Guía 1

1. Suponga que a, b son números reales no nulos simultáneamente. Hallar números reales c y d tales que,

$$\frac{1}{a+bi} = c+di$$

Respuesta.- Hallemos $c \in \mathbb{R}$ de la siguiente manera,

$$\begin{array}{rcl} \displaystyle \frac{1}{a+bi} & = & c+di \\ \\ \displaystyle \frac{1}{a+bi} - di & = & c+di-di \\ \\ c & = & \displaystyle \frac{1}{a+bi} - di \end{array}$$

Ya que,
$$i^4 = i^3 i = (-i)i = -(i^2) = -(-1) = 1$$
 y
$$i^3 = i^2 i = (-1)i = -i,$$

podemos hallamos $d \in \mathbb{R}$,

$$\frac{1}{a+bi} = c+di$$

$$di = \frac{1}{a+bi} - c$$

$$di \cdot i^3 = i^3 \left(\frac{1}{a+bi} - c\right)$$

$$d = \frac{-i}{a+bi} + ci$$

Así,
$$c = \frac{1}{a+bi} - di$$
; $d = \frac{-i}{a+bi} + ci$.

2. Hallar dos raíces cuadradas distintas de i.

Respuesta.- $x^2 - 1 = 0$ y $x^2 - 4 = 0$.

3. Probar que $\alpha + \beta = \beta + \alpha$, para todo $\alpha, \beta \in \mathbb{C}$.

Demostración.- Sea $\alpha = a + bi$ y $\beta = c + di$, entonces por definición de números complejos para la adición, tenemos que,

$$\begin{array}{rcl} \alpha+\beta & = & (a+bi)+(c+di) \\ & = & (c+di)+(a+bi) \\ & = & \beta+\alpha \in \mathbb{C} \end{array}$$

De donde se demuestra la proposición dada.

4. Probar que $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$, para todo $\alpha, \beta, \lambda \in \mathbb{C}$.

Demostración.- Sea $\alpha = a + bi, \ \beta = c + di$ y $\lambda = e + fi$ entonces,

$$(\alpha + \beta) + \lambda = [(a + bi) + (c + di)] + (e + fi)$$

= $(a + bi) + [(c + di) + (e + fi)]$
= $\beta + (\alpha + \lambda)$

Así,
$$(\alpha + \beta) + \lambda = \beta + (\alpha + \lambda)$$
.

5. Probar que para todo $\alpha \in \mathbb{C}$, existe un único $b \in \mathbb{C}$ tal que $\alpha + \beta = 0$.

Demostración.-