Klausur zur Vorlesung Grundbegriffe der Informatik 1. September 2011

Klausur- nummer							
Name:							
Vorname:							
MatrNr.:							
Aufgabe	1	2	3	4	5	6	7
max. Punkte	5	5	6	7	5	6	8
tats. Punkte							
Gesamtpunktzahl:					Note:		

Aufgabe 1 (5 Punkte)

- 1. Gegeben sei die formale Sprache $L_1=\left(\{a,b\}^*\cdot\{c\}\right)^*$. Geben Sie alle Wörter der Länge 2 in L_1 an.
- 2. Geben Sie eine Menge L_2 von Wörtern an, so dass gilt:

$$L_2 \cdot L_2 = \{aa, aba, aab, abab\}$$

3. Gegeben sei die kontextfreie Grammatik $G_3 = (\{S, X, Y, Z\}, \{a, b, d, e, f\}, S, P)$ mit folgender Produktionenmenge

$$\begin{split} \mathsf{P} = \{ & \mathsf{S} \to \mathsf{aS} \mid \mathsf{Sb} \mid \epsilon \mid \mathsf{X}, \\ & \mathsf{X} \to \mathsf{dZ} \mid \mathsf{Ye} \mid \mathtt{fY}, \\ & \mathsf{Y} \to \epsilon, \\ & \mathsf{Z} \to \mathsf{dX} \\ \} \end{split}$$

Geben Sie einen regulären Ausdruck an, der genau L(G₃) beschreibt.

4. Es seien $R, S, T \subseteq M \times M$ binäre Relationen auf einer Menge M. Beweisen oder widerlegen Sie (durch Angabe eines Gegenbeispiels):

$$R \circ S \cap R \circ T \subseteq R \circ (S \cap T)$$

Weiterer Platz für Antworten zu Aufgabe 1:

Aufgabe 2 (5 Punkte)

In dieser Aufgabe geht es um ungerichtete Graphen ohne Schlingen.

- 1. Zeichnen Sie alle paarweise nichtisomorphen ungerichteten schlingenfreien Graphen mit genau 5 Knoten und genau 5 Kanten, die einen Weg besitzen, in dem alle Knoten vorkommen.
 - Suchen Sie sich einen Ihrer Graphen aus und geben Sie für ihn die Wegematrix an.
- 2. Zeichnen Sie alle paarweise nichtisomorphen ungerichteten schlingenfreien Graphen mit genau 6 Knoten, die alle Grad 1 haben.
- 3. Wieviele ungerichtete schlingenfreie Graphen mit Knotenmenge $V = \{0, 1, 2, 3, 4, 5\}$ gibt es, bei denen alle Knoten Grad 1 haben?

Achtung: Bei den ersten beiden Teilaufgaben gibt es bei Angabe mehrerer isomorpher Graphen Punktabzug. (Aber man kann auf keine Teilaufgabe weniger als 0 Punkte bekommen.)

Weiterer Platz für Antworten zu Aufgabe 2:

Aufgabe 3 (6 Punkte)

Eine Funktion $T(n):\mathbb{N}_0\to\mathbb{N}_0$ sei rekursiv wie folgt definiert:

- T(0) = 2
- T(1) = 3
- Für alle $n \in \mathbb{N}_0 \setminus \{0, 1\}$ sei:

$$T(n) = 3 \cdot T(n-1) - 2 \cdot T(n-2)$$

- 1. Geben Sie die Funktionswerte T(n) für $n \in \{2, 3, 4, 5, 6\}$ an.
- 2. Geben Sie eine geschlossene Formel F(n) (d. h. einen arithmetischen Ausdruck) für T(n) an.
- 3. Beweisen Sie durch Induktion, dass für alle $n \in \mathbb{N}_0$ gilt: F(n) = T(n).

Weiterer Platz für Antworten zu Aufgabe 3:

Aufgabe 4 (7 Punkte)

In dieser Aufgabe geht es um Huffman-Codierungen.

1. Gegeben sei das Alphabet $A = \{a, b, c, d, e, f, g\}$ und ein Wort $w \in A^*$ in dem die Symbole mit folgenden Häufigkeiten vorkommen:

a	b	С	d	е	f	g
11	3	11	24	8	7	36

- (a) Zeichnen Sie den Huffman-Baum.
- (b) Geben Sie die Huffman-Codierung des Wortes bad an.
- 2. Für $k \ge 1$ sei ein Alphabet $A = \{a_0, a_1, \ldots, a_k\}$ mit k+1 Symbolen gegeben und ein Text, in dem jedes Symbol a_i mit Häufigkeit 2^i vorkommt für $0 \le i \le k$.

Geben Sie die Huffman-Codierungen aller Symbole a_i an.

Weiterer Platz für Antworten zu Aufgabe 4:

Aufgabe 5 (5 Punkte)

Es sei A ein nichtleeres Alphabet.

Für $x \in A$ und $w \in A^*$ sei $N_x(w)$ die Anzahl der Vorkommen des Zeichens x im Wort w.

Wir definieren auf A^* eine binäre Relation \sqsubseteq wie folgt:

$$w_1 \sqsubseteq w_2$$
 genau dann, wenn $\forall x \in A : N_x(w_1) \le N_x(w_2)$

- Besitzt die Relation

 ⊆ ein kleinstes Element?
 Wenn ja: Geben Sie das kleinste Element an.
 Wenn nein: Beweisen Sie, dass es keines gibt.
- Besitzt die Relation

 ⊆ ein größtes Element?
 Wenn ja: Geben Sie das größte Element an.
 Wenn nein: Beweisen Sie, dass es keines gibt.
- 3. Zeigen Sie, dass die Relation \sqsubseteq nicht antisymmetrisch ist, wenn A mindestens zwei Symbole enthält.

Weiterer Platz für Antworten zu Aufgabe 5:

Aufgabe 6 (6 Punkte)

Die Sprache L \subseteq {0, 1}* sei definiert als die Menge aller Wörter w, die die Binärzahldarstellung einer durch 3 teilbaren Zahl sind.

- 1. Geben Sie alle Wörter aus L an, deren Länge höchstens 3 ist.
- 2. Geben Sie einen endlichen Akzeptor an, der L erkennt.
- 3. Es sei L' die Menge aller Wörter aus L (!), die Länge 1 haben oder mit dem Symbol 1 beginnen.

Geben Sie einen endlichen Akzeptor an, der L' erkennt.

Hinweis: Es muss sich um vollständige deterministische endliche Akzeptoren handeln wie sie in der Vorlesung definiert wurden.

Weiterer Platz für Antworten zu Aufgabe 6:

Aufgabe 7 (8 Punkte)

Gegeben sei die folgende Turingmaschine T:

- Zustandsmenge ist $Z = \{s, a_1, a_2, a_3, b_1, b_2, b_3, r\}.$
- Anfangszustand ist s.
- Bandalphabet ist $X = \{\Box, a, b\}$.
- Die Arbeitsweise ist durch folgendes Diagramm festgelegt:

Die Turingmaschine wird im folgenden benutzt für Bandbeschriftungen, bei denen zu Beginn der Berechnung auf dem Band ein Wort $w \in \{a, b\}^+$ steht, das von Blanksymbolen umgeben ist.

Der Kopf der Turingmaschine stehe anfangs auf dem ersten Symbol des Eingabewortes.

- 1. Geben Sie für die Eingabe aaabbb folgende Konfigurationen an:
 - die Anfangskonfiguration;
 - die Endkonfiguration;
 - jede Konfiguration, die in einem Zeitschritt vorliegt, nachdem die Turingmaschine vom Zustand r in den Zustand s gewechselt hat.
- 2. Zu Beginn stehe auf dem Band ein Wort der Form a^kb^m mit $k \ge 1$ und $m \ge 0$. Welches Wort steht am Ende (wenn die Turingmaschine gehalten hat) auf dem Band, wenn
 - (a) $k \le m$ ist?
 - (b) k > m ist?

3. Für welche Eingabewörter hält die Turingmaschine in Zustand a₁ an?

- 4. Geben Sie eine Funktion f(n) an, so dass die Laufzeit der Turingmaschine für Eingaben der Form $(ab)^n$ in $\Theta(f(n))$ liegt.
- 5. Geben Sie eine Funktion g(n) an, so dass die Laufzeit der Turingmaschine für Eingaben der Form a^nb^n in $\Theta(g(n))$ liegt.

Weiterer Platz für Antworten zu Aufgabe 7: