(1) (Płaszczyzna Niemyckiego) Niech $L = \{(x,y) \in \mathbb{R}^2 : y \geq 0\}$. Oznaczmy $L_1 = \{(x,0) : x \in \mathbb{R}\}$ oraz $L_2 = L \setminus L_1$. Dla $(x,y) \in L$ oraz r > 0 przez $B_e((x,y),r)$ oznaczymy kulę w \mathbb{R}^2 w metryce euklidesowej. Jeżeli $(x,y) \in L_2$, niech

$$\mathcal{B}(x,y) = \{B_e((x,y), \frac{1}{i}) : i = 1, 2, 3, \dots, y > \frac{1}{i}\}.$$

Jeżeli $(x,0) \in L_1$, niech

$$\mathcal{B}(x,0) = \{B_e((x,\frac{1}{i}),\frac{1}{i}) \cup \{(x,0)\} : i = 1,2,3,\ldots\}.$$

Niech \mathcal{T} będzie topologią generowaną przez $\bigcup_{(x,y)\in L} \mathcal{B}(x,y)$.

- (a) Zauważyć, że (L, \mathcal{T}) jest przestrzenią ośrodkową.
- (b) Pokazać, że (L, \mathcal{T}) zawiera dyskretną podprzestrzeń mocy continuum.
- (c) Pokazać, że (L, \mathcal{T}) nie jest przestrzenią normalną. WSKAZÓWKA: Rozważmy $C = \{(x, y) \in L_2 : x, y \in \mathbb{Q}\}$. Załóżmy nie wprost, że dla każdego $A \subseteq L_1$ istnieją rozłączne zbiory otwarte $A \subseteq V_A$ i $L_1 \setminus A \subseteq U_A$. Rozważmy $\{C \cap V_A : A \subseteq L_1\}$.
- (2) Pokazać, że płaszczyzna Niemyckiego jest przestrzenią Tichonowa (czyli $T_{3\frac{1}{2}}$, przestrzeń Tichonowa nazywamy też przestrzenią całkowicie regularną).
- (3) Pokazać, że produkt dwóch strzałek nie jest przestrzenią normalną. Wskazówka: Rozważmy $D = \{(-x, x) \colon x \in \mathbb{R}\}$ oraz zbiory postaci $A \subseteq D$ i $D \setminus A$.
- (4) Niech X będzie przestrzenią topologiczna T_1 . Pokazać, że X jest przestrzenią regularną wtedy i tylko wtedy gdy dla każdego $x \in X$ i dla każdego otoczenia otwartego $x \in U$ istnieje otoczenia otwarte $x \in V$ takie, że $\overline{V} \subseteq U$.
- (5) Pokazać, że przestrzeń $\mathcal{C}^{\mathbb{N}}$ jest homeomorficzna z \mathcal{C} , gdzie \mathcal{C} jest zbiorem Cantora, a $\mathcal{C}^{\mathbb{N}}$ oznacza $\mathcal{C} \times \mathcal{C} \times \ldots$ Wywnioskować, że istnieje ciągłe przekształcenie \mathcal{C} na $[0,1]^{\mathbb{N}}$. Zarówno $\mathcal{C}^{\mathbb{N}}$ jak i $[0,1]^{\mathbb{N}}$ bierzemy z topologią produktową.
- (6) Pokazać, że przestrzeń zwarta metryczna jest przestrzenia ośrodkowa.
- (7) Niech (X, d) będzie przestrzenią ośrodkową metryczną. Pokazać, że (X, d) zanurza się w przestrzeń $[0, 1]^{\mathbb{N}}$. Innymi słowy, (X, d) jest homeomorficzna z podprzestrzenią $[0, 1]^{\mathbb{N}}$. Zatem w szczególności konkluzja zachodzi dla przestrzeni zwartych metrycznych.
- (8) Pokazać, że płaszczyzna z metryką centrum, jak również płaszczyzna z metryką rzeka, są przestrzeniami zupełnymi.
- (9) Pokazać, że C[0,1] z metryką $d(f,g) = \int_0^1 |f(x) g(x)| dx$ nie jest przestrzenią zupełną.
- (10) Niech $\mathbb{N}^{\mathbb{N}}$ będzie zbiorem ciągów liczb naturalnych z metryką d zdefiniowaną w zadaniu (1) na liście 2.
 - (a) Pokazać, że metryka d jest równoważna metryce określonej w Tw. 1.5.2 w skrypcie ($\mathbb N$ bierzemy z metryka dyskretną).
 - (b) Pokazać, że $\mathbb{N}^{\mathbb{N}}$ jest przestrzenią zupełną w każdej z tych dwóch metryk.