Sensores

A.1.4 Actividad de aprendizaje

Objetivo

Realizar un sensor medidor de temperatura a través de un circuito electrónico, utilizando un simulador, y un Transistor TMP36 lineal de temperatura y un amplificador operacional LM741.

Instrucciones

- Se sugiere para el desarrollado de la presenta actividad, utilice uno de los siguientes simuladores: Autodesk Tinkercad, Virtual BreadBoard, Easy EDA por lo cual habrá que familiarizarse antes, e incluso instalarse o registrarse dentro de la plataforma.
- Toda actividad o reto se deberá realizar utilizando el estilo MarkDown con extension .md y el entorno de desarrollo VSCode, debiendo ser elaborado como un documento single page, es decir si el documento cuanta con imágenes, enlaces o cualquier documento externo debe ser accedido desde etiquetas y enlaces, y debe ser nombrado con la nomenclatura A1. 4_NombreApellido_Equipo.pdf.
- Es requisito que el .md contenga una etiqueta del enlace al repositorio de su documento en GITHUB, por ejemplo Enlace a mi GitHub y al concluir el reto se deberá subir a github.
- Desde el archivo .md exporte un archivo .pdf que deberá subirse a classroom dentro de su apartado correspondiente, sirviendo como evidencia de su entrega, ya que siendo la plataforma oficial aquí se recibirá la calificación de su actividad.
- Considerando que el archivo .PDF, el cual fue obtenido desde archivo .MD, ambos deben ser idénticos.
- Su repositorio ademas de que debe contar con un archivo **readme**.md dentro de su directorio raíz, con la información como datos del estudiante, equipo de trabajo, materia, carrera, datos del asesor, e incluso logotipo o imágenes, debe tener un apartado de contenidos o indice, los cuales realmente son ligas o enlaces a sus documentos .md, evite utilizar texto para indicar enlaces internos o externo.
- Se propone una estructura tal como esta indicada abajo, sin embargo puede utilizarse cualquier otra que le apoye para organizar su repositorio.

```
- readme.md
```

- blog
 - C0.1_x.md
 - C0.2 x.md
- img
- docs
 - A0.1 x.md
 - A0.2_x.md
 - A1.2_x.md
 - A1.3_x.md

1. Utilice el siguiente listado de materiales para la elaboración de la actividad

Cantidad	Descripción	Fuente de consulta
1	Sensor temperatura TMP36	Geekbot Electronics
1	Potenciómetro 10k	Geekbot Electronics
2	Resistencias de 220	Electro Componentes
1	Amplificador LM741	Electronicos Caldas
1	Fuente de alimentación de 5Volts.	CDMX Electronica

Para mayor información acceder a los siguientes enlaces:

- o Información y especificaciones del Sensor TMP36
- o Información y especificaciones del Amplificador operacional LM741
- 2. Basado en la imagen ensamble mediante un simulador el circuito electrónico etapa 1, colocando el transistor LM35 en la posición indicada.

3. Calcule, mida y registre los valores solicitados para Vout1, bajos las 3 condiciones requeridas en la tabla

anexa.

Numero	Condición	Voltaje Vout1 medido	Voltaje en R1 medido	Temperatura indicada
1	Mínima	99.9mV	11mV	-40°C
2	Media	939mV	11mV	43°C
3	Máxima	1.75V	11mV	125°C

4. Utilizando la imagen del transistor TMP36 que corresponde a la etapa 1, conecte la terminal Vout1 a la terminal no inversora del LM741, y ensamble el circuito correspondiente a la etapa 2.

5. Que valor deberá tener R3 en el circuito Etapa 2, para lograr obtener Vout2 = 5 volts, para la condición máxima de temperatura que el sensor es capaz de detectar? Como se puede observar la resistencia

R3 corresponde a un potenciómetro, sin embargo se pueden hacer arreglos de resistencias para lograr un ajuste fino. Cual cree que sea la razón por la cual se esta solicitando un **ajuste a 5 Volts**?

- El valor que nosotros le dimos a R3 es de 500 ohms ya que si le poniamos mas valor no se podía variar cuando subia o bajaba la temperatura.
- El ajuste de 5V pensamos que es por que el sensor y el integrado no soporta mas voltaje y se podría quemar fácilmente.
- 6. Una vez que se ha ajustado el valor R3 dejalo asi y registre los valores solicitados para Vout2, para las 3 condiciones. requeridas en la tabla anexa.

Numero	Condición	Voltaje en R2 medido	Voltaje en Vout2 medido	Temperatura indicada
1	Condición mínima	99.9mV	327mv	-40°C
2	Condición media	939mV	3.08V	43°C
3	Condición máxima	1.38v	4.53V	125°C

7. Grafique Vout1 y Vout2, para las tres condiciones anteriores, considerando en "X" los valores de temperatura y para "Y" los valores de voltaje, y coloque dentro de este apartado.

8. Evidencias

Criterios	Descripción	Puntaje
Instrucciones	Se cumple con cada uno de los puntos indicados dentro del apartado Instrucciones?	
Desarrollo	Se respondió a cada uno de los puntos solicitados dentro del desarrollo de la actividad?	
Demostración	El alumno se presenta durante la explicación de la funcionalidad de la actividad?	
Conclusiones	Se incluye una opinión personal de la actividad por cada uno de los integrantes del equipo?	10

Link Díaz Navarro Alejandro

🕮 Link Rodríguez Báez Vanessa Marlenne

A Link Soria Márquez Guillermo