Lecture 5: Concentration of Measure and Isoperimetry

Tianpei Xie

Jan. 19th., 2023

Contents

1	$Th\epsilon$	e Classic Isoperimetry Inequalities
	1.1	Brunn-Minkowski Inequality
	1.2	Blow-Up of Sets
	1.3	The Classical Isoperimetry Theorem
2	Con	ncentration via Isoperimetry
	2.1	Levy's Inequalities and Concentration Function
	2.2	Isoperimetric Inequalities on the Unit Sphere
	2.3	Gaussian Isoperimetric Inequalities and Concentration of Gaussian Measure
	2.4	Edge Isoperimetric Inequality on the Binary Hypercube
		Vertex Isoperimetric Inequality on the Binary Hypercube
	2.6	Convex Distance Inequality

1 The Classic Isoperimetry Inequalities

1.1 Brunn-Minkowski Inequality

• Theorem 1.1 (Brunn-Minkowski Inequality) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019]

Let $A, B \subset \mathbb{R}^n$ be non-empty compact sets. Then for all $\lambda \in [0, 1]$,

$$Vol(\lambda A + (1 - \lambda)B)^{\frac{1}{n}} \ge \lambda Vol(A)^{\frac{1}{n}} + (1 - \lambda) Vol(B)^{\frac{1}{n}}.$$
 (1)

Note: a convex body in \mathbb{R}^n is closed and compact set.

• Theorem 1.2 (The Prékopa-Leindler Inequality). [Boucheron et al., 2013, Wainwright, 2019]

Let $\lambda \in (0,1)$, and let $f,g,h:\mathbb{R}^n \to [0,\infty)$ be non-negative measurable functions such that for all $x,y\in\mathbb{R}^n$,

$$h(\lambda x + (1 - \lambda)y) \ge f(x)^{\lambda} g(y)^{1-\lambda}.$$

Then

$$\int_{\mathbb{R}^n} h(x)dx \ge \left(\int_{\mathbb{R}^n} f(x)dx\right)^{\lambda} \left(\int_{\mathbb{R}^n} g(x)dx\right)^{1-\lambda}.$$
 (2)

• Corollary 1.3 (Weaker Brunn-Minkowski Inequality) [Boucheron et al., 2013, Wainwright, 2019]

Let $A, B \subset \mathbb{R}^n$ be non-empty compact sets. Then for all $\lambda \in [0, 1]$,

$$Vol(\lambda A + (1 - \lambda)B) \ge Vol(A)^{\lambda} Vol(B)^{1-\lambda}.$$
 (3)

1.2 Blow-Up of Sets

1.3 The Classical Isoperimetry Theorem

2 Concentration via Isoperimetry

2.1 Levy's Inequalities and Concentration Function

2.2 Isoperimetric Inequalities on the Unit Sphere

• Remark (Volume Ratio of Unit Balls and its Interior) [Vershynin, 2018] Let $B(0,1) := \{x \in \mathbb{R}^n : ||x|| \le 1\}$ be the unit ball in \mathbb{R}^n . The volume ratio between B(0,1) and its ϵ -interior $B(0,1-\epsilon)$ is

$$\frac{\operatorname{Vol}(B(0, 1 - \epsilon))}{\operatorname{Vol}(B(0, 1))} = (1 - \epsilon)^n \le \exp(-n\epsilon)$$

The inequality is due to $1 - x \le e^{-x}$.

As $n \to \infty$, the above ratio goes to 0. In other words, most of volume in B(0,1) is **concentrated** in the **boundary** $\partial B = \mathbb{S}^{n-1} := \{x \in \mathbb{R}^n : ||x|| = 1\}$. This phenomenon is called "**the curse of dimensionality**".

• Definition

- 2.3 Gaussian Isoperimetric Inequalities and Concentration of Gaussian Measure
- 2.4 Edge Isoperimetric Inequality on the Binary Hypercube
- 2.5 Vertex Isoperimetric Inequality on the Binary Hypercube
- 2.6 Convex Distance Inequality

References

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47. Cambridge university press, 2018.

Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press, 2019.