			Roll No.:	
National Instit Name of the Examin Branch Title of the Course	nation: B. Tech. / M. T : Electrical & Electro : Electric & Magnetic	ech. / Ph.D. nics Engg. Seme	ester : 3rd se Code : EE203	
Time: 3 Hours			Maximum Marks: 50	
Note: 1. Do not write anythin 2. Assume any data s	ng on the question paper uitably if found missing	except Roll number		
Section A: Answer all 10 mu	ultiple choice questions.	Each question carries (01 mark. [10×1=10]	
A1. The unit of Electric field	intensity E is given as E	,		
(a) V/m	(b)V-m	(c) C/m	(d) $C-m$	
A2. The electric flux density	D is related to electric fi	eld intensity E by an ex	pression	
(a) $\mathbf{D} = \mathbf{E} / \boldsymbol{\varepsilon}$	(b) $D = \varepsilon E$	(c) $D = \sigma E$	(d) $D = \rho E$	
A3. Poisson's equation is give	en as			
(a) $\Delta^2 V = 0$	(b) $\Delta^2 V = -\rho_v$	(c) $\Delta^2 V = -\rho_v / \varepsilon$	(d) $\Delta^2 V = -\sigma$	
A4. A positively-charged part	ticle placed in an electric	field experiences		
(a) Displacement	(b) Torque	(c) Acceleration	(d) Force	
A5. In which material type no	ormally polarization is ob	servable ?		
(a) semiconductor	(b) dielectric	(c) conductors	(d) liquid conductors	
A6. A conductor to be equipo	tential surface, the field	nside is		
(a) zero	(b) unity	(c) maximum (c	d) exponentially varying	
A7. The statement that an ind	uced voltage acts to prod	uce an opposing flux is l	known as	

(d) Faraday's law

(d) vector emf

(d) Roland

(c) Biot-Savart law

(c) mmf

(c) Ampere

(b) Gauss's law

A8. The emf produced by a changing field within a stationary circuit is called as

A9. The concept of displacement current density was introduced by

(b) Faraday

(b) transformer emf

(a) Lenz's law

(a) Induced emf

(a) Maxwell

A10. $\triangle .B = 0$ has a significance as

(a) isolated monopole

(b) no isolated monopole

(c) constant current

(d) constant magnetic field intensity

Section B: Answer any 4 questions. Each question carries 5 marks.

 $[4 \times 5 = 20]$

- **B1.** If F is a vector, given as $F = 5xy\hat{a}_x + 2xyz\hat{a}_y + 3x^2y^2z^2\hat{a}_z$, then find the divergence of F at point (1,2,3).
- B2. State and prove the uniqueness theorem.
- B3. Derive and Explain Poisson's and Laplace's equations
- B4. State and prove stokes theorem
- **B5.** Find the force between two straight, infinite, parallel wires carrying current I_1 and I_2 separated by a distance d and placed in air.

Section C: Answer any 2 questions. Each question carries 10 marks.

[2×10=20]

- C1. Derive the Maxwell's equations for time varying fields. What will be the Maxwell's equations if both \bar{B} and \bar{D} are constant?
- C2. Derive the equation for magnetic field due to infinitely long co-axial transmission line using Ampere's circuital law.
- C3. A point charge $Q_1 = 100 \,\mu\text{C}$ located at a point (1,1,3) experiences a force $F = (3\hat{a}_x + 3\hat{a}_y + 3\hat{a}_z) \,N$ due to a point charge Q_2 at (2,2,4). Determine Q_2 .