

PADDING ORACLES

TTM4205 - Lecture 13

Tjerand Silde

19.10.2023

Contents

Padding Oracles

Recall: RSA Encryption

RSA Padding Schemes

The Bleichenbacher Attack

Improved Bleichenbacher Attack

Protection

Contents

Padding Oracles

Recall: RSA Encryption

RSA Padding Schemes

The Bleichenbacher Attack

Improved Bleichenbacher Attack

Protection

Reference Material

These slides are based on:

- ► The referred papers in the slides
- ▶ JPA: parts of chapter 10
- ▶ DW: parts of chapter 6

Padding Oracles

By this we mean, on a high level, an API that allows an adversary to check if some input is correctly formed.

We limit ourselves to input with a particular padding.

A limited version of the protocol APIs from last week.

Padding Oracles

We will look at symmetric and asymmetric padding schemes:

- more in depth on CBC mode (last time)
- extension attacks against hashing (last time)
- padding attacks against RSA scheme (today)

Several of which are relevant to the weekly problems.

We will also look at some mitigations to these issues.

Contents

Padding Oracles

Recall: RSA Encryption

RSA Padding Schemes

The Bleichenbacher Attack

Improved Bleichenbacher Attack

Protection

The plain RSA encryption scheme works as follows:

KGen:

- ightharpoonup Samples primes p and q of appropriate size and entropy
- ▶ Use fixed e and compute $d \equiv e^{-1} \mod \text{lcm}(p-1, q-1)$
- ▶ Output the key pair $pk = (e, n = p \cdot q)$ and sk = (d, p, q)

The plain RSA encryption scheme works as follows:

Enc:

- lacktriangle Takes as input a message m and public key pk = (e, n)
- ightharpoonup Computes the ciphertext $c \equiv m^e \bmod n$ and outputs c

The plain RSA encryption scheme works as follows:

Dec:

- lacktriangle Takes as input a ciphertext c and secret key ${\sf sk}=(d,p,q)$
- ▶ Computes the message $m \equiv c^d \mod p \cdot q$ and outputs m

Question: Why is not the textbook RSA scheme secure?

The following things make the RSA scheme insecure:

- It is not randomized and hence not even CPA secure
- Given a ciphertext you can search for the message
- High-entropy messages still gives the same ciphertext
- lacktriangle The Jacobi symbol of m and c will be the same

Solution: structured, but randomized padding

Contents

Padding Oracles

Recall: RSA Encryption

RSA Padding Schemes

The Bleichenbacher Attack

Improved Bleichenbacher Attack

Protection

RSA-PKCS#1v1.5

Let n be of k bytes. Given a message m of $\ell \le k-11$ bytes, the padded messages \bar{m} of length k bytes is constructed as follows: $00\ 02$ {at least 8 non-zero random bytes} $00\ \{m\}$.

Quite simple, not proven secure, not secure in practice...

A bad couple of years for the cryptographic token industry

Figure: https://blog.cryptographyengineering.com/2012/06/2 1/bad-couple-of-years-for-cryptographic

OAEP

More complex, proven secure, what you should use:

- ▶ Let n be of k bytes and message m be of ℓ bytes.
- ▶ Let MGF and Hash be hash functions with output *h* bytes.
- Let L be a label (which can be set to the all zero string)
- ▶ Let seed be an ephemeral random string of *h* bytes.
- ▶ Let PS be a all zero string of length $k \ell 2h 2$ bytes.

OAEP

Optimal Asymmetric Encryption — How to Encrypt with RSA

MIHIR BELLARE* PHILLIP ROGAWAY

November 19, 1995

Figure: https://cseweb.ucsd.edu/~mihir/papers/oaep.pdf

Contents

Padding Oracles

Recall: RSA Encryption

RSA Padding Schemes

The Bleichenbacher Attack

Improved Bleichenbacher Attack

Protection

New cryptographers

However, many implementations (still) use RSA-PKCS#1v1.5 or similar padding schemes (note that this is version 1.5).

Recall: $00\ 02$ {at least 8 non-zero random bytes} $00\ \{m\}$.

Question: Assuming no integrity check of RSA ciphertexts, how could you attack this scheme?

▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \mod n$.

- ▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \mod n$.
- ightharpoonup We can multiply a ciphertext c by a chosen $r^e \mod n$.

- ▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \mod n$.
- We can multiply a ciphertext c by a chosen $r^e \mod n$.
- We learn if padding is valid (error message or timings).

- ▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \mod n$.
- We can multiply a ciphertext c by a chosen $r^e \mod n$.
- We learn if padding is valid (error message or timings).
- ▶ We know the value *r* since we could choose it ourselves.

- ▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \mod n$.
- We can multiply a ciphertext c by a chosen $r^e \mod n$.
- We learn if padding is valid (error message or timings).
- ▶ We know the value *r* since we could choose it ourselves.
- ▶ Then we learn that unknown \bar{m} times r is valid encoding.

- ▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \mod n$.
- ▶ We can multiply a ciphertext c by a chosen $r^e \mod n$.
- We learn if padding is valid (error message or timings).
- ▶ We know the value *r* since we could choose it ourselves.
- ▶ Then we learn that unknown \bar{m} times r is valid encoding.
- ▶ We know that if valid then $2 \cdot 2^{8(k-2)} \le \bar{m} \cdot r < 3 \cdot 2^{8(k-2)}$.

- ▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \mod n$.
- We can multiply a ciphertext c by a chosen $r^e \mod n$.
- We learn if padding is valid (error message or timings).
- ▶ We know the value *r* since we could choose it ourselves.
- ▶ Then we learn that unknown \bar{m} times r is valid encoding.
- ▶ We know that if valid then $2 \cdot 2^{8(k-2)} \le \bar{m} \cdot r < 3 \cdot 2^{8(k-2)}$.
- ▶ Repeat for fresh values r until we have a unique \bar{m} left.

Oracle	Original algorithm	
	Mean	Median
FFF	_	-
FFT	215 982	163 183
FTT	159 334	111 984
TFT	39 536	24 926
TTT	38 625	22 641

Figure: https://eprint.iacr.org/2012/417.pdf

Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1

Daniel Bleichenbacher

Bell Laboratories 700 Mountain Ave. Murray Hill, NJ 07974 E-mail: bleichen@research.bell-labs.com

Figure: https://spar.isi.jhu.edu/~mgreen/bleichenbacher.pdf

Contents

Padding Oracles

Recall: RSA Encryption

RSA Padding Schemes

The Bleichenbacher Attack

Improved Bleichenbacher Attack

Protection

1. Be clever when choosing r using co-prime samples.

- **1.** Be clever when choosing r using co-prime samples.
- **2.** Trim the randomness to a specific interval [a, b]

- **1.** Be clever when choosing r using co-prime samples.
- **2.** Trim the randomness to a specific interval [a, b]
- **3.** Parallelization and threading and pre-computation

Improving the Attack

- **1.** Be clever when choosing r using co-prime samples.
- **2.** Trim the randomness to a specific interval [a, b]
- **3.** Parallelization and threading and pre-computation
- 4. Adapt based on how strict padding checks are

The efficiency depends on how strict the padding check is:

1. FFF: padding is 'ok' only if correctly padded and plaintext is of a specific length (e.g., it's a 128-bit AES key).

- **1.** FFF: padding is 'ok' only if correctly padded and plaintext is of a specific length (e.g., it's a 128-bit AES key).
- **2.** FFT: padding is 'ok' only if correctly padded, but plaintext can be any length.

- **1.** FFF: padding is 'ok' only if correctly padded and plaintext is of a specific length (e.g., it's a 128-bit AES key).
- **2.** FFT: padding is 'ok' only if correctly padded, but plaintext can be any length.
- **3.** FTT: same as above, but also allows 0s in the "non-zero random bytes".

- **1.** FFF: padding is 'ok' only if correctly padded and plaintext is of a specific length (e.g., it's a 128-bit AES key).
- **2.** FFT: padding is 'ok' only if correctly padded, but plaintext can be any length.
- **3.** FTT: same as above, but also allows 0s in the "non-zero random bytes".
- **4.** TFT: same as above, but 'ok' even if there are no zeros after the first byte.

- **1.** FFF: padding is 'ok' only if correctly padded and plaintext is of a specific length (e.g., it's a 128-bit AES key).
- **2.** FFT: padding is 'ok' only if correctly padded, but plaintext can be any length.
- **3.** FTT: same as above, but also allows 0s in the "non-zero random bytes".
- **4.** TFT: same as above, but 'ok' even if there are no zeros after the first byte.
- **5.** TTT: padding is 'ok' as long as it starts with 0x 00 02.

Oracle	Original algorithm		Modified algorithm			
	Mean	Median	Mean	Median	Trimmers	Mean skipped
FFF	-	-	18 040 221	12 525 835	50 000	7 321
FFT	215 982	163 183	49 001	14 501	1 500	65 944
FTT	159 334	111 984	39 649	11 276	2 000	61 552
TFT	39 536	24 926	10 295	4 014	600	20 192
TTT	38 625	22 641	9 374	3 768	500	18 467

Table 1: Performance of the original and modified algorithms.

Figure: https://eprint.iacr.org/2012/417.pdf

Efficient Padding Oracle Attacks on Cryptographic Hardware*

Romain Bardou 1, Riccardo Focardi 2**, Yusuke Kawamoto 3***, Lorenzo Simionato^{2†}, Graham Steel^{4***}, and Joe-Kai Tsay^{5***}

¹ INRIA SecSI, LSV, CNRS & ENS-Cachan, France

² DAIS, Università Ca' Foscari, Venezia, Italy

³ School of Computer Science, University of Birmingham, UK ⁴ INRIA Project ProSecCo, Paris, France

Department of Telematics, NTNU, Norway

Figure: https://eprint.iacr.org/2012/417.pdf

Contents

Padding Oracles

Recall: RSA Encryption

RSA Padding Schemes

The Bleichenbacher Attack

Improved Bleichenbacher Attack

► Use OAEP padding for encryption

- Use OAEP padding for encryption
- ► Encrypt-then-Authenticate

- Use OAEP padding for encryption
- ► Encrypt-then-Authenticate
- ▶ Do not use RSA for encryption

Questions?

