Introduction

- We use 2 currencies as underlyings (use £ and \$ to make intuition easier)
- When a market maker launches a bank, it defines:
 - Borrowing rates
 - Lending rates
 - Market in FX swap points:

Time 0	Sell \$S₀ / buy £1	Buy \$S₀ / sell £1
Time T	Buy \$F / sell €1	Sell \$F₀ / buy £1

- Fundamental equations and these 3 primitive pairs are enough to define markets in collateralized lending rates
- In the following cases, we assume the collateral in escrow is the minimum required to meet the **net** obligations at time T

Definitions

x - call on \pounds denominated in \$ (bid side) x^0 - call on \$ denominated in \pounds (bid side) x^0 - put on \pounds denominated in \$ (offer side) x^0 - call on \$ denominated in \pounds (offer side) x^0 - put on \pounds denominated in \hbar (offer side) \hbar 0 - put on \hbar 2 denominated in \hbar 3 (offer side) \hbar 4 - put on \hbar 5 denominated in \hbar 5 (offer side)

rs - the rate at which the market maker lends \$

r_€ - the rate at which the market maker lends £

 $r_{\text{\$coll} \pounds}\text{-}$ the rate at which the market maker lends \$ collateralized in \pounds

r_{€coll\$} - the rate at which the market maker lends £ collateralized in \$

r\$coll€ - the rate at which the market maker lends \$ collateralized in €

r_{€coll}s - the rate at which the market maker lends € collateralized in \$

Lending rate equation 1 (\$-\$)

User 1 is a bank sponsor who funds in \$. "User 2" is actually multiple users in the market, so the impact for User 2 is not symmetrical to the impact for User 1.

At time 0:

User 1		User 2
Buys a put on £1, K=S₀ at x'	←	Sells a put on £1, K=S ₀ at x' Posts \$S ₀ collateral (alternatively, buys a discounted underlying)
Buys a discounted underlying on £1 (ie. $S - call$ on £1, $K=S_0$) at $(S_0 - x^*)$	←	Sells a discounted underlying on £1 (ie. S – call on £1, K=S ₀) at (S ₀ - x*) Posts \$S ₀ collateral (alternatively, buys a put)
1		
User 1 spends [S ₀ - (x* - x')] ie. "lends" [S ₀ - (x* - x')]		

At time T:

User 1 is repaid \$S₀

• User 1 receives S_0 from escrow (Fundamental equation 2: $P_K + (S - C_K) = K$)

Lending rate equation 1

$$[S_0 - (x^* - x')] * (1 + r_5) = S_0$$

User 1 will only put on this package of trades when $r_{\$}$ exceeds it's hurdle rate (as a minimum, $x^* > x'$)

Lending rate equation 2a(i) (\$-£)

User 1 is a bank sponsor who funds in \$. "User 2" is actually multiple users in the market, so the impact for User 2 is not symmetrical to the impact for User 1.

At time 0:

User 1		User 2
Buys £1 / sells \$S₀ spot	\longleftrightarrow	Sells £1 / buys \$S₀ spot
Agrees to buy \$F / sell £1 at time T Posts £1 as collateral	←	Agrees to sell \$F / buy £1 at time T Posts \$F as collateral
User 1 spends \$ S ₀ ie. "lends" \$ S ₀		

At time T:

User 1 is repaid \$F

- User 1 receives \$F, pays £1 and receives £1 from escrow
- Net, User 1 receives \$F

Lending rate equation 2a(i) (with forward contract)

$$S_0 * (1 + r_{\text{$coll}}) = F$$

User 1 will offer the forward at F based on its hurdle rate for r_{scoll} , which in turn is dependent on its deposit funding rate and return on equity hurdle.

Lending rate equation 2a(ii) (\$-£)

User 1 is a bank sponsor who funds in \$. "User 2" is actually multiple users in the market, so the impact for User 2 is not symmetrical to the impact for User 1.

At time 0:

User 1		User 2
Buys a call on £1, K=S₀ at \$x	←	Sells a call on £1, K=S ₀ at \$x Posts £1 collateral (alternatively, buys a discount bond)
Buys a discount bond on £1 at (S ₀ - x^)	←	Sells a discount bond at (S ₀ - x^) Posts \$S ₀ collateral (alternatively, buys a call)
Agrees to buy \$F / sell £1 at time T Posts call option and discount bond as collateral		Agrees to sell \$F / buys £1 at time T Posts \$F as collateral Alternatively, could post: [call on \$1.3 + discount bond on \$1.3 + (\$F - \$1.3) → could be £ funded MM (equation 4)
User 1 spends [S ₀ - (x^ - x)] ie. "lends" [S ₀ - (x^ - x)]		

At time T:

User 1 is repaid \$F

- User 1 receives £1 for the long call and long discount bond
- User 1 receives \$F and pays €1
- Net, User 1 receives \$F from escrow

Lending rate equation 2a (with forward contract)

$$[S_0 - (\$x^- - \$x)] * (1 + r_{\$coll}) = F$$

User 1 will offer the forward at \$F based on its hurdle rate for $r_{\text{$coll}}$, which in turn is dependent on its deposit funding rate and return on equity hurdle.

$$r_{\text{$coll}} = r_{\text{£}} + [(F - S_0) / S_0]$$
 ——TBD if this identity holds in crypto markets

Lending rate equation 2c (\$-£) (without forward contract)

User 1 is a bank sponsor who funds in \$. "User 2" is actually multiple users in the market, so the impact for User 2 is not symmetrical to the impact for User 1.

At time 0:

User 1		User 2
Sells \$1.3 / buys €1 spot		Buys \$1.3 / sells ₤1 spot
Buys a call on \$1.3, K=£1 at £x ⁰		Sells a call on \$1.3, K=£1 at £x ⁰ Posts \$1.3 as collateral (alternatively, buys a discount bond)
Buys a discount bond on \$1.3 at (£1 − £x ⁰)		Sells a discount bond on \$1.3 at $(£1 - £x^0)$ Posts £1 as collateral (alternatively, buys a call)
User 1 spends \$[1.3 - (x^0 - x^0)/1.3] ie. "lends" \$[1.3 - (x^0 - x^0)/1.3]		

At time T:

User 1 is repaid \$1.3

• User 1 receives \$1.3 from escrow for the long call and long discount bond

Lending rate equation 2c (without forward contract) [1.3 - $(x^0 - x^0)/1.3$] * $(1 + r_{\text{scoll}}) = 1.3$

User 1 will only put on this package of trades when r_{scoll} exceeds its hurdle rate (as a minimum, $x^{0} > x^{0}$)

Lending rate equation 3 (£-£)

User 1 is a bank sponsor who funds in €. "User 2" is actually multiple users in the market, so the impact for User 2 is not symmetrical to the impact for User 1.

At time 0:

User 1		User 2
Buys a put on \$1.3, $K=£1$ at $£x'^0$	←	Sells a put on \$1.3, K=£1 at £x' ⁰ Posts £1 collateral
		(alternatively, buys a discounted underlying)
Buys a discounted underlying on \$1.3 (ie. $$1.3 - \text{call on on } $1.3, K=£1$) at $(£1 - £x^{*0})$		Sells a discounted underlying on \$1.3 (ie. \$1.3 – call on on \$1.3, K=£1) at (£1 - £x*0) Posts £1 collateral
		(alternatively, buys a put)
1		
User 1 spends $\mathbf{f}[1 - (\mathbf{x}^{*0} - \mathbf{x}^{'0})]$ ie. "lends" $\mathbf{f}[1 - (\mathbf{x}^{*0} - \mathbf{x}^{'0})]$		

At time T:

User 1 is repaid £1

• User 1 receives £1 from escrow (Fundamental equation 2: $P_K + (S - C_K) = K$)

Lending rate equation 3

$$[1 - (x^{*0} - x^{'0})] * (1 + r_{\epsilon}) = 1$$

User 1 will only put on this package of trades when $r_{\rm f}$ exceeds it's hurdle rate (as a minimum, $x^{*0} > x^{'0}$)

Lending rate equation 4a(i) (£-\$) [non-standard forward market quotation (buy £F⁰ / sell \$1.3)]

User 1 is a bank sponsor who funds in €. "User 2" is actually multiple users in the market, so the impact for User 2 is not symmetrical to the impact for User 1.

At time 0:

User 1		User 2	
Buys \$1.3 / sells £1 spot	←	Sells £1 / buys \$S₀ spot	
Agrees to buy £F ⁰ / sell \$1.3 at time T Posts \$1.3 as collateral	←	Agrees to sell \$F / buy £1 at time T Posts \$F as collateral	
1			
User 1 spends £1 ie. "lends" £1			

At time T:

User 1 is repaid \$F

- User 1 receives £F⁰, pays \$1.3 and receives \$1.3 from escrow
- Net, User 1 receives £F⁰

Lending rate equation 2a(i) (with forward contract)

1 * (1 +
$$r_{\text{£coll}}$$
\$) = F^0

User 1 will offer the forward at $\mathbb{E}F^0$ based on its hurdle rate for $r_{\text{£coll}\$}$, which in turn is dependent on its deposit funding rate and return on equity hurdle.

Lending rate equation 4a(ii) (£-\$) [non-standard forward market quotation (buy £F⁰ / sell \$1.3)]

User 1 is a bank sponsor who funds in €. "User 2" is actually multiple users in the market, so the impact for User 2 is not symmetrical to the impact for User 1.

At time 0:

User 1		User 2
Buys a call on \$1.3, K=£1 at \$x ⁰	←	Sells a call on \$1.3, K=£1 at \$x0 Posts \$1.3 collateral (alternatively, buys a discount bond)
Buys a discount bond on \$1.3 at (£1 - x ⁰)	←	Sells a discount bond on \$1.3 at (£1 - x^0) Posts £1 collateral (alternatively, buys a call)
Agrees to buy £F ⁰ / sell \$1.3 at time T Posts call option and discount bond as collateral		Agrees to sell £F° / buy \$1.3 at time T Posts £F° as collateral Alternatively, could post: [call on £1 + discount bond on £1 + (£F° - £1) → could be \$ funded MM (equation 2)
User 1 spends $\mathbb{E}[1 - (x^{0} - x^{0})]$ ie. "lends" $\mathbb{E}[1 - (x^{0} - x^{0})]$		

At time T:

User 1 is repaid **£**F⁰

- User 1 receives \$1.3 for the long call and long discount bond
- User 1 receives £F⁰ and pays \$1.3
- Net, User 1 receives £F⁰ from escrow

Lending rate equation 4a (non-standard forward market quotation (buy **£**F⁰ / sell \$1.3)

$$[1 - (x^{0} - x^{0})] * (1 + r_{\text{£coll}}) = F^{0}$$

User 1 will offer the forward at \mathbb{E}^0 based on its hurdle rate for $r_{\text{£coll}}$, which in turn is dependent on its deposit funding rate and return on equity hurdle.

$$r_{\text{£coll}} = r_{\text{5}} + [(F^0 - 1)/1] \leftarrow$$
 TBD if this identity holds in crypto markets

Lending rate equation 4b (£-\$) [standard forward market quoting convention (sell \$F₀ / buy £1)]

User 1 is a bank sponsor who funds in €. "User 2" is actually multiple users in the market, so the impact for User 2 is not symmetrical to the impact for User 1.

At time 0:

User 1		User 2
Buys a call on \$1.3, K=£1 at \$x ⁰		Sells a call on \$1.3, K=£1 at \$x0 Posts \$1.3 collateral (alternatively, buys a discount bond)
Buys a discount bond on \$1.3 at (£1 - x ⁰)	←	Sells a discount bond on \$1.3 at (£1 - x^0) Posts £1 collateral (alternatively, buys a call)
[standard forward mkt convention sell \$F₀ / buy £1] Agrees to buy £(1.3/F₀) against \$1.3 at time T Posts call option and discount bond as collateral		Agrees to sell £(1.3/F ₀) against \$1.3 at time T Posts £(1.3/F ₀) as collateral Alternatively, could post: [call on £1 + discount bond on £1 + [£(1.3/F ₀) - £1] → could be \$ funded MM (equation 2)
↓		
User 1 spends $\pounds[1 - (x^{0} - x^{0})]$ ie. "lends" $\pounds[1 - (x^{0} - x^{0})]$		

At time T:

User 1 is repaid $\pounds(1.3/F_0)$

- User 1 receives \$1.3 for the long call and long discount bond
- User 1 receives £(1.3/F₀) and pays \$1.3
- Net, User 1 receives £(1.3/F₀) from escrow

Lending rate equation 4b (standard forward market quoting convention (sell F_0 / buy £1) $[1 - (x^{0} - x^{0})] * (1 + r_{\text{Ecolls}}) = 1.3/F_0$

User 1 will quote the forward at F_0 based on its hurdle rate for $r_{\text{£coll}}$, which in turn is dependent on its deposit funding rate and return on equity hurdle.

 $r_{\text{£coll}\$} = r_{\$} + [(1.3/F_0 - 1)/1]$ TBD if this identity holds in crypto markets

Lending rate equation 4c (£-\$) (without forward contract)

User 1 is a bank sponsor who funds in €. "User 2" is actually multiple users in the market, so the impact for User 2 is not symmetrical to the impact for User 1.

At time 0:

User 1		User 2
Sells £1 / buys \$1.3 spot	\longleftrightarrow	Buys \$1.3 / sells £1 spot
Buys a call on £1, K=1.3 at x	←	Sells a call on \$1.3, K=£1 at £x ⁰ Posts \$1.3 as collateral (alternatively, buys a discount bond)
Buys a discount bond on £1 at (S ₀ - x^)	←	Sells a discount bond on \$1.3 at $(£1 - y^{*0})$ Posts £1 as collateral (alternatively, buys a call)
↓		
User 1 spends £[1 - (x^ - x)*1.3] ie. "lends" £[1 - (x^ - x)*1.3]		

At time T:

User 1 is repaid £1

• User 1 receives £1 from escrow for the long call and long discount bond

Lending rate equation 4c (without forward contract)

$$[1 - (x^{-} + x)^{*}1.3] * (1 + r_{\text{£coll}}) = 1$$

User 1 will only put on this package of trades when $r_{\text{£coll}}$ \$ exceeds its hurdle rate (as a minimum, $x^{\wedge} > x$)

Lending rate equation 5 (\$-\$ Box-Spread)

User 1 is a bank sponsor who funds in \$. "User 2" is actually multiple users in the market, so the impact for User 2 is not symmetrical to the impact for User 1.

Multiple ways to describe the trade:

- User 1 buys box-spread (buys bull-call-spread and bear-put-spread)
- User 1 buys synthetic at lower strike, sells synthetic at upper strike
- User 1 locks in strike differential pay-out at maturity

At time 0:

User 1		User 2
Buys a Call on €1, K=S _L at x ^{CL}	←	Sells a Call on £1, K=S _L at x ^{CL} Posts £1 collateral
Sell a Call on £1, K=S _U at x ^{CU} Posts Call (K=S _L) as collateral		Buys a Call on €1, K=S _U at x ^{CU}
Buys a Put on €1, K=S _U at x ^{PU}		Sells a Put on £1, K=S _U at x ^{PU} Posts \$S _U collateral
Sells a Put on £1, K=S _L at x ^{PL} Posts Put (K=S _U) as collateral	←	Buys a Put on £1, K=S _L at x ^{PL}
User 1 spends $[(x^{CL} - x^{CU}) + (x^{PU} - x^{PL})]$ ie. "lends" $[(x^{CL} - x^{PL}) - (x^{CU} - x^{PU})]$		

At time T:

User 1:

User 1 receives the Strike differential (S_U − S_L)

Lending rate equation 5

$$[(x^{CL} - x^{PL}) - (x^{CU} - x^{PU})] * (1 + r_5) = S_U - S_L$$

User 1 will only put on this package of trades when r_{\$} exceeds it's hurdle rate