



2/10

Fig.3.





## the control of the co

#### Fig.5.

con sequence of Ruman MGF

GGACCGGAGACGCTCTGCGGGGCTGAGCTGGTGGATGCTCTTCGTGTYCTGGAGACAGGGGCCTTTTATTTCAACAGCCCACAGGGTATGGCTCCAGCAGTTCGG Exon 4 Exon ]

AACACAAGTAGAGGGAGTGCAGGAAACAAGAACTACAGGATGTAGAAGACCCTTCTGAGGAGTGAAGAAGAAGACGGCCACCGCAGGACCCTTTGCTCTGCACAGTTA

**CCTGTAAACATTGGAATACCGGCCAAAAATAAGTTTGATCACATTTCAAAGATGGCATTTCCCCCAATGAAATACACAAGTAAACAT** 

## Protein sequence of Human MGF

GlyProGluThrLeuCysGlyAlaGluLeuValAspAlaLeuGlnPheValCysGlyAspArgGlyPheTyrPheAsnLysProThrGlyTyrGlySerSerSerAr

gArgAlaProGlnThrGlyIleValAspGluCysCysPheArgSerCysAspLeuArgArgLeuGluMetTyrCysAlaProLeuБysProAlaLysSerAlaArgS

erValArgAlaGlnArgHisThrAspMetProLysThrGlnLysTyrGlnProProSerThrAsnLysAsnThrLysSerGlnArgArgLysGlysGlySerThrPheGlu Exon 5

GluffisLys

### the state of the s

#### con's sequence of Rat MGF

Fig.6.

GGACCAGAGACCCTTTGCGGGGCTGAGCTGGTGGTCGTCTTCGTGTGTGGACCAAGGGGCTTTTACTTCAACAAGCCCACAGTCTATGGCTCCAGCATTCG

GAGGGCACCACAGACGGGCATTGTGGATGAGTGTTGCTTCCGGAGCTGTATCTGAGGAGGCTGGAGGTGTACTGTGTCCGCTGCAAGCCTACAAAGTCAGCTCGTTT

GAAGAACACAAGTAGAGGAAGTGCAGGAAACAAGACCTACAGAATGTAGGAGGAGCCTCCCGAGGAACAGAAAATGCCACGTCACCGCAAGATCCTTTGCTGCTTGA

GCAACCTGCAAAACATCGGAACACCTGCCAAATATCAATAATGAGTTCAATATCATTTCAGAGATGGGCATTTCCCTCAATGAAATACACAAGTAAACATTCCCGGA

ATYIC

### Protein sequence of Rat MGF

 ${\tt GlyProGluThrLeuCysGlyAlaGluLeuValAspAlaLeuGlnPheValCysGlyProArgGlyPheTyrPheAsnLysProThrValTyrGlySerSerIleAr}$ Exon 4

gArgAlaProGlnThrGlyIleValAspGluCysCysPheArgSerCysAspLeuArgArgLeuGluMetTyrCysValArgCysLysProThrLysSerAlaArgS

erIleArgAlaGlnArgHisThrAspMetProLysThrGlnLysSerGlnProLeuSerThrHisLysLysArgLysLeuGlnArgArgArgLysGlySerThrLeu Exon 5

GluGluHisLya

#### Fig.7.

### conn sequence of Rabbit MGF

AAACAAGAACTACAGGATGTAGGAAGACCCTTCTGAGGAGTGAAGGACAGGCCACGCAGGACCCTTTGCTCTGCACGGTTACCTGTAAAATTAGGAATACCGGCCAAAAAT

**AAGTTTGATCACATTTTCAAAGATGGCATTTCCCCCAATGAAATACACAGTAAACATTT** 

# Protein sequence of Rabbit MGF

GlyProGluThrLeuCysGlyAlaGluLeuValAspAlaLeuGlnPheValCysGlyAspArgGlyPheTyrPheAsnLysProThrGlyTyrGlySerSerArgArgAlaPr

oGlnThrGlyIleValAspGluCysCysPheArgSerCysAspLeuArgArgLeuGluMetTyrCysAlaProLeuLysProAlaLysAlaAlaArgSerValArgAlaGlnArgH

isThrAspMetProLysThrGlnLysTyrGlnProProSerThrAsnLysLysMetLysSerGlnArgArgLysGlySerThrPheGluGluHisLys

5/10

### The state of the s

#### Fig.8.

CDNA sequence of Human L, IGF-1

GGACCGGAGACGCTCTGCGGGGCTGGTGGATGCTCTTCAGTTCGTGTGGAGACAGGGGGCTTTTTTCAACAAGCCCACAGGGTATGGCTCCAGCAGGAGGGCCCC Exon 4 Exon 3

ACACCGACATGCCCAAGACCCCAGAAGGAAGTACATTTGAAGAACGCAAGTAGAGGGAGTGCAGGAAACAAGAACTACAGGATGTAG Exon 6

# Protein seguence of Human L.IGF-1

GlyProGluThrLeuCysGlyAlaGluLeuValAspAlaLeuGlnPheValCysGlyAspArgGlyPheTyrPheAsnLysProThrGlyTyrGlySerSerArgArgAlaPr Exon 4

oGlnTheGlyIleValAspGluCysCysPheArgSerCysAspLeuArgArgLeuGluMetTyrCysAlaProLeuLysProAlaLysSerAlaArgSerValArgAlaGlnArgH

isThrAspMetProLysThrGlnLysGluValHisLeuLysAsnAlaSerArgGlySerAlaGlyAsnLysAsnTyrArgMet Exon 6

His first part street date since in 

Fig.9,

U 4111 € / · LUU I

cDNA sequence of Rat L.IGF-1

GGACCAGAGACCCTTTGCGGGGCTGGTGGTGGTCTTCTTCGTGTTCGTGTGGACCAAGGGGCTTTTACTTCAACAAGCCCACAGTCTATGGCTCCAGGATTTCGGAGGGCACC Exon 4

ACAGACGGGCATIGIGGAIGATGCTICCITCCGGAGCTGIGAGGAGGCTGGAGRIGIACIGTGFCCGCTGCAAGCCTACAAAGICAAAGTCAGCICGTTCCAITCCGGGCCCAGCGCC

ACACTGACATGCCCAAGACTCCAGAAGGAAGTACACTTGAAGAACACAAGTAGAGGAAGTGCCAGGAAACAAGACCTACAGAATGTAGGAGGAGGAGCCTCCCGAGGAACAGAAAATGCCA Exon 6

CGTCACCGCAAGATCCTTTGCTGCTTTGAGCAACCTGCAAAAACACCTGCCAAATATCAATAATGAGTTCAATATCATTTCAGAGATGGGCATTTCCCTCAATGAATAC

ACAAGTAAACATTCCCGGAATTC

Rat L. IGF-1 Protein sequence of

GlyProGluThrLeuCysGlyAlaGluLeuValAspAlaLeuGlnPheValCysGlyProArgGLyPheTyrPheAsnLysProThrValTyrGlySerSerIleArgArgAlaPr Exon 4 Exon 3

oGlnThrGlyIleValAspGluCysCysPheArgSerCysAspLeuArgArgLeuGluMetTyrCysValArgCysLysProThrLysSerAlaArgSerIleArgAlaGlnArgH

isThrAspMetProLysThrGlnLysGluValHisLeuLysAsnThrSerArgGlySerAlaGlyAsnLysTyrArgMet

#### Fig. 10.

cDNA sequence of Rabbit L.IGF-1

Exon 3

Exon 6

8/10

AACATTC

Protein sequence of Rabbit L.IGF-1

GlyProGlnThrLeuCysGlyAlaGlnLeuValAspAlaLeuGlnPheValCysGlyAspArgGlyPheTyrPheAsnLysProThrGlyTyrGlySerSerArgArgAlaPr Exon 4 Exon 3

pGlnThrGlyIleValAspGluCysCysPheArgSerCysAspLeuArgArgLeuGluMetTyrCysAlaProLeuLysProAlaLysAlaAlaArgSerValArgAlaGlnArgH

isThrAspMetProLysThrGlnLysGluValHisLevLysAsnThrSerArgGlySerAlaGlyAsnLysAsnTyrArgMet

#### Fig. 11

| GP -        | sn Lys Pro Thr Gly Tyr Gly Ser Ser Ser Arg Arg Ala Pro Gln Thr Gly Ile Val Asp Glu          | Cys      |
|-------------|---------------------------------------------------------------------------------------------|----------|
| GF ~        | sn Lys Pro Thr Val Tyr Gly Ser Ser Ile Arg Arg Ala Pro Gln Thr Gly Ile Val Asp Glu          | Cys      |
| MGF -       | Ser Ser Ser Arg Arg Ala Pro Gln Thr Gly Ile                                                 | Cys Phe  |
| . Z5        | an Lys Pro Thr Gly Tyr Gly Ser Ser Ser Arg Arg Ala Pro Gln Thr Gly Ile Val Asp Glu          | CYS      |
| GF ~        | sn Lys Pro Thr Val Tyr Gly Ser Ser Ile Arg Arg Ala Pro Gln Thr Gly Ile Val Asp Glu          | $c_{YS}$ |
| <b>G₽</b> ~ | an Lys Pro Thr Gly Tyr Gly Ser Ser Arg Arg Ala Pro Gln Thr Gly Ile Val Asp Glu              | Cys      |
|             |                                                                                             |          |
| MGE -       | Arg Ser Cys Asp Leu Arg Arg Jen Glu Met Tur Cys Ala Pro Leu Tws Pro Ala lws Ser Ala Arg Ser | r Val    |
| 200         |                                                                                             |          |

| s Ser Ala Arg Ser Val<br>s Ser Ala Arg Ser Ile<br>s Ala Ala Arg Ser Val<br>s Ser Ala Arg Ser Val<br>s Ala Ala Arg Ser Ile                                                                                                                                                                                                                                                                                                       | Ser Thr Asn Lys Asn Thr Lys Ser Thr His Lya Lys Arg Lys Ser Thr Asn Lys Lys Met Lys                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pro Leu Lys Pro Ala Lys Arg Cys Lys Pro Thr Lys Pro Leu Lys Pro Ala Lys Pro Leu Lys Pro Ala Lys Arg Cys Lys Pro Thr Lys Pro Leu Lys Pro Ala Lys Pro Leu Lys Pro Ala Lys                                                                                                                                                                                                                                                         | ron 5 rr Gln Pro Pro rr Gln Pro Pro                                                                                                                                                                                                                                                                                                                             |
| Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Val Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala | Ala Gln Arg His Thr Asp Wet Pro Lys Thr Gln Ala Gln Arg His Thr Asp Wet Pro Lys Thr Gln Ala Gln Arg His Thr Asp Wet Pro Lys Thr Gln Ala Gln Arg His Thr Asp Wet Pro Lys Thr Gln Ala Gln Arg His Thr Asp Wet Pro Lys Thr Gln Ala Gln Arg His Thr Asp Wet Pro Lys Thr Gln Ala Gln Arg His Thr Asp Wet Pro Lys Thr Gln Ala Gln Arg His Thr Asp Wet Pro Lys Thr Gln |
| Hu MGF -<br>Rat MGF -<br>Rab MGF -<br>Hu IGF -<br>Rat IGF -                                                                                                                                                                                                                                                                                                                                                                     | Hu MGF<br>Rat MGF<br>Rab MGF<br>Hu IGF<br>Rat IGF<br>Rab IGF                                                                                                                                                                                                                                                                                                    |

|   |                       |                           |                           |          | Arg Met                                 | rg Met                                          |
|---|-----------------------|---------------------------|---------------------------|----------|-----------------------------------------|-------------------------------------------------|
|   |                       |                           |                           | 7.       | Tyr A                                   | rr Au                                           |
|   |                       |                           |                           |          | The T                                   |                                                 |
|   |                       |                           |                           | 's A:    | T 57                                    | S A                                             |
|   |                       |                           |                           | A E      | in Ly                                   | in Ly                                           |
|   |                       |                           |                           | y As     | Y As                                    | Leu Lys Asn Thr Ser Arg Gly Ser Ala Gly Asn Lys |
|   |                       |                           |                           | .a G1    | a Gl                                    | a G1                                            |
|   |                       |                           |                           | r Al     | r Al                                    | r Al                                            |
|   |                       |                           |                           | y Se     | ž še                                    | у 3е                                            |
|   |                       |                           |                           | g 61     | g 61                                    | g G1                                            |
|   | 71                    | Va.                       | Ŋ1                        | r Ar     | r Ar                                    | r Ar                                            |
|   | 3 17                  | S Ly                      | s Ly                      | Se       | r Se                                    | Se                                              |
|   | 1 His                 | H. H.                     | Hi:                       | 1 AL     | Thu                                     | ı Thı                                           |
|   | 1 61.                 | GIL                       | GE                        | Asr      | Asr                                     | Asr                                             |
|   | GLo                   | GIC                       | G11                       | Lys      | Lys                                     | Lys                                             |
|   | Phe                   | Leu                       | Phe                       | Leu      | Leu                                     | Leu                                             |
|   | Thr                   | Thr                       | Thr                       | His      | Hls                                     | Hls                                             |
| , | Ser                   | Ser                       | Ser                       | Val      | Val                                     | Val                                             |
|   | 115                   | 111                       | 17                        | (Glu     | Gla                                     | Gla                                             |
|   | Ser Gla Arg Arg Lys G | Leu Gln Arg Arg Arg Lys G | Ser Gln Arg Arg Arg Lys G |          | *************************************** | LA HIS LA                                       |
|   | Hu MGP -              | Rat MGF -                 | Rab MGF -                 | Hu IGF - | Rat IGF -                               | Rab IGF ~                                       |

Fig. 12.

