National University of Computer & Emerging Sciences CS 3001 - COMPUTER NETWORKS

Lecture 19
Chapter 4

27th October, 2022

Nauman Moazzam Hayat nauman.moazzam@lhr.nu.edu.pk

Office Hours: 02:30 pm till 06:00 pm (Every Tuesday & Thursday)

Chapter 4 Network Layer

KUROSE ROSS

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2013 J.F Kurose and K.W. Ross, All Rights Reserved Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

IP addresses: how to get one?

Q: How does a host get IP address?

- hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network server when it joins network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/"on")
- support for mobile users who want to join network (more shortly)
- App layer protocol used by the Network Layer
- DHCP uses UDP at the Transport Layer

DHCP overview (DHCP Summary):

- host broadcasts "DHCP discover" msg [optional]
- DHCP server(s) responds with "DHCP offer" msg [optional]
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg Network Layer 4-5

DHCP client-server scenario

DHCP client-server scenario

DHCP client-server scenario

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS sever
- network mask (indicating network versus host portion of address)

DHCP: example

- connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802. I Ethernet
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

DHCP: example

- DCP server formulates
 DHCP ACK containing
 client's IP address, IP
 address of first-hop
 router for client, name &
 IP address of DNS server
- encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- client now knows its IP address, name and IP address of DNS server, IP address of its first-hop router

IP addresses: how to get one?

Q: how does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0	11001000	00010111	0001000	00000000	200.23.16.0/23
Organization 1					200.23.18.0/23
Organization 2	11001000	00010111	0001010	0000000	200.23.20.0/23
Organization 7	11001000	00010111	00011110	00000000	200.23.30.0/23

Hierarchical addressing: route aggregation

(Route Summarization / Address Aggregation)

hierarchical addressing allows efficient advertisement of routing information:

- As was shown in the previous Figure, the ISP Fly-By-Night advertises to the outside world that it should be sent any datagrams whose first 20 address bits match 200.23.16.0/20.
- The rest of the world need not know that within the address block 200.23.16.0/20 there are in fact eight other organizations, each with their own subnets.
- This ability to use a single prefix to advertise multiple networks is often referred to as address aggregation (also route aggregation or route summarization or loosely can be called supernetting).
- This works extremely well when addresses are allocated in blocks to ISPs and then from ISPs to client organizations.

What if the addresses are not allocated in such a hierarchical manner?

- For example, what would happen if ISP Fly-By-Night acquires ISPs-R-Us and then has Organization 1 connect to the Internet through its subsidiary ISPs-R-Us?
- As was shown in the Figure, ISPs-R-Us owns the address block 199.31.0.0/16 but Organization 1's IP addresses are unfortunately outside of this address block.
- What should be done here?

Proposed Solutions

- Organization 1 could renumber all of its routers and hosts to have addresses within the ISPs-R-Us address block.
 - It's a costly solution.
 - Organization 1 might well be reassigned to another subsidiary in the future.
- Organization 1 keeps its IP addresses in 200.23.18.0/23 and ISPs-R-Us advertises the block of addresses for Organization 1 (in addition to its own block of addresses.)
 - When routers in the Internet see the address block 200.23.16.0/20 (from Fly-By-Night) and 200.23.18.0/23 (from ISPs-R-Us), and want to route to an address in the block 200.23.18.0/23, they will use longest prefix matching and route towards ISPs-R-Us as it advertises the longest (most specific) address prefix that matches the destination address.

Figure 4.19 ♦ ISPs-R-Us has a more specific route to Organization 1

Route Summarization / Address Aggregation

 For revision of Route Summarization / Address Aggregation (Supernetting) discussed in the Class, please watch and review my video shared via Google Classroom. (Please watch the complete video, where I explain & solve an example for this in detail.)

Important topic of Computer Networks !!!!!!

IP addressing: the last word...

- Q: how does an ISP get block of addresses?
- A: ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/
 - allocates addresses
 - manages DNS
 - assigns domain names, resolves disputes

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

ICMP: internet control message protocol

- used by hosts & routers to communicate networklevel information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams (similar to UDP & TCP segments)
- ICMP message: type, code plus first 8 bytes of IP datagram causing error (so the source host can identify which datagram caused the error)

<u>Type</u>	Code	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

- source sends series of UDP segments to dest
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number (not known to destination host)
- when nth set of datagrams arrives to nth router (i.e. when timer TTL expires):
 - router discards datagrams
 - and sends source ICMP messages (type II, code 0)
 - ICMP messages includes name of router & IP address

 when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

Default HOP Limit (IPv6) Or TTL (IPv4) Values

Default TTL and Hop Limit values vary between different operating systems, here are the defaults for a few:

- > Linux kernel 2.4 (circa 2001): 255 for TCP, UDP and ICMP
- > Linux kernel 4.10 (2015): 64 for TCP, UDP and ICMP
- > Windows XP (2001): 128 for TCP, UDP and ICMP
- > Windows 10 (2015): 128 for TCP, UDP and ICMP
- > Windows Server 2008: 128 for TCP, UDP and ICMP
- > Windows Server 2019 (2018): 128 for TCP, UDP and ICMP
- > MacOS (2001): 64 for TCP, UDP and ICMP

As you can see, the TTL or Hop Limit seen in packets from a host could, in part, be used to identify the operating system in use on that host.

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- * additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed at routers. If a router receives a datagram too big, it discards it and send a "Packet Too Big" ICMP Message, thus the host has to re-send a smaller packet

IPv6 datagram format

Priority/traffic class: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of flow not well defined).

next header: identify upper layer protocol for data

ver	pri	flow label				
payload len		next hdr	hop limit			
source address (128 bits)						
destination address (128 bits)						
data						

IPv6 Header

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, (but not part of the standard IP header), can be outside of header, indicated by "Next Header" field
- * ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days" (i.e. a day announced where change will happen)
 - how will network operate with mixed IPv4 and IPv6 routers? (Dual Stack Approach or Tunneling.)
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Dual Stack Approach

- IPv6 nodes have a complete implementation of IPv4 as well (referred to as IPv6/IPv4 node) & have both IPv6 & IPv4 addresses
- Such nodes can speak in both i.e. in IPv4 to IPv4 nodes and in IPv6 to IPv6 nodes
- Such nodes should be able to determine whether the other node is IPv4 or IPv6 (can be done via DNS, IP address returned via DNS can identify)
- * Issue: Two IPv6 nodes can end up speaking in IPv4 with each other. (e.g. Node A to F, both can speak IPv6, but intermediate nodes C & D can only speak IPv4, thus header fields (e.g. flow identifier) are lost from A to F although both understand this field

Figure 4.25 • A dual-stack approach

Tunneling

Physical view

Figure 4.26 ♦ Tunneling

IPv6: adoption

- US National Institutes of Standards estimate [2013]:
 - ~3% of industry IP routers
 - ~II% of US gov't routers
- Long (long!) time for deployment, use
 - 20 years and counting! While network layer changes are taking too long (akin to changing the foundation of a house), Application layer changes are rapid (akin to applying a new layer of paint to a house)
 - think of application-level changes in last 20 years: WWW, Facebook, ...
 - Why? (Expensive, Solutions like NAT take some of the pressure off.)

Quiz # 4 (Chapter - 4)

- On: Tuesday 8th November, 2022 (During the lecture)
- Topics Included from Chapter 4 of the textbook:
 - 4.1
 - 4.4

- Quiz to be taken during own section class only