

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b+u,\ u^4+u^3-2u^2+a-2u,\ u^5+u^4-3u^3-2u^2+2u-1\rangle\\ I_2^u &= \langle -u^5+2u^3-u^2+b-u+1,\ -u^4+u^2+a-u+1,\ u^6+u^5-2u^4+2u^2-2u-1\rangle\\ I_3^u &= \langle b+1,\ a,\ u-1\rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 12 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle b+u, \ u^4+u^3-2u^2+a-2u, \ u^5+u^4-3u^3-2u^2+2u-1 \rangle$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} - u^{3} + 2u^{2} + 2u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{4} - u^{3} + 2u^{2} + u \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} - u^{2} + 2u \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^4 6u^3 + 4u^2 + 14u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_8	$u^5 - u^4 - 3u^3 + 2u^2 + 2u + 1$
c_3, c_7	$u^5 - 3u^4 + 6u^3 - 7u^2 + 4u - 2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_8	$y^5 - 7y^4 + 17y^3 - 14y^2 - 1$
c_{3}, c_{7}	$y^5 + 3y^4 + 2y^3 - 13y^2 - 12y - 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.331409 + 0.386277I		
a = 0.76001 + 1.23514I	-0.373181 - 1.138820I	-4.71808 + 6.05450I
b = -0.331409 - 0.386277I		
u = 0.331409 - 0.386277I		
a = 0.76001 - 1.23514I	-0.373181 + 1.138820I	-4.71808 - 6.05450I
b = -0.331409 + 0.386277I		
u = 1.49784		
a = -0.911163	-8.51482	-10.2860
b = -1.49784		
u = -1.58033 + 0.28256I		
a = 0.195567 + 1.002700I	-13.4637 + 6.9972I	-11.13904 - 3.54683I
b = 1.58033 - 0.28256I		
u = -1.58033 - 0.28256I		
a = 0.195567 - 1.002700I	-13.4637 - 6.9972I	-11.13904 + 3.54683I
b = 1.58033 + 0.28256I		

$$II. \\ I_2^u = \langle -u^5 + 2u^3 - u^2 + b - u + 1, \ -u^4 + u^2 + a - u + 1, \ u^6 + u^5 - 2u^4 + 2u^2 - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} - u^{2} + u - 1 \\ u^{5} - 2u^{3} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + u^{4} - 2u^{3} + 2u - 2 \\ u^{5} - 2u^{3} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} - 2u^{3} + 2u^{2} + u - 2 \\ u^{5} - u^{3} + 2u^{2} - u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^5 + 8u^3 4u^2 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_4 \ c_5, c_6, c_8$	$u^6 - u^5 - 2u^4 + 2u^2 + 2u - 1$
c_3, c_7	$(u^3 + u^2 + 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_8	$y^6 - 5y^5 + 8y^4 - 6y^3 + 8y^2 - 8y + 1$
c_{3}, c_{7}	$(y^3 + 3y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.592989 + 0.847544I		
a = -0.916215 - 0.894804I	-6.31400 - 2.82812I	-9.50976 + 2.97945I
b = 1.47043 + 0.10268I		
u = 0.592989 - 0.847544I		
a = -0.916215 + 0.894804I	-6.31400 + 2.82812I	-9.50976 - 2.97945I
b = 1.47043 - 0.10268I		
u = 1.13416		
a = 0.502436	-2.17641	-2.98050
b = 0.379278		
u = -1.47043 + 0.10268I		
a = -0.083785 - 0.894804I	-6.31400 + 2.82812I	-9.50976 - 2.97945I
b = -0.592989 + 0.847544I		
u = -1.47043 - 0.10268I		
a = -0.083785 + 0.894804I	-6.31400 - 2.82812I	-9.50976 + 2.97945I
b = -0.592989 - 0.847544I		
u = -0.379278		
a = -1.50244	-2.17641	-2.98050
b = -1.13416		

III.
$$I_3^u = \langle b+1,\ a,\ u-1
angle$$

(i) Arc colorings

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_6	u-1
c_3, c_7	u
c_4, c_8	u+1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_8	y-1
c_{3}, c_{7}	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	-3.28987	-12.0000
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1, c_2, c_5 c_6	$(u-1)(u^5 - u^4 + \dots + 2u + 1)(u^6 - u^5 + \dots + 2u - 1)$	
c_3, c_7	$u(u^3 + u^2 + 2u + 1)^2(u^5 - 3u^4 + 6u^3 - 7u^2 + 4u - 2)$	
c_4, c_8	$(u+1)(u^5-u^4+\cdots+2u+1)(u^6-u^5+\cdots+2u-1)$	

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_8	$(y-1)(y^5 - 7y^4 + \dots - 14y^2 - 1)(y^6 - 5y^5 + \dots - 8y + 1)$
c_3, c_7	$y(y^3 + 3y^2 + 2y - 1)^2(y^5 + 3y^4 + 2y^3 - 13y^2 - 12y - 4)$