

Semi-Perspective Decoupled Heatmaps for 3D Robot Pose Estimation from Depth Maps

Alessandro Simoni, Stefano Pini, Guido Borghi, Roberto Vezzani

alessandro.simoni@unimore.it, s.pini@unimore.it, guido.borghi@unibo.it, roberto.vezzani@unimore.it

University of Modena and Reggio Emilia, Italy

Why RPE?

SHARED WORKSPACE

ROBOTS + HUMANS

→ SURVEILLANCE SYSTEM WITH EXTERNAL CAMERAS

3D POSE OF HUMANS AND ROBOTS

- Analysis of interactions `
- Anomaly detection
- Trajectory prediction

Our setting

NO ACCESS TO ENCODER DATA

DISABLED OR REVOKED BY THIRD PARTIES

COMPUTER GRAPHICS & SIMULATORS

TRAINING DATA GENERATION

SYNTHETIC TO REAL
TRAINING ON SYNTH AND TEST ON REAL

RGB-D OR DEPTH ONLY CAMERA DEVICES

PRECISE 3D SCENE INFORMATION

Our approach – Data Acquisition

SimBa Dataset

Rethink Baxter

SimBa Dataset

SYNTHETIC

∷:ROS + **⊗** Gazebo

- Over 350k RGB-D images
- Pick-n-place locations
- 16 robot joints
- Camera positions

REAL

IIIROS + Microsoft Kinect One

- Over 20k RGB-D images
- Camera positions
- 16 robot joints
- 20 pick-n-place sequences

Center camera

Left camera

Right camera

Our approach - Data Pre-processing

Speaker: Alessandro Simoni

Our approach - SPDH

Interpretability

Drawn inspiration from Human Pose Estimation domain

HEATMAPS INTERPRETABILITY

Speaker: Alessandro Simoni

Find alternative representation for 3D pose of articulated objects

SPDH Computation

UV SPACE

$$\sigma_j = rac{\sigma^m \cdot f}{Z_j}$$
 near joints = bigger σ far joints = smaller σ

$$\mathcal{H}_{j}^{uv}(p) = \mathcal{N}(p - p_{j}, \sigma_{j})$$

$$= \frac{1}{2\pi\sigma_{j}} e^{-[(p^{x} - p_{j}^{x})^{2} + (p^{y} - p_{j}^{y})^{2}]/(2\sigma_{j}^{2})}$$

SPDH Visualization

Speaker: Alessandro Simoni

3D Joints Computation

Quantitative Results

		mAP (%) ↑			$\mathbf{ADD} \ (\mathrm{cm}) \downarrow$		
Approach	Network	40 mm	60 mm	80 mm	100 mm	$\overline{L1}$	L2
2D to 3D (depth)	Stacked Hourglass (1 HG) [1]	8.98	31.21	49.12	66.11	15.63 ± 6.62	11.59 ± 5.32
2D to 3D (depth)	Stacked Hourglass (2 HG) [1]	10.13	31.94	50.54	67.14	14.88 ± 6.10	11.06 ± 5.04
2D to 3D (depth)	FPM (MobileNet) [2]	9.83	29.09	49.13	66.70	16.25 ± 6.66	11.66 ± 5.38
2D to 3D (depth)	FPM (SqueezeNet) [2]	10.84	32.87	51.58	67.87	15.12 ± 6.11	11.22 ± 5.07
2D to 3D (depth)	HRNet-32 [3]	12.52	33.23	49.57	67.18	14.51 ± 5.59	10.86 ± 4.64
2D to 3D (depth)	HRNet-48 [3]	12.15	32.55	50.83	67.99	14.62 ± 5.78	10.99 ± 4.81
3D regression	ResNet-18 [4]	9.40	19.99	27.06	44.44	$17.10{\scriptstyle\pm5.43}$	$12.20{\scriptstyle\pm4.12}$
2D to 3D lifting	Martinez et al. [5] *	26.96	37.98	48.40	58.33	14.01 ± 4.84	10.03 ± 3.53
Vol. heatmaps	Pavlakos et al. [6]	18.15	42.24	61.60	86.15	10.35 ± 1.07	$7.11{\scriptstyle\pm0.65}$
SPDH (ours)	HRNet-32 [3]	53.75	79.75	93.90	98.12	6.62 ± 1.53	4.41 ± 1.09

^{*} relative joint positions

^{1.} Newell et al., "Stacked hourglass networks for human pose estimation". In ECCV 2016.

^{2.} Martìnez-Gonzàlez et al., "Efficient convolutional neural networks for depth-based multi-person pose estimation". In IEEE Trans. Circuits Syst. Video Technol. 2019.

^{3.} Sun et al., "Deep high-resolution representation learning for human pose estimation". In CVPR 2016.

^{4.} He et al., "A simple yet effective baseline for 3d human pose estimation". In CVPR 2016.

 $^{5. \ \ \}textit{Martinez et al., "Single-view robot pose' and joint angle estimation via render \& compare". In ICCV 2016.}$

^{6.} Pavlakos et al., "Coarse-to-fine volumetric prediction for single-image 3D human pose". In CVPR 2017.

Qualitative Results

Ball pick-n-place real sequence

Qualitative Results

Cup pick-n-place real sequence

Conclusion

CONTRIBUTIONS

- <u>Depth maps</u> to reduce synth-to-real domain gap
- <u>Semi-Perspective Decoupled Heatmaps (SPDH)</u>
- <u>SimBa</u> dataset

Scan for project website:

https://aimagelab.ing.unimore.it/go/simba

THANK YOU!

"Semi-Perspective Decoupled Heatmaps for 3D Robot Pose Estimation from Depth Maps"

Alessandro Simoni, Stefano Pini, Guido Borghi, Roberto Vezzani

alessandro.simoni@unimore.it, s.pini@unimore.it, guido.borghi@unibo.it, roberto.vezzani@unimore.it

University of Modena and Reggio Emilia, Italy

