Slido: #ADA2021

CSIE 2136 Algorithm Design and Analysis, Fall 2021

National Taiwan University 國立臺灣大學

Handling NP-completeness

Hsu-Chun Hsiao

Announcement

- ρ HW4
 - Due Time (hand-written): 2022/01/04 14:20
 - Due Time (programming): 2022/01/13 14:20
- No TA hours on 1/12 and 1/13
- Final exam: 2022/01/06 14:20-17:20
 - Location: **綜合**大講堂
 - Strongly recommend to review homework problems and questions asked in class
 - Details will be released on COOL later
- We will try our best to release the final grades by 1/26. If you need to know your grade earlier, please email us.
- p 優良助教問卷

Agenda

- Note on reduction
- P Traveling salesman problem
 - Proving NP-completeness
 - Approximation algorithms for metric TSP
- Integer programing problem
 - Proving NP-completeness
 - Reduction to integer programming
- Randomized approximation algorithms
 - ρ 3-CNF-SAT
 - A MAX-CUT

Reduction of decision problems

- A reduction f is an algorithm for transforming every instance of a problem A into an instance of another problem B, and, for all α , $AlgA(\alpha) = 1$ if and only if $AlgB(f(\alpha)) = 1$
 - Parameter Thus, we can use AlgB to construct AlgA for solving problem A
- For ease of understanding, try replacing A and B with simple yet concrete problems
 - Arr Example: A is "Can 2 divide x?", and B is "Can y divide x?"

Polynomial-time reduction

- A polynomial-time reduction $(A \le_p B)$ is a polynomial-time algorithm for transforming every instance of a problem A into an instance of another problem B
 - Can help determine the hardness relationship between problems (within a polynomial-time factor)
 - $P = A \leq_{p} B$ implies A is no harder than B; equivalently, B is at least at hard as A

Common misconceptions

Wrong	Correct	
$\times f$ transforms a subset of problem A's instances	✓ f must transform every problem A's instance	
$\times f(\alpha)$ must cover every problem B's instance	$\bigvee f(\alpha)$ may be a subset of problem B's instances	
$XA \leq_p B$ implies $B \leq_p A$	Reduction is directional; $A \leq_p B$ does not imply $B \leq_p A$	
X To prove $A \leq_p B$, we only need to show $AlgA(\alpha) = 1$ implies $AlgB(f(\alpha)) = 1$	While reduction is directional, the proof of correctness must be done both directions. That is, $AlgA(\alpha) = 1$ if and only if $AlgB(f(\alpha)) = 1$	
If A can be reduced to B in $O(n^2)$ and there is an algorithm $AlgB$ for B runs in $O(n^3)$, then we can construct an algorithm for A runs in $O(n^3)$	We need to take into account possible size increase after f . If A can be reduced to B in $O(n^2)$ and the size increases to $O(n^2)$, and there is an algorithm $AlgB$ for B runs in $O(n^3)$, then we can construct an algorithm for A runs in $O(n^6)$	

Traveling Salesman Problem (TSP)

Traveling Salesman Problem (TSP)

- Optimization problem: Given an undirected complete graph G = (V, E) and a nonnegative edge cost function w, find a tour of lowest cost
- Pecision problem: Given an undirected complete graph G = (V, E) and a nonnegative edge cost function w, find a tour of cost at most k
- Property Tour = visit each vertex exactly once and return to the beginning

A tour to catch every (518) Pokémon in Boston https://www.math.uwaterloo.ca/tsp/poke/index.html

The TSP Problem

TSP = $\{(G, w, k): G = (V, E) \text{ is a complete graph, } w \text{ is a non-negative cost function for edges, } G \text{ has a traveling-salesman tour with cost at most } k\}$

- Prove that TSP ∈ NP-COMPLETE
- ρ Polynomial-time reduction: HAM-CYCLE ≤_p TSP

Step-by-step approach for proving *L* in NPC:

- 1. Prove $L \subseteq NP$
- 2. Prove $L \subseteq NP$ -hard $(C \leq_p L)$
 - Select a known NPC problem C
 - Construct a reduction f transforming every instance of C to an instance of L
 - 3 Prove that x in C if and only if f(x) in L for all x in $\{0,1\}^*$
 - 4 Prove that f is a polynomial time transformation

The TSP Problem

TSP = $\{(G, w, k): G = (V, E) \text{ is a complete graph, } w \text{ is a non-negative cost function for edges, } G \text{ has a traveling-salesman tour with cost at most } k\}$

- ② Construct a reduction f transforming every HAM-CYCLE's instance $G_H = (V_H, E_H)$ to a TSP instance with cost at most k
 - Power We construct a TSP instance in which G is a complete graph with $V=V_H$, and w(i,j)=0 if $(i,j)\in E_H; w(i,j)=1$, otherwise.
 - ho With this reduction function, we set k=0

$\mathsf{HAM}\text{-}\mathsf{CYCLE} \leq_p \mathsf{TSP}$

- ③ Prove that $x \in \mathsf{HAM}_\mathsf{CYCLE} \Leftrightarrow f(x) \in \mathsf{TSP}$ Correctness proof: $x \in \mathsf{HAM}_\mathsf{CYCLE} \Leftrightarrow f(x) \in \mathsf{TSP}$
- More specifically, we want to prove that G contains a Hamiltonian cycle $h = \langle v_1, v_2, ..., v_n, v_1 \rangle$ if and only if $\langle v_1, v_2, ..., v_n, v_1 \rangle$ is a traveling-salesman tour with cost at most 0

u, y, v, w, z, u is a Hamiltonian cycle ⇔ u, y, v, w, z, u is a traveling-salesman tour with cost 0

$\mathsf{HAM}\text{-}\mathsf{CYCLE} \leq_p \mathsf{TSP}$

③ Prove that $x \in \mathsf{HAM}_\mathsf{CYCLE} \Leftrightarrow f(x) \in \mathsf{TSP}$

Correctness proof: $x \in HAM$ -CYCLE $\Rightarrow f(x) \in TSP$

- Suppose the Hamiltonian cycle is $h = \langle v_1, v_2, ..., v_n, v_1 \rangle$
- $\Rightarrow h$ is also a tour in the transformed TSP instance
- ho \Rightarrow The cost of the tour h is 0 since there are n consecutive edges in E, and so has cost 0 in f(x)
- $\Rightarrow f(x) \in TSP(f(x) \text{ has a TSP tour with cost } \leq 0)$

u, y, v, w, z, u is a Hamiltonian cycle

u, y, v, w, z, u is a traveling-salesman tour with cost 0

$\mathsf{HAM}\text{-}\mathsf{CYCLE} \leq_p \mathsf{TSP}$

③ Prove that $x \in \mathsf{HAM_CYCLE} \Leftrightarrow f(x) \in \mathsf{TSP}$ Correctness proof: $f(x) \in \mathsf{TSP} \Rightarrow x \in \mathsf{HAM_CYCLE}$

- Suppose after reduction, there is a TSP tour with cost ≤ 0 . Let it be $\langle v_1, v_2, ..., v_n, v_1 \rangle$
- $ho \Rightarrow$ The TSP tour contains only edges in E_H
- \triangleright \Rightarrow Thus, $\langle v_1, v_2, ..., v_n, v_1 \rangle$ is a Hamiltonian cycle ($x \in HAM\text{-CYCLE}$).

u, y, v, w, z, u is a Hamiltonian cycle

u, y, v, w, z, u is a traveling-salesman tour with cost 0

TSP arts and challenges

Mona Lisa TSP: \$1,000 Prize for a 100,000-city challenge problem http://www.math.uwaterloo.ca/tsp/

Shortest possible tour to nearly every (49687) pub in the United Kingdom https://www.math.uwaterloo.ca/tsp/uk/

Traveling Salesman Problem (TSP): Approximation

Metric TSP

- Optimization problem: Given a set of cities and their pairwise distances, find a tour of lowest cost that visits each city exactly once, and the pairwise distances satisfy triangle inequality.
 - Priangle inequality: $\forall u, v, w \in V, d(u, w) ≤ d(u, v) + d(v, w).$

Satisfy triangle inequality

Do not satisfy triangle inequality

Show that Metric TSP is also in NPC

Hint: reduce from either HAM-CYCLE or general TSP

2-approximation algorithm for Metric TSP

APPROX-TSP-TOUR(G) 1. select a vertex $r \in G.V$ to be a "root" vertex 2. grow a minimum spanning tree T for G3. let H be the list of vertices visited in a preorder tree walk of T4. **return** H

- Running time is dominated by finding a MST
 - \circ MST is in P: $O(V^2)$ when using adjacency matrix
- P Claim: Approximation ratio $\rho(n) = 2$

2-approximation algorithm for Metric TSP

- Let H^* denote an optimal tour, H the TSP tour found by the algorithm, T^* a MST
- \circ With triangle inequality, immediately we have $w(H) \leq 2w(T^*)$
- Also, H^* is formed by some tree T plus some edge e, i.e., $w(H^*) = w(T) + w(e)$
- $\Rightarrow w(H) \leq 2w(T^*) \leq 2w(H^*)$
- $\rho \Rightarrow \rho(n) = 2$

1.5-approximation algorithm for Metric TSP

- Can we do better than $\rho(n) = 2$?
 - △ A better intermediary than $2w(T^*)$ in $w(H) \le 2w(T^*) \le 2w(H^*)$?
- Homework

Theorem 35.3 General TSP (when triangle inequality may not hold)

If P \neq NP, there is no polynomial-time approximation algorithm with a constant ratio bound ρ for the general TSP.

Proof by contradiction

- Suppose there is such an algorithm Alg_{AT} to approximate TSP with a constant ρ . We will use Alg_{AT} to construct Alg_{HC} to solve HAM-CYCLE in polynomial time.
- P Consider the following reduction algorithm f converting an instance of HAM-CYCLE α into an instance of TSP f(α)
 - $\alpha = \{G = (V, E)\}; f(\alpha) = \{G' = (V, E'), w, k = \rho |V|\}$
 - Part is, we construct a TSP instance with a complete graph G' = (V, E'), where w(u, v) = 1 if $(i, j) \in E$; $w(u, v) = \rho |V| + 1$, otherwise.
 - Run Alg_{AT} on $f(\alpha)$
 - ρ If $Alg_{AT}(f(\alpha))$ returns a tour whose cost ≤ $\rho|V|$, then $Alg_{HC}(\alpha) = 1$ (i.e., G contains a Hamiltonian cycle); otherwise, $Alg_{HC}(\alpha) = 0$.

Proof by contradiction (cont'd)

- Correctness of reduction
 - ρ If G has an HC: G' contains a tour of cost |V| by picking edges in E, each with cost of 1. Then, Alg_{AT} guarantees to return a tour whose cost ≤ ρ|V|.
 - P If G' has a tour whose cost ≤ P[V]: the tour must consist of edges in E only, and thus it's also a HC in G
- $\Rightarrow Alg_{HC}$ can solve HAM-CYCLE in polynomial time, contradiction!

u, y, v, w, x, u is a Hamiltonian Cycle

u, y, v, w, x, u is a traveling-salesman tour with cost |V|

Exercise 35.2-2 Show how in polynomial time we can transform one instance of the traveling-salesman problem into another instance whose cost function satisfies the triangle inequality. The two instances must have the same set of optimal tours. Explain why such a polynomial-time transformation does not contradict Theorem 35.3, assuming that P≠NP.

Exercise 35.2-2

- \circ For example, we can add w_{max} (the largest cost) to each edge
- P G contains a tour of minimum cost $k \Leftrightarrow G'$ contains a tour of minimum cost $k + w_{max} * |V|$
- G' satisfies triangle inequality because $\forall t, u, v \in V$, $w'(u, v) = w(u, v) + w_{max} \le 2 * w_{max} \le w'(t, u) + w'(t, v)$

Exercise 35.2-2

(Linear) Integer Programming

Linear programming [Ch. 29]

- Optimize a linear function subject to a set of linear inequalities
- Example
 - Maximize $x_1 + x_2$
 - Subject to

$$9 4x_1 - x_2 \le 8$$

$$p 2x_1 + x_2 \le 10$$

$$> 5x_1 - 2x_2 \ge -2$$

$$\rho$$
 $x_1, x_2 \geq 0$

Linear programming [Ch. 29]

Maximize $c^T x$ Subject to $Ax \le b$, and $x \ge 0$

Notation

- $A = (a_{ij}): m \times n \text{ coefficient matrix}$
- ρ $b = (b_i)$: m×1 requirement vector
- $c = (c_i): n \times 1 \text{ cost vector}$
- p $x = (x_i)$: $n \times 1$ vector of unknown variables

(Linear) integer programming [ch. 35.4]

- Integer programing: x_i are integers
 - Parallel Decision problem: whether there is a feasible solution $x = (x_j)$ subject to $Ax \le b$ and $x_i \in \mathbb{Z}_0^+$
- Mixed integer programming: some of x_j are integers
- While the linear programing problem is in class P, the integer programming problem (decision version) is NP-complete
- Fortunately, there are powerful integer programming solvers, which haven solved many integer programming instances

Show that the integer programming problem is NP-complete

<u>Hint</u>: Consider a reduction from 3-CNF-SAT. How would you reduce an 3-CNF-SAT instance, say, $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor \neg x_4 \lor x_5)$, to an integer programming instance?

Modeling vertex cover via integer programming

- <u>Vertex cover (optimization)</u>: find a vertex cover of minimum size in G
 - A vertex cover of G = (V, E) is a subset $V' \subseteq V$ such that if $(w, v) \in E$, then $w \in V'$ or $v \in V'$ or both
- Integer programming formulation
 - \circ Variables: $x_i \in \{0,1\}$ represents whether vertex v_i is covered
 - Minimize: $\sum_{i=1}^{n} x_i$
 - Subject to
 - $x_i + x_j \ge 1, \forall e = (v_i, v_j) \in E$
 - $P x_i \in \{0,1\}, \forall i = 1,2,..., |V|$

Clique, Independent-Set, Vertex-Cover

- Parameter The following are equivalent for G = (V, E) and a subset V' of V:
 - 1. V' is a clique of G
 - 2. V' is an independent set of G_c
 - 3. V V' is a vertex cover of G_c

Clique $V' = \{u, v, x, y\}$ in G

Independent set $V' = \{u, v, x, y\}$ in G_C

Vertex cover $V - V' = \{z, w\}$ in G_c

Show the integer programming formulation for the clique problem (optimization)

Show that the independent-set problem is NP-Complete. Show the integer programming formulation for the independent-set problem (optimization)

Randomized Approximation Algorithms

Randomness

- A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic
- A randomized data structure is a data structure that employs a degree of randomness as part of its logic
- A randomized algorithm's behavior is determined not only by its input but also by values produced by a random-number generator

Randomized approximation algorithm

	Exact	Approximate
Deterministic	MST	APPROX-TSP-TOUR
Randomized	Quick Sort	MAX-3-CNF-SAT MAX-CUT

MAX-3-CNF

- 3-CNF-SAT: Satisfiability of Boolean formulas in 3-conjunctive normal form (3-CNF)
 - 3-CNF = AND of clauses, each is the OR of exactly 3 distinct literals
 - ho A literal is an occurrence of a variable or its negation, e.g., x_1 or $\neg x_1$
- 2 3-CNF-SAT is a decision problem. What should be an optimization version of 3-CNF-SAT?

MAX-3-CNF

- MAX-3-CNF: find an assignment of the variables that satisfies as many clauses as possible
 - Closeness to optimum is measured by the fraction of satisfied clauses
- Can you design a randomized 8/7-approximation algorithm?

$$(x_1 \lor \neg x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

$$< x_1, x_2, x_3, x_4 > = <0, 0, 1, 1 > \text{ satisfies 3 clauses}$$

$$< x_1, x_2, x_3, x_4 > = <1, 0, 1, 1 > \text{ satisfies 2 clauses}$$

Note that this clause is always SAT since it always evaluates to 1. For simplicity, we can assume no clause containing both of a literal and its negation.

Randomized 7/8-approximation algorithm for MAX-3-CNF-SAT

- A randomized 8/7-approximation algorithm:
 - · 丟硬幣決定變數要設成 0 或是 1
 - Part it.

Theorem 35.6

Given an instance of MAX-3-CNF-SAT with n variables $x_1, x_2, ..., x_n$ and m clauses, the randomized algorithm that independently sets each variable to 1 with probability 1/2 and to 0 with probability 1/2 is a randomized 8/7-approximation algorithm.

^{*} Satisfying 7/8 of the clauses in expectation

Theorem 35.6

Given an instance of MAX-3-CNF-SAT with n variables $x_1, x_2, ..., x_n$ and m clauses, the randomized algorithm that independently sets each variable to 1 with probability 1/2 and to 0 with probability 1/2 is a randomized 8/7-approximation algorithm.

Proof

- A clause that contains both a variable and its negation is always evaluated to 1
- P The rest of the clauses is the OR of exactly 3 distinct literals, and no variable and its negation appear at the same time
 - $Pr[x_i = 0] = Pr[x_i = 1] = 1/2$
 - \Rightarrow for all $x_1 \neq x_2 \neq x_3$, $\Pr[(x_1 \lor x_2 \lor \neg x_3) = 0] = 1/8$
- ⇒ E[# of satisfied clauses] = m * E[clause j is satisfied]≥ $m * (1 - \frac{1}{8}) = \frac{7}{8}m$
- $\rho \Rightarrow \rho(n) = \max \# \text{ of satisfied clauses} / E[\# \text{ of satisfied clauses}] = 8/7$

MAX-CUT

- Poptimization problem: Given an unweighted undirected graph G = (V, E), find a cut whose size is maximized
 - A cut partitions V into V_0 and V_1 ; a cut consists of the edges across the partition
- Parallel Decision problem: Given an unweighted undirected graph G = (V, E), there exists a cut whose size is k
- MAX-CUT problem is NP-complete
 - C.f. MIN-CUT is in P
- Can you design a randomized 2-approximation algorithm?

Randomized 2-approximation algorithm for MAX-CUT

- \triangleright Randomly assign each vertex to either V_1 and V_2 with equal probablity
- Done!

<u>Proof</u>

- Let C be the cut found by the algorithm; C^* is the maximum cut
- Property For any edge e = (u, v) on G, the probability that e ∈ C is ½
- Let x_e be an indicator variable for event $e \in C$; that is, $x_e = 1$ if $e \in C$, otherwise, 0.

$$> E[|C|] = E[\Sigma_{e \in E} x_e] = \Sigma_{e \in E} E[x_e]$$

$$= \Sigma_{e \in E} Pr[e \in C] * 1 + Pr[e \notin C] * 0 = \frac{|E|}{2} \le \frac{|C^*|}{2}$$

Suppose vertices are numbered from 1 to n, show that the following greedy algorithm achieves 2-approximation max cut:

- 1. Initially $V_0^1 = \{1\}, V_1^1 = \{\}$
- 2. Adding the *i*th vertex to the subset that results in a better cut, say $V_x, V_x^i = V_x^{i-1} \cup \{i\}, V_{1-x}^i = V_{1-x}^{i-1}$
- 3. Output V_0^n , V_1^n

Hint: consider the edges introduced by adding the ith vertex