

Contents

1	Sym	ulacja k	komputerowa zaniku sygnału luminescencyjnego w skal	eniach	1
2	Clas	s Index	x		3
	2.1	Class I	List		3
3	Clas	s Docu	umentation		5
	3.1	Crysta	al Class Reference		5
		3.1.1	Detailed Description		6
		3.1.2	Constructor & Destructor Documentation		6
			3.1.2.1 Crystal()		6
		3.1.3	Member Function Documentation		6
			3.1.3.1 calculateDistance()		6
			3.1.3.2 calculateTau()		7
			3.1.3.3 changeTime()		7
			3.1.3.4 startSimulation()		8
			3.1.3.5 tunnelEffect()		8
			3.1.3.6 tunnelEffectProbability()		8
	3.2	Electro	on Class Reference		9
		3.2.1	Detailed Description		9
		3.2.2	Constructor & Destructor Documentation		9
			3.2.2.1 Electron()		9
		3.2.3	Member Function Documentation		9
			3.2.3.1 setX()		9
			3.2.3.2 setY()		10

ii CONTENTS

		3.2.3.3	setZ()	. 10
3.3	Electro	nHole Cla	ass Reference	. 10
	3.3.1	Detailed	Description	. 11
	3.3.2	Construc	ctor & Destructor Documentation	. 11
		3.3.2.1	ElectronHole()	. 11
	3.3.3	Member	Function Documentation	. 11
		3.3.3.1	getEnergy()	. 11
		3.3.3.2	getTrap()	. 11
		3.3.3.3	getX()	. 12
		3.3.3.4	getY()	. 12
		3.3.3.5	getZ()	. 12
		3.3.3.6	nullTrap()	. 12
3.4	Trap C	lass Refere	ence	. 12
	3.4.1	Detailed	Description	. 13
	3.4.2	Construc	ctor & Destructor Documentation	. 13
		3.4.2.1	Trap()	. 13
	3.4.3	Member	Function Documentation	. 13
		3.4.3.1	getEnergy()	. 13
		3.4.3.2	getX()	. 13
		3.4.3.3	getY()	. 14
		3.4.3.4	getZ()	. 14
		3.4.3.5	isOccupied()	. 14
		3.4.3.6	removeElectron()	. 14
		3.4.3.7	setElectron()	. 14
Index				17

Chapter 1

Symulacja komputerowa zaniku sygnału luminescencyjnego w skaleniach

2	Symulacja komputerowa zaniku sygnału luminescencyjnego w skaleniach
	Congreted by Doyugan

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Crystal	 			 															 		Ę
Electron	 			 															 		Ş
ElectronHole	 			 															 		10
Trap	 			 															 		12

4 Class Index

Chapter 3

Class Documentation

3.1 Crystal Class Reference

```
#include <Crystal.h>
```

Public Member Functions

- Crystal (unsigned long n)
- Crystal (long long int n_el, long long n_holes, double min, double max)
- double changeTime (unsigned long time) const
- void startSimulation (int time)
- void tunnelEffect (Trap &trap, int time)
- std::vector< Trap > getTraps () const
- std::vector< Electron * > getElectrons () const
- std::vector < ElectronHole* > getElectronHoles () const
- void removeAll ()
- unsigned long countElectrons () const
- void saveToFile (std::string)

Static Public Member Functions

static double tunnelEffectProbability (double time, double tau)

Private Member Functions

- double calculateTau (double distance, ElectronHole *el_hole, const Trap &trap) const
- double calculateDistance (const Trap &trap, const ElectronHole *hole) const

Private Attributes

```
    const double S = 3e15
        wartość stałej 'attempt-to-escape frequency'
    std::map< unsigned long, unsigned long > amount_electrons
        mapa klucz - czas, wartosc - ilosc elektronow w stanie wzbudzonym
    std::vector< Trap > el_traps
        wektor przechowujący wszystkie pułapki
    std::vector< Electron * > electrons
        wektor przechowujący wskaźniki do elektronów
    std::vector< ElectronHole * > electron_holes
```

wektor przechowujący wskaźniki do dziur elektronowych

3.1.1 Detailed Description

Klasa reprezentująca kryształ

3.1.2 Constructor & Destructor Documentation

3.1.2.1 Crystal()

Konstruktor

Parameters

n⊷	ilosc obiektów elektronu do stworzenia
_el	
n⊷	ilosc obiektów dziury elektronowej do stworzenia
_el	
min	dolna granica którą mogą przyjmować współrzędne cząstek
max	górna granica którą mogą przyjmować współrzędne cząstek

3.1.3 Member Function Documentation

3.1.3.1 calculateDistance()

Funkcja do obliczania odległości między pułapką a dziurą

Parameters

trap	referencja do pułapki
hole	wskaznik na dziurę elektronową

Returns

odległość między parametrami

3.1.3.2 calculateTau()

Funkcja do obliczania wartosci tau

See also

calculateDistance()

Parameters

distance	dystans do przetunelowania
el_hole	wskaznik na dziurę elektronową
trap	referencja do pułapki

Returns

wartość tau

3.1.3.3 changeTime()

```
double Crystal::changeTime (
          unsigned long time ) const
```

Funkcja zmieniajaca jednostę czasu

Parameters

time	czas do zamiany

Returns

czas podany w jednostce log10(t/2dni)

3.1.3.4 startSimulation()

```
void Crystal::startSimulation ( int \ \textit{time} \ )
```

Funkcja rozpoczynająca symulacje

Parameters

time	symulowany czas działania
------	---------------------------

3.1.3.5 tunnelEffect()

Funkcja wykonująca efekt tunelowania

Parameters

trap	referencja do pułapki
time	czas

3.1.3.6 tunnelEffectProbability()

Funkcja do obliczania prawdopodobienstwa NIEZAJŚCIA tunelowania

Parameters

time	czas
tau	wartość tau

See also

calculateTau()

Returns

wartość prawdopodobieństwa

The documentation for this class was generated from the following files:

- C:/Users/olav/ClionProjects/Dissertation/Crystal.h
- $\bullet \ \ C:/Users/olav/ClionProjects/Dissertation/Crystal.cpp$

3.2 Electron Class Reference

```
#include <Electron.h>
```

Public Member Functions

- Electron (std::vector< double > pos)
- double getX () const
- double getY () const
- double getZ () const
- void setX (double x)
- void setY (double y)
- void setZ (double z)

Private Attributes

std::vector< double > position
 wektor współrzędnych elektronu

Friends

std::ostream & operator<< (std::ostream &s, const Electron &v)

3.2.1 Detailed Description

Klasa reprezentująca elektron

3.2.2 Constructor & Destructor Documentation

3.2.2.1 Electron()

```
Electron::Electron ( {\tt std::vector} < {\tt double} \ > \ pos \ )
```

Konstruktor tworzy obiekt o podanych wspolrzednych

Parameters

```
pos wektor współrzędnych
```

3.2.3 Member Function Documentation

3.2.3.1 setX()

```
void Electron::setX (
```

```
double x )
```

Zmianna x-owej wartości współrzędnej

Parameters

```
x nowa wartość współrzędnej
```

3.2.3.2 setY()

Zmianna y-owej wartości współrzędnej

Parameters

```
y nowa wartość współrzędnej
```

3.2.3.3 setZ()

```
void Electron::setZ ( double z )
```

Zmianna z-owej wartości współrzędnej

Parameters

```
z nowa wartość współrzędnej
```

The documentation for this class was generated from the following files:

- · C:/Users/olav/ClionProjects/Dissertation/Electron.h
- C:/Users/olav/ClionProjects/Dissertation/Electron.cpp

3.3 ElectronHole Class Reference

```
#include <ElectronHole.h>
```

Public Member Functions

- ElectronHole (std::vector< double > pos, Trap &trap)
- double getEnergy () const
- double getX () const
- double getY () const
- double getZ () const
- Trap * getTrap ()
- void nullTrap ()

Private Attributes

```
    std::vector< double > position
        wektor współrzędnych dziury
    Trap * trap = NULL
        wskaźnika na obiekt typu Trap (informacja czy obiekt znajduje się w pułapce)
    double energy = 1.
        energia dziury [w eV]
```

Friends

• std::ostream & operator<< (std::ostream &s, const ElectronHole &v)

3.3.1 Detailed Description

Klasa reprezentująca dziurę elektronową

3.3.2 Constructor & Destructor Documentation

3.3.2.1 ElectronHole()

```
ElectronHole::ElectronHole (
          std::vector< double > pos,
          Trap & trap )
```

Konstruktor tworzy obiekt o podanych wspolrzednych i łączy go z pułapką

Parameters

pos	wektor współrzędnych
trap	referencja do pułapku

3.3.3 Member Function Documentation

3.3.3.1 getEnergy()

```
double ElectronHole::getEnergy ( ) const
```

Returns

zwraca energię dziury

3.3.3.2 getTrap()

```
Trap* ElectronHole::getTrap ( )
```

Returns

zwraca adres do pułapki w której się obecne znajduje

```
3.3.3.3 getX()

double ElectronHole::getX ( ) const

Returns
   zwraca x-ową współrzędną

3.3.3.4 getY()

double ElectronHole::getY ( ) const

Returns
   zwraca y-ową współrzędną

3.3.3.5 getZ()

double ElectronHole::getZ ( ) const

Returns
   zwraca z-ową współrzędną

3.3.3.6 nullTrap()

void ElectronHole::nullTrap ( )
```

usuwa dziurę z pułapki, ustawia wskaznik trap na NULL

The documentation for this class was generated from the following files:

- C:/Users/olav/ClionProjects/Dissertation/ElectronHole.h
- C:/Users/olav/ClionProjects/Dissertation/ElectronHole.cpp

3.4 Trap Class Reference

```
#include <Trap.h>
```

Public Member Functions

- Trap (std::vector< double > position)
- double getEnergy () const
- double getX () const
- double getY () const
- double getZ () const
- void setElectron (Electron *electron1)
- Electron * getElectron () const
- void removeElectron (std::vector< double > position)
- bool isOccupied () const

Private Attributes

```
    std::vector< double > position
        wektor współrzędnych pułapki
    Electron * electron = NULL
```

wskaznik na uwięziony elektron

• double energy = 2.

energia pułapku [w eV]

Friends

std::ostream & operator<< (std::ostream &s, const Trap &v)

3.4.1 Detailed Description

Klasa reprezentująca pułapkę

3.4.2 Constructor & Destructor Documentation

3.4.2.1 Trap()

Konstruktor tworzy obiekt o podanych wspolrzednych

Parameters

position wektor współrzędnych

3.4.3 Member Function Documentation

3.4.3.1 getEnergy()

```
double Trap::getEnergy ( ) const
```

Returns

zwraca energię pułapku

3.4.3.2 getX()

```
double Trap::getX ( ) const
```

Returns

zwraca x-ową współrzędną

```
3.4.3.3 getY()
double Trap::getY ( ) const
Returns
     zwraca y-ową współrzędną
3.4.3.4 getZ()
double Trap::getZ ( ) const
Returns
     zwraca z-ową współrzędną
3.4.3.5 isOccupied()
bool Trap::isOccupied ( ) const
sprawdza czy w pułapce znajduje się elektron
Returns
     TRUE jesli elektron jest spułapkowany
3.4.3.6 removeElectron()
void Trap::removeElectron (
             std::vector< double > position )
Usuwa elektorn z pułapki
Parameters
 position nowa pozycja elektronu
3.4.3.7 setElectron()
void Trap::setElectron (
```

Electron * electron1)

pułapkuje elektron, ustawia wskaźnik na niego

Generated by Doxygen

Parameters

electron1 elektron do spułapkowania

The documentation for this class was generated from the following files:

- C:/Users/olav/ClionProjects/Dissertation/Trap.h
- $\bullet \ \ C:/Users/olav/ClionProjects/Dissertation/Trap.cpp$

Index

removeElectron

calculateDistance	Trap, 14
Crystal, 6	
calculateTau	setElectron
Crystal, 7	Trap, 14
changeTime	setX
Crystal, 7	Electron, 9
Crystal, 5	setY
calculateDistance, 6	Electron, 10
calculateTau, 7	setZ
changeTime, 7	Electron, 10
Crystal, 6	startSimulation
startSimulation, 7	Crystal, 7
tunnelEffect, 8	
tunnelEffectProbability, 8	Trap, 12
	getEnergy, 13
Electron, 9	getX, 13
Electron, 9	getY, 13
setX, 9	getZ, 14
setY, 10	isOccupied, 14
setZ, 10	removeElectron, 14
ElectronHole, 10	setElectron, 14
ElectronHole, 11	Trap, 13
getEnergy, 11	tunnelEffect
getTrap, 11	Crystal, 8
getX, 11	tunnelEffectProbability
getY, 12	Crystal, 8
getZ, 12	
nullTrap, 12	
17	
getEnergy	
ElectronHole, 11	
Trap, 13	
getTrap	
ElectronHole, 11	
getX	
ElectronHole, 11	
Trap, 13	
getY	
ElectronHole, 12	
Trap, 13	
getZ	
ElectronHole, 12	
Trap, 14	
·	
isOccupied	
Trap, 14	
UT.	
nullTrap	
ElectronHole, 12	