- We want to predict the price of houses by creating a model that will help us predict the prices
- Let's start by importing the libraries needed for the project

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set_style("whitegrid")
import warnings
warnings.filterwarnings("ignore")
```

Let's load the datasets

EDA

df.head()

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	Land(
0	1	60	RL	65.0	8450	Pave	NaN	Reg	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	
2	3	60	RL	68.0	11250	Pave	NaN	IR1	
3	4	70	RL	60.0	9550	Pave	NaN	IR1	
4	5	60	RL	84.0	14260	Pave	NaN	IR1	

5 rows × 81 columns

Missing Values

```
df.isnull().sum()
     Ιd
                         0
     MSSubClass
                         0
                         0
     MSZoning
     LotFrontage
                       259
     LotArea
                         0
     MoSold
                         0
     YrSold
                         0
                         0
     SaleType
     SaleCondition
                         0
     SalePrice
     Length: 81, dtype: int64
```

Taking care of the missing values

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 62 columns):

Data	columns (total	62 COTUMNS):	
#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotArea	1460 non-null	int64
4	Street	1460 non-null	object
5	LotShape	1460 non-null	object
6	LandContour	1460 non-null	object
7	Utilities	1460 non-null	object
8	LotConfig	1460 non-null	object
9	LandSlope	1460 non-null	object
10	Neighborhood	1460 non-null	object
11	Condition1	1460 non-null	object
12	Condition2	1460 non-null	object
13	BldgType	1460 non-null	object
14	HouseStyle	1460 non-null	object
15	OverallQual	1460 non-null	int64
16	OverallCond	1460 non-null	int64
17	YearBuilt	1460 non-null	int64

18	YearRemodAdd	1460	non-null	int64
19	RoofStyle	1460	non-null	object
20	RoofMatl	1460	non-null	object
21	Exterior1st	1460	non-null	object
22	Exterior2nd	1460	non-null	object
23	ExterQual	1460	non-null	object
24	ExterCond	1460	non-null	object
25	Foundation	1460	non-null	object
26	BsmtFinSF1	1460	non-null	int64
27	BsmtFinSF2	1460	non-null	int64
28	BsmtUnfSF	1460	non-null	int64
29	TotalBsmtSF	1460	non-null	int64
30	Heating	1460	non-null	object
31	HeatingQC	1460	non-null	object
32	CentralAir	1460	non-null	object
33	1stFlrSF	1460	non-null	int64
34	2ndFlrSF	1460	non-null	int64
35	LowQualFinSF	1460	non-null	int64
36	GrLivArea	1460	non-null	int64
37	BsmtFullBath	1460	non-null	int64
38	BsmtHalfBath	1460	non-null	int64
39	FullBath	1460	non-null	int64
40	HalfBath	1460	non-null	int64
41	BedroomAbvGr	1460	non-null	int64
42	KitchenAbvGr	1460	non-null	int64
43	KitchenQual	1460	non-null	object
44	TotRmsAbvGrd	1460	non-null	int64
45	Functional	1460	non-null	object
46	Fireplaces	1460	non-null	int64
47	GarageCars	1460	non-null	int64
48	GarageArea	1460	non-null	int64
49	PavedDrive	1460	non-null	object
50	WoodDeckSF	1460	non-null	int64
51	OpenPorchSF	1460	non-null	int64
52	EnclosedPorch	1460	non-null	int64
53	3SsnPorch	1460	non-null	int64

df.describe()

df.columns

EDA

df.nunique()

Id 1460 15 MSSubClass MSZoning 5 LotArea 1073 Street 2 MoSold 12 YrSold 5 SaleType 9 SaleCondition 6 SalePrice 663 Length: 62, dtype: int64

df.Street.value_counts()

Pave 1454 Grvl 6

Name: Street, dtype: int64

df.MSZoning.value_counts()

RL 1151 RM 218 FV 65 RH 16 C (all) 10

Name: MSZoning, dtype: int64

```
df.YrSold.value_counts()
     2009
              338
              329
     2007
     2006
              314
     2008
              304
     2010
              175
     Name: YrSold, dtype: int64
df.MoSold.value_counts()
     6
            253
     7
            234
     5
            204
     4
            141
     8
            122
     3
            106
     10
            89
     11
             79
     9
             63
     12
             59
             58
     1
     2
             52
     Name: MoSold, dtype: int64
df = df.select_dtypes(exclude=['object'])
df
```

Lets split the dataset into Training et Testing set

Feature Engineering

```
X = np.append(arr = np.ones((1460,1)), values = X, axis=1)
import statsmodels.api as sm
X_opt = X[:,[0,1,2,3,4,5]]
regressor = sm.OLS(endog = Y, exog = X_opt).fit()
regressor.summary()
```

OLS Regression Results

R-squared: Dep. Variable: У 0.666 OLS Model: Adj. R-squared: 0.665 Method: Least Squares F-statistic: 579.5 Date: Thu, 26 May 2022 **Prob (F-statistic):** 0.00 21:47:03 Log-Likelihood: -17744. Time: No. Observations: 1460 AIC: 3.550e+04 **Df Residuals:** 1454 BIC: 3.553e+04

Df Model: 5

Covariance Type: nonrobust

t P>|t| [0.025 0.975] coef std err const -9.22e+04 9029.698 -10.211 0.000 -1.1e+05 -7.45e+04 **x1** 1.2840 2.859 0.449 0.653 -4.325 6.893 **x2** -162.5297 28.833 -5.637 0.000 -219.089 -105.970 0.123 11.024 0.000 1.112 1.593 **x3** 1.3523 **x4** 4.452e+04 880.507 50.561 0.000 4.28e+04 4.62e+04 **x5** -775.8548 1088.662 -0.713 0.476 -2911.371 1359.661

 Omnibus:
 593.097
 Durbin-Watson:
 1.968

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 7698.739

 Skew:
 1.525
 Prob(JB):
 0.00

 Kurtosis:
 13.829
 Cond. No.
 1.09e+05

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.09e+05. This might indicate that there are strong multicollinearity or other numerical problems.