Computational Fluid Dynamics HW2

Almog Dobrescu

ID 214254252

 $March\ 7,\ 2025$

Contents

List of Figures

1

1	Problem Definition	1
	1.1 Governing Equations	1
	1.2 Physical Domain	1
	1.3 Initial Conditions	1
	1.4 Boundary Conditions	1
2	The Computational Domain	2
	2.1 Discretization	2
	2.2 Boundary Conditions	2
3	The Numerical Schemes	2

Nomenclature

 Δx size of each cell in the domain

 γ ratio of specific heats

 κ coefficient of thermal conductivity

 μ coefficient of viscodity

 ρ fluid density

E inviscid convective vector

e total energy

 E_v viscous convective vector

p pressure

Q conservation state space

R gas constant

T temperature

t time

u fluid velocity

x spatial coordinate

 x_F x coordinate of the end of the domain

 x_i x coordinate of the i-th cell

1 Problem Definition

1.1 Governing Equations

Consider the one-dimensional Navier-Stokes Equations:

$$\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial x} = \frac{\partial E_v}{\partial x} \tag{1}$$

Where:

$$Q = \begin{cases} \rho \\ \rho u \\ e \end{cases}, \quad E = \begin{cases} \rho u \\ p + \rho u^2 \\ (e + p) u \end{cases}, \quad E_v = \begin{cases} \frac{4}{3} \mu \frac{\partial u}{\partial x} \\ \frac{4}{3} \mu u \frac{\partial u}{\partial x} - \kappa \frac{\partial T}{\partial x} \end{cases}$$

$$p = (\gamma - 1) \left(e - \frac{1}{2} \rho u^2 \right), \qquad T = \frac{p}{\rho R},$$

$$\mu = 1.458 \cdot 10^{-6} \frac{T^{\frac{3}{2}}}{T + 110.4}, \quad \mu = 2.495 \cdot 10^{-3} \frac{T^{\frac{3}{2}}}{T + 194}$$
(2)

The constants are:

- $\gamma = 1.4$ for air under standard atmospheric conditions
- R = 287.0 for air

1.2 Physical Domain

The physical domain is a tube extended between x = 0.2 and x = 1.0. At both ends there are impermeable walls.

1.3 Initial Conditions

The initial conditions are shown in Fig.1:

Figure 1: Initial conditions

1.4 Boundary Conditions

On each side of the tube there is an adiabatic, soild wall boundary conditions.

$$u_{(x=0.2)} = u_{(x=1.0)} = 0 \qquad \left\| \frac{\partial p}{\partial x} \right|_{x=0.2} = \left. \frac{\partial p}{\partial x} \right|_{x=1.0} = 0 \qquad \left\| \frac{\partial T}{\partial x} \right|_{x=0.2} = \left. \frac{\partial T}{\partial x} \right|_{x=1.0} = 0$$

2 The Computational Domain

2.1 Discretization

The physical domain $[x_I, x_F]$ is discretizes into N equispaced cells. The size of each cell is there for:

$$\Delta x = \frac{x_F - x_I}{N} \tag{3}$$

so the x coordinate of the i-th cell x_i is:

$$x_i = x_I + \frac{1}{2}\Delta x + \Delta x \cdot (i-1)$$
 when starting from $i = 1$ (4)

2.2 Boundary Conditions

In order to set the boundary conditions on the edge faces we will define ghost cells that will be calculated like so:

$$\begin{array}{rcl}
 u_{(i=0)} & = & -u_{(i=1)} \\
 u_{(i=N+1)} & = & -u_{(i=N)}
 \end{array} \tag{5}$$

in order to mentain velocity zero on the boundary and like so:

$$T_{(i=0)} = T_{(i=1)}$$

 $T_{(i=N+1)} = T_{(i=N)}$
(6)

in order to mentain adiabatic boundary conditions. Since the gradient of the pressure on the wall is zero, we get:

$$\begin{array}{rcl}
p_{(i=0)} & = & p_{(i=1)} \\
p_{(i=N+1)} & = & p_{(i=N)}
\end{array} \tag{7}$$

From equations 2, 6, and 7 we can conclude:

$$\begin{array}{rcl}
\rho_{(i=0)} & = & \rho_{(i=1)} \\
\rho_{(i=N+1)} & = & \rho_{(i=N)}
\end{array} \tag{8}$$

and from equations 2, 5, 7, and 8 we can conclude:

$$e_{(i=0)} = e_{(i=1)}$$

 $e_{(i=N+1)} = e_{(i=N)}$ (9)

3 The Numerical Schemes