

From biomolecular data to information

Antonia Mey

Matteo Degiacomi

matteo.t.degiacomi@dur.ac.uk

The Data Mining world

The Data Mining world

Data fitting is an optimization problem

Linear Least squares

- Model predicts values for each datapoint $\hat{y}_i = f(x_i; a, b, ...)$
- Residuals quantify prediction error $r_i = y_i f(x_i; a, b, ...)$

The best model minimizes the sum of squared residuals («loss function»)

$$E(a, b, ...) = \sum_{i=1}^{N} r_i^2$$
, solve $\nabla E = 0$

Use least squares (i.e. analytical solution) if:

- there are more data points than parameters (overdetermined)
- model's parameters combine linearly (linear least squares)

Non-linear least squares

Non-linear combinations of model parameters. E.g. Michelis-Menten model:

$$\frac{d[P]}{dt} = \frac{V_{max}[S]}{K_M + [S]}$$

$$f(x,a,b) = \frac{ax}{b+x}$$

- Cannot be solved using least squares
- Needs to be solved via iterative methods

Gradient descent

In machine learning, the step size of the gradient descent is called the learning rate

There is an optimal learning rate for every regression problem

Gradient descent: learning rate and initial conditions

Low learning rate bad starting point 424 steps

High learning rate bad starting point 52 steps

Low learning rate Good starting point 379 steps

The more parameters, the better the fit?

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk" John von Neumann

The more parameters, the better the fit?

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk" John von Neumann

N points can be perfectly fit with a N-1 order polynomial

Artificial Neural Network (ANN)

A **neuron** fires if input signal is above a threshold

Sigmoid Function

Threshold Logic

The activation function f can take several shapes

Artificial Neural Network (ANN)

Neurons can be arranged in **networks**

Hidden layers enable producing any complex boundary (in classification)

or data fitting model (in regression)

Training the ANN = finding synapses weights w_i minimizing error ANN can fit any data, but are not easily interpretable

Shallow vs Deep Learning

1980S-ERA NEURAL NETWORK DEEP LEARNING NEURAL NETWORK Hidden Multiple hidden layers process hierarchical features layer Input Input Output Output layer layer layer layer Output: 'George' Input Identify Node Identify combinations light/dark or features pixel value Identify Identify Identify Links carry signals combinations edges features from one node s of edges to another, boosting or damping them according to each link's 'weight'.

[Extra] Convolutional neural networks

Convolution: a mathematical operation, "sliding a filter" (kernel) over the signal. Example, edge detection:

$$\mathbf{G}_x = egin{bmatrix} -1 & 0 & +1 \ -2 & 0 & +2 \ -1 & 0 & +1 \end{bmatrix} * \mathbf{A}$$

and

$$\mathbf{G}_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix} * \mathbf{A}$$

Convolutional neural network: instead of neurons, has many kernels. Learning = optimising kernel weights

[Extra] Convolutional neural networks

Exploit local correlation in data (e.g. images, spectra, ...).

Can deal with inputs of arbitrary sizes with less parameters to learn

Problem with neural networks: interpretability

Conclusion

 Know what algorithms do, what their limitations are, and how their parameters may affect results

Pick your algorithm depending on the nature of your data

Better data often beats better algorithms