Electromyogram (EMG)

Hsiao-Lung Chan, Ph.D.

Dept Electrical Engineering

Chang Gung University, Taiwan

chanhl@mail.cgu.edu.tw

Single motor unit

Skeletal muscle (骨骼肌)

Sarcomere (basic unit of skeletal muscles)

J. Enderle, Introduction to Biomedical Engineering, Academic Press, 2000.

Motor-unit firing pattern

A series of impulse or Dirac delta function

Inter-pulse interval (IPI) > SMUAP duration

HL Chan , EE, CGU EMG 5

Single-motor-unit action potential (SMUAP)

Electromyography (EMG, 肌電圖)

Resting state

Muscle contraction

SMUAP (Cont.)

Normal:

• Mostly biphasic, 3-5 ms duration

(c)

Neuropathy (brachial plexus in injury):

- Slow conduction
- Polyphasic, large amplitude (800 μV)

Myopathy:

- Loss of muscle fibers in motor unit
- Recruitment of more motor units at a

low level of effort

Gradation of muscular contraction

- Spatial recruitment
 - Activating new motor units with increasing effort
- Temporal recruitment
 - Increasing frequency of firing rate of each motor unit with increasing effort

EMG at diaphram muscle

Gradation of muscular contraction (cont.)

SMUAPs at initial stages of contraction, following by increasing of several MUAP

Electromyography (EMG) processing in prothesis control

(Myoelectric Control System at University of New Brunswick, Canada)

EMG during different movements

Forearm Pronation

Elbow Extension

Forearm Supination

Integrated EMG (IEMG)

Analysis of EMG activity

EMG over two breath cycles from paraternal intercostal muscle of a dog

Relation between EMG activity and airflow

Methods to compute EMG envelop

- Root-mean-square (RMS) method
- Turn count
- Hilbert transform-based method
- Using a full-wave rectifier and a lowpass filter

Diaphram EMG over two breath cycles

Analysis of activity by RMS

Root mean-squared value

$$RMS(n) = \left[\frac{1}{M} \sum_{k=0}^{M-1} x^{2} (n-k)\right]^{1/2}$$

Turns count

*Willison define turns to have difference greater than 100µV

Hilbert transform and analytic signal

Analytic signal

$$y(t) = x(t) + jx_H(t) = |x(t)| e^{j\phi(t)}$$

where $x_H(t)$ is Hilbert transform of x(t)

$$x_H(t) = x(t) * \frac{1}{\pi t} = \int_{-\infty}^{\infty} \frac{x(\tau)}{\pi(t - \tau)} d\tau$$

$$Y(\omega) = X(\omega) + X(\omega) \operatorname{sgn}(\omega)$$

 $Y(\omega)$ Contain only positive frequency components

Short-time Fourier transform (spectrogram)

- Compute time-varying spectra
- Time-frequency distribution
- Tradeoff between time resolution and frequency resolution
 - Uncertainty principle (Heisenberg inequality)

$$Time-Bandwidth\ product = \Delta t \ \Delta f \ge \frac{1}{4\pi}$$

Spectrogram of chirp signal

```
T = 0:0.001:2;

X = chirp(T,100,1,200,'q');

spectrogram(X,128,120,128,1E3);

title('Quadratic Chirp');
```


Spectrogram of chirp signal (cont.)

```
T = 0:0.001:2;
X = chirp(T,0,1,150);
F = 0:.1:100;
[Y,F,T,P] = spectrogram(X,256,250,F,1E3,'yaxis');
surf(T,F,10*log10(abs(P)),'EdgeColor','none');
axis xy; axis tight; colormap(jet); view(0,90);
xlabel('Time, s');
                                               90
ylabel('Frequency, Hz');
                                               80
                                             Frequency, Hz
                                               30
                                                               Time, s
```

Muscle fatigue

Nervous fatigue

- After a period of maximum contraction, nerve's signal reduces in frequency and force generated by the contraction diminishes.
- No sensation of pain or discomfort, muscle appears to simply 'stop listening' and gradually cease to move.

Metabolic fatigue

- Reduction in contractile force due to the direct or indirect effects of the reduction of substrates or accumulation of metabolites within the muscle fiber.
- Occur through a simple lack of energy to fuel contraction, or interference with the ability of Ca²⁺ to stimulate actin and myosin to contract.

HL Chan, EE, CGU EMG 25

Pre-fatigue

Post-fatigue

Measures derived from spectrum

- Mean frequency
 - Measurement of concentration of signal power

$$TP = \sum_{k=0}^{N/2} S_{xx}(k)$$

$$\bar{f} = \sum_{k=0}^{N/2} \left(f(k) \times \frac{S_{xx}(k)}{TP} \right)$$

Measures derived from spectrum (cont.)

- Median frequency
 - The frequency that divides spectrum into two parts with the same total energy
- Matlab function

Envelope of PCG with systolic murmurs

Envelope of PCG with systolic murmurs

Spectra of systolic murmur due to aortic stenosis

Pressure gradient

Figure 7.18 (a) Systolic pressure gradient (left ventricular-aortic pressure) across a stenotic aortic valve. (b) Marked decrease in systolic pressure gradient with insertion of an aortic ball valve.

Cardiac catherterization

Speech signal

Data retrieved by safety.m

Reference

- R. Rangayyan, Biomedical Signal Analysis, John Wiely & Sons, 2002.
- John G. Webster, Medical Instrumentation, application and design, 3rd Ed., Houghton Mifflin, 2000.
- Wikipedia, the free encyclopedia