Theory of Computation Final Exam

November 29, 2023

Time: 9.30am to 12.30pm

Total marks: 100

Write clearly and precisely.

(1)(a) Define recursive languages and recursively enumerable languages.

State Rice's theorem for recursive index sets and for recursively enumerable index sets.

 \mathcal{J} Show that the language $L = \{\langle M \rangle \mid L(M) \text{ is not recursive} \}$ is undecidable.

 \mathcal{A}) Is L recursively enumerable? Justify.

You may give direct proofs or apply Rice's theorem(s) with precise statements. 2+3+3+4 marks

(2)(a) Is the language $L = \{ \langle M \rangle \mid L(M) \cap L_u \neq \emptyset \}$ recursively enumerable?

(b) Is \overline{L} recursively enumerable?

L(M) 1 Lu # \$

Justify answers.

4+4 marks

What is the Post Correspondence Problem (PCP for short)?

Show that checking if a context-free grammar is ambiguous is undecidable using PCP.

(c) Is the set $L = \{G \mid G \text{ is a CFG such that } L(G) \text{ is ambiguous} \}$ recursively enumerable?

2+4+4 marks

(4) Let $\Sigma = \{0, 1\}$ and $L \subseteq \Sigma^*$.

If both L and \overline{L} are recursively enumerable show that L is recursive.

(b) Suppose L is recursively enumerable. Show that there is a recursive language $A \subset \Sigma^* \times \Sigma^*$ such that

 $L = \{ x \in \Sigma^* \mid \exists y \in \Sigma^* : (x, y) \in A \}.$

4+6 marks

(a) Let $L_1, L_2 \subseteq \Sigma^*$ be languages. When is L_1 said to be many-one reducible to L_2 ? In the context of oracle Turing machines, when is L_1 said to be recursive in L_2 ? When are L_1 and L_2 said to be (recursively) equivalent?

(b) Let $L = \{\langle M \rangle \mid L(M) \text{ is finite}\}$. Recall that $S_1 = \{\langle M \rangle \mid L(M) = \emptyset\}$. Show that there is no algorithm using S_1 as oracle for testing membership in L.

Give an oracle algorithm, with L as oracle, for testing membership in S_1 .

Justify answers.

5+5+5 marks

(6)(a) State the recursion theorem.

Let $\tau: \mathbb{N} \to \mathbb{N}$ be any <u>surjective</u> total recursive function. Using the recursion theorem show that for some positive integer i the two Turing machines $M_{\tau(i)}$ and $M_{\tau(i+1)}$ compute the same 1-ary partial recursive function.

(c) Show using the recursion theorem that any total recursive function $\sigma: \mathbb{N} \to \mathbb{N}$ must have infinitely many fixed points. I.e. there are infinitely many indices i such that $M_{\sigma(i)}$ and M_i compute the same 1-ary partial recursive function.

3+3+4 marks

- (7) Let G be a finite group with identity element denoted by 1. Let G^* denote the set of all words over G. Consider the language $L = \{w \in G^* \mid w \text{ evaluates to } 1\}$.
 - (a) Show that L is regular.
 - (b) What is the minimum size of a DFA that accepts L?

Justify answers.

5+5 marks

(8) Give a deterministic pushdown automaton that accepts by final state for the language over $\{0,1\}$ consisting of all strings with an equal number of 0's and 1's.

- (8) Is there a nondeterministic PDA for it that accepts by empty stack?
- Is there a deterministic PDA for it that accepts by empty stack?

Justify answers with an explanation.

3+3+4 marks

- (9) Let Σ and Δ be two finite alphabets. Consider a substitution map $f: \Sigma \to 2^{\Delta^*}$ such that for each $a \in \Sigma$ its image $f(a) = R_a \subseteq \Delta^*$ is a regular language.
- (a) For a language $L \subseteq \Sigma^*$ how is its image $f(L) \subseteq \Delta^*$ defined, obtained by applying the substitution map to L?
- (b) For a language $L' \subseteq \Delta^*$ how its inverse image $f^{-1}(L') \subseteq \Sigma^*$ defined?
- (c) If $L \subseteq \Sigma^*$ is regular is f(L) regular?
- (d) If $L' \subseteq \Delta^*$ is regular is $f^{-1}(L')$ regular?

Justify answers.

2+3+5+5 marks