Print | Close

Patent Record View

Thursday, June 16 2011

THOMSON INNOVATION

Patent/Publication: JP3109935A PRODUCTION OF EMULSIFIER COMPOSITION

Bibliography

DWPI Title

Emulsifier compsn. mfr. by reacting phospholipid with phospho-lipase A adding glycerol and reacting with lipase

Original Title

PRODUCTION OF EMULSIFIER COMPOSITION

Assignee/Applicant

Standardized: ASAHI DENKA KOGYO KK

Original: ASAHI DENKA KOGYO KK

Inventor

SUZUKI KAZUAKI; AOSHIMA HIDEYUKI; SATO SUSUMU

Publication Date (Kind Code)

1991-05-09 (A)

Application Number / Date

JP1989250177A / 1989-09-26

Priority Number / Date / Country

JP1989250177A / 1989-09-26 / JP

Abstract

Abstract

PURPOSE: To produce an emulsifier compsn. having high safety and high surface activity by allowing phospholipase A to act on phospholipid, adding glycerol and allowing lipase to act on the resulting mixture.

CONSTITUTION: Phospholipase A is allowed to act on phospholipid or a mixture of phospholipid with fats and oils as starting material preferably in the presence of a small amt. of water by which the action of phospholipase A is enhanced. The amt. of the phospholipase A used is about 10-500U (U is the activity unit of enzyme) per 1g phospholipid. After or during the reaction, glycerol is added preferably by about 0.1-3.0 pts.wt. per 1 pt.wt. of the starting material. Lipase is then allowed to act on the resulting reactive mixture to obtain an emulsifier compsn.

COPYRIGHT: (C)1991, JPO&Japio

Legal Status

INPADOC Legal Status

Get Family Legal Status

Family

Family

Expand INPADOC Family (1)

Claims

No Claims exist for this Record

Description

Drawing Description

Drawing Description

Description

Description

Citations

Citation

Expand Citing Patents (2)

Cited Patents (0)

Cited Non-patents (0)

Other

No Other exists for this Record

Copyright 2007-2011 THOMSON REUTERS

⑩ 日本国特許庁(JP)

⑩特許出願公開

平3-109935 ⑩ 公 開 特 許 公 報 (A)

@Int.Cl. 5 B 01 J A 23 J B 01 F C 07 F 13/00 7/00

庁內整理番号 識別記号

⑩公開 平成3年(1991)5月9日

6345-4 G 7115-4 B A

請求項の数 2 (全4頁) 審査請求 未請求

回発明の名称 乳化剤組成物の製造法

> ②特 顧 平1-250177

> > 靃

願 平1(1989)9月26日 砂出

明 番 鈴 木 @発

東京都荒川区東尾久7丁目2番35号 旭電化工業株式会社

秀 個発 明

東京都荒川区東尾久7丁目2番35号 旭電化工業株式会社

⑫発

明

進

東京都荒川区東尾久7丁目2番35号 旭電化工業株式会社

頲 旭電化工業株式会社 创出

東京都荒川区東尾久7丁目2番35号

人 弁理士 羽 鳥 個代 理

1. 発明の名称

乳化剤組成物の製造法

2. 特許請求の難関

(1)リン脂質にホスホリバーゼAを作用させると 共にグリセリンを添加し、次いでこの混合物にり パーゼを作用させることを特徴とする安全性の高 い乳化剤組成物の緊溃法。

(2)リン脂質及び油脂の混合物にホスホリパーゼ Aを作用させると共にグリセリンを添加し、次い でこの混合物にリバーゼを作用させることを特徴 とする安全性の高い乳化剤組成物の製造法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、新規な乳化剤組成物の製造法に関す

(従来の技術及び発明が解決しようとする課題)

リン脂質は、乳化、起泡の安定化及び温潤化の 促進等のための天然の舞蹈活性剤、乳化剤として 広く食品加工のみならず、トイレタリー、医薬品 の分野に利用されている。

近年、リン脂質あるいはリン脂質及び油脂の混 合物をより観水化、観油化した製品が開発され、 一層の界面活性の向上がはかられている。

こうした中で、レシチンに酵素を作用させるこ とで部分的に脱アシル化させたリゾレシチンは乳 化剤、湿潤化促進剤等天然の界面溶性剤として穏 めて有用であり、このようなリゾレシチンを使用 した乳化剤組成物として、出願人は、先に、酵素 を作用させたリン脂質、モノグリセリド及び遊離 脂肪酸の混合系が極めて高い乳化力、界面活性能 のあることを見出し、特顯配63-106171 号、特職昭63-138150号及び特願昭63 - 188151号の出頭を行った。

しかし、これらの出願に記載された脂質組成物 は、3成分をそれぞれ別々に製造した後、それら 3 成分を混合して製造されており、作業性が悪く、 コスト動にも不利である等工業化適性を欠くもの

また、リン脂質及び油脂の混合物を原料とし、

ホスホリバーゼA及びリバーゼを作用させる乳化 朝の製造法が特開版 63-302929号公報に 記載されているが、この方法では十分に高い乳化 力、界面活性、湿潤性を有する乳化剤組成物を得 ることは出来ないものであった。

能って、本発明の目的は、安全性が高く、しか も極めて高い界面活性作用を有する乳化剤組成物 を、少ない工程で効率的に製造することのできる 乳化剤組成物の製造法を提供することにある。

(線懸を解決するための手段)

本発明は、上記目的を、下記の(1)及び(2)の氧化 利組成物の製造法を提供することにより達成した ものである。

(1)リン財質にホスポリバーゼAを作用させると 共にグリセリンを添加し、次いでこの混合物にリ バーゼを作用させることを特徴とする安全性の高 い乳化剤組成物の製造法。

(2) りン脂質及び油脂の混合物にホスホリバーゼ Aを作用させると共にグリセリンを添加し、次い でこの混合物にリバーゼを作用させることを特徴

3

まず、原料としてのリン脂質あるいはリン脂質及び油脂の混合物に、ホスポリバーゼAを作用させ

ホスポリバーゼムの作用は少量の水が存在すると、より活性になるので好ましく、例えば、リン脂質及び油脂の混合物1 重量部に対して、0.1~1.0重量部、好ましくは0.2~0.5 重量部の水を存在させると良い。

水分合量が上記置より少ないと反応は進み難く、 逆に多すぎると後のリバーゼによるエステル合液、 グリセロリシスが進み難くなるので好ましくない。

本発明における原料としては、リン脂質及び油脂の混合物が好ましく、この場合リン脂質と油脂との重量比はリン脂質:油脂=4:6~8:2、特に5:5~7:3が好ましい。

上配範囲を外れると、モノグリセリドが出来難 くなり生成物の昇電活性作用が低下することがあ る。

ホスポリパーゼAの使用量は、リン脂質1g当。 たり10~500U(但し、ひは酵素の活性単位 とする安全性の高い乳化剤組成物の製造法。

以下、本発明の乳化剤組成物の製造法について 跨速する。

本発明で用いられるリン脂質としては、特に限 定されず、動物性起源でも植物性起源でも良く、 例えば大豆レシチン、チタネレシチン、卵質レシ チン等が使用できるが、工薬的には大豆レシチン、 ナタネレシチンが入手し勗く好ましい。

また、本発明で用いられる油脂としては、特に 限定されず、動物性油脂でも植物性油脂でも良く、 例えば大豆油、ナクネ油、綿実油、米油、コーン 油、サフラワー油、パーム油、ヤシ油、牛脂、豚 脂、鯨脂、魚油等が使用できる。

また、本発明で用いられるホスホリバーゼAと しては、特に限定されず、動物由来でも微生物由 来でも使用することができる。

また、本発明で用いられるリバーゼとしては、 特に限定されず、動物由来、植物由来及び微生物 由来の何れも使用することができる。

而して、本発明の方法を実施するに際しては、

á

であり、ホスホリバーゼ人の徳性単位としては G.
H. de Haas bの方法 (Biochemi
ca et Biophysica Acta
159, 105 (1968))で定義される単位
とする。以下同じ。)、好ましくは 20~300
Uが適しており、また、反応は、20~80℃、
好ましくは35~70℃で行うのが良い。

ホスホリバーゼムの選が上記置以下であると反 応は進み難く、多すぎると経済的に不利である。

また、温度が低すぎると反応が進み難く、温度 が高すぎるとりン脂質の劣化の点で好ましくない。

上記反応中は、撹拌してもしなくても良い。

反応時間は、添加して酵素量によっても異なるが、概ね30分~60時間、好ましくは5~50時間、好ましくは5~50時間とするのが良い。

反応時間が短いと反応が不十分となりやすく、 反応時間が長すぎると生産効率の点で好ましくない。

上配の反応終了後又は反応と同時にグリセリン 在添加する。

6

グリセリンの添加量は、リン脂質あるいはリン 脂質及び物脂の混合物 1 型量部に対し、好ましく は 0.1~3.0 重量部、より好ましくは 0.2~1.0 重量部であり、グリセリン量が上紀範囲外である と、生成物の発酶活性作用が低下することがある。

上記グリセリンはリバーゼを作用させる前殺階 であればその添加時期は荷等制限されない。

次いで反応混合物にリバーゼを作用させ、本発 明の乳化剤組成物を得る。

上記リバーゼの使用量は、ホスホリバーゼAを作用させたリン脂質あるいはリン脂質及び油脂の混合物と、グリセリンとの混合物1 g当たり、好ましくは10~500U(但し、Uは酵素の活性単位であり、リバーゼの汚性単位としては出田らの方法(日膜化36、860(1962)によって定義されるリバーゼの単位とする。以下同じ。)、より好ましくは30~200Uである。

リバーゼの量が上配置以下であると反応は進み 難く、多すぎると経済性の点で好ましくない。

反応温度は、リバーゼの種類によっても異なる

7

一ゼ(田辺製薬機製)を反応物18點たり100 U(1.38)加え40℃で24時間反応させた。 この反応生成物(本発明の乳化剂組成物)をイア トロスキャンで分析したところ、リン脂質のリゾ リン脂質への転換率は約30%であった。

また、この反応生成物の 0.2 %水溶液の界質管性を調べたところ、表面張力 2 9.9 dynes / cn、ミッロウに対する接触角 5 1 °、及び直径 1 inchのキャンパス・ディスクを沈降させるのに娶する時間 9 7.3 秒であった。

実施例2

原料として、大豆白胶油(日複製油鍋製)50 8とSLP-ホワイト(ツルーレシチン工業㈱ 製)50 8 との混合物を用いた以外は実施例1と 関様にして反応生成物(本発明の乳化剤組成物) を得た。

この反応生成物をイアトロスキャンで分析した ところ、リン脂質のリゾリン脂質への転換率は約 80%であった。

また、この反応生成物の0.2%水溶液の界面循

が、20~80℃、好ましくは30~60℃が良く、選度が低すぎると反応が進み繋く、温度が高すぎるとリバーゼの失活の可能性が大きくなり好ましくない。

反応時間は、終加したリバーセの量によっても 異なるが、30分~50時間、好ましくは10~ 30時間とするのが良い。

反応時間が短いと反応が不十分となりやすく、 反応時間が長すぎると生産効率の点で好ましくな い

(实施例)

以下に実施例を比較例と共に挙げ、本発明を更 に詳しく説明する。

実施例1

大豆レシチン(味の素解製)100gに水道水 20gを加え、これにポスポリパーゼAzレシターゼ10L(NOVO社製)を0.2g(2000 U)加えて混合撹拌し60℃で48時間反応させた

この反応動にグリセリンを20g加え、タリパ

8

性を調べたところ、変質張力2 % 7 dynes/cn、 ツロウに対する接触角48°、及び値径1 inchの キャンパス・ディスクを沈降させるのに要する時 間107秒であった。

比較例1

実施例1と関係の条件で大豆レシチン(味の素 (株製)を分解したが、グリセリンの添加及びリバーゼの添加を行わなかった。この反応物(酵素分解レシチン)の0.2%水溶液を調製しようとしたが、均一に可溶化できなかった。

比較例 2

比較例1で複製した酵素分解レシチンをアセトンで脆脂して乾燥させ、この0.2%水溶液を翻製した。

この水溶液の界面活性を調べたところ、表面張力34.0 dynes/cs.キャンバス・ディスクの沈隆時間20分以上であった。

〔発明の効果〕

本発明の乳化剤組成物の製造法によれば、安全 性が高く、しかも極めて高い昇間活性作用を有す

9

特別平 3-109935(4)

る異化剤組成物を、少ない工程で効率的に製造す ることができる。

特 許 出 凝 人 想 電 化 工 뵃 株 式 会 社 代理人 弁理士 羽 馬 修 深葉原