

A39C-T400A22S1a 产品手册

410~525MHz, 158mW, LORA 扩频无线串口模块, AES 加密, 定点传输

版本: Spec_A39C-T400A22S1a _V9.3

日期: 2022-9-30

状态: 受控状态

目录 Content

_	`	产品概》	术	1
=		产品特征	正	1
Ξ		系列产品	コ 旧	3
四		电气参数	数	3
五		模块功能	£	4
	5.:	1	推荐连接图(基本功能)	4
	5.2	2	引脚定义	4
	5.3	3	引脚功能	5
六		模块命令	₹	9
	6.3	1	命令格式	9
	6.2	2	模块参数寄存器	10
	6.3	3	模块出厂设置	11
七	`	模块功能	É	13
	7.	1	模块功能概述	13
	7.	2	模块功能详解	13
	7.	2.1	组号和地址的概念	13
	7.	2.2	透明广播	14
	7.	2.3	主从模式	14
	7.	2.4	定点传输	15
	7.	2.5	定点传输下的广播	15
	7.	2.6	定点传输下的监听	16
	7.	2.7	空中唤醒	16
	7.	2.8	低功耗	17
	7.	2.9	中继	17
	8.3	1	数据传输时序图	18
	8.2	2	状态切换时序图	18
	8.3	3	模块命令时序图	19
八		封装信息	₫	21

机械尺寸(unit: mm)......21

9.1

410~525MHz,158mW,LORA 扩频无线串口模块, AES 加密,定点传输

一、产品概述

A39C-T400A22S1a 是一款 410~525MHz,158mW,具有高稳定性,工业级的无线串口模块。LORA 扩频调制,实测传输距离最远可达 5000米。该模块具备数据广播、数据监听、定点传输、主从模式、自动中继、定点唤醒等传输方式,支持超低功耗,多样化的功能和极高的稳定性,可广泛应用于各种环境下,轻松实现低频无线数据传输。

二 、 产品特征

- 具有数据广播、数据监听、定点传输、主从模式、自动中继、定点唤醒,
- 接收灵敏度(芯片手册)高达-129dBm,最大 传输距离 5000 米[1]
- 休眠电流低至 2.4uA
- 超低接收功耗
- AES 加密
- 可读取模块 RSSI
- 内建多种异常处理机制,保证模块长时间稳定 运行
- 最大单包传输 230 字节
- 多等级发射功率
 - ▶四级可调功率(0~3),每级步进约 3dBm
 - ➤ 功率范围: 11~22dBm, 最大 158mW
- 等级波特率[2]
 - ► 八种常用波特率,默认波特率为 9600bps
 - ➤ 波特率范围: 1200bps~115200bps

- 多等级空中速率 [3]
 - ►八级可调空中速率,默认空中速率 4.8kbps
 - ≥ 1.2~62.5kbps
 - 工作状态[4]
 - ➤ MD0 = 0 MD1 = 0 进入指令配置模式
 - ➤ MD0 = 1 MD1 = 0 正常工作状态
 - ➤ MD0 = 1 MD1 = 1 休眠工作状态
 - 频率 410~525MHz,提供 116 个信道[5]
 - > 410MHz + CHAN * 1MHz
 - ➤ CHAN: 0x00~0x73H (对应 410~525MHz)
 - ➤ 默认工作在 433MHz 频段
 - 供电电压范围
 - ≥ 2.5V~5.5V
 - ▶ 内置 LDO,保证模块稳定供电,能够满足多种系统需求
- 512 环形 FIFO
 - ➤ 512 字节的发送接收 FIFO

410~525MHz, 158mW, LORA 扩频无线串口模块, AES 加密,定点传输

- ▶ 内部自动分包传输
- ▶ 某些空速和波特率的组合可以发送无限长数据包
- 广播数据与监听
 - ▶ 模块地址设为 0xFFFF,可以监听相同信道上的所 有模块的数据传输。发送的数据可以被相同信道 上的任意地址的模块收到
- 空中唤醒
 - ▶ 处于唤醒工作状态下的发送方在发送数据时会自 动增加唤醒码,唤醒处于省电工作状态下的目标 模块

- ➤ 发送方式同定点传输
- 定点传输
 - ►任意模块发送数据,可指定模块接收。多个接收 模块地址信道相同时,均可接收数据。
 - ▶ 数据可跨信道实现点对点传输
 - ▶ 可以实现组网、中继等多种应用方式

备注

[1] 晴朗空旷,无障碍物干扰;最大功率、天线增益 5dBi、高度 2m、空中速率 2.4kbps

[2]详见第六章 6.2 节模块参数寄存器中的 0x04 寄存器

[3]详见第六章 6.2 节模块参数寄存器中的 0x06 寄存器

[4]详见第五章引脚定义和引脚功能详解

[5]7 版本的设备支持频率范围为 410MHz~525MHz, 共 116 个信道(0x00 ~ 0x73)

三、系列产品

模块型号	载波频率(Hz)	尺寸 (mm)	最大发射功率(dBm)	通信距离(km)	封装	天线形式
A39-T400A21D1a	410M~525M	20*36	21	5.0	插件	SMA-K
A39-T400A30D1a	410M~490M	23*43	30	10.0	插件	SMA-K
A39-T900A21D1a	850M~931M	20*36	21	5.0	插件	SMA-K
A39-T900A21S1a	850M~931M	16*26	21	5.0	贴片	IPEX
A39-T900A30D1a	850M~931M	23*43	30	10.0	插件	SMA-K
A39C-T400A22D1a	410M~525M	16*26	22	5.0	插件	SMA-K

四、电气参数

条件: Tc = 25°C, VCC = 3.3V, 433MHz

模块型号	参数名称	说明	最小值	典型值	最大值	单位
A39C-T400A22S1a	供电电压	电源电压小于 3.3V,输出功率会有下降,但对接收功率影响较小	2.5		5.5	V
A39C-T400A22S1a		SendPower ^[1] = 0		108		mA
	发射电流	SendPower = 1		78		mA
	(瞬时)	SendPower = 2		60		mA
		SendPower = 3		50		mA
A39C-T400A22S1a		进入配置模式(MD0=0,MD1=0)		5		mA
	接收电流	一般工作模式(MD0=1,MD1=0)		8		mA
		进入低功耗模式(MD0=1,MD1=1)		2.4		uA
A39C-T400A22S1a	休眠电流	是在休眠工作状态(MD0=1,MD1=1)下测得的电 流		2.4		uA
A39C-T400A22S1a	工作频段	410~525MHz,116 个信道,1MHz 步进,出厂默 433MHz	410	433	525	MHz
A39C-T400A22S1a		SendPower = 0		22		dBm
	发射功率 (参考值)	SendPower = 1		17		dBm
		SendPower = 2		14		dBm
		SendPower = 3		11		dBm
A39C-T400A22S1a	空中速率	8级可调(1.2kbps、2.4kbps、4.8kbps、 9.6kbps、19.2kbps、38.4kbps、50kbps、 62.5kbps)	1.2k	4.8k	62.5k	bps
A39C-T400A22S1a	接收灵敏度	接收灵敏度和串口波特率、延迟时间无关		-129		dBm@ 2.4kbps
A39C-T400A22S1a	工作温度		-40		+85	°C
A39C-T400A22S1a	工作湿度	相对湿度,无冷凝	10%		90%	
A39C-T400A22S1a	存储温度		-40		+125	°C

五、 模块功能

5.1 推荐连接图 (基本功能)

图 5-1 推荐连接图

5.2 引脚定义

引脚定义表

4

引脚序号	引脚名称	引脚方向	引脚用途			
1	MD0	输入 (极弱上拉)	配合低延迟工作状态引脚 MD1,决定模块的四种工作状态			
2	MD1	输入 (极弱上拉)	配合低延迟工作状态引脚 MD0,决定模块的四种工作状态			
3	RXD	输入	TTL 串口输入,连接到外部 TXD 输出引脚			
4	TXD	输出	TTL 串口输出,连接到外部 RXD 输入引脚			
5	AUX	输出	用于指示模块工作状态,用户唤醒外部 MCU,上电自检初始化期间输出低电平			
6	VCC	输入	供电电源,电压 2.5~5.5V(注意:低于 3.3V,输出功率有所下降,但对接收性能影响较小)			
7	GND	输出	地线,连接到电源参考地			
18,20	GND	-	天线参考地			
19	ANT	输入/输出	天线输入/输出			
34	SWCLK	输入/输出	SWD 时钟			
35	REST	输入	复位输入/ 内部复位输出(低电平有效)			
36	SWDIO	输入/输出	SWD IO			
其余脚为 NC						

5.3 引脚功能

➤ MD0 和 MD1 低延迟工作状态引脚功能

图 5-2 MD0、MD1 引脚内部结构示意图

低延迟工作状态引脚 MD0 和 MD1 高低电平的自由组合可以决定无线串口模块的工作状态,这些工作状态可以自由切换。

工作状态切换时需注意以下两点特殊情况:

- 1、模块接收无线数据尚未输出完成,则数据输出完成后再进入新的状态。
- 2、模块发送无线数据尚未发送完成,则数据发送完成后再进入新的状态。

工作状态表

工作状态	MD0	MD1	工作状态介绍
进入配置模式	0	0	串口参数转为 9600,8,n,1,收到的数据会作为配置参数进行处理,无线进入睡眠模式,不能收到消息。
退出配置模式	1	0	以配置后的参数重新配置外设,以新配置进行运行,串口打开,无线打开
进入低功耗模式	1	1	串口关闭,无线关闭,处于极低功耗模式,会周期性的自主唤醒,以接收唤醒码,此时模块处 于省电工作状态。

状态通信表

	接收		工作状态			数据传输模式	
发送		一般 工作状态	唤醒 工作状态	省电 工作状态	透明广播 广播与监听 定,		定点传输
工作业大	一般工作状态	Υ	Υ		Υ	Υ	Υ
工作状态	唤醒工作状态	Υ	Υ	Υ	Υ	Υ	Υ

➤ AUX 引脚功能

图 5-3 AUX 引脚内部结构示意图

AUX 用于串口发送数据状态指示。

上电初始化时,模块拉低 AUX,此时为不可操作状态,直到初始化完成,模块拉高 AUX,此时可正常操作模块。

➤ RXD 和 TXD 引脚功能

图 5-4 RXD、TXD 引脚内部结构意图

RXD 和 TXD 串口数据收发引脚,同时,串口波特率可以自定义,更加便捷了开发,支持的波特率范围 1200~115200(bps);串口的校验方式也有奇校验、偶校验、无校验可供选择。串口传输字节格式如下图:

7

图 5-5 串口传输字节格式

IDLE: 空闲时为高电平

St: 起始位 P: 校验位 Sp1: 停止位

备注:

- 【1】需要将数据位设置为 7 位,就将帧长度设置为 8 位,校验位设置为 ODD 或 EVEN
- 【2】如果需要设置为 8 为数据位带校验位,则需要将帧长度设置为 9 位再将校验位设置为 ODD 或 EVEN
- 【3】如果是7版本的设备,则不支持7位数据位,只支持8位数据位。

➤ VCC和GND引脚功能

GND 表示接地线, VCC 表示供电电源, 而模块电源自身有带 LDO, 输入电压范围: 2.5~5.5VDC, 如下图:

图 5-6 电源 LDO

注:输入的电源纹波系数要控制在100mV以内,并可提供瞬间脉冲电流200mA以上

电源电压小于临界值时,输出功率有所下降,但对接收性能影响较小。功率与电压的关系如图 5-7:

图 5-7 功率与电压的关系图

六、 模块命令

6.1 命令格式

参数配置命令只支持在配置模式下进行参数的修改,即 MD0 引脚为低电平(MD0 = 0,MD1 = 0)时有效,此时串口参数为 9600,8N1。

配置命令为命令字加上寄存器地址和寄存器长度的方式来实现,可实现同时连续配置多个配置项。 指令格式如下:

命令字	寄存器起始地址	配置寄存器个数	寄存器值	寄存器值	寄存器值 n
CMD	REG	LEN	DATA0		DATAn
CMD[7]	在本型号中 REG 的范	表示需要操作的寄存器	当读取的时候可	可以不填,当写入	的时候,一定要对应好
0为读取,1为写入	围为 0x00~0x21	个数,当操作的寄存器	寄存器长度和原	总长度,否则会报纸	错
CMD[6]		个数超过当前操作权限			
0 为本地指令,1 为远程配置		的个数就会出错,比如			
CMD[5]		写一个只读寄存器,就			
0 为返回操作成功,1 为返回		会返回错误。			
操作错误					
CMD[4箣0] 保留					

说明:寄存器地址为功能区分,不是按照占用字节来分

命令功能详解,以默认出厂配置为例,详见下表:

命令格式	模块应答	说明
0x80 ADDR LEN VAL1 VAL2 箣 VALn	0x80 ADDR LEN	配置成功,配置参数掉电保存
(详见参数配置寄存器说明)	0xA0 ADDR LEN	配置失败,原配置参数未被更改
0x80 0x0B 0x01 0x77 0x77 0x77 0x2E 0x61	0x80 0x0B 0x01	数据密钥成功
0x73 0x68 0x69 0x6E 0x69 0x6E 0x67 0x2E 0x63 0x6F 0x6D	0xA0 0x0B 0x01	数据密钥失败
	0x00 0x00 0x25 0x80 0x00 0x02 0xFA	模块以十六进制格式返回当前所有可写寄存器的参
	0x00 0x01 0x05 0x03 0xE8 0x00 0x77	数
	0x77 0x77 0x2E 0x61 0x73 0x68 0x69	
0x00 0x04 0x1B	0x6E 0x69 0x6E 0x67 0x2E 0x63 0x6F	
0000 0004 00115	0x6D 0x7C 0x7C 0x7C 0x7C 0x7C	
	0x05 0x40 0x00 0x23 0x00 0x00 0x00	
	0x3C 0x3C 0x00 0x0A 0x19 0x00 0x80	
	0x00 0x00 0x00 0x00 0x00 0x00	
0x00 0x00 0x01	A39-T400A22S1a-xxxx	模块以 ASCII 格式会返回当前的版本号
		模块产生一次复位,复位过程中模块进行自检,AUX
0x80 0x22 0x01	OK	进行输出低电平,复位完毕 AUX 输出高电平,模块
0,00 0,22 0,01	OIL	开始正常工作。此时,可以进行状态切换或发起下一
		条指令

0x80 0x23 0x01	OK	恢复默认参数配置成功
0x00 0x01 0x01	FFXX FFXX	直接读取当环境 RSSI 和包 RSSI。例如:模块返回 XXXX,前两个 XX 代表当前环境 RSSI,后两个 XX 代表当前数据的 RSSI,将其转换成十进制数据,就表示当前信号强度。该命令所有模式下都可以使用
		小口的旧了压反。 区界 4171月大八十里的 区区口

6.2 模块参数寄存器

序号	地址	寄存器权限	寄存器长度		寄存	器描述	
1	0x00	R	N	模块版本号			
2	0x01	R	4	前两个字节表示当前环境 RS	SI,后两个字	型节表示当包的 RS	SI
3	0x02	R	2	保留			
4	0x03	R	2	保留			
5	0x04	R/W	4	模块的串口波特率,可自定と	义,范围为 1	200~115200bps	
6	0x05	R/W	1	模块的串口参数			
				Bit4 为帧长度(数据位+校验	位)		
				0 为	8位	1为9位	
					1位		
				·		10 为偶校验	11 为奇校验
				(不是任意组合,详情请询问			
7	0x06	R/W	2	Bit11 Bit10 Bit9 Bit8 Bit			为 010111(23)信道
				Bit4 Bit3 为功率	11 :		
						17dBm	
					01 :		
						11dBm 功率为 21dBm	
				Bit2 Bit1 Bit0 为空速 [1]		列平列 21dBill 62.5K	
				5.02 5.02 5.00 / 3.2.2. [2]	110 :	50K	
					101 :		
					100 :	19.2K	
					011 :	9.6K	
					010 :	4.8K	
					001 :	2.4K	
					000 :	1.2K	
					默认为 010),空速为 4.8K [2]	
8	0x07	R/W	2	工作模式			
				0x0001, 透传			
				0x0002, 定点			
				0x0004, 主从 0x0020, 中继			
9	0x08	R/W	1	保留			
10	0x09	R/W	2	保留			
10	0X09	rt/VV	2	木田			

彻软例应用	13人/千/唯					09/2022
11	0x0A	R/W	1	设备为主机还是	从机	
				Bit0	主从模式的主机(0)还是从机(1)	
12	0x0B	R/W	16	AES 密钥		
13	0x0C	R/W	5	保留		
14	0x0D	R/W	1	保留		
15	0x0E	R/W	1	保留		
16	0x0F	R/W	2	保留		
17	0x10	R/W	2	保留		
18	0x11	R/W	1	保留		
19	0x12	R/W	1	保留		
20	0x13	R/W	1	保留		
21	0x14	R/W	1	唤醒时间,100m	ns 为单位	
22	0x15	R/W	1	保留		
23	0x16	R/W	1	保留		
24	0x17	R/W	2	工作选项		
				Bit0 输出地址		
				Bit7 唤醒码		
25	0x18	R/W	1	本地组号		
26	0x19	R/W	1	本地地址		
27	0x1A	R/W	1	目标组号		
28	0x1B	R/W	1	目标地址		
29	0x1C	R/W	1	中继模式下,路径	径A组号	
30	0x1D	R/W	1	中继模式下,路径	径 A 地址	
31	0x1E	R/W	1	中继模式下,路径	径B组号	
32	0x1F	R/W	1	中继模式下,路径	径 B 地址	
33	0x20	R/W	1	中继模式下跳转	到的临时信道值	
34	0x21	R/W	1	中继模式临时信息	道停留时间	
35	0x22	Χ	1	模块重启		
36	0x23	Χ	1	模块恢复出厂设置	置	

6.3 模块出厂设置

寄存器出厂配置表:

序号	地址	寄存器权限	寄存器长度	默认参数
1	0x00	R	N	模块版本号
2	0x01	R	4	FF00FF00,即表示环境 RSSI 为 0x00,包的 RSSI 为 0x00
3	0x02	R	2	保留
4	0x03	R	2	保留
5	0x04	R/W	4	0x00002580(9600bps,默认)模块的串口波特率,可自定义,范围为 1200~115200
6	0x05	R/W	1	0x00(默认) Bit4 为 0, 表示数据位为 8 位

Ashining

物联网应用	找泽耀			09/2022			
				Bit5 为 0, 表示停止位为 1 位			
				Bit2 Bit1 为 00 表示无校验			
				串口参数即为 8 位数据位 1 位停止位 无校验位			
7	0x06	R/W	2	0x02FA(默认)			
				Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 为信道编号,默认为 10111(23)信道			
				Bit4 Bit3 为功率 编号,默认为 11,功率为 21dBm			
				Bit2 Bit1 Bit0 为空速编号,默认为 010,空速为 4.8K			
8	0x07	R/W	2	0x0001 (默认)			
	0.00	D /144		工作模式为透明传输			
9	0x08	R/W	1	保留			
10	0x09	R/W	2	保留			
11	0x0A	R/W	1	0x00 (默认)			
12	000	D/M	16	Bit0=0 表示当处于主从模式的时候,作为主机			
12	0x0B	R/W	16	0x77 0x77 0x77 0x2E 0x61 0x73 0x68 0x69 0x6E 0x69 0x6E 0x67 0x2E 0x63 0x6F 0x6D (默认)			
				表示使用以上 AES 密钥对数据包进行加密			
13	0x0C	R/W	5	保留			
14	0x0D	R/W	1	保留			
15	0x0E	R/W	1	保留			
16	0x0F	R/W	2	保留			
17	0x10	R/W	2				
18	0x10	R/W	1	保留			
19	0x11	R/W	1	保留			
20	0x13	R/W	1	保留			
21	0x14	R/W	1	0 (默认) 默认不会发送唤醒码和进入睡眠			
22	0x15	R/W	1	保留			
23	0x16	R/W	1	保留			
24	0x10	R/W	2	0x80			
25	0x18	R/W	1	0x00,本地组号为 0x00			
26	0x19	R/W	1	0x00,本地地址为 0x00			
27	0x1A	R/W	1	0x00,目标组号为 0x00			
28	0x1B	R/W	1	0x00,目标地址为 0x00			
29	0x1C	R/W	1	0x00,中继模式下,路径 A 组号为 0x00			
30	0x1D	R/W	1	0x00,中继模式下,路径 A 地址为 0x00			
31	0x1E	R/W	1	0x00,中继模式下,路径 B 组号为 0x00			
32	0x1F	R/W	1	0x00,中继模式下,路径 B 地址为 0x00			

七、模块功能

7.1 模块功能概述

模块功能表

模块功能	发送方的数据格式	接收方数据格式	功能简介
透明广播	用户数据	用户数据	任意模块发送数据, <mark>具有相同地址和相同信道的模块均可接收。</mark> 发送数据透明,所发即所收。
主从模式	主机:接收方地址+用户数据 从机:用户数据	用户数据	主机可以制定给单个从机发送数据,或者同时给多个从机发送 数据,任意从机发送数据主机都可以收到。
定点传输	接收方地址+接收方信道+用户数据	用户数据	任意模块发送数据,可指定模块接收, <mark>多个接收模块地址信道</mark> 相同时,均可接收数据。数据可以实现跨信道点对点传输。
广播与监听 (定点传输 下)	0xFF+0xFF+接收方信道+用户数据	用户数据	广播:任意模块发送数据,处于同一信道下的模块均可同时接收数据; 收数据; 监听:具有 0xFFFF 地址的模块可以接收同一信道下任意地址模块发送的数据。
空中唤醒	1、透明传输模式下: 发送数据包之前会自动发送唤醒码, 当唤醒码发送完成之后,紧接着发送 数据,用户无需关心内部操作,只需 要发送用户数据即可 2、定点传输模式下: 模块会先切换到目标信道,然后自动 发送唤醒码唤醒目标模块紧接着发送 数据包,用户在此模式下需要先在数 据包的头部添加目标地址和信道。 目标模块组号+目标模块地址+目标模 块信道+用户数据	用户数据	 处于唤醒工作状态下的发送方模块可以空中唤醒处于省电工作状态下的接收方模块 唤醒工作状态下的模块在发送数据时会自动先发送唤醒码 通过设置无线唤醒时间可以设置发送唤醒码的条数
低功耗		用户数据	配置模块的接收响应延时时间可调节模块的整机功耗,模块可配置的最大接收响应延时寄存器 0x14 为 255,在此配置下模块的平均电流极低
中继	用户数据	用户数据	中继可以使用在传输距离不够的情况下,中继节点收到数据之后,会原封不动的将数据传送给下一级,直到目的地址和模块的地址相同,才将数据输出。(7版本的模块在传输数据的过程中够可以选择跳转到其他信道将数据发出)

7.2 模块功能详解

7.2.1 组号和地址的概念

▶ 功能说明

每个种功能下都有组号和地址的概念在其中,有了组号的概念,使用方式上就比传统的串口模块更加灵活。

如果模块的本地组号和本地地址都设置为 0xFF,模块会监听当前信道的所有数据

如果模块的目标组号设置为 0xFF,模块发送数据会广播给所有组的目标地址模块

如果模块的目标地址设置为 0xFF,模块发送数据会广播给当前目标组的所有地址

7.2.2 透明广播

▶ 功能说明

任意模块发送数据,具有相同地址且相同信道的模块均可同时接收数据。数据以透明方式发送和接收,所发即所收。

▶ 模块设置

- 1. MD0 = 0, MD1 = 0
- 2. 需将 0x07 特殊功能寄存器配置成 0x0001,透明传输模式
- 3. 发送模块目标地址和接收模块的本地地址设置成相同值
- 4. 发送模块和接收模块的信道设置成相同值
- 5. MD0 = 1, MD1 =0

➤ 举例说明

	发送方	接收方		
目标组号地址 0x00 0x01		本地组号地址	0x00 0x01	
模块信道空速 0x17(默认)		模块信道空速 0x17 (默认)		
发送数据 0123456789		接收数据 0123456789		

7.2.3 主从模式

▶ 功能说明

分为主机和从机,主机可以给指定的从机发送数据,所有从机发送数据主机都能够收到。

▶ 模块设置

- 1. MD0 = 0, MD1 = 0
- 2. 需将 0x07 特殊功能寄存器配置成 0x0004, 主从模式
- 3. 发送模块和接收模块的地址可设置成不相同
- 4. 发送模块和接收模块的信道设置成相同
- 5. MD0 = 1, MD1 = 0

▶ 举例说明

	发送方		接收方
目标组号地址	0xXXXX	本地组号地址	0x5678
模块信道	0x18	模块信道	0x18
主从	主机	主从	从机
发送数据	接收地址高+接收地址低+数据	输出数据	用户数据
	0x56 0x78 0x11 0x22 0x33		0x11 0x22 0x33

7.2.4 定点传输

▶ 功能说明

任意模块发送数据,可指定模块接收。多个接收模块地址信道相同时,均可接收数据。

▶ 模块设置

- 1. MD0 = 0, MD1 = 0
- 2. 需将 0x07 特殊功能寄存器配置成 0x0002, 定点传输模式
- 3. 发送模块和接收模块的地址可设置成不相同
- 4. 发送模块和接收模块的信道可设置成不相同
- 5. MD0 = 1, MD1 =0

▶ 举例说明

	发送方	接收方		
目标组号地址	0xXXXX	本地组号地址	0x5678	
模块信道	0xXXXX	模块信道	0x18	
发送数据	接收地址高+接收地址低+接收信道+数据	输出数据	用户数据	
	0x56 0x78 0x18 0x11 0x22 0x33		0x11 0x22 0x33	

7.2.5 定点传输下的广播

▶ 功能说明

任意模块发送数据,处于同一信道下的模块均可接收数据。

▶ 模块设置

- 1. MD0 = 0, MD1 = 0
- 2. 需将 0x07 特殊功能寄存器配置成 0x0002, 定点传输模式
- 3. 发送模块和接收模块的地址可设置成不相同
- 4. 发送模块和接收模块的信道可设置成不相同

- 5. 发送方数据前 3 个字节必须是 0xFF+0xFF+接收方信道
- 6. MD0 = 1, MD1 = 0

▶ 举例说明

	发送方	接收方			
目标组号地址	0xXXXX	本地组号地址	0xXXXX		
模块信道	0xXXXX	模块信道	0x17(出厂默认)		
发送数据	0xFF+0xFF+接收信道+用户数据	输出数据	用户数据		
	0xFF 0xFF 0x17 0x11 0x22 0x33		0x11 0x22 0x33		

7.2.6 定点传输下的监听

▶ 功能说明

任意模块发送数据,处于同一信道下的模块均可接收数据。

▶ 模块设置

- 1. MD0 = 0, MD1 = 0
- 2. 需将 0x07 特殊功能寄存器配置成 0x0002, 定点传输模式
- 3. 监听模块的地址必须设置成 0xFFFF
- 4. 监听模块和发送模块的信道必须设置成相同
- 5. 发送方数据前 3 个字节必须是 0xXX+0xXX+接收方信道
- 6. MD0 = 1, MD1 =0

➤ 举例说明

	发送方	接收方		
目的组号地址	0x0000(出厂默认)	本地组号地址	0xFFFF	
模块信道	0x17(出厂默认)	模块信道	0x17(出厂默认)	
发送数据	任意地址高+任意地址低+接收信道+用户数据	输出数据	用户数据	
	0xXX 0xXX 0x17 0x11 0x22 0x33		0x11 0x22 0x33	

7.2.7 空中唤醒

▶ 功能说明

唤醒工作状态下的发送方模块可以空中唤醒处于省电工作状态下的接收方模块。省电工作状态下的模块一直处于"休眠-监听"的工作状态,如果在"监听"过程中接收到了有效唤醒码,模块会计算有效数据到来的时间,如果有效数据到来的时间大于三个唤醒码的时间,设备将继续进入睡眠状态,等到数据到来之前自动醒来并接收数据。如果小于三个唤醒码的时间,模块将持续等待有效数据包。接收完毕,打开串口,将接收到的无线数据通过 TXD 发送,发送完毕后,模块继续进入"休眠-监听"的工作状态。

▶ 模块设置

- 1. 发送方模块必须工作在唤醒工作状态下(MD0 = 1, MD1 = 0)
- 2. 发送方通过设置无线唤醒时间寄存器 0x14 来设置唤醒时间的长度。发送方模块的无线唤醒时间大于等于接收方模块的监听间隔时间,确保处于省电工作状态下的接收方模块能够监听到唤醒码。收到唤醒码之后,接收模块计算是否需要再次进入睡眠状态,如果有效数据到来的时间大于三个唤醒码的时间,模块会再次进入睡眠状态,并在有效数据到来之前醒来,完成数据的接收。
- 3. 接收方模块必须处于省电工作状态下(MD0 = 1, MD1 = 1)
- 4. 设置接收方模块的监听间隔时间寄存器 0x14,确保接收模块能够在监听间隔时间内接收到有效唤醒码。
- 5. 在一般的应用情况下,发送和接收方模块都将唤醒时间寄存器 0x14 设置为一样的值即可。

7.2.8 低功耗

▶ 功能说明

被唤醒模块处于省电工作状态,模块会定时监听是否收到唤醒码。如果没有收到唤醒码,模块会一直处于"休眠-监听"的工作状态。如果在监听唤醒过程中接收到唤醒码,接收模块计算是否需要再次进入睡眠状态,如果有效数据到来的时间大于三个唤醒码的时间,模块会再次进入睡眠状态,并在有效数据到来之前醒来,完成数据的接收。

通过设置不同的监听间隔时间,模块具有不同的接收响应延迟和平均功耗。用户需要在通讯延迟时间和平均功耗时间取得一个平衡点。

▶ 模块设置

- 1. 设置模块的工作状态为省电工作状态(MD0 = 1, MD1 = 1)
- 2. 设置模块的无线唤醒时间寄存器 0x14

7.2.9 中继

▶ 功能说明

中继模式下的设备会将收到的数据按照设定的路径向后转发,直到目标设备,以达到延长传输距离的目的。 如果模块版本是 7 版本,则可以选择是否在传输数据的时候跳转到临时信道传输数据,在临时信道停留一段时间 之后,中继会自动回到默认信道。

▶ 模块设置

- 1. MD0 = 0, MD1 = 0
- 2. 需将 0x07 特殊功能寄存器配置成 0x0020,中继模式
- 3. 设置中继模式下的上一级组号地址和下一级组号地址(0x1B~0x1E 寄存器)
- 4. 中继模块和发送模块的信道必须设置成相同
- 5. MD0 = 1, MD1 =0

8.1 数据传输时序图

8.2 状态切换时序图

模块从任意工作状态切换到下一工作状态都会有一段切换延时 T_sc,在切换到下一工作状态后,如果模块没有执行其他工作状态切换操作,那么模块会一直工作在切换后的工作状态。工作状态切换与模块上一工作状态无关,用户只需在切换过程中进行状态切换延时,然后选择低延迟工作状态引脚 MD0 和 MD1 进行高低电平操作,即可切换到想要的工作状态。

符号	说明	最小值	典型值	最大值	单位
T1	工作模式开始切换至配置模式		120		ms
T2	配置模式切换至工作模式		120		ms
Т3	唤醒模式切换至休眠模式		10		ms
T4	休眠模式切换至唤醒模式		10		ms

注:工作状态切换只在 AUX 为高电平时才能切换,此时模块处于空闲状态;若 AUX 为低电平,则表示此时模块繁忙,发送(接收)不为空,数据还未发送(接收收)完成,需用户添加延时,等待数据收发完成后,即可开始工作状态切换。

8.3 模块命令时序图

命令时序图如下:

1. 模块参数配置命令

2. 模块加密密钥设置命令

3. 读取模块配置参数命令

4. 读取模块硬件版本号命令

5. 模块复位命令

6. 恢复模块默认参数命令

7. 直接读取当前数据信号 RSSI 和环境 RSSI 命令

参数名称	T_answer	描述	最小值	典型值	最大值	单位
	T1	参数配置延时		100		ms
	T2	模块加密密钥设置延时		40		ms
	Т3	读取模块配置参数延时		100		ms
模块命令应答延时	T4	读取模块硬件版本号延时		40		ms
	T5	等待模块复位延时		140		ms
	Т6	恢复模块默认参数延时		140		ms
	T7	读取当前数据信号 RSSI 和环境 RSSI 延时		50		ms
等待数据发送完成延时	T_Packet	发送完一包数据所需要的延时时间				ms

版权所有©成都泽耀科技有限公司 2022,保留一切权利。

八 、 封装信息

9.1 机械尺寸(unit: mm)

版权所有©成都泽耀科技有限公司 2022,保留一切权利。

重要说明和免责声明

由于随着产品的硬件及软件的不断改进,此规格书可能会有所更改,最终应以最新版规格书为准。 使用本产品的用户需要到官方网站关注产品动态,以便用户及时获取到本产品的最新信息。 本规格书所用到的图片、图表均为说明本产品的功能,仅供参考。 本规格书中的测量数据均是我司在常温下测得的,仅供参考,具体请以实测为准。 成都泽耀科技有限公司保留对本规格书中的所有内容的最终解释权及修改权。