

Procesamiento de series de tiempo en GRASS GIS

Aplicaciones en Ecología y Ambiente

Dra. Verónica Andreo CONICET - INMeT

Río Cuarto, 2018

Exercise 2: Create a new Location and Mapset

• Revise GRASS GIS database structure

- Revise GRASS GIS database structure
- Data fo the exercise

- Revise GRASS GIS database structure
- Data fo the exercise
- Create new locations and mapsets: different options

- Revise GRASS GIS database structure
- Data fo the exercise
- Create new locations and mapsets: different options
- Change mapsets / add mapsets to path

- Revise GRASS GIS database structure
- Data fo the exercise
- Create new locations and mapsets: different options
- Change mapsets / add mapsets to path
- Import raster and vector map

- Revise GRASS GIS database structure
- Data fo the exercise
- Create new locations and mapsets: different options
- Change mapsets / add mapsets to path
- Import raster and vector map
- Reproject raster and vector maps

- Revise GRASS GIS database structure
- Data fo the exercise
- Create new locations and mapsets: different options
- Change mapsets / add mapsets to path
- Import raster and vector map
- Reproject raster and vector maps
- Export raster and vector maps

Data for this exercise

- Download the raster and vector sample files
- Create a folder in your \$HOME directory (or Documents) and name it gisdata
- Unzip/Move the files within \$HOME/gisdata

 Select the GRASS database folder

- Select the GRASS database folder
- Select the nc_spm_08_grass7 location

- Select the GRASS database folder
- Select the nc_spm_08_grass7 location
- Select user1 mapset

- Select the GRASS database folder
- Select the nc_spm_08_grass7 location
- Select user1 mapset
- Hit Start GRASS session

Creating a new Location

- From the GUI
 - button "New" in the Location wizard
 - from within a GRASS session: Settings → GRASS working environment →
 Create new location

- From the command line
 - using -c flag in the *grass74* start script
 - provide path to new location plus either a georeferenced map or an EPSG code

Creating a new Location from the GUI

Create new Lat-Long location using EPSG code

Creating new location from command line

```
# Creates new location with EPSG code 4326
grass74 -c EPSG:4326 $HOME/grassdata/mylocation

# Creates new location based on georeferenced Shapefile
grass74 -c myvector.shp $HOME/grassdata/mylocation

# Creates new location based on georeferenced GeoTIFF file
grass74 -c myraster.tif $HOME/grassdata/mylocation
```

This can also be done from a different location; GRASS will switch to the newly created one.

Creating a new mapset

- From the GUI
 - button "New" in the Mapset wizard
 - from within a GRASS session: Settings → GRASS working environment →
 Create new mapset

- From command line
 - using -c flag in the grass 74 script, just add the mapset name to the path
 - with g.mapset command from within a GRASS session

Creating a new mapset from the GUI

using New button in wizard

from within a GRASS session

Creating a new mapset from command line

Start GRASS and create location and mapset all at once

```
# Creates new location and mapset
grass74 -c EPSG:4326 $HOME/grassdata/mylocation/mymapset
```

Create a mapset from within a running GRASS session:

```
# Create a new mapset within a GRASS session
g.mapset -c mapset=curso_rio4
```


Remove Locations or Mapsets

Just remove the folder or use the Location wizard

Rename Locations and Mapsets

From the Location wizard

Change to a different mapset

• From the GUI:

• From command line:

```
# print current mapset
g.mapset -p
# list available mapsets
g.mapsets -l
# change to user1 mapset
g.mapset mapset=user1
```


Add mapsets to path

Sometimes we need to read data from a different mapset and use it for a certain processing, so we need to see that mapset from the current one

```
# print accessible mapsets
g.mapsets -p
# add user1 to the accessible mapsets
g.mapsets mapset=user1 operation=add
# check it was added
g.mapsets -p
# check current mapset
g.mapset -p
```


Tasks:

- Create a new location with EPSG:4326 and name it latlong
- Create a new mapset called curso_rio4 within the latlong location

Choose whatever method you prefer

Hint: from command line is only one line ②...

Import raster and vector maps

 r.in.gdal: Imports raster data into a GRASS raster map using GDAL library.

```
r.in.gdal input=myraster.tif output=myraster
```

 v.in.ogr: Imports vector data into a GRASS vector map using OGR library.

v.in.ogr input=myvector.shp output=myvector

CRS of maps must match that of the Location

Import raster and vector maps

Alternatively, we can use:

- r.import
- v.import

that offer also re-projection, resampling and subset on the fly

Import a raster map

Import a vector map

Imported maps are displayed by default

Create location and mapset from georeferenced file

Create location and mapset from georeferenced file

Create location and mapset from georeferenced file

How to get metadata from any raster map?

gdalinfo <mapname>

Set computational region

```
# check region
g.region -p
# set region to imported raster map
g.region raster=XX
```


Working without importing maps

We can also only link our geodata to the GRASS DB:

- r.external: Links GDAL supported raster data as a pseudo GRASS raster map.
- v.external: Creates a pseudo-vector map as a link to an OGR-supported layer or a PostGIS feature table.

Do not rename, delete or move the *linked* file afterwards...!

Maps reprojection

Locations are defined by CRS, so

to transfer maps between locations \rightarrow map re-projection

Maps reprojection

- Raster map re-projection: The user needs to set desired extent and resolution prior to re-projection in target location
- Vector map re-projection: The whole vector map is re-projected by coordinate conversion

Mechanism: Working in target location, maps are projected into it from the source location

Tasks:

- Create a new location named UTM18N from the L8 band 5 file and then reproject (with r.proj) it to North Carolina location (mapset curso_rio4)
- Now, import (with reprojection on the fly) the L8 band 2 file into North Carolina location (mapset curso_rio4) and set the region to the imported raster map

Export raster and vector maps

Task:

Explore r.out.gdal and v.out.ogr manual pages and export elevation and roadsmajor maps

Thanks for your attention!!

Move on to: Raster data processing

Presentation powered by

