Higher-order model checking with GFP-models

GFP model

$$\mathcal{D} = \langle \{D\}_{A \in Types}, \{\omega_A\}_{A \in Types}, \{c_{\mathcal{D}}\}_{c \in \Sigma} \rangle$$

- D_o is a finite lattice,
- $D_{A\to B}$ is the set of monotone functions from D_A to D_B ,
- ω_A is the greatest element of D_A ,
- for $c \in \Sigma$ of type $A, c_{\mathcal{D}} \in D_A$.

Variable assignment $\vartheta: Vars \to \bigcup \{D_A : A \in Types\}$ if $\vartheta(x^A)$ defined then $\vartheta(x^A) \in D_A$.

GFP model

$$\mathcal{D} = \langle \{D\}_{A \in Types}, \{\omega_A\}_{A \in Types}, \{c_{\mathcal{D}}\}_{c \in \Sigma} \rangle$$

Semantics

 $[\![\lambda F^A.M]\!]$ is monotone.

Stable under β -reduction: $[\![\lambda x.M]\!] = [\![M[N/x]]\!]$.

Stable under δ -reduction: [YF.M] = [M[YF.M/F]].

The unique result is (in some cases) a ranked tree

Tree signature:

All constants of have type of the form $o \to \cdots \to o \to o$, or just o.

Cor: A normal form of a term M:0 over a tree signature is a finite ranked tree.

 $BT(M)|_n$ is BT(M) where nodes at level n are replaced by ω of appropriate types.

 $\llbracket BT(M) \rrbracket_{\mathcal{D}}^{\vartheta} = \bigcap \{ \llbracket BT(M) |_{n} \rrbracket_{\mathcal{D}}^{\vartheta} : n \in \mathbb{N} \}$

Proposition [Extended soundness]: $[\![M]\!]_{\mathcal{D}}^{\vartheta} = [\![BT(M)]\!]_{\mathcal{D}}^{\vartheta}$

Proposition [Extended soundness]: $[\![M]\!]_{\mathcal{D}}^{\vartheta} = [\![BT(M)]\!]_{\mathcal{D}}^{\vartheta}$

The language recognized by $F \subseteq D_o$ is the set of closed λY -terms M of type o with $[\![M]\!]_{\mathcal{D}} \in F$.

TAC automaton (trivial accepting conditions)

Signature $\Sigma = \Sigma_0 \cup \Sigma_2$.

$$\mathcal{A} = \langle Q, \Sigma, q^0, \delta_0, \delta_2 \rangle$$

$$\delta_0 : Q \times (\Sigma_0 \cup \{\omega\}) \to \{ff, tt\}$$

$$\delta_2 : Q \times \Sigma_2 \to \mathcal{P}(Q \times Q)$$

 ω -blind condition: $\delta_0(q,\omega) = tt$ for all $q \in Q$.

TAC automaton (trivial accepting conditions)

$$\mathcal{A} = \langle Q, \Sigma, q^0, \delta_0, \delta_2 \rangle$$

 ω -blind condition: $\delta_0(q,\omega) = tt$ for all $q \in Q$.

Def. $L(A) = \{M : M \text{ closed, of type } o, BT(M) \text{ accepted by } A\}.$

Prop. L(A) is recognized by a finitary GFP model.

BT(M) accepted by \mathcal{A} iff $[\![M]\!]_{\mathcal{D}_{\mathcal{A}}} \in F_{\mathcal{A}}$.

Prop. L(A) is recognized by a finitary GFP model.

$$\mathcal{A} = \langle Q, \Sigma, q^0, \delta_0, \delta_2 \rangle$$

$$\delta_0 : Q \times (\Sigma_0 \cup \{\omega\}) \to \{ff, tt\}$$

$$\delta_2 : Q \times \Sigma_2 \to \mathcal{P}(Q \times Q)$$

$$D_o = \mathcal{P}(Q)$$

For
$$c \in \Sigma_0$$
: $c_D = \{q : \delta(q, c) = tt\}$

For
$$a \in \Sigma_2$$
: $a_D(S_1, S_2) = \{q : \delta_2(q, a) \cap (S_1 \times S_2) \neq \emptyset\}$

$$F = \{S : q^0 \in S\}$$

$$BT(M)$$
 accepted by \mathcal{A} iff $[\![M]\!]_{\mathcal{D}} \in F$.

From models to automata

Fix a model $\mathcal{D} = \langle \{D_A\}, \{w_A\}, \{c_{\mathcal{D}}\}_{c \in \Sigma} \rangle$

Take $Q = D_o$.

Consider automaton $\mathcal{A}(q) = \langle Q, \Sigma, q, \delta_0, \delta_2 \rangle$

$$\delta_0(q, c) = tt$$
 if $q \le c_D$
 $\delta_2(q, a) = \{(q_1, q_2) : q \le a_D(q_1, q_2)\}$

Lemma: For every closed term M of type o:

$$BT(M) \in \mathcal{A}_q \text{ iff } q \leq [\![M]\!]_{\mathcal{D}}.$$

Thm [Salvati, W.]

Let L be a set of closed λY -terms of type o.

L is recognized by a finitary GFP model iff L is a Boolean combination of languages of ω -blind TAC automata.

Thm [Salvati, W.]

Let L be a set of closed λY -terms of type o.

L is recognized by a finitary GFP model iff L is a Boolean combination of languages of ω -blind TAC automata.

Cor:

For M, N closed λY -terms of type o over tree signature:

BT(M) = BT(N) iff $[\![M]\!]_{\mathcal{D}} = [\![N]\!]_{\mathcal{D}}$ in all finitary GFP models.

Thm [Salvati, W.]

Let L be a set of closed λY -terms of type o.

L is recognized by a finitary GFP model iff L is a Boolean combination of languages of ω -blind TAC automata.

Cor:

For M, N closed λY -terms of type o over tree signature:

$$BT(M) = BT(N)$$
 iff $[\![M]\!]_{\mathcal{D}} = [\![N]\!]_{\mathcal{D}}$ in all finitary GFP models.

Thm [Statman]

For every closed λ -term M there is a finitary model \mathcal{D} s.t. for every term N:

$$BT(M) = BT(N)$$
 iff $[M]_{\mathcal{D}} = [N]_{D}$.

Thm [Loader]

Let \mathcal{D} be a nontrivial standard model.

The following problem is undecidable:

given $d \in \mathcal{D}$ is there a λ -term M with $[\![M]\!]_{\mathcal{D}} = d$.