Lecture Notes For Analysis

Aakash Ghosh(19MS129)

 25^{th} October, 2022

References:

- 1. Fourier Series: Texts and Readings in Mathematics, Rajendra Bhatia.
- 2. An Introduction to Harmonic Analysis, Yitzhak Katznelson

1 Motivation

Definition 1 (2π periodic functions). A function $f: \mathbb{R} \to \mathbb{R}$ or \mathbb{C} is said to be 2π periodic if $f(x+2\pi) = f(x) \forall x \in \mathbb{R}$

- 1. **Periodicity:** A 2π periodic function can also be thought to have $2n\pi$ Periodicity where $n \in \mathbb{Z}\{0\}$.
- 2. Bijection of 2π periodic function and continuous function on circle: A 2π periodic function f is fully described by

$$f: [0, 2\pi] \to \mathbb{R}, f(0) = f(2\pi) \text{ or } f: [-\pi, \pi] \to \mathbb{R}, f(-\pi) = f(\pi)$$

We define the $F: \mathbb{T} \to \mathbb{R}$ where $\mathbb{T} = \{z | z \in \mathbb{C}, |z| = 1\}$ such that:

$$F(e^{i\theta}) = f(\theta)$$

This establishes a bijection between 2π periodic function and continuous function on \mathbb{T} . Properties like continuity and differentiability are carried over.

3. Change of variable: Define a map ϕ from X to Y. Let ν be a measure defined on X. Then we can define a corresponding measure μ on Y defined as

$$\mu(E) = \nu(\phi^{-1}(E))$$

Then we have the following formula for changing the variable:

$$\int_{E} f d\mu = \int_{\phi^{-1}(E)} f \circ \phi d\nu$$

4. Integration of functions on a circle: We define a normalized/probabilistic Lebesgue measure defined as

$$\tilde{m}(E) = \frac{1}{2\pi} m(E)$$

For a map $F: \mathbb{T} \to \mathbb{R}$ we have:

$$\int_{\mathbb{T}} F d\tilde{m} = \frac{1}{2\pi} \int_{[-\pi,\pi]} f dm = \frac{1}{2\pi} \int_{-\pi}^{\pi} f d\theta$$

5.

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{in\theta} = \begin{cases} 0 & \text{if } n \neq 0 \\ 1 & \text{if } n = 0 \end{cases}$$

1.1 Some notions from complex analysis

Definition 2 (Unit Disc, \mathbb{D}). We define the unit disc as the set $\mathbb{D} = \{z : |z| < 1\}$

Definition 3 (Closure of Unit Disc, $\overline{\mathbb{D}}$). We define the closure unit disc as the set $\mathbb{D} = \{z : |z| \leq 1\}$

Definition 4 (Unit Circle, \mathbb{T}). We define the boundary of a unit disc as $\mathbb{T} = \{z : |z| = 1\}$

Remark. Note that \mathbb{T} is written as S^1 in topological contexts.

Definition 5 (Harmonic Functions). A function f is said to be Harmonic in a domain Ω if $\frac{\partial^2}{\partial x^2} f$ and $\frac{\partial^2}{\partial y^2} f$ are well-defined in Ω and $\Delta f = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f = 0$

1.2 The Dirichlet Problem and Fourier's big idea

This is a type of PDE. Assume we are given a function $f \in C(\mathbb{T})$. We are interested in knowing if there exists a harmonic function u such that $u|_{C(\mathbb{T})} = f$. Fourier noticed that $e^{in\theta}$ is harmonic. So if we can represent f is the following form

$$f = \sum_{i=\mathbb{Z}} a_n e^{in\theta}$$

then we are done. But the problem with this idea is that this doesn't happen for all functions.(It happens for a large class of functions though.)

2 Preliminary Ideas

Lemma 1. If f is continuous function on \mathbb{R} then the following holds:

1.
$$\int_a^b f(x)dx = \int_{a+2\pi}^{b+2\pi} f(x)dx$$

2.
$$\int_{-\pi}^{\pi} f(x)dx = \int_{-\pi}^{\pi} f(x+a)dx$$

3.
$$\int_a^{a+2\pi} f(x)dx$$
 is independent of a.

Those holds even if $f \in L^1[-\pi, \pi]$

We define the map Γ_{θ_o} as below:

$$\Gamma_{\theta_o} F(e^{i\theta}) = F(e^{i(\theta - \theta_o)})$$

We note that

$$\int_{\mathbb{T}}\Gamma_{\theta_o}Fd\tilde{m}=\int_{\mathbb{T}}Fd\tilde{m}$$

Therefore, Γ_{θ_o} is an isometry on $L^1(\mathbb{T})$. As $C(\mathbb{T})$ is dense in $L^p(\mathbb{T})$ for $1 \leq p \leq \infty$, we can extend the previous idea and conclude Γ_{θ_o} is an isometry on $L^p(\mathbb{T})$ for $1 \leq p \leq \infty$.

Lemma 2. If $f \in L^p(\mathbb{T})$ then the following hold:

1.
$$\Gamma_{\theta}\Gamma_{\theta} f = \Gamma_{\theta+\theta} f$$

2.
$$\lim_{\theta \to \theta_0} ||\Gamma_{\theta} f - \Gamma_{\theta_0} f||_p = 0$$

3 Convolution

Definition 6 (Convolution). We define the convolution of two functions f, g as

$$f * g(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - y)g(y)dy$$

Lemma 3. 1. If $f,g\in L^1(\mathbb{T})$ then $f*g\in L^1(\mathbb{T})$ and

$$||f * g||_1 \le ||f||_1 ||g||_1$$

2. If $f \in L^p(\mathbb{T}), g \in L^1(\mathbb{T})$ then:

$$||f * g||_p \le ||f||_p ||g||_1$$

3. If $f \in L^p(\mathbb{T})$, $g \in L^{p*}(\mathbb{T})$ such that 1/p + 1/p* = 1 then:

$$||f * g||_{\infty} \le ||f||_p ||g||_{p*}$$

Theorem 4 (Young's inequality). If $f \in L^p(\mathbb{T}), g \in L^q(\mathbb{T}), then$

$$||f * g||_r \le ||f||_p ||g||_q$$

where 1 + 1/r = 1/p + 1/q