#### algorithm

- finite set of well-defined instructions for accomplishing some task
- will begin in an initial state and terminate in a defined end state.

### algorithm efficiency

- speed: the time it takes for an algorithm to complete
- space: maximum amount of memory used up by the algorithm at any time of its execution

### measuring algorithm efficiency

- <u>do not</u> count the exact number of machine instructions or machine words required
- but estimate the running time and/or space of algorithms

#### rules

- running time and space requirement is given for the worst case input of the problem to be solved
- make running time and space requirement depend on the size of the input to the problem
- $\Rightarrow$  running time and space requirement are functions  $T:\mathbb{N}\to\mathbb{N}$  and  $S:\mathbb{N}\to\mathbb{N}$ 
  - T(n) and S(n) express the running time and space requirement for input size n

### Example 1

- suppose the running time of an algorithm is  $T(n) = 5n^2 + 3n + 72$  seconds, where n is the size of the problem.
- simplification by dropping all constants and lower terms.
- $\Rightarrow$  drop 3n and 72 (lower-order terms with respect to  $n^2$ ) and constant 5
  - running time of the algorithm is  $O(n^2)$ .

2/10

- The O-notation is a mathematical notation used to describe the asymptotic behavior of functions.
- It allows us to indicate that we do not care for constants and lower-order terms.
- Its purpose is to characterize a function's behavior for very large inputs in a simple but rigorous way that simplifies the comparison of algorithms concerning their running time and space requirements.
- More precisely, the symbol O is used to describe an asymptotic upper bound for the magnitude of a function in terms of another, usually simpler, function.
- There are also symbols for lower bounds and tight bounds which are not discussed here.

#### Definition 1

Suppose f and g are two functions from integers to integers. We say that f is O(g) if and only if there exists some constants  $n_0$  and c > 0 such that

$$0 \le f(n) \le c \cdot g(n)$$
 for all  $n \ge n_0$ 

- Note that the  $n_0$  is the minimum problem size for which f is dominated by g.
- -c is a constant, i.e. it cannot depend on n.

### Example 2

Consider the functions f and g defined as follows:

$$f(n) = 6n^4 - 2n^3 + 5$$
$$g(n) = n^4$$

Now for  $n \ge 1$  the following inequality holds:

$$f(n) = 6n^4 - 2n^3 + 5 \le 6n^4 + 2n^3 + 5$$

$$\le 6n^4 + 2n^4 + 5n^4$$

$$\le 13n^4$$

$$= 13 \cdot g(n)$$

With c=13 and  $n_0=1$  we can conclude  $0 \le f(n) \le c \cdot g(n)$  for all  $n \ge n_0$ . That is, we have found the constant c and minimum input size  $n_0$  as required in Definition 1. So f is O(g).

- By O(g) we refer to the set of functions f such that f is O(g).
- That is, O(g) is the set of functions dominated by g.
- When using the O-Notation, one does not always have to give explicit names to functions, like f and g as in the example above.
- Instead, one uses polynomials: For example, if we want to refer to the set O(g) with g defined by  $g(n) = n^2$  we simply write  $O(n^2)$ .
- Then we can, for example, state that the running time of some algorithm is  $O(n^2)$ .
- This means that the function f describing the dependency of the running time of the algorithm on the input size is  $O(n^2)$ .
- Table 1 shows some commonly used functions for specifying asymptotic upper bounds.
- Table 2, Table 3 and Figure 1 give more explanations, shows sample values and plots of most of these functions.

 $\label{thm:commonly} \textbf{Table 1: Some commonly used functions for specifying asymptotic upper bounds.}$ 

| notation      | name        | example                                        |  |  |  |
|---------------|-------------|------------------------------------------------|--|--|--|
| O(1)          | constant    | determining cost of an edit operation          |  |  |  |
| $O(\log n)$   | logarithmic | finding an element in a sorted array of length |  |  |  |
|               |             | n                                              |  |  |  |
| O(n)          | linear      | determining the identity of two sequences      |  |  |  |
|               |             | both of length <i>n</i>                        |  |  |  |
| $O(n \log n)$ | quasilinear | determining an optimal chain of $n$ matches,   |  |  |  |
|               |             | see Genome Informatics lecture                 |  |  |  |
| $O(n^2)$      | quadratic   | determining the edit distance of two se-       |  |  |  |
|               |             | quences both of length <i>n</i>                |  |  |  |
| $O(n^c)$ ,    | polynomial  | find secondary structure of RNA-sequence s     |  |  |  |
| c > 1         |             | with minimum free energy $(n =  s , c = 3,  $  |  |  |  |
|               |             | see Genome Informatics lecture)                |  |  |  |
| $O(c^n)$      | exponential | recursive counting of all alignments           |  |  |  |
| O(n!)         | factorial   | enumerate all subsets of set of size <i>n</i>  |  |  |  |

7/10

Table 2: Explanations of commonly used functions for *O*-Notation.

- O(1) All instructions of the program are executed at most only a few times, independent of the size of the input.
- $O(\log n)$  The program gets slightly slower as n grows. Whenever n doubles,  $\log n$  increases by a constant.
- O(n) Usually, a small amount of processing is done on each input element. Whenever n doubles, then so does the running time. This is the optimal situation for an algorithm that must process n inputs/produce n outputs.
- $O(n \log n)$  This often arises in algorithms dividing the problem into smaller subproblems, solving them independently and then combining solutions. When n doubles the running time more than doubles (but not much more).
- $O(n^2)$  This arises when algorithms process pairs of all data items (e.g. doublenested loop). Whenever n doubles, the running time increases fourfold.
- $O(n^3)$  This arises when algorithms process triples of all data items (e.g. triplenested loop). Whenever n doubles, the running time increases eightfold.
- $O(2^n)$  Exponential run times arise naturally as solutions to problems using a "brute-force" approach. Whenever n doubles, the running time squares.

Table 3: Commonly used functions with sample values

| log n | $\sqrt{n}$ | n               | n log n            | n <sup>2</sup>  | n <sup>3</sup> | 2 <sup>n</sup>        | n!                  |
|-------|------------|-----------------|--------------------|-----------------|----------------|-----------------------|---------------------|
| 3     | 3          | 10              | 30                 | 10 <sup>2</sup> | $10^{3}$       | $1.02 \cdot 10^{3}$   | $3.62 \cdot 10^{6}$ |
| 6     | 10         | $10^{2}$        | 600                | $10^{4}$        | $10^{6}$       | $1.27 \cdot 10^{30}$  | $pprox 10^{158}$    |
| 9     | 31         | $10^{3}$        | $9 \cdot 10^{3}$   | $10^{6}$        | $10^{9}$       | $1.07 \cdot 10^{301}$ | $pprox 10^{2568}$   |
| 13    | 100        | 10 <sup>4</sup> | $1.3 \cdot 10^5$   | 10 <sup>8</sup> | $10^{12}$      | very large            | very large          |
| 16    | 316        | $10^{5}$        | $1.6 \cdot 10^{6}$ | $10^{10}$       | $10^{15}$      | very large            | very large          |
| 19    | 1 000      | 10 <sup>6</sup> | $1.9 \cdot 10^7$   | $10^{12}$       | $10^{18}$      | very large            | very large          |

Figure 1: Plots of some commonly used functions f for specifying asymptotic upper bounds shown for  $n \le 8$  and  $f(n) \le 9$ .

