Measure theory

All the definitions that follow are directly taken from the book?. We specify on which page the definition is given with brackets, for example we write {12} for page 12.

1 Borel measures

 $\{81\}$ Let (X,\mathcal{U}) be a topological space. It is called locally compact if each point has a compact neighborhood. It is called σ -compact if there exists an increasing sequence of compact sets (K_i) such that

$$\bigcup_{i \in \mathcal{N}} K_i = X. \tag{1}$$

We assume in this section that (X, \mathcal{U}) is a locally compact Hausdorff space and denote by \mathcal{B} the Borel σ -algebra generated by \mathcal{U} .

1.1 Regular Borel Measures

Definition D3.1 - {82} (Borel Measure, regular measure). A measure $\mu : \mathcal{B} \to [0, \infty]$ is called

- a Borel measure if $\mu(K) < \infty$ for every compact set $K \subset X$
- outer regular if for every Borel set,

$$\mu(B) = \inf\{\mu(U) : B \subseteq U, U \text{ is open}\}$$
 (2)

• inner regular if for every Borel set,

$$\mu(B) = \sup\{\mu(K) : B \subseteq K, K \text{ is compact}\}. \tag{3}$$

A Radon measure is an inner regular Borel measure.

Definition {86} (Local regularity). Let \mathcal{A} be a subclass of the Borel sets \mathcal{B} . We say that a measure μ is outer (inner) regular for the class \mathcal{A} if (??) (or (??)) is satisfied, with the inf (sup) taken on \mathcal{A} .

Lemma L3.7 - {86} (). Let μ be an outer regular Borel measure that is inner regular for \mathcal{U} . Then,

- μ is inner regular for $\{B \in \mathcal{B} : \mu(B) < \infty\}$
- If X is σ -compact then μ is regular.

Theorem T3.8 - {87} (Riez). Let $\mu_1 : \mathcal{B} \to [0, \infty]$ be an outer regular Borel measure that is inner regular on open sets. Let

$$\mu_0(B) := \sup\{\mu_1(K) : K \subset B \text{ and } K \text{ is compact}\}. \tag{4}$$

The following holds:

- (i) μ_0 is a Radon measure, it agrees with μ_1 on all compact sets and all open sets, and $\mu_0(B) \leq \mu_1(B)$ for all $B \in \mathcal{B}$
- (ii) If X is σ -compact then $\mu_0 = \mu_1$,
- (iii) If $f: X \to \mathbb{R}$ is a compactly supported continuous function then

$$\int_{X} f d\mu_0 = \int_{X} f d\mu_1. \tag{5}$$

(iv) Let $\mu: \mathcal{B} \to [0,\infty]$ be a Borel measure that is inner regular on open sets. Then, $\int_X f d\mu = \int_X f d\mu_1$ for every compactly supported continuous function iff $\mu_0 \le \mu \le \mu_1$.

1.2 Outer Borel Measures

Definition D1.54 - {39} (Complete measure space). A measure space (X, \mathcal{A}, μ) is complete if

$$N \in \mathcal{A}, \mu(N) = 0, E \subset N \Rightarrow E \in \mathcal{A}.$$
 (6)

Definition D2.3 - $\{50\}$ (Outer measure). Let X be a set. A function $\nu: 2^X \to [0,\infty]$ is called an outer measure if it satisfies the following axioms:

- (a) $\nu(\varnothing) = 0$,
- (b) If $A \subset B \subset X$ then $\nu(A) \leq \nu(B)$,
- (c) If $A_i \subset X$ for $i \in \mathbb{N}$, then $\nu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \nu(A_i)$.

A set A is called ν -measurable if is satisfies

$$\nu(D) = \nu(D \cap A) + \nu(D \setminus A). \tag{7}$$

Theorem T2.4 - {50} (Caratheodory). Let \mathcal{A} be the set of ν -measurable sets. Then, \mathring{A} is a σ -algebra, $\mu := \nu_{|\mathcal{A}}$ is a measure and the measure space (X, \mathring{A}, μ) is complete.

Definition D3.11 - {92} (Borel outer measure). A Borel outer measure on X is an outer measure $\nu: 2^X \to [0, \infty]$ that satisfies the following axioms:

- (a) If $K \subset X$ is compact then $\nu(K) < \infty$.
- (b) If $K_0, K_1 \subset X$ are disjoint compact sets then $\nu(K_0 \cup K_1) = \nu(K_0) + \nu(K_1)$.
- (c) ν is outer regular on every set,
- (d) ν is inner regular on every open set.

Theorem T3.12 - $\{92\}$ (Caratheodory for Borel outer measures). Let ν be a Borel outer measure. Then $\nu_{\mathcal{B}}$ is an outer regular Borel measure and is inner regular on open sets.

1.3 Riez representation theorem

Definition {97} (Compactly supported function). A function $f: X \to \mathbb{R}$ is said to be compactly supported if its support

$$\operatorname{supp}(f) = \overline{\{x \in X : f(x) \neq 0\}} \tag{8}$$

is compact. We define:

$$C_c(X) = \{f : X \to \mathbb{R} | f \text{ is continuous and compactly supported}\}.$$
 (9)

Definition D3.13 - {97} (Positive linear functional). A linear functional Λ : $C_c(X) \to \mathbb{R}$ is said to be positive if

$$f \ge 0 \Rightarrow \Lambda(f) \ge 0. \tag{10}$$

Lemma {98} (Continuous functions with bounded support are integrable). Let $\mu: \mathcal{B} \to [0, \infty]$ be a Borel measure. For all $f \in C_c(X)$, f is μ -integrable.

We define:

$$\Lambda_{\mu}(f) := \int_{Y} f d\mu. \tag{11}$$

Theorem T3.15 - $\{98\}$ (Riez representation theorem). Let $\Lambda: C_c(X) \to \mathbb{R}$ be a positive linear functional. Then,

- (i) There exists a unique Radon measure μ_0 such that $\Lambda_{\mu_0} = \Lambda$
- (ii) There exists a unique outer regular Borel measure μ_1 that is inner regular on open sets and $\Lambda_{\mu_1}=\Lambda$
- (iii) The Boral measures μ_0 and μ_1 agree on compact and open sets, and $\mu_0 \leq \mu_1$
- (iv) Let μ be a Boral measure that is inner regular on open sets. Then, $\Lambda_{\mu} = \Lambda$ implies that $\mu_0 \leq \mu \leq \mu_1$.

Lemma C3.17 - $\{105\}$ (Outer Radon). Radon measures are outer regular on compact sets.

Theorem T3.18 - $\{105\}$ (Borel measures are regular). Let X be a locally compact Hausdorff space. Then,

- (a) Assume X is σ -compact. Then, every Borel measure that is inner regular on open sets is regular.
- (b) Assume that every open set of X is σ -compact. Then, every Borel measure is regular.

Definition {106} (Bases, countability). A basis of a topological space (X, \mathcal{U}) is a collection \mathcal{V} such that for every $U \in \mathcal{U}$, there is a subset \mathcal{S} of \mathcal{V} such that $U = \bigcup_{V \in \mathcal{S}} V$. A second countable topological space has a countable basis. For a first countable topological space, every point has a local countable basis, i.e. there is a countable sequence of sets W_i , that all contain x, such that every open set that contains x contains one of the W_i .

Lemma L3.21 - $\{106\}$ (σ -compactness and countability). Let X be a locally compact Hausdorff space.

- (i) If X is a second countable space, then every open subset is σ -compact.
- (ii) If every open set of X is σ -compact, then X is first countable.

The Alexandrov double arrow space is an example of a space that is σ -compact but not second countable.

References

Dietmar A. Salamon. Measure and Integration. 2020.