

Dirty Bits in Low-Earth Orbit: The Carbon Footprint of Launching Computers

Robin Ohs, Gregory F. Stock, Andreas Schmidt,

Juan A. Fraire, Holger Hermanns

HotCarbon'25 – Boston, MA – Thursday, July 10, 2025

Datacenters in Space

Google Datacenter [1]

Datacenters Go to Space

"Space datacenters offer a pathway toward truly sustainable computing infrastructure."

ACM - data centers go to space [3]

Why we should train Al in space

© Lumen Orbit (now Starcloud)¹, White Paper v1.03, September 2024

Lumen Orbit Whitepaper [4]

Data center load [2]

Common beliefs about **Satellites**:

- Unlimited & efficient solar power.
- Can be burned in the atmosphere after EOL.
- Satellites enable global coverage.

OPERATIONAL EMISSIONS

$$O = E \cdot I$$

E: Energy consumption [kWh]

I: Carbon intensity $\left[\frac{gCO_2e}{kWh}\right]$

EMBODIED EMISSIONS

$$M = TE \cdot TS \cdot RS$$

TE: Total Embodied emissions [gCO_2e]

TS: Time share (of total lifespan)

RS: Resource share

Emission tendency according to the **beliefs**.

Different Orbit Heights

Delay to:

→ GEO:
$$\frac{2 \cdot 35786 \text{km}}{c} = 239 \text{ms}$$

$$\rightarrow \text{LEO: } \frac{2 \cdot 600 \text{km}}{c} = 4 \text{ms}$$

Coverage

LEO Satellites have low visibility.

Constellations

Connectivity challenges

- In LEO, satellites do not always have contact to a ground station.
- Data is instead transmitted over the constellation via Inter-Satellite Links.
- This uses a share of the satellite lifetimes.

Creation of carbon equivalents.

Falcon-9 rocket launch [7]

Amplified Embodied Carbon of Space Components

- Rocket manufacturing & launch releases large amounts of carbon.
 - Even with renewable fuel, sustainability is questionable.
- Maximum payload limit that rockets can bring to orbit.

Launch Intensity of a 2-stage Rocket system t:

$$C_{Launch,t}(n_1, n_2) = \frac{TE_{Prod,1st,t}}{n_1} + \frac{TE_{Prod,2nd,t}}{n_2} + TE_{Fuel,t}$$

$$I_{Launch,t}(n_1,n_2) = \frac{c_{Launch,t}(n_1,n_2)}{m_{Payl,t}}$$

Object Re-Entry

ESA project DRACO [9]

Environmental damage from objects that enter atmosphere:

- Re-enter (burn) of satellites and rockets create:
 - a. nitrogen (NO_x): depletes the protective ozone layer.
 - b. alumina (Al_2O_3) : traps outgoing longwave radiation.

Re-Entry Intensity:

$$I_{Re-Entry,NO_x} = 0.4 \frac{kgNO_x}{kg} = 119.2 \frac{kgCO_2e}{kg}$$

$$I_{Re\text{-}Entry,Al_2O_3} = e$$
 Conversion to CO_2e unclear

$$I_{Re-Entry} = 119.2 \frac{kgCO_2 e}{kg} + e \ge 119.2 \frac{kgCO_2 e}{kg}$$

Intensity calculation results:

Launch System	Fuel	Reusable?	Payload	Launch Intensity	Re-Entry Intensity	L&R Intensity
Falcon 9	RP-1	Partially (First stage)	17.5 t	21 $rac{kgCO_2e}{kg}$	158 $\frac{kgCO_2e}{kg}$	179 $rac{kgCO_2e}{kg}$
Starship	(green) Methane	Fully	150 t	15.8 $\frac{kgCO_2e}{kg}$	119.2 $\frac{kgCO_2e}{kg}$	135 $\frac{kgCO_2e}{kg}$

(Data approximated due to absence of official public data)

Important for us:

This is the environmental impact of putting components into orbit.

Clean Solar Energy in Orbit?

- Average Solar Power in $rac{W}{m^2}$:
- Launch & Re-Entry Intensity: (Falcon 9)
- Energy Intensity: (5-year mission)

On-Ground

400

0

 $34\frac{gCO_2\epsilon}{kWh}$

1367

 $179 \frac{kgCO_2 e}{kg}$

 $165.1 \frac{gCO_2\epsilon}{kWh}$

Total Power Supply Emissions

Production emissions Solar panels

Production emissions Battery

Mass of Solar panels

Mass of Solar panels

L&R Intensity

Total Produced Energy

Solar Panel Area

×

Average Solar Power

×

Mission Duration

Estimator implemented in Rust:

- Models launches and re-entry for launch technologies.
- Amplifies component footprints to include L&R impact.
- Format allows for future extension with new technologies.

Input

```
# sysX.toml (X \in \{E, F, S\})
mission_time = 5.0 # yrs
launch = "None" # or "Falcon9" or "Starship"
[solar_array]
                              [cpu]
area = 2.0 \# m^2
                              mass = 100
                                                  # g
panels = 1 \# 1
                              area = 1137.5
                                                  # mm^2
                              max_power = 28.0
                                                  # W
[battery]
capacity = 4.0 # kWh
                              [dram]
cycles = 5000 # 1
                              capacity = 16.0
                                                        # GB
                             power_per_memory = 0.020 # W/GB
[transceiver]
mass = 24.5
                 # g
                              [ssd]
                              capacity = 4.0
power = 1
                                                  # TB
data_rate = 38.4 # Kbps
                              average_power = 3.0 # W
```

Output (5-year mission time)

Intensity Unit	SCI	8 Earth	₹ F9	♥ StSh
ECPU	M $O + M$	18.0	127.7	103.7
μgCO ₂ e/s		282.8	1412.1	1147.8
$ ightharpoonup DRAM$ $ m \mu gCO_2 e/(GB s)$	M $O + M$	3.0 3.2	4.0 4.9	3.8 4.5
SSD	M $O + M$	0.040	0.056	0.052
μgCO ₂ e/(GB s)		0.047	0.090	0.080

Components in Space

Parameter study for different mission times:

- Amplification of embodied carbon makes long mission times necessary.
 - SpaceX currently de-orbits Starlink satellites after 5-7 years.
- Systems require high reliability since physical maintenance / upgrading hardware in-orbit is (almost) impossible.

Case Study: in-orbit vs. on-ground data aggregation

Case Study: in-orbit vs. on-ground data aggregation

Variable params of our mission:

- Aggregation factor of processing.
 - How many pictures can be discarded?
- Number of inter-satellite links before a ground station is visible.
- Different technologies to launch constellation.
 - Falcon-9 vs. Starship

Network Experiment

Legend

- ★ In-Orbit processing
- On-Ground processing

blue Constellation launched with Starship red Constellation launched with Falcon-9

- Embodied emissions of components in space are amplified by launch & re-entry.
 - Especially re-entry damages the atmosphere; while often not considered.
- Solar in space is more effective, but the embodied emissions are not negligible.
 - Long mission times are required, which are unusual today in LEO.
- Newer rockets can minimize the launch and re-entry environmental impact.
- Global-coverage is only achieved with constellations; overhead is overlooked.

Reach out to us:

ohs@depend.uni-saarland.de

Thank you! Questions?

Credits

- 1. https://upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Google_Data_Center%2C_Council_Bluffs_lowa_%2849062863796%29.jpg
- 2. https://www.uaf.edu/acep-blog/images/Data%20Center%20Load%20Growth.png
- 3. https://cacm.acm.org/news/datacenters-go-to-space/
- 4. https://www.starcloud.com/
- 5. https://arxiv.org/abs/2203.16597
- 6. https://www.ses.com/sites/default/files/styles/gallery_thumb/public/2024-05/01_SES-9_Boeing_Satellite_Systems.jpg?itok=DvPPO8Hm
- 7. https://commons.wikimedia.org/wiki/File:Iridium-1 Launch %2832312419215%29.jpg
- 8. https://cdn12.picryl.com/photo/2016/12/31/satellite-orbit-spacex-science-technology-26e4f7-1024.jpg
- 9. https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2022/11/esa_space_debris_project_- draco/24584226-1-eng-GB/ESA Space Debris project DRACO pillars.jpg
- 10. https://spacewatchafrica.com/game-changing-idrs-comms-tech-to-be-deployed-for-space-inventors-space-based-maritime-surveillance/
- 11. https://picryl.com/media/cloud-streets-off-the-amery-ice-shelf-image-of-the-day-8f2f8f
- 12. https://www.lemonde.fr/en/international/article/2022/08/16/satellite-images-show-first-grain-ship-out-of-ukraine-in-syria_5993792_4.html