

Customer Churn

Presendeted by: Mert Yigitcan

OUTLINE

- Why does it matter?
- What are we going to do?

I will build a model to answer questions like "Looking at this customers given data, will he/she churn in X months"

Telco Dataset-Kaggle
21 Initial Features –
Mixed

Visualation of data

- What do we want to achieve?
- What is our use case?
- What will be our solution to churn?

ABSTRACT

 Customer churn refers to the process of identifying customer/ clients who will terminate their relations with an organisation.

 The purpose of this project is to build a model to predict if a given customer will churn or not churn using various classification algorithms and techniques

DESIGN

For the purpose of the business, I ensured that we catch as much churns, so we will make recall and f1 score our priority.

► I built upon that by using various techniques like class imbalance techniques, cross-validation to achive an optimal F1-score which we are about.

Data Acquisition & Storage

Telco Dataset-Kaggle

21 Initial Features – Mixed

~7.5K observations

```
In [5]: print(f'num rows: {data.shape[0]} \nnum columns: {data.shape[1]}')
```

num rows: 7043 num columns: 21

Data

data.dropna(how = 'any', inplace = True)
data.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 7032 entries, 0 to 7042
Data columns (total 21 columns):
```

#	Column	Non-Null Count	Dtype
0	customerID	7032 non-null	object
1	gender	7032 non-null	object
2	SeniorCitizen	7032 non-null	int64
3	Partner	7032 non-null	object
4	Dependents	7032 non-null	object
5	tenure	7032 non-null	int64
6	PhoneService	7032 non-null	object
7	MultipleLines	7032 non-null	object
8	InternetService	7032 non-null	object
9	OnlineSecurity	7032 non-null	object
10	OnlineBackup	7032 non-null	object
11	DeviceProtection	7032 non-null	object
12	TechSupport	7032 non-null	object
13	StreamingTV	7032 non-null	object
14	StreamingMovies	7032 non-null	object
15	Contract	7032 non-null	object
16	PaperlessBilling	7032 non-null	object
17	PaymentMethod	7032 non-null	object
18	MonthlyCharges	7032 non-null	float64
19	TotalCharges	7032 non-null	float64
20	Churn	7032 non-null	object
dtypes: float64(2), int64(2), object(17)			

Data Exploration Imbalance Data

No 5163 Yes 1869

Name: Churn, dtype: int64

In precentages No 73.421502 Yes 26.578498

Name: Churn, dtype: float64

In [13]: sns.pairplot(data.drop('customerID', axis=1), hue='Churn')
 plt.show()

Tenure

Data Exploration

Distrubution of Partner Churn

Distrubution of Internet Service for Churned by Gender

Data Exploration

Distrubution of Payment Method for Churned by Gender

Distrubution of Multiple Lines for Churned Customers by Gender

Distrubution of Tech Support fro Churned Customers by Gender

Before Modeling


```
plt.figure(figsize=(25,10))
ab = full_data corr( ['Churn'].sort_values(ascending = False).plot(kind='bar')
plt.xticks(fontsize=25, rotation=90)
```


Modelling

Modelling

Logistic Regression as baseline

• Recall: 0.5346

• F1 Score : 0.588

...Ooopsss!!

- Test Different Models
- Every Model:
 - Bring in all our our feature
 - Make them usable by the model (dummy)
 - Cross- Validation
 - Class Imbalance Techniques

Focus on Imbalance tecniques.

```
In [43]: thresh_ps = np.linspace(.10,.50,1000)
model_val_probs = clf_cv.predict_proba(x_val)[:,1]
```


- F1
- Precession
- Recall
- Accurancy

ADASYN

KNeigbhbors

SMOTE

GridSearchCV

```
In [66]: print("Best params: ", grid.best_params_)
    print("Best estimator: ", grid.best_estimator_)
    print("Best score: ", grid.best_score_)

Best params: {'n_neighbors': 7}
    Best estimator: KNeighborsClassifier(n_neighbors=7)
    Best score: 0.5189494499854447
```


Random Forest

- Combine Val and test
- Fit
- Results:

Threshold @ .21

