

(An Autonomous Institution)

Regulations: **A18**

Code No: 7HC16 Date: 14-August - LUZUZ4 (FIN)

B.Tech II-Year II- Semester External Examination, August - 2024 (Supplementary) MATHEMATICS-II (DIFFERENTIAL CALCULUS) (CSE,IT,ECM)

Time: 3 Hours Max.Marks:70

Note: a) No additional answer sheets will be provided.

- b) All sub-parts of a question must be answered at one place only, otherwise it will not be valued.
- c) Missing data can be assumed suitably.

Bloom's Cognitive Levels of Learning (BCLL)

Remember	L1	Apply	L3	Evaluate	L5
Understand	L2	Analyze	L4	Create	L6

Part - A Max.Marks:20 ANSWER ALL QUESTIONS

		BCLL	CO(a)	Marka
1	1 Define functional dependence		CO(s) CO1	Marks [2M]
2	2 Write Bernoulli's Equation.		CO2	[2M]
3	Find Particular Integral $(D^2 + 4)y = \sin 2x$		CO3	[2M]
4	Write Lagrange's interpolation formula.	L1	CO4	[2M]
5	Write Picard's formula.	L1	CO5	[2M]
6	Find	L2	CO6	[2M]
	$L^{-1}\left(\frac{7s-15}{s^2+4}\right)$			
7	Define Jacobian two variables' formulae.	L1	CO1	[2M]
8	Write Cauchy-Euler equation	L1	CO3	[2M]
9	9 Find $L(e^{3t} + cos5t - 100 + t^6)$		CO6	[2M]
10	10 Write Newton -Raphson formula.		CO5	[2M]

Max.Marks:50 Part - B

ANSWER ANY FIVE QUESTIONS. EACH QUESTION CARRIES 10 MARKS.

functionally dependent and hence find the relation between them.

- **BCLL** CO(s) Marks $u = x + y + z, v = xy + yz + zx, w = x^2 + y^2 + z^2$ 11. a) CO₁ [5M] Show that
 - L5 CO1 b) A rectangular box open at the top is to have volume of 32 cubic feet. Find [5M] the dimensions of the box requiring least material for its construction.
- Solve $(1 + e^{x/y})dx + (1 \frac{x}{y})e^{x/y}dy = 0$ L3 CO₂ 12. a) [5M]
 - L5 CO₂ b) A body is originally at $80^{\circ}c$ and cools down to $60^{\circ}c$ in 20 minutes. If the [5M] temperature of the air is $40^{\circ}c$, find the temperature of the body after 40 minutes.
- 13. a) Solve the differential equation $(D^2 5D + 6) = e^x sinx$ L3 CO3 [5M]
 - b) Solve $(D^2 + 4)y = tan2x$ by the method of variation of parameters L4 CO3 [5M]
- 14. a) Find root of the equation $f(x) = e^x - 3x$ using Newton Raphson method L4 CO4 [5M] that lies between 0 and 1.
 - L2 CO4 b) Find the polynomial f(x) by using Lagrange's formulae and hence find [5M]

f(3)

X.	0	1	2	3
у:	2	3	12	147

- 15. a) Using Taylor's series method, find an approximate value of y at x=0.2 for L4 CO5 [5M] the differential equation $y'-2y=3e^x$ for y (0) = 0.
 - b) Find y (0.1) using Runge-Kutta fourth order formula , given that L4 CO5 [5M] $y' = x + x^2 y$ and y (0) =1
- 16. a) $L^{-1}\left\{\frac{1}{s(s+2)^3}\right\}$ L3 C06 [5M]
 - b) State Convolution theorem on Laplace Transform and hence find the L3 CO6 [5M] Inverse Laplace Transform of $^{\frac{1}{s(s^2+a^2)}}$
- - b) $\int_{\text{Solve x}} \frac{dy}{dx} + y = \log x$
 - c) Solve $(D^3 + 1)y = cos2x$
- 18. a) If $x^3 x 4 = 0$, then by Bisection method find first two L5 CO4 [4M] approximations x_0 and x_1
 - b) If $\frac{dy}{dx} = x y$, y (0) = 1 find y (0.1) by Euler's method.
 - c) Find the Laplace Transform of $\left(\frac{sint}{t}\right)$ L5 C06 [3M]

-- 00 -- 00 --