Review of know alsobra
Review of knoor algebra
lector and metrices - a use-ful way of organizing information about a model: variables, constants, initial values,
organizing information
about a
model: variables, constants, initial values,
_
Matrix: Ta b m=3 rows c d n=2 columns
n=Z columns
C d
Le f] 3×2 matrix
(column) [9] A matrix with one Vector: dimension (typically columns) being n=1
Vector: dimension (typically
h columns/beine n=1
1) Losia watrix
The classic
matrix problem: Ax=b= vector of constants
The classic matrix problem: $Ax = b = vector of constants$
vector of
unknown variables
A MINAMA AN IN PIC 2

ax+ by + cz = i This matrix problem is leguivalent to dx+ey+fz = K of linear equation; gxthy + iz = l Which can be written! $\begin{bmatrix} A & b & c \\ A & e & c \\ A & A & C \\ A & C$ Kemindo about how matrix mult works The guestion: how to solve this matrix problem for unknowns (x, y, z)? Invert A. [X] = [a b c] [k] = [d e f] [k]

Matrix determinant
In the matrix multiplication Ax,
In the matrix multiplication $A \times$, the det(R) tells us how much A makes vector \times "bigger" in the growtric sense.
Groweric sense.
det ([ab])=ad-be
[L/Ta L] (1 C)
det [a b c] = a det [h i] Ly h i] - b det [d f] Twent make
-bdet/7df
+ 00001 0014 10
be MATLAB + e det [de] Will efficiently
good to remember -

_

_

Eigenvalues and eigenvectors
Back to our naatrix problem? Ax=b
The solutions, 7, to
det(A-ZI) = 0 are the teigenvalues identity matrix
And each eigenvalue has a corresponding eigenvector which is The solution to I (H-1; I) v=0
breametrically, eigenvectors are the characteristic vectors that point in the direction that A stretches vectors, the eigenvalue is the amount by which though are stretched

Why d	o we are	e about	eizenve	(005
and a	eizenvect	055?	0	
	<u> </u>			
because	in model he solutions us of e	5 with	coupled	linees
ODES, 1	he solution	rs car	be wsin	tten
in ter.	us of e	exponentic	l eigen	functions
Example	models	r our cou	pled b	ox
	models	•	<u> </u>	
	1 .4 .4			
	dt =	Kz, Mz+k	31 13+()	4,2+ K,3) M(
	dMz	14 . -	M /	/ \ M/
	dt -	K12M1+K32	13-CK21+	K23) / 9
	1 10 4			
	4003	1- 11 1-	ha /1	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		kz3 Mz+k	13 M - (K3)	$+k_3)$
				<u> </u>
	d Tm.	$\gamma = \overline{1}$	M	1
	JE MZ	1= K	. N	12
	M3	=		43
		V	~	نے "

The eigenvalues and eigenvectors of K are 7: and Vi In journal for any closed box model, the solution is $M(t) = \sum_{i}^{\infty} \left[E^{-i} M(t=0) \right] e^{\lambda_i t} v_i$ where E= [Y, Vz V3 ····]

Or in other words, the solution is a bruch of exponential functions lespontation functions with decay rates equal to the eigenvalues of K