Maths Assignment - 1081

z5417727

November 8, 2022

Contents

1	Que	Question 1															2											
	1.1	a)																										2
	1.2	b)	•					•		•				•	•	•	•	•	•	•	•	•	•	•	•	•		3
2	Question 2															5												
	2.1	a)																										5
	2.2	b)																										6
	2.3	,																										
	2.4	,																										
	2.5	,																										
3	Question 3															10												
	3.1	a)																										10
	3.2	,																										
	3 3																											12

1 Question 1

1.1 a)

Prove that in modulo 9, it is not possible for a perfect square to be congruent to 2,3,5,6 or 8.

Proposition: For any integer $n \in \mathbb{Z}$, we say that $n^2 \equiv 0, 1, 4, 7 \pmod{9}$.

Proof: This can be deduced by finding the squares of 0, 1, 2, 3, 4 respectively.

$$0^2 \equiv 0 \pmod{9},$$

 $1^2 \equiv 1 \pmod{9},$
 $2^2 \equiv 4 \pmod{9},$
 $3^2 \equiv 0 \pmod{9},$
 $4^2 \equiv 7 \pmod{9}.$

Through finding the modulo of 9, we find the similar rule applied to 5 through 8 (since $9^2 \equiv 0 \pmod{9}$).

$$5^{2} \equiv (-4)^{2} \equiv 7 \pmod{9},$$

$$6^{2} \equiv (-3)^{2} \equiv 0 \pmod{9},$$

$$7^{2} \equiv (-2)^{2} \equiv 4 \pmod{9},$$

$$8^{2} \equiv (-1)^{2} \equiv 1 \pmod{9}.$$

Here, we see that the modulo of perfect squares always end with the digits 0, 1, 4 and 7. Thus, it can be proved that in modulo 9, it is not possible for a perfect square to be congruent to 2, 3, 5, 6, or 8.

1.2 b)

Hence (and not otherwise) prove that there do not exist three consecutive integer values of n for which 41n + 39 is a perfect square.

Consider a number n-1, n and n+1 for $n \in \mathbb{Z}$. Then, we see that the numbers are:

$$41(n-1) + 39,41(n) + 39,41(n+1) + 39.$$

Proposition For 41(n-1) + 39, 41(n) + 39 and 41(n+1) + 39 to be perfect squares, they should not be congruent to 2, 3, 5, 6 or 8 in modulo 9 (this is proved in q1 (a)).

Proof Consider 41n + 39 as a perfect square.

$$41n + 39$$
 as a perfect square $\Rightarrow 41n + 39 = k^2$, where $k \in \mathbb{Z}$.

Here, we can use the proof from q1 (a) to deduce that $k^2 \mod 9$ would give 0, 1, 4 or 7 as the remainder since it is a perfect square.

However, when we check the number 41(n-1) + 39,

$$\Rightarrow 41n - 41 + 39,$$

$$\Rightarrow (41n + 39) - 41,$$

$$\Rightarrow k^2 - 41.$$

Thus, we can consider the modulo of 9 for $k^2 + 41$:

$$\Rightarrow (k^2-41) (\text{mod } 9),$$

$$\Rightarrow (k^2 (\text{mod } 9)-41 (\text{mod } 9)) (\text{mod } 9). (\text{modular subtraction})$$

Here, we know that $41 \equiv 5 \pmod{9}$, and k^2 gives a remainder of either 0, 1, 4, 7. Consider each of the cases individually:

1) $k^2 \equiv 0 \pmod{9}$:

$$\Rightarrow (k^2 \pmod{9} - 41 \pmod{9}) \pmod{9}.$$

$$\Rightarrow (0 - 5) \pmod{9},$$

$$\Rightarrow -5 \pmod{9},$$

$$\Rightarrow -5.$$

Since the $(k^2 - 41) \equiv -5 \pmod{9}$, this means that it is not a perfect square (as proven in q1 a)). 2) $k^2 \equiv 1 \pmod{9}$:

$$\Rightarrow (k^2 \pmod{9} + 41 \pmod{9}) \pmod{9}.$$

$$\Rightarrow (1 - 5) \pmod{9},$$

$$\Rightarrow -4 \pmod{9},$$

$$\Rightarrow -4.$$

Since the $(k^2 - 41) \equiv -4 \pmod{9}$, this means that it is not a perfect square (as proven in q1 a)). 3) $k^2 \equiv 4 \pmod{9}$:

$$\Rightarrow (k^2 \pmod{9} - 41 \pmod{9}) \pmod{9}.$$

$$\Rightarrow (4 - 5) \pmod{9},$$

$$\Rightarrow -1 \pmod{9},$$

$$\Rightarrow -1.$$

Since the $(k^2 - 41) \equiv 0 \pmod{9}$, this means that it is not a perfect square (as proven in q1 a)). 4) $k^2 \equiv 7 \pmod{9}$:

$$\Rightarrow (k^2 \pmod{9} - 41 \pmod{9}) \pmod{9}.$$

$$\Rightarrow (7 - 5) \pmod{9},$$

$$\Rightarrow 2 \pmod{9},$$

$$\Rightarrow 2.$$

Since the $(k^2 - 41) \equiv 2 \pmod{9}$, this means that it is not a perfect square (as proven in q1 a)). We see that for each case, 41(n-1) + 39 can never be a perfect square if 41n + 39 is a perfect square.

Therefore, we can say that there do not exist three consecutive integer values of n for which 41n + 39 is a perfect square.

2 Question 2

A certain relation \star is defined on the set \mathbb{Z}^+ by:

 $x \star y$ if and only if every factor of x is a factor of y.

For each of the questions below, be sure to provide a proof supporting your answer.

2.1 a)

Is ★ reflexive?

Theorem: If \star is to be reflexive, then $x \sim x$.

For example, let y = kx, where $k \in \mathbb{Z}^+$. If we swap the x and y values, so we get x = kx. Now, since x = kx is only true when x = 1, we can conclude that $x \star y$ is not reflexive.

2.2 b)

Is \star symmetric?

Theorem: If \star is symmetric, then $x \sim y \leftrightarrow y \sim x$.

2.3 c)

Is \star anti-symmetric?

Theorem: If a set $A \leq B, B \leq A \rightarrow A = B$.

2.4 d)

Is \star transitive?

If a set $A \leq B, B \leq C \rightarrow A \leq C$.

2.5 e)

Is \star an equivalence relation, a partial order, both or neither?

3 Question 3

Consider the two functions $f: X \to Y$ and $g: Y \to Z$ for non-empty sets X, Y, Z. Decide whether each of the following statements is true or false, and prove each claim.

3.1 a)

If $g \circ f$ is injective, then g is injective.

Counterexample

Consider sets $X = \{1\}, Y = \{2, 3\}, Z = \{4\}.$

Function $g \circ f$ implies that $g \circ f : X \to Z$ (since $f : X \to Y$ and $g : Y \to Z$). Therefore, g(f(1)) = 4. This makes it an injective function as it is one to one.

However, for the function g, g(2) = g(3) = 4, making the function non-injective.

Therefore, by a counterexample, we can conclude that the statement "If $g \circ f$ is injective, then g is injective" is false.

3.2 b)

If $g \circ f$ is injective, then f is injective.

Proof: Suppose f is not injective. Since $f: X \to Y$, we take two numbers $x_1, x_2 \in \mathbb{Z}$, where x_1, x_2 are in the set X and $f(x_1)$ and $f(x_2)$ are in set Y, giving:

$$f(x_1) = f(x_2) \text{ when } x_1 \neq x_2,$$

Similarly, since $g:Y\to Z$, this would imply that:

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$
 when $f(x_1) \neq f(x_2)$ ie,
 $g(f(x_1)) = g(f(x_2))$ when $f(x_1) \neq f(x_2)$.

Since $f(x_1), f(x_2) \in Y$ and $g(f(x_1)) = g(f(x_2)) \in Z$, we can consider that this proves the statement "if f is not injective, then $g \circ f$ is not injective".

Therefore, by contrapositive, we can conclude that if $g \circ f$ is injective then f is injective.

3.3 c)

If $g \circ f$ is injective and f is surjective, then g is injective

Proof Consider two variables $y_1, y_2 \in Y$. such that $g(y_1) = g(y_2)$; where $y_1, y_2 \in \mathbb{R}$

Since f is known to be surjective, we can consider two other variables $x_1, x_2 \in X$; where $x_1, x_2 \in \mathbb{R}$.

Then, if we map f to g, using this surjective nature of f, we can presume $f(x_1) = y_1, f(x_2) = y_2$. With this, the proof follows:

$$\Rightarrow g(f(x_1)) = g(f(x_2)),$$

$$\Rightarrow g \circ f(x_1) = g \circ f(x_2),$$

where $x_1 = x_2$ because $g \circ f$ is injective (given in question). Then,

$$\Rightarrow f(x_1) = f(x_2),$$

$$\Rightarrow y_1 = y_2.$$

Thus, $g(y_1) = g(y_2) \Rightarrow y_1 = y_2$, which means g is injective.

Therefore, we can conclude that if $g \circ f$ is injective and f is surjective, then g is injective.