Exercices de révision pour l'examen final

4 décembre 2019

Sur cette matière, vous serez aussi évalués sur la qualité de votre rédaction. Pratiquez-vous dès maintenant à bien rédiger!

Partie 1. Géométrie dans l'espace

Exercice 1.

Soit \mathcal{P}_1 le plan défini par les points A = (1, -2, 4), B = (0, 5, -1) et C = (2, 3, 0) et \mathcal{P}_2 le plan de vecteur normal $\vec{n_2} = (1, 0, 3)$ et passant par le point D = (4, 1, 7).

Vérifier si les plans sont sécants ou parallèles. S'ils sont sécants, trouver une équation paramétrique de leur droite d'intersection.

Exercice 2.

Dans un repère orthonormé d'origine O, on considère les points

$$A = (-2, 1, 0), \quad B = (1, 7, 4), \quad C = (-8, -11, -8)$$

 $D = (-1, 3, 4), \quad E = (2, 9, 8) \quad \text{et} \quad F = (0, 5, 4)$

- 1. Les points A, B et C définissent-ils un plan?
- 2. Montrer que les plans \mathcal{P}_{ABD} et \mathcal{P}_{CEF} sont parallèles.

Partie 2. Déterminants et inverses

Exercice 3. Pour chacune des matrices suivantes, calculer son déterminant puis son inverse s'il existe. (Pratiquez les 2 méthodes de calcul d'inverse.)

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ -1 & -1 & 5 \end{pmatrix} \quad B = \begin{pmatrix} 4 & 2 \\ -1 & 5 \end{pmatrix} \quad C = \begin{pmatrix} -3 & 1 & -4 \\ 0 & 2 & -5 \\ 0 & 2 & -1 \end{pmatrix}$$

Exercice 4.

On a les matrices suivantes.

$$M = \begin{pmatrix} 0 & 3 & 9 \\ 1 & 0 & 2 \\ -1 & 1 & 2 \end{pmatrix} \qquad M' = \begin{pmatrix} 0 & 3 & 9 & a \\ 1 & 0 & 2 & b \\ -1 & 1 & 2 & c \end{pmatrix}$$

1. Utiliser l'algorithme de Gauss-Jordan pour montrer que la matrice échelonnée réduite de M^\prime est

$$\left(\begin{array}{cccc}
1 & 0 & 0 & \frac{2}{3}a - b - 2c \\
0 & 1 & 0 & \frac{4}{3}a - 3b - 3c \\
0 & 0 & 1 & -\frac{1}{3}a + b + c
\end{array}\right)$$

- 2. Sans calcul supplémentaire, en déduire la matrice échelonnée réduite de M. Quel est le rang de M?
- 3. M est-elle inversible? Justifier. Si oui, calculer son inverse.
- 4. Donner la ou les solution(s) du système suivant :

$$\begin{cases} 3x_2 + 9x_3 &= 9\\ x_1 + 2x_3 &= 3\\ -x_1 + x_2 + 2x_3 &= 6 \end{cases}$$

Exercice 5.

On donne les matrices A, B et C suivantes.

$$A = \begin{pmatrix} 1 & -1 & -3 \\ 0 & 2 & 5 \\ 0 & 0 & 7 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 4 & 10 \\ 1 & -1 & -3 \\ 2 & -2 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} -4 & 1 \\ 8 & -3 \end{pmatrix}$$

- 1. Calculer le déterminant de A.
- 2. Montrer que l'on peut passer de A à B par des opérations élémentaires de lignes. En déduire le déterminant de B.
- 3. Calculer le déterminant de C. Donner sans calcul supplémentaire le déterminant de C^T .

Partie 3. Espaces vectoriels

Exercice 6.

Voici une série de sous-ensembles, déterminer lesquels sont des sous-espaces vectoriels et lesquels n'en sont pas.

(a)
$$H_1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = -x_2, x_3 = 2x_4\}$$

(b)
$$H_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = x_2^2\}$$

(c)
$$H_3 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = x_2 + x_3 + x_4 \}$$

(d)
$$H_4 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = x_2 + 1\}$$

Exercice 7. Voici une série d'applications, déterminer lesquelles sont des transformations linéaires et lesquelles n'en sont pas.

(a)
$$T_1: \mathbb{R}^3 \to \mathbb{R}^3$$
 définie par $(x, y, z) \mapsto (x - 2y, 3z + 2, y + z)$

(b)
$$T_2: \mathbb{R}^3 \to \mathbb{R}^3$$
 définie par $(x, y, z) \mapsto (x + y - 2z, 2x - 2y, y - z)$

- (c) $T_3: \mathbb{R}^3 \to \mathbb{R}^2$ définie par $(x, y, z) \mapsto (x + y, y z)$
- (d) $T_4: \mathbb{R}^2 \to \mathbb{R}^3$ définie par $(x, y) \mapsto (2x, x + 3y, y x)$
- (e) $T_5: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $(x, y) \mapsto (2x + 2, 3y + 3)$
- (f) $T_6: \mathbb{R}^2 \to \mathbb{R}^4$ définie par $(x, y) \mapsto (y, -x, x, -y)$

Exercice 8. Pour les transformations de l'exercice précédent qui sont des transformations linéaires, calculer leur noyau.

Exercice 9. On donne les bases suivantes :

$$\mathcal{B}_1 = \{(1,0,0), (1,2,0), (1,2,3)\}$$

$$\mathcal{B}_2 = \{(1,0,-1), (0,-1,1), (0,-1,0)\}$$

Et on note \mathcal{B} la base standard : $\mathcal{B} = \{(1,0,0), (0,1,0), (0,0,1)\}.$

- 1. Montrer que \mathcal{B}_1 est une famille génératrice de \mathbb{R}^3 et en déduire que c'est bien une base.
- 2. Montrer que \mathcal{B}_2 est une famille libre de \mathbb{R}^3 et en déduire que c'est bien une base.
- 3. Calculer la matrice de passage $P_{\mathcal{B}_2 \leftarrow \mathcal{B}_1}$ de la base \mathcal{B}_1 à la base \mathcal{B}_2 .
- 4. Calculer la matrice de passage $P_{\mathcal{B}_1 \leftarrow \mathcal{B}_2}$ de la base \mathcal{B}_2 à la base \mathcal{B}_1 .
- 5. Calculer la matrice de passage $P_{\mathcal{B}_2 \leftarrow \mathcal{B}}$ de la base \mathcal{B} à la base \mathcal{B}_2 .
- 6. Calculer la matrice de passage $P_{\mathbb{B}\leftarrow\mathbb{B}_2}$ de la base \mathbb{B}_2 à la base \mathbb{B} .
- 7. Soit $\vec{u}_{\mathcal{B}} = (2, 1, -3)$. Calculer $\vec{u}_{\mathcal{B}_1}$.