امتحانات شهادة الثانوية العامة فرع العلوم العامة

دورة سنة ٢٠٠٤ العادية

مسابقة في الرياضيات الاسم : المدة : أربع ساعات الرقم :

عدد المسائل: ستة

المدة : أربع ساعات المدة عير قابلة للبرمجة أو إختزان المعلومات أو رسم البيانات. ملاحظة يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (2 points)

Soit f la fonction définie, sur [-3; 3], par $f(x) = \frac{2}{3} \sqrt{9 - x^2}$ et (C) sa courbe représentative

dans un repère orthonormé (O; \overrightarrow{i} , \overrightarrow{j}).

- 1) Calculer f '(x) et dresser le tableau de variations de f.
- 2) Tracer la courbe (C).
- 3) On considère l'ellipse (E) d'équation $\frac{x^2}{9} + \frac{y^2}{4} = 1$.

Montrer que (C) est une partie de (E) et tracer (E).

4) A l'aide du changement de variable $x = 3\cos\theta$, on trouve :

 $\int_{-3}^{3} f(x) dx = 6 \int_{0}^{\pi} \sin^{2} \theta d\theta$ (on ne demande pas de démontrer cette égalité).

Déduire de cette égalité l'aire du domaine limité par (E).

II - (3points)

L'espace est rapporté à un repère orthonormé direct (O; i, j, k).

On donne les droites (d) et (d') définies par :

$$\text{(d): } \begin{cases} x = 2t+1 \\ y = -2t-1 \\ z = t+2 \end{cases} \quad \text{et} \qquad \text{(d'): } \begin{cases} x = m \\ y = 2m-3 \\ z = 2m \end{cases} \quad \text{(t et m sont deux paramètres réels)}.$$

- 1) Montrer que les droites (d) et (d') sont concourantes au point A (1; -1; 2) et qu'elles sont perpendiculaires.
- 2) Ecrire une équation du plan (P) déterminé par (d) et (d').
- 3) Dans le plan (P) on donne la droite (D) définie par :

(D):
$$\begin{cases} x = 3\lambda - 1 \\ y = -1 \\ z = 3\lambda \end{cases}$$
 (λ est un paramètre réel).

- a- Démontrer que la droite (D) est une bissectrice de l'un des angles formés par (d) et (d').
- b- E (-1 ; -1 ; 0) est un point de (D) ; on désigne par (C) le cercle du plan (P) , de centre E , tangent en T à (d) et en S à (d').

Déterminer la nature du quadrilatère ATES et calculer la longueur AT.

c- Ecrire une équation du plan médiateur de [AE] et en déduire un système d'équations paramétriques de la droite (TS).

III - (2,5points)

Une agence de tourisme propose à ses clients des voyages de 7 jours avec deux options : pension complète ou demi - pension .

L'agence publie l'annonce publicitaire suivante :

Option Destination	Pension complète	Demi - pension
France	1 500 000 LL	1300 000 LL
Italie	1 250 000 LL	1100 000 LL
Turquie	800 000 LL	700 000 LL

Cette agence estime que 25 % de ses clients choisissent la France, 35 % l'Italie et le reste la Turquie et que parmi les clients de chaque destination, 60 % choisissent la pension complète. On interroge au hasard un client.

Soit les événements suivants :

F: « le client interrogé a choisi la France ».

I : « le client interrogé a choisi l'Italie ».

T : « le client interrogé a choisi la Turquie ».

C : « le client interrogé a choisi la pension complète ».

1) a- Calculer les probabilités suivantes :

 $P(C \cap F)$; $P(C \cap I)$; $P(C \cap T)$ et P(C).

- b- Le client interrogé a choisi la pension complète, quelle est la probabilité qu'il ait choisi l'Italie ?
- 2) Soit X la variable aléatoire égale à la somme payée à l'agence par un voyageur.
 - a- Déterminer la loi de probabilité de X.
 - b- Calculer l'espérance mathématique E(X). Que représente le nombre ainsi trouvé ?
 - c- Estimer la somme reçue par l'agence lorsqu'elle sert 200 voyageurs.

IV - (3points)

Dans la figure ci-contre, ABC, ADB et CDE sont trois triangles équilatéraux directs

tels que
$$(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{3}$$
 (2π) .

On désigne par I le milieu de [AB] .

1) Montrer que AE = 2AB.

Soit S la similitude directe de centre W, de rapport k et d'angle θ qui transforme A en B et E en D.

- 2) Déterminer k et vérifier que $\theta = \frac{-2\pi}{3}$ (2 π).
- 3) On désigne par (T) le cercle circonscrit au triangle ACE. Démontrer que le transformé de (T) par S est le cercle (T') de diamètre [BD] et déduire que l'image du point C par S est le point J milieu de [DE].
- 4) Le plan complexe est rapporté à un repère orthonormé direct (A; u, v) tel que u = AI.
 - a- Déterminer les affixes des points B, C, D et E.
 - b- Donner la forme complexe de S et préciser l'affixe de son centre W.
- 5) Soit S' la similitude directe de centre W, de rapport 2 et d'angle $\frac{-\pi}{3}$.
 - a- Déterminer la nature et les éléments de la transformation S'oS.
 - b- Calculer l'affixe du point A' transformé de A par S'oS.

V - (2,5points)

Dans le plan rapporté à un repère orthonormé (O; i, j) (unité 3 cm), on donne les paraboles (P) et (P') d'équations respectives $y^2 = 2x - 1$ et $x^2 = 2y - 1$.

- 1) Déterminer le sommet, le foyer et la directrice de chacune de ces deux paraboles.
- 2) Vérifier que le point A (1; 1) est commun à (P) et (P') et démontrer que (OA) est une tangente commune aux deux paraboles.
- 3) Démontrer que la perpendiculaire (d) en O à (OA) est une tangente commune à (P) et (P').
- 4) Tracer (d) , (P) et (P').
- 5) L'aire du domaine limité par (P), l'axe des abscisses et la droite d'équation x = 1 vaut 3 cm^2 .

Déduire l'aire, en cm², du domaine limité par (P), (P'), l'axe des abscisses et l'axe des ordonnées.

3

VI - (7 points)

- A- Soit l'équation différentielle (E) : y'' + 3y' + 2y = 2. On pose z = y - 1.
 - 1) Former une équation différentielle (E_1) satisfaite par z et résoudre (E_1) .
 - 2) Déduire la solution générale de (E) et trouver la solution particulière de (E) dont la courbe représentative, dans un repère orthonormé (O; i, j), est tangente en O à l'axe des abscisses.
- **B** Soit f la fonction définie sur IR par $f(x) = e^{-2x} 2e^{-x} + 1$ et (C) sa courbe représentative dans le repère (O; i, j).
 - 1) Calculer $\lim_{x \to +\infty} f(x)$ et déduire une asymptote (d) à (C).
 - 2) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$.
 - 3) Trouver f '(x) et dresser le tableau de variations de f.
 - 4) Démontrer que (C) admet un point d'inflexion I dont on déterminera les coordonnées.
 - 5) Déterminer les coordonnées du point d'intersection de (C) avec son asymptote (d).
 - 6) Tracer (d) et (C).
 - 7) Calculer l'aire du domaine limité par la courbe (C) , son asymptote (d) et l'axe des ordonnées .
 - 8) Soit g la fonction donnée par g(x) = ln(f(x)), et (G) sa courbe représentative .
 - a- Justifier que le domaine de définition de g est $]-\infty;0[\bigcup]0;+\infty[$ et dresser son tableau de variations .
 - b- Démontrer que la droite (D) d'équation y = -2x est une asymptote à (G).
 - c-Résoudre chacune des équations g(x) = 0 et g(x) = -2x.
 - d- Tracer (D) et (G) dans un autre repère.

Barème

Barème				
SCIE	ENCES	G GENERALES MATH 1 ^{ère} SESSION(2	004)	
		Eléments de réponse	N	
		$f'(x) = \frac{-2x}{3\sqrt{9-x^2}} \qquad \frac{x -3}{f'(x) - 3} \qquad 0 \qquad 3$		
		$3\sqrt{9-x^2}$ f'(x) $\Big _{+\infty}$ + 0 - $\Big _{-\infty}$		
	1	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		f(x) 2		
		-0 - 0 - 0		
		y ↑		
		★ ²		
		-3		
	2	O X		
		(E): $\frac{y^2}{4} = 1 - \frac{x^2}{9}$, $y^2 = \frac{4}{9}(9 - x^2)$		
		$\begin{bmatrix} 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$		
		$2\sqrt{2}$ $2\sqrt{2}$		
		$y = \frac{2}{3}\sqrt{9-x^2}$ ou $y = -\frac{2}{3}\sqrt{9-x^2}$		
I		3		
1		Donc (C) est la partie de (E) située au-dessus de l'axe des abscisses.		
		(E) =(C) \cup (C') où (C') est le symétrique de (C) par rapport à l'axe des		
		abscisses.		
		y_{lack}		
		2		
	3			
		↑		
		$\frac{-3}{2}$ $\frac{3}{2}$ x		
		Γ O Γ .		
		' \		
		-2		
		l		
		$\begin{bmatrix} 3 & \pi & \pi \\ A & 2 & f(x) & d = 12 & f(x) & 2 & 0.10 & c & f(x) & 2 & 0.10 \end{bmatrix}$		
		$A = 2 \int f(x) dx = 12 \int \sin^2 \theta d\theta = 6 \int (1 - \cos 2\theta) d\theta$		
	4	-3 0		
		$=6\left[\theta-\frac{1}{2}\sin 2\theta\right]^{\pi}=6\pi u^{2}$		
		$=6 \left \theta - \frac{1}{2} \sin 2\theta \right = 6\pi u^2$		

	4	A est le point de (d) correspondant à t = 0; A est le point de (d') correspondant à m = 1.	
	1	$\vec{V}_{d}(2;-2;1) \text{ et } \vec{V}_{d'}(1;2;2); \vec{V}_{d} \cdot \vec{V}_{d'} = 0, \text{ donc } (d) \perp (d').$	
	2	$M(x,y,z)$ est un point de (P) ssi \overrightarrow{AM} . $(\overrightarrow{V_d} \wedge \overrightarrow{V_{d'}}) = 0$; D'où (P): $2x + y - 2z + 3 = 0$.	
		â	
		A est un point de (D) correspondant à $\lambda = \frac{2}{3}$.	
		$\triangleright \cos(\overrightarrow{V}_{d}; \overrightarrow{V}_{D}) = \frac{\overrightarrow{V}_{d}.\overrightarrow{V}_{D}}{\ \overrightarrow{V}_{d}\ \times \ \overrightarrow{V}_{D}\ } = \frac{\sqrt{2}}{2}.$	
	3-a	$\parallel \overrightarrow{V_{d}} \parallel \times \parallel \overrightarrow{V_{D}} \parallel \qquad \qquad 2$	
		Donc l'un des angles formés par (d) et (D) est égal à 45°.	
		► Ou : \overrightarrow{V}_{D} (3;0;3); $\overrightarrow{V}_{D} = \overrightarrow{V}_{d} + \overrightarrow{V}_{d'}$ avec $ \overrightarrow{V}_{d} = \overrightarrow{V}_{d'} = 3$.	
		► Ou : Soit $E(-1; -1; 0)$ un point de (D); $d(E; (d)) = d(E, (d')) = 2$.	
II	3-b	$\hat{A} = \hat{T} = \hat{S} = 90^{\circ} \text{ et ES} = \text{ET ,donc ATES est un carré, par suite}$ $AT = \frac{AE}{\sqrt{2}} = 2 \text{ . Ou AT} = ES = 2 \text{ .}$	
	3-c	Soit L le milieu de [AE]; L(0; -1; 1) (Q): \overrightarrow{LM} . $\overrightarrow{AE} = 0$ avec $\overrightarrow{AE}(-2; 0; -2)$ (Q): $x + z - 1 = 0$ T et S sont deux points de (Q) et de (P), par suite (TS) est la droite d'intersection de (Q) et (P). (TS): $\begin{cases} x + z - 1 = 0 \\ 2x + y - 2z + 3 = 0 \end{cases}$ (TS): $x = -\alpha + 1$, $y = 4\alpha - 5$, $z = \alpha$.	

III		$ \begin{array}{c} 0,6 \\ \hline C \\ \hline C \\ \hline C \\ 0,4 \end{array} $ $ \begin{array}{c} 0,6 \\ \hline C \\ C \\ \hline C \\ C \\$				
	1-a	$P(C \cap F) = 0.25 \times 0.6 = 0.15$; $P(C \cap I) = 0.3$ $P(C \cap T) = 0.4 \times 0.6 = 0.24$; $P(C) = P(C \cap F)$ P(C) = 0.6 car 60% des clients choisissent	$+P(C\cap I)$	$+P(C \cap T) = 0$	0,6 .	
	1-b	$P(I/C) = \frac{P(I \cap C)}{P(C)} = \frac{0.21}{0.6} = 0.35.$				
	2-a	xi 700 000 800 000 1100 000 12 pi 0,16 0,24 0,14	250 000 0,21	1300 000 0,1	1500 0 0,15	
	2-b	E(X) = 1 075 500 . 1 075 500LL est la somme moyenne payée pa	ar un voya	geur à l'agen	ice.	
	2-c	Si l'agence sert 200 voyageurs on estime qu'e $200 \times E(X) = 215\ 100\ 000\ LL$.	elle reçoit	_		

IV	Le triangle ACE est rectangle en C , le cercle (T) a pour diamètre [AE], d'où (T') est le cercle de diamètre [BD] = $S(AE)$.	
	J: milieu de [ED] et BDE est isocèle donc $\hat{B} \hat{J} D = 90^{\circ}$ et $\hat{J} \in (T')$.	

	AEC est un triangle demi-équilatéral direct et BDJ est un triangle demi équilatéral direct donc $S(C) = J$.	
4-a	$z_B = 2$; $z_C = 1 + i\sqrt{3}$; $z_D = 1 - i\sqrt{3}$ et $z_E = 4$.	
	$z' = az + b = \frac{1}{2}e^{-i\frac{2\pi}{3}}z + b = -\frac{1}{4}(1+i\sqrt{3})z + b.$	
	$S(A) = B \text{ donc } b = 2 \text{ d'où } z' = -\frac{1}{4}(1 + i\sqrt{3})z + 2.$	
4-b	► Ou : S(A) = B et S(E) = D donnent 2= 0 + b et 1 - $i\sqrt{3}$ = a(4) + b	
	$b = 2 \text{ et } a = -\frac{1}{4}(1+i\sqrt{3}).$	
	$z_{W} = \frac{b}{1-a} = \frac{2}{7}(5-i\sqrt{3}).$	
	S'oS est une similitude de centre W et de rapport $\frac{1}{2} \times 2 = 1$ et d'angle	
5-a	$-\frac{\pi}{3} - \frac{2\pi}{3} = -\pi$. S'oS est une symétrie centrale de centre W.	
5-b	$z_{A'} = 2z_W = \frac{4}{7}(5 - i\sqrt{3}).$	

		(P): $y^2 = 2x - 1 = 2(x - \frac{1}{2})$ et (P'): $x^2 = 2y - 1$.	
	1	(P) de sommet $S(\frac{1}{2},0)$, de foyer $F(1;0)$ et de directrice (y'y).	
	1	(P') de sommet S'(0, $\frac{1}{2}$), de foyer F'(0;1) et de directrice (x'x).	
V	2	Les coordonnées de A vérifient les équations de (P) et de (P'), donc A est un point commun à ces paraboles. $\blacktriangleright (OA) : y = x$ $(OA) \cap (P) : x^2 = 2x - 1 \; ; \; (x - 1)^2 = 0 \; , \; x' = x'' = 1 \text{(racine double)}$ $(OA) \text{ est tangente à (P) en A.}$ $(OA) \cap (P') : y^2 = 2y - 1 \; ; \; (y - 1)^2 = 0 \; , \; y' = y'' = 1 \text{(racine double)}$ $(OA) \text{ est tangente à (P') en A.}$ $\blacktriangleright Ou : 2yy' = 2 \; , \; y' = \frac{1}{y} \text{ et } y_A' = 1 \; ; \; l'équation de la tangente en A à (P)}$ $\text{est } y - 1 = 1(x - 1) \; ; \; y = x \; c'\text{est (OA)} \; .$ $\text{De même pour (P').}$ $\blacktriangleright \text{Soit en remarquant que (OA) est la bissectrice de FÂF'}.$	
	3	(d): y = -x. (d) ∩ (P): x² = 2x - 1; racine double x'= x"= x _A . (d) ∩ (P'): y² = 2y - 1; racine double y'= y"= y _A . ► Ou (d) est la symétrique de (OA) par rapport à l'axe focal (axe de symétrie) de (P) donc (d) est une tangente à (P). De même (d) est symétrique de (OA) par rapport à l'axe focal (y'y) de (P').	

VI	A-1	$\begin{array}{l} y"+3y'+2y=2\;;\;z=y-1\;.\\ (E_1):z"+3z'+2z=0\;.\\ \text{Equation caract\'eristique de }(E_1):r^2+3r+2=0\;;\;r=-1\;\text{ou}\;r=-2\\ \text{Donc }z=C_1e^{-x}+C_2e^{-2x} \end{array}$	
	A-2	$\begin{aligned} y &= z + 1 = C_1 e^{-x} + C_2 e^{-2x} + 1 \\ y(0) &= 0 \text{ et } y'(0) = 0 \text{ donnent } C_1 + C_2 = -1 \text{ et } -C_1 - 2C_2 = 0 \text{ ;} \\ C_1 &= -2 \text{ et } C_2 = 1 \text{ .} \\ \text{Donc } y &= -2e^{-x} + e^{-2x} + 1 \text{ .} \end{aligned}$	
	B-1	$f(x) = e^{-2x} - 2e^{-x} + 1.$ $\lim_{x \to +\infty} f(x) = 0 + 1 = 1, \text{ la droite (d) d'équation y = 1 est une asymptote à (C)}.$	

		$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} e^{-x} (e^{-x} - 2 + e^{x}) = +\infty.$	
	B-2	$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{e^{-x}(e^{-x} - 2 + e^x)}{x} = -\infty(+\infty) = -\infty$	
		$x \rightarrow -\infty$ x $x \rightarrow -\infty$ x $y'y$ est une direction asymptotique.	
		y'y est une direction asymptotique. $f'(x) = -2e^{-2x} + 2e^{-x}$ $= 2e^{-x}(1 - e^{-x})$ $x \mid -\infty$ 0 $+\infty$	
	B-3	f'(x) = 0 +	
		$f(x) + \infty$	
		$f''(x) = 4 e^{-2x} - 2 e^{-x} = 2 e^{-x} (2 e^{-x} - 1)$	
	B-4	f''(x) s'annule en x = ln2 en changeant de signe ; en plus $f(ln2) = \frac{1}{4}$.	
		Donc le point W(ln2; $\frac{1}{4}$) est un point d'inflexion de (C).	
	B-5	(C) coupe (d); $e^{-2x} - 2e^{-x} + 1 = 1$; $e^{-x}(e^{-x} - 2) = 0$; $e^{-x} = 2$; $x = -\ln 2$ (C) coupe (d) en $(-\ln 2; 1)$.	
VI	B-6	-ln2 O	
	B-7	$S = \int_{-\ln 2}^{0} (1 - f(x)) dx = \int_{-\ln 2}^{0} (-e^{-2x} + 2e^{-x}) dx = \left[\frac{1}{2} e^{-2x} - 2e^{-x} \right]_{-\ln 2}^{0} = \frac{1}{2} u^{2}.$	
	B-8 a	$g(x) = \ln(f(x))$ g est définie pour $f(x) > 0$ ce qui correspond à $D_g =]-\infty; 0[\cup]0; +\infty[$ $g(x) = \ln(f(x)) \text{ et ln est strictement croissante donc g et f varient dans le même sens.}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

