Математическая статистика

Основные понятия математической статистики

Попов Юрий, СКБ-172

ОГЛАВЛЕНИЕ

Задание 2.1 Моделирование выбранных случайных величин	3
Задание 2.2 Построение эмпирической функции распределения	4
Задание 2.3 Построение вариационного ряда выборки	5
Задание 2.4 Построение гистограммы и полигон частот	7

Предисловие

Все графики, которые в дальнейшем будут вставлены в эту работу, были сконструированы с помощью библиотеки matplotlib в Jupyter Notebook, который будет приложен вместе с работой (Mathematical statistics DZ2.ipynb)

Большая часть определений, которые представлены в этой работы взять с лекций нашего курса.

Также некоторые определения взяты из источника Г.И. Ивченко, Ю.И. Медведев "Ведение в математическую статистику"

Задание 2.1 Моделирование выбранных случайных величин

Реализация выборки

Определение 1. Peanusauus выборки - это набор из п наблюдений $\hat{x} = (x_1, x_2, \dots, x_n)$

Задание 2.2 Построение эмпирической функции распределения

Эмпирическая функция распределения

Определение 2. Для произвольного числа $x \in R$ рассмотрим случайную величину

$$\mu_n(x) = \sum_{i=1}^n Ind(X_i \le x)$$

равную числу элементов выборки меньших или равных x. Тогда функция $\hat{F}(x) = \frac{\mu_n(x)}{n}$ называется эмпирической функцией распределения(э.ф.р)

Эмпирическая функция распределения принимает значения $\{0,\frac{1}{n},\frac{2}{n},\dots,\frac{n}{n}\}$

$$P(\hat{F}(x) = \frac{k}{n}) = C_k^m F^k(x) (1 - F(x))^{n-k}$$

Задание 2.3 Построение вариационного ряда выборки

Вариационный ряд выборки

Определение 3. Пусть есть

$$\vec{X} = (X_1, \dots, X_n),$$

где $X_i, i=\overline{1,n}$ —независимые одинаково распределенные случайные величины из распределения ξ . И $\vec{x}=(x_1,\cdots,x_n)$ является реализацией имеющейся выборки \vec{X} . Отсортируем вектор \vec{x} по возрастанию:

$$x_{(1)} \le x_{(2)} \le \ldots \le x_{(n)}$$

Тогда $x_{(1)} = \min(x_1, x_2, \dots x_n)$, а $x_{(n)} = \max(x_1, x_2, \dots, x_n)$. Через $X_{(i)}$ обозначают случайную величину, которая для каждой реализации выборки принимает значение $X_{(i)}$. Вектор $(X_{(1)}, X_{(2)}, \dots, X_{(n)})$ называют вариационным рядом выборки.

Квантиль

Определение 4. *Квантилью уровня* $\alpha \in (0,1)$ функции распределения F(x) называется величина $\zeta_{\alpha} = \sup\{x : F(x) \leq p\} = F^{-1}(p)$.

Выборочный квантиль

Определение 5. *Выборочными квантилями* называют квантили выборочного распределения.

Для каждой выборки построим вариационный ряд. Вот, примеры вариационных рядов для выборок объема n=5 и для n=10:

Вариа	ционные	ряды дл	я 5 реалі	изаций в	ыборки,	объема	10:			
X:	0	1	2	5	7	14	16	19	39	
f:	1	1	1	2	1	1	1	1	1	
X:	0	1	2	3	6	8	23			
f:	1	4	1	1	1	1	1			
X:	0	1	2	3	6	9	12	13	15	33
f:	1	1	1	1	1	1	1	1	1	1
x:	0	1	3	5	16	28				
f:	4	2	1	1	1	1				
x:	0	1	3	4	5	6	8	12	17	
f:	1	1	1	2	1	1	1	1	1	

Вариационные ряды для 5 реализаций выборки, объема 5:

		1				
			5			
f:	1	2	1	1		
			6		25	
			1			
			5		8	
			1			
			13			
			1		1	
X:	0	1	3	7	18	
f:	1	1	1	1	1	-

Рис. 1: n = 5

Перейдем к нахождению выборочной квантили.

Поясним простыми словами на примере уровня квантиля 0.1, что такое выборочная квантиль:

Выборочная квантиль уровня 0.1 - это точка, левее которой (включая её саму) лежит не менее 10% всей выборки, и правее которой (снова включая её саму) - не менее 100% - 10% = 90% выборки.

Будем искать выборочную квантиль графическим способом: проведем прямую y= (уровень квантиля) до пересечения с графиком. И определим x, при котором прямая пересекает график. Если точка пересечения одна, то именно это значения x и будет выборочной квантиль. А если пересечение проходит по отрезку, то квантилей будет много. Например, если отрезок от 3 до 4 является прямой y, то квантилью будет любое число от 3 до 4. ля определённости в практической статистике в таких случаях выбирают по какому-то правилу одно из чисел "отрезка квантилей". Например, середину отрезка - в данном случае 3.5.

Задание 2.4 Построение гистограммы и полигон частот

Гистограмма

Определение 4.Для непрерывной случайной величины ξ , обладающей непрерывной плотностью f(x), также можно построить по соответствующей выборке $X=(X_1,\ldots,X_n)$ статистический аналог $\hat{f}_n(x)$ для плотности f(x), который называется гистограммой

Полигон частот

Определение 5. Наряду с гистограммой, в качестве приближения для неизвестной теоретической плотности f(x) можно использовать кусочно-линейный график, называемый *полигоном частом*, и который строится так: если построена гистограмма $\hat{f}_n(x)$, то ординаты, соответствующие серединам интервалов группировки, последовательно соединяют отрезками прямых.

Литература

- [1]
- [2] ссылка1
- [3] ссылка2
- [4] // ссылка3
- [5] // ссылка4