SAMPLE CALCULATIONS

$$\Theta = \sin^{-1}\left(\frac{0.60}{1.85}\right) = 18.9^{\circ}$$

$$\Theta_{\text{Min}} = \sin^{-1}\left(\frac{0.59}{1.86}\right) = 18.5^{\circ}$$

$$\Theta_{\text{Max}} = \sin^{-1}\left(\frac{0.61}{1.84}\right) = 19.4^{\circ}$$

THEORETICAL ACCELERATION:

$$\alpha = g \sin \Theta = 9.8 \sin 18.9^{\circ} = 3.17 \text{m/s}^{2}$$

$$\therefore \alpha_{\text{max}} = 9.8 \sin 19.4^{\circ} = 3.26 \text{m/s}^{2}$$

$$\alpha_{\text{min}} = 9.8 \sin 18.5^{\circ} = 3.11 \text{m/s}^{2}$$

THEORETICAL TIME TO BASE OF RAMP:
$$(S=uE+\frac{1}{2}aE^2, u=om/s)$$

$$\frac{\Theta=18.5^{\circ}}{S=1.86m} \qquad \frac{\Theta=19.4^{\circ}}{S=1.86m} \qquad \frac{\Theta=1$$

$$S = 1.86 \,\text{m}$$
 $Q = 3.17 \,\text{m/s}^2$
 $S = 1.85 \,\text{m}$
 $S = 1.85 \,\text{m}$
 $S = 1.85 \,\text{m}$
 $S = 1.86 \,\text{m}$
 $S = 1.85 \,\text{m}$
 $S = 1.86 \,\text{m}$

will, on average

®I would expect the results here to allow for the assumption that friction on the ramp was negligible, but if notion

Mass of Cart = 0 * 250 kg			Table 1: Time to lase of ramp.		
	Trial	(Tegal 2	Trial 3	
Time to Base of Rap	1.36	2	1.38 s	1.37 s	
Uncertainty (Reaches Time) = ±0.15 Average: 1-37 ±0.105					

This is outside of theoretical range of [1.06-1.09]

s. Friction of ramp is not negligible.

Estimate Firthon on ramp using Ear 1-375 & 0 = 18.90

$$S = 1.85_{M}$$

$$S = u + \frac{1}{2} a + \frac{2}{3}$$

$$U = 0 M S$$

$$L = 1.37 S$$

$$U = 0 \times 1 = \frac{1.85}{2} = (0)(1.37) + \frac{1}{2} a(1.37)^{2}$$

$$U = 0 \times 1 = \frac{1.85}{2} = (0)(1.37) + \frac{1}{2} a(1.37)^{2}$$

$$U = 0 \times 1 = \frac{1.85}{2} = (0)(1.37)^{2}$$

$$U = 1.85 \times 2 = (0)(1.37)^{2} = (0)(1.37)^{2}$$

$$U = 1.85 \times 2 = (0)(1.37)^{2} = (0)(1.37)^{2}$$

$$U = 1.85 \times 2 = (0)(1.37)^{2} = (0)(1.37)^{2}$$

FNET (DOWN STOPE) = Mg SIN & - FRICTION

$$S = (-85M)$$

$$V^{2} = U^{2} + 295$$

$$U = 0 \text{ m/s}$$

$$U = (-97 \text{ m/s}^{2})$$

$$V = 7.289$$

$$V = 7.70 \text{ m/s}$$

$$V = 7.70 \text{ m/s}$$

$$V_{\text{max}}$$
 ($\epsilon_{\text{au}} = 1.27s$, $\Theta = 19.40$) = 2.89 m/s
 V_{min} ($\epsilon_{\text{au}} = 1.47s$, $\Theta = 18.5^{\circ}$) = 2.53 m/s

different masses in the trolley, as Friction & mass.

If we could ignore frithin of the comp, velocity could be assumed to be identical for each run down the ramp. For simplicity, I will continue as though velocity as the case of the value of the range.

Table 2: Mass of Trolley us. Stopping Distance

Mass (hg)	Shopping Di	stance (M)	(±0.01m)	
(± 0-01 h)		Trial 2	Terai 3	Average
0.25	0-39	1.00	(-0	1.00n
0.30	0.94	0.95	0.96	0-95m
0.35	0,89	७ - ५०	0-91	0-90 m
0-40	0.84	0-85	0-86	0-85 m
0.45	0-79	0-80	0.81	0-80 M

$$V^{2} = u^{2} + 2a5 \Rightarrow \frac{U^{2} - u^{2}}{25} = a$$

$$a = \frac{0^2 - 2.70^2}{2(1)} = -3.645 \text{ m/s}^2$$

$$F_{\text{ERICTION}} = MQ = 0.25(-3.645)$$

$$= -0.91125 N$$

$$= 9.11 \times 10^{-1} N \text{ against motion}$$

To find upper limit of Ferceron, maximise 'N' & 'm', minimise 's'...

$$\frac{1}{2 \cdot (0.99)} = -4.218 \, \text{m/s}^2$$

To find lower limit, minimise 'u' & 'm', maximise 's' ...

$$\frac{1}{2(1-01)} = \frac{0^2 - 2.53^2}{2(1-01)} = -3.169 \text{ m/s}^2$$

$$F_{min} = mq = 0.24 (-3.169)$$

$$= 0.7605 N$$

$$= 7.61 \times 10^{-1} N \text{ ag ainst matrix}$$

Students need only show such a calculation unce, but they would need to perform It repeatedly for each mass.

(alculations (perhaps in a tuble):

Table 3: Mass Us. Frechon Force on Carpet

Mass (hg)	Friction Force (N)
0.25 ± 0.01	0-91+0-19/-0-15
0.30+0.01	
0-35 t 0-01	
0-40 t 0-01	
0-45±0.01	

Students would then ideally plot the results on a graph (mass us. Frichen Force) with both vertical & horizontal error bars included, then comment on the trend (it any).