Отчёт по лабораторной работе №8

дисциплина: Архитектура компьютера

Максим Александрович Мишонков

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
5	Выводы	19

Список иллюстраций

4.1	Создание каталога и фаила
4.2	Введение текста программы
4.3	Проверка работы исполняемого файла
4.4	Изменение текста программы
4.5	Проверка работы исполняемого файла
4.6	Изменение текста программы
4.7	Проверка работы исполняемого файла
4.8	Создание файла
4.9	Введение текста программы
	Введение текста программы
	Проверка работы исполняемого файла
	Создание файла листинга и открытие его в редакторе
4.13	Открытие файла в редакторе
4.14	Объяснение первой строки
4.15	Объяснение второй строки
4.16	Объяснение третьей строки
	Удаление операнда в файле
	Выполнение трансляции с получением файла листинга 14
	Ошибка в тексте программы
	Текст программы
	Текст программы
	Проверка работы исполняемого файла
	Текст программы
4.24	Текст программы
4 25	Проверка работы исполняемого файла

1 Цель работы

Целью данной лабораторной работы является изучение команд условного и безусловного переходов, приобретение навыков написания программ с использованием переходов, знакомство с назначением и структурой файла листинга.

2 Задание

Изучить команды условного и безусловного переходов, приобрести навыки написания программ с использованием переходов, познакомиться с назначением и структурой файла листинга.

3 Теоретическое введение

Для реализации ветвлений в ассемблере используются команды передачи управления или команды перехода. Можно выделить 2 типа переходов:

Условный переход – это выполнение перехода в определенную точку программы в зависимости от проверки условия.

Безусловный переход – это выполнение передачи управления в определенную точку программы без каких-либо условий.

4 Выполнение лабораторной работы

1. Создал каталог для программ лабораторной работы №8, перешёл в него и создал файл lab8-1.asm. (рис. 4.1)

Рис. 4.1: Создание каталога и файла

2. Рассмотрел пример программы с использованием инструкции jump, ввёл в файл lab8-1.asm текст программы из листинга. (рис. 4.2)

```
Терминал - mamishonkov@dk6n57:~
Файл Правка Вид Терминал Вкладки Справка
...2-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08/lab8-1.asm Изменён
include 'in_out.asm' ; подключе<mark>н</mark>ие внешнего файла
        .data
         'Сообщение No 1',0
         'Сообщение No 2',0
         'Сообщение No 3',0
        .text
jmp _label2
ov eax, msg1 ; Вывод на экран строки
call sprintLF ; 'Сообщение No 1'
ov eax, msg2 ; Вывод на экран строки
call sprintLF ; 'Сообщение No 2'
mov eax, msg3 ; Вывод на экран строки
call sprintLF ; 'Сообщение No 3'
call quit ; вызов подпрограммы завершения
                                             <sup>*</sup>К Вырезать
                                            ^U Вставить
```

Рис. 4.2: Введение текста программы

3. Создал исполняемый файл и проверил его работу. (рис. 4.3)

```
amaishonkow@dk6n57 ~/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ nasm -f elf lab5-1.asm
amaishonkow@dk6n57 ~/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ id -m elf_i386 -o lab8-1 lab8-1.o
mamishonkow@dk6n57 ~/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ ./lab8-1
CooGueниe No 2
CooGueниe No 3
mamishonkow@dk6n57 ~/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ ...
```

Рис. 4.3: Проверка работы исполняемого файла

4. Изменил текст программы таким образом, чтобы программа выводила сначала 'Сообщение №2', потом 'Сообщение №1'. Для этого в текст программы после вывода сообщения №2 добавил инструкцию jmp с меткой _label1, а после вывода сообщения №1 добавил инструкцию jmp с меткой _end. (рис. 4.4)

```
Терминал - mc [mamishonkov@dk6n57]:-
Файл Правка Вид Терминал Вкладки Справка
                                    /afs/.dk.sci.pfu.edu.ru/home/m/a/mamishonkov/work,
%include 'in_out.asm' ; подключение внешнего файла
       .data
        'Сообщение No 1',0
        'Сообщение No 2',0
        'Сообщение No 3',0
        .text
       _start
jmp _label2
ov eax, msg1 ; Вывод на экран строки
call sprintLF ; 'Сообщение No 1'
jmp _end
_label2:
nov eax, msg2 ; Вывод на экран строки
call sprintLF ; 'Сообщение No 2'
jmp _label1
nov eax, msg3 ; Вывод на экран строки
call sprintLF ; 'Сообщение No 3'
call quit ; вызов подпрограммы завершения
```

Рис. 4.4: Изменение текста программы

5. Создал исполняемый файл и проверил его работу. (рис. 4.5)

```
mamishonkov@dk6n57 ~/work/study/2022-2023/Архитектура конпьютера/study_2022-2023_arh-pc/lab08 $ nasm -f elf lab8-1.asm
mamishonkov@dk6n57 ~/work/study/2022-2023/Архитектура конпьютера/study_2022-2023_arh-pc/lab08 $ ld -m elf_i386 -o lab8-1 lab8-1.o
mamishonkov@dk6n57 ~/work/study/2022-2023/Архитектура конпьютера/study_2022-2023_arh-pc/lab08 $ ./lab8-1
CooGueниe No 2
CooGuenue No 1
mamishonkov@dk6n57 ~/work/study/2022-2023/Архитектура конпьютера/study_2022-2023_arh-pc/lab08 $ ...
```

Рис. 4.5: Проверка работы исполняемого файла

6. Изменил текст программы, изменив инструкции jmp, чтобы вывод программы был следующим: (рис. 4.6, 4.7)

```
Терминал - mc [mamishonkov@dk6n57]:
 GNU nano 6.3
                                /afs/.dk.sci.pfu.edu.ru/home/m/a/mamishonkov/work
%include 'in_out.asm'
                      ; подключение внешнего файла
        'Сообщение No 1',0
        'Сообщение No 2',0
        'Сообщение No 3',0
       _start
mp _label3
mov eax, msg1 ; Вывод на экран строки
call sprintLF ; 'Сообщение No 1'
jmp _end
nov eax, msg2 ; Вывод на экран строки
call sprintLF ; 'Сообщение No 2'
jmp _label1
mov eax, msg3 ; Вывод на экран строки
call sprintLF ; 'Сообщение No 3'
jmp _label2
call quit ; вызов подпрограммы завершения
```

Рис. 4.6: Изменение текста программы

```
mamishonkov@dk6n57 ~/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ nasm -f elf lab8-1.asm mamishonkov@dk6n57 ~/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ ld -m elf_i386 -o lab8-1 lab8-1.o mamishonkov@dk6n57 ~/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ ./lab8-1 Cooбщение No 3 Cooбщение No 2 Cooбщение No 1 mamishonkov@dk6n57 ~/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ []
```

Рис. 4.7: Проверка работы исполняемого файла

7. Создал в каталоге lab08 файл lab8-2.asm, ввёл текст программы из листинга, которая определяет и выводит на экран наибольшую из 3 целочисленных переменных: A,B и C. (рис. 4.8, 4.9, 4.10)

Рис. 4.8: Создание файла

```
Терминал - mc [mamishonkov@dk6n57]:
 Файл Правка Вид Терминал Вкладки Справка
GNU nano 6.3
                                      /afs/.dk.sci.pfu.edu.ru/home/m/a/mamishonkov/work
%include 'in_out.asm'
section .data
msg1 db 'Введите В: ',0h
msg2 db "Наибольшее число: ",0h
A dd '20'
C dd '50'
section .bss
max resb 10
B resb 10
section .text
global _start
 ----- Вывод сообщения 'Введите В: '
mov eax,msg1
call sprint
 ----- Ввод 'В'
mov ecx,B
mov edx,10
call sread
; ----- Преобразование 'В' из символа в число
call atoi ; Вызов подпрограммы перевода символа в число
mov [B],eax ; запись преобразованного числа в 'B'
; ------ Записываем 'A' в переменную 'max'
; ------ записываем A в переменную шах
mov ecx,[A] ; 'ecx = A'
mov [max],ecx ; 'max = A'
; ------- Сравниваем 'A' и 'С' (как символы)
стр есх,[С] ; Сравниваем 'А' и 'С'
jg check_B ; если 'A>C', то переход на метку 'check_B',
mov ecx,[C] ; иначе 'ecx = C'
mov [max],ecx ; 'max = C'
  ----- Преобразование 'max(A,C)' из символа в число
```

Рис. 4.9: Введение текста программы

```
check_B:
mov eax,max
call atoi ; Вызов подпрограммы перевода символа в число
mov [max],eax ; запись преобразованного числа в `max`
; ----- Сравниваем 'max(A,C)' и 'В' (как числа)
mov ecx,[max]
cmp ecx,[B] ; Сравниваем 'max(A,C)' и 'B'
jg fin ; если 'max(A,C)>B', то переход на 'fin',
mov ecx,[B] ; иначе 'ecx = В'
mov [max],ecx
  ----- Вывод результата
in:
mov eax, msg2
call sprint ; Вывод сообщения 'Наибольшее число: '
mov eax,[max]
call iprintLF ; Вывод 'max(A,B,C)'
call quit ; Выход
```

Рис. 4.10: Введение текста программы

8. Создал исполняемый файл и проверил его работу. (рис. 4.11)

```
mamishonkovddk6n57 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ couch lab8-2.asm
amaishonkovddk6n57 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ nasm -f elf lab8-2.asm
amishonkovddk6n57 -/work/study/2022-2023/Apхитектура компьютера/study_2022-2023_arh-pc/lab08 $ ld -m elf_i386 -o lab8-2 lab8-2.o
amishonkovddk6n57 -/work/study/2022-2023/Apхитектура компьютера/study_2022-2023_arh-pc/lab08 $ ./lab8-2
Becaurte B: 1
Haufonsuee число: 50
mamishonkovddk6n57 -/work/study/2022-2023/Apхитектура компьютера/study_2022-2023_arh-pc/lab08 $ ./lab8-2
Becaurte B: 52
Haufonsuee число: 52
mamishonkovddk6n57 -/work/study/2022-2023/Apхитектура компьютера/study_2022-2023_arh-pc/lab08 $ ./lab8-2
Becaurte B: 52
Haufonsuee число: 52
```

Рис. 4.11: Проверка работы исполняемого файла

9. Создал файл листинга для программы из файла lab8-2.asm, указав ключ -l и задав имя файла листинга в командной строке, открыл этот файл при помощи редактора mcedit. (рис. 4.12, 4.13)

```
mamishonkov@dk6n57 ~/work/study/2022-2023/Apxитектура компьютера/study_2022-2023_arh-pc/lab88 $ nasm -f elf -l lab8-2.lst lab8-2.asm mamishonkov@dk6n57 ~/work/study/2022-2023/Apxитектура компьютера/study_2022-2023_arh-pc/lab88 $ mcedit lab8-2.lst
```

Рис. 4.12: Создание файла листинга и открытие его в редакторе

Рис. 4.13: Открытие файла в редакторе

10. Данная строка находится на 21 месте, её адрес - 00000101, машинный код - B8[0A000000], а mov eax,В - исходный текст программы, который означает, что мы в регистр еах вносим значение переменой В. (рис. 4.14)

Рис. 4.14: Объяснение первой строки

11. Данная строка находится на 35 месте, её адрес - 00000130, машинный код - E867FFFFFF, а call atoi - исходный текст программы, который означает, что символ, лежащий в строке выше, переводится в число. (рис. 4.15)

Рис. 4.15: Объяснение второй строки

12. Данная строка находится на 38 месте, её адрес - 0000013A, машинный код - 8B0D[0000000], а mov есх,[max] - исходный текст программы, означающий, что число, хравнившееся в переменной max, записывается в регистр есх. (рис. 4.16)

Рис. 4.16: Объяснение третьей строки

13. Удалил один из операндов в файле с программой lab8-2.asm. (рис. 4.17)

```
check_B:
mov eax
call atoi ; Вызов подпрограммы перевода символа в число
mov [max],eax ; запись преобразованного числа в `max`
 ----- Cравниваем 'max(A,C)' и 'B' (как числа)
mov ecx,[max]
cmp ecx,[B] ; Сравниваем 'max(A,C)' и 'B'
jg fin ; если 'max(A,C)>B', то переход на 'fin',
mov ecx,[B] ; иначе 'ecx = B'
mov [max],ecx
    ----- Вывод результата
fin:
mov eax, msg2
call sprint ; Вывод сообщения 'Наибольшее число: '
mov eax,[max]
call iprintLF ; Вывод 'max(A,B,C)'
call quit ; Выход
```

Рис. 4.17: Удаление операнда в файле

14. Выполнил трансляцию с получением файла листинга, программа выдала ошибку, как и должно быть, потому что один из операндов был удалён. В файле листинга изображается, где именно ошибка и с чем она связана. (рис. 4.18, 4.19)

```
mamishonkov@dk4n65 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ nasm -f elf -l lab8-2.lst lab8-2.asm lab8-2.asm:34: error: invalid combination of opcode and operands mamishonkov@dk4n65 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ []
```

Рис. 4.18: Выполнение трансляции с получением файла листинга

Рис. 4.19: Ошибка в тексте программы

Самостоятельная работа

1. Написал программу нахождения наименьшей из 3 целочисленных переменных, соответствующих варианту 14. (рис. 4.20, 4.21)

```
GNU nano 6.3
%include 'in_out.asm'
section .data
msg1 db 'Введите В: ',0h
                                                  /afs/.dk.sci.pfu.edu.ru/home/m/a/mamishonkov
msg2 db <mark>"Наименьшее число: "</mark>,0h
A dd '81'
C dd '72'
section .bss
min resb 10
B resb 10
section .text
global _start
 _start:
mov eax,msg1
call sprint
mov ecx,B
mov edx,10
call sread
mov eax,B
call atoi
mov [B],eax
mov ecx,[A]
mov [min],ecx
cmp ecx,[C]
jb check_B
mov ecx,[C]
mov [min],ecx
```

Рис. 4.20: Текст программы

Рис. 4.21: Текст программы

2. Создал исполняемый файл и проверил его работу. (рис. 4.22)

```
mamishonkov@dk4n65 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ nasm -f elf lab0-3.asm
mamishonkov@dk4n65 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ ld -m elf_i386 -o lab0-3 lab0-3.o
mamishonkov@dk4n65 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ ./lab0-3
Bengurre B: 22
mamishonkov@dk4n65 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ .
```

Рис. 4.22: Проверка работы исполняемого файла

3. Написал программу, которая для введённых с клавиатуры значений х и а вычисляет значение функции, соответствующей варианту 14, и выводит результат вычислений. (рис. 4.23, 4.24)

```
GNU nano 6.3
%include 'in_out.asm'
                                        /afs/.dk.sci.pfu.edu.ru/home/m/a/mamishonkov.
      ON .data
msg1 db 'Введите X: ',0h
msg2 db 'Введите а: ',0h
msg3 db 'Ответ: ',0h
        .bss
x resb 10
a resb 10
o resb 10
         .text
global _start
mov eax,msg1
call sprint
mov ecx,x
mov edx,10
call sread
mov eax,x
call atoi
mov [x],eax
mov eax,msg2
call sprint
mov ecx,a
mov edx,10
call sread
```

Рис. 4.23: Текст программы

```
mov eax,a
call atoi
mov [a],eax
mov ecx, [x]
mov [o],ecx
mov ebx,3
cmp ecx,[a]
jl fin
mov eax,[x]
mul ebx
add eax,1
mov [o],eax
jmp otv
mov eax,[a]
mul ebx
add eax,1
mov [o],eax
mov eax,msg3
call sprint
mov eax,[o]
call iprintLF
call quit
```

Рис. 4.24: Текст программы

4. Создал исполняемый файл и проверил его работу. (рис. 4.25)

```
mamishonkov@dk4n65 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ nasm -f elf lab8-4.asm
mamishonkov@dk4n65 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ 1d -m elf_1386 -o lab8-4 lab8-4.o
mamishonkov@dk4n65 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ ./lab8-4
Beeдите X: 2
Beeдите a: 3
OTeet: 10
mamishonkov@dk4n65 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ ./lab8-4
Beeдите X: 4
Beeдите a: 2
OTeet: 13
mamishonkov@dk4n65 -/work/study/2022-2023/Архитектура компьютера/study_2022-2023_arh-pc/lab08 $ []
```

Рис. 4.25: Проверка работы исполняемого файла

5 Выводы

В ходе выполнения данной лабораторной работы я изучил команды условного и безусловного переходов, приобрёл навыки написания программ с использованием переходов, познакомился с назначением и структурой файла листинга.