Champs de Killing et résidus

Abdelhak Abouqateb

Université Cadi-Ayyad Faculté des sciences et Techniques Marrakech

Ecole de printemps Mehdia Géométrie Non Commutative et Physique Kénitra, du 6 au 11 Avril 2009 \blacktriangleright <u>Thème</u> : Formules de résidus de classes caractéristiques en géométrie différentielle.

▶ <u>Thème</u> : Formules de résidus de classes caractéristiques en géométrie différentielle.

▶ <u>Objet</u> : Comment peut-on obtenir de telles formules en utilisant un complexe de Mayer-Vietoris et des connexions adaptées ?

▶ <u>Thème</u> : Formules de résidus de classes caractéristiques en géométrie différentielle.

▶ <u>Objet</u> : Comment peut-on obtenir de telles formules en utilisant un complexe de Mayer-Vietoris et des connexions adaptées ?

► <u>Sujet</u> : La formule principale qui va nous intéresser est la formule dite des résidus de Baum-Cheeger (*Malgré des travaux de* F. Gomez, N. Alamo, A. Abouqateb)

Invariant d'Euler-Poincaré :

 ${\it V}$: une variété riemannienne compacte orientée.

Invariant d'Euler-Poincaré:

V: une variété riemannienne compacte orientée.

Caratéristique d'Euler-Poincaré de V:

$$\chi(V) = \sum_{i=0}^{i=\dim V} (-1)^i \dim H^i(V; \mathbb{R})$$

Invariant d'Euler-Poincaré:

V : une variété riemannienne compacte orientée.

Caratéristique d'Euler-Poincaré de V:

$$\chi(V) = \sum_{i=0}^{i=\dim V} (-1)^i \dim H^i(V; \mathbb{R})$$

Théorème de Gauss-Bonnet :

$$\chi(V) = \chi(TV) \frown [V].$$

Formule de S. Kobayashi:

Supposons que V est munie d'une métrique riemannienne et soit X un champ de Killing sur V.

Formule de S. Kobayashi:

Supposons que V est munie d'une métrique riemannienne et soit X un champ de Killing sur V.

Alors, chaque composante connexe W de l'ensemble $Z\acute{e}ro(X)$ est une sous-variété compacte orientable de codimension paire.

Formule de S. Kobayashi:

Supposons que V est munie d'une métrique riemannienne et soit X un champ de Killing sur V.

Alors, chaque composante connexe W de l'ensemble $Z\acute{e}ro(X)$ est une sous-variété compacte orientable de codimension paire.

L'invariant d'Euler-Poincaré de V est la somme des invariants d'Euler-Poincaré de chaque composante connexe W :

$$\chi(V) = \sum_{W} \chi(W)$$

Une autre forme équivalente :

Soit \mathbb{T}^r un tore qui opère sur une variété V.

Une autre forme équivalente :

Soit \mathbb{T}^r un tore qui opère sur une variété V.

Alors, l'invariant d'Euler-Poincaré de V coı̈ncide avec celui des points fixes $V^{\mathbb{T}^r}$:

$$\chi(V) = \chi(V^{\mathbb{T}^r})$$

Une autre forme équivalente :

Soit \mathbb{T}^r un tore qui opère sur une variété V.

Alors, l'invariant d'Euler-Poincaré de V coı̈ncide avec celui des points fixes $V^{\mathbb{T}'}$:

$$\chi(V) = \chi(V^{\mathbb{T}^r})$$

Exemples:

- 1. $\chi(S^{2r}) = 2$.
- 2. Les seules surfaces qui possèdent une métrique riemannienne ayant un champ de Killing non trivial sont la sphère S^2 et le tore \mathbb{T}^2 .
- 3. Calculer $\chi(G/K)$ où $K \subset G$ sont compacts connexes.

Un problème de résidus :

Soit $\xi = (E \xrightarrow{\pi} V)$ un fibré vectoriel et soit G un groupe de Lie compact opérant sur ce fibré.

Un problème de résidus :

Soit $\xi = (E \xrightarrow{\pi} V)$ un fibré vectoriel et soit G un groupe de Lie compact opérant sur ce fibré.

▶ Un Théorème d'annulation : Si l'action de G sur V est quasi-libre, alors les classes caractéristiques du fibré ξ de dimension supérieure ou égale à dim $V-\dim G+1$ sont nulles.

Un problème de résidus :

Soit $\xi = (E \xrightarrow{\pi} V)$ un fibré vectoriel et soit G un groupe de Lie compact opérant sur ce fibré.

- ▶ Un Théorème d'annulation : Si l'action de G sur V est quasi-libre, alors les classes caractéristiques du fibré ξ de dimension supérieure ou égale à dim $V-\dim G+1$ sont nulles.
- Problème de résidus : Lorsque l'action de G n'est plus quasi-libre, décrire la localisation des classes caractéristiques de dimension supérieure ou égale à dim $V-\dim G+1$, autour du lieu singulier

$$\Sigma_G = \{x \in V / \dim(G_x) \ge 1\}$$

Soit $\xi = (E \xrightarrow{\pi} V)$ un *G*-fibré vectoriel. Notons $\Gamma(\xi)$ le $C^{\infty}(V)$ -module des sections de ξ .

Soit $\xi = (E \xrightarrow{\pi} V)$ un G-fibré vectoriel. Notons $\Gamma(\xi)$ le $C^{\infty}(V)$ -module des sections de ξ . G opère sur $\Gamma(\xi)$:

$$(g.\sigma)(x) = g\sigma(g^{-1}x)$$

Soit $\xi = (E \xrightarrow{\pi} V)$ un *G*-fibré vectoriel. Notons $\Gamma(\xi)$ le $C^{\infty}(V)$ -module des sections de ξ . *G* opère sur $\Gamma(\xi)$:

$$(g.\sigma)(x) = g\sigma(g^{-1}x)$$

Pour tout $h \in \mathcal{G}$, on désignera par $\theta_h^{\xi} : \Gamma(\xi) \to \Gamma(\xi)$, l'opérateur défini par :

$$(\theta_h^{\xi}\sigma)(x) = \frac{d}{dt}\mid_{t=0} ((\exp th)\cdot\sigma)(x)$$

Soit $\xi = (E \xrightarrow{\pi} V)$ un *G*-fibré vectoriel. Notons $\Gamma(\xi)$ le $C^{\infty}(V)$ -module des sections de ξ .

G opère sur $\Gamma(\xi)$:

$$(g.\sigma)(x) = g\sigma(g^{-1}x)$$

Pour tout $h \in \mathcal{G}$, on désignera par $\theta_h^{\xi} : \Gamma(\xi) \to \Gamma(\xi)$, l'opérateur défini par :

$$(\theta_h^{\xi}\sigma)(x) = \frac{d}{dt}\mid_{t=0} ((\exp th)\cdot\sigma)(x)$$

 X_h Le champ de vecteurs fondamental sur V associé à $h \in \mathcal{G}$:

$$(X_h)_x = \frac{d}{dt} \mid_{t=0} (\exp -th)x$$

$$\theta_h(f\sigma) = (X_h f)\sigma + f(\theta_h \sigma)$$

 \Diamond

$$\theta_h(f\sigma) = (X_h f)\sigma + f(\theta_h \sigma)$$

 \diamond Si \langle , \rangle est une métrique riemannienne G-invariante sur ξ , alors on a :

$$X_h. \langle \sigma, \tau \rangle = \langle \theta_h \sigma, \tau \rangle + \langle \sigma, \theta_h \tau \rangle.$$

 \Diamond

$$\theta_h(f\sigma) = (X_h f)\sigma + f(\theta_h \sigma)$$

 \diamond Si \langle,\rangle est une métrique riemannienne G-invariante sur ξ , alors on a :

$$X_h. \langle \sigma, \tau \rangle = \langle \theta_h \sigma, \tau \rangle + \langle \sigma, \theta_h \tau \rangle.$$

 \diamond abla est une connexion riemanienne si et seulement si

$$X.\langle \sigma, \tau \rangle = \langle \nabla_X \sigma, \tau \rangle + \langle \sigma, \nabla_X \tau \rangle$$

 \Diamond

$$\theta_h(f\sigma) = (X_h f)\sigma + f(\theta_h \sigma)$$

 \diamond Si \langle , \rangle est une métrique riemannienne G-invariante sur ξ , alors on a :

$$X_h. \langle \sigma, \tau \rangle = \langle \theta_h \sigma, \tau \rangle + \langle \sigma, \theta_h \tau \rangle.$$

 \diamond abla est une connexion riemanienne si et seulement si

$$X.\langle \sigma, \tau \rangle = \langle \nabla_X \sigma, \tau \rangle + \langle \sigma, \nabla_X \tau \rangle$$

 \diamond Si ∇ est *G*-invariante, alors on a :

$$\theta_h \circ \nabla_Y - \nabla_Y \circ \theta_h = \nabla_{[X_h, Y]}$$

On a:

 $\diamond S_h \in \operatorname{Hom}_{C^{\infty}(V)}(\Gamma(\xi))$, et par suite définit une section du fibré des endomorphismes de ξ .

On a:

- $\diamond S_h \in \operatorname{Hom}_{C^{\infty}(V)}(\Gamma(\xi))$, et par suite définit une section du fibré des endomorphismes de ξ .
- \diamond Si la connexion ∇ préserve une métrique riemannienne G-invariante \langle , \rangle , alors S_h est antisymétrique.

On a:

- $\diamond S_h \in \operatorname{Hom}_{C^{\infty}(V)}(\Gamma(\xi))$, et par suite définit une section du fibré des endomorphismes de ξ .
- \diamond Si la connexion ∇ préserve une métrique riemannienne G-invariante \langle , \rangle , alors S_h est antisymétrique.
- \diamond Si ∇ est *G*-invariante, de courbure *R*, alors

$$\nabla S_h = i(X_h)R$$

Théorème.

Théorème.

Soit $\xi = (E \xrightarrow{\pi} V)$ un \mathbb{T}^r -fibré vectoriel de base V une variété compacte, orientée, de dimension paire. Soit h_0 un vecteur dans l'algèbre de Lie \mathbb{R}^r de \mathbb{T}^r tel que $\{\exp th_0/t \in \mathbb{R}\}$ soit dense dans \mathbb{T}^r . Soit $\varphi(\xi) \in H^{2l}(V)$ une classe caractéristique de ξ de dimension maximale 2l = N.

Théorème.

Soit $\xi = (E \xrightarrow{\pi} V)$ un \mathbb{T}^r -fibré vectoriel de base V une variété compacte, orientée, de dimension paire. Soit h_0 un vecteur dans l'algèbre de Lie \mathbb{R}^r de \mathbb{T}^r tel que $\{\exp th_0/t \in \mathbb{R}\}$ soit dense dans \mathbb{T}^r . Soit $\varphi(\xi) \in H^{2l}(V)$ une classe caractéristique de ξ de dimension maximale 2l = N. Alors :

$$\varphi(\xi) \frown [V] = \sum_{\alpha} \mathit{Res}_{\varphi}(W_{\alpha})$$

La sommation porte sur la famille $(W_{\alpha})_{\alpha}$ des composantes connexes de $Z\acute{e}ro(X_{h_0})$,

Théorème.

Soit $\xi=(E\stackrel{\pi}{\to} V)$ un \mathbb{T}^r -fibré vectoriel de base V une variété compacte, orientée, de dimension paire. Soit h_0 un vecteur dans l'algèbre de Lie \mathbb{R}^r de \mathbb{T}^r tel que $\{\exp th_0/t\in\mathbb{R}\}$ soit dense dans \mathbb{T}^r . Soit $\varphi(\xi)\in H^{2l}(V)$ une classe caractéristique de ξ de dimension maximale 2l=N. Alors :

$$arphi(\xi) \frown [V] = \sum_{lpha} \mathit{Res}_{arphi}(\mathit{W}_{lpha})$$

La sommation porte sur la famille $(W_{\alpha})_{\alpha}$ des composantes connexes de $Z\acute{e}ro(X_{h_0})$, et le nombre $Res_{\varphi}(W_{\alpha})$ est donnée par :

$$extit{Res}_{arphi}(W_{lpha}) = \left[\left(rac{arphi(R^{\xi_{lpha}} + heta^{\xi_{lpha}}_{h_0})}{\chi(R^{N_{lpha}} + heta^{N_{lpha}}_{h_0})}
ight)_{N-2m_{lpha}}
ight] \frown [W_{lpha}]$$

▶ Dans le cas particuler où E = TV et W_{α} est un point isolé $\{p\}$, alors le résidu $Res_{\varphi}(W_{\alpha})$ est donné par :

▶ Dans le cas particuler où E = TV et W_{α} est un point isolé $\{p\}$, alors le résidu $Res_{\varphi}(W_{\alpha})$ est donné par :

$$\mathit{Res}_{arphi}(p) = rac{arphi(A_X(p))}{\chi(A_X(p))}$$

où $A_X(p)$ est l'endomorphisme antisymétrique de T_pV naturellement définit à partir de la dérivée covariante $(A_X = L_X - \nabla_X = -\nabla X, \nabla$ la connexion de Levi-Civita associée à la métrique riemannienne \mathbb{T}^r -invariante).

▶ Dans le cas particuler où E = TV et W_{α} est un point isolé $\{p\}$, alors le résidu $Res_{\varphi}(W_{\alpha})$ est donné par :

$$\mathit{Res}_{arphi}(p) = rac{arphi(A_X(p))}{\chi(A_X(p))}$$

où $A_X(p)$ est l'endomorphisme antisymétrique de T_pV naturellement définit à partir de la dérivée covariante $(A_X = L_X - \nabla_X = -\nabla X, \nabla$ la connexion de Levi-Civita associée à la métrique riemannienne \mathbb{T}^r -invariante).

▶ Si E = TV et $\varphi = \chi$, alors on retrouve la formule de S. Kobayashi.

Idée de démonstration :

Posons $\mathcal{H}_0 = \{th_0/t \in \mathbf{R}\}$, c'est une sous algèbre de Lie de \mathbf{R}^r algèbre de Lie de \mathbb{T}^r , elle engendre donc un groupe de Lie connexe H_0 immergé dans \mathbb{T}^r de dimension égale à 1.

Idée de démonstration :

Posons $\mathcal{H}_0 = \{th_0/t \in \mathbf{R}\}$, c'est une sous algèbre de Lie de \mathbf{R}^r algèbre de Lie de \mathbb{T}^r , elle engendre donc un groupe de Lie connexe H_0 immergé dans \mathbb{T}^r de dimension égale à 1. Pour tout $x \in V$, on a :

$$\dim(H_0)_x = \left\{ egin{array}{ll} 0 & \emph{si} & x \in V - Z\acute{e}ro(X_{h_0}) \ 1 & \emph{si} & x \in Z\acute{e}ro(X_{X_{h_0}}) \end{array}
ight.$$

L'action de H_0 sur le fibré ξ étant induite par celle de \mathbb{T}^r , on en déduit l'existence de métriques et connexions invariantes par H_0 sur ξ .

L'action de H_0 sur le fibré ξ étant induite par celle de \mathbb{T}^r , on en déduit l'existence de métriques et connexions invariantes par H_0 sur ξ .

La décomposition de $Z\acute{e}ro(X_{h_0})$ en composantes connexes s'écrit : $Z\acute{e}ro(X_{h_0}) = \coprod_{\alpha} W_{\alpha}$.

L'action de H_0 sur le fibré ξ étant induite par celle de \mathbb{T}^r , on en déduit l'existence de métriques et connexions invariantes par H_0 sur ξ .

La décomposition de $Z\acute{e}ro(X_{h_0})$ en composantes connexes s'écrit : $Z\acute{e}ro(X_{h_0}) = \coprod_{\alpha} W_{\alpha}$.

Pour tout α , on désignera par $(U_{\alpha}, \pi_{\alpha}, W_{\alpha})$ un \mathbb{T}^r -voisinage tubulaire de W_{α} dans V. On suppose que les ouverts U_{α} sont disjoints deux à deux.

On a ainsi un recouvrement naturel de ${\it V}$ par deux ouverts ${\it G}$ -stables :

$$\mathcal{U} = \{U^{\circ}, U^{1}\}$$
 avec

$$U^{\circ} = V - Z\acute{e}ro(X_{h_0})$$

 $U^1 = \prod_{\alpha} U_{\alpha}$

Le complexe de Mayer-Vietoris associé à ce recouvrement, est donné par :

$$MV(\mathcal{U})^* = \Omega^*(\mathit{U}^\circ) \bigoplus \Omega^*(\mathit{U}^1) \bigoplus \Omega^{*-1}(\mathit{U}^\circ \cap \mathit{U}^1)$$

$$\left[=\Omega^*(V-Z\acute{e}ro(X_{h_0}))\bigoplus(\bigoplus_{\alpha}\Omega^*(U_{\alpha}))\bigoplus(\bigoplus_{\alpha}\Omega^{*-1}(U_{\alpha}-W_{\alpha}))\right]$$

Le complexe de Mayer-Vietoris associé à ce recouvrement, est donné par :

$$MV(\mathcal{U})^* = \Omega^*(U^\circ) \bigoplus \Omega^*(U^1) \bigoplus \Omega^{*-1}(U^\circ \cap U^1)$$

$$\left[=\Omega^*(V-Z\acute{e}ro(X_{h_0}))\bigoplus(\bigoplus_{\alpha}\Omega^*(U_{\alpha}))\bigoplus(\bigoplus_{\alpha}\Omega^{*-1}(U_{\alpha}-W_{\alpha}))\right]$$

avec la différentielle

$$D(\lambda_0, \lambda_1, \lambda_{\circ 1}) = (d\lambda_{\circ}, d\lambda_1, -d\lambda_{\circ 1} + \lambda_1 - \lambda_0)$$

Pour tout couple de connexions $\{\nabla^{\circ}, \nabla^{1}\}: \nabla^{\circ}$ connexion riemannienne sur le fibré vectoriel riemannien

$$\xi^{\circ} = (E_{|_{U^{\circ}}} \stackrel{\pi}{\rightarrow} U^{\circ})$$

Pour tout couple de connexions $\{\nabla^{\circ}, \nabla^{1}\}: \nabla^{\circ}$ connexion riemannienne sur le fibré vectoriel riemannien

$$\xi^{\circ} = (E_{|_{U^{\circ}}} \stackrel{\pi}{\rightarrow} U^{\circ})$$

 $abla^1$ connexion riemannienne sur le fibré vectoriel riemannien

$$\xi^1 = (E_{|_{U^1}} \stackrel{\pi}{\to} U^1),$$

Pour tout couple de connexions $\{\nabla^{\circ}, \nabla^{1}\}: \nabla^{\circ}$ connexion riemannienne sur le fibré vectoriel riemannien

$$\xi^{\circ} = (E_{|_{U^{\circ}}} \stackrel{\pi}{\rightarrow} U^{\circ})$$

 $abla^1$ connexion riemannienne sur le fibré vectoriel riemannien

$$\xi^1 = (E_{|_{U^1}} \stackrel{\pi}{\to} U^1),$$

On désignera par

$$\varphi(\nabla^{\circ}, \nabla^{1}) = (\varphi(\nabla^{\circ}), \varphi(\nabla^{1}), \varphi(\nabla^{\circ}, \nabla^{1}))$$

 $\varphi(\nabla^{\circ}, \nabla^{1})$ est la forme différence de Bott associée au couple de connexions $\{\nabla^{\circ}, \nabla^{1}\}$ et au polynôme φ , il satisfait l'egalité $d(\varphi(\nabla^{\circ}, \nabla^{1})) = \varphi(\nabla^{1}) - \varphi(\nabla^{\circ})$.

La classe de cohomologie $[\varphi(\nabla^{\circ}, \nabla^{1})] \in H^{2l}(V)$ est indépendante du choix du couple $(\nabla^{\circ}, \nabla^{1})$, et définit la classe caractéristique $\varphi(\xi) \in H^{2l}(V)$ du fibré vectoriel ξ associée au polynôme φ .

La classe de cohomologie $[\varphi(\nabla^{\circ}, \nabla^{1})] \in H^{2l}(V)$ est indépendante du choix du couple $(\nabla^{\circ}, \nabla^{1})$, et définit la classe caractéristique $\varphi(\xi) \in H^{2l}(V)$ du fibré vectoriel ξ associée au polynôme φ .

S'il est possible de choisir ∇° comme φ -connexion (c'est-à dire $\varphi(\nabla^{\circ})=0$), on aura :

$$\varphi(\xi) \frown [V] = \sum_{\alpha} \left[\left(\int_{\Omega^{2m_{\alpha}}} \varphi(\nabla^{1}) - \int_{C^{2m_{\alpha}-1}} \varphi(\nabla^{\circ}, \nabla^{1}) \right) \right] \frown [W_{\alpha}]$$

Ainsi le problème revient à faire un choix judicieux des connexions ∇° et ∇^{1} de façon que :

$$\varphi(\nabla^{\circ}) = 0$$

et

$$\left[\left(\int_{\rho^{2m_{\alpha}}} \varphi(\nabla^{1}) - \int_{\varsigma^{2m_{\alpha}-1}} \varphi(\nabla^{\circ}, \nabla^{1})\right)\right] = \left[\left(\frac{\varphi(R^{\xi_{\alpha}} + \theta_{h_{0}}^{\xi_{\alpha}})}{\chi(R^{N_{\alpha}} + \theta_{h_{0}}^{N_{\alpha}})}\right)_{2l-2m_{\alpha}}\right]$$

pour tout α .

Pour tout α , on se donne désormais un isomorphisme \mathbb{T}^r -équivariant

$$\Phi_{\alpha} = \xi_{U_{\alpha}} \stackrel{\cong}{\to} \pi_{\alpha}^{-1}(\xi_{\alpha})$$

où $\xi_{U_{\alpha}} = (E_{|_{U_{\alpha}}} \xrightarrow{\pi} U_{\alpha})$ et $\xi_{\alpha} = (E_{|_{W_{\alpha}}} \to W_{\alpha})$, tel que par restriction des deux membres de l'isomorphisme à ξ_{α} on obtienne l'identité.

Pour tout α , on se donne désormais un isomorphisme \mathbb{T}^r -équivariant

$$\Phi_{\alpha} = \xi_{U_{\alpha}} \stackrel{\cong}{\to} \pi_{\alpha}^{-1}(\xi_{\alpha})$$

où $\xi_{U_{\alpha}} = (E_{|_{U_{\alpha}}} \xrightarrow{\pi} U_{\alpha})$ et $\xi_{\alpha} = (E_{|_{W_{\alpha}}} \to W_{\alpha})$, tel que par restriction des deux membres de l'isomorphisme à ξ_{α} on obtienne l'identité.

Munissons ensuite le fibré vectoriel $\xi = (E \xrightarrow{\pi} V)$ d'une métrique riemannienne \mathbb{T}^r -invariante \langle,\rangle , dont la restriction à $\xi_{U_{\alpha}}$ coïncide, via l'isomorphisme Φ_{α} , avec l'image réciroque par π_{α} de sa restriction à ξ_{α} (ce qui est possible : un argument de partition \mathbb{T}^r -invariante de l'unité le montre).

Munissons ξ d'une connexion riemannienne \mathbb{T}^r -invariante ∇^1 , dont la restriction à $\xi_{U_{\alpha}}$ coïncide, via l'isomorphisme Φ_{α} avec l'image réciproque par π_{α} de sa restriction à ξ_{α} .

Munissons ξ d'une connexion riemannienne \mathbb{T}^r -invariante ∇^1 , dont la restriction à ξ_{U_α} coïncide, via l'isomorphisme Φ_α avec l'image réciproque par π_α de sa restriction à ξ_α . Choisissons d'autre part une métrique riemannienne \mathbb{T}^r -invariante sur le fibré tangent à U° , et considérons la 1-forme $a\in\Omega^1(U^\circ)$ définie par : $a(X_{h_0})=1$ et a(Y)=0 pour Y orthogonal à X_{h_0} .

Munissons ξ d'une connexion riemannienne \mathbb{T}^r -invariante ∇^1 , dont la restriction à ξ_{U_α} coïncide, via l'isomorphisme Φ_α avec l'image réciproque par π_α de sa restriction à ξ_α . Choisissons d'autre part une métrique riemannienne \mathbb{T}^r -invariante sur le fibré tangent à U° , et considérons la 1-forme $a \in \Omega^1(U^\circ)$ définie par : $a(X_{h_0}) = 1$ et a(Y) = 0 pour Y orthogonal à X_{h_0} . Désignons ensuite par ∇° la connexion sur $\xi^\circ = (E_{|_{U^\circ}} \xrightarrow{\pi} U^\circ)$

$$abla^\circ =
abla^1 + a \otimes S^1_{bo}$$

définie par :

On trouve:

$$\left[\int_{c^{2m_{\alpha}-1}} -\varphi(\nabla^{\circ}, \nabla^{1}) \right] = \left(\left[\varphi(R^{\xi_{\alpha}} + \theta_{h_{0}}^{\xi_{\alpha}}) \right] \frown \left[\int_{c^{2m_{\alpha}-1}} \frac{a}{da} \right] \right)_{N-2m_{\alpha}}$$

On trouve:

$$\left[\oint_{S^{2m_{\alpha}-1}} \varphi(\nabla^{\circ}, \nabla^{1}) \right] = \left(\left[\varphi(R^{\xi_{\alpha}} + \theta_{h_{0}}^{\xi_{\alpha}}) \right] \frown \left[\oint_{S^{2m_{\alpha}-1}} \frac{a}{da} \right] \right)_{N-2m_{\alpha}}$$

et on démontre comme lemme :

$$\left[\int_{s^{2m_{\alpha}}} \frac{a}{1 - da} \right] = \left[\frac{1}{\chi_{m_{\alpha}} (R^{N_{\alpha}} + \theta_{h_0}^{N_{\alpha}})} \right]$$