## Question 2: Iris Data Collection INTE1129 Assessment 1B The maximum marks for Question 2 is 4 Instructions Question 1: Fingerprint data collection textbox below: (1 mark) Question 2: Iris Data Collection Mated 0001\_L\_000 vs 0001\_L\_001 Question 3: Multimodal operation 0001\_L\_000 vs 0001\_L\_002 0001\_L\_000 vs 0001\_L\_003 Start Over 0001\_L\_000 vs 0001\_L\_004 0001\_R\_000 vs 0001\_R\_001 0001\_R\_000 vs 0001\_R\_002 0001\_R\_000 vs 0001\_R\_003 0001\_R\_000 vs 0001\_R\_004 0002\_L\_000 vs 0002\_L\_001 0002\_L\_000 vs 0002\_L\_002 0002\_R\_000 vs 0002\_R\_001 0002 R 000 vs 0002 R 002 0004\_L\_000 vs 0004\_L\_001 0004\_L\_000 vs 0004\_L\_002 0004\_R\_000 vs 0004\_R\_001 0004\_R\_000 vs 0004\_R\_002 0007\_L\_000 vs 0007\_L\_001 0007\_R\_000 vs 0007\_R\_001 0008\_L\_000 vs 0008\_L\_001 0008\_R\_000 vs 0008\_R\_001 Non Mated 0001\_L\_000 vs 0011\_R\_002 0001 L 000 vs 0011 L 001 0001\_L\_000 vs 0010\_R\_002 0001\_L\_000 vs 0010\_R\_001 0001\_R\_000 vs 0010\_R\_000 0001\_R\_000 vs 0010\_L\_002 0001\_R\_000 vs 0010\_L\_001 0001 R 000 vs 0010 L 000 0002\_L\_000 vs 0009\_R\_001 0002\_L\_000 vs 0009\_R\_000

Look at the Iris database - Retica\_sample\_iris\_DB. It has iris captures from users numbered 0000 to 0011. Each user has Left and Right iris samples and the numbers of samples vary from 1 to 5. 2a. Use this database to create a list of 20 mated and 20 non mated iris comparisons. Write your list in the

0002\_R\_000 vs 0009\_L\_001 0002\_R\_000 vs 0009\_L\_000 0004\_L\_000 vs 0008\_R\_001 0004 L 000 vs 0008 R 000 0004\_R\_000 vs 0008\_L\_001 0004\_R\_000 vs 0008\_L\_000 0007\_L\_000 vs 0007\_R\_001 0007\_R\_000 vs 0000\_L\_000 0008\_L\_000 vs 0000\_R\_000 0008 R 000 vs 0001 L 001 Mated Comparisons data collection Open the IrisAlgorithmDemo application. Go to Tools on the menu bar and select Clear Database to empty the RAM of any existing images. Click Enrol and enrol the iris sample based on your mated comparison list. Click Identify and choose the iris sample you want to compare with from your list. Note the score on the bottom right panel of the application screen. 2b. Repeat this process and record all the 20 mated scores below:(0.5 marks) Use the format:

001 L 001 vs 001 L 002 = 791 002 R 001 vs 002 R 002 = 403 and so on.....

0007\_R\_000 vs 0007\_R\_001 = 427

0008\_L\_000 vs 0008\_L\_001 = 732

0008 R 000 vs 0008 R 001 = 777

Start Over

Code

0001\_R\_000

0001\_R\_000

0001 R 000

0001\_R\_000

0002 L 000

0002\_L\_000

mark)

Code

Start Over

comparisons\_col1

<chr>

0001\_L\_000

0002 L 000

27

30 31

33

36

41

<chr>

0001\_L\_000

0001 L 000

0001\_L\_000

0001\_L\_000

0001\_R\_000

0001\_R\_000

0001\_R\_000

0001\_R\_000

0002 L 000

0002\_L\_000

<chr>

1-10 of 20 rows

0001\_L\_000

0001\_L\_000

0001\_L\_000

0001\_L\_000

0001\_R\_000

3.0

2.0

1.0

0.0

\$breaks

[1]

[14]

[27]

[40]

[53]

[66]

[79]

[92]

[105]

[118]

[131]

[144]

[157]

[170]

0.0

**Previous Topic** 

0

0

65

130

195

260

325

390

455

520

585

650

715

780

845

5

70

135

200

265

330

395

460

525

590

655

720

785

850

10

75

140

205

270

335

400

465

530

595

660

725

790

855

15

80

145

210

275

340

405

470

535

600

665

730

795

860

20

85

150

215

280

345

410

475

540

605

670

735

800

865

25

90

155

220

285

350

415

480

545

610

675

740

805

870

30

95

160

225

290

355

420

485

550

615

680

745

810

875

35

100

165

230

295

360

425

490

555

620

685

750

815

880

40

105

170

235

300

365

430

495

560

625

690

755

820

885

45

110

175

240

305

370

435

500

565

630

695

760

825

890

50

115

180

245

310

375

440

505

570

635

700

765

830

895

55

120

185

250

315

380

445

510

575

640

705

770

835

900

60

125

190

255

320

385

450

515

580

645

710

775

840

905

Frequency

comparisons\_col1

39 mated\_hist

40 nonmated\_hist

comparisons\_col1

29 iris\_nonmated\_dataframe

32 #observe the score distribution

34 mated\_scores<-as.numeric(iris\_mated\_dataframe[,3])</pre>

35 nonmated\_scores<-as.numeric(iris\_nonmated\_dataframe[,3])</pre>

1-10 of 20 rows

1-10 of 20 rows

mated comparisons and the scores:(0.5 mark)

Mated 0001\_L\_000 vs 0001\_L\_001 = 791 0001 L 000 vs 0001 L 002 = 566

0001\_L\_000 vs 0001\_L\_003 = 746 0001\_L\_000 vs 0001\_L\_004 = 618 0001 R 000 vs 0001 R 001 = 589 0001\_R\_000 vs 0001\_R\_002 = 541  $0001_R_000 \text{ vs } 0001_R_003 = 612$ 

0001 R 000 vs 0001 R 004 = 638 0002\_L\_000 vs 0002\_L\_001 = 482 0002\_L\_000 vs 0002\_L\_002 = 522 0002 R 000 vs 0002 R 001 = 693

0002\_R\_000 vs 0002\_R\_002 = 737 0004\_L\_000 vs 0004\_L\_001 = 503 0004 L 000 vs 0004 L 002 = 551 0004\_R\_000 vs 0004\_R\_001 = 443 0004\_R\_000 vs 0004\_R\_002 = 881 0007 L 000 vs 0007 L 001 = 316

13 iris\_mated\_dataframe 14 15 comparisons\_col1 comparisons\_col2 comparisons\_score <chr> <chr> <chr> 791 0001\_L\_000 0001\_L\_001 0001\_L\_000 0001\_L\_002 566 0001\_L\_000 0001\_L\_003 746 0001\_L\_000 0001\_L\_004 618

589

541

612

638

482

522

Previous 1 2 Next

► Run Code

2c. Use the codeblock below to create and display a dataframe called <code>iris\_mated\_dataframe</code> that has all the

3 rep("0007\_R\_000", times=1), rep("0008\_L\_000", times=1), rep("0008\_R\_000", times=1))

6 "0004\_R\_002", "0007\_L\_001", "0007\_R\_001", "0008\_L\_001", "0008\_R\_001")

0001\_R\_001

0001\_R\_002

0001\_R\_003

0001\_R\_004

0002\_L\_001

0002 L 002

The iris comparator will not give a non mated score for security reasons. We will simulate the non mated scores by

iris\_nonmated\_dataframe. The dataframe must have the non mated comparisons and generated scores (0.5)

3 rep("0007\_R\_000", times=1), rep("0008\_L\_000", times=1), rep("0008\_R\_000", times=1))

6 "0008\_L\_001", "0008\_L\_000", "0007\_R\_001", "0000\_L\_000", "0000\_R\_000", "0001\_L\_001")

1 comparisons\_col1<- c(rep("0001\_L\_000", times =4), rep("0001\_R\_000", times =4), rep("0002\_L\_000", 2 rep("0002\_R\_000", times=2), rep("0004\_L\_000", times=2), rep("0004\_R\_000", times=2), rep("0007\_L\_0

4 comparisons\_col2<- c("0011\_R\_002", "0011\_L\_001", "0010\_R\_002", "0010\_R\_001", "0010\_R\_000", "0010\_ 5 "0010\_L\_001", "0010\_L\_000","0009\_R\_001", "0009\_R\_000", "0009\_L\_001","0009\_L\_000", "0008\_R\_001", "

generating them using a normal distribution. Choose the mean as 300 and standard deviation as 50.

2d. Use the code block below to generate 20 non mated scores and assign it to a variable called

Non mated comparisons data collection.

1 comparisons\_col1<-c(rep("0001\_L\_000", times =4), rep("0001\_R\_000", times =4), rep("0002\_L\_000", t

2 rep("0002\_R\_000", times=2), rep("0004\_L\_000", times=2), rep("0004\_R\_000", times=2), rep("0007\_L\_0

4 comparisons\_col2<-c("0001\_L\_001", "0001\_L\_002", "0001\_L\_003", "0001\_L\_004", "0001\_R\_001", "0001\_F 5 "0001\_R\_003", "0001\_R\_004", "0002\_L\_001", "0002\_L\_002", "0002\_R\_001", "0002\_R\_002", "0004\_L\_001"

7 comparisons\_score<-c(791, 566, 746, 618, 589, 541, 612, 638, 482, 522, 693, 737, 503, 551, 443, 8

12 iris\_mated\_dataframe<-as.data.frame(cbind(comparisons\_col1,comparisons\_col2,comparisons\_score))

► Run Code

7 comparisons\_score<-round(rnorm(20, mean = 300, sd=50),0) # change the number of generated outputs 9 iris\_nonmated\_dataframe<-as.data.frame(cbind(comparisons\_col1,comparisons\_col2,comparisons\_score) 10 iris\_nonmated\_dataframe 11 12

comparisons\_score

<chr>

308

297

Previous 1 2 Next

comparisons\_col2

<chr>

0011\_R\_002

0009 R 000

1 # Copy the code for your mated and non mated database generation here.

8 "0004\_R\_002", "0007\_L\_001", "0007\_R\_001", "0008\_L\_001", "0008\_R\_001")

0001\_L\_000 0011\_L\_001 332 0010\_R\_002 0001\_L\_000 304 0001\_L\_000 0010\_R\_001 279 0010\_R\_000 0001\_R\_000 347 0001\_R\_000 0010\_L\_002 330 0001\_R\_000 0010\_L\_001 255 0001\_R\_000 0010\_L\_000 329 0009 R 001 365 0002\_L\_000

✓ Data analysis 2e. Use the code block below to generate a plot of the mated and non mated distributions.(0.5 mark) Code Start Over ▶ Run Code

14 iris\_mated\_dataframe<-as.data.frame(cbind(comparisons\_col1,comparisons\_col2,comparisons\_score)) 15 iris\_mated\_dataframe

20 comparisons\_col1<- c(rep("0001\_L\_000", times =4), rep("0001\_R\_000", times =4), rep("0002\_L\_000", 21 rep("0002\_R\_000", times=2), rep("0004\_L\_000", times=2), rep("0004\_R\_000", times=2), rep("0007\_L\_000", times=2)

23 comparisons\_col2<- c("0011\_R\_002", "0011\_L\_001", "0010\_R\_002", "0010\_R\_001", "0010\_R\_000", "0010\_ 24 "0010\_L\_001", "0010\_L\_000", "0009\_R\_001", "0009\_R\_000", "0009\_L\_001", "0009\_L\_000", "0008\_R\_001",

26 comparisons\_score<-round(rnorm(20, mean = 300, sd=50),0) # change the number of generated outputs

28 iris\_nonmated\_dataframe<-as.data.frame(cbind(comparisons\_col1,comparisons\_col2,comparisons\_score)

22 rep("0007\_R\_000", times=1), rep("0008\_L\_000", times=1), rep("0008\_R\_000", times=1))

25 "0008\_L\_001", "0008\_L\_000", "0007\_R\_001", "0000\_L\_000", "0000\_R\_000", "0001\_L\_001")

37 mated\_hist<-hist(mated\_scores, plot=TRUE, breaks = seq(from=0, to=1000, by=30))

comparisons\_col2

<chr>

0001\_L\_001

0001\_L\_002

0001\_L\_003

0001\_L\_004

0001\_R\_001

0001\_R\_002

0001\_R\_003

0001\_R\_004

0002\_L\_001

0002\_L\_002

0011\_R\_002

0011\_L\_001

0010\_R\_002

0010\_R\_001

0010\_R\_000

<chr>

comparisons\_col2

38 nonmated\_hist<-hist(nonmated\_scores, plot=TRUE, breaks = seq(from=0, to=1000, by=5))

3 comparisons\_col1<-c(rep("0001\_L\_000", times =4), rep("0001\_R\_000", times =4), rep("0002\_L\_000", t 4 rep("0002\_R\_000", times=2), rep("0004\_L\_000", times=2), rep("0004\_R\_000", times=2), rep("0007\_L\_000", times=2)

6 comparisons\_col2<-c("0001\_L\_001", "0001\_L\_002", "0001\_L\_003", "0001\_L\_004", "0001\_R\_001", "0001\_F 7 "0001\_R\_003", "0001\_R\_004", "0002\_L\_001", "0002\_L\_002", "0002\_R\_001", "0002\_R\_002", "0004\_L\_001"

9 comparisons\_score<-c(791, 566, 746, 618, 589, 541, 612, 638, 482, 522, 693, 737, 503, 551, 443, 8

5 rep("0007\_R\_000", times=1), rep("0008\_L\_000", times=1), rep("0008\_R\_000", times=1))

42 plot(mated\_hist\$mids, mated\_hist\$counts, type='l', lwd=2, col=3, xlab = "mated scores", ylab = "( 43 lines(nonmated\_hist\$mids, nonmated\_hist\$counts, lwd=2, col=2) 44 title("Mated and Non Mated score distribution")

comparisons\_score

<chr>

791

566

746

618

589

541

612

638

482

522

<chr>

351

298

287

273

345

comparisons score

Previous 1 2 Next

0001\_R\_000 0010\_L\_002 236 0001\_R\_000 0010\_L\_001 275 0010\_L\_000 0001\_R\_000 230 0002\_L\_000 0009\_R\_001 207 0002\_L\_000 0009\_R\_000 299 Previous 1 1-10 of 20 rows 2 Next **Histogram of mated\_scores** 3.0 2.0 Frequency 1.0 0.0 200 0 400 600 800 1000 mated\_scores

Histogram of nonmated\_scores





400

mated scores

2f. What would you choose as the operating threshold if this system was used to secure a high security

600

800

1000

none of the non-mated individuals can access the system and operating threshold of 450 is well above any sample for non-mated individuals.

**Next Topic** 

clearance government document database? Justify your answer. (1 mark)

We would choose 450 as the threshold as the system being used is a high security

database. Having a higher threshold would eliminate the possibility of a non-mated

individual from accessing the system and accidental errors. We need to ensure that

200