深度学习在银行业的应用

上海银行信息技术部 李梦霄 顾心诚 裴佳翔 邢腾飞 郑小云

金融科技引发金融领域的新一轮变革, 以科技为重 要驱动力发展金融业务迅速成为金融及互联网公司关注 的重点。随着互联网金融机构的崛起, 传统金融机构面 临获利空间收窄、客户流失等诸多挑战, 在外部竞争压 力与内部转型需求双重驱动下,银行逐步推动产品和服 务向智能化发展。

近年来,深度学习技术在社会数字化大背景下取得 突破性进展, 并在数据挖掘、自然语言理解、计算机视 觉等领域发挥核心价值,呈现出大数据驱动、人机融合 等特征。考虑到商业银行金融数据的连续性、高维度、 时变性等特点较为适用于深度学习模型,同时深度学习 的先进性以及应用广泛性能够给商业银行在风险控制、 智能服务等方面带来诸多创新应用可能,探索深度学习 在金融业的场景应用或许将成为银行提升智能化服务水 平、实现弯道超车的利器。

一、深度学习简介

深度学习的概念最早由 Hinton 等人于 2006 年提出, 它是机器学习中一种基于对数据进行表征学习的方法, 核心思想在于模仿人脑的机制来解释数据,如图像、声 音和文本等。给定输入数据,通过训练深度模型自动提 取数据特征,从而预测结果。现阶段对于深度学习的研 究大多是基于神经网络的方法,如卷积神经网络(CNN)、 循环神经网络(RNN)、深度置信网络(DBN)等,神 经网络的基础原理架构如图 1 所示。

神经网络总体可分为三个模块:输入层、隐藏层和 输出层。输入层接收输入数据; 隐藏层是对输入进行数 学运算, 获取各神经元之间的关系, 创建神经网络的一 大难点便是如何决定隐藏层的层数, 以及每层神经元的 个数,而深度学习中的"深度"所指的也正是隐藏层的

图 1 神经网络的基础原理架构

数量;输出层返回模型的预测结果。

随着互联网、信息技术的高速发展,数据也得到爆 发性增长,如何实时处理并分析大规模的数据为深度学 习的发展提供了契机。深度神经网络的核心是让计算机 通过多层简单的数学计算构建复杂的网络, 在多层神经 网络中, 前几层能学习一些低层次的简单特征, 后几层 发展为基于简单特征的结合去探测更加复杂的事物。神 经网络深度的增加和完善以及模型复杂度的提升,不仅 使其可以自动学习浅层特征,同时可以逐层抽象深层的 多维特征,赋予其更复杂的学习表征能力。

二、深度学习在银行业的技术应用

海量、多维度的大数据为深度学习算法的发展提供 了充分的条件,GPU 芯片的发展弥补了 CPU 在并行计 算上的短板,为深度学习算法研究提供了算力支撑。"数 据+算力"的支持使得深度学习算法不断取得新的进展。 算料(数据)、算力和算法三方面的重大突破推动了以 深度学习算法为代表的人工智能技术飞速发展,大幅跨 越了理论与应用之间的鸿沟,诸如机器视觉、语音识别、

自然语言处理、人机交互等人工智能技术正逐步实现从 "不能用、不好用"到"可以用"的技术突破,迎来人 工智能新的发展浪潮。而在金融领域,如何利用 AI 技 术为传统金融发展注入新的活力,赋能加速科技转型也 成为业界关注的热点问题。目前,金融机构不断探索 AI 技术与业务场景的融合与落地,且已初见成效。具体应 用探索如图 2 所示。

人工智能技术的不断成熟,使金融业逐步开始向打造营销、风控、评估、运营等各环节一体化、自动化的智能平台方向发展。以下结合实际介绍深度学习赋能银行业降本增效、加速科技转型的探索与应用。

1. 智能服务, 提升客户体验

人工智能技术在银行业主要以辅助功能为主,大多应用于服务领域。深度学习算法的发展大大改善了人工智能技术的实际应用效果,有效提升客户满意度。

(1)应用场景

①生物特征识别核查。人脸、语音等信息易于采集 且难以盗取复制,可以用于对客户身份的验证。传统人 脸识别技术常采用"人工提取生物特征+传统机器学习 算法"预测,这种方法只能利用浅层特征,且对图像质 量要求较高,当出现面部遮挡、表情变化、光照不均等 情况时识别效果较差。而卷积神经网络不仅解决了人工 提取特征的难题,还可以通过深度网络提取丰富的高阶 特征,大大提升了识别的准确率。目前人脸识别技术已 经普遍使用在登录软件或者支付核验领域。另外,在网 点运营方面,可以通过摄像头进行网点客流量统计、分 析客户属性等,并可以快速识别出进入网点的老客户, 根据其以前的业务数据,提供更有针对性的服务,提升 客户体验和营销成功率;同时还可识别出面部遮挡或者 警方黑名单中的人员,提升营业网点安全性。

②机器人聊天。传统的聊天客服大多是设置固定话 术, 当客户提问话术与设定场景不一致时, 自动客服不 能很好地理解客户问题。而随着深度学习技术的成熟, 聊天机器人越来越人性化, 可以无障碍地与人交流沟通, 在智能客服和大堂机器人领域应用广泛。

智能客服方面,平安集团旗下保险、基金、银行、 证券等用户拨打客服热线后可直接说出服务需求,系统 识别客户语音内容后,即可转接相应模块,大幅节省了 客户选择菜单的时间;建设银行打造的微信客服"小微" 能自动回答客户的问题。除传统银行外,各大金融科技 企业也不断推动算法创新,提升聊天机器人的服务质量。 蚂蚁金服的"小蚂"已能够实现自我学习,把深度学习 的排序 DSSM 模型与 LSTM 模型相结合,实现综合用 户行为轨迹与用户输入来回答用户问题; 拍拍贷研发了 基于 LSTM + Hierarchical Attention 模型的智能客服机 器人,能够有效识别用户情绪,智能搜索知识图谱,在 多轮对话中高效解答客户疑问。

大堂机器人方面,各个银行都有自己的研究和试验, 工商银行的"小i"、建设银行的"小龙人"、交通银 行的"娇娇"等,这些智能机器人能利用语音识别、语 义理解、人脸识别等技术, 为客户提供智能化、人性化 的业务咨询、大堂引导等服务。

③创新服务应用。以深度学习为代表的人工智能技 术能为金融机构的服务形式带来创新,提升客户体验。 浦发银行利用自然语言处理和情绪计算技术,感知客户 投诉时的情感状态, 为客服人员予以提示并辅助其主动 开展危机公关。

在保险行业,由于寿险业务人员众多,业务员面试 存在面试量大、人力投入多、筛选困难等痛点。平安寿 险研发的 AI 面试官能依靠面试领域的特殊对话系统, 运用智能短回应技术,发起多轮对话、智能提问,创新 拟人化面试交互体验。

以上创新案例能真实落地都基于精准的情感感知, 能够准确理解用户的自然语言,这些技术的背后除了传 统算法, 也都离不开深度学习算法的支撑。

(2) 应用算法

目前计算机视觉领域的算法技术已相对成熟, 人脸 识别、指纹识别等产品基本已能满足业务场景需求。而 人工智能强势进驻金融科技应用领域的另一重要场景便 是聊天机器人,如何让机器人更加智能、更接近于人, 在算法技术上还有很大的研究空间。当前重点采用的技 术包括:语音识别(ASR)、语音合成(TTS)、自然 语言处理(NLP)等,这也是深度学习在银行业大力发 展的一大领域。因此我们重点调研了这三方面常用的一 些深度学习算法的研究进展,表 1~表 3 分别展示了这 三方面技术的常用深度网络算法。

2. 智能营销, 助力创盈增收

近年来, 传统金融行业整体面临客户流失率增加、 净利润增速放缓的挑战, 仅靠传统业务创盈增收已举步 维艰,科技转型迫在眉睫。深度学习算法的突破,使得 众多营销手段开始从"想象"步入"现实"。

平安集团旗下的金融壹账通利用深度学习算法构建 一体化的营销方案,将大数据、人工智能等先进技术与 传统业务流程有机融合,基于深度神经网络构建1:N 人脸识别、微表情识别、智能文本阅读理解等技术, 打 造出加马识客眼镜、加马客来屏、加马营销助手等智能 化工具,覆盖银行网点内外、线上线下及数字营销等场 景。

上海银行在挖掘新客户、挽留流失老客户、新产品 营销等各个业务场景, 训练构建机器学习模型, 并在大 数据量的场景下, 针对传统机器学习算法的局限, 探索 构建深度模型,提升模型实际营销效果,从多角度、多 维度助力银行拉新、促活、留存、营收。

3. 智能风控, 重塑风险管控模式

传统金融风控中定性风险管理占主体,以主观规则 及客户评级为主。这种方式存在主观规则需要丰富经验、 分析能力偏弱、难以精确化用户特征等缺点。在数字化 转型的背景下, 传统的风险管控模式已无法满足全面风

声学模型	优点	缺点
GMM+HMM	训练速度快,声学模型较小,易移植到嵌入式平台	没有利用帧的上下文信息,不能学习深层 非线性特征变换
DNN+HMM	利用帧拼接,可以利用上下文信息并学习深层非线性 特征变换	不能利用历史信息来辅助当前识别任务
RNN+HMM	能够有效利用历史信息米辅助当前任务	随着层数的增加,会导致梯度爆炸或梯度 消失
RNN+CTC	完全端到端的声学模型训练,不需要预先对数据做 对齐	
Deep CNN	利用卷积的不变性来克服语音信号本身的多样性,识 别准确率高	模型参数非常庞大,硬件、时间成本高

表 2 语音合成技术常用算法特点

TTS 算法	特点
传统算法	能够联系上下文相关信息,有利于处理非平稳噪声,但需要人工提取特征
WaveNet	使用 Dilated Casual CNN,而不是 LSTM 去实现语音算法,思想非常值得学习。这个方法对比 RNN,好处就是可以并行计算,提高预测训练速度。但是这个方法也有局限性,在测试时,需要使用自回归当前的输出语言当做输入进行下一时刻的计算,限制了它的速度。如果用于 TTS,那初始采样点选择将会很重要
DeepVoice	整个网络分为5个模块,各模块可以单独分开快速训练;可以单独调试修改;实时性好。但分模块也会带来误差累积,系统复杂
Char2Wav	实现端到端的语音合成,引入了 Attention 机制
Tacotron	更快速的训练; 但模型复杂,人为干预能力差,端到端不彻底
WaveRNN	高并行度的生成语音算法,结构简化、训练速度快

表 3 自然语言处理常用算法及应用场景

应用方面	算法方案	应用场景
(三日)抽切	采用 Bi –LSTM–CRF 模型,三层结构,词嵌入层、双向 LSTM 层、 CRF 层	文本关键提取、生成知识图谱、用户 画像
2017470	V ==	情感分类、电话营销态度分析
机器翻译	采用文本处理领域的 Encoder-Decoder 框架,为深度学习的基本框架	文本翻译、人脸识别、声纹识别

险管控的需求。以大数据、人工智能为代表的新技术发 展为风控领域相关痛点的解决提供了很好的契机。深度 学习算法在金融风控的应用主要分为三类。

(1)基于序列数据建模:传统序列数据分析大多 是统计模型,参数化的统计模型需要人为事先定义强度 函数,非参数模型算法复杂,给实际应用带来不便。而 深度学习算法的发展为序列数据分析带来了较大突破, 代表算法有 LSTM 及其改进算法。

- (2) 传统特征衍生: 传统风控模型特征工程主要 靠人工提取,人力成本较高;且原始特征往往包含大量 系数特征,易带来维度灾难。深度学习端到端自学习的 方式表现出巨大优势,代表算法有 CNN、自编码网络、 DeepFM等。
- (3)基于知识图谱建模: 随着知识图谱技术的发展, 基于客户的画像、关联特征构建图谱结构,利用图神经 网络建模, 在风险传导、反欺诈等场景分析中起到了重 要作用。

目前各银行都在通过传统方式和深度学习算法的对 比测试,不断探索深度学习在风险防控中的应用,搭建 贷前 - 贷中 - 贷后一体化的智能风控体系。

平安集团构建加马智能贷款一体机,融合微表情识 别、生物识别、智能双录、大数据风控、电子签章、区 块链等多种创新科技,解放了大量申请、验证、核身等 人力工作,整个贷款流程全面采用无纸化放贷操作,可 高效完成对借款人从面审签约到线上电子合同签署的全 流程。其中值得一提的是,基于深度神经网络搭建的微 表情识别模型可通过远程视频实时抓取客户微小的表情 变化,智能判断并提示欺诈风险;"智能双录"技术通 过人脸识别、声纹识别、指纹识别以及证件联网核查技 术四合一, 可大大简化现有贷款模式下复杂低效的客户 身份认证流程。

上海银行在智能风控方面研究基于机器学习算法构 建反欺诈模型,同时也在探索知识图谱技术,研究图神 经网络算法,挖掘分析信贷客户之间在资金收付、担保 等方面的关联关系,智能预测信贷客户潜在的信用违约 风险。

4. 其他智能应用探索

目前深度学习在银行业的创新应用场景有智能投 顾、智能运维、OCR 智能表单识别系统等。

(1)智能投顾

智能投顾是根据用户风险偏好和预期收益等历史特 征,利用传统机器学习和深度学习算法构建模型,智能 配置投资方案,为更多的客户提供专属投资服务。招商 银行的"摩羯智投"、中国银行的"中银慧投"、工商 银行的"AI 投"、农业银行的"金穗智投"平台等都是 商业银行推出的智能投顾产品。

(2)智能运维

上海银行推出智能巡检机器人, 通过运用自主与规 划导航相结合、多传感器融合、智能识别、智能监控等 技术, 机器人能够自动巡视、自主避障、自主充电、实 时监控遥控,并提供实时移动巡检数据上传至智能运检 平台,实时展示数据并可定制报表输出。

(3) OCR 智能表单识别系统

上海银行 OCR 算法积累了包含传统数字图像处理 和基于深度学习的图像处理技术, 支持用户所需的定制 化OCR识别需求。OCR算法识别流程大致为: 版面分析, 文字提取,文字识别,整合排版。针对OCR版面分析, 算法融合 ResNet、Batchnorm、Inception、Depthwise 等 优秀子结构,不仅大大减少网络参数并增速网络训练, 还保证了网络的表达性能。同时, 在文字识别方面, 主 流方法是基于 CNN 和 RNN 的混合深度神经网络进行端 到端的识别。

三、未来展望

1. 深度学习在银行业落地的困境

虽然深度学习在各行业已有着广泛的应用, 但仍存 在诸多困难,除技术可行性外,还有研发和应用成本、 市场供需等多个因素影响着深度学习算法在银行业的落 地速度和程度。

(1)数据获取成本高、难度大

海量、多维度的数据为深度学习发展提供了基础, 同时也成为深度学习继续成长的关键制约因素。利用深 度学习构建人工智能体系需要包含多维度的数据信息, 包括客户的基本信息、偏好信息、行为信息、分析数据 等。因此,即便已有海量数据储备的科技巨头和银行,仍需要获取多种外部企业的数据。而金融机构大多数据较为敏感,银行内部的各业务条线之间、银行机构之间、银行与外部企业之间因多种因素存在数据壁垒,造成信息无法共享,在此背景下,深度学习算法应用经常因数据不足而被迫放弃。

此外,由于数据收集、特征构建、标签定义等需要 大量人工和专业知识,银行的业务人员对深度学习算法 了解不够,算法人员对于业务知识了解不足,所以在数 据准备阶段需要耗费较大的人力和时间成本。

(2) 深度算法对人才和算力要求较高

虽然深度学习算法最近在各大领域都取得瞩目的成效,但大量算法都是处于科学研究的水平。而真实场景相较于科研更加复杂,变化影响的因素更多,从科研到算法落地变现可能需要长时间的探索。同时在实际应用中也需要随着外部环境影响及时调整和优化算法,而银行业内部对于从事深度学习算法研究的科研人才较少,需要投入资金引进高端人才,并且有较长时间的学习和试错成本。同时深度学习复杂算法需要更高运算速度,需要大规模高速并行运算的 GPU、FPGA 专用设备以及模式识别、信息采集所依赖的各类传感器等硬件设备,其耗能水平和成本均较高,也影响了深度学习算法在银行业相关解决方案的普及和商业化。

(3)银行业务场景风险较高

目前深度学习整体理论体系还不够完善,深度神经 网络就像是"黑匣子",无法进行人工干预,可解释性 较差,对于模型预测的结果无法做出合理的解释,结果 可能超乎预期,潜在风险大。因此目前银行业中深度学 习算法大多应用于服务场景,而在关键业务场景中只作 为辅助分析,最终还是要人工决策,基于业务驱动的每 个业务场景都需要构建独立的深度模型,金融业各机构 暂时都还没有形成统一的管理和规范。

2. 深度学习发展的机遇

虽然深度学习算法离大范围落地变现还有不少的路

要走,短期内仍以研究为主,少量变现也作为辅助性作用,但是并不能因此而忽视深度学习对于推动银行业发展的潜力,其积极作用不容小觑。

(1)数据价值更加突出

随着大数据时代外部海量信息的涌现,企业内部业务、人员、系统平台等规模的扩大,数据孤岛的问题逐渐凸显,各机构越来越意识到数据的重要性。联邦学习算法的提出解决了因安全隐私造成的数据壁垒问题,联邦学习与深度学习算法的结合,可以综合多维度特征进行数据挖掘和分析,既可避免直接存储造成的浪费,又能提升金融大数据的价值。

(2)服务更加智慧

深度学习的发展使得机器越来越像人类,能批量为客户提供人性化和个性化的服务,这将给身处服务价值链高端的银行业带来深刻影响。它将给金融产品、服务渠道、服务方式、风险管理等带来新一轮的变革,大幅改变金融业现有格局,使金融服务(银行、保险、理财、借贷、投资等)更加个性化与智能化。

(3)风控能力更加完善

由于金融体系时刻面临来自各渠道的危险攻击,在 处理风险管理与交易这种复杂数据时,传统人工风控模 型已不足以应对风险;深度学习技术的引入,可以使模 型自动学习和预测风险,从而大幅降低人力成本并提升 金融风控及业务处理能力,提高整个金融体系的安全度 和稳定性。

随着深度学习的发展,人工智能技术逐步完善。商业银行应携手产业各方,持续完善顶层设计,加强核心技术研究,联手完善数据生态圈,推进人工智能技术在银行业的普及和发展,创新服务方式和流程,提升整个银行业资源配置效率,以更先进、更灵活、更高效地响应客户和社会需求。