# Analysis of miles per gallon by vehicle transmission type

### Summary

You work for Motor Trend, a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). They are particularly interested in the following two questions:

- "Is an automatic or manual transmission better for MPG"
- "Quantify the MPG difference between automatic and manual transmissions"

#### **Analysis**

The data used for the analysis comes from the mtcars data set provided from the 1974 Motor Trend US magazine, and consists of 32 observations using 11 variables, see Appendix 1 for data structure.

We conduct a preliminary exploration of the relationship of MPG to transmission, taking into account weight and number of cylinders, which are also generally related to displacement. A plot (see Figure 1 in the first Appendix) reveals clear distinctions in the 4 and 6 cylinder cars, but that it is only 4 cylinder cars that markedly show a preference for manual transmission to deliver a better MPG performance. The 8 cylinder cars show a preference for automatic transmission for MPG performance, but an investigation of the two manual cars in the group reveal that they are high performance sports cars, whereas most of the 8 cylinder automatics are large family cars or mid-range performance sports cars.

In order to fairly evaluate the efficiency of manual vs. automatic transmission we would need to have identical models of cars with the alternative transmissions driven under controlled conditions to get the best mileage per gallon. We do not have such a set of data, so the best we can do is to identify what other factors might contribute to a better MPG performance, and try to account for them when modelling the effect of transmission on MPG.

We have already identified number of cylinders and weight as determining factors. Therefore rather than using a simple MPG to transmission relationship we should try to find a more complete set of variables in order to establish the most accurate and parsimonious model to quantify the relationship between MPG and transmission.

For this we can conduct a multivariate regression analysis.

To assist with visualizing the effects of all of the factors we add a column hp.wt to the data to show power to weight ratio (hp/wt), which together with quarter mile performance (qsec) can assist in understanding performance. In Appendix 2 we have printed lists of cars based on transmission type and sorted by MPG and performance.

As a comparative starting point we perform a simple evaluation by testing a two sided hypothesis that MPG from manual transmissions is better than from automatics, by supplying manual and auto transmission data as two samples to the R function **t.test** (default 95% confidence level):

| diff in means | mean Manual | mean Auto | Test Statistic | P value | DF    | low conf | high conf |
|---------------|-------------|-----------|----------------|---------|-------|----------|-----------|
| 7.245         | 24.392      | 17.147    | 3.767          | 0.00137 | 18.33 | 3.21     | 11.28     |

Our simple model's prediction for MPG improvement between manual vs automatic transmission is the difference in the means, so we can predict an average improvement of **7.245 MPG** for manual transmission cars.

However this test ignores various other variables, so to account for sufficient of the variables involved in the MPG performance we need to perform some multivariate tests. We can use the step function of R to test all of the possible useful variations, and after evaluating the results suggest the best model. See Appendix 3 for results:

#### Model development

The suggested variables returned by **step** were cylinders, horsepower, weight, and transmission. After analysis of the results we re-introduced i/4 mile time (qsec) to test as an **alternative model**, as it seems help account for effects of high performance vehicles. The adjusted R squared score of the alternative model was only 0.01 better than the suggested step model, but as the estimate of transmission effect was **55% higher** and seems likely more accurate, it seems a better model. Comparisons of the residuals plots in Appendix 3 seem to indicate a better fit for our alternative model, the QQ plot is aligned along more points compared to the suggested model, the scale location regression line is flatter, and the residuals vs leverage regression line is flatter and centered closer to the zero intercept.

Some of the residuals exert significant leverage, the Maserati Bora has the highest performance specification of the manual transmission cars, while the Toyota Corona has the worst MPG of the 4 cylinder cars (though still better than any 6 or 8 cylinder cars). If we take out just the Maserati Bora from the data set then step produces what seems a more balanced **medium model** based just on weight, 1/4 mile time, and transmission and shows a **further trend** towards manual transmission being better than automatic transmission - column 4 of the comparative summary in Appendix 3.

#### Discarded variables

Many of the variables discarded by testing through step seemed to have significant effects, but were also variable in tandem with the key values of horsepower, weight and 1/4 mile time. For instance rear axle ratio (drat) was given a high score, but it seems to be confounded with the simultaneous low horsepower and weight of the Honda Civic, which also has the highest rear axle ratio of all of the cars, and achieves very good MPG. Therefore drat is noise, and is removed from from the model. Likewise for numbers of carburetors, they achieve a number of significant looking scores but are really linked to the performance of a vehicle better measured via horsepower.

### Conclusion and MPG prediction

We have seen that a simple comparison of mean MPG between manual and automatic transmissions produces a rather high value for the predicted MPG effect, and have concluded that a multivariate regression analysis is required to take into account other variables beside transmission. We have taken the suggested variables which the step function determined as our first model, as an alternative we have added 1/4 mile time to try to better account for high performance vehicles, and finally we created a model that eliminates the extremely powerful Maserati Bora from the data. These 3 models suggest different values for MPG improvement from manual over automatic transmission, but applying predict to the models shows the range of possible values for the alternative model to be closest to the recorded figures (Appendix 4).

The range of possibilities available in the multivariate comparisons suggest an improvement in MPG performance for manual transmissions from between 1.8 to 3.2 MPG, with **2.8 MPG** as the most likely choice considering all of the vehicles, but **3.2 MPG** as most representative if the high performance Maserati Bora is excluded. Based on the adjusted R squared value the 3 models exhibit between **84 and 83 R squared** which we can use as a measure of certainty (Appendix 5).

Appendix 1 - Structure of mtcars table and MPG vs weight analysis

| Field   | Description           | Field    | Description                              |
|---------|-----------------------|----------|------------------------------------------|
| 1. mpg  | Miles/(US) gallon     | 7. qsec  | 1/4 mile time                            |
| 2. cyl  | Number of cylinders   | 8. vs    | V/S (0 = V, 1 = Straight configuration)  |
| 3. disp | Displacement (cu.in.) | 9. am    | Transmission (0 = automatic, 1 = manual) |
| 4. hp   | Gross horsepower      | 10. gear | Number of forward gears                  |
| 5. drat | Rear axle ratio       | 11. carb | Number of carburetors                    |
| 6. wt   | Weight (lb/1000)      |          |                                          |

Figure 1 - MPG vs Weight



## Appendix 2 - data to assist with comparitive analysis

Figure 2 - Manual and Automatic cars

Manual Transmission

|                | mpg  | cyl | disp | hp  | drat | wt    | qsec  | vs | am | gear | carb | hp.wt    |
|----------------|------|-----|------|-----|------|-------|-------|----|----|------|------|----------|
| Toyota Corolla | 33.9 | 4   | 71.1 | 65  | 4.22 | 1.835 | 19.90 | 1  | 1  | 4    | 1    | 35.42234 |
| Fiat 128       | 32.4 | 4   | 78.7 | 66  | 4.08 | 2.200 | 19.47 | 1  | 1  | 4    | 1    | 30.00000 |
| Honda Civic    | 30.4 | 4   | 75.7 | 52  | 4.93 | 1.615 | 18.52 | 1  | 1  | 4    | 2    | 32.19814 |
| Lotus Europa   | 30.4 | 4   | 95.1 | 113 | 3.77 | 1.513 | 16.90 | 1  | 1  | 5    | 2    | 74.68605 |
| Fiat X1-9      | 27.3 | 4   | 79.0 | 66  | 4.08 | 1.935 | 18.90 | 1  | 1  | 4    | 1    | 34.10853 |

|                | mpg  | cyl | disp  | hp  | drat | wt    | qsec  | vs | am | gear | carb | hp.wt    |
|----------------|------|-----|-------|-----|------|-------|-------|----|----|------|------|----------|
| Porsche 914-2  | 26.0 | 4   | 120.3 | 91  | 4.43 | 2.140 | 16.70 | 0  | 1  | 5    | 2    | 42.52336 |
| Datsun 710     | 22.8 | 4   | 108.0 | 93  | 3.85 | 2.320 | 18.61 | 1  | 1  | 4    | 1    | 40.08621 |
| Volvo 142E     | 21.4 | 4   | 121.0 | 109 | 4.11 | 2.780 | 18.60 | 1  | 1  | 4    | 2    | 39.20863 |
| Mazda RX4 Wag  | 21.0 | 6   | 160.0 | 110 | 3.90 | 2.875 | 17.02 | 0  | 1  | 4    | 4    | 38.26087 |
| Mazda RX4      | 21.0 | 6   | 160.0 | 110 | 3.90 | 2.620 | 16.46 | 0  | 1  | 4    | 4    | 41.98473 |
| Ferrari Dino   | 19.7 | 6   | 145.0 | 175 | 3.62 | 2.770 | 15.50 | 0  | 1  | 5    | 6    | 63.17690 |
| Ford Pantera L | 15.8 | 8   | 351.0 | 264 | 4.22 | 3.170 | 14.50 | 0  | 1  | 5    | 4    | 83.28076 |
| Maserati Bora  | 15.0 | 8   | 301.0 | 335 | 3.54 | 3.570 | 14.60 | 0  | 1  | 5    | 8    | 93.83754 |

#### **Automatic Transmission**

|                     | mpg  | cyl | disp  | hp  | drat | wt    | qsec  | vs | am | gear | carb | hp.wt    |
|---------------------|------|-----|-------|-----|------|-------|-------|----|----|------|------|----------|
| Merc 240D           | 24.4 | 4   | 146.7 | 62  | 3.69 | 3.190 | 20.00 | 1  | 0  | 4    | 2    | 19.43574 |
| Merc 230            | 22.8 | 4   | 140.8 | 95  | 3.92 | 3.150 | 22.90 | 1  | 0  | 4    | 2    | 30.15873 |
| Toyota Corona       | 21.5 | 4   | 120.1 | 97  | 3.70 | 2.465 | 20.01 | 1  | 0  | 3    | 1    | 39.35091 |
| Hornet 4 Drive      | 21.4 | 6   | 258.0 | 110 | 3.08 | 3.215 | 19.44 | 1  | 0  | 3    | 1    | 34.21462 |
| Merc 280            | 19.2 | 6   | 167.6 | 123 | 3.92 | 3.440 | 18.30 | 1  | 0  | 4    | 4    | 35.75581 |
| Pontiac Firebird    | 19.2 | 8   | 400.0 | 175 | 3.08 | 3.845 | 17.05 | 0  | 0  | 3    | 2    | 45.51365 |
| Hornet Sportabout   | 18.7 | 8   | 360.0 | 175 | 3.15 | 3.440 | 17.02 | 0  | 0  | 3    | 2    | 50.87209 |
| Valiant             | 18.1 | 6   | 225.0 | 105 | 2.76 | 3.460 | 20.22 | 1  | 0  | 3    | 1    | 30.34682 |
| Merc 280C           | 17.8 | 6   | 167.6 | 123 | 3.92 | 3.440 | 18.90 | 1  | 0  | 4    | 4    | 35.75581 |
| Merc 450SL          | 17.3 | 8   | 275.8 | 180 | 3.07 | 3.730 | 17.60 | 0  | 0  | 3    | 3    | 48.25737 |
| Merc 450SE          | 16.4 | 8   | 275.8 | 180 | 3.07 | 4.070 | 17.40 | 0  | 0  | 3    | 3    | 44.22604 |
| Dodge Challenger    | 15.5 | 8   | 318.0 | 150 | 2.76 | 3.520 | 16.87 | 0  | 0  | 3    | 2    | 42.61364 |
| AMC Javelin         | 15.2 | 8   | 304.0 | 150 | 3.15 | 3.435 | 17.30 | 0  | 0  | 3    | 2    | 43.66812 |
| Merc 450SLC         | 15.2 | 8   | 275.8 | 180 | 3.07 | 3.780 | 18.00 | 0  | 0  | 3    | 3    | 47.61905 |
| Chrysler Imperial   | 14.7 | 8   | 440.0 | 230 | 3.23 | 5.345 | 17.42 | 0  | 0  | 3    | 4    | 43.03087 |
| Duster 360          | 14.3 | 8   | 360.0 | 245 | 3.21 | 3.570 | 15.84 | 0  | 0  | 3    | 4    | 68.62745 |
| Camaro Z28          | 13.3 | 8   | 350.0 | 245 | 3.73 | 3.840 | 15.41 | 0  | 0  | 3    | 4    | 63.80208 |
| Cadillac Fleetwood  | 10.4 | 8   | 472.0 | 205 | 2.93 | 5.250 | 17.98 | 0  | 0  | 3    | 4    | 39.04762 |
| Lincoln Continental | 10.4 | 8   | 460.0 | 215 | 3.00 | 5.424 | 17.82 | 0  | 0  | 3    | 4    | 39.63864 |

# Appendix 3 - modelling the effects of variables on MPG

Figure 3 - comparisons of model variables

| Model Name | Variables                  | Description                        |
|------------|----------------------------|------------------------------------|
| model      | Im(mpg ~ ., data=testCars) | Test all variables                 |
| stepmodel  | cyl + hp + wt + qsec + am  | Variables of the step model        |
| altmodel   | cyl + hp + wt + qsec + am  | Variables of the alternative model |
| medmodel   | wt + qsec + am             | Variables of the medium model      |

| <br>Dependent variable: |           |          |          |  |  |  |
|-------------------------|-----------|----------|----------|--|--|--|
| mpg                     |           |          |          |  |  |  |
| (1)                     | (2)       | (3)      | (4)      |  |  |  |
| model                   | stepmodel | altmodel | medmodel |  |  |  |

| (Intercept)             | 3.966 (37.306)        | 35.518 (2.032)***       | 24.409 (10.246)**       | 13.073 (6.170)**               |
|-------------------------|-----------------------|-------------------------|-------------------------|--------------------------------|
| 6 cylinders             | -2.057 (3.197)        | -3.031 (1.407)**        | -1.909 (1.730)          |                                |
| 8 cylinders             | -0.316 (7.276)        | -2.164 (2.284)          | -0.227 (2.870)          |                                |
| Displacement            | 0.036 (0.032)         |                         |                         |                                |
| Gross horsepower        | -0.154 (0.122)        | -0.032 (0.014)**        | -0.025 (0.015)          |                                |
| Rear axle ratio         | 3.967 (4.604)         |                         |                         |                                |
| Weight                  | -0.253 (6.454)        | -2.497 (0.886)***       | -2.963 (0.977)***       | -3.821 (0.733)***              |
| 1/4 mile time           | 0.247 (0.965)         |                         | 0.619 (0.560)           | 1.191 (0.296)***               |
| V engine configuration  | 0.015 (3.970)         |                         |                         |                                |
| Automatic transmission  | n 0.213 (3.815)       | -1.809 (1.396)          | -2.833 (1.670)          | -3.176 (1.471)**               |
| 4 forward gears         | 2.114 (4.101)         |                         |                         |                                |
| 5 forward gears         | 0.643 (4.607)         |                         |                         |                                |
| 2 carburetors           | -2.884 (3.534)        |                         |                         |                                |
| 3 carburetors           | 0.816 (5.307)         |                         |                         |                                |
| 4 carburetors           | -2.513 (6.731)        |                         |                         |                                |
| 6 carburetors           | 2.719 (6.929)         |                         |                         |                                |
| 8 carburetors           | 6.960 (8.506)         |                         |                         |                                |
| Power to weight ratio   | 0.294 (0.407)         |                         |                         |                                |
| Observations            | 32                    | 32                      | 32                      | 31                             |
| $R^2$                   | 0.897                 | 0.866                   | 0.872                   | 0.848                          |
| Adjusted R <sup>2</sup> | 0.772                 | 0.840                   | 0.841                   | 0.832                          |
| Residual Std. Error     | 2.879 (df = 14)       | 2.410 (df = 26)         | 2.400 (df = 25)         | 2.484 (df = 27)                |
| F Statistic             | 7.166*** (df = 17; 14 | )33.571*** (df = 5; 26) | )28.420*** (df = 6; 25) | 50.380*** (df = 3; 27)         |
| Note:                   |                       |                         | p<                      | <0.1; <b>p&lt;0.05;</b> p<0.01 |

Figure 4 - Residuals plots from the step model



Figure 5 - Residuals plots from the alternative model, which includes qsec:



### Appendix 4 - Toyota Corolla (actual MPG 33.9) - Predict and Statistics

| Model     | fit      | lwr       | upper    | SE        | DF | Residual Scale |
|-----------|----------|-----------|----------|-----------|----|----------------|
| stepmodel | 28.84874 | 27.078182 | 30.61930 | 0.8613639 | 26 | 2.41012        |
| altmodel  | 29.68133 | 27.330907 | 32.03176 | 1.1412400 | 25 | 2.399848       |
| medmodel  | 29.75772 | 27.807767 | 31.70766 | 0.9503457 | 27 | 2.484144       |

## Appendix 5 - summary of MPG values obtained

| Model Name | Advantage manual transmission | Adjusted R squared |
|------------|-------------------------------|--------------------|
| stepmodel  | 1.809 MPG                     | 84.0               |
| altmodel   | 2.833 MPG                     | 84.1               |
| medmodel   | 3.176 MPG                     | 83.2               |

The regression table in appendix 3 was created using the stargazer library: http://CRAN.R-project.org/package=stargazer (http://CRAN.R-project.org/package=stargazer)

This document was created using R markdown and knitr to create an HTML file, which was then converted to PDF. For reasons of space most of the R code is not reproduced here, but the original R markdown file with the embedded R code is available: https://github.com/Zohaggie/CourseraRegressionModels/blob/master/Regression\_Models.Rmd (https://github.com/Zohaggie/CourseraRegressionModels/blob/master/Regression\_Models.Rmd)