Adatbázis rendszerek I

Gyakorlati feladatok

11. hét

Témakör: SQL API (SQLite, C)

Miskolc, 2020

Készítette: dr. Kovács László

Mutassa be, hogy miben különbözik egymástól a CLI és E-SQL interfészek.

Útmutató:

szempont	E-SQL	CLI
SQL parancs megadása	változatlan alakban, de egy megadott prefix megadása után	függvény hívás argumentumában
adatbázis kapcsolatok	alapesetben egy adatbázissal kommunikál	több adatbázissal, DB azonosító változó használata
parancsok jellege	csak SQL	SQL és nem-SQL jellegű parancsok is kiadhatóak
elterjedtség	ritkán használt	elterjedtebb

2. Feladat

Mutassa be, milyen lépésekben lehet a Codeblocks-ból az SQLite adatbázis elérni.

- 1. SQLite letöltése
- 2. SQLite adatbázis létrehozása

```
2 Dir(s) 601,716,035,584 bytes free

D:\sqlite>sqlite>sqlite3 ujdb

SQLite version 3.31.1 2020-01-27 19:55:54

Enter ".help" for usage hints.

sqlite> create table autok (rsz char(6), tipus char(30), ar int);

sqlite> insert into autok values (1,'Opel',56666);

sqlite> insert into autok values (2,'Fiat',66);

sqlite> select * from autok;

1|Opel|56666

p:2|Fiat|66

sqlite>

Documents

Documents

Downloads
```

3. CodeBlocks C projekt létrehozatala

4. sqlite3.h header file átmásolása projekt katalógusba

5. A sq.lite3.c letöltött kódfile beillesztése a projektbe

Kérdezze le az SQLite rendszer verzióját C programból!

```
#include <sqlite3.h>
#include <stdio.h>
int main(void) {
      printf("%s\n", sqlite3_libversion());
      return 0;
}
     main.c
                #include <stdio.h>
         2
                #include <stdlib.h>
         3
                #include "sqlite3.h"
         4
         5
                int main()
         6
         7
                    printf("%s\n", sqlite3_libversion());
         8
         9
                    printf("Hello world!\n");
        10
                    return 0;
        11
        12
  D:\OKTATAS\SQLITE\probaSQL\bin\Debug\probaSQL.exe
 3.33.0
Hello world!
Process returned 0 (0x0)
                               execution time : 0.013 s
aPress any key to continue.
```

Csatlakozzon egy meglévő SQLite adatbázishoz

```
#include <stdio.h>
#include <sqlite3.h>

int main(int argc, char* argv[]) {
    sqlite3 *db;
    int rc;

    rc = sqlite3_open("test.db", &db);

if( rc ) {
        fprintf(stderr, "Hiba a megnyitáskor: %s\n", sqlite3_errmsg(db));
        return(0);
    } else {
        fprintf(stderr, "Sikeresen megnyitva\n");
    }
    sqlite3_close(db);
}
```

```
int main(int argc, char* argv[]) {
    sqlite3 *db;
    int rc;

    rc = sqlite3_open("D:/sqlite/ujdb", &db);

    if( rc ) {
        fprintf(stderr, "Hiba a megnyitáskor: %s\n", sqlite3_errmsg(db));
        return(0);
    } else {
        fprintf(stderr, "Sikeresen megnyitva\n");
    }
    sqlite3_close(db);
}
```

Hozzon létre egy Cars(*Id INT, Name TEXT, Price INT*) adattáblát és vigye fel több új rekordot a táblába,a hol az adatok fixen adottak a programban.

```
#include <sqlite3.h>
#include <stdio.h>
int main(void) {
      sqlite3 *db;
      char *hibaUzenet = 0;
      int rc = sqlite3_open("test.db", &db);
      if (rc != SQLITE_OK) {
      fprintf(stderr, "Hiba a megnyitáskor: %s\n", sqlite3_errmsg(db));
      sqlite3_close(db);
      return 1;
      }
      char *sql = "DROP TABLE IF EXISTS Cars;"
             "CREATE TABLE Cars(Id INT, Name TEXT, Price INT);"
             "INSERT INTO Cars VALUES(1, 'Audi', 52642);"
             "INSERT INTO Cars VALUES(2, 'Mercedes', 57127);"
             "INSERT INTO Cars VALUES(3, 'Skoda', 9000);"
             "INSERT INTO Cars VALUES(4, 'Volvo', 29000);"
             "INSERT INTO Cars VALUES(5, 'Bentley', 350000);"
             "INSERT INTO Cars VALUES(6, 'Citroen', 21000);"
             "INSERT INTO Cars VALUES(7, 'Hummer', 41400);"
             "INSERT INTO Cars VALUES(8, 'Volkswagen', 21600);";
      rc = sqlite3_exec(db, sql, 0, 0, &hibaUzenet);
```

```
if (rc != SQLITE_OK) {
    fprintf(stderr, "SQL hiba: %s\n", hibaUzenet);
    sqlite3_free(hibaUzenet);
    sqlite3_close(db);
    return 1;
    }
    sqlite3_close(db);
    return 0;
}
```

```
Cars autok
sqlite> select * from Cars;
1|Audi|52642
2|Mercedes|57127
3|Skoda|9000
4|Volvo|29000
5|Bentley|350000
6|Citroen|21000
7|Hummer|41400
8|Volkswagen|21600
sqlite>
```

Olvassa be egy új autó adatait a képernyőről és vigye fel egy új rekordként a Cars(rsz, tipus, ar) táblába.

```
#include <stdio.h>
#include <stdlib.h>
#include "sqlite3.h"
```

```
int main(int argc, char* argv[]) {
  sqlite3 *db;
 int rc:
  char *hibaUzenet = 0;
  char rsz[30];
  char tipus[30];
  int ar;
  char sar[30];
  rc = sqlite3_open("D:/sqlite/ujdb", &db);
 if( rc ) {
       fprintf(stderr, "Hiba a megnyitáskor: %s\n", sqlite3_errmsg(db));
       return(0);
 } else {
       fprintf(stderr, "Sikeresen megnyitva\n");
 printf ("rsz=");
 scanf ("%s", &rsz);
 printf ("tipus=");
  scanf ("%s", &tipus);
 printf ("ar=");
 scanf ("%d",&ar);
  sprintf(sar, "%d", ar);
       char sql[200];
       strcpy(sql, "INSERT INTO Cars VALUES("");
       strcat(sql,rsz);
       strcat(sql,"", "");
       strcat(sql, tipus);
       strcat(sql,"', ");
       strcat(sql,sar);
       strcat(sql,")");
       printf ("%s\n", sql);
       rc = sqlite3_exec(db, sql, 0, 0, &hibaUzenet);
       if (rc != SQLITE_OK) {
```

```
fprintf(stderr, "SQL hiba: %s\n", hibaUzenet);

sqlite3_free(hibaUzenet);
sqlite3_close(db);

return 1;
}

sqlite3_close(db);

return 0;
}

D:\OKTATAS\SQLITE\probaSQL\bin\Debug\probaSQL.exe
Sikeresen megnyitva
rsz=R23
cdtipus=Skoda
ar=2000
INSERT INTO Cars VALUES('R23', 'Skoda', 2000)
```

execution time : 10.798 s

Process returned 0 (0x0)

OL Press any key to continue.