طراحي كامپايلرها

تحلیل لغوی (بخش 1)

$$do[for] = new 0;$$

پویش فایل مبدأ

W	h	i	1	е	(1	3	7	<	i)	\n	\ +	+	+	i	;
	11				`			•	-			/11	10	•	•	_	,
W	h	i	1	е	(1	3	7	<	i)	\n	\t	+	+	i	;
W	h	i	1	е	(1	3	7	<	i)	\n	\t	+	+	i	;
W	h	i	1	е	(1	3	7	<	i)	\n	\t	+	+	i	;
W	h	i	1	е	(1	3	7	<	i)	\n	\t	+	+	i	;
W	h	i	1	е	(1	3	7	<	i	1		\t		+	i	;
W	h	i	1	e	(<u> </u>				I	I	I	I	<u> </u>	+	I	;
W	h	i	1	е	(1	3	7	<	i)	\n	\t	+	+	i	;

 گاهی اوقات یک لغت ذخیره نمیشود و ندیده گرفته میشود. فضای خالی هیچ معنایی برای برنامه ندارد بنابراین نادیده گرفته می شود.

T_While

W	h	i	1	е	(1	3	7		<	i)	\n	\t	+	+	i	;
W	h	i	1	е	(1	3	7		<	i)	\n	\t	+	+	i	;
W	h	i	1	е	(1	3	7		<	i)	\n	\t	+	+	i	;
W	h																	
																	l	
W	n		1						<u> </u>		 			<u> </u>				
W	h	i	1	е	(1	3	7		<	i)	\n	\t	+	+	i	;

T_While (

T_IntConst

. .

برخی از توکن ها خصیصه ای دارند که اطلاعات اضافه درباره توکن را نگهداری میکند.

هدف از تحلیل لغوی

- □ تبدیل از توصیف فیزیکی برنامه به دنباله ای از توکنها
- هر توکن یک بخش منطقی از فایل مبدأ را نشان میدهد
 مثل یک کلمه کلیدی، نام متغیر و ...
 - 🗖 هر توكن با يك لغت مرتبط است.
 - ... , "int" , 137 متن واقعى توكن مثل 137 , "...
- هر توکن میتواند خصیصه ای داشته باشد که از متن
 به دست می آید مثل مقدار عدد
 - دنباله توکن ها در مرحله بعد در پارسر به کار می رود.

انتخاب توكن

🗖 چه توکنهایی مفید هستند؟

```
for (int k = 0; k < myArray[5]; ++k) {
cout << k << endl;
For
int
<<
++
Identifier
IntegerConstant
```

انتخاب توکن های خوب

- □ بسیار وابسته به زبان است.
 - □ معمولا:
- کلمات کلیدی، توکن خودشان را دارند.
- هر نماد نقطه گزاری، توکن خودش را دارد.
- لغتهای نمایشگر شناسه ها، ثابتهای عددی، رشته ها و غیره با هم گروه بندی میشوند.
- اطلاعات نامربوط کنارگذاشته می شوند (فضای خالی، توضیحات)

پیچیدگیها

- □ در fortran همه فضاهای خالی حذف می شوند
- \Box DO 5 I = 1,25
- D05I = 1.25

□ تعیین این که ورودی کجا تفکیک شود مشکل است.

پیچیدگیها

- در زبان PL/1 کلمات کلیدی می توانند به عنوان شناسه استفاده شوند.
- IF THEN THEN THEN = ELSE; ELSE ELSE = IF
- □ IF THEN THEN THEN = ELSE; ELSE ELSE = IF
 - □ برچسب گزاری لغات مشکل است

چالش ها

- تكونه تعيين كنيم كدام لغات با هر توكن مرتبط هستند.
- اگر چند روش برای پویش ورودی وجود دارد چگونه بدانیم کدام را انتخاب کنیم.
 - چگونه میتوان موارد فوق را با کارایی درنظر
 گرفت

ارتباط لغات و توكنها

- 🗖 توکنها روشی برای گروه بندی لغات فراهم میکنند.
 - رخی توکنها ممکن است فقط با یک لغت مرتبط شوند.
 - توکنها برای کلمات کلیدی مثل if و While میتوانند
 جزء این دسته باشند.
 - بعضی ت.کنها ممکن است با لغات زیادی مرتبط شوند:
 - نام متغیرها، اعداد، رشته ها و...

مجموعه لغات

```
    ارتباط لغات با هر توکن "number" با مجموعه (0,1,2, ...)
    توکن "10,11,12, ...}
    توکن "string" با مجموعه (" ","b","" "," a","b", ...}
    توکن "While با مجموعه (while)
```

Formal Languages

- □ زبانهای رسمی، مجموعه ای از رشت*ه* ها هستند.
- بسیاری از زبانهای نامتناهی دارای تعریف متناهی هستند.
 - و تعریف زبان با استفاده از اتوماتا
 - تعریف زبان با استفاده از گرامر
 - تعریف زبان با استفاده از عبارت باقاعده

عبارت باقاعده

- مجموعه ای از توصیفها برای تعریف زبانهای معینی است.
 - □ توصیف فشرده و قابل فهمی از زبان
 - □ اساسی برای بسیاری سیتمهای نرم افزاری مثل Flex که بعدا بررسی خواهد شد

عبارات باقاعده اتمیک

- 🗖 نماد 🗌 یا 🖑 رشته تهی را نشان میدهد.
- برای هر نماد a، a یک عبارت باقاعده است که با
 کاراکتر a منطبق می شود.

عبارات باقاعده ترکیبی

```
🗖 اگر R1 و R2 عبارت باقاعده باشند،
R1R2(الحاق)، R1|R2 (اجتماع) و R1 بستار
             ستاره ای آنها هم باقاعده است.
                          🗖 اولویت عملگرها:
```

(R)

 \mathbb{R}^*

 R_1R_2

 $R_1 \mid R_2$

مثال

- $^{-}$ الفبای 0 و 1 : $^{-}$ رشته های شامل $^{-}$ $^{-}$ $^{-}$ رشته های شامل $^{-}$ $^{-}$

مثال

```
الفباى 0و1:
```

□ رشته های با طول 4:

```
(0|1)(0|1)(0|1)(0|1) (0|1){4}
```

مثال

- الفباى 0و1: $^{\square}$
- رشته هایی که حداکثر یک صفر دارند:

مثال کاربردی

- فرض كنيد الفبا شامل a, @ و . باشد كه a به
 معنى هر حرف الفبا باشد.
 - عبارت باقاعده برای آدرس ایمیل:

cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

مثال کاربردی

```
🗖 الفبا: همه كاراكترهاي اسكي
           🗖 عبارت باقاعده برای اعداد زوج
(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)
      (+|-)?[0-9]*[02468]
                42
              +1370
```

-3248

-9999912

پیاده سازی عبارتهای باقاعده

- عبارات باقاعده با اتوماتای متنهای قابل پیاده سازی هستند.
 - □ دو نوع اصلی:
 - NFA(Nondeterministic Finite Automata)
 - DFA(Deterministic Finite Automata) •

یک اتوماتای ساده

یک اتوماتای ساده، ادامه....

یک اتوماتای ساده، ادامه....

یک اتوماتای ساده، ادامه....

A More Complex Automaton

An Even More Complex Automaton

گذر ﷺ به صورت خودکار و بدون استفاده از ورودی دنبال می شود

شبیه سازی NFA

- وضعیتها دنبال می شوند. پردازش ازوضعیت شروع و هر وضعیتی
 که با تغییرحالت شود.
 - 🗖 برای هر کاراکتر ورودی:
 - مجموعه ای از وضعیتهای بعدی نگهداری می شوند. (مقدار اولیه تهی اس*ت*)
 - ۰ برای هر وضعیت جاری:
 - همه انتقالهایی که برچسب آنها حرف جاری است دنبال می شوند.
 - این وضعیتها به مجموعه وضعیتهای جدید اضافه می شوند.
 - ٔ هر وضعیتی که با حرکت ﴿ قابل دسترسی باشد به مجموعه وضعیت های بعدی اضافه میشود.
 - □ پیچیدگی: O(mn²) برای رشته هایی به طول m و اتوماتایی با n وضعیت

جمع بندی

- هر عبارت باقاعده با طول n را می توان به یک
 NFA با (n) وضعیت تبدیل کرد.
- □ در زمان (O(mn² میتوان تعیین کرد که آیا رشته ای با طول m با عبارت باقاعده با طول n منطبق می شود یا خیر.
 - بعدا نشان میدهیم چگونه این زمان را به (O(m)
 کاهش میدهیم.