William Stallings Data and Computer Communications

Chapter 20 Transport Protocols

Koneksi yang diorientasi pada tata cara pengangkutan atau transportasi

- Kemungkinan terhubung
- Penetapan
- Penghentian pemeliharaan
- Keandalan
- TCP

Keandalan dalam layanan jaringan

- Panjangnya pesan diasumsikan terserah
- Keandalan pengiriman diasumsikan hampir 100% oleh layanan jaringan
 - —Keandalan paket dalam memilih jaringan yang menggunakan X.25
 - —frame relay menggunakan LAPF control protocol
 - —IEEE 802.3 menggunakan koneksi yang diorientasikan pada layanan LLC
- Layanan transportasi dari ujung ke ujung protokol antara dua sistem pada jaringan yang sama

Protokol Transportasi sederhana pada umumnya

- Pengalamatan
- Multiplexing
- Flow Control
- Hubungan penetapan dan penghentian

Pengalamatan

- Target pengguna ditetapkan oleh:
 - Idetifikasi pengguna
 - biasanya host, port
 - Disebut socket di TCP
 - Port menghadirkan transportasi service (TS) tertentu pengguna
 - Identifikasi Transport entity
 - Umumnya hanya satu per host
 - Jika lebih dari satu, kemudian biasanya salah satu dari masingmasing jenis
 - menetapkan protokol transportasi (TCP, UDP)
 - Alamat host
 - Dipasang alat jaringan
 - Didalam internet,
 - Nomer jaringan

Pencarian alamat

- Ada 4 metode
 - —Mengetahui alamat sebelum waktu yang ditetapkan
 - Koleksi perencanaan peralatan jaringan
 - —Alamat dimengerti
 - —Menyebut server
 - —Proses pengiriman meminta ke alamat yang diketahui

Multiplexing

- Para pemakai dikerjakan pada protokol transportasi yang sama
- Pemakai dikenali dengan nomer port atau service access point (SAP)
- Kemungkinan multiplex dengan layanan network menggunakan
 - multiplexing a single virtual X.25 sirkuit to a number of transport service user
 - X.25 charges per virtual circuit connection time

Flow Control

- Delay yang panjang antara kesatuan pengiriman dibandingkan dengan waktu trasmisi sebenarnya
 - Delay dalam komunikasi dari informasi flow kontrol
- Delay transmisi variabel
 - Sulit untuk digunakan dalam timeout
- Flow may be controlled because:
- Aliran data dapat dikontrol karena:
 - User penerima tidak dapat melanjutkan
 - Kesatuan pengiriman tidak dapat melanjutkan
- Hasil dari buffer memenuhi

Mengkopi dengan Syarat Flow Control(1)

- Do nothing
 - —Segment yang overflow dibuang
 - —Kesatuan pengiriman akan mendapat ACk dan mentrasmisikan kembali
 - Akan ditambahkan pada data yang masuk
- Menolak bagian selanjutnya
 - —Bagian yang janggal
 - —Sambungan multiplex dikontrol di jumlah aliran data

Mengkopi dengan Syarat Flow Control(2)

- Menggunakan sliding window protokol tertentu
 - Lihat bab 7 untuk detail operasinya
 - —Bekerja dengan baik di network yang diandalkan
 - Kegagalan menerima ACK didapat sebagai indikasi flow control
 - —Tidak bekerja dengan baik di network yang tidak dapat diandalkan
 - Tidak dapat membedakan antara segmen yang hilang dengan flow control
- Menggunakan credit scheme

Credit Scheme

- Kontrol yang lebih besar di jaringan yang diandalkan
- Lebih efektif di jaringan yang tidak diandalkan
- Pasangan flow control dari ACK
 - —Kemungkinan ACK tanpa granting credit dan sebaliknya
- Setiap octet mempunyai nomor urut
- Setiap segmen transportasi mempunyai nomor urut, nomor permintaan dan ukuran window pada header

Penggunaan dari Header Fields

- Ketika pengiriman, esq. number is that of first octet in segment
- ACK termasuk AN=i, W=j
- Semua octets melewati SN=i-1 acknowledged
 - —Next expected octet is i
- Meminta ijin untuk mengirim additional window dari W=j octets
 - —i.e. octets through i+j-1

Credit Allocation

 $SN \approx 1001$

 $SN \approx 1201$

 $SN \approx 1401$

 $SN \approx 2001$

 $\frac{SN = 2201}{SN = 2401}$

AN = 2601,W = 1400

SN ≥ 1601

Transport Entity A

A may send 1400 octets

A shrinks its transmit window with each transmission

A adjusts its window with each credit

A exhausts its credit

A receives new credit

Transport Entity B

B is prepared to receive 1400 octets, beginning with 1001

B acknowledges 3 segments (600 octets), but is only prepared to receive 200 additional octets beyond the original budget (i.e., B will accept octets 1601 through 2600)

B acknowledges 5 segments (1000 octets) and restores the original amount of credit

Pengiriman dan Penerimaan Sebenarnya

(a) Send sequence space

(b) Receive sequence space

Establishment dan Termination

- Mengijinkan semua yang ada sampai akhir
- Negosiasi dari parameter pilihan
- Alokasi triger dari kesatuan pengangkutan sumber
- Dengan persetujuan bersama

Diagram Bagian Koneksi

Connection Establishment

Not Listening

- Menolak dengan RST (Reset)
- Permintaan antrian sampai hasilnya match
- Sinyal TS memberitahu user atas permintaan yang tetunda
 - —May replace passive open with accept

Termination

- Salah satu atau kedua sisi
- Dengan persetujuan bersama
- Pemberhentian yang tiba-tiba
- Atau pemberhentian yang lemah
 - —Close wait state must accept incoming data until FIN received

Side Initiating Termination

- Penguna TS menutup request
- Transport entity mengirim FIN, meminta termination
- Tempat koneksi di FIN WAIT state
 - —Melanjutkan untuk menerima data dan mengirim data ke user
 - —Tidak mengirim data lagi
- Ketika menerima FIN, memberitahukan user dan menutup koneksi

Side Not Initiating Termination

- FIN received
- Inform TS user Place connection in CLOSE WAIT state
 - —Continue to accept data from TS user and transmit it
- TS user issues CLOSE primitive
- Transport entity sends FIN
- Menutup koneksi
- Semua data ditransmisikandari kedua sisi
- Kedua sisi setuju untuk diakhiri

Unreliable Network Service

- E.g.
 - —internet menggunakan IP,
 - —frame relay menggunakan LAPF
 - —IEEE 802.3 menggunakan unacknowledged connectionless LLC
- Bagian bagiannya bisa hilang
- Bagian bagian yang tiba bisa sangat banyak/melebihi batas

Problems

- Ordered Delivery
- Retransmission strategy
- Duplication detection
- Flow control
- Connection establishment
- Connection termination
- Crash recovery

Ordered Delivery

- Segments boleh tiba out of order
- Number segments sequentially
- TCP numbers each octet sequentially
- Segments are numbered by the first octet number in the segment

Retransmission Strategy

- Segment rusak saat pemindahan
- Segment gagal tiba
- Transmitter tidak mengetahui kegagalan
- Receiver must acknowledge successful receipt
- Menggunakan pengakuan kumulatif
- Time out yang menantikan ACK triggers re-transmission

Timer Value

- Fixed timer
 - —Based on understanding of network behavior
 - —Tidak bisa menyesuaikan untuk mengubah kondisi jaringan
 - —Too small leads to unnecessary re-transmissions
 - —Too large and response to lost segments is slow
 - —Should be a bit longer than round trip time
- Adaptive scheme
 - —May not ACK immediately
 - —Can not distinguish between ACK of original segment and re-transmitted segment
 - —Conditions may change suddenly

Duplication Detection

- jika ACK hilang, bagiannya akan dikirimkan kembali
- Receiver harus mengenali salinan/duplikasinya
- Duplicate sebelumnya diterima untuk menutup koneksi
 - —Receiver menggap ACK hilang dan Asks adalah salinannya
 - —Sender jangan bingung dengan banyaknya Asks
 - Sequence number space large enough to not cycle within maximum life of segment
- Duplicate diterima setelah menutup koneksi

Incorrect Duplicate Detection

A times out and retransmits SN = 1

A times out and retransmits SN = 201

Flow Control

- Alokasi credit
- Masalah jika AN=i, W=0 menutup window
- kirim AN=i, W=j untuk kembali membuka, tapi window akan hilang
- Sender menganggap window tertutup, receiver menganggap window terbuka
- Menggunakan window timer
- jika waktunya berakhir, kirim sesuatu
 - —Could be re-transmission of previous segment

Connection Establishment

- Two way handshake
 - A mengirim SYN, B membalas dengan SYN
 - Hilangnya SYN dapat diatasi dengan re-transmission
 - Can lead to duplicate SYNs
 - Ignore duplicate SYNs once connected
- Kehilangan atau keterlambatan bagian data dapat menyebabkan masalah dalam koneksi.
 - Segment dari old connection
 - Start segment numbers fare removed from previous connection
 - Use SYN i
 - Need ACK to include i
 - Three Way Handshake

Two Way Handshake: Obsolete Data Segment

Two Way Handshake: Obsolete SYN Segment

Three Way Handshake: State

Diagram

SV = state vector MSL = maximum segment lifetime

Three Way Handshake: Examples

Connection Termination

- Entity in CLOSE WAIT state sends last data segment, followed by FIN
- FIN tiba sebelum bagian data yang terakhir
- Receiver menerima FIN
 - Tutup koneksi
 - Kehilangan bagian data yang terakhir
- Associate mengurutkan nomor dengan FIN
- Receiver menunggu semua bagian sebelum FIN mengurutkan nomor
- Loss of segments and obsolete segments
 - Must explicitly ACK FIN

Graceful Close

- Kirim FIN i dan menerima AN i
- Menerima FIN j dan mengirim AN j
- Wait twice maximum expected segment lifetime

Failure Recovery

- Setelah restart semua bagian, info akan hilang
- Koneksi terbuka setengah
 - Side that did not crash still thinks it is connected
- Menutup koneksi menggunakan persistence timer
 - Wait for ACK for (time out) * (number of retries)
 - ketika expired, tutup koneksi dan inform user
- Send RST i in response to any i segment arriving
- User harus memutuskan kapan koneksi kembali
 - Masalah masalah dengan kehilangan data

TCP & UDP

- Transmission Control Protocol
 - —Connection oriented
 - -RFC 793
- User Datagram Protocol (UDP)
 - —Connectionless
 - -RFC 768

TCP Services

- Tersedianya komunikasi antara pasangan suatu proses
- Macam-macam jarak dari jaringan yang tersedia dan tidak serta internet
- Dua pelabelan fasilitas
 - Data stream push
 - User TCP memerlukan transmisi semua data sampai menyentuh fleg
 - Receiver akan mengirimkan dengan cara yang sama
 - Menghindari penungguan sampai buffer penuh
 - Sinyal data yang penting
 - Indikasi datangnya data yang penting dalam aliran data
 - User memutuskan bagaimana cara menanganinya

TCP Header

Item yang melewati IP

- TCP melewati beberapa parameter sampai menuju IP
 - —Lebih utama
 - —Normal delay/low delay
 - —Normal throughput/high throughput
 - —Normal reliability/high reliability
 - —Security

Mekanisme TCP(1)

- Pembuatan koneksi
 - —Three way handshake
 - —Antara pasangan port
 - —Satu port dapat disambungkan ke banyak tujuan

Mekanisme TCP(2)

- Transfer data
 - —Aliran logis dari octets
 - —Nomor octet modulo 2²³
 - —Flow control oleh credit alokasi dari nomor octet
 - —Buffer data pada pengirim dan penerima

Mekanisme TCP (3)

- Connection termination
 - —Graceful close
 - —TCP users issues CLOSE primitive
 - —Transport entity sets FIN flag on last segment sent
 - —Abrupt termination by ABORT primitive
 - Entity abandons all attempts to send or receive data
 - RST segment transmitted

Implementation Policy Options

- Kirim
- Pengiriman
- Menerima
- Pengiriman kembali
- Mengakui

Mengirim

- Jika tidak ditekan atau close, kesatuan sambungan TCP akan tepat dengan sendirinya
- Buffer data pada pengiriman buffer
- Kemungkinan mendirikan segmen per data batch
- Kemungkinan menunggu untuk kuantitas atau jumlah data

Pengirim

- Jika tidak ditekan, terjadi pengiriman data dengan sendirinya
- Kemungkinan mengantarkan pada setiap segmen penerima
- Kemungkinan buffer data lebih dari satu segment

Penerima

- Segments mungkin tiba out of order
- Tujuan
 - —Hanya menerima segmen dalam pesanan
 - -Pembuangan segmen yang melebihi pesanan
- Pada windows
 - -Menerima semua segmen dengan menerima window

Pengiriman kembali

- TCP mempertahankan antrian dari segmen pengiriman tetapi tidak diakui
- TCP akan mengirimkan kembali jika ACK tidak memberikan waktu
 - —First only
 - —Batch
 - —Individual

Acknowledgement

- Segera
- Kumulatif

Congestion Control

- RFC 1122, kebutuhan untuk pemakai internet
- Manajemen waktu pengiriman kembali
 - Perkiraan waktu perjalanan dengan mengonservasi pola dari delay
 - Pengesetan waktu lebih besar dari yang diperkirakan
 - —Simple average
 - —Exponential average
 - —RTT Variance Estimation (Algoritma Jacobson)

Use of **Exponential Averaging**

Jacobson's RTO Calculation

Exponential RTO Backoff

- Since timeout is probably due to congestion (dropped packet or long round trip), maintaining RTO merupakan ide yang tidak baik
- RTO meningkat setiap kali suatu segment retransmitted
- RTO = q*RTO
- Commonly q=2
 - —Binary exponential backoff

Algoritma Karn

- Jika sebuah segmen dikirimkan kembali maka ACK mungkin akan:
 - —Untuk copy pertama dari segmen
 - RTT lebih panjang dari yang diharapkan
 - —Untuk copy kedua
- No way to tell
- Tidak mengatur RTT untuk re-transmitted segments
- Calculate backoff ketika re-transmission terjadi
- menggunakan backoff RTO sampai ACK tiba untuk segment yang belum re-transmitted

Window Management

- Start lambat
 - awnd = MIN[credit, cwnd]
 - Start koneksi dengan cwnd=1
 - kenaikan cwnd pada masing-masing ACK, ke beberapa max
- Dynamic window pada congestion
 - Ketika terjadi timeout
 - Set slow start threshold to half current congestion window
 - ssthresh=cwnd/2
 - Set cwnd = 1 dan start lambat sampai cwnd=ssthresh
 - Increasing cwnd by 1 for every ACK
 - Untuk cwnd >=ssthresh, meningkat cwnd dengan 1 untuk setiap RTT

UDP

- User datagram protocol
- RFC 768
- Tidak ada koneksi service untuk prosedur tingkatan aplikasi
 - —Tidak handal
 - -Kontrol pengiriman dan duplikasi tidak terjamin
- Mengurangi eksploitasi
- Manajemen jaringan (Chapter 19)

Menggunakan UDP

- Pengumpulan data
- Pemecahan data
- Respon permintaan
- Secara langsung

UDP Header

Required Reading

- Stallings bab 20
- RFCs