

Lecture 5.2: Inverted Indexes

01204553 Web Information Retrieval and Mining

Department of Computer Engineering Faculty of Engineering, Kasetsart University Bangkok, Thailand.

Review: Search Engine Architecture

Introduction

- Although efficiency might seem a secondary issue compared to effectiveness, it should not be neglected in the design of an IR system.
- Efficiency in IR systems
 - To process indexing and searching with minimal requirements of computational resources
- As we move to large-scale application, efficiency becomes more and more important
 - For example, web search engine with petabytes of indexed data and billion of queries per second

Introduction

- Index: a data structure built from text to speed up the searches
- In the context of an IR system, the efficiency can be measured by
 - Indexing time: time needed to build the index
 - Indexing space: space used during the generation of the index
 - Index storage: space required to store the index
 - Query latency: time interval between the arrive of the query and the generation of the answer
 - Query throughput: average number of queries processed per second

Inverted Indexes

Review: Term-Document Matrix

 d_1

To do is to be. To be is to do.

 d_2

To be or not to be.

I am what I am.

 d_3

I think therefore I am. Do be do be do.

 d_{λ}

Do do do, da da da. Let it be, let it be.

Vocabulary	n_i
to	2
do	3
is	1
be	4
or	1
not	1
I	2
am	2
what	1
think	1
therefore	1
da	1
let	1
it	1

<i>d</i> ₁ 4	d_2	d_3	d_4
4	2	-	-
2	-	3	3
2	-	-	-
2	2	2	2
-	1	-	-
-	1	-	-
-	2	2	-
-	2	1	-
-	1	-	-
-	-	1	-
-	-	1	-
-	-	-	3
_	-	-	2 2
-	-	-	2

Problems of Term-Document Matrix

Problem: It requires too much space (sparse matrix).

Solution: Represent it as a term-document list.

Problem: It requires sequential comparing between each document and a user's query, $sim(d_i,q)$.

Solution: Represent it as a set of occurrence lists, called inverted index.

Basic Concepts

- Inverted index
 - A word-oriented mechanism for indexing a text collection to speed up the searching task
- The inverted index structure is composed of two elements:
 - Vocabulary—the set of all different words in the text
 - Occurrences—for each word in the vocabulary, occurrences refer to documents containing that word

Basic Inverted Index

 d_1

To do is to be. To be is to do.

 d_2

To be or not to be.

I am what I am.

 d_3

I think therefore I am. Do be do be do.

 d_{λ}

Do do do, da da da. Let it be, let it be.

Vocabulary	n_i
to	2
do	3
is	1
be	4
or	1
not	1
I	2
am	2
what	1
think	1
therefore	1
da	1
let	1
it	1

Occurrences
[1,4],[2,2]
[1,2],[3,3],[4,3]
[1,2]
[1,2],[2,2],[3,2],[4,2]
[2,1]
[<mark>2,1</mark>]
[2,2],[3,2]
[2,2],[3,1]
[2,1]
[3,1]
[3,1]
[4,3]
[4,2]
[4,2]

Full Inverted Indexes

Full Inverted Index

- The basic index is not suitable for answering phrase or proximity queries.
- Hence, we need to add the positions of each word in each document to the index (full inverted index)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

In theory, there is no difference between theory and practice. In practice, there is.

Text

Full Inverted Index

 d_1

To do is to be. To be is to do.

 d_2

To be or not to be.
I am what I am.

 d_3

I think therefore I am. Do be do be do.

 d_{λ}

Do do do, da da da. Let it be, let it be.

Vocabulary	n_i
to	2
do	3
is	1
be	4
or	1
not	1
I	2
am	2
what	1
think	1
therefore	1
da	1
let	1
it	1

Occurrences w	ith position
[1,4,[1,4,6,9]],[2,2,[1,5]]	
[1,2,[2,10]],[3,3,[6,8,10]]	,[<mark>4,3</mark> ,[1,2,3]]
[1,2,[3,8]]	
[1,2,[5,7]],[2,2,[2,6]],[3,2	2,[7,9]],[<mark>4,2,[9,12</mark>]]
[<mark>2,1,[3]]</mark>	
[<mark>2,1,[4]]</mark>	
[2,2,[7,10]],[3,2,[1,4]]	
[2,2,[8,11]],[3,1,[5]]	
[<mark>2,1,[9]]</mark>	
[3,1,[2]]	
[3,1,[3]]	
[4,3,[4,5,6]]	
[4,2,[7,10]]	
[4,2,[8,11]]	

Any Question?

