CSC 226

Algorithms and Data Structures: II
Rich Little
rlittle@uvic.ca
ECS 516

Two basic properties for minimum spanning trees

- Cycle property
- Cut property

Cycle property

- Let C be any cycle in weighted graph G with distinct edge weights. Let e be the heaviest edge in the cycle.
- Then the minimum spanning tree for *G* does not contain *e*.

Proof. (Cycle property)

- Assume that all edges in the graph are of distinct weight
- We proof by contradiction: the MST T for G does not contain edge e
- Assume e does belong to MST T. Then deleting e from T disconnects T into two trees, T_1 and T_2 .
- Consider cycle C. C consists of some vertices that belong to T_1 and the other vertices of C belong to T_2 .
- There is an edge in C, say f, that connects a vertex from T_1 to a vertex T_2 .
- Merge T_1 and T_2 using f to spanning tree T^* . The new tree, T^* , is lighter than T. A contradiction.

Cycle property

Cut Property

- Let V be any proper subset of vertices in weighted graph G = (V, E), and let e be the lightest edge that has exactly one endpoint in V
- Then the minimum spanning tree T for G contains e.

Proof (Cut property)

- Assume that all edges in the graph are of distinct weight
- We prove by contradiction: MST T for G contains edge e
- Assume it does not
- Add e to T creating cycle C
- Consider edge f in C that has exactly one endpoint in V'
- Create spanning tree T^* by replacing e with f, but T^* is lighter than T. Contradiction.

Cut Property

Prim's Algorithm Correctness

Initialize tree with single chosen vertex

Cut property

- Grow tree by finding lightest edge not yet in tree and expanding the tree, and connect it to tree; repeat until all vertices are in the tree
- Example of greedy algorithm

Pseudocode: Prim's Algorithm

vertices

values in D

```
Algorithm Prim-Jarník-Dijkstra
                                                                         D:distance vector,
Input: a weighted connected graph G = (V, E)
                                                                        maintains reachable
Output: an MST T for G
Data structure: array D; Priority Queue PQ; and tree T
                                                                       PQ: a priority queue for
pick an arbitrary vertex v in G; D[v] \leftarrow 0
                                                                       the edges according to
for each vertex u \neq v do D[u] \leftarrow +\infty end
T \leftarrow \emptyset
for each vertex u do PQ.insert(\{(u, (null), D[u]\}) end // including v
// for each vertex u, (u, edge) is the element and D[u] is the key in PQ
while not PQ.empty() do
  (u, e) \leftarrow PQ.deleteMin()
  add vertex u and edge e to T
  for each vertex z adjacent to u such that z is in PQ do
    if weight((u, z) < D[z] then
      D[z] \leftarrow \mathsf{weight}((u, z))
      in PQ, change element and key of z to \{z, (u, z), D[z]\}
      update PQ
    end
  end
end
```

return T

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	$+\infty$	$+\infty$	$+\infty$

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	$+\infty$

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	$+\infty$	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	$+\infty$	+∞	+∞
0	3	9	9	2	4	+∞	$+\infty$	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	$+\infty$	$+\infty$
0	3	9	9	2	4	+∞	+∞	+∞	$+\infty$

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	$+\infty$
0	3	9	9	2	4	+∞	+∞	+∞	$+\infty$

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	$+\infty$
0	3	9	9	2	4	+∞	+∞	+∞	$+\infty$
0	3	9	8	2	2	9	+∞	$+\infty$	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	$+\infty$

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	$+\infty$	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	$+\infty$	+∞	$+\infty$

a	b	С	d	e	f	g	h	i	j
0	3	9	$+\infty$	+∞	6	$+\infty$	$+\infty$	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	9	8	2	2	9	$+\infty$	+∞	$+\infty$

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	$+\infty$
0	3	9	8	2	2	9	+∞	+∞	$+\infty$
0	3	9	8	2	2	9	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	9	8	2	2	9	$+\infty$	$+\infty$	$+\infty$

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	$+\infty$	+∞
0	3	9	9	2	4	+∞	+∞	$+\infty$	+∞
0	3	9	8	2	2	9	+∞	$+\infty$	$+\infty$
0	3	9	8	2	2	9	9	$+\infty$	$+\infty$
0	3	8	8	2	2	7	9	$+\infty$	10

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	9	8	2	2	9	9	+∞	+∞
0	3	8	8	2	2	7	9	+∞	10

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	$+\infty$	6	+∞	$+\infty$	+∞	+∞
0	3	9	9	2	4	+∞	$+\infty$	+∞	+∞
0	3	9	8	2	2	9	$+\infty$	+∞	+∞
0	3	9	8	2	2	9	9	+∞	+∞
0	3	8	8	2	2	7	9	$+\infty$	10

a	b	С	d	c e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	9	8	2	2	9	9	+∞	$+\infty$
0	3	8	8	2	2	7	9	+∞	10
0	3	8	8	2	2	7	5	4	10

a	b	С	d	c e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	9	8	2	2	9	9	$+\infty$	$+\infty$
0	3	8	8	2	2	7	9	+∞	10
0	3	8	8	2	2	7	5	4	10

a	b	С	d	c e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	$+\infty$	+∞
0	3	9	9	2	4	+∞	+∞	$+\infty$	+∞
0	3	9	8	2	2	9	$+\infty$	$+\infty$	+∞
0	3	9	8	2	2	9	9	$+\infty$	+∞
0	3	8	8	2	2	7	9	$+\infty$	10
0	3	8	8	2	2	7	5	4	10

Prim-Jarník-Dijkstra h a g 0 a $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ 9 8 $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$

		9	g 9 7	1 5 1 9	3	j	Prim-	Jarn	ík-Di	jkstra
a	b 4	2c e	81	e	10/ f 18	g	h	i	j	
0 a	3	9	$+\infty$	$+\infty$	6	+∞	+∞	+∞	+∞	
0	3 9	9 9	9 8	2	4	+∞	+∞	+∞	+∞	
0	3	9	80	2	2	9	+∞	+∞	+∞	
0	3	9	8	2	2	9	9	+∞	+∞	
0	3	8	8	2	2	7	9	+∞	10	
0	3	8	8	2	2	7	1	4	4	
0	3	8	8	2	2	7	1	4	4	
0	3	8	8	2	2	7	1	4	3	
0	3	8	8	2	2	7	1	4	3	

		9	g 9	1 5 1 9	3	j	Prim-	Jarn	ík-Di	jkstra
a	b 4	2c e	8	e	10/ f 18	g	h	i	j	
0 a	3	9	+∞	$+\infty$	6	+∞	+∞	+∞	+∞	
0	3 9	9 9	9 8	/2	4	+∞	+∞	+∞	+∞	
0	3	9	8 c	2	2	9	+∞	+∞	+∞	
0	3	9	8	2	2	9	9	+∞	+∞	
0	3	8	8	2	2	7	9	+∞	10	
0	3	8	8	2	2	7	1	4	4	
0	3	8	8	2	2	7	1	4	4	
0	3	8	8	2	2	7	1	4	3	
0	3	8	8	2	2	7	1	4	3	

Pseudocode: Prim's Algorithm

```
Algorithm Prim-Jarník-Dijkstra
Input: a weighted connected graph G = (V, E)
Output: an MST T for G
Data structure: array D; Priority Queue PQ; tree T
pick an arbitrary vertex v in G; D[v] \leftarrow 0
for each vertex u \neq v do D[u] \leftarrow +\infty end
T \leftarrow \emptyset
for each vertex u do PQ.insert(\{(u, (null), D[u]\}) end // including v
// for each vertex u, (u, edge) is the element and D[u] is the key in PQ
while not PQ.empty() do
  (u, e) \leftarrow PQ.deleteMin()
  add vertex u and edge e to T
  for each vertex z adjacent to u such that z is in PQ do
    if weight((u, z)) < D[z] then
      D[z] \leftarrow \mathsf{weight}((u, z))
      in PQ, change element and key of z to \{z, (u,z), D[z]\}
      update PQ
    end
  end
end
```

return T

D: distance vector, maintains reachable vertices

PQ: priority queue(heap) for the edges,according to theirvalues in D

Prim-Jarník Time Complexity

Theorem. The Prim-Jarník algorithm constructs a minimum spanning tree for a connected weighted graph G = (V, E) with n vertices and m edges in $O(m \log(n))$ time.

Prim's algorithm: eager implementation

```
public class PrimMST {
 private Edge[] edgeTo;
                                     // shortest edge from tree to vertex
 private double[] distTo;
                                     // distTo[w] = edgeTo[w].weight()
 private boolean[] marked;
                                     // true if v in mst
 private IndexMinPQ<Edge> pq;
                                     // eligible crossing edges
  public PrimMST(WeightedGraph G) {
     edgeTo = new Edge[G.V()];
     distTo = new double[G.V()];
     marked = new boolean[G.V()];
    for(int v = 0; v < G.V(); v++)
        distTo[v] = Double.POSITIVE_INFINITY;
     pq = new IndexMinPQ<Double>(G.V());
     distTo[0] = 0.0;
     pq.insert(0, 0.0);
     while(!pq.isEmpty())
         visit(G, pq.delMin());
```

assume G is connected

repeatedly delete the min weight edge e = v-w from PQ

Prim's algorithm: eager implementation

```
private void visit(WeightedGraph G, int v) {
  marked[v] = true;
 for (Edge e : G.adj(v)) {
   int w = e.other(v);
   if (marked[w]) continue;
   if (e.weight() < distTo[w]) {</pre>
       edgeTo[w] = e;
       distTo[w] = e.weight();
       if (pq.contains(w)) pq.changeKey(w, distTo[w]);
       else pq.insert(w, distTo[w]);
public Iterable<Edge> edges(){
  Queue<Edge> mst = new Queue<Edge>();
 for (int v = 0; v < edgeTo.length; <math>v++)
    Edge e = edgeTo[v];
   if (e!= null) {
     mst.enqueue(e);
  return mst; }
```

add v to T

for each edge e = v-w, add to PQ if w not already in T

add edge e to tree

Update distance to w or Insert distance to w

Create the mst