# Significantly Improved Multibit Differentials for Reduced Round Salsa and ChaCha

Arka Rai Choudhuri

Johns Hopkins University

USA

Subhamoy Maitra

Indian Statistical Institute
India

FSE 2017, Tokyo

# Salsa and ChaCha

**ARX** based stream ciphers.

Designed by Dan Bernstein.

# Salsa and ChaCha

**ARX** based stream ciphers.

Designed by Dan Bernstein.

Salsa accepted into the **eStream** software portfolio (2007).

# Salsa and ChaCha

**ARX** based stream ciphers.

Designed by Dan Bernstein.

Salsa accepted into the eStream software portfolio (2007).

ChaCha designed to address some concerns about Salsa (2008).

**Standardization** process for inclusion of cipher suite based on ChaCha20-Poly1305 AEAD in **TLS1.3** is almost complete.

**Standardization** process for inclusion of cipher suite based on ChaCha20-Poly1305 AEAD in **TLS1.3** is almost complete.

Existing cryptanalysis treats ciphers as **black-boxes**.

**Standardization** process for inclusion of cipher suite based on ChaCha20-Poly1305 AEAD in **TLS1.3** is almost complete.

Existing cryptanalysis treats ciphers as **black-boxes**.

Brute force search for multiple components in cryptanalysis.





Easy to implement.



Easy to implement.

Fast on PCs.



Easy to implement.

Fast on PCs.



No security guarantees.

# Non Randomness

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v_0 & v_1 \\ t_0 & t_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v_0 & v_1 \\ t_0 & t_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & \mathbf{v'}_0 & \mathbf{v'}_1 \\ \mathbf{t'}_0 & \mathbf{t'}_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v_0 & v_1 \\ t_0 & t_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix}$$



$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & \mathbf{v'}_0 & \mathbf{v'}_1 \\ t'_0 & \mathbf{t'}_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix}$$

$$\Delta^{(0)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & ? & ? \\ ? & ? & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v_0 & v_1 \\ t_0 & t_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \longrightarrow Salsa^r$$



$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v'_0 & v'_1 \\ t'_0 & t'_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \longrightarrow Salsa^r$$

$$\Delta^{(0)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & ? & ? \\ ? & ? & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v_0 & v_1 \\ t_0 & t_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \longrightarrow \begin{array}{c} Salsa^r \\ Salsa^r \\ \hline \\ Salsa^r \\ \\ Sa$$



$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v'_0 & v'_1 \\ t'_0 & t'_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \longrightarrow Salsa^r \qquad \begin{bmatrix} x'_0 & x'_1 & x'_2 & x'_3 \\ x'_4 & x'_5 & x'_6 & x'_7 \\ x'_8 & x'_9 & x'_{10} & x'_{11} \\ x'_{12} & x'_{13} & x'_{14} & x'_{15} \end{bmatrix}$$

$$\Delta^{(0)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & ? & ? \\ ? & ? & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & \mathbf{v_0} & \mathbf{v_1} \\ t_0 & t_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \longrightarrow \mathbf{Salsa}^{\mathbf{r}} \qquad \begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v'_0 & v'_1 \\ t'_0 & t'_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \longrightarrow Salsa^r \qquad \begin{bmatrix} x'_0 & x'_1 & x'_2 & x'_3 \\ x'_4 & x'_5 & x'_6 & x'_7 \\ x'_8 & x'_9 & x'_{10} & x'_{11} \\ x'_{12} & x'_{13} & x'_{14} & x'_{15} \end{bmatrix}$$

$$\Delta^{(0)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & ? & ? \\ ? & ? & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & \mathbf{v_0} & \mathbf{v_1} \\ t_0 & t_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \longrightarrow \mathbf{Salsa}^{\mathbf{r}} \qquad \begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{bmatrix}$$



$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v'_0 & v'_1 \\ t'_0 & t'_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \longrightarrow Salsa^r \qquad \begin{bmatrix} x'_0 & x'_1 & x'_2 & x'_3 \\ x'_4 & x'_5 & x'_6 & x'_7 \\ x'_8 & x'_9 & x'_{10} & x'_{11} \\ x'_{12} & x'_{13} & x'_{14} & x'_{15} \end{bmatrix}$$

$$\Delta^{(0)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & ? & ? \\ ? & ? & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v_0 & v_1 \\ t_0 & t_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \longrightarrow \begin{array}{c} Salsa^r \\ Salsa^r \\ \hline \\ Salsa^r \\ \\ Sa$$

$$\bigoplus$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v'_0 & v'_1 \\ t'_0 & t'_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \longrightarrow Salsa^r \qquad \begin{bmatrix} x'_0 & x'_1 & x'_2 & x'_3 \\ x'_4 & x'_5 & x'_6 & x'_7 \\ x'_8 & x'_9 & x'_{10} & x'_{11} \\ x'_{12} & x'_{13} & x'_{14} & x'_{15} \end{bmatrix}$$

$$\Delta^{(0)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & ? & ? \\ ? & ? & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v_0 & v_1 \\ t_0 & t_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \longrightarrow \begin{array}{c} Salsa^r \\ Salsa^r \\ \hline \\ Salsa^r \\ \\ Sa$$

$$\bigoplus$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v'_0 & v'_1 \\ t'_0 & t'_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \longrightarrow Salsa^r \qquad \begin{bmatrix} x'_0 & x'_1 & x'_2 & x'_3 \\ x'_4 & x'_5 & x'_6 & x'_7 \\ x'_8 & x'_9 & x'_{10} & x'_{11} \\ x'_{12} & x'_{13} & x'_{14} & x'_{15} \end{bmatrix}$$

$$\Delta^{(0)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & ? & ? \\ ? & ? & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$













Complexity of attack increases with increase in number of significant bits.







#### ChaCha





#### ChaCha



# Salsa update function

# Salsa update function

$$\begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{bmatrix}$$

# Salsa update function

$$\begin{array}{lll}
b & = & b \oplus ((a+d) \lll 7), \\
c & = & c \oplus ((b+a) \lll 9), \\
d & = & d \oplus ((c+b) \lll 13), \\
a & = & a \oplus ((d+c) \lll 18).
\end{array}$$

$$\begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{bmatrix}$$

$$\begin{array}{lll}
b & = & b \oplus ((a+d) \lll 7), \\
c & = & c \oplus ((b+a) \lll 9), \\
d & = & d \oplus ((c+b) \lll 13), \\
a & = & a \oplus ((d+c) \lll 18).
\end{array}$$

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ x_5 & x_6 & x_7 \\ x_6 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{bmatrix}$$

$$\begin{array}{lll}
b & = & b \oplus ((a+d) \lll 7), \\
c & = & c \oplus ((b+a) \lll 9), \\
d & = & d \oplus ((c+b) \lll 13), \\
a & = & a \oplus ((d+c) \lll 18).
\end{array}$$



$$\begin{array}{lll}
b & = & b \oplus ((a+d) \lll 7), \\
c & = & c \oplus ((b+a) \lll 9), \\
d & = & d \oplus ((c+b) \lll 13), \\
a & = & a \oplus ((d+c) \lll 18).
\end{array}$$



$$\begin{array}{lll}
b & = & b \oplus ((a+d) \lll 7), \\
c & = & c \oplus ((b+a) \lll 9), \\
d & = & d \oplus ((c+b) \lll 13), \\
a & = & a \oplus ((d+c) \lll 18).
\end{array}$$



# Differential-Linear Biases

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v_0 & v_1 \\ t_0 & t_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \xrightarrow{\mathbf{r} \text{ rounds}} \begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{bmatrix}$$

$$\bigoplus$$

$$\bigoplus$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v'_0 & v'_1 \\ t'_0 & t'_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \quad \mathbf{r} \text{ rounds} \qquad \begin{bmatrix} x'_0 & x'_1 & x'_2 & x'_3 \\ x'_4 & x'_5 & x'_6 & x'_7 \\ x'_8 & x'_9 & x'_{10} & x'_{11} \\ x'_{12} & x'_{13} & x'_{14} & x'_{15} \end{bmatrix}$$

$$\Delta^{(0)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & ? & ? \\ ? & ? & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v_0 & v_1 \\ t_0 & t_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \xrightarrow{\mathbf{r} \text{ rounds}} \begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{bmatrix} \xrightarrow{\mathbf{r'} \text{ rounds}} \begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v'_0 & v'_1 \\ t'_0 & t'_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \quad \mathbf{r} \text{ rounds} \qquad \begin{bmatrix} x'_0 & x'_1 & x'_2 & x'_3 \\ x'_4 & x'_5 & x'_6 & x'_7 \\ x'_8 & x'_9 & x'_{10} & x'_{11} \\ x'_{12} & x'_{13} & x'_{14} & x'_{15} \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v'_0 & v'_1 \\ t'_0 & t'_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \xrightarrow{\mathbf{r} \text{ rounds}} \begin{bmatrix} x'_0 & x'_1 & x'_2 & x'_3 \\ x'_4 & x'_5 & x'_6 & x'_7 \\ x'_8 & x'_9 & x'_{10} & x'_{11} \\ x'_{12} & x'_{13} & x'_{14} & x'_{15} \end{bmatrix}$$

$$\begin{bmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v'_0 & v'_1 \\ t'_0 & t'_1 & c_2 & x_{11} \\ k_5 & k_6 & k_7 & c_3 \end{bmatrix} \xrightarrow{\mathbf{r} \text{ rounds}} \begin{bmatrix} x'_0 & x'_1 & x'_2 & x'_3 \\ x'_4 & x'_5 & x'_6 & x'_7 \\ x'_8 & x'_9 & x'_{10} & x'_{11} \\ x'_{12} & x'_{13} & x'_{14} & x'_{15} \end{bmatrix}$$

Given  $\varepsilon_d$  and  $\varepsilon_L$ , we can find the **differential-linear** bias for  $\mathbf{r}+\mathbf{r}'$  rounds.

Let's look at the Salsa update function again

Let's look at the Salsa update function again

$$\begin{array}{lll} b & = & b \oplus ((a+d) \lll 7), \\ c & = & c \oplus ((b+a) \lll 9), \\ d & = & d \oplus ((c+b) \lll 13), \\ a & = & a \oplus ((d+c) \lll 18). \end{array}$$

Let's look at the Salsa update function again

$$\begin{array}{rcl} \boldsymbol{d} & = & d \oplus ((\boldsymbol{c} + \boldsymbol{b}) \lll 13), \\ \boldsymbol{a} & = & a \oplus ((\boldsymbol{d} + \boldsymbol{c}) \lll 18). \end{array}$$

Get rid of the carry.

$$d[13] = d[13] \oplus (c[0] \oplus b[0]),$$
  
 $a[18] = a[18] \oplus (d[0] \oplus c[0]).$ 

$$\Delta d[13] \oplus \Delta c[0] \oplus \Delta b[0] = \Delta d[13]$$
  
$$\Delta a[18] \oplus \Delta d[0] \oplus \Delta c[0] = \Delta a[18].$$

$$\Delta d[13] \oplus \Delta c[0] \oplus \Delta b[0] = \Delta d[13]$$

$$\Delta a[18] \oplus \Delta d[0] \oplus \Delta c[0] = \Delta a[18].$$

$$\varepsilon$$

$$\Delta d[13] \oplus \Delta c[0] \oplus \Delta b[0] = \Delta d[13]$$

$$\Delta a[18] \oplus \Delta d[0] \oplus \Delta c[0] = \Delta a[18].$$

$$\varepsilon$$

$$\Delta d[13] \oplus \Delta c[0] \oplus \Delta b[0] = \Delta d[13]$$

$$\Delta a[18] \oplus \Delta d[0] \oplus \Delta c[0] = \Delta a[18].$$

$$\varepsilon$$

Lets us search over 8 possible bits instead of  $\binom{512}{3}$  3 bit combinations.

Similar idea for ChaCha, but involves more bits because of a more involved state update function.

Similar idea for ChaCha, but involves more bits because of a more involved state update function.

"Unlike Salsa20, our exhaustive search showed no bias in 4-round ChaCha, be it with one, two, or three target output bits."

| Reference                  | ε           |
|----------------------------|-------------|
| Tsunoo et al. (2007)       | $2^{-5.24}$ |
| Aumasson et al. (2008)     | $2^{-2.93}$ |
| Maitra, Paul, Meier (2015) | $2^{-2.35}$ |
| Maitra (2016)              | $2^{-2.12}$ |
|                            |             |

4 rounds

| Reference                  | arepsilon   |
|----------------------------|-------------|
| Fischer et al. (2006)      | 2-10.34     |
| Maitra, Paul, Meier (2015) | $2^{-9.05}$ |
|                            |             |

5 rounds

| Reference                  | ε             |
|----------------------------|---------------|
| Tsunoo et al. (2007)       | $2^{-5.24}$   |
| Aumasson et al. (2008)     | $2^{-2.93}$   |
| Maitra, Paul, Meier (2015) | $2^{-2.35}$   |
| Maitra (2016)              | $2^{-2.12}$   |
| This work                  | $\approx 2^0$ |

4 rounds

| Reference                  | ε                   |
|----------------------------|---------------------|
| Fischer et al. (2006)      | 2-10.34             |
| Maitra, Paul, Meier (2015) | $2^{-9.05}$         |
| This work                  | $\approx 2^{-3.13}$ |

5 rounds

| Reference                  | ε             |
|----------------------------|---------------|
| Tsunoo et al. (2007)       | $2^{-5.24}$   |
| Aumasson et al. (2008)     | $2^{-2.93}$   |
| Maitra, Paul, Meier (2015) | $2^{-2.35}$   |
| Maitra (2016)              | $2^{-2.12}$   |
| This work                  | $\approx 2^0$ |

4 rounds

### ChaCha

| Reference              | ε           |
|------------------------|-------------|
| Aumasson et al. (2008) | $2^{-5.26}$ |
| Maitra (2016)          | 2-2.83      |
|                        |             |

3 rounds

| Reference                  | arepsilon           |
|----------------------------|---------------------|
| Fischer et al. (2006)      | 2-10.34             |
| Maitra, Paul, Meier (2015) | $2^{-9.05}$         |
| This work                  | $\approx 2^{-3.13}$ |

5 rounds

| Reference | arepsilon |
|-----------|-----------|
|           |           |

| Reference                  | ε             |
|----------------------------|---------------|
| Tsunoo et al. (2007)       | $2^{-5.24}$   |
| Aumasson et al. (2008)     | $2^{-2.93}$   |
| Maitra, Paul, Meier (2015) | $2^{-2.35}$   |
| Maitra (2016)              | $2^{-2.12}$   |
| This work                  | $\approx 2^0$ |

4 rounds

### ChaCha

| Reference              | ε           |
|------------------------|-------------|
| Aumasson et al. (2008) | $2^{-5.26}$ |
| Maitra (2016)          | 2-2.83      |
| This work              | 20          |

3 rounds

| Reference                  | arepsilon           |
|----------------------------|---------------------|
| Fischer et al. (2006)      | 2-10.34             |
| Maitra, Paul, Meier (2015) | $2^{-9.05}$         |
| This work                  | $\approx 2^{-3.13}$ |

5 rounds

| Reference | arepsilon           |
|-----------|---------------------|
| This work | $\approx 2^{-2.33}$ |

| Reference                  | ε             |
|----------------------------|---------------|
| Tsunoo et al. (2007)       | $2^{-5.24}$   |
| Aumasson et al. (2008)     | $2^{-2.93}$   |
| Maitra, Paul, Meier (2015) | $2^{-2.35}$   |
| Maitra (2016)              | $2^{-2.12}$   |
| This work                  | $\approx 2^0$ |

4 rounds

#### ChaCha

| Reference              | ε           |
|------------------------|-------------|
| Aumasson et al. (2008) | $2^{-5.26}$ |
| Maitra (2016)          | 2-2.83      |
| This work              | 20          |

3 rounds

| Reference                  | ε                   |
|----------------------------|---------------------|
| Fischer et al. (2006)      | 2-10.34             |
| Maitra, Paul, Meier (2015) | $2^{-9.05}$         |
| This work                  | $\approx 2^{-3.13}$ |

5 rounds

Distinguisher with complexity  $\approx 2^8$   $2^{47}$  improvement

| Reference | arepsilon           |
|-----------|---------------------|
| This work | $\approx 2^{-2.33}$ |

| Reference                  | arepsilon     |
|----------------------------|---------------|
| Tsunoo et al. (2007)       | $2^{-5.24}$   |
| Aumasson et al. (2008)     | $2^{-2.93}$   |
| Maitra, Paul, Meier (2015) | $2^{-2.35}$   |
| Maitra (2016)              | $2^{-2.12}$   |
| This work                  | $\approx 2^0$ |

4 rounds

#### ChaCha

| Reference              | ε           |
|------------------------|-------------|
| Aumasson et al. (2008) | $2^{-5.26}$ |
| Maitra (2016)          | 2-2.83      |
| This work              | 20          |

3 rounds

| Reference                  | ε                   |
|----------------------------|---------------------|
| Fischer et al. (2006)      | 2-10.34             |
| Maitra, Paul, Meier (2015) | $2^{-9.05}$         |
| This work                  | $\approx 2^{-3.13}$ |

5 rounds

Distinguisher with complexity  $\approx 2^8$   $2^{47}$  improvement

| Reference | arepsilon           |
|-----------|---------------------|
| This work | $\approx 2^{-2.33}$ |

4 rounds

Distinguisher with complexity  $\approx 2^6$ 

$$(x+y)[i]$$

$$(x+y)[i] = x[i] \oplus y[i] \oplus x[i-1]$$
 w.p.  $\frac{1}{2}(1+\frac{1}{2})$ 

$$(x+y)[i] = x[i] \oplus y[i] \oplus x[i-1]$$
 w.p.  $\frac{1}{2}(1+\frac{1}{2})$ 

$$(x+y)[i] \oplus (x+y)[i+1]$$

$$(x+y)[i] = x[i] \oplus y[i] \oplus x[i-1]$$
 w.p.  $\frac{1}{2}(1+\frac{1}{2})$ 

$$(x+y)[i] \oplus (x+y)[i+1] = x[i+1] \oplus y[i+1]$$
 w.p.  $\frac{1}{2}(1-\frac{1}{2})$ 

 $d[13] = d[13] \oplus c[0] \oplus b[0]$ 









Combination of 19 bits from the subsequent round

| Reference | ε                    |
|-----------|----------------------|
| This work | $\approx 2^{-15.13}$ |

6 rounds

| Reference | ε                    |
|-----------|----------------------|
| This work | $\approx 2^{-95.13}$ |

| Reference | ε                    |
|-----------|----------------------|
| This work | $\approx 2^{-15.13}$ |

6 rounds

| Reference | ε                    |
|-----------|----------------------|
| This work | $\approx 2^{-95.13}$ |

7 rounds

## ChaCha

| This work | $\approx 2^{-7.2}$ |
|-----------|--------------------|
| Reference | $ \varepsilon $    |

5 rounds

| Reference | ε                   |
|-----------|---------------------|
| This work | $\approx 2^{-57.2}$ |

| Reference | ε                    |
|-----------|----------------------|
| This work | $\approx 2^{-15.13}$ |

6 rounds

Distinguisher with complexity  $\approx 2^{32}$   $2^{41}$  improvement

| Reference | ε                    |
|-----------|----------------------|
| This work | $\approx 2^{-95.13}$ |

7 rounds

#### ChaCha

| This work | $\approx 2^{-7.2}$ |
|-----------|--------------------|
| Reference | ε                  |

5 rounds

| Reference | ε                   |
|-----------|---------------------|
| This work | $\approx 2^{-57.2}$ |

| Reference | ε                    |
|-----------|----------------------|
| This work | $\approx 2^{-15.13}$ |

6 rounds

Distinguisher with complexity  $\approx 2^{32}$  $2^{41}$  improvement

| Reference | ε                    |
|-----------|----------------------|
| This work | $\approx 2^{-95.13}$ |

7 rounds

#### ChaCha

| This work | $\approx 2^{-7.2}$ |
|-----------|--------------------|
| Reference | ε                  |

5 rounds

Distinguisher with complexity  $\approx 2^{16}$ 

| Reference | ε                   |
|-----------|---------------------|
| This work | $\approx 2^{-57.2}$ |

| Reference | 8                  |
|-----------|--------------------|
| This work | $pprox 2^{-15.13}$ |

6 rounds

Distinguisher with complexity  $\approx 2^{32}$  $2^{41}$  improvement

| Reference | ε                    |
|-----------|----------------------|
| This work | $\approx 2^{-95.13}$ |

7 rounds

#### ChaCha

| This work | $\approx 2^{-7.2}$ |
|-----------|--------------------|
| Reference | $ \varepsilon $    |

5 rounds

Distinguisher with complexity  $\approx 2^{16}$ 

| Reference | ε                   |
|-----------|---------------------|
| This work | $\approx 2^{-57.2}$ |

6 rounds

Distinguisher with complexity  $\approx 2^{116}$  $2^{20}$  improvement

Implications to the key recovery attack















## ChaCha



## ChaCha





| Reference              | Time             |
|------------------------|------------------|
| Aumasson et al. (2008) | 2 <sup>151</sup> |
| Shi et al. (2012)      | 2 <sup>148</sup> |
|                        |                  |

7 rounds

| Reference              | Time        |
|------------------------|-------------|
| Aumasson et al. (2008) | $2^{251}$   |
| Shi et al. (2012)      | $2^{250}$   |
| Maitra(2016)           | $2^{245.5}$ |
|                        |             |

| Reference              | Time             |
|------------------------|------------------|
| Aumasson et al. (2008) | 2 <sup>151</sup> |
| Shi et al. (2012)      | $2^{148}$        |
| This work              | 2 <sup>137</sup> |

7 rounds

| Reference              | Time               |
|------------------------|--------------------|
| Aumasson et al. (2008) | $2^{251}$          |
| Shi et al. (2012)      | $2^{250}$          |
| Maitra(2016)           | $2^{245.5}$        |
| This work              | 2 <sup>244.9</sup> |

| Reference              | Time             |
|------------------------|------------------|
| Aumasson et al. (2008) | 2 <sup>151</sup> |
| Shi et al. (2012)      | $2^{148}$        |
| This work              | 2 <sup>137</sup> |

7 rounds

| Reference              | Time               |
|------------------------|--------------------|
| Aumasson et al. (2008) | $2^{251}$          |
| Shi et al. (2012)      | $2^{250}$          |
| Maitra(2016)           | $2^{245.5}$        |
| This work              | 2 <sup>244.9</sup> |

8 rounds

## ChaCha

| Reference              | Time             |
|------------------------|------------------|
| Aumasson et al. (2008) | 2 <sup>139</sup> |
| Shi et al. (2012)      | 2 <sup>136</sup> |
|                        |                  |

6 rounds

| Reference              | Time        |
|------------------------|-------------|
| Aumasson et al. (2008) | $2^{248}$   |
| Shi et al. (2012)      | $2^{246.5}$ |
| Maitra(2016)           | $2^{238.9}$ |
|                        |             |

| Reference              | Time             |
|------------------------|------------------|
| Aumasson et al. (2008) | 2 <sup>151</sup> |
| Shi et al. (2012)      | $2^{148}$        |
| This work              | 2 <sup>137</sup> |

7 rounds

| Reference              | Time               |  |  |
|------------------------|--------------------|--|--|
| Aumasson et al. (2008) | $2^{251}$          |  |  |
| Shi et al. (2012)      | $2^{250}$          |  |  |
| Maitra(2016)           | $2^{245.5}$        |  |  |
| This work              | 2 <sup>244.9</sup> |  |  |

8 rounds

## ChaCha

| Reference              | Time               |  |
|------------------------|--------------------|--|
| Aumasson et al. (2008) | $2^{139}$          |  |
| Shi et al. (2012)      | 2 <sup>136</sup>   |  |
| This work              | 2 <sup>127.5</sup> |  |

6 rounds

| Reference              | Time               |  |
|------------------------|--------------------|--|
| Aumasson et al. (2008) | $2^{248}$          |  |
| Shi et al. (2012)      | $2^{246.5}$        |  |
| Maitra(2016)           | $2^{238.9}$        |  |
| This work              | 2 <sup>237.7</sup> |  |

# Conclusion

Improve attacks on some reduced round versions, importantly moving some to practical realms.

Improve attacks on some reduced round versions, importantly moving some to practical realms.

A different method to partition the key space could potentially improve our attacks in both **complexity** and **rounds**.

Improve attacks on some reduced round versions, importantly moving some to practical realms.

A different method to partition the key space could potentially improve our attacks in both **complexity** and **rounds**.

(or is this inherent to this kind of cryptanalysis?)

# Thank you. Questions?

# References

[C05] Paul Crowley. "Truncated differential cryptanalysis of five rounds of Salsa20". In: IACR Cryptology ePrint Archive 2005 (2005), p. 375. url: http://eprint.iacr.org/2005/375.

[FMB<sup>+</sup>06] Simon Fischer, Willi Meier, Come Berbain, Jean-Francois Biasse, and Matthew J. B. Robshaw. "Non-randomness in eSTREAM Candidates Salsa20 and TSC-4". In: Progress in Cryptology - INDOCRYPT 2006, 7th International Conference on Cryptology in India, Kolkata, India, December 11-13, 2006, Proceedings.

[TSK+07] Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki, and Hiroki Nakashima. "Differential Cryptanalysis of Salsa20/8". 2007. url: http://ecrypt.eu.org/stream/papersdir/2007/010.pdf.

[AFK+08] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and Christian Rechberger. "New features of Latin dances: analysis of Salsa, ChaCha, and Rumba". In: Fast Software Encryption. Springer. 2008.

[SZF+12] Zhenqing Shi, Bin Zhang, Dengguo Feng, and Wenling Wu. "Improved Key Recovery Attacks on Reduced-Round Salsa20 and ChaCha". In: Information Security and Cryptology - ICISC 2012 - 15th International Conference, Seoul, Korea, November 28-30, 2012, Revised Selected Papers.

[MPM15] Subhamoy Maitra, Goutam Paul, and Willi Meier. "Salsa20 Cryptanalysis: New Moves and Revisiting Old Styles". In: WCC 2015, the Ninth International Workshop on Coding and Cryptography, April 13-17, 2015, Paris, France.

[Mai16] Subhamoy Maitra. "Chosen IV cryptanalysis on reduced round ChaCha and Salsa". In: Discrete Applied Mathematics 208 (2016).