Self-distillation Family

Lifan Lin

Department of Statistics and Data Science, SUSTech

July 13, 2023

Overview

- Continue with BYOL
- 2 Why Collapse is Prevent? -SimSIAM
- 3 Transformer trained by Self-Distillation
- 4 Conclusion

- Continue with BYOL
- 2 Why Collapse is Prevent? -SimSIAM
- Transformer trained by Self-Distillation

Self-distillation Family

Bootstrap Your Own Latent (BYOL)

Objective

Learn representation without labels.

Contrastive Learning

Learn a representation invariant of augmentation.

Need to Avoid Collapse

- Negative pairs
- BYOL's structure

Bootstrap Your Own Latent (BYOL)

Alignment & Uniformity

Alignment: 相似实例有相近的特征

Uniformity:保留尽可能多的信息

From:Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere

Illustrations

Bootstrap Your Own Latent (BYOL)

BYOL somehow prevent Collapse (and with small batch)

How BYOL prevent Collapse?

- Asymmetry (mdl&sg)
- Predictor in Student(online)
- Momentum Teacher(Target)

Implicit Negative Comparison?

- Accumulated Negative Pairs
- Addition of Predictor

Structure of SimCLR&BYOL

Question in BYOL

- Projector
 Works better, From SimCLR.
- EMA Exponential Moving Average
 - update slowly
 - Learn from student
 - Chase Between Fast&Slow
- Predictor
 - Flexibility
 - Learn expectation

BYOL Arch. Summary

0000000

Why BYOL

- Which component is essential to prevent collapse (trivial sol.)?
- Semi-supervised Learning: Momentum encoder works without Predictor. Mean Teacher (2018)
- Stable target matters. Update instantly, collapse(BYOL).
- Without Target (Teacher): Predictor is important. A model without target network can work with a near-optimal predictor (BYOL). Predictor parameters should have a larger Ir and carefully schedule.

Remove Momentum Teacher - SimSIAM

Where are the implicit Negative pairs:

- Large Batch size
- Momentum Encoder?
- Batch Normalization?
- Cosine Loss?
- Asymmetric structure

Simpler model: Shared weightsPrevent collapse without the use of:

- Negative Pair
- Large batch size
- Momentum encoder

Department of Statistics and Data Science, SUSTech

- Continue with BYOL
- 2 Why Collapse is Prevent? -SimSIAM
- 3 Transformer trained by Self-Distillation

SimSIAM - Experience

Remove Components in Model, see whether it collapses. (ablations)

Momentum encoder

May also act as "Memory bank".

SimSIAM - Experience

Remove Components in Model, see whether it collapses. (ablations)

Momentum encoder

Spacial case $\tau = 0$ in:

$$\xi \leftarrow \tau \xi + (1 - \tau)\theta$$

Conclusion: Effective, but not necessary for preventing collapse.

method	batch size	negative pairs	momentum encoder	100 ep	200 ep	400 ep	800 ep
SimCLR (repro.+)	4096	✓		66.5	68.3	69.8	70.4
MoCo v2 (repro.+)	256	✓	✓	67.4	69.9	71.0	72.2
BYOL (repro.)	4096		✓	66.5	70.6	73.2	74.3
SwAV (repro.+)	4096			66.5	69.1	70.7	71.8
SimSiam	256			68.1	70.0	70.8	71.3

Table 4. Comparisons on ImageNet linear classification. All are based on ResNet-50 pre-trained with two 224×224 views. Evaluation is on a single crop. All competitors are from our reproduction, and "+" denotes *improved* reproduction vs. original papers (see supplement).

Exponential Moving Average is still an effective update strategy.

12 / 33

Remove Components in Model, see whether it collapses.

Batch Normalization

 \Rightarrow A mapping to hyper-sphere.

		proj. MLP's BN		pred. MLP's BN		
	case	hidden	output	hidden	output	acc. (%)
(a)	none	-	-	-	-	34.6
(b)	hidden-only	✓	-	✓	-	67.4
(c)	default	✓	\checkmark	✓	-	68.1
(d)	all	/	✓	✓	✓	unstable

Table 3. Effect of batch normalization on MLP heads (ImageNet linear evaluation accuracy with 100-epoch pre-training).

Exponential Moving Average is still an effective update strategy.

SimSIAM - Ablation Experience

Neither Loss function nor Batch size

method	batch size	negative pairs	momentum encoder	100 ep	200 ep	400 ep	800 ep
SimCLR (repro.+)	4096	✓		66.5	68.3	69.8	70.4
MoCo v2 (repro.+)	256	✓	✓	67.4	69.9	71.0	72.2
BYOL (repro.)	4096		✓	66.5	70.6	73.2	74.3
SwAV (repro.+)	4096			66.5	69.1	70.7	71.8
SimSiam	256			68.1	70.0	70.8	71.3

Table 4. Comparisons on ImageNet linear classification. All are based on ResNet-50 pre-trained with two 224×224 views. Evaluation is on a single crop. All competitors are from our reproduction, and "+" denotes *improved* reproduction vs. original papers (see supplement).

Exponential Moving Average is still an effective update strategy.

Indispensable Predictor

• Maintain asymmetric Without predictor h the stop gradient is equivalent to removing stop gradient and scaled by $\frac{1}{2}$.

The gradient of $\frac{1}{2}D(z_1, \text{stopgrad}(z_2) + \frac{1}{2}D(z_2, \text{stopgrad}(z_1))$ has the same direction as th gradient of $D(z_1, z_2)$.

Maintain asymmetry.

Indispensable Predictor

Relate to representation

	pred. MLP h	acc. (%)
baseline	lr with cosine decay	67.7
(a)	no pred. MLP	0.1
(b)	fixed random init.	1.5
(c)	lr not decayed	68.1

Table 1. **Effect of prediction MLP** (ImageNet linear evaluation accuracy with 100-epoch pre-training). In all these variants, we use the same schedule for the encoder f (lr with cosine decay).

Closely follow new representation yield better performance.

SimSIAM - Ablation Experience

Stop Gradient is needed.

Figure 2. SimSiam with vs. without stop-gradient. Left plot: training loss. Without stop-gradient it degenerates immediately. Middle plot: the per-channel std of the ℓ_2 -normalized output, plotted as the averaged std over all channels. Right plot: validation accuracy of a kNN classifier [36] as a monitor of progress. Table: ImageNet linear evaluation ("w/ stop-grad" is mean \pm std over 5 trials).

Insufficient to prevent collapsing solely by the architecture Indicate underlying another optimization problem.

The implement of SimSIAM is an EM-like algorithm, following form:

$$\mathcal{L}(\theta, \eta) = \mathbb{E}_{\mathsf{x}, \mathcal{T}} \left[|| \mathcal{F}_{\theta}(\mathcal{T}(\mathsf{x})) - \eta_{\mathsf{x}} ||_2^2 \right]$$

where x is the input, \mathcal{T} is the augmentation, \mathcal{F}_{θ} is the encoder(without predictor yet). Ideally, let η_x be the representation of image x.

The procedure of SimSIAM is thought to be alternatively optimize \mathcal{L} w.r.t. θ and η .

Short review of EM algorithm (k-means clustering)

- E-Step
 Estimate the cluster centers. It is the learnable parameter of encoder.
- M-Step Assign the label vector of x.
- 3 repeat until convergence.

For SimSIAM

- 1 E-Step Estimate θ . It is the learnable parameter of **encoder**.
- M-Step η_x is analogous to the assignment vector of the sample x (a one-hot vector in k-means): it is the representation of x.
- 3 repeat until convergence.

For sample x in B:

$$\begin{array}{ll} \boldsymbol{\theta}^t \; \leftarrow \; \displaystyle \mathop{\arg\min}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}^{t-1}) \\[0.2cm] \boldsymbol{\eta}^t \; \leftarrow \; \displaystyle \mathop{\arg\min}_{\boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}^t, \boldsymbol{\eta}) \end{array}$$

- Stop-gradient is a natural result of EM-algorithm.
- By basic statistic, the second optimization gives:

$$\eta \leftarrow \mathbb{E}_{\mathcal{T}}[\mathcal{F}(\mathcal{T}(x))]$$

under L_2 norm.

If we sample T(x) exactly once, this is what SimSIAM do (ignore predictor for now):

$$\mathcal{L}(heta, \eta) = \mathbb{E}_{\mathsf{x}, \mathcal{T}} \left[||\mathcal{F}_{ heta}(\mathcal{T}(\mathsf{x})) - \mathcal{F}_{ heta}(\mathcal{T}'(\mathsf{x}))||_2^2
ight]$$

Now θ^t is a constant in this sub-problem, and \mathcal{T}' implies another view due to its random nature.

If we reducing the loss above with one SGD step, then SimSIAM algorithm is approached: A Siamese network with stop-gradient.

Predictor: fill the gap

We have not introduced predictor yet. The predictor h aims to minimize:

$$\mathbb{E}_{z_1}[||h(z_1)-z_2||_2^2]$$

where z is the projection(s). The optimal solution of h should be able to minimize the loss for ANY image x. Similarly, the ideal form of h is

$$h(z_1) = \mathbb{E}_z[z_2] = \mathbb{E}_{\mathcal{T}}[f(\mathcal{T}(x))]$$

Why Collapse is Prevent? -SimSIAM

Predictor: fill the gap

- The approximation of η_X is rough, only sample once(the Expectation is ignored.
- It could be impractical to compute the Expectation. A neural network may approximate it.

$$h(z) \sim \mathbb{E}[z] = \mathbb{E}_{\mathcal{T}}[f(\mathcal{T}(x))]$$

• The predictor fill this gap. The task of calculate $\mathbb E$ is switch to the other side, but keeping the loss like $\mathcal D(\mathsf{sample}, \mathsf{average})$

Proof of Hypothesis

Multi-step alternation

Optimize θ^t for k SGD step instead of only once.

	1-step	10-step	100-step	1-epoch
acc. (%)	68.1	68.7	68.9	67.0

The model work slightly better. SimSIAM

Proof of Hypothesis

Expectation over augmentation

- Remove predictor h
- Maintain a Expectation by EMA

$$\eta^t \leftarrow m * \eta_x^{t-1} + (1-m) * \mathcal{F}_{\theta^t}(\mathcal{T}'(x))$$

The model achieve an accuracy of 55% , does not collapse.

Short Summary

Simple is more!

- Find key Component to prevent collapse by **Ablation**.
- Propose an underlying EM-like optimization.

Loss in the form $\mathcal{D}(\mathsf{sample}, \mathsf{average})$ Is BYOL achieve this by momentum encoder?

S BYOL achieve this by momentum encoder.

- Continue with BYOL
- 2 Why Collapse is Prevent? -SimSIAM
- 3 Transformer trained by Self-Distillation
- 4 Conclusion

Difficulty:

Unlike language model, tokenizer of which can learn deep semantic info via statistic approach(e.g. coexistence).

Images(videos) are hard to tokenized.

- high dimension
- full of noise
- information is scarce

DINO

DINO used transformer to learn deep semantic info without ground true. Its structure is similar to a extent of BYOL and SimSIAM

- no predictor
- Teacher model updated by EMA
- Entropy loss

DINO (2022)

iBot

iBot used cropped image to learn deep semantic representation.

Its loss consist of two parts, difference of cropped image and difference of rest image

- no predictor
- Teacher model updated by EMA
- Entropy loss

iBot (2022)

They have no much innovation in the framework of self-distillation, but introduce transformer to it(replace covnet).

- Continue with BYOL
- 2 Why Collapse is Prevent? -SimSIAM
- 3 Transformer trained by Self-Distillation
- 4 Conclusion

Conclusion

- What is Contrastive learning
- Learn without negative pairs
- Expectation prevents collapse in the absence of negative pair.
- Self-distillation and Transformer