Clustered Level Planarity

Michael Forster, Christian Bachmaier

University of Passau

UML Diagrams

- Vertices
 - Classes
 - Interfaces
- Directed edges
 - Inheritance
 - Association
- Recursive clustering
 - Packages
 - Arbitrary depth

Biochemical Pathways

- Reaction networks
 - Substances / reactions
 - Directed (hyper) graphs
- Compartments
 - Separate cell regions
 - Nested

Overview

- Introduction
- Definition and concepts
- Level planarity testing
 - Algorithm of Jünger, Leipert, Mutzel (1998)
 - PQ-trees
- Clustered level planarity testing
 - Differences to level planarity
 - Extension of the algorithm
- Summary

Definitions and Concepts

Clustered (Level) Graphs Clustered (Level) Planarity

Clustered Graphs

- Clustered graph: G = (V, E, C, I)
- Vertices: V
- Clusters: C
 - Contain vertices
 - Or other clusters
- Inclusion relation: I
 - \blacksquare T = (V \cup C, I) is a tree
 - No cluster overlap
 - Single root cluster
- Edges: EConnect vorticesBut not clusters

1 2 3 4 5 6 7 8 V

Clustered Planarity (c-Planarity)

- Is G planar?
- Can G be drawn without
 - edge crossings
 - edge/clusters crossings?
- Complexity
 - O(|V|) for c-connected graphs [Feng, Cohen, Eades, 1995]
 - Open in the general case

One of the TOP 10 open problems in graph drawing!

Clustered Level Graphs

- Clustered level graph: $G=(V_1 \ \ V_2 \ \ \dots \ \ V_k, E, C, I)$
 - Clustered graph: (V, E, C, I)
 - Leveling: $V = V_1 \square V_2 \square ... \square V_k$
- Drawing conventions
 - Clusters
 - Connected regions
 - No overlaps
 - Recursively nested
 - Simple: convex polygons, rectangles
 - Levels
 - Horizontal lines
 - Edges
 - Strictly downwards
 - Horizontal edges: see previous talk
- Question: is G planar?

Overview

	Class of graphs	Complexity
Clustered Planarity	arbitrary	open
	c-connected	Θ(V)
Level Planarity	arbitrary	Θ(V)

Level Planarity Testing

Algorithm of Jünger, Leipert, Mutzel (1998)

Level Planarity Testing

- Similar to planarity testing (vertex addition method, LEC)
- "Sweep-line"
 - Traverse the graph level by level
 - Store the "admissible" edge permutations
 - For each vertex: REDUCE
 - Check planarity
 - Update permutation set
 - For each vertex: REPLACE
 - Insert outgoing edges
 - Next level
- Precondition: proper, single source
- Running time: O(|V|)
- Data structure: PQ-trees

Storing the permutations

- PQ-trees [Booth, Lueker, 1976]
 - Leaves represent edges ("virtual vertices")

- P-nodes:
 - Represent cut vertices
 - Arbitrary permutations of children

- Q-nodes:
 - Represent biconnected components
 - Only "reversion"

PQ-trees: Operations

- REDUCE(T, S):
 - Restricts the permutation set: Leaves S must be consecutive
 - Failure is possible → graph is not planar
 - Traverse tree bottom-up
 - At each node: local updates
 - Apply one of 11 "Templates"
 - Afterwards: Reduced leaves correspond to a subtree of T
- REPLACE(T, S, S'):
 - Substitute leaves S with leaves S'
 - Leaves S must already be consecutive

Clustered Level Planarity Testing

Needed Extensions

Clustered Level Planarity Restrictions

Edge/Edge-Restriction

Edge/Cluster-Restriction

Cluster/Level-Restriction

Cluster/Cluster-Restriction

- Property of the graph: level connectivity
 - At least one edge between consecutive levels
 - Weak form of cluster connectivity
 - Similar to cluster planarity

Clustered Level Planarity: Algorithm

- "Sweep-line"
 - Traverse the graph level by level
 - Store the "admissible" edge permutations
 - For each vertex: REDUCE
 - Check planarity
 - Update permutation set
 - REDEBOTE VEIDERS PLACE
 - Insert outgoing edges
 - Next level

REDUCE-CLUSTERS

- Given: PQ-tree containing admissible permutations
- Wanted: Restricted permutation set
 - Contents of a cluster must be consecutive
 - Invalid permutations are removed
- Idea
 - Semantics of the PQ-tree operation REDUCE are the same
 - Reuse REDUCE
- Naive Algorithm
 - For each cluster c on the current level
 - REDUCE(T, {vertices contained in c})
 - Running time: O(|V| |C|)
- Improvement
 - Single traversal of the PQ-tree
 - Running time: O(|V|)

REDUCE-CLUSTERS

- Compare clusters and PQ-tree
 - Every cluster corresponds to a subtree of the PQ-tree
 - This is only true after the reduction
- Nested clusters
 - Child in the inclusion tree
 - Corresponding PQsubtrees are nested
- Idea
 - Reuse the inner PQsubtree for the outer PQsubtree
 - Simultaneously traverse trees bottom up

PQ-tree Inclusion tree

- Both trees are traversed once per level
- Both are of size O(|V|)
- Overall running time O(k |V|)

Summary Future Work

Results and Open Problems

Summary / Future Work

- Cluster-Level-Planarity
 - Test and Embedding
 - O(k |V|) running time
 - Restricted graph class
 - Combinable with other advanced level planarity concepts
- Open
 - Test for arbitrary clustered level graphs
 - Linear time algorithm

Similar situation as with c-planarity

Questions?

Thank you for your attention!