Dealing with interference in random wireless networks

Matthew Aldridge

University of Leeds

joint work with

Oliver Johnson and Robert Piechocki

supported by Toshiba Research Europe

Stochastic Models in Risk Analysis and Queuing University of Leeds, February 2019

Wired connection

Wired network

Wireless connection

Two conclusions

Relatively few "bottleneck" interfering links tightly bound the total capacity of a network

Planning transmissions so that interference "aligns" at each transmitter allows performance close to the bottleneck bound

- A1 Single-user channels
- **A2** Interference networks

- **B1** Interference alignment
- **B2** Bottleneck links

- C1 Jafar network
- C2 Standard dense network

A₁ Single-user channels

Channel:
$$Y[t] = H[t]x[t] + Z[t]$$

Y, H, x, Z all in \mathbb{C}

We assume is $|H[t]|^2$ constant in t

t = 1, 2, ..., T indexes channel use (time)

Channel: Y[t] = H[t]x[t] + Z[t]

Background noise: $Z[t] \sim \mathbb{C}N(0, \sigma^2)$ IID

Channel:
$$Y[t] = H[t]x[t] + Z[t]$$

Background noise: $Z[t] \sim \mathbb{C}N(0, \sigma^2)$ IID

Power constraint:
$$\frac{1}{T} \sum_{t=1}^{T} |x[t]|^2 \le P$$

$$Y[t] = H[t]x[t] + Z[t]$$

Capacity

the highest rate at which one can communicate with arbitrarily low probability of error

$$Y[t] = H[t]x[t] + Z[t]$$

Capacity

the highest rate at which one can communicate with arbitrarily low probability of error

$$C = \log_2\left(1 + \frac{|H|^2 P}{\sigma^2}\right)$$

(Shannon, 1948)

$$Y[t] = H[t]x[t] + Z[t]$$

transmitted power

$$C = \log_2\left(1 + \frac{|H|^2 P}{\sigma^2}\right)$$

$$Y[t] = H[t]x[t] + Z[t]$$

received power
$$C = \log_2 \left(1 + \frac{|H|^2 P}{\sigma^2} \right)$$

$$Y[t] = H[t]x[t] + Z[t]$$

$$Y[t] = H[t]x[t] + Z[t]$$

signal-to-noise ratio
$$C = \log_2(1 + (SNR))$$

A2 Interference networks

Wireless connection

$$Y_{k}[t] = \sum_{j=1}^{n} H_{jk}[t]x_{j}[t] + Z_{k}[t]$$

When interference is weak

When interference is weak

Treat interference as noise

$$R = \log_2 \left(1 + \frac{|H_S|^2 P}{|H_I|^2 P + \sigma^2} \right) = \log_2 (1 + \text{SINR})$$

When interference is **Strong**

When interference is **Strong**

Pretend interference is signal

When interference is **Strong**

Pretend interference is signal Decode and subtract

$$R = \min \left\{ \log_2 \left(1 + \frac{|H_{\rm I}|^2 P}{|H_{\rm S}|^2 P + \sigma^2} \right), \log_2 (1 + \text{SNR}) \right\}$$

Interference

Weak interference
Treat as noise

Strong interferenceDecode and subtract

Interference ≈ Signal ???

Resource division (or cake cutting)

Resource division

(or cake cutting)

$$C = \log_2(1 + SNR)$$

Resource division

(or cake cutting)

$$R = \frac{1}{n} \log_2(1 + SNR)$$

Only use the channel an *n*th of the time

Resource division

(or cake cutting)

$$R = \frac{1}{n} \log_2(1 + nSNR)$$

Only use the channel ...but can use n times an nth of the time

the power

Resource division

(or cake cutting)

$$R_{\text{sum}} = \log_2(1 + n\text{SNR})$$

Sum-rates and sum-capacity

Easier to calculate than the whole "capacity region"

Resource division

(or cake cutting)

...by time (TDMA)

...by **frequency** (FDMA)

Give each user a separate slice of spectrum

...in codeword space (CDMA)

Transmitted signals live in \mathbb{C}^T Split this into n orthogonal T/n-dimensional subspaces

Interference ≈ Signal

Resource division

(or cake cutting)

$$R = \frac{1}{n}\log_2(1 + nSNR)$$

$$Y_k = \sum_{j=1}^n H_{jk} x_j + Z_k$$

Suppose
$$H_{kk} = 1$$

 $H_{jk} = i$, $j \neq k$

$$Y_k = \sum_{j=1}^n H_{jk} x_k + Z_k$$

Suppose
$$H_{kk} = 1$$

 $H_{jk} = i$, $j \neq k$

And then suppose transmitters send only real-valued signals x_k

Suppose
$$H_{jj} = 1$$

 $H_{jk} = i$, $j \neq k$

And then suppose transmitters send only real-valued signals x_k

$$\operatorname{Re} Y_{k} = H_{kk} x_{k} + \operatorname{Re} Z_{k}$$

$$\operatorname{Im} Y_{k} = \sum_{k \neq j} H_{jk} x_{j} + \operatorname{Im} Z_{k}$$

Interference alignment

(or "everyone gets half a cake")

$$R = \frac{1}{2}\log(1 + 2SNR) - O(\log SNR)$$

No matter how many users it's as if there's only two

Interference alignment

(or "everyone gets half a cake")

...in codeword space

(Cadambe & Jafar, 2008)

...in **time**

(Grokop, Tse & Yates, 2011)

...over the rational numbers

(Motahari, Oveis-Gharan, Maddah-Ali & Khandani, 2014)

Ergodic interference alignment

(Nazer, Gastpar, Jafar & Vishwanath, 2009)

Ensures a rate of

$$R = \frac{1}{2}\log_2(1 + 2SNR)$$

without requiring SNR → ∞

High rates

As if there's only two users "Everyone gets half a cake"

High rates

As if there's only two users "Everyone gets half a cake"

but...

Impractical

Requires coordination
Requires knowledge of channel coefficients
Requires very long blocklengths
etc

B2 Bottleneck links

$$Y = Hx + Z$$

$$C = \log\left(1 + \frac{|H|^2 P}{\sigma^2}\right)$$

$$Y = Hx + Z$$

$$C = \log\left(1 + \frac{|H|^2 P}{\sigma^2}\right)$$

Pick units so $\sigma^2 = 1$

Absorb P into |H|, to allow P=1

Write
$$|H| = \sqrt{SNR}$$

$$Y = \sqrt{\text{SNR}}e^{i\Theta}x + Z$$

$$C = \log(1 + \text{SNR})$$

From now on, we assume $\Theta \sim U[0,2\pi)$ and is IID over time

$$Y_k = \sqrt{\text{SNR}_k} e^{i\Theta_{kk}} x_k + \sum_{k \neq j} \sqrt{\text{INR}_{jk}} e^{i\Theta_{jk}} x_j + Z_k$$

A two-user network

$$C_{\text{sum}} = \log(1 + 2\text{SNR})$$

regardless of the value of INR₂₁ (Jafar, 2011)

Suppose the rates R_1 and R_1 are achievable

Suppose the rates R_1 and R_2 are achievable

Genie provides Rx 1 with message m_2

Suppose the rates R_1 and R_2 are achievable

Genie provides $Rx\ 1$ with message m_2 $Rx\ 1$ can decode and subtract

Suppose the rates R_1 and R_2 are achievable

Rx 2 can decode and subtract message m_2

Suppose the rates R_1 and R_2 are achievable

Rx 2 can decode and subtract message m_2

Suppose the rates R_1 and R_2 are achievable

Rx 1 can decode and subtract message m_1

Suppose the rates R_1 and R_2 are achievable

Rx 1 can decode and subtract message m_1 So Rx 2 can also

Suppose the rates R_1 and R_2 are achievable

So Rx 2 has decoded **both messages**This is a **multiple access channel**

Suppose the rates R_1 and R_2 are achievable

So Rx 2 has decoded **both messages**

So
$$R_1 + R_2 \le \log(1 + SNR + SNR)$$

$$C_{\text{sum}} = \log(1 + 2\text{SNR})$$

regardless of the value of INR₂₁ (Jafar, 2011)

C₁ Jafar networks

(Jafar, 2011)

In a wireless network, we might expect:

SNRs roughly the same INRs vary, but can be similar to SNR

(Jafar, 2011)

In a wireless network, we might expect:

SNRs roughly the same INRs vary, but can be similar to SNR

In a Jafar network:

SNRs identical and deterministic INRs IID from a distribution supported at SNR

(Jafar, 2011)

$$Y_k = \sqrt{\text{SNR}_k} e^{i\Theta_{kk}} x_k + \sum_{k \neq j} \sqrt{\text{INR}_{jk}} e^{i\Theta_{jk}} x_j + Z_k$$

In a Jafar network:

SNRs identical and deterministic INRs IID from a distribution supported at SNR

SNRs identical and deterministic INRs IID from a distribution supported at SNR

Theorem (Jafar, 2011)

The sum-capacity of the *n*-user Jafar network satisfies

$$\frac{C_{\text{sum}}}{n} \xrightarrow{\mathbb{P}} \frac{1}{2} \log(1 + 2SNR)$$
as $n \to \infty$

Theorem (Jafar, 2011)

The sum-capacity of the *n*-user Jafar network satisfies

$$\frac{C_{\text{sum}}}{n} \stackrel{\mathbb{P}}{\to} \frac{1}{2} \log(1 + 2SNR)$$

Lower bound:

Achievable using ergodic interference alignment.

Jafar network

Theorem (Jafar, 2011)

The sum-capacity of the *n*-user Jafar network satisfies

$$\frac{C_{\text{sum}}}{n} \stackrel{\mathbb{P}}{\to} \frac{1}{2} \log(1 + 2SNR)$$

Lower bound: ergodic interference alignment Upper bound: bottleneck links

A bottleneck link

$$C_{\text{sum}} = \log(1 + 2\text{SNR})$$

regardless of the value of INR₂₁ (Jafar, 2011)

A ε -bottleneck link

$$R_1 + R_2 \le \log(1 + 2\text{SNR}) + \varepsilon$$

regardless of the value of INR₂₁

Jafar network

Theorem (Jafar, 2011)

The sum-capacity of the *n*-user Jafar network satisfies

$$\frac{C_{\text{sum}}}{n} \stackrel{\mathbb{P}}{\to} \frac{1}{2} \log(1 + 2SNR)$$

Upper bound:

Probabilistic (Jafar, 2011)

Combinatorial (Johnson, Aldridge, Piechocki, 2011)

C2

The standard dense network

Unit square $[0,1]^2$

$$Y_k = \sqrt{\text{SNR}}_k \ e^{i\Theta_{kk}} \ x_k + \sum_{k \neq j} \sqrt{\text{INR}}_{jk} \ e^{i\Theta_{jk}} \ x_j + Z_k$$

$$Y_k = \sqrt{\text{SNR}}_k \ e^{i\Theta_{kk}} \ x_k + \sum_{k \neq j} \sqrt{\text{INR}}_{jk} \ e^{i\Theta_{jk}} \ x_j + Z_k$$

$$SNR_k = C d(Tx k, Rx k)^{-\alpha}$$

$$INR_{jk} = C d(Tx j, Rx k)^{-\alpha}$$

$$SNR_k = C d(Tx k, Rx k)^{-\alpha}$$

$$INR_{jk} = C d(Tx j, Rx k)^{-\alpha}$$

So SNRs and INRs are identically distributed (but not independent)

Write
$$E = \frac{1}{2} \mathbb{E} \log(1 + 2SNR) = \frac{1}{2} \mathbb{E} \log(1 + 2INR)$$

Theorem (Johnson, Aldridge & Piechocki, 2011)

The sum-capacity of the

n-user standard dense network satisfies

$$\frac{C_{\text{sum}}}{n} \xrightarrow{\mathbb{P}} E = \frac{1}{2} \mathbb{E} \log(1 + 2SNR)$$
as $n \to \infty$

Theorem (Johnson, Aldridge & Piechocki, 2011)

The sum-capacity of the

n-user standard dense network satisfies

$$\frac{C_{\text{sum}}}{n} \stackrel{\mathbb{P}}{\to} E = \frac{1}{2} \mathbb{E} \log(1 + 2SNR)$$

Lower bound: ergodic interference alignment Upper bound: bottleneck links

$$\frac{C_{\text{sum}}}{n} \stackrel{\mathbb{P}}{\to} E = \frac{1}{2} \mathbb{E} \log(1 + 2SNR)$$

Lower bound: ergodic interference alignment

$$\sum_{j=1}^{n} \frac{1}{2} \log(1 + 2SNR_j) \stackrel{\mathbb{P}}{\to} E$$

by the weak law of large numbers

Bottleneck links

We say that (j, k) is an ε -bottleneck link if

$$\frac{1}{2}\log(1+2SNR_{j}) \le E + \frac{\varepsilon}{2}$$

$$\frac{1}{2}\log(1+2INR_{jk}) \le E + \frac{\varepsilon}{2}$$

$$\frac{1}{2}\log(1+2INR_{kj}) \le \frac{1}{2}\log(1+2SNR_{k})$$

Bottleneck links

Lemma (Johnson, Aldridge & Piechocki, 2011) If (j, k) is an ε -bottleneck link, then any achievable rates satisfy

$$R_j + R_k \le 2E + \varepsilon$$

Proof

As before, genie + multiple access channel.

Upper bound

Proof 1 (Johnson, Aldridge & Piechocki, 2011)

Discretize space
look for zones with bottleneck links

Proof 2 (Aldridge, Johnson & Piechocki, 2010)
Probabilistic existence proof
Along the lines of Jafar's proof earlier

Theorem (Johnson, Aldridge & Piechocki, 2011)

The sum-capacity of the

n-user standard dense network satisfies

$$\frac{C_{\text{sum}}}{n} \stackrel{\mathbb{P}}{\to} E = \frac{1}{2} \mathbb{E} \log(1 + 2SNR)$$

Lower bound: ergodic interference alignment Upper bound: bottleneck links

Two conclusions

Relatively few "bottleneck" interfering links tightly bound the total capacity of a network

Planning transmissions so that interference "aligns" at each transmitter allows performance close to the bottleneck bound

Open Questions

Engineering

How can we make interference alignment more plausible?

Imperfect channel knowledge
Shorter time delays
Less precise arithmetic
Less precise timing

How do more realistic assumptions affect the sum-capacity?

Open Questions Mathematical

Can we prove similar results for more physically realistic networks?

Preferential attachment

Nodes with movement

What about "finite n" results?

Can we use combinatorics to give a proof with an exponential rate of convergence?