5 Time plan

TASKS	TIME							
	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
Literature review								
Research proposal								
Design								
Simulation								
Presentations								
Presentations								
Material acquisition								
Fabrication								
Testing								
Final presentation								

Table 5.1: Time plan

6 Budget

	Item	Description	Cost per unit(Kshs.)	Total(Kshs.)
1	Chamber material	Machining purposes	5000	5000
2	Pump	Fluid flow	5000	5000
3	Microcontroller	Function control	2000	2000
4	Valves	Flow control	2000	2000
5	Assorted sensors	System state	2000	2000
6	Assorted electronics	Electronic wiring	1000	1000
7	Plumbing fittings	Fluid flow	2000	2000
8	Coolant tank	Stores the coolant	3000	3000
				22000

Table 6.1: Budget

REFERENCES 29

References

[1] D. K. Huzel and D. H. Huang, Design of Liquid Propellant Rocket Engines, Scientific and Technical Information Office, National Aeronautics and Space Administration [Online]. Available, 1967. [Online]. Available: https://books.google.co.ke/books?id=UpqgnQEACAAJ

- [2] G. P. Sutton and O. Biblarz, *Rocket propulsion elements*, 7th ed. New York: John Wiley & Sons, 2001.
- [3] E. A. Santos, W. F. Alves, A. N. A. Prado, and C. A. Martins, "Development of test stand for experimental investigation of chemical and physical phenomena in liquid rocket engine," *Journal of Aerospace Technology and Management*, vol. 3, no. 2, pp. 159–170, 2011.
- [4] J. Hansen, "Student design of a bipropellant liquid rocket engine and associated infrastructure," vol. 36.
- [5] S. R. Shine and S. S. Nidhi, "Review on film cooling of liquid rocket engines," *Propulsion and Power Research*, vol. 7, no. 1, pp. 1–18, 2018.
- [6] R. C. Arnold, D. Suslov, and O. J. Haidn, "Experimental investigation of film cooling with tangential slot injection in a lox/ch4 subscale rocket combustion chamber," Transactions of The Japan Society for Aeronautical and Space Sciences, Space Technology Japan, vol. 7, 2009.
- [7] G. P. Richter and T. D. Smith, "Ablative material testing for low-pressure, low-cost rocket engines," presented at the Combustion Subcommittee, Propulsion Systems Hazards Subcommittee, Huntsville, AL, Oct, vol. 1995, Jun. 2022. [Online]. Available: https://ntrs.nasa.gov/citations/19960007443
- [8] M. E. Boysan, "A thesis submitted to the graduate school of natural and applied sciences of middle east technical university," vol. 100.

REFERENCES 30

[9] M. Pizzarelli, "Regenerative cooling of liquid rocket engine thrust chambers," Roma: Agenzia Spaziale Italiana, 2017.

- [10] D. K. Huzel, Modern Engineering for Design of Liquid-Propellant Rocket Engines. AIAA, 1992.
- [11] B. Smith, "Materials for rocket construction i," Astronautics, vol. 5, no. 31, pp. 7–8, June 1935.
- [12] S. Shine and S. S. Nidhi, "Review on film cooling of liquid rocket engines," *Propulsion and Power Research*, vol. 7, no. 1, pp. 1–18, 2018.
- [13] E. Andersson, "Preliminary design of a small-scale liquid-propellant rocket engine testing platform," 2019.