MAT02025 - Amostragem 1

AAS: amostragem aleatória simples com reposição

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2023

Relembrando

Relembrando

Relembrando

A amostragem aleatória simples¹ (AAS) é um processo para selecionar n unidades de N de modo que cada uma das ${}_{N}C_{n}$ amostras distintas tenha uma chance igual de ser extraída.

¹Também conhecida como **amostragem casual simples** ou **amostragem acidental irrestrita**

Amostragem aleatória simples

- Como um número sorteado é removido da população em todos os sorteios subsequentes, esse método também é chamado de amostragem aleatória sem reposição.
- ▶ A amostragem aleatória com reposição é inteiramente viável: em qualquer sorteio, todos os N membros da população têm a mesma chance de serem sorteados, não importa quantas vezes eles já tenham sido sorteados.
- As fórmulas para as variâncias e variâncias estimadas das estimativas feitas a partir da amostra são frequentemente mais simples quando a amostragem é "com reposição" do que quando é "sem reposição".
 - Por esta razão, a amostragem com reposição é às vezes usada nos planos de amostragem mais complexos, embora à primeira vista pareça fazer pouco sentido em ter a mesma unidade duas ou mais vezes na amostra.

Amostragem aleatória simples com reposição

Amostragem aleatória simples com reposição

AAS com reposição

- Uma amostra aleatória simples com reposição (AASc) é sorteada unidade por unidade.
- As unidades da população são numeradas de 1 a N.
- Uma série de números aleatórios entre 1 e N é então sorteada, por meio de uma tabela de números aleatórios ou por meio de um programa de computador que produz tal tabela.
- ► Em qualquer sorteio, o processo usado deve dar uma chance igual de seleção a qualquer número na população.
 - Uma vez sorteada a unidade, ela é reposta na população e sorteia-se um elemento seguinte.
- Repete-se o procedimento até que *n* unidades tenham sido sorteadas.
 - Estas unidades constituem a amostra (selecionada).

AAS com reposição

▶ Portanto, a probabilidade de que todas as n unidades especificadas sejam selecionadas em n sorteios é

$$\frac{1}{N} \cdot \frac{1}{N} \cdot \frac{1}{N} \cdot \dots \cdot \frac{1}{N} = \left(\frac{1}{N}\right)^n = \frac{1}{N^n}.$$

Seleção de uma AAS com reposição

Exemplo no R

```
sample(x = 1:528, size = 10, replace = TRUE)
## [1] 351 118 375 256 500 345 385 360 165 209
sample(x = 1:128, size = 10, replace = TRUE)
## [1] 124 111 59 115 92 34 120 10 48 29
```

- ▶ Os estimadores $\overline{y} = \sum_{i=1}^{n} Y_i / n$ e $\widehat{Y}_T = N\overline{y}$ apresentam estimativas não viesadas para $\overline{Y} = \sum_{i=1}^{N} Y_i / N$ e $Y_T = \sum_{i=1}^{N} Y_i$, respectivamente.
 - Exercício: demonstre o resultado acima.
- As expressões das variâncias podem ser obtidas utilizando o mesmo artifício das variáveis indicadoras de seleção que foi utilizado no esquema de amostragem aleatório simples sem reposição.

- No caso da AAS com reposição, a unidade i pode aparecer 0, 1, 2, . . . , n vezes na amostra.
- Seja t_i o número de vezes que a unidade i aparece na amostra. Então, temos

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{N} t_i Y_i.$$

 \triangleright Dessa forma, t_i se distribui como uma variável binomial, em n **tentativas**, com P = 1/N. Portanto,

$$\mathsf{E}\left(t_{i}\right)=nP=rac{n}{N},\quad \mathsf{Var}\left(t_{i}
ight)=nP(1-P)=n\left(rac{1}{N}
ight)\left(1-rac{1}{N}
ight).$$

Conjuntamente, as variáveis *t_i* apresentam uma distribuição multinomial (ver, por exemplo, Paulino et al. (2018)², Apêndice). Por isso.

$$Cov(t_i, t_j) = -\frac{n}{N^2}.$$

²Paulino, C.D., Amaral Turkman, M.A., Murteira, B., Silva, G.L. (2018). Estatística Bayesiana, 2ª edição. Fundação Calouste Gulbenkian, Lisboa.

Combinando as expressões anteriores, temos, para a amostragem aleatória simples com reposição:

$$Var(\overline{y}) = \frac{1}{n^2} \left[\sum_{i=1}^{N} Y_i^2 \frac{n(N-1)}{N^2} - 2 \sum_{i < j} Y_i Y_j \frac{n}{N^2} \right]$$
$$= \frac{1}{nN} \sum_{i=1}^{N} (Y_i - \overline{Y})^2 = \frac{\sigma^2}{n} = \frac{N-1}{N} \frac{S^2}{n}.$$

- A variância para $\widehat{Y}_T = N\overline{y}$ é dada por $Var(\widehat{Y}_T) = N(N-1)\frac{S^2}{n}$.

 Exercício: demonstre o resultado acima.
- Erros padrões são obtidos tomando-se a raiz quadrada destas expressões para as variâncias.
- **Estimativas** para os **erros padrões** podem ser obtidas utilizando a **variância amostral**, s^2 , para estimar S^2 .
- ▶ Supondo normalidade para as estimativas \overline{y} e \widehat{Y}_T , intervalos de confiança podem ser construídos de forma semelhante que os intervalos construídos para AAS sem reposição (AASs).

Comparação entre planos amostrais

Comparação entre planos amostrais

Relembrando

Estimativa do erro padrão

As fórmulas que nos dão os **erros padrões** das estimativas da **média** $(\overline{y} = (1/n)\sum_{i=1}^{n} Y_i)$ e **total** $(\hat{Y}_T = N\overline{y})$ populacionais são usadas principalmente para três finalidades:

- comparar a precisão obtida por amostragem aleatória simples com a precisão dada por outros métodos de amostragem;
- para estimar o tamanho da amostra necessária em um levantamento que está sendo planejado;
- para estimar a precisão realmente alcançada em um levantamento que foi concluído.

Comparação entre AASc e AASs

- Quando há dois planos amostrais, é importante saber qual deles é "melhor".
 - ▶ Surge a necessidade de fixar o critério pelo qual o plano será julgado.
- Como já foi discutido anteriormente, o critério mais adotado em amostragem é o Erro Quadrático Médio.
 - Lembre-se que quando o estimador é não viesado, $EQM(\widehat{\theta}) = Var(\widehat{\theta})$.
- Devido a isso, existe um conceito bastante importante, que é o chamado efeito do planejamento (EPA, do inglês design effect, "deff"), que compara a variância de um plano qualquer com relação a um plano que é considerado padrão (de referência).

Comparação entre AASc e AASs

A estatística \overline{y} é, em ambos os planos (AASc e AASs), um estimador não enviesado de \overline{Y} . Assim,

$$\textit{EPA} = \frac{\mathsf{Var}_{\mathit{AASs}}(\overline{y})}{\mathsf{Var}_{\mathit{AASc}}(\overline{y})} = \frac{[(N-n)/N]S^2/n}{[(N-1)/N]S^2/n} = \frac{N-n}{N-1}.$$

- Quando EPA > 1, tem-se que o plano do numerador é menos eficiente que o padrão.
- ► Quando EPA < 1, tem-se que o plano do numerador é mais eficiente que o padrão.

Comparação entre AASc e AASs

► Da expressão acima vê-se que

$$\frac{N-n}{N-1}\leq 1,$$

ou seja, o plano AASs é sempre "melhor" (mais eficiente) do que o plano AASc.

- ► Só para amostras de tamanho 1 é que os dois se equivalem.
- Note que este resultado confirma a intuição popular de que amostras sem reposição são "melhores" do que aquelas com elementos repetidos.

Para casa

- ► Resolver os exercícios³ 3.1, 3.2, 3.4a, 3.4b, 3.5, 3.6, 3.7 do Capítulo 3 do livro **Elementos de Amostagem**⁴ (disponível no Sabi+).
 - Trazer dúvidas para aula.

³PQPs.

⁴Bolfarine, H. e Bussab, W. O. **Elementos de Amostagem**, Blucher, 2005, p. 83-85.

Próxima aula

Estimativa de um índice.

Por hoje é só!

Bons estudos!

