

UFSM00029 - FÍSICA EXPERIMENTAL III FSC1026 - FÍSICA GERAL EXPERIMENTAL III FSC326 - LABORATÓRIO DE FÍSICA III Engenharias e Física

Semestre - 1.2023

Prof. Hans R. Zimermann

"A perfeição é atingida não quando não se tem mais o que colocar, mas sim quando não se tem mais o que tirar." - Antoine de Saint-Exupéry

V: 02-05-2023 19:44:00

Experimento: - CAPACITÂNCIA

1 Objetivos

Estudar o efeito capacitivo entre as placas de um capacitor variável de placas paralelas - Figura 1, verificando a relação da capacitância $C = \epsilon_0 A/d$ em função da distância d entre as placas; Medir a constante de permissividade ϵ_0 e medir a constante dielétrica de distintos materiais isolantes como papel, E.V.A (*Ethylene Vinyl Acetate*) e isopor.

2 Material utilizado

- a) Um capacitor variável de placas paralelas: 2,3 pF 280 pF;
- b) Um medidor digital de capacitância;
- c) Dois fios ou cabos condutores;
- d) Um papel milimetrado;
- e) Folhas de papel ou papelão;
- f) Lâminas de isolantes E.V.A, EPS (Isopor), Vidro, Acrílico, etc;
- j) Uma régua ou trena ou paquímetro.

3 Fundamentos teóricos

Se preenchermos o espaço entre as placas de um capacitor com um dielétrico (isolante), o que acontecerá com a capacitância? Michel Faraday (1791-1867) investigou este assunto pela primeira vez em 1837. Usando equipamento simples, ele descobriu que a capacitância aumentava por um fator κ , que ele chamou de constante dielétrica do material isolante. Outro efeito importante na introdução do dielétrico no capacitor é limitar

Figura 1: Capacitor de placas paralelas com separação variável montado em isolante acrílico. Fonte: Cidepe.

a diferença de potencial que se pode aplicar entre as placas a um certo valor V_{max} , chamado de potencial de ruptura. Se este valor for excedido, o material dielétrico se romperá e formará um caminho condutor (arco elétrico) entre as placas. Logo, todo material dielétrico possui uma rigidez dielétrica característica, que é o valor máximo do campo elétrico que um isolante pode tolerar sem se romper e se tornar um condutor (para o ar a rigidez dielétrica é $3 \times 10^6 \, V.m^{-1}$, ou seja tensões ou diferenças de potencial V_{max} acima desses valores,

permitem a ocorrência de um **arco elétrico** ou popularmente raio/faisca/centelha). Na Tabela 1 são mostradas algumas constantes dielétricas importantes.

Material	Constante Dielétrica, κ	Rigidez Dielétrica $E_{max}(10^6 V.m^{-1})$
Ar(1 atm)	1,0006	3
Madeira		10
Borracha		12
Papel	3,5	16
Poliéster	3,6	21,7
Vidro		30
Mica		60
Teflon		80

Tabela 1: Constante dielétrica e rigidez dielétrica

4 Procedimento experimental

4.1 A - MEDIDA DA PERMISSIVIDADE ELÉTRICA (ϵ_0)

- a) Certifique-se de que o capacitor esteja descarregado, fazendo contato entre as duas placas por meio de um fio ou cabo condutor;
- b) Meça o diâmetro, calcule o raio e com este a área das placas do capacitor (use: $A = \pi r^2$, onde r é o raio das placas). Anote os resultados na Tabela 2;

Diâmetro das Placas (m)	Área das Placas do Capacitor (m^2)

Tabela 2: Diâmetro e área do capacitor

- c) Fazer a conexão do medidor de capacitância nas placas do capacitor. Zerar o aparelho antes de fazer a medida;
- d) Com a chave seletora do medidor em 200 pF, estabeleça um espaçamento aproximado de 1,0 ou 10 mm entre as placas do capacitor. Anote o valor da capacitância C_{exp} na Tabela 3;
- e) Calcule a constante de permissividade (use a relação: $\epsilon_0 = C_{exp} d/A.\kappa_{ar}$). Anote o resultado na Tabela 3;
- f) Calcule o erro experimental, entre o valor teórico (da literatura), e o valor experimental (medido). Anote o resultado na Tabela 3.

C_{exp} (pF)	ϵ_0 (Teórico)(pF)	ϵ_0 (experimental)(pF)	Erro (Absoluto)	Erro (%)
	8,85			

Tabela 3: Medição da constante dielétrica

4.2 B - VARIAÇÃO DA CAPACITÂNCIA COM A SEPARAÇÃO ENTRE AS PLACAS

- a) Certifique-se de que o capacitor esteja descarregado;
- b) Com a chave seletora do medidor em 200 pF, varie a distância entre as placas de 1 mm em 1 mm até 10 mm (5 mm em 5 mm até 50 mm no Capacitor Cidepe EQ065D ou similar). Para cada variação meça a capacitância correspondente (**Para uma melhor precisão**, a partir da segunda medida selecione a posição da chave em $200 \,\mu F$). Anote os valores das capacitâncias C_{exp} na Tabela 4;

d (mm)					
$C_{exp}\left(pF\right)$					
$1/d \ (mm^{-1})$					

Tabela 4: Variação da capacitância em função de d e 1/d

c) Faça um gráfico, digital ou em papel milimetrado, de $C_{exp} \times d$ e em seguida de $C_{exp} \times (1/d)$;

- d) Obtenha o coeficiente angular α da reta $C_{exp} \times (1/d)$ e compare com o valor do produto $\kappa_{ar} \epsilon_0 A$. Anote os valores na Tabela 5;
- e) Calcule o erro experimental absoluto e percentual.

Coeficiente angular α (pF.m)	$\kappa_{ar}\epsilon_0 A \text{ (Teórico)(pFm)}$	Erro (Absoluto)	Erro (%)

Tabela 5: Coeficientes e constantes

4.3 C - MEDIDAS DAS CONSTANTES DIELÉTRICAS DOS ISOLANTES

- a) Certifique-se de que o capacitor esteja descarregado;
- b) Escolher uma placa/isolante dielétrico, folha de papel. Em seguida, medir sua espessura com um paquímetro (ou um micrômetro);
- c) Meça a capacitância do ar C_{ar} , para uma separação miníma entre as placas, aproximadamente 1 mm (ou 10mm no Cidepe EQ065D ou similar) com o medidor (selecione uma escala de 200 pF);
- d) Insira o dielétrico entre as placas do capacitor, em uma posição firme, e meça a capacitância equivalente, C_{d+ar} com o medidor (selecione uma escala de $200 \,\mu F$). Obs: C_d = capacitância com dielétrico;
- e) Calcule a capacitância da placa dielétrica usando a relação: $1/C_{placa} = 1/C_{d+ar} 1/C_{ar}$. Anote o valor na Tabela 6;
- f) Calcule a constante dielétrica do isolante, $\kappa_{isolante} = C_d.d/\epsilon_0 A$;
- g) Calcule erro experimental entre as constantes teórica (literatura) e experimental;
- h) Repita os passos a-g para os outros isolantes.

d (mm)	C_{ar} (pF)	C_{d+ar} (pF)	$\kappa_{isolante}$ (teórico)	$\kappa_{isolante}$ (exp.)	Erro	Erro (%)

Tabela 6: Constante dielétrica dos isolantes

5 Exercícios

- a) Justifique os erros observados no experimento;
- b) Qual o valor da constante de permissividade elétrica? Use os dados experimentais;
- c) Quais são os valores das constantes dielétricas? Use os dados experimentais;
- d) Para um potencial constante, a carga do capacitor aumenta ou diminui com a introdução do dielétrico? Justifique;
- e) Qual a finalidade do dielétrico no capacitor? Justifique.

Desafio: Considere - Capacitor com dielétrico

Será que conseguimos realizar um experimento mostrando o potencial V antes e após a introdução de um material dielétrico em um capacitor didático de placas planas?

HIPÓTESTES

Sabe-se empiricamente que a capacitância aumenta quando o capacitor é preenchido com um material dielétrico. Os primeiros a constatarem isto foram (independentemente) Faraday (1837) e Cavendish (1773). Todo dielétrico pode ser caracterizado por uma grandeza denominada **constante dielétrica**, denotada pela letra grega κ , definida por :

$$\kappa = \frac{C}{C_0}$$

Onde C e C_0 são as capacitâncias de um mesmo capacitor respectivamente com e sem dielétrico. Note que o valor mínimo k=1 ocorre no caso em que o capacitor está vazio, ou seja, $C=C_0$. Para conhecimento, o valor de κ a temperatura de 25°C é 1,00059 para o ar, 2,25 para a parafina, 78,2 para água destilada. Quando um

capacitor é carregado com carga Q e mantido isolado, de tal forma que sua carga não pode variar, a mudança da capacitância deve ser acompanhada de uma mudança do potencial entre as placas. De fato, como Q=C.V não muda, então:

$$C_0 V_0 = C V$$

em que V_0 e V são os potenciais respectivamente antes e depois da introdução do dielétrico. Portanto, o novo potencial:

$$V = \frac{C_0}{C}V_0 = \frac{1}{\kappa}V_0$$

diminui por um fator κ^{-1} em relação ao potencial V_0 , na ausência do dielétrico. $\emph{prove isso}$

Dicas[A]

O que se espera?

Figura 2: $C \times d$. Fonte: Cidepe.

Figura 3: $C \times 1/d$. Fonte: Cidepe.

$\mathbf{Dicas}[\mathrm{B}]$

A capacitância é a principal propriedade de um capacitor, e diz respeito à capacidade de armazenamento das cargas elétricas. Podemos definir Capacitância como sendo a relação entre a quantidade de cargas acumuladas e a diferença de potencial aplicada às armaduras em um capacitor. Quanto maior a capacitância, maior a quantidade de cargas elétricas que podem ser armazenadas no dispositivo.

A capacitância é medida em uma unidade denominada Farad (batizada em homenagem ao célebre físico e químico Michael Faraday), abreviada pela letra F, e no geral os capacitores utilizam submúltiplos dessa unidade, pois a capacitância de 1 F é um valor muito elevado. Um capacitor de 1F conectado a uma fonte que forneça 1V de tensão elétrica irá armazenar uma carga de 1C, que equivale a 6,24 x 1018 elétrons.

As principais unidades utilizadas para representar a capacitância de um capacitor são as seguintes:

Nome da Unidade	Símbolo	Valor equivalente em Farads
Milifarad	mF	$1 \times 10^{-3} F$
Microfarad	μF	$1 \times 10^{-6} F$
Nanofarad	nF	$1 \times 10^{-9} F$
Picofarad	pF	$1 \times 10^{-12} F$

Tabela 7: Principais unidades de Capacitância

Um capacitor possui capacitância de um Farad quando uma carga elétrica de um Coulomb é armazenada em suas armaduras por uma tensão elétrica de um Volt. A capacitância é sempre um valor positivo.

Referências

- [1] INSTITUTO DE FÍSICA GLEB WATAGHIN. "Aula 5: Capacitância". Disponível em ¡http://midia.cmais.com.br/assets/file/original/bc19adc4984d1dd3d06412d78fe66d166e7c3514. pdf/¿. Acesso em 12 de Julho de 2018.
- [2] REDAÇÃO. "Resumo de física: Capacitância e tensão elétrica". Disponível em ¡https://guiadoestudante.abril.com.br/estudo/resumo-de-fisica-capacitancia-e-tensao- eletrica/¿. Acesso em 12 de Julho de 2018.
- [3] BOSONTREINAMENTOS. "Treinamentos em Ciência e Tecnologia". Disponível em ¡http://www.bosontreinamentos.com.br/eletronica/curso-de-eletronica/especificacoes-dos-capacitores/¿. Acesso em 25 de outubro de 2020.
- [4] PLATO. "Ruptura Dielétrica". jhttp://plato.if.usp.br/ fge0211n/Main $_Site/Extras/Extras_files/Ruptura$