

MULTIMEDIA

UNIVERSITY

STUDENT ID NO

--	--	--	--	--	--	--	--	--	--	--	--

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

EEL1196 – INSTRUMENTATION & MEASUREMENT TECHNIQUES (All Sections / Groups)

11 MARCH 2020
9:00 A.M – 11:00 A.M.
(2 Hours)

INSTRUCTIONS TO STUDENT

1. This Question paper consists of 6 pages including cover page with 4 Questions only.
2. Attempt **ALL FOUR** questions. All questions carry equal marks and the distribution of the marks for each question is given.
3. Please write all your answers in the Answer Booklet provided.

Question 1

- (a) What is the purpose of a signal conditioning element in measurement systems? Give an example of a device or component that is classified as a signal conditioning element. [3 marks]
- (b) (i) Distinguish between the terms ‘resolution’ and ‘sensitivity’. [4 marks]
(ii) A thermocouple indicates an output voltage of 30mV for a detected temperature of 50°C; and 70mV when the temperature is 75°C. Determine the sensitivity of the thermocouple. [3 marks]
- (c) A circuit is as connected in **Figure Q1(c)**. It is given that:

$$R_1 = 1\text{k}\Omega \pm 5\%, R_2 = 3\text{k}\Omega \pm 10\% \text{ and } E = 15\text{V} \pm 3.5\%$$

Calculate the total current, I as well as its % relative limiting error.

[9 marks]

Figure Q1(c)

- (d) The energy of a photon is related to its speed, c , and wavelength, λ , by the following equation:

$$E = (hc)/\lambda$$

where h is Planck’s constant. Find the dimension and base units of h . [6 marks]

Continued...

Question 2

- (a) Name the 3 different torques required for the operation of indicating instruments and describe the purpose(s) of each torque. [5 marks]
- (b) A permanent magnet moving coil (PMMC) instrument has coil dimensions of $15\text{cm} \times 8\text{cm}$ with 20 turns and spring constant value, $k = 2.5 \times 10^{-6} \frac{\text{Nm}}{\text{degree}}$. The coil produces an angular deflection of 90° when a current of 6mA flows through it. Calculate the flux density required in the air gap. [4 marks]
- (c) A shunt resistor R_S is connected across a direct-current (DC) moving-iron ammeter as shown in **Figure Q2(c)**. It is given that the meter resistance, $R_M = 900\Omega$. Calculate the value of R_S required to extend the current range from 100mA to 1A . Assume that meter current, $I_M = 100\text{mA}$ and $I = 1\text{A}$. [4 marks]

Figure Q2(c)

- (d) For magnetic testing purposes, there are both advantages and disadvantages of using ring sample and bar sample, state the advantages and disadvantages of using each of these two sample types. [4 marks]
- (e) An iron ring fluxmeter, with a current of 10A flowing through its magnetizing winding of 20mm mean diameter and a cross section area of 25mm^2 . It has a magnetizing winding of 400 turns in its search coil. If the flux linking with the search coil is $50 \times 10^{-6}\text{wb}$, find the relative permeability of the specimen. ($\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$) [8 marks]

Continued...

Question 3

- (a) A Wheatstone bridge is shown in **Figure Q3(a)**. The values of the resistors are given as $R_1 = 4\text{k}\Omega$, $R_2 = 50\text{k}\Omega$, $R_3 = 2\text{k}\Omega$, but the value of R_4 is currently unknown. Find the value of R_4 , if the circuit is in balanced condition. [4 Marks]

Figure Q3(a)

- (b) For the given AC circuit shown in **Figure Q3(b)**, in the two arms of this bridge circuit, the resistors and capacitors are in parallel. When the bridge is balanced, operating frequency is found to be 500Hz, if $R_1 = 2\text{k}\Omega$, $R_3 = 1\text{k}\Omega$, $R_4 = 500\Omega$ and $C_1 = 0.5\mu\text{F}$. Derive and find the values of R_p , C_p and the D factor of this circuit.

[10 marks]

Figure Q3(b)

Continued...

- (c) The **Figure Q3(c)** shows an AC Maxwell Wien Bridge, if $C_1 = 0.08\mu\text{F}$ is in parallel with a resistor $R_1 = 100\Omega$ in arm AB. In arms BC and AD, $R_2 = 1.25\text{k}\Omega$ and $R_4 = 80\Omega$. If the bridge is balanced under these conditions, derive the equations and find the values for the inductor L_s and resistor R_s in arm CD.

[11 marks]

Figure Q3(c)

Continued...

Question 4

- (a) An electrodynamometer-type wattmeter has a pressure coil resistance, $R_p = 3.2\text{k}\Omega$. Calculate the percentage error of the wattmeter reading if the pressure coil is connected **after** the current coil, as shown in **Figure Q4(a)**. Given the load current, $I_L = 15\text{A}$ and load voltage, $V_L = 150\text{V}$ and power factor, $\cos \varphi = 0.8$. [4 marks]

Figure Q4(a)

- (b) The power in a balanced 3-phase star-connected load is measured by using the two-wattmeter method.
- Write the formulas for each wattmeter reading, P_1 and P_2 as well as the total power, P_T . [3 marks]
 - Determine the readings of P_1 , P_2 and P_T if the line voltage, $V_L = 250\text{V}$ and line current, $I_L = 20\text{A}$ with power factor, $\cos \varphi = 0.65$. [3 marks]
- (c) An energy meter has a constant of 100 revolutions per kilowatt-hour (revs/kWh). Calculate the number of revolutions made by the disc in 20 minutes when measuring the energy consumed by a single-phase load carrying 20A at 220V and power factor of 0.75. [3 marks]
- (d) A resistance-temperature detector (RTD), with the temperature-resistance relationship has a temperature coefficient of $\alpha_{20^\circ\text{C}} = 0.01/\text{ }^\circ\text{C}$, given that the resistance at 20°C is 50Ω .
- Determine the RTD resistance at 50°C . [4 marks]
 - The RTD is then placed in an oven set at constant temperature of 100°C , with a dissipation constant of $50\text{mW}/\text{ }^\circ\text{C}$ and the current supplied to the sensor is 20mA. Calculate both the resistive value of RTD in the oven, and the temperature value as indicated on the RTD. [8 marks]

End of Paper