Orbit Bundle Theorem and Applications

Hazel Brenner

Spring 2023

1 Introduction

This writeup is an extension of what I've written in No Badly Compactified Annuli. This will prove a general version of the *Orbit Bundle Structure* which concerns the structure of connected regions consisting of orbits of a fixed dimension. As of writing, this result takes as an input that the region is a manifold (would be ideal to have settings that this can be relaxed).

The setting of the generalized bundle structure result is the following. Suppose $\operatorname{Homeo}_0(M)$ acts on N, and X is a connected submanifold of N with orbits of fixed dimension. Fix a base point $b \in \operatorname{Conf}_n(M)$. We will abuse notation by denoting both the point in $\operatorname{Conf}_n(M)$ and the corresponding subset of M as b. Also, note that the deck group of the maximal admissible covering $C_b \to \operatorname{Conf}_n(M)$ can be identified with $\operatorname{stab}_0(b)/\operatorname{stab}_0(b) \subset \operatorname{Homeo}_0(M)$.

Proposition 1.1 (Orbit Bundle). Suppose X a connected submanifold of N with orbits of fixed dimension, then there is a continuous map $p: X \to \operatorname{Conf}_n(M)$ such that there's a map:

$$I: C_n \times p^{-1}(b)/\Gamma \to X$$

where Γ is the deck group of the covering $C_n \to \operatorname{Conf}_n(M)$ acting on the first factor by deck transformations and the second factor by the $\operatorname{Homeo}_0(M)$ action restricted to the subgroup Γ acting on the fiber. The map I is an equivariant homeomorphism with the $\operatorname{Homeo}_0(M)$ action on $C_n \times p^{-1}(b)/\Gamma$ be the quotient of the product of the standard action on C_n with the trivial action on the fiber.

$$Proof.$$
 TODO

2 Codimension 1 Orbit Bundles

For components of codimension 1 orbits, the fiber must be 1-dimensional and all 1-dimensional homology manifolds are manifolds. So, codimension 1 orbit bundless are classified by actions of the deck group of Γ of the covering $C_X \to \operatorname{Conf}_n(M)$ on 1-manifolds up to equivariant homeomorphism. Note that, in general, $|\pi_0(F)| \leq |\Gamma|$ and the components of F are homeomorphic.

It's hard to say something overly general here, but fixing $M = S^1$ and $\dim(N) = 3$ a classification is possible. Note, in this setting $C_X = \operatorname{PConf}_2(S^1)$ and $\Gamma = \mathbb{Z}_2$.

Proposition 2.1. The classification of $\text{Homeo}_0(S^1)$ codimension 1 orbit bundles X in 3-manifolds is as follows.

F disconnected $F \cong C \sqcup C$ for a 1-manifold $C, X \cong PConf_2(S^1) \times C$ and $\pi_{SO(2)}(X) \cong I \times C$

F connected

 \mathbb{Z}_2 acts on F f.p. free $F \cong S^1$, action is by a π rotation. $X \cong \mathrm{PConf}_2(S^1) \times S^1$ and $\pi_{SO(2)} \cong I \times S^1$ \mathbb{Z}_2 acts on F w/ fixed points This depends on F, on each \mathbb{Z}_2 acts by reflection. Note in each case, the bundle is described in terms of the Seifert structure given by the SO(2) action.

$$F \cong \mathbb{R} \ X \text{ is } (\mathring{\mathbb{D}}^2, (2, 1))$$

 $F \cong S^1 \ X \text{ is } (\mathring{\mathbb{D}}^2, (2, 1), (2, 1))$

 $F \cong [0,1] \ X$ is $(\mathring{\mathbb{D}}^2 \cup I, (2,1))$ where I is a interval in the boundary of the closed disk \mathbb{D}^2 acts trivially $X \cong \operatorname{Conf}_2(S^1) \times C$ N.B. resulting bundle is nonorientable (and top dimensional), so N is as well

A generic component C of the fiber is one of S^1 , \mathbb{R} , [0,1] or [0,1)

Proof. Note that the quotient gives a 2-fold covering from $PConf_2(S^1) \times F$ to the orbit bundle X, which is connected, so $PConf_2(S^1) \times F$ and thus F has at most two components. Assume F has two components. Since the quotient is connected, the action must permute the components (homeomorphically), so in particular we can express the fiber as $F \cong C \sqcup C$. Then the action is just a homeomorphism from one compenent of $PConf_2(S^1) \times F$ to the other, so the quotient is $PConf_2(S^1) \times C$ where the resulting $Homeo_0(S^1)$ action is the standard configuration space action on the $PConf_2(S^1)$ coordinate and the trivial action on the C coordinate.

If F has a single component, then the \mathbb{Z}_2 action is simply a choice of involution on F. For any possible F we can allow \mathbb{Z}_2 to act trivially. Then, the quotient loads entirely onto the $\operatorname{PConf}_2(S^1)$ factor, where \mathbb{Z}_2 acts as the deck group of $\operatorname{PConf}_2(S^1) \to \operatorname{Conf}_2(S^1)$, so the resulting quotient is $\operatorname{Conf}_2(S^1) \times F$. This is nonorientable (regardless of F) and top-dimensional, so in general, such orbit bundles only arise when N is nonorientable. The remainder of the proof is done by exhaustion. [0,1) has no nontrivial involutions, [0,1] and \mathbb{R} each have one and S^1 has two. In each case, the quotient preserves the product structure away from fixed points and sends every $\operatorname{PConf}_2(S^1) \times \{x\}$ for fixed point x to $\operatorname{Conf}_2(S^1) \times \{x\}$. The result in each case is trivially the Seifert structure described in the proposition.