Software Engineering

Chapter: Use cases Models

- Actors & Use Cases
- Relationships
- Use cases Diagrams
 Context Diagram &
 Initial Diagram
 Specification Templates
 Construction Process

Use Cases

- A technique to capture how an existing system works or how a future system should work
- Use to capture functional requirements.

Boundary of the system Notation System Use Case Actor Actor Use Case Communication Use Case

Actors and Use cases

Actor: Entity (Human, Device or another software system) exchanging information with the system

Use case: Consists of the sequence of transactions/messages that actors and the system exchange when a given functionality of the system is executed

Description Templates

Use cases are described using templates and natural language

<u>Use Case</u>	
Actors	
Summary	
Preconditions	
Postconditions	
Includes	
Extends	
Inherits from	
Flow of events	
Actor	System

Relationships between actors-Inheritance

 The inheritance relationship indicates that the descendant actor may play all the roles of its predecessor actor.

Relationships between use cases-Inclusion

 A use case A <u>includes</u> a use case B, if an instance of A executes all the events that are described in B.

The instantiation of Remove Member always uses the flow of events defined in Search Member

Relationships between use cases-Extension

 A use case B <u>extends</u> a use case A, if there is a condition in the description of A that if evaluated to true all the events described in B are executed.

Relationships between use cases

Inclusion: The description of use case A includes a reference to B

• Extension: Equivalent to an inclusion + a condition

Flow of events use case A

Relationships between use cases-Inheritance

- A use case B is an specialization of another use case A, if the flow of events in B is a refinement of the flow of events in A
 - Similar to inheritance in OO (it allows the separation between a generic interaction pattern (parent use case) and a more specific case (descendant case).

Use cases Diagrams

- Structured in three layers
 - Context diagram and Initial context
 - Description templates
 - Structured Diagram

Context Diagram

It shows the boundaries of the system and the interacting actors

Initial Diagram

It contains a grouping of the main use cases

Structured Diagram

(... the model is incomplete)

Example SPM

Sales Point Machine

. Example SPM

Sales Point Machine

Variations

... Example SPM

Sales Point Machine

Variations on the example

If only actors interacting with the computer-based system are shown.

... Example SPM

Sales Point Machine

Description template

Use Case	Sell Products	
Actors	Employee (initiator)	
Goal	Capture a sale and its cash	
	payment	
Summary	A customer arrives to the sales point with products. The employee registers products and manages payments in cash. The customer leaves with the products.	
Preconditions	The employee is logged in the system.	
Postconditions	The sale is stored in the system.	
Includes	-	
Extends	-	
Inherits from	-	

... Example SPM

Sales Point Machine

... <u>Description</u> <u>template</u>

User Intentions	System Obligations	
1. The employee indicates a new sale starts.	2. The system records the start of a new sale	
3. The employee inserts the code of the product and the quantity	4. The system calculates the cost of the product and adds the information to the bill.	
5. The employee indicates the end of the sale	6. The system calculates and shows the total cost.	
7. The employee indicates the money received	8. The system calculates and shows the change. It prints a receipt and records the sale.	
Synchronous Extensions		
#1. If at step 3 a code of a non- existent product is inserted the system generates an error message.		
#2. At 7 the employee may cancel the sale.		
Asynchronous Extensions		
None		

Building the diagram

- Top-down technique
- Bottom-up technique

Building the diagram

Rules to find Actors

- Users play roles when interacting with the system
- A user may correspond to many roles

- ☐ Any group or individual in one of the following categories:
 - Who will use the system?
 - Who will install the system?
 - Who will maitain the system?
 - Who will switch off the system?
 - What other systems will communicate with this one?
 - Who gets information?
 - Who provides information?

Building the diagram. Rules to identify Use Cases

- Paying attention to actors
 - What are the tasks required by actors from the system?.
 - Will an actor be able to create, store, change or remove information from the system?.
 - Will an actor inform to the system about changes occurring outside?.
 - Will any actor be informed about state changes of the system?.

The answers to these questions represent flows of events that are associated to potential candidate use cases.