A "ribbon" (width a) with uniform surface current density K passes through a uniform magnetic field \mathbf{B}_{ext} . Only the length b along the ribbon is in the field. What is the magnitude of the force on the ribbon?

A. *KB*

B. aKB

C. abKB

D. bKB/a

E. KB/(ab)

To find the magnetic field **B** at P due to a current-carrying wire we use the Biot-Savart law,

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} I \int \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{\mathbf{R}^2}$$

In the figure, with $d\mathbf{l}$ shown, which purple vector best represents \Re ?

E) None of these!

To find the magnetic field **B** at P due to a current-carrying wire we use the Biot-Savart law,

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} I \int \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{\mathbf{R}^2} \qquad \qquad \stackrel{\text{Origin}}{\longleftarrow}$$

What is the direction of the infinitesimal contribution $\mathbf{B}(P)$ created by current in $d\mathbf{l}$?

- A. Up the page
- B. Directly away from $d\mathbf{l}$ (in the plane of the page)
- C. Into the page
- D. Out of the page
- E. Some other direction

What is the magnitude of
$$\frac{d\mathbf{l} \times \hat{\mathbf{R}}}{\mathbf{R}^2}$$
?

A.
$$\frac{dl \sin \theta}{\Re^2}$$

B.
$$\frac{dl \sin \theta}{\Re^3}$$

C.
$$\frac{dl \cos \theta}{\Re^2}$$

D.
$$\frac{dl \cos \theta}{\Re^3}$$

E. something else!

What is the value of $I \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{\mathbf{R}^2}$?

A.
$$\frac{I y dx'}{[(x')^2 + y^2]^{3/2}} \hat{z}$$
B.
$$\frac{I x' dx'}{[(x')^2 + y^2]^{3/2}} \hat{y}$$

B.
$$\frac{I x' dx'}{[(x')^2 + y^2]^{3/2}} \hat{y}$$

C.
$$\frac{-I x' dx'}{[(x')^2 + y^2]^{3/2}} \hat{y}$$

D.
$$\frac{-I y dx'}{[(x')^2 + y^2]^{3/2}} \hat{Z}$$

E. Other!

What do you expect for direction of $\mathbf{B}(P)$? How about direction of $d\mathbf{B}(P)$ generated JUST by the segment of current $d\mathbf{l}$ in red?

- A. $\mathbf{B}(P)$ in plane of page, ditto for $d\mathbf{B}(P)$, by red)
- B. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P)$, by red) into page
- C. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P)$, by red) out of page
- D. $\mathbf{B}(P)$ complicated, ditto for $d\mathbf{B}(P)$, by red)
- E. Something else!!

What is the magnitude of $\frac{d\mathbf{l} \times \hat{\mathbf{R}}}{\mathbf{R}^2}$?

A.
$$\frac{dl \sin \phi}{z^2}$$
B.
$$\frac{dl}{z^2}$$
C.
$$\frac{dl \sin \phi}{z^2 + a^2}$$
D.
$$\frac{dl}{z^2 + a^2}$$

B.
$$\frac{dl}{z^2}$$

C.
$$\frac{dl \sin \phi}{z^2 + a^2}$$

D.
$$\frac{dl}{z^2 + a^2}$$

E. something else!

What is $d\mathbf{B}_z$ (the contribution to the vertical component of \mathbf{B} from this dl segment?)

A.
$$\frac{dl}{z^2 + a^2} \frac{a}{\sqrt{z^2 + a^2}}$$
B.
$$\frac{dl}{z^2 + a^2}$$
C.
$$\frac{dl}{z^2 + a^2} \frac{z}{\sqrt{z^2 + a^2}}$$
D.
$$\frac{dl \cos \phi}{\sqrt{z^2 + a^2}}$$

B.
$$\frac{dl}{z^2 + a^2}$$

C.
$$\frac{dl}{z^2 + a^2} \frac{z}{\sqrt{z^2 + a^2}}$$

D.
$$\frac{dl\cos\phi}{\sqrt{z^2+a^2}}$$

E. Something else!

