DE2 lab 7

Václav Pastušek

xpastu02, 204437

Table with voltage divider

$$\begin{split} &U_R = 5V \cdot \frac{0}{R_2 + 0} = 5V \cdot \frac{0}{3000 + 0} = 0V \\ &U_U = 5V \cdot \frac{R_3}{R_2 + R_3} = 5V \cdot \frac{330}{3000 + 330} = 0.495V \\ &U_D = 5V \cdot \frac{R_3 + R_4}{R_2 + R_3 + R_4} = 5V \cdot \frac{330 + 620}{3000 + 330 + 620} = 1.203V \\ &U_L = 5V \cdot \frac{R_3 + R_4 + R_5}{R_2 + R_3 + R_4 + R_5} = 5V \cdot \frac{330 + 620 + 1000}{3000 + 330 + 620 + 1000} = 1.970V \\ &U_{SEL} = 5V \cdot \frac{R_3 + R_4 + R_5 + R_6}{R_2 + R_3 + R_4 + R_5 + R_6} = 5V \cdot \frac{330 + 620 + 1000 + 3300}{3000 + 330 + 620 + 1000 + 3300} = 3.182V \\ &U_{none} = 5V \end{split}$$

ADC values for all buttons

$$ADC = \frac{V_i}{V_{ref}} \cdot (2^n - 1) = \frac{V_i}{5} \cdot (2^{10} - 1)$$

Push button	PC0[A0] voltage	ADC value (calculated)	ADC value (measured)
Right	0	0	0
Up	0.495	101	101
Down	1.203	246	245
Left	1.970	403	402
Select	3.182	651	650
none	5	1023	1022

Operation	Register(s)	Bit(s)	Description	
Voltage reference	ADMUX	REFS1:0	01: Avcc voltage reference, 5V	
Input channel	ADMUX	MUX3:0	0000: ADC0, 0001: ADC1,	
ADC enable	ADCSRA	ADEN	1: enables the ADC, 0: the ADC is turned off (0: while a conversion is in progress> terminate conversion)	
Start conversion	ADCSRA	ADSC	Single Conversion mode: 1: to start each conversion; Free Running mode: 1: to start the first conversion.	
ADC interrupt enable	ADCSRA	ADIE	1: ADC Conversion Complete Interrupt is activated	
ADC clock prescaler	ADCSRA	ADPS2:0	000: Division fator 2, 001: 2, 010: 4,	
ADC result	ADCH, ADCL	IADC9:0	ADLAR=1: ADCH9:2, ADCL1:0, result is left adjusted	
			ADLAR=0: ADCH9:8, ADCL7:0, result is right adjusted	

Function name	Function parameters	Description	Example
uart_init	UART_BAUD_SELECT(9600, F_CPU)	Initialize UART to 8N1 and set baudrate to 9600 Bd	uart_init(UART_BAUD_SELECT(9600, F_CPU));
uart_getc	void	Get received byte from ringbuffer	uart_getc();
uart_putc	data	Put byte to ringbuffer for transmitting via UART.	uart_putc('A');
uart_puts	* S	Put string to ringbuffer for transmitting via UART.	uart_puts("Hello world");

