## CLAIMS

## 1. An electronic component device comprising:

a rectangular plate-shaped element including a front face, a reverse face, a functional part provided on the front face, and a first frame-shaped electrode surrounding the functional part, wherein the coefficient of linear expansion in the x direction along a side of the rectangle is different from the coefficient of linear expansion in the y direction orthogonal to the x direction in the rectangular plane;

a substrate including a front face, a reverse face, and a second frame-shaped electrode provided on the front face at a position corresponding to the first frame-shaped electrode; and

a solder sealing frame provided on the surface of at least one of the first frame-shaped electrode and the second frame-shaped electrode,

wherein each of the first frame-shaped electrode, the second frame-shaped electrode, and the solder sealing frame includes a strip-shaped part extending in the x direction and a strip-shaped part extending in the y direction,

the element and the substrate are bonded with the solder sealing frame, the functional part provided on the front face of the element is hermetically sealed in a space formed between the element and the substrate, and

when the difference in expansion in the x direction between the element and the substrate is represented by  $Q_{\rm x}$  and the difference in expansion in the y direction between the element and the substrate is represented by  $Q_{\rm y}$ , in each of the first frame-shaped electrode, the second frame-shaped electrode, and the solder sealing frame, the width of the strip-shaped part

extending in the direction in which the larger difference in expansion is generated between the differences  $Q_x$  and  $Q_y$  in expansion is smaller than the width of the strip-shaped part extending in the direction in which the smaller difference in expansion is generated between the differences  $Q_x$  and  $Q_y$  in expansion.

- 2. The electronic component device according to claim 1, wherein the thickness of the solder sealing frame is 18  $\mu m$  or more.
- 3. The electronic component device according to claim 1 or claim 2, wherein when the coefficient of linear expansion in the x direction of the substrate is represented by  $A_x$ , the coefficient of linear expansion in the y direction of the substrate is represented by A<sub>v</sub>, the coefficient of linear expansion in the x direction of the element is represented by Bx, the coefficient of linear expansion in the y direction of the element is represented by  $B_{v}$ , the length of the external side of the strip-shaped part extending in the x direction of the first and second frame-shaped electrodes is represented by dlx, the length of the external side of the strip-shaped part extending in the y direction of the first and second frame-shaped electrodes is represented by  $\mathrm{dl}_{\mathrm{y}}$ , the difference  $\mathrm{Q}_{\mathrm{x}}$  in expansion is represented by  $Q_x = |A_x - B_x| \times dl_x$  (mm/°C), and the difference  $Q_y$  in expansion is represented by  $Q_y$  =  $|A_y$  -  $B_y$  |  $\times$  dl<sub>y</sub> (mm/°C), the larger difference in expansion between the differences  $\rm Q_x$  and  $\rm Q_y$  in expansion is 2.2  $\times$  10  $^{-5}$  (mm/°C) or less.
- 4. The electronic component device according to any one of claims 1 to 3, wherein when the ratio of flexural rigidity in the x direction between the element and the substrate is

represented by  $R_{\rm x}$  and the ratio of flexural rigidity in the y direction between the element and the substrate is represented by  $R_{\rm y}$ , the larger ratio of flexural rigidity between the ratios  $R_{\rm x}$  and  $R_{\rm y}$  of flexural rigidity is 1.2 or less.

5. The electronic component device according to any one of claims 1 to 4, wherein the element is a surface acoustic wave element.