

Dimension Reduction Methods Applied to Sleep Stage Analysis

Zekuan Liu

liuzekuan@bupt.edu.cn

May 18, 2021

Problem Statement

Methodology

Experiments

Problem Statement Background

- Sleep is important for the human body
- Sleep disorders become an increasingly frequent problem
- Sleep stage analysis helps to address sleep disorders
- Polysomnography (PSG) is widely adopted in sleep stage analysis

(a) Sleep disorder

Source: https://stock.tuchong.com/

(b) A Sample of Hypnogram

Problem Statement

Motivation

- Multiple measurements and features of PSG add data redundancy
- Features extracted from physiological data can have very high dimensions

- Reduce data redundancy
- Save computational resource
- Avoid over-fitting

PSG Data

Low-Dimensional Vectors

Problem Statement

Achievements

- 1. Establishing of pre-processed dataset
- 2. Implementation of sleep stage analysis procedure
- 3. Verification of the necessity and superiority of dimension reduction
- 4. Design of a variable weighted PCA based on mutual information
- 5. Proposal of a novel form of hypnogram

Problem Statement

Methodology

Experiments

Methodology Workflow

Methodology Pre-processing

- Removing bad segments (RMD)
- Filtering (FLT)
- Independent Component Analysis
- Normalization
- Segmentation

Methodology Feature Extraction

EEG (8 dimension)

- Power in frequency band
- Hjorth Parameters

ECG (30 dimension)

- Autoregressive Coefficients
- Shannon Entropy (WPT)
- Wavelet Leader (DWT)

Methodology

Dimension Reduction

- Principal Component Analysis (PCA)
- Weighted PCA (WPCA)

$$w_i = \sum_{j,k} P(X_i = x_j, Y = y_k) \log \frac{P(X_i = x_j, Y = y_k)}{P(X_i = x_i)P(Y = y_k)}$$

Methodology

Classification

Leave-one-out method

Classifiers:

- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Naive Bayes (NB)
- k Nearest Neighbor (kNN)
- Support Vector Machine (SVM)

Problem Statement

Methodology

Experiments

Experiments

Dataset

- St. Vincent's University Hospital / University College Dublin Sleep Apnea Dataset (UCDDB)
- Overnight PSG data
- 25 subjects in total
- Only EEG channel C3A2 and ECG channel is used
- Open access in https://doi.org/10.13026/C26C7D.

A 30-second sample of the PSG dataset

Experiments

Result

- SVM outperform other classifiers
- Both pre-processing, filtering and removing bad segments, are effective

WRN	Wake	REM	NREM			
WRLS	Wake	REM	LS		SWS	
ALL	Wake	REM	S1	S2	S3	S4

ACC	WRN	WRLS	ALL
LDA	74.1	62.5	53.2
QDA	68.3	55.7	48.1
kNN	71.4	60.0	48.3
NB	71.0	61.9	54.6
SVM	77.2	68.4	60.3

ACC	WRN	WRLS	ALL
RAW	72.5	61.8	52.6
FLT	73.0	64.2	54.5
RMD	75.4	65.4	57.6
FULL	77.2	68.4	60.3

Experiments

Result

- Dimension reduction is effective
- Dimension reduction improves the performance in some cases
- Weighted PCA outweighs conventional PCA in most times

WRN

Problem Statement

Methodology

Experiments

Conclusion Sumary

- 1. The complete procedure of sleep stage analysis
 - pre-processing, feature extraction, dimension reduction, and classification
- 2. Experiments demonstrated
 - Effectiveness of data pre-processing
 - Necessity and superiority of dimension reduction in both general and specific cases
 - Improvement of a variable weighted PCA based on mutual information
- 3. A novel form of hypnogram

Conclusion Future Work

Introducing deep learning

Considering time series

Including more types of data

Thank you!

Q&A