Assignment	
Control System	by Hanan Hadan 20180163087
as) Drow the inverse polar plot for a feel bode &	ysten w
Drow the inverse polar plot for a	Ü
as open loof transfer function	
C(c) H(c) - h	
G(s) H(s) = k $s(1+ts)$	
Anu) = s(1+Ts)	
Aru) = $s(1+Ts)$ K	
Then fore, the sinosuidal TF is	ir i
A	jw
GGWHCJW) = JW(1+Tjw) = -W++	J
	V 1 - 2
At $\omega = -\infty$	
- NO	
$\frac{1}{a(j\omega)+(j\omega)} = -\omega - j\omega$	
At $\omega = 0$ $\frac{1}{G(j\omega)} + G(j\omega)$	
At $\omega = 0^+$ $\frac{1}{\omega} = -0^+$	•
GCjwiH(jw)	· F
A4	
At $\omega = +\infty$ $= -\infty + j \infty$	

The open loop function y a system is 02 G(1) = K S(1+0.15) + (1+5) Deservine the value of K so that GM is 68 B G(s) = K S(H0.1s) (Hs) Replacing S=jw $G(j\omega) = \frac{k}{j\omega (1+0.1j\omega) (1+j\omega)}$ = k jw(1+j)| -0.1w²) -1.1w²+jw(1-0.1w²) Wp (1-0.1 wp2)= 0 wp to 0.162-1 wp = vio wp = 3/62 rad 4 [G (jw) | w= wp = | K - 0.0909K

- Mo-90-40 = 50° Jan 0.2 wg + lan o. or wg Taking tan if both sides Jan 50 1 1.2 0,2 wg + 0,05 wg 0.25wg - 1.20 1-0.01 wg 1.20 - D. 012 wg2 = 0.25 wg 0.012 wg 2 + 0.25 wg - 12 = 0 wg = -0.25 ± \0.852 + 4x0.012 xx2 - 0 (G(Jw)) w= wg = (1+6,2wg)2) (1+6,2wg)2) Solving egn O for positive value. we get wg = 4 rad/ sec Putting way - 4 rad/sec in (2) we get K=5.2 Am