

STUDENT ID NO					

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2019/2020

EMG 2016 – ELECTROMAGNETIC THEORY (TE, RE)

17 OCTOBER 2019 09:00 a.m - 11:00 a.m (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 8 pages with 4 Questions only.
- 2. Attempt ALL FOUR questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.
- 4. Please submit the completed Smith Chart together with the answer booklet.

- (a) A voltage generator with $v_g = 5\cos(2\pi \times 10^9 t) V$ and internal impedance $Z_g = 50\Omega$ is connected to a 50Ω lossless air-spaced transmission line. The line length is 5cm and it is terminated in a load with impedance $Z_L = (100 j100) \Omega$. Find:
 - i) The reflection coefficient, Γ .

[3 marks]

ii) The input impedance Z_{in} at the input to the transmission line.

[5 marks]

iii) The input voltage \tilde{V}_t and input current \tilde{I}_t .

[4 marks]

- (b) Measurements on a lossless transmission line of characteristic impedance $Z_0=75\Omega$ show a standing-wave ratio of 2.4 and the first two voltage minima nearest to the load at 0.335m and 1.235m. Use a Smith chart to:
 - i) Determine the load impedance Z_L, the load admittance Y_L.

[9 marks]

ii) Find the location nearest to the load and the length of a shunt short-circuited stub required to match Z_L to the line.

[4 marks]

Continued...

(a) A 125 Ω resistive load is preceded by a $\lambda/4$ section of a 50 Ω lossless line, which itself is preceded by another 0.3 λ section of an 80 Ω lossless line, which is also preceded by another a $\lambda/4$ section of a 50 Ω lossless line. What is the input impedance?

[13 marks]

(b) A 50-cm-long metal rod rotates about the z-axis at 90 revolutions per minute, with end 1 fixed at the origin as shown in Figure Q2. Determine the induced electromotive force (EMF), V_{12} if $B_0 = \hat{z}2 \times 10^{-4}$ T.

[12 Marks]

Figure Q2

Continued...

(a) Provide two equations to show that for any uniform plane wave travelling in an arbitrary direction denoted by the unit vector $\hat{\mathbf{k}}$, the magnetic field phasor $\widetilde{\mathbf{H}}$ is related to the electric field phasor $\widetilde{\mathbf{E}}$.

[3 Marks]

(b) Explain briefly the polarization of a uniform plane wave.

[4 Marks]

(c) The magnetic field component of a plane wave in a lossless dielectric is given by $\vec{H} = 30 \sin(2\pi \times 10^8 t - 5x)\hat{a}_z$ (mA/m).

i) If $\mu_r = 1$, find ε_r . [2 Marks] ii) Calculate the wavelength (λ) and wave velocity, u [3 Marks] iii) Determine the wave impedance, η [3 Marks] iv) Determine the polarization of the wave [3 Marks] v) Find the corresponding electric field component \vec{E} [4 Marks] vi) Find the displacement current density J_d [3 Marks]

Continued...

(a) An air filled copper waveguide has dimensions of a = 2.286 cm, and b = 1.016 cm. Find the cut-off frequencies of the first four propagating modes. Determine the dominant mode.

[11 marks]

(b) For an air filled waveguide. It has a field component of

$$E_z = 30 \sin\left(\frac{2\pi}{a}x\right) \sin\left(\frac{\pi}{b}y\right) \cos(40\pi \times 10^9 t - \beta z) V/m$$

where a = 5 cm and b = 2 cm, determine the following:

(i) The mode of propagation.

[2 marks]

(ii) Phase constant, β , given the cut-off frequency is 9.6 GHz.

[3 marks]

(iii) Phase velocity, up.

[3 marks]

(iv) Propagation wavelength, λ_g .

[3 marks]

(v) Wave impedance of the propagating mode in part (b) (i).

[3 marks]

End of Page

Appendix

FUNDAMENTAL PHYSICAL CONSTANTS

Permittivity of free space $\varepsilon_0=8.85\times 10^{-12}$ F/m Permeability of free space $\mu_0=4\pi\times 10^{-7}$ H/m Speed of light in vacuum c = 3×10^8 m/s Intrinsic impedance of free space $\eta_0=377\Omega$

TEFO/KGT 6/8

The Complete Smith Chart

Black Magic Design

The Complete Smith Chart

Black Magic Design

TEFO /KGT