Lesson 40: Critical Points and Linearization ODE 1 - Prof. Adi Ditkowski

Nonlinear Systems Analysis

1 Introduction to Nonlinear Systems

Definition 1 (Nonlinear Autonomous System). A two-dimensional nonlinear autonomous system has the form:

$$\dot{x} = f(x, y) \tag{1}$$

$$\dot{y} = g(x, y) \tag{2}$$

where f and g are continuously differentiable nonlinear functions.

Unlike linear systems where solutions can be found explicitly using eigenvalues and eigenvectors, nonlinear systems generally cannot be solved in closed form. Linearization provides a powerful tool to understand local behavior.

2 Critical Points

Definition 2 (Critical Point/Equilibrium). A point (x_0, y_0) is a critical point (or equilibrium point) of the system if:

$$f(x_0, y_0) = 0$$
 and $g(x_0, y_0) = 0$

Method 1 (Finding Critical Points). 1. Set f(x,y) = 0 and g(x,y) = 0

- 2. Solve the resulting algebraic system
- 3. Check each solution for validity
- 4. List all critical points systematically

Nonlinear systems can have:

- No critical points
- Finitely many critical points (most common)
- \bullet Infinitely many critical points (degenerate cases)

3 The Jacobian Matrix

Definition 3 (Jacobian Matrix). For the system $\dot{x} = f(x, y)$, $\dot{y} = g(x, y)$, the Jacobian matrix is:

 $J(x,y) = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix}$

Critical Computation Rule:

- 1. Compute partial derivatives symbolically
- 2. Then evaluate at the critical point (x_0, y_0)
- 3. The result $J(x_0, y_0)$ is a constant matrix

4 Linearization Process

Theorem 1 (Linearization near Equilibrium). Near a critical point (x_0, y_0) , the nonlinear system can be approximated by the linear system:

$$\begin{pmatrix} \dot{\xi} \\ \dot{\eta} \end{pmatrix} = J(x_0, y_0) \begin{pmatrix} \xi \\ \eta \end{pmatrix}$$

where $\xi = x - x_0$ and $\eta = y - y_0$ represent small deviations from equilibrium.

The linearization is derived from the Taylor expansion:

$$f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x} \Big|_{(x_0, y_0)} (x - x_0) + \frac{\partial f}{\partial y} \Big|_{(x_0, y_0)} (y - y_0) + \text{h.o.t.}$$
 (3)

$$= 0 + \text{linear terms} + \text{higher order terms}$$
 (4)

Near the critical point, higher order terms are negligible!

5 Classification of Critical Points

Method 2 (Classification Procedure). Given a critical point (x_0, y_0) :

- 1. Compute $J(x_0, y_0)$
- 2. Find eigenvalues λ_1, λ_2 of $J(x_0, y_0)$
- 3. Classify using:

Eigenvalues	Type	Stability
$\lambda_1, \lambda_2 < 0 \text{ (real)}$	Node	Asymptotically stable
$\lambda_1, \lambda_2 > 0 \text{ (real)}$	Node	Unstable
$\lambda_1 < 0 < \lambda_2 \text{ (real)}$	Saddle	Unstable
$\lambda = \alpha \pm i\beta, \alpha < 0$	Spiral	Asymptotically stable
$\lambda = \alpha \pm i\beta, \alpha > 0$	Spiral	Unstable
$\lambda = \pm i\beta$ (pure imaginary)	Center	Linearization inconclusive

Prof. Ditkowski expects you to:

- State the type (node, saddle, spiral, center)
- State stability (stable, unstable, or inconclusive)
- Show eigenvalue computation explicitly

6 Complete Examples

Example 1 (Van der Pol Oscillator). Consider the system:

$$\dot{x} = y \tag{5}$$

$$\dot{y} = -x + \mu(1 - x^2)y\tag{6}$$

where $\mu > 0$ is a parameter.

Step 1: Find critical points

Setting y = 0 and $-x + \mu(1 - x^2) \cdot 0 = -x = 0$ gives (0, 0) as the only critical point.

Step 2: Compute Jacobian

$$J(x,y) = \begin{pmatrix} 0 & 1\\ -1 - 2\mu xy & \mu(1 - x^2) \end{pmatrix}$$

Step 3: Evaluate at (0,0)

$$J(0,0) = \begin{pmatrix} 0 & 1 \\ -1 & \mu \end{pmatrix}$$

Step 4: Find eigenvalues

Characteristic equation: $\lambda^2 - \mu \lambda + 1 = 0$

Eigenvalues: $\lambda = \frac{\mu \pm \sqrt{\mu^2 - 4}}{2}$

Step 5: Classification

- If $0 < \mu < 2$: Complex with positive real part \Rightarrow Unstable spiral
- If $\mu = 2$: Repeated positive eigenvalue \Rightarrow Unstable node
- If $\mu > 2$: Two positive real eigenvalues \Rightarrow Unstable node

7 Validity of Linearization

Linearization provides accurate local behavior EXCEPT when:

- Eigenvalues have zero real part (centers, degenerate nodes)
- The system has special symmetries
- Nonlinear terms dominate near the critical point

The region where linearization is valid shrinks as:

- Eigenvalues approach the imaginary axis
- Nonlinearity becomes stronger
- Other critical points are nearby

8 Summary Flowchart

