

Classificação mínima: 40%. Sem consulta. Duração: 2h00m. Por favor, responda a cada parte <u>em conjuntos de folhas separados</u>. Identifique cada folha com nome e <u>número</u>.

Parte I

Nas alíneas de escolha múltipla pode haver várias opções correctas e cada resposta errada desconta meia resposta certa.

Grupo 1 (1.5 valores)

Apresenta-se abaixo um sistema de filas de espera para utilização sequencial de dois recursos, R1 e R2 – inclui fila de espera para cada recurso. Considere que o intervalo entre chegadas de clientes a este sistema é descrito por uma distribuição exponencial negativa de média 2 (unidades de tempo). Uma vez no sistema, os clientes pretendem usar o recurso R1 e, após esta operação, pretendem usar o recurso R2 – em seguida abandonam o sistema. A Distribuição Exponencial Negativa é também a que melhor descreve o tempo de utilização de cada recurso, com parâmetros 5 e 3, respectivamente para R1 e R2.

Para cada pergunta, escolha as respostas adequadas, considerando a filosofia de modelação Planeamento de Acontecimentos aplicada ao sistema acima descrito e o cenário de utilização da ferramenta Visio Basic for Simulations (VBS).

- a) O que representa o conceito de acontecimento em simulação?
 - 1. Um período de tempo
 - 2. Um instante de tempo
 - 3. A duração da simulação
 - 4. A duração da utilização de um recurso do sistema
- b) Para o sistema acima, quantos acontecimentos descreveria?
 - 1. Um
 - 2. Dois
 - 3. Três
 - 4. Quatro
- c) Que acontecimentos fariam parte deste sistema?
 - 1. Intervalo de tempo entre saída de R1 e entrada em R2
 - 2. Intervalo entre chegadas de clientes ao sistema
 - 3. Instante de libertação do recurso R1
 - 4. Instante de ocupação do Recurso R2
- d) Que ficheiros seriam necessários?
 - 1. Registo de intervalos entre chegadas
 - 2 Registo de acontecimentos futuros
 - 3. Registo de ocupação de recursos
 - 4. Registo de inserção de entidades em filas
- e) Complete a frase: No ficheiro que representa o comportamento da fila de espera de acesso a R2...
 - 1. ...Inserimos um registo sempre que chegar um cliente
 - 2. ...Inserimos um registo sempre que R2 for libertado
 - 3. ...Inserimos um registo sempre que R1 for ocupado
 - 4. ...Inserimos um registo sempre que R1 for libertado

- f) Complete a frase: No ficheiro que representa a utilização de R1...
 - 1. ...Removemos um registo sempre que chegar um cliente
 - 2. ...Removemos um registo sempre que R2 for libertado
 - 3. ...Removemos um registo sempre que R1 for ocupado
 - 4. ...Removemos um registo sempre que R1 for libertado
- g) Diga se as seguintes afirmações são verdadeiras ou falsas.
 - Os registos do ficheiro de acontecimentos futuros s\u00e3o respons\u00e1veis pela determina\u00e7\u00e3o do avan\u00e7o
 do rel\u00e9gio em simula\u00e7\u00e3o.
 - 2. No ficheiro que representa o comportamento da fila de espera de acesso a R2, a chave de ordenação dos registos deve ser o instante de tempo de chegada a essa fila
 - 3. No ficheiro que representa a utilização de R1, devemos remover um registo sempre que R1 ficar livre
 - 4. Sempre que R1 ficar livre, é necessário descobrir se R2 está livre

Grupo 2 (1.5 valores) Alíneas relativas ao ARENA

h) Considere a seguinte Lista de palavras reservadas (*keywords*) do ARENA e as designações de três conjuntos. Diga quais os elementos de cada conjunto, colocando a seguir ao respectivo número as letras associadas aos elementos da lista, que lhe pertençam.

Lista: A=Route B=Event C=Dispose D=Entity E=Create F=Variable G=Assign H=Resource I=Insert J=Process K=Station L=Activity

Conjunto 1 - Módulos do Painel Basic Process,

Conjunto 2 - Tabelas (módulos de dados) do Painel Basic Process,

Conjunto 3 - Módulos do Painel Advanced Transfer,

i) Numa route 🖪 (ligação física que une duas stations 🖃), quais das seguintes opções permitem ajustar o detalhe do movimento das entidades ao longo dessa linha?

1=Distance 2=Speed 3=Entity.picture 4=Acceleration 5=Flip 6=Jump 7=Time 8=Reverse 9=Hidden 10=Color 11=ParkArea 12=Rotate 13=SeizeArea

- j) Considere que observa, num relatório final de simulação, a utilização dos recursos R1=90% e R2=100%. Sendo esses recursos utilizados exclusivamente nos Processes P1 e P2. O que poderia fazer para resolver o aparente problema?
 - 1. Aumentava a capacidade de R2, no bloco (Process) P2.
 - 2. Aumentava a capacidade de R1, no bloco (Process) P1.
 - 3. Aumentava a capacidade de R1, na tabela 'Resource' do painel 'Basic Process'.
 - 4. Aumentava a capacidade de R2, na tabela 'Resource' do painel 'Basic Process'.
 - 5. Aumentava progressivamente a eficiência de P1 até obter também 100%.

Observe o extracto de um relatório final de uma simulação no Arena. Cada fila precede um PROCESS (A, B ou C). Considere que as entidades são pessoas. Para validar cada resposta, **justifique** com os valores (números) lhe permitem tirar essa conclusão.

- k) Qual dos 3 processos é o mais preocupante (congestionado), para as entidades?
- Se o espaço disponível para espera for muito escasso (reduzido), qual o processo mais preocupante?

vvaiting i ime	Average	winimum Value	vaximum Value
A.Queue	9.9451	0.00	57.3377
B.Queue	17.2772	0.00	87.3996
Ç.Queue	47.1766	0.00	189.70
Number Waiti	n g Average	Minimum Value	Maximum Value
A.Queue	1.6778	0.00	10.0000
B.Queue	2.4725	0.00	14.0000
C.Queue	1.2502	0.00	7.0000

m) Considerando que cada pessoa necessita de 2 metros quadrados de espaço enquanto espera, determine o espaço total mínimo a reservar para pessoas em espera.

Grupo 1 (2.5 valores)

A empresa TV Tech. dedica-se à comercialização e manutenção de sistemas de televisão por cabo. A empresa encontra-se neste momento a reorganizar o seu serviço de apoio ao cliente por telefone, tendo decidido recorrer a uma empresa de desenvolvimento de software para esta lhe desenvolver um novo programa para a gestão do serviço e dimensionar o mesmo em termos do número de computadores a instalar (ou do número de postos de trabalho). Após uma recolha das informações relevantes para o problema de dimensionamento do serviço de apoio ao cliente, o analista de sistemas chegou à conclusão que o serviço recebe em média 96 chamadas por dia; que o tempo gasto a atender um pedido de apoio é em média de 8 minutos; que o serviço funciona durante 16 horas por dia; que qualquer operador disponível pode atender a próxima chamada (em linha ou não); que quando todos os operadores estão ocupados o cliente fica a aguardar ao telefone até que um deles fique disponível; e que o pressuposto de se tratar de um sistema de filas de espera de Markov é aceitável.

Tendo em consideração o problema acima descrito responda às seguintes questões:

a) Determine a fracção de tempo em que estarão dois ou mais clientes em linha, à espera de serem atendidos, caso o serviço funcione com apenas um computador?

b) Caso o serviço funcione com dois computadores, qual será o tempo médio que cada cliente terá de aguardar ao telefone até que um operador fique disponível para o atender?

c) Sabendo que a TV Tech. pretende que o número médio de clientes a aguardar ao telefone seja no máximo igual a dois e que o número de postos de trabalho seja o menor possível, determine quantos computadores devem ser instalados no serviço?

d) Para uma fila (M/M/2), qual a percentagem de tempo que um cliente estará à espera de ser atendido em relação ao tempo decorrido desde que estabeleça a sua ligação até esta ter terminado?

Grupo 2 (2.5 valores)

O Ministério da Educação decidiu encerrar, no próximo ano lectivo, uma escola secundária num determinado concelho, pelo que os alunos que estudam actualmente nesta escola terão de passar a estudar noutra escola do concelho (Escola 1, Escola 2 ou Escola 3).

Dado o transtorno provocado aos alunos, a Direcção Regional de Educação (DRE) decidiu providenciar o transporte para os alunos em questão, entre a sua área de residência e a sua nova escola. Na tabela, apresentam-se os dados relativos à situação em análise:

Área de Residência	N.º de	Custo de transporte anual [euros/aluno]		
	alunos	Escola 1	Escola 2	Escola 3
1	50	200	500	800
2	40	600	300	100
3	35	0	400	500
4	60	500	300	350
Capacidade o	da escola	-		
[em termos de novos alunos]		60	75	50

A DRE tem de decidir para que escola devem ser enviados os alunos, por forma a garantir um custo de transporte anual tão baixo quanto possível. Auxilie a DRE na sua tomada de decisão, indicando como devem ser distribuídos os alunos e o custo anual de transporte dos alunos.

Grupo 3 (2 valores)

A AAUM já está a planear a organização da próxima semana do Enterro da Gata. Como esta actividade é uma das mais importantes da vida académica dos alunos, a AAUM quer garantir que nada vai falhar. Com base na experiência de anos anteriores a AAUM definiu um plano com todas as tarefas a realizar (ver tabela abaixo). Para cada tarefa estabeleceu ainda a sua duração média em semanas e as suas tarefas predecessoras imediatas (também apresentadas na tabela abaixo).

Tarefa	Designação	Tarefas precedentes	Duração média (semanas)
Α	Constituição do grupo de trabalho	-	3
В	Escolha do tema e do local	Α	3
С	Contratação dos grupos musicais	В	5
D	Contratação dos equipamentos	В	6
Е	Contratação de pessoal	В	3
F	Elaboração do programa	C, D, E	3
G	Contratação do sistema de som e de projecção	С	1
H Distribuição do programa		F	2
Tratamento e distribuição de convites e publicidade		F	5

- a) Represente as tarefas associadas à organização do Enterro da Gata através de um diagrama com as actividades nos nodos.
- b) Indique o tempo mínimo necessário para a organização do evento e as tarefas críticas.
- c) Se as tarefas C e E demorarem no conjunto 10 semanas, haverá atrasos na organização do Enterro da Gata? Justifique.

	Formulário
M/M/1	M/M/s
$\rho = \frac{\lambda}{\mu}$ $\pi_0 = 1 - \rho$	$\rho = \frac{\lambda}{s\mu}$ $\pi_0 = \left[\sum_{r=0}^{s-l} \frac{(s\rho)^r}{n!} + \frac{(s\rho)^s}{s!(l-\rho)}\right]^{-l}$
$\pi_n = \rho^n \pi_0 = \rho^n (1 - \rho), n \ge 1$ $L_q = \frac{\rho^2}{1 - \rho}$ $L_s = \rho$	$\pi_{n} = \begin{cases} \frac{(s\rho)^{n} \pi_{0}}{n!}, para \ 1 \leq n \leq s \\ \frac{s^{s} \rho^{n} \pi_{0}}{s!}, para \ n \geq s \end{cases}$
$L = \frac{\rho}{1 - \rho}$	$P_B = rac{\pi_s}{I - ho}$
$W_q = \frac{\rho}{\mu(1-\rho)}$	$L_q = \frac{s^s \rho^{s+1} \pi_0}{s! (I - \rho)^2}$
$W_s = 1/\mu$	$L_s = \lambda / \mu$
$W = \frac{I}{\mu(I-\rho)}$	$W_q = L_q / \lambda$ $W_s = I / \mu$
$W_q(t) = \begin{cases} \rho, para \ t = 0 \\ \rho e^{-\mu(1-\rho)t}, para \ t \ge 0 \end{cases}$	$W_q(t) = \begin{cases} I - \frac{(s\rho)^s \pi_0}{s!(1-\rho)}, parat = 0\\ \frac{(s\rho)^s \pi_0}{s!(1-\rho)} e^{-s\mu(I-\rho)t}, parat > 0 \end{cases}$