三维殷集程序进展

谭焱,邱云昊

September 15, 2022

提纲

- 💶 程序背景
- 2 程序进展
 - 程序架构
 - 计算非流形点的优化
 - 粘合模块的修改
- ③ 后续工作

殷集研究背景

- 多相流中的几何和拓扑问题是求解动边界偏微分方程的核心问题.
- 现有方法对界面的几何和拓扑问题进行回避,导致了:
 - 对等距变换的流场不能保证几何性质.
 - 对同胚映射的流场不能保证拓扑性质.
 - 3 精度最高为二阶精度.
 - ◎ 很难对拓扑变化进行严格的处理.
- 我们的核心思想是用几何和拓扑的手段研究几何和拓扑的问题,其中首要工作在干殷集对流相建模。

二维殷集

- 殷集: 空间中边界有界的正则半解析开集. 所有殷集构成的集合被称为殷空间, 记为 ∑.
- 二维空间中,任一个殷集可以唯一表示为

$$\mathcal{Y} = \cup_j^{\perp \perp} \cap_i \operatorname{int}(\gamma_{j,i}),$$

约当曲线 $\gamma_{i,i}$ 是 \mathcal{Y} 内第 j 个连通分量的第 i 条边界.

• 实现了殷集上的布尔代数.

Figure 1: 二维殷集的交

三维殷集

二流形的分类定理 有向的紧二流形是同胚于球或者圆环或它们的有限个连通和.

黏合紧曲面是一个二维连通紧流形或这种流形的商空间,其商映射将多个与一维CW复形同胚的子集粘在一起;将这个一维子集删除后该黏合紧曲面仍然是连通的.

三维殷集的唯一表示

• 任一个殷集 $y \in Y$ 可以唯一表示为

$$\mathcal{Y}=\cup_{j}^{\perp\perp}\cap_{i}\text{int}(\Gamma_{j,i}),$$

黏合紧曲面 $\Gamma_{i,i}$ 是 \mathcal{Y} 的第 j 个连通分量的第 i 个边界.

- 唯一表示中每个内部是有界区域的黏合紧曲面对应一个连通分量.
- 连通分量的边界中每个内部无界的曲面对应连通分量闭包的洞.

程序的实现方式

- 实现步骤
 - 计算股集边界上的所有非流形点.
 - ② 沿非流形点剪开黏合紧曲面得到若干曲面片.
 - ③ 根据交并补的需要删除曲面片或改变曲面片方向.
 - 4 将曲面片重新粘合成黏合紧曲面集合.
 - 🗿 黏合紧曲面集合唯一表示一个三维殷集作为布尔运算结果.
- 代码模块
 - class TriangleIntersection.
 - ② class Triangulation. 找到非流形点.
 - class Prepast. 生成曲面片.
 - class RemoveOverlap.
 - class Locate. 恰当的保留曲面片.
 - 6 class Past. 生成黏合紧曲面.
 - 🗿 YinSet(). 构造殷集.

时间瓶颈分析

• 求交运算在同一图形的不同加密次数的模型上计算时间.

三角形/个	三角形求交/秒	Ratio	三角化/秒	Ratio	总时间	Ratio
2.11×10^{3}	5.52×10^{-1}		1.63×10^{-1}		7.63×10^{-1}	
3.46×10^{4}	1.04×10^{2}	1.87	2.33×10^{0}	0.95	1.07×10^{2}	1.76
1.14×10^{5}	1.26×10^{3}	2.09	7.66×10^{0}	0.99	1.27×10^{3}	2.07
3.59×10^{5}	1.28×10^{4}	2.02	2.42×10^{1}	1.00	1.29×10^{4}	2.02
5.39×10^{5}	2.89×10^{4}	2.00	3.59×10^{1}	0.97	2.90×10^{4}	1.99

- 计算时间过长, 瓶颈在三角形求交, 需求时间复杂度更低的求交算法.
- 三角化的时间复杂度达到理论最优的 O(1),.

使用空间划分降低求交计算时间度

• 三角形相交局部发生,将三角形划分到不同的局部降低计算量.

三角形/个	俩俩求交/秒	Ratio	空间划分/秒	Ratio
2.11×10^{3}	5.52×10^{-1}		4.26×10^{-1}	
3.46×10^{4}	1.04×10^{2}	1.87	5.14×10^{0}	0.89
1.14×10^{5}	1.26×10^{3}	2.09	1.36×10^{1}	0.82
3.59×10^{5}	1.28×10^{4}	2.02	3.44×10^{1}	0.80
5.39×10^{5}	2.89×10^{4}	2.00	4.85×10^{1}	0.84

针对殷集与网格求交优化

- 有限体积法基于网格的控制体, 求解需大量控制体和计算域求交.
- 不妨假设三角形与至多常数 N 个网格面相交.
- 计算复杂度从 O(n₁ * n₂) 降为 O(n₂).
- 只需替换 TriangleIntersection 模块.

原 Past 方法的问题

- 原 Past 方法只证明了能将殷集正确黏合.
- 无法检测到一些疑似殷集的非殷集输入.

黏合紧曲面的性质

Theorem 3.5 (Jordan Curve Theorem [14]). The complement of a Jordan curve γ in the plane \mathbb{R}^2 consists of two components, each of which has γ as its boundary. One component is bounded and the other is unbounded; both of them are open and path-connected.

• 黏合紧曲面同样拥有类似性质.

生成黏合紧曲面的方法

定义 2.18. 广义扇形的**好配对**定义为将这些扇形两两配对,使得不存在两对 (F,F') 和 (G,G') 有恰当交。

- 好配对粘合可以得到一个连通分量的边界.
- 正向好配对粘合再反向好配对粘合得到黏合紧曲面.
- 该方法检测到 Rabbit 不为殷集.

现有测试模型的问题

- Rabbit 与 Teddy 内部洞边界的方向朝外.
- ② cow 尾部有不可定向的曲面片.
- ③ 缺乏几何结构复杂的殷集测试模型.

后续工作方向

- 增加测试样例.
 - 熟悉已完成的三维殷集表面建模程序.
 - ② 截取简单殷集模型在复杂流场运行一段时间后的殷集.
 - ③ 使用 blender 构建拓扑结构复杂的模型.
 - 4 验证程序的正确性.
- 分析优化计算非流形点.
 - 分析布尔运算程序速度是否为瓶颈.
 - 检索更优的三角形求交和三角化算法.
- 重构现有程序.

请老师同学批评指正!