o let
$$y = f(x) = f(e_{G}x) = f(e_{G}) \cdot f(x)$$

 $y = f(x) = f(x) \cdot f(e_{G})$

$$f(e_{G}) \cdot f(x) = f(x) \cdot f(e_{G}) = f(x) = y$$

 $g(x) \cdot f(e_{G}) = f(x) = y$
 $g(x) \cdot f(e_{G}) = g(x) = y$
 $g(x) \cdot f(e_{G}) = g(x) = y$

(2) In general we have
$$f(xy)=f(a)f(y)$$

$$f(xx^{-1}) = f(x) f(x^{-1})$$

$$f(e_{G}) = e_{H}$$

$$3. f(x) f(x') = e_{H}$$

is the inverse of
$$f(x)$$

Mok:
$$f(a^*) = f(a \cdot a \cdot a) = f(a) f(a) \cdot a \cdot f(a) = f(a)$$

k-hims

k-hims

Pick arb. eH heH
$$\rightarrow$$
 h = f(a) $h = f(a)$ $h = f(a)$

$$\begin{cases} f(a) \\ f(a) \end{cases}$$

$$G \longrightarrow A$$

{ R/8} * { C(>)} Example: Pinker p. 90 G: set of real nois under addition { R,+} H: set of pos. real's under multo $ER^{\dagger}, \times 3$ Claim: these two groups are isomorphic. Choose: f(x)= ex $\mathcal{L} \sim \mathbb{R} \times \mathbb{R}$ Bijective?; 1. Injectie f(a) = f(b) Show a = b. Surjection: Yes, by $log(e^a) = log(e^b)$ inspection.

Compatible: Does $f(a \circ b) = f(a) \circ_{H} f(b)$ $f(a+b) = f(a) \cdot f(b)$ Does $e^{a+b} = e^{a} \cdot e^{b}$?

YES

Isomorphism; O bijective map 2 compatability $f(a_0b) = f(a) \cdot f(b)$. $f(a_0b) = f(a) \cdot f(b)$ f(x)=ex Aside,

earb = ea.eb

f(a+b) = f(a)-f(b)