

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

Instituto de Ingeniería Biológica y Médica Departamento de Ingeniería Estructural y Geotécnica

IBM2020 Introducción a la Biomecánica

Primer Semestre 2021

Ayudantía 2

Pablo Zurita Soler - pzurita@uc.cl

Problema 1. Notación indicial

Utilizando notación indicial, demuestre que

i)
$$\epsilon_{ijk}\epsilon_{pqk} = \delta_{ip}\delta_{jq} - \delta_{iq}\delta_{jp}$$

ii) Para
$$s, t, u, v \in \mathbb{R}^n$$
, se tiene que $(s \times t) \cdot (u \times v) = (s \cdot u)(t \cdot v) - (s \cdot v)(t \cdot u)$

iii) Para
$$f, g \in C^2(\mathbb{R}^n)$$
, se tiene que $\Delta(fg) = f\Delta g + 2\nabla f \cdot \nabla g + \Delta g$

iv) para
$$f \in C^1(\mathbb{R}^n)$$
 y $\boldsymbol{v} : \mathbb{R}^n \to \mathbb{R}^n$ diferenciable, se tiene que $\nabla \otimes (f\boldsymbol{v}) = \nabla f \otimes \boldsymbol{v} + f \nabla \otimes \boldsymbol{v}$

Problema 2. Transformación de coordenadas

La Figura 1 muestra una viga curvada por una fuerza en su extremo.

Figura 1: Viga curvada por una fuerza en el extremo

El campo de tensiones en coordenadas polares está dado por:

$$\sigma_{rr} = \left(2Ar - \frac{2B}{r^3} + \frac{D}{r}\right)\sin(\theta),$$

$$\sigma_{\theta\theta} = \left(6Ar + \frac{2B}{r^3} + \frac{D}{r}\right)\sin(\theta) \text{ y}$$

$$\sigma_{\theta r} = -\left(2Ar - \frac{2B}{r^3} + \frac{D}{r}\right)\cos(\theta)$$

donde

$$A = \frac{P}{2N}$$
 $B = -\frac{Pa^2b^2}{2N}$ $D = -\frac{P}{N}(a^2 + b^2)$

У

$$N = a^2 - b^2 + (a^2 + b^2) \log \frac{b}{a}$$

Se pide:

- i) Encuentre las tensiones $(\sigma_x, \sigma_y, \tau_{xy})$ en coordenadas cartesianas.
- ii) Evalúe las tensiones en los planos x=0 e y=0 para las expresiones tanto en coordenadas polares y cartesianas y compare.