course: CSC 135-01 - Computing Theory and Programming Languages

instructor: Ted Krovetz

related_notes: <u>2022-03-10</u>

Limits of Computation

W10.4 | Thursday, March 10, 2022 | 08:59 AM

Notes - Limits of Computation

$$egin{array}{ll} L &=& \{a^nb^n|n\leq 4\} \ L &=& \{a^nb^n|n\leq 40\} \ L &=& \{a^nb^n|n\leq 9000\} \end{array}$$

DFA proves L is regular

$\it L$ is Not Regular - Proof By Contradiction

Theorem: L is not regular

 While consuming a^P M will repeat some state (pigeon hole/musical chair principle)
Let x represent the string leading to the first repeated state Let y represent the string leading back to the repeated state Let z represent the rest of the string xyyz will lead to an accept state and so is in L But xyyz has more a's than b's and so is not in L This contradiction prove L is not regular

Consider the string a^Pb^P

 $egin{aligned} xyz \in L \ xyyz \in L \end{aligned}$

Examples RE \rightarrow NFA \rightarrow DFA: 0(0+1)*0

RE → **NFA**

0(0+1)*0

NFA → DFA

Zero (0)
C: CDE
D: CDEF
E: F
F: empty

NFA → RE

- Loops do not count for they become stars *
- Number of in arrows times the number of out arrows
- ullet Parallel edges you'd combine them with a plus +

BECOMES

