UC Berkeley

Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Problem Set 6

Fall 2021

1. The CLT Implies the WLLN

- (a) Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables. Show that if $X_n \stackrel{\mathsf{d}}{\to} c$, where c is a constant, then $X_n \stackrel{P}{\to} c$.
- (b) Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of i.i.d. random variables, with mean μ and finite variance σ^2 . Show that the CLT implies the WLLN, i.e. if

$$\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^{n}(X_i-\mu)\stackrel{\mathsf{d}}{\to}\mathcal{N}(0,1),$$

then

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{P}{\to}\mu.$$

Solution:

(a) Since $X_n \stackrel{\mathsf{d}}{\to} c$, we can deduce that for any $\epsilon > 0$, we have

$$\lim_{n \to \infty} F_{X_n}(c - \epsilon) = 0,$$

$$\lim_{n\to\infty} F_{X_n}\Big(c+\frac{\epsilon}{2}\Big)=1.$$

Using this fact we have that

$$\lim_{n \to \infty} P(|X_n - c| \ge \epsilon) = \lim_{n \to \infty} [P(X_n \le c - \epsilon) + P(X_n \ge c + \epsilon)]$$

$$= \lim_{n \to \infty} P(X_n \le c - \epsilon) + \lim_{n \to \infty} P(X_n \ge c + \epsilon)$$

$$= \lim_{n \to \infty} F_{X_n}(c - \epsilon) + \lim_{n \to \infty} P(X_n \ge c + \epsilon)$$

$$\le 0 + \lim_{n \to \infty} P\left(X_n > c + \frac{\epsilon}{2}\right)$$

$$= 1 - \lim_{n \to \infty} F_{X_n}\left(c + \frac{\epsilon}{2}\right)$$

$$= 0$$

Therefore $\lim_{n\to\infty} P(|X_n-c|\geq \epsilon)=0$, for all $\epsilon>0$ which means that $X_n\stackrel{P}{\to}c$.

1

(b) From the CLT we know that

$$\frac{\sqrt{n}}{\sigma} \left(\frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right) \xrightarrow{\mathsf{d}} Z \sim \mathcal{N}(0, 1).$$

In addition $\frac{\sigma}{\sqrt{n}} \to 0$, so

$$\frac{1}{n} \sum_{i=1}^{n} X_i - \mu \stackrel{\mathsf{d}}{\to} 0$$

or stated another way

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{\mathsf{d}} \mu.$$

Finally using Part (a) we can conclude that

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{P}{\to}\mu.$$

2. Confidence Intervals: Chebyshev vs. Chernoff vs. CLT

Let X_1, \ldots, X_n be i.i.d. Bernoulli(q) random variables, with common mean $\mu = \mathbb{E}[X_1] = q$ and variance $\sigma^2 = \text{var}(X_1) = q(1-q)$. We want to estimate the mean μ , and towards this goal we use the sample mean estimator

$$\bar{X}_n \stackrel{\Delta}{=} \frac{X_1 + \dots + X_n}{n}.$$

Given some confidence level $a \in (0,1)$ we want to construct a confidence interval around \bar{X}_n such that μ lies in this interval with probability at least 1-a.

(a) Use Chebyshev's inequality in order to show that μ lies in the interval

$$\left(\bar{X}_n - \frac{\sigma}{\sqrt{n}} \frac{1}{\sqrt{a}}, \ \bar{X}_n + \frac{\sigma}{\sqrt{n}} \frac{1}{\sqrt{a}}\right)$$

with probability at least 1 - a.

(b) A Chernoff bound for this setting can be computed to be:

$$P(|\bar{X}_n - q| \ge \epsilon) \le 2\epsilon^{-2n\epsilon^2}$$
, for any $\epsilon > 0$.

Use this inequality in order to show that μ lies in the interval

$$\left(\bar{X}_n - \frac{\frac{1}{2}}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}, \ \bar{X}_n + \frac{\frac{1}{2}}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}\right)$$

with probability at least 1 - a.

(c) Show that if $Z \sim \mathcal{N}(0,1)$, then

$$P(|Z| > \epsilon) < 2\epsilon^{-\frac{\epsilon^2}{2}}$$
, for any $\epsilon > 0$.

(d) Use the Central Limit Theorem, and Part (c) in order to heuristically argue that μ lies in the interval

$$\left(\bar{X}_n - \frac{\sigma}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}, \ \bar{X}_n + \frac{\sigma}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}\right)$$

with probability at least 1 - a.

(e) Compare the three confidence intervals.

Solution:

(a) Rewrite the probability that μ lies in the specified interval as the probability that \bar{X}_n lies in an interval of the same width around μ :

$$P\Big\{\mu \in \Big(\bar{X}_n - \frac{\sigma}{\sqrt{n}} \frac{1}{\sqrt{a}}, \bar{X}_n + \frac{\sigma}{\sqrt{n}} \frac{1}{\sqrt{a}}\Big)\Big\} = P\Big(|\bar{X}_n - \mu| \le \frac{\sigma}{\sqrt{n}} \frac{1}{\sqrt{a}}\Big)$$
$$= 1 - P\Big(|\bar{X}_n - \mu| > \frac{\sigma}{\sqrt{n}} \frac{1}{\sqrt{a}}\Big)$$
$$\ge 1 - \frac{\operatorname{var} \bar{X}_n}{(\sigma^2/n)(1/a)} = 1 - a,$$

because var $\bar{X}_n = \sigma^2/n$.

(b) Use the same idea as the previous part, but using the stronger tail inequality.

$$P\Big\{\mu \in \Big(\bar{X}_n - \frac{1/2}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}, \bar{X}_n + \frac{1/2}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}\Big)\Big\}$$

$$= P\Big(|\bar{X}_n - \mu| \le \frac{1}{2\sqrt{n}}\sqrt{2\ln\frac{2}{a}}\Big)$$

$$= 1 - P\Big(|\bar{X}_n - \mu| > \frac{1}{2\sqrt{n}}\sqrt{2\ln\frac{2}{a}}\Big) \ge 1 - 2\exp\Big(-\ln\frac{2}{a}\Big) = 1 - a.$$

(c) For any t > 0 we have that

$$P(Z \ge \epsilon) = P(tZ \ge t\epsilon)$$

$$= P(e^{tZ} \ge e^{t\epsilon})$$

$$\le \frac{\mathbb{E}[e^{tZ}]}{e^{t\epsilon}}$$

$$= \epsilon^{\frac{1}{2}t^2 - t\epsilon}.$$

Optimizing over t > 0, yields

$$P(Z \ge \epsilon) \le e^{-\frac{\epsilon^2}{2}}.$$

The final result follows by a union bound.

(d) From the CLT and the previous part we have that

$$P\left(\left|\frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu)\right| \ge \epsilon\right) \approx P(|Z| \ge \epsilon) \le 2\epsilon^{-\frac{\epsilon^2}{2}}.$$

We are going to set ϵ to be such that $a = 2\epsilon^{-\frac{\epsilon^2}{2}}$, which yields $\epsilon = \sqrt{2 \ln \frac{2}{a}}$. Plugging in this value of ϵ we have that

$$P(|\bar{X}_n - \mu| \ge \frac{\sigma}{\sqrt{n}} \sqrt{2 \ln \frac{2}{a}}) \le a,$$

or equivalently

$$P\left(\bar{X}_n - \frac{\sigma}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}} < \mu < \bar{X}_n + \frac{\sigma}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}\right)$$

$$= P\left(-\frac{\sigma}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}} < \mu - \bar{X}_n < \frac{\sigma}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}\right)$$
$$= P\left(|\bar{X}_n - \mu| < \frac{\sigma}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}\right) \gtrsim 1 - a.$$

.

(e) We can see that Chebyshev's inequality and the CLT produce confidence intervals with standard deviation term σ present, while on the other hand using the Chernoff bound the standard deviation is replaced by 1/2, which is only an upper bound on σ , since $\sigma^2 = \sigma^2(q) = q(1-q) \le 1/4$.

Chebyshev's inequality is able to capture the standard deviation term, but on the other hand it has a poor dependence of the form $1/\sqrt{a}$ on the confidence level a. Chernoff's inequality and the CLT have a way better dependence on a of the form $\sqrt{\ln \frac{2}{a}}$.

Finally, while the confidence intervals derived via Chebyshev's and Chernoff's inequality, are true/provable confidence intervals, we can only argue heuristically about the interval derived via the CLT.

3. Transform Practice

Consider a random variable Z with transform

$$M_Z(s) = \frac{a - 3s}{s^2 - 6s + 8},$$
 for $|s| < 2$.

Calculate the following quantities:

- (a) The numerical value of the parameter a.
- (b) $\mathbb{E}[Z]$.
- (c) var(Z).

Solution:

(a) By definition, we know that $M_Z(s) = \mathbb{E}[\epsilon^{sZ}]$. Thus, we know the following must be true:

$$M_Z(0) = \mathbb{E}[\epsilon^{0Z}] = 1 = \frac{a}{8}$$

It follows that a = 8.

(b)

$$\mathbb{E}[Z] = \frac{\mathrm{d}}{\mathrm{d}s} M_Z(s) \Big|_{s=0} = \frac{2}{(4-s)^2} + \frac{1}{(2-s)^2} \Big|_{s=0} = \frac{3}{8}.$$

(c) Note that

$$\mathbb{E}[Z^2] = \frac{\mathrm{d}^2}{\mathrm{d}s^2} M_Z(s) \Big|_{s=0} = \frac{4}{(4-s)^3} + \frac{2}{(2-s)^3} \Big|_{s=0} = \frac{5}{16}.$$

Thus,

$$\operatorname{var}(Z) = \frac{11}{64}.$$

4. Rotationally Invariant Random Variables

Suppose random variables X and Y are i.i.d., with zero mean, such that their joint density is rotation invariant.

- (a) Let $\varphi(t)$ be the characteristic function of X. Show that $\varphi(t)^n = \varphi(\sqrt{nt})$.
- (b) Show that $\varphi(t) = \exp(ct^2)$ for some constant c, and all t such that $t^2 \in \mathbb{Q}$. Hint: Let $t^2 = a/b$, where a, b are positive integers.
- (c) Conclude that X and Y must be Gaussians.

Solution:

- (a) For $t \in \mathbb{R}$, tX + tY has the same distribution as $\sqrt{2}tX$, so $\varphi(t)^2 = \varphi(\sqrt{2}t)$. Likewise, note that $t\sqrt{n-1}X + tY$ has the same distribution as $\sqrt{n}X$, so $\varphi(\sqrt{n-1}t)\varphi(t) = \varphi(\sqrt{n}t)$. Inducting on n, this implies $\varphi(t)^n = \varphi(\sqrt{n}t)$ for all $n \in \mathbb{N}$.
- (b) For positive integers a, b, let $t^2 = a/b$. Using part (a), we can write

$$\varphi(t) = \varphi(\sqrt{a/b}) = \varphi(1/\sqrt{b})^a = (\varphi(1/\sqrt{b})^b)^{a/b} = \varphi(1)^{a/b} = e^{ct^2},$$

where we took c to satisfy $e^c = \varphi(1)$.

(c) We have so far shown that $\varphi(t) = \exp(ct^2)$ for all t such that $t^2 \in \mathbb{Q}_{\geq 0}$. But since $\{t: t^2 \in \mathbb{Q}_{\geq 0}\}$ is a dense subset of \mathbb{R} , and characteristic functions are continuous, it follows that $\varphi(t) = \exp(ct^2)$ for all $t \in \mathbb{R}$. Finally, note that this is just the characteristic function of a Gaussian, so we conclude that X (and also Y) must be Gaussian distributed.

5. Matrix Sketching

Matrix sketching is an important technique in randomized linear algebra to do large computations efficiently. For example, to compute the multiplication $\mathbf{A}^T \times \mathbf{B}$ of two large matrices \mathbf{A} and \mathbf{B} , we can use a random sketch matrix \mathbf{S} to compute a "sketch" $\mathbf{S}\mathbf{A}$ of \mathbf{A} and a "sketch" $\mathbf{S}\mathbf{B}$ of \mathbf{B} . Such a sketching matrix has the property that $\mathbf{S}^T\mathbf{S} \approx \mathbf{I}$ so that the approximate multiplication $\mathbf{A}^T\mathbf{S}^T\mathbf{S}\mathbf{B}$ is close to $\mathbf{A}^T\mathbf{B}$.

In this problem, we will discuss two popular sketching schemes and understand how they help in approximate computation. Let $\hat{\mathbf{I}} = \mathbf{S}^T \mathbf{S}$ and the dimension of sketch matrix \mathbf{S} be $d \times n$ (typically $d \ll n$).

(a) (Gaussian-sketch) Define

$$\mathbf{S} = \frac{1}{\sqrt{d}} \begin{bmatrix} S_{11} & \dots & \dots & S_{1n} \\ \vdots & \ddots & & \vdots \\ S_{d1} & \dots & \dots & S_{dn} \end{bmatrix}$$

such that S_{ij} 's are chosen i.i.d. from $\mathcal{N}(0,1)$ for all $i \in [1,d]$ and $j \in [1,n]$. Find the element-wise mean and variance (as a function of d) of the matrix $\hat{\mathbf{I}} = \mathbf{S}^T \mathbf{S}$, that is, find $\mathbb{E}[\hat{I}_{ij}]$ and $\operatorname{Var}[\hat{I}_{ij}]$ for all $i \in [1,n]$ and $j \in [1,n]$.

(b) (Count-sketch) For each column $j \in [1, n]$ of **S**, choose a row i uniformly randomly from [1, d] such that

$$S_{ij} = \begin{cases} 1, & \text{with probability } 0.5\\ -1, & \text{with probability } 0.5 \end{cases}$$

and assign $S_{kj}=0$ for all $k\neq i$. An example of a 3×8 count-sketch is

$$\mathbf{S} = \begin{bmatrix} 0 & -1 & 1 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \end{bmatrix}$$

Again, find the element-wise mean and variance (as a function of d) of the matrix $\hat{\mathbf{I}} = \mathbf{S}^T \mathbf{S}$.

Note that for sufficiently large d, the matrix $\hat{\mathbf{I}}$ is close to the identity matrix for both cases. We will use this fact in the lab to do an approximate matrix multiplication.

Note: You can use the fact that the fourth moment of a standard Gaussian is 3 without proof.

Solution: Let $\hat{\mathbf{I}} = \mathbf{S}^T \mathbf{S}$.

(a) For the Gaussian-sketch $\hat{I}_{ij} = \frac{1}{d} \sum_{k=1}^{d} S_{ki} S_{kj}$. Thus, by using linearity of expectation and the fact that S_{ki} 's are drawn i.i.d. from $\mathcal{N}(0,1)$, we get

$$\mathbb{E}[\hat{I}_{ij}] = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise.} \end{cases}$$

By the definition of variance, we have

$$\operatorname{Var}[\hat{I}_{ij}] = \frac{1}{d^2} \left(\mathbb{E}\left[\left(\sum_{k=1}^d S_{ki} S_{kj} \right)^2 \right] - \left(\mathbb{E}\left[\sum_{k=1}^d S_{ki} S_{kj} \right] \right)^2 \right)$$
$$= \frac{1}{d^2} \left(\mathbb{E}\left[\left(\sum_{k=1}^d S_{ki} S_{kj} \right)^2 \right] - \left(\sum_{k=1}^d \mathbb{E}[S_{ki} S_{kj}] \right)^2 \right)$$

Next, we consider two cases when i = j and when $i \neq j$. When i = j

$$\operatorname{Var}[\hat{I}_{ii}] = \frac{1}{d^2} \left(\mathbb{E}\left[\left(\sum_{k=1}^d S_{ki}^2\right)^2\right] - \left(\sum_{k=1}^d \mathbb{E}[S_{ki}^2]\right)^2 \right)$$

$$= \frac{1}{d^2} \left(\sum_{k=1}^d \mathbb{E}[S_{ki}^4] + \sum_{\substack{k=1,l=1\\k\neq l}}^d \mathbb{E}[S_{ki}^2] \mathbb{E}[S_{ki}^2] - d^2 \right)$$

$$= \frac{1}{d^2} \left(\sum_{k=1}^d \mathbb{E}[S_{ki}^4] + d(d-1) - d^2 \right)$$

$$= \frac{1}{d^2} \left(3d + d(d-1) - d^2 \right) = \frac{2}{d}.$$

where we use the fact that the fourth moment of a standard Gaussian random variable is 3.

For the case when $i \neq j$, we use the fact that S_{ki} and S_{kj} are independent and get

$$\operatorname{Var}[\hat{I}_{ij}] = \frac{1}{d^2} \left(\mathbb{E}\left[\left(\sum_{k=1}^d S_{ki} S_{kj}\right)^2\right] - \left(\sum_{k=1}^d \mathbb{E}[S_{ki}] \mathbb{E}[S_{kj}]\right)^2 \right)$$

$$= \frac{1}{d^2} \left(\sum_{k=1}^d \mathbb{E}[S_{ki}^2] \mathbb{E}[S_{kj}^2] \right) + \sum_{\substack{k=1,l=1\\k\neq l}}^d \mathbb{E}[S_{ki}] \mathbb{E}[S_{kj}] \mathbb{E}[S_{li}] \mathbb{E}[S_{lj}] - 0 \right)$$

$$= \frac{1}{d^2} (d+0) = \frac{1}{d}.$$

Thus, we have

$$\operatorname{Var}[\hat{I}_{ij}] = \begin{cases} 2/d, & \text{if } i = j\\ 1/d, & \text{otherwise.} \end{cases}$$

(b) Note that for Count-sketch, we have $\hat{I}_{ij} = \sum_{k=1}^{d} S_{ki} S_{kj}$. By construction of **S**, the diagonal terms \hat{I}_{ii} are always one. Thus, we only need to worry about the non-diagonal terms. It is also important to note that in **S**, entries in a row are independent but the entries in a column are dependent (there can only be one non-zero entry in one column, as shown in the example). Also,

$$S_{ki}S_{kj} = \begin{cases} 1, & \text{with probability } 1/2d \\ -1, & \text{with probability } 1/2d \quad \forall i \neq j. \\ 0, & \text{with probability } 1 - 1/d. \end{cases}$$

Thus,

$$\mathbb{E}[\hat{I}_{ij}] = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise.} \end{cases}$$

The diagonal terms in $\hat{\mathbf{I}}$ are exactly one, and hence, their variance is zero. For the non-diagonal terms, i.e. when $i \neq j$, we have

$$\operatorname{Var}[\hat{I}_{ij}] = \mathbb{E}\left[\left(\sum_{k=1}^{d} S_{ki} S_{kj}\right)^{2}\right] - \left(\mathbb{E}\left[\sum_{k=1}^{d} S_{ki} S_{kj}\right]\right)^{2}$$

$$= \sum_{k=1}^{d} \mathbb{E}[S_{ki}^{2}] \mathbb{E}[S_{kj}^{2}] + \sum_{\substack{k=1,l=1\\k\neq l}}^{d} \mathbb{E}[S_{ki} S_{li}] \mathbb{E}[S_{kj} S_{lj}] - 0$$

$$= \sum_{k=1}^{d} \frac{1}{d^{2}} + 0 = \frac{1}{d}.$$

where the 0 in the last step comes from the fact at in any column j, the product of two elements S_{kj} , S_{lj} is 0 since only one can be non-zero. Hence, the element-wise variance is

$$\operatorname{Var}[\hat{I}_{ij}] = \begin{cases} 0, & \text{if } i = j\\ 1/d, & \text{otherwise.} \end{cases}$$