#### FCC PART 15, SUBPART B and C TEST REPORT

for

# SK METER MODULE MODEL: SK TX

Prepared for

LEAP DEVICES, LLC 229 EAST RESERVE STREET, #102 VANCOUVER, WASHINGTON 98661-38030

| Prepared by: |               |
|--------------|---------------|
|              | KYLE FUJIMOTO |
| Approved by: |               |
|              | JAMES ROSS    |

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

**DATE: MARCH 15, 2014** 

|       | REPORT | APPENDICES       |   |   | TOTAL |    |    |
|-------|--------|------------------|---|---|-------|----|----|
|       | BODY   | $\boldsymbol{A}$ | В | C | D     | E  |    |
| PAGES | 19     | 2                | 2 | 2 | 12    | 30 | 67 |

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.



FCC Part 15 Subpart B and FCC Section 15.249 Test Report SK Meter Module

#### TABLE OF CONTENTS

| Section / Title                                                | PAGE |
|----------------------------------------------------------------|------|
| GENERAL REPORT SUMMARY                                         | 4    |
| SUMMARY OF TEST RESULTS                                        | 5    |
| 1. PURPOSE                                                     | 6    |
| 2. ADMINISTRATIVE DATA                                         | 7    |
| 2.1 Location of Testing                                        | 7    |
| 2.2 Traceability Statement                                     | 7    |
| 2.3 Cognizant Personnel                                        | 7    |
| 2.4 Date Test Sample was Received                              | 7    |
| 2.5 Disposition of the Test Sample                             | 7    |
| 2.6 Abbreviations and Acronyms                                 | 7    |
|                                                                |      |
| 3. APPLICABLE DOCUMENTS                                        | 8    |
| 4. DESCRIPTION OF TEST CONFIGURATION                           | 9    |
| 4.1 Description of Test Configuration - Emissions              | 9    |
| 4.1.1 Cable Construction and Termination                       | 10   |
| 5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT                | 11   |
| 5.1 EUT and Accessory List                                     | 11   |
| 6. TEST SITE DESCRIPTION                                       | 13   |
|                                                                | 13   |
| *** - *** - ****** - *******                                   |      |
| 6.2 EUT Mounting, Bonding and Grounding                        | 13   |
| 7. TEST PROCEDURES                                             | 14   |
| 7.1 RF Emissions                                               | 14   |
| 7.1.1 Conducted Emissions Test                                 | 14   |
| 7.1.2 Radiated Emissions (Spurious and Harmonics) Test – Lab B | 15   |
| 7.1.3 Radiated Emissions (Spurious and Harmonics) Test – Lab D | 17   |
| 7.1.4 RF Emissions Test Results                                | 18   |
| 8. CONCLUSIONS                                                 | 19   |
| o. Conclusions                                                 | 19   |

#### LIST OF APPENDICES

| APPENDIX | TITLE                                       |  |  |
|----------|---------------------------------------------|--|--|
|          |                                             |  |  |
| A        | Laboratory Accreditations and Recognitions  |  |  |
| В        | Modifications to the EUT                    |  |  |
| С        | Additional Models Covered Under This Report |  |  |
| D        | Diagrams and Charts                         |  |  |
|          | Test Setup Diagrams                         |  |  |
|          | Antenna and Effective Gain Factors          |  |  |
| Е        | Data Sheets                                 |  |  |

#### LIST OF FIGURES

| FIGURE | TITLE                                    |  |
|--------|------------------------------------------|--|
|        |                                          |  |
| 1      | Conducted Emissions Test Setup           |  |
| 2      | Plot Map And Layout of Test Site         |  |
| 3      | Layout of the Semi-Anechoic Test Chamber |  |

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

SK Meter Module Model: SK Tx

#### GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government.

Device Tested: SK Meter Module

Model: SK Tx S/N: N/A

Product Description: See Expository Statement.

Modifications: The EUT was not modified during the testing.

Customer: Leap Devices, LLC

229 East Reserve Street, #102

Vancouver, Washington 98661-38030

Test Dates: March 7 and 8, 2014

Test Specifications: EMI requirements

CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.249

Test Procedure: ANSI C63.4

Test Deviations: The test procedure was not deviated from during the testing.

### **SUMMARY OF TEST RESULTS**

| TEST | DESCRIPTION                                            | RESULTS                                                                                                                                        |  |
|------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1    | Conducted RF Emissions, 150 kHz – 30 MHz               | This test was not performed because the EUT is a DC powered device only.                                                                       |  |
| 2    | Spurious Radiated RF Emissions, 10 kHz – 1000 MHz      | Complies with the <b>Class B</b> limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, section 15.209 |  |
| 3    | Spurious Radiated RF Emissions,<br>1000 MHz – 9300 MHz | Complies with the <b>Class B</b> limits of CFR Title 47, Part 15, Subpart B; and CFR Title 47, Part 15, Subpart C, section 15.249              |  |



FCC Part 15 Subpart B and FCC Section 15.249 Test Report SK Meter Module

Model: SK Tx

#### 1. PURPOSE

This document is a qualification test report based on the emissions tests performed on the SK Meter Module, Model: SK Tx. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.249.

Note: For the unintentional radiator portion of the test, the EUT was within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B.

#### 2. ADMINISTRATIVE DATA

#### 2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

#### 2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

#### 2.3 Cognizant Personnel

Leap Devices, LLC

Kevin King Director

Compatible Electronics Inc.

James Ross Test Engineer Kyle Fujimoto Test Engineer

#### 2.4 Date Test Sample was Received

The test sample was received prior to the date of testing.

#### 2.5 Disposition of the Test Sample

The test sample has not been returned to Leap Devices, LLC. as of the date of this test report.

#### 2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference

EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

N/A Not Applicable

#### 3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

| SPEC                                  | TITLE                                                                                                                                |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| FCC Title 47,<br>Part 15<br>Subpart C | FCC Rules - Radio frequency devices (including digital devices) – Intentional Radiators                                              |
| FCC Title 47,<br>Part 15<br>Subpart B | FCC Rules - Radio frequency devices (including digital devices) – Unintentional Radiators                                            |
| ANSI C63.4<br>2009                    | Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz |

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

SK Meter Module Model: SK Tx

#### 4. DESCRIPTION OF TEST CONFIGURATION

#### 4.1 Description of Test Configuration - Emissions

The SK Meter Module, Model: SK Tx (EUT) was connected to an Arduino PCB via 10-centimeter cables. The Arduino PCB was also conencted to an AC/DC Adapter via its power port.

The EUT was tested for emissions at the low, middle, and high channels. The channels were changed by changing the jumper settings on the Arduino PCB. The EUT was continuously transmitting.

Note: The AC/DC adapter is to only power the Arduino PCB only. The EUT was powered by the Adurino PCB via its 3.5 Vdc output.

The final radiated data for the EUT as was taken in the mode described above. Please see Appendix E for the data sheets.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report SK Meter Module

#### 4.1.1 Cable Construction and Termination

<u>Cables 1-9</u> These are 10-centimeter unshielded cables connecting the EUT to the Arduino PCB. The cables are hard wired at each end.

<u>Cable 10</u> This is a 2-meter unshielded cable connecting the Arduino PCB to the AC/DC Adapter. The cable has a 1/8 inch power connecter at the Arduino end and is hard wired at the AC/DC Adapter end..



FCC Part 15 Subpart B and FCC Section 15.249 Test Report SK Meter Module

K Meter Moaute Model: SK Tx

### 5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

### 5.1 EUT and Accessory List

| EQUIPMENT          | MANUFACTURER         | MODEL<br>NUMBER | SERIAL NUMBER | FCC ID  |
|--------------------|----------------------|-----------------|---------------|---------|
| SK METER MODULE    | LEAP DEVICES,<br>LLC | SK Tx           | N/A           | V4TSKT1 |
| ARDUINO SHIELD PCB | N/A                  | LEONARDO        | N/A           | N/A     |
| AC/DC ADAPTER      | N/A                  | SF-789          | N/A           | N/A     |



## 5.2 EMI Test Equipment

| EQUIPMENT<br>TYPE        | MANU-<br>FACTURER             | MODEL<br>NUMBER | SERIAL<br>NUMBER | CALIBRATION<br>DATE | CAL. CYCLE |  |  |
|--------------------------|-------------------------------|-----------------|------------------|---------------------|------------|--|--|
|                          | GENERAL TEST EQUIPMENT        |                 |                  |                     |            |  |  |
| Computer                 | Hewlett Packard               | p6716f          | MXX1030PX0       | N/A                 | N/A        |  |  |
| LCD Monitor              | Hewlett Packard               | 52031a          | 3CQ046N3MG       | N/A                 | N/A        |  |  |
| Receiver, 20Hz-<br>40GHz | Rohde & Schwarz               | ESIB40          | 100194           | November 19, 2012   | 2 Year     |  |  |
|                          | RF RADI                       | ATED EMISSIO    | NS TEST EQUIP    | MENT                |            |  |  |
| CombiLog Antenna         | Com-Power                     | AC-220          | 61060            | May 29, 2013        | 1 Year     |  |  |
| Preamplifier             | Com-Power                     | PA-118          | 181656           | January 13, 2014    | 1 Year     |  |  |
| Loop Antenna             | Com-Power                     | AL-130          | 17089            | January 29, 2014    | 2 Year     |  |  |
| Horn Antenna             | Com-Power                     | AH-118          | 071175           | February 26, 2014   | 2 Year     |  |  |
| System Controller        | Sunol Sciences<br>Corporation | SC110V          | 112213-1         | N/A                 | N/A        |  |  |
| Turntable                | Sunol Sciences<br>Corporation | 2011VS          | N/A              | N/A                 | N/A        |  |  |
| Antenna-Mast             | Sunol Sciences<br>Corporation | TWR95-4         | 112213-3         | N/A                 | N/A        |  |  |

FCC Part 15 Subpart B and FCC Section 15.249 Test Report SK Meter Module

#### 6. TEST SITE DESCRIPTION

### 6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

### 6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report SK Meter Module

#### 7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

#### 7.1 RF Emissions

#### 7.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 2009. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics conducted emissions software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

#### **Test Results:**

This test was not performed because the EUT is a DC powered device only.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report SK Meter Module

Model: SK Tx

#### 7.1.2 Radiated Emissions (Spurious and Harmonics) Test – Lab B

The EMI Receiver was used as a measuring meter. A preamplifier was used to increase the sensitivity of the instrument. The Com Power Microwave Preamplifier Model: PA-118 was used for frequencies above 1 GHz. The EMI Receiver was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the EMI Receiver records the highest measured reading over all the sweeps.

The frequencies above 1 GHz were averaged by reducing the VBW down to 10 Hz.

The measurement bandwidths and transducers used for the radiated emissions test were:

| FREQUENCY RANGE  | EFFECTIVE<br>MEASUREMENT<br>BANDWIDTH | TRANSDUCER   |
|------------------|---------------------------------------|--------------|
| 1 GHz to 9.3 GHz | 1 MHz                                 | Horn Antenna |

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 2009. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT by the Radiated Emission Manual Test software. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

SK Meter Module

Model: SK Tx

#### Radiated Emissions (Spurious and Harmonics) Test -- Lab B (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance from 1 GHz to 9.3 GHz to obtain the final test data.

#### **Test Results:**

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Sections 15.209 and 15.249 for radiated emissions. Please see Appendix E for the data sheets.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report SK Meter Module

#### 7.1.3 Radiated Emissions (Spurious and Harmonics) Test – Lab D

The EMI Receiver was used as the measuring meter. A built-in, internal preamplifier was used to increase the sensitivity of the instrument. The EMI Receiver was initially used in the Analyzer mode feature activated. In this mode, the EMI receiver can then record the actual frequency to be measured. This final reading is then taken accurately in the EMI Receiver mode, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. A quasi-peak reading was taken only for those readings, which are marked accordingly on the data sheets.

The TDK FAC-3 shielded test chamber of Compatible Electronics, Inc. was used for radiated emissions testing. This test site is set up according to ANSI C63.4: 2009. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT.

The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength).

The measurement bandwidths and transducers used for the radiated emissions test were:

| FREQUENCY RANGE   | EFFECTIVE<br>MEASUREMENT<br>BANDWIDTH | TRANSDUCER          |
|-------------------|---------------------------------------|---------------------|
| 10 kHz to 150 kHz | 200 Hz                                | Active Loop Antenna |
| 150 kHz to 30 MHz | 9 kHz                                 | Active Loop Antenna |
| 30 MHz to 1 GHz   | 120 kHz                               | CombiLog Antenna    |

The EUT was tested at a 3 meter test distance. The six highest emissions are listed in Table 1.0.

#### Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Sections 15.209 and 15.249 (d) for radiated emissions. Please see Appendix E for the data sheets.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report SK Meter Module

Meter Module Model: SK Tx

#### 7.1.4 RF Emissions Test Results

Table 1.0 RADIATED EMISSION RESULTS SK Meter Module, Model: SK Tx

| Frequency<br>MHz     | Corrected Reading*<br>dBuV | Specification Limit<br>dBuV | Delta<br>(Cor. Reading – Spec. Limit)<br>dB |
|----------------------|----------------------------|-----------------------------|---------------------------------------------|
| 64.00 (V)            | 39.55 (QP)                 | 40.00                       | -0.45                                       |
| 1827.84 (V) (X-Axis) | 52.82 (A)                  | 54.00                       | -1.18                                       |
| 3703.20 (V) (Z-Axis) | 52.11 (A)                  | 54.00                       | -1.89                                       |
| 48.00 (V)            | 38.05 (QP)                 | 40.00                       | -1.95                                       |
| 1851.60 (H) (Y-Axis) | 51.74 (A)                  | 54.00                       | -2.26                                       |
| 1807.12 (H) (X-Axis) | 51.49 (A)                  | 54.00                       | -2.51                                       |

#### Notes:

\* The complete emissions data is given in Appendix E of this report.

QP Quasi-Peak Reading A Average Reading

FCC Part 15 Subpart B and FCC Section 15.249 Test Report SK Meter Module

#### 8. CONCLUSIONS

The SK Meter Module, Model: SK Tx meets all of the specification limits defined in FCC Title 47, Part 15, Subpart C, sections 15.205, 15.209, and 15.249.

Note: For the unintentional radiator portion of the test, the EUT was within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B.



APPENDIX A

# LABORATORY ACCREDITATIONS AND RECOGNITIONS

Report Number: **B40308D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

SK Meter Module Model: SK Tx

# LABORATORY ACCREDITATIONS AND RECOGNITIONS



For US, Canada, Australia/New Zealand, Japan, Taiwan, Korea, and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025. Please follow the link to the NIST/NVLAP site for each of our facilities' NVLAP certificate and scope of accreditation NVLAP listing links

Agoura Division / Brea Division / Silverado/Lake Forest Division .Quote from ISO-ILAC-IAF Communiqué on 17025:

"A laboratory's fulfilment of the requirements of ISO/IEC 17025:2005 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in language relevant to laboratory operations and meet the principles of ISO 9001:2008 Quality Management Systems — Requirements."



ANSI listing CETCB



Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA).

US/EU MRA list NIST MRA site



Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA). **APEC MRA list** NIST MRA site

We are also listed for IT products by the following country/agency:



VCCI Support member: Please visit http://www.vcci.jp/vcci\_e/



FCC Listing, from FCC OET site
FCC test lab search https://fjallfoss.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm



Compatible Electronics IC listing can be found at: http://www.ic.gc.ca/eic/site/ic1.nsf/eng/home



### **APPENDIX B**

# **MODIFICATIONS TO THE EUT**



# MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B and FCC 15.249 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.



#### **APPENDIX C**

# ADDITIONAL MODELS COVERED UNDER THIS REPORT

# ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

SK Meter Module Model: SK Tx S/N: N/A

There were no additional models covered under this report.







APPENDIX D

**DIAGRAMS AND CHARTS** 

# FIGURE 1: CONDUCTED EMISSIONS TEST SETUP





## FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE

#### **OPEN LAND > 15 METERS**



#### **OPEN LAND > 15 METERS**

**X** = GROUND RODS

= GROUND SCREEN

**D** = TEST DISTANCE (meters)



# FIGURE 3: LAYOUT OF THE SEMI-ANECHOIC TEST CHAMBER



# COM-POWER AL-130

# **LOOP ANTENNA**

S/N: 17089

CALIBRATION DATE: JANUARY 29, 2014

| FREQUENCY<br>(MHz) | MAGNETIC<br>(dB/m)<br>-42.5<br>-42.3 | ELECTRIC<br>(dB/m) |
|--------------------|--------------------------------------|--------------------|
| 0.009              | -42.5                                | 9                  |
| 0.01               | -42.3                                | 9.2                |
| 0.02               | -42.1                                | 9.4                |
| 0.03               | -41.4                                | 10.1               |
| 0.04               | -41.8                                | 9.7                |
| 0.05               | -42.4                                | 9.1                |
| 0.06               | -42.4<br>-42.3                       | 9.2                |
| 0.07               | -42.5                                | 9                  |
| 0.08               | -42.4                                | 9.1                |
| 0.09               | -42.5                                | 9                  |
| 0.1                | -42.5                                | 9                  |
| 0.2                | -42.7                                | 8.8                |
| 0.3                | -42.6                                | 8.9                |
| 0.4                | -42.5                                | 9                  |
| 0.5                | -42.7                                | 8.8                |
| 0.6                | -42.7                                | 8.8                |
| 0.7                | -42.5                                | 9                  |
| 0.8                | -42.3<br>-42.2<br>-42.2<br>-41.8     | 9.2                |
| 0.9                | -42.2                                | 9.3                |
| 1                  | -42.2                                | 9.3                |
| 2                  | -41.8                                | 9.7                |
| 3                  | -41.7                                | 9.8                |
| 4                  | -41.7                                | 9.8                |
| 5                  | -41.5                                | 10                 |
| 6                  | -41.6                                | 9.9                |
| 7                  | -41.4                                | 10.1               |
| 8                  | -41                                  | 10.5               |
| 9                  | -40.8                                | 10.7               |
| 10                 | -41.3                                | 10.2               |
| 15                 | -41.4                                | 10.1               |
| 20                 | -41.2                                | 10.3               |
| 25                 | -42.6                                | 8.9                |
| 30                 | -41.7                                | 9.8                |

# **COM-POWER AC-220**

# **COMBILOG ANTENNA**

S/N: 61060

CALIBRATION DATE: MAY 29, 2013

| FREQUENCY<br>(MHz) | FACTOR (dB) | FREQUENCY<br>(MHz) | FACTOR (dB) |
|--------------------|-------------|--------------------|-------------|
| 30                 | 19.40       | 200                | 9.10        |
| 35                 | 19.10       | 250                | 11.40       |
| 40                 | 19.70       | 300                | 11.90       |
| 45                 | 18.00       | 350                | 14.20       |
| 50                 | 16.80       | 400                | 15.20       |
| 60                 | 12.50       | 450                | 16.50       |
| 70                 | 7.30        | 500                | 17.10       |
| 80                 | 4.40        | 550                | 16.20       |
| 90                 | 8.00        | 600                | 17.70       |
| 100                | 8.80        | 650                | 19.10       |
| 120                | 10.50       | 700                | 20.00       |
| 125                | 10.60       | 750                | 21.50       |
| 140                | 8.60        | 800                | 21.50       |
| 150                | 11.20       | 850                | 21.70       |
| 160                | 8.90        | 900                | 22.70       |
| 175                | 9.60        | 950                | 22.10       |
| 180                | 8.50        | 1000               | 22.90       |

# **COM POWER AH-118**

# HORN ANTENNA

S/N: 071175

# CALIBRATION DATE: FEBRUARY 26, 2014

| FREQUENCY | FACTOR | FREQUENCY | FACTOR |
|-----------|--------|-----------|--------|
| (GHz)     | (dB)   | (GHz)     | (dB)   |
| 1.0       | 24.23  | 10.0      | 38.43  |
| 1.5       | 25.84  | 10.5      | 40.19  |
| 2.0       | 28.14  | 11.0      | 40.49  |
| 2.5       | 29.51  | 11.5      | 41.39  |
| 3.0       | 31.20  | 12.0      | 42.02  |
| 3.5       | 32.17  | 12.5      | 43.30  |
| 4.0       | 31.40  | 13.0      | 42.77  |
| 4.5       | 31.86  | 13.5      | 40.18  |
| 5.0       | 34.82  | 14.0      | 42.59  |
| 5.5       | 34.38  | 14.5      | 41.74  |
| 6.0       | 36.31  | 15.0      | 41.84  |
| 6.5       | 34.81  | 15.5      | 38.48  |
| 7.0       | 37.48  | 16.0      | 39.52  |
| 7.5       | 36.98  | 16.5      | 37.85  |
| 8.0       | 36.66  | 17.0      | 41.33  |
| 8.5       | 38.47  | 17.5      | 44.96  |
| 9.0       | 37.22  | 18.0      | 48.50  |
| 9.5       | 37.86  |           |        |



## **COM-POWER PA-118**

# **PREAMPLIFIER**

S/N: 181656

CALIBRATION DATE: JANUARY 13, 2014

| FREQUENCY | FACTOR        | FREQUENCY | FACTOR |
|-----------|---------------|-----------|--------|
| (GHz)     | ( <b>dB</b> ) | (GHz)     | (dB)   |
| 1.0       | 24.90         | 6.0       | 25.40  |
| 1.1       | 25.30         | 6.5       | 25.20  |
| 1.2       | 26.00         | 7.0       | 24.40  |
| 1.3       | 26.20         | 7.5       | 24.00  |
| 1.4       | 26.30         | 8.0       | 23.90  |
| 1.5       | 26.40         | 8.5       | 24.50  |
| 1.6       | 26.50         | 9.0       | 25.20  |
| 1.7       | 26.60         | 9.5       | 24.80  |
| 1.8       | 26.50         | 10.0      | 24.90  |
| 1.9       | 26.60         | 11.0      | 25.40  |
| 2.0       | 26.70         | 12.0      | 24.50  |
| 2.5       | 26.90         | 13.0      | 24.30  |
| 3.0       | 27.00         | 14.0      | 25.20  |
| 3.5       | 27.10         | 15.0      | 25.90  |
| 4.0       | 26.60         | 16.0      | 25.60  |
| 4.5       | 26.10         | 17.0      | 23.70  |
| 5.0       | 26.40         | 18.0      | 25.80  |
| 5.5       | 25.80         |           |        |





#### **FRONT VIEW**

LEAP DEVICES, LLC SK METER MODULE MODEL: SK Tx FCC SUBPART B AND C - RADIATED EMISSIONS - BELOW 1 GHz

# PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS



#### **REAR VIEW**

LEAP DEVICES, LLC
SK METER MODULE
MODEL: SK Tx
FCC SUBPART B AND C – RADIATED EMISSIONS – BELOW 1 GHz

# PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS



#### **FRONT VIEW**

LEAP DEVICES, LLC
SK METER MODULE
MODEL: SK Tx
FCC SUBPART B AND C – RADIATED EMISSIONS – ABOVE 1 GHz

# PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

SK Meter Module Model: SK Tx



### **REAR VIEW**

LEAP DEVICES, LLC
SK METER MODULE
MODEL: SK Tx
FCC SUBPART B AND C – RADIATED EMISSIONS – ABOVE 1 GHz

# PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS



SK Meter Module Model: SK Tx

### **APPENDIX E**

DATA SHEETS

SK Meter Module Model: SK Tx

### **RADIATED EMISSIONS**

DATA SHEETS



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

Low Channel X-Axis

| Freq.<br>(MHz) | Level<br>(dBuV) | Pol (v/h) | Limit | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-----------------|-----------|-------|--------|-----------------------|-----------------------|-------------------------|----------|
| 903.56         | 83.42           | V         | 94    | -10.58 | Peak                  | 2.25                  | 85                      |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 1807.12        | 51.81           | V         | 74    | -22.19 | Peak                  | 1.5                   | 45                      |          |
| 1807.12        | 48.31           | V         | 54    | -5.69  | Avg                   | 1.5                   | 45                      |          |
|                |                 |           |       |        |                       |                       | 2                       |          |
| 2710.68        | 38.19           | V         | 74    | -35.81 | Peak                  | 1.25                  | 180                     |          |
| 2710.68        | 24.59           | V         | 54    | -29.41 | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 3614.24        | 61.31           | V         | 74    | -12.69 | Peak                  | 1.25                  | 180                     |          |
| 3614.24        | 50.82           | V         | 54    | -3.18  | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 4517.80        | 47.42           | V         | 74    | -26.58 | Peak                  | 1.35                  | 270                     |          |
| 4517.80        | 37.97           | V         | 54    | -16.03 | Avg                   | 1.35                  | 270                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 5421.36        | 54.08           | V         | 74    | -19.92 | Peak                  | 1.25                  | 180                     |          |
| 5421.36        | 44.27           | V         | 54    | -9.73  | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 6324.92        | 49.25           | V         | 74    | -24.75 | Peak                  | 1.5                   | 135                     |          |
| 6324.92        | 35.68           | V         | 54    | -18.32 | Avg                   | 1.5                   | 135                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 7228.48        | 56.36           | V         | 74    | -17.64 | Peak                  | 1.25                  | 180                     |          |
| 7228.48        | 43.91           | V         | 54    | -10.09 | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 8132.04        | 53.35           | V         | 74    | -20.65 | Peak                  | 1.25                  | 135                     |          |
| 8132.04        | 38.67           | V         | 54    | -15.33 | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 9035.60        | 51.74           | V         | 74    | -22.26 | Peak                  | 1.25                  | 135                     |          |
| 9035.60        | 38.94           | V         | 54    | -15.06 | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
|                |                 |           |       |        |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

Low Channel X-Axis

| Freq.<br>(MHz)     | Level<br>(dBuV) | Pol (v/h) | Limit | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|--------------------|-----------------|-----------|-------|--------|-----------------------|-----------------------|-------------------------|----------|
| 903.56             | 86.72           | Н         | 94    | -7.28  | Peak                  | 1.53                  | 342                     |          |
|                    |                 |           |       |        |                       |                       |                         |          |
| 1807.12            | 55.06           | Н         | 74    | -18.94 | Peak                  | 1.25                  | 225                     |          |
| 1807.12            | 51.49           | Н         | 54    | -2.51  | Avg                   | 1.25                  | 225                     |          |
|                    |                 |           |       |        |                       |                       | 2                       |          |
| 2710.68            | 37.77           | Н         | 74    | -36.23 | Peak                  | 1.25                  | 180                     |          |
| 2710.68            | 25.24           | Н         | 54    | -28.76 | Avg                   | 1.25                  | 180                     |          |
|                    |                 |           |       |        |                       |                       |                         |          |
| 3614.24            | 59.33           | Н         | 74    | -14.67 | Peak                  | 1.25                  | 180                     |          |
| 3614.24            | 48.45           | Н         | 54    | -5.55  | Avg                   | 1.25                  | 180                     |          |
|                    |                 |           |       |        |                       |                       |                         |          |
| 4517.80            | 50.14           | Н         | 74    | -23.86 | Peak                  | 1.35                  | 270                     |          |
| 4517.80            | 39.68           | Н         | 54    | -14.32 | Avg                   | 1.35                  | 270                     |          |
|                    |                 |           |       |        |                       |                       |                         |          |
| 5421.36            | 53.39           | Н         | 74    | -20.61 | Peak                  | 1.25                  | 180                     |          |
| 5421.36            | 42.71           | Н         | 54    | -11.29 | Avg                   | 1.25                  | 180                     |          |
|                    |                 |           |       |        |                       |                       |                         |          |
| 6324.92            | 49.95           | Н         | 74    | -24.05 | Peak                  | 1.5                   | 135                     |          |
| 6324.92            | 39.18           | Н         | 54    | -14.82 | Avg                   | 1.5                   | 135                     |          |
|                    |                 |           |       |        |                       |                       |                         |          |
| 7228.48            | 57.73           | H         | 74    | -16.27 | Peak                  | 1.25                  | 180                     |          |
| 7228.48            | 46.75           | Н         | 54    | -7.25  | Avg                   | 1.25                  | 180                     |          |
| 0400.04            | 50.70           |           | 7.4   | 00.00  | Daal                  | 4.05                  | 405                     |          |
| 8132.04            | 53.78           | H         | 74    | -20.22 | Peak                  | 1.25                  | 135                     |          |
| 8132.04            | 39.61           | Н         | 54    | -14.39 | Avg                   | 1.25                  | 135                     |          |
| 0025.60            | 40.04           | Н         | 74    | 24.40  | Dook                  | 1.25                  | 125                     |          |
| 9035.60<br>9035.60 | 49.81<br>39.32  | Н         |       | -24.19 | Peak                  |                       | 135                     |          |
| 9035.60            | 39.32           | П         | 54    | -14.68 | Avg                   | 1.25                  | 135                     |          |
|                    |                 |           |       |        |                       |                       |                         |          |
|                    |                 |           |       |        |                       |                       |                         |          |

Tested By: Kyle Fujimoto



Model: SK Tx

FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Low Channel Y-Axis

Model: SK Tx

| Freq.    | Level<br>(dBuV) | Pol (v/h) | Limit           | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------|-----------------|-----------|-----------------|--------|-----------------------|-----------------------|-------------------------|----------|
| 903.56   | 83.78           | V         | 94              | -10.22 | Peak                  | 1.67                  | 324                     |          |
|          |                 |           |                 |        |                       |                       |                         |          |
| 1807.12  | 50.32           | V         | 74              | -23.68 | Peak                  | 1.25                  | 225                     |          |
| 1807.12  | 46.71           | V         | 54              | -7.29  | Avg                   | 1.25                  | 225                     |          |
|          |                 |           |                 |        |                       |                       |                         |          |
| 2710.68  | 40.76           | V         | 74              | -33.24 | Peak                  | 1.25                  | 135                     |          |
| 2710.68  | 30.76           | V         | 54              | -23.24 | Avg                   | 1.25                  | 135                     |          |
|          |                 |           |                 |        |                       |                       |                         |          |
| 3614.24  | 57.67           | V         | 74              | -16.33 | Peak                  | 1.25                  | 180                     |          |
| 3614.24  | 47.74           | V         | 54              | -6.26  | Avg                   | 1.25                  | 180                     |          |
|          |                 |           |                 |        |                       |                       |                         |          |
| 4517.80  | 50.34           | V         | 74              | -23.66 | Peak                  | 1.25                  | 270                     |          |
| 4517.80  | 40.35           | V         | 54              | -13.65 | Avg                   | 1.25                  | 270                     |          |
|          |                 |           |                 |        |                       |                       |                         |          |
| 5421.36  | 51.01           | V         | 74              | -22.99 | Peak                  | 1.25                  | 180                     |          |
| 5421.36  | 42.57           | V         | 54              | -11.43 | Avg                   | 1.25                  | 180                     |          |
|          |                 |           |                 |        |                       |                       |                         |          |
| 6324.92  | 55.42           | V         | 74              | -18.58 | Peak                  | 1.25                  | 225                     |          |
| 6324.92  | 45.17           | V         | 54              | -8.83  | Avg                   | 1.25                  | 225                     |          |
| <b>-</b> |                 | .,        |                 | 4= 00  |                       | 4.0=                  | 100                     |          |
| 7228.48  | 58.78           | V         | 74              | -15.22 | Peak                  | 1.25                  | 180                     |          |
| 7228.48  | 46.52           | V         | 54              | -7.48  | Avg                   | 1.25                  | 180                     |          |
| 8132.04  | 48.17           | V         | 74              | 25.02  | Peak                  | 1.25                  | 125                     |          |
| 8132.04  |                 | V         | <u>74</u><br>54 | -25.83 |                       | 1.25                  | 135<br>135              |          |
| 0132.04  | 37.74           | V         | 54              | -16.26 | Avg                   | 1.25                  | 133                     |          |
| 9035.60  | 49.72           | V         | 74              | -24.28 | Peak                  | 1.25                  | 135                     |          |
| 9035.60  | 41.41           | V         | 54              | -12.59 | Avg                   | 1.25                  | 135                     |          |
| 3033.00  | 71.71           | v         | <u> </u>        | 12.00  | Avg                   | 1.20                  | 100                     |          |
|          |                 |           |                 |        |                       |                       |                         |          |
|          |                 |           |                 |        |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

Low Channel Y-Axis

| Freq.<br>(MHz) | Level<br>(dBuV) | Pol (v/h) | Limit    | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-----------------|-----------|----------|--------|-----------------------|-----------------------|-------------------------|----------|
| 903.56         | 88.54           | Н         | 94       | -5.46  | Peak                  | 1                     | 331                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
| 1807.12        | 55.24           | Н         | 74       | -18.76 | Peak                  | 1.25                  | 225                     |          |
| 1807.12        | 51.26           | Н         | 54       | -2.74  | Avg                   | 1.25                  | 225                     |          |
|                |                 |           |          |        |                       |                       | 2                       |          |
| 2710.68        | 37.48           | Н         | 74       | -36.52 | Peak                  | 1.25                  | 180                     |          |
| 2710.68        | 25.89           | Н         | 54       | -28.11 | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
| 3614.24        | 57.53           | Н         | 74       | -16.47 | Peak                  | 1.25                  | 225                     |          |
| 3614.24        | 47.57           | Н         | 54       | -6.43  | Avg                   | 1.25                  | 225                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
| 4517.80        | 50.74           | Н         | 74       | -23.26 | Peak                  | 1.35                  | 270                     |          |
| 4517.80        | 39.66           | Н         | 54       | -14.34 | Avg                   | 1.35                  | 270                     |          |
| F 404 00       | FF 04           |           | 7.4      | 40.00  | Daal                  | 4.05                  | 400                     |          |
| 5421.36        | 55.91           | H         | 74       | -18.09 | Peak                  | 1.25                  | 180                     |          |
| 5421.36        | 45.36           | П         | 54       | -8.64  | Avg                   | 1.25                  | 180                     |          |
| 6324.92        | 54.07           | Н         | 74       | -19.93 | Peak                  | 1.5                   | 135                     |          |
| 6324.92        | 42.01           | Н.        | 54       | -11.99 | Avg                   | 1.5                   | 135                     |          |
| 0024.02        | 72.01           |           | <u> </u> | 11.00  | 7119                  | 1.0                   | 100                     |          |
| 7228.48        | 58.86           | Н         | 74       | -15.14 | Peak                  | 1.25                  | 180                     |          |
| 7228.48        | 47.46           | Н         | 54       | -6.54  | Avg                   | 1.25                  | 180                     |          |
|                |                 |           | -        |        | <u>J</u>              | -                     |                         |          |
| 8132.04        | 52.61           | Н         | 74       | -21.39 | Peak                  | 1.25                  | 135                     |          |
| 8132.04        | 41.12           | Н         | 54       | -12.88 | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
| 9035.60        | 49.96           | Н         | 74       | -24.04 | Peak                  | 1.25                  | 135                     |          |
| 9035.60        | 39.21           | Н         | 54       | -14.79 | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
|                |                 |           |          |        |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

Low Channel Z-Axis

| Freq.<br>(MHz) | Level<br>(dBuV) | Pol (v/h) | Limit | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-----------------|-----------|-------|--------|-----------------------|-----------------------|-------------------------|----------|
| 903.56         | 86.15           | V         | 94    | -7.85  | Peak                  | 1                     | 217                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 1807.12        | 48.93           | V         | 74    | -25.07 | Peak                  | 1.25                  | 225                     |          |
| 1807.12        | 45.41           | V         | 54    | -8.59  | Avg                   | 1.25                  | 225                     |          |
|                |                 |           |       |        |                       |                       | 2                       |          |
| 2710.68        | 36.53           | V         | 74    | -37.47 | Peak                  | 1.25                  | 90                      |          |
| 2710.68        | 26.15           | V         | 54    | -27.85 | Avg                   | 1.25                  | 90                      |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 3614.24        | 61.21           | V         | 74    | -12.79 | Peak                  | 1.25                  | 180                     |          |
| 3614.24        | 51.41           | V         | 54    | -2.59  | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 4517.80        | 50.05           | V         | 74    | -23.95 | Peak                  | 1.35                  | 270                     |          |
| 4517.80        | 39.79           | V         | 54    | -14.21 | Avg                   | 1.35                  | 270                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 5421.36        | 56.02           | V         | 74    | -17.98 | Peak                  | 1.25                  | 180                     |          |
| 5421.36        | 46.01           | V         | 54    | -7.99  | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 6324.92        | 51.57           | V         | 74    | -22.43 | Peak                  | 1.5                   | 135                     |          |
| 6324.92        | 40.59           | V         | 54    | -13.41 | Avg                   | 1.5                   | 135                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 7228.48        | 57.21           | V         | 74    | -16.79 | Peak                  | 1.25                  | 180                     |          |
| 7228.48        | 44.48           | V         | 54    | -9.52  | Avg                   | 1.25                  | 180                     |          |
|                |                 | ,.        |       |        |                       |                       |                         |          |
| 8132.04        | 55.71           | V         | 74    | -18.29 | Peak                  | 1.25                  | 135                     |          |
| 8132.04        | 42.82           | V         | 54    | -11.18 | Avg                   | 1.25                  | 135                     |          |
| 000            | 40.5.           | , .       |       | 04.15  |                       | 4.5-                  | 46-                     |          |
| 9035.60        | 49.84           | V         | 74    | -24.16 | Peak                  | 1.25                  | 135                     |          |
| 9035.60        | 38.28           | V         | 54    | -15.72 | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
|                |                 |           |       |        |                       |                       |                         |          |

Tested By: Kyle Fujimoto



SK Meter Module Model: SK Tx

FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Low Channel

Model: SK Tx

| Z-Ax | is | <br>•. |
|------|----|--------|
|      |    |        |

| Freq.<br>(MHz) | Level | Pol (v/h) | Limit           | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-------|-----------|-----------------|--------|-----------------------|-----------------------|-------------------------|----------|
| 903.56         | 86.26 | Ĥ         | 94              | -7.74  | Peak                  | 1.66                  | 3                       |          |
|                |       |           |                 |        |                       |                       |                         |          |
| 1807.12        | 51.61 | Н         | 74              | -22.39 | Peak                  | 1.25                  | 225                     |          |
| 1807.12        | 46.32 | Н         | 54              | -7.68  | Avg                   | 1.25                  | 225                     |          |
|                |       |           |                 |        |                       |                       |                         |          |
| 2710.68        | 38.32 | Н         | 74              | -35.68 | Peak                  | 1.25                  | 180                     |          |
| 2710.68        | 26.76 | Н         | 54              | -27.24 | Avg                   | 1.25                  | 180                     |          |
|                |       |           |                 |        |                       |                       |                         |          |
| 3614.24        | 59.05 | Н         | 74              | -14.95 | Peak                  | 1.25                  | 180                     |          |
| 3614.24        | 49.68 | Н         | 54              | -4.32  | Avg                   | 1.25                  | 180                     |          |
|                |       |           |                 |        |                       |                       |                         |          |
| 4517.80        | 50.12 | Н         | 74              | -23.88 | Peak                  | 1.35                  | 270                     |          |
| 4517.80        | 39.91 | Н         | 54              | -14.09 | Avg                   | 1.35                  | 270                     |          |
|                |       |           |                 |        |                       |                       |                         |          |
| 5421.36        | 50.17 | Н         | 74              | -23.83 | Peak                  | 1.25                  | 180                     |          |
| 5421.36        | 39.45 | Н         | 54              | -14.55 | Avg                   | 1.25                  | 180                     |          |
| 0004.00        | 50.00 |           | 7.4             | 00.04  | D1                    | 4.5                   | 405                     |          |
| 6324.92        | 50.69 | Н         | 74              | -23.31 | Peak                  | 1.5                   | 135                     |          |
| 6324.92        | 40.43 | Н         | 54              | -13.57 | Avg                   | 1.5                   | 135                     |          |
| 7228.48        | 55.11 | Н         | 74              | -18.89 | Peak                  | 1.25                  | 180                     |          |
| 7228.48        | 43.19 | H         | 54              | -10.81 | Avg                   | 1.25                  | 180                     |          |
| 1 220.70       | 70.13 | 11        | J <del>-1</del> | 10.01  | Avy                   | 1.20                  | 100                     |          |
| 8132.04        | 54.19 | Н         | 74              | -19.81 | Peak                  | 1.25                  | 135                     |          |
| 8132.04        | 44.14 | Н         | 54              | -9.86  | Avg                   | 1.25                  | 135                     |          |
|                |       |           |                 |        |                       |                       |                         |          |
| 9035.60        | 50.42 | Н         | 74              | -23.58 | Peak                  | 1.25                  | 135                     |          |
| 9035.60        | 38.96 | Н         | 54              | -15.04 | Avg                   | 1.25                  | 135                     |          |
|                |       |           |                 |        |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLCDate: 03/08/2014SK Meter ModuleLabs: B and DModel: SK TxTested By: Kyle Fujimoto

Middle Channel X-Axis

| Freq.<br>(MHz) | Level | Pol (v/h)                             | Limit    | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-------|---------------------------------------|----------|--------|-----------------------|-----------------------|-------------------------|----------|
| 913.92         | 84.29 | V                                     | 94       | -9.71  | Peak                  | 1.02                  | 215                     |          |
|                |       |                                       |          |        |                       | -                     |                         |          |
| 1827.84        | 56.11 | V                                     | 74       | -17.89 | Peak                  | 1.25                  | 225                     |          |
| 1827.84        | 52.82 | V                                     | 54       | -1.18  | Avg                   | 1.25                  | 225                     |          |
|                |       |                                       |          |        |                       |                       |                         |          |
| 2741.76        | 36.15 | V                                     | 74       | -37.85 | Peak                  | 1.25                  | 180                     |          |
| 2741.76        | 24.81 | V                                     | 54       | -29.19 | Avg                   | 1.25                  | 180                     |          |
|                |       |                                       |          |        |                       |                       |                         |          |
| 3655.68        | 55.48 | V                                     | 74       | -18.52 | Peak                  | 1.25                  | 180                     |          |
| 3655.68        | 45.81 | V                                     | 54       | -8.19  | Avg                   | 1.25                  | 180                     |          |
|                |       |                                       |          |        |                       |                       |                         |          |
| 4569.60        | 48.21 | V                                     | 74       | -25.79 | Peak                  | 1.35                  | 270                     |          |
| 4569.60        | 38.21 | V                                     | 54       | -15.79 | Avg                   | 1.35                  | 270                     |          |
| 5 400 50       | 54.00 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 7.4      | 00.07  | D I                   | 4.05                  | 400                     |          |
| 5483.52        | 51.93 | V                                     | 74       | -22.07 | Peak                  | 1.25                  | 180                     |          |
| 5483.52        | 41.38 | V                                     | 54       | -12.62 | Avg                   | 1.25                  | 180                     |          |
| 6397.44        | 49.16 | V                                     | 74       | -24.84 | Peak                  | 1.5                   | 135                     |          |
| 6397.44        | 34.76 | V                                     | 54       | -19.24 | Avg                   | 1.5                   | 135                     |          |
| 0007.44        | 04.70 | <b>V</b>                              | <u> </u> | 10.24  | 7119                  | 1.0                   | 100                     |          |
| 7311.36        | 56.15 | V                                     | 74       | -17.85 | Peak                  | 1.25                  | 180                     |          |
| 7311.36        | 45.55 | V                                     | 54       | -8.45  | Avg                   | 1.25                  | 180                     |          |
|                |       |                                       |          |        |                       |                       |                         |          |
| 8225.28        | 52.34 | V                                     | 74       | -21.66 | Peak                  | 1.25                  | 135                     |          |
| 8225.28        | 38.29 | V                                     | 54       | -15.71 | Avg                   | 1.25                  | 135                     |          |
|                |       |                                       |          |        | -                     |                       |                         |          |
| 9139.20        | 52.39 | V                                     | 74       | -21.61 | Peak                  | 1.25                  | 135                     |          |
| 9139.20        | 39.28 | V                                     | 54       | -14.72 | Avg                   | 1.25                  | 135                     |          |
|                |       |                                       |          |        |                       |                       |                         |          |
|                |       |                                       |          |        |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

Middle Channel X-Axis

| Freq.<br>(MHz) | Level | Pol (v/h) | Limit | Margin           | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-------|-----------|-------|------------------|-----------------------|-----------------------|-------------------------|----------|
| 913.92         | 84.01 | H         | 94    | -9.99            | Peak                  | 1.01                  | 86                      |          |
|                |       |           |       |                  |                       |                       |                         |          |
| 1827.84        | 56.21 | Н         | 74    | -17.79           | Peak                  | 1.25                  | 225                     |          |
| 1827.84        | 50.81 | Н         | 54    | -3.19            | Avg                   | 1.25                  | 225                     |          |
|                |       |           |       |                  |                       |                       | 2                       |          |
| 2741.76        | 37.01 | Н         | 74    | -36.99           | Peak                  | 1.25                  | 180                     |          |
| 2741.76        | 26.96 | Н         | 54    | -27.04           | Avg                   | 1.25                  | 180                     |          |
|                |       |           |       |                  |                       |                       |                         |          |
| 3655.68        | 59.31 | Н         | 74    | -14.69           | Peak                  | 1.25                  | 180                     |          |
| 3655.68        | 49.15 | Н         | 54    | -4.85            | Avg                   | 1.25                  | 180                     |          |
|                |       |           |       |                  |                       |                       |                         |          |
| 4569.60        | 49.16 | Н         | 74    | -24.84           | Peak                  | 1.35                  | 270                     |          |
| 4569.60        | 38.46 | Н         | 54    | -15.54           | Avg                   | 1.35                  | 270                     |          |
|                |       |           |       |                  |                       |                       |                         |          |
| 5483.52        | 51.28 | Н         | 74    | -22.72           | Peak                  | 1.25                  | 180                     |          |
| 5483.52        | 41.52 | Н         | 54    | -12.48           | Avg                   | 1.25                  | 180                     |          |
|                |       |           |       |                  |                       |                       |                         |          |
| 6397.44        | 49.74 | H         | 74    | -24.26           | Peak                  | 1.5                   | 135                     |          |
| 6397.44        | 37.29 | Н         | 54    | -16.71           | Avg                   | 1.5                   | 135                     |          |
| 7044.00        | 50.04 |           | 7.4   | 00.00            | Deel                  | 4.05                  | 400                     |          |
| 7311.36        | 53.61 | H         | 74    | -20.39           | Peak                  | 1.25                  | 180                     |          |
| 7311.36        | 42.68 | Н         | 54    | -11.32           | Avg                   | 1.25                  | 180                     |          |
| 8225.28        | 50.77 | Н         | 74    | -23.23           | Peak                  | 1.25                  | 135                     |          |
| 8225.28        | 38.82 | Н         |       | -23.23<br>-15.18 |                       | 1.25                  | 135                     |          |
| 0223.20        | 30.02 | П         | 54    | -13.16           | Avg                   | 1.20                  | 133                     |          |
| 9139.20        | 48.68 | Н         | 74    | -25.32           | Peak                  | 1.25                  | 135                     |          |
| 9139.20        | 38.88 | H         | 54    | -15.12           | Avg                   | 1.25                  | 135                     |          |
| 0100.20        | 30.00 | ''        | J-T   | 10.12            | Avy                   | 1.20                  | 100                     |          |
|                |       |           |       |                  |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

Middle Channel Y-Axis

| Freq.<br>(MHz) | Level<br>(dBuV) | Pol (v/h) | Limit | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-----------------|-----------|-------|--------|-----------------------|-----------------------|-------------------------|----------|
| 913.92         | 86.21           | V         | 94    | -7.79  | Peak                  | 1.58                  | 263                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 1827.84        | 49.55           | V         | 74    | -24.45 | Peak                  | 1.25                  | 225                     |          |
| 1827.84        | 44.78           | V         | 54    | -9.22  | Avg                   | 1.25                  | 225                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 2741.76        | 42.47           | V         | 74    | -31.53 | Peak                  | 1.25                  | 180                     |          |
| 2741.76        | 31.86           | V         | 54    | -22.14 | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 3655.68        | 55.74           | V         | 74    | -18.26 | Peak                  | 1.25                  | 180                     |          |
| 3655.68        | 45.94           | V         | 54    | -8.06  | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 4569.60        | 50.91           | V         | 74    | -23.09 | Peak                  | 1.35                  | 270                     |          |
| 4569.60        | 40.35           | V         | 54    | -13.65 | Avg                   | 1.35                  | 270                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 5483.52        | 51.25           | V         | 74    | -22.75 | Peak                  | 1.25                  | 180                     |          |
| 5483.52        | 40.54           | V         | 54    | -13.46 | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 6397.44        | 53.71           | V         | 74    | -20.29 | Peak                  | 1.5                   | 135                     |          |
| 6397.44        | 43.49           | V         | 54    | -10.51 | Avg                   | 1.5                   | 135                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 7311.36        | 55.68           | V         | 74    | -18.32 | Peak                  | 1.25                  | 180                     |          |
| 7311.36        | 44.83           | V         | 54    | -9.17  | Avg                   | 1.25                  | 180                     |          |
|                |                 | ,.        |       |        |                       |                       |                         |          |
| 8225.28        | 53.23           | V         | 74    | -20.77 | Peak                  | 1.25                  | 135                     |          |
| 8225.28        | 41.13           | V         | 54    | -12.87 | Avg                   | 1.25                  | 135                     |          |
| 0.400.00       |                 | .,        |       | 00.46  |                       |                       | 40-                     |          |
| 9139.20        | 51.54           | V         | 74    | -22.46 | Peak                  | 1.25                  | 135                     |          |
| 9139.20        | 38.85           | V         | 54    | -15.15 | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
|                |                 |           |       |        |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

Middle Channel Y-Axis

| Freq.<br>(MHz) | Level | Pol (v/h) | Limit          | Margin           | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-------|-----------|----------------|------------------|-----------------------|-----------------------|-------------------------|----------|
| 913.92         | 86.62 | H         | 94             | -7.38            | Peak                  | 1.57                  | 354                     |          |
|                |       |           |                |                  |                       |                       |                         |          |
| 1827.84        | 55.22 | Н         | 74             | -18.78           | Peak                  | 1.25                  | 225                     |          |
| 1827.84        | 51.02 | Н         | 54             | -2.98            | Avg                   | 1.25                  | 225                     |          |
|                |       |           |                |                  |                       |                       | 2                       |          |
| 2741.76        | 35.53 | Н         | 74             | -38.47           | Peak                  | 1.25                  | 180                     |          |
| 2741.76        | 25.74 | Н         | 54             | -28.26           | Avg                   | 1.25                  | 180                     |          |
|                |       |           |                |                  |                       |                       |                         |          |
| 3655.68        | 58.37 | Н         | 74             | -15.63           | Peak                  | 1.25                  | 180                     |          |
| 3655.68        | 48.85 | Н         | 54             | -5.15            | Avg                   | 1.25                  | 180                     |          |
|                |       |           |                |                  |                       |                       |                         |          |
| 4569.60        | 50.66 | H         | 74             | -23.34           | Peak                  | 1.35                  | 270                     |          |
| 4569.60        | 39.91 | Н         | 54             | -14.09           | Avg                   | 1.35                  | 270                     |          |
| 5483.52        | 54.67 | Н         | 74             | 40.00            | Dools                 | 4.05                  | 180                     |          |
| 5483.52        | 43.89 | Н         | 54             | -19.33<br>-10.11 | Peak<br>Avg           | 1.25<br>1.25          | 180                     |          |
| 3403.32        | 45.09 | 11        | J <del>4</del> | -10.11           | Avg                   | 1.20                  | 100                     |          |
| 6397.44        | 53.19 | Н         | 74             | -20.81           | Peak                  | 1.5                   | 135                     |          |
| 6397.44        | 42.05 | Н         | 54             | -11.95           | Avg                   | 1.5                   | 135                     |          |
|                |       |           |                |                  |                       |                       |                         |          |
| 7311.36        | 56.22 | Н         | 74             | -17.78           | Peak                  | 1.25                  | 180                     |          |
| 7311.36        | 45.31 | Н         | 54             | -8.69            | Avg                   | 1.25                  | 180                     |          |
|                |       |           |                |                  |                       |                       |                         |          |
| 8225.28        | 47.93 | Н         | 74             | -26.07           | Peak                  | 1.25                  | 135                     |          |
| 8225.28        | 37.99 | Н         | 54             | -16.01           | Avg                   | 1.25                  | 135                     |          |
|                |       |           |                |                  |                       |                       |                         |          |
| 9139.20        | 53.53 | Н         | 74             | -20.47           | Peak                  | 1.25                  | 135                     |          |
| 9139.20        | 38.74 | Н         | 54             | -15.26           | Avg                   | 1.25                  | 135                     |          |
|                |       |           |                |                  |                       |                       |                         |          |
|                |       |           |                |                  |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

Middle Channel Z-Axis

| Freq.<br>(MHz) | Level | Pol (v/h)                             | Limit | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-------|---------------------------------------|-------|--------|-----------------------|-----------------------|-------------------------|----------|
| 913.92         | 84.94 | V                                     | 94    | -9.06  | Peak                  | 1                     | 215                     |          |
|                |       |                                       |       |        |                       |                       |                         |          |
| 1827.84        | 49.14 | V                                     | 74    | -24.86 | Peak                  | 1.25                  | 225                     |          |
| 1827.84        | 42.92 | V                                     | 54    | -11.08 | Avg                   | 1.25                  | 225                     |          |
|                |       |                                       |       |        |                       |                       | 2                       |          |
| 2741.76        | 42.61 | V                                     | 74    | -31.39 | Peak                  | 1.25                  | 180                     |          |
| 2741.76        | 30.29 | V                                     | 54    | -23.71 | Avg                   | 1.25                  | 180                     |          |
|                |       |                                       |       |        |                       |                       |                         |          |
| 3655.68        | 62.02 | V                                     | 74    | -11.98 | Peak                  | 1.25                  | 180                     |          |
| 3655.68        | 50.89 | V                                     | 54    | -3.11  | Avg                   | 1.25                  | 180                     |          |
|                |       |                                       |       |        |                       |                       |                         |          |
| 4569.60        | 52.91 | V                                     | 74    | -21.09 | Peak                  | 1.35                  | 270                     |          |
| 4569.60        | 43.37 | V                                     | 54    | -10.63 | Avg                   | 1.35                  | 270                     |          |
| 5 400 50       | F7 77 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 7.4   | 40.00  | D I                   | 4.05                  | 400                     |          |
| 5483.52        | 57.77 | V                                     | 74    | -16.23 | Peak                  | 1.25                  | 180                     |          |
| 5483.52        | 48.53 | V                                     | 54    | -5.47  | Avg                   | 1.25                  | 180                     |          |
| 6397.44        | 50.46 | V                                     | 74    | -23.54 | Peak                  | 1.5                   | 135                     |          |
| 6397.44        | 39.16 | V                                     | 54    | -14.84 | Avg                   | 1.5                   | 135                     |          |
| 0007777        | 00.10 | ·                                     | 0 1   |        | , <u>g</u>            | 1.0                   |                         |          |
| 7311.36        | 55.51 | V                                     | 74    | -18.49 | Peak                  | 1.25                  | 180                     |          |
| 7311.36        | 44.66 | V                                     | 54    | -9.34  | Avg                   | 1.25                  | 180                     |          |
|                |       |                                       |       |        |                       |                       |                         |          |
| 8225.28        | 53.15 | V                                     | 74    | -20.85 | Peak                  | 1.25                  | 135                     |          |
| 8225.28        | 41.67 | V                                     | 54    | -12.33 | Avg                   | 1.25                  | 135                     |          |
|                |       |                                       |       |        |                       |                       |                         |          |
| 9139.20        | 50.43 | V                                     | 74    | -23.57 | Peak                  | 1.25                  | 135                     |          |
| 9139.20        | 39.17 | V                                     | 54    | -14.83 | Avg                   | 1.25                  | 135                     |          |
|                |       |                                       |       |        |                       |                       |                         |          |
|                |       |                                       |       |        |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

## Middle Channel Z-Axis

| Freq.<br>(MHz) | Level | Pol (v/h) | Limit    | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-------|-----------|----------|--------|-----------------------|-----------------------|-------------------------|----------|
| 913.92         | 86.16 | Н         | 94       | -7.84  | Peak                  | 1.51                  | 345                     |          |
|                |       |           |          |        |                       |                       |                         |          |
| 1827.84        | 50.75 | Н         | 74       | -23.25 | Peak                  | 1.25                  | 225                     |          |
| 1827.84        | 46.78 | Н         | 54       | -7.22  | Avg                   | 1.25                  | 225                     |          |
|                |       |           |          |        |                       |                       | 2                       |          |
| 2741.76        | 40.41 | Н         | 74       | -33.59 | Peak                  | 1.25                  | 180                     |          |
| 2741.76        | 28.08 | Н         | 54       | -25.92 | Avg                   | 1.25                  | 180                     |          |
|                |       |           |          |        |                       |                       |                         |          |
| 3655.68        | 59.08 | Н         | 74       | -14.92 | Peak                  | 1.25                  | 180                     |          |
| 3655.68        | 48.97 | Н         | 54       | -5.03  | Avg                   | 1.25                  | 180                     |          |
|                |       |           |          |        |                       |                       |                         |          |
| 4569.60        | 51.13 | Н         | 74       | -22.87 | Peak                  | 1.35                  | 270                     |          |
| 4569.60        | 40.61 | Н         | 54       | -13.39 | Avg                   | 1.35                  | 270                     |          |
| 5 400 50       | 54.04 |           | 7.4      | 00.00  | D I                   | 4.05                  | 400                     |          |
| 5483.52        | 51.61 | H         | 74       | -22.39 | Peak                  | 1.25                  | 180                     |          |
| 5483.52        | 40.45 | П         | 54       | -13.55 | Avg                   | 1.25                  | 180                     |          |
| 6397.44        | 50.62 | Н         | 74       | -23.38 | Peak                  | 1.5                   | 135                     |          |
| 6397.44        | 39.12 | Н Н       | 54       | -14.88 | Avg                   | 1.5                   | 135                     |          |
| 0007.44        | 00.12 |           | <u> </u> | 14.00  | 7119                  | 1.0                   | 100                     |          |
| 7311.36        | 52.19 | Н         | 74       | -21.81 | Peak                  | 1.25                  | 180                     |          |
| 7311.36        | 41.71 | Н         | 54       | -12.29 | Avg                   | 1.25                  | 180                     |          |
|                |       |           |          |        |                       |                       |                         |          |
| 8225.28        | 51.77 | Н         | 74       | -22.23 | Peak                  | 1.25                  | 135                     |          |
| 8225.28        | 38.82 | Н         | 54       | -15.18 | Avg                   | 1.25                  | 135                     |          |
|                |       |           |          |        |                       |                       |                         |          |
| 9139.20        | 50.73 | Н         | 74       | -23.27 | Peak                  | 1.25                  | 135                     |          |
| 9139.20        | 39.09 | Н         | 54       | -14.91 | Avg                   | 1.25                  | 135                     |          |
|                |       |           |          |        |                       |                       |                         |          |
|                |       |           |          |        |                       |                       |                         |          |

Tested By: Kyle Fujimoto



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

High Channel

| ingii c | , i i a i i i i <del>C</del> i |
|---------|--------------------------------|
| X-Axis  |                                |
| V-WXI2  | )                              |
|         |                                |
|         |                                |
|         |                                |

Model: SK Tx

| Freq.<br>(MHz) | Level<br>(dBuV) | Pol (v/h) | Limit | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-----------------|-----------|-------|--------|-----------------------|-----------------------|-------------------------|----------|
| 925.80         | 83.72           | V         | 94    | -10.28 | Peak                  | 1.56                  | 252                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 1851.60        | 47.82           | V         | 74    | -26.18 | Peak                  | 1.25                  | 225                     |          |
| 1851.60        | 43.52           | V         | 54    | -10.48 | Avg                   | 1.25                  | 225                     |          |
|                |                 |           |       |        |                       |                       | 2                       |          |
| 2777.40        | 37.96           | V         | 74    | -36.04 | Peak                  | 1.25                  | 180                     |          |
| 2777.40        | 25.95           | V         | 54    | -28.05 | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 3703.20        | 60.53           | V         | 74    | -13.47 | Peak                  | 1.25                  | 135                     |          |
| 3703.20        | 50.26           | V         | 54    | -3.74  | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 4629.00        | 46.71           | V         | 74    | -27.29 | Peak                  | 1.25                  | 225                     |          |
| 4629.00        | 33.94           | V         | 54    | -20.06 | Avg                   | 1.25                  | 225                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 5554.80        | 52.42           | V         | 74    | -21.58 | Peak                  | 1.25                  | 180                     |          |
| 5554.80        | 41.03           | V         | 54    | -12.97 | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 6480.60        | 47.76           | V         | 74    | -26.24 | Peak                  | 1.5                   | 135                     |          |
| 6480.60        | 33.46           | V         | 54    | -20.54 | Avg                   | 1.5                   | 135                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
| 7406.40        | 53.64           | V         | 74    | -20.36 | Peak                  | 1.25                  | 180                     |          |
| 7406.40        | 42.77           | V         | 54    | -11.23 | Avg                   | 1.25                  | 180                     |          |
| 0000.00        | 54.04           |           | 7.4   | 00.00  | Deal                  | 4.05                  | 405                     |          |
| 8332.20        | 51.01           | V         | 74    | -22.99 | Peak                  | 1.25                  | 135                     |          |
| 8332.20        | 37.01           | V         | 54    | -16.99 | Avg                   | 1.25                  | 135                     |          |
| 0050.00        | 50.05           | \/        | 74    | 22.05  | Dools                 | 4.05                  | 405                     |          |
| 9258.00        | 50.95           | V         | 74    | -23.05 | Peak                  | 1.25                  | 135                     |          |
| 9258.00        | 38.94           | V         | 54    | -15.06 | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |       |        |                       |                       |                         |          |
|                |                 |           |       |        |                       |                       |                         |          |

Tested By: Kyle Fujimoto



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

ligh Channel

High Channel X-Axis

Model: SK Tx

| Freq.<br>(MHz) | Level<br>(dBuV) | Pol (v/h) | Limit    | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-----------------|-----------|----------|--------|-----------------------|-----------------------|-------------------------|----------|
| 925.80         | 84.09           | Н         | 94       | -9.91  | Peak                  | 1                     | 77                      |          |
|                |                 |           |          |        |                       |                       |                         |          |
| 1851.60        | 48.86           | Н         | 74       | -25.14 | Peak                  | 1.25                  | 225                     |          |
| 1851.60        | 41.94           | Н         | 54       | -12.06 | Avg                   | 1.25                  | 225                     |          |
|                |                 |           |          |        |                       |                       | 2                       |          |
| 2777.40        | 38.36           | Н         | 74       | -35.64 | Peak                  | 1.25                  | 180                     |          |
| 2777.40        | 26.22           | Н         | 54       | -27.78 | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
| 3703.20        | 58.84           | Н         | 74       | -15.16 | Peak                  | 1.25                  | 135                     |          |
| 3703.20        | 48.49           | Н         | 54       | -5.51  | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
| 4629.00        | 49.42           | Н         | 74       | -24.58 | Peak                  | 1.25                  | 225                     |          |
| 4629.00        | 37.51           | Н         | 54       | -16.49 | Avg                   | 1.25                  | 225                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
| 5554.80        | 53.75           | H         | 74       | -20.25 | Peak                  | 1.25                  | 180                     |          |
| 5554.80        | 41.53           | Н         | 54       | -12.47 | Avg                   | 1.25                  | 180                     |          |
| 0.400.00       | 40.00           |           | 7.4      | 07.77  | Daal                  | 4.5                   | 405                     |          |
| 6480.60        | 46.23           | H         | 74<br>54 | -27.77 | Peak                  | 1.5                   | 135                     |          |
| 6480.60        | 35.08           | Н         | 54       | -18.92 | Avg                   | 1.5                   | 135                     |          |
| 7406.40        | 55.36           | Н         | 74       | -18.64 | Peak                  | 1.25                  | 180                     |          |
| 7406.40        | 44.24           | Н         | 54       | -9.76  | Avg                   | 1.25                  | 180                     |          |
|                |                 |           | <u> </u> | 55     | ··· ສ                 | 0                     |                         |          |
| 8332.20        | 49.92           | Н         | 74       | -24.08 | Peak                  | 1.25                  | 135                     |          |
| 8332.20        | 38.11           | Н         | 54       | -15.89 | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
| 9258.00        | 50.96           | Н         | 74       | -23.04 | Peak                  | 1.25                  | 135                     |          |
| 9258.00        | 38.99           | Н         | 54       | -15.01 | Avg                   | 1.25                  | 135                     |          |
| <u> </u>       |                 |           |          |        | <u> </u>              |                       |                         |          |
|                |                 |           |          |        |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

High Channel Y-Axis

| Freq.<br>(MHz) | Level<br>(dBuV) | Pol (v/h)                             | Limit    | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-----------------|---------------------------------------|----------|--------|-----------------------|-----------------------|-------------------------|----------|
| 925.80         | 84.13           | V                                     | 94       | -9.87  | Peak                  | 1                     | 262                     |          |
|                |                 |                                       |          |        |                       |                       |                         |          |
| 1851.60        | 46.01           | V                                     | 74       | -27.99 | Peak                  | 1.25                  | 225                     |          |
| 1851.60        | 42.09           | V                                     | 54       | -11.91 | Avg                   | 1.25                  | 225                     |          |
|                |                 |                                       |          |        |                       |                       | 2                       |          |
| 2777.40        | 41.39           | V                                     | 74       | -32.61 | Peak                  | 1.25                  | 180                     |          |
| 2777.40        | 30.13           | V                                     | 54       | -23.87 | Avg                   | 1.25                  | 180                     |          |
|                |                 |                                       |          |        |                       |                       |                         |          |
| 3703.20        | 56.56           | V                                     | 74       | -17.44 | Peak                  | 1.25                  | 180                     |          |
| 3703.20        | 46.98           | V                                     | 54       | -7.02  | Avg                   | 1.25                  | 180                     |          |
|                |                 |                                       |          |        |                       |                       |                         |          |
| 4629.00        | 52.32           | V                                     | 74       | -21.68 | Peak                  | 1.35                  | 270                     |          |
| 4629.00        | 41.94           | V                                     | 54       | -12.06 | Avg                   | 1.35                  | 270                     |          |
|                |                 |                                       |          |        |                       |                       |                         |          |
| 5554.80        | 55.11           | V                                     | 74       | -18.89 | Peak                  | 1.25                  | 180                     |          |
| 5554.80        | 45.87           | V                                     | 54       | -8.13  | Avg                   | 1.25                  | 180                     |          |
|                |                 |                                       |          |        |                       |                       |                         |          |
| 6480.60        | 52.86           | V                                     | 74       | -21.14 | Peak                  | 1.5                   | 135                     |          |
| 6480.60        | 43.44           | V                                     | 54       | -10.56 | Avg                   | 1.5                   | 135                     |          |
| 7400.40        | 54.00           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 7.4      | 40.04  | Deal                  | 4.05                  | 400                     |          |
| 7406.40        | 54.09           | V                                     | 74       | -19.91 | Peak                  | 1.25                  | 180                     |          |
| 7406.40        | 42.53           | V                                     | 54       | -11.47 | Avg                   | 1.25                  | 180                     |          |
| 8332.20        | 55.55           | V                                     | 74       | -18.45 | Peak                  | 1.25                  | 135                     |          |
| 8332.20        | 43.84           | V                                     | 54       | -10.45 | Avg                   | 1.25                  | 135                     |          |
| 0332.20        | 43.04           | V                                     | 54       | -10.10 | Avy                   | 1.20                  | 130                     |          |
| 9258.00        | 49.49           | V                                     | 74       | -24.51 | Peak                  | 1.25                  | 135                     |          |
| 9258.00        | 39.39           | V                                     | 54       | -14.61 | Avg                   | 1.25                  | 135                     |          |
| 0200.00        | 30.00           | · ·                                   | <u> </u> | 17.01  | , . v g               | 1.20                  | 100                     |          |
|                |                 |                                       |          |        |                       |                       |                         |          |

Tested By: Kyle Fujimoto



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

High Channel

High Channel Y-Axis

Model: SK Tx

| Freq.<br>(MHz) | Level<br>(dBuV) | Pol (v/h) | Limit | Margin           | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-----------------|-----------|-------|------------------|-----------------------|-----------------------|-------------------------|----------|
| 925.80         | 85.13           | Н         | 94    | -8.87            | Peak                  | 1.16                  | 184                     |          |
|                |                 |           |       |                  |                       |                       |                         |          |
| 1851.60        | 55.28           | Н         | 74    | -18.72           | Peak                  | 1.25                  | 225                     |          |
| 1851.60        | 51.74           | Н         | 54    | -2.26            | Avg                   | 1.25                  | 225                     |          |
|                |                 |           |       |                  |                       |                       | 2                       |          |
| 2777.40        | 37.98           | Н         | 74    | -36.02           | Peak                  | 1.25                  | 180                     |          |
| 2777.40        | 26.33           | Н         | 54    | -27.67           | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |                  |                       |                       |                         |          |
| 3703.20        | 58.01           | Н         | 74    | -15.99           | Peak                  | 1.25                  | 135                     |          |
| 3703.20        | 48.81           | Н         | 54    | -5.19            | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |       |                  | _                     |                       |                         |          |
| 4629.00        | 49.23           | Н         | 74    | -24.77           | Peak                  | 1.25                  | 225                     |          |
| 4629.00        | 39.35           | Н         | 54    | -14.65           | Avg                   | 1.25                  | 225                     |          |
| 5554.00        | 55.54           |           |       | 10.10            | -                     | 4.05                  | 100                     |          |
| 5554.80        | 55.51           | H         | 74    | -18.49           | Peak                  | 1.25                  | 180                     |          |
| 5554.80        | 45.01           | Н         | 54    | -8.99            | Avg                   | 1.25                  | 180                     |          |
| 6480.60        | 53.15           | Н         | 74    | -20.85           | Peak                  | 1.5                   | 135                     |          |
| 6480.60        | 41.22           | Н         | 54    | -20.65<br>-12.78 | Avg                   | 1.5                   | 135                     |          |
| 0400.00        | 41.22           | П         | 54    | -12.70           | Avg                   | 1.5                   | 133                     |          |
| 7406.40        | 54.98           | Н         | 74    | -19.02           | Peak                  | 1.25                  | 180                     |          |
| 7406.40        | 43.67           | Н         | 54    | -10.33           | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |       |                  | <u> </u>              |                       |                         |          |
| 8332.20        | 54.85           | Н         | 74    | -19.15           | Peak                  | 1.25                  | 135                     |          |
| 8332.20        | 44.62           | Н         | 54    | -9.38            | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |       |                  |                       |                       |                         |          |
| 9258.00        | 50.21           | Н         | 74    | -23.79           | Peak                  | 1.25                  | 135                     |          |
| 9258.00        | 39.41           | Н         | 54    | -14.59           | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |       |                  |                       |                       |                         |          |
|                |                 |           |       |                  |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

High Channel Z-Axis

| Freq.<br>(MHz)  | Level<br>(dBuV) | Pol (v/h)                             | Limit    | Margin  | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|-----------------|-----------------|---------------------------------------|----------|---------|-----------------------|-----------------------|-------------------------|----------|
| 925.80          | 84.59           | V                                     | 94       | -9.41   | Peak                  | 1.55                  | 251                     |          |
|                 |                 |                                       |          |         |                       |                       |                         |          |
| 1851.60         | 45.82           | V                                     | 74       | -28.18  | Peak                  | 1.25                  | 225                     |          |
| 1851.60         | 41.77           | V                                     | 54       | -12.23  | Avg                   | 1.25                  | 225                     |          |
|                 |                 |                                       |          |         |                       |                       | 2                       |          |
| 2777.40         | 34.21           | V                                     | 74       | -39.79  | Peak                  | 1.25                  | 180                     |          |
| 2777.40         | 24.39           | V                                     | 54       | -29.61  | Avg                   | 1.25                  | 180                     |          |
|                 |                 |                                       |          |         |                       |                       |                         |          |
| 3703.20         | 62.63           | V                                     | 74       | -11.37  | Peak                  | 1.25                  | 135                     |          |
| 3703.20         | 52.11           | V                                     | 54       | -1.89   | Avg                   | 1.25                  | 135                     |          |
|                 |                 |                                       |          |         | _                     |                       |                         |          |
| 4629.00         | 47.26           | V                                     | 74       | -26.74  | Peak                  | 1.25                  | 225                     |          |
| 4629.00         | 36.65           | V                                     | 54       | -17.35  | Avg                   | 1.25                  | 225                     |          |
| <i>EEE</i> 4.00 | F7 47           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 74       | 40.50   | Dools                 | 4.05                  | 400                     |          |
| 5554.80         | 57.47<br>46.91  | V                                     | 74<br>54 | -16.53  | Peak                  | 1.25                  | 180                     |          |
| 5554.80         | 46.91           | V                                     | 54       | -7.09   | Avg                   | 1.25                  | 180                     |          |
| 6480.60         | 49.169          | V                                     | 74       | -24.831 | Peak                  | 1.5                   | 135                     |          |
| 6480.60         | 36.46           | V                                     | 54       | -17.54  | Avg                   | 1.5                   | 135                     |          |
|                 |                 |                                       |          |         |                       |                       |                         |          |
| 7406.40         | 55.99           | V                                     | 74       | -18.01  | Peak                  | 1.25                  | 180                     |          |
| 7406.40         | 46.28           | V                                     | 54       | -7.72   | Avg                   | 1.25                  | 180                     |          |
|                 |                 |                                       |          |         |                       |                       |                         |          |
| 8332.20         | 50.65           | V                                     | 74       | -23.35  | Peak                  | 1.25                  | 135                     |          |
| 8332.20         | 38.46           | V                                     | 54       | -15.54  | Avg                   | 1.25                  | 135                     |          |
|                 |                 |                                       |          |         |                       |                       |                         |          |
| 9258.00         | 51.68           | V                                     | 74       | -22.32  | Peak                  | 1.25                  | 135                     |          |
| 9258.00         | 39.61           | V                                     | 54       | -14.39  | Avg                   | 1.25                  | 135                     |          |
|                 |                 |                                       |          |         |                       |                       |                         |          |
|                 |                 |                                       |          |         |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

High Channel Z-Axis

| Freq.<br>(MHz) | Level<br>(dBuV) | Pol (v/h) | Limit    | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments |
|----------------|-----------------|-----------|----------|--------|-----------------------|-----------------------|-------------------------|----------|
| 925.80         | 84.59           | Н         | 94       | -9.41  | Peak                  | 1.55                  | 352                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
| 1851.60        | 50.33           | Н         | 74       | -23.67 | Peak                  | 1.25                  | 225                     |          |
| 1851.60        | 46.01           | Н         | 54       | -7.99  | Avg                   | 1.25                  | 225                     |          |
|                |                 |           |          |        |                       |                       | 2                       |          |
| 2777.40        | 39.58           | Н         | 74       | -34.42 | Peak                  | 1.25                  | 180                     |          |
| 2777.40        | 26.73           | Н         | 54       | -27.27 | Avg                   | 1.25                  | 180                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
| 3703.20        | 59.04           | Н         | 74       | -14.96 | Peak                  | 1.25                  | 135                     |          |
| 3703.20        | 47.41           | Н         | 54       | -6.59  | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |          |        |                       | 1000                  |                         |          |
| 4629.00        | 49.56           | Н         | 74       | -24.44 | Peak                  | 1.25                  | 225                     |          |
| 4629.00        | 39.11           | Н         | 54       | -14.89 | Avg                   | 1.25                  | 225                     |          |
|                | -0.4-           |           |          | 00.05  |                       |                       | 400                     |          |
| 5554.80        | 53.15           | H         | 74       | -20.85 | Peak                  | 1.25                  | 180                     |          |
| 5554.80        | 42.41           | Н         | 54       | -11.59 | Avg                   | 1.25                  | 180                     |          |
| 6480.60        | 52.59           | Н         | 74       | -21.41 | Peak                  | 1.5                   | 135                     |          |
| 6480.60        | 41.93           | Н         | 54       | -12.07 | Avg                   | 1.5                   | 135                     |          |
| 0400.00        | 41.33           | - ''      | 34       | -12.07 | Avy                   | 1.5                   | 133                     |          |
| 7406.40        | 50.28           | Н         | 74       | -23.72 | Peak                  | 1.25                  | 180                     |          |
| 7406.40        | 39.81           | Н         | 54       | -14.19 | Avg                   | 1.25                  | 180                     |          |
|                | 00.0.           |           | <u> </u> |        | , <u>g</u>            | 5                     |                         |          |
| 8332.20        | 48.38           | Н         | 74       | -25.62 | Peak                  | 1.25                  | 135                     |          |
| 8332.20        | 40.63           | Н         | 54       | -13.37 | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
| 9258.00        | 53.65           | Н         | 74       | -20.35 | Peak                  | 1.25                  | 135                     |          |
| 9258.00        | 41.89           | Н         | 54       | -12.11 | Avg                   | 1.25                  | 135                     |          |
|                |                 |           |          |        |                       |                       |                         |          |
|                |                 |           |          |        |                       |                       |                         |          |



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

### Non-Harmonic Emissions from the Tx and Digital Portion Vertical and Horizontal Polarizations

| Freq. | Level<br>(dBuV) | Pol (v/h) | Limit | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments                       |
|-------|-----------------|-----------|-------|--------|-----------------------|-----------------------|-------------------------|--------------------------------|
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         | No Emissions Detected from     |
|       |                 |           |       |        |                       |                       |                         | the Digital Portion of the EUT |
|       |                 |           |       |        |                       |                       |                         | from 1 GHz to 9.3 GHz          |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         | No Emissions Detected from     |
|       |                 |           |       |        |                       |                       |                         | the Non-Harmonic Emissions     |
|       |                 |           |       |        |                       |                       |                         | from the Tx from               |
|       |                 |           |       |        |                       |                       | 11.0                    | 1 GHz to 9.3 GHz               |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         | No Emissions Detected from     |
|       |                 |           |       |        |                       |                       |                         | the Digital Portion of the EUT |
|       |                 |           |       |        |                       |                       |                         | from 10 kHz to 30 MHz          |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         | No Emissions Detected from     |
|       |                 |           |       |        |                       |                       |                         | the Non-Harmonic Emissions     |
|       |                 |           |       |        |                       |                       |                         | from the Tx from               |
|       |                 |           |       |        |                       |                       |                         | 10 kHz to 30 MHz               |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         | Tested in the X-Axis,          |
|       |                 |           |       |        |                       |                       |                         | Y-Axis, and Z-Axis             |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         |                                |
|       |                 |           |       |        |                       |                       |                         |                                |

### Report Number: B40308D1 FCC Part 15 Subpart B and FCC Section 15.249 Test Report

SK Meter Module Model: SK Tx

Leap Devices, LLC - Pre-Scan - FCC Class B
File: Radiated Pre-Scan 30-1000Mhz - FCC B - Y-Axis Worst Case 03-08-2014.set
Operator: Kyle Fujimoto
EUT Type: SK Meter Module
EUT Condition: Everything Connected and Operating Normally

3/8/2014 6:00:32 PM Sequence: Preliminary Scan

Note #1: The emission in the 902 MHz to 928 MHz band is from the transmitter and was tested to FCC 15.249 limits. M/N: SK TX

#### Electric Field Strength (dBµV/m)





Report Number: B40308D1 FCC Part 15 Subpart B and FCC Section 15.249 Test Report

SK Meter Module Model: SK Tx

3/8/2014 6:26:10 PM Sequence: Final Measurements

Leap Devices, LLC - Final Scan - FCC Class B
File: Radiated FINAL 30-1000Mhz - FCC B - Y-Axis Worst Case 03-08-2014.set
Operator: Kyle Fujimoto
EUT Type: SK Meter Module
EUT Condition: Everything Connected and Operating Normally
Comments: Final Scan - FCC Class B
M/N: SK Tx

| Freq<br>(MHz) | Pol | (PEAK) EMI<br>(dBµV/m) | (QP) EMI<br>(dBµV/m) | (PEAK) Margin<br>(dB) | (QP) Margin<br>(dB) | Limit<br>(dBµV/m) | Transducer<br>(dB) | Cable<br>(dB) | Ttbl Agl<br>(deg) | Twr Ht<br>(cm) |
|---------------|-----|------------------------|----------------------|-----------------------|---------------------|-------------------|--------------------|---------------|-------------------|----------------|
| 32.00         | V   | 34.63                  | 32.47                | -5.37                 | -7.53               | 40.00             | 19.27              | 0.19          | 343.75            | 104.77         |
| 46.20         | V   | 38.99                  | 36.22                | -1.01                 | -3.78               | 40.00             | 17.69              | 0.15          | 137.75            | 99.40          |
| 48.00         | V   | 41.49                  | 38.05                | 1.49                  | -1.95               | 40.00             | 17.27              | 0.17          | 356.25            | 108.23         |
| 64.00         | V   | 40.54                  | 39.55                | 0.54                  | -0.45               | 40.00             | 10.33              | 0.29          | 323.75            | 102.92         |
| 128.10        | V   | 30.86                  | 28.63                | -12.64                | -14.87              | 43.50             | 10.18              | 0.61          | 270.50            | 110.80         |
| 160.00        | V   | 35.40                  | 34.27                | -8.10                 | -9.23               | 43.50             | 8.90               | 0.86          | 244.25            | 101.79         |
| 384.00        | H   | 29.40                  | 27.05                | -16.60                | -18.95              | 46.00             | 14.89              | 1.18          | 243.75            | 107.28         |
| 384.00        | V   | 30.14                  | 28.35                | -15.86                | -17.65              | 46.00             | 14.89              | 1.18          | 298.25            | 132.53         |





Report Number: **B40308D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

SK Meter Module Model: SK Tx

**BAND EDGES** 

DATA SHEETS



FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

Band Edges - Vertical Polarization Worst Case - Z-Axis

| Freq.<br>(MHz) |       | Pol (v/h) |    | Margin | Peak /<br>QP /<br>Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments          |
|----------------|-------|-----------|----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|-------------------|
| 903.56         | 86.15 | V         | 94 | -7.85  | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                     | 217                     | Fundamental of    |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         | Low Channel       |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
| 902            | 51.93 | V         | 66 | -14.07 | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                    | 217                     | Band Edge of Low  |
| 902            | 43.54 | V         | 46 | -2.46  | Q.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                     | 217                     | Channel           |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
| 925.80         | 84.59 | V         | 94 | -9.41  | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.55                  | 251                     | Fundamental of    |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         | High Channel      |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 100                     |                   |
| 928            | 50.73 | V         | 66 | -15.27 | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.55                  | 251                     | Band Edge of High |
| 928            | 43.16 | V         | 46 | -2.84  | Q.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.55                  | 251                     | Channel           |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        | The state of the s |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |
|                |       |           |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |                   |

FCC 15.249

Leap Devices, LLC Date: 03/08/2014 SK Meter Module Labs: B and D

Model: SK Tx Tested By: Kyle Fujimoto

**Band Edges - Horizontal Polarization Worst Case - Y-Axis** 

| Freq.  | Level |           |    |        | Peak /<br>QP / | Ant.<br>Height | Table<br>Angle | _                 |
|--------|-------|-----------|----|--------|----------------|----------------|----------------|-------------------|
| (MHz)  |       | Pol (v/h) |    | Margin | Avg            | (m)            | (deg)          | Comments          |
| 903.56 | 88.54 | Н         | 94 | -5.46  | Peak           | 1              | 331            | Fundamental of    |
|        |       |           |    |        |                |                |                | Low Channel       |
|        |       |           |    |        |                |                |                |                   |
| 902    | 54.2  | Н         | 66 | -11.8  | Peak           | 1              | 331            | Band Edge of Low  |
| 902    | 45.23 | Н         | 46 | -0.77  | Q.P.           | 1              | 331            | Channel           |
|        |       |           |    |        |                |                |                |                   |
| 925.80 | 85.13 | Н         | 94 | -8.87  | Peak           | 1.16           | 184            | Fundamental of    |
|        |       |           |    |        |                |                |                | High Channel      |
|        |       |           |    |        |                |                | 100            |                   |
| 928    | 50.37 | Н         | 66 | -15.63 | Peak           | 1.16           | 184            | Band Edge of High |
| 928    | 43.49 | Н         | 46 | -2.51  | Q.P.           | 1.16           | 184            | Channel           |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    | -      |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |
|        |       |           |    |        |                |                |                |                   |



Band Edge for Low Channel - Vertical Polarization - Z-Axis (Worst Case)





Band Edge for High Channel – Vertical Polarization – Z-Axis (Worst Case)



Band Edge for Low Channel - Horizontal Polarization - Y-Axis (Worst Case)





Band Edge for High Channel – Horizontal Polarization – Y-Axis (Worst Case)