1412 AUTOMATON

## 5.195 int\_value\_precede

**DESCRIPTION** LINKS AUTOMATON

Origin [258]

Constraint int\_value\_precede(S, T, VARIABLES)

Synonyms precede, precedence, value\_precede.

Arguments S : int T : int

VARIABLES : collection(var-dvar)

**Restrictions**  $S \neq T$ 

required(VARIABLES, var)

Purpose If value T occurs in the collection of variables VARIABLES then its first occurrence should be preceded by an occurrence of value S.

**Example**  $(0, 1, \langle 4, 0, 6, 1, 0 \rangle)$ 

The int\_value\_precede constraint holds since the first occurrence of value 0 precedes the first occurrence of value 1.

Typical S < T

|VARIABLES| > 1 atleast(1, VARIABLES, S) atleast(1, VARIABLES, T)

**Symmetries** 

- An occurrence of a value of VARIABLES.var that is different from S and T can be replaced by any other value that is also different from S and T.
- All occurrences of values S and T can be swapped in S, T and VARIABLES.var.

Arg. properties

- Suffix-contractible wrt. VARIABLES.
- Aggregate: S(id), T(id), VARIABLES(union).

Algorithm

See also

A filtering algorithm for maintaining value precedence is presented in [258]. Its complexity is linear to the number of variables of the collection VARIABLES.

Systems precede in Gecode, value\_precede in MiniZinc

generalisation: int\_value\_precede\_chain(sequence of 2 values replaced by
sequence of at least 2 values), set\_value\_precede (sequence of domain variables

replaced by sequence of set variables).

20041003 1413

**Keywords** characteristic of a constraint:

automaton,

automaton without counters,

reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency.

symmetry: symmetry, indistinguishable values, value precedence.

1414 AUTOMATON

Automaton

Figure 5.435 depicts the automaton associated with the int\_value\_precede constraint. Let VAR $_i$  be the  $i^{th}$  variable of the VARIABLES collection. To each triple (S, T, VAR $_i$ ) corresponds a signature variable  $S_i$  as well as the following signature constraint: (VAR $_i$  = S  $\Leftrightarrow$   $S_i$  = 1)  $\wedge$  (VAR $_i$  = T  $\Leftrightarrow$   $S_i$  = 2)  $\wedge$  (VAR $_i$   $\neq$  S  $\wedge$  VAR $_i$   $\neq$  T  $\Leftrightarrow$   $S_i$  = 3).



Figure 5.435: Automaton of the  $int_value_precede$  constraint (state s means that value S was not yet encountered, while state t means that value S was already encountered)



Figure 5.436: Hypergraph of the reformulation corresponding to the automaton of the int\_value\_precede constraint

20041003 1415