Generalization through Memorization: Nearest Neighbor Language Models

Authors: Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, Mike Lewis

Stanford University, Facebook AI Research

ICLR 2020

Presented by: Itay Levy

Talk outline

kNN-LM

- Motivation
- Constructing the datastore
- Inference

Experiment setting

Key results

- Improved generalization w/o adding parameters
- Scaling up to larger training sets using the datastore
- Domain adaptation

Summary

• Maybe also some additional stuff

Motivation: Autoregressive LM as two separate tasks

1) Representation learning - mapping sentence prefixes to fixed-sized representations

2) **Predict** the next word

$$c_t = (w_1, \dots, w_{t-1}) \longrightarrow \qquad f(c_t) \qquad \longrightarrow P(w_t | c_t)$$

$$Obama \ was \ born \ in$$

$$Neural \ Language \ Model$$

$$Nodel$$

$$Neural \ Language \ Model$$

$$Nodel$$

$$Neural \ Language \ Model$$

$$Nodel$$

Motivation: Hypotheses

Representation learning may be easier for LM than the prediction problem

- 2. Context representation function is a similarity function.
 - Contexts which are close in representation space are more likely to be followed by the same target word.
 - E.g. "Dickens is the author of" ~ "Dickens wrote"
 - Seen before in the seminar in openQA we compare the query representation to the passage representation

Motivation: finding close contexts in representation space

Test Context: Obama's birthplace is _???_

Previously Seen Contexts	Targets
Obama was senator for	Illinois
Barack is married to	Michelle
Obama was born in	Hawaii
Obama is a native of	Hawaii

kNN-LM motivation

kNN-LM motivation

$$q = f(x) =$$

Nearest Neighbors
Datastore

Focus on neighbors for inference efficiency (like in openQA)

kNN-LM motivation

$$q = f(x) =$$

<u>Keys</u>

f(Obama was senator for) f(Obama was born in)

. . .

<u>Values</u>

Illinois Hawaii

...

Talk outline

kNN-LM

- Motivation
- Constructing the datastore
- Inference

Experiment setting

Key results

- Improved generalization w/o adding parameters
- Scaling up to larger training sets using the datastore
- Domain adaptation

Summary

• Maybe also some additional stuff

Constructing the datastore

The text collection for the NN datastore can be the original LM training data or a different dataset

Training Contexts c_i	Targets v_i
Obama was senator for	Illinois
Barack is married to	Michelle
Obama was born in	Hawaii
Obama is a native of	Hawaii

Constructing the datastore

Datastore Create entry for each Values training set token Keys Training Contexts Representations Targets $k_i = f(c_i)$ v_i Obama was senator for Illinois Barack is married to Michelle Obama was born in Hawaii Obama is a native of Hawaii

Constructing the datastore - efficiency

Task	Time for Wikitext-103 [hours]	Hardware
[reference] A single epoch of LM training forward + backward pass	5	1 GPU
A single forward pass over the dataset to save keys/values	4	1 GPU(+SSD storage)
Creating the datastore using FAISS	2	1 CPU(+SSD storage)

Time complexity - roughly like 1 epoch of training Highly parallelizable method

Datastore implementation details

How large is it?

- Key for every token
- 4000 bytes for each key
- ~400GB of storage

FAISS -open source library for fast nearest neighbor retrieval in high dimensional spaces

- Reduces I/O
 - Clusters the keys
 - Search based on cluster centroids
- Reduces storage usage
 - Stores compressed versions of the vectors (64 bytes)

Talk outline

kNN-LM

- Motivation
- Constructing the datastore
- Inference

Experiment setting

Key results

- Improved generalization w/o adding parameters
- Scaling up to larger training sets using the datastore
- Domain adaptation

Summary

• Maybe also some additional stuff

Inference – neighbors retrieval

The k-nearest neighbors for q = f(x)Representations $k_i = f(c_i)$ Distances Targets $d_i = d(q, k_i)$ Illinois 100 Michelle 3 Hawaii . . . 5 Hawaii

$$K = 1024$$

Inference – choosing nearest neighbors

The k-nearest neighbors for q = f(x)

Inference – kNN distribution

Softmax over negative distances

Inference – interpolation with the original model

Language Model	
Hawaii	0.2
Illinois	0.2

k-Nearest Neighbors		
Hawaii	0.8	
Illinois	0.2	

$kNN-LN$ $(1-\lambda) p_{\rm LM} + \lambda$	
Hawaii	0.6
Illinois	0.2

Inference – complete illustration

Highly interpretable

Inference - efficiency

Language model	Decoding speed on a single GPU [tokens/sec]
Vanilla LM	500
kNN-LM	60

Talk outline

kNN-LM

- Motivation
- Constructing the datastore
- Inference

⇒ Experiment setting

Key results

- Improved generalization w/o adding parameters
- Scaling up to larger training sets using the datastore
- Domain adaptation

Summary

• Maybe also some additional stuff

Datasets

Dataset	Description	#Tokens
WIKITEXT-103	Standard benchmark for autoregressive language modelling Wikipedia articles	100M
BOOKS (Toronto Books Corpus)	10K books in 16 different genres	1B
WIKI-3B	English Wikipedia articles	3B
WIKI-100M	Random articles subset of WIKI-3B	100M

Model details

- Decoder-only Transformers
 - Architecture and optimization from Baevski & Auli (2019)
 - 16 layers
 - The keys in the datastore are the input to the final layer's feedforward network
 - 1024 dimensional hidden states our keys

Evaluation

- Loss function during training
 - negative log-likelihood of the training corpus
- Evaluation metric
 - Perplexity (standard practice)

Metric	Definition	Formula
Likelihood	P(D)	$\prod_{y_i \in D} P(y_i Y_{< i})$
Log-likelihood	$\log P(D)$	$\sum_{y_i \in D} \log P(y_i Y_{< i})$
Cross Entropy	$-\frac{1}{ D }\log P(D)$	$-\frac{1}{ D } \sum_{y_i \in D} \log P(y_i Y_{< i})$
Perplexity	$(P(D))^{-\frac{1}{ D }}$	$\exp\left(-\frac{1}{ D }\sum_{y_i\in D}\log P(y_i Y_{< i})\right)$

Credit: Advanced Methods in NLP course by Omer Levy

Qualitative Analysis Memorizing rare information

Test Context

 $(p_{\rm kNN} = 0.998, p_{\rm LM} = 0.124)$

The model is specifically helpful in predicting rare patterns

- factual knowledge
- Names
- near-duplicate sentences from the training set

it was organised by New Zealand international player Joseph Warbrick, promoted by civil servant Thomas Eyton, and managed by James Scott, a publican. The Natives were the first New Zealand team to perform a haka, and also the first to wear all black. They played 107 rugby matches during the tour, as well as a small number of Victorian Rules football and association football matches in Australia. Having made a significant impact on the	development	
Training Set Context	Training Set Target	Context Probability
As the captain and instigator of the 1888-89 Natives – the first New Zealand team to tour the British Isles – Warbrick had a lasting impact on the	development	0.998
promoted to a new first grade competition which started in 1900. Glebe immediately made a big impact on the	district	0.00012
centuries, few were as large as other players managed. However, others contend that his impact on the	game	0.000034
Nearly every game in the main series has either an anime or manga adaptation, or both. The series has had a significant impact on the	development	0.00000092

Test Target

Figure 6: Example where the kNN model has much higher confidence in the correct target than the LM. Although there are other training set examples with similar local n-gram matches, the nearest neighbour search is highly confident of specific and very relevant context.

Talk outline

kNN-LM

sentiment analysis

Experiment setting

vibe check

Key results

- Improved generalization w/o adding parameters
- Scaling up to larger training sets using the datastore
- Domain adaptation

Summary

• Maybe also some additional stuff

Using the training data as the datastore

Model	Perplexity
Previous Best (Luo et al., 2019)	17.40
Base LM	18.65
kNN-LM	16.12

Very significant result!

Key result #1 Improved generalization w/o adding parameters

- Compatible with any autoregressive model
- No added parameters*
- No additional training
 - Takes advantage of effective similarity functions learned by LM

Is it just ensembling with an overfitted model?

Memorizing Transformer – Transformer LM that perfectly memorized the training data

Interpolating original LM with:	Validation perplexity improvement †
kNN-LM	1.9
Memorizing Transformer	0.1

Implicit memorization is less effective at generalization than kNN-LM

Back to the hypotheses

- 1. Prediction problem is harder when done implicitly using LM parameters
- 2. Contexts which are close in representation space are more likely to be followed by the same target word

Talk outline

kNN-LM

- Motivation
- Constructing the datastore
- Inference

Experiment setting

Key results

- Improved generalization w/o adding parameters
- Scaling up to larger training sets using the datastore
- Domain adaptation

Summary

• Maybe also some additional stuff

What should I do with extra data?

LM Training Data	Datastore	Perplexity
Wiki-3B	-	15.17
Wiki-100M	_	19.59
Wiki-100M	Wiki-3B	13.73

Test on Wiki-3B

Retrieving nearest neighbors from the corpus outperforms training on it!

What should I do with extra data?

(a) Effect of datastore size on perplexities.

kNN-LM trained on 100M tokens with a datastore of 1.6B tokens already outperforms the LM trained on all 3B tokens

Back to the hypotheses

Prediction problem is harder when done implicitly using LM parameters

Possible implication?

Massive LM (like GPT-3) are not that better at finding better representations

They are better at prediction by implicitly memorizing more data in parameters

Credit: Advanced Methods in NLP course by Omer Levy

Key result #2 Scaling up to larger training sets using the datastore

- Retrieving nearest neighbors from the corpus outperforms training on it
- New path for efficiently using large datasets in LMs
 - No additional cost of training
 - Just increasing the datastore
- Problem
 - Larger datastore -> slower inference

Talk outline

kNN-LM

- Motivation
- Constructing the datastore
- Inference

Experiment setting

Key results

- Improved generalization w/o adding parameters
- Scaling up to larger training sets using the datastore
- Domain adaptation

Summary

Maybe also some additional stuff

Domain adaptation

- Varying the NN datastore, again without further training
 - Adding out-of-domain data to the datastore makes a single LM useful across multiple domains

LM Training Data	Datastore	Perplexity on Books
Books	_	11.89
Wiki-3B	_	34.84
Wiki-3B	Books	20.47

Domain adaptation requires more weight on kNN component than indomain

Key result #3 Domain adaptation

- A single LM can adapt to multiple domains without the in-domain training
- We can domain-specific data to the datastore

Talk outline

kNN-LM

- Motivation
- Constructing the datastore
- Inference

Experiment setting

Key results

- Improved generalization w/o adding parameters
- Scaling up to larger training sets using the datastore
- Domain adaptation

→ Summary

• Maybe also some additional stuff

Summary

- Explicitly memorizing the training data helps generalization
 - Suggests that prediction problem is harder that representation learning
 - Takes advantage of effective similarity functions learned by LM

• Enables:

- Compatibility to any autoregressive LM
- Smaller models trained on smaller datasets
 - Quicker training
- Adaptability to other domains

Future work

- Explicitly training similarity functions.
- Reducing the size of the datastore.
- Keep training the decoding layers while freezing the encoding part that kNN-LM uses.
- Extend the proposed model to other language tasks.
- Test on various language models to verify the generalization ability across different models.

Result #1 on multiple domains

Control for the possibility that encyclopedic Wikipedia text is somehow uniquely good for caching.

Model	Perplexity (↓)		# Trainable Params
	Dev	Test	
Base LM (Baevski & Auli, 2019)	14.75	11.89	247M
+kNN-LM	14.20	10.89	247M

Table 2: Performance on BOOKS, showing that kNN-LM works well in multiple domains.

Finding optimal λ Datastore size

The optimal value of λ increases with the size of the datastore.

(b) Tuned values of λ for different datastore sizes.

Finding optimal λ in domain vs. out of domain

More weight on kNN LM improves domain adaptation.

kNN(neural representation) vs n-gram (simple representation)

Highlights the need to use the learned representation function $f(\cdot)$ to measure similarity between more varied contexts