

Decision Trees

- Popular classification method in data mining supervised classification method
 - collection of decision nodes, connected by branches, extending downward from root node to terminating leaf nodes
 - Beginning with root node, attributes tested at decision nodes, and each possible outcome results in branch
 - Each branch leads to decision node or leaf node

Decision Trees

- Pre-classified target variable must be included in training set
- The target variable must be categorical
- Decision trees learn by example, so training set should contain records with varied attribute values
- If training set systematically lacks definable subsets, classification becomes problematic
- Classification and Regression Trees (CART) and C4.5 are two leading algorithms used in data mining

Classification and Regression Trees (CART)

- Classification and Regression Trees (CART) developed by Breiman, 1984
 - Splits at decision nodes are binary, resulting in two branches
 - CART recursively partitions data into subsets with similar values for target variable
 - Algorithm grows tree by evaluating all predictor variables.
 Then chooses optimal split according to criteria:

Classification and Regression Trees (CART)

Let $\Phi(s|t)$ be a measure of the "goodness" of a candidate split s at node t, where

$$\Phi(s \mid t) = 2P_L P_R \sum_{j=1}^{\text{\#classes}} \left| P(j \mid t_L) - P(j \mid t_R) \right|$$

 $t_{L} = \text{left child node of node } t$ $t_{R} = \text{right child node of node } t$ $P_{L} = \frac{\text{number of records at } t_{L}}{\text{number of records in training set}}$ $P_{R} = \frac{\text{number of records at } t_{R}}{\text{number of records in training set}}$ $P(j | t_{L}) = \frac{\text{number of class } j \text{ records at } t_{L}}{\text{number of records at } t}$ $P(j | t_{R}) = \frac{\text{number of class } j \text{ records at } t_{R}}{\text{number of records at } t_{R}}$

Optimality measure maximizes split over all possible splits, at node t

Classification and Regression Trees (CART)

- Example
 - Predict whether customer is classified "Good" or "Bad" credit risk using three predictor fields

Customer	Savings	Assets	Income (\$1000s)	Credit Risk
1	Medium	High	75	Good
2	Low	Low	50	Bad
3	High	Medium	25	Bad
4	Medium	Medium	50	Good
5	Low	Medium	100	Good
6	High	High	25	Good
7	Low	Low	25	Bad
8	Medium	Medium	75	Good

Splits evaluated for Savings, Assets, and Income
 Income is numeric.

- CART identifies possible splits based on values it contains

Classification and Regression Trees (CART)

– Nine candidate splits, for t = root node

Candidate Split	Left Child Node, t_L	Right Child Node, t _R		
1	Savings = low	$Savings \in \{medium, high\}$		
2	Savings = medium	$Savings \in \{low, high\}$		
3	Savings = high	Savings ∈ {low, medium}		
4	Assets = low	$Assets \in \{medium, high\}$		
5	Assets = medium	$Assets \in \{low, high\}$		
6	Assets = high	$Assets \in \{low, medium\}$		
7	Income ≤ \$25,000	Income > \$25,000		
8	Income ≤ \$50,000	Income > \$50,000		
9	Income ≤ \$75,000	Income > \$75,000		

Classification and Regression Trees (CART)

Split	P_L	P_R	$P(j t_L)$	$P(j t_R)$	$2P_LP_R$	Q(s t)	$\Phi(s t)$
1	0.375	0.625	G: .333	G: .8	0.46875	0.934	0.4378
			B: .667	B: .2			
2	0.375	0.625	G: 1	G: 0.4	0.46875	1.2	0.5625
			B: 0	B: 0.6			
3	0.25	0.75	G: 0.5	G: 0.0667	0.375	0.334	0.1253
			B: 0.5	B: 0.333			
4	0.25	0.75	G: 0	G: 0.833	0.375	1.667	0.6248
			B: 1	B: 0.167			
5	0.5	0.5	G: 0.75	G: 0.5	0.5	0.5	0.25
			B: 0.25	B: 0.5			
6	0.25	0.75	G: 1	G: 0.5	0.375	1	0.375
			B: 0	B: 0.5			
7	0.375	0.625	G: 0.333	G: 0.8	0.46875	0.934	0.4378
			B: 0.667	B: 0.2			
8	0.625	0.375	G: 0.4	G: 1	0.46875	1.2	0.5625
		B: 0.6	B: 0				
9	0.875	0.125	G: 0.571	G: 1	0.21875	0.858	0.1877
			B: 0.429	B: 0			

Classification and Regression Trees (CART)

- Optimality measure <u>maximized</u> to 0.6248, when *Assets* = "Low" (Left branch), Assets = "Medium or High" (Right branch)
- Left branch terminates to pure leaf node; both records have target value = "Bad Risk"
- Right branch diverse and calls for further partitioning

Classification and Regression Trees (CART)

- · When is Optimality Measure large?
 - Measure large when its main components are large
 - (1) Larger values of $\Phi(s | t)$ tend to be associated with larger values of its main components: $2P_L P_R$ and $\sum_{j=1}^{\#classes} |P(j | t_L) - P(j | t_R)|$
- When is component Q(s/t) large?

(2) Let
$$Q(s \mid t) = \sum_{j=1}^{\#classes} |P(j \mid t_L) - P(j \mid t_R)|$$

 $Q(s \mid t)$ is large when the distance between

 $P(j | t_L)$ and $P(j | t_R)$ is maximized across each class value

Classification and Regression Trees (CART)

• Classification Error Rate

- After tree "fully grown", not all leaf nodes necessarily <u>homogenous</u>. Some are <u>diverse leaf nodes</u>
- Leads to level of classification error

Customer	Savings	Assets	Income	Credit Risk
004	High	Low	<=\$30K	Good
009	High	Low	< \$30K	Good
027	High	Low	<=\$30K	Bad
031	High	Low	< \$30K	Bad
104	High	Low	<=\$30K	Bad

- Probability that record in leaf node classified correctly (as "Bad") is 3/5 = 0.60 = 60%

Classification error rate for leaf node is 0.40 = 40%. 2/5 "Good" records classified incorrectly ("Bad")

C4.5 Algorithm

- C4.5 is extension of ID3 developed by Quinlan
 - Similar to CART, C4.5 builds tree by recursively visiting decision nodes and choosing optimal spit, until no further splits possible

- Differences Between CART and C4.5

- Unlike CART, C4.5 is not limited to binary splits and produces tree with variable shape
- C4.5 produces branch for each categorical value. This may result in "bushiness"
- C4.5 uses different algorithm to measure homogeneity occurring at leaf nodes
- C4.5 uses information gain or entropy reduction to select optimal split at each decision node
 - In Engineering, information analogous to signal, entropy analogous to noise

C4.5 Algorithm

Entropy

$$H(X) = -\sum_{j} p_{j} \log_{2}(p_{j})$$

- Event with probability = p, average amount of information, in bits, required to transmit result -log₂(p)
- Represents smallest number of bits, on average per symbol, needed to transmit stream of symbols corresponding to observed values of X

C4.5 Algorithm

- How to use Entropy?
 - Assume candidate split S, partitions data set T into subsets
 T1, T2, ..., Tk
 - Mean information requirement calculated as weighted sum of entropies associated with each subset $\it T$

$$H_{S}(T) = \sum_{i=1}^{k} P_{i} H_{S}(T_{i})$$

- Pi represents proportion of records in subset Ti

C4.5 Algorithm

• Information gain

$$gain(S) = H(T) - Hs(T)$$

- Represents increase in information by partitioning training data T according to candidate split S
- For each candidate split, C4.5 chooses split that has maximum information gain, gain(S)
- Information gain =
 entropy(parent)-[p(c1)×entropy(c1)+p(c2)×entropy(c2)+...]

Note: Higher IG indicates a more informative split by the variable.

C4.5 Algorithm

• Information gain

Entropy(parent)

- $= -[p(\bullet) \times \log 2 \ p(\bullet) \bullet p(\) \times \log \bullet \ p(\)]$
- $= -[0.53 \times (-0.9) + 0.47 \times (-1.1)]$
- = 0.99 (very impure!)

Left child: entropy(Balance < 50K)

- $= -[p(\bullet) \log_2 p(\bullet) + p() \log_2 p()]$
- $= -[0.92 \times (-0.12) + 0.08 \times (-3.7)]$
- = 0.39

Right child: entropy(Balance

- $= -[p(\bullet) \log_2 p(\bullet) + p() \log_2 p()]$
- $= -[0.24 \times (-2.1) + 0.76 \times (-0.39)]$
- = 0.79

Exercise

Customer	Savings	Assets	Income (\$1000s)	Credit Risk
1	Medium	High	75	Good
2	Low	Low	50	Bad
3	High	Medium	25	Bad
4	Medium	Medium	50	Good
5	Low	Medium	100	Good
6	High	High	25	Good
7	Low	Low	25	Bad
8	Medium	Medium	75	Good

Candidate Split		Child No	des	
1	Savings = Low	Savings = M	ledium	Savings = High
2	Assets = Low	Assets = Medium		Assets = High
3	Income <= \$25,000			Income > \$25,000
4	Income <= \$50,000			Income > \$50,000
5	Income <= \$75,000			Income > \$75.000

Exercise

Candidate Split	Child Nodes	Information Gain (Entropy Reduction)
1	Savings = Low Savings = Medium Savings = High	0.36 bits
2	Assets Low Assets Medium Assets High	0.5487 bits
3	Income <= \$25,000 Income > \$25,000	0.1588 bits
4	Income < \$50,000 Income > \$50,000	0.3475 bits
5	Income <= \$75,000 Income > \$75,000	0.0923 bits

Decision Rules

- Decision Trees produce <u>interpretable</u> output in humanreadable form
- <u>Decision Rules</u> constructed directly from Decision Tree output, traversing path from root node to a given leaf node
- Decision Rules have form <u>IF antecedent THEN</u> consequent
- Antecedent consists of attributes values from branches of given path
- Consequent is classification of records contained in particular leaf node, corresponding to path

