Physics 421: Intro to Electrodynamics

Lectures: Eric Henriksen Notes and Homework: Junseo Shin

Contents

1	Vec	tor Ar	naly	sis																				
	1.1	What	is a	Vec	tor?																			
	1.2	Differe	enti	al Ca	ılculı	ıs .																		
	1.3	Integr	ral (Calcu	lus:																			
	1.4	Dirac	Del	ta Fı		on .																		
	T21		, •																					
2		ctrosta																						
	2.1	The E																						
		2.1.1																						
		2.1.2	Di	verg	ence	and	cui	rl o	f E	E: (Gai	ıss [:]	La	aw										
		2.1.3																						
		2.1.4	Tl	ne cu	rl of	Ε.																		
		2.1.5	El	ectri	e pot	enti	ial .																	

1 Vector Analysis

1.1 What is a Vector?

In type we use boldface $\mathbf{A} = |\mathbf{A}|\hat{\mathbf{A}}$, where we we can do some simple operations as such:

- Adding and Subtraction: $\mathbf{A} \pm \mathbf{B} = \mathbf{C}$ or aligning the head to the tail
- Multiplication:
 - Scalar: $\mathbf{A} \to 2\mathbf{A}$
 - Dot Product: $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A} = AB \cos \theta$
 - Cross Product: $\mathbf{A} \times \mathbf{B} = AB \sin \theta$, and $\mathbf{B} \times \mathbf{A} = -(\mathbf{A} \times \mathbf{B})$

Components of a Vector In 3D space, we often use the familiar Cartesian coordinates, e.g.

$$\mathbf{A} = A_x \mathbf{\hat{x}} + A_u \mathbf{\hat{y}} + A_z \mathbf{\hat{z}}$$

and we can add components by adding the components:

$$\mathbf{A} + \mathbf{B} = (A_x + B_x)\hat{\mathbf{x}} + (A_y + B_y)\hat{\mathbf{y}} + (A_z + B_z)\hat{\mathbf{z}}$$

and likewise for subtraction. For the dot product:

$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z$$

or more shortly

$$=\sum_{i,j}A_iB_j\delta_{ij}$$

where δ_{ij} is the Kronecker delta. The cross product is a bit trickier...

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{\hat{x}} & \mathbf{\hat{y}} & \mathbf{\hat{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = (A_y B_z - A_z B_y) \mathbf{\hat{x}} - (A_x B_z - A_z B_x) \mathbf{\hat{y}} + (A_x B_y - A_y B_x) \mathbf{\hat{z}}$$

This can also be written in short form using the Levi-Civita symbol (look it up)

Scalar triple product

$$A \cdot (B \times C) = B \cdot (C \times A) = C \cdot (A \times B)$$

This is the also the volume of the parallelepiped formed by the three vectors. NOTE that

$$(A \cdot B) \times C$$

since you can't cross a scalar with a vector.

Vector triple product

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

Using the BAC-CAB rule.

Some important vectors We define a position vector

$$\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}} = r\hat{\mathbf{r}}$$

where the unit vector is

$$\hat{\mathbf{r}} \equiv \frac{\mathbf{r}}{r}, \quad r = \sqrt{x^2 + y^2 + z^2}$$

and an infinitesimal displacement vector

$$dl = dx\hat{\mathbf{x}} + dy\hat{\mathbf{y}} + dz\hat{\mathbf{z}}$$

In EM we define a source point \mathbf{r}' (e.g. a charge) and a field point \mathbf{r} that give us the separation vector

$$z = r = r'$$

with magnitude

$$|\mathbf{z}| = |\mathbf{r} - \mathbf{r}'|$$

and unit vector

$$\hat{\mathbf{r}} = rac{\mathbf{r} - \mathbf{r}'}{\mathbf{r} - \mathbf{r}'}$$

1.2 Differential Calculus

And ordinary derivative $\frac{dF}{dx}$ is a change in F(x) in dx

$$\mathrm{d}F = \left(\frac{\partial F}{\partial x}\right) \mathrm{d}x$$

... geometrically, it's the slope

Gradient for functions of 2 or more variables, generalize for h(x,y)

$$\mathrm{d}h = \left(\frac{\partial h}{\partial x}\right) \mathrm{d}x + \left(\frac{\partial h}{\partial y}\right) \mathrm{d}y$$

it's a scalar so $dh = (\nabla h) \cdot (dl)$ where

$$\mathbf{\nabla}h = \frac{\partial h}{\partial x}\mathbf{\hat{x}} + \frac{\partial h}{\partial y}\mathbf{\hat{y}}$$

In 3D

$$\mathbf{\nabla}T = \frac{\partial T}{\partial x}\hat{\mathbf{x}} + \frac{\partial T}{\partial y}\hat{\mathbf{y}} + \frac{\partial T}{\partial z}\hat{\mathbf{z}}$$

If $\nabla u = 0$, we are at an extremum (max, min, or shoulder/saddle point) Rewriting:

$$\mathbf{\nabla}T = \left(\hat{\mathbf{x}}\frac{\partial}{\partial x} + \hat{\mathbf{y}}\frac{\partial}{\partial y} + \hat{\mathbf{z}}\frac{\partial}{\partial z}\right)T(x, y, z)$$

where we can assume the ∇ as an "operator" acting on T:

- 1. Scalars like T: ∇T , "grad T", generalized slope
- 2. Dot product on $\mathbf{V} \colon \nabla \cdot \mathbf{V}$, "divergence" or "div"
- 3. Cross product : $\boldsymbol{\nabla}\times\mathbf{V},$ "curl" or "rotatation"

Figure 1.1: Divergence of field lines

Divergence From the Figure, we can see that (a) & (c) diverges, and (b) does not.

Geometrical Interpretation: Sources of positive divergence is a source or "faucet", and negative divergence is a sink or "drain".

Curl

$$\mathbf{
abla} imes \mathbf{V} = egin{bmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ V_x & V_y & V_z \end{bmatrix}$$

E.g. for $\mathbf{V} = -y\hat{\mathbf{x}} + x\hat{\mathbf{y}}, \, \nabla \times \mathbf{V} = 2\hat{\mathbf{z}}.$

Combining Multiple Operations Two ways to get scalar from two functions:

$$fg$$
 or $\mathbf{A} \cdot \mathbf{B}$

Two ways to get vector from two functions:

$$f\mathbf{A}$$
 or $\mathbf{A} \times \mathbf{B}$

And we have 3 'derivatives': div, grad, and curl.

Product rule:

$$\partial_x(fg) = f\partial_x g + g\partial_x f$$

i
$$\nabla(fg) = f\nabla g + g\nabla f$$

ii
$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + B \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$$

... (see Griffiths for more)

Second Derivatives Combining $\nabla, \nabla \cdot, \nabla \times$

 ∇T is a vector

i

$$\nabla \cdot (\nabla T) = (\hat{\mathbf{x}} \partial_x + \hat{\mathbf{y}} + \partial_y + \hat{\mathbf{z}} \partial_z) \cdot (\hat{\mathbf{x}} \partial_x T + \hat{\mathbf{y}} \partial_y T + \hat{\mathbf{z}} \partial_z T)$$

$$= \partial_x^2 T + \partial_y^2 T + \partial_z^2 T$$

$$= \nabla^2 T$$

ii
$$\nabla \times (\nabla T) = 0$$

iii
$$\nabla(\nabla \cdot \mathbf{v}) = \dots$$
 ignored

iv
$$\nabla \cdot (\nabla \times \mathbf{v}) = 0$$

$$\mathbf{v} \ \mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{v}) = \mathbf{\nabla} (\mathbf{\nabla} \cdot \mathbf{v}) - \nabla^2 \mathbf{v}$$

1.3 Integral Calculus:

line, surface and volume integrals

"Fundamental theorem for gradients" Start with a scalar T(x, y, z): from $a \to b$, in small steps $dT = \nabla \cdot T d\ell$

Total change in T:

$$\int_{a}^{b} dT = \int_{a}^{b} \nabla T \cdot d\ell = T(b) - T(a)$$

This line integral is path independent but $\int_a^b \mathbf{F} \cdot d\ell$ is not!

Divergence Theorem, "Gauss' Theorem", or "Green's Theorem"

$$\int_{V} (\mathbf{\nabla \cdot v}) d\tau = \oint_{S} v \cdot d\mathbf{a}$$

where V is the volume enclosed by the surface S. The divergence of a field in a volume is equivalent to the flux of the field at the boundary or surface.

Geometrical Interpretation: The "source" (or faucet) should present a flux (or flow) out through the surface.

Fundamental Theorem of Curls: Stokes' Theorem

$$\boxed{\oint_{S} (\mathbf{\nabla} \times \mathbf{v}) \cdot d\mathbf{a} = \oint_{P} \mathbf{v} \cdot d\boldsymbol{\ell}}$$

We have a 2D surfaces S bounded by a closed 1D perimeter P.

In 3D, imagine a soap bubble in a wire frame. We can change the surface of the bubble by moving the wire frame and making almost making a bubble, but the perimeter that bounds the bubble is still the wireframe.

Example:

$$\mathbf{v} = (2xz + 3y^2)\hat{\mathbf{y}} + 4yz^2\hat{\mathbf{z}}$$

On a surface S square on the y-z plane:

$$\oint \mathbf{v} \cdot d\boldsymbol{\ell} =$$

RHS: We can split this into 4 integrals going counterclockwise around the square: First x=0,z=0,y: $0 \to 1$: $dx = dz = 0 \int_0^1 3y^2 dy = 1$

Second $\int_0^1 4z^2 dz = 4/3$ Third: -1

Fourth: 0

Summing them all gives: $\oint \mathbf{v} \cdot d\mathbf{\ell} = 4/3$ LHS: The curl gives: $4z^2 - 2x, -(0-0), 2z$ so

$$\oint (\boldsymbol{\nabla} \times \mathbf{v}) \cdot d\mathbf{a} = \oint$$

1.4 Dirac Delta Function

Considering a vector function

$$\mathbf{v} = \frac{1}{r^2}\mathbf{\hat{r}}$$

[insert picture of field lines]

$$\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{1}{r} \right) = 0$$

The div theorem doesn't obviously tell what volume and surface to choose, but we can choose a sphere of radius R and its corresponding surface:

$$\oint_{S} \mathbf{v} \cdot d\mathbf{a} = \int \frac{1}{R^{2}} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} R^{2} \sin \theta d\theta d\phi = 4\pi$$

where the polar angle is $\theta: 0 \to \pi$ and the azimuthal angle is $\phi: 0 \to 2\pi$.

We think that the divergence is zero (thus the theorem does not hold), but we make a tiny mistake:

 $\nabla \cdot \mathbf{v} = 0$ everywhere except at the origin $r \to 0$ and we stumbled on the Dirac delta function:

$$\delta(x) = \begin{cases} 0 & x \neq 0 \\ \infty & x = 0 \end{cases} \text{ and } \int_{-\infty}^{\infty} \delta(x) dx = 1$$

where

$$\int f(x)\delta(x)\mathrm{d}x = f(0)$$

Shifting the delta function:

$$\delta(x-a) = \begin{cases} 0 & x \neq a \\ \infty & x = a \end{cases}$$

so

$$\int f(x)\delta(x-a)\mathrm{d}x = f(a)$$

Multiplying by a constant:

$$\delta(kx) = \frac{1}{|k|}\delta(x)$$

Generalizing to 3D:

$$\delta^3(\mathbf{r}) = \delta(x)\delta(y)\delta(z)$$

Examples:

$$\int_{V} (\mathbf{\nabla \cdot (v)}) d\tau = \int 4\pi \delta^{3}(\mathbf{r}) = 4\pi$$

and

$$\mathbf{\nabla} \cdot \left(\frac{\hat{\mathbf{z}}}{\mathbf{z}^2} \right) = 4\pi \delta^3(\mathbf{z})$$

2 Electrostatics

2.1 The Electric Field

given charge q: find force on Q, where F depends on $\boldsymbol{z}, \mathbf{v}_i, \mathbf{a}_i$

2.1.1 Electrostatics:

Coulomb's Law empirically,

$$\mathbf{F}_{Q} = \frac{1}{4\pi\epsilon_{0}} \frac{qQ}{\mathbf{z}^{2}} \hat{\mathbf{z}}$$

where $k = \frac{1}{4\pi\epsilon_0}$ and the permittivity of free space is $\epsilon_0 = 8.85 \times 10^{-12} \, \mathrm{C^2/Nm^2}$

The force is attractive if sgn(qQ) = -1 and repulsive if = +1.

Principal of superposition:

$$\mathbf{F}_T = \mathbf{F}_{Q1} + \mathbf{F}_{Q2} + \dots$$

$$= \frac{1}{4\pi\epsilon_0} Q \left(\frac{q_1}{\boldsymbol{\imath}_1^2} \hat{\boldsymbol{\imath}}_1 + \frac{q_2}{\boldsymbol{\imath}_2^2} \hat{\boldsymbol{\imath}}_2 + \dots \right)$$

$$= Q \mathbf{E}_T$$

where \mathbf{E}_T is the total electric field due to all of the source (point) charges.

 ${f E}$ doesn't depend on Q

• $\mathbf{E} \sim F/Q$

Example: E field midway above two charges q: The electric fields are zero in the x and y direction:

Figure 2.1: Griffiths Example 2.1

$$E_x = E_y = 0$$

But we can sum the fields in the z direction:

$$E_z = 2\frac{1}{4\pi\epsilon_0} \frac{q}{\imath^2} \cos\theta$$

where

$$z = \left[z^2 + \left(\frac{d}{2}\right)^2\right]^{1/2} \quad \cos\theta = \frac{z}{z}$$

so

$$E_z = \frac{1}{4\pi\epsilon_0} \frac{2qz}{\left[z^2 + \left(\frac{d}{2}\right)^2\right]^{3/2}}$$

Far away: $z \gg d$, so $d \to 0$ thus

$$E_z \approx \frac{1}{4\pi\epsilon_0} \frac{2qz}{z^3} = \frac{1}{4\pi\epsilon_0} \frac{2}{z^2}$$

Continuous Charge Distributions

• line: charge per unit length λ ; $dq = \lambda d\ell$

• surface: charge per unit area σ ; $dq = \sigma da$

• volume: charge per unit volume ρ ; $dq = \rho d\tau$

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{1}{\boldsymbol{\imath}^2} \, \hat{\boldsymbol{\imath}} \, \mathrm{d}q$$

e.g. for a volume charge:

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}')}{\mathbf{z}^2} \, \hat{\mathbf{z}} \mathrm{d}\tau'$$

where ' denotes the source charge in (no ' is a field point)

Example: Find **E** at z above a straight line segment of length 2L with uniform line charge λ . If we

Figure 2.2: Griffiths Example 2.2

treat dq as a point particle, then we can use Ex 2.1 likewise but integrate over the line segment.

First we catalog what we know:

- Field point P is at $\mathbf{r} = z\hat{\mathbf{z}}$
- Sources at $\mathbf{r}' = x\hat{\mathbf{x}}$; $\mathrm{d}\ell' = \mathrm{d}x$
- $\bullet \ \mathbf{z} = \mathbf{r} \mathbf{r}' = z\hat{\mathbf{z}} x\hat{\mathbf{x}}$
- $i = \sqrt{x^2 + z^2}$
- $\hat{\imath} = \frac{\imath}{\imath} = \frac{z\hat{\mathbf{z}} x\hat{\mathbf{x}}}{\sqrt{x^2 + z^2}}$

The electric field is then (line charge)

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_{-L}^{+L} \frac{\lambda}{\mathbf{z}^2} \hat{\mathbf{z}} dx = \frac{1}{4\pi\epsilon_0} \lambda \int_{-L}^{+L} \frac{z\hat{\mathbf{z}} - x\hat{\mathbf{x}}}{(z^2 + x^2)^{3/2}} dx$$

$$= \frac{1}{4\pi\epsilon_0} \lambda \left[z\hat{\mathbf{z}} \int_{-L}^{L} \frac{dx}{(z^2 + x^2)^{3/2}} - \hat{\mathbf{x}} \int_{-L}^{L} \frac{x dx}{(z^2 + x^2)^{3/2}} \right]$$

$$= \frac{1}{4\pi\epsilon_0} \lambda \left[z\hat{\mathbf{z}} \frac{x}{z^2 \sqrt{z^2 + x^2}} \Big|_{-L}^{L} - \hat{\mathbf{x}} \frac{1}{\sqrt{z^2 + x^2}} \Big|_{-L}^{L} \right]$$

we can easily see that the x component is zero through the geometrical symmetry of the line centered at the origin (like Ex 2.1). Simplifying gives us

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{2\lambda L}{z\sqrt{z^2 + L^2}} \hat{\mathbf{z}}$$

Checks and balances:

• **z** is expected!

 $z\gg L \quad \sqrt{z^2+L^2} pprox z \quad E(P,z\gg L) = rac{1}{4\pi\epsilon_0} rac{2\lambda L}{z^2}$

where we can treat this as a point charge $q = 2\lambda L$ when we are far away.

2.1.2 Divergence and curl of E: Gauss' Law

'flux' of field lines

$$\Phi = \oint_S \mathbf{E} \cdot d\mathbf{a}$$

What is Φ for point charge at origin surrounded by a spherical surface?

$$\Phi = \int \mathbf{E} \cdot d\mathbf{a} = \int \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} r^2 \sin\theta d\theta d\phi$$
$$= \frac{q_{enc}}{\epsilon_0}$$

A bunch of charges surrounded by a surface: $\mathbf{E}_T = \sum \mathbf{E}_i$

$$\Phi = \oint \mathbf{E}_T \cdot d\mathbf{a} = \sum_i \oint \mathbf{E}_i \cdot d\mathbf{a} = \sum_i \frac{q_i}{\epsilon_0}$$

Thus we have an integral form of Gauss's law:

$$\boxed{\oint \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_0}}$$

where $Q = \sum q_i$.

From the theorem of divergence:

$$\oint_{S} \mathbf{v} \cdot d\mathbf{a} = \int_{V} (\mathbf{\nabla} \cdot \mathbf{v}) d\tau \quad \text{and} \quad Q = \int_{V} \rho d\tau$$

so

$$\int_V (\mathbf{\nabla \cdot E}) d\tau = \int_V \rho d\tau \to \text{good for all volume}$$

therefore we have the differential form of Gauss' Law:

$$oldsymbol{
abla} oldsymbol{\cdot} \mathbf{E} = rac{
ho}{\epsilon_0}$$

Three ways Gauss's law makes life nice: Gaussian surfaces

 $\bullet\,$ spherical: gaussian sphere

• cylindrical: gaussian cylinder

• planar: gaussian pillbox

2.1.3 Applications of Gauss's Law

$$\int \mathbf{E} \cdot d\mathbf{a} = \frac{q_{enc}}{\epsilon_0} \to \mathbf{\nabla \cdot E} = \frac{\rho}{\epsilon_0}$$

1. (Simple spherical) What is **E** outside a uniformly charged solid sphere of radius R and total charge Q? The spherical Gaussian surface implies a symmetry where we should *only have a radial component* $\mathbf{E} = E_r$.

$$\oint \mathbf{E} \cdot d\mathbf{a} = \frac{Q}{\epsilon_0}$$

$$E \oint d\mathbf{a} = E \cdot 4\pi r^2 = \frac{Q}{\epsilon_0}$$

$$\implies \mathbf{E} = \frac{Q}{4\pi \epsilon_0 r^2} \hat{\mathbf{r}}$$

where the integral is equivalent to the surface area of the sphere. This is also \implies a field of a point.

2. (Simple cylindrical) A long cylinder (radius a) of charge density $\rho = ks$ (\propto distance from axis) where k is a constant and s is the radial distance from the axis. What is \mathbf{E} inside the cylinder? The cylindrical Gaussian surface has radius s and length ℓ :

$$\oint \mathbf{E}.\mathrm{d}\mathbf{a} = \frac{Q_e nc}{\epsilon_0}; \quad Q_{enc} = \int \rho \mathrm{d}\tau = \int (ks')\mathrm{d}s'\mathrm{d}\phi\mathrm{d}z = \frac{2}{3}\pi k\ell s^3$$

When using the divergence theorem, note that only the curved part of the cylinder contributes to the flux. Thus,

$$\int \mathbf{E} d\mathbf{a} \to E \int da = E(2\pi s \ell)$$

$$\implies \mathbf{E} = \frac{1}{3\epsilon_0} k s^2 \hat{\mathbf{s}}$$

If we were to find the field outside the cylinder we would find that the enclosed charge is constant Q_{enc} thus the field is proportional to 1/s.

Figure 2.3: Electric field as a function of s

3. (Simple infinite plane) with uniform surface charge σ . Symmetry implies that **E** is perpendicular to the plane. The Gaussian pillbox (either box or cylinder) will have a field of

$$\mathbf{E} = \frac{\sigma}{2\epsilon_0} \mathbf{\hat{n}}$$

2.1.4 The curl of E

$$\nabla \times \mathbf{E} = 0, \quad \mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{1}{r^2} \hat{\mathbf{r}}$$

calculating

$$\int_{a}^{b} \mathbf{E} \cdot d\ell, \quad d\ell = dr \hat{\mathbf{r}} + r d\theta \hat{\boldsymbol{\theta}} + r \sin\theta d\phi \hat{\boldsymbol{\phi}}$$

So the integral is

$$\frac{1}{4\pi\epsilon_0} \int_a^b \frac{q}{r^2} (\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}) dr = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{a} - \frac{q}{b} \right)$$

This means:

- path independent!
- if a = b then $\oint \mathbf{E} \cdot d\ell = 0$ (ℓ is a vector but I don't know how to bold it)

We can now use Stokes' theorem: $\oint \mathbf{v} \cdot d\ell = \int_S (\mathbf{\nabla} \times \mathbf{v}) \cdot d\mathbf{a}$ or

$$\oint \mathbf{E} \cdot d\ell = \int_{S} (\mathbf{\nabla} \times \mathbf{E}) \cdot d\mathbf{a} = 0 \implies \mathbf{\nabla} \times \mathbf{E} = 0$$

2.1.5 Electric potential

Any function f with zero curl is the gradient of a scalar function: $\nabla \times (\nabla f) = 0$ (curl of gradient is always 0!)

$$V(\mathbf{r}) = -\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot \mathrm{d}\ell$$

implies all paths give some value.

 $V \sim$ "electric potential"

$$V(\mathbf{b}) - V(\mathbf{a}) = -\left(\int_{\mathcal{O}}^{b} \mathbf{E} \cdot d\ell\right) - \left(-\int_{\mathcal{O}}^{a} \mathbf{E} \cdot d\ell\right)$$
$$= -\int_{\mathcal{O}}^{b} - \int_{\neg} O\mathbf{E} \cdot d\ell$$
$$= -\int_{a}^{b} \mathbf{E} \cdot d\ell$$

And from the fundamental theorem for gradients: $T(\mathbf{b}) - T(\mathbf{a}) = \int_a^b (\nabla T) \cdot d\ell$

$$\implies \mathbf{E} = -\nabla V$$

- i "potential" is a terrible name
- ii $\mathbf{E} = (E_x, E_y, E_z)$ vs V with only one value at every point in space! Otherwise we would have to deal with

$$(\mathbf{\nabla} \times \mathbf{E})_x = \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = 0$$

iii

$$V'(\mathbf{r}) = -\int_{O'}^{\mathbf{r}} \mathbf{E} \cdot d\ell = -\int_{O'}^{O} \mathbf{E} \cdot d\ell - \int_{O}^{\mathbf{r}} \mathbf{E} \cdot d\ell = C + V(\mathbf{r})$$

$$\implies \mathbf{E} = -\nabla V$$