TA: Itziar Ochoa de Alaiza

Fall 2017

Sections: ADJ/ADK

Approximate Integration

 $\Delta x =$

 $\bar{x}_i =$

 $x_i =$

Midpoint Rule

$$\int_a^b f(x)dx = \Delta x [f(\bar{x}_1) + f(\bar{x}_2) + \dots + f(\bar{x}_n)]$$

Trapezoidal Rule

$$\int_{a}^{b} f(x)dx = \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]$$

Simpsons Rule

$$\int_{a}^{b} f(x)dx = \frac{\Delta x}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 4f(x_{n-1}) + f(x_n)]$$

Arc Length

• Write the formula in terms of x: $y = f(x), a \le x \le b$

$$L = \int_{a}^{b} \sqrt{dx}$$

• Write the formula in terms of y: $x = g(y), c \le y \le d$

$$L = \int_{c}^{d} \sqrt{dy}$$

Area of a Surface of Revolution

General formula:

$$= \int 2\pi R ds$$

	integral in terms of x	integral in term of y
rotate about x-axis (R=)		
rotate about y-axis (R=)		

Example:

Set up an integral for the area of the surface obtained by rotation the curve $y = \tan(x), \ 0 \le x \le \pi/3$

- about the x-axis in terms of x:
- about the x-axis in terms of y:
- \bullet about the y-axis in terms of x:
- about the y-axis in terms of y:

Hydrostatic force

General formula:

$$F = \int_{a}^{b} \rho g(\text{depth})(\text{width}) \, dy$$

1. Rectangle:

2. Triangle:

3. Parabola, circle, elipse etc:

Moments and Centers of Mass

$$M_y = \rho \int_a^b dx$$

$$M_x = \rho \int_a^b dx$$

$$\bar{x} =$$

$$\bar{y} =$$

What if the region lies between two curves y = f(x) and y = g(x) where $f(x) \ge g(x)$?

$$M_y =$$

$$M_x =$$

Example: A lamina of density $\rho \text{ kg/}m^2$ has the shape of the half circle defined by

$$x^2 + y^2 = 9, \qquad y \ge 0.$$

Set up but do not evaluate an integral to compute the moment M_x about the x-axis.

Sequences

If $\lim_{n\to\infty} a_n$ exists (as a finite number), we say the sequence $\{a_n\}$ the sequence is

. Otherwise we say that

Examples: Are the following sequences convergent or divergent?

a.
$$a_n = \frac{\sqrt{9n^2 - 2n}}{2n + 3}$$

b.
$$a_n = \ln(n+6) - \ln(n)$$

$$\mathbf{c.} \ a_n = \frac{\cos^2 n}{4^n}$$

Series

Given a series $\sum_{n=1}^{\infty} a_n$, let s_n denote its nth partian sum:

$$s_n =$$

If the sequence $\{s_n\}$ is convergent, then the series $\sum_{n=1}^{\infty} a_n$ is called

and we write

$$\sum_{n=1}^{\infty} a_n =$$

• How can we find a_n if s_n is given?

$$a_n =$$

• Examples of series we know well:

The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots$$

is convergent/divergent if |r| < 1 and its sum is:

If , the geometric series is **divergent**.

p-series

• Tests we can use to find convergence or divergence:

Test for Divergence

The Integral Test

- What are the hypothesis for f?
- What is the conclusion?

The Comparison Test

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- If $\sum b_n$ is convergent and \leq for all n, then $\sum a_n$ is also convergent.
- If $\sum b_n$ is divergent and \leq for all n, then $\sum a_n$ is also divergent.

The Limit Comparison Test

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

If $\lim_{n\to\infty} \frac{a_n}{b_n} =$, then either both series converge or both diverge.

Remarks:

• Careful when using the divergence test: If $\lim_{n\to\infty} a_n = 0$, we cannot conclude anything from the divergence test.

Example: Look at $\sum_{n=1}^{\infty} \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Both limits are 0, but the first one diverges and the second one converges.

7

 $\bullet\,$ If using the Integral test make sure you check the hypothesis.

Example: Use the integral test to show whether $\sum_{n=1}^{\infty} e^{-n}$ converges:

Examples: Are the following series convergent or divergent?

a.
$$\sum_{n=1}^{\infty} \frac{\sin^2(n)}{2n^2+3}$$

b.
$$\sum_{n=1}^{\infty} \arctan(n)$$

c.
$$\sum_{n=1}^{\infty} \frac{2^{3n+1}}{3^n}$$

$$\mathbf{d.} \sum_{n=1}^{\infty} \sin(\frac{4}{n})$$

e.
$$\sum_{n=1}^{\infty} \frac{n^3 + 5n}{e^n}$$

Remember: $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$ and we define

$$S_n = a_1 + \dots + a_n$$
 and $R_n = a_{n+1} + a_{n+2} + \dots$

When we approximate $\sum_{n=1}^{\infty} a_n$ by S_n we make and "error" R_n and we want to know how big this error is.

Reminder Estimate for the Integral Test

$$\leq R_n \leq$$

$$\leq S = \sum_{n=1}^{\infty} a_n \leq$$

• How many terms of the series $\sum_{n=1}^{\infty} \frac{5}{n^3}$ would we need to add to estimate the sum to within 0.1?

• Approximate $\sum_{n=1}^{\infty} \frac{5}{n^3}$ within 0.1.