ENGG 5501: Foundations of Optimization

2021-22 First Term

Homework Set 1

Instructor: Anthony Man–Cho So Due: September 24, 2021

SOLVE THE FOLLOWING PROBLEMS:

Problem 1 (15pts). Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ be given. Reformulate the following optimization problem as a linear program. Justify your answer.

minimize
$$||Ax - b||_{\infty}$$

subject to $||x||_1 \le 1$.

(Here, $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ denote the ℓ_1 - and ℓ_{∞} -norm, respectively. Their definitions can be found in Handout B, Section 1.2.)

Problem 2 (30pts).

- (a) **(10pts).** Let $S \subseteq \mathbb{R}^n$ be arbitrary and $A : \mathbb{R}^n \to \mathbb{R}^m$ be an affine map. Is it true that A(conv(S)) = conv(A(S))? Justify your answer.
- (b) (10pts). Show that the set $S = \{X \in \mathcal{S}^n : \lambda_{\max}(X) \leq 1, X \succeq 0\}$ is convex.
- (c) (10pts). Is the set $S = \{X \in \mathcal{S}^n : \operatorname{rank}(X) \leq 1\}$ convex? Justify your answer.

Problem 3 (25pts). Let $B(\mathbf{0},1) \subset \mathbb{R}^n$ be the unit Euclidean ball in \mathbb{R}^n centered at the origin. For any $x \in B(\mathbf{0},1)$, consider the set

$$N(x) = \{ u \in \mathbb{R}^n : u^T(y - x) \le 0 \text{ for all } y \in B(\mathbf{0}, 1) \}.$$

- (a) (10pts). Show that N(x) is a convex cone for any $x \in B(0,1)$.
- (b) (15pts). Give an explicit description of N(x). Simplify your answer as much as possible. Show all your work.

Problem 4 (30pts).

- (a) **(15pts).** Consider the halfspace $H^-(s,c) = \{x \in \mathbb{R}^n : s^T x \leq c\}$, where $s \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $c \in \mathbb{R}$ are given. Let $x \in \mathbb{R}^n$ be arbitrary. Find a formula for $\Pi_{H^-(s,c)}(x)$ in terms of s,c,x and prove its correctness.
- (b) **(15pts).** Let $\Delta = \{x \in \mathbb{R}^n : e^T x = 1, x \geq \mathbf{0}\}$ be the standard simplex, where $e = (1, 1, \dots, 1)$ is the vector of all ones. Show that for any $v \in \mathbb{R}^n$ and $\delta \in \mathbb{R}$, we have

$$\Pi_{\Delta}(v) = \Pi_{\Delta}(v + \delta e).$$