Teorema 7.3.3

Sean V un espacio vectorial de dimensión n, W un espacio vectorial de dimensión m y $T: V \to W$ una transformación lineal. Sea $B_1 = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ una base para V y sea $B_2 = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ una base para W. Entonces existe una matriz única A_T de $M \times N$ tal que

$$(T\mathbf{x})_{B_2} = A_T(\mathbf{x})_{B_1}$$
 (7.3.2)

Observación 1. La notación (7.3.2) es la notación de la sección 5.6. Si $\mathbf{x} \in V = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$

$$+\cdots+c_n\mathbf{v}_n$$
, entonces $(\mathbf{x})_{B_1} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$. Si $\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$, entonces $A_T\mathbf{c}$ es un vector de dimensión

$$m$$
 que se denotará por $\mathbf{d} = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_m \end{pmatrix}$. La ecuación (7.3.2) dice que $(T\mathbf{x})_{B_2} = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_m \end{pmatrix}$, es decir,

$$T\mathbf{x} = d_1\mathbf{w}_1 + d_2\mathbf{w}_2 + \cdots + d_m\mathbf{w}_m$$

Observación 2. Como en el teorema 7.3.1, la unicidad de A_T es relativa a las bases B_1 y B_2 . Si se cambian las bases, A_T cambia (vea los ejemplos 7.3.8 y 7.3.9, y el teorema 7.3.5). Si se usan las bases estándar, entonces esta A_T es la A_T de la definición 7.3.1.

Demostración

Sean $T\mathbf{v}_1 = \mathbf{y}_1$, $T\mathbf{v}_2 = \mathbf{y}_2$, $T\mathbf{v}_n = \mathbf{y}_n$. Como $\mathbf{y}_1 \in W$, se tiene que para $i = 1, 2, \ldots, n$

$$\mathbf{y}_1 = a_{1i}\mathbf{w}_1 + a_{2i}\mathbf{w}_2 + \cdots + a_{mi}\mathbf{w}_m$$

Para algún conjunto (único) de escalares $a_{1i}, a_{2i}, \ldots, a_{mi}$ y se escribe

$$(\mathbf{y}_1)_{B_1} = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, (\mathbf{y}_2)_{B_2} = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \dots, (\mathbf{y}_n)_{B_2} = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

Esto significa, por ejemplo, que $\mathbf{y}_1 = a_{11}\mathbf{w}_1 + a_{21}\mathbf{w}_2 + \cdots + a_{m1}\mathbf{w}_m$. Ahora se define

$$A_T = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Como

$$(\mathbf{v}_1)_{B_1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, (\mathbf{v}_2)_{B_1} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, (\mathbf{v}_n)_{B_1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$