Методы оптимизации и управления О.И. Костюкова, О.И. Дугинов

Лабораторная работа 3 «Начальная фаза симплекс-метода»

Пусть имеется задача линейного программирования в канонической форме

$$c^{\mathsf{T}}x \to \max$$

$$Ax = b$$

$$x \ge 0,$$
(1)

где $c \in \mathbb{R}^n$, $x = (x_1, x_2, \dots, x_n)^\intercal \in \mathbb{R}^n$ — вектор переменных, $A \in \mathbb{R}^{m \times n}$ — матрица, в которой m строк и n столбцов, $b = (b_1, b_2, \dots, b_m)^\intercal \in \mathbb{R}^m$. Требуется определить совместна ли задача (1) и, в случае положительного ответа, найти какой-нибудь базисный допустимый план (x, B).

Начальная фаза симплекс-метода

 $Bxo\partial:\ c\in\mathbb{R}^n,\ A\in\mathbb{R}^{m\times n}$ и $b\in\mathbb{R}^m$ — параметры задачи (1)

Bыход: (x, B) — базисный допустимый план задачи (1) или сообщение о том, что задача (1) не имеет допустимых планов.

Шаг 1. Необходимо преобразовать задачу (1) таким образом, чтобы вектор правых частей b был неотрицательным. Для этого умножим на -1 все ограничения задачи, правая часть которых отрицательна. А именно, для каждого индекса $i \in \{1, 2, \ldots, m\}$ выполним следующую операцию: если $b_i < 0$, то умножим на -1 компоненту b_i и i-ю строку матрицы A;

Шаг 2. Составим вспомогательную задачу линейного программирования

$$\widetilde{c}^{\intercal}\widetilde{x} \to \max$$

$$\widetilde{A}\widetilde{x} = b$$

$$\widetilde{x} \geqslant 0,$$
(2)

где вектор коэффициентов при переменных в целевой функции имеет вид

$$\widetilde{c}^{\mathsf{T}} = (\underbrace{0, 0, \dots, 0}_{n}, \underbrace{-1, -1, \dots, -1}_{m}) \in \mathbb{R}^{n+m},$$

вектор переменных — $\widetilde{x}=(x_1,x_2,\ldots,x_n,x_{n+1},x_{n+2},\ldots,x_{n+m})^\intercal\in\mathbb{R}^{n+m}$ (переменные $x_{n+1},x_{n+2},\ldots,x_{n+m}$ называются uckyccmeenhumu), матрица \widetilde{A} получается из матрицы A присоединением к ней справа единичной матрицы порядка m.

Шаг 3. Построим начальный базисный допустимый план (\tilde{x}, B) задачи (2)

$$\widetilde{x} = (0 \quad 0 \quad \dots \quad 0 \quad b_1 \quad b_2 \quad \dots \quad b_m) \in \mathbb{R}^{n+m},$$

$$B = \{j_1 = n+1, j_2 = n+2, \dots, j_m = n+m\}.$$

Шаг 4. Решим вспомогательную задачу (2) основной фазой симплекс-метода и получим оптимальный план

$$\widetilde{x} = (\widetilde{x}_1 \quad \widetilde{x}_2 \quad \dots \quad \widetilde{x}_n \quad \widetilde{x}_{n+1} \quad \widetilde{x}_{n+2} \quad \dots \quad \widetilde{x}_{n+m})^\mathsf{T}$$

и соответствующее ему множество базисных индексов B.

Шаг 5. Проверим условия совместности: если $\widetilde{x}_{n+1} = \widetilde{x}_{n+2} = \ldots = \widetilde{x}_{n+m} =$ 0, то задача (1) совместна; в противном случае, задача (1) не совместна и метод завершает свою работу.

Шаг 6. Формируем допустимый план $x = (\widetilde{x}_1 \ \widetilde{x}_2 \ \ldots \ \widetilde{x}_n)$ задачи (1). Для него необходимо подобрать множество базисных индексов. С этой целью скорректируем множество В следующим образом.

ШАГ 7. Если $B \subseteq \{1, 2, ..., n\}$, то метод завершает свою работу и возвращает базисный допустимый план (x, B).

Шаг 8. Выберем в наборе B максимальный индекс искусственной переменной

 $j_k = n + i$. \mathcal{G} Шаг \mathcal{G} Для каждого индекса $j \in \{1,2,\ldots,n\} \setminus B$ вычислим вектор

$$\ell(j) = \widetilde{A}_B^{-1} \widetilde{A}_j,$$

где \widetilde{A}_j то j-ый столбец матрицы \widetilde{A} . Шаг E: Если найдется индекс $j\in\{1,2,\dots,n\}\setminus B$ такой, что $(\ell(j))_k\neq 0$, то заменим в наборе B значение j_k , равное n+i, на j.

Шаг f: Если для любого индекса $j \in \{1,2,\ldots,n\} \setminus B$ выполняется $(\ell(j))_k = 0$ 0, то *i*-е основное ограничение задачи (1) линейно выражается через остальные и его необходимо удалить. В этом случае удалим i-ую строку из матрицы A и i-ую компоненту из вектора b. Удалим из B индекс $j_k = n + i$. Кроме этого, удалим i-ую строку из матрицы A. Переходим на ШАГ 7.

Проиллюстрируем работу метода на примере. Рассмотрим задачу (Р) линейного программирования

$$x_1 \to \max$$

$$x_1 + x_2 + x_3 = 0$$

$$2x_1 + 2x_2 + 2x_3 = 0$$

$$x_1 \geqslant 0$$

$$x_2 \geqslant 0$$

$$x_3 \geqslant 0$$

Размеры задачи m=2 и n=3. Вектор коэффициентов при переменных в целевом функционале

$$c^{\mathsf{T}} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$
.

Матрица коэффициентов при переменных в основных ограничениях

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix}.$$

Вектор правых частей

$$b = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Так как $b \ge 0$, то корректировать вектор b не нужно.

Составляем вспомогательную задачу линейного программирования (2), в которой вектор переменных

$$\widetilde{x}^{\mathsf{T}} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{pmatrix},$$

вектор коэффициентов переменных в целевом функционале

$$\widetilde{c}^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & 0 & -1 & -1 \end{pmatrix},$$

матрица \widetilde{A} получается из матрицы A приписыванием к ней справа единичной матрицы порядка два

$$\widetilde{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 2 & 2 & 2 & 0 & 1 \end{pmatrix}.$$

Формируем начальный базисный допустимый план (x, B) задачи (2), в котором

$$\tilde{x}^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}, B = \{j_1 = 4, j_2 = 5\}.$$

Решаем вспомогательную задачу (2) основной фазой симплекс-метода и получаем оптимальный план $\widetilde{x}^{\intercal} = \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$ с соответствующим множеством базисных индексов $B = \{j_1 = 1, j_2 = 5\}$. В плане \widetilde{x} значения искусственных переменных x_4 и x_5 равны 0. Следовательно, задача (P) совместна. Значения переменных x_1, x_2, x_3 в \widetilde{x} образуют допустимый план задачи (1)

$$x^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}.$$

В множестве B базисных индексов выбираем максимальный индекс искусственной переменной

$$j_2 = 5 = 3 + 2$$
.

Таким образом, k=2 и i=2. Для каждого индекса $j\in\{1,2,3\}\setminus B=\{2,3\}$ найдем вектор $\ell(j)$

$$\ell(2) = \widetilde{A}_B^{-1} \widetilde{A}_2 = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

$$\ell(3) = \widetilde{A}_B^{-1} \widetilde{A}_3 = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Заметим, что для любого индекса $j \in \{1,2,3\} \setminus B$ компонента $(\ell(j))_k = 0$. Стало быть, i-ое ограничение задачи (P) линейно выражается через остальные и его необходимо удалить. Из матриц A и \widetilde{A} исключим вторую строку, а из вектора b вторую компоненту. Из множества B удалим выбранный индекс искусственной переменной j_2 . Получаем множество $B = \{j_1 = 1\}$. Поскольку в B нет индексов искусственных переменных, то метод завершает свою работу.

Ответ:
$$x^{\intercal} = (0,0,0), B = \{j_1 = 1\}, A = (1,1,1) \text{ и } b = (1)$$