Mitschrieb Elementare Geometrie

Jens Ochsenmeier

6. Dezember 2017

Ubungen

1.1 2017-10-27

Aufgabe (1). Zeigen Sie: (\mathbb{R}^2, d) mit $d(x, y) = |(x_1 - y_1) + (x_2 - y_2)|$ ist pseudometrischer Raum.

- Positivität. Zu zeigen: $\forall x \in \mathbb{R}^2 : d(x, x) = 0$. $d(x,x) = |(x_1 - x_1) + (x_2 - x_2)| = |0| = 0.$
- Symmetrie. Zu zeigen: $\forall x, y \in \mathbb{R}^2 : d(x, y) = d(y, x)$. $d(x,y) = |(x_1 - y_1) + (x_2 - y_2)| = |(y_1 - x_1) + (y_2 - x_2)| = d(y,x).$
- Dreiecksungleichung. Zu zeigen: $\forall x, y, z \in \mathbb{R}^2 : d(x, z) \leq d(x, y) + d(y, z)$. $d(x,y) + d(y,z) = |(x_1 - y_1) + (x_2 - y_2)| + |(y_1 - z_1) + (y_2 - z_2)| \ge$ $|(x_1-z_1)+(x_2-z_2)|=d(x,z).$

Aufgabe (2). Gegeben:

- $||x||_1 := \sum_{i=1}^n |x_i|$, $||x||_2 := \sqrt{\sum_{i=1}^n x_i^2}$,
- $||x||_{\infty} := \max_{i=1,...,n} |x_i|$.

Wir zeigen, dass alle drei Normen sind. Dafür ist zu zeigen:

- 1. Positivität: $||x|| \ge 0 \forall x, x = 0 \iff ||x|| = 0$.
- 2. Sublinearität: $\forall x, y \in V : ||x + y|| \le ||x|| + ||y||$
- 3. Homogenität: $\forall x \in V \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda| \cdot ||x||$.

Positivität ist klar für alle drei. Homogenität ist auch arg simpel.

Sublinearität:

1.

$$||x + y||_1 = \sum_{i=1}^n |x_i + y_i| \le \sum_{i=1}^n |x_i| + |y_i|$$
$$= ||x||_1 + ||y||_1$$

2.

$$\begin{aligned} ||x+y||_{2}^{2} &= \langle x+y, x+y \rangle = \langle x, x \rangle + 2\langle x, y \rangle - \langle y, y \rangle \\ &\stackrel{\text{CSU}}{\leq} ||x||_{2}^{2} + 2||x||_{2}||y||_{2} + ||y||_{2}^{2} = (||x||_{2} + ||y||_{2})^{2} \\ &\Rightarrow ||x+y||_{2} \leq ||x||_{2} + ||y||_{2} \end{aligned}$$

3.

$$\begin{split} ||x+y||_{\infty} &= \max_{i=1,...,n} |x_i + y_i| \leq \max_{i=1,...,n} (|x_i| + |y_i|) \\ &\leq \max_{i=1,...,n} \max_{j=1,...,n} (|x_i| + |y_j|) = (\max_i |x_i|) + (\max_j |y_j|) \\ &= ||x||_{\infty} + ||y||_{\infty} \end{split}$$

Aufgabe (3). Sei (X, d) ein metrischer Raum, $r_1, r_2 \in \mathbb{R}_{>0}$.

- 1. Beweise:
 - 1. Falls $d(x,y) \ge r_1 + r_2$, dann sind $B_{r_1}(x)$, $B_{r_2}(y)$ disjunkt.

 Beweis: Angenommen, $\exists z \in B_{r_1}(x) \cap B_{r_2}(y)$.

 Dann ist $d(x,y) \le d(x,z) + d(z,y) < r_1 + r_2$
 - 2. Falls $d(x,y) \le r_1 r_2$, so ist $B_{r_2}(y) \subseteq B_{r_1}(x)$.

 Beweis: Angenommen, $\exists \ z \in B_{r_2}(y) \setminus B_{r_1}(x)$. Dann ist

$$d(x,z) \ge r_1 = (r_1 - r_2) + r_2$$

> $d(x,y) + d(z,y)$ 4

- 2. Finde je ein Gegenbeispiel für die Rückrichtung:
 - 1. Sei $X = \{0, 1\}$ und d Metrik auf X mit d(0, 1) = 1.

Idee: Wir nehmen zwei Bälle, die sich in der Theorie überschneiden, weil die Summe der Radien kleiner ist als der Abstand, aber in der Schnittmenge liegen

keine Elemente.

Wir wählen
$$r_1=r_2=\frac{2}{3}, x=0, y=1$$
. Wir haben $B_{r_1}(0)=\{0\}, B_{r_2}(1)=\{1\}$, aber $r_1+r_2=\frac{4}{3}>d(0,1)$.

2. Metrik wie in erstem Gegenbeispiel, $r_1=r_2=100, x=0, y=1.$ Dann ist $B_{r_1}(0)=\{0,1\}, B_{r_2}(1)=\{0,1\},$ aber d(0,1)>100-100.

Aufgabe (4). 1. Zeigen Sie, dass (\mathbb{R}^2, d_1) und $(\mathbb{R}^2, d_{\infty})$ isometrisch sind.

Sei
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x, y) \mapsto (x + y, x - y)$.

Behauptung: $f: (\mathbb{R}^2, d_1) \to (\mathbb{R}^2, d_{\infty})$ ist Isometrie.

f ist linear mit Rang 2, also bijektiv.

Seien $p = (x_1, y_1), q = (x_2, y_2) \in \mathbb{R}^2$. Zu zeigen:

$$d_{\infty}(f(p), f(q)) = d_1(p, q).$$

Es ist

$$\begin{split} d_1(p,q) &= |x_1 - x_2| + |y_1 - y_2| \\ &= \max\{|(x_1 - x_2) + (y_1 - y_2)|, \ |(x_1 - x_2) - (y_1 - y_2)|\} \\ &= \max\{|(x_1 + y_1) - (x_2 + y_2)|, |(x_1 - y_1) - (x_2 - y_2)|\} \\ &= (\text{undeutlich}) = d_{\infty}(f(p), f(q)). \end{split}$$

2. Zeigen Sie, dass (\mathbb{R}^n, d_1) und $(\mathbb{R}^n, d_{\infty})$ nicht isometrisch sind für n > 2.

Angenommen, es gibt eine Isometrie $\varphi^1:(\mathbb{R}^n,d_\infty)$ nach (\mathbb{R}^n,d_1) . Die Abbildung $\varphi^2:(\mathbb{R}^n,d_1)\to(\mathbb{R}^n,d_1)$, $x\mapsto x-\varphi^1(0)$ ist eine Translation, also eine Isometrie.

Wähle $\varphi := \varphi^2 \circ \varphi^1$. φ ist Isometrie mit $\varphi(0) = 0$.

Die Menge $\{(x_1,\ldots,x_n):x_i\in\{-1,1\}\}=A$ hat folgende Eigenschaft: Für alle $p,q\in A$ mit $p\neq q$ gilt $d_\infty(p,q)=2$ und $d_\infty(p,0)=1$.

Sei $B=\varphi(A)$. Für alle $p,q\in B$ mit $p\neq q$ gilt $d_1(p,q)=2$ und $d_1(p,0)=1$. Da φ injektiv ist, gilt $|B|=|A|=2^n>2n$ (weil $n\geq 3$). Da jedes $x\in B$ mindestens eine Koordinate $\neq 0$ hat, gibt es ein $i\in\{1,\ldots,n\}$ und $p,q,r\in B$ mit $p_i,q_i,r_i\neq 0$.

Dann gibt es oBdA verschiedene $p,q\in B$ mit $p_i,q_i>0$ (bzw haben selbes Vorzeichen, da es nur zwei mögliche Vorzeichen gibt).

Es gilt
$$d_1(p,q) = \sum_{j=1}^{n} |p_j - q_j| < \sum_{\text{da beide} > 0} \sum_{j=1}^{n} |p_j| + |q_j| = d_1(p,0) + d_1(0,q) = 2 \frac{t}{2}$$

1.2 2017-11-03

Nachtragen

1.3 2017-11-10

Aufgabe (1). Sei (X, d) ein metrischer Raum. Zu zeigen: Die Menge O aller doffenen¹ Teilmengen von X ist Topologie. Wir zeigen die Eigenschaften einer Topologie.

- 1. $\emptyset \in O, X \in O$
- 2. Zu zeigen: beliebige Vereinigungen von d-offenen Mengen sind wieder d-offen. Sei $\{A_i\}_{i\in I}$ eine Familie von d-offenen Mengen. Zu zeigen: $A:=\bigcup_{i\in I}A_i$ ist d-offen.

Beweis: Sei $x \in A$ beliebig. Dann $\exists i \in I \text{ mit } x \in A_i$. Da A_i d-offen ist, gibt es ein $\varepsilon > 0$ mit $B_{\varepsilon}(x) \subseteq A_i \subseteq A$.

Damit ist A d-offen.

3. Zu zeigen: endliche Durchschnitte d-offene Mengen sind wieder d-offen. Seien A,B d-offen. Zu zeigen: $A\cap B$ ist wieder d-offen.

Sei $x \in A \cap B$. Da A und B d-offen sind, gibt es $\varepsilon, \varepsilon' > 0$, sodass $B_{\varepsilon}(x) \subseteq A$ und $B_{\varepsilon'}(x) \subseteq B$. Wähle $\varepsilon'' = \min\{\varepsilon, \varepsilon'\}$. Dann ist $B_{\varepsilon''}(x) = B_{\varepsilon}(x) \cap B_{\varepsilon'}(x) \subseteq A \cap B$ und $A \cap B$ ist d-offen.

Aufgabe (2). Seien X, Y_1, Y_2 topologische Räume, seien

$$\begin{aligned} p_i: Y_1 \times Y_2 &\to Y_i \\ &(y_1, y_2) \mapsto y_i \quad \text{(für $i=1,2$)}. \end{aligned}$$

1. Zu zeigen: f ist stetig $\iff f_1 \coloneqq p_1 \circ f, f_2 \coloneqq p_2 \circ f$ stetig.

Beweis:

• \Rightarrow . Sei f stetig. Zu zeigen (oBdA): f_1 ist stetig, i.e. die Urbilder offener Mengen sind wieder offen.

Sei $U \subseteq Y_1$. Zu zeigen: $f_1^{-1}(U)$ offen. Es gilt³:

 $^{^{-1}}$ d- offen: $U \in X$ heißt d-offen, falls $\forall x \in U \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq U$.

 $^{^2}$ Es ist immer nur der Schnitt zweier Mengen zu zeigen, da $A_1\cap\cdots\cap A_n=(((A_1\cap A_2)\cap A_3)\cdots).$ Also ist sukzessive der gesamte Schnitt offen.

 $p_1^{-1}(U) = U \times Y_2$

$$f_1^{-1}(U) = f^{-1}(p_1^{-1}(U)) = f^{-1}(U \times Y_2).$$

Diese Menge ist offen, da *f* stetig ist.

←. Seien f₁, f₂ stetig. Zu zeigen: f ist stetig. Wir zeigen wieder, dass die Urbilder offener Mengen wieder offen sind.

Sei $U \in Y_1 \times Y_2$ offen. Zu zeigen: $f^{-1}(U)$ ist wieder offen.

Sei $x \in f^{-1}(U)$. Zu zeigen: Es gibt eine offene Menge $U' \subseteq f^{-1}(U)$ sodass $x \in U'$.

Es ist $f(x) \in U$. Da U offen ist in $Y_1 \times Y_2$ gibt es offene $V_1 \subseteq Y_1$, $V_2 \subseteq Y_2$, sodass $f(x) \in V_1 \times V_2 \subseteq U$.

Jetzt sei $U_1:=f_1^{-1}(U_1)$, $U_2:=f_2^{-1}(U_2)$. Da f_1 , f_2 stetig sind, sind U_1 und U_2 offen, also auch $U_1\cap U_2:=U'$ offen.

Da $f(x) \in V_1 \times V_2$, ist $f_1(x) = p_1(f(x)) \in V_1$, $f_2(x) = p_2(f(x)) \in V_2$, also $x \in U_1 \cap U_2 = U'$.

2. Sind p_1 , p_2 immer offen?⁴

Ja — sei $U \subseteq Y_1 \times Y_2$ offen. Dann ist

$$U = \left\{ \begin{array}{l} \left\{ V_1 \times V_2 : V_1 \subseteq Y_1 \text{ offen, } V_2 \subseteq Y_2 \text{ offen, } V_1 \times V_2 \subseteq U \right\}. \end{array} \right.$$

Dann ist $p_1(U) = \bigcup \{V_1 : \text{ analog zu } U, V_2 \neq \emptyset \}$ eine Vereinigung offener Mengen, also wieder offen — p_2 analog.

3. Sind p_1 , p_2 immer abgeschlossen?

Nein - sei

$$M = \{(x, y) \in \mathbb{R}^2 : x \cdot y = 1\}.$$

Das ist eine klassische Hyperbel. M ist abgeschlossen, aber $p_1(M) = \mathbb{R} \setminus 0$ nicht, auch nicht $p_2(M) = \mathbb{R} \setminus 0$.

Aufgabe (3). Seien X, Y Hausdorffräume, $f, g : X \rightarrow Y$ stetig. Zu zeigen: $\{x \in X : f(x) = g(x)\}$ ist abgeschlossen.

Da Y Hausforffraum ist

$$\Delta_y \coloneqq \{(y, y) : y \in Y\}$$

in Y^2 abgeschlossen. (\star)

⁴ Offene + geschlossene Abbildungen: $f: X \to Y$ heißt offen, wenn für alle offenen $U \subseteq X$ auch f(U) offen ist; $f: X \to Y$ heißt abgeschlossen, wenn für alle abgeschlossenen $U \subseteq X$ auch f(U) abgeschlossen ist.

 $\begin{array}{l} \textit{Beweis} \ (\star). \ \ \text{Zu zeigen:} \ \{(y,y') \in Y^2 : y \neq y'\} =: \Delta_y^c \ \text{ist offen.} \\ \text{Sei} \ (y,y') \in \Delta_y^c. \ \text{Da} \ Y \ \text{hausdorffsch ist, gibt es offene Räume} \ U_y \ \text{und} \ U_{y'}, \ \text{sodass} \ y \in U_y, \\ y' \in U_{y'}, U_y \cap U_{y'} = \varnothing. \ \text{Dann ist} \ (y,y') \in U_y \times U_{y'} \subseteq \Delta_y^c. \end{array}$

Die Funktion

$$h: X \to Y,$$

 $x \mapsto (f(x), g(x))$

ist stetig, denn $p_1 \circ h = f$ und $p_2 \circ h = g$ sind stetig nach Voraussetzung, also können wir den ersten Teil der Aufgabe 2 anwenden.

Da Δ_y abgeschlossen ist, ist $h^{-1}(\Delta_y) = \{x \in X : f(x) = g(x)\}$ ebenfalls abgeschlossen.

Aufgabe (4). Sei X topologischer Raum und ~ Äquivalenzrelation auf X. Die kanonische Abbildung $\pi: X \to X/_{\sim}$ sei offen.

 Zu zeigen: Falls X eine abzählbare Basis hat, dann auch X/₋.
 Sei B eine beliebige Basis von X. Sei U ∈ X/₋ offen. Dann ist π⁻¹(U) nach Definition der Quotiententopologie offen, also existiert A ⊆ B mit π⁻¹(U) = ∪_{M∈A} M. Dann ist

$$U = \pi(\pi^{-1}(U)) = \pi\left(\bigcup_{M \in A} M\right) = \bigcup_{M \in A} \pi(M).$$

Damit ist $\pi(B) := \{\pi(M) : M \in B\}$ eine Basis von $X/_{\sim}$ und wenn B abzählbar ist, so ist auch $\pi(B)$ abzählbar.

2. Zu zeigen: Ist $A:=\left\{(x,y)\in X^2:x\sim y\right\}$ abgeschlossen, so ist $X/_{\sim}$ hausdorffsch.

Beweis: Sei A abgeschlossen. Seien $p_1, p_2 \in X/_{\sim}, p_1 \neq p_2$. Wir wollen zeigen, dass p_1 und p_2 durch offene Mengen getrennt werden können.

Seien $x_1 \in \pi^{-1}(p_1)$, $x_2 \in \pi^{-1}(p_2)$ $(x_1 \text{ und } x_2 \text{ existieren, weil die kanonische Abbildung surjektiv ist). Da <math>[x_1]_{\sim} = p_1 \neq p_2 = [x_2]_{\sim}$ ist $x_1 \not \uparrow x_2$, also $(x_1, x_2) \in A^c$.

Da A_c in der Produkttopologie auf X^2 offen ist, gibt es $U_1, U_2 \subseteq X$ offen, sodass $(x_1, x_2) \in U_1 \times U_2 \subseteq A^c$.

Sei nun $V_1=\pi(U_1)$, $V_2=\pi(U_2)$. Es gilt $p_1\in V_1$, $p_2\in V_2$. V_1 und V_2 sind offen, da die kanonische Abbildung nach Voraussetzung offen ist.

Es bleibt zu zeigen, dass $V_1 \cap V_2 = \varnothing$. Sei $q_1 \in V_1$, $q_2 \in V_2$, $x_1 \in q_1$,

 $x_2 \in q_2$. Dann ist $(x_1, x_2) \in U_1 \times U_2 \subseteq A_c$, also ist $x_1 \not = x_2$ und demnach $q_1 = [x_1]_{\sim} \neq [x_2]_{\sim} = q_2$.

1.4 2017-11-17 - Übungsblatt 4

Aufgabe (1). Sei $A \subseteq X$ zusammenhängend. Zu zeigen: \bar{A} ist abgeschlossen. Sei $B \subseteq \bar{A}$ offen und abgeschlossen in \bar{A} .

OBdA sei $B\cap A\neq \emptyset$, ansonsten setze $B'=\bar A\setminus B$. Da $B\cap A$ offen, abgeschlossen und nichtleer in A ist, folgt aus A zusammenhängend, dass $B\cap A=A$ also $A\subseteq B$. Damit ist $A\subseteq B\subseteq \bar A$ und da B abgeschlossen ist, ist $\bar A\subseteq B$

 $\operatorname{und} B \subseteq \bar{A} \Longrightarrow \to \bar{A} = B$

Folglich ist auch \bar{A} abgeschlossen.

Aufgabe (1b). Seien $A, B \subseteq X$ zusammenhängend und $A \cap B = \emptyset$.

Zu zeigen: $A \cup B$ zusammenhängend. **Beweis**: Sei $C \subseteq A \cup B$ nichtleer, offen udn abgeschlossen in $A \cup B$.

Sei $x \in C$, dann ist $x \in A$ (oBdA, sonst wähle B)

Da $C\cap A$ abgeschlossen, offen und nichtleer in A und da A zusammenhängend, ist $C\cap A=A$ also $A\subseteq C$. Damit ist $\varnothing\neq A\cap B\subseteq C\cap B$. Weiter ist $C\cap B$ abgeschlossen, offen und nichtleer in B. Da B zusammenhängend ist, ist $C\cap B=B$ und $B\subseteq C$. Damit ist $C\subseteq A\cup B\subseteq C$.

Also $C = A \cup B \Rightarrow A \cup B$ ist zusammenhängend, da $A \cup B$ und Ø die einzigen gleichzeitig offenen und abgeschlossenen Mengen sind.

Aufgabe (1c). Sei $\{A_i\}_{i\in I}$ eine zusammenhängende Familie (Familie zusammenhängender Mengen), sodass $A_i\cap A_j\neq\emptyset$.

Zu zeigen: $A := \bigcup_{i \in I} A_i$ ist zusammenhängend.

Sei $B\subseteq A$ offen, abgeschlossen und nichtleer. Sei weiter $x\in B$. Dann existiert $i\in I$ mit $x\in A_i$. Sei $y\in A$ beliebig.

Behauptung: $y \in B$ **Beweis**: Sei $j \in I$, sodass $y \in A_j$ nach Aufgabenteil b) ist dann $A_j \cup A_i$ zusammenhängend. Damit ist $B \cap (A_i \cup A_j) = A_j \cup A_i$, weil alle A_i zusammenhängend. Weiter ist $y \in A_i \cup A_j$ und $y \in B$.

Daraus folgt: $A \subseteq B$ und $B \subseteq A \Rightarrow A = B$.

Aufgabe (2a). Zu zeigen: B ist die Basis einer Topologie O_p auf P.

- 1. Zeige: $P \in O_p$, wobei $O_p = \{\bigcup_{U \in A} U | A \subseteq B\}$. $P = U_{\alpha}(0, 0, \dots) \in B \text{ also } P \in O_p$
- 2. Für $V_1, V_2 \in O_p$ gilt $V_1 \cap V_2 \in O_p$. Sei $V_1 = \bigcup_{U \in A_1} U, V_2 = \bigcup_{U \in A_2} U$.

Behauptung: Für alle $U, U' \in B : U \cap U' \in B$ oder $U \cap U' = \emptyset$.

Dann ist

$$V_1 \cap V_2 = \bigcup_{U \in A_1} \bigcup_{U' \in A_2} (U \cap U')$$
 also $V_1 \cap V_2 \in O_p$

Beweis: Seien $U = U_{\mu}(a) \in B, U' = U_{\mu'}(a') \in B$. Falls $U \cap U' \neq \emptyset$ existient $a'' \in U \cap U'$. Dann gilt $U = U_{\mu}(a''), U' = U_{\mu'}(a'')$. Also: $U \cap U' = U_{\mu \cup \mu'}(a'')$

3. O_P ist bezüglich Vereinigung abgeschlossen, denn O_p besteht aus Vereinigungen von Elementen aus B.

Insgesamt folgt damit: O_p ist Topologie!

Aufgabe (2b). Ist (P, O_p) zusammenhängend, unzusammenhängend oder total unzusammenhängend?

Behauptung:: (P, O_p) ist total unzusammenhängend!

Beweis: Seien $a,b \in P$ Zeige: Es gibt offene, abgeschlossene Mengen U_a, U_b mit $U_a \cup U_b = P, U_a \cap U_b = \emptyset$ und weiter $a \in U_a, b \in U_b$.

Seien $a \neq b \Rightarrow \exists i \in \mathbb{N}$ sodass $a_i \neq b_i$. Setze $U_a = U_{\{i\}}(a)$ und $U_b = U_{\{i\}}(b)$.

 U_a und U_b sind in O_p offen. Nach Wahl von i ist $U_a \cap U_b = \emptyset$ und $U_a \cup U_b = P$. Angenommen es gibt ein zusammenhängendes $V \subseteq Pmit|V| \ge 2$.

Wähle $a,b \in V$ mit $a \neq b$ und konstruiere U_a,U_b wie oben. Dann ist $V = (V \cap U_a) \cup (V \cap U_b)$ eine offene disjunkte Zerlegung von V. Widerspruch!

Aufgabe (3a). Es reicht zu zeigen, dass alle p_i stetig sind.

"
$$\Rightarrow$$
": Die Mengen $p_i^{-1}(\emptyset) = \emptyset$

$$p_i^{-1}(\{0,1\}) = P$$

$$p_i^{-1}(\{1\}) = U_{li}(1,\dots)$$

$$p_i^{-1}(\{0\}) = U_{\{i\}}(0,\ldots)$$

sind alle offen.

"\(: \text{Sei } U \) \(\sigma \) \(P \) offen. Dann ist \(U = \igcup_{U' \in A} U' \) f\(\text{fix } A \) \(\sigma \) \(B \) also \(f^{-1}(U) = \igcup_{U \in A} f^{-1}(U') \).

Fallse alle $f^{-1}(U')$ offen sind, dann auch $f^{-1}(U)$. Damit können wir uns für U auf Basiselemente beschränken. Sei also $U = U_{\mu}(a) \in B$.

Sei weiter $M = \{i_1, \dots, i_n\}$. Dann ist:

$$U = U_{i_1}(a) \cap \cdots \cap U_{i_n}(a) = p_i^{-1}(\{a_{i_1}\}) \cap \cdots \cap p_i^{-1}(\{a_{i_n}\})$$

Also ist:
$$f^{-1}(U) = f_i^{-1}(\{a_{i_1}\}) \cap \cdots \cap f_i^{-1}(\{a_{i_n}\}).$$

Diese Menge ist endlicher Schnitt offener Mengen, weil alle f_i stetig sind.

Aufgabe (3b). Zu zeigen: $f: X \to (P, \mathcal{P}(P))$ ist nicht genau dann stetig, wenn alle $f_i: X \to \{0, 1\}$ stetig sind.

Beispiel: $X = (P, O_P), f : (P, O_p) \rightarrow (P, \mathcal{P}(P)), a \mapsto a.$

Sei $A \in \mathcal{P}(P) \setminus O_p$ beliebig, dann ist A offen in $\mathcal{P}(P)$ aber $f^{-1}(A) = A$ ist in (P, O_P) nicht offen, also ist f nicht stetig.

1.5 2017-11-24 - Übungsblatt 5

Aufgabe (1a). Sei $Y \subseteq \mathbb{R}^n$ heißt konvex, falls für $p,q \in Y$ auch die Verbindungsgerade pq in Y.

Zeigen sie: Jede konvexe Teilemenge von \mathbb{R}^n ist zusammenhängend.

Behauptung: $Ykonvex \Rightarrow Ywegzusammenhngend$,

Seien $p,q\in Y$, Sei $c:[0,1]\to Y,t\mapsto (1-t)p+tq$ Die Verbindungsstrecke. Dann ist $c(0)=p,c(1)=q,c([0,1])\subseteq Y$ wegen Konvexität.

Da p, q bel. waren, ist Y wegzusammenhänged.

Aufgabe (2). vgl. Aufgabentext..

Zu zeigen: X ist kompakt \iff für alle Familien $(A_i)_{i\in I}$ abgeschlossen Teilmengen von X mit endlicher Schnitteigenschaft gilt: $\bigcap_{i\in I}\neq\emptyset$.

Sei
$$(A_i)$$
,, Familie und $\forall i \in I$ sei $B_i := X \setminus A_i = A_i^C$.

Dann gelten: $(A_i)_{i \in I}$ ist Familie von offenen Mengen \iff (B_i) besteht aus abg. Mengen.

$$\bigcap_{i \in M} A_i \neq \emptyset \Longleftrightarrow X \setminus \bigcap_{i \in M} A_i \neq X \setminus \emptyset \Longleftrightarrow \bigcup_{i \in M} (X \setminus A_i) \neq X \Longleftrightarrow (B_i)_{i \in M}$$

ist keine Überdeckung von X. **Beweis:** Alle Familien abgeschlossener Teilmengen von X mit endl. Schnitteigenschaft haben nichtleeren Schnitt. \iff Alle Familien mit abge-

schlossenen Teilmengen von X mit leerem Schnitt besitzen eine undendliche Teilfamilie mit leerem Schnitt.

 \Leftrightarrow Alle Familien offener Teilmengen von X, die X überdecken, besitzen eine endliche Teilfamilie, die X überdeckt. \iff x ist kompakt

Aufgabe (3). Sei X kompakt, $f: X \to \mathcal{R}$ stetig.

Zeigen Sie: f nimmt auf \mathcal{R} ein endliches Minimum und endliches Maximum an.

Beweis: Da stetige Bilder kompakter Mengen wieder kompakt sind, ist f(X) kompakt in \mathcal{R} .

Nach dem Satz von Heine-Borel sind die kompakten Mengen in $\mathcal R$ genau die abgeschlossenen, beschränkten Mengen. Damit ist f(X) also abgeschlossen und beschränkt, außerdem nichtleer.

Zeige ausführlich (statt mit Ana I.): f(X) hat Maximum, Minimum.

Sei $s := \sup f(X)$. Da f(X) nichtleer ist, ist $s > -\infty$.

Da f(X) nach oben beschränkt ist, ist $s < \infty$. Für alle $n \in \mathcal{N}$ gibt es ein $x_n \in f(X)$ sodass $s - \frac{1}{n} < x_n \le s$, weil $s - \frac{1}{n}$ keine obere Schranke von f(X) ist.

Damit ist $\lim_{n\to\infty} x_n = s$. Damit ist $s \in f(X)$ und somit Maximum von f.

Aufgabe (4a). Sind Mannigfaltigkeiten stückweise wegzusammenhängend?

Behauptung : Ja!

Beweis: Sei $x \in M$, M sei n - dim Mannigfaltigkeit.

Dann gibt es eine Karte (φ, U) von $M, \varphi : U \to \mathbb{R}^n, x \in U$.

Damit ist $\varphi(x)$ innerer Punk von $\varphi(U)$, also gibt es einen offenen Ball

 $B \coloneqq B_{\varepsilon}(\varphi(x)) \subseteq \varphi(U).$

B ist wegzusammenhängend, also auch $\varphi^{-1}(B)\subseteq U$ wegzusammenhängend und $\varphi^{-1}(B)$ ist **offene** Umgebung von $\varphi^{-1}(\varphi(x))=x$, wie gesucht.

Aufgabe (4b). Sind zusammenhängede Mannigfalitgkeiten immer wegzusammenhängend?

Behauptung: Ja!

Beweis: Für alle $x \in X$ ist W(x) offen.

Zu zeigen: Für alle $y \in W(x)$ gibt es eine in X offene Umgebung von y in W(x). Sei $y \in W(x)$. Dann ist W(x) = W(y). Sei U eine offene, wegzusammenhängende Umgebung von y.

Dann ist $U \subseteq W(y) = W(x)$ die gesuchte Umgebung.

Angenommen, X ist nicht wegzusammenhängend. Dann gibt es $x,y\in X$ mit $x\in W(x),y\notin W(x)$.

Nun ist W(x) offen (siehe oben), und W(x) ist abgeschlossen, denn

$$X\setminus W(x)=\bigcup_{z\notin W(x)}W(z)$$

ist auch offen. Damit ist W(x) Zeuge, dass X nicht zusammenhängend ist. Damit folgt die Behauptung.

2017-12-01 - Übungsblatt 6

Muss nochmal gesäubert werden!!!

Aufgabe (1a). Zu zeigen: **Stereographische Projektion** an p_+ und p_- ist genau die Umkehrabbildung φ^{-1} .

$$\begin{split} &\psi_{\pm}:S^2\setminus\{p_{\pm}\}\to\mathcal{R}^{\in}, (x,y,z)\mapsto \left(\frac{x}{1\pm z},\frac{y}{1\pm z}\right.\\ &\text{zz:}\ \psi_{+}\circ\varphi_{+}=\mathit{id}.\ \text{Nachrechnen...}:\psi_{+}(\varphi_{+}(x,y))=\cdots=(x,y)\\ &\text{zz:}\ \varphi_{+}\circ\psi_{+}=\mathit{id}.:\ \text{Nachrechnen...}:\varphi_{+}(\psi_{+}(x,y,z))=\cdots=(x,y,z) \end{split}$$

Aufgabe (1b). Zeige: Der Kartenwechsel $\psi_+ \circ \psi_-^{-1} = \varphi_+^{-1} \circ \varphi_-$ ist C^{∞} . Sei $f : \psi_-(S^2 \setminus \{p_+, p_-\}) \to \psi_+(S^2 \setminus \{p_+, p_-\})$.

$$\begin{array}{l} f(x,y) = \cdots = \frac{1}{x^2 + y^2}(x,y) \text{ ist } C^{\infty}. \\ \text{Seien dafür: } g(x,y) = (\frac{p(x,y)}{(x^2 + y^2)^n}, \frac{q(x,y)}{(x^2 + y^2)^n}) \text{ für } p,q \in \mathbb{R}[x,y]. \end{array}$$

Beh: Es gibt $N \in \mathbb{N}, P, Q \in \mathbb{R}[x, y]$ sodass:

$$g_x(x,y) = \left(\frac{P(x,y)}{(x^2+y^2)^n}, \frac{Q(x,y)}{(x^2+y^2)^n}\right)$$

Mit dieser Behauptung folgt, dass alle partiellen Ableitungen von f auf $\mathbb{R}^2\setminus\{0\}$ existieren.

Beweis:

$$\frac{d}{dx}g(x,y) = \left((x^2+y^2)p_x(x,y) - 2xp(x,y), (x^2+y^2)q_x(x,y) - 2xq(x,y)\right) \cdot \frac{1}{(x^2+y^2)^n}$$

Aufgabe (2a). Der Tangentialraum T_pF von F in p sei definiert als $T_pF \coloneqq Bild(d\varphi(\varphi^{-1}(p)))$, wobei $\varphi: V \to F, V \subseteq \mathbb{R}^2$,

eine Parametrisierung von F um den Punkt $p \in F$ ist.

Zeige: Diese Definition ist unabhängig von φ .

Ansatz: Wähle zwei Parametrisierungen und zeige, dass das Bild das selbe ist.

Beweis: Seien φ , ψ Param. von F um p. Sei $q = \varphi^{-1}(p)$, $r = \psi^{-1}(p)$,

zz: $Bild(d\varphi(q)) = Bild(d\psi(r))$.

Es gilt $\psi = \varphi \circ (\varphi^- 1 \circ \psi)$ wobei $f := (\varphi^- 1 \circ \psi)$.

also: $d\psi(r) = d\varphi \circ f(r) = d\varphi(f(r)) \cdot df(r) = d\varphi(q) \cdot df(r)$, also:

 $Bild(d\psi(r)) \subseteq Bild(d\varphi(q)).$

Durch Vertauschung von ψ , φ erhalten wir auch $Bild(d\varphi(q)) \subseteq Bild(d\psi(r))$ also:

$$Bild(d\varphi(q)) = Bild(d\psi(r))$$

Aufgabe (2b). Vgl. Aufgabenstellung...

Beweis:

Sei $p = (p_x, p_y, p_z)$. Sei oBdA $p_z > 0$.

Sei
$$\varphi : B_1(0) \to S^2, (x, y) \mapsto (x, y, \sqrt{1 - x^2 - y^2}).$$

Dann ist:

$$d\varphi(p) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{-x}{\sqrt{1-x^2-y^2}} & \frac{-y}{\sqrt{1-x^2-y^2}} \end{pmatrix} (p) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{-p_x}{p_z} & \frac{-p_y}{p_z} \end{pmatrix}$$

Also:

$$T_p S^2 = \begin{bmatrix} 1 \\ 0 \\ \frac{-p_x}{p_z} \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \frac{-p_y}{p_z} \end{pmatrix} = \begin{bmatrix} p_z \\ 0 \\ -p_x \end{pmatrix}, \begin{pmatrix} 0 \\ p_z \\ -P_y \end{pmatrix}$$

Jetzt ist: $p \cdot t_1 = p_x p_z - p_z p_x = 0$ und $p \cdot t_2 = p_y p_z - p_z p_y = 0$ also $\{p\} \perp \{t_1, t_2\}$ und $[p] \perp [t_1, t_2] = T_p S$, also auch $T_p S = [p]^{\perp}$.

Aufgabe (3a). Sei

$$U_i \coloneqq \{ \lceil x_1, \dots, x_{n+1} \rceil \in P^n \mathbb{R} | x_i \neq 0 \}$$

und

$$\varphi_i([x_1,\ldots,x_n]) = \frac{1}{x_i}(x_1,\ldots,x_{i-1},x_{i+1},\ldots x_{n+1})$$

Zeige: (U_i, φ_i) bilden einen differenzierbaren Atlas von $P^n\mathbb{R}$.

Behauptung: Es gilt:

$$\varphi_i^{-1}(u_1,\ldots,u_n) = [u_1,\ldots,u_{i-1},1,u_i,\ldots,u_n]$$

Zeige: $\varphi_i \circ \varphi_i^{-1}$ ist differenzierbar für $i, j = 1, \dots, n+1, i < j$.

$$\varphi_{i}(\varphi_{j}^{-1}(u_{1},\ldots,u_{n})) = \varphi_{i}([u_{1},\ldots,u_{i-1},1,u_{i},\ldots,u_{n}])$$

$$= \left(\frac{u_{1}}{u_{i}},\ldots,\frac{u_{i-1}}{u_{i}},\frac{u_{i+1}}{u_{i}},\ldots,\frac{u_{j-1}}{u_{i}},\frac{1}{u_{i}},\frac{u_{j}}{u_{i}},\ldots,\frac{u_{n}}{u_{i}}\right)$$

ist C^{∞} von $\{u \in \mathbb{R}^n : u_i \neq 0\}$ nach $\{u \in \mathbb{R}^n : u_{i-1} \neq 0\}$.

Noch zz: $U_1 \cup \cdots \cup U_{n+1} = P^n \mathbb{R}$.

Für $[x_1, \ldots, x_{n+1}] \in P^n \mathbb{R}$ gibt es mindestens ein i mit $x_i \neq 0$ damit ist $[x_1, \ldots, x_{n+1}]$ in U_i . Damit gilt $U_1 \cup \cdots \cup U_{n+1} = P^n \mathbb{R}$.

Aufgabe (3b). **Behauptung:** $P^n\mathbb{R}$ ist hausdorffsch mit abzählbarer Basis.

Wir wissen aus der VL, dass $P^n\mathbb{R} = S^n/\sim$ wobei $x\sim y :\Leftrightarrow x=\pm y$,.

(Vgl. Abbildung).

Seien $\pm x, \pm y \in S^2 / \sim$.

Seien $U_x := B_{\varepsilon}(x) \cup B_{\varepsilon}(-x)$ und

 $U_y\coloneqq B_\varepsilon(y)\cup B_\varepsilon(-y).$

Zu jedem $z \in U_x$ ist auch $-z \in U_x$.

Zu jedem $z \in U_y$ ist auch $-z \in U_y$.

Also ist $\pi^{-1}(\pi(U_x)) = U_x$ also $\pi(U_x)$ auch offen in $S^n / \sim \cong P^n \mathbb{R}$.

Da U_x, U_y disjunkt gilt: $\pi(U_x) \cap \pi(U_y) = \emptyset$. Also sind $\pi(U_y), \pi(U_x)$ disjunkte offene Umgebungen von $\pm x, \pm y$ und damit ist $S^n/\sim P^n\mathbb{R}$ hausdorffsch.

Zur abzählbaren Basis:

Seien B_1,\ldots,B_{n+1} abzählbare Basis von $U_1,\ldots U_n+1$. Dann ist $B_1\cup B_2\cup\cdots\cup B_{n+1}$ eine abzählbare Basis von ??? $P^n\mathbb{R}$??? -> Weiß nicht was hier hin sollte