שיטות חישוביות באוטפיטמיזציה 046197 תרגיל בית מספר 2

Alexander Shender: 328626114

Eliran Cohen: 204187801

: תרגיל מספר 1

 $x, d \in \mathbb{R}^n$ קמורה לכל $\phi(t) = f(x+t\mathrm{d})$ משפט קמורה אם ורק אם

נוכיח את המשפט בשני הכיוונים

א. $\phi(t)$ קמורה

 $\lambda \in [0,1]$ - ו $x,y \in \mathbb{R}^n$ נרצה להראות שפונקציה f קמורה לפי הגדרה, לכן עבור שתי נקודות

$$f(\lambda x + (1 - \lambda)y) = f(x - x + \lambda x + (1 - \lambda)y) = f(x + (\lambda - 1)x + (1 - \lambda)y) = f(x + (1 - \lambda)(y - x))$$

(כלומר, $\phi(t) = f(x+t\mathrm{d})$: נסמן d = y-x נסמן d = y-x

$$f(\lambda x + (1 - \lambda)y) = f(x + (1 - \lambda)(y - x)) = f(x + (1 - \lambda)d) = \phi(1 - \lambda) = \phi((1 - \lambda) \cdot 1 + \lambda \cdot 0)$$

$$\leq \lambda \phi(0) + (1 - \lambda) \phi(1) = \lambda f(x + 0 \cdot d) + (1 - \lambda)f(x + 1 \cdot d)$$

$$= \lambda f(x) + (1 - \lambda)f(x + y - x) = \lambda f(x) + (1 - \lambda)f(y)$$

כלומר הוכחנו שאם $\phi(t)$ קמורה פונקציה f קמורה לפי הגדרה

ב. f קמורה

 $\lambda \in [0,1]$ - ו $a,b \in \mathbb{R}$ ו- $a,b \in \mathbb{R}$ נרצה להראות שפונקציה $\phi(t)$ קמורה לפי הגדרה, לכן עבור שתי

$$\phi(\lambda a + (1 - \lambda)b) = f(x + (\lambda a + (1 - \lambda)b)d) = f(x + \lambda ad + bd - \lambda bd)$$

$$= f(x + \lambda x - \lambda x + \lambda ad + bd - \lambda bd) = f(\lambda(x + ad) + (1 - \lambda)(x + bd))$$

$$\leq \lambda f(x + ad) + (1 - \lambda)f(x + bd) = \lambda \phi(a) + (1 - \lambda)\phi(b)$$

כלומר הוכחנו שאם f קמורה פונקציה $\phi(t)$ קמורה לפי הגדרה

: 2 תרגיל מספר

g(x) א. חישוב הגרדיאנט וההיסאן של

$$g(x) = f(x, x) = \left(\frac{1}{2}x^TQx\right)\left(\frac{1}{2}x^TRx\right)$$

$$\nabla g(x) = \frac{\partial}{\partial x}\left[\left(\frac{1}{2}x^TQx\right)\left(\frac{1}{2}x^TRx\right)\right] = \left(\frac{1}{2}x^TRx\right)\frac{\partial}{\partial x}\left(\frac{1}{2}x^TQx\right) + \left(\frac{1}{2}x^TQx\right)\frac{\partial}{\partial x}\left(\frac{1}{2}x^TRx\right)$$

$$= \frac{1}{2}\left[(x^TRx)Qx + (x^TQx)Rx\right]$$

$$\nabla^2 g(x) = \frac{\partial}{\partial x} \left[\frac{1}{2} [(x^T R x) Q x + (x^T Q x) R x] \right]$$

$$= \frac{1}{2} \left[(x^T R x) \frac{\partial}{\partial x} [Q x] + \frac{\partial}{\partial x} [(x^T R x)] (Q x)^T + (x^T Q x) \frac{\partial}{\partial x} [R x] + \frac{\partial}{\partial x} [(x^T R x)] (R x)^T \right]$$

$$= \frac{1}{2} [x^T R x Q + 2R x x^T Q + x^T Q x R + 2Q x x^T R] = \frac{1}{2} x^T R x Q + \frac{1}{2} x^T Q x R + R x x^T Q + Q x x^T R$$

ב. האם g(x) - שמורה בהינתן קמורה קמורה f(x,y) אינה קמורה ב. אם g(x) אינה קמורה אז מתקיים g(x)

$$g(\lambda x + (1 - \lambda)y) > \lambda g(x) + (1 - \lambda)g(y)$$

f(x,y) נראה איך זה משפיע על

$$f(\lambda x + (1 - \lambda)y, \lambda x + (1 - \lambda)y) = g(\lambda x + (1 - \lambda)y) > \lambda g(x) + (1 - \lambda)g(y) = \lambda f(x, x) + (1 - \lambda)f(y, y)$$

. כלומר קיימים x,y בהם הפונקציה לא קמורה ולכן בהם בהם כלומר קיימים

 $R=\alpha Q$, $\alpha>0$ קמורה אם g(x) - ג. הוכחה ש(x) החיסאן היא אי שלילית מוגדרת לכל נבדוק אם מטריצת ההיסאן היא אי שלילית

$$\nabla^2 g(x) = \frac{1}{2} x^T R x Q + \frac{1}{2} x^T Q x R + R x x^T Q + Q x x^T R = \frac{1}{2} \alpha x^T Q x Q + \frac{1}{2} \alpha x^T Q x Q + \alpha Q x x^T Q + \alpha Q x x^T Q = \alpha (x^T Q x) Q + 2 \alpha Q x (Q x)^T$$

: נראה את השפעת כלל הגורמים על ההיסאן

- Q > 0 מכיוון ש $x^T Q x$ הוא סקלר חיובי לכל
- מוגדרת מיובית חיובית סקלר חיובי במטריצה של מכפלת מכיוון שזו תוצאה מכיוון שזו מוגדרת מכיוון מוגדרת מכיוון $lpha(x^TQx)Q$
 - Qx היא מטריצה חיובית מכיוון שהיא מכילה את הערכים הריבועיים של $Qx(Qx)^T$.3
- אובית מוגדרת מכיוון שזו תוצאה של מכפלת סקלר חיובי במטריצה חיובית מוגדרת מ $2\,lpha Qx(Qx)^T$.4
- היא חיוביות מוגדרות שהיא סכום של שתי מטריצות חיוביות מוגדרת מכיוון היא $lpha(x^TQx)Q + 2lpha Qx(Qx)^T$.5

קמורה
$$g(x)$$
 ולכן \mathbf{x} לכל $\nabla^2 g(x) = \alpha(x^TQx)Q + 2\alpha Qx(Qx)^T > 0$ כלומר

הנתונות R – ו Q אבור מטריצות קמורה קמורה g(x)האם ד. בדיקה האם ד.

י בו אקרידיאום p g (x) קלמור די בואר בואר פואר אוני בואר אוני פוע איים אל אידי מציאת הערכים העצמיים של המטריצות R,Q>0

$$Q = \begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix} \rightarrow \det[Q - \lambda I] = \begin{vmatrix} 3 - \lambda & -2 \\ -2 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 4 \rightarrow \lambda_1 = 5, \lambda_2 = 1 \rightarrow \lambda_1, \lambda_2 > 0 \rightarrow Q > 0$$

$$R = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix} \rightarrow \det[Q - \lambda I] = \begin{vmatrix} 4 - \lambda & 3 \\ 3 & 4 - \lambda \end{vmatrix} = (4 - \lambda)^2 - 9 \rightarrow \lambda_1 = 7, \lambda_2 = 1 \rightarrow \lambda_1, \lambda_2 > 0 \rightarrow R > 0$$

: נבדוק קמירות על ידי ההיסאן

$$\nabla^2 g(x) = \frac{1}{2} x^T R x Q + \frac{1}{2} x^T Q x R + R x x^T Q + Q x x^T R$$

: $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ נבדוק גורם בסכום על ווקטור נכדוק

$$\frac{1}{2}x^{T}RxQ = \frac{1}{2}(x_{1} \quad x_{2})\begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}\begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix} = \frac{1}{2}(4x_{1} + 3x_{2} \quad 3x_{1} + 4x_{2})\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}\begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix} \\
= (2x_{1}^{2} + 3x_{1}x_{2} + 2x_{2}^{2})\begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} 6x_{1}^{2} + 9x_{1}x_{2} + 6x_{2}^{2} & -4x_{1}^{2} - 6x_{1}x_{2} - 2x_{2}^{2} \\ -4x_{1}^{2} - 6x_{1}x_{2} - 2x_{2}^{2} & 6x_{1}^{2} + 9x_{1}x_{2} + 6x_{2}^{2} \end{pmatrix}$$

$$\frac{1}{2}x^{T}QxR = \frac{1}{2}(x_{1} \quad x_{2})\begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix}\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}\begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix} = \frac{1}{2}(3x_{1} - 2x_{2} \quad -2x_{1} + 3x_{2})\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}\begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix} \\
= \frac{1}{2}(3x_{1}^{2} - 4x_{1}x_{2} + 3x_{2}^{2})\begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 12x_{1}^{2} - 16x_{1}x_{2} + 12x_{2}^{2} & 9x_{1}^{2} - 12x_{1}x_{2} + 9x_{2}^{2} \\ 9x_{1}^{2} - 12x_{1}x_{2} + 9x_{2}^{2} & 12x_{1}^{2} - 16x_{1}x_{2} + 12x_{2}^{2} \end{pmatrix}$$

$$Rxx^{T}Q = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} (x_{1} & x_{2}) \begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} 4x_{1} + 3x_{2} \\ 3x_{1} + 4x_{2} \end{pmatrix} (3x_{1} - 2x_{2} & -2x_{1} + 3x_{2})$$

$$= \begin{pmatrix} 12x_{1}^{2} + x_{1}x_{2} - 6x_{2}^{2} & -8x_{1}^{2} + 6x_{1}x_{2} + 9x_{2}^{2} \\ 9x_{1}^{2} + 6x_{1}x_{2} - 8x_{2}^{2} & -6x_{1}^{2} + x_{1}x_{2} + 12x_{2}^{2} \end{pmatrix}$$

$$\begin{aligned} Qxx^TR &= (Rxx^TQ)^T = \begin{pmatrix} 12x_1^2 + x_1x_2 - 6x_2^2 & -8x_1^2 + 6x_1x_2 + 9x_2^2 \\ 9x_1^2 + 6x_1x_2 - 8x_2^2 & -6x_1^2 + x_1x_2 + 12x_2^2 \end{pmatrix}^T = \\ &= \begin{pmatrix} 12x_1^2 + x_1x_2 - 6x_2^2 & 9x_1^2 + 6x_1x_2 - 8x_2^2 \\ -8x_1^2 + 6x_1x_2 + 9x_2^2 & -6x_1^2 + x_1x_2 + 12x_2^2 \end{pmatrix} \end{aligned}$$

$$Rxx^{T}Q + Qxx^{T}R = \begin{pmatrix} 24x_{1}^{2} + 2x_{1}x_{2} - 12x_{2}^{2} & x_{1}^{2} + 12x_{1}x_{2} + x_{2}^{2} \\ x_{1}^{2} + 12x_{1}x_{2} + x_{2}^{2} & -12x_{1}^{2} + 2x_{1}x_{2} + 24x_{2}^{2} \end{pmatrix}$$

 $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ נפריך בדוגמא נגדית עבור

$$\frac{1}{2}x^TRxQ = \begin{pmatrix} 6 & -4 \\ -4 & 6 \end{pmatrix}$$

$$\frac{1}{2}x^TQxR = \frac{1}{2}\begin{pmatrix} 12 & 9\\ 9 & 12 \end{pmatrix}$$

$$Rxx^{T}Q + Qxx^{T}R = \begin{pmatrix} 24 & 1\\ 1 & -12 \end{pmatrix}$$

$$\nabla^2 g(x) = \begin{pmatrix} 36 & 1.5 \\ 1.5 & 0 \end{pmatrix} \rightarrow \det[\nabla^2 g(x) - \lambda I] = \begin{vmatrix} 36 - \lambda & 1.5 \\ 1.5 & -\lambda \end{vmatrix} = \lambda(\lambda - 36) - \frac{9}{4} \rightarrow \lambda_1 = 36.06 \text{ , } \lambda_2 = -0.06$$

$$\rightarrow \lambda_2 < 0 \rightarrow Q \text{ not PSD}$$

. לא אי שלילית מוגדרת כלומר אי שלילית שלילית לא $abla^2 g(x)$

: 3 תרגיל מספר

 $0 \le x < 1$ קמורה עבור f(x) - א. הוכחה ש

נגזור את הפונקציה פעמיים כדי לראות אם היא אי שלילית בתחום הנתון:

$$f(x) = \ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1-x)$$

$$\frac{d}{dx}f(x) = \frac{d}{dx}[\ln(1+x) - \ln(1-x)] = \frac{1}{1+x} + \frac{1}{1-x} = \frac{2}{(1+x)(1-x)}$$

$$\frac{d^2}{dx^2}f(x) = \frac{d}{dx}\left[\frac{1}{1+x} + \frac{1}{1-x}\right] = -\frac{1}{(1+x)^2} + \frac{1}{(1-x)^2} = \frac{4x}{((1+x)(1-x))^2}$$

 $x \geq 0$: הפונקציה מוגדרת בתחום $-1 \leq x < 1$ הפונקציה מוגדרת בתחום

 $0 \le x < 1$: כלומר הפונקציה קמורה בתחום

$0 \le x < 1$ עבור $f(x) \ge 2x$ ב. נראה כי מתקיים

 \cdot מתארת את הפרש בין הפונקציות מתארת את המנקציות בפונקציות

$$q(x) = \ln\left(\frac{1+x}{1-x}\right) - 2x$$

 $0 \le x < 1$: נראה כי הפונקציה אי שלילית אי

$$q'^{(x)} = \frac{d}{dx} \left[\ln \left(\frac{1+x}{1-x} \right) - 2x \right] = \frac{2}{(1+x)(1-x)} - 2 = \frac{2x^2}{(1+x)(1-x)}$$

היא עולה היא בתחום כלומר כלומר כתחום $0 \le x < 1$

: כמו כן נשים לב ש

$$q(0) = 0$$

 $f(x) \geq 2x$ כלומר מתקיים $0 \leq x < 1$ לכן ההפרש בין הפונקציות מתחיל ב-0 וההפרש גדל בתחום

 $0 \le x < 1$ קעורה עבור h(x) ג. הראו כי

$$h(x) = -x \ln(x) - (1-x) \ln(1-x)$$

: נתבונן בפונקציה

$$p(x) = -h(x) = x \ln(x) + (1 - x) \ln(1 - x)$$

הפונקציה $x \ln(x)$ היא פונקציה קמורה ועולה בתחום הנתון

הפונקציה x היא פונקציה קמורה

. ולכן הרכבת שתי הפונקציות ln(1-x) וולכן הרכבת שתי הפונקציות וולכן הרכבת שתי הפונקציות וולכן

לכן הפונקציה של שתי פונקציה קמורה $p(x) = x \ln(x) + (1-x) \ln(1-x)$ שתי פונקציה קמורה לכן הפונקציה קמורות קמורות קמורות קמורות עם מקדמים חיוביים.

. לכן הנתון העורה בתחום הנתון $h(x)=-p(x)=-x\ln(x)-(1-x)\ln(1-x)$ היא פונקציה הנגדית לכן הפוקנציה הנגדית

$$g(x) = h\left(\frac{1 - \sqrt{1 - x^2}}{2}\right)$$

נחשב את הנגזרת השניה של הפונקציה כדי להראות שהיא תמיד אי שלילית

$$g'(x) = h'\left(\frac{1 - \sqrt{1 - x^2}}{2}\right) \cdot \frac{2x}{4\sqrt{1 - x^2}} = h'\left(\frac{1 - \sqrt{1 - x^2}}{2}\right) \frac{x}{2\sqrt{1 - x^2}}$$

$$g''(x) = h''\left(\frac{1-\sqrt{1-x^2}}{2}\right) \cdot \frac{2x}{4\sqrt{1-x^2}} \cdot \frac{x}{2\sqrt{1-x^2}} + h'\left(\frac{1-\sqrt{1-x^2}}{2}\right) \cdot \left[\frac{2\sqrt{1-x^2}-x\frac{-2x}{\sqrt{1-x^2}}}{4(1-x^2)}\right]$$

$$= h''\left(\frac{1-\sqrt{1-x^2}}{2}\right) \frac{x^2}{4(1-x^2)} + h'\left(\frac{1-\sqrt{1-x^2}}{2}\right) \cdot \frac{2(1-x^2)+2x^2}{4(1-x^2)\sqrt{1-x^2}} =$$

$$= h''\left(\frac{1-\sqrt{1-x^2}}{2}\right) \frac{x^2}{4(1-x^2)} + h'\left(\frac{1-\sqrt{1-x^2}}{2}\right) \cdot \frac{1}{2(1-x^2)\sqrt{1-x^2}}$$

h(x) נחשב את הנגזרות של

$$h(x) = -x \ln(x) - (1-x) \ln(1-x)$$

$$h'(x) = -[\ln(x) + 1 - \ln(1 - x) - 1] = \ln(1 - x) - \ln(x)$$

$$h''(x) = \frac{-1}{1-x} - \frac{1}{x} = \frac{1}{x(x-1)}$$

$$h'\left(\frac{1-\sqrt{1-x^2}}{2}\right) = \ln\left(1-\frac{1-\sqrt{1-x^2}}{2}\right) - \ln\left(\frac{1-\sqrt{1-x^2}}{2}\right) = \ln\left(\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}\right)$$
$$h''\left(\frac{1-\sqrt{1-x^2}}{2}\right) = \frac{1}{\left(\frac{1-\sqrt{1-x^2}}{2}\right)\left(\frac{1-\sqrt{1-x^2}}{2}-1\right)} = \frac{-4}{(1-\sqrt{1-x^2})(1+\sqrt{1-x^2})} = \frac{-4}{x^2}$$

g''(x) - נציב ב

$$g''(x) = \frac{-4}{x^2} \cdot \frac{x^2}{4(1-x^2)} + \ln\left(\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}\right) \cdot \frac{1}{2(1-x^2)\sqrt{1-x^2}}$$
$$= \frac{-1}{(1-x^2)} + \ln\left(\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}\right) \frac{1}{2(1-x^2)\sqrt{1-x^2}}$$

 $0 \le x < 1$ בסעיף בי הוכחנו כי מתקיים בתחום

$$\ln\left(\frac{1+x}{1-x}\right) \ge 2x$$

התחום הוא אותו אותו ולכן נציב ב $g^{\prime\prime}(x)$ כחסם כחחון את התחום הוא אותו התחום ולכן נציב ב

$$\ln\left(\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}\right) \ge 2\sqrt{1-x^2}$$

$$g''(x) = \frac{-1}{(1-x^2)} + \ln\left(\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}\right) \frac{1}{2(1-x^2)\sqrt{1-x^2}} \ge \frac{-1}{(1-x^2)} + 2\sqrt{1-x^2} \frac{1}{2(1-x^2)\sqrt{1-x^2}}$$
$$= \frac{-1}{(1-x^2)} + \frac{1}{(1-x^2)} = 0$$

. הפונקציה הפונקציה ולכן בתחום $g^{\prime\prime(x)} \geq 0$ בתחום הוכחנו כי הוכחנו בתחום $g^{\prime\prime(x)} \geq 0$

Question 4.

Prove that the following function is convex for x > 0; $x \in R$:

$$g(x) = -\prod_{i=1}^{n} x_i^{p_i}, \quad p_i \ge 0; \sum_i p_i = 1$$

We will use the composition statement from the book from Stephen Boyd. (page 86), which says:

If f(x) is concave and positive, then 1/f(x) is convex.

Indeed: Let's take f(x) concave positive function (f(x) > 0). The composition function will be $h(x) = \frac{1}{x}$, which is convex (h''(x) > 0), and decreasing (h'(x) < 0) for $x \in R^+$. Then:

$$g(x) = h(f(x)) = \frac{1}{f(x)}$$

Showing that its second derivative is positive:

$$g''(x) = \underbrace{h''(f(x))}_{>0} \underbrace{f'(x)^2}_{>0} + \underbrace{h'(f(x))}_{<0} \underbrace{g''(x)}_{<0} > 0$$

In our case, proving that $-\prod_{i=1}^n x_i^{p_i}$ is convex is equal to proving that $\prod_{i=1}^n x_i^{p_i}$ is concave.

From the previous statement, since $\prod_{i=1}^n x_i^{p_i}$ is positive $(x>0\;;\;p_i\geq 0\;\forall\;i\;)$ and concave, it is equal to proving that $\frac{1}{\prod_{i=1}^n x_i^{p_i}}$ is convex. Rewriting. Need to prove:

$$g_2(x) = \left(\prod_{i=1}^n x_i^{p_i}\right)^{-1} = \prod_{i=1}^n x_i^{-p_i}$$

Is convex.

Using exp and log trick to turn multiplication into sum:

$$q_2(x) = e^{\log(\prod_{i=1}^n x_i^{-p_i})} = e^{\sum_{i=1}^n \log(x_i^{-p_i})} = e^{\sum_{i=1}^n -\log(x_i^{p_i})}$$

Since log is a concave function for positive values, thus -log is convex. So,

$$y = \sum_{i=1}^{n} -\log(x_i^{p_i})$$

Is the sum of convex functions, thus is also convex.

Further, e^y is also convex, since it is a composition of 2 convex functions, where y is convex, and e is convex and non-decreasing. Thus, we prove that $g_2(x)$ is convex, thus g(x) is also convex.

Another way to prove it is to use the Hessian matrix of the original g(x) function, and prove that it's PSD.

Question 5.

Need to prove:

$$f(p_1x_1 + p_2x_2) \ge p_1f(x_1) + p_2f(x_2)$$
; $p_1 + p_2 = 1$; $p_1 > 0$; $p_2 < 0$

Let's assume there's a point $x_1 \in U$. Extending:

$$x_1 = \frac{p_1 x_1 + p_2 x_2 - p_2 x_2}{p_1}$$

Thus,

$$f(x_1) = f\left(\frac{p_1x_1 + p_2x_2 - p_2x_2}{p_1}\right)$$

Since the function f is convex, the following inequality holds:

$$f\left(\frac{p_1x_1 + p_2x_2 - p_2x_2}{p_1}\right) \leq \underbrace{\left(\frac{1}{p_1}\right)}_{t} f(p_1x_1 + p_2x_2) + \underbrace{\left(\frac{-p_2}{p_1}\right)}_{t} f(x_2)$$

Only if the conditions for t is met (0 < t < 1). And that those coefficients sum to 1.

And indeed:

$$t + (1 - t) = \left(\frac{1}{p_1}\right) + \left(\frac{-p_2}{p_1}\right) = \frac{1 - p_2}{p_1} = \frac{p_1}{p_1} = 1$$

And:

$$t = \frac{1}{p_1}$$
; $0 < \frac{1}{p_1} < 1$

So we get:

$$f(x_1) \le \left(\frac{1}{p_1}\right) f(p_1 x_1 + p_2 x_2) + \left(\frac{-p_2}{p_1}\right) f(x_2)$$

Multiply by p_1 :

$$p_1 f(x_1) \le f(p_1 x_1 + p_2 x_2) - p_2 f(x_2)$$

$$p_1 f(x_1) + p_2 f(x_2) \le f(p_1 x_1 + p_2 x_2)$$

Which is what is required.

Question 6.

Given function in $I \in R$. $x \neq y$.

$$\Delta_f(x,y) = \frac{f(x) - f(y)}{x - y}$$

a.

$$\Delta_f(x,y) = \frac{f(x) - f(y)}{x - y} = \frac{-(f(y) - f(x))}{-(y - x)} = \frac{f(y) - f(x)}{y - x} = \Delta_f(y,x)$$

b.

First direction.

Expressing x_2 with the convex combination of x_1 , x_3 :

$$x_2 = tx_1 + (1-t)x_3$$

We can then express t and (1-t):

$$x_{2} = tx_{1} + x_{3} - tx_{3}$$

$$x_{2} - x_{3} = t(x_{1} - x_{3})$$

$$t = \frac{x_{2} - x_{3}}{x_{1} - x_{3}}$$

$$1 - t = \frac{x_{1} - x_{2}}{x_{1} - x_{2}}$$

The function at point x_2 :

$$f(x_2) = f(tx_1 + (1-t)x_3)$$

It is given that the function f(x) is convex, thus the following holds:

$$f(tx_1 + (1-t)x_3) \le tf(x_1) + (1-t)f(x_3)$$

Inserting t and $f(x_2)$ back:

$$f(x_2) \ge \left(\frac{x_2 - x_3}{x_1 - x_3}\right) f(x_1) + \left(\frac{x_1 - x_2}{x_1 - x_3}\right) f(x_3)$$

We multiply by $x_1 - x_3$. Since $x_1 < x_3$, it is a negative number, so we change the direction of inequality.

$$f(x_2)(x_1 - x_3) \ge (x_2 - x_3)f(x_1) + (x_1 - x_2)f(x_3)$$
$$(x_3 - x_2)f(x_1) + f(x_2)(x_1 - x_3) + f(x_3)(x_2 - x_1) \ge 0$$

Which proves the statement.

Second direction

Given some 3 points x_1, x_2, x_3 , which satisfy $x_1 < x_2 < x_3$ and satisfy:

$$(x_3 - x_2)f(x_1) + f(x_2)(x_1 - x_3) + f(x_3)(x_2 - x_1) \ge 0$$

Prove that f(x) is convex.

Solution:

We will try to use the same characteristic of the convex function. Since $x_1 < x_2 < x_3$, we can express x_2 as a combination of x_1, x_3 :

$$x_2 = tx_1 + (1-t)x_3$$

We will use the same derivations that we got from previous direction proof:

$$t = \frac{x_2 - x_3}{x_1 - x_3}$$

$$1 - t = \frac{x_1 - x_2}{x_1 - x_3}$$

From this expression:

$$(x_3 - x_2)f(x_1) + f(x_2)(x_1 - x_3) + f(x_3)(x_2 - x_1) \ge 0$$

Divide both by $(x_1 - x_3)$:

$$f(x_2) + \left(\frac{x_3 - x_2}{x_1 - x_3}\right) f(x_1) + \left(\frac{x_2 - x_1}{x_1 - x_3}\right) f(x_3) \ge 0$$

$$f(x_2) \ge -\left(\frac{x_3 - x_2}{x_1 - x_3}\right) f(x_1) - \left(\frac{x_2 - x_1}{x_1 - x_3}\right) f(x_3)$$

$$f(x_2) \ge \left(\frac{x_2 - x_3}{x_1 - x_3}\right) f(x_1) + \left(\frac{x_1 - x_2}{x_1 - x_3}\right) f(x_3)$$

$$f(x_2) \ge tf(x_1) + (1-t)f(x_3)$$

Putting x_2 :

$$f(tx_1 + (1-t)x_3) \ge tf(x_1) + (1-t)f(x_3)$$

And since $x_1 < x_3$, it proves that the function f(x) is convex.

If f(x) is convex and $x_1 < x_2 < x_3$, then this holds:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

We can use the expression from previous paragraph, reorganize it, and get:

$$(x_3 - x_2)f(x_1) + f(x_2)(x_1 - x_3) + f(x_3)(x_2 - x_1) \ge 0$$

$$x_3f(x_1) - x_2f(x_1) + f(x_2)(x_1 - x_3) + f(x_3)(x_2 - x_1) \ge 0$$

Add and subtract $f(x_1)x_1$:

$$x_3 f(x_1) - f(x_1) x_1 + f(x_1) x_1 - x_2 f(x_1) + f(x_2) (x_1 - x_3) + f(x_3) (x_2 - x_1) \ge 0$$

$$f(x_1) (x_3 - x_1) + f(x_1) (x_1 - x_2) + f(x_2) (x_1 - x_3) + f(x_3) (x_2 - x_1) \ge 0$$

$$(f(x_2) - f(x_1)) (x_1 - x_3) + (f(x_3) - f(x_1)) (x_2 - x_1) \ge 0$$

Divide by $(x_1 - x_3)(x_2 - x_1)$ (which is negative, changing sign):

$$\frac{f(x_2) - f(x_1)}{(x_2 - x_1)} + \frac{f(x_3) - f(x_1)}{(x_1 - x_3)} \le 0$$

$$\frac{f(x_2) - f(x_1)}{(x_2 - x_1)} - \frac{f(x_3) - f(x_1)}{(x_3 - x_1)} \le 0$$

$$\frac{f(x_2) - f(x_1)}{(x_2 - x_1)} \le \frac{f(x_3) - f(x_1)}{(x_3 - x_1)}$$

Which proves the left part of the inequality.

To obtain the second part of the inequality, instead of adding and subtracting $f(x_1)x_1$, we add and subtract $f(x_3)x_3$. And follow same steps.

Given: x < y < z < w

Function f(x) is convex.

Prove: $a \le b \le c \le d \le e$

We use the results from paragraph 3. From the definition of the gradient (approximation):

$$\Delta_f(x, y) = \frac{f(x) - f(y)}{x - y}$$

So we can mark the gradients:

$$a = \frac{f(x) - f(y)}{x - y} = \frac{f(y) - f(x)}{y - x}$$

$$b = \frac{f(x) - f(z)}{x - z}$$

$$c = \frac{f(y) - f(z)}{y - z}$$

$$d = \frac{f(y) - f(w)}{y - w}$$

$$e = \frac{f(z) - f(w)}{z - w}$$

Since: x < y < z and using the inequation from paragraph 3:

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(x) - f(z)}{x - z}$$

$$a \le b$$

$$\frac{f(x) - f(z)}{x - z} \le \frac{f(y) - f(z)}{y - z}$$

$$b \le c$$

Since y < z < w and using the inequation from paragraph 3:

$$\frac{f(y) - f(z)}{y - z} \le \frac{f(y) - f(w)}{y - w}$$

$$c \le d$$

$$\frac{f(y) - f(w)}{y - w} \le \frac{f(z) - f(w)}{z - w}$$

$$d \le e$$

Summing all together, we obtain:

Which is what was required.

е

Prove that if f(x) convex, if and only if for all $x \neq y \in I$; $g_{y}(x) = \Delta_{f}(x, y)$ is not decreasing.

Solution:

Direction 1

f(x) is convex. We will use the previous statement from paragraph 3 again.

Case 1.

We assume $y < x_2 < x_1$; $x_2, x_1 \in I$.

Then:

$$\frac{f(x_2) - f(y)}{x_2 - y} \le \frac{f(x_1) - f(y)}{x_1 - y} \le \frac{f(x_1) - f(x_2)}{x_1 - x_2}$$
$$\Delta_f(x_2, y) \le \Delta_f(x_1, y) \le \Delta_f(x_1, x_2)$$
$$g_y(x_2) \le g_y(x_1) \le g_{x_2}(x_1)$$

Thus: $g_{\gamma}(x_2) \leq g_{\gamma}(x_1)$

Which means that the gradient is not decreasing.

Case 2.

We assume $x_2 < y < x_1$; $x_2, x_1 \in I$.

Then:

$$\frac{f(y) - f(x_2)}{y - x_2} \le \frac{f(x_1) - f(x_2)}{x_1 - x_2} \le \frac{f(x_1) - f(y)}{x_1 - y}$$
$$\Delta_f(x_2, y) \le \Delta_f(x_1, x_2) \le \Delta_f(x_1, y)$$
$$g_y(x_2) \le g_{x_1}(x_2) \le g_y(x_1)$$

Thus, $g_y(x_2) \le g_y(x_1)$

Which means the gradient is not decreasing.

Case 3.

We assume $x_2 < x_1 < y$; $x_2, x_1 \in I$.

Then:

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} \le \frac{f(y) - f(x_2)}{y - x_2} \le \frac{f(y) - f(x_1)}{y - x_1}$$
$$\Delta_f(x_2, x_1) \le \Delta_f(x_2, y) \le \Delta_f(x_1, y)$$
$$g_{x_1}(x_2) \le g_y(x_2) \le g_y(x_1)$$

Thus, $g_{\nu}(x_2) \leq g_{\nu}(x_1)$

Which means the gradient is not decreasing.

Direction 2

 $g_y(x) = \Delta_f(x, y)$ is not decreasing.

Let's take 3 points, s.t. $x_1 < y < x_3$

From the property of not decreasing gradient, we get:

$$g_{y}(x_1) \le g_{x_1}(x_3) \le g_{y}(x_3)$$

Which means:

$$\frac{f(y) - f(x_1)}{y - x_1} \le g_{x_1}(x_3) \le \frac{f(y) - f(x_3)}{y - x_3}$$
$$\frac{f(y) - f(x_1)}{y - x_1} \le \frac{f(y) - f(x_3)}{y - x_3}$$

We multiply by $(y - x_1)(y - x_3)$ which is negative. Change sign.

$$(f(y) - f(x_1))(y - x_3) \ge (f(y) - f(x_3))(y - x_1)$$

We can express y as a convex combination of x_1 and x_3 :

$$y = tx_1 + (1-t)x_3$$

Then:

$$(y - x_3) = (tx_1 + (1 - t)x_3 - x_3) = (tx_1 - tx_3) = t(x_1 - x_3)$$
$$(y - x_1) = (tx_1 + (1 - t)x_3 - x_1) = ((1 - t)x_3 - x_1(1 - t)) = (t - 1)(x_1 - x_3)$$

Pasting:

$$(f(y) - f(x_1))t(x_1 - x_3) \ge (f(y) - f(x_3))(t - 1)(x_1 - x_3)$$

$$f(y)(t(x_1 - x_3) - (t - 1)(x_1 - x_3)) \ge f(x_1)t(x_1 - x_3) + f(x_3)(1 - t)(x_1 - x_3)$$

$$f(y)(x_1 - x_3) \ge f(x_1)t(x_1 - x_3) + f(x_3)(1 - t)(x_1 - x_3)$$

We can divide both parts by $(x_1 - x_3)$. Since its negative, we change the sign:

$$f(y) \le f(x_1)t + f(x_3)(1-t)$$

And replace the y with the declaration:

$$f(tx_1 + (1-t)x_3) \le tf(x_1) + (1-t)f(x_3)$$

Which is the basic characteristic of the convex function.

Thus, f(x) is convex.