Группа <u>А-07-22</u> ФИО <u>Татарников Максим Станиславович</u> № вар. 5 (бригада 6) Лабораторная работа 3.3

ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ ИНДУКЦИИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ

Цель работы:

- 1) практическое изучение магнитного поля кругового тока и принципа суперпозиции полей;
- 2) экспериментальное определение горизонтальной составляющей магнитного поля Земли.

Описание установки и метода измерений

 $T\Gamma$ – тангенс-гальванометр;

K – компас;

 Π – переключатель;

A — миллиамперметр;

R – peoctat;

U – источник постоянного напряжения.

Схема экспериментальной установки

Спецификация измерительных приборов

	Наименование	Пределы измерений		Цена	Класс		
№ n/n		деления	ед. изм.	дени деления	точности/инструментальная		
				оеления	погрешность		
1.	Миллиамперметр	40	200 мА	5	0.5 мА		
2.	Шкала компаса	120	360°	3	1.5°		

Обработка результатов измерений

1. Результаты измерений

$$N = 85$$
; $r = 0.24$ M

Группа А-07-22 ФИО Татарников Максим Станиславович № вар. 5 (бригада 6)

								B_0,
Nº	I, MA	ф_1, °	φ_2,°	ф, °	ф, радианы	tgφ	В_0, Тл	мкТл
1	40	24,5	27	25,75	0,449422282	0,482343	1,84447E-05	18,4447
2	50	31	34	32,5	0,567232007	0,63707	1,74562E-05	17,45621
3	70	39,5	45	42,25	0,737401609	0,908336	1,71403E-05	17,14032
4	90	46	52	49	0,855211333	1,150368	1,74009E-05	17,40095
5	100	49	55,5	52,25	0,911934534	1,291518	1,72213E-05	17,22134
6	130	55,5	63	59,25	1,034107582	1,680849	1,72021E-05	17,20212
7	150	59	67	63	1,099557429	1,962611	1,6999E-05	16,99904
8	195	64	72	68	1,186823891	2,475087	1,75231E-05	17,52312
	•			•		•	В_0_сред,	
							мкТл	17.42347

	N,			
r, m	витки	мю_0		
0,24	85	0,000001256		

2. Пример расчёта
$$B_0 = \frac{\mu_0 NI}{2r \operatorname{tg} \varphi} =$$

3.
$$\Delta I = \frac{K \cdot I_{\text{пред}}}{100} =$$

4.
$$\Delta B_0 = \bar{B}_0 \sqrt{\left(\frac{\Delta N}{N}\right)^2 + \left(\frac{\Delta r}{r}\right)^2 + \left(\frac{\Delta I}{I}\right)^2 + \left(\frac{2\Delta \varphi}{\sin(2\varphi)}\right)^2} =$$

5.
$$\delta B_0 = \frac{\Delta B_0}{\bar{B}_0} 100\% =$$

$$6. B_0 = \overline{B}_0 \pm \Delta B_0 =$$

7. Вывод: