تراشههای منطقی برنامه پذیر

انواع تراشههای برنامهپذیر

- جنبههای تفاوت:
- 🗖 فناوری برنامهریزی تراشه
- □ ساختار بلوکهای منطقی
- □ معماري اتصالات برنامه پذير
 - ا ساختار مدار IO block ساختار مدار
 - Hard core

ساختار FPGA

معماري اتصالات

- :CB •
- □ اتصال LB به قطعه سیم
 - :SB •
- □ اتصال قطعه سیم به قطعه سیم

- ساخت با
- ترانزیستور عبور
 - بافر سه حالته
 - - مالتي پلکسر

Connection Block

فقط بخشی از نقاط قابل برنامهریزی

Switch Block

معماری اتصالات CB

معماري اتصالات □ اتصالات با طول بیش از یک LB LB LB LB switch switch switch L=1 switch switch L=2 switch switch L=3

بلوكهاي ورودي-خروجي

IO Blocks

بلوكهاي ورودي-خروجي

:IOB •

- ارتباط بین داخل و خارج تراشه
 - 🗖 وظایف اصلی:
 - تقویت سیگنال خروجی
- ثبت خروجی در ثبات و همگام کردن با کلاک
- انتخاب از بین چند سیگنال و ارسال آن به درگاه خروجی
 - فعال یا غیرفعال کردن درگاه خروجی
- همگام کردن ورودی دریافتی از درگاه ورودی و همگام کردن آن با کلاک

بلوكهاي ورودي-خروجي

- بلوک فرستنده/گیرندهٔ گیگابیتی:
- □ نیاز برخی از کاربردها به ارسال و دریافت دادهها با سرعتهای بسیار بالا
 - چند میلیارد بیت در ثانیه یا Gbps
 - ارسال و دریافت دادهها
 - به صورت سریال (یک بیت در هر کلاک)
 - روی دو خط تفاضلی

- d₀ 0 d₁ 0 d₂ 1 d₃ 1 d₄ 0 d₅ 1 d₆ 0 d₇ 0 d₈ 0 d₉ 1
- D 0 0 1 1 0 1 0 0 0 1

• مزایای ارسال و دریافت تفاضلی:

)الف(

 D_{bar} D D_{bar}

مشكلات ارسال و دريافت موازى در سرعت بالا:

- تداخل الكترومغناطيسي بين خطوط نزديك
 - 🗖 همزمان کردن دریافت سیگنالها
 - همگام کردن کلاک فرستنده و گیرنده
- همگام کردن تعداد زیاد بیت موازی با یک کلاک یکتا
 - → افزایش هزینهٔ ساخت بورد و تراشه

مدار PLL:

بازیابی کلاک

مشکلات ارسال و دریافت موازی:

ارسال (یا دریافت) همزمان بین چند بلوک: غیر ممکن یا بسیار پرهزینه \Box

ارسال و دریافت دادههای n بیتی:

- \square استفاده از چند بلوک به طور موازی:
 - در Virtex-7: تا ۹۶ بلوک

FPGA

کدگذار ۸ بیت به ۱۰ بیت

- '1'های متوالی (یا '0'های متوالی) ← خطا
- سرعت بسیار بالا، فیلتر شدن فرکانسهای بالا توسط خط، به هم خوردن تعادل DC

سیگنال دریافتی در سمت

- کدگذار ۸ بیت به ۱۰ بیت:
- تضمين عدم وجود پنج '1' متوالى يا پنج '0' متوالى
 - ایجاد تعداد تقریباً مساوی '1' و '0'
 - کدگشای ۱۰ بیت به ۸ بیت:
 - عکس تبدیل در گیرنده

میانگیر FIFO

:FIFO Buffer

در فرستنده: Serializer دادهها را به ترتیب میخواند و سری می کند عدم هماهنگی سرعت تولید دادههای ۱۰ بیتی با سرعت ارسال سریساز - FIFO \leftarrow -

سرىساز

- d₀ 0 d₁ 0 d₂ 1 d₃ 1 d₄ 0 d₅ 1 d₆ 0 d₇ 0 d₈ 0 d₉ 1
- D 0 0 1 1 0 1 0 0 0 1

موازيساز

FPGA

موازيساز

• نمونهبرداری با سرعت بالا

بالاتر از فركانس كلاك

پیشازدیاد

:Pre-emphasis

- □ سرعت بسیار بالا ← دادهها تا به گیرنده برسد تضعیف میشوند
 - فيلتر يا تضعيف فركانسهاى بالا
 - باقی ماندن فرکانسهای پایین تر
 - 🗖 🛨 خطا در دریافت داده

پیشازدیاد

pre-emphasis بدون □

پیشازدیاد

pre-emphasis با

متعادلكننده

:Equalizer •

در گیرنده: تقویت فرکانسهای بالاتر

- 🖵 مقدار pre-emphasis و equlaization قابل تنظيم
 - بستگی به مشخصات بورد
 - طول اتصالات روی بورد

... –

→ انتخاب مقدار مناسب: با سعی و خطا

پیشازدیاد و متعادلکننده

- تنظیم مقدار مناسب:
 - □ اها در ابزارها
- Data pattern generator Data pattern checker –
- ارسال و دریافت داده و بررسی میزان خطا
 - سیس تنظیم مقادیر

بلوكهاي خاصمنظوره

Special-Purpose Blocks

بلوكهاي خاصمنظوره

□ بلوکهای با کارایی بالا برای انجام اعمال پرکاربرد

• انواع:

- بلوکهای محاسباتی
 - 🗖 بلوکهای حافظه
 - **ل** بلوکهای پردازنده
- بلوکهای مدیریت کلاک \square

بلوكهاي خاصمنظوره

- اعمال محاسباتی:
 - ـا جمع
 - تفریق 🗖
 - مقايسه
 - 🗖 ضرب
- (MAC) Multiply-Accumulate

بلوكهاي محاسباتي

- جمع و تفریق و مقایسه
- (carry chain) ساختار زنجيرهٔ نقلی ساختار زنجيرهٔ نقلی
 - در logic blockهای مجاور
- □ اتصال مستقیم (بدون MUX یا سوییچ)

بلوكهاي محاسباتي

• ضرب

- مىتوان از LBها استفاده كرد 🗖
 - مصرف منابع زیاد
 - سرعت پایین
 - توان مصرفي بالا
- □ بلوکهای DSP به تعداد زیاد

بلوكهاي محاسباتي

- ضرب
- به عنوان مدار ترکیبی
- به عنوان مدار ترتیبی همگام با کلاک

بلوكهاي محاسباتي

MAC •

برای محاسباتی نظیر

for (i= 1 to n)

$$Acc \leftarrow (A_i * B_i) + Acc$$
;

:FIR Filter •

$$y[n] = b_0.x[n] + b_1.x[n-1] + ... + b_m.x[n-m]$$

بلوكهاي محاسباتي

$$y[n] = b_0.x[n] + b_1.x[n-1] + ... + b_m.x[n-m]$$
 :FIR Filter

• همزمان با جمع R4 + R4، ضرب اعداد بعدی

- حافظه
- □ در گذشته: حافظهٔ خارجی
 - ← سطح زیاد بورد
 - FPGA هاى امروزى:
 - حافظه داخل تراشه
 - و دونوع:
 - 🗖 توزیعشده:
- با LUTها: **k** ورودى: 2^k بيت
- نیاز به حافظهٔ بزرگتر: اتصال دو یا چند LUT
 - لوكى: 🗖
 - حافظهٔ بزرگتر و یکپارچه

• حافظه:

بعضی از تراشهها در چند اندازه

- حافظه
- □ بلوک بزرگ:
 - **–** مزیت
 - اشكال -
- 🗖 بلوکهای کوچکتر
 - **–** مزیت
 - اشكال -

• حافظه

- تشكيل 4 x 4 1024 با دو 4 x 512 ؟

بلوكهاي يردازنده سيستم ديجيتال: 🔲 نرمافزار: اجرا توسط پردازنده Hardware **Processor** یک دستور یک دستور **Block** 🗖 سختافزار: - اجرا توسط LBها و سایر بلوکها - اجرای موازی بلوکها FPGA هاى امروزى: - پردازنده در تراشه **Peripheral Memory** - حافظه در تراشه SOPC : کل سیستم روی یک تراشه \leftarrow

بلوكهاي پردازنده

• انواع پردازنده:

- 🗖 نرم:
- ییادهسازی با LBها
- کد پردازنده، آماده در کتابخانهٔ ابزار
- (Xilinx) MicroBlaze , PicoBlaze -
 - (Altera) NIOS II -
 - (QuickLogic) Q90C1 -
 - اشكالات
 - اشغال منابع
 - **–** کند
 - مصرف توان بالا

بلوكهاي پردازنده

انواع پردازنده:

سخت 🔲

- پیادهسازی چینش در تراشه
 - **-** + سایر امکانات
 - حافظهٔ نهان
- منابع ارتباطی استاندارد
 - مدارهای واسط
 - گذرگاههای استاندارد

بلوكهاي پردازنده

انواع پردازنده:

- مساحت بسیار کمتر
- اگر نیاز نباشد، مساحت تلف کرده
 - سرعت و توان بسیار بهتر
- (Xilinx) ARM ₉ PowerPC -
 - (Altera) ARM -
 - (QuickLogic) MIPS -
- در بعضی تراشهها: بیش از یک پردازنده
 - 🛨 سیستم چندهستهای

بلوك مديريت كلاك

• وظایف بلوک مدیریت کلاک:

 \Box تولید چند کلاک از یک کلاک

- طراح مشخص می کند

بلوک مدیریت کلاک • وظایف بلوک مدیریت کلاک:

□ کاهش یا حذف انحراف کلاک (clock skew) کاهش یا حذف

بلوک مدیریت کلاک • وظایف بلوک مدیریت کلاک:

(clock jitter) کاهش یا حذف لغزش کلاک 🖵

