Pooling vs Voting:

An Empirical Study of Learning Causal Structures

Meghamala Sinha, Prasad Tadepalli, Stephen A. Ramsey

AAAI Spring Symposium Beyond Curve Fitting: Causation, Counterfactuals, and Imagination-based AI, March 27, 2019

Confusion over Causality and Correlation

- Causally unrelated variables appear to be highly correlated
- Spurious Correlation, Personal Anecdotes & Scientific Reporting are unclear to determine Causality

Effects of mixing Observational and Interventional data

- Observational data is cheap, accessible and identifies among Markov Equivalent structures
- Interventions are external manipulating of one or more variables in our system
- Enable us to differentiate among different causal structures compatible with an observation

- A dependence on both observational and interventional experiments is important
- A common approach is to pool all the data and learn a single causal model for Statistical Efficiency.

Perfect Known, fixed target

Not applicable in Real World settings!!

Imperfect Unreliable, Soft targets

"off-target" effects of drugs, gene knockouts etc

Spurious Causal links

False Causal Dependence

False Causal Independence

Contribution

Detecting such spurious causal links might lose the very purpose of learning these networks

 We propose a way of handling uncertain interventions by learning causal information from different experiments separately and combining the results using a simple approach called "Learn and Vote".

We found that our approach achieves a significant reduction of false causal discovery.

Our Approach: Learn and Vote

Our Approach: Learn and Vote

- Total number of "k" experiments
- Can be observational or interventional

ALGORITHM 1 Learn and Vote

Input: set of k experiments with dataset $D_1, D_2... E_k$

Output: DAG $G^f = (E, V)$, final causal network

1: **procedure** Our Approach

for j=1 to k do

3: N=nodes In D_i

4: intv=Intervened nodes in D_i

randomNet=createRandNet(N, 100)

6: **for** l=1 to 100 **do**

7: Net[l]=Tabu(randomNet[l], intv)

arcProb[j]=arcStrength(Net)

9: avgArcs = avgNetwork(arcProb)

10: $G^f = learnDAG(avgArcs, Threshold)$

Known
 Targets of intervention

Score based searching

Averaging over all experiments

• Final causal network, with threshold 50%

Initialization

100 DAGs

List containing arc strength

probability

and direction in

Observed

variables in our

system

7

An Application: Cell Signalling Networks

An Application: Biological Signalling Networks

Observational Study

Observational + Interventional Study

Learn and Vote

TP: 5, FP: 10, FN: 15

Networks Inferred

Sachs method reimplemented

TP: 17, FP: 8, FN: 3

P38 -> pjnk

Learn and Vote

1 PCViz: http://www.pathwaycommons.org/pcviz/ 2 PubMed : https://www.ncbi.nlm.nih.gov/pubmed/

Empirical Study

TP: 8, FP: 6, FN: 12

TP: 9, FP: 0, FN: 11

Greedy methods not good with uncertain interventions:-(

Networks Inferred

GDS simy

TP: 18, FP: 25, FN: 2

TP: 17, FP: 28, FN: 3

TP: 19, FP: 26, FN: 1

Comparative Benchmark

Dataset	Metric	Causal Discovery Algorithms						
Dataset		PC	GDS	GIES	ICP	simy	Sachs et al	Learn and Vote
Flow Cytometry	Precision	0.5714	0.4186	0.377	1	0.4222	0.68	0.89
	Recall	0.4	0.9	0.85	0.45	0.95	0.85	0.89
	F1 score	0.47	0.572	0.522	0.62	0.584	0.7558	0.89
Lizards	Precision	1	1	1	0	1	1	1
	Recall	1	1	1	0	1	0.5	0.5
	F1 score	1	1	1	0	1	0.667	0.667
Asia_mut1	Precision	1	0.625	0.625	1	0.31578	0.77	1
	Recall	0.75	0.625	0.625	0.5	0.75	0.875	0.75
	F1 score	0.857	0.625	0.625	0.666	0.4444	0.8237	0.857
Asia_mut2	Precision	1	0.85714	0.85714	1	0.3043	0.666	1
	Recall	0.75	0.75	0.75	0.5	0.875	0.75	0.75
	F1 score	0.857	0.8	0.8	0.666	0.4928	0.7058	0.857
gmInt	Precision	0.75	0.889	0.889	1	0.889	0.8571	1
	Recall	0.75	1	1	0.375	1	0.75	0.75
	F1 score	0.75	0.94	0.94	0.5454	0.94	0.8	0.857
Alarm_mut1	Precision	0.666	0.25	0.26	0.7	n/a	0.625	0.564
	Recall	0.434	0.217	0.26	0.26	n/a	0.4464	0.4
	F1 score	0.526	0.2325	0.26	0.38	n/a	0.52	0.468
Alarm_mut2	Precision	0.666	0.411	0.5128	0.6	n/a	0.725	0.769
	Recall	0.434	0.456	0.434	0.21	n/a	0.63	0.642
	F1 score	0.526	0.432	0.47	0.3115	n/a	0.675	0.7
Insurance_mut1	Precision	0.7143	0.36	0.3617	0.7	n/a	0.857	0.8
	Recall	0.288	0.3461	0.327	0.25	n/a	0.577	0.538
	F1 score	0.4107	0.352	0.3435	0.368	n/a	0.689	0.643
Insurance_mut2	Precision	0.7143	0.355	0.366	0.64	n/a	0.676	0.6857
	Recall	0.288	0.423	0.423	0.21	n/a	0.4423	0.4615
	F1 score	0.4107	0.386	0.392	0.316	n/a	0.535	0.5517

Performance Analysis with respect to ROC curve

- We plot the ROC curve for the Flow cytometry data
- Compared the baseline method to Learn and vote
- Area under curve is greater across all thresholds
- Performance improves for "Learn and Vote"
- Intervening at informative targets improves performance

Performance Analysis with respect to Sample size

Flow Cytometry data

- We plot the F1 score against various sample sizes
- Equal number of sample per experiment
- Compared the baseline method to Learn and vote
- Performance improves for "Learn and Vote" with larger sample size
- Pooling is a better than "Learn and Vote" with small sample size per experiments

Limitations

- Approach is preliminary, needs more theoretical backing
- Does not work if dataset is too small
- We need equal samples of data per experiments

Future Directions

- Learning better given only Observations
- Categorizing which interventions are more informative
- Detecting presence of Latent variables

Thank You!

Any Questions?