6. Random matrices and covariance estimation

担当:みーとみ

2021年7月1日,7月7日

Table of Contents

6.1 Some preliminaries

6.2 Wishart matrices and their behavior

6.3 Covariance matrices from sub-Gaussian ensembles

6.5 Bounds for structured covariance matrices

6.1 Some preliminaries

・Notation とこの章で使う preliminary results の説明から.

6.1.1 Notation and basic facts

・行列 $A \in \mathbb{R}^{n \times m}$ with $n \geq m$ に対し, (順序付き) 特異値を

$$\sigma_{\max}(A) = \sigma_1(A) \ge \sigma_2(A) \ge \cdots \ge \sigma_m(A) = \sigma_{\min}(A) \ge 0$$

と書く.

・最小・最大特異値は次のように characterize される:

$$\sigma_{\max}(A) = \max_{v \in \mathbb{S}^{m-1}} ||Av||_2 \quad \text{and} \quad \sigma_{\min}(A) = \min_{v \in \mathbb{S}^{m-1}} ||Av||_2,$$
 (6.1)

ただし $\mathbb{S}^{d-1}:=\left\{v\in\mathbb{R}^d\mid\|v\|_2=1
ight\}$ は \mathbb{R}^d 上の Euclidean unit sphere.

・また次の同値性が成り立つ: $|||A|||_2 = \sigma_{\max}(A)$.

・対称行列の集合を $\mathcal{S}^{d imes d}:=\left\{Q\in\mathbb{R}^{d imes d}\mid Q=Q^{\mathrm{T}}\right\}$ とし, その半正定値行列からなる部分集合を

$$\mathcal{S}_{+}^{d \times d} := \left\{ Q \in \mathcal{S}^{d \times d} \mid Q \succeq 0 \right\} \tag{6.2}$$

と書く.

・任意の対称行列 $Q \in \mathcal{S}^{d imes d}$ は対角化可能であり, その固有値を

$$\gamma_{\max}(Q) = \gamma_1(Q) \ge \gamma_2 \ge \dots \ge \gamma_d(Q) = \gamma_{\min}(Q)$$

とする.

・このとき, $Q \succeq 0 \Leftrightarrow \gamma_{\min}(Q) \geq 0$.

・最小・最大固有値の "Rayleigh – Ritz variational characterization":

$$\gamma_{\max}(Q) = \max_{v \in \mathbb{S}^{d-1}} v^{\mathrm{T}} Q v \quad \text{and} \quad \gamma_{\min}(Q) = \min_{v \in \mathbb{S}^{d-1}} v^{\mathrm{T}} Q v.$$
(6.3)

・任意の対称行列 Q に対し, その ℓ_2 -operator norm は,

$$|||Q|||_2 = \max\{\gamma_{\max}(Q), |\gamma_{\min}(Q)|\} = \max_{v \in \mathbb{S}^{d-1}} |v^{\mathrm{T}}Qv|.$$
 (6.4)

・最後に, 行列 $A\in\mathbb{R}^{n\times m}$ with $n\geq m$ に対し, m-次元対称行列 $R:=A^{\mathrm{T}}A$ を考えると,

$$\gamma_j(R) = (\sigma_j(A))^2$$
 for $j = 1, \dots, m$.

6.1.2 Set-up of covariance estimation

- ・ $\{x_1,\ldots,x_m\}$ は, \mathbb{R}^d 上の zero-mean・covariance $\Sigma=\mathrm{cov}(x_1)\in\mathbb{S}^{d\times d}_+$ なる分布 からの n 個の i.i.d. サンプルとする.
- ・ Σ の standard estimator は、次の sample covariance matrix である:

$$\widehat{\Sigma} := \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\mathrm{T}}.$$
(6.5)

- ・各 x_i は zero-mean なので $\mathbb{E}[x_ix_i^{\mathrm{T}}] = \Sigma$ であり, $\widehat{\Sigma}$ は Σ の unbiased estimator.
- ・したがって $\widehat{\Sigma} = \Sigma$ は期待値ゼロとなり, その ℓ_2 -operator norm によって測った error の bound を求めることがこの章の goal となる.

・(6.4) の ℓ_2 -operator norm の表現より, $|||\widehat{\Sigma} - \Sigma|||_2 \le \epsilon$ は以下と同値:

$$\max_{v \in \mathbb{S}^{d-1}} \left| \frac{1}{n} \sum_{i=1}^{n} \langle x_i, v_i \rangle^2 - v^{\mathrm{T}} \Sigma v \right| \le \epsilon.$$
 (6.6)

・つまり, $|||\hat{\Sigma} - \Sigma|||_2$ をコントロールすることは, v で indexed された関数クラス $x\mapsto \langle x,v\rangle^2$ の uniform law of large numbers を示すことと同値になる.

・その ℓ_2 -operator norm をコントロールすることは, $\widehat{\Sigma}$ の固有値の一様収束も意味する: Weyl's theorem の corollary より,

$$\max_{j=1,\dots,d} \left| \gamma_j(\widehat{\Sigma}) - \gamma_j(\Sigma) \right| \le |||\widehat{\Sigma} - \Sigma|||_2. \tag{6.7}$$

・また最後に, ランダム行列 $X \in \mathbb{R}^{n \times d}$ が, 第 i 行に x_i^{T} を持つものとする

$$X = \begin{pmatrix} x_1^{\mathrm{T}} \\ \vdots \\ x_n^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{n \times d}$$

と,

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\mathrm{T}} = \frac{1}{n} X^{\mathrm{T}} X$$

なので, $\widehat{\Sigma}$ の固有値は X/\sqrt{n} の特異値の 2 乗となる.

6.2 Wishart matrices and their behavior

- ・サンプル x_i は, d-次元正規分布 $\mathcal{N}(0,\Sigma)$ から i.i.d. で引かれるとする.
- ・このとき,

$$X = \begin{pmatrix} x_1^{\mathrm{T}} \\ \vdots \\ x_n^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{n \times d}$$

は, Σ -Gaussian ensemble から引かれると言う.

・ Sample covariance $\widehat{\Sigma} = \frac{1}{n} X^{\mathrm{T}} X$ は, a multivariate Wishart distribution に従う.

Theorem 6.1

 $X \in \mathbb{R}^{n \times d}$ は Σ -Gaussian ensemble から引かれるとする. このとき, 任意の $\delta > 0$ に対し, 最大特異値 $\sigma_{\max}(X)$ は以下の upper deviation inequality を満たす:

$$\mathbb{P}\left[\frac{\sigma_{\max}(X)}{\sqrt{n}} \ge \gamma_{\max}\left(\sqrt{\Sigma}\right)(1+\delta) + \sqrt{\frac{\operatorname{tr}(\Sigma)}{n}}\right] \le \exp\left(-\frac{n\delta^2}{2}\right). \tag{6.8}$$

さらに $n \geq d$ なら, 最小特異値 $\sigma_{\min}(X)$ は以下の lower deviation inequality を満たす:

$$\mathbb{P}\left[\frac{\sigma_{\min}(X)}{\sqrt{n}} \le \gamma_{\min}\left(\sqrt{\Sigma}\right)(1-\delta) - \sqrt{\frac{\operatorname{tr}(\Sigma)}{n}}\right] \le \exp\left(-\frac{n\delta^2}{2}\right). \tag{6.9}$$

Example 6.2 (Operator norm bounds for the standard Gaussian ensemble)

- ・ $W \in \mathbb{R}^{n \times d}$ は各成分が $\mathcal{N}(0,1)$ i.i.d. で引かれる random matrix とする $(\Sigma = I_d)$.
- ・Thm 6.1 より, $n \geq d$ なら, 確率 $1 2\exp\left(-\frac{n\delta^2}{2}\right)$ 以上で

$$\frac{\sigma_{\max}(W)}{\sqrt{n}} \le 1 + \delta + \sqrt{\frac{d}{n}} \quad \text{and} \quad \frac{\sigma_{\min}(W)}{\sqrt{n}} \ge 1 - \delta - \sqrt{\frac{d}{n}}$$
 (6.10)

となる.

・よって、同じ確率で

$$\left\| \left\| \frac{1}{n} W^{\mathrm{T}} W - I_d \right\|_{2} \le 2\epsilon + \epsilon^2, \quad \text{where} \epsilon = \sqrt{\frac{d}{n}} + \delta.$$
 (6.11)

・したがって, $d/n \to 0$ なら, sample covariance $\widehat{\Sigma} = \frac{1}{n} W^{\mathrm{T}} W$ は identity matrix I_d の一致推定量となる.

Example 6.3 (Gaussian covariance estimation)

- ・ $X \in \mathbb{R}^{n \times d}$ は Σ -Gaussian ensemble からの random matrix とする.
- ・このとき $X=W\sqrt{\Sigma}$ と書ける($W\in\mathbb{R}^{n\times d}$ は standard Gaussian random matrix)ので、

$$\left| \left| \left| \frac{1}{n} X^{\mathsf{T}} X - \Sigma \right| \right| \right|_{2} = \left| \left| \left| \sqrt{\Sigma} \left(\frac{1}{n} W^{\mathsf{T}} W - I_{d} \right) \right| \right| \right|_{2} \leq |||\Sigma|||_{2} \left| \left| \left| \frac{1}{n} W^{\mathsf{T}} W - I_{d} \right| \right| \right|_{2}.$$

・したがって (6.11) より, 任意の $\delta>0$ に対して確率 $1-2\exp\left(-\frac{n\delta^2}{2}\right)$ で

$$\frac{|||\widehat{\Sigma} - \Sigma|||_2}{|||\Sigma|||_2} \le 2\sqrt{\frac{d}{n}} + 2\delta + \left(\sqrt{\frac{d}{n}} + \delta\right)^2. \tag{6.12}$$

・よって, $|||\widehat{\Sigma} - \Sigma|||_2/|||\Sigma|||_2$ は $d/n \to 0$ である限り 0 に収束する.

Example 6.4 (Faster rates under trace constraints)

- ・ $\{\gamma_i(\Sigma)\}_{i=1}^d$ は Σ の固有値列で, $\gamma_1(\Sigma)$ がそのうち最大のもの.
- ・ Σ は、次元に対して独立な定数 C に対し、次の "trace constraint" を満たすとする:

$$\frac{\operatorname{tr}(\Sigma)}{|||\Sigma|||_2} = \frac{\sum_{j=1}^d \gamma_j(\Sigma)}{\gamma_1(\Sigma)} \le C. \tag{6.13}$$

- ・ C は Σ の(実質的な)rank と見なせる (\cdot, \cdot) (6.13) は $C = \operatorname{rank}(\Sigma)$ では常に成立.)
- ・パラメータ $q \in [0,1]$ と半径 $R_q > 0$ の the Schatten q-"balls" を, 以下で定義する:

$$\mathbb{B}_q(R_q) := \left\{ \Sigma \in S^{d \times d} \middle| \sum_{j=1}^d |\gamma_j(\Sigma)|^q \le R_q \right\}. \tag{6.14}$$

- ・ q=0 なら, rank R_q 以下の対称行列の集合.
- ・ q=1 なら, trace constraint になる.
- ・任意の非零行列 $\Sigma \in \mathbb{B}_q(R_q)$ は, (6.13) を $C = R_q/(\gamma_1(\Sigma))^q$ で満たす.

・(6.13) を満たす任意の Σ に対し, Thm 6.1 は高確率で X の最大特異値が次のように抑えられることを保証する:

$$\frac{\sigma_{\max}(X)}{\sqrt{n}} \le \gamma_{\max}(\sqrt{\Sigma}) \left(1 + \delta + \sqrt{\frac{C}{n}} \right). \tag{6.15}$$

・ $\Sigma = I_d$ のときの bound (6.10) と比べると, C が d に置き換わって "実行的なrank" となっている.

Proof of Theorem 6.1.

- Notation: $\overline{\sigma}_{\max} = \gamma_{\max}(\sqrt{\Sigma}), \ \overline{\sigma}_{\min} = \gamma_{\min}(\sqrt{\Sigma}).$
- ・最大/最小特異値の upper/lower bound ともに以下の 2 段階で示す:
 - 1. 高確率で特異値が期待値に近いことを concentration inequality から示す (Ch.2)
 - 2. その期待値の bound の導出に Gaussian comparison inequality を用いる(Ch.5)
- ・ここでは最大特異値の upper bound のみを示す. (最小特異値の lower bound は 大体似た方針で示せるがよりテクニカルなので Appendix (Section 6.6) にま わす.)

- ・ $X = W\sqrt{\Sigma}$ と書ける, ただし $W \in \mathbb{R}^{n \times d}$ は i.i.d. $\mathcal{N}(0,1)$ entries をもつ.
- ・ $W\mapsto rac{\sigma_{\max}(W\sqrt{\Sigma})}{\sqrt{n}}$ を \mathbb{R}^{nd} 上の実数値写像とみると, これは $L=\overline{\sigma}_{\max}/\sqrt{n}$ で Lipschitz w.r.t. Euclidean norm. (cf. Example 2.32)
- ・Gaussian r.v. に対する Lipschitz 関数の concentration inequality (Thm 2.26) より,

$$\mathbb{P}\left[\sigma_{\max}(X) \ge \mathbb{E}[\sigma_{\max}(X)] + \sqrt{n}\overline{\sigma}_{\max}\delta\right] \le \exp\left(-\frac{n\delta^2}{2}\right).$$

・したがって, あとは以下を示せれば良い:

$$\mathbb{E}[\sigma_{\max}(X)] \le \sqrt{n}\overline{\sigma}_{\max} + \sqrt{\operatorname{tr}(\Sigma)}.$$
(6.16)

・ $\sigma_{\max}(X)=\max_{v'\in\mathbb{S}^{d-1}}\|Xv'\|_2$ で, $X=W\sqrt{\Sigma},\ v=\sqrt{\Sigma}v'$ とすると次のように書ける:

$$\sigma_{\max}(X) = \max_{v \in \mathbb{S}^{d-1}(\Sigma^{-1})} \|Wv\|_2 = \max_{u \in \mathbb{S}^{d-1}} \max_{v \in \mathbb{S}^{d-1}(\Sigma^{-1})} \underbrace{u^{\mathsf{T}} W v}_{Z_{u,v}},$$

ただし $\mathbb{S}^{d-1}(\Sigma^{-1}) := \{ v \in \mathbb{R}^d \mid \|\Sigma^{-\frac{1}{2}}v\|_2 = 1 \}.$

- ・ $\{Z_{u,v}, (u,v) \in \mathbb{T}\}$ where $\mathbb{T} := \mathbb{S}^{d-1} \times \mathbb{S}^{d-1}(\Sigma^{-1})$ は zero-mean Gaussian process とみなせる.
- ・別の Gaussian process $\{Y_{u,v}, (u,v) \in \mathbb{T}\}$ で $\mathbb{E}[(Z_{u,v} Z_{\tilde{u}\tilde{v}})^2] \leq \mathbb{E}[(Y_{u,v} Y_{\tilde{u}\tilde{v}})^2]$ for all $(u,v), (u',v') \in \mathbb{T}$ となるようなものを construct することを考える.
- ・すると Sudakov-Fernique comparison (Thm. 5.27) から以下が言える:

$$\mathbb{E}[\sigma_{\max}(X)] = \mathbb{E}\left[\max_{(u,v)\in\mathbb{T}} Z_{u,v}\right] \le \mathbb{E}\left[\max_{(u,v)\in\mathbb{T}} Y_{u,v}\right]. \tag{6.17}$$

- ・ $(u,v),(\tilde{u},\tilde{v})\in\mathbb{T}$ を given とし, $\|v\|_2\leq \|\tilde{v}\|_2$ とする.
- ・まず $Z_{u,v} = u^{\mathrm{T}}Wv = \langle \langle W, uv^{\mathrm{T}} \rangle \rangle$ となる, where $\langle \langle A, B \rangle \rangle := \sum_{i=1}^{n} \sum_{k=1}^{d} A_{jk} B_{jk}$.
- ・W は i.i.d. $\mathcal{N}(0,1)$ entries をもつので,

$$\mathbb{E}\left[(Z_{u,v} - Z_{\tilde{u}\tilde{v}})^2\right] = \mathbb{E}\left[\langle\langle W, uv^{\mathrm{T}} - \tilde{u}\tilde{v}^{\mathrm{T}}\rangle\rangle^2\right] = |||uv^{\mathrm{T}} - \tilde{u}\tilde{v}^{\mathrm{T}}|||_F^2.$$

· Frobenius norm を変形すると,

$$\begin{split} &|||uv^{\mathrm{T}} - \tilde{u}\tilde{v}^{\mathrm{T}}|||_{F}^{2} \\ &= |||u(v - \tilde{v})^{\mathrm{T}} - (u - \tilde{u})\tilde{v}^{\mathrm{T}}|||_{F}^{2} \\ &= |||(u - \tilde{u})\tilde{v}^{\mathrm{T}}|||_{F}^{2} + |||u(v - \tilde{v}) - \mathrm{T}|||_{F}^{2} + 2\langle\langle u(v - \tilde{v})^{\mathrm{T}}, (u - \tilde{u})\tilde{v}^{\mathrm{T}}\rangle\rangle\\ &\leq ||\tilde{v}||_{2}^{2}||u - \tilde{u}||_{2}^{2} + ||u||_{2}^{2}||v - \tilde{v}||_{2}^{2} + 2(||u||_{2}^{2} - \langle u, \tilde{u}\rangle)(\langle v, \tilde{v}\rangle - ||\tilde{v}||_{2}^{2}). \end{split}$$

- ・ ここで, $||u||_2 = ||\tilde{u}||_2 = 1$ より $||u||_2^2 \langle u, \tilde{u} \rangle \ge 0$.
- ・一方, Cauchy-Schwarz と仮定 $\|v\|_2 \leq \|\tilde{v}\|_2$ より, $|\langle v, \tilde{v} \rangle| \leq \|v\|_2 \|\tilde{v}\|_2 \leq \|\tilde{v}\|_2^2$.
- ・ したがって,

$$|||uv^{\mathrm{T}} - \tilde{u}\tilde{v}^{\mathrm{T}}|||_F^2 \le ||\tilde{v}||_2^2 ||u - \tilde{u}||_2^2 + ||v - \tilde{v}||_2^2.$$

・ $\mathbb{S}^{d-1}(\Sigma^{-1})$ の定義より、 $\|\tilde{v}\|_2 \leq \overline{\sigma} = \gamma_{\max}(\sqrt{\Sigma})$ なので、

$$\mathbb{E}[(Z_{u,v} - Z_{\tilde{u},\tilde{v}})^2] \le \overline{\sigma}_{\max}^2 ||u - \tilde{u}||_2^2 + ||v - \tilde{v}||_2^2.$$

・Gaussian process $Y_{u,v} := \overline{\sigma}_{\max} \langle g, u \rangle + \langle h, v \rangle$ を定義する(ただし $g \in \mathbb{R}^n, h \in \mathbb{R}^d$ は standard Gaussian rv's)と、

$$E[(Y_{u,v} - Y_{\tilde{u},\tilde{v}})^2] = \overline{\sigma}_{\max}^2 ||u - \tilde{u}||_2^2 + ||v - \tilde{v}||_2^2.$$

・よって Sudakov-Fernique bound (6.17) より,

$$\mathbb{E}[\sigma_{\max}(X)] \leq \mathbb{E}\left[\sup_{(u,v)\in\mathbb{T}} Y_{u,v}\right] = \overline{\sigma}_{\max}\mathbb{E}\left[\sup_{u\in\mathbb{S}^{d-1}} \langle g,u\rangle\right] + \mathbb{E}\left[\sup_{v\in\mathbb{S}^{d-1}(\Sigma^{-1})} \langle h,v\rangle\right]$$
$$= \overline{\sigma}_{\max}\mathbb{E}[\|g\|_2] + \mathbb{E}[\|\sqrt{\Sigma}h\|_2].$$

・ Jensen's inequality から, $\mathbb{E}[\|g\|_2] \leq \sqrt{n}$ ans $\mathbb{E}[\|\sqrt{\Sigma}h\|_2] \leq \sqrt{\mathbb{E}[h^T\Sigma h]} = \sqrt{\mathrm{tr}(\Sigma)}$ となり, (6.16) が示された.

6.3 Covariance matrices from sub-Gaussian ensembles

・Random vector $x_i \in \mathbb{R}^d$ は zero-mean で, sub-Gaussian with parameter at most σ , つまり各 $v \in \mathbb{S}^{d-1}$ に対し,

$$\mathbb{E}\left[\exp\left(\lambda\langle v, x_i\rangle\right)\right] \le \exp\left(\frac{\lambda^2 \sigma^2}{2}\right) \quad \text{for all } \lambda \in \mathbb{R}$$
 (6.18)

が成り立つとする.

- ・例 1) $x_{ij} \in \mathbb{R}$ は zero-mean, sub-Gaussian with $\sigma=1$ $(x_{ij} \sim \mathcal{N}(0,1)$ や Rademacher variable, サポート [-1,1] の分布など)
- ・例 2) $x_i \sim \mathcal{N}(0, \Sigma)$ とすると, 任意の $v \in \mathbb{S}^{d-1}$ に対し $\langle v, x_i \rangle \sim \mathcal{N}(0, v^{\mathrm{T}} \Sigma v)$ で $v^{\mathrm{T}} \Sigma v \leq |||\Sigma|||_2$ より, x_i は sub-Gaussian with parameter at most $\sigma^2 = |||\Sigma|||_2$.
- ・このとき, $X \in \mathbb{R}^{n \times d}$ は row-wise σ -sub-Gaussian ensemble からのサンプルであるという.

Theorem 6.5

ある定数 c_0,c_1,c_2,c_3 が存在して, 任意の row-wise σ -sub-Gaussian ランダム行列 $X\in\mathbb{R}^{n\times d}$ について, 標本共分散 $\widehat{\Sigma}=\frac{1}{n}\sum_{i=1}^n x_ix_i^{\mathrm{T}}$ は次のの bound

$$\mathbb{E}\left[\exp\left(\lambda|||\widehat{\Sigma} - \Sigma|||_2\right)\right] \le \exp\left(c_0 \frac{\lambda^2 \sigma^2}{n} + 4d\right) \quad \text{for all } |\lambda| < \frac{n}{64e^2 \sigma^2} \tag{6.19a}$$

を満たし, したがって,

$$\mathbb{P}\left[\frac{|||\widehat{\Sigma} - \Sigma|||_2}{\sigma^2} \ge c_1 \left\{ \sqrt{\frac{d}{n}} + \frac{d}{n} \right\} + \delta \right] \le c_2 \exp\left(-c_3 n \min\{\delta, \delta^2\}\right) \quad \text{for all } \delta \ge 0.$$
(6.19b)

Remarks:

- ・(6.19a) を given とすると, Chernoff technique (Ch.2) からただちに (6.19b) が示される.
- ・ $\Sigma = I_d$ で x_i が sub-Gaussian w/ $\sigma = 1$ のとき, (6.19b) は高確率で

$$|||\widehat{\Sigma} - I_d|||_2 \lesssim \sqrt{\frac{d}{n}} + \frac{d}{n}$$

となることを含意する.

 $n \geq d$ のとき, これは定数 c' > 1 について

$$1 - c'\sqrt{\frac{d}{n}} \le \frac{\sigma_{\min}(X)}{\sqrt{n}} \le \frac{\sigma_{\max}(X)}{\sqrt{n}} \le 1 + c'\sqrt{\frac{d}{n}}$$
 (6.20)

を意味し, standard Gaussian matrix についての result (6.10) の sub-Gaussian version とみなせる.

Proof

- ・ $Q:=\widehat{\Sigma}-\Sigma$ の ℓ_2 -operator norm の moment 母関数の bound を求めたい.
- ・まず Section 6.1 より $|||Q|||_2 = \max_{v \in \mathbb{S}^{d-1}} |\langle v, Qv \rangle|$.
- ・Example 5.8 より, \mathbb{S}^{d-1} には $N(\leq 17^d)$ 個のベクトルからなる $\frac{1}{8}$ -covering が存在し, これを $\{v^1,\dots,v^N\}$ とかく.
- ・任意の $v\in\mathbb{S}^{d-1}$ は $v=v^j+\Delta$ where $\|\Delta\|_2\leq \frac{1}{8}$ とかけ, よって

$$\langle v, Qv \rangle = \langle v^j, Qv^j \rangle + 2\langle \Delta, Qv^j \rangle + \langle \Delta, Q\Delta \rangle.$$

・三角不等式と operator norm の定義から

$$\begin{split} |\langle v, Qv \rangle| &\leq |\langle v^j, Qv^j \rangle| + 2\|\Delta\|_2 |||Q|||_2 \|v^j\|_2 + |||Q|||_2 \|\Delta\|_2^2 \\ &\leq |\langle v^j, Qv^j \rangle| + \frac{1}{4} |||Q|||_2 + \frac{1}{64} |||Q|||_2 \\ &\leq |\langle v^j, Qv^j \rangle| + \frac{1}{2} |||Q|||_2. \end{split}$$

 $v \in \mathbb{S}$ について sup をとると,

$$|||Q|||_2 = \max_{v \in \mathbb{S}^{d-1}} |\langle v, Qv \rangle| \le 2 \max_{j=1,\dots,N} |\langle v^j, Qv^j \rangle|.$$

・よって、

$$\mathbb{E}\left[e^{\lambda|||Q|||_{2}}\right] \leq \mathbb{E}\left[\exp\left(2\lambda \max_{j=1,\dots,N}|\langle v^{j},Qv^{j}\rangle|\right)\right] \leq \sum_{j=1}^{N}\left\{\mathbb{E}\left[e^{2\lambda\langle v^{j},Qv^{j}\rangle}\right] + \mathbb{E}\left[e^{-2\lambda\langle v^{j},Qv^{j}\rangle}\right]\right\}. \tag{6.21}$$

・ここで、任意の $u \in \mathbb{S}^{d-1}$ に対して以下が成り立つ(証明は後で):

$$\mathbb{E}\left[e^{t\langle u,Qu\rangle}\right] \le e^{512\frac{t^2}{n}e^4\sigma^4} \quad \text{for all } |t| \le \frac{n}{32e^2\sigma^2}.$$
 (6.22)

・(6.21)(6.22)より,

$$\mathbb{E}\left[e^{\lambda|||Q|||_2}\right] \le 2Ne^{2048\frac{\lambda^2}{n}}e^4\sigma^4 \le \exp\left(c_0\frac{\lambda^2\sigma^4}{n} + 4d\right) \quad \text{for all } |\lambda| < \frac{n}{64e^2\sigma^2}$$

となり(2つ目の不等号は $2 \cdot 17^d \le e^{4d}$ より), (6.19a) が示された.

Proof of the bound (6.22)

・ $Q = \widehat{\Sigma} - \Sigma$ の定義と i.i.d. の仮定より,

$$\mathbb{E}\left[e^{t\langle u,Qu\rangle}\right] = \prod_{i=1}^{n} \mathbb{E}\left[e^{\frac{t}{n}\left\{\langle x_{i},u\rangle^{2} - \langle u,\Sigma u\rangle\right\}}\right] = \left(\mathbb{E}\left[e^{\frac{t}{n}\left\{\langle x_{1},u\rangle^{2} - \langle u,\Sigma u\rangle\right\}}\right]\right)^{n}. \quad (6.23)$$

・ $\epsilon \in \{-1,1\}$ を Rademacher 変数とすると, symmetrization argument (Prop.4.11) より

$$\mathbb{E}_{x_1} \left[e^{\frac{t}{n} \left\{ \langle x_1, u \rangle^2 - \langle u, \Sigma u \rangle \right\}} \right] \leq \mathbb{E}_{x_1, \varepsilon} \left[e^{\frac{2t}{n} \varepsilon \langle x_1, u \rangle^2} \right] \stackrel{\text{(i)}}{=} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{2t}{n} \right)^k \mathbb{E} \left[\varepsilon^k \langle x_1, u \rangle^{2k} \right]$$

$$\stackrel{\text{(ii)}}{=} 1 + \sum_{\ell=1}^{\infty} \frac{1}{(2\ell)!} \left(\frac{2t}{n} \right)^{2\ell} \mathbb{E} \left[\langle x_1, u \rangle^{4\ell} \right]$$

となる, ただし (i) は指数関数の冪乗展開, (ii) は奇数次項は Rademacher term が 0 になることより.

・Thm.2.6 の sub-Gaussian の同値条件より,

$$\mathbb{E}\left[\langle x_1, u \rangle^{4\ell}\right] \le \frac{(4\ell)!}{2^{2\ell}(2\ell)!} (\sqrt{8}e\sigma)^{4\ell} \quad \text{for all } \ell = 1, 2, \dots,$$

が成り立つので,

$$\mathbb{E}_{x_1} \left[e^{\frac{t}{n} \{\langle x_1, u \rangle^2 - \langle u, \Sigma u \rangle \}} \right] \le 1 + \sum_{\ell=1}^{\infty} \frac{1}{(2\ell)!} \left(\frac{2t}{n} \right)^{2\ell} \frac{(4\ell)!}{2^{2\ell} (2\ell)!} (\sqrt{8}e\sigma)^{4\ell}$$
$$\le 1 + \sum_{\ell=1}^{\infty} \left(\underbrace{\frac{16t}{n} e^2 \sigma^2}_{f(t)} \right)^{2\ell}$$

となる, ただし最後の不等号は $(4\ell)! \le 2^{2\ell}[(2\ell)!]^2$ より.

・
$$f(t) = \frac{16t}{n}e^2\sigma^2 < \frac{1}{2}$$
 なら

$$1 + \sum_{\ell=1}^{\infty} \left[f^2(t) \right]^{\ell} = \frac{1}{1 - f^2(t)} \stackrel{\text{(i)}}{\leq} \exp\left(2f^2(t) \right)$$

となる((i) は
$$1/(1-a) \le e^{2a}$$
 for all $a \in [0,1/2]$ より)ので、(6.23) と合わせて $|t| < \frac{n}{32e^2-2}$ に対して $\mathbb{E}[e^{t\langle u,Qu\rangle}] \le e^{2nf^2(t)}$, つまり (6.22) が示された.

6.4 Bounds for general matrices

- ・より一般的な条件下での bound を求める.
- ・そのために covariance matrices だけでなくより general な random matrices を考える.
- ・Main result の Theorem 6.15 と 6.17 は Hoeffding・Bernstein bounds の matrix-based analogs である.

6.4.1 Background on matrix analysis

- ・対称行列 $Q \in \mathcal{S}^{d \times d}$ の対角化 $Q = U^{\mathrm{T}} \Gamma U$ を考える:
 - ・ $U \in \mathbb{R}^{d \times d}$ はユニタリ行列 $U^{\mathrm{T}}U = I_{d}$.
 - ・ $\Gamma := \mathrm{diag}(\gamma(Q))$ は固有値 $\gamma(Q) \in \mathbb{R}^d$ からなる対角行列.
- ・関数 $f:\mathbb{R} \to \mathbb{R}$ を $\mathcal{S}^{d imes d}$ 上の関数に以下のように拡張する:

$$Q \mapsto f(Q) := U^{\mathrm{T}} \mathrm{diag}(f(\gamma_1(Q)), \dots, f(\gamma_d(Q)))U.$$

· このとき, f はユニタリ不変, つまり

$$f(V^{\mathrm{T}}QV) = V^{\mathrm{T}}f(Q)V \quad \text{for all unitary matrices } V \in \mathbb{R}^{d \times d}.$$

・また, 固有値は次のように変換される (spectral mapping property):

$$\gamma(f(Q)) = \{ f(\gamma_j(Q)), \ j = 1, \dots, d \}.$$

- ・特に matrix exponential と matrix logarithm の 2 つの関数がこの章では重要.
- Matrix exponential:
 - ・ Power-series expansion が成立: $e^Q = \sum_{k=0}^{\infty} \frac{Q^k}{k!}$.
 - ・ Spectral mapping property より, e^Q の固有値は常に正, よって e^Q は常に正定値.
- ・ Matrix logarithm は matrix exponential の inverse.
- ・関数 f が単調であるとは, $Q \leq R$ ならば $f(Q) \leq f(R)$ が成り立つことをいう.
- ・ Matrix logarithm は単調である(Lowner-Heinz theorem)
- ・ Matrix exponential は単調でない.
- ・ $f: \mathbb{R} \to \mathbb{R}$ が連続かつ非減少なら, 任意の対称行列 $Q \leq R$ に対し,

$$\operatorname{tr}(f(Q)) \le \operatorname{tr}(f(R)) \tag{6.25}$$

が成り立つ(trace inequality).

6.4.2 Tail conditions for matrices

- ・対称ランダム行列 $Q \in \mathcal{S}^{d \times d}$ に対し, polynomial moment $\mathbb{E}[Q^j]$ が存在すると仮定する.
- ・Q の variance は $\mathrm{var}(Q) := \mathbb{E}[Q^2] (\mathbb{E}[Q])^2$ で, これは半正定値(Ex.6.6)
- ・Qの moment generating function $\Psi_Q:\mathbb{R} o\mathcal{S}^{d imes d}$ は以下で与えられる:

$$\Psi_Q(\lambda) := \mathbb{E}[e^{\lambda Q}] = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \mathbb{E}[Q^k]. \tag{6.26}$$

・Ch.2 の議論と同様に, この moment generating function を用いて random matrix の sub-Gaussian と sub-exponential が定義される.

Definition 6.6

Zero-mean 対称ランダム行列 $Q \in \mathcal{S}^{d \times d}$ が sub-Gaussian with matrix parameter $V \in \mathcal{S}^{d \times d}_+$ であるとは, 以下が成り立つことをいう:

$$\Psi_Q(\lambda) \leq e^{\frac{\lambda^2 V}{2}} \quad \text{for all } \lambda \in \mathbb{R}.$$
 (6.27)

Example 6.7

- ・ $Q = \epsilon B$ で, $\epsilon \in \{-1,1\}$ は Rademacher 変数, $B \in \mathcal{S}^{d \times d}$ は fixed matrix とする.
- ・このとき, $\mathbb{E}[Q^{2k+1}]=0$ かつ $\mathbb{E}[Q^{2k}]=B^{2k}$ なので,

$$\mathbb{E}[e^{\lambda Q}] = \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{(2k)!} B^{2k} \preceq \sum_{k=1}^{\infty} \frac{1}{k!} \left(\frac{\lambda^2 B^2}{2}\right)^k = e^{\frac{\lambda^2 B^2}{2}}$$

となり, Q は sub-Gaussian w/ $V = B^2 = var(Q)$.

・より一般に, Q = gB で $g \in \mathbb{R}$ が zero-mean σ -sub-Gaussian なら, Q は $V = \sigma^2 B^2$ で sub-Gaussian となる.

Example 6.8

- ・ $Q=\epsilon C$ で, ϵ は Rademacher 変数, C は ϵ と独立で $|||C|||_2 \leq b$ なるランダム行列とする.
- ・まず C を固定して ϵ について期待値をとると $\mathbb{E}_{\epsilon}[e^{\lambda \epsilon C}] \preceq e^{\frac{\lambda^2}{2}C^2}$.
- ・さらに $|||C|||_2 \le b$ より $e^{\frac{\lambda^2}{2}C^2} \preceq e^{\frac{\lambda^2}{2}b^2I_d}$ となり, よって

$$\Psi_Q(\lambda) \leq e^{\frac{\lambda^2}{2}b^2I_d}$$
 for all $\lambda \in \mathbb{R}$.

・したがって, Q は sub-Gaussian w/ matrix parameter $V=b^2I_d$.

Definition 6.9

Zero-mean ランダム行列 Q が sub-exponential with parameters (V,α) であるとは, 以下が成り立つことをいう:

$$\Psi_Q(\lambda) \le e^{\frac{\lambda^2 V}{2}} \quad \text{for all } |\lambda| < \frac{1}{\alpha}.$$
 (6.28)

- ・任意の sub-Gaussian 行列は sub-exponential w/ (V,0).
- ・Sub-exponential だが sub-Gaussian でないランダム行列はありうる:
 - ・例) $M=\epsilon g^2 B$ where ϵ は Rademacher 変数, $g\sim \mathcal{N}(0,1)$ でそれぞれ独立.

・ Sub-exponential の1つの判定方法は, 次の Bernstein condition である.

Definition 6.10 (Bernstein's condition for matrices)

Zero-mean 対称ランダム行列 Q が Bernstein condition with parameter b > 0 を満たすとは、以下が成り立つことをいう.

$$\mathbb{E}[Q^j] \le \frac{1}{2} j! b^{j-2} \text{var}(Q) \quad \text{for } j = 3, 4, \dots$$
 (6.29)

・ Q が bounded operator norm を持つ, つまり $|||Q|||_2 \le b$ almost surely の場合, 次が成り立つ.

$$\mathbb{E}[Q^j] \le b^{j-2} \text{var}(Q) \quad \text{for all } j = 3, 4, \dots$$
 (6.30)

・次の Lemma は, Bernstein condition が sub-exponential condition を含意する ことを示す.

Lemma 6.11

Bernstein condition を満たす任意の zero-mean 対称行列に対し, 以下が成り立つ:

$$\Psi_Q(\lambda) \leq \exp\left(\frac{\lambda^2 \text{var}(Q)}{2(1-b|\lambda|)}\right) \quad \text{for all } |\lambda| < \frac{1}{b}.$$
(6.31)

Proof

・ $\mathbb{E}[Q] = 0$ なので, matrix exponential σ power-series expansion より

$$\mathbb{E}[e^{\lambda Q}] = I_d + \frac{\lambda^2 \text{var}(Q)}{2} + \sum_{j=3}^{\infty} \frac{\lambda^j \mathbb{E}[Q^j]}{j!}$$

$$\stackrel{\text{(i)}}{\preceq} I_d + \frac{\lambda^2 \text{var}(Q)}{2} \left\{ \sum_{j=0}^{\infty} |\lambda|^j b^j \right\}$$

$$\stackrel{\text{(ii)}}{=} I_d + \frac{\lambda^2 \text{var}(Q)}{2(1-b|\lambda|)}$$

$$\stackrel{\text{(iii)}}{\preceq} \exp\left(\frac{\lambda^2 \text{var}(Q)}{2(1-b|\lambda|)}\right),$$

ただし (i) は Bernstein condition, (ii) は $|\lambda| < 1/b$ で成立, (iii) は matric inequality $I_d + A \leq e^A$ (for any symmetric matrix A) より.

6.4.3 Matrix Chernoff approach and independent decompositions

・まず Chernoff approach の matrix バージョンから.

Lemma 6.12 (Matrix Chernoff technique)

Q は zero-mean symmetric random matrix で, その moment generating function Ψ_Q は $\lambda \in (-a,a)$ の範囲で存在するものとする. このとき, 任意の $\delta>0$ に対して以下が成り立つ:

$$\mathbb{P}\left[\gamma_{\max}(Q) \ge \delta\right] \le \operatorname{tr}\left(\Psi_Q(\lambda)\right) e^{-\lambda \delta} \quad \text{for all } \lambda \in [0, a). \tag{6.32}$$

さらに同様に,

$$\mathbb{P}\left[\|Q\|_2 \ge \delta\right] \le 2\operatorname{tr}\left(\Psi_Q(\lambda)\right)e^{-\lambda\delta} \quad \text{for all } \lambda \in [0, a). \tag{6.33}$$

Proof

・各 $\lambda \in [0, a)$ に対し, まず以下が成り立つ.

$$\mathbb{P}\left[\gamma_{\max}(Q) \ge \delta\right] = \mathbb{P}\left[e^{\gamma_{\max}(\lambda Q)} \ge e^{\lambda \delta}\right] \stackrel{\text{(i)}}{=} \mathbb{P}\left[\gamma_{\max}\left(e^{\lambda Q}\right) \ge e^{\lambda \delta}\right], \tag{6.34}$$

ただし(i) は行列関数の固有値の変換 (spectral mapping property) から.

・Marlkov's inequality より,

$$\mathbb{P}\left[\gamma_{\max}\left(e^{\lambda Q}\right) \ge e^{\lambda \delta}\right] \le \mathbb{E}\left[\gamma_{\max}\left(e^{\lambda Q}\right)\right] e^{-\lambda \delta} \stackrel{\text{(i)}}{\le} \mathbb{E}\left[\operatorname{tr}\left(e^{\lambda Q}\right)\right] e^{-\lambda \delta} \tag{6.35}$$

ただし (i) は $e^{\lambda Q}$ が positive definite から $\gamma_{\max}(e^{\lambda Q}) \leq \operatorname{tr}(e^{\lambda Q})$.

· Trace と E は交換可能なので.

$$\mathbb{E}\left[\operatorname{tr}\left(e^{\lambda Q}\right)\right] = \operatorname{tr}\left(\mathbb{E}\left[e^{\lambda Q}\right]\right) = \operatorname{tr}\left(\Psi_Q(\lambda)\right).$$

・同じことが $\gamma(-Q) \geq \delta$, つまり $\gamma_{\min}(Q) \leq -\delta$ にも成り立ち, $|||Q|||_2 = \max\{\gamma_{\max}(Q)|\gamma_{\min}(Q)|\}$ なので, (6.33) も成り立つ.

39/6

Lemma 6.13

 Q_1,\ldots,Q_n は独立な対称ランダム行列で, moment generating function は $\lambda\in I$ に対し存在するものとし, $S_n:=\sum_{i=1}^nQ_i$ とする. このとき以下が成り立つ.

$$\operatorname{tr}(\Psi_{\mathbf{S}_n}(\lambda)) \le \operatorname{tr}\left(e^{\sum_{i=1}^n \log \Psi_{Q_i}(\lambda)}\right) \quad \text{for all } \lambda \in I.$$
 (6.36)

Remark:

 Lemma 6.12 とあわせると,独立なランダム行列の和の operator norm の tail bound が得られる,つまり,

$$\mathbb{P}\left[\left|\left|\frac{1}{n}\sum_{i=1}^n\mathbf{Q}_i\right|\right|\right|_2 \geq \delta\right] \leq 2\operatorname{tr}\left(e^{\sum_{i=1}^n\log\Psi_{Q_i}(\lambda)}\right)e^{-\lambda n\delta} \quad \text{ for all } \lambda\in[0,a).$$

Proof.

・Lieb(1973) より次の result を用いる: 任意の fixed matrix $H \in S^{d \times d}$ に対し, 次の関数 $f: S^{d \times d} \to \mathbb{R}$

$$f(A) := \operatorname{tr}(e^{H + \log(A)})$$

は concave である.

・ $G(\lambda) := \operatorname{tr}(\Psi_{S_n}(\lambda))$ とかくと, trace と期待値の線形性から

$$G(\lambda) = \operatorname{tr}\left(\mathbb{E}\left[e^{\lambda \mathbf{S}_{n-1} + \log \exp(\lambda \mathbf{Q}_n)}\right]\right) = \mathbb{E}_{\mathbf{S}_{n-1}}\mathbb{E}_{\mathbf{Q}_n}\left[\operatorname{tr}\left(e^{\lambda \mathbf{S}_{n-1} + \log \exp(\lambda \mathbf{Q}_n)}\right)\right].$$

・ $H=\lambda S_{n-1},\; A=e^{\lambda Q_n}$ としたときの f の concavity と Jensen's inequality より,

$$\mathbb{E}_{\mathbf{Q}_n} \left[\operatorname{tr} \left(e^{\lambda \mathbf{S}_{n-1} + \log \exp(\lambda \mathbf{Q}_n)} \right) \right] \le \operatorname{tr} \left(e^{\lambda \mathbf{S}_{n-1} + \log \mathbb{E}_{\mathbf{Q}_n} \exp(\lambda \mathbf{Q}_n)} \right).$$

- ・よって, $G(\lambda) \leq \mathbb{E}_{S_{n-1}}[\operatorname{tr}(e^{\lambda S_{n-1} + \log \Psi_{Q_n}(\lambda)})].$
- ・ Q_{n-1} についても同様にすると, $G(\lambda) \leq \mathbb{E}_{S_{n-2}}[\operatorname{tr}(e^{\lambda S_{n-2} + \log \Psi_{Q_{n-1}}(\lambda) + \log \Psi_{Q_n}(\lambda)})].$
- ・これを繰り返していけばいい.

41/6

Example 6.14 (Rademacher symmetrization for random matrices)

•

6.4.4 Upper tail bounds for random matrices

Sub-Gaussian case

• Sub-Gaussian random matrix \mathcal{O} Hoeffding-type tail bound \mathcal{D} 6.

Theorem 6.15 (Hoeffding bound for random matrices)

 $\{Q_i\}_{i=1}^n$ は zero-mean の独立対称ランダム行列の列で, それぞれ sub-Gaussian w/parameters $\{V_i\}_{i=1}^n$ とする. このとき, 任意の $\delta>0$ に対して次の upper tail bound が成り立つ:

$$\mathbb{P}\left[\left|\left|\left|\frac{1}{n}\sum_{i=1}^{n}\mathbf{Q}_{i}\right|\right|\right|_{2} \geq \delta\right] \leq 2\operatorname{rank}\left(\sum_{i=1}^{n}\mathbf{V}_{i}\right)e^{-\frac{n\delta^{2}}{2\sigma^{2}}},\tag{6.38}$$

ただし
$$\sigma^2 = |||\frac{1}{n} \sum_{i=1}^n V_i|||_2$$
.

Proof.

- ・まず $V := \sum_i V_i$ が full-rank のケースを考える.
- ・Sub-Gauusianity の定義と log の matrix monotonicity より,

$$\sum_{i=1}^{n} \log \Psi_{Q_i}(\lambda) \leq \frac{\lambda^2}{2} \sum_{i=1}^{n} V_i$$

・exp 関数は increasing なので, (6.25) の trace inequality から,

$$\operatorname{tr}\left(e^{\sum_{i=1}^{n}\Psi_{Q_{i}}(\lambda)}\right) \leq \operatorname{tr}\left(e^{\frac{\lambda^{2}}{2}\sum_{i=1}^{n}V_{i}}\right).$$

・これと Chernoff bound (6.37) より,

$$\mathbb{P}\left[\left|\left|\left|\frac{1}{n}\sum_{i=1}^{n}Q_{i}\right|\right|\right|_{2} \geq \delta\right] \leq 2\operatorname{tr}\left(e^{\frac{\lambda^{2}}{2}\sum_{i=1}^{n}V_{i}}\right)e^{-\lambda n\delta}.$$

- ・ Fact: 任意の d-次元対称行列 R に対し, $\operatorname{tr}(e^R) \leq de^{|||R|||_2}$.
- ・ $R=rac{\lambda^2}{2}\sum_{i=1}^n V_i$ としてこれを使うと, $|||R|||_2=rac{\lambda}{2}n\sigma^2$ で,

$$\mathbb{P}\left[\left|\left|\frac{1}{n}\sum_{i=1}^{n}Q_{i}\right|\right|\right|_{2} \geq \delta\right] \leq 2de^{\frac{\lambda^{2}}{2}n\sigma^{2}-\lambda n\delta}.$$

- ・これは任意の $\lambda \geq 0$ について成り立つので, $\lambda = \delta/\sigma^2$ とすると claim を得る.
- ・次に $V := \sum_{i} V_i$ が full-rank でなく, rank r < d とする.
- ・V の固有値分解 $V=UDU^{\mathrm{T}}$ ($U\in\mathbb{R}^{d imes r}$ は正規直交列をもつ) を考え, $Q:=\sum_{i=1}^nQ_i$ に対して r-次元行列 $\widetilde{Q}=U^{\mathrm{T}}QU$ をとると, $|||\widetilde{Q}|||_2=|||Q|||_2$.
- ・ \widetilde{Q} に対して同様の議論を行えば,dのかわりにrとして成り立つ.

Example 6.16 (Looseness/sharpness of Theorem 6.15)

Bernstein-type bounds for random matrices

・次は Sub-exponential random matrices の Bernstein bound.

Theorem 6.17 (Bernstein bound for random matrices)

 $\{Q_i\}_{i=1}^n$ は zero-mean な独立対称行列で Bernstein condition (6.29) を parameter b>0 で満たすとする. このとき, 任意の $\delta\geq 0$ に対して以下が成り立つ:

$$\mathbb{P}\left[\frac{1}{n}\left|\left|\left|\sum_{i=1}^{n} Q_{i}\right|\right|\right|_{2} \ge \delta\right] \le 2\operatorname{rank}\left(\sum_{i=1}^{n} \operatorname{var}\left(Q_{i}\right)\right) \exp\left\{-\frac{n\delta^{2}}{2\left(\sigma^{2} + b\delta\right)}\right\}$$
(6.42)

ただし,
$$\sigma^2 := \frac{1}{n} ||| \sum_j \operatorname{var}(Q_j) |||_2$$
.

Proof.

- Lemma 6.13 $\sharp \mathfrak{h}$, $\operatorname{tr}(\Psi_{S_n}(\lambda)) \leq \operatorname{tr}(e^{\sum \log \Psi_{Q_i}(\lambda)})$.
- ・Lemma 6.11 より, Bernstein condition から 任意の λ s.t. $|\lambda| < 1/b$ に対し $\log \Psi_{Q_i}(\lambda) \preceq \frac{\lambda^2 \mathrm{var}(Q_i)}{1-b|\lambda|}$.
- ・したがって,

$$\operatorname{tr}\left(\Psi_{S_n}(\lambda)\right) \le \operatorname{tr}\left(\exp\left(\frac{\lambda^2 \sum_{i=1}^n \operatorname{var}(Q_i)}{1 - b|\lambda|}\right)\right) \le \operatorname{rank}\left(\sum_{i=1}^n \operatorname{var}(Q_i)\right) e^{\frac{n\lambda^2 \sigma^2}{1 - b|\lambda|}},$$

ただし最後の不等号は Thm6.15 の証明と同様にして示せる.

・よって (6.37) と合わせると, 任意の $\lambda \in [0,1/b)$ に対し,

$$\mathbb{P}\left[\left|\left|\frac{1}{n}\sum_{i=1}^{n}Q_{i}\right|\right|\right|_{2} \geq \delta\right] \leq 2\operatorname{rank}\left(\sum_{i=1}^{n}\operatorname{var}(Q_{i})\right)e^{\frac{n\sigma^{2}\lambda^{2}}{1-b|\lambda|}-\lambda n\delta}.$$

・ $\lambda = \frac{\delta}{\sigma^2 + b\delta} \in (0, 1/b)$ とすると (6.42) を得る.

Remarks

•

Example 6.18

,

Example 6.19

,

6.4.5 Consequences for covariance matrices

・Thm 6.17 から, covariance matrix の推定に有用な次の系が得られる.

Corollary 6.20

 x_1,\ldots,x_n は i.i.d. zero-mean random vectors で, covariance Σ , かつ $\|x_j\| \leq \sqrt{b}$ almost surely とする. このとき任意の $\delta>0$ に対して, sample covariance $\widehat{\Sigma}=\frac{1}{n}\sum_{i=1}^n x_i x_i^{\mathrm{T}}$ は次を満たす:

$$\mathbb{P}\left[|||\widehat{\Sigma} - \Sigma|||_2 \ge \delta\right] \le 2d \exp\left(-\frac{n\delta^2}{2b\left(|||\Sigma|||_2 + \delta\right)}\right). \tag{6.49}$$

Proof.

- ・ Zero-mean random matrix $Q_i := x_i x_i^{\mathrm{T}} \Sigma$ に対して Thm6.17 を適用する.
- ・三角不等式より,

$$|||Q_i|||_2 \le ||x_i||_2^2 + |||\Sigma|||_2 \le b + |||\Sigma|||_2.$$

- ・ $\Sigma = \mathbb{E}[x_i x_i^{\mathrm{T}}]$ より, $|||\Sigma|||_2 = \max_{v \in \mathbb{S}^{d-1}} \mathbb{E}[\langle v, x_i \rangle^2] \leq b$ で, よって $|||Q_i|||_2 \leq 2b$.
- ・ Q_i の分散については,

$$\operatorname{var}(Q_i) = \mathbb{E}[(x_i x_i^{\mathrm{T}})^2] - \Sigma^2 \leq b\Sigma,$$

で, よって $|||var(Q_i)|||_2 \le b|||\Sigma|||_2$.

・これを (6.42) に入れると claim を得る.

 \Box

Example 6.21 (Random vectors uniform on a sphere)

•

Example 6.22 ("Spiked" random vectors)

•

6.5 Bounds for structured covariance matrices

- ・これまでは general・unstractured な設定で covariance matrix の推定を考えた.
- ・この章では sparse and/or graph-structured のもとではより早い収束が得られることを確認する.
- ・最も簡単な設定では, covariance matrix は sparce で, その non-zero entry が分かってるとする:
- ・例えば, covariance が diagonal なら, 各要素ごとの標本分散を求めて $\widehat{D}:=\mathrm{diag}(\widehat{\Sigma}_{11},\ldots,\widehat{\Sigma}_{dd})$ とするのが自然.
- ・ このときは Exercise 6.15 より, sub-Gaussian variables なら estimation error の オーダーは $\sqrt{\frac{\log d}{n}}$ となり, unstructured setting の $\sqrt{\frac{d}{n}}$ よりよくなる.
- ・これに近い statement が違う形の sparsity のもとでも得られる.

6.5.1 Unknown sparsity and thresholding

- ・Σ は sparse であることは分かっているが, non-zero entries の position は分かっていないとする.
- ・パラメータ $\lambda > 0$ に対し, hard-thresholding operator は以下で定義される:

$$T_{\lambda}(u) := u\mathbb{I}[|u| > \lambda] = \begin{cases} u & \text{if } |u| > \lambda, \\ 0 & \text{otherwise.} \end{cases}$$
 (6.52)

- ・行列 M について, 各要素に $T_{\lambda}(\cdot)$ をかませた行列を $T_{\lambda}(M)$ と書くものとする.
- ・ここでは $T_{\lambda_n}(\widehat{\Sigma})$ の推定値を考えていく, ただし λ_n は n と d に依存して決まる.

- ・ Σ の zero pattern は隣接行列 $A \in \mathbb{R}^{d \times d}$ with $A_{j\ell} = \mathbb{I}[\Sigma_{j\ell} \neq 0]$ で表せる.
- ・ A は vertices が $\{1,2,\ldots,d\}$ で edge が $\{(j,\ell)\mid \Sigma_{j\ell}\neq 0\}$ なる undirected graph G を表しているともよめる.
- ・ $|||A|||_2$ は sparsity の measure とみることができ, $|||A|||_2 \le d$ (等号は fully conected のとき成立) である.
- ・より一般に, Σ が各行について最大で s の non-zero entry をもつなら $|||A|||_2 \le s$ である.

Theorem 6.23 (Thresholding-based covariance estimation)

 $\{x_i\}_{i=1}^n$ は zero-mean, covariance Σ の i.i.d. random vectors で, 各要素 x_{ij} はパラメータ最大 σ で sub-Gaussian とする. もし $n>\log d$ なら, 任意の $\delta>0$ に対し, thresholded sample covariance matrix $T_{\lambda_n}(\widehat{\Sigma})$ w/ $\lambda_n/\sigma^2=8\sqrt{\frac{\log d}{n}}+\delta$ は以下を満たす:

$$\mathbb{P}\left[\left|\left|\left|T_{\lambda_n}(\widehat{\Sigma}) - \Sigma\right|\right|\right|_2 \ge 2||\mathbf{A}||_2 \lambda_n\right] \le 8e^{-\frac{n}{16}\min\{\delta, \delta^2\}}.$$
 (6.53)

・証明は次の (deterministic) result にもとづく:

$$\forall \lambda_n \ge \|\widehat{\Sigma} - \Sigma\|_{\max}, \quad |||T_{\lambda_n}(\widehat{\Sigma}) - \Sigma|||_2 \le 2|||A|||_2 \lambda_n. \tag{6.54}$$

- ・ 任意の (j,ℓ) s.t. $\Sigma_{j\ell}=0$ に対し、 $\|\widehat{\Sigma}-\Sigma\|_{\max}\leq \lambda_n$ より $|\widehat{\Sigma}_{j\ell}|\leq \lambda_n$. $T_{\lambda_n}(\widehat{\Sigma}_{j\ell})=0$.
- ・一方任意の (j,ℓ) s.t. $\Sigma_{j\ell} \neq 0$ について,

$$\left| T_{\lambda_n} \left(\widehat{\Sigma}_{j\ell} \right) - \Sigma_{j\ell} \right| \stackrel{\text{(i)}}{\leq} \left| T_{\lambda_n} \left(\widehat{\Sigma}_{j\ell} \right) - \widehat{\Sigma}_{j\ell} \right| + \left| \widehat{\Sigma}_{j\ell} - \Sigma_{j\ell} \right| \stackrel{\text{(ii)}}{\leq} 2\lambda_n,$$

ただし (i) は三角不等式, (ii) は $\left|T_{\lambda_n}\left(\widehat{\Sigma}_{j\ell}\right) - \widehat{\Sigma}_{j\ell}\right| \leq \lambda_n$ と $\|\widehat{\Sigma} - \Sigma\|_{\max} \leq \lambda_n$ より.

- ・よって $B:=|T_{\lambda_n}(\widehat{\Sigma})-\Sigma|$ は elementwise inequality $B\leq 2\lambda_n A$ を満たす.
- ・B, A は non-negative より, $|||B|||_2 \le 2\lambda_n |||A|||_2$ で (6.54) が示される.

Corollary 6.24

Thm6.23 の条件に加え, covariance Σ の各行は最大で s の non-zero entry を持つとする. このとき $\lambda_n/\sigma^2=8\sqrt{\frac{\log d}{n}}+\delta$ で,

$$\mathbb{P}[|||T_{\lambda_n}(\widehat{\Sigma}) - \Sigma \ge 2s\lambda_n] \le 8e^{-\frac{n}{16}\min\{\delta, \delta^2\}}.$$
 (6.55)

・ $||A||_2 \le s$ (see Exercise 6.2) より.

Example 6.25 (Sparsity and adjacency matrices)

- ・A が Figure 6.1(a) のような, 最大 s-1 degree で s-clique(s 個のノードの組で それらすべてが違いにつながってる)をもつグラフの場合, $|||A|||_2 = s$ となり (6.53) と (6.55) は一致する.
- ・(b) のように 1 つのノードが s 個のノードとつながるハブのようになってる場合, $|||A|||_2 = 1 + \sqrt{s-1}$ で, Thm6.23 (6.53) より高確率で

$$|||T_{\lambda_n}(\widehat{\Sigma}) - \Sigma|||_2 \lesssim \sqrt{\frac{s \log d}{n}}$$

と \sqrt{s} のオーダーとなり, (6.55) より sharper になる.

- ・Thm6.23 の証明のつづき.
- ・(6.54) から, $\widehat{\Delta} := \widehat{\Sigma} \Sigma$ の infinity norm の bound を求めれば良い.

Lemma 6.26

Thm6.23 の条件のもとで, 以下が成り立つ:

$$\mathbb{P}[\|\widehat{\Delta}\|_{\max}/\sigma^2 \ge t] \le 8e^{-\frac{n}{16}\min\{t, t^2\} + 2\log d} \quad \text{for all } t > 0.$$
 (6.56)

・(6.56) で
$$t = \lambda_n/\sigma^2 = 8\sqrt{\frac{\log d}{n}} + \delta$$
 とすると, $n > \log d$ より,

$$\mathbb{P}[\|\widehat{\Delta}\|_{\max} \ge \lambda_n] \le 8e^{-\frac{n}{16}\min\{\delta, \delta^2\}},$$

となる.

・したがってあとは Lemma 6.26 を示せばよい.

- ・ $\sigma=1$ として一般性を失わない $(x_i/\sigma$ は sub-Gaussian w/ at most 1 なので, あとで rescale すればよい).
- ・まず対角成分を考えると, Exercise 6.15(a) より定数 c_1, c_2 が存在して

$$\mathbb{P}[|\widehat{\Delta}_{jj}| \ge c_1 \delta] \le 2e^{-c_2 n \delta^2} \quad \text{for all } \delta \in (0, 1).$$
 (6.57)

・非対角成分については次が成り立つ:

$$2\widehat{\Delta}_{j\ell} = \frac{2}{n} \sum_{i=1}^{n} x_{ij} x_{i\ell} - 2\Sigma_{j\ell} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} + x_{i\ell})^2 - (\Sigma_{jj} + \Sigma_{\ell\ell} + 2\Sigma_{j\ell}) - \widehat{\Delta}_{jj} - \widehat{\Delta}_{\ell\ell}.$$

- ・各 x_{ij} は zero-mean sub-Gaussian with at most parameter σ なので, $x_{ij} + x_{i\ell}$ は zero-mean sub-Gaussian w/ parameter at most $2\sqrt{2}\sigma$ (see Exercise 2.13).
- zero-mean sub-Gaussian w/ parameter at most $2\sqrt{2}\sigma$ (see Exercise 2.13). ・よって、定数 c_2 、 c_3 に対して、任意の $\delta \in (0,1)$ について

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^{n}(x_{ij}+x_{i\ell})^{2}-(\Sigma_{jj}+\Sigma_{\ell\ell}+2\Sigma_{j\ell})\right|\geq c_{3}\delta\right]\leq 2e^{-c_{2}n\delta^{2}}$$

で, (6.57) と合わせると $\mathbb{P}[|\widehat{\Delta}_{i\ell}| > c_1'\delta] < 6e^{-c_2n\delta^2}$ となる.

・(6.57) と合わせて d^2 -entry について合わせると, claim (6.56) を得る.

64/68

6.5.2 Approximate sparsity

- ・Thm 6.23 は, 厳密に 0 である entry が少ない場合は使い物にならない.
- ・厳密に 0 ではなくとも多くの entry が "near zero" であるときを考える.
- ・ Σ は, パラメータ $q \in [0,1]$ と半径 R_q に対して, 以下を満たすとする:

$$\max_{j=1,...,d} \sum_{\ell=1}^{d} |\Sigma_{j\ell}|^{q} \le R_{q}. \tag{6.58}$$

- ・q=0 なら, 各行の non-zero entry が最大 R_q であることを示す.
- ・ Σ が (6.58) を満たすとき, ℓ_q -sparsity を満たすという.

Theorem 6.27 (Covariance estimation under ℓ_q -sparsity)

Covariance matrix Σ は ℓ_q -sparsity(6.58) を満たすとする. このとき任意の λ_n s.t. $\|\widehat{\Sigma} - \Sigma\|_{\max} < \lambda_n/2$ に対して以下が成り立つ:

$$|||T_{\lambda_n}(\widehat{\Sigma}) - \Sigma|||_2 \le 4R_n \lambda_n^{1-q}. \tag{6.59a}$$

 $\{x_i\}_{i=1}^n$ は zero-mean で sub-Gaussian w/ parameter at most σ からの i.i.d. サンプルなら, $\lambda_n/\sigma^2=8\sqrt{\frac{\log d}{n}}+\delta$ として以下が成り立つ:

$$\mathbb{P}\left[\left\|T_{\lambda_n}(\widehat{\Sigma}) - \Sigma\right\|_2 \ge 4R_q \lambda_n^{1-q}\right] \le 8e^{-\frac{n}{16}\min\{\delta,\delta^2\}} \quad \text{for all } \delta > 0$$
 (6.59b)

Proof.

- ・(6.59a) の deterministic claim を given とすると (6.59b) は sub-exponential 変数の tail bound から得られるので、(6.59a) を示す.
- ・Exercise 6.2 より, operator norm は次のように bound される:

$$|||T_{\lambda_n}(\widehat{\Sigma}) - \Sigma|||_2 \le \max_{j=1,\dots,d} \sum_{n=1}^d |T_{\lambda_n}(\widehat{\Sigma}_{j\ell}) - \Sigma_{j\ell}|.$$

- ・ $j \in \{1,\ldots,d\}$ を固定し、set $S_j(\lambda_n/2) := \{\ell \in \{1,\ldots,d\} \mid |\Sigma_{j\ell} > \lambda_n/2|\}$ とする.
- ・任意の $\ell \in S_i(\lambda_n/2)$ について.

$$\left| T_{\lambda_n} \left(\widehat{\Sigma}_{j\ell} \right) - \Sigma_{j\ell} \right| \le \left| T_{\lambda_n} \left(\widehat{\Sigma}_{j\ell} \right) - \widehat{\Sigma}_{j\ell} \right| + \left| \widehat{\Sigma}_{j\ell} - \Sigma_{j\ell} \right| \le \frac{3}{2} \lambda_n.$$

- ・一方 $\ell \notin S_i(\lambda_n/2)$ については, $T_{\lambda_n}(\Sigma_{i\ell}) = 0$ なので, $|T_{\lambda_n}(\widehat{\Sigma}_{i\ell}) \Sigma_{i\ell}| = |\Sigma_{i\ell}|$.
- ・したがって,

$$\sum_{\ell=1}^{d} |T_{\lambda_n}(\widehat{\Sigma}_{j\ell} - \Sigma_{j\ell})| \le |S_j(\lambda_n/2)| \frac{3}{2} \lambda_n + \sum_{\ell \notin S_j(\lambda_n/2)} |\Sigma_{j\ell}|. \tag{6.6}$$

・ここで次が成り立つ:

$$\sum_{\ell \notin S_j(\lambda_n/2)} |\Sigma_{j\ell}| = \frac{\lambda_n}{2} \sum_{\ell \notin S_j(\lambda_n/2)} \frac{|\Sigma_{j\ell}|}{\lambda_n/2} \stackrel{\text{(i)}}{\leq} \frac{\lambda_n}{2} \sum_{\ell \notin S_j(\lambda_{n/2})} \left(\frac{|\Sigma_{j\ell}|}{\lambda_n/2}\right)^q \stackrel{\text{(ii)}}{\leq} \lambda_n^{1-q} R_q$$

ただし(i)は $|\Sigma_{i\ell}| \leq \lambda_n/2$ と $q \in [0,1]$ より,(ii)は ℓ_q -sparsityから.

・一方 $S_j(\lambda_n/2)$ と ℓ_q -sparsity から,

$$|S_j(\lambda_n/2)| \le \left(\frac{\lambda_n}{2}\right)^{-q} R_n.$$

・よって.(6.60)は

$$\sum_{\ell=1}^{d} |T_{\lambda_n}(\widehat{\Sigma}_{j\ell} - \Sigma_{j\ell})| \le 2^q R_q \lambda_n^{1-q} \frac{3}{2} + R_q \lambda_n^{1-q} \le 4R_q \lambda_n^{1-q}$$

となる.

・これが全ての $j \in \{1, \dots, d\}$ に対して成立するので、(6.59a) が示された.

П