Lecture on Measures of Central Tendency from Frequency Tables

1 Section 1: The Median from the Frequency Distribution Table

Bismillah Ar-Rahman Ar-Raheem.

Welcome back, students! In our previous lecture, we delved into the **Arithmetic Mean** derived from a frequency table. Today, we're going to explore two other pivotal measures of central tendency: the **Median** and the **Mode** from a frequency table. Let's embark on this mathematical journey together.

1.1 Understanding the Median

The **Median** is the value that separates a dataset into two equal halves. When dealing with a frequency distribution table, calculating the median involves a specific formula tailored to grouped data.

1.1.1 Formula 1: Median Calculation

Median =
$$A + \left(\frac{\sum F}{2} - f_1}{f_2 - f_1}\right) \times L$$

Where:

- $\mathbf{A} = \text{Lower limit of the median class}$
- $\sum F = \text{Sum of all frequencies}$
- f_1 = Cumulative frequency before the median class
- f_2 = Cumulative frequency of the median class
- $\mathbf{L} = \text{Class interval length}$

Let's break down these components to ensure clarity.

1.2 Key Components Explained

- 1. A (Lower Limit of the Median Class):
 - This is the starting value of the class interval where the median lies.
- 2. $\sum F$ (Total Frequency):
 - Sum of all the frequencies in the table.
- 3. f_1 (Cumulative Frequency Before Median Class):
 - Total frequency accumulated before reaching the median class.
- 4. f_2 (Cumulative Frequency of Median Class):
 - Total frequency up to and including the median class.
- 5. L (Class Interval Length):
 - The difference between the upper and lower limits of the class interval.

1.3 Example 1: Finding the Median

Let's apply our understanding to an example.

1.3.1 Problem:

Find the median from the following frequency table:

Classes (C)	Frequency (f)
60 - 69	4
70 - 79	2
80 - 89	5
90 - 99	6
100 - 109	3
Sum	20

1.3.2 Solution:

1. Calculate $\sum F/2$:

$$\frac{\sum F}{2} = \frac{20}{2} = 10$$

2. Determine the Median Class:

• We need to find the class where the cumulative frequency just exceeds 10.

3. Cumulative Frequency Table:

C	f	Upper C	F.C.A
60 - 69	4	69	4
70 - 79	2	79	6
80 - 89	5	89	11
90 - 99	6	99	17
100 - 109	3	109	20

• The cumulative frequency reaches 11 in the 80-89 class, which exceeds 10. Thus, 80-89 is our median class.

4. Identify Parameters:

- $\mathbf{A} = 80$ (Lower limit of the median class)
- $\mathbf{f}_1 = 6$ (Cumulative frequency before the median class)
- $\mathbf{f}_2 = 11$ (Cumulative frequency of the median class)
- $\mathbf{L} = 10$ (Class interval length: 80 70 = 10)

5. Apply Formula 1:

$$\text{Median} = 80 + \left(\frac{10 - 6}{11 - 6}\right) \times 10 = 80 + \left(\frac{4}{5}\right) \times 10 = 80 + 8 = 88$$

Therefore, the Median is 88.

Note: There seems to be a minor discrepancy in the final value based on the provided data. Ensure all parameters are correctly identified to achieve accurate results.

2

2 Section 2: The Mode from the Frequency Distribution Table

Bismillah Ar-Rahman Ar-Raheem.

Moving forward, let's uncover the **Mode**, another essential measure of central tendency. The **Mode** represents the most frequently occurring value in a dataset.

2.1 Understanding the Mode

When dealing with grouped data in a frequency table, the **Mode** can be calculated using the following formula.

2.1.1 Formula 2: Mode Calculation

$$Mode = A + \left(\frac{f_2}{f_1 + f_2}\right) \times L$$

Where:

- $\mathbf{A} = \text{Lower limit of the modal class}$
- \mathbf{f}_1 = Frequency of the class preceding the modal class
- \mathbf{f}_2 = Frequency of the modal class
- L = Class interval length

2.2 Example 2: Finding the Mode

Let's apply this formula to an example.

2.2.1 Problem:

Find the mode from the following frequency table:

\mathbf{C}	f	\mathbf{M}
10 - 14	3	12
15 - 19	4	17
20 - 24	7	22
25 - 29	2	27
30 - 34	4	32
Sum	20	

2.2.2 Solution:

1. Identify the Modal Class:

• The modal class is the one with the highest frequency, which is 20 - 24 with a frequency of 7.

2. Determine Parameters:

- $\mathbf{A} = 20$ (Lower limit of the modal class)
- $\mathbf{f}_1 = 4$ (Frequency of the class preceding the modal class)
- $\mathbf{f}_2 = 7$ (Frequency of the modal class)
- L = 5 (Class interval length: 20 15 = 5)

3. Apply Formula 2:

Mode =
$$20 + \left(\frac{7}{4+7}\right) \times 5 = 20 + \left(\frac{7}{11}\right) \times 5 \approx 20 + 3.18 = 23.18$$

Therefore, the Mode is approximately 23.2.

In practice, it's common to round the mode to a suitable number of decimal places based on context.

Section 3: The Arithmetic Mean from the Frequency Distri-3 bution Table

Bismillah Ar-Rahman Ar-Raheem.

Now, let's revisit the Arithmetic Mean, a measure we touched upon earlier but will explore in greater depth with frequency tables.

Understanding the Arithmetic Mean

The Arithmetic Mean is the average of all data points, calculated by dividing the sum of all values by the number of values.

3.1.1 Formula 3: Arithmetic Mean Calculation

$$\bar{X} = \frac{\sum (m \times f)}{\sum f}$$

Where:

- $\mathbf{m} = \text{Midpoint of the class}$
- $\mathbf{f} = \text{Frequency of the class}$

3.2 Example 3: Calculating the Arithmetic Mean

Let's apply this to an example.

3.2.1 Problem:

Calculate the arithmetic mean from the following frequency table:

C	f
2-4	4
4 - 6	6
6 - 8	5
8 - 10	8
10 - 12	7
Sum	30

3.2.2 Solution:

1. Determine Midpoints (m) for Each Class:

$$m = \frac{\text{Lower Limit} + \text{Upper Limit}}{2}$$

• **2** - **4**:
$$m = \frac{2+4}{2} = 3$$

• **2** - **4**:
$$m = \frac{2+4}{2} = 3$$

• **4** - **6**: $m = \frac{4+6}{2} = 5$

• 6 - 8:
$$m = \frac{6+8}{2} = 7$$

• 8 - 10:
$$m = \frac{8+10}{2} = 9$$

• 6 - 8:
$$m = \frac{6+8}{2} = 7$$

• 8 - 10: $m = \frac{8+10}{2} = 9$
• 10 - 12: $m = \frac{10+12}{2} = 11$

2. Create an Extended Frequency Table:

\mathbf{C}	f	m	$\mathbf{m} \times \mathbf{f}$
2 - 4	4	3	12
4 - 6	6	5	30
6 - 8	5	7	35
8 - 10	8	9	72
10 - 12	7	11	77
Sum	30		226

3. Apply Formula 3:

$$\bar{X} = \frac{226}{30} \approx 7.5333$$

Therefore, the Arithmetic Mean is approximately 7.5.

4 Section 4: Confirming Calculations

Bismillah Ar-Rahman Ar-Raheem.

It's crucial to verify our calculations to ensure accuracy. Let's confirm our findings for the Mode.

4.1 Verification of Mode Calculation

Recall from **Example 2**:

Mode
$$\approx 23.18$$
 (rounded to 23.2)

However, based on the visual content provided, the calculation resulted in:

Mode
$$\approx 21.333$$
 (rounded to 22)

4.2 Steps to Confirm:

- 1. Re-examining the Formula and Parameters:
 - A = 20
 - $\mathbf{f}_1 = 4$
 - $\mathbf{f}_2 = 2$
 - L = 4
- 2. Reapplying Formula 2:

Mode =
$$20 + \left(\frac{2}{4+2}\right) \times 4 \approx 20 + 1.333 = 21.333$$

Therefore, the correct Mode is approximately 21.3, rounded to 22.

This discrepancy highlights the importance of accurately identifying the modal class and its preceding frequency.

5 Section 5: Creating an Ascending Frequency Table

Bismillah Ar-Rahman Ar-Raheem.

To effectively utilize frequency tables for calculating measures like the median and mode, it's essential to organize data in ascending order.

5.1 Steps to Create an Ascending Frequency Table

1. List the Data Points:

$$2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 9, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 11, 14, 15, 16, 18, 19, 20, 22$$

2. Determine the Range:

Range = Highest Value - Lowest Value =
$$22 - 2 = 20$$

3. Decide the Number of Classes:

Number of Classes
$$= 5$$

4. Calculate Class Interval Length (L):

$$L = \frac{\text{Range}}{\text{Number of Classes}} = \frac{20}{5} = 4$$

5. Establish Class Limits:

• First Class: 2 – 5

• Subsequent Classes: Add the class interval length to the previous class's lower limit.

6. Create the Frequency Table:

\mathbf{C}	f	fi
2 - 5	8	
6 - 9	14	
10 - 13	2	
14 - 17	3	
18 - 21	3	
Sum	30	

Here, "fi" represents tally marks for visual clarity.

5.2 Application in Calculations

Having an ascending frequency table simplifies the identification of the median and modal classes, ensuring accurate computations.

6 Conclusion

In today's lecture, we've thoroughly examined how to calculate the **Median**, **Mode**, and **Arithmetic Mean** from frequency distribution tables. By understanding the underlying formulas and meticulously organizing data, you can derive these essential statistical measures with confidence.

Remember:

- Always ensure your frequency table is in ascending order.
- Carefully identify the median and modal classes based on cumulative frequencies.
- Double-check your calculations to maintain accuracy.

Keep practicing with various examples to solidify your understanding. Until next time, keep exploring the fascinating world of statistics!