Problem 1

There is not always a stable pair of schedules. Consider the following example: Network A has two shows, a_1 and a_2 , with ratings 20 and 40, respectively. Network D has two shows, d_1 and d_2 , with ratings 10 and 30, respectively.

Each network can reveal one of two possible schedules. We denote the schedules as follows:

- Network A's possible schedules:
 - Schedule 1: $\{a_1, a_2\}$
 - Schedule 2: $\{a_2, a_1\}$
- Network D's possible schedules:
 - Schedule 1: $\{d_1, d_2\}$
 - Schedule 2: $\{d_2, d_1\}$

Now consider the following scenarios:

- 1. If Network A reveals Schedule 1 ($\{a_1, a_2\}$) and Network D reveals Schedule 1 ($\{d_1, d_2\}$):
 - Slot 1: $a_1(20)$ vs $d_1(10) \Rightarrow$ Network A wins
 - Slot 2: $a_2(40)$ vs $d_2(30) \Rightarrow$ Network A wins

In this case, Network A wins both slots. To avoid losing all slots, Network D will want to switch the order of its shows to:

$$\{d_2, d_1\}$$

- 2. If Network A reveals Schedule 2 ($\{a_2,a_1\}$) and Network D reveals Schedule 2 ($\{d_2,d_1\}$):
 - Slot 1: $a_2(40)$ vs $d_2(30) \Rightarrow$ Network A wins
 - Slot 2: $a_1(20)$ vs $d_1(10) \Rightarrow$ Network A wins

In this case, Network A wins both slots again. To avoid this, Network D will want to switch back to its original order:

$$\{d_1, d_2\}$$

- 3. If Network A reveals Schedule 1 ($\{a_1, a_2\}$) and Network D reveals Schedule 2 ($\{d_2, d_1\}$):
 - Slot 1: $a_1(20)$ vs $d_2(30) \Rightarrow$ Network D wins
 - Slot 2: $a_2(40)$ vs $d_1(10) \Rightarrow$ Network A wins

In this case, each network wins one slot. However, Network A will want to switch its schedule to:

$$\{a_2, a_1\}$$

to win both slots.

4. If Network A reveals Schedule 2 ($\{a_2, a_1\}$) and Network D reveals Schedule 1 ($\{d_1, d_2\}$):

- Slot 1: $a_2(40)$ vs $d_1(10) \Rightarrow$ Network A wins
- Slot 2: $a_1(20)$ vs $d_2(30) \Rightarrow$ Network D wins

Again, each network wins one slot. Network D will want to switch its schedule to:

$$\{d_2,d_1\}$$

to avoid losing both slots.

This example shows that there is no stable pair of schedules, as each network will always want to switch its schedule to improve its outcome.

1 Problem 2

Part 1

Let A and B be sets. We can prove that $A \times B = B \times A$ if and only if $A = \emptyset$ or $B = \emptyset$ or A = B.

(a) Proof by Contraposition

If $A \times B = B \times A$, then $A = \emptyset$ or $B = \emptyset$ or A = B.

We will prove the contrapositive: If $A \neq \emptyset$, $B \neq \emptyset$, and $A \neq B$, then $A \times B \neq B \times A$.

Assume $A \neq \emptyset$, $B \neq \emptyset$, and $A \neq B$. Let $a \in A \setminus B$ and $b \in B \setminus A$. Then, $(a,b) \in A \times B$ but $(a,b) \notin B \times A$. Hence, $A \times B \neq B \times A$.

(b) Direct Proof

If $A = \emptyset$ or $B = \emptyset$ or A = B, then $A \times B = B \times A$.

If $A=\emptyset$ or $B=\emptyset$, then $A\times B=\emptyset=B\times A$. If A=B, then $A\times B=A\times A=B\times A$.

Part 2

Let x and y be positive real numbers. Prove by contradiction: If $x^2 - y^2 = 1$, then x or y (or both) are not integers.

Assume x and y are integers. Then $x^2 - y^2 = (x - y)(x + y) = 1$. Since x and y are positive, x - y = 1 and x + y = 1, which implies 2x = 2 and x = 1. This leads to y = 0, contradicting the assumption that y is positive. Thus, x or y (or both) are not integers.

2 Problem 3

Using induction:

Part 1

Prove that $1 + 2 + \dots + n = \frac{n(n+1)}{2}$.

Base Case

For n = 1,

$$1 = \frac{1(1+1)}{2} = 1.$$

Inductive Step

Assume $1 + 2 + \cdots + k = \frac{k(k+1)}{2}$ for some k. Then,

$$1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2}.$$

Thus, $1+2+\cdots+(k+1)=\frac{(k+1)((k+1)+1)}{2}$, completing the induction.

Part 2

Find the sum of $1^2 + 2^2 + 3^2 + \cdots + n^2$.

Using the result of the previous part, we write:

$$(1+2+\cdots+n)^2 = \left(\frac{n(n+1)}{2}\right)^2$$
.

Thus, the sum of squares is:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

Problem 4

Proof of Correctness

To prove the correctness of the given algorithm, we will use a loop invariant and induction approach for both loops.

Algorithm 1 smallest_with_min_freq

```
1: Input: An array A
2: Output: The smallest element with the minimum frequency
3: frequency \leftarrow \{\}
4: for each num in A do
      if num in frequency then
         frequency[num] \leftarrow frequency[num] + 1
6:
7:
8:
         frequency[num] \leftarrow 1
      end if
9:
10: end for
11: \min_{\text{freq}} \leftarrow \min_{\text{frequency.values}}()
12: smallest\_element \leftarrow inf
13: for each num, freq in frequency.items() do
      if freq = min_freq and num; smallest_element then
14:
         smallest\_element \leftarrow num
15:
      end if
16:
17: end for
18: return smallest_element
```

First Loop: Frequency Calculation

Loop Invariant: At the start of each iteration i (where $0 \le i \le n$), the frequency dictionary contains the correct count of all elements in the subarray A[0:i].

Base Case: Before the first iteration (i = 0), frequency is an empty dictionary. This correctly represents the frequency counts for the empty subarray A[0:0], so the invariant holds.

Inductive Hypothesis: Assume that at the start of iteration i, the loop invariant holds. That is, frequency correctly represents the counts of all elements in A[0:i].

Inductive Step: In iteration i, the loop processes the element A[i]:

- If A[i] is already in frequency, the algorithm increments the count by 1.
- If A[i] is not in frequency, the algorithm adds A[i] with a count of 1.

After this iteration, frequency correctly represents the counts of all elements in A[0:i+1]. Thus, the loop invariant is maintained.

Conclusion: By the loop invariant and induction, after n iterations, frequency correctly contains the counts of all elements in A.

Second Loop: Finding the Smallest Element with Minimum Frequency

Loop Invariant: At the start of each iteration j (where $0 \le j \le m$), smallest_element is the smallest element with the minimum frequency among the first j elements

of frequency.

Base Case: Before the first iteration (j = 0), smallest_element is initialized to ∞ . This trivially satisfies the invariant because no elements have been processed yet, and any actual number will be less than ∞ .

Inductive Hypothesis: Assume that at the start of iteration j, the loop invariant holds. That is, smallest_element is the smallest element with the minimum frequency among the first j elements of frequency.

Inductive Step: In iteration j, the loop processes the j-th element (num, freq) from frequency:

• If freq equals min_freq and num is smaller than smallest_element, then smallest_element is updated to num.

After this iteration, $smallest_element$ is still the smallest element with the minimum frequency among the first j+1 elements. Thus, the loop invariant is maintained.

Conclusion: By the loop invariant and induction, after m iterations, smallest_element correctly contains the smallest element with the minimum frequency in A.