MS Thesis (Graduation: 2021)

DESIGN AND ANALYSIS OF WIRE-DRIVEN ROBOTIC JOINTS WITH APPLICATION FOR MINIMALLY INVASIVE SURGERIES

Kent State University (KSU), USA

- Professor Tao Shen
- Professor Darwin Boyd
- 3. Professor Rui Liu
- 4. Professor Hossein Mirinejad

Background

Minimally Invasive Surgery (MIS)

- ✓ Operation with as little invasion as possible
 - Less invasion, smaller scar, less painful, less bleeding, short recovery time, better cosmetics
 - Highly advanced and popular robot assisted MIS
- ✓ Benefits of robot assisted MIS
 - Remote control, smoother motion control, better imaging, less fatigue

State of the art

- Long & rigid instruments
- Not flexible
- Manual tool changing
- Hinders natural vision
- Onsite (attached to robot joints) motors/sensors

- Long & rigid instruments
- Not flexible
- Manual tool changing
- Hinders natural vision
- Damage to electronics due to heat/chemical sterilization

- Long & rigid instruments
- Not flexible
- Manual tool changing
- Tool tip does not have multifunctionality
- One tool manipulator can do only one job

Tool

unlock

Tool

retract

Methodology

Experimental Setup

✓ Wire driven multifunctional tool tip manipulator

- Remote placement of motors/sensors through wire actuation
- Damage prevention of electronics
- Compact size and lightweight
- Manipulator can hold multiple types of tool
- Multifunctionality with auto onsite tool change without full retraction of the manipulator

Experimental Setup

✓ Flexible robotic arm

End-effector position

Ĺ	β	L	α
1	eta_1	L_1	0
2	eta_2	L_2	0
3	eta_3	L_3	0

 L_1,L_2 and L_3 represent three consequtive link lenghts β_1,β_2 and β_3 are the joint rotations

Length of	f wire when relative rotation is zero, $X = 2L\cos 10$
-----------	--

Length when rotation angle is
$$\gamma, X' = 2L\cos\left(10 + \frac{\gamma}{2}\right)$$

Wire displacement at each joint,
$$\delta = X' - X = 2L\left\{cos\left(10 + \frac{\gamma}{2}\right) - cos10\right\}$$

$X = L_2 \cos(\beta_1)$	$+\beta_{2})+L_{1}$	$cos(\beta_1)$	$+ L_3 cos(\beta_1)$	$+\beta_2+\beta_3$

$$Y = L_2 \sin(\beta_1 + \beta_2) + L_1 \sin(\beta_1) + L_3 \sin(\beta_1 + \beta_2 + \beta_3)$$

- Flexible robot arm for mounting compact multifunctional manipulator
- Can navigate curved regions
- Can do pitch and yaw motion

environments

Advantages

placement

⋖ Solved problems

lightweight

prevention