CS 484: Introduction to Machine Learning

Fall Semester 2023 Assignment 4

Oduri Sai Ram

A20522183

Question 1 (50 points)

The **Homeowner_Claim_History.xlsx** contains the claim history of 27,513 homeowner policies. The following table describes the eleven columns in the HOCLAIMDATA sheet.

Name	Description	Categories				
policy	Policy Identifier					
exposure	Duration a Policy is Exposed to Risk Measured in Portion of a Year					
num_claims	Number of Claims in a Year					
amt_claims	Total Claim Amount in a Year					
f_primary_age_tier	Age Tier of Primary Insured	< 21, 21 - 27, 28 - 37, 38 - 60, > 60				
f_primary_gender	Gender of Primary Insured	Female, Male				
f_marital	Marital Status of Primary Insured	Not Married, Married, Un-Married				
f_residence_location	Location of Residence Property	Urban, Suburban, Rural				
f_fire_alarm_type	Fire Alarm Type	None, Standalone, Alarm Service				
f_mile_fire_station	Distance to Nearest Fire Station	< 1 mile, 1 - 5 miles, 6 - 10 miles, > 10 miles				
f_aoi_tier	Amount of Insurance Tier	< 100K, 100K - 350K, 351K - 600K, 601K - 1M, > 1M				

We want to predict the *Frequency* which is *number of claims per unit of exposure* using the above features. We first divide the reported number of claims by the exposure. This gives the *Frequency*. Next, we put the policies into four groups according to their *Frequency* values.

Frequency Group	Frequency Value				
0	Frequency = 0				
1	0 < Frequency <= 1				
2	1 < Frequency <= 2				
3	2 < Frequency <= 3				
4	3 < Frequency				

We will use the above Frequency Group as our target variable which has four levels.

After dropping the missing target values, we will divide the observations into the training and the testing partitions. Observations whose Policy Identifier starts with the letters A, G, and P will go to the training partition. The remaining observations go to the testing partition.

Since we have sufficient computing resources, we will train multinomial logistic models for all the possible subsets of combinations of the seven categorical predictors, namely, <code>f_aoi_tier</code>, <code>f_fire_alarm_type</code>, <code>f_marital</code>, <code>f_mile_fire_station</code>, <code>f_age_tier</code>, <code>f_primary_gender</code>, and <code>f_residence_location</code>. All models must include the Intercept term. To help us select our "optimal" model, we will calculate the AIC and the BIC criteria of the Training partition, the Accuracy of the Testing partition, and the Root Average Squared Error of the Testing partition.

(a) (10 points) How many policies are in each of the four groups in the Training partition? Also, in the Testing partition?

```
Training Partition - Frequency Group Counts:
0
    12184
     5567
1
2
     2584
      746
4
      929
Name: Frequency Group, dtype: int64
Testing Partition - Frequency Group Counts:
    3010
    1469
1
2
     618
     157
     249
4
Name: Frequency Group, dtype: int64
```

- (b) (10 points) What is the lowest AIC value on the Training partition? Also, which model produces that AIC value?
- (c) (10 points) What is the lowest BIC value on the Training partition? Also, which model produces that BIC value?

B and C Ans.

```
Lowest AIC on Training Partition: 39.10713312130849
Model producing Lowest AIC: K=10, C=0.001, Max Iter=100

Lowest BIC on Training Partition: 220084.64749431767
Model producing Lowest BIC: K=10, C=0.001, Max Iter=100
```

(d) (10 points) What is the highest Accuracy value on the Testing partition? Also, which model produces that Accuracy value?

```
warnings.warn(
Best Model Hyperparameters (Based on AIC/BIC): (10, 0.001, 100)
Accuracy (Testing): 0.5473378157368708
F1 Score (Testing): 0.3901946954001588
```

(e) (10 points) What is the lowest Root Average Squared Error value on the Testing partition? Also, which model produces that RASE value?

```
Lowest RASE on Testing Partition: 1.298106646228551
Model producing Lowest RASE: K=10, C=10, Max Iter=100
```

Question 2 (50 points)

The Center for Machine Learning and Intelligent Systems at the University of California, Irvine manages the Machine Learning Repository (https://archive.ics.uci.edu/ml/index.php). We will use two of the datasets in the repository for analyses, namely, the **WineQuality_Train.csv** for training and the **WineQuality_Test.csv** for testing.

The categorical target variable is *quality_grp*. It has two categories, namely, 0 and 1. The input features are *alcohol*, *citric_acid*, *free_sulfur_dioxide*, *residual_sugar*, and *sulphates*. These five input features are considered interval variables.

We will train a Multi-Layer Perceptron neural network with the following specifications.

- 1. Perform a grid search to select the most desired network structure.
- 2. The maximum number of iterations is 10000.
- 3. The random seed is 2023484.
- 4. Try all the **Hyperbolic Tangent**, the **Identity**, and the **Linear Rectifier** activation functions.
- 5. Try the number of layers from 1 to 10 inclusively with an increment of 1.
- 6. Try the common number of neurons per layer from 2 to 10 inclusively with an increment of 2.

We will predict an observation with $quality_grp$ of 1 if $Prob(quality_grp = 1) \ge 1.5c$ where c is the proportion of observations where $quality_grp = 1$ in the training partition. Otherwise, the predicted $quality_grp$ is 0.

```
Fitting 3 folds for each of 150 candidates, totalling 450 fits

Best Model Parameters: {'activation': 'logistic', 'hidden_layer_sizes': (10, 10)}

Accuracy on Test Data: 0.8215384615384616
```

Some plots for the training_loss for activation functions

(a) (10 points). What is the proportion of observations where quality qrp = 1 in the training partition?

```
# Calculate the proportion of quality_grp = 1 in the training partition
proportion_quality_1 = (y_train_split == 1).sum() / len(y_train_split)

print(f"Proportion of quality_grp = 1 in the training partition: {proportion_quality_1:.2f}")

Proportion of quality_grp = 1 in the training partition: 0.20
Proportion of quality_grp = 1 in the training partition: 0.20
```

(b) (10 points). What is the proportion of observations where quality_grp = 1 in the testing partition?

```
[9] # Calculate the proportion of quality_grp = 1 in the testing partition
    proportion_quality_1_test = (test_data["quality_grp"] == 1).sum() / len(test_data)

    print(f"Proportion of quality_grp = 1 in the testing partition: {proportion_quality_1_test:.2f}")

    Proportion of quality_grp = 1 in the testing partition: 0.20
```

(c) (10 points). Show your grid search results in a table. The table should contain (1) the activation function type, (2) the number of layers, (3) the common number of neurons per layer, (4) the number of iterations performed (*n_iter_* attribute), (5) the best loss value (*best_loss_* attribute), (6) the root average squared error of the testing partition, (7) the misclassification rate of the testing partition, and (9) the elapsed time in seconds.

					٠.			_		,
⊒	0	Activation	logistic	Number	of L	ayers 1	Numbe	r of	Neurons 2	\
	1		logistic			2			2	
	2		logistic			3			2	
	3		logistic			4			2	
	4		logistic			5			2	
	 145		relu			6			10	
	146		relu			7			10	
	147		relu			8			10	
	148		relu			9			10	
	149		relu			10			10	
		Number of	Iteration	s Best	Loss	Root	Mean	Squai	red Error	١ ١
	0		69!	5 0.4	11692				0.433235	
	1		650	5 0.4	10626				0.425471	
	2		47	7 0.4	98748				0.444338	
	3		108	8 0.4	98919				0.444338	
	4		104	4 0.4	98918				0.444338	
	145		12		12049				0.412621	
	146		11:		97612				0.430861	
	147		9:		06278				0.462435	
	148		94		11402				0.431455	
	149		9:	3 0.4	18122				0.417563	
		Misslassia	fication Ra	.+. E1	ancad	Time	(-)			
	0	HIZCIGZZI	0.1870		apseu	5.207				
	1		0.1810			4.744				
	2		0.101			0.404				
	3		0.197			1.109				
	4		0.197			1.197				
	Ϊ.									
	145		0.170			2.491				
	146		0.185			3.764				
	147		0.213			2.938				
	148		0.186			2.252				
	149		0.174	359		2.282	579			

(d) (5 points). Among the networks that converged, which network structure yields the lowest misclassification rate on the testing partition? In the case of ties, choose the network with fewer neurons overall.

```
Best Network Structure:
Activation Function
                              relu
Number of Layers
                                 6
Number of Neurons
                                 4
Number of Iterations
                               255
Best Loss
                          0.400065
Root Mean Squared Error
                          0.408876
Misclassification Rate
                          0.167179
Elapsed Time (s)
                          6.045437
Name: 115, dtype: object
```

(e) (5 points). Among the networks that converged, which network structure yields the lowest root average squared error on the testing partition? In the case of ties, choose the network with fewer neurons overall.

```
Best Network Structure:
Activation Function
                              relu
Number of Layers
                                 6
Number of Neurons
                                 4
Number of Iterations
                               255
Best Loss
                          0.400065
Root Mean Squared Error
                          0.408876
Misclassification Rate
                          0.167179
Elapsed Time (s)
                          6.045437
Name: 115, dtype: object
```

(f) (10 points) We will choose the network structure that yields the lowest root average squared error as our final model. Based on the final model, generate a grouped boxplot for the predicted probability for *quality_grp* = 1 (i.e., if Prob(*quality_grp* = 1)) on the Testing data. The groups are the observed *quality_grp* categories. Add one reference line for Prob(*quality_grp* = 1) equals 1.5 c.

