F1/10th Autonomous Racing

Localization

Nischal K N

System Overview

Mapping

Hector Mapping

Localization

Path Planning

Control

System Overview

Mapping

Hector Mapping

Localization

Adaptive Monte Carlo Localization

Path Planning

Control

Localization using Odometry

Drawbacks of Localization using Wheel Odometry

Wheel spin due to lack of traction

Drawbacks of Localization using Hector odometry

Failed scan matching due to lack of features

Issue

- A mechanism to compensate the mistakes committed by odometry
- A solution robust to compensate for lack of information on initial position

Issue

- A mechanism to compensate the mistakes committed by odometry
- A solution robust to compensate for lack of information on initial position

Solution: Monte Carlo Localization

Alternate Solutions: Kalman Filter, Topological Markov Localization

A Example in 1 Dimension

Belief State

A Example in 1 Dimension

A Example in 1 Dimension

A Example in 1 Dimension

A Example in 1 Dimension At time t = 1Robot Door Direction of motion Measurement Model p(z|x)**Belief State** bel(x)

At time t = 2, robot moves forward a certain distance

At time t = 2, robot moves forward a certain distance

At time t = 2, robot moves forward a certain distance

At time t = 2, robot moves forward a certain distance

Discrete State

Discrete State

Particle Filter in 2D

Particle Filter in 2D

Particle Filter in 2D

$$S = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

$$S = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle Weight

Particle 1 S₁

$$S = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle Weight

Particle 1 S₁

Particle 2 S₂

$$S = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle	Weigh
Particle 1	S_1
Particle 2	S_2
Particle 3	Sa

$$S = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle	Weigh
Particle 1	S_1
Particle 2	S_2
Particle 3	S_3
Particle 4	S_4

$$S = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle	Weigh
Particle 1	S_1
Particle 2	S_2
Particle 3	S_3
Particle 4	S_4
Particle 5	S_5

$$S = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle	Weight
Particle 1	S_1
Particle 2	S_2
Particle 3	S_3
Particle 4	S_4
Particle 5	S_5
Particle 6	S_6

$$S = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle	Weight
Particle 1	S_1
Particle 2	S_2
Particle 3	S_3
Particle 4	S_4
Particle 5	S_5
Particle 6	S_6

Localization using

Odometry

Particle Filter

Update step

- Update the particle cloud with the update in position from the odometry
- Repeat Scan matching process for each particle and determine the weights.

Update step

- Update the particle cloud with the update in position from the odometry
- Repeat Scan matching process for each particle and determine the weights.

Update step

- Update the particle cloud with the update in position from the odometry
- Repeat Scan matching process for each particle and determine the weights.

Particle Weights

$$W_t \leftarrow W_{t-1} \times S$$

Particle Filter without Resampling

Resampling

Original Particles

Resampling

Original Particles

After N iterations

Resampling

Particles

Particle filter with Resampling

Kullback–Leibler divergence (KLD Sampling)

- Variable Particle size
- Sample size is proportional to error between odometry position and sample based approximation
- i.e smaller sample size when particles have converged

Particle Filters in ROS

Adaptive Monte Carlo Localization Package

Localization for a robot moving in a 2D space

Localizes against a pre-existing map

Tf tree – Where does AMCL fit in

Tf tree – Where does AMCL fit in

Tf tree – Where does AMCL fit in

Input Parameters:

1. Laser Scan

Input Parameters:

- 1. Laser Scan
- 2. Dead Reckoning/Odometry

Input Parameters:

- 1. Laser Scan
- 2. Dead Reckoning/Odometry
- 3. Map

Input Parameters:

- 1. Laser Scan
- 2. Dead Reckoning/Odometry
- 3. Map

Output Parameters:

1. AMCL pose

Input Parameters:

- 1. Laser Scan
- 2. Dead Reckoning/Odometry
- 3. Map

Output Parameters:

- 1. AMCL pose
- 2. Particle Cloud

min_particles

Default: 100

The minimum number of particles to be used for calculating correlation

max particles

Default: 500

The maximum number of particles to be used for calculating correlation

update_min_d

Default: 0.2m

The minimum translation movement required by the vehicle before an pose update is published

update_min_a

Default: $\pi/_6$ radians

The minimum angular movement required by the vehicle before an pose update is published

The initial mean position of the particles to initialize the particle filter

The covariance of particles distributed around the mean

What Next?

Path Planning and Trajectory Generation

Cost Maps

Control Algorithms For Navigation