4 Analyze Phase

Note: There is no change to Section 4 in the 2022 ASQ CSSGB BoK update. Exploratory Data Analysis

Multi-vari Studies

Correlation and linear regression

Hypothesis Testing

Basics

Tests for means, variances, and proportions

4A-1 Multi-vari Studies

Three types of variation

Example-Bearing Measurements

Example-Call Centre (Minitab)

Multi-vari Chart

A tool to visually show a variety of sources of variation.

Variation

- Positional (within parts)
- Cyclical (between parts)
- Temporal (over a period of time)

Variation

- Positional (within parts)
- Cyclical (between parts)

Bearing	dim	m1
1	1	52.00
1	2	52.02
1	3	52.00
2	1	52.05
2	2	52.01
2	3	51.96
3	1	52.00
3	2	52.00
3	3	51.95

Bearing

3

3

52.00

Variation

dim m152.02 3 52.00 52.05 52.01 3 51.96 52.00 52.00

3

51.95

Variation

Bearing	dim	m2
	1	52.00
	2	52.02
	3	52.00
2	1	52.05
2	2	52.06
2	3	52.06
3	1	51.92
3	2	51.93
3	3	51.92

Variation

Demo Using Minitab 18

+	C1-T	C2-T	C3-D	C4	C5-T	C6	C7	C8-T
	Call Centre	Request	Dates	Durations	Customer Cat	Week	Hour	Day
85	Montpellier	Technical Support	03/09/2007	906	D	36	13	Mon
86	Montpellier	Individual accounts	03/09/2007	599	С	36	13	Mon
87	Saint-Quentin	New account	03/09/2007	613	E	36	13	Mon
88	Montpellier	Individual accounts	03/09/2007	765	Α	36	14	Mon
89	Montpellier	Credit Cards	03/09/2007	779	Α	36	14	Mon
90	Saint-Quentin	Queries	03/09/2007	607	С	36	14	Mon
91	Montpellier	Technical Support	03/09/2007	1077	Α	36	14	Mon
92	Montpellier	Credit Cards	03/09/2007	487	Α	36	14	Mon
93	Montpellier	Technical Support	03/09/2007	752	Α	36	14	Mon
94	Saint-Quentin	Queries	03/09/2007	580	В	36	14	Mon

Multi-Vari Charts

4A-2 Correlation and Linear Regression

- Calculate correlation coefficient
 - Correlation vs causation
- Linear regression equation

Regression model for estimation and prediction

Correlation

- $\Upsilon = f(X),$
 - where Y is Dependent variable or the result (output)
 - X is Independent variable, input or the controllable variable
- For example in the study of marks obtained by students in a subject (Y) vs hours of study (X)

Correlation

Hours Studied (X)	Test Score % (Y)
20	40
24	55
46	69
62	83
22	27
37	44
45	61
27	33
65	71
23	37

Hours Studied (X)	Test Score % (Y)
20	40
24	55
46	69
62	83
22	27
37	44
45	61
27	33
65	71
23	37

Scatter Plot

Correlations

Pearson correlation 0.879 P-value 0.001

Regression Equation

Test Score = 15.79 + 0.976 Hours Studied

Correlation / Regression

_	Hours Studied (X)	Test Score % (Y)	ΧY	X2 -	Y2 _
	20	40	800	400	1600
	24	55	1320	576	3025
	46	69	3174	2116	4761
	62	83	5146	3844	6889
	22	27	594	484	729
	37	44	1628	1369	1936
	45	61	2745	2025	3721
	27	33	891	729	1089
	65	71	4615	4225	5041
	23	37	851	529	1369
SUM	371	520	21764	16297	30160

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n(\sum x^2) - (\sum x)^2][n(\sum y^2) - (\sum y)^2]}}$$

•	Hours Studied (X)	Test Score % (Y)	ΧY	X2 _	Y2 _
	20	40	800	400	1600
	24	55	1320	576	3025
	46	69	3174	2116	4761
	62	83	5146	3844	6889
	22	27	594	484	729
	37	44	1628	1369	1936
	45	61	2745	2025	3721
	27	33	891	729	1089
	65	71	4615	4225	5041
	23	37	851	529	1369
SUM	371	520	21764	16297	30160

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{\left[n(\sum x^2) - (\sum x)^2\right]\left[n(\sum y^2) - (\sum y)^2\right]}}$$

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

- Measures the strength of linear relationship between Y and X
- ❖ Pearson Correlation Coefficient, r (r varies between -1 and +1)
 - Perfect positive relationship: r = 1
 - ightharpoonup No relationship: r = 0
 - ❖ Perfect negative relationship: r = -1

Correlation

- ❖ Population correlation (ρ) − usually unknown
- Sample correlation (r)

Correlation

- ❖ Coefficient of Determination, r²
- Proportion of the variance in the dependent variable that is predictable from the independent variable
- (varies from 0.0 to 1.0 or zero to 100%)
 - None of the variation in Y is explained by X, $r^2 = 0.0$
 - ❖ All of the variation in Y is explained by X, r²= 1.0
 - $r = 0.88, r^2 = 0.77$

Correlation vs Causation

- Correlation does not imply causation
 - a correlation between two variables does not imply that one causes the other

Regression Analysis

Quantifies the relationship between Y and X (Y = a + bX)

Regression

	Hours Studied (X)	Test Score % (Y)	XY	X2	Y2
	20	40	800	400	1600
	24	55	1320	576	3025
Y = a + bX	46	69	3174	2116	4761
	62	83	5146	3844	6889
	22	27	594	484	729
$N\Sigma XY - (\Sigma X)(\Sigma Y)$	37	44	1628	1369	1936
h —	45	61	2745	2025	3721
$N\Sigma X^2 - (\Sigma X)^2$	27	33	891	729	1089
	65	71	4615	4225	5041
$\sum Y - b \sum X$	23	37	851	529	1369
$a = \frac{\Delta}{\Delta}$ SUM	371	520	21764	16297	30160
IV					

$$Y = 15.79 + 0.97 X$$

Hours Studied (X)	Test Score % (Y)	Y = 15.79 + 0.97.X	Residual
20	40	35.19	4.81
24	55	39.07	15.93
46	69	60.41	8.59
62	83	75.93	7.07
22	27	37.13	-10.13
37	44	51.68	-7.68
45	61	59.44	1.56
27	33	41.98	-8.98
65	71	78.84	-7.84
23	37	38.1	-1.1

$$Y = 15.79 + 0.97 X$$

• For a student studying 50 hrs what is the expected test score %?

$$Y = 15.79 + 0.97 X$$

$$Y = 64.58$$

Regression

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	1	2412.6	2412.56	27.28	0.001
Hours Studied	1	2412.6	2412.56	27.28	0.001
Error	8	707.4	88.43		
Total	9	3120.0			

If P-value is less than 0.05, you can say with 95% confidence the significant relationship exists between variables.

Regression

4B-1
Hypothesis
Testing Basics

- Statistical vs practical significance
- Hypothesis testing steps
- Type 1 and 2 errors
- The p Value

- A statistical hypothesis test is a method of statistical inference.
- Commonly used tests include:
 - Compare sample statistic with the population parameter
 - Compare two datasets

Statistical Significance

- Case of a perfume making company:
- ❖ Mean Volume 150 cc and sd=2 cc

Practical Significance

- Practical significance of an experiment tells us if there is any actionable information from the result.
- Large samples can find out statistical difference for very small difference. These small difference might not have practical significance.

- 1. State the Alternate Hypothesis.
- 2. State the Null Hypothesis.
- 3. Select a probability of error level (alpha level). Generally 0.05
- 4. Calculate the test statistic (e.g t or z score)
- 5. Critical test statistic
- 6. Interpret the results.

- Null Hypothesis: The person is innocent
- Alternate Hypothesis: The person is guilty. You need to provide proof of this.
- Court conclusion is: Guilty or Not Guilty (not the innocent)

- Null Hypothesis: The person is innocent
- Alternate Hypothesis: The person is guilty. You need to provide proof of this.
- In statistical terms you:
 - Reject the Null Hypothesis, or
 - Fail to reject the Null Hypothesis (not accept the Null Hypothesis)

- ❖ Null Hypothesis: The machine is filling the bottles with 150 cc
- Alternate Hypothesis: The machine is "not" filling the bottles with 150 cc.

- Lower Tail Tests
 - **❖** H_0 : μ ≥ 150cc
 - ♣ H_a: μ < 150cc
- Upper Tail Tests
 - ♣ H₀: μ ≤ 150cc
 - ❖ H_a : μ > 150cc
- ❖ Two Tail Tests
 - ❖ H_0 : $\mu = 150cc$
 - **♦** 4 H_a: μ ≠ 150cc

- ❖ What would you conclude if you pick one sample and find the volume as:
 - ❖ 147 cc or
 - **❖** 156 cc

- 1. State the Alternate Hypothesis.
- 2. State the Null Hypothesis.
- 3. Select a probability of error level (alpha level). Generally 0.05
- 4. Calculate the test statistic (e.g t or z score)
- 5. Critical test statistic
- 6. Interpret the results.

		True State	of Nature
		H ₀ Is true	H _a Is true
	Support H _{0 /} Reject H _a	Correct Conclusion	Type II Error
Conclusion	Support H _{a /} Reject H ₀	Type I Error	Correct Conclusion (Power)

		True State	of Nature
		H _o Is true	H _a Is true
Conclusion	Support H _{0 /} Reject H _a	Correct Conclusion	Type II Error
Conclusion	Support H _{a /} Reject H ₀	Type I Error	Correct Conclusion (Power)

	Type I error (alpha)	Type II error (beta)			
Name	Producer's risk/ Significance level	Consumer's risk			
1 minus error is called	Confidence level	Power of the test			
Example of Fire Alarm	False fire alarm leading to inconvenience	Missed fire leading to disaster			
Effects on process	Unnecessary cost increase due to frequent changes	Defects may be produced			
Control method	Usually fixed at a predetermined level, 1%, 5% or 10%	Usually controlled to < 10% by appropriate sample size			
Simple definition	Innocent declared as guilty	Guilty declared as innocent			

Confidence Level:

C = 0.90, 0.95, 0.99 (90%, 95%, 99%)

Level of Significance or Type I Error:

 $\alpha = 1 - C (0.10, 0.05, 0.01)$

	Type I error (alpha)	Type II error (beta)		
Name	Producer's risk/ Significance level	Consumer's risk		
1 minus error is called	Confidence level	Power of the test		
Example of Fire Alarm	False fire alarm leading to inconvenience	Missed fire leading to disaster		
Effects on process	Unnecessary cost increase due to frequent changes	Defects may be produced		
Control method	Usually fixed at a predetermined level, 1%, 5% or 10%	Usually controlled to < 10% by appropriate sample size		
Simple definition	Innocent declared as guilty	Guilty declared as innocent		

Power

- ❖ Power = 1 β (or 1 type II error)
- Type II Error: Failing to reject null hypothesis when null hypothesis is false.
- ❖ Power: Likelihood of rejecting null hypothesis when null hypothesis is false.
- Or: Power is the ability of a test to correctly reject the null hypothesis.

		True State	e of Nature
		H ₀ Is true	H _a Is true
Conclusion	Support H _{0 /} Reject H _a	Correct Conclusion	Type II Error
	Support H _{a /} Reject H ₀	Type I Error	Correct Conclusion (Power)

Alpha vs Beta

- Researcher can not commit both Type I and II error. Only one can be committed.
- As the value of α increases (say 0.01 to 0.05) β goes down and the Power of test increases.
- To reduce both Type I and II errors increase sample size.

- 1. State the Alternate Hypothesis.
- 2. State the Null Hypothesis.
- 3. Select a probability of error level (alpha level). Generally 0.05
- 4. Calculate the test statistic (e.g t or z score)
- 5. Critical test statistic
- 6. Interpret the results.

- Let's pick 1 bottle from the production line and the volume is 153.8 cc
- ❖ With 95% confidence level we will fail to reject the null hypothesis.

Let's pick 4 bottles from the production line and find the average volume as 153.8 cc.

- Let's pick 4 bottles from the production line and find the average volume as 153.8 cc.
- ❖ With 95% confidence level we will reject the null hypothesis.

 H_0 : $\mu = 150cc$ H_a : $\mu \neq 150cc$

$$z_{cal} = \frac{(\bar{X} - \mu)}{\sigma_{\chi}/\sqrt{n}}$$
 $z_{cal} = \frac{(153.8 - 150)}{2/\sqrt{4}} = 3 \cdot 8$

For α = 0.05 Two Tails means 0.025 on both tails. Z Critical = 1.96

 H_0 : $\mu = 150cc$ H_a : $\mu \neq 150cc$

- 1. State the Alternate Hypothesis.
- 2. State the Null Hypothesis.
- 3. Select a probability of error level (alpha level). Generally 0.05
- 4. Calculate the test statistic (e.g t or z score)
- 5. Critical test statistic
- 6. Interpret the results.

- α = 0.01 Two Tails means 0.005 on both tails. Z Critical = 2.575
- α = 0.05 Two Tails means 0.025 on both tails. Z Critical = 1.96
- α = 0.10 Two Tails means 0.05 on both tails. Z Critical = 1.645
- \Leftrightarrow $\alpha = 0.05$ Single Tails
 - **❖** Z Critical = 1.645

z	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019 .0014
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005 .0003	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003 .0002
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001 .0000	.0002 .0001 .0001 .0001							

p Value

- p value is the lowest value of alpha for which the null hypothesis can be rejected. (Probability that the null hypothesis is correct)
- For example, if p = 0.045 you can reject the null hypothesis at $\alpha = 0.05$
- ❖ p is low the null must go / p is high the null fly.

4B-2
Tests for means,
variances and
broportions

6. Interpret the results.

One Sample z Test

More than

2 samples

ANOVA

Conditions for z Test

- Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- Sampling distribution approximates Normal Distribution
 - ❖ Population is Normally distributed and the population standard deviation is known *** OR ***
 - **❖** Sample size ≥ 30

One Sample z Test

Calculated Test Statistic

$$H_0$$
: $\mu = 150cc$
 H_a : $\mu \neq 150cc$

$$z_{cal} = \frac{(\bar{x} - \mu)}{\sigma/\sqrt{n}}$$

- ❖ Example: Perfume bottle producing 150cc with sd of 2 cc, 100 bottles are randomly picked and the average volume was found to be 150.2 cc. Has mean volume changed? (95% confidence)
- $z_{calculated} = (150.2-150)/[2 / sqrt(100)] = 0.2/0.2 = 1$
- \star $z_{critical} = ?$

Critical Test Statistic

z	0	1	2	3	4	5	6	7	8	9
0.0 0.1 0.2 0.3 0.4	.5000 .4602 .4207 .3821 .3446	.4960 .4562 .4168 .3783 .3409	.4920 .4522 .4129 .3745 .3372	.4880 .4483 .4090 .3707 .3336	.4840 .4443 .4052 .3669	.4801 .4404 .4013 .3632 .3264	.4761 .4364 .3974 .3594 .3228	.4721 .4325 .3936 .3557 .3192	.4681 .4286 .3897 .3520 .3156	.4641 .4247 .3859 .3483 .3121
0.5 0.6 0.7 0.8 0.9	.3085 .2743 .2420 .2119 .1841	.3050 .2709 .2389 .2090 .1814	.3015 .2676 .2358 .2061 .1788	.2981 .2643 .2327 .2033 .1762	.2946 .2611 .2296 .2005 .1736	.2912 .2578 .2266 .1977 .1711	.2877 .2546 .2236 .1949 .1685	.2843 .2514 .2206 .1922 .1660	.2810 .2483 .2177 .1894 .1635	.2776 .2451 .2148 .1867 .1611
1.0 1.1 1.2 1.3 1.4	.1587 .1357 .1151 .0968 .0808	.1562 .1335 .1131 .0951 .0793	.1539 .1314 .1112 .0934 .0778	.1515 .1292 .1093 .0918 .0764	.1492 .1271 .1075 .0901 .0749	.1469 .1251 .1056 .0885 .0735	.1446 .1230 .1038 .0869 .0721	.1423 .1210 .1020 .0853 .0708	.1401 .1190 .1003 .0838 .0694	.1379 .1170 .0985 .0823 .0681
1.5 1.6 1.7 1.8 1.9	.0668 .0548 .0446 .0359 .0287	.0655 .0537 .0436 .0351 .0281	.0643 .0526 .0427 .0344 .0274	.0630 .0516 .0418 .0336 .0268	.0618 .0505 .0409 .0329 .0262	.0606 .0495 .0401 .0322 .0256	.0594 .0485 .0392 .0314 .0250	.0582 .0475 .0384 .0307 .0244	.0571 .0465 .0375 .0301 .0239	.0559 .0455 .0367 .0294 .0233
2.0 2.1 2.2 2.3 2.4	.0228 .0179 .0139 .0107 .0082	.0222 .0174 .0136 .0104 .0080	.0217 .0170 .0132 .0102 .0078	.0212 .0166 .0129 .0099 .0075	.0207 .0162 .0125 .0096 .0073	.0202 .0158 .0122 .0094 .0071	.0197 .0154 .0119 .0091 .0069	.0192 .0150 .0116 .0089 .0068	.0188 .0146 .0113 .0087 .0066	.0183 .0143 .0110 .0084 .0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019 .0014
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005 .0003	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005 .0003	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001 .0000	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001

- \Leftrightarrow $\alpha = 0.05$ One Tail
- ❖ Z Critical = 1.645
- \Leftrightarrow $\alpha = 0.10$ One Tail
- Z Critical = 1.282
- $\alpha = 0.05$ Two Tails
- Z Critical = 1.96
- $\alpha = 0.10$ Two Tail
- Z Critical = 1.645

QG

Critical Test Statistic

- ❖ Example: Perfume bottle producing 150cc with sd of 2 cc, 100 bottles are randomly picked and the average volume was found to be 150.2 cc. Has mean volume changed? (95% confidence)
- $z_{calculated} = (150.2-150)/[2 / sqrt(100)] = 0.2/0.2 = 1$
- \star z_{critical} = 1.96

QG

Interpret the Results

Fail to Reject H₀

- ❖ Example: Perfume bottle producing 150cc with sd of 2 cc, 100 bottles are randomly picked and the average volume was found to be 150.2 cc. Has mean volume changed? (95% confidence)
- $z_{calculated} = (150.2-150)/[2 / sqrt(100)] = 0.2/0.2 = 1$
- \star z_{critical} = 1.96

 H_a : $\mu > 150cc$

Interpret the Results

Fail to Reject H₀

- ❖ Example: Perfume bottle producing 150cc with sd of 2 cc, 100 bottles are randomly picked and the average volume was found to be 150.2 cc. Has mean volume changed-increased? (95% confidence)
- $z_{calculated} = (150.2-150)/[2 / sqrt(100)] = 0.2/0.2 = 1$
- $z_{critical} = \frac{1.96}{1.645}$

Critical Test Statistic

z	0	1	2	3	4	5	6	7	8	9
0.0 0.1 0.2 0.3 0.4	.5000 .4602 .4207 .3821 .3446	.4960 .4562 .4168 .3783 .3409	.4920 .4522 .4129 .3745 .3372	.4880 .4483 .4090 .3707 .3336	.4840 .4443 .4052 .3669	.4801 .4404 .4013 .3632 .3264	.4761 .4364 .3974 .3594 .3228	.4721 .4325 .3936 .3557 .3192	.4681 .4286 .3897 .3520 .3156	.4641 .4247 .3859 .3483 .3121
0.5 0.6 0.7 0.8 0.9	.3085 .2743 .2420 .2119 .1841	.3050 .2709 .2389 .2090 .1814	.3015 .2676 .2358 .2061 .1788	.2981 .2643 .2327 .2033 .1762	.2946 .2611 .2296 .2005 .1736	.2912 .2578 .2266 .1977 .1711	.2877 .2546 .2236 .1949 .1685	.2843 .2514 .2206 .1922 .1660	.2810 .2483 .2177 .1894 .1635	.2776 .2451 .2148 .1867 .1611
1.0 1.1 1.2 1.3 1.4	.1587 .1357 .1151 .0968 .0808	.1562 .1335 .1131 .0951 .0793	.1539 .1314 .1112 .0934 .0778	.1515 .1292 .1093 .0918 .0764	.1492 .1271 .1075 .0901 .0749	.1469 .1251 .1056 .0885 .0735	.1446 .1230 .1038 .0869 .0721	.1423 .1210 .1020 .0853 .0708	.1401 .1190 .1003 .0838 .0694	.1379 .1170 .0985 .0823 .0681
1.5 1.6 1.7 1.8 1.9	.0668 .0548 .0446 .0359 .0287	.0655 .0537 .0436 .0351 .0281	.0643 .0526 .0427 .0344 .0274	.0630 .0516 .0418 .0336 .0268	.0618 .0505 .0409 .0329 .0262	.0606 .0495 .0401 .0322 .0256	.0594 .0485 .0392 .0314 .0250	.0582 .0475 .0384 .0307 .0244	.0571 .0465 .0375 .0301 .0239	.0559 .0455 .0367 .0294 .0233
2.0 2.1 2.2 2.3 2.4	.0228 .0179 .0139 .0107 .0082	.0222 .0174 .0136 .0104 .0080	.0217 .0170 .0132 .0102 .0078	.0212 .0166 .0129 .0099 .0075	.0207 .0162 .0125 .0096 .0073	.0202 .0158 .0122 .0094 .0071	.0197 .0154 .0119 .0091 .0069	.0192 .0150 .0116 .0089 .0068	.0188 .0146 .0113 .0087 .0066	.0183 .0143 .0110 .0084 .0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019 .0014
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005 .0003	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005 .0003	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001 .0000	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001

- \Leftrightarrow $\alpha = 0.05$ One Tail
- ❖ Z Critical = 1.645
- \Leftrightarrow $\alpha = 0.10$ One Tail
- Z Critical = 1.282
- $\alpha = 0.05$ Two Tails
- Z Critical = 1.96
- $\alpha = 0.10$ Two Tail
- Z Critical = 1.645

 H_a : $\mu > 150cc$

Interpret the Results

Fail to Reject H₀

- ❖ Example: Perfume bottle producing 150cc with sd of 2 cc, 100 bottles are randomly picked and the average volume was found to be 150.2 cc. Has mean volume changed-increased? (95% confidence)
- $z_{calculated} = (150.2-150)/[2 / sqrt(100)] = 0.2/0.2 = 1$
- $z_{critical} = \frac{1.96}{1.645}$

One Sample z Test - Minitab

One-Sample Z

Descriptive Statistics

N	Mean	SE Mean	95% CI for μ
100	150.200	0.200	(149.808, 150.592)

μ: mean of Sample Known standard deviation = 2

Test

Null hypothesis H_0 : $\mu = 150$ Alternative hypothesis H_1 : $\mu \neq 150$

Z-Value P-Value 1.00 0.317

Conditions for t Test

- Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- Sampling distribution approximates Normal Distribution
 - Population is Normally distributed and the standard deviation is <u>unknown</u> *** AND ***
 - ❖ Sample size < 30

One Sample t Test

Conditions for t Test

$$H_0$$
: $\mu = 150cc$
 H_a : $\mu \neq 150cc$

$$\boldsymbol{t}_{cal} = \frac{(\bar{x} - \mu)}{\boldsymbol{s}/\sqrt{n}}$$

❖ Example: Perfume bottle producing 150cc, <u>4 bottles</u> are randomly picked and the average volume was found to be 151cc and sd of the <u>sample bottles</u> was 2 cc. Has mean volume changed? (95% confidence)

$$\star$$
 $t_{\text{calculated}} = \frac{(\bar{x} - \mu)}{s/\sqrt{n}} = \frac{(151 - 150)}{2/\sqrt{4}} = \frac{1}{1} = 1$

$$\star$$
 $t_{critical} = ?$

Critical Test Statistic

	TAIL PROBABILITY P											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646

- $\alpha = 0.05$ One Tails
- Φ Df = 3
- t Critical = 2.353

- $\alpha = 0.05$ Two Tails
- Df = 3
- t Critical = 3.182

Critical Test Statistic

					TAIL	PROBAB	ILITY P					
lf	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	970	1.070	1 350	1 771	2.160	2 282	2.650	3.012	2 272	3.852	4.22
14	.692	Distribution Plot								3.787	4.140	
15	.691					, df=3	,,			5	3.733	4.073
16	.690	0.4								2	3.686	4.015
17	.689					\sim				2	3.646	3.965
18	.688									7	3.611	3.922
19	.688	0.3 -				/ \				4	3.579	3.883
20	.687					/ \				3	3.552	3.850
21	.686	>-			/		\			5	3.527	3.819
22	.686	Density -			/		\			9	3.505	3.792
23	.685	ے ا			/					4	3.485	3.768
24	.685				/		\			1	3.467	3.749
25	.684	0.1 -								3	3.450	3.725
26	.684									7	3.435	3.707
27	.684						`			7	3.421	3.690
28	.683	0.0	0.025						0.025	7	3.408	3.674
29	.683			-3.182		0 X		3.182		8	3.396	3.659
30	.683)	3.385	3.646

❖ Example: Perfume bottle producing 150cc, <u>4 bottles</u> are randomly picked and the average volume was found to be 151cc and sd of the <u>sample bottles</u> was 2 cc. Has mean volume changed? (95% confidence)

$$\star$$
 $t_{\text{calculated}} = \frac{(\bar{x} - \mu)}{s/\sqrt{n}} = \frac{(151 - 150)}{2/\sqrt{4}} = \frac{1}{1} = 1$

$$t_{critical} = 3.182$$

Interpret the Results

Fail to Reject H₀

❖ Example: Perfume bottle producing 150cc, <u>4 bottles</u> are randomly picked and the average volume was found to be 151cc and sd of the <u>sample bottles</u> was 2 cc. Has mean volume changed? (95% confidence)

$$\star$$
 $t_{\text{calculated}} = \frac{(\bar{x} - \mu)}{s/\sqrt{n}} = \frac{(151 - 150)}{2/\sqrt{4}} = \frac{1}{1} = 1$

$$t_{critical} = 3.182$$

One Sample t Test - Minitab

One-Sample T

Descriptive Statistics

Ν	Mean	StDev	SE Mean	95% CI for μ
4	151.00	2.00	1.00	(147.82, 154.18)

μ: mean of Sample

Test

Null hypothesis H_0 : $\mu = 150$ Alternative hypothesis H_1 : $\mu \neq 150$

Conditions for One Proportion Test

- Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - If sampling without replacement, the sample size should not be more than 10% of the population
- The data contains only two categories, such as pass/fail or yes/no
- For Normal approximation:
 - both np≥10 and n(1-p)≥10 (data should have at least 10 "successes" and at least 10 "failures") (in some books it is 5)

One Proportion Test

One Proportion Test

$$H_0$$
: $p = p_0$

$$H_a$$
: $p \neq p_0$

$$z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

- Example: Smoking rate in a town in past was 21%, 100 samples were picked and found 14 smokers. Has smoking habit changed?
- Can Normality assumption be made?

$$p_0 = 0.21$$
, p=0.14

$$periode property pr$$

$$(1-p_0) = 0.79 \times 100 = 79$$

❖ >10 means sample size is sufficient.

QG

One Proportion Test

$$H_0$$
: $p = p_0$

$$H_a$$
: $p \neq p_0$

$$z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Example: Smoking rate in a town in past was 21%, 100 samples were picked and found 14 smokers. Has smoking habit changed?

$$z_{critical} = \hat{i}$$

Critical Test Statistic

z	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005 .0003	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001

- $\alpha = 0.05$ One Tail
- Z Critical = 1.645
- \Leftrightarrow $\alpha = 0.10$ One Tail
- ❖ Z Critical = 1.282
- \Leftrightarrow $\alpha = 0.05$ Two Tails
- Z Critical = 1.96
- \Leftrightarrow $\alpha = 0.10$ Two Tail
- Z Critical = 1.645

One Proportion Test

Example: Smoking rate in a town in past was 21%, 100 samples were picked and found 14 smokers. Has smoking habit changed? (95% confidence)

$$z_{\text{calculated}} = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.14 - 0.21}{\sqrt{\frac{0.21(1 - 0.21)}{100}}} = -1.719$$

$$\star$$
 $z_{critical} = 1.96$

Interpret the Results

Fail to Reject H₀

- ❖ Example: Smoking rate in a town in past was 21%, 100 samples were picked and found 14 smokers. Has smoking habit changed? (95% confidence)
- $z_{\text{calculated}} = \frac{p p_0}{\sqrt{\frac{p_0(1 p_0)}{n}}} = \frac{0.14 0.21}{\sqrt{\frac{0.21(1 0.21)}{100}}} = -1.719$
- \star $z_{critical} = 1.96$

Interpret the Results

 H_a : p < p₀ Fail to Reject H₀

Example: Smoking rate in a town in past was 21%, 100 samples were picked and found 14 smokers. Has smoking habit reduced at 95% confidence? (one tail)

$$z_{\text{calculated}} = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.14 - 0.21}{\sqrt{\frac{0.21(1 - 0.21)}{100}}} = -1.719$$

$$z_{critical} = \frac{1.96}{1.645}$$

One Proportion Test - Minitab

Test and CI for One Proportion

Method

p: event proportion

Normal approximation method is used for this analysis.

Descriptive Statistics

Ν	Event	Sample p	95% CI for p
100	14	0.140000	(0.071992, 0.208008)

Test

Null hypothesis H_0 : p = 0.21Alternative hypothesis H_1 : $p \neq 0.21$

Z-Value P-Value -1.72 0.086

One Proportion Test - Minitab

Test and CI for One Proportion

Method

p: event proportion
Normal approximation method is used for this analysis.

Descriptive Statistics

			95% Upper Bound
N	Event	Sample p	for p
100	14	0.140000	0.197074

Test

-1.72

Null hypothesis H_0 : p = 0.21Alternative hypothesis H_1 : p < 0.21Z-Value P-Value

0.043

- * Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- The data follows a Normal Distribution

One Variance Test

Variance Tests

- Chi-square test
 - For testing the population variance against a specified value
 - testing goodness of fit of some probability distribution
 - testing for independence of two attributes (Contingency Tables)
- ❖ F-test
 - for testing equality of *two* variances from different populations
 - for testing equality of several means with technique of ANOVA.

One Variance Test

One Variance Test

Ho: $s^2 <= \sigma^2$

Ha: $s^2 > \sigma^2$

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

Example 1: A sample of 51 bottles was selected. The standard deviation of these 51 bottles was 2.35 cc. Has it increased from established 2 cc? 90% confidence level.

What is critical value of Chi Square for 50 degrees of freedom?

Critical Test Statistic

Percentage Points of the Chi-Square Distribution

		reiteiltä	se roilles	or the ci	11-Square	Distribu	lion		
Degrees of				Probability	of a larger	value of x 2			
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

- \Leftrightarrow $\alpha = 0.10$ One Tail
- ❖ Df = 50
- χ^2 Critical = 63.17

- $\alpha = 0.10$ Two Tail
- **❖** Df = 50
- χ^2 Critical = 34.76 and 67.50

Critical Test Statistic

Percentage Points of the Chi-Square Distribution

Degrees of	f Probability of a larger value of x ²								
Freedom	0.99	0.95	0.10	0.05	0.01				
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11							.28	19.68	24.72
12				tion Plot			.55	21.03	26.22
13			Chi-Squa	re, ai=50			.81	22.36	27.69
14	0.04						.06	23.68	29.14
15							.31	25.00	30.58
16							.54	26.30	32.00
17	0.03 -		/				.77	27.59	33.41
18	≥	/					.99	28.87	34.80
19	Density 0.02	/					.20	30.14	36.19
20	Δ						.41	31.41	37.57
22		/					.81	33.92	40.29
24	0.01 -	/					.20	36.42	42.98
26					0.1		.56	38.89	45.64
28					0.1		.92	41.34	48.28
30	0.00			63.1	7		.26	43.77	50.89
40				Х			.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

❖ Example 1: A sample of 51 bottles was selected. The standard deviation of these 51 bottles was 2.35 cc. Has it increased from established 2 cc? 90% confidence level.

$$^{*}\chi^{2}(critical) = 63.17$$

One Variance Test

One Variance Test

Ha: $s^2 > \sigma^2$

❖ Example 1: A sample of 51 bottles was selected. The standard deviation of these 51 bottles was 2.35 cc. Has it increased from established 2 cc? 90% confidence level.

❖
$$\chi^2$$
 (critical) = 63.17

One Variance Test

Percentage Points of the Chi-Square Distribution

Degrees of	Probability of a larger value of x ²								
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10								18.31	23.21
11				tribution Pl				19.68	24.72
12		Chi-Square, df=50						21.03	26.22
13	0.04							22.36	27.69
14								23.68	29.14
15			/					25.00	30.58
16	0.03 -		/					26.30	32.00
17	_		/	\				27.59	33.41
18	Density - 20.0		/	`	\			28.87	34.80
19	_ 0.02 ص		/					30.14	36.19
20		/	/					31.41	37.57
22								33.92	40.29
24	0.01 -							36.42	42.98
26		0.05				0.05		38.89	45.64
28	0.00					0.05		41.34	48.28
30	0.00	34.7	6	V	67.50			43.77	50.89
40				Х				55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

❖ Example 2: A sample of 51 bottles was selected. The standard deviation of these 51 bottles was 2.35 cc. Has it changed from established 2 cc? 90% confidence level.

What is critical value of Chi Square for 50 degrees of freedom? (two tails test)

One Variance Test

Critical Test Statistic

Percentage Points of the Chi-Square Distribution

		reiteiltä	se roilles	or the ci	11-Square	Distribu	lion		
Degrees of				Probability	of a larger	value of x 2			
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

- \Leftrightarrow $\alpha = 0.10$ One Tail
- ❖ Df = 50
- χ^2 Critical = 63.17

- $\alpha = 0.10$ Two Tail
- **❖** Df = 50
- χ^2 Critical = 34.76 and 67.50

One Variance Test

Ha: $s^2 \neq \sigma^2$

Fail to Reject H₀

❖ Example 2: A sample of 51 bottles was selected. The standard deviation of these 51 bottles was 2.35 cc. Has it changed from established 2 cc? 90% confidence level.

$$\star \chi^2$$
 (critical) = 34.76 and 67.50

One Variance Test - Minitab

Test and CI for One Variance

Method

σ: standard deviation of Sample

The Bonett method cannot be calculated for summarized data.

The chi-square method is valid only for the normal distribution.

Descriptive Statistics

90% Lower Bound for σ using N StDev Variance Chi-Square 51 2.35 5.52 2.09

Test

Null hypothesis H_0 : $\sigma = 2$ Alternative hypothesis H_1 : $\sigma > 2$ Test

Method Statistic DF P-Value
Chi-Square 69.03 50 0.038

One Variance Test

One Variance Test - Minitab

Test and CI for One Variance

Method

σ: standard deviation of Sample

The Bonett method cannot be calculated for summarized data.

The chi-square method is valid only for the normal distribution.

Descriptive Statistics

			90% CI for				
		σ using					
Ν	StDev	Variance	Chi-Square				
51	2.35	5.52	(2.02, 2.82)				

Test

Null hypothe	esis	H_0 : $\sigma = 2$			
Alternative h	ypothesis	H₁:	σ≠2		
	Test				
Method	Statistic	DF	P-Value		
Chi-Square	69.03	50	0.077		

One Variance Test

Two Sample Z Test

Conditions for z Test

- Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- Sampling distribution approximates Normal Distribution
 - ❖ Population is Normally distributed and the population standard deviation is known *** OR ***
 - **❖** Sample size ≥ 30

Two Sample Z Test

Z Test

One Sample

Two Sample

$$H_0$$
: $\mu = 150cc$
 H_a : $u \ne 150cc$

$$H_0$$
: $\mu = 150cc$
 H_a : $\mu \neq 150cc$

$$z_{cal} = \frac{(\bar{x} - \mu)}{\sigma / \sqrt{n}}$$

• Null hypothesis:
$$H_0$$
: $\mu_1 = \mu_2$

• or
$$H_0$$
: $\mu_1 - \mu_2 = 0$

Alternative hypothesis:
$$H_a: \mu_1 \neq \mu_2$$

$$z_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Calculated Test Statistic

$$H_0$$
: $\mu_1 = \mu_2$

$$H_a$$
: $\mu_1 \neq \mu_2$

$$z_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

$$z_{cal} = \frac{(151.2 - 151.9)}{\sqrt{\frac{2.1^2}{100} + \frac{2.2^2}{100}}}$$

Example: From two machines 100 samples each were drawn.

Machine 1: Mean = 151.2 / sd = 2.1

Machine 2: Mean = 151.9 / sd = 2.2

Is there difference in these two machines. Check at 95% confidence level.

- $z_{critical} = ? (for alpha = 0.05, two tail test)$

Critical Test Statistic

z	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005 .0003	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005 .0003	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001

- \Leftrightarrow $\alpha = 0.05$ One Tail
- ❖ Z Critical = 1.645
- $\alpha = 0.10$ One Tail
- ❖ Z Critical = 1.282
- \Leftrightarrow $\alpha = 0.05$ Two Tails
- **❖** Z Critical = 1.96
- $\alpha = 0.10$ Two Tail
- Z Critical = 1.645

Two Sample Z Test

QG

Interpret the Results

Fail to Reject H₀

Example: From two machines 100 samples each were drawn.

Machine 1: Mean = 151.2 / sd = 2.1

Machine 2: Mean = 151.9 / sd = 2.2

Is there difference in these two machines. Check at 95% confidence level.

- $z_{critical} = 1.96$
- **Conclusion:** Reject Null Hypothesis H_0 : $\mu_1 = \mu_2$

Two Sample z Test - Minitab

1. Download Macro:

https://support.minitab.com/en-us/minitab/18/TwoZTest.mac

2. Provide the path of Macro:

Choose Tools > Options > General. Under Macro location browse to the location where you save macro files.

3. Run command:

Edit > Command Line Editor and type: %TWOZTEST C1 C2 sd1 sd2

Two Sample Z Test

Conditions for t Test

- Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- Sampling distribution approximates Normal Distribution
 - Population is Normally distributed and the standard deviation is <u>unknown</u> *** AND ***
 - ❖ Sample size < 30

Two Sample t Test

- If two set of data are independent or dependent.
 - ❖ If the values in one sample reveal no information about those of the other sample, then the samples are independent.
 - **Example:** Volume produced by two machines
 - ❖ If the values in one sample affect the values in the other sample, then the samples are dependent.
 - Example: Blood pressure before and after a specific medicine

Two sample t test

Paired t test

Two Sample t Test

One Sample t Test

$$t_{cal} = \frac{(\bar{x} - \mu)}{s / \sqrt{n}}$$

Two Sample t Tests

Is variance for two samples equal?

Yes

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$df = n_1 + n_2 - 2$$

No

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

$$df = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{\frac{(s_1^2/n_1)^2}{(n_1 - 1)} + \frac{(s_2^2/n_2)^2}{(n_2 - 1)}}$$

Two Sample t Test

QG

Conditions for t Test

$$H_0$$
: $\mu_A = \mu_B$
 H_a : $\mu_A \neq \mu_B$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
$$df = n_1 + n_2 - 2$$

- Example: Samples from two machines A and B have the following volumes in bottles. (assume equal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine B:** 156, 155, 158, 155, 154 Is the mean different? Calculate with 95% confidence.
 - $n_1 = 5$, $n_2 = 5$, $s_1 = 1.48$, $s_2 = 1.52$
 - \bar{x}_1 = 151.8, \bar{x}_2 = 155.6

Conditions for t Test

$$H_0$$
: $\mu_A = \mu_B$
 H_a : $\mu_A \neq \mu_B$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$s_p = 1.50$$

- Example: Samples from two machines A and B have the following volumes in bottles. (assume equal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine B:** 156, 155, 158, 155, 154 Is the mean **different**? Calculate with 95% confidence.

$$n_1 = 5$$
, $n_2 = 5$, $s_1 = 1.48$, $s_2 = 1.52$

$$\bar{x}_1$$
 = 151.8, \bar{x}_2 = 155.6

Conditions for t Test

$$H_0$$
: $\mu_A = \mu_B$
 H_a : $\mu_A \neq \mu_B$

$$s_{p} = 1.50$$

$$t_{cal} = \frac{(\bar{x}_{1} - \bar{x}_{2})}{s_{p} \sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

$$t_{cal} = -4.01$$

- Example: Samples from two machines A and B have the following volumes in bottles. (assume equal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine B:** 156, 155, 158, 155, 154 Is the mean different? Calculate with 95% confidence.

$$n_1 = 5$$
, $n_2 = 5$, $s_1 = 1.48$, $s_2 = 1.52$

$$\bar{x}_1$$
 = 151.8, \bar{x}_2 = 155.6

Critical Test Statistic

	TAIL PROBABILITY P											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2,878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646

$$df = n_1 + n_2 - 2$$
$$df = 8$$

$$\alpha = 0.05$$
 Two Tails

$$H_0$$
: $\mu_A = \mu_B$
 H_a : $\mu_A \neq \mu_B$

Interpret the Results

- Example: Samples from two machines A and B have the following volumes in bottles. (assume equal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine B:** 156, 155, 158, 155, 154 Is the mean **different**? Calculate with 95% confidence.
- \star t_{calculated} = 4.01
- \star t_{critical} = 2.306

One Sample t Test

$$t_{cal} = \frac{(\bar{x} - \mu)}{s / \sqrt{n}}$$

Two Sample t Tests

❖ Is variance for two samples equal?

Yes

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$df = n_1 + n_2 - 2$$

No

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

$$df = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{\frac{(s_1^2/n_1)^2}{(n_1 - 1)} + \frac{(s_2^2/n_2)^2}{(n_2 - 1)}}$$

Conditions for t Test

$$H_0$$
: $\mu_A = \mu_C$
 H_a : $\mu_A \neq \mu_C$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{s_p \sqrt{(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

- Example: Samples from two machines A and B have the following volumes in bottles. (unequal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine C:** 144, 162, 177, 150, 140 Is the mean different? Calculate with 95% confidence.
 - $n_1 = 5$, $n_2 = 5$, $s_1 = 1.48$, $s_2 = 15.0$
 - $\bar{x}_1 = 151.8, \bar{x}_2 = 154.6$

Conditions for t Test

$$H_0$$
: $\mu_A = \mu_C$
 H_a : $\mu_A \neq \mu_C$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

$$t_{cal} = -0.41$$

- Example: Samples from two machines A and B have the following volumes in bottles. (unequal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine C:** 144, 162, 177, 150, 140 Is the mean different? Calculate with 95% confidence.
 - $n_1 = 5$, $n_2 = 5$, $s_1 = 1.48$, $s_2 = 15.0$
 - \bar{x}_1 = 151.8, \bar{x}_2 = 154.6

Conditions for t Test

$$H_0$$
: $\mu_A = \mu_C$
 H_a : $\mu_A \neq \mu_C$

$$df = n_1 + n_2 - 2$$

$$df = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{\frac{(s_1^2/n_1)^2}{(n_1 - 1)} + \frac{(s_2^2/n_2)^2}{(n_2 - 1)}}$$

df = 4.078 or 4 (round down to nearest integer)

- Example: Samples from two machines A and B have the following volumes in bottles. (unequal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **★ Machine C:** 144, 162, 177, 150, 140 Is the mean different? Calculate with 95% confidence.
 - $n_1 = 5$, $n_2 = 5$, $s_1 = 1.48$, $s_2 = 15.0$
 - \bar{x}_1 = 151.8, \bar{x}_2 = 154.6

Critical Test Statistic

	TAIL PROBABILITY P											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646

$$df = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{\frac{(s_1^2/n_1)^2}{(n_1 - 1)} + \frac{(s_2^2/n_2)^2}{(n_2 - 1)}}$$

$$df = 4$$

- $\alpha = 0.05$ Two Tails
- **❖** Df = 4
- ❖ t Critical = 2.776

Interpret the Results

- Example: Samples from two machines A and B have the following volumes in bottles. (unequal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **Machine C:** 144, 162, 177, 150, 140 Is the mean different? Calculate with 95% confidence.
- $t_{calculated} = -0.41$

Interpret the Results

Machine A	Machine B	Machine C
150	156	144
152	155	162
154	158	177
152	155	150
151	154	140
$\bar{x}_{\mathbf{A}} = 151.8$	$, \bar{x}_{\mathrm{B}} = 155.6$	$\bar{x}_{\rm C} = 154.6$

Two Sample t Test

Two Sample t Test - Minitab Equal Variance

Two-Sample T-Test and CI: Machine A, Machine B

Method

 μ_1 : mean of Machine A μ_2 : mean of Machine B Difference: $\mu_1 - \mu_2$

Equal variances are assumed for this analysis.

Descriptive Statistics

Sample	N	Mean	StDev	SE Mean
Machine A	5	151.80	1.48	0.66
Machine B	5	155.60	1.52	0.68

Estimation for Difference

	Pooled	95% CI for
Difference	StDev	Difference
-3.800	1.500	(-5.988, -1.612)

Test

Null hypothesis H_0 : $\mu_1 - \mu_2 = 0$ Alternative hypothesis H_1 : $\mu_1 - \mu_2 \neq 0$

T-Value DF P-Value

Two Sample t Test

Two Sample t Test - Minitab

Unequal Variance

Two-Sample T-Test and CI: Machine A, Machine C

Method

μ₁: mean of Machine A
 μ₂: mean of Machine C
 Difference: μ₁ - μ₂

Equal variances are not assumed for this analysis.

Descriptive Statistics

Sample	N	Mean	StDev	SE Mean
Machine A	5	151.80	1.48	0.66
Machine C	5	154.6	15.0	6.7

Estimation for Difference

95% CI for Difference Difference -2.80 (-21.55, 15.95)

Test

Null hypothesis H_0 : $\mu_1 - \mu_2 = 0$ Alternative hypothesis H_1 : $\mu_1 - \mu_2 \neq 0$ T-Value DF P-Value

- If two set of data are independent or dependent.
 - ❖ If the values in one sample reveal no information about those of the other sample, then the samples are independent.
 - **Example:** Blood pressure of male/female
 - ❖ If the values in one sample affect the values in the other sample, then the samples are dependent.
 - Example: Blood pressure before and after a specific medicine

Two sample t test

Paired t test

QG

- Find the difference between two set of readings as d1, d2 dn.
- Find the mean and standard deviation of these differences.

$$t = \frac{\bar{d}}{s/\sqrt{n}}$$

Paired t Test

Paired t Tests

 H_0 : $\mu_{before} = \mu_{after}$

 H_a : $\mu_{before} \neq \mu_{after}$

Patient	Before	After		
1	120	122		
2	122	120		
3	143	141		
4	100	109		
5	109	109		

Example: Before and after medicine BP was measured. Is there a difference at 95% confidence level?

Paired t Tests

$$H_0$$
: $\mu_{before} = \mu_{after}$

$$H_a$$
: $\mu_{before} \neq \mu_{after}$

$$t = \frac{\bar{d}}{s/\sqrt{n}}$$

Patient	Before	After	difference
1	120	122	-2
2	122	120	2
3	143	141	2
4	100	109	-9
5	109	109	0

Example: Before and after medicine BP was measured. Is there a difference at 95% confidence level?

$$• \bar{d} = -1.4$$
, s = 4.56, n = 5

$$t_{cal.} = 1.4/2.04 = -0.69$$

Critical Test Statistic

					TAIL I	PROBAB	ILITY P					
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646

$$df = n - 1$$
$$df = 4$$

- \Leftrightarrow $\alpha = 0.05$ Two Tails
- $4 \cdot df = 4$
- ❖ t Critical = 2.776

H_0 : $\mu_{before} = \mu_{after}$ Interpret the Results

 H_a : $\mu_{before} \neq \mu_{after}$

Fail to Reject H₀

Example: Before and after medicine BP was measured. Is there a difference at 95% confidence level?

$$t_{calculated} = -0.69$$

$$\star$$
 t_{critical} = 2.776

Paired t Test - Minitab

Paired T-Test and CI: Before, After

Descriptive Statistics

Sample	Ν	Mean	StDev	SE Mean
Before	5	118.80	16.18	7.23
After	5	120.20	13.10	5.86

Estimation for Paired Difference

			95% CI for
Mean	StDev	SE Mean	$\mu_difference$
-1.40	4.56	2.04	(-7.06, 4.26)

μ_difference: mean of (Before - After)

Test

Null hypothesis H_0 : μ _difference = 0 Alternative hypothesis H_1 : μ _difference \neq 0

-0.69 0.530

- * Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- The data contains only two categories, such as pass/fail or yes/no
- For Normal approximation:
 - both np≥10 and n(1-p)≥10 (data should have at least 10 "successes" and at least 10 "failures") for each sample (in some books it is 5)

Proportions - Sample vs Population

How do we represent sample and population proportions?

One Proportion Test

$$z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

One Proportion Test

$$z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Two Proportions Tests

Test for **no** difference between proportions

$$H_0$$
: $p_1 - p_2 = 0$

$$H_a: p_1 - p_2 \neq 0$$

$$H_0$$
: $p_1 - p_2 = d$

$$H_0: p_1 - p_2 = 0$$
 Yes No $H_0: p_1 - p_2 = d$
 $H_a: p_1 - p_2 \neq 0$ Pooled Un-pooled $H_a: p_1 - p_2 \neq d$

$$\bar{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{(n_1 + n_2)}$$

$$z_{cal} = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\bar{p}(1 - \bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$z_{cal} = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$$

$$H_0$$
: $p_1 - p_2 = 0$

$$H_a: p_1 - p_2 \neq 0$$

Test if Normality can be assumed?

$$\bar{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{(n_1 + n_2)}$$

$$z_{cal} = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\bar{p}(1 - \bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Example: From vendor A we test 200 pieces and find 30 defectives. From vendor B we test 100 pieces and we find 10 defectives. Is there a significant difference in the quality of these two vendors? Use 95% confidence level.

$$\star$$
 $z_{calculated} = ?$

$$z_{critical} = ?$$

$$H_0$$
: $p_1 - p_2 = 0$

$$H_a: p_1 - p_2 \neq 0$$

Test if Normality can be assumed?

$$\bar{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{(n_1 + n_2)}$$

$$z_{cal} = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\bar{p}(1 - \bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Example: From vendor A we test 200 pieces and find 30 defectives. From vendor B we test 100 pieces and we find 10 defectives. Is there a significant difference in the quality of these two vendors? Use 95% confidence level.

$$\hat{p}_1$$
 = 30/200 = 0.15

$$\hat{p}_2$$
= 10/100 = 0.10

$$n_1 = 200, n_2 = 100$$

Two Proportions Test

$$H_0$$
: $p_1 - p_2 = 0$

$$H_a: p_1 - p_2 \neq 0$$

Test if Normality can be assumed?

$$n_1 \hat{p}_1 \ge 10$$
 ≥ 10 $n_1 (1 - \hat{p}_1) \ge 10$ $n_2 \hat{p}_2 \ge 10$ $n_1 (1 - \hat{p}_2) \ge 10$

Example: From vendor A we test 200 pieces and find 30 defectives. From vendor B we test 100 pieces and we find 10 defectives. Is there a significant difference in the quality of these two vendors? Use 95% confidence level.

$$\hat{p}_1$$
 = 30/200 = 0.15

$$\hat{p}_2 = 10/100 = 0.10$$

$$n_1 = 200, n_2 = 100$$

$$H_0$$
: $p_1 - p_2 = 0$

$$H_a: p_1 - p_2 \neq 0$$

$$\bar{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{(n_1 + n_2)}$$

$$\bar{p} = 0.1333$$

❖ Example: From vendor A we test 200 pieces and find 30 defectives. From vendor B we test 100 pieces and we find 10 defectives. Is there a significant difference in the quality of these two vendors? Use 95% confidence level.

$$\hat{p}_1$$
 = 30/200 = 0.15

$$\hat{p}_2$$
= 10/100 = 0.10

$$n_1 = 200, n_2 = 100$$

$$H_0: p_1 - p_2 = 0 \\ H_a: p_1 - p_2 \neq 0$$

$$\bar{p} = 0.1333$$

$$z_{cal} = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\bar{p}(1 - \bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$= \frac{(0.15 - 0.10)}{\sqrt{0.133(1 - 0.133)\left(\frac{1}{200} + \frac{1}{100}\right)}} \Leftrightarrow \hat{p}_1 = 30/200 = 0.15$$

$$\hat{p}_2 = 10/100 = 0.10$$

$$\hat{p}_1 = 200, p_2 = 100$$

Example: From vendor A we test 200 pieces and find 30 defectives. From vendor B we test 100 pieces and we find 10 defectives. Is there a significant difference in the quality of these two vendors? Use 95% confidence level.

$$\hat{p}_1 = 30/200 = 0.15$$

$$\hat{\boldsymbol{\varphi}}$$
 \hat{p}_2 = 10/100 = 0.10

$$n_1 = 200, n_2 = 100$$

Critical Test Statistic

z	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005 .0003	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001						

- $\alpha = 0.05$ One Tail
- ❖ Z Critical = 1.645
- $\alpha = 0.10$ One Tail
- ❖ Z Critical = 1.282
- \Leftrightarrow $\alpha = 0.05$ Two Tails
- ❖ Z Critical = 1.96
- $\alpha = 0.10$ Two Tail
- Z Critical = 1.645

Two Proportions Test

Fail to Reject H₀

- Example: From vendor A we test 200 pieces and find 30 defectives. From vendor B we test 100 pieces and we find 10 defectives. Is there a significant difference in the quality of these two vendors? Use 95% confidence level.
- $z_{calculated} = 1.20$

Two Proportions Test - Minitab

Test and CI for Two Proportions

Method

p₁: proportion where Sample 1 = Event p₂: proportion where Sample 2 = Event Difference: p₁ - p₂

Descriptive Statistics

Sample	N	Event	Sample p
Sample 1	200	30	0.150000
Sample 2	100	10	0.100000

Estimation for Difference

95% CI for Difference Difference 0.05 (-0.026852, 0.126852)

CI based on normal approximation

Test

Null hypothesis	H_0 : $p_1 - p_2 = 0$				
Alternative hypothesis					
Method	Z-Value	P-Value			
Normal approximation	1.20	0.230			
Fisher's exact		0.281			

The pooled estimate of the proportion (0.133333) is used for the tests.

Two Proportions Test

Conditions for Variance Tests

- * Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- The data follows a Normal Distribution

Two Variances Test

Variance Tests

- Chi-square test
 - For testing the population variance against a specified value
 - testing goodness of fit of some probability distribution
 - testing for independence of two attributes (Contingency Tables)
- ❖ F-test
 - for testing equality of *two* variances from different populations
 - for testing equality of several means with technique of ANOVA.

Two Variances Test

Two Variances Test

H₀:
$$\sigma_1^2 = \sigma_2^2$$

Ha: $\sigma_1^2 \neq \sigma_2^2$

$$F_{cal} = \frac{s_1^2}{s_2^2}$$

- ❖ Example: We took 8 samples from machine A and the **standard deviation** was 1.1. For machine B we took 5 samples and the **variance** was 11. Is there a difference in variance at 90% confidence level?
- $^{\bullet}$ n1 = 5, s²₁ = 11, df₁ = 4 (numerator)
- Arr n2 = 8, s₂ = 1.1, s²₂ = 1.21, df₂ = 7 (denominator)
- **❖** F calculated = 11/1.21 = 9.09 (higher value at top)

Critical Test Statistic

F - Distribution (α = 0.05 in the Right Tail)

		df ₁ Numerator Degrees of Freedom									
(յ ք չ\գ	IT _{1 1}	2	3	4	5	6	7	8	9	
	7	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	
	2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385	
	3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	
	4	7.7086	9.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	6.9988	
	5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	
	6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990	
	7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767	
	8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	
ε	9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	
ᅙ	10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204	
ĕ	11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962	
.2	12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964	
-	13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144	
0	14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458	
e	15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876	
Ë	16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377	
ě	17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.4943	
Ö	18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563	
₫	19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227	
Denominator Degrees of Freedom	20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928	
١.	21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660	
ō	22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419	
ē	23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201	
Δ	24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002	
	25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.2821	
	26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655	
	27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501	
	28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2360	
	29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229	
	30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107	
	40	4.0847	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.1240	
	60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.0401	
	120	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750	2.0868	2.0164	1.9588	
	00	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799	

F - Distribution (α = 0.01 in the Right Tail)

	٦,	Numerator Degrees of Freedom								
	df_2	dt _{1 1}	2	3	4	5	6	7	8	9
	1	4052.2	4999.5	5403.4	5624.6	5763.6	5859.0	5928.4	5981.1	6022.5
	2	98.503	99.000	99.166	99.249	99.299	99.333	99.356	99.374	99.388
	3	34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345
	4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659
	5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10.158
	6	13.745	10.925	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.976
	7	12.246	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.718
	8	11.259	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.910
E	9	10.561	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.351
Freedom	10	10.044	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.942
ĕ	11	9.6460	7.2057	6.2167	5.6683	5.3160	5.0692	4.8861	4.7445	4.631
9	12	9.3302	6.9266	5.9525	5.4120	5.0643	4.8206	4.6395	4.4994	4.387
Ψ.	13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021	4.191
ģ	14	8.8616	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.029
Degrees	15	8.6831	6.3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.894
핕	16	8.5310	6.2262	5.2922	4.7726	4.4374	4.2016	4.0259	3.8896	3.780
မိ	17	8.3997	6.1121	5.1850	4.6690	4.3359	4.1015	3.9267	3.7910	3.682
	18	8.2854	6.0129	5.0919	4.5790	4.2479	4.0146	3.8406	3.7054	3.597
ō	19	8.1849	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.522
ninator	20	8.0960	5.8489	4.9382	4.4307	4.1027	3.8714	3.6987	3.5644	3.456
٠Ę	21	8.0166	5.7804	4.8740	4.3688	4.0421	3.8117	3.6396	3.5056	3.398

- Numerator df = 4
- Denominator df = 7

- \Leftrightarrow $\alpha = 0.10$ Two Tail
- \bullet F 0.05, 4, 7 = 4.1203

Critical Test Statistic

F - Distribution (α = 0.05 in the Right Tail)

	1 - Distribution (& 0.00 in the Right Tull)									
	Numerator Degrees of Freedom									
C	lt2/at	1	2	3	4	5	6	7	8	9
	1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
	2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385
	3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123
	4	7.7086	9.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	6.9988
	5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725
	6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990
	7	5.5914	4.7374	4.7371	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767
	8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881
_	9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789
Denominator Degrees of Freedom	1								3.0717	3.0204
Ď	10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355		2.8962
ě	11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962
ŭ.	12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	
ģ	13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144 2.6458
S	14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	
9	15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876
Б	16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377
å	17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.4943
ᆫ	18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563
٥	19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227
g	20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928
.를	21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660
ō	22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419
e	23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201
Δ	24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002
	25	4.2417	3.3852	2.9912	2.7587	2,6030	2,4904	2.4047	2.3371	2.2821
	26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655
	27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501
	28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2360
	29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229
								2.3343	2.2662	2.2107
	30	4.1709	3.3158	2.9223	2.6896	2.5336 2.4495	2.4205 2.3359	2.3343	2.2662	2.2107
	40	4.0847	3.2317	2.8387	2.6060		2.3359	2.2490	2.1802	2.0401
	60	4.0012	3.1504	2.7581	2.5252	2.3683		2.0868	2.0164	1.9588
	120 ∞	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750 2.0986	2.0868	1.9384	1.9388
	∞	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.0/99

- Numerator df = 4
- Denominator df = 7
- $\alpha = 0.10$ Two Tail
- \bullet F 0.05, 4, 7 =
- 4.1203 **★** F 0.95, 4, 7 = ?

Critical Test Statistic

F - Distribution (α = 0.05 in the Right Tail)

	\				lumorator	Dograss	of Freedo			
	յ <u>քչ\df</u> ղ	1	2	3	4	5	6	7	8	9
•	- I									
	1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
	2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385
	3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123
	4	7.7086	9.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	6.9988
	5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725
	6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990
	7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767
	8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881
Ε	9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789
Denominator Degrees of Freedom	10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204
ě	11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962
ıΕ	12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964
Ŧ	13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144
S	14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458
96	15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876
Ĕ	16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377
ě	17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.4943
·	18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563
٥	19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227
٥	20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928
·Ē	21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660
ō	22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419
e	23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201
Δ	24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002
	25	4.2417	3.3852	2.9912	2.7587	2.6030	2,4904	2.4047	2.3371	2.2821
	26	4.2252	3.3690	2.9752	2.7426	2.5868	2,4741	2.3883	2.3205	2.2655
	27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501
	28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2360
	29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229
	30	4.1709	3.3158	2.9223	2,6896	2.5336	2.4205	2.3343	2.2662	2.2107
	40	4.1709	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.1240
	60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.0401
	120	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750	2.0868	2.0164	1.9588
	∞	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799
	~	3.0413	2.9931	2.0049	2.3/19	2.2141	2.0700	2.0090	1.7554	1.0.77

- Numerator df = 4
- Denominator df = 7
- $\alpha = 0.10$ Two Tail
- **❖** F 0.05, 4, 7 = 4.1203

$$F 0.95, 4, 7 = 1/F 0.05, 7,4$$

Two Variances Test

Two Variances Test

QG

Ha: $\sigma_1^2 \neq \sigma_2^2$

❖ Example: We took 8 samples from machine A and the **standard deviation** was 1.1. For machine B we took 5 samples and the **variance** was 11. Is there a difference in variance at 90% confidence level?

$$\Rightarrow$$
 n1 = 5, s²₁ = 11, df₁ = 4 (numerator)

$$Arr$$
 n2 = 8, s₂ = 1.1, s²₂ = 1.21, df₂ = 7 (denominator)

$$Arr$$
 F critical = 0.0164 and 4.120

Two Variances Test

One Variance Test - Minitab

Test and CI for Two Variances

Method

 σ_1^2 : variance of Sample 1 σ_2^2 : variance of Sample 2 Ratio: σ_1^2/σ_2^2 F method was used. This method is accurate for normal data only.

Descriptive Statistics

Sample	N	StDev	Variance	90% CI for σ
Sample 1	5	3.317	11.000	(2.154, 7.868)
Sample 2	8	1.100	1.210	(0.776, 1.977)

Test

Null hypothesis H_0 : $\sigma_1 / \sigma_2 = 1$ Alternative hypothesis H_1 : $\sigma_1 / \sigma_2 \neq 1$ Significance level $\alpha = 0.1$ Test

Method Statistic DF1 DF2 P-Value

F 9.09 4 7 0.013

Two Variances Test - Minitab

Test and CI for Two Variances

Method

 σ_1^2 : variance of Sample 1 σ_2^2 : variance of Sample 2 Ratio: σ_1^2/σ_2^2 F method was used. This method is accurate for normal data only.

Descriptive Statistics

Sample	N	StDev	Variance	90% CI for σ
Sample 1	8	1.100	1.210	(0.776, 1.977)
Sample 2	5	3.317	11.000	(2.154, 7.868)

Test

Null hypothesis H_0 : $\sigma_1 / \sigma_2 = 1$ Alternative hypothesis H_1 : $\sigma_1 / \sigma_2 \neq 1$ Significance level $\alpha = 0.1$ Test

Method Statistic DF1 DF2 P-Value

F 0.11 7 4 0.013

Two Variances Test

Variance Tests

- Chi-square test
 - For testing the population variance against a specified value
 - testing goodness of fit of some probability distribution
 - testing for independence of two attributes (Contingency Tables)
- **❖** F-test
 - for testing equality of *two* variances from different populations
 - for testing equality of several means with technique of ANOVA.

Two Sample t Tests

Machine A	Machine B	Machine C
150	156	144
152	155	162
154	158	177
152	155	150
151	154	140
$\bar{x}_{\mathbf{A}} = 151.8$	$, \bar{x}_{\rm B} = 155.6$	$\bar{x}_{\rm C} = 154.6$

2 Sample T Test

 H_0 : $\mu_A = \mu_B$

 H_a : $\mu_A \neq \mu_B$

ANOVA

 H_0 : $\mu_A = \mu_B = \mu_C = \mu_D \dots = \mu_k$

H_a: At least one of the means is

different from others

T Test vs ANOVA

T Test

$$H_0$$
: $\mu_A = \mu_B$
 H_a : $\mu_A \neq \mu_B$

ANOVA

 H_0 : $\mu_A = \mu_B = \mu_C = \mu_{D....} = \mu_k$ H_a : At least one of the means is different from others

❖ Why ANOVA?

- We used t test to compare the means of two populations.
- ❖ What if we need to compare more than two populations? With ANOVA we can find out if one or more populations have different mean or comes from a different population.
- We could have conducted multiple t Test.
- How many t Test we need to conduct if have to compare 4 sample means? ... 6

T Test vs ANOVA

❖ Why ANOVA?

- We used t test to compare the means of two populations.
- ❖ What if we need to compare more than two populations? With ANOVA we can find out if one or more populations have different mean or comes from a different population.
- We could have conducted multiple t Test.
- How many t Test we need to conduct if have to compare 4 sample means? ... 6

T Test vs ANOVA

- **❖** Why ANOVA?
 - How many t Test we need to conduct if have to compare 4 samples? ... 6
 - Each test is done with alpha = 0.05 or 95% confidence.
 - \bullet 6 tests will result in confidence level of $0.95 \times 0.95 \times 0.$

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

Machine 4	Machine 5	Machine 6
130	163	166
155	152	154
160	143	155
158	141	151
152	149	152
145	157	155
$\bar{x}_4 = 151.00$	$\bar{x}_5 = 150.83$	$\bar{x}_6 = 155.50$

Machine 4	Machine 5	Machine 6
130	163	166
155	152	154
160	143	155
158	141	151
152	149	152
145	157	155
$\bar{x}_4 = 151.00$	$\bar{x}_5 = 150.83$	$\bar{x}_6 = 155.50$

QG
40

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_4 = 151.00$	$\bar{x}_2 = 150.83$	$\bar{x}_2 = 155.50$

A	N	O	V	Ά	
A	N	O	V	A	

Machine 4	Machine 5	Machine 6
130	163	166
155	152	154
160	143	155
158	141	151
152	149	152
145	157	155
$\bar{x}_4 = 151.00$	$\bar{x}_5 = 150.83$	$\bar{x}_6 = 155.50$

- ❖ ANOVA is Analysis of Variance
- Variance

$$s^2 = \frac{\sum (x_i - \overline{X})^2}{n - 1}$$

Numerator of this formula is Sum of Squares, the denominator is the degrees of freedom for the sample.

$$F = \frac{S_1^2}{S_2^2}$$

$$F = \frac{\frac{\sum (x - \bar{x}_1)^2}{n_1 - 1}}{\frac{\sum (x - \bar{x}_2)^2}{n_2 - 1}}$$

$$F = \frac{\frac{SS_1}{\mathrm{d}f_1}}{\frac{SS_2}{\mathrm{d}f_2}} \qquad F = \frac{MSS_2}{MSS_2}$$

$$F = \frac{MSS_{between}}{MSS_{within}}$$

$$F = \frac{\frac{SS_{\text{between}}}{\text{d}f_{\text{between}}}}{\frac{SS_{\text{within}}}{\text{d}f_{\text{within}}}}$$

$$F = \frac{\frac{SS_{\text{between}}}{\text{d}f_{\text{between}}}}{\frac{SS_{\text{within}}}{\text{d}f_{\text{within}}}}$$

$$F = \frac{MSS_{between}}{MSS_{within}}$$

QG

ANOVA

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

- Null hypothesis: H_0 : $\mu_1 = \mu_2 = \mu_3$
- **Alternative hypothesis**: H_a : Means are not all equal

Check at 95% confidence level.

- SS between(or treatment, or column)
- SS within(or error)

$$F = \frac{\frac{SS_{\text{between}}}{\text{d}f_{\text{between}}}}{\frac{SS_{\text{within}}}{\text{d}f_{\text{within}}}} \qquad F = \frac{MSS_{\text{between}}}{MSS_{\text{within}}}$$

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

•••	SS within	= 4.00+18.83+5.50 =	28.33
-----	-----------	---------------------	-------

Machine 1	x1 - x 1	Sqr(x1 - x1)	Machine 2	x2 - x 2	Sqr(x2 - x 2)	Machine 3	x3 - x̄3	Sqr(x3 - x̄3)	
150.00	-1.00	1.00	153.00	2.17	4.69	156.00	0.50	0.25	
151.00	0.00	0.00	152.00	1.17	1.36	154.00	-1.50	2.25	
152.00	1.00	1.00	148.00	-2.83	8.03	155.00	-0.50	0.25	
152.00	1.00	1.00	151.00	0.17	0.03	156.00	0.50	0.25	
151.00	0.00	0.00	149.00	-1.83	3.36	157.00	1.50	2.25	
150.00	-1.00	1.00	152.00	1.17	1.36	155.00	-0.50	0.25	
151.00			150.83			155.50			152.44
		4.00)		18.83			5.50	

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

•	SS between	=	(2.07+2.58+9.36)x6	= 84.06
---	------------	---	--------------------	---------

Machine 1	x1 - x 1	Sqr(x1 - x 1)	Machine 2	x2 - x 2	Sqr(x2 - x 2)	Machine 3	x3 - x̄3	Sqr(x3 - x̄3)	
150.00	-1.00	1.00	153.00	2.17	4.69	156.00	0.50	0.25	
151.00	0.00	0.00	152.00	1.17	1.36	154.00	-1.50	2.25	
152.00	1.00	1.00	148.00	-2.83	8.03	155.00	-0.50	0.25	
152.00	1.00	1.00	151.00	0.17	0.03	156.00	0.50	0.25	
151.00	0.00	0.00	149.00	-1.83	3.36	157.00	1.50	2.25	
150.00	-1.00	1.00	152.00	1.17	1.36	155.00	-0.50	0.25	
151.00			150.83			155.50			152.44
		4.00			18.83	3		5.50)
									,
	-1.44	2.07		-1.61	2.58	3	3.06	9.36	,

**	SS within	= 4.00 + 18.83 + 5.50 = 28	3.33
•	33 within	$-4.00 \pm 10.03 \pm 3.30 - 20$	3.33

\$ SS _{between} = (2.07+2.58+9.36)x6 = 84.06

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

Machine 1	x1 - x 1	Sqr(x1 - x 1)	Machine 2	x2 - x 2	Sqr(x2 - x̄2)	Machine 3	x3 - x 3	Sqr(x3 - x 3)	
150.00	-1.00	1.00	153.00	2.17	4.69	156.00	0.50	0.25	
151.00	0.00	0.00	152.00	1.17	1.36	154.00	-1.50	2.25	
152.00	1.00	1.00	148.00	-2.83	8.03	155.00	-0.50	0.25	
152.00	1.00	1.00	151.00	0.17	0.03	156.00	0.50	0.25	
151.00	0.00	0.00	149.00	-1.83	3.36	157.00	1.50	2.25	
150.00	-1.00	1.00	152.00	1.17	1.36	155.00	-0.50	0.25	
151.00			150.83			155.50			152.44
		4.00)		18.83	3		5.50)
	-1.44	2.07		-1.61	2.58	3	3.06	9.36	;

Degrees of freedom

$$(N-1) = (C-1) + (N-C)$$

$$4 \cdot df_{between} = 3-1=2,$$

$$4 \cdot df_{total} = 17$$
, $df_{within} = 17-2=15$

Machine 1	Machine 2	Machine 3	G
150	153	156	
151	152	154	
152	148	155	
152	151	156	
151	149	157	
150	152	155	
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$	

Mean Sum of Square = SS / df

$$\$$$
 MSS_{between} = 84.06 / 2 = 42.03

$$\$$$
 MSS_{within} = 28.33/15 = 1.89

$$F = MSS_{between} / MSS_{within} = 42.03/1.89 = 22.24$$

Machine 1	Machine 2	Machine 3	G
150	153	156	
151	152	154	
152	148	155	
152	151	156	
151	149	157	
150	152	155	
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$	

$$\Leftrightarrow$$
 df between = 2

Critical Test Statistic

F - Distribution (α = 0.05 in the Right Tail)

	Numerator Degrees of Freedom									
C	յ <u>քչ\df</u> լ	1	2	3	4	5	6	7	8	9
	1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
	2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385
	3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123
	4	7.7086	9.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	6.9988
	5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725
	6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990
	7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767
	8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881
Ε	9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789
용	10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204
ĕ	11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962
۳.	12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964
Ξ	13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144
S	14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458
Denominator Degrees of Freedom	15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876
ğ	16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377
ě	17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.4943
Ü	18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563
₫	19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227
2	20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928
٦.	21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660
፩	22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419
ē	23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201
Δ	24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002
	25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.2821
	26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655
	27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501
	28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2360
	29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229
	30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107
	40	4.0847	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.1240
	60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.0401
	120	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750	2.0868	2.0164	1.9588
	œ	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799

$$F = \frac{\frac{SS_{\text{between}}}{\text{d}f_{\text{between}}}}{\frac{SS_{\text{within}}}{\text{d}f_{\text{within}}}}$$

- Numerator (between) df = 2
- Denominator (within) df = 15

- $\alpha = 0.05$ One Tail
- \bullet F 0.05, 2, 15 = 3.68

$$F = MSS_{between} / MSS_{within} = 42.03/1.89 = 22.24$$

- Compare this with F critical
- \Leftrightarrow F (0.05, 2, 15) = 3.68
- Reject Null Hypothesis

ANOVA- Minitab

III 18 ONE WAY ANOVA.MTW

One-way ANOVA: Machine 1, Machine 2, Machine 3

Method

Null hypothesis All means are equal
Alternative hypothesis Not all means are equal

Significance level $\alpha = 0.05$

Equal variances were assumed for the analysis.

Factor Information

Factor	Levels	Values
Factor	3	Machine 1, Machine 2, Machine 3

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Factor	2	84.11	42.056	22.26	0.000
Error	15	28.33	1.889		
Total	17	112.44			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
1.37437	74.80%	71.44%	63.72%

Means

Factor	Ν	Mean	StDev	95% CI
Machine 1	6	151.000	0.894	(149.804, 152.196)
Machine 2	6	150.833	1.941	(149.637, 152.029)
Machine 3	6	155.500	1.049	(154.304, 156.696)

Pooled StDev = 1.37437

Variance Tests

- Chi-square test
 - For testing the population variance against a specified value
 - testing goodness of fit of some probability distribution
 - testing for independence of two attributes (Contingency Tables)
- **❖** F-test
 - for testing equality of two variances from different populations
 - for testing equality of several means with technique of ANOVA.

Variance Tests — Chi-Square

- To test if the sample is coming from a population with specific distribution.
- Other goodness-of-fit tests are
 - Anderson-Darling
 - Kolmogorov-Smirnov

Goodness of Fit Test

- ♣ H₀: The data follow a specified distribution.
- ❖ Ha: The data do not follow the specified distribution.
- * Calculated Statistic: $\chi^2 = \sum_{i=1}^k \frac{(O-E)^2}{E}$
- Critical Statistic: Chi square for k-1 degrees of freedom for specific alpha.

Goodness of Fit Test

Goodness of Fit Test (Chi Square)

❖ A coin is flipped 100 times. Number of heads and tails are noted. Is this coin biased? Check with 95% Confidence Level.

Head	40
Tail	60

Goodness of Fit Test

Ho: Coin is not biased.

Ha: Coin is biased.

Alpha = 0.05

Example 1: A coin is flipped 100 times. Number of heads and tails are noted. Is this coin biased? Check with 95% Confidence Level.

Head	40
Tail	60

Goodness of Fit - Chi-Square

Variance Tests

- Chi-square test
 - For testing the population variance against a specified value
 - testing goodness of fit of some probability distribution
 - testing for independence of two attributes (Contingency Tables)
- **❖** F-test
 - for testing equality of two variances from different populations
 - for testing equality of several means with technique of ANOVA.

Variance Tests — Chi-Square

Contingency Tables

To find relationship between two discrete variables.

	Smoker	Non Smoker	
Male	60	40	100
Female	35	40	75
	95	80	175

	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	110	115	347

Contingency Tables

	Smoker	Non Smoker	
Male	60	40	100
Female	35	40	75
	95	80	175

	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	110	115	347

- Null hypothesis is that there is no relationship between the row and column variables.
- Alternate hypothesis is that there is a relationship. Alternate hypothesis does not tell what type of relationship exists.

$$\chi^2 = \sum_{i=1}^{k} \frac{(O-E)^2}{E}$$

	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	110	115	347

<u>OBSERVED</u>	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	110	115	347

EXPECTED	Operator 1	Operator 2	Operator 3	
Shift 1	122x71/347	110x71/347	115x71/347	71
Shift 2	122x116/347	110x116/347	115x116/347	116
Shift 3	122x160/347	110x160/347	115x160/347	160
	122	110	115	347

<u>OBSERVED</u>	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	112	115	347

EXPECTED	Operator 1	Operator 2	Operator 3	
Shift 1	122x71/347	110x71/347	115x71/347	71
Shift 2	122x116/347	110x116/347	115x116/347	116
Shift 3	122x160/347	110x160/347	115x160/347	160
	122	110	115	347

EXPECTED	Operator 1	Operator 2	Operator 3	
Shift 1	24.96	22.51	23.53	71
Shift 2	40.78	36.77	38.44	116
Shift 3	56.25	50.72	53.02	160
	122	112	115	347

$$\chi^2 = \sum_{i=1}^{k} \frac{(O-E)^2}{E}$$

<u>OBSERVED</u>	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	110	115	347

EXPECTED	Operator 1	Operator 2	Operator 3	
Shift 1	122x71/347	110x71/347	115x71/347	71
Shift 2	122x116/347	110x116/347	115x116/347	116
Shift 3	122x160/347	110x160/347	115x160/347	160
	122	110	115	347

(<u>O-E)²/E</u>	Operator 1	Operat or 2	Operat or 3	
Shift 1	$(22-24.96)^2/24.96 = 0.35$	0.54	0.01	71
Shift 2	$(28-40.78)^2/40.78 = 4.00$	17.31	4.03	116
Shift 3	$(72-56.25)^2/56.25 = 4.41$	16.26	3.18	160
	122	112	115	347

EXPECTED	Operator 1	Operator 2	Operator 3	
Shift 1	24.96	22.51	23.53	71
Shift 2	40.78	36.77	38.44	116
Shift 3	56.25	50.72	53.02	160
	122	112	115	347

$$\chi^2 = \sum_{i=1}^{k} \frac{(O-E)^2}{E}$$

(<u>O-E)²/E</u>	Operator 1	Operator 2	Operator 3	
Shift 1	$(22-24.96)^2/24.96 = 0.35$	0.54	0.01	71
Shift 2	$(28-40.78)^2/40.78 = 4.00$	17.31	4.03	116
Shift 3	$(72-56.25)^2/56.25 = 4.41$	16.26	3.18	160
	122	112	115	347

$$X^2 = 50.09$$

$$\chi^2 = \sum_{i=1}^k \frac{(O-E)^2}{E}$$

Critical Test Statistic

Percentage Points of the Chi-Square Distribution

Degrees of				Probability	of a larger	value of x 2			
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

- rightharpoonup Df = (r-1)(c-1) = 4
- \Leftrightarrow $\alpha = 0.05$ One Tail
- \star χ^2 Critical = 9.49

Percentage Points of the Chi-Square Distribution

		reiteiltag							
Degrees of				Probability	of a larger	value of x 2			
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3.0			Distributi	on Diot			19.68	24.72
12	3.5			Chi-Squar				21.03	26.22
13	4.1	0.20						22.36	27.69
14	4.6		\bigcirc					23.68	29.14
15	5.2							25.00	30.58
16	5.8	0.15 -						26.30	32.00
17	6.4							27.59	33.41
18	7.0 Ann 7.6	0.10						28.87	34.80
19	7.6	J.10 -						30.14	36.19
20	8.2							31.41	37.57
22	9.5	0.05 -						33.92	40.29
24	10.8							36.42	42.98
26	12.:					0.05	;	38.89	45.64
28		0.00			9.488	0.03		11.34	48.28
30	14.9	0			Χ 3.400			13.77	50.89
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

<u>OBSERVED</u>	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	112	115	347

QG

Null hypothesis is that there is no relationship between the row and column variables. **Alternate hypothesis** is that there is a relationship. Alternate hypothesis does not tell what type of relationship exists.

Alpha = 0.05

<u>OBSERVED</u>	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	112	115	347

• Practice Exercise:

- Calculate the Expected value for Non Smoker Male?
- What will be the degrees of freedom in this example?

	Smoker	Non Smoker	
Male	60	40	100
Female	35	40	75
	95	80	175

- Practice Exercise: SOLUTION
- Calculate the Expected value for Non Smoker Male? = 80x100/175 = 45.71
- What will be the degrees of freedom in this example? (2-1)(2-1)=1

	Smoker	Non Smoker	
Male	60	40	100
Female	35	40	75
	95	80	175

Ho: Coin is not biased.

Ha: Coin is biased.

Alpha = 0.05

Example 1: A coin is flipped 100 times. Number of heads and tails are noted. Is this coin biased? Check with 95% Confidence Level.

$$\chi^2 = \sum_{i=1}^{k} \frac{(O-E)^2}{E}$$

Flip	Expected	Observed	O-E	(O-E) ²	$(O-E)^2/E$
Head	50	40	-10	100	2
Tail	50	60	10	100	2
					$X^2 = 4$

Goodness of Fit — Chi-Square

Critical Test Statistic

Percentage Points of the Chi-Square Distribution

					'				
Degrees of				Probability	of a larger	value of x 2			
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

- α = 0.05 One Tail
- \Leftrightarrow Df = 1
- χ^2 Critical = 3.84

Critical Test Statistic

60

Percentage Points of the Chi-Square Distribution

Degrees of				Probability	of a larger	value of x 2	2		
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3			B:	ъ.			19.68	24.72
12	3			Distributio Chi-Square				21.03	26.22
13	1.6	- 1			<u></u>			22.36	27.69
14	4							23.68	29.14
15	1.4-							25.00	30.58
16	1.2							26.30	32.00
17	(1.0-] \						27.59	33.41
18		\						28.87	34.80
19	Density	\						30.14	36.19
20	£ 0.6-	\						31.41	37.57
22	9							33.92	40.29
24	0.4							36.42	42.98
26	1 0.2							38.89	45.64
28	1 0.0					- P	0.05	41.34	48.28
30	1	0		>	(3.841		43.77	50.89
40	2							55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

Example 1: A coin is flipped 100 times. Number of heads and tails are noted. Is this coin biased? Check with 95% Confidence Level.
Head
40

Tail

Goodness of Fit - Chi-Square

60

Ho: Coin is not biased.

Ha: Coin is biased.

Alpha = 0.05

Example 1: A coin is flipped 100 times. Number of heads and tails are noted. Is this coin biased? Check with 95% Confidence Level.
Head
40

Tail

Goodness of Fit - Chi-Square

H0: The data follow a specified distribution.

Ha: The data do not follow the specified

distribution.

Alpha = 0.05

Example 2: A t-shirt manufacturer expects vs actual sale.

Size	Proportions	Counts
Small	0.1	25
Medium	0.2	41
Large	0.4	91
Extra Large	0.3	68

H0: The data follow a specified distribution.

Ha: The data do not follow the specified

distribution.

Alpha = 0.05

•	Example 2: A t-shirt manufacturer
	expects vs actual sale.

$$\chi^2 = \sum_{i=1}^{k} \frac{(O-E)^2}{E}$$

Size	Proportions	Expected	Observed
Small	0.1	22.5	25
Medium	0.2	45	41
Large	0.4	90	91
Extra Large	0.3	67.5	68