

Comparing Several Means: One-Way ANOVA

Aims

- Understand the basic principles of ANOVA
 - Why it is done?
 - What it tells us?
- Theory of one-way independent ANOVA
- Following up an ANOVA:
 - -Post hoc tests

When and Why

- When we want to compare means we can use a T-test. This test has limitations:
 - You can compare only 2 means: often we would like to compare means from 3 or more groups.
 - It can be used only with one predictor/independent variable.

ANOVA

- Compares several means.
- Can be used when you have manipulated more than one independent variable.
- It is an extension of regression (the general linear model).

Why Not Use Lots of *T*-Tests?

- If we want to compare several means why don't we compare pairs of means with *T*-tests?
 - Can't look at several independent variables.
 - Inflates the Type I error rate.

familywise error = $1 - 0.95^n$

Multiple Comparisons

Comparisonwise Error Rate (α=0.05)	Number of Comparisons	Experimentwise Error Rate (α=0.05)
.05	1	.05
.05	3	.14
.05	6	.26
.05	10	.40

What Does ANOVA Tell Us?

- Null hyothesis:
 - Like a T-test, ANOVA tests the null hypothesis that the means are the same.
- **Experimental hypothesis:**
 - The means differ.
- ANOVA is an omnibus test
 - It test for an overall difference between groups.
 - It tells us that the group means are different.
 - It doesn't tell us exactly which means differ.

Assumptions ANOVA

- 1. The measure is interval-level continuous data.
- 2. The measure is normally distributed (within each group), *i.e.*, Y|X is normally distributed.
- 3. The variance of the measure is the same in each group.
- 4. The observations are independent Note that 2,3 and 4 is the same as saying

$$\epsilon_i \sim i.i.d.N(0,\sigma^2)$$

Theory of ANOVA

Figure 10.4: Partitioning variance for ANOVA

- If the experiment is successful, then the model will explain more variance than it can't
 - SS_M will be greater than SS_F

ANOVA by Hand

- Testing the effects of Viagra on libido using three groups:
 - Placebo (sugar pill)
 - Low dose viagra
 - High dose viagra
- The outcome/dependent variable (DV) was an objective measure of libido.

The Data

Table 10.1: Data in Viagra.dat

	Placebo	Low Dose	High Dose			
x_{ij}	3	5	7			
	2	2	4			
	1	4	5			
	1	2	3			
	4	3	6			
$\bar{x_{.j}}$	2.20	3.20	5.00			
s_{j}	1.30	1.30	1.58			
$egin{array}{c} x_{.j}^- \ s_j \ s_j^2 \ \end{array}$	1.70	1.70	2.50			
Grand Mean = 3.467 Grand SD = 1.767 \mathcal{X} . Grand Variance = 3.124						
s^2						

Total Sum of Squares (SS_T):

ANDY FIELD

Step 1: Calculate SS_T

$$SS_{T} = \sum_{i=1}^{N} (x_{i} - \bar{x}_{..})^{2}$$

$$s^{2} = \frac{SS}{N-1}$$

$$SS = s^{2}(N-1)$$

$$SS_{T} = s^{2}(N-1)$$

$$SS_{T} = 3.124(15-1)$$

$$SS_{T} = 43.74$$

Degrees of Freedom

- Degrees of freedom (df) are the number of values that are free to vary.
 - Think about rugby teams!
- In general, the *df* are one less than the number of values used to calculate the SS.

$$df_T = N - 1 = 15 - 1 = 14$$

Model Sum of Squares (SS_M):

ANDY FIELD

Step 2: Calculate SS_M

$$SS_M = \sum_{j=1}^k n_j (\bar{x}_{.j} - \bar{x}_{..})^2$$

$$SS_M = 5(2.2 - 3.467)^2 + 5(3.2 - 3.467)^2 + 5(5.0 - 3.467)^2$$

 $SS_M = 20.135$

Model Degrees of Freedom

- How many values did we use to calculate SS_M ?
 - We used the 3 means.

$$df_M = k - 1 = 3 - 1 = 2$$

Residual Sum of Squares (SS_F):

ANDY FIELD

Step 3: Calculate SS_E

$$SS_E = \sum_{j=1}^k \sum_{i=1}^N (x_{ij} - \bar{x}_{.j})^2$$

$$s^2 = \frac{SS}{N-1}$$

$$SS = s^2(N-1)$$

$$SS_E = \sum_{j=1}^k s_j^2(n_j - 1)$$

$$SS_E = s_1^2(n_1 - 1) + s_2^2(n_2 - 1) + s_3^2(n_3 - 1)$$

Step 3: Calculate SS_E

$$SS_E = s_1^2(n_1 - 1) + s_2^2(n_1 - 1) + s_3^2(n_1 - 1)$$

$$= 1.70(5 - 1) + 1.70(5 - 1) + 2.50(5 - 1)$$

$$= 23.60$$

Residual Degrees of Freedom

- How many values did we use to calculate SS_F?
 - We used the 5 scores for each of the SS for each group.

$$df_E = df_1 + df_2 + df_3$$

$$df_E = (n_1 - 1) + (n_2 - 1) + (n_3 - 1)$$

$$df_E = N - k = 12$$

Double Check

$$SS_T = SS_M + SS_E$$

 $43.74 = 20.14 + 23.60$
 $43.74 = 43.74$

$$df_T = df_M + df_E$$
$$14 = 2 + 12$$

Step 4: Calculate the Mean Squared Error

$$MS_M = \frac{SS_M}{df_M} = \frac{20.135}{2} = 10.067$$

 $MS_E = \frac{SS_E}{df_E} = \frac{23.60}{12} = 1.967$

ANDY FIELD

Step 5: Calculate the *F*-Ratio

$$F = \frac{MS_M}{MS_E} = \frac{10.067}{1.967} = 5.12$$

Step 6: Construct a Summary Table

Source	SS	df	MS	F
Model	20.14	2	10.067	5.12*
Residual	23.60	12	1.967	
Total	43.74	14		

F Statistic and Critical Values at α =0.05

F-distribution df=(2,12)

 $F(Model df, Error df)=MS_M / MS_E$ ANDY FIELD

One-Way ANOVA using **R**When the Test Assumptions Are Met

- Using *lm()*:
 - viagraModel <- lm(libido~dose, data = viagraData)
 Anova(viagraModel)</pre>
- In practice we verify the assumptions

Output

```
Df Sum Sq Mean Sq F value Pr(>F)
dose 2 20.133 10.0667 5.1186 0.02469 *
Residuals 12 23.600 1.9667
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Output 10.5

Verifying the assumptions

> plot(viagraModel)

Figure 10.13: Plots of an ANOVA model

Why Use Follow-Up Tests?

- The *F*-ratio tells us only that the experiment was successful
 - i.e. group means were different
- It does not tell us specifically which group means differ from which.
- We need additional tests to find out where the group differences lie.

Slide 29

Multiple Comparison Methods

Control || Comparisonwise Error Rate

Pairwise t-tests

Control Experimentwise Error Rate

Compare All Pairs
Tukey

Compare to Control Dunnett

Post Hoc Tests

- Compare each mean against all others.
- In general terms they use a stricter criterion to accept an effect as significant.
 - Hence, control the familywise error rate.
 - Simplest example is the Bonferroni method:

Bonferroni
$$\alpha = \frac{\alpha}{\text{number of tests}}$$

Slide 31

Tukey's Multiple Comparison Method

- This method is appropriate when you consider pairwise comparisons only.
- The experimentwise error rate is
 - equal to alpha when *all* pairwise comparisons are considered
 - less than alpha when *fewer* than all pairwise comparisons are considered.

Special Case of Comparing to a Control

Comparing to a control is appropriate when there is a natural reference group, such as a placebo group in a drug trial.

- Control comparison computes and tests k-1 groupwise differences, where k is the number of levels of the classification variable.
- An example is the *Dunnett* method.

Tukey {multcomp}

 For the Viagra data, we can obtain Tukey post hoc tests by executing:

{emmeans}

- > lsm = emmeans(viagraModel, ~ dose)
- > contrast(lsm, method="pairwise", adjust="tukey")

Output

Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:

```
Estimate Std. Error t value Pr(>|t|)

Low Dose - Placebo == 0 1.0000 0.8869 1.127 0.5162

High Dose - Placebo == 0 2.8000 0.8869 3.157 0.0208 *

High Dose - Low Dose == 0 1.8000 0.8869 2.029 0.1474
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Dunnett {multcomp}

 For the Viagra data, we can obtain Dunnett post hoc tests by executing:

{emmeans}

- > lsm = emmeans(viagraModel, ~ dose)
- > contrast(lsm, method="trt.vs.ctrl", ref=1, Cls=TRUE)

When variances are not equal across groups

- If Levene's test is significant then it is reasonable to assume that population variances are different across groups.
- We can get the output for Welch's F
 (variance weighted) for the current data by
 executing:

oneway.test(libido ~ dose, data = viagraData)

Output

One-way analysis of means (not assuming equal variances)

data: libido and dose

F = 4.3205, num df = 2.000, denom df = 7.943, p-value = 0.05374

Homogeneity of Variance

- Unless the group variances are extremely different or the number of groups is large, the usual ANOVA test is relatively robust when the groups are all about the same size.
- As Box (<u>1953</u>) notes,

"To make the preliminary test on variances is rather like putting to sea in a rowing boat to find out whether conditions are sufficiently calm for an ocean liner to leave port!"

quiz

 In the viagra dataset we compare 3 groups.
 How many dummy variables do we have in the regression model?

- a) 1
- b) 2
- c) 3
- d) 4

quiz

In the viagra dataset we compare 3 groups.
 How many dummy variables doe we have in the regression model

- a) 1
- b) 2
- c) 3
- d) 4

workflow

- Summary statistics (cfr indep T-test)
- Graphs (cfr indep T-test)
- Statistical model
- Test the assumptions of a linear model (cfr regression)
- Post-hoc tests

ANOVA as Regression

 $libido_i = b_0 + b_1 X_1 + b_2 X_2 + e_i$

 $X_1 = 1$ if observation belongs to the Low Dose group and 0 otw

 $X_2 = 1$ if observation belongs to the High Dose group and 0 otw

ERING STATISTICS

Dummy coding

observation	Intercept	Low Dose	High dose
Placebo	1	0	0
Placebo	1	0	0
Placebo	1	0	0
Placebo	1	0	0
Placebo	1	0	0
Low Dose	1	1	0
Low Dose	1	1	0
Low Dose	1	1	0
Low Dose	1	1	0
Low Dose	1	1	0
High Dose	1	0	1
High Dose	1	0	1
High Dose	1	0	1
High Dose	1	0	1
High Dose	1	0	1

Placebo Group

•
$$X_1=X_2=0$$

 $E(libido|Placebo)=b_0=\bar{x}_{placebo}$

Low Dose Group

•
$$X_1=1, X_2=0$$

 $E(libido|Low) = b_0 + b_1 = \bar{x}_{Low}$
 $b_1 = \bar{x}_{Low} - \bar{x}_{placebo}$

High Dose Group

•
$$X_1$$
=0, X_2 =1
$$E(libido|High) = b_0 + b_2 = \bar{x}_{high}$$

$$b_2 = \bar{x}_{high} - \bar{x}_{placebo}$$

Output from Regression

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.2000 0.6272 3.508 0.00432 **

## doseLow Dose 1.0000 0.8869 1.127 0.28158

## doseHigh Dose 2.8000 0.8869 3.157 0.00827 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.402 on 12 degrees of freedom

## Multiple R-squared: 0.4604, Adjusted R-squared: 0.3704

## F-statistic: 5.119 on 2 and 12 DF, p-value: 0.02469
```

Question: What is the average value for the Low Dose group?

ANOVA as Regression

- No intercept model
- In the absence of an intercept, the regression coefficients correspond to the mean of each group
- Formula: y ~ 0 + dose
- Formula: y ~ dose 1

ANOVA as Regression

 $libido_i = b_1 X_1 + b_2 X_2 + b_3 X_3 + e_i$

 $X_1 = 1$ if observation belongs to the Placebo group and 0 otw

 $X_2 = 1$ if observation belongs to the Low Dose group and 0 otw

 $X_3 = 1$ if observation belongs to the High Dose group and 0 otw

"different parameterization"

ERING STATISTICS

No intercept model

observation	Intercept	Low Dose	High dose
Placebo	1	0	0
Placebo	1	0	0
Placebo	1	0	0
Placebo	1	0	0
Placebo	1	0	0
Low Dose	0	1	0
Low Dose	0	1	0
Low Dose	0	1	0
Low Dose	0	1	0
Low Dose	0	1	0
High Dose	0	0	1
High Dose	0	0	1
High Dose	0	0	1
High Dose	0	0	1
High Dose	0	0	1

Conditional models

- Placebo group: $X_1=1$ $E(libido|Placebo) = b_1 = \bar{x}_{placebo}$
- Placebo group: $X_2=1$ $E(libido|Low) = b_2 = \bar{x}_{low}$
- Placebo group: $X_3=1$ $E(libido|High) = b_3 = \bar{x}_{high}$

Ismeans

- Least-squares means are predictions from a linear model
 - Balanced data: Ismeans = arithmetic group means
 - All SE are equal (due to homogeneity of variance assumption)
 - Unbalanced data: Ismeans ≠ arithmetic group means, adjusted for imbalance

Linear hypotheses {multcomp}

- Intercept model
- Eg. Test all pairwise comparisons
 - Low vs Placebo

```
E(libido|Placebo) = b_0

E(libido|Low) = b_0 + b_1

Thus testing Low-Placebo is equal to testing b<sub>1</sub>=0
```

High vs Low

```
E(libido|High) = b_0 + b_2

E(libido|Low) = b_0 + b_1

Thus testing High-Low is equal to testing b<sub>2</sub>-b<sub>1</sub>=0
```

R code

- > L2 = rbind(c(0,1,0),c(0,0,1),c(0,-1,1))
- > rownames(L2) = c("low-placebo", "high-placebo", "high-low")
- > summary(glht(viagraModel, linfct = L2))

Linear hypotheses {multcomp}

- No intercept model
- Eg. Test vs control
 - Low vs Placebo

```
E(libido|Placebo) = b_1

E(libido|Low) = b_2
```

Thus testing Low-Placebo is equal to testing b_2 - b_1 =0

High vs Placebo

```
E(libido|Placebo) = b_1

E(libido|High) = b_3
```

Thus testing High-Placebo is equal to testing b_3 - b_1 =0

- R code
 - > L1 = rbind(c(-1,1,0),c(-1,0,1))
 - > rownames(L1) = c("low-placebo","high-placebo")
 - > summary(glht(viagraModel, linfct = L1))

ANDY FIELD

Model comparison

- Compare residual SS from the one-way anova model to a model where dose is considered as a linear covariate
 - > anova(reduced model, full model)

10.1 Multiple Choice Poll

- If you have 20 observations in your ANOVA and you calculate the residuals, to which of the following would they sum?
 - a. -20
 - b. 0
 - c. 20
 - d. 400
 - e. Unable to tell from the information given

10.1 Multiple Choice Poll – Correct Answer

- If you have 20 observations in your ANOVA and you calculate the residuals, to which of the following would they sum?
 - a. -20
- b.) 0
 - c. 20
 - d. 400
 - e. Unable to tell from the information given

10.2 Multiple Choice Poll

- If you have 20 observations in your ANOVA and you calculate the squared residuals, to which of the following would they sum?
- a. -20
- b. 0
- c. 20
- d. 400
- e. Unable to tell from the information given

10.2 Multiple Choice Poll – Correct Answer

- If you have 20 observations in your ANOVA and you calculate the squared residuals, to which of the following would they sum?
- a. -20
- b. 0
- c. 20
- d. 400
- e.) Unable to tell from the information given

10.3 Multiple Choice Poll

- Which part of the ANOVA tables contains the variation due to nuisance factors?
 - a. Sum of Squares Model
 - b. Sum of Squares Error
 - c. Degrees of Freedom

10.3 Multiple Choice Poll – Correct Answer

- Which part of the ANOVA tables contains the variation due to nuisance factors?
 - a. Sum of Squares Model
- b.) Sum of Squares Error
- c. Degrees of Freedom

10.4 Multiple Answer Poll

- A study is conducted to compare the average monthly credit card spending for males versus females. Which statistical method might be used?
 - a. One-sample *t*-test
 - b. Two-sample t-test
 - c. One-way ANOVA
 - d. Two-way ANOVA

10.4 Multiple Answer Poll – Correct Answers

- A study is conducted to compare the average monthly credit card spending for males versus females. Which statistical method might be used?
 - a. One-sample *t*-test
 - b. Two-sample *t*-test
 - c. One-way ANOVA
 - d. Two-way ANOVA

DEMO ONE-WAY ANOVA

Open the program Ch10_glm1.R

Exercises

Task 1

 The Superhero.dat dataset contains data relating to children's injuries while wearing superhero costumes. Children reporting to the emergency centre at hospitals had the severity of their injury (injury) assessed (on a scale from 0, no injury, to 100, death). In addition, a note was taken of which superhero costume they were wearing (hero): Spiderman, Superman, the Hulk or a teenage Mutant Ninja Turtle. Use one-way ANOVA and multiple comparisons to test the hypotheses that different costumes are associated with more severe injuries.