

Computationally Hard Problems – Fall 2016 Assignment 1

 $\mathbf{Date} \colon 30.08.2016, \, \mathbf{Due} \,\, \mathbf{date} \colon 05.09.2016, \, 21:00$

The following exercises are not mandatory:
Exercise 1.1: Consider the language L_{graphs} from Example 2.3 in the lecture notes. Let $w \in \{0,1\}^k$ be a word of length k over $\{0,1\}$.
a) Describe how one can check that it encodes an undirected graph.
b) If w encodes an undirected graph, describe how one can check whether a certain edge $\{i, j\}$, where $j > i$, is present.
End of Exercise 1
Exercise 1.2: Design a language L_{dgraphs} for directed graphs. Do not forget to specify the alphabet Σ_{dgraphs} you use.
End of Exercise 2
Exercise 1.3: Design a language for sequences of fractions. A fraction is the quotient of two integers.
a) Specify the alphabet.
b) Specify how the language is defined.
c) Show how the sequence $1/3$, $234/39$, $-55/16$ is coded in your language.
End of Exercise 3
Continued on next page.

Exercise 1.4: A disjunctive form is a formula over n boolean variables x_1, \ldots, x_n such that

- the formula is a boolean disjunction of k so-called monomials m_1, \ldots, m_k
- where each monomial m_i , $1 \le i \le k$, is a boolean conjunction of variables or their negations.

For example, a disjunctive form for n = 5 and k = 4 is

$$\underbrace{(\overline{x}_1 \wedge x_2 \wedge x_3)}_{m_1} \vee \underbrace{(\overline{x}_1 \wedge x_4)}_{m_2} \vee \underbrace{(x_1 \wedge \overline{x}_3 \wedge x_4 \wedge x_5)}_{m_3} \vee \underbrace{(x_2 \wedge \overline{x}_3 \wedge \overline{x}_5)}_{m_4}.$$

Design a language $L_{\text{disj-form}}$ for the set of disjunctive forms. Do not forget to specify the alphabet $\Sigma_{\text{disj-form}}$ you use.

End of Exercise 4

The following exercise is **mandatory**:

Exercise 1.5: A chess game configuration describes the current state in the well-known chess game. Such a state includes the positions of the up to 32 available pieces on the 8×8 -chess board and the color of the player whose turn it is next. The aim is to design a formal language L_{chess} for chess game configurations.

- a) Specify the alphabet Σ_{chess} you use.
- b) Specify how a chess game configuration is encoded in the language L_{chess} .
- c) Describe how one can check whether a given word $w \in \Sigma_{\text{chess}}^*$ is in L_{chess} , and, if so, how the game configuration can be reconstructed.
- d) How would the initial game configuration (i. e., the configuration the game is set up to begin with) be encoded in your language?

Note: a game configuration only describes how pieces are arranged on the board and whose turn it is. We do not check whether the arrangement can be reached in a real chess game.

End of Exercise 5