Functions and Their Graphs

_____ / 10

Determine if the relation represents a function. For those that are, state the domain and range.

$$1. \quad \{(-3,9),\, (-2,4),\, (-1,1),\, (0,0),\, (1,1),\, (2,4),\, (3,9)\} \\ \qquad 2. \quad \{(-3,0),\, (1,6),\, (2,-3),\, (4,2),\, (-5,6),\, (4,-9),\, (6,2)\}$$

2.
$$\{(-3,0), (1,6), (2,-3), (4,2), (-5,6), (4,-9), (6,2)\}$$

Determine if each represent y as a function of x.

$$3. \quad y = x^3 - x$$

4.
$$x^2 - y^2 = 1$$

5.
$$x = 4$$

5.
$$x = 4$$
 6. $y = x^2 + 4$

Find an expression for f(x) of each given the function's description.

8. (1) subtract 5; (2) take the square root; (3) multiply by
$$-1$$

9. (1) multiply by
$$-1$$
; (2) take the square root; (3) subtract 5

Given $f(x) = 2x^2 - 5$, simplify or evaluate each.

10.
$$f(3)$$

11.
$$f(0)$$

12.
$$f(-2)$$

13.
$$f(2x)$$

14.
$$f(-x)$$

15.
$$f(x+1)$$

Find the domain of each. Write your answers in interval notation.

16.
$$f(x) = x^2 + 4$$

17.
$$f(x) = \frac{x-2}{x+1}$$

18.
$$f(x) = \frac{3x}{x^2 + x - 2}$$

19.
$$f(x) = \sqrt{2x+5}$$

20.
$$f(x) = \sqrt[3]{6x - 2}$$

21.
$$f(x) = \frac{\sqrt{6x - 2}}{x^2 - 36}$$

Find the intercepts (both x- and y-) of each.

$$22. \quad y = x^2 + 1$$

$$23. \quad y = \sqrt{x-2}$$

24.
$$y = x^2 - 2x - 8$$

Key

- 1. Yes. Domain: $\{-3, -2, -1, 0, 1, 2, 3\}$. Range = $\{9, 4, 1, 0\}$
- 2. Not a function.
- 3. Yes.
- 4. No.
- 5. No.
- 6. Yes.
- 7. $f(x) = \frac{2(x+3)}{4} = \frac{2x+6}{4}$
- 8. $f(x) = -\sqrt{x-5}$
- 9. $f(x) = \sqrt{-x} 5$
- 10. 13
- 11. -5
- 12. 3
- 13. $8x^2 5$
- 14. $2x^2 5$
- 15. $2x^2 + 4x 3$
- 16. $(-\infty, \infty)$
- 17. $(-\infty, -1) \cup (-1, \infty)$
- 18. $(-\infty, -2) \cup (-2, 1) \cup (1, \infty)$
- 19. $\left[-\frac{5}{2}, \infty\right)$
- 20. $(-\infty, \infty)$
- 21. $\left[\frac{1}{3}, 6\right) \cup (6, \infty)$
- 22. No x-intercepts; y-intercept: (0,1)
- 23. x-intercept: (2,0); No y-intercept
- 24. x-intercepts: (4,0) and (-2,0); y-intercept: (0,-8)