

那**6**草 高可用性服务

无边界网络服务

高可用性支持 (High-Availability)

Resilient Services

2019/4/1

高可用性

可用性	每百万故障次数	每年的故障时间
99.000%	10000	3天15小时36分钟
99.500%	5000	1天19小时48分钟
99.900%	1000	8小时46分钟
99.950%	500	4小时23分钟
99.990%	100	53分钟
99.999%	10	5分钟
99.9999%	1	30秒钟

可靠性的本质是要求系统能正确执行其处理任务, 而可用性则是指系统处于立即可用状态。

定义士

- MTTR (Mean Time To Repair, 平均修复时间), MTTR是指修复故障所花费的时间
- MTBF (Mean Time Between Failure, 平均无故障时间或平均故障间隔), MTBF是指相邻两次故障之间的平均工作 时间。

可用性=MTBF/(MTBF+MTTR)

■降低MTTR、提高MTBF都能提高网络的可用性。

串联可用性

■ 串联可用性 (Serial Availability)

S₁, S₂ - Series Components

System is available when both components are available:

并联可用性

■ 升联可用性 (Parallel Availability)

S₃, S₄ - Parallel Components

System is unavailable when both components are unavailable:

$$A_{\text{parallel}} = 1 - (1 - A_1) \times (1 - A_2)$$

Design Consideration: Parallel Versus Serial Implementations

Cisco.com

A2=0.997 * pa^3 * pb=0.999699690093

冗余方法★

- ■常用的冗余方法:
 - ◆容错设备,Device redundancy
 - ◆工作站到路由冗余
 - Workstation-to-router redundancy
 - ◆服务器冗余,Server redundancy
 - ◆路由冗余, Route redundancy
 - ◆链路冗余, Link media redundancy

高可靠性

使用容错型设备

容错设备

N+1 Redundant Fans

Supervisors (1+1) with NSF/SSO

Simple Line Card Design High MTBR

Fault Detection, Isolation, and Correction through Soft HA/Gold (Catalyst 6500)

for the Most Complex
Components

NSF/SSO

Catalyst Modular Switches with Dual Supervisors

Oroute processor redundancy (RPR)

©Nonstop Forwarding with Stateful Switchover (NSF with SSO)

Cisco Nonstop Forwarding with Stateful Switchover

- The standby Route Processor (RP) takes control of the router after a hardware or software fault on the Active RP.
- SSO allows the standby RP to take immediate control an maintain connectivity protocols.
- NSF continues to forward packets until route convergence is complete.

RPR (Route Processor Redundancy, 路由处理器的冗余性)

Nonstop forwarding with stateful switchover (NSF/SSO)

© 2007 Cisco Systems, Inc. All rights reserved.

高可靠性

Workstation-to-Router Redundancy LAN High Availability Protocols

工作站到路由的冗余

- ■外网传送路由地址获取
 - ARP
 - Explicit configuration
 - ICMP Router Discovery Protocol (IRDP)
 - RIP
 - + HSRP、VRRP、GLBP
 - VSS

使用代理 ARP

使用默认路由 (网关)

路由发现协议

- ICMP Router Discovery Protocol, IRDP
- ■使用2条 ICMP 消息实现路由发现:
 - ◆ ICMP Router Solicitation Message 由主机发给相邻的路由器,请求发布存在信息。
 - ◆ICMP Router Advertisement Message 由路由器发送,公告其可以用于路由的IP地址。

RIP协议

- ■可在主机上运行RIP协议,以获取路由器地址。
 - ◆ 不常使用
 - ◆ 不推荐
 - ◆以前在UNIX主机上有过应用。

一连接——首跳冗余

Standby Router

Forwardir Router

Backbone

多台路由器组成一个路由器组,使用同一IP地址。

每个组中一个活动路由器承担转发用户流量。

当活动路由器失效后,备份路由器成为新的活动路由器。

FHRP *

- 首跳冗余性协议 (FHRP: First Hop Redundancy Protocol) 主要是用来解决网 关问题,提高冗余性和负载均衡。
 - ◆虚拟路由冗余协议 (Virtual Router Redundancy Protocol, 简称VRRP)是IETF协议。
 - ◆热备份路由器协议(Hot Standby Router Protocol,简称HSRP),是cisco的私有协议。
 - ◆网关负载均衡协议(Gateway Load Balancing Protocol, 简称GLBP),是思科的专有协议。GLBP不仅提供冗余网关,还提供负载均衡。(和HSRP、VRRP不同)

The Internet Engineering Task Force, IETF

VSS

Virtual Switching Systems

高可靠性

服务器冗余

连接方法

- 单连接, Single attachment: 不推荐
- 双连接, Dual attachment: 多网卡 network interface cards (NIC).
- 端口绑定, EtherChannel (FEC) and Gigabit EtherChannel (GEC) port bundles

Dual attachment

FEC / GEC

高可靠性

路由冗余

路由冗余

- ■路由冗余的目的
 - ◆提高可用性
 - ◆实现负载均衡

路由冗余一负载均衡大

- ■负载均衡:
 - ◆大部分路由协议支持等花销负载均衡。 等价路径数默认为4,最大为8
 - ◆EIGRP 还支持不等价负载均衡
- Process Switching
 - Per-Packet Load Balancing
- Cisco Express Forwarding (CEF)
 - Per-Destination

路由冗余 — 提高可用性

全相联网络连接 最大冗余,可用性最好 部分网状连接 花费较少, 易于扩展

高可靠性

链路冗余

链路冗余

高可靠性

设备容错 VS

拓扑冗余(路由+链路冗余)

设备容错★

■优点:

- ◆可以最大限度地减少系统的无响应时间,
- ◆可以在保持系统持续运行的情况下检测 并替换故障组件,
- ◆如果冗余组件之间无相互关联,则能够实现优化的灾难保护机制。

设备容错

■不足:

- ◆增加设备成本,占用大量的设备板卡槽 位。
- ◆冗余部件仅在主部件失效时才被完全激 活,对设备的性能无提高。
- ◆集中于设备级的硬件可靠性可能会忽略 其他故障机制。

拓扑冗余

■ 优势:

- ◆ 当备用网元与主用网元处于不同位置时,降低了因物理环境造成的服务中断几率。
- ◆可以降低非硬件故障对网络造成的可用性冲击。
- ◆降低了设备级容错的配置需求,降低了成本。
- ◆通过流量的负载共享提高网络的汇聚性能和能力。
- ◆实现从主用设施到备用设施的自动恢复。
- ◆可以按照负载均衡方式进行可预测的包分发操作。

DLD (Deterministic Load Distribution,确定性的负载分发)

拓扑冗余

■不足:

- ◆配置冗余设备、冗余链路和冗余转发路 径会提高网络成本
- ◆較难进行管理,較难进行故障检测及排 除。