Carleton University Department of Systems and Computer Engineering Digital Communication

Winter 2022/23

Assignment #1

Due on Wednesday, February 8, 2023

- 1. For the sequence of bits 01011, sketch the transmitted analogue signal if each of the following line codes are used:
 - (a) unipolar NRZ
 - (b) polar NRZ
 - (c) unipolar RZ
 - (d) bipolar RZ
 - (e) Manchester coding
- 2. Suppose the signals $s_0(t)$ and $s_1(t)$ shown below:
 - (a) Write mathematical expressions for $s_0(t)$ and $s_1(t)$.
 - (b) Sketch the sum $v(t) = s_0(t) + s_1(t)$.
 - (c) Sketch the product $v(t) = s_0(t)s_1(t)$.
 - (d) Sketch the convolution $v(t) = s_0(t) \otimes s_1(t)$.
 - (e) Find the inner product $s_{01} = \langle s_0(t), s_1(t) \rangle$.

- 3. For the signals $s_0(t)$, $s_1(t)$, and $s_2(t)$ shown below:
 - (a) Use the Gram-Schmidt orthogonalization procedure to find a set of basis signals. Sketch the basis signals.
 - (b) Express $s_0(t)$, $s_1(t)$, and $s_2(t)$ as linear combinations of the basis signals.
 - (c) Show $s_0(t)$, $s_1(t)$, and $s_2(t)$ on a signal space diagram.
 - (d) What is the average transmitted energy, if each signal is equally likely to be transmitted?

SYSC 4600 1 Winter 2022/23