64
11	OCT	641 non-null	float64
12	NOV	641 non-null	float64
13	DEC	641 non-null	float64
14	ANNUAL	641 non-null	float64
15	Jan-Feb	641 non-null	float64
16	Mar-May	641 non-null	float64
17	Jun-Sep	641 non-null	float64
18	Oct-Dec	641 non-null	float64

dtypes: float64(17), object(2)

memory usage: 95.3+ KB

In [8]:

```
df.isnull().any()
```

Out[8]:

STATE_UT_NAME False DISTRICT False JAN False False FEB MAR False APR False MAY False False JUN JUL False False AUG False SEP False 0CT NOV False DEC False ANNUAL False Jan-Feb False Mar-May False Jun-Sep False Oct-Dec False dtype: bool

In [10]:

```
df.isnull().sum()
```

Out[10]:

STATE_UT_NAME 0 DISTRICT 0 0 JAN FEB 0 MAR 0 APR 0 MAY 0 JUN 0 JUL 0 0 **AUG** SEP 0 0CT 0 NOV 0 0 DEC **ANNUAL** 0 Jan-Feb 0 0 Mar-May Jun-Sep 0 Oct-Dec 0 dtype: int64

```
In [11]:
df.columns
Out[11]:
Index(['STATE_UT_NAME', 'DISTRICT', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JU
       'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC', 'ANNUAL', 'Jan-Feb',
       'Mar-May', 'Jun-Sep', 'Oct-Dec'],
      dtype='object')
In [12]:
df.duplicated().sum()
Out[12]:
0
In [13]:
df['ANNUAL'].value_counts()
Out[13]:
ANNUAL
747.1
          9
2080.0
          4
1336.5
          3
1824.8
          3
2814.4
          3
1037.6
          1
907.2
          1
944.5
          1
1003.3
          1
3253.1
Name: count, Length: 591, dtype: int64
```

Feature Scaling:

To Split the data into training data and test data

```
In [14]:

x=df[["APR"]]
y=df["JAN"]

In [15]:

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=50)
```

STEP-3: Data Visualization

In [16]:

```
slice = [12, 25, 50, 36, 19]
activities = ['DISTRICT','JAN', 'FEB', 'MAR', 'APR']
cols = ['r', 'b', 'c', 'g', 'orange']
plt.pie(slice,labels = activities,colors=cols,startangle=150,shadow=True,explode=(0, 0.1
plt.title('Months')
```

Out[16]:

Text(0.5, 1.0, 'Months')

Months

In [17]:

sns.pairplot(df)

Out[17]:

<seaborn.axisgrid.PairGrid at 0x2393a533bb0>

In [18]:

```
df=df[['JAN','FEB','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```


STEP-4:- Data Modelling

Applying LINEAR REGRESSION

In [19]:

```
from sklearn.linear_model import LinearRegression
reg=LinearRegression()
reg.fit(X_train,y_train)
print(reg.intercept_)
coeff_=pd.DataFrame(reg.coef_,x.columns,columns=['coefficient'])
coeff_
```

13.76772905796956

-- ee: -: - -- t

Out[19]:

	coefficient				
APR	0.08298				

In [20]:

```
score=reg.score(X_test,y_test)
print(score)
```

0.13760810725167383

In [21]:

predictions=reg.predict(X_test)

In [22]:

plt.scatter(y_test,predictions)

Out[22]:

<matplotlib.collections.PathCollection at 0x2394ebfa8c0>

In [23]:

```
df500=df[:][:500]
sns.lmplot(x="APR",y="JAN",order=2,ci=None,data=df500)
plt.show()
```


In [24]:

```
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
reg.fit(X_train,y_train)
reg.fit(X_test,y_test)
```

Out[24]:

LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [25]:

```
y_pred=reg.predict(X_test)
plt.scatter(X_test,y_test,color='ORANGE')
plt.plot(X_test,y_pred,color='BLUE')
plt.show()
```


In [26]:

```
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 Score:",r2)
```

R2 Score: 0.11486832305419492

RIDGE MODEL

In [27]:

```
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
```

In [28]:

```
features= df.columns[0:5]
target= df.columns[-5]
```

In [29]:

```
x=np.array(df['APR']).reshape(-1,1)
y=np.array(df['JAN']).reshape(-1,1)
```

In [30]:

```
x= df[features].values
y= df[target].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=17)
```

In [31]:

```
ridgeReg=Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train_score_ridge=ridgeReg.score(x_train,y_train)
test_score_ridge=ridgeReg.score(x_test,y_test)
```

In [32]:

```
print("\n Ridge Model:\n")
print("the train score for ridge model is{}".format(train_score_ridge))
print("the test score for ridge model is{}".format(test_score_ridge))
```

Ridge Model:

the train score for ridge model is0.9999999792491524 the test score for ridge model is0.9999999887465535

In [33]:

```
lr=LinearRegression()
```

In [34]:

```
plt.figure(figsize=(10,10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,colo
plt.plot(features,alpha=0.4,linestyle='none',marker="o",markersize=7,color='BLUE',label=
plt.xticks(rotation=90)
plt.legend()
plt.show()
```


LASSO MODEL

In [35]:

```
print("\n Lasso Model:\n")
lasso=Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls=lasso.score(x_train,y_train)
test_score_ls=lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is{}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.99912857000705 The test score for ls model is 0.9991969731663574

In [36]:

```
pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="hist")
```

Out[36]:

<Axes: ylabel='Frequency'>

In [37]:

```
from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10],random_state=0).fit(x_train,y_train)
print(lasso_cv.score(x_train,y_train))
print(lasso_cv.score(x_test,y_test))
```

- 0.999999999999198
- 0.99999999999954

In [38]:

```
plt.figure(figsize= (10,10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,colo
plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',
plt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="Aqua",label=
plt.xticks(rotation=90)
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```


ELASTICNET

In [39]:

```
from sklearn.linear_model import ElasticNet
eln=ElasticNet()
eln.fit(x,y)
print(eln.coef_)
print(eln.intercept_)
print(eln.score(x,y))
```

```
[ 9.93078025e-01 4.17330119e-03 0.00000000e+00 -2.56844715e-04 4.33064019e-04] 0.04331617537314969 0.9999905490942288
```

In [45]:

```
y_pred_elastic = eln.predict(x_train)
mean_squared_error=np.mean((y_pred_elastic - y_train)**2)
print(mean_squared_error)
```

0.004278888506659882

Conclusion: