Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Дальневосточный государственный университет путей сообщения»

Кафедра «Вычислительная техника и компьютерная графика»

НЕЙРОННЫЕ СЕТИ Лабораторная работа №10 ЛР 09.04.01.МРО.08.01.МО921ИВС

Выполнил	
студент гр. МО921ИВС	А.Ю. Панченко
Проверил	
доцент, к.фм.н.	Ю.В. Пономарчук

Цель работы: рассмотреть процесс обучения однослойной бинарной нейронной сети с использованием Δ -правила для операций конъюнкции и импликации.

1 УСЛОВИЕ ЗАДАЧИ

Просчитать одну итерацию цикла обучения по Δ -правилу однослойной бинарной неоднородной нейронной сети, состоящей из 2 нейронов и имеющей функции активации: пороговую (T = 0.8) и сигмоидальную (k = 1). В качестве обучающей выборки использовать таблицу истинности для операций конъюнкции и импликации (не использовать первую строчку таблицы). Синаптические веса задать случайным образом.

1.1 Описание процесса решения

Для обучения нейронной сети по Δ-правилу необходимо:

- 1) графически отобразить структуру нейронной сети. Определить размерность матрицы синаптических весов;
- 2) определить обучающую выборку, представив ее в табличном виде;
- 3) выбрать входные данные, на которых будет рассматриваться итерация цикла обучения;
- 4) следуя алгоритмы обучения по Δ -правилу, просчитать одну итерацию цикла и представить новые синаптические веса в матричном виде.

1 РЕШЕНИЕ

Нейронная сеть состоит из двух нейронов, значит, у однослойной нейронной сети 2 входа и 2 выхода, всего 4 синаптических веса. Первый нейрон имеет пороговую функцию активации с T=0.8, второй — сигмоидальную функцию активации с k=1.

На рисунке 1 показана структура рассматриваемой нейронной сети.

Рисунок 1 – Архитектура нейронной сети и выбранные случайным образом веса

Структура сети:

Входы: X_1, X_2

Выходы: Y_1, Y_2

Beca: W_{11} , W_{12} , W_{21} , W_{22}

Функция активации для первого нейрона: $\sigma 1(x) = \begin{cases} 1, S \ge 0.8 \\ 0, S < 0.8 \end{cases}$

Функция активации для второго нейрона: $\sigma 2(x) = \frac{1}{1 + e^{(-S)}}$

Нейронная сеть бинарная, поэтому на входы подаются только 0 и 1. С двумя входами имеем 4 возможные комбинации.

Первый нейрон реализует конъюнкцию ($X_1 \wedge X_2$), второй — импликацию ($X_1 \rightarrow X_2$).

Таблица истинности (без первой строки):

X_1	X_2	$D_1 = (X_1 \wedge X_2)$	$D_2 = (X_1 \to X_2)$
0	1	0	1
1	0	0	0
1	1	1	1

Пусть в качестве вектора обучения будет рассматриваться 3-ая строка таблицы.

Зададим матрицу весов случайным образом из интервала [0,1]:

Wij(1)	1	2
1	0.4	0.5
2	0.6	0.7

Шаг 2: Входной вектор $X = \{1, 0\}$, целевой вектор $D = \{0, 0\}$

Шаг 3: вычислим выходные значения нейронной сети (вектор Y).

Для первого нейрона:

$$S_1 = x_1 \cdot w_{11} + x_2 \cdot w_{21} = 1 \cdot 0.4 + 0 \cdot 0.6 = 0.4$$
$$Y_1 = \sigma 1(S_1) = 0$$

Для второго нейрона:

$$S_2 = x_1 \cdot w_{12} + x_2 \cdot w_{22} = 1 \cdot 0.5 + 0 \cdot 0.7 = 0.5$$

$$Y_2 = \sigma 2(S_2) = \frac{1}{1 + e^{-0.5}} \approx 0.6224$$

Шаг 4. Вычисление ошибок:

$$\varepsilon_1 = d_1 - y_1 = 0 - 0 = 0$$

 $\varepsilon_2 = d_2 - y_2 = 0 - 0.6224 = -0.6224$

Шаг 5. Зададим коэффициент обучения $\eta = 0.7$ и скорректируем веса и значение пороговой функции:

$$w_{11}(2) = w_{11}(1) - \eta \cdot \varepsilon_1 \cdot x_1 = 0.4 - 0.7 \cdot 0 \cdot 1 = 0.4$$

$$w_{21}(2) = w_{21}(1) - \eta \cdot \varepsilon_1 \cdot x_2 = 0.6 - 0.7 \cdot 0 \cdot 0 = 0.6$$

$$w_{12}(2) = w_{12}(1) - \eta \cdot \varepsilon_2 \cdot x_1 = 0.5 - 0.7 \cdot (-0.6224) \cdot 1 = 0.5 + 0.4357 =$$

$$= 0.9357$$

$$w_{22}(2) = w_{22}(1) - \eta \cdot \varepsilon_2 \cdot x_2 = 0.7 - 0.7 \cdot (-0.6224) \cdot 0 = 0.7$$

$$t(2) = t(1) - \eta \cdot \varepsilon_1 = 0.8 - 0.7 \cdot 0 = 0.8$$

Новая матрица весов:

Wij(2)	1	2
1	0	0.9357

2	0	0.7

Шаг 6. Вычислим среднеквадратичную ошибку:

$$\varepsilon = \sum \varepsilon_i^2 = \varepsilon_1^2 + \varepsilon_2^2 = (0)^2 + (-0.6224)^2 = 0 + 0.387 = 0.387$$

Вывод: в результате выполнения одной итерации обучения по Δ -правилу для однослойной бинарной неоднородной нейронной сети с двумя нейронами, имеющей функции активации: пороговую (T = 0,8) и сигмоидальную (k = 1), удалось скорректировать синаптические веса, что привело к улучшению приближения к целевым выходам операций конъюнкции и импликации с квадратичной ошибкой 0,387, которая при дальнейших итерациях обучения будет уменьшаться.