Project on "Machine Learning" MSc in Artificial Intelligent

Spilios Dellis

Outline

- > Introduction
- ➤ Data presentation and problem determination
- ➤ Program workflow
 - Features extraction
 - Features preprocessing
 - Machine learning algorithms comparison
 - Features comparison
 - Best features and machine learning combination

Data

Data description

- Field audio recordings of 10 s duration from around the world (FreeSound project)
- Some contains bird sound
- Labeling by the Machine Listening Lab of the Queens Mary University of London
- More than 7000 audio recording (25 % of them contains bird sound)

Detect audio recording contains bird sound

Workflow

Features. Extraction

Extraction

- 1. Prepare chromagrams for each audio recording using constant-Q method and waveform methods.
- 2. Use chromograms as images and extract features using a CNN pretrained model (VGG16)

Features. Preprocessing

Resampling

Features. Preprocessing

Resampling

Features. Preprocessing

Resampling

Standardization

ML algorithms comparison

- > 10 % of the original data kept as validation dataset.
- Rest used for model training with a 2/8 ratio between test and training datasets.
- The used algorithms are
 - 1. Support vector classification
 - 2. Logistic regression
 - 3. Gaussian naïve Bayes
 - 4. Decision tree classification
 - 5. K nearest neighbours
- > ROC curves used for comparison
- Best algorithm derived for each type of features

Determine best algorithm in respect to features' type

Comparison between features

Best combination

Features extracted from chromograms using waveform + SVM