Recursive Construction of Relative Phase Multiple Controlled Toffoli

Minh Pham

Emilio Peláez

July 14, 2021

Abstract

We propose an efficient construction for multiple controlled-NOT gates that allows for relative phase difference in the output of the gate and uses no additional qubits other than n control bits and one target bit. We employ a recursive construction using three base cases: the phaseless CNOT, the phased Toffoli, and the phased triple controlled-NOT; the latter two are known constructions from previous literature on the subject. To prove its correctness, we use the method of exhaustion, checking all different gate and parameter combinations. Finally, we derive an upper bound on the complexity of our technique and compare it to the recently known construction of complexity $9n + \mathcal{O}(1)$ CNOT gates.

Contents

1	Introduction	1
2	Construction	2
3	CX count	9
4	Naive comparison to the $9n + O(1)$ construction	4
5	Applications in Phaseless Circuits	5
$\mathbf{A}_{\mathbf{j}}$	ppendix A Difference data for first 400 cases	8

1 Introduction

The theory of quantum information and quantum computation allows us to exploit the phenomena present in quantum mechanics to solve computational problems that classical computers cannot; at least in theory. To take this theory into practice, among other things, depth of quantum circuits needs to be reduced such that it takes less time to run than the coherence time of the device it is running on. Papers like [Barenco et al., 1995] have proposed ways to write complex unitary gates in terms of simpler unitary gates efficiently.

One of the most commonly used two-qubit gates in quantum computation is the CNOT gate. The CNOT gate has a control and a target qubit, and its action is to flip the target qubit when the control qubit is set to $|1\rangle$. In other words, it performs the operation $CNOT(|a\rangle|b\rangle) = |a\rangle|a \oplus b\rangle$, where $|a\rangle$ is the control and $|b\rangle$ the target. This gate can be extended to the Toffoli gate that acts on three qubits. It has two control qubits and one target qubit, and its actino is to flip the target if the controls are $|11\rangle$.

The Toffoli gate can be further generalized to a gate with n control qubits and still one target qubit. We will denote this gate as C^nX for the rest of the paper. The matrix of CnX is definted as

$$\operatorname{diag}\left\{1, 1, \dots, 1, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right\} \tag{1}$$

Our focus is in optimizing the implementing C^nX gates in which a relative phase error can be introduced. Given a unitary U, its relative phase version is a unitary V such that $|u_{i,j}| = |v_{i,j}|$ for all i, j, i.e., the magnitude of all elements of U and V are equal. Thus, the relative phase C^nX is defined as

$$\operatorname{diag}\left\{z_{0}, z_{1}, ..., z_{2^{n+1}-3}, \begin{pmatrix} 0 & z_{2^{n+1}-2} \\ z_{2^{n+1}-1} & 0 \end{pmatrix}\right\}$$
 (2)

where every $z_i \in \mathbb{C}$ has $|z_i| = 1$.

2 Construction

We build the relative phase-error with no ancillae C^nX gates. Let's call these p- C^nX gates, where n is the number of control bits. Along with the normal CX gates, we use two known p- C^nX as base cases [Maslov, 2016]. These other base cases are n=2 and n=3. Let's take a look at these base constructions. When we have n=2, the corresponding circuit is the following.

Figure 1: p- C^2X base construction

Where \cong means that the circuit on the right is a relative phase version of the circuit on the left. In the final decomposition and gate count, the circuit in the right is considered. And for n=3 we have the following circuit.

Figure 2: p- C^3X base construction

Notice how C^3X has 3 CX pairs, one on qubit a, one on qubit b, and one on qubit c. Looking at the structure of p- C^3X , we can build p- C^4X by first extending the CX to a C^2X as follows.

Figure 3: p- C^4X from p- C^3X

Then, we can replace the normal C^2X with the p- C^2X base case shown in Figure 1.

Figure 4: Replacing normal C^2X with $p\text{-}C^2X$

Similarly for p- C^5X , and p- C^6X , we can again extend the CX pairs into C^2X from the n=3 structure, and replace these with p- C^2X . For p- C^7X , p- C^8X , and p- C^9X , we repeat the same process as above, however this time extend the CX pairs into C^3X , and replace these with p- C^3X . For p- $C^{10}X$, p- $C^{11}X$, and p- $C^{12}X$, we extend the CX pairs into C^4X , and replace these with the p- C^4X gates that we previously built.

Overall, to build an arbitrary p- C^nX where n > 3, extend the a qubit CX pairs to $C^{\lceil \frac{n}{3} \rceil}X$, the b qubit CX pairs to $C^{\lfloor \frac{n}{3} \rfloor}X$, and the c qubit CX pairs to $C^{(n-\lceil \frac{n}{3} \rceil - \lfloor \frac{n}{3} \rfloor)}X$. We repeat the process until all the gates decompose to the gates in the base cases. At the end, we repeat these gates with their corresponding phase gates.

3 CX count

For an arbitrary C^nX , we will denote the cost of building such gate as the number of CX gates used. This cost depends on the cost of $p ext{-}C^{\lceil \frac{n}{3} \rceil}X$, $p ext{-}C^{\lfloor \frac{n}{3} \rfloor}X$ and $p ext{-}C^{(n-\lceil \frac{n}{3} \rceil - \lfloor \frac{n}{3} \rfloor)}X$. We aim to provide a strict bound for the growth of this cost with respect to number of control qubits, n.

The growth of the gate depends on the transition difference when we extend one of these gates by one control bit, like shown in Figure 3. Let the first difference be defined as the cost of transition between p- $C^{n-1}X$ to p- C^nX .

first diff. at
$$n = \cos(p - C^n X) - \cos(p - C^{n-1} X)$$
 (3)

Let the second difference be defined as the difference in of transition cost from p- C^nX to p- $C^{n+1}X$ and transition cost from p- $C^{n-1}X$ to p- C^nX .

second diff. at
$$n = \left(\cot(p-C^{n+1}X) - \cot(p-C^nX)\right) - \left(\cot(p-C^nX) - \cot(p-C^{n-1}X)\right)$$
 (4)

If we look at the data (attached in appendix A), we see that the second difference is zero when the transition cost of p- C^nX to p- $C^{n+1}X$ is equal to that of p- $C^{n-1}X$ to p- C^nX . As n increases, the second difference presents itself in sequences of 0s. For each value of $n \geq 4$, the ith sequence that governs the second difference at n is defined by $i = \lfloor \log_3(n-1) \rfloor$. These sequence comes in pairs, where each ends in a second difference of 2^i and each has length 3^i where i refers to the ith sequence of 0

We can estimate the average second difference of each sequence by diving the 2^i value at the end of the sequence by length of the sequence. We can use this fact to find the average second difference centered at n.

average second diff. of the *i*th sequence
$$=\left(\frac{2}{3}\right)^i$$
 (5)

$$= \left(\frac{2}{3}\right)^{\lfloor \log_3(n-1)\rfloor} = \text{average second diff. at } n \qquad (6)$$

Let's define a continuous function u(x) that serves as an upper bound of $f(n) = \left(\frac{2}{3}\right)^{\lfloor \log_3(n-1) \rfloor}$. Since f(n) contains the floor function, we need to multiply by a constant factor when removing the floor to get an upper bound. Thus, $u(x) = \frac{3}{2} \left(\frac{2}{3}\right)^{\log_3(x+2)}$.

Figure 5: Graph showing that u(x) (denoted as g(x)) is an upper bound of f(n)

Recall that u(x) is the continuous upper bound of the average second difference of the cost when centered at n. Since u(x) is strictly decreasing, u(x) is also the upper bound of the second derivative of the continuous cost function at n. Let us define this cost function as y(x).

As $\lim_{x\to\infty} u(x) = 0$, we can bound u(x) from above by a non-zero constant α such that $\Theta(\alpha) > \Theta(u(x))$. This implies that

$$\Theta(\alpha) > \Theta(y''(x)) \tag{7}$$

Integrating the inequality twice, we get

$$\Theta(x^2) > \Theta(y(x)) \tag{8}$$

And thus, we have a tight upper bound on the growth of our cost function. It is sub-quadratic.

The exact complexity, however, is a bit harder to find. By trial and error we found that the function $x^{\log_3(6)}$ approximates the actual data very well, with an uncertainty of about $\pm 320~CX$ or $\pm 2\%$ for the first 400 values of n.

4 Naive comparison to the $9n + \mathcal{O}(1)$ construction

We compare the performance of our technique to the $3n + \mathcal{O}(1)$, where n is the number of Toffoli gates, technique outlined by Craig Gidney in [Gidney, 2021]. Since the $3n + \mathcal{O}(1)$ is in terms of the Toffoli (C^2X) gates, we multiply by a factor of 3 when converted to CX using the p- C^2X gates. After doing this, we are dealing with a complexity of $9n + \mathcal{O}(1)$.

Here, let's assume that gates of both techniques are interchangeable in applications, so we can compare them directly without considering any other constant factors. Provided in the post is an example of a 10-control bits gate. This gate is made up of 16 p- C^2X (each cost 3 CX) and 3 C^2Z (each cost 6 CX) for a total of 66 CX gates. Using point-slope form, we have the regression line y = 9(n-10) + 66, where y is the number of CX gates used.

We can see from Figure 6 that the cost of our technique is superior to that of the $9n + \mathcal{O}(1)$ technique up until n = 27. It is to be seen how much more or how many fewer cases our technique is useful in specific applications.

Figure 6: Red: growth of the $3n + \mathcal{O}(1)$ technique. Blue: growth of our technique.

5 Applications in Phaseless Circuits

Recall that our relative phase C^nX is defined as the following matrix.

$$p\text{-}C^{n}X = \operatorname{diag}\left\{z_{0}, z_{1}, ..., z_{2^{n+1}-3}, \begin{pmatrix} 0 & z_{2^{n+1}-1} \\ z_{2^{n+1}-2} & 0 \end{pmatrix}\right\}$$
(9)

By [Maslov, 2016], this can also be written as a product of a phased-diagonal matrix D^n and the phaseless Toffoli.

$$p\text{-}C^nX = D^n(C^nX), \tag{10}$$

where $D^n := \text{diag}\{z_0, z_1, ..., z_2^{n+1} - 2, z_2^{n+1-1}\}$. Since p- C^nX is a unitary matrix, it follows that its inverse is its conjugate transposed.

$$\left(p - C^n X\right)^{-1} = \left(p - C^n X\right)^{\dagger} \tag{11}$$

Thus, we can see that $(p-C^nX)^{\dagger}$ is also a relative phase C^nX .

$$(p - C^n X)^{\dagger} = \operatorname{diag} \left\{ z_0^*, z_1^*, \dots, z_{2^{n+1}-3}^*, \begin{pmatrix} 0 & z_{2^{n+1}-1}^* \\ z_{2^{n+1}-2}^* & 0 \end{pmatrix} \right\}$$
 (12)

Again, this can be written as

$$(p-C^nX)^{\dagger} = C^nX^{\dagger}(D^n)^{\dagger}$$
$$= C^nX(D^n)^{\dagger}$$
(13)

Since we know that C^nX is its own inverse.

To construct the $(p-C^nX)^{\dagger}$ circuit, we take the original $p-C^nX$ circuit, and reverse its gate order. Then we substitute all the gates by their inverse. Since H and CX are their own inverse, we only need to perform the replacement $T \longleftrightarrow T^{\dagger}$. Also since this substitution doesn't change the number of gates or gate types, the cost of $p-C^nX$ and its inverse is identical.

Figure 7: p- C^4X

Figure 8: $(p-C^4X)^{\dagger}$. Note that $p-C^2X$ is its own inverse so we don't need to replace it

When we apply a relative phase C^nX and its inverse consecutively, we get the phaseless identity I. Therefore, we propose the following application. Consider U to be defined as $U: t \to f(t)$.

Figure 9: Specific application of relative phase C^nX

Let I be the identity matrix of appropriate size depending on the context and \oplus denote addition modulo 2. We can write the effect of the circuit on the right of Figure 9 as

$$((p-C^{n}X)^{\dagger} \otimes I)(I \otimes CU)(p-C^{n}X \otimes I)|x\rangle|y\rangle|t\rangle$$

$$= ((p-C^{n}X)^{\dagger} \otimes I)(I \otimes CU)\left[(D^{n})|x\rangle \mid y \oplus \prod x_{i}\rangle |t\rangle\right]$$
(14)

Recall that D^n is the phase component added by our relative phase C^nX , as shown in (10). Carrying on, we get the following.

$$((p-C^{n}X)^{\dagger} \otimes I)(I \otimes CU) \left[(D^{n})|x\rangle \left| y \oplus \prod x_{i} \right\rangle |t\rangle \right]$$

$$= ((p-C^{n}X)^{\dagger} \otimes I) \left[(D^{n})|x\rangle \left| y \oplus \prod x_{i} \right\rangle \left| \left(y \oplus \prod x_{i} \right) f(t) + \left(1 \oplus y \oplus \prod x_{i} \right) t \right\rangle \right]$$

$$(16)$$

$$(17)$$

Taking the case in which $|y\rangle = |0\rangle$, we can simplify the equation above to the one below.

$$((p-C^nX)^{\dagger} \otimes I) \left[(D^n)|x\rangle \left| \prod x_i \right\rangle \left| \left(\prod x_i \right) f(t) + \left(1 \oplus \prod x_i \right) t \right\rangle \right]$$

$$= (D^n)^{\dagger} (D^n)|x\rangle \left| \prod x_i \oplus \prod x_i \right\rangle \left| \left(\prod x_i \right) f(t) + \left(1 \oplus \prod x_i \right) t \right\rangle$$

$$(18)$$

$$=|x\rangle|0\rangle\left|\left(\prod x_i\right)f(t)+\left(1\oplus\prod x_i\right)t\right\rangle \tag{20}$$

Where $(D^n)^{\dagger}(D^n) = I$ and $(p - C^n X)^{\dagger}(p - C^n X) = I$. The state in the third register will take on $|f(t)\rangle$ if and only if all qubits in register $|x\rangle$ are in state $|1\rangle$ and will stay on $|t\rangle$ otherwise, which is the effect we intended to get. Also note that the controlled U gate showed in 9 cannot have any effect on $|y\rangle$.

Figure 10: Generalized application of relative phase C^nX

The circuit shown in Figure 9 can be generalized to the one shown in Figure 10. The overall action of the left circuit on the input state $|x, y, t\rangle$ is defined by

$$[(p-C^nX)^{\dagger} \otimes I^m] U_f [(p-C^nX) \otimes I^m] |x,y,t\rangle$$
(21)

Using the alternative representation from (9) and (12), we can rewrite the above expression as

$$\left[C^{n}X(D^{n})^{\dagger} \otimes I^{m}\right]U_{f}\left[(D^{n})C^{n}X \otimes I^{m}\right]|x,y\rangle|t\rangle \tag{22}$$

$$= \left[C^n X(D^n)^{\dagger} \otimes I^m \right] U_f \left[(D^n) \otimes I^m \right] \left| x, y \oplus \prod x, t \right\rangle$$
 (23)

The overall action of the right circuit is equivalent to that of the left and is given by

$$\left[C^{n}X \otimes I^{m}\right] U_{f} \left[C^{n}X \otimes I^{m}\right] |x,y\rangle |t\rangle = \left[C^{n}X \otimes I^{m}\right] U_{f} \left[C^{n}X |x,y\rangle \otimes I^{m} |t\rangle\right]$$
(24)

$$= \left[C^{n} X \otimes I^{m} \right] U_{f} \left| x, y \oplus \prod x, t \right\rangle \tag{25}$$

By definition, both give the output $|x,y \oplus \prod x, f(t)\rangle$. So by comparing the two circuits, we get the equality

$$\left[C^{n}X\otimes I^{m}\right]\left[(D^{n})^{\dagger}\otimes I^{m}\right]U_{f}\left[(D^{n})\otimes I^{m}\right]\left|x,y\oplus\prod x,t\right\rangle = \left[C^{n}X\otimes I^{m}\right]U_{f}\left|x,y\oplus\prod x,t\right\rangle \tag{26}$$

By canceling the common factor $[C^n X \otimes I^m]$ from both sides, we derive a meaningful constraint for U_f that allows it to operate between two relative phase $C^n X$ without evoking any of their drawbacks, namely unwanted phase or bit flips in registers $|x\rangle$ and $|y\rangle$. In all cases, U_f satisfies

$$[(D^n)^{\dagger} \otimes I^m] U_f [(D^n) \otimes I^m] = U_f$$
(27)

The circuit acts in a way that leaves the input state $|x\rangle|y\rangle$ unaffected. In fact, many circuit constructions have this structure. Most notably, the quadratic multiple-controlled Toffoli in Lemmas 7.2, 7.3 and 7.5 of [Barenco et al., 1995] uses this structure. This will work as long as the states $|x\rangle|y\rangle$ going into $p\text{-}C^nX$ are the same as that going into $(p\text{-}C^nX)^{\dagger}$. If this is the case, we can enjoy a substantial cost reduction of relative phase C^nX .

References

[Barenco et al., 1995] Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J. A., and Weinfurter, H. (1995). Elementary gates for quantum computation. *Physical Review A*, 52(5):3457–3467.

[Gidney, 2021] Gidney, C. (2021). Complexity of n-toffoli with phase difference. Quantum Computing Stack Exchange. URL: https://quantumcomputing.stackexchange.com/revisions/18098/15 (version: 2021-06-23).

[Maslov, 2016] Maslov, D. (2016). Advantages of using relative-phase toffoli gates with an application to multiple control toffoli optimization. *Physical Review A*, 93(2).

Appendices

A Difference data for first 400 cases

n	CX count	First diff.	Second diff.	Length	i
1	1	N/A	N/A	N/A	N/A
2	3	2	N/A	N/A	N/A
3	6	3	1	1	0
4	10	4	1	1	0
5	14	4	0	3	1
6	18	4	0	3	1
7	24	6	2	3	1
8	30	6	0	3	1
9	36	6	0	3	1
10	44	8	2	3	1
11	52	8	0	9	2
12	60	8	0	9	2
13	68	8	0	9	2
14	76	8	0	9	2
15	84	8	0	9	2
16	92	8	0	9	2
17	100	8	0	9	2
18	108	8	0	9	2
19	120	12	4	9	2
20	132	12	0	9	2
21	144	12	0	9	2
22	156	12	0	9	2
23	168	12	0	9	2
24	180	12	0	9	2
25	192	12	0	9	2
26	204	12	0	9	2
27	216	12	0	9	2
28	232	16	4	9	2
29	248	16	0	27	3
30	264	16	0	27	3
31	280	16	0	27	3
32	296	16	0	27	3
33	312	16	0	27	3
34	328	16	0	27	3
35	344	16	0	27	3
36	360	16	0	27	3
37	376	16	0	27	3
38	392	16	0	27	3
39	408	16	0	27	3
40	424	16	0	27	3
41	440	16	0	27	3
42	456	16	0	27	3
43	472	16	0	27	3
44	488	16	0	27	3
45	504	16	0	27	3
46	520	16	0	27	3
47	536	16	0	27	3
48	552	16	0	27	3

10	F00	1.0	0	0.7	
49	568	16	0	27	3
50	584	16	0	27	3
51	600	16	0	27	3
52	616	16	0	27	3
53	632	16	0	27	3
54	648	16	0	27	3
55	672	24	8	27	3
56	696	24	0	27	3
57	720	24	0	27	3
58	744	24	0	27	3
59	768	24	0	27	3
60	792	24	0	27	3
61	816	24	0	27	3
62	840	24	0	27	3
63	864	24	0	27	3
64	888	24	0	27	3
65	912	24	0	27	3
66	936	24	0	27	3
67	960	24	0	27	3
68	984	24	0	27	3
69	1008	24	0	27	3
70	1032	24	0	27	3
71	1056	24	0	27	3
72	1080	24	0	27	3
73	1104	24	0	27	3
74	1128	24	0	27	3
75	1152	24	0	27	3
76	1176	24	0	27	3
77	1200	24	0	27	3
78	1224	24	0	27	3
79	1248	24	0	27	3
80	1272	24	0	27	3
81	1296	24	0	27	3
82	1328	32	8	27	3
83	1360	32	0	81	4
84	1392	32	0	81	4
85	1424	32	0	81	4
86	1456	32	0	81	4
87	1488	32	0	81	4
88	1520	32	0	81	4
89	1552	32	0	81	4
90	1584	32	0	81	4
91	1616	32	0	81	4
92	1648	32	0	81	4
93	1680	32	0	81	4
94	1712	32	0	81	4
95	1744	32	0	81	4
96	1776	32	0	81	4
97	1808	32	0	81	4
98	1840	32	0	81	4
99	1872	32	0	81	4
100	1904	32	0	81	4
101	1936	32	0	81	4
102	1968	32	0	81	4
102	1 1000	92		<u> </u>	-

100					
103	2000	32	0	81	4
104	2032	32	0	81	4
105	2064	32	0	81	4
106	2096	32	0	81	4
107	2128	32	0	81	4
108	2160	32	0	81	4
109	2192	32	0	81	4
110	2224	32	0	81	4
111	2256	32	0	81	4
112	2288	32	0	81	4
113	2320	32	0	81	4
114	2352	32	0	81	4
115	2384	32	0	81	4
116	2416	32	0	81	4
117	2448	32	0	81	4
118	2480	32	0	81	4
119	2512	32	0	81	4
120	2544	32	0	81	4
121	2576	32	0	81	4
122	2608	32	0	81	4
123	2640	32	0	81	4
124	2672	32	0	81	4
125	2704	32	0	81	4
126	2736	32	0	81	4
127	2768	32	0	81	4
128	2800	32	0	81	4
129	2832	32	0	81	4
130	2864	32	0	81	4
131	2896	32	0	81	4
132	2928	32	0	81	4
133	2960	32	0	81	4
134	2992	32	0	81	4
135	3024	32	0	81	4
136	3056	32	0	81	4
137	3088	32	0	81	4
138	3120	32	0	81	4
139	3152	32	0	81	4
140	3184	32	0	81	4
141	3216	32	0	81	4
142	3248	32	0	81	4
143	3280	32	0	81	4
144	3312	32	0	81	4
145	3344	32	0	81	4
146	3376	32	0	81	4
147	3408	32	0	81	4
148	3440	32	0	81	4
149	3472	32	0	81	4
150	3504	32	0	81	4
151	3536	32	0	81	4
152	3568	32	0	81	4
153	3600	32	0	81	4
154	3632	32	0	81	4
155	3664	32	0	81	4
156	3696	32	0	81	4
	1	I .	1	1	İ

155	9700	00		0.1	1
157	3728	32	0	81	4
158	3760	32	0	81	4
159	3792	32	0	81	4
160	3824	32	0	81	4
161	3856	32	0	81	4
162	3888	32	0	81	4
163	3936	48	16	81	4
164	3984	48	0	81	4
165	4032	48	0	81	4
166	4080	48	0	81	4
167	4128	48	0	81	4
168	4176	48	0	81	4
169	4224	48	0	81	4
170	4272	48	0	81	4
171	4320	48	0	81	4
172	4368	48	0	81	4
173	4416	48	0	81	4
174	4464	48	0	81	4
175	4512	48	0	81	4
176	4560	48	0	81	4
177	4608	48	0	81	4
178	4656	48	0	81	4
179	4704	48	0	81	4
180	4752	48	0	81	4
181	4800	48	0	81	4
182	4848	48			
		48	0	81	4
183	4896		0	81	4
184	4944 4992	48	0	81	4
185		48	0	81	4
186	5040		0	81	4
187 188	5088	48		81	
	5136	48	0	81	4
189	5184	48	0	81	4
190	5232	48	0	81	4
191	5280	48	0	81	4
192	5328	48	0	81	4
193	5376	48	0	81	4
194	5424	48	0	81	4
195	5472	48	0	81	4
196	5520	48	0	81	4
197	5568	48	0	81	4
198	5616	48	0	81	4
199	5664	48	0	81	4
200	5712	48	0	81	4
201	5760	48	0	81	4
202	5808	48	0	81	4
203	5856	48	0	81	4
204	5904	48	0	81	4
205	5952	48	0	81	4
206	6000	48	0	81	4
207	6048	48	0	81	4
208	6096	48	0	81	4
209	6144	48	0	81	4
210	6192	48	0	81	4
,					

	I	T	ı		
211	6240	48	0	81	4
212	6288	48	0	81	4
213	6336	48	0	81	4
214	6384	48	0	81	4
215	6432	48	0	81	4
216	6480	48	0	81	4
217	6528	48	0	81	4
218	6576	48	0	81	4
219	6624	48	0	81	4
220	6672	48	0	81	4
221	6720	48	0	81	4
222	6768	48	0	81	4
223	6816	48	0	81	4
224	6864	48	0	81	4
225	6912	48	0	81	4
226			0		4
	6960	48		81	
227	7008	48	0	81	4
228	7056	48	0	81	4
229	7104	48	0	81	4
230	7152	48	0	81	4
231	7200	48	0	81	4
232	7248	48	0	81	4
233	7296	48	0	81	4
234	7344	48	0	81	4
235	7392	48	0	81	4
236	7440	48	0	81	4
237	7488	48	0	81	4
238	7536	48	0	81	4
239	7584	48	0	81	4
240	7632	48	0	81	4
241	7680	48	0	81	4
242	7728	48	0	81	4
243	7776	48	0	81	4
244	7840	64	16	81	4
245	7904	64	0	243	5
246	7968	64	0	243	5
247	8032	64	0	243	5
248	8096	64	0	243	5
248	8160	64	0	243	5
250	8224	64	0	243	5
251	8288	64	0	243	5
252	8352	64	0	243	5
253	8416	64	0	243	5
254	8480	64	0	243	5
255	8544	64	0	243	5
256	8608	64	0	243	5
257	8672	64	0	243	5
258	8736	64	0	243	5
259	8800	64	0	243	5
260	8864	64	0	243	5
261	8928	64	0	243	5
262	8992	64	0	243	5
263	9056	64	0	243	5
264	9120	64	0	243	5

265	0104	G A	0	243	
	9184	64	0		5
266	9248	64	0	243	
267	9312	64	0	243	5
268	9376	64	0	243	5
269	9440	64	0	243	5
270	9504	64	0	243	5
271	9568	64	0	243	5
272	9632	64	0	243	5
273	9696	64	0	243	5
274	9760	64	0	243	5
275	9824	64	0	243	5
276	9888	64	0	243	5
277	9952	64	0	243	5
278	10016	64	0	243	5
279	10080	64	0	243	5
280	10144	64	0	243	5
281	10208	64	0	243	5
282	10272	64	0	243	5
283	10336	64	0	243	5
284	10400	64	0	243	5
285	10464	64	0	243	5
286	10528	64	0	243	5
287	10592	64	0	243	5
288	10656	64	0	243	5
289	10720	64	0	243	5
290	10784	64	0	243	5
291	10848	64	0	243	5
292	10912	64	0	243	5
293	10976	64	0	243	5
294	11040	64	0	243	5
295	11104	64	0	243	5
296	11168	64	0	243	5
297	11232	64	0	243	5
298	11296	64	0	243	5
299	11360	64	0	243	5
300	11424	64	0	243	5
301	11488	64	0	243	5
302	11552	64	0	243	5
303	11616	64	0	243	5
304	11680	64	0	243	5
305	11744	64	0	243	5
306	11808	64	0	243	5
307	11872	64	0	243	5
308	11936	64	0	243	5
309	12000	64	0	243	5
310	12064	64	0	243	5
311	12128	64	0	243	5
312	12192	64	0	243	5
313	12256	64	0	243	5
314	12320	64	0	243	5
315	12384	64	0	243	5
316	12448	64	0	243	5
317	12512	64	0	243	5
318	12576	64	0	243	5
<u> </u>	1-0.0		<u> </u>		<u> </u>

04.0	10010		<u> </u>	2.40	
319	12640	64	0	243	5
320	12704	64	0	243	5
321	12768	64	0	243	5
322	12832	64	0	243	5
323	12896	64	0	243	5
324	12960	64	0	243	5
325	13024	64	0	243	5
326	13088	64	0	243	5
327	13152	64	0	243	5
328	13216	64	0	243	5
329	13280	64	0	243	5
330	13344	64	0	243	5
331	13408	64	0	243	5
332	13472	64	0	243	5
333	13536	64	0	243	5
334	13600	64	0	243	5
335	13664	64	0	243	5
336	13728	64	0	243	5
337	13792	64	0	243	5
338	13856	64	0	243	5
339	13920	64	0	243	5
340	13984	64	0	243	5
341	14048	64	0	243	5
342	14112	64	0	243	5
343	14176	64	0	243	5
344	14240	64	0	243	5
345	14304	64	0	243	5
346	14368	64	0	243	5
347	14432	64	0	243	5
348	14496	64	0	243	5
349	14560	64	0	243	5
350	14624	64	0	243	5
351	14688	64	0	243	5
352	14752	64	0	243	5
353	14816	64	0	243	5
354	14880	64	0	243	5
355	14944	64	0	243	5
356	15008	64	0	243	5
357	15008	64	0	243	5
358	15136	64	0	243	5
359	15200	64	0	243	5
360	15264	64	0	243	5
361	15204	64		243	5
	15328	64	0	243	5
362			-		
363	15456	64	0	243	5
364	15520	64	0	243	5
365	15584	64	0		5
366	15648	64	0	243	5
367	15712	64	0	243	5
368	15776	64	0	243	5
369	15840	64	0	243	5
370	15904	64	0	243	5
371	15968	64	0	243	5
372	16032	64	0	243	5

0=0	10000			2.12	
373	16096	64	0	243	5
374	16160	64	0	243	5
375	16224	64	0	243	5
376	16288	64	0	243	5
377	16352	64	0	243	5
378	16416	64	0	243	5
379	16480	64	0	243	5
380	16544	64	0	243	5
381	16608	64	0	243	5
382	16672	64	0	243	5
383	16736	64	0	243	5
384	16800	64	0	243	5
385	16864	64	0	243	5
386	16928	64	0	243	5
387	16992	64	0	243	5
388	17056	64	0	243	5
389	17120	64	0	243	5
390	17184	64	0	243	5
391	17248	64	0	243	5
392	17312	64	0	243	5
393	17376	64	0	243	5
394	17440	64	0	243	5
395	17504	64	0	243	5
396	17568	64	0	243	5
397	17632	64	0	243	5
398	17696	64	0	243	5
399	17760	64	0	243	5