

Corresponds to a stationary state 1 (x,t)=2+(x) e Outside: 7(x)=0 (otherwise $\langle V(X) \rangle = \infty$ Inside: T.T.S.E Becomes $-\frac{t^2}{am}\frac{d^2}{dx^2} + (x) = \pm 2 + (x)$ - d 4(x) = - k 4(x) where $k^2 = 2mE$, or $E = \frac{t^2k^2}{t^2}$ Solutions to egn: 4(X) = A sinkX + B as kX Boundary conditions:

	We will see that whenver
	√ (x) ·
	is continuous, Both
	$\gamma(x)$ and $\frac{d}{dx} \gamma(x)$
	need to be antinuous.
	We'll see later that, if
	V(x) has infinite discontinuity,
	only 4(x) needs to be continuous.
	So, at
	X=0 and X=a
9	re regure
	are continuous 2 4(x)
A	rt <u>x=0</u> :
	$0 = 4(6) = A - 8in \phi + B \cos \phi$
	$= 8.1 = B \Rightarrow B$

At x=a.

$$0 = \frac{1}{4}(a) = A \cdot \sin k \cdot a$$

So:

 $k \cdot a = \frac{1}{2} \cdot \frac{1}{4} \cdot$

So:
$$\frac{1}{2} = \frac{1}{2} =$$

Orthonormality Spectrum is discrete and non-degenate: In's are mutually orthogonal 7 2 m(x) 4 n(x) dx = 0, N=14 Physically, this means that Un and Um one "maximally different" or "zero overlap" 1 24m (x) 24n (x) dx= = $\frac{2}{a}$ Sin $(\frac{m\pi}{a}x)$ Sin $(\frac{n\pi}{a}x)$ dx $=\frac{1}{a}\left[\cos\left(\frac{m+n}{a}\pi x\right)-\cos\left(\frac{m-n}{a}\pi x\right)\right]$

Be written as f(x) = 2 (n 4n (x) $\frac{1}{a}$ $\sum c_n sin(\frac{n\pi}{a}x)$ where cn= (24n (x) f(x) dx This joropuly will hold for all potentals we will run who Remembr: From thise stalmany solulars we get any solution to then:

 $\frac{1}{\sqrt{(x_10)}} = \sum_{n=1}^{\infty} c_n \mathcal{A}_n(x)$

3. S.E. is solved by

 $\frac{1}{Y(x,t)} = \sum_{n=1}^{\infty} \frac{-i\operatorname{Ent}/h}{n}$

with 24ncx), En as above.

4. Recall, normalization of solution

to S.E. is time independent

1= dx 4 (x,t) 4 (x,t)

 $=\sum_{n_1m=1}^{\infty}C_nC_mS_{mn}=\sum_{n=1}^{\infty}|C_n|^2$

or $\left(=\sum_{n=1}^{\infty}\left|C_{n}\right|^{2}\right)$

These sound like probabilities... and they are: Probability that, for a particle in state (x,1) measurement of energy results in In. In particuler: dx 4*(x1+) + 4(x1+) -iEnt/to = = cn En 4n(x) e

Expertalar value of energy is undefounded of time in any stale of (xit), not got un Aarmeny stales classica expertation conservatou value of of energy of time in any granden Nall Y (KH) tarmonie Oscillator

An arbitrary potential looks like of, near its miniman! $\sqrt{(\chi)} = \sqrt{(\chi_0)} + \frac{d}{d\chi} \sqrt{(\chi_0)} (\chi_0) + \frac{d}{\chi_0} \sqrt{(\chi_0)} \chi_0) + \frac{d}{\chi_0} \sqrt{(\chi_0)} (\chi_0) + \frac{d}{\chi_0} \sqrt{(\chi_0)} \chi_0) + \frac{d}{\chi_0} \sqrt{(\chi_0)} \chi_0 + \frac{d}{\chi_0} \sqrt{(\chi_0)} \chi_0) + \frac{d}{\chi_0} \sqrt{(\chi_0)} \chi_0 + \frac{d}{\chi_0} \sqrt{(\chi_0)} \chi_0 + \frac{d}{\chi_0} \sqrt{(\chi_0)} + \frac{d}{\chi_0} \sqrt{(\chi_$ + 1 old V(x) (x-X0)+. a minimum $\frac{d}{dx}V(x_0)=0$, $\frac{d}{dx_2}V(x_0) \geq 0$ => effective. H.o. potulal w/ kell = 0/2 /(x0) >0 In QM We get - th d = + m 2 x 2 + m = = = + (x) 2 methods to sibe qui: Bruk force and algebraic Algebraic Y(x) = E Y(x) where $\frac{1}{1} = \frac{1}{2m} + \frac{1}{2}m\omega^2 x^2$ P=-ihd If these were numbers $\alpha_{\pm} = \frac{1}{\sqrt{2m\hbar\omega}} \left(\mp i p + m\omega x \right)$ t= thwa+.a-= $\frac{\hbar\omega}{2m\hbar\omega} \left(-ip + m\omega x\right) \left(+ip + m\omega x\right)$ $= \frac{1}{2m} \left(P^2 + (m\omega \times)^2 \right)$ $= \frac{P^2}{2^{n}} + \frac{m\omega^2}{2^n} \times \frac{2^n}{2^n}$

Since
$$\hat{p}$$
 and \hat{x} do not commute \hat{x}

$$\hat{x} \hat{p} f(x) \neq \hat{p} \hat{x} f(x)$$

$$\hat{x} f(x) = x f(x) \qquad f(x) = tost \\ f(x) = -it \frac{d}{dx} f(x)$$
Instead:
$$\hat{x} \hat{p} f(x) = \hat{p} \hat{x} f(x) + it f(x)$$
It follows also
$$\hat{\alpha}_{\pm} = \frac{1}{4} (\mp i \hat{p} + m \omega \hat{x})$$

$$\hat{\alpha} \hat{\alpha}_{\pm} f(x) \neq \hat{\alpha}_{\pm} \hat{\alpha}_{\pm} f(x)$$

$$ustead$$

$$\hat{\alpha}_{-} \hat{\alpha}_{+} f(x) = \hat{\alpha}_{+} \hat{\alpha}_{-} f(x)$$
One usually drops test functors:
and works with operator relations:

$$\hat{A} - \hat{A}\hat{A} = it$$

$$\hat{a} - \hat{a} + \hat{a} = i$$
For any pair of quature
$$\hat{A} \cdot \hat{B},$$
we define a commutator
$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$
and then relating above read:
$$[\hat{x}, \hat{p}] = it$$

$$[\hat{a}, \hat{a}_{+}] = i$$
Upolod:
$$H = \frac{i}{2m}\hat{p} + \frac{i}{2}m\omega^{2}\hat{x}^{2}$$
can be rewritten, using

$$\hat{\rho} = i \sqrt{m \hbar \omega} (\hat{a}_{+} - \hat{a}_{-})$$

$$\hat{x} = \sqrt{\frac{\hbar}{2}m\omega} (\hat{a}_{+} + \hat{a}_{-})$$

$$\hat{x} = \sqrt{\frac{\hbar}{2}m\omega} (\hat{a}_{+} + \hat{a}_{-})$$

$$\hat{x} = \sqrt{\frac{\hbar}{2}m\omega} (\hat{a}_{+} + \hat{a}_{-})^{2} \text{ order}$$

$$\frac{1}{2}m\omega^{2} (\frac{\hbar}{2}m\omega) (\hat{a}_{+} + \hat{a}_{-})^{2} + \frac{\hbar}{2}\omega$$

$$= -\frac{\hbar}{2}\omega (\hat{a}_{+} + \hat{a}_{-} + \hat{a}_{-})^{2} + \frac{\hbar}{2}\omega$$

$$= \frac{\hbar}{2}\omega (\hat{a}_{+} + \hat{a}_{-} + \hat{a}_{+})^{2} + \frac{\hbar}{2}\omega$$

$$= \frac{\hbar}{2}\omega (\hat{a}_{+} + \hat{a}_{-} + \hat{a}_{+})^{2}$$

$$= \frac{\hbar}{2}\omega (\hat{a}_{+} + \hat{a}_{-} + \hat{a}_{+} + \hat{a}_{-})^{2}$$

$$= \frac{\hbar}{2}\omega (\hat{a}_{+} + \hat{a}_{-} + \hat{a}_{+} + \hat{a}_{-})^{2}$$

$$= \frac{\hbar}{2}\omega (\hat{a}_{+} + \hat{a}_{-} + \hat{a}_{+} + \hat{a}_{-})^{2}$$

$$= \frac{\hbar}{2}\omega (\hat{a}_{+} + \hat{a}_{-} + \hat{a}_{-} + \hat{a}_{+} + \hat{a}_{-})^{2}$$

$$= \frac{\hbar}{2}\omega (\hat{a}_{+} + \hat{a}_{-} + \hat{a}_{-} + \hat{a}_{-} + \hat{a}_{+} + \hat{a}_{-})^{2}$$

$$= \frac{\hbar}{2}\omega (\hat{a}_{+} + \hat{a}_{-} + \hat{a}_{-} + \hat{a}_{-} + \hat{a}_{+} + \hat{a}_{-} + \hat{a}_$$

$$E+3\hbar\omega \qquad \hat{A}^{3} \qquad \downarrow$$

$$E+2\hbar\omega \qquad \hat{A}^{2} \qquad \downarrow$$

$$E+\hbar\omega \qquad \hat{A}^{2} \qquad \downarrow$$

$$E-\hbar\omega \qquad \hat{A}^{2} \qquad \downarrow$$

$$E-2\hbar\omega \qquad \hat{A}^{2} \qquad \downarrow$$

$$E-2\hbar\omega \qquad \hat{A}^{2} \qquad \downarrow$$

$$E+\hbar\omega \qquad \hat{A}^{2} \qquad \downarrow$$

$$E+\lambda\omega \qquad \downarrow$$

$$E+\lambda\omega$$

$$\frac{1}{4} \hat{a} = \hat{a} + \hat{a}$$

Physical Expedation
There should exist a
stale to of
Lowest energy
for which
a-40=0,
Since we cannot lower
onergy any further. Othewise
energy would be unbounded
from Below - we would have
om unstable system.
•

_

_

_

We can find from this explicit form of Un(X) as well. Begun with yo; Ground state Per definiter Sime $\Omega = \frac{1}{\sqrt{2 + \omega m}} \left(\frac{i p + m \omega \lambda}{i} \right)$ P=-itg This is an egue to = + m w x) 45 (x) = 0

Solved By

$$2 + \frac{m\omega}{2\pi} x^2$$
 $2 + \frac{m\omega}{2\pi} x^2$

Normalization constant (see each)

 $4 = \frac{m\omega}{\pi \hbar} \frac{m\omega}{4}$

So $2 + \frac{m\omega}{\pi \hbar} = \frac{m\omega}{\pi \hbar} x^2$

From thus, get

 $2 + \frac{m\omega}{\pi \hbar} = \frac{m\omega}{\pi \hbar} = \frac{m\omega}{2\pi} x^2$
 $2 + \frac{m\omega}{\pi \hbar} = \frac{m\omega}{\pi \hbar} = \frac{m\omega}{2\pi} x^2$
 $2 + \frac{m\omega}{\pi \hbar} = \frac{m\omega}{\pi \hbar} = \frac{m\omega}{2\pi} x^2$
 $2 + \frac{m\omega}{\pi \hbar} = \frac{m\omega}{\pi \hbar} = \frac{m\omega}{2\pi} x^2$
 $2 + \frac{m\omega}{\pi \hbar} = \frac{m\omega}{\pi \hbar} = \frac{m\omega}{2\pi} x^2$
 $2 + \frac{m\omega}{\pi \hbar} = \frac{m\omega}{\pi} = \frac$

It follows (dn 4m) (dn 4m) dx = ((a-4n) a-4n dx = (4n de a 4n dx homy apa lu = n 4n =) | dn|2n; dn=\n , umg Som a- a+ 4n = (a+a-+1) 4n -(ne/) 44 folono Mculzani; ca=Inti. an Ym = Thei Ynor

Iteraly:

a+ 40 = 41

a+ 4, = \(\sigma \frac{4}{2} \frac{4}{2}

a+ 4n-1 = Vn 4n

=) (a+) 40 = \n! 4n

or $4n = \frac{1}{\sqrt{n!}} (a_t)^n Y_o$

Orthogonality

Since Em#En

for minter

Expect:

 $\int_{\infty}^{\infty} \mathcal{Y}_{m}^{*}(x) \mathcal{Y}_{n}(x) dx = \mathcal{S}_{m}^{n}$

We can prove this explirity here a, a. Un = n Un a_tn = In Tn-1 a+ a- 4n = \n a+ 24n-1 $=\sqrt{N-\sqrt{N-1+1}}$ = m 7tm) a 4n dx = m f 2m 2ndx

The thought = 0 (m-n) Tu th dr=0. mŧn, Expectation values $\hat{p} = i \sqrt{m + \omega} (\hat{a}_{+} - \hat{a}_{-})$ $\frac{1}{2m\omega}$ ($\alpha_{+}+\alpha_{-}$) => For any of eigenstates p>= Stmptndx = 0prin = Linear combinator of Until and Yand

But
$$\langle p^2 \rangle_n$$
, $\langle x^2 \rangle$

do not vanish:

$$=-\left(\frac{n t \omega}{2}\right)\left(-2 a_{+} a_{-}-1\right) \psi_{n}$$

$$[a_{-}, a_{+}] = 1 \text{ and } \hat{a}_{-}a_{+} = q_{+}a_{+}$$

$$= (m\hbar w)(n+\frac{1}{2}) 7n$$

$$= \frac{1}{2} \left(\frac{1}{p} \right)_{n} = m t \omega \left(n + \frac{1}{2} \right)$$

or
$$\langle \frac{P}{2m} \rangle_{n} = \frac{1}{2} \hbar \omega (n + \frac{1}{2})$$

Simulary $\langle m\omega^2 \rangle = \frac{1}{2}\hbar\omega(n+\frac{1}{2})$

Usi this we can also ponone pre spectur of H is Bounded Som beliew. This follows far H= tw (a+a-+= where operator har spun Bounded from Below f le au eigenf. a. 1 = V -(a-f) a-f dx 1a- f)2dx

$$V = \frac{\int |\alpha - f|^2 dx}{\int |f|^2 dx}$$

or
$$a-f=9+6$$
 and U

he Free Particle Ch 2.4 V(X)=0 - to de 7+(x) = E 7+(x) R= 2ME = tik2 0/2 24(x) = - k 24(x) 2+(x)= Aeikx + Be-ikx x,t) = 4(x) & = Aeik(x- thkt)+ +Boik(x+thet) f(x+vt) represents a

amp le is allowed Since Ck YK (XIt S.E: $-\frac{t^2}{2m}\frac{\partial^2}{\partial x^2}\frac{\partial}{\partial x^2}\left(x_1t\right)=it^2\frac{\partial}{\partial t}$ Really, we wan which correspond to initial con di han 4(x,0)

T.e:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \int$$

dx' 8(x-x') 4(x(0) t(x,o) x Here, we want to cloose a 4 (4,0), σ 14(x10) | dx = 1 2+(x,t) dx -1 This is equivalent -~ -ck(x x')

dk (dx dx' 4(x) 4(x') e

-ck(x x')

2π

(dx dx' 4(x) 4(x') δ(x-x') = (dx | ψ(x) |

A free quantus medanical particle $\frac{1}{1+1} \left(\frac{1}{1+1} \right) = \frac{1}{1+1} \left(\frac{1}{1+1} \right) =$ one of dales above, with vormuliable $\phi(k) =$ Wave packet " EX: Gaussian Wave pachet $4(x,0)=\left(\frac{2a}{\pi}\right)^{1/4} = ax^{2}$ width a 1/Vea

Let's now they to understand what happens to velocity. Suppose $\phi(k)$ is harrowly pealed and M=ko (lex-wiest) $\omega(k) = \frac{t_1 k^2}{2}$

Taylor expand W(k) = W(ko) + W. (k-ko) + ... $\frac{1}{(x,t)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ds \, \phi(k_0 + s) e \times \frac{1}{(\omega(k_0) + \omega_0 s)t}$ $\psi(\chi_{10}) = \sqrt{2\pi} \int_{-\infty}^{\infty} dS \, \phi(h_0 + s) \, e^{-\frac{1}{2\pi} (h_0 + s) X}$ At later hous $\Psi(x,t) = [...] \frac{1}{\sqrt{2\pi}} \int_{-\pi/2}^{\pi/2} ds \, \Phi(k_0 + s) \, e^{-\frac{t}{2\pi}} \left(\frac{(k_0 + s)(x - \omega st)}{\sqrt{2\pi}} \right)$ [....] · 4(x-wot, 0) -i'wot +i'kowo't Phase factor; 2 = e doro not ather! 141

So, the wave packet propagates
with speed
$w_0' = \frac{d}{dk} w$
group velou y " $\sqrt[4]{g_{som}} = \frac{d}{dk} W \Big _{k_0}$
While individual components
Joropasak with
"phase velous" Tophan = k ko
For wo $\omega = \frac{t_0 k^2}{am}$
Types = the = 1 Volumed
Vgroup = tile = Vilus

When W(k) = c x k Some constant Ogranp = d W = W = Ophase But otherse it is not Ngroup= relouty with which pathet as a whole moves $\Psi(x,0) \rightarrow \Psi(x-v_{grup}t,0)$ Nohers = speed of "ripples" withu palm

Unler w(k)= c.k =) Vgroup + V phase with different velouity There is another effect spready of the Ganssian example dh Q(k) e

(Pealed at ko=0=7 Nclass=0 114 [zatitt]

$$\begin{aligned} & \left| \begin{array}{c} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} \right)^{1} \underbrace{\left| \begin{array}{c} 2a t t \\ \text{Litizatily} \end{array} \right|}_{\text{The 2att}} \\ & \left| \begin{array}{c} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right)^{2} \\ & \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right)^{2} \end{aligned} \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right)^{2} \\ & \left| \left(\frac{2a}{\pi} t \right)^{2} \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right)^{2} \\ & \left| \left(\frac{2a}{\pi} t \right)^{2} \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right)^{2} \\ & \left| \left(\frac{2a}{\pi} t \right)^{2} \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right)^{2} \\ & \left| \left(\frac{2a}{\pi} t \right)^{2} \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right)^{2} \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right)^{2} \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right)^{2} \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right)^{2} \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right)^{2} \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right)^{2} \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1} t \right) \right| = \left(\frac{2a}{\pi} t \right) \end{aligned}$$

$$\begin{vmatrix} \left| \left(x_{1}$$

	In monulu space the width
	stags fixed
	stags pred
	Sp= Va.t
	so unadamby
	6 2 to 0 1. (00 to to 2)
	6x.6p= to 1+ (2att)
	•
	increases with time.
	25 Delta-Function Potential
•	١ -
+	rst:
	BOUND STATES US SCATTERING
	•
	CLASSICALY:
	BOUND (=>> PARTICLE CANT
	STATE GET TO 300;
	BACK AND FORTH
	GETWEEN TURNING
	PTS

•

•

ec	ure	<u>_ l</u> l
1	tha	0
JU .	\mathbf{I}	\wedge

2.5 Delta-function potential

Dirac Delta-Junden

$$S(x) = \begin{cases} 0, & x \neq 0 \\ \infty, & x = 0 \end{cases}$$

such that

$$\int f(x) \delta(x-a) dx = f(a)$$

S(x) is an example of a "distribution",

since it is not a function un stemdard

terms. One can obtain it as a

limit of a regunce of normal funtame

E.g: $g(x) = \begin{cases} \frac{1}{2a} & |x| < a \end{cases}$

	To	FIND	WHAT	IT N	EDS To	BE
	INTEG	RATE				
		- t2	.12		(r) V(r)	= = Y(x)
		ZM	JXZ 41	(x) + 0	/(k / P () /	$= \cup \ \varphi(x)$
		•				
		TROM	-E 1	3 6	FOR SM	AL E>0
			•	•		-24(0)
	+1			٩		
	- h	2	zw.dx	4 ($V(x) \psi(x)$	-24(0) dx
	2 m	1 dx2				•
		-9.		-8		
				ک کر	10	
		<u>Λ</u> 1	L1	<u>-</u> (-n/x)0	t.
		<u> </u>	1		EN/X)	
				-2		•
		٤			•	
		- 200		0		
_	lu	E 41)	()dx =	= lu	E.4(6)	28 = 0
4	270 - 8	;		2-7	= 4(6) = disc	:. w E-4
	2					
L	u SV	(x) 4 ()	x)dx =	= lu (-	28(x)4	(x) dx
ما حار	- 5.		Q	-50		· //- /
270					28(x)4 =-24	(0)
					•	
				. 1	, ,	
		For V	(X) MIT	h at	most f	m'le
					1	
	discon	h'mm'h'	er, R	HS vo	imship.	
	•					

we would get

$$\Delta \mathcal{H}' = 0 \iff \mathcal{H}' \text{ is continuous}$$

As is, we get

$$-\frac{t^2}{2m} \Delta \mathcal{H}'(0) - d\mathcal{H}(0) = 0$$

OR: $\Delta \mathcal{H}'(0) = -2md\mathcal{H}(0)$

THIS DETERMINES K:

$$\mathcal{H}'(x) = \int \frac{dx}{dx} A e^{-\frac{kx}{2}} = -\frac{kx}{2} A e^{-\frac{kx}{2}}$$

$$\frac{dx}{dx} A e^{-\frac{kx}{2}} = \frac{kx}{2} A e^{-\frac{kx}{2}}$$

$$\Delta \mathcal{H}'(0) = -\frac{kx}{2} - \frac{kx}{2} - \frac{kx}{2} A e^{-\frac{kx}{2}}$$

$$\Delta \mathcal{H}'(0) = -\frac{kx}{2} - \frac{kx}{2} -$$

$$= |A| \frac{1}{2K} \left\{ e^{2KX} \right|_{0}^{0} - e^{-2KX} \right|_{0}^{\infty}$$

$$= \frac{|A|^2}{2k} \left[+1-0 - (0-1) \right]$$

$$= \frac{|A|^2}{2k} = \delta \qquad A = \sqrt{2k}$$

SCATTERING STATES (EXO)

$$\lambda \leftarrow \frac{1^2}{dx^2} + = -\frac{2mt}{k^2} + = -\frac{1}{k^2}$$

$$k = \frac{t^2 k^2}{t^2}$$

$$k = \frac{t^2 k^2}{2m}$$

STITCH SOCUTIONS AT X=0

$$V = S = A+B = F$$

$$\int ump \, u \, d \, V = -2mL \, V(0) = -2mL \, F$$

$$\int ump \, u \, d \, V = -2mL \, V(0) = -2mL \, F$$

$$\int v = ikF + dv = ik(F-A+B)$$

$$= -2md \, F$$

$$\int v = -2md \, F$$

	Relative PROBABILITY OF REFLECTION
~ Pc	ELECTION $R = \frac{ B ^2}{ A ^2} = \frac{B^2}{ A ^2}$
	(FRACTION OF PARTICUES IN REFUECTED BEAM)
	Relative PROB. OF TRANSMISSION
\\-	TURNSHI'S. $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
	R+T=1
	R, T ARE FUS OF
	$\beta = \frac{2d}{\pi k} = \frac{d}{\pi} \sqrt{\frac{2}{mE}}$
	HIGHER E (=) SMANUER B
	T GROWS, R PALLS.
	CLASSICALLY R=0 T=1.

QUANTUM: NON-ZERO FROB U
KELIECLOH!
WE DID THIS ALL W STATIONARY
STATES, WHICH ARE NOT PARTICLES
TO GET PHYSICAL PARTICLES, NOED
WAVE PACKETS. HOVE IS A GOOD
APPROX. FOR A WAVE PERKED NAPROWLY
AT K
S-In PARRIER (2 > 1)
h A(n)
S-FN BARRIER
×
* No BOUND STATES
* CLASSICALY T=0, R=1
* QUANTUM ANSWER IS PN OF 22 DOES NOT CHANGE

