Support vector machines (SVMs)

SUMMARY

1. Support Vector Machines	1
2. Types of SVMs	3
3. Some kernel functions for SVMs	
4. Overfitting	
5. LIBSVM	
6. SVM related research topics	10

Performance of supervised learning models

- predictive performance
 - o performance metrics (AUC,...,MAPE,)
- computational complexity
 - o for the **training**, and **inference/testing** stages
 - time, space
 - asymptotic analysis (classes of complexity: $O, \theta,...$)
 - empirical analysis
 - o exact running time/required memory on specific data sets

1. Support Vector Machines

- SVMs are a set of related supervised learning methods used for classification and regression
- SVMs are eager inductive learners
- instances are high dimensional real valued vectors (data points in \Re^d)
- a SVM constructs a hyperplane or a set of hyperplanes in a high dimensional space, which can be used for classification, regression or other tasks.
 - o a good separation is achieved by the hyperplane that has the largest distance to the nearest training data points of any class (the so called *functional margin*)
 - o in general, the larger the margin, the lower the generalization error of the classifier \Rightarrow *large margin classifiers*

Optimal Separation Hyperplane

[6]

- SVMs are inherently two-class classifiers
 - o for multiple classes (M), two approaches have been proposed
 - one-against-the-rest
 - construct a hyperplane between class k and the M-1 other classes $\Rightarrow M$ SVMs
 - one-against-one
 - construct a hyperplane for any two classes $\Rightarrow M * (M-1)/2 \text{ SVMs}$
- Extensions of the classical architecture
 - o Deep SVMs
 - Different perspectives
 - multiple layers of SVMs DSVM
 - deep kernel learning architecture with multiple intermediate layers <u>Totally Deep SVMs</u>
 - DSVMs for regression

Applications

- o pattern recognition
- o classification (facial expression classification, image classification)
 - text categorization
 - e-mail filtering
 - web searching
 - sorting documents by topic
- o predictions (of traffic speed, protein structure prediction, breast cancer diagnosis prediction, time series prediction)
- o object detection, intrusion detection
- o handwritten recognition
- · . .

Main idea of SVMs

- O Given a set of data points which belong to either of two classes
 - Find an optimal separating hyperplane

• leaving the largest possible fraction of points of the same class on the same side

and

• maximizing the distance of either class from the hyperplane

- Minimize the risk of misclassifying the training samples and the unseen test samples
- o <u>Approach</u>: Formulate a *constrained optimisation problem*, then solve it using *constrained quadratic programming*
- o SMO (Sequential Minimal Optimisation) algorithm, developed by John Platt, in 1986

• Characteristics

- o SVMs implement automatic complexity control to avoid overfitting
- o even if an SVM has a lot of hyperparameters, large margins make them simple classifiers
- o intuition regarding the large margin:
 - points near the decision surface may represent very uncertain classification decisions
 - there is almost 50% chance of the classifier going either way
 - a classifier with large margin makes no very uncertain decisions
- o <u>SVR</u> (Support Vector Regression)

2. Types of SVMs

- Linear SVMs
- Linear SVMs with soft margin
- Nonlinear SVMs

a). Linear SVMs

- the linear case
- data are linearly separable by a hyperplane

- o linear classifier
- formulate an optimisation problem
 - Formalisation
 - S a set o data points $x_i \in \mathbb{R}^d$, i=1,2...,m
 - two classes: +, -
 - the label of each instance x_i is $y_i \in \{-1,+1\}$
 - training data $\langle x_i, y_i \rangle$, i=1,2...,m
 - impose a **functional margin** at least 1

The set S is linear separable if there are $w \in \mathbb{R}^d$ and $w_0 \in \mathbb{R}$ such that

$$y_i(w \cdot x_i + w_0) \ge 1 \qquad i = 1, \dots, m$$

The pair (w, w_0) defines the hyperplane of equation $w \cdot x + w_0 = 0$, named the separating hyperplane.

The signed distance d_i of a point x_i to the separating hyperplane (w, w_0) is given by $d_i = \frac{w \cdot x_i + w_0}{||w||}$.

It follows that $y_i d_i \geq \frac{1}{||w||}$, therefore $\frac{1}{||w||}$ is the lower bound on the distance between points x_i and the separating hyperplane (w, w_0) .

30000

• linear classifier

○
$$f(x) = sgn(w \cdot x + w_0)$$

○ if $w \cdot x + w_0 > 0 \Rightarrow$ predict 1, otherwise predict -1

[6]

o Linear SVMs: the primal form

minimize
$$\frac{1}{2}||w||^2$$

subject to $y_i(w \cdot x_i + w_0) \ge 1$ for $i = 1, \dots, m$ (1)

- **constrained quadratic problem** (QP) with d+1 parameters
- hypothesis \rightarrow hyperplane

$$(w_0, w_1, \dots w_d) \in \Re^{d+1}$$

- if d is not very big (10³) can be solved using quadratic optimisation methods
- for large values of d (10⁵)
 - o <u>Kuhn-Tucker theorem</u> (nonlinear programming)
 - objective function and the associated constraints are convex

 \Rightarrow the <u>Lagrange multipliers</u> $(\alpha_i \ge 0, i = 1, ..., m)$ are used to transform the problem into an equivalent **dual form**

[6]

Linear SVMs: the dual form

maximize
$$\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \ x_i \cdot x_j$$

subject to $\sum_{i=1}^{m} y_i \alpha_i = 0$
 $\alpha_i \ge 0, i = 1, \dots, m$

The link between the primal and the dual form:

The optimal solution $(\overline{w}, \overline{w}_0)$ of the primal QP problem is given by

$$\overline{w} = \sum_{i=1}^{m} \overline{\alpha}_i y_i x_i$$

$$\overline{\alpha}_i (y_i (\overline{w} \cdot x_i + \overline{w}_0) - 1) = 0 \text{ for any } i = 1, \dots, m$$

where $\overline{\alpha}_i$ are the optimal solutions of the above (dual form) optimisation problem.

b). Linear SVMs with soft margin

- the data set S is not linearly separable, or one ignores weather or not S is linearly separable
- extend the optimisation problem (1), by allowing a small number of misclassified points
 - o better generalisation of computational efficiency
 - o m non-negative variables ξ_i

• primal form

minimize
$$\frac{1}{2}||w||^2 + C\sum_{i=1}^m \xi_i$$

subject to $y_i(w \cdot x_i + w_0) \ge 1 - \xi_i$ for $i = 1, ..., m$
 $\xi_i \ge 0$ for $i = 1, ..., m$

• dual form

maximize
$$\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \ x_i \cdot x_j$$

subject to $\sum_{i=1}^{m} y_i \alpha_i = 0$
 $0 \le \alpha_i \le C, i = 1, \dots, m$

[6]

- introduce a parameter *C misclassification parameter*
 - o acts as a regularizing parameter
 - reducing overfitting
 - o large $C \Rightarrow$ minimize the number of misclassified points
 - o small $C \Rightarrow$ maximize the functional margin $\frac{1}{\|w\|}$

c). Nonlinear SVMs

- the data points from the input space \Re^d are mapped into a higher dimensional space \Re^n (n>d) using a function called a map $\phi:\Re^d \to \Re^n$
 - in a higher dimensional space, it is likely that a linear separator can be constructed
- the training algorithm would depend on the scalar (dot) product $\phi(x_i) \cdot \phi(x_j)$
- constructing (via ϕ) a separating hyperplane with maximum margin in the higher dimensional space yields a nonlinear decision boundary in the input space

General Schema for Nonlinear SVMs

[6]

- nonlinear SVMs make use of the "kernel trick"
 - the dot product is computationally expensive
 - a kernel function $K: \mathfrak{R}^d \times \mathfrak{R}^d \to \mathfrak{R}$ such that $K(x_1, x_2) = \phi(x_1) \cdot \phi(x_2)$, where \cdot is the dot product
 - by using the kernel function, it is possible to compute the separating hyperplane without explicitly constructing the map ϕ

3. Some kernel functions for SVMs

- Polynomial: $K(x, x') = (x \cdot x' + c)^q$
- RBF (radial basis function): $K(x, x') = e^{-\frac{||x-x'||^2}{2\sigma^2}}$
- Sigmoide: $K(x, x') = tanh(\alpha x \cdot x' b)$

$$tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

Example Considering that the dimensionality of the input space is 2 (d=2), show that the polynomial function K previously defined, for c=0 and q=2 is a kernel function.

Proof. Assuming that $x=(x_1, x_2)$ and $y=(y_1, y_2)$, we have that

$$K(x, y)=(x \cdot y)^2=x_1^2y_1^2+2 x_1 y_1 x_2 y_2+x_2^2y_2^2$$

For proving that *K* is a kernel function, we must prove that there exists $\phi: \Re^2 \to \Re^n$ (n > 2) such that $(x \cdot y)^2 = \phi(x) \cdot \phi(y)$.

There are three possible mapping functions ϕ which satisfy the previous equality.

a).
$$\phi: \Re^2 \to \Re^3$$
, $\phi(x_1, x_2) = (x_1^2, \sqrt{2x_1 x_2, x_2^2})$

b).
$$\phi: \Re^2 \to \Re^3$$
, $\phi(x_1, x_2) = 1/\sqrt{2} (x_1^2 - x_2^2, 2x_1 x_2, x_1^2 + x_2^2)$

c).
$$\phi: \mathbb{R}^2 \to \mathbb{R}^4$$
, $\phi(x_1, x_2) = (x_1^2, x_1 x_2, x_1 x_2, x_2^2)$

• decision surfaces induced by a kernel function

Decision surface

- (a) by a polynomial classifier, and
- (b) by a RBF.

Support vectors are indicated in dark fill.

[6]

XOR Example

for the XOR publim

A	В	Outpu	大
1	1	1	Class 1
-1	1	-1	Class 2
1	-1	-1	Class 2
-1	-1	1	Uass 1

Pohynomial Kernel
$$K(u,v) = (u0v+1)^{2} = (u_{1}\cdot v_{1} + u_{2}\cdot v_{2} + 1)^{2} = u_{1}^{2}v_{1}^{2} + u_{2}^{2}v_{2}^{2} + 2u_{1}u_{2}v_{1}v_{2} + 2u_{1}v_{1} + 2u_{2}v_{2} + 1$$

An SVM with a RBF kernel is equivalent with a 2 layered perceptron network

4. Overfitting

- *C* is a regularization parameter
 - o helps in avoiding overfitting
 - o theoretically, SVMs should be highly resistant to overfitting
 - in practice, it depends on the careful choice of *C* and other hyperparameters (e.g. the parameters of the kernel)
 - large $C \Rightarrow$ minimize the number of misclassified points
 - small $C \Rightarrow$ maximize the functional margin

5. LIBSVM

- implements the C-SVM algorithm
- for hyperparameters optimization (C and the parameters of the kernel) a grid search procedure is used
 - o repeated trials for each parameter across a specified interval using geometric steps
 - o for each combination of these parameters, a 10-fold cross-validation is performed during training, the quality of the combination being computed as the average of the accuracy rates estimated for each of the 10 divisions of the data
- the training step is computationally expensive

6. SVM related research topics

- <u>SVR</u> (regression)
- Deep SVMs
- Deep SVMs for regression
- Using SVMs in an ensemble learning
 - o Boosted SVMs
 - o Bagging SVMs
 - Stacking
 - base model
- Fuzzy SVMs
- Lazy SVMs
- Combining kernels for SVMs
- Hybrid models
 - SVM + ANN (Artificial Neural Networks)
 - \circ SVM + kNN (k-Nearest Neighbors)
 - SVM + NBC (Naive Bayes Classifier)

[SLIDES]

Introduction to Support Vector Machines (Ming-Hsuan Yang and Antoine Cornuejols) [6]

[READING]

- Support Vector Machines Explained (T. Fletcher) [1]
- Support Vector Machines (Ch. 23) [2]
- A Practical Guide to Support Vector Classification (Hsu et al.) [3]

Bibliography

- [1] Tristan Fletcher, Support Vector Machines Explained, 2008, UCL
- [2] Support Vector Machines, Chapter 23, Cambridge University Press, 2012
- [3] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin, A Practical Guide to Support Vector Classification, Taiwan, 2009
- [4] The Simplified SMO Algorithm
- [5] John Platt, <u>Fast Training of Support Vector Machines using Sequential Minimal Optimization</u>, Microsoft Research, USA