EXERCISES 14

1. The local ice cream shop keeps track of how much ice cream they sell versus the temperature on that day, here are their figures for the last 12 days:

Ice Cream Sales vs Temperature		
Temperature °C	Ice Cream Sales	
14.2°	\$215	
16.4°	\$325	
11.9°	\$185	
15.2°	\$332	
18.5°	\$406	
22.1°	\$522	
19.4°	\$412	
25.1°	\$614	
23.4°	\$544	
18.1°	\$421	
22.6°	\$445	
17.2°	\$408	

Calculate the correlation coefficient. Predict the Ice Cream Sales for Temperature 27°C.

2. The following table gives the heights and weights of 10 friends:

Name	Height (cm)	Weight (kg)
Albert	180	87
Beth	176	65
Cindy	144	52
David	195	94
Emily	159	87
Frank	185	79
Gary	166	59
Helen	173	64
Ida	149	45
Jeremy	168	77

Calculate the correlation coefficient. Estimate the linear regression line.

3. The following table gives the math scores and times taken to run 100 m for 10 friends:

Name	Math score (%)	Time taken to run 100 m (secs)
Albert	56	11.3
Beth	29	12.9
Cindy	45	11.9
David	93	10.2
Emily	67	11.1
Frank	38	12.5
Gary	85	10.8
Helen	77	10.5
Ida	56	12.0
Jeremy	71	10.9

Calculate the correlation coefficient. Estimate the linear regression line.

- **4.** Crickets make their chirping sounds by rapidly sliding one wing over the other. The faster they move their wings, the higher the chirping sound that is produced. Scientists have noticed that crickets move their wings faster in warm temperatures than in cold temperatures. Therefore, by listening to the pitch of the chirp of crickets, it is possible to tell the temperature of the air. The table below gives the recorded pitch (in vibrations per second) of a cricket chirping recorded at 15 different temperatures (in Fahrenheit):
- 5.

Chirps/Second	Temperature
20	89
16	72
20	93
18	84
17	81
16	75
15	70
17	82
15	69
16	83
15	80
17	83
16	81
17	84
14	76

What if someone asked you what the temperature was, but you couldn't use a thermometer? Could you use the crickets?

If yes: What the temperature of the air if crickets Chirps/Second = 10?

6. *Farr's study of elevation and cholera mortality*. William Farr (1807–1883) is a titan in the history of epidemiology and public health. He was the first Registrar General of a national vital statistics organization and he innovated many of the methods still used today to collect and analyze population-based health statistics. At the same time, like many of his contemporaries, Farr erroneously believed that epidemics were caused by spontaneous generations and miasmas (bad air) that emanated from the environment; Farr was *not* a contagionist. In 1852, Farr reported on the association between low elevation and cholera. Some of his data are reported below.

i	Mean elevation (feet)	Cholera mortality (per 10,000)
1	10	102
2	30	65
3	50	34
4	70	27
5	90	22
6	100	17
7	350	8

Calculate the correlation coefficient. Predict Cholera mortality for mean elevation = 250 feet.

6. A professor in the School of Business in a university polled a dozen colleagues about the number of professional meetings professors attended in the past five years (x) and the number of papers submitted by those to refereed journals (y) during the same period. The summary data are given as follows:

$$n = 12$$
, $\bar{x} = 4$, $\bar{y} = 12$, $\sum_{i=1}^{n} x_i^2 = 232$, $\sum_{i=1}^{n} x_i y_i = 318$

Fit a simple linear regression model between x and y by finding out the estimates of intercept and slope. Comment whether attending professional meetings would result in publishing more papers.

7. The data were obtained in a study of the relationship between the weight(x) and chest size(y) of infants at birth. The summary data are given as follows:

$$cov(x,y) = 21.8507$$
, $var(x) = 9.9955$, $var(y) = 77.62$, $n = 9$

- (a) Calculate r. Interpret it.
- (b) Test the null hypothesis that $\rho = 0$ against the alternative that $\rho \neq 0$ at the 0.01 level of significance.
- **8.** A study was made on the amount of converted sugar (y) in a certain process at various temperatures (x). The summary data are given as follows:

$$n = 11, \sum_{i=1}^{n} x_i = 16.5, \sum_{i=1}^{n} y_i = 100.4, \sum_{i=1}^{n} x_i^2 = 25.85,$$

$$\sum_{i=1}^{n} y_{i}^{2} = 923.58, \sum_{i=1}^{n} x_{i} y_{i} = 152.59$$

- (a) Calculate r. Interpret it.
- (b) Test the null hypothesis that $\rho = 0$ against the alternative that $\rho \neq 0$ at the 0.05 level of significance.
- (c) Estimate the linear regression line. (y depends on x)
- (d) Estimate the mean amount of converted sugar produced when the coded temperature is 1.75.
- **9.** A study was made by a retail merchant to determine the relation between weekly advertising cost (x) and sales (y). The summary data are given as follows:

$$n=12, \, \sum_{i=1}^n x_i^{} = 410\, , \, \sum_{i=1}^n y_i^{} = 5\,\, 445\, , \, \sum_{i=1}^n x_i^2^{} = 15\,\, 650,$$

$$\sum_{i=1}^{n} y_{i}^{2} = 2 \ 512 \ 625, \sum_{i=1}^{n} x_{i} y_{i} = 191 \ 325$$

- (a) Calculate r. Interpret it.
- (b) Test the null hypothesis that $\rho = 0$ against the alternative that $\rho \neq 0$ at the 0.02 level of significance.
- (c) Estimate the linear regression line. (y depends on x)
- (d) Estimate the weekly sales when advertising costs are \$35.