state-based models for decision problems

models

- describe a state (representation)
- identify special states & the problem space
- describe & validate transitions
- specify a search strategy

uninformed search strategies

these have no distinction between states

- random
- BFS (and Uniform Cost)
 - search states in order of distance from start
 - o finds optimal solution
- DFS (and Iterative Deepening, IDS)
 - o go as far as possible as fast as possible
 - o go back from dead ends and try something else
- backtracking
- bidirectional
 - o start from both the start state and end state, meet in the middle

informed search strategies

use heuristics to help distinguish between states

- greedy
 - best-first
- hill-climbing
 - o select a local state that's at least as good as the current one
 - o easily fooled by local maxima
- simulated annealing
 - has a chance to choose a worse state
 - o chance gradually gets lower over time
- A* (and IDA*)
 - o informed IDDFS
 - o IDDFS explores nodes by distance from initial state
 - A* explores nodes by \$d(S) + h(S)\$
 - \$d(S)\$ distance from initial state
 - \$h(S)\$ estimated distance from final state
 - o optimization: consistent heuristic
 - $h(A) \le h(A,B) + h(B)$ if \$B\$ reachable from \$A\$