Week 4

???

4.1 Euclidean Domains and Reducibility

1/23: • Notes to wrap up last time to start.

- Recall the theorem from last time: There is an injective ring homomorphism $\iota: R \to D^{-1}R$ such that for any $\varphi: R \to S$ such that $\varphi(D) \subset S^{\times}$, there exists a unique $\tilde{\varphi}: D^{-1}R \to S$ such that $\tilde{\varphi} \circ \iota = \varphi$.
 - Callum redraws Figure 3.1.
- Something Callum misstated last time: Diadic refers to 2-adic, not p-adic.
- Corollary: If $f \in R$ is not a zero divisor, then $R_f \cong R[X]/(fX-1)$.
 - We can prove this using the universal property; it's on the HW.
- Subfield of F generated by R: The field defined as follows, where F is a field and $R \subset F$ is an integral domain. Denoted by K. Given by

$$K = \bigcap_{\substack{R \subset F' \subset F \\ F' \text{ a field}}} F'$$

- Alternative definition: The smallest field inside F that contains R.
- Proposition: Let $R \subset F$ be an integral domain, where F is a field. Then

$$K \cong \operatorname{Frac} R$$

Proof. Background: Consider the injection $R \to F$. It sends every element of $D = R \setminus \{0\}$ to a unit in F. Moreover, this function "factors through the fraction field" via Figure 3.1 as per the theorem. We now begin the argument in earnest.

To prove that $K \cong \operatorname{Frac} R$, we will use a bidirectional inclusion proof. For the forward direction, observe that $R \subset \operatorname{Frac} R \subset F$. Therefore, by the definition of K, $K \subset \operatorname{Frac} R$, as desired. For the backward direction, let $x/y \in \operatorname{Frac} R$ be arbitrary. To confirm that $x/y \in K$, it will suffice to verify that $x/y \in F'$ for all $R \subset F' \subset F$. Let F' subject to said constraint be arbitrary. Since $x/y \in \operatorname{Frac} R$, $x, y \in R$. It follows since $R \subset F'$ that $x, y \in F'$. Thus, since F' is a field and hence closed under multiplicative inverses, $1/y \in F'$. Finally, since F' is closed under multiplication and $x, 1/y \in F'$, we have that $x/y \in F'$, as desired.

• Example: Let $R = \mathbb{Z}[\sqrt{2}] = \mathbb{Z}[X]/(X^2 - 2)$. Then

$$\operatorname{Frac} R = \mathbb{Q}[\sqrt{2}] = \frac{\mathbb{Q}[X]}{(X^2 - 2)}$$

Week 4 (???)
MATH 25800

• That's it for rings of fractions. We now move onto Euclidean Domains (EDs), Principal Ideal Domains (PIDs), and Unique Factorization Domains (UFDs).

- An ED is a PID, and a PID is a UFD (hence, for example, an ED is both a PID and a UFD).
- Norm: A function from an integral domain R to $\mathbb{Z}_{\geq 0}$ that satisfies the following. Denoted by N.

 Constraints
 - (i) Let $a \in R$. Then N(a) = 0 iff a = 0.
 - (ii) $h, f \in R$ and $f \neq 0$ implies that there exists $q, r \in R$ such that h = qf + r and N(r) < N(f).
- Euclidean domain: An integral domain on which there exists a norm. Also known as ED.
- Theorem: If R is an ED, then R is a PID.

Proof. This proof will use an analogous argument to that used in the proof that F[X] is a PID from the end Lecture 3.1. Let's begin.

To prove that R is a PID, it will suffice show that for every ideal $I \subset R$, I = (f) for some $f \in I$. Let $I \subset R$ be arbitrary. Let

$$d = \min\{N(a) \mid a \in I \setminus \{0\}\}\$$

Pick $f \in I \setminus \{0\}$ such that N(f) = d. We will now argue that I = (f) via a bidirectional inclusion proof. In one direction, since I is an ideal, $(f) = Rf \subset I$. In the other direction, let $h \in I$ be arbitrary. Then since $f \neq 0$ by assumption, the hypothesis that R is an ED implies that there exist $q, r \in R$ such that h = qf + r and N(r) < N(f). It follows since $h, qf \in I$ that $r = h - qf \in I$. But since N(r) < N(f) = d, $r \in I$ implies by the definition of d that necessarily N(r) = 0 and hence r = 0. Therefore, h = qf, as desired.

- Note that showing that $r \in I$ this way would not be acceptable in the HW??
- Examples of EDs:
 - 1. \mathbb{Z} , N(m) = |m|.
 - The norm is non-unique.
 - 2. $F[X]^{[1]}$, $N(f) = 2^{\deg(f)}$.
 - We define the norm in this way because then the degree of the zero polynomial being $-\infty$ makes $N(0) = 2^{-\infty} = 0$.
 - Note that since $\deg(fg) = \deg(f) + \deg(g)$, N(fg) = N(f)N(g) here.
 - 3. $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}\ (d \text{ is a square-free integer}), \ N(a + b\sqrt{d}) = |(a + b\sqrt{d})(a b\sqrt{d})| = |a^2 b^2d| \text{ for } a, b \in \mathbb{Q}.$
 - Most famous example: $\mathbb{Z}[\sqrt{-1}]$, which are the **Gaussian integers**.
 - Also interesting are $\mathbb{Z}[\sqrt{-2}]$, $\mathbb{Z}[\sqrt{2}]$, and $\mathbb{Z}[\frac{-1+\sqrt{-3}}{2}] \cong \mathbb{Z}[X]/(X^2+X+1)$.
 - In the last example, the complex number in brackets is a cube root of unity equal to cos(120) + i sin(120).
 - The reason why we define the norm on $\{a+b\sqrt{d}\}\$ for $a,b\in\mathbb{Q}$ instead of $a,b\in\mathbb{Z}$.
 - The number θ in $\mathbb{Z}[\theta]$ may not always be a radical or imaginary; it can be complex, too, as in the case of $\mathbb{Z}[\frac{-1+\sqrt{-3}}{2}]$.
 - Let $\theta = \frac{-1+\sqrt{-3}}{2}$. In this case, we have

$$\left\{\alpha+\beta\frac{-1+\sqrt{-3}}{2}\mid\alpha,\beta\in\mathbb{Z}\right\}\cong\left\{a+b\sqrt{-3}\mid a,b\in\mathbb{Q},\ a=\alpha-\frac{1}{2}\beta,\ b=\frac{1}{2}\beta,\ \alpha,\beta\in\mathbb{Z}\right\}$$

¹Henceforth, "F" is assumed to denote a field.

Week 4 (???)
MATH 25800

- Square-free integer: An integer that is not divisible by the square of any integer.
- Gaussian integers: The Euclidean domain $\mathbb{Z}[\sqrt{-1}]$.
- Unit: An element $u \in R$ for which there exists $v \in R$ such that uv = vu = 1.
- \mathbf{R}^{\times} : The set of all units of R.
 - $-(R^{\times}, \times)$ is a group.
- Examples:
 - 1. $F^{\times} = F \setminus \{0\}$.
 - 2. $F[X]^{\times} = F^{\times}$, i.e., is the nonzero constant polynomials.
 - This is because any higher degree polynomial cannot be taken back down in degree multiplying polynomials adds degrees.
 - 3. $\mathbb{Z}^{\times} = \{\pm 1\}.$
 - 4. $\mathbb{Z}[\sqrt{-1}]^{\times} = \{\pm 1, \pm i\}.$
 - 5. $R[X]^{\times} = R^{\times}$ (R an integral domain).
 - 6. Suppose R is not an integral domain. Then we get things like $a \neq 0 \in R$ and $a^2 = 0$ (i.e., a is a zero divisor) implies that $(1 aX)(1 + aX) = 1 a^2X^2 = 1$.
 - We forbid this! It's nasty. Thus, we assume that rings of polynomials are taken over integral domains.
- Reducible (element): A nonzero element $a \in R$ such that a = bc and $b, c \notin R^{\times}$, where R is an integral domain.
 - Alternative definition: An element that is the product of two things, neither of which is a unit.
- $R \setminus \{0\}$ is a disjoint union of...
 - (i) Units;
 - (ii) Reducible elements;
 - (iii) And irreducible elements.

Proof. Suppose for the sake of contradiction that $a \in R \setminus \{0\}$ is both reducible and a unit. Since a is reducible, a = bc where $b, c \notin R^{\times}$. Since a is a unit, we may define $d = a^{-1}$. Then

$$1 = ad = bcd = b(cd)$$

so $b \in \mathbb{R}^{\times}$, a contradiction.

- Reducibility/irreducibility changes based on context.
- Example:
 - Consider F[[X]], where X is taken to be irreducible.
 - Here, all elements are of the form uX^n for some $u \in F$ and $n \in \mathbb{Z}_{>0}$.
 - However, if we define $X=(X^{1/2})^2$, then $F[[X]]\subset F[[X^{1/2}]]$. In this larger context, X is now reducible.
 - We can continue the chain via

$$\bigcup_{n=1}^{\infty} F[[X^{\frac{1}{2^n}}]]$$

Week 4 (???)
MATH 25800

• Factorization (of $a \in R$): A product of certain elements of R that is equal to a, where R is a ring; in particular, the product must consist of one unit u and r irreducible elements $\pi_1, \ldots, \pi_r \in R$. Given by

$$a = u\pi_1\pi_2\cdots\pi_r$$

• Unique factorization domain: A ring R such that for every nonzero element $a \in R$, any two factorizations

$$a = u\pi_1\pi_2\cdots\pi_r \qquad \qquad a = u'\pi_1'\pi_2'\cdots\pi_s'$$

of a satisfy the following conditions.

- (i) r = s.
- (ii) There exists $\sigma \in S_r$ such that $\pi'_i = \pi_{\sigma(i)} u_i$ for all $1 \le i \le r$, u_i being a unit.

Also known as **UFD**.

• Wednesday: Show that a PID is a UFD.