Electric Vehicle (EE60082)

Lecture 6: Motor drive for EV (part 2)

DR. SHIMULK. DAM

ASSISTANT PROFESSOR,
DEPARTMENT OF ELECTRICAL ENGINEERING,
INDIAN INSTITUTE OF TECHNOLOGY (IIT), KHARAGPUR.

Traction motors for EV (recap)

Commonly used motors:

- Brushed DC motor
- Brushless DC motor (BLDC)
- Induction motor
- Permanent magnet synchronous motor (PMSM)
- Switched reluctance motor (SRM)

Torque-speed requirement (recap)

Torque-speed requirement for EV (recap)

High-way Drive: high speed, torque can be low;

Climbing Hills: high torque, speed can be low;

Motor speed range: wide, otherwise gear box is needed.

Common electrical machines-DC machine (rec

Force on a current carrying conductor

$$F = I \cdot L \cdot B \cdot \sin(\theta)$$

- Force on two conductors are in opposite direction
 - > follows right hand rule
 - Creates torque that rotates the coil

Commutator ensures that the coil rotates in the same direction

Common electrical machines-DC machine (recap)

> Torque generated by one coil,

$$T = n\Phi I$$

- \triangleright Overall torque $T = K_m \Phi I$
- Coil current

$$I = \frac{V}{R_a} = \frac{E_s - E_b}{R_a} = \frac{E_s}{R_a} - \frac{K_m \Phi}{R_a} \omega$$

> Torque equation

$$T = \frac{K_m \Phi E_s}{R_a} - \frac{(K_m \Phi)^2}{R_a} \omega$$

Common electrical machines-DC machine (recap):

- Control with supply:
 - > supply voltage is reduced
 - > maximum torque falls in proportion,
 - slope of the torque/speed graph is unchanged
 - any torque and speed can be achieved below the maximum values

Common electrical machines-DC machine (recap)

- Control with magnetic field:
 - magnetic flux can be controlled in some DC machines
 - ➤ Magnetic field is produced by coil, not by permanent magnet
 - higher speed can be achieved during low torque operation
 - Main advantage: produce strong magnetic field at lower cost
 - ➤ Main drawback: additional losses in the field winding
 - Can be somewhat compensated by more efficient operation of motor

Electric braking – regenerative (recap)

- In braking mode, motor is connected to a low voltage battery
- Current into battery is,

$$I = \frac{V}{R} = \frac{K_m \Phi \omega - V_b}{R_a}$$

- This current flows out of motor, producing a reverse torque (braking action)
- > This is called regenerative braking

- > Large uncontrolled current
- Regeneration not possible at low speed

Electric braking - regenerative (recap)

- Energy transfer to a battery with controlled current possible with a DC-DC power converter
- Can support wide rage of battery voltage
- No need for a separate lowvoltage battery
- Effective for entire range of speed
- > Highly efficient energy transfer
- > Fast control of braking power

Choice of converter (recap)

> basic DC-DC converters: buck, boost, buck-boost

Ex1: motor rated voltage 550V, battery nominal voltage 400V, range of battery voltage 300V-460V

➤ Which converter to choose?

DC motor drive

Lower battery voltage

Higher battery voltage

DC motor drive – buck

Buck converter without filter?

> Filter not needed for motor

- also called DC chopper
 - Class A chopper
 - Single quadrant chopper

What about regenerative braking?

DC motor drive – synchronous buck

> Synchronous buck

bidirectional power flow

> Two-quadrant chopper

➤ Class C chopper

> How to drive in reverse?

DC motor drive – 4 quadrant chopper

> Full bridge

bidirectional power flow

Four-quadrant chopper

➤ Class E chopper

- > Drive in reverse-
 - > 4 quadrant chopper vs. gear box

DC machine drawbacks (recap)

- Wear and tear of brush and commutator
 - High maintenance
 - Limited life
 - limited speed range
- Sparking at the commutator
 - sparking at brush contacts, especially under heavy load and high speed
 - EMI noise due to sparking
 - Potential safety hazards
- Higher weight and volume
- Lower efficiency

Requirement for rotor rotation

Coil arrangements in a BLDC

- Multiple coils to increase torque
- > Strong magnet needed for rotor

No current flow in rotor

Only stator cooling required

- Two types of PM mounting
 - Surface and interior mounting

BLDC control loop

BLDC- advantages and limitations

- >Advantages:
 - > no brush, commutator
 - >Low maintenance
 - ➤ Higher efficiency
 - ease of cooling
 - >Low noise

- > Drawbacks:
 - Higher cost of magnets
 - Cost and availability of rear earth elements
 - Limited high speed capability
 - limitation of magnet assembly strength
 - large fault current in case of drive failure
 - Can causse wheel block

- - Limited constant power range
 - Lack of field strength control
 - Need for position sensors
 - > costly
 - can lead to reliability issues

Thank you!