Assignment: Module 2 - The LP Model

- 1. a. The decision variables are **number of units of bags** produced per week— the Collegiate(X1) and the Mini(X2).
 - b. Objective function is to maximize the profit by the sale of the two types of bag. Z=32*X1+24*X2
 - c. Constraints are

limit of bag production based on the total sq-ft. nylon received from the supplier $3*X1+2*X2 \le 5000$

Bag manufacturing count should be less than maximum bags can be sold per week.

X1<=1000, X2<=1200

Another constraint is based on the number of hours labors can work per week.

45*X1+40*X2<=40*60*35

d. Mathematical formula for the linear problem.

Maximize profit Z=32*X1+24*X2

3*X1+2*X2<=5000

X1<=1000, X2<=1200

45*X1+40*X2<=40*60*35

2. a. Decision variables:

Let's assume that below are the **per day** production rate/volume

X11 = number of Large Products made at Plant 1

X12 = number of Medium Products made at Plant 1

X13 = number of Small Products made at Plant 1

X21 = number of Large Products made at Plant 2

X22 = number of Medium Products made at Plant 2

X23 = number of Small Products made at Plant 2

X31 = number of Large Products made at Plant 3

X32 = number of Medium Products made at Plant 3

X33 = number of Small Products made at Plant 3

b. LP model:

Constraints:

Production unit limit per day

X11+X12+X13<=750

X21+X22+X23<=900

X31+X32+X33<=450

In process storage space for day's production

20*X11+15*X12+X13<=13000 20*X21+15*X22+X23<=12000 20*X31+15*X32+X33<=5000

Sales forecast of quantities sale per day X11+X21+X31<=900 X12+X22+X32<=1200 X13+X23+X33<=750

Objective Function:

Maximize the profit C=(X11+X21+X31)*420+(X12+X22+X32)*360+(X13+X23+X33)*300