Test Tema 3 de Percepción

ETSINF, Universitat Politècnica de València, Marzo de 2019

Apellidos:				Nombre:	
	 	 _			

Profesor: \square Jorge Civera \square Carlos Martínez

Cuestiones (0.25 puntos, 15 minutos, con apuntes)

- $\overline{\mathbb{C}}$ ¿Cuál de los siguientes vectores de proyección **no** define la misma recta de dirección en el espacio que el vector de proyección $x = (1 \ 1)$?
 - A) $\left(\frac{-\sqrt{2}}{2} \quad \frac{-\sqrt{2}}{2}\right)$
 - B) $\left(\frac{\sqrt{2}}{2} \quad \frac{\sqrt{2}}{2}\right)$
 - C) $\left(\frac{-\sqrt{2}}{2} \quad \frac{\sqrt{2}}{2}\right)$
 - D) (-1 1)
- - A) $\sum_{j=1}^{D} \mathbf{w}_{j}^{t} \Sigma_{\mathcal{X}} \mathbf{w}_{j} + \sum_{j=1}^{k} \mathbf{w}_{j}^{t} \Lambda \mathbf{w}_{j}$
 - B) $\sum_{j=k+1}^{D} \mathbf{w}_{j}^{t} \Sigma_{\mathcal{X}} \mathbf{w}_{j} \sum_{j=k+1}^{D} \mathbf{w}_{j}^{t} \Lambda \mathbf{w}_{j}$
 - C) $\sum_{j=k+1}^{D} \mathbf{w}_{j}^{t} \Lambda \mathbf{w}_{j}$
 - D) $\sum_{j=1}^{k} \mathbf{w}_{j}^{t} \Sigma_{\mathcal{X}} \mathbf{w}_{j}$
- \square En reducción de dimensión por LDA se calculan las matrices S_w (intraclases) y S_b (entre-clases) de forma que:
 - A) Ambas deben tener el menor valor posible
 - B) Ambas deben tener el mayor valor posible
 - C) S_w debe tener el mayor valor posible y S_b el menor posible
 - D) S_w debe tener el menor valor posible y S_b el mayor posible

Test Tema 3 de Percepción ETSINF. Universitat Politècnica de València. Marzo de 2019

Apellidos:			Nombre:	
Profesor:	□ Jorge Civera	\boxtimes Carlos Martínez		

- $\boxed{\mathbb{B}}$ Dada una matriz $W \in \mathbb{R}^{D \times D}$, ¿cuántos vectores propios se puede esperar encontrar?
 - A) D
 - B) Como máximo D

Cuestiones (0.25 puntos, 15 minutos, con apuntes)

- C) Como mínimo D
- D) $\frac{D}{2}$
- \overline{A} ¿Cuál es la cantidad de varianza que reside en los datos proyectados de D a k dimensiones con vectores de proyección obtenidos mediante PCA?
 - A) $\sum_{j=1}^{k} \lambda_j$
 - B) $\sum_{j=1}^{D} \lambda_j$
 - C) $\sum_{j=k+1}^{D} \lambda_j$
 - D) No es posible calcularla.
- A ¿Qué característica es común a LDA y PCA?
 - A) La matriz de proyección W es ortonormal
 - B) La matriz intraclases en el espacio proyectado es la identidad
 - C) Se resuelven como un problema de vectores propios generalizados
 - D) Son no supervisadas