Advanced Mixed Integer Programming Formulation Techniques

Constructing MIP Formulations using Convex Hulls

Joey Huchette and Juan Pablo Vielma

Massachusetts Institute of Technology

Spring School of the International Symposium on Combinatorial Optimization (ISCO 2018)

Marrakesh, Morocco, April, 2018

Course Material

• Code:

 https://github.com/joehuchette/ISCO-springschool/tree/master/code

• Slides:

 https://github.com/joehuchette/ISCO-springschool/tree/master/slides

Constructing Ideal Formulations For Pure Integer

• Pure Integer :

$$Q := \operatorname{conv}\left(\left\{p^i\right\}_{i=1}^n\right)$$

Integral Formulations for Small Sets

- $S = \{x \in \{0,1\}^3 : x_3 = x_1 \times x_2\}$
- Constraints = conv(S)

$$-\operatorname{conv}(W) := \left\{ \sum_{w \in W} w \lambda_w : \lambda \in \Delta^W \right\}$$

$$- \qquad \Delta^W := \left\{ \lambda \in \mathbb{R}_+^W : \sum_{w \in W} \lambda_w = 1 \right\}$$

- $S = \{(0,0,0), (1,0,0), (0,1,0), (1,1,1)\}$
- $\operatorname{conv}(S)$:

Integral Formulations for Small Sets

```
julia> using Polyhedra, CDDLib, JuMP
julia> points = SimpleVRepresentation([0 0 0; 1 0 0; 0 1 0; 1 1 1]);
julia> poly = polyhedron(points, CDDLibrary(:exact))
julia> ineq = SimpleHRepresentation(poly)
H-representation
begin
4 4 rational
 1//1 -1//1 -1//1 1//1
 0//1 1//1 0//1 -1//1
 0//1 0//1 1//1 -1//1
 0//1 0//1 0//1 1//1
end
julia> model = Model(); @variable(model,x[1:3]);
julia> @constraint(model,convert.(Int64,ineq.A)*x .<= convert.(Int64,ineq.b))</pre>
4-element
Array{JuMP.ConstraintRef{JuMP.Model, JuMP.GenericRangeConstraint{JuMP.GenericAf
fExpr{Float64, JuMP. Variable}}},1}:
 x[1] + x[2] - x[3] \le 1
 -x[1] + x[3] \leq 0
 -x[2] + x[3] \leq 0
 -x[3] \leq 0
```

Integral Formulations for Small Sets

•
$$S = \{x \in \{0,1\}^3 : x_3 = x_1 \times x_2\}$$

• Constraints = conv(S)

$$-\operatorname{conv}(W) := \left\{ \sum_{w \in W} w \lambda_w : \lambda \in \Delta^W \right\}$$
$$-\Delta^W := \left\{ \lambda \in \mathbb{R}_+^W : \sum_{w \in W} \lambda_w = 1 \right\}$$

- $S = \{(0,0,0), (1,0,0), (0,1,0), (1,1,1)\}$
- $\operatorname{conv}(S)$:

$$- x_1 + x_2 \le 1 + x_3$$

$$- x_3 \le x_1$$

$$- x_3 \le x_2$$

$$0 \le x_3$$

Always works for 0-1 problems

Careful With General Integer Problems

- All different : $S = \{x \in [n]^n : x_i \neq x_j \ \forall i \neq j\}$
- Permutahedron:

$$- \operatorname{conv}(S) = \left\{ x \in \mathbb{R}^n : \sum_{i \in I} x_i = \sum_{i=1}^n i \\ \sum_{i \in I} x_i \ge \binom{|I|+1}{2} \ \forall I : \emptyset \ne I \subseteq [n] \right\}$$

• If *n* is odd then:

$$-\left(\frac{n+1}{2}, \dots, \frac{n+1}{2}\right) \in \operatorname{conv}(S) \cap \mathbb{Z}^{n}$$
$$-\left(\frac{n+1}{2}, \dots, \frac{n+1}{2}\right) \notin S$$

• "Hole-Free": $S \subseteq \mathbb{R}^n$ such that $conv(S) \cap \mathbb{Z}^n = S$

Solution: Extended Formulations

- (Finite?) Non-hole free subset of integers is always projection of hole-free subset of integers
- All different : $S = \{x \in [n]^n : x_i \neq x_j \ \forall i \neq j\}$

•
$$T := \begin{cases} \sum_{i=1}^{n} Y_{i,j} = 1 \ \forall j \in [n] \\ (x,Y) \in \mathbb{R}^{n} \times \{0,1\}^{n \times n} : \sum_{j=1}^{n} Y_{i,j} = 1 \ \forall i \in [n] \\ \sum_{j=1}^{n} j \ Y_{i,j} = x_{i} \ \forall i \in [n] \end{cases}$$

• $S = \operatorname{proj}_{x}(T)$

What About Mixed-Integer Sets?

• Pure Integer $S \subseteq \mathbb{Z}^n$

$$P \cap \mathbb{Z}^n = S \ (P \subseteq \mathbb{R}^n)$$

• Mixed-Integer $S = \bigcup_{i=1}^{n} P^i \subseteq \mathbb{R}^n$

$$Q := \operatorname{conv}(S)$$
?

What is a MIP Formulation?

Simple Formulation for Univariate Functions

$$z = f(x)$$

Size = O (# of segments)

Non-Ideal: Fractional Extreme Points

$$\begin{pmatrix} x \\ z \end{pmatrix} = \sum_{j=1}^{5} \begin{pmatrix} d_j \\ f(d_j) \end{pmatrix} \lambda_j$$

$$1 = \sum_{j=1}^{5} \lambda_j, \quad \lambda_j \ge 0$$

$$y \in \{0, 1\}^4, \quad \sum_{i=1}^{4} y_i = 1$$

$$0 \le \lambda_1 \le y_1$$

$$0 \le \lambda_2 \le y_1 + y_2$$

$$0 \le \lambda_3 \le y_2 + y_3$$

$$0 \le \lambda_4 \le y_3 + y_4$$
etc.
$$0 \le \lambda_5 \le y_4$$

Advanced Formulation for Univariate Functions

$$z = f(x)$$

$$\begin{pmatrix} x \\ z \end{pmatrix} = \sum_{j=1}^{5} \begin{pmatrix} d_j \\ f(d_j) \end{pmatrix} \lambda_j$$

$$1 = \sum_{j=1}^{5} \lambda_j, \quad \lambda_j \ge 0$$

$$y \in \{0, 1\}^2$$

$$0 \le \lambda_1 + \lambda_5 \le 1 - y_1$$

$$0 \le \lambda_3 \qquad \le y_1$$

$$0 \le \lambda_4 + \lambda_5 \le 1 - y_2$$
Size = $O(\log_2 \# \text{ of segments})$

$$0 \le \lambda_1 + \lambda_2 \le y_2$$
Ideal: Integral Extreme Points

Computational Performance

- Advanced formulations provide an computational advantage
- Advantage is significantly more important for free solvers
- State of the art commercial solvers can be significantly better that free solvers
- Still, free is free!

Formulation Improvements can be Significant

Abstracting Univariate Functions

Abstraction Works for Multivariate Functions

$$P_i := \{ \lambda \in \Delta^m : \lambda_j = 0 \quad \forall v_j \notin T_i \}$$

Standard Formulation for SOS2 = Unary Encoding

$$Q = \text{LP relaxation} \longrightarrow \begin{bmatrix} \sum_{i=1}^{5} \lambda_i = 1 \\ y \in \{0, 1\}^4, \end{bmatrix} \sum_{i=1}^{4} y_i = 1$$

$$0 \le \lambda_1 \le y_1$$

$$0 \le \lambda_2 \le y_1 + y_2$$

$$0 \le \lambda_3 \le y_2 + y_3$$

$$0 \le \lambda_4 \le y_3 + y_4$$

$$0 \le \lambda_5 \le y_4$$

$$(\lambda, y) \in Q \cap (\mathbb{R}^5 \times \mathbb{Z}^4)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$P_i := \left\{ \lambda \in \Lambda^5 : \lambda_j = 0 \quad j \notin \{i, i+1\} \right\}$$

Unary Encoding

Advanced = Binary Encoded Formulation

$$Q = LP \ relaxation \longrightarrow \boxed{\sum_{i=1}^{5} \lambda_i = 1}$$

$$h^{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, h^{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, h^{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, h^{4} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• V. and Nemhauser '08.

$$0 \le \lambda_1 + \lambda_5 \le 1 - y_1$$

$$0 \le \lambda_3 \qquad \le y_1$$

$$0 \le \lambda_4 + \lambda_5 \le 1 - y_2$$

$$0 \le \lambda_1 + \lambda_2 \le y_2$$

$$(\lambda, y) \in Q \cap (\mathbb{R}^5 \times \mathbb{Z}^2)$$

$$\updownarrow$$

$$y = h^i \wedge \lambda \in P_i$$

$$P_i := \left\{ \lambda \in \Lambda^5 : \lambda_j = 0 \quad j \notin \{i, i+1\} \right\}$$

Binary Encoding

Embedding Formulation = Ideal non-Extended

$$\operatorname{ext}(Q) \subseteq \mathbb{R}^d \times \mathbb{Z}^k$$

$$\operatorname{ext}(Q) \subseteq \mathbb{R}^d \times \mathbb{Z}^k \qquad H := \left\{h^i\right\}_{i=1}^n \subseteq \left\{0, 1\right\}^k, \quad h^i \neq h^j$$

Alternative Encodings

Careful with general integers:

- Options for 0-1 encodings:
 - Traditional or Unary encoding

$$H = \left\{ y \in \{0, 1\}^n : \sum_{i=1}^n y_i = 1 \right\}$$
$$= \left\{ \mathbf{e}^i \right\}_{i=1}^n$$

- $\mathbf{e}_{j}^{i} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$
- Binary encodings: $H \equiv \{0,1\}^{\log_2 n}$

Embedding Formulations and Complexity

• Embedding formulation of $\lambda \in \bigcup_{i=1}^n P_i \subseteq \mathbb{R}^V$:

- Encoding
$$H:=\left\{h^i\right\}_{i=1}^n\subseteq\left\{0,1\right\}^k,\quad h^i\neq h^j$$

$$-Q(H) := \operatorname{conv}\left(\bigcup_{i=1}^{n} P_i \times \left\{h^i\right\}\right)$$

Embedding complexity = size smallest formulation

$$- \operatorname{mc}(\mathcal{P}) := \operatorname{min}_{H} \left\{ \operatorname{size}(Q(H)) \right\},$$

$$\operatorname{size}(Q(H)) := \# \operatorname{facets}$$

Special Ordered Sets = Simplex Faces = $\mathcal{P} := \{P_i\}_{i=1}^n$

•
$$\Delta^{d+1} := \left\{ x \in \mathbb{R}_{+}^{d+1} : \sum_{i=1}^{d+1} x_i = 1 \right\} = \operatorname{conv}\left(\left\{e^i\right\}_{i=1}^{d+1}\right)$$

$$P_i := \operatorname{conv}\left(\left\{e^j\right\}_{j \in T_i}\right) = \left\{x \in \Delta^{d+1} : \sum_{j \notin T_i} x_i \le 0\right\}$$

$$T_i \subseteq \{1, \dots, d+1\}$$

- $\operatorname{mc}(\mathcal{P}) := \operatorname{min}_{H} \left\{ \operatorname{size}(Q(H)) \right\},$ $\operatorname{size}(Q(H)) := \# \operatorname{facets}$
- $\mathbf{mc}_{G}(\mathcal{P}) := \mathbf{min}_{H} \left\{ \mathbf{size}_{G}(Q(H)) \right\},$ $\mathbf{size}_{G}(Q(H)) := \# \text{ non-bound facets}$

Special Ordered Sets of Type 2 (SOS2) = $\mathcal{P} := \{P_i\}_{i=1}^n$

•
$$P_i := \operatorname{conv} \left(\left\{ e^i, e^{i+1} \right\} \right) \subseteq \Delta^{n+1}, \quad i \in [n]$$

• $(\mathbf{x}_3)^{0.5}$
• $(\mathbf{x}_3)^{0.5}$
• $(\mathbf{x}_4)^{0.5}$
•

Embedding Formulation for SOS2: Part 1

• From encodings (H) to hyperplanes:

$$\begin{cases} h^i \rbrace_{i=1}^n \\ \vdots \\ c^i = h^{i+1} - h^i \end{cases}$$

$$h^{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, h^{2} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, h^{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

non-bound facets = $2 \times \#$ of hyperplanes

$$\bigcup_{i=1}^{\infty} j_i = 1$$

Hyperplanes spanned by

$$\left\{b^i \cdot y = 0\right\}_{j=1}^L$$

Embedding Formulation for SOS2: Part 2

$$Q(H) = \begin{cases} b^{i} \cdot y = 0 \\ j=1 \end{cases}$$

$$L(H) := \operatorname{aff}(H) - h^{1}$$

$$(b^{j} \cdot h^{1}) x_{1} + \sum_{i=2}^{n} \min\{b^{j} \cdot h^{i}, b^{j} \cdot h^{i-1}\} x_{i} + (b^{j} \cdot h^{n}) x_{n+1} \le b^{j} \cdot y \quad \forall j$$

$$-(b^{j} \cdot h^{1}) x_{1} - \sum_{i=2}^{n} \max\{b^{j} \cdot h^{i}, b^{j} \cdot h^{i-1}\} x_{i} - (b^{j} \cdot h^{n}) x_{n+1} \le -b^{j} \cdot y \quad \forall j$$

$$\sum_{i=1}^{n+1} x_{i} = 1, \quad x \in \mathbb{R}^{n+1}_{+}$$

$$y \in L(H)$$

non-bound facets = 2 × # of hyperplanes

Embedding Complexity for SOS2

• Lower Bound: $L(H) := \operatorname{aff}(H) - h^1$ $\operatorname{mc}_G(\mathcal{P}) \geq 2 \times \min \# \text{ of hyperplanes}$ $\min \# \text{ of hyperplanes} \geq \dim (L(H))$ $\dim (L(H)) \geq \lceil \log_2 n \rceil$

• Upper Bound:
$$H=\{0,1\}^{\lceil\log_2 n\rceil}$$

- Gray code: $\{h^i-h^{i+1}\}_{i=1}^{n-1}\equiv\{e^i\}_{i=1}^{\lceil\log_2 n\rceil}$
 $\operatorname{size}_G(Q(H))=2\lceil\log_2 n\rceil$

$$n+1 \le \operatorname{mc}(\mathcal{P}) \le n+1+2\lceil \log_2 n \rceil$$

Embedding Complexity for SOS2

• Unary encoding (Padberg / Lee and Wilson, early 00's):

$$\operatorname{size}_{G}(Q(H)) = 2(n-1), \quad \operatorname{size}(Q(H)) = 2n$$

• Smallest Binary encoding (V. and Nemhauser '08, Muldoon '12):

$$\operatorname{size}_{G}(Q(H)) = 2 \lceil \log_{2} n \rceil,$$

$$2 + 2 \lceil \log_{2} n \rceil \leq \operatorname{size}(Q(H)) \leq n + 1 + 2 \lceil \log_{2} n \rceil$$

Adding lower bounds (# hyperplanes ≥ dimension):

$$\operatorname{mc}_{G}(\mathcal{P}) = 2 \lceil \log_{2} n \rceil,$$

$$n + 1 \leq \operatorname{xc}(\mathcal{P}) \leq \operatorname{mc}(\mathcal{P}) \leq n + 1 + 2 \lceil \log_{2} n \rceil$$

Validity of Formulation May Not Be Evident

$$Q(H) = \begin{cases} b^{i} \cdot y = 0 \\ j=1 \end{cases}$$

$$L(H) := \operatorname{aff}(H) - h^{1}$$

$$(b^{j} \cdot h^{1}) x_{1} + \sum_{i=2}^{n} \min\{b^{j} \cdot h^{i}, b^{j} \cdot h^{i-1}\} x_{i} + (b^{j} \cdot h^{n}) x_{n+1} \le b^{j} \cdot y \quad \forall j$$

$$-(b^{j} \cdot h^{1}) x_{1} - \sum_{i=2}^{n} \max\{b^{j} \cdot h^{i}, b^{j} \cdot h^{i-1}\} x_{i} - (b^{j} \cdot h^{n}) x_{n+1} \le -b^{j} \cdot y \quad \forall j$$

$$\sum_{i=1}^{n+1} x_{i} = 1, \quad x \in \mathbb{R}^{n+1}_{+}$$

non-bound facets = 2 × # of hyperplanes

 $y \in L(H)$

Validity of Formulation May Not Be Evident

- $H = (0, 1, 1, 1)^T, (0, 1, 0, 0)^T, (0, 0, 0, 0)^T, (0, 1, 0, 1)^T, (0, 0, 0, 1)^T,$ $(1, 0, 0, 0)^T, (1, 1, 0, 1)^T, (1, 0, 1, 1)^T, (1, 1, 1, 1)^T$
- $(c^i)_{i=1}^8 = (0, 0, -1, -1)^T, (0, -1, 0, 0)^T, (0, 1, 0, 1)^T, (0, -1, 0, 0)^T,$ $(1, 0, 0, -1)^T, (0, 1, 0, 1)^T, (0, -1, 1, 0)^T, (0, 1, 0, 0)^T$
- $b^1 = (1, 0, 0, -1, 1)^T$, $b^2 = (1, 0, 0, 1)^T$, $b^3 = (1, -1, -1, 1)^T$, $b^4 = (1, 0, 0, 0)^T$ and $b^5 = (0, 0, 1, 0)^T$

Validity of Formulation May Not Be Evident

$$\sum_{j=1}^{10} \lambda_{j} = 1,$$

$$\lambda_{5} + \lambda_{6} + \lambda_{7} + \lambda_{8} + \lambda_{9} + \lambda_{10} \leq y_{1} - y_{3} + y_{4}$$

$$\lambda_{4} + \lambda_{5} + \lambda_{6} + 2\lambda_{7} + 2\lambda_{8} + \lambda_{9} + \lambda_{10} \geq y_{1} - y_{3} + y_{4}$$

$$\lambda_{1} + \lambda_{5} + \lambda_{6} + \lambda_{7} + 2\lambda_{8} + 2\lambda_{9} + 2\lambda_{10} \leq y_{1} + y_{4}$$

$$\lambda_{1} + \lambda_{2} + \lambda_{4} + \lambda_{5} + \lambda_{6} + 2\lambda_{7} + 2\lambda_{8} + 2\lambda_{9} + 2\lambda_{10} \geq y_{1} + y_{4}$$

$$-\lambda_{1} - \lambda_{2} - \lambda_{3} + \lambda_{6} + \lambda_{7} + \lambda_{8} \leq y_{1} - y_{2} - y_{3} + y_{4}$$

$$-\lambda_{1} - \lambda_{2} + \lambda_{5} + \lambda_{6} + \lambda_{7} + \lambda_{8} + \lambda_{9} \geq y_{1} - y_{2} - y_{3} + y_{4}$$

$$\lambda_{7} + \lambda_{8} + \lambda_{9} + \lambda_{10} \leq y_{1}$$

$$\lambda_{6} + \lambda_{7} + \lambda_{8} + \lambda_{9} + \lambda_{10} \geq y_{1}$$

$$\lambda_{1} + \lambda_{9} + \lambda_{10} \leq y_{3}$$

$$\lambda_{1} + \lambda_{2} + \lambda_{8} + \lambda_{9} + \lambda_{10} \geq y_{3}$$

$$\lambda_{j} \geq 0$$

Abstraction Works for Multivariate Functions

$$P_i := \{ \lambda \in \Delta^m : \lambda_j = 0 \quad \forall v_j \notin T_i \}$$

Formulations and Complexity for Triangulations

Lower bound:

$$\left(\sqrt{n/2} + 1\right)^2 \le \operatorname{mc}(\mathcal{P})$$

• Size of unary formulation is: (Lee and Wilson '01)

$$\operatorname{mc}(\mathcal{P}) \le {2\sqrt{n/2} \choose \sqrt{n/2}} + (\sqrt{n/2} + 1)^2$$

 Small binary formulation for union jack triangulation of size: (V. and Nemhauser '08)

$$\operatorname{mc}(\mathcal{P}) \le 4 \log_2 \sqrt{n/2} + 2 + \left(\sqrt{n/2} + 1\right)^2$$

$$n=2m^2$$

Encoding Selection Matters

 Size of unary formulation is: (Lee and Wilson '01)

$$\binom{2\sqrt{n/2}}{\sqrt{n/2}} + \left(\sqrt{n/2} + 1\right)^2$$

$$\uparrow \qquad \qquad \uparrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

 Size of one binary formulation: (V. and Nemhauser '08)

$$4\log_2\sqrt{n/2} + 2 + \left(\sqrt{n/2} + 1\right)^2$$

 Right embedding = significant computational advantage over alternatives (Extended, Big-M, etc.)

Unary Encoding, Minkowski Sum and Cayley Trick

Faces of Cayley Embedding

Two types of facets (or faces):

$$-P_1 \times \{0\} \equiv y_i \ge 0$$

$$-\operatorname{conv}\left(\left(F_1\times 0\right)\cup \left(F_2\times 1\right)\right)$$

 F_i proper face of P_i

- Not all combinations of faces
- Which ones are valid?

Valid Combinations = Common Normals

Redundancy in Embedding Formulations

Formulations and Complexity for Triangulations

Lower bound:

$$\left(\sqrt{n/2} + 1\right)^2 \le \operatorname{mc}\left(\mathcal{P}\right)$$

• Size of unary formulation is: (Lee and Wilson '01)

$$\operatorname{mc}(\mathcal{P}) \le {2\sqrt{n/2} \choose \sqrt{n/2}} + (\sqrt{n/2} + 1)^2$$

$$\operatorname{mc}(\mathcal{P}) \le 4 \log_2 \sqrt{n/2} + 2 + \left(\sqrt{n/2} + 1\right)^2$$

What About Other Triangulations

• $\min_{H \in \mathcal{H}_3(8)} \operatorname{size}_M (Q(\mathcal{T}, H)) \ge 9.$

$$\lambda_{(1,1)} + \lambda_{(3,3)} \leq 1 - y_1, \qquad \lambda_{(1,3)} + \lambda_{(2,2)} + \lambda_{(3,1)} \leq y_1$$

$$\lambda_{(1,2)} + \lambda_{(2,1)} \leq 1 - y_2, \qquad \lambda_{(2,3)} + \lambda_{(3,2)} \leq y_2$$

$$\lambda_{(1,1)} + \lambda_{(2,1)} + \lambda_{(3,1)} \leq 1 - y_3, \qquad \lambda_{(1,3)} + \lambda_{(2,3)} + \lambda_{(3,3)} \leq y_3$$

$$\lambda_{(1,1)} + \lambda_{(1,2)} + \lambda_{(1,3)} \leq 1 - y_4, \qquad \lambda_{(3,1)} + \lambda_{(3,2)} + \lambda_{(3,3)} \leq y_4$$

$$\sum_{v \in V} \lambda_v = 1, \quad \lambda \in \mathbb{R}^V_+, \quad y \in \{0, 1\}^4.$$

Redundant Embedding Formulation

•
$$\operatorname{size}_{M}\left(Q\left(\mathcal{T},\left\{h^{i}\right\}_{i=1}^{8}\right)\right)=19$$

v/s 8 inequalities