Lawrence Livermore National Laboratory

ZFS on Linux for Lustre LUG11 April 13, 2011

Brian Behlendorf

2007

- Livermore raises Idiskfs scalability/performance concerns
 - Fsck, filesystem size, random IO, data integrity, etc
- Alternate backend is needed for large lustre filesystems
- ZFS identified as technically the best solution
 - Addresses all known Idiskfs limitations
 - Proven production quality implementation
 - Licensing concerns can be addressed
 - Must be ported to Linux
- CFS/Sun start ZFS/Lustre user space implementation

2008

- Livermore starts porting ZFS to the kernel
 - Intended to determine viability of a kernel port
 - No unsurmountable technical issues discovered
 - Initial performance results are encouraging
- Sun Lustre-osd development
 - Shift in strategy, the Livermore kernel port is adopted
 - Brian joins the Sun Lustre-osd development team
 - Continued Lustre-osd development
- Licensing concerns unresolved... work continues...

- **2009**
 - Livermore ZFS development
 - Focus on a production quality ZFS port
 - Built quarter scale prototype ZFS/Lustre filesystem
 - Sun/Oracle Lustre-osd development
 - Oracle acquires Sun
 - Lustre-osd development continues unchanged
 - Zerocopy, grants, large dnodes, quotas, utilities, etc
 - Licensing concerns unresolved... work continues...

- **2010**
 - Livermore ZFS development
 - Linux integration (utilities, udev, zevents, disk failures)
 - Built a full scale ZFS/Lustre filesystem
 - Oracle Lustre-osd development
 - Announced ZFS/Lustre only available for Solaris
 - Lustre-osd development continues on Linux
 - Oracle cancels Lustre... progress is delayed...
 - Licensing concerns unresolved... work continues at LLNL...

- **2011**
 - Livermore ZFS development
 - ZFS Posix Layer (ZPL) added
 - Lustre-osd development branch publicly available
 - Whamcloud Lustre-osd development
 - Contracted by Livermore to complete Lustre-osd
 - Most of the original Lustre-osd developers are at Whamcloud
 - Licensing concerns unresolved... work continues...
- Late 2011
 - Livermore plans a ZFS/Lustre filesystem for Sequoia
 - 50 PB capacity, 512 GB/s 1 TB/s bandwidth

ZFS Overview

- Developed by Sun (now Oracle) on Solaris
- Combined filesystem, logical volume manager, RAID
- Copy-on-write
- Built-in data integrity
- Intelligent online scrubbing and resilvering
- Very large filesystem limits

LLNL's Reasons for porting ZFS

- Lustre servers currently use ext4 (ldiskfs)
 - Random writes bound by disk IOPS rate, not disk bandwidth
 - OST size limits
 - fsck time is unacceptable
 - Expensive hardware required to make disks reliable
- Late 2011 requirement:
 - 50PB, 512GB/s 1 TB/s
 - At a price we can afford
- COW sequentializes random writes
 - No longer bound by drive IOPS
- Single volume size limit of 16 EiB
- Zero fsck time. On-line data integrity and error handling
- Expensive RAID controllers are unnecessary

Licensing Concerns

CDDL = Common Development and Distribution License GPL = (Gnu) General Public License

Licensing Concerns

- Distributing Source
 - CDDL is an open source license
 - CDDL provides an explicit patent license
 - ZFS changes contributed as CDDL code
 - ZFS sources kept separate from all GPL code
- Distributing Binaries
 - Linux kernel allows non-GPL third party modules
 - Nvidia, ATI, etc...
 - Linus views the kernel module interface as LGPL
 - ZFS uses no GPL-only symbols
 - Included headers do not make a derived work

Licensing Concerns

- ZFS is NOT a derived work of Linux
 - "It would be rather preposterous to call the Andrew FileSystem a 'derived work' of Linux, for example, so I think it's perfectly OK to have a AFS module, for example."
 - Linus Torvalds
 - "Our view is that just using structure definitions, typedefs, enumeration constants, macros with simple bodies, etc., is NOT enough to make a derivative work. It would take a substantial amount of code (coming from inline functions or macros with substantial bodies) to do that."
 - Richard Stallman (The FSF's view)

Solaris Porting Layer Linux/ZFS Glue

ZFS and Lustre Components

Ported by LLNL

CFS → **Sun** → **Oracle** → **Whamcloud**

ZFS/Lustre Prototype (Zeno)

OSS SSU (Zeno)

Component	Bandwidth
QDR IB	25.6 GB/s
Host SAS	96.0 GB/s
JBOD SAS	96.0 GB/s
Disk	56.0 GB/s

- 896 TB / SSU
- 25.6 GB/s
- 70 2TB Disks / Host
 - 7 8+2 Raid-Z2 groups
 - 1 112 TB OST / Host

OSS SSU (Zeno3)

Component	Bandwidth
QDR IB	38.4 GB/s
Host SAS	38.4 GB/s
JBOD SAS	96.0 GB/s
Disk	60.0 GB/s

- 960 TB / SSU
- 38.4 GB/s
- 50 2TB Disks / Host
 - 5 8+2 Raid-Z2 groups
 - 1 80TB OST / Host

ZFS Performance Comparison

- Same number of drives
- SATA vs SAS disk
- RAID-Z2 vs RAID-6
- Write Performance is Limited by the ZFS Port
- Read Performance is Limited by Lustre/CPU
- ZFS is unoptimized, this can all be improved!

Single Node Write Performance

ZPIOS Write Performance

- Write performance is consistent with Lustre
- Lustre workload
 - Random 1MiB I/Os
 - 128 thrs to 4096 objs
- 60 MiB/s per disk for small pools (10 disks)
- Limited by taskq when scaled up
- This is fixable

Total Disks (10 per vdev)

Single Node Read Performance

ZPIOS Read Performance

- Read performance is significantly better than Lustre
- Lustre Workload
 - Random 1MiB I/Os
 - 128 thrs to 4096 objs
- Shows good scaling
- Prefetch disabled
- 50-60 MiB/s per disk even for large pools
- >90% CPU utilization when using 70 disks
- Can be optimized

More Information

- ZFS & SPL
 - http://zfsonlinux.org
 - _ Mailing Lists
 - _ zfs-announce@zfsonlinux.org
 - _ zfs-discuss@zfsonlinux.org
 - _ zfs-devel@zfsonlinux.org
 - Download software
 - Documentation
- Lustre support for ZFS
 - http://zfsonlinux.org/lustre.html
- Licenses
 - CDDL http://hub.opensolaris.org/bin/view/Main/licensing_faq
 - GPLv2 http://www.gnu.org/licenses/gpl-2.0.html
 - Linus http://linuxmafia.com/faq/Kernel/proprietary-kernel-modules.html
 - RMS http://lkml.indiana.edu/hypermail/linux/kernel/0301.1/0362.html

