BioCro Equations

Canopy Radiation

$$\delta = -23.5 \cdot \cos\left(\frac{360(D_j + 10)}{365}\right) \tag{1}$$

$$\cos(\theta) = \sin(\Omega)\sin(\delta) + \cos(\Omega)\cos(\delta)\cos(15 \cdot (t - t_{sn})) \tag{2}$$

$$I_{dir} = I_s \alpha^{\frac{(P/P_o)}{\cos(\theta)}} \tag{3}$$

$$I_{diff} = 0.5 \cdot I_s \cdot (1 - \alpha^{(P/P_o)/\cos(\theta)})\cos(\theta)$$
(4)

$$\frac{1}{2}\cos((15 \cdot t_{len}) = -\tan(\Omega)\tan(\delta) \tag{5}$$

$$t_{\rm len} = \frac{2\cos^{-1}(-\tan(\Omega)\tan(\delta))}{15} \tag{6}$$

$$t_{\text{down}} = 12 - t_{\text{len}}/2 \tag{7}$$

$$t_{\rm up} = 12 + t_{\rm len}/2$$
 (8)

what is the relevance of equation 5? Steve H's thesis contains the original, below

Weather Downscaling

$$T_{\text{mean}} = \frac{1}{2} \left(T_{\text{max}} + T_{\text{min}} \right) \tag{9}$$

$$T_{\rm range} = T_{\rm max} - T_{\rm min} \tag{10}$$

$$T_{\text{excursion}} = \sin\left(2\pi \frac{h_r - 10}{24}\right) \tag{11}$$

$$T_{\rm air} = T_{\rm mean} + T_{\rm range} \cdot T_{\rm excursion}$$
 (12)

Canopy Radiation

combine or use clearly distinguished titles for different sections on canopy radiation; energy balance, etc

$$q = \frac{n_r}{n} \tag{13}$$

$$q = \frac{n_r}{n}$$

$$N_{\text{eff}} = \frac{\frac{(1-q)}{q}}{C_{ov}^2}$$

$$r^{\sim} = \frac{m_r}{n}$$

$$h = \frac{r^{\sim}}{q}$$

$$(13)$$

$$(14)$$

$$(15)$$

$$r^{\sim} = \frac{m_r}{n} \tag{15}$$

$$h = \frac{r^{\sim}}{q} \tag{16}$$

C4 Photosynthesis test

From Collatz 1992 Coupled Photosynthesis-Stomata1 Conductance Model for Leaves of C4 Plants. Aust. J. Plant Physiol. 19 519-538

$$V_{\text{max}} = \frac{V_{\text{max}_0} Q_{10}^{\frac{T_{\text{leaf}} - 25}{10}}}{(1 + \exp(0.3(T_{\text{lower}} - T_{\text{leaf}})) (1 + \exp(0.3(T_{\text{leaf}} - T_{\text{upper}}))}$$
(17)

$$R_d = \frac{R_0 Q_{10}^{\frac{T_{\text{leaf}} - 25}{10}}}{1 + \exp(1.3(T_{\text{leaf}} - 55))}$$
(18)

$$k_t = kQ_{10}^{\frac{T_{\text{leaf}} - 25}{10}}$$
(19)

$$c_i = c_a - \frac{1.6A_n P}{g_s} \tag{20}$$

$$A_{\text{net}} = A_{\text{gross}} - R_d \tag{21}$$

$$M = \min \left[\frac{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}}) \pm \sqrt{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}})^2 - 4(V_{\text{max}} \alpha_{\text{slope}} I_{\text{abs}})\theta_{\text{curve}}}}{2\theta_{\text{curve}}} \right]$$
(22)

$$M = \min \left[\frac{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}}) \pm \sqrt{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}})^2 - 4(V_{\text{max}} \alpha_{\text{slope}} I_{\text{abs}}) \theta_{\text{curve}}}}{2\theta_{\text{curve}}} \right]$$

$$A_{\text{gross}} = \min \left[\frac{\left(M + k_t \cdot \frac{c_i}{P}\right) \pm \sqrt{\left(M + k_t \cdot \frac{c_i}{P}\right)^2 - \left(4 \cdot M \cdot k_t \cdot \frac{c_i}{P} \cdot \beta\right)}}{2 \cdot \beta} \right]$$

$$(22)$$

C3 Photosynthesis

From Appendix 2 in Bernacchi et al 2003 Plant, Cell and Environment 26, 14191430 doi: 10.1046/j.0016-8025.2003.01050.x

$$A = (1 - \Gamma^*/c_i) \tag{24}$$

$$w_c = \frac{V_{cmax}c_i}{c_i + K_c(1 + O_a/K_0)}$$
 (25)

$$w_j = \frac{Jc_i}{4.5c_i + 10.5\Gamma^*} \tag{26}$$

$$\Gamma^* = \exp(19.02 - 37.83/(R(T_{\text{leaf}} + 273.15))) \tag{27}$$

$$K_c = exp(38.05 - 36.38/R(T_{leaf} + 273.15))$$
 (28)

$$K_0 = \exp(20.30 - 36.38/R(T_{\text{leaf}} + 273.15)) \tag{29}$$

$$V_{c,\text{max}} = V_{c,\text{max}@25C} \cdot \exp(26.35 - 65.33/R(T_{\text{leaf}} + 273.15))$$
(30)

$$J = \frac{Q_2 + J_{\text{max,T}} - \sqrt{(Q_2 + J_{\text{max,T}})^2 - 4\Theta_{PSII}Q_2J_{\text{max,T}}}}{2\Theta_{PSII}}$$
(31)

$$J_{\max,T} = J_{\max@25C} \exp(17.57 - 43.54/(R(T_{\text{leaf}} + 273.15)))$$
(32)

$$\Theta_{\text{PSII}} = 0.76 + 0.018T_{\text{leaf}} - 3.7 \cdot 10^{-4} T_{\text{leaf}}^2$$
(33)

$$Q_2 = Q \cdot k \cdot \Phi_{\text{PSII,max}} \cdot \beta_{\Phi} \tag{34}$$

$$\Phi_{\text{PSII,max}} = 0.352 + 0.022T_{\text{leaf}} - 3.4 \cdot 10^{-4} T_{\text{leaf}}^2$$
(35)

renamed β as to β_{Φ} ; is this an appropriate naming?

From Appendix 1, Equations 7-9 in Long 1991 Plant, Cell and Environment 14, 729-739. doi:10.1111/j.1365-3040.1991.tb01439.x

$$c_i = 0.7c_a \left(\frac{1.6740 - 6.1294 \cdot 10^{-2} T_{\text{leaf}} + 1.1688 \cdot 10^{-3} T_{\text{leaf}}^2 - 8.8741 \cdot 10^{-6} T_{\text{leaf}}^3}{0.73547} \right)$$
(36)

$$c_i = 0.7c_a@25^{\circ}C \tag{37}$$

$$O_i = 210 \left(\frac{4.7000 \cdot 10^{-2} - 1.3087 \cdot 10^{-3} T_{\text{leaf}} + 2.5603 \cdot 10^{-5} T_{\text{leaf}}^2 - 2.1441 \cdot 10^{-7} T_{\text{leaf}}^3}{2.6934 \cdot 10^{-2}} \right)$$
(38)

$$O_i = O_a @25^{\circ}C \tag{39}$$

$$\phi = \frac{A_{I=50} - A_{I=25}}{25f} \tag{40}$$

is there a reason not to divide by the denominator when it is constant?

Water Stress

$$h_s = \frac{e_l - \rho_{va}}{e_l} \cdot 100 \tag{41}$$

$$g_s = g_0 + g_1 \cdot A_{\text{gross}} \cdot \frac{h_s}{c_a} \tag{42}$$

Four options for water stress model: (43)

$$g_{\text{ws, linear}} = \frac{W_s - W_p}{F_c - W_p} \tag{44}$$

$$g_{\text{ws, logistic}} = \frac{1}{1 + \exp\left(\frac{\frac{1}{2}(F_c - W_p) - W_s)}{\phi_i}\right)}$$
(45)

$$g_{\text{ws, exponential}} = \frac{1 - \exp\left(\frac{F_c - W_s}{F_c - W_p} + \frac{W_p}{1 - W_p}\right)}{0.631206}$$
 (46)

$$q_{\text{ws, none}} = 1 \tag{47}$$

(48)

Calculate g_s and A_n under water stress:

$$g_s^{\text{water stress}} = g_{\text{ws},*}g_s$$
 (49)
 $A_n^{\text{water stress}} = g_{\text{ws},*}A_n$ (50)

$$A_n^{\text{water stress}} = g_{\text{ws.*}} A_n \tag{50}$$

should there be only one equation for Anet(?) is either correct? The first seems strange in that it implies water limited Anet equals Anet times humidity

Canopy Energy Balance

$$J_a = 2 \cdot I_{\text{abs}} \cdot \left(\frac{1 - r - \tau}{1 - \tau}\right) \cdot \ell \tag{51}$$

$$L_b = (2.126 \cdot 10^{-5} + 1.48 \cdot 10^{-7} \cdot T_{\text{air}}) / 0.004 \cdot \sqrt{L_w / u_{\text{layer}}}$$
(52)

$$u_a = \frac{u \cdot 0.41}{\log((u-d)/z_o)}$$
 (53) I can not reconcile units

$$g_a = \frac{(u_a^2/u_{\text{layer}}) \cdot L_b}{(u_a^2/u_{\text{layer}}) + L_b}$$
 (54) I can not reconcile units

$$\rho_v' = 610.78 \cdot \exp\left(\left(17.269 \cdot \frac{T_a}{T_a + 237.3}\right)\right) \tag{55}$$

$$\Delta \rho_{va} = \rho_v' \cdot \left(1 - \frac{h_s}{100} \right) \tag{56}$$

$$\gamma = \frac{\rho \cdot c_p}{\lambda} \tag{57}$$

$$s = 18 \cdot (2501 - 2.373 \cdot T_a) \cdot \left(\frac{\rho_v'}{8.314 \cdot (T_a + 273)^2}\right)$$
(58)

$$R_{lc} = 4\sigma \cdot (273 + T_{air})^3 \cdot \Delta T \tag{59}$$

$$\Phi_N = J_a - R_{lc} \tag{60}$$

$$\Delta T = T_{\text{leaf}} - T_{\text{air}} = \frac{\Phi_n \left(\frac{1}{g_a} + \frac{1}{g_c}\right)}{\lambda \left[s + \gamma \left(1 + \frac{g_a}{g_c}\right)\right]} - \frac{\lambda \Delta \rho_{va}}{\lambda \left[s + \gamma \left(1 + \frac{g_a}{g_c}\right)\right]}$$

$$E = \frac{s \cdot \Phi_N + \lambda \cdot g_a \cdot \Delta \rho_{va}}{\lambda \cdot [s + \lambda \cdot (1 + g_a/g_c)]}$$
(62)

$$\mathbf{E_c} = \sum_{\text{layer}^N} (\mathbf{E}_{\text{sun}} \cdot l_{\text{sun}}) + (\mathbf{E}_{\text{shade}} \cdot l_{\text{shade}})$$
(63)

$$\mathbf{E}_{\text{tot}} = \int_{0}^{365 \text{days}} \int_{0}^{24 \text{hours}} \mathbf{E}_{\mathbf{c}}$$
 (64) why use \int instead of Σ ?

Sun / Shade Canopy

$$k = \frac{\sqrt{\chi^2 + \tan^2(\theta)}}{\chi + 1.744 \cdot [\chi + 1.183]^{-0.733}}$$
(65)

$$F_{\rm sun} = \frac{1 - \exp[-k \cdot F_{\rm canopy}]}{k} \tag{66}$$

$$F_{\text{shade}} = F_{\text{canopy}} - F_{\text{sun}} \tag{67}$$

$$I_{\text{sun}} = k \cdot I_{beam} + I_{\text{diff}} + I_{\text{scat}} \tag{68}$$

$$I_{\text{beam}} = I_{\text{dir}} \cos(\theta) \tag{69}$$

$$I_{\text{shade}} = I_{\text{diff}} + I_{\text{scat}} \tag{70}$$

$$I_{\text{diff}} = I_{\text{od}} \exp(-k_d F_{\text{canopy}}) \tag{71}$$

$$I_{\text{scat}} = I_{\text{beam}} \exp(-k\sqrt{\alpha_{\text{scat}}} F_{\text{canopy}}) - I_{\text{beam}} \exp(-kF_{\text{canopy}})$$
 (72)

(73)

should thermal conductivity

be in this equation?

Total Canopy Assimilation

$$A_c = (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$
(74)

$$F_{\text{sun}} = \sum_{\text{layer}N}^{\text{layer}1} l_{\text{sun}}; \ l_{\text{sun}} = \frac{1 - e^{(-k \cdot F_{\text{sun}})}}{k}$$
 (75)

$$F_{\text{shade}} = \sum_{\text{layer}N}^{\text{layer1}} \ell_{\text{shade}}; \ \ell_{\text{shade}} = F_{\text{sun}} - \ell_{\text{sun}}$$
 (76)

$$F_{\text{canopy}} = F_{\text{sun}} + F_{\text{shade}} \tag{77}$$

$$A_c = \sum_{\text{layer}N}^{layer1} (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$
(78)

$$A_{c,\text{tot}} = \sum_{\text{day}=1}^{365} \sum_{\text{hr}=1}^{24} A_c \tag{79}$$

$$g_c = \sum_{\text{laver1}}^{\text{layer}N} (g_{s,\text{sun}} \cdot l_{\text{sun}}) + (g_{s,\text{shade}} \cdot l_{\text{shade}})$$
(80)

$$g_{c,\text{tot}} = \sum_{\text{day}=1}^{365} \sum_{\text{hr}=1}^{24} g_c \tag{81}$$

is $\ell_{\text{sun}} \equiv l_{\text{sun}}$? neither is defined

switch use of \int over hr/yr to \sum ?

Allocation

$$A_{\text{storage}} = |\min(0, \omega_{\text{storage}} \cdot k_{\text{storage}})| \tag{82}$$

$$A_{\text{total}} = A_{\text{leaf}} + A_{\text{stem}} + A_{\text{root}} + A_{\text{storage}}$$
(83)

$$\omega_{\text{leaf}} = \omega_{\text{leaf}} + (A_{\text{total}} \cdot k_{\text{leaf}}) \tag{84}$$

$$\omega_{\text{stem}} = \omega_{\text{stem}} + (A_{\text{total}} \cdot k_{\text{stem}}) \tag{85}$$

$$\omega_{\text{stroot}} = \omega_{\text{storage}} + (A_{\text{total}} \cdot k_{\text{storage}}) \tag{86}$$

$$\omega_{\text{root}} = \omega_{\text{root}} + (A_{\text{total}} \cdot k_{\text{root}}) \tag{87}$$

$$\Psi_{\rm adl} < \Psi_{\rm pt}$$
 (88)

$$k_{\text{leaf}} = k_{\text{leaf}} \cdot k_{\text{mod}} \tag{89}$$

$$k_{\text{stem}} = k_{\text{stem}} \cdot k_{\text{mod}} \tag{90}$$

$$k_{\text{storage}} = k_{\text{storage}} \cdot k_{\text{mod}}$$
 (91)

$$k_{\text{mod}} = (\Psi_{\text{adl}} - \Psi_{\text{pt}}) \cdot \Psi_g; 0 \le k_{\text{mod}} \le 1$$
(92)

$$\Delta F_{\rm canopy} = \frac{\omega_{\rm leaf}}{Sp_{\rm leaf}} \tag{93}$$

$$\Delta L_{\text{stem}} = \frac{\omega_{\text{stem}}}{S_{D_{\text{obs}}}} \tag{94}$$

$$\Delta L_{\text{sroot}} = \frac{\omega_{\text{sroot}}}{S n_{\text{most}}} \tag{95}$$

$$\Delta L_{\text{stem}} = \frac{\omega_{\text{stem}}}{Sp_{\text{stem}}}$$

$$\Delta L_{\text{sroot}} = \frac{\omega_{\text{sroot}}}{Sp_{\text{sroot}}}$$

$$\Delta L_{\text{storage}} = \frac{\omega_{\text{storage}}}{Sp_{\text{storage}}}$$

$$(94)$$

$$(95)$$

$$Stem_{coppice} = 0.95 - \omega_{stem} \tag{97}$$

should restrictions on values of k in equations 82 and 92 be moved to the parameter definitions?

would it make sense to subscript values of ω with t, t+1 when updating them to avoid confusion?

 Δt is the timescale for updating biomass.; need to define ΔT for both daily and hourly

Soil Evaporation

$$E_{\text{soil}} = \sum \frac{(\Psi_{\text{si}} - g \cdot z_i - \Psi_x)}{R_{\text{si}} + R_{\text{ri}}}$$

$$(98)$$

$$R_{\rm ri} = R_r \cdot \frac{\sum L_i}{L_i} \tag{99}$$

$$\Psi_x = \sum \frac{(\Psi_{si} - q_w \cdot z_i)}{R_{si} + R_{ri}} / \sum \frac{1}{R_{si} + R_{ri}}$$
 (100)

$$\Psi_L = \Psi_x - E \cdot R_L \tag{101}$$

$$E_d = \begin{cases} E_p, & \theta^* \ge \theta_1 \\ E_p \left(\frac{\theta - \theta_2}{\theta_1 - \theta_2} \right), & \theta_2 < \theta^* < \theta_1 \\ 0, & \theta^* \le \theta_2 \end{cases}$$
 (102)

$$\theta_{i+1} = \theta_i - \frac{E_i \cdot \theta_i}{\rho_w \cdot d_s} \tag{103}$$

$$g_{a,\text{soil}} = \frac{(2.126 \cdot 10^{-5}) + (1.48 \cdot 10^{-7}) \cdot T_{\text{soil}}}{\left(0.004 \cdot \sqrt{\frac{S_{size}}{u_{\text{soil}}}}\right)}$$
(104)

$$R_{lc,\text{soil}} = ((4\sigma) \cdot (273 + T_{\text{soil}})^3 \cdot \Delta T) \tag{105}$$

$$J_{a,\text{soil}} = 2 \cdot I_{\text{soil}} \cdot \left(\frac{1 - S_r - S_\tau}{1 - S_\tau}\right) \tag{106}$$

$$\Phi_{N,soil} = J_{a,soil} - R_{lc,soil} \tag{107}$$

$$E_{\text{soil}} = \frac{s \cdot \Phi_{N,soil} + \lambda \cdot g_{a,soil} \cdot \Delta \rho_{va}}{\lambda \cdot [s + \gamma]}$$
 (108) is "soil" subscript correct?

Respiration

$$R_{\text{total}} = aA_n + b_{\text{stem}}\Delta\omega_{\text{stem}} + b_{\text{root}}\Delta\omega_{\text{root}} + b_{\text{storage}}\Delta\omega_{\text{storage}}$$
(109)

Energy Balance

$$HS_{\text{soil}} = HO_{\text{soil}} \cdot exp \left[\frac{h_{\text{soil}}}{46.97 \cdot (T_{\text{soil}} + 273.16)} \right]$$

$$(110)$$

$$HO_{\text{soil}} = 1.323 \cdot exp \left[\frac{17.27 \cdot T_{\text{soil}}}{273.3 + T_{\text{soil}}} \right] / T_{\text{soil}} + 273.16$$
 (111)

$$G_{\text{soil}} = -\lambda_{\text{soil}} \frac{\delta T}{\delta x} \tag{112}$$

$$G_{\text{soil}} = -\lambda_{\text{soil}} \cdot \left[\frac{T_2 - T_{\text{soil}}}{\Delta z} \right] + (T_{\text{soil}} - T_l) \cdot C \cdot \frac{\Delta z}{(2 \cdot \Delta t)}$$
(113)

should denominator in equation 112 be δz ?

what is t_1 ?

C in from equation 113 is undefined - is this the specific heat of soil?

Definition of Terms

Term	Units	Definition	Value	
$A_{ m gross}$	$\mu mol \ mol^{-1}$	Gross rate of CO_2 uptake per unit leaf area	-	
$A_{ m net}$	$\mu mol mol^{-1}$	Net rate of CO ₂ uptake per unit leaf area	-	
$A_{net, water stress}$	$\mu mol mol^{-1}$	$A_{\rm net}$ under water stress		
A_c	$\mu mol mol^{-1}$	Net canopy rate of CO ₂ uptake per unit ground area	-	
$A_{c,\mathrm{tot}}$	$g m^{-2} yr^{-1}$	A_c integrated over the course of a year	-	
$A_{c,\mathrm{sun}}$	$mol mol^{-1}$	Net rate of CO ₂ uptake per unit area sunlit leaves	-	
$A_{c,\mathrm{shade}}$	$mol m^{-2} s^{-1}$	Net rate of CO ₂ uptake per unit area shaded leaves	-	
A	$\mu mol mol^{-1}$	Predicted rate of CO ₂ uptake	-	
c_a	$\mu mol mol^{-1}$	Atmospheric CO ₂ concentration	378	
a	Dimensionless	Coefficient for growth respiration	0.2	
α	dimensionless	Atmospheric transmittance	0.85	
$lpha_{ m slope}$.	mol mol ⁻¹	The quantum yield of CO_2 uptake determined by the initial slope of the response of A versus I_{abs}	0.04	
$b_{ m leaf}$	Dimensionless	Coefficient for maintenance respiration for leaf	0.03	
$b_{ m stem}$	Dimensionless	Coefficient for maintenance respiration for stem	0.015	
$b_{ m root}$	Dimensionless	Coefficient for maintenance respiration for root	0.01	
β	0.4	C ₄ curvature parameter	0.93	
eta_Φ	%	Fraction of absorbed quanta reaching PSII		
c_i	$\mu mol mol^{-1}$	Intercellular concentration of O_2 in air corrected for solubility relative to $25^{\circ}C$		
c_p	$J kg^{-1} K - 1$	Specific heat capacity of dry air	1010	
C_{ov}	Dimensionless	Coefficient of Variation for probability of rain in each month	-	
d_s	m	Soil depth	-	
D_j	d	day of year	-	
$D_{ m start}$	d	Day of year on which the sinusoidal temperature func- tion is assumed to start	45	
d	dimensionless	Zero plane displacement	0.77	
δ	degrees	Solar declination	-	
e_l	kPa	Saturated water VPD in the leaf	-	is "saturated
E	$J mol^{-1}$	Activation energy	$R_d =$	oxymoron?
			66405	
			$V_{\rm max} =$	
			6800	
E_d				undefined from
E_i	0 1			undefined from
E_c	$mmol m^{-2} s^{-1}$	Instantaneous canopy evapo/transpiration rate	-	
E_d	$g m^{-2} s^{-1}$	Potential soil evaporation	-	
E_l	$mmol m^{-2} s^{-1}$	Evapo/transpiration rate at sunlit/shaded leaves in a canopy layer	-	
E_p	$g m^{-2} s^{-1}$	Actual soil evaporation	-	
E_{R_d}	$\rm J~mol^{-1}$	Activation energy of R_d	-	
$E_{ m tot}$	$mmol m^{-2} yr^{-1}$	E_c integrated over the course of a year	-	
$E_{V_{\mathrm{max}}}$	$\rm J~mol^{-1}$	Activation energy of V_{cmax}	-	
f		fraction of light not absorbed by photosynthesis	0.23	
$f_{s,l}$		fraction of sunlit leaves at depth l (l is cumulative leaf area index from top)		
F_c	$m^3 m^{-3}$	Field Capacity		
$F_{\rm canopy}$	$m^2 m^{-2}$	Cumulative canopy leaf area index from top at depth	9	
$F_{ m shade}$	$m^2 m^{-2}$	Canopy shaded leaf area index	-	
$F_{ m sun}$	$m^2 m^{-2}$	Canopy sunlit leaf area index	-	
$F_{ m sum}$	$m^2 m^{-2}$	Summed leaf area index from top of canopy to layer	-	
	0	considered in calculation		
$G_{ m soil}$	$W m^{-2}$	Soil heat flux	-	
g	$m s^{-2}$	Gravitional constant	9.8	
g_a	$mmolm^{-2}s^{-1}$	Leaf boundary layer conductance	-	

"saturated VPD" an

undefined from equation 102 undefined from equation 103

Table 1 – continued from previous page

Term Units Definition Value g. mmod $m^{-2} s^{-1}$ Campy conductance of CO ₂ - g. mmod $m^{-2} s^{-1}$ Last stomatal conductance - g. dimensionless Stomatal storecept theory 0.08 g. mmod $m^{-2} s^{-1}$ The sum of stomatal conductance of shalled leaves g. mmod $m^{-2} s^{-1}$ The sum of stomatal conductance of shalled leaves g. dimensionless The sum of stomatal conductance of shalled leaves g. dimensionless The sum of stomatal conductance of shalled leaves g. dimensionless The sum of stomatal conductance of shalled leaves g. dimensionless The sum of stomatal conductance of shalled leaves g. park for the sum of the stomatal conductance of shalled leaves g. park for the sum of the stomatal conductance of shalled leaves g. park for the sum of the stomatal conductance of shalled leaves g. park for the sum of the stomatal conductance of shalled leaves g. park for the sum of the sum			e 1 – continued from previous page		
g_{s} $monol m^{-2} s^{-1}$ Leaf stomatal conductance g_{s} g_{s	Term	Units	Definition	Value	
g_{0} dimensionless dimensionless of dimensionless shaded imensionless shaded imensionless shaded leaves shaded leaves shaded leaves get dimensionless shaded leaves get dimensionless shaded leaves get dimensionless shaded leaves should conductance of shaded leaves get leaves the sensitivity factor water stress stomatal conductance of shaded leaves should leave should be shaded leaves should leave should lea	g_c	$mmol m^{-2} s^{-1}$	Canopy conductance of CO_2	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$g_{\rm c, \ root}$				undefined
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	g_s	$mmol m^{-2} s^{-1}$		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	g_0	dimensionless	Stomatal slope factor	3	
g_{se} dimensionless dimensionless (dimensionless dimensionless) Species-specific water stress sensitivity factor water stress stomatal conductance factor; see equations 43 graph of the proposal of the properties of the proposal of the properties water stress sensitivity factor water stress stomatal conductance factor; see equations 43 graph of the proposal of the properties of the properties water stress stomatal conductance factor; see equations 43 graph of the properties water stress stomatal conductance factor; see equations 43 graph of the properties water stress stomatal conductance factor; see equations 43 graph of the properties water stress stomatal conductance factor; see equations 43 graph of the properties water stress stomatal conductance factor; see equations 43 graph of the properties water stress stomatal conductance factor; see equations 43 graph of the properties water stress stomatal conductance factor; see equations 4 graph of the properties water stress stomatal conductance factor; see equations 4 graph of the properties water stress stomatal conductance factor; see equations 4 graph of the properties water stress stomatal conductance factor; see equations 4 graph of the stress stomatal conductance factor; see equations 4 graph of the stress stomatal conductance factor; see equations 4 graph of the stress stomatal conductance factor; see equations 4 graph of the stress stomatal conductance factor; see equations 4 graph of the stress stomatal conductance factor; see equations 4 graph of the stress stomatal conductance factor; see equations 4 graph of the stress stomatal conductance factor; see equations 4 graph of the stress stomatal conductance factor; see equations 4 graph of the stress stomatal conductance factor; see equations 4 graph of the stress stomatal conductance factor; see equations 4 graph of the stress stomatal conductance factor stress stomatal conductance factor stress stomatal conductance factor stress stomatal stress stomatal stress stomatal stress stomatal stress stomat	g_1		Stomatal intercept factor	0.08	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$g_{s,\mathrm{sun}}$		The sum of stomatal conductance of sunlit leaves	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$g_{s,\mathrm{shade}}$		The sum of stomatal conductance of shaded leaves	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$g_{ m ws}$	dimensionless	Species-specific water stress sensitivity factor		
Γ'' Pa K $^{-1}$ pmol mol $^{-1}$ CO2 compensation point in the absence of dark respiration CO2 compensation CO2	$g_{ m ws}*$	dimensionless	water stress stomatal conductance factor; see equa-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
h_r h Hours of day 1 can be a surface $h_{control}$ b, $h_{control}$ m Height of canopy $h_{control}$ m Height of canopy $h_{control}$ m Height of canopy layer above ground 1 can be a surface $h_{control}$ m Height of canopy layer above ground 2 can be a surface $h_{control}$ m $h_{$				_	
h_r h Hour of day	Γ^*	$\mu \mathrm{mol} \ \mathrm{mol}^{-1}$	CO ₂ compensation point in the absence of dark respi-		
h_s % Relative lumidity − − − − − − − − − − − − − − − − − − −			ration		
$h_{contropy}$ m Height of canopy wind speed measurement height 5 h_{thyser} m Wind speed measurement height 2 1 $\mu mol m^{-2} s^{-1}$ Height of canopy layer above ground - h $minday^{-1}$ The amount of water received on a given rainy day - h_{coull} h_{gm} h_{coull} h_{coull} h_{coull} h_{coull} HO_{suill} h_{gm} h_{coull} h_{coull} h_{coull} h_{coull} h_{coull} HO_{suill} h_{gm} h_{coull} h_{coull} h_{coull} h_{coull} h_{coull} H_{coull} h_{gm} h_{coull}	h_r		Hour of day	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h_s	%	Relative humidity	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	h_{canopy}	m	Height of canopy	5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	h_{ms}	m	Wind speed measurement height	2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Height of canopy layer above ground	-	
h_{coll} m Water pressure head -100 Mater h_{coll} in h_{coll}	I			-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	h	$mmday^{-1}$	The amount of water received on a given rainy day	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$h_{ m soil}$			-	
$ I_{abs} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \text{Photon flux absorbed by either sunlit or shaded leaves} \qquad - \\ I_{\text{diff}} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \text{Photon flux in direct solar beam} \qquad - \\ I_{\text{diff}} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \text{Photon flux in diffuse radiation} \qquad - \\ I_{\text{total}} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \text{Solar constant, photon flux in a plane perpedicular to} \\ I_{s} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \text{Solar constant, photon flux in a plane perpedicular to} \\ I_{t,d} \qquad \qquad undefined \\ I_{t,d} \qquad \qquad undefined \\ I_{t,d} \qquad \qquad undefined \\ I_{\text{short}} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \text{Short wave radiation component of incident light} \qquad - \\ I_{\text{beam}} \qquad \qquad indefined \\ I_{\text{total}} \qquad indefined \\ I_{\text{total}} \qquad indefined \\ I_{\text{total}} \qquad indefined \\ I_{\text{total}} \qquad indefined \\ I_{\text{short}} \qquad indefined \\ I_{\text{short}} \qquad indefined \\ I_{\text{short}} \qquad indefined \\ I_{\text{short}} \qquad indefined \\ I_{\text{total}} \qquad indefined \\ I_{tot$	$HO_{ m soil}$		Saturated humidity of the air at the soil surface	-	
	$HS_{ m soil}$	Kgm^{-3}	Humidity of the air at the soil surface	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$I_{ m abs}$	$\mu mol m^{-2} s^{-1}$	Photon flux absorbed by either sunlit or shaded leaves	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			within a canopy layer		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$I_{ m dir}$	$\mu mol m^{-2} s^{-1}$	Photon flux in direct solar beam	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$I_{ m diff}$	$\mu mol m^{-2} s^{-1}$		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$I_{ m total}$			-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_s	$\mu mol m^{-2} s^{-1}$		2600	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			the solar beam above the atmosphere		
$ I_{\rm short} \\ I_{\rm beam} \\ I$					
$I_{\rm beam} \qquad \qquad$		0 1			undefined
$I_{\rm soil} \mu mol \ m^{-2} \ s^{-1} Solar \ radiation \ on soil \ surface surfa$	_	$\mu mol m^{-2} s^{-1}$	-	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$I_{ m beam}$				
$ I_{\rm soil} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \text{Solar radiation incident upon soil surface} \qquad - \\ I_{\rm Soil} \qquad W \ m^{-2} \qquad \text{Solar radiation on soil} \qquad - \qquad \text{which units for } I_{\rm soil} \ \text{are correct?} \\ I_{\rm sun} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \text{Mean I for leaves which receive direct solar radiation}, i.e. \ are sunlit \\ I_{\rm shade} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \text{Mean I for leaves shaded from direct solar radiation} \\ I_{\rm scat} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \text{Direct beam radiation scattered by surfaces within the} \\ canopy \qquad canopy \\ J_{\rm a} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \text{Total solar radiation absorbed by either sunlit or} \\ shaded leaves within a canopy layer \\ J_{\rm a, soil} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \text{Total solar radiation absorbed by soil} \qquad - \\ k \qquad \text{dimensionless} \qquad \text{Foliar absorption coefficient } (\alpha_{\ell} \text{ in Bernacchi 2003}) \qquad - \\ k_{d} \qquad \text{dimensionless} \qquad \text{extinction coefficient for diffuse light} \\ K_{C} \qquad \mu mol \ mol^{-1} \qquad \text{Michaelis Menton constant for the carboxylation of} \\ RuBISCO \qquad K_{\rm CO_2} \qquad mol \ m^{-2} \ s^{-1} \qquad \text{Initial slope of photosynthetic CO}_2 \ \text{response} \qquad 0.7 \\ Kt \qquad \qquad - \\ K_{o} \qquad mmol \ mol^{-1} \qquad \text{Michaelis Menton constant for oxygenation of Ru-} \\ BISCO \qquad & \\ k_{\rm slope} \qquad \text{Dimensionless} \qquad \text{Initial slope of photosynthetic light response} \qquad 0.04 \\ LN \qquad g \ m^{-2} \qquad \text{Leaf nitrogen concentration} \qquad - \\ \end{array}$	_				
$ \begin{array}{c} I_{\rm soil} \\ I_{\rm soil} \\ I_{\rm soil} \\ I_{\rm soil} \\ I_{\rm sun} \\ I_{\rm sun} \\ I_{\rm sun} \\ I_{\rm shade} \\ I_{\rm shade} \\ I_{\rm scat} \\ I_{\rm soil} \\ I_{\rm scat} \\ I_{\rm soil} \\ I_{\rm soil} \\ I_{\rm scat} \\ I_{\rm soil} \\ I_{\rm soil} \\ I_{\rm scat} \\ I_{\rm scat} \\ I_{\rm soil} \\ I_{\rm scat} $	I_{od}				
$ I_{\text{sun}} \qquad Wm^{-2} \qquad \text{Solar radiation on soil} \qquad - \qquad \text{which units for } I_{\text{soil}} \text{ are correct?} $ $ I_{\text{sun}} \qquad \mu mol m^{-2} s^{-1} \qquad \text{Mean I for leaves which receive direct solar radiation,} - I_{\text{shade}} \qquad \mu mol m^{-2} s^{-1} \qquad \text{Mean I for leaves shaded from direct solar radiation} \qquad - I_{\text{scat}} \qquad \mu mol m^{-2} s^{-1} \qquad \text{Direct beam radiation scattered by surfaces within the canopy} $ $ I_{\text{scat}} \qquad \mu mol m^{-2} s^{-1} \qquad \text{Direct beam radiation absorbed by either sunlit or shaded leaves within a canopy layer} $ $ I_{\text{soil}} \qquad \mu mol m^{-2} s^{-1} \qquad \text{Total solar radiation absorbed by soil} \qquad - I_{\text{soil}} \qquad - I_{\text{soil}$	_	. 2 1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$I_{ m soil}$			-	
i.e. are sunlit $I_{ m shade}$ $I_{ m scat}$ $I_{ m scat$				-	which units for I_{soil} are correct?
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$I_{ m sun}$	$\mu mol \ m^{-2} \ s^{-1}$		-	
$I_{\text{scat}} \qquad \mu mol \ m^{-2} s^{-1} \qquad \text{Direct beam radiation scattered by surfaces within the canopy} \\ J_{\text{a}} \qquad \mu mol \ m^{-2} s^{-1} \qquad \text{Total solar radiation absorbed by either sunlit or shaded leaves within a canopy layer} \\ J_{\text{a, soil}} \qquad \mu mol \ m^{-2} s^{-1} \qquad \text{Total solar radiation absorbed by soil} \qquad - \\ k \qquad \text{dimensionless} \qquad \text{Foliar absorption coefficient } (\alpha_{\ell} \text{ in Bernacchi 2003}) \qquad - \\ k_{d} \qquad \text{dimensionless} \qquad \text{extinction coefficient for diffuse light} \\ K_{c} \qquad \mu mol \ mol^{-1} \qquad \text{Michaelis Menton constant for the carboxylation of Ru-BISCO} \\ K_{\text{CO}_{2}} \qquad mol \ m^{-2} s^{-1} \qquad \text{Initial slope of photosynthetic CO}_{2} \text{ response} \qquad 0.7 \\ K_{t} \qquad \qquad C_{4} \text{ slope factor} \qquad - \\ K_{o} \qquad mmol \ mol^{-1} \qquad \text{Michaelis Menton constant for oxygenation of Ru-BISCO} \\ k_{\text{slope}} \qquad \text{Dimensionless} \qquad \text{Initial slope of photosynthetic light response} \qquad 0.04 \\ \text{LN} \qquad g \ m^{-2} \qquad \text{Leaf nitrogen concentration} \qquad - \\ \end{cases}$, -2 -1			
$J_{\rm a} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \begin{array}{c} {\rm canopy} \\ {\rm Total \ solar \ radiation \ absorbed \ by \ either \ sunlit \ or} \\ {\rm shaded \ leaves \ within \ a \ canopy \ layer} \\ {\rm Ja, \ soil} \qquad \mu mol \ m^{-2} \ s^{-1} \qquad \begin{array}{c} {\rm Total \ solar \ radiation \ absorbed \ by \ soil} \\ {\rm c} \\ {\rm k} \qquad {\rm dimensionless} \qquad {\rm Foliar \ absorption \ coefficient \ } (\alpha_{\ell} \ in \ {\rm Bernacchi \ } 2003) \\ {\rm k}_{d} \qquad {\rm dimensionless} \qquad {\rm extinction \ coefficient \ } {\rm for \ diffuse \ light} \\ {\rm K}_{c} \qquad \mu mol \ mol^{-1} \qquad {\rm Michaelis \ Menton \ constant \ for \ the \ carboxylation \ of \\ {\rm RuBISCO} \qquad {\rm RuBISCO} \\ {\rm K}_{{\rm CO}_{2}} \qquad mol \ m^{-2} \ s^{-1} \qquad {\rm Initial \ slope \ of \ photosynthetic \ CO_{2} \ response} \qquad 0.7 \\ {\rm K}_{t} \qquad {\rm C}_{4} \ {\rm slope \ factor} \qquad {\rm -} \\ {\rm K}_{c} \qquad {\rm mmol \ mol^{-1}} \qquad {\rm Michaelis \ Menton \ constant \ for \ oxygenation \ of \ Ru-} \\ {\rm RuBISCO} \qquad {\rm BISCO} \qquad {\rm BISCO} \qquad {\rm Siscopheta} \qquad 0.04 \\ {\rm LN} \qquad g \ m^{-2} \qquad {\rm Leaf \ nitrogen \ concentration} \qquad {\rm -} \\ {\rm Canopy} \qquad {\rm Canopy} \qquad {\rm Concentration} \qquad {\rm -} \\ {\rm Canopy} \qquad {\rm Canopy} \qquad {\rm Canopy} \qquad {\rm Concentration} \qquad {\rm -} \\ {\rm Canopy} \qquad {\rm Concentration} \qquad {\rm -} \\ {\rm Canopy} \qquad {\rm Concentration} \qquad {\rm -} \\ {\rm Canopy} \qquad {\rm Concentration} \qquad {\rm -} \\ {\rm Canopy} \qquad {\rm Concentration} \qquad {\rm -} \\ {\rm Canopy} \qquad {\rm Concentration} \qquad {\rm -} \\ {\rm C$		$\mu mol \ m^{-2} \ s^{-1}$		-	
$ J_{\rm a, soil} \qquad \mu mol m^{-2} s^{-1} \qquad {\rm Total \ solar \ radiation \ absorbed \ by \ either \ sunlit \ or \ -} \\ shaded \ leaves \ within a \ canopy \ layer \\ J_{\rm a, soil} \qquad \mu mol m^{-2} s^{-1} \qquad {\rm Total \ solar \ radiation \ absorbed \ by \ soil} \qquad -} \\ k \qquad {\rm dimensionless} \qquad {\rm Foliar \ absorption \ coefficient \ } (\alpha_{\ell} \ {\rm in \ Bernacchi \ } 2003)} \qquad -} \\ k_{d} \qquad {\rm dimensionless} \qquad {\rm extinction \ coefficient \ for \ diffuse \ light} \\ K_{c} \qquad \mu mol mol^{-1} \qquad {\rm Michaelis \ Menton \ constant \ for \ the \ carboxylation \ of} \qquad 460 \\ RuBISCO \qquad {\rm RuBISCO} \qquad {\rm K}_{\rm CO_{2}} \qquad mol m^{-2} s^{-1} \qquad {\rm Initial \ slope \ of \ photosynthetic \ CO_{2} \ response} \qquad 0.7 \\ K_{t} \qquad {\rm C_{4} \ slope \ factor} \qquad -} \\ K_{o} \qquad mmol mol^{-1} \qquad {\rm Michaelis \ Menton \ constant \ for \ oxygenation \ of \ Ru-} \\ K_{\rm slope} \qquad {\rm Dimensionless} \qquad {\rm Initial \ slope \ of \ photosynthetic \ light \ response} \qquad 0.04 \\ {\rm LN} \qquad g m^{-2} \qquad {\rm Leaf \ nitrogen \ concentration} \qquad -} \\ \label{eq:mol}$	$I_{ m scat}$	$\mu mol \ m^{-2}s^{-1}$	-	=	
$J_{\rm a,soil} \qquad \mu molm^{-2}s^{-1} \qquad {\rm Totalsolarradiationabsorbedbysoil} \qquad - \\ k \qquad {\rm dimensionless} \qquad {\rm Foliarabsorptioncoefficient}(\alpha_\ell{\rm inBernacchi2003})} \qquad - \\ k_d \qquad {\rm dimensionless} \qquad {\rm extinctioncoefficientfordiffuselight} \qquad - \\ K_c \qquad \mu molmol^{-1} \qquad {\rm MichaelisMentonconstantforthecarboxylationof} \qquad 460 \\ {\rm RuBISCO} \qquad {\rm RuBISCO} \qquad {\rm RuBISCO} \qquad - \\ K_{\rm CO_2} \qquad molm^{-2}s^{-1} \qquad {\rm InitialslopeofphotosyntheticCO_2response} \qquad 0.7 \\ Kt \qquad \qquad {\rm C_4slopefactor} \qquad - \\ K_o \qquad mmolmol^{-1} \qquad {\rm MichaelisMentonconstantforoxygenationofRu-} \\ BISCO \qquad {\rm BISCO} \qquad {\rm Biscool} \qquad {\rm Siope} \qquad {\rm Dimensionless} \qquad {\rm Initialslopeofphotosyntheticlightresponse} \qquad 0.04 \\ {\rm LN} \qquad gm^{-2} \qquad {\rm Leafnitrogenconcentration} \qquad - \\ \end{tabular}$	7	, -2 -1			
$J_{\rm a, soil}$ $\mu mol m^{-2} s^{-1}$ Total solar radiation absorbed by soil - $\mu mol mol m^{-2} s^{-1}$ dimensionless Foliar absorption coefficient (α_ℓ in Bernacchi 2003) - $\mu mol mol $	$J_{ m a}$	$\mu mol \ m^{-2} s^{-1}$		=	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	, -2 -1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•		-	
K_c $\mu mol mol^{-1}$ Michaelis Menton constant for the carboxylation of RuBISCO RuBISCO $K_{\rm CO_2}$ $mol m^{-2} s^{-1}$ Initial slope of photosynthetic CO ₂ response 0.7 Kt C_4 slope factor - K_o $mmol mol^{-1}$ Michaelis Menton constant for oxygenation of Ru-BISCO Sistematically and Sistematic				_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				400	
K_{CO_2} $molm^{-2}s^{-1}$ Initial slope of photosynthetic CO_2 response 0.7 Kt C_4 slope factor - K_o $mmolmol^{-1}$ Michaelis Menton constant for oxygenation of Ru- BISCO k_{slope} Dimensionless Initial slope of photosynthetic light response 0.04 LN gm^{-2} Leaf nitrogen concentration -	Λ_c	$\mu moi moi$	· · · · · · · · · · · · · · · · · · ·	400	
Kt C_4 slope factor $ Michaelis Menton constant for oxygenation of Ru- Michaelis Menton$	<i>K</i>	$m_{0}l_{m}^{-2}$ c^{-1}		0.7	
K_o $mmol mol^{-1}$ Michaelis Menton constant for oxygenation of Ru-BISCO $k_{\rm slope}$ Dimensionless Initial slope of photosynthetic light response 0.04 LN $g m^{-2}$ Leaf nitrogen concentration -		movm s		0.7	
BISCO $k_{\rm slope}$ Dimensionless Initial slope of photosynthetic light response 0.04 LN gm^{-2} Leaf nitrogen concentration -		$mm \circ l m \circ l - 1$		- -	
$k_{\rm slope}$ Dimensionless Initial slope of photosynthetic light response 0.04 LN gm^{-2} Leaf nitrogen concentration -	Λ_{O}	тингот тог		33U	
LN $g m^{-2}$ Leaf nitrogen concentration -	k.	Dimonsionless		0.04	
				0.04	
Near Dimensionless Landidoning Coefficient for lear -				_	
	Meat	Dimensioniess	i en anatonoming cochrotenta non near	=	

Table 1 – continued from previous page

Term	Units	Definition	Value	
$\frac{1 \text{erm}}{k_{\text{stem}}}$	Dimensionless	Partitioning coefficient for stem	varue	
$k_{ m sroot}$	Dimensionless	Partitioning coefficient for storage root	-	
k_t	Dimensionless	temperature-dependent pseudo-first order rate con-	-	
κ_t		stant with respect to P_i (Collatz 1992)		
Ia.	Dimensionless	Partitioning coefficient for fine root		
$k_{ m froot}$	Dimensionless	Partitioning coefficient for fine root Partitioning coefficient for structural root	-	
$k_{ m stroot} \ \ell$	Dimensionless	Partitioning coefficient for structural root	-	undefined from Islanustion 51
				undefined from Ja: equation 51
$\ell_{ m sun}$				undefined from equation ??
$l_{ m sun}$	-3	D + 1 : : : : : : : : : : : : : : : : : :		undefined from equation 75
L_i	$cm cm^{-3}$	Root density of ith zone	-	
L_w	m	Leaf width in the direction of the wind	0.04	1.6. 1
$\Delta L_{ m stem}$				undefined
$\Delta L_{ m sroot}$	2.57./77			undefined
λ	MJ/Kg	Latent heat of vapourisation	-	
$\lambda_{ m soil}$	$W/(m^{\circ}C)$	Thermal conductivity for the soil surface	-	1 160
M	1		22	what is M ?
m_r	$mm month^{-1}$	monthly precipitation rate		
$N_{ m eff}$	days/mo	effective length of rainy period		check units with equation 14
n	day	The number of days in a month	29, 30,	
			or 31	
nr	day	The number of rainy days in a month	-	
O_a	$mmol mol^{-1}$	Atmospheric O ₂ concentration	210	is this corected to 25C like O_i ?
O_i	$mmolm^{-2}s^{-1}$	Intercellular concentration of O_2 in air corrected for	-	
		solubility relative to 25°C		
ω_{leaf}	g	Leaf biomass	-	
$\omega_{ m stem}$	g	Stem biomass	-	
$\omega_{ m sroot}$	g	Biomass of storage root	-	
ω_{froot}	g	Biomass of fine root	-	
$\omega_{ m stroot}$	g	Biomass of structural root	-	
$\omega_{ m storage}$	g	Biomass of storage	-	
Ω	degrees	Latitude	-	
P	kPa	Atmospheric pressure		
P_o	kPa	Standard atmospheric pressure at sea level	101.324	
P_s	kPa	Leaf surface partial pressure of CO ₂	-	
$\Psi_{ m g}$				undefined
Ψ_l	MPa	Leaf water potential	-	
$\Psi_{ m L}$				undefined
Ψ_t	MPa	Threshold leaf water potential for decreasing gs	-	
$\Phi_{ m N}$	$\mathrm{W~m}^{-2}$	Net radiation	-	
$\Phi_{N,soil}$	$\mathrm{W}~\mathrm{m}^{-2}$	Net radiation at soil surface	-	
ϕ_i		coefficient which controls spread of logistic function		
_		used to calculate water stress factor in 43		
$\Psi_{\rm adl}$	MPa	Average daily plant water potential	-	
$\Psi_{\rm pt}$	MPa	Threshold water potential	-	
$\Psi_{\rm si}$	MPa	Soil water potential of the ith layer	-	
Ψ_x	MPa	xylem water potential	-	
q	Dimensionless	The probability that there is no rainfall	-	during a month?
q_w	${\rm kg~s}^{-1}$	Flux of water	-	
Q_{10}	dimensionless	Is the proportional rise in a parameter for a 10°C in-	2	
		crease in temperature		
r	dimensionless	Leaf reflection coefficient for total solar radiation	0.2	
r^{\sim}	$\operatorname{mm} \operatorname{day}^{-1}$	Mean daily rainfall in each month	-	
R	$J k^{-1} mol^{-1}$	Real gas constant	8.314	
R_L	$m^3 kg^{-1} s^{-1}$	Leaf resistance	-	
$R_{ m si}$	$m^3kg^{-1}s^{-1}$	Soil resistance of the ith zone	-	
$R_{ m ri}$	$M^3kg^{-1}s^{-1}$	root resistance of the ith zone	-	
R_o	$mol m^{-2} s^{-1}$	Dark respiration rate at $25^{\circ}C$	3	
R_d	$mol m^{-2} s^{-1}$	Dark respiration at a given temperature	-	

Table 1 – continued from previous page

		e 1 – continued from previous page		
Term	Units	Definition	Value	
$R_{\rm lc}$	$mol m^{-2} s^{-1}$	Longwave radiation	-	
$R_{lc, \text{soil}}$	$mol m^{-2} s^{-1}$	Soil longwave radiation	-	
$ ho_w$	kgm^{-3}	Density of water	1000	
$ ho_a$	kPa	vapor pressure deficit in air		is this distinct from $\Delta \rho_{\rm va}$?
$ ho_a'$				undefined from equation 56
s	$kPa~K^{-1}$	Slope of saturated water vapor pressure change with	_	also defined by equation 58;
		respect to temperature (look up table)		one correct?
s_p	dimensionless	Spectral imbalance	_	
$S_{ m size}$	m	Average size of soil particles	0.04	
S_r	Dimensionless	Soil reflectance	0.2	
$S_{ au}$	Dimensionless	Soil transmission	0.01	
$Sp_{ ext{leaf}}$	gram m ⁻²	Specific leaf area	50	
	gram m ⁻¹		60	
$Sp_{ m stem}$		Specific stem elongation factor		
$Sp_{ m froot}$	$\operatorname{gram} \operatorname{m}^{-1}$	Specific fine root elongation factor	10	
$Sp_{ m stroot}$	$\operatorname{gram} \operatorname{m}^{-1}$	Specific structural root elongation factor	60	
σ	$\mathrm{Wm^{-2}K^{-4}}$	Stefan-Boltzmann constant	5.67 .	
			10^{-8}	
t	h	Time of day	-	
$t_{ m up}$	h	time of dawn		
$t_{ m down}$	h	time of dusk		
$t_{ m len}$	h	day length	-	is this a constant, 24?
$t_{ m sn}$	h	Time of solar noon	12	
$T_{ m leaf}$	$^{\circ}\mathrm{C}$	Leaf temperature	_	
$T_{ m air}$	$^{\circ}\mathrm{C}$	Ambient air temperature	_	
$T_{ m mean}$	$^{\circ}\mathrm{C}$	Daily mean $T_{\rm air}$		
$T_{\rm range}$	$^{\circ}\mathrm{C}$	$rac{T_{ m air}-T_{ m mean}}{T_{ m range}}$		
		$\overline{T_{\mathrm{range}}}$		
$T_{\text{excursion}}$	fraction	Difference between current $T_{\rm mean}$		
$T_{ m soil}$	°C	Soil surface temperature	-	
$T_{ m lower}$	$^{\circ}\mathrm{C}$	Lower T limitation on photosynthesis		
T_{upper}	$^{\circ}\mathrm{C}$	Upper T limitation on photosynthesis		
T_1	$^{\circ}\mathrm{C}$	Annual mean air temperature	18	
T_2	$^{\circ}\mathrm{C}$	Annual range in air temperature	2	
T_3	$^{\circ}\mathrm{C}$	Average daily range in air temperature	7	
T_4	$^{\circ}\mathrm{C}$	Maximum daily range in air temperature	7	
ΔT	$^{\circ}\mathrm{C}$	Temperature difference between (leaf or soil) and air		
au	Dimensionless	Leaf transmittance coefficient		
Θ_{curve}	dimensionless	Curvature parameter	_	
Θ^*	kgm^{-3}	Actual volumetric water content	_	
Θ_1	$kg m^{-3}$	The volumetric water content for maximizing Evapo-		
01	neg me	ration		
Θ_2	kgm^{-3}	The volumetric water content for wilting point	_	
Θ_i	kgm^{-3}	The volumetric water content for whiting point The volumetric water content of the ith day	-	
Θ_i	$\operatorname{degrees}$		-	
_	${ m m~s^{-1}}$	Solar zenith angle	-	
u		Measured wind speed at known height (2m)	2	
u_{layer}	${\rm m}\ {\rm s}^{-1}$	Wind speed in a given canopy layer	-	
$u_{ m soil}$	$\mathrm{m}\ \mathrm{s}^{-1}$	Wind speed at soil surface	-	
v	- 9 1	Saturated water vapour concentration	-	
$V_{ m max}$	$molm^{-2}s^{-1}$	Maximum rubP saturated rate of carboxylation at a	-	
	2 1	given temperature		
V_{max_0}	$mol m^{-2} s^{-1}$	Maximum rubP saturated rate of carboxylation at a	-	
		given temperature		
V_{c,\max_0}	$mol m^{-2} s^{-1}$	Maximum rubP saturated rate of carboxylation at	39	
-		$25^{\circ}C$		
VPD	kPa	Leaf-air water vapour pressure deficit	_	
V_T	$mol m^{-2} s^{-1}$	$V_{ m max}$ at current T		
w_c	$mol m^{-2} s^{-1}$	RuBISCO limited rate of photosynthesis		units?
w_c	$mol m^{-2} s^{-1}$	RuBP limited rate of photosynthesis		units?
ω ₀	71000110 0	10421 Hilliod 1000 of photosymmons		anio.

Table 1 – continued from previous page

Term	${f Units}$	Definition	Value
W_p	$m^{3}m^{-3}$	Wilting point	
W_s	$m^3 m^{-3}$	Soil water content	
z_o	m	Roughness length	0.234
χ	dimensionless	The ratio of horizontal:vertical projected area of leaves	1
		in the canopy segment	
slope	$mol m^{-1}$	Initial slope of photosynthetic CO ₂ response	0.7
curve	dimensionless	Curvature parameter	0.83
Z	m	Thickness of a soil layer	-