Differentiate
Almost
Everywhere

Differentiable Relaxations and Reparameterisations

Jonathon Hare

Vision, Learning and Control University of Southampton

What are differentiable relaxations and reparameterisations?

 We've seen that we can build arbitrary computational graphs from a variety of building blocks

What are differentiable relaxations and reparameterisations?

- We've seen that we can build arbitrary computational graphs from a variety of building blocks
- But, those blocks need to be differentiable to work in our optimisation framework
 - More specifically they need to be continuous and differentiable almost everywhere.

What are differentiable relaxations and reparameterisations?

- We've seen that we can build arbitrary computational graphs from a variety of building blocks
- But, those blocks need to be differentiable to work in our optimisation framework
 - More specifically they need to be continuous and differentiable almost everywhere.
- That limits what we can do... Can we work around that?
 - Relaxations make continuous (and differentiable everywhere) approximations.
 - Reparameterisations rewrite functions to factor out stochastic variables from the parameters.

• Consider the ReLU function f(x) = max(0, x)

- Consider the ReLU function f(x) = max(0, x)
 - ReLU is continuous
 - it does not have any abrupt changes in value
 - small changes in x result in small changes to f(x) everywhere in the domain of x

- Consider the ReLU function f(x) = max(0, x)
 - ReLU is continuous
 - it does not have any abrupt changes in value
 - small changes in x result in small changes to f(x) everywhere in the domain of x
 - ReLU is differentiable almost everywhere
 - No gradient at x = 0; only *left* and *right* gradients at that point
 - There are *subgradients* at x=0; implementations usually just arbitrarily pick f'(0)=0

- Consider the ReLU function f(x) = max(0, x)
 - ReLU is continuous
 - it does not have any abrupt changes in value
 - small changes in x result in small changes to f(x) everywhere in the domain of x
 - ReLU is differentiable almost everywhere
 - No gradient at x = 0; only *left* and *right* gradients at that point
 - There are subgradients at x = 0; implementations usually just arbitrarily pick f'(0) = 0
- Functions that are differentiable almost everywhere or have subgradients tend to be compatible with gradient descent methods
 - We expect that the loss landscape is different for each batch & that
 we'll never actually reach a minima, and we only need to mostly take
 steps in the right direction.

Relaxing ReLU

• Softplus $(ln(1 + e^x))$ is a relaxation of ReLU that is differentiable everywhere.

Relaxing ReLU

- Softplus $(ln(1 + e^x))$ is a relaxation of ReLU that is differentiable everywhere.
- Its derivative is the Sigmoid function

Relaxing ReLU

- Softplus $(ln(1 + e^x))$ is a relaxation of ReLU that is differentiable everywhere.
- Its derivative is the Sigmoid function
- Not widely used; counterintuitively, even though it neither saturates completely and is differentiable everywhere, empirically it has been shown that ReLU works better.

- Up until now we've really considered softmax as a generalisation of sigmoid (which represents a probability distribution over a binary variable) to many output categories.
 - softmax transforms a vector of logits into a probability distribution over categories.

- Up until now we've really considered softmax as a generalisation of sigmoid (which represents a probability distribution over a binary variable) to many output categories.
 - softmax transforms a vector of logits into a probability distribution over categories.
- As you might guess from the name, softmax is a relaxation...

- Up until now we've really considered softmax as a generalisation of sigmoid (which represents a probability distribution over a binary variable) to many output categories.
 - softmax transforms a vector of logits into a probability distribution over categories.
- As you might guess from the name, softmax is a relaxation...
 - but not of the max function like the name would suggest!

- Up until now we've really considered softmax as a generalisation of sigmoid (which represents a probability distribution over a binary variable) to many output categories.
 - softmax transforms a vector of logits into a probability distribution over categories.
- As you might guess from the name, softmax is a relaxation...
 - but not of the max function like the name would suggest!
 - softmax can be viewed as a continuous and differentiable relaxation of the arg max function with one-hot output encoding.

- Up until now we've really considered softmax as a generalisation of sigmoid (which represents a probability distribution over a binary variable) to many output categories.
 - softmax transforms a vector of logits into a probability distribution over categories.
- As you might guess from the name, softmax is a relaxation...
 - but not of the max function like the name would suggest!
 - softmax can be viewed as a continuous and differentiable relaxation of the arg max function with one-hot output encoding.
 - The arg max function is not continuous or differentiable; softmax provides an approximation:

$$\mathbf{x} = \begin{bmatrix} 1.1 & 4.0 & -0.1 & 2.3 \\ \arg \max(\mathbf{x}) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0.044 & 0.797 & 0.013 & 0.146 \end{bmatrix}$$

The Softmax function with temperature

Consider what happens if you were to divide the input logits to a softmax by a scalar temperature parameter T.

$$\operatorname{softmax}(\boldsymbol{x}/T)_i = \frac{e^{x_i/T}}{\sum_{i=1}^K e^{x_j/T}} \qquad \forall i = 1, 2, \dots, K$$

Jonathon Hare Relaxation 7 / 19

arg max — softmax with temperature

x =	1.1	4.0	-0.1	2.3]
$\operatorname{softmax}(\boldsymbol{x}/1.0) = [$	0.044	0.797	0.013	0.146]
softmax(x/0.8) = [0.023	0.868	0.005	0.104]
softmax(x/0.6) = [0.008	0.937	0.001	0.055]
softmax(x/0.4) = [6.997e-04	9.852e-01	3.484e-05	1.405e-02]
softmax(x/0.2) = [5.042e-07	9.998e-01	1.250e-09	2.034e-04	1

Jonathon Hare Relaxation 8 / 19

- What if you want to get a scalar approximation to the index of the arg max rather than a probability distribution approximating the one-hot form?
 - Caveat: we can't actually get a guaranteed integer representation as that would be non-differentiable; we'll have to live with a float that is an approximation.

- What if you want to get a scalar approximation to the index of the arg max rather than a probability distribution approximating the one-hot form?
 - Caveat: we can't actually get a guaranteed integer representation as that would be non-differentiable; we'll have to live with a float that is an approximation.
- First, consider how to convert a one-hot vector to index representation in a differentiable manner: $[0,0,1,0] \rightarrow 2$
 - Just dot product with a vector of indices: [0, 1, 2, 3]

- What if you want to get a scalar approximation to the index of the arg max rather than a probability distribution approximating the one-hot form?
 - Caveat: we can't actually get a guaranteed integer representation as that would be non-differentiable; we'll have to live with a float that is an approximation.
- First, consider how to convert a one-hot vector to index representation in a differentiable manner: $[0,0,1,0] \rightarrow 2$
 - Just dot product with a vector of indices: [0, 1, 2, 3]
- The same process can be applied to the softmax distribution
 - As temperature $T \to 0$, softmax $(x/T) \cdot [0, 1, ..., N] \to \arg\max(x)$ for $x \in \mathbb{R}^N$.

$$\mathbf{x} = [\ 1.1 \ \ 4.0 \ \ -0.1 \ \ 2.3 \]^{\top}$$
 $\mathbf{i} = [\ 0.0 \ \ 1.0 \ \ 2.0 \ \ 3.0 \]^{\top}$
softmax $(\mathbf{x}/1.0)^{\top}\mathbf{i} = 1.2606$
softmax $(\mathbf{x}/0.8)^{\top}\mathbf{i} = 1.1894$
softmax $(\mathbf{x}/0.6)^{\top}\mathbf{i} = 1.1037$
softmax $(\mathbf{x}/0.4)^{\top}\mathbf{i} = 1.0274$
softmax $(\mathbf{x}/0.2)^{\top}\mathbf{i} = 1.0004$

max

• A similar trick applies to finding the maximum value of a vector:

max

- A similar trick applies to finding the maximum value of a vector:
 - Use softmax(x) as an approximate one-hot arg max, and dot product with the vector x.

- A similar trick applies to finding the maximum value of a vector:
 - Use softmax(x) as an approximate one-hot arg max, and dot product with the vector x.
 - As temperature $T \to 0$, softmax $(\mathbf{x}/T)^{\top}\mathbf{x} \to \max(\mathbf{x})$.

- A similar trick applies to finding the maximum value of a vector:
 - Use softmax(x) as an approximate one-hot arg max, and dot product with the vector x.
 - As temperature $T \to 0$, softmax $(\mathbf{x}/T)^{\top}\mathbf{x} \to \max(\mathbf{x})$.

$$\mathbf{x} = [\ 1.1 \ \ 4.0 \ \ -0.1 \ \ 2.3 \]^{\top}$$
 softmax $(\mathbf{x}/1.0)^{\top}\mathbf{x} = 3.571$ softmax $(\mathbf{x}/0.8)^{\top}\mathbf{x} = 3.736$ softmax $(\mathbf{x}/0.6)^{\top}\mathbf{x} = 3.881$ softmax $(\mathbf{x}/0.4)^{\top}\mathbf{x} = 3.974$ softmax $(\mathbf{x}/0.2)^{\top}\mathbf{x} = 3.999$

• L1 norm is the sum of absolute values of a vector

- L1 norm is the sum of absolute values of a vector
- We've seen that an L1 norm regulariser can induce sparsity in a model

- L1 norm is the sum of absolute values of a vector
- We've seen that an L1 norm regulariser can induce sparsity in a model
- abs is continuous and differentiable almost everywhere, but...

- L1 norm is the sum of absolute values of a vector
- We've seen that an L1 norm regulariser can induce sparsity in a model
- abs is continuous and differentiable almost everywhere, but...
- unlike ReLU, the gradients left and right of the discontinuity point in equal and opposite directions
 - This can cause oscillations that prevent or hamper learning

Relaxing the L1 norm

Huber loss (aka Smooth L1 loss) relaxes
 L1 by mixing it with L2 near the origin:

$$z_i = \begin{cases} 0.5(x_i - y_i)^2, & \text{if } |x_i - y_i| < 1\\ |x_i - y_i| - 0.5, & \text{otherwise} \end{cases}$$

Relaxing the L1 norm

Huber loss (aka Smooth L1 loss) relaxes
 L1 by mixing it with L2 near the origin:

$$z_i = egin{cases} 0.5(x_i - y_i)^2, & \text{if } |x_i - y_i| < 1 \ |x_i - y_i| - 0.5, & \text{otherwise} \end{cases}$$

 In both cases gradients reduce in magnitude and switch direction smoothly which can lead to much less oscillation.

Differentiable Sampling

The reparameterisation trick

Sampling from a diagonal-covariance Gaussian

Jonathon Hare Relaxation 16 / 19

Jonathon Hare Relaxation 17 / 19

The Straight-Through operator

The Straight-Through operator: implementation

Jonathon Hare Relaxation 19 / 19