Оглавление

2) свет с длиной волны 0.55 мкм падает нормально на поверхность стеклянного (n=1.5) клина	2
3)металлический шар радиусом R=3 несёт заряд Q=20нКл. Шар окружён слоем парафина (2)	3
4)магнитный поток через неподвижный контур с сопротивлением б изменяется в течение	4
5)бесконечная плоскость заряжена отрицательно с поверхностной плотностью (35.4)	5
6)ток, текущий по длинному прямого соленоиду, радиус сечения которого R, меняется	6
7)в длинном соленоиде с радиусом сечения R и числом витком n на единицу длины	7
8)перед диафрагмой с круглым отверстием радиусом 1.0мм поместили точечный источник	9
9)в установке «КН» радиус выпуклой поверхности линзы равен R=0.9м, а пространство	10
10)тонкая плёнка покрывает плоскую стеклянную пластину (1.36)	11
11)определить энергию протона, который движется в однородном магнитном поле	12
12)на длинный соленоид, имеющий диаметр сечения (5см) и содержащий 20 витков на 1 см	13
13)на небольшое круглое отверстие диаметром 0.4 см в	14
14)в вакууме распространяется гармоническая плоская электромагнитная волна	15
15)расстояние между вторым и четвёртым светлыми кольцами Ньютона (0.9мм)	16
16)при сдвиге подвижного зеркала интерферометра Майельина на I	17
17)принимая орбиту электрона в невозбуждённом атоме водорода за окружность	18
18)найти плотность тока смещения в плоском конденсаторе, пластины которого	19
19)плотность потока энергии солнечного излучения, падающего на границу земной атмосферы.	20
20)в вакууме распространяется плоская гармоническая линейно поляризованная	21
21)радиус длинного парамагнитного сердечника соленоида 1.0см	22
22)предельный угол полного внутреннего отражения для некоторого вещества равен 45	23
23)какая энергия запасена на единице длины коаксиального кабеля с проводниками	24
24)плоский воздушный конденсатор с круглыми пластинами радиуса R	25
25)магнитный поток через неподвижный контур с сопротивлением б изменяется в течение	26
26) перед диафрагмой с круглым отверстием радиусом r=1.0 мм поместили	27
27)найти плотность тока смещения в плоском конденсаторе, пластины которого	28
28)в установке «КН» радиус выпуклой поверхности линзы равен R=0.9м, а пространство	29
29)найти плотность тока смещения в плоском конденсаторе, пластины которого	30
30)какая энергия запасена на единице длины коаксиального кабеля с проводниками	31

2) свет с длиной волны 0.55 мкм падает нормально на поверхность стеклянного (n=1.5) клина

При нормальном падении оптическая разность хода

$$\Delta = 2bn$$
,

где b – толщина клина в том месте, где наблюдают максимум m – го порядка;

n – показатель преломления стекла.

$$2b_1 n = m\lambda$$

$$2b_2 n = (m+1)\lambda$$

$$2(b_2 - b_1)n = \lambda; b_2 - b_1 = \frac{\lambda}{2K}$$

Из рисунка

3)металлический шар радиусом R=3 несёт заряд Q=20нКл. Шар окружён слоем парафина (2)

Решение. Так как поле, созданное заряженным шаром, является неоднородным, то энергия поля в слое диэлектрика распре-

делена неравномерно. Однако объемная плотность энергии будет одинакова во всех точках, отстоящих на равных расстояниях от центра сферы, так как поле заряженного шара обладает сферической симметрией.

Выразим энергию в элементарном сферическом слое диэлектрика объемом dV:

$$dW = w dV$$
,

Рис. 18.1

где w — объемная плотность энергии (рис. 18.1).

Полная энергия выразится интегралом

$$W = \int w \, dV = 4\pi \int_{R}^{R+d} wr^2 \, dr, \qquad (1)$$

где r — радиус элементарного сферического слоя; dr — его толщина. Объемная плотность энергии определяется по формуле $w = \frac{1}{2} \varepsilon_0 \varepsilon E^2$, где E — напряженность поля. В нашем случае

$$E = \frac{Q}{4\pi\epsilon_0\epsilon r^2}$$
 и, следовательно,

$$w = \frac{Q^3}{32\pi^2 \epsilon_0 \epsilon_{f^4}}$$
.

Подставив это выражение плотности в формулу (1) и вынеся за знак интеграла постоянные величины, получим

$$W = \frac{Q^2}{8\pi\varepsilon_0\varepsilon} \int\limits_{R}^{R+d} \frac{\mathrm{d}r}{r^2} = \frac{Q^2}{8\pi\varepsilon_0\varepsilon} \left(\frac{1}{R} - \frac{1}{R+d}\right) = \frac{Q^2d}{8\pi\varepsilon_0\varepsilon R(R+d)} \,.$$

Произведя вычисления по этой формуле, найдем $W=12\,$ мк Π ж.

4)магнитный поток через неподвижный контур с сопротивлением б изменяется в течение

5)бесконечная плоскость заряжена отрицательно с поверхностной плотностью (35.4)

Дано:

$$\sigma = 35.4 \cdot 10^{-9} \ \text{Kn/m}^2$$
 $l_0 = 0.05 \ \text{M}$
 $T = 80 \ 9B$

Решение:

$$eU = T$$

 $eEl = T; l = \frac{T}{eE}$
 $E = \frac{\sigma}{2\varepsilon_0}; l = \frac{2\varepsilon_0 T}{e\sigma}$
 $l_{min} = l_0 - l = l_0 - \frac{2\varepsilon_0 T}{e\sigma} = 0,04 M$

Ответ: 0,04 м.

6)ток, текущий по длинному прямого соленоиду, радиус сечения которого R, меняется

3.236 Ток, проходящий по обмотке длинного прямого соленоида радиусом R, изменяют так, что магнитное поле внутри соленоида рас-

тет со временем по закону $B = At^2$, где A — некоторая постоянная. Определите плотность тока смещения как функцию расстояния r от оси соленоида. Постройте график зависимости $f_{cm}(r)$.

A	ано	Per	иение	
R $B = At^{2}$ $A = \text{const}$ $J_{\text{CM}}(r) - ?$		$f_{CM} = \frac{\partial D}{\partial t},$ $\oint_{L} \mathbf{E} d\mathbf{l} = -$	$\int_{S} \frac{\partial \mathbf{B}}{\partial t} d\mathbf{S} ,$ $\frac{\partial B}{\partial t} = 2\lambda$	
r < R,	$2\pi rE = \pi r^2$		$\frac{\partial B}{\partial t} = 2A$ $E = Atr,$	$J_{cot} = -\epsilon_0 A r$;
r > R,	$2\pi rE=\pi R^2$	2.41 ,	$E = \frac{R^2 A t}{r} .$	$j_{\rm cm} = \frac{\varepsilon_0 A R^2}{r} \; ;$
r = R,	E=AtR,		$j_{\rm cm} = \varepsilon_0 A R$.	

Ответ

$$\int_{c_M} = -\varepsilon_0 A r \ (r < R);$$

$$\begin{split} j_{\rm cm} &= \frac{\varepsilon_0 A R^2}{r} \ (\ r > R \); \\ j_{\rm cm} &= \varepsilon_0 A R \ (\ r = R \). \end{split}$$

$$j_{\rm cm}=\varepsilon_0 A R$$
 ($r=R$).

7)в длинном соленоиде с радиусом сечения R и числом витком n на единицу длины

В динном приман соленоведе менияться поле abusera ognopognucy Brythu concernouge, upurcus наспиткай индукция В начавления в инборт тогкое навливино оси соленочаре и ровеа но (1)B=NoIn ege: I-rox 6 Burnax coneriorga; n- mano harrob rea *cueralyxy* единици длины. Overluga (uz oceloù ounnerpun), ato ben rof E mantisженност динопилеоного поля в мовый почко жучинестях е дентром нея обы соленовая и нерионодикция пови оси Интем значение Езавионя жеоко от раположней в до бы, r.e. $E = E(\varepsilon)$. воспользуется уравнением Мекевыма В интеграцикам виде: gEde = - de SBas (2) Применяй (а) к номуру У в Сиде окрушность. oc. 1 wga, wayuw: \$\varepsilon \varepsilon \var Cur Juc.1 (tox: l=202-quira oxfyurwery) S B d s = { B it 2, up a > 2 > 0, S B d s = { B it a2, up a > 2 > 0, (198: S=874 HUM S=1092 - ULLEUMORE KAYCE) S
R=Q-fargung eoler ough ULM C YEEFOX (1): SBdS=(MoINTOX, Ufrarzzo)
(1) R=Q-fargung eoler ough ULM C YEEFOX (1): SBdS=(MoINTOX, Ufrarzzo)
(1) R 10 Intag ufu 2 > Q интеграл по кругу S рединод с рабен: Mui a-270: E(T) 27 2 = - de (NoIn TT2) = - HOMETEI, OTHERS E(T) = MonteI, We are the 23 Q: E(t) 2002 = -d (yo Insa?) = - youra? I, orange: E(t) = No sin Ia2, who to a Undur sadmennoctu E = E(z) whegepalmen na fue 2. Hotza/2 Q.

8)перед диафрагмой с круглым отверстием радиусом 1.0мм поместили точечный источник

9)в установке «КН» радиус выпуклой поверхности линзы равен R=0.9м, а пространство

10)тонкая плёнка покрывает плоскую стеклянную пластину (1.36)

11)определить энергию протона, который движется в однородном магнитном поле

Раздожим скорость протона \vec{v} на две составляющие: $\vec{v}_{\rm F}$, направленную вдоль поля, и $\vec{v}_{\rm R}$, направленную перпенАнкулярно к полю. Проекция траектории электрона на
Влюскость, перпендикулярную к индукции \vec{B} эмпредставляет собой окружность, радиус которой определяется
формулой $R = \frac{mv_{\rm R}}{eB} = \frac{m(v\sin\alpha)}{eB}$ (см. задачу 11.69). Отсюда $v = \frac{eBR}{m\sin\alpha}$. Кинетическая энергия протона $W = \frac{mv^2}{2}$.
Подставляя выражение для v, получим $W = \frac{e^2B^2R^2}{2m\sin^2\alpha}$.
Подставляя числовые данные, получим $W = 6.9 \cdot 10^{-17}$ Дж

studyport.ru

или W = 431 pB.

12)на длинный соленоид, имеющий диаметр сечения (5см) и содержащий 20 витков на 1 см

13) на небольшое круглое отверстие диаметром 0.4 см в ...

14)в вакууме распространяется гармоническая плоская электромагнитная волна

15)расстояние между вторым и четвёртым светлыми кольцами Ньютона (0.9мм)

16)при сдвиге подвижного зеркала интерферометра Майельина на І

...

17)принимая орбиту электрона в невозбуждённом атоме водорода за окружность

Согласно теории Бора, электрон в атоме водорода движется вокруг ядра по круговой орбите радиусом $r = 52,8\,$ пм. Определите магтную индукцию B поля, создаваемого электроном в центре круговой орбите

Дано	Решение •
= 52,8 TIM = 5,28 · 10 ⁻¹¹ M	$\mathbf{B} = \frac{\mu_0 \mu Q[\mathbf{v} \mathbf{r}]}{4\pi r^3}, (\mathbf{v}, \mathbf{r}) = \frac{\pi}{2}, \mu = 1, Q = e.$
<i>−</i> ?	$B = \frac{\mu_0}{4\pi} \frac{ev}{r^2}, \qquad \frac{mv^2}{r} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2}, \qquad v = \sqrt{\frac{e^2}{4\pi\varepsilon_0 rm}}.$
$B = \frac{\mu_0 e^2}{8\pi r^2 \sqrt{\pi \varepsilon_0 r m}} .$	Ответ В = 1,25 10 ⁻²³ Тл

18) найти плотность тока смещения в плоском конденсаторе, пластины которого

Р е ш е н и е. 1. Так как заряд на пластинах конденсатора не изменяется, то величина электрического смещения

$$D_n = |\mathbf{D}| = q/S = \text{const}$$
.

Спедовательно, плотность тока смещения

$$j_{\text{CM}} = \left| \frac{\partial \mathbf{D}}{\partial t} \right| = \left| \frac{\partial D_n}{\partial t} \right| = 0.$$

19)плотность потока энергии солнечного излучения, падающего на границу земной атмосферы

20)в вакууме распространяется плоская гармоническая линейно поляризованная

В вакууме распространяется плоская гармоническая линейно поляризованная электромагнитная волна частоты ω . Интенсивность волны равна I. Найдем амплитудное значение плотности тока смещения в этой волне.

По определению, плотность тока смещения $\mathbf{j}_{\mathrm{cm}} = \partial \mathbf{D}/\partial t$, где $\mathbf{D} = \varepsilon_0 \mathbf{E}$. Пусть $\mathbf{E} = \mathbf{E}_m \cos(\omega t - kx)$, тогда амплитудное значение плотности тока смещения $j_{\mathrm{cm}\ \mathrm{make}} = \varepsilon_0 \omega E$. Остается найти E_m . Это делается с помощью формулы (2.25):

$$E_m = \sqrt{2I\sqrt{\mu_0/\epsilon_0}},$$

и мы получим из предыдущих двух формул, что

$$j_{\rm cm\ marc} = \omega \sqrt{2\varepsilon_0 I/c}$$
,

где
$$c = 1/\sqrt{\epsilon_0 \mu_0}$$
.

21)радиус длинного парамагнитного сердечника соленоида 1.0см.

Пусть соленоид таков, что его длина много больше диаметра сердечника. Выделим в соленоиде вдали от его краев элемент длины $l=1\ cm=0.01\ m$, обмотка которого содержит $n=10\ витков$.

Индуктивность такого элемента $L = \mu\mu 0n2S/l = \pi\mu\mu 0n2r2/l$, где S- площадь поперечного сечения, r- радиус сердечника; энергия магнитного поля в сердечнике при I= const W= $LI2/2=\pi\mu\mu 0n2r2I2/l$.

- (1) Предположим, что обмотка соленоида выполнена из проволоки круглого сечения. Тогда при площади поперечного сечения a=1 см $2=1\cdot 10$ -4 м2 радиус сечения провода равен $c=V(a/\pi)=V((1\cdot 10\text{-}4/\pi)\sim 0.564\cdot 10\text{-}2$ (м).
- (2) Диаметр сечения провода составляет тогда $d=2c=2\cdot 0,564\cdot 10-2\sim 1,13\cdot 10-2$ (м), и на длине l=0,01 м десять витков уложены быть не могут. Поэтому ограничимся предположением о том, что обмотка выполнена плотно, т. е. витки проволоки уложены без зазоров, форма сечения проволоки неизвестна, а длина проволоки b приблизительно равна произведению числа витков на длину периметра поперечного сечения сердечника, т. е. $b\sim 2\pi rn$.
- (3) Сопротивление обмотки $R = \rho b/a$; количество теплоты, выделившейся в обмотке, $Q = I2Rt = I2t\rho b/a$.
- (4) По условию задачи Q = W. Тогда, приравнивая в ыражения (1) и (2), получаем I2tpb/a = $\pi\mu\mu$ 0n2r2I2/l, tpb/a = $\pi\mu\mu$ 0n2r2/l, откуда выводим t = $\pi\mu\mu$ 0n2r2a/(lpb) = $\pi\mu\mu$ 0n2r2a/(2 π rnlp) = $\mu\mu$ 0nra/(2lp).
- (5) Подставим в формулу (3) числовые значения величин: $\mu > 1$ (для парамагнетика), $\mu 0 = 4\pi \cdot 10$ -7 Гн/м, n = 10, r = 0.01 м, $a = 1 \cdot 10$ -4 м2, l = 0.1 м, $\rho = 1.72 \cdot 10$ -8 Ом · м и найдем $t > 4\pi \cdot 10$ -7 · $10 \cdot 0.01 \cdot 1 \cdot 10$ -4/($2 \cdot 0.1 \cdot 1.72 \cdot 10$ -8) $\sim 3.65 \cdot 10$ -3 (c). Поскольку материал парамагнетика в условии не указан, точное значение времени определить невозможно.
- (6) Other: $t > 3,65 \cdot 10-3$ c.

22)предельный угол полного внутреннего отражения для некоторого вещества равен 45

23) какая энергия запасена на единице длины коаксиального кабеля с проводниками

25)магнитный поток через неподвижный контур с сопротивлением б изменяется в течение

26) перед диафрагмой с круглым отверстием радиусом r=1.0 мм поместили

27) найти плотность тока смещения в плоском конденсаторе, пластины которого

Р е ш е н и е. 1. Так как заряд на пластинах конденсатора не изменяется, то величина электрического смещения

$$D_n = |\mathbf{D}| = q/S = \text{const}.$$

Спедовательно, плотность тока смещения

$$j_{\rm CM} = \left| \frac{\partial \mathbf{D}}{\partial t} \right| = \left| \frac{\partial D_n}{\partial t} \right| = 0.$$

28)в установке «КН» радиус выпуклой поверхности линзы равен R=0.9м, а пространство

29) найти плотность тока смещения в плоском конденсаторе, пластины которого

Р е ш е н и е. 1. Так как заряд на пластинах конденсатора не изменяется, то величина электрического смещения

$$D_n = |\mathbf{D}| = q/S = \text{const.}$$

Спедовательно, плотность тока смещения

$$j_{\rm CM} = \left| \frac{\partial \mathbf{D}}{\partial t} \right| = \left| \frac{\partial D_n}{\partial t} \right| = 0.$$

30) какая энергия запасена на единице длины коаксиального кабеля с проводниками

