BE1M13VES

Manufacturing of Electrical Components

Michal Brejcha

CTU in Prague

Prague, 2017

Overview

- 1 Resistance value
- 2 Technology
- 3 Parasitic Parameters

TOPIC

- 1 Resistance value
- 2 Technology
- 3 Parasitic Parameters

Resistors

Parameters:

- R... electric resistance,
- \bullet δ ... value tolerance,
- \blacksquare P_{max} ... dissipated power,
- TCR... temperature coefficient of resistivity,
- VCR, THI... voltage dependence of rezistivity,
- frequency dependence,
- noise, non-linearity (*THI*), aging.

Resistivity

Resistance of a wire:

$$R = \rho \cdot \frac{I}{S}$$

- ρ ... resistivity in Ωm or $\Omega m m^2/m$
- I... wire length in m
- S... surface area in m^2 or mm^2

Normalization - Geometric Progression

Marking: *E*6, *E*12, *E*24,..., *EX*

E... geometric (exponential) sequence,

X... count of values per decade,

 $X = 3 \cdot 2^n, n = 1, 2, 3, ...$

Base value:

$$b = \sqrt[X]{10}$$

Precision:

$$\delta \approx \frac{100}{X}\%$$

E6, E12, E24

$$\textit{E6} = (\textit{b}^0, \textit{b}^1, ..., \textit{b}^5) \cdot 10^{\textit{E}} = 1.00, 1.47, 2.15, ..., 6.81$$

E6	1.0	1.5	2.2	3.3	4.7	6.8
$\delta =$ 20%						
E12	1.0	1.2	1.5	1.8	2.2	2.7
$\delta = 10\%$	3.3	3.9	4.7	5.6	6.8	8.2
E24	1.0	1.1	1.2	1.3	1.5	1.6
$\delta = 5\%$	1.8	2.0	2.2	2.4	2.7	3.0
	3.3	3.6	3.9	4.3	4.7	5.1
	5.6	6.2	6.8	7.5	8.2	9.1

Tolerance boundaries approximation

Component Identification

Source: www.diyaudioandvideo.com/Electronics/ResistorColorCodes/

Component Identification - OLD or for Power Resistors

Source: uk.rs-online.com/web/p/through-hole-fixed-resistors/7017383/

Value: 2 or 3 first digits. Sometimes *R* is used as symbol

for the radix point.

Multiplier: $\mathbf{R} = 10^0$, $\mathbf{k} = \text{kilo} = 10^3$, $\mathbf{M} = \text{mega} = 10^6$,

G= giga= 10⁶

It works as radix point

Tolerance: 2 digits with % symbol

Component Identification - SMT (SMD)

3 digits: $\delta > 1\%$ 4 digits: $\delta < 1\%$

Example: $30R9 \rightarrow 30.9\Omega$,

 $\delta < 1\%$

 $391 \to 390\Omega$

 $270
ightarrow 27\Omega$

Source: gme.cz

Value: 2 or 3 first digits.

Multiplier: It is the last digit whenever R symbol missing \Rightarrow

power of 10.

For small values *R* symbol replacing the radix

point.

TOPIC

- 1 Resistance value
- 2 Technology
- 3 Parasitic Parameters

Technology Overview

Film resistors: carbon, metal, metal-oxide layer;

They are most common in electro-

nics

Varnished resistors: varnished-carbon film, just for high

voltage appl.

Wire resistors: power dumping resistor, variable

resistors.

Value precise setting:

Film resistors: via spiral trace in the layer,

Wire resistors: via length of the wire.

Technology - Film Resistors

Source: www.resistorguide.com/pictures/metal_film_resistor_schematic.png

Carbon resistors

■ Device is made of ceramic cylinder body (e.g. alkalic ceramic) and covered with carbon layer. Layer of carbon is made by heat decompositions of some hydrocarbon (e.g. $CH_2 - CH_2$).

Metal resistors

■ Design is similar to carbon resistors. Layer with required resistivity is made from some metal - typically from chrome-nickel alloy (Cr - Ni) or Si - Fe - Cr.

Technology - Film Resistors

Metal-oxide resistors (MOX)

■ Design is similar to metal and carbon resistors. Layer with resistivity is made from *SnO*₂ by using of reactive (jet) vapor deposition.

Varnished (lacquered) resistors

Resistive layer is sprayed on a ceramic body. Layer consist from polymer binder (varnish - terephthalate), resistivity is managed by graphite filler (soot). Layer have a huge specific resistivity!

Thick ant Thin Film Resistors - SMT

Thick-layer resistors

In the past these resistors were used in hybrid devices (printed circuit board on ceramic plate with integrated semiconductor part. Today's some of thick layer resistors are made and used for surface mounted technology (SMT). Features are similar to layer metal and metal-oxide resistors.

Thin-layer resistors

Big specific resistivity on square of thin layer is suitable for thin-layer resistors. Also such layer can exhibit low *TCR* (lower than 10⁻⁴ K⁻¹) The layer is made by vapor deposition on smooth and flat basis - glass, ceramic. Typical shape of such resistor is a meander or strip.

Thick ant Thin Film Resistors - SMT

Source: www.resistorguide.com/thin-and-thick-film/

Parameter	Thick	Thin		
Values (Ω)	1 – 100M	0.2 – 20M		
Tolerance (%)	$\pm 1 - \pm 5$	$\pm 0.1 - \pm 2$		
$\overline{TCR(K^{-1})}$	$(5-20)\cdot 10^{-5}$	$(5-50)\cdot 10^{-6}$		
1000 h stability (%)	$\pm 1 - \pm 3$	$\pm 0.15 - \pm 0.5$		

Wire Resistors

Power Resistors

Coiled ceramic body with resistive wire. Chrome-nickel wire is used for applications at high temperature (e.g. 350°C). The winding is made only in one layer and the insulation is got from oxide layer on wires.

Precise Resistors

They are not dedicated and used for power application nor for high temperature operation. Resistors consist from ceramic or plastic body and from multi-layer winding. Winding is made from isolated Manganin, Kanthal or Constantan wire. Low TCR is required!

coil ⇒ large parasitic inductance

Winding

TOPIC

- 1 Resistance value
- 2 Technology
- 3 Parasitic Parameters

Temperature Dependency of Resistivity

- TCR Temperature Coefficient of Resistivity.
- clean metals (not contaminated) **TCR**: $(2-10) \cdot 10^{-3} \text{ K}^{-1}$, (Fe-10; W, Mo-5.5; Cu-4; Pt-3.8)
- alloys exhibit lower **TCR**: brass $(Cu + Zn) - 1.5 \cdot 10^{-3} \text{ K}^{-1}$
- resistive alloys have the lowest TCR: (1 – 3) · 10⁻⁵ K⁻¹(Manganin, Constantan)

Dependency can be approximated by:

$$R = R_0 \cdot (1 + TCR \cdot (T - T_0))$$

Voltage Dependency of Resistivity

- VCR Voltage Coefficient of Resistivity **NONLINEARITY**.
- Under voltage stress (voltage loading) can be at maximum up to 10% of nominal resistivity (bulk, varnished resistors). Linear resistors (metal, metal-oxide) low dependence (VCR < 10⁻⁶ V⁻1).

Dependency can be approximated by:

$$R = R_0 \cdot (1 + VCR \cdot (U - U_0))$$

$$VCR = \frac{R - R_0}{(U - U_0) \cdot R_0}$$

Noise

Thermal noise

■ Thermal noise is a non-periodic, non-harmonic random signal with natural origin. It is frequency independent.

$$U_n^2 = 4 \cdot k \cdot T \cdot B \cdot R$$

 U_n is an average noise voltage; k is a Boltzmann's const. $1.38 \cdot 10^{-23}$ J/K; T is absolute temperature; B is equivalent frequency bandwidth; R is a resistivity.

Noise

Current noise

The level of current noise is critical especially in low-frequency audio and video HiFi devices. Current noise is a quality marker and can be used for predictions of reliability and life-time of devices. It is frequency dependent.

$$u_n^2(f) = \frac{A \cdot I^{\alpha} \cdot R^{\beta}}{f}$$

 u_n^2 is a square of noise voltage measured in 1Hz band, A is a quality marker of used resistor, I is a load current, f is a frequency,

 α , β are parameters depending on the type of resistor (typically $\alpha = \beta = 2$).

Total noise

