Technical Document 490

OPSATCOM FIELD MEASUREMENTS

Volume I

1 June 76
Research and Development, June through August 1975

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

NAVAL ELECTRONICS LABORATORY CENTER

San Diego, California 92152

INITIAL DISTRIBUTION LIST

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY TECHNICAL LIBRARY (3) OFFICE OF THE DIRECTOR OF DEFENSE RESEARCH & ENGINEERING (3) INFORMATION OFFICE, LIBRARY BRANCH T. NYMAN (2) DEFENSE TELECOMMUNICATIONS & COMMAND & CONTROL SYSTEMS DR. N. BURCH **DEFENSE COMMUNICATIONS AGENCY** CODE 1010 CODE 800 (DR. PARVIN JAIN) DEFENSE DOCUMENTATION CENTER (12) CHIEF OF NAVAL MATERIAL NMAT-031 (LCDR J. DIETZLER) (6) NAVAL ELECTRONIC SYSTEMS COMMAND NELEX-031031 (T. B. HUGHES) (3) NELEX 3102 (M. PARKER) (3) PME 106-4 (CHARLES GOOD) (3) PME 117 (DR. J. DON CARLOS) (6) OFFICE OF NAVAL RESEARCH PHYSICAL SCIENCES DIVISION **CODE 421 (DR. W. J. CONDELL) (3)** DIRECTOR OF TECHNOLOGY CODE 201 (DR. L. E. LARMORE) (3) (DR. D. LEWIS) (6) (T. HORWATH) (1) OFFICE OF NAVAL RESEARCH BRANCH OFFICE CHICAGO PASADENA BOSTON SAN FRANCISCO AREA OFFICE OFFICE OF NAVAL RESEARCH SCIENTIFIC DEPARTMENT NEW YORK, NY **IRVING ROWE** NAVAL RESEARCH LABORATORY CODE 7903 (E. DIX) (6) CODE 6503 (DR. JOHN MAC CULLUM) (6) CODE 7044 (DR. S. MELLMAN) (1) NAVAL SHIP ENGINEERING CENTER CODE 6113c (CDR ED VEAZY) PEARL HARBOR NAVAL SHIPYARD LCDR R. DRISCOLL NAVAL AIR DEVELOPMENT CENTER TECHNICAL LIBRARY **NAVAL WEAPONS CENTER** CHINA LAKE TECHNICAL LIBRARY NAVAL POSTGRADUATE SCHOOL TECHNICAL LIBRARY (CODE 0212) PACIFIC MISSILE TEST CENTER CODE 4263 3 (TECH LIBRARY) POINT MUGU, CA 93042 NAVAL OCEANOGRAPHIC OFFICE CODE 1640 (TECHNICAL LIBRARY) NAVAL SURFACE WEAPONS CENTER, WHITE OAK TECHNICAL LIBRARY NAVAL UNDERSEA CENTER TECHNICAL LIBRARY NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER CENTRAL LIBRARY US ARMY ENGINEERING RESEARCH AND DEVELOPMENT LABORATORIES TECHNICAL DOCUMENTS CENTER

AF SPACE & MISSILE SYSTEMS ORGANIZATION SKX (DR. J. D. BARRY) (3) P.O. BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 AIR FORCE CAMBRIDGE RESEARCH CENTER TECHNICAL LIBRARY NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GODDARD SPACE FLIGHT CENTER JOHN McELROY (3) NATIONAL BUREAU OF STANDARDS TECHNICAL LIBRARY RAND CORP S. KATZ 1700 MAIN STREET SANTA MONICA, CA 90496 UNIVERSITY OF CALIFORNIA, SAN DIEGO VISIBILITY LABORATORY B. AUSTIN (6) VIA MARINE PHYSICAL LABORATORY (MPL 106) **SAN DIEGO, CA 92093** McDONNEL-DOUGLAS G. LEE P.O. BOX 516 ST. LOUIS, MO 63166 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY H. HEGGESTAD J. WARD P.O. BOX 73 LEXINGTON, MA 02173 McDONNEL-DOUGLAS S. SPINAK 5301 BOLSA AVE HUNTINGT ON BEACH, CA 92647 ITT/GILFILLAN JOHN WARD 7821 ORION AVE **VAN NUYS, CA 91406 TETRA TECH** H. HODARA 630 NORTH ROSEMEAD PASADENA, CA 91107 PACIFIC SIERRA RESEARCH CORP. A. SHAPIRO 1464 CLOVERFIELD BLVD. SANTA MONICA, CA 90404 STANFORD RESEARCH INSTITUTE DR. RICHARD HONEY 333 RAVENSWOOD AVE. MENLO PARK, CA 94025 UNIVERSITY OF SOUTHERN CALIFORNIA PROFESSOR R. M. GAGLIARDI LOS ANGELES, CA 90007 UNIVERSITY OF CALIFORNIA LAWRENCE LIVERMORE LABORATORY DR. LOWELL WOOD BOX 808 LIVERMORE, CA 94650

REPORT DOCUMENTATION	PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2 GOVT.A	CESSION NO.	RECIPIENT'S CATALOG NUMBER
NELC Technical Document 490 (TD 490)	1 119	Acres	17 - 410 - VOI-1
promise resource and a second	,	(4)	Research and Development 16106
OPSATCOM FIELD MEASUREMENTS Volume I		CL.	Jung through Augus 1975
+ Volume 1			6. PERFORMING ORG. REPORT NUMBER
7 AUTHORIA	##- ## * {{\dagger} \cdot \cd		6 CONTRACT OR GRANT NUMBER(*)
RG/Driscoll, JN Martin, S Karp		i	
9. PERFORMING ORGANIZATION NAME AND ADDRESS			10. PROGRAM EL EMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Electronics Laboratory Center	,		60000N; NRL;NIF
San Diego, CA 92152			(NEI C 1425)
11. CONTROLLING OFFICE NAME AND ADDRESS		ا أم.	12. HEPORT'DATE
Office of Naval Research		$\mathcal{U}_{\mathbf{u}}$	1 Juni 1976
Washington, DC			622 65.40-
14 MONIT HING AGENCY NAME & ADDRESS(If differen	it Itom Contro	lling Office)	IB. SECURITY CLASS: (od-this-report) (f
			UNCLASSIFIED
			154. DECLASSIFICATION/DOWNGRADING
Approved for public release; distribution is unlim 17. DISTRIBUTION STATEMEN'S (at the abateact entered		il dilferent frod	n Report)
18. SUPPLEMENTARY NOTES		•	
19. KEY WORDS (Continue on reverse side it necessary an	d identify by	block number)	
Optical Communication-Blue Green Spacecraft Communication-Terminals			
Mathematical Models Multiple Scattering			
Subsurface Communication Terminals			
Air/Sea Interface 20. ABSTRACT (Continue on reverse side if necessary and	i identify by	lock number)	
This document reports on the results of a serie Santa Catalina Island. The purpose of these expecommunications. The experiments addressed the through the xir/sea interface for both the uplink considered. The relationship of radiative transfer	es of experients was propagation and downling	ments perfori s to determin n aspects of t ik. Certain a	e the feasibility of satellite-to-submarine the problem through the water and spects of cloud penetration were also
			423 11

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE 8/N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ADMINISTRATIVE INFORMATION

The experiment described in Volume I constitutes a complex assemblage of apparatus. The construction, assembly, test, checkout, fielding, maintenance, and data reduction of this equipment would not have been possible without the able assistance of many dedicated technical people. Among those deserving special mention are:

- Mr. Leonard A. Ruth, NELC Code 2520
- Mr. Edward Schumacher, NELC Code 2520
- Mr. Joe Lopes, Adroit Engineering
- Mr. Walt Foley, Megatek, Inc.
- Mr. Lou Wuellner, ITT, Ft. Wayne
- Mr. Dave Wulfing, NELC Code 2200
- Mr. Bill Martin, NELC Code 2200
- Mr. Verne Duvall, NELC Code 6540
- Mr. Jim Burlesen, NELC Code 6530
- ETN2 John Murabeas, NELC Code 2520
- ET1 Frank Weges, NELC Code 2520
- ETN2 Bruce Wooley, NELC Code 1400
- EOSA Paul Webb, Amphibious Construction Battalion 1
- Mr. Jim Carter, Catalina Island Co., Comp and Cove Agency
- Mr. James Baldwin, NELC Code 1400
- Mr. Larry Langin, Santa Catalina Marine Biological Laboratory
- Lt. Dennis Guilford, USN, NELC Code 5200
- Mr. Robert Rose, NELC Code 2200
- Mr. John E. Celto, NELC Code 2500
- Mr. Richard D. Anderson, NELC Code 2500
- Mr. Robert F. Howarth, NELC Code 2500
- Mr. Merv Hyde, NELC Code 2500
- Lt. Robert J. Giannaris, USN, NELC Code 2500
- Mr. Roswell W. Austin, Scripps Institution of Oceanography
- Mr. Theodore J. Petzold, Scripps Institution of Oceanography
- Ms. Catharine Edgerton, Scripps Institution of Oceanography
- Mr. Albert Chapin, Scripps Institution of Oceanography
- Mr. Donald Webb, Scripps Institution of Oceanography
- Mr. Robert Stapleford, Scripps Institution of Oceanography
- Mr. Harry Sprink, Scripps Institution of Oceanography

This work was performed by members of the Satellite Systems Program Office, the Propagation Division, and the LOS and Satellite Communications Division of the Naval Electronics Laboratory Center under Program Element 60000N, Project NRL, Task Area NIF, and NELC Work Unit J425 for the Office of Naval Research. This document was approved for publication on 1 June 1976.

TABLE OF CONTENTS

Section			Page
1	1.1	ODUCTION	1-1 1-1 1-2 1-2
2	FORM	MULATION OF THE EXPERIMENTAL MODEL	2-1
3	3.1 1 3.2 1 3.3 1	RIMENTAL METHODS AND APPARATUS Methods Utilized	3-1 3-1 3-1 3-10 3-14
4	4.1 1 4.2	A AND RESULTS Downlink Measurements Uplink Data Reduction Conclusions and Recommendations	4-1 4-1 4-55 4-68
LIST OF	REFF	RENCES	Ref-
APPENDI	X A	Optical Communications Between Underwater and Above Surface (Satellite) Terminals	A-1
APPENDI	х в	Layered Water Correction	B-1
APPENDI	X C	Shallow Depth Correction	C-1
APPENDI	X D	Scripps Institution of Oceanography, Visionlity Laboratory Technical Memorandum	D-1
APPEND	X E	General Description of Uplink Program	E-1
APPEND	X F	General Description of Downlink Program	F-1
APPEND	X G	General Description of Slice Program	G-1
APPEND	х н	General Description of Automatic Hemispherical Scan	H-1

TABLE OF CONTENTS (Cont)

Section			Page
APPEN	DIX I	General Description of Downmodel	1-1
APPEN	DIX J	General Description of Upmodel	J-1
APPEN	DIX K	Underwater Radiance Scanner Calibration Program	K- 1
APPENDIX L Plots of Irradiance Loss at Given Depth as Function of the Sun's Zenith Angle		Plots of Irradiance Loss at Given Depth as Function of the Sun's Zenith Angle	L-1
APPEN	DIX M	F(θ) Receiver Data	M-I
		LIST OF ILLUSTRATIONS	
Figure			
3-1.		of dye laser in watertight housing (with top removed	
		servicing)	3-2
3-2.		water radiance scanner and vidissector camera	3-4
3-3.	Under	water radiance scanner housed in watertight canister	3-5
3-4,	-4. Closeup view of acrylic dome (with fisheye lens of the		
		erwater radiance scanner visible)	3-6
3-5.		ing optical receiver in laboratory test mount	3-7
3-6 .		ing optical receiver mounted in PBY aircraft	3-8
3- 7.	optic	ft overflight of the experimental test site (with the tracking cal receiver automatically tracking the submerged laser	
• •		ce)	3-9
3- 8.		imental test barge (with 180 foot guide pipe suspended	
		n right-hand corner and underwater platform in raised	
• •		tion)	3-11
3- 9.	unde	water platform in raised position (showing dye laser and erwater radiance scanner with protective cover attached nted)	3-12
3-10 .			3-12
3-10. 3-11.		ite location	3-15
3-11. 3-12.		ral attenuation length vs. wavelength	3-15
3-12. 3-13 .		green propagation experiment downlink measurements	
3-13. 3-14.		of the sun and azimuthal angle trajectory	3-18
<i>3</i> -14. 4 -1.		green propagation experiment uplink measurements	3-19
		ant loss (radiance scanner)	4-2
4-2.		al of radiance	4-3
4-3.	Kadiai	nt loss (dB/unit solid angle)	4-3

LIST OF ILLUSTRATIONS (Cont)

Figure	
4-4A.	Irradiant loss (radiance scanner)
4-4B.	Irradiant loss
4-5.	Irradiant loss (automatic hemispherical scan program)
4 6.	Radiance profile through sun angle
4 -7.	Radiance profile through sun angle
4-8.	Radiance profile through sun angle
4-9.	Integral of radiance
410.	Integral of radiance
411.	Ensemble average
4-12.	Radiance profile with sun on horizon
4-13.	Radiance profile with sun 15° below horizon
4-14.	Radiance profile with sun 15° below horizon (radiance scanner out of water)
4-15.	Irradiance vs. source zenith angle
416.	Irradiance at the ocean surface
4-17A.	Distribution of points every hour from 1100 to 1500
417B.	Distribution of points every 10 minutes from 1100 to 1500
4-17C.	Distribution of points every 10 minutes from 0900 to 1700
4-18.	Radiance profile through angle of aircraft
4-19.	Radiance profile through angle of aircraft
4-20.	Radiance profile through angle of aircraft
4-21.	Radiance profile through angle of aircraft
4-22.	Regression of volume scattering function $\sigma(\theta)$ against
	scattering coefficient s
4-23.	Regression of scattering coefficients against volume attenuation coefficient <u>a</u>
4-24.	Regression of normalized second moment of the scattering
_ ••	function θ^2 against scattering coefficient s
	LIST OF TABLES
Table	
4-1.	OPSATCOM Data Summary
42.	Quick Scan Measurements
4- 3.	Automatic Hemispherical Scan Measurements
4.4 .	PBY Dye Laser Tracks
., -,,	and are and animal gradular () , , , , , , , , , , , , , , , , , ,

SECTION 1

INTRODUCTION

The ability of light to penetrate the sea to operationally useful depths, the ease with which optical energy can be generated and modulated, and the ability to direct this energy into narrow beams utilizing small antennas (optical systems) illustrate the theoretical feasibility of optical communication links in the sea. For example, when the proportionate sea path is limited to lengths of hundreds of feet (or meters), optical communication links between an earth orbiting satellite and submerged terminals appear possible.

Before such optical communication links become practical, phenomena reported in the literature must be quantified to reliably predict system performance. This is necessary for systematic design and evaluation of terminals. For example, optical beam spreading, attenuation, air/sea interface effects, and background radiant intensities must all be documented to be used for component development.

With these objectives in mind, an experiment designed to measure the propagation characteristics of light in the ocean was conducted in the vicinity of Santa Catalina Island, California, between June and August 1975 (ref. 1).

1.1 PURPOSE

The purpose of this experiment was to examine the propagation of light in the sea, at the sea/air interface, and in the air above the sea. This served to quantify and catalog previous measurements and to obtain necessary new data. These data will be used as the basis for the design of optical communication links operating in the conglomerate environment. Specifically, this experiment was designed to:

- a. Measure (in the atmosphere) the radiant intensity pattern produced by an underwater optical projector at various orientations and depths whose beam transits the air/sea interface. These measurements were made in the far field of perturbations caused by wave effects.
- b. Measure the underwater radiant intensity profile produced by a simulated extended optical source whose beam transits the air/sea interface. The definition of an extended optical source is one whose projected dimension at the air/sea interface is much greater than the depth at which the measurement is made.

Although the experiment was not geared to any specific propagation model, the propagation model that was developed has been verified, and provides a very useful tool for understanding the physical requirements of transceivers operating in the ocean environment. The verification of this model, which is highlighted in Section 4, will provide a basis for the engineering design of communication systems and a mechanism to predict the performance of optical communication links when penetration of the sea is a requirement.

^{*}Distance measurements throughout this document are mostly in feet. However, some measurements are presented in metric units, while others indicate meters followed by the equivalent in feet. For those measurements that do not display a combination of both, conversion factors are provided: Multiply feet by 0.3048 to obtain meters, and meters by 3.2808 for the value in feet.

1.2 BACKGROUND (ref. 1)

The study and progress of ocean optics have been closely connected with the evolution both of instrumental techniques and of motivational factors for investigating the optical character of the seas.

For the earliest work, which dates back to 1885, only photographic methods were available (refs. 2 and 3). The advent of photocells revolutionized techniques in optical oceanography and led to the development, beginning in the 1930's, of relatively sophisticated instruments for measuring apparent and inherent optical properties of the sea.

Throughout the history of underwater optics, a fundamental incentive for research has been the photosynthetic activity of the ocean in terms of planktonic abundance and primary organic productivity (ref. 4). In particular, studies of the ecology of fish have made wide use of a subjective measurement technique known as the Secchi disc. Although the properties of the Secchi disc have never been standardized, Secchi disc measurements represent the most complete worldwide body of knowledge of submarine daylight and water transparency available, with more than 67,000 sightings cataloged (ref. 5).

Another long-term motivational factor in ocean optics has been its relationship with meteorology and the physical processes occurring at the sea surface which determine the interchange of energy between the atmosphere and the sea. This work has stressed modeling of radiative transfer in the sea and experimentally measuring upwelling and downwelling irradiances in the oceans (ref. 6).

More recent applications in underwater photography, vision, remote viewing/surveillance, and in remote detection of chlorophyll from aircraft or satellites have added impetus to the study of underwater natural light fields (ref. 7).

For the most part, there exists adequate documentation of the ocean optical propagation properties (ref. 8) utilizing the sun as a source. There are, however, new applications of optics where data required to predict system performance in the ocean are either scarce or nonexistent. Examples of such optical systems in the ocean are those which operate through the air/water, for example, an optical communication link between a satellite and a submerged terminal.

1.3 SCOPE OF WORK

To describe optical systems which operate in the environment, quantitative data are required on underwater radiant intensity distributions from natural backgrounds; radiance distributions from artificially collimated sources on axis, off axis, and operating through the air/water interface; and the optical properties of the air/water interface.

Quantitative descriptions of natural background radiance (or special radiance) and the radiance distributions are essential for determining noise levels in submerged optical equipment. Although absolute or quantitative data have not been reported, relative data have been presented by several workers (ref. 8).

The only work which specifically studied the effect of propagating a light beam through the air/water interface (Ohio State University) employed a small diameter beam (compared to the surface wave structure) and examined the results in the near field of the wave optics (ref. 9). The data needed to understand most systems that operate through the surface relate to beam diameters of several water wave lengths and the effects observed in the far field of both upward and downward directed energy.

Some investigators have published results, both experimental and theoretical, describing underwater light fields from immersed light sources (refs. 4, 10, 11, 12, 13, and 14). Unfortunately, it is not possible to reconcile the various data sources to obtain a meaningful description of the geometrical beam spreading expected in a collimated light beam for predicting the performance of a system. Little work has been reported on the optics of waves in terms of scattering, reflection, transmission, and their effect on the radiant intensity pattern thus produced.

What is needed is a workable model that can be used to describe the propagation of light beams over a water path and through the air/sea interface. The objective of the experiment herein described was to obtain the measurements necessary to verify a model. The model used is presented in Appendix A.

The results of this experiment will find immediate applications among electro-optical system designers working on other programs that must operate in this environment. It is currently necessary, in at least one advanced development program, to overdesign and construct equipment to compensate for uncertainties in the hydrosol environment. This approach has proven expensive, and the equipment designs are complex and large. Acquisition of the necessary optical oceanographic data and development of a predictive ocean optics model will result in substantial savings in these programs, and will provide a primary nechanism to enhance reliability at lower system costs.

SECTION 2

FORMULATION OF THE EXPERIMENTAL MODEL

The basic theory describing the propagation of light through any multiple scattering medium is radiative transport. References on this topic are listed in Appendix A. Unfortunately, closed form solutions exist only for certain special cases. The solution most closely matching the underwater environment is the forward scattering solution, in which the scattered energy is concentrated in a tight cone around the direction of origin of the ray. In this case, the mutual coherence function is known to have the general form

$$M(\rho,z) = e^{-az}e^{-sz[1-Q(\rho)]};$$
 $Q(o) = 1$
 $Q(\infty) = 0$, (2-1)

which specializes to the function

$$M(\rho,z) = e^{-(az)} \exp\left[-(sz)\right] \left[1 - \frac{1}{\sqrt{\left(\frac{2\pi\rho}{\lambda}\right)^2 \overline{\theta^2} + 1}}\right]$$
 (2-2)

when an empirically derived scatter function (ref. 15) is used. The θ^2 is a measure of the scattered cone angle; s is the scattering coefficient, a is the absorption coefficient; ρ is the correlation length; λ is the wavelength; and z is the distance propagated. An off axis correction has been offered (ref. 16) to account for wide angle scattering. This solution, which is presented as Appendix A, forms the basis for the Optical Satellite Communications (OPSATCOM) model. In this section, we will give some elementary insight into the model and a discussion of how the model was adapted for reducing the data taken at Santa Catalina Island.

It is shown (ref. 17) that the Fourier transform of the mutual coherence function is a function whose relative amplitude is proportional to the direction of arrival of the intensity. Thus, by examining the mutual coherence function, information can be obtained concerning the angular distribution of the arriving intensity. For example, a constant mutual coherence function implies a point source, whereas an impulsive mutual coherence function is generated from radiation coming from all directions to the receiver. It is also shown that equation (2-1) has the following limiting form:

$$M(\rho,z) = e^{-az} e^{-\frac{(\rho/\rho_0)^2}{2}} : \left(\frac{2\pi}{\lambda}\right)^2 \overline{\theta^2} \rho^2 << 1$$

$$= e^{-(a+s)z} : \left(\frac{2\pi}{\lambda}\right)^2 \overline{\theta^2} \rho^2 >> 1$$

$$= e^{-az} : sz << 1$$
(2-3)

where

$$\rho_0^2 = \left(\frac{\lambda}{2\pi}\right)^2 \frac{1}{sz\theta^2} \,. \tag{2-4}$$

Thus, we see that for short distances a point source will retain its imaging properties. At large distances, the mutual coherence function is predominantly Gaussian in shape with an asymptotic value of $\exp -(a + s)z$, whereby, the residual imaging term is reduced to this asymptotic value. Since $M(\rho, z) = \exp -(az)$ for $\rho = 0$, we see that the total power at a point z is always much greater than that contained in the residual (unscattered) term. Specifically, it is $\exp (sz)$ times greater. However, this abundant power is associated mainly with the Gaussian portion of the mutual coherence function, and consequently appears to come from a source subtending a large field of view. This holds true whenever the receiver is in the scattering medium.

In the model used, the energy at any point is constructed from all the rays converging there. Thus, the solution is derived in the transform domain by examining the divergence of a zero cross section collimated beam which can be described as a spatial impulse response. Once a boundary has been defined, the solution at any point is obtained by convolving the spatial impulse response over the boundary. The spatial impulse is derived as a sum of two terms. The first term corresponds to the residual image (or, in this case, the point source) which is merely reduced by the factor $\exp -(a + s)z$. The second term in the spatial impulse response is obtained by subtracting the residual value and assigning the remaining weight to the Gaussian term, which becomes

$$e^{-az}e^{-\frac{(\rho/\rho_0)^2}{2}}[1-e^{-sz}]$$
 (2-5)

The model takes the random surface into account by assuming that the point source is Gaussian distributed and then adds the appropriate variance to the angular spread. This procedure is correct on an ensemble basis. However, it must be noted that when the point image is discernible, this spread is traced by the motion of the point caused by the dynamics of the surface. Thus, if the radiation were frozen in time, it would most likely be seen as one or several spots coming from a direction whose angle of arrival was Gaussian distributed in time, but fixed at any instant. Although we have not done so in this case, it can be represented as a point or sum of points with a time varying mean. For the scattered part of the radiation, this ensemble averaging has already been performed by the multiple scattering medium and is of no concern.

Another addition to the model is identified as the glow field component. This term, as described in Appendix C, is included to take account of the transition region existing between 1 and 10 scattering lengths (sz). In essence, what is done is to subtract both the residual image and the scattering field, and to

tht a second Gaussian term to the remainder. This gives a better fit to the function in equation (2-2) through the transition region. A final modification to the model is described in Appendix B. This modification accounts for the fact that all the coefficients, a, s, and θ^2 , are actually functions of z in any real environment. We are therefore able to layer the model to accommodate any variations in depth. The presence of the experimental test barge can also be accounted for when convolving the impulse response. By knowing the exact orientation and coordinates of the boundary, this area is given zero weight during the convolution.

不可能的表 一人名英克尔 医眼状态管的 有限者医療不足能的 化过去分词 医神经性上的

SECTION 3

EXPERIMENTAL METHODS AND APPARATUS

3.1 METHODS UTILIZED

In general, the atmospheric radiance pattern of an underwater optical projector was measured by overflying the surface spot illuminated by the projector with a tracking optical receiver. The orientation, field of view, and depth of the projector were correlated in consonance with the measured oceanographic parameters and with the radiance pattern measured during the surface spot overflights.

The sun was used to simulate a point source, and a hemispherical scanning receiver was employed to measure the radiance profile at various receiver depths and source orientations.

Both the uplink and downlink data obtained in open ocean waters were concurrently calibrated in terms of the physical characteristics of the water. This calibration was accomplished by the Visibility Laboratory of Scripps Institution of Oceanography where measurements were made to determine the extinction coefficient (α) , scattering coefficient (s), absorption coefficient (a), and the volume scattering function $(\sigma(\theta))$.

The collection of this empirical data has permitted verification of the model presented in Section 2 and Appendix A. Using this model it will be possible to predict link parameters which influence the intercept contours of air or space to undersea, and of undersea to air or space communication links.

3.2 EQUIPMENT DESCRIPTION

The equipment used to gather data during this experiment can be separated into three distinct areas: the underwater equipment package, the aircraft equipment package, and the surface support platform. For a more complete description of the above equipment, refer to Volume II, Sections 2, 3, and 6, respectively.

3.2.1 UNDERWATER EQUIPMENT PACKAGE

In general, the underwater equipment package is a submergible equipment platform which is controlled from the surface.

Attached to it are a dye laser (see Volume II, Section 1) and the underwater radiance scanner (see Volume II, Section 2).

3.2.1.1 THE DYE LASER. The dye laser (figure 3-1), which was mounted on the underwater platform, was housed in a watertight container and controlled from the surface. It could be lowered on the platform to a predetermined depth and activated at will. The mount allowed 360° azimuth rotation with 0° to 50° variances in zenith angle. The azimuthal rotation was continuous, while the zenith angle was controlled discretely in 10° steps.

Figure 3-1. View of dye laser in watertight housing (with top removed for servicing).

The laser driver, which controlled the activation of the laser, also output a trigger voltage that activated a surface mounted radio transmitter. This radio transmitter was used to synchronize time with a tracking receiver that was mounted in an aircraft and flown over the experimental test site to measure the upward radiance pattern.

The pertinent specifications of the laser were:

1

Pulse repetition rate	20 pulses/sec ⁻¹
Peak pulse amplitude	5 kW (±6% relative ±10% absolute)
Pulse width	0.75 µsec
Center wavelength	5,214 A
Bandwidth	46.5 Å
Beamwidth (in water)	1.23°

3.2.1.2 UNDERWATER RADIANCE SCANNER. The underwater radiance scanner (figure 3-2), which is essentially an electronic video camera, image dissector tube, was mounted on the underwater platform. By scanning its focal plane, it discretely sampled the composite field of view, including the upper hemisphere. The scanner was mounted inside a watertight container (figure 3-3), with an acrylic transparent dome and a fisheye lens (figure 3-4). The fisheye lens was installed so that its focal plane was the photoemissive surface of the image dissector tube.

Appendix K contains a program for the implementation of calibration taken by the underwater radiance scanner.

The platform could be lowered to any desired depth. Computer control from the surface support platform allowed the field of view to be scanned in segments of approximately 1° by 1°. Each field of view segment was uniquely identified and the measured radiance was recorded as raw data.

A narrow spectral filter of 93 Å bandwidth centered at 5,200 Å was incorporated into the optic train.

3.2.2 AIRCRAFT EQUIPMENT PACKAGE

The aircraft equipment package consisted of a calibrated tracking optical receiver, its electronic control circuitry, and a digital data recording system. A complete description of the aircraft receiver system is contained in Volume II, Section 3.

The tracking optical receiver (figure 3-5) was designed to measure the radiance distribution of an underwater laser at various depths and orientations. Measurements were made while the receiver passed overhead in its aircraft platform (figure 3-6) and tracked the optical source, the dye laser. The receiver was manually controlled by a joystick pointing mechanism that was pointed at the surface of the water above the laser source. When sufficient energy was detected, the receiver automatically tracked the laser signal (figure 3-7) and recorded on magnetic tape the signal intensity, and the receiver pitch and roll angles. Using these data and known aircraft altitude, one can determine the cuts that were taken of the desired upward radiance profiles. Changing the laser depth or angular orientation and repeating the above procedure yields a family of radiance profiles, as a function of the transmitter configuration and the water parameters which were measured simultaneously.

The operational characteristics of the aircraft optical tracking receiver were:

sensitivity
$$4.7 \times 10^{-9} \text{ w/cm}^{-2}$$
 f/# 3

Figure 3-2. Underwater radiance scanner and vidissector camera.

Figure 3-3. Underwater radiance scanner housed in watertight canister.

Figure 3-4. Closeup view of acrylic dome (with fisheye lens of the underwater radiance scanner visible).

Figure 3-5. Tracking optical receiver in laboratory test mount.

Figure 3-6. Tracking optical receiver mounted in PBY aircraft.

Figure 3-7. Aircraft overflight of the experimental test site (with the tracking optical receiver automatically tracking the submerged laser source).

Lens diameter	6"
Spectral bandpass	5.240 ±38 Å
Data field of view	1.4°
Visual field of view	15°
Maximum roll angle	±22.5°
Maximum pitch angle	±90°
Roll rate correction	> 5° sec ⁻¹
Pitch rate correction	> 5° sec ⁻¹
Joystick slew rate	$> 15^{\circ} \text{ sec}^{-1}$

A radio link between the surface support platform and the aircraft provided timing information that was synchronous with the tracking optical receiver.

3.2.3 SURFACE SUPPORT PLATFORM

The surface support platform (figure 3-8) provided stability for conducting the experiments in an exposed ocean environment under nonsevere weather conditions. A complete description is presented in Volume II, Section 6. It had a mechanism in the form of an assembly which could be raised, lowered, or rotated to provide vertical access to depths of approximately 164 feet, and upon which the underwater radiance scanner and the dye laser could be mounted (figure 3-9). The platform also provided the means to traverse an optical detector along a horizontal path slightly beneath the surface of the water. Necessary power supplies, personnel accommodations, a control equipment shelter, oceanographic instruments, support hut, and operating equipment to facilitate experimental data gathering operations were provided. Also mounted on this platform, were the following environmental sensing instruments, which are described in Volume II, Section 7.

- a) Solar monitor a narrow field of view (7°) calibrated receiver, filtered identically to the underwater radiance scanner, which was used to monitor direct sun rays.
- b) Deck cell a lambertian collecting thermopile filtered at 5,220 Å center wavelength with an 820 Å bandwidth that was used to monitor ambient background levels.
 - c) Wind speed and direction measuring instruments.

3.3 EXPERIMENTAL TEST SITE

The test site was located in waters adjacent to Santa Catalina Island. The criteria for this selection are described in ref. 1.

This test site was near NELC and provided appropriate water depths. Water clarity was comparable to that of open ocean areas. Laboratory, dockage, and personnel support facilities were available at the Santa Catalina Marine Biological Research Station, operated by the University of Southern California. Figure 3-10 shows the test site, the approximate location of the Marine Biological Research Station, and the aircraft overflight path that was used in conducting the uplink measurements.

3.3.1 AZIMUTHAL ALIGNMENT OF THE UNDERWATER RADIANCE SCANNER

In order to align the azimuth of the underwater radiance scanner (URS) with the earth's coordinate system, a precise mark on the URS was aligned with a prominent projection of the coast of Santa Catalina Island at Fisherman Cove so that the Y-axis was oriented north-south. To calibrate this alignment, the URS was operated out of the water at a known time. This imaged the sun, slightly out of focus, on the image

Figure 3-8. Experimental test barge (with 180 foot guide pipe suspended from right-hand corner and underwater platform in raised position).

Figure 3-9. Underwater platform in raised position (showing dye laser and underwater radiance scanner with protective cover attached mounted).

あるのではないのから、ことでは、大をとうでは、大学などの情報を経過であることのないないのである。

Figure 3-10. Test site location.

plane which was then scanned by the URS image dissector tube. The location of the peak radiance in the image plane yielded the angular location of the sun with respect to the URS. By simultaneously determining the angular orientation of the sun with respect to the known geographic location of the URS, it was possible to determine the alignment of the URS in relation to true North and the zenith.

A summary of these measurements follows:

- (a) URS location, 33°27'14" N, 118°28'55" W.
- (b) Time of observation 2224 Greenwich mean time 24 June 1975.

(c)	<u>Calculated</u>	Observed
azimuth	262.5°	263.0°
elevation	56.2°	54,72°

This measurement confirms that the angular alignment was within the experimental goal of ±3°.

3.3.2 GENERAL WATER CHARACTERISTICS

The test site was located in waters adjacent to the Southern California coast generally classified as coastal waters. This water has its maximum transmission peaking in the 480 to 550 nm wavelength region of the visible spectrum. Typical attenuation lengths in terms of meters/in, the distance in which the intensity is reduced by a factor of exp (-1), are shown in figure 3-11 which is extracted from ref. 10. For the experiment described here, a laser source of wavelength 5,214 Å was chosen and the URS was spectrally filtered about a center frequency 5,200 Å wavelength.

The test site was somewhat protected from the prevailing seas by the northeastern projection of Santa Catalina Island. During the experiment, the sea state ranged from a flat calm, with swells of 1 to 2 feet from the northwest, to seas of 5 to 8 feet with patches of wind-generated whitecaps covering approximately 5 percent of the ocean surface.

3.4 EXPERIMENTAL SCENARIOS

The experiment made three measurements to describe the propagation of light in the ocean environment: Downlink, uplink, and $F(\theta)$. Of these three measurements, approximately 99 percent of the experimental time was spent makin; the downlink and uplink measurements which were considered the most important. The $F(\theta)$ data is presented in Appendix M. Following is a brief description of the experimental scenarios that were used to collect the data analyzed that is presented in Section 4.

3.4.1 DOWNLINK MEASUREMENTS

The sun was used as the downlink source because as a stable source of sufficient intensity, it adequately represented a satellite transmitter. The use of an airborne laser as the source was rejected early in the experiment for the following reasons. To satisfy the simplified range equation, the radius of the surface spot is required to exceed half the depth of the receiver (see Appendix A, figure 10). If a spot of such dimensions (c.g. 164 feet), is projected from an airborne laser at reasonable altitudes of 3,280 feet or less, the wavefront departs substantially from a plane wave. In addition, flying and pointing a laser from an aircraft is a difficult and expensive task.

The solar intensity was monitored continuously at the sea surface to correct the data for any changes in source intensity. Recorded data were normalized to these readings, simultaneously taken, so that the results could be expressed in terms of loss per steradian as a function of depth.

The second of th

Figure 3-11. Spectral attenuation length vs. wavelength.

Figure 3-12 depicts a downlink recording event. Using the sun as the optical source, the solar cell (or deck cell) was used to measure the solar intensity; Scripps Institution of Oceanography was at the test site providing water calibration measurements (a and s calibration), and the URS was mounted to operate vertically on the 180 foot guide pipe suspended from the southern corner of the experimental test barge.

Data was recorded at approximately extinction length intervals down to a depth of 150 feet. The URS was used to record a hemispherical mapping of the radiant intensity profile produced by the solar source. The tilt angles of the underwater platforms were monitored to determine both vertical and azimuthal references.

Measurements were conducted under predominantly cloudy conditions, however, some were under clear conditions. These are described in detail in Section 4. Figure 3-13 represents the zenith and azimuthal angle trajectory of the sun as recorded at the test site during the experiment. This trajectory permitted zenith angle opportunities of from approximately 10° to greater than 90° over an azimuthal range of approximately 50° to 310° referenced to true North.

The suspension of the underwater platform and its guide pipe left a clear field of view to the sun at all angles during the day, and provided unobstructed views of sunrises and sunsets.

Experimental data was recorded in the following way:

- (a) The URS was lowered to a known depth.
- (b) The URS was exercised to set its gain characteristics, which were then recorded in the test log.
- (c) The deck cell (solar monitor instruments) readings were recorded.
- (d) The URS was programmed to execute a preset quantity of scans and was then activated, thus automatically recording the data in digital format on magnetic tape for later processing.
 - (e) The time of each scan was both manually and automatically recorded individually or by series.
 - (f) The URS was then lowered or raised to a new depth and the above procedure was repeated.

3.4.2 UPLINK MEASUREMENTS

The dye laser was used as the underwater source for the uplink tests. The tracking optical receiver was mounted in an aircraft to record data while flying over this source,

The short pulses of the underwater laser required the use of a peak reading circuit to hold the level of the pulse until the next pulse occurred. The output of this circuit was recorded on one channel of the 9-track digital tape recorder. A timing signal was recorded for reference purposes. As the signal was received, the pointing angles of the tracking optical receiver were recorded. These data were later reduced and are presented in Section 4, paragraph 4.2 of this document.

Figure 3-14 presents a pictorial representation of an uplink data gathering event. This event differs from the downlink in that the dye laser, which was mounted on the underwater platform, was activated at various depth and zenith angle orientations. As the aircraft overflew the test site, the tracking optical receiver measured the radiant intensity produced by the laser source. All background and water calibration measurements that were conducted during the downlink events were repeated during the uplink episodes with the exception of simultaneous operation of the URS. A radio link between the laser control point and the aircraft passed time gating signals to synchronize the optical receiver and laser transmitter.

Figure 3-12. Blue-green propagation experiment downlink measurements.

Figure 3-13. Zenith of the sun and azimuthal angle trajectory.

おいままない とうかんしょう かんかん かいかん こうかいけん あいりょうし

Figure 3-14. Blue-green propagation experiment uplink measurements.

A Taniffel belog sales in the sales

3.4.3 FIRM MEASUREMENTS

The $F(\theta)$ measurements recorded the spatial impulse response of the dye laser. In order to make this measurement, an optical receiver (described in Yolume II, Section 4) was transited just beneath the water surface along a specially constructed I-beam attached to the side of the barge (see figure 3-14). This receiver was mounted so that it could be stopped at any position along the optical bench and pivoted through 160° (±80° about the nadir) in the plane which contained the underwater platform suspension pipe and the $F(\theta)$ optical receiver.

Data were gathered as follows:

- (a) The dye laser was placed in a preselected angular orientation with respect to the vertical and was lowered to a predetermined depth so that it transmitted in the plane that contained the laser, the pipe, and the $F(\theta)$ optical receiver.
 - (b) The $F(\theta)$ optical receiver was positioned at a known horizontal position away from the laser.
- (c) The angular position of the $F(\theta)$ optical receiver was set, the dye laser was activated, and the signal level as received was recorded.
- (d) After the angular position of the $F(\theta)$ optical receiver had been exercised through its range, the horizontal position was changed, and the sequence was repeated.
- (e) When a complete sequence of measurements had been made that sufficiently exhausted the receiver angular and horizontal position possibilities, the laser was lowered to a different depth, its angular orientation was changed, or a combination of both. This different configuration then formed a new set of experimental knowns, and steps (b) through (d) were repeated.

SECTION 4

DATA AND RESULTS

The experiment consisted of two major portions: uplink and downlink measurements. In addition, several levels of calibration were employed. The calibration, which is discussed in detail in Volume II, consisted of equipment calibration, water calibration at the fundamental level, and water calibration at the system level. The equipment calibration was used to determine the absolute levels of the uplink and downlink measurements in order to obtain quantitative results. This resulted in absolute accuracies of 3 to 5 dB. The water calibration was necessary as an input to model development. These measurements were performed by Scripps Institution of Oceanography with the results appearing in Appendix D and Volume II, Section 5.

4.1 DOWNLINK MEASUREMENTS

The downlink measurements that were performed by the URS are described briefly in Section 3 and in detail in Volume II, Section 2. This instrument was used to make solar measurements in a 95 Å bandwidth around 5,200 Å. This scenario closely describes that of a satellite except that there is no modulation and the sun is not a point source, but rather subtends an angle of 0.5°. Neither of these deficiencies mattered as far as the goals of this experiment were concerned. The data-recording equipment was previously described in Section 3. Two data acquisition programs were used and are described in Appendices B and H, and in Volume II, Section 2. The data taken with the quick scan program are summerized in figure 4-1. Representative curves are shown in figures 4-2 and 4-3. For each data point plotted, there is an accompanying hemispherical radiant pattern, together with an integration of the power in this pattern as a function of the field of view (figure 4-2). Notice the power loss in the upper left hand quadrant of figure 4-3 resulting from the shadow cast by the supporting pipe. The origin of the coordinate system corresponds to the zenith, while edges are 90° from the zenith. The patterns are truncated whenever the noise level is reached so that all the plots do not display the horizon. The data points in figure 4-1 correspond to the asymptotic value of the integrated curves in figure 4-2 which correspond to the total irradiance (intensity) incident upon the radiance scanner. All curves are normalized to the surface irradiance so that we have units of loss/steradian for radiance and loss for the integrated power.

4.1.1 DATA CALIBRATION

Notice that at 40 feet and below anomalies exist in the data. This is better observed by focusing on a single set of data taken as the radiance scanner was submerged (see figure 4-4A). Observe the 10 dB discontinuity occurring at 40 feet. It is our opinion that there was an intermittent malfunction regarding the gain-determining mechanism which was depth dependent. (The underweter connector failed late in the experiment and might have been the trouble.) We support this claim in the following manner. If 10 dB is subtracted from each of the data points below 40 feet, and the resultant curve compared to a K-meter measurement of irradiance taken simultaneously by John Shannon of the Naval Air Development Center, then the comparison in figure 4-4B can be made. Notice that the greatest deviation is only 3 dB which

action of many

Michigan (1962)

佐藤 小田田 ののはまったい

はいかないとなっているい ガランジール カイ

P07

24 JUN 197 1:56:02.275 1:56:26.739

Figure 4-2. Integral of radiance.

a Military Prop. Amagazinia

1 }

发展到1000年以前,1000年

Figure 4.4B. Irradiant loss.

occurs at the shallow depths. R. W. Austin of Scripps Institution of Oceanography indicated (in private conversation) that based upon his extensive experience in K-meter measurements, the behavior in figure 4-4B is what he would expect; namely, a lower value for the radiance scanner at shallow depths with an asymptotic convergence at the deeper depths. He also expected the results at the deeper depths to be independent of whether it was a sunny or an overcast day. A suggestion has been made at NELC* that the 10 dB correction should be made by increasing the value of the shallow depth measurements. It is believed that this would be incorrect for two reasons. First, this would result in a systematic 10 dB discrepancy between the radiance measurements and the K-meter measurements. Since the latter are taken with a single instrument, this would imply a 10 dB error in calibration. Second, and more compelling, is the fact that the greatest loss occurring at 150 feet on June 20 and 24 was 19.3 dB without the 10 dB correction. However, the absorptive loss alone when projected from measurements of the absorption coefficient taken by Scripps is at least 22.5 dB for these two days. Allowing for a 10 percent error in the measurement of the absorption coefficient still results in an absorptive loss of at least 20.5 dB. Examining consecutive scans of the quick scan program at a 150 foot depth shows a peak deviation of only 0.3 dB in irradiance. Consequently, the proposed correction would violate the laws of thermodynamics. What is important to point out is that the only difference between the K-meter and the radiance scanner is that the former has a $\cos \theta$ pattern while the pattern of the latter is $\sin \theta/\theta$. Hence, within a maximum 2.16 dB factor, both m. asurements are identical.

Finally, figure 4-4B plots the results of the propagation model with the water calibration data inserted for the same time and day. This appears to give confirmation to within 5 dB. It is interesting to point out that the model seems conservative; so that projection to Jerlov II water made in figure 11 of Appendix A should be accurate.

By contrast, our confidence in the repeatability or accuracy of the Automatic Hemispherical Scan (AHS) program is low. This can best be explained with reference to figure 4-5 where the irradiance values obtained from the AHS are displayed. The measurements made at 50 feet were recorded in 22 consecutive scans. The irradiant loss ranged from 0.7 dB to -12.7 dB, or peak to peak of 13.4 dB. This range in irradiance values supports the earlier conjecture of an equipment malfunction. Furthermore, it took 1 hour and 15 minutes to make these measurements since each scan took approximately 4 minutes. (By contrast, the quick scan program on June 20 took 26 scans in one minute at 150 feet with 0.3 dB peak to peak deviation.) As a consequence further discussion is concentrated on the quick scan measurements with the inclusion of the 10 dB correction as proposed. Table 4-1 shows a complete data summary of the experiment; table 4-2 reports each of the quick scan measurements; and table 4-3 is a complete report of the Automatic Hemispherical Scan measurements.

4.1.2 INTERPRETATION OF DATA

As evidenced by tables 4-2 and 4-3, the bulk of the data were taken on June 24 and June 26. As it was decided not to use the Automatic Hemispherical Scan data because of large variances, and since most of the June 26 data were taken with the AHS program, we will concentrate on the June 24 data. These data consist of two distinct portions. The portion between 1111PDT and 1156PDT was taken during heavy overcast conditions (refer to paragraph 4.1.1). The airport at Santa Catalina Island reported a cloud thickness of 800 to 1,500 feet. We consider this set of data to be well calibrated. Figure 4-3 displays the hemispherical radiance pattern of the data at 150 feet. Figures 4-6A through O represent cuts of the radiance profiles taken through the sun angle (Appendix G). Also plotted are cuts through the radiance peak, and the model developed with the Scripps data inserted. Since it was an overcast day, the sun could not be considered as a point source. Instead, an initial spread $(\theta_0)^1$ of 45° was used to simulate the isotropic

^{*}NELC Memo Ser 2500-224, by R. D. Anderson, 17 June 1976.

¹Appendix A, equation 6.

Figure 4-5. Lindient loss (automatic hemisphesical scan program).

丁の北京がった ラフト

是是一个人,我们就是一个人的人,我们就是一个人的人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,

TABLE 4-1. OPSATCOM DATA SUMMARY (SHEET 1 OF 4).

	REMARKS	Series Variation	"NBNE Check = 10/ No (M - 2.5)s	cos (wicze.					50 scans	50 scans		56 nours	50 scans		2	•	50 acties	scintilistics data		scietifistion dete	pool ou			25 scans	no deta	Automatic Pennipherical Scan program.	scrabbed dered 750		06/ 700	Oct Page	and behind clouds intermittently	clouded see	4				O Date	Joer signal	f 2.B			
	THE /		. **	r.																			2	82		82				-4		m	F		-	2	2	2	2	2	-1	7 7
- Control		16.1	1.40	17.1	1.51		136	27	98,1	951	137	1.37	1.37	101	101	10.1	201	1.06	801	1.13	21.15	17.	- -	1.00	151	151		3 , 3		30	E	350	170 971		2	3	191	191	1.53	1.53	153	2 S
	*NEBNF								Γ	-							8	0.99	3.05	171	1.13	1	g ,	£.	1.55			1.11		g T					7							
	ZENITH																<u>.</u>		Ġ.	b	ې پ	2	3	, Si-	33.		ŀ	Ŀ	1	2					=							
	MENTE (READUNG)																33.5	33.5		57	34.5	ž	R	×	37			絮	,	2			1 12	,	\$ 1							
112	15.	1		•	1		+							ī <u>0</u> 1	<u>5</u>	19	8	90.	8	=	52 :	7	1 2	1.40	-											2	18	3	153	1.53	7	2 S
הנמצכיוו	207	1	9	E	1 74		9	ß	5	*	i.37	1.37	1.37	,]			35.	3		3 3	8 2	99	1.02	0.54			<u>.</u> S							
	OFFET:	ş	93	8	2 2	5	2	3	8	8	3	8	8	R	Я	82	a	150	1-50	1-50	150	5	82	951	951	<u>8</u>		9 5	5	3	95.	150	<u>s</u> §	1	7	T	7	7	7	7 :	2	S 51
	¥	2.001	7.0	2		3321	× 50	9639	0460	343	1760	7560	300	5883	938	2000	36	2913	97.60	200	0930	2 2 2	1016	1701	300	=		133	3311	3 3	1203	1209	7 2	1	2 5	245	1447	1451	1504	98	1151	523
	TAPE FILE NO.	-		→	4	. ~	. co	٥). 2	=	::	:::	<u>-</u>	1		7	~	*	WS 1	٦		-		14	- F	1	7 1			30.5	6 22	6 6	= :		7	0		<u></u>	7	4 1	1	۸ ۵
	<u> </u>	_				_	2		L_		l		_	ار. سا							-	۲.	, ,													<u>=</u>					_L	
	DATE.	1					14 June							30 June																			_		_	23 June						

1.

TABLE 4-1. OPSATCOM DATA SUMMARY (SHEET 2 OF 4).

製造されています。

	MEMANIS		30 mm	30 scans	El X00, 30 frances	deel 750.	Berte laten algoment check			feed 250, 4 scan				Į		inch 750				-	~~ **	200 score data		make tweed off			Precia 200, amaiog of a	dent May	hed 4000					deres 2006.		Jack 4000	
		/DWELL	Ř	ġ.	Ī	<u> </u>	1	Ţ	-	Į	T		1,000	•		1		ļĵ	1	3		<u> </u>	-	1		Ţ	¥ ;		I	T		T		1	Ţ	¥	<u> </u>
	COMPIDENCE	20	~ =	1		m m		-														- 14	2				-			7	. 1 *1	-	*	r,			
	MONEZONTAL MEF	1	1.40	0.7		55		9	643	570		550	970	O.e.S	8		657	665	98	590		1 8	5020				210	ž.	6.10	2 3	2 2	200	100	4 3	3	00	
-	j	X X	8 E	2							†	-		1				-			+	200	ĝ	+		-				+	-,,	-	-			sı etta	
	ZEBRITH		'nħ	×	1			+			1			7		1					+	'n	·12	+		-	+						7			-	
	Ď		××	X R								-			440		*****					11.5	13					-									
	TAPE	1	5 2	1.53	1			\dagger	530	0.0	50	83	3		3 8	3 2	3 3	590	590	690	-			+			SIS	513	2 5	3 3	9	ă	ğ	3 5	800	2000	. 1
DECK	100	1		-	X	2,74	1 1	942	- 4	******											-								9								
	MEL	4	23 23	8 3	**	3	3-18	9	Я	泉巢	33	3	2 8	3 5		91.	28	13.00 E	¥	85	0	2	88	* 1	8 8	Æ	8	8	9 0	8	8	8	R	¥ 8	3	82	ጵጸ
	¥	1	152	25.20	April 100	She's of	1.00	III	Ħ	22	Š	127	2			E .	1 2	9511	1154	% X	1555	1901	6	Era!	1915	8161	18267	1921	ž ž	S E	36	8 8.21	19.39	.	26.	3005	2009
	Tree Green		• •	9: :1	5	22	32		5	ψ F-	-	٥٠	£ :		2 2	2	. y	2	4	¥. 0	-	0	r		1 +	\$ 9		-	• •		2	13	2	2 2	E	=	28
	E		=				*	_	-											•		-															
	Ä		7	-			i X					14 . Tipe			-																					-	

TABLE 4-1. OPSATCOM DATA SUMMARY (SHEET 3 OF 4).

	REMARKS				dwell 256 dwell 0		dwell 250 300 scars cach							O Freed	**************************************		350	91 138	200 Part 1200		Jack 1809 - Estamento de there stadings (* 18 mand)															
COMPROBACE	/DMELL							777													3								-	8 8	9	8	8 5	8		1 280 1 280
HOMEOMTAL	REF nms/cm²	, #	E71		<u> </u>	9	3	7	3.5	96.1	20.5	96.1	1.36	97'!	201	760	680	CER	G.82	ž e	672	990	950	190	95.0	200	670	2770	G.35	2 G	220	0.19	0.15 0.10	100	800	9 PK
	X)													997	9	0.97	6	9	35	ķ	22.0	950	9990	199	950	3	970	7	2	527	822	3	E G	900		906
	WHOLE CHECK	3		9	a n	Y	1	×						\$ 0	3	×	'n		3 °		6.	3	Şą,	3 &	P 1	8 3	ř	'n,	2	z k	#	R	F =	2	3	8,8
}	HEADTHC	7		;	80.			8						# # *	16.5	2%	35.	4 1	n X	24.0	33.5	330	33.0	er Er	28.5		28.5	0 17	9	2 2 2 2 2 2	215	2	18.0 15.0	4.0	2	221 211
퍨	TREE	: 5	2		1.00	9 -7		**	R 3	R	P. S	3	3																							
DECK CELL	8																																			
į	(FEET)			2	2.2	5 5	2	2	8	R	泉角	9	Ş	88	۶	3	R 8	1	2 9	8	9 21	2.5	<u> </u>	<u>\$</u> 81	S. 5	8	951	<u>s</u> 5	3 5	8 8	391	3 8	7 8	S R 5	8 8	2 2
		2515 1352	1353	100	12	1	Ä	83	153	3	14 55 14 55 15 55 16 55	25	25.	53	1594	1	817.1 227.1		132	1736	250	* 2		25.	18. 19. 19.	0181	921	. 153		1940	9		1363	1915	3	1923
		22				v e	-	•	-	2	m 4	~	۰	o -	"		* ^	I) h	-	•	2 :		20	# ¥	=	٤	= :		3 12	2 2	;	ដ	A K		a s
		7 2						6						*				_														_				
1	•	Į XX																																		

TABLE 4-1. OPSATCOM DATA SUMMARY (SHEET 4 OF 4).

		REMARYS				dwell either 400 or 800												GREEN - U. OPENCIAL, COMING - 1000 Jeer					Overcast breaking up	no bag date								
;	w	/OMELL	ş	8	\$ \$	\$	8	8 8									•	- اه		T	-	-	0									
	COMPLIDENCE		-	-	 (-)	-1	.,	ri m										7700 1	142.8													
1,101,101,101,101,101,101,101,101,101,1	HOMIZONTAL	Tet Tet	900	0.03	(0) (0)	100	000	2000 0		ı	- Done						and the second			250	990											
		O EECK	200	800	g	ğ	, DOG	5000	,	ſ									<u></u>											1		
		ANGLE CHECK	*	2	2 2	19	5	z z	3	à														4 2€					,			
	1	INEADMICE	10.	0	3 3	5.5	3.6	0 + 3	***************************************	seine + 0.5	į.				-		ı							36								
		TANK.																														
	DECK CELL	9																		25.0	898											
		WEET)	8 8	2 3	R &	St 5	2	R 51	S	æ	8	EX.	S. 5	2	& &	2000	oct of water	200		out of water		- J.										
	1	<u>.</u>	1557	200	1936	66.5		£ <u>\$</u>	1952	9861	2		5005		î X	7017	ij	2		0071	250			1357								
			8;	7	# FR	* *	7	R Fa	Ħ	2	8:	=	\$ \$,	4 8	4	ī	2	7	i	Ž,	1	í	ì	2	T						
			**									_					ı						-				 					
	1		×														17.12						1	III K				 				

院金曜 あが、またこ

TABLE 4-2. QUICK SCAN MEASUREMENTS (SHEET 1 OF 2).

W.T.	N/NF 18	IUNI 19	JUNE 70	HJM4 70	10N1 20	JUNE 2J	37 INME	AJN) 31	JALE 23	JUNI 71	#IMF 74	21/NL
-				0916 PD1 19 6 IB NEARLY CLEAR GAIN II	0930 PD1 18 7 dH MEARLY CLEAR UAIN 10	1442 PD T 40 FoN SCATTERFD CLOUDS DWELL 760 GAIN TI	1647 PDT 29.1 da 3CATTEMED CLOUDA DWELLO GAIN II	1451 POT 34 2 dll 54 ATTENED CLOUDS DWELL 0 GAIN 11	1464 POT J han ECATTERED CLOROS DWELL D GAIN O	TIME POT 10 J (H) SCATTERED CLOUDS DWELL O GAIN DI		1548 PD 1 8 B ill HEAVY UVERCAST CAIN 1
ij.	وسنب ، دلیواده س										1111 PDT 7 4 dB HEAVY OVENCART EMPLL 780 CIAIN 11	1996 PDT # 1 dR HEAVY DV! HUART GAIN!
20			TON BASO S 8 8 MARLY CLEAR	GBGS PDT 1 4 dB MEARLY CLEAR	0000 POT 1 2 40 NEARLY CLEAR GAIN 01		1617 POT 34 dls SCATTP RED CLINUM DWELL D GAIN 10	1570 PDT 1 1 dE SCATTERED CLOUDS OWELL G GAIN DI	1673 POT 1.0 dB 8CATTEMED CLOUDS OWELL 0 GAIN GO	1898 PUT 0.3 dB BCATTERED CLOUDS DWELL 0 GAIN 00	HINDT FLOOR HEAVY OVERGANT DWELL 700 GAIN 11	
20											1117 PD1 4.6 4B HB AVY OVERCABT DWELL 750 GAIN 11	
40											1191 PDT -07-88 148 AVV OVERCART DWELL 780 GAIN 11	
•	GAIN 1D 17 (III) PTLY CLOUDY 1015 PDT	003/ POT 22 8 dB									1134 PDT 1.34H HEAVY OVERCAST DWELL 280 GAIN 11	1849/PD1 -1 8-49 LOW SUN DWELL 2000 CAIN 11
•											11277DT 2.4 HB HB AVY OVERCAST DWS LL 250 GAIN 11	
70	į								1837 POT 84 HB BCATTERS D CLOUDS DWELL O GAIN 10	1942 PDT -9.8 dB SCATTENED GLOUDS DWF LL O GAIN 11	1120 PDT 38 HE HEAVY OVERGAST DWELL 200 GAIN H	
85			į								1129 PDT 4.9 (III) HEAVY OVERCAST DWELL 200 GAIN 11	INFO POT IN HIS HEAVY OVENCAST IIWELL TOOK GAIN 11
100											1133 FDT 4 9 IIB HEAVY OVERCAST DWFLL 800 GAIN 11	1871 POT 11 8 48 HEAVY DVF MCAST DWELL 2000 GAIN 11
100											HISH PDT 8.5 HR HEAVY OVERCART DWELL 750 GAIN 11	IB24 PD1 11 9 in MFAVY DVFRCAST DWELL 4000 UAIN 11
110											1137 PDT 11.2 dR HEAVY OVERCAST DWILL 780 GAIN 11	HIZE PD1 14 Juli LIGHT CLOUDS DWELL 4000 GAIN 11
120											1138 PDT 137 dR HEAVY DVENCAST DWELL 780 QAIN 11	
120											1180 POT 18 UHB HEAVY OVE MCAST DWELL 2000 DAIN 11	
140		an ya . Ada san un andar									1194 PDT 17 G IR HEAVY DVFRLAST DWFLL 4000 GAIN 11	
150			SUES POT SECULO PO SECULO	IN BUILD IN LAND	IOJUPUT IN LIH NEAHLY CLEAN IWILL ING ; IJAIN IT						I I Sh PD T I B 3 IP HEAVY OVERPAST OWELL WILL OAIN 11	

TABLE 4-2. QUICK SCAN MEASUREMENTS (SHEET 2 OF 2).

DEPTH IIN FT	쌝	JUNE 24	AAM 26	AME	AINE 16	T	T	T	T	1	T	Γ
(19) 61)	_ _	24		*	 *	 						
1			IASO POT IBS SB DWELL O GAIN IS									
10												
ю			IASE POT IB.7 #8 OWELL B GAIN 18	IB40 PDT 19 8 48 DWELL 6 GAIN 18								
*				1641 PDT -91.8 x8 DWELL 6 CAR: 10	1649 PDT 78,9 dB OWELL 6 GAIN 18							
8			-	1844 POT -28.5 ett DWELL 6 GAIN 10	PRINT POT PRINTS DWELL O GAIN 10							
10	1847 PDT 18,4 dB LOW BUH DWE LL 2000 GAIN 11	2006 PDT 4.6 dB LOW SUN OWELL 2006 GAIN 11										
80	1941 PST 3,3 48 LOW BUH DWELL 2008 GAIN II											
70	1936 PLIT -3.7 dg LOW BUN DWELL 4000 GAIN 11											
••	1836 PDT 5.3 48 LOW SUN DWELL 4000 GAIN 11											
- 1	1936 PDT -7.0 dB LOW SUN DWILL 4000 GAIN 11											
ian	1936 POT -87 d8 CLEAR BKY LOW BUN DWELL 4000 GAIN 11											
110												
120												
130												
140												
160		-										

TABLE 4-3. AUTOMATIC HEMISPHERICAL SCAN MEASUREMENTS (SHEET 1 OF 2).

COPTH (IN FT)	AMI 10	A.H41 26	AJMI 76	NIA K	MUN.	AM4 16	AJMI 76	AINE 10	AINE 76	AINE 70	AINE st	AINT 76
,												
10												
*												
			i						 			
*												
*	1860 PDT -(8.7 dB DWELL 458	I MAR POT -2.6 alb CHIELL 188	1816-PDT 9.9-48 OWELL 180	1016 PD7 4.448 DWILL 160	1931 POT 2.1 de DWELL MA	1923 PD1 -1.0 #8 DWELL 200	1931 PDT 4.5 40 OWELL 400	1830 PDT 0.8 48 DWELT 400	1939 PDT 0.5 49 DWELL 460	1929 PDT -1.6 40 DWELL 400	1929 PDT -1.8 48 DWGLL 468	1947 PD7 4.6 48 DWELL 600
8										10.00		
×		1667 PDT :11,336 DWELL 26					,					
•		1768 /07 -7,9 48 DWELL 18										
		1718 POT -15.6 48 Curticum	1722 PDT -18.5 dB DWd.LL 100									
ě			IPST POT ILO 48 DWELL 100									
110			1730 F/17 -19.6 wit DWG LL SEP									
120			1736 POT -21.3 dB DWg.LL 1000									
130		····		1740 PDT 20,4 60 DWILL 1009								
140				1746 P DT -72.6 dt DWS LL 1000	1761 PDT 67.0 (8 0905 LL 1006							
190					1786 PDT 94 9 68 DWELL 1000	1788 PDT -94.5 45 DWELL 1986	I mad PDT IRL I did COPT LL INCO	1806 # DT -24,7 48 DWELL 1806	1810 PDT -79,7 #8 DWE LL 1800	1800 PHT -20.3 48 DWELL 1880	ters PDT -E7 3 #B THYSILL 1000	1899 TOT -37.3 40 DWG LL 1000

TABLE 4-3. AUTOMATIC HEMISPHERICAL SCAN MEASUREMENTS (SHEET 2 OF 2).

DAPTH 11A FTI	Alle N	MIT TIME	11M 14	AUNF 19	anu M	A/NE	ane M	AIM M	AJHI 16	AINE 24		
10										POT 105 Bue D		
R												
20												
•												
10	1946 PD1 5 8 88 DW111 BD0	1940 PDT 7 0 48 DWI LL MID	INT POT BE 48 DWELL 800	IMAPDT 74 dR DWELL 1000	1949 POT -7 4 MB DWELL 1999	3007 ADT 6.6 48 DWFLL 1000	2096 PD1 66 HB DWFLL 1046	9008 PD / 4 1 48 DWBLL 1080	3011 FIIT 3.2 68 CWELL 1001	#014 PDT 417 ## 0 MELL 1080		
40												
R)												:
											5-06 Tax 8 Tax Tax - 0 Tax S S S	
100	1940 PDT 32 G 48 DWELL 400	1846 PDT -21 0 HB DWELL 800	1869 FDT 18 8 HR DWFLL 806								perconga person relici	
110											ipo 14,140-110-110-1	
190											landing to the control of	i
1,30												
146											s mark dan or de land translation	
19/2	18JB PD T 22 0 HP DWELL 408											

Figure 4-6A. Radiance profile through sun angle.

-30.00 GAMMA'

-60.00

0.00 \$0.0 X, DEGREES

30.00

50.00

90.00

80.00

24 JUN 1875 I FL4 POT GRMMA'Y - O DEGREES THETRO - 45 DEGREES DEPTH - 6.1 METERS

PARTY AND PRINCIPLES OF THE PR

Figure 4-6B. Radiance profile through sun angle.

24 JUN 1975 1117 POT GAMMA'Y = O DEGREES THETAO = 45 DEGREES DEPTH = 9.1 METERS

Figure 4-6C. Radiance profile through sun angle.

Figure 4-6D. Radiance profile through sun angle.

Figure 4-6E. Radiance profile through sun angle.

the state of the s

Figure 4-6F. Radiance profile through sun angle.

Figure 4-6G. Radiance profile through sun angle.

製造業をおけられていていていて、一角の変更がながらなければなければなるのではなっていませんがあっていましています。これではなってものできってものでしています。

Figure 4-6H. Kadiance profile through sun angle.

Figure 4-51. Radiance profile through sun angle.

Figure 4-6J. Radiance profile through sun angle.

Figure 4-6K. Radiance profile through sun angle.

Figure 4-6L. Radiance profile through sun angle.

Figure 4-6M. Radiance profile through sun angle.

Figure 4-6N. Radiance profile through sun angle.

Figure 4-60. Radiance profile through sun angle.

nature of the source. (A cos θ pattern is approximately $\pm 60^{\circ}$ with a contraction of 3/4 because of the water index.) This correction seems to be better behaved at the deeper depths. Because little data were obtained on a sunny day, it was difficult to make a comparison between the model and the data. However, two good runs were made on June 20, one at 150 feet and the other at 20 feet. At 150 feet, a deviation of approximately 5 dB at the peak of the radiance pattern was noted. However, away from the peak there was good agreement. This was interpreted to mean that the shallow water correction was truncated too quickly. The model was rerun with the original function for A, in equation (C-12). A noticeable improvement was seen as evidenced in figure 4-7. For the 20 feet data, both A and A' produced identical results which is in close agreement with the measured data in figure 4-8. The model was also rerun at 150 feet with the new value of A for the June 24 data (figure 4-60) and a slight improvement was noticed. Because of the lack of data, it was decided to discontinue model reruns. However, it is believed that a shallow water correction can be empirically determined to further reduce the discrepancy. What is more important for system design is the integrated power as a function of the field of view. This is displayed in figure 4-9A through N for the June 24 data together with upper and lower bounds derived in Appendix A. Notice that there is a 0 to 5 dB discrepancy throughout the range, with the larger discrepancies occurring at the asymptotic values. Also note that the 3 dB field of view is approximately ±30°. This is true even on a sunny day us seen in figure 4-10. Here the discrepancy between data and model is also smaller. We also point out that the ocean roughness which did not vary greatly was estimated using data taken on June 23. Here, the radiance scanner was submerged to 1 foot, and 100 consecutive scans were taken. As pointed out in Appendix A, the ensemble average of all these scans should approach a Gaussian distribution whose vuriance is

$$\sigma^2 = \left| 1 - \frac{n}{n!} \right|^2 \operatorname{var}[R] .$$

The ensemble average is plotted in figure 4-11 and the resulting value for var(R) is .044.

The second portion of the June 24 measurements concerns uncalibrated data taken with the sun at or below the horizon. These measurements were taken to simulate the effects of ship-submarine line of sight and over-the-horizon scatter modes of communication. Figure 4-12 portrays a radiance profile taken by the radiance scanner at 50 feet with the sun precisely on the horizon. Notice the large solid angle around the Snell's angle over which the intensity is approximately constant. In figure 4-13, there is a radiance profile with the radiance scanner submerged to 20 feet, the surface irradiance set equal to unity. and the sun 15° below the horizon. Note the concentration of power at the Smill's angle. In order to obtain a rough calibration, the radiance scanner was taken out of the water and the sunset viewed directly (figure 4-14). Now the concentration of power falls at the horizon. The total integrated power in figure 4-14 was only 13 dB greater than the integrated power in figure 4-13. Furthermore, the peak power on the horizon in figure 4-14, was only 6 dB greater than that of figure 4-13. Thus, it is concluded that the loss in power and the inability to calibrate were due to the absence of 5,200 Å in a red sunset and not due to loss through the water. To emphasize this, irradiance vs. zenith angle were plotted at each depth for all of our data (Appendix L). The most enlightening of these curves is shown in figure 4-15. The results of the model were also plotted to substantiate the invariance of loss with the zenith angle at a depth of 100 feet. These results are most important for any system communicating to a submarine in the blue-green portion of the visible spectrum.

4.1.3 CLOUD PENETRATION

Although no attempt was made to record quantitative data on light penetration through clouds, a pyrheliometer was used to continuously monitor the irradiance at the ocean surface. The output from this

Figure 4-7. Radiance profile through sun angle.

Figure 4-8. Radiance profile through sun angle.

Figure 4-9A. Integral of radiance.

Figure 4-9B. Integral of radiance.

market and the continuence of th

Figure 4-9C. Integral of radiance.

Figure 4-9D. Integral of radiance.

Figure 4-9E. Integral of radiance.

and the state of the configuration of the state of the st

Figure 4-9F. Integral of radiance.

Figure 4-9G. Integral of radiance.

市民 中国 一次 一下 七

Figure 4-9H. Integral of radiance.

Figure 4-91. Integral of radiance.

Figure 4-9J. Integral of radiance.

Figure 4.9K. Integral of radiance.

Figure 4-9L. Integral of radiance.

Figure 4-9M. Integral of radiance.

Figure 4-9N. Integral of radiance.

Figure 4-10A. Integral or radiance.

Figure 4-10B. Integral of radiance.

23 JUN 1975 15:04:21.582 PDT 15:06:26.487 PDT

PERK ZENITH ANGLE = 22.2 DEGREES REIMUTH = 264.3 DEGREES

SUN ZENJIH ANGLE = 28.7 DEGREES AZIMUTH = 258.7 DEGREES

DEPTH = 0.3 METERS (1 FEET)

Figure 4-11. Ensemble average.

24 JUN 1975 20:05:47.935 PDT 20:06:20.479 PDT

PEAK ZENITH ANGLE = 43.0 DEGREES AZIMUTH = 288.5 DEGREES SUN ZENITH ANGLE - 90.4 DEGREES AZIMUTH - 298.8 DEGREES INTEGRATED LOSS - -4.8 DB X71L7 - 1.4 DEGREES, YTILT - -8.4 DEGREES DEPTH - 15.2 HETERS (50 FEET) 00/09

Figure 4-12. Radiance profile with sun on horizon.

AVERAGE OF 5

SCANS

24 JUN 1975 20:15:39.659 PDT 20:16:12.188 PDT

PERK
TENITH ANGLE = 53.8 DEGREES
ATIMUTH = 297.7 DEGREES
SUN
TENITH ANGLE = 82.2 DEGREES
ATIMUTH = 300.2 DEGREES
JNTEGRATED LOSS = -7.6 DB

X71L7 = 1.8 DEGREES, Y71L7 = -6.4 DEGREES DEPTH = 8.1 METERS (20 FEET)

AVERAGE OF 5 SCANS

Figure 4-13. Radiance profile with sun 15° below horizon.

24 JUN 1975 20:19:11.391 PDT 20:19:43.901 PDT

PERK ZENITH ANGLE = 03.9 DEGREES AZIMUTH = 299.3 DEGREES

SUN ZENITH ANGLE = 82.9 DEGREES AZIMUTH = 300.7 DEGREES

INTEGRATED LOSS - 0 DB

X71L7 = 1.9 DEGREES. Y71LT = -6.0 DEGREES DEPTH = -1.8 METERS 6 FEET ABOVE SURFACE

AVERAGE OF 5 SCANS

Figure 4-14. Radiance profile with sun 15° below horizon (radiance scanner out of water).

Figure 4-15. Irradiance vs. source zenith angle.

device was recorded on a strip chart with a few representative samples shown in figures 4-16A through C. Figure 4-16C is a trace for a sunny day. By using this curve as a reference, it was possible to obtain meaningful statistical data on cloud penetration. Thus, for example, figure 4-17A is a distribution of points taken every hour between 1100 and 1500. The value of each point is divided by the corresponding value of the sunny day curve at the same time of day. This is designated as the transmission and is always less than or equal to one. The transmission values are plotted on the abscissa and the relative frequency (number of times a particular value occurs divided by the total number of values) is plotted on the ordinate. This bar chart is an estimate of the probability distribution for transmission. It is bimodal, that is, an impulse occurs between .9 and 1.0, and a bell-shaped portion between 0 and .9. Of a total of 36 points, 21 represent clear conditions or a cloud-free line of sight probability of .58. The cumulative probability was superimposed to demonstrate this better. However, 36 points do not represent a significant sample so the same procedure was repeated every 10 minutes and plotted in figure 4-17B. Notice the same basic shape, but more filled in. The same data were reprocessed every 10 minutes between 0900 and 1700, as plotted in figure 4-17C, which gave a more continuous sampling of the same time period. Notice that there is no basic change to the curves with the exception that the probability of a cloud-free line of sight is now .62. Therefore, now that 274 points have been obtained, it represents a significant set of data and some conclusions may be reached. For example, the probability of having less than a 10 dB loss is .986, or 98.6%. Even the conditional probability (the probability when there is a cloud, referring only to the bell-shaped part of the curve) of having less than a 10 dB loss given an overcast condition is 96.2%. Although only a spot sample was taken of all clouds, it is clear that transmission through clouds with nominal values and at high probabilities is feasible. This contention is substantlated since the major set of water penetration measurements were made in overcast conditions so that the penetration of diffuse light into the water is understood. The extension of these results to spot beam transmission and other types of clouds would be desirable in view of the potential impact on system availability.

4.2 UPLINK DATA REDUCTION

The experimental procedures, descriptions, and scenarios for the uplink measurements are outlined in Section 3. The equipment used and the calibration employed are described in Volume II, Section 3. The goal of the uplink measurements was to determine, as best as possible, those parameters which are critical in determining uplink performance. Specifically, there were three parameters which received the most attention: overall link loss, beamwidth (antenna gain), and beam direction. Furthermore, it was desired that models be developed which could adequately describe these parameters. The model used in this report is the one developed in Appendix A. All the data presented are in one format; link loss vs. zenith angle. These represent a slice of the transmitted pattern as seen by a receiver passing through the beam toward the source. The program used to reduce the uplink data is described in Appendix E. Because of equipment difficulties, aircraft failures, and a narrow operational window, the only data deemed acceptable were obtained on July 21 and 22, 1975. We also point out that for logistical reasons, the uplink measurements were always given first priority over the downlink measurements, which contributed to some spottiness in the latter.

In figures 4-18A through F, data taken with the laser pointing in the zenith direction are displayed; e.g. zenith angle is 0°. There are several items that should be pointed out with regard to the data. First, the dynamic range of the receiver was only 10 dB, so that the data went from the noise floor to saturation very quickly. This required some adjustment on each pass; for example, figures 4-18B and C were repeated passes taken with different gain settings. Notice also that at the higher zenith angles the noise floor starts to increase. This is due to the secant squared correction that was used to account for the difference in path lengths at the various zenith angles to a constant altitude aircraft. This effect can also be observed when the

Figure 4-16A. Irradiance at the ocean surface - cloudy day.

というないというできます。 これをおける のはないしゃ かいしょうきんは可能には動きのないなないはないないによるない

Figure 4-16B. Irradiance at the ocean surface - cloudy day.

Figure 4-16C. Inadiance at the ocean surface - sumy day.

Figure 4-17A. Distribution of points every hour from 1100 to 1500.

Figure 4-17B. Distribution of points every 10 minutes from 1100 to 1500.

Figure 4-17C. Distribution of points every 10 minutes from 0900 to 1700.

Figure 4-18A. Radiance profile through angle of aircraft (Run No. 16, 22 July 1975).

Figure 4-18B. Radiance profile through angle of aircraft (Run No. 17, 22 July 1975).

Figure 4-18C. Radiance profile through angle of aircraft (Run No. 19, 22 July 1975).

Figure 4-18D. Radiance profile through angle of aircraft (Run No. 20, 22 July 1975).

Figure 4-18E. Radiance profile through angle of aircraft (Run No. 21, 22 July 1975).

於我問題者 想是一件是事一人不知道一人不知道是一個有效也一人不可以完了

Figure 4-18F. Radiance profile through angle of aircraft (Run No. 22, 22 July 1975).

data are saturated. On most data plots there is a constant line going through zero degrees zenith. Because the aircraft could not always pass directly overhead, a minimum zenith angle resulted. Since a sign reversal occurs in the gimbal readings, a plus/minus indication occurs on adjacent pulses. Along the abscissa, an indication of when the receiver was in track has been noted. A deviation from the abscissa indicates track. The filtering of the data is described in Appendix E. Filtering of approximately one second was used for a few reasons. First, this was the shortest integration time that would eliminate the grass in the data due to noise without altering the results. Second, the aircraft was traveling at 80 mph which is approximately 117 feet per second. At 3,000 feet this is 2.2°, while at 2,000 feet this is 3.3°. Since the beamwidth of the source was 2°, this is approximately the maximum resolution inherent in the experiment. Finally, the results of the model were overlaid using the data taken by Scripps.

In figures 4-18 A through F, the model ranges from several dB too high to several dB too low, and is consistent with the downlink data. There also appears to be some conservatism at the deeper depth, which is appropriate for system design. However, there is some uncertainty, that is more difficult to explain. Notice that figures 4-18 B and C which were taken within 15 minutes of each other and represent the same scenario are 10 dB different, with the model falling halfway in between. One could possibly envision some sudden change in the environment to explain this. What is more plausible, however, is to look for other causes. For example, the sensitivity of the receiver was changed between the two runs by inserting a neutral density filter. Although it was accounted for in the calibration, this might be suspect. Also, the percentage of track was different in the two runs. And finally, there could be some dynamic effects caused by the ocean surface that might have caused the difference. What can be concluded, however, is qualitative concurrence. This same qualitative concurrence is also maintained as the angle of the laser source is varied.

In figures 4-19 A through E, the laser angle is changed to 12.5° off the vertical. (The refracted angle predicted from Snell's law is also plotted.) In figures 4-20 A through D, this angle is increased to 32.5° and in figures 4-21 A through J, to 42.5°. In every case where two scenarios were repeated, there were several dB variation, with the model residing in between. Furthermore, the data clearly indicate a spreading of the beam away from the Snell's angle and toward the zenith. This has been predicted by the model and is in qualitative agreement with the data.

The above data have been selected so that only the better runs are presented. Tables 4-4 A through D represent complete listings of all the data with some accompanying comments. Approximately 50 hours of aircraft time were employed. The data taken on July 24 were lost due to a tape recorder malfunction.

4.3 CONCLUSIONS AND RECOMMENDATIONS

While it cannot be said that all the goals of the experiment were reached in a quantitative manner, the experiment was nevertheless highly successful. Use of the radiative transport theory as a principal tool in predicting system performance in the ocean environment has been clearly established. Although some approximations were used in the OPSATCOM application, it is also clear that a more global application is well within the state of existing knowledge. The basic parameters on which the radiative transport theory are based are well known. However, the mechanism for extracting these parameters is still an art, and some advances in this direction were also made (Appendix D). Some of the regression curves derived are shown in figures 4-22 through 4-24. The most interesting one from a system point of view is figure 4-24. This is the regression of θ^2 against s. Notice that in the clearer waters, θ^2 is larger than in the turbid waters. This of course implies that in the latter case the particulates are large and concentrate the scattering in a forward direction. This in turn will somewhat offset the deleterious effects of a large value of s upon system performance. On the other hand, in clear water we must recognize that the medium is less forward scattering, which will degrade system performance to some degree.

Figure 4-19A. Radiance profile through angle of aircraft (Run No. 12, 21 July 1975).

Figure 4-19B. Radiance profile through angle of aircraft (Run No. 1, 21 July 1975).

Figure 4-19C. Radiance profile through angle of aircraft (Run No. 4, 21 July 1975).

Figure 4-19D. Radiance profile through angle of aircraft (Run No. 5, 21 July 1975).

Figure 4-19E. Radiance profile through angle of aircraft (Run No. 6, 21 July 1975).

Figure 4-20A. Radiance profile through angle of aircraft (Run No. 14, 21 July 1975).

Figure 4-20B. Radiance profile through angle of aircraft (Run No. 16, 21 July 1975).

Figure 4-20C. Radiance profile through angle of aircraft (Run No. 17, 21 July 1975).

Figure 4-20D. Radiance profile through angle of aircraft (Run No. 19, 21 July 1975).

Figure 4-21A. Radiance profile through angle of aircraft (Run No. 12, 22 July 1975).

是我们的想象,也是我们的人,我们也没有我们的人,我们就是是我的人,我们也没有的人,我们也没有一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个

Figure 4-21B. Radiance profile through angle of aircraft (Run No. 4, 12 July 1975).

Figure 4-21C. Radiance profile through angle of aircraft (Run No. 2 22 July 1975).

Figure 4-21D. Radiance profile through angle of aircraft (Run No. 11, 22 July 1975).

Figure 4-21E. Radiance profile through angle of aircraft (Run No. 3, 22 July 1975).

Figure 4-21F. Radiance profile through angle of aircraft (Run No. 10, 22 July 1975).

Figure 4-21G. Radiance profile through angle of aircraft (Run No. 4, 22 July 1975).

Figure 4-2114. Radiance profile through angle of aircraft (Run No. 5, 22 July 1975).

Figure 4-211. Radiance profile through angle of aircraft (Run No. 6, 22 July 1975).

Figure 4-21J. Radiance profile through angle of aircraft. (Run No. 7, 22 July 1975).

TABLE 44A. PBY DYE LASER TRACKS.

19 July 1975		COMMENTS	N	No soci		Some track near Snell's anole	Come track near Cnell's anale	No second	Some track on side of Snell's angle	No good	Some track	No according	No snoot	Some track wery little	No sond	Sun's	No soud	Comp	Joseph Company						
	40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																							İ
	40,	15																							
		%																							
	13	ON	 														_								
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	روما	5.3			-	-	-						_	-		-	-	-		-	_				
0 x x 30 x	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\s\ \																							
307				_	 	\vdash	_								_		_			<u></u>			_		_
LASER	% 5	ОЕРТН																							
LASER	Z MN	θ																							
	TIME	HRS				1634	1641		1657		1718			1746		1807		1822							
	PASS NO.	ALT																							
	7/			\vdash			4	\dashv	7				_	-	-		Н	-				_		-+	-4

TABLE 448. PBY DYE LASER TRACKS.

. . .

21 July 1975			\		Tried range and bicked out	Bad pass	\$ 5	66.54	77:DX	Repairing intercom				Circled while barge crew examined laser disposition				≈50° to overhead, through douds	Lost barge due to clouds	Tracked through clouds	Some spurious sync. through clouds **.1K	Trying to pick up approach information	Good track, broke due to clouds			T	
		\	**************************************	\setminus	1	1	1	1	+	+	4	-	+	+	+	+	$\frac{1}{1}$	1	4	+	+	+	+	+	+	+	4
	\	\	10 P	长	-	+	+	+	n	× ×	-	+	-	-	1	Yes	1	χœ	9 <u>2</u>	Kas	χä	ON N	Ķ	- 2	+	+	4
		\	35/1	W	_	ᆁ	\dashv	+	χe	2 /25	S No	S No	S	No No	2	*	ž	بر	4	4	4	4	4	4	+	+	7
IABLE TTB. 151 OIL LAMEN	105/3/	7b.	10 _{/2}	5	>100 2:3	None	1	>100	>100	>100	10-12	10-12	20	≈15	× 100		≈15	>100	≈15	∞80	some>100	07.2	>100			+	7
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	%) }			°Ž.	1		0:1	_							9	00	ž	9	9	2	2	2	2		7	
		اي		, H	1	7	4	-	_	4	7	_	_		7	귀	Ξ	日	7	7		7	7	\dashv	1	\dashv	
	}	LASER	3	DEPTH	30	30,	30,	<u>,</u>	.50	9	70,		60,		30,	23,	10,	30,	30,	\$	56,	50,	50,	Š		_	
		LASER	UW Z	°Ө	18°/air	18°/au	18°/air	18°/air	18°/air	18°/air	18°/air	18°/air	18°/air	18°/air	18°/air	18°/air	18°/air	45°	45°	45°	45°	45°	45°	45°	EOF		
			TIME	HRS	1427	1435	1442			1503			9/5/17	1534	1545	1553	21603	1616	1623	1630	1638	1647	1652	1700	1704		
			-	ALT	i i	Ι-		3K'	<u>}</u>			j _m	۱."	†			1	T.		_	_	1	_	2K'			
			PASS NO	۲	<u> </u>	7	-	┝~	├~		┿-	+	┿━	┪╌┈		2	+-	+-	├	┝	┯	┼~	2	8			

Note: Had trouble starting APU on this trip. After connector rattling and relay tapping, it went. Intermittently dropped out three times and finally held.

TABLE 44C. PBY DYE LASER TRACKS.

																									
		KTS	50°-90°	35°-90°	28° – 90°	40°-85°	40° - 80°	30 - 85				60° – 80°	37° - 30°	30,-62	38°-≈75°	}	35°-55°	85°-100°	85°-100°	85°-100°	80°-100°	80°-110°	85°-110°	8895	! }
	_	COMMENTS	Good track	Good track	Good track	Good track	Good track	Good track				Looked good	Looked good	Looked good	Turbulent at isthmus	Very turbulent	•		Clock laser with barne clock	Phantom track or ?	Good track	Good track, minimal	Sienal > 100	,	
	10	23	Yes		Yes				χ,			χes							Yes		ž,		_	_	Γ
	100	13/																							
	\ .se	*	Yes	Yes	Yes	Yes	Yes	Yes	N.o	No	No.	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes		Yes	Yes	Yes	Yes	-
3 .	\ <u>`</u>	03	01/9	≈!0 Yes	8/9		517		≈5	4	5	4	4	5	4	5	+	4	5	0	8/10		5	5	
0 N 30 N	NOR	1/ 5,3	>100	>100	>100	>100	∞90	∞70	≈20	≈15	12	25	∞30	≈5S	100	∞10	040	8	20	25	>100	>100	≈30	28	
357			°Z	No	Ŷ	ş	9	Ş	ş	9	9	91	9	10	1.0	1.0	0.1	0	9	ş	9	ş	9	Ş	_
æ							_	_	-	1	-	4	4	_	-	-		-		4	-	4	4	4	
LASER	3	DEPTH	30,	, 0	\$6,	,9	73,	80,	96	90	8	2 0	Ą	30,	30,	Š	30,	50,	70,	R	70,	8	110	130,	
LASER	UW Z	Θ°	60°/air	60°/zir	60° (air	60°/zir	60°/air	60°/air	60°/2ir	60°/air	60°/air	60°/zir	60° jair	60°/2ir	60°/air	60°/zir	90°	çj	đ	O _c	Ð	O	g	00	
	TIME	HRS	1458	1507	1517	1524	1533	1540	1549	1557	1605	1614	1620	1627	1634	1641	1650	1725	1713	1221	1728	1736	174	1751	
	PASS NO.	ALT	2K'	X,	7K,	K K	K,	2K'	7K,	2K,	X,	×	7K	2K'	H	SK	IK,	×	3K	Ж,	3K,	×	×	, M	1
1	9		5	17	77	7	Ž,	9	1	80	60	ョ	긬	12	13	Ĭ	15	16	1	82	19	8	礻	7	_

Notes: EOF inserted after each pass. Sync usually sporadic at turning point; cleans up at 15° to 20° and looks good through tracking portion of pass. @ Pass No. on tape will be 8 for this pass. Forgot to change switch. "Bottom door open for photographer. Pitch of A/C measured to be +2.5° to 3° during this pass. Assume same A/C pitch for all * passes.

: |

TABLE 44D. PBY DYE LASER TRACKS.

Į												24 July 1975
						10/13/						
			LASER	LASER	1)	\	`	'	\	
PAS	PASS NO.	TIME	Z MO	3	*\	10/ \display		10, 35 35	と	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\	
	ALT	HRS	မိ	ОЕРТН	100		ON		THE STATE OF	03	COMMENTS	
744	2K'	1414	42°/water	25'	% -			S.	×	2	No sync	
2	25K	1418	42°/water	25'	i No	>100		Ya		£	250' 93 knots	
3	25K'	1423	42°/water	25'	I No			Yes	×	2	_	
*	25K'	1427	42°/water	25'	I No			Yes	×	Ş	% Inota	
2	25K ²	1432	42°/water	,04	I.	>100	6/10 Yes	Yes	X	XG.	97 knots	
9	25K'	1436	42°/water	50,	1 No	None	5/8	No		ž	95 knots	
7	22K'	1440	42°/water	50′	1 No	>100		Yes	X	X	93	
80	25K'	1450	52%	30,	1 No	>100		,		χα	86	
6		1454	52%°	30,	1 100	None		No	X	Y.		
9	36K	1459	52%	30,	No.	≈15		No	X	Yes		
三	3K'	1512	32%	30,	l No	6	3/6	No	X	Χα		
7	3K,	1517	32%	30,	l No	≈15		οŅ	X	χg		
13	3K'	1523	32%°	30,	I No	>100	3/6	Yes	X	Yes		
1	3K	1527	32%	8,	1 No	201 <		Yes		Yes		
15	3K,	1535	32%	90,	1 No	07	3/8	Yes	×	Yes		
16	3K	152	32½°	,00	No.	<u>\$</u> 1≈		No		Yes		
17	3K,	1547	3212°	100,	- No	0Z≈		,	X	Ϋ́З		
18	3K'	1554	32%	70,	1 No	≈75		χez	×	Ķ		
19	3K'	1559	32%°	.03	1 10	0Z≈	3/6	Yes	X	χœ		
R	3K,	1604	32%	30,	1 10	∞60	3//6	Yes	×	Yes	Excellent	
2;	3K′	1613	32%	20,	1 No	201 		Yes	X	Yes	Offset 12° in eximath	
22	3K,	1619	32½°	\$0,	о <u>х</u> -	20I<		Yes	X	Yes	Offset 32° in azimuth	
23	3%,	1635	32%	50,	1 No	260				Yes	Offset 90° in azimanth	
27) (10		22 (145	1	24 (4000	0-11-11-1 - 10 6 4 4 P.	2. 6.4		9	j			

32 (0 pitch), 33 (+45° food pitch), 34 (+90° pitch); 35 (-45° pitch), 36 (-90° pitch) EOF

44 (0° roll), 45 (10 out), 46 (30 out), 47 (-10 in), 48 (-20 in) EOF
NOTES: Motorola walkie talkie failed at commencement of passes, hence had to use Motorola mobile unit with external speaker. Forgot to turn off recorder after Pass No. 2. Fitch and roll calibration; roll readings are roll meter divisions and not degrees.

*End of data marks overhead position.

Figure 4-22. Regression of volume scattering function $\sigma(\theta)$ against scattering coefficient 3.

Figure 4-23. Regression of scattering coefficients against volume attenuation coefficient g.

Figure 4-24. Regression of normalized second moment of the scattering function θ^2 against scattering coefficient s.

With the confirmation of radiative transport as the underlying theory for these system applications there are some suggestions that can be made for future work:

- a. General Cleanup. This is basically a firming up of the general theory to include all scenarios that the Navy might envision.
- b. Monte Carlo Techniques. These are primarily an augmentation of the general theory to include those cases that are not conducive to analytic computation.
- c. Cloud Propagation. This is an extension of (a) and (b) that includes any scenarios in the total environment that are of interest to the Navy.
- d. Model Range. Establishment of the theory automatically implies an understanding of scale change. This means that system scenarios can be studied in a suitably designed test tank similar to the manner that antennas are designed on an antenna range.
- e. Experimental Test Site. In much the same manner that a test tank can scale, so too, can a test site. Having such a facility as a convenient adjunct to system-related design activities would allow for total interaction between theory, experimentation, and testing.

LIST OF REFERENCES

- (1) NELC Technical Note 2868, <u>Underwater Test Plan</u>, by R. D. Anderson, Lt. R. G. Driscoll, USN, et al, December 1974.*
- (2) Fol and Sarasin exposed photographic plates of the Cote d'Azur in the Mediterranean in 1885.
- (3) Knudsen, M., "On the Measurement of Penetration of Light into the Sea," Conseil Perm. Intern. Exploration Mer, 76, p. 16, 1922.
- (4) Duntley, S. O., "Light in the Sca," J.O.S.A., 53, p. 214-33, 1963.
- (5) NPG School, An Atlas of Secchi Disc Transparency Measurements and Forelule Color Codes for the Oceans of the World, M. A. Frederick, September 1970.
- (6) Plass, G. N., and Kattawar, G. W., "Radiative Transfer in an Atmosphere-Ocean System," Applied Optics, 8, p. 455-66, February 1969.
- (7) Mertens, L. E., "In-Water Photography," Wiley Interscience, 1970.
- (8) Jerlov, N. G., "Optical Oceanography," Elsevier, 1968.

- (9) Swennen, J. P. J. N., "Time Average Power Density Probability Distribution Below the Ocean Surface of a Beam of Collimated Optical Radiation Incident on the Surface," J.O.S.A., 56, p. 224-9, 1966.
- (10) Scripps Institution of Oceanography Visibility Lab Report 71-1, <u>Underwater Lighting</u>
 by Submerged Lasers and <u>Incandescent Sources</u>, S. Q. Duntley, June 1971.
- (11) Ivanov, A. P., et al, "Propagation of Short Light Pulses in an Aqueous Medium," Inz., Atmospheric and Oceanic Physics, 5, p. 212-5, 1969.
- (12) Kinney, J. S., et al, "Visibility of Colors Underwater using Artificial Illumination," J.O.S.A., 59, p. 624-8, 1969.
- (13) Okoomian, H. J., Underwater Laser Transmission Characteristics.
- (14) Bravo-Zhwotovsky, D. M., et al, "Structure of a Narrow Light Beam in Sea Water," Izv., Atmospheric and Oceanic Physics, 5, p. 160-7, 1969.
- (15) Arnush, D., "Underwater Light-Beam Propagation in the Small-Angle-Scuttering Approximation," J.O.S.A., 62, p. 1109-11, 1972.
- (16) Karp, S., "Optical Communications Between Underwater and Above Surface (Satellite) Terminals," <u>IEEE Transactions on Communications</u>, Vol. COM-24, No. 1, January 1976. (Reproduced as Appendix A)
- (17) Livingston, P. M., et al, Joint NRL/NELC Optical-Satellite-Communication Atmospheric Propagation Test Plan," NRL-N03-25, April 1975.

^{*}NELC technical notes are informal documents intended primarily for use within the Center.

APPENDIX A OPTICAL COMMUNICATIONS BETWEEN UNDERWATER AND ABOVE SURFACE (SATELL) FOR TERMINALS

SHERMAN KARP

Abstract -- A multiple scattering model is used and extended to characturize the change) between underwater and airhorne (satellita) terminals at optical frequencies. The effects of the air/ses interface are also included with approximate solutions accurate for elevation angles above 45°. The results are presented in terms of a radiance function which is related to the transform of the spatial covariance function (mutual coherence function). The primary losses are shown to be a result of the water absorption coeffecient and not the extinction coafficient. The scattering losses can be isolated from the absorption losses and for certain cases, where the receiver is imbedded in the scattering medium, can be completely recovered. New components may be required to achieve this performance. The effects of ocean roughness are shown to have a minimal effect upon the subsurface reception while causing possible beam steering of subsurface transmission. Although substantial losses are experienced, duples, operation can be achieved at modest data rates.

化对射性 经营业的 医甲状腺性 的复数人名英格兰人姓氏克里克里的变体 医神经炎 人名英格兰人姓氏克里克

I. INTRODUCTION

TTHE ACCEPTANCE of optical communications for use in L operational systems has been severely hampered by our inability to adequately compensate for channel effects induced by the environment. Consequently, most if not all of the projected system gains are quickly nullified when rudimentary measures of system margin are added to the link budgets to account for these effects, it is, therefore, extremely important that environmental effects be accurately accounted for, and systems designed to best exploit these channels in a most advantageous manner. The most difficult channel that the optical communications engineer has to deal with is the multiple scattering channel. Such a channel exists when propagating through clouds, fog, water, etc. [1] -[3]. In this paper we will extend the model, which has been independently developed by Heggestad [4] and Arnush [5] for multiple scattering media, and apply it to compute the effects we would encounter while traversing a satellite to underwater channel. In doing so, we will try to validate the use and interpretation of the model by applying it to experimental dato.

In its most general form, the problem of optical communications between a satellite and a submerged platform can be described as: 1) a problem in communications from a platform in a nonscattering, nondispersive environment, through a random surface and into a medium with a different index, which is multiple-scattering, absorbing, and dispersive; and conversely, 2) a problem in communications from a

Paper approved by the Associate Editor for Space Communication of the IEEE Communications Society for publication without oral presentation. Manuscript received March 13, 1975; revised July 25, 1975.

The author is with the Navai Electronics Laboratory Center, San Diego, CA 92152.

platform in a multiple-scattering, absorbing, and dispersive medium, through a random surface and into a medium with a different index which is nonscattering and nondispersive. These two problems are nonreciprocal. Thus, it is necessary to decompose them into their fundamental elements and to individually identify and characterize the contributing factors. To this end this discussion is divided into four parts. The first part involves the actual propagation effects encountered while traversing a multiple scattering medium. The three system parameters which can be identified are the attenuation, the beam spreading and the apparent source size. These in turn are related to the absorption coefficient, the scattering coeffluient, and the volume scattering function. The second part uddresses the problem of transmitting through a random surface characterized by a slope distribution. The effect on scintillation will be discussed in addition to beam pointing and beam broadening. The third and fourth parts will address link calculations from the satellite platform to the submerged platform and from the submerged platform to the satellite platform, respectively. It is estimated that the model presented can be verified to within several decibels over most operational scenarios envisioned.

II. THE UNDERWATER CHANNEL

Over the past two decades there has been an interest in understanding the behavior of light while propagating through water. With the advent of the laser this interest intensified when viewed in the context of operational equipment. Although there have been numerous measurements [6], [7] and many empirical curves derived to fit the data [7] the latter are of limited use for extrapolating system performance. For this paper we will use a model which has been developed independently by two separate authors [4], [5]. While this model is derived for small angle forward scattering it appears to be fairly accurate out to ±45° providing the optical thickness is not too large. Fortunately the range of validity is within the operational ranges envisioned. The model describes the radiance transfer while traversing the multiple scattering region. This region is characterized by three variables.

1) Absorption: The absorption coefficient of the medium, a, is the amount of energy absorbed by the medium per unit length of propagation. This loss is attenuation and goes directly into heating and other irreversible processes.

2) Scattering Function $F(\theta)$: Multiple scattering media are characterized by scattering centers which, in the case of ocean scattering. The volume scattering function is defined as the secondary radiation pattern created by a plane wave traversing Copyright © 1976 by The Institute of Electrical and Electronics Engineers, Inc.

a small enough volume so that only single scattering occurs. This represents the average scattering distribution of all the scattering centers. There does not appear to be a great deal of variation in the general shape of $F(\theta)$ although the average width does change.

3. Scattering Coefficient: If we normalize $F(\theta)$, then

$$s \approx 2\pi \int_0^\pi F(\theta) \sin \theta \ d\theta \tag{1}$$

and

$$f(\theta) = \frac{F(\theta)}{s} \tag{2}$$

is the normalized version, s is the scattering coefficient with s^{-1} interpreted as the average distance between scatterings. Amush assumed a form for $A\theta$ as

$$f(\theta) = \frac{\delta}{2\pi\theta} e^{-\delta\theta}, \quad \delta = 10. \tag{3}$$

fleggestad, on the other hand, defines a modified variance

$$2\theta^2 = 2\pi \int_0^{\pi} \theta^2 \sin \theta f(\theta) \ d\theta = \frac{2}{8^2} \tag{4}$$

and by equating $\overline{\theta^2}$ with $1/\delta^2$ the two models are identical. This is true for large δ . We will use the notation $\overline{\theta^2}$. It is also common to define an extinction coefficient α , defined by

$$\alpha = q + s. \tag{5}$$

Thus, to completely characterize the environment it would be necessary to have measuring equipment for a, s, and $f(\theta)$. An alternate procedure, and less desirable, would be to measure two parameters and scale the measurements to the third. Although feasible, this would assume the validity of a model and the confidence to extrapolate from it. With these parameters in mind we will now present the model.

For convenience we assume that the transmitted beam is Gaussian and has the form

$$f_0(\theta, r) = \frac{1}{(\pi \theta_0 r_0)^2} \exp\left[-\frac{\theta^2}{\theta_0^2} - \frac{r^2}{r_0^2}\right]. \tag{6}$$

That is, it has a Gaussian distribution both in its spatial cross section and its ray direction. Next we assume the geometry in Fig. 1, where the source is at (0,0), the observer is at (r,z) and, as we will see, the apparent source is at $(0,z_0)$. In terms of the observation point (r,z) we have as the transfer in intensity $f(\theta,r)$

$$f(\bullet,r) = \frac{1}{(\pi U_r R_0)^2} \exp \left[-az - \frac{(r - r_m)^2}{R_0^2} - \frac{\theta_r^2}{U_r^2} - \frac{\theta_0^2}{U_0^2} \right]$$

$$= \frac{1}{(\pi U_\phi R_1)^2} \exp \left[-az - \frac{(\theta_r - \theta_m)^2 + \theta_\phi^2}{U_\phi^2} - \frac{r^2}{R_1^2} \right]$$

Fig. 1 Model geometry.

where

$$R_0^2 = sz^3 \overline{\theta^2} \left[\frac{1 + 2V + 6I + 3IV}{3(2 + V)} \right]$$

$$U_r^2 = sz^{\overline{\theta^2}} (2 + V)$$

$$U_{\phi^2} = sz^{3\overline{\theta^2}} \left[\frac{1 + 2V + 6I + 3IV}{2 + 3(I + V)} \right]$$

$$R_1^2 = sz^{3\overline{\theta^2}} \left[\frac{2 + 3(I + V)}{3} \right]$$
(8)

with

$$\theta_{m} = \left[\frac{3(1+V)}{2+3(I+V)}\right] \left(\frac{r}{z}\right)$$

$$r_{m} = \left[\frac{1+V}{2+V}\right] z U_{r} \tag{9}$$

att

$$I = \frac{r_0^2}{sz^2\theta^2}; \qquad I' = \frac{\theta_0^2}{sz\theta^2}. \tag{10}$$

Some explanation of the interpretation of (7) is now warranted. First notice that if we had a receiver at point (r,x) and added equally the contributions coming from all angles, we could integrate over the variables θ_r , θ_{ϕ} and obtain the result¹

$$f(r) = \int f(\Phi, r) d\Omega = \frac{e^{-\alpha x}}{(\pi R_1^2)} \exp\left[\frac{-r^2}{R_1^2}\right]. \tag{11}$$

Thus the total energy has a distribution which is Gaussian in the x-plane, centered at r = 0, and is a result of scattering. The standard deviation of this spread is $(R_1^{-2}/2)^{1/2} = (sz^3 \delta^{-2}/6)[2 + 3(i + i')]^{-1/2}$. If in addition we could collect all the scattered radiation in the x-plane (a large collector) we would integrate over r and obtain

$$f = \int f(r) dr = e^{-\alpha z} \tag{12}$$

and identify this as an irretrievable loss which we see is due to absorption.

Note: If the ray is coming from the direction $\theta = (\theta_{P}\theta_{d})$, then the receiver is pointed in the $(-\theta) = (-\theta_{P}, -\theta_{\phi})$ direction. Hence there is only a sign difference between the two.

suppose we observe the source at the point (r, z) as a function of angle, Fig. 2.

Notice y_{ϕ} is the unit vector in the direction θ_{ϕ} , the angle out of the r-z-plane, and y_r is the unit vector representing the angular tilt up from the z-axis θ_r in a plane described by r, z. Thus for any r, the maximum always occurs in the r-z-plane ($\theta_{\phi} = 0$) at a tilt angle of θ_m . Alternatively, for a fixed tilt angle θ_r the maximum occurs when the receiver is off the axis a distance r_m . The net result of both interpretations is that the source appears to be located at the point z_0 , Fig. 1, where

$$z_0 = \frac{z}{3} \left(\frac{1 - 3l}{1 + V} \right). \tag{13}$$

Furthermore, the source will have an apparent extent (size) in diameter (twice the standard deviation) of

$$z^{3/2}(s\overline{\theta^2})^{1/2}\left\{\frac{2+3(l+V)}{3(1+V)}\left(1+\frac{V}{2}\right)\right\}^{1/2} \tag{14}$$

ot

$$2(3\tilde{\theta}^{2}z)^{1/2} \tag{15}$$

in radians (field of view). Consequently, any system should account for the spatial filtering that may occur when optical elements are used.

Finally we can identify

$$l = \frac{r_0^2}{22^3 \overline{\theta}^2} - \frac{r_0^2}{R_1^2} \tag{16}$$

as the ratio of the initial beam cross section to the cross section at (r,z) which should be much loss than one and

$$V = \frac{\theta_0^2}{sz\theta^2} \sim \frac{\theta_0^2}{U_z^2} \tag{17}$$

as the ratio of the initial beam spread to the beam spread at (r,z) which should also be much less than one. Thus we can set I = V = 0 when collimated beams are used.

Strictly speaking, the model used here is only valid for small angle forward scatter. This is true because in the derivation, the approximations $\sin\theta \sim \theta$ and $\cos\theta \sim 1$ are used. However, these approximations are only off by 10-20 percent at 30-40° and hence the model should degrade gracefully at larger angles. Some modification has to be made, however, to use this at large angles. This is due to the fact that the absorption and scattering paths are longer by the factor $z[\sec\theta - 1]$ at the angle θ . This can be easily accounted for by changing z to $z \sec\theta = \sqrt{z^2 + r^2}$ wherever z occurs. Then we will interpret (7) to be the transfer in intensity from the source to a sphere of radius z. With the latter interpretation in mind we will now show the justification of using this model and then point out the remaining verification needed.

Consider the geometry in Fig. 3. A collimated source emits radiation along the z-axis. The medium is characterized by the

Fig.2. Source as a function of angle.

Fig. 3. Geometry used by Duntley.

ratio α/a . Since $\alpha = s + a$, $s/a = (\alpha/a) - 1$. The unit of length is $N = \alpha z$ extinction lengths. Thus, N extinction lengths correspond by the relationship

$$N = \alpha z = \frac{\alpha}{a} dz = \left(\frac{\alpha}{a}\right) N_{\text{absorption}} \tag{18}$$

to $[N/(\alpha/a)]$ absorption lengths and since

$$N_{\text{scat}} = sz = [(s + a) - a]z = \alpha z - az = N \frac{[\alpha/a - 1]}{\alpha/a}$$
 (19)

to $[(\alpha/a)-1]/(\alpha/a)$ scattering lengths.

With this geometry and parameterization. Duntley [7] has made extensive measurements of the power collected as a function of N for various values of Ψ . Two representative samples are shown in Fig. 4. For this case, (11) integrates to

$$\int_{0}^{\Psi z} f(r) dr = e^{-\alpha z} \left[1 - \exp\left(\frac{-(\Psi z)^{2}}{R_{1}^{2}}\right) \right]$$

$$= \exp\left(\frac{-\alpha z}{\alpha/a}\right)$$

$$= \exp\left(\frac{N}{\alpha/a}\right)$$

$$\left[1 - \exp\left(\frac{-V}{\alpha/a}\right) - \frac{\Psi^{2}}{\alpha/a}\right]$$
(20)

As pointed out by Duntley and as observed in (12), for large values of Ψ we would expect the relationship

Fig. 4. Total power on spherical cap. (a) Alpha/4 = 2.49. (b) Alpha/4 = 4.

Fig. 5. Duntley measurements of anomalous model behavior. Alpha/ $A \approx 2.49$.

e Napsorption to hold. However, this is not happening even though the curve saturates for $\Psi > 60^{\circ}$. We can compensate with our model by recalling that the effective source broadens and shifts location as N increases. Duntley was able to observe and measure the former phenomenon although he was not able to explain it (see Fig. 5). In the actual measurements an integrating sphere was used in the collecting optics. This has a spatial response of $\cos \theta$. Consequently at large values of N one would expect to start to observe spatial filtering of the source. This is precisely what we see for N greater than 8. This was corrected for as follows. It was assumed that the difference between the e^{-N} absorption line and the $\Psi = 100^{\circ}$ curve was due to spatial filtering. Therefore, at every value of N this difference was added to each of the curves (on a log scale) and replotted. The model was then calibrated at the largest value of N and the smallest value of Ψ , where it should be most accurate, and $\overline{\theta^2}$ was calculated. The model was then plotted on the revised curves, Fig. 6. Although the agreement is not perfect, it is remarkably close. The validity of this calibration should be checked at some point by comparing the results of an integrating sphere with those of a hemispherical coverage lens (fisheye).

III. THE AIR/SEA INTERFACE

In this section a geometric optics model will be developed to determine the effect of surface irregularities on beam spreading, pointing and scintillation when traversing the boundary. To do so, we consider the following model of an

Fig. 6. Revised model curves. (a) $e^{-AZ} = e^{-(N/2.49)}$, (b) $e^{-AZ} = e^{-(N/4)}$,

Fig. 7. Model of an element of the surface.

element of the surface, Fig. 7. A ray of light, γ degrees of the normal, impinges upon the surface whose local slope is R degrees from the horizontal. By Snell's law

$$n' \sin (\gamma' + R) = n \sin (\gamma + R) \tag{21}$$

nnel

$$\gamma' = \sin^{-1} \left[\frac{n}{n'} \sin \left(\gamma + R \right) \right] - R \tag{22}$$

which is valid for both positive and negative slopes, γ and γ' are always taken with respect to the true vertical. If R is a random variable, the statistics of the slope must also be factored in. We do this in the following manner. Given a sample R from the set of possible slopes, γ' is well defined. That is, the probability of γ' conditioned upon γ and R is

$$p(\gamma'/R,\gamma) = \delta \left[\gamma' - \left(\sin^{-1} \left(\frac{n}{n'} \sin \left(\gamma + R \right) \right) - R \right) \right]. \tag{23}$$

We arrive at the angular distribution of γ' , given γ , by averaging over the variable R. Thus,

$$p(\gamma'/\gamma) = \int_{-\infty}^{\infty} dR p_R(R) p(\gamma'/\gamma_i R)$$

$$= \int_{-\infty}^{\infty} dR p_R(R)$$

$$= \delta \left[\gamma' - -\sin^{-1} \left(\frac{n}{n'} \sin (\gamma + R) \right) - R \right) \right]$$
 (24)

where $p_R(R)$ is the probability density of R.

Rigorously, this is merely the change of variables in the density $p_R(R)$ from R to γ' using

$$R = \tan^{-1} \left[\frac{\frac{n}{n'} \sin \gamma - \sin \gamma'}{\frac{n}{n'} \cos \gamma} \right] = R(\gamma', \gamma). \tag{25}$$

Thus

$$p(\gamma'/\gamma) = p_R[R(\gamma',\gamma)] \left| \frac{dR(\gamma',\gamma)}{d\gamma'} \right|$$

$$= p_R \left\{ \tan^{-1} \left[\frac{n}{n'} \sin \gamma - \sin \gamma' - \frac{n}{n'} \cos \gamma' - \frac{n}{n'} \cos \gamma' \right] \right\}$$

$$\frac{\frac{n}{n'}\cos{(\gamma-\gamma')}-1}{1+\left(\frac{n}{n'}\right)^2-2\frac{n}{n'}\cos{(\gamma-\gamma')}}$$
 (26)

Knowing $p(\gamma'/\gamma)$ we can compute the average spreading and offset of a ray incident at the angle γ . This becomes

average offset
$$= \int \gamma' p(\gamma'/\gamma) d\gamma' = \bar{\gamma}^{\gamma}$$

$$= \int \left\{ \sin^{-1} \left[\frac{n}{n!} \sin(\gamma + R) \right] - R \right\} p_R(R) dR$$

$$= \int \sin^{-1} \left[\frac{n}{n!} \sin(\gamma + R) \right] p_R(R) dR - \bar{R}.$$
(27)

Defining y as

$$\overline{\gamma^{2}} = \int \gamma'^{2} p(\gamma'/\gamma) \, d\gamma'$$

$$= \int \left[\sin^{-1} \left[\frac{n}{n'} \sin(\gamma + R) \right] - R \right]^{2} p_{R}(R) \, dR \quad (28)$$

the rms spread becomes

$$\Delta = (\overline{\gamma}^{12} - \overline{\gamma}^{12})^{1/2}, \tag{29}$$

There are some practical limitations to these results which require modification, Fig. 8.

A ray of light with zenith angle γ will never intercept a wave whose slope is greater than $\pi/2 - \gamma$ because of wave obscuration. However, the ray will still penetrate the interface with probability one. Consequently, the limits of integration for R are set at $|-\pi/2, \pi/2 - \gamma|$ and the density $p_R(R)$ should be modified to that of

$$\frac{p_R(R)}{\int_{-\pi/2}^{\pi/2-\gamma} p_R(R) dR} = \begin{bmatrix} \widehat{p}_R(R), & -\pi/2 \le R \le \pi/2 - \gamma \\ 0, & \text{elsewhere.} \end{bmatrix}$$
(30)

The results in (26)-(29) would then be modified by replacing $p_R^*(R)$ with $p_R(R)$. In general, the results presented can be simplified by only considering those values of $(\gamma + R) < 45^\circ$. This corresponds to the major operational requirements and

Fig. 8. Modifications of model.

gives good engineering insight into the behavior of a ray going through the air/sea interface. For this case

$$p(\gamma'/\gamma) = p_R \left[\frac{\frac{n}{n'}\gamma - \gamma'}{1 - \frac{n}{n'}} \right] \left| \frac{1}{1 - \frac{n}{n'}} \right|$$

$$\tilde{\gamma}' = \frac{n}{n'} \gamma + \left(1 - \frac{n}{n'} \right) \tilde{R}$$

$$\Delta^2 \approx \left| 1 - \frac{n}{n'} \right|^2 \text{var} \{R\}. \tag{31}$$

Notice that $|1-n/n'||^2 \le 1$ for the air/sea interface (index of water = 1.33, index of air = 1) and consequently the ray spreading is appreciably less than the slope spreading of the ocean. In addition the surface adds the contribution $(1-n/n')\Re$ to the normal bending due to Snell's law.

in all cases, the model used represents an optical beam of zero cross section and zero divergence. The exiting beam also has zero cross section and zero divergence but is being steered by the roughness of the surface. If this surface is the ocean, $p(\gamma'/\gamma)$ represents the average time history of the beam direction γ' , with $p(\gamma'/\gamma k/\gamma')$ the probability that it is pointing within a dy' interval of the y' direction at any instant in time. This apparent beam wender would cause severe scintillation in an operating system. As the cross section of the beam increases the refracting surface can no longer be considered locally flat and different portions of the beam are refracted at different angles. Consequently, it would be possible to average out the beam wander in the direction of the mean γ' by spreading the beam over a larger portion of the surface. If the area of the beam is A, and the correlation length of the surface statistics is L. then there are approximately $A/(\pi(L/2))^2$ identically distributed independent paths similar to diversity paths. If we further assume a depth 2 such that the beam cross section is greater than A.

$$\frac{sz^3\tilde{\theta}^2}{3} > 4, \tag{32}$$

then all of the paths will overlap at the receiver. This can be analyzed in the following manner. First we notice that the probability of having the beam within an rms deviation about the mean is

$$\int_{\widetilde{\gamma}' + \Delta}^{\widetilde{\gamma}' + \Delta} p(\gamma'/\gamma) \, d\gamma' \tag{33}$$

which for the Gaussian density becomes 0.68. Thus, even if we had no time variations the beam would only be within a deviation of the mean 68 percent of the time. Now suppose we pick N independent, identically distributed, paths to the receiver and transmitted (1/N)th of the power p_i in each path. Since the paths are identically distributed, the average direction of the sum is still $\bar{\gamma}'$. Now, however, the variance of the sum becomes Δ^2/N , or a standard deviation for the sum of Δ/\sqrt{N} about the mean $\bar{\gamma}'$. If, for example, we set N=25, and assume the central limit is approximately valid, the probability that the beam is within $\pm \Delta$ is now 0.999994. Since the correlation length is approximately the separation between independent spatial Nyquist samples we see that

$$\Lambda' \sim \frac{A}{\pi \left(\frac{L}{2}\right)^2} \tag{34}$$

and can be used accordingly. Furthermore, it can be shown that the scintillation will reduce the average signal-to-noise ratio by the factor

$$\frac{1}{1 + \Delta^2/N} \tag{35}$$

A verification of these results and the relationship in (32) would be warranted.

Finally, we can interpret the function $p(\gamma'/\gamma)$ as a beam spreading factor. Thus, if we have a propagating beam of the form $f(\theta,r)$ in (7), or $f(\gamma,r)$ then the output beam after traversing the surface will be

$$f(\gamma',r) = \int d\gamma p(\gamma'/\gamma) f(\gamma,r) \tag{36}$$

or an average over all input ray directions weighted by the relative intensity. Notice, that we have not restricted the results to which medium corresponds to air and which to water. When going from air to water set n=1, n'=1.33 and when going from water to air set n=1.33 and n'=1. Then the computation of the beam moments after traversing the surface yields

$$\overrightarrow{\gamma'} = \frac{\int \gamma' f(\gamma', r) d\gamma'}{\int f(\gamma', r) d\gamma'}$$

$$\operatorname{var} \left[\gamma'\right] = \frac{\int (\gamma' - \overrightarrow{\gamma'})^2 f(\gamma', r) d\gamma'}{\int f(\gamma', r) d\gamma'} \tag{37}$$

The results derived in this section were performed for a

one-dimensional surface. To extend them to a two-dimensional surface is straightforward if we restrict ourselves to Cartesian coordinates. The variable R would then become the pair R = (x,y) and the one-dimensional results would carry over to each of the orthogonal coordinates. The interpretation would then be one of projecting the true slope distribution onto the Cartesian coordinate system. Although simple in theory the actual computations are difficult. If we use the linearization implicit in (31), this problem is greatly simplified. For this reason we will restrict our analysis to this assumption. To make the calculations for large zenith angles a more rigorous assessment of the surface geometry must be performed [8].

IV. SATELLITE-TO-SUBMERGED PLATFORM

The computation of satellite-to-submerged platform power budget is aided by a brief discussion of the geometry. It is assumed, for a variety of reasons, that we will project a spot on the ocean approximately one mile in diameter. Thus, if we transmit P_t watts of radiation, from the zenith the full angle of the beam will be approximately (1/22 000) rad \approx 50 μ rad \approx 10 s. The power density, intensity, at the surface will be approximately

$$\frac{P_t}{\pi (830)^2} = 4.62 \times 10^{-7} P_t w/M^2. \tag{38}$$

If the surface is illuminated at an angle γ from the zenith then the power density will be

$$\frac{P_t \cos \gamma}{\pi (830)^2} = 4.62 \times 10^{-7} P_t \cos \gamma \, \text{w/M}^2. \tag{39}$$

Now, however, the circular spot has elongated into an ellipse with minor axis 830M and major axis (830/cos γ)M. We wifi use the symmetry along the major axis of the ellipse to pick a convenient coordinate system. We will call this the x-axis. The minor axis will define the y-axis of the coordinate system and the depth of the ocean will constitute the z-axis, Fig. 9.

In practice, the spot will have a nonuniform illumination. We will account for this by defining a normalized intensity $I(x_{0},y_{0})$ which is then multiplied by the factor in (38).² Notice that the angle γ is always measured between the x,y plan: and x line in the x,y plane. This will allow us to use the second form in (7). At any location (x_{0},y_{0}) in the x,y plane an elementary surface element x_{0},y_{0} contributes an amount $I(x_{0},y_{0})dx_{0}dy_{0}$. A ray with this intensity passing through the air/sea interface yields the value

$$f(\gamma')(x - x_0), (y - y_0)) = I(x_0, y_0) dx_0 dy_0 p(\gamma'/\gamma)$$
 (40)

as the intensity on the water side of the boundary. At this point we will consider a functional form for $p(\gamma'|\gamma)$ to aid in the computation. From experimental results [10] it can be assumed that $p(\gamma'|\gamma)$ is Gaussian. Furthermore, if we keep to the angles such that (31) is valid, then³

¹ To be correct, the transmission coefficient at the boundary should also be included as a function of angle [9].

³ To use correlated Gaussian variables would only be the refinement of an approximation.

Fig. 9. Axes of coordinate system.

$$\exp \left[-\frac{\left[\gamma' - \left\{\frac{n}{n'}\gamma + \left(1 - \frac{n}{n'}\right)\overline{R}\right\}\right]^2}{2\left[1 - \frac{n}{n'}\right]^2 \operatorname{var}\left\{R\right]}$$

$$2\pi \left[1 - \frac{n}{n'}\right]^2 \operatorname{var}\left\{R\right\}$$
(41)

For this approximation

$$f(\gamma'; (x - x_0), (y - y_0)) = \frac{I(x_0, y_0) dx_0 dy_0}{2\pi \left[\left| 1 - \frac{n}{n'} \right|^2 (\text{var} \{R\}) \right]} + \exp \left[\frac{\left[\gamma' - \left[\frac{n}{n'} \gamma + \left(1 - \frac{n}{n'} \right) \overline{R} \right] \right]^2}{2 \left[1 - \frac{n}{n'} \right]^2 \text{var} \{R\}} \right]$$
(42)

Inserting this into (7), and using the off-axis correction to the intensity we find at a point below the surface that the contribution from the intensity $I(x_0, v_0)$ in an area $dx_0 dy_0$ at the point $(x_0, v_0, 0)$ to the intensity at (x_0, v_0, z) is

$$\Delta I(x, y, z; \gamma'_{x}\gamma_{y}') = \frac{I(x_{0}, y_{0})dx_{0}dy_{0}}{(\pi U_{\phi}'R_{1}')^{2}} \exp \left\{ a \left[z^{2} + (x_{0} - x)^{2} + (y_{0} - y)^{2} \right]^{1/2} + \left[\frac{\xi_{x}^{2} + \xi_{y}^{2}}{R_{1}'^{2}} \right] + \frac{1}{U_{\phi}'^{2}} \right. \\
\left. + \left[(\gamma_{x}' - \overline{\gamma}_{x})^{2} + (\gamma_{y}' - \overline{\gamma}_{y})^{2} + \theta_{m}'^{2} + \frac{1}{U_{\phi}'^{2}} \right] \\
- 2\theta_{m}' \left\{ \frac{\epsilon_{x} + x_{0} - x + (\gamma_{x}' - \overline{\gamma}_{x})}{\sqrt{(x_{0} - x)^{2} + (y_{0} - y)^{2}}} + \frac{\epsilon_{y} + y_{0} - y + (\gamma_{y}' - \overline{\gamma}_{y})}{\sqrt{(x_{0} - x)^{2} + (y_{0} - y)^{2}}} \right] \right\}$$

where

$$\theta_{m'} = \frac{3(1+V')}{2+3(l'+1'')} \left[\frac{\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}}{\sqrt{z^{2}+(v_{0}-x)^{2}+(v_{0}-y)^{2}}} \right]$$

$$R_{1}'^{2} = s[z^{2}+(x_{0}-x)^{2}+(v_{0}-y)^{2}]^{3/2}\overline{\theta^{2}}$$

$$\cdot \left[\frac{2+3(l'+V')}{3} \right]$$

$$U_{\phi}'^{2} = s[z^{2}+(x_{0}-x)^{2}+(v_{0}-y)^{2}]^{1/2}\overline{\theta^{2}}$$

$$\left[1+2V'+6l'+3l'1'' \right]$$

 $\cdot \left[\frac{1 + 2V' + 6I' + 3I'1''}{2 + 3(I' + 1'')} \right]$ (44)

$$\frac{\left(1 - \frac{n}{n'}\right)^2 \text{var}\left\{R\right\}}{s\overline{\theta^2} \left[z^2 + (x_0 - x)^2 + (y_0 - y)^2\right]^{1/2}}$$

$$I' = \frac{\Delta v_0 \Delta v_0}{50^{2} [z^2 + (x_0 - x)^2 + (v_0 - y)^2]^{\frac{3}{2}/2}} \approx 0$$

$$\bar{\gamma}_x = \frac{n}{n'}\gamma + \left(1 - \frac{n}{n'}\right)\bar{R}_x$$

$$\bar{\gamma}_y = \left(1 - \frac{n}{n'}\right)\bar{R}_y$$
(45)

$$\xi_x = \left\{ -\tilde{\gamma}_x + \sin^{-1} \frac{(x_0 - x)}{\sqrt{z^2 + (x_0 - x)^2}} \right\} (z^2 + (x_0 - x)^2)^{1/2}$$

$$\xi_y = \left\{ -\frac{7}{7}y + \sin^{-1} \frac{(v_0 - y)}{\sqrt{z^2 + (v_0 - y)^2}} \right\} (z^2 + (x_0 - x))^{1/2}$$

$$\epsilon_{\rm x} = {\rm sgn}\,\xi_{\rm x}$$
: $\epsilon_{\rm y} = {\rm sgn}\,\xi_{\rm y}$. (46)

In (43) we have introduced the new variables γ_x and γ_y . The former is the angle measured in the x-z plane while the latter is the angle perpendicular to the x-z plane. This set of variables results from a rotation of coordinates of the variables θ_r and

 θ_{ϕ} by the transformation

$$\theta_{\phi} = \frac{(v_0 - y)}{\sqrt{(v_0 - y)^2 + (x_0 - x)^2}} \gamma_{x'}$$

$$+ \frac{(v_0 - x)}{\sqrt{(v_0 - y)^2 + (x_0 - x)^2}} \gamma_{y'}$$

$$\theta_{\tau} = \frac{(x_0 - x)}{\sqrt{(v_0 - y)^2 + (x_0 - x)^2}} \gamma_{x'}$$

$$- \frac{(v_0 - y)}{\sqrt{(v_0 - y)^2 + (x_0 - x)^2}} \gamma_{y'}$$
(47)

and represents the viewing angle at the receiver.

The necessity for this rotation arises from the fact that θ_r lies in the plane described by the points $(x_0,y_0),(x,y)$ and the refracted angle. Consequently, it is necessary to project the angular contributions onto a common set of coordinates before integration. Since the transformation is unitary, the variables $\gamma_{x'}$ and $\gamma_{y'}$ are still normalized to one. Finally, we see that

$$I(x,y,z;\gamma_x',\gamma_y') = \iint_0^\infty \Delta I(x,y,z) \, dx_0 \, dy_0. \tag{48}$$

It is evident that even with the simplifying assumptions used, the model is complicated. Therefore, in terms of an experiment, it is important to pick a geometry such that we can make further simplifying assumptions. For example, an experiment using the sun at zenith would have $\gamma = 0$, $I(x_0, y_0) = \text{constant}$, x = y = 0. We could also pick a calm day so that we can assume $R_x = R_y = V' = 0$. If in addition we collect over a sphere with a fisheye lens, we have

$$\frac{I(0,0,z)}{I(x_0,y_0,z)} = \iint_{-\pi R_1/2} \frac{1}{\pi R_1/2} \exp\left[-\left[a[z^2 + x_0^2 + y_0^2]^{1/2} + \frac{(\xi_x^2 + \xi_y^2)}{R_1/2}\right]_{x=y=\tilde{\gamma}_x=\tilde{\gamma}_y=0}\right] dx_0 dy_0$$

$$R_1/2 = (2/3)s\theta^2 [z^2 + x_0^2 + y_0^2]^{3/2}.$$
(49)

Setting $x_0 = r_0 \cos \rho$, $y_0 = r_0 \sin \rho$ and assuming

$$\sin^{-1} \frac{x_0}{\sqrt{z^2 + x_0^2}} \approx \frac{x_0}{\sqrt{z^2 + x_0^2}}$$

and

$$\sin^{-1} \frac{y_0}{\sqrt{z^2 + y_0^2}} = \frac{y_0}{\sqrt{z^2 + y_0^2}}$$

we have

$$\frac{I(0,0,z)}{I(x_0,y_0)} = 2 \int_0^{\infty} \frac{\exp\left[-\left\{a[z^2 + r_0^2]^{1/2} + \frac{r_0^2}{(2/3)s\theta^3[z^2 + r_0^2]^{3/2}}\right\}}{(2/3)s\theta^3[z^2 + r_0^2]^{3/2}} r_0 dr_0.$$
 (50)

(Notice that for z = 0 the approximation 1' = 0 does not hold.)

The power collected at depth z will be merely AI(0,0,z) where A is the size of the collecting aperture. Consequently, a measurement of $I(0,0,z)/I(x_0,y_0)$ over many extinction lengths would indicate the validity of extrapolating the model to great depths.

We have now presented three separate methods for computing the power loss to a depth z when the source is at the zenith and no other effects are considered. By order of expected accuracy they are (49), (50), and (7) when the beam radius ro is considered large. In Fig. 10 we plot (50) as a function of the upper limit of integration. Notice that in all cases convergence occurs when the radius is approximately z/2 for $\bar{\theta}^{2} = 0.01$. As θ^2 increases from 0.01-0.11 the effective surface area increases and the total contribution decreases. A calculation of (49) was also made and the result was within a few percent of that calculated by (50) for $\theta^2 = 0.01$. Finally, when we use (7) with r_0 large, it can be easily shown that $I(0,0,z)/I(x_0,y_0)$ is merely emax. This is plotted together with the previous results in Fig. 11 as a function of z. At 300M and $\overline{\theta^2} = 0.01$ the difference was only 3 dB. This result implies that the diffuse reflection coefficient [6] when measured at the zenith is approximately the absorption coefficient.

in a practical system, one will encounter background noise arising from the sky and the sun. When this occurs, the use of u 4n steradian collector will admit an unacceptable amount of noise into the detector circuitry. For these cases it can be shown that to optimize the received signal-to-noise ratio a spatially matched filter should be used. Simply stated, the matched filter will take two forms depending upon whether we have blue sky or the sun (or both). To eliminate a source such as the sun the filter reduces to an obscuration covering the field of view subtended by the sun to the receiver. For an extended source, the filter takes on the angular distribution subtended by the source to the receiver. In practice this reduces to an obscuration which only passes that portion of the field in which the major portion of the source subtends. Mathematically, we would integrate (48) over the variables γ_{x}' and γ_{y}' with the integration boundary determined by the receiver field of view. Then (43) can be rewritten as

$$\Delta I(x, y, z; \gamma_x', \gamma_y') = \frac{I(x_0, y_0) dx_0 dy_0}{(\pi U_0' R_1')^2} \exp -\left\{a[z^2 + (x - x_0)^2 + (y - y_0)^2]^{1/2} + \left[\frac{\xi_x^2 + \xi_y^2}{R_1'^2}\right] + \frac{1}{U_0'^2} + \left[\left(\gamma_x' - \overline{\gamma}_x - \frac{\epsilon_x + x_0 - x + \theta_{m'}}{\sqrt{(x_0 - x)^2 + (y_0 - y)^2}}\right)^2 + \left(\gamma_y' - \overline{\gamma}_y - \frac{\epsilon_y + y_0 - y + \theta_{m'}}{\sqrt{(x_0 - x)^2 + (y_0 - y)^2}}\right)^2\right\}. (51)$$

If we assume that the receiver will be pointing at the refracted angle $(n/n')\gamma$ we can perform the integration over a finite field of view between say $(n/n')\gamma - \Delta$ and $(n/n')\gamma + \Delta$. If we perform the integration over a cone, we find that some difficulty would arise in trying to obtain a closed form solution. However, by reterring to Fig. 12 we see that upper and lower bounds can easily be obtained in closed form. The resultant received power over the finite field of view Ω can be obtained using combinations of the function

$$\begin{split} I(x,v,z,\Omega) &= \iint_{x_0,y_0} \frac{I_0(x_0,v_0) \, dx_0 \, dv_0}{\pi R_1^{\frac{1}{2}2}} \left[\exp\left[-\left\{a[z^2 + (x-x_0)^2 + (v-y_0)^2]^{\frac{1}{2}}\right\} - \left(\frac{\xi_x^2 + \xi_y^2}{R_1^{\frac{1}{2}2}}\right) \right] G \end{split}$$

where

$$G = \left\{ \frac{1}{2} \operatorname{erf} \left[\Delta \cdot \left(\frac{1}{n'} \right) \hat{R}_{\lambda} - \frac{e_{x} + x_{0} - x + \theta_{m'}}{\sqrt{(x - x_{0})^{2} + (y - y_{0})^{2}}} \right] \frac{1}{U_{\phi'}} \right\}$$

$$= \frac{1}{2} \operatorname{erf} \left\{ \left[-\Delta \cdot \left(1 - \frac{n}{n'} \right) \tilde{R}_{\lambda} - \frac{e_{x} + x_{0} - x + \theta_{m'}}{\sqrt{(x - x_{0})^{2} + (y - y_{0})^{2}}} \right] \frac{1}{U_{\phi'}} \right\}$$

$$= \frac{1}{2} \operatorname{erf} \left\{ \left[\Delta - \left(1 - \frac{n}{n'} \right) \hat{R}_{\lambda} - \frac{e_{y} + y_{0} - y + \theta_{m'}}{\sqrt{(x - x_{0})^{2} + (y - y_{0})^{2}}} \right] \frac{1}{U_{\phi'}} \right\}$$

$$= \frac{1}{2} \operatorname{erf} \left\{ \left[-\Delta \cdot \left(1 - \frac{n}{n'} \right) \hat{R}_{\lambda} - \frac{e_{y} + y_{0} - y + \theta_{m'}}{n'} \right] \frac{1}{U_{\phi'}} \right\}$$

$$= \frac{1}{2} \operatorname{erf} \left\{ \left[-\Delta \cdot \left(1 - \frac{n}{n'} \right) \hat{R}_{\lambda} - \frac{e_{y} + y_{0} - y + \theta_{m'}}{n'} \right] \frac{1}{U_{\phi'}} \right\}$$

$$= \frac{1}{2} \operatorname{erf} \left\{ \left[-\Delta \cdot \left(1 - \frac{n}{n'} \right) \hat{R}_{\lambda} - \frac{e_{y} + y_{0} - y + \theta_{m'}}{n'} \right] \frac{1}{U_{\phi'}} \right\}$$

$$= \frac{1}{2} \operatorname{erf} \left\{ \left[-\Delta \cdot \left(1 - \frac{n}{n'} \right) \hat{R}_{\lambda} - \frac{e_{y} + y_{0} - y + \theta_{m'}}{n'} \right] \frac{1}{U_{\phi'}} \right\}$$

$$= \frac{1}{2} \operatorname{erf} \left\{ \left[-\Delta \cdot \left(1 - \frac{n}{n'} \right) \hat{R}_{\lambda} - \frac{e_{y} + y_{0} - y + \theta_{m'}}{n'} \right] \frac{1}{U_{\phi'}} \right\}$$

$$= \frac{1}{2} \operatorname{erf} \left\{ \left[-\Delta \cdot \left(1 - \frac{n}{n'} \right) \hat{R}_{\lambda} - \frac{e_{y} + y_{0} - y + \theta_{m'}}{n'} \right] \frac{1}{U_{\phi'}} \right\}$$

$$= \frac{1}{2} \operatorname{erf} \left\{ \left[-\Delta \cdot \left(1 - \frac{n}{n'} \right) \hat{R}_{\lambda} - \frac{e_{y} + y_{0} - y + \theta_{m'}}{n'} \right] \frac{1}{U_{\phi'}} \right\}$$

$$= \frac{1}{2} \operatorname{erf} \left\{ \left[-\Delta \cdot \left(1 - \frac{n}{n'} \right) \hat{R}_{\lambda} - \frac{e_{y} + y_{0} - y + \theta_{m'}}{n'} \right] \frac{1}{U_{\phi'}} \right\}$$

For small fields of view, G can be replaced by

$$G = \frac{\Omega}{\pi U_{\phi}^{-1/2}} \exp \left[-\frac{1}{U_{\phi}^{-1/2}} \left\{ \left(-\frac{n}{n'} \right) \hat{R}_{\lambda} - \frac{e_{\lambda} + x_{0} - x + \theta_{m'}}{\sqrt{(x_{0} - x)^{2} + (y_{0} - y)^{2}}} \right)^{2} + \left(-\left(-\frac{n}{n'} \right) \hat{R}_{\lambda} - \frac{e_{\lambda} + y_{0} - y + \theta_{m'}}{\sqrt{(x_{0} - x)^{2} + (y_{0} - y)^{2}}} \right)^{2} \right\}, \qquad \Omega \leq U_{\phi}^{-1/2}.$$
(54)

On a final note, it is possible to obtain an estimate of the pulse spreading by referring to Fig. 13, for the zenith geometry. If the primary contributions come from the disc with diameter z, then the maximum path difference is

$$\mu = \frac{z}{2} (\sec \theta - 1), \qquad \sec \theta = 1.115$$

and the maximum time difference is

$$\Delta t = \frac{n'}{c}\rho + \frac{1.33z}{2c} [0.115] \approx 3 \times 10^{-1.0} z. \tag{55}$$

At z = 300M, $\Delta T = 90$ ns. If the primary contributions come from twice the disk diameter, $\Delta T = 324$ ns.

Heggestad has computed the impulse response of the medium from which he evaluates the delay spread as the 1/e point. This value takes the form

$$\Delta t = \frac{1}{\alpha \epsilon^{i}} \left[1 + 2 \left(\frac{s}{\alpha} - \sqrt{\frac{s}{\alpha}} \right) \alpha z + 2 \sqrt{(\alpha z)^{2} \left(\sqrt{\frac{s}{\alpha}} - 1 \right)^{2} + \alpha z \left(2 \frac{s}{\alpha} - \sqrt{\frac{s}{\alpha}} \right)} \right].$$
(56)

For z = 300M, this yields 193 ns.

V. SUBSURFACE-TO-SATELLITE BUDGETS

The part of the system most difficult to model has been the subsurface-to-satellite uplink. This difficulty can best be understood by showing why the two are not reciprocal. On the downlink a one mile spot projected from 22 000 miles represents an antenna gain of

1

On the uplink, however, if we go through one scattering length of water the beam solid angle will be approximately θ^T or an antenna gain of 4π θ^T . Since $\theta^T \sim 10^{-2} - 10^{-1}$ the gain is only 21-31 dB. The gain then goes down as $-10 \log N_{\rm scatt}$ in scattering lengths. Because of the paucity in gain it would be necessary to operate the system closer to the surface on the uplink than for the downlink, if the scattered radiation as described by the Heggestad-Arnush approximation is used exclusively.

For this portion of the link it is necessary to investigate the radiation in greater detail. To do so it is helpful to use the normalized version of the mutual coherence function (MCF) [11]-[13] (spatial covariance function). For the scattering function described in (3) this becomes

$$\gamma(\rho) = \exp\left[\frac{\pi^2 r_0^2 \rho^2}{Z^2 \lambda^2} + sZ\left\{\frac{1}{\sqrt{1 + (k_0 \rho)^2 \theta^2}} - 1\right\}\right], \qquad k_0 = \frac{2\pi}{\lambda}. \quad (57)$$

Notice that at $\rho = 0$ this is normalized to unity, and we assumed a Gaussian source with an aperture equal to πr_0^2 focused at infinity. In normal system design we are commonly interested in the beamwidth of the antenna defined at the 3

Fig. 10. Equation (50) plotted as a function of the upper limit of integration. (a) Z = 100 m. (b) Z = 200 m.

dB points. Since MCF is the transform of the angular distribution of the source as seen by the receiver, we can equivalently define a "coherence length" ρ_r as a comparable measure of antenna collimation. Thus, the greater the coherence length, the closer the source appears to approximate an impulse in angle (point source). By setting the MCF equal to $e^{-0.693}$ (-3 dB) and solving for ρ_r , we can investigate the behavior of the radiation as it traverses the scattering medium. The expression for ρ_r becomes

$$\rho_{\bullet} = 0.693 \left(\frac{\lambda Z}{\pi r_0}\right), \qquad Z < \frac{0.693}{s}$$

$$\rho_{\bullet} = \lambda \frac{\left[\{1.386(sZ) - 0.48\}/\bar{\theta}^{\frac{3}{2}}\}^{1/2}}{2\pi[sZ - 0.693]}, \qquad Z > \frac{0.693}{s}$$
(58)

which is shown in Fig. 14 as a function of Z for an initial divergence of 10^{-3} rad, and for the water properties defined by s = 0.06, a = 0.04, and $\overline{6^2} = 0.01$. Notice that for a distance Z = 0.693/s the beam propagates as it would in vacuum, and the correlation length increases as the beam diverges. However, the scattering mechanisms abruptly take hold at this distance and the coherence length decreases dramatically in a very short

distance, and rapidly approaches the value

$$\rho_{\rm r} \approx 0.19\lambda \left(\frac{1}{s\theta^{\frac{1}{2}z}}\right)^{1/2} \tag{59}$$

defining the Heggestad-Arnush approximation. Since this behavior is dependent upon the scattering properties of the water, it is instructive to define the albedo $\{2\}$ ω as the ratio s/(s+a) and the extinction length as $N=\alpha Z=(a+s)Z$ and replot Fig. 14 for various water parameters in Fig. 15. Thus, we see that we rapidly lose the gain (or imaging capability) of the medium as we traverse a few scattering lengths, which can vary in terms of the extinction length. This, however, is not the whole story.

If we observe the MCF, (57), for large values of ρ , we observe the asymptotic value of e^{-aZ} . From Fourier transform theory we know that this corresponds to a point source which relates to the unscattered portion of the beam. And, while the power associated with this portion of the beam is significantly less than that associated with the scattered radiation (lower by e^{-aZ}), it nevertheless retains the full gain of the original source. Consequently, it can be shown that for the uplink geometry a receiver located out of the scattering media at a

Fig. 11. Equation (7) plotted with r_0 large.

Fig. 12. Integration upper and lower bonds in closed form.

Fig. 13. Zenith geometry for estimating pulse spreading.

Fig. 14. Coherence length us a function of propagation path.

great distance from the source will always collect more power from this unscattered component that from the scattered component [12]. It is therefore possible to consider the uplink radiation as composed of two additive Gaussian terms. The first, retaining all the geometric properties of the radiated source, but attenuated by the factor $e^{-(a+s)Z}$, and the second consisting of the scattered portion of the radiation as considered for the downlink. Either of these terms may be used to develop a system, but the resulting systems will have vasily differing operating scenarios due to the difference in coverage and pointing requirements. Consequently, we will consider the general problem of a Gaussian beam propagating up through the air/sea interface and determine the effects.

We will first make the computations outlined in (36) for the Heggestad-Arnush approximation and then show how the unscattered result follows.

To compute the surface irradiance profile upon passing through the interface on the uplink it is only necessary to insert (7) into (36). This yields

$$f(\gamma'x) = \int d\gamma P(\gamma'/\gamma) f(\gamma x) \tag{60}$$

[we assume a collimated, zero cross section illuminating source (I = V = 0)]. Finally, to determine the angular distribution of the beam (Υ', r) is integrated over the surface to yield

$$f(\gamma') = \int f(\gamma'x) dr = \int f(\gamma x) p(\gamma'/\gamma) d\gamma dr.$$
 (61)

Fig. 15. Coherence length as a function of extinction lengths for various values of the albedo and θ^{2} .

Fig. 16. Coordinate system of Fig. 9 turned upside down.

To perform the integration in (60), several factors must be taken into account. First recall that we have defined the medium containing the source to have the index n, and senith angle γ . Thus, if we want a more figurative description we should turn the coordinate system in Fig. 9 upside down to yield Fig. 16.

Next recall that we projected the true slope statistics of the surface onto the x and y coordinates. However, the scattered beam has circular symmetry with regard to the angular divergence. Consequently, it is again necessary to rotate the axis of the angular coordinates by the transformation in (47), which will allow us to perform the integration in (60) in Cartesian coordinates. Taking the latter remarks into account and again

assuming Gaussian slope statistics yields the function $f(\mathbf{Y}, \mathbf{r})$ with

$$I(\mathbf{Y}'x) = p_1 \int_{-\pi}^{\pi} \frac{d\theta_N d\theta_N}{|\pi U_{\theta'}'R_1'|^2} \left[2\pi \left[1 - \frac{n}{n'} \right]^2 \operatorname{var} \{R\} \right]$$

$$+ \exp\left[-\left\{ a\sqrt{x^2 + N^2 + N^2 + \frac{2}{N^2 + \frac{2}{N^2}}} \right\}^2 + \frac{1}{U_{\phi'}^{-12}} \left[\left(\theta_N - \gamma_N - \frac{\epsilon_N + N + \theta_{m'}}{\sqrt{N^2 + N^2}} \right)^2 + \left(\theta_N - \frac{\epsilon_N + N + \theta_{m'}}{\sqrt{N^2 + N^2}} \right)^2 \right] + \frac{1}{2} \left[1 - \frac{n}{n'} \right]^2 \operatorname{var} \{R\}$$

$$+ \left[\left(\gamma_N' - \frac{n}{n'} \theta_N - \left(1 - \frac{n}{n'} \right) R_N \right)^2 + \left(\gamma_N' - \frac{n}{n'} \theta_N - \left(1 - \frac{n}{n'} \right) R_N \right)^2 \right]$$

$$+ \left(\gamma_N' - \frac{n}{n'} \theta_N - \left(1 - \frac{n}{n'} \right) R_N \right)^2 \right]$$

$$+ \left((62)$$

where we have assumed that the source is located at $(x_0 = 0)$. $y_0 = 0$, z) and the surface radiance profile is over $(x_0 y_0 z)$. Consequently, the angular distribution of the emerging beam is obtained by integrating $f(\mathbf{r}',r)$ over the variables (x,y), where γ_a and γ_b are now the angles projected by the source.

As the surface roughness goes to zero in (62), p(y, y) approaches the delta function $\delta(\gamma - (n, n', \gamma))$. For this case the integration can be performed over θ_{x} , θ_{y} to yield

$$f(\gamma',r) = \frac{p_{\ell}}{\left(\pi \frac{n}{n'} U_{0}' R_{1}'\right)^{2}} \exp\left\{a\sqrt{z^{2} + x^{2} + y^{2}} + \frac{\xi_{x}^{2} + \xi_{y}^{2}}{R_{1}'^{2}} + \frac{1}{\binom{n}{n'}} \frac{1}{2U_{0}^{2}} \left[\left(\gamma_{x}' + \frac{n}{n'} \dot{\gamma}_{x} - \frac{n}{n'} \frac{\epsilon_{x} + x + \theta_{m'}}{\sqrt{x^{2} + y^{2}}}\right)^{2} + \left(\gamma_{x}' - \frac{n}{n'} \frac{\epsilon_{y} + y + \theta_{m'}}{\sqrt{x^{2} + y^{2}}}\right)^{2}\right]\right\}$$
(63)

We can also perform the integration in (62) for the narrow beam case. For this case we can extend the integration from ∞ to ∞ yielding

$$f(\gamma',r) = \left\{ \frac{1}{U_{\phi'}\Sigma} \exp\left[\Delta + \frac{\Gamma}{\Sigma}\right] \right\} \frac{p_t}{\pi R_1'^2}$$
 plied by the normalized angular distribution
$$\exp\left[a\sqrt{z^2 + x^2 + y^2} + \frac{\xi_x^2 + \xi_y^2}{R_1'^2}\right] = (64) \qquad \pi \left(\frac{n}{n}, U_{\phi'}\right)^2 \exp\left(\frac{n}{n}, U_{\phi'}\right)^2$$

where

$$\frac{2}{2} = \frac{1}{U_{0}^{1/2}} + \frac{1}{2} \left[\frac{n}{n'} - 1 \right]^{2} \operatorname{var} \{R\}$$

$$\frac{2}{2} \left[\frac{n'}{n} - 1 \right]^{2} \left[\frac{n}{n} \cdot \gamma_{s} - \left(\frac{n}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{n'}{n} \gamma_{s} - \left(\frac{n}{n} - 1 \right) R_{s} \right]^{2} + \frac{1}{U_{0}^{1/2}} \left[\left\{ \frac{5}{5} \right\} \right] + \left[\frac{n'}{\sqrt{x^{2} + y^{2}}} \right]^{2} + \left[\frac{y\theta_{m'}}{\sqrt{x^{2} + y^{2}}} \right]^{2} + \left[\frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{(s_{s} + y + \theta_{m'})}{\sqrt{x^{2} + y^{2}}} + \frac{n'}{n} \gamma_{s} - \left(\frac{n'}{n} - 1 \right) R_{s} \right]^{2} + \left[\frac{n'}{n} - 1 \right]^{2} + \left[\frac{n'}{$$

For the case where the ocean roughness is absent (63) we see that the exiting beam is centered around the linearized Snell's angle, $(n/n')\gamma_{x}$, but somewhat steered toward the zenith. Physically, this is due to the fact that the scattered paths which lie closest to the zenith traverse a shorter distance and consequently are absorbed less which skews the beam.

We can integrate the contribution at an angle φ' over the entire surface as indicated in (61). This results in the function $f(\gamma')$ which is the angular power distribution. To compute an uplink budget one needs to integrate $f(\gamma')$ over the solid angle subtended by the collecting aperture. At a distance R large enough for the function $f(\gamma')$ to be constant over the collecting aperture, this solid angle is merely A R2 Consequently the collected power is

$$p_i = f(\mathbf{Y}') \cdot \frac{A}{R^2} \,, \tag{66}$$

An important case to notice is when the beam is exiting the water at the zenith and the surface is smooth. Then (63) integrated over the hemisphere yields the result in (49), multiplied by the normalized angular distribution

$$\pi \left(\frac{n}{n!} U_{\phi'}\right)^2 \exp \left(\frac{\gamma_{\chi}'^2 + \gamma_{\chi}'^2}{\left(\frac{n}{n!} U_{\phi'}\right)^2}\right). \tag{67}$$

If we look at the 3 dB contour, the beam half-angle is (n/n') \S

 $U_0 \sim 5.693$, and the effective gain is

$$G = \frac{2}{1 - \cos\left(\frac{n}{n'} U_{\phi}' \sqrt{0.693}\right)}.$$
 (68)

The link loss for this case becomes $(\gamma_x' = \gamma_y' = 0)L$, where

$$L = \frac{f(\gamma')|_{\gamma'=0}}{p_t} = \frac{A}{\pi \left(\frac{n}{n'}U_{\phi}\right)^2 (R^2)}$$

$$\int \int_{\infty}^{\infty} \frac{1}{\pi R_1'^2 \left(\frac{U_{\phi'}}{U_{\phi}}\right)^2} \exp\left[-\left\{a[z^2 + x^2 + y^2]^{\frac{1}{2}/2} + \frac{\xi_x^2 + \xi_y^2}{R_1'^2}\right|_{x_0 = \gamma_x = 0}\right\} dx dy.$$
(69)

To obtain the results for the unscattered beam we would use (6) in place of (7). This, however, merely requires the substitutions

$$S = 0$$

$$R_0'^2 \rightarrow r_0^2$$

$$U_r'^2 \rightarrow \theta_0^2$$

$$U_{\phi'}^3 \rightarrow \theta_0^2$$

$$R_1'^2 \rightarrow r_0^2 + \theta_0^2 z'^2$$

$$P_t' \rightarrow P_t e^{-z} z'$$
(70)

with $\theta_m = r_m = 0$. With these substitutions (62)-(64), (67)-(69) become (71)-(76), respectively,

$$f(\gamma', r) = P_{i} \int \frac{d\theta_{x} d\theta_{y}}{\{\pi z' \theta_{0}^{2}\}^{2} 2\pi \left[1 - \frac{n}{n'}\right]^{2} \text{var} \{R\}}$$

$$\cdot \exp \left[\alpha \sqrt{z^{2} + x^{2} + y^{2}} + \frac{\xi_{x}^{2} + \xi_{y}^{2}}{\theta_{0}^{2} (z^{2} + x^{2} + y^{2})} + \frac{1}{\theta_{0}^{2}} \left[(\theta_{x} - \overline{\gamma}_{x})^{2} + \theta_{y}^{2}\right] + \frac{1}{2} \left[1 - \frac{n}{n'}\right]^{2} \text{var} \{R\}$$

$$\cdot \left[\left(\gamma_{x'} - \frac{n}{n'} \theta_{x} - \left(1 - \frac{n}{n'}\right) R_{x}\right)^{2} + \left(\gamma_{y'} - \frac{n}{n'} \theta_{y} - \left(1 - \frac{n}{n'}\right) R_{y}\right)^{2}\right]\right\}$$

$$(71)$$

$$f(\gamma)^{A_{1}^{-2}} \frac{P_{t}}{\left(n \frac{n}{n}, z'\theta_{0}^{2}\right)^{2}} \exp \left\{\alpha \sqrt{z^{2} + x^{2}} + v^{2}\right\}$$

$$+ \frac{\xi_{x}^{2} + \xi_{y}^{2}}{\theta_{0}^{2} Z'^{2}} + \frac{1}{\left(\frac{n}{n'}\right)^{2} (\theta_{0}^{2})}$$

$$+ \left[\left(\gamma_{x'} - \frac{n}{n'} \overline{\gamma}_{x}\right)^{2} + \gamma_{y}^{2}\right]$$
(72)

$$f(\gamma' \wedge \pi \frac{1}{\theta_0^2 \Sigma} \exp{-\left[\Delta + \frac{\Gamma}{\Sigma}\right]} \frac{P_t}{\theta_0^2 Z'^2}$$

$$\cdot \exp{-\left[\alpha \sqrt{x^2 + y^2 + z^2} + \frac{\xi_x^2 + \xi_y^2}{\theta_0^2 Z'^2}\right]}$$
(73)

$$\frac{1}{\pi \left(\frac{r}{n}\right)^{\frac{1}{2}} (\theta_0^2)} \exp \frac{\gamma_{\kappa}^{2} + \gamma_{\gamma}^{2}}{\left(\frac{n}{n'}\right)^{\frac{n}{2}} (\theta_0^2)}$$
(74)

$$G' = \frac{2}{1 - \cos\left(\frac{n}{n'} \sqrt{\theta_0^2(0.693)}\right)}$$
 (75)

$$\frac{A}{\left(\frac{n}{n!}\right)^{2} \left(\theta_{0}^{2}\right)\left(R^{2}\right)} \int_{-\infty}^{\infty} \frac{dx \, dy}{\pi \theta_{0}^{2} g^{2}} dx$$

$$-\exp\left\{\alpha \sqrt{z^{2} + x^{2} + y^{2}} - \frac{z_{n}^{2} + \xi_{y}^{2}}{\theta_{0}^{2} Z^{2}}\right\}_{x = 0, y = 0, \overline{y}} = 0$$
(76)

We assume point out that for large zenith angles, the linearization used to derive these results is not valid, and a more detailed-makysis is required.

Comparing (68) and (75) and letting $\cos X = 1 - (X^2/2)$ we see that the ratio of the gain in the unscattered to scattered beam on wis is

$$\frac{\Lambda_s \overline{\theta^2}}{(\lambda u_0)^5} \tag{77}$$

where we have assumed that the beam is focused at infinity $(\theta_0 = N_D)$ and we are transmitting from N_a scattering lengths since the unscattered beam has e^{-N_a} times the power of the softered beam we see that the inequality

$$\frac{\Lambda_s \overline{\partial^2}_s \cdot \gamma_s}{(\lambda) r_s ^4} \le 1 \tag{78}$$

Marie Line

determine which portion dominates.

VI. DISCUSSION

In this paper we have developed models for use in evaluating the performance of the duplex subsurface-to-above surface optical communications systems. We will now briefly discuss the limitations of the models and the areas of applicability. We will also point out relevant areas of future work. The first aspect of the model is the estimate of underwater propagation. The Heggestad-Arnush model used appears to have all the attributes necessary for accurate predictions. Although the model has been calibrated to existing data, an independent ventications is warranted. The results of such an effort would determine whether or not turther refinement is necessary. The major implication of this propagation model is a clear distinction between the contribution of absorption and scattering to the extinction coefficient. Couched in system terminology, the model states that if the size of the beam on the surface is comparable or greater than the depth from which it is to be viewed, and if the field of view at the receiver can be made large, then the only loss is from absorption. Since the extinetion coefficient is usually two or more times greater than the absorption coefficient, so too would the depth prediction under these conditions from those normally expected using only the extinction coefficient. The field of view encountered is also seen to be proportional to the square root of the scattering coefficient and the depth.

The second aspect of the model relates to the effects of the surface. In order to obtain usable results, a linearization of Snell's law was employed which should be reasonably accurate for zenith angles out to 45%. The important result is that at sufficient depth the effects of a random surface would be negligible. The major concern should be blockage of light due to foam, etc. The basis of this conclusion stems from the prediction that the rins beam spreading will be proportional to 1.1 - (n/n'); times the rms slope distribution of the surface. This would imply that a maximum of five or so degrees is all that would ever be expected. The major impact would seem to be on the uplink where the beam steering would occur.

The most difficult part of this communication system appears to be the uplink. Because of the nonreciprocal nature of the duplex system the unscattered portion of the beam provides the greater potential for power transfer. The power in this portion of the beam is greatly diminished over the scattered term, yet retains its high directionality. The diminished power alone implies a depth reduction of a(a+s). The addition the spot size on the ocean surface will not encompass enough area to average out the dynamic offects of the wave

motion. Consequently, measures will have to be taken to compensate for this wave motion in an active and dynamic manner. This implies a torm of image enhancement of the downlink beam so as to track the unscattered component. This is an area where ruthic work can be directed and efforts are already underway.

REFERENCES

- [11] R. S. Kennedy, "Communication through optical scattering channels An introduction," Proc. IEEE, vol. 58, pp. 1651–1665, Oct. 1970.
- [2] R. M. Ferner and A. J. Holland, "The optical scatter channel," Proc. IEEE, vol. 58, pp. 1547-1563, Oct. 1970.
- [3] L. A. Bucher, R. M. Lerner, and C. W. Niessen, "Some experiments on the propagation of light pulses through clouds," *Proc. IEEE*, vol. 58, pp. 1364–1367, Oct. 1970.
- [4] H. M. Heggestad, "Optical communication through multiple scattering media," MIT/RL1 Tech. Rep. 472, Nov. 1968.
- [5] D. Arnush, "Underwater light-beam propagation in the smallangle scattering approximation," J. Opt. Soc. Amer., vol. 62, pp. 1109-1111, 1972.
- [6] S. G. Jerlov, Optical Oceanography. New York, Elsevier, 1968.
- [7] S. Q. Duntley, "Underwater lighting by submerged lasers," Visibility Lab., SIO Ref. 71-1, June 1971.
- [8] J. P. J. W. Swennen, "Time-average power-density probability distribution below the ocean surface of a beam of collimated optical radiation incident on the surface," J. Opt. Soc. Amer., vol. 56, pp. 224-229, 1966.
- [9] J. A. Stritton, Flectromagnetic Theory New York: McGraw-Hill, 1941
- [10] C. Cox and W. Munk, Hull. Scripps Inst. Occurage, vol. 6, p. 401, 1986.
- [114] W. H. Wells, "Loss of resolution in water as a result of multiple small-angle scattering," J. Opt. Soc. Amer., vol. 59, p. 1109, June 1969.
- [12] R. I. Lufomirski, private communication,
- [13] P. M. Livingston, private communication,

APPENDIX B

LAYERED WATER CORRECTION

When a and s are functions of z, it becomes necessary to determine the effect upon the model and to correct for it when necessary. Write $s(z)\theta^2(z)$ as

$$s(z)\overline{\theta^2}(z) = s_i \overline{\theta_i^2} ; z \in (z_{i-1}, z_i).$$
 (B-1)

Let us first consider the effect upon the angle. For constant parameters, the angular variance grows as $a\theta^2z=\Omega$. Since

$$\frac{d\Omega}{dz} = \sqrt[4]{2}, \tag{B-2}$$

we argue that for $z \in (z_{i-1}, z_i)$

$$\Delta \Omega_i = s_i \overline{\theta_i^2} (z_i - z_{i-1}). \tag{B-3}$$

For $z \in (z_{i-1}, z_i)$

$$\frac{\Delta \Omega_i}{\Delta z} = \frac{\Delta \Omega_i}{z_i - z_{i-1}} = s_i \frac{\alpha_i^2}{\theta_i^2}. \tag{B-4}$$

Hence,

$$\Omega(z) = \int_{0}^{z} \frac{\Delta \Omega}{\Delta z} dz = \sum_{i=1}^{N} s_{i} \overline{\theta_{i}^{2}} (z_{i} - z_{i-1}) : z \in (z_{N-1}, z_{N}).$$
(B-5)

In general,

$$SI(z) = \left[\sum_{i=1}^{N} s_i \frac{1}{\theta_i^2} (z_i - z_{i-1})\right] \sec \theta$$
, (B-6)

where θ is the angle relative to the normal that the ray takes to get to the depth z. Since the absorption loss is linear in z, a similar argument can be given to yield

$$az = \left[\sum_{i=1}^{N} a_i (z_i - z_{i-1})\right] \sec \theta \tag{B-7}$$

as the exponential absorption loss to replace az.

The spatial spread, on the other hand, goes as

$$\sqrt{2}$$
 $\sqrt{2}$ $\sqrt{2}$ (B-8)

which is actually Ωz^2 . Now

$$(\Omega + \Delta\Omega)(z + \Delta z)^2 = \Omega z^2 + \Delta\Omega z^2 + 2\Omega z \Delta z + \Delta\Omega \Delta z^2 + O(\Delta z^2)$$
 (B-9)

or

$$\frac{\Delta (\Omega z^2)}{\Delta z} = \frac{\Omega z^2 + \Delta \Omega z^2 + 2\Omega z \Delta z + O(\Delta z^2) - \Omega z^2}{\Delta z} = 3 s(z) z^2 \frac{\overline{\theta^2}(z)}{\theta^2}.$$
 (B-10)

Hence, the spatial spread can be modeled as

$$\int_{0}^{z} 3s(z) z^{2} \overline{\vartheta^{2}}(z) dz = \sum_{i=1}^{N} s_{i} \overline{\vartheta_{i}^{2}} \left(z_{i}^{3} - z^{3}_{i-1} \right), \tag{B-11}$$

which becomes

$$\left[\sum_{i=1}^{N} s_i \overline{\theta^2} \left(z_i^3 - z_{i-1}^3\right)\right] \sec^3 \theta \tag{B-12}$$

to account for the signt angles. Better approximations of the integrals could be obtained with linear interpolation, but was not considered necessary.

APPENDIX C

SHALLOW DEPTH CORRECTION

In this appendix, we will develop an empirical correction to the model in Appendix A which will apply in the region of 1 to 10 scattering lengths. There will actually be two corrections presented; one for illustrative purposes and the other for data reduction.

In figure 14 of Appendix A, we see that the correlation length ρ of the model used is always less than an empirical fit to the volume scattering function. Since the measure of radiant spread is inversely related to the correlation length, this implies an overestimate of the radiant spread and hence, a conservative model. We know, however, that the correlation length defined has the form

$$\rho_0 = \frac{\lambda \left[(1.38 zs - .48) / \sqrt{2} \right]^{\frac{1}{4}}}{2\pi \left(sz - .693 \right)}, \tag{C-1}$$

which can be rewritten as

$$\rho_{e} = \rho_{H-A} = \left[\frac{\left(1 - \frac{.3478}{82}\right)^{1/4}}{\left(1 - \frac{.693}{82}\right)^{1/4}} \right]$$
 (C-2)

We can define an effective value for $\overline{\theta^2}$ as

$$\frac{1}{\theta_{\text{eff}}^2} = \frac{1}{\theta^2} \left[\frac{\left(1 - \frac{.693}{8Z}\right)^2}{\left(1 - \frac{.3478}{8Z}\right)} \right] = \frac{1}{\theta^2} F$$
 (C-3)

and rowrite ρ_e as

$$\rho_{\rm e} = \rho_{\rm H-A}' = .19 \, \lambda \left(\frac{1}{\text{sz} \, v_{\rm eff}^2} \right)^{1/2} \; ; \; \text{sz} > .693$$
 (C-4)

F is plotted in figure C-1.

This correction gives the value for the correlation length. However, since the radiant pattern used remains Gaussian, it turns out to be only slightly better than the uncorrected function, but falls far short of reproducing the correct correlation function and hence, correct radiant pattern. A better approach would be to try a functional fit to the actual correlation function. In addition, since there already was a Gaussian solution, we will try to make this functional fit by adding another Gaussian term in a judicious manner. The function that we are trying to fit is

Figure C-1. Shallow depth correction to $\overline{o_{\rm eff}^2}$.

$$\operatorname{sz}\left[\frac{1}{\sqrt{1+\rho^2}}\frac{1}{\theta^2}\frac{2\pi}{\left(\frac{2\pi}{\lambda}\right)}^2 - 1\right] \tag{C-5}$$

where the exp (-az) multiplier was omitted. It was already pointed out that the asymptotic value of this function is exp(-sz) so that we are trying to fit

$$\operatorname{sz}\left[\frac{1}{\sqrt{1+\rho^{2}} \frac{1}{\theta^{2}} \left(\frac{2\pi}{\lambda}\right)^{2}} - 1\right]_{-e^{-sz}} = \left\{ \left(\operatorname{sz} \frac{1}{\sqrt{1+\rho^{2} \frac{1}{\theta^{2}} \left(\frac{2\pi}{\lambda}\right)^{2}}} \right)_{-1} \right\}_{e^{-sz}}. \tag{C-6}$$

By observing several values of this function (figures C-2 through C-5), the scattered term in equation (C-9) is always visible for small values of ρ . This term will always have the form

$$e^{-\frac{\rho^2}{2}\left(sz\,\overline{\theta^2}\,\left(\frac{2\pi}{\lambda}\right)^2\right)}.$$
 (C-7)

Now, if the following is set

$$\rho = 3 \rho_0 = \rho_{co} = \frac{3\lambda}{2\pi \sqrt{sz \theta^2}}$$
 (C-8)

then this portion of the coherence function at most contributes 1 percent to the total. Consequently, whatever remains of equation (C-6) at this value of ρ can be considered to be one value for a new function. If this new function takes the form

$$A = \frac{B}{2}\rho^2$$
, (C-9)

then we are clearly solving for the point where

$$A e^{-\frac{B}{2}\rho_{CO}^2} = e^{sz} \left[\frac{1}{\sqrt{1+\frac{9}{sz}}} - 1 \right]_{...e^{-sz}}.$$
 (C-10)

Similarly, a second fit at the value $\rho = 3 \rho_{co}$ yields

$$A e^{-\frac{9B}{2}\rho_{co}^{2}} = e^{\frac{sz}{\sqrt{1+\frac{81}{sz}}}-1} - e^{-sz}.$$
 (C-11)

Solving for A and B yields

$$A = \frac{e^{-8z} \left[\frac{8z}{\sqrt{1 + \frac{9}{8z}}} - 1 \right]^{9/8}}{\left[\frac{5z}{\sqrt{1 + \frac{81}{8z}}} - 1 \right]^{1/8}}$$

Figure C-2. Mutual coherence function.

Figure C-3. Mutual coherence function.

Figure C4. Mutual coherence function.

Figure C-5. Mutual coherence function.

新新的人,我们就是这些人,我们就是一个人,我们就是

Figure C.6. Glow field correction.

Start.

11

.

V 3

1

5,000

-1

$$B = \frac{1}{36 \left[\frac{\lambda^2}{(2\pi)^2 \text{ sz } \theta^2} \right] \log \left[\frac{\frac{5Z}{e\sqrt{1 + \frac{9}{yz}}} - 1}{\frac{5Z}{e\sqrt{1 + \frac{81}{yz}}} - 1} \right]}$$
(C-12)

By defining

$$\frac{\overline{\theta_{\text{eff}}^{2'}} = \frac{\overline{\theta^2}}{36} \log \left[\frac{\frac{32}{e\sqrt{1 + \frac{9}{82}}} - 1}{\frac{32}{e\sqrt{1 + \frac{81}{82}}} - 1} \right]$$
 (C-13)

we are able to use our previous Gaussian solution without any changes. Ignoring absorption, the relative weights for the three terms become:

exp (-sz) for the residual image,

A for the third or glow field term using θ_{aff}^{2} ,

(I-A-e-82) for the scattered term.

Values for A and B are plotted in figures C-6 and 7. Notice that $\theta^2 > \theta_{eff}^2$ and the glow field makes its greatest contribution in the region of 1 to 10 scattering lengths. The fact that A starts to increase after 10 scattering lengths is attributed to the fact that after this point the Gaussian fit for the third term is no longer valid for a number of reasons. As a consequence, a modified value for A was used which takes the form

$$A' = .235 (sz) e^{-\frac{sz}{2.31}}$$
 (C-14)

This is also plotted in figure C-6. Finally, we have also shown the values for A and B when the second calibrate point is taken at $\rho = 5\rho_{CO}$. This is also plotted in figures C-6 and 7 and shows no appreciable difference other than the calibrate at $\rho = 3\rho_{CO}$.

Figure C-7. Glow field correction.

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Berkeley - Davis - Invine - Los anceles - Riverside - San Diego - San Francisco

SANTA BARBARA . SANTA CRITE

APPENDIX D

VISIBILITY LA TORATORY SCRIPPS INSTITUTION OF OCEANOGRAPHY

金巻の日本はは日本の大きの名を見れているというからいというのでもないからいないと、と、そ、まっていてのであるという。

BAN DIROU, CALLYONNIA 92152

23 June 1976 ML-76-005t - REVISED

TECHNICAL MEMORANDUM

SUBJECT: Ocean Optical Properties -- 520 Nanometers
Santa Catalina Island, Lat: 33°27.2'N, Long: 118°29.0'W

- 1. Near surface daytime optical measurements of the water properties at the Santa Catalina Island SATCOM test site were limited to the beam transmittance and its derivative, the volume attenuation coefficient, α . This limitation was incurred because of the effects of ambient daylight on the instruments used for measuring scattering. Measurements of all required properties were obtained at night, however, and correlations between them were explored for a variety of water conditions. Curve-fitting techniques were applied to these night data, and empirical relationships were derived allowing the prediction of the required but unmeasured daytime scattering and absorption properties of the water from the measured beam transmittance. The fits of the nighttime data to the derived analytic expressions was generally good-to-excellent, with correlation coefficients of 0.946 or better. These expressions may, therefore, be used with confidence to predict the unmeasured properties.
- 2. NOTE: A window correction factor of 0.9794 has been applied to all transmittance values obtained in the field. Any preliminary data issued prior to 12 April 1976 were not so corrected. Any original transmittance or alpha profiles, i.e., those obtained in the field with the x-y plotter or data logger, must have this correction applied. All computer-generated output has now been corrected.
- 3. Using the expressions obtained from the nighttime June and July data, daylight transmittance profiles have been used to obtain estimates of the scattering and absorption properties of the water column to a depth of 50 meters. These values are listed for the various depths, Z(m), at which the transmittance data were sampled. The following is a description of the information supplied in the computer listing titled, "Ocean Optical Properties:"
- a. The transmittance on the computer listing under the column T(1/M) is the field data multiplied by the correction factor (see paragraph 2 above).

MEMO #ML-76-005t - REVISED Page 2 23 June 1976

b. The column headed ALPHA' is obtained by taking the natural logarithm of the reciprocal of the corrected transmittance, i.e.,

- c. The true volume attenuation coefficient α (column headed ALPHA) is greater than the apparent volume attenuation coefficient ALPHA' by a small amount which accounts for the scattering included within the acceptance angle (1.5 milliradians) of the transmissometer.
- d. The scattering coefficient, s, (column headed SCAT) is calculated from a linear relationship of the form

where m and α were slightly adjusted from the constants derived from the straight line, least squares curve fit. Specifically, from the regression of α vs α (disregarding two data points with obvious difficulty)

$$\sigma = 0.958\alpha - 0.101, \quad \sigma_{m} = 0.0315$$

and after adjustment

$$= 0.97 \alpha - 0.0977, \sigma_{\underline{a}} = .0324$$

The reason for the adjustment was to provide a better agreement between the absorption coefficient calculated from the relationship, $\mathbf{z} = \alpha - \mathbf{z}$, and other estimates of absorption arrived at by independent methods. As is indicated by the standard deviations between the data points and the values predicted by the two relationships (i.e., $\sigma_{\mathbf{z}}$), there is only a slight decrease in the precision with which the adjusted equation predicts the observations of \mathbf{z} from α .

- e. The absorption coefficient, a, listed in the column ABS, is obtained by subtracting the values in the SCAT column from the ALPHA column since
- f. The volume scattering function $\sigma(\Theta)$ at 3, 6 and 12 milliradians was calculated using expressions obtained from the regression of $\sigma(\Theta)$ vs s.
- g. The normalized second moment of the volume scattering function $\overline{\vartheta}^2$, i.e.,

$$\frac{\sigma^2}{\sigma^2} = \frac{\pi}{8} \int_0^{\pi} \sigma(0) \cdot 0^2 \cdot \sin \theta \, d\theta$$

is listed in the column headed THTA* 2 BAR. The values listed were calculated using the expression obtained from the regression of $\frac{2}{6}$ vs H.

MEMO #ML-76-005t - REVISED Page 3 23 June 1976

The narrow angle volume scattering function data, viz; VSF3, VSF6, and VSF12, were obtained with the ALSCAT instrument which performed these measurements concurrently with determination of the beam transmittance. These data, therefore, are all obtained from the same sample of water. The volume scattering function data at angles from 100 to 1700 were obtained with a second instrument, the General Angle Scatter Meter (GASM), which was lowered to the same indicated depth as ALSCAT but was about 4 meters away horizontally. Some vertical separation may also have occurred due to errors in the indicated depth. This may have been as much as 2 meters on some occasions. Operational considerations did not always permit data from the two instruments to be obtained at the same time although that was the intention. In general, the operational procedure in July was improved over that in June, and the time difference between the two measurements, i.e., ALSCAT and GASM was, with three exceptions, reduced to less than 5 minutes. These time and spatial separations between the ALSCAT & GASM data were usually of little consequence with the possible exception of those circumstances where the measurements were obtained in the turbid scattering layer that occurred frequently at depths of from 15 to 40 meters. As this layer was sometimes very localized vertically and would move up and down with the passage of the coastal current or with the propagation of internal waves, temporal and spatial coincidence of the measurements assumed greater significance for these cases. Despite these concerns there appears little difference, as determined by the correlation coefficient r, with the tightness of fit of the observations to the resulting analytic expressions obtained for the 18 nighttime data sets in June, the 30 sets in July and the 48 combined sets. The expressions derived from the regressions are listed below.

Expressions Coupling Measured Ocean Optical Properties (Derived from 48 sets of nighttime data)

α =	1.0188011.0066	r	=	1.000
s =	0.970 a0977			
a =	a - s			
σ(3)=	1398.4s 1.1204	r	а	0.9597
o(6)=	553,2s 1.1768	r	14	0.9800
	218.8s 1.2302	r	*	0.9872
<u> </u>	0.0283s	r	144	0.9467

5. The scattering properties, as determined from the combined ALSCAT and GASM data for the 48 nighttime measurements, are submitted herewith. Each sat consists of a plot of log-volume scattering function vs. log-angle and two pages of computed properties. The "Iterated Data" differs from the "Data Read-In" by a correction applied to "Sigma" values for the three smallest angles, viz, $\sigma(\theta)$ at 3,6 and 12 milliradians to account for multiple scattering in the one-meter measurement path length used in ALSCAT.

MEMO #ML-76-005t - REVISED Page 4 23 June 1976

The correction to "ALPHA" is that required to account for the inclusion of scattering in the acceptance angle of the transmissometer. The column headed "Integral" is the portion of the total scattering coefficient due to angles from zero to the listed angle. Thus

"Integral" (0)
$$\leq 2\pi \int_{0}^{0} \sigma(\theta') \sin \theta' d\theta'$$
.

Similarly, the "Normalized Integral" is the decimal fraction obtained by dividing the value listed in the "Integral" column by the total scattering coefficient s.

"Norm. Integral" (0) $\pm \frac{2\pi}{s} \int_{0}^{\Theta} \sigma(\Theta') \sin \Theta' d\Theta'$

- 6. The values of α , s, and a obtained from the nighttime measurements described in paragraph 5 above have been entered on the curves of these properties generated from the regression expressions. The times of the measurements are printed beside the data points to aid in evaluating this comparison between the measurements and the values predicted from a transmittance profile obtained on the same night but at a somewhat different time. It will be noted that the predicted values agree well with the measured values considering the changes that are found in repetitive measurements performed within relatively short periods of time in a dynamic ocean.
- 7. Secchi disc observations were obtained on six days in June. The disappearance depths varied from 14 to 22 meters. The observations are listed in the attached table. No analysis of these data will be attempted. No single-value parameter, e.g., s or 6 at a single depth, would be expected to correlate as well with these observations as would an average or "effective" value obtained by some weighted integral of the parameter over the depth interval.

SECCHI DISC OBSERVATIONS

DATE	TIME	<u>DEPTH</u>	DATE	TIME	DEPTH
6/18/75	1230 1330	18 m 21 m	6/24/75	1125	22 m
6/19/75	1030 1130 1230 1330	15 m 15 m 14 m 15 m	6/25/75	1008 1014 1103 1125 1204	17 m 17 m 17 m 17 m 17 m
6/20/75	1430 0950 1054	18 m 19 m 19 m		1255 1303 1439 1448	17 m 15 m 15 m 18 m 18 m
	1205 1250 1345	15 m 15 m 15 m	6/26/75	1554 1350	17 m 15 m

MEMO #ML-76-005t - REVISED Page 5 23 June 1976

The errors in the optical properties presented have been the subject of considerable study. Unfortunately no single, simple statement can be offered regarding the magnitude of the errors as they depend upon the property under consideration and the value or magnitude of that property. Furthermore, the optical nature of ocean water is highly variable both spatially and temporally -- particularly so in coastal waters. Any values of ocean optical properties presented as a result of measurements in this dynamic system must be understood to have inherent "errors" due to sampling in space and time. As mentioned in Paragraph 4 above, the sampling problem was examined with regard to the nighttime data sets and was not found to affect, significantly, the observed correlations between the several properties. The prediction of the set of optical properties pertinent to the SATOOM tests by the application of the regression-derived relationships to the daytime transmittance profiles circumvents any concern with simultaneity of data acquisition. The remaining question is "did the transmittance profile change significantly from that which existed at some critical time of concern?" This question must be examined for each situation. Frequent profiles were taken in order to provide a measure of the rates of change of the optical properties and with the intent of bracketing the SATCOM observations.

Absolute errors in the measurement of beam transmittance were less than ± 0.4 %. The resulting relative errors in the volume attenuation coefficient would be between ± 2 % for the clearest water and ± 1 % for the most turbid water encountered in the upper 50 meters at the site in June and July 1975.

Absolute errors in the determination of the volume scattering function, a(0), over the angular range of measurement are somewhat greater, probably ranging up to 10% in some circumstances. More significant to the calculation of the scattering coefficient is the fact that the volume scattering function was not measured between 0.7° and 10°, necessitating interpolation of the function between these values. As up to 50% of the scattering coefficient may be due to the scattering in this angular range, the magnitude of the coefficient is significantly affected by the nature of the interpolation. Furthermore; since the scattering coefficient accounted for something between 51% (for the clearest waters encountered) and 89% (for turbid water) of the volume attenuation coefficient, the magnitude of the absorption coefficient -- as determined by the differences between a and a becomes particularly sensitive to the method of interpolation of the volume scattering function. For example, when $\alpha=0.6m^{-1}$, $s/\alpha\approx.81$ and $s/\alpha\approx.19$. Under these conditions a 10% change in s results in a 43% change in a. If, as in the application of these water properties data to the SATCOM system analysis, the absorption data is particularly significant, we need a better capability for determining absorption -- either by more complete

MEMO #ML-76-005t - REVISED Page 6 23 June 1976

and accurate determination of the volume scattering function or, more desirably, by a direct measurement of the absorption coefficient itself.

The determination of the normalized second moment of the volume scattering function, Θ^2 , is inherently less sensitive to the value of the VSF at small angles than is the scattering coefficient. 02 is, in fact, primarily dependent upon the VSF in the angular range measured by the General Angle Scattering Meter, i.e., for $\theta > 10^\circ$.

RWA: vb

cc: Lt. R. Oriscoll (2) C. F. Edgerton

T. J. Petzold

LICEAN LIPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LING: 118-29.0 N 18JUN1975 DP40PDT

Figure D-1. Ocean optical properties (sheet 1 of 2).

SANTA 18jun:	CATALINA 1975 0	15. 940PDT	1.AT 33 -	27.2 N	LONG	118~29.0 W			***************************************
.Z(M)	T(1/M)	ALPHA'	ALPHA	SCAT	248	VSF3	VSF6	VS#12	THTA#28
2.0	0.770	0.262	0.264	0.158	0.106		63.5	22.7	
3.0	11.767	0.265	0.268	0.162	0.106	182.2	65.3	23.4	0.092
4.0	0.767	0.265	0.268	0.162	0.106		65.3	23.4	0.092
5.0	0.769	0.263	0.265	0.160	0.106		84.1	22.9	0.093
A • D	0.762	0.272	0.275	0.169	0.106		68.3	24.5	0.090
7.0	0.764	0.267	0.272	0.164	0.106		47-1	24.0	0.091
9.0	0.766	0.267	0.269	0.164	0.106		65.9 65.9	23.6	0.092
10.0	0.762	0.272	0.275	0.169	0.106		68.3	24.5	0.090
11.0	0.752	0.285	0.288	0.181	0.106		74.4	26.8	0.040
12.0	0.741	0.299	0.302	0.196	0.107		81.3	29.4	0.082
13.0	0.732	0.313	0.316	0.209	0.107		97.7	31.8	0.078
14.0	0.721	0.327	0.331	0.223	0.108		95.0	34.6	0.075
15.0	0.718	0.331	0.335	0.227	0.108		97.0	35.4	0.074
16.0	-1.704	0.351	0.355	0.246	0.108		106.6	39.1	0.070
17.0	0.692	0.368	0.372	0.263	0.109		115.1	42.3	0.067
19.1	0.677	0.390	0.395	0.286	0.110		126.9	46.8	0.064
19.2	0.669	0.402	0.407	0.297	9.110		132.7	49.2	11.063
50.0	0.66B	0.404	0.409	0.299	0.110		133.7	49.5	0.062
21.2	1.65B	0.418	0.424	0.313	0.110		141.4	52.5	0.060
<u> 22.2</u> 23.1	0.661	0.414	0.419	0.309	0.110		139.1	<u> </u>	<u></u>
24.1	-1.675	0.393	0.398	0.289	0.110		128.4	48.9 47.4	0.062
25.2	2.678	0.389	0.304	0.284	0.110		126.1	46.6	0.064
24.2	0.685	0.379	0.384	0.274	0.109		121.0	44.6	0.066
27.2	0.687	0.376	0.381	0.271	0.109		119.5	44.0	0.055
30.2	0.688	0.375	0.379	0.270	0.109		118.3	43.7	0.065
29.2	0.689	0.373	0.378	0.269	0.109		118.0	43.4	0.066
30.1	0.698	0.359	0.363	0.255	0.109		110.9	40.7	0.069
31.1	0.708	0.345	0.349	0.241	0.108		103.9	38.0	0.071
32.2	0.718	0.331	0.335	0.227	0.108		97.0	35.4	0.074
33.2	0.718	0.331	0.335	0.227	0.108		97.0	35.4	0.074
34.3	0.718	0.331	0.335	0.227	0.108		97.0	35.4	0.074
35.4	0.723	0.331	0.325	0.227	0.108		97.0	35.4 34.1	0.074
36.0	0.723	0.325	0.328	0.221	0.108		33.7	34.1	0.076
40.1	0.735	308	0.312	0.205	0.107		H5.8	31.1	0.079
41.1	0.736	0.307	0.310	0.203	0.107		85.1	30.8	0.080
.42.2	0.746	C-293	0.296	0.189	0.107		78.1	28.2	0.084
43.5	0.756	0.280	0.282	0.176	0.106	100.3	71.9	25.9	0.087
44.9	0.765	0.268	0.271	0.165	0.106	185.4	66.5	23.8	0.091
44.1	0.772	0.259	0.262	0.156	0.106	174.4	62,3	22.3	0.095
48.0	0.774	0.257	0.259	0.153	0.105		61.1	21.8	0.096
30.0	0.775	0.235	0.258	0.152	0.105	169.7	60.5	21.6	0.096
PAUSE	READY	LUTTER							

Figure D-1. Ccean optical properties (sheet 2 of 2),

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 35-27.2 N; LINE: 118-29.8 N 18JUN1975 1030PDT

神風の ないまれること

Figure D- 2. Ocean optical properties (sheet 1 of 2).

Account and the secretary bearing

SANTA	CATAL INA 1975 1	15. 030PDT	AT 33-	27.2 N	LONG - 1	18-29.0	/		
2(M)	T(1/M)	ALPHAI	AL PHA	SCAT	ABS	VSF3	VSF6	V5F12	THTA+284
2.0	0.773	0.258	0.260	0.155	0.106	172.8	61.7	55.0	0.095
3.4	0.773	0.258	0.260	0.155	0.106	172.8	61.7	22.0	0.095
5.1	0.757	0.278	0.261	0.175	0.106	214.6	71.3	25.0	0.088
6.2	0.747	0.306	0.294	0.188	0.107	233.1	77.5 84.5	28.ú 30.6	0.080
7.2	0.737	0.306	0.309	0.202	0.107	233.1	84.5	30.6	0.080
10.3	0.737	0.306	0.309	0.202	0.107	233.1	84.5	30.6	0.080
12.4	0.728	0.318	0.321	0.214	0.107	248.5	90.3	32.8	0.077
14.0	0.726	0.331	0.324	0.217	0.107	251.9	91.7	33.3	0.076
15.2	U. 700	0.345	0.349	0.241	0.108	283.8	103.9	38.0	0.071
16.2	0.703	0.352	0.356	0.248	0.108	292.9	107.3	39.3	0.070
17.3	0.689	0.373	0.378	0.269	0.109	320.6	118.0	43,4	0.066
17.5	0.684	0.380	0.385	0.276	0.109	330.1	121.7	44.8	0.069
19.2	0.576	0.552	0.560	0.445	0.114	565.0	213.9	80.9	Ü.048
19.8	0,490	0.714	0.736	0.606	0.119	798.0	307.2	114.2	0.039
21.0	0.619	0.440	0.486	0.374	0.112	464.4	174.1	65.2	0.054
22.2	0.649	0.432	0.437	0.327	0.111	399.0	148.5	55.2	0.059
23.2	554.0	0.427	0.433	0.322	0.111	302,9	146.1	54.3	0.039
24.1	0.655	0.423	0.428	0.318	0.111	386.8	143.7	53.4	0.060
25.2	0.658	0.418	0.424	0.313 0.304	0.110 0.110	360.8 369.9	141.4	52.5 50.7	0.060
27.3	0.664	0.407	0.415	0.302	0.110	364.9	135.2	50.1	0.062
2A.5	0.678	0.389	0.394	0 • 2 R4	0.110	341.5	126.1	46.6	0.064
24.7	0.489	0.373	0.378	0.269	0.109	320.6	118.0	. 43.4	0.066
30.2	0.694	0.365	0.369	0.260	0.109	309.4	113.7	41.8	0.068
31.5	0.702	0.353	0.356	0.749	0.108	204.7	108.0	39.6	0.070
32.5	0.704	0.351	0.355	0.246	0.108	291.0	106.6	39.1	0.070
32.4	0.706	0.348	0.352	0.244	0.108	287.4	105.2	38.5	0.071
33.5	0.707	0.347	0.351	0.242	0.108	285.6	104.5	38.3	0.071
35.2	0.713	0.338	0.342	7.234	0.108	274.8	100.4	36.7	0.073
34.2	-1.717	0.333	0.337	0.229	0.108	267.7	47.7	35.6	0.074
37.2	0.719	0.330	0.394	0.226	0.108	264.7	96.3	35.1	0.074
38.0	0.724	0.323	0.327	0.219	0.108	255.4	93.0	33.я	0.076
40.0	0.725	0.322	0.725	0.518	0.107	253.7	92.3	33.6	0.076
41.2	0.735	0.308	0.512	0.205	0.107	236.5	85.8	31.1	0.079
42.1	0.737	0.305	0.308	0.201	0.107	<u> </u>	<u> </u>	30.4	<u> </u>
43.1	0.741	0.299	0.302	0.196	0.107	224.6	81.3 78.7	29.4 28.4	0.082
43.A 44.4	0.743	0.291	0.294	0.188	0.107	214.6	77.5	28.0	0.083
45.5	0.750	-0.287-	0.290	0.194	0.106	200.9	75.6	27.2	<u> </u>
46.2	0.754	0.282	0.245	0.179	0.106	203.1	73.1	26.3	0.087
47.3	0.759	0.2.6	0.278	0.172	0.106	195.0	70.1	25.2	0.089
-4 h 1	0.771	0.260	0.263	ŏ.197	801.7	175.9	62.9	22.5	0.094
49.2	0.774	0.257	0.259	0.153	0.105	171.2	61.1	21.8	0.096
50.0	0.774	0.257	0.259	0.153	0.105	171.2	61.1	21.8	0.096

Figure D-2. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM BANTA CATALDNA 28. LAT: 33-27.2 N; LDND: 119-29.0 N 18.001975 1130997

Figure D-3. Ocean optical properties (sheet 1 of 2).

	CATALINA 1975		.AT 33-	27.2 N	LONG 1	18-29.0 k	l 		
Z(M)	T(1/M)	AL PHA!	ALPHA	SCAT	ABS	VSF3	V\$#6	VSF12	THTA+28
2.2	7(1/M) 0.771	0.360	0.263	SCAT 0.157	0.106	175.9	62.9	22.5	0.094
3.5	0.767	0.265	0.268	0.162	0.106	182.2	65.3	23.4	0.092
5.0	0.762	0.289	9-272	9-169	0.106	190 - 2	- \$8.3 -		وووين
	0.749	0.289	0.292	0.185	0.106	211.3		27.5	0.085
6.0	0.737	0.306	0.309	0.202	0.107	233.1	84.5	30.6	0.080
7.8 8.8	0.733	0.311	0.313	0.189	0.107	216.3	78.1 87.1	31.6	0.074
9.5	0.737	0.305	0.308	0.201	0.107	231.4	83.8	30.4	0.080
10.4	0.723	0.325	0.328	0.221	0.108	257.2	93.7	34.1	0.076
12.0	0.723	0.325	0.328	0.221	0.108	257.2	93.7	34.1	0.076
13.0	0.706	0.348	0.352	0.244	0.108	287.4	105.2	38.5	0.071
14.0	0.684	0.380	0.385	0.276	0.109	310.1	121.7	44.8	0.065
15.0	0.685	0.379	0.384	0.274	0.109	328.2	121.0	44.6	0.066
16.1	0.638	0.450	0.456	0.345	0.111	423.8	150.2	59.0	0.057
17.5	0.631	0.461	0.467	0.355	عببه_	418.4	166-0	<u> </u>	0.055
18.3	0.640	0.447	0.453	0.342	0.111	419.7	156.6	58.4	0.057
19.1	0.627	0.467	0.473	0.362	0.112	447.1	167.3	62.6	0.055
19.A 20.8	0.509	-0.675 0.520	0.686	0.567	0.114	740.8 520.4	- 284.2	<u> 188 8</u> .	<u> </u>
	0.607	0.499	0.506	0.393	0.113		196.2	73.9	0.050
21.5	0.627	0.467	0.473	0.362	0.112	490.9	164.6	62.6	0.052
23.5	0.637	0.452	0.458	0.346	- 8.111	425.9	159.0	59.3	0.056
24.2	0.646	0.436	0.442	0.331	0.111	405.2	130.9	56.2	0.058
25.5	0.656	0.421	0.427	0.316	0.111	384.8	142.9	53.1	0.060
26.5	0.659	0.417	0.422	0.312	0.110	378.8	140.6	52.2	0.060
27.2	0.669	0.402	0.407	0.297	0.110	359.0	132.9	49.2	0.062
2A.5	0.669	0.402	0.407	0.297	0.110	359.0	132.9	49.2	0.062
30.0	0.669	0.402	0.407	0.297	0.110	359.0	132.9	49.2	0.062
31.0	0.689	0.373	0.378	0.269	0.109	320.6	118.0	43.4	0.066
32.3	0.485	0.379	0.384	0.274	<u>ŏ•lúā</u>	328.2	<u> </u>	44.6	0.066
33.2	0.674	0.395	0.400	0.290	0.110	349.3	127.1	47.7	0.063
34.0	0.690		0.375	0.266	0.109 0.109	316.9 311.3	116.6	42.9	0.067
35.2	0.705	0.349	0.353	0.245	0.108	299.2	105.0	38.8	9.96H
37.0	0.715	0.336	0.339	0.231	0.108	271.3	19.1	36.2	0.073
3A.2	0.734	7.310	0.313	0.206	0.107	238.2	36.4	31.3	0.079
39.0	0.745	0.294	0.297	0.190	0.107	218.0	78.7	20.4	0.003
40.0	0.756	0.280	0.282	0.176	0.106	199.9	71.9	25.4	0.087
42.0	0.766	0.267	0.269	0.164	0.106	183.8	65.4	23.6	0.092
44.0	0.766	0.267	0.269	0.164	0.106	163.8	65.9	23.6	0.092
45.0	0.763	0.271	0.273	0.167	0.106	188.6	67.7	24.3	0.090
46.0	0.760	0.674	0.277	0.171	9.100	103.4	69.5	24.9	0.089
47.0	0.770	0.262	0.264	0.158	0.106	177.5	63.5	22.7	0.094
47.8	0.760	0.274	0.277	0.171	0.106	193.4	69.5	24.9	0.089
48,5	0.764	0.269	0.272	<u> </u>	0-106	187.0	47.1	24.0	0.091
50.0 PAUS	0.767 E READY	0.265 PLOTTER	0.268	0.162	0.106	182.2	65.3	23.4	0.092

Figure D-3. Ocean optical properties (sheet 2 of 2).

DICEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT' 39-27.2 N; LIBNS: 118-29.8 N 18-801975 1220901

Figure D-4. Ocean optical properties (sheet 1 of 2).

SANTA 18jun	CATALIN	4 15. I	.AT 33-	27.2 N	LONG 1	18-29.0 W	l ————————————————————————————————————	•	
Z (M)	711/41	AL PHA	ALPHA	SC AT	A 0 6	VS#3	VSF6	uee in	T. (T. 4 D.)
1.0	T(1/M)	0.246	0.249	0.144	AB5 0.105	158.9	56.5	70.1	0.100
1.8	0.773	0.258	0.260	0.155	0.106	172.8	61.7	22.0	0.095
2.5	0.775	0.255	0.258	0.152	0.105	169.7	60.5	21,6	0.096
3.2	0.766	0.267	0.269	0.164	0.106	183.8	65.9	23.6	0.092
4.2	0.756	0.280	0.282	0.176	0.106	199.9	71.9	25.9	0.087
5.2	0.737	0.306	0.309	0.202	0.107	233.1	94.5	30.6	0.080
5.8	0.727 0.737	0.306	0.309	0.202	0.107	233.1	91.0	33.1	0.077
8.0	0.730	0.315	0.319	0.211	0.107	245.0	89.0	32.3	0.078
9.0	0.727	0.319	0.323	0.215	0.107	250.2	91.0	33.1	0.077
10.0	0.725	0.322	0.325	0.218	0.107	253.7	92.3	33.6	0.076
11.0	0.717	0.333	0,337	0.241	0.108	267.7	97.7	35.6	0.074
15.0	0.708	0.345	0.349	0.241	0.108	289.8	103.9	38.0	0.071
13.0	0.696	0.362	0.365	0.257	0.109	305.7	112.3	41.2	0.068
14.0	0.666	0.406	0.412	0.302	0-110	364.9	135.2	50.1	0.062
16.0	0.619	0.480	0.486	0.374	0.112	464.4	174.1	65.2	0.054
	0.604	0.504				497.0	187.2		
17.5	0.614	0.488	0.494	0.398	0.113	475.4	178.4	70.4	0.052
16.0	0.607	0.499	0.506	0.393	0.113	490.9	184.6	69.3	0.052
19.2	0.607	0,499	0.506	0.393	0.113	490.9	184.6	69,3	0.052
20.2	0.608	0.497	0.504	0.391	0.113	488.7	183.7	69.0	0.052
21.0	0.610	0.494	0.501 0.494	0.388	0.113	475.4	181.9	68.3	0.052
21.5	0.620	0.478	0.485	0.372	0.113	462.3	179.6	66.9	0.053
23.0	0.632	0.459	0.465	0.354	0.112	436.5	163.1	60.9	0.056
24.0	0.668	0.404	0.409	0.299	0.110	361.0	133.7	49.5	0.062
23.2	0.676	0.392	0.397	0.287	0.110	345.4	127.6	47.1	0.064
26.1	0.685	0.379	0.384	0.274	0.109	328.2	121.0	44.6	0.066
24.9	0.686	0.377	0.382	0.273	0.110	341.5	120.2	44.3	0.064
27.5	0.586	0.377	0.382	0.273	0.109	326.3		44.3	0.066
79.2	0.690	0.370	0.375	0.266	0.109	316.9	120.2	44.3 42.9	0.066 0.067
-6-6	0.689	0.372	(1.376	0.267	0.109	318.7	117.3	43.2	0.007
31.0	0.689	0.372	0.376	0.267	0.109	318.7	117.3	43.2	0.067
32.1	0.692	0.368	0.372	0.263	0.109	313.1	115.1	42.3	0.067
33.0	0.692	0.368	0.372	0.263	0.109	313.1		42.3	0.067
34.0	0.693	0.366	0.370	0.262	0.109	311.3	114.4	42.0	0.068
35.0	0.694	0.365	0.365	0.256	0.109	309.4	113.7	41.B	0.068
36.1 37.0	0.700	0.356	0.360	0.252	0.109	298.3	111.6	40.9 40.1	0.069
38.2	0.717		0.337	0.229	0.108	267.7	97.7	35.6	0.074
39.3	0.729	0.333	0.320	0.213	0.107	246.8	97.7	32.6	0.077
40.2	0.729	0.317	0.320	0.213	0.107	246.8	89.7	32.6	0.077
41.2	0.746	0.293	0.296	0.189	9.197	216.3	78.1	28.2	0.084
42.1	0.752	0.285	0.288	0.181	0.106	206.4	74.4	26.8	0.086
43.1	0.755	0.281	0.284	0.177	0.106	201.5 193.4	72.5	26.1	0.087
44.2	0.750	0.274	0.288	0.171	0.106	206.4	74.4	24.9 26.8	0.039
46.0	0.758	0.277	0.280	0.174	0.106	196.6	70.7	25.4	0.088
47.0	0.762	0.272	0.275	0.169	0.106	190.2	68.3	24.5	0.090
48.5	0.757	0.27B	0.281	0.175	0.106	(08.3	71.3	25.6	0.088
49.2	0.748	0.290	0.293	0.186	0.106	213.0	76.9	27.7	0.084
50.2	0.759	0.276	0.278	0.172	0.106	1្លុម•្យ	70.1	25,2	0.089

Figure D-4. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALDNA IS. LAT: 39-27.2 N; LINE: 118-29.0 N 18JUN1975 1330PDT

Figure D-5. Ocean optical properties (sheet 1 of 2).

	CATALIN	A IS. L 1330POT	AT 33-	27.2 N	LONG	118-29.0	W 		
. Z (M)	.T(1/M)	ALPHAI	ALPHA	SCAT	ABS	VSF3	VSFA	VSE12	THTA#25
1.0	0.796	0.228	0.230	0.125	0.105	136.3	48.1	17.0	0.109
3.0	0.791	0.234	0.236	0.131	0.105	143.7	50.9	18.0	0.106
	0.782	_0.246_	0.249	0.144	0.105	158.9		20.1	0.100
7.0	0.782	0.246	0.249	0.144	0.105	158.9	56.5	20.1	9.109
A. 0	0.773	0.258	0.260	0.155	0.106	172.6	61.7	22.0	0.095
9.0	0.776	0.234	0.256	0.151	0.105	168.1 174.4	<u> </u>	<u> </u>	0.097
12.0	0.771	0.259	0.263	0.150	0.106	175.9	62.3 62.9	22.3	0.094
13.1	0.766	0.267	0.269	0.164	0.106	163.5	65.9	23.6	0.092
13.0	0.766	0.267	U.269	0.164	0.106	183.8	65.9	23.6	U . U 92
16.0	0.760	0.274	0.277	0.171	0.106	193.4	69.5	24.0	0.089
15.8	0.752	0.285	O.RAA	0.181	0.106	200.6	76.6	26.A	ULORE
17.2	0.734	0.310	0.313	0.206	0.107	238.2	86.4	31.3	0.079
18.2	0.715	0.336	0.339	0.231	0.108	271.3	99.1	36.2	0.073
19.0	0.635	0.512	0.461	0.349	9.112	<u> 430a)</u>	160-7	60.0	0.054
27.1	0.599		0.519	0.406	0.113	\$09.0	191.7	72.1	0.051
20.7	0.556 0.581	0.586	0.595	0.480	0.116	613.9	233.3	48.6	0.046
22.0	0.595	0.518	0.351	0.412	0.114	518.1	209.1	79.0	0.050
23.7	0.619	0.480	0.486	0.374	0.112	464.4	174.1	73.6 65.2	0.054
25.0	0.625	0.470	0.477	0.365	0.112	451.4	169.0	63.2	0.045
25.1	0.635	0.435	0.461	0.349	0.112	430.1	160.7	60.0	0.05c
27.1	0.642	0.442	0.448	0.337	0.111	413.4	154.1	57.4	0.057
28.1	0.648	0.433	0.439	0.328	0.111	401.1	149.3	55.5	0.250
29.1	0.647	0.435	0.440	0.330	0.111	403.1	150,1	55.9	0.058
30.1	0.660	0.415	0.421	0.310	0.110	376.8	139.8	51.9	0.061
31.2	0.664	0.409	0.415	0.304	0-110	364.9	136.7	30.7	0.001
32.4	0.677	0.390	0.395	0.286	0.110	343.5	126.9	46.8	0.064
?3.3	0.681	0.385	0.359	0.280	0.109	335.8	123.9	45.7	0.065
<u>. 35 ~2</u>	0.687	0.376	O.BEL.	0.271	0-109	<u> </u>	119.5	44.0	<u> </u>
36.5	0.693	0.366	0.370	0.262	0.109	311.3 285.6	104.6	42.0 38.3	0.068 0.071
39.0	0,703	0.352	0.356	0.248	0.108	292.9	107.3	39.3	0.070
40.0	Ö.713	0.338	0.342	0.234	0.108	274.8	100.4	30.7	0.073
41.0	0.717	0,333	0.337	0.229	0.108	267.7	97.7	35.6	0.074
42.0	0.725	0.322	0.325	0.218	0.107	253.7	92.3	33.6	<u> </u>
43.0	0.730	0.315	0.319	0.211	0.107	245.0	89.0	32.3	C.076
44.0	0.733	0.311	0.315	0.207	0.107	239.9	87.1	31.6	0.079
45.0	0.739	0.302	0.305	<u> </u>	9.197	224.0	92.6	79.9	0.091
47.0	0.739	0.302	0.305	0.198	0.107	22A.0	82.6	29.9	0.081
48 • 1 49 • ()	0.742	0.298	0.301	0.194	0.107	223.0	80.6	29.2 28.4	0.082
30.1	0.749	0.294	0.297	0.190	0.107	21A.0 211.3	78.7	27.5	0.043
PAUSE		PLUTTER	V1676	A + 103	0.100	61143	1044	2143	04003
F 40 3	. KGAUT								

Figure D- 5. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALDNA TS. LAT: 39-27.2 NJ LINE: 118-29.8 N 18.781975 1480997

 Γ_{i}

Figure D-6. Ocean optical properties (sheet 1 of 2).

SANTA	CATALINA	A 15. 1 1430PDT	AT 33-	27.2 N	LONG	118-29.0	W		
Z (M)	T(1/M)	ALPHA!	AL PHA	SCAT	ABS	V5F3	VSF6	VSF12	THTA#284
0.9	0,776	0.254	0.256	0.151	0.104		60.0	21.4	0.097
1.9	0.768	0.264	0.267	0.161	0.106		64.7	23.1	0.093
-}: }-	-(,750	0.274	0.277	0.171	0.104	193.4	69.5	24,9	0.089
	0.760	0.274	0.277	0.171	0.106		69.5	24.4	0.089
4.0	0.747	0.291	0.294	0.188	0.107		77.5	24.0	0.084
5.1	0.735	0.336	0.312	0.205	0.107		85.8	- 21-1	<u> </u>
7.0	0.715	0.385	0.339	0.231	0.108		99.1	36.2	0.073
8.0	0.642	0.444	0.450	0.280	0.109	335.A 415.5	123.9	45.7	0.065
9.6	0.617	0.483	0.489	0.377	0.112		175.8	65.0	0.057 J.U5:
10.0	0.587	0.533	0.541	0.427	0.114	538.9	203.5	76.8	0.049
11.0	0.561	0.578	0.506	0.471	0.115		228.4	80.7	4.040
12.6	0.550	0.397	0.606	0.490	Ö. 116	601.5	239.4	91.0	0.045
13.1	0.573	0.557	0.565	0.451	0.115	572.2	216.7	92.0	0.048
14.1	0.583	0.540	0.548	0.434	0.114		207.3	78.3	0.049
14.0	0.590	0.528	0.536	0.422	0.114	548,3 531.9	200.8	78.3	0.030
15.5	0.591	0.527	0.534	0.420	0.114	529.6	199.8	75.4	0.050
16.A	0.593	0.523	0.531	0.417	0.114	525.0	198.0	74.6	0.050
17.5	0.596	0.517	0.524	0.411	0.113	515.8	194.4	73.2	0.050
14.5	0.599	0.512	0.519	0.404	0.113	509.0	191.7	72.1	0.051
19.8	0.403	0.507	0.514	0.401	0.113	502.2	189.0	71.1	0.051
50.3	0.604	0.504	0.311	0.398	0.113	497.6	187.2	70.4	0.032
21.A	0.612	0.491	0.498	0.385	0.113	479.8	180.2	67.6	0.053
22.5	0.635	0.455	0.461	0.349	0.112	430.1	160.7	60.0	0.050
73.5	0.648	0.433	0.439	0.324	0.111	401.1	149.3	55.5	0.056
24 . A	2.666	0.404	0.409	0.299	0.110	361.0	133.7	49.5	0.062
74.0	0.673	0.396	0.401	0.291	0.110	351.2	129.9	44.0	0.003
27.5	0.684	0.380	0.385	0.276	0.139		121.7	44.8	0.000
20.5	0.688	0.375	0.379	0.270	0.1.79	327.5	118.8	43.7	0.066
30.3	7.648	0.375	0.379	0.270	0.100	322.5	118.8	43.7	1000 COV
31.0	0.588	0.375	0.379	0.270	0.109	322.5	118.0	43.7	0.000
32.0	0.689	0.372	0.376	0.267	0.109	318.7	117.3	43.2	0.007
32.4	0.698	0.359	0.370	0.255	0.109	311.3	114.4	42.0	0.000
30.4	0.705	0.349	0.353	0.245	0.109	302.0	110.9	40.7	0.064
						299.2 274.8	105.9	38.8	0.071
34.7	0.713	0.326	0.342	0.234	0.104	258.9	100 4 94.3	36.7	
30.1	0.725	0.322	0.325	0.218	0.107	253.7	92.3	33.6	0.075 0.076
39.1	0.735				0.107		85.8	31.1	0.079
41.0	<u> </u>	0.308	0.312	0.205	<u> </u>	236.5 228.0	62.6	3/1-6	5.681
42.1	0.739	0.302	0.305	0.198	0.107	228.0	82.6	20.0	0.081
43.0	0.742	0.298	0.301	0.194	0.107		80.6		0.042
44.11	Ö.743	0.294	0.297	0.190	0.107	223.0 218.0	78.7	20.2	n.083
45.2	0.747	0.291	0.294	0.188	0.107	214.6	77.5	28.0	0.084
46.0	0.747	0.291	0.294	0.188	0.107	214.6	77.5	28.0	0.08
47.0	0.747	0.291	0.244	0.188	0.107	214.6	77.5	28.0	0.084
44.0	0.750	0.287	0.290	0.184	0.106	209.7	75.6	27.2	0.085
49.0	0.750	0.287	0.290	0.184	0.106	209.7	75.6	27.2	0.085
50.0	0.752	0.285	0.288	0.101	0.106	206.4	74.4	26.6	0.066

Figure D-6. Ocean optical properties (sheet 2 of 2).

DICEAN OPTICAL PROPERTIES - 520 NM SANTA CATALDIA IS. LAT: 33-27.2 N; LING: 118-29.0 N 14481173 1952907

Figure D-7. Ocean optical properties (sheet $1 \,$ of 2).

	CATALINA		.AT 33-	27.2 N	LONG 1	18-29.0	<i></i>	·	
2(4)	T(L/M)	AL PHA	ALPHA	SCAT	AB 5	.V5.F.3	VSF6	VSF12	.IHIA#2
1.0	0.756	0.280	0.282	0.176	0.106	199.0	71.9	25.9	0.08
4.0	0.756	0.280	0.282	0.176	0.106	199.9	71.9	25.9	0.08
5.9	- 8 - 733	0.311	0.111	9.207	0.107	239.9	17.1_	11.6	0.07
6.0		0.319	0.323	0.215	0.107	250.2	91.0	33.1	0.07
7.0	0.697	0.360	0.365	0.256	0.109	303.9	111.6	40.9	0.06
<u> </u>	9.619	0.480	0.400	0.374	<u></u>	<u> </u>	<u> 174 al</u>		0.05
9.2	0.501	0.690	0.701	0.583	0.119	763.3	293.2	112.6	0.04
10.0	0.506	0.690 0.681	0.692	0.583	0.119	763.3 749.2	293.2 287.5	112.6	0.04
- 13:X-	0.376	0.552	0.360	0.445	0.114	565.0	213.9	60.9	0.04
13.1	0.549	0.512	0.519	0.406	0.113	509.0	191.7	72.1	0.05
14.1	0.615	0.486	0.493	7.380	0.112	473.2	177.6	66.6	
15.1	0.433	0.458	0.464	0.352	0.112	434.4	162.3	60.6	0.05
16.1	0.048	0.433	0.439	0.328	0.111	401.1	149.3	55.5	0.05
17.0	0.663	0.411	0.416	0.306	0.110	370.8	117.5	41.0	0.04
[R . ()	0.676	0.392	0.397	0.287	0,110	345.4	127.6	47.1	0.064
19.0	0.692	0.368	0.372	0.263	0.109	313.1	115.1	42.3	0.06
30.0	0.694	0.355	0.369	<u> 0.260</u>	0.100	3(19.4	113.7	<u> </u>	0.061
51.0	0.711	0.341	0.345	0.237	0.108	278.4	101.6	37.2	0.07
\$2.0	0.723	0.325	0.328	0.221	0.108	257.2	93.7	34.1	0.07
23.0	- 0 - 727 0 - 731	0.319	0.323	0.215	0.107	250.2 243.3	91.0	33-1	0.07
25.1	0.727	0.319	0.323	0.215	0.107	250.2	91.0	33.1	0.07
25.0	7.722	0.326	0.330	0.222	0.108	258.9	94.3	34.4	0.079
27.1	0.738	0.303	0.306	0.199	0.107	229.7	A3.2	30.1	0.08
2 7 4 0	0.741	0.299	0.302	0.196	0.107	224.6	H1.3	24.4	0.08
29.2	0.750	0.287	0.290	0.184	0.106	209.7	75.6	27.2	0.08
30.1	0.756	0.280	0.282	0.176	0.106	199.9	71.9	25.9	0.08
31.1	0.770	0.268	0.264	0.158	0.106	177.5	63.5	22.7	0.09
12.	7.775	0.255	0.258	9.152	2.103	169.7	60.5	ع دلي	0.090
33.3	0.781	0.248	0.250	0.145	0.105	160.4	57.1	20.3	0.099
34.A 34.0	0.784 0.782	0.244 0.246	0.246	0.141	0.105	155.8 158.9	55.4 56.5	19.7	0.10
37.7	0.787	11.239	1.241	0.136	0.103	129.7	53.1	14.8	0.10
34,0	0.791	0.234	0.236	0.131	0.105	143.7	50.9	18.0	0.10
39,1	0.798	0.225	0.227	0.123	0.105	133.3	47.0	10.0	0.11
40,0	0.800	0.223	0.225	0.120	0.104	130.4	45.9	10.2	0.11
42.0	0.400	0.223	0.225	0.120	0.104	130.4	45.9	16.2	0.112
42.5	0.795	2.728	0.230	0.175	0.105	136.3	48.1	17.0	0.10
43.0	0.796	0.228	0.230	0.125	0.105	136.3	48.1	17.0	0.10
46.0	0.794	0.230	0.232	0.128	0.105	139.3	49.2	17.4	0.100
48.0	0.794	0.230	0.232	0.131	0.105	130.3	49.2	17.4	<u> </u>
49.0	0.791				0.103	143.7	30.9	14.0	0.10
90.0 PAUSE	0.791	0.234 PLUTTER	0.236	0.131	0.105	143.7	50.9	18.0	0.100

Figure D-7. Ocean optical properties (aheet 2 of 2).

GCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LDMG: 118-29.0 N 19JUN1975 0930PDT

Figure D- 8. Ocean optical properties (sheet 1 of 2).

7 (M)									
	T(1/M)	AL PHA	ALPHA	SCAT	284	VSF3	VSF6		THTA + 28/
1.2	0.740	0.301	0.304	0.197	0.107	226.3	81.9	29.6	0.081
2.5	0.744	0.295	0.298	0.192	0.107	219.6	79.4	28.7	0.083
4.0	·) 746	0.293	0.296	0.189	0.107	216.3	78.1	28.2	0.084
5.1	=(.751	0.286	0.289	0.183	0.106	208.0	75.0	27.0	0.085
6.1	0.749	0.289	0.292	0.185	0.106	211.3	76.2	27.5	0.085
7.0	0.743	0.297	0.300	0.193	0.107	221.3	80.0	28.9	0.082
7.2	0.733	0.311	0.315	0.2.7	0.107	239.9	87.1	31.6	0.079
8.1	0.723	0.325	0.328	0.221	0.108	257.2	93.7	34.1	0.076
9.1	0.713	0.338	0.342	0.234	0.108	274.8	100.4	36.7	0.073
10.1	0.643	0.366	0.370	0.262	0.104	311.3	114.4	42.0	0.068
11.1	0.648	0.433	0.439	0.328	0.111	401.1	149.3	55.5	0.058
11.9	0.639	0.449	() . 454	0.343	0.111	421.7	157.4	58.7	0.057
13.0	7.635	0.455	0.461	0.349	0.112	430.1	160.7	60.0	0.056
14.0	0.629	0.464	0.470	0.358	0.112	442.9	165.6	61.9	0.055
15.0	0.621	0.477	0.483	0.371	0.112	460.1	172.4	64.5	0.054
18.0	0.624	0.472	0.478	0.366	0.113	453.6	169.9	63.6	0.054
17.0	1.642	0.442	0.448	0.337	0.111	413.4	154.1	57.4	0.057
18.2	0.659	0.417	0.422	0.312	0.110	378.8	140.6	52.2.	0.060
19.1	0.684	0.380	0.385	0.276		330.1	121.7	44.8	0.065
20.7	0.713	0.338	0.342	0.234 0.214	0.108 C.107	274.8	100.4	36.7	0.073
23.1	0.741	0.318				248.5	90.3	32.8	0.077
			0.302	0.198	0.107	234.6	81.3	29.4	0.082
24.1	0.753	0.294 0.283	0.297 0.286	0.190 0.180	0.107	218.0 204.8	78.7 73.7	28.4 26.5	0.083
25.B	0.746	0.293	0.296	0.189	0.107	216.3	78.1	28.2	
29.0	0.753	0.283	0.286	0.180	0.106	204.8	73.7	26.5	0.084
30.0	0.753	0.283	0.286	0.180	0.106	204.8	73.7	26.5	0.086
33.1	0.755	7.281	0.284	0.177	0.106	201.5	72.5	26.1	0.087
35.0	0.755	0.281	0.284	0.177	0.106	201.5	72.5	26.1	0.087
38.0	~(.755	0.281	0.284	0.177	0.106	201.5	72.5	26.1	
38.0	0.752	0.265	0.288	0.lei	0.106	206.4	14.4	26.8	0.087
40.0	0.760	0.274	0.277	0.171	0.106	193.4	69.5	24.9	0.089
41.3	0.765	0.268	0.271	0.165	0.105	185.4	66.5	23.8	0.091
43.0	-1.757	0.265	0.268	0.162	0.108	182.2	65.3	23.4	() . () 42
46.0	1.775	0.255	0.258	0.152	0.105	169.7	60.5	21.6	0.096
	0.775	0.255	0.258	0.152	0.105	169.7	60.5	21.6	0.096
48.0		1.246	0.249	0.144	0.105	158.9	56.5	20.1	0.100
48.0	17.102			0.144	0.105	158.9	56.5	20.1	
	0.782 -(.782	0.246	0.249	0.444	0 4 1 0 2			ZUal	0.100

Figure D- 8. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LING: 118-29.0 N 19JUN1975 1030PDT

Figure D-9. Ocean optical properties (sheet 1 of 2).

	C .TAL INA 1975 1		LAT 33-	27.2 N	LONG	118-29.0	₩		·
2(11)	T(1/M)	AL PHA	ALPHA	SCAT	ABS	VSF3	VSF6	V\$F12	THTA#284
1.0	A 752	0.285	0.288	0.181	0.104		74.4	26.8	0.086
3.0	-(.73 0	0.315	0.319	0.211	0.107		89.0	32.3	0.078
<u>4 a.Q.</u>	<u> </u>	0.375	0.379	0.270	<u> </u>		118.8	43.7	0.066
5.2	0.657	0.420	0.425	0.315	0.110		142.2	52.8	0.060
5.8	0.693	0.366	0.370	0.565	0.109		114.4	42.0	0.068
<u></u>	0.574	0.395	0.400	0.530	<u> </u>		1294	<u> 47.7</u>	0.063
8.0 9.0	0.637 0.625	0.452	0.458	0.346	0.111		159.0	59.3	0.056
10.2	0.615	0.486	0.493	0.380	0.112		169.0 177.6	63.2	0.055
- 11.5 -	0.509	0.496	0.503	0.390	0.113		182.8	68.7	0.053
13.0	0.591	0.527	0.534	0.420	0.114		199.8	75.4	0.052
14.0	0.588			0.425	0.114		202.5	76.5	0.049
14.8	0.578	0.548	0.539	0.442	0.114	560.2	212.0	80.2	0.048
16.2	0.405	0.502	0.509	0.396	0.113		186.3	70.0	0.052
16.8	0.607	0.499	0.506	0.393	0.113		184.6	69.3	0.052
1 P.()	0.644	(1.439	0.445	0.334	0.111		152.5	50.8	0.058
19.0	A 652	0.427	0.433	0.322	0.111		146.1	54.3	0.059
20.1	0.569	0.402	0.407	0.297	0.110	359.0	132.9	49.2	0.062
21.0	0.679	0.388	0.392	0.283	0.109		125.4	46.3	0.064
22.0	0.584	0.380	0.385	0.276	0.109		121.7	44.8	0.065
23,0	0.715	0.336	0.339	0.231	0.108	271.3	99.1	36.2	0.073
24.0	0.740	0.301	0.304	0.197	0.107		e1.9	29.6	0.041
25.0) . 744	0.295	0.298	0.192	0.107		79.4	29.7	0.083
24.5	0.739	0.302	0.305	0.198	0.107		92.6	29.9.	0.081
27.5	0.728	0.318	0.321	0.214	0.107		90.3	32.8	0.077
2A.A	-(.746	0.293	0.296	0.189	0.107		78.1	28.2	0.084
30.0	0.737	0.305	0.308	0.201	0.107		93.3	30.4.	0.080
31.0	0.722	0.326	0.330	0.222	0.108		94.3	34.4	0.075
32.0	0.741 0.751	0.299	0.302	0.196	0.107 0.106		81.3 75.0	29.4	0.082
33.0	0.746	0.293	0.296	0.189	0.107		78.1	27.0	0.085
36.0	0.752	0.285	0.288	0.181	0.106		74.4	26.8	0.084
37.2	0.754	0.282	0.285	0.179	0.106		73.1	26.3	0.087
3A.3	-1.750	0.276	0.278	0.172	0.106		70.1	25.2	0.089
38.8	4.772	0.259	0.262	0.156	0.106		62.3	22.3	0.095
40.0	0.768	0.264	765.0	0.161	0.106	180.7	64.7	23.1	0.093
41.0	0.757	7.27€	0.281	0.175	0.106	198.3	71.3	25.6	0.088
42.1	-(.771	0.260	0.263	0.157	0.106	175.9	62.9	22.5	0.094
43.7	1.766	0.267	0.269	0.164	0.106		65.9	23.6	0.092
45,0	0.7A1	0.248	0.250	0.145	0.105		57.1	20.3	0.099
47.5	0.781	0.248	0.250	0.145	0.105		57.1	20.3	0.099
48.5	-1.773	0.258	0.260	0.155	0.106		61.7	55.0	0.095
49.5	7. 78H	0.238	0.240	0.135	0.105		52.5	18.6	0.104
50.0	-(.788	0.238	0.240	0.135	0.105	148.2	52.5	18.6	0.104
PAUSE	READY	<u>PLOTTER</u>							

Figure D- 9. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LINE: 110-29.0 N 19JUN1975 1130PDT

Figure D-10. Ocean optical properties (sheet 1 of 2).

19JUN1	C JALINA	15. 130PDT	LAT 33-	27.2 N	LONG	118-29.0	H		
Z (M)	T (1/M)	AL PHA I	ALPHA	SC AT	ABS	V5F3	V5#6	VSF12	THTA#28A
2.5	1.740	0.301	0.304	0.197	0.107		81.9	29.6	180.0
3.1	-(.728	0.318	0.321	0.214	0.107		90.3	32.8	0.077
3,3	1.707	0.347	0.351	0.242	0,108	285.6	104.6	30.3	0.071
3.0	-(.692 /.663	0.368	0.372	0.263	0.109		115.1	42.3	0.067
4.9 5.2	~(.653	0.426	0.431	0.321	0.111	390.9	145.3	51.0 54.0	0.061
5.5	7.605	Ö.502	8 309	0.396	0.113	495.4	186.3	70.0	0.052
6.4	-1.630	0.462	0.469	0.357	0.112	440.7	164.8	61.6	0.055
7.0	4.640	0.447	0.453	0.342	0.111	419.7	156.6	58.4	0.057
4.6	0.648	0.433	0.439	0.328	0.111	401.1	149.3	55.5	0.058
10.2	1.644	0.439	0.445	0.334	0.111	409.3	152.5	56.8	0.058
11.0	-1.625	0.470	0.477	0.365	0.112	451.4	169,0	63.2	0.055
13.2	11.614	0.488	0.494	0.382	0.113	475.4	178.4	66.9	0.053
15.0	-(.612	0.491	0.498	0.385	0.113	479.8	180.2	67.6	0.053
15.5	4605 ~(.599	0.502	0.519	0.396	0.113	49#.4 509.0	186.3	70.0	0.052
18.2	A 592	0.525	0.533	0.419	0.114	527.3	198.9	75.0	0.050
20.1	-1.587	0.533	0.541	0.427	0.114	538.9	203.5	76.8	0.049
22.0	7,599	0.512	0.519	0.406	0.113	509.0	191.7	72.1	0.031
23.4	0.637	0.452	0.458	0.346	0.111	425.9	159.0	59.3	0.056
24.3	0.651	0.429	0.434	0.324	0.111	394.9	146.9	54.6	0.059
25.2	0.674	0.395	0.400	0.290	0.110		129.1	47.7	0.063
26.1	0.688	0.375	0.379	0.270	0.109	322.5	118.8	43.7	0.066
27.1	0,697	0.360	0.365	0.256	0.109	303.9	111.6	40.9	0,069
28,0	7.705 0.717	0.349	0.353	0.245	0.108	289.2	103.9	38.8	0.071
29.5 31.2	0.727	0.319	0.323	0.215	0.10/	250.2	97.7 91.0	35.6 33.1	0.074
33.5	0.736	0.307	0.310	0.203	0.107	234.0	83.1	30.8	0.080
37.B	0.732	0.313	0.316	0.209	0.107	241.6	87.7	31.8	0.078
34.0	0.742	0.298	0.301	0.194	0.107	223.0	80.6	29.2	0.082
40.1	0.737	0.305	0.308	0.201	0.107	231.4	83.8	30.4	0.080
41.0	0.743	0.297	0.300	0.193	0.107	221.3	80.0	28.9	0.082
42.0	0.738	0.303	0.306	0.199	0,107	229.7	83.2	30.1 29.2	0.081
43.0	0.742	0.298	0.301	0.194	0.107	223.0	80.6		0.082
44 - ()	0.751	0.286	0.289	0.183	0.106	208.0	75.0	27.0	0.085
45.0	0.756	0.280	0.282	0.176	0.106	211.3	71.9	<u> </u>	0.097
46 • 0 47 • 0	0.728	0.318	0.292	0.214	0.107	248.5	90.3	27.5 32.8	0.085
48.0	0.745	0.294	0.297	0.190	0.107	218.0	78.7	28.4	0.083
49.0	0.752	0.285	0.288	ő. ÍÁÍ	0.106	206.4	74.4	26.8	0.086
50.0	0.756	085.0	0.282	0.176	0.106	199.9	71.9	25.9	0.087
	READY	PLQ TTER							

Figure D-10. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALDNA IS. LAT' 39-27.2 N; LDNG: 110-29.0 N 19.JML975 1250FBT

Figure D-11. Ocean optical properties (sheet 1 of 2).

was the same of th

	T(1/M)	ALPHA!	ALPHA	SCAT	ARS	VSF3	VSFA	V\$512	THTA#25A
Z(M)	0.678	0.389	0.394	0.264	0.110	341.5	126.1	46.6	U.064
2.0	0.673	0.396	0.401	0.291	0.110	351.2	129.9	48.0	0.063
3.0	0.666	0.406	0.412	0.302	0.110	364.9	135.2	50.1	0.062
4.0	0.641	0.445	0.451	0.840	0.111	417.6	155.7	58.1	0.057
5.0	0.635	0.455	0.461	0.349	0.112	430.1	160.7	60.0	0.056
6.9	0.620	0.478	0.485	0.372	0,112	462.3	173.3	54.9	0.054
A.0	0.617	0.483	0.489	0.377	0.112	468.8	175.8	65.9	0.053
10.0	0.600	0.510	0.517	0.404	0.113	506.7	190.8	71.8	0.051
11.9	0.590	0.528	0.536	0.432	0.114	531.9	200.4	75.7	0.050
12.5	0.583	0.540	0.548	0.434	0.114	548.3	207.3	78.3	0.049
13.3	0.595 0.586	0.518	0.526	0.412	0.113	518.1	195.3	73.6	0.050
17.1	0.599	0.512	0.519	0.429	0.113	541.3 509.0	204.5 191.7	77.2	0.049
14.2	0.629	0.464	0.470	0.358	0.112	442.9	165.6	61.9	0.055
19.0	0.643	0.441	0.447	0.336	0.111	411.3	_153.3	57.1	0.058
20.0	0.655	0.423	0.428	0.318	0.111	386.8	143.7	53.4	0.060
21.0	0.658	0.418	0.424	0.313	0.110	380.8	141.4	52.5	0.060
23.0	0.666	0.406	0.412	0.302	0.110	364.9	135.2	50.1	0.062
24.0	0.663	0.411	0.416	0.306	0.110	370.8	137.5	51.0	0.061
26.0	0.671	0.399	0.404	0.294	0.110	355.1	131.4	48.6	0.063
27.1	0.564	<u> 0.409</u>	0.415	0.304	<u> </u>	368.9	136.7	50.7	0.061
24.0	0.667	0.405	0.410	0.300	0.110	362.9	134.4	49.8	0.062
29.0	0.665	0.408	0.413	0.303	0.110	366.9	136.0	50.4	0.061
30.2	0.689	0.372	0.392	0.257	0.109	339.6 318.7	125.4	<u> 46.3</u> 43.2	0.064
33.2	0.707	0.347	0.351	0.242	0.108	285.6	104.6	38.3	0.071
35.0	0.703	0.352	0.356	0.248	0.108	292.9	107.3	39.3	0.070
36.5	0.703	0.352	0.356	0.248	0.108	292.9	107.3	39.3	0.070
37.2	0.704	0.351	0.355	0.246	0.108	291.0	106.6	39.1	0.070
37.5	0.708	0.345	0.349	0.241	G.108	283.8	103.9	38.0	0.071
39.8	0.712	0.340	0.343	0.235	0.108	276.6	101.1	36.9	0.072
41.0	0.728	0.318	0.321	0.214	0.107	248.5	90.3	32.8	0.077
42.0	0.737	0.305	0.308	0.201	0,107	231.4	83.8	30.4	0.080
43.2	0.746	0.293	0.296	0.189	0.107	216.3	78.1	28.2	0.084
-	0.755	0.281	0.284	0.177	0.106	201.5	72.5	26.1	0.087
47.5	0.754	0.287 0.282	0.285	0.179	0.106	203.1	75.6 73.1	27.2	U.085 U.087
48.2	0.762	0.272	0.275	0.169	0.106	190.2	68.3	24.5	0.090
	0.766	0.267	0.269	0.164	0.106	18: 8	65.9	23.6	0.092
50.0		PLOTTER							

Figure D-11. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 35-27.2 N; LING: 110-29.0 N 19JUL1979 1420POT

Figure D-12. Ocean optical properties (sheet 1 of 2).

2.1	2.1	2.1	SANTA 19JUL	CATALINA 1975 1	15. 420PDY	LAT 3	3-27.2 N	LONG	118-29.0	W		
3.8	3.8	3.8	7[4]			ALPH	A SCAT	ABS	VSF3	V\$F6		
5.6 0.592 0.525 0.533 0.419 0.114 527.3 198.9 75.0 0.05 7.3 0.578 0.548 0.556 0.442 0.114 560.2 212.0 80.2 0.04 9.1 0.576 0.552 0.560 0.445 0.114 565.0 213.9 80.9 0.04 11.0 0.567 0.567 0.576 0.461 0.115 586.7 222.5 84.3 0.04 12.8 0.568 0.566 0.574 0.499 0.115 584.3 221.5 84.0 0.04 14.7 0.538 0.601 0.410 0.494 0.116 634.1 241.4 91.8 0.04 18.5 0.534 0.628 0.638 0.521 0.117 673.0 256.9 98.0 0.04 18.5 0.518 0.658 0.658 0.550 0.117 673.0 256.9 98.0 0.04 20.5 0.518 0.658	5,6 0.592 0.525 0.533 0.419 0.114 527.3 198.9 75.0 0.050 7.3 0.578 0.548 0.556 0.442 0.114 560.2 212.0 80.2 0.048 9.1 0.576 0.556 0.560 0.445 0.114 565.0 213.9 80.9 0.048 11.0 0.567 0.566 0.574 0.459 0.115 584.3 221.5 84.0 0.047 14.7 0.548 0.601 0.610 0.494 0.116 634.1 241.4 91.8 0.044 16.6 0.534 0.601 0.610 0.494 0.117 673.0 256.9 98.0 0.043 18.5 0.524 0.646 0.657 0.539 0.117 699.6 267.6 102.3 0.042 20.5 0.518 0.658 0.668 0.550 0.118 715.9 274.2 104.9 0.042 22.3 0.495 0.7	5,6 0,592 0,525 0,533 0,419 0,114 527.3 198.9 75.0 0,050 7.3 0,578 0,548 0,556 0,442 0,114 560.2 212.0 80.2 0,048 9.1 0,576 0,556 0,560 0,445 0,114 565.0 213.9 80.9 0,048 11.0 0,567 0,566 0,574 0,459 0,115 584.3 221.5 84.0 0,047 14.7 0,586 0,566 0,574 0,459 0,115 584.3 221.5 84.0 0,047 16.6 0,534 0,610 0,610 0,494 0,116 634.1 241.4 91.8 0,043 18.5 0,524 0,646 0,657 0,399 0,117 699.6 267.6 102.3 0,042 20.5 0,518 0,658 0,668 0,550 0,118 715.9 274.2 104.9 0,042 22.3 0,495 0,7										
7.3	7.3	7.3	3.6	0.590							75.7	
9.1	9.1	9.1	- 2,0 -	0.398		<u> </u>	0.443					
11.0 0.567 0.567 0.576 0.461 0.115 586.7 222.5 84.3 0.04 12.8 0.568 0.566 0.574 0.459 0.115 584.3 221.5 84.0 0.04 14.7 0.548 0.601 0.610 0.494 0.116 634.1 241.4 91.8 0.04 16.6 0.534 0.628 0.638 0.521 0.117 673.0 256.9 98.0 0.04 18.5 0.524 0.646 0.657 0.539 0.117 699.6 267.6 102.3 0.04 20.5 0.518 0.658 0.668 0.550 0.118 715.9 274.2 104.9 0.04 22.3 0.495 0.704 0.716 0.596 0.118 715.9 274.2 104.9 0.04 22.3 0.500 0.692 0.703 0.585 0.119 766.2 294.4 13.1 0.04 24.2 0.519 0.656 0.666 0.548 0.118 713.2 273.1 104.5 0.04 28.2 0.519 0.656 0.666 0.548 0.118 713.2 273.1 104.5 0.04 28.0 0.551 0.595 0.604 0.634 0.517 0.117 667.7 254.8 97.2 0.06 30.1 0.551 0.595 0.604 0.489 0.116 626.5 238.4 90.6 0.04 32.0 0.556 0.586 0.595 0.480 0.116 626.5 238.4 90.6 0.04 33.9 0.579 0.547 0.555 0.480 0.116 557.8 211.0 79.8 0.04 33.9 0.596 0.535 0.543 0.429 0.116 557.8 211.0 79.8 0.04 37.7 0.609 0.496 0.503 0.390 0.112 486.5 182.8 68.7 0.05 43.5 0.621 0.477 0.483 0.489 0.377 0.112 466.5 182.8 68.7 0.05 43.5 0.621 0.477 0.483 0.371 0.112 466.5 175.8 65.9 0.05 43.5 0.622 0.475 0.481 0.369 0.112 460.1 172.4 64.6 0.05 47.5 0.630 0.462 0.469 0.377 0.112 460.1 172.4 64.6 0.05 47.5 0.630 0.462 0.469 0.377 0.112 460.1 172.4 64.6 0.05 47.5 0.630 0.462 0.469 0.357 0.112 460.1 172.4 64.6 0.05 47.5 0.630 0.462 0.468 0.337 0.112 460.1 172.4 64.6 0.05 47.5 0.662 0.442 0.448 0.337 0.112 460.1 172.4 64.6 0.05 47.5 0.662 0.442 0.448 0.337 0.112 460.1 172.4 64.6 0.05 47.5 0.662 0.442 0.448 0.337 0.112 460.1 172.4 64.6 0.05 47.5 0.662 0.442 0.448 0.337 0.112 460.1 172.4 64.6 0.05 47.5 0.662 0.442 0.448 0.337 0.112 460.1 172.4 64.6 0.05	11.0 0.567 0.567 0.576 0.461 0.115 586.7 222.5 84.3 0.047 12.8 0.568 0.566 0.574 0.459 0.115 584.3 221.5 84.0 0.047 14.7 0.548 0.601 0.610 0.494 0.116 634.1 241.4 91.8 0.048 16.6 0.534 0.628 0.638 0.521 0.117 673.0 256.9 98.0 0.043 18.5 0.524 0.646 0.657 0.339 0.117 699.6 267.6 102.3 0.042 20.5 0.518 0.658 0.668 0.550 0.118 715.9 274.2 104.9 0.042 22.3 0.495 0.704 0.716 0.596 0.119 783.4 301.3 115.8 0.040 24.3 0.500 0.692 0.703 0.585 0.119 783.4 301.3 115.8 0.040 24.3 0.519 0.656 0.666 0.548 0.118 713.2 273.1 104.5 0.042 28.0 0.519 0.656 0.666 0.548 0.118 713.2 273.1 104.5 0.042 28.0 0.551 0.595 0.604 0.517 0.117 667.7 254.8 97.2 0.063 30.1 0.551 0.595 0.604 0.489 0.116 626.5 238.4 90.6 0.045 32.0 0.556 0.586 0.595 0.480 0.116 613.9 233.3 88.6 0.046 33.9 0.579 0.567 0.555 0.440 0.116 613.9 233.3 88.6 0.046 33.9 0.579 0.567 0.555 0.440 0.116 557.8 211.0 79.8 0.048 35.9 0.586 0.535 0.543 0.424 0.116 557.8 211.0 79.8 0.048 37.7 0.609 0.496 0.503 0.390 0.112 466.5 182.8 68.7 0.052 39.8 0.610 0.496 0.503 0.390 0.112 466.5 182.8 68.7 0.052 41.7 0.617 0.483 0.489 0.377 0.112 466.5 182.8 68.7 0.052 41.7 0.617 0.483 0.489 0.377 0.112 460.1 172.4 64.6 0.055 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.055 43.5 0.622 0.475 0.481 0.369 0.112 460.1 172.4 64.6 0.055 47.5 0.630 0.462 0.469 0.357 0.112 460.1 172.4 64.6 0.055 47.5 0.630 0.462 0.469 0.357 0.112 460.1 172.4 64.6 0.055 47.5 0.662 0.442 0.448 0.337 0.112 460.1 172.4 64.6 0.055	11.0										
12.8	12.8	12.8										
14.7	14.7	14.7										
19.5 0.524 0.646 0.657 0.539 0.117 099.6 267.6 102.3 0.04 20.5 0.518 0.658 0.668 0.550 0.118 715.9 274.2 104.9 0.04 22.3 0.495 0.704 0.716 0.596 0.119 783.4 301.3 115.8 0.04 22.3 0.500 0.692 0.703 0.585 0.119 766.2 294.4 113.1 0.04 24.3 0.500 0.692 0.703 0.585 0.119 766.2 294.4 113.1 0.04 26.2 0.519 0.656 0.666 0.548 0.118 713.2 273.1 104.5 0.04 28.0 0.536 0.624 0.634 0.517 0.117 667.7 254.8 97.2 0.06 310.1 0.551 0.595 0.604 0.489 0.116 626.5 238.4 90.5 0.04 32.0 0.556 0.586 0.595 0.480 0.116 613.9 233.3 88.6 0.04 33.9 0.579 0.547 0.555 0.480 0.116 557.8 211.0 79.8 0.04 35.9 0.596 0.535 0.543 0.429 0.116 557.8 211.0 79.8 0.04 37.7 0.609 0.496 0.503 0.390 0.112 486.5 182.8 68.7 0.05 39.8 0.610 0.496 0.503 0.390 0.112 486.5 182.8 68.7 0.05 43.5 0.617 0.483 0.489 0.377 0.112 466.3 175.8 65.9 0.05 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.05 47.5 0.630 0.462 0.469 0.357 0.112 460.1 172.4 64.6 0.05 47.5 0.630 0.462 0.469 0.357 0.112 460.1 172.4 64.6 0.05 47.5 0.630 0.462 0.469 0.357 0.112 460.1 172.4 64.6 0.05 49.4 0.642 0.442 0.448 0.337 0.112 460.1 172.4 64.6 0.05 49.4 0.642 0.442 0.448 0.337 0.112 460.1 172.4 64.6 0.05 49.4 0.642 0.442 0.448 0.337 0.112 460.1 172.4 64.6 0.05 49.4 0.642 0.442 0.448 0.337 0.112 460.1 172.4 64.6 0.05 49.4 0.642 0.442 0.448 0.337 0.112 460.1 172.4 64.6 0.05	18.5	18.5										
20.5 0.518 0.658 0.668 0.550 0.118 715.9 274.2 104.9 0.04 22.3 0.495 0.704 0.716 0.596 0.119 783.4 301.3 115.8 0.104 24.3 0.500 0.692 0.703 0.585 0.119 766.2 294.4 113.1 0.04 26.2 0.519 0.656 0.666 0.548 0.118 713.2 273.1 104.5 0.04 28.0 0.536 0.624 0.634 0.517 0.117 667.7 254.8 97.2 10.04 30.1 0.551 0.595 0.604 0.469 0.116 626.5 238.4 90.6 0.04 32.0 0.556 0.595 0.604 0.469 0.116 626.5 238.4 90.6 0.04 32.0 0.556 0.595 0.400 0.116 613.9 233.3 88.6 0.04 33.9 0.379 0.547 0.855 0.400 0.116 557.8 211.0 79.8 0.04 33.9 0.379 0.547 0.855 0.400 0.116 557.8 211.0 79.8 0.04 33.9 0.500 0.496 0.503 0.390 0.112 557.8 211.0 79.8 0.04 37.7 0.609 0.496 0.503 0.390 0.112 486.5 182.8 68.7 0.05 39.8 0.617 0.483 0.489 0.377 0.112 460.3 175.8 69.9 0.05 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.05 43.5 0.622 0.475 0.481 0.369 0.112 460.1 172.4 64.6 0.05 47.6 0.630 0.462 0.469 0.357 0.112 460.1 172.4 64.6 0.05 47.6 0.630 0.462 0.468 0.337 0.112 460.1 172.4 64.6 0.05 47.6 0.630 0.462 0.468 0.337 0.112 460.1 172.4 64.6 0.05 47.6 0.630 0.462 0.468 0.337 0.112 460.1 172.4 64.6 0.05 47.6 0.630 0.462 0.468 0.337 0.112 460.1 172.4 64.6 0.05 47.6 0.630 0.462 0.468 0.337 0.112 460.1 172.4 64.8 61.6 0.05 47.6 0.630 0.462 0.468 0.337 0.112 460.1 172.4 64.8 61.6 0.05 47.5 0.630 0.462 0.468 0.337 0.112 450.1 172.4 64.8 61.6 0.05	20.5 0.518 0.658 0.668 0.550 0.118 715.9 274.2 104.9 0.042 22.3 0.495 0.704 0.716 0.396 0.119 783.4 301.3 115.8 0.040 24.3 0.500 0.692 0.703 0.585 0.119 76.0 294.4 113.1 0.040 26.2 0.519 0.656 0.666 0.548 0.118 713.2 273.1 104.5 0.042 28.0 0.536 0.551 0.595 0.604 0.517 0.117 667.7 254.8 97.2 0.045 30.1 0.551 0.595 0.604 0.489 0.116 626.5 238.4 90.6 0.045 32.0 0.556 0.586 0.595 0.480 0.116 613.9 233.3 88.6 0.045 33.9 0.579 0.556 0.595 0.480 0.116 613.9 233.3 88.6 0.046 33.9 0.579 0.556 0.595 0.480 0.116 557.8 211.0 79.8 0.048 35.9 0.596 0.535 0.543 0.429 0.114 541.3 204.5 77.2 0.049 37.7 0.609 0.496 0.503 0.390 0.115 486.5 182.8 68.7 0.052 39.6 0.601 0.498 0.388 0.113 484.2 181.9 68.3 0.082 41.7 0.617 0.483 0.489 0.377 0.112 466.5 182.8 68.7 0.052 41.7 0.617 0.483 0.489 0.377 0.112 468.3 175.8 69.9 0.053 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.054 47.6 0.622 0.475 0.481 0.369 0.112 460.1 172.4 64.6 0.054 47.6 0.622 0.475 0.481 0.369 0.112 460.1 172.4 64.6 0.054 47.6 0.630 0.462 0.469 0.357 0.112 460.1 172.4 64.6 0.055 49.4 0.642 0.448 0.337 0.112 460.7 164.8 61.6 0.055 49.4 0.662 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.055 49.4 0.662 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.055 49.4 0.662 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.055 49.4 0.662 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.055 49.4 0.662 0.462 0.468 0.337 0.111 413.4 154.1 57.4 0.605	20.5 0.518 0.658 0.668 0.550 0.118 715.9 274.2 104.9 0.042 22.3 0.495 0.704 0.716 0.596 0.119 783.4 301.3 115.8 0.040 24.3 0.500 0.692 0.703 0.585 0.119 766.2 294.4 113.1 0.040 26.2 0.519 0.656 0.666 0.548 0.118 713.2 273.1 104.5 0.042 28.0 0.536 0.551 0.595 0.604 0.517 0.117 667.7 254.8 97.2 11.04.3 30.1 0.551 0.595 0.604 0.489 0.116 626.5 238.4 90.6 0.045 32.0 0.556 0.596 0.595 0.480 0.116 613.9 233.3 88.6 0.046 33.9 0.579 0.556 0.595 0.480 0.116 613.9 233.3 88.6 0.046 33.9 0.579 0.556 0.595 0.480 0.116 557.8 211.0 79.8 0.048 35.9 0.596 0.535 0.543 0.429 0.114 541.3 204.5 77.2 0.049 37.7 0.609 0.496 0.503 0.390 0.112 486.5 182.8 68.7 0.052 39.6 0.617 0.483 0.489 0.388 0.113 484.2 181.9 68.3 0.052 41.7 0.617 0.483 0.489 0.377 0.112 468.3 175.8 69.9 0.053 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.054 45.6 0.622 0.475 0.481 0.369 0.112 460.1 172.4 64.6 0.054 47.5 0.630 0.462 0.469 0.357 0.112 460.1 172.4 64.6 0.055 47.5 0.630 0.462 0.469 0.357 0.112 460.1 172.4 64.6 0.055 49.6 0.622 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.055 49.6 0.662 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.055 49.6 0.662 0.462 0.468 0.337 0.111 413.4 154.1 57.4 0.055 49.6 0.672 0.398 0.403 0.293 0.110 353.1 130.6 48.3 0.063						0.11	7 673.0	256,9	98.0	0.043
22.3	22.3	22.3									102.3	0.042
26.2	26.2	26.2										0.042
26.2	26.2	26.2										
28.0	28.0	28.0										
30.1 0.551 0.595 0.604 0.469 0.116 626.5 238.4 90.6 0.04 32.0 0.556 0.586 0.595 0.480 0.116 613.9 233.3 88.6 0.046 33.9 0.579 0.547 0.555 0.460 0.114 557.8 211.0 79.8 0.04 35.9 0.566 0.535 0.543 0.429 0.114 541.3 204.5 77.2 0.04 37.7 0.609 0.496 0.503 0.390 0.113 486.5 182.8 68.7 0.05 39.8 0.610 0.494 0.501 0.385 0.113 484.2 181.9 68.3 0.05 41.7 0.617 0.483 0.489 0.377 0.112 468.8 175.8 65.9 0.05 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.05 43.6 0.622 0.475 0.481 0.369 0.112 467.9 171.6 64.2 0.05 47.5 0.630 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.05 47.5 0.630 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.05 49.4 0.642 0.448 0.337 0.112 460.7 164.8 61.6 0.05 49.4 0.642 0.448 0.337 0.112 413.4 154.1 57.4 0.05	\$0.1 0.551 0.595 0.604 0.489 0.116 626.5 238.4 90.6 0.045 32.0 0.556 0.586 0.595 0.480 0.116 613.9 233.3 88.6 0.046 33.9 0.579 0.557 0.555 0.460 0.114 557.8 211.0 79.8 0.048 35.9 0.586 0.535 0.543 0.429 0.114 541.3 204.5 77.2 0.048 37.7 0.609 0.496 0.503 0.390 0.110 486.5 182.8 68.7 0.052 39.8 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.02 41.7 0.617 0.483 0.489 0.377 0.112 468.8 175.8 65.9 0.053 43.5 0.621 0.477 0.483 0.371 0.112 468.8 175.8 65.9 0.053 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.054 45.6 0.622 0.475 0.481 0.369 0.112 460.1 172.4 64.6 0.054 47.5 0.630 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.054 49.4 0.642 0.442 0.448 0.337 0.112 467.7 164.8 61.6 0.054 49.4 0.642 0.442 0.448 0.337 0.111 413.4 154.1 57.4 0.057 51.5 0.672 0.398 0.403 0.293 0.110 353.1 130.6 48.3 0.063	\$0.1 0.551 0.595 0.604 0.489 0.116 626.5 238.4 90.6 0.045 32.0 0.556 0.586 0.595 0.480 0.116 613.9 233.3 88.6 0.046 33.9 0.579 0.557 0.555 0.440 0.114 557.8 211.0 79.8 0.048 35.9 0.586 0.535 0.543 0.429 0.114 541.3 204.5 77.2 0.049 37.7 0.609 0.496 0.503 0.390 0.112 486.5 182.8 68.7 0.052 39.8 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 41.7 0.617 0.483 0.489 0.377 0.112 468.8 175.8 65.9 0.053 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.054 45.6 0.622 0.475 0.481 0.369 0.112 460.1 172.4 64.6 0.054 47.5 0.630 0.462 0.469 0.357 0.112 460.1 172.4 64.6 0.054 47.5 0.630 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.054 49.4 0.642 0.442 0.448 0.337 0.112 440.7 164.8 61.6 0.055 51.5 0.672 0.398 0.403 0.293 0.110 353.1 130.6 48.3 0.063										
37.0 0.556 0.586 0.595 0.480 0.116 613.9 233.3 88.6 0.046	37.0 0.556 0.586 0.595 0.480 0.116 613.9 233.3 88.6 0.046	37.0 0.556 0.586 0.595 0.480 0.116 613.9 233.3 88.6 0.046 33.9 0.379 0.547 0.555 0.440 0.114 557.8 211.0 79.8 0.048 35.9 0.586 0.535 0.543 0.429 0.114 541.3 204.5 77.2 0.049 37.7 0.609 0.496 0.503 0.390 0.113 486.5 182.8 68.7 0.052 39.8 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 41.7 0.617 0.483 0.489 0.377 0.112 468.8 175.8 65.9 0.053 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.054 45.6 0.622 0.475 0.481 0.369 0.112 457.9 171.6 64.2 0.054 47.5 0.630 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.054 49.4 0.642 0.442 0.448 0.337 0.112 440.7 164.8 61.6 0.055 49.4 0.672 0.398 0.403 0.293 0.110 353.1 130.6 48.3 0.063										
33.9 0.579 0.547 0.555 0.440 0.114 557.8 211.0 79.8 0.04 35.9 0.586 0.535 0.543 0.429 0.114 541.3 204.5 77.2 0.04 37.7 0.609 0.496 0.503 0.390 0.113 486.5 182.8 68.7 0.05 39.8 0.610 0.494 0.501 0.388 0.413 484.2 181.9 68.3 0.05 41.7 0.617 0.483 0.489 0.377 0.112 468.3 175.8 65.9 0.05 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.05 47.5 0.630 0.462 0.469 0.357 0.112 457.9 171.6 64.6 0.05 47.5 0.630 0.462 0.469 0.357 0.112 457.9 171.6 64.6 0.05 49.4 0.642 0.449	33.9 0.579 0.547 0.555 0.440 0.114 557.8 211.0 79.8 0.048 35.9 0.586 0.535 0.543 0.424 0.114 541.3 204.5 77.2 0.049 37.7 0.609 0.494 0.503 0.390 0.113 486.5 182.8 68.7 0.052 39.8 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 41.7 0.617 0.483 0.489 0.377 0.112 466.3 175.8 65.9 0.053 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.054 47.5 0.630 0.463 0.469 0.357 0.112 457.9 171.6 64.2 0.054 49.4 0.662 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.054 47.5 0.630 0.	33.9 0.579 0.547 0.555 0.440 0.114 557.8 211.0 79.8 0.048 35.9 0.586 0.535 0.543 0.429 0.114 541.3 204.5 77.2 0.049 37.7 0.609 0.496 0.503 0.390 0.113 486.5 182.8 68.7 0.052 39.8 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 41.7 0.617 0.483 0.489 0.377 0.112 466.3 175.8 65.9 0.053 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.054 47.5 0.630 0.463 0.357 0.112 457.9 171.6 64.2 0.054 49.4 0.630 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.055 49.5 0.630 0.462 0.										
35.9 0.586 0.535 0.543 0.429 0.114 541.3 204.5 77.2 0.04 37.7 0.609 0.496 0.503 0.390 0.113 486.5 182.8 68.7 0.05 39.8 0.610 0.493 0.489 0.377 0.112 466.3 175.8 65.9 0.05 41.7 0.617 0.483 0.489 0.377 0.112 466.3 175.8 65.9 0.05 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.05 43.6 0.622 0.475 0.481 0.369 0.112 457.9 171.6 64.2 0.05 47.5 0.630 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.05 49.4 0.642 0.442 0.448 0.337 0.112 460.7 164.8 61.6 0.05 51.5 0.672 0.398 0.403 0.293 0.110 353.1 130.6 48.3 0.06	35.9 0.586 0.535 0.543 0.424 0.114 541.3 204.5 77.2 0.049 37.7 0.609 0.496 0.503 0.390 0.113 486.5 182.8 68.7 0.052 39.8 0.610 0.483 0.489 0.388 0.113 484.2 181.9 68.3 0.052 41.7 0.617 0.483 0.489 0.377 0.112 460.1 172.4 64.6 0.053 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.054 47.5 0.630 0.462 0.469 0.357 0.112 457.9 171.6 64.2 0.054 49.4 0.630 0.462 0.469 0.357 0.112 440.7 164.8 61.6 0.055 49.4 0.642 0.448 0.337 0.112 440.7 164.8 61.6 0.057 51.5 0.672 0.398 0.	35.9 0.586 0.535 0.543 0.429 0.114 541.3 204.5 77.2 0.049 37.7 0.609 0.496 0.503 0.390 0.113 486.5 182.8 68.7 0.052 39.8 0.610 0.483 0.489 0.386 0.113 484.2 181.9 68.3 0.052 41.7 0.617 0.483 0.489 0.371 0.112 460.1 172.4 64.6 0.053 43.5 0.621 0.477 0.483 0.371 0.112 460.1 172.4 64.6 0.054 47.5 0.630 0.462 0.469 0.357 0.112 457.9 171.6 64.2 0.054 49.4 0.630 0.462 0.469 0.357 0.112 460.7 164.8 61.6 0.055 49.4 0.642 0.469 0.357 0.112 460.7 164.8 61.6 0.055 49.5 0.662 0.462 0.										
37.7	37.7	37.7										
39.6	39.6	39.6										
41.7	41.7	41.7		0.610	0.494							
45.6 0.622 0.475 0.481 0.369 0.112 4.57.9 171.6 64.2 0.05 47.5 0.630 0.462 0.469 0.357 0.112 440.7 164.8 61.6 0.05 49.4 0.642 0.442 0.448 0.337 0.111 413.4 154.1 57.4 0.05 51.5 0.672 0.398 0.403 0.293 0.110 353.1 130.6 48.3 0.06	41.6 0.622 0.475 0.481 0.369 0.112 457.9 171.6 64.2 0.054 47.5 0.630 0.462 0.469 0.357 0.112 440.7 164.8 61.6 0.055 49.4 0.642 0.442 0.448 0.337 0.111 413.4 154.1 57.4 0.057 51.5 0.672 0.398 0.403 0.293 0.110 353.1 130.6 48.3 0.063	41.6 0.622 0.475 0.481 0.369 0.112 457.9 171,6 64.2 0.054 47.5 0.630 0.462 0.469 0.357 0.112 440.7 164.8 61.6 0.055 49.4 0.642 0.442 0.448 0.337 0.111 413.4 154.1 57.4 0.057 51.5 0.672 0.398 0.403 0.293 0.110 353.1 130.6 48.3 0.063		0.617	0.483	0.48	9 0.377	0.112	2 468.3	175.8		
47.5	47.5	47.5										0.054
49.4 0.642 0.442 0.448 0.337 0.111 413.4 154.1 57.4 0.05 51.5 0.672 0.398 0.403 0.293 0.110 353.1 130.6 48.3 0.06	49.4	49.4										
51.5 0.672 0.398 0.403 0.293 0.110 353.1 130.6 48.3 0.06	51.5 0.672 0.396 0.403 0.293 0.110 353.1 130.6 48,3 0.063	51.5 0.672 0.396 0.403 0.293 0.110 353.1 130.6 48.3 0.063										
PAGE READ! PEGITER							0.273	V - 1 1 (33301	130,0	7013	0.003
				ita ata manaki		برواميوا.		. <u></u>		4 Walland and Alberta (1984)		
											WHEN PARTY IS NOT THE PARTY IN	

Figure D-12. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LINE: 110-29.0 N 19.3311975 1430901

Figure D-13. Ocean optical properties (sheet 1 of 2).

2(M)	T11/M1	ALPHA	ALPHA	SCAT	ABS	V5F3	VSR6	VSF12	THTA # 2 H
1.0	0.657	0.420	0.425	0.315	0.110	382.8	142.2		
2.0	0.667	0.405	0.410	0.300	0.110	362.9	134.4	49.8	0.062
3.0	0,688	0.375	9.379	0.270	0.109	322.5	118.8	43,7	0.066
5.1	0.707	0.345	0.351	0.242	0.108	283.6	104.6	36.3	0.071 0.071
6.i	0.712	0.340	0.343	0.235	0.108	276.6	101.1	36.9	0.072
A.I	0.697	0.360	0.363	- 8 - 256 ··	0.109	303.9	Tiři 6	40.0	า บังก ังใ
9.1	0.686	0.377	586.0	0.273	0.109	326.3	120.2	44.3	0.066
9.5	0.664	0.409	0.415	0.304	0.110	368.9	136.7	50.7	0.061
<u> </u>	0.629	0.484	0:470-		0.112	442.9	165.6	61.9	0,055
11.2	0.599	0.512	0.519	0.406	0.113	509.0	191.7	72.1	0.051
13.8	0,595	0.518	0.426	0.412	0.113	518.1	195.3	73.6	0.050
14.3	0.588	0.532	3.534	0.425	0.11%	536.6	202.6	76.5	0.045
15.0	0.588	0.532	0.539	0.425	0.114	536.6	202.6	76.5	0.049
17.0	<u> 0.604</u>	0.502	0.509	0.396	0.113	445.4	186.3	70.0	0.052
19.0	0.609	0.496	0.403	0.390	0.113	486.5	132.8	68.7	0.052
20.2	0.625	0.470	0.077	0.365 0.328	0.112	491.4	169.0	63.2	0.055
- <u>66</u>	0.698	0.421	0,439		0.111	401.1	169.4	33.5	0,056
25.1	0.665	0.408	0.413	0.303	0.111	384.8 366.9	142.9 136.0	50.4	0.060
24.0	0.681	0.384	0.389		0.109	335.8	123.9	45.7	0.065
24.2	0.696	377	0.382			322.2.9 22 324.3	120.2		0.000 7.070.5
29.0	0.687	0.376	0.381	0.271	U . 109	324.4	119.5	44.0	
30.2	0.689	0.373	0.378	0.269	0.109	320.6	118.0	43.4	0.066
11.5	0.694	0.365	0.369	0.260	0.109	309.4	113.7	4) 13	0.068
33.H	0.703	0.352	0.356	0.248	0.108	292.9	107.3	39.3	0.070
35.3	0.706	0.348	0.352	0.244	0.108	287.4	105.2	38.5	0.071
37.3	0.715	0.336	0.359	0.231	0.108	271.3	99.1	36.2	0.073
3A.7	0.770	0.329	0.332	0.225	0.108	262.4	95.7	34.9	0.075
39.5	9.725	0.322	0.325	0.218	0.107	253.7	97.1		0.076
40.7	0.727	0.319	0.323	0.215	0.107	250.2	91.0	33.1	0.077
41.2	0.732	0.313	0.316	0.209	0.107	241.6	87.7	31.0	0.078
45.2		0.298	-8 :301 -	0.194	- 0.107 0.107	233.1	84.5 80.6	30.6	0.080
45.0	0.749	0.289	0.301	0.185	0.106	211.3	16.2	29.2	0.082
47.9	0.743	0.297	0.300	0.193	0.107	221.3	90.0	28.9	0.083 0.082
48.	0.737	.306	0.309	205.0	0.107	233.1	84.5	30.6	0.080
49.2	0.747	0.291	0.294	0.188	0.107	214.6	77.5	28.0	0.084
50.0	0.752	0.285	0.288	0.181	0.106	206.4	74.4	26.8	0.086
PAUS	E READY	PLUTER							

Figure D-13. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT' 33-27.2 N; LINE: 110-29.0 N 19-321-275 1507907

Figure D-14. Ocean optical properties (sheet 1 of 2).

7 (M)	T(1/M)	AL PHA	AL PHA	SCAT	485	VSF3	VSPA	VSFLZ	THTA#28
2.6	0.561	0.578	0.586	0.471	0.115	601.5	228.4	86.7 86.2	0.046
4.1	0.554	0.590	0.599	0.483	0.116	618.9		89.4	0.045
- 5.7 "	0.550	-0.397	0.606	0.490	7.116	629.0	235.3	91.0	0.045
7.5	0.554	0.590	0.599	0.483	0.116	619.9	235.3	89.4	0.045
9.5	0.558	0.583	0.592	1).476	0.115	608,9	231.3	87.6	0.046
11.5	0.556	0.586	0.595	0.460	0.116	613.9	733.	88.6	0.046
13.0	0.559 0.555	0.581 0.588	0.590	0.475	0.115	606.4 ulb.4	230.4 234.3	87.5 89.0	0.046
TA.7			0.541	0.924	- 0.11 7 -	57A.3	237.1	98.9	0.043
14.9	0.499	0.696	0.707	0.589	0.119	771.9	296.7	114.0	0.040
20.0	f] , 49 53 44	0.720	0.738	0.618	0.120	415.7	314.4	121.1	0.039
22.6	0.499	() 404	0.705	77,587	0.199	769.0	745.5	133.5	U.040
24.7	0.517	6.659	0.670	0.552	0.118	718.7	275.3	105.4	0.042
24.4	0.531	0.633	0.643	0.526	0.117	640.9	260.1	79.7	0.043
74.5	0.56	0.895	0.612	0.096	0.115	646.1	242.4	42 · 3	0.00
30,5	(i) telef	(1,595	() • h(1#	() • # A 4	0.115	624.5	238.4	90.6	9.045
37.5	-0.561	0.578 76.562	. 0.586 0.570	0.671	0.115	0.001 45	228.4		0.045
36.4	0.481	0.535	0.543	0.029	0.115	579.4 541.3	204.5	77.2	0.049
38.3	() 444	0.522	0.529	0.416	0.114	524.7	191.1	74.3	
40.1	0,507	1,749		··· 303	0.113	400 u	184.6	··· 64.3	0.052
42.2	0.617	0.403	0.489	0.377	0.112	464.8	175.8	65.9	0.053
4.4	0.625	0.470	0.477	0.365	0.112	481.4	144.0	63.2	0.055
44.0	().64()	0.447	0.453	0.342	0.111	419.7	156.6	58.4	0.057
48.1	O. for 7	0.435	0.440	0.330	0.111	403+1	150.1	55.9	0.058
50.0 PAUS	0.654 E 9EAUY	PLUTTER	0.430	0.319	0.111	344.4	144.5	53,7	0,059
	aphin an il religioni i bar such file an il religioni i bar such file antifilia pel la religion = 0 -100 ti				annon anno de la describida de la composição de la compos) - doud - e - parendado - e -			10 to Change 1 and

Figure 1)-14. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LING: 118-29.0 N 19-JUL1975 1550PDT

Figure D-15. Ocean optical properties (sheet 1 of 2).

1.6	-5 226.4 85.9 0.046 -4 234.3 89.0 0.046 -0 229.4 87.1 0.046 -9 231.3 87.8 0.046 -0 227.4 86.3 0.046 -0 229.4 87.1 0.046 -0 237.3 90.2 0.045 -7 249.6 95.1 0.044 -4 280.8 107.6 0.041 -8 289.8 111.2 0.040 -8 284.2 108.9 0.041 -7 279.7 107.2 0.041 -7 279.7 107.2 0.041 -7 274.2 104.9 0.042 -1 253.8 96.8 0.044 -5 230.3 89.8 0.044 -5 230.3 89.8 0.045 -6 214.8 81.3 0.048 -6 194.4 73.2 0.050 -7 276.7 107.5 0.048 -7 277.5 94.3 0.048 -7 277.5 94.3 0.044 -7 277.5 94.3 0.044 -7 277.5 94.3 0.045 -7 277.5 94.3 0.045 -7 277.5 94.3 0.045 -7 277.5 94.3 0.045 -7 277.5 94.3 0.045 -7 277.5 94.3 0.045 -7 277.5 94.3 0.045 -7 277.5 94.3 0.045 -7 277.5 94.3 0.045
2.4 0.555 0.588 0.597 0.481 0.116 616.4 234.3 89.0 0.2.8 0.560 0.579 0.588 0.473 0.115 604.0 229.4 87.1 0.4.3 0.562 0.576 0.585 0.469 0.115 599.0 227.4 86.3 0.50 0.558 0.583 0.592 0.476 0.115 509.0 227.4 86.3 0.50 0.558 0.583 0.592 0.476 0.115 608.9 231.3 87.8 0.50 0.556 0.556 0.583 0.592 0.476 0.115 608.9 231.3 87.8 0.50 0.556 0.556 0.558 0.473 0.115 604.0 229.4 87.1 0.50 0.579 0.588 0.473 0.115 604.0 229.4 87.1 0.50 0.579 0.588 0.473 0.115 604.0 229.4 87.1 0.50 0.579 0.552 0.594 0.603 0.487 0.116 624.0 237.3 90.2 0.51 0.50 0.512 0.669 0.625 0.508 0.116 654.7 249.6 95.1 0.51 0.50 0.615 0.625 0.508 0.116 654.7 249.6 95.1 0.51 0.51 0.504 0.684 0.695 0.577 0.119 754.8 289.8 111.2 0.51 0.504 0.684 0.695 0.577 0.119 754.8 289.8 111.2 0.51 0.504 0.684 0.695 0.577 0.119 754.8 289.8 111.2 0.51 0.504 0.684 0.695 0.577 0.118 740.8 284.2 108.9 0.51 0.50 0.51 0.504 0.686 0.550 0.118 740.8 284.2 108.9 0.51 0.50 0.51 0.50 0.658 0.668 0.550 0.118 729.7 279.7 107.2 0.50 0.51 0.554 0.658 0.668 0.550 0.118 715.9 274.2 104.9 0.52 0.554 0.562 0.632 0.515 0.118 715.9 274.2 104.9 0.52 0.554 0.562 0.632 0.515 0.117 665.1 253.8 96.8 0.52 0.52 0.553 0.592 0.601 0.485 0.116 624.5 236.3 89.8 0.52 0.50 0.575 0.554 0.562 0.447 0.115 567.4 214.8 81.3 0.52 0.7 0.596 0.517 0.524 0.447 0.115 567.4 214.8 81.3 0.52 0.7 0.596 0.486 0.493 0.380 0.112 473.2 177.6 66.0 0.33 5.5 0.631 0.486 0.493 0.380 0.112 473.2 177.6 66.0 0.35 5.5 0.631 0.486 0.493 0.380 0.112 473.2 177.6 66.0 0.35 5.5 0.631 0.461 0.467 0.355 0.112 438.6 164.0 61.3 0.37 1 0.655 0.430 0.430 0.436 0.325 0.111 307.0 147.7 54.9 0.37 1 0.656 0.408 0.413 0.303 0.110 384.8 142.9 53.1 0.40.9 0.657 0.420 0.427 0.316 0.111 384.8 142.9 53.1 0.40.9 0.657 0.420 0.427 0.316 0.111 384.8 142.9 53.1 0.40.9 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.40.9 0.425 0.315 0.110 382.8 142.2 52.8 0.40.9 0.425 0.315 0.110 382.8 142.2 52.8 0.40.9 0.425 0.315 0.110 382.8 142.2 52.8 0.40.9 0.425 0.315 0.110 382.8 142.2 52.8 0.40.9 0.425 0.315 0.110 382.8 142.2 52.8 0.40.9 0.425 0.315 0.110 382.8 142.2 5	.4 234.3 89.0 0.046 .0 229.4 87.1 0.046 .0 227.4 86.3 0.046 .0 231.3 87.8 0.046 .0 237.3 90.2 0.045 .7 249.6 95.1 0.044 .8 289.8 107.6 0.041 .8 289.8 111.2 0.040 .8 284.2 108.9 0.041 .7 279.7 107.2 0.041 .9 274.2 104.9 0.042 .1 253.8 96.8 0.044 .2 247.5 94.3 0.045 .3 247.5 94.3 0.045 .4 214.8 81.3 0.048 .4 194.4 73.2 0.050 .4 194.4 73.2 0.053 .4 194.4 73.2 0.053
2.8	0 229.4 87.1 0.046 0 227.4 86.3 0.046 9 231.3 87.8 0.046 0 229.4 87.1 0.046 0 237.3 90.2 0.045 7 249.6 95.1 0.044 4 280.8 107.6 0.041 8 289.8 111.2 0.040 8 284.2 108.9 0.041 9 279.7 107.2 0.041 9 279.7 107.2 0.041 9 279.7 107.2 0.044 1 253.8 96.8 0.044 2 247.5 94.3 0.046 5 230.3 89.8 0.045 6 214.8 81.3 0.048 1 194.4 73.2 0.050 2 177.6 66.6 0.053
4.3	0 227.4 86.3 0.046 9 231.3 87.8 0.046 0 229.4 87.1 0.046 0 237.3 90.2 0.045 7 249.6 95.1 0.044 4 280.8 107.6 0.041 8 289.8 111.2 0.040 8 284.2 108.9 0.041 7 279.7 107.2 0.041 7 279.7 107.2 0.041 9 274.2 104.9 0.042 1 253.8 96.8 0.044 5 247.5 94.3 0.044 5 230.3 89.8 0.045 4 214.8 81.3 0.048 6 194.4 73.2 0.053 2 177.6 66.6 0.053
6.0 0.558 0.583 0.592 0.476 0.115 608.9 231.3 87.8 0.87.1 0.560 0.579 0.588 0.473 0.115 604.0 229.4 87.1 0.97.7 0.552 0.579 0.603 0.487 0.116 624.0 237.3 90.2 0.11.5 0.504 0.615 0.625 0.508 0.116 654.7 249.6 95.1 0.95.1 0.669 0.669 0.562 0.118 732.4 280.8 107.6 0.15.1 0.669 0.6680 0.562 0.118 732.4 280.8 111.2 0.17.0 0.509 0.675 0.686 0.567 0.119 754.8 289.8 111.2 0.17.0 0.509 0.675 0.686 0.567 0.119 754.8 289.8 111.2 0.17.0 0.509 0.667 0.678 0.560 0.118 715.9 779.7 107.2 0.20 0.518 0.658 0.568 0.550 0.118 715.9 279.7 709.7 <	.9 231.3 87.8 0.046 .0 229.4 87.1 0.046 .0 237.3 90.2 0.045 .7 249.6 95.1 0.044 .8 289.8 107.6 0.041 .8 289.8 111.2 0.040 .8 284.2 108.9 0.041 .7 279.7 107.2 0.041 .9 274.2 104.9 0.042 .1 253.8 96.8 0.044 .5 247.5 94.3 0.044 .5 230.3 89.8 0.045 .6 214.8 81.3 0.048 .6 194.4 73.2 0.050 .7 177.6 66.6 0.053
9.7 0.552 0.594 0.603 0.487 0.116 624.0 237.3 90.2 0. 11.5 0.541 0.615 0.625 0.508 0.116 654.7 249.6 95.1 0. 13.4 0.512 0.669 5.680 0.562 0.118 732.4 280.8 107.6 0. 15.1 0.504 0.684 0.695 0.577 0.119 754.8 289.8 111.2 0. 17.0 0.509 0.675 0.686 0.567 0.118 740.8 284.2 108.9 0. 18.7 0.513 0.667 0.678 0.560 0.118 729.7 279.7 107.2 0. 20.6 0.518 0.658 0.668 0.550 0.118 715.9 274.2 104.9 0. 22.4 0.537 0.622 0.632 0.515 0.117 665.1 253.8 96.8 0. 24.3 0.543 0.661 0.621 0.504 0.116 649.5 247.5 94.3 0. 24.3 0.543 0.561 0.621 0.504 0.116 649.5 247.5 94.3 0. 28.0 0.575 0.554 0.562 0.447 0.115 567.4 214.8 81.3 0. 29.7 0.596 0.517 0.524 0.447 0.115 567.4 214.8 81.3 0. 31.7 0.615 0.486 0.493 0.380 0.112 473.2 177.6 66.0 0. 35.5 0.623 0.473 0.460 0.368 0.112 473.2 177.6 66.0 0. 35.5 0.623 0.473 0.460 0.368 0.112 473.2 177.6 66.0 0. 35.5 0.631 0.461 0.467 0.355 0.112 438.6 164.0 61.3 0. 37.1 0.650 0.430 0.436 0.325 0.111 397.0 147.7 54.9 0. 37.1 0.655 0.408 0.413 0.303 0.110 386.9 136.0 50.4 0. 40.9 0.656 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0. 42.3 0.665 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0. 42.3 0.665 0.421 0.427 0.315 0.110 382.8 142.2 52.8 0.	0 237.3 90.2 0.045 7 249.6 95.1 0.044 4 280.8 107.6 0.041 8 284.2 108.9 0.041 7 279.7 107.2 0.041 9 274.2 104.9 0.042 1 253.8 96.8 0.044 5 230.3 89.8 0.045 6 214.8 81.3 0.048 6 194.4 73.2 0.050 1 77.6 66.6 0.053
11.5	.7 249.6 95.1 0.044 .4 280.8 107.6 0.041 .8 289.8 111.2 0.040 .8 284.2 108.9 0.041 .7 279.7 107.2 0.041 .9 274.2 104.9 0.042 .1 253.8 96.8 0.044 .5 247.5 94.3 0.044 .5 230.3 89.8 0.045 .6 214.8 81.3 0.048 .7 279.7 107.2 0.053 .8 1.3 0.048 .8 1.3 0.048 .8 1.4 4 73.2 0.050 .8 177.6 66.6 0.053
13.4	.4 280.8 107.6 0.041 .8 289.8 111.2 0.040 .8 284.2 108.9 0.041 .7 279.7 107.2 0.041 .9 274.2 104.9 0.042 .1 253.8 96.8 0.044 .5 247.5 94.3 0.044 .5 230.3 89.8 0.045 .4 214.8 81.3 0.048 .4 194.4 73.2 0.050 .2 177.6 66.6 0.053
15.1 0.504 0.684 0.695 0.577 0.119 754.8 289.8 111.2 0.17.0 0.509 0.675 0.686 0.567 0.118 740.8 284.2 108.9 0.18.7 0.513 0.667 0.678 0.560 0.118 729.7 279.7 107.2 0.20.6 0.518 0.658 0.658 0.550 0.118 715.9 274.2 104.9 0.22.4 0.537 0.622 0.632 0.515 0.117 665.1 253.8 96.8 0.22.4 0.537 0.622 0.632 0.515 0.116 649.5 247.5 94.3 0.24.3 0.543 0.611 0.621 0.504 0.116 649.5 247.5 94.3 0.24.2 0.401 0.442 0.116 621.5 230.3 89.8 0.22.4 0.555 0.552 0.504 0.116 621.5 230.3 89.8 0.22.4 0.0565 0.556 0.562 0.447 0.115 567.4 214.8 81.3 0.22.4	.8 289.8 111.2 0.040 .8 284.2 108.9 0.041 .7 279.7 107.2 0.041 .9 274.2 104.9 0.042 .1 253.8 96.8 0.044 .5 247.5 94.3 0.045 .5 230.3 89.8 0.045 .4 214.8 81.3 0.048 .4 194.4 73.2 0.050 .2 177.6 66.6 0.053
17.0 0.509 0.675 0.686 0.567 0.113 740.8 284.2 108.9 0.12.7 0.513 0.667 0.678 0.560 0.118 729.7 279.7 107.2 0.20.6 0.518 0.658 0.668 0.550 0.118 715.9 274.2 104.9 0.22.4 0.537 0.622 0.632 0.515 0.117 665.1 253.8 96.8 0.24.3 0.543 0.6611 0.621 0.504 0.116 649.5 247.5 94.3 0.24.3 0.543 0.5611 0.621 0.504 0.116 649.5 247.5 94.3 0.24.2 0.553 0.592 0.601 0.445 0.116 621.5 230.3 89.8 0.28.0 0.575 0.554 0.562 0.447 0.115 567.4 214.8 81.3 0.29.7 0.596 0.517 0.524 0.411 0.113 515.8 194.4 73.2 0.31.7 0.615 0.486 0.493 0.380 0.112 473.2 177.6 66.6 0.33.5 0.623 0.473 0.460 0.368 0.112 473.2 177.6 66.6 0.35.5 0.623 0.473 0.460 0.368 0.112 473.2 177.6 66.6 0.35.5 0.623 0.473 0.460 0.368 0.112 473.2 177.7 63.9 0.35.5 0.631 0.461 0.467 0.355 0.112 438.6 164.0 61.3 0.37.1 0.655 0.403 0.436 0.325 0.112 438.6 164.0 61.3 0.37.1 0.665 0.408 0.413 0.303 0.110 366.9 136.0 50.4 0.40.9 0.665 0.408 0.413 0.303 0.110 366.9 136.0 50.4 0.40.9 0.665 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0.42.3 0.656 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0.42.3 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.	.8 284.2 108.9 0.041 .7 279.7 107.2 0.041 .9 274.2 104.9 0.042 .1 253.8 96.8 0.044 .5 247.5 94.3 0.046 .5 230.3 89.8 0.045 .4 214.8 81.3 0.048 .4 194.4 73.2 0.050 .2 177.6 66.6 0.053
18.7 0.513 0.667 0.678 0.560 0.118 729.7 279.7 107.2 0.20.6 0.518 0.658 0.668 0.550 0.118 715.9 274.2 104.9 0.22.4 0.537 0.622 0.632 0.515 0.117 665.1 253.8 96.8 0.22.4 0.5543 0.611 0.621 0.504 0.116 649.5 247.5 94.3 0.24.2 0.601 0.485 0.116 629.5 236.3 89.8 0.22.2 0.601 0.485 0.116 621.5 236.3 89.8 0.22.2 0.601 0.485 0.116 629.5 247.5 94.3 0.22.2 0.601 0.485 0.116 629.5 236.3 89.8 0.22.2 0.601 0.485 0.116 629.5 236.3 89.8 0.22.2 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 <	.7 279.7 107.2 0.041 .9 274.2 104.9 0.042 .1 253.8 96.8 0.044 .5 247.5 94.3 0.044 .5 230.3 89.8 0.045 .4 214.8 81.3 0.048 .4 194.4 73.2 0.050 .2 177.6 66.6 0.053
20.6	.9 274.2 104.9 0.042 1 253.8 96.8 0.044 .5 247.5 94.3 0.044 .5 230.3 89.8 0.045 .4 214.8 81.3 0.048 .4 194.4 73.2 0.050 .2 177.6 66.6 0.053
22.4 0.537 0.622 0.632 0.515 0.117 665.1 253.8 96.8 0.24.3 0.543 0.611 0.621 0.504 0.116 649.5 247.5 94.3 0.2	1 253.8 96.8 0.044 247.5 94.3 0.044 230.3 89.8 0.045 4 214.8 81.3 0.048 4 194.4 73.2 0.050 2 177.6 66.6 0.053
24.3 0.543 0.611 0.621 0.504 0.116 649.5 247.5 94.3 0.26.2 26.2 0.553 0.592 0.601 0.449 0.116 621.5 230.3 89.8 0.28.0 28.0 0.575 0.556 0.562 0.447 0.115 567.4 214.8 81.3 0.29.7 29.7 0.596 0.517 0.524 0.411 0.113 515.4 194.4 73.2 0.31.7 0.615 0.486 0.493 0.380 0.112 473.2 177.6 66.6 0.33.5 0.623 0.473 0.480 0.368 0.112 455.7 170.7 63.9 0.35.5 0.623 0.443 0.467 0.355 0.112 438.6 164.0 61.3 0.37.1 0.650 0.436 0.435 0.111 397.0 147.7 54.9 0.37.1 0.665 0.408 0.413 0.303 0.111 366.9 136.0 50.4 0.40.9 0.427 0.316	.5 247.5 94.3 0.044 .5 230.3 89.8 0.045 .4 214.8 81.3 0.048 .4 194.4 73.2 0.050 .2 177.6 66.6 0.053
26.2 0.553 0.592 0.601 0.445 0.116 621.5 230.3 89.8 0.28.0 0.575 0.554 0.562 0.447 0.115 567.4 214.8 81.3 0.20.7 0.596 0.517 0.524 0.411 0.113 515.8 194.4 73.2 0.31.7 0.615 0.486 0.493 0.380 0.112 473.2 177.6 66.6 0.35.5 0.623 0.473 0.480 0.368 0.112 475.7 170.7 63.9 0.35.5 0.623 0.473 0.480 0.368 0.112 455.7 170.7 63.9 0.35.5 0.631 0.461 0.467 0.355 0.112 438.6 164.0 61.3 0.37.1 0.650 0.430 0.436 0.325 0.112 438.6 164.0 61.3 0.37.1 0.655 0.408 0.413 0.303 0.110 386.9 136.0 50.4 0.40.9 0.665 0.408 0.413 0.303 0.110 386.9 136.0 50.4 0.40.9 0.656 0.402 0.427 0.316 0.111 384.8 142.9 53.1 0.42.3 0.656 0.421 0.427 0.315 0.111 384.8 142.9 53.1 0.42.3 0.655 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.44.6 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.	.5 230.3 89.8 0.045 .4 214.8 81.3 0.048 .4 194.4 73.2 0.050 .2 177.6 66.6 0.053
28.0 0.575 0.556 0.562 0.447 0.115 567.4 214.8 81.3 0.29.7 29.7 0.596 0.517 0.526 0.411 0.113 515.8 194.4 73.2 0.31.7 31.7 0.615 0.486 0.493 0.380 0.112 473.2 177.6 66.6 0.33.5 33.5 0.623 0.473 0.461 0.467 0.355 0.112 438.6 164.0 61.3 0.37.1 37.1 0.655 0.430 0.436 0.325 0.111 397.0 147.7 54.9 0.39.1 39.1 0.665 0.408 0.413 0.303 0.110 386.9 136.0 50.4 0.40.9 40.9 0.656 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0.42.3 44.6 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.44.2	.4 214.8 81.3 0.048 .4 194.4 73.2 0.050 .2 177.6 66.6 0.053
29.7	A 194,4 73.2 0.050 2 177.6 66.6 0.053
31.7	2 177.6 66.6 0.053
35.5 0.631 0.461 0.467 0.355 0.112 438.6 164.0 61.3 0.37.1 0.650 0.430 0.436 0.325 0.111 397.0 147.7 54.9 0.39.1 0.665 0.408 0.413 0.303 0.110 386.9 136.0 50.4 0.40.9 0.656 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0.42.3 0.656 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0.42.4 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.44.6 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.44.6	
37.1 0.650 0.430 0.436 0.325 0.111 397.0 147.7 54.9 0.391 0.665 0.408 0.413 0.303 0.110 386.9 136.0 50.4 0.40.9 0.656 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0.42.3 0.656 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0.42.3 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.44.6 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.44.6	17 170.7 63.9 U.U54
39.1 0.665 0.408 0.413 0.303 0.110 3A6.9 136.0 50.4 0.40.9 0.656 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0.42.3 0.656 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0.42.6 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.44.6 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.44.6 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.44.6 0.657 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.420 0.425 0.420 0.425 0.420 0.420 0.425 0.420 0.425 0.420 0.420 0.420 0.425 0.420 0.420 0.420 0.425 0.420 0.420 0.420 0.420 0.425 0.420 0	
40.9 0.656 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0.42.3 0.656 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0.42.3 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.44.6 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.44.6 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.44.6 0.657 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.315 0.420 0.425 0.420 0.425 0.315 0.420 0.425 0.420 0.425 0.315 0.420 0.425 0.420 0.425 0.315 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.425 0.420 0.420 0.425 0.420 0.420 0.425 0.420 0	
42.3 0.656 0.421 0.427 0.316 0.111 384.8 142.9 53.1 0.44.6 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.	
44.6 0.657 0.420 0.425 0.315 0.110 382.8 142.2 52.8 0.	the state of the s
PAUSE READY PLOTTER	- 11010 1100

Figure D-15. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LINE: 118-29.0 N 19.00.1975 1634701

Figure D-16. Ocean optical properties (sheet 1 of 2).

2.6	0.562 0.561 0.552 0.552	0.576 0.578 0.594	0.585 0.586 0.603	0.469	0.115	599.0	227.4	86.3	0.04
2.6	0.561 0.552 0.552	0.578	0.586	0.471					
4.0 0.552 0.594 0.603 0.487 0.116 624.0 237.3 90.2 0.0 6.8 0.554 0.552 0.594 0.603 0.487 0.116 624.0 237.3 90.2 0.0 6.8 0.554 0.594 0.606 0.605 0.488 0.116 618.9 235.3 89.4 0.0 68.4 0.554 0.594 0.606 0.615 0.499 0.116 641.8 244.5 93.1 0.0 79.9 0.541 0.615 0.625 0.508 0.116 654.7 249.6 95.1 0.0 11.4 0.535 0.626 0.636 0.519 0.117 670.4 255.9 97.6 0.0 12.7 0.524 0.646 0.657 0.539 0.117 679.6 265.6 102.3 0.0 12.7 0.524 0.646 0.657 0.539 0.117 679.6 265.6 102.3 0.0 114.4 0.535 0.626 0.636 0.577 0.110 754.8 209.8 111.2 0.0 114.4 0.550 0.668 0.695 0.577 0.110 754.8 209.8 111.2 0.0 114.5 0.504 0.684 0.695 0.577 0.110 754.8 209.8 111.2 0.0 114.5 0.504 0.684 0.695 0.577 0.110 754.8 209.8 111.2 0.0 114.5 0.504 0.684 0.653 0.535 0.117 674.8 209.8 111.2 0.0 114.5 0.504 0.684 0.653 0.535 0.117 674.8 209.8 111.2 0.0 114.5 0.504 0.534 0.653 0.535 0.117 675.6 258.0 98.5 0.0 117.5 0.526 0.643 0.653 0.535 0.117 675.6 258.0 98.5 0.0 117.5 0.526 0.636 0.537 0.523 0.117 676.4 255.9 97.6 0.0 117.5 0.506 0.535 0.526 0.636 0.519 0.118 591.6 224.5 85.1 0.506 0.507 0.506 0.597 0.606 0.490 0.116 529.0 239.4 91.0 0.0 224.7 0.550 0.597 0.606 0.490 0.116 529.0 239.4 91.0 0.0 224.7 0.550 0.597 0.606 0.490 0.116 529.0 239.4 91.0 0.0 224.7 0.550 0.598 0.444 0.114 562.6 212.9 80.5 0.0 224.7 0.550 0.598 0.444 0.114 562.6 212.9 80.5 0.0 224.7 0.571 0.550 0.558 0.444 0.114 562.6 212.9 80.5 0.0 224.7 0.571 0.550 0.598 0.444 0.114 562.6 212.9 80.5 0.0 229.3 0.606 0.415 0.421 0.310 0.110 375.8 139.8 51.0 0.0 335.3 0.660 0.415 0.421 0.310 0.110 375.8 139.8 51.0 0.0 335.3 0.660 0.415 0.421 0.310 0.110 375.8 139.8 51.0 0.0 335.3 0.660 0.415 0.421 0.310 0.110 375.8 139.8 51.0 0.0 335.3 0.660 0.415 0.421 0.310 0.110 375.8 139.8 51.0 0.0 335.3 0.660 0.415 0.421 0.310 0.110 375.8 139.8 51.0 0.0 335.3 0.660 0.415 0.421 0.310 0.110 375.8 139.8 51.0 0.0 335.3 0.660 0.415 0.421 0.310 0.110 375.8 139.8 51.0 0.0 335.3 0.660 0.415 0.421 0.310 0.110 375.8 139.8 51.0 0.0 335.3 0.660 0.404 0.409 0.299 0.110 347.3 128.4 47.4 0.0 348.6 0.677 0.399 0.398 0.289 0.110 347.	0.552	0.594	0.603		~ * * * * *	00162			
5.4 0.552 0.594 0.603 0.487 0.116 624.0 237.3 90.2 0.0 6.8 0.554 0.590 0.599 0.483 0.116 618.9 235.3 89.4 0.0 9.9 9.483 0.116 618.9 235.3 89.4 0.0 9.9 9.9 0.599 0.483 0.116 618.9 235.3 89.4 0.0 9.9 9.9 0.541 0.615 0.625 0.508 0.116 654.7 249.6 95.1 0.0 11.4 0.535 0.626 0.636 0.519 0.117 670.4 255.9 97.6 0.0 112.7 0.524 0.646 0.657 0.539 0.117 699.6 267.6 102.3 0.0 114.4 0.504 0.684 0.695 0.577 0.110 754.8 287.5 111.2 0.0 114.4 0.504 0.684 0.695 0.577 0.110 754.8 287.5 111.2 0.0 115.9 0.513 0.667 0.678 0.560 0.118 729.7 279.7 107.2 0.0 17.5 0.526 0.643 0.653 0.535 0.117 694.3 265.5 101.5 0.0 17.9 0.553 0.630 0.539 0.535 0.117 694.3 265.5 101.5 0.0 17.9 0.553 0.656 0.639 0.535 0.117 676.4 255.9 97.6 0.0 223.5 0.626 0.639 0.535 0.117 676.4 255.9 97.6 0.0 223.5 0.626 0.639 0.535 0.117 676.4 255.9 97.6 0.0 223.5 0.550 0.557 0.606 0.490 0.116 629.0 239.4 91.0 0.0 224.5 0.581 0.550 0.557 0.606 0.490 0.116 629.0 239.4 91.0 0.0 224.7 0.550 0.557 0.658 0.444 0.114 562.6 212.9 80.5 0.0 227.8 0.581 0.553 0.551 0.487 0.114 562.6 212.9 80.5 0.0 227.8 0.618 0.481 0.488 0.376 0.112 456.6 175.0 65.6 0.0 330.9 0.624 0.472 0.478 0.366 0.112 453.6 169.9 63.6 0.0 332.3 0.626 0.491 0.447 0.336 0.111 411.3 153.3 57.1 0.0 332.3 0.668 0.491 0.447 0.336 0.111 411.3 153.3 57.1 0.0 332.3 0.668 0.491 0.447 0.336 0.111 411.3 153.3 57.1 0.0 332.3 0.668 0.491 0.447 0.336 0.111 411.3 153.3 57.1 0.0 332.3 0.668 0.491 0.447 0.336 0.111 411.3 153.3 57.1 0.0 332.3 0.668 0.491 0.447 0.336 0.111 411.3 153.3 57.1 0.0 332.3 0.668 0.491 0.497 0.299 0.110 347.3 128.4 47.4 0.0 44.6 0.675 0.399 0.384 0.274 0.109 328.2 121.0 44.6 0.0 44.6 0.677 0.399 0.384 0.274 0.109 328.2 121.0 44.6 0.0 44.6 0.685 0.388 0.279 0.109 333.9 123.2 455.4 0.0 46.6 0.0 46.6 0.685 0.388 0.279 0.109 333.9 123.2 455.4 0.0 56.6 0.109 309.4 113.7 41.8 0.0 56.6 0.694 0.365 0.388 0.279 0.109 339.9 123.2 455.4 0.0 56.6 0.109 309.4 113.7 41.8 0.0 56.6 0.109 309.4 113.7 41.8 0.0 56.6 0.109 309.4 113.7 41.8 0.0 56.6 0.109 309.4 113.7 41.8 0.0 56.6 0.109 309.4 113.7 41.8 0.0 56.6 0.109 309	0.552				0.116				
6.8 0.554 0.590 0.599 0.483 0.116 618.9 235.3 89.4 0.0 8.4 0.546 0.606 0.615 0.499 0.116 641.8 244.5 93.1 0.0 9.9 0.541 0.615 0.625 0.508 0.116 654.7 249.6 95.1 0.0 11.4 0.535 0.626 0.636 0.519 0.117 670.4 255.9 97.6 0.0 12.9 0.524 0.646 0.657 0.539 0.117 699.6 267.6 102.3 0.0 17.4 0.504 0.684 0.695 0.577 0.110 754.8 207.5 111.2 0.0 17.5 0.526 0.643 0.653 0.535 0.117 694.3 265.5 101.5 0.0 17.5 0.526 0.643 0.653 0.535 0.117 675.6 258.0 98.5 0.0 17.9 0.533 0.660 0.639 0.523 0.117 675.6 258.0 98.5 0.0 20.6 0.535 0.626 0.643 0.653 0.535 0.117 675.6 258.0 98.5 0.0 21.9 0.550 0.597 0.606 0.490 0.116 629.0 239.4 91.0 0.0 22.5 0.588 0.571 0.579 0.404 0.115 591.6 224.5 85.1 0.0 22.5 0.588 0.571 0.579 0.404 0.115 591.6 224.5 85.1 0.0 22.6 0.585 0.626 0.488 0.376 0.112 453.6 169.9 0.3 22.7 0.618 0.481 0.488 0.376 0.112 453.6 169.9 0.3 22.3 0.660 0.472 0.478 0.366 0.112 453.6 169.9 0.3 23.3 0.660 0.415 0.421 0.310 0.110 376.4 139.8 51.0 0.0 33.4 0.618 0.481 0.447 0.478 0.366 0.112 453.6 169.9 0.3 34.0 0.660 0.415 0.421 0.310 0.110 376.4 139.8 51.0 0.0 37.0 0.668 0.404 0.407 0.299 0.110 351.2 129.9 48.0 0.0 37.0 0.668 0.404 0.407 0.299 0.110 351.2 129.9 48.0 0.0 37.0 0.668 0.404 0.409 0.299 0.110 376.4 139.8 51.0 0.0 37.0 0.668 0.404 0.409 0.299 0.110 376.4 139.8 51.0 0.0 37.0 0.668 0.404 0.409 0.299 0.110 347.3 178.4 47.4 0.0 44.4 0.675 0.393 0.398 0.289 0.110 347.3 178.4 47.4 0.0 44.4 0.675 0.393 0.398 0.289 0.110 347.3 178.4 47.4 0.0 44.4 0.677 0.685 0.393 0.398 0.289 0.110 347.3 178.4 47.4 0.0 44.4 0.685 0.379 0.384 0.274 0.109 328.2 121.0 44.6 0.0 44.4 0.685 0.399 0.388 0.279 0.109 333.9 123.2 45.4 0.0 46.6 0.685 0.388 0.279 0.109 333.9 123.2 45.4 0.0 47.4 0.685 0.388 0.279 0.109 333.9 123.2 45.4 0.0 47.4 0.685 0.388 0.279 0.109 339.9 123.2 45.4 0.0 47.4 0.685 0.388 0.279 0.109 339.9 123.2 45.4 0.0 47.4 0.685 0.388 0.279 0.109 339.9 123.2 45.4 0.0 47.4 0.685 0.389 0.388 0.279 0.109 339.9 123.2 45.4 0.0 47.4 0.685 0.389 0.389 0.290 0.109 309.4 113.7 4			0.603						
8.4 0.546 0.606 0.615 0.499 0.116 641.8 244.8 93.1 0.0 9.9 0.541 0.615 0.625 0.508 0.116 654.7 249.6 95.1 0.0 11.4 0.535 0.626 0.636 0.519 0.117 670.4 255.9 97.6 0.0 12.9 0.524 0.646 0.657 0.539 0.117 679.6 267.6 102.3 0.0 15.9 0.513 0.667 0.678 0.560 0.118 729.7 279.7 107.2 0.0 17.5 0.526 0.643 0.653 0.535 0.117 675.6 258.0 98.5 0.0 17.1 0.533 0.630 0.639 0.523 0.117 675.6 258.0 98.5 0.0 21.9 0.550 0.597 0.606 0.491 0.116 629.0 239.4 91.0 0.0 22.5 0.551 0.552									0.04
9.9	0.546			0.499					0.04
12.9	0.541	0.615	0.625	0.508					0.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.535	0.626		0.519	0.117	670.4	255.9	97.6	0.04
15.9	0.524	0.646	0.657	0.539	0.117	699.6	267.6	102.3	0.04
17.5		0.584	0.695	0.577	0.110	754.8	289.5	111.5	0.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.667		0.560	0.118	729.7	279.7	107.2	0.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.04
23.5						610.4			U . Ü 4
24.7									0.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									U . U4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.04
29.3 0.624 0.472 0.478 0.366 0.112 453.6 169.9 63.6 0.0 30.9 0.643 0.441 0.447 0.336 0.111 411.3 153.3 57.1 0.0 32.3 0.660 0.415 0.421 0.310 0.110 376.8 139.8 51.9 0.0 34.0 0.660 0.415 0.421 0.310 0.110 376.4 139.8 51.9 0.0 35.3 0.673 0.396 0.401 0.291 0.110 351.2 129.9 48.0 0.0 37.0 0.668 0.404 0.409 0.299 0.110 361.0 133.7 69.5 0.0 38.6 0.675 0.393 0.398 0.289 0.110 347.3 128.4 47.4 0.0 40.1 0.675 0.393 0.398 0.289 0.110 347.3 128.4 47.4 0.0 41.3 0.685 0.379 0.384 0.274 0.109 326.2 121.0 46.6 0.0									
30.9									
32.3									
34.0									
35.3									
37.0									
38.6									
40.1 0.675 0.393 0.398 0.289 0.110 347.3 178.4 47.4 0.0 67.3 0.685 0.379 0.384 0.274 0.109 328.2 121.0 44.6 0.0 68.4 0.677 0.390 0.395 0.286 0.110 343.5 126.9 46.8 0.0 68.4 0.682 0.383 0.388 0.279 0.109 328.2 121.0 44.6 0.0 68.6 0.0 68.7 0.376 0.381 0.271 0.109 328.4 119.5 44.0 0.0 68.7 0.376 0.384 0.274 0.109 328.2 121.0 44.6 0.0 68.7 0.383 0.388 0.279 0.109 328.2 121.0 44.6 0.0 68.2 0.383 0.388 0.279 0.109 328.2 121.0 44.6 0.0 68.2 0.682 0.383 0.388 0.279 0.109 328.2 121.0 44.6 0.0 68.2 0.682 0.383 0.388 0.279 0.109 333.9 123.2 45.4 0.0 68.2 0.682 0.383 0.388 0.279 0.109 333.9 123.2 45.4 0.0 68.2 0.682 0.365 0.369 0.260 0.109 309.4 113.7 41.8 0.0									
\$\begin{array}{cccccccccccccccccccccccccccccccccccc									0.06
43.0 0.677 0.390 0.395 0.286 0.110 343.5 126.9 46.8 0.0 44.4 0.682 0.383 0.388 0.279 0.109 333.9 123.2 45.4 0.0 46.0 0.687 0.376 0.381 0.271 0.109 324.4 119.5 44.0 0.0 47.4 0.685 0.379 0.384 0.274 0.109 328.2 121.0 44.6 0.0 47.4 0.682 0.383 0.388 0.279 0.109 333.9 123.2 45.4 0.0 56.2 0.383 0.388 0.279 0.109 333.9 123.2 45.4 0.0 56.4 0.684 0.365 0.365 0.369 0.260 0.109 309.4 113.7 41.8 0.0	0.685			0.274					0.06
44.4 0.682 0.383 0.388 0.279 0.109 333.9 123.2 45.4 0.0 46.0 0.687 0.376 0.381 0.271 0.109 324.4 119.5 44.0 0.0 47.4 0.685 0.379 0.384 0.274 0.109 328.2 121.0 44.6 0.0 49.2 0.682 0.383 0.388 0.279 0.109 333.9 123.2 45.4 0.0 50.4 0.694 0.365 0.369 0.260 0.109 309.4 113.7 41.8 0.0									0.06
46.0									0.06
49.2	0.587	0.376	0.381	0.271	0.109	324.4	119.5	44.0	0.06
50.4 0.694 0.365 0.369 0.260 0.109 309.4 113.7 41.8 0.00	0.685	0.379	0.384	0.274	0.109	328.2	121.0	44.6	0.06
							123.2	45.4	0.06
PAUSE READY PLOTTER			0.369	0.260	0.109	3()9.4	113.7	41.8	0.06
	READY	PLOTTER							
	0.694	0.365							
							, ·		
		0.524 0.504 0.513 0.513 0.523 0.553 0.556 0.571 0.566 0.666 0.	0.524 0.646 0.504 0.687 0.513 0.667 0.526 0.653 0.535 0.626 0.550 0.597 0.568 0.571 0.577 0.550 0.581 0.543 0.618 0.461 0.624 0.472 0.643 0.472 0.643 0.472 0.643 0.472 0.666 0.475 0.675 0.393 0.675 0.393 0.675 0.393 0.675 0.393 0.675 0.393 0.675 0.393 0.675 0.393 0.675 0.393 0.675 0.393	0.524	0.535	0.535 0.626 0.636 0.519 0.117 0.524 0.646 0.657 0.539 0.117 0.504 0.684 0.695 0.577 0.117 0.513 0.667 0.678 0.560 0.118 0.526 0.643 0.653 0.535 0.117 0.533 0.630 0.639 0.523 0.117 0.535 0.650 0.636 0.519 0.117 0.555 0.597 0.606 0.490 0.116 0.571 0.579 0.606 0.490 0.116 0.571 0.579 0.606 0.490 0.114 0.571 0.559 0.444 0.114 0.571 0.559 0.444 0.114 0.571 0.579 0.406 0.490 0.112 0.571 0.579 0.406 0.490 0.112 0.571 0.579 0.406 0.112 0.112 0.618 0.461 0.478	0.535 0.626 0.636 0.519 0.117 670.4 0.524 0.646 0.657 0.539 0.117 699.6 0.504 0.684 0.695 0.577 0.116 754.8 0.513 0.667 0.678 0.560 0.118 729.7 0.526 0.643 0.653 0.535 0.117 674.3 0.533 0.630 0.639 0.523 0.117 675.6 0.5535 0.626 0.636 0.519 0.117 676.6 0.5535 0.557 0.636 0.419 0.117 676.4 0.556 0.557 0.606 0.440 0.115 529.0 0.557 0.559 0.444 0.114 562.6 0.551 0.543 0.551 0.437 0.114 553.1 0.551 0.543 0.551 0.437 0.114 553.1 0.561 0.543 0.548 0.376 0.112 453.6 0.6	0.535	0.535

Figure D-16. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LING: 118-29.0 N 19JUN1975 1939901

Figure D-17. Ocean optical properties (sheet 1 of 2).

ATMAR MULP1	CATALINA 1975	A IS. 1 1939PDT	LAT 33-	27.2 N	LONG	118-29.0 V)		
Z (M)	J(1/M)	ALPHA!	ALPHA	SCAT	ABS	VS #3	VS.F.6	VSF12	THTA+28A
1.0	0.796	0.228	0.230	0.125	0.105	136.3	48.1	17.0	0.109
3.0	0.795	0.229	0.231	0.126	0.105	137.8	48.7	17.2	0.109
5. 0	0.796	0.228	0.230	0.125	0.105	136.3	48.1	17.0	0.109
7.0	0.788	0.238	0.240	0.135	0.105	148.2	52.5	18.6	0.104
8.0	0.781	0.248	0.250	0.145	0.105	160.4	57.1	20.3	0.099
9.2	0.774	0.257	0.259	0.153	0.105	171.2	<u> </u>	الم الم	0.096
10.2	0.766	0.267	0.269	0.164	0.106	183.8	65.9	23.6	0.092
11.2	0.741	0.299	0.302	0.196	0.107	224.6	81.3	29.4	0.082
12.1	0.720	0.329	0.427	0.225	0.111	262.4	95.7	34.9	0.075
14.0	0.612	0.491	0.498	0.385	0.113	384.8 479.8	142.9	53.1 67.6	0.060
14.2	0.602	0.507	0.514	0.401	0.113	502.2	189.0	71.1	0.053
15.2	0.599	0.512	0.519	0.406	0.113	509.0	191.7	72.1	0.051
16.3	0.593	0.523	0.531	0.417	0.114	525.0	198.0	74.6	0.050
17.2	0.578	0.548	0.556	0.442	0.114	560.2	2 4.0	80.2	0.048
18.0	0.540	0.945	0.553	0.439	0.114	555.4	210.1	70.4	0.048
19.0	0.580	0.545	0.553	0.439	0.114	555.4	210.1	79.4	0.048
19.8	0.580	0.545	0.553	0.439	0.114	555.4	210.1	79.4	0.048
20.5	0.583	0.540	0.548	0.434	0.114	548.3	207.3	78.3	0.049
21.0	0.590	0.528	0.536	0.422	0.114	531.9	200.8	75.7	0.050
22.0	0.622	0.475	0.481	0.369	0.112	457.9	171.6	44.2	0.054
23.0	0.651	0.429	0.434	0.324	0.111	394.9	146.9	54.6	0.059
24.0	0.682	0.385	0.388	0.279	0.109	333.9	123.2	45.4	0.055
25.0	0.482	0.383	0.384	2.279	0.109	333.9	123.2	45.4	0.055
24.3	0.664	0.409	0.415	0.304	0.110	368.9	136.7	50.7	0.061
27.1	0.687	0.376	0.481	0.271	0.109	324.4	119.5	44.0	0.056
7 A . 5	<u> </u>	0.395	0.400	<u> </u>	<u> </u>	349.3	129-1	47.7	0.063
29.2	0.691	0.369	0.373	0.264	0.109	315.0	115.9	42.6	0.067
30.0	0.695	0.363 0.348	0.368	0.259	0.109	307.6	113.0	41.5	0.068
30,7	0.706	0.329	0.352	0.225	0.108	287.4 262.4	105.2	38.5	0.071
32.0	0.738	0.303	0.306	0.199	0.107	229.7	83.2	34.9 30.1	0.075 0.081
34.7	0.738	0.303	0.306	0.199	0.107	229.7	83.2	30.1	0.081
35.4	0.747	0.291	0.294	0.188	0.107	214.6	77.5	28.0	0.084
36.3	0.749	0.289	0.292	0.185	0.106	211.3	76.2	27.5	0.085
36.8	0.752	0.245	0.288	0.181	0.106	206.4	74.4	26.8	0.086
39.2	0.761	.273	0.276	0.170	0.106	191.8	68.9	24.7	0.090
39.A	0.758	0.277	0.260	0.174	0.106	196.6	70.7	25.4	0.088
40.8	0.757	0.278	0.281	0.175	0.106	198.3	71.3	25.6	0.088
41.2	0.754	0.792	0.285	0.179	0.100	203.1	73.1	26.3	0.087
42.3	0.764	0.269	0.272	0.166	0.106	187.0	67.1	24.0	0.091
44.0	0.770	0.252	0.264	0.158	0.106	177.5	63.5	22.7	0.094
46.2	0.770	0.252	0.264	0.158	0.106	177.5	63.5	22.7	0.094
47.2	0.781	0.248	0.250	0.145	0.105	160.4	57.1	20.3	0.099
4A .0	0.795	0.229	0.231	0.126	0.105	137.8	48.7	17.3	0.109
49.2	0.800	0.223	0.223	0.120	0.104	130.4	45.9	16.2	0.112
50.3	0.803	0.219	0.221	0.117	0.104	126.0	44.3	15.6	0.114

Figure D-17. Ocean optical properties (sheet 2 of 2).

DICEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LING: 118-29.0 N 19.001978 2107901

Figure D-18. Ocean optical properties (sheet 1 of 2).

2.5 O. 3.0 O. 5.0 O. 6.0 O. 6.0 O. 6.0 O. 11.0 O. 12.5 O. 13.0 O. 14.0 O. 17.0 O. 17.0 O. 17.0 O. 22.0 O. 24.0 O. 25.0 O. 27.0	791 0.234 791 0.234 791 0.234 791 0.234 791 0.234 791 0.234 772 0.246 772 0.259 725 0.322 627 0.467 490 0.714 527 0.641 527 0.566 605 0.502 604 0.504 605 0.512 606 0.512 607 0.499 607 0.499 617 0.483 637 0.496	ALPHA 0.236 0.236 0.236 0.236 0.249 0.262 0.325 0.473 0.726 0.551 0.574 0.509 0.511 0.519 0.526 0.536 0.489 0.489 0.458	SCAT 0-131 0-131 0-131 0-131 0-131 0-136 0-136 0-362 0-606 0-534 0-396 0-396 0-396 0-396 0-412 0-422 0-422 0-423 0-377	ABS 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.107 0.117 0.117 0.113 0.113 0.113 0.113 0.113 0.113	VSF3 143.7 143.7 143.7 143.7 143.7 158.9 174.4 253.7 447.1 798.0 691.6 584.3 495.4 497.6 5181.9 515.8 490.9 468.8	V5F6 50.9 50.9 50.9 50.9 50.9 50.5 62.3 92.3 167.3 307.2 264.4 221.5 186.3 187.2 191.7 195.3 200.8 194.4 184.6 175.8	18.0 18.0 18.0 18.0 20.1 22.3 33.6 62.6 118.2 201.0 70.0 70.0 70.0 70.4 73.6 75.7 73.2 69.3 69.3	THTA=2BAI 0.106 0.106 0.106 0.106 0.106 0.095 0.076 0.055 0.043 0.043 0.047 0.052 0.052 0.055 0.055 0.055 0.055 0.055 0.055
1.0 0. 2.5 0. 3.0 0. 5.0 0. 6.0 0. 10.0 0. 11.0 0. 12.5 0. 13.0 0. 14.0 0. 15.2 0. 14.0 0. 17.0 0. 18.0 0. 21.0 0. 21.0 0. 22.0 0. 23.0 0. 24.0 0. 27.0 0. 27.0 0. 27.0 0.	791 0.234 791 0.234 791 0.234 7791 0.234 7791 0.239 772 0.259 772 0.327 627 0.461 527 0.641 527 0.641 527 0.556 605 0.502 604 0.502 604 0.502 605 0.512 595 0.518 596 0.512 597 0.483 657 0.499 657 0.499	0.236 0.236 0.236 0.236 0.249 0.262 0.325 0.473 0.726 0.551 0.574 0.509 0.511 0.519 0.526 0.526 0.526 0.526 0.458	0.131 0.131 0.131 0.131 0.131 0.144 0.156 0.218 0.362 0.606 0.539 0.396 0.396 0.398 0.440 0.412 0.411 0.393 0.4414 0.393 0.4414 0.393 0.4414 0.393 0.4414 0.393 0.4414 0.393 0.4414 0.393 0.4414 0.393 0.4414 0.4414 0.393 0.4414 0.4414 0.4414 0.393 0.4414 0	0.105 0.105 0.105 0.105 0.105 0.106 0.107 0.117 0.113 0.113 0.113 0.113 0.114 0.113 0.114	143.7 143.7 143.7 143.7 158.9 1758.9 1758.0 691.6 584.3 495.4 495.4 497.0 518.1 931.9 490.9 468.8	50.9 50.9 50.9 50.9 56.5 62.3 92.3 167.3 307.2 264.4 221.5 186.3 186.3 187.2 191.7 195.3 200.8 194.4 184.6 175.8	18.0 18.0 18.0 18.0 20.1 22.3 33.6 62.6 118.2 201.0 70.0 70.0 70.0 70.4 73.6 75.7 73.2 69.3 69.3	0.106 0.106 0.106 0.106 0.100 0.095 0.095 0.039 0.043 0.047 0.052 0.052 0.051 0.050 0.050
3.0 0. 5.0 0. 6.0 0. 8.0 0. 11.0 0. 12.0 0. 13.0 0. 14.0 0. 15.2 0. 14.0 0. 17.0 0. 17.0 0. 17.0 0. 21.0 0. 21.0 0. 21.0 0. 21.0 0. 22.0 0. 23.0 0. 24.0 0. 27.0 0. 27.0 0.	791 0.234 791 0.234 781 0.246 772 0.259 772 0.359 775 0.367 627 0.641 5568 0.566 665 0.502 6665 0.502 6665 0.512 667 0.518 599 0.518 599 0.518 599 0.518 599 0.518 599 0.518 599 0.518 599 0.518 599 0.518	0.236 0.236 0.236 0.249 0.262 0.325 0.473 0.726 0.551 0.574 0.509 0.511 0.519 0.526 0.536 0.524 0.489	0.131 0.131 0.131 0.144 0.156 0.218 0.362 0.608 0.534 0.459 0.398 0.398 0.412 0.412 0.412 0.411 0.377 0.346	0.105 0.105 0.105 0.105 0.106 0.107 0.112 0.113 0.113 0.113 0.113 0.113 0.113	143.7 143.7 143.7 158.9 174.4 253.7 447.1 798.0 6884.3 495.4 497.6 509.0 518.1 931.9 490.9 468.8	50.9 50.9 50.9 56.5 62.3 92.3 167.3 307.2 264.4 221.5 186.3 186.3 187.7 195.3 200.8 194.4 184.6 175.8	18.0 18.0 20.1 22.3 33.6 62.6 118.2 101.0 70.0 70.0 70.0 70.1 73.6 75.7 73.2 69.9	0.106 0.106 0.100 0.095 0.076 0.039 0.043 0.047 0.052 0.052 0.051 0.050 0.050 0.050
5.0 0.6.0 0.10.0 0.11.0 0.12.0	791 0.234 791 0.234 782 0.246 782 0.259 725 0.352 627 0.467 490 0.714 5568 0.506 605 0.502 605 0.502 604 0.504 5595 0.512 599 0.512 599 0.512 599 0.512 599 0.512 599 0.512 599 0.512 599 0.512 599 0.512 599 0.512 599 0.512	0.236 0.236 0.249 0.262 0.325 0.473 0.726 0.574 0.509 0.511 0.519 0.519 0.536 0.524 0.458	0.131 0.131 0.156 0.156 0.362 0.608 0.396 0.396 0.396 0.396 0.402 0.411 0.422 0.411 0.337	0.105 0.105 0.105 0.106 0.107 0.112 0.113 0.113 0.113 0.113 0.113 0.114 0.113	143.7 143.7 158.9 174.4 253.7 447.1 798.6 584.3 495.4 497.6 509.0 518.1 931.9 468.8	50.9 50.9 56.5 62.3 92.3 167.3 507.2 264.4 221.5 186.3 187.3 191.7 195.3 200.8 194.4 184.6 175.8	18.0 18.0 20.1 22.3 33.6 62.6 118.2 201.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0	0.106 0.106 0.109 0.076 0.055 0.043 0.047 0.052 0.051 0.055 0.055 0.055 0.055 0.055 0.055
6.0 0. 8.0 0. 10.0 0. 11.0 0. 12.5 0. 13.0 0. 14.0 0. 15.2 0. 16.5 0. 17.0 0. 17.0 0. 21.0 0. 21.0 0. 22.0 0. 23.0 0. 24.0 0. 25.0 0. 27.0 0. 27.0 0.	791 0.234 782 0.246 782 0.246 772 0.329 627 0.467 490 0.714 556 0.566 605 0.502 605 0.502 606 0.502 607 0.518 590 0.518 590 0.518 590 0.518 590 0.518 590 0.518	0.236 0.249 0.262 0.325 0.473 0.726 0.551 0.574 0.509 0.511 0.519 0.526 0.526 0.526 0.458	0.131 0.144 0.218 0.218 0.606 0.534 0.459 0.396 0.396 0.398 0.412 0.411 0.393 0.377	0.105 0.105 0.106 0.107 0.112 0.113 0.113 0.113 0.113 0.113 0.113 0.113	143.7 158.9 1753.7 447.1 758.0 691.6 584.3 495.4 495.4 497.6 518.1 931.9 490.9 468.8	50.9 56.5 62.3 92.3 167.3 307.2 264.4 221.5 186.3 187.7 195.3 200.8 194.4 184.6 175.8	18.0 20.1 22.3 33.6 62.6 118.2 201.0 70.0 70.0 70.0 70.4 72.6 75.7 73.2 69.3 65.9	0.106 0.100 0.075 0.075 0.039 0.043 0.047 0.052 0.052 0.051 0.050 0.050 0.050
8.0 0.10.0 0.11.0 0.12.5 0.13.0 0.14.0 0.17.	782 0.246 772 0.259 772 0.325 627 0.467 627 0.464 627 0.566 605 0.502 604 0.502 604 0.504 609 0.512 604 0.512 607 0.488 607 0.488 607 0.488	0.249 0.262 0.325 0.473 0.726 0.651 0.579 0.509 0.511 0.519 0.526 0.536 0.524 0.458	0.144 0.156 0.218 0.362 0.606 0.534 0.459 0.398 0.406 0.412 0.412 0.412 0.414 0.377 0.346	0.105 0.106 0.107 0.112 0.117 0.113 0.113 0.113 0.113 0.113 0.114 0.113 0.114	158.9 174.4 253.7 477.1 778.0 691.6 584.3 495.4 497.6 509.0 518.1 931.9 490.9 468.8	56.5 62.3 92.3 167.3 507.2 264.4 221.5 186.3 187.2 191.7 195.3 200.8 194.4 184.6 175.8	20.1 22.3 33.6 62.6 118.2 101.0 70.0 70.0 70.0 70.4 72.1 73.6 75.7 73.2 69.3	0.100 0.093 0.076 0.039 0.043 0.047 0.052 0.052 0.051 0.050 0.050 0.050
10.0 0.11.0 0.12.0 0.12.5 0.13.0 0.14.0 0.15.2 0.14.0 0.17.0 0.18.0 0.19.1 0.18.0 0.19.1 0.18.0 0.19.1 0.18.0 0.19.1 0.18.0 0.19.1 0.18.0 0.19.1 0.18.0 0.19.1 0.18.0 0.19.1 0.18.0 0.19.1 0.18.0 0.19.1 0.18.0 0.18	772 0.259 775 0.322 627 0.467 527 0.641 527 0.556 605 0.502 605 0.502 604 0.504 599 0.512 599 0.512 599 0.512 607 0.499 607 0.499 607 0.499	0.262 0.325 0.473 0.726 0.574 0.509 0.511 0.519 0.526 0.536 0.524 0.489	0.156 0.218 0.362 0.606 0.534 0.459 0.396 0.396 0.406 0.412 0.412 0.411 0.377	0.106 0.107 0.119 0.117 0.115 0.113 0.113 0.113 0.113 0.113	174.4 253.7 447.1 778.0 691.6 584.3 495.4 497.6 509.0 518.1 931.9 490.9 468.8	62.3 92.3 167.3 307.2 264.4 221.5 186.3 187.2 191.7 195.3 200.8 194.4 184.6 175.8	22.3 33.6 62.6 118.2 101.0 84.0 70.0 70.0 70.0 72.1 73.6 75.7 73.2 69.9	0.095 0.076 0.055 0.039 0.043 0.047 0.052 0.052 0.051 0.050 0.050 0.050
11.0 0.12	725 0.322 627 0.467 490 0.714 5527 0.564 605 0.502 605 0.502 604 0.512 599 0.512 599 0.512 599 0.512 604 0.517 607 0.499 607 0.499 607 0.499	0.325 0.473 0.726 0.651 0.574 0.509 0.511 0.519 0.526 0.536 0.524 0.458	0.218 0.362 0.608 0.534 0.459 0.398 0.398 0.442 0.412 0.422 0.411 0.393	0.107 0.112 0.113 0.113 0.113 0.113 0.113 0.114 0.114 0.113	253.7 447.1 798.6 584.3 495.4 495.6 509.0 518.1 531.9 490.9 468.8	92.3 167.3 307.2 264.4 221.5 186.3 187.2 191.7 195.3 200.8 194.4 184.6 175.8	33.6 62.6 118.2 101.0 70.0 70.0 70.0 70.4 72.1 73.6 75.7 73.2 69.3	0.076 0.035 0.037 0.043 0.047 0.052 0.051 0.050 0.050 0.050
12.0 0.12.5 0.12.5 0.13.0 0.14.0 0.15.2 0.16.5 0.17.0 0.19.1 0.19	627	0.473 0.726 0.651 0.574 0.509 0.509 0.511 0.519 0.526 0.526 0.536 0.458	0.362 0.606 0.539 0.396 0.398 0.406 0.412 0.412 0.413 0.377 0.346	0.112 0.119 0.117 0.113 0.113 0.113 0.113 0.113 0.114 0.113	447.1 798.0 691.6 584.3 495.4 495.4 497.6 509.0 518.1 931.9 498.8	167.3 307.2 264.4 221.5 186.3 187.7 195.3 200.8 194.4 184.6 175.8	62.6 118.2 101.0 84.0 70.0 70.4 72.1 73.6 75.7 73.2 69.3 65.9	0.055 0.039 0.043 0.047 0.052 0.052 0.051 0.050 0.050 0.052
12.5 O. 13.0 O. 14.0 O. 15.2 O. 16.5 O. 17.0 O. 19.1 O. 22.0 O. 24.0 O. 25.0 O. 26.0 O. 27.0 O	490 0.714 527 0.641 508 0.506 609 0.502 609 0.502 609 0.512 599 0.512 599 0.512 599 0.518 590 0.517 607 0.499 617 0.483 637 0.496	0.726 0.651 0.574 0.509 0.509 0.511 0.519 0.526 0.536 0.524 0.506	0.608 0.534 0.459 0.396 0.398 0.406 0.412 0.412 0.413 0.377 0.346	0.119 0.117 0.115 0.113 0.113 0.113 0.113 0.113 0.114 0.113	798.0 691.6 584.3 495.4 497.6 509.0 518.1 931.9 519.8 490.9 468.8	307.2 264.4 221.5 186.3 187.2 191.7 195.3 200.8 194.4 184.6 175.8	118.2 201.0 84.0 70.0 70.4 72.1 73.6 75.7 73.2 69.3	0.039 0.043 0.047 0.052 0.052 0.051 0.050 0.050 0.050
14.0 0. 15.2 0. 16.5 0. 17.0 0. 18.0 0. 19.1 0. 20.0 0. 21.0 0. 23.0 0. 23.0 0. 24.0 0. 25.0 0. 27.0 0.	527 0.641 568 0.566 605 0.502 605 0.502 604 0.604 599 0.512 590 0.518 590 0.518 590 0.517 607 0.499 637 0.499 637 0.496	0.574 0.509 0.509 0.511 0.519 0.526 0.536 0.526 0.506 0.489 0.458	0.459 0.396 0.398 0.406 0.412 0.411 0.423 0.377 0.346	0.115 0.113 0.113 0.113 0.113 0.114 0.113 0.114	584.3 495.4 495.4 497.6 509.0 511.9 515.8 490.9 468.8	264.4 221.5 186.3 187.2 191.7 195.3 200.8 194.4 184.6 175.8	201.0 84.0 70.0 70.0 70.4 72.1 73.6 75.7 73.2 69.3 65.9	0.043 0.047 0.052 0.052 0.053 0.051 0.050 0.050 0.050
15.2 0.16.5 0.17.0 0.19.1 0.20.0 0.22	605 0.502 605 0.502 604 0.504 599 0.512 595 0.512 595 0.528 596 0.517 607 0.483 637 0.483 637 0.483	0.509 0.509 0.511 0.519 0.526 0.536 0.524 0.506 0.489	0.396 0.396 0.398 0.406 0.412 0.422 0.411 0.377 0.346	0.113 0.113 0.113 0.113 0.113 0.114 0.113 0.113	495.4 495.4 497.6 509.0 518.1 531.9 515.8 490.9 468.8	186.3 186.3 187.2 191.7 195.3 200.8 194.4 184.6 175.8	70.0 70.0 70.4 72.1 73.6 75.7 73.2 69.3 65.9	0.052 0.052 0.052 0.051 0.050 0.050 0.050
16.5 0.1 17.0 0.1 18.0 0.1 19.1 0.2 21.0 0.2 21.0 0.2 23.0 0.2 24.0 0.2 24.0 0.2 25.0 0.2 26.0 0.2 27.0 0.2	605 0.502 604 0.504 599 0.512 595 0.518 590 0.517 607 0.499 617 0.483 637 0.493	0.509 0.511 0.519 0.526 0.536 0.524 0.506 0.489	0.396 0.398 0.406 0.412 0.422 0.411 0.393 0.377	0.113 0.113 0.113 0.113 0.114 0.113 0.113 0.112	495.4 497.6 509.0 518.1 531.9 515.8 490.9 468.8	186.3 187.2 191.7 195.3 200.8 194.4 184.6 175.8	70.0 70.4 72.1 73.6 75.7 73.2 69.3 65.9	0.052 0.052 0.051 0.050 0.050 0.050 0.052
17.0 0.18.0 0.19.1 0.20.0 0.22.0 0.23.0 0.22.0 0.23.0 0.22	604	0.511 0.519 0.526 0.536 0.524 0.506 0.489	0.398 0.406 0.412 0.422 0.411 0.393 0.377 0.346	0.113 0.113 0.113 0.114 0.113 0.113 0.113	497.6 509.0 518.1 531.9 515.8 490.9 468.8	187.2 191.7 195.3 200.8 194.4 184.6 175.8	70.4 72.1 73.6 75.7 73.2 69.3 65.9	0.052 0.051 0.050 0.050 0.050 0.050
18.0 0.19.1 0.20.0 0.20.0 0.23.0 0.23.0 0.23.0 0.23.0 0.23.0 0.23.0 0.24.0 0.25.0 0.27	599 0.512 595 0.518 590 0.517 696 0.517 607 0.493 617 0.483 637 0.492 666 0.496	0.519 0.526 0.536 0.524 0.506 0.489	0.406 0.412 0.422 0.411 0.393 0.377	0.113 0.113 0.114 0.113 0.113 0.112	509.0 518.1 531.9 515.8 490.9 468.8	191.7 195.3 200.8 194.4 184.6 175.8	72.1 73.6 75.7 73.2 69.3 65.9	0.051 0.050 0.050 0.050 0.052
19.1 0. 20.0 0. 21.0 0. 22.0 0. 23.0 0. 24.0 0. 25.0 0. 26.0 0. 27.0 0.	595 0.518 590 0.528 596 0.517 607 0.499 617 0.483 637 0.492 666 0.406	0.526 0.536 0.524 0.506 0.489	0.412 0.422 0.411 0.393 0.377	0.113 0.114 0.113 0.113 0.112	518.1 531.9 515.8 490.9 468.8	195.3 200.8 194.4 184.6 175.8	73.6 75.7 73.2 69.3 65.9	0.050 0.050 0.050 0.052
20.0 0. 21.0 0. 22.0 0. 23.0 0. 24.0 0. 25.0 0. 25.0 0. 27.0 0. 27.0 0.	590 0.528 596 0.517 607 0.499 617 0.483 637 0.492 666 0.406	0.536 0.524 0.506 0.489	0,422 0,411 0,393 0,377 0,346	0.113 0.113 0.113 0.112	531.9 515.8 490.9 468.8	200.8 194.4 184.6 175.8	75.7 73.2 69.3 65.9	0.050
21.0 0.1 22.0 0.1 23.0 0.1 24.0 0.1 25.0 0.0 26.0 0.1 27.0 0.2	607 0.499 617 0.483 637 0.492 666 0.406	0.524 0.506 0.489 0.458	0.393 0.377 0.346	0.113 0.113 0.112	515.8 490.9 468.8	194.4 184.6 175.8	73.2 69.3 65.9	0.050
22.0 0.0 23.0 0.0 24.0 0.0 25.0 0.0 26.0 0.0 27.0 0.0 28.0 0.0	607 0.499 617 0.483 637 0.492 666 0.406	0.506 0.489 0.458	0.393 0.377 0.346	0.113	490.9 468.8	184.6 175.8	69.3	0.052
23.0 0.0 24.0 0.0 25.0 0.0 26.0 0.0 27.0 0.0 28.0 0.0	617 0.483 637 0.452 666 0.406	0.489	0.377	0.112	468.8	175.8	45.9	
24.0 0.0 25.0 0.0 26.0 0.0 27.0 0.	637 0.452 666 0.406			0.111				
26.0 0.0 27.0 0.0 26.0 0.0		0.412			425.9	139.0	59.3	0.056
27.0 0. 28.0 0.			0.302	0.110	364.9	135.2	50.1	0.062
28.0 0.		0.382	0.273	0.109	326.3	120.2	44.3	0.066
		0.353	0.245	0.108	289.2	105.9	38.8	0,071
		0.325	0.218	0.107	253.7	92.3	33.6	0.076
	737 0.306	0.309	0.202	0.107	233.1	84.5	28.4	0.080
	766 0.267	0.269	0.164	0.106	183.8	65.9	23.6	0.093
	784 0.243	0.245	0.140	0.105	154.3	54.8	19.5	0.102
34.3 0.	787 0.239	0.241	0.136	0.105	149.7	53.1	16,6	0.103
	784 ().243	0.245	0.140	0.105	154.3	54.8	19.5	0.102
	790 0.235	0.237	0.133	0.105	145.2	51.4	18.2	0.105
37.0 0.	793 0.232	0.234	0.129	0.105	140.7	49.8	17.6	0.107
	791 0.234	0.236	0.131	0.105	143.7	50.9	18.0	0.106
	791 0.234	0.235	0.131	0.105	143.7	50.9	<u>negt</u>	0.106
	792 233			0.105	142.2	50.3	17.8	0.107
	791 0.234	0.236	0.131	0 - 105	143.7	50.9	18.0	0.104
	793 0.232	0.234	0.129	0.105	140.7	49.8 50.9	17.6	0.107
	794 0.230	0.232	0.128	0.105	139.3	49.2	17.4	0.108
49.2 0.		0.236	0.131	0.105	143.7	50.9	18.0	0.106
50.3 0.	793 0.232 EADY PLOTTER	0.234	0.129	0.105	140.7	49.8	17.6	<u>0.1.07</u>

Figure D-18. Ocean optical properties (sheet 2 of 2).

DICEAN OPTICAL PROPERTIES - 520 NM SANTA CATALONA IS. LAT: 33-27.2 N; LONG: 118-29.0 N 19-38-1975 2127797

Figure D-19. Ocean optical properties (sheet 1 of 2).

of the state of th

	TLIZMI	AL PHA	ALPHA	SCAT	ABS	VSF3	VSF6	VSF12	THTA+26A
2 (M)	0.561	0.578	0.586	SCAT 0.471	0.115	601.5	228.4	86.7	0.046
3.1	0.572	0.559	0.567	0.452	0.115	574.6	217.7	82.4	0.047
4.2	0.559	0.581	0.590	0.475	0.115	606.4	230.4	87.5	0.046
5.4	0.559	0.588	0.597	0.481	0.116	616.4	234.3	89.0	0.046
6.6	0.551	0.595	0.604	0.489	0.116	626.5	238.4	90.6	0.045
7.9	0.547	0.602	0.412	0.496	0.116	636.7	242.4		0.045
9.2	0.543	0.611	0.621	0.504	0.116	649.5	247.5	94.3	0.044
10.5	0.530	0.635	0.645	0.528	0.117	683.6	261,2	99.7	0.043
11.6	0.519	0.656	0.666	0.548	9-119	713.2	273.1	104.5	0.042
12.9	0.507	0.679	0.690	0.571	0.118	746.4	286.4	109.8	0.041
14.2	0.506	0.681	0.692	0.573	0.118	749.2	287.5	110.3	0.041
16.8	0.501	0.690	0.701	0.583	0.119	763.3	293.2 295.5	113.5	0.040
18.1	0.492	0.710	0.722	0.567	0.119	792.1	304.8	117.3	0.040
19.4	0.555	0.588	0.597	0.481	0.116	616.4	234.3	89.0	0.046
20.6	0.579	0.547	0.555	0.440	0.114	557.8	211.0	79.8	0.048
22.0	0.596	0.517	0.524	0.411	0.113	515.8	194.4	73.2	0.050
23.3	0.405	0.502	0.509	0.396	0.113	495.4	186.3	70.0	0.052
24.6	0.631	0.461	0.467	0.355	0.112	438.6	164.0	61.3	0.055
26.0	0.638	0.450	0.456	0.345	0.111	423.8	158.2	59.0	0.057
27.3	0.656	0.421	0.427	0.316	0.111	384.8	142.9	53.1	0.060
20.5	0.673	0.396	0.401	0.291	0.110	351.2	129.9	48.0	0.063
29.8	0.682	0.383	0.388	0.279	0.109	333.9	123.2	45.4	0.065
31.1	0.649	0.372	0.376	0.267	0.109	318.7	117.3	43.2	0.067
32.6	0.696		0.366	0.257	0.109	305.7	112.3	41.2	0.068
33.9	0.706	0.348	0.352	0.244	0.108	287.4	105.2	38.5	0.071
35.3	0.692	0.368	0.372	0.263	0.109	313.1 269.5	11501	42.3	0.067
36.A	0.716	0.334	0.338	0.230	0.108		98.4		0.074
38.0 39.4	0.726 0.743	0.321 0.297	0.324	0.217	0.107	251.9 221.3	91.7	33.3	0.076
40.9	0.743	0.294	0.297	- 8:146	0.107	218.0	78.7	28.4	0.082
42.1	0.747	0.291	0.294	0.188	0.107	214.6	77.5	28.0	0.084
43.7	0.747	0.291	0.294	0.188	0.107	214.6	77.5	28.0	0.084
45.2	0.749	0.289	0.292	0.185	0.106	211.3	76.2	27.5	0.085
46.5	0.760	0.274	0.277	0.171	0.106	193.4	69.5	24.9	0.089
47.A	0.763	0.271	0.273	0.167	0.106	188.6	67.7	24.3	0.090
49.5	0.777	7.253	0.255	0.150	0.105	166.6	59.4	21.2	0.097
51.2	0.779	0.250	0.253	0.147	0.105	163.5	58.2	20.7	0.098
	READY	PLOTTER							

Figure D-19. Ocean optical properties (sheet 2 of 2).

OCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT' 33-27.2 N; LINE: 110-29.0 N 20.4781975 0950PDT

Figure D-20. Ocean optical properties (sheet 1 of 2).

	CATALINA	15. I	AT 33-	27.2 N	LONG 1	18-29.0 V	•		
ZOJUN	14 7. Land	7770701					····		····
2 (M)	TUZMI	ALPHA	ALPHA	SCAT	A B S	VSF3	VSF6	VSF12	THTAMZBAF
7 (M)	0.789	0.236	0.239	0-134	ABS 0.103	146.7	52.0	18.4	0.105
2.0	0.785	0.241	0.244	0.139	0.105	152.8	54.2	19.2	0.102
3.1	0,766	0.267	0.269	0.164	0,106	183.4	65.9	23.6	0.092
4.1	0.772	0.259	0.262	0.156	0.106	174.4	62.3	22.3	0.095
5.1	0.769	0.263	0.265	0.160	0.106	179.1	64.1	22.9	0.093
6.0	0.735	0.30A 0.342	0.312	0.205	0.107	236.5	95.8		0.079
7.1	0.686	0.377	0.346	0.238	0.108	280.2	102.5	37.5	0.072
8.5 9.1	0.676	0,392	0.397	0.287	0.110	326.3 345.4	120.2	44.3 47.1	0.066
10.0	0.661	0.44	0.419	0.309	0.110	374.8	139.1	51.6	0.061
11.3	0.651	0.429	0.434	0.324	0.111	394.9	146.9	54.6	0.059
12.1	0.637	0.452	0.458	0.346	0.111_	425.9	159.0	39.3	0.054
14.0	0.611	0.492	0,499	0.387	0.113	482.0	181.0	68.0	0.052
14.3	0.608	0.497	0.504	0.391	0.113	488.7	183.7	69.0	0.052
15.8	0.605	0.502	0.509	0.395	0.113	495.4	186.3	70.0	0.052
16.3	0.601	0.509	0,516	0.403	0.113	504.4	189.9	71.4	0.051
17.0	0.601	0.509	0.516	ი∙403	0.113	504.4	189.9	71.4	0.051
17.2	9.695	0.502	0.509	0.396	<u> </u>	495.4	<u> </u>	70.0	<u></u>
19.0	0.609	0.496	0.503	0.390	0.113	486.5	182.8	68.7	0.052
19.3	0.614	0.488	0.494	0.382	0.113	475 . 4	178.4	66.9	0.053
19.9	-0.617	0.483	0.489	<u> </u>	0-112	468.8	175.8	65.9	<u>0.053</u>
21.1	0.627	0.467 0.458	0.473	0.362	0.112	447.1 434.4	167.3	62.6 60.6	0.055
22.5	0.627	0.467	0.473	0.362	0.112	447.1	167.3	62.6	0.056 0.055
23.0	0.625	0.470	0.477	0.365	0.112	451.4	169.0	63.2	0.055
25.0	0.621	0.477	0.483	0.371	0.112	460.1	172.4	54.6	0.054
25.A	0.639	0.449	0.454	0.343	0.111	421.7	157.4	58.7	0.057
27.2	0.650	0.430	0.436	0.325	0.111	397.0	147.7	54.9	0.059
29.0	0.661	0.414	0.419	0.309	0.110	374.8	139.1	51.6	0.061
30.3	0.666	0.406	0.412	0.302	0.110	364.9	135.2	50.1	0.062
31.0	0.678	0.389	0.344	0.284	0.110	341.5	126.1	46.6	0.064
31.2	0.680	0.386	0.391	0.281	0.109	337.7	124.6	46.0	0.065
31.4	0.684	0.380	0,385	0.276	0.109	330.1	121.7	44.5	0.065
32.1	0.700	0.356	0.360	0.252	0.109	298.3	109.5	40.1	0.069
34.0	0.720	0.329	0.332	0.225	0.108	262.4 239.9	95.7 . 87.1	34.9	0.075
-35 · 1	0.733	- 9:311 - 307	0.315	0.207	0.107	234.8	85.1	31.6	0.079
36.1 36.3	0.737	0.305	0.308	0.201	0.107	231.4	83.8	30.4	0.080
3P.4	0.741	J. 299	0.302	0.176	0.107	224.6	01.3	29.4	0.060
30.4	0.741	0.299	0.302	0.196	0.107	224.6	81.3	29.4	0.082
39.A	0.741	0.299	0.302	0.196	0.107	224.6	81.3	29.4	0.082
40.2	0.746	0.293	0.296	0.189	0.107	216.3	78.1	28.2	0.084
41.2	0.768	0.254	0.267	0.161	0.106	180.7	64.7	23.1	0.093
42 . 1	0.780	0.249	0.251	0.146	0.105	161.9	57.7	20.5	0.099
43.2	0.790	0.235	0.237	0.133	0.105	145.2	51.4	18.2	0.105
44,1	0.794	0.230	0.232	0.128	0.105	139.3	49.2	17.4	0.108
45.1	0.794	0.230	0.232	0.128	0.105	139.3 129.0	49.2	17.4	0.108
44.2	0.801	0.222	0.224	0.119	0.104	129.0	45.4	16.0	0.113
48.1 48.3	0.801	0.222	0.225	0.120	0.104	130.4	45.9	16.2	0.112
48.5	0.800 0.800	0.223	0.225	0.120	0.104	130.4	45.9	16.2	0.112
50.0	0.795	0.229	0.231	0.126	0.105	137.8	48.7	17.2	0.109

Figure D-20. Ocean optical properties (sheet 2 of 2).

SMETA CATALINA IS. LAT: 33-27.2 N; LING: 118-29.0 N SMETA CATALINA IS. LAT: 33-27.2 N; LING: 118-29.0 N

Figure D-21. Ocean optical properties (sheet 1 of 2).

SANTA 20JUN	CATAL IN	15. L 1054PDT	AT 33-	27.2 N	LONG	118-29.0 k	† 		
Z (M)	T(1/M)	ALPHA	_AL PHA	SCAT	ABS	V 5.F.3	VSF6	VSF12	THTA+28
1.5	0.861	0.150	0.151	0.048	0.102	47.0	15.0	5.3	0.202
2.1	0.811	0.210	0.211	0.107	0.104		40.1	14.0	0.121
معد	<u> </u>	0.207	0.209	<u> </u>	0.104		39.1	<u></u>	0.123
4.0	0.793	0.232	0.234	0.129	0.105	140.7	49.8	17.6	0.107
5.0	0.784	0.243	0.245	0.140	0.105	154.3	54.8	19.5	0.102
7.0	0.759	0.276	0.278 0.312	0.172	0.104	195.0 236.5	70.1	25.2 31.1	0.089
N.O	0.692	0.368	0.372	0.263	0.109	313.1	115.1	42.3	0.067
9.0	0.677	0.390	0.395	0.286	0.110	343.5	126.9	46.8	0.064
10.0	0.668	0.404	0.409	0.299	0.110	361.0	133.7	49.5	0.062
11.0	0.661	0.414	0.419	0.309	0.110	374.8	139.1	51.6	0.061
13.0	0.632	0.459	0.465	0.354	0.112	436.5	163.1	60.9	0.056
	0.588	0.532	0.539	0.425	0.114	536.6	202.6	76.5	0.049
14.0	0.561	0.578	0.586	0.471	0.115	601.5	228.4	86.7	0.046
15.2	0.594	0.520	0.527	0.414	<u>Qulla</u>	520-4	190.2	73.9	0.057
16.0	0.600	0.510	0.517	0.404	0.113	506.7	190.8	71.8	0.051
17.0	0.600	0.510	0.517	0.404	0.113	506.7	190.8	71.8	0.051
19.0	0.607	0.464	0.506	0.393	0.113	442.9	184.6	69.3	<u> </u>
20.0	0.625	0.470	0.477	0.365	0.112	451.4	165.6	61.9 63.2	0.055
21.0	0.625	0.470	0.477	0.365	0.112	451.4	169.0	63.2	0.055
22.0	0.614	0.488	0.494	0.382	0.113	475.4	178.4	66.9	0.053
23.0	0.628	0.466	0.472	0.360	0.112	445.0	166.5	62.3	0.055
24.0	0.644	0.439	0.445	0.334	0.111	409.3	152.5	56.8	0.058
25.0	0.656	0.421	0.427	0.316	0.111	384.8	142.9	53.1	0.060
26.0	0.666	0.406	0.412	0.302	0.110	364.9	135.2	50.1	0.062
27.0	0.683	0,382	0.386	0.277	0.109	332.0	122.4	45.1	0.065
28.0	C.693	0.366	0.370	0.262	0.109	311.3	114.4	42.0	0.068
29.2	0.705	0.349	0.353	0.245	0.108	289.2	105.9	38.8	0.071
30.0	0.705	0.349	0.333	0.245	0.108	289.2	105.9	34.9	0.071
31.0	0.704	0.351	0.355 0.346	0.246	0.108	291.0	106.6	39.1	0.070
32.0 34.0	0.728	0.318	0.321	0.214	0.107	280 • 2 248 • 5	90.3	37.5 32.8	0.072 0.077
35.1	0.749	0.289	0.292	0.185	0.106	211.3	76.2	27.5	0.085
36.0	0.770	0.262	0.264	0.158	0.136	177.5	63.5	22.7	0.094
38.0	0.766	0.267	0.269	0.164	0.106	183.8	65.9	23.6	0.092
41.0	0.762	0.272	0.275	0.169	0.106	190.2	68.3	24.5	0.090
42.8	0.750	0.287	0.290	0.184	0.106	209.7	75.6	27.2	0.085
44.0	0.759	0.276	0.278	0.172	0.106	195.0	70.1	25.2	0.089
45.3	0.776	0.254	0.256	0.151	0.105	168.1	60.0	21.4	0.097
46.0	0.766	0.267	0.269	0.164	0.106	183.8	65.9	23.6	0.092
46.4	0.773	0.258	0.260	0.155	0.106	172.8	61.7	52.0	0.095
47.0	0.765	0.268.	0.271	0.165	0.106	185.4	66.5	23.8	0.091
49.0 50.0	0.765	0.268	0.271	0.165 0.153	0.106 0.105	185.4 171.2	61.1	23.8 21.8	0.091 0.096

Figure D-21. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES ~ 520 NM SANTA CATALINA IS. LAT: 39-27.2 N; LINE: 118-29.0 N 20.001975 1205901

Figure D-22. Ocean optical properties (sheet 1 of 2).

SANTA	CATALIN 1975	A 15. L 1205PDT	AT 33-	27.2 N	LONG 1	10-29.0 k	l ———————		
ZIML	T(1/M)	AL PHA 1	ALPHA	SCAT	ABS	VSF3	VSF6		THTA+2BA
1.0	0.713	0.338	0.342	0.234	0-108	274.8	100.4	36.7	0.073
3.0	0.727	0.319	0.323	0.215	0-107	250.2	91.0	33.1	0.077
4.0	0.713	0.338	0.342	0.234	0.100	274.8	100.4	36.7	0.073
5.0	0.705	0.349	0.353	0.245	0.108	289.2	105.9	38.8	0.071
6.0	0.689	0.373	0.378	0.269	0.109	320.6	118.0	43.4	0.066
<u> </u>	9.671	0.399	0.404	0.331	2.110	405.2	131.4	48.6	0.063
7.0	0.646	0.464	0.442	0.350	0.111	442.9	150.9	56.2	0.058
8.0 9.0	0.604	0.504	0.511	0.398	0.112	497.6	165.6 187.2	61.9 70.4	0.055
10.0	0.522	0.650	0.660	0.543	0.118	705.0	269.8	103.2	0.042
11.0	0.542	0.613	0.623	0.506	0.116	652.1	248.6	94.7	0.044
12.0	0.570	0.562	0.570	0.456	0.115	579.4	219.6	83.2	0.047
13.0	0.581	0.543	0.551	0.437	Ö.114	553.1	209.1	79.0	0.048
14.0	0.617	0.483	0.489	0.377	0.112	468.8	175.8	65.9	0.053
15.0	0.617	0.483	0.489	0.377	0.112	468.8	175.8	65.9	
16.0	0.625	0.470	0.477	0.365	0.112	451.4	169.0	63.2	0.053
17.0	0.636	0.453	0.459	0.348	0.111	428.0	159.8	59.7	0.056
18.0	0.636	0.453	0.459	0.348	0.111	428.0	159.8	59.7	0.056
19.0	0.627	0.467	0.473	0.362	0.112	447.1	167.3	62.6	0.055
19.5	0.631	0.461	0.467	0.355	0.112	438.6	164.0	61.3	0.055
20.0	0.521	0.477	0.483	0.371	0.112	460.1	172.4	64.6	0.054
20.A	0.606	0.500	0.507	0.395	0.113	493.2	185.4	69.7	0.052
21.2	0.616	0.484	0.491	0.379	0.112	471.0	176.7	66.3	0.053
23.0	0.604	0.504	0.511	0.398	0.113	497.6	187.2	70.4	0.052
24.0	0.608	0.497	0.504	0.391	0.113	488.7	183.7	69.0	0.052
25.0	0.616	0.484	0.491	0.379	0.112	471.0	176.7	66.3	0.053
26.0	0.636	0.453	0.459	0.348	0.111	428.0	159.8	59.7	0.056
27.0	0.683	0.382	0.386	0.277	0.109	332.0	122.4	45.1	0.065
27.8	0.710	0.342	0.346	0.238	0.108	260.2	102.5	37.5	0.072
28.5	0.721	0.327	0.331	0.223	0.108	260.7	95.0	34.6	0.075
29.8	0.728	0.318	0.321	0.214	0.107	248.5	90.3	32.8	0.077
31.0	0.730	0.315	0.319	0.211	0.107	245.0	89.0	32.3	0.078
31.5	0.711	0.341	0.345	0.237	0.108	278,4	101.8	37.2	0,072
32.6	0.737	0.305	0.308	0.201	0.107	231.4	83.8	30.4	0.080
34.0	0.737	0.305	0.308	0.201	0.107	231.4	83.8	30.4	0.080
35.0	0.741	0,299	0.302	0.196	0.107	224.6	<u> </u>	29.4	0.082
38.0	0.741	0.299	0.302	0.196	0.107	224.6	81.3	29.4	0.082
39.0	0.742	0.298	0.301	0-194	0.107	223.0	80.6	29.2	0.082
40.0	0.752	0.285	0.208	0.181	0.106	206.4 233.1	74.4	<u> </u>	0.086
41.0	0.737	0.306	0.281	0.175	0.106	198.3	84.5	30.6	0.080
42.0	0.757	0.278 0.267		0.164	0.106	183.8	71.3 65.9	25.6	0,088
43.5	0.766	0.248	0.259	0.145	0.105	160.4	97.1	23.6	0.092
47.0	0.785	0.241	0.244	0.139	0-105	152.8	54.2	19.2	0.102
48.0	0.791	0.234	0.236	0.131	0.105	143.7	50.9	18.0	0.102
49.0	0.792	0.233	0.235	0.130	0.105	142.2	50.3	17.8	0.107
50.5	0.792	0.233	0.235	0.130	0.105	142.2	50.3	17.8	0.107
PAUSE		PLOTTER	~ 1 6 5 5	3			, , ,		01101

Figure D-22. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 39-27.2 N; LINE: 118-29.8 N 20.000175 1250907

Figure D-23. Ocean optical properties (sheet 1 of 2).

Constitution of the section of the s

	CATAL IN		AT 33-	27.2 N	LONG	118-29.0	W		
Z (M).	T () / M)	0.262	ALPHA	SCAT.	ABS_	VSF3	VSF6	VSF12	THTA=28
7 M)	18:448		0.264		0.106		63.5	22.7	0.094
5.0	0.739	0.302	0.305	0.198	0.107		82.6	29.9	0.081
3.3	0.752	0.285	0.334	0.181	0.106	206.4	74.4		0.086
4.0	0.710	0.342	0.346	0.238	0.108	280.2	96.3	35.1 37.5	0.074
5.0	0.681	0.385	0.389	0.280	0.109		123.9	45.7	
3.5	0.667	0.409	0.410	0.300	0.110	362.9	134.4	49.8	0.062
6.2	0.689	0.373	0.378	0.269	0.109	320.6	116.0	43.4	0.066
7.8	0.651	0.429	0.434	0.324	0.111	394.9	146.9	54.6	0.059
A . 5	0.622	0.475	0.481	0.369	0.112	457.9	171.6	64.2	0.054
9.1	0.58R	0.532	0.539	0.425	0.114	536.6	202.6	76.5	0.049
16.0	0.473	0.749	0.676	0.558	9-121	848 -8	327.4	126.5	0.03#
11.0	0.535	0.665	0.636	0.519	0.118	726.9 670.4	278.6 255.9	97.6	0.041
13.2	0.547	0.604	0.613	0.497	0.116		243.4	92.7	0.045
14.3	0.563	0.574	0.583	0.468	0.115	596.5	226.4	85.9	0.046
16.0	0,563	0.574	0.583	0.468	0.115	596.5	226.4	85.9	0.046
16.4	0.586	0.535	0.543	0.429	0.114	941.3	204.5	77.2	0.049
17.1	0.595	0.518	0.526	0.412	0.113	518-1	195.3	73.6	0.050
17.9	0.607	0.499	0.506	0.393	0.113	490.9	184.6	69.3	0.052
<u> 13.0</u>	0.619	0.480	0.486	0.374	<u> 0-112</u>	464.4	<u> </u>	<u> </u>	0.054
19.9	0.599	0.512	0.493	0.406 0.380	0.113	509.0 473.2	191.7 177.6	72.1	0.051
24.0	0.608	0.497		0.391	0.113	48H . 7	183.7	69.0	0.052
25.8	0.594	0.520	0.504	0.414	0.114	520.4	196.2	73.9	0.050
26.3	0.622	0.475	0.481	0.369	0.112	457.9	171.6	64.2	0.054
27.0	0.617	0,483	0.489	0.377	0.112	468.8	175.8	65.9	0.053
2A.2	0.643	0.441	0.447	0.336	0.111	411.3	153.3	57.1	0.058
29.2	0.659	0.417	0.422	0.312	0.110	378.8	140.6	52.2	0.060
32.4	0.690	0.370	0.388	0.266	0.109	333.9 316.9	123.2	45.4	0.067
33.3	0.680	0.316	0.391	0.281	0.109	337.7	124.6	46.0	0.065
33.8	0.697	0.360	0.365	0.256	0.109	303.9	111.6	40.9	0.069
35.0	0.709	0.344	0.348	0.240	0.108	282.0	103.2	37.7	0.072
37.0	0.730	0.315	0.319	0.211	0.107	245.0	89.0	32.3	0.078
34.0	0.739	0.302	0.305	0.198	0.107	228.0	82.6	29.9	0.081
39.0	0.752	0.285	0.288	0.181	0.106	206.4	74.4	26.8	0.086
40.0	0.754	0.282	0.285	0.179	0.106	203 - 1	73.1	26.3	0.087
40.B	0.752	0.285	Q-298	0.181	0.106	190.2	74.4	26.8	0.086
41.8	0.762	0.272	0.275	0.169	0.106	183.8	65.9	23.6	0.090
46.0	0.771	0.260	0.263	0.157	0.106	175.9	62.9	22.5	0.094
48.0	ŏ.777	0.253	0.255	0.150	0.105	166.6	39.4	21.2	0.097
50.0	0.790	0.235	0.237	0.133	0.105	145.2	51.4	18.2	0.105
PAUS	E READY	PLUTTER							

Figure D-23. Occun optical properties (sheet 2 of 2).

DICEAN DIPTICAL PROPERTIES - 520 NM SANTA CATALDIA IS. LAT: 35-27.2 N; LING: 118-29.0 N 20JULI975 1945PDT

Figure D-24. Ocean optical properties (sheet 1 of 2).

and the second s

SANTA 20JUN	CATALINA 1975	15. I 1345PDT	AT 35-	27.2 N	LONG	118-29.0	·		
Z(M)	T(1/M)	ALPHAI	ALPHA	SCAT	ARS	V£ F3	VSEA	V5F12	THTA+28A
0.5	0.772	0.259	0.262	0.136	0.106	174.4	VSF 6	22.3	0.095
1.0	0.819	0.200	0.201	0.098	0.104	103.3	36.0	12.5	0.128
3.0	0.834	0-181	0.182	9.079	0.103	81.5	28.0	9.6	0.147
3.1	0.815	0.205	0.206	0.102	0.104	108.9	38.0	13.3	0.124
4.1 5.0	0.786	0.240	0.242	0.137	0.105	151.3	53.7 60.0	19.0 21.4	0.103 0.097
3.8	0.759	0.276	0.278	0.172	0.106	195.0	70.1	23.2	0.089
6.2	0.756	0.280	0.282	0.176	0.106	199.9	71.9	25.9	0.087
H.O	0.741	0.299	0.302	0.196	0.107	224.6	81.3	29.4	0.082
9.0	0.723	0.325	0.328	0.221	0.108	257.2	93.7	34.1	0.076
10.0	0.708	0.345	0.349	0.241	0.108	283.8 364.9	103.9	38.0	0.071 0.062
13.6	0.605	0.302	ŏ 309	0.396	0.113	495.4	186.3	70.0	0.052
13.6	0.571	0.560	0.569	0.454	0.115	577.0	218.6	82.8	0.047
14.6	0.571	0.560	0,569	0,454	0,115	577.0	210.6	82.8	0.047
15.0	0.595	0.518	0.526	0.412	0.113	518.1	195.3	73.6	0.030
17.0	0.581	0.543	0.551	0.437	0.114	553.1	209.1	79.0	0.048
14.0	0.584	0.536	0.546	0,432	0.114	546.0 531.9	206.3	77.9	0.049
19.0	0.593	0.523	0.531	0.422	0.114	525.0	200.8 198.0	74.6	0.050
20.0	0.595	0.518	0.526	0.412	0.113	518.1	195.3	73.6	0.050
20.0	0.605	0.502	0.509	0.396	0.113	495.4	186.3	70.0	0.052
23.0	0.612	0.491	0.498	0.385	0.113	479.8	180.2	67.6	0.053
24.0	0.415	0.486	0,493	0.380	0.112	473.2	177.6	66.6	0.053
25.0	0.625	0.470	0.477	0.365	0.112	451.4	169.0	63.2	0.055
25.7	0.642	0.455 0.444	0.461	0.349	0.112	430.1	160.7 154.9	60.0 57.7	0.056
27.1	0.648	0.433	0,439	0.328	ŏ.iii	401.1	149.3	55.5	0.058
24.3	0.660	0.415	0.421	0.310	0.110	376.8	139.8	51.9	0.061
29,2	0.674	0,395	0.400	0.290	9.110	349.3	129.1	47.7	0.063
30.0	0.679	0.389	0.394	0.284	0.110	341.5	156.1	46.6	0.064
31.0	0.688 0.697	0.375	0.379	0.270	0.109	322.5	118.8	43.7	0.066
31.6	0.717	0.360	0.365	0.236	0.108	303.9 267.7	97.7	40.9	0.069
33.2	0.727	0.319	0.323	0.215	0.107	250.2	91.0	33.1	0.077
35.7	0.753	0.283	0.286	0.180	0.106	204.8	73.7	26.5	0.086
36.5	0.742	0.298	0.301	0.194	0.107	223.0	80.6	29.2	0.082
37.1	0.753	0.283	0.286	0.180	0.106	204.8	73.7	26.5	0.086
39.0 40.0	0.763	<u> </u>	0.273	0.167	0.106	188.6	67.7	24.3	0.090
40.5	0.756	0.271	0.282	0.176	0.106	199.9	67.7 71.9	24.3 25.9	0.090
41.0	0.765		0.271			185.4	66.5		0.091
42.0	0.765	0.268	0.271	0.165	0.106	1.85.4	66.3	23.8	0.091
42.3	0.764	0.269	0.272	0.166	0.106	187.0	67.1	24.0	0.091
42.8	0.764	0.269	0.272	0.166	0.106	187.0	<u> </u>	24.0	0.091
43.1	0.769	0.243	0.265	0.160	0.106	179.1	64.1	22.9	0.093
45.2	0.769	0.263	0.265	0.160	0.106	179.1 185.4	64.1	22.9 23.8	0.093
48.0	0.784	- 8.289 -	7.272	8.185	0.106	187.0	67.1	34.0	0.091
	0.761	0.273	0.276	0.170	0.106	191.5	68.9		0.090

Figure D-24. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT' 39-27.2 N; LONG! 110-29.6 N 21JRL1975 1501P91

Figure D-25. Ocean optical properties (sheet 1 of 2).

/MI ALPHA 676 0.392 650 0.492 650 0.433 6540 0.433 6540 0.492 6513 0.492 6514 0.492 652 0.474 653 0.492 653 0.493 654 0.438 654 0.438 654 0.438	0.396 0.435 0.382 0.379 0.476 0.495 0.495 0.495 0.576 0.505 0.454 0.444 0.438	3CAT 0.236 0.268 0.222 0.227 0.303 0.323 0.323 0.323 0.323 0.328 0.284 0.271	ABS 0.160 0.167 0.197 0.167 0.173 0.175 0.175 0.175 0.176 0.183 0.176 0.183 0.176	VSF3 312.3 355.6 290.5 293.4 359.1 402.3 425.1 419.3 629.0 924.4 436.8 376.8	VSF6 104.6 120.8 98.7 97.6 122.1 138.5 147.3 148.0 148.7 185.9 151.8 125.8	40.6 47.8 38.2 37.7 48.1 55.1 58.9 57.9 57.9 57.8 60.8	0.076 0.076 0.076 0.076 0.076 0.065 0.064 0.065 0.065
980 0-430 980 0-377 988 0-377 988 0-378 948 0-470 9513 0-484 9516 0-484 9516 0-484 9507 0-499 9507 0-499 9507 0-499 9507 0-499 9507 0-499 9507 0-499 9507 0-499 9507 0-499 9507 0-499 9507 0-499 9508 0-438 9508 0-438	0.435 0.382 0.376 0.476 0.495 0.495 0.495 0.576 0.505 0.454 0.454 0.438 0.423	0.268 0.224 0.227 0.303 0.320 0.316 0.393 0.393 0.328 0.284 0.271	0.167 0.197 0.167 0.173 0.175 0.175 0.176 0.183 0.176 0.176	359.6 296.5 293.4 359.1 402.3 425.1 419.3 429.0 524.4 436.8 376.8	120.8 98.7 97.6 122.1 138.5 147.3 145.0 148.7 185.9 151.8	47.5 38.2 37.7 48.1 55.1 58.9 57.9 57.9 57.9	0.070 0.079 0.079 0.070 0.065 0.065 0.064 0.083 0.055 0.062
586 0-377 586 0-375 548 0-470 513 0-484 516 0-484 511 0-494 500 0-569 500 0-499 507 0-499 507 0-499 508 0-433 558 0-438	0.382 0.379 0.438 0.476 0.495 0.495 0.490 0.576 0.505 0.454 0.438	0.224 0.222 0.271 0.303 0.320 0.316 0.323 0.328 0.284 0.271	0.197 0.157 0.167 0.173 0.175 0.175 0.183 0.176 0.170 0.164	296.5 293.4 359.1 402.3 425.1 419.3 429.0 524.4 436.8 376.5 346.1	98.7 97.6 122.1 138.5 147.3 145.0 148.7 185.9 151.8	38.2 37.7 48.1 55.1 58.9 57.9 57.9 57.9	0.079 0.079 0.070 0.065 0.065 0.064 0.065 0.055 0.062
548 0.375 548 0.433 525 0.475 513 0.489 516 0.484 531 0.492 560 0.569 507 0.492 539 0.449 544 0.439 550 0.449	0.379 0.438 0.476 0.495 0.490 0.576 0.505 0.454 0.454 0.438	0.222 0.271 0.303 0.320 0.316 0.323 0.323 0.328 0.284 0.271	0.157 0.167 0.175 0.175 0.175 0.176 0.183 0.176 0.170 0.168	293.4 359.1 402.3 425.1 419.3 429.0 524.4 436.8 376.8	97.6 122.1 138.5 147.3 145.0 148.7 185.9 151.8	37.7 48.1 55.1 58.9 57.9 57.9 57.8 60.8	0.079 0.070 0.065 0.064 0.064 0.055 0.062
648	0.438 0.475 0.495 0.490 0.576 0.505 0.454 0.454 0.438	0.271 0.303 0.320 0.316 0.323 0.323 0.328 0.284 0.271	0.167 0.173 0.175 0.175 0.175 0.183 0.176 0.170 0.168 0.167	359.1 402.3 425.1 419.3 429.0 524.4 436.8 376.8	122.1 138.5 147.3 145.0 148.7 185.9 151.8	55.1 58.9 57.9 59.5 75.8 60.8	0.065 0.064 0.063 0.055 0.055
513 0.484 516 0.484 516 0.484 560 0.569 507 0.495 539 0.449 544 0.438 558 0.418 558 0.418	0.495 0.490 0.498 0.576 0.505 0.454 0.444 0.438	0.320 0.316 0.323 0.393 0.328 0.284 0.276 0.271	0.175 0.175 0.176 0.183 0.176 0.170 0.168 0.167	425.1 419.3 429.0 524.4 436.8 376.8 366.1	147.3 145.0 148.7 185.9 151.8	58.9 57.9 57.5 75.8 60.8	0.063 0.064 0.083 0.035 0.062
516 0.484 511 0.492 566 0.569 507 0.449 539 0.449 549 0.433 558 0.418 564 0.409	0.490 0.498 0.576 0.505 0.454 0.444 0.438	0.316 0.323 0.393 0.328 0.284 0.276 0.271	0.175 0.176 0.183 0.176 0.170 0.168 0.167	419.3 429.0 524.4 436.8 376.8 366.1	145.0 148.7 185.9 151.8 125.8	37.9 39.3 75.8 60.8	0.064 0.083 0.055 0.062
511 0.492 566 0.569 507 0.499 539 0.449 544 0.439 546 0.439 558 0.418	0.498 0.576 0.505 0.454 0.444 0.438	0.323 0.393 0.328 0.284 0.276 0.271	0.178 0.183 0.176 0.170 0.168 0.167	429.0 924.4 436.8 376.8 366.1	148.7 185.9 151.8 125.8	79.3 75.8 60.8	0.063
566 0.569 507 0.449 539 0.449 544 0.439 548 0.433 558 0.418	0.576 0.505 0.454 0.444 0.438	0.393 0.328 0.284 0.276 0.271	0.183 0.176 0.170 0.168 0.167	524.4 436.8 376.8 346.1	185.9 151.6 125.8	75.8 60.8 50.9	0.055
507 0.499 539 0.449 544 0.439 548 0.433 558 0.418 564 0.409	0.505 0.454 0.444 0.438	0.328 0.284 0.276 0.271 0.271	0.176 0.170 0.168 0.167	436.8 376.8 366.1	151.8	8.09	0.062
539 0.449 544 0.439 548 0.433 558 0.418 564 0.409	0.454 0.444 0.438 0.423	0.284 0.276 0.271 0.238	0.170 0.168 0.167	376.8 366.1	159.8	50.9	
544 0.439 548 0.433 558 0.418 564 0.409	0.444	0.276	0.168	366.1			U & U G F
58 0.433 58 0.418	0.438	3.236	0.167			49.2	0.069
558 0.418 564 0.409	0.423	3.236		359.1	122.1	48.1	0.070
64 0.409			0.165	342.0	115.7	45.3	0.072
		0.251	0.163	331.9	111.9	43.7	0.074
	0.396	0.236	0.160	312.3	104.6	40.6	0.076
575 0.393		0.237	0.160	313.9	105.2	40.9	0.076
578 0.389		0.234	0.160	309.1	103.4	40.1	0.077
581 0.385		0.230	0.159	304.3	101.6	39.4	0.078
							0.054
						5.7	0.085
							0.087
							0.089
							0.093
							0.098
		0.154	0.136		64.8	24.2	0.100
		0.160	0.138	210.7	67.6	25.3	0.097
757 0.278		0.148	0.133	194.1	81.7	22.9	0.102
		0.142		186.6			0.105
		0.125	0.124	163.9	51.2	18.7	0.114
HAUY PLUTTE	R						
	05 0.349 08 0.345 15 0.336 22 0.321 24 0.310 45 0.294 50 0.287 44 0.295 27 0.271 63 0.271 82 0.246	05 0.349 0.353 08 0.345 0.349 15 0.336 0.339 20 0.329 0.332 26 0.321 0.324 34 0.310 0.313 45 0.294 0.297 50 0.287 0.297 50 0.287 0.298 37 0.278 0.298 63 0.271 0.273	05 0.349 0.553 0.202 08 0.345 0.349 0.198 15 0.336 0.329 0.191 20 0.329 0.332 0.186 26 0.321 0.324 0.179 34 0.310 0.313 0.171 45 0.294 0.297 0.159 50 0.287 0.290 0.154 44 0.295 0.298 0.160 57 0.778 0.281 0.148 63 0.271 0.273 0.142 82 0.246 0.249 0.125	05	05 0.349 0.353 0.202 0.151 266.2 0.6 0.345 0.349 0.198 0.150 261.8 15 0.336 0.339 0.191 0.148 251.7 20 0.329 0.332 0.186 0.147 244.6 26 0.321 0.324 0.179 0.145 236.2 34 0.310 0.313 0.171 0.142 225.3 45 0.294 0.297 0.159 0.138 209.4 50 0.287 0.290 0.154 0.136 202.9 44 0.295 0.298 0.160 0.138 210.7 27 0.278 0.291 0.148 0.133 194.1 63 0.271 0.273 0.142 0.131 186.6 82 0.246 0.249 0.125 0.124 163.9	05 0.349 0.353 0.202 0.151 266.2 87.6 0.6 0.345 0.349 0.198 0.150 261.8 86.0 15 0.336 0.339 0.191 0.148 251.7 82.3 20 0.329 0.332 0.186 0.147 244.6 79.8 26 0.321 0.324 0.179 0.145 236.2 76.7 34 0.310 0.313 0.171 0.142 225.3 72.8 45 0.294 0.297 0.159 0.136 209.4 67.1 50 0.287 0.290 0.154 0.136 202.9 64.8 44 0.295 0.298 0.160 0.138 210.7 67.6 57 0.278 0.281 0.145 0.131 194.1 51.7 63 0.271 0.273 0.142 0.131 186.6 59.1 82 0.246 0.249 0.125 <	09 0.349 0.349 0.202 0.191 266.2 87.6 33.5 08 0.345 0.349 0.198 0.150 261.8 86.0 32.9 15 0.336 0.339 0.191 0.144 251.7 82.3 31.4 20 0.329 0.332 0.186 0.147 244.6 79.8 30.3 26 0.321 0.324 0.179 0.145 236.2 76.7 29.1 34 0.310 0.313 0.171 0.145 236.2 76.7 29.1 45 0.294 0.297 0.159 0.198 209.4 67.1 25.1 50 0.287 0.290 0.154 0.136 202.9 64.8 24.2 44 0.295 0.298 0.160 0.138 210.7 67.6 25.3 37 0.276 0.278 0.142 0.131 194.1 61.7 22.9 63 0.271

Figure D-25. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA DS. LAT: 39-27.2 NJ LIMB: 110-29.0 N 21JUL1975 1305991

Figure D-26. Ocean optical properties (sheet 1 of 2).

2(M) 5.0	T (17M) 0.771	ALPHA 1	0.263	3CAT 0.135	0.128	VSF3	V3F6 55.7	20.5	7HTA= 20 101.0
6.7	0.752	0.205	0.200.	0.152	0-135	200.4	43.9		0.100
10.2	0.709	0.344	0.413	0.197	0.150	330.2	111.3	43.5	0.08
12.0	0.620	0.478	0.484	0.310	0.174	411.7	142.1	36.6	0.074
13.8	0.607	0.499	0.505	0.328	0.176	436.8	151.8	60.1	0.062
15.4	0.618	0.481	0.487	0.313	0.174	415.5	143.6	57.3	0.064
27.4	0.657	0.420	0.425	0.259	0.165	343.6	116.3	45.6	0.072
22.4	0.666	0.414	0.418 0.411	0.254	0.164 0.163	328.6	113.8	43.2	0.074
23.8	0.677	0.390	0.395	0.235	0.160	310.7	104.0	40.4	0.074
25.2	0.682	0.383	0.387	0.229	0.159	302.7	101.1	39.1	0.078
24.6	0.484	0.380	0.365	0.227	0.158	299.6	99.9	38.7	0.078
28.1	0.685	0.379	0.369	0.225	0.158	298.0	99.3	38.4	0.079
31.3	0.693	0.366	0.370	0.215	0.155	284.1	94.2	36.3	0.081
32.9	0.703	0.352	0.356	0.204	0.152	269.1	88.7	34.0	0.084
34.5	0.704	0.344	0.347	0.141	0.150	260.3	85.5	32.7	0.085
35.0	0.715	0.336	0.339	0.191	0.148	251.7	82.3	31.4	0.087
36.2	(10/11	0.335	7.336	0.189	0.147	244.6	79.8	30.3	0.089
37.9	0.727	0.319	0.323	0.178	0.144	234.8	76.2	28.9	0.091
38.8	0.733	0.311	0.314	0.172	0.142	226.6	73.3	27.6	0.093
39.	0.733	0.308	0.312	0.170	0.142	223.9	15.3	27.3	0.094
40.7 41.5	0.738	0.303	0.306 0.294	0.166	0.140	218.6	70.4 66.2	26.5 24.8	0.095
42.5	0.741	0.299	0.302	7.103	0.139	214.6	69.0	25.9	0.096
43.3	0.749	0.289	0.292	0.135	0.136	204.2	65.3	24.4	0.099
44.3	0.756	0.280	0.282	0.149	0.134	195.3	62.1	23.1	0.102
45.3	0.756	0.291	0.294	0.157	0.137	192.8	66.2	24.8	0.103
47.0	0.766	0.267	0.269	0.139	0.130	182.9	57.8	21.4	0.106
40.0	0.151	0.802	0.255	0.138	0.130	131.7	37.4	21.2	0.107
4P.9	0.776	0.254	0.256	0.130	0.126	170.9	53.6	19.7	0.111
49.9 50.9	0.776	0.254	0.256	0.130	0.126	170.9	53.6	19.7	0.111
PAUSE			J 1 E 7V	V 4 4 4 7	0 + 1 6 1	* 22 14	7007	71.00	0.117

Figure D-26. Ocean optical properties (sheet 2 of 2).

DICEAN OPTICAL PROPERTIES - 520 NM SANTA CATALDNA 19. LAT: 39-27.2 N; LING: 118-29.0 N 21.01.173 1327701

Figure D-27. Ocean optical properties (sheet 1 of 2).

Danie waters

2(M)	T(17H)	AL PHA *	A LPHA D.408	SCAT	ABS	VSF3	V5F6		THIAFZE
3.4	0.623	0.478	0.479	0.246	0.162	325.3 406.1	109.4 140.0	42.7 55.7	0.074
4.7	0.647	C 435	0.440	0.272	0.168	360.9	122.8	48.3	0.065
5.9	0.653	0.426	0.431	0.264	0.166	350.5	118.9	46.7	0.071
7.1	0.636	0.453	0,458	0.288	0.170	382.2	130.9	51.8	0.067
8.6	0.611	0.492	0.498	0.323	0.176	429.0	148.7	59.5	0.063
10.0	0.613	0.489	0.495	0.320	0.175	425 • 1 500 • 4	147.3 176.5	58.9	0.063
12.9	0.623	0.473	0.479	0.306	0.173	40A.1	140.0	71.6	0.057
14.4	0.659	0.417	0.422	0.257	0.165	340.3	115.0	45.0	0.072
13.8 17.3	3666	0.412	0.417	0.253	0.164	335.2	113.2	44.2	0.073
	0.670	0.401	0.405	0.243	0.162	322.0	108.2	42.2	0.075
10.8	0.667	0.405	0.410	0.247	0.163	326.9	110-1	42.9	0.074
20.1	0.663	0.411	0.408	0.252	0.164	333.6	112.5	44.0	0.073
23.1	0.673	0.396	0.401	0.240	0.161	325.3	109.4	42.7	0.074
24.5	0.657	0.420	0.425	0.259	0.165	343.6	116.3	45.6	0.072
26.1	0.662	0.412	0.417	0.253	0.164	335.2	113.2	44.2	0.073
27.4	0.666	0.406	0.411	0.248	0.163	328.6	110.7	43.2	0.074
29.1	0.675	0.393	0.398	0.237	0.160	313.9	105.2	40.9	0.076
30.4 32.0	0.689	0.373 0.35¢	0.377	0.221	0.157	273.6	90.3	3/65	0.080
33.3	0.716	0.334	0.338	0.190	0.148	250.2	81.8	34.7 31.1	0.083
35.0	0.720	0.329	0.332	7.186	0.147	244.6	79.8	30.3	0.089
36.3	0.724	0.323	0.327	0.181	0.145	239.0	77.7	29.5	0.090
37.8	0.748	0.290	0.293	0.156	0.137	205.5	65.8	24.6	0.099
39.4 40.7	0.744	0.245	0.298	0.150	0.138	210.7	67.6	25.3	0.097
42.3	0.757	0.278	0.281	0.148	0.135	200 .4 194 . L	63.9 61.7	23.8 22.9	0.100
43.6	0.753	0.283	0.286	0.151	0.135	199.1	63.5	23.7	0.102
45.1	0.770	0.262	0.264	0.136	0.128	178.1	56.1	20.7	0.108
46.7	0.772	0.259	0.262	0.134	0.128	175.7	55.3	20.4	0.109
42.0	U.769	0.263	3.265	0.137	0.129	179.3	20.5	20.9	0.107
49.5 50.9	0.770 0.778	0.262	0.264 0.254	0.136	0.128 0.125	178.1	56.1	20.7	0.109
PAUSE		PLOTTER	0.434	0.124	0.125	168.6	52.4	19.4	0.112
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,							
						·			***************************************

Figure D-27. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALIDA IS. LAT! 39-27.2 N; LINB! 118-29.0 N 21JUL1975 1331PDT

Figure D-28. Ocean optical properties (sheet 1 of 2).

2(M) 1.5 2.3	0.689 0.663		0,377 0,415	0.221	0-15T	VSF3 291.6 339.6	VSF6 97.0 112.5	37.5	THTA # 21 0 - 08(0 - 07)
3.6	0.666		0.411	0.248	0.163	328.5	110.7	43.2	0.01
4 . 8	0.678	0.389	0.393	0.234	0.160	309.1	103.4	40.1	0.07
6.0	0.648	0.433	0.438	0.271	0.167	359.1	122.1	48.1	0.070
7.5 8.8	0.622	0.475	0.480	0.307	0.173	408.0	140.7	56.0	0.06
10.2	0.611	0.492	0.498	0.323	0.176	429.0	148.7	59.5	0.06
11.5	0.596	0.211	0.523	0.345	0.178	45F.1	160.2	54.5	0.050
12.9	0.580	0.545	0.552	0.371	0.181	494.0	174.0	70.5	0.058
14.4	0.624	0.472	0.477	0.304	0.173	359.1	139.3	55.4	0.06
17.4	0.648	0.433	0.438 0.418	0.271	0.167	336.9	113.8	48.1	0.070
18.7	0.661	0.414	0.418	0.254	0.164	336.9	113.8	44.5	0.073
20.3	0.663	0.411	0.415	0.252	0.154	333.6	112.5	44.0	0.07
21.7	0.664	0.409	0.414	0.251	0.163	331.9	111,9	43.7	0.074
23.2	0.663	0.411	0.415	0.252	0.154	333.6	112.5	44.0	0.073
24.7	0.670	0.401	0.405.	0.243	0.152	322.0 318.8	108.2	42.2	0.07
25.9 27.6	0.672	0.398	0.402	0.248	0.163	328.6	110.7	41.6 43.2	0.074
29.1	0.671	0.399	5.404	0.242	0.162	320.4	107.6	41.7	0.07
30.5	0.676	0.392	0.396	0.236	0.160	312.3	104.6	40.6	0.076
32.0	0.685	0.377	0.382	0.224	0.157	296.5	98.7	38.2	0.079
33.5	0.696	0.362	0.355	0.212	0.154	279.6	92.5	37.6	0.087
35.0 36.6	0.704 0.713	0.351 0.338	0 • 354 U • 342	0.203 0.193	0.149	267.6 254.5	88.1 83.4	33.8 31.8	0.084
30.1	0.715	0.330	0.342	0.193	0.149	624.5	83.4	31.0	0.08
39.9	0.733	0.311	0.314	0.172	0.142	226.6	73.3	27.6	0.093
41.4	0.746	0.293	0.296	0.158	0.137	208.1	66.7	24.9	0.098
+3.4	0.748	0.290	0.293	0.156	0.137	205.5	65.8	24.6	0.066
45 4	0.752	0.285	0.288	0.152	0.135 0.133	200 • 4	63.9	23.8	0.100
47.5 49.2	0.758	0.277	0.280	0.147 0.143	0.132	192.8	61.3 59.5	22.8	0.103
51.1 PAUSE	0.765	0.268 PLOTTER	0.271	0.140	0.130	184.1	58.2	21.5	0.106
-									
	<u> </u>								

Figure D-28. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT' 39-27.2 N; LINE: 118-29.0 N 21JUL1975 1400PDT

Figure D-29. Ocean optical properties (sheet 1 of 2).

Z(H) 1.9	T(1/M) 0.712	0.340	ALPHA C. 343	SCAT 0.194	AB5	256.0	83.9	75F12 32.0	THTA¥2 80.0
2.6	0.697	0.360	0.364	0.211	0.154		92.0	35.3	0.08
4.0	0.634	0.456	0.401	0.291	0.171	385.A	132.2	52.4	0.06
5.2	0.649	0.432	0.437	0.270	0.167	357.4	121.5	47.8	0.07
6.5	0.642	0.442	0.447	0.279	0.169 D.168	369.6	124.1	49.8	0.06
B.0	0.645	0.438	0.480	0.307	0.173	408.0	140.7	56.0	0.06
9.3 10.8	0.606	0.500	0.506	0.330	0.176	438.8	152.5	61.1	0.06
12.0	0.554	0.520	0.526	0.348	0.179	452.5	161.5	65.2	0.08
13.3	0.501	0.543	0.550	0.369	0.181	491.9	173.1	70.1	0.05
14.8	0.613	0.489	0.495	0.320	0.175	425.1	147.3	58.9	0.06
16.2	0.646	0.436	0.441	0.273	0.168	362.6	123.4	48.6	0.07
17.5	0.657	0.420	0.425	0 . 2 59	0.165	343.6	116.3	45.6	0.07
10.9	0.656	0.421	0.426	0.261	0.165	345.3	116.9	45.9	0.07
20.4	0.698	0.418	0.423	0.258	0.165	342.0	115.7	45.3	0.07
51.6	0.656	0.421	0.426	0.261	0.165	345.3 343.6	116.9	45.9 45.6	0.07
24.4	0.657	0.420	0.425	0.259	0.163	326.9	110.1	42.9	0.07
25.9	0.663	0.411	0.415	0 - 2 52	0.164	333.6	112.5	44.0	0.07
26.9	0.667	0.405	0.410	0.247	0.163	326.9	110.1	42.9	0.07
23.6	0.671	0.399	0.404	0.242	0.162	320.4	107.6	41.9	0.07
29.7	0.679	0.388	0.392	0.232	0.159	307.5	102.8	39.9	0.07
31.2	0.635	0.379	0.383	0.225	0.158	298.0	99.3	38.4	0.07
32.5	0.699	0.358	0.362	0.208	0.153	275.1	40.4	34.9	0.08
33.9	0.700	0.356	0.360	0.207	0.153	273.6	90.3	34.7	0.08
35.4	0.708	0.345	0.349	0.198	0.150	261.8	86.0	32.9	0.08
35.7	0.700	0.356	0.350	0.184	0.153	243.2	79.3	30.1	0.08
38.1 39.6	0.719	0.330	0.334	0.187	0.147	246.0	90.3	30.5	0.08
40.9	0.723	0.325	0.328	0.182	0.146	240 4	78.2	29.7	0.09
42.3	0.724	0.323	0.327	0.181	0 - 145	239.0	77.7	29.5	0.09
43.6	0.725	0.322	0.325	0.180	0.145	237.6	77.2	29.3	0.09
45.2	0.722	0.326	0.329	0.103	0.146	54148	70.7	54.4	0.178
46.4	0.729	0.317	0.320	0.176	0.144	232.1	75.3	28.4	0.09
47.8	0.734	0.310	0.313	^.171	0.142	225.3	72.8	27.4	0.09
49.2	0.738	0.303	0.306	0.166	0.140	218.6 195.3	62.1	26.5 23.1	0.09 0.10
50.3 PAUS	0.756	0.280 PLUTTER	0.282	0.147	0.134	175.5	92.1	2311	0410
- AU3	E NEMUT	PEULIER							

Figure D-29. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 35-27.2 N; LIMB: 110-29.0 N 21JUL1975 1450PDT

Figure D-30. Ocean optical properties (sheet 1 of 2).

and the second of the second of the second

and the distribute to the control of the state of the sta

3.7 0.011 0.492 0.498 0.323 0.176 429.0 148.7 59.5 0.06 4.8 0.627 0.467 0.473 0.300 0.172 398.6 137.1 54.5 0.06 6.2 0.626 0.469 0.474 0.302 0.173 400.5 137.8 54.8 0.06 7.8 0.621 0.477 0.482 0.308 0.174 409.8 141.4 56.3 0.06 9.1 0.613 0.489 0.495 0.320 0.175 425.1 147.3 58.9 0.06 10.5 0.573 0.557 0.564 0.382 0.182 509.1 179.9 73.1 0.05 13.2 0.594 0.520 0.526 0.348 0.179 462.8 161.8 65.2 0.06 14.6 0.615 0.486 0.492 0.317 0.175 421.3 145.5 58.2 0.06 14.6 0.615 0.486 0.492 0.317 0.175 421.3 145.5 58.2 0.06 17.4 0.622 0.446 0.449 0.272 0.175 421.3 145.5 58.2 0.06 18.7 0.647 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 20.1 0.500 0.405 0.440 0.272 0.168 360.9 122.8 48.3 0.07 22.9 0.647 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 22.9 0.653 0.426 0.440 0.272 0.168 360.9 122.8 48.3 0.07 22.9 0.657 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.847 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.857 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.857 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.857 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.857 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 25.6 0.652 0.427 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 25.7 0.659 0.417 0.422 0.250 0.166 350.5 118.9 46.7 0.07 26.9 0.653 0.426 0.431 0.264 0.165 350.5 118.9 46.7 0.07 31.2 0.658 0.418 0.423 0.254 0.165 340.3 115.0 45.0 0.07 33.8 0.666 0.406 0.411 0.248 0.163 330.5 118.9 46.7 0.07 35.6 0.659 0.418 0.423 0.254 0.165 340.3 115.0 45.0 0.07 35.6 0.669 0.408 0.411 0.248 0.163 330.5 118.9 46.7 0.07 35.6 0.669 0.408 0.411 0.248 0.163 330.5 118.9 46.7 0.07 35.6 0.669 0.408 0.411 0.248 0.163 330.5 118.9 46.7 0.07 35.6 0.669 0.408 0.413 0.254 0.165 330.5 118.9 46.7 0.07 35.6 0.669 0.408 0.413 0.254 0.165 330.5 118.9 46.7 0.07 35.6 0.669 0.408 0.413 0.254 0.165 330.5 118.9 46.7 0.07 35.6 0.669 0.408 0.413 0.249 0.153 330.5 110.6 39.4 0.07 35.6 0.669 0.408 0.413 0.254 0.165 330.5 110.6 39.4 0.07 35.6 0.669 0.408 0.413 0.254 0.155 300.5 10.6 39.4 0.07 35.6 0.669 0.375 0.380 0.253 0.155 300.5 10.6 39.2	3. T	0.011		** 0.493 ·					
4.8 0.627 0.467 0.473 0.300 0.173 398.6 137.1 94.5 0.06 6.2 0.626 0.469 0.474 0.302 0.173 400.5 137.8 54.8 0.06 7.8 0.621 0.477 0.482 0.308 0.174 409.8 141.4 56.3 0.06 9.1 0.613 0.489 0.495 0.320 0.175 425.1 147.3 58.9 0.06 10.5 0.573 0.587 0.586 0.382 0.182 50.91 17.9 73.1 0.05 13.2 0.594 0.520 0.526 0.348 0.179 462.8 161.8 65.2 0.06 13.4 0.615 0.486 0.492 0.317 0.175 421.3 145.9 58.2 0.06 13.4 0.628 0.486 0.492 0.317 0.175 421.3 145.9 58.2 0.06 15.9 0.628 0.446	4.8			N 603					0.06
6.2 0.626 0.469 0.474 0.302 0.173 400.5 137.8 54.8 0.06 7.8 0.621 0.477 0.482 0.308 0.174 409.8 141.4 56.3 0.06 9.1 0.613 0.489 0.495 0.320 0.175 425.1 147.3 58.9 0.06 10.5 0.573 0.557 0.564 0.382 0.182 509.1 179.9 73.1 0.05 11.9 0.580 0.595 0.592 0.371 0.181 494.0 174.0 70.5 0.05 11.9 0.580 0.595 0.526 0.348 0.179 462.8 161.8 65.2 0.06 14.6 0.615 0.486 0.492 0.317 0.175 421.3 145.5 58.2 0.06 15.9 0.628 0.466 0.471 0.299 0.172 396.8 136.4 54.2 0.06 15.9 0.628 0.466 0.471 0.299 0.172 396.8 136.4 54.2 0.06 17.4 0.642 0.444 0.449 0.272 0.168 360.9 122.8 48.3 0.07 20.1 0.647 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 22.4 0.647 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 22.4 0.647 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 22.4 0.647 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 22.4 0.647 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 22.4 0.647 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 23.4 0.653 0.426 0.431 0.264 0.165 350.5 118.9 46.7 0.07 23.4 0.659 0.417 0.432 0.266 0.166 350.5 118.9 46.7 0.07 23.4 0.659 0.417 0.422 0.257 0.165 340.3 115.0 45.0 0.07 23.5 0.651 0.418 0.423 0.254 0.165 340.3 115.0 45.0 0.07 33.8 0.666 0.406 0.411 0.248 0.163 328.6 110.7 45.3 0.07 33.8 0.666 0.406 0.411 0.242 0.257 0.165 340.3 115.0 45.0 0.07 33.8 0.666 0.406 0.418 0.423 0.254 0.165 340.3 115.0 45.0 0.07 33.8 0.666 0.406 0.413 0.248 0.163 328.6 110.7 45.2 0.07 33.7 0.659 0.417 0.422 0.257 0.165 340.3 115.0 45.0 0.07 33.8 0.666 0.406 0.411 0.248 0.163 328.6 110.7 45.2 0.07 34.1 0.607 0.386 0.390 0.231 0.159 305.9 102.2 39.6 0.07 35.4 0.669 0.408 0.407 0.244 0.155 284.1 94.2 36.3 0.08 43.7 0.689 0.376 0.389 0.223 0.157 294.9 98.2 37.9 0.07 42.2 0.693 0.366 0.370 0.215 0.155 284.1 94.2 36.3 0.08 44.0 0.701 0.355 0.359 0.205 0.157 291.8 97.0 37.5 0.08 46.0 0.701 0.355 0.359 0.205 0.159 306.3 19.3 30.2 111.3 41.5 0.06 46.0 0.701 0.355 0.359 0.205 0.152 267.6 86.1 38.8 0.06 46.0 0.701 0.355 0.359 0.205 0.152 267.6 86.1 38.4 0.08		0.627							
9.1									0.06
10.5 0.573 0.557 0.564 0.382 0.182 509.1 179.9 73.1 0.05 11.19 0.580 0.545 0.552 0.371 0.161 494.0 174.0 70.5 0.05 13.2 0.594 0.520 0.526 0.348 0.179 462.8 161.8 65.2 0.06 14.6 0.615 0.486 0.492 0.317 0.175 421.3 145.5 58.2 0.06 15.9 0.628 0.466 0.471 0.299 0.172 396.8 136.4 54.2 0.06 18.7 0.647 0.483 0.444 0.449 0.280 0.169 371.4 126.8 50.0 0.06 18.7 0.647 0.483 0.440 0.272 0.168 360.9 122.8 48.3 0.07 20.1 0.640 0.447 0.452 0.283 0.169 375.0 123.1 50.6 0.08 21.4 0.647 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.547 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.547 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.547 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.547 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.547 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.547 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.547 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.547 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.547 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.547 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 24.2 0.547 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 25.6 0.652 0.427 0.432 0.266 0.166 350.5 115.9 46.7 0.07 26.9 0.653 0.426 0.431 0.264 0.165 350.5 115.9 46.7 0.07 28.4 0.653 0.426 0.431 0.264 0.165 350.5 115.9 46.7 0.07 31.2 0.658 0.418 0.423 0.258 0.165 342.0 115.7 45.3 0.07 31.2 0.658 0.418 0.423 0.258 0.165 342.0 115.7 45.3 0.07 31.3 0.666 0.406 0.401 0.248 0.163 328.6 110.7 43.2 0.07 33.8 0.666 0.406 0.401 0.248 0.163 328.6 110.7 43.2 0.07 33.8 0.666 0.406 0.401 0.249 0.163 330.2 111.3 43.5 0.07 33.8 0.666 0.406 0.403 0.413 0.249 0.163 330.2 111.3 43.5 0.07 33.8 0.666 0.406 0.403 0.413 0.249 0.163 328.6 110.7 43.2 0.07 33.8 0.666 0.406 0.403 0.413 0.249 0.163 328.6 110.7 43.2 0.07 33.8 0.668 0.408 0.413 0.249 0.163 328.6 110.7 43.2 0.07 33.8 0.669 0.408 0.413 0.249 0.163 320.2 111.3 43.5 0.07 34.1 0.689 0.336 0.336 0.231 0.159 305.9 102.2 39.6 0.07 42.2 0.693 0.366 0.370 0.250 0.159 305.9 102.2 39.0 0.08 45.0 0.697 0.380 0.384 0.2									0.06
11.9									
13.2									
14.6									
15.9	14.6								0.063
18.7	15.9								0.060
20.1	17.4								0.06
21.4									
22.9									
24.2 0.647 0.435 0.440 0.272 0.168 350.9 122.8 48.3 0.07 25.6 0.652 0.427 0.432 0.264 0.166 352.2 119.5 47.0 0.07 26.9 0.653 0.426 0.431 0.264 0.166 350.5 118.9 46.7 0.07 28.4 0.653 0.426 0.431 0.264 0.165 350.5 118.9 46.7 0.07 29.7 0.659 0.417 0.422 0.257 0.165 340.3 115.0 45.0 0.07 31.2 0.658 0.418 0.423 0.258 0.165 342.0 115.7 45.3 0.07 32.5 0.661 0.418 0.254 0.164 336.9 113.8 44.5 0.07 33.6 0.666 0.406 0.411 0.244 0.163 328.6 110.7 43.2 0.07 35.6 0.669 0.408 0.413									
25.6	24.2								0.070
28.4	25.6	0.652							0.07
20.7	26.9								0.07
31.2									
32.5									
33.8									
35.6	33.8								0.074
38.1 0.660 0.396 0.390 0.231 0.159 305.9 102.2 39.6 0.07 39.5 0.681 0.385 0.389 0.230 0.159 304.3 101.6 39.4 0.07 40.7 0.687 0.376 0.380 0.223 0.157 294.9 98.2 37.9 0.07 42.2 0.693 0.366 0.370 0.215 0.157 284.1 94.2 36.3 0.08 43.7 0.689 0.373 0.377 0.221 0.157 291.8 97.0 37.5 0.08 45.0 0.097 0.360 0.364 0.211 0.154 278.1 92.0 35.3 0.08 46.4 0.704 0.351 0.354 0.203 0.152 267.6 88.1 33.8 0.08 48.0 0.701 0.355 0.357 0.205 0.153 272.1 89.8 34.4 0.08 49.2 0.702 0.353 0.357 0.205 0.152 270.6 89.2 34.2 0.08 50.7 0.697 0.360 0.364 0.211 0.154 278.1 92.0 35.3 0.08	35.4	0.669	0.402			323.6	108.8	42.4	0.07
39.5	30.0								0.07
40.9									
42.2 0.693 0.366 0.370 0.215 0.155 284.1 94.2 36.3 0.08 43.7 0.689 0.373 0.377 0.221 0.157 291.8 97.0 37.5 0.08 45.0 0.697 0.380 0.364 0.211 0.154 278.1 92.0 35.3 0.08 46.4 0.704 0.351 0.354 0.203 0.152 267.6 88.1 33.8 0.08 48.0 0.701 0.355 0.359 0.206 0.153 272.1 89.8 34.4 0.08 49.2 0.702 0.353 0.357 0.205 0.152 270.6 89.2 34.2 0.08 49.2 0.702 0.360 0.364 0.211 0.154 278.1 92.0 35.3 0.08									
43.7									
46.4 0.704 0.351 0.354 0.203 0.152 267.6 88.1 33.8 0.08 48.0 0.701 0.355 0.359 0.206 0.153 272.1 89.8 34.4 0.08 49.2 0.702 0.353 0.357 0.205 0.152 270.6 89.2 34.2 0.08 50.7 0.697 0.360 0.364 0.211 0.154 278.1 92.0 35.3 0.08	43.7								0.080
48.0 0.701 0.355 0.359 0.206 0.153 272.1 89.8 34.4 9.08 49.2 0.702 0.353 0.357 0.205 0.152 270.6 89.2 34.2 0.08 50.7 0.697 0.360 0.364 0.211 0.154 278.1 92.0 35.3 0.08	45.0								0.087
49.2 02702 0.353 0.357 0.205 0.152 270.6 89.2 34.2 0.08. 50.7 0.697 0.360 0.364 0.211 0.154 278.1 92.0 35.3 0.08									
50.7 0.697 0.360 0.364 0.211 0.154 278.1 92.0 35.3 0.08									
					 		, 200		••••

Figure D-30. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALINA 25. LAT: 59-27.2 N; LDMG: 118-29.0 N 21.81.1975 1554POT

Figure D-31. Ocean optical properties (sheet 1 of 2).

1.3	T(1/H)	0.473	ALPHA 0.482	3CAT	0-174	VSF3	VSF6 141.4		THIVASBY
" i.i	0.411	0.492	0.498	0.323	0.176	429.0	148.7	56.3 59.8	0.065
2.6	0.612	0.491	0.497	0.321	0.175	427.0	148.0	59.2	0.063
4.0	0.616	0.484	0.490	0.316	0.175	419.3	145.0	57.9	0.064
3.4	0.607	0.499	0.505	0.328	0.176	436.A	151.6	60,8	0.062
8.2	0.598	0.513	10.520	0.342	0.178	454.7 513.4	155.7	63.8	0.061
9.6	0.504	0.538	0.545	0.365	0.180	485.6	170.7	73.9 69.1	0.056
11.0	0.396	0.517	0.523	0.345	0.178	428.7	160.2	54.5	0.060
12.3	0.643	0.441	0.446	0.277	0.169	367.9	125.4	49.5	0.069
13.8	0.648	0.433	0,438	0.271	0.167	359,1	122.1	48.1	0.070
\$2.4	(1.547	0.435	0.440	0.272	0.168	360.9	155.8	48.3	0.070
16.6	0.652	0.427 0.430	0.432	0.266	0.166 0.167	352.2 355.6	119.5	47.0	0.071
19.3	0.544	0.439	0.444	0.278	0.158	364.1	124.3	47.5	0.070
20.9	0.654	0.424	0.429	0.263	0.166	348.8	118.2	46.4	0.071
22.4	0.652	0.427	0.432	0.266	0.166	352.2	119.5	47.0	0.071
53.4	0.636	0.421	0.926	0.251	0.162	345.5	116.9	45.9	0.072
25.3	0.655	0,423	0.428	0.262	0.166	347.0	117.6	46.1	0.072
20.0	0.636	0.421	0.426	0.261	0.165	345.3	116.9	45.9	0.072
29.5	0.663	0.411	0.415	0.252	0.164	345.5	112.5	44.0	0.072
32.4	0.662	0.412	0.417	0.253	0.164	335.2	113.2	44.2	0.073
34.17	0.574	0.393	0.399	0.238	0.161	315.5	105.8	41.1	0.076
35.3	0.689	0.373	0.377	0.221	0.157	291.6	97.0	37.5	0.080
36.6	0.692	0.368	0.372	0.216	0.155	285.7	74.8	. 36.5	0.081
39.5	0.706	0.365 0.348	0.357	0.201	0.151	264.7	93.1	35.8	0.081
41.0	0.712	0.340	0.343	0.194	0.149	256.0	87.1 83.9	33.3 32.0	0.085
42.5	0.717	0.333	0.336	0.189	0.148	248.8	81.3	30.9	0.088
45.8	0.728	0.318	0.321	0,177	0.144	233.5	75.7	20.6	0.091
45.3	0.728	0.318	0.321	0.177	0.144	233.5	75.7	28.6	0.091
40.0	0.732	0.315	0.310	0.173	0.143	227.0	73.8	27.8	0.093
	0.732	0.313	0.316	0.173	0.143	228.D 218.6	73.8 70.4	27.8	0.093
49.7								26.5	0.005

Figure D-31. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 39-27.2 N; LIND: 118-29.0 N 21JL1975 1434901

Figure D-32. Ocean optical properties (sheet 1 of 2).

MATTER !!

Z (M)	TILIMI	AL PHAT	ALPHA	SCAT	ABS	VSF3	VSF6	VSF12	THTA 287
1.7	0.617	0.483	0.488	0.314	0.174	417.4	144.3	57.6	0.064
3,2	0.610	0.494	0.500	0.324	0.176	430.9	149.5	59.8	0.063
4.6	0.605	0.502	0.508	0.331	0.177	440.7	153.3	61.5	0.095
5.9	0.601	0.509	0.515	0.337	0.177	448.7	156.3	62.8	0.061
7,4	0.613	0,489	0.495	0,320	0.175	425.1	147.3	58.9	0.063
0.6	0.605	0.502	0.508	0.331	0.177	440.7	153.3	61.5	0.062
10.3	0.576	0.552	0.558	0.377	0.181	502.6 513.4	177.3 181.6	72.0 73.9	0.057
13.1	0.569	0.564	0.571	0.388	0.182	517.8	183.3	74.6	0.056
14.6	0.557	0.585	0.592	0.408	0.184	544.7	193.8	79.3	0.054
16.1	0.573	0.557	0.564	0.382	0.182	509.1	179.9	73.1	0.056
17.5	0.614	0.468	0.493	0.318	0.175	423.2	146.5	5H.5	0.063
19.1	0.635	0.455	0.460	0.289	0.171	384.0	131.5	52.1	0.067
20.4	0.639	0.449	0.454	0.284	0.170	376,8	128.8	50.9	0.068
51.0	0.642	0.442	0.447	0.279	0.169	369.6	126.1	44.6	0.069
23.5	0.637	0.452	0.457	0.287	0 • 1 70	380.4	130.2	51.5	0.068
24,9	0.636	0.453	0.458	0.288	0.170	382.2	130.9	51.8	0.067
26.4	0.644	0.449	0.454	0.276	0.168	376.8	128.8	49.2 50.9	0.068
29.4	0.641	0.445	0.451	0.281	0.169	373.2	127.5	50.3	0.058
30.7	0.045	0.438	0.443	0.275	0.168	364.4	124.1	48.5	0.089
32.4	0.648	0.433	0 4 38	0.271	0.147	359.1	122.1	48.1	0.070
33.9	0.657	0.420	0.425	0.259	0.165	343.5	116.3	45.6	0.072
35.4	0.658	0.418	0.423	0.258	0.165	342.0	115.7	45.3	0.072
36.8	0.665	0.408	0.413	0.249	0.163	330.2	111.3	43.5	0.074
30.2	0,674	0.395	0.399	0.238	0.161	315.5	105.8	41.1	0.076
30.0	0.686	0.377	0.382	0.224	0.157	296.5	98.7	38.3	0.079
41.3	0.499	0.358 0.356	0.362	0.208	0.153 0.153	275.1 273.6	90.9 90.3	34.9 34.7	0.083
44.4	7:100	0.356	0.350	0.207	0.155	273.8	90.3	34.7	0.083
45.9	0.705	0.349	0.353	0.202	0.151	266.2	87.6	33.5	0.034
47.5	0.706	U.348	0.352	0,201	0.151	264.7	87.1	33.3	0.045
48.9	0.711	0.341	0.345	0.195	0.150	257.4	84.4	32.2	0.086
50.4	0.716	0.334	0.338	0.190	0.148	250.2	81.8	31-1	0.088
	# READ	PLOTTER							

Figure D-32. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALDNA DA. LAT: 35-27.2 N; LONG: 110-29.0 N 21JUL1979 2040F07

Figure D-33. Ocean optical properties (sheet 1 of 2).

3:2 0.667 0.408 0.410 0.247 0.163 326.5 110.1 42.9 0.07 5.9 0.660 0.418 0.420 0.256 0.164 338.6 114.4 44.8 0.07 7.2 0.653 0.426 0.431 0.264 0.166 350.5 118.9 46.7 0.07 8.8 0.658 0.428 0.428 0.262 0.165 342.0 115.7 45.3 0.07 10.2 0.655 0.423 0.428 0.262 0.165 347.0 117.6 46.1 0.07 11.5 0.657 0.420 0.428 0.259 0.165 343.6 116.8 45.6 0.07 13:1 0.650 0.430 0.435 0.269 0.165 343.6 116.8 45.6 0.07 14.5 0.648 0.433 0.438 0.271 0.167 359.6 120.8 47.5 0.07 16.0 0.633 0.458 0.463 0.292 0.171 387.6 132.9 52.7 0.06 17.4 0.622 0.475 0.480 0.307 0.173 408.0 140.7 56.0 0.06 18.9 0.544 0.520 0.526 0.348 0.179 462.8 161.8 65.2 0.06 20.3 0.588 0.532 0.538 0.358 0.180 477.2 167.4 67.6 0.02 21.9 0.602 0.507 0.480 0.307 0.173 408.0 140.7 56.0 0.06 22.3 0.622 0.475 0.480 0.307 0.173 408.0 140.7 56.0 0.06 23.3 0.622 0.475 0.480 0.307 0.173 408.0 140.7 56.0 0.06 24.7 0.655 0.436 0.443 0.275 0.168 360.4 12.4 67.5 0.07 27.5 0.650 0.436 0.443 0.275 0.168 360.4 12.4 68.9 0.06 28.3 0.667 0.435 0.440 0.272 0.168 360.4 12.4 68.9 0.06 28.3 0.667 0.435 0.440 0.272 0.168 360.4 12.4 68.9 0.06 28.3 0.667 0.405 0.410 0.247 0.163 326.9 110.1 42.9 0.07 32.1 0.682 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 33.7 0.692 0.368 0.372 0.216 0.157 284.1 90.2 90.07 33.7 0.692 0.368 0.372 0.216 0.157 284.1 90.2 90.07 33.7 0.692 0.368 0.372 0.216 0.157 284.1 90.2 90.07 33.7 0.692 0.368 0.372 0.216 0.157 284.1 90.2 90.07 33.7 0.692 0.368 0.372 0.216 0.157 284.1 90.2 90.07 33.7 0.692 0.368 0.372 0.216 0.157 284.1 90.2 90.07 38.1 0.769 0.299 0.293 0.156 0.137 205.5 65.8 2.6 0.09 38.1 0.769 0.299 0.293 0.156 0.177 55.3 20.4 10.0 22.2 20.10
5.9
7.2 0.653 0.426 0.431 0.264 0.166 350.5 118.9 46.7 0.07 8.8 0.658 0.418 0.423 0.258 0.165 342.0 115.7 45.3 0.07 10.2 0.655 0.423 0.428 0.262 0.166 347.0 117.6 46.1 0.07 11.5 0.457 0.420 0.425 0.259 0.166 345.6 116.3 45.6 0.07 13.1 0.650 0.430 0.435 0.268 0.167 355.6 120.8 47.5 0.07 14.5 0.668 0.433 0.438 0.271 0.167 355.6 120.8 47.5 0.07 16.0 0.633 0.458 0.463 0.292 0.171 387.6 132.9 52.7 0.06 16.9 0.594 0.520 0.526 0.348 0.175 468.0 140.7 36.0 0.06 16.9 0.594 0.520 0.526 0.348 0.175 468.0 140.7 36.0 0.06 20.3 0.588 0.532 0.538 0.338 0.180 477.2 167.4 67.6 0.05 21.9 0.602 0.475 0.480 0.307 0.173 468.0 140.7 36.0 0.06 23.3 0.622 0.475 0.480 0.307 0.173 468.0 140.7 36.0 0.06 24.7 0.665 0.438 0.443 0.275 0.168 364.4 124.1 46.9 0.06 24.7 0.665 0.438 0.443 0.275 0.168 364.4 124.1 46.9 0.06 24.7 0.665 0.438 0.443 0.272 0.168 360.9 122.8 48.3 0.07 27.5 0.650 0.430 0.435 0.268 0.167 355.6 120.8 47.5 0.07 32.1 0.682 0.383 0.387 0.229 0.157 326.9 110.1 42.9 0.07 32.1 0.682 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 32.1 0.682 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 32.1 0.682 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 32.1 0.682 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 32.1 0.682 0.383 0.387 0.229 0.155 285.7 94.8 36.5 0.08 36.7 0.723 0.225 0.328 0.180 0.155 285.7 94.8 36.5 0.08 36.7 0.723 0.225 0.328 0.180 0.155 285.7 94.8 36.5 0.08 36.7 0.723 0.225 0.328 0.180 0.137 205.5 65.8 24.6 0.09 37.7 0.671 0.273 0.276 0.184 0.125 187.7 94.8 36.5 0.08 36.7 0.772 0.250 0.253 0.186 0.137 205.5 65.8 24.6 0.09 37.7 0.779 0.250 0.253 0.126 0.127 157.4 52.4 19.2 0.11
10.2 0.695 0.423 0.428 0.262 0.166 347.0 117.6 46.1 0.07 11.8 0.457 0.420 0.425 0.259 0.165 343.6 116.3 45.6 0.07 13.1 0.650 0.430 0.435 0.268 0.167 359.6 120.8 47.5 0.07 14.5 0.648 0.433 0.438 0.271 0.167 359.1 122.1 48.1 0.07 16.0 0.633 0.498 0.463 0.292 0.171 387.6 132.9 52.7 0.06 17.4 0.622 0.475 0.480 0.307 0.173 408.0 140.7 56.0 0.06 18.9 0.594 0.520 0.526 0.348 0.179 462.8 161.8 65.2 0.66 20.3 0.588 0.532 0.538 0.358 0.180 477.2 167.4 67.6 0.05 21.9 0.602 0.507 0.513 0.386 0.177 466.7 155.6 62.5 0.06 23.3 0.622 0.475 0.480 0.307 0.173 408.0 140.7 56.0 0.06 24.7 0.645 0.438 0.443 0.275 0.168 364.4 124.1 46.9 0.06 26.3 0.667 0.438 0.443 0.275 0.168 364.4 124.1 46.9 0.06 27.5 0.650 0.438 0.443 0.275 0.168 364.4 124.1 46.9 0.06 27.5 0.650 0.438 0.443 0.275 0.168 360.9 122.8 48.3 0.07 30.6 0.667 0.405 0.410 0.247 0.163 326.9 110.1 42.9 0.07 32.1 0.662 0.383 0.387 0.228 0.163 326.9 110.1 42.9 0.07 32.2 0.667 0.405 0.410 0.247 0.163 326.9 110.1 42.9 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 42.9 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 39.1 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 501.1 39.1
11.5
13.1
14.5
17.4
18.9
20.3 0.588 0.532 0.538 0.356 0.180 477.2 167.4 67.6 0.05 21.9 0.602 0.507 0.513 0.356 0.177 446.7 155.6 62.5 0.06 23.3 0.622 0.475 0.480 0.307 0.173 408.0 140.7 56.0 0.06 24.7 0.645 0.436 0.443 0.275 0.168 360.9 122.8 48.3 0.07 27.5 0.650 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 27.5 0.650 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 27.5 0.650 0.435 0.440 0.272 0.168 360.9 122.8 48.3 0.07 27.5 0.650 0.430 0.435 0.268 0.167 355.6 120.8 47.5 0.07 27.2 0.667 0.405 0.410 0.247 0.163 326.9 110.1 42.9 0.07 30.6 0.667 0.405 0.410 0.247 0.163 326.9 110.1 42.9 0.07 32.1 0.662 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 33.7 0.692 0.368 0.372 0.216 0.155 285.7 94.8 36.5 0.08 35.2 0.693 0.365 0.370 0.215 0.155 285.7 94.8 36.5 0.08 35.2 0.693 0.365 0.370 0.215 0.155 285.7 94.8 36.5 0.08 36.7 0.723 0.25 0.328 0.182 0.146 240.4 78.2 29.7 0.09 38.1 0.746 0.229 0.293 0.156 0.137 205.5 65.8 24.6 0.09 39.7 0.781 0.273 0.276 0.184 0.125 167.4 52.4 19.2 0.10 41.0 0.772 0.289 0.262 0.134 0.128 175.7 55.3 20.4 0.10 42.0 0.779 0.250 0.253 0.128 0.125 167.4 52.4 19.2 0.11
21.9
23.3
24.7
27.5
29-2 0.667 0.405 0.410 0.247 0.163 326.9 110.1 42.9 0.07 30.5 0.657 0.405 0.410 0.247 0.163 326.9 110.1 42.9 0.07 32.1 0.682 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 33.7 0.692 0.368 0.372 0.216 0.155 285.7 94.8 36.5 0.08 35.2 0.693 0.365 0.370 0.215 0.155 284.1 94.2 36.3 0.08 35.2 0.693 0.255 0.328 0.182 0.146 240.4 78.2 27.7 0.09 38.1 0.746 0.290 0.293 0.186 0.137 205.5 65.8 24.6 0.09 39.7 0.781 0.273 0.276 0.184 0.132 189.1 80.0 22.2 0.10 41.0 0.772 0.289 0.262 0.134 0.128 175.7 55.3 20.4 0.10 41.0 0.779 0.250 0.253 0.128 0.128 175.7 55.3 20.4 0.10
30.6 0.667 0.408 0.410 0.247 0.163 326.9 110.1 42.9 0.07 32.1 0.682 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 33.7 0.692 0.368 0.372 0.216 0.155 285.7 94.8 36.5 0.08 35.2 0.693 0.365 0.370 0.215 0.155 285.7 94.8 36.3 0.08 36.7 0.723 0.225 0.328 0.182 0.154 240.4 78.2 29.7 0.09 38.1 0.746 0.290 0.293 0.186 0.137 205.5 65.8 24.6 0.09 39.7 0.781 0.273 0.276 0.144 0.132 189.1 80.0 22.2 0.10 41.0 0.772 0.289 0.262 0.134 0.128 175.7 55.3 20.4 0.10 41.0 0.779 0.250 0.253 0.128 0.128 175.7 55.3 20.4 0.10
32.1 0.682 0.383 0.387 0.229 0.159 302.7 101.1 39.1 0.07 33.7 0.692 0.368 0.372 0.216 0.155 285.7 94.8 36.5 0.08 35.2 0.693 0.365 0.370 0.215 0.155 285.7 94.8 36.3 0.08 36.7 0.723 0.225 0.326 0.182 0.194 240.4 78.2 29.7 0.09 38.1 0.746 0.220 0.293 0.186 0.137 205.5 65.8 24.6 0.09 39.7 0.781 0.273 0.276 0.184 0.132 189.1 80.0 22.2 0.10 41.0 0.772 0.289 0.262 0.134 0.128 175.7 55.3 20.4 0.10 42.6 0.779 0.250 0.253 0.128 0.125 167.4 52.4 19.2 0.11
33.7
36.7 0.723 0.225 0.328 0.182 0.146 240.4 78.2 27.7 0.09 38.1 0.746 0.290 0.293 0.186 0.137 205.5 65.8 24.6 0.09 39.7 0.781 0.273 0.276 0.184 0.132 189.1 80.0 22.2 0.10 41.0 0.772 0.259 0.262 0.134 0.128 175.7 55.3 20.4 0.10 42.6 0.779 0.250 0.253 0.128 0.128 175.7 55.3 20.4 0.10
38.1 0.746 0.290 0.293 0.156 0.137 205.5 65.8 24.6 0.09 39.7 0.761 0.273 0.276 0.144 0.132 169.1 60.0 22.2 0.10 41.0 0.772 0.259 0.262 0.134 0.128 175.7 55.3 20.4 0.10 42.6 0.779 0.250 0.253 0.128 0.128 167.4 52.4 19.2 0.11 44.0 0.765 0.241 0.244 0.122 0.122 159.3 49.6 18.1 0.11
39-7 0.781 0.273 0.276 0.144 0.132 189-1 60-0 22.2 0.10 41-0 0.772 0.289 0.262 0.134 0.128 175-7 55.3 20.4 0.10 42-6 0.779 0.250 0.253 0.128 0.125 167-4 52.4 19.2 0.11 44-0 0.765 0.241 0.244 0.122 0.122 194-3 44-6 18-1 0.11
41.0 0.772 0.259 0.262 0.134 0.128 175.7 55.3 20.4 0.10 42.6 0.779 0.250 0.253 0.128 0.125 167.4 52.4 19.2 0.11 44.0 0.785 0.241 0.244 0.122 0.122 154.3 44.6 18.1 0.11
42.6 0.779 0.250 0.253 0.128 0.125 167.4 52.4 19.2 0.11
PAUSE READY PLOTTER

Figure D-33. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALDIA IS. LAT: 39-27.2 N; LONG: 110-29.0 N 22.02.1975 1900/91

Figure D-34. Ocean optical properties (sheet 1 of 2).

9 4				SCAT	ABS	VSF3	VS F6	VSF12 1	
2,4	0.661	0.414	0.419	0.309	0.110	374.8	139.1	51.6	0.061
	0.651	0.429	0.434	0.324	<u>qallı</u>	394.9	146.9		0.059
4.9	0.647	0.435	0.440	0.330	0.111	403.1	150.1	55.9	0.058
6.3	0.651	0.429	0.434	0.324	0.111	394.9	146.9	54.6	0.059
7.5	<u> </u>	0.438	0.444	<u></u>	<u> </u>	407.2	151.7		<u>o va a</u>
9.0	0.640	0.447	0.453	0.342	0.111	419.7 415.5	156.6	50.4	0.057
11.7	0.644	0.439	0.445	0.334	0,111	409.3	152.5	57.7 56.8	0.057
13.1	0.637	0.452	0.458	0.346	- 0 .111	425.9	159.0	59.3	0.056
14.4	0.639	0.449	0.454	0.343	0.111	421.7	157.4	58.7	0.057
15.4	0.631	0.461	0.467	0.355	0.112	438.6	166.0	41.3	0.055
17.3	0.630	0.462	0.469	0.357	0.112	440.7	164.8	61.6	0.055
18.6	0.635	0.455	0.461	0.349	0.112	430.1	160.7	60.0	0.056
20.1	0.631	0.461	0.467	0.355	0.112	438.6	164.0	AL . 3	0.055
21.4	0.617	0.483	0.489	0.377	0.112	468.8	175.8	65.9	0.053
22.A	0.649	0.432	0.437	0.327	0.111	399.0	148.5	55.2	0.059
24.3	0.653	C.426	0.431	121.	0.111	390.9	165_3	_54.0_	0.059
29.7	0.648	0.433	0.439	0.328	0.111	401.1	149.3	55.5	0.058
27.1	0.647	0.435	0.440	0.330	0.111	403.1	150.1	55.9	0.058
28.5	ــــــــــــــــــــــــــــــــــــــ	0.373	<u> 0.378</u>	_0-269_	0.109	320-6	_بيهميـ		440-0
30.0	0.695	0.363	0.360	0.259	0.109	307.6	113.0	41.5	0.068
31.3	0.699	0.358	9.362	0.253	0.109	300.2	110.2	40.4	0.069
34.4	0.701	0.342	0.346	0.238	0.108	294.5	108.7	37.5	0.072
35.7	0.701	0.355	0.359	0.251	0.108	296.5	108.7	39.9	0.070
37.3	0.712	0.340	0-343	0235	0.108	276.6	101.1	36.9	0.072
38.7	0.720	0.329	0.332	0.225	0.108	262.4	95.7	34.9	0.075
40.2	0.720	0.329	0.332	0.225	0.108	262.4	95.7	34.9	0.075
41.6	0.715	0.336	0.339	0.231	0.104	271	99.1	3A . 2	0.073
45.1	0.726	0.321	0.324	0.217	0.107	251.9	91.7	33.3	0.076
44.7	0.724	0.323	0.327	0.219	0.106	255.4	93.0	33.8	0.076
46.2_	0.735	0.308	0.312	0.205	0.107	236.5	8_8	1_1	0.079
47.6	0.730	0.315	0.319	0.511	0.107	245.0	89.0	37.3	0.07ย
49.1	0.725	0.322	0.325	0.218	0.107	253.7	92.3	33.6	0.076
10.7	0.746	0.293	0.296	0-189	Dallif	214.3	78-1	28.2	- Davillia
PAUS	READY	PLOTTER							

Figure D-34. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LUNG: 110-29.0 N 22.001.1975 1401.PDT

Figure D-35. Ocean optical properties (sheet 1 of 2).

	T(3/M)	ALPHA .	ALPHA	SCAT	ABS	VSF3	VSF6		THTA#28A
0.8	0.658	0.418	0.424	0.313	0.110	380.8	141.4	52.5	0.063
<u>2.5</u>	0.647	0.435	0.440	0.330	<u>- بببہ</u>	403.1	150-1	<u> </u>	0-058
3.7 5.0	0.648	0.433	1.439 0.459	0.328	0.111 0.111	401.1 428.0	149.3 159.8	55.5 59.7	0.058
6.2	0.639	0.449	0.454	0.343	0.111	421.7	_157.4_	58.7	0.057
7.5	0.636	0.453	0.459	0.348	0.111	428.0	159.8	59.7	0.056
8.9	0.641	0.445	0.451	0.340	0.111	417.6	155.7	58.1	0.057
10.2	0.640	0.447	0.453	0.342	0.111	419.7	156.6		0.057
11.5	0.630	0.462	0.469	0.357	0.112	440.7	164.8	61.6	0.055
12.9	0.433	0.458	0.464	0.352	0.112	434.4	162.3	60.6	0.056
14.2	0.628	0.456	0.472	0.360	0.112	443.0	166.5	42.3	0.055
15.6	0.609	0.471	0.503	0.371	0.112	460.1 486.5	172.4 182.8	64.6 68.7	0.054
18.2	0.607	0.499	0.506	0.393	0.113	490.9	184.6	69.3	0.052
19.6	0.643	0.441	0.447	0.336	0.111	411.3	153.3	57.1	0.058
20.9	0.648	0.433	0.439	0.328	0.111	401.1	149.3	55.5	0.058
22.2	0.643	0.441	0.447	0.336	0.111	411.3	153.3	57.1.	0.058
23 .A	0.650	0.430	0.436	0.325	0.111	397.0	147.7	54.9	0.059
25.0	0.655	0.423	0.42B	0.318	0.111	386.8	143.7	53.4	0.060
26.4	0.658	0.418	0.424	0.313	<u>-0-110</u>	380-8	<u> </u>	52-5	
27.8	0.666	0.406	0.412	0.302	0.110	364.9	135.2	50.1	0.062
29.1 30.5	0.656 0.676	0.406	0.412	0.302	0.110	364.9	135.2	50.1	0.062
31.9	0.676	0.392	0.397	0.287	0.110	345.4	127.6	47.1	0.064
33.2	0.676	0.392	0.397	0.287	0.110	345.4	127.6	47.1	0.064
34.7	0.685	0.379	0.384	0.274	0.109	328.2	121-0	44.6.	0.064
36.0	0.696	0.362	0.366	0.257	0.109	305.7	112.3	41.2	0.068
37.4	0.702	0.353	0.358	0.249	0.108	294.7	108.0	39.6	0.070
39.0	0.702	0.353	0.358	0.249	0.108	294.7	108-0	39.6	0.070
40.3	0.708	0.345	0.349	0.241	0.108	283.8	103.9	38.0	0.071
42 • 0	0.703	0.352	0.356	0.248	0.108	292.9	107.3	39.3	0.070
45.2	0.711	0.341	0.345	0.237	0.108 0.108	278.4 267.7	97.7	37.2 35.6	0.072
46.8	0.726	0.331	0.324	0.217	0.107	251.9	91.7	33.3	0.074
49.5	_0.750_	0.287	0.290	0.1.94	0.104	209.7	75-6	27.2	0.055
	0.760	0.274	0.277	0.171	0.106	193.4	. 69.5	24.9	0.089
50.0									

Figure D-35. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALDNA IS. LAT: 35-27.2 N; LDNB: 118-29.0 N 22.78.175 1455701

Figure D-36. Ocean optical properties (sheet 1 of 2).

2 (M)									
	T(17M)	ALPHA!	ALPHA	SCAT	ABS	VSF3	VSF6	VSF12	THTA#2
2.1	0.639	0.449	0.454	0.343	0.111	481.7	157.4	50.7	0.05
	0.635	0,455	0.461	0.349	0.112	430.1	160.7	60.0	0.05
4.0 4.8	0.624	0.472	0.478	0.366	0.112	453.6	169.9	63.6	0.05
4.D	0.633	0.458	0.464	0.352	0.112	434.4	169.9 162.3	63.6	0.05
7.3	0.627	0.467	0.473	0.362	Ö-112	447.1	167.3	62.6	0.05
0.7	0.623	0.473	0.480	0.368	0.112	455.7	170.7	63.9	0.054
10.0	0.625	0.470	0.477	0.365	0.112	451.4	169.0	63.2	0.05
11.3	0.530	0.462	0.469	0.357	0.112	440.7	164.8	61.6	0.05
12.6	0.622	0.475	0.481	0.369	0.112	457.9	171.6	64.2	0.054
13.9	0.615	0.466	0.493	0.380	0.112	473.2	177.6	64.6	0.053
15.2	0.619	0.480	0.486	0.374	0.112	464.4	174.1	65.2	0.054
16.6	0.639	0.449	0.454	0.343	0.111	421.7	157.4	58.7	0.05
17.8	0.621	0.477	0.483	0.337	0.111	460.1	172.4	64.6	0.05
20.5	0.642	0.442	0.448	0.337	0.111	413.4	154.1	57.4	0.057
21.9	0.633	0.458	0.464	0.357	0.112	413.4	162.3	5 1 a 4 A 0 A	0.05
23.3	0.646	0.436	0.442	0.331	0.111	405.2	150.9	56.2	0.056
24.5	0.647	0.435	0.440	0.330	0.111	403.1	150.1	55.9	0.056
24.0	0.649	0.632	0.437	0.327	0-111	199.0	148.5	55.2	0.049
27.1	0.654	0.424	0.430	0.319	0.111	388.9	144.5	53.7	0.059
29.5	0.663	0.411	0.416	0.306	0.110	370.6	137.5	51.0	0.061
<u> </u>	<u> </u>	0-405	0.410	_0.300_	<u>-0.110</u> -	342.9	-134-4-		
31.2	0.673	0.396	0.401	0.291	0.110	351.2	129.9	48.0	0.063
32.5	0+680 0-694	0.386	0.391	0.261	0.109	337.7	124.6	46.0	0.06
35.1	0.709	0.344	0.348	0.240	0.108	285.0	103.2	37.7	0.07
34.5	0.729	0.317	0.320	0.213	0.107	246.8	89.7	32.6	0.077
37.5	0.720	0.329	0.332	0.225	0.10a	262.4	94.7	14.0	0.07
39.2	0.721	0.327	0.331	0.223	0.108	260.7	95.0	34.6	0.07
40.5	0.728	0.318	0.321	0.214	0.107	248.5	90.3	32.8	0.077
Alab	0-740	0-301	0.304	_0.197_	<u> </u>	224-3	و به	29.6	C_DA1
43.2	0.744	0.295	0.298	0.192	0.107	219.6	79.4	28.7	0.083
44.4 45.7	0.740	0.301	0.304	0.197	0.107	226.3	81.9	29.6	0.081
47.0	0.748	0.290	0.293	0.186	0.106	213.0	78.1	28.7 27.7	0.084
48.3	0.749	0.249	0.292	0.135	0.106	211.3	76.2	27.5	0.085
49.7	0.749	0.299	0.292	0.185	0.106	211.3	76.2	27.5	0.089
50.9	0.760	0.274	0.277	0.171	0.106	193.4	69.5	24.9	0.089
PAUSE		PLITTER							• • • •

Figure D-36. Ocean optical properties (sheet 2 of 2).

DICEAN DIPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 35-27.2 N; LINE: 110-29.0 N 22.78.1975 1800P97

Figure D-37. Ocean optical properties (sheet 1 of 2).

631	0.472 0.470 0.469 0.475 0.461 0.467	0.355 0.360 0.358 0.357 0.366 0.349 0.355 0.374	0.112 0.112 0.112 0.112 0.112 0.112 0.112	438.6 442.9 440.7 453.6 430.1 438.6	164.0 166.5 165.6 164.8 169.9	61.3 61.9 61.6 63.6	0.055 0.055 0.055 0.055 0.054
630 0.462 624 0.472 635 0.455 631 0.461 619 0.480 612 0.491 515 0.486	0.469 0.478 0.461 0.467 0.486	0.357 0.366 0.349 0.355	0.112 0.112 0.112 0.112	440.7 453.6 430.1	164.8	61.6 63.6 60.0	0.055
624 0.472 635 0.455 631 0.461 619 0.480 612 0.491 515 0.486	0.478 0.461 0.467 0.486	0.366 0.349 0.355	0.112 0.112 0.112	430.1	160.7	60.0	0.054
635 0.455 631 0.461 619 0.450 612 0.491 515 0.466	0.461 0.467 0.486	0.349	0.112	430.1	160.7	60.0	
631 0.461 619 0.480 612 0.491 515 0.486	0.467	0.355	0.112				0.056
619 0.480 612 0.491 515 0.486	0,486						
612 0.491 515 0.486		V.2.LT	0.112	464.4	164.0 174.1	61.3 65.2	0.055
515 0.486		0.385	0.113	479.8	180.2	67.6	0.053
		0.380	0.112	473.2	177.6	55.6	0.053
614 0.48B		0.382	0.113	475.4	178.4	44.9	0.053
622 0.475		0.369	0.112	457.9	171.6	64.2	0.054
615 0.486		0.380	0.112	473.2	177.6	66.6	0.053
							_0.052
							0.053
							0.053
							0.056
							0.056
		0.343		421.7	157.4	58.7	0.057
139 0.449		0.343	0.111	421.7	157.4	58.7	0.057
543 0.441		0.336	0.111		153.3	57.1	0.058
							<u> </u>
							0.059
							0.061
		0.277	0.109	332.0	122.4		0.065
92 0.368		0.263	0.109	313.1	115.1		0.067
194 0.365		0.240	0.109	309.4	113.7	<u> </u>	640.0
							0.066
							0.071
							0.072 0.076
							0.078
		0.211	0.107	265.0	89.0	32.3	0.074
ADY PLOTTE							
	0.489 0.17 0.483 0.17 0.483 0.17 0.483 0.17 0.483 0.17 0.483 0.17 0.483 0.18 0.488 0.18 0.488 0.18 0.483 0.18 0.483	13 0.489 0.489 17 0.483 0.489 17 0.483 0.489 135 0.458 0.464 137 0.458 0.464 139 0.458 0.464 139 0.449 0.456 139 0.441 0.447 131 0.451 0.441 150 0.491 0.436 150 0.491 0.436 150 0.491 0.436 150 0.491 0.361 150 0.361 0.372 150 0.364 0.373 150 0.364 0.378 150 0.349 0.353 150 0.349 0.353 150 0.349 0.353 150 0.349 0.353 150 0.349 0.353 150 0.349 0.353 150 0.328 0.328	113	113	113	113	113

Figure D-37. Ocean optical properties (sheet 2 of 2).

OCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALIDA IS. LAT: 33-27.2 N; LINE: 110-29.0 N 22.781.1975 22.4991

明明の後に日本教での方、一般の日本教の間の教会の文化を持ちている財政教をといるのであるというながに、これでは、これである。

Figure D-38. Ocean optical properties (sheet 1 of 2).

	CATAL ING	15. 1	AT 33-	27.2 N	LONG 1	18-29.0	4		
22300	1975 2	249007						·	
		4							
	1(1/M)	ALPHA	ALPHA	SCAT	ABS		VSF6		THTA+26A
4.0	0.632	0.459	0.465	0.354	0.112	436.5	163.1	60,9	0.056
4.7	0.625	0.470	0.477	0.365	0.112	451.4	169.0	<u>61.2</u>	0.055
5.6 4.5	0.620	0.478	0.485	0.372	0.112	462.3	173.3	64.9	0.054
7.7	0.621	0.477	0.463	0.371	0.112	460.1	172.4	66.6	
8.8	0.621	0.477	0,463	0.371	0.112	460.1	172.4	64.6	0.054
9.7	0.616	0.484	0.491	0.379	0.112	471.0	176.7	66.3	0.053
10.9	0,614	0.488	0.494	0.382	0.113	475.4	178.4	66.9	0.053
11.8	0.622	0.475	0.481	0.359	0.115	457.9	171.6	64.2	0.054
12.7	0.618	0.481	O•488	0.376	0.112	466.6	175.0	65.6	0.053
13.9.	0.609	0.446		0.390	0.113	486.5	152.5	B#7_	0.052
15.0	0.598	0.513	0.521	0.407	0.113	511.2	192.6	72.5	0.051
16.0	0.577	0.550	0.554	0.444	0.114	562.6	212.9	80.5	0.048
<u>- </u>	<u> </u>	<u> - Q.475</u>	<u>_0 ~481</u> _	<u> </u>	- Örliğ-	<u> </u>	<u> </u>		
18.1	0.627	0.467	0 4 4 7 3	0.362	0.112	447.1	167.3	62.6	0.055
19.0	0.613	0.489	0.496	0.383	0.113	477.6	179.3	67.3	0.053
20.2	0.623	0.473	0.480	0.368	0.112	455.7	170.7	63.9	0.054
22.3	0.642	0.442	0.448	0.337	0.111	413.4	154.1	57.4	0.057
23.3	0.667	0.435		0.330	0.111	403.1	150.1	55.9	0-054
24.4	0.697	0.360	0.365	0.256	0.109	303.9	111.6	40.9	0.069
25.5	0.710	0.342	0.346	0.238	0.108	280.2	102.5	37.5	0.072
26.5	0.723	0.325	0.328	0.221	0.108	257.2		36.1.	0.076
27.5	0.723	0.325	0.328	0.221	0.108	257.2	93.7	34.1	0.076
28.7	0.733	0.311	0.315	0.207	0.107	239.9	87.1	31.6	0.079
<u> </u>	0.752	_0.285_	_0.288_	_يعبمو				2A.A.	
30.5	0.761	0.273	0.276	0.170	0.106	191.8	60.9	24.7	0.090
31.8	0.766	0.267	0.269	0.164	0.106	183.8	65.9	23.6	0.092
33.9	0.785	0.261	0.240	0.135	0.105	148.2	52.5	18.6	0-102
34,9	0.804	0.218	0.220	0.116	0.104	124.6	43.8	15.4	0.115
36.1	0.812	0.208	0.210	0.106	0.104		39.6	13.8	0.122
37.3	0.814	0.206	0.208	0.104	0.104	110.3	38.5	13,5	0.123
30.2	0.814	0.206	0.208	0.104	0.104	110.3	38.5	13.5	0.123
39.4	0.815	0.205	0.206	201.0	0-104	108.8	38.0	13.3	0.124
40.4	0.819	0.200	0.201	0.098	0.174	103.3	36.0	12.5	0.126
41.5	0.522	0.196	0.198	0.094	0.104	99.1	34.4	12.0	0.131
عميب	Qeal7_	<u> </u>	0.204	<u>_0.100</u> _	0_104_	_10641_	37.0	12.9	0-124
43.8	0.823	0.195	0.197	0.093	0.104	97.7	33.9	11.8	0.132
44.7	0.826	0.192	0.193	0.090	0.103	93.6	32.4	11.2	0.136
45.9	0.822	0.196	0.198	0.088	0.104	92.2	31.9	11.1	0.131
46.9 45.0	0.827 0.825	0.190 0.193	0.194	0.091	0.105	95.0	32.9	11.4	0.137
49.1	0.824	0.195	0.195	0.091	0.104	96.4	30.4		0.135
50.2	0.826	0.192	0.193	0.090	0.103	93.6	32.4	11.2	0.136

Figure D-38. Ocean optical properties (sheet 2 of 2).

DICEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 35-27.2 N; LING: 118-29.8 N 23478175 1237781

Figure D-39. Ocean optical properties (sheet 1 of 2).

SANTA	CATALIN 1975	A IS. L 1237PDT	AT 33-	27-2 N	LONG 1	18-29.0 k	! 		
2 (M)	T[]/M]-	ALPHA	AL PHA	SCAT.	A85 0.105	V\$F3	VS#6	_V\$#12	HTA+26
6.1	0.771	0.239	0.241	0.157	0-105	175.9	62.9	55.2	0.103
6.9	0.778	0.251		0.149	0.105	165.0	58.8	20.9	0.098
7.0	5.179	0.250	0.253	0.147	0.105	163.5	58.2	20.7	0.098
8 . 8	0.772	0.259	0.262	0.156	0.106	174.4	62.3	22.3	0.095
9,4	0.763	0.271	0,273	0.167	0.106	189.6	67.7	24.3	0.090
10.7	0.759	0.276	0.278	0.172	0.106	195.0	70.1	52.5	0.089
11.5	0.751	0.286	0.289	0.183	0.106	206.4 208.0	74.4 75.0	26.8	0.086
13.3	0.756	0.280	0.282	0.176	0.106	199.9	71.9	23.0	0.087
14.3	0.756	0.280	0.282	0.176	0.106	199.9	71.9	25.9	0.087
15.3	0.754	0.282	0.285	0.179	0.106	203.1	73.1	26.3	0.087
15.1	0.745	0.294	0.297	0.190	0.107	238.0	75.7	28.4	0.083
17.2	0.740	0.301	0.304	0.197	0.107	559-3	81.9	29.6	0.087
19.0	0.633	0.456	0,464	0.352	9.108	434,4	103.9	31.0	0.071
19.9	0.585	0.537	0.544	C.430	0.112	543.6	205.4	60.6 77.6	0.056
20.8	0,504	0.684	0.695	0.577	0.119	754.8	289.8	111.2	0.040
21.9	0.422	0.862	0.878	0.754	0.124	1018.5	396.8	154.5	0.034
22.9	0.455	9.787	0.800	0.678	0.122	905.0	350.6	135.7	0.036
23.7	0.440	0,822	0.836	0.713	0.123	957.1	371.0	144.3	0.035
24.6	0.398	0.922	0.939	0.313		1104.9	433.8	169.6	0.032
25.6	0.386	0.952	0.970	0.843	0.127	1154.5	452.6	177.3	0.032
27.4	0.491	0.712	0.724	0.604	<u> </u>	795.1	306.0	133.3	0.039
24.4	0.496	0.702	0.714	0.594	0.119	780.5	300.2	115.4	0.040
29.4	0.511	0.671	0.682	0.564	0.116	735.2	281.9	108.0	0.041
30.3	0.508	0.677	0.688	0.569	0.118	743.6	285.3	109.4	0.041
31.4	0.520	0.654	0.664	0.547	0.118	710.5	272.0	104.1	0.042
33.6	0.511	0,671	0.682	0.564	0.118	735.2	201.9	100.0	0.041
36.9	0.515	0.648	0.658	0.541	0.117	702.3	268.7	102.8	0.042
37.9	0.536	0.624	0.634	0.517	0.117	667.7	254.8	97.2	0.043
39.0	0.540	0.617	0.626	0.910	0.116	657.3	250.7	95.5	0.044
40.2	0.559	0.581	0.590	0.475	0.115	606.4	230.4	67.5	0.046
41.3	0.565	0.571	0.579	0.464	0.115	991.6	224.5	85.1	0.047
42.4	0.592	0.925	0.533	0.419	0.114	327.3	198.9	75.0	0.050
43.6	0.614	0.466	0.494	0.382	0.113	475.4	178.4	66.9	0.053
44.6	0.644	0.478	0.445	0.372	0.115	462.3	173.3	- 56.8	0.054
46.8	0.667	C.405	0.410	0.300	0.110	362.9	134.4	49.0	0.062
47.9	0.682	0.383	0.788	0.279	0.109			47.4	0.065
49.0	0,686	0.377	0.362	0.273	0.100	328.3	123:2	44.3	0.066
50.2	0.703	0.352	0.346	0.248	0.108	568.6	107.3	39.3	0.070
PAUSE	READY	PLOTTER							-

Figure D-39. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 39-27.2 NJ LING: 118-29.0 N 28JUN1978 1842P9T

Figure D-40. Ocean optical properties (sheet 1 of 2).

	1975		AT 33-	27.2 N	LONG 1	18-29.0	 		
2(4)	TILIMI	ALPHAL	ALPHA	SCAT	ABS	VSE3	VSF6		IHIA#2HA
2.7	0.804	0.579	0.550	0.114	0.104	124.6	43.0	18.4	0.115
3.6	0.789	0.236	0.239	0.134	0.105	146.7	92.0 	18.4 20.3	0.105
5.6	0.770	0.262	0.264	0.158	0.106	177.5	63.5	22.7	0.094
7.6	0.768	0.264	0.267	0.161	0.106	180.7	64.7	23.1	0.093
19:3	8:773	- 0.234	0.269	0.155	0.106	183.8	65.6	23.6	0.095
13.0	0.753	0.283	0.286	0.180	0.106	204.8	73.7	26.5	0.084
16.2	0.677	0.390	0.395	0.286	0.110	343.5	126.9	44.8	0.064
10.5	0.546	0.755	0.543	0.429	0.114	541.3 858.0	331.5	77.2 128.0	0.038
	0.425		0.071	0.747		1008-1	192.6		0.034
20.3	0.424	0.856	0.873	0.749	8.124	1011.5	394.0	153.4	0.034
29.3	0.431	0.842	0.857	0.733	0.123	907.5	384.1	149.4	0.035
32.1	0.506	0.813	0.837	0.704	U.118	123.9	- 289.3 -	110.3	0.041
37.6	0.512	0.667	0.680	0.56	0.118	732.4	280.8	107.6	0.041
39.7	0.528	0.639	0.649	0.53	<u> </u>	Sea. o	263.3	100.6	U.043
41.6	0.551	0.595	0.604	0.489	0.116	676.5 423.8	238.4	90.6 59.0	0.049
45.8	0.676	0.392	0.397	^_ZBZ	0.110	345.4	127.6	47. l	0.064
47.9	0.686	0.377	0.382	() . 273	0.109	326.3	120.2	44.5	0.066
50.1 PAUS	0,699	O.358 PLUTTER	0.362	0.253	0.109	300.2	110.2	40.4	0.069
	Marine								. Ti uji kili majupi ya

		er it singelling de de normaliste							
and the second s									

Figure D-40. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALIDIA IS. LAT: 33-27.2 N; LINE: 116-29.0 N 23.881975 1951997

Shiper

Figure D-41. Ocean optical properties (sheet 1 of 2).

	1975	1351PDT	LAT 33-	27.2 N	LONG	116-59.0 W			
9 / M s	F / 1 / 41 1	ALPHA.	A1 044	SCAT	Ans	uc = 5	ue ea		#1.#4.# N.A.
-Z(M)	T(1/4)	0.264	3.267	0.161	- ABS	VSF3	45 FA	VS# 13	THTA+28A
4.0	0.773	0.258	0.240	0.155	0.106	172.8	61.7	22.0	0.095
8.4	0.765	0.248	0.271	0.165	0.106	185.4	66.5	23.0	0.091
8.7	3,761	0.773	0.276	0.170	0.106	191.8	68.9	24.7	0.090
9.2	0.768	0.264	0.267	0.161	0.106	180.7	64.7	23.1	0.093
10.1	0.761	0.273	0.276	0.170	0.106	191.8	68.9	24.7	0.090
12.0	0.744	0.293	0.546	0.192	0.107	219.6	79.4	28.7	0.083
12.9	0.724	0.323	0.327	0.219	0.108	255.4	93.0	33.6	0.076
13.0	0.708	0.343	0,349	0.241	0,108	283.8	103.9	38.0	0.071
14.7	0.690	0.370	0.375	0.206	0.109	316.9	116.6	42.9	0.067
15.4	0.652	0.427	0.433	0.322	0.111	392.9	146.1	54.3	0.059
15.8	0 - 41 - -	0.586	0.595	0.480	- Sel 13	613.9	233.3	18.6	0.053
18.9	0.476	0.742	0.755	0.434	0.120	839.7	324.1	125.0	0.038
19.7	0.453	0.791	0.804	0.683		911.4	353.2	136.8	0.036
20.8	0.430	0.830	0.845	0.722	0.123	970.5	377.2	146.5	0.033
21.7	0.417	0.874	0.890	0.765	0.124	1036.1	404.0	157.5	0.034
	0.430	0.844	7.859				385	149.9	0.035
23.7 23.A.	0.449	0.802	0.916	0.693	8:123	927.5	359.7	139.4	0.036
24.7	0.441	0.819	0.834	0.711	0.123	953.8	370.4	1-3.8	0.035
- 25 +7-	0.440	0.022	0.036	0.711	0,123	957.1	371.6	144.3	9 033
26.7	0.450	0.800	0.813	0.691	0.122	924.3	358.4	138.9	0.036
27.7	0.426	0.053	0.868	0.745	0.124	1004.6	341.1	152.2	0.034
28.7	0.457	0.782	0.796	0.674	0.155	HOH . 6	348.0	134.7	0.037
39.6	0.458	7.780	0.793	0.672	0.122	895.4	346.7	134.2	0.037
30.7 31.6	0.486 0.508	0.722 0.677	0.734	0.514	0.118	809.7 743.6	312.0	120.1	0.039 0.041
32,8	0.318	0.658	0.648	0.550	ं हैं। नि	715.9	205.3	104.9	0.042
31.7	0.518	0.658	0.668	0.550	0.118	715.7	274.2	104.9	0.042
34.7	0.524	0.646	0.657	0.339	0,117	699.6	267.6	102.3	0.042
35.7	0.52H	0.637	0.649	0.332	0.117	688.9	263.3	100.6	0,043
36.7	0.523	0.648	0.658	0.341	0.117	702.3	268.7	102.8	0.042
37.A	0.562	0.576	0.585	0.469	0.115	599.0	227.4	86.3	0.046
38.7	0.601	0.509	0.516	0.403	0.113	504.4	189.9	71.4	0.031
39.7	0.540	0.447	().453	0.342	0.111	419.7	156.6	58,4	0.057
40.A	0.472	(, 109	0.403	9.293	0.110	35344	13000	49.2	0.063
41.8	0.692	(1.368	0.372	0.243	0.109	313.1	115.1	42.3	0.057
42.8	0.681	0.385	0.389	0.280	0.109	335.8	123.9	45.7	0.065
43.H	0.689	0.373	0.378	0.269	<u> </u>	320.6	<u> </u>	43.4	0.066
44.A	0.598	0.359	0.363	0.253	0.109	269.5	98.4	40.7	0.069
45.A 46.7	0.716	0.325	0.336	0.230	0.108	297.2	98.4	35.9 34.1	0.074
47.7	0.729	0.317	0.320	<u> </u>	0.107	226.8	H 9 . 7	32.6	0.076
48.9	0.730	0.315	0.319	0.211	0.107	245.0	89.0	32.3	0.078
49.8	0.746	0.293	0.296	0.189	0.107	216.3	78.1	20.2	0.084
PATIS									

Figure D-41. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 39-27.2 N; LING: 118-29.0 N 23.001975 1505F07

Figure D-42. Ocean optical properties (sheet 1 of 2).

SANTA 23JUN	CATALIN	A 15. L 1505PDT	AT 33-	27.2 N	LONG 1	18-29-0	1		
Z(M)	T(1/M)	AL PHA '	AL PHA	SCAT	ABS	VSF3	VSF6	<u> </u>	THTA#2
1.5	0.747	0.291	0.294	0.188	0.107	214.6	77.5	28.0	0.084
2.7 3.9	0.762 0.762	0.272 0.272	0.275	0.169	0.106 0.106	190.2 190.2	68.3 68.3	24.5	0.090
4.9	0.748	0.290	0.273	0.186	0.106	213.0	76.9	24.5	0.090
5.8	0.740	106.0	0.304	0.197	0.107	226.3	81.9	29.6	0.081
6.9	0.731	0.314	0.317	0.210	0.107	243.3	88.4	32.1	0.078
7.9	0.721	0.327	0.331	0.223	0.108	260.7	95.0	34.6	0.07
8.2	0.712	0.340	0.343	0.235	0.108	276.6	101.1	36.9	0.072
8.8	0.684	0.380	0.385	0.276	0.109	330.1	121.7	44.8	0.06
9.7	0.654	0.424	0.430	0.319	0.111	38A.9	144.5	53.7	0.055
10.8	0.618	0.481	0.488	0.376	0.112	466.6	175.0	65.6	0.053
12.1	0.587	0.533	0.541	0.427	0.114	534.9	203.5	76.8	0.049
13.5	0.514	0.665	0.676	0.558	0.118	726.9	278.6	106.7	0.041
14.2	0.415	0.879	0.895	0.770	0.125	1043.2	406.9	158.6	0.034
15.5	0.440	0.822	0.836	0.713	0.123	957-1	371.8	144.3	0.03
16.3	0.411	0.888	0.904	0.779	0.125	1057.5	412.8	161.0	0.033
17.5	0.351	1.048	1.068	0.938	0.130	1301.8	513.3	202.3	0.029
19.3 19.3	0.354	1.040	1.060	0.936	0.129	1288.9	508.0	200.1	0.030
20.5	0.356	1.042	1.062	0.925	0.129	1293.2	509.8 504.5	200.9	0.030
21.6	0.366	1.004	1.023	0.895	0.128	1234.3	485.5	198.7 190.8	0.030
22.4	0.368	0.999	1.018	0.890	0.128	1226.1	482.1	189.5	0.030
23.8	0.374	0.983	1.002	0.874	0.128	1201.8	472.1	185.3	0.031
24.7	0.367	1.002	1.020	0.892	0.128	1230.2	483.8	190.1	0.030
26.2	0.361	0.965	0.983	0.856	0.127	1174.0	460.6	160.6	0.031
27.1	0.403	0.910	0.926	0.801	0.125	1090.3	426.2	166.5	0.033
28.4	0.399	0.920	0.937	0.811	0.126	1105.1	432.3	169.0	0.032
29.5	0.431	0.842	0.857	0.733	0.123	987.5	384.1	149.4	0.035
30.6	0.438	0.826	C.840	0.716	0.123	963.8	374.5	145.4	0.035
32.1	0.474	0.746	0.759	0.639	0.120	845.7	326,5	126.0	0.038
33.4	U.478	0.738	0.751	0.630	0.120	833.6	321.6	124.0	0.038
34.8	0.490	0.714	0.726	0.606	0.119	798.0	307.2	118.2	0.039
36.0	0.502	0.688	0.699	0.581	0.119	760.5	292.1	112.1	0.040
37.0	0.503	0.686	0.697	C.579	0.119	757.7	290.9	111.7	0.040
34.1	0.500 0.545	0.692	0.703	0.585	0.119	766.2	294.4	113.1	0.740
39.1 40.2	0.364		0.617	0.501	0.116	644,4	245,5	93.5	0.044
41.6	0.613	0.572 0.489	0.496	0.466 0.383	0.113	594 • 1 477 • 6	225.4	85.5	0.046
42.9	0.671	0.399	0.404	0.294	0.110	355.1	179.3 131.4	67.3 48.6	0.053
44.2	0.670	0.401	0.405	0.296	0.110	357.0	132.1	48.9	
45.3	0.695	0.363	0.368	0.259	0.109	307.6	113.0	41.5	0.062 0.068
46.8	0.693	0.366	0.370	0.262	0.109	311.3	114.4	42.0	0.068
47.8	0.689	0.372	0.376	0.267	0.109	318.7	117.3	43.2	0.067
48.8	0.707	0.347	0.351	0.242	0.108	285.6	104.6	38.3	0.071
49.8	0.716	0.334	0.338	0.230	0.108	269.5	98.4	35.9	0.074
PAUS	F READY	PLOTTER	·····			····			

Figure D-42. Ocean optical properties (sheet 2 of 2).

OCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LING: 118-29.0 N 23.001775 151.0707

Figure D-43. Ocean optical properties (sheet 1 of 2).

23100	CATAL IN. 1975	SIGPOT	LAT 33-	ETAE N	LONG 1	18-29.0	, 		-
ZIMI	T(1/M)	ALPHA!	AL PHA 0.294	SCAT	ABS 0.107	V5.F3	¥\$F\$	VSF12.	THTA+21
		0.291	0.294	0,188		214.6			0.08
4.9	0.724	0.323	0.327	0.219	0.108	255.4	93.0	33.8	0.07
7.0	0.708 0.705	0.345	0.349	0.243	0.108 0.108	283.8	103.9	38.8	9.07
8.1	0.667	0.405	0.410	0.300	0.110	365.9	134.4	49.8	0.06
9.3	0.652	0.427	0.433	0.322	0.111	392.9	146.1	54.3	0.05
10.4	0.594	0.520	0.527	0.414	0.114	520.4	196.2	73.9	0.050
11.3	0.523	0.648	0.658	0.541	0.117	702.3	268.7	102.8	0.04
12.5	0-467	0.761	0.774	0.653	0.121	867.2	333.2	129.5	0.03
13.5	0.437	0.828	0.843	0.720	0.123	967.2	375.9	146.0	0.03
15.7	0.389	0.862	0.878	0.754	0.124	1018.5	396.8 <u>447.8</u>	154.5 175.4	0.034
16.7	0.329	Y.777	1.133	1.001	0.132	1400.3	554.2	219.2	0.02
17.7	0.335	1.094	1.115	0.984	0.131	1372.7	542.7	214.5	0.02
19.0	0.315	1,154	1.177	1.044	0.133	1466.9	9.81.8	230.7	0.02
19.A		1.106	1.127	0.996	0.132	1391.1	550.3	217.6	0.02
21.0	0.363	1.012	1.031	0.903	0.129	1246.7	490.6	192.9	0.030
22.0	8.374	0.970	0.968	0.861	0.130	1301-8	513.3	702.3	0.029
24.1	0.370	0.994	1.012	0.884	0.128	1181.9	463.9	182.0	0.03
24.9	0.378	0.973	0.991	0.863	0.127	1185.9	465.5	182.6	0.03
25. A	0.376	0.978	0.996	0.869	0.128	1193.8	468.8	184.0	0.03
27.1	0.387	0.950	0.967	0.840	0.127	1150.7	451.0	176.7	0.03
27.A	7.406	0.900	0.917	0.791	9-175	1075.6	420.2	164.1	0.03
	0.440	0.822	0.836	0.713	0.123	957.1	371.8	144.3	0.03
30.9	0.447	0.806	0.820 0.755	0.698	0.120	934.1 839.7	362.4 324.1	140.5	0.036
32.0	0.475	0.744	0.757	0.636	0.120	842.7	325.3	125.5	0.03
33.0	0.481	0.732	0.744	0.624	0-120	824.6	318.0	122.6	0.036
34.0	0.487	0.720	0.732		0.120	806.8	310.8	119,6	0.03
35.0	0.449	0.696	0.707	0.589	0.119	771.9	296.7	114.0	0.040
36.0	0.506	0.681	0.692	0.573	0.118	749.2	287.5	110.3	0.04
37.1	0.526	0.643	0.653	0,535	0.117	694.3	265.5	<u> </u>	0.04
38.0 39.0	0.559	0.581	0.590	0.4/2	0.115	518.1	230.4 195.3	87.5 73.6	0.046
40.1	0.625	0.470	0.477	0.365	0.112	451.4	169.0	63.2	0.050
41.0	0,661	0.414	0.419	0.309	0.110	374.8	139.1	51.6	0.061
42.1	0.676	0.392	0.397	0.287	0.110	345.4	127.6	47.1	0.064
43.1	0.659	0. 372	0.376	0.267	0.109	318.7	117.3	43.2	0.067
44.2	0.675	0.393	0.398	0.289	0.110	347.3	128.4	47.4	0.06
45.2	0,695	0.363	0.368	0.259	0.109	307.6	113.0	41.5	0.068
47.4	0.711	0.344	0.348	0.237	0.108	292.0 278.4	101.8	37.7 37.2	0.072
48.5	0.712	0.340	0.343	0.235	0.108	276.6	101.1	36.9	9.07
49.6	0.725	0.322	0.325	0.218	0.107	253.7	92.3	33.6	0.076
PAUS									

Figure D-43. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT' 39-27.2 N; LINE: 110-29.8 N 23.001978 1956797

のでは、100mm

Control of the second of the s

Figure D-44. Ocean optical properties (sheet 1 of 2).

ATHAS MULES	CATALINA 1975 1	13. L 556PDT	AT 33-	27.2 N	LONG 1	18-29.0 W	· · · · · · · · · · · · · · · · · · ·		
2(M)	T(1/M)	ALPHA!	ALPHA	SCAT	0.10s	¥5F3	VSF6		THTA+28
2.5	0.713	0.338	0.342	0.234	0.108		100.4	36.7	0.073
3.5	0.717 	0.325	0.328	0.221	0.108	267.7 257.2	97.7 93.7	35.4	0.074
	- 8.72 1	Ö.327	0.331	Ö. 223	0.108	260.7	93.0	34.6	3.873
6.2	0.705	0.349	0.357	0.245	0.108	289.2	105.9	38.8	0.071
7.2	0.701	0.355	0,359	0.251	0.108	296.5	100.7	39.9	0.070
	0.660	0.415	0.421		0.110	376.8	139.8	51.9	0.061
9.1	0.641	0.445	0.451	0.340	0.111	417.6	155.7	58.1	0.057
10.1	0.574	0.555	0.563	0.449	0.115	569.8	215.6	81.7	0.048
11.1	0.510	0.673	0.584	0.565	0.118	738.0	283.0	108.5	0.041
11.9	0.491	0.712	0.724	0.604	0.119	795.1 911.4	306.0	117.7	0.039
13.1	0.453	0.849	0.864	0.740	D. 124	- 341:7	353.2	157.7	0.034
15.2	0.421	0.865	0.880	0.756	0.124	1055.0	398.2	155.1	0.034
14.0	0.391	0.940	0.957	0.830		1135.3	444.7	174.1	0.032
17.3	0.363	1.012	1.031	0.903	0.129	1246.7	490.6	192.9	0.030
18.1	0.345	1.065	1.085	0.955	0.130	1328.0	524.2	206.8	0.029
19.3	0.325	1.123	1.145	1.013	0.132	1419.0	561.9	222.4	0.028
20.2	0.335	1.094	1.115	0.984	0.131	1372.7	542.7	214.5	0.029
21.3	0.342	1.073	1.094	0.964	0.131	1341.2	529.7	209.1	0.029
33.3.	0.360	1.020	1.040	0.911	0.129	1259.2	495.7	195.1	0.030
23.4	0.385	0.955	0.972	0.846	0.127	977.3	454.2	178.0	0.032
24.3	0.434	0.835	0.850	0.680	0.123	908.2	380.0 351.4	147.7 136.3	0.035
26.5	0.456	0.784	0.798	0.676	Ö. 122	901.8	349.3	135.2	0.036
27.6	0.480	0.734	0.746	0.626	0.120	827.6	319.2	123.0	0.038
28.7	0.483	0.728	0.740	0.620	0.120	818.6	315.6	121.6	0.039
29.7	0.491	0.712	0.724	0.604	0.119	795.1	306.0	117.7	0.039
30.R	0.491	0.712	0.724	0.604	0.119	795.1	306.0	117.7	0.039
31.9	0.500	0.692	0.703	0.585	0.119	766.2	294,4	113.1	0.040
33.0	0.493	0.708	0.720	0.600	0.119	789.2	303.7	116.8	0.039
34.1	0.526	0.643	0.653	0.535	0.117	694.3	265.5	101.5	0.042
35.1	0.516	0.626	0.672	0.519	-0.11# -0.117	721.4	276.4	105.8	0.042
37.4	0.557	0.585	0.594	0.478	0.116	611.4	232.3	88.2	0.046
34.5	0.591	0.527	0.534	0.420	0.114	529.6	199.8	75.4	0.050
39.4	0.605	0.502	0.309	0.396	0.113	495.4	186.3	70.0	0.052
40.5	0.609	0.496	0.503	0.390	0.113	486.5	182.8	68.7	0.052
41.7	0.619	0.480	0.486	0.374	0.112	464.4	174.1	65.2	0.054
42.9	0.628	0.466	0.472	0.360	0.112	445.0	166.5	62.3	0.055
44.1	0.636	0.453	0.459	0.348	0.111	428.0	159.8	59.7	0.056
45.1	0.653	0.426	0.431	0.357	9-111	390.9	142.3	54.0	0.059
46.3	0.668	0.404	0.409	0.299	0.110	361.0	133.7	49.5	0.062
47.5	0.672 0.676	0.398	0.403	0.293	0.110 0.110	353.1	130.6	48.3	0.063
48.7	0.688	0.375	0.379	0.270	0.109	345.4	118.8	47.1	0.064

Figure D-44. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 39-27.2 N; LDN0: 110-29.0 N 23-3011975 1607PDT

かまってまる場所は 一川 光中にく こ

a visiting start layer or a

Figure D-45. Ocean optical properties (sheet 1 of 3).

SANTA 23JUN	CATALIN	A IS. 1	AT 33-	27.2 N	LONG 1	18-29.0	W	umaria de la compansión d	المراجعة ا
ZIM)	TLIM	ALPHA!	0.376	SCAT	ABS	VSF3	VSF6		THTA:2BA
2.4	0.689	0.372		0.267	0.109	318.7	117.3	43.2	0.067
3.2	0.677	0.390	0.395	0.286	0.110	343.5	126.9	46.8	0.064
<u> 4. 4</u>	0.663	0.412	0.418	0.307	9.110	372.0	138.3	ــبعديــــــ	0.061
4.7	0.659	0.417	0.422	0.312	0.110	378.8	140.6	52.2	0.060
5.7	0.655	0.475	0.481	0.369	0.112	457.9	171.6	64.2	0.054
<u> </u>	0.578	0.548	<u> </u>	0.442	9.114	- 50Q+2	212.0	<u> </u>	0.048
7.5	0.533	0.630	0.639	0.523	0.117	675.6	258.0	98.5	0.043
8.5	0.499 0.457	0.694	0.705	0.587	0.119	769.0	295.5	113.5	0.040
9.4		0.782	0.796	0.674		898.6	348.0	134.7	0,037
10.3	0.349	0.952	0.970		0.127	1154.5	452.6	177.3	0.032
11.3	0.332	1.054	1.074	0.944 0.993	0.130	1310.5	516.9	203.8	0.029
13.6	0.328	1.114	1:136	1.004	0.132	1405.0	548.4 556.1	216.B 220.0	0.028
13.9	0.339	1.082	1.103	0.972	0.131	1354.6	535.2	211.4	
14.7	0.321	1.136	1.158	1.025	0.132	1430.0	_569.8	225.7	0.029
15.5	0.331	1:106	1:127	0.996	0.132	1361.1	550.3	217.6	0.028
16.3	0.352	1.045	1.065	0.936	0.130	1297.5	511.5	201.6	0.030
17.2	5.382	0.962	0.980	0.653	0.127	1170.1	459.0	180.Ω	0.031
16.6	0.379	0.970	0.988	0.861	0.127	1101.4	463.9	182.0	0.031
18.7	0.410	0.891	0.907	0.782	0.125	1061.1	414.2	161.6	0.033
19.4	0.420	0.867	0.883	0.758	0.124	1025.5	199.7	155.7	0.034
20.4	0.452	0.793	0.807	0.685	0.122	914.6	354.5	137.3	(3.036
21.0	0.473	0.749	0.761	0.641	0.121	848.0	327.8	126.5	0.038
22.0	0.484	0.726	0.738	0.618	0.120	815.7	314.4	1211	0.039
22.7	0.499	0.696	ŏ.707	0.589	0.119	771.9	296.7	114.0	0.040
23.4	0.494	0.706	0.718	0.598	0.119	786.3	302.5	116.3	0.040
24.0	0.498	0.698	0.709	0.590	0.119	774.8	297.8	114.4	0.040
24.6	0.563	0.686	0.697	0.579	0.119	757.7	290.9	111.7	0.040
25.2	0.517	0.659	0.670	0.552	0.118	710.7	275.3	105.4	0.042
26.6	0.501	0.690	0.701	0.583	0.119	763.3	293.2	112.6	0.040
27.1	0.535	0.626	0.636	0.519	0.117	670.4	255.9	97.6	0.043
28.5	0.544	0.610	0.619	0.503	0.116	646.9	246.5	93.9	0.044
29.4	0.546	0.606	0.615	0.499	0.116	641.8	244.5	93.1	0.044
31.0	0.547	0.602	0.612	0.496	0.116	636.7	242.4	92.3	0.045
31.7	0.549	0.599	0.608	0.492	0.116	631.6	240.4	91.4	0.045
32.A 33.6	0.552	0.594	0.603	0.487	0.116	624.0	237.3	90.2	0.045
33.6		0.617	0.656	0.510	0.116	657.3	250.7	95.5	0.044
34.2	0.555	0.588	0.597	0.481	0.116	616.4	234.3	89.0	0.046
35.1	0,570	0.562	0.570	0.456	0.115	579.4	219.6	83.2	0.047
36.2	0.597	0.515	0.522	0.409	0.113	513.5	193.5	72.9	0.031
34.9	0.630	0.462	0.469	0.357	0.112	440.7	164.8	61.6	0.055
37.7	0.642	0.442	0.448	0.337	0.111	413.4	154.1	57.4	0.057
38.2	0.652	0.427	0.433	0.322	0.111	372.9	146.1	54.3	0.059
39.5	0.672	0.398	0.403	0.293	0.110	353.1	130.6	48.3	0.063
40.3	0.663	0.411	0.416	0.306	0.110	370.8	137.5	51.0	0.061
41.6	0.689	6.372	0.376	0.267	0.109	314.7	117.3	43.2	0.067
43.0	0.684	0.380	0.385	0.276	0.109	330.1	121.7	44.8	0.065
43.6	0.690	0.370	0.375	0.266	0.109	316.9	116.6	42.9	0.067

Figure D-45. Ocean optical properties (sheet 2 of 3).

									
44.0 44.6	0.687	0.374	0.331	0.271	0.109	324.4	124.6	44.0	0.06
45.3 45.9 46.5	0.675	0.393	0.396 0.401 0.379	0.291	0.110 0.110 0.109	347.3 391.2 322.5	120.0	47.4	0.04
47.0	0.700	0.386 0.386	0.365	0.276	0.109	330.1 298.3 291.0	100.5	44.8	0.00
48.3	0.705	0.349	0.353	0.245	0.108	269.2	105.9	30.0	0.07
50.0 PAUSE	0.709	0.344 PLUTTER	0.348	0.240	0.108	282.0	103.2	37.7	0.07
	···		·· • · · · · · · · · · · · · · · · · ·	····			·		
									
						·			4
	-								
			- Anna Carlo de Mario						
	y-1 - 1 1 - 1 - 1 - 1 - 1	·							
			,						
				· · · · · · · · · · · · · · · · · · ·	············	·			
									
					- 				
ومنطبية وسعوي									

Figure D-45. Ocean optical properties (sheet 3 of 3).

DICEAN OPTICAL PROPERTIES - 520 NM SANTA CATALDNA IS. LAT' 33-27.2 N; LUNG! 110-29.0 N 23JUN1975 193490T

Figure D-46. Ocean optical properties (sheet 1 of 2).

21M)	19:44	AL PHA	ALPHA	O.SAT	ABS	VSF3	108.0	VSELS	THTATE
		0.353	0.356	0.249	0.108	294.7		34.6	0.07
3,3 _1,2_	0.692	0.368	0.372	0.203	0.109	313.1 _339.6	115.1	42.3	0.061
4.5	0.652	0.427	0.433	0.322	0.111	392.0	146.1	34.5	0.059
5,2	0.648	0.433	0.439	0.328	0.111	401.1	149.3	55.5	0.056
2.9	0.634	0.456	0.462	0.331	0.113	432.2	161.5	49-1	0.056
7.3	0,646	0.436	0.442	0.331	1.112	405.2	150.9	36.3	0.034
9.0	0.634	0.456	0.462	0.351	0.111	432.2 407.2	161.5	60.3 56.5	0.056
6.9	0.646	0.436	0.442	0.331	0.111	405.2	150.9	56.2	0.058
9.6	0.646	0.436	0.442	0.331	0.111	405.2	150.9	56.2	0.058
10.3	0.623	0.413	0.465	0.354	8:113	439.7	170.1	60.9	0.056
11.1			0.480	0.368		455.7	170.7	65.9	0.054
11.0	0.602	0.507	0.514	0.401	0.113	508-2	189.0	71.1	0.051
13.0	0.364	0.578	0.581	8:491	8:113	601.5	- 225.4 228.4	-88:3	9-046
14.7	0.550	0.597	0.604	0.490	0.116	629.0	239.4	91.0	0.045
			0.626	0.510	0.116	657.3	250.7	95.5	0.044
16.3	0.552	8:347	0.603	0.487	0.116	0.456	237.3	40.5	0.04
17.1	0.505	0.682	0.493	0.575	0.119	752.0	288.7	110.8	0.041
17.0	0.507	0.679	0.690	9.571	0.110	<u> 744 e</u>	_294.4	<u>. 109. g</u> .	<u> </u>
19.6	0.458	0.780	0.793	0.672	0.122	963.8	346.7 374.5	134.2	0.037
	0.413	0.884	0.899	0.775		1050	409.8	159.0	0.033
39:8	ň.4ôž	0.912	0.029	0.803	-0:\\ 25	1004.0	427.7	167.2	0.05
23.0	0,411	0.488	0.904	0.779	0.125	1057.5	412.8	161.0	0.033
24.0	0.408	0.895	0.912	<u>Q.707_</u>	0.125	1060.1	417.2	162.9	0.037
	0.363	1.012	1.031	0.903	0.129	1246.7	490.6	192.9	0.030
26.4 27.A	0.368	0.999 0.947	1.018	0.890	0.125	1226.1 1146.5	482.1	189.5	0.031
20.7	0.398	0.422	Ö. 939	- 6.813 -	- 0.126	1108.8	433.0	176.0	0.032
31.0	0.399	0.920	0.937	0.611	0.126	1105.1	432.3	169.0	0.032
32.7	0.390	0.942	0.959	0.833	0.126	1139.1	446.3	174.7	0,032
33.9	0.415	0.879	0.895	0.770	0.135	1043.2	406.9	158.6	0.034
34,4	0.4 ,1	0.810	0.834	0.711	0.123	953.8	370.4	143.8	2.035
37.2	0.526	0.791	0.404	0.535	-6113	911.4	<u>153.2</u>	130.8	<u> </u>
38.7	0.557	0.545	0.594	0.478	0.116	611.4	232.3	88.2	0.046
40.3	0.580	0.545	0.553	0.439	0,114	592.4	210.1	79.4	0.04
41.9	0.591	0.527	0.534	0.420	0.114	329.6	199.8	75.4	0.050
43.5	0.622	0.475	0.48	0.369	0.112	457.9	171.6	64.2	0.054
45.1	0.639	() . 449 X 168	0.454	0.343	20111	<u> </u>	\ 57.4	25.7_	0.097
46.6	0.658	0.418	0.424	0.313	0.110	380.8	141.4	72.5	0.060
49.6.	0.690	0.370	0.375	0.306	0.109	370.8 316.9	110.0	51.0 42.9	0.061
PAUS		PLITTER			<u></u>		TERES	7647	- A S A B I

Figure D-46. Ocean optical properties (sheet 2 or 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT! 39-27.2 NJ LINE: 110-29.0 N 23.4001973 2130991

Figure D-47. Ocean optical properties (sheet 1 of 2).

3.0 4.0 5.3 6.2 7.1 7.0 8.7 9.6 10.4 11.2 11.0 12.7 13.6 14.6 19.2 16.1 17.7	0.762 0.762 0.753 0.757 0.757 0.757 0.763 0.727 0.714 0.709 0.665 0.671 0.668 0.633 0.615 0.629 0.634	ALPHA! 0.272 0.272 0.276 0.278 0.287 0.387 0.387 0.366 0.366 0.379 0.404 0.458 0.458	ALPHA 0.273 0.275 0.275 0.281 0.290 0.300 0.323 0.341 0.348 0.370 0.384 0.404	SCAT 0.169 0.169 0.172 0.175 0.184 0.193 0.215 0.262 0.262 0.274 0.262	AAS 0.106 0.106 0.106 0.106 0.107 0.107 0.108 0.108 0.109 0.109	VS#3 190.2 190.2 199.0 198.3 209.7 221.3 250.2 273.0 282.0	VSF4 68.3 68.3 70.1 71.3 75.6 80.0 91.0 99.7 101.2	24.5 24.5 24.2 25.6 27.2 28.9 33.1 36.4	THTA+25A 0.090 0.090 0.089 0.085 0.085 0.077 0.073 0.073
3.0 4.0 5.3 6.2 7.1 7.0 8.7 9.6 10.4 11.2 11.0 12.7 13.6 14.6 19.2 16.1 17.7	0.762 0.762 0.753 0.757 0.757 0.753 0.727 0.714 0.709 0.695 0.695 0.671 0.629 0.629 0.634	0.272 0.272 0.278 0.278 0.287 0.387 0.389 0.366 0.379 0.399	0.275 0.275 0.278 0.281 0.290 0.300 0.323 0.341 0.348 0.370 0.384 0.404	0.169 0.169 0.172 0.175 0.184 0.193 0.215 0.233 0.240 0.264 0.274	0.106 0.106 0.108 0.106 0.106 0.107 0.107 0.108 0.108 0.109	190.2 190.2 199.0 198.3 209.7 221.3 250.2 273.0 282.0	68.3 70.1 71.3 75.6 80.0 91.0 99.7	24.5 24.5 24.2 25.6 27.2 28.9 33.1 36.4	0.090 0.090 0.089 0.085 0.085 0.077 0.073
5.6 6.2 7.1 7.0 9.6 10.4 11.2 11.9 12.7 13.6 14.4 19.2 16.1 17.7	0.757 0.757 0.753 0.727 0.714 0.709 0.693 0.655 0.653 0.653 0.615 0.629 0.634	0.276 0.278 0.287 0.387 0.319 0.337 0.344 0.366 0.379 0.496 0.498 0.498	0.278 0.281 0.290 0.300 0.323 0.341 0.348 0.370 0.384 0.404	0.172 0.175 0.184 0.193 0.215 0.233 0.240 0.262 0.274 0.294	0.106 0.106 0.106 0.107 0.107 0.108 0.108	198.0 198.3 209.7 221.3 250.2 273.0 282.0 311.3	70.1 71.3 75.6 60.0 91.0 99.7	25.6 27.2 28.9 33.1 36.4	0.089 0.085 0.085 0.077 0.073 0.078
6.2 7.1 7.8 9.6 10.4 11.2 11.9 12.7 13.6 14.4 19.2 16.1 17.7	0.757 0.750 0.727 0.727 0.724 0.709 0.693 0.693 0.693 0.693 0.693 0.633 0.613 0.614 0.624 0.634	0.278 0.287 0.319 0.319 0.357 0.344 0.366 0.379 0.498 0.498	0.281 0.290 0.300 0.323 0.341 0.348 0.370 0.384 0.404	0.175 0.184 0.193 0.215 0.233 0.240 0.262 0.274 0.294	0.106 0.106 0.107 0.107 0.108 0.108 0.109	198.3 209.7 221.3 250.2 273.0 282.0	71.3 75.6 80.0 91.0 99.7	25.6 27.2 28.9 33.1 36.4 37.7	0.088 0.085 0.082 0.077 0.073
7.1 7.0 8.7 9.6 10.4 11.2 11.9 12.7 13.0 14.4 19.2 16.1 17.7	0.750 0.763 0.727 0.714 0.719 0.663 0.665 0.671 0.668 0.673 0.615 0.624 0.624	0.287 0.319 0.337 0.344 0.366 0.379 0.404 0.458 0.458	0.290 0.300 0.323 0.341 0.348 0.370 0.384 0.404	0.184 0.193 0.215 0.233 0.240 0.262 0.274 0.296	0.106 0.107 0.107 0.108 0.108 0.109	209.7 221.3 250.2 273.0 282.0	75.6 NO.0 91.0 99.7	27.2 28.9 33.1 36.4 37.7	0.085 0.082 0.077 0.073 0.072
7.6 0.7 9.6 11.9 12.7 13.6 14.6 19.2 16.6 17.7 14.5	0.743 0.727 0.714 0.709 0.663 0.665 0.671 0.668 0.673 0.615 0.629 0.629	0.319 0.337 0.344 0.366 0.379 0.399 0.404 0.458	0.300 0.323 0.341 0.348 0.370 0.384 0.404	0.193 0.215 0.233 0.240 0.262 0.274	0.107 0.107 0.108 0.108 0.109	221.3 250.2 273.0 282.0 311.3	91.0 91.0 99.7 103.2	28.9 33.1 36.4 37.7	0.017 0.077 0.073 0.072
8.7 9.6 10.4 11.2 12.7 13.6 14.4 19.2 16.1 17.7 14.5	0.714 0.709 0.093 0.665 0.671 0.668 0.673 0.615 0.616 0.624 0.634	0.319 0.337 0.344 0.366 0.379 0.399 0.404 0.458	0.323 0.341 0.340 0.370 0.384 0.404	0.215 0.233 0.240 0.262 0.274 0.294	0.107 0.108 0.109 0.109	250.2 273.0 282.0 311.3	91.0 99.7 103.2	33.1 36.4 37.7	0.077
10.4 11.2 11.9 12.7 13.6 14.4 19.2 16.1 17.7	C.709 C.693 U.665 C.671 O.668 O.673 O.615 O.615 O.624 C.634	0.366 0.379 0.399 0.404 0.458	0.348 0.370 0.384 0.404	0.240 0.262 0.274 0.294	0.109	311.3	103.2	37.7	0.078
11.2 11.9 12.7 13.6 14.4 15.2 16.1 14.8 17.7	0.693 0.605 0.671 0.668 0.633 0.615 0.629 0.629	0.366 0.379 0.399 0.404 0.458 0.486	0.370 0.384 0.404	0.262 0.274 0.294	0.109	371.3		<u> </u>	
11.9 12.7 13.6 14.4 15.2 16.1 16.6 17.7	0.605 0.671 0.668 0.633 0.615 0.629 0.629	0.379 0.399 0.404 0.458 0.464	0.384 0.404 0.409	0.274	0.109		116.6		
13.6 14.4 19.2 16.1 1A.A 17.7	0.671 0.668 0.633 0.615 0.616 0.629 0.634	0.399	0.404	0.294				42.0	0.068
13.6 14.4 19.2 16.1 16.6 17.7	0.668 0.633 0.615 0.629 0.634	0.404 0.458 0.484	0.409		11. 11.1	328.2 355.1	121.0	44.6	0.066
14.4 13.2 16.1 16.6 17.7	0.633 0.615 0.616 0.624 0.634	0.458		0.299	0.110	361.0	193.7	49.5	0.062
16.1 16.8 17.7 18.5	0.616		0.464	0.352	0.112	434.4	162.3	60.6	0.056
10.0	464.0		0.493	0.380	0.112	473.2	177.6	4644	0.053
17.7	0.634	0.484	0.491	0.379	0.112	471.0	176.7	66.3	0.053
18.3		0.464	0.470	0.358	0.112	442.9	165.6	61.9	0.05
	0.644	- 8:439 -	0.443	0.334	8:113	409.3	192.5	- \$6:3 -	
19.3	0.645	0.438	0.444	0.313	0.111	407.2	151.7	56.5	0.058
20.2	0.636	0.433	0.459	0.348	0.111	428.0	159.4	19.7	AEO.O.
51.0	0.011	0.492	0.499	0.387	0.113	462.0	181.0	68.0	0.052
21.9	0.579	0.547	0.555	0.440	0.114	557.8	211.0	79.8	0.048
22.7	<u> </u>	9.360	0.469	0.654	0.115	977.0	_218.6	AZ.A	0.047
23.3	0.361	0.578	0.586	0.471	0.115	601.5	228.4	86.7	0.046
24.4	0.545	0.608	0.617	0.534	0.116	644.4	245.5	93.5	0.044
54.U	0.118	0.656	0.660	0.550	0.117	715.9	204.2	101.0	0.043
24.9	0.497	0.700	0.711	0.592	0.119	777.7	299.0	114.9	0.040
27.7	0.452	0.795	0.809	0.687	0.122	917.8	351.4	_127.0_	0.036
28.5	0.398	0.055	0.939	0.013	0.126	1106.6	433.6	169.6	0.032
29.4	0.407	0.898	0.914	0.789	0-123	1072.0	418.7	163.5	0.033
30.3	- Secold	<u> </u>			0.135	1033.9	<u> {+}}</u>	<u> </u>	0.033
31.4	0.414	0.876 0.846	0.892	0.766	0.124	994.3	405.5 386.9	150.5	0.034
32.7	0.432	0.840	0.654	0.731	0.123	984.0	382.8	148.6	0.035
33.7	631	0.842	0.857	0.733	0.123	987.5	384.1	149.4	0.035
34.4	0.436	0.830	0.845	0.722	0-123	970.5	377.2	146.6	0.035
25.4	0,442	0.817	0.831	0,709	0.133	950.5	799.1	_141.3_	<u> </u>
36.2 37.1	0.484	0.767 0.726	0.780 0.738	0.639	0.121	676.6	339.0	131.1	0.037
37.9	0.489	0.716	0.728	0.608	0.120	815.7 800.9	314.4 308.4	121.1	0.039
30.7	0.904	0.664	0.695	6.377	-ŏ.ttš	754.8	269.8	111.5	0.040
39.7	0.534	0.628	0.638	0.521	0.117	673.0	256.9	98.0	0.043
40.1	0.930	0.654	0.664	0.547	8.119	710.5	272.0	104.1	0.042
41.4	0.533	0.630	0.639	0.525	0.117	675.6	258.0	98.5	0.043
42.2	0.939	0.619	0.628	0.512	0.117	659.7	251.7	96.0	0.044
43.0	0.547	-{}• \$?\$	8:623	0.497	8:119	639.3	257:4	- 38. 7	0.045
44.0	0.352	0.594	0.403	0.487	0.116	624.0	237.3	90.2	0.044
45.6	0.578	0.548	0,556	0.442	0.114	560.2	215.0	90.5	0.048
46.5	0.002	0.507	0.514	0.401	0.113	502.2	189.0	71.1	0.031
47.5	0.617	0.483	0.489	0.3/7	0.112	468.8	175.8	65.9	0.055
48.2	0.614	0.484	0.491	0.379	8:112	471.0	176.7	64.3	0.053
49.0 50.0	0.630	0.462	0.469	0.357	0.112	440.7	164.8 169.0	61.6	0.055

Figure D-47. Ocean optical properties (sheet 2 of 2).

DICEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA 23. LAT: 39-27.2 N; LINE: 118-29.0 N 24381975 1231971

Figure D-48 Ocean optical properties (sheet 1 of 2).

CONTRACTOR STATE OF S

Z(M)	T(1/M)	AL PHA 1	ALPHA	SCAT	ABS	VSE3	VSEA	VSF12	THTA#26A
2.0	0.805	0.217	0.219	0.114	0.104	VSF3	<u> </u>	15.2	0.116
3.7	0.813	0.207	0.209	0.105	0.104	111.7	39.1	13.6	0.122
4,9	0,806	0.216	0.217	0.113	0.104	121.7	42.7	15.0	0,117
5.9	0.302	0.220	0.222	0.118	0.104	127.5	44.9	15.8	0.114
7.3	0.798	0.225	0.227	0.123	0.105	133.3	47.0	16.6	0.111
<u> 9.5</u> .	0.789	0.236	0.239	0.134	0.105	146.7	52.0	18.4	0.105
9,7	0.784	0.243	0.245	0.140	0.105	154.3	54.8	19.5	0.102
10.0	0.784	0.243	0.245	0-140	0.105	154.3	54.8	19.5	0.102
12.2	0.782	0.246	0.249	0.144	0.105	158.9	56.5	20.1	0.100
13.3	0.781	0.248	0.250	0.145	0.105	160.4	57.1	20.3	0.099
14.7	0.770	0.262	0.264	0.158	0.104	177.5	63.5	22.7	0.094
$\frac{16.0}{17.3}$	0.712	0.281	0.343	0.177	108	201.5	72.5	<u>26. j</u>	0.047
18.5	0.575	0.393	0.398	0.289	0.110	347.2		36.9	0.072
19.8	0.592	0.525	0.533	0.419	0.114	527.3	128.4 198.9	47.4	0.063
21.0	0.559	0.581	0.590	0.475	0.115	606.4	230.4	75.0 87.5	0.050
22.4	0.510	0.673	0.684	0.565	0.118	738.0	283.0	108.5	0.041
23.7	0.444	0.813	0.827	0.704	0.123	943.9	366.4	142.2	0.036
24.9	0.420	0.867	0.803	0.758	0.124	1025.5	399.7	155.7	0.034
26.2	0.428	0.849	0.864	0.740	0.124	997.7	388.3	151.1	0.034
27.6	0.462	0.772	0.785	0.663	0.121	892.8	341.6	132.1	0.037
28.8	0.475	0.744	0.757	0.636	0.120	842.7	325.3	125.5	0.038
30.1	0.471	0.753	0.765	0.645	0.121	854.9	330.2	127.5	0.038
31.2	0.467	0.761	0.774	0.653	0.121	867.2	335.2	129.5	0.037
32.7	0.484	0.726	0.738	0.618	0.120	815.7	314.4	121.1	0.039
33.9	0.490	0.714	0.726	0.506	0.119	798.0	307.2	119.2	0.039
35.4	0.521	0.652	0.662	0.545	0.118	707.8	270.9	103.6	0.042
36.5	0.542	0.613	0.623	0.506	0,116	652.1	248.6	94.7	0.044
27.8	0.557	0.585	0.594	0.478	0.116	611.4	232.3	88.2	0.046
39.0	0.585	0.537	0.344	0.430	0.114	547.6	205.4	77.6	0.049
40.4	0.585	0.537	0.544	0.430	0.114	543.6	205.4	77.6	0.049
41.7	0.594	0.520	0.527	0.414	0.114	. 20 • 4	196.2	73.9	0.050
43.0	0.599	0.512	0.519	0 +406	0.113	509.0	191.7	72.1	0.051
44.2	0.629	0.454	0.470	0.351	0.112	442.9	165	61.9	0.055
46.9	0.677	0.390	0.395	0.286		432.2	16:	50.3	0.056
48.1	0.685	0.379	0.384	0.274	0.110	343.5	121.0	44.6	0.064
49.4	0.687	0.376	0.381	0.271	0.109	324.4	119.5	44.0	0.066
50.7	0.682	0.383	0.388	0.279	0.109	323.9	123.2	45.4	0.065
		PLUTTER	0.200		00103		16396	43.4	0.003

Figure D-48. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LINE: 118-29.0 N 24.5NL1975 1222PDT

Figure D-49. Ocean optical properties (sheet 1 of 2).

SANTA 24JUN	CATAL IN	15. 1222PDT	AT 33-	27.2 N	LONG 1	18-29-0	·	· · ·	
Z (M)	T(1/M)	ALPHAI	ALPHA	SCAT	ABS	VS#3	V5#6		THTA#ZBAF
1.6	0.819	0.200	0.201	0.098	0.104		36.0	12.5	0.128
3.1	0.818	0.213	0.205	0.099	0.104	104.7	36.5	12.7	0.127
- 3.8	0.804	- 0.218-	0.220	- 0.116	0.104	118.8	43.8	13.4	0:113
5.3	0.793	0.232	0.234	0.129	0.105	140.7	49.8	17.6	0.107
6.2	0.788	0.238	0.240	0.135	0.105	148.2	52.5	18.6	0.104
7.4	0.784	0.243	0.245	0.140	0.109	194.3	34.8	19.5	0.102
8.4	0.786	0.240	0.242	0.137	0.105	151.3	53.7	19.0	0.105
9,5	0,778	0.251	0.254	0.149	0.105	165,0	58.8	20.9	0.098
10.6	0.773	0.258	0.260	0.155	0.106	172.5	61.7	22.0	0.095
11.7	0.752	0.285	0,288	0.181	0.106	206.4	74.4	26.8	0.086
13.8	C. 739	0.362	0.305	8:237	9-197	228.0	112.3	29.9	<u> </u>
15.0	0.696	0.453	0.366	0.348	0.109	305.7 428.0	159.8	41.2	0.066
15.9	0.587	0.533	0.541	0.427		53B.9	202 8	59.7 76.8	0.056
17.7	0.477	0.740	0.753	0.632	- 120	836.6	203.5 322.A	124.5	0.038
18.1	0.470	0.755	0.768	0.647	0.121	858.0	331.5	128.0	0.038
19.2	0.424	0.858	0.873	0.749	0.124	1011.5	394.0	153.4	0.034
20.2	0.409	0.893	0.909	0.784	0.125	1064.7	415.7	162.2	0.033
21.3	0.421	0.865	0.880	0.756	0.124	1022.0	398.2	155.1	0.034
22.4	0.451	0.797	0.811	0.689	0.122	921.1	357.1	138.4	0.036
23.3	0.465	0.765	0.778	0.657	0.121	873.5	337.8	130.5	0.037
24.4	0.474	0.746	0.759	0.639	0.120	845.7	326.5	126.0	0.038
25.5	0.468	0.759	0.772	0.651	0.121	864.1	334.0	129.0	0.037
26.5	0.469	0.757	0.770	0.649	0.121	861.1	332.7	128.5	0.037
27.5	0.458	0.780	0.793	0.672	0.122	895.4	346.7	134.2	0.037
29.5	0.488	0.718	0.730	0.610	0.120	777.7 803.8	309.6	114.9	0.040
30.6	0.492	0.710	0.722	0.602	0.119	792.1	304.8	117.3	0.039
	0.499	0.696	0.707	0.589	0.119	771.9	296.7	114.0	0.040
32:7	0.320	0.654	0.664	0.541	0.116	710.5	272.0	104.1	0.042
33.7	0.524	0.646	0.657	0.539	0-117	699.6	267.6	102.3	0.042
34.8	0.541	0.615	0.625	0.506	0.116	654.7	249.6	95.1	0.044
35.9	0.557		0.594	0.476	0.116	611.4	232.3	88.2	0.046
36.8	0.564	0.572	0.581	0.466	0.115	394.l	225.4	85.5	0.046
37.9	0.586	0.535	0.543	9.429	<u> </u>	<u> </u>	204.5	77.2	0.249
39.0	0.594	0.522	0.529	0.416	0.114	522.7	197.1	74.3	0.050
39.9	0.612	0.491	0.498 0.456	0.365	0.113	479.8	180.2	67.6	0.053
42.1	0.638	0.435	0.440	0.345	0.111	423.8 403.1	150.1	59.0	0.057
43.2	0.655	0.423	0.428	0.318	0.111	386.8	143.7	53.4	0.050
44.2	0.659	0.417	0.422	0.312	0.110	378.8	140.6	52.2	0.060
13.4	0.676	Ŏ.392	0.397	0.287	ŏ.iiŏ	345.4	127.6	47.1	0.834
46.4	0.680	0.386	0.391	0.281	0.109	337.7	124.6	46.0	0.065
47.06	0.689	0.373	0.378	0.269	0.109	320.6	118.0	43.4	0.066
45.5	0.696	0.362	0.366	0.257	0.109	305.7	112.3	41.2	0.068
49.7	0.724	0.323	0.327	0.219	0.108	255.4	93.0	33.8	0.076

Figure D-49. Ocean optical properties (sheet 2 of 2).

DICEAN OPTICAL PROPERTIES - 520 NM SANTA CATALONA IS. LAT: 39-27.2 N; LUND: 118-29.0 N 2AJUN1975 150090T

Figure D-50. Ocean optical properties (sheet 1 of 2).

0.813 0.814 0.809 0.802	0.207 0.206 0.212 0.220	0.209 0.209 0.214	SCAT 0.105 0.104 0.110	0.104 0.104	VSF3 111.7 110.3	39.1	13.6	0.123
0.809	0.212	0.214						
0.802	0.220			0.104_		4141	14.4	0.123
		0.222	0.118	0.104	127.5	44.9	15.8	0.114
0.799	0.224	0.226	0.122	0.104	131.9	46.5	16.4	0.111
N. 1783	- X-566	0.346			1 88.0			0.109
		0.280	0.174	0.106				0.088
0.703	0.352	0.356		0.108	292.9			0.070
0.668		0.409	0.249	0.110		133.7	49.5	0.062
						149.3		0.058
N-305	0.423		- 0.4	 X**1**- -		168.7		0.053
0.552								0.045
0.539	0.619	0.628	0.512	0.117	659.9	251.7	96.0	0,044
		0.600		0.122	905.0	350.6	135.7	0.036
								0.035
				— <u>;</u>				0.035
0.465								0.037
0.498	0.698	0.709	0.590	0.119	774.8	297.8		0.040
	0.656	0.666	0.548	0.118	713.2	273.1	104.5	0.042
					705.0			0.042
								0.041
	0.620							0.044
0.555	0.588	0.597	0.481	0.116	616.4	234.3	89.0	0.046
			0.434	0.114	548.3			0.049
								0.051
	0.492			- 6.113 -		181.0		0.052
0.633	0.458	0.464	0.352	0.112	434.4	162.3	60.6	0.056
0.662	0.412	0.418	0.307	0.110		138.3	51.3	0.061
								0.064
							40.0 50.4	0.064 0.061
				- ŏ.11ŏ	359.0			0.062
0.674	0.395	0.400	0.290	0.110	349.3	129.1	47.7	0.063
	0.648 0.648 0.593 0.593 0.593 0.593 0.495 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.526 0.533 0.533 0.661 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667	0.758	0.758 0.277 0.280 0.703 0.352 0.356 0.668 0.404 0.409 0.648 0.433 0.439 0.617 0.463 0.409 0.593 0.523 0.531 0.594 0.619 0.628 0.455 0.787 0.800 0.443 0.815 0.829 0.443 0.815 0.829 0.443 0.815 0.829 0.443 0.815 0.847 0.448 0.826 0.840 0.468 0.765 0.778 0.498 0.898 0.709 0.519 0.656 0.666 0.522 0.650 0.666 0.522 0.650 0.666 0.525 0.626 0.636 0.538 0.626 0.636 0.538 0.626 0.636 0.538 0.626 0.636 0.538 0.626 0.636 0.538 0.626 0.636 0.538 0.626 0.636 0.538 0.626 0.636 0.538 0.626 0.636 0.538 0.626 0.636 0.538 0.626 0.636 0.538 0.626 0.636 0.538 0.626 0.636 0.538 0.626 0.636	0.758	0.758	0.758	0.758	0.758

Figure D-50. Ocean optical properties (sheet 2 of 2).

DICEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 39-27.2 N; LING: 118-29.0 N 24JUNI975 1910P9T

Figure D-51. Ocean optical properties (sheet 1 of 2).

SANTA 24JUN	CATALINA 1975 1	IS. 31 OPDT	LAT	33-2	7.2 N	LONG	118-29.0	u		·
Z (M)	T(1/M)	ALPHA			SCAT	ABS	VSF3	VS#6	VSF12	THTA+28A
3,4	0.817	0.505	0.2		0.100	0.104		37.0	15.4	0.136
4.3	0.809	0.212	0.		0.110	0.104		41-1	14.4	0.119
6,0	0.804	0.220	0.2	44	0.116	8.104	124.6	44.9	13.4	9.115
6.9	0.797	0.227	0.2		0.124	0.10	134.8	47.6	15.8	Q.114 0.110
8.1	0.789	0.236	0.2	39	0.134	0.10		52.0		
9.1	0.765	0.268	0.	71	0.165	0.10		66.5	23.8	0.105
10.0	0.730	0.315	0.1		0.211	0.107	245.0	89.0	32.3	0.078
11.1	0.675	0.393	0.3		0.289	0.110		128.4	47.4	0.063
15.0	0.625	0.470	0.4		0.365	0.11	451.4	194.0	63.2	0.055
13.1	0.612	0.491	0 • 4		0.385	0.113		180.2	67.6	0.053
14.1	0.555	0.566	0.		0.459	- 9.11		221.5	84.0	0.047
15.1	0.521	0.588	0.5		0.545	0.116		234.3	103.6	0.046
17.1	0.515	0.663	0.6		0.556	0.116		277.5	106.3	0.041
18.2	0.488	8.718	- 8.		0.610	ö.120		309.6	119.2	6.333
19.2	0.460	0.776	0.7		0.668	0.121		344.1	133.1	0.037
20.1	0.408	0.895	0.9	12	0.787	0.12:		417.2	162.9	0.033
\$1.3	0.410	0.891	0.9	07	0.782	0.12		414.2	161.6	0.033
22.3	0.433	0.837	0.6		0.729	0.123		381.4	148.2	0.035
23.2	0.431	0.842	0.8		0.733	0.123		384.1	149.4	0.035
24.4	0.453	0.791	0.6		0.663	0.122		353.2	136.8	0.036
25.4	0.464	0.767	0.7		0.659	0.121	876.6	339.0	131.1	0.037
26.3	0.512	0.619	0.6		0.562	ŏ:117		280.3	96.0	0.041
28.4	0.553	0.592	0.6	_	0.485	0.116		236.3	89.8	0.045
	0.566	0.569	0.5		0.462	0.115			84.7	0.047
30.5	0.556	0.586	0.5		0.480	0.116		233.3	68.6	0.046
31.5	0.534	0.628	0.6	38	0.521	0.117	673.0	256.9	98.0	0.043
32.5	0.543	0.611	7.6	21	0.504	0.116		247.5	94.3	0.044
	0.550	0.597	0.6		0.490	0.116		239.4	91.0	0.045
34.5	0.555	0.588	0.5	97	0.481	0.116		234.3	89.0	0.046
35.5	0.579	0.547	<u>Q</u> •2	22 -	0.440	0.114		- 211-0	79.8	0.048
36.7	0.605 0.614	0.502	0.5		0.396	0.113		186.3 178.4	70.0 66.9	0.052
	0.638	0.450	0 4		0.345	0.111		158.2	59.0	0.057
38.5	0.646	0.436	0.4		0.331	0.111		150.9	56.2	0.058
40.7	0.660	0.415	0.4		0.310	0.110	376.8	139.8	51.9	0.061
41.7	0.683	0.382	0.3	86	0.277	0.109	332.0	122.4	45.1	0.065
42.7	0.697	0.360	0.3		0.256	0.109		111.6	40.9	0.069
43.8	0.688	0.375	0.3		0.270	0.109		118.8	43.7	0.066
44,7	0.683	0.382	0.3		0.277	0.109		122.4	45.1	0.065
45.8	0.683	0.382	0.3		0.277	0.109		122.4	45.1	0.065
46.8 47.9	0.673 0.671	0.396	0.4		0.291	0.110		129.9	48.0	0.063
48.9	0.673	0.396	0.4		0.291	0.110		131.4	48.6	0.063
49.9	0.677	0.390	0.3		0.286	0.110		126.9	46.8	0.064
PAUSE							- , - + -			

Figure D-51. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALONA IS. LAT: 39-27.2 N; LONG: 118-29.0 N 2AJRL1975 1814P07

Figure D-52. Ocean optical properties (sheet 1 of 2).

: }

with the state of
2.1 0.662 0.412 0.416 0.307 0.110 372.8 136.8 51.3 0.0 3.5 0.626 0.469 0.475 0.363 0.112 449.3 168.2 62.9 0.0 4.7 0.623 0.473 0.480 0.368 0.112 455.7 170.7 63.9 0.0 6.0 0.620 0.478 0.485 0.372 0.112 462.3 173.3 64.9 0.0 7.5 0.589 0.530 0.538 0.424 0.114 534.3 201.7 76.1 0.0 8.9 0.591 0.527 0.534 0.420 0.114 529.6 199.8 75.4 0.0 10.3 0.585 0.537 0.544 0.420 0.114 529.6 199.8 75.4 0.0 11.8 0.593 0.523 0.531 0.417 0.114 543.6 209.4 77.6 0.0 13.2 0.583 0.540 0.546 0.434 0.114 548.3 207.3 78.3 0.0 14.6 0.808 0.497 0.504 0.434 0.114 548.3 207.3 78.3 0.0 14.6 0.808 0.497 0.504 0.391 0.113 488.7 188.7 69.0 0.0 16.1 0.619 0.480 0.486 0.374 0.112 464.1 167.3 82.8 0.0 17.5 0.627 0.467 0.473 0.362 0.112 464.1 167.3 82.8 0.0 18.9 0.630 0.462 0.469 0.357 0.112 460.1 167.3 82.8 0.0 22.0 0.879 0.388 0.392 0.283 0.109 339.8 129.4 46.3 0.0 22.0 0.879 0.388 0.392 0.283 0.109 339.8 129.4 46.3 0.0 23.6 0.701 0.335 0.359 0.251 0.108 266.5 108.7 39.9 0.0 25.0 0.718 0.331 0.335 0.359 0.227 0.108 266.5 108.7 39.9 0.0 27.8 0.737 0.306 0.309 0.202 0.107 233.1 84.5 30.6 0.0 29.3 0.751 0.266 0.289 0.183 0.109 339.8 129.4 46.3 0.0 33.6 0.771 0.266 0.289 0.183 0.108 255.4 91.0 35.8 0.0 35.0 0.771 0.260 0.263 0.377 0.110 0.108 255.4 91.0 35.8 0.0 35.0 0.771 0.260 0.263 0.377 0.110 0.108 255.4 91.0 35.8 0.0 35.0 0.771 0.260 0.263 0.377 0.110 0.108 255.4 91.0 35.8 0.0 37.8 0.793 0.224 0.129 0.105 140.7 49.8 17.6 0.1 38.9 0.605 0.793 0.224 0.129 0.105 140.7 49.8 17.6 0.1 38.1 0.7765 0.268 0.271 0.165 0.106 175.4 56.5 23.8 0.0 37.8 0.793 0.222 0.224 0.119 0.108 20.0 49.4 16.0 0.1 42.5 0.805 0.219 0.221 0.117 0.106 175.9 50.9 11.8 0.1 42.5 0.805 0.219 0.221 0.117 0.106 175.9 50.9 11.8 0.1 42.5 0.805 0.219 0.221 0.117 0.107 120.0 120 120.0 12	Z(M)	T(1/M)	ALPHA!	ALPHA	SCAT	0.108	VSF3	VSF6	VSF12	THTAP
3.5	0.7	0.714	0.337	0.341	0.233		273.0	99.7	36.4	0.0
6.0 0.620 0.473 0.480 0.368 0.112 455.7 170.7 63.9 0.0 6.0 0.620 0.478 0.485 0.372 0.112 462.3 173.3 64.9 0.0 7.5 0.589 0.530 0.538 0.424 0.114 534.3 201.7 76.1 0.0 8.9 0.591 0.527 0.534 0.420 0.114 524.6 199.8 75.4 0.0 110.3 0.585 0.587 0.544 0.420 0.114 524.6 199.8 75.4 0.0 111.8 0.593 0.523 0.531 0.417 0.114 525.0 198.0 74.6 0.0 113.2 0.585 0.537 0.544 0.430 0.114 525.0 198.0 74.6 0.0 113.2 0.585 0.540 0.548 0.434 0.114 525.0 198.0 74.6 0.0 114.6 0.608 0.497 0.504 0.434 0.114 525.0 198.0 74.6 0.0 114.6 0.608 0.497 0.504 0.391 0.113 525.0 198.7 183.7 0.0 114.6 0.608 0.497 0.504 0.391 0.113 525.0 198.7 183.7 0.0 114.6 0.608 0.497 0.473 0.362 0.112 464.1 167.3 62.6 0.0 118.9 0.630 0.462 0.469 0.377 0.112 464.4 174.1 653.2 0.0 175.5 0.627 0.467 0.473 0.362 0.112 447.1 167.3 62.6 0.0 128.9 0.630 0.462 0.469 0.357 0.112 440.7 164.8 61.6 0.0 22.0 0.631 0.461 0.467 0.355 0.359 0.221 0.108 225.0 164.0 61.3 0.0 225.0 0.679 0.388 0.392 0.283 0.109 339.8 129.4 46.3 0.0 225.0 0.718 0.331 0.335 0.359 0.221 0.108 225.4 50.0 125.4	2.1								71.3	
6.0	-202									
8.	6.0	0.620			0.372					0.0
10.3		0,589								0.0
11.8										0.0
13.2										
14.6										
16.1										0.0
17.5		0,619		0.486	0.374	0.112	464.4	174.1		0.0
20.4	17.5								62.6	0.0
22.0										
23.6										
25.0										
26.4					0.227		266.0		35.4	0.0
29.3 0.751 0.266 0.289 0.183 0.106 208.0 75.0 27.0 0.0 30.A 0.750 0.267 0.290 0.184 0.106 209.7 75.6 27.2 0.0 32.1 0.765 0.268 0.271 0.165 0.106 185.4 66.5 23.8 0.0 33.6 0.771 0.260 0.263 0.157 0.106 175.9 62.9 22.5 0.0 35.0 0.784 0.243 0.245 0.140 0.105 154.3 54.8 19.5 0.1 36.5 0.793 0.232 0.234 0.129 0.105 140.7 49.8 17.6 0.1 38.1 0.787 0.239 0.241 0.136 0.105 149.7 53.1 18.8 0.1 39.5 0.803 0.219 0.221 0.117 0.104 120.0 44.3 15.6 0.1 41.0 0.803 0.219 0.2		0.724		0.327	0.219	0.108		93.0	33,1	0.0
30.A										0.0
32.1		0.751								
33.6										
35.0 0.784 0.243 0.245 0.140 0.105 154.3 54.8 19.5 0.1 34.5 0.793 0.232 0.234 0.129 0.105 140.7 49.8 17.6 0.1 38.1 0.787 0.239 0.241 0.136 0.105 149.7 53.1 16.8 0.1 38.3 0.803 0.219 0.221 0.117 0.104 126.0 44.3 15.6 0.1 41.0 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.1 42.5 0.805 0.215 0.217 0.113 0.104 121.7 42.7 15.0 0.1 42.5 0.805 0.216 0.217 0.113 0.104 121.7 42.7 15.6 0.1 43.8 0.813 0.207 0.209 0.105 0.104 111.7 39.1 15.6 0.1 45.4 0.809 0.212 0.214 0.110 0.104 111.7 39.1 15.6 0.1 45.4 0.809 0.217 0.219 0.114 0.104 17.4 41.1 14.4 0.1 46.9 0.805 0.217 0.219 0.114 0.104 17.4 41.1 14.4 0.1 48.4 0.805 0.217 0.219 0.114 0.104 17.4 41.1 39.6 13.6 0.1 48.4 0.812 0.208 0.210 0.106 0.104 17.1 39.6 13.6 0.1 49.9 0.812 0.208 0.210 0.106 0.104 17.1 39.6 13.6 0.1					0.157			62.9		
3A.5	35.0				0.140	0.103	154.3	54.8	19.5	0.1
41.0 0.801 0.222 0.224 0.119 0.104 129.0 49.4 16.0 0.1 42.5 0.806 0.216 0.217 0.113 0.104 121.7 42.7 15.0 0.1 43.8 0.813 0.207 0.209 0.105 0.104 111.7 39.1 15.6 0.1 45.4 0.809 0.212 0.214 0.110 0.104 117.4 41.1 14.4 0.1 46.9 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.7 0.1 48.4 0.812 0.208 0.217 0.106 0.104 113.1 39.6 13.6 0.1 49.9 0.812 0.208 0.210 0.106 0.104 113.1 39.6 13.6 0.1		0.793					140.7	49.8		0.10
41.0 0.801 0.222 0.224 0.119 0.104 129.0 49.4 16.0 0.1 42.5 0.806 0.216 0.217 0.113 0.104 121.7 42.7 15.0 0.1 43.8 0.813 0.207 0.209 0.105 0.104 111.7 39.1 15.6 0.1 45.4 0.809 0.212 0.214 0.110 0.104 117.4 41.1 14.4 0.1 46.9 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.7 0.1 48.4 0.812 0.208 0.217 0.106 0.104 113.1 39.6 13.6 0.1 49.9 0.812 0.208 0.210 0.106 0.104 113.1 39.6 13.6 0.1	34.1			0.241			149.7	- 53.		
42.5 0.806 0.216 0.217 0.113 0.104 121.7 42.7 15.0 0.1 43.8 0.813 0.207 0.209 0.105 0.104 111.7 39.1 15.6 0.1 45.4 0.809 0.212 0.214 0.110 0.104 111.4 41.1 14.4 0.1 46.9 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.7 0.1 48.4 0.812 0.208 0.217 0.106 0.104 123.1 39.6 13.8 0.1 49.9 0.812 0.208 0.210 0.106 0.104 113.1 39.6 13.8 0.1				0.221	0.117		120.0		17.0	
45.4 0.809 0.212 0.214 0.110 0.104 117.4 41.1 14.4 0.1 46.9 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.1 47.4 0.812 0.208 0.210 0.106 0.104 113.1 39.6 13.8 0.1 49.9 0.812 0.208 0.210 0.106 0.104 113.1 39.6 13.8 0.1					0-113					
45.4 0.809 0.212 0.214 0.110 0.104 117.4 41.1 14.4 0.1 46.9 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.1 47.4 0.812 0.208 0.210 0.106 0.104 113.1 39.6 13.8 0.1 49.9 0.812 0.208 0.210 0.106 0.104 113.1 39.6 13.8 0.1				ñ.204				39:1	15.8	- 6.1
48.4 0.812 0.208 0.210 0.106 0.104 113.1 39.6 13.8 0.1 49.9 0.812 0.208 0.210 0.106 0.104 113.1 39.6 13.8 0.1	45.4		0.212	0.214				41.1	14.4	0.1
49.9 0.812 0.208 0.210 0.106 0.104 113.1 39.6 13.8 0.1	46.9		0.217				123.1			
							113-1			
PATRIC 1527 - 152 1 2 1				0.210	0.100	0.104	113.1	37.0	19.0	0.1
	11/35	176707	- 47 1 47					·		
										-

Figure D-52. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALDIA 23. LAT' 39-27.2 N; LIBID: 118-29.0 N 24.001.075 1410797

Figure D-53. Ocean optical properties (theet 1 of 2).

7(M)	T(1/M)	0.383	O.388	SCAT 0.279	0.109	VSF3 333.9	VSF6	45.4	1HTA+2B
2.9	0.505	0.462	0.493	0.575	0.119	752.0	288.7	110.8	0.041
4.2	0.580	0.545	0.553	0.439	0.116	555.4	_210.i		0.044
5.1	0.589	0.530	0.538	0.424	0.114	534.3	201.7	76.1	0.049
6.5	0.569	0.564	0.572	0.457	0.115	581.9	550.6	83.6	0.047
7.9	0.397	0.518	0.522	0.409	0.113	518.1 513.5	193.5	72.9	0.050
10.6	0.543	0.540	0.548	0.434	0.114	548.3	207.3	78.3	0.049
11.9	0.570	0.562	0.570	0.456	0.119	579.4	219.6	63.2	0.047
13.3	0.578	0.548	0.556	0.442	0.114	560.2	212.0	80.2	0.048
14.6	0.593	0.523	0.531	0.417	0.114	525.0	198.0	74.6	0.050
19:3	0.621	8.477	0.503	0.390	0.113	460.1	172.4	64.6	U.052
18.9	0.631	0.461	0.467	0.355	0.112	438.4	164.0	61.3	0.055
20.3	0.646	0.436	0.442	0.331	0.111	405.2	150.9	56.2	0.058
21.8	0.652	0.427	0.433	0.322	0.111	392.9	146.1	54.3	0.059
23.3	0.649	0.432	0.437	0.327	0.111	399.0	148.5	55.2	0.059
26.1	0.679	0.388	0.406	8.296	8:109	337.0	125.4	46.3	0.062
27.6	0.697	0.340	0.365	0.256	0.109	303.9	111.6	40.9	0.049
29.0	0.718	0.331	0.335	0.227	0.108	266.0	97.0	35.4	0.074
20.5	0.723	0.325	0.328	0.221	0.108	257.2	93.7	34.1	0.076
32.1	0.728	0.318	0.321	0.214	0.107	248.5	90.3	32.8	0.077
33.5 33.0	0.756	0.280	0.275	0.169	0.106	190.2	71.5	25.9 _	0.057
36.6	0.754	0.282	0.285	0.179	0.104	203.1	73.1	26.3	0.087
38.3	0.787	0.239	0.241	0.136	0.105	149.7		18.8	0.103
39.8	0.747	0.239	0.241	0.135	0.105	149.7	53.1	18.8	0.103
41.8	0.790	0.235	0.237	0.133	0.105	145.2	51.4	18.2	0.105
45.8	0.801	0.224	0.226	0.122	0.104	131.9	45.4	16.0	0.111
47.5	0.812	0.208	0.210	0.104	0.104	113.1	39.6	13.8	0.122
49.6	0.811	0.210	0.211	0.107	0.104	114.5	40.1	14.0	0.121
51.A	0.806	0.216	0.217	0.113	0.104	121.7	42.7	15.0	0.117
PAUSE		PLOTTER							

Figure D-53. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALDIA IS. LAT: 33-27.2 N; LINE: 110-29.0 N 24.0001975 1450997

Figure D-54. Ocean optical properties (sheet 1 of 2).

-21M)	T11641	0.704	ALPHA -	SCAT	0.104	187.3	¥\$#4	VSF12	IHIA-24 0.125
2.5	0.808	0.213	0.215	0.111	0.104	118.8	41.7	14.6	0.125
3.6	0.809	0.212	0.214	0.110	0.104	117.4	<u> </u>	19.9	0.112
4.6	0.793	0.212	0.234	0.110	0.105	140.7	49.8	17.6	0.107
5.6	0.788	0.238	0.240	0.135	0.105	148.2	52.5	18.6	0.104
6.8	0.749	0.209	C-292	0.185	0.106	211.3	76.2	27.5	0.085
9.2	0.727	0.319	0.323	0.219	0.107	341.5	91.0	33.1	0.077
10.3	0.642	0.444	0.450	0,339	0.111	415.5	154.9	57.7	0.057
11.3	0.609	0.496	0.503	0.390	0.113	486.5	182.6	68,7	0.052
12.6	0.579	0.547	0.555	0.440	0.114	557.8	211.0	79.8	0.048
13.0	0.514	0.005	0.676	0.558	9.110	725.9	278.6	106.7	0.041
15.0	0.434	0.835	0.850	0.726	0.123	977.3	380.0	147.7	0.035
16.3	0.392	0.937	0.954	0.628	0.126	1131.5	443.1	173.5	0.032
16.6	0.349	0.939	0.967	0.840	9.124	1130.7	491.0	176.7	0.032
19.9	0.424	0.858	0.873	0.749	0.124	1011.5	374.0	153.4	0.034
21.2	0.452	0.795	0.804	0.487		917.6	355.8	137.8	0.036
22.3	0.476	0.742	0.755	0.634	8:128	839.7	324.1	125.0	0.038
23.5	0.509	0.675	0.686	0.567	0.118	740.8	284.2	108.9	0.041
- 24.9 -	0.521	<u> </u>	0.463	0.545	<u> </u>	<u> </u>	270.9	<u> </u>	0.042
26.1	0.521	0.639	0.649	0.545	0.117	688.9 707.8	263.3	100.6	0.043
26.4	0.531	0.633	0.643	0.526	0.117	600.9	260.1	99.3	0.043
29.7	0.539	0.619	0.628	0.312	0.117	659.9	251.7	96.0	0.044
31.0	0.559	0.581	0.590	0.475	0.115	606.4	230.4	87.5	0.046
32.3	0.574	0.555	0,563	0.449	0.115	369.8	215.0	81.7	0.048
33.5	0.594	0.322	0.529	0.416	0.114	522.7	197.1	74.3	0.050
34.7 36.1	0.613	0.489	0.496	0.303	0.113	477.6	179.3 160.7	67.3	0.053
37.2	0.629	0.464	0.470	0.358	ö:112	442.4	103.0	61.9	0.056
38,6	0.681	0.477	0.483	0.371	0.112	460.1	172.4	64.6	0.054
39.6	0.639	0.449	0.454	0.343	0.111	421.7 423.8	157.4	54.7	0.057
41.2	0.638	0.450	0.456	0.345	0.111	423.8	158.2	59.0	0.057
42.4	0.681	0.385	0.389	0.280	0.109	335.8	123.9	45.7	0.065
43.7	- 0.104 -	0.351	0.370	0.262	0.109	311.3	114.4	42.0	O-OFR
46.2	0.718	0.331	0.335	0.227	0.108	291.0 266.0	106.6 97.0	39.1 35.4	0.070
47.5	0.710	0.342	0.346	0.238	0.100	260.2	102.5	37.5	0.072
48.8	0.697	0.360	0.365	0.256	0.109	303.9	111.6	40,9	0.009
50.0	1.685	0.379	0.384	0.274	0.109	328.2	121.0	44.6	U. 066
PAUSI	F READY	FLOTTER							

Figure D-54. Occun optical properties (sheet 2 of 2).

OCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 39-27.2 N; LINE: 118-29.0 N 24.000173 145075

Figure D-55. Ocean optical properties (sheet 1 of 2).

· compression comments the history of the things with the office of

SANTA 24JUN	CATALINA	IS.	LAT 33-	-27.2 N	LONG	118-29.0	W		
									
Z(M)	T(1/M)	ALPHA	ALPHA	SCAT	ABS	VS.83	VSF6	VSF12	THTA#2BA
3.3	0.817	0.202	0.204	0.100	0.104		37.0	12.9	0.126
3.7	0.799	0.224	0.226	0.122	0.104		46.5	16.4	0.111
<u></u>	0.788	0.238	0.240	0.135	0.10	148.2	52.5		0.104
5.3	0.725	0.322	0.325	0.218	0.107		92.3	33.6	0.076
6.3 7.3	0.684	0.380	0.385	0.276 0.328	0.109	330.1 401.1	121.7	44.8	0.065 0.058
6.1	0.625	0.470	0.477	0.365	0.112		169.0	55.5	0.055
9.0	0.590	0.523	0.536	0.422	0.114		200.8	75.7	0.050
10.0	0.533	0.650	0.639	0.573	0.117		258.0	98.5	0.043
10.9	0.486	0.722	0.734	0.614	0.120	809.7	312.0	120.1	0.039
11.9	0.450	0.800	0.813	0.691	0.122		358.4	138.9	0.036
12.7	0.395	0.930	1,,947	0.821	0.126		438.5	171.5	0.032
13.7	0.398	0.922	0.939	0.613	0.126		433.8	169.6	
14.6	0.398	0.922	0.939	0.813	0.126 0.125		433.8	169.6	0.032
15.5	0.403	0.910	0.926	0.801	0.123	1090.3	426.2	162.9	0.033
17.3	0.412	0.886	0.902	0.777	0.125	1053.9	411.3	160.4	0.033
19.3	0.447	0.806	0.820	0.698	0.122		362.4	140.5	0.036
19.3	0.480	0.734	0.746	0.626	0.120	627.6	319.2	123.0	0.038
20.2	0.478	0.738	0.751	0.630	0.120		321.6	124.0	0.038
21.2	0.485	0.724	0.736	0.616	0.120		313.2	120.6	0.039
22.1	0.506	0.681	0.692	0.573	0.118		287.5	110.3	0.041
23.0	0.524	0.645	0.657	0.539	0.117		267.6	102.3	0.042
23.9	0.536	0.624	0,634	0.517	0.117		254.8	97.2	0.043
24.9	0.531	0.633	0.643	0.526	0.117		260.1	99.3	0.043
25.8	0.534	0.628	0.638	0.521	0.117	673.0	256.9	98.0	0.043
24.7	0.536	0.637	0.634	0.517	0.117	686.2	262.2	100.3	0.043
28.5	0.541	0.615	0.625	0.508	0.116		349.6	95.1	0.044
29.5	0.551	0.595	0.604	0.489	0.116		238.4	90.6	0.045
30.5	0.563	0.574	0.583	0.468	0.115		226.4	85.9	0.046
31.4	0.573	0.557	0.565	0.451	0.115	572.2	216.7	82.0	0.048
32.2	0.590	0.528	0.536	0.422	0.114		200.B	75.7	0.050
33.3	0.615	0.791	0.498	0.385	0.113		180.5	67.6	0.053
34.1	0.630	0.462	0.469	0.357	0.112		164.8	61.6	0.055
36.1	0.649	0.438	0.444	0.333	0.111	407.2	151.7	<u> 56.5</u>	0.058
37.0	C.648	0.433	0.439	0.327	0.111	399.0 401.1	148.5 149.3	55.2 55.5	0.059 0.058
38.0	0.646	0.436	3.442	0.331	0.111	405.2	150.7	56.2	0.058
38.A	0.636	0.453	0.459	0.348	0.111	429.0	9.8	59.7	0.056
39.7	0.652	0.427	0.433	0.322	0.111	392.9	146.1	54.3	0.059
40.7	0.660	0.415	0.421	0.310	0.110	376.8	139.9	51.9	0.061
41.7	0.668	0.404	0.409	0.299	0.110	361.0	133.7	49.5	0.062
42.6	0.707	0.347	0.351	0.242	0.108	285.6	104.6	30.3	0.071
43.6	0.710	0.342	0.346	0.238	0.108	280.2	102.5	37.5	0.072
44.5	0.718	0.331	0.335	0.227	0.106	266.0	97.0	35.4	0.074
45.5	0.709	0.344	0.348	0.240	0.108	282.0	103.2	37.7	0.072
46.3	0.705	0.349 U.353	0,353	0.245	0.108	289,2	105.9	38.8	0.071
47.3	0.702	0.362	0.358	0.249	0.108	294.7 305.7	108.0 112.3	39.6 41.2	0.070 0.068
49.2	0.695	0.363	0.368	0.259	0.109	307.6	113.0	41.5	0.068
50.1	6.697	0.360	0.365	0.256	0.109		111.6	40,9	0.069

Figure D-55. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 39-27.2 N; LING: 110-29.0 N 24-06-1975 1510PDT

Figure D-56. Ocean optical properties (sheet 1 of 2).

	m '			***					
Z(M)	T(1/M)	ALPHA	ALPHA	SCAT	ABS	VSF3	VSF6		THTA#2BA
1.5	0.603	0.505	0.512	0.399	0.113	499.9	188.1	70.7	
1.7	0.580 0.578	0.545	0.553	0.439	0.114 0.114	555.4	210.1	79.4	0.048
3.6	0.568	0.348	0.574	0.442	0.115	584.3	212.0	80.2	0.048
5.1	0.562	0.576	0.585	0.469	0.115	599.0	227.4	86.3	0.046
6.3	0.551	0.595	0.604	0.489	0,116	626.5		90.6	0.045
7.7	0.330	0.597	0.606	0.490	<u> </u>	629.0	239.4	91.0	0.045
9.0	0.571	0.560	0.569	0.454	0.115	577.0	218.6	82.8	0.047
10.3	0.567	0.567	0.576	0.461	0.115	586.7	222.5	84.3	0.047
11.6	0.571	0.360	0.569	0.454	0.115	577.0	218.5	82.8	0.047
12.7	0.576	0.552	0.560	0.445	0.114	565.0	213.9	80.9	0.048
14.0	0.586	0.535	0.543	0.429	0.114	541.3	204.5	77.2	0.049
15.4	0.597	0.515	0.522	0.409	0.113	513.5	193.5	72.9	0.051
16.7	0.623	0.473	0.480	0.368	0.112	455.7	170.7	63.9	0.054
17.9	0.631	0.461	0.467	0.355	0.112	438.6	164.0	61.3	0.055
10.1	0.634	0.456	0.462	0.351	0.112	432.2	161.5	60.3	0.056
20.5	0.651	0.429	0.434	0.324	0.111	394.9	146.9	54.6	0.059
21.8	0.664	0.409	0.415	0.304	0.110	368.9	136,7	50.7	0.061
53.5	0.670	0.401	0.406	0.296	0.110	357.0	132.1	48.9	0.062
24.4	0.682	0.383	0.388	0.279	0.109	333.9	123.2	45.4	0.065
25.7	0.694	0.373	0.378	0.269	0.109	320.6	118.0	43.4	0.066
27.1	0.695	0.365	0.368	0.259	0.109	307.6	113.0	41.5	0.058
29.6	0.688	0.375	0.379	0.270	0.109	322.5	118.8	43.7	0.056
31.0	0.692	0.366	0.372	0.263	0.109	313.1	113.1	42.3	0.067
32.2	0.693	0.366	0.370	0.262	0.109	311.3	114.4	42.0	0.068
33.5	0.704	0.351	0.355	0.246	0.108	291.0	106.6	39.1	0.070
34.8	0.707	0.347	0.351	0.242	0.108	285.6	104.6	38.3	0.071
34.1	0.722	0.326	0.330	0.222	0.108	258.9	94.3	34.4	0.075
37.4	0.744	0.295	0.298	0.192	0.107	219.6	79.4	28.7	0.083
38.8	0.749	0.289	0.292	0.185	0.106	211.3	76.2	27.5	0.085
40.0	0.745	0.294	0.297	0.190	0.107	218.0	78.7	28.4	0.083
41.3	0.762	0.272	0.275	0.169	0.106	190.2	68.3	24.5	0.090
42.6	0.770	0.262	0.264	0.158	0.106	177.5	63.5	22.7	0.094
43.6	0.771	0.260	0.263	0.157	0.106	175.9	62.9	22.5	0.094
45.1	0.784	0.244	0.246	0.141	0.105	155.8	55.4	19.7	0.107
46.5	0.790	0.235	0.237	0.133	0.105	145.2	51.4	18.2	0.105
47.6	0.788	0.238	0.240	0.135	0.105	149.2	52.5	18.6	0.104
49.0	0.796	0.228	0.230	0,125	0.105	136.3	48.1	17.0	0.109
PAUS	0.791 E READY	0.234 PLOTTER	0.236	0.131	0.105	143.7	50.9	18.0	0.106

Figure D-56. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LING! 110-29.0 N 2AUL1975 1413FDT

Figure D-57. Ocean optical properties (sheet 1 of 2).

0.600 0.605 0.596	0.510 0.502 0.517	0.517 0.509	0.404	A85	VSF3	V5 # 6 190.8	71.8	A - A - B - 1
0.596	0.902	V.2UY						0.051
		0.524	0.396	0.113	495.4 515.8	186.3	70.0	0.052
0.982	0.542	0.330	0.435	0.114	550.7	208.2	73.2	0.050
0.572	0.559	0.567	0.452	0.115	574.6	217.7	82.4	0.047
0.569	0.564	0.572	0.457	0.115	581.9	220.6	83.6	0.047
			0.462		589.2	223.5	84.7	0.047
								0.047
				0.115		321.5	84.0	0.047
								0.046
								0.047
0.582		0.550			550.7			0.049
0.573	0.557	0.545	0.451	0.115	572.2	216.7	82.0	0.048
0.568	0.566	0.574	0.459	0.115	584.7	221.5	84.0	0.047
		0.576	0.461	0.115	586.7	222.5	84.3	0.047
								0.048
0.599		<u>Q. 538</u>		<u> </u>			<u>- 74. j</u> -	0.049
0.414								0.051
								0.053
								0.056
0.641	0.445	0.451	0.340	0.111	417.6	155.7		0.057
0.643	0.441	0.447	0.336	0.111	411.3	153.3	57.1	0.058
		0.444				151.7	56.5	0.058
								0.059
							- 53.4	0.060
			0.267					0.060
					337.7			0.065
0.688	0.375	0.379	0.270	0.109	322.3			0.066
0.692	0.368	0.372	0.263	0.109	313.1	115.1	42.3	0.067
0.689	0.373	0.378	0.269	0.109	320.6	118.0	43.4	0.066
								0.068
								0.067
		- V+395 - 170				114.0		0.069
0.693	0.366	0.370	0.262	0.109	311.3	114.4	42.0	0.068
	0.369	0.373	0.264	0.109	315.0	115.9	42.6	0.067
0,691					313.1			
	0.569 0.566 0.568 0.568 0.568 0.567 0.573 0.573 0.573 0.573 0.567 0.643 0.641 0.643 0.645 0.659 0.659 0.688 0.692 0.693 0.693 0.693	0.569 0.564 0.566 0.569 0.568 0.566 0.568 0.566 0.568 0.566 0.568 0.566 0.582 0.542 0.582 0.542 0.587 0.587 0.567 0.567 0.573 0.557 0.573 0.557 0.573 0.557 0.599 0.530 0.602 0.507 0.616 0.484 0.623 0.473 0.634 0.456 0.641 0.445 0.643 0.441 0.645 0.427 0.659 0.417 0.669 0.402 0.608 0.375 0.692 0.368 0.689 0.373 0.693 0.366	0.569	0.569	0.569	0.569	0.569	0.569

Figure D-57. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALTNA IS. LAT: 35-27.2 N; LUNG: 116-29.0 N 24.001973 1934P0T

Figure D-58. Ocean optical properties (sheet 1 of 2).

Z(M)	TLIZMI	ALPHAI	ALPHA	SCAT	ABS	VSF3	VS F6	VSF12	IHIA±284
1.5	0.769	0.263	0.265	0.160	0.106	179.1	64.1	22.9	0.093
2.1	0.762	0.272	0.275	0.169	0.106	190.2	68.3	24.5	0.090
	0.747	<u> </u>	0.294	<u> </u>	<u>0_7_</u>		<u></u>	28.0	0.084
4.3	0.756 0.759	0.280 0.276	0.282	0.176 0.172	0.106	199.9	71.9	25.9	0.087
5.3	0.761	0.273	0.276	0.170	0.106	195.0	70.1 68.9	25.2	0.089
7.5	0.747	0.291	0.294	0.188	0.107	214.6	77.5	28.0	0.084
8.6	0.703	0.352	0.356	0.248	0.108	292.9	107.3	39.3	0.070
9.7	0.660	0.415	0.421	0.310	0.110	376.8	139.6	51.9	0.061
10.4	0.606	0.500	0.507	0.395	0.113	493.2	185.4	69.7	0.052
11.9	0.576	0.552	0.560	0.445	0.114	565.0	213.9	80.9	0.048
13.0	0.547	0.602	7.612	0.496	Celle	635.7	242.4	92.3	0.045
14.1	0.531	0.633	0.643	0.526	0.117	680.9	260.1	99.3	0.043
15.3	0.535	0.626	0.636	0.519	0.117	670.4	255.9	97.6	0.043
16.4	0.531	0.590	0.599	0.526	0.117	618.9	260.1 235.3	99.3 89.4	0.043
18.6	0.570	0.562	0.570	0.456	0.115	579.4	219.6	83.2	0.045 0.047
19.8	0.535	0.626	0.636	0.519	0.117	670.4	255.9	97.4	0.043
20.9	0.527	0.641	0.651	0.534	0.117	691.6	264.4	101.0	0.043
22.0	0.489	0.716	0.728	0.608	0-120	800.9	308.4	118.7	0.039
23.3	0.483	0.728	0.740	0.620	0.120	818.6	315.6	121.6	0.039
24.5	0.417	0.874	0.890	0.765	0.124	1036.1	404.0	157.5	0.034
25.6	0.385	0.955	0.972	0.846	0.127	1158-4	454.2	178.0	0.032
26.9	0.403	0.910	0.926	0.801	0.125	1090.3	426.2	166.5	0.033
2A-1	0.435	0.833	0.847	0.724	0.123	973.9	378.6	147.1	0.035
29.4	0.453	0.791	0.804	0.683	0.122	911.4	353.2	136.8	0.036
30.5	0.477	0.765	0.778	0.637	0.121	836.6	322.8	130.5	0.037 0.038
33.0	0.492	0.710	0.722	0.602	0.119	792.1	304.A	117.3	0.039
34.3	0.478	0.738	0.751	0.630	0.120	833.6	321.6	124.0	0.039
35.5	0.479	0.736	0.748	0.628	0.120	830.6	320.4	123.5	0.038
36.7	0.467	0.761	0.774	0.653	0.121	867.2	335.2	129.5	0.037
37.9	0.473	0.749	0.761	0.641	0.121	848.8	327.8	126.5	0.038
39.2	0.469	0.757	0.770	0 • 64 9	0.121	861.1	332.7	128.5	0.037
40.4	0.486	0.722	0.734	0.614	0.120	809.7	312.0	120.1	0.039
41.7	0.505	0.692	0.693	<u> </u>	6-115	752.0	<u> </u>	110.8	0.041
43.0 44.1	0.528	0.639	0.649	0.532	0.117	688.9 601.5	263.3 228.4	100.6	0.043
45.4	0.556	0.586	0.595	0.480	0.116	613.9	233.3	88.6	0.046 0.046
46.6	0.562	0.576	0.585	0.469	ŏ.113	599.0	227.4	86.3	0.046
47.8	0.572	0.559	0.567	0.452	0.115	574.6	217.7	82.4	0.047
49.1	0.571	0.560	0.569	0.454	0.115	577.0	218.6	82.8	0.047
30.3	0.578	0.548	0.556	0.442	0.114	360.2	212.0	80.2	0.048
PAUS	READY	PLOTTER							

Figure D-58. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LINE: 110-29.0 N 24JN1975 1939PDT

Figure D-59. Ocean optical properties (sheet 1 of 2).

24JUN	CATALINA 1975	1939PDT	AT 33-	27.2 N	LDNG	118-29.0	W		
Z (M)	T (1/M)	ALPHA!	AL PHA	SCAT	ABS	VSF3	VSF6	VSF12	THTA+2
Z(M) 3.5	0.762	0.272	0.275	0.169	0.106	190.2	68.3	24.5	0.09
4.0	0.754	0.282	0.285	0.179	0.106	203.1	73.1	26.3	0.08
- 2.1	0.743	0.334	0.338	0.193	8:187	221.3	98.4	28.9 35.9	0.08
6.3	0.716	0.334	0.338			269.5		35.9	0.074
7.1	0.689	0.372	0.376	0.267	0.109	318.7	117.3	43.2	0.06
A.3	0.610	0.494	0.501	0.368	8:113	494.2	211.8	- 68.3 79.8	0.05
10.3	0.579	0.547	0.576	0.440	0.115	557.8			0.04
11.4	0.562	0.576	0.585	0.469	0.115	586.7 599.0	222.5 227.4	84.3	0.047
12.4	0.546	0.606	0.615	0.499	0.116	641.8	244.5	93.1	0.04
13.4	0.544	0.610	0.619	0.503	0.116	646.9	246.5	93.9	0.044
14.4	0.562	0.576	0.585	0.469	0.115	599.0	227.4	86.3	0.046
15.6	0.583	0.540	0.548	0.434	0.114	348.3	207.3	78.3	0.049
16.6	0.594	0.520	0.527	0-414	0.114	520.4	196.2	73.9	0.050
17.7	0.576	0,552	0.560	0.445	0.114	565.0	213.9	80.9	0.041
1.8.8	0.539	0.619	0.628	0.512	0.117	659.9	251.7	96.0	0.044
19.8	0.480	0.734	0.746	0.626	0.120	827.6	319.2	123.0	0.036
20.9	0.459	0.778	0.791	0.670	0.131	892.3	343.4	133.6	0.03
21.9	0.436	0.830	0.845	0.722	0.123	970.5	377.2	146.6	0.035
23.0	0.404	0.905	0.922	0.796	0.125	1082.9	423.2	165.3	0.03
23.9	0.390	0.942	0.959	0.833	<u> </u>	1139.1	415.7	174.7	9.032
		0.873	0.909		0.125	1064.7		152.2	0.03
26.0	0.435 0.471	0.833	0.647	0.724	0.123	973.9	378.6	147.1	0.039
28.2	0.478	0.753	0.751	0.645	0.120	333.6	371.6	124.0	0.03
29.3	0.488	0.718	0.730	0.410	0.120	HO3.8	309.6	119.2	0.039
30.4	0.501	0.690	0.701	0.503	0.119	763.3	293.2	112.6	0.040
31.3	0.489	0.716	0.728	0.608	5.120	763.3	308.4	118.7	0,034
32.6	0.469	0.757	0.770	0.649	0.121	851.1	332.7	128.5	0.037
33.6	0.472	0.751	0.763	0.643	151.0	851.8	324,C	1,27.0	0.036
34.7	0,479	0.736	0.748	0.628	0.130	\$30.6	320.4	J53.3	0.036
35.8	0.488	0.718	0.730	0.610	0.120	803.9	309.6	110.2	0.034
36.6	0.485	0,724	0.736	0.010	0.130	812.7	313.2	130.6	0.039
37.9	0.437	0.700	0.711	0.372	0.119	777.7	299.0	114.9	0.340
39.0	0.548	0.601	0.610	0.494	0.116	634.)	241.4	91.8	0.045
40.0	0.569	0.543	0.572	0.437		353.1	200.6	79.0	0,047
42.2	0.571	0.560	0.569	0.454	0.115	577.0	218.6	82.6	0.048
43.3	2.590	0.328	0.536	0.467	0.114			75.7	0.050
- 44.4	0.570	0.562	0.570	C.456	0.113	531.9 579.4	200.8	- U3.2	0.04
45.4	0.582	0.542	0.550	0.435	0.114	550.7	208.2	78.7	0.049
46.4	0.576	0.552	0.560	0.445	0.114	565.0	213.9	80.9	0.048
47.6	0.594	0.520	0.527	0.414	0.114	520.4	196.2	73.9	0.030
48.6	0.581	0.543	0.551	0.437	0.114	553.1	209.1	79.0	0.048
49.7	0.590	0.528	0,536	0,422	0.114	531.9	200.8	75.7	0.050
PAUS	E READY	PLOTTER							

Figure D-59. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 39-27.2 N; LONG: 110-29.0 N 24.488175 21.59967

Figure D-60. Ocean optical properties (sheet 1 of 2).

2(M) 2.1 3.2	T(1/M)	AL PHA 1	ALPHA	SC AT	ABS	VSER	V\$F6	VSE12	THTA+264
1.2	0.748	0.290	0.293	0.186	0.106	213.0	76.5	727.9	0.084
756	0.758	0.277	0.250	0.174	0-106	196.6	70.7	25.4	0.088
3.4	0.749	0.289	0.292	0.185	0.104	- 2 23 3.3	76.2	27.5	0.085
5.4	0.750		0.290	0.184	0.106		75.6	27.2	0.085
6.7 8.0	0.742	0.298	0.301	0.194	0.107 0.106	223.0	80.6	39.5	0.092
9.3	0.747	8.201	0.294	0.188	0.107	214.6	$\frac{73.7}{17.5}$	20.5	0.084
10.6	0.740	0.301	0.304	0.197	0.107	226.3	81.9	29.6	0.081
11.8	0.682	0,383	0.388	0.279	G-109	333.9	123.2	45.4	0.065
13.2	0.636	0.453	0.459	0.348	0.111	428.0	159.8	59.7	0.056
14.5	0.585	0.537	0.544	0.430	0.114	543.6	205.4	77.6	0.049
10.0	0.599	0.512	0.519	0.406	0.113	509.0	191-7	73.1	0.051
17.1	0.623	0.406	0.480	0.368	0.112	455.7	170.7	63.9	0.054
	0.673	0.394	0.401	0-302	0.110	364.9 361.2	135.2	50.1. 48.0	0.062
20.3	0.662	- 6 4 2 ·	0.401 0.418	0.201	0.110	372.8	- 129.9 -	31.3	().061
23.5	0.606	0.500	0.507	0.395	0.113	493.2	185.4	69.7	0.052
35.1	0.355	0.588	0.597	0.481	0.116	616,4	234.3	89.0	0.046
26.6	0.524	0.646	0.657	0.539	0.117	699.6	267.6	105.3	0.042
2A.3	0.520	0.654	0.664	0.547	0.118	710.5	272.0	104.1	0.042
30.1	0.527	0.641	0.643	0.534	$\frac{-9.117}{0.117}$	691.6 680.9	260.1	101.0	0.043
33.6	0.532	0.631	0.641	0.524	0.117	678.3	259.1	98.9	0.043
35.4	0.515	0.663	0.674	0.556	0.118	724.2	277.4	106.3	0.041
37.2	0.507	0.679	0.690	0.571	0.118	746.4	286.4	109.8	0.041
39.0	0.501	0.690	0.701	0.583	0.119	763.3	293.2	115.6	0.040
40.9	0.554	0.590	0,599	0.483	0.116	618.9	235.3 175.8	89.4	0.045
44.0	0.617	0.483	0.489	0.377	0.112	468.8		65.9	0.053
45.5	0.652	0.427	0.433	0.322	0.111	392.9	156.6	58.4 54.3	0.057 0.059
47.6	0.861	0.414	ñ.419	0.309	6.110	374.8	139.1	37:8	0.061
48.6	0.065	7.408	0.413	0.303	0.110				0.061
50.2	0.673	0.396	0.401	0.291	0.110	351.2	129.9	48.0	0.063
48.6	0.065	7.408	0.413	0.303	0.110	366.9	136.0	50.4	0.06

Figure D-60. Ocean optical properties (sheet $\, \mathbf{2} \,$ of $\, \mathbf{2} \,$).

DICEAN OPTICAL PROPERTIES - 520 NM SANTA CATALDNA 19. LAT! 89-27.2 NJ LDMS! 119-29.0 N 24.001375 1345P01

Figure D-61. Ocean optical properties (sheet 1 of 2).

	<u>TITÇET</u>	0.230	ALPHA.	SCAT	ABS	V3F3	<u> YŞEĞ.</u>		<u>IHĬV÷ŠŘ</u>
4.6	0.794	0.239	0.232	0.128	0.105	139.3	49.2	17.4	0.108
7.2	0.763	0.271	0.273	0.167	0.104	188.6	53.1 67.7	18.8	0.103
8.3	0.712	0.340	0.343	0.235	0.108	276.6	101.1	36.9	0.072
9.2	0.702	0.353	0.354	0.249	0.108	294.7	108.0	39.6	0.070
10.3	0.707	0.347	<u> </u>	0.242	0.100	205.6	104.4		0.071
11.4	0.642	0.442	0.448	0.337	0-111	413.4	154.1	57.4	(1.057
12.5	0.453	0.791	0.804	0.683	0.122	911.4	353.2	136.6	0.036
14.9	0.334	0.935	1.118	0.987	8:131	1377.7	544.6	178.8	0.032
14.1	0.327	1.117	1.139	1.007	0.132	1409.6	558.0	215.2	0.029
17.3	0.316	_1.151_	10174	1.041	0.133	1467.0	579.8	229.8	0.028
10.4	0.324	1.126	1.149	1.016	0.132	1423.7	563.9	223.2	0.028
19.7	0.334	1.097	1.118	0.987	0.131	1377.3	544.6	215.2	0.029
21.0	0.354	1.040	1.060	0.930	0.129	1288.9	508.0	200.1	0.030
22.0	0.376	0.978	0.996	0.869	0.128	1193.8	468.8	184.0	0.031
23.3	0.420	0.867	0.883	0.758	0.124	1025.5	399.7	155.7	0.034
24.6	0.467	0.761	0.497	0.653	<u> </u>	757.7	335.2	129.5	0.037
26.9	0.550	0.597	0.606	0.490	0.119 0.116	629.0	290.9 239.4	111.7	0.040
20.1.	0.554	0.590	0.599	0.483	0.116	618.9	235.3	89.4	0.045
29.4	0.579	0.347	0.555	0.440	0.114	557.8	211.0	79.8	0.048
30.6	A599	0.512	0.519	0.406	0.113	509.0	191.7	72.1	0.051
21.9	0.595	0.518	0.526	0.412	0.113	519.1	195.3	73.6	0.050
33.0	0.605	0.507	0.514	0.401	0.113	502.2	189.0	71.1	0.051
34.2	0.622	0.475	0.481	0.369	0-112	457.9	171.6	64.2	0.054
36.5	0.630	0.455	0.469	0.349	0.112	430.1	160.7	60.0	0.055
37.7	0.693	0.366	0.370	0.262	0.109	311.3	114.4	42.0	0.056
39.0	0.703	0.352		0.248	0.108	292.9	107.3	39.1	0.070
40.2	0.692	0.368	0.372	0.263	0.109	313.1	115.1	42.3	0.067
41.3	0.695	0.363	0.348	0.259	0.109	307.6	113.0	41.5	0.068
42.6	0.723	0.325	0,328	0.221	0.108	257.2	93.7	34.1	0.076
43.9	0.744	0.295	0.298	0.192	0.107	219.6	79.4	28.7	0.083
45.1	0.744	0.295	0.298	0.192	0.107	219.6	79.4	28.7	0.083
66.4	-1.75A 1.752	0.277	0.280	0.174	0.106	206.4	70.7	25.4	0.086
	70176	0.272	0.275	0.169	0.106	190.2	68.3	24.5	0.090
47.5	0.762	114772		0.181		206.4		26.8	0.086

Figure D-61. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALDIA IS. LATI 35-27.2 N; LINE: 119-29.8 N 26-101-175 1500-07

Figure D-62. Ocean optical properties (sheet 1 of 2).

The same of the sa

.742 .732 .700 .712 .697 .717 .633 .490	0.298 0.313 0.356 0.340 0.360 0.333 0.458	0.301 0.316 0.360 0.343 0.365 0.337	0.194 0.209 0.252 0.235 0.256 0.229	0.107 0.107 0.109 0.108 0.109 0.108	223.0 241.6 298.3 276.6 303.9	80.6 87.7 109.5 101.1 111.6	29.2 31.8 40.1 36.9 40.9	0.082 0.078 0.069 0.072
.700 .712 .697 .717 .633	0.356 0.340 0.360 0.333 0.458	0.360 0.343 0.365 0.337	0.252 0.235 0.256 0.229	0.109 0.108 0.109	298.3 276.6 303.9	101.1	36.9	0.069
.712 .697 .717 .633	0.340 0.360 0.333 0.458	0.343 0.365 0.337	0.256	0.109	303.9	101.1		0.072
.697 .717 .633	0.360 0.333 0.458	0.365	0.256	0.109	303.9			
.717 .633 .490	0.333	0.337	0.229			717.0		
.633 .490	0.458				267.7	97.7	35.6	0.069
490			0.352	0.112	434.4	162.3	60.6	0.036
.338	0.714	0.726	0.606	0.119	798.0	307.2	118.2	0.039
	1.085	1.106	0.975	0.131	1359.1	537.1	212.1	0.029
305	1.189	1.213	1.078	0.134	1521.5	604.5	240.1	0.027
.313	1.160	1.183	1.050	0.133	1476.6	585.9	232.4	0.027
<u> </u>								0.027
-515		1.177						0.028
								0.029
326		0.653	0.535	0.117	694.3			0.042
		0.541						0.049
	0.484	0.491	0.379			176.7		0.053
.624	0.472	0.478	0.366	0.112	453.6	169.9	63.6	0.054
619	0.480	0.486	0.374	0.112	464.4	174.1	65.2	0.054
617								0.053
								0.055
			0.304			136.7		0.061
- 435			-X*513			- 101 a d		0.072
								0.077
.733				0.107				0.079
748	0.290	0.293	0.186	0.106	213.0	76.9		0.084
.756	0.280	0.282	0.176	0.106	199.9	71.9	25.9	0.087
	0.276	0.278	0,172		195.0	70.1	25.2	0.089
								0.096
	0.246							0.103
							17.4	0.101 0.108
								0.115
								0.112
	0.230	0.232	0.128	0.105	139.3	49.2	17.4	0.108
789	0.236	0.239	0.134	0.105	146.7	52.0	18.4	0.105
	307 315 345 345 526 587 616 624 6617 6617 7727 7733 7748 7748 7748 7748 7748 7748 7748 7748 7748 7748 7774 7784 7794 7794	307 1.182 315 1.154 347 1.054 347 1.054 441 0.819 526 0.643 .587 0.533 .616 0.484 .624 0.472 .617 0.483 .617 0.483 .631 0.461 .664 0.409 .712 0.340 .727 0.319 .727 0.319 .733 0.311 .748 0.290 .759 0.276 .774 0.257 .782 0.246 .784 0.244 .794 0.230 .800 0.223 .794 0.230	.307 1.182 1.206 .315 1.154 1.177 .347 1.059 1.080 .441 0.819 0.834 .526 0.643 0.653 .587 0.533 0.541 .616 0.484 0.491 .624 0.472 0.478 .619 0.480 0.486 .617 0.483 0.467 .666 0.409 0.415 .712 0.340 0.323 .727 0.319 0.323 .727 0.319 0.323 .733 0.311 0.315 .748 0.290 0.293 .759 0.76 0.286 .759 0.76 0.278 .774 0.257 0.278 .784 0.290 0.293 .784 0.244 0.246 .794 0.230 0.232 .800 0.223 0.225 .794 0.230 0.232	307	307	307	307	307

Figure D-62. Ocean optical properties (sheet 2 of 2).

OCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LONG: 110-29.0 N 26JUN1975 1504PDT

Figure D-63. Ocean optical properties (sheet 1 of 2).

2.4 0.721 0.327 0.331 0.223 0.108 260.7 95.0 34.6 0.075 3.7 0.712 0.3340 0.338 0.235 0.108 270.6 101.1 36.9 0.072 5.0 0.719 0.330 0.334 0.226 0.108 264.2 96.3 35.1 0.074 6.4 0.743 0.297 0.300 0.193 0.107 221.3 80.0 28.9 0.082 7.9 0.648 0.433 0.439 0.328 0.111 401.1 149.3 55.5 0.058 9.5 0.501 0.690 0.701 0.583 0.119 763.3 293.2 112.6 0.040 11.1 0.347 1.059 1.080 0.930 0.130 1319.2 520.5 205.3 0.028 12.5 0.326 1.120 1.142 1.010 0.132 1414.3 560.0 221.6 0.028 14.1 0.303 1.195 1.219 1.085 0.134 1531.6 608.8 241.9 0.027 15.6 0.313 1.160 1.163 1.050 0.132 1414.3 560.0 221.6 0.028 14.1 0.341 1.076 1.097 0.967 0.131 1345.7 531.5 209.8 0.029 18.0 0.438 0.826 0.840 0.718 0.123 963.8 374.5 145.4 0.035 20.2 0.543 0.611 0.621 0.504 0.116 649.5 247.5 94.3 0.044 21.9 0.584 0.538 0.546 0.432 0.114 546.0 26.3 77.9 0.049 23.4 0.608 0.497 0.504 0.439 0.113 488.7 183.7 69.0 0.052 26.5 0.617 0.483 0.489 0.377 0.112 466.8 175.8 65.9 0.052 27.7 0.569 0.402 0.407 0.388 0.113 482.2 181.9 68.3 0.052 27.7 0.569 0.402 0.407 0.388 0.113 482.2 181.9 68.3 0.052 27.7 0.569 0.402 0.407 0.287 0.113 482.2 181.9 68.3 0.052 27.9 0.564 0.351 0.355 0.246 0.108 291.0 106.6 39.1 0.075 27.9 0.720 0.329 0.332 0.225 0.108 262.4 95.7 34.9 0.075 27.9 0.720 0.329 0.332 0.225 0.108 262.4 95.7 34.9 0.075 27.9 0.720 0.329 0.332 0.225 0.108 262.4 95.7 34.9 0.075 27.9 0.720 0.329 0.322 0.225 0.108 262.4 95.7 34.9 0.075 27.9 0.736 0.807 0.310 0.203 0.107 234.8 85.1 30.8 0.080 27.9 0.756 0.294 0.297 0.190 0.107 234.8 85.1 30.8 0.080 27.9 0.756 0.294 0.297 0.190 0.107 234.8 85.1 30.8 0.080 27.9 0.756 0.294 0.297 0.190 0.106 185.0 58.2 20.7 24.0 0.80 27.9 0.756 0.291 0.222 0.213 0.107 234.8 85.1 30.8 0.080 27.9 0.756 0.291 0.293 0.190 0.107 234.8 85.1 30.8 0.080 27.9 0.756 0.291 0.293 0.190 0.107 234.8 85.1 30.8 0.080 27.9 0.756 0.294 0.297 0.190 0.107 234.8 85.1 30.8 0.080 27.9 0.756 0.294 0.297 0.190 0.107 234.8 85.1 30.8 0.080 27.9 0.756 0.291 0.292 0.293 0.107 234.8 85.1 30.8 0.080 27.9 0.764 0.269 0.272 0.166 0.108 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.	2.4 0.721 0.327 0.331 0.223 0.108 260.7 95.0 34.6 0.075 3.7 0.712 0.340 0.348 0.235 0.108 276.6 101.1 36.9 0.072 5.0 0.719 0.330 0.334 0.226 0.108 264.2 94.3 35.1 0.076 6.4 0.743 0.297 0.300 0.193 0.107 221.3 80.0 28.9 0.082 7.9 0.648 0.433 0.439 0.328 0.111 401.1 149.3 55.5 0.098 7.5 0.501 0.690 0.701 0.583 0.119 763.3 293.2 112.6 0.040 11.1 0.347 1.059 1.080 0.950 0.130 1319.2 520.5 205.3 0.029 12.5 0.326 1.120 1.142 1.010 0.132 1414.3 560.0 221.6 0.028 14.1 0.303 1.195 1.219 1.085 0.134 1531.6 608.8 261.9 0.027 15.6 0.313 1.160 1.163 1.050 0.133 1476.6 585.9 232.4 0.027 17.1 0.341 1.076 1.097 0.967 0.131 1345.7 531.5 209.8 0.029 18.6 0.438 0.826 0.840 0.718 0.123 963.8 374.5 145.4 0.035 20.2 0.543 0.611 0.621 0.504 0.116 649.5 247.5 94.3 0.044 21.9 0.564 0.538 0.546 0.432 0.116 649.5 247.5 94.3 0.044 21.9 0.564 0.538 0.489 0.377 0.112 466.8 175.8 65.9 0.052 23.6 0.608 0.497 0.504 0.313 488.7 183.7 69.0 0.082 25.0 0.617 0.483 0.489 0.377 0.112 466.8 175.8 65.9 0.053 26.5 0.611 0.492 0.499 0.357 0.112 466.8 175.8 65.9 0.053 26.0 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 27.7 0.669 0.402 0.407 0.207 0.110 359.0 132.9 49.2 0.062 31.3 0.704 0.351 0.355 0.246 0.108 291.0 106.6 39.1 0.070 32.9 0.720 0.337 0.320 0.221 0.108 291.0 106.6 39.1 0.070 37.6 0.736 0.297 0.310 0.223 0.107 246.8 89.7 32.6 0.077 37.6 0.736 0.297 0.310 0.203 0.107 246.8 89.7 32.6 0.077 37.6 0.736 0.297 0.280 0.174 0.108 257.2 93.7 34.1 0.076 39.2 0.745 0.294 0.297 0.100 0.107 246.8 89.7 32.6 0.077 37.6 0.736 0.297 0.280 0.174 0.106 196.6 70.7 25.4 0.088 40.8 0.778 0.251 0.254 0.147 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.252 0.253 0.447 0.105 165.5 58.8 20.9 0.099 47.1 0.805 0.217 0.220 0.233 0.147 0.105 165.5 58.8 20.9 0.099 47.1 0.805 0.217 0.220 0.224 0.119 0.104 129.0 45.4 16.0 0.113	Z(M)	TOM	ALPHA!	ALPHA 0.331	SCAT 0.223	ABS 0.108	VSE3	VSF6	VSF12	THTA+28A
5.0 0.719 0.330 0.334 0.226 0.108 266.2 96.3 35.1 0.072 6.4 0.743 0.2297 0.300 0.107 221.3 80.0 28.9 0.082 7.9 0.648 0.433 0.439 0.320 0.111 401.1 149.3 55.5 0.058 9.5 0.501 0.690 0.701 0.583 0.119 763.3 293.2 112.6 0.040 11-1 0.347 1.059 1.080 0.130 1319.2 520.5 205.3 0.029 12-1 0.303 1.195 1.219 1.085 0.134 1531.6 608.8 241.9 0.027 15.6 0.313 1.100 1.153 1.050 0.133 1476.6 585.9 232.4 0.027 17.1 0.341 1.076 1.097 0.967 0.131 1345.7 531.5 209.8 0.029 18.6 0.343 0.681 0.840 <t< th=""><th>5.0 0.719 0.330 0.334 0.226 0.108 266.2 96.3 35.1 0.074 6.4 0.743 0.297 0.300 0.107 221.3 80.0 28.9 0.082 7.9 0.648 0.433 0.439 0.328 0.111 401.1 149.3 55.5 0.058 9.5 0.501 0.690 0.701 0.583 0.119 763.3 293.2 112.6 0.040 11-1 0.347 1.059 1.080 0.930 0.130 1319.2 20.5 205.3 0.029 12-1 0.303 1.195 1.219 1.085 0.134 1531.6 608.8 241.9 0.027 15.6 0.313 1.160 1.163 1.050 0.133 1476.6 585.9 232.4 0.027 17.1 0.341 1.076 1.097 0.967 0.131 1345.7 521.5 209.8 0.029 18.6 0.543 0.611</th><th></th><th></th><th>0.327</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	5.0 0.719 0.330 0.334 0.226 0.108 266.2 96.3 35.1 0.074 6.4 0.743 0.297 0.300 0.107 221.3 80.0 28.9 0.082 7.9 0.648 0.433 0.439 0.328 0.111 401.1 149.3 55.5 0.058 9.5 0.501 0.690 0.701 0.583 0.119 763.3 293.2 112.6 0.040 11-1 0.347 1.059 1.080 0.930 0.130 1319.2 20.5 205.3 0.029 12-1 0.303 1.195 1.219 1.085 0.134 1531.6 608.8 241.9 0.027 15.6 0.313 1.160 1.163 1.050 0.133 1476.6 585.9 232.4 0.027 17.1 0.341 1.076 1.097 0.967 0.131 1345.7 521.5 209.8 0.029 18.6 0.543 0.611			0.327							
6.4 0.743 0.297 0.300 0.193 0.107 221.3 80.0 28.9 0.082 7.9 0.648 0.433 0.439 0.328 0.111 401.1 149.3 55.5 0.058 9.5 0.501 0.690 0.701 0.583 0.119 763.3 293.2 112.6 0.640 11.1 0.347 1.059 1.080 0.950 0.130 1319.2 520.5 205.3 0.029 12.5 0.326 1.120 1.142 1.010 0.132 1414.3 560.0 221.6 0.028 14.1 0.303 1.195 1.219 1.085 0.134 1531.6 608.8 241.9 0.027 15.6 0.313 1.160 1.163 1.050 0.133 1476.6 585.9 232.4 0.027 17.1 0.341 1.076 1.097 0.967 0.131 1345.7 531.5 209.8 0.029 18.8 0.638 0.826 0.840 0.718 0.123 963.8 374.5 145.4 0.035 20.2 0.543 0.611 0.621 0.504 0.116 649.5 247.5 94.3 0.044 21.9 0.564 0.538 0.546 0.432 0.114 546.0 206.3 77.9 0.049 23.4 0.608 0.497 0.504 0.313 488.7 183.7 69.0 0.052 25.0 0.617 0.483 0.489 0.377 0.112 468.8 175.8 65.9 0.052 26.0 0.617 0.483 0.489 0.377 0.112 468.8 175.8 65.9 0.052 27.7 0.669 0.402 0.499 0.387 0.113 488.7 183.7 69.0 0.052 27.7 0.669 0.402 0.499 0.377 0.113 488.7 183.7 69.0 0.052 27.7 0.669 0.402 0.499 0.387 0.113 488.2 181.9 68.3 0.052 27.7 0.669 0.402 0.409 0.387 0.113 488.2 181.9 68.3 0.052 27.7 0.669 0.402 0.407 0.297 0.110 359.0 132.9 49.2 0.062 31.3 0.704 0.351 0.355 0.246 0.108 291.0 106.6 39.1 0.070 32.9 0.720 0.329 0.332 0.225 0.108 262.4 95.7 34.9 0.073 34.4 0.723 0.325 0.338 0.221 0.108 257.2 93.7 34.1 0.076 36.1 0.729 0.317 0.320 0.223 0.107 234.8 85.1 30.8 0.080 39.2 0.745 0.294 0.297 0.190 0.107 218.0 78.7 28.4 0.083 40.8 0.778 0.251 0.254 0.190 0.107 218.0 78.7 28.4 0.083 40.8 0.778 0.251 0.254 0.190 0.107 218.0 78.7 28.4 0.083 40.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 42.3 0.779 0.250 0.253 0.147 0.105 165.5 58.8 20.9 0.098 42.3 0.779 0.250 0.253 0.147 0.105 165.5 58.8 20.9 0.098 42.3 0.779 0.250 0.253 0.147 0.105 165.5 58.8 20.9 0.098 42.3 0.779 0.250 0.253 0.147 0.105 165.0 58.8 20.9 0.098 42.3 0.779 0.250 0.253 0.147 0.105 165.5 58.8 20.9 0.098 42.3 0.779 0.250 0.253 0.147 0.105 165.5 58.8 20.9 0.098 42.3 0.779 0.250 0.253 0.147 0.105 165.5 58.8 20.9 0.098 42.5 0.779 0.250 0.253 0.147 0.105 165.5 58.8 20.9 0.098 42.3 0.779 0.250 0.253 0.147	6.4 0.743 0.297 0.300 0.193 0.107 221.3 80.0 28.9 0.082 7.9 0.648 0.438 0.439 0.328 0.111 401.1 149.3 55.5 0.098 9.5 0.501 0.690 0.701 0.583 0.119 763.3 293.2 112.6 0.040 11.1 0.347 1.059 1.080 0.950 0.130 1319.2 520.5 205.3 0.029 12.5 0.326 1.120 1.142 1.010 0.132 1414.3 560.0 221.6 0.028 14.1 0.303 1.195 1.219 1.085 0.134 1531.6 608.8 241.9 0.027 17.1 0.303 1.195 1.219 1.050 0.133 1476.6 585.9 232.4 0.027 17.1 0.341 1.076 1.097 0.967 0.131 1345.7 531.5 209.8 0.029 18.6 0.313 1.160 1.163 1.050 0.133 1476.6 585.9 232.4 0.027 17.1 0.341 1.076 1.097 0.967 0.131 1345.7 531.5 209.8 0.029 18.6 0.438 0.826 0.840 0.718 0.123 963.8 374.5 145.4 0.035 20.2 0.543 0.611 0.621 0.504 0.116 649.5 247.5 94.3 0.044 21.9 0.584 0.538 0.546 0.432 0.114 546.0 206.3 77.9 0.049 23.4 0.608 0.497 0.504 0.432 0.114 546.0 206.3 77.9 0.049 23.4 0.608 0.497 0.504 0.391 0.113 488.7 183.7 69.0 0.052 28.0 0.608 0.497 0.504 0.391 0.113 488.7 183.7 69.0 0.052 28.0 0.601 0.492 0.499 0.387 0.112 468.8 175.8 65.9 0.053 26.5 0.611 0.492 0.499 0.387 0.112 468.8 175.8 65.9 0.053 26.5 0.611 0.492 0.499 0.387 0.113 482.0 181.0 60.0 0.052 28.0 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 28.0 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 28.0 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.008 32.9 0.720 0.329 0.332 0.225 0.108 252.4 95.7 34.9 0.075 34.4 0.720 0.329 0.332 0.225 0.108 252.4 95.7 34.9 0.075 34.4 0.720 0.329 0.332 0.221 0.108 257.2 93.7 34.1 0.076 34.4 0.720 0.329 0.332 0.221 0.108 257.2 93.7 34.1 0.076 34.4 0.720 0.377 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.776 0.250 0.251 0.200 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.776 0.250 0.251 0.200 0.174 0.106 196.6 70.7 25.4 0.008 42.3 0.776 0.250 0.251 0.254 0.109 13.1 43.8 45.1 14.8 0.008 42.3 0.776 0.250 0.251 0.254 0.109 13.4 0.106 13.8 5.1 10.006 0.107 2.100 0.107 2.100 0.107 2.100 0.107 2.100 0.107 2.100 0.008 42.3 0.776 0.250 0.251 0.254 0.109 0.105 1.63.5 58.2 20.7 0.098 42.3 0.776 0.250 0.251 0.254 0.109 0.105 1.63.5 58.2 20.7 0.098 42.3 0.776 0.250 0.251 0.254 0										
7.9	7.9										
9.5	9.5										
12.5	12.5	9.5		0.490							
14-1	14-1 0-303 1.195 1.219 1.085 0.134 1531.6 608.8 241.7 0.027 15.6 0.313 1.160 1.163 1.050 0.133 1476.6 585.9 232.4 0.027 17.1 0.341 1.076 1.097 0.967 0.131 1345.7 531.5 209.8 0.027 18.8 0.438 0.826 0.840 0.718 0.123 963.8 374.5 145.4 0.035 20.2 0.543 0.611 0.621 0.504 0.116 649.5 247.5 94.3 0.044 21.9 0.584 0.538 0.546 0.432 0.114 546.0 206.3 77.9 0.049 23.4 0.608 0.497 0.504 0.337 0.113 488.7 183.7 69.0 0.052 25.0 0.617 0.483 0.489 0.377 0.113 488.7 183.7 69.0 0.052 25.0 0.611 0.492 0.499 0.387 0.113 488.2 181.0 60.0 0.052 28.0 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 28.0 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 29.7 0.669 0.402 0.407 0.287 0.110 359.0 132.9 49.2 0.062 31.3 0.704 0.351 0.355 0.246 0.108 291.0 106.6 39.1 0.070 32.9 0.720 0.329 0.332 0.225 0.108 262.4 95.7 34.9 0.073 34.4 0.723 0.325 0.328 0.225 0.108 257.2 93.7 34.1 0.076 36.1 0.729 0.317 0.320 0.213 0.107 246.8 89.7 32.6 0.077 37.6 0.736 0.307 0.310 0.203 0.107 246.8 89.7 32.6 0.077 37.6 0.736 0.307 0.310 0.203 0.107 246.8 89.7 32.6 0.077 37.6 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.107 185.5 58.2 20.7 0.098 45.5 0.779 0.250 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.254 0.149 0.105 165.0 58.8 20.9 0.098 47.1 0.805 0.217 0.219 0.114 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.108 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.118									205.3	0.029
15.6	15.6							1414.3			
17.1 0.341 1.076 1.097 0.967 0.131 1345.7 531.5 209.8 0.029 18.8 0.438 0.826 0.840 0.718 0.123 963.8 374.5 145.4 0.035 20.2 0.543 0.611 0.621 0.504 0.116 649.5 247.5 94.3 0.044 21.9 0.584 0.538 0.546 0.432 0.114 546.0 206.3 77.9 0.049 23.4 0.608 0.497 0.504 0.391 0.113 488.7 183.7 69.0 0.052 25.0 0.617 0.483 0.489 0.377 0.112 468.8 175.8 65.9 0.053 26.5 0.611 0.492 0.499 0.387 0.113 482.0 181.0 60.0 0.052 28.0 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 28.0 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 29.7 0.569 0.402 0.407 0.297 0.110 359.0 132.9 49.2 0.062 31.3 0.704 0.351 0.355 0.246 0.108 291.0 106.6 39.1 0.070 32.9 0.720 0.329 0.332 0.225 0.108 262.4 95.7 34.9 0.073 34.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.4 0.736 0.307 0.310 0.203 0.107 234.8 85.1 30.8 0.080 39.2 0.745 0.294 0.297 0.190 0.107 234.8 85.1 30.8 0.080 39.2 0.745 0.294 0.297 0.190 0.107 234.8 85.1 30.8 0.080 39.2 0.745 0.294 0.297 0.190 0.107 234.8 85.1 30.8 0.080 39.2 0.745 0.269 0.277 0.280 0.114 0.106 196.6 70.7 25.4 0.088 40.8 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.107 234.8 85.1 30.8 0.090 42.3 0.764 0.269 0.272 0.166 0.107 234.8 85.1 30.8 0.090 42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.099 45.5 0.779 0.250 0.253 0.147 0.106 185.0 58.8 20.9 0.099 45.5 0.779 0.250 0.253 0.147 0.106 185.0 58.8 20.9 0.099 47.1 0.805 0.217 0.220 0.223 0.147 0.105 163.5 58.2 20.7 0.098 47.1 0.805 0.217 0.220 0.223 0.110 0.104 129.0 45.4 16.0 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.118	17.1							1531.0	608.8		
18.8	18.8										
20.2	20.2		0.438								
23.4	23.4	20.2	0.543			0.504					
26.5	26.5										
26.5	26.5	<u> </u>									
28.0 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 29.7 0.669 0.402 0.407 0.297 0.110 359.0 132.9 49.2 0.062 31.3 0.704 0.351 0.355 0.246 0.108 291.0 106.6 39.1 0.070 32.9 0.720 0.329 0.332 0.225 0.108 262.4 95.7 34.9 0.075 34.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.1 0.729 0.317 0.320 0.213 0.107 246.8 89.7 32.6 0.077 37.6 0.736 0.307 0.310 0.203 0.107 236.8 85.1 30.8 0.080 39.2 0.745 0.294 0.297 0.190 0.107 218.0 78.7 28.4 0.083 40.8 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 196.6 70.7 25.4 0.088 42.3 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.091 45.5 0.779 0.250 0.253 0.147 0.105 163.5 58.2 20.7 0.098 47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 129.0 45.4 16.0 0.118	28.0 0.610 0.494 0.501 0.388 0.113 484.2 181.9 68.3 0.052 29.7 0.669 0.402 0.407 0.297 0.110 359.0 132.9 49.2 0.062 31.3 0.704 0.351 0.355 0.246 0.108 291.0 106.6 39.1 0.70 32.9 0.720 0.329 0.332 0.225 0.108 262.4 95.7 34.9 0.075 34.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.1 0.729 0.317 0.320 0.213 0.107 246.8 89.7 32.6 0.077 37.6 0.736 0.307 0.310 0.203 0.107 246.8 85.1 30.8 0.080 39.2 0.745 0.294 0.297 0.190 0.107 218.0 78.7 28.4 0.083 40.8 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.991 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.253 0.147 0.105 165.0 58.8 20.9 0.098 47.1 0.805 0.217 0.219 0.114 0.104 12.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.215 0.111 0.104 12.8 41.7 14.6 0.118										
29.7 0.669 0.402 0.407 0.297 0.110 359.0 132.9 49.2 0.062 31.3 0.704 0.351 0.355 0.246 0.108 291.0 106.6 39.1 0.070 32.9 0.720 0.329 0.332 0.225 0.108 262.4 95.7 34.9 0.075 34.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.1 0.729 0.317 0.320 0.213 0.107 246.8 89.7 32.6 0.077 37.6 0.736 0.307 0.310 0.203 0.107 236.8 85.1 30.8 0.080 39.2 0.745 0.294 0.297 0.100 0.107 218.0 78.7 28.4 0.083 40.8 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.094 45.5 0.779 0.250 0.253 0.147 0.105 165.0 58.8 20.9 0.094 47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 123.1 43.3 15.2 0.116	29.7 0.669 0.402 0.407 0.297 0.110 359.0 132.9 49.2 0.062 31.3 0.704 0.351 0.355 0.246 0.108 291.0 106.6 39.1 0.070 32.9 0.720 0.329 0.332 0.225 0.108 262.4 95.7 34.9 0.075 34.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.1 0.729 0.317 0.320 0.213 0.107 246.8 89.7 32.6 0.077 37.6 0.736 0.307 0.310 0.203 0.107 246.8 89.7 32.6 0.077 37.6 0.745 0.294 0.297 0.190 0.107 218.0 78.7 28.4 0.083 40.8 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.253 0.147 0.105 165.0 58.8 20.9 0.098 47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.118										
31.3	31.3								132.9		
32.9	32.9					0.246					
34.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.1 0.729 0.317 0.320 0.213 0.107 246.8 89.7 32.6 0.077 37.6 0.736 0.307 0.310 0.203 0.107 234.8 85.1 30.8 0.080 39.2 0.745 0.294 0.297 0.190 0.107 218.0 78.7 28.4 0.083 40.8 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.253 0.147 0.105 165.5 58.2 20.7 0.098 47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 118.6 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113	34.4 0.723 0.325 0.328 0.221 0.108 257.2 93.7 34.1 0.076 36.1 0.729 0.317 0.320 0.213 0.107 246.8 89.7 32.6 0.077 37.6 0.736 0.307 0.310 0.203 0.107 234.8 85.1 30.8 0.080 39.2 0.745 0.294 0.297 0.190 0.107 218.0 78.7 28.4 0.083 40.8 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.253 0.147 0.105 165.5 58.2 20.7 0.098 47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 118.6 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113	32.9			0.332	0.225			95.7		
37.6 0.736 0.307 0.310 0.203 0.107 234.8 85.1 30.8 0.080 39.2 0.745 0.294 0.297 0.190 0.107 218.0 78.7 28.4 0.083 40.8 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.253 0.147 0.105 163.5 58.2 20.7 0.098 47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 128.0 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113	37.6		0.723						93.7		
39.2 0.745 0.294 0.297 0.190 0.107 218.0 78.7 28.4 0.083 40.8 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.253 0.147 0.105 163.5 58.2 20.7 0.098 47.1 0.605 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 118.6 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113	39.2 0.745 0.294 0.297 0.190 0.107 218.0 78.7 28.4 0.083 40.8 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.253 0.147 0.105 165.0 58.8 20.9 0.098 47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 118.6 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113										
40.8 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.253 0.147 0.105 163.5 58.2 20.7 0.098 47.1 0.605 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 128.6 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113	40.8 0.758 0.277 0.280 0.174 0.106 196.6 70.7 25.4 0.088 42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.253 0.147 0.105 163.5 58.2 20.7 0.098 47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 18.6 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113			0 3 0 7 0 3 6 4							
42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.253 0.147 0.105 163.5 58.2 20.7 0.098 47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 118.8 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113	42.3 0.764 0.269 0.272 0.166 0.106 187.0 67.1 24.0 0.091 43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.253 0.147 0.105 163.5 58.2 20.7 0.098 47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 118.8 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113										
43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.250 0.253 0.147 0.105 163.5 58.2 20.7 0.098 47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.11 0.104 118.8 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113	43.8 0.778 0.251 0.254 0.149 0.105 165.0 58.8 20.9 0.098 45.5 0.779 0.253 0.147 0.105 163.5 58.2 20.7 0.098 47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 47.6 0.808 0.213 0.215 0.11 0.104 118.8 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113										
47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 118.6 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113	47.1 0.805 0.217 0.219 0.114 0.104 123.1 43.3 15.2 0.116 48.6 0.808 0.213 0.215 0.111 0.104 118.8 41.7 14.6 0.118 50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113				0.254	0.149					
50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113	50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113	45.5				0.147	0.105			20.7	0.098
50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113	50.2 0.801 0.222 0.224 0.119 0.104 129.0 45.4 16.0 0.113			0.217	0.219	<u> </u>		123.1_	43.3	<u>15.2.</u>	
PROSE REAL I POUTTER	PROSE REAL TRESTIER				0.224	0.114	0.104	154.0	42.4	10.0	0.113
				_							

Figure D-63. Ocean optical properties (sheet 2 of 2).

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 39-27.2 N; LINE: 118-29.8 N 24-301-75 15-45-01

Figure D-64. Ocean optical properties (sheet 1 of 2).

1

Z(M)	T(1/M)	ALPHA!	AL PHA	SCAT	ABS	VSF3	VSF6	UCE 12	THTA+284
1.4	0.728	0.318	0.321	0.214	0.107	248.5	90.3	32.8	0.077
2.0	0.721	0.327	0.331	0.223	0.108	260.7	95.0	34.6	0.075
3,0	0.700	0.356	0.360	0.232	0.109	298.3	109.5	40.1	0.069
4.6	0.689	0.372	0.376	0.267	0.109	318.7	117.3	43.2	0.067
5.8	0.651	0.429	0.434	0.324	0.111	394.9	146.9	54.6	0.059
7.3	0.564	0.972	0.581	0.466	0.115	1166.2	225.4	85.5	0.046
10.3	0.332	1.103	1.124	0.993	0.127	1386.4	457.4	179.3 216.8	0.031
11.6	0.302	1.198	1.223	1.088	0.134	1536.8	610.9	242.8	0.027
13.1	0.304	1.192	1.216	1.082	0.134	1526.6	605.7	241.0	0.027
14.5	0.307	1.182	1.206	1.072	0.134	1511.4	600.4	238.4	0.027
15.9	0.303	1.195	1.219	1.085	0.134	1531.6	8.R06	241.9	0.027
17.5	0.331	1.106	1.127	0.996	0.132	1391.1	550.3	217.6	0.020
18.8	0.416	0.876	0.892	0.768	0-124	1039-6	405.5	158.1	0.034
20,3	0.463	0.769	0.763	0.661	0.121	746.4	340.3 286.4	109.8	0.037
23.2	0.550	0.597	0.606	0.490	0.116	629.0	239.4	91.0	0.041
		0.567	0.576	0.461		586.7	222.5	84.3	0.047
24.5	0.592	0.525	0.533	0.419	0.115	527.3	198.9	75.0	0.050
27.3	0.617	0.483	0.489	0.377	0.112	468.8	175.8	65.9	0.053
24.9	0.639	0.449	0.454	0.343	0.111	421.7	157.4	58.7	0.057
30.5	0.664	0.409	0.415	0.304	0.110	368.9	136.7	50.7	0.061
31.8	0.705 0.715	0.349	0.353	0.245	0.108	289.2	105.9	38.8	0.071
33.2	0.718	0.331	0.335	0.231	0.108	271.3	99.1	36.2	0.073
36.0	0.733	0.311	0.315	0.207	0.107	239.9	87.1	31.6	0.079
37.6	0.761	0.273	0.276	0.170	0.106	191.8	68.9	24.7	0.090
39.0	0.777	0.253	0.255	0.150	0.105	165.6	59.4	21.2	0.097
40.4	0.788	0.238	0.240	0.135	0.105	148.2	52.5	18.6	0.104
42.0	0.793	0.222	0.234	0.129	0.105	140.7	49.8	17.6	0.107
43.4	0.801		0.224	0.119	0.104	129.0	45.4	16.0	0.113
45.0	0.807	0.214	0.216	0-112	0.104	120.3	42.2	14.8	0.117
46.2	0.797	0.224	0.229	0.122	0.104	131.9	46.5	16.4	8:113
49.2	0.798	0.225	0.227	0.123	0.105	133.3	47.0	16.6	0.111
		PLOTTER		*****	*****		7.00		

Figure D-64. Ocean optical properties (sheet 2 of 2).

A STATE OF THE STA

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LINE: 110-29.0 N 26JUN1975 1951PDT

Figure D-65. Ocean optical properties (sheet 1 of 2).

	CATALINA 1975 1		LAT	3 3-	27.2 N	LONG	118-29.0	 		
7 (M) 2.3	T(1/M)	AL PHA	AL	PHA 312	SCAT 0.205	A65	VSF3	VS#6	VSF12	THTA+28A
		0.308							31.1	0.079
4.1	0.719	0.330		334	0.226	0.100		96.3	35.1	0.074
7.5	0.715	0.336		339	<u> </u>	- Sv l Št	271.3	99.1	36.2	0.073
9.1	0.722	0.326		330 342	0.222	0.106		94.3	34.4	0.075
10.9	0.514	0.665	0.	676	0.558	0.114	724.0	278.6	36.7 106.7	0.041
12.5	0.300	0.968	- X -	986	0.858	0.11	726.9	462.2	181.3	0.031
14.2	0.334	1.097		118	0.987	0.131	1377.3	544.6	215.2	0.029
16.0	0.310	1.170		193	1.059	0.133		592.0	234.9	0.027
17.5	0.288	1.245		270	1.134	0.136		641.6	255.5	0.026
19.2	0.297	1.215	1.	239	1.104	0.135	1562.6	621.7	247.2	0.027
20.7	0.333	1.100		121	0.990	0.131		546.5	216.0	0.028
22.2	0.405	0.903		919	0.794	0.125		421.7	164.7	0.033
23.6	0.487	0.720		732	0.612	0.130		310.8	119.6	0.039
25.3	علقين	0.658		<u> </u>	0.550	بببو		274.2	104.9	
26.6	0.544	0.610		619 579	0.503	0.116	646.9 591.6	246.5	93.9	0.044
28.1 29.7	0.565	0.520		527	0.464	0.115	520.4	224.5 196.2	85.1 73.9	0.047
31.2	0.614	7.488		494	0.382	0.113		178.4	66.9	0.053
32.7	0.649	0.432		437	0.327	0.111		148.5	55.2	0.059
34.1	0.675	0.393		398	0.289	0.110		128.4	47.4	0.063
35.8	0.691	0.369	0.	373	0.264	0.109	315.0	115.9	42.6	0.067
37.1	0.712	0.340	0.	343	0.235	0.108	276.6	101.1	36.9	0.072
38.6	0.738	0.303		304	0.199	0.107		83.2	3041	0.081
40.1	0.763	0.271		273	0.167	0.106	188.6	67.7	24.3	0.090
41.7	0.777	0.253	0.	255	0.150	0.105	166.6	59.4	21.2	0.097
43.1	0.784	0.243	- ×	235	0.140	9-105		<u> </u>	<u> </u>	0.102
44.7	0.792	0.216		237 217	0.130	0.105		50.3 42.7	17.8	0.107
47 . A	0.806	0.216		217	0.113	0.104		42.7	15.0	0.117
49.3	0.804	0.218	~~~~~	220	0.116	0.104		43.8	15.4	0.115
PAUSE		PLOTTER			00	01.0-	15410	4310	1314	00113
	· · · · · · · · · · · · · · · · · · ·			-						
		· · · · · · · · · · · · · · · · · · ·			···				···	
		·				· · · · · · · · · · · · · · · · · · ·				

Figure D-65. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALDIA IS. LAT: 33-27.2 N; LINE: 118-29.0 N

Figure D-66. Ocean optical properties (sheet 1 of 2).

3(4)	J (1790)	AL PHA!	ALPHA	SCAT	AHS	V5#3	YSF6	VSF12	THTAR25
1.4	0.653	11.426	"() • 431	0.321	0.111	390.9	145.3	54.0	0.05
2.4	0.702	0.353	0.358	0.249	0.104	294.7	108.0	39.6	J. 137
3.5	0.703	0.352	0.350	0.344	U.LOA	242.9	107.3	39.3	0.070
4.7	().493	0.166	0.370	0.262	0.109	311.3	114.4	42.0	0.000
6.1 7.3	().549 ().333	1.100	1.121	0.492 0.490	0.116	631.6 1391.9	240.4	91.4	0.045
A A		-1:142		1.032	- U. 13 3	1447.5	573.B	216:0 227:3	<u>0.02</u> €
10.1	0.297	1.215	1.239	1.104	0.135	1562.6	621.7	247.2	0.027
11.4	0.290	1.23A	1.243	1.124	0.136	1500.5	637.1	253.7	<u> </u>
12.4	(n) 285	1.551	1.245	-1:111	0.135	1574.11	635.1	249.1	
14.3	0.310	1.170	1.193	1.059	0.133	1401.4	542.0	234.4	0.327
17.0	_0_34 <u>B</u> _	1.056	1.077	0.947	0.130	131400	518.7	204.5	
17.0	0.399	0.420	(1.037	0.311	0.126	1105.1	432.3	169.0	ચે∗ે3ે
14.3	0.462	0.772	0.785	0.653	0.121	382.H	341.6	132.1	0.037
-)19.8 -	- () = 5 1 1 () = 5 1	0.671	0.042	0 - 364 1 - 330	<u> </u>	734.2	<u> </u>	100.0	<u></u>
22.4	0.552	() .594	0.603	0.487	0.117	616 a 2	262.2	100.2	U p (144.)
23.9	0.566	0.560	0.577	0.462	0.115	624.0 500.2	237.3	90.2	0 . 049 0 .047
29.4	0.371	7) . 550	0.569	0	0.115	377.0	218.5	82.H	5,74
24.4	0.598	0.513	0.521	0.407	0.113	511.2	192.5	72.5	15.
29.0	0.601	0.509	0.516	0.4113	9.113	5114 . 4	199.0	7].4	1.051
24.5	214.0	C.491	0.40%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.113	7.79.8	140.2	57.5	في الإدارة ال
30.9	0.620	0.474	0.485	0.372	0.112	462.3	173.3	64.4	ひょうきゃ
37.3	(1.64()	0.415	0.421	3.310	0.110	374.4	134.4	<u> </u>	<u> </u>
3.7	0.690 0.711	0.370	0.345	0.265 1.237	0.109	316.9	116.5	42.7	1 2 7
35.1 34.5	0.730	0.315	0.319	0.211	0.108	279.4 245.0	101.4 89.0	37.2	0.072 0.078
7	=(.7A()	11.274	11.277	- 171 -	0.106	193.4	89.5	- 32.6 -	0 1 1 1
30.3	0.741	D.24A	0.250	() . 145	0.105	160.4	57.1	20.3	4.149
404	-1.784	0.243	0.245	0.140	0.105	144.3	54.4	19.4	0.102
42.2	0.793	0.212	() . 234	C*150	0.105	411.7	40,×	17.0	(,137
43.4	0.797	0.227	0.529	0.174	0.105	134.8	47.6	10.4	4.110
44.9	0.205	0.217	0.210	0.114	0.1(4	127.1	43.3	15.2	0.110
45.1	CALL	0.210	7.211	7. 117	0.104	114.5	40.1	14.0	0.171
47.4	0.414	0.205	0.200	1.103	0.104	1.4.4	3(8) (1)	17.3	•1 ?4
	0.400	0.227	0.229	0.120	0.104	134.4	47.6	15.2	-\ <u>+112</u>
50.4		PLUTTER	77 E E E T	11 1 1 2 4	O # # (1/3)	F 4- 9 ()	4140	16.04	3.110

Figure D-66. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LING: 110-29.0 N 24.7N1275 1835P0T

Figure D-67. Ocean optical properties (sheet 1 of 2).

7.0 (a) 4.4 (b) 4.7 (c) 4.7 (c	178 0.346 573 0.342 573 0.349 574 0.349 534 0.496 535 0.968 537 0.990 537 0.990 537 0.990 537 1.276 540 1.202 540 1.202		5CAT D. 284 0. 277 0. 291 0. 284 0. 481 0. 481 0. 770 0. 840 0. 952 1. 104 1. 118 1. 155 1. 145 1. 166 0. 952 0. 952	0.110 0.110 0.110 0.110 0.112 0.116 0.122 0.123 0.127 0.134 0.135 0.135 0.135 0.135 0.135	341.5 332.0 351.2 341.5 432.2 614.4 777.5 1273.6 1643.0 1643.0 1632.0 1323.6 1404.2 1404.2	VSFA 126-1 127-4 129-9 126-1 161-5 234-3 344-0 344-0 633-7 672-3 413-1 656-3 650-7 934-9 570-5 960-6	VSF12 46.6 45.1 44.0 40.6 60.3 89.0 134.7 147.7 176.7 206.0 243.6 250.9 250.9 250.9 250.9	THIME 2 U - 10 A 10
7.0 (44 A 44 O 44 A 4	0.342 0.342 0.344 0.344 0.344 0.346 0.	(1.3 M6 (1.401 (1.3 04 (1.4 04	0.277 0.291 0.284 0.351 0.481 0.574 0.720 0.840 0.952 1.901 1.118 1.154 1.154 1.154 1.154 1.154 0.452 0.356 0.782	0.104 0.110 0.110 0.112 0.116 0.122 0.123 0.127 0.136 0.136 0.138 0.138 0.138 0.138 0.138 0.138 0.138 0.138	332.0 351.2 341.5 432.2 437.6 977.3 150.7 177.6 1223.6 1643.0 1632.0 154.2 1403.0 1504.2 1403.0 1319.2 1174.0	122.4 129.9 126.1 161.5 234.0 340.0 451.0 651.3 650.7 934.9 480.3 480.3 480.3	45.1 48.0 46.6 60.3 89.0 134.7 176.7 176.7 176.8 20.0 243.6 259.3 252.7 20.0 205.0 205.3	0.05 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03
11.7 De 12.5 D	573 0.39A 578 0.389 585 0.568 587 0.782 536 0.835 587 0.980 1.07A 560 1.07A 560 1.07A 560 1.07A 560 1.07A 570	0.401 0.304 0.462 0.597 0.796 0.450 0.450 0.450 1.065 1.083 1.226 1.284 1.291 1.284 1.290 1.136 1.083 1.083 1.083	0.291 0.284 0.351 0.471 0.572 0.840 0.952 1.001 1.155 1.145 1.124 1.004 0.952 0.356 0.782	0.110 0.110 0.110 0.112 0.116 0.122 0.123 0.127 0.136 0.136 0.138 0.138 0.138 0.138 0.138 0.138	351.2 341.5 432.2 614.4 777.3 1150.7 1223.6 1223.6 1643.0 1524.2 1404.2 1404.2 1404.2	129.0 126.1 161.5 234.3 344.0 451.0 637.7 627.3 650.7 944.0 650.7 944.0 650.7	4 P - 0 40 - 6 60 - 3 F9 - 0 134 - 7 147 - 7 176 - 7 206 - 6 261 - 2 259 - 3 252 - 7 207 - 6 207 - 6 207 - 6 207 - 3	0.05 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02
11.7 n.1 12.7 n.1 14.7 n.1 14.7 n.4 11.4 n.2 11.4 n.3 11.4 n.3 11.	17H 0.3H9 1854 0.456 1855 0.548 187 0.742 187 1.076 187 1.076 187 1.076 187 1.276 187 1.276 187 1.276 187 1.276 187 1.276 187 1.276 187 1.276 187 1.276 187 1.276 187 1.276 187 1.276	0.394 0.462 0.597 0.796 0.450 1.045 1.045 1.043 1.226 1.271 1.284 1.270 1.136 1.083 1.083 1.083	0.284 0.351 0.441 0.776 0.840 0.840 0.952 1.001 1.118 1.155 1.144 1.176 0.450 0.782	0.110 0.112 0.116 0.123 0.127 0.127 0.127 0.136 0.136 0.138 0.138 0.138 0.138 0.138	341.5 432.2 432.2 434.6 977.3 1150.7 127.6 127.6 127.6 1643.0 152.0 152.0 152.0 152.0 152.0 152.0	120 - 1 161 - 5 234 - 3 244 - 0 451 - 7 52 - 4 631 - 7 944 - 9 650 - 7 944 - 9 450 - 5 450 - 5 450 - 6	40.6 60.3 89.0 134.7 176.7 176.7 206.6 261.9 261.2 259.3 252.7 206.6 207.3	0.05 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02
11.7 D. (12.5) D	0.456 0.568 0.702 34 0.435 347 0.940 150 1.076 340 1.076 340 1.076 1.07	0.462 0.597 0.795 0.467 1.045 1.043 1.225 1.273 1.284 1.270 1.136 1.083 0.907	0.351 0.481 0.674 0.720 0.840 0.952 1.001 1.118 1.159 1.144 1.004 0.452 0.650 0.782	0.112 0.116 0.122 0.123 0.127 0.136 0.136 0.138 0.138 0.138 0.138 0.138 0.138	432.2 614.4 797.5 170.7	161.5 236.3 340.0 441.0 451.0 472.3 472.5 470.5 460.7 934.4 480.4 480.5 480.7	6U.3 H9.0 134.7 147.7 176.7 206.0 243.6 259.3 252.7 206.0 207.3	0.05 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02
12.5	145 0.568 57 0.702 34 0.435 347 0.940 157 1.076 346 1.076 346 1.265 242 1.266 242 1.266 244 1.265 244 1.265 244 1.265 244 1.265 244 1.265 244 1.265 244 1.265 245 1.265 246 1.265 247 1.062	0,597 0.796 0.450 0.450 1.083 1.226 1.284 1.240 1.136 1.080 1.	0.481 0.674 0.720 0.840 0.952 1.091 1.119 1.154 1.154 1.154 1.154 1.004 0.452 0.356 0.782	0.116 0.122 0.123 0.127 0.136 0.136 0.136 0.135 0.135 0.135 0.130 0.130	614.4 794.6 977.3 1.40.7 1.23.6 154.9 154.6 1643.6 1643.6 1643.6 154.2 1404.6 1319.2 1174.0	236.3 34H.00 34H.00 451.07 522.3 613.1 630.7 650.7 634.00 446.1 522.3 640.6	#9.0 134.7 147.7 176.7 200.0 243.5 250.9 261.2 259.3 232.7 200.0 207.3	0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02
14.7 ().1 ().1 ().1 ().2 ().2 ().2 ().2 ().2 ().2 ().2 ().2	57 0.742 -34 0.435 -367 0.940 -367 1.076 -366 1.762 -361 1.202 -378 1.266 -378 1.266 -378 1.266 -378 1.114 -366 1.062 -378 1.06	0.796 0.450 0.467 1.043 1.226 1.273 1.274 1.284 1.280 1.136 1.080 0.493	7.674 0.725 0.840 0.952 1.901 1.118 1.155 1.144 1.004 0.952 0.650 0.782	0.122 0.123 0.127 0.134 0.136 0.136 0.136 0.136 0.136 0.130 0.130 0.130	977.3 1140.7 127.6 127.6 127.6 127.6 140.0 152.0 152.0 1504.2 1404.0 1373.6 1310.2	24H (1) 34(1) 451(1) 527(2) 527(2) 527(2) 659(3) 659(3) 659(3) 659(4) 527(3) 540(6)	134.7 147.7 176.7 176.0 296.0 243.6 250.9 261.2 259.3 252.7 220.0 206.0	0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02
14.7 (0.4 f). 11.4 f). 11.4 f). 12.7 f)	-34	0.450 0.457 1.045 1.083 1.284 1.284 1.240 1.136 1.083 1.083	0.725 0.840 0.952 1.911 1.118 1.155 1.145 1.124 1.904 0.952 0.650 0.782	U.123 U.127 U.137 U.136 U.136 U.136 U.136 U.136 U.136 U.137 U.131 U.131 U.131 U.131 U.131	977.3 1150.7 1767.6 1223.6 1643.0 1632.0 1504.2 1404.0 1323.6 1323.6	3/(0.1) 451.17 1337.2 122.2 123.1 631.5 655.3 650.7 134.9 570.5 460.6	147.7 176.7 176.8 200.0 243.6 250.9 261.2 259.3 252.7 220.0 206.0 205.3	0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02
1 no h () s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	387 0.090 157 1.076 366 1.076 361 1.202 155 1.276 188 1.260 191 1.235 378 1.116 166 1.062 191 1.465 191 1.465 191 1.465 191 1.465 191 1.465	1.047 1.045 1.043 1.226 1.231 1.241 1.240 1.136 1.080 0.907	0.840 0.952 1.001 1.155 1.145 1.124 1.004 0.950 0.550 0.782	0.127 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.137 0.137	1140.7 127.6 127.6 121.0 163.0 163.0 163.0 1504.2 1404.0 1310.2 1174.0	451.1 133.2 122.3 123.1 131.5 131.5 151.5 151.7 134.4 152.3 157.5 167.5	176.7 176.8 296.0 243.5 250.4 261.2 259.3 292.7 206.0 207.3	0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.03
14.5 ().2 21.4 ().2 23.7 ().2 24.4 ().2 24.4 ().2 27.4 ().2	340 1.202 301 1.202 705 1.274 1.276 1.27	1 .083 1 .226 1 .253 1 .291 1 .284 1 .270 1 .136 1 .083 1 .080 0 .907	0.952 1.001 1.11H 1.155 1.144 1.004 1.004 0.452 0.356 0.782	0.136 0.136 0.136 0.136 0.135 0.135 0.137 0.127	1223.6 (E41.9 1223.6 1643.0 1632.0 1594.2 1494.0 1323.6 1319.2 1174.0	62 2 · d 613 · l 630 · 5 655 · 3 650 · 7 634 · 4 622 · 3 620 · 5 640 · 6	296.0 243.6 250.9 261.2 259.3 252.7 220.0 206.0 207.3	0.02 0.02 0.02 0.02 0.02
71.4 (1) 23.7 (1) 24.4 (1) 27.3 (1) 27.3 (1) 27.3 (1) 27.3 (1) 27.3 (1) 27.4 (1) 27.3 (1) 27.4 (1 1.202 705 1.276 1.276 1.276 1.276 1.276 1.114 1.	1 .083 1 .226 1 .253 1 .291 1 .284 1 .270 1 .136 1 .083 1 .080 0 .907	1.001 1.11H 1.155 1.144 1.004 0.452 0.650 0.356	0,136 0,138 0,138 0,136 0,135 0,132 0,130 0,127 0,127	1583.0 1643.0 1632.0 1594.2 1404.0 1323.0 1319.2 1174.0	613.1 690.5 655.3 650.7 634.9 550.1 522.3 570.5	243.5 250.9 261.2 259.3 252.7 220.0 206.0 207.3	0.02 0.02 0.02 0.02 0.02
23.7 3.7 24.1 0.0 24.4 0.0 27.3 0.3 27.3 0.3 27.3 0.3 27.3 0.3 27.3 0.3 27.3 0.4 27.4 0.4	105 1.276 204 1.260 204 1.250 374 1.114 366 1.0162 367 1.050 191 1.465 191 1.465	1.243 1.291 1.284 1.250 1.136 1.083 1.080 0.983 0.907	1.11H 1.155 1.144 1.004 0.452 0.050 0.356 0.782	0.138 0.136 0.136 0.136 0.137 0.130 0.130 0.127	1585.6 1643.0 1632.0 1584.2 1584.2 1405.0 1323.6 1319.2 1174.0	690.5 655.3 650.7 934.9 550.1 522.3 570.5	250.9 261.2 259.3 252.7 220.0 206.0 203.3	0.02: 0.02: 0.02: 0.02: 0.02:
23.7),7 24.1 (),2 24.4 (),2 77.3 (),3 73.3 (),3 27.0 (),3 27.0 (),3 27.0 (),4 27.0 ()	2 MZ 1.266 2 M4 1.259 191 1.239 3 PH 1.114 1.4169 191 1.4465 191 1.4465 191 1.4465 191 1.4465	1.291 1.284 1.250 1.136 1.083 1.080 0.983 0.907	1.155 1.144 1.124 1.004 0.452 0.050 0.356 0.782	0.136 0.135 0.135 0.130 0.130 0.130 0.127	1643.0 1632.0 1594.2 1404.0 1323.6 1319.2 1174.0	655.3 650.7 934.4 586.1 622.3 570.5	261.2 259.3 252.7 220.0 206.0 203.3	0.02 0.02 0.02 0.02
2 H o 1 10 2 2 h o 4 10 2 2 h o 4 10 2 2 h o 4 10 2 2 h o 7 10 2 2	101 1232 101 1232 101 1232 104 1006 101 1006 101 1006 101 1006 101 1006 101 1006 101 1006	1.284 1.250 1.136 1.083 1.080 0.983 0.907	1.144 1.124 1.004 0.452 0.050 0.356 0.782	0.136 0.135 0.132 0.130 0.130 0.127	1632.0 1504.2 1405.0 1323.6 1319.2 1174.0	650.7 644.9 550.1 522.3 570.5	259.3 252.7 220.0 206.0 205.3	0.02 0.02 0.02 0.02 0.02
25.4 (1) 7.3 (1) 7.3 (3) 7.3 (3) 7.3 (5) 7.3 (6) 7.3 (6) 7.3 (6) 7.3 (6) 7.3 (6) 7.3 (7) 7.3 (7) 7.	101 1.235 328 1.114 346 1.062 347 1.060 101 0.461 101 0.461	1.136 1.136 1.083 1.080 0.983 0.907	1.174 1.004 0.452 0.050 0.356 0.782	0.135 0.132 0.130 0.130 0.137 0.127	1504.2 1405.0 1323.6 1310.2 1174.0	986.1 586.1 522.3 520.5 460.6	252.7 220.0 206.0 205.3	0.02: 0.02: 0.02: 0.02:
7.3 ().1 13.3 ().1 27.2 ().1 27.2 ().1 27.6 ().6	37H 1.114 36A 1.0162 347 1.0169 191 9.465 10 9.461	1.136 1.083 1.080 0.983 0.907	1.004 0.952 0.050 0.356 0.782	0.132 0.130 0.130 0.127 0.125	1404.0 1323.6 1319.2 1174.0	550.5 570.5 460.6	220.0 206.0 205.3	0.02
73.3 / 10.2 27.2 / 0.3 33.6 / 0.4 25.0 / 0.4	366 [-062 367 [-056 19] [-066 19] [-065 19] [-061	1.083 1.080 0.983 0.907	0.952 0.950 0.356 0.782	0.130	1373.6	570.5 460.6	206.0	C.02
37.07 0.3 33.65 0.66 35.65 0.66	191 1.465 191 1.465 10 1.461	1.080 0.983 0.907	0.950 0.356 0.782	0.127	1310.2	570.5 460.6	204.3	0.112
33.8 0.3 33.8 0.4 35.0 0.4	191 0.465 10 0.461 127 0.461	0 • 983 0 • 907	0.356 0.782	0.127	1174.0	440.6		
5.6 0.4					1.141.1			.,,,,,
14.6 O.4		1 70			1	616.2	161.6	0.03
14.4 0.4 17.7 0.5	A 0 940			() . 14	1714.3	ACI- ·	154.5	17.611.51
37.7 0.4		1.743	0.661	0.131	H70,7	340.3	131.6	0.413
minimum room		11,645	0.377	C.110	744,3	240.4	111.2	1) 11 (1
4-7-3 () .		1) 645	0.528	0.117	647.6	SV1.5	99.7	U a tree
42.1 0.5		0.623	0.506	0.115	652.1 555.4	248.6	94.7 79.4	0.044
- X		7.377	7, 30 /	0.113	307.5		70.4	0.045
44.5	403.0 000	0.303	0.340	3.113	44.5	147.4	15 0 7	11 11 11 11
2 1.4		17.674	1) .356	0.112	453.0	193.4	63.6	100.154
47.0 n.	69 0.40F	11.413	0.303	0.110	E.AAF	36.	50.4	Usun
40.2 0.4		0.345	0.276	1) . [(19	330.1	121.7	44.4	lie in:
40.4 D.7	102 0.353	7.350	0.240	U-104	204.7	104.0	34.6	0.07
ं प्रतिहरू छड्	त्तरे शामको वे वे से	<u>, , , , , , , , , , , , , , , , , , , </u>						
				·				
					£	·		
		· · · - · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
							•	
								·····

Figure D-67. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT' 33-27.2 N; LINE: 118-29.0 N 26JUN1975 1837PDT

Figure D-68. Ocean optical properties (sheet 1 of 2).

中国の神経 東京の神石で

N.

BEST AVAILABLE COPY

Figure D-68. Ocean optical properties (sheet 2 of 2).

at delle Varada in the

DCEAN DPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 33-27.2 N; LDN8: 118-29.0 N 24-301975 1919PdT

Figure D-69. Ocean optical properties (sheet 1 of 2).

.613 .526 .452 .392 .391 .278 .275 .273 .286 .291	0.489 0.643 0.795 0.937 1.076 1.129 1.215 1.280 1.290	0.496 0.653 0.809 0.954 1.097 1.152 1.239 1.306 1.317	SCAT 0.383 0.535 0.687 0.828 0.967 1.019	0.113 0.117 0.122 0.126 0.131 0.132	477.6 694.3 917.8 1131.5 1345.7 1428.4	179.3 265.5 355.8 443.1 531.5	67.3 101.5 137.8 173.5 209.8	0.03
452 392 341 323 297 278 275 286 296	0.795 0.937 1.076 1.129 1.215 1.280 1.290	0.809 0.934 1.097 1.152 1.239 1.306	0.687 0.828 0.967 1.019	0.122 0.126 0.131 0.132	917.8 1131.5 1345.7	355.8 443.1 531.5	137.8	
392 341 323 297 278 275 273 286 296	0.937 1.076 1.129 1.215 1.280 1.290	0.934 1.097 1.152 1.239 1.306	0.828 0.967 1.019 1.104	0.126 0.131 0.132	1131.5	443.1 531.5	173.5	0.03
341 323 297 278 275 273 286 296	1.076 1.129 1.215 1.280 1.290	1.097 1.152 1.239 1.306	0.967 1.019 1.104	0.131	1345.7	531.5		0.03
323 297 278 275 273 286 296	1.129 1.215 1.240 1.290	1.152	1.019	0.132			209.A	0.02
297 278 275 273 286 296	1.215 1.240 1.290	1.239	1.104		1479.4			
278 275 273 286 296	1.290 1.290	1.306		V 138		365.A	224 ()	0.02
275 273 286 296	1.290			0.135	1562.6	521.7	247.2	0,(12)
273 286 296	1.297		1.169 1.180	0.137	1682.1	671.7	265.1 268.1	0.02
286 296		1.324	1.17	0.137	1693.5	575.5	270.1	0.02
296	1.252	1.277	1.141	0.136	1621.1	640.2	257.4	0.026
201	1.252	1.277	1.141	0.136	1621.1	640.2	257.4	0.036
	1.235	1.260	1.124	0.135	1394.2	634.9	252.7	U . (12 c
315	1.154	1.177	1.044	0.133	1466.9	581.8	230.7	0.026
351	1.046	1.068	0.938	0.130	1301.8	513.3	202.3	0.029
364	1.010	1.029	0.400	0.129	1242.6	#¥4.#	143.2	0.030
								0.031
								(1, () 3
								0.033
								0.035
								0.039
								U.045 U.053
	0.445							0.056
	0.409	0.415						0.061
675	0.393	0.398	0.289	0.110	347.3	128.4	47.4	0.063
	0.356	0.360	0.252	0.109	208.3	109.5	40.1	0.069
	0.358	0.352	0.253	0.100	300.3	110.2	40.4	0.069
704						100.5	39.1	0.070
708								0.071
								0.071
								0.072
						111000		0.069
					244.4		32.6	0.077
	0.302	0.305			228.0			U.Ubl
746	5,240	0.203	0.196	0.106	213.0			0.034
741	0.500	0.302	().196	0.107	224.6	41.3	29.4	0.052
		0.300	0.193	0.107	221.3	30.0	28.0	0.082
		0.292	() . 195	0.100	211.3	77.7	27.5	(101) (15
EALIV	PL.TTER		'				•	
	378 390 443 4442 613 667 667 709 709 709 770 771 772 774 774 774 774	378	.378	.378 0.973 0.991 0.663 .390 0.942 0.959 0.833 .412 0.886 0.902 0.773 .443 0.815 0.329 0.706 .442 0.730 0.742 0.622 .549 0.394 0.608 0.492 .612 0.491 0.498 0.383 .635 0.465 0.461 0.349 .644 0.493 0.398 0.289 .700 0.356 0.360 0.252 .699 0.358 0.362 0.293 .704 0.358 0.362 0.293 .704 0.358 0.362 0.246 .708 0.348 0.349 0.246 .700 0.348 0.348 0.240 .700 0.348 0.348 0.240 .710 0.3-2 0.346 0.231 .729 0.317 0.320 0.252 .710 0.3-2 <t< td=""><td>.578 0.973 0.991 0.863 0.127 .390 0.942 0.959 0.833 0.126 .412 0.886 0.902 0.777 0.125 .443 0.815 0.329 0.706 0.123 .443 0.815 0.329 0.706 0.123 .549 0.394 0.608 0.492 0.116 .612 0.491 0.498 0.385 0.113 .635 0.455 0.461 0.349 0.112 .644 0.493 0.398 0.289 0.110 .670 0.358 0.360 0.252 0.109 .699 0.358 0.362 0.253 0.109 .699 0.358 0.362 0.252 0.109 .699 0.358 0.362 0.253 0.109 .704 0.351 0.352 0.244 0.108 .706 0.348 0.352 0.244 0.108 .709 0.344<</td><td>.578 0.973 0.991 0.863 0.127 1185.9 .390 0.942 0.959 0.833 0.126 1139.1 .412 0.886 0.902 0.777 0.125 1053.0 .443 0.815 0.329 0.706 0.123 947.2 .442 0.730 0.742 0.622 0.120 M21.6 .549 0.394 0.608 0.492 0.116 631.0 .612 0.491 0.498 0.385 0.113 470.8 .635 0.455 0.461 0.349 0.112 430.1 .644 0.493 0.398 0.289 0.110 368.9 .670 0.356 0.360 0.252 0.109 298.3 .700 0.358 0.362 0.283 0.109 298.3 .704 0.351 0.355 0.246 0.109 298.3 .704 0.358 0.362 0.293 0.109 298.3</td><td>*378 0.973 0.991 0.863 0.127 1185.9 *65.5 *390 0.942 0.959 0.833 0.126 1139.1 446.3 *412 0.886 0.992 0.777 0.125 1053.9 411.3 *443 0.415 0.329 0.706 0.123 947.2 367.7 *442 0.730 0.742 0.622 0.120 A21.6 315.8 *549 0.399 0.608 0.492 0.116 631.0 240.0 *612 0.491 0.498 0.385 0.113 479.8 140.2 *635 0.461 0.498 0.384 0.113 479.8 140.2 *635 0.465 0.461 0.349 0.112 430.1 150.7 *644 0.493 0.346 0.310 0.110 368.9 136.7 *675 0.393 0.398 0.289 0.110 347.3 128.4 *700 0.356 0.362<</td><td>*378 0.973 0.991 0.863 0.127 1185.9 465.5 182.6 *390 0.942 0.959 0.833 0.126 1139.1 446.3 174.7 *412 0.886 0.902 0.777 0.125 1053.0 411.3 160.4 *443 0.815 0.329 0.706 0.123 947.2 36.7 142.7 *482 0.730 0.742 0.622 0.123 947.2 36.7 142.7 *482 0.399 0.608 0.492 0.116 631.0 240.0 91.4 *612 0.491 0.498 0.383 0.113 479.8 140.2 67.6 *635 0.463 0.461 0.349 0.112 420.1 150.7 60.0 *644 0.493 0.461 0.349 0.112 420.1 150.7 60.0 *645 0.461 0.349 0.110 364.9 126.4 47.4 *700 0.356</td></t<>	.578 0.973 0.991 0.863 0.127 .390 0.942 0.959 0.833 0.126 .412 0.886 0.902 0.777 0.125 .443 0.815 0.329 0.706 0.123 .443 0.815 0.329 0.706 0.123 .549 0.394 0.608 0.492 0.116 .612 0.491 0.498 0.385 0.113 .635 0.455 0.461 0.349 0.112 .644 0.493 0.398 0.289 0.110 .670 0.358 0.360 0.252 0.109 .699 0.358 0.362 0.253 0.109 .699 0.358 0.362 0.252 0.109 .699 0.358 0.362 0.253 0.109 .704 0.351 0.352 0.244 0.108 .706 0.348 0.352 0.244 0.108 .709 0.344<	.578 0.973 0.991 0.863 0.127 1185.9 .390 0.942 0.959 0.833 0.126 1139.1 .412 0.886 0.902 0.777 0.125 1053.0 .443 0.815 0.329 0.706 0.123 947.2 .442 0.730 0.742 0.622 0.120 M21.6 .549 0.394 0.608 0.492 0.116 631.0 .612 0.491 0.498 0.385 0.113 470.8 .635 0.455 0.461 0.349 0.112 430.1 .644 0.493 0.398 0.289 0.110 368.9 .670 0.356 0.360 0.252 0.109 298.3 .700 0.358 0.362 0.283 0.109 298.3 .704 0.351 0.355 0.246 0.109 298.3 .704 0.358 0.362 0.293 0.109 298.3	*378 0.973 0.991 0.863 0.127 1185.9 *65.5 *390 0.942 0.959 0.833 0.126 1139.1 446.3 *412 0.886 0.992 0.777 0.125 1053.9 411.3 *443 0.415 0.329 0.706 0.123 947.2 367.7 *442 0.730 0.742 0.622 0.120 A21.6 315.8 *549 0.399 0.608 0.492 0.116 631.0 240.0 *612 0.491 0.498 0.385 0.113 479.8 140.2 *635 0.461 0.498 0.384 0.113 479.8 140.2 *635 0.465 0.461 0.349 0.112 430.1 150.7 *644 0.493 0.346 0.310 0.110 368.9 136.7 *675 0.393 0.398 0.289 0.110 347.3 128.4 *700 0.356 0.362<	*378 0.973 0.991 0.863 0.127 1185.9 465.5 182.6 *390 0.942 0.959 0.833 0.126 1139.1 446.3 174.7 *412 0.886 0.902 0.777 0.125 1053.0 411.3 160.4 *443 0.815 0.329 0.706 0.123 947.2 36.7 142.7 *482 0.730 0.742 0.622 0.123 947.2 36.7 142.7 *482 0.399 0.608 0.492 0.116 631.0 240.0 91.4 *612 0.491 0.498 0.383 0.113 479.8 140.2 67.6 *635 0.463 0.461 0.349 0.112 420.1 150.7 60.0 *644 0.493 0.461 0.349 0.112 420.1 150.7 60.0 *645 0.461 0.349 0.110 364.9 126.4 47.4 *700 0.356

Figure D-69. Ocean optical properties (sheet 2 of 2).

DCEAN OPTICAL PROPERTIES - 520 NM SANTA CATALINA IS. LAT: 39-27.2 N; LINE: 110-29.0 N 26JUN1975 2114PDT

Figure D-70. Occan optical properties (sheet 1 of 2).

SANTA	CATALIN	A IS. L 2114PDT	-68 TA.	27.2 N	LONG 1	18-50-0	;ł		
• , 13	T(1/2)	ΛΕΡΗΛΙ	AL PHA	SCAT	448	V5#3	VSP6	VSF12	THTAPRE
7.3	711.6	11.341	0.345	0.237	0.108	779.4	101.8	37.2	0.07%
4.2	0.699	0.358	0.362	0.253	0.109	300.2	110.2	40.4	0.064
5.0	0.697	0.360	0.365	0.256	0.109	303.9	111.5	40.9	0.069
5.0	0.647	0.376	0.381	0.271	0.109	374.4	119.5	44.0	0.065
7.0	0.689	0.373	0.378	0.269	0.109	350.0	114.0	43.4	0.066
7.0	0.684	0.340	0.395	0.276	0.109	330.1	121.7	44.8	0.065
0.0	7 645	(1.412	0.418	0.307	0.110	372.8	138.3	51.3	0.001
10.4	0.615 0.538	0.486 0.620	0.493 0.530	0.513	0.112	473.2 542.5	177.6 252.7	66.6 96.4	0.053 0.044
-11.5	0.462	1.772	795	0.663	2.121	157.A	341.5	132.1	0.037
. 4	0.442	0.817	0.831	0.709	0.123	9511.5	369.1	143.2	0.035
7	0.402	0,412	0.929	0.903	0.126	1004.0	427.7	167.2	(1.1133
1=.7	0.343	1.071	1.091	0.961	7.130	1336.3	327.H	208.3	0.1125
14.4	0.317	1.149	1.171	1.038	0.133	1457.2	577.P	229.0	0.024
14.6	0.302	1.198	1.223	1.088	0.134	1536.4	510.9	242.A	0.027
	0.296	1.218	1.243	1.108	0.135	1567.3	623.9	24H.1	0.026
1 4.5	0.288	1.265	1.270	1.134	0.136	1610.3	641.6	255.5	0.026
10.5	0.294	1.259	1.284	1.148	0.136	1632.0	650.7	259.3	0.020
30.5	-1.279	1.276	1.302	1.165	0.137	1659.6	642.3	264.2	0.030
21.3	0.284	1.259	1.284	1.148	0.136	1632.0	650.7	259.3	0.059
22.3	0.274	1.287	1.313	1,176	0.137	1074.5	5.93	267.1	1) = 1) 2 5
23.3	0.264	1.330	1.358	1.219	0.139	1745 . d	608.4	274.3	0.025
24.3	0.277	1.283	1.309	1.172	0.137	1670.8	867.0	266.1	0.025
24.2	0.274	1.242	1.288	1.152	0.137	1037.5	674.1 553.0	269.1 260.3	0.025
27.2	0.320	1.139	1.161	1.029	0.133	1447.7	571.H	226.5	0.023
2 4 . 2	0.321	1.136	1.158	1.025	0.132	1434.0	569.4	225.7	0.024
20.1	6.341	1.076	1,097	1) 967	0.131	1345.7	531.5	209.H	0.024
30.2	0.408	0.895	0.912	0.7A7	0.125	1068.3	417.2	162.9	0.033
21.1	0.461	0.774	0.797	0.565	0.121	444.)	342 1	132.6	0.037
33.1	0.300	().692	0.703	7.585	0.119	754.2	294.4	113.1	0.040
33.1	0.494	0.705	0.718	0.593	0.110	744.3	302.5	115.3	0.04()
34.1	0.515	0.663	0.674	0.556	0.118	724.3	277.5	106.3	0.1141
3 3 6 7	0.525	n.K44	0.655	11.537	0.117	264.0	766.4	1111.0	1) = (14 }
34.0	0.517	0.659	0.670	0.552	0.118	714.7	275.3	105.4	11.042
37.0	2.537	1) • 6.5.5	0.632	7.515	1.117	<u> </u>	2 4 3 4 A	96.4	() e · di ia
31.0	0.546	0.606	0.615	0.499	0.11:	641.B	244.9	97.1	0.044
30.0	1.539	0.419	0.628	0.512	0.117	640.9	241.7	96.0	0.044
- <u>24</u> -5-	0.543	0.611 0.369	0.621	0.452	7.115	440.2	247.5 223.5	94.7 H4.7	<u> </u>
41.0	0.584	1).53A	0.546	0.432	0.114	546.0	206.3	77.0	0.044
42.9	0.585	0.537	0.544	0.430	0.114	543.5	205.4	77.5	0.049
410	0.595	0.518	0.326	0.412	- 8.113	518.1	104.3	73.6	0.050
44.9	0.404	0.504	.0.511	0.398	0.113	497.6	147.2	70.4	0.052
48.9	0.615	0.486	0.493	0.380	0.112	473.2	177.6	65.5	0.053
	0.414	0.464	().494	0.342	0.113	474.4	17	65.0	(1, (153
±7.4	0.627	0.467	0.473	0.362	0.112	447.1	157.3	62.6	0.055
44.9	0.651	0.429	0.424	0.324	n.iii	304.0	146.4	54.6	0.059
40.7	0.692	0.368	1).372	0.263	0.109	312.1	115.1	42.3	0.067

Figure D-70. Ocean optical properties (sheet 2 of 2).

Figure D-71. Volume scattering function (sheet 1 of 3).

#20 11JUN75	2107	STA.CAT#3	- SEA	H2D 30M
-------------	------	-----------	-------	---------

	DATA	READ IN		ITERAT	ED DATA
Al	NGLE (DEG)	SIGMA	INSTR-0	ANGLE (DEG)	SIGMA
			HAND-1	· · · · · · · · · · · · · · · · · · ·	
L (0.1750	3.25006 0		0.1750	3.2695E 02
	0.3500	1.1900E 0		0.3500	1.1754E 02
•	0.7000	4.2000E 0		0.7000	4.2254E 01
4	10.00	2.74806-0		10.00	2.7480E-01
	20.00	9.9464E-0		20.00	9.9464E-02 4.1943E-02
7	25.00	2.27858-0		25.00	2.2785E-02
•	30.00	1.3811E-0		30.00	1.38118-02
4	40.00	5.46048-0		40.00	5.46048-03
• •	50.00	2.8342E-0	-	50.00	2.83426-03
<u> </u>	60-00	1.61888-0		60.00	1.4188E-03
	70.00	1.05786-0	-	70.00 80.00	1.0578E-03 7.2661E-04
:3 :14	80.00 90.00	7.2681E-0		90.00	5.6762E=04
+7	100.0	4.6830E-0		100.0	4.6830E-04
	110.0	4.39628-0		110.0	4.3962E-04
	120.0	4.3490E-0		120.0	4.3490F=06
1.	130.0	4.4705E-0		130.0	4.4705E-04
1.	140.0	4.5863E-0		140.0	4.88635-04
	150.0	7.0203E-0		150.0	7.0203E-04
• •	170.0	1.41856-0		170.0	1.41858-03
* 3	.,500	1141476-0	<u> </u>	180.0	1.7183E-03
ALP	HA= 0.3920	S/AL			
	S= 0.2760 A= 0.1160	A/AL	PHA: 0.296 B/S= 0.01		
	H- 011100		.,,,,,	•	
: , HH EC.	TED ALPHA	CORRE	CTION=0.00	3	
		m 44.			
ALPI	HA= 0.3968 S= 0.2760	S/AL			
	A 0.1207		878 0.01		
				-	
	MAI U.O DEGI	REES)= 7	49.0		
\$16			62.3		
	PE(3 MILLII P TO 0.1 DE		-1.476 2260E-03	MODMALIZAN	= 2.25557E-02
3 0	P 10 061 DE	04663- 00	22005-03	MONMACICED	- 26253518-02
WINTALMIN	PARTICLE D	IAMETER (MICR	ONS) =	109.0	•
	K/ALPHA=	0.4082		DIFFUSE ATTEN	UATION CHEFFICIENT .
##OTAN	MI		ADIANS	DEGREES	
1447 (AN	0,99		5111E-01 2971	2.929 17.02	
ANC					
4514 2			1481	8 48 5	
112		. 0.	3344	19.40	
#45 Z		0.	3045	17.45	
4447	A= 0.16	ZO KAPP	A 7 8 7	3349E=03	
		MATE	• •		

Figure D-71. Volume scattering function (sheet 2 of 3).

				3,7	JUN 1976 070	12 1 N
	520 11JUN75	2107 STA.CAT#3)m ·		
	ANGLE (RAD)	ANGLE(DEG)	SI GHA .		<u>norm. Integral</u>	<u> </u>
	1.7453E-03	1.00008-01	2.6533E 05	6.5590E-02	2.2556E-02	
	2.1972E-03	1.2569E-01	4.7846E 02	9.1312E-03	3.30816-02	11
	2.76628-03	1.58498-01	3.7486E 02	1.24928-02	4.6707E-02	51
	3.4824E-03	1.9953E-01 2.5119E-01	2.6941E 02 1.9179E 02	1.7340E-02 2.2363E-02	6.2819E-02	31
	5.5192E-03				8.1019E-02	41
	6.94836-03	3.1623E-01 3.9811E-01	1.3653E 02 9.7191E 01	2.80318-02 3.4426E-02	1.01558-01	- 5 1
	8-7474E-03	5.0119E-01	6.9188E 01	4.1641E-02	1.50866-01	71
	1.10128-02	6.3096E-01	4.9253E 01	4.97818-02	1.80350-01	81
	1.36648-02	7.9433E-01	3.51268 01	2.8468E-05	2.1363E-01	91
	1.74536-02	1.0000E 00	2.52928 01	6-94046-02	2.51446-01	101
	2.19726-02	1.25898 00	1.82258 01	8-13286-05	2.94448-01	111
	2.788 ZE -02	1.5849E 00	1.54426 01	9.4885E-02	3443768-01	151
	3.4824E-02	1.9953E 00	9.0642E 00	1.10056-01	3.9869E-01	131
	4.3A41E-02	2.5119E 00	6.1152E 00	1.26555-01	4,58468-01	141
	5.51928-02	3.16236 00	3.945ZE 00	1.4381E-01	5.20998-01	151
	6.9483E-02	3.9811E 00 5.0119E 00	2.4144E 00 1.4193E 00	1.6099E-01 1.7730E-01	5.8324E-01 6.4231E-01	161 171
	8.7473E-02	5.0119E 00 6.3096E 00	8.1704E-01	1.92306-01	6:96678-01	181
	1.38646-01	7.9433E 00	4.6963E=01	2.05946-01	7.4609E-01	191
	1.7453E-01	1.00002 01	2.7480E-01	2.1844E-01	7.9137E-01	201
	2.61808-01	1.5000E 01	9.9464E-02	2.38018-01	8.62286-01	206
	3.4907E-01	2.0000E 01	4.1943E-02	2.4853E-01	9.00396-01	211
	4.36336-01	2.5000E 01	2.27856-02	2.54976-01	9,23738-01	216
_	5.2360E-01	3.0000E 01	1.3811E-02	2.5945E-01	9.39948-01	221
	6.10866-01	3.5000E 01	8.45676-03	2.6265E-01	9.5154E-01	226 .
	A.9813E-01	4.0000E 01	5.4604E-03	2.64916-01	9.59716-01	231
	7.85408-01	4.5000E 01	3.8637E-03	2.6660E-01	9.6586E-01	236
	H.7266E-01	5.0000E 01	2.83425-03	2.6794E-01	9.70718-01	241
	9,59938-01	5.50008 01	2.1067E-03	2.6900E-01	9.7456E-01 9.7764E-01	246 251
	1.04726 00	6.0000E 01 6.5000E 01		2.6986E-01 2.7056E-01	9.80198-01	984
	1.1345E 00 1.2217E 00	7.00008 01	1.2963E-03 1.0578E-03		9.82346-01	261
-	1.2217E 00	7.50000 01	8.7019E-04	2.7115E-01 2.7165E-01	9.8416E-UI	286
	1.39636 00	8.0000E 01	7.2681E-04	2.7208E-01	9.8570E-01	271
	1.4 356 00	8.5000E 01	6.3351E-04	2.7245E-01	9.8703E-01	276
	1.57088 00	9,0000E 01	3.6762E-04	2.7277E-01	9.8822E-01	281
	1.6581E 00	9.5000E 01	5.1045E-04	2.7307E-01	9.8929E-01	286
	1.7453E OU	1.0000E 02	4.6930E-04	2.7333E-01	9.9025E-01	_291
	1.83266 00	1.05000 02	4.4725E-04	2.73586-01	9.91136-01	246
	1.9199E 00	1,- 1000E 02	4.39626-04	2.73816-01	9.91978-01	301
	2.00718 00	1.1500E 02	4,3561E-04	2.7403E-01	9-9277E-01	306
	2.09446 00	1.2000E 02	4.3490E-04 4.3854E-04	2.7424E-01 2.7444E-01	9.9354E-01 9.9427E-01	316
	2.1817E 00 2.2689E 00	1.2500E 02 1.3000E 02	4.4705E-04	2.7464E-01	9.9497E-01	321
_	2.3562E 00	3500E 02	4.6364E-04	2.7482E-01	9.9563E-01	326
	2.44356 00	1.4000E 02	4.88636-04	2.7500E-01	9.9627E-01	331
	2.5307E 00	1.4500E 02	5.2365E-04	2.7516E-01	9.96886-01	336
	2.61805 00	1.5000 02	5.6615E-04	2.75336-01	9.9746E-01	341
	2.7053E 00	1.5500E 02	6.2081E-04	2.7547E-01	9.9800E-01	346
_	2.74256 00	1.6000E 02	7.0203E-04	2.7561E-01	9.9850E-01	351
	2.87988 00	1.6500E 02	9.20878-04	2.7574E-01	9.9897E-01	356
	2.96718 00	1.7000E 02	1.4185E-03 1.6476E-03	2.7588E-01	9.9946E-01	361
	3.05438 00	1.7500E 02		2.7599E-01	9.9985E-01	36 ú

Figure D-71. Volume scattering function (sheet 3 of 3).

Figure D-72. Volume scattering function (sheet 1 of 3).

520	11JUN75 2	145 STA.C	AT#4 - SEA	H20 10M	•	
		ATA READ	IN		ITERA	TEO DATA
	ANGLE ID	EG)	SIGMA	INSTR=0 HAND=1	ANGLE (DEG)	SIGMA
1	0.1750		24008 02	0		1.22438 02
3	0.3500		2000E 01	0	0.350U 0.7000	5.4714E 01
	10.00		5449E-01	ŏ	10.00	2.4372E 01 1.5449E-01
Š	15.00		42036-02	ŏ	15.00	6.4203E-02
	20.00		01918-02	<u> </u>	20,00	3.0191E-02
7	25.00		53396-02	0	25.00	1.53392-02
8	30.00 40.00		.6976E-03 .2190 E- 03	O O .	30.00 40.00	9.6876E-03 4.2190E-03
10	30,00		06648-03	0	50.00	2.06648-03
ii	60.00		1377E-03	ŏ	60.00	1.13778-03
12	70.00		89298-04		70.00	7.89298-04
13	80.00		6324E-04	. 0	80.00	5.43248-04
14	90.00		.7177E=04	0 	90.00 100.0	4.2574E-04 3.7177E=04
16	110.0		62418-04	0	110.0	3.62618-06
17	120.0		6301E-04	ŏ	120.0	3.6301E-04
10.	130.0		7925E-04		130.0	3.7925E-06
19	140.0		1463E-04	0 10	140.0	4.18638-04
80	150.0		84158-04	0	150.0	4.84158-04
22	170.0		93598-04		170.0	9.9359E-04
23		,		ĭ	180.0	1.1454E-03
	ALPHA - 0.2	901	S/AL PH			<u>-</u>
	S= 0.1 A= 0.1		A/ALPH			
COR	RECTED ALP	HA	CORRECT	10N=0.002		
	ALPHA- 0.2		STALPH			
	S= 0.1		A/AL PH			
	A= 0.1	3119	5/;	0.017		
-	SIGNAL D.O					
	SIGMA! Q.1 Slope! 3 m			.5 -1.167		•
	S UP TO O.			76-03	NORMALIZED	= 1.24219E-02
	MUM PARTIC				94.00	
EXPE	CTED K/ALP	HA = 0.	5490	EXPECTED	DIFFUSE ATTEN	WATION COEFFICIENT
		HU		ANS	DEGREES	•
MEDI		0.9984 0.9430	Q. 24	96-01	3,266	
VARI	-	0.9430 0.2216	0.33	77	19.44	
MEAN		774E 49	0.179	33	10.05	
RMS		.1	0.36	72	22.30	
RMS :	2		0.347	75 .	19.91	
· · ·	APPAR	0.1601	KAPPATI	3.02	767E-03	

Figure D-72. Volume scattering function (sheet 2 of 3).

25_JUN 1976 0710.5	491	10.	07	1976	JUN	75
--------------------	-----	-----	----	------	-----	----

ANGLE(RAD)	145 STA.CAT#4 ANGLE(DEG)	- SEA H20 10	M Integral	NORM. INTEGRAL	L
1.7453E-03	1.0000E-01	1.8652E 02	1.9897E-03	1.24225-02	
2.1972E-03	1.2589E-01	1.6504E 02	2.97228-03	1.85566-02	11
2.7662E-03	1.58496-01	1.36796 02	4.3064E-03	2.68856-02	Ži
3.47246-03	1.99338-01	1.0540E 02	3.98748-03	3.7380E-02	31
4.3841E-03	2.5119E-01	8.05728 01	6.02606-03	5.0107E-02	41
5.5192E-03	3.1623E-01	6.1591E 01	1,04965-02	6.55266-02	51
4.9483E-03	3.4811E-01	4.7081E 01	1.34886-02	8.42076-02	61
R.7474E-03	5.01198-01	3.5990E 01	1.71136-02	1.06846-01	71
1.10126-02	6.3096E-01	2.7511E 01	2.15056-02	1.34266-01	_ 81
TO- SPORE -UZ	-7.9433F-D1	1-04618 01	\$198X58-05	1.67456-01	41
1.74536-02	1.0000E 00	1.5644E 01	3-314/6-05	2.07158-01	101
2.1972E-02	1.25898 00	1.13836 01	4.06078-08	2.93514-01	111
2.75526-02	1.55446 00	8.02306 00	4.40205=05	3.0055E=01	151
3.48244 -02	1.99538 00	5.5256E 00	5.83735-02	3.6443E-01	131
4.3841E-02	2.51198 00	3.66776 00	6.83436-07	4,26676-01	141
5.51926-02	3.16238 00	2.3490E 00	7.8646E-02	4.90996-01	151
4.94838-0 2	3.9811E 00	1.4200E 00	A.8A34E-02	5.54606-01	161
6.7473E-02	5.0119E 00	6.12436-01	9.4302E-02	6.13716-01	_171
1-10126-07	6.30966 00	4.55406-01	1.0677E-01	6.6659E-UI	181
1.38646-01	7.94338 00	2.56888-01	1.1432E-01	7.13716-01	191
1.74538-01	1.0000E 01	1.54498-01	1.2126E-01	7.5701E-01	201
2.6180E-01	1.5000E 01	6.4203E-02	1.3267E-01	4.29528-01	206
3.4907E-01	2.0000E 01	3.0191E-02	1.40128-01	8.7480E-01	
4.36338-01	2.50006 01	1.33362-02	1.4461E-01	\$.0281E-31	-316
5.2360E-01	3.0000E 01	9.68765-03	1.47688-01	9.21996-01	221
6.10866-01	3,5000E 01	6.29596-03	1.49988-01	9.36326-01	226
6.9813E-01	4.00000 01	4.21906-03	1.51708-01	9.4707E-01	231
7.8540E-01	4.50006 01	2.90016-03	1.5299E-01	9.55168-01	236
8.7266E-01	5-00006-01	2.0664E-03			241
9.59938-01	3.30008 01	1.50398-03	1.53448-01	9.66126-01	246
1.0472E 00	6.0000E 01	1.13776-03	1.55356-01	9.69898-01	251
1.1345E 00	6.50000 01	9.32916-04	1.55458-01	9.73008-01	256
1.22172 00	7.0000E 01	7.89298-04	1.5629E-01	9.75718-01	261
1.3090E 00	7.5000E 01	6.6304E-04	1.5667E-01	9.78078-01	266
1.39638 00	8.0000E 01	5.63246-04	1.56998-01	9.40128-01	271
1.4835E 00	8.5000E 01	4.85728-04	1.5728E-01	9.81846-01	276
1.570AE 00	9.0000E 01	4.25744-04	1.57526-01	9.83446-01	261
1.65818 00	9,5000E 01	3 . ABOBE-04	1.5775E-01	9.84836-01	286
1.7453E 00	1.00004 02	3.71778-04	1.37958-01	9.86116-01	291
1.8326E 00	1.0500# 02	3.6520E-04	1.58156-01	9.67346-01	296
1.9199E 00	1,1000# 02	3.62415-04	1.58346-01	9.8853E-01	301
1.9199E 00 2.0071E 00	1.15008 02	3.61776-04	1.58528-01	9.8967E-01	306
2.0944E 00	1.20006 02	3.6301E-04	1.58708-01	9.90776-01	311
2.1817E 00	1.2500E 02	3.68608-04	1.58876-01	9.91826-01	316
2.26898 00	7.3000F 05	3.79256-04	1.59036-01	9.9284E-01	-351
2.35426 00	1.3500E 02	3.96056-04	1.59198-01	9.93825-01	326
2.44358 00	1.4000E 02	4.18636-04	1.59348-01	9.9476E-01	331 336
2.53070 00	1.4500E 02	4.48186-04	1.5948E-01	9.95666-01	
2.6180E 00	1.50008 02	4.84158-04	1.59628-01	9.96516-01	341
2.7053E 00	1.5500E 02	5.3241E-04	1.59758-01	9.97318-01	346
2.7925E 00	1.4000E 02	6.04236-04	1.5986E-01	9,98051-01	151
2.87988 00	1.4500E 02	7.42648-04	1.59976-01	9.98735-01	356
2.9671E 00	1.7000E 02	9.93598-04	1.6007E-01	9.99368-01	361
3.0543E 00	1.7500# 02	1.11SHE-03	1.6015E-01	9. 99A3E-01	366
3.1416E OU	1.8000# 02	1.14546-03	1.60188-01	1.0000E 00	371

Figure D-72. Volume scattering function (sheet 3 of 3).

Figure D-73. Volume scattering function (sheet 1 of 3).

5.9352E-04

4.1206E-04

A.A.BORE-DA

8.14536-04

1.0112E-03 1.0939E-03

	DATA RI	EAD IN		ITERAT	EN DATA	
	ANGLE (DEG)	SIGMA	INSTR=0	ANGLE (1/EG)	SIGMA	
			HAND=1			
1	0.1750	1.37008 02	0	0.1750	1.3017E 02	
2	0.3500	4.4000E 01	O	0.3500	6.8731E.01	
3	0.7000	1.92008 01	0	0.7000	1.8243E 01	
è	10.00	1.11936-01	0	10.00	1.1193E-01	
	15.00	5.7907E=02		15.00	5.79075-02	
6	20.00	3.08456-02	0	20.00	3.0845E-U2	
7	25.00	1.90948-02	Ŏ	25.00	1.90946-02	
À	30.00	1.23208-02	Ŏ	30.00	1.23208-02	
- 2	40.00	6.07176-03	ō	40.00	6.07178-03	
10	50.00	3.36136-03	Õ	50.00	3.36136-03	
11		2.05348-03	ŏ	6U.DU	2.05345-03	
12	70.00	1.36458-03	0	70.00	1.36456-03	
13	80.00	9.75928-04	Ŏ	80.00	9.75928-04	
14	90.00	7.49845+04		80-00	7.59956-04	
15	100.0	6.22288-04	O.	100.0	6.22285-04	
16	110.0	5.83438-04	ŏ	110.0	5.83436-04	
17	120.0	3.752AE=04	ň	120-0	5.752A#=04	

5.93528-04 6.12048-04

8.1453E-04

1.01126-03

130.0

140.0

140.0

160.0

170.0

21 22 23

520 16JUN75 2110 STA.CAT#6 - SEA H20 80M

	0.2291	S/ALPHA=			
	0.0997	8/5-	0.031		
CORRECTED	AL PHA	CORRECTION	500.00		-
	0.2309	S/ALPHA=			
	0.1019		0.031		
	O.O DEGREES!=	286.3			
SLOPE(U.L DEGREES) = 3 MILLIRAD) = 1 O.L DEGREES =	218.3 -1. 2.3978E		NURMAL12EO= 1_85643E-02	······································

00

0

0

130.0

140.0

140.0

160.0 170.0 180.0

	MU	RADIANS	DEGREES	
MEDIAN	0.9974	0.7276E-01	4.169	
MEAN 1	0.8471	0.4577	26.22	
VARIANCE	0.2947			
MEAN 2		0.2611	14.96	
RMS		0.5218	29.90	
RMS Z		0.4518	25.89	

Figure D-73. Volume scattering function (sheet 2 of 3).

			25	JUN 1976 071	26
				•	
	2110 STA.CAT#6				
ANGLE (RAD)	ANGLE (DEG)	SIGMA		NORM. INTEGRA	<u>L</u>
2.1972E-03	1.0000E-01	2.1828E 02	2.3978E-03	1.8564E-02	
2.19726-03	1.25896-01	1.87256 02	3.5300E-03	2.7331E-02	11
3.48246-03	1.5849E-01	1.4839E 02	5.01046-03	3,87926-02	21
4.38418-03	2.51196-01	7.79878 01	6.7828E-03	5.2515E-02	31
3.51926-03	3.1623E-01	5.62698 01	.8.8122E-03	6.8227E-02	41
6.94836-03	3.98118-01	4.0600E 01	1.3787E-02	8.6194E-02	- 51 -
A.7474E-03	5.0119E-01	2.9294E 01	1.68218-02	1.30246-01	71
1.1012E-02	6.3096E-01	2.1136E 01	2.02928-02	1.57106-01	ėί
1.38648-02	7.94338-01	1.5196E 01	2,42571-02	1.87818-01	- š i -
1.74536-02	1.0000E 00	1.06988 01	2.8731E-02	2.2244E-01	101
2.19728-02	1.25898 00	7.37698 00	3.36698-02	2.4067E-01	111
7.4626-02	1.5849E 00	4.99858 00	3.9016E-02	3.0207E-01	151
3.48246 -02	1.99536 00	3.3387E 00	4.47156-02	3.4620E-01	131
4.38415-02	2.51198 00	2.20538 00	3.07126-02	3.92636-01	131
5.51928-02	3.16236 00	1.4450E 00	5.6962E-02	4.4102E-01	
6.9483E-02	3-98118 00	9.0000#-01	6.3332E-02	4.9034E-01	161
9.7473E-02	3.01198 00	3.2527E-01	4.93946-02	2.3727E-01	171
1.1012E-01	6.30968 00	3.0078E-01	7.4925E-02	5.80098-01	181
1.38648-01	7.9433E 00 1.0000E 01	1.7692E-01 1.1193E-01	7.9987E-02 8.4854E-02	6.1928E-01 6.5697E-01	191
3.6180E-01	1.3000E 01	5.79076-02	9.4273E-02	7.2989E-01	201
3.49076-01	2.00006 01	3.08458-02	1.01156-01	7.83176-01	211
4.36338-01	2.5000E 01	1-90946-02	1.06216-01	6-2234E-01	216
5.2360E-01	3.00000 01	1.23206-02	1.1009E-01	8.5234E-01	221
6.1086E-01	3.5000E 01	8.47096-03	1.1309E-01	8.75566-01	226
6.98138-01	4.0000E 01	6.0717E-03	1.15486-01	8.9407E-01	231
7.8540E-01	4.5000E 01	4.46012-03	1.1740E-01	9.0898E-01	236
A.7266E-01	5.0000E Q1	3.3613E~03	1.18978-01	9.2109E-01	241
9,59936-01	5.5000E 01	2.59776-03	1.20258-01	9.3103E-01	246
1.04728 00	6.0000E 01	2.0534E-03	1.21326-01	9.39296-01	251
1.1345E 00	6.5000E 01	1.65916-03	1.22228-01	9.46238-01	256
1.30908 00	7.0000E 01	1.3645E-03	1.23636-01	9.52135-01	261 266
1.39638 00	8.0000E 01	9-75928-04	1.24196-01	9.5718E-01	200 271
1.4835E 00	5.5000E 01	8.54418-04	1.24696-01	9.6155E-01 9.6539E-01	276
1.37881 00	9.0000E 01	7.5995E-04	1.25136-01	9.68818-01	297
1.65815 00	9.5000E 01	6.80928-04	1.2552E-01	9.7185E-01	286
1.7453E 00	1.0000E 02	6.2228E-04	1.2588E-01	9.7459E-01	291
1.8326E 00	1.05008 02	3.9361E-04	1.2620E-01	9.7709E-01	296
1.9199# 00	1.1000# 02	5.8343E-04	1.2651E-01	9.7948E-01	301
2.0071E 00	1.1500E 02	5-7488E-04	1.2680E-01	9-8174E-01	30.6
		5.7526E-04	1.27086-01	9.8391E-01	311
2.18178 00	1.2500E 02	5.8430E-04	1.27356-01	9.8598E-01	316
2.26895 00	1.3000E 02	5.9352E-04 6.0276E-04	1.2761E-01 1.2785E-01	9.8796E-01 9.8953E-01	321
2.3562E 00	1.3500E 02	6.1206E-04	1.2807E-01	9.91586-01	326
2.53078 00	1.4500E 02	6.2613E-04	1.28286-01	9.9317E-01	331 _336
2.61606 00	1.5000E 02	6.6309E-04	1.28476-01	9.9464E-01	341
2.7053E 00	1.5500E 02	7.3024E-04	1.28648-01	9.93996-01	346
2.79256 00	1.60005 02	8.1453E-04	1.2880E-01	9.9725E-01	351
2.87988 00	1.65006 02	9.0731E-04	1.28958-01	9.98348-01	356
2.96718 00	1.7000# 02	1.01126-03	1.2906E-01	9.99226-01	361
3.05436 00	1.7500E- 02	1.0825E-03	1.29138-01	9,9980E-01	396
3.1416E DO	1.8000E 02	1.0939E-03	1.2916E-01	1.0000 € 00	371
PAUSE READY	PLOTTER				

Figure D-73. Volume scattering function (sheet 3 of 3),

Figure D-74. Volume scattering function (sheet 1 of 3).

520	17JUN7	5 1953 ST	A.CAT#7 - S	EA H20 80	•		1.,
	ANGLE	DATA RE		INSTR=0	•	TERATED DATA	
	ANGLE	(DEG)	SIGMA	HANDEL	ANGLE 10	EG) SIGMA	
1	0.17		1.5200E 0	2 0	0.1750	1.43586)2
2	0.35		4.5300E 0		0.3500	5-07648	
	0.70		1.2144E-0		10.00	1.7968F (
5	15.	00	5.55616-0	-	15.00	5.5561E-0	-
	- 20.		2.5655E-0		20.00	2.56558-0	
7	25.		1.53898-0		25.00	1.53898~(
8	37. 40.		1.0421E-0 5.1529E-0	-	40.00	1.0421E-0 5.1529E-0	
10	50.		2.65948-0		50.00	2.6594E-0	
11	60.		1.7268E-0		60.00	1.7268E-0	
12	70-		1.1612E~0		70-00	1.16125-0	
13 14	80. 90.		6.1209E-0		90.00 90.00	#.1209E-0	
13	100		5.7410E=0		100.0	5.74106=0	
16	110	• 0	5.3495E-0		110.0	5.3495E-C)4
17	120		5.1247E-0		120.0	5.1247E-0	
19	140		5.2809E-0 5.5459E-0		140.0	5.2809F=0 5.5459E=0	
20	150		6.1311E-0		150-0	6.13116-0	
21_	160		7.21198-0	<u> </u>	160.0	7.2119E-0	
53	170	• 0	8.9659E-0		170.0	8.96596~0	
23				1	180.0	9.6219E~0)4 _m 1
	ALPHA=	0.2304	S/AL	PHA= 0.5	17		
		0.1284	A/AL				
	A =	0.1020		B/S= 0.07	2.B		
COR	RECTED	AL PHA	CORRE	CT10N=0.00	2		
	ALPHA:	0.2325	S/AL	PHA= 0.5	2		
		0.1284	A/AL				
	<u>Au</u>	0.1041		B/S= 0.02			
		0.0 DEGRE		33.4			
		O <u>l Degre</u> 3 mil:Irai		-1.500	······································		
		0.1 DEGR		7647E-03	NORMA	.12ED= 2.15334E-0	·2
	MUM PAR		METER (MICRI		110.0 D DIFFUSE	ATTENUATION COEFF	ICIENT -
				ADTANS	DEGREE		
MEDI	ΔN	MU 0.9978		4D14N3 6655E-01	3.813	•	
MEAN		0.9096		4284	24.55		
	ANCE	0.2806			15 4		
MEAN RMS	2			2347 4903	13.44 28.09		
RMS	2			4305	24.66		
۔ پ	APPA=	0.1270	KAPP		€"		
			NAPPI		22776-03		

Figure D-74. Volume scattering function (sheet 2 of 3).

				5 JUN 1976 071	7.10
520 17JUN75	1953 STA.CATE7	- SEA H20 80	M		
ANGL S (RAD)	ANGLE (DEG)	STOMA	INTEGRAL	NORM. INTEGRA	r ,
1.7453E-03	1.0000E-01	2.4904E 02	2.7647E-03	2.1533E-02	1
2.19725-03	1.25896-01	2.1131E 02	4.0496E-03	3.15416-02	11
2.76626-03	1.5849E-01	1.6493E 02	5.70766-03	4.44556-02	21
3.48248-03	1.99538-01	1.1794E 02	7.65956-03	5.9657E-02	31
4.38416-03	2.51198-01	8.3493E 01	9.8525E-U3	7.67386-02	41
5.5192E-03	3.16236-01	5.9109E 01	1.23136-02	9.5903E-02	
6.9483E-03	3.9811E-01	4.1846E 01	1.50746-02	1.1741E-01	
8.7474E-03	5.0119E-01	2.9625E 01	1.81726-02	1.4153E-01	71
1.10126-02	6.3096E-01	2.09738 01	2.1647E-02	1.68606-01	81
1.3864E-02	7.9433E-01	1.48328 01	2.5545E=UZ	1.9897E=01	41
1.7453E-02	1.00000 00	1.04228 01	5.9903E-05	2.32916-01	101
2.1972# -02	1.2589E 00	7.2634E 00	3.47368-02	2.7054E-01	111
2.78628-02	1.5849E 00	3.01408 00	4.00485-05	3.1192E-01	121
3.4824E-02	1.9053E 00	3.42388 00	4.58286-02	3.5694E-01	131
4.3841E-02 5.5192E-02	2.7119E 00 3.1623E 00	2.3097E 00	5.2046E-02	4.0537E-01	141
6.9483E-02	3.1623E 00 3.9811E 00	1.5374E 00	5.6648E-02	4.5679E-01	151
6.7473E-02	5.01198 00	9.7132E-01 5.7585E-01	6.5471E-02 7.2065E-02	5.0993E-01 5.6129E-01	161
1.10128-01	6.3096E 00	3.3321E-01	7.8164E-02	6.08808-01	181
1.38646-01	7.94338 00	1.95758-01	8.37756-02	6.5250E=01	191
1.7453E-01	1.00COE OI	1.21446-01	8.91186-02	6.9411E-01	201
2.6180E-01	1.5000E 01	5.5561E-02	9.86438-02	7.68306-01	206
3.4907E-01	2.0000E 01	2.56556-02	1.0485E-01	8.1664E-01	211
4.3633E-01	2.5000E 01	1.53896-02	1.08975-01	8.4876E-01	عزن
5.2360E-01	3.0000E 01	1.04216-02	1.1216E-01	8.7361E-01	221
6.1086E-01	3.5000E 01	7.2513E-03	1.14726-01	8.9354E-01	226
6.9813E-01	4.0000E 01	5.1529E-03	1.1676E-01	9.0947E-01	
7.8540E-01	4.5000E 01	3.6213E-03	1.18376-01	9.21938-01	236
8.7266E-01	5.0000E 01	2.65948-03	1.1962E-01	9.3165E-01	241
9.5993E-01	5.5000E 01	2-1230F-03	1.20646-01	9.3966E-01	246
1.0472E 00	6.0000E 01	1.7268E-03	1.2153E-01	9.4657E-01	251
1.13458 00	6.5000E 01	1.4066E-03	1.2229E-01	9.5247E-01	256
1.2217E OC	7.00006 01	1.16128-03	1.2294E-01	9.5751E-01	561
1.3090E 00	7.5000E 01	9.6330E-04	1.2349E-01	9.61826-01	266
1.3963E 00	8.00008 01	8.1209E-04	1.2396E-01	9.6550E-01	271
1.4835E 00	8-5000E 01	7,2073E-04	1.2438E-01	9.68726-01	276
1.5708E 00	9.00000 01	6.6195E-04	1.2475E-01	9.7167E-01	281
1.6581E 00 1.7453E 00	9.5000E 01 1.0000E 02	6.1105E-04	1.2510E-01	9.7438E-01	286
1.8326E 00	1.05000 02	5.7410E-04 5.5149E-04	1.2542E-01 1.2572E-01	9.7689E-01 9.7922E-01	291 296
1.91998 00	1.1000E 02	5.3495E~04	1.26016-01	9.8144E-01	301
2.0071E 00	1.1500E 02	5.2020[-04	1.2627E-01	9.63516-01	306
2.09446 00	1.2000 02	5.1247E-04	1.26536-01	9.8347E-01	311
2.1817E 00	1.2500E 02	5.1722E-04	1.2676E-01	9.87316-01	316
2.26898 00	1.3000E 02	5.2809E-04	1.2699E-01	9.8909E-01	321
2.3562E 00	1.3500E 02	5.3990E-04	1.2721E-01	9.9076E-01	326
2.4435E 00	1.4000E 02	5.5459E-04	1.27416-01	9.92356-01	331
2.53074 00	1.4500E 02	5.7825E-04	1.2760E-01	9.4381E-01	336
2.6190E 00	1.5000E 02	6.1311E-04	1.2777E-01	9.95188-01	341
2.7.53E 00	1.5500E 02	6.5972E-04	1.2793E-01	9.96424-01	346
2.7925E 00	1.6000E 02	7.2119E-04	1.2808E-01	9.97366-01	351
2.8798E 00	1.65006 02	7.9890E-04	1.28206-01	9, 91526-01	356
7.9671E 00	1.7000E 02	8 • 9659E-04	1.2830E-01	9.9931E-01	361
3.0543E 00 3.1416E 00	1.7500E 02	9.5110E-04	1.2837E-01	9.9981E-01	366
4 . 14 14 4 (17)	1.80006 02	9.6219E-04	1.28396-01	1.0000£ 00	

Figure D-74. Volume scattering function (sheet 3 of 3).

Figure D-75. Volume scattering function (sheet 1 of 3).

Figure D-75. Volume scattering function (sheet 2 of 3).

2. The Land of the State of the said

520 17JUN75					
ANGLE (RAD)	ANGLE (DEG)	SIGMA	INTEGRAL	NORM. INTEGRAL	
1.7453E-03	1.0000E-01	6.9613E 02	7.79128-03	3.2005E-02	
2.1972E-03	1.2589E-01	5.8575E 02	1.1368E-02	4.6699E-02	11
2.7662E-03 3.4824E-03	1.5849E-01 1.9953E-01	4.5195E 02 3.1923E 02	1.59386-02	6.5471E-02	- 21
				8.730ZE-02	31
4.3841E-03	2.51196-01	2.23366 02	2.71536-02	1.11546-01	41
5.51928 -03 6.64838 -03	3-16238-01	1-56288 02	3.3696E-02	1.38428-01	- 81
0.74036-09	3.98115-01	1.09346 02	4104366-05	1.68236-01	91
8.7474E-03	5.01195-01	7.65048 01	4.89985-02	2.01285-01	71
1.10126-02	6.3096E-01	5.3528E 01	5.79208-02	2.37938-01	- 11
1.38646-02	7.94336-01	3.73768 01	6.7809E-02	2.78552-01	91
1.74538-02	1.0000E 00	2.5773E OL	7.86918-02	3.2325E-01	101
2.1972E-02	1.25898 00	1.7903E 01	9.04928-02	3.7173E-01	111
2.7662E-02	1.5849E 00	1.1689E 01	1.03096-01	4.23486-01	121
3.4824E-02	1.99538 00	7.666BE 00	1.1630E-01	4.7775E-01	131
4.38418-02	2.51198 00	4.93128 00	1.29908-01	3.3362E-01	141
5.5192E-02	3.1623E 00	3.1060E 00	1.4362E-01	5.8998E-01	151
6.94838-02	3.9811E 00	1.8513E 00	1.57016-01	6.4498E-01	161
8.74738-02	5.0119E 00	1.03708 00	1.6923E-01	6.9518E~O1	171
1.1012E-01	6.30968 00	5.6785E-01	1.79926-01	7.3909E-01	181
1.38646-01	7.94336 00	3.16216-01	1.89236-01	7.7735E-01	191
1.7453E-01	1.00000 01	1.86271-01	1.97648-01	8.1189E~01	201
2.61806-01	1.5000E 01	7.5997E-02	2.11556-01	8.6904E-01	206
3.4907E-01	2.0000E 01	3.37926-02	2.19916-01	9.03356-01	211
4.36338-01	2.50008 01	1.7357E-02	2.24946-01	9.2402E-01	216
5.2360E-01	3.0000E 01	1.0616E-02	2.2836E-01	9.3807E-01	221
6.1086E-01	3.50000 01	7.0066E-03	2.3089E-01	9.4847E-01	226 231
6.90138-01	4.0000E 01	4.68836-03	2.3284E-01	9.5648E-01	231
7.8540E-01	4.5000E 01	3.5249E-03	2.3438F-01	9.62795-01	236
8.7266E-01	5.0000E 01	2.6114E-03	2.3560E-01	9.6783E-01	241
9.5993E-01	5.5000E 01	1.98728-03	2.36598-01	9.71898-01	246
1.0472E 00	6.0000E 01	1.54508-03	2.3740E-01	9.75226-01	251
1.1345E 00	6.5000E 01	1.2165E-03	2.3807E-01	9.77966-01	256
1.2217E 00	7.0000E 01	9.73096-04	2.38624-01	9.80226-01	261
1.3090E 00	7.5000E 01	8.03376-04	2.39086-01	9.82126-01	266
1.3963E 00	8.0000E 01	6.8673E-04	2.3948E-01	9.8375E-01	271
1.4835E 00	8.5000E 01	6.1070E-04	2.39836-01	4.85198-01	276
1.57086 00	9.0000E 01	5.64476-04	2.40156-01	9.86516-01	281 .
1.6581E 00	9.5000E 01	5.32466-04	2.4045E-01	9.8774E-01	286
1.7453E OU	1.0000E 02	5.0797E-04	2.40736-01	9.8890E-01	291
1.8326E 00	1.03008 02	4.8898E-04	2.4100E-01	9.89996-01	296
1,91996 00	1.10008 02	4.73068-04	2.41255-01	9.91035-01	301
2.00716 00	1.15006 02	4.60698-04	2.4148E-01	9.9200E-01	306
2.09446 00	1.2000E 02	4.5353E-04	2.4171E-01	9.9291E-01	311
2,1817E 00	1.2500E 02	4.55286-04	2.419ZE-01	9.93778-01	316
2.26898 00	1.30008 02	4.6251E-04	2.42126-01	9.94596-01	321
2.35628 00	1.3500E 02	4.7230E-04	2.4230E-01	9.9536E-01	326
2.44358 00	1.4000E 02	4.8786E-04	2-42488-01	9.96108-01	331
2.5307E 00	1.4500E 02	5.1572E-04	2.42656-01	9.9678E-01	336
2.61806 00	1.5000E 02	5.7069E-04	2-42816-01	9.9743E-01	341
2.7053E 00	1.5500E 02	6.4943E-04	2.4296E-01	9.9806E-01	246
2.79258 00	1.6000E 03	7.3477E-04	2.4311E-01	9.98666-01	351
2.8798E 00	1.6500E 02	8.29826-04	2.43236-01	9.99198-01	356
2,96718 00	1.7000E 02	9.3407E-04	2.43345-01	9.9961E-01	361
3.05436 00	1.7500E 02	1.00726-03	2.4341E-01	9.9990E-01	366
3.1416E 00	1.8000E 02	1.0190E-03	2.4343E-01	1.0000E 00	371
PAUSE READY	PLOTTER				

Figure D-75. Volume scattering function (sheet 3 of 3).

Figure D-76. Volume scattering function (sheet 1 of 3).

Figure D-76. Volume scattering function (sheet 2 of 3).

4.3534E-02 RADIANS++2

THETA+M2 BAR

520 17JUL75	2115 STA.CAT#	15 - SEA H20	1 5M		
ANGLE (RAD)	ANGLE (DEG)	\$104A		NORM INTEGRA	L
1.74536-03	1.00008-01	9.60906 02	1.0699E-02	2.1953C-02	
2.19726-03	1.25898-01	8.2665E OZ	1.57126-02	3.223RE-02	11
2.7662E-03	1.58496-01	6.5016E 02	2.2222E-02	4.5597E-02	21
3.48248-03	1.99536-01	4.6991E 02	2.99566-02	6.1464E-02	31
4.3841E -03	2.51198-01	3.3674E 02	3.87486-02	7.9504E-02	41
5-51924-01		2.6131E 02	4.8733E-02	9.9992E-02	
6.9483E-03	3.98118-01	1.7292# 02	6.00748-02	1.23266-01	61
R.74748-03	5.01198-01	1.23014 05	7.29548-02	1.49698-01	71
<u> 1 = 1015E -05</u>	6-30966-01		8-7582E-02	<u> 1.79708-01</u>	<u>∳}</u>
1.36648-02	7.94336-01	6.3681E 01	1.04208-01	2.13808-01	91
1.7453E-02 2.1972E-02	1.0000E 00	4.5844E 01 3.2979E 01	1.23128-01 1.44718-01	2.52636-01	101
2.76628-02	1.58498 00	2.35728 01	1.69261-01	- 2.9693E-01 3.47383-01	-121-
3.48248-02	1.99536 00	1.6645E 01	1.96918-01	4.0403E-01	131
4.38416-02	2.5119E 00	1.1546E C1	2.2759E-01	4.66988-01	141
5.51928-02	3.16236 00	7.82256 00	2.6092E-01	5.35366-01	151
6.94638-02	3.98118 00	4.9362E 00	2.95696-01	6.06728-01	161
8.74738-02	5.01198 00	2.8379E 00	3.2880E-01	6.7463E-01	
1.10126-01	6.3096E 00	1.5357E UO	3.57986-01	7.3451E-01	181
1.38646-01	7.94336 00	8.07976-01	3 - R258E-01	7.84995-01	191
1.74536-01	1.0000E 01	4.2699E-01	4.03058-01	8-2699E-01	201
S-91806-01	1.50008 01	1.36308-01	4-31128-01	6.84594-01	509
3.4907E-01	2.0000E 01	6.2800E-02	4-46178-01	9.15476-01	211
4.3633 1 -01	2.5000E 01		<u> </u>	9.3596E-01	<u> </u>
5.23A0E-01	3.00002 01	2.0856E-02	4.63146-01	9.50296-01	221
A.1086E-01	3.50008 01	1.36818-02	4.68086-01	9.60436-01	556
6.9813E-01 7.8540E-01	4.5000E 01	9.3629E-03 6.0975E-03	4.7469E-01	9.6821E-01 9.7399E-01	231
7.7266E-01	5.0000E 01	4.1331E-03	4.7671E-01	9.78136-01	236 241
9.5993E-01	5.5000E 01	3.03048-03	A. 7825E-01	9.61298-01	240
1.0472E 00	6.00008 01	2.30336-03	4.7947E-01	9.83798-01	251
1.13456 00	6.5000E 01	1.80158-03	4.80465-01	9.85828-01	256
1.22176 00	7.0000E U1	1.43798-03	4.8127E-01	9.97498-01	261
1.3090# 00	7.50000 01	1.16838-03	4.81958-01	9.8888E-01	266
1.3963E 00	8.0000E 01	9.6234E-04	4.82526-01	9.90056-01	271
1.4435# 00	8-5000E U1	8.00138-04	4.82998-01	9.9103E-01	_276
1.57088 00	9.0000E 01	6.77478-04	4.83408-01	9.91866-01	281
1.45818 00	9.5000E 01	6.2012E-04	4.83758-01	9.9258E-01	586
1.8326E 00	1.05000 02	3.9582E-04	4.8408E-01 4.8439E-01	9.9324E-01	291
1.91995 00	1.10008 02	5.42956-04	4.8468E-01	9.9389E-01 9.9449E-01	301
2.00718 00	1.15008 02	5.3558E-U4	4.84956-01	9.9504E-01	306
2.09448 00	1.20006 02	3.3582H-04	4.85218-01	9.93588-01	311
2.1817E 00	1.25005 02	5.3735E-04	4.8546E-01	9.9609E-01	316
2.2689E 00	1.30008 02	5.4339E-04	4.8570E-01	9.96576-01	321
2.33628 00	1.35006 02	5.6935E-04	4.85928-01	9.9703E-01	326
2.4435E 00	1.4000E 02	6.0898E-04	4.86148-01	9.97488-01	331
2.53074 00	1.4500E 0Z	6.58776-04	4.04358-01	9.97915-01	334
2.61806 00	1.50000 02	7.13278-04	4.86558-01	9.98326-01	341
2.7053E 00	1.5500E 02	7.8179E-04	4.8674E-01	9.9871E-01	346
2.7925E 00	1.60000 02	0.6531E-04	4-8691E-01	9-99076-01	
2.8798E 00	1.65006 02	1.06998-03	4.87074-01	9.99366-01	356
2.9671E 00 3.0543E 00	1.7000# 02 1.7500E 02	1.4759E-03 1.6577E-03	4.8722E-01 4.8733E-01	4-4445E-07	361
3.1416E 00	1.80000 02	1.7104E-03	4.87376-01	1.0000 00	366 371

Figure D-76. Volume scattering function (sheet 3 of 3).

Figure D-77. Volume scattering function (sheet 1 of 3).

52	0 17JUN75 21	24 STA.CAT#7 -	SEA HZ	0 10M	•		
	NA.	YA READ IN			TARR	TED DATA	
	ANGLE (DE			TR=0 ND=1	ANGLE (DEG)	\$1GMA	
1	0.1750	3.2500E	05	0	0.1750	3.19468 02	
5	0.3500	1.11000		0	0.3500	1.14848 02	
<u></u> .	30.00	4.2000E			10.00		
4	15.00	1.20246~	1. 7	ŏ	15.00	3.2127E=01 1.2026E=01	
á	20.00	5,17338-		<u> </u>	20.00	5.17318-02	
7	25.00	2.47798-		0	25.00	2.47798-02	
Ą	30.00	1.44706-		Q	30.00	1-44708-02	
<u>.</u>	20.00			_ •	<u> </u>	6.5140E-01	
10	50.00	3.2976E-	-	0	50.00	3.29766-03	
11	\$0.00 70.00	1,7969E- 1,160AE-		0	60.00	1,79698-03	
13	80.00	7.89148-		0	80.00	7.89148-04	
14	90.00	5,95268-		Ŏ	90.00	5.95268-04	
عد.	100.0	9.20118-			100.0	M-20118-04	
16	110.0	4.91898-		0	110.0	4.91898-04	
17	120.0	4.85432-		0	120.0	4.85438-04	
<u>18.</u> 19	140.0	5.3429E=		0	140.0	5.3429E-04	
20	150.0	6. Q745E-		ŏ	150.0	6.07458-04	
21	140.0	7.70048-		<u> </u>	140.0	7.70045=04	
23 22	170.0	1.2750E-	03	0	170.0 180.0	1.2750E-03 1.4746E-03	
	ALPHA- 0.35	78 5/4	LPHAS	0.816			
	5= 0.29		LPHA=	0.184			
	AH 0.06	<u> </u>	8/5=	0.012	-		
CO	RRECTED ALPH	A CORR	ECTION	=0.005			
	ALPHA= 0.36		LPHAN	0.805			
	\$= 0.29		LPHAM	0.195			
	A= 0.07	<u> </u>	8/5-	0.012			
	SIGNAL D.O.		731.8	-			
	SLOPE: 3 MI		.08326		NORMALIZE	D= 2.08395E-02	
	IMUM PARTICL	E DIAMETER (MIC			09.0 DIFFUSE ATTE	NUATION COEFFICIEN	T -
			RADIAN		DEGREES		
MED			.5006E	-01	3.327		
MEA			1041		17.43		
VAR Më ai		.1912	. 1568		8.984		
RMS			.3448		19.76		
RMS			3071		17.59		
	KAPPA= D	.1073 KAP	PA I m	2.45	915-03		

Figure D-77. Volume scattering function (sheet 2 of 3).

		2124 STA-CATE			NORM INTERPAL	
_	ANGLEIRAD	ANGLE (DEG)	SIGHA	INTEGRAL	NORM. INTEGRAL	
	1.7453E-03	1.0000E-01	3.49438 02	6.0M3ZE-03	2.08345-05	
	2.19726-03	1.25898-01	4.6749E 02	8.92186-03	3.0564E-02	11
	2.76626-03	1.58498-01	3.6627E 02	1.2597E=02	4.31536-02	21
	3. 1 KZ4E-03	1.94236-01	X-9353F OS	7.9445E-05	5.8039E-02	-31
	4.3841 2-03	2.51198-01	1.87398 02	2.18506-02	7.48546-02	41
	5.51926-03	3.16234-01	1.3340E 02	2.73886-02	9.38266-02	- 81-
-	6.94838-03	3.9811E-01	7.49628 01	3.3637E-02	1.15236-01	
	8.74748-03	5.01198-01	6.7601E 01	4.06866-02	1.39386-01	71
	1-10128-02	6.30968-01	4.81248 01	4.8640E-02	1.6663E-01	9.7
-	1.386648-02	7.94332-01	3.43138 01	3476161-02	1.41385-01	47
	1.74536-02	1.00008 00	2.46628 01	6.7804E-02	2.32288-01	101
	2.19728-02	1.2589E 00	1.77968 01	7.94426-02	2.72156-01	111
-	2.75628-02	1.58498 00	1.27488 01	9.27038-02	3.17586-01	121
	3.48246-02	1.99538 00	8.99356 00	1.07666-01	3.68808-01	131
	4.3841E-02		6.1947E 00	1.24168-01	4.25426-01	141
_			4.12956 00	1.41948-01	4.86248-01	131
	3.51926-02				5.48968-01	161
	6.94834-02	3.98118 00	2.61346 00	1.60256-01		171
_	0.74731-02	5.01198 00	1.97358 00	<u> </u>	6.10198-01	
	1.1012E-01	6.3096E 00	9.22518-01	1.94912-01	6.6770E-01	191
	1,38648-01	7.94336 00	5.39028-01	2.1043E-01	7.20898-01	191
_	1.7453E-01	1.00000 01		2.24910-01	7.70478-01	-241-
	2.61808-01	1,50006 01	1.20206-01	2.4814E-01	8.5014E-01	206
	5.49078-01	2.0000E 01	3.17336-02	2.6116E-01	8.94676-01	577
	4.36338-01	2.50000 01	2.4779E-02	2.6863E-01	9.2026E=01	-216 221
_	5.2360E-01	3.00000 01	1.44708-02	2.7339E-01	9.36566-01	
	6.1086E-01	3.50000 01	9.45118-03	2.76828-01	9.48316-01	226
	6.9813E-01	4.0000# 01	6.51608-03	2.79446-01	9.57286-01	
_	7. A3401 -01	4.5000E 01	4.58228-03	2.8146E-01	9.64228-01	231 236
	8.7266E-01	5.0000E 01	3.29768-03	2.83036-01	9-49408-01	241
	9.59938-01	5.30008 01	2.38648-03	2.8426E-01	9.73798-01	
-	1.04728 68	6.0000 01	1.79698-03	2.65218-01	9.7705E-01	251
	1.13458 00	6.5000# 01	1.43078-03	2.85998-01	9.79726-01	256
	1.22178 00	7.0000E 01	1.16068-03	7.8664E-01	9.81968-01	591
	1.30908 00	7.50008 01	4.50428-04	2.87198-01	9.63846-01	766
		5.000U# 01	7.69145-04	2.87656-01	9.8543E-01	271
				2.88056-01	9.86784-01	276
	1.48358 00	8.5000E 01	6.73228-04 5.9326E-04	2.88408-01	9.8797E-01	261
	1.57088 00	9.0000E 01			9.89048-01	286
	1.65AlE 00	9.50008 01	5.4711E-04	2.88718-01		291
_	1.74535 00	1.00006 03	3.20118-04	_ <u> </u>	9.90028-01	-291 -
	1.83266 .0	1.05008 02	5.02326-04	2.8927E-01	9.90968-01	-
	1.91998 00	1.1000E 02	4.91898-04	2.8953E-01	9.91858-01	301
	2.00715 (0	1.1500E 02	4.07508-04	2.89788-01	9-92708-01	300
_	2.0944E 00	1.2000E 02	4.85438-04	2.9001E-01	9.9351E-01	311
	2.1817E 00	1.25008 02	4.8470E-04	2.90246-01	9.9428E-01	316
	2.26898 00	1.30008 02	4.8841E-04	2.90456-01	9.9500E-01	321
_	2.35628 00	1.35000 02	5.0618E-04	2-90658-01	9.95698-01	326
	2.44358 00	1.4000E 02	5.3429E-04	2.90846-01	9.96356-01	331
	2.53078 00	1.4500E 02	5.6730E-04	2.9102E-01	9,9698E-01	336
_	2.41808 00	1.50000 02	6.07451-04	2.9120E-01	9.97576-01	341
	2.7053E 00	1.55008 02	6.6944E-04	2.9136E-01	9.9812E-01	346
	2.7925E 00	1.60006 02	7.70048-04	2.91518-01	9.98638-01	
-	2.87988 00	1.65000 02	9.53028-04	-2.4169E-01	9.99111-01	351
		1.70000 02	1.27508~03	2.9178E-01	9.99556-01	361
			1.43236-03	2.91878-01	9.99888-01	366
-	3.65438 00		1.47462-03	- 2. 9191E-01	1.00000 00	371
	3.14168 00	1.8000E 02	*** LAGE-03			

Figure 1)-77. Volume scattering function (sheet 3 of 3).

Figure D-78. Volume scattering function (sheet 1 of 3).

12 70.00 1.4614E-03 0 70.00 1.4614E-03 13 80.00 1.0676R-03 0 80.00 1.0676E-03 14 90.00 8.1827R-06 0 90.00 8.1827E-06 15 100.0 6.6664E-04 0 100.0 6.6664E-04 16 110.0 6.1603E-04 0 110.0 6.1603E-04 17 120.0 6.0077E-04 0 120.0 6.007F-04 18 130.0 6.1264E-04 0 130.0 6.1264E-04 19 140.0 4.5809E-04 0 140.0 6.5809E-04 20 140.0 7.2713E-04 0 150.0 7.2713E-06 21 160.0 8.4543E-04 0 150.0 7.2713E-04 22 170.0 9.3990E-04 0 170.0 9.3990E-04 23 1 160.0 8.4543E-04 0 160.0 8.4343E-04 24 140.0 4.5809E-04 0 170.0 9.3990E-04 25 170.0 9.3990E-04 0 170.0 9.3990E-04 27 S= 0.1641 A/ALPHA= 0.627							
1 0.1750 1.9500E 02 0 0.1750 1.9538 02 2 0.3500 6.5000E 01 0 0.3500 6.6110E 01 3 0.7000 2.2800E 01 0 0.7000 2.2606E 01 4 10.00 1.4682E-01 0 10.00 1.4682E-01 5 15.00 5.9892E-02 0 15.00 5.9892E-02 6 20.00 3.3888E-02 0 20.00 1.3888E-02 7 25.00 2.2863E-02 0 25.00 2.3888E-02 9 40.00 1.3783E-02 0 30.00 1.3783E-02 9 40.00 3.7973E-03 0 40.00 6.7973E-03 10 50.00 3.4464E-03 0 70.00 1.4614E-03 11 60.00 2.0799E-03 0 60.00 2.0799E-03 12 70.00 1.4614E-03 0 70.00 1.4614E-03 13 80.00 1.0676E-03 0 80.00 1.0676E-03 14 90.00 8.1827E-04 0 80.00 8.1827E-04 15 100.0 6.6664E-04 0 100.0 6.6664E-04 16 110.0 6.1603E-04 0 110.0 6.6664E-04 16 110.0 6.1603E-04 0 110.0 6.1603E-04 17 120.0 6.007E-04 0 120.0 6.103E-04 19 140.0 6.5809E-04 0 140.0 6.5809E-04 10 140.0 6.5809E-04 0 140.0 6.5809E-04 20 140.0 7.2713E-04 0 150.0 7.2713E-06 21 160.0 8.4545E-04 0 160.0 8.4545E-04 22 170.0 9.3990E-04 0 140.0 6.5809E-04 23 140.0 7.2713E-06 0 150.0 8.4545E-04 24 140.0 6.5809E-04 0 140.0 6.5809E-04 25 160.0 8.4545E-04 0 160.0 8.4545E-04 26 140.0 8.4545E-04 0 160.0 8.4545E-04 27 160.0 8.4545E-04 0 160.0 8.4545E-04 28 160.0 8.4545E-04 0 160.0 8.4545E-04 29 170.0 9.3990E-04 0 170.0 9.3990E-04 20 140.0 8.4545E-04 0 160.0 8.4545E-04 21 160.0 8.4545E-04 0 160.0 8.4545E-04 22 170.0 9.3990E-04 0 170.0 9.3990E-04 23 160.0 8.4545E-04 0 160.0 8.4545E-04 24 160.0 8.4545E-04 0 160.0 8.4545E-04 25 170.0 9.3990E-04 0 170.0 9.3990E-04 26 160.0 8.4545E-01 0 160.0 8.4545E-04 27 160.0 8.4545E-01 0 160.0 8.4545E-04 28 160.0 8.4545E-01 0 160.0 8.4545E-02 29 170.0 9.3990E-04 0 170.0 9.3990E-04 20 140.0 8.4545E-01 0 160.0 8.4545E-01 20 160.0 8.4545E-01 0 16		_		-			
3 0.7000 2.2800E 01 0 0.7000 2.260E 01 4 10.00 1.4682E-01 0 10.00 1.4682E-01 5 15.00 5.9692E-02 0 15.00 5.9692E-02 6 20.00 3.3888E-02 0 26.00 3.3888E-02 7 25.00 2.2863E-02 0 26.00 3.3888E-02 8 30.00 1.3783E-02 0 30.00 1.3783E-02 9 40.00 4.795E-03 0 40.00 4.795E-03 10 50.00 3.4464E-03 0 50.00 3.4464E-03 11 60.00 2.0799E-03 0 60.00 2.0799E-03 12 70.00 1.6614E-03 0 70.00 1.4614E-03 13 80.00 1.0676E-03 0 80.00 1.0676E-03 14 90.00 1.0676E-03 0 80.00 1.0676E-03 15 100.0 6.6664E-04 0 100.0 6.6664E-04 16 110.0 6.1603E-04 0 110.0 6.1603E-04 17 120.0 6.0077E-04 0 120.0 6.0076E-03 18 130.0 6.1264E-04 0 120.0 6.0076E-04 19 140.0 6.5809E-04 0 120.0 6.0076E-04 19 140.0 6.5809E-04 0 140.0 6.5809E-04 20 150.0 7.2713E-04 0 150.0 7.2713E-04 21 160.0 8.4543E-04 0 150.0 7.2713E-04 22 170.0 9.3990E-04 0 170.0 9.3990E-04 23 ALPHA= 0.2647 S/ALPHA= 0.627 5.0.1661 A/ALPHA= 0.373 A= 0.0076 B/S= 0.026 CORRECTED ALPHA CORRESS A/ALPHA= 0.380 A= 0.1009 B/S= 0.026 MAXIMUM PARTICLE DIAMETER (MICRONS)= EXPECTED DIFFUSE ATTENUATION CORFFICIENT MEAN 1 0.9133 0.4196 24.04 MBDIAM 0.9133 0.4197 27.33		0.1750	1,4	500E 02		0.1750	1.93338 02
### 10.00	_				_		
\$ 15.00							
A 20.00 \$3888=02 0 20.00 \$3888=02 7 25.00 2.28638=02 0 25.00 2.28638=02 8 30.00 1.37838=02 0 30.00 1.37838=02 9 40.00 A.79758=03 0 40.00 6.79758=03 10 30.00 3.44648=03 0 50.00 3.44648=03 11 60.00 2.07998=03 0 60.00 2.07998=03 12 70.00 1.66148=03 0 70.00 1.46148=03 13 80.00 1.06768=03 0 80.00 1.06768=03 14 90.00 A.18278=04 0 80.00 1.06768=03 15 100.0 6.66648=04 0 100.0 6.66648=04 16 110.0 6.16038=04 0 110.0 6.66648=04 16 110.0 6.16038=04 0 110.0 6.10038=04 17 120.0 6.00778=04 0 120.0 6.10778=04 18 130.0 6.12648=04 0 130.0 6.12648=04 19 140.0 6.56098=04 0 140.0 6.56098=04 20 140.0 7.27138=04 0 140.0 6.56098=04 21 160.0 7.27138=04 0 150.0 7.27138=04 22 170.0 9.39908=04 0 170.0 9.39908=04 22 170.0 9.39908=04 0 170.0 9.39908=04 23 APHA= 0.2647 S/ALPHA= 0.620 ALPHA= 0.2647 S/ALPHA= 0.620 ALPHA= 0.2647 S/ALPHA= 0.373 A= 0.0076 B/S= 0.026 CORRECTED ALPHA CORRECYION=0.003 ALPHA= 0.2647 S/ALPHA= 0.620 SIGMAI 0.1 DEGREES: A/ALPHA= 0.323 A= 0.1009 B/S= 0.026 CORRECTED ALPHA CORRECYION=0.003 ALPHA= 0.2647 S/ALPHA= 0.620 SIGMAI 0.1 DEGREES: 3.84998=03 NORMALIZED= 2.345828=02 MAXIMUM PARTICLE DIAMETER (MICRONS)= 113.0 EXPECTED K/ALPHA= 0.323 ANAIMUM PARTICLE DIAMETER (MICRONS)= 113.0 EXPECTED K/ALPHA= 0.4267 SIGMAI 0.1 DEGREES: 3.84998=03 NORMALIZED= 2.345828=02 MAXIMUM PARTICLE DIAMETER (MICRONS)= 113.0 EXPECTED K/ALPHA= 0.4267 SIGMAI 0.1 DEGREES: 3.84998=03 NORMALIZED= 2.345828=02 MAXIMUM PARTICLE DIAMETER (MICRONS)= 113.0 EXPECTED K/ALPHA= 0.4267 SIGMAI 0.1 DEGREES: 3.84998=03 NORMALIZED= 2.345828=02 MAXIMUM PARTICLE DIAMETER (MICRONS)= 113.0 EXPECTED K/ALPHA= 0.4264 EAN 0 0.4277 27.33							
7 25.00 2.28638-02 0 25.00 2.28638-02 6 30.00 1.37838-02 0 30.00 1.37838-02 0 30.00 1.37838-02 0 30.00 1.37838-02 0 30.00 1.37838-02 0 40.00 6.78735-03 0 40.00 6.78735-03 10 50.00 3.44645-03 0 50.00 3.44645-03 11 60.00 2.07998-03 0 60.00 2.07998-03 12 70.00 1.46148-03 0 70.00 1.46148-03 13 60.00 1.06768-03 0 80.00 1.06768-03 14 90.00 8.18278-04 0 10.00 6.6648-04 15 100.0 6.6648-04 0 100.0 6.6648-04 15 100.0 6.6648-04 0 110.0 6.6648-04 16 110.0 6.16038-04 0 110.0 6.16038-04 17 120.0 6.00778-04 0 120.0 6.16038-04 17 120.0 6.00778-04 0 120.0 6.12648-04 19 140.0 6.38098-04 0 130.0 6.12648-04 19 140.0 6.38098-04 0 140.0 6.38098-04 140.0 6.38098-04 0 140.0 6.38098-04 20 140.0 7.27138-04 0 150.0	-				-		
### 0.000	7						
10	-						
11							
12 70.00 1.4614E-03 0 70.00 1.4614E-03 13 80.00 1.0676R-03 0 80.00 1.0676E-03 14 90.00 8.1877E-06 0 90.00 1.0676E-03 15 100.0 6.664E-04 0 100.0 6.664E-04 16 110.0 6.1603E-04 0 110.0 6.1603E-04 17 120.0 6.0077E-06 0 120.0 6.0077E-06 18 130.0 6.1264E-04 0 130.0 6.1264E-04 19 140.0 6.3809E-04 0 140.0 6.5809E-04 20 140.0 7.2713E-06 0 150.0 7.2713E-06 21 160.0 8.4543E-04 0 160.0 8.4343E-04 22 170.0 9.3990E-04 0 170.0 9.3990E-04 23 1 160.0 8.4543E-04 0 160.0 9.3990E-04 24 1 1.00 9.3990E-04 0 170.0 9.3990E-04 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	20.00	2.4	4096-03	0	50.00	3.44646-03
13 80.00 1.0676E-03 0 80.00 1.0676E-03 14 90.00 8.1827#=06 0 90.00 8.1827#=06 15 100.0 6.6664E-04 0 100.0 6.6664E-04 16 110.0 6.1603E-04 0 110.0 6.1603E-04 17 120.0 6.0077E-04 0 120.0 6.0077E-06 18 130.0 6.1264E-04 0 130.0 6.1264E-04 19 140.0 6.5809E-04 0 140.0 6.5809E-04 20 140.0 7.2713E-06 0 140.0 7.2713E-06 21 160.0 8.4545E-04 0 150.0 7.2713E-06 22 170.0 9.3990E-04 0 170.0 9.3990E-04 23 170.0 9.3990E-04 0 170.0 9.3990E-04 23 1 100.0 8.4545E-04 0 160.0 8.4545E-04 24 1 100.0 8.4545E-04 0 160.0 9.7773E-04 ALPHA= 0.2617 \$/ALPHA= 0.627 \$= 0.1661 A/ALPHA= 0.373 A= 0.0976 B/S= 0.026 GORRECTED ALPHA GORRECTION=0.003 ALPHA= 0.2647 \$/ALPHA= 0.620 \$= 0.1661 A/ALPHA= 0.380 A= 0.1005 B/S= 0.026 SIGMAI 0.0 DEGREESIE 9467.9 SIGMAI 0.1 DEGREES = 344.0 SLOPEI 3 MILLIRADI = -1.548 S UP TO 0.1 DEGREES = 3.8499E-03 NORMALIZED= 2.3498EE-02 MAXIMUM PARTICLE DIAMETER (MICRONS) = 113.0 EXPECTED K/ALPHC = 0.4619 EXPECTED DIFFUSE ATTENUATION CONFFICIENT MU RADIANS DEGREES MEDIAN 0.9979 0.4648E-01 3.4694 MEDIAN 0.9979 0.4649E-01 3.4694 MEDIAN 0.9979 0.4649E-01 3.4694 MEDIAN 0.9979 0.4649E-01 3.4694	11	60.00	2.0	7998-03	0	60.00	2.07998-03
13 80.00 1.0676E-03 0 80.00 1.0676E-03 14 90.00 8.1827#=06 0 90.00 8.1827#=06 15 100.0 6.6664E-04 0 100.0 6.6664E-04 16 110.0 6.1603E-04 0 110.0 6.1603E-04 17 120.0 6.0077E-04 0 120.0 6.0077E-06 18 130.0 6.1264E-04 0 130.0 6.1264E-04 19 140.0 6.5809E-04 0 140.0 6.5809E-04 20 140.0 7.2713E-06 0 140.0 7.2713E-06 21 160.0 8.4545E-04 0 150.0 7.2713E-06 22 170.0 9.3990E-04 0 170.0 9.3990E-04 23 170.0 9.3990E-04 0 170.0 9.3990E-04 23 1 100.0 8.4545E-04 0 160.0 8.4545E-04 24 1 100.0 8.4545E-04 0 160.0 9.7773E-04 ALPHA= 0.2617 \$/ALPHA= 0.627 \$= 0.1661 A/ALPHA= 0.373 A= 0.0976 B/S= 0.026 GORRECTED ALPHA GORRECTION=0.003 ALPHA= 0.2647 \$/ALPHA= 0.620 \$= 0.1661 A/ALPHA= 0.380 A= 0.1005 B/S= 0.026 SIGMAI 0.0 DEGREESIE 9467.9 SIGMAI 0.1 DEGREES = 344.0 SLOPEI 3 MILLIRADI = -1.548 S UP TO 0.1 DEGREES = 3.8499E-03 NORMALIZED= 2.3498EE-02 MAXIMUM PARTICLE DIAMETER (MICRONS) = 113.0 EXPECTED K/ALPHC = 0.4619 EXPECTED DIFFUSE ATTENUATION CONFFICIENT MU RADIANS DEGREES MEDIAN 0.9979 0.4648E-01 3.4694 MEDIAN 0.9979 0.4649E-01 3.4694 MEDIAN 0.9979 0.4649E-01 3.4694 MEDIAN 0.9979 0.4649E-01 3.4694	15	70-00	1_4	614E-03	0		
15 100.0 6.6664E-04 0 100.0 6.6664E-04 16 110.0 6.1603E-04 0 110.0 6.1603E-04 17 120.0 6.0077E-04 0 120.0 6.0077E-04 18 130.0 6.1264E-04 0 130.0 6.1264E-04 19 140.0 6.5809E-04 0 140.0 6.5809E-04 20 150.0 7.2713E-04 0 150.0 7.2713E-04 21 160.0 8.4543E-04 0 160.0 8.4543E-04 22 170.0 9.3990E-04 0 170.0 9.3990E-04 23 170.0 9.3990E-04 0 170.0 9.3990E-04 23 1 160.0 8.4543E-04 0 160.0 9.7173E-04 ALPHA= 0.2617 S/ALPHA= 0.627 S= 0.1661 A/ALPHA= 0.373 A= 0.0976 B/S= 0.026 CORRECTED ALPHA CORRECTION=0.003 ALPHA= 0.2647 S/ALPHA= 0.620 S= 0.1641 A/ALPHA= 0.380 A= 0.1005 B/S= 0.026 SIGMA(0.0 DEGREES)= 344.0 SLOPE(3 MILLIRAD)= -1.548 S UP TO 0.1 DEGREES= 3.8499E-03 NORMALIZED= 2.34582E-02 MAXIMUM PARTICLE DIAMETER (MICRONS)= 113.0 EXPECTED K/ALPH/= 0.4819 EXPECTED DIFFUSE ATTENUATION CORFFICIENT MU RADIANS DEGREES MEDIAN 0.9079 0.4648E-01 3.494 MEDIAN 0.9073 0.4496 VARIANCE 0.2706 MEAN 1 0.9133 0.4496 VARIANCE 0.2706 MEAN 2 0.2292 13.13 AMS	13	80.00	ã.c	6764-03	Ŏ	80.00	
15 110.0 6.1603E-04 0 110.0 6.1603E-04 17 120.0 6.0077E-04 0 120.0 6.0077E-06 18 130.0 6.1264E-04 0 130.0 6.1264E-04 19 140.0 6.5809E-04 0 140.0 6.5809E-06 20 140.0 7.2713E-04 0 150.0 7.2713E-02 21 160.0 8.4543E-04 0 160.0 8.4543E-04 22 170.0 9.3990E-04 0 170.0 9.3990E-04 23 1 180.0 9.7173E-04 ALPHA= 0.2617 S/ALPHA= 0.627 S= 0.1661 A/ALPHA= 0.373 A= 0.0976 B/S= 0.026 CORRECTED ALPHA CORRECTION=0.003 ALPHA= 0.2647 S/ALPHA= 0.620 S= 0.1661 A/ALPHA= 0.380 A= 0.1005 B/S= 0.026 SIGMAI 0.0 DEGREESI= 467.9 SIGMAI 0.1 DEGREES]= 344.0 SLOPEI 3 MILLIRADI= -1.548 S UP TO 0.1 DEGREES= 3.8499E-03 NORMALIZED= 2.3458ZE-02 MAXIMUM PARTICLE DIAMETER (MICRONS)= 113.0 EXPECTED K/ALPHC= Q.4819 EXPECTED DIFFUSE ATTENUATION CORFFICIENT MU RADIAN DEGREES MEDIAN 0.9979 0.6448E-01 3.6946	<u> </u>						
17 120.0 6.0077E-04 0 120.0 6.0077E-04 18 130.0 6.1266E-04 0 130.0 6.1266E-04 19 140.0 6.3809E-04 0 140.0 6.3809E-04 20 140.0 7.2713E-04 0 150.0 7.2713E-04 21 160.0 8.4343E-04 0 160.0 8.4343E-04 22 170.0 9.3990E-04 0 170.0 9.3990E-04 23 170.0 9.3990E-04 0 170.0 9.3990E-04 24 170.0 9.3990E-04 0 170.0 9.3990E-04 25 2 100.0 9.3990E-04 0 170.0 9.3990E-04 26 2 170.0 9.3990E-04 0 170.0 9.3990E-04 27 28 0.1661 A/ALPHA= 0.627 S= 0.1661 A/ALPHA= 0.373 A= 0.0976 B/S= 0.026 CORRECTED ALPHA CORRECTION=0.003 ALPHA= 0.2647 S/ALPHA= 0.380 A= 0.1005 B/S= 0.026 SIGMAI 0.0 DEGREESI= 467.9 SIGMAI 0.1 DEGREESI= 3.8499E-03 NORMALIZED= 2.3458ZE-02 MAXIMUM PARTICLE DIAMETER (MICRONS)= 113.0 EXPECTED K/ALPH/= 0.4819 EXPECTED DIFFUSE ATTENUATION CONFFICIENT MU RADIANS DEGREES MEDIAN 0.9979 0.6448E-01 3.494 WEAN 1 0.9133 0.4196 24.04 VARIANCE 0.2706 MEAN 2 0.477 27.37		_			-		
18 130.0 6.1264E-04 0 130.0 6.1264E-04 19 140.0 6.5809E-04 0 140.0 6.5809E-04 20 150.0 7.2713E-04 0 150.0 7.2713E-04 21 160.0 8.4343E-04 0 160.0 8.4343E-04 22 170.0 9.3990E-04 0 170.0 9.3990E-04 23 1 160.0 9.3990E-04 0 170.0 9.3990E-04 24 1 180.0 9.7173E-04 ALPHA= 0.2617 \$/ALPHA= 0.627 \$= 0.1641 A/ALPHA= 0.373 A= 0.0976 B/S= 0.026 CORRECTED ALPHA CORRECTION=0.003 ALPHA= 0.2647 \$/ALPHA= 0.620 \$= 0.1641 A/ALPHA= 0.380 A= 0.1005 B/S= 0.026 SIGNAI 0.0 DEGREESI= 947.9 SIGNAI 0.1 DEGREES= 344.0 SLOPEI 3 MILLIRADI= -1.548 \$= 0.100 DEGREES= 3.8499E-03 NORMALIZED= 2.34582E-02 MAXIMUM PARTICLE DIAMETER (MICRONS)= 113.0 EXPECTED K/ALPH/= 0.4819 EXPECTED DIFFUSE ATTENUATION CORFFICIENT MEDIAN 0.9979 0.648E-01 3.694 MEDIAN 0.9133 0.4496 24.04 VARIANCE 0.2706 MEAN 1 0.9133 0.4496 24.04 VARIANCE 0.2706 MEAN 2 0.4777 27.37						110.0	
19 140.0 6.5809E-04 0 140.0 6.5809E-04 20 150.0 7.2713E-06 0 150.0 7.2713E-06 21 160.0 8.4345E-04 0 160.0 8.4345E-04 22 170.0 9.3990E-04 0 170.0 9.3990E-04 23 1 180.0 9.7173E-04 ALPHA= 0.2617 \$/ALPHA= 0.627	16						
21 160.0 8.4343E-04 0 160.0 8.4343E-04 22 170.0 9.3990E-04 0 170.0 9.3990E-04 23 1 180.0 9.7173E-04 ALPHA= 0.2617 \$/ALPHA= 0.627 \$= 0.1641 A/ALPHA= 0.373 A= 0.0976 B/S= 0.026 CORRECTED ALPHA CORRECTION=0.003 ALPHA= 0.2647 \$/ALPHA= 0.380 A= 0.1005 B/S= 0.026 \$IGMAI 0.0 DEGREESI= 947.9 \$IGMAI 0.1 DEGREESS= 3.44.0 \$LOPE(3 MILLIRAD)= -1.548 \$SUP TO 0.1 DEGREES= 3.8499E-03 NORMALIZED= 2.3458ZE-02 MAXIMUM PARTICLE DIAMETER (MICRONS)= 113.0 EXPECTED K/ALPH/= 0.4819 EXPECTED DIFFUSE ATTENUATION CONFFICIENT MU RADIANS DEGREES MEDIAN 0.9079 0.448E-01 3.494 MEDIAN 0.9079 0.448E-01 3.494 MEDIAN 0.9073 0.4196 24.04	19	140.0	6.5	809E-04	•		
22 170.0 9.3990E-04 0 170.0 9.3990E-04 ALPHA= 0.2617							
ALPHA= 0.2617					_		
S= Q.1641 A/ALPHA= Q.373 A= 0.0976 B/S= 0.026 CORRECTED ALPHA	<u>"</u>	170.0	V. 3	A405-04	ĭ		
S= Q.1641 A/ALPHA= Q.373 A= 0.0976 B/S= 0.026 CORRECTED ALPHA		LPHAR 0.2	617	S/AL PI	HA= 0.627	,	
CORRECTED ALPHA CORRECTION=0.003 ALPHA= 0.2647							•
ALPHA= 0.2647		A= 0.0	976	В	/5= 0.026		
S= 0.1641 A/ALPHA= 0.380 A= 0.1009 B/S= 0.026 SIGMAL 0.0 DEGREES)= 344.0 SLOPEL 3 MILLIRAD= -1.548 S UP TO 0.1 DEGREES= 3.8499E-03 NORMALIZED= 2.3458ZE-02 MAXIMUM PARTICLE DIAMETER (MICRONS)= 113.0 EXPECTED K/ALPH/= 0.4819 EXPECTED DIFFUSE ATTENUATION CONFFICIENT MU RADIANS DEGREES MEDIAN 0.9070 0.6448E-01 3.694 MEAN 1 0.9133 0.4196 24.04 VARIANCE 0.2706 MEAN 2 0.2292 [3.13] AMS 0.4777 27.37	COAR	ECTED ALP	HA	CORREC	TION=0.003		
A= 0.1009 B/S= 0.026 SIGMAI 0.0 DEGREESI# 467.9 SIGMAI 0.1 DEGREES!# 344.0 SLOPEI 3 MILLIRAD!# -1.548 S UP TO 0.1 DEGREES# 3.8499E-03 NORMALIZED# 2.3458ZE-02 MAXIMUM PARTICLE DIAMETER (MICRONS)# 113.0 EXPECTED K/ALPH/= 0.4619 EXPECTED DIFFUSE ATTENUATION CONFFICIENT MU RADIANS DEGREES MEDIAN 0.9070 0.6448E-01 3.694 MEAN 1 0.9133 0.4196 24.04 VARIANCE 0.2706 MEAN 2 0.2292 [3.13] RMS 0.4777 27.37	A						
\$IGMAL 0.0 DEGREES) # 467.9 \$IGMAL 0.1 DEGREES) # 344.0 \$LOPEL 3 MILLIRAD) = -1.548 \$ UP TO 0.1 DEGREES # 3.84998-03 NORMALIZED # 2.34582F-02 MAXIMUM PARTICLE DIAMETER (MICRONS) # 113.0 EXPECTED K/ALPH/ = 0.4819 EXPECTED DIFFUSE ATTENUATION CORFFICIENT MU RADIANS DEGREES MEDIAN 0.9079 0.6448E-01 3.494 MEAN 1 0.9133 0.4196 24.04 VARIANCE 0.2706 MEAN 2 0.2292 [3.13] RMS 0.4777 27.37			<u>691</u>				
SIGMA O.1 DEGREES)		W= 0.1	009	9,	/3= U+U40		
SLOPE(3 MILLIRAD)							
S UP TO 0.1 DEGREES= 3.8499E-03 NORMALIZED= 2.3458ZE-02 MAXIMUM PARTICLE DIAMETER (MICRONS)= 113.0 EXPECTED K/ALPH/= 0.4619 EXPECTED DIFFUSE ATTENUATION CONFFICIENT MU RADIANS DEGREES MEDIAN 0.9979 0.6448E-01 3.694 MEAN 1 0.9133 0.4196 24.04 VARIANCE 0.2706 MEAN 2 0.2292 [3.13] RMS 0.4777 27.37				371			
### EXPECTED K/ALPH/ =				3.84		NORMALIZED	4 2.345B2E-02
MU RADIANS DEGREES MEDIAN 0.9079 0.6448E-01 3.694 MEAN 1 0.9133 0.4196 24.04 VARIANCE 0.2706 MEAN 2 0.2292 [3.13 MMS 0.4777 27.37	MAXIM	UM PARTICI	LE DIAMETER				
MEDIAN 0.9079 0.6448E-01 3.694 MEAN 1 0.9133 0.4196 24.04 VARIANCE 0.2706 MEAN 2 0.2292 [3.13 MMS 0.4777 27.37	- A - E - Y	TEN DAMPE			,		MALIUN CUEFFICIENT
VARIANCE 0.2706 MEAN 2 0.2292 [3.13 RMS 0.4777 127.37	MER- 4	. .		RAI	DIANS		
VARIANCE 0.2706 MEAN 2 0.2292 [3.13 RMS 0.4777 127.37	GEVAA	7	X: 3733		965-01	34.04	·····
MEAN 2 0.2292 [3.13						573V7	
RMS 0.4777 27.37 RMS 2 0.4191 24.01	MEAN			0.27	292	<u> </u>	
RM5 2 0.4191 24.01	AMS			0.4	117		
	RM5 2			0.43	191	24.01	•

Figure D-78. Volume scattering function (sheet 2 of 3).

····	·····		2	JUN 1976 0720	15.
520 18JUN75	2046 STA.CATHR	- SEA H20 8	OM .		
ANGLE (RAD)	ANGLE (DEG)	SIGMA	INTEGRAL	NORM. INTEGRAL	
1./4538-03	1.0000E-01	3.4348E 02	3.8499E-03	2.3458E-02	1
2 . 1972 E - 03	1.2589E-01	2.8944E 02	5.61746-03	3.42236-02	11
2.7662E-03	1.5849E-01	2.2335E 02	7.8755E-03	4.7987E-02	21
3.48246-03	1.9953E-01	1.57418 02	1.0505E-05	6.39908-02	31
4.3841E-03	2.51196-01	1.1049E 02	1.3420E-02	8.1768E-02	41
5.51928-03	3.1623E-01	7.7355E 01	1.6657E-02	1.01508-01	51
6.9483E-03 8.7474E-03	3.9F11E-01 5.0119E-01	5.4159E 01 3.7919E 01	2.0250E-02 2.4237E-02	1.2339E-01 1.4768E-01	61 71
1.10126-02	6.3096E-01	2.6548E 01	2.86608-02	1.7463E-01	81
1.38646 -02	7.94338-01	1.8802E 01	3.35698-02	2.0454E-01	- 91
1.74538-02	1.0000E 00	1.3088E 01	3-9033E-02	2.37838-01	101
2.19728-02	1.2589E 00	9.20568 00	4.51276-02	2.74978-01	iii
2.75526-02	1.58498 00	6.4330E 00	5.1902E=02	3.16256-01	121
3.4824E-02	1.9953E 00	4.4447E 00	5.9366E-02	3.6173E-01	131
4.3841E-02	2.5119E 00	3.0159E 00	6.7467E-02	4.1109E-01	141
5.5192E-02	3.1623E 00	1.99878 00	7.6078E-02	4.63558-01	151
6.94838-02	3.9811E 00	1.2574E 00	8.4920E-02	5.1743E-01	161
8.74738-02	5.0119E 00	7.4657E-01	9.3463E-02	5.6949E-01	$\frac{171}{181}$
1.1012E-01	6.3096E 00	4.3046E-01	1.01366-01	6.1762E-01	
1.3864E -01	7.9433E 00	2.41976-01	1.0856E-01	6.61456-01	191
1.74536-01	1.0000E 01	1.4682E-01	1-1519E-01	7.0185E-01	201
2.6180E-01	1.5000E 01	5.989ZE-02	1.2602E-01	7.67848-01	206
3.4907E-01	2.0000E 01	3.38866-02	1.3332E-01	6.12356-01	211
4.3633E-01	2.5000E 01	2.20636-02	<u> 1.3914E-01</u>	8.4780E-01	<u>šię</u>
5.2360E-01	3.0000E 01	1.3783E-02 9.5151E-03	1.4364E-01 1.4699E-01	8.7524E-01	221
6.1086E-01 6.9813E-01	3.5000E 01 4.0000E 01	6.7975E-03	1.49698-01	P.9567E-01 9.1206E-01	226 231
7.8540F-01	4.5000E 01	4.7623E-03	1.5180E-01	9.2493E-01	236
8.7266E-01	5.0000E 01	3.4464E-03	1.5343E-01	9.3488E-01	241
9.5993E-01	5.5000E 01	2.6152E-03	1.5473E-01	9.4282E-01	246
1.0472E 00	\$.0000E 01	2.07996-03	1.5581E-01	9.4937E-01	251
1.1345E 00	6.5000E 01	1.73066-03	1.5573E-01	9.5498E-01	256
1.2217E 00	7,0000E 01	1,4614E-05	1.5754E-01	9.5989E-01	261
1.3090E 00	7.50008 01	1.2424E-03	1.5824E-01	9.5418E-01	266
1.3963E 00	8.0000E 01	1-0676E-03	1.5886E-01	9.67948-01	271
1.4835E 00	8.5000E 01	9.2964E-04	1.5940E-01	9.7123E-01	276
1.5708E 00	9.0000E 01	8.1827E-04	1.5987E-01	9.7414E-01	281
1.6581E 00	9.5000E 01	7.2981E-04	1.6030E-01	9.7672E-01	286
1.7453E 00	1.0000E 02	6.6664E-04	1.6068E-01	9.7902E-01	291
1.8326E 00	1.0500E 02	6.3217E-04	1.61026-01	9.8113E-01	296
1.9199E 00	1.1000E 02	6.1603E-04	1.61356-01	9.8312E-01	301
2.0071E .CO	1.1500E 02	6.0552E-04	1.6166E-01	9.8500E-01	306
2.0944E 00 2.1817E 00	1.2000E 02 1.2500E 02	6.0077E-04	1.61956-01	9.8679E-01	311
2.2689E 00	1.3000E 02	6.1264E-04	1.6223E-01 1.6249E-01	9.8848E-01 9.9009E-01	316 321
2.35626 00	1.3500E 02	6.3210E-04	1.6274E-01	9.9162E-01	356
2.4435E 00	1.4000E 02	6.5809E-04	1.62985-01	9.9307E-01	331
2.5307E 00	1.4500F 02	6.8633E-04	1.6321E-01	9.9444E-01	336
2.6180E 00	1.5000E 02	7.2713E-04	1.6341E-01	9.9571E-01	341
2.7053E 00	1.5500E 02	7.8338E-04	1.6360E-01	9.9687E-01	346
2.7925E 00	1.6000E 02	8.4343E-04	1.6377E-01	9.9791E-01	351
2.8798E 00	1.6500E 02	8.9414E-04	1.6392E-01	9.9878E-01	356
2.9671E 00	1.7000E 02	9.3990E-04	1.6403E-01	9.9944E-01	361
3.0543E 00	1.7500E 02	9.6592E-04	1.6409E-01	9.9986E-01	366
3.1416E 00	1.80006 02	9.7173E-04	1.6412E-01	1.0000E 00	371

Figure D-78. Volume scattering function (sheet 3 of 3).

Figure D-79. Volume scattering function (sheet 1 of 3).

520	18JUN75 2122	STA.CATHO -	EA HZ	3 14M	·	• •		
		READ IN			3, 4	TERATED (NATA	
	ANGLE (DEG)	SIGMA	INSTI		ANGLE (SIGMA	
1	0.1750	3.2500E 02	2	0	0.1750		.2536E 02	
2	0.3500	1.1300E 0		ø	0.3500		1.1271E 02	
- 3 -	0.7000	3.9000E 01		0	<u> </u>		904AF UL	
4	10.00 15.00	1.5027E-01 5.7334E-01		ő	10.00 15.00		1.5027E-01 5.7334E-02	
_ 6	20.00	2.7682E-0		ŏ	20.00		7682E-02	
7	25.00	1.54776-0	?	0	25.00		.5477E-02	
ņ	30.00	9.71396-03		0	30.00		.71394-03	
<u> </u>	40-00	<u> 4.4245E-01</u>		<u> </u>	40-00		-4245E-03	-
10 11	50.00	2.5952E-03 1.2578E-03		0	50.00 60.00		.5952E-03	
12	60.00 70.00			0	70.00		72115=04	
13	80.00	5.6762E-04		0	62.00		. 6762E-04	
14	90.00	4.55366-04		ő	90.00		.5536E-04	
15	100.0	A.0358F=04		Δ	100-0		03585-04	
16	110.0	3.9044E-04		0	110.0	-	.9044E-04	
17	120.0	3.94078-04		0	120.0		-11715=04	
19	140.0	4.5062E-04		0	140.0		-5062E-04	
20	150.0	5.03458-04		ŏ	150.0		.0345E-04	
21		5.8923E=04		<u> </u>	140.0		98238+04	
22	170.0	8.6670E-04)	0	170.0	E	.6670E-04	
23				1	180.0	٩	.6432E-04	-
-	LPHA= 0.3776	S/ALF	HA= (.554				
	S= 0.2091	A/ALP		.446				
	A= 0.1685		789	013	<u></u>			
CORR	ECTED ALPHA	CORREC	TIUN=C	.005				
A	LPHA= U.3825	S/ALP	HA = C	.547				-
	S = 0.2091	A/ALH		.453				
	A- 0.1734	B	/S= C	.013				
	IGNAL 0.0 DEGI		6.0					
	IGMAL O.1 DEG		4.0					
	UP TO 0.1 DE	* 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1	-1.58 066E-0		MORMA	ALIZED- 3.	06413E-02	
	IUM PARTICLE D Ted K/Alpha=	IAMETER (MICRO 0.5515			12.0 DIFFUSE	ATTENUATI	ON COEFFIC	ENT
	M		DIANS		DEGREE	S	 	
MEDIA			7998-0	1	2.176			
MEAN VARIA			043	:	<u> 17.63</u>			
MEAN			412		8.092			
RMS	•		483		19.96			
RMS 2		0,3	184		18.24		2 · ·	
KA	PPA= 0.21	LO KAPPA) <u>u</u>	2.51	49E-03			

Figure D-79. Volume scattering function (sheet 2 of 3).

_				1.186 3.56	5 JUN 1976 0718	
	520 18JUN75			148,	•	
	ANGLE (RAD)	ANGLE (DEG)	SIGNA	INTEGRAL	NORM. INTEGRAL	
	1.7453E-03	1.00006-01	2.1394E 05	6.4066E-03	3.06418-02	
	2.19726-03	1.2589E-01	4.84348 02	9.3600E-03	4.47668-02	11
	2.76626-03	1.58498-01	3.7514E 02	1.3146E-02	6.28736-02	<u>-21</u>
	3.45246-05	1.99535-01	2.66226 02	1.75676-02	6.4019E-02	31
	4.3841E-03	2.51192-01	1.47206 02	2-2500E-02	1.07618-01	41
_	5.5192E -03 6.9483E -03 8.7474E -03	3.1623E-01 3.9811E-01	9.2558E 01	2.7998E-02	1:339 5-01	-51
	8.7474E -03	5.0119E-01	6.5084E 01	4.0953E-02	1.9587E-01	71
	1.10126-02	6.3096E-01	4.5765E 01	4.85638-02	2.32266-01	81
-	1.3864E-02	7.94338-01	3.21512 01	5.7041E-02	2.72818-01	" 91
	1.7453E-02	1.00006 00	2-2441E 01	4.6455E-02	3-17846-01	101
	Z. 1972E-02	1.25898 00	1.5473E 01	7.6810E-02	3.6736E-01	iii
_	2.7662E-02	1.5849E 00	1.0479E 01	8.8027E-02	4.2101E-01	121
	3.4824E-02	1.99538 00	6.9309E 00	9.99296-02	4.77936-01	131
	4.3841E-02	2.51198 00	4.4520E 00	1.1223E-01	5.3676E-01	141
_	5.5192E-02	3-1623E 00	2.76146 00	1.24546-01	5.9562E-01	131
	6.9483E-02	3.9811E 00	1.6170E 00	1.36326-01	6.5200E-01	161
	A.7473E-02	5.0119E 00	8.95876-01	1.4694E-01	7.02778-01	171
	1.101SE-01	6.30968 00	4.8482E-01	1.5612E-01	7.4670E-U1	181
	1.38645-01	7.94338 00	2.64566-01	1.6400E-01	7.8439E-01	191
	1.74538-01	1.000006 01	1.50276-01	1.70936-01	8-17505-01	201
	2.6180E-01	1.50001 01	5.7334E-02	1.8173E-01	8.59145-01	20.6
	3.49078-01	2.0000E 01	2.76826-02	1.8823E-01	9.00236-01	511
_	4.36336-01	2.5000E 01	1.5477E-02 9.7139E-03	1.9254E-01	9.20865-01 9.3563E-01	214
	5.2360E-01			1.9795E-01		
	4.1086E-01	3.5000E 01 4.0000E 01	6.3982E-03 4.4245E-03	1.99726-01	9.4673E-01 9.5520E-01	929
-	6.9813E-01 7.8540E-01	4.5000E 01	3.3390E-03	2.01136-01	9.6196E-01	<u>231</u> 236
	8.7266E-01	5.0000E 01	2.59526-03	2.02336-01	9.6767E-01	241
	9.59936-01	5.5000E 01	1.78348-03	2.03286-01	9.72218-01	246
_	1.04728 00	6.0000E 01	1.2578E-03	2.03968-01	9.7549E-01	231
	1.1345E 00	6.5000E 01	1.0388E-03	2.0451E-01	9.7813E-01	256
	1.2217E 00	7.0000E 01	8.72115-04	2.0500E-01	9.8045E-01	261
_	1.3090E 00	7.5000E 01	6.94216-04	2.05416-01	9.8240E-01	266
	1.39638 00	8.0000E 01	5.67626-04	2.05746-01	9.8400E-01	271
_	1.4835E 00	8.5000E 01	4.98826-04	2.0603E-01	9.8538E-01	276
	1.57088 00	9.0000E 01	4.55366-04	2.0629E-01	9.8662E-01	281
	1.6591E 00	9.5000E 01	4.2371E-04	2.0653E-01	9.8777E-01	286
_	1-7453 00	1.0000E 02	4-03586-04	2.0675E-01	9.8884E-01	<u> 291</u>
	1.83268 00	1.0500E 02	3.93985-04	2.06978-01	9.89866-01	296
	1.9199E 00	1.1000E 02.	3.90446-04	2.07176-01	9,9084E-01	301
_	2-0071E 00	1.20008 02	3.90856-04	2.0737E-01 2.0756E-01	9.9179E-01 9.9270E-01	306 311
	2.0944E 00 2.1817E 00	1.25000 02	3.9407E-04 4.0047E-04	2.07748-01	9.9358E-01	316
	2-2689E 00	1.3000E 02		2.0792E-01	9.9442E-01	
-	2.3562E 00	1.3500E 02	4.11715-04 4.2925E-04	2.08092-01	9.9523E-01	32 <u>1</u> 326
	2.4435E 00	1.4000E 02	4.50628-04	2.0825E-01	9.9601E-01	331
	2.5307E 00	1.4500E 02	4.75358-04	2.0841E-01	9.9675E-01	336
_	2.6180E 00	1.50000 02	5.0345E-04	2.0855E-01	9.9744E-01	341
	2.7053E 00	1.5500E 02	5.4178E-04	2.0868E-01	9.9807E-01	346
_	2.79256 00	1.6000E 02	5.98238-04	2.0880E-01	9.9864E-01	351
_	2.87986 00	1.6500E 02	6.9875E-04	2.0891E-01	9.99142-01	356
	2.9671E 00	1.7000E 02	8.6670E-04	2.09006-01	9.9958E-01	361
	3.0543E 00 3.1416E 00	1.7500E 02	9.4389E-04	2.0906E-01	9.99898-01	300
	3.1416E 00	1.8000E 02	9.6432E-04	2.09096-01	1.0000E 00	371

Figure D-79. Volume scattering function (sheet 3 of 3).

Figure D-80. Volume scattering function (sheet 1 of 3).

ţ

Figure D-80. Volume scattering function (sheet 2 of 3).

			25	JUN 1976 0723	.34
520 19JUN75	1719 "TA.CAT#	- SEA H20 7	e M		
ANGLE (RAD)	ANULE(DEG)	SIGMA	INTEGRAL	NORM. INTEGRAL	
1.7453E-03	1.000000	1.7609E 02	1.8918E-03	1.41136-02	1
2.19726-03	1.25896-01	1.5466E 02	2.8157E-03	2.10086-02	11
2.76628-03	1.58498-01	1.26778 02	4.0590E-03	3.02846-02	21
3.48248-03	1.99536-01	9.6158E 01	5.6051E-03	4-18196-02	31
4.3841E-03	2.5119E-01	7.2242E 01	7.44836-03	5.55726-02	41
5.5192E-03	3.16236-01	5.4275E 01	9.6431E-03	7.19476-02	51
6.9483E-03	3.98116-01	4.0776E 01	1.22566-02	9.1445E-02	61
8.74746-03	5.01196-01	3.0634E 01	1.53686-02	1-14666-01	71
1.1012E-02	6.3096E-01	2.30158 01	1.9073E-02	1.42306-01	81
1.38648-02	7,9433E-01	1.71788 01	2.34796-02	1.75.86-01	91
1.74536-02	1.00008 00	1.23398 01	2.45966-02	2.13366-01	101
2.1972E-02	1.25898 00	8.5456E 00	3.4311E-02	2.55995-01	111
2.766ZE-02	1.3849E 00	5.7500E 00	4.0488E-02	3.0208E-01	121
3.48248-02	1.99535 00	3.7871E 00	4.70008-02	3.5067E-01	131
4.3941E-02	2.51198 00	2.45996 00	5.37468-02	4.0100E-01	141
5.51928-02	3.16238 00	1.58776 00	6.06636-02	4.52608-01	151
6.94836-02	3.9811E 00	9.7280E-01	6.7608E-02	5.0442E-01	161
8.7473E-02	3.0119E 00	5.56286-01	7.4096E-02	5.52838-01	171
1.1012E-01	6.3096E UO	3.12228-01	7.98935-02	10-1006-6	181
	0120105 00	,,,,,,,,	, , , , , , , , , , , ,	34,73072 01	
1.38648-01	7.94338 00	1.80906-01	8.5107E-02	6.34986-01	191
1.74538-01	1.00008 01	1.1378E-01	9.00655-02	6.71978-01	201
2-61808-01	1.5000# 01	4.4557E-02	1.00118-01	7.4690E-01	206
			1.07218-01		
3-4907E-01	2.0000E 01	2.9066E-02	1.11918-01	7.9988E-01 8.3498E-01	211
4.36338-01		1.21296~02		8.6252E-01	
5.2360E-01	3.0000E 01		1.15608-01		221
6-1086E-01	3.5000F 01	7.9746E-03	1-10521-01	8.84288-01	-226
6.98136-01	4-0000E 01	5.4582E-03	1.20716-01	9.00598-01	
7.85408-01	4.5000E 01	4.3007E-03	1.22486-01	9.1386E-01	236
# . 7266E-01	3.0000E 01	3.44646-03	1-2405E-01	9-25548-01	341
9.59938-01	5.5000E 01	2.54366-03	1.2535E-01	9.35206-01	246
1.04728 00	6.0000# 01	1.93226-03	1.2637E-01	9.4281E-01	251
1.1345E 00	6.5000# 01	1.59496-03	1.27226-01	9.4915E-01	256
1.22178 00	7.0000E 01	1.3349E-03	1.2796E-01	9.54686-01	261
1.3090E 00	7.5000E 01	1.09936-03	1.2859E-01	9.59408-01	266
1.3963E 00	8.00000 01	9-2207E-04	1.29135-01	9.63428-01	271
1,44358 00	A-20005 01	8.0851E-04	1.2960E-01	9.6690E-01	276
1.5708E 00	9.0000E 01	7.2816E-04	1.30028-01	9.7005E-01	281
1.6581E 00	9.5000E 01	6-6540E-04	1.3040E-01	9.7288E-01	286
1.7453E 00	1.0000E 03	6.1836E-04	1.30756-01	9.7549E-01	291
1.63266 00	1.0500E 02	5.86446-04	1.31078-01	9.77888-01	296
1.91098 00	1.1000E 02	3.6349E-04	1.3137E-01	0.8013E-01	301
2.00718 00	1.1500E 02	5.45136-04	1.31656-01	9.82216-01	306
2.0944E 00	1.2000E 02	5-3981E-04	1.31916-01	9.84186-01	311
2.18178 00	1.25008 02	3.5097E-04	1.3216E-01	9.8605E-01	310
2.2689E 00	1.30008 02	5.6817E-04	1.32418-01	9.8787E-01	321
2.3562E 00	1.35008 02	. 5.8579E-04	1-3264E-01	9.8960E-01	326
2.44351 00	1.4000E 02	6.0898E-04	1.32868-01	9.91268-01	221_
2.53078 00	1.4500E 02	6.51628-04	1.3307E-01	9.9281E-01	336
2.6180E OC	1.5000E 02	7.09396-04	1.33276-01	9.9432E-01	341
2.70536 00	1.5500E 02	7.7513E-04	1.3346E-01	9.9570E-01	346
2.79258 00	. 1.6000E 02	6.59716-04	1.3363E-01	9.9699E-01	351
2.87988 00	1.4500E 02	9.97645-04	1.3378E-01	9.98115-01	356
2.96718 00	1.70005 02	1.21356-03	1.33916-01	9.9909E-01	361
3.05436 00	1.7500E 02	1.3190E-03	1.3400E-01	9.9975E-01	366
3.1416E 00	1.8000E 02			1.0000E 00	371

Figure D-80. Volume scattering function (sheet 3 of 3).

Figure D-81. Volume scattering function (sheet 1 of 3).

520	19JUN75	2000 STA	.CATA9 - SE	A H2O 18M	•	:	• '
		DATA REAL) IN	15	ITER	ATED DATA	
	ANGLE		SIGMA	INSTR=0	ANGLE (DEG)	SIGMA	
1	0.175		7.0000E 02	0	0.1750	7.0906E 02	
Ş	0.350		2.56008 02	0	0.3500	2.5142E 02	•
4	10.0		2.6126E-01	<u> </u>	10.00	2.61268-01	
5	15.0		1.06338-01	ŏ	15.00	1.06335-01	
<u>. Á</u>	20_0	0	4-54725-02		20.00	4-54728-02	
7	25.0 30.0		2.4912E-02 1.4726E-02	0	25.00 30.00	2.49126-08	
			4.21405-01	ŏ	30.00 0.00	1.4724E-02 6.2140E-03	
10	50.0		3.08758-03	0	50.00	3.08758-03	
11	60.0		1.7664#-03	0	60.00	1.76648-03	
12	70.0		1.1700E-03 8.2169E-04	<u>0</u>	70.00	1-1700E=01 8-2169E=04	
13	90.0	-	4.14448-04	0.	90.00	6.14462-04	
<u> </u>			A-80078=04		100-0	A.80078=0A	
16	110.		4.5741E-04	0	110.0	4.57416-04	
17	120.		4.86208-04	0	120.0	4.86208-04	
19	140.		5.42618-04		140.0	5.4261E=04	
20	150.		6.37848-04	Ŏ,	150.0	6.3784E-04	
٠	140.	<u> </u>	7.43975-04	A		7.43074-04	
23 23	170.	0	1.25918-03	ì	170.0	1.2591E-03 1.4464E-03	
,	LPHA- O		S/ALP				
		.4043	A/ALPI	HA= 0.24'			
CORR	ECTED A			T10N=0.01			
A	LPHA- D		STALP		-		
	S= 0	.4093	A/ALPI	100.0 = AH			
		<u> </u>		CALL MANN			
		.O DEGREES		47. 30.			
		MILLIRADI 0.1 DEGREE		-1.496 653E-02	NORMALIZE	10= 3.33548E-02	
	UM PART		TER (MICRO		110.0 DIFFUSE ATTE	NUATION COEFFICIE	NT -
		MU		DIANS	DEGREES		
MEDIA		0.9995		D49E-01	1.745		
MEAN.	NC.	0.1629	0.2	234			
MEAN		VI.VE7	0.1	115	6.389		
RMS	_		0.2		16:57	-	
RMS 2			0.80	65	15.27		, 4
KA	PPA	0.2021	KAPPA	1.	1828H-03		

Figure D-81. Volume scattering function (sheet 2 of 3).

						5 JUN 1976 0721	41.
520 19JUN	75 2000 STA	CATES .	- SEA H20	1 18M			
ANGLEIRA		•	SIGHA		EGRAL	NORM. INTEGRAL	
1.74538-			1.2299E C		53E-02	3.33558-62	1
2.19728~			1.04366		99E-02	4.88576-02	11
2.76628-	03 1.58491				676-02	6.88605~0	Žί
3.48241-	Ŏ <u>Ŏ</u> 1.6653				28E-02	9.24128-02	- 31
4.38418-					69E-UZ	1.18906-01	41
5.51921-					454-02	1-48648-01	
6.94838-	3.9811			7.45	196-02	1.82056-01	- \$}
8.7474E~					778-02	2.19578-01	71
1.10128-					12E-01	2.61706-01	01
1.3864E=					482-01	3.08988-01	- 91
1.74536~					84E-01	3.61178-01	101
2.19728~				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	73E-01	4.17096-01	iii
2.76622					58E-01	4.7536E-01	121
3.48246					79E-01	5.3450E-01	131
4.38416-					77E-01	5.9307E-01	141
3.51428					488-01	6.49788-01	131
6.94836-					73E-01	7.0290E-01	161
0.74738~					78E-01	7.49468-01	171
1.10128-			3450E-0		26-01	7.8864E-01	181
1.38646			4.5225E-0		33E-01	8.2165E-01	191
1.74536-			2.61266-0		10-01	8.50736-01	201
2.61806-		Ŏ	08338-0	1.47	161-61	8.98278-01	206
3.49078-			6.5472E-0	2 3.79	1E-01	9.26658-01	211
4.36331			2.49128-0		338-01	9.4380E-01	216
5,23608=	3 0000		47264-0		178-01	9.55638-01	221
6-1086E-			9.3195E-0		62E-01	9.6403E-01	226
A.98136-			-2140E-0		166-01	9.70248-01	231
7.85408 -		61	1.29928-0	3.00	07E-01	9.74918-01	236
8.72666-			-0875E-0		34E-01	9.78518-01	241
9.59938-		01	2.2875E-0		59E-01	9.81328-01	246
	00 6.0000	07	.76644-0		28-01	9.83596-01	23T
	00 6.50009		1.4230E-0	3 4.03	39E-01	9.85478-01	256
	00 7.0000		1.1700E-0	3 4.04	95-01	9.87076-01	261
	00 7.5000		7410E-0	4 4.04	50E-01	9.68436-01	266
	00 8.0000	01	3.2169E-0		08E-01	9.8960E-D1	271
1.4835E	00 8.5000	01	7.05916-0	4.05	49E-01	9.9061E-01	276
	00 9.0000	0)	5.1446E-0	4 4.05	6E-01	9.9150E-U1	281
1.65818	00 9.50008	01 !	5.39328-0	4.06	17E-01	9.9226E-01	286
1.7453E	00 1.00001		4.8007E-0		5E-01	9.9294E-01	291
1.03266	00 1.0500	02	4.52726-0	4.06	59E-01	9.9354E-01	296
1.91998	00 1,10008		4.5741E-0		3E-01	9.94126-01	301
	00 1.1500	02 4	71726-0	4 4.07	17E-01	9.9469E-01	306
	1.2000		.8620E-0		FOE-OI		311
	00 1.2500		.0075E-0		53E-01	9.9582E-01	316
	00 1.3000		3.1514E-0		156-01	9,96366-01	321
	00 1.3500		-ZABAE-0		06E-01	9.9687EOI	320
	00 1.4000		3.4261E-0		10-398	9.9736E-01	331
	00 1.4500	<u> </u>	- 4001E-0	4.08	45-01	9.97818-01	336
	00 1.50006		5-3784E-0		52E-01	9.9826E-01	341
	00 1.5500		-947RE-0		79E-01	9.98668-01	346
	00 1 00001	92	<u> </u>	9 9 05	(\$E-U)	9-99048-01	7.1
	00 1.6500		2860E-0)5E-01	9.99378-01	336
	1.7000		1.25916-0		116-01	9.99686-01	361
	00 1.7500E	02	.40438-0		10E-01	9.9401E=01	366 371
3.14166	1.8000	: Uz l		¥.	コマヒーバー	I . UUUUUE UU	2 / L

Figure D-81. Volume scattering function (cheet 3 of 3).

Figure D-82. Volume scattering function (sheet 1 of 3).

520 19JUN7	5 2024 STA.C	ATRO - SE	A H20 1M	a .		
· · · · · · · · · · · · · · · · · · ·	DATA READ			TTERAT	ED DATA	
	(DEG)	SIGHA	INSTR=0 HANDEL	ANGLE (DEG)	S I GMe	
1 0.17		.1900E 02	-	0.1790	1.16396 02	-
2 0.35		.4500E 01	0	0.3500	4.6509E 01	
4 . 10.		.6703E-01	D	10.00	1.6703E-01	
5. 15.	00 6	.29728-02	Ò	15.00	6.29728-02	
مِي مِي		**************************************		20-00	<u>2.65718=02</u>	
7 25.0		.4262E-02	0	25.00 30.00	1.4262E-02 8.6717E-03	
9 404		73716-03	ă	40.00	3.73718-03	
10 50.0		.96646-03	0	50.00	1.96648-03	
11 60.0		.1751E-03		60.00	1.17518-03	
12 700		# # # # # # # # # # # # # # # # # # #	<u>0</u>	70.00	7.8958K-06	
13 80.0		.4065E-04 .1985E-04		80.00 90.00	9.4065E-04 4.1985E-04	
19 100		70106-04		100-0	1.70398=04	
14 110	.0 3	·45386-04		110.0	3.45388-04	
17 120		.50208-04	Ö	750.0	3.50208-04	
19 140		.9206E-04		140.0	1.68396=04 1.9204E-04	
20 150		.27206-04		150.0	4.27208-04	
21		A2168-04		160-0	4-A21AE=0A	
22 170	0 7	.40127-04		170.0	7.4012E-04	
23			1	180.0	8.20436-04	**
ALPHA=		S/ALP				
	1444	AZALPI				
لسکھ نے مسمسسے	0000		/S=_0_01	<u></u>		
CORRECTED	L PHA	CORREC	T10N=0.002	•		
AL PHA	.2344	STALP	HA= 0.616)		-
	1444	A/ALP				
	0000		/s= 0.017	<u></u>		
SIGMAL	0.0 DEGREES)	w 23 ¹	9.6			
SIGMAL	1 DEGREES!	= 18	7.2			
	MI.LIRAD)= 0.1 DEGREES		+1.323 300E-03	NORMALIZED	- 1.405578-02	
MAXIMUM PAR	TICLE DIAMET	ER IMICRO	NS) =	101.0		
EXPECTED K/		-485A			UATION COEFFICIE	ΝT
	HU		DIANS	DEGAGES		
MEDIAN Mean 1	0.9978	0.3	629F-01	3.798	The state of the s	
VARIANCE	0.2250	V a D'	-	XXX		
MEAN 2		0.1	841	10.59		
RMS		2.3	966	22.73		
MS 2		0.3	513	20-15		
KAPPA=	0.1139	KAPPA	·- 3.2	3948-01	2.14	

Figure D-82. Volume scattering function (sheet 2 of 3).

			······································	5 JUN 1976 0725	10/
520 19JUN75	2024 STA.CAT#9	- SEA H20 1H	,	, ' '	
ANGLEIRADI	ANGLE (DEG)	SIGHA	INTEGRAL	NORM. INTEGRAL	
1 • 1423E =02	1.00008-01	1.4718E 05	S-0303E-03	1.40566-02	
2.1972F-03	1.25896-01	1.62728 02	3.00778-03	2.0822E-02	1
E0-95447.5	1.58498-01	1,31416 02	4,30616-03	2.9811E-02	_ 2
3.48248-03		9.7846E 01	5.8937E-03	4.080SE-05	3
4.3541E-03 5.5192E-03	2.51198-01	7.21448 01	7.75136-03	5.36626-02	•
6.04 436-03	3:981E-01	3.92218 01	9.9221E-03 1.2459E-02	8.62518-02	
8.74748-03	5.01192-01	2.8918E 01	1.54238-02	1.06776-01	7
1.10126-02	6.30966-01	2.1322E 01	1.88678-02	1.30756-01	8
1.38648-02	7.94338-01	1.37428 01	2.29368-02	1.58788-01	Ť
1.74538-02	1.00000 00	1.17028 01	2.76918-02	1.91708-01	10
2.1972E-02	1.25898 00	8.68538 00	3-32938-08	2,30496-01	11
Z.766ZE-0Z	1.5849E 00	6.36778 00	3.9848E-02	2.75866-01	15
3.46248-02	1.99538 00	4.56318 00	4.73818-02	3.28026-01	13
4.39418-02	2.51198 00	3-16231 00	3-5006-05	3-96305-01	14
2-21-05	3.16236 00	2.04708 00	6.48498-02	4.48948-01	13
4.4483E-02 8.7473E-02	3.98118 00 5.01198 00	1.31858 00 7.95308=01	7.4108E-02	5.13046-01	16
1.10128-01	6.30966 00	4.6973E-01	9-1640E-02	5.75488-01 6.34428-01	끊
1.39646-01	7.94338 00	2.77316-01	9.95878-02	6.8943E-01	19
1.74538-01	1.00008 01	1.67038-01		7.41256-01	20
2.61808-01	1.50008 01	6.29728-02	1-07078-01	8.23628-01	20
3.49078-01	2.00008 01	2.65718-02	1.25934-01	8.71816-01	21
4.36331-01	2.5000E 01	1.42628-02	1.29988-01	8.9988 E-01	216
3.23408-01	3.00000 01	H.6717E-03	1.35798-01	9.19308-01	22
6-10465-01	3.5000# 01	5.5317E-03	1,34836-01	9.33416-01	220
4.94138-01	4.00001 01	3.73716-03	1-36348-01	9.43998-01	33
7.4540E-01	4.50008 01	2.66148-03	1.37516-01	9.51966-01	53
8.7266E-01 9.5493E-01	5.0000E 01 5.5000E 01	1.96648-03	1.38434-01	9.58762-01	241
1.04721 00	5.5000 01 6.0000 01	1.17518-03	1-39798-01	9.63424-01	}
1.1345# 00	6.5000# 01	9.53618-04	1.40318-01	9.71326-01	250
1.2217# 00	7.00000 01	7.89585-04	1.40746-01	9.74378-01	26
1.37908 00	7.50000 01	6,49616-04	1.41126-01	9.76968-01	260
1.39638 00	8.0000E 01	5.40654-04	1.41448-01	9.79166-01	271
1,4835E 00	8.5000E 01	4-66918-04	1.41716-01	9.81048-01	276
1.570BE 00	9.00006 01	4.19858-04	1.41956-01	9.82728-01	\$ B :
1.65818 00	9.5000# O1	3.90535-04	1.42176-01	9.8425E-01	286
1.74436 00		3-1039E-04	1-423HE-01	9-H36#E-01	29
1.8326E 00 1.9199E 00	1.05000 02	3 - 5 4 5 6 2 - 0 4	1.42578-01	9.87026-01	296
1.9199E 00 2.0071E 00	1.1000# 02 1.1500# 02	3-45388-04	1.4275E-01	9.88288-01	301
2.09448 00	1.20006 02	3.5020H-04	1.4310E-01	9.9066E-01	364
2.18178 00	1.25005 02	3.58648-04	1.43268-01	9.91798-01	311
2.24893 00	1.30006 02	3.6839E-04	1,43428-01	9.92898-01	321
2.35628 00	1.35008 02	3.79848-04	1.43378-01	9.03938-01	32
2.44358 00	1.4000# 02	3.9206E-04	1.43716-01	9.94928-01	331
2.53078 00	1.4500E 02	4.0196E-04	1.43858-01	9.95848-01	336
2.618DE 00	1.50006 02	4.27208-04	1.43976-01	9.96686-01	341
2.7053E 00	1.5500E 02	4.8531E-04	1-44088-01	9.97476-01	346
2.79254 00	1.6000E 02	5-62168-04	1.4419E-01	9.98235-01	321
2.87488 00	1.6500E 02	6.45568-04	1.44298-01	9.98916-01	334
2.9671E 00	1.70006 02	7.4012E-04	1.4457E-01	9.99488-01	361
3.0343E 00 3.1416E 00	1.7500E 02	8.0991E-04 P.2043E-04	1.4445E-01	9,99868-01 1.0000E 00	399

Figure D-82. Volume scattering function (sheet 3 of 3).

Figure D-53. Volume scattering function (sheet 1 of 3).

ċ

Figure D-83. Volume scattering function (sheet 2 of 3).

men me mental beach the transmission with

			2.9	JUN 1976 072	9.50
520 23JUN75		111 - SEA H20			, y
ANGLE (RAD)	ANGLE (DEG)	SIGMA	INTEGRAL	NORM. INTEGRA	<u>L</u> .
1.7453E-03	1.00008-01	2.8349E 02	3.1223E-03	2.17286-02	1
2.1972E-03	1.2569E-01	2.4253E 02	4.59096-03	3.1947E-02	11
2.7662E-03	1.5849E-01	1.9148E Q2	6.50475-03	4.5266F-02	21
3.4824E-03	1.99536-01	1.3874E 02	8.78618-03	6.1141E-02	31
4.3841E-03	2.51196-01	.9.9519E 01	1.13836-02	7.9214E-02	41
5.5192E-03	3.1623E-01	7.1367E 01	1-43366-02	9.9761E-02	51
6.94838-03	3.9811E-U1	5.1207E 01	1.76936-02	1.2312E-01	61
A.7474E - 03	5.0119E-01	3.6732E 01	2.15096-02	1.47686-01	71
1.10128-02	6.3096E-01	2.6349E 01	2.5847E-02	1.7987E-01	81
1.38646-02	7.9433E-01	1.8868E OX	3.07786-02	2.1418E-01	<u> </u>
1.74536-02	1.00000 00	1.3364E 01	3.4346E-02	2.52926-01	101
2.19726-02	1.25898 00	9.3316E 00	4-25526-02	2.96116-01	111
2.7652E-02	1.5849E 00	6:4079E 00	4.93636-02	3.4351E-01	121
3.48246-02	1.99538 00	4.3169E 00	5.6705E-02	3.9460E-01	131
4.38416-02	2.51198 00	2.84648 00	6.44616-02	4.4857E-01	141
5.5192E-02	3.16238 00	1.8326E 00	7.2469E-02	5.0430E-01	151
6.94835-02	3.9811E 00	1.1169E 00	8-04546-02	5.5987E-01	161
8.74736-02	5.01198 00	6.4139E-01	8.7917E-02	6-1180E-01	171
1.10128-01	6.30966 00	3.6000E-01	9.4609E-02	6.5837E-01	161
1.38646-01	7.94336 00	2.0489E-01	1.0058E-01	6.9992E-01	191
1.74538-01		1.2266E-01	1.06078-01	7.3816E-01	201
2.6180E-01	1.00005 01	3.2630E-02			206
			1.15388-01	8.02976-01	
3.4907E-01	5.00008 01	2-75338-02	1-21606-01	8.46276-01	211
4.36338-01	2.5000E 01	1.56124-02	1.2593E-01	<u> </u>	216
5.2360E-01	3.0000E 01	1.04886-02	1.2917E-01	8.94656-01	221
6.1086E-01	3.5000E 01	6.6516E-03	1.31636-01	9.1601E-01	226
4-9813E-01	4.0000E 01	4.4516E-03	1.3344E-01	9.2859E-01	
7.8540E -01	4.5000E 01	3.16725-03	1.34838-01	9.3828E-01	236
8.7266E-01	5.0000# 01	2.390eE-03	1-35956-01	,9.4602E-01	241
9-59935-01	5.5000E 01	<u> 1-87718-03</u>	1.3080E-01	9.5242E-01.	-246 251
1.04728 00	6.0000E 01	1.5179E-03	1.37645-01	9.5785E-01	
1.1345E 00	6.5000E 01	1.2606E-03	1.38328-01	9.62526-01	256
1.2217E 00	7.0000E 01	1-0615E-03	1.3890E-01	9.6660E-01	261 266
1.3090E 00	7.5000E 01	0.7005E-04	1-3941E-01	9.7011E-01	
1.3963E 00	8.0000E 01	7.1903E-04	1.39838-01	9.7305E-01	271
1.4835E 00	8.5000E 01	6-2297E-04	1.4019E-01	9.7557E-01	276 281
1.5708E 00	9.0000E 01	5.6092E-04	1.40516-01	0.7782E-01	
1.6581E 00	9.5000E 01	5.2134E-04	1.40816-01	9.7988E-01	286
1.7453F 00	1.0000E 02	4.9376E-04	1-41096-01	9.8179E-01	291
1.8326E 00	1.0500E 02	4.7304E-04	1.41346-01	9.8359E-01	296
1.9199E 00	1.1000E 02	4.59816-04	1.4159E-01	9.85288-01	301
2.0071E 00	1.1500E 02	4-5531E-04	1.4182E-01	9.8690E-01	306
2.0944E 00	1.2000E 02	4.5743E-04	1.4204E-01	9.8844E-01	311
2.1817E 00	1.25008 02	4.6356E-04	1.42256-01	9.8992E-01	316
2.2689E 00	1.3000E 02	4.7346E-04	1-4246E-01	9.9133E-01	321
2.3562E 00	1.3500E 02	4.8760E-04	1.4265E-01	9.9269E-01	326
2.4435E 00	1.4000E 02	5.0368E-04	1.4283E-01	9.9396E-01	331
2.5307E 00	1.4500E 02	5.2159E-04	1.4300E-01	9.9515E-01	336
2.6180E 00	1.5000E 02	5.4564E-04	1.4516E-01	9.9624E-01	341
2.7053E 00	1.5500E 02	5.4475E-04	1.4331E-01	9.9724E-01	346
2.79256 00	1.6000E 02	6.5240E-04	1.4344E-01	9.9815E-01	351
2.8798E 00	1.6500E 02	6.94076-04	1.4355E-01	9.98928-01	356
2.9671E 00	1.7000E 02	7-2778E-04	1-4363E-01	9.99518-01	361
3.0543E 00	1.7500E 02	7-4542E-04	1.4368E-01	9.9988E-01	366
3.1416E 00	1-8000E 02	7.5024E-04	1.4370E-01	1.0000E 00	371

Figure D-83. Volume scattering function (sheet 3 of 3).

Figure D-84. Volume scattering function (sheet 1 of 3).

74	:0 2330N/3 g	039 STA.CA		384 HZU 43)M 4 30	F 2		
,		TA READ IN					DATA	···
	ANGLE (DE	G) S	IGMA	INSTR=0 HAND#1	ANGLE (DEG 1	SIGMA	
1	0.1750		400E 03	. 0	0.1750		1.6713E 03	
2	0.3500		000E 02	0	0.3500		6.2591E 02	
4	0,7000		1576-01		10.00		2-1440F.02	
3	10.00 15.00	277	0698-01	ŏ	15.00		5.8157E-01 2.0069E-01	
<u>.</u>	20.00		178-02		20.00		7.78178-02	
7	25.00		9966-02	. 0	25.00		4.39966-02	
ß	30.00		13K-02	0	30.00		2-64138-02	
<u>. </u>	40.00		<u> 5916-05</u>	<u>o</u>	40.00		1-22618-02	
10 11	50.00		7116-03	0	50.00		5-47118-03	
12	60.00 70.00		4508-03 4118-03		60.00 70.00		2.9450E-03	
13	80.00		2796-03	0	80.00		1.2279E-03	
14	90.00		396E-04	. 0	90.00		8.6396E-04	
15	100.0	7.1	157En04.		100.0		7.1157F=04	
16	110.0	6.5	569E-04	0	110.0		6.55698-04	
17	120.0		365E-04	Ō	120.0	(6.53656-04	
<u> </u>	130.0		870E+04		170-0		98708-04	
19 20	140.0		052E-04 189E-04	. 0	140.0 150.0		7.7052E~04 8.2189E~04	
21	140.0		1676-04 7448-03		150.0		1.07648-03	
22	170.0		157E-03	0	170.0	· · · · · · · · · · · · · · · · · · ·	2.0157E-03	·
23				i	180.0		2.40926-03	•1
	ALPHA= 0.97	54	S/ALPI	HA= 1.043	·			*****
	\$= 1.01		AZALPI			•		
	A=-0.04	12		/S= 0.005				
COR	RECTED ALPH	A	CORRECT	110N=0.024	ı			
	ALPHA= 0.99	89	S/ALPI	HA- 1.018				
	\$= 1.01	69		HA= -0.018				
	A= -0.01	80		/S=_0.005				
	\$16MA(0.0 (77.				
	SIGMAL O. L		281	03.				
	SLOPE(3 M') S UP TO 0.1		3.0	-1.417 787E-02	NORMA	LIZED= 3	.02743E-02	
	MUM PARTICL	DIAMETER	/HICEDI	NE 1 =	106.0		······································	
	CTED K/ALPH		3778-02			ATTENUAT	ON COEFFIC	18NT -
		MU	RAI	DIANS	DEGREE	2		
MEDI		9996		861E-01	1.639		-	
MAN	1 0	9790	0.20	255	11.77			
VARI	ANCE 0	1256		1475				
4E A N R M S	4		0.87	767E-01	5.023 13.23			
ins-	2	, j	0.2	144 × 3.14	12.24		34 - 3 - 12 - 35	
			, 1	137	AV.		25 2 16 5 67 67 1	
K	APPA= 1	5860E-02	KAPPA	1.1	2548-03			

Figure D-84. Volume scattering function (sheet 2 of 3).

			25	JUN 1976 072	8.12
			· ·	1.	
	2039 STA.CAT				
ANGLE (RAD)	ANGLE (DEG)	SIGMA		NORM. INTEGRA	<u>L</u>
1.7453E-03	1.0000E-01	2.8026E 03	3.0787E-02	3.0274E-02	1
2.19726-03	1.25896-01	2.40428 03	4.5325E-02	4.4570E-02	11
2.7662E-03	1.5849E-01	1.9053E 03	6,4332E-02	6.3567E-05	21
4.38418-03		1.0015E 03	8.7091E-02	8.5641E-02	
5.51928-03	2.5119E=01 5.1623E=01	7.22698 02	1.1315E-01 1.4295E-01	1.1127E-01 1.4057E-01	+1
6.94838-05	3.98116-01	3.21506 02	1.7704E-01	1.74698-01	- 81 -
8.7474E-03	5.0119E-01	3.7632E 02	2.1602E-01	2 . 1243E-01	71
1-10126-02	6.3096E-01	2.7155E 02	2.60618-01	2.56276-01	ái
1.38646-02	7.9433E-01	1.95208 02	3.1155E-01	3.0637E-01	91
1.74538-02	1.00000 00	1.36948.02	3.6895E-01	3.6281E-01	. 101
2.19728-02	1.2569E 00	9.3217E 01	4.31016-01	4-24626-01	111
2.76621-02	1.58498 00	6.13702 01	4.9851E-01	4.90218-01	121
3.48248-02	1.9953E 00	3.89518 01	5.6686E-01	5.5742E-01	131
4.38418-02	2.51198 00	2.3758E 01	6.3427E-01	6-2370E-01	141
2.21626-05	3.16235 00	7.3880E OI	6.9806E-07	6.8644E=01	151
6.94836-02	3.98116 00	7.6483E 00	7.55556-01	7-4297E-01	161
8.74738-02	5.01198 00	4.00538 00		7-9099E-01	
1.10156-01	6.3096E 00	2.0579E 00	8-44416-01	8.30356-01	181
1.38648-01	7.94338 00	1.0701E 00	6.7707E-01	8.62476-01	191
1.74531-01	1.00000 01	2-01205-01	9.04476-01	8-89416-01	201
2.61808-01	1.50008 01	2.00696-01	9.44558-01	9. 28835-01	50.6
3.4907E-01 4.3633E-01	2.0000E 01 2.5000E 01	7.78178-02 4.39968-02	9.449 8E -01	9,48918-01	211
5.23608-01	3.00000 01	2.64138-02	9.8576E-01	9.49898-01	-216 221
6.1086E-01	3.50002 01	1.76866-02	9.9209E-01	9.7557E-01	226 .
6.9813E-01	4.0000E 01	1.22616-02	9.97026-01	9.8042E-01	231
7.45401-01	4.30008 01	0.09612-03	1.00072 00	9.84078-01	236
8.7266E-01	5.0000E 01	5.4711E-03	1.00348 00	9.86716-01	241
9.59936-01	5.50006 01	3.92208-03	1.00548 00	9.88696-01	246
1.0472E 00	6.00008 01	2.9450#-03	1.0070€ 00	9.90238-01	251
	4 #500# 01	n #041E-00		6 644 86 84	
1.13456 00	6.5000E 01	2.30618-03	1.00838 00	9.91476-01	256
1.22178 00	7.0000E 01	1.84118-03	1.00936 00	9.92508-01	261
1.30908 00	7.5000E 01	1.49348-03	1.0102E 00	9.93358-01	566
1.39638 00	1.0000E 01	1.22798-03	1.01054 00	9-94074-01	271
1.48358 00	A.5000E 01	1.0231E-03	1.01158 00	9.94666-01	276
1.5708E 00 1.6581E 00	9.0000E 01	8.6396E-04 7.6530E-04	1.0120E 00 1.0125E 00	9.9518E-01 9.9561E-01	281 286
1.74538 00	1.0000F 02	7.1157E-04	1.0129E 00	9.9600E-01	291
1.8326E 00	1.0500# 02	6.7553E-04	1.01326 00	9.96366-01	296
1.9199E 00	1.10008 02	6.5569E-04	1.0136E 00	9.96718-01	301
2.00718 00	1.15006 02	6.4803E-04	1.0139€ 00	9.97038-01	306
2.09448 00	1.2000E 02	6.5365E-04	1.0142E 00	9.97346-01	311
2-1817E 00	1.2500E 02	6.71798-04	1.0145E 00	9.9764E-01	316
2.26898 00	1.30008 02	6.9870E-04	1.01488 00	9.97943-01	321
2.35628 00	1.3500E 02	7.3375E-04	1.0151E 00	9.98226-01	326
2.4435E 00	1.4000E 02	7.70526-04	1.01548 00	9.98505-01	33)
2.53078 00	1.4500E 02	7.97168-04	1.0157E 00	9.9875E-01	336
2.61808 00	1.5000E 02	8.21898-04	1.01598 00	9.98998-01	341
2.7053E 00 2.7925E 00	1.5500E 02	9-0417E-04	1.0161E 00 1.0163E 00	9.9920E-01 9.9940E-01	346 351
2.8798E DO	1.6000E 02	1.0764E-03 1.4024E-03	1.0165E 00	9.9959E-01	356
2.9671E 00	1.70006 02	2.0157E-03	1.0167E 00	9.99748-01	361
3.05438 00	1.7300E 02	2.32286-03	1.01595 00	9.99946-01	366
3.14168 00	1.8000E 02	2.4092E-03	1.0169E 00	1.00006 00	371
PAUSE READY	PLOTTER				

Figure D-84, Volume acattering function (sheet 3 of 3).

Figure D-85. Volume scattering function (sheet 1 of 3).

520 23JUN75 2116 STA.CAT#11 - SEA H20	520 Z3	JUNIS	2110	STA	•CAIRIL	- 3EA	MZO 5M
---------------------------------------	--------	-------	------	-----	---------	-------	--------

	ANGLE	DATA REAL	SIGMA	INSTR		ANGLE	TTERATE	D DATA \$1gma	
	0.17	E/\	1.42006 02	HAND	0	0.175		1.44321 02	
1			6.5000E 01		ŏ		-		
2	0.35		2.7000E 01		0	0.350	Ų.	6.2932E 01	
-	10.		2.20426-01		-	10.0		2.7442E 01	
5	15.		9-26018-02		ŏ	15.0		9.2601E-02	
<u> </u>	20.		4-04316-02		<u> </u>	_ 20.0		4-0431E-02	
7	25.		1.9694E-02		0	25.0		1.96946-02	
ė	30.		1.1699#-02		ă	30.0		1.16998-02	
9	40.	00	4.57498-03		0	60.0	Ò	4-5749E-03	
10	50.	00	2.5539E-03		0	50.0	0	2.55396-03	_
11	60.		1.46128-03		0	60.0		1.46126-03	
12	70.		9-0990E-06		٥			9-0660F-06	
13	80.		6.20608-04		0	80.0		6-2060E-C4	
14	90.		4.89018-04		o .	90.0		4.8901E-04	
ــــــــــــــــــــــــــــــــــــــ	<u> ioo</u>		<u> </u>		<u> </u>	<u>ioo</u>			
16	110		4-03796-04		0	110.		4.03796-04	
17	120		3.84258-04		0	120		3-8425E-04	
19	140		4-09718-04		0	140.		4.4944E-04	
20	150		5.1852E-04		0	150.		5.18526-04	
21	160		A-1572E-04		<u> </u>	160			
22	170		9.60255-04		0	170.		9.6025E-04	
23	• • •	•,•	,		ī	160.		1.0875E-03 ·	
	AL PHA=		STALP		.717	·	·····		
		0.1987	AZALPI		. 243				
		0.0784			-014		وانتفدات إسهار عادبارات		
COR	RECTED	AL PHA	CORREC	TION=0	.002				
	LPHA=	0.2789	S/ALPI	AN O	.713				-
	\$ -	0.1987	A/AL U	HAM U	-287				
	A=_	0.0801	A	<u> </u>	-014				
:	SIGMAL	D.O DEGREES)= 279	3.0					
		0.1 DEGREES		وم					
	SLOPE() S up to	MILLIRAD)	s= 2.3	-1.19 522E-0		NORI	AALIZED=	1.18856E-02	
						-			
	TED K/		TER (HICRO) 0.3913			5.00 D1FFUSI	E ATTENU	ATION COEFFICIENT	۲ .
		AU	RAI	ZIANS		DEGR	# \$		
MED1		0.9980		898-0	1	3.66		•	
MEAN		0.9469	0.3	273		18.7	3	····	
VARI		0.2076							
MEAN	Z		0.1			9.96			
RMS			0.3	719		21.3	<u></u>		
RMS :	6		0.3	(85	•	18.8	•	, ,	
K	APPA=	0.1091	KAPPA	۱ س	2.84	67E-03	·	. Y .	

Figure D-85. Volume scattering function (sheet 2 of 3).

				JUN 1976 072	6.38
520 23JUN75	2116 STA.CAT#	11 - SEA H20 !	5M		
ANGLE (RAD)	ANGLEIDEGI	SIGMA	INTEGRAL	NORM. INTEGRA	L
1.7453E-03	1.00000=01	5.5043E 05	2.36226-03	1.18862-02	T
2.19728-03	1.25898-01	1.9503E 02	3.5246E-03	1.77346-02	11
2.76626-03	1.5849E-01	1.61048 02	5.09816-03	2.5651E-02	21
3.48246-03	1.99531-01	1.23356 02	7.07168-03	3.55818-02	
4.38411-03	2.51198-01	9.3623E 01	9.44858-03	4.7540E-02	41
5.51921-03	3.16238-01	7.1062E 01	1.23081-02	6.19274-02	51
6.94835-03	3.9811E-01	5.3938E 01	1.57488-02	7.92346-02	- 5]
A.74748 -03	5.01192-01	4.0941E 01	1.98866-05	1.00056-01	71
1.1012E-02	6.3096E-01	3.1075E 01	2.4863E-02	1.25106-01	81
1.38548-02	7.94332=01	1.33335E 01	3.08498-02	1.55226-01	41
1.74536-02	1.0000# 00	1.75808 01	3.79R8E-02	1.91148-01	101
2.1972E-02	1.2569E GO	1.2892E 01	4.63628-02	2.3327E-01	111
2.766ZE=0Z	1.58498 00	9.23248 00	3.39905.05	2.81716-01	151
3.4824E-02	1.9953E 00	6.4772E 00	6.6805E-02	3.36136-01	131
4,38418-02	2.5119E 00	4,40898 00	7.6637E-Q2	3.9566E-01	141
3.5142E-02	3.1623E 00	2.90856 00	4.15075-05	4,58898-01	131
6,94838-02	3.9811E 00	1.81426 00	1.04026-01	5.23368-01	161
8.74738-02	5.0119E 00	1-0701E 00	1-16308-01	5.8516E-01	171
1.10128-01	6.3096E 00	6.17456-01	1.2762E-01	6.4210E-01	181
1.38648 -01	7.94336 00	3.60556-01	1.37996-01	6.94294-01	191
1.74536-01	1.0000E 01	2.2042E-01	1.47776-01	7.4349E=01	201
2.61808-01	1.3000E 01	9.2601E-02	1.6457E-01	8,2805E-01	506
3.49076-01	2.0000E 01	4.0431E-02	1.74708-01	8.79018-01	211
4.3633E-01	2.5000E 01	1.96946-02	1.80598-01	9.08638-01	216
5.2360E-01	3.0000E 01	1.1944E-05	1.84416-01	9.27878-01	551
6.10868-01	3.5000E 01	7.05118-03	1.87106-01	9.4138E-01	226
6.9813E-01	4.0000E 01	4.57496-03	1.88986-01	9.5086E-01	231
7.85+0E-01	4.5000E 01	3.37526-03	1.90438-01	9.56131-01	
8.7266E-01	5.0000E 01	2.55396-03	1.91626-01	9.64126-01	241
9.5993E-01	5.5000E 01	1.90935-03	1.92588-01	9.68958-01	246
1.0472E 00	6.0000E 01	1.4612E-03	1.93358-01	9.72848-01	251
1.1345# 00	6.5000E 01	1.14058-03	1.9398E-01	9.76008-01	256
1.22178 00	7,0000E 01	9.0660E-04	1.9449E-01	9.7859E-01	261
1.30908 00	7.5000E 01	7.39498-04	1.94925-01	9.80748-01	266
1.39638 00	8.0000E OI	6.2060E-04	1.95286-01	9.82568-01	271
1.4835E 00	8.5000E 01	3.41718-04	1.95608-01	9.8414E-01	276
1.5700E 00	9.0000E 01	4.8901E-04	1.95486-01	9.85568-01	201
1.65818 00	9.5000E 01	4.4768E-04	1.96136-01	9.86848-01	286
1 - 74 53E - QQ	1.0000E 02	4.2379E-04	1.96375-01	9.88038-01	<u> </u>
1.83268 00	1.0500E 02	4-13206-04	1.96598-01	9.89168-01	296
1.9199E 00	1.1000E 02	4.0379E-04	1.96812-01	9.90238-01	301
2.00718 00	1.1500E 02	3.93115-04	1.970)E-01	9.91258-01	306
2.09446 00		3-84256-04	1.97206-01	9.9220E-01	311
2.1817E 00	1.2500E 02	3.9126E-04	1.97386-01	9.9309E-01	316
2.3562E 00	3000E 02	4.0971E-04 4.2740E-04	1.9755E-01 1.9772E-01	9.93978-01	321 326
	1.35000 02	4.49446-04	1.97886-01	9.94826-01	
2.44356 00	1.40008 02			9.95648-01	331
2.53078 00	1.5000E 02	4.8106E-04	1-9804E-01	9.9642E-01 9.9716E-01	- 336 -
2.6180E 00 2.7053E 00	1.5500E 02	5.6116E-04	1.98326-01	9.97846-01	346
				9.98466-01	351
2.7925E 00 2.8798E 00	1.6500E 02	6.1572E-04 7.3472E-04	1.98446-01	9.99016-01	356
2.9671E 00	1.7000E 02	9.60256-04	1.9865E-01	9.9951E-01	361
3.0543E 00		1.05946-03	1.98728-01	9.9987E-01	
					299
3.14168 00	1.500E 02	1.0875E-03	1.9875E-01	1.0000E 00	366

Figure D-85. Volume scattering function (sheet 3 of 3).

東京の日本教育大学、これの日本教学をこれが、日本の日本では、まままの日本の日本を大きているようなないできない。 「「「「「「」」」

Figure D-86. Volume scattering function (sheet 1 of 3).

	ANULE (DEG)	•	NSTR=0	ANGLE (DEO)	SIGMA
			HAND-1		
ī	0.1750	8.5000€ 02	0	0.1750	8.6233E 05
2	0.3500	3.2500E 02	O	0.3500	3.1580E 02
	10.00	3.69806-01	-	10.00	3.49808-01
7	15.00	1.1637E=01	Ô	15.00	1.16376-01
Ä	20.00	6.3968E=02	ő	20.00	4.3968E-02
7	25.00	3.2670E-02	0	25-00	3.2670E-02
Ä	30.00	2.1676E-02	Ö	30.00	2-16766-02
9	40.00	9.67976-03	. 0	40.00	9.67978-03
10	30.00	4.60136-03	0	50.00	4.60138-03
11	60.00	2.64108-03	0	60.00	2,64108-03
12	72.00	1.6411E-01	<u> </u>	70.00	1-44118-03
13	80.00	1.15496-03	0	80.00	1.15498-03
14	90.00	8.52616-04	0	90.00 100.0	8.5261E-04
15	110.0	7.2708E-04	- 8	110.0	7.27085-04 6.38/3E-04
17	120.0	6.192HE-04	ŏ	120.0	6.1928E-04
ì A	130.0	6.54758-04	ŭ	130.0	6.54758-04
19	140.0	7.3063E-04	Ö	140.0	7.3063E-04
30	150.0	8.28606=04	Ŏ	150.0	8.2860E-04
? I.	150.0	7.54748=04		160.0	9.54748-04
7 2	170.0	1.83956-03	0	170.0	1.43946-03
23		<u>يون دون به د</u>	1	180.0	2.18896-03
	ALPHAM 0.6427	S/ALPHA	0.894		
	5= 0.5748	A/AL PHA		····	
	A= 0.0679	B/\$			•
Cr	RECTED ALPHA	CORRECTION	JN=0.012		
	ALPHA 0.6551	S/ALPHA	0.877		
	\$ 0.3748	AZALPHA		·	
	E080.0	8/8			
	STARL D.U DEGRE				<u> </u>
	SIGIAL O.1 DEGRE				
	SLOPEL 3 MILLIRA		449		A- 9 US 4A/ - 24
	S (IP TO U.1 DEGR	ER2= 1.653	46-05	NUMMALIZE	D= 2.82506E-02
tue	**************************************	1005-02 040148			
7.	TANE C BAR 4.1	1894-US 44014N	7 T C		

Figure D-86. Volume scattering function (sheet 2 of 3).

520 24 IIIN75	2032 STA CATA	2 - SEA H20	74M		
ANGLE (RAD)	ANGLE (DEG)	SIGMA	INTEGRAL	NORM. INTEGRAL	
1.74538-03	1.0000#-01	1.4704E 03	1.62398-02	2.82518-02	. 1
2.19728-03	1.25898-01	1.2547E 03	2.384 RE-02	4.14866-02	- 11
2.76628-03	1.58498-01	9.86818 02	3.37306-02	5.86788-02	21
	1.99538-01	7.1305E 02	4.5467E-02		
3.4824E-03				7,90956-02	}}
4.38418-03	2.51198-01	5.1074E 02	3-84026-05	1.0230E-01	
5.51926-03	3.16238-01	3.65838 02	7.39478-02	1.28646-01	51
6.94836-03	3.98112-01	2.4203E 02	9.1136E-02	1.58546-01	
A.74748-03	5.01196-01	1.4769E 02	1.10658-01	1.92498-01	
1.10128-02	6.30968-01	1.34448 02	1.3280E-01	2.3102E-01	81
1.3864E-02	7.94338-01	9.6369E 01	1.57956-01	2.74776-01	91
1.74538-02	1.0000 00	P-45518 -01_	1.86578-01	3.24568-01	101
2.19726-02	1.25898 00	4.9129E 01	2.18996-01	3.40978-01	111
2.76628-02	1.5849E 00	3.38988 01	2.55006-01	4.4360E-01	121
3.48746-02	1.99538 00	2.23738 01	2.03546-01	5.1085E-01	131
4.38418-02	2.51198 00	1.38986 01	3.3270E-01	5.7878E-01	141
5.51926-02	3.16238 00	7.9943E 00	3.6986E-01	6.43425-01	151
5.9483E-02	3.9811E 00	4.37698 00	4.02716-01	7.00586-01	161
8 - 747 DE -02	5.01198 00	2.3746E 00	4.3108E-01	7.49926-01	171
1.10128-01	6.3096E 00	1.28048 00	4.55378-01	7.92188-01	iėi
1.3#A48=01	7.94332 00	6.581Fe-01	4.7508E-01	8-28208-01	191
1.74538-01	1.0000E 01	3.69808-01	4.93686-01	8.56836-01	201
2.61008-01	1.50006 01	1.16376-01	5.17418-01	9.00808-01	206
3.49078-01	2.00008 01	6.3968E=02	5.31858-01	9.25238-01	- 2 11 -
4.36338-01	2.5000E 01	3.26708-02	5.4139E-01	9.4183E-01	216
5.23606-01	3.0000E 01	2.16765-02	5.4A10E-01	9.53498-01	221
	3.30008 01	1.43708-02	5.53306-01	9.62536-01	120
A-10862-01		9.67978-03	5.57248-01	9.69396-01	231
6.9813E-01		6.51716-03	5.60198-01	9.74526-01	
7,85408-01	4.50006 01				230
A.7266E-01	3.0000# 01	4.60138-03	5.62396-01	9.78358-01	241
9.59936-01	5.5000E 01	3.44206-03	5.64126-01	9.81376-01	246
1.04728 00	6.00008 07	2-64104-03	5.65518-01	9. H379E-01	251
1.13458 00	6.5000E 01	2.03588-03	5.66658-01	9.85768-01	256
1.2217E 00	7.00008 01	1.64116-03	5.67506-01	9.87370-01	201
1.30908 00	7.50008 01	1.36266-03	1.6036E-01	9.8474E-01	_266
1.39636 00	N-0000F 01	1.15498-03	5.69036-01	4.84406-01	271
1.49358 00	8.5000E 01	9.8316E-04	5.69616-01	9.90916-01	276
1.570AE 00	9.0000E 01	0.526)E-04	3.7011E-01	9.91798-01	201
1.6581E OU	9.5000E 01	7.7702E=04	5.70556-01	7.42565-01	549
1.7453E 00	1.0000E 02	7.2708E-04	5.7096E-01	9.93266-01	291
1.4326E 00	1.05000 02	6.7880E-04	5.7134E-01	9.93926-01	290
1.91998 00	1.10000 02	6.38766-04	5.71h8E-01	9.9451E-01	301
2.00718 00	1.1500E 02	6-1854E-04	5.7200E-01	9.95076-01	306
2.09448 00	1.2000E 02	6-19286-04	5.7230E-01	9.9559E-01	311
2.18178 00	1.2500E 02	6.30446-04	5.72594-01	9.96098-01	316
2.2689E 00	1.30008 02	6.54758-04	5.7286E-01	9.9657E-01	321
2.35626 00	1.35006 02	6.89626-04	5.7314E-01	9.97056-01	326
2.44358 00	1.4000E 02	7.3063E-04	5.7340E-01	9,97506-01	331
2.5307E 00	1.4500E 02	7.78098-04	5.73656-01	9.97950-01	336
2.61808 00	1.5000E 02	8.2A60E-04	5.7388E-01	9.98356-01	341
2.70531 00	1.55506 02	A.7534E-04	3.7410E-01	9.94738-01	346
2.79258 00	1.60008 02	9.5474E-U4	5.7429E-01	9.9906E-01	351
2.8798E 00	1.6500E 02	1.2114E-03	5.7447E-01	9.9937E-01	356
2.96718 00	1.7000 72	1.83438-05	3 74648-01	4. 44672-01	161
3.05438 00	1.7500E 02	2.10368-03	5.7479E-01	9.99428-01	366
3.14168 00	1.8000# 02	2.18896-03	5.7483E-01	1.00008 00	371
			3 8 1 T 4 3 5 T V 1		

Figure D-86. Volume scattering function (sheet 3 of 3).

Figure D-87. Volume scattering function (sheet 1 of 3).

520	26JUN79	1922 51	A.GAT#14 -	SEA HE	O BOM	Y	4	
		DAYA RE	AD IN	н	ota (TER		
		(DEG) .	SIGMA	INST		ANULE (DEG)	SIGMA	
Ī	0.175		1.6900#		0	0.1750	1.67698 02	-
?	0.350			01 01	0	0.3500	5.77578 01	
	16.6		2-0000		8	10.00	1.2144 = 01	_
5	15.0	0	4.69768-	2	Ŏ	15.00	4.69768-02	
6	20.0	0	2,44758-		0	20.00	2-44758-02	
8	30.0	_	1.12034-		0	25.00 . 10.00	1.49452-02	
9	40.0		5.21256-	-	_	40.00	1.12034-02	
Ò	50.0		2.93288-		0	90.00	2.95288-03	-
1	40.0	0	1.01166-		0	60.00	1.01168-03	
<u></u> _	70.0		1-19275-		-8	70 00	1-1927E-01	
3	90.0	-	8.61606-1	: :	0	90.00	5.4160E=04 4.8829E=04	
5	100	-	- 1.82498-		ŏ	. 100.0	5.82498-04	
6	110.		3.34951-		0	110.0	5.34958-04	
7	750.		5.27928-		0	120.0	5.27928-04	
-	140.		5.7349E-			140.0	5.7369E-04	-
0	150.		4.29B46-		ă	190.0	4.29848-04	
ĭ			7.08038-		<u> </u>	140.0	7-04038-04	
2	170.	0	1.00946-	3	0	170.0	1.00946-03	
3					1	180.0	1.1127E-03	
7	LPHA- O	.2304	874	PHA-	0.612			
		.1411		PHA .	0.386			
	<u> </u>	.0493		8/5=	0.024			-
CORR	ECTED A	LPHA		ICTION=	0.003			
Ā	LPHA O	.2329	37AL	PHA=	0.606			
		.1411	A/AI		0.394			
	A=_0	-0919		1480	0-024			-
		.D DEGRE		00.7				
5	LOPE! 3	MILLIRA	0)=	-1.5	37			
5	UP TO	0.1 DEGF	8ES= 3.	30606-	03	NORMAL 125	D= 2.34365E-02	
	UM PART TED K/A		METER (MICI 0.4959			12.0 DIFFUSE ATTE	NUATION COEFFICIENT	-
		MU		ADIANS		DEGREES		
edia Ean	• •	0.9983		5915E-(JL	3.309		
ARIA		0.2717	<u> </u>	4145				
EAN				2208		12.65	•	
MS.				4741-		-27-17		
MS 7			0.	4178		24.05		
KA	PPAN	0.1155	KAPI	Alm	4,95	204-03		
	++2 BAR		125 RAD	IANS##	_			

Figure D-87. Volume scattering function (sheet 2 of 3).

520 2AJUN75	L922 STA.ČATM	14 - SEA H2D	ROM		
	ANGLE (DEG)	SIGMA			
ANGLE (RAD)	1.00000=01	2.9619 02	3.3060E-03	NORM. INTEGRAL	٠
2.19726-03	1.2589E-01	2.49938 02	4.82998-03	3.42406-02	1
2.76628-03	1.58498-01	1.9358E 02	6.7835E-03	4.8090E-02	2
3.48246-03	1.9953E-01	1.3719E 02	9.0641E-03	6.4257E-02	3
4.36416-03	2.51198-01	9.6248E 01	1.16038-02	B. 2259E-02	4
5.51928-03	3.1623E-01	4.75228 01	1.4427E=02	1.02276-01	5
6.94838-03	3.98116-01	4.7369E 01	1.75668-02	1.24536-01	6
8.7474E-03	5.01196-01	3.3231E 01	2.1056E-02	1.49278-01	Ť
1.1012E-02	6.3096E-01	2.3313E 01	2.49378-02	1.76785-01	4
1.36648-02	7.94338-01	1.6392E 01	2.92546-02	2.0738E-01	9
1.74536-02	1.0000E Q0	1.1669E 01	3.40946-02	2.41708-01	10
2.19728-02	1.2589E QQ	8.3410E 00	3.95716-02	2.80538-01	_111
2.76626-02	1.58498 00	5.9214E 00	4.57606-02	3.24406-01	12
3.48246-02	1.99538 00	4.1289E 00	5.26566-02	3.73366-01	13
<u> 4 - 384 18 -02 - </u>	3.5119E 00	2.79666 00	6.01936-02	4.26726-01	_141
5.51928-02	3.1623E 00	1.8198E 00	6.81178-02	4.82908-01	15
6.94836-02	3.9811E 00	1.11868 00	7.60696-02	5.39278-01	10
0.74736-02 1.10128-01	5.0119E 00 6.3096E 00	3.7146E-01	9.0473E-02	5.92708-01 6.41388-01	17
1.38646-01	7.94338 00	2.1033E=01	9.6629E-02		
1.74538-01	1.00006 01	1.2144E-01	1.0219E-01	6.8502E-01 7.2444E-01	20
2.61808-01	1.30006 01	4.6976E-02	1.10936-01	7.86428-01	200
3-49078-01	2.00006 01	2.44756-02	1.1643E-01	8.25426-01	211
4.3633E-01	2.5000E 01	1.6945E-02	1.20665-01	8.5538E-01	214
3.2360E-01	3.0000E 01	1.1203E-02	1.2416E-01	8.80206-01	221
6-1086E-01	3.50006 01	7.4258E-03	1.26946-01	8.9921E-01	226
6.94138-01	4.0000E 01	5.2125E-03	1.2891E=01	9.1388E-01	231
7.85406-01	4.5000E 01	3.87056-03	1.30576-01	9-25648-01	236
8.7266E-01	5.0000E 01	2.95286-03	1.31948-01	9.35338-01	241
9.39931-01	3.5000E 01	2.28938-03	1.33078-01	9-43348-01	246
1.0472E 00	6.0000E 07	1.01166-03	1.34018-01	9.50016-01	251
1.13458 00	6.50008 01	1.45438-03	1.34806-01	9.5561E=01	256
1-22178 00	7-00006 01	12:275-03	1.35475-01	9.6035E-01	لفق
1.3090E 00	7.5000E 01	9.99836~04	1.3604E-01 1.3653E-0\	9.6438E-01 9.6790E-01	246
1.3963E 00 1.4835E 00	8.0000E D1 8.5000E D1	8.6160E-04 7.6278E-04	1.3653E~0\ 1.3697E-01	9.71028-01	271
1.5YORE OO	9.00000	6.88298-04	1.37378-01	9.73836-01	275
1.45818 00	9.5000E 01	6.28656-04	1.37736-01	9.76386-01	286
1.74538 00	1.0000E 02	5.82698-04	1.3506E-01	9.78716-01	291
1.83260 03	1.05004 02	3.5161E-04	1.38368-01	9.80866-01	5 96
1.91998 00	1.1000E 02	5.3495E-04	1.38648-01	9.82876-01	301
2.00718 00	1.1500E 02	5-30336-04	1.30916-01	9.8478E-01	306
2.09448 00	1.500UE 05	5.2792E-04	1.39176-01	9.86608-01	311
2.18178 00	1.25008 02	5-10648-04	1.39418-01	9.8831E-01	316
2.26898 00	1.3000E 02	5.0356E-04	1.3963E-01	9.8986E-01	321
3-3595F 00	1.3500E 02	5.34346-04	1.39846-01	9.9134E-01	
2.44358 00	1.4000# 02	5.73696-04	1.40048-01	9.92808-01	331
2.53078 00	1.4500# 02	6-01715-04	1.40248-01	9-94198-01	-336
2.61808 00	1.50000 02	6.29846-04	1.40426-01	9.95476-01	341
2.70538 00 2.79258 00	1.55008 02	6.6396E-04	1.40586-01	9.96636-01	346
2.8798E 00	1.6500E 02	7.0803E-04	1.40738-01	9.9765E-01	-35
2.9671E 00	1.7000# 02	1.0094E-03	1.40968-01	9.9928E-01	356 361
3.05438 00	1.7500E 02	1.08956-03	1.41036-01	9.99H1E-01	366
3.14168 00	1.BOOOE 02	1.11278-03	1.41068-01	1.0000 00	371

Figure D-87. Volume scattering function (sheet 3 of 3).

Figure D-38. Volume scattering function (sheet 1 of 3).

Figure D-88. Volume scattering function (sheet 2 of 3).

6.5719E-02 RADIANS**2

THETA**2 BAR

Figure D-98. Volume scattering function (sheet 3 of 3).

2.44076-0

2.4421E-01

2.44348-01

2.44446-01

2.4447E-01

9.48356-01

9.9893E-01

9.99472-01

9.9986E-01

1.0000E 00

336

361

366

7.9077E-04

9.4438E-04 1.2707E-03

1.4154E-03

1.4549E-03

2.7925E 00

2.8798E 00

2.9671E 00

3 0543E 00

3.1416E 00

PAUSE READY PLOTTER

1.6000E 02

1.6500E 02

1.7000E 02

1.7500E 02

1.80008 02

Figure D-89. Volume scattering function (sheet 1 of 3).

	. 			1 h	4
• •	DATA READ I E (DEG)	SIGMA I	NSTR=D HAND=1	ANGLE (DEG)	ATED DATA Sigma
1 0.1		3000E 03	0	0.1750	2.33048 03
3 0.3		4000E 02	•	0.3500	9.1559E 02
		9437E-01		0.7000 10.00	3.59728 02 4.9437E-01
		9336E-01	ŏ	15.00	1.93365-01
		37828-02	Ò	20.00	9.37426-02
		27708-02	0	25.00	5.27708-02
		8893E-02 3042 E- 02	0	30.00 40.00	7.8463E-05
		33948-03	8	50.00	6.33942-03
11 60		28966-03	Õ	60.00	3.2896E-03
		18805-03	0	70.00	2.1880E-03
		50916-03 1138E-03	0	80.00 90.00	1.50918-03
		6234E-04	. . .	100-0	1.1138E-03
		01346-04	0	110.0	9.0134E-04
		6204E-04	Ō	120.0	8.6204E-04
		9453E-04		130.0	8.9453E-04
		5537E-04 0353E-03	Ď	140.0	9.5537E-04 1.0353E-03
		4782E-03	Ď	140.0	1.4782E=03
22 170		95158-03	0	170.0	2.95154-03
23			1	180.0	3.6153E-03
AL PHA-	1.2449	SZALPHA	= 1.011	• •	· · · · · · · · · · · · · · · · · · ·
5=	1,2429	A/ALPHA		•	
An-	-0.0140	<u> </u>	w 0.005		
CORRECTED	AL PHA	CORRECTI	ON=0.032		
ALPHA	1,2006	SZALPHA	- 0.986		
	1.2629	'A/ALPHA	m 0.014		
	0.0177	8/\$	= 0.005		· · · · · · · · · · · · · · · · · · ·
SIGNAL	O.O DEGREES)=	4925			
	O. 1 DEGREES)	3811	-		*****
	3 MILLIRADI=		1.348		
S UP TO	0.1 DECREES=	4.154	15-05	NORMALIZE	D= 3.28941E-02
	TICLE DIAMETE			103.0	
EXPECTED K	ALPHA= 6.	1167E-02	EXPECTED	DIFFUSE ATTE	NUATION COEFFICIEN
	MU	MADI		DEGREES	
MEDIAN	0.9998	0.220		1.260	
MEAN 1 VARIANCE	0.9799 0.1281	0.200	J	11.51	
MEAN 2	~ + 4 4 4 4	0.781	76-01	4.479	
RMS		0.228	4	13.09	
RMS 2	,	0.214	6	12.30	
KAPPA	7.83298-02	KAPPA	1 - 0	7556-03	

Figure D-89. Volume scattering function (sheet 2 of 3).

ANGLE 1.745 2.1977 2.766 3.482 4.384 5.519 6.948 8.747 1.101 1.386 3.482 4.384 5.519 6.948 8.747 1.101 1.386 3.490 4.364 5.519 2.6186 3.490 4.364 5.519	(RAD) 3E -03 2E -03 2E -03 2E -03 3E -03 3E -03 3E -03 4E -03 3E -02 4E -02 4E -02 4E -02 4E -02 4E -02 4E -02 4E -02 4E -02	2040 STA.CAY# ANGLE(DEG) 1.0000E=01 1.25849E=01 1.5849E=01 2.5119E=01 3.1527E=01 3.1627E=01 5.0119E=01 6.7096E=01 7.9433E=01 1.0000E=00 1.25849E=00	\$1GMA 3.8106E 03 3.2953E 03 2.6413E 03 1.9528E 03 1.4318E 03 1.0498E 03 7.6969E 02 5.6433E 02 4.1376E 02 3.0011E 02	1NTEGRAL 4.1541E-02 6.1386E-02 8.7585E-02 1.1937E-01 1.5633E-01 1.9929E-01 2.4921E-01 3.0722E-01	NORM. INTEGRAL 3.2894E-02 4.8609E-02 6.9354E-02 9.4520E-02 1.2379E-01 1.5781E-01 2.4327E-01	1 11 21 31 41 51
1.745 2.197. 2.766 3.482 4.384 5.519 6.948 8.747. 1.101 1.386 1.745 2.197. 2.482 4.384 5.519 6.948 8.747. 1.101 1.386 8.747. 1.386 8.74	3E-03 2E-03 4E-03 1E-03 3E-03 3E-03 3E-02 4E-02 3E-02 4E-02 4E-02 4E-02	1.0000E-01 1.2589E-01 1.5849E-01 1.9953E-01 2.5119E-01 3.1627E-01 5.0119E-01 6.3096E-01 7.9433E-01 1.0000E-00 1.2589E-00	3.8106E 03 3.2953E 03 2.6413E 03 1.9528E 03 1.4316E 03 7.6969E 02 5.6433E 02 4.1376E 02 3.0011E 02	4.1541E-02 6.1386E-02 8.7585E-02 1.1937E-01 1.5633E-01 1.9929E-01 2.4921E-01 3.0722E-01	3.2894E-02 4.8609E-02 6.9354E-02 9.4520E-02 1.2379E-01 1.5781E-01	1 11 21 31 41 51
2.197/ 2.766 3.482/ 4.384 5.519/ 6.948/ 8.745/ 2.197/ 2.766/ 3.482/ 4.384/ 5.519/ 6.948/ 8.747/ 1.101/ 1.386/ 8.747/ 1.386/ 8.745/ 8.74	2E-03 2E-03 4E-03 1E-03 2E-03 2E-03 2E-03 2E-03 2E-02 4E-02 4E-02 4E-02 4E-02 4E-02	1.2509E-01 1.5849E-01 1.9933E-01 2.5119E-01 3.1623E-01 5.0119E-01 6.3096E-01 7.9433E-01 1.0000E 00 1.2509E 00	3.2953E 03 2.6413E 03 1.9528E 03 1.4318E 03 1.0498E 03 7.6969E 02 5.6433E 02 4.1376E 02 3.0011E 02	6.1386E-02 8.7585E-02 1.1937E-01 1.5633E-01 1.9929E-01 2.4921E-01 3.0722E-01	4.8609E-02 6.9354E-02 9.4520E-02 1.2379E-01 1.5781E-01 1.9734E-01	21 31 41 51
2.766 3.482 4.384 5.519 6.948 8.747 1.101 1.386 2.197 2.766 3.482 4.384 5.5192 6.948 8.747 1.101 1.386 6.948 8.747 1.101 1.386 6.948 8.747 1.101 1.386 6.948 8.747 1.101 1.386 6.948 8.747 1.101 1.386 6.948 8.747 1.101 1.386 6.948 8.747 1.101 1.386 6.948 8.747 1.101 1.386 6.948 8.747 1.101 1.386 6.948 8.747 1.101 1.386 6.948 8.747 1.101 1.386 8.747 1.101 1.386 8.747 1.101 1.386 8.747 1.101 1.386 8.747 1.101 1.386 8.747 1.101 1.386 8.747 1.101 1.386 8.747 1.101 1.386 8.747 1.101 1.386 8.747 1.101 1.386 8.486 8	2E -03 4E -03 1E -03 2E -03 3E -03 2E -02 4E -02 2E -02 2E -02 4E -02 2E -02 2E -02	1.5849E-01 1.9933E-01 2.5119E-01 3.627E-01 3.9811E-01 5.0119E-01 6.7096E-01 7.9433E-01 1.0000E-00	2.6413E 03 1.9528E 03 1.4318E 03 1.0498E 03 7.6696E 02 5.6433E 02 4.1376E 02 3.0011E 02	8.7585E-02 1.1937E-01 1.5633E-01 1.9929E-01 2.4921E-01 3.0722E-01	6.9354E-02 9.4520E-02 1.2379E-01 1.5781E-01 1.9734E-01	21 31 41 51
3.482 4.384 5.519 6.948 8.747 1.101 1.386 1.745 2.197 2.766 3.482 4.384 4.384 6.949 6.949 1.3765 2.618 3.490 4.363 6.108 6.108	4E-03 2E-03 2E-03 4E-03 2E-02 4E-02 3E-02 2E-02 2E-02	1.9933E-01 2.5119E-01 3.1623E-01 3.9811E-01 5.0119E-01 6.3096E-01 7.9433E-01 1.0000E-00 1.2589E-00	1.9528E 03 1.4318E 03 1.0498E 03 7.6969E 02 5.6433E 02 4.1376E 02 3.0011E 02	1.1937E-01 1.5633E-01 1.9929E-01 2.4921E-01 3.0722E-01	9.45208-02 1.23796-01 1.57818-01 1.97348-01	31 41 51
5.519 6.948 8.747 1.101 1.386 1.745 2.197 2.766 3.482 4.384 5.519 6.948 1.745 2.618 3.490 4.363 5.236 6.108	2E -03 3E -03 4E -03 2E -02 4E -02 3E -02 2E -02 4E -02 4E -02 4E -02	3.1627E-01 3.9811E-01 5.0119E-01 6.3096E-01 1.0000E 00 1.2589E 00	1.0498E 03 7.6969E 02 5.6433E 02 4.1376E 02 3.0011E 02	1.5633E-01 1.9929E-01 2.4921E-01 3.0722E-01	1.2379E-01 1.5781E-01 1.9734E-01	41 51
6.948 9.747 1.101 1.386 1.745 2.197 2.402 4.384 5.519 6.448 1.745 2.618 3.490 4.363 5.236 6.108	3E -03 4E -03 2E -02 4E -02 3E -02 2E -02 4E -02 4E -02	3.9811E-01 5.0119E-01 6.3096E-01 7.9433E-01 1.0000E-00 1.2589E-00	7.6969E 02 5.6433E 02 4.1376E 02 3.0011E 02	2.4921E-01 3.0722E-01	1.9734E-01	
9.747 1.101 1.386 1.745 2.197 2.766 3.482 4.384 5.5192 6.948 1.747 1.101 1.386 2.618 3.490 4.363 5.536 6.108	4E -03 2E -02 4E -02 3E -02 2E -02 4E -02 4E -02	5.0119E-01 6.3096E-01 7.9433E-01 1.0000E-00 1.2589E-00	5.6433E 02 4.1376E 02 3.0011E 02	3.07228-01		A 3
1.101 1.386 1.745 2.197 2.766 3.482 4.384 5.519 6.948 8.747 1.101 1.386 2.618 3.490 4.363 5.236 6.108	2E -02 4E -02 3E -02 2E -02 4E -02 1E -02	6.3096E-01 7.9433E-01 1.0000E 00 1.2589E 00	4.1376E 02 3.0011E 02		2.432/6-01	
1.386 1.745 2.1977 2.766 3.482 4.384 5.519 6.948 1.747 1.386 1.745 2.618 3.490 4.363 5.236	48-02 38-02 28-02 28-02 48-02 18-02	7.9433E-01 1.0000E 00 1.2589E 00	3.00116 02		2.9664E-01	71 81
1.745; 2.197; 2.766; 3.482; 4.384; 5.519; 6.948; 1.747; 1.386; 1.745; 2.618; 3.490; 4.363; 5.236; 6.108;	36 -02 26 -02 26 -02 46 -02 16 -02	1.25898 00	0 04015	3.7462E-01 4.5279E-01	3.58548-01	
2.766 3.482 4.384 5.5192 6.948 8.747 1.101 1.386 1.745 2.618 3.490 4.363 5.236	2E -02 4E -02 1E -02		2.04216 02	5.39956-01	4.2756E-01	101
3.482 4.384 5.5192 6.9482 1.747 1.101 1.386 1.745 2.618 3.490 4.363 5.236 6.108	4E-02 1E-02		1.30598 02	6.30986-01	4.99648-01	
4.384 5.5192 6.9492 6.747 1.1012 1.3864 1.7452 2.618 3.490 4.3632 5.2366	1E-02	1.99538 00	7.9341E 01 4.62925 01	7.2082E-01 8.0554E-01	5.7078E-01	121
5.5197 6.4487 7.477 1.101 1.3867 1.7457 2.6187 3.4490 4.3637 5.2366		2.5119E 00	2.62198 01	8.8266E-01	6.3786E-01 6.9893E-01	131
8.747 1.101 1.3864 1.745 2.6180 3.490 4.363 5.2360 6.1086	2 E 02	3.16238 00	1.45728 01	9.51186-01	7.53196-01	151
1.101; 1.3664 1.745; 2.6180 3.490; 4.363; 5.2360 6.1080		3.9811E 00	7.6397E 00	1.01028 00	7.99958-01	161
1.3864 1.7451 2.6180 3.490 4.3631 5.2360 6.1086		5.0119E 00	3-7376E 00	1-0575E 00	8-3735E-01	171
2.6180 3.490 4.3633 5.2360 6.1080		6.3096E 00	1.8005E 00 9.0111E-01	1.0936E 00	8.6599E-Q1 8.8814E-Q1	181 191
2.6180 3.490 4.363 5.2360 6.1080		1.0000€ 01	4.94384=01	1.1447E DO	9.0640E+01	201
5.2360 6.1086	08-01	1.5000E 01	1.93366-01	1.18058 00	9.34816-01	206
5.2360		2.0000E 01	9.37825-02	1-2025E 00	9.52208-01	211
6.1086		3.0000E 01	5.2770E-02 2.8893E-02	1.2172# 00 1.2271# 00	9.6383E-01 9.7168E-01	216 221
		3.5000E 01	1.8956E-02	1.23398 00	9.7710E-01	224
0.401	3E -01	4.00000 01	1.3062E-02	1.23928 00	9.81278-01	231
7.8540		4.5000E 01	8.99498-03	1.2432E 00	9.84458-01	236
8.7266		5.0000E 01 5.5000E 01	6.3394E-03	1.2463E 00 1.2486E 00	9.8687E-01	241
9.599	28 00	6.0000E 01	3.2896E-03	1.2504E 00	9.8870E-01 9.9010E-01	246 251
1.134		6.5000E 01	2.6549E-03	1.2518E 00	9.9:238-01	256
1.2217		7.0000E 01	2.1880E-03	1.25308 00	9.9220E-01	261
1.309		7.50008 01	1.8059E-03	1.25418 00	9.93026-01	266
1.396		8.0000E 01	1.5091E-03 1.2821E-03	1.2549E 00 1.2557E 00	9.93726-01 9.94326-01	271 276
1.3700	ee öö	9.00000 01	1.1138E-03	1.25638 00	9.94846-01	281
1.4581	18 00	9.5000E 01	1.01286-03	1.25696 00	9.9529E-01	286
1.745		1.0300E 02	9.6234E-04	1.2575E 00	9-95725-01	291
1.8326		1.0500E 02 1.1000E 02	9.2882E-04 9.0134E-04	1.2580E 00 1.2584E 00	9.9612E-01 9.9650E-01	296 301
2.0071			0.7733E-04	1.2589E 00	9.9685E-01	40.6
2.0944	4E 00	1.2000E 02	8.6204E-04	1.2593E 00	9.9719E-U1	311
2.1817		1.25008 02	8.69596-04	1.25976 00	9.97506-01	316
2.3562		1.3000E 02	9.9453E-04 9.2401E-04	1.2601E 00	9.9781E-01 9.9810E-01	321 326
2.443		1.40008 02	9.55378-04	1.26088 00	9.98378-01	331
2.5307	7E 00	1.45005 02	9.9140E-04	1.26115 00	9,98635-01	336
2.6180		1.50008 02	1.0353E=03	1.2614E 00	9.98878-01	
2.7053		1.5500E 02 1.6000E 02	1.1760E-03 1.4782E-03	1.2617E 00 1.2620E 00	9.9908E-01 9.9930E-01	346 351
2.879		1.65006 02	2.00158-03	1.26238 00	9.99526~01	356
2.9671		1.7000E 02	2.95156-03	1.2626E.00	9.9975E-01	361
3.0543		1.7500E 02	3.47546-03	1.2628E 00	9.9936~01	366

Figure D-89. Volume scattering function (sheet 3 of 3).

Figure D-90. Volume scattering function (sheet 1 of 3).

ANGLE 10	ATA READ IN		STR=0	ANGLE (DEG)	ATED DATA SIGMA
1 0.1750		0E 02	AND=1	0.1750	3.71325 02
2 0.3500		OE 02	Ö	0.3500	1.2805E 02
3 0.7000		DE OL	0	0.7000	4.4158E 01
4 10.00	1.895	5E-01	0	10.00	1.8955E-01
5 15.00		15-05	Ō	13.00	7-38515-02
6 20.00		96-02	8	25.00	3.8548E-02 1.7579E-02
30.00		38-02	ă	30.00	1.20338-02
9 40.00	3.794	35-03	<u>(i)</u>		5.79456-03
0 50.00	4 •	86-03	0	90.00	2.87688-03
1 60.00		58-03 98-03	0 0	60.00 70.00	1.58855-03
3 80.00		56-04	. 6	80.00	7.43355-04
4 90.00		96-04	ŏ	90.00	5.83198-04
وموود د		RE-OA		100-0	5.05D8E=04
6 110.0 7 120.0		48-04 08-04	0	110.0	4.81246-04
130.0		3E-04	0	120.0	4.8270E-04 5.1853E-04
9 140.0		5E-04	0	140.0	3-83156-04
150.0		15-04	Ó	150.0	6.5931E-04
1 160-0		38-04 38-03		170.0	7-83638-04
3	1 0 2 3	36-03	ì	180.0	1.02336-03
ALPHA- 0.3		S/ALPHA-	0.659	······································	
\$= 0.2 A= 0.1		A/ALPHA= B/S=	0.341		
CORRECTED ALP		ORRECTION			
ALPHA= 0.3		S/ALPHA=	0.649	····	
S= 0.2		A/ALPHA=	0.351	•	
A= 0.1		B/S=	0.014		
	DEGREES) = DEGREES) =	886.3			
SLOPEL 3 4	ILLIRAD) =	-1	536		
	1 DEGREES-	7.31176			D= 2.94351E-02
XPECTED K/ALP	LE DIAMETER (MA= 0.453			12.0 Diffuse atte	NUATION COEFFICIENT
	MU	RADIAN		DEGREES	
	0.9992 0.9515	0.41006	:-U1	2.349	•
ARIANCE	0.2056	······································			······································
EAN 2		0.1481		8.486	
MS		0.3581		20.12	······································
MS 2		0.3261		18.68	
KAPPAn	0.1735	KAPPATE	2.43	34E-03	

Figure D-90. Volume scattering function (sheet 2 of 3).

				JUN 1976 073	
		15 - SEA H2O !			
ANGLE (RAD)	ANGLEIDEG)	SIGNA	INTEGRAL	NORM INTEGRA	
1.74538-03	1.0000#-01	6.5508E 02			
2.19728-03	1.25096-01	5.5276E 02	1.06825-05	4.30046-02	11
2.76626-03	1.58498-01	4.28136 05	1.50038-02	6.03988-02	21
3.44246-03	1.99536-01	3.0357E 02	2.00488-02	8.0707E-02	31
4.38418-03	2.51198-01	5.1314E 05	2.56691-02	1-03346-01	41
- 9.51928-03	3-16235-01	1-49656 02	<u> </u>	1.28528-01	
6.94838-03	3.9811E-01	1.05078 02 7.3769E 01	3.88846-02	1.56546-01	6 j
1.10128-02	5.0119E-01 6.3096E-01	5.17948 01	4.66298-02 5.5247E-02	2.22412-01	71 81
1.3044 -02	7.94338-01	3.63508 01	6.48378-02	2.6101E-01	- 81
1.74538-02	1.00008 00	2.5467E 01	7.54988-0?	3.03938-01	101
2.19728-02	1.25898 00	1.7689# 01	0.7288E-02	3.51406-01	iii
2.76678-02	1.38498 00	1.21018 01	1.00182-01	4.03288-01	121
3.48246-02	1.99538 00	8.0975E 00	1.1400E-01	4.5893E-01	131
4.38416-02	2.5119# 00	5.264 SE CO	1.28466-01	5.1719E-01	14.1
5.51926-02	3.16236 00	3.30286 00	1.43098-01	5.7606E-01	151
6.94838-02	3.9811# 00	1.9572E 00	1.57286-01	6.33158-01	161
8.74738-02	5.01198 00	1.09898.00	1.70218-01	4.45216-01	171
1.10126-01	6.3096E 00	6.02278-01	1.81548-01	7.30836-01	181
1.3M64E-01	7.94336 00	3.31946-01	1.91396-01	7.70478-01	191
1.74538-01	1-00006 01	1.89558-01	2.0010#-01	8.0354E-01	201
2.61808-01	1.5000# 01	7.38516-02	2.13788-01	8.60638-01	206
3.49078-01	2.0000000	3.85488-02	2.2246E-01	8.95588-01	511
4.36335-01	2-50008 01	1-74794-02	<u> </u>	<u> 9-1760E-01</u>	-214
5.23608-01	3.0000R 01	1.20336-02	2.31598-01	9.32336-01	221
6.10866-01	3.5000E 01	8.32098-03	2.34538-01	9.44176-01	226
4-9813E-01		3.79436-03	2.36866-01	9.53538-01	236
7.8540E-01 8.7266E-01	5.0000E 01	4.0233 6-03 2.87686-03	2.3865E-01 2.4002E-01	9.6626E-01	241
9-59936-01	5.500QE 01	2.07926-03	2.4109E=01	9.70571-01	246
1.04728 00	6.00008 01	1.44851-03	2.41932-01	9.73968-01	231
1.13456 00	6.5000E 01	1.28818-03	2.42636-01	9.76758-01	256
1.22178 00	7.00000 01	1.07398-03	2.43226-01	9.79158-01	261
1.30904 00	7.30008 01	8.8701E-04	2.43738-01	9.81214-01	266
1.3963E 00	8.0000E 01	7.4335E-04	2.44176-01	9.82958-01	271
1.4835E 00	8.5000E 01	6.4806E-04	2.4454E-G1	9.84472-01	276
1.57086 00	9.0000E 01	5.8319E-04	2.4488E-01	9.85826-01	391
1.6581E 00	9.5000E 01	5.35556-04	2,45198-01	9.8705E-01	286
1.74535 00	1 OUR OF OS	3.0508E-04	2.4547E-01	9.88148-01	201
1.83266 00	1.05008 02	4.88978-04	2.45738-01	9.89266-01	296
1.91998 00	1.1000# 02	4-81246-04	2.4599E-01	9.9027E-01	301
2.00715 00	1.1500E 02	4.7865E-U4	- 3-4623E-01	9-91256-01	311
2.0944E 00 2.1817E 00	1.20008 02	4.82705=04 4.9488E=04	2.4646E-01 2.4669E-01	9.9219#-01 9.4310#-01	316
2.24898 00	1.2500E 02 1.3000E 02	5.18538-04	2.46918-01	9.9398E-01	
2.35628 00	1.3500E 02	5.50858-04	2.47128-01	9.94860-01	321
2.4435E 00	1.4000# 02	5.85158-04	2.47336-01	9.95706-01	33).
2.53078 00	1.4500E 02	6.21208-04	2.47546-01	9.96516-01	336
2.6INOE OO	1.5000E 02	6,59310-04	2.4772E-01	9.97266-01	341
2.70536 00	1.55006 02	7.1105E-04	2.47906-01	9.4796E-01	346
2.7925E 00	1.6000E 02	7.83436-04	2.48058-01	9.98598-01	351
2.8798E 00	1.6500E 02	8.8379E-04	2.48198-01	9.99148-01	356
2.9671E 00	1.7000E 02	1.02336-03	2.48308-01	9.99598-01	36 l
3.0543E 00	1.7500E 02	1.0953E-03	2.4836E-01	9.99908-01	366
3.1416E 00	1.80000E 02	1.1115E-03	2.4840E-01	1.00005 00	371

Figure D-90. Volume scattering function (sheet 3 of 3).

Figure D-91. Volume scattering function (sheet 1 of 3).

520 17JUL75 2136 S	4 CA			
ANGLE (DEG)	SIGMA	INSTR=0 MAND=1	ANGLE (DEG)	SIGMA
1 0.1750	1.20006 05	0 ,	0.1750	1.25328 02
2 0.3500	4.6600E 01	Ö	0.3500	4.7103E 01
10.7000	1.20608-01		10.00	1.77048 01
5 15.00	4.53548-02	ŏ	15.00	4.53548-02
6 20.00	2.35288-02	0	20.00	2.35288-02
7 25.00	7-2249E-05	0	25.00	1.15964-02
30.00	8.59972-03	0	10.00 40.00	8.5997E-03 3.8591E-03
10 50.00	2.0606E-03	8	50.00	2.05061-03
11 40.00	1.23726-03	ō	60.00	1.23728-03
12 70.00	8.0960E=04	0	70.00	8.09608-04
13 40.00	5.82458-04	. 0	60.00	5.82458-04
14 90.00	4.69488-04	0	,90.00 100.0	4.6948E=04
16 110.0	4.0926E-04	Ö	110.0	4.09268-04
17 120.0	4.0927E-04	ŏ	120.0	4.09278-04
13 130.0	4.3710E-04		190.0	6.3710E-06
19 140.0	4.70618-04	0	140.0	4.70618-04
20 150.0	5.23666-04	0	150.0	5.23886-04
23 170.0	7.9706E-04		170.0	4.2050E-04
23	100,000	ĭ	180.0	8.62228-04
ALPHAN 0.2236 Sm 0.1285	S/ALPH A/ALPH			
A= 0.0981				· · ·
CORRECTED ALPHA	CORRECT	10N=0.002		
ALPHA- U.2254	S/ALPH			
\$= 0.1285	A/ALPH			
A= U.0969	B/	Sm 0-053		
SIGMAL 0.0 DEGR				
SIGNAL O.1 DEGRI		-1.412		
S UP TO 0-1 DEGI		648-03	HORMAL IZED	1.796976-02
ANXIMUM PARTICLE DIS EXPECTED K/ALPHA=	AMETER IMICRON		DIFFUSE ATTENU	ATION COEFFICIENT
NU	RAD	IANS	DEGREES	
MEDIAN 0.998	0.57	56E-01	3.298	
MEAN 1 0.928		01	21.78	
VARIANCE 0.2534 Mean 2	0.19	74	11.32	
MEAN 2 RMS	0.73	75	25.07	
ÀHS 2	8.39	04	22.37	<u> </u>
KAPPA= 0-119	S KAPPA*	. 2.00	356-03	

Figure D-91. Volume scattering function (sheet 2 of 3).

520 17JUL75	2136 STA.CAT#	15 - SEA M2D 5	BOM '		
	ANGLE (DEG)	SIGMA	· • · · · · · · · · · · · · · · · · · ·	NORM. INTEGRAL	
ANGLE (RAD)	1.000008-01	2.10146 02	2.3084E-03	1.79708-02	1
2.19726-03	1,25898-01	1.8027E 02	3.39858-03	2.64556-02	11
2.76626-03	1.50498-01	LACE OZ	4.82378-03	3.755GE-02	21
3.48248-03	1.99536-01	1.04148 08	6.5305E-03	5.0836E-02	27
.4.38416-03	2.51196-01	7.5237E 01	6.46716-03	6.60678-02	41
5.51928-03 6.94838-03	3.9611E-01	3.9273E 01	1.07268-02 1.32938-02	1.0348E-01	61
8.74748-03	5.01198-01	2.83746 01	1.62308-02	1.26348-01	71
1.10128-02	6.10968-01	2.0499E D1	1.95948-02	1.52538-01	
1.38648-02	7.94338-01	1.40778 01	2.34484-02	1.02536-01	
1.74535-02	1.0000E 00	1.1059E 01	2.79368-02	2-17476-01	101
2.76621-02	1.33496 00	8.28358 00 6.11568 00	3.93328-02	- 2 · 58 66 - 0 }	-121
3.4824E-02	1.99538 00	4.35318 00	4.6754E-02	3.63958-01	131
4.38416-02	2.51198 00	2.92228 00	5.4677E-02	4.25628-01	141
5.5192E-02	3.1623E 00	1.80978 00	6.27868-02	4.88754-01	151
6.94836-02	3.98118 00	1.06318 00	7.04848-02	5.48678-01	141
0.74736-02	3.01198 00	0.19568-01	7.74191-02	<u> 4.04216-01</u>	171
1.10126-01	6.30968 OU 7.94338 OO	3.5932E-01 2.0503E-01	6,41876=02	6.5534E-01 7.0224E-01	161
1.74536-01	1.00000 01	1.20606-01	9.0213E-02	7.4523E=01	201
2.61808-01	1.50008 01	4.33548-02	1.04296-01	8.11866-01	206
3.49078-01	2.00006 01	2.35288-02	1.09628-01	6.53328-01	211
4.36336-01	2-3000E 01	1-35968-02	1.13355-01	A.A245E-01	216
5.23608-01	3.00006 01	8.59978-03	1.16086-01	9.03638-01	221
6.1086E-01 6.9813E-01	3.5000# 01 4.0000# 01	5.6198E-03 3.6591E-03	1.18136-01	9.19550-01 9.3162E-01	226 . 231
7.83408-01	4.5000E 01	2.77086-03	1.20898-01	9.41036-01	236
8.7266E-01	5.0000E 01	2.06064-03	1.21656-01	9.48546-01	241
9.59938-01	4.5000E 01	1.5779E-03	1.22648-01	9.5464E-01	240
1.04728 00	6.00000 01	1.23726-03	1.23286-01	9.59678-01	251
1.1345E 00 1.2217E 00	6.5000E 01	9.9147#-34 8.0960#:04	1.2382E-01 1.2427E-01	9.6386E-01	256 261
1.30908 00	7.50008 01	6.78165-04	1.24668-01	9.70408-01	266
1.3963E 00	8.00000 01	5.82452-04	1.2500E-01	9.7301E-01	271
1.4835E 00	8.5000E 01	5.1440E-04	1.2529E-01	9.75328-01	276
1.57088 00	9.00008 01	4.69488-04	1.25566-01	9.7741E-01	281
1.6581E 00 1.7453E 00	9.5000E 01 1.0000E 02	4.4019F-04 4.2336E-04	1.25818-01 1.2604E-01	9.7935E-01 9.8117E-01	286 291
1.89268 00	1.05008 02	4.14418-04	1.26278-01	9.82928-01	296
1.91998 00	1.1000E 02	4.09268-04	1.26488-01	9.84598-01	301
2.00718 00	1.1500E 02	4.05908-04	1.26694-01	9.86206-01	306
2.09448 00	1 - 2000E 02	4.09278-04	1.26898-01	9.87736-01	311
2.18178 00	1.25000 02	4.21678-04	1.27086-01	9.89236-01	316
2.2689E 00	1.35008 02	4.3710E-04	1.27278-01	9.90685-01	321-
2.44358 00	1.40008 02	4.70618-04	1.27628-01	9.93418-01	331
2.5307E 00	1.4500E 02	4.93738-04	1.27788-01	9.94668-01	336
2.41606 00	1.50000 02	5.2385E-04	1.27936-01	9.95834-01	341
2.7053E DO	1.5500E 32	5.6451E-04	1.28066-01	9,96898-01	346
2.7925E 00	1.60000 02	6.2050E-04	1.2819E-01	9.9786E-01	351
2.8798E 00 2.9671E 00	1.65008 02	7-97068-04	1.28388-01	9.99386-01	356 361
3.05438 00	1.75008 02	8.50538-04	1.28446-01	9.9984E-01	366

Figure D-91. Volume scattering function (sheet 3 of 3).

Figure D-92. Volume scattering function (sheet 1 of 3).

		DATA R	EAD IN			IYER	ATED DATA	
		e (DEG)	SIGMA	HA	TR=0	ANGLE (DEG)	SIGMA	
Ĭ	0.1		1.51001	_	<u> </u>	0.1750	1.5114E O2	
2	0.3		3.2000E 0	1	. 0	0.3500	5.1893E 01 1.7817E 01	
	<u>V</u>	.00	1.46078-0	1	- 8 -	10.00	1.460/E-01	
5		.00	5.85318-0		ō	15.00	5.85318-02	
		.00	7.20636-0		<u> </u>	20.00	3.2063E-02	
7	25	•00	1.9692E-0		0	25.00	1.96926-02	
6	¥0	•00	4.13748-0	2	. 0	30.00 40.00	1.3437E-02 6.1374E-03	
10		.00	3.22788-0	3	8	30.00	3.22788-03	
11		.00	1.98616-0	3	0	60.00	1.98616-03	
12	7.0	.00	1.37326-0			70.00	1.37328-03	_
13		•00	9.8982E-C		0	MO.00	9.89828-04	
14		•00	7.74206-0		0	90.00	7.74208-04	
16		0.0	5.9775E-C		0	110.0	3.9775E-04	
17		0.0	5.81206-0		Ω	120.0	5.81205-04	
-11 -		0-0	6.1446E-0			130.0		_
20		0.0 0.0	4.6522E-0	•	0	140.0 150.0	6.6522E-04 7.2986E-04	
.21		0.0	A_3345=0		<u> </u>	160-0	B.4334#=04	
5.5		0.0	1.07156-0	3	0	170.0	1.07158-03	
23					1	180.0	1.15248-03	•
		0.2255		PHA=	0.650			-
		0.1467	A/AL	A/Su	0.029			
COA	RFCTED		CORRE	CTION	=0.002			
	AL PHA	0.2278	S/AL	PHA=	0.644			
		0.1467		PHA=	0.356			
		0.0811		B/S=	0.029			
		0.0 DEGR		40.7				
	SIGMAL	O 1 DEGR	1 <u>P319</u>	46.4	542			
		n o.i begi		976ÎE		NORMAL 12	10= 2.02888E-02	
			AMETER IMICA			12.0		
EXPE	CTED K	/AL PHA	0.4589	EX	PECTED	DIFFUSE ATT	ENUATION COEFFICIENT	·
		MU		ADIAN		DEGREES		
MEDI		0.997	9.	73016	-01	4.183		
MEAN	ANCE	0.906		4360		24.98	······································	, - , - ,
MEAN		31233		2439		13.98		
BMS				4983		28.55		
RMS	2		. 0.	4345		24.90		
u	APPA-	0.104	KAPP	A 1 =	4.41	256-03		

Figure D-92. Volume scattering function (sheet 2 of 3).

**************************************	· · · · · · · · · · · · · · · · · · ·			1976 074	
520 17JUL75	2141 STA.CATH	15 - SEA H2D	BUM	· · · · · · · · · · · · · · · · · · ·	
ANGLEIRADI	ANGI-E (DEG)	SIGMA	INTEGRAL	NORM. IPTEGRA	L
1.7453E-03	1.0000E-01	2.6664E 02	2.9761E-03	2.02896-02	1
2.1972E-03	1.25896-01	2.2499E 02	4.3480E-03	2.9642F-02	11
2.7662E-03	1.5849E-01	1.7426E 02	6.1067E-03	4.16314-02	21
3.4824E-03	1.9953E-01	1.2345F 02	8.1596E-03	5.5626E-02	31
4.3841E-03	2.51196-01	8.6557E Cl	1.0444E-02	7.1198E-02	41
5.5192E-03	3.1623E-01	6.0684E 01	1.2982E-02	8.85028-02	51
6.9483E-03	3.9811E-01	4.2545E 01	1.58036-02	1.07736-01	61
8.7474E-03	5.01196-01	2.98286 01	1.8936E-02	1.2909E-01	71
1-1015E-05	6.30965-01	2.0912E 01	2.24196-02	1.5283E-01	81
1.38648-02	7.94338-01	1.47286 01	2.62916-02	1.7923E-01	.91
1.74538-02	1.0000E,00	1.06468 01	3.7669E-02	2.09086-01	101
2.1972E-02	1-2589E 00	7.80208 00	3.5720E-02	2.43578-01	121
2.7662E-02 3.4824E-02	1.5849E 00	5.6955E 00	4.1600E-02	2.83606~01	
4.3841E-02	1.9953E 00 2.5119E 00	4.0691E 00 2.7955E 00	4.8330F-02 5.5809L-02	3.2947E-01	131
5.5192E-02	3.1623E 00	1.81455 00	6.3734E-02	3.8046E-01 4.3449E-01	151
6.94R3E-02	3.98118 00	1.1226E 00	7.1664E-02	4.8855E-01	161
0.7473E-02	5.01198.00	6.7987E-01	7.9349E-02	5-40945-01	171
1.1012E-01	5.3096E 00	4.0691E-01	8.6673E-02	5.9086E-01	181
1.3864E-01	7.9433E 00	2.4295E-C1	9.35996-02	6.3808E-01	191
1.7453E-01	1.0000E 01	1.4607E-01	1.00166-01	6.8282E-01	201
2.61808-01	1.5000E 01	5.85316-02	1.10368-01	7.5576E-01	206
3.4907E-01	2.0000E 01	3.2063E-02	1.1791E-01	8.03836-01	211
4.3633E-01	2.5000E 01	1.9692E-02	1.23146-01	8-39505-01	216
5.2360E-01	3.0000E 01	1.3437E-02	1.27256-01	8.6748E-01	221
6-10868-01	3.5000E 01	8.9881E-03	1.30506-01	3.89628-01	226 .
6.98138-01	4.0000E 01	6.1376E-03	1.3297E-01	9.0649E-01	231
7.8540E-01	4.5000F 01	4.3665E-03	1.34896-01	9.19566-01	236
9.7266E-01	5.0000E 01	3.22786-03	1.36402-01	9.2988E-01	241
9.59936-01	5.5000E 01	2.4841E-03	1.3763E-01	9.38265-01	246
1.04728 00	6.0000E C1	1.98616-03	1.3866F-01	9.45246-01	251
1.1345E 00	6.5000E 01	1.6389E-03	1.39536-01	9.51226-01	256
1.22175 00	7.0000E 01	1.3732E-03	1.4029E-01	9.5640E-01	261
1.3090E 00	7.5000E 01	1.1595E-03	1.40956-01	9.6090E-01	266
1.39635 00	8.0000E 01	9.8982E-04	1.41526-01	9.6480E-01	271
1.4835E UC	8-5000E 01	8.6467E-04	1.4203E-01 1.4247E-01	9-6822E-01	276
1.5708E 00 1.6581E 00	9.5000E 01	7.7420E-04 7.0894E-04	1.42886-01	9.7127E-01 9.7404E-01	286
1.7453E 00	1.0000E 02	6.60846-04	1.4200E-01	9.7404E-01	291
1.8326E 00	1.0500E 02	6.2423E-04	1.43596-01	9.7891E-01	296
1.91998 00	1.10000 02	5.9775E-04	1.4391E-01	9.81G8E-01	301
2.0071E 00	1,1500E 02	5-8172E-Q4	1.4421E-01	9.8312E-01	306
2.09448 00	1.2000E 02	5.812UE-04	1.4449E-01	9.8504E-01	311
2.1817E 00	1.2500E 02	5.94116-04	1.4476E-01	9.8689E-01	316
2.26A7E 00	1.3000E 02	6.1446E-04	1.45035-01	9.0868E-01	321
2.3562E 00	1.35006 02	6.3886E-04	1.4528E-01	9.9040E-01	326
2.4435E 00	1.4000# 02	6.6522E-04	1.4552E-01	9.9205E-01	331
2.5307E 00	1.4500E 02	6.9546E-04	1.45756-01	9.9359E-01	336
2.6180E 00	1.5000E 02	7.29868-04	1.4596E-01	9.9502E-01	341
2.7053E 00	1.5500E 02	7.7692E-04	1.46156-01	9.4632E-01	346
2.7925E 00	1.6000E 02	8.4334E-04	1.46326-01	9.9747E-01	351
2.8798E 00	1.9200E 05	5.3819E-04	1.4646E-01	9.9847E-01	356
2.9671E 00	1.7000E 02	1.07156-03	1.46586-01	9.99276-01	361
3.05435 00	1.7500E 02	1.1371E-03	1.46666-01	9.99828-01	366
3,1416E 00	1.80006 02	1.1524E-03	1.45696-01	1.0000E 00	371

中国的现在分词 医阿拉克氏病 医克里克氏病 医克里克氏病 医克里克氏病 医克里克氏病 医克里克氏病 医克里克氏病 医克里克氏病 医克里克氏病 医克里克氏病 医多种性病 病 医多种性病 医多种性病病 医多种性病 医多种性病病 医多种性病 医多种性病 医多种性病 医多种性病 医多种性病 医多种性病的 医多种性病 医多种性病 医多种性病 医多种性病 医多种性病病 医多种性病 医多种性病 医生物性病 医生物性病 医生物性病 医生物性病 医生物性病 医生物性病 医生物性病 医生物性病 医生物性病病 医生物性病性病病 医生物性病病 医生物性病病 医生物性病病 医生物性病性病病 医生物性原生物体病性病病性病病 医生物性原生病 医生物性原生物体病性病性病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性病性原生物体病性病性病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性病性原生物体病性病性原生物体病性原生物体病性原生物体病性原生物体皮肤皮肤病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体病性原生物体原生物体病性原生物体皮肤皮肤皮结肠神经生殖物体病性原生物体病病性原生物体皮肤皮结肠神经生殖物体皮肤皮结肠神经原生物体皮肤皮肤皮结肠神经生殖物体皮结肠结肠结肠神经生殖物体皮结肠结肠结肠结肠结肠结肠结肠结肠结肠结肠结肠

Figure D-92. Volume scattering function (slicet 3 of 3).

Figure D-93. Volume scattering function (sheet 1 of 3).

520 183	UL75 2031	STA.CAT#16 -	SEA HZO 10F	\	·
		READ IN			ATED DATA
AN	GLE (DEG)	SIGMA	INSTR®O HAND®1	ANGLE (DEG)	SIGMA
	1750	6.2000E 0		0.1750	5.0955E 02
	.3500	2.33000 0		0.3500	2.4110E 02
3 0	7000 10.00	9.7000E 07		10.700	9.5367E Q1 4.3266E-01
5	15.00	1.65958-0		15.00	1.65956-01
6	20.00	7.86955-0		20.00	7.86956-02
7	25.00	4.10186-0		25.00	4-10188-02
	30.00 40.00	2.2994E-0		30.00 40.00	2.2994E-02 9.7675E-03
	50.00	4.95101-0	3 8	50.00	4.9510E-03
	60.00	2.63950-0		60.00	2.63956-03
17,	70.00	1.6205E-0		70.00	1.6205E-03
	80.00	1.12806-0		80.00	1.1280E-03
	90.00 100.0	8.2882E-04		90.00	8.2882E-04
	110.0	6.0882E-04		110.0	6.08826-04
17	120.0	6.100RE-04	4 0	120.0	6.10085-04
	130.0	6.3112E-0		130.0	6.3112E-04
	140.0	6.71726-04		140.0	6.71726-04
	150.0 160.0	7.8736E-04		150.0	7.8736E-04
	170.0	1.81758-0	3 0	170.0	1.8175E-03
23			1	180.0	2.13126-03
ALPH	A= 0.6422	S/AL			
	S= 0.5306 Am 0.1116	A/ALI	PHA= 0.174 8/5= 0.009		
	ED ALPHA	CORREC	STION=0.008		
ALPH	A= 0.6504	S/ALF	PHA= 0.816		
-	\$= 0.5306	A/ALF	HA= 0.184		
	A= 0.1198		3/5= 0.009		
	A! 0.0 DEC		271.		
SIGM	AL O.1 DEC E(3 MILL)		38.4		
	TO 0.1 DE		-1.338 0748E-02	NORMAL IZE	D= 2.02569E-02
	PARTICLE D K/ALPHA=	IAMETER (MICRO		102.0 DIFFUSE ATTE	NUATION COEFFICIENT
			DIANS	DEGREES	
MEDIAN	0.99		1304E-01	2.466	
MEAN 1 VARIANCE	0.96		2680	15.36	
MEAN 2	2010		1295	7.422	
RMS		0.3	1023	17.32	
RMS 2		0.2	2732	15.65	
KAPPA	0.18	53 KAPPA	1.9	3266-03	

Figure D-93. Volume scattering function (sheet 2 of 3).

			25	JUN 1976 074	4.39
520 18JUL75	2031 STA.CAT#			,	
ANGLE (RAD)	ANGLE (DEG)	SIGMA	INTEGRAL	NORM. INTEGRAL	
1.7453E-03	1.00008-01	9.8842E 02	1.07486-02	2.02576-02	1
2.19726-03	1.25896-01	8.5700E 02	1.59026-02	2.99716-02	11
2.76625-03	1.5849E-01	6.8952E 02	2.27296-02	4.2837E-02	21
3.48248-03	1.99536-01	5.11438 02	3-10-16-05	5.8503E-02	31
4.38418-03	2.51198-01	3.75828 02	4.0734F-02	7.67716-02	41
5.51925-03	<u> </u>	2.76178 02	5.2023E-02	9.80478-02	
6.94836-03	3.9811E-01	2.02946 02	6.51708-02	1.2283E-01	61
8.74746-03	5.01196-01	1.49136 02	8.04816-05	1.5168E-01	71
1.1012E-02	<u> </u>	1.095BE 02	9.8313E-02	1.8529E-01	<u> </u>
1.38648-02	7.9433E-01	8.03796 01	1.19078-01	2.24426-01	91
1.74536-02	1.0000E 00 1.2589E 00	5.8241E 01 4.1405E 01	1.4308E-01	2.69658-01	101 111
2.1972E-02 2.7662E-02	1.58498 00	2.67086 01	2.00786-01	3.78418-01	121
3.4824E-02	1.99536 00	1.92988 01	2.33678-01	4.40416-01	131
4.3841E-02	2.5119E 00	1.2501E 01	2.68098-01	5.05266-01	161
5.51925-02	3.16238 00	7.75738 00	3.0268E-01	3.7046E-01	151
6.9483E-02	3.98116 00	4.53968 00	3.3577E-01	6.32828-01	161
8.74738-02	5.01195 00	2.525BE 00	3.65625-01	6-8908E-01	171
1.10126-01	6.3096E 00	1.37648 00	3.9160E-01	7.38056-01	181
1.38648-01	7.94336 00	7.5690E-01	4-14068-01	7.80388-01	191
1.74536 -01	1.0000E 01	4.3266E-01	4.33938-01	8.17838-01	
2.61806-01	1.5000E 01	1.6595E-01	4.65126-01	8.7661E-01	206
3.4907E-01	2.0000E 01	7.8695E-02	4.8385E-01	9.1191E-01	211
4.3633E-01	2.5000E 01	6.1018E-02	4.9577E-01	9.3438E=01	216
5.2360E-01	3,0000E 01	2.2994E-02	5.0351E-01	9.48975-01	221
6.1086E-01	3.5000E 01	1.45268-02	5.08886-01	9.59098-01	226 .
6.9513E-01	4.0000E 01	9.76758-03	5.1285E-01	9.6657E-01	231
7.8540E-01	4.5000E 01	6.8479E-03	5.15888-01	9.7227E-01	236
8.7266E - 01	5.0000E 01	4.9510E-03	5.18235-01	9.7671E-01	241
9.5993E-01	5.5000E 01	3.5774E-03	5.20075-01	9.80172-01	246
1.0472E 00	6.0000E 01	2.6395E-03	5.2148E-01	9.8284E-01	25)
1.1345E 00	6.50008 01	2.02946-03	5.2261E-01	9.8496E-01	5,4
1.2217E 00	7.0000E 01	1.6205E-03	5.2353E-01	9.8669E-01	<u>_2:1</u>
1.30906 00	7.5000E 01	1.34058-03	5-2430E-01	9.8814E-01	566
1.39638 00	H-0000E 01	1.1280E-03	5.2495E-01	9.89388-01	271
1.4835E 00	8.5000E 01	9-6058E-04	5.25528-01	9-9044E-01	276
1.57088 00	9.0000E 01	8.28826-04	5.2601E-01	9.9136E-01	281
1.6581E 00	9.5000E 01	7.3872E-04	5.26436-01	9.92175-01	286
1.74536 00	1.00000 02	6.7810E-04	5.26828-01	9.92895-01	291
1.83266 00	1.0500E 02	6.32258-04	5.2717E-01 5.2749E-01	9.93556-01	296
1.9199E 00 2.0071E 00	1.1000E 02	6.0882E-04 6.0495E-04	5.2780E-01	9.9416E-01	301
2.0944E 00	1.2000E 02	6.10086-04	5.28098-01	9.9530E-01	
2.1917E 00	1.2500E 02	6.1951E-04	5.2838E-01	9.9583E-01	311 316
2.2689E 00	1.3000E 02	6.31128-04	5.2865E-01	9.96346-01	321
2.35628 00	1.3500E 02	6.48258-04	5.28916-01	9.96836-01	326
2.44358 00	1.40008_02	6-7172E-04	5-2915E-01	9.97298-01	_331
2.53078 00	1.4500E 02	7.16326-04	3.2938E-01	9.9772E-01	336
2.61808 00	1.50006 02	7.87366-04	8.2040E-01	9.9814E-01	341
2.7053E 00	1.55008 02	4.9674E-04	5.2981E-01	9.9854E-01	346
2.7925E 00	1.60008 02	1.07226-03	5.2981E-01 5.3002E-01	9.98926-01	351
2.8798E 00	1.6500E 02	1.3561E-03	5.30216-01	9.9930E-01	356
2.96718 00	1.7000E 02	1.01756-03	5.3040F-U1	9.9964E-01	361
3.05438 00	1.7500E 02	2.06916-03	5.30546-01	9.9991E-01	366
3.1416E 00	1.8000E 02	2.13126-03	5.3059E-01	1.0000E 00	371

Figure D-93. Volume scattering function (sheet 3 of 3).

Figure D-94. Volume scattering function (sheet 1 of 3).

· Si in it is the Miller of the second

3	20 183061	5 2045 STA.	CAT#16 - SEA		Na	
	ANGLE	DATA READ (DEG)		NSTR=0 HAND=1	ANGLE (DEG)	SIGMA
T	0.17		3.0000E 02	0	0.1750	4.9854E 02
3	0.3		1.7400E 02 6.8000E 01	0	0.3500	1.7697E 02
	0.70		6.3000E 01 1.9323E-01	0	10.00	6.2818E 01
5	īš.		8.6320E-02	ŏ	15.00	8.63206-02
. 6	20,		4.0743E-02	0	30.00	4.0743E-02
7	30.		2.3497E-02 1.3783E-02	0.	30.00	2.3497E=02 1.3783E=02
` •	40.		6.4871E-03	ŏ	40.00	6.4871E-03
16	50.		3.27618-03	ő	30.00	3.2761E-03
11	60.	00	1.91458-03	0	60.00	1.91456-03
12	70		1.21438-03		79.00	1.21435-03
13	90.		8.1209E-04 6.6195E-04	0 .	80.00 90.00	8.1209E-04 6.6195E-04
15	100		5.9141E=04	ŏ	100-0	3.9141E-04
16	110	•0	5.59328-04	0	110.0	5.59326-04
17	120		5.39818-04	o o	150.0	5.3981E-04
18	130 140		5.5435E-04 5.6652E-04		140.0	5.5435E-04 5.8852E-04
20	150		7.09396-04	ŏ	150.0	7.09596-04
21	160		8.9493E-04	<u>ò</u>	160.0	8.94936-04
22	170	••0	1.65928-03	D	170.0	1.65926-03
23				1	180.0	1.97108-03
	ALPHA=		S/ALPHA			
		0.2994	A/ALPHA			
		0.1615				······································
C	DRRECTED	ALPHA	CORRECTI	ON=0.007		
_	ALPHA		S/AL PHA			······································
		0.2994	AZALPIA			
		0.1689	B/S	0.013		
		0.0 DEGREES				
		O.1 DEGREES 3 MILLIRAD)		1.494		
		O.1 DEGREE		6E-03	NOR MAL 126	D= 3.20660E-02
MΔ	CIMUM PAR	TICLE DIAME	TER IMICRONS) = 1	10.0	
	PECTED KA		0.4634		DIFFUSE ATTE	NUATION COEFFICIENT
		MU	RADI		DEGREES	
	IAN	0.9995		3E-01	1.898	-
	I ANCE	0.2007	0.304	<u> </u>	17.42	
	AN 2	015001	0.139	0	7.963	
RM:	L	· ·····	0.349		20.02	
RM.	3-2		0.320	16	18.37	
	KAPPA=	0.2170	KAPPA1=	2.49	286-03	

Figure D-94. Volume scattering function (sheet 2 of 3).

			2	5 JUN 1976 0746	14.15
520 18JUL75 2	045 STA.CATE	16 - SEA H2D	5 OM		
ANGLE (RAD)	ANGLE (DEG)	SIGMA	INTEGRAL	NORM. INTEGRAL	١.
1,74538-03	1.0000E-01	8.6472E 02	9.3996E-03	NORM. INTEGRAL	7
2.1972E-03	1.25898-01	7.33736 02	1.40616-02	4.6967E-02	11
2.7662E-03	1.5849E-01	5.7267E 02	1.98186-02	6.6199E-02	21
3.48246-03	1.9953E-01	4.0981E 02	2.6597E-02	8.8843E-02	31
4,3841E-03	2.5119E-01	2.9051E 02	3.422ZE-02	1-1431E-01	41
5.51928-03	3.1623E-01	2.05948 02	4.2790E-02	1.42936-01	51
6.94838-03	3.9811E-01	1.45998 02	5.24158-02	1.7508E-01	61
8 • 7474E - 03	5.0119E-01	1.0349E 02	6.32295-02	2.1121E-01	71
1.1012E-02	6.3096E-01	7.3361E 01	7.53796-02	2.51798-01	81
1.3864E-02	7.9433E-01	5.1729E C1	8.9015E-02	2.9734E-01	91
1.7453E-02	1.0000# 00	3.5346E 01	1.04036-01	3.47496-01	101
2.19728-02	1.25898 00	2.34068 01	1.20036-01	4.00938-01	111
2.7662E-02	1.5849E 00	1.50888 01	1.3658E-01	4.5623E-01	151
3.4R24E-02	1.99536 00	9.5085E 00	1.5330E-01	5.1208E-01	131
4.3841E-02	2.51195 00	5.8847E 00	<u> 1.6984E-01</u>	5.6733E-01	- jë j
5.5192E-02	3.1623E 00	3.5923E 00	1.85958-01	6.21126-01	151
6.94836-02	3.98118 00	2.07756 00	2.01216-01	6.7211E-01	161
8.7473E-02	3.0119# 00	1-1251E 00	2.1470E-01	7-17178-01	_171
1.1012E-01	6.3096E 00	5.9811E-01	2.26126-01	7.55336-01	191
1.38648-01	7.94338 00	3.27276-01	2.35846-01	7.87776-01	191
1.7453E-01 2.6180E-01	1.0000E 01	1.93235-01	2.4453E-01 2.5958E-01	H-1682E-01	201
		B.6320E-02		8.6710E-01	206
3.49078-01 4.36338-01	2.00008 01 2.50008 01	4.0743E-02 2.3497E-02	2.6929E-01 2.75745-01	8.9951E-01 9.2107E-01	211
5.2360E-01	3.0000E 01	1.3783E-02	2.80298-01	9.36278-01	221
6.1086E-01	3.5000E 01	9.2715E-03	2.8350E-01	9.47316-01	226
6.98138-01	4.0000E 01	A.4871E-03	2.8619E-01	9.5598E=01	_231
7.85408-01	4.5000E 01	4.5225E-03	2.88208-01	9.6269E-01	236
8.7266E-01	5.0000E 01	3.27618-03	2.89756-01	9.67878-01	241
9.5993E-01	5.5000E 01	2.47428-03	2.90998-01	9.7200E=01	246
1.0472E 00	6.0000E 01	1.9145E-03	2.92006-01	9.7537E-01	251
1.1345R 00	6.5000E 01	1.5115E-03	2.92828-01	9.7813E-01	256
1.2217E 00	7.0000E 01	1.21436-03	2.9351E-01	9.8042E-01	261
1.30908 00	7.5000E 01	9.85568-04	2.94088-01	9.82332-01	266
1.3963E 00	8.00008 01	8.1209E-04	2.94568-01	9.8393E-01	271
1.4835E 00	8.5000E 01	7.1361E-04	2.9497E-01	9.85306-01	276
1.5708E 00	9.0000E 01	6.61956-04	2.95356-01	9.86568-01	281
1.65818 00	9.5000E 01	6.2009E-04	2.9570E-01	9.87738-01	286
1.74535 00	1.00006 02	3.9141E-04	2.9603E-01	9.8883E-01	291
1.83268 00	1.0500E 02	5.7359E-04	2.96346-01	9.89862-01	296
1.91998 00	1.10005 03	5.59326-04	2.96635-01	9.90866-01	301
2.00718 00	1.1500E 02	3.4742E-04	2.9691E-01	9.91798-01	304
2.09448 00	1.2000E 02	3.3981E-04	2.97188-01	9.92678-01	311
2.1617E 00	1.25008 02	5.4356E-04	2.9743E-01	9.93506-01	316
2,26898 00	1.3000E D2	5.5435E-04	2.9767E-01	9,94318-01	321
2.35628 00	1.35008 02	5.6619E-04	2.97898-01	9.95066-01	
2.44358 00	1.40008 02	5.8852E-04	2.98116-01	9.9577E-01	331
2.5307E 00 2.6180E 00	1.45000 02	6.3929E-04	2.9831E-01	9.9645E-01	336
2.6180F 00 2.7053E 00	1.5000E 02	7.0939E-04 7.8880E-04	2.9851E-01 2.9869E-01	9.9712E-01 9.9774E-01	341 346
2.7925E 00		8.9493E-04	2.9887E-01	9.98335-01	351
2.87988 00	1.6000E 02	1.14318-03	2.99038-01	9.98886-01	356
2.9671E 00	1.7000E 02	1.65928-03	2.9920E-01	9.9942E-01	361
3.05436 00	1.7500E 02	1.90076-03	2.99326-01	9.99848-01	366
3.1418E 00	1.8000E 02	1.9710E-03	2.99376-01	LOCOUE ON	371

Figure D-94. Volume scattering function (sheet 3 of 3).

Figure D-95. Volume scattering function (sheet 1 of 3).

DATA	A READ IN		I TER	ATED DATA
ANGLE (SEG	SIGMA IN	STR#O AND=1	ANGLE (DEG)	SIGMA
1 0.1750	1.7400E 02	0	0.1750	1.6617E 02
2 0.3500	5.2000E 01	0	0.3500	5.70368 01
3 0.7000	2.0500E 01	0	0.7000	1.9577E 01
5 15.00	4.80808-02	<u>.</u>	15.00	4.80808=02
A 20.00	2.66198-02	Ö	20.00	2.66196-02
7 25.00	1.75265-02	<u> </u>	25.00	1.75268-02
B 30.00	1.27596-02	0	30.00	1.27596-02
9 40.00 10 50.00	5.8683E-03 3.1913E-03	0	40.00 50.00	5.8683E-03 3.1913E-03
11 60.00	1.80836-03	0	60.00	1.80836-03
12 70 00	1 2 4 4 0 5 - 0 2		70.00	1 444.48-03
13 80.00	8.8645E-04	Ŏ	80.00	8.86438-04
14 90.00	7.0511E-04	0	90.00	7.05118-04
15 100.0 15 110.0	5.6982E-04		110.0	5.6982E-04
17 120.0	5.62346-04	ŏ	120.0	5.62346-04
19 130-0	5-78005-04			5.78005-04
19 140.0	6.10668-04	0	140.0	6.10666-04
20 150.0 21 160.0	7.23776-04 8.44336-04	0	150.0	7.2377E-04
22 170.0 23	1.04336-03	0 1	170.0 180.0	1.0333E-03 1.1691E-03
ALPHA= 0.2492	S/ALPHA=	0.534		
S= 0.1330 A= 0.1162		0.466		
CHRECTED ALPHA	CORRECTIO		· · · · · · · · · · · · · · · · · · ·	
ALPHA= 0.251				
\$= 0.1330 A= 0.1187		0.472		
\$16MA(0.0 DE				
SIGMAL O.1 PE SLOPEL 3 MILL S UP TO 0.1 D	IRAD)= -1	.543 E-03	NOR MAL I ZE	D= 2.46069E-02
THETAN #2 BAR	0.1286 RADIANS			

Figure D-95. Volume scattering function (sheet 2 of 3).

1.7453E-02 1.7500E-01 2.750E-02 3.2720E-02 2.4007E-02 1.7453E-03 1.0000E-01 2.4915E 02 3.2720E-03 2.4007E-02 1.2757E-03 1.27				2:	JUN 1976 1143	22
1.7493E-03 1.2900E-01 2.49315E 02 3.2720E-03 2.4607E-02 1 2.7662E-03 1.2846E-01 1.28478E-02 4.7136E-03 5.0591E-02 1 2.7662E-03 1.5866E-01 1.3873E-02 6.7708E-03 5.0591E-02 21 3.4841E-03 2.5119E-01 9.3148E 01 1.1482E-02 8.6549E-02 41 5.5192E-03 3.1623E-01 6.6770E-01 1.4272E-02 1.0738E-01 51 6.9483E-05 3.9811E-01 4.4788E 01 1.1482E-02 8.6549E-02 41 6.9483E-05 3.9811E-01 4.4788E 01 1.7372E-01 1.3064E-01 61 7.444E-03 2.719E-01 9.32778E 01 2.04016E-02 1.3658E-01 61 7.445E-02 6.3096E-01 2.2978E 01 2.4442E-02 1.5558E-01 71 1.1012E-02 6.3096E-01 2.2978E 01 2.4442E-02 1.5558E-01 91 1.7453E-02 1.0000E 00 1.188E 01 5.3594E-02 2.5564E-01 101 2.1972E-02 1.5669E 00 7.7076E 00 3.7572E-02 2.9143E-01 91 1.7453E-02 1.5569E 00 7.7076E 00 3.7572E-02 2.9143E-01 111 2.7462E-02 1.5669E 00 7.7076E 00 3.7572E-02 2.9143E-01 111 3.8472E-02 1.5669E 00 5.2515E 00 5.6722E-02 3.3355E-01 121 4.3841E-02 2.5519E 00 2.3419E 00 6.6722E-02 4.2656E-01 141 5.5192E-02 3.7881E 00 9.4470E-01 7.0058E-02 3.3355E-01 121 4.3841E-02 2.5519E 00 1.5574E 00 6.3350E-02 5.7466E-01 161 4.7473E-02 3.7681E 00 9.4470E-01 7.0058E-02 5.2656E-01 161 4.7473E-02 3.7681E 00 9.4470E-01 7.0058E-02 5.7466E-01 171 6.9473E-02 3.7681E 00 9.4470E-01 7.0058E-02 5.7466E-01 161 6.9473E-02 3.7681E 00 9.4470E-01 7.0058E-02 5.7466E-01 161 7.485E-01 1.5000E 01 1.7258E-01 1	520 19JUL75	2013 STA.CATHI	7 - SEA H2D 7	5M		
2.1972E-03 1.2949E-01 2.4738E 02 4.7803E-03 3.5950E-02 11 2.7642E-03 1.9649E-01 1.9198E-02 6.7138E-03 5.0491E-02 21 3.4874E-03 1.9649E-01 1.9198E-01 1.4187E-02 6.7664E-02 31 5.9192E-03 5.1928E-01 9.918E 01 1.1472E-02 6.7664E-02 31 5.9192E-03 5.1928E-01 4.6738E 01 1.1472E-02 1.07338E-01 51 6.9483E-03 3.9881E-01 4.6738E 01 1.1472E-02 1.07338E-01 51 6.9483E-03 3.9881E-01 4.6738E 01 1.7472E-02 1.07338E-01 51 6.9483E-03 3.9881E-01 4.6738E 01 1.7472E-02 1.07338E-01 51 6.7474E-03 5.0119E-01 3.2779E 01 2.4074E-02 1.3554E-01 71 1.1012E-02 6.3908E-01 2.2078E 01 2.4074E-02 1.3554E-01 81 1.3864E-02 7.9433E-01 1.6090E 01 2.48493E-02 2.7728E-01 91 1.7473E-02 1.7593E 00 7.7076E 00 3.6752E-02 2.7128E-01 101 2.7462E-02 1.7593E 00 3.5725E 00 4.3593E-02 2.7128E-01 111 2.7462E-02 1.7593E 00 3.5725E 00 5.0352E-02 3.7873E-01 131 3.5872E-02 1.7593E 00 3.5725E 00 5.0352E-02 3.7873E-01 131 5.5912E-02 3.1623E 00 2.5419E 00 5.6732E-02 4.7647E-01 15 6.9443E-02 3.7831E 00 9.4470E-01 7.058E-02 5.7868E-01 161 6.7473E-03 1.00000 0 3.6732E-00 4.3350E-02 3.7873E-01 131 6.9443E-02 3.7831E 00 9.4470E-01 7.058E-02 5.7868E-01 161 6.7473E-03 1.00000 0 1.0043E-01 7.6603E-02 5.7868E-01 161 6.7473E-03 1.00000 0 1.0043E-01 7.6603E-02 5.7868E-01 161 6.7473E-03 1.00000 0 1.0043E-01 7.6603E-02 5.7868E-01 161 6.7483E-01 1.00000 0 1.0043E-01 7.6603E-02 5.7868E-01 161 6.7483E-01 1.50000 0 1.0043E-01 7.6603E-02 5.7868E-01 161 6.7485E-01 1.50000 0 1.0043E-01 7.6603E-02 5.7868E-01 161 6.7485E-01 1.50000 0 1.0043E-01 7.6603E-02 5.7868E-01 161 6.7480E-01 1.50000 0 1.0043E-01 7.6603E-02 5.7868E-01 161 6.7480E-	•				NORM. INTEGRAL	
2.76428-03 1.58408-01 1.3939E 02 6.7138E-03 5.7446E-02 31 4.38418-03 2.5119E-01 6.5168E 01 1.1452E-02 8.6340E-02 4 5.51928-03 3.98318-01 6.6761E 01 1.1452E-02 1.07338-01 51 6.43845-03 3.98318-01 6.6761E 01 1.1452E-02 1.07338-01 51 6.7474E-03 3.98318-01 3.2779E 01 2.07816E-02 1.07338-01 51 1.1012E-02 6.3096E-01 2.2678E 01 2.4642E-02 1.8532E-01 61 1.366E-02 7.9633E-01 1.6000E 01 2.4642E-02 1.8532E-01 61 1.366E-02 7.9633E-01 1.6000E 01 2.4642E-02 2.1729E-01 91 1.7633E-07 1.0000E 00 1.1138E 01 5.3594E-02 2.1729E-01 91 1.7633E-07 1.0000E 00 1.1138E 01 5.3594E-02 2.9143E-01 101 2.7662E-02 1.2569E 00 7.7076E 00 3.6732E-02 2.9143E-01 111 2.7662E-02 1.9469E 00 5.2513E 00 4.3938-02 3.3359E-01 121 3.4742E-02 1.9493F 00 5.2513E 00 4.3938-02 3.3359E-01 121 3.4742E-02 1.9493F 00 5.2513E 00 5.6722E-02 4.7662E-01 151 4.3741E-02 2.5119E 00 2.3419E 00 5.6722E-02 4.7662E-01 151 5.512E-02 3.9831E 00 9.4470E-01 7.0596E-02 5.7686E-01 161 8.762E-02 3.9831E 00 9.4470E-01 7.0696E-02 5.7686E-01 161 8.762E-02 3.9831E 00 9.4470E-01 7.0696E-02 5.7686E-01 161 8.762E-02 3.9831E 00 9.4970E-01 7.6408E-02 5.7686E-01 161 8.762E-01 1.3000E 01 1.0786E-01 7.6408E-02 5.7686E-01 161 8.762E-01 1.3000E 01 1.0848E-01 7.6408E-02 5.7686E-01 161 8.762E-01 1.3000E 01 1.0848E-01 7.6408E-02 5.7686E-01 161 8.760F-01 1.3000E 01 1.0848E-01 7.6408E-02 6.5668E-01 161 8.760F-01 1.3000E 01 1.0848E-01 7.6408E-02 7.7686E-01 161 8.760F-01 1.3000E 01 1.0848E-01 7.6408E-02 7.7608E-01 2.0008E-01 7.0008E-01 7.						1
0.44748-03 1.9938-01 1.3973E 02 8.9708E-03 6.7404E-02 31 4.3841E-03 2.5119E-01 6.3148E 01 1.1482E-02 1.0733E-02 41 5.5192E-03 3.1023E-01 6.6701E 01 1.4272E-02 1.0733E-01 51 6.9483E-03 3.981E-01 4.4778E 01 1.7272E-02 1.3064E-01 61 7.474E-03 5.0119E-01 3.2779E 01 2.0846E-02 1.8532E-01 81 1.1012E-02 4.3096E-01 2.2979E 01 2.4642E-02 1.8532E-01 81 1.3864E-02 7.9433E-01 1.6090E 01 2.4893E-02 2.1728E-01 91 1.7453E-07 1.0000E 00 1.113E 01 3.3574E-02 2.1728E-01 91 2.1972E-02 1.2899E 00 7.7076E 00 3.8732E-02 2.1728E-01 101 2.1972E-02 1.2899E 00 7.7076E 00 3.8732E-02 2.1728E-01 101 2.1972E-02 1.5869E 00 7.7076E 00 3.8732E-02 3.3359E-01 121 3.4826E-02 1.7939E 00 3.522E 00 4.3352E-02 3.3359E-01 121 3.4826E-02 1.7939E 00 3.522E 00 5.6722E-02 4.2658E-01 101 4.3841E-02 2.5119E 00 2.3419E 00 5.6722E-02 4.2658E-01 131 4.3841E-02 3.1829E 00 1.2774E 00 6.43550E-02 5.7868E-01 161 7.472E-02 3.9811E 00 5.47450E-01 7.0036E-02 5.7868E-01 161 7.472E-02 3.0119E 00 5.4658E-01 7.6058E-02 5.7868E-01 161 7.473E-02 3.0119E 00 5.4658E-01 7.6058E-02 5.7868E-01 161 7.473E-01 1.0000E 01 1.0843E-01 7.6058E-02 5.7868E-01 171 1.1012E-01 5.3000E 01 1.0843E-01 9.2159E-02 6.9312E-01 201 2.6100E-01 1.50002 01 4.6076E-02 1.0053E-02 6.9312E-01 201 2.6100E-01 1.50002 01 4.6076E-02 1.0053E-02 6.9312E-01 201 2.6100E-01 1.50002 01 4.6076E-02 1.0053E-02 6.9312E-01 201 2.6100E-01 1.50000 01 1.7729E-02 1.1081E-01 8.3338-01 216 5.2300E-01 2.0000E 01 1.7729E-02 1.1081E-01 8.3338-01 216 5.2300E-01 3.0000E 01 1.7729E-02 1.1081E-01 8.3338-01 216 5.2300E-01 3.0000E 01 1.7729E-02 1.1081E-01 8.3338-01 216 5.2300E-01 3.0000E 01 1.7729E-02 1.1081E-01 9.4939E-01 220 6.9413E-01 5.0000E 01 1.7729E-02 1.1081E-01 9.4939E-01 220 6.9413E-01 5.0000E 01 1.7729E-02 1.1081E-01 9.9315E-01 240 1.7578E-00 6.0000E 01 1.7729E-02 1.1081E-01 9.9315E-01 240 1.7578E-00 6.0000E 01 1.7729E-01 1.7749E-01 9.9315E-01 301 2						
4.3841E-03 2.5119E-01 4.570E 01 1.1482E-02 8.6349E-02 41 5.5192E-03 3.1623E-01 4.673E-01 1.0733E-01 51 6.4745E-03 3.1623E-01 4.673E-01 1.7372E-02 1.0733E-01 51 6.4745E-03 3.0119E-01 3.2779E 01 2.07416-01 1.5645E-01 71 1.1012E-02 6.3096E-01 2.2778E 01 2.4642E-02 1.5635E-01 71 1.1012E-02 6.3096E-01 1.6096E-01 2.4745E-03 1.5036E-01 91 1.7473E-02 1.0000E 00 1.1188E 01 2.4642E-02 1.5532E-01 81 1.7473E-02 1.0000E 00 1.1188E 01 5.3574E-02 2.1724E-01 91 1.7473E-02 1.2589E 00 7.7076E 00 3.6732E-02 2.9143E-01 101 2.7662E-02 1.5849E 00 7.7076E 00 3.6732E-02 3.3355E-01 121 3.4472E-02 1.7473E-02 1.7473E-03 1.7473E-03 3.7473E-01 131 4.3841E-02 2.5119E 00 2.3419E 00 5.6722E-02 3.3355E-01 121 5.5122E-02 3.1623E-02 3.1623E-03 3.1623E						7.7
5.51928-03 3.1928-01 6.6701E 01 1.4272E-02 1.0738-01 51 8.4938-03 3.9816-01 4.4778E 01 1.7272E-02 1.3064E-01 61 8.47474E-03 5.0119E-01 3.2779E 01 2.0816E-02 1.8532E-01 81 1.1012E-02 6.3096E-01 2.2979E 01 2.0816E-02 1.8532E-01 81 1.3868E-02 7.9633E-01 1.6090E 01 2.4893E-02 2.1728E-01 91 1.7632E-02 1.2989E 00 7.7076E 00 3.6732E-02 2.5264E-01 101 2.1972E-02 1.2899E 00 7.7076E 00 3.6732E-02 2.5264E-01 101 2.1972E-02 1.5569E 00 7.7076E 00 3.6732E-02 2.5363E-01 121 3.4762E-02 1.5569E 00 7.7076E 00 3.6732E-02 3.3353E-01 121 3.4762E-02 1.5699E 00 5.2313E 00 4.6338E-02 3.3353E-01 121 3.4762E-02 1.5699E 00 1.2774E 00 5.6732E-02 3.7873E-01 131 4.3842E-02 2.5119E 00 2.3419E 00 5.6732E-02 3.7873E-01 131 4.3842E-02 3.1623E 00 1.2774E 00 6.33500-02 4.7662E-01 131 4.7473E-02 3.6119E 00 5.4636E-01 7.0986E-02 5.7868E-01 161 8.7473E-02 3.6119E 00 5.4636E-01 7.0986E-02 5.7868E-01 161 8.7473E-02 3.6119E 00 5.4636E-01 7.0986E-02 5.7868E-01 161 8.7473E-02 3.6119E 00 5.4636E-01 7.0986E-02 5.7868E-01 161 8.7473E-01 1.0000E 01 1.0943E-01 7.2137E-02 6.7768E-01 171 1.1012E-01 1.5000E 01 1.0943E-01 9.2139E-02 6.9312E-01 201 2.6109E-01 1.5000E 01 1.0943E-01 9.2139E-02 6.9312E-01 201 2.6109E-01 1.5000E 01 1.7259E-02 1.0953E-01 7.9962E-01 211 4.3633E-01 2.0000E 01 1.7259E-02 1.1081E-01 8.3338E-01 216 8.3230E-01 3.0000E 01 1.7259E-02 1.1081E-01 8.3338E-01 216 8.7260E-01 3.0000E 01 1.7279E-02 1.1461E-01 8.6195E-02 226 6.9413E-01 5.0000E 01 1.7279E-02 1.1461E-01 8.6195E-02 231 7.8590E-01 5.0000E 01 1.7279E-02 1.1461E-01 8.6195E-01 226 6.9413E-01 5.0000E 01 1.7279E-02 1.1461E-01 9.9515E-01 246 9.993E-01 9.0000E 01 1.7279E-02 1.1461E-01 9.9515E-01 246 9.993E-01 9.0000E 01 1.7279E-02 1.1461E-01 9.9515E-01 2			1.35/36 02		6.74648-02 13166-03	31
A. 9483E-03					7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
### ### ### ### ### ### ### ### ### ##						
1.3864E-02 7.9438E-01 1.6090E 01 2.4879E-02 2.1729E-01 91 1.7453E-02 1.2589E 00 7.7076E 00 3.8752E-02 2.9143E-01 101 2.1972E-02 1.5869E 00 7.7076E 00 3.8752E-02 2.9143E-01 111 2.762E-02 1.5869E 00 3.5332E 00 5.0562E-02 3.7875E-01 121 3.4872E-02 1.7953E 00 3.5332E 00 5.0562E-02 3.7875E-01 121 4.3861E-02 2.5119E 00 2.4419E 00 5.6722E-02 4.2658E-01 141 5.5192E-02 3.1823E 00 1.5774E 00 6.3350E-02 4.7662E-01 151 6.9483E-02 3.9811E 00 9.4470E-01 7.0056E-02 5.2686E-01 161 1.7473E-02 5.0119E 00 5.4658E-01 7.6405E-02 5.2686E-01 161 1.7473E-02 5.0119E 00 5.4658E-01 7.6405E-02 5.2686E-01 161 1.1012E-01 6.3096E 00 3.1097E-01 7.2137E-02 6.1786E-01 181 1.7483E-01 1.0000E 01 1.0843E-01 9.2137E-02 6.1786E-01 181 1.7483E-01 1.5000E 01 1.0843E-01 9.2169E-02 6.9312E-01 201 2.6100E-01 1.5000E 01 1.7926E-02 1.0051E-01 7.9462E-01 211 4.363E-01 2.5000E 01 1.7926E-02 1.0051E-01 7.9462E-01 211 4.363E-01 3.5000E 01 1.2739E-02 1.1061E-01 8.338E-01 216 5.230E-01 3.5000E 01 1.2739E-02 1.1061E-01 8.8497E-01 226 6.943E-01 4.0000E 01 5.8663E-03 1.7062E-01 8.8497E-01 226 6.943E-01 5.5000E 01 3.7566E-01 1.7762E-01 8.8497E-01 226 6.943E-01 5.5000E 01 3.75668E-03 1.7062E-01 8.8497E-01 226 6.943E-01 6.0000E 01 5.663E-03 1.2002E-01 9.3675E-01 226 6.943E-01 7.9000E 01 1.2739E-02 1.1061E-01 8.8497E-01 226 6.943E-01 7.9000E 01 5.7500E 01 3.2568E-03 1.7762E-01 9.3675E-01 226 6.943E-01 7.9000E 01 1.7926E-03 1.7762E-01 9.3675E-01 226 6.943E-01 7.9000E 01 7.8683E-03 1.2002E-01 9.3675E-01 221 7.8560E-01 9.0000E 01 7.8683E-03 1.2002E-01 9.3675E-01 226 1.7360E-01 9.0000E-01 1.3668E-03 1.2761E-01 9.8690E-01 226 1.7465E-01 9.0000E-01 1.000E-02 9.000E-01 1.2000E-01 9.7797E-01 200 1.7475E-00 1.5000E-02 7.8683E-04 1					1.56548-01	11
1.74358-72 1.00006 00 1.1188 01 3.3546-02 2.3526-01 101 2.19728-02 1.258496 00 7.70768 00 3.87528-02 2.3588-01 121 3.47268-02 1.58496 00 5.2518 00 4.43558-02 3.3558-01 121 3.47268-02 1.758496 00 5.2518 00 4.43558-02 3.3558-01 121 3.47268-02 1.758496 00 3.55128 00 4.43558-02 3.3558-01 121 4.37618-02 1.74538 00 1.5746 00 6.3506-02 3.78858-01 131 4.37618-02 3.98118 00 9.44708-01 7.00568-02 5.26868-01 161 A.74738-02 3.98118 00 9.44708-01 7.00568-02 5.74608-01 171 1.10128-01 6.30946 00 3.10978-01 7.00568-02 5.74608-01 171 1.10128-01 6.30946 00 3.10978-01 7.25179-02 6.74688-01 181 1.74438-01 1.00006 01 1.04838-01 7.25179-02 6.74688-01 181 1.74438-01 1.00006 01 1.08438-01 9.21698-02 6.56658-01 191 2.61708-01 1.50009 01 6.80708-02 1.00518-01 7.45878-01 201 2.61708-01 2.50008 01 1.75268-02 1.00518-01 7.99628-01 211 4.33658-01 2.50008 01 1.72568-02 1.06538-01 7.99628-01 211 4.33638-01 3.50008 01 1.27598-02 1.10818-01 8.33588-01 216 5.23406-01 3.50008 01 1.27598-02 1.10818-01 8.61998-01 226 6.94138-01 4.50008 01 5.46638-03 1.7668-01 8.61998-01 226 6.94138-01 4.50008 01 5.46638-03 1.20028-01 9.27728-01 221 1.13450 00 6.50008 01 5.46638-03 1.20028-01 9.27728-01 221 1.13450 00 6.50008 01 1.42759-02 1.14618-01 8.46198-01 226 1.13450 00 6.50008 01 1.49708-03 1.2458-01 9.27728-01 221 1.13450 00 6.50008 01 1.49708-03 1.2458-01 9.27728-01 221 1.13450 00 6.50008 01 1.49708-03 1.2458-01 9.47728-01 226 1.13450 00 6.50008 01 1.9038-03 1.2558-01 9.47728-01 226 1.13450 00 6.50008 01 1.9038-03 1.2558-01 9.47728-01 226 1.13450 00 6.50008 01 1.9038-03 1.2558-01 9.47728-01 226 1.13450 00 6.50008 01 1.9038-03 1.2558-01 9.47728-01 226 1.13450 00 6.50008 01 1.9038-03 1.2558-01 9.47728-01 226 1.13450 00 6.50008 01 1.9038-03 1.2558-01 9.47728-01 226 1.13450 00 6.50008 01 1.9038-03 1.2558-01 9.47728-01 226 1.13450 00 6.50008 01 1.9038-03 1.2558-01 9.47998-01 226 1.13450 00 6.50008 01 1.9038-03 1.2558-01 9.47998-01 226 1.13460 00 1.50008 02 5.4628-04 1.30008-01 9.47998-01 301 2.26890 01 1.5008 02 5.4628-04 1.3008-01 9.47998-01 301 2.26890 01 1.50		6.30968-01	2.2978E 01		1.05326-01	
2.1972E-02						
2.7662E-02 1.7864E 00 5.2519E 00 4.8358E-02 3.3859E-01 121 3.4872E-02 1.7875E 00 3.522E 00 5.0562E-02 3.7875E-01 131 4.3841E-02 2.5119E 00 1.5774E 00 5.6722E-02 4.2658E-01 151 5.5102E-02 3.7811E 00 1.5774E 00 6.3350E-02 4.7647E-01 151 6.6843E-02 3.7811E 00 5.4870E-01 7.0056E-02 5.7868E-01 161 A.7673E-02 5.0119E 00 5.4863E-01 7.0056E-02 5.7460E-01 171 1.012E-01 6.3020E 00 3.1097E-01 8.7340E-02 6.3685E-01 161 1.3864E-01 7.943E 00 1.7982E-01 8.7340E-02 6.3685E-01 161 1.3864E-01 7.943E 00 1.7982E-01 8.7340E-02 6.3685E-01 191 1.7443E-01 1.0000E 01 1.8000E 01 9.2169E-02 6.3685E-01 191 1.7443E-01 1.0000E 01 2.6619E-02 1.0051E-01 7.4557E-01 201 2.1106E-01 1.5000E 01 2.6619E-02 1.0051E-01 7.4557E-01 201 3.4907E-01 2.0000E 01 2.6619E-02 1.0631E-01 7.996E-01 211 4.385E-01 2.0000E 01 1.7728E-02 1.1081E-01 8.3338E-01 216 5.2301E-01 3.5000E 01 1.7728E-02 1.1081E-01 8.3338E-01 216 6.9413E-01 4.0000E 01 5.8683E-03 1.2002E-01 9.20283E-01 226 6.9413E-01 4.0000E 01 5.8683E-03 1.2002E-01 9.20283E-01 231 7.850E-01 5.5000E 01 3.4683E-03 1.2002E-01 9.2772E-01 246 1.6472E-00 6.0000E 01 3.4976E-03 1.2456E-01 9.3678E-01 236 1.2217E 00 6.5000E 01 1.8093E-03 1.2851E-01 9.4391E-01 246 1.2217E 00 6.5000E 01 1.8093E-03 1.2851E-01 9.4391E-01 246 1.2217E 00 6.5000E 01 1.6468E-03 1.2701E-01 9.5513E-01 246 1.2376E-01 9.5000E 01 1.6468E-03 1.2701E-01 9.5513E-01 246 1.2376E-01 9.6000E 02 5.6428E-04 1.3000E-01 9.7277E-01 266 1.3376E-01 1.5500E 02 5.6428E-04 1.3000E-01 9.7277E-01 266 1.2376E-01 1.5500E 02 5.6428E-04 1.3000E-01 9.7277E-01 366 2.6470E-01 1.5500E 02 5.6428E-04 1.3000E-01 9.7277E-01 366 2.6470E-01 1.5500E 02 5.7600E-04 1.3100E-01 9						
3.48748-02 1.49535 00 3.5525 00 5.67528-02 3.7875E-01 131 4.39418-02 3.5128 00 2.34198 00 5.67228-02 4.2658E-01 141 5.51428-02 3.6828 00 1.52748 00 6.33508-02 4.76428-01 151 6.64858-02 3.78118 00 9.44708-01 7.60588-02 5.2658E-01 161 A.74738-02 5.01198 00 5.46708-01 7.60588-02 5.74608-01 171 1.10128-01 6.30765 00 3.10978-01 7.21378-02 6.17868-01 181 1.34648-01 1.00005 01 1.78328-01 8.73408-02 6.56588-01 191 1.74838-01 1.00005 01 1.08438-01 9.21658-02 6.56638-01 191 1.74838-01 1.50008 01 4.80808-02 1.00518-01 7.45378-01 201 2.61008-01 1.50008 01 4.80808-02 1.00518-01 7.45378-01 201 3.40078-01 2.00008 01 1.75288-02 1.00518-01 7.45378-01 201 4.36338-01 2.50008 01 1.75288-02 1.10818-01 8.33338-01 216 5.23608-01 3.00008 01 1.75288-02 1.10818-01 8.33338-01 216 5.23608-01 3.00008 01 8.47228-03 1.1668-01 8.84978-01 226 6.48198-01 4.00008 01 8.47228-03 1.1668-01 8.84978-01 226 6.48198-01 4.00008 01 8.47228-03 1.1668-01 8.84978-01 226 6.48198-01 4.00008 01 3.1938-03 1.2008-01 9.27288-01 231 7.85408-01 4.00008 01 3.1938-03 1.2008-01 9.27288-01 231 8.75408-01 4.00008 01 3.1938-03 1.2338-01 9.27288-01 241 8.59938-01 5.0008 01 3.1938-03 1.2338-01 9.24788-01 246 1.64732 00 6.0008 01 3.1938-03 1.2338-01 9.24788-01 246 1.22178 00 7.00008 01 1.8098-03 1.27518-01 9.36788-01 266 1.37608 00 7.50008 01 7.0518-04 1.27518-01 9.59688-01 266 1.37608 00 7.50008 01 7.0518-04 1.27988-01 9.77288-01 271 1.4388 00 8.0008 01 7.0518-04 1.27988-01 9.77088-01 271 1.4388 00 8.0008 01 7.0518-04 1.27988-01 9.77088-01 271 1.4388 00 8.0008 01 7.0518-04 1.27988-01 9.77088-01 271 1.4388 00 8.0008 01 7.0518-04 1.27988-01 9.77088-01 271 1.4388 00 8.0008 01 7.0518-04 1.27988-01 9.77088-01 271 1.4388 00 8.0008 01 7.0518-04 1.27988-01 9.77088-01 271 1.5588 00 8.0008 01 7.0518-04 1.27988-01 9.77088-01 271 1.5588 00 8.0008 01 7.0518-04 1.27988-01 9.77088-01 271 1.5788 00 1.0008 02 5.36438-04 1.27988-01 9.77088-01 304 2.00718 00 1.5008 02 5.64388-04 1.27988-01 9.77088-01 304 2.18178 00 1.5008 02 5.64388-04 1.30088-01 9.77088-01 314 2.18178 00 1.5008 02 5.64388-0						
### ### ### ### ### ### ### ### ### ##						
5.519(2-02 3.1423E 00 1.5274E 00 6.3350E-02 4.7642E-01 151 6.694A3E-02 3.7811E 00 9.4470E-01 7.0056E-02 5.2886E-01 161 A.7473E-02 5.01199 00 5.4863E-01 7.0656E-02 5.7460E-01 171 1.012E-01 6.3096E 00 3.0097E-01 7.2157E-02 6.1786E-01 181 1.3464E-01 1.0000E 01 1.982E-01 8.7340E-02 6.5663E-01 191 1.7483E-01 1.0000E 01 1.0843E-01 9.2169E-02 6.9312E-01 201 2.6100E-01 1.5000E 01 4.8000E-02 1.0051E-01 7.5577E-01 200 3.4007E-01 2.0000E 01 1.526E-02 1.0051E-01 7.5577E-01 200 3.4007E-01 2.0000E 01 1.7526E-02 1.0051E-01 7.5577E-01 210 4.3633E-01 2.0000E 01 1.7526E-02 1.1081E-01 8.3333E-01 216 5.2360E-01 3.0000E 01 1.7526E-02 1.1081E-01 8.3338E-01 216 6.943E-01 3.0000E 01 8.472E-03 1.1768E-01 8.8497E-01 226 6.943E-01 3.0000E 01 8.472E-03 1.1768E-01 8.8497E-01 226 6.943E-01 3.0000E 01 5.8683E-03 1.2002E-01 9.053E-01 231 7.8540E-01 5.0000E 01 3.913E-03 1.2002E-01 9.2772E-01 241 9.5993E-01 5.5000E 01 3.913E-03 1.2356E-01 9.2772E-01 241 9.5993E-01 5.5000E 01 1.6970E-03 1.2556E-01 9.3675E-01 266 1.217E 00 7.0000E 01 1.6970E-03 1.2556E-01 9.3675E-01 266 1.3900E 00 7.5000E 01 1.6970E-03 1.2556E-01 9.5696E-01 256 1.3900E 00 7.5000E 01 1.6970E-03 1.2556E-01 9.5696E-01 266 1.3900E 00 7.5000E 01 1.2649E-03 1.2701E-01 9.5696E-01 266 1.3900E 00 7.5000E 01 7.0274E-04 1.2836E-01 9.6996E-01 266 1.5900E 00 7.5000E 01 7.0274E-04 1.2836E-01 9.7707E-01 266 1.5900E 00 7.5000E 01 7.0274E-04 1.2836E-01 9.5906E-01 301 2.1817E 00 1.0000E 02 5.6813E-04 1.2936E-01 9.7707E-01 266 1.7458E 00 1.0000E 02 5.6813E-04 1.2936E-01 9.7707E-01 266 2.7648E 00 1.0000E 02 5.6813E-04 1.3000E-01 9.6906E-01 316 2.1817E 00 1.5000E 02 5.6813E-04 1.3000E-01 9.6906E-01 316 2.1817E 00 1.5000E 02 5.6813E-04 1.3000E-01 9.9909E						
6 94A3E-02 3.9811E 00 9.4470E-01 7.0056E-02 5.7868E-01 161 A.7473E-02 3.019E 00 5.4863E-01 7.6605E-02 5.77460E-01 171 1.012E-01 6.3096E 00 3.097E-00 7.2157E-02 6.1786E-01 181 1.366E-01 7.943E 00 1.982E-01 8.7340E-02 6.3685E-01 191 1.74A3E-01 1.0006 01 1.0843E-01 9.2157E-02 6.3685E-01 191 1.74A3E-01 1.0006 01 1.0843E-01 9.2158E-02 6.3685E-01 191 2.6106E-01 1.50005 01 4.8008E-02 1.0633E-01 7.4587E-01 201 3.4907E-01 2.0006 01 1.0843E-02 1.0633E-01 7.4587E-01 205 3.4907E-01 2.0006 01 1.7526E-02 1.0633E-01 7.9962E-01 211 4.3633E-01 3.0000E 01 1.7526E-02 1.1661E-01 8.333SE-01 216 5.2360E-01 3.0000E 01 1.7526E-03 1.1661E-01 8.4519E-01 221 6.9413E-01 4.0000E 01 5.4683E-03 1.2002E-01 9.1638E-01 231 7.8540E-01 3.5000E 01 3.4722E-03 1.1763E-01 8.4619E-01 231 7.8540E-01 4.5000E 01 4.5757E-03 1.2187E-01 9.1638E-01 234 8.7266E-01 5.000E 01 3.6688E-03 1.2002E-01 9.2772E-01 241 9.5993E-01 5.000E 01 3.6688E-03 1.2336E-01 9.2772E-01 241 9.5993E-01 5.000E 01 3.6688E-03 1.2356E-01 9.2473E-01 241 1.345E 00 6.0000E 01 1.8063E-03 1.2356E-01 9.3673E-01 246 1.3760E-01 07.0000E 01 1.2649E-03 1.2701E-01 9.4990E-01 256 1.2316E-01 07.0000E 01 1.2649E-03 1.2701E-01 9.4990E-01 256 1.3963E 00 8.0000E 01 1.4646E-03 1.2701E-01 9.4990E-01 256 1.3963E 00 8.0000E 01 7.8274E-04 1.2888E-01 9.5858E-01 271 1.4835E 00 6.0000E 01 7.8274E-04 1.2898E-01 9.5988E-01 276 1.570RE 00 9.0000E 01 7.8274E-04 1.2898E-01 9.7001E-01 781 1.453E 00 1.0000E 02 5.363E-04 1.3009E-01 9.7727E-01 256 1.753E 00 1.0000E 02 5.563E-04 1.33029E-01 9.7001E-01 781 1.2581E 00 9.5000E 01 6.3341E-04 1.2898E-01 9.7001E-01 781 1.2581E 00 9.5000E 01 6.3341E-04 1.2898E-01 9.7001E-01 781 1.2581E 00 9.5000E 01 7.8274E-04 1.3808E-01 9.7001E-01 781 1.2581E 00 9.5000E 01 7.8274E-04 1.3808E-01 9.7001E-01 781 1.2581E 00 1.0000E 02 5.6982E-04 1.33029E-01 9.7988E-01 301 2.0071E 00 1.5000E 02 5.6982E-04 1.33029E-01 9.7988E-01 301 2.1817E 00 1.5000E 02 5.6982E-04 1.33029E-01 9.7988E-01 301 2.1817E 00 1.5000E 02 5.6982E-04 1.33029E-01 9.8000E-01 311 2.2580E 00 1.5000E 02 5.6982E-04 1.3308E-01 9.9998						
### ### ### ### ### ### ### ### ### ##						
1.0128-0 6.3096E 00 3.10978-0 7.2137E-02 6.1786E-0 18 1.3864E-01 7.5433E 00 1.7882E-01 8.7340E-02 6.5683E-01 19 1.7483E-01 1.0000E 01 1.0848E-01 9.2165E-02 6.9312E-01 20 2.6190E-01 2.0000E 01 2.6698-02 1.0653E-01 7.9482E-01 21 4.3633E-01 2.5000E 01 1.7526E-02 1.0653E-01 7.9482E-01 21 4.3633E-01 2.5000E 01 1.7526E-02 1.1081E-01 8.3533E-01 216 5.2360E-01 3.0000E 01 1.2759E-02 1.1681E-01 8.3533E-01 216 6.1086E-01 3.0000E 01 1.2759E-02 1.1681E-01 8.8497E-01 22 6.9813E-01 4.0000E 01 5.8683E-03 1.2002E-01 9.0263E-01 23 7.8540E-01 5.0000E 01 5.7683E-03 1.2002E-01 9.2772E-01 23 7.8540E-01 5.0000E 01 2.1913E-03 1.236E-01 9.2772E-01 24 9.5993E-01 5.5000E 01 2.3668E-03 1.2456E-01 9.2772E-01 24 9.5993E-01 5.5000E 01 2.3668E-03 1.2456E-01 9.3675E-01 24 1.1345E 00 6.5000E 01 1.8683E-03 1.2651E-01 9.4991E-01 25 1.1345E 00 6.5000E 01 1.8683E-03 1.2761E-01 9.4991E-01 25 1.2217E 00 7.0000E 01 1.2649E-03 1.2761E-01 9.5958E-01 25 1.3903E 00 8.0000E 01 1.2649E-03 1.2761E-01 9.5958E-01 25 1.3903E 00 8.0000E 01 7.0760E 01 1.27649E-03 1.2761E-01 9.5968E-01 26 1.3903E 00 8.0000E 01 7.0760E 01 1.27649E-03 1.2761E-01 9.5968E-01 26 1.3903E 00 8.0000E 01 7.0760E 01 1.27649E-03 1.2761E-01 9.5968E-01 26 1.3903E 00 8.000E 01 7.8778E-04 1.2898E-01 9.7701E-01 27 1.4835E 00 8.5000E 01 7.8778E-04 1.2898E-01 9.7701E-01 27 1.4835E 00 8.5000E 01 7.8778E-04 1.2898E-01 9.7701E-01 27 1.2581E 00 9.5000E 01 5.3841E-04 1.2935E-01 9.7777E-01 26 1.7457E 00 1.2500E 02 5.9638E-04 1.3009E-01 9.7702E-01 37 1.3903E 00 1.000E 02 5.6638E-04 1.3009E-01 9.7702E-01 37 1.3903E 00 1.5500E 02 5.6638E-04 1.3009E-01 9.7702E-01 31 2.1577E 00 1.2500E 02 5.6638E-04 1.3009E-01 9.8792E-01 30 2.3507E 00 1.5500E 02 7.828E-04 1.3208E-01 9.9999E-01 31 2					5.74608-01	
1.3864E-01 7.9438E UO 1.7887E-01 8.7340E-02 6.5668E-01 191 1.7443E-01 1.0000E 01 1.0043E-01 9.2169E-02 6.9312E-01 201 2.6106E-01 1.5000E 01 2.6610E-02 1.0653E-01 7.4537E-01 205 3.4907E-01 2.0000E 01 1.7526E-02 1.0653E-01 7.962E-01 211 4.3633E-01 3.0000E 01 1.7526E-02 1.0653E-01 8.3538E-01 216 5.2360E-01 3.0000E 01 1.7526E-02 1.1081E-01 8.6195E-01 221 6.1086E-01 3.5000E 01 8.4722E-03 1.1768E-01 8.6195E-01 221 6.9413E-01 4.0000E 01 5.8685E-03 1.2072E-01 9.0653E-01 231 7.8540E-01 4.5000E 01 4.2577E-03 1.2187E-01 9.1653E-01 234 9.5993E-01 5.5000E 01 4.2577E-03 1.2187E-01 9.1653E-01 234 9.5993E-01 5.5000E 01 2.3668E-03 1.2658E-01 9.3675E-01 241 9.5993E-01 5.5000E 01 1.4970E-03 1.2538E-01 9.4990E-01 236 1.2217E 00 7.0000E 01 1.4970E-03 1.2538E-01 9.4990E-01 236 1.2217E 00 7.0000E 01 1.2649E-03 1.2701E-01 9.5515E-01 246 1.3963E 00 6.5000E 01 1.2649E-03 1.2701E-01 9.5515E-01 246 1.3963E 00 6.5000E 01 1.2649E-03 1.2701E-01 9.5968E-01 246 1.3963E 00 6.5000E 01 7.8778E-04 1.288E-01 9.693E-01 276 1.3963E 00 6.5000E 01 7.8778E-04 1.288E-01 9.5968E-01 260 1.3963E 00 9.0000E 01 7.8778E-04 1.2898E-01 9.5968E-01 276 1.5708E 00 9.0000E 01 7.8778E-04 1.2898E-01 9.7701E-01 781 1.4835E 00 6.5000E 01 7.8778E-04 1.2898E-01 9.7701E-01 781 1.4950E 00 9.5000E 01 6.3841E-04 1.2898E-01 9.7701E-01 281 1.7453E 00 9.5000E 01 6.3841E-04 1.2988E-01 9.7701E-01 281 1.7453E 00 1.0000E 02 5.6982E-04 1.3000E-01 9.7702E-01 781 1.2518E 00 9.5000E 01 6.3841E-04 1.2988E-01 9.7808E-01 304 1.7453E 00 1.0000E 02 5.6982E-04 1.3000E-01 9.7808E-01 304 2.0771E 00 1.1500E 02 5.6982E-04 1.3000E-01 9.7808E-01 304 2.7675E 00 1.5000E 02 5.6428E-04 1.3108E-01 9.8992E-01 314 2.1817E 00 1.2500E 02 5.6428E-04 1.3108E-01 9.8992E-01 314 2.2680E 00 1.3000E 02 5.6428E-04 1.3108E-01 9.8992E-01 314 2.2680E 00 1.4900E 02 5.6428E-04 1.3108E-01 9.9992E-01 314 2.7675E 00 1.5000E 02 5.6428E-04 1.3108E-01 9.9992E-01 346 2.7675E 00 1.6000E 02 1.6838E-03 1.3248E-01 9.9992E-01 346 2.7675E 00 1.5000E 02 1.6838E-03 1.3248E-01 9.9992E-01 346 3.1416E 00 1.7500E 02 1.1691E-03 1.3248E-01				8.2157E-02	6.17868-01	181
7.61008-01 1.50008 01 4.80608-02 1.00538-01 7.9468E-01 211 4.36338-01 2.30008 01 1.75268-02 1.06338-01 7.9468E-01 211 4.36338-01 3.50008 01 1.75268-02 1.10818-01 8.33388-01 216 5.23608-01 3.50008 01 1.27528-02 1.14618-01 8.61938-01 221 6.10868-01 3.50008 01 8.4722E-03 1.17688-01 8.84978-01 226 6.98138-01 4.00008 01 5.86838-03 1.20028-01 9.02638-01 221 7.85408-01 4.50008 01 4.25758-03 1.21878-01 9.16338-01 226 8.7656-01 5.00008 01 3.19138-03 1.2308-01 9.2778-01 241 9.5938-01 5.50008 01 2.36688-03 1.24588-01 9.2778-01 241 9.5938-01 5.50008 01 2.36688-03 1.24588-01 9.36758-01 246 1.04728-00 6.00008 01 1.49708-03 1.26588-01 9.36758-01 246 1.22178-00 7.00008 01 1.26498-03 1.27018-01 9.55158-01 251 1.33968-00 7.50008 01 1.26498-03 1.27018-01 9.55158-01 261 1.39988-00 8.50008 01 1.04868-03 1.27018-01 9.55158-01 261 1.39988-00 8.50008 01 7.82488-04 1.28128-01 9.4998-01 260 1.39988-00 8.50008 01 7.82788-04 1.28128-01 9.59988-01 271 1.48358-00 8.50008 01 7.82788-04 1.28128-01 9.63358-01 271 1.48358-00 8.50008 01 7.82788-04 1.28128-01 9.6998-01 276 1.57088-00 9.00008 01 7.82788-04 1.28988-01 9.70018-01 271 1.48358-00 1.00008 02 5.93638-04 1.29688-01 9.77018-01 250 1.74538-00 1.00008 02 5.93638-04 1.29688-01 9.77018-01 250 1.74538-00 1.00008 02 5.69828-04 1.30628-01 9.79888-01 271 1.48358-00 1.00008 02 5.69828-04 1.30628-01 9.79888-01 301 2.00718-00 1.55008-02 5.69828-04 1.30628-01 9.79888-01 301 2.00718-00 1.55008-02 5.69828-04 1.30628-01 9.79888-01 301 2.00718-00 1.5008-02 5.69828-04 1.30628-01 9.79888-01 301 2.18178-00 1.25008-02 5.69828-04 1.30628-01 9.79888-01 316 2.18178-00 1.50008-02 5.69828-04 1.30628-01 9.79888-01 301 2.53078-00 1.40008-02 5.69828-04 1.30628-01 9.9988-01 316 2.53078-00 1.50008-02 5.69828-04 1.31628-01 9.9988-01 316 2.53078-00 1.50008-02 5.69828-04 1.31628-01 9.9988-01 316 2.79288-00 1.50008-02 7.62888-03 1.32688-01 9.9988-01 336 2.79288-00 1.50008-02 7.62888-03 1.32868-01 9.99888-01 336 2.79288-00 1.50008-02 7.62888-03 1.32868-01 9.99888-01 336 2.79288-00 1.50008-02 7.62888-03 1.32868-01 9.99888-0			1.79828-01	8.73405-02	6.56836-01	
4.3633E-01 2.9000E 01 1.7526E-02 1.1081E-01 8.3733E-01 216 512360E-01 3.9000E 01 1.2759E-02 1.1461E-01 8.6195E-01 221 6.9613E-01 3.5000E 01 8.4722E-03 1.1768E-01 8.8497E-01 228 6.9613E-01 4.0000E 01 5.8683E-03 1.2002E-01 4.0263E-01 231 7.8540E-01 4.5000E 01 5.8683E-03 1.2002E-01 4.0163E-01 236 8.7266E-01 5.0000E 01 3.1913E-03 1.2336E-01 9.2772E-01 241 9.5993E-01 5.50000E 01 2.3668E-03 1.22856E-01 9.3675E-01 241 9.5993E-01 5.5000E 01 2.3668E-03 1.22856E-01 9.3675E-01 266 1.0472E 00 6.0000E 01 1.40970E-03 1.2551E-01 4.4990E-01 256 1.2217E 00 7.0000E 01 1.2649E-03 1.2761E-01 9.5958E-01 261 1.3963E 00 8.0000E 01 1.2649E-03 1.2761E-01 9.5958E-01 261 1.3963E 00 8.0000E 01 7.0511E-04 1.2886E-01 9.5958E-01 271 1.4835E 00 8.5000E 01 7.0511E-04 1.2898E-01 9.6495E-01 271 1.4835E 00 8.5000E 01 7.0511E-04 1.2898E-01 9.6495E-01 276 1.5708E 00 9.0000E 01 7.0511E-04 1.2898E-01 9.6495E-01 276 1.5708E 00 9.5000E 01 5.3841E-04 1.2898E-01 9.7001E-01 260 1.7453E 00 1.0800E 02 5.9363E-04 1.2295E-01 9.7277E-01 260 1.7453E 00 1.0800E 02 5.6425E-04 1.3050E-01 9.728E-01 291 1.3326E 01 1.9500E 02 5.6425E-04 1.3050E-01 9.7988E-01 301 2.0071E 00 1.1500E 02 5.6425E-04 1.3050E-01 9.7988E-01 301 2.2680E 00 1.3000E 02 5.6425E-04 1.3050E-01 9.8204E-01 306 2.2680E 00 1.3000E 02 5.6425E-04 1.3050E-01 9.8204E-01 301 2.25307E 00 1.4500E 02 5.6425E-04 1.317E-01 9.8990E-01 311 2.3562E 01 3.500E 02 5.6425E-04 1.317E-01 9.8990E-01 321 2.3562E 01 3.500E 02 5.6425E-04 1.317E-01 9.8990E-01 321 2.3562E 01 3.500E 02 7.7277E-01 1.317E-01 9.8990E-01 321 2.3562E 01 3.500E 02 7.7277E-04 1.3160E-01 9.9990E-01 341 2.7925E 00 1.4500E 02 6.4435E-04 1.3266E-01 9.9990E-01 346 2.7925E 00 1.6500E 02 7.8277E-04 1.3266E-01 9.9990E-01 346 2.7925E 00 1.6500E 02 1.6835E-03 1.3286E-01 9.9990E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3294E-01 9.9999E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3294E-01						
4.3833E-01 2.9000E 01 1.7526E-02 1.1081E-01 8.3338E-01 216 5.2360E-01 3.0000E 01 1.2759E-02 1.1461E-01 8.6195E-01 221 6.9813E-01 4.0000E 01 5.8683E-03 1.2002E-01 4.0263E-01 231 7.8540E-01 4.5000E 01 5.8683E-03 1.2002E-01 4.0263E-01 231 7.8540E-01 4.5000E 01 5.8683E-03 1.2002E-01 4.0263E-01 231 8.5963E-01 5.0000E 01 3.1918F-03 1.2336E-01 9.2772E-01 241 9.5993E-01 5.5000E 01 2.3666E-03 1.2756E-01 9.3675E-01 266 1.0472E 00 6.0000E 01 1.6083E-03 1.2751E-01 4.4991E-01 251 1.2345E 00 6.5000E 01 1.46970E-03 1.2751E-01 4.4991E-01 256 1.2217E 00 7.5000E 01 1.2649E-03 1.2701E-01 9.5515E-01 261 1.3963E 00 8.0000E 01 7.0511E-04 1.2701E-01 9.5968E-01 271 1.4835E 00 6.5000E 01 7.7526E-04 1.2761E-01 9.5968E-01 271 1.4835E 00 8.0000E 01 7.7624E-04 1.2898E-01 9.6695E-01 276 1.5708E 00 9.0000E 01 7.0511E-04 1.2898E-01 9.6695E-01 276 1.5708E 00 9.5000E 01 6.3841E-04 1.2898E-01 9.7021E-01 266 1.7453E 00 1.0800E 02 5.9365E-04 1.2968E-01 9.7722E-01 266 1.7453E 00 1.0800E 02 5.6425E-04 1.3050E-01 9.7722E-01 266 1.9199E 06 1.0800E 02 5.6425E-04 1.3050E-01 9.7928E-01 301 2.0071E 00 1.1500E 02 5.6425E-04 1.3050E-01 9.7828E-01 301 2.2680E 00 1.3500E 02 5.6425E-04 1.3050E-01 9.8204E-01 306 2.2680E 00 1.3500E 02 5.6425E-04 1.3050E-01 9.8204E-01 306 2.2680E 00 1.3500E 02 5.6425E-04 1.3050E-01 9.8204E-01 301 2.25307E 00 1.4500E 02 5.6425E-04 1.3050E-01 9.8204E-01 306 2.3632E 01 3500E 02 5.6425E-04 1.3050E-01 9.8990E-01 311 2.1817E 00 1.2500E 02 5.6425E-04 1.3050E-01 9.8990E-01 316 2.25800 0 1.3000E 02 5.6425E-04 1.3050E-01 9.8990E-01 321 2.3507E 00 1.4500E 02 6.6466E-04 1.316E-01 9.8990E-01 321 2.3507E 00 1.4500E 02 6.6466E-04 1.3265E-01 9.9990E-01 346 2.7925E 00 1.6500E 02 7.2377E-04 1.3266E-01 9.9990E-01 346 2.7925E 00 1.6500E 02 7.2377E-04 1.3266E-01 9.9990E-01 346 2.7925E 00 1.6500E 02 7.8277E-04 1.3266E-01 9.9990E-01 346 2.7925E 00 1.6500E 02 7.8277E-04 1.3266E-01 9.9990E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3294E-01 9.9999E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3294E-01 9.9999E-01 366	10-30010-S		4.80908-02		7.55976-01	200
\$.2360E-01 3.0000E 01 4.2799E-02 1.1661E-01 8.6198E-01 221 6.1086E-01 3.5000E 01 8.4722E-03 1.1768E-01 8.8497E-01 225 6.9813E-01 4.0000E 01 5.8683E-03 1.2002E-01 9.0263E-01 231 7.8540E-01 4.5000E 01 6.2573E-03 1.2002E-01 9.1653E-01 236 8.7266E-01 5.0000E 01 3.1913E-03 1.2336E-01 9.2772E-01 241 9.5973E-01 5.0000E 01 3.1913E-03 1.2336E-01 9.2772E-01 241 9.5973E-01 5.0000E 01 3.6083E-03 1.2456E-01 9.3675E-01 266 1.0472E 00 6.0000E 01 1.6083E-03 1.2551E-01 9.4991E-01 256 1.2217E 00 7.0000E 01 1.4970E-03 1.2651E-01 9.4991E-01 256 1.3090E 00 7.5000E 01 1.4970E-03 1.2761E-01 9.5915E-01 261 1.3090E 00 7.5000E 01 1.64970E-03 1.2761E-01 9.5915E-01 261 1.3090E 00 7.5000E 01 1.64970E-03 1.2761E-01 9.5915E-01 261 1.3090E 00 7.5000E 01 1.64970E-03 1.2761E-01 9.5915E-01 266 1.3963E 00 8.0000E 01 7.7276E-04 1.2878E-01 9.6495E-01 266 1.5708E 00 9.0000E 01 7.727E-04 1.2878E-01 9.6495E-01 276 1.5708E 00 9.0000E 01 7.0511E-04 1.2898E-01 9.7001E-01 281 1.6581E 00 9.5000E 01 6.3841E-04 1.2898E-01 9.7701E-01 281 1.6581E 00 9.5000E 01 6.3841E-04 1.2935E-01 9.7777E-01 266 1.7453E 00 1.0000E 02 5.9363E-04 1.2068E-01 9.77782E-01 291 1.2326E 00 1.0000E 02 5.9363E-04 1.3000E-01 9.7708E-01 301 2.0071E 00 1.1500E 02 5.6932E-04 1.3000E-01 9.7768E-01 301 2.0071E 00 1.1500E 02 5.6432E-04 1.3000E-01 9.7804E-01 301 2.1817E 00 1.2500E 02 5.6432E-04 1.3000E-01 9.8904E-01 311 2.1817E 00 1.2500E 02 5.6432E-04 1.3008E-01 9.8904E-01 311 2.1817E 00 1.2500E 02 5.6432E-04 1.312E-01 9.8970E-01 321 2.3562E 01 .3000E 02 5.7800E-04 1.312E-01 9.8970E-01 321 2.3562E 01 .3500E 02 5.7800E-04 1.312E-01 9.8970E-01 321 2.3562E 01 .3500E 02 5.7800E-04 1.31762E-01 9.9979E-01 336 2.6807E 00 1.4500E 02 6.444E-04 1.31762E-01 9.9979E-01 336 2.6807E 00 1.5500E 02 7.7828E-04 1.3260E-01 9.9939E-01 336 2.6807E 00 1.4500E 02 6.444E-04 1.3274E-01 9.9939E-01 336 2.7073E 00 1.5500E 02 7.4228E-04 1.3260E-01 9.9939E-01 346 2.7073E 00 1.5500E 02 1.8530E-03 1.3286E-01 9.9939E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3294E-01 9.9999E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3294E-01	1 77.1.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3					
6.9A13E-01 4.0000E 01 5.8663E-03 1.2002E-01 9.1653E-01 231 7.8540E-01 5.0000E 01 3.1913E-03 1.2187E-01 9.1653E-01 234 8.5993E-01 5.5000E 01 2.3668E-03 1.2456E-01 9.3675E-01 244 9.5993E-01 5.5000E 01 2.3668E-03 1.2456E-01 9.3675E-01 246 1.0472E 00 6.0000E 01 1.8083E-03 1.2851E-01 9.4991E-01 251 1.1345E 00 6.5000E 01 1.4970E-03 1.251E-01 9.4991E-01 256 1.2217E 00 7.0000E 01 1.2649E-03 1.2701E-01 9.5515E-01 261 1.3963E 00 7.5000E 01 1.0466E-03 1.2701E-01 9.5515E-01 261 1.3963E 00 7.5000E 01 7.6249E-03 1.2701E-01 9.5515E-01 261 1.3963E 00 8.5000E 01 7.6274E-04 1.2858E-01 9.6695E-01 276 1.570RE 00 9.0000E 01 7.6511E-04 1.2858E-01 9.7777E-01 256 1.7453E 00 9.0000E 01 6.3341E-04 1.2858E-01 9.7777E-01 256 1.7453E 00 1.0000E 02 5.9363E-04 1.2968E-01 9.7727E-01 256 1.7453E 00 1.0000E 02 5.6423E-04 1.3000E-01 9.7702E-01 291 1.3226E 00 1.0500E 02 5.6423E-04 1.3000E-01 9.8000E-01 306 2.0948E 00 1.2500E 02 5.6423E-04 1.3086E-01 9.8000E-01 316 2.1817E 00 1.2500E 02 5.6423E-04 1.312E-01 9.8000E-01 316 2.2680E 00 1.3000E 02 5.6423E-04 1.312E-01 9.8000E-01 316 2.3562E 00 1.3500E 02 5.6423E-04 1.312E-01 9.8000E-01 316 2.3562E 00 1.5500E 02 7.8471E-04 1.312E-01 9.8970E-01 321 2.3562E 00 1.5500E 02 7.8471E-04 1.312E-01 9.9890E-01 316 2.7073E 00 1.4500E 02 6.466E-04 1.312E-01 9.9890E-01 321 2.3562E 00 1.5500E 02 7.828E-04 1.312E-01 9.9990E-01 346 2.7073E 00 1.5500E 02 7.828E-04 1.312E-01 9.9990E-01 346 2.7073E 00 1.5500E 02 7.828E-04 1.328E-01 9.9990E-01 366 3.1416E 00 1.8000E 02 1.0838E-03 1.3286E-01 9.9999E-01 366 3.1416E 00 1.8000E 02 1.0838E-03 1.3286E-01 9.9999E-01 366	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
6.9A1BE-01 4.0000E 01 5.8663E-03 1.2002E-01 9.1653E-01 231 7.8540E-01 5.0000E 01 3.1913E-03 1.2336E-01 9.1653E-01 234 8.5993E-01 5.5000E 01 2.3668E-03 1.2456E-01 9.3675E-01 241 9.5993E-01 5.5000E 01 2.3668E-03 1.2456E-01 9.3675E-01 246 1.0472E 00 6.0000E 01 1.8083E-03 1.2851E-01 9.4901E-01 251 1.1345E 00 6.5000E 01 1.4970E-03 1.2651E-01 9.4901E-01 256 1.2217E 00 7.0000E 01 1.2649E-03 1.2701E-01 9.5515E-01 261 1.3963E 00 7.5000E 01 1.0466E-03 1.2701E-01 9.5515E-01 261 1.3963E 00 7.5000E 01 7.6249E-04 1.2701E-01 9.5915E-01 266 1.3963E 00 8.5000E 01 7.6274E-04 1.2858E-01 9.6695E-01 276 1.570RE 00 9.0000E 01 7.6511E-04 1.2858E-01 9.7001E-01 781 1.6581E 00 9.5000E 01 6.3441E-04 1.2858E-01 9.7001E-01 781 1.6581E 00 9.5000E 01 6.3441E-04 1.2958E-01 9.777E-01 256 1.7453E 00 1.0000E 02 5.9363E-04 1.2968E-01 9.772E-01 291 1.3326E 00 1.0000E 02 5.6423E-04 1.3000E-01 9.7988E-01 301 2.0071E 00 1.1500E 02 5.6423E-04 1.3009E-01 9.8409E-01 316 2.0948E 00 1.2500E 02 5.6423E-04 1.312E-01 9.8409E-01 316 2.1817E 00 1.2500E 02 5.6423E-04 1.312E-01 9.8606E-01 316 2.2680E 00 1.3000E 02 5.6423E-04 1.312E-01 9.8606E-01 316 2.3562E 00 1.3500E 02 5.6423E-04 1.312E-01 9.8606E-01 316 2.5307E 00 1.4500E 02 5.6423E-04 1.312E-01 9.8606E-01 316 2.5307E 00 1.4500E 02 6.666E-04 1.312E-01 9.8970E-01 321 2.3562E 00 1.5500E 02 7.428E-04 1.312E-01 9.8970E-01 324 2.7073E 00 1.4500E 02 6.466E-04 1.312E-01 9.8970E-01 324 2.7073E 00 1.5500E 02 7.428E-04 1.3208E-01 9.993E-01 336 2.6180E 00 1.5000E 02 7.428E-04 1.3208E-01 9.993E-01 346 2.7073E 00 1.5500E 02 7.428E-04 1.3208E-01 9.9948E-01 366 2.7074E 00 1.5500E 02 7.428E-04 1.328E-01 9.9948E-01 366 3.1416E 00 1.8000E 02 1.0838E-03 1.3286E-01 9.9948E-01 366						
7.85+0E-01 4.5000E 01 3.1913E-03 1.21878-01 9.1638E-01 241 9.5993E-01 5.0000E 01 3.3913E-03 1.2356E-01 9.2772E-01 241 9.5993E-01 5.5000E 01 2.3668E-03 1.2456E-01 9.3475E-01 246 1.0472E 00 6.0000E 01 1.4970E-03 1.2551E-01 9.4391E-01 251 1.1345E 00 6.5000E 01 1.4970E-03 1.2651E-01 9.4990E-01 256 1.2217E 00 7.0000E 01 1.2649E-03 1.2701E-01 9.5515E-01 261 1.3963E 00 7.5000E 01 1.6466E-03 1.2701E-01 9.5915E-01 266 1.3963E 00 8.0000E 01 8.6649E-04 1.2812E-01 9.5915E-01 271 1.4835E 00 8.5000E 01 7.8274E-04 1.2812E-01 9.6495E-01 276 1.5708E 00 9.0000E 01 7.8274E-04 1.2896E-01 9.7001E-01 281 1.6581E 00 9.5000E 01 6.3841E-04 1.2950E-01 9.7277E-01 266 1.7453E 00 1.0000E 02 5.9363E-04 1.2960E-01 9.7277E-01 266 1.7453E 00 1.0000E 02 5.9363E-04 1.2960E-01 9.7722E-01 291 1.326E 00 1.0500E 02 5.6425E-04 1.3029E-01 9.7762E-01 291 1.326E 00 1.2500E 02 5.6425E-04 1.3029E-01 9.8204E-01 301 2.0071E 00 1.1500E 02 5.6425E-04 1.3050E-01 9.8204E-01 301 2.0944E 00 1.2500E 02 5.6425E-04 1.3112E-01 9.8793E-01 311 2.1817E 00 1.2500E 02 5.6425E-04 1.3112E-01 9.8793E-01 321 2.3552E 01 1.3500E 02 5.6425E-04 1.3112E-01 9.8793E-01 321 2.3572E 00 1.2500E 02 5.6425E-04 1.3152E-01 9.8793E-01 321 2.3572E 00 1.5500E 02 5.6425E-04 1.3160E-01 9.8793E-01 321 2.3572E 00 1.5500E 02 7.8277E-04 1.3160E-01 9.8793E-01 321 2.3572E 00 1.5500E 02 7.8277E-04 1.3228E-01 9.9870E-01 326 2.4435E 00 1.5500E 02 7.8277E-04 1.3228E-01 9.9879E-01 336 2.6180E 00 1.5500E 02 7.8277E-04 1.3228E-01 9.992E-01 346 2.7973E 00 1.6000E 02 8.4435E-04 1.3228E-01 9.992E-01 346 2.7973E 00 1.5500E 02 7.8277E-04 1.3228E-01 9.992E-01 346 2.7973E 00 1.6000E 02 1.0835E-03 1.3286E-01 9.992E-01 366 3.1416E 00 1.8000E 02 1.0835E-03 1.3286E-01 9.9992E-01 366						
R.7266E-01 \$.0000E 01 3.1913E-03 1.2336E-01 9.2772E-01 241 9.5993E-01 5.5000E 01 2.3668E-03 1.2456E-01 9.3673E-01 246 1.0472E-00 6.0000E 01 1.4070E-03 1.2631E-01 9.4391E-01 251 1.1345E 00 6.5000E 01 1.4070E-03 1.2631E-01 9.4391E-01 256 1.2217E 00 7.0000E 01 1.2649E-03 1.2701E-01 9.5515E-01 261 1.3000E 00 7.5000E 01 1.0466E-03 1.2761E-01 9.5968E-01 266 1.3963E 00 8.0000E 01 7.6274E-04 1.2812E-01 9.6355E-01 271 1.4835E 00 8.5000E 01 7.6274E-04 1.2836E-01 9.6095E-01 276 1.5708E 00 9.0000E 01 7.6274E-04 1.2836E-01 9.7001E-01 261 1.5781E 00 9.5000E 01 6.341E-04 1.2935E-01 9.7727E-01 260 1.7453E 00 1.0000E 02 5.9363E-04 1.2935E-01 9.7727E-01 260 1.7453E 00 1.0000E 02 5.9363E-04 1.2935E-01 9.7727E-01 260 1.7453E 00 1.0000E 02 5.9363E-04 1.3000E-01 9.7762E-01 291 1.3326E 00 1.0000E 02 5.6236E-04 1.3000E-01 9.7762E-01 306 2.0071E 00 1.1500E 02 5.6423E-04 1.3000E-01 9.8204E-01 306 2.0071E 00 1.2500E 02 5.6236E-04 1.3000E-01 9.8409E-01 311 2.1817E 00 1.2500E 02 5.6236E-04 1.3137E-01 9.8793E-01 321 2.3562E 00 3.3000E 02 5.6713E-04 1.3137E-01 9.8793E-01 321 2.3502E 00 3.3000E 02 5.6713E-04 1.3137E-01 9.8793E-01 321 2.3502E 00 3.5000E 02 5.6713E-04 1.3137E-01 9.8793E-01 321 2.3502E 00 3.5000E 02 5.6713E-04 1.3137E-01 9.8793E-01 321 2.3502E 00 3.5000E 02 5.6713E-04 3.3137E-01 9.8970E-01 321 2.3502E 00 3.5000E 02 5.6713E-04 3.3232E-01 9.9932E-01 346 2.7075E 00 1.6500E 02 6.1066E-04 3.3232E-01 9.9932E-01 346 2.7075E 00 1.6500E 02 7.8448E-04 1.3248E-01 9.9932E-01 346 2.7075E 00 1.6500E 02 7.8448E-04 1.3248E-01 9.993						
9.5993E-01 5.5000E 01 2.3668E-03 1.2456E-01 9.3675E-01 266 1.0472E 00 6.0000E 01 1.6003E-03 1.2531E-01 9.4391E-01 251 1.345E 00 6.5000E 01 1.4970E-03 1.2631E-01 9.4391E-01 256 1.2217E 00 7.0000E 01 1.2649E-03 1.2701E-01 9.5515E-01 261 1.3090E 00 7.5000E 01 1.2649E-03 1.2701E-01 9.5515E-01 261 1.3090E 00 7.5000E 01 7.6246E-03 1.2761E-01 9.5968E-01 266 1.33963E 00 8.0000E 01 7.6246E-04 1.2656E-01 9.6555E-01 271 1.4835E 00 8.5000E 01 7.6274E-04 1.2856E-01 9.6695E-01 276 1.5708E 00 9.0000E 01 7.0511E-04 1.2856E-01 9.7001E-01 261 1.6581E 00 9.5000E 01 6.3341E-04 1.2956E-01 9.7277E-01 266 1.7453E 00 1.0000E 02 5.9363E-04 1.2968E-01 9.7727E-01 266 1.3326E 00 1.0500E 02 5.6482E-04 1.3009E-01 9.7762E-01 291 1.3326E 00 1.0500E 02 5.6482E-04 1.3009E-01 9.7762E-01 301 2.0071E 00 1.2500E 02 5.6482E-04 1.3009E-01 9.7988E-01 301 2.071E 00 1.2500E 02 5.6482E-04 1.3009E-01 9.8204E-01 306 2.0944E 00 1.2000E 02 5.6613E-04 1.3112E-01 9.8409E-01 311 2.1817E 00 1.2500E 02 5.6613E-04 1.3112E-01 9.8409E-01 311 2.3562E 01 .3500E 02 5.6613E-04 1.3172E-01 9.8793E-01 321 2.3562E 01 .3500E 02 5.66446E-04 1.3172E-01 9.8793E-01 321 2.3562E 01 .3500E 02 6.6646E-04 1.3172E-01 9.9870E-01 331 2.5307E 00 1.6000E 02 6.6646E-04 1.3172E-01 9.9999E-01 336 2.6180E 00 1.6000E 02 6.6646E-04 1.3260E-01 9.9999E-01 346 2.7795E 00 1.6000E 02 8.4433E-04 1.3260E-01 9.9999E-01 346 2.7795E 00 1.6000E 02 1.6838E-03 1.3286E-01 9.9999E-01 361 3.0543E 00 1.7500E 02 1.6838E-03 1.3286E-01 9.9999E-01 361 3.0543E 00 1.7500E 02 1.6838E-03 1.3286E-01 9.9999E-01 366 3.1416E 00 1.6000E 02 1.6638E-03 1.3297E-01 1.6000E 00 371						241
1.0472E 0U 6.000E 01 1.6098E-03 1.2551E-01 9.4391E-01 251 1.1345E 0U 6.500E 01 1.4970E-03 1.2631E-01 9.4390E-01 256 1.2217E 0U 7.0000E 01 1.2649E-03 1.2701E-01 9.5515E-01 256 1.3090E 0U 7.5000E 01 1.0486E-03 1.2761E-01 9.5515E-01 271 1.4835E 0U 8.0000E 01 7.8274E-04 1.2832E-01 9.6495E-01 271 1.4835E 0U 8.5000E 01 7.8274E-04 1.2832E-01 9.6695E-01 271 1.5708E 0U 9.5000E 01 7.0511E-04 1.2832E-01 9.7001E-01 256 1.5708E 0U 9.5000E 01 6.3341E-04 1.2935E-01 9.701E-01 256 1.7453E 0U 1.0000E 02 5.9363E-04 1.2968E-01 9.7727E-01 256 1.7453E 0U 1.0500E 02 5.9363E-04 1.3000E-01 9.7722E-01 291 1.3326E 0U 1.0500E 02 5.6982E-04 1.3000E-01 9.7722E-01 292 1.9326E 0U 1.5500E 02 5.6423E-04 1.3050E-01 9.7988E-01 301 2.0071E 0U 1.1500E 02 5.6423E-04 1.3050E-01 9.8204E-01 306 2.0944E 0U 1.2500E 02 5.6234E-04 1.3076E-01 9.8409E-01 311 2.1817E 0U 1.2500E 02 5.643E-04 1.312E-01 9.8409E-01 312 2.2680E 0U 1.3500E 02 5.643E-04 1.3172E-01 9.8409E-01 312 2.3562E 0U 3.3500E 02 5.6471E-04 1.3172E-01 9.879E-01 322 2.3562E 0U 1.3500E 02 5.6471E-04 1.3172E-01 9.879E-01 322 2.3562E 0U 1.3500E 02 5.6471E-04 1.3172E-01 9.879E-01 322 2.3562E 0U 1.3500E 02 5.6471E-04 1.3172E-01 9.879E-01 324 2.3562E 0U 1.3500E 02 5.6471E-04 1.3172E-01 9.879E-01 336 2.6180E 0U 1.5500E 02 7.2377E-04 1.3224E-01 9.9879E-01 336 2.6180E 0U 1.5500E 02 7.2377E-04 1.3224E-01 9.9829E-01 336 2.6180E 0U 1.5500E 02 7.2377E-04 1.3224E-01 9.9929E-01 346 2.7053E 0U 1.5500E 02 7.2377E-04 1.3224E-01 9.9929E-01 346 2.7053E 0U 1.5500E 02 7.2377E-04 1.3224E-01 9.9929E-01 356 2.7053E 0U 1.5500E 02 1.6833E-03 1.3260E-01 9.9929E-01 356 3.6443E 0U 1.5500E 02 1.6833E-03 1.3260E-01 9.9929E-01 366 3.6443E 0U 1.5500E 02 1.6833E-03 1.3260E-01 9.9929E-01 366 3.6443E 0U 1.5500E 02 1.691E-03 1.3297E-01 9.9999E-01 366					9.36758-01	246
1.2217E 00 7.0000E 01 1.2649E-03 1.2701E-01 9.5915E-01 261 1.3090E 00 7.5000E 01 1.0486E-03 1.2761E-01 9.5968E-01 260 1.3963E 00 8.5000E 01 7.8274E-04 1.2858E-01 7.6535E-01 271 1.4835E 00 8.5000E 01 7.0511E-04 1.2858E-01 9.6695E-01 276 1.570RE 00 9.0000E 01 7.0511E-04 1.2858E-01 9.7001E-01 281 1.65R1E 00 9.5000E 01 6.3841E-04 1.2958E-01 9.7001E-01 281 1.7453E 00 1.0400E 02 5.7411E-04 1.3000E-01 9.7762E-01 291 1.4326E 00 1.0400E 02 5.6982E-04 1.3000E-01 9.7762E-01 294 1.9199E 06 1.1000E 02 5.6982E-04 1.3000E-01 9.7988E-01 301 2.0071E 00 1.2500E 02 5.643E-04 1.3050E-01 9.8204E-01 306 2.0944E 00 1.2000E 02 5.6613E-04 1.3112E-01 9.8606E-01 316 2.2689E 00 1.3000E 02 5.6613E-04 1.3112E-01 9.8606E-01 316 2.2689E 00 1.3500E 02 5.6471E-04 1.3112E-01 9.8793E-01 321 2.3562E 00 1.3500E 02 5.6471E-04 1.3160E-01 9.8793E-01 321 2.5507E 00 1.4500E 02 6.1066E-04 1.3203E-01 9.9295E-01 336 2.6435E 00 1.5500E 02 7.8248E-04 1.3260E-01 9.9295E-01 336 2.7053E 00 1.5500E 02 7.8248E-04 1.3260E-01 9.9999E-01 336 2.7053E 00 1.5500E 02 7.8248E-04 1.3260E-01 9.9999E-01 336 2.7053E 00 1.5500E 02 7.8248E-04 1.3260E-01 9.9999E-01 356 2.7053E 00 1.5500E 02 1.6838E-03 1.3286E-01 9.9999E-01 366 3.7053E 00 1.7500E 02 1.1531E-03 1.3297E-01 1.000UE 00 371	1.0472E 0U		1.80838-03		9.4391E-01	251
1.3000E OO 7.5000E OI 1.0486E-03 1.2761E-01 9.5968E-01 260 1.3963E OO 8.0000E OI 8.8645E-04 1.2812E-01 9.6695E-01 271 1.4835E OO 9.5000E OI 7.874E-04 1.2858E-01 9.6695E-01 276 1.570RE OO 9.5000E OI 7.531E-04 1.2858E-01 9.7001E-01 261 1.6581E OO 9.5000E OI 6.3341E-04 1.2958E-01 9.7001E-01 261 1.7453E OO 1.0000E O2 5.9363E-04 1.2968E-01 9.7277E-01 266 1.7453E OO 1.0000E O2 5.9363E-04 1.3000E-01 9.7762E-01 291 1.326E OO 1.0000E O2 5.682E-04 1.3000E-01 9.7762E-01 301 2.0071E OO 1.5500E O2 5.682E-04 1.3050E-01 9.8204E-01 306 2.0044E OO 1.2000E O2 5.623E-04 1.3050E-01 9.8204E-01 306 2.0680E OO 1.3000E O2 5.6813E-04 1.3112E-01 9.8606E-01 312 2.3562E OI 1.3500E O2 5.6813E-04 1.3137E-01 9.8793E-01 321 2.3562E OI 1.3500E O2 5.6446E-04 1.3150E-01 9.8970E-01 322 2.3562E OI 1.5500E O2 6.1066E-04 1.3160E-01 9.8970E-01 321 2.3567E OO 1.4500E O2 6.1066E-04 1.3208E-01 9.9295E-01 346 2.7075E OO 1.5500E O2 7.2377E-04 1.3224E-01 9.940E-01 341 2.7075E OO 1.5500E O2 7.8277E-04 1.3224E-01 9.940E-01 341 2.7075E OO 1.5500E O2 9.4021E-04 1.3260E-01 9.9939E-01 356 2.7075E OO 1.5500E O2 9.4021E-04 1.3274E-01 9.9829E-01 356 2.7075E OO 1.5500E O2 9.4021E-04 1.3274E-01 9.9829E-01 356 2.7075E OO 1.5500E O2 1.6838E-03 1.3286E-01 9.9939E-01 356 2.7075E OO 1.7000E O2 1.0838E-03 1.3286E-01 9.9939E-01 366 3.0553E OO 1.7500E O2 1.5838E-03 1.3286E-01 9.9939E-01 366 3.0553E OO 1.7500E O2 1.1531E-03 1.3274E-01 9.9939E-01 366 3.0553E OO 1.7500E O2 1.1531E-03 1.3274E-01 9.9979E-01 366	1.13458 00					
1.3963E OO						
1.4835E OO					9.396HE-01	
1.5708E 00 9.0000E 01 7.0511E-04 1.2898E-01 9.7001E-01 281 1.5581E 00 9.500E 01 6.3841E-04 1.2935E-01 9.7277E-01 286 1.7453E 00 1.0000E 02 5.9363E-04 1.2958E-01 9.7276E-01 291 1.320E 00 1.0400E 02 5.6982E-04 1.3000E-01 9.7762E-01 296 1.9199E 00 1.1000E 02 5.6982E-04 1.3000E-01 9.7988E-01 301 2.0071E 00 1.1500E 02 5.6423E-04 1.3030E-01 9.8204E-01 306 2.0044E 00 1.2000E 02 5.6423E-04 1.3080E-01 9.8406E-01 310 2.1817E 00 1.2500E 02 5.6813E-04 1.3112E-01 9.8606E-01 310 2.2680E 00 1.3000E 02 5.7800E-04 1.3112E-01 9.8793E-01 321 2.3562E 00 1.3500E 02 5.6471E-04 1.3160E-01 9.8793E-01 321 2.3562E 00 1.3500E 02 5.6471E-04 1.3160E-01 9.8970E-01 726 2.4435E 00 1.4500E 02 6.6446E-04 1.3162E-01 9.9135E-01 331 2.5307E 00 1.5500E 02 7.8248E-04 1.3224E-01 9.9448E-01 341 2.7053E 00 1.5500E 02 7.8248E-04 1.3243E-01 9.929E-01 346 2.7053E 00 1.5500E 02 7.8248E-04 1.3243E-01 9.9892E-01 345 2.7053E 00 1.5500E 02 7.8248E-04 1.3260E-01 9.9720E-01 351 2.8708E 00 1.6000E 02 8.4433E-04 1.3260E-01 9.9720E-01 351 2.8708E 00 1.6000E 02 8.4433E-04 1.3260E-01 9.9929E-01 355 2.9671E 00 1.7500E 02 1.0833E-03 1.3286E-01 9.9919E-01 366 3.0543E 00 1.7500E 02 1.1531E-03 1.3297E-01 1.000UE 00 371						
1.6581E 00						
1.7453E 00 1.0000E 02 5.9363E-04 1.2968E-01 9.7528E-01 291 1.326E 00 1.000E 02 5.761E-04 1.300E-01 9.7762E-01 796 1.9199E 00 1.1000E 02 5.6982E-04 1.3032E-01 9.7988E-01 301 2.0071E 00 1.1500E 02 5.6428E-04 1.3050E-01 9.8204E-01 306 2.0944E 00 1.2000E 02 5.6234E-04 1.3050E-01 9.8204E-01 316 2.1817E 00 1.2500E 02 5.6613E-04 1.3112E-01 9.8606E-01 316 2.2689E 00 1.3000E 02 5.7800E-04 1.3112E-01 9.8793E-01 321 2.3562E 01 1.3500E 02 5.6431E-04 1.3150E-01 9.8970E-01 321 2.3562E 01 1.3500E 02 5.6471E-04 1.3160E-01 9.8970E-01 326 2.4435E 00 1.4500E 02 6.6446E-04 1.3203E-01 9.9135E-01 336 2.6180E 00 1.5500E 02 7.2377E-04 1.3224E-01 9.940E-01 346 2.7975E 00 1.5500E 02 7.8248E-04 1.3243E-01 9.9592E-01 346 2.7975E 00 1.6500E 02 9.4021E-04 1.3260E-01 9.9629E-01 356 2.677E 00 1.6500E 02 9.4021E-04 1.3260E-01 9.9629E-01 356 2.677E 00 1.6500E 02 9.4021E-04 1.3260E-01 9.9999E-01 356 3.0553E 00 1.7500E 02 1.6530E-03 1.3266E-01 9.9979E-01 366 3.0553E 00 1.7500E 02 1.1531E-03 1.3297E-01 9.9979E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3297E-01 1.000UE 00 371						
1.4326E 00						
1.9199E 00 1.1500E 02 5.6982E-04 1.3050E-01 9.7988E-01 301 2.0071E 00 1.2500E 02 5.623E-04 1.3050E-01 9.8204E-01 306 2.0948E 00 1.2500E 02 5.6813E-04 1.312E-01 9.8606E-01 316 2.1817E 00 1.2500E 02 5.6813E-04 1.3112E-01 9.8606E-01 316 2.2689E 00 1.3000E 02 5.7800E-04 1.3137E-01 9.8793E-01 321 2.3562E 01 .3500E 02 5.6471E-04 1.3137E-01 9.8793E-01 321 2.5307E 00 1.4500E 02 6.6446E-04 1.3182E-01 9.9135E-01 331 2.5307E 00 1.4500E 02 6.6446E-04 1.3203E-01 9.9295E-01 336 2.4435E 00 1.5500E 02 7.2377E-04 1.3224E-01 9.9446E-01 346 2.7955E 00 1.5500E 02 7.8248E-04 1.3243E-01 9.9992E-01 346 2.7975E 00 1.5500E 02 8.4433E-04 1.3260E-01 9.9922E-01 346 2.7975E 00 1.5500E 02 9.4021E-04 1.3274E-01 9.9829E-01 351 2.8798E 00 1.5500E 02 9.4021E-04 1.3274E-01 9.9829E-01 351 2.9798E 00 1.5500E 02 9.4021E-04 1.3274E-01 9.9919E-01 351 3.0538E 00 1.7500E 02 1.0583E-03 1.3286E-01 9.9919E-01 366 3.1416E 00 1.8000E 02 1.1591E-03 1.3297E-01 1.0000E 00 371	1.43266 00			1.3000E-01		296
2.0944E 00 1.2000E 02 3.6234E-04 1.3086E-01 9.8409E-01 311 2.1817E 00 1.2500E 02 5.6813E-04 1.3112E-01 9.8606E-01 316 2.2689E 00 1.3000E 02 5.7800E-04 1.3113E-01 9.8606E-01 316 2.3562E 01 .3500E 02 5.7800E-04 1.3160E-01 9.8970E-01 321 2.3562E 01 1.4000E 02 6.1066E-04 1.3162E-01 9.8970E-01 336 2.4435E 00 1.4500E 02 6.6446E-04 1.3203E-01 9.9135E-01 336 2.6180E 00 1.5500E 02 7.2377E-04 1.3224E-01 9.940E-01 346 2.7053E 00 1.5500E 02 7.8237E-04 1.3224E-01 9.940E-01 346 2.7053E 00 1.5500E 02 9.4021E-04 1.3260E-01 9.9592E-01 346 2.7053E 00 1.6500E 02 9.4021E-04 1.3274E-01 9.9829E-01 356 2.6176E 00 1.6500E 02 9.4021E-04 1.3274E-01 9.9829E-01 356 3.0538E 00 1.7500E 02 1.6530E-03 1.3286E-01 9.9919E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3297E-01 1.000UE 00 371	1.9199E 00	1.1000E 02	5.69826-04	1.30298-01	9.7988E-01	301
2.18178 00 1.28008 02 5.7800E-04 1.3112E-01 9.8606E-01 316 2.26808 00 1.30008 02 5.7800E-04 1.3137E-01 9.8793E-01 321 2.3562E 01 .3500E 02 5.4871E-04 1.3160E-01 9.8970E-01 326 2.4435E 00 1.4600E 02 6.1066E-04 1.3162E-01 9.9135E-01 231 2.5507E 00 1.4500E 02 6.6446E-04 1.3203E-01 9.9295E-01 336 2.4180E 00 1.5500E 02 7.2377E-04 1.3224E-01 9.9440E-01 341 2.7053E 00 1.5500E 02 7.8298E-04 1.3224E-01 9.9942E-01 346 2.7075E 00 1.6500E 02 8.4433E-04 1.3260E-01 9.9720E-01 351 2.8708E 00 1.6500E 02 9.4021E-04 1.3274E-01 9.9829E-01 356 2.9671E 00 1.7500E 02 1.0833E-03 1.3286E-01 9.9919E-01 361 3.0553E 00 1.7500E 02 1.1531E-03 1.3294E-01 9.9979E-01 366 3.1416E 00 1.8000F 02 1.1691E-03 1.3297E-01 1.0000F 00 371			5.64235-04			
2.2689E 00 1.3000E 02 5.7800E-04 1.3137E-01 9.8793E-01 321 2.3562E 01 .3500E 02 5.8471E-04 1.3160E-01 9.8970E-01 326 2.4435E 00 1.4500E 02 6.1066E-04 1.3162E-01 9.9135E-01 231 2.5307E 00 1.4500E 02 6.6446E-04 1.3203E-01 9.9295E-01 336 2.4160E 00 1.5500E 02 7.2377E-04 1.3224E-01 9.9440E-01 341 2.7053E 00 1.5500E 02 7.82*RE-04 1.3243E-01 9.9592E-01 346 2.7075E 00 1.6000E 02 8.4433E-04 1.3243E-01 9.972E-01 351 2.8708E 00 1.6500E 02 9.4021E-04 1.3274E-01 9.9829E-01 351 2.9671E 00 1.7000E 02 1.0833E-03 1.3286E-01 9.9919E-01 361 3.0543E 00 1.7500E 02 1.1531E-03 1.3294E-01 9.9979E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3297E-01 1.0000E 00 371			3.6234E-04			311
2.3562E 01						
2.4439E 00 1.4000E 02 6.1066E-04 1.3162E-01 9.9135E-01 331 2.5307E 00 1.4500E 02 6.6446E-04 1.3203E-01 9.9295E-01 336 2.6180E 00 1.5500E 02 7.2377E-04 1.3224E-01 9.946E-01 341 2.7053E 00 1.5500E 02 7.8296E-04 1.3243E-01 9.9592E-01 346 2.7925E 00 1.6000E 02 8.4433E-04 1.3260E-01 9.9720E-01 351 2.8798E 00 1.6500E 02 9.4021E-04 1.3274E-01 9.9829E-01 356 2.9671E 00 1.7500E 02 1.0833E-03 1.3286E-01 9.9919E-01 361 3.0553E 00 1.7500E 02 1.1531E-03 1.3294E-01 9.9979E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3297E-01 1.0000E 00 371						
2.5307E 00 1.6500E 02 6.6446E-04 1.3203E-01 9.9295E-01 336 2.6160E 00 1.5500E 02 7.2377E-04 1.3224E-01 9.946E-01 346 2.7053E 00 1.5500E 02 7.62+8E-04 1.3243E-01 9.9592E-01 346 2.7075E 00 1.6000E 02 8.4433E-04 1.3260E-01 9.9720E-01 351 2.8708E 00 1.6500E 02 9.4021E-04 1.3274E-01 9.9829E-01 356 2.971E 00 1.7500E 02 1.0533E-03 1.3286E-01 9.9919E-01 361 3.0543E 00 1.7500E 02 1.1531E-03 1.3294E-01 9.9979E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3297E-01 1.0000E 00 371	2234E AA					935 ·
2,6180E 00 1,5000E 02 7,2377E-04 1,3224E-01 9,9440E-01 341 2,7053E 00 1,5500E 02 7,8248E-04 1,3243E-01 9,9592E-01 346 2,7053E 00 1,6000E 02 8,4433E-04 1,3260E-01 9,9720E-01 351 2,879E 00 1,6500E 02 9,4021E-04 1,3274E-01 9,9829E-01 356 2,9671E 00 1,7000E 02 1,0839E-03 1,3286E-01 9,9979E-01 361 3,0343E 00 1,7500E 02 1,1531E-03 1,3294E-01 9,9979E-01 366 3,1416E 00 1,8000E 02 1,1691E-03 1,3297E-01 1,0000E 00 371			A. 64468-04			
2.7053E 00 1.5500E 02 7.82+8E-04 1.3243E-01 9.9592E-01 346 2.7075E 00 1.6000E 02 8.4433E-04 1.3260E-01 9.9720E-01 351 2.8798E 00 1.6500E 02 9.4021E-04 1.3274E-01 9.9829E-01 356 2.9671E 00 1.7000E 02 1.0839E-03 1.3286E-01 9.9919E-01 361 3.0543E 00 1.7500E 02 1.1531E-03 1.3294E-01 9.9979E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3297E-01 1.0000E 00 371		1.5000E 02	7.2377E-04	1.3224E-01	9.9448E-01	
2.7925E 00 1.6000E 02 8.4433E-04 1.3260E-01 9.9720E-01 351 2.8768E 00 1.6500E 02 9.4021E-04 1.3274E-01 9.9829E-01 355 2.9671E 00 1.7000E 02 1.0833E-03 1.3286E-01 9.9919E-01 361 3.0543E 00 1.7500E 02 1.1531E-03 1.3294E-01 9.9979E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3297E-01 1.000UE 00 371		1.35000 02	7. AZ+AE-04	1.32436-01		
2.9671E 00 1.7000E 02 1.0833E=03 1.3286E=01 9.9919E=01 361 3.0543E 00 1.7500E 02 1.1531E=03 1.3294E=01 9.9979E=01 366 3.1416E 00 1.8000E 02 1.1691E=03 1.3297E=01 1.000UE 00 371	2.79256 00	1.60006 02				
3.0543E 00 1.7500E 02 1.1531E-03 1.3294E-01 9.9979E-01 366 3.1416E 00 1.8000E 02 1.1691E-03 1.3297E-01 1.000UE 00 371				بتداريها بتدميها خلطتها ويسرعي حواست	ستعسطيك بمكاف كالشاكة بسب	
3.1416E 00 1.8000F 02 1.1691E-03 1.3297E-01 1.000UE 00 371						
			1010416-02	10364(6-01	1.00008 00	2/1

Figure D-95. Volume scattering function (sheet 3 of 3).

Figure D-96. Volume scattering function (sheet 1 of 3).

	A VGL	F (DEG)	PEAD IN		INSTR=0	ANGLE IDEG	SIGMA
	" "	10407	•		HAND=1		3.0///
1	0.1			700E 02	8	0.1750	1.61125 02
2	0.3			0008 01	.0	0.3500	3,55 5.4774E 01
3	0.7	000 •00		300E 01	0	0.7000	1.8621E 01
		.00		591E-02	Ö	15.00	5.55918-02
6		.00		2458-02	ŏ	20.00	2.72458-02
7		00		0238-02	0	25.00	1.70236=02
8		• 00		381E-02	0	30.00	1.13818-02
10 10		•00		568E-03 587E-03	0	40.00	5.7568E-03 2.8587E-03
11		OU		958E-03	Ö	60.00	1.79586-03
12		.00		829E-03	ō	70.00	1.18296-03
13		on.		ARCHADA.		<u> </u>	4.34305=04
14		•00 0 • 0		532E-04 (051E-04	0	90.00 100.0	6.8532E-04 5.8051E-04
10		0.0		3112=04		100.0	5.5311E-04
17		0.0		6558-04	0	120.0	5.46556-04
10		n.o		419E-04	0	130.0	5.74198-04
10 20		<u> </u>		166E=04		150.0	6.4084E-04
21		0.0		0178-04	0	160.0	8.0017E=04
22		0.0		668E=03	<u>.</u>	170.0	1-04888-03
2.3					1	180.0	1.14896-03
	AI BUA-	0.2429	1	C AAL DIA	0.557		•
		0.1353		S/ALPH/	0.443		
	A=	0.1075			0.029		
	A PREPA	11 5111		******	ALCE DE		
COF	RECTED	TEPHA		CORRECT	0N=0.002		
	AL PHA =	0.2453	i	S/ALPH	Am 0.552		
		0.1353		A/ALPH			
	≜ =	0.1099	,	B/9	5- 0.029		
	STOMAL	0.0.05	GREES) =	389	. 0		
			GREES)=	286			
		3 311.1			1.557		
	S UP TO	0.10	2GR #8 5 =	3.20	94.6-03	NORMALI	ZED= 2.370978-02
TUE	A++2 9/	A D	0.1218	RADIA			
TUE	A		24.464.	787441	14 3 7 6		
					· · · · · · · · · · · · · · · · · · ·		

Figure D-96. Volume scattering function (sheet 2 of 3).

A CONTRACTOR OF THE PARTY OF TH

25	JULIA.	1976	1140	. 10

520 19JUL75	2040 STA CATH		62M		
ANGLE (RAD)	ANGLE(DEG)	SIGMA	INTEGRAL	NORM. INTEGRAL	
1.7453E -03	1.00008-01	2.8666E 02	3.20046-03	2.3710E-02	1
2.19726-03	1.25895-01	5.4121E 05	4.68138-03	3.4594E-02	11
2.76628 -03	1.58498-01	1.86116 02	6.5631E-03	4.8501E-02	21
3.4A24E-03	1.99538-01	1.31366 02	6.7511E-03	6.4670E-02	31
4.38418-03	2.51198-01	9.1796E 01	1.11786-02	8.2602E-02	41
5.5192E-03	3.16236-01	6.4145E 01	1.38656-02	1.02466-01	51
6.94836-03	3.90118-01	4.4824E 01	1-68416-02	1.2446E-01	A.1
71.74748-03	5.0119E-01	3.13228 01	2.01376-02	1.48818-01	71
1.10126 -02	6.30966-01	2.1887E 01	2.37R8E-02	1.75798-01	ė i
1.38646-02	7.94334-01	1.5289E 01	2.7830E-02	2.05678-01	91
1.74538-02	1.00000 00	1.0659E DI	3.5305E-05	2.3871E-01	101
2.19728-02	1.25898 00	7.4025E 00	3.72348-02	2.75156-01	111
7.7662E-02	1.56498 00	5.1124E 00	4.26478-02	3.1516E-01	121
3.48248-02	1.9953E 00	3.57468 00	4, 99916-02	3.5879E-01	131
4.38418-02	2.51196 00	2.3804E 00	5.49366-02	4.05978-01	141
5.51925-02	3.1623E 00	1.59908 00	5.1771E-02	4.56438-01	151
6.94838-02	3.9811E 00	1.01968 00	6. P401E-02	5.09178-01	161
8.74736-02	5.01198 00	6.08168-01	7.58468-02	5.60508-01	171
C11-126-V4	J. V. L. TU VV		1224465468	> 4 00 3 0 6 O T	ATA
1110125-01		- 3,52402-01-	612243E-02		-161
3 3 4 4 5 03		1 0430861	4 40000 00		
1.3864E-01 1.74538-01	7.9433E 00	2.0627E-01 1.2645E-01	8.82228-02	6.51968-01	191
		5.55018-02	9-35216-02	7.65428-01	201
2.6180E-01			1.03588-01		
3,490.12-01	2.0000# 01	2.72458-02	1.09926-01	8.12286-01	211
4.363 12-01	3.5000E 0)	1.70238-02	1-14408-01	8-45408-01	2)0
5.23608-01	3.0000# 01	1.13.16-05	1.17916-01	8.71326-01	557
6.10868-01	3.5000E 01	7.98696-03	1.20716-01	8.92048-01	226
A-9813H-01	4-00000# 01	5.75ARE-03	1.22978-01	9.08768-01	236
7.85408-01	4.50008 01	3.98468-03	1.24768-01	4.5149E-01	
8.7266E-01	5.0000E 01	2.3587E-03	1.26118-01	9.31978-01	241
9.59938-01	5.50000 01	2.24431-03	1.27211-01	9-40098-01	246
1.04728 00	9.0000F 07	1.79588-03	1.28146-01	9.46965-01	251
1.1345# 00	6.5000E 01	1.4460E-03	1.28926-01	9.52746-01	256
1.22178 00	7.00000 01	1.14296-03	1.29598-01	9.5764E-01	261
1.3090# 00	7.5000E 01	9.78438-04	1.30158-01	9.61798-01	196
1.39638 00	H.0000E 01	0.34106-04	1.3063E-01	9.65366-01	271
1.4835E 00	8.5000E 01	7.4637E-04	1.31066-01	9.6H52E-01	276
1.570 HE 00	9.00000	6.3537:404	1.31456-01	9.71426-01	261
1.658 EE 00	9.50006 01	6-27126-04	1.31816-01	9.7407E-01	206
1.745 ¥ 00	1.00000 02	5.5351E-04	1.3214E-01	9.76498-01	291
1.83268 00	1.05000 02	5.5927E-04	1.3244E-01	9.78736-01	296
1.9199E 00	1.1000E 02	5.53116-04	1.32738-01	9.BOR9E-01	301
2.00716 00	1.1500E 02	5.4662E-04	1.3301E-01	9.32948-01	306
5 5044E 50					
2.0944E 00	1.50006 05	5.46556-04	1.33286-01	9.84906-01	311
2.1817E 00	1.25006 02	5.5702E-04	1.3353E-01	9.86748-01	316
2.26498 00	1.30008 02	5.74198-04	1.33782-01	9.8860E-01	321
2.35628 00	1.3500E 02	5.9591E-U4	1.3401E-01	9.90348-01	326
2.44358 00	1.40008 02	6.19664-04	1.34246-01	9.92018-01	331
2.53078 00	1.45008 02	6.20006-04	1.3445E-01	9.93858-01	336
2.61808 00	1.5000E 02	6.40846-04	1.34636-01	9.94928-01	341
2.70538.00	1.5500E 02		1.34808-01		346
7 70788 00	1.60008 02	7.0185E-04 8.0017E-04	1.34962-01	9.9417E-01 9.9733E-01	351
2.87988 00	1.6500E 02	9.12578-04	1.35106-01	9-98368-01	356
7.9671E 00	1.7000# 02	1.04885-03	1.35218-01	9.99226-01	361
3.05438 00	1.75008 02	1.13708-03	1.35208-01	9.99798-01	366
3.14168 00	1 . #ODOE 02	1.1489E-03	1.35328-01	1.0000E 00	371
PAUSE READY			·		

Figure D-96. Volume scattering function (sheet 3 of 3).

Figure D-97. Volume scattering function (sheet 1 of 3).

520 19JUL75 2048 S		A MER LAN		1 1976 1141.51
320 1400013 2040 3	INSCRIBATION SE	A REU TON	and the second second	and the state of t
DATA K	AD IN			ED DATA
ANGLE (DEG)	5 I GMA	INSTR#0	ANGLE (DEG)	SIGMA
		HAND=1		
1 0.1750	2.2500E 02	ō	0.1750	2.1270E 02
2 0.3500	7.0000E 01	0	0.3500	7.83136 01
4 10.00	1.5349E-01	<u>0</u>	10.00	1.53496-01
5 15.00	6.6496E-0Z	ŏ	15.00	6.6496E=02
A 20.00	3.0258E-02	ŏ	20.00	3-02586-02
7 40.00	5.03296-03	0	40.00	5.03296-03
8 50.00	2.60268-03	0	50.00	2.60266-03
9 60.00 10 70.00	1.4922E-03 9.2919E-04		70.00	1.4922E=03 9.2919E=04
80.00	6.8144E-04	ü	80.00	6.8144E-04
90-00	5.532AE-04		90.00	5.53265-04
100.0	4.66956-04	o	100.0	4.66958-04
14 110.0	4.5464E-04	0 0 ·	110.0	4.5464F=04
16 130.0	5.1139E-04	0	130.0	5-1139E-04
7 140.0	5.39646-04	õ	140.0	5.39648-04
150-0	6.2312F-04	<u> </u>	150.0	6.2312E-04
160.0	7.6257E-04	0	160.0	7.6257E-04
20 170.0 21	1.10426-03	0	170.0 180.0	1.10425-03
ALPHA= 0.2792	S/ALPH			
S= 0.1753 A= 0.1039	A/ALPH	A= 0.372 S= 0.019		
A- 011037	67	3- 0.019		
CORRECTED ALPHA	CORRECT	10N=0.003		
	* * * * * * * * * * * * * * * * * * * *	4 0.481		
ALPHA= 0.2822 S= 0.1753	S/ALPH	A= 0.621 A= 0.379		
A= U.1069		S= 0.019		
SIGNAL D.O DEGR	ES) = 474	<u>.ż</u>		
SIGMA(0.1 DEGRE SLOPE(3 MILLIR	ES)= 359	-1.442		
S UP TO 0.1 DEGE	REES# 3.96	15E-03	NOR MALIZED	= 2.25978E=02
	,		+	Alternative Control
HETA ** 2 BAR 8.4	746E-QZ RADIA	42445	•	•
				
				•

· ·				18".

Figure D-97. Volume scattering function (sheet 2 of 3).

	520 19JUL75 20	ANGLE (DEG)	7 - SEA H20 40 SIGMA	INTEGRAL N	DRM. INTEGRAL	
	1.7453E-03	1.0000E-01	3.5969E 02	3.96158-03	2.2598E-02	
-	2.19726-03	1.2589E-01	3.0772E 02	5.8248E-03	3.32278-02	11
	\$ 477287Jg	1.5849E-01	2.4294E 02	0.2530ć-03	4.7079E-02	5 7
	7.7662E-03 3.4824E-03	1.99536-01	1.7606E 02	1.1148E-02	6.3591E-02	31
		2.5119E-01	1.26334 02	1.4444E-02	8.2394E-02	41
	4,38418-03	3.16236-01	9.0647E 01	1.81936-02	1.03786-01	5)
	5.51926-03	3.9811E-01	6.50448 01	2.24565-07	1.38108-01 1.55756-01	9}
	6.74835-03	3:0114E-01	4.66728 01	2.7304E-02	1.55756-01	
	8.7474E-03	6.3096E-01	3.3489E 01	3.2817E-02	1.87202-01	81
	1.10158-05	7.94336-01	2.3973E 01	3.9084E-02	2.2295E-01	
	1.38646-02	1.00000 00	1.69176 01	4.6147E-02	2.63246-01	101
	1.74536-02	1.25895 00	1.1739E 01	5.39796-02	3.0792E-01	111
	2.19726-02	1.58498 00	A.0054E 00	6.25176-02	3.56636-01	121
	2,7662E-02	1.0953E 00	5.3605E 00	7.10618-02	4.08786-01	131
	3.49246-02		3.52208 00	8.12716-02	4.63615-01	141
	4.38416-02	2.5119E 00	2.26895 00	9-1180E-02	5.20130-01	151
	5.51071-02	3.16235 00	1.38346 00	1.0107E-01	5.76566-01	161
	6.94836-02	3.98118 00	7.92256-01	1.10305-01	6.2455E-01	171
	A.7473E-02	5.0119E CO	4.4384E-01	1.18566-01	6.7632E-01	151
	1.10125-01	6.30956 00	2.5336E-01	1.25938-01	7.1834E-01	191
	1.38646-01	7.94336 00	1.53498-01	1.32766-01	7.57313-01	201
	1.074538-01	1.00000 01	6.64955-02	1.4455E-01	P.24586-01	205
	2.61906-01	1.50008 01	3.02586-02	1.51028-01	8.6661E-01	511
	3.49078-01	2.00008 01	1.70788-02	1.56645-01	8.9356E-01	216
	4.36338-01	2.5000E 01	1.07936-02	1.6006E-01	9-1308E-01	321
	5.2360E-01	3.00008 01		1.62506-01	9.2790E-01	226
	5.10868-01	3.50006 01	7.24256-03	1.64686-01	9.3940E-01	231
	6.9913E-01	4.00006 01	5.03296-03	1.66256-01	9.48366-01	236
	7.8540E-01	4.5000F 01	3.5763' 03	1.67485-01	9.5540E-01	241
	8-1246E-01	3.00006 01	2.602. 03	1.68466-01	0.6097E-01	246
	9.59936-01	5.5000E 01	1.94625-03	1.6925E-01	9.65478-01	251
	1.0472E 00	6.0000E 01	1.49275-03	1007626-41		
-			1.16666-03	1.69896-01	9.6913E-01	256
	1.13456 00	6.5000E 01	•	1.7042E-01	9.7214E-01	261
	1.22175 00	7.00006 01	9.2919E-04	1.70868-01	9.74656-01	266
	1.309716 00	7.5000E 01	7.76346-04	1.71258-01	9.76876-01	271
	1.39636 00	P.0000E 01	6.8144E-04	1.7160E-UL	9.78876-01	276
	1.48358 00	8,50006 01	5.10P6E-04	1.71926-01	9.80696-01	281
	1.5708E CO	6 0000 F 01	5.53266-04		9.82335-01	266
	1.65818 00	9.5000E 01	5.0501E-04	1.72218-01	9.83845-01	251
	1.7453E 00	1.0000E CZ.	4.6595E-04	1.7247E-01	9.8523E-01	296
	1.83266 00	1.05006 02	4.5050E-04		9.8658E-01	301
	1.9199E 00	1.1000E 02	4.54446-04	1.72955-01	9.8790E-01	306
	2.00716 00	1,1500E 0Z	4.6514E-04	-1.7318E-01	9.89228-01	311
	2.0944E 00	1.2000E 02	4.78815-04	1.7341E-01	9.9050E-01	ลีโ6
	2.1817E 00	1.2500E 02	4.95120-04	1.7364E-01 1.7386E-01	9.9175F-01	321
	2.26896 00	1 .30008 02	5.1139E-04	1.74066-01	9.9294E-01	320
_	2.35628 00	1.35008 02	5.2541E-04	1.74266-01	9.9407E-01	331
	2.4435E 00	1.40008 02	5.3964E-04		9.95128-01	336
	- 2.5307E 00	1.4500E 02	5.72H7E-04	1.7445E-01 1.7462E-01	9.9A12E-01	341
	2.6180E 00	1.5000E 02	6.2312E-04		9.97066-01	346
	2.70536 00	1.5500E 02	6.8220E-04	1.7479E-01 1.7494E-01	9,97926-01	351
	2.7925E 00	1.6000E 02	7.6237E-04		9.9864E-Ü1	356
-	2.87988 00	1.65008 02	8.9489E-04	1.7507E-01	9,99366-01	361
	2.96718 00	1.7000E 02	1.10425-03	1.75198-01	9,99836-01	366
	3.0543E 00	1.7500E 02	1.20698-03	1.75276-01	1.00000 00	371
	3.14168 00	1.8000E 02	1.2325E-03	1.7530E-01	F = 0 0 0 0 F 0 0	

Figure D-97. Volume scattering function (sheet 3 of 3).

Figure D-98. Volume scattering function (sheet 1 of 3).

Marie Comment of the
	DAT	A READ IN			ITERAT	ED DATA
	ANGLE IDEG		HA	TR#O	ANGLE (DEG)	5 I GMA
<u></u>	0.1750	4.9500E (0	0.1750	4.8609E 02
2	0.3500	1.7500E		0	0.3500	1.8149E 02
3	0.7000	6.9000E (}}	- 8 -	10.00	6.7759E 01 2.8775E-01
5	15.00	-1.21406=0		0	15.00	1.21406-01
6	20.00	5.9317E-0	2	0	20.00	5.9317E-02
7	23.00	3.24425-0		0	25.00	3.244ZE-02
	30.00	1.9088E-0		<u> </u>	30.00	1.90888-02
9	40.00	8.52196-0	_		40.00	8.5219E-03
0	50.00	4.20985~0		0	50.00	4.20986-03
2	60.00 70.00	2,4128E-0		<u> </u>	40.00 70.00	2.4128E-03 1.5978E-03
3	80.00	1.08666~	-	Ö	80.00	1.08666-03
3 4	90.00	7.9013E-0		0	90.00	7.90138=04
5	100.0	6.3870E-0		Ú	100.0	A.8870E-04
6	110.0	6.41736-0		Ü	110.0	6.4173E-04
<u> </u>	120.0	5.239AF-1		<u>n</u>	120.0	6.2396E-04
A	130.0	6.41756-0)4	0	130.0	6.41756-04
9	140.0	6.93538-0		0	140.0	6.93536-04
	130.0	7.4559E-C		<u> </u>	150.0	7.5559E-04
l	160.0	9.08906-0	-	0	160.0	9.08906-04
? 3	170.0	1.31986-0		1	170.0 180.0	1.3198E-03 1.4712E-03
A	PHA= 0.508 \$= 0.367		PHA=	0.722 0.278	······································	·
	A= 0.141	2	B/S=	0.012		
CIRR	ECTED ACPHA	CORRE	CTION	#0.007	- 	
A	PHA= 0.515	5 S/AL	PHA=	C-713		
	5. 0.367	A/AL	PHA =	0.287		
	A= 0.148	ı	B/S=	0.012		
			069.		-,,,	######################################
	IGMA(O.1 D		15.1			
	UP TO O.1	JRAD) = B.	9540E		MURMAL IZEO	= 2.43667E-02
						20150012 112
X PEC	IM PARTICLE TED KVALPHA	□ 0.3911	ONS) =	PECTED	DIFFUSE ATTEN	UATION CHEFFICIENT
		MU	ADIAN	S	DEGREES	
DIA		9991 0.	4224E	-01	2.420	
EAN			3040		17.42	
1914		1921				
AN :	?		1475		8.451	
45 45. 2			3441 3109		19.72 17.81	
	PA= 0.	2017 KAPP		2 67	74E-03	· · · · · · · · · · · · · · · · · · ·

Figure D-98. Volume scattering function (sheet 2 of 3).

Figure D-98. Volume scattering function (sheet 3 of 3).

3.67476-01

1.0000E 00

371

mountain water the willes to the total grapes to keep as

1.47126-03

1.80008 02

Marian Commencer

Figure D-99. Volume scattering function (sheet 1 of 3).

520 19JUL75 2104 STA.CAT#17 - SEA H20	50 TOM	
---------------------------------------	--------	--

は現代機能の情報をはいるのは、日本のでは、大きなないできます。 こうしょうしょうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅう

ANG	LE IDEG	READ IN	GMA .	INSTR-		NGLE (DEG)	ATE: DATA Sigma	
			008 02	HAND		0.1750	6.4 34E 02	
1 0.	1750					0.3500	2.60256 02	
-	3500	2.32	00E 02			0.7000	1.0430E 02	_
	7000	1.00 4.70	00E 02 45E-01		Ó	10.00	4.70458-01	
	5.00		57E-01		õ	15.00	1.95578-01	
-	0.00		576-02		Q	20.00		_
	5.00	. 4.22	96 E-02		0	25.00	, '296E-C2	
	0.00	2.65	80E-02		0	30.00	1.15678-02	
	0.00		678-02		<u> </u>	40.00	3.63608-03	_
0	0.00		60E-03		0	50.00	3,03376-03	
	00.00		376-03		0 0	60.00 70.00	1.84806-03	
	70.00		10E-03		o o	#0.00	1.21016-03	-
• •	30 - 00		01E-03		ŏ	90.00	8 <u>~</u> 9457E-04	
•	90.00		115=04		Ŏ	100.0	7.57115.06	
	100.0		836-04		Ü	110.0	7.92838-04	
	110.0 120.0	6.8	97E-04		0	120.0	9.8297E-04	
	130.0		59E-04			130.0	7.9859E=04	
	140.0		698-04		0	140.0	8-26376-04	
	150.0		374-04		0	150.0	1.09565-09	
	140.0		14 E-07		<u> </u>	170.0	1.52406-03	
22 23	170.0	1.9	240E-03		ĭ	180.0	1.70688-03	_
AL DH	Am 0.68	30	STALP		.828			
48 4 1.	5= 0.56	35	AZALP	HAH (1.172			
	Am Dall	7.5		<u> </u>	0.009			
CORRECT	ED ALPH	A	CORREC	TIONE	0.009			
AL DI	A= 0.69	1.6	SIALP	MAH	0.818			
METT	5= 0.56		AZALP	HA= (0.182		•	
	A- OLIZ	6)	<u>_</u>	<u> </u>	0.009			
			19	37.				
\$16	AL O.D	DEGREES)=		44				
510	A Dal	DEGREES). LLIRAD).		-1.3	19			
S UF	TO 0+1	DEGREES		327E-	02		ZED= 2.002998-02	_
MAXIMUM EXPECTED	PARTICL	E DIAMETER	MICRO	HS)=	ECTED	DIFFUSE AT	TEMINTION COEFFICIEN	T
_ AFE0181				B 1 1 1 1 1		DEGREES		
		MU		DIANS		2.479		
MEDIAN		.9991	0.7	727	· •	15.62		_
MEAN 1		9639						
VARIANC	• (.1657	0-1	332		7.634		
MEAN 2				058		13.77		
RMS 2				753		15.77		
			KAPP		2.0	1448-03		
KAPP	AT	1,1957						
THETA++		4.6765E	-00 040		. 2			

Figure D-99. Volume scattering function (sheet 2 σ^{\prime} 3).

The same of the sa

INTEGRAL NORM INTEGRAL
3 1.13278-02 2.0030E-02 1 2 1.6779E-02 2.9672E-02 11 2 2.4023E-02 4.2482E-02 21 2 3.2881E-02 5.8146E-02 31 2 4.3256E-02 7.6492E-02 41 2 9.5392E-02 9.7932E-02 51 2 6.9587E-02 1.2305E-01 61 2 8.6192E-02 1.5242E-01 71 2 1.0561E-01 1.8676E-01 81 1 1.2832E-01 2.2691E-01 91 1 1.5446E-01 2.7315E-01 101 1 2.8378E-01 3.8153E-01 121 1 2.4970E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 5.0356E-01 151 0 3.5036E-01 5.0356E-01 171 0 4.1202E-01 7.2860E-01 171 0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.2860E-01 191
3 1.13278-02 2.0030E-02 1 2 1.6779E-02 2.9672E-02 11 2 2.4023E-02 4.2482E-02 21 2 3.2881E-02 5.8146E-02 31 2 4.3256E-02 7.6492E-02 41 2 9.5392E-02 9.7932E-02 51 2 6.9587E-02 1.2305E-01 61 2 8.6192E-02 1.5242E-01 71 2 1.0561E-01 1.8676E-01 81 1 1.2832E-01 2.2691E-01 91 1 1.5446E-01 2.7315E-01 101 1 2.8378E-01 3.8153E-01 121 1 2.4970E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 5.0356E-01 151 0 3.5036E-01 5.0356E-01 171 0 4.1202E-01 7.2860E-01 171 0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.2860E-01 191
2 2.4023E-02 4.2402E-02 21 2 3.2881E-02 5.8146E-02 31 2 4.3256E-02 7.6492E-02 41 2 3.51492E-02 9.7952E-02 51 2 6.9567E-02 1.2305E-01 61 2 8.6192E-02 1.5242E-01 71 2 1.0561E-01 1.8676E-01 81 1 1.2632E-01 2.2691E-01 91 1 1.5446E-01 2.7319E-01 101 1 2.1575E-01 3.8153E-01 121 1 2.4970E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 5.0356E-01 151 0 3.5036E-01 6.6096E-01 171 0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.2860E-01 181
2 3.2881E-02 5.8146E-02 31 2 4.3256E-02 7.6492E-02 41 2 3.5392E-02 9.7952E-02 51 2 6.9587E-02 1.2305E-01 61 2 8.6192E-02 1.5242E-01 71 2 1.0561E-01 1.8676E-01 81 1 1.2632E-01 2.2691E-01 91 1 1.5446E-01 2.7319E-01 101 1 2.1575E-01 3.8153E-01 121 1 2.4970E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 5.696E-01 151 0 3.5086-01 6.6096E-01 171 0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.2860E-01 181 1 4.3546E-01 7.7005E-01 121
2 4.3256E-02 7.6492E-02 41 2 9.5392E-02 9.7952E-02 51 2 6.9587E-02 1.2305E-01 61 2 8.6192E-02 1.2305E-01 71 2 1.0561E-01 1.8676E-01 81 1 1.2832E-01 2.2691E-01 91 1 1.5446E-01 2.7315E-01 101 1 2.8375E-01 3.8153E-01 121 1 2.4970E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 5.6580E-01 151 0 3.5036E-01 6.6096E-01 171 0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.2860E-01 181 1 4.3546E-01 7.2860E-01 191
2
2 6.9587E-02 1.2305E-01 61 2 8.6192E-02 1.5242E-01 71 2 1.0561E-01 1.8676E-01 81 1 1.2632E-01 2.2691E-01 91 1 1.2632E-01 2.7319E-01 101 1 1.8378E-01 3.8153E-01 121 1 2.1575E-01 3.8153E-01 121 1 2.4970E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 5.6989E-01 151 0 3.5416E-01 6.6026E-01 171 0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.7005E-01 121
2 8.6192E-02 1.5242E-01 71 2 1.0561E-01 1.8676E-01 81 1 1.2632E-01 2.2691E-01 91 1 1.5446E-01 2.7319E-01 101 1 1.5376E-01 3.8153E-01 121 1 2.1575E-01 3.8153E-01 121 1 2.4970E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 3.699E-01 151 0 3.5616E-01 6.6096E-01 171 0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.7005E-01 121
2 1.0561E-01 1.8676E-01 81 1 1.2632E-01 2.2691E-01 91 1 1.5446E-01 2.7315E-01 101 1 1.5378E-01 3.2498E-01 111 1 2.1575E-01 3.8153E-01 121 1 2.4970E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 5.6989E-01 151 0 3.5036E-01 6.2626E-01 171 0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.7005E-01 121
1 1.2632E-01 2.2691E-01 91 1 1.5446E-01 2.7319E-01 101 1 1.8378E-01 3.2498E-01 111 1 2.1573E-01 3.8153E-01 121 1 2.4970E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 5.6589E-01 151 0 3.5036E-01 6.2624E-01 161 0 3.5036E-01 7.2860E-01 171 0 4.120E-01 7.2860E-01 181 1 4.3546E-01 7.7005E-01 121 1 4.5666E-01 8.0753E-01 201
1 1.5446E-01 2.7315E-01 101 1 1.6376E-01 3.2498E-01 111 1 2.1575E-01 3.6153E-01 121 1 2.4470E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 3.6589E-01 151 0 3.5416E-01 6.2626E-01 171 0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.7005E-01 121 1 4.3546E-01 8.0753E-01 201
1 1.8378E-01 3.2498E-01 111 1 2.1575E-01 3.8153E-01 121 1 2.4470E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 3.6589E-01 151 0 3.5416E-01 6.2624E-01 161 0 3.0508E-01 6.6096E-01 171 0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.7005E-01 121 1 4.3546E-01 8.0753E-01 201
1 2.1575E-01 3.8153E-01 121 1 2.4970E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 5.6369E-01 151 0 3.5614E-01 6.2624E-01 161 0 3.0508E-01 6.6096E-01 171 0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.7005E-01 121 1 4.5666E-01 8.0733E-01 201
1 2.4970E-01 4.4155E-01 131 1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 5.6580E-01 151 0 3.5416E-01 6.2624E-01 161 0 3.0508E-01 6.6096E-01 171 0 4.120E-01 7.2860E-01 181 1 4.3546E-01 7.7005E-01 121 1 4.5666E-01 8.0753E-01 201
1 2.8476E-01 5.0356E-01 141 0 3.2001E-01 3.6589E-01 151 0 3.5416E-01 6.2626E-01 161 0 3.0508E-01 6.606E-01 171 0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.7005E-01 121 1 4.5666E-01 8.0733E-01 201
0 3.20018-01 3.65898-01 151 0 3.55148-01 6.26248-01 161 0 3.65088-01 6.6098-01 171 0 4.12028-01 7.28608-01 181 4.35468-01 7.70058-01 121 1 4.56688-01 8.07538-01 201
0 3.20018-01 3.65898-01 151 0 3.55148-01 6.26248-01 161 0 3.65088-01 6.6098-01 171 0 4.12028-01 7.28608-01 181 4.35468-01 7.70058-01 121 1 4.56688-01 8.07538-01 201
0 1.56146-01 6.26246-01 161 0 3.05086-01 6.60966-01 171 0 4.12026-01 7.28608-01 181 1 4.35468-01 7.70088-01 191 1 4.56668-01 8.07338-01 201
0 4.1202E-01 7.2860E-01 181 1 4.3546E-01 7.7005E-01 191 1 4.5666E-01 8.0753E-01 201
1 4.3546E-01 7.7005E-01 191 1 4.566E-01 8.0753E-01 201
1 4.56668-01 8.07538-01 201
1 4.03016=01 4.70046=01 304
2 3-13526-01 9-08096-01 211
2 5.26098-01 9.30328-01 216
2 5.34536-01 9.45236-01 221
2 5.40828-01 9.56868-01 226 2 5.45588-01 9.64708-01 221
2 5.4553E-01 9.6470E-01 221 3 5.4909E-01 9.7099E-01 236
3 5.5180E-01 9.7578E-01 241
3 5.53888-01 9.79468-01 246
3 5.55516-01 9.82336-01 251
3 5.5680E-01 9.8462E-01 256
3 3.57848-01 9.86498-01 261
3 5.5872E-01 9.8802E-01 266
1 5.5944E-01 9.8929E-01 271
3 5.6004E-01 9.9035E-01 276
4 5.6056E-01 9.9128E-01 281
4 5.6103E-01 9.9210E-01 286
4 5.6145E-Q1 9.9285E-Q1 291
4 5.61856-01 9.93556-01 296
4 5.6221E-01 9.9420E-01 301
4 5.62568-01 9.94818-01 306
4 5.6289E-01 9.9540E-01 311
5.632[6-0] 9.95968-0] 316
4 5.6351E-01 9.9649E-01 321
5.6486E-01 9.9699E-01 326 4 5.6486E-01 9.9747E-01 331
4 5.6431E-01 9.9791E-01 336
4 5.6455E-01 9.9832E-01 341
3.64778-01 9.98718-01 346
5.6498E-01 \$.9909E-01 351
5. 5178-01 9.9943E-01 356
5.05348-01 9.99738-01 361
3 5.6545E-01 9.9993E-01 366
5 .6550E-01 1.0000E 00 371

Figure D.99. Volume scattering function (sheet 3 of 3).

我也是我的人一次一一人不是不知,其中的一个如此是一个一年的我们的人,我就是我们也不是我们就是一个人

Figure D-100. Volume scattering function (sheet 1 of 3).

520	19JUL75	2119 STA	.CAT#17 -	SEA H	120 10M		. •	
		DAYA REA	O IN		* ***		TATED DATA	***************************************
	ANGLE (SIGMA	HA	TR=0 ND=1	ANGLE (DEG)		
<u> </u>	0.175		6-6000E		0	0.1750	6.4769E 02	
2	0.3500		2.50006		0 431	0.3500	2.5958E 02	
}	10.00		1-0400E	7	- 8 -	10.00	1.7970E-01	
Ξ.	15.00		2.30886-		ŏ	15.00	2.30885-01	
6	20.00		9.63846-		ŏ	20.00	9.6384E-02	
7	25.00		4.81338-		0	25.00	4.81338-02	
8	30.00		3.00058-	2	0	30.00	3.0005E-02	
9	40.00		1.2666E-		0	40.00	1.26668-02	
0	50.00		5.7162E-	-	0	50.00	5.7162E-03	
1	60.00		3.28326-		9	60.00	3.2832E-03	
<u> </u>	70.00		1.9537E-		- 8	70.00	1.9537E-03	
3	\$0.00 90.00		1.2897E-0		. 0	90.00	9-8486E-04	
š	100.0		A.18716-		ŏ	100.0	A.1871E-04	
h	110.0		7.4263E-		Ó	110.0	7.4263E-04	
7	120.0		7.1471E-		Ó	120.0	7.14718-04	
Α	130.0		7-06975-	14	0	130.0	7.0697E=04	
9	140.0)	7.47256-		0	140.0	7.47258-04	
0	150.0		8.17175-		0	150.0	8.1717E-04	
<u></u>			1.03328-		- 9	170.0	1.03328-03 1.5635E-03	
2 3	170.0	,	1.9635E-	J 3	ì	180.0	1.76998-03	
A	LPHA- O.		S/AI	PHA=	0.904		1.	
	\$= Q.		A/AI	PHA=	0.096			
	A= 0	0656		8/5=	0.008			
CHRR	ECTED AL	PHA.	CORRI	ECTION	I=0.00 9			
Ā	LPHA O	6916	S/AI	PHA-	0.093		······································	
	S= 0.	6174	A/AI	PHA	0.107			
	A=_Q	0742		B/S=	0.008			
		O DEGREE		1333.				
		MILLIRAD			319			
		.1 DEGRE		12986		NOR MAL 12	ED= 1.82999E-02	
	UM PARTI		ETER (MICE 0.1989	ONS)	DECTED	01.0	ENUATION COEFFICIEN	T
APEL	160 K/AL						CHOMITON COCKLICIEN	, —
		HU		RADIAN		DEGREES 2.781		
EDIA		0.9988		.48548 .2707	-01	15.51		
EAN		0.1613	<u></u>					
EAN		~	á	.1362		7.805		
MS	_		0	3020		17.30		
M\$ 2	******			2695		15.44	,	
KA	PPA=	0-1374	KAPI	PA =	2.0	106-03		
		4.56						

Figure D-100. Volume scattering function (sheet 2 of 3),

			25 JUN 1976 0752.36		
520 19JUL75	2119 STA.CAT#	17 - SEA H20	10M		
ANGLE (RAD)	ANGLE (DEG)	SIGMA	INTEGRAL	HORM. INTEGRAL	
1.7453E -() 5	1.0000E=01	1.0416E U3	1.1298E-02	1.83006-02	1
2.19726-03	1.25896-01	9.0546E 02	1.67376-02	2.7109E-02	11
2.7662E=03	1.5849E-01	7.3124E 02	2.3962E-02	3.8813E-02	21
3 .48246-03	1.99538-01	5.4479E 02	3.2798E-02	5.31246-02	31
4,3841E-03	2.5119E-01	4.0208E 02	4.3146E-02	6.98856-02	41
5.5192E-0A	3.1623E-01	_2.9676E 02	5.5250E-02	8-9492E-02	51
6.94836-03	3.9811E=01	2.1902E 02	6.94096-02	1.12436-01	61
A.74746-03	9.0114E-01	1.6165E 02	A.5971E-02	1.39258-01	71
1-10124-02	6.3096E-01	1-19306 05	1.0534E-01	1.7063E-01	81
1.3864E-02	7.04334-01	8.74246 01	1.27998-01	2.07326-01	91
1.74536-02	1.00000 00	6.36026 01	1.54226-01	2.49798-01	101
7-19728-02	1.25 A9E 00	4.51426 01	1.8401E-01	2.9300E-01	
3.1995E-05		3.13366 01	2-17156-01	3.5174E-01	121
3.4824E-02 4.3841E-02	1.9953E 00 2.5119E 00	2.12326 01 1.40136 01	2.53188~01 2.9136E=01	4.1009E-01	131
8 - 11 D2 G - A2		8.9908E 00	3.30738-01	4.7193E-01	151
5.5192E-02 6.9483E-02	3.1623E 00 3.9811E 00	5.43908 00	3.6977E-01	5.35716~01 5.98946~01	161
8.747.5E-02	5.0119E 00	3.09288 00	4.05956~01	6.57538=01	171
1.1015# -11	A.30966 00	1.71H9E 00	4.3806E=01	7.09546-01	181
1.38646-01	7.94336 00	9.71008-01	4.6645E-01	7.55538-01	191
1.74535 -01	1.00008.01.	5.79714-01	4.9245E=01	7.97646-01	201
2.61804-01	1.5000E 01	2.308AE-UI	5.3587E-01	8.67986-01	206
3.4907E -01	2.0000E 01	9.63846-02	5.6035E-01	9.07626-01	211
4.3633E=01	2.50008 01	4.8133E-02	5.7455E-01	9-30626-01	216
5.23606-01	3.0000E 01	3.00058-02	3.84096-01	9.46078-01	221
6.10868-01	3,5000E 01	1.92166-02	5.91168-01	9.5753E-01	226
4-98138-01	4.0000E 01	1.2666E-02	5.9637E-01	9.6597E-01	231
7.85408-01	4.5000E 01	8.31116-03	6.0019E-01	9.72156-01	236
8.7266E-01	5.00008 01	5-71628-03	6.0296E-01	9.7665E-01	241
9.5003E-1))	5.3000E 01	4.28238-03	6.05110-01	9-8012E-01	246
1.04728 00	6.0000E U1	3.28325-03	6.0685E-01	9.82946-01	251
1.1345E CO	6.5000E 01	2.5088E-03	6.0824E-01	9.45208-01	256
1.22176 00	7.0000E 01	1.95378-09	6.0936E-01	9.8702E-01	261
1.3090E 00	7.5000E 01	1.56456-03	6.1028E-01	9.8850E-01	266
1.39638 00	P.0000F 01	1.28978-01	6.1104E-01	9.8973E-01	271
1.4P35E 00	8.50006 01	1.10896-03	6.11685-01	9.90776-01	276
1.57088 00	9.0000E 01	9.84865-04	6.1226E-01	9.9170E-01	281
1.65816 00	7.50006 01	8.867E-04	6-12776-01	9.92536-01	200
1.74536 00	1.00000	8.1871E-04	6.1323#-01	9.93288-01	291
1.83266 00	1.0500E 02	7.71526-04	6.1365F=01	9.93976-01	296
1.9199E 00 2.0071E 00	1.1000E 02	7.42638-04	6.1405E-01	9.94616-01	301
2.0071E 00 2.0944E 00	1.2000E 02	7.25436-04	6.1442E-01 6.1477E-01	9.9521E-01 9.9578E-01	306
2.1917E 00	1.25006 02	7.0720E-04	6.1510E-01	9.96315-01	311
2.2689E 00	1.3000E 02	7.0697E-04	6.15416-01	9.9680E-01	321
2.35628 00	1.35006 02	7.22438-04	6.1569E-01	9.9727E-01	326
2.44358 00	1.40006 02	7.4725E-04	6.1597E-01	9.97716-01	331
2.53578 00	1.4500E 02	7.77068-04	6.1622E-01	9.98128-01	336
2.6180E 00	1.50006 02	8 1717E-04	6.1645E-01	9.98505-01	341
2.70538 00	1.5500E 02	8-9616E-04	6.1667E-01	9.9884E-01	346
2.79238 00	1.6000E 02	1.03321-03	6.16678-01	9.99188-01	351
2.87986 00	1.65008 02	1.24228-03	6.1706E-01	9.99488-01	356
2.96718 00	1.70008 02	1.56356-03	6-17226-01	9.99748-01	361
3,05438 00	1.75008 02	1.7291E-03	6.1734E-01	9.99932-01	366
3.1416E 00	1.8000E 02	1.76996-03	6.1738E-01	1.0000E 00	371
PAUSE READY	PLOTTER				

Figure D-100. Volume scattering function (sheet 3 of 3).

Figure D-101. Volume scattering function (sheet 1 of 3).

		8244 - 11			
	ANGLE (DEG)	READ IN	INSTR=0	ANGLE (DEG	RATED DATA
	P.11062 (021)	J	HAND=1	MITTER TOPE	31944
_1	0.1750	1.4200F U	2 0	0.1750	1.3869E 02
5	0.3500	4.3000E 0	1 , Q	0.3500	4.5077E UL
3	0.7000	1.5000E 0	1 0	0.7000	1.46515 01
	10.00	1.0422E-0		10.00	1.0422E-01
5	15.00	4.3848E=0		15.00	4.38486-02
6	20.00	2.3964E-U		20.00	2.39646-02
-/	25.00	1.4799E-0		25.00	1-4799E-02
9	30.00 40.00	1.0161E=0		30 • 00 40 •00	1.01618-02
10	50.00	2.3444E-0		50.00	4.5287E-03 2.3444E-03
11	60.00	1.41498-0		60.00	1.41486-03
12	70.00	9.68838-0	-	70.00	9.68836-04
13_	80.00	7.213AE+0		80.00	7.21365-04
14	90.00	5.7660E-0	4 0	90.00	5.7660E-04
15	100.0	4.58236-0		100.0	4.88236-04
کا	110-0	4.5836E-0		110-0	4.58345-04
17	120.0	4.55918-0		120.0	4.5591E-04
18	130.0	4.62048-0		130.0	4.62045-04
20	<u>160-c</u>	4.2022E-0		140-0	4.8720E=04
21	150.0 160.0	5.3823E-04		150.0 160.0	5.3823E-04 6.3784E-04
22	170-0	1_0051E=0		170.0	1.0051R#03
23			1	180.0	1.1409E=03
	ALPHA: 0.2145	S/ALI			
	5= 0.1124	A/AL			•
	A= 0.1021		B/S= 0.02	29	
CLE	RECTED ALPHA	CORRE	T10N=0.00	2	
	ALPHA = 0.2167	S/ALI			
	S= 0.1124	A/ALI			
	A= 0.1043	(3/S= 0.08	29	
	SIGMAL 0.0 DEG		54.8		
	SICMAL O.1 DEG SLOPEL 3 MILLI		55.3 _=1.621		
	S UP TO 0.1 DE		891E-03	NORMALI	ZED= 2.56974E-02
THETA	4++2 BAR O	.1218 RAD	IANS##2	4,	

Figure D-101. Volume scattering function (sheet 2 of 3).

ANGLE (RAD)	ANGLEIDEGI	18-SEA HZO 751 Sigma	INTEGRAL	LICIDIA TAITECCAI	
1.74536-03	1.0000E-01	2.5527E 02		NURM. INTEGRAL	-
			2.88918-03	2.56976-02	1
7.1972E-03	1.25896-01	2.1237E 02	4-19346-03	3.72986-02	11
2.74628-03	1.58496-01	1.6137E 02	5.83778-03	5.1923E-02	21
3.4824E-03	1.9953E-01	1-1212E 02	7.71926-03	6.8658E-02	31
4.3941E-03	5.2114E-01	7.71878 01	9.7746E-03	8.6940E-02	41
5.51926-03	3.1623E-01	5.3138E 01	1.20176-02	1.06896-01	51
6.9483E-03	3.98116-01	3.6581E 01	1.44648-02	1.2865E-01	
8.7474E-03	5.0119E-01	2.5184E 01	1.71346-02	1.5240E-01	-71
1.10126-02	6.3096E-01	1.7337E 01	2.0047E-02	1.78316-01	8 1
1.3864E-02	7.9433E-01	1.1960E 01	2.32266-02	2.06586-01	91
1.74536-02	1.0000E 00	N.3256E DO	Z-6723E-02	2.3769E-01	-101
2.19728-02	1.2589E 00	5.87798 00	3.06115-02	2.72275-01	111
2.74625-02	1.58498 00	4.13635 00	3.49516-02	3.1087E-01	121
3.44246-02	1.4953E 00	2.89408 00	3.9779E-UZ	3.53816-01	131
4.3841E-02	2.51196 00	1.996DE 00	4.50966-02	4.0110E-01	141
5.51926-02	3.16235 00	1.3479E 00	5.0848E-02	4.52276-01	151
6.94836-02	3.98118 00	8.6164E-01	5.6863E-02	5.05/6E-01	161
8.7473E-02	5.0119E 00	5.1700E-01	6.2750E-02	5.5813E-01	171
1.10125-01	6.30966 00	3.0037E-01	6.82428-02	6.0698E-01	181
1.38646-01	7.54336 00	1.74316-01	7.32786-02	6.51772-01	191
1.74535-01	1.00000 01	1.04226-01	7.7960E-02	6.9341E-01	201
2.61805-01	1.50008 01	4.38446-02	8.57715-02	7.62846-01	206
3.4907E-01	2.0000F 01	2.39646-02	9.1044E-02	8.09798-01	211
4.36336-01	2.5000E C1	1.47996-02	9.4967E-02	8.4465E-01	216
5-2360E-01	3.00005 01	1.0161E-02	9.80658-02	0.72236-01	221
6.10866-01	3.50006 01	6.7166E-03	1.00516-01	6.93968-01	226
6.98138-01	4.00000 01	4.5287E-03	1.0235E-01	9.10316-01	231
7.4540E-01	4,5000E 01	3.1963E-03	1.03756-01	9.22836-01	236
8.7766E-01	5.0000E 01	2.34448-03	1.04866-01	9.32666-01	241
9.5993E=01	5.50006 01	1.78998-03	1.05758-01	9.4057E-01	246
1.04726 00	6.00008 01	1.41486-03	1.06488-01	9.47108-01	251
1.13458 00	6.50000 01	1,15556-03	1.07106-01	9.52626-01	256
1.22176 00	7.00002 01	9.68836-04	1.0764E-01	9.57385-01	261
1.30908 00	7.50000 01	8.28348-04	1.07116-01	9.6154E-01	266
1.39638 00	6.0000E OI	7.2136E-04	1.08328-01	9.65226-01	271
1.48358 00	8.50008 01	6.40436-04	1.08898-01	9.68508-01	
1.57088 00	9.0000E 01	5.7660E-04	1.09228-01	9.7146E-01	276 281
1.49912 00	9.5000E 01	5.25516-04 4.88236-04	1.09528-01	9.7414E=01 9.7659E=01	266
					291
1.43266 00	1.05008 02	4.55586-04	1.10056-01	9.7485E-01	346
1.91998 00	1.1000E 02	4.58346-04	1.10296-01	9.80996-01	301
2.00718 00	1.1500E 02	4.5591E-04	1.10526-01	9.83055-01	306
2.0944E OC	1.20005 02	4.5591E-04	1.1075E-01	9.8502E-01	311
2.19178 00	1.25006 02	4.5793E-04	1.10966-01	9.4690E-01	316
2.26P9E 00	1.30005 02	4.6204E-04	1.11106-01	9.38686-01	321
2.3542E 00	1.35006 02	4,7136E=04	1.11356-01	9.90765-01	326
2.44356 00	1.4000E 02	4.8720E-04	1.11526-01	9.91936-01	331
2.53078 00	1.45000 02	5.09678-04	1.11696-01	9.93416-01	336
2.61808 00	1.5000E 02	5.3823E-04	1.1184E-01	9.94785-01	341
2.70536 00	1.5500E 02	5.7740E-04	1.11992-01	9.9603E-01	346
2.7925E 00	1.6000E 02	6.3784E-04	1.12116-01	9.9716E-01	351
2.8798E 00	1.4500E 02	7.65H4E-04	1.1222E-01	9.08175-01	356
2.9671E 00	1.7000E 02	1.0051E-03	1.1233E-C1	9. 0000E-01	361
3.0543E 00	1.7500E 02	1.1107E-03	1.1240E-01	9.99766-01	366
3.1416E 00	1.8000E 02	1.1409E-03	1.1243E-01	1.0000E 00	271

Figure D-101. Volume scattering function (sheet 3 of 3).

では、10mmのでは、1

Figure D-102. Volume scattering function (sheet 1 of 3).

1 2 3 5 6 7 8 9 10 11 12 13 14 15 14 17 19 20 21 22 23	ANGLE (DEG) 0.1750 0.3500 0.7000 10.00 15.00 25.00 25.00 40.00 60.00 70.00 100.0		17R=0 1ND=1 0 0 0 0 0 0 0 0	ANGLE (DEG) 0.1750 0.7000 10.00 15.00 20.00 25.00 30.00 40.00 50.00 60.00 70.00	\$1GMA 1.9996E 02 6.4295E 0) 2.0673E 01 1.2714E=01 5.4560E=02 2.6010E=02 1.4708E=02 9.9905E=03 4.2087E=03 2.1341E=03 1.2727E=03 8.2633E=04 5.9827E=06
3 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23	0.3500 0.7000 10.00 15.00 20.00 25.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00	2.0700F 02 6.0000R 03 2.1400E 01 1.2716F=01 5.4560E=02 2.6010E=02 1.4708E=02 9.9805E=03 4.2087E=03 1.2727E=03 8.2683E=04 5.9827E=04 4.8587E=04 4.3409E=04	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3900 0.7000 10.00 20.00 25.00 30.00 40.00 50.00	6.4295E 0) 2.0673E 01 1-2714E-01 5.4560E-02 2.6010E-02 1.4708E-02 9.9805E-03 4.2087E-03 2.1341E-03 1.2727E-03 8.2683E-04
3 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23	0.7000 10.00 15.00 25.00 30.00 40.00 50.00 70.00 90.00 100.00	#.1400E 01 1.2716E=01 5.4560E=02 2.6010E=02 1.4708E=02 9.9805E=03 4.2087E=03 2.1341E=03 1.2727E=03 8.2683E=04 5.9827E=04 4.8587E=04	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3900 0.7000 10.00 20.00 25.00 30.00 40.00 50.00	2.0473E 01 1.271AF=01 5.4560E=02 2.6010E=02 1.470HE=02 9.9805E=03 4.2087E=03 2.1341E=03 1.2727E=03 8.2683E=04
5 6 7 8 9 10 11 12 13 14 15 14 17 19 20 21 22 23	10.00 15.00 20.00 25.00 30.00 40.00 60.00 70.00 90.00 100.0	1.27168-01 5.45608-02 2.60108-02 1.47086-02 9.98058-03 4.20878-03 2.13418-03 1.27278-03 8.26838-04 5.98278-04 4.85878-04 4.34098-04	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.00 15.00 20.00 25.00 30.00 40.00 50.00 60.00 70.00	271AE-01 5.4560E-02 2.6010E-03 1.470HE-02 9.9505E-03 4.2087E-03 2.1341E-03 1.2727E-03 8.2683E-04
67 78 99 100 111 122 133 144 15 164 17 19 200 21 222 23	15.00 20.00 25.00 30.00 40.00 60.00 60.00 70.00 90.00	5.45608-02 2.60108-02 1.47088-02 9.98058-03 4.20878-03 2.13418-03 1.27278-03 8.26838-04 5.98278-04 6.85878-04	0 0 0 0	15.00 20.00 25.00 30.00 40.00 50.00 60.00 70.00	3.4560E-02 2.6010E-02 1.470HE-02 9.9805E-03 4.20B7E-03 2.1341E-03 1.2727E-03 8.2683E-04
67 78 99 100 111 122 133 144 15 164 17 19 200 21 222 23	20.00 25.00 30.00 40.00 50.00 60.00 70.00 90.00	2.6010E-02 1.4708E-02 9.9805E-03 4.2087E-03 2.1341E-03 1.2727E-03 8.2683E-04 5.9827E-04 6.8587E-04	0 0 0 0	20.00 25.00 30.00 40.00 50.00 60.00 70.00	2.6010E-02 1.4708E-02 9.9805E-03 4.2087E-03 2.1341E-03 1.2727E-03 8.2683E-04
7 8 9 10 11 12 13 14 15 16 17 19 19 20 21 22 23	25.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.0	1.47086-02 9.98056-03 4.20876-03 2.13416-03 1.27276-03 8.26836-04 5.98278-04 4.85876-04	0 0 0 0	25.00 30.00 40.00 50.00 60.00 70.00	1.470HF-02 9.9805E-03 4.20B7E-03 2.134H-03 1.2727E-03 8.2683E-04
8 9 10 11 12 13 14 15 14 17 19 20 21 22 23 AL	30.00 40.00 50.00 60.00 70.00 80.00 100.00	9.9805E-03 4.2087E-03 2.1341E-03 1.2727E-03 8.2683E-04 5.9827E-04 4.8587E-04	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30.00 40.00 50.00 60.00 70.00	9.9805E-03 4.2087E-03 2.1341E-03 1.2727E-03 8.2683E-04
10 11 12 13 14 15 14 17 17 18 19 20 21 22 23	40.00 50.00 60.00 70.00 80.00 90.00 100.0	4.2087E-03 2.1341E-03 1.2727E-03 8.2683E-04 5.9827E-04 4.8587E-04	00000	40.00 50.00 60.00 70.00 80.00	4.2087E-03 2.1341E-03 1.2727E-03 8.2683E-04
11 12 13 14 15 16 17 19 19 20 21 22 23	50.00 50.00 70.00 90.00 100.0	2.1341E-03 1.2727E-03 8.2682-04 5.9827E-04 6.8587E-04 4.3409E-04	0 0 0 0	50.00 60.00 70.00 80.00	2.1341E-03 1.2727E-03 8.2683E-04
12 13 14 15 16 17 19 20 21 22 23	70.10 80.00 90.00 100.0	8.2683E-04 5.9827E-04 4.8587E-04 4.3409E-04	0	70.00 80.00	1.2727E-03 8.2683E-04
13 14 15 16 17 17 19 20 21 22 23	90.00 90.00 100.0	5.9827E-04 4.8587E-04 4.3409E-04	0	80.00	
14 15 16 17 18 19 20 21 22 23	90.00 100.0 110.0	4.8587E-04 4.3409E-04	0		8 000.90 -02
15 16 17 18 19 20 21 22 23	100.0	4.3409E-04		80.00	
16 17 18 19 20 21 22 23	110.0		n		4.85878-04
17 1 # 19 20 21 22 23		A = 1.05 A E # D &	ō	100.0	4.34096-04
19 20 21 22 23	121110	4.1737E-04	0	120.0	A TOTAL OF
19 20 21 22 23	130.0	4.2940E-04	Ü	130.0	4.1737E-04 4.2940E-04
20 21 22 23	160.0	4.6792F=04		150 - 0	4.67928=04
21 22 23	150.0	5 . 2712E-04	0	150.0	5.2712E-04
22 23 AL	160.0	6.26958-04	ö	160.0	6.26958-04
AL	170-0	9.911AF=04	<u>`</u>	170.0	9.911HF=04
			1	180.0	1.12646-03
CORRE	PHA= 0.2607	S/AL PHA #	0.529		
CORRE	5= 0.1380	A/ALPHA=	0.471		
CORRE	A= 0.1227	8/5=	0.021		
	CTEN ALPHA	CORRECTION	€0.003		
AL	PHA= 0.2639	S/ALPHA=	0.523		
	S= 0.1380	A/ALPHA=	0.477		
	A= ~.1260	B/S=	0.021		
SI	GMAL D.O DEGRE			27	
	GMAL O.1 DEGRE				
	OPEL 3 MILLIRA		637	AIGO MAI TTE	D= 3.09342E-02
5	UP TO Q.1 DEGE		-05	MOMBALIZE	U= 3+U734XE=02

Figure D-102. Volume scattering function (sheet 2 of 3).

ANGLE (RAD)	ANGLEIDEG	R-SEA HZO 5UM SIGMA	INTEGRAL	NORM. INTEGRAL	
1.74536-03	1.0000E-01	3.71176 02	4.2129E-03	3.05348-02	
7.197ZE-03	1.25896-01	3.0791E 02	6.10678-03	4.4260E-02	
2.76626-03	1.5849E-01	2.33078 02	8.4862E-03	6.1505E-02	21
3.48242-03	1.99536-01	1.6133E 02	1.1198E-C2	8.1163E-U2	31
4.3841E-03	2.51198-01	1.10665 02	1.4150E-UZ	1.0256E-01	41
5.5192E-03	3.16238-01	7.59128 01	1.73408-02	1.25826-01	51
	3.98116-01	5.2073E 01	2.08498-02	1.51116-01	61
6.9483E-03	5.0119E-01	3.57218 01	2.46436-02	1.7860E-01	71
9.7474E+03	6.3096E-01	2.45038 01	2.6767E-02	2.0849E-01	81
1.10126-02	7.9433H-01_	1.6804E 01	3.3250E-02	2.40996-01	91
1.3964E-02	1.0000E 00	1.13112 01	3.81218-02	2.7629E-01	101
1.7453E-02	1.2589E 00	7.8700E 00	4.3404E-02	3.14586-01	111
2.19726-02	1.58498 00	5.3657E 00	4.9120E-02	3.5601E-01	121
2.76626-02	1.99336 00	3.6450E 00	5.52866-02	4.00698-01	131
3.48248-02		2.4651E 00	6.1909E-02	4.4870E-01	141
4.3841E-02			6.80888-02	5.0001E-01	151
5.51925-02	3.16235 00	1.6583E 00	7.6385E-02	3.53628-01	161
6.9483E-02		6.2455E-01	3.35526-02	6.0556E-01	171
R.7473E-02	5.01196 00	3.5790E-01	9.01346-02	6.5330E-01	181
1-10125-01	8.3096H QQ	2.07956-01	9.61236-02	6.96716-01	191
1.35648-01	7.94536 00	1.27166-01	1.01766-01	7.37496-01	201
1.74536-01	1.00004 01	5.45608+02	1.11566-01	8.28536-01	206
2.4)30E-01	1.5000F 01	2.60108-02	1.17768-01	8.5303E-01	211
3.4907H-01			1.21776-01	8.82556-01	216
4.34332-01	2.50000 01	1.47086-02	1.24848-01	9.04798-01	
5,2360E-01	3.0000E 01	9.9805E-03	1.27176-01	9.21718-01	221 226
6.10866-01	3.50009 01	4.20876-03	1.28A9E-01	9,34156-01	231
4.98136-01	4.0000E 01		1.30196-01	9.43574-01	234
7,85405-01	4,5000 01	3.93204-03	1.31206-01	9. 30888-01	24)
8.7266E -01	5.0000E 01	2.13416-03	1.32016-01	9.5674E-01	246
9.59736-01	5.500UE 01	1.6248E-03	1.32678-01	9.41565-01	251
1.0472E 00	6.0000E 01	1.27276-03	TO THE TYPE		
1.1345E 00	6.#000# 01	1.0165E-03	1.33226-01	₽,6557E-01	256
			1.3369E-01	9.6893E-01	261
1.22176 00	7.0000E 01	8.2683E-04 6.9281E-04	1.34066-01	9.71798-01	266
1.30908 00	7.5000E 01		1.34438-01		271
1.39638 00	8.0000E 01	5.9827E-04	1.34736-01	9.7650E-01	276
1.4835E 00	8.5000E 01	5.31005-04	1.35018-01		201
	c.0000E 01	4.85876-04	1.35276-01		286
1.6581E 00	9.50008 01	4.5541E-04	1.35518-01	9.82136-01	291
1,7453ê QU	1.0000E 02	4.34095-04	1.3574E-01	9.83788-01	296
1.83266 00	1.0500E 02	4.1770E-04	1.35956-01		301
1.9199E 00	1.10000 02	4.1058E-04		9-86R5E-01	306
2,00715 00	1-15000 02	4.12795-04	1.3616E-01		311
2.09445 00	1.20000 02	4.17376-04			316
2.18175 00	1.25000 02	4.22326-04	1.3656E-01 1.3674E-01		321
2.26 P9E 00	1.3000E 02	4,2940E-04	1.38926-01		326
3.3565E 00	1.3500E 02	4.4499E-04	1.37096-01		331
2.4435E 00	1.4000E 02	4.67928-04	1.37256-01		336
2.5307E 00	1.4500E 02	4.9541E-04	1.3740E-01		341
2.61808 00	1.5000E 02	5.2712E-04	1.37546-01		346
2.7053E 00	1.55006 02	5.68026-04			351
2.79258 00	1.60006 02	6.2695F-04	1.37666-0		350
2.87038 00	1.65008 02	7.53186-04	1.37778-01		361
2.94718 00	1.7000E 02	9.9118E-04	1.37878-01		366
3.0543E 00	1.7500E 02	1.09646-03	1.37955-01		371
3.1416E CU	1.80002 02	1.12646-03	1.3797E-0	T TOURDRE ON	<i>⊌</i> 1 €

Figure D-102. Volume scattering function (sheet 3 of 3).

Figure D-103. Volume scattering function (sheet 1 of 3).

	READ IN			ATED DATA
ANGLE (DEG)	H	TR=0 ND=1	ANGLE (DEG)	SIGMA
1 0.1750	2.6000F 02	<u> </u>	0.1750	2.3899# 02
2 0.3500	6.2000E 01	•	0.3500	7.33648 0
3 0.7000	2.4500E 01	0	0.7000	5.5557# O
10.00	2-04178-01			2-04178-0
5 15.00	9.1464E-02 4.0122E-02	0	15.00 20.00	9.1464E-07 4.0122E-07
7 25.00	1.89828=02	ő	25.00	1.49826m0
20.00	1.09418-02	0	30.00	1.09416-0
9' 40.00	4.8446E-03	ŏ	40.00	4 . 8646E-0
10 50 00	2.46885-03		50.00	2.4688E-0
1 60.00	1.40512-03	0	60.00	1.40516-0
70.00	8.93668-04	0	70.00	8.93668-04
14 90.00	4.1370F-04	0	90.00	A 1179E=04
15 100.0	4.80182-04 4.2313E-04	ŏ	100.0	4.8018E-04
110.0	3.9450F=04	<u>.</u>	110-0	3.94508-0
7 120.0	3.9744E-()4	0	120.0	3.97448-0
130.0	4.34048-04	Ó	130.0	4.3404E-04
9 160.4	4-4364E-04	<u> </u>	140.0	4.53665-0
150.0	5.09398-04	0	150.0	5-09398-04
160.0	6.56938-04	0	140.0	6.56936-04
170.0	4.33000		180.0	9.3990E=0
•		•		,
ALPHA 0.3142	S/AL PHA =	0.561		
S= 0-176B	A/AL PHA	0.439		
A= 0.1379	R/S=	0.016	,	
CONRECTED ALPHA	CORRECTION	=0.004		
ALPHA 0-3183	S/AL PHAM	0.554		
S= 0.1763	A/AL PHAM	0.446		
A= 0.1420	8/5=	0.016		
SIGMAL O.O DEC				
SIGMAL 0.1 DEC		704		
\$ UP TO 0.1 36			NOR HAL I ZE	D= 2.98911E-02
HETA**2 BAR	-76288-02 RADIANS+		. 14	

Figure D-103. Volume scattering function (sheet 2 of 3).

	520 20JUL75 ANGLE(RAD)	ANGLE (DEG)	18-SEA HZU 259 Sigma		NORM. INTEGRAL	_
•	1.74536-03	1.0000E-01	4.58802 02	5.2685E-03	2.9891E-02	1
	2.1972E-03	1,2589E-01	3.76218 02	7.59COE-03	4,30966-02	11
	2.7662E-03	1.58498-01	2.8047E 02	1.04816-02	5.9466E-02	21
	3.4824E-03	1.99538-01	1.9113E 02	1.37196-07	7.7836E-02	31
•	4,34416-03	10-Heller	1:5071£ 05	7.71898-02	9.75258-02	4
	5.5192E-03	3,16235-01	8.7209E 01	2.0905E-02	1.18608-01	51
	6,9483E-03	3.98118-01	5.89098 01	2.48826-02	1.41175-01	61
	A . 7474E -03	5.0119E-01	3.9792E 01	2.91406-02	1.65335-01	71
	1.10126-02	6.3096E-01	2.68798 01	3.36998-02	1.91198-01	8 I
	1.38648-02	7,94336-01	1.82206 01	3. P5A26-02	2.18906-01	91
	1.74538-02	1.00008 00	1.26148 01	4.30828-02	2.4897E-01	101
•	2.19728-02	1.2589E 00	8.86838 00	4.97478-02	2.82248-01	111
	2.76628-02	1.58498 00	6.27058 00	5.63078-02	3-19468-01	
	3.4P24E-02 4.3841E-02	1.9953E 00 2.5119E 00	4.41612 00 3.0679E 00	6.36466-02	3.61112-01	131
			3.0679E 00 2.0822E 00	7.1792E-02	4.07326-01	141
	5.51928-02 6.94838-02	3.1623F 00 3.9811E 00	1.35318 00	8.0659E-02	4.5762E-01 5.1066E-01	-121-
	9.7473E-02	5.0119E 00	8-44048-01	9.94176-02	5.6405E-01	171
	1.10128-01	6.30968 00	5.17766-01	1.08626-01	6.1625E-01	161
	1.3#64E-01	7.94338 00	3.20016-01	1.17573-01	6.6705E=01	191
	1.74538 -01	1.0000 01	2.04176-01	1.26458-01	7.17426-01	201
	2.61808-01	1.50008 01	9.14646-02	1.42486-01	P.∩839H+01	200
	3.4907E-01	Z. ÜÖÖÖE Öİ	4.01228-02	1.5260E-01	B.6578E-01	211
	4.36338-01	2.5000E 01	1.89828-02	1.58366-01	8.98446-01	216
	5.2360E-01	3.0000E 01	1.09418-02	1.6198E-01	9.19008-01	
	6.10862-01	3.50000 01	7.11558-03	1.64578-01	V.33678-01	221
	6.9813E-01	4.C000E 01	4.8646E-03	1.66538-01	9.4482E=01	231
	7.85408-01	4.50008 01	3.40796-03	1.6F04E-01	9.53376-01	
	F.7266E-01	5.00000 01	2.46889-03	1.6921E-01	9.6002E-01	236 241
	9.59936-01	5.5000E 01	1.83766-03	1.7014E-01	9.65278-01	246
	1.0472E 00	6.0000E 01	1.40518-03	1.70886-01	9.09498=01	251
	1.13458 00	6.3000E 01	1.10815-03	1.71466-01	9.72926-01	256
	1.22178 00	7.0000E 01	R. 9366E-04	1.71998-01	9.75796-01	261
	1.3090E 00	7.50000 01	7.33686-04	1.7241E-01	9.78188-01	266
	1.39638 00	8.0000£ 01	6.13798-04	1.72776-01	9.80356-01	271
	1.4835E 00	8.50008 01	5.3165E-04	1.73086-01	9.8197E-01	276
_	1.5708E 00	9.00008 01	4.80164-04	1.73365-01	9.43545-01	281
	1.65816 00	9.50008 01	4.46576-04	1.7361E=01	9.84986-01	286
	1.74536 00	1.00008 02	4.2313E-04	1.73846-01	9.86328-01	291
	1.9326E 00	1.0500E 02	4.0508E-04	1-74075-01	9.8757E-01	296
	1.9199E 00	1.1000E 02	3.9450E-04	1.74288-01	9.88768-01	30 1
	2.00718 00	1.15008 02	3.90906-04	1 - 7447E-01	9.89846-01	306
	2.0944E 00 2.1817E 00	1.2500E 02	3.9744E-04 4.1516E-04	1.7466E-01	9.9097E-01	311
	2.2689E 00	1.25008 02	4.34046-04	1.75046-01	9.93086-01	321
	2.35428 00	1.35000 02	4.4414E=04	1.75218-01	9.9409E=01	326
	2.44356 00	1.40005 02	4.53648-04	1.75388-01	9.95036-01	331
	2.5307E 00	1.4500# 02	4.7424E-04	1.73538-01	9.95916-01	336
•	2.61706 00	1.5000E 02	5.09396-04	1.75686-01	9.9673E-01 -	341
	2.70538 00	1.55006 02	5.68088-04	1.75816-01	9.97498-01	340
	2.7925E 00	1.60008 02	6.5693E-04	1.75946-01	9.98228-01	351
	2.87988 00	1.65005 02	7.76655-04	1.76068-01	9.988AE-01	356
_	2.96716 00	1.7000E 02	9.3990E-04	1.7616E-01	9.99468-01	361
•	3.05438 00	1.7500E 02	1.03356-03	1.7623E-01	9.9986E-01	366
	3.1416E 00	1.8000# 02	1.0536E-03	1.76266-01	1.00000 00	371

Figure D-103. Volume scattering function (sheet 3 of 3).

Figure D-104. Volume scattering function (sheet 1 of 3).

	DATA	READ IN	برير المديورة الد		1 TERAT	ED DATA
	ANGLE (DEG)	SIGMA		TR=0	ANGLE (DEG)	SIGMA
1	0.1750	4.6500E		0	0.1750	4.5798E 02
2	0.3500	1.7000E		0	0.3500	1.75148 0
_					<u> </u>	
4	10.00	3.64278-0		D	10.00	3.64276-0
5	15.00	1.41078~(0	15.00	1.41076-01
7	25.00	2.95778-0		0	25.00	2.95778-0
Á	30.00	1.74458-		ŏ	30.00	1.74458-0
9	40.00	7.24286-			60.00	7.26288-03
10	50.00	3.67908-0	23	0	50.CO	3.67906-03
11	60.00	1.47028-0	73	0	60.00	1.97026-01
12_	7.0.00	1.32906-0			70.00	1.3290E+03
1.3	80.00	9.27366-		0	80.00	9.27368-04
14	90.00	6.519AE-(0	90.00	6.519AE-04
16	110.0	4.9189E=		0	110.0	4.9189E=04
17	120.0	4.74736-0	-	ŏ	120.0	4.74738-04
ii	140.0	4.7400F-0				4.74998=04
19	140.0	4.99476-0	14	0	140.0	4.99478-04
20	150.0	5.5051E-0	14	0	150.0	5.50516-04
71	140-0	7.78668-1			140-0	7.28648-04
2 2 2 3	170.0	1.27508-0	3	1	170.0 190.0	1.27#08**03 1.5011E=03
	ALPHAN 0.5538	S/AL	PHA	0.714	AND THE PERSON NAMED IN COLUMN 2 IN COLUMN 2	-
	5= 0.3956 A= 0.1582	A/A(PHA=	0.286		
ርሮያ	RECTED ALPHA	CORRE	ECT 10A	400.006		
	ALPHA= 0.5601	S/AL	PHA=	0.706		
	S= 0.3956 A= 0.1645	A/AL	P114= A/S+	0.294		
	SIGNAL D.O DEG		80.8			
	SLOPEL 3 MILLI	RAD)=	-1,	3 A 7		
	5 UP TO 0.1 DE	GREES <u>+</u> 8∙	25316	-03	NOSMAL IZED:	: 2.08407E=02

Pigure D-104. Volume scattering function (sheet 2 of 3).

3.4824E-03 1.99536-01 3.8181E 02 2.3588E-02 5.9621E-02 4.3841E-03 2.5119E-01 2.7744E 02 3.0782E-02 7.7807E-02	1 11 21 31 41 91
1.7453E-03 1.0000E-01 7.5516E 02 8.2531E-03 2.0861E-02 2.1972E-03 1.2589E-01 6.5130E 02 1.2181E-02 3.0788E-02 2.7662E-03 1.5649E-01 5.2007E 02 1.7349E-02 4.3852E-02 3.4824E-03 1.9953E-01 3.8181E 02 2.3588E-02 5.9621E-02 4.3841E-03 2.5119E-01 2.7744E 02 2.0762E-02 7.7807E-02 5.5192E-03 3.1623E-01 2.0160E 02 3.9068E-02 9.8750E-02	11 21 31 41
2.76626-03 1.56492-01 5.20076 02 1.73498-02 4.38526-02 3.46246-03 1.99536-01 3.81818 02 2.35686-02 5.96216-02 4.38526-02 5.51926-03 2.51198-01 2.77448 02 2.07626-02 7.78078-02 5.51926-03 3.16236-01 2.01608 02 8.90688-02 9.87508-02	21 31 41
3.4824E-03 1.99536-01 3.8181E 02 2.3588E-02 5.9621E-02 4.3841E-03 2.5119E-01 2.7744E 02 3.0782E-02 7.7807E-02 5.5192E-03 3.1623E-01 2.0160E 02 8.9068E-02 9.8750E-02	}
4.38418-03 2.51198-01 2.77448 02 3.07828-02 7.78078-02 5.51928-03 3.16236-01 2.01608 02 3.90688-02 9.87508-02	41
5.51926-03 3.16236-01 2.01608 02 3.90688-02 9.87508-02	
	71
	61
8.7474E-03 5.0119E-01 1.0649E 02 3.9600E-02 1.5069E-01	71
	ė i
1.3864E-02 7.9433E-01 5.6132E 01 8.6628E-02 2.1947E-01	91
	01
	11
	21
	31
	41 51
6.9483E-02 3.9811E 00 3.4419E 00 2.4090E-01 6.0789E-01 1	31
	71
	<u> </u>
1.34646-01 7.94334 00 6.20696-01 3.02136-01 7.63686-01 1	41
***************************************	01
	06
	11
	21
6.10968-01 3.80008 01 1.09098-02 3.79178-01 9.88408-01 2	26
	31
	36
	41
	46
1.0472E 00 6.0000E 01 1.9702E-03 3.8453E-01 9.8207E-01 2	5) 56
	66 61
1.39638 (10 8.00008 01 9.27368-04 3.91318-01 9.89098-01 2	71
	76
	86
	91
والمراجع والم	20
Advance of account of the control of	01 06
	11
2.1817E 00 1.2500E 02 4.7379E-04 3.9404E-01 9.9598E-01 3	16
	21
2.3562E 00 1.3500E 07 4.8616E-00 3.9444E-01 9.9699E-01 3	26
2.4435E 00 1.4000E 02 4.9947E-04 3.9462E-01 9.9746E-01 3	31
	36
2.6180E 00 1.5000E 02 5.5051E-04 3.9495E-01 9.9826E-01 3.7653E 00 1.5500E 02 6.1291E-04 3.9509E-01 9.98653-01 3	41
	70 51
2 87088 NO 1 48008 O2 0 28888-04 3 08378-01 9 09348-01 3	5.4
2.9671E 00 1.7000E 02 1.2750E-03 3.9550E-01 9.9966E-01 3	61
3.0543H 00 1.7500E 02 1.4538E-03 3.9559E-01 9.9991E-01 3	66
3,1416E 00 1.8000E 02 1.5011E-03 3.9563E-U1 1.0000E 00 3	71

PAUSE READY PLOTTER

Figure D-104, Volume scattering function (sheet 3 of 3).

Figure D-105. Volume scattering function (sheet 1 of 3).

			TA READ I	N					ATED DATA
	ANGL	E (D	(G)	SIGM	4		TR#O ND#1	ANGLE (DEG)	SIGMA
	0.1	750		3000			0	0.1750	4.2104E 0
Ž	0.3		7.5	3700			0	0.3500	1.6370E 0
3	0.7			5000			0	0.7000	6.3647E 0
		00		للعمة				10-00	1.049)E=0
5		•00		5027			0	15.00	1.5C27E-0
6		•00		3559			0	20.00	6.33596-0
그_		<u>.00</u>		1782			<u> </u>	25-00	3.1782F=0
į.		•00		7842 3313			0	30.00 40.00	· 1.78428-0: 7.33138-0:
9 10		•00		9948	7		8	50.00	3.9968E-0
11	_	.00		0630				60.00	2.06308-0
12		•00		2914			ő	70.00	1.2914E-0
1.3		-00	• •	0581			<u>`</u>	80.00	9.05818-0
14		.00		0076			0	90.00	7.0076E-0
15	10	0.0	5.	9782	E-04		J	100.0	5.93826-04
_هٔ		سفته		3274	404				5.32768=0
17	12	0.0	T. T	3440			0	120.0	5.3440E-0
LA		0.0		7419			0	130.0	5.74198-0
19		<u>~~</u>		1730			<u> </u>		A-13395-0
20	• •	0.0		3208			0	150.0 160.0	7.32086-04 1.03796-0
21 22		0.0		03791 8940			0	170.0	2.R9405=0
23		<u> </u>					1	180.0	3.83936-0
	AL PHA=	0.46	.95	S.	CALP	HA#.	0.840		
		0.39			ALF		0.160		
		0.0			8.	15=	0.011		
co.	RECTED	ALPI	1A	CO	RREC	110/	*0.006		<u> </u>
	AL PHA .	0.4	152		/ALP		0.929		
	-	0.39		A	/ALPI		0.171		
	A=	0.08	10		8.	/5=	0.011		
			DEGREES!=			9.6			
			DEGREES)=		681	9.5 Mis	143		
			DEGREES.		7.5	0526		NORMALIZ	ED= 1.90396E-0
	A##2 B		5.51176						

Figure D-105. Volume scattering function (sheet 2 of 3).

ANGLE (RAU)	ANGLE (UEG)	SIGMA	INTEGRAL	HORM. INTEGRAL	_
1.7453E -03	1.0200E-01	6.8847E 02	7.5052E-03	1.9040E-02	- 1
7.1972E-03	1.25896-01	5.9535E 02	1.10916-02	2.8136E-02	тi-
		4.7720E 02	**********	4.01436-02	ži
2.76626 -03	1.58498-01		1.58246-02		
3.4AZ4E-03	1.99538-01	3.5212E 02	2.15626-02	5.4701E-02	31
4.3841E-03	3.51146-01	2.5728E 02	2.62166-02	7.1581E-02	41
5.5192E-03	3.1623E-01	1.87988 02	3.59226-02	9.11296-02	51
A.9483E ~03	3.9811E-01	1.37358 02	4.4844E-02	1,13766-01	
1.7474E=03	5.01198-01	1.00356 02	5.51778-02	1.39986-01	71
1.10126 -02	A.3096E-01	7.3323E 01	6.7142E-02	1.70336-01	81
1.3864E-02	7.94336-01	5.3502E 01	8.09948-02	2.0547E-01	91
1.7453E-02	1.00000 00	3.869ZE 01	9.6948E-02	2.45958-01	101
2.19726-02	1.25898 00	2.7599E 01	1.15116-01	2.9203E-01	111.
		1.93358 01	1.39476-01	3.43668-01	121
2,7662E-02	1.58498 00				
5.4F24E=02	1.9953E 00	1.32476 01	1.57826=01	4.0035E=01	131
4.3841E -02	2.5119E 00	8.83928 00	1.81776-01	4.61148-01	141
5.51926-02	3.1423E 00	5,7193E 00	2.06726-01	5,2443E-01	151
6.9483E-02	3.98118 00	3.49658 00	2.31676-01	5.87724-01	191
8.7473E-02	5.0119E CO	2.0182E.00	2-55096-01	6.47146-01	171
1.10126 -01	6.30968 00	1.13758 00	2.7620E-01	7.0068E-01	181
				·····	
1.39648-01	7.94338 00	6.47488-01	2.95078-01	7.48566-01	191
		3.8491E-01		7.9250E=01	
1.7453E-01	1-00025-01		3-12395-01		201
5.61806-01	1.50006 01	1.50278-01	3.4089E-01	8.6460E-01	206
3.4907E - OL	2.00004 01	6.35596-02	3.56948-01	0.0555F-0T	511
4.3633E-01	2.50008 01	3.1782E-02	3.6633E-01	9.29358-01	_216
5.2340E -01	3.0000E 01	1.78426-02	3.72346-01	9.44565-01	221
6.1086E-01	3.5000E 01	1.10428-02	3.76468-01	9.5504E-01	226
6.98136-01	4.0000E 01	7.3313E-03	3.79468-01	9.62646-01	231
7.4540E-01	4.5000E 01	5.32948-03	3.81765-01	9.68486-01	236
A. 7266E-01	5-0000E 01	3.99686-03	3.83636-01	9.73228-01	241
9.59936-01	5.5000F 01	2.83496-03	B-8510E-01		246
1.7472E 70	6.00006 01	2.06306-03	3.86228-01	9.7396E-01	231
	6.50006 01	1.60566-03	3.87108-01	9.82036-01	256
1.13456 00			3.47936-01	9.83886+01	261
1.22175 00	7.0000E 01	1.29145-03			
1.3090E 0U	7.5000# 01	1.06886-03	3.8844E-01	9.85438-01	599
1.39638 00	A.0000E 01	9.05818-04	3.88976-01	9.86778-01	271
1.4835E 00	P.5000E 01	7.86615-04	3.89438-01	9.87938-01	276
1.570FE 00	6.0000E 01	7.00768-04	3.89836-01	A 9 8 8 8 6 E - O I	291
1.65ALE 00	9,50006 01	A.4002E-04	3.90206-01	9.89896-01	586
1.74538 00	1.00006 02	3.93826-04	3.90536-01	9.9074E-01	241
1.83265 00	1.05006 02	5.5720E-04	3.9084E-01	9.915ZE-01	296
1.91998 00	1.1000E 02	5.32768-04	3.91136-01	9.92248-01	301
2.0071E 00	1.1500E 02	5.2417E-04	3.91396-01	9.9291E-01	306
2.0944E 00	1.2000# 02	5.3440E-04	3.91656 -01	9.9256E-01	311
		5.54336-04	3.91908-01	9.9420E-01	316
2.18178 00					
2.3562E 00	121/0/05 1/6	5.7419E-04	3 9215E-01	9-94526-01	326
	1.3500E 02	5.93A3E-04	3.92386-01	9.95426-01	
2.4435E 00	1.4000E 02	6.1339E-04	3.92606-01	9.95998-01	331
2.5307E 00	1,4500E 02	6.5962E-04	3.92825-01	9.46525-01	334
3.6180E 00	1.50006 02	7.32086-04	3.53056-01	9.97046-01	341
2.7053E 00	1.55008 02	9.41216-04	3.9322E-01	9.97546-01	346
2.79258 00	1.60000# 02	1.0379E-03	3.934][:::0]	9,99046-01	251
2 A7SAE OU	1.6500E 02	1.55998-03	3.9362E-01	9.98556-01	356
2.9671E 00	1.7000# 02	2.8940E-03	3.93866-01	9.9918E-01	36).
3.0543E 00	1.7500E 02	3.6128E-03	3.94106-01	9.09776-01	366
3.141AE 00	A T I J V V L UE	3 F393E-03	3.97 TEF-01	1.00000 00	- 571

Figure D-105. Volume scattering function (sheet 3 of 3).

Figure D-106. Volume scattering function (sheet 1 of 3).

٠,		,	•	DATA REAL	S IN	7.1		, v.)		ITERATE		હું મુંગીય
		ANGL	E	neg)		GMA		STR=0		DEG)	SIG	MA
	1.	0.1	750)	9.90	300		Q	0.1750		9.717	4E_01
	- 2	0.3	100)	3.1	3008	01	0	0.3500		3,266	5E 01
	3		1000			OOE		0	0.7000		1.099	4E 01.
	ــهـــ		1.00			والفو	_		10.00	·		6E-01
	5		.00			33E-		Ö	15.00		4.382	
	A 7		.00			69E-		0	20.00		2.026	
****	-6		00			8 2E-		- O	30.00			0E=02
	9		.00			10E-		ŏ	40.00		2.981	
	10		.00			456		Ö	50.00	. '	1.066	
	11		0.00			228-		()	60.00		9.332	
	12				5.76	686-	-04	ö	70.00		5.766	
	12	nr.	بريت		4.40	LAE.	04	n	90.00		4.404	
	14		ان. ۱			486-	_	Ο.	90.00	. '	3.724	8E-04
	15		0.0			976-		Q	100.0		3.449	
	عب		ومق			ZOE		<u> </u>			3.327	
	17		0.0			386-		Ö	120.0		3.383	
	18		0.0			186-		0	130.0		3.681	
	20		0.0			42E-		0	150.0		4.564	
	21		0.0		6.05			ŏ	160.0		4.058	
	22		0.0			375-		ō	170.0		E 0 43	
	23							1	180.0		8.945	3E =04
		ALPHA:					L PHA .	0.444			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		-		0975		A/A	L PHA=	0.556				•
		A#	0.	1220	•		B/S=	0.025	:	•		2
	GO	RRECTE) AL	PHA		CORR	ECTIO	1=0.002				
		ALPHA:	0.	2210		5/6	LPHA=	0.441				
				0975		AIA	LPHA-	0.559				
		A=	0.	1235			B/S=	0.025				Į.
		SIGMA	ī.	O DEGREES	;) •		23A.4	*******	···········		······	
				1 DEGREES			174.4					
				MILLIRADI Li DEGREE		1	.95696	<u>572</u>	NOR M	AL IZED=	2.0079	5F=02
,				•		_			110-11-11			
	THE	TA++2 B	AR_	0.106	1	RA	DIANS+	72			·	

Figure D-106. Volume scattering function (sheet 2 of 3).

ANGLETRAD	2207 STA.CAT#: ANGLE(DEG)				
MINIOUS INNU P		\$1GMA	INTEGRAL	NORM. INTEGRAL	
1.7453E-03	1.0000E-01	1.7437E 02	1.95696-03	2.0080E+02	1
					
					21
			• • • • • • •		31
					41
					51
					6)
8.74746-03					71
1.10128-02	4.3096E-01	1.2943E 01	1.42758-02		81
1.38648-02	7.9433E-01	9.0609E 00	1.66638-02	1.70985-01	91
1.14538-02	1.0000E 00	6.5451E UU	1.4355#-02	1.98598-01	101
2.19726-02	1.2589E 00	4.82838 00	2.24738-02	2.30596-01	111
2.76626-02	1.5849E 00	3.57056 00	2.61338-02	2.48148-01	121
3.48248-12	1.49536 00	5.0512F 00	3.04126-02	3.12046=01	131
4.38412-02	2.51198 00	1.8674E 00	3.53156-02	3.62366-01	141
5.4192:-02	3.1623E 00	1.27268 00	4.07356-02	4.17965-01	151
6.9483E-02	3.9811E 00	8.2733E-01	4.64426-02	4.76526-01	161
F.7473E-02	5.01198 00	5.2093E-01	5.2221E-02	5.35838-01	171
1.1012E -01	6.30964 00	3.2110E-01	5.79196-02	5.9429E-01	181
1-34848-01	7.94338 00	1.0583E-01	6.34478-02	6.5101E=01	191
1.7453E -C1	1.00004 01	1.19446-01	6.87766-02	7.05694-01	201
					206
					211
					516
					221
					226
					231
					236
					241
					246
					251 256
					261
					266
					276
					281
					286
					291
					296
					301
					306
		3.38388-04			
2.1817E 00	1.25008 02	3.51546-04	9.6218E-02	9.37276-01	311
2.26808 00	1.3000E 02	3.6F18E-04	9.6375E-02	9.8887E-01	321
2.35426 00	1.3500E 02	3.8689E-04	9.05278-02	9.90438-01	326
2.4435E CO	1.4000E 02	4.0861E-04	9.6674E-02	9.9194E-01	331
2.5307E 00	1.4500E 02	4.24446-04	9.6813E-02	9.9336E-01	336
2.6180E 00	1.5000E 02	4.5542E-04	9.69426-02	9.94676-01	341
		5.2074E-04		9.9595E-U1	340
2.7925E 00	1.6000E 02	6.05856-04	4.7182E-02	9.97156-01	351
	1.6500E 02	6.98696-04			356
					361
3.0543E 00	1.75008 02	8.8272E-04	9.743BE-02	9.9978 E-0 1	366
3.1416E 00	1.8000F 02	8.9453E-04	9.74598-02	1.00006.00	371
	2.1972E-03 2.1972E-03 3.4824E-03 3.4824E-03 3.4824E-03 5.5192E-03 6.9483E-02 1.1014E-02 2.1672E-02 2.1672E-02 2.1672E-02 2.1672E-02 2.1672E-02 2.1672E-02 2.1672E-02 2.1672E-02 2.1672E-02 2.1672E-02 2.1672E-02 2.1672E-01 1.7453E-01 2.0944E-02 2.0944E-02 2.0944E-02 2.0945E-02 2.0945E-03 2.0945	2.1972E=03 2.7662E=03 3.4824E=03 3.4824E=03 3.4824E=03 5.5192E=03 3.1623E=01 5.5192E=03 3.9811E=01 6.9483E=03 3.9811E=01 1.1012E=02 4.33096E=01 1.3664E=02 1.3664E=02 1.3684E=02 1.3684E=01 1.3684E=01 1.3684E=01 1.3684E=01 1.3684E=01 1.3686E=01 1.3686E=01 1.3680E=01 2.3680E=00 1.3680E=02 2.3680E=00 1.3680E=02 2.3680E=00 1.3680E=02 2.3680E=00 1.3680E=02 2.3680E=00 1.3600E=02 2.3680E=00 1.3600E=02 2.3680E=00 1.3600E=02 2.3680E=00 1.5600E=02	2.1972E=03	2.1972E-03 1.2989E-01 1.4631E 02 2.8516E-03 3.4824E-03 3.9953E-01 3.8337E 01 5.3102E-03 3.1623E-01 3.8337E 01 3.8771E-03 5.5192E-03 3.1623E-01 3.8337E 01 3.8771E-03 5.5192E-03 3.1623E-01 2.6695E 01 1.0152E-02 6.3096E-01 1.4588E 01 1.2112E-02 6.3096E-01 1.4588E 01 1.4212E-02 6.3096E-01 1.4588E 01 1.4212E-02 1.3096E-01 1.4588E 01 1.4212E-02 1.2589E 00 2.4473E-02 2.1972E-02 1.2589E 00 3.5795E 00 2.4473E-02 2.5119E 00 3.5795E 00 2.4473E-02 2.5119E 00 3.5795E 00 3.5315E-02 3.1623E 00 3.5795E 00 3.5315E-02 3.1623E 00 3.2110E-01 3.6442E-02 3.9811E 00 3.2726E 00 4.8735E-02 3.1623E 00 3.2110E-01 3.7919E-02 1.1012E-01 3.1026E-01 3.1026E-01 3.8345E-02 3.9815E 00 3.2110E-01 3.7919E-02 3.1026E-01 3.1026E-01 3.8345E-02 3.8345E-02 3.8345E-01 3.8000E 01 4.8623E-02 3.8346E-01 3.0000E 01 4.8623E-02 3.3340E-01 3.0000E 01 4.8623E-03 3.7640B-02 3.7286E-01 3.0000E 01 4.8623E-03 3.7640B-02 3.7286E-01 3.0000E 01 3.7286E-03 3.7640B-02 3.738E-03 3.7640B-02 3.738E-03 3.7483E-03 3.7640B-03 3.7493E-03 3.7640B-03 3.7786C-03 3.7786C-03 3.7786B-04 3.	2.1972E-03 1.2889E-01 1.4781E 02 2.8818E-03 2.9260E-02 2.7682E-03 1.5849E-01 1.1245E 02 3.9909E-03 4.0949E-02 3.4824E-03 1.5849E-01 7.9069E 01 5.3102E-03 5.4467E-02 5.5192E-03 3.622E-01 3.9307E 01 6.7682E-03 5.4467E-02 6.5948E-03 2.5119E-01 3.8337E 01 6.777E-03 5.9535E-02 6.9483E-03 3.9811E-01 2.6695E 01 1.0152E-02 1.0417E-01 1.4538E 01 1.212E-02 1.2227E-03 1.1012E-01 1.4538E 01 1.212E-02 1.2227E-03 1.3849E 01 1.4535E-02 1.2427E-01 1.3846E-02 7.4633E-01 9.0409E 00 1.6658E-02 1.7098E-01 1.3846E-02 7.4633E-01 9.0409E 00 1.6658E-02 1.7098E-01 1.3846E-02 7.4633E-01 9.0409E 00 1.6658E-02 1.7098E-01 1.7785E-02 1.2589E 00 4.8203E 00 2.2473E-02 2.3059E-01 2.7662E-02 1.2589E 00 4.8203E 00 2.2473E-02 2.3059E-01 3.623E-02 1.3849E 00 3.5783E 00 2.2473E-02 3.059E-01 3.6472E-02 1.3849E 00 3.5783E 00 2.2473E-02 3.6386E-01 3.636E-01 3.6472E-02 1.5859E 00 4.8203E 00 2.2473E-02 3.6386E-01 3.6472E-02 1.5859E 00 4.8203E 00 3.6436E-02 3.6386E-01 3.6472E-02 1.5859E 00 4.8203E-01 3.6472E-02 3.6486E-02 3.6486E-02 3.5783E-01 3.6472E-02 3.6486E-02 3.6486E-02 3.6486E-01 3.6486E-02 3.6486E-02 3.6486E-01 3.6486E-02 3.6486E-01 3.6486E-02 3.6486E-01 3.6486E-02 3.6486E-01 3.6486E-02 3.6486E-01 3.6486E-02 3.6486E-02 3.6486E-01 3.6486E-02 3.6486E-02 3.6486E-01 3.6486E-02 3.6486E-02 3.6486E-01 3.6486E-01 3.6486E-02 3.6486E-02 3.6486E-01 3.6486E-01 3.6486E-02 3.6486E-01 3.6486E-01 3.6486E-01 3.6486E-02 3.6486E-02 3.6486E-01 3.6486E-01 3.6486E-02 3.6486E-02 3.6486E-01 3.6486E-01 3.6486E-02 3.6486E-02 3.6486E-01 3.6486E-01 3.6486E-02 3.6486E-02 3.6486E-01 3.6486E

Figure D-106. Volume scattering function (sheet 3 of 3).

Figure D-107. Volume scattering function (sheet 1 of 3).

		TA READ IN		ITERAT	ED_DATA
	ANGLE IDE	(G) \$1G 4A	HAND=1	77 CEG (DEG)	516.4
1	0.1750	2.05004 02	0	0.1750	2.1016E 0
2	0.3500	7.4000E 01	0	0.3500	7.0396E ()
3	0.7000	2.30008 01	0	0.7000	2.35808 0
٠.	10.00	2-14425-11			2-10-25-0
5	15.00	3.67525-02	Ų	15.00	3.67326-01
7	20.00	4.14298-02 1.26638-07	0	20.00	4.14295-0
	30.00	1.1657E=02	0	30.00	1.16575-(
9	40.00	3.14856-03	Ö	40.00	5.04 50m0
10.	50.00	2.49635-03	ő	50.00	2.69-7
11	50.00	1.324.6-11	v	50,00	1.720 4- 1
13	70.00	8.46148-04	13	73.00	~.4u1-#=0.
12	40.00	A - CA = A = O =			5.06 \AB=0
14	90.400	4.7399E-U4	0	90.00	4.73993-04
15	100.0	4.21028-04	0	100.0	4.21028-3-
16 17	120.0	3 9853R+06 4 0156=04	<u></u>	120.0	<u> </u>
1.9	130.0	4.19638=04	ŏ	130.0	4.1 5.5+04 4.1 5.5+04
10	160.5	4.49438=06	ŏ	1.33.0	
20	150.0	4.83056-04	Ö	150.0	4.739#8=04
21	160.0	6.35464-04	Ó	160.0	n. 554654
22 23	170.0	9.44518-04		173.0	<u> </u>
23			1	1"0.0	1.17184-03
	ALPHa C.25				
	S# 0.18				
	A= 0.11	- ZII	0.015		
Can	RECTED ALPH	ia , comprecti	ា ១៣៧ ° ៧ <i>០ង</i>		
	ALPPAR 0.30		0.618		
	S= 0.18				
	A= 0.11	.61 8/5	- 0.015		
	51G-A1 C.O				
	SIGNAL C.1 SLOPEL 3 //1		1.573		
	S UP TO 0.1		3E-03	1175 'AL 1750'	2.279233-02
	U - GF 137 M 1 2			1.00	- 64611655

Figure D-107. Volume scattering function (sheet 2 of 3).

		20-SEA H2U 21)			
ANGLE (RAD)	ANGLE (LEG)	SIGMA		NORM. INTEGRA	L .
1.7453F -(13	1,0000F-01	3.7711E 02	4.23236-03	2.2792E-02	1
7.1972E - 13	1.25892-01	3.164ZE 02	6.16738-03	3.32138-02	11
2.76628-05	1.58498-01	2.4321E 02	8.63126-03	4.6482E-02	21
3.4824E-03	1.94534-01	1.7087E 02	1.14848-02	6.18456-02	31
4.3841E-03	S-21.10E-01	1.1495E 05	1.46326-02	7.8799E-02	41
5.5192E-03	3.16236-01	8.2619E 01	1.41024-05	9.74856-02	51
A.9483E -03	3.9811E-01	3.7450E 01	2.19268-02	1.18098-01	61
A . 7474E -03	5.01198-01	3.994AE ()	5.0140E-05	1.40776-01	71
1.1012E - 02	6.3096E-01	2.77786 01	3.:17846-07	1.65746-01	81
1.38646-02	7.94335-01	1.9397E 01	3.50066-02	1.93365-01	91
1.74538-02	1.00008 00	1.3877E UI	4.16426-02	2.2426E-01	101
2.19726-02	1.2589E OU	1.0074E 01	4.82038-02	2.59548-01	111
2.76628-02	1.5849E 00	7.31385 00	5.5761E-02	3.00296-01	121
3.47246-02	1.99555 00	5.23332 00	6.44038-07	3.4503E-01	131
4.3841E-02	2.51196 00	3.6373E 00	7.40706-02	3.98898-01	141
5.51926-02	3.16236 00	2.4201E 00	8.4697E-02	4.55048=01	191
6.94836-02	3.78116 00	1.53906 00	9.5229E-02	5.1284E-01	161
8.7473E-02	5.01198 00	9.51346-01	1.05888-01	5.70188-01	171
1.10126-01	6.3094E 00	5.79326-01	1.1621E-01	6.2585E-01	iei
1.30446-()	94336 00	3.52194-01	1.24166-01	6.79428-01	[4]
1.74538-01	1.0000# 01	2.16626-01	1.35786-01	7.31208-01	201
2.61908-01	1.50000 01	8.47526+02	1.4146-01	8 17714-01	206
3.49076-01	2.00008 01	4-1429E-02	1.61718-01	8.70858-01	211
4.36336-01	2.5000E 01	1.86638-02	1.67548-01	9.02246-01	216
5.2360E-01	3.00008 01	1.1657E-02	1.7125E-01	9.22256-01	221
6.10466-01	3.80008 01	7.49726-03	1.74008-01	9.37058-1	226
			1.76058-01	9.48106-01	
A.9813E-01		5.04856-03			231
7.85405-01	4.5000 01	3.50216-03	1.7701H=01	9-26406-01	236
7.7266E-01	2.0000F 01	2.49632-03	1.78816-01	9.62938-01	241
4.59938-01	5.50006 01	1.79146-03	1.79738-01	9.6790E-01	246
1.04725 00	e-uccos of	1.32506-03	1.80446-01	9.71726-01	591
1.13458 00	6.50004 01	1.03956-03	1.81013-01	9.74796-01	256
1.2217E 00	7.00003 01	9.46146-04	1.61488-01	9.77345-01	261
1.30005 00	7.50006 01	7.07766-04	1.11196-01	9,79423-01	266
1.39638 00	8.0000E 01	6.0486E-04	1.82248-01	9.51406-01	271
1.48358 00	8.50008 01	5.27776-04	1.92556-01	9-4306E-U1	276
1.47086 00	9,00006 01	4.7399F-04	1.4282E-01	9.84525-01	281
1.45718 00	6.300CE 01	4.41126-04	(4307E-01	9.45.8E-01	280
1.74538 00	1.0000: 02	4.21026-04	1.03306-01	v. 47176-01	79 l
1.97264 00	1.0800- 07	6.0844H-(14	1.44836-01	0 20232-11	254
1-0199E 00	1.10000 02	3.98536-04	1.63736-01	9.89452-01	30 I
2.00716 00	1.15000 02	3.97646-04	1.83936-01	4.9054E-01	306
7.0944E 00	1.20006 03	4.01566-04	1.9413E-01	9.0158c-01	311
7.19178 00	1.25004 02	4.03306-04	1.54526-01	9.92592-01	316
2.2689E 00	1.3000€ 02	4.18482-04	1.44496-01	9.93566-01	321
2.3462£ 00	1.35006 03	4,33166-04	1.8467E=01	9,0846E=01	326
2.44352 00	1.40008 02	4.48636-04	1.84036-01	9.0536E=01	331
2.53078 00	1.45006 02	4.64066~04	1.8498E-01	4.96196-01	33ი
2.6180E 00	1.50005 02	4.8395E-04	1.85126-01	9.9693E-01	341
2.70936 00	1.99008 02	5.46024-04	1.85256-01	3.97636-01	340
2.79258 00	1.6000E 02	6.55466-04	1.8537E-01	9.9A30E-01	551
2.97988 10	L.6300: 02	7-93235-04	1.35496-01	0.000-6-01	356
2.96715 00	1.7000E 02	9.45511-04	1.85596-01	9. 49494-01	361
3.05435 00	1.7500E 02	1.0503E-03	1.35676-01	9.99875-01	366
3 6 0 3 7 3 4 4 4 4					

Figure D-107. Volume scattering function (sheet 3 of 3).

衛生の表別の神神をかれば、他のとのは、中のとは、中のというないが、からなって、本のでもなりできた。

Figure D-108. Volume scattering function (sheet 1 of 3).

	DATAR		, , , _ , _ ,		ATED DATA
	ANGLE (DEG)		STR = O	ANGLE (DEG)	\$1GHA
	0.1750	3.5500E 02	Ö	0.1750	3.3872E 0
5	0.3500	1.11006 05	0	0.3500	1.21936 0
3	0.7000	4.6000E 01	ø	0.7000	4.38918 D
<u>_</u> _	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
5	15.00	1.71826-01	0	15.00	1.71826-0
. ń	20.00 25.00	7.01468-02 3.50756-02	0	20.00	7.01+65-0 3.50755-0
A	30.00	1.77768-02	Ö	30.00	1.77766-0
•	40.00	8.27948-03	0	40.00	8.27948-0
10	50.00	4-1063E=03	Ŭ.	50.00	4.1063E=0
11	50.0V	2,25524-03	ð	00.00	2.25526
12	70.00	1.40038-03	0	70.00	1.4003840)
13	60.00 90.00	9.0603E-04 T.0219E-04	n 0	80.00 90.00	9.06038-06 7.02198-06
15	100.0	5.73128-04	0	100.0	5.73128-0
ÌÁ	110.0	5.34248-04	ō	110.0	5.34248-04
_يت	120.0	5.11665-06		120-0	10 E 30 E 30
ŢĄ	130.0	5.3022E-04	0	130.0	4.30228-04
10	140.0	5.6011E-04	0	140.0	4.60118-04
20	150.0 150.0	8.7459E-04		150.0 160.J	<u> </u>
25	170.0	1.38048-03	Ö	170.0	1.33046-01
5 8			<u> </u>	180.0	1.43408-01
	41.PHA= 0.4599	S/ALPHA=	0.726		
	5- 11.3339	A/ALPHA=	0.274		
	A= 0.1260	±/\$=	0.011		
COP	RECTED ALPHA	CORFECTIO	0.005		
	ALPHAH C.4648	SZALPHAH	0.718		
	S= C.339 A= 0.1309	A/ALPHA=	0.011		·
	SIGNAL O.O. DEGRE	ES) = 775.9			
	SIGMAL U.1 DEGRE	ES) = 582.6			
	SLOPE(3 MILLIRA 5 UP TO 0.1 DEGR		474	NOBHAI 174	D= 1.931738~02
	Manager of the Manage	MANUAL MATAYER			A
THET	A	834E-02 RADIANS	W 2		

Figure D-108. Volume scattering function (sheet 2 of 3).

		ਨ ਜਾਵਨ ਹਾਰਨ 1	AN		
320 27JUL75 2	223 STA GAIDA	IO - SEA HEC I	INTEGRAL	NORM. INTEGRAL	•
ANGLE (RAD)	ANGLE(DEG) 1.0000E-01	5.8254E 02	4.4500E-03	1.93176-02	1
1.7453E-03	1.2509E-01	4.9567E 02	- 4 1 3 4 7 F - 0 5	2.83318-02	11
5-10/25-03	1.58498-01	3.86356 02	1.33566-02	4.00016-02	21
2.76626-03	1.99536-01	2.79178 02	1.79646-02	5.38006-02	- 31
3.4A24E-03	2.5119 8-01	1.48826 02	2.31718-02	8.4342E-05	
4.3A41E-03	3.14236-01	1.4160E 02	2.90486-02	8.6997E-02	51
5.5192E-03	3.48118-01	1.00858 02	3.56828-02	1.06876-01	61
6.94 A 3E -03	- 5. 6114E-61	7.18218 01	4.31708-02	1.50545-01	71
8.7474E-03 1.1012E-02	6.3096E-01	5.1150E 01	5.16228-02	1.54608-01	87
1.38645-02	7.9433E-01	3.64195 01	6.11618-02	1.83178-01	91
1.74536-02	1.00000 00	1.5899E 01	1-10165-05	5.1234E-01	101
2.19724-02	1.2589E 00	1.8380E 01	R.40338-02	2.51678-01	111
2.76628-02	1.58498 00	1.30076 01	9.76391-02	2.92428-01	121
3.48248-02	1.99335 00	9.16948 00	1.15445=01	3.38035-01	131
4.38418-02	2.51198 00	6.43428 00	1.29848-01	3.8888E-01	141
5.51924-02	3.1623E 00	4.49016 00	1.48678-01	4,45768-01	151 -
7.9483E-02	3.98118 00	2.96418 00	1.64095-07	5.06348-01	161
H.74738-02	5.0119E 00	1.8136E 00	1.89528-01	5.67618-01	171
1.10128-01	6.30968 00	1.0744E 00	2.08978-01	6.25848-01	181
1.39648-01	7.9433E 00	6.43676-01	2.27246-01	6.80578-01	191
1.74538 -01	1.00006 01	4.07386-01	2.44986-01	7.33708-01	201
2.61808-01	1.5000E OL	1.71828-01	2.76868-01	8.2018E-01	- 200
3.49078-01	10 10000 5	7.01468-02	2.9481E-01		
4.36336-01	2.5000E 01	3.50756-02	3.0516H-01		216
5.2360E-01	3.0000E 01	1.77755-02	3.11498-01	9-12648-01	221
6.10866-01	3.5000E 01	1.15148-02	3.15706-01		231
6.9A13E-01	4.00008 01	6.27948-03	3.19018-01	9.55438-01	236
7,85408-01	4.50008 01	5.74415-03	1.21578-01	9.6307E-01	241
8.7266E-01	5.0000E 01	4.10635-03	3.23536-0		246
9.59938-01	5.5000E 01	2.99826-03	3.25066-01		251
1.0472E 00	6.0000# 01	2.21528-03	3.2626#-0		256
1.13458 00	5.5000# 01	1.73832-03	3.27724-01		261
1.22176 00	7.0000# 01	1.4003E-07	3.28024-01 3.2867E-01		266
1,30968 00	7.50000 01	1.11205-03	- 3.29218-0		271
1.39638 00	N-0000E 01	9.0603E-04	3.29678-01		276
1.48358 00	A.5000E 01	7.86078-04	3.3007E-0		2 - 1
1.57088 00	9.00008 01	7.02198-04	3 30445-0		2.5
1.65918 00	9.5000E 01	5.7312E-04	3.30766-0		291
1.74538 00	1.00008 02	5.42198-04	3.31068-0	•	396
1.83268 00	1.05004 02	5.34248-04	3.31346-0		361
1.91998 00	1.1000E 02	5.19438-04	3.3161E-0	• : : : - : : : :	306
2.00718 00	1.20008 02	5.1146E-04	3.3104E-0	9,93908-01	311
2.0944E 00	1.5300F US	3.1753E-04	3.32108-0	1 9.9451E-01	316
2.1817E 00	1.30008 02	5.30228-04	3.32328-0	1 9.95296-01	321
Manager and the second	1.35006 02	5.4409E-04	3.32545-1)	1 9.95948-01	326
2.3567E 00 2.4435E 00	1.4000 02	3.60118-04	3.32756-0	1 9.96558-01	
2.53078 00	1.4500E 02	5.85906-04	3.32946-0	1 9.97128-01	336
2.61 ADE 00	1.50000 02	6.3165E-04	3.33116-0	1 9.97665-41	341
2.70532 00	1.55008 02	7.22958-04	3.33286-0	1 9.9816E-01	340
2.79256 00	1.60005 02	8.74598-04	3.33456-0	1 9.98668-01	351
2.8798 <u>6 00</u>	1.65006 02	1.09346-03	3,33618-0	1 9,99148-01	356
2.96718 00	1.70008 02	1.38048-01	3.33758-0		301
3.05438 00	1.75008 02	1.55825-03	3.33862-0		366
3.14168 00	1.80004 02	1.5949E~03	3.33906-0	1 1.00000 00	371

Figure D-108. Volume scattering function (sheet 3 of 3).

Figure D-109. Volume scattering function (sheet 1 of 3).

		DATA R	PAU IN			ITERAT	ED DATA
	ANGL	E (DFG)	SIGHA	• • • •	TRHO	ANGLE (DEG)	SIGNA
1	0-1	750	4.22006		NDE1	0.1750	4.1469E O
ż		500	1.46008		ā	0.3500	1.41498 0
		000	6-4000E			0.7000	6 2H025 0
4		•00	4.14326-		0	10.00	4.14326-0
•		•00	1.66526-		0	15.00	1.66528-01
<u> </u>		-00	<u> </u>			<u> </u>	<u> </u>
7		•00	3.24926		0	25.00	3.24826-07
-		•00	1.79615- H.0825E-		n n	30.00 40.00	1.79618-02 8.02288-03
10		.00	4.28146-		()	5() , (10)	4.21144.0
ii		00	2.24748-		Ğ	60.00	2.26744-02
ــــــــــــــــــــــــــــــــــــــ		4111	1.19175	<u> </u>		70.00	1.34136-01
13		.00	8.95496-		O .	80.00	7.95496-04
14		•00	-3A008.		0	90.00	6.80088-04
14		<u> </u>	<u> </u>		- 0		<u>5-74754=04</u>
17		0.0 4.0	5.32356- 5.16286-	-	0	110.0 120.0	5.32356-04
10		0.0	5 - 3 A Q O F m			130.0	5.16289-70 3.30000-00
19		0.0	5.67338-		0	140.0	5.47335-04
ŽÖ		0.0	6.51898-	04	Ö	150.0	6.51898-04
21		0.0	1.10776=			140.0	1.19278=61
27	17	0 • Ø	5.52P06-	0.3	0	170.0	3.52804-02
23					1	140.0	4.97548-03
		0.4743		LPHA=	0.845		
	-	0.4006	A/A	LPHAR	0.155		
	Au	0.0737		_1/5x_	0.011		
ជូបន	PECTED	YEBHA	CORR	#CT1U%	au.006		
	AL PHA =	().4799	S/A	LPHAM	0.435		
		0.4006	A/4	LPHA=	0.165		
	A=	U-0793		P/5=	0.011		
		e.o paas		376.4			
		O. J. OEGRI		479.1			
		3 HILLIRA			361		
	3 UP TI	D O.1 DEGR	1005 = 7	. 39196	-03	NORMAL 12FD	: 1.84507E-02

Figure D-109. Volume scattering function (sheet 2 of 3),

520 223047 ANGLE (330		120 - SEA H20 SIGMA	INTEGRAL	NUMM. INTEGRAL	
1.74536-0		6.780RE 02	7.3919E-03	1.84516-02	<u> </u>
3.1978E-0		5.8637E 02	1.04536-05	2.72654-02	
2.76626-0		4.70008 03	1.55656-02	3.89028-02	21
3,49246-0		3.46916 02	2.1738E-02	5.30106-02	31
4.38418-0		2.5361E 05	2.7745E-02	6.93782-02	41
5.51926-0	3 3.16236-01	1.85408 02	3.53936-02	8.83428-02	51
A.9483E-()	3 3.9611 E-01	1.35548 02	4.41966-02	1.10316-01	61
P. 7474E-0	30-30110F-01	4.4083E 01	5.4395E-02	1.43774-11	71
1.10126-0	2 4.30966-01	7.24368 01	6.62126-03	1.65274-01	# 1
1.34648~0	2 7.94338-01	5.2862E 01	7.95998-02	1.00498-01_	41
1.74536-0	2 1.0000 00	3.0158E 01	9.56498-07	2.30735-01	101
2.19724-0	2 1.25898 00	2.71538 01	1.13548-01	2-83408-01	111
2.76A2E -0		1.9003E 01	1.33558-01	3.33356-01	121
3.4 H 2 4 E =()		1.30498 01	1.55541-01	5.1 223-01	131
4.38416-0		8.7709E 00	1.79218-01	4.47316-01	141
5.51928-0		5.74778 00	2.04136-01	5.09516=01	141
4.74936-0		3.37116 00	3 24446-01	3.727 E-01	161
7.7473E-0		2-08048 00	2.53486-01	6.32098=01	171
1.10128-0		1.1/298.00	2.75326-01	6.67228=01	181
1.3HA48 -C		5 41 43 5 = O1	2.44()68-01	7.304-5-01	141
1.74536-0		4.14%/26=01	3.13488-01	7.82675-01	201
2.6160E-0		1.44528=01	3.444446401	2.40734-01	500
3.49078-0		6.51456+02	3.61456-01	9.03446-01	- \$18
				9.2741E=G1	
4.36338-0		3-24926-02	3.71556-01	9.42536-01	516
3 - 3 3 6 0 E - O	1 1.0000A 01	1.79414-02	3.77638-01		-337
6-10868-0		1.16578-02	3.51770-01	9.53156-01	715
A - 9 / 1 3 E - 0		8.0A25E-03	3.85108-01	9.51245-01	231
7.35400-0		5.40475-02	3.07642-01	5.A7#A =) }	230
8 - 72 6 6 E = 0		4.2HIGH-03	3.84625-01	7.7260E-01	341
9.59936-0		3.08606-03	3.01248-01	4.76556-01	245
1.04728 0		2.30744-03	3.93445-01	7.79415-01	-377
1.13486 0		1.75246-03	3.03436-01	4.92 (28-0)	350
	0 7.00008 01	1.38134-08	3.94824-01	可以这些个内容的作 集	201
	C 7-30008 01	1.10304-01	3.9400 -01	G. Stratent	75.15
1.30436 0		8.95498-04	3.95408-01	9.86946-01	271
1.48358 0		7.63032-04	3.95846.01	4.80746-01	276
1.5706% 0		6.800HE-OL	7.9424E-01	4.4403E-01	<u> </u>
		5.169AE-U"	3.06306-01	A . 3. [Family	5. c
1.74576 0		5.74746-04	3.94926-01	<u>+.007726-11</u>	5 / 7
1,33261 0	التكامين والمتحدد والمتحدد والمتحدد والمتحدد	5.47745-04	3.97218-01	0.01. "#411	7117
1.91991		5.32356-04	3.97506-01	4.921 0-01	₹ (7.1
2.3071E U		5.19676-04	3.97766-01	3.451.464.01	100
2.09445 0		3.16285-04	3.0R028-01	2.93.175-01	311
रेगार्य त		5.24596-04	3.44258+01	4.94 (5841)	310
	0 1.30005 02	5.36906=04	3.60465-01	9。44.5当是一门	441
2.3542L C	0 1.35000 02	5.51208-04	3.00708-01	9.08193-01	326
2.46758	0 1.4000E 02	5.67338-04	3.98916-01	6,5571E-01	331
2.53076 0	0 1.450QE 02	5.97566-04	3,99108-01	9.75198-01	330
2.51806_0		6.51898-04	3.09298-01	9. PAASE-01	341
2.70536 0		8.15434-04	3.09478-01	4.971 E-01	300
2.7925E 0	0 1.6000# 02	1.19276-03	3.9968E-01	5.9761E-01	351
2 P7983 A	0 1.45000 02	1.93428-03	3.9142#-01	6.00736=/)[354
2.96713 0	1.7000E 02	3.52809-03	4.0023E-01	9.98946-01	361
3.05436 0		4.58555-05	4.0052E-01	9.99718-01	366
3.1416E 0		4.8754E-03	4.0063E-01	1.0000# 00	371
रेन्य में होति व					

Figure D-109. Volume scattering function (sheet 3 of 3).

Figure D-110. Volume scattering function (sheet 1 of 3).

	DATA RE				ATED DATA
4	Alighe (DES)		TREO ND=1	AMOLE (DEG)	\$1647
_1	0.1750	4.1000# 02	0	0.1750	4.0134E O
	0.3500	1.5200E 02	0	0.3500	1.5857H 0
3	0.7000	6.4000E Q1	٥	0.7000	6.26518 0
<u> </u>	10.00	3.6942E=01	<u> </u>	10.00	3.8942E-0
5	15.00	1.47346-01	O.	15.00	1.4734E-1)
6	20.00	6.4332E-02	()	20.00	6.43326-0
	25.00	3.2636E-02		25.00	3.25366-0
A	30.00	1.88526-02	O	30.00	1.80526-0
9	40.00	8.07416-03	0	40.00	8.07416-0
<u> 10 </u>	50.00	3.8970E-03		50.00	3-84708-0
11	60.00	2.06063-03	1)	90.00	2.00066-0
15	70.00	1.24406-03	0	70.00	1.24408-0
17	30-00	9.495-04		30-00	
14	90.00	6.40386-04	0	90.00	6.40386-0
15	100.0	5.3647E-04	0	100.0	5.3647E-0
17	120.0	5.1466E-04	0	120.0	5.14668-0
10	130.0	5.37428-04	ő	130.0	5.37428-0
1.9	140	5.52996=06	Č	163.0	5.62925.00
21)	150.0	4.34012-04)	150.0	6.3401E-0
31	160.0	7.90408-04	o	160.0	7.90-08-0
22	170.0	1.26RAEmD3	<u> </u>	17/1-0	1-24844-0
23			ı	180.0	1.45386-0
	HA# 0.6812	S/ALPHAM	0.826		
	5= 0.3976	A/ALPHA=	0.174		
	A# 0.0#36	B/\$=	0.009		
C. (1) (1) 12 12 1	TEO ALPEA	CORFECTION	•0.005		
	111/m / 45 55	S/ALPHA =	0.017		and the state of t
	S= 0.3976	A/ALPHA=	0.143		
	An 11.0540	A/S=	0.000		
	HAL D.O HEGRE				. به هنده به است مرد بیشته ه <u>کست بیاگی شد</u> ه د د
	MAL O.1 PEGRE				
	iner a mirritar		<u> 100</u>	1/35/1141 5 4 5	in a business of
SU	IP TO 0.1 DEGR	EE S. 7.0768E	-03	NUMBAL 12E	D= 1.77971E-02
THETA		74.76-02 RADIANS#			

Figure D-110. Volume scattering function (sheet 2 of 3).

-					
	2236 STA CATH		- '		
ANGLE (RAD)	AMGLE (DEG)	SIGHA	INTEGRAL	NORM. INTEGRAL	
1.7453E =03	1.000006-01	6.5080E 02	7.0768E-03	1.7797E-02	1
2.19728 =03	1.25898-01	5.64278 02	1.04716-02	2.6332E-02	11
2.76A2E -03	1.58496-01	4.5400E Q2	1.4965E-02	3.7635E-02	21
3.48248-03	1.09538-01	3.3667E 02	2.04386-02	5.13985-02	31
4.3941E-03	7.51196-01	2.4730E 02	2.6817E-02	6.74416-02	41
5.51426-03	3.16236-01	1.8165E 02	3.4244E-02	8.61196-02	51
6.94938-03	3.98116-01	1.33448 02	4,2991E-02	1.0786E-01	61
8.7474E-03	5.0) [9a-0]	9.8021E 01	5.25576-02	1.33134-01	71
1.10126 -02	A.3096E-01	7.20028 01	6.46768-02	1.62658-01	61
1.38646-02	7.94338-01	5.2872E 01	7.43175-02	1.9696E-01	91
1.74578 =02	1.0000E 00	3.8691E 01	9.41735-02	2.3683E-01	101
7 . 1 972 E -O2	1.2589E 00	2.H013E 01	1.1247E-01	2.82856-01	111
2.76625-02	1.5849E 00	1.9910E 01	1.33296-01	3.35206-01	121
3,48242-02	1.99538 00	1.3783E 01	1.56446-01	3.9341E-01	131
4.38418-02	2.51198 00	9.22158 00	1.81416-01	4.56238-01	141
5.51926-02	3.16236 00	5.9164E 00	2.07356-01	5.21486-01	isi
A.9483E-02	3.9811E 00	3.5870E 00	2.3304E-01	5.8603E-01	161
A - 74736 - 02	5.01196 00	2.0718E 00	2.5706E-01	6.4646E-01	171
11017134-02			47,7700E-01	44446541	
		1.17 PH 2 199	- 	7.01035-01	101
1.38646-01	7.94335 00	6.64766-01	2.98175-01	7.49865-01	191
1.74536-01	1.00006 01	3.89426-01	3.15858-01	7.94318-01	201
2.6140E-01	1.500000 01	1.47348-01	3.44108-01	8.6536E-01	206
3.4907E-01	2.5000E 01	6.43326-02	3-6009E-01	9.0555E-01 9.2459E-01	211
4.36336-01		3.26368-02	3.69646-01		519
5.2360E -01	3.00002 01	1.89528-02	3.75908-01	9.45326-01	221
6-10868-01	3.50005 01	1.19778-02	3.40313-01	9.5641E-01	226
6.98136-01	4.0000E 01	8.0741E-03	3 - R359E-U1	9.6466E-01	231
7.85405-01	4.5000E 01	5.5550E-03	2.8607E-01	9.70916-01	236
2.7266E-01	5.0000 01	3.8970E-03	3.6795E-01	9.7564E-01	241
Ģ • 4993∉ - ()1	5.50003 01	2.79355-03	3.40306-01	9.70258-01	246
1.04726 00	6.0000E 01	2.0606E-03	3.4050E-01	9.4204E-01	251
1.13456 00	6.5000E 01	1.57715-03	3.9137E-01	0,94.246-01	256
1.22176 00	7.0000E 01	1.2440E-03	3-4508E-01	9.8602E-01	261
1.3090E 00	7.5000E 01	1.0140E-03	3.9267E-01	9.8750E-01	266
1,39638 00	8.0000E 01	8.40556-04	3.9316E-01	9.8874E-01	271
1.48358 00	8.50002 01	7.29()56=04	\$.4B\$44-01	5.89#2E=01	276
1.570%E 00	9.00006 01	6.4038E=04	3.93975-01	9.9076E-01	2 - 1
1.6581% 00	7.5000-01	5.77506-04	3.54305-01	0,91506-01	240
1.7453E 00	1.0000E 02	5.36475-04	3.9460E-01	9.9235E-01	291
1.8326E 00	1.0500E 02	5.1173E-04	3.94886-01	9.93066-01	296
1.9199E 00	1.1000E 02	5.0387E-04	3.95146-01	9,93725-01	30 1
2.00718 00	1.15006 02	5.06733-04	3.9540E-01	9.9437E-01	306
Z.0944E 00	1.2000 : 02	5.1466E-04	3,05,55-01	9.04C0E-01	311
2.1917E 00	1.25008 02	5.2591E-04	3.0579E-01	9,95596=01	216
2.2689E 00	1.30005 02	5.3742E-04	3.96126-01	9.96175-01	321
2.35625 00	1.3500E 02	3.4968E-04	3.9534E-01	9.96736-01	326
2.4435E 00	1.40000 02	5.62998-04	3.98546-01	9.97246-01	331
2.53076 00	1.450C : 02	5.91056-04	3.96745-01	9.97736-01	336
2.6180E 00	1.5000 : 02	6.3401E-04	3.06925-01	9.08195-01	341
2.70536 00	1.55008 02	6.94596-04	3.9708E-01	9.9860E=01	346
2.7925E 00	1.60005 02	7.90406-04	3-9724E-01	9.98996-01	351
2.87988 00	1.6500E 02	9.65076-04	3.9738E -01	9.9935E-01	356
2.96715 00	1.7000 € 02	1.26466-03	3.97519-01	9.0967E-01	361
3.0543E 00	1.75008 02	1.41466-03	3.97612-01	5.000[E=0]	366
3.14162 00	1.50001 02	1.45388-03	3.57646-01	1.0000£ 0)	371
PAUSE READY	PLOTTER				

Figure D-110. Volume scattering function (sheet 3 of 3).

Figure D-111. Volume scattering function (sheet 1 of 3),

PATA N	ITERATED DATA			
ANGLE (DEG)	- •	NSTR=0	ANGLE (DEG)	SIGMA
1 0.1750	1.95008 02	. 0	0.1750	1.8476E 0
2 0.3500	6.00008 01	0	0.3500	6.68158 0
	2.5500F 01		0.7000	2-41625 0
4 10.00 5 15.00	2.16728-01 9.14536-02	0	10.00 15.00	2.1672E-01 9.1453E-01
A 20.00	3.6413E=02	ŏ	20.00	3.68138=0
7 25.00	2.2131E-02	0	25.00	2.21314-0
8 30.00	1.2389E-02	0	30.00	1.2389E-0
9 40.00	5.59764-03		40.00	5.4976E-03
10 50.00	2.57045-03	ņ	50 • 00 40 00	2.57046-03
11 60.00	1.58406-03	0	60.00 70.00	1.54408-03
13 80.00	7.5538E-04	0	80.00	7.55386-04
14 90.00	5.57548-04	ŏ	90.00	5.57546-04
15 100-0	4.70175-04		100-0	4.79175-00
16 110.0	4.44065-04	0	110.0	4.44068-04
17 120.0 12 130.0	4.42526-04	0	120.0	4.42526-04
19 130-0 19 140-0	5.31006-04	0	140.0	5.31u0E-04
20 150.0	5.60526-04	ŏ	150.0	5.60526-04
140.0	4.0101E-04	. <u> </u>	140-0	4 04025-04
22 170.0	9.93626-04	Ö	170.0	9.93628-04
23		1	130.0	1.10746-03
4LPHA= 0.3079	S/ALPHA=			
S= 0.1862	A/ALPHA=			
Au_0.1217	B/Ss	0.017		
CORRECTED ALPHA	CORRECTIO	M=U*003		
ALPHA 0.3106	S/AL PHA	0.600		
S= 0.1862	A/ALPHA#			
An 0.1244	B/S	-0-017		
SIGNAL 0.0 DEGRE				
SIGNAL O.1 DEGRE				
SLOPE(3 MILLIRA 5 UP TO 0.1 DEGR		467	MARIA TERM	1.389306-02
5 OF TO VALUE OF	16604 313103	C 203	10/10/46 1650=	**************************************

Figure D-111. Volume scattering function (sheet 2 of 3).

570 23JUL75 2 Angle(RAD)	ANGLE (DEG)	SIGMA	INTEGRAL	NORM. INTEGRA	1
1.7453E-03	1.00006-01	3.17776 02	3.5183E-03	1.88938-02	١ ،
2.19726-03	1.23898-01	2.70378 02	5.1600E-03	2.77098-02	- 7i-
2.7662: -03	1.58491-01	2.11836 02	7.28556-03	3.91236-02	21
3.4824E-03	1.99536-01	1.52418 02	9.79946-03	5.26278-02	
4.3741E-03	2.5119E-01	1.04716 02	1.26446-07	6.7899E-02	$\frac{31}{41}$
5.5192E-03	3.1623E-61	7.75428 01	1.58608-02	8.51698-02	51
A. 9483E-03	3.98116-01	5.5307E 0)	1.9496#-02	1.0469E-01	
H.7474E-03	5.01196-01	3.94302 01	2.36061-02	1.26768-01	\$}
1.1012E-02	6.30966-01	2.9139E 01	2.8252E-02	1.51718-01	áî
1.38645-02	7.94335-01	2.00708 01	3.35046-02	1.79926-01	91
1.74536-02	1.00001 00	1.4314E 01	3.94418-02	2.1180E-01	101
2.19728-02	1.2584E 00	1.0187E 01	4.61478-02	2.47816-01	111
2.76626-02	1.5849E 00	7.2170E 00	5.36938-02	2.83336-01	iži
3.4F24E=02	1.9953E 00	5.0769E Q0	6.21386-02	3.33686-01	131
4.3841E-02	2.51198 00	3.53768 00	7.1508E-02	3.84006-01	141
5.51928-02	3.14234 00	2.435RE 00	4.17946-02	4.8923E-01	151
6.94438-02	3.9811E 00 .	1.59348 00	9.27985-02	4.98326-01	161
A.7473E-02	5.01196 00	9.80336-01	1.03036-01	5.57556-01	171
1-10125-01	6.30961 00	5.043* E-01	1.14375-01	6.1417E-01	181
1.38646-01	7.9433: 00	3.49414-01	1.2431E-01	6.67536=01	191
1.74436-01	1.00006 01	2.16726-01	1.33"66-01	7 • 1934E =01	50 1
5-41-05-01	1.30005 01	9.14.334-02	1.50445-01	9.77075-01	200
3.49076-01	2.00006 01	3-46136-05	1-9000E-01	0.59188-01	
4.36326-01	2.5000E 01	2.21316-02	1.65966-01	8-91196-01	516
5-8340E-01	10 20000 2	1-53696-05	1.70148-01	9-13678-01	221
6.10352-01	3.50006 01	8-11912-03	1.73086-01	9.29416-01	226
6.9813E-01	4.0000E 01	5.59766-03	1.75336-01	9.4153E-01	331
7.354CE-01	4.50006 01	3-47848-03	1.77028-01	4-2001E-01	236
P.72668-01	5.0000E 01	2.57048-03	1.78266-01	9.57248-01	241
7.59936-01 1.04725 00	5.50006 01 6.00006 01	1.99466-03	1.7924E-01 1.8006E-01	9.62506-01	246
	C TOO ONE OIL	1 5 5 5 7 7 5 7 7 5	1.01/1/05-1/1	9.66936-01	251
1.13458 00	6.50008 01	1.26875-03	1.80756-01	7.70628-01	256
1-22175 (%)	7.00003.01	1-0367E-03 6-7737E-04	1.81336-01	9.73766-01	261
1.30906 00	7.500UE 01		1.81836-01	9.7640E-01	266
1.3763E QQ	8.00008 01	7.55366-04	1.62276-01	9.7876E-01	271
1.40350 00	4.5000E 01	6.44785-04	1.8297E-01	9.80785-01	276
1.57066 00	9.0000E 01	5.5754E-04		9. 1246E-01	291
1.65916 00	9.5000E 01	5.07546-04	1.8326E-01	9.84106-01	246
1.76536 00	1.0000 : 02	4.70175-04	1.73535-01	3-5555-01	- 247-
1.8325E 00 1.9199E 00	1.05003 02 1.1000# 02	4.58146-04 4.44066-04	1.8378E-01 1.84026-01	9.86898-01	296
		4.35018-04		9.88165-01	301
2.0944E 00	1.2000E 02	4.4252E-04	1.8424E-01	9.8934E-01 9.9050E-01	306 311
2.1917E 00	1.25000 02	4. 15375-04	1.84666-01	9.9161E-01	316
2.26996 00	1.3000 02	4.91626-04	1.84876-01	9.92746-01	321
2.35628 00	1.3500E 02	3.1162E-04	1.85076-01	9.43826-01	326
2.4435E 00	1.40008 02	5.31008-04	1.8527E-01	9.94818-01	331
2,53078 00	4500E 02	5-45756-04	1.85446-01	9.9582E-01	336
2.61805 00	1.50008 02	5.6052E-04	1.8361E-01	9.9671E-U1	341
2.70538 00	1.55006 02	5.0782E-04	1.85756-01	9.97486-01	346
7.79255 00	50 000001	6.05934-04	1.35898-01	9.99238-01	351
2.47906 00	1.6500E 02	8.18115-04	1.8601E-01	9.988AE-01	356
2.9671E 00	1.7000E 02	9.93626-04	1.5612E-01	9.9946E-01	361
3.0543E 00	1.75005 02	1.0857E-03	1,86198-01	9,9985E-01	366
3.1416E 00	1.8000E 02	1.10746-03	1.8622E-01	1.00005 00	371
	PLOTIER		1100845-01	7.000002 00	211

Figure D-111. Volume scattering function (sheet 3 of 3).

整部與某些主意的傳統與是一部開發之為其間擊地區的中部世紀的自即位行為一

Figure D-112. Volume scattering function (sheet 1 of 3).

		READ IN		TTERAT	LED_DATA
	ANGLE (DEG)	SIGMA	HAND=1	ANGLE (DEG)	SIGMA
_1	0.1750	4.20008 02	0	0.1750	4.02886 02
-5	0.3500	1.2800# 02	0	0.3500	1.3901E 02
3	0.7000	5.0000€ 01	0	0.7000	4.79658 01
	10.00	3.23598-01		10,00	3.2349E-01
5	15.00	1.52116-01	Ó	15.00	1.52116-01
۴	\$0.00	7.01468-02	Ō	20.00	7.01466-02
<u> </u>	29.00	3-40756-02	<u>-</u>	29.00	<u> </u>
R	30.00	8.02158-02	Ö	30.00	2.02156-02
. 9	40.00	8.77298-03	Ö	40.00	8.7729E-03
10 11	50.00	4.19228-03		50.00	6.1922F-03
12	6 0.00 70.00	2.40995-03 1.57173-03	O O	40,10 40,10	7.40996-03
1.2	711 (O O	D_UDA7#=04	. 8	70.00 30.00	1.57176-03
14	90.00	7.39664-04	0	90.00	7.39665-04
13	100.0	6.1709E-04	ò	100.0	6.170SE-04
ia	110-0	5 87 GAR - 04	ŏ	110.0	K. 87966=0=
17	120.0	5.8085E-04	0	120.0	5.80855-04
ÌA	130.0	5.71106-04	ŭ	120.0	5.71106-04
15	100.0	6.17215-06		<u> </u>	6.17213-06
50	150.0	7.39106-04	Ų	150.0	7.39106-04
21	160.0	1.02338-03	Q	150.0	1.02336-03
22	170.0	1.71798-03	<u> </u>	170.0	1.71798-03 2.01439-03
£ 5				180.0	2.71454403
	ALOHAM 0.4551	SZALPHA			
	\$= 0.3220	A/ALPHA			
	A= 0.1331	6/5	0.013		
CDd	AHQUA CETOPE	CORRECT	600.04bD		
	ALPHAR C.4512	S/AL PHA			
	S= 11.3220	A/ALPHA			
	A= 0.1392	B/\$	0.013		
	SIGMAL 0.0 DEG		-		
	SIGNAL C.L DEG				
	SLOPEL 3 ILLI S UP TO U.I DE		11535	AUTO MAN 7750	= 2.46398E-02
	2 05 10 047 05		115-03	":Un HAG 125U	- K . 403 70E 4//K

Figure D-112. Volume scattering function (sheet 2 of 3).

ANGLE (RAD)	ANGLE (DEG)	21 - SEA H2')		MARK THEORY	
1.74536-03	1.0000E-01	7.1075E 02	INTEGRAL	NORM. INTEGRAL	
7.19728-03	1.23896-01		7.93316-03	2.4640E-02	1
		5.9973E 02	1.15506-02	3.59996-02	- 17
2.7662E-03	1.58496-01	4.6451E 02	1.62786-02	5.0559E-02	21
3.49246-03	1.99538-01	3.2940E (12	2.17516-02	6.75596-02	31
4.3841E-03	7.5119E-01	5.31355 OS	2.78516-05	8.6505E-02	41
5.5192H-03	3.1623E-01	1.6244E 02	3.46408-02	1.07592-01	51
6.94P3E-03	3.9811 6-01	1.1407E 02	4.21968-02	1.31066-01	- 91
1.74748-03	5.01196-01	4.0107E 01	5.000000-02	1.37196-01	77
1.10126-08	A.3096E-01	5.6254E U1	F.09566-02	1.86256-01	ა 1
1.38646-02	7.44324-01	3.9467E 01	7.03408-02	2.1260n=01	41
1.74531 -07	1.0000 E 00	Z.7537E 01	20-21E-03	Z.5448E-01	101
5 - 1 0724 -05	1.25898 00	1.90818 01	9.46600-02	2.94016-01	111
2.7662E-02	1.58496 00	1.31188 01	1.08558+01	3.37246-01	121
2*0n508m05	1.99538 70	E • 9400 € 00	1.73693=01	3.34175-01	131
4.39418-02	2.51198 00	6.0324E 00	1.39926-01	4.34508-01	141
4,51928-02	3.1A238 00	4.0296B 00	1.57208-01	4.08756-01	151
A. 94P3E-02	3.98116 00	2.55578 00	1.75126-01	5.4391E-01	-iái
9.7473 = -02	5.01196 00	1.51ABE OG	1.92498-01	5.97876-01	171
1.10128-01	5.30968 00	8.80778-01	2.0059E-01	6.47855-01	111
1.335446=/1	7. 94336 00	5.19005=01	7. 14.453-01	S 44.1) 2 # = ()]	171
1.74536-01	1.00000 01	3.23598-01	2.37548-01	7.39115-01	201
2.41306=01	1.5000% 01	1.52118-01	2.03295-01	2.17774-01	206
3.49078-01	2.00008 01	7.01466-02	2.30603-01	8.71556-01	211
4.36338-01	2.50005 01	3.50754-02	2.40958-01	9.0368E-01	216
5 - 23 60E -01	3.0000E 01	2.02158-02	2.97665-01	9.24548-01	221
6.10868-01	3.50000 01	1.29448-02	3.02415-01	9.39205-01	556
A.98135-01	4.00008 01	8.77298-03	2.05965-01	9.50315-01	231
7.95408-01	4.8000a 01	5.95638-07	3.025554=01	9.86.655-01	
9.72665-01	5.0000E 01	4.19221-03	1.10364-01	9.6491E-51	- 23 7
9.59936-01	5.50008 01	3.12548-03	3.12238-01	9.69798-01	
1.04723 00	6.0000 01	2.4099E-03	3.13504-01	9.73725-01	246
1 3 4 3 E 750	6.550002 01	1.02046-13	3 1003 -01	6.7861 2-01	251.
1.32176 (0	7.00004 01	1.57179-03	3.3 B v 3 € ₩ 0 3	9.7972:-01	261
1.30008 (0)	7.50005 01	1.24598-03	3-1-174-01	9.82001-01	266
1.39636 00	A.0000 1	9.99678-04	3.15 08-01	9.83832-01	271
1.48358 00	A.5000# 01	8.45886-04	3.17268-01	9.85408-01	
1.57098 00	9.00002 01	7.3966E-04	3.17098-01	9.85746-01	276
1.03818 00	7. 50005 01	6.52135-0-	3.1 175-01		-6 -1-
1.74538 00	S0 20000 1	6.17098-04	3.10429-01	9.47432=01 9.49018=01	
1.03266 00	1.05003.02	5.96308-04	3.10746-01	0.90018-01	291
1.01000 00	1.1000 6 02	3.8796E-04	3.19058-01	9.90971-01	395
2.00718 00	1.15000 02	5.8430E-04	3.19356-01	9.91898=01	301
					300
7.0944E 00	1.2000E 02	5.7583E-04	3.1963H-01	9.92772-01	-211
2.2454B 00	1.30004 02		3.70188-01	9.936()=-()1	316
		5.7110E-U-		9.94346-01	721
7.35A2E 00 2.4435E 00	1.35004 62	3-84728-04	3,20618-01	9.95104-01	-330
	1.40006 02	6.17216-04		9.95798-01	331
2.53076 00	1.45008 02	6.66198-04	3.20126-01	9.9645E-01	136
3.0130E CO	1.50004 02	7-39108-04	3-21026-01	9.9709E-01	441
2.7053E 00	1.55005 02	8.50366-04	3.21226-0)	9.97718-01	346
7.7925E 00	1.40004 02	1.05336-03	3.21425-01	9.98323-01	751
2 47011 (I)	1.55008 02	1.39316=03	3.21314-01	9,98906-01	314
2.0A/1. 00	1.70006 02	1.71798-03	3.21788-01	9.09448-01	361
3.0943E 00	1.75006 02	1.95746-03	3.21916-01	9.99958-01	366
3.14168 00	1.A000 t 02	2.01436-03	3.21066-01	1.0000 00	371

Figure D-112. Volume scattering function (sheet 3 of 3).

Figure D-113. Volume scattering function (sheet 1 of 3).

AMGLE (DEG)	SIGMA INS	STR*U	ANGLE (DEG)	SIGMA
		AND#1		4 44444 5
2 0.3500	1.5200E 02	0	0.1740	1.99258.0
3 0.7000	6.6000E 01	ŏ	0.7000	1.6020E 03
610.00	2.95376-01	ŏ	10.00	2.95378-0
\$ 15.00	1.19428-01	Ü	15.00	1.1942E-01
A 20.00	3.79116-02	Ó	20.00	5.78118-0
7 28.00	3.2828F-02		25.00	3.232HF===
8 30.00	1.77406-02	U	30.00	1.77406-0
40.00	ア・チスチの第一のう	0	40.00	7.42466-01
10 30.00	3.3725E-03	<u> </u>	50.00	3.37256-01
00.00	2.01105-03	U D	(c) (11)	2.0110E=0
10.00	1.39306-03	ņ	70.00	1,39398-0
13 00.00 14 90.00	6.95076-04		90.00	4 05070Bmile
14 90.00 14 100.0	5.7134E-04	Ü	160.0	6.9507E=04
16 110.0	5 - 1 1 3 T E - 1 7 T E -	ň.	110.0	
17 120.0	5.33388-04	Ü	120.0	5.33386-00
15 130.0	5.44708-04	Ü	130.0	5.44708-04
18 140.0	4-03077-04	<u> </u>		4.03:178-04
20 150.0	7.1651E-04	0	150.0	7.16518=04
21 160.0	1.02968-03	0	160.0	1.02968-03
27	1.5220A=03			1.12201-01
*1		1	180.0	1.73198-03
ALPHAM 0.5118	S/ALPHAD	0.701		
S= 0.3589	A/ALPHA=	0.299		
A= 0.1529	B/5=	0.011		
TOPPETHE ALPHA	CHARECTION	und. Des		
ALPHA D. 5171	S/ALPHA=	0.694	المراجع المستوان والمستوان والمستوان والمستوان والمستوان والمستوان والمستوان والمستوان والمستوان والمستوان	
5= 0.358P	A/ALPHA=	0.305		
A= 0.1592	B/S=	0.011		
SIGNAL O.O OEGRA				
SIGNAL O.1 DEGRE				
<u> </u>		318	118 h. (A) = = =	D - 1 010836 00
S UP TO GAL DEGR	1865= 6.9650E	:-03	NOM HAL IZE	D= 1.940576~02
THETANNE BAR 5.5	14398-02 RADIAMS	h ub 19		

Figure D-113. Volume scattering function (sheet 2 of 3).

	E (RAO)	ANGLE (NEG)	91 - SEA H20 Signa	ZOM INTEGRAL	NORM. INTEGRAL	
	53E -03	1.000008-01	6.4211E 02	4-9650E-03	1.9406E-02	1
	72E-03	1.25096-01	5.58198 77	1.03135-02	2.4747E-02	- ; ;
	1626 =US	1.58498=01	4.5079E UZ	1.47726-02	4.115HE-02	21
						_
	246-03	1.99536-01	3.35926 02	2-02146-02	5.63356-02	31
	कार नाड	5-21145-01	2.48026 02	5.0001E-05	7.4115E-02	41
	05 E -03	3.16238-01	1.8312E 02	3.40695-02	9.49748-02	51
	83E -03	B.9811E-01	1.3520E 02	4.28086-02	1.1927E-U1	61
9.77	748-73	3.01198-01	A. ad Sin Ol	2.10.2764405	1.47762-01	71
1.10	128 -02	6.30964-01	7.37028 01	ちょちいついだーひを	1.81106-01	H l
1.38	646-02	7.94338-01	5.4230E ill	7.20028-02	2.2005E=01	91
1.74	536-02	I . HOODE OF	Palitie Of	9.31356=07	2.65138-01	101
	728-02	1.25898 00	2.75196 01	1.13616-01	3.15774-01	111
	SO- 554	1.58498 00	1.8861E 01	1.3849#=01	3.71978-01	121
	346 mus	1.47938 00	1.25698 01	I verogenii	4.8(858-01	131
	416-02	2.51198 00	8.12898 00	1.77376-01	4.96196-01	141
	925-02	3.16234 00	9.09366 00	1,00058-01	5,57104-01	121
	135 -05	3.9811E 00	3.00125 00	5 - 5 1 g 0 5 - 0 1	6.17988-01	161
	736-02	5.01196 00	1.67358 00	2.41596-01	6.73126-01	171
	128-01	6.30948 00	9-11248-01	2.58795-01	7.21048-01	111
	4411-01	1.04334 00	3.04456-01	10-50111	7.62416-01	141
	53# -11	1.0000# 01	2.45376-01	2.87086*01	7.04054=01	201
2.61	10+108	1.50008 01	1.19428-01	10-08086-01	A . W. deliferof	2017
3.49	11-11	2.00000 01	3.7811E-02	4.55296 -01	8.9871E=01	-3.1.1
4.36	33E-01	2.5000E 01	3.2828E-02	3.31646-01	9.24016-01	210
5.23	60E-01	3.00006 01	1.77408-02	3.37798-01	9.61158-01	221
5.10	166-11	3.50009 01	1.11476-02	7.41913-01	9 4 4 5 5 1 - 0 1	285
	138-01	4.00000 01	7.42444-03	3.4495E-01	9.61108-01	231
	435-01	6.80004 01	4.48404-03	4.47194-01	0 . A 7 2 4 1 mill	236
	66E=1	5.00003 01	3.37258-03	3.488BH-01	V. 71HVE-01	241
	938-01	# 50008 01	2.53966-03	3.5009E-01	9.75-2E-01	246
	726 01	6.00006 01	2.01108-03	3-51148-01	0.76344-01	251
		A. 50006 01	1.06704-03	4.52023-01	9 40 10	250
1.22	178 00	7.00006 01	1.30394-03	3.52006-01	9.02963=01 9.44806=01	Sel
	906 00	7.40004 01	1014144-03	1.53464-01		391
1.39		IO BOOMO. A	9.4470E-04	# . # A O L B - O 1	9.86358-01	
1.48		A.SUOOE OL	8.0294E-04	3.54490-01	9.5766E-01	276
1.57		6.0000+ 01	6.45078-04	3.54006-01	8.04406-01	281
	M. 4. 12.7.	C**COD# 07	6. 13. Of = 04	3.55253-01	4 - 4 - 5 - 5	200
1.74		1.00000# 08	5.713uE=0u	3.55576-01	3.40436401	201
1.A?	268 10	1.05000 02	3.53690-04	3.55072-01	3 01431-01	290
1.91	998 00	1.1000# 02	5.44376-04	3.56168-01	9.42336-01	30 L
2.00	718 00	1.15008 07	5.37618-04	3.4643e-Ul	9.43096-01	103
2.09	44E 00	1.2000E 02	5.3338E-04	# 5669E-01	9.95326-01	311
2.19		1.25004 02	5.35072-04	3.56948-11	4. 345 - 5-01	315
2.24		1.3000E 02	5.4477E-04	3.57186-01	4.951:5-01	237
2.34		1.35008 02	5.63356-04	7.57408-01	4.09770-01	3.0
	396 00	1.40001 02	3.9307E-04	3.57610-01	3.76386-01	131
7.13		4500B 02	6.3565E-04	3.57828-01	9.96946-01	330
	ADE DU	1.50006 02	7.16518-04	3.5801E-01	0,07698.01	341
7.7 6		1.53000 02	0.30132-04	5.5e212-01	4.3A (1.4E=1.7	<u> </u>
3.79		1.60008 02	1.02966-03	3.50416-01	9.98598-01	351
2 . A7	236 00		1.25016-03	3.44506-01	4.49116-01	350
				3.39765-01	9.00368-01	35
2.96		1.7000E 02	1.52298-03			
3.05		1.75006 02	1.71456-03	3.5587E-01	9.99896-01	364
3.14	16E 00	1.80008 02	1.75196-03	3.58918-01	1,0000 00	371

Figure D-113. Volume scattering function (sheet 3 of 3).

Figure L-114. Volume scattering function (sheet 1 of 3).

ANGLE (DEG)	ALL IN	THEO	ANGLE (NEG)	ATED DATA
P. 9411 (0411)		ND=1	- 1000	0.0
1 0,1750	4,20006 02	n	0.1750	4.08AQE 0
2 0.3500	1.5000# 05	0	0.3500	1.58338 0
3 0.7000	6.3000E 01	0	0.7000	6.132UE 0
<u> </u>	2.3214E-01	<u> </u>	10.00	2.32346-0
6 15.00 4 20. 00	1.04246-01 5.30#26-02	n D	1 % • 0 0 20 • 0 0	1.04246-0
7 25.00	2.55494402	n	25.00	2.55688m0
A 30.00	1.38518-02	Ó	30.00	1.30516-0
9 40.00	6.0993E-03	Ō	40.00	6.09938-0
10 50.00	3.13148-03	0	50.00	3.1314E-0
11 60 - 0	1.04A16-03	Ü	30 m	1.94813-01
11 70.60	1.14608-03	Ö	70 • eo	1.14066-0
	7.49021=04 6.36818=04	Ö	90.00	7.54074=04 6.5681E=04
14 90.00 15 100.0	5.78058-04	ō	100.0	5.7805E=0
16 110.0	8.38333=04	ŏ	110.0	4.34174-0
17 120.0	5.31666-04	Q	120.0	5.31666-(
1 120.0	3.22428-04	0	130.0	ちゃれてみてきゃい
10 100-0	4.74795-06	<u> </u>	ــــبمبيميـــــ	
30 150.0	6.61088-04	0	150.0	6.81088-0
21 160.0	9.25296-04	O O	169.0	9.23295-04 1.75898-0
43		1	1-0.0	?.1090E=0
AL 29AH 0.5013	SZALPHAN	0.620		
\$# 0.310H	A/ALPHA=	0.380		
Am U.1905	H/S=	0.013		
तिसर समृत्यास्य । सम्म र्	0.09 98011 0	:=U.O:0+	······································	**************************************
11 0 HA 0 - 4049	SZALPHAR	11.517		
Sm ("#\$108	A/ALPHA=	0.347		
A= 0.1961	B/5=	0.013		
STODAL D.O ORGRE				<u></u>
510MA(U.1 DEGRA SUMPEC 3 MILLINA		344		
S UP TO 0.1 DEGR			NURMALIZE	D= 2.369946-0
THETANKS MAR 5.F	SHUE-OZ PADIANS			

Figure D-114. Volume scattering function (sheet 2 of 3).

370 233 21	17 514 LAINE	- SFA H2U 10	jii 	CA. INTEGRAL	
350 337 612 51	AHGLE (DEG)			2.36996-02	ı
A GLE (RAU)	1.00001-01	6.7407E 02		3.4478E-02	TI
1.74536 -03	1.75.146-01	5.3136E 02	1.08730-02	4.94805-02	21
7 4 472 (-13	1.58446-01	4.64236 UZ	1.54866-02	6,77476-02	ــــــــــــــــــــــــــــــــــــــ
2.74626 = 12	1.09536=01	3.4163b 02	2.10598-07	8-8502E-02	41
3 . 4 9 ? 4 E -113	2.3110 = 61	2.44246 02	2.75 TOE-02		51
4 3441E-13	5-21146-01	1.A191E 02	3.4972E-02	1.12514-01	
5.51926-00	3.14838-01	1.3274E 02	4.3601E-02	1.48275-01	91-
4.94R31 -0 4	3.44115-01-	9.52056 01	4.50415-03	2.0950E=01	h i
76746 -00	9.01.19:-01 9.5096:-01	7.0670E 01	6.51224-02	7.42406-01	91
1.10136 =02	7.0.534-01	4.12056 01	7.44468-07	3.00978-03	101
1.29466.012	1.0000 = 00	3.40555 01	9.35546-02	3.54108-01	iii
1.71534	1.24698 00	2.4466H 01	1.10078-01	4.1043E-01	121
2 10726 -12	1.2549£ 00 1.5444£ 00	1.61376 01	1.27584-01	## 10 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1	131
7.74626 407	र एक्क गा	1.03606.01	1.050484	f.27035-01	141
7 64 12 64 41 4	5.27105 00	5.5204E 00	1.63836-01	# - 1 V c . H= 9.1	151
6.36410 mil	2.16246 ()()	4 - 02738 00	10=1754-01	0.40191-01	161
4 41 5 7 7 - 2		2.35688 00	िनमेजनए-०।	5-19746-01	171
★ 日本にひま一つま	3.00116 00	1.20475 00	2.14404-01	7.32344-01	<u>iėi –</u>
りょうもてろピージに		7.00076-01	2.77:00:-01	7.32300	
1.1013d-Cl.		3.1. 40-01		. 27: E=01	21
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		コースクスムチーバー	2.40016-01	: *0#54=01	20.5
1.74500-11	1,0000 9 01	1. 14 44-111	2.47644-11	\$ 6030a-01	211
4 4 4 4 4 4 4 5 5 6 5 6 5 6 5 6 5 6 5 6		9.30856-05	5-10015-01	9.25348-01	218
3.49076-04	X.COOOE OI	2.454H6=02	2. H764E-01	9-40908-01	221
4.34334-01	2.5000d 01 3.00006 01	1.3841H=02.	2.92316-01	3.71002-01	: 20
4.23601-01		13732-03	7. 45016-01	5.43A46-(1	231
5.17763-77	3,80004 01	4.00034-03	2.078-01	4 . 14 40 4 4 1	2.35
4.00136-01	19 ±00000, a	4 24 CUE-03	7.00000000	9.89748-UL	24.1
7 4114 (14 -1)		3.13142-03	3.0144E-01	4.73678-01	240
4.776AE-11		2.44BBE=03	4. U264H-U1	4.78465-01	351_
6.39036-71		1.94818-03	3.03656-01	A 12534-7	. 30
1.04728	6.0000 01	- 128134-113	3 - 1 - 1 - 1 1	9150 =-01	251
1.1349:	7.00004 01	1.16666=03	3-041-6-01	0.47378-01	200
1.22176 (%	7. 50000 OL	9.407978-114	3.08ABE-01	10-30848°c	571
1.3hane Co	100000	7.69076=04	1.06126-01	10-38009.6	27+
1.39636 00	1/1 LAMER	7_04334-04	5.06528-01	9.8778H-01	181
1.41356 00	200004 01	6.56814-04	3.06494-01		
1.57084 00			3.07296-01	0.1446E=01	5-1
1.84.15 00			3.07552-01	0 37618-01	730
1.74578 00		n - 4 1 3 8 6 - 7 4	3,070,00-01	0.01328-01	301
1.77766		5.3833E~()4	3.08158-01	9.92206-01	300
1.01605 (10		5.34566-04	3.08426-01	1 63036-01	311
2.00718 66			3.08086-01		
2.00444 0				0.03/26wal	310
2.10174 0	1.25004 0	5.20446-04	_	0.0454F=01	
		3.27428-04	3.2015[-8]	0.42.6-01	330
Z SKAPE C	35000 0	5-040236-04			331
2.35572 C	0.00	9 4.74256-04	3 - (145 2 - 0	9.90565-01	336
	. / E 20 L C		3.09062-1		341
2.83072 0		5 6 F 103E-0	3 10 9 7 6 6 - 11	0.4771E=01	340
2.41405		- 7 SANTENU	# 347/175H	9.03274-01	
2.7043F C	0 1.60005 0	0 0 TAREN	2 + X2 4 Z	7-9-96836-01	350
2.70750		3 1.23136-0	3	1 9.99378-01	301
2. A74Au (1.7000E C	1.76808-0	3 3 10005 -0	1 0.90846-01	300
2.96718		a oneunieu	3 3.10796-0 3 3.10758-0		371
3.05436	1 30003 0		9 5.10.56-0	•	•
3-14106 /	ADY PROTTER				

Figure D-114. Volume scattering function (sheet 3 of 3).

Figure D-115. Volume scattering function (sheet 1 of 3).

DATA	READ IN	•	TTEDAT	ED DATA
ANGLE (DEG)	SIGMA INS	TR=0	ANGLE (DEG)	SIGMA
1 0.1750	3.6500E 02	0	0.1750	3.5359E 02
2 0.3500 .	1.3900E 02	Q	0.3500	1.4807E 02
3 0.7000	6.4000E 01	O.	0.7000	6.2042E 01
410.00	2.5435E=01	Λ		2-54856-01
5 15.00	1.14956-01	Ú	15.00	1.14956-01
6 20.00	5.1663E-02	O	20.00	5.1663E-02
7 25.00	2.7125E-02		25.00	2.7125E-12
M 30.00	1.7397E-02	0	30.00	1.73976-02
9 40.30	6.28806-03	0	40.00	6.28806-03
10 50.00	3.39815-03		50.00	3.39816-03
13 60.00	1.89396-03	()	60.00	1.89392-03
12 70.00	1.23186-03	0	70.00	1.23186-03
13 30-40	#.22716=04	<u> </u>		9.22716-04
14 90.00	6.30778-04	0	90.00	6.3077E-04
15 100.0	5.5866E-04	0	100.0	5.5866E-04
16	5-2830F-04	<u> </u>	130-0	4-78305-04
17 120.0	5.1037E-04	0	120.0	5.10376-04
19 130.0	5.16846-04	0	120.0	5.1684E-04
19 140.0	5.4579F=04	ù -	<u></u>	<u> </u>
20 150.0	6.50228-04	0	150.0	5.50226-04
21 160-0	8.13795-04	0	160.0	8.13796-04
27 176.0 23	1.398051103	1	180.9	1.62918-03
ALPHA 0.4923	S/ALPHA=	0.655	•	
Sn 0.3227	A/ALPHA#	0.345		
A= 0.1696	B/S=	0.012		, i
CERRECTED ALPHA	CORRECTION	-0.005		· · · · · · · · · · · · · · · · · · ·
ALPHAS 0.4968	S/ALPHA+	0.649		
S= 0.3227	A/ALPHA=	0.551		
A= 0.1742	8/5=	0.012		
SIGNAL 0.0 DEGR				
SIGNAL D.1 DEG!		241		
SUP TO 0.1 DEG		-03	NORMAL IZED	1.851166-02
THETA+#2 BAR5.	63018-02 RADIANS*	•		

Figure D-115. Volume scattering function (sheet 2 of 3).

	520 23JUL75 ANGLE(RAD)	ANGLE(DEG)	21 - SEA HEO 2 Sigma	M Integral	MODAL TAITECHAI	
	1.7453E-03	1.0000E-01	5.5471E 02		MORM. INTEGRAL	-
	2.19725-03	1.2589E-01	4.8507E 02	5.97316-03	1.85126-02	,}
				8.8806E=03	2.7522E-02	11
	2.76625-03	1.58498-01	3.968AE 02	1.27809-02	3.9607E-02	51
_	3.48246-03	1,49536-01	2.99896 02	1.76106-02	5.4576E-02	31
	4.38418-03	2.51196-01	2.2459E 02	2-33496-02	7.2362E-02	41
	5.51928-03	3.1623E-01	1.68198 02	3.0161E-05	9-34738-02	51
	6.94A3E-03	3.98116-01	1.25958 02	3.82466-02	1.18536-01	
	74742-03	5.0119E-01	9.4325E UI	4.78425-02	1.4827E-01	
	1.10124-02	6.30966-01	7.06388 01	5.9232E-02	1.83576-01	81
	1.38546-02	7.94336-01	5.2559E 01	7.27336-02	2,25416-01	91
	1.74538-02	1.00000 00	3.7633E 01	8-3365E-05	2.7385E-01	101
	2.19728-02	1.25896 00	2.59276 01	1.05756-01	3.27746-01	111.,
	2.76625-02	1.58498 00	1.72756 01	1.2441E-01	3.8556E-01	121
	3 - 4 4 2 4 5 -4) 5	1.99935 00	1.11246 OT	1.43658-01	4-45734-01	131
	4.3841E-02	2.5119E 00	7.0820E 00	1.6351E-01	5.0675H-Ul	141
	5.51935-02	3.1AR35 00	4,40256 00	1.53046-01	5.67396-01	151
	6.94A3E-02	3.98118 00	2.5848E OU	2.01936-01	6.25016-01	161
	R.74738-02	5.01198 00	1.4184E QO	2.1883E-01	6.7817E-01	171
	1.10126-01	6.209AE 00	7.64188-01	2.33328-01	7.23108-01	181
	1.40046-01	7.94536 30	4. 2340 2401	2.65-16-01	7.51318-01	191
	1.74536-01	1.00000 01	2.54356-01	2.57176-01	7.97006-01	201
	2.61908-01	1.50000 01	1.14956-01	2.77168-01	8.58958-01	206
_	3.49078-01	2.0000 01	5.15635-02	2.8997E-01	H. 9834E-01	211
	4.06038-01	2.50006 01	2.7125E-U2	2.97678-01	9.22586-01	216
	5-23606-01	3.00008 01	1.73978-02	3.03146-01	9.39496-01	221
	6.1086E-01	3.50002 01	1.01044-02	3.07108-01	9.31736-01	226
	6.98136-01	4.0000E 01	6.2880E-03	09736-01	9.59908-01	231
	7.85408-01	4.50000 01	4.55615-03	3.11708-01	9.66016-01	236
	2.72666-01	5.0000 01	3.39818-03	3.1330E-01	9.7095E-01	241
	9.59936-01	5.5000E 01	2.49558-03	3.1457E-01	9.7488E-01	246
		6.0000E 01	1.89398-03	3.1557E-01	9.7799E-01	
	1.1345: 00	6.5000E 01	1.51336-03	3.16395-01	9.80535-01	- <u>251</u> - 256
	1.22178 00	7.00004 01	1.23146-03	3.17088-01 3.1756E-01	9.82686-01	261
	30004 00	7.50003 01	1.00015-03		9.84485-01	- 265 -
	1.30636 00	8-0000E 01	8.22716-04	3.1015E-01	9.859RE-01	
	1.48356 00	3.5000E 01	7.04305-04	3.1856E-01	9.87266-01	276
-	1,57082 00	9.0000 01	6.30778-04	3.18925-01	9.8/39E-01	281
	1.65016 00	9.1000E 01	5.85306-04	3.19866-01	9.8942E-UI	206
	1.74536 00	1.00006 02	5.58460-04	3.16576-01	9.90386-01	2 7 1
	Passe C.	1.0500E 02	7.41755-0/	_1e16"() E - 11	9-91795-31	- 296 -
	1.91994 00	1-1000 8 02	5.283UE-04	3.20146-01	9.9216E-01	?O 1
	8.0071E 00	1.1500E 03	5.1806E-04	3.2040E-01	4.92988-01	306
	2.09446 00	1.2000E 02	5-1037E-04	3.2066E-01	<u> 9-93756-01</u>	311
	2.19176 00	1.25008 02	5.04026-04	3.20896-01	9.9448E-01	316
	5.56Hat 00	1.3000 02	5 - 1 - 8 4 E - 04	3.2111E-01	9.9517E-01	721
	2.35625 CC	1.3500E 02	5.3645E-04	10-32515-61	9.95838-01	320
	2.44359 00	1.4000E 02	5.65796-04	3.21536-01	9.96468-01	
	2.5307E 00	1.4500E 02	6-03925-04	3.21726-01	9.97066-01	336
	2.61.905 00	1.5000F 02	6.50226-04	3.2191E-01	9,97645-01	341
	2.70538 00	1.55008 05	7.14636-04	3.2208E-01	9.98178-01	346
	2.79256 00	1.60008 02	8.13796-04	3.2224E-01	9.9866E-01	351
	2.9798E 00	1.65008 02	1.01576-03	3.27395-Cl	a oulse-01	350
	2.96716 00	1.70006 02	1.3980E-03	3.27536-01	9.9955E-01	36.
	3.05436 00	1.7500E 02	1.5784E-03	3.2263E-01	9.9988E-01	366
	3.1416E 00	1.8000E 02	1.62915-03	3.2267E-01	1.00008 00	371

PAUSE READY PLOTTER

Figure D-115. Volume scattering function (sheet 3 of 3).

APPENDIX E

GENERAL DESCRIPTION OF UPLINK PROGRAM

Program UPLINK is used to reduce the experiment uplink data. This data was recorded aboard an aircraft using a receiver looking at an underwater laser pointed upward. The receiver data for each received pulse is digitized and recorded on magnetic tape. A data sample from one of these tapes is shown in table E-1. Program UPLINK reads this data from tape along with control information from cards. The tape is searched for a specified run number. The data for this run number is read in, filtered, calibrated, and plots of radiance loss versus zenith angle are generated.

The data is calibrated using the values for receiver sensitivity and laser power given in Volume II, Section 5. The program initially assumes that the receiver was operated at its most sensitive range. This value is then multiplied by 100 if switch 5 is zero, indicating that the 1 percent transmission filter was in place, and by 10 if switch 4 indicates that the 10 percent transmission filter was in place.

The data for one run are read and the receiver output, roll angle, pitch angle, and value of switch 12 are saved. Switch 12 is an indication of whether or not the receiver was getting sufficient signal for automatic tracking. When all data for one run have been read from tape; the signal, roll angle, and pitch angle are filtered. The signal is multiplied by the calibration factor, and the zenith angle is calculated from the roll and pitch angle. Two plots of the signal are generated (see figure E-1A and figure E-1B); one is the uncorrected signal and the second is multiplied by the secant squared of the zenith angle to correct for variable range to the aircraft. The plots are drawn side by side on an 11 inch by 17 inch page.

The digital filter applied to the data is defined as follows. Let the digital sequence to be filtered be denoted by

$$\{s_j\}, i = 1, n.$$
 (E-1)

then define

$$u_1 = s_1$$

 $u_i = u_{i-1} - \frac{1}{N}(u_{i-1} s_i)$ $i = 2, n$ (E-2)

where N is a constant with $N \ge 1$. This is essentially a low pass filter with a time constant of $(N-1) \Delta t$ where Δt is the sample interval for the original sequence $\{s_i\}$. The sequence $\{u_i\}$ is a smoothed and time delayed image of $\{s_i\}$.

Now define

$$v_n = s_n$$

 $v_n = v_{i+1} - \frac{1}{N}(v_{i+1} - s_i)$ $i = N-1, 1.$ (E-3)

TABLE E-1. UPLINK PROGRAM DATA SAMPLE.

											15.40	15 ARY 75
	2	•	©	© FILTER #	STARGIJAD			,XAM = V(6.A-				TON
	TIXE	1 11 10	1 0	ΪĒ.	-	-	3	È	DATA CH3	1 5	ğ	3
				-	3	2				į	È	Ē
	15:46:56.53	- }	٠ ناد		90	- 1		4.		-0-05	-3.315	-0.253
	15: 46:56.60		ب درد درد	٠.٠	-, >(ء ت					27.6	
	15:45:54:55		_		ขน	ر در 		1 1		4000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	3
	17:40:50	İ		-		ان: ا		-6.463		0.00	-3.311	100
	12: 4: 5: 18: 18: 18: 18: 18: 18: 18: 18: 18: 18)))	4-1 4-1 5-2 5-2	ں د	., (,,				-0-054	136.351	7.5
	15:46:56.41	· }	2		0	י וכי		44.3		-0-054	-3-15	3.0
	12: 4: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5:	_	00	 	-~ 5()	99		199		4000	52E-E-	200
	15: 40: 26.52	-	00		90	0:	-0.674			100	-3-315	9.24
	13. 48. 26. 31)))		ں۔	7- 30	-1.221	1		4446	116-6-	9
	17:46:50-63		9	 	u,	10	-1.075	100		400	-3.315	2
	17:40:30.70		 	 	_ m		10101	***		450-0	3.320	2
	5:4:36:15	1	50	, m.	0	P	-1-167	69		7	-3.315	
	15:46:57.21		97		 	- 7	-1.226	31		50.00	410	77-0
	15:40:57.24		9	ا سا ا سا	0		-1.11	3		10.0	-3.415	7.0
	15:46:57.32		D 2	 	re	rii	1.206	1,463		7	-3.320	2
	5:4:57.35		ت ت	-H-	υ.	41.	-1-372	4.63		0.050	-3.320	2
	10:40:01	1) ()	 	- -	> -	# C - 1	33		5	-3-315	2
	12: 40:57.4		0:		100	יכי	-1-614	194.		0.05	3.311	-0.26
	15:46:57.53))	 	ųę	3 6	-1-205	£. £. £. £. £. £. £. £. £. £. £. £. £. £		9000	-3-315	2
	19:48:51.51	:	0	اما اما ان		b	-I-Z65	4			3.320	
	17:4:7:) (->c		<u>م</u> .	161-1-			0.054	-3-315	9-25
	15:40:57.67		10			, r	13.00			6.0	7.00	7
	19:48:91	1	D		P	יח	991	E93		100	-3-311	12.0
	15:46:57.71))		9 6	36		97		6	-3-315	200
	15:46:57.42		0	1 a d	•	9	-1.323	1694		400	-1.155	
	5-16-51-62	;	.	- -	 •	<u>ن</u>	90	100		0.054	-3.315	0.29
	15:46:57.52			·~	9	ت د	186-0-			56		-
	15:46:51-55) c		٥.		-C. 128	103		6.020	3.315	0.28
	15:44:51-63		90	 	99	5 5	C91-1-				- W. W. W.	2
	15:46:57.67		- 0:		Q!	\$ 10	-1.191	. 66		-0-0-	3.320	200
	16:04:61	Ţ	30		JU	٠.	-1-11			6	-3.315	-0-24
	15: 46: 57. 78		130		000	ا زر د	907-1			92	3.306	7.7
	15:40:56-25			 	 	ر. 	-0.523			400	110.00	200
	13.84.78.CI	Г	0	-	0	10	-0.472	4.4		0	-3.315	17.7
	15:46:58.35)) ;		''o	٠, ٠	-1.133	-6.463		400	10 mm	200
CALEGRAL BE NOT IN CALBRATE OVERLOAD PESSONAL SUFFICIENT B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15:44:58.39	: D(2	اسم: اسم:	0	į.	31 ye 1 -	9		9	-3-311	100
FILTER IN 1 = IN CALIBRATE PUERLOAD FRACIONG SQUETCHBIT 0 + 18,000 ANGLE AN FILTER OUT 0 = 18,000 ANGLE AN FILTER OUT 0 = INOTIN CALIBRATE 1 = 0.K. FOR TRACKUNG 0 + 180 ON METER 0 = INOTIN CALIBRATE 1 = INOTIN CALIBRATE 0 =	54*8£1841£1	ا ا ا	ب ن	 	٠,	: .	- I. 759	4.467		3.4	-3.306	-0.26
PILTER IN 1 M INCALIBRATE E MOTERLOAD DE SIGNOLI SUFFICIENT DE 1-10,000 ANGLE AN FRLIER GUIT DE NOT IN CALIBRATE 1 M INCRESONAD TO 1 M INC	PILTERS		æ	OVERL	3	_	FRACIONG	*	SOUNT		ğ	ROLL
FILTER GLIT 0 E NOT IN CALMANTE 1 E G.K. FOR TRACKING CORRESPONDETO +V = FORWAND +V = 1 I = NOT ENOUGH SQUAL 0 + 140 ON METER 0 = NAUR 0 = INAUR 0	PILTER SE	111	MATE	Ħ	0000	•		•		ŧ	ME	AMORE
1 = MOT ENOUGH SIGNAL 0 + 100 ON METER O = NACHR O = ETAS TRACTIONS	FRITEROUT	W	AL BRATE	Ņ		•				į		
Enstratoring			ı					•		g	TOTAL DESCRIPTION OF THE PERSON	
							_	!		•		H .

Figure E-1A. Uncorrected uplink plot.

HANGALIMA LANGE LANGE LES AND RE-WINCOME EST

Figure F-1B. Corrected uplink plot.

This is really the same filter applied in the opposite direction, so that $\{v\}$ has a time advance rather than a time delay. Finally, define

$$z_i = \frac{1}{2}(u_i + v_i)$$
 $i = 1, n.$ (E-4)

Then $\{z_i\}$ has neither an advance or delay. Any desired degree of smoothing can be accomplished with this filter by choosing different values of the filter constant, N. Figures E-2A through E-2C show the results of filtering the same raw data with various values of N.

INPUT DATA. The raw data to be processed is read from magnetic tape. Control information is read from cards using NAMELIST with name INPUT. Variables to be input from cards are defined as follows.

SIZE - A real variable allowing plots of different size to be generated. See DOWNLINK for details. Default value is 1.0.

NAVG — An integer variable specifying the filter time constant. Same as N in the discussion of the filter. Default value is NAVG = 6 which gives a filter time constant of 0.25 seconds.

RUN — An integer variable specifying the run number of the data to be processed. The tape is searched until the proper run number is found. Data is then read in and processed until the run number changes.

DATE — An integer array of dimension 3. Used for the date as a character string; i.e., DATE = '24 JUL 75'. Default value is all blanks.

LASANG — A real variable specifying the angle of the laser in degrees from the zenith. $0 \le LASANG \le 48.75$ (the critical angle).

DEPTH - A real variable specifying the depth of the laser in meters.

ALT - A real variable specifying the altitude of the receiver (aircraft) in feet.

OUTPUT DATA. All output from the program is either to the plotter or to the printer. The tracking signal is plotted on the graphs just above the zenith angle axis.

EXTERNAL SUBROUTINES REQUIRED:

AXISM, COPY, HEDING, PHILINE - See discussion of these routines in program DOWNLINK.

OPSAT — A PL/I subroutine to read and decode the raw data tapes. For each call to OPSAT, one logical record is returned. A logical record consists of the time, the settings of the 12 switches, and the values of the 6 data channels. OPSAT also returns the length of the block read from tape and flags for end of record, end of data set, and error.

Figure E-3 represents a program listing on the following 14 pages of the SATCOM UPLINK data reduction.

Figure E-2A. Uplink data filtered with time constant = 0 seconds.

Figure E-2B. Uplink data filtered with time constant = .05 seconds.

Pigure E-2C. Uplink data filtered with time constant = .95 seconds.

SATCH UP, IM. DATA REDUCTION PROCRAM	7 1	UATATE); B SICH-2001; VI+0001; Z	STATEMENT FURTION: STATEMENT FURTION: STATEMENT FURTION: STATEMENT FURTION: STATEMENT FURTION: STATEMENT FURTION: STATEMENT FURTION: STATEMENT FURTION: STATEMENT FURTION: STATEMENT FURTION: STATEMENT FURTION: STATEMENT FURTION: STATEMENT FURTHER THAN X/V	STISTIS, Y YAMMI, IX/YI - 0.5st 1.9 - 1.X/MSIXI 1.1.1 COLUMN THE THEY RETAINS TO SEPARE MADE		
	LOGICAL	REAL		3	3332	
		7. A.			is s	

では、10mmのでは、1

Figure E-3. SATCOM uplink data reduction program listing (sheet 1 of 14).

				- TOPE -	
AEAD ONE SET OF LINUT DATA	11.0-0.1 (10.0 700) CTAIN (51.2 15.0 0 10 740 12.3-51.0 10.0 0 10 740 13.3-51.0 10.0 0 10 740 14.3-51.0 10.0 0 10 740 CEPTI-0.3 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0			TRUE. 1 TAME. 5 AT HR. MIM. SEC. St. GAIA, EGF. EUK. ERACR, LPEC. 61. 23 F. GA. 10 120	 SAVE FIRST TIME FOR THIS AM
	2011-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	February	000000	FIRST FIRST	

Figure E.3. SATCOM uplink data reduction program listing (abert 2 of 14).

or a mer work althought the property of the

-								
		******	\$1		- 11			
	15 kum = ••181	***************************************	E TO DE PROCESSED. FACTUR FUR FILTERS	IN + 1	CAFAC*100.0	N18K + 1	1 mers 1 1-100.0 25 mm = -,104 3 mm = -,104 15.50 mm = -,54-14	
	TIME FUK THIS KUN	ST 1 GD TG [50	FUSED FIEST	76 JH		1. 0 1 KIRK (1. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1	145 HIRK 1/FLOATI MPTS 1 145 TIME FOR THIS MM = 1 166 THE FOR THIS MM = 1 166	60. 3 1 00 10 820 673
	FUND	CONTINUE FIR	30751	FIRST = FALSE-	1514 1514 1514 1514 1514 1514 1514 1514	THE SECTION OF THE SE	CONTRACTOR CARROLL CAR	I TO THE PROPERTY OF THE PARTY
* ***			ادرون	ر. مدد د د د د د د د د د د د د د د د د د د		3	91	3.4

Figure E.3. SATCOM uplink data reduction program listing (sheet 3 of 14).

** \					TRACKING SIGNAL	
	SIGNOSS [1-1] - A. PHART VIKELS - SIGILS S [1-1] - A. PHART VIKELS - SIGILS S [1-1] - A. PHART VIKELS - SIGILS S	THE PITCH AND THE PERCENTAGE OF THE PERCENT AND THE PERCENT AN		1 - 1,APTS.HQUT - (U(1) + V(1) 3/2.0	FILTER THE BOLL ANGLE AND SIFT THE TRACKING SIGNAL	U(1-1) - A.PHAPL U(1-1) - AUL((1)) V(K-1) - A.PHAPL V(K+1) - AUL((K)) V(K-1) - A.PHAPL V(K+1) - AUL((K)) 1.MPTS.MDUT 1.MPTS.MDUT - SYMC((1)
9 S = C X	- 1 C-72 M - 1 C-	30 0+7 0+7 0+7 0+7 0+7 0+7 0+7 0+7 0+7 0+	M (11) (1) (1) (1) (1) (1) (1) (1) (1) (1	300 (100) 987		10, 300 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
, Mr.		page 1				1

Figure E-3. SATCOM uplink data reduction program listing (sheet 4 of 14).

*************	ZENTIH ANGLE			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							HALLE & "F9-L"	EGEES*)	•
	CALIBRATE THE SIGNAL AND COMPUTE THE ZENTIH ANGLE		1. 56.716+PILI 1. 56.051+RILI 5. 56.051+RILI	111 1 1 1 1 1 1 1 1 1	6A1R + 10.0 -LT - 50.0 J ALIM = 50.0 -GT - 85.0 J ALIM = 85.0	1) -CT. ALIN) GO TO 360	15 - 15RST + 1	= 10100 KPTS	10.04 ALIGIOI 4(1) 1 60 TO 400	1611 LE. SHAK 1 GO TU 420	Antiversity viewall sicianaxis since and selected and sel	10x, UNCORRECTED PEAK VALUE = "F61 bearess	
## ST## 1	* * *	ا ا ا ا	RANG = 0	- CHINA - CHIN	340 CENTINUE AL M 1F (AL M 1F (AL M	NATIONAL PROPERTY OF COLUMN AND ADMINISTRACE OF	360 COMINUE 1F61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25.4X 25.42 10.420 11.55	77) 41 77) 41 77) 77 77 77 77 77 77 77	15) 41 15) 41 18 1 007	AZO CUMTINUE CALL HED MAITE (6)		ر.

re E.3. SATCOM uplink data reduction program listing (sheet 5 of 14)

Figure E.3. SATCOM upliesk data reduction program listing (sheet 7 of 14).

中一年時代之前以前一日間 在衛門在衛門等所以為此人有一世以及其中人民民民民民人 有名的名称 聖事 中一年一年

10		- 4	i,	7 . 1	76		AN		4			11.			Ç
		,		j.	``			4	1			1 343°			
					' ·							Y. Y.	1		
-									1					17	
	•							L				י און' מנערטיים			
		•					. '	Ę.		jë e		.9 3 y		1	9
	•	3	S.	·			,5 (50	1		10.00		-	1
]	.0	•	j					0.0	1	* *				2	-
,		ė	1				·	 •	- 1"					9	.
:		· C						·					-	•	
<u> </u>	# 7			·					-	1	_				-0
THE PLOT	**************************************	STACTIFESTI, LPTS. 6.0. 6.0. 0.0.					ļ ·	Ž	Ţ.		٥	_~~~	_	3-	
¥:	. 0		Ì			~	-	POJER BEANG	-2		201			58-	-au
=			i	-N-M	7	7-	7	ER.	1	_ `	ė,			+0	2.3
		-	i	2333	ĘĘ.	33	4	2	X. S. S. S. S. S. S. S. S. S. S. S. S. S.	Ž :	~" 0	-0.4		NE .	
3		15	!	-22	44	44	4	Ţ	3.05	7.5	PX PX	いまい	EXX.		
2	1 51	E	٠	25.5	20	2.1	#	BEA.	3 C - X	3	A HE	X 15			
ž		¥	ı		•			- 1	기보호	#	3.'E	-	E 000		丰
E.		Ś	!	FEEE	II	II	-	F 5	2 3	3	5=	20 mg	:.33?		=E
DRAW THE CURYE AND DOCUMENT	PHILIDE VITESTI: ACTESTI: LPE	D-	;	CIMEN.	98	3-19,	3.40, hT, FPR, ANG	1400		þ					
₩.	VITERST	FRST	;	היוניה	NIN		1	-	775-	17)	90.5	3121	10 AN		3340
<u> </u>				5555	S P	Š	, 0,	ניכן	300		200	-1406	naa.	100	-100
3				THE REAL	# H	1月11年	200	<u> </u>			253	32.30	B		3225
	# 1 ING	PH IN	0	SEE SE	I SE	JE	NE -	TE T			日本の		27		
• •			07,	2222	- I			NA PAR			H WE			S PORT	
		5	1" 23		244				444		\$ 33	333		3533	3533
		•	ENG	10000											4
				ļ				3	ŀ						
ىد	000			ĺ						ł "			4		
 	1			1			-174			1.			4	. , 4.	1
	d.	. "	1	T	. : {		1	. "	1.	. 1		. "	1	1	1

Figure E.3. SATCOM uplink data reduction program listing (sheet 8 of 14).

Figure E-3. SATCOM uplink data reduction program listing (sheet 9 of 14).

		KAR			
				9	
e Alexandra					
	THE ON TAPE 18. THE ON TAPE 18. DATA BETWEEN START AND STOP THE '	RUN S *, 16/1			
i F	TAPE = ",181	THAN 6000 PGINIS FOR RUN S			
¥. E15	ST TIME ON THE	NE THAN 6000		(2)	
10 100 INUE E(&, 805] LA	10x° LM 10x° LM 10 L60 10 L	L MEDING(3 TE(6,480) KN MATEL/10X, NO MATEL/10X, NO			(%)
750 CONT	TANGO DOS DE LA LINE D	3 S S S S S S S S S S S S S S S S S S S	is.		

	! !		- type	3.4	1.797	of the state of	12 探測
PAGE		ALT = 2000,	160				94 94 94 94 94 94
		40-63 .	LASANG = 0,				K ,
76.155		. LASAIG -	500				
	; ; ;	* 50 LED = 40 LED = 40 LED = 30 LED - 30 LED - 50 L					
12/18/21		DATE = 22 - 06PTH = 9 - 06PTH = 4 - 06PTH		; !			
REDUCTION	GRAN UPLEN	RUN BY BY BY BY BY BY BY BY BY BY BY BY BY	22. 22. 22. 22. 22. 22. 22. 23.	!			
SATCON UPLINK DATA REDUCTION	INPUT DATA FOR PROCRAM UPLINK CARD MO.	CINPUL CINPUL CINPUL CINPUL					
5 502 5 502 5	INPUT BAT			2			
						y .	

Figure E-3. SATCOM uplink data reduction program listing (sheet 11 of 14).

Figure E.3. SATCOM uplink data reduction program listing (sheet 12 of 14).

•		\ ".		÷ 4		1000	Ť
PLEE			! ! ;				
74-155	60.0 DEGREES LAIRT		9 DEGREES MACIE = -13.6 DEGREES M 7.5 DEGREES DEGREES				
11/10/57	SECTIONS 40:3 THE FEET 1 2000.	160550 161336 85.6	IN ANCLE = 69. 5.0				
SATCON UPLINE DATA RESUCTION	RUN MO. 6, 22 JUL 1975 11 LET TINE CONSTANT 1 ASER ANGLE = 43.6 DECAREES DEPIN = 18.29 METERS (60.0 A/C ALTITUDE = 610, METERS	FIRST TIME FOR THIS RUN = 16. LAST TIME FOR THIS RUN = 16. 1914 POINTS PROCESSED PERCENT UF TIME TAKKING =	PEAK VALUE = -69.4 DB AT LEM TACTARRECTED PEAK VALUE = -58.1 MALF POMER POINTS AT 52.5 TV UNCCARECTED MALF-POMER PUBMIS NACORACTED ASAMINITY = 33.5				
				v. (5)	k. •		

Figure E.3. SATCOM uplink data reduction program Esting (sheet 13 of 14).

				K A Y	
2 4 4					
Tay.	144	T BECKES			
16.155	EGREES (AIR)	7 PEGREES 39	DEGREES		
17/10/57	XIECUPOS ATERIS - 68.0 2000, FEET 3	1 200 E = 40	7 25.25 49.5 EGREES		
DATA REDUCTION	2. Jul. 1975 10. Secret 11. 10. Secret 11. 10. METERS (10. FILES MAN 162142 PROCESSED 73.6 FILES MAN 162142	ALE-POIER PLIATS EANHIOTH = 24-3			
SATCUN UPLINK DATA RES	RUN NO. 19. 2 FILTER TINE CO FILSER ANGLE " DEFIN " 15.24 A.C. ALTITUDE "	FIRST TIME FOR LAST TIME FOR PERCENT OF THE	HALF PONEN P	-	1.
					page 15 and

APPENDIX F

GENERAL DESCRIPTION OF DOWNLINK PROGRAM

Program DOWNLINK is used to reduce the SATCOM downlink data which was recorded in the quick scan mode. In this mode of operation, a 60 by 60 point scan was made of the photo cathode surface and the resulting 3,600 points, plus seven words of additional information were recorded on magnetic tape in one record. At each depth, a specified number of scans (records) were written onto the tape with the last record followed by a tape mark. The first record of each file contains the seven words of environmental data. The original raw data tapes were copied to prevent loss of data in the event of damage to a tape. All files from a given original tape were written into a single file of the copy. In addition to the original data, each record of the copy contains four words of information giving the tape number, file number, record number, and number of data words from the original tape.

Program DOWNLINK reads certain control information from cards; included in this are the tape and file number to be processed. The input tape is then searched for this data. All data records from the indicated tape and file are read in and averaged. This averaged data is then calibrated and contour plots of the image are generated.

Calibration of the data follows the procedure outlined in Volume II, Section C. Let $S_{x,y}$ be the raw data value recorded on tape for camera coordinates (x, y). Then the calibrated value $Z_{x,y}$ is calculated as

$$Z_{x,y} = \frac{(S_{x,y} + 14)(600)(93)}{G G_D F P_{x,y}} \Delta N_{\lambda}$$
 for $S_{x,y} \neq 0$ (F-1)
 $Z_{x,y} = 0$ for $S_{x,y} = 0$.

Where,

G is the camera gain factor,

GD is the dwell gain factor.

$$G_D = 1 + 11.23D^{1.036}$$

D is the number of turns on the dwell potentiometer.

F is the surface flux in watt-cm⁻²

 ΔN_{λ} is a unit spectral radiance factor as defined in Volume II, Section 3. It has the value

$$\Delta N_{\lambda} = 2.68 \times 10^{-8}$$
 $r^2 \le 898704$ (F-2)

$$\Delta N_{\lambda} = 2.68 \times 10^{-8} + 2 \times 10^{-10} \left(\frac{r^{1.06}}{31.61} - 45 \right) r^2 > 898704$$

where $r^2 = x^2 + y^2$ and x, y are the camera coordinates of each point.

The factor $600/P_{x,y}$ corrects for the variable response over the photo cathode surface. $P_{x,y}$ is a least squares fit to the response of the photo cathode surface with uniform illumination.

The factor 93 accounts for the 93 A bandwidth of the filter.

The term 14 added to the row data corrects for the de bias in the raw data.

The calibrated data is searched to locate the peak, then integrated over circles centered on the peak. These circles are opened up from 5° to 90° in 5° steps. The resulting values are plotted to give integrated loss vs. field of view. The values are also output in tabular form on the printer.

A sample plot generated by this program is shown in figures F-1A and F-1B. A sample of the printed output appears at the end of the program listing.

INPUT DATA. The data to be processed is read from magnetic tape as described above. Control information is read from cards using NAMELIST with name INPUT. The variables to be input from cards are as follows:

- TAPE An integer variable specifying the number of the original raw data tape.
- FILE An integer variable specifying the file number on the original raw data tape.
- GAIN An integer variable specifying the camera gain for the data to be processed. This is a coded value and must be either 0, 1, 2, or 3.
- DWELL A real variable specifying the dwell setting for the data to be processed. This is given as the number of turns of the dwell potentiometer. 0 < DWELL ≤ 10.
- FLUX A real variable specifying the surface flux at the time the data was recorded. Units are watt-cm².
- SIZE A real variable which allows plots of variable size to be generated. The default value is SIZE = 1.0. This produces plots on an 11 inch by 17 inch page. SIZE = 0.5 would reduce the plots to a 5 1/2 inch by 8 1/2 inch page. If SIZE is given a value greater than 1.0, then a request must be made for 30 inch plotter paper. SIZE should not be given a value greater than 2.72 since this would attempt to generate a plot page greater than 30 inches high.
- C TIME An integer array of dimension 5 which may be used to correct the tape time for cases in which the clock was in error when the data were recorded. Default values for this array are all zeros which assumes the clock was correct.
 - C TIME (1) = day correction
 - C TIME (2) = hour correction
 - C TIME (3) = minute correction
 - C TIME (4) = seconds correction
 - C TIME (5) = milliseconds correction

The correction is added to the tape time so that the correction for a clock 1 hour slow would be C TIME = 0, 1, 0,0,0.

DEPTH - A real variable specifying the depth of the camera in meters.

Figure F-1. Sample plot of downlink.

F-1B

F-IA

24 JUN 1975 19:18:40.253 P 19:18:48.693 P

PDT PDT When processing is completed for one set of input data, another set is read, and processing continues. Any number of sets of input data may be stacked for a given job. No special code is required for the last set; the program terminates normally when no more cards are found. Since the input tape is rewound after each set of data is processed, it is not necessary to process the data in the order in which it appears on the tape; and if desired, the same data may be processed more than once.

OUTPUT DATA. All output from the program is either to the plotter or the printer and should be self explanatory. Note that the printer output and plots may be matched by the ID number which appears along the left hand edge of each plot and at the top of each printer page. This ID number is merely the date and time at which the job began.

EXTERNAL SUBROUTINES REQUIRED.

- ALMNAC This subroutine calculates the solar declination and the equation of time for the date and time given. This information is used by the main program to calculate the zenith angle and azimuth of the sun at the time the data were recorded.
- AXISM This routine generates the coordinate axes for the plots. It is a slightly modified version of the CALCOMP routine AXIS.
- BCDBIN This routine converts the tape time from three words of binary coded decimal information to five integer words giving time in days, hours, minutes, seconds, and milliseconds. It also produces a character string giving date and time of day for easy output to the plotter.
- CONTUR This routine generates the contour plots from the 60 × 60 array of tape data.
- COPY This routine copies the input cards to the printer and to a scratch data set for subsequent reading by the main program.
- HEDING This routine keeps track of lines output to the printer and prints a new heading at the top of the next page whenever the current page is filled.
- PHLINE This routine generates the line plot of integrated loss versus field of view. It is a modified version of the CALCOMP routine.

Figure F-2 represents a program listing on the following 21 pages of the DOWNLINK data reduction.

REAL

Figure F-2. Downlink data reduction program listing (sheet 1 of 21).

Figure F-2. Downlink data reduction program listing (sheet 2 of 21).

٠.

.....

Figure F-2. Downlink data reduction program listing (sheet 3 of 21).

2) 24 3

Figure F-2. Downlink data reduction program listing (sheet 4 of 21).

Figure F-2. Downlink data reduction program listing (sheet 5 of 21).

11 - 72.0)**** (V + 205.0)**** 18:1 RSQ	PTOIAL + TEMP	FIELD OF VIEW FI	- J72,0 1-02 - 1 - 1 - 204-0 1-02 - 1 - 1 - 204-0 - 102 - 1 - 1 - 204-0 - 102 - 1 - 204-0 - 102 - 11 - 0.0) AZIR - 340.0 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	ELEY AND AZIN ARE THE ZENITH ANGLE AND AZINUTH OF THE SUN. CONVERT POT TO GAT AZINUTH OF THE SUN. CONVERT POT TO GAT AZINUTH OF THE SUN.	15 in (2) + 7 10	
RSO = SON SON SON SON SON SON SON SON SON SON	200 CONTINUE	PIOIA = 91	# 1 8 1 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		HOUR FRS. HOUR FRS. HOUR FRS. HOUR FRS. HOUR FRS. HOUR FRS. HOUR FRS. HOUR FRS. SIDN FRS. HOUR FRS. HOUR FRS. HOUR FRS. HOUR FRS.	ag:

Figure F.2. Downlink data reduction program listing (sheet 6 of 21).

がき コミント

Figure F-2. Downlink data reduction program listing (sheet 7 of 21).

10x. *V[EW", 26x, "V[EW', 26x, "V[Eh'// 10x, *V[EW", 26x, "V[EW', 26x, "V[Eh'//	FIND MAK-AND MIN FOR PLOTTING.	7.230°1	A(I) -CI- PHAK PHAK = PA(I)	SET SCALE TO TO DO/INCH. SET MAX AND NIN	65 WILL - PRUX, 5-9 J	IF PLOT IS TOO SPALL. INCREASE SIZE BY	M .ET. 3.5 J GO TO 640 LEMO2.0 17.10	FACTOR OF 2	EN 11. 8-1 60 TO 640	
		+ # WING	CONTINUE		ADY = 10		IF (YUE YUE		1F (YUE -YER - 1	CONTINUE
	يىلىنىد	مُن	300		4		,	J UUUU	· · · · ·	99

Figure F-2. Downlink data reduction program listing (sheet 8 of 21).

CALL STREEL 0.2, 2.56, HF, 10AY, 90.0, 3 } FFW = IAR	CALL STRIBUT C.2. 2.05 HT 10 = 0.90.0. 4 1 CALL STRIBUT C.2. 2.35 HT I'M 90.0. 2 1 CALL STRIBUT C.2. 2.49 HT 1.0. 90.0. 1 1	C CALL PINITE PL. PA. 18. 4.5. YIER, 0.0. 0.0. 1. 0. 0. 1. CALL PLOIL - 2-0. 1 YER - 11.0 150.43 1.	300000000000000000000000000000000000000	C C C CORNE INE CURVE AND DOCUMENT THE PLOT	PAI 20] = ALV ************************************	F1(20) = 20.0	900000000000000000000000000000000000000	C + LOAD SCALE FACTORS AND ORIGINS INTO THE #	***************************************	CALL AXISM 0.0, 0.0, FIELD OF VIEW, GEGREES', -22, 4.5, 0.0, 0.0, 0.25, 6	CALL PLOTE 2.0, 1 11.0 - YLEN 1-00-19 YLEN, PO.0.	RESET THE ORIGIN FOR THE PLOT AND ORAN THE *	CALL PLOTE (56, 0.0, 2) CALL PLOTE (56, 0.0, 2)	CALL PLOTE 16.0,	SET THE ORIGIN AND FRAME THE PAGE		CURVE AND DOCUMENT THE PLOT 4.5. VIEW, 0.0, 0.0, 1, 0, 0 1 11.0 100, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
--	---	---	---	---	---	---------------	---	---	---	---	---	--	--	------------------	-----------------------------------	--	--	--

Figure F-2. Downlink data reduction program listing (sheet 9 of 21).

Figure F-2. Downlink data reduction program listing (sheet 10 of 21).

h. 1

+ 1

ED (USS -1, 0.0, 17 b. 20,	0.0° 5 1	I, AXIS THROUGH THE	578-47AAZ -204.8 - YH. 72.9 - XH J DA P. YP. '1, AHLEN, AXAMS, 0.0, 30.0. TIC. 3 J **********************************	
1.3 6.75 HT "SECREES" 0.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	10. 10. 2 4.45; 1.55; HT, HK, G.O 4.45; 6.35; HT, KK, G.O 5.05; 6.95; HT, E.', G.O 6.0; -0.2; HT, FW, O.O 1.37; -0.2; HT, SAKRAE 1.34; -0.2; HT, SAKRAE 1.34; -0.2; HT, SAKRAE	SCALE FROM THE DETICE IRANDIANCE PROFILE PE 1234, C + YO 1/DY 1210 - XO 1/DX	DETRÉMÉTANZE -204.0 - VH. 72.0 - XH B D/DH LP. VP. * ., -1, AHLEN, AXANG, 0.0, 30.0, TIC DATES DESCRIPTION THE TAPE, AND READ NORE IMPUT DATA IF ANY.	
CALL STREET CALL S		**** +	AMIG 57.2 AMIG MESO TIGO CALL AXISEL	REWIND 9 CO TO 100
	JUG	, ,,,, ,,,	00000	2

Figure F-2. Downlink data reduction program listing (sheet 11 of 21).

子 经期代 一次日本

のは、「我のとなっていましての機能を発するとのないのではないないないないできませんというではないないできませんないできません。

•						
***************************************		- END OF JOS ++++	UNIT 9 ****///)	CADS IN THE SPECIFIED FILE *** TAPE SPECIFIED ****///		
	RESSAGES	TE(6, 800) MATIC//3cx, **** EDF ON SYSIN L-PERTI - Er Gr - 999-1	HED 1961 7 3 HELST (1/1/3CX,************************************	E(6, 90) AT(1//2Cx,************************************		
	بىرى	200 HRI		840 HALITA		3 M (3)

rigure F-2. Downlink data reduction program listing (sheet 12 of 21).

and from the second sec

Figure F-2. Downlink data reduction program listing (sheet 13 of 21).

SATCHM DOWN LINK DATA REDUCTION

76.083

PAGE			•	1055 06	1.04mm, 4.05%
m			GEGREES AZIMUTH DEGREES AZIMUTH	FIELD OF VIEW	4464 4464 6464
76.063		255 251	283.5	1055 UB	20.50 20.50 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.3
IUN 14/4/23	0, FEE S WW/CM SQ 0, FEE S	1975 19:07:32.05 1 1975 19:07:37.135	IRAALIANCE Prak AI 52.2 DEGREFS ZENITH ANGLE, 283.5 DEGREES AZINUTH SIM AI 79.4 DEGREES ZENITH ANGLE, 291.2 DEGREES AZINUTH	FIELO L UF VIEW	0.
SATCUM USAN EINK DATA REPUCTION	MINUSPEED = -0. MPN. DEGREES MIND DIRECTION = -1. DEGREES XTILT = -0.0 DEGREES FLUX DENSITY = -0.0 JULE-17 MW/CM SQ PLUX DENSITY = -0.0 JULE-17 MW/CM SQ DEPTH = 3.0 MLTEAS (10.0 FEET)	TIME UF FIRST SCAN = 24 JUN TIME UF LAST SCAN = 24 JUN 5 SCANS AVERAGED	E Prak AI 52.2 UES	L055	
SATCUM BIS	MINUSPEED WIND DIRE WILLI = VILLI = FLUX DENS DEPIH =	TIME OF F TIME OF L	IRAALIANC	FIELD OF VIEW	Sevano Se

PAGE				1055 108	-1-0-22 0-1-0-22 0-1-1-0-22 0-1-1-0-22 0-1-1-0-22
			DEGREES AZIMUTH DEGREES AZIMUTH	FIELD OF VIEW	ಸಭಕ್ತಿಸುತ್ತ
76.063		136 215	287.9	1055 08	-3-05 0-16 0-91 1-24 1-31
8 14/44/25	S COM SG FEET &	1975 19:09:59.136 1975 19:10:04:215	50.0 DESPEES ZENITH ANGLE, 267.9 DEGREES AZINUTH 79.8 DEGREES ZENITH ANGLE, 291.4 DEGREES AZINUTH	FIELD L	25. 25. 25. 25. 25. 25.
SATCUM DJAN LINK DATA REDUCTIUN	MINDSPEED = -0. MPH WIND DIRECTION = -1. UKGREES TILT = -0.0 DEGREES TILT = -0.0 DEGREES FLUX DENSITY = -9.091E07 PW/CM SQ UEPTH = 0.1 METERS (20.0 FEET)	24 JUN 24 JUN	FAK AT 50.0 DESPEI SUR AT 79.8 DEGREI	105S	0.00 0.30 0.31 0.31 0.31
SATCUM DJEN	MINJSPEED = MIND DIRECTI XI	TIME OF FIRST SCAN # TIME OF LAST SCAN # 5 SCANS AVEKASED	IRRADIANCE PFAK AT SUN AT	FIELD OF VIE	85 70°5°

^			د,		
PALF				1055 06	#10000
٠,			BEGREES AZIMUTH BEGREES AZIMUTH	F 1ELD OF VIEW	12.43.45 40.43.45
for Jr		247.	36.98	90 580	-5-36 -1-36 -0-41 -0-11
14/44/53		19:10:46.145 19:10:46.145	ITH ANGLE.		11111
F 1 2 2	FRUKERS -UT MAZER SE	NS 1975 NS 1975	Eupeps Zen Eureps Zen	FIELD OF VIEW	9.44×2.2
STRUM PAGE FRE DELA PLUM, INST	**INDSTITED = -0, MPH** **********************************	TIME OF FERT SCAM = 24 JUN 1975 TIME OF LAST JUN = 44 JUN 1975 5 SCANS AVERGED	IPPADIANCE PEAR AT 53.4 LEUPEFS ZENITH ANGLE; 296.9 DEGREES AZINUTH SULLE; 291.6 ULGREES AZINUTH	1655 66	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5
	MINDSTED MIND CLAFE XTILL = YTILL = FLUX DEASI	TIME OF FE	IPPADIANC:	FIFUS OF VIEW	, 0, 1, 1, 1, 1

•	,				
	,		DEGREES AZINUTH DEGREES AZINUTH	FIELD OF VIEW	2444 2446 2464 2464 2464 2464 2464 2464
76.083		23	283.5	580 088	
14/44/23	05 H3	75 19:13:07.780 75 19:13:12.800	DEGREES ZENITH ANGLE, DEGREES ZENITH ANGLE,	FIELD OF VIEW	0.00000 0.00000 0.00000000000000000000
EDUCT LINE	DESREES F-07 ME/C	52 51 NOT 57	2 DEGREE 6 OFGREE	u->	
SATCOR DOWN LINK DATA REDUCTION	SPEED = -3. MPH DESREES 1 = -0.0 DEGREES 1 = -0.0 DEGREES	I SCAN = SCAN = AVERAGED	PEAK AT 52.2 SUN AT 83.6	1055 08	13.45.0 1.45.0 1.45.0 1.45.0
SATCOR DOK	MINDSPEED MIND DIREC XIII = YIII = FLUX DENSI DEPIH =	TIME OF FIRST TIME OF LAST	IRRADIANCE PEAK AT SUM AT	FIELD OF VIEL	10 10 10 0 10 10 10 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1

7805				1058 68	-9-14 -2-49 -2-68 -1-17
			IPRADIANCE PEAK AT 52.2 DEGREES ZENITH ANGLE: 283.5 DEGREES AZIMUTH SUN AT 81.0 DEGREES ZENITH ANGLE: 492.2 LEUMERS AZIMUTM	FIELO OF VÍEV	744358
76.063		.230 958	283.5	00 00 00 00	-12.15 -6-26 -4-45 -3-34 -2-55
14/44/23	3 <u>-</u>	19:15:49.230 19:15:49.230	TENITH ANGLE.		2000 2000 2000 2000 2000 2000 2000 200
REDUCT IN	. UFJAEFS IE-07 MY/CP (50.0 FEET	24 JUN 1975 24 JUN 1975	.2 DEGREES	FIELD	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
SATCIJA DIMM LITAK DATA REDUCTĪJĀS	MINDSPEED = -3, WPH MIND DIRECTIFN = -0, DFJREFS MILL	TIME UF FIRST SCAN = 24 JUN IIME IN LAST SCAN = 24 JUN I SCANS AVFAGED	PEAK AT 52 SUN AT 81	80 082	16.55 14.55 18.55 18.55
SATCOM DIN	MINDSPED MIND DIREC MILL * YILL * FLUX DENSE	THE UP ELLINE OF LA	IPRADIANCE	FIELU OF VIEW	7.7.7.4.0 4.0.4.0.4.0

SATGUM JUAN LINN DATA REDUCTION MINDSPEED = -U. MPH MINDSPEED = -U. MPH MINDSPEED = -U. DEGREES	14/44/23 76.063	m	PAGE 8
### ### ### ##########################	1 50 1 5 1 5 1 6:17:51 400 19:17:51 458		
DEGKEES	IRRADIANCE PEAK AT 45.3 DEGREES ZENITH ANGLE, 281.5	292.4 DEGREES AZINUTH	
E.2	FIELD LUSS 06 D6 VIEW	FIELU OF VIEW	1055 10
	1015.20 2518.63 505.18 704.34	ಸ್ಥಾಪ್ತಿಕ್ಕಾ <u>ಕ</u>	10°5- 10°5- 11°5- 11°5- 11°5-

PAGE 9			۵	ress oe oe	10.43 -10.43 -1.05
			EGREES AZIMUTH	riero Gr Viev	
3 75.083		19:16:43.23 19:16:48.093	GLE: 236.5 D	1.055 06	-11. -11. -11. -13. -4. -1. -4. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1
ICH 14/44/23	FES MW/CM SQ U FET 1		REES ZENITH AN	FIELD UF VIEW	50000 0000 0000 0000 0000 0000 0000 00
SATCOM DOWN LIME DATA REGUETION	MINGSPEED = -0. MPH DEGREES WINLT = -0. DEGREES VILL = -0. DEGREES VILL = -0. DEGREES FLUX FENSING BETT SQUEED WALCH SQUEEN = -1.0.0 PEET S	RSI SCAN = 24 JUN 1975 ST SCAN = 24 JUN 1975 S AVEKAGED	IPRADIANCE PEAK AF 43.3 DEGREES ZENITH ANGLE: 236.5 DEGREES AZIHUTH Sun at mi.G degrees Zenith Angle: 292.6 Degrees Azimuth	£:35	7, -7, -1 -1, -6, -4, -6, -4, -6, -4, -6, -4, -6, -4, -4, -6, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4
SATCOM SOL	MINOSPEES STATEMENT OF A THE TENT OF A THE T	TIME OF FIRST SCAN = TIME OF LAST SCAN = 5 SCANS AVENAGED	IPRADÍANCE	FIELD	400000 000000

APPENDIX G

GENERAL DESCRIPTION OF SLICE PROGRAM

Program SLICE is similar to DOWNLINK and processes the same data. The difference is that instead of a contour plot of the data array, SLICE generates a plot of a cross section of the contours along a specified azimuth angle. The data are read from tape and averaged exactly as in DOWNLINK. The azimuth of each point in the array is calculated and compared to specified limits. If it falls within these limits the value is calibrated, its zenith angle calculated, and the calibrated value and zenith angle are saved. If the azimuth of the point falls outside the specified limits it is ignored. When all points have been examined, those saved are sorted into increasing zenith angle order and a plot of radiance loss vs. zenith angle is generated.

It is necessary to specify limits around the desired azimuth angle, since it is probable that no point will have exactly the desired azimuth. A more elegant method would have been to utilize an interpolation scheme to obtain values at exactly the required azimuth, but this seemed to be an unnecessary complication. Azimuth limits of any width may be specified, but experience suggests that the desired value $\pm 2.1/2$ degrees produces good results.

A sample plot generated by the program is shown in figure G-1 and a sample of the printed output appears at the end of the program listing.

INPUT DATA. The camera data to be processed is read from magnetic tape as described for program DOWNLINK. Control information is read from cards. All variables defined for DOWNLINK also apply to program SLICE.

In addition, the following variables are required:

AZL1, AZL2, AZL3, AZL4 real variables specifying the azimuth limits in degrees. The restrictions are AZL1 < AZL2, AZL3 < AZL4, and 0 < AZL1, AZL2, AZL3, AZL4 < 360. Example: to obtain a cross section along the azimuth 215 degrees, specify

AZL1 = 212.5, AZL2 = 217.5, AZL3 = 32.5, AZL4 = 37.5,

The values AZL1 = 32.5, AZL2 = 37.5, AZL3 = 212.5, AZL4 = 217.5, would produce the same results except that the resulting cross section plot would be reversed left-to-right.

As a general rule use,

AZL1 = A-2.5, AZL2 = A + 2.5, $AZL3 = AZL1 \pm 180$, $AZL4 = AZL2 \pm 180$.

All cards are read from NAMELIST name INPUT. Any number of sets of data may be stacked for a given job. Processing continues until no more cards are found.

OUTPUT DATA. All output is either to the printer or the plotter. Examples have been cited above and should be self-explanatory.

Lagrand and the total of the state of the st

24 JUN 1975 11:11:55.556 PDT 11:11:59.323 PDT

PERK TENJIH ANOLE = 19.0 DEGREES AZIMUTH = 208.0 DEGREES

SUN ZENITH ANGLE = 25.1 DEGREES AZIMUTH = 108.7 DEGREES

DEPTH = 3.0 METERS (10 FEET)

Figure G-1. Sample plot from program SLICE.

EXTERNAL SUBROUTINES REQUIRED. Same as for program DOWNLINK except for CONTUR which is not required.

Figure G-2 represents a program listing on the following 14 pages of the SLICE data reduction.

	MAIN PREGRAM FOR STACON UNDERNATER CANERA		INTEGER IDATA[4096], FLACS1200], FRSTM[5], ALPHAITEJ, CAIM, FILE, LASIM(5), ALPHAZ(6), TAPE, CAIM, FILE, LASIM(5), ALPHAZ(6), TAPE, CTIME(5) / 500 /	HEALOW DAY, DEC. EURI	#EME. 00114160.601. BUFFER(4096), AR(3), PA(20).	8 35-0, 40-0, 45-0, 50-0, 55-0, 60-0, 65-0, 60-0, 65-0, 60-0, 65-0, 60-0, 65-0, 60-0, 65-0, 60-0, 65-0, 60-0, 65-0, 60-0, 65-0, 60-0, 65-0, 60-0, 65-0, 60-0, 65-0, 60-0, 65-0, 60-0	A / 5.0250E+2/, A2 / 1.244TE-1/, A3 /-6.1724E-2/, A4 /-1.2029E-5/,	A 7-1-220H-3/- Ab /-1-2011-3/- AP /-6-871H-9/- AI0/-9-6330E-9/-	COMMEN / LUNG/ LYR, LDAY, LHR, MIN, 1SEC	MARCHEST / JIMPUT/ MODE, AR. SIZE, GAIM, DWELL, FILE, PLUI, TAPE, DEPIN, CTIME, ALLL, ALLS, ALLS, ALLS,	CSIINTIA,YI = Yeck/Y>, MERE CX/Y> IS THE LARGESTS	15 MUL GREATER	\$511MIL X. V. J. = V*ALMIT. (N/V) = 0.591 1.0 = (1/ABS(I)) 1 1	CALL CGPY(8, £780)	OPEN & INITIALIZE THE PLOTTER	***************************************	CALL PLOTS! BUFFER, 4096, 99 &
24	ال)							3		بالمال		•	ب ن	, ,		, u

Figure G-2. SLICE data reduction program listing (sheet 1 of 14).

DEFAULT VALUES		ATA			BRATION FACTOR AND	0.,		TO ZEADES
*** INITIALIZE VARIABLES TO DEFAULT VALUES************************************		AEAD UNF SET OF INPUT CATA	KEABIBLIKPUT. END= 7301 121111211121112111E111211111111111111	CALL FALURI SIZE)	CALCULATE PARTIAL CALIBRATION FACTOR AND	EFGAIN+13 EFGAIN+13 EFGAIN+13 E 5.58t4/FMP 10.0*ALOGIO(2.094E-5/FEMP)	= 3.0 = ZERO + 4.0 M = DEFTH=0.30+8	* INITIALIZE DATA ARANY TO ZEROES * INITIALIZE FRAME COUNT TO ZERO
٠	512E = 1.0 FLUE = 0.0	٠	S S S S S S S S S S S S S S S S S S S	CALL	9 0000	CSUBD CSUBD CALFA CALFA CALFA CALFA		

Figure Coll. SLIKE data retixation program listing (sheet 2 of 14).

ATA(1.3) = 0.0 ITIMUE IN E	***************************************	* READ A RECORD FROM THE DATA LAFE	REAUTO, END-820) ITAPE, IFILE, IREC, N. (IDATALI), I-1,N)	CHECK FOR CORRECT TAPE AND FILE NUMBER		N = 7 = 5 ENVIRONMENTAL MECING - DECIDE AND PAINT .	TBATALL1720-47 1 - 10ATAL1720-47 1 - 10ATAL1720-47 1 - 10ATAL1777-12	HEDING (0) HEDING (1)	TONCE NEWER, TXTP PATA RECORD. IF NOT THE CORRECT NEWERLY TYPE PATA RECORD.
DATA CONTINUE 120 CONTINUE	٥٠١	ودو	JOO REAUIO,E		11111	٠	29x1	THE CALL HE STATE OF THE STATE	200 CO CONTINUE

Figure G-2. SLICE data reduction program listing (sheet 3 of 14).

3607) GO TO 160	M - 1 - 50 TO 240	27/314-1593 44 10474, FRSTM, ALPHAL, CTIME, 6220 1	TIME ENUM. IN THIS RECURD - SKIP IT MID BECKENENT SCAN COUNT BECKENENT SCAN COUNT 1		TE TOWN, CASTO, ALPHAZ, LTINE, K220 J TO SOCIALIZACION SCHOOL SC	60 + 1 + 7 + 1 DATA(KQ)
091 01 09 (1098 380 M) 31 3	MSCAN = NSCAN + 1 J K NSCAN +	220 CONTINUE CALL SCUBING IDATA. CALL SCUBING IDATA. CALL SCUBING IDATA. CALL SCUBING IDATA.	NSCAN = NSCAN - 1	2.0 CONTINUE TO TAIL T	CALL BURNEY TONING	2 00 2 0 1 = 1.60 1 = 61 1 = 1.60 1 = 1.40 1 = 1.13 % 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure G-2. SLICE data reduction program listing (sheet 4 of 14).

Figure G-2. SLICE data reduction program listing (sheet 5 of 14).

P. 15, THE PHOTOCATHODE RESPONSIVITY	15.0 1*2.06-10		OR 750		111 ANGLE AND 111 ANGLE AND 111 ANGLE AND 11 POI TO GAT	
POKSI VITY	19:18	10.04ALUGIOI TEMP 7	CORRECT TOTAL POWER FOR SCAN RESOLUTION AND FIELD OF VIEW	25 00 00	ENTH ANGLE INTRODUCE TO THE LANGUE ANGLE A	
P IS THE PHOTOCATHODE RESPONSIVITY	(Y + 205-0 Jee2) Dett. = 2-68E) Dett. = 2-68E (Rect. = 06)/	11.11 = ZERO	CORECT TOTAL POWER FOR SCAN RESOLUTIFIED OF VIEW	19255-4 10	ELEY AND AZIN ARE THE ZENTIN AZINUTH, RESPECTIVELY THE ZENTIN PEAK, NOW CACCULATE THE ZENTI AZINUTH OF THE SUM. CONFERT) 10 440 FRSTM(3)/1440-0 DEC. EOM!)
IS THE PHOTO	8.96704E5 B.96704E5 B.9670	0.0 1 DATA 0.0 3 DATA	CORRECT TOTAL	1001 2 3025E	ELEY AND AZ PAZINUTH RE AZINUTH UF	11121 + 1 GO TO ++0 24
	50 = 1X - 72 5	MAX = 1EM PTO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A = FIUIAL = 160 - 170 -		FRSTMILL MUUR LI MUUR LI E DAY E DAY E DAY E HOD
و المالية	222	300 300 954 11 12 12 12 12 12 12 12 12 12 12 12 12	دادودو		النونون	
	1,11		ر انتوار نو		. A	

Figure G-2. SLICE data reduction program listing (sheet 6 of 14).

The state of the s

String

Figure G-2. SLICE data reduction program listing (sheet 7 of 14).

SOLT POINTS IN ORDER OF INCREASING ZERITH **	CALL HEDING(3) UNITE 16,5137 LU FORMATI/104.16." POINTS FOUND WITHIN AZIMUTH LIMITS"/) LG - 10 - 36 - 10 - 515 AZII = AZII - 0.5	ALL 2 ALL 2 4 0.5 IF (AZL 2 - AZL) - GT - 5.0 J STOP AZL 3 - AZL 4 - 0.5 AZL 4 - 0.5 AZL 4 0.5 CON 10 470 D 540 1 - 11001	LPL		FIND MAXIMUM DATA POINT ALONG THE SLICE		NAKE PLOT LINIT A MUTIPLE OF 10 00
	916	86	838	*			

Figure G-2. SLICE data reduction program listing (sheet 8 of 14).

IF (2Max -ME. 3.0) 2Max = -6571MT(-2Max, 10.0)	LOAD PLOTTING PARAMETERS INTO THE ARRAYS	34 [CE [C+2] = 2018 24 [CE [C+2] = 50.0 24 [CE [C+2] = 30.0	SET PLOTTER ORIGIN AND FRANCE THE PAGE	CALL PLOT 0.5, -11.0, -3.1 CALL PLOT 0.5, 11.3, 2.1 CALL PLOT 0.5, 2.3 CALL PLOT 0.5, 2.3 CALL PLOT 1.5, -3.1	CRAM THE AXES AND FRAME THE PLOT	CALL AXISH 0.0 0.0, "ZENITH ANGLE, DECREES", -21, 6.0, 0.0, 0.0, 20, 2, 0.0, 0.0, 0.0, 0.0,	TALL FLUIT 6-01 2-01 2 1	CALL PHEINE! Z. SLICE: LQ. 6-0. 6-0. 0.0. 0.0. 1. 0. 0. 2. 2. 2. 2. 3. HI. 10. 2. 2. 3. 3. 4. 2. 3. 3. 2. 3. 3. 4. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.
-	ب د اب		بنون		,000		3000	و ماداد

pure G-2. SLKE data reduction program listing (sheet 9 of 14).

# MESS	•
دون	ںد
	237020000000000000000000000000000000000

Figure G-2. SLICE data reduction program listing (sheet 10 of 14).

教育の大学では、これのでは、日本のでは、これのでは、これのでは、これのでは、これのことでは、これのことでは、これのことでは、これのことでは、これのでは、これのことでは、これのことでは、これのことでは、

Figure G-2. SLICE data reduction program listing (sheet 11 of 14).

F 5 . . .

7 }

1 }

Figure G-2. SLICE data reduction program listing (sheet 12 of 14).

では近世地

N	,•					
PAGE					•	
		j				
				1. (A)		
	1					
-		 				
76-101						
	:					
4 /61/1						
P	ĭ					
1	5 .					
	- 4140	,				
	X X					
	SATCON BOMR LINK SLICE DAIN REMULTION			ľ		
	5					
	3,	1 1		}	1	1 "

Figure G-2. SLICE data reduction program listing (sheet 13 of 14).

~ !

3482							M. W	
			AZ LINUTH AZ INUTH			,		
76-161		*S	209.0 DEGREES 166.7 DEGREES					
764/1	3-	11:11:55-55. 11:11:59-32	ENITH ANGLE.	LIMITS				
SATCON DOWN LINK SLICE DATA REDUCTION	DECREES FOR MUCH SQ NETER 1	24 JUN 1975 24 JUN 1975	19.0 DEGREES ZENITH ANGLE, 25.1 DEGREES ZENITH ANGLE,	87 POINTS FOUND MITHIN AZINGTH LINITS				
IN LINK SLIC	CT 100 -6 MPH 110 DECREE -5.5 DECREE 117 # 9.0	IRST SCAN = NST SCAN = NS AVERAGED	IRRADIANCE PEAK AF	JINTS FOUND			,	
SATCON BO	MINOSPEED MINO-DIRE MILL ** TILL ** FLUX DENS	11	IRRADÍAM	2 2). 33

APPENDIX H

GENERAL DESCRIPTION OF AUTOMATIC HEMISPHERICAL SCAN PROGRAM

This program is similar to DOWNLINK but is used to reduce SATCOM data recorded in the full scan mode. In this mode of operation, the photo cathode was divided into three different regions which were scanned with a different point density in each region. Figure H-1 illustrates the scan areas. The center square was sampled with ΔX , $\Delta Y = 20$, the outer square with ΔX , $\Delta Y = 80$. Since the contour plotting routine requires a rectangular array of data with constant ΔX and constant ΔY , it is necessary to interpolate values to produce a constant ΔX , $\Delta Y = 20$. The result is a 185 by 185 point array. Points outside the circular area actually scanned are set to zero.

Except for the differences in bookkeeping to read the data and the interpolation scheme required, the program is the same as DOWNLINK. The same input is required and the same output is produced. A sample plot is shown in figures H-2A and H-2B, and the printer output appears at the end of the program listing.

INPUT DATA. Same as program DOWNLINK.

OUTPUT DATA. Same as program DOWNLINK.

EXTERNAL SUBROUTINES REQUIRED. Automatic Hemispherical Scan uses all the subroutines used by DOWNLINK plus the following:

DENNIS — This subroutine handles the bookkeeping required in reading the camera data from tape and loading it into the data matrix in the proper location. There are actually three versions of this routine to handle three different modes of recording the camera data. In some cases of data recording, each of the three regions of the image were scanned four times; once at each of the four possible camera gain settings. Thus, the data are recorded as four scans of region 1 followed by four scans of region 2, followed by four scans of region 3. The version of DENNIS for this case will retain for processing only one scan of each region. The scan processed is the highest gain which did not cause saturation of the A-D converter. If the lowest gain saturated the converter, that data is kept and a message is written to the printer to warn of the saturation condition. At other times, only two scans were made of each region, and at still other times, only one scan of each region. Separate versions of DENNIS handle each of these cases and some care is required to insure that the correct version is used for the data to be processed.

Figure H-1. Scanning regions.

这种是这种的一种,我们就是这种的人,我们就是一个人的人,我们就是一个人的人,我们就是一个人的人的人,也是一个人的人的人,也是一个人的人的人,也是一个人的人的人,也

Figure H-2. Sample plot from automatic hemispherical scan program.

で、大学の上のないから、大学を選集を対象を対象をある。 これにいいないないなど、ないないなどをとないないといいないといっているというというというというというというというというというというというというと

- INTERP This routine calibrates the data read in by DENNIS, and interpolates values in the two outer regions so that the resulting data array has the same density of points in these regions as in region 1. Calibration follows the procedure described in DOWNLINK.
- UWCAM This is a PL/I subroutine which reads the raw data tape, checks for errors and determines the length of each record read. The data, the length of the record, an error flag, and an end of data set flag are returned to the calling program.

Figure H-3 represents a program listing on 8 pages of the Automatic Hemispherical Scan data reduction.

Figure H-3. Automatic hemispherical scan data reduction program listing (sheet 1 of 8).

\$0000000000000000000000000000000000000	######################################	
=	1F (VLEM .LT. 8.1) G) TO 660 VEF - VEW/2.0 60 TO 640 CONTINUE CONTINUE	
35733 	CALL PLOT 10.011.01 -2 -	

Figure H-3. Automatic hemispherical scan data reduction program listing (sheet 2 of 8).

CALL AXISMI 0.0.0 11.0 THEM 13.4.5 DO. 19, WIEN. 90.0. CALL AXISMI 0.0.0 0.0. THYEGATED LISS. DO. 19, WIEN. 90.0. CALL AXISMI 0.0.0 0.0. THYEGATED LISS. DO. 19, WIEN. 90.0. CALL AXISMI 0.0.0 0.0. THYEGATED LISS. DO. 19, WIEN. 90.0. MILED DO. 10.0 1.0. THYEGATED LISS. DO. 19, WIEN. 90.0. MILED DO. 10.0 1.0. THYEGATED LISS. DO. 10.0. 10.0. MILED DO. 10.0 1.0. THYEGATED LISS. DO. 10.0. 10.0. MILED DO. 10.0 1.0. THYEGATED LISS. THYE PLOT CALL MILED TO. 10.0 1.0. THYEGATED LISS. THYE PLOT CALL STORM 0.2. 2.92 HT. 10.0 1.0. 1.0. 1.0. CALL MILED TO. 2. 3.19 HT. 10.0 1.0. 1.0. CALL MILED TO. 2. 3.19 HT. 10.0 1.0. 1.0. CALL STORM 0.2. 3.19 HT. 10.0 1.0. CALL STORM 0.2. 3.10 HT. 10.0 1.0. CALL STORM 0								
Call Ax Call	MESST THE ORIGIN FOR THE PLOT AND DRAW THE	2.0, [11.0 - YLEN 1*0.4, -3) 0.0, 0.0. [11.6 - YLEN 1*0.4, -3) 0.0, 0.0. [14.56AAY, 2] 0.0, 0.0, FIFED OF VIEW, DECREES, -22, 4.5, 0.0, 0.0, 30.0, 7.25, 6)	LOAD SCALE FACTORS AND ORIGINS INTO THE PLOT TRANSFER CONTINUES OF THE PLOT TRANSFER CONTINUES OF THE PROPERTY CONTINUES O	114 174 184 184 184 184 184 184 184 184 184 18	DRAN THE CURVE AND DOCUMENT THE PLOT	2.35 HT IN 2.55 HT IN 3.12. HT 50	3.19. HT. FPM, 90 3.33. HT. **, 90 10.25. 0.14. ALPH 9.85. 0.14. ALPH	***************************************
		CALL AXISM		PA(19) - PA	CALL PRESU		0.00 mm mm mm mm mm mm mm mm mm mm mm mm m	

Figure H-3. Automatic hemisphesical scan data reduction program listing (sheet 3 of 8).

.:			Property of			
					3	t i
***		***			64.7.38	
				(*) (*) (*)	14	
				-	11	
		4 9 7	4	5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.5	0.0.
THE PLUTTER ORIGIN AND FRAME THE FORTING PLUTS.	1 : 2		4			
O FRA		00C#				
THE PLOTTER DRIGIN AND FRAME FORMER PRAME CONTINUE PLOTS			TATE OF THE STATE	7.00 P. C. C. C. C. C. C. C. C. C. C. C. C. C.	**************************************	PTM **
R GRIC		ONTOU BEEN			TO BOTH	2-0-0-0-
7. 97. F.		¥ 2 2	25. THE SOURCE STATE OF TH	23.23.33. 23.23.23.33.33.33.33.33.33.33.33.33.33.3	CASE SAN	CHETETEL.
THE	9900	9 5 1 2 7 1	Dr. Correction of the correcti		446 446	44466446
		CONTURE 2 185				
		191	54450 54450 54450 54450 84450 84450	NACES OF STREET	PAN SAN SAN SAN SAN SAN SAN SAN SAN SAN S	THE PARTY OF THE P
	13235	Catt		23233335		
OUUL		المناس				
		1 (A)				

Figure H-3. Automatic hemispherical scan data reduction program listing (sheet 4 of 8).

j	1		t of	1	17.54		1 1 1	
:								
				3 1				
			<u> </u>	.0				
			7 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	30				
	man.			XAME.		5		
	000			- 49, 394 - RP Anen, axane,		- 50		
	11					EDF 74 SYSIR - EVD RF		
•	NEW 1	6.45		295780474821 you1.	RESAGES	F0F 7		
	*****	5.05	i i	2057				
	14 E & C	STABLE		AXE C		F16, 800 NT (///)		
		27		2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
4		· u	:	u		200		
11.00	1			24		1. 3		

Figure H-3. Automatic hemispherical scan data reduction program listing (sheet 5 of 8).

好意では有限者機械 八八のこころり

IMPAT DATA FCH PROGRAM SATCOM DUMN LINK

CARD NG.

SATEGN DEAM LINK DATA REDUCTION

DWELL = 0.25, FLUX = 1.026-3, DEFTH = 70.

DEFTH = 80.

OWELL = 0.25. PLUX = 9.7E-6.

LIMPUT 4, FILE = 2, I LEND LEND LIMPE = 0, FILE = 3, G LEND

H-10

Figure H-3. Automostic hemispherical scan data reduction program listing (sheet 6 of 8).

- :

1

1

1

Account National or which is

76.107

Figure H-3. Automatic hemispherical scan data reduction program listing (sheet 8 of 8).

APPENDIX I

GENERAL DESCRIPTION OF DOWNMODEL

This program is used to evaluate two of the integrals in Appendix A. The first section of the program calculates and stores functions which are common to both integrals. The different integrals are evaluated in subsequent sections of the program. Evaluation of either or both integrals is selected by program input. The first of the integrals which may be evaluated is

$$I(x, y, z, \gamma'_{x}, \gamma'_{y}) = f_{1} + \iint_{\mathbb{R}} \left\{ (1 - e^{-\theta z} - A)\Delta I + A\Delta I \Big| \overline{\theta^{2}} = \overline{\theta_{eff}^{2}} \right\} dx_{0} dy_{0}$$
 (1-1)

where ΔI is defined in equations (43) through (46) of Appendix A.

The term f is given by

$$f_1 = \frac{1}{2\pi(\theta_1^2 + \theta_0^2)} \exp \left[-(a+s)z \sec \sqrt{\gamma_X^2 + \gamma_y^2} - \frac{(\gamma_X' - \overline{\gamma_X})^2 + (\gamma_y' - \overline{\gamma_g})^2}{2(\sigma_1^2 + \theta_0)} \right]$$
 (I-2)

where.

$$\sigma_1^2 = \left[\left(\frac{e_1}{2} \right)^2 + \left(\frac{e_2}{2} \right)^2 + \left(1 - \frac{n}{n'} \right) var(R) \right]. \tag{1-3}$$

e₁ is the angular diameter of the source,

e2 is the angular diameter of the receiver field of view,

 θ_0^2 = variance of source distribution at the surface.

The term A is defined as

$$A = .255(sz')exp^{-sz'2.31}.$$
 (1-4)

The notation $A\Delta I_{\theta^2=\theta_{eff}^2}$ means that this integration is performed with A and ΔI evaluated at an effective value of θ^2 . This is accomplished by multiplying the original θ^2 by

$$\overline{\theta^2} = \frac{1}{36} \log \left\{ \frac{\exp(sz'/\sqrt{1+9/sz'}) - 1}{\exp(sz'/\sqrt{1+81/sz'}) - 1} \right\}.$$
 (I-5)

The calculations are further generalized to allow the water properties a, s, and θ^2 to be functions of the depth. This is done by dividing the water into n layers of arbitrary thickness. The top of the ith layer is at depth z_{i-1} and the bottom of this layer is at depth z_i . The water in this layer is assigned a scattering coefficient s_i , an attenuation coefficient s_i , and a variance in $f(\theta)$ of θ_i^2 , z' is defined by

$$z' = \left[z_n^2 + (x - x_0)^2 + (y - y_0)^2\right]^{1/2}$$

Then the terms az', sz', (a + s)z', $s\theta^2z'$, and $s\theta^2z'^3$ in the original equations are replaced by the following terms respectively

$$\frac{z'}{z_n}\sum_{i=1}^n a_i dz_i, \qquad (I-6)$$

$$\frac{z'}{z_n}\sum_{i=1}^n s_i dz_i, \qquad (I-7)$$

$$\frac{z'}{z_n} \sum_{i=1}^n (a_i + s_i) dz_i , \qquad (I-8)$$

$$\frac{z'}{z_n} \sum_{i=1}^n s_i \frac{\overline{\theta_i^2}}{\theta_i^2} dz_i, \qquad (1-9)$$

$$\left(\frac{z'}{\overline{z_n}}\right)^3 \sum_{i=1}^n s_i \, \overline{\theta_i^2} \left(z_i^3 - z_{i-1}^3\right),$$

where

$$dz_i = z_i - z_{i-1}$$
 (1-10)

Also evaluated by this program is the integral

$$I(x, y, z, \Omega) = \iint_{\mathbb{R}} \left\{ (1 - e^{-9Z'}A)\Delta I^{+} + A\Delta I^{+} \right\} \frac{1}{\theta^{2} = \theta_{eff}^{2}} dx_{0} dy_{0}$$
 (1-11)

where Δl^* is the integral in equation (52) of Appendix A. In both integrals, the region of integration R is defined by

$$-5/3 z_{n} < x_{o} < 5/3 z_{n}$$

$$-4/3 z_{n} < y_{o} < 4/3 z_{n}.$$
(I-12)

The program has the option of blanking out a region in the $x_0 - y_0$ plane corresponding to the location of the barge used in the experiment. The shadow of the pipe holding the camera platform will also be considered if this option is selected.

As part of the input data, the program requires the date and time (PDT). This information is used to compute the azimuth and zenith angle of the sun, and the x_0 , y_0 coordinate system is oriented so that the $+x_0$ axis is directed toward the sun. The known orientation of the barge, camera, and sun are used to define a coordinate transformation from $x_0 - y_0$ to x'' - y'' with the x'' - y'' coordinates having the origin at the corner of the barge, and -x'' axis along one end with -y'' axis along one side of the barge. This transformation is used to simplify the determination of whether or not points in R fall on the barge or not. The relationship of the barge, camera, and various coordinate systems are illustrated in figure 1-1.

INPUT DATA. All data for the program are read from cards using NAMELIST name INPUT. The following variables are defined:

ZL	-a real array of dimension 50 giving the depths in meters of the water layers, $ZL(I)$ is depth of top of layer I. $ZL(I+1)$ is the depth of the bottom of the layer.
AL	 a real array of dimension 50 giving the scattering coefficient in each layer of water
S	-a real array of dimension 50 giving the scattering coefficient in each layer of water
THBRSQ	- a real array giving the value of θ^2 in each layer of water.
LAYERS	- the number of values of ZL, i.e., 1 more than the number of water layers.
NXGD	—an integer variable giving the number of grid points in R parallel to the x_0 axis. Default value is NXGD = 90. Values less than 90 may be input, 90 is the maximum value unless the program is modified to increase the dimension of all arrays that depend on this number.
NYGD	number of grid points in R parallel to the y_0 axis. Default (and maximum) value is NYGD = 60.
VARR	a real variable specifying the value of var(R).

Figure 1-1. Coordinate system for program DNMODEL.

FOVIEW	a real variable specifying the angular diameter in degrees of the detector field of view. Default value is 1°.
GAMP1, GAMP2, STEP1 -	real variables specifying the range and increment for γ'_{x} in the evaluation

iP2, STEP1 - real variables specifying the range and increment for γ_x in the evaluation of equation (i-1). γ_x' takes values from GAMP1 to GAMP2 in steps of STEP1. All units are degrees. Default values are -90, 90, and 10.

GAMP3, GAMP4, STEP2 – real variables which allow a different step size in γ'_{x} over a subinterval of the range GAMP1, GAMP2.

THZERO — a real variable specifying a value in degrees for θ_0 , the variance of the source distribution at the surface.

GPY — a real variable specifying a value for $\gamma'_{\mathbf{v}}$ in degrees.

BARGE - a logical variable specifying whether or not to consider the barge in the calculations. BARGE - .FALSE, will cause the barge to be ignored.

Default value is .TRUE.

TIME — An integer array of dimension four for specifying the date and time.

TIME(1) = month, TIME(2) = day of month, TIME(3) = hour of day (PDT),

TIME(4) = minute.

DEL1, DEL2, STEPD — real variables specifying the range and increment for values of Δ in the

evaluation of equation (I-11). Units are degrees and default values are

5, 90, and 5.

BETAX, BETAY – real variables specifying values for the terms $(1 - n/n')\overline{R}_x$ and

 $(1 - n/n')R_v$ which appear in the evaluation of equation (I-11). See

equation (53) of Appendix A.

XPEAK, YPEAK — real variables specifying the values of γ'_X and γ'_Y at which the irradiance

distribution has its peak. This point is the origin for Δ in equation (I-11). Default values are 0, 0 if equation (I-1) is not evaluated. If equation (I-1) is evaluated, the actual location of the peak is used and

any values read in are ignored.

IRPROF — a logical variable specifying whether or not to evaluate equation (I-1).

Default value is .TRUE.

INTPWWR — a logical variable specifying whether or not to evaluate equation (I-11).

Default value is .TRUE.

OUTPUT DATA. A sample of the printed output from this program follows the program listing. The first page is a copy of the input cards. Page 2 is a list of parameters for the first set of input data, and includes the depth profiles of a, s, and θ^2 . Page 3 contains the results of evaluating equation (I-1). The columns labeled GPX and GPY are the values of γ_X' and γ_Y' . The column labeled SUM is the value of equation (I-1) at this point. The column labeled F1 is the value of f_1 equation (I-2). The column labeled SUM1 is the term

$$\iint_{\mathbf{R}} (1 - e^{-\mathbf{S}\mathbf{Z}'} - \mathbf{A}) \Delta \mathbf{I} \, dx_0 \, dy_0 \,, \tag{I-13}$$

and the column labeled SUM2 is the term

$$\iint\limits_{\mathbf{R}} \mathbf{A} \Delta \mathbf{I} \left| \overline{\theta^2} = \overline{\theta^2}_{\text{eff}} \, \mathrm{d} \mathbf{x}_0 \, \mathrm{d} \mathbf{y}_0 \right|. \tag{I-14}$$

The columns labeled zenith and azimuth are just γ_X' , γ_Y' converted to polar coordinates with the 000° azimuth taken in the X_0 – Z plane. Page 4 of the printed output is the result of evaluating equation (I-11). The column labeled DELTA is the radius of the field of view in degrees. The column labeled UPPER BOUND is equation (I-11) integrated over the outer square of figure 12 in Appendix A. The column labeled LOWER BOUND is the value of the integral over the inner square of the same figure. The column labeled ASMPTOTE is the theoretical value approached as Δ goes to 090°. This value is obtained by setting G = 1 in equation (53) of Appendix A. A plot is also generated for equation (I-1); a sample is shown in figure I-2.

Figure I-3 represents a program listing on 19 pages of the downlink model.

Figure I-2. Sample plot from program DNMODEL.

76-167	
13/48/ 0	
NOPEL .	
X	

WDEL
F
Ě
NA TA

Ę	
Ĭ.	
L DATE FOR STATE	3
5	CAPD NO.

Celeps PAIN FOR 24 JUNE 1975 1222 BOT HUT 0. 2.50 3.10 3.90 6.80 5.37 6.27 7.40 8.40 9.50 10.67 11.72 12.82 13.80 5.01 15.90 13.10 18.10 19.22 20.20 21.30 22.40 22.50 24.40 25.50 26.60 37.90 30.00	\$\frac{1.0}{62.1}\$, \$43.2\$ \$45.2\$ \$55.4\$ \$65.2\$ \$75.5\$ \$105.4\$ \$106.4\$ \$106.5\$	98 .009; .111; .116; .129; .135; .149; .135; .148; .156; .659; .159; .657; .689; .657; .689; .657; .689; .657; .689; .657; .689; .678; .689; .678; .689; .678; .689; .678; .689; .678; .689; .678; .689; .68		= 19, 1 = 45.72, LAYERS = 45; GAMP3 = 0, SAMP4 = 40, STEP2 = 2, 5 6, 24, 6, 0,	6, 24. 7. 0.
SCOLOGE FAIR FIR 2 SIMMIT FOR 2.50 3-10 15-0, 15-9, 17-15-17-17-17-17-17-17-17-17-17-17-17-17-17-	39.9, 41.0, 42.10 1.05.10 1.05.10 1.05.10 1.150.10 1.150.10	108	086. 081. 086. 018. 037. 037. 076. 049. 050.	ZEL45) = 19, ZEL45) = 45.72, TIME = 6, 24, 6,	EEND 6. 24. 7. EEND 7.
- MW-41	~~~~ <u>~</u>		\$~\$^{	35352	59288 88482

in 13 Program listing for dografink model (sheet 1 of 19).

NOO MC3145	HOOM WHIT MADD MC3:15	13/48/ 0	76.167	3974	~
CAMAX = CAMAX = CAMAX = VAP(R)	45.7 MEYERS BR.1 DEGREES, GAMM 9.0 DEGREES, 74MM 0.0 TWEYL) =	194 348 15.9 0 15.9 0	x = 48.7 PF:4FES y = 0 0 DEG4EFS E31EFS		
AZTHUTH OF CO-OPOTANT CORNER OF	GA"GX] 17 GEARG H	LEFS	72.0 0ESPEES 2.77E-01, -5.43F-01)		•
HEPTH METERS	•	~	THSRSO		
. 0.0	1-346-11	9.80E-02	1.28E-01		•
. 5.6	1.04F-01	9.90E-02	i.27F-01		
3.1	1.04E-01	1.116-01	1.165-01		
6.6	1.04F-01	1.165-01	1.156-01		
4. 1	1.95F-01	1.296-91	1.07E-01		
£.6	1.05F-01	1.35F-01	1.0%-01		
7 ,	1.05F-01	1.406-01	1.02F-01		
* ;	1.05F-01	1.376-01	1.035-01		
	1.05f-01	1.496-01	9.80F-02		
	1.06F-01	1.556-01	9.50F-92		
• · ·	1.06F-01	1.316-01	£.60F-02		
11.	1.07F-C1	1.986-01	8.10F-D2		
12.8	1.096-01	2.576-91	6.80E-02		
- 15.8	1-116-01	3.48F-01	5.60F-0Z		
•	1.146-01	4.27E-01	4.90E-02		
15.9	1.20F-01	6.32F-01	3.80F-02		
15.1	1.216-01	6.+7F-01	3.80F-02		

Figure 1-3. Program listing for downlink model (sheet 2 of 19).

a Alexandrille Marchine are a comme

大きない 大の 田田田で こうごうんじゅう こうこう

			•								•	•													1
16.167	3.40E-02	3.30F-02	3.40F-02	3.60E-02	3.70F-02	3. BOF-02	3. 70F-02	3.70F-02	3.706-02	4.00F-92	3.90E-02	3.90E-92	4.00E-92	4.20F-02	4.20F-02	4.40E-02	4.60E-02	4-60F-02	4.90F-02	5.00F-02	5.30F-02	5-706-02	5.80E-02	6.00F-02	6. 00F-02
0 /94/61	7 .495-01	10-358"	7.568-01	6.89F-01	6.57F-01	6.39F-01	6.51E-01	6.49E-01	6.72E-01	5.92E-01	6.10E-01	6.02E-01	5.89E-01	5.47E-01	5.396-01	5.08E-01	4.78E-01	4.66E-01	4.29E-01	4.16F-01	3.85F-01	3.45E-01	3,30E-01	3.16F-01	3.12E-01
THE AUDIT LINK WODEL	1.24F-01	1.256-01	1.245-01	1.22E-61	1.216-01	1.205-01	1.215-01	1.216-01	1.22F-01	1.196-01	1.20E-01	10-361-1	1.196-01	1.185-01	1.176-01	1-166-01	1.166-01	1.156-01	1.146-01	1-146-01	1.136-01	1.116-01	1.116-01	1.11E-01	1.106-01
SATCEM DOAN	19:1	7-61	7-07	23.	**77	23.3	4.42	C*C7	20.0	20.5	9-87	C	0.50	31.7	32.5	33.1	B 4 1	33.9	20 de 1	-31.9	39.6	59.9	0-14	1.54	

Figure I-3. Program listing for downlink model (sheet 3 of 19).

70-10/	6.40E-02	6.50E-02
13/43/ 0	2.87E-01	2.816-01
SATCON DOWN LINK MODEL	1-106-61	1.096-01
SATCON DOVI	4.2	45.4

The second of th

^		A217KUTN SPEC	
		ZENTTH DEC	
		Surt	
76-167	2, -61.0)	IMIS	1.05177-95 2.44177-95 2.44177-95 2.44177-95 2.44177-95 2.4417
13/48/ 0	1.01 1 76.2	E	5.65 5.65
r amer	-76-2; 6 -76-2; -6	SUM	4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
XMI I APUC	CORVERS:	100	00000 2000 2000 2000 2000 2000 2000 20
SA *COM	CATB C	96 80	

PEAK VALUE = 1.2406F-04 AT GAMMA = 15.79 DESPEES - EXP! -1/2 1 PURMYS AT -23.4, 52.1

MFAN ABSCRPTION = 1.136F-01 MFAN GENTTRING = 4.144E-01 MFAN ALPHA = 5.230F-01 Figure I-3. Program Esting for downlink model (sheet 5 of 19).

ASYMPTGTE	5.26.51 5.26.5
LAKER BOUND	1.25745-96 3.09426-05 3.09426-95 9.61295-95 1.3856-95 1.3856-95 2.34275-96
ICK Y 7 , DWECA) UPPER "ROUND	2.538.4°-36 2.238.4°-36 6.7792;-35 6.7792;-36 1.7912;-34 1.7912;-34 2.4787;-04 3.7297;-04 4.2106;-04
NF1 7A	**************************************
	UPPER ROW CALER BOUND

	,
רספונאוייו	HOLE, TRPROF. INTPU
	TIME(4), MONIHILZ) / 0, 31, 59, 90, 120, 121, 181 RIM(12) / JAM +, *FEB *, *RAR *, *JAF /* **MAY *, *JUH *, *JUH *, *AUG *,
•	SUM(230), DGP x, 2001, THM(60, 90), EXPMENTED, 90), IFMENTED, 90), IFMENTED, 90), A (150), A
REAL*8	GAY, DEC., EUNT
DATA	DIR /3.0174533/, AN /1.0/, AN /1.33/, ELAI /3.966/2/, CLUN /2.0079/, PIPE /3.1407/
MAREL I ST	/IMPUT/ X, Y, ZL, A, S, THBRSO, LAVESS, HXGD, MYLD, VARR, FOYIES, GAN-Y, GASPS, GARPA, STEPL, STEP2, HALENO, AM, ANP, GPY, BARGE, TIME, DELL, DELZ, STEP BETAX, BETAY, APEAK, YPEAK, HAPROF, INIPAR
GST ENT (X,Y)	1 = 70AINT (11/7) - 0.5*[1.0 - (1/ABSIX)]))

Figure 1-3. Program listing for downiask model (sheet 7 of 19).

Figure 1-3. Program fixting for downlink model (sheet 8 of 19).

pure 1-3. Programs listing for downshisk model (sheet 9 of 19),

海田市事刊 一大江東小子で

Figure 1-3. Program listing for downlink model (sheet 10 of 19).

UZ = [L[I] - [L[I]-I] = [L[I]-I] = [L[I]+S[I]-I]+O[] PS	DO 140 = 1,0 x0 DALY TERP = X0 - X X0 = 1 - C_5 > 00 x + LLX X0 = 1 - C_5 > 00 x + LLX X1 = X0 - X X0	EXIT = CALUE 20 - XSOID FEMPARE 1 - CR. EXIT = CALUE 1.0. EXIT 1 94851 TEMP 1 EXIT = EXIT = EXIT = CALUE EXIT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 201 = 1.4760 y0 = 1 - 6.5 30N + 113 YERD = Y0 - 7 YO - 7 YERD = Y0 - 7 YERD = Y0 - 7 YERD = Y0 - 7 YO - 7 YO - 7 YO - 7 YO - 7 YO - 7 YO - 7 YO - 7 YO - 7 YO - 7 YO -
9 ·	Joogooo	20000	من المرابعة المرابعة المرابعة المرابعة المرابعة المرابعة المرابعة المرابعة المرابعة المرابعة المرابعة المرابعة

igne 1-3. Program inting for downlink model (wheet 11 of 19).

```
Figure I-3. Program listing for downlink model (sheet 12 of 19).
```

ienne 1.3 Proeram listing for downlink model (sheet 13 of 19).

Figure 1-3. Program listing for downlink model (sheet 14 of 19).

í | []

	AX = (XIAXIA) - Y2) + X2*X2*(Y1 - Y3) + X3*X3*(Y2 - Y1) 1/ AX = AX/2*0 AX = AX/2*0 AA = (Y1 - Y2)/((X1 - AX)*2 - (X2 - AX)*0 Z) AH = Y1 - AX*(X1 - AX)*0*2 - (X2 - AX)*0*2 } \$\text{RMAX} = \text{EP}(M)	RTEST = EXPLAH - 0.5)	CONTINUE CUNTINUE DO 400 I = 1,112 DI 400 I = 1,112 IF (SLMIA) .GT. RTEST 1 GD TO 400 GG TO 420 CONTINUE	CONTINUE YI = ALGG SUMMILEFT) YI = ALGG SUMMILEFT) XI = CGPF(ILEFT) XI = CGPF(ILEFT) XI = LGF = XI = XI = XI = XI = XI = XI = XI = X	X2 = DCPX(IPGNT-1) XCGHT = (X2 - X1)*(AH - 0.5 - Y1)/(Y2 - Y1) + X1 SP4D = (XGHT - XEEF)/2.0 SP4D = SFEDEN SP4D = SFEDEN GRAN = A GRAN = AR*DIR CALL HFDIMC(6)
*			98 0 0		
1 1	. ;	1	· · · · · · · · · · · · · · · · · · ·	:	

URITE(6,440) RMAD, AK, KL FUSEKI(//10A, PEAK VALUE = 0 DEGREES/ 1 DX, EXPE(-1/2) EXITE(6,445) ZETA, PS112 EXITE(6,445) ZETA, PS112 FUSEKI(10A, HEM ABSURPEIN 1 UX, MEAN SCATTEKIN	CALL HEDINGS 0 3 CALL HEDINGS 0 3 CALL HEDINGS 0 3 CALL HEDINGS 0 3 CALL HEDINGS 0 3 CALL HEDINGS 0 2 CALL HEDINGS 0 2 CALL HEDINGS 0 CALL HE	(RMAX) MAX (MAX) MAX (MO)	LOT (1.00 11.00 2) LOT (8.50 11.00 2) LOT (8.50 0.00 2) LOT (1.20 11.75 - 2) SAP+1) = -40.0 GAP+2) = -50.0	-40.00 -40.00 -0	CALL PIDIS 0.00 2 2 2 CALL PIDIS 0.00 0.00 0.00 1. 3. 0 CALL PIDIS 0.00 0.00 0.00 1. 3. 0 CALL PHI INE 1 0.00 1. 5.00 NSAP. 6.00 8.30 0.00 0.00 1. 3. 0 CALL PHI 164 1 0.00 NSAP. 6.00 8.30 0.00 0.00 1. 3. 0 CALL PHI 184 13 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
å ž	33	3 3	<u> </u>			•

	* BEGIN LGOP ON DELTA	ELF = DELL F = 1 EF = DELL F = 1 DATUB =
		ONTITUDE OF THE PROPERTY OF TH

```
GVBE = ( ERF( | Ortun - ARGE | //UPE(|| 1) | ) / 2.0

GVLE = ( ERF( | Ortun - ARGE | //UPE(|| 1) | ) / 2.0

GVLE = ( ERF( | Ortun - ARGE | //UPE(|| 1) | ) / 2.0

GVLE = ( ERF( | Ortun - ARGE | //UPE(|| 1) | ) / 2.0

TERPI = ( Interpletation - ARGE | //UPE(|| 1) | ) / 2.0

TERPI = ( Interpletation - ARGE | //UPE(|| 1) | ) / 2.0

TERPI = ( Interpletation - ARGE | //UPE(|| 1) | ) / 2.0

TERPI = ( Interpletation - ARGE | //UPE(|| 1) | ) / 2.0

TERPI = ( Interpletation - ARGE | //UPE(|| 1) | ) / 2.0

TERPI = ( Interpletation - ARGE | //UPE(|| 1) | ) / 2.0

TERPI = ( Interpletation - ARGE | //UPE(|| 1) | ) / 2.0

TERPI = ( Interpletation - ARGE | //UPE(|| 1) | ) / 2.0

TRANS = SUMUS + TERPI = ( Interpletation - ARGE | //UPE(|| 1) | ) / 2.0

TRANS = SUMUS + TERPI = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Interpletation - ARGE | //UPE(|| 1) / 2.0

TRANS = ( Int
```

| INTEGER | VEAR | Main

1-26

Smarth Millionia are all Lechan

APPENDIX J

GENERAL DESCRIPTION OF UPMODEL

Program UPMODEL is designed to integrate equation (63) of Appendix A. The function evaluated is

$$I(\gamma') = \iint\limits_{\mathbb{R}} \left\{ (1 - e^{-6Z'} - A)f(\gamma', \gamma) + A f(\gamma', \gamma) \middle| \frac{1}{\theta^2 - \theta_{eff}^2} \right\} dx dy.$$
 (J-1)

A modified form of (J-1) is also computed. The modification is the substitution of $f^*(\gamma', \gamma)$ for $f(\gamma', \gamma)$, where f^* is defined by

$$f^{*}(\gamma',\gamma) = f(\gamma',\gamma)\exp(-az'\sec\psi), \qquad (J-2)$$

where

$$\psi = \left\{ \left(\gamma_{X}^{\prime} - \frac{n}{n^{\prime}} \overline{\gamma_{X}} - \frac{n}{n^{\prime}} \frac{e_{X} |x| \theta_{M}^{\prime}}{\sqrt{x^{2} + y^{2}}} \right)^{2} + \left(\gamma_{y}^{\prime} - \frac{n}{n^{\prime}} \overline{\gamma_{y}} - \frac{n}{n^{\prime}} \frac{e_{Y} |y| \theta_{M}^{\prime}}{\sqrt{x^{2} + y^{2}}} \right)^{2} \right\}^{1/2}. \tag{J-3}$$

INPUT DATA. All input to program UPMODEL is from cards using NAMELIST name INPUT. The variables to be input are as follows:

ZL, A, S, THBRSQ, LAYERS, NXGD, NYDG, FOVIEW, GAMP1, GAMP2, STEP1, THZERO,

GPY - these are identical to the input for DNMODEL; see the discussion there for definitions.

ADATE - an integer array of dimension 3 for the date in character string form. Example, ADATE = 22 JUN 1975. Default value is all blanks.

ATIME — an integer array of dimension 2 for the time of day in character string form. The default value is "bbbbbPDT'.

OUTPUT DATA. A sample of the printer output is shown following the program listing. Page 1 is a list of all input data. Page 2 is a list of parameters for the first set of input data. Page 3 is the tabular listing of the results of evaluating the integrals. The columns labeled GPX, GPY, ZENITH, and AZIMUTH are the same as in the output for program DNMODEL. The column labeled SUM1 is the value of equation (J-1)

directly. The column labeled SUM2 is the value of equation (J-1) with f* substituted for f. The column labeled SUM is the term

$$\iint\limits_{\mathbf{R}} 1 - e^{-\mathbf{g}\mathbf{z}'} - \mathbf{A}) f(\gamma', \gamma) dx dy . \tag{J-4}$$

The column labeled SUME is the term

$$\iint\limits_{\mathbf{R}} \mathbf{A} \, f(\gamma', \gamma) \Big|_{\overline{\theta^2} = \overline{\theta_{\text{eff}}^2}} \, d\mathbf{x} \, d\mathbf{y} \, . \tag{J-5}$$

The columns labeled SUMS and SUMSE are the terms (J-4) and (J-5) with f* substituted for f.

A sample plot generated by UPMODEL is shown in figures J-1A and 1B. The first curve is a plot of SUM1 vs. zenith angle and the second curve is the plot of SUM2 vs. zenith angle.

EXTERNAL SUBROUTINES REQUIRED. COPY, HEDING, AXISM, PHLINE — See discussion of these in DNMODEL.

FIT - This is a subroutine to locate the peak of the data and the points at which the data falls to a value of $e^{-1/2}$ of the peak.

Figure J-2 represents a program listing on 12 pages of the uplink model.

22 JUL 1978 1725 POT GRMMA'Y - 8 DEGREES THETRO - 0 DEGREES DEPTH - 18.2 METERS ALTITUDE - 914.4 METERS GRMMA X - 0.0 DEGREES

Figure J.1A. Sample plot from UPMODEL.

GRAMA'Y - 5 DEGREES THETAG - 0 DEGREES
DEPTH - 15.2 HETERS
ALTITUDE - 914.4 METERS
GRAMA X - 9.0 DEGREES

Figure J-1B. Sample plot from UPMODEL (using secant correction).

				4.					
MODEL FOR SATCON UPLINK MITH SUMFACE ZERO	INE(2) /* ** PÓT-)	1. \$150! THBR 50(50). 13.4. BUFFER 10254. LLT. HIR. 13.5. BUFFER 10254. LLT. 10. Er 150!. EPY160!. LANDA. NU. 10. Er 150!. EPY160!. LANDA. NU. 10. Er 160!. EPY160!. LANDA. NU. 10. ER 160!. SO!. EPY160!. LANDA. NU. 10. ER 160!. SO!. TERME 1. SO!. 10. ER 160!. SO!. TERME 1. SO!. 10. ER 150!. TERME 1. SO!. 10. EPY1600!. TERME 1. SO!.	IYR. 10AV. LIM. MINUTE. ISECHO IL. A. S. THMASQ, LAYERS, NICO. NYCO. ADVIEW. CANPI. CANPZ. SIEPI. THEEGO. AN. AMP. CANPIX, GPY. ADATE. ATIME.	CSTINITATION OF THE STATE OF THE LANGESTS OF THE LANGESTS OF THE LANGESTS OF THE CALVES OF THE LANGESTS OF THE CALVES OF THE CANCES OF T	ESTINIC X, Y) = YOAINTC (X/Y) - 0.50C 1.0 - (X/ABS(X) 1 1 1	COPT INPUT BAIA AND ASSIGN DEFAULT VALUES			
MODEL FOR S	ACTIECTO ATTMETED	11 (50) A(50) DIR /0.01745 DIR /0.01745 V2 (60) Y50 (V2 (GSTINITAL	(, Y) = Y*AIMT((COPT JEPUT BATA		90	
المحادث	İNTEGER	4	TST PART 151	بارسان	C CSTINIC 1		מאר כסגת	MANA CAMPANA C	

Figure J-2. Program listing for uplink model (sheet 1 of 12).

one J-2. Program listing for unlink model (sheet 2 of 12).

• 1

.... L

EDING: ** THE TAD ** 'P. FE. 1: 'P. PECREE 10X: 3A4.5X.2A4//) EDING: ** THE TELE OF VIEW ** 'P. P. P. P. P. P. P. P. P. P. P. P. P. P	F7.1. FEETI "		E FUNCTIONS UN CARRA PRIME			
	10x, THEIAO = 'F6.1, DEGREES' 10x, FIELD F VIEW = 'F5.1, WETERS 10x, ALTITUDE = 'Fe.1, WETERS 10x, 344, 5x, 244//) IF (6, 130) MAT (/10x, DEPTH' ,11x, A', 11x, S', 8x, TMBRS)	ASI = LAYER 150 E = 1, 150 E = 1, ARITE(4,146 FURNAL NITHUE NITHE 1004			TANKK	Ziń - Ailw - ZIAMAX) LLY JANGO LLY JANGO LLY JANGO LLY JANGO O D D D D D D D D D D D D D D D D D D

Figure 1-2. Program listing for uplink model (sheet 3 of 12).

GPT* 66Ke*SUML* 6Ke*SMRZ*.9Ke*SUM* 6Kk *SUMS**7K**SUMSE**4K**ZEMITH**+K* DEG**75K**DEG**6K**DEG*///		CALCULATE QUANTITIES WHICH ARE FUNCTIONS OF & AND X CRLY) per (CALCIAL SUMITIFES WHICH ARE FUNCTIONS OF Z AND Y UNLY		CALCACATE QUANTITIES WHICH ARE FUNCTIONS	
# 11X, 'GPK', 6X, 'GPV', 6X, 'SUNI # 12ME', 8X, SUNS', 7X, SU # 11X, 'DEG', 6X, 'DEG', 75X, 'DEG'	MUZ = MU/Z PS12 = PS1/Z ZETA = ZETA/Z ZETA = ZETA/Z KAPPA = ZETA + PS1 KAPPAZ = KAPPA/Z	CALCULATE QUANTI	DO 200 1 = 1 MXCD X = { 1 - 0.5 } PDX + LLX XZ(L) = X XXR(L) = X XXR(L) = X EX (L) = (-GX + ANSIN(X/RX) } EX (L) = (-GX + ANSIN(X/RX) } EX (L) = (-GX + ANSIN(X/RX) } EX (L) = (X/RX) } EX (L) = (X/RX) }		Do 220 = 1,NYCO	20 CONT.	
				Roomer	in i	NOUGOO	

Figure J-2. Program listing for uplinic model (sheet 4 of 12).

	0/MU 1 - 1.0	GRI ASUM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 + vre 1 -3 = 9e#+expt - xp 17th	J) = 0.0 J) = TEMPERPL -XP J/RRE 1 TERNACL JI = 1.0E-30 3-0.12 12 EXEX/LEGINE 1	Jeffing Constitution Jeffing		
DO 260 I = 1,NYGD DO 260 I = 1,NXGD SR = 1,NXGD SR = 1,0XGD SR = 1	VF = VFFAC/LAMCA NU = F512 42 PR INC ETA = LETA-2-PR INC ETA = END 42 PR INC A5UC; = EXP (NU/50RT 1.0 + 9. A5UG; = EXP (NU/50RT 1.0 + 0.1) EXPRINDITE = 1.0 + 0.1	ASUBL = 0.2559WOCKPC - 401/2 ASUBD = ASUBNOSQUIT SQUIT ASUBD = SQUIT SQUIT SQUIT ASUBD ASUBD AND ASUBD ASUBD AND ASUBD ASU	RR = RHO+ (0.6466467 + WP RRP = RHO+ (1.6466461		TERNS[1] = -MPF: GDX + EPX: TERNS[1] = (GPY - MPF) GDX + EPX: TERNS[1] = (GPY - MPF) GDX + EPX: TERNS[1] = (GPY - MPF) GDX + EPX: TERNS[1] = (GPY - MPF) GDX + MPF) GDX + MPF) GDX + MPF + M	CAMPY = CPV/DIR	- X

Figure J-2. Program listing for uplink model (sheet 5 of 12).

		00 = 500	1. Sou	(C*113)			
Z00 KGXP = 0 CUNTINUE KGXP = KGXP + 1 KGXP = CAMPX*DIR	SUME = 0.0 SUME = 0.0 SUMS = 0.0 SUMS = 0.0 SUMS = 0.0 SUMS = 0.0 SUMS = 0.0 SUMS = 0.0 Telest = 0.0 ATEST = 0.0	16 (A1EST -61 - 10E-5 - 1 ANGY = TAMI GPY 21.05 - 41.04 SQRI(1ANGX = 2 + 1ANGX + 2 + 1ANGX + 2 + 1ANGX + 2 + 1ANGX + 2 + 1ANGX + 2 + 1ANGX + 2 + 1ANGX + 2 + 1ANGX + 2 + 1ANGX + 2 + 1ANGX + 2 + 1ANGX + 2 + 1ANGX +		XP = TERNOCH 1 TERNO = 1.0E-30 1 TER		# TERME = 1.0E-30 AND. NP ACE D.O. 1 FOR THE END IN TERME = END 1.0 FOR THE END	EMP4 = AF(II.) = TEMP2

Figure J-2. Program listing for uplink model (sheet 6 of 12).

Figure J-2. Program listing for uplink model (sheet 7 of 12).

nre I.7 Processon lictime for unlink model (sheet 8 of 12)

issure 3.2. Program listing for uplink model (spect 9 of 12).

PAGE 1	. 0. M. 2000 1, 12.6, 13.9, 15.2,	365- 357- 369. 354055-			
76.175	- ATIME - 1725" - CAMMA	.954, .852, .362, .364, .365, .355, .957, .055,			
SATCOR UPLINE MODEL 20/44/48	CARD NEW ALM FER PROCRAM UPMODEL CARD NEW ALM # 16, 50 FEET ESTAPUT ADDRESS AN 1975!	14 FEST = 131 6	13 CENO		

Figure J-2. Program listing for uplink model (sheet 10 of 12).

, .							,		
						, ,			
S 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				1					
0.0 DECLES	146.ESQ	-5.70E-02-	5.60E-02	5.40E-02	5.506-02	2.36.4	5.466-62	5. 66-22 25-32-22 25-32-22 25-32-32-32-32-32-32-32-32-32-32-32-32-32-	
CAMPA BAR X = CA		3.436-01	3.496-01	3.66E-01	3.62E-01	3.65E-01	3,69f-01	3.74E-01	
LEES, CAN LEES,								4.3	
12.22 12.22		1-1116-01	1-12E-01	1.126-01	1.126-01	10-321-1 10-321-1	1.125-01	1.128-01	
 DEPTH = CAMMAX = CAMMAX = FIELD OF VII	DEPTH METERS	0.0	2.1 3.1	0.4	0.0		11.3	13.9	

5.002 5.	GRID CURNERS:	: (-14.51	4.5) [14.5; 4.5) [14.5;	14.51					
1.100 1.00		i -	2003	NOS.	SUME	Smrs	Sunse	200 200 200 200 200 200 200 200 200 200	AZIRUT
		7-602E-09	6-638-10 6-2256-10	1.602E-09	4-6596-11	6.638E-10	5.5486-18	0.0	179.
		1-1996-94		10-3661-1	94	1.2156-09	2-5725-16	.2	
2.0 2.4000 0.0 2.9500 0.0 2.4600 0.0 2.4600 0.0 110.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		1.772E-06		1.7725-00	وو	2000	*****	27	
2. C. 3.25 Te 0a 4.21 E 09 3.24 E 00 4.192 E 09 4.12 E 0		2-104-08 		2-1086-00	m	2-455E-09	L	25:1	176
7.05		200	-	2. 8405-03	Ú.	8-11:3		9	1321
2.0		3-25 TE-08		3.2432-06	0	4.1926-09	II	7.04	
\$\frac{5}{5} \frac{5}{6} \frac		30-102-08 4-78-F-08		3-638E-08	01-374-9	60-30E9-9	1-1356-10	35.2	172
5.6 7.0400 0 1.074F-05 4.694F-05 5.344F-05 6.511F-09 4.127F-09 5.131F-09 1.5.77 1.040F-09 1.040F		3	- 1	4.3745-06	£-530£-09	04.7F-00	27.75	2	717
1.420E-01 1.610E-08 4.940E-08 7.140E-09 1.410E-09 1.41		2		4.694E-08	2.3446-08	6.611E-09	4.12 K-05	20.5	
100 100		0-1		20-1076 · 4	5-131E-08	2.049E-03	9-1215-09	15.7	191
5.6 1.95/ff-01 3.3ME-38 5.32F-38 1.42/ff-01 7.706F-09 2.56/ff-08 7.106/ff-09 2.56/ff-09			1	2. 221 E-06	7.0381-01	1-416-09	- W. C.	101	153-
5.C 1.420E-0.1 2.959E-0.6 5.25E-0.7 7.432E-0.9 2.25E-0.0 7.452E-0.9 2.25E-0.0 7.452E-0.9 2.25E-0.0 7.452E-0.9 1.21E-0.0 1.21E-		1.0		£.323E-36	1.4276-07	7.7065-09	2.27	9	
2.6 1.309E-01		Ξ.		5-281E-04	1-4/46-07	7.632E-09	2.25 K-08	1-1	45
5.0 7.040E-08 1.074E-08 4.894E-08 2.344E-08 6.611E-09 4.127E-09 2.545 5.0 5.244E-08 7.579E-09 4.321E-09 6.612E-09 1.572E-09 2.545 5.0 5.251E-09 1.525E-09		1		80-100	5.038F-08	7-4168-09	1-6186-08	17-11	26-4
5.0 5.445=08 7.578=09 4.378=09 5.0578=09 1.5128=09 25.5 5.0 5.745=08 5.9188=09 4.0218=09 5.0578=09 1.5128=09 2.428=09 1.378=10 30.3 5.0 5.75=08 4.215=09 2.4518=09 5.4518=09 4.3958=09 1.378=09 1.378=10 30.3 5.0 5.75=08 4.215=09 2.4518=09 1.4518=10 3.5718=09 1.378=10 30.3 5.0 5.448=00 2.4458=09 2.4518=13 2.4518=13 5.518=09 1.378=10 3.5718=09 1.378=10 3.5718=09 1.378=10 3.5718=09 1.378=09 1.4418=11 5.50 1.378=09 1.378=09 1.378=09 1.4418=11 5.50 1.378=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=10 3.578=09 1.4418=11 5.50 1.378=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=10 3.578=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=09 1.378=10 3.578=09 1.378=		~]	4.696E-06	23.46-08	6.411E-09	17.1	1	
2. 1. 109E-04		S.		4-3745-06	E-694E-09	6-067E-09	1.5126-09	25.4	101
5.6 3.237E-08 4.215E-09 3.243E-06 1.400E-10 4.191E-39 2.402E-11 46.2 5.6 2.405.E-08 3.576E-09 2.467E-06 4.750E-11 3.571E-09 4.395E-12 45.1 5.6 2.408.E-0 2.408.E-09 2.467E-06 4.750E-12 2.455E-09 7.115E-13 55.1 5.6 2.408.E-0 2.408.E-09 2.467E-09 7.45E-12 2.455E-09 7.115E-13 55.1 5.6 1.72E-08 1.95E-09 1.75E-09 9.848E-14 1.979E-09 1.411E-14 60.0 5.6 1.409.E-08 1.564E-09 1.75E-09 1.564E-1	1	7	i	20-1170-1	2-25-10	7.454-03 1.234-03	が大学	M	
5.6 2.454E-04 3.574E-09 2.849E-06 2.754E-11 3.571E-09 4.395E-12 45.15 5.6 2.454E-06 2.5499E-09 2.461E-08 4.554E-12 2.9848E-09 7.115E-13 50.1 5.6 1.772E-04 1.455E-09 2.461E-04 4.554E-12 2.9848E-09 7.115E-13 50.1 5.6 1.772E-04 1.545E-09 1.772E-04 1.575E-13 1.572E-09 1.441E-14 60.0 5.6 1.459E-04 1.546E-09 1.75E-04 1.575E-14 1.541E-14 60.0 5.6 1.459E-04 1.546E-09 1.199E-04 1.575E-16 1.541E-15 65.0 5.6 1.459E-09 0.434E-10 7.603E-09 4.655E-17 0.836E-10 5.548E-14 80.0 7.603E-09 0.433E-01 AI 6448A* = -0.00 DECREE\$		3.5		3-2435-06	1-405-10	4. 1915-39	11-3697-6	7 67	1
5-6 2-648E-05 2-949E-09 2-45FE-08 4-559E-12 2-988E-09 7-115E-13 50-15 5-15 5-15 5-15 5-15 5-15 5-15 5-1		7		2-849E-06	2.738E-11	3.571E-09	4.3956-12	45-1	
5.6 1.772E-08 1.979E-09 1.772E-09 5.448E-14 1.979E-09 1.441E-14 60.0 5.6 1.441E-14 60.0 5.6 1.441E-14 60.0 5.6 1.441E-14 60.0 5.6 1.441E-14 60.0 5.6 1.441E-14 60.0 5.6 1.441E-14 1.979E-09 1.579E-09 1.579E-09 1.579E-09 1.579E-09 1.579E-09 1.579E-09 1.579E-14 1.560E-09 1.579E-14 1.560E-09 1.579E-14 1.560E-16 0.579E-14 1.560E-16 0.579E-16		,		2-15年-18	€-55€-12	2.9685-09	7.1156-13	3	4
5.0 1.409E-08 1.544E-09 1.469E-08 1.373E-14 1.566E-09 1.921E-15 65.0 2.0172E-15		1235-04	}	12121 - 121	- 2777-13-10 0-1777-13-10	- 4.455F+03	1-06/1-13	55.	-
5.0 1.199E-08 1.215E-09 1.199E-08 1.925E-15 1.215E-09 2.572E-16 70.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		1.409E-03		10-Joy-	3735-16	7444	92121		7
5.0 7.0.31E-09 0.434E-10 7.603E-09 4.6.59E-17 0.836E-10 5.548E-14 80.0 0 ALVE = 2.1332E-01 AI GAMM' = -0.00 DEGREES		1-1996-04		1.1996-04	13	1.215.1-8	2.5726-14	70.0	
VALUE = 2-1332E-07-A; CANDA! =		7.6J3E-09		7.603E-09	4.65%-17	6.638E-10	5.548-16	90.0	100
	1727	AL.			GREES				
				~					· '; ;

Figure J-2. Program listing for wolink model (sheet 12 of 12).

APPENDIX K UNDERWATER RADIANCE SCANNER CALIBRATION PROGRAM

Figure K-1. Program for radiance scamer calibration (Sheet 1 of 39).

		277			22.25.00.000.000.000.000.000.000.000.000	17.23775	\$
PKE SKILL	TATION DIAXI	SSIVE AXI	UES AT SE AND	AK AK AK			
MAPTICONTICE	COUNTER-COUNTE	I'H THE AKIS IS TO BE DRAWN E CORDINATE AT THE BECINATION OF ALLODRAFE VALUE BETWEEN SUGGESSY	TIC-HARKS, IN INCHES ALLES ALL PLACING COORDINATE VALUES ALL TO BE PLACEU AT EVERY ILC-RAIN	D AT EVERY		4	
SUBRECUTIVE - AXISM 4xaYubC 0, WC, 512E, THETA, XABB, DA, FIC, WFIC.	11. 65 OR 11. 11. 6 P. A.	DINATE AT THE	TIC-NARKS, PLACING COO	VALUES TO BE PLACED AT EVERY SES ALL COORDINATE TALVES			300
EBANCASIZEA S. JF THE BEC	CAMARATE CONTROL OF THE PROPERTY OF THE PROPER	AT HAICH THE USE THE COOK OF THE COOK OF THE COOK OF THE COOK OF THE COOK OF THE THE THE THE THE THE THE THE THE THE	Cycle Fight	SES VALUES SES VALUES FIRST FILE PRESSES FILE			AND THE STREET
MISM 4E,Yth	THE ALLS A	THE ANGLE THE VALUE SAIS.	THE DISTANT	100. 2 CM	115, 10 E1		(XA-7A-3) (CS-2 (XB-YB-2) (XC-YR-2) (XA-YA-2)
UBROUTENE -	978	SAZE HETA KATU	71.C 87.1C	J MARTIN	01 REGE M. 9 10 1 EGE M. 9 5 7 EGE - 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0X1=11CeCT 0Y1=11CeST 0Y1=11CeST 1N=H 1N=H 1R=H 1R=H	TAL PLOT TO THE PROPERTY OF TH
185	~ 40 14	7'	1 {			1.34	

issure K.-1. Program for radiance scanner calibration (Sheet 2 of 39).

•	KI 53	222	XI 59	703S	1335	12 12 13 13 13 13 13 13	12 12 12 12 12 12 12 12 12 12 12 12 12 1	AXI 79		AXI 86 AXI 86 AXI 85	AXI 91	# # # # # # # # # # # # # # # # # # #	AXI 104 AXI 105 AXI 105 AXI 105 AXI 105 AXI 105	
	1													
			LAST LABELED TIC."				(38.7m; 1C.)		171530C7H 171430STH	SE ONDER." MSV. THE TA, 2)		23 23	11+2564TH 1-15464Z	
	١	25.20.25	A 25	1.30.01 45,35.35	0.01	011 43.90.93	**************************************	100,55 101,4116	200	"" "IICS, 13 NEWEPSE ONDER	SY ADX =FLOAT(NTIC) =FLOAT(NTIC) NT AD 75.49		95-100-95 -240-2540-2540-2564 -64-2540-93-2564 644-25644 1	
Ì		13	546	DO:	- C	25.2	10 1	4 AV .					W X+0	}
	ţ	120,0	10 90 10 80 10 10 90	1200 1200 1200 1200 1200 1200 1200 1200	11.0	ABSE-ABSVET XPX-EXPX-1 IF (ABX-0.0	Manual Carrell		7	CONTENUE CON	10-14- 10-14-		A PROPERTY OF THE PROPERTY OF	EC-NAC

C E III- [-0.0] - SYGN-C - YZZZ - SIN C. 8CD(1) - IHE A. MAC) C. 8CD(1) - IHE A. MAC)	7100		
2.C0.07*FMC]*EIN-[-0.0]*SY 20.110.7 30.110			
109 X1=X+ S1/E			

Figure K-1. Program for radiance scanner calibration (Sheet 4 of 39).

Figure K-1. Program for radiance scamer calibration (Sheet 5 of 39).

ين د		. 8 .			0.E.1
INTEGER		CONTINUE CONTINUE CONTINUE TAMOS BCO			20 I = 1 100 I = 1 100 I = 1 100 I = 1 100 I = 1 100 I = 1 100 I = 1
ECD(3), EIN(5) **ALPIASO, CORO **ARTIZION PI EU **ARTIZION PI	FOR 17 2000 FORTH / JAN FORTH / JAN FOR / JAN FOR / JAN 813 213 2000	LT. 0) 11 HASK 11 HASK 11 HASK	1) 945K1 2) HASK4 + HU 21, HASK2 21, HASK2		[일
MZ, COLU	1430/	8CO(1) = 9CO(1) 175HFT4 175HFT2	1/54F14 1/54F13 1/54F12	1/5/#T3 1/5/#T3 1/5/#T2	111 60 TU 140
SHF13, SHF14, MC 13 FK.1100, 15-17 15 SU 15 12 12 12 12 12 12 12 12 12 12 12 12 12	MA " " AFR " " " MAY MG " " " SEP " " " BC! " " BC! " " SEP " " BC! " SEP " " " BC! " SEP " " " BC! " SEP " " " " BC! " SEP " " " " BC! " " " " " " " " " " " " " " " " " " "	• 65530	, , , , , , , , , , , , , , , , , , ,		
SHET4, MONTH(121, 1100 C-7-1975-7; CTIME(5 C-7-1975-7; CTIME(5 C-7-1975-7; C-7-1976-7; C-7			. , ,		
. 5					
				4	

			9 240		+	
140 [6 10 137 11. 60 60 10 160 60 60 60 60 60	160 [64-19-140] 11. 60) 60 T0 180 61	HT = BIN(2)/10 C NT = BIN(3) - 100HT ST = BIN(3) - 100HT ST = BIN(4)/10	1 = 6 Bin(5) - 1 = 6 Bin(5) - 220 - 1 = 1 1 1 1 1 1 1 1 1	MIKI	10 = 10AY - 17*10 11 = 10AY - 17*10 ALPHA[1] = 10*10 ALPHA[4] =	

Figure X-1. Program for radiance scanner calibration (Sheet 6 of 39).

		40.		1994 V.	
	•	3			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+ MSU + MASK2 5-1 RETURN I		. A.y.	x		
1F (BINITI - PERIOD FF 108M					Copy the to
		Mayor Mayor			

Figure K-1. Program for radiance scanner calibration (Sheet 7 of 39).

を含めたいというとと、これが生き自己などの対象が対象になっているというとして、それにおどならればなどの気がないないのであれないと

Figure K-1. Program for radiance scanner c. 17:13. 'm (Theet 8 of 39).

	The state of the s	
7	* TAMOLK,Y) - A FUNCTION TO RETURN THE LOGICAL AND OF	
۰۰۰	* IORIX.Y! - A FUNCTION TO RETURN THE LOGICAL OR UF X AND Y. *	
اب	* CAL-CUMP PLOT KOUTINES "PLUT" AND "MUMBER". *	
٠		
	SUBROUTING (C-TUP (F. JMAX, 196X, FS, AR, HODE, SCALE J. SCALET)	
174	THETA, N FIJMAX, IMAX) MASK(31), APT(4,3	
	DINEMSTON WEGITOOF JOHN 1997 WINSTITOOF REAL JAY, JAYED MANUAL JAYED JAY	
	DATA AC / 1.25, 2.0, 2.5, 5.0, 10.0 / 10.1 / 12/ 17/20/ 0/ 1.25, 2.0, 2.5, 5.0, 10.0 / 10.1 / 32/ 17/20/ 0/ 1.25, 2.0, 2.5, 5.0, 10.0 / 10.1 / 32/ 17/20/ 0/ 1.25, 2.3, 0.398, 0.7, 1.0 /	
.		
	INTITALIZE PLOTTING PARAPERSS IDFS = JAAXFINAX IOFS = IOFS/(ARIT - 1) + 1	
	##62 = ##f11 #8E6 = 1 #8E6 = 0 \$5AE = 1-0/SCALE1	
	CSALE J = 1.0/SCALEJ FF 1-1.146 - 50	
1	SET-UP LOOP CONTROLLING SELECTION OF CONTOURS	
	FAIL MAC. 100117 - AC.	FRIM = FALLY FRIM = FALLY DO 12 [= 1, 1MAX UO 12 J = 1, JMAX

Figure K-1. Program for radiance scanner calibration (Sheet 9 of 39).

CO TO 120	60 TO 13	0 TO 18		FAIN FRAME COMINE	.0 1) .LT. DEL) GO TO 20	A CONTOURGE. DEL 1 GG TG 32	
FRIN = AMINIC FRIN, FILLD D. F. FRAX = ANAXII FRAX; FILF ST. FRAX = ANAXII FRAX; FILF ST. F. F. F. F. F. F. F. F. F. F. F. F. F.	120 Mil) = ARC2 120 Mil) = ARC2 120 Mil) = ARC2 161 MODE = 2 SELECT CUNTUR INTERVAL 2 ALCOT = ALUGIOTICFAA - FRINJARC23	N = AL GAN N = CAN N = AL GAN N = AL	19 1 = 1 5 5 00 19 15 5 00 19 19 19 19 19 19 19 19 19 19 19 19 19	FRIM = CONINTEANN FRIX = CONINTEANN FRIX = CONINTEANN FRIX = CONINTEANN FRIX =	11 MCDNS = (FMAX - FMIM)/COMIMI + 1.0 MCDNS = MIMOT MCDNS; +6 1 LABEL OFTERNINE MANBER OF DIGITS IN LABEL 10 DET = 1.00 + + + + + + + + + + + + + + + + + +	E INSURE THAT NO POINT IS EXACTLY ON CO. 32 L = 1, 184X 11 (A.S.) AMAX 11 (A.S.) AMAX 12 (A.S.) AMAX 13 (A.S.) AMAX 14 (A.S.) AMAX 15 (A.S.) AMAX 16 (A.S.) AMAX 17 (A.S.) AMAX 18 (A.S.) AMAX 18 (A.S.) AMAX 18 (A.S.) AMAX 19 (A.S.) AMAX	

Figure K-1. Program for radiance scanner calibration (Sheet 10 of 39).

CONTINUE START CONTOUR PLUTTING	Confer Conjustent Contust.	PLCT = .FALSE. PLCT	11 MTT PLAX - 1 NE - STAXI 1	(E) - CON (E) - CON (E) 0.0)	A 1 1 1 1 2 2 2 4 1 2 2 4 1 2 2 4 1	TAY = FLATISHAX) A TO SO F TE SHE - IMAKE F FECIN LAYERSON SEARCH	THUE. 10. 1)
							FAISE.

gare K.1. Program for radiance scamer calibration (Street 11 of 39).

		10 TO TO 10-				005+ Du 4500	
	OF 01	CU TO 39 CO TO 27 AM). KBEG -LI: 80 FFER OBBIS FOR THE CLUSEST	50 10 82	AF PLOTITION AETURA CGO 10-56	60 10 53 60 10 53 60 10 53	ST- STARTING CONTOUR OUT. TREECH .CT. 109 1	· · · · · · · · · · · · · · · · · · ·
JF = 0 JF = JF + 1 JF FT = JF + 1 A = F(JE) JE - CUH F = F(JE) JE - CUH		IF US NE JHAXI I IF IE NE JHAXI I IF KONTUR PE NCINS PUNGF HITTIAL POINTS BU SENCEN STORED INITIAL P	KBEGAX = KBEG - 1 IREI = 5 KBAXD2 = KBEGHX/2 + 1 K = 0 K = K + 1 IFI K - LT. KBMXD2 3	FFINON IF ALL CONTOURS IF (KONTUR GE - NCONS KREG = 1 ED 10 10 40 40 40 40 40 40 40 40 40 40 40 40 40		OI CLOSE	
3		R July	25		A * •	J	

igure K-1. Program for radiance scamer calibration (Sheet 12 of 39).

Set. 4 1 GG TO 4500	I a limit a c	MITIAL PUINT LPLUT = TRUE.	GO 13 4590 BBIT 1.NE.0) GG TO (22, 24,26,30), SKET	CALL MUNDER (GEYE-L.O) +CSALEI. CALL PLO) CSACE; 0.00; CON; THEIR; NOCT ; CALL PLO) (GEYE-L.O) +CSALEI, LAX-1.0) +CSALEI, 3 }		CONTINUE DE LE CONTINUE DE LA CONTIN
		*	SY(REE) - NIN 6 - 165 6 1 00 1 REE 61 100 1 REE 61 100 1 RE 5 117 NB 1 N 1 1 1 - 181 - NB 1 NI 1 1 1 1 - 181 - NB 1 NI 1 1 1 1 - 181 - NB 1 NI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1960 -11 0 1 CALL NU 19101 1 CAN-1:0 1 CALL NU 19101 1 CALL PLOT 1 (EYE- 200 = 1AT 6 = FALSE.	CORVE FOLLOWING ROUTINE CORVE FOLLOWING ROUTINE A = F(4) 11 - CON C = F(4) 11 - CON C = F(4) 11 - CON C = F(4) 11 - CON C = F(4) 11 - CON C = F(4) 11 - CON	1 - 1517761741 - 11670 - 116000 - 1064 - 5541400001.W

Figure K-1. Propagn for redimors sessuer calibration (Sucet 13 of 39).

Figure K-1. Program for radiance scanner calibration (Sheet 14 of 39).

19.19.19	1.2.1. 1.2. 1.4. 1.2. 1.2. 1.4. 1.2. 1.2	WALT - TIME.	HALT = .TRUE.	HALT - JONE. 50 - CALET: LANT-1:00-C.5ALE-6- TRUE. 50 - 10 - 90		CU 10 1001	
60 TO (12, 74, 76, 15 Jr, 2001 1Pf Ave ! JPP = 2 LOWITHUSE		LOWING 118.8 //11x, 4E26.81 } EYE	EYE = 6(1.01) JAY = FLOAT[J + 1] J + 1 + 1 J + 2 + 1 J + 2 + 1 J + 3 + 1 J + 3 + 1 J + 3 + 1 J + 3 + 1 J + 4 + 1 J +	60 10 80 1	Min - AF1ABUT+1) KLOG TRUE. GO TD 60		
#3 5	4444444	3	1			1001	

				The state of the s
0.53				

ان د			SUBSTITUE - COPY C-1UNIT- 4-1	••••••
	THE ROUTHE CONTROL OF THE STREAM IS EMPTY.	145 THE TANUE STR	EXECUTED IF THE TAPUT	
ں ں	DIMENSION (CAFB12G)	(26)		
291	CALL HEDING(4) MR 118(4,100) FORMAT(10x, "1MPUT 0	DATA FOR SATCON DOUBLINK BATA'	E-18E 047477	
150	LIME = 0 READIS-14C.FMD=169 FURMATICOAL)	II ICARD		
8	W.5	CARD		
28.	TO CLIME 190 0) LALL HEDING! FORMATION:	lee/		

Figure K-1. Program for radiance scanner calibration (Sheet 16 of 39).

Figure K-1. Program for radiance scanner calibration (Sheet 17 of 39).

Figure K-1. Program for radiance scanner calibration (Sheet 18 of 39).

; ;

300 CONTINUE 10 111.1

Figure K-1. Program for radiance scanner calibration (Sheet 19 of 39).

		N		CAN			
TERR, FOF 1		ASSERBLES RECURD OF SECOND SCAN SEAD FIRST RECURD OF SECOND SCAN SEACCACACACACACACACACACACACACACACACACACA	60 TO 1040 12	DATÁLK:2) 1.EG. 1023) SATRAT = .TRUE. SALAMANDOCCASIONOSTICONOSTAN FRAD SECUMO RECORD OF SECOND SCAN	CATA, M, TBR, EOF 3 0 10 640 22	740 023 3 SATUAT - TRUE. 580	
ALL VMCAP([DATA, N. F-[E0F-] + G0 TF- 48-9 RFC = 1 RFC + 1 TINUE	0 426 J = 1,51 12(1,4) = 0 00(1)(0) = 0 11(0) = 0 12 = 9	PEAD FIRST PEASOCONCONTONE LUCAM HAIN ''. I		TIME CANADA EQ. 1023 1 SATI	LUCAN (1047A M. 1 ETF 1 GO TO 880 EN NE 628) GO TO 800 EN NE 628	24 - 10414(14.0) 24 - 10414(14.1) 241.3) - 10414(14.2) 1104 1104 12114(14.2) 12114(14.2) 12114(14.2) 12114(14.2) 12114(14.2)	
300000	000 924	3		8	5±1 ±8 [*]	The state of the s	

gure K-1. Program for radiance scanner calibration (Sheet 20 of 39).

Figure K-1. Program for radiance scanner calibration (Sheet 21 of 39).

							CIBCH AR SCAM*/)			*************************			
CAIA, Ny TEPRO EOF)		1040 13 3 3 11 - MF. 1023 1 GO TO 720		1080 1-3 + 3 ATA(K)/20	ATA(K+2) Q., 3.) , GG TU 860	(d. 10 figures) 1	3) SATURALION AT CAIM *, D IN QUIER C		IDATA, N. TERE, EOF J RETURN	***************************************	WEIPECTED FOF ON THOUT TAPE?	3)	
CALL UICANT	IREC = TREC FREE FR	00 720 L 1	720 CONTINUE 740 CONTINUE	768 10 763 L 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	7.0 CMINUF TAO CMINUF IF CALMS	641 13 - 641 14 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	FMDSH = TRLF CALL HFD 196 (WRITE 16, 620) 620 FGWMAI (7.10X)	6.00 CONTINUE	CALL UNCAP IF (FOF) IF (FOF) 670 CORTINUE	# # # •	200 (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	920 CALL HEDING!	

Figure K-1. Program for radiance scanner calibration (Sheet 22 of 39).

94C FORMATITIOA+"MONG TAPE SPECIFIED"/1	980 FORMITTE 4) FREE M * 13, WRONG LENGTH' / FERGER * 16/) FREE M * 150/) FREE M * 16/)		1060 CALL HEDINGL 3 15 15 15 15 15 15 15		
1					
				0) 1	

· 中心中的

11.							
* **	SUBPOUTINE TO READ UNDERWATER CAMERA TAPES RECORDED WITH THE DERMIS GUILFORD PROGRAM.	·	ALLINCE D. S. S. L.	Ailini 140	FIND CORRECT TAPE AND FILE MUNDER.	E.F. 60 10 860 E.F. E.	ITALE FALSE
LOBOON'S	د د د د د د د د د د د د د د د د د د د	C PFAL LOGICAL LOGICAL	2 00 VI 00 V	17.0 CONTINUE OF 1	ال الا الا الا الا الا	200 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	220 CONTI

Figure K-1. Program for radiance scanner calibration (Sheet 24 of 39).

				14.0		

READ FIRST RECORD OF FIRST SCAN	20 TO 960 1060	1.FO. 1023 CONTRACTOR	60 TO 960		4 - E-16 - W 152 - E0 - E0 - E0 - E0 - E0 - E0 - E0 - E	11/20
SEAL UNG ALL TO SEA		260 CONTINUE READ SE	CALL USCAN ECATA	1 (1-1) - 10 - 10 - 10 - 10 - 10 - 10 - 10		1 = 31 - 10ATA(K

Figure K-1. Program for radiance scanner calibration (Sheet 25 of 39).

	SUFFER						
23 1 SATRAI - TRUE.	FROM TEMPORARY BUFFER TO BATA	GU TU 362	IN AL GAIR, F. S. I.O. IN LINER SOUM		ГРКИ, ЕОР 1 1. EO 10 1040 9. TO 1046	ATAIKI/40 ATAIKI/4/ ATAIK/4/ 1) -EQ. 1023 J. SATBAT W. TRUE. 1) -EQ. 1023 J. SATBAT W. TRUE. HEAD SECOND RECUED OF SECOND SCAN	
11(1,1) = (CATA(#+2) 1	MOVE CATA	226 CONTINE TALLS TALLS TO TALLS TAL	350 CONTINE 150 GAINI 340 CONTINE 151 50 CONTINE 151 50 CONTINE 151 50 CONTINE 151 50 CONTINE	SATRAT = .FALSE.	60 CALL DECAM, ICATA, M, 160 CALL DECAM, ICATA, M, 160 CALL DECAM, ICATA, M, 160 CALL DATA, M, 160 CAL	1 = 20 - 1041A(K./40) 1041A(K./2) 1041A(K./2) 1041A(K./2) 1041A(K./2) 1041A(K./2) 1041A(K./2) 1041A(K./2) 1041A(K./2) 1041A(K./2) 1041A(K./2)	

Figure K-1. Program for radiance scanner calibration (Sheet 26 of 39).

Figure K-1. Program for radiance scanner calibration (Sheet 27 of 39).

在如果我们的人名 · 如此,只是我们就是不是一口,只是知识你不是一个人的时候,我们不是什么,可以是什么,可以是一只是一个人

- TRUE.	.12. IN OUTER CIRCULAR SCAN'/)					SCAR TYPE, STAN - 116.11	
1 = 93 - 1DATA(K+1)/20 1	CALL NEDINGS 3 2 HOLD A 1 CALL NE A 1 CALL SALVA WAS TO THE CALL WE AND 1 CAT A 1 CA TU B 30 RETURN ET IN 1 CA TU B 30 RET	FESSAGES FESSAG	DR = 1 URM 1 MEDING(3 I TE(9,940) MATI/10X,"-RONG TAPE SPECIFIED*/1 OR = 2	MAN TELEVISION A 1 C M 1	1990 CALL MED 196(3) 1990 CALL MED 196(3) 1990 FORMATO () 020 11ME ERROR, TIME SET TO 0 1040 CANTINUE 1040 CANTINUE 60 10 220	Tood Cal HEDING! 3 REC. IDATALL3. uttouc From Prince PELURA 1100 CALL #EDING! 3) WRIE(6, 1120) IREC. IDATA(2)	

Figure K-1. Program for radiance scanner calibration (Sheet 28 of 39).

•;

TO A STANDARD STANDARD WITH THE PROPERTY OF TH

FORMATIVION, RECORD NO. ".13," MING GAIN, GAIN = ",14/)
KEIGAN
REIGAN
END 0211

Figure K-1. Program for radiance scanner calibration (Sheet 29 of 39).

SUBACOUTINE FIT (KCEPP SUM: DOON; BRANT, REAL SUM!), DGPX 11 11 12 13 14 15 15 15 15 15 15 15	K. IMAK.						
	I KGEP, SUM, DCPM, BRAM, MPEN ILEFT, INCHT, KLEFT, ARCHI	M 1 60 TO 100		1 - K 1002 - (K2 - M 10 10 10 10 10 10 10 10 10 10 10 10 10	EST		*
	1	SURTED !	1 NAT 1 1 1 1 1 1 1 1 1	X3 = DCX (Max + 1) = VZ M = (X X Y Y Y X X X X X		10011100 1001100 10011100 10011100 10011100 10011100 10011100 10011100 10011100 10011100 10011100 10011100 10011100 10011100 1001100 1001100 10011100 10011100 10011100 10011100 10011100 10011100 10011100 10011100 10011100 10011100 10011100 10011100 1001100 1001100 10011100 10011100 1001100 1001100 1001100 1001100 10011	CONTINUE CONTINUE

Figure K-1. Program for radiance scanner calibration (Sheet 30 of 39).

iì

: ' X2 = DCPX(IRGHT=1) XXCHT = (X2 - X1)+(AH - 0.5 - YI)/(Y2 - YI) + X1 KETURN END :. tr.

Figure K-1. Program for radiance scanner calibration (Sheet 31 of 39).

91. 91. 中華 アンル 経過のはい いっぱい いいかい

新聞の日間を有があることは、19年間の問題を行わるとようというとの間に見りの間では、東西にはあるこれ、大阪の時間をある。 いっちゅう

HEDING (T) FIRST / JRUE. /	1000 / 1700 1700	00000	NIN ISEC. ITE IDAY PAGE. ATCOM BOUND INK GATA REDUCTION. ATCOM BOUND INK GATA REDUCTION.			
SUBSECUTINE HED ING 1	101°	Sec Sec	11 MES = 11 MES - 11 C S S S S S S S S S S S S S S S S S	END		

Figure K-1. Program for radiance scanner calibration (Sheet 32 of 39).

to do

-

ME INTERP L. Ze-Gainle Gainze-Gainse Duelle Fluxe	NOTTINE TO INTERPOLATE MISSING POINTS IN PROCESSAINE CANERA DATA TAKEN WITH THE GULLFOND PROCESSAIN	21185,185), GEE148 / 0.037, 9.228; 1.0, 3.067 /- A3 /-5.8250E-2/- A4 /-1.2029E-5/- A5 /-1.0780E-5/- A8 /-1.2029E-5/- A5 /-1.0780E-5/- A8 /-1.2029E-5/- A5 /-1.0597E-9/- A8 /-1.2021E-9/- A9 /-0.8211E-9/- A10/-9.6330E-9/-	MAIS 3. MISS. **********************************	A	22-	G1 C2 G3 SUBSECTION) 1E47 G3 CSUBSECTION) 10 CSUS CSUBSECTION) 10 CSUS CSUBSECTION) 10 CSUS CSUS CSUS CSUS CSUS CSUS CSUS CSU	
S. S. SUBBOUTINE		•		C PF(X,Y) = Al	1015211.J	CHAN = NAME OF THE PARTY OF THE	ou .

Figure K-1. Program for radiance scanner calibration (Sheet 33 of 39).

THE REPORT OF THE PROPERTY OF

職工了了多流動時間には丁女子へ

近年のでは、1980年の198

Figure K-1. Program for radiance scanner calibration (Sheet 34 of 39).

ř W Ni

7

4

A.J.

		*						· 一种 · · · · · · · · · · · · · · · · · ·
2 + (Y + 204.0)**2 4E5 DML = 2.48E-8 ************************************	is as a mand deather a state is a state of the state of t	FILL IN ROAS OF THE OUTER CIRCULAR SCAN	1 .11. 145 .410 to 220	52.00-17 12.00-25 12.00-25	SCAN	0. 1 -11 - 145 1 **** 10 264 000-25 02-00-75	FILL IN ROWS OF THE OUTER SOURCE SCAN	
99 (0.27 - X) = 029 99 (0.21 - X) = 029 10.50 - 510 -	CONTINUE CONTINUE	FILL IM RO	DO 240 1 = 1.185.4 DO 220 = 1.181.4 DO 220 = 1.181.4	250 CONTINUE TENP + 0 211-1-1-1 211-1-1 211-1-1 211-1-1 211-1-1 211-1-1 211-1 2	2006 2008 2008	DO 280 [= 1.1d1.4 DO 280 [= 1.1d1.4 DO 260 J = 1.185 DO 760 J = 1.161.3 TEM 2 Z [-1 -1 Z -1 Z -1 -1 Z -1	280 CONTINUE 280 CONTINUE 6 FILL 18 8	

Figure K.1. Program for radiance scanner calibration (Sheet 35 of 39).

電機指列には重要を止ることがない ころしょう

我们就是我们的时候,我们也没有我们的时候,我们就会想到这个时候,我们就会想到这个时候,我们就会会看到这一个人,我们就是我们的时候,一个人们的人们的时候,一个人们

3 5 GO TO 300		THE OUTER SQUARE SCAR				
1 = 41+143+2 1 = 61 = 41 - AMD, 1 = 11 - 52 1 = 211+3 2 = 211+3 4 = 11 = 15 = 1 = 10 = 15	41341441444444444444444444444444444444	8	= 41,143,2 1 = 42-144 1 = 61 = 61 = 61 = 124 AND 2 = 211,3 3 = 75 P = 0.2+0.5			A
00 30	300 CONTINUE	رسر	20 30 30 30 30 30 30 30 30 30 30 30 30 30	SAO CONTINUE		

Figure K-1. Program for radiance scanner calibration (Sheet 36 of 39).

			74 15 15 16 17 17 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	TARE	FR 27	222 222 222	Z 32	iii:	:77 :	:::: ::::	22.22 22.23	<i>†</i>
YEXTHUR131L1	D ORDINATE VALUES. B-ABEESSA-VALUES. PECTIVELY THE HES FROM THE PEN	Y (NORMALLY = 1). MI TO PLUT A SYMBOL. FOR POINT PLUT. MYZ-FOR EVERY-BINE! BE USED, SEE SYMBOR.	OV-10-0E-STORED IN KALAKI RESPECTIVELY.									
THE THE THE SERVING	HE ARRAY OF UNSCALED HE-AMILAY OF ANSCALED POINTS IN THE MULAY TOWN YEXTHMA ARE RESP ST DESCALED BY INCH	CLE OF A NIKED AKA NUMBER OF DAIA FOI LINE KUTHELATIVE FOR LYEAT DATA FUH SCRIGING SYNOOL TO	5 - KASA-AMBA-AMB 5.7 (HeK+1), AMB 7 (Het									
SUMMOUTINE - PM INE - [K, V, N; XELTHR, VERTHK-1XERTHM; VEXTHM, K, J, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	T IS THE MANE CH. T. T. T. T. T. T. T. T. T. T. T. T. T.	15 THE REPLATE OF COLUMN 15 THE ALFERDATE OF COLUMN 15 THE	THES ROUTEME EXPECTS - XMIN-BX-TWIN-AND OF TO KINFALLI, FINEK-L-KI, VINEK-LI, AND YINEK-L-KI EXTERNAL REFERENCES-	STEERS STEERS			NG) WHERE (XM,YM,TIMES)	- TN IN - TN I	+0x1)+(0x1+0x1) +0x1)+(0x2+0x1)	J) 0X21 5,5,10		4
SOMOOTI STATE	برونون	o o o o o o o o o o o o o o o o o o o	10000 10000	نىدىد	10 0 LV = 10 0 L	MAIN-X(M DX-X1NG) VMIN-Y(M	17=-1 (ALL WE) 13=3 (ALL WE)	(T)X=1AG (T)X=TXQ AGOMA-NA NG -MY -MY	DAZ=A1 MU	MT-1465(3) MA-17 15 (0x1-0x2)	16 Mus-2 KL = 2	
	111											J. Pa

場所に からまる とうさき

e K-1. Program for radiance scanner calibration (Sheet 38 of 39).

					75.75.75.75.75.75.75.75.75.75.75.75.75.7	
3=2 	AF WITH THE RETURN TO THE RETURN THE RETURN THE RETURN THE RETURN TO THE RETURN TO THE RETURN TO THE RETURN TH	A = 11.57 - XCONG A = 11.57 - XCONG L = 22 - XCONG L = 22 - XCONG D = 37.40 XCONG D = 10.40 XCONG D =	A= 11 A S 1 - YCCORD P= AL AS 1 - XCORD C= EL - YCLORD D= EL AS YCCKRD=EX ACORD=EX ACORD=EX ACORD=EX ACORD=EX	EF=KEX TPM 60-10-180 EX=KEX 1EX EX=KEX 1EX C=F-CRUST C=F-CRUST C=F-CRUST TAST=KT TAST=KT	EX=YEXTM EX=YEXTM EX=YEXTM EX=YEXTM B=XCOMD-YLAST C=EX=YEAST	7 AS 1 = EX XI AS 1 = IL AS 1 + O 400 TO 95 END

APPENDIX L PLOTS OF IRRADIANCE LOSS AT GIVEN DEPTH AS FUNCTION OF THE SUN'S ZENITH ANGLE

ï

Figure L.2. irradiant loss vs. zenith angle.

· 情報の 世界 一元 アイト

说,这是是是是是一个人,我们就是一个人,我们就是一个人,我们就是我们的人,我们就是我们的人,我们就是一个人,我们也会会会一个人,我们也会会会会会会会会会会会会会 第一个人,我们就是我们的一个人,我们就是我们的一个人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人

Figure L.3. Irradiant loss vs. zenith angle.

Figure L.4. Irradiant loss vs. zenith angle.

;]

本語のでは、10mmので

DEPTH - 50 FEET

HOUR 1936

8

1932 1930 1927 1923 1921 1915 1905 1805

1918

Figure L-5. Imadiant loss vs. zenith angle

8

Ķ

-15

5

INTEGRATED LOSS, 48

Ġ

8

ĸ

2

ķ

-15

8

L-8

INTEGRATED LOSS, dB

Figure L.6. Irradiant loss vs. zenith angle

THE

有為

TO POST

1

, 1

學情報是確認可以自由的時間的問題的問題的問題的自然的問題的問題的問題的問題的問題的問題的問題的問題的

per 1.9. Irradiant loss vs. zenith angle.

Figure L-10. Irradiant loss vs. zenith angle.

1

Fyre L-11. Instint los v. zezih angle.

Figure L.13. Irradiant loss vs. zenith angle.

APPENDIX M

$F(\theta)$ RECEIVER DATA

The $F(\theta)$ receiver was deployed to make an independent measurement of the radiant impulse response as described in Appendix A, equation (7). Two sets of these measurements were taken and are plotted in figures M-1 and M-2. The conditions for these measurements were as follows: the laser was inclined at an angle 12.5° off the zenith. The receiver, mounted alongside the barge, was moved roughly perpendicular to the direction of propagation. At each point (measured in feet), the receiver was rotated and a radiant pattern recorded. In figure M-1, the position of the receiver was measured from the point on the surface where the undistorted beam would normally intercept, thus recording plus/minus distances. In figure M-2, the distances were measured from the location of the laser and therefore only positive distances occur.

Figure M-1A. Radiance profile through $F(\theta)$ receiver (June 1975).

Figure M-1B. Radiance profile through $F(\theta)$ receiver (June 1975).

Figure M-1C. Radiance profile through $F(\theta)$ receiver (June 1975).

"我想到我们是我们是我们的,我们就是我们就是我们

Figure M-2A. Radiance profile through $F(\theta)$ receiver (July 1975).

Figure M-2B. Radiance profile through $F(\theta)$ receiver (July 1975).

Figure M-2C. Radiance profile through $F(\theta)$ receiver (July 1975).

Figure M-2D. Radiance profile through $F(\theta)$ receiver (July 1975).

Figure M-2E. Radiance profile through $F(\theta)$ receiver (July 1975).

M-9/M-10 blank