Лекція 2. **Генератори випадкових чисел**.

Для самостійного вивчення

Інна Вячеславівна Стеценко д.т.н., проф., професор кафедри ІПІ НТУУ «КПІ ім. Ігоря Сікорського»

Представлення випадкових величин в моделі

- Випадкова величина спрощене представлення складних процесів, які впливають на значення величини.
- *Стохастичні* моделі ті, що використовують для опису своїх змінних та/або параметрів випадкові величини
- *Закон розподілу* основна характеристика випадкової величини
- *Ідентифікація* закону розподілу метод для визначення закону розподілу випадкової величини за даними спостережень

Ідентифікація закону розподілу

Ідентифікація закону розподілу випадкової величини

Формування масиву значень випадкової величини
Побудова гістограми частот
Формування гіпотези про вид закону розподілу
Оцінка значень параметрів закону розподілу
Перевірка відповідності за критерієм згоди

Перевірка відповідності випадкових чисел закону розподілу

Розраховане значення χ^2 порівнюється з табличним значенням критерію $\chi^2_{\kappa p}$, яке взяте при рівні значимості α =0,05 та кількості степенів свободи, рівній кількості інтервалів у гістограмі частот k мінус 1 мінус кількість параметрів закону розподілу. Якщо $\chi^2 < \chi^2_{\kappa p}$, то з довірчою ймовірністю 0,95 можна стверджувати, що знайдений закон розподілу відповідає спостережуваним значенням випадкової величини ζ .

Генератори випадкових чисел

Генерування випадкової величини r за заданим законом розподілу F(x)

метод оберненої функції

$$r = F^{-1}(\varsigma)$$

експоненціальний закон розподілу

$$r = -\frac{1}{\lambda} \cdot \ln \varsigma$$

табличний метод

$$r = x_{i-1} + \frac{x_i - x_{i-1}}{a_i - a_{i-1}} (\varsigma - a_{i-1})$$
$$a_i = F(x_i)$$

емпіричний закон розподілу

спеціальні методи

нормальний закон розподілу(закон Гауса)

закон розподілу Ерланга

$$r = \sigma \cdot \left(\sum_{i=1}^{12} \zeta_i - 6\right) + a$$

$$r = -\frac{1}{k\mu} \ln \left(\prod_{i=1}^{k} \zeta_{i} \right)$$

Генерування рівномірно розподілених в інтервалі (0;1) випадкових величин на основі рекурсивних формул

$$z_{i+1} = (az_i + b)(\text{mod } c), i = 0,1,...$$

$$\zeta_{i+1} = z_{i+1} / c$$

Тестування генераторів рівномірно розподілених в інтервалі (0,1) випадкових чисел:

- перевірка на рівномірність,
- перевірка на випадковість,
- кореляції

Генерування випадкової величини методом оберненої функції

$$\varsigma_{i} = F(r_{1}), ..., \varsigma_{n} = F(r_{n})
G(y) = P(\varsigma \leq y) = P(F(r) \leq y) = P(F^{-1}(F(r)) \leq F^{-1}(y)) =
= P(r \leq F^{-1}(y)) = F(F^{-1}(y)) = y$$

$$r = F^{-1}(\varsigma)$$

$$F(x)$$

Приклад: $\varsigma = 1 - e^{-\lambda r} \Leftrightarrow r = -\frac{1}{\lambda} \cdot \ln(1 - \varsigma)$.

Табличний метод генерування випадкового числа r, що має закон розподілу F(x)

Цікаво, що

Метод Монте-Карло так само, як і імітаційні моделі, використовує псевдогенератори випадкових чисел. Він отримав свою назву через застосування для ігорного бізнесу (у Монте-Карло найбільша кількість казино).