TD 8 : compléments sur l'intégration

Intégration sur un segment (compléments)

Techniques de calcul

Exercice 1 (Série de Taylor de l'exponentielle)

Pour $n \in \mathbb{N}$, et $x \in \mathbb{R}$, on pose : $S_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$.

- **1.** Montrer, pour $n \ge 1$, et $x \in \mathbb{R}$, que: $S'_n(x) = S_{n-1}(x) = S_n(x) \frac{x^n}{n!}$
- **2.** Soit $n \in \mathbb{N}$. Pour $x \in \mathbb{R}$, on pose : $f_n(x) = S_n(x) \cdot e^{-x}$.
 - **a)** Montrer, pour $x \in \mathbb{R}$, que $f'_n(x) = -\frac{x^n}{n!} \cdot e^{-x}$.
 - **b)** Étudier les variations de f_n sur $[0; +\infty[$.
 - c) En déduire, pour $n \in \mathbb{N}$, et $x \ge 0$, que : $\sum_{k=0}^{n} \frac{x^k}{k!} \le e^x$.
- **a)** Montrer, pour $n \in \mathbb{N}$ et $x \ge 0$, que: $1 f_n(x) = \int_0^x \frac{t^n}{n!} \cdot e^{-t} dt$
 - **b)** En déduire pour $x \ge 0$, l'encadrement : $0 \le 1 f_n(x) \le \int_0^x \frac{t^n}{n!} dt$.
 - c) Montrer pour $x \ge 0$, l'encadrement : $0 \le e^x \sum_{k=0}^n \frac{x^k}{k!} \le \frac{x^{n+1}}{(n+1)!} \cdot e^x$.

Conclure, pour $x \ge 0$, sur la convergence et la somme de la série : $\sum_{k=0}^{\infty} \frac{x^k}{k!}$

Exercice 2 (Pratique du changement de variables)

- a) Rappeler une primitive de $t \mapsto \frac{t}{1+t^2}$.
- **b)** Par le changement de variables $t = \ln(x)$, calculer l'intégrale $I = \int_1^{e^2} \frac{\ln(x) dx}{x(1 + \ln^2(x))}$. **2.** Calculer $J = \int_1^3 \frac{1 + \ln(x) + \ln^5(x)}{x} dx$ par le changement de variables $t = \ln(x)$. **3.** Par le ch^{gt} de variables $t = x^2$, calculer : $K = \int_0^1 x e^{-\frac{x^2}{2}} dx$, et $L = \int_0^1 x^3 e^{-\frac{x^2}{2}} dx$.

Reconnaître des sommes de Riemann

Proposition 1 (Sommes de Riemann)

Soit $f : [a;b] \to \mathbb{R}$ une fonction continue. Alors pour $n \to +\infty$, on a la convergence :

$$\frac{b-a}{n} \cdot \sum_{k=1}^{n} f\left(a + \frac{k}{n} \cdot (b-a)\right) \longrightarrow \int_{a}^{b} f(t) \, \mathrm{d}t.$$

Exercice 3 (Avec des sommes de Riemann (I))

- $\lim_{n \to +\infty} \left| \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \right| \xrightarrow[n \to +\infty]{} \int_{0}^{1} f(t) dt.$ 1. Rappeler les hypothèses pour avoir :
- $a_n = \frac{1}{n} \sum_{k=1}^n 1$, $b_n = \frac{1}{n} \sum_{k=1}^n \frac{k}{n}$, $c_n = \frac{1}{n} \sum_{k=1}^n \left(\frac{k}{n}\right)^2$. a) En déduire la limite des suites :
 - b) Comparer le résultat avec les formules donnant

$$\sum_{k=1}^{n} 1, \sum_{k=1}^{n} k, \text{ et } \sum_{k=1}^{n} k^{2}.$$

Exercice 4 (Avec des sommes de Riemann (II): Restes harmoniques)

- rcice 4 (Avec des sommes de Reconstruction)

 1. Montrer que l'on peut écrire : $\forall n \ge 1$, $H_{2n} H_n = \sum_{i=1}^n \frac{1}{n+i}$.

 (On écrira : $H_{2n} H_n = \frac{1}{n} \sum_{i=1}^n \frac{1}{1 + \frac{i}{n}}$.)
- 3. Conclure que $\lim_{n\to+\infty} \left[H_{2n}-H_n\right]=\ln(2)$. 4. Montrer de même que $\lim_{n\to+\infty} \left[H_{3n}-H_n\right]=\ln(3)$. (On écrira: $H_{3n} - H_n = \frac{2}{2n} \sum_{i=1}^{2n} \frac{1}{1 + 2\frac{i}{2x}} \to \int_1^3 \frac{\mathrm{d}x}{x}$.)
- **5.** En calculant de deux façons $\lim_{n \to +\infty} [H_{6n} H_n]$, montrer que $\ln(6) = \ln(2) + \ln(3)$.

Exercice 5 (Avec des sommes de Riemann (III))

- **a)** Pour a > 0, calculer $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n}$.
 - **b)** En déduire un équivalent pour $n \to +\infty$, de la suite des sommes partielles $\sum_{i=1}^{n} k^{a}$.
- $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(1 + \frac{k}{n} \right) = 2 \ln(2) 1.$ a) Grâce à une somme de Riemann, montrer :
 - **b)** Montrer qu'on a : $\sum_{k=1}^{n} \ln \left(1 + \frac{k}{n} \right) = \ln \left[(2n)! \right] \ln(n!) n \ln(n).$
 - c) En déduire un équivalent de la suite : $u_n = \ln \left(\frac{(2n)!}{n!} \right)$.

Convergence et calcul par passage à la limite 2

Exercice 6 (Intégrations par parties)

Justifier l'existence et calculer les intégrales suivantes :

$$I_{1} = \int_{1}^{\infty} \frac{\ln(t)}{t^{3}} dt, \qquad I_{2} = \int_{1}^{\infty} \frac{\ln(t)}{t^{2}} dt, \qquad I_{3} = \int_{1}^{\infty} \frac{\ln^{2}(t)}{t^{3}} dt, \qquad I_{4} = \int_{0}^{\infty} t^{3} e^{-\frac{t^{2}}{2}} dt.$$

$$I_{5} = \int_{0}^{1} \ln(t) dt, \qquad I_{6} = \int_{0}^{1} \frac{\ln(t)}{\sqrt{t}} dt, \qquad I_{7} = \int_{0}^{1} \frac{\ln^{2}(t)}{\sqrt{t}} dt, \qquad I_{8} = \int_{-\infty}^{1} (t-1) e^{t} dt.$$

Que donne le changement de variables $x = \ln(t)$ dans celles « à logarithme »?

Exercice 7 (Intégrales Eulériennes (version exponentielles))

On fixe a > 0;

a) Montrer que pour $x \ge 0$, on a : $\int_0^x e^{-at} dt = \frac{1}{a} - \frac{e^{-at}}{a}.$ **b)** En déduire convergence et valeur de : $\int_0^{+\infty} e^{-at} dt = \frac{1}{a}.$

 $\int_0^x t^{n+1} e^{-at} dt = -\frac{1}{a} x^{n+1} e^{-ax} + \frac{n+1}{a} \int_0^x t^n e^{-at} dt.$ **2.** Montrer pour $n \in \mathbb{N}$, $x \ge 0$:

 $\int_{0}^{+\infty} t^{n+1} e^{-at} dt = \frac{n+1}{a} \int_{0}^{+\infty} t^{n} e^{-at} dt.$ **3.** En passant à la limite $x \to +\infty$, montrer :

 $\forall n \in \mathbb{N}, \quad \int_0^{+\infty} t^n e^{-at} dt = \frac{n!}{a^{n+1}}.$ 4. En déduire par récurrence l'expression :

Exercice 8 (Intégrales Eulériennes (version logarithmes))

a) Montrer pour $x \to 0^+$, le comportement asymptotique : $\ln(x) = o\left(\frac{1}{\sqrt{x}}\right)$.

b) En déduire que l'intégrale $\int_0^1 \ln(x) dx$ converge.

c) Montrer que : $\int_0^1 \ln(x) \, dx = -1.$ 2. Montrer de même (convergence puis valeur) que : $\int_0^1 \ln^2(x) \, dx = 2.$

3. Par le changement de variables $x = e^{-t}$, montrer que : $\int_0^1 \ln(x) dx = -\int_0^{+\infty} e^{-t} dt$

4. De même, montrer que : $\int_0^1 \ln^2(x) dx = \int_0^{+\infty} t e^{-t} dt.$ **5.** (*Pour creuser*) On pourra montrer : $\forall n \in \mathbb{N}, \quad \int_0^1 \ln^n(x) dx \stackrel{\text{ch' var.}}{=}_{t=\ln(x)} (-1)^n \int_0^{+\infty} t^n e^{-t} dt.$

= $(-1)^n n!$

Exercice 9 (Une suite d'intégrales)

Pour $n \in \mathbb{N}$, on considère la fonction f_n définie sur \mathbb{R}_+ par : $f_n(t) = \frac{e^{-t}}{1+t^n}$.

1. Étudier, pour $n \in \mathbb{N}$, les variations de f_n .

Pour $n \in \mathbb{N}$, on pose: $I_n = \int_0^{+\infty} f_n(t) dt$

- **2.** Montrer pour $t \ge 0$, que : $0 \le f_n(t) \le e^{-t}$. En déduire la convergence de l'intégrale I_n .
- **3. a)** Montrer pour $n \ge 2$ et $t \ge 1$, que: $f_n(t) \le \frac{1}{t^n}$
 - **b)** En déduire que $\lim_{n \to +\infty} \int_{1}^{+\infty} f_n(t) dt = 0$.
- **4. a)** Montrer, pour $t \ge 0$, que: $0 \le e^{-t} f_n(t) \le t^n$.
 - **b)** En déduire : $\lim_{n \to +\infty} \int_0^1 f_n(t) dt = 1 \frac{1}{e}.$
- 5. Étude d'une fonction définie par des limites.
 - a) Pour tout réel $t \ge 0$, déterminer $\lim_{n \to +\infty} f_n(t)$. (On distinguera t < 1, t = 1, t > 1.) On définit la fonction limite, pour $t \ge 0$, par : $h(t) = \lim_{n \to +\infty} f_n(t)$.
 - **b)** Montrer que h est continue par morceaux sur $[0; +\infty[$.
 - c) Étudier l'intégrale $\int_0^{+\infty} h(t) dt$. Vérifier que cette intégrale est la limite de (I_n) .

3 Comparaisons série-intégrale

Exercice 10 (Comparaison s'eries-int'egrales (principe))

- **1.** Soit $f:]0; +\infty[\to \mathbb{R}$ une fonction continue **décroissante**.
 - a) Soit $n \in \mathbb{N}^*$. Donner un encadrement de f(t) pour $t \in [n; n+1]$.
 - **b)** En déduire un encadrement de $\int_{n}^{n+1} f(t) dt$.
 - c) En déduire pour $n \ge 2$, l'encadrement $\int_{n}^{n+1} f(t) dt \le f(n) \le \int_{n-1}^{n} f(t) dt$
 - **d)** En déduire que l'on a $\forall n \in \mathbb{N}$: $\int_{1}^{N+1} f(t) dt \leq \sum_{n=1}^{N} f(n) \leq f(1) + \int_{1}^{N} f(t) dt.$

Exercice 11 (Comparaison séries-intégrales (Applications))

- 1. Application pour la fonction $f: \begin{cases}]0; +\infty[\to \mathbb{R}. \\ t \mapsto \frac{1}{t} \end{cases}$ a) Par comparaison série-intégrale (Ex. 10) montrer: $\int_1^{N+1} \frac{\mathrm{d}t}{t} \leqslant \sum_{n=1}^N \frac{1}{n} \leqslant 1 + \int_1^N \frac{\mathrm{d}t}{t}.$
 - **b)** En déduire la divergence de la série $\sum_{n\geqslant 1}\frac{1}{n}$ (série harmonique).
- **b)** En déduire la divergence α is $n \ge 1$ n2. Application pour $f: \left\{ \mathbb{R} \to \mathbb{R} \right.$, avec $\alpha > 0$, pour $\alpha \ne 1$, $t \mapsto \frac{1}{t^{\alpha}}$ a) Par comparaison série-intégrale montrer : $\int_{1}^{N+1} \frac{\mathrm{d}t}{t^{\alpha}} \le \sum_{n=1}^{N} \frac{1}{n^{\alpha}} \le 1 + \int_{1}^{N} \frac{\mathrm{d}t}{t^{\alpha}}.$ $= \frac{1}{\alpha 1} \frac{1}{N^{\alpha 1}} + \mathrm{cst.}$
 - **b)** En déduire le critère de convergence pour la série : $\sum_{n>1} \frac{1}{n^{\alpha}}$. (critère de Riemann)

Exercice 12 (Un équivalent $de \ln(n!)$)

- **1.** Montrer que pour $n \ge 2$, on a : $\ln(n!) = \sum_{k=1}^{n} \ln(k) = \sum_{k=2}^{n} \ln(k)$.
- 2. Par une comparaison série-intégrale (Attention au sens de variations!), montrer pour une certaine fonction F à expliciter :

$$\forall n \ge 2$$
, $F(n) - F(1) \le \ln(n!) \le F(n+1) - F(2)$.

3. En déduire pour $n \to \infty$, l'équivalent $\ln(n!) \sim n \cdot \ln(n)$.

Autour des fonctions densité

Exercice 13 (Une densité utile en statistique)

- **1.** Soit $\theta > 0$ et $k \ge 0$ un entier. Montrer que la fonction $f_{\theta}: \mathbb{R} \to \mathbb{R}$ définit une densité : $f_{\theta}: x \mapsto \begin{cases} \frac{k+1}{\theta^{k+1}} x^k & \text{si } 0 \leq x \leq \theta \\ 0 & \text{sinon.} \end{cases}$
- **2.** Soit *X* une variable aléatoire admettant f_{θ} pour densité.
 - a) Calculer la fonction de répartition de X.

(Quel est le rapport avec $[0; \theta]$?)

b) Calculer l'espérance $\mathbb{E}[X]$.

Exercice 14 (Une densité pour s'entraîner)

- 1. Montrer que $\int_0^1 \ln^2(x) dx$ converge et vaut 2.
- **2.** Montrer que $\int_{-\infty}^{0} e^{2x} dx$ converge et vaut $\frac{1}{2}$.
- **3.** Montrer que la fonction $f: x \mapsto \begin{cases} \frac{2}{5} e^{2x} & \text{pour } x \le 0 \\ \frac{2}{5} \ln^2(x) & \text{pour } 0 < x \le 1 \\ 0 & \text{sinon.} \end{cases}$

Exercice 15 (Gaussiennes)

- 1. **a)** Montrer pour $x \ge 1$, l'encadrement : $0 \le \exp\left(-\frac{x^2}{2}\right) \le \exp\left(-x\right)$.
 - **b)** En déduire la convergence de l'intégrale : $\int_1^{+\infty} e^{-\frac{x^2}{2}} dx$.
- **2.** Montrer la convergence de l'intégrale $\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx$. Rappeler sa valeur *(c'est du cours)*.
- **3.** Soient $\mu \in \mathbb{R}$, et $\sigma > 0$. Par changement de variables affine, en déduire $\int_{-\infty}^{+\infty} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$.
- **4.** Quelle est la valeur de $\int_0^{+\infty} e^{-\frac{x^2}{2}} dx$?

Exercice 16 (Moments de la loi exponentielle)

Soit $\lambda > 0$ et soit X une variable aléatoire de loi exponentielle $\mathcal{E}(\lambda)$.

- 1. Rappeler l'expression de la densité f de X.
- **2.** Montrer que X admet un moment à tout ordre et que $\forall n \in \mathbb{N}$, $\mu_n(X) = \frac{n!}{\lambda^n}$.
- **3.** Retrouver la valeur de la variance : $Var(X) = \frac{1}{\lambda^2}$.

Exercice 17 (La loi d'Erlang)

Soit $\lambda > 0$ et $n \in \mathbb{N}$.

On definit une fonction $f_n : \mathbb{R} \to \mathbb{R}$ par la formule $f_n : x \mapsto \begin{cases} \lambda^{n+1} \cdot \frac{x^n}{n!} \cdot e^{-\lambda x} & \text{si } x \ge 0 \end{cases}$ 1. Montrer que la fonction f_n est une fonction densité.

(On utilisera le résultat de l'Exercice 7)

- **2.** Quelle densité reconnaît-on pour n = 0?
- **3.** Pour quelle valeur de x la densité $f_n(x)$ est-elle maximisée? (le **mode** de la distribution)

Soit X une variable aléatoire admettant f_n pour densité. $(X \hookrightarrow \mathcal{E}(\lambda, n): loi d'Erlang)$

- **4.** Montrer que la variable X admet une espérance et que : $\mathbb{E}[X] = \frac{n+1}{\lambda}$.
- **5.** Montrer que la variable X admet moment d'ordre 2 et que : $\mathbb{E}[X^2] = \frac{(n+1)(n+2)}{\lambda^2}$.
- **6.** En déduire que *X* admet une variance et que $Var(X) = \frac{n+1}{\lambda^2}$.