教理说什么以 曹建钦 201411 20375177 5. A 4. C 2. C 3. D 1. C 朱戬信息、总体信息和 样丰信息 3. Xw P-1 h-1 5. ZX U) iZAA: $\bar{x} \sim N(\mu, \bar{m}) \quad \bar{y} \sim N(2\mu, \bar{n})$ =) EX = p Ey = 24 故 ETI = E[= (x+ + 1)] = = = = x+ + = = p 故下是M的无偏估计 (2)解: 样车X1,X2--,Xm,Y,,Y2--,Yn的联合家原函数为 f(x,,x2--,xm,y,,y2--yn;6) = (22) = exp? -= (mp+xnp) (exp? -= (= xi+ = yi) (exp/mpx+2npy) 3 ((a)=(22) = exp? ?-= (mp+knp)), h(x), x2 -- xm, y1, y2 -- yn)=exp?-==(2x) + 割约 w(p)=p, T(x1,x2...xm, y1,y2...yn)=mx+2ny 由于w(p)=p的循域有内点,故T=mx+2ny为完全交易该计量 又: ET=(m+4)p : E(mx+2ny)=p 神程 Lehmann - Scheffe 定理 なわて的 函数 ETE-M 故 Ti= mx+2hy 为 M的一致最大的系文的估计 (3) T2是户的有效估计,iD明知了 Vary (T2) = m + (m + (n) = m + (n) = (m + (n)) = (m + (n)) = q'(vo)=1 In(0)= Ep [Sp Inp(x1,x2 -- xm, y1, y2 .. ynip)] == Ep [Sp Inp(x,,x...xn;

右

y,,y,-- yn; m] = m+ph

有
$$V_{CYP}(T_V) = \frac{1}{170(P)} = \frac{1}{m+vn}$$
 故 T_2 是 P_1 的有效估计 因.
解: 由 $N-P_3$] 超 T_2 是 P_1 的有效估计 $P_2(X) = \begin{cases} 1 & \lambda & \lambda & \lambda \\ 0 & \lambda & \lambda & \lambda \\ 0 & \lambda & \lambda & \lambda \end{cases}$ 似 然 $P_2(X) = \begin{cases} 1 & \lambda & \lambda & \lambda \\ 0 & \lambda & \lambda & \lambda \\ 0 & \lambda & \lambda & \lambda \end{cases} = \left(\frac{E_2}{2}\right)^n exp(F_2)^n e$

团此在星部且千年 d=0.05 Tr, 柜柜原假设, 不以为这批产品长度为 9cm

初至	A B AXB C AXC D							实验数据
1329	- I	_ ೭_	3_	Y	_5	6	_7	745 3013
	-ı	l		_1_		1	1	350
2	<u></u>	1	1	2	2	2	2	325
3	1,	2	2	_ [!	2	2	pro
¥	ı	2	2	2	2	1	1	kry
5	2	١	2	1	2	1	2	200
6	2	1	2	2	1	7	1	250
	12	-1-	1	1	-2-	_2_		1275
8	2	2	_i	'n	_ _	1,-	2	375
Trj	1525	1125	1325	12/20	1400	1350_	1300	7 - 12/
Trj	1100	1500	1300	137	1225	1275	1325	7=2625
Rj	425	375	V	125	זקו	75	25	
明主つり	30	B; P	500					[4
最优落		AL P	a constant	D	Aı	B2C, D),	1 11

图注→为 A,B;AxC,C;D;AxB 考虑相至作用, Ax(楷花(之前,拟近 C的最优于年从AxC入乡。

其中 A 取于平便1: AIX C1 = 350+FOLT = 775

A1 X C2 = 375 + 475 = 20 750

得上,最优多和 在原生的 AIB2(1D)

· b.

(1)
$$Z = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}$$

书铅饱桶

有三个特征值入1=18,入2,入3(入2+入3=3)

故方这位取一个主办的

$$= \begin{cases} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 15 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = 0 \Rightarrow \lambda = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

放主部为 yi= Xz