Report for Sep 29

Introduction

This report focuses on testing a dataset with D=1 using the Stochastic Gradient Descent (SGD) method. In the current phase, we modified the forward function by introducing a new nn.Module, simulating DivideByConstantLayer instead of directly dividing by m after applying $<\vec{a}, \cdot>$.

```
import torch
import torch.nn as nn

class DivideByConstantLayer(nn.Module):
    def __init__(self, constant):
        super(DivideByConstantLayer, self).__init__()
        self.constant = constant

def forward(self, x):
    return x / self.constant
```

The model is defined as follows, employing HE initialization:

```
class Model(nn.Module):
   def __init__(self, m, D):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(D + 1, m)
        self.tanh = torch.nn.Tanh()
        self.linear2 = torch.nn.Linear(m, 1)
        self.divide = DivideByConstantLayer(m)
        # HE initialization
        torch.nn.init.kaiming_normal_(self.linear1.weight)
        torch.nn.init.kaiming_normal_(self.linear2.weight)
   def forward(self, x):
        fc1 = self.linear1(x)
        fc2 = self.tanh(fc1)
        fc3 = self.linear2(fc2)
        fc4 = self.divide(fc3)
        return fc4
```

The parameters are set as follows: D=1, m=50, batch size = 32.

The relative error is computed as:

$$ext{error} = rac{|y_{ ext{pred}} - y_{ ext{true}}|}{|y_{ ext{true}}|}$$

Stochastic Gradient Descent (SGD) Method

We selected PyTorch's SGD optimizer for training.

Default Learning Rate

Initially, we tested the default learning rate with 100,000 epochs:

```
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
```

After 10,000 epochs, the results were:

• Train Loss: 0.005463460925966501

• Test Loss: 0.002377670258283615

• Relative Error: 0.15652328729629517

The default SGD method failed to adequately fit the curve. We then adjusted the learning rate to find an optimal result.

Learning Rate = 1

After 100,000 epochs:

 $\bullet \quad \text{Train Loss: } 2.066 \times 10^{-6}$

• Test Loss: 2.018×10^{-6}

• Relative Error: 0.003224582178518176

While increasing the learning rate improved the results, we observed significant errors in the interval $x \in [1, 1.5]$.

After 100,000 epochs:

 $\bullet \quad \text{Train Loss: } 6.208 \times 10^{-7} \\$

 $\bullet \ \ \text{Test Loss:} \ 4.469 \times 10^{-7}$

• Relative Error: 0.0017211942467838526

After 100,000 epochs:

 $\bullet~$ Train Loss: 2.060×10^{-7}

 $\bullet \ \ \text{Test Loss:} \ 1.590 \times 10^{-7}$

• Relative Error: 0.0009969599777832627

After 100,000 epochs:

 $\bullet \quad \text{Train Loss: } 9.079 \times 10^{-8}$

 $\bullet \ \ \text{Test Loss:} \ 7.902 \times 10^{-8}$

• Relative Error: 0.0006686306442134082

After 100,000 epochs:

 $\bullet \quad \text{Train Loss: } 5.602 \times 10^{-8}$

 $\bullet \ \ \text{Test Loss:} \ 5.357 \times 10^{-8}$

• Relative Error: 0.0005298249307088554

Significant oscillations were observed in both training and testing losses.

After 100,000 epochs:

 $\bullet \quad \text{Train Loss: } 2.965 \times 10^{-8}$

 $\bullet \quad \text{Test Loss: } 3.113 \times 10^{-8}$

• Relative Error: 0.00038910453440621495

Further increasing the learning rate showed diminishing returns, with the relative error converging to approximately 3×10^{-4} . At this stage, we proceeded to experiment with the Adam optimizer.

Adam Method

```
optimizer = torch.optim.Adam(model.parameters())
```

Using the default Adam optimizer, we observed the following at Epoch 65,574:

 \bullet Train Loss: 1.883×10^{-9}

 $\bullet \ \ \text{Test Loss:} \ 1.899 \times 10^{-9}$

• Relative Error: 9.765×10^{-5}

Given that the relative error dropped below 1×10^{-4} , we terminated the process.

