# DL/T724-2000 电力系统用蓄电池直流电源装置

# 运行与维护技术规程

## 1 范围

本标准规定了电力系统用蓄电池直流电源装置(包括蓄电池、充电装置、微机监控器)运行与维护的技术要求和技术参数,适用于电力系统各部门直流电源的运行和维护。

#### 2 引用标准

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示的版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB/T2900.11-1988 蓄电池名词术语

GB/T2900.33-1993 电工术语 电力电子技术

DL/T459-2000 电力系统直流电源柜订货技术条件

## 3 名词术语

名词术语除按引用标准 GB/T2900.11 及 GB/T2900.33 中的规定外,再增补以下名词术语: 3.1 初充电

新的蓄电池在交付使用前,为完全达到荷电状态所进行的第一次充电。初充电的工作程序 应参照制造厂家说明书进行。

3.2 恒流充电

充电电流在充电电压范围内,维持在恒定值的充电。

3.3 均衡充电

为补偿蓄电池在使用过程中产生的电压不均现象,使其恢复到规定的范围内面进行的充电。

3.4 恒流限压充电

先以恒流方式进行充电,当蓄电池组电压上升到限压值时,充电装置自动转换为限压充电, 至到充电完毕。

#### 3.5 浮充电

在充电装置的直流输出端始终并接着蓄电池和负载,以恒压充电方式工作。正常运行时充电装置在承担经常性负荷的同时向蓄电池补充充电,以补偿蓄电池的自放电,使蓄电池组以满容量的状态处于备用。

3.6 补充充电

蓄电池在存放中,由于自放电,容量逐渐减少,甚至于损坏,按厂家说明书,需定期进行的充电。

3.7 恒流放电

蓄电池在放电过程中,放电电流值始终保持恒定不变,直放到规定的终止电压为止。 3.8 容量试验(蓄电池)

新安装的蓄电池组,按规定的恒定电流进行充电,将蓄电池充满容量后,按规定的恒定电流进行放电,当其中一个蓄电池放至终止电压时为止,按以下公式进行容量计算:

C=Ift(Ah)

式中 C - 蓄电池组容量, Ah; If\_-恒定放电电流, A; 1-放电时间, h。

#### 3.9 核对性放电

在正常运行中的蓄电池组,为了检验其实际容量,将蓄电池组脱离运行,以规定的放电电

流进行恒流放电,只要其中的一个单体蓄电池放到了规定的终止电压,应停止放电。按 3.8 条 计算蓄电池组的实际容量.

## 3.10 稳流精度

交流输入电压在额定电压±10%范围内变化、输出电流在20%~100%额定值的任一数值, 充电电压在规定的调整范围内变化时, 其稳流精度按以下公式计算:

## 3.11 稳定精度

交流输入电压在额定电压±10%范围内变化,负荷电流在0~100%额定值变化时,直流输出电压在调整范围内的任一数值时其稳压精度按以下公式计算;

## 3.12 纹波系数

充电装置输出的直流电压中,脉动量峰值与谷值之差的一半,与直流输出电压平均值之比。 按以下公式计算:

#### 3.13 效率

充电装置的交流额定输入功率与直流输出功率之比。按以下公式计算:

## 3.14"三遥"功能

遥信功能、遥测功能、遥控功能的简称。

#### 3.15 均流及均流不平衡度

采用同型号同参数的高频开关电源模块整流器,以(N+1)或(N+2)多块并联方式运行,为使每一个模块都能均匀地承担总的负荷电流,称为均流。模块间负荷电流的差异,叫均流不平衡度。按以下公式计算:

#### 3.16 电磁兼容

设备或系统在电磁环境中,能正常工作,并不对环境中的任何事物产生不允许的电磁骚扰 的能力。

3.17 严酷等级

在抗扰性试验中规定的影响电磁量值。

3.18 共模电压

在每一导体和所规定的参照点之间(往往是大地或机架)出现的相量电压的平均值。

3.19 差模电压

在规定的一组有效导体中任意两导体之间的电压。

3.20 蓄电池容量符号

C5-5h 率额定容量, Ah;

C10 10h 率额定容量, Ah。

3.21 放电电流符号

I5-5h 率放电电流,数值 C5/5, A;

I10-10h 率放电电流,数值 C10/10, A。

## 4 基本要求

- 4.1 本规程的基本目的。
- 4.1.1 保证发电厂、变电所中直流电源装置有良好的运行状态,从而延长其使用年限;
- 4.1.2 保证发电厂、变电所中直流母线电压均在合格范围;
- 4.1.3 保证发电厂、变电所中蓄电池组有合格的放电容量;
- 4.1.4 保证发电厂、变电所中直流电源装置的供电可靠性;
- 4.1.5 保证蓄电池运行维护人员的安全。
- 4.2 发电厂、变电所中直流电源装置的专职工程师,运行维护人员,局、厂科室、工区、分场等行关工程技术人员,均应熟悉和贯彻执行本规程的有关规定。并制定出本单位直流电源装置现场的运行及维护条例。
- 4.4 防酸蓄电池和大容量的阀控蓄电池应安装在专用蓄电池室内,容量较小的隔镍蓄电池 (40Ah 及以下)和阀控蓄电池(300Ah 及以下)可安装在柜内,直流电源柜可布置在控制室内,也可布置在专用电源室内。
- 4.5 防酸蓄电池室的门应向外开,套间内有自来水、下水道和水池。
- 4.6 防酸蓄电池室附近应有存放硫酸、配件及调制电解液的专用工具的专用房间。若人目处 套间较大,也可利用此房间。
- 4.7 防酸蓄电池室的墙壁、天花板、门、窗框、通风罩、通风管道内外侧、金属结构、支架 及其他部分应涂上防酸漆;蓄电池室的地面应铺社耐酸砖。
- 4.8 防酸蓄电池室的窗户,应安装遮光玻璃或涂有带色油漆的玻璃,以免阳光直射在蓄电池上。
- 4.9 防酸蓄电池室的照明,应使用防爆灯、并至少有一个接在事故照明母线上,开关、插座、熔断器应安装在蓄电池室外。室内照明线应采用耐酸绝缘导线。
- 4.10 防酸蓄电池室应安装抽风机,抽风量的大小与充电电流和电池个数成正比,由以下公式决定:

式中 V-排风量, m3/h; Ich-最大充电电流值, A; N-蓄电池组的电池个数。

 $V=0.07 \times Ich \times N$ 

除了设置抽风系统外,蓄电池室还应设置自然通风气道。通风气道应是独立管道,不可将通风气道引入烟道或建筑物的总通风系统中。

- 4.11 防酸蓄电池室若安装暖风设备,应设在蓄电池室外、经风道向室外送风。在室内只允许安装无接缝的或焊接无汽水门的暖气设备。取暖设备与蓄电池的距离应大于 0.75m。蓄电池室应有下水道,地面要有 0.5%的排水坡度,并应有泄水孔,污水应进行中和或稀释后排放。
- 4.12 蓄电池室的温度应经常保持在5℃~35℃之间,并保持良好的通风和照明。
- 4.13 抗震设防烈度大于或等于 7 度的地区, 蓄电池组应有抗震加固措施。
- 4.14 不同类型的蓄电池,不宜放在一个蓄电池室内.
- 4.15 防酸蓄电池的维护, 宜备有下列仪表, 用具, 备品和资料:
  - a) 仪表:

测量电解液密度用的密度计;

測量电解液温度用的温度计:

测量蓄电池电压用的 41/2 数字万用表,室外用温度计.

測量直流电源中的自动装置,控制板等用的示波器,录波器,真空毫伏表等.

b) 用具:

充注电解液用的玻璃缸,漏斗,量杯,搪瓷盆,塑料桶,注射器,手电筒,耐酸手套,耐酸围裙,胶皮靴子等.

c) 备品:

化验合格的蒸馏水;

密度为 1.40g/cm3 稀硫酸;

中和硫酸用的碳酸氢钠:

防酸隔爆帽;

适当数量的备用蓄电池.

d) 资料:

蓄电池直流电源装置运行日志;

该蓄电池组制造厂家的技术资料,型式试验报告;

充电浮电装置的说明书和电气原理图;

自动装置,微机监控装置的使用说明书;

投运前三次充放电循环,蓄电池组端电压,单体电池电压的记录;运行中定期均衡充电,定期核对性放电的记录.

- - a) 电压为 220V 的蓄电池组不小于 200k Ω;
  - b) 电压为 110V 的蓄电池组不小于 100k Ω;
  - c) 电压为 48V 的蓄电池组不小于 50kΩ。
- 4.18 新安装的直流电源装置在投运前,应进行交接验收试验。
- 5 直流电源装置的基本参数、技术指标、交接验收、运行监视。
- 5.1 基本参数
- 5.1.1 额定输入交流电压: (380±10%) V、(220±10%) V、(50±2%) Hz
- 5.1.2 直流标称电压: 220V、110V、48V。
- 5.1.3 充电装置额定直流输出电流分别为: 5、10、15、20、30、40、50、60、80、100、160、200、250、315、400A。
- 5.1.4 蓄电池组选用额定容量为: 10Ah-3000Ah
- 5.2 技术指标
- 5.2.1 直流母线绝缘电阴应不小于 10M Ω; 绝缘强度应受工频 2Kv,耐压 1min。

- 5.2.2 蓄电池组浮充电压稳定范围:稳定范围电压值为 90%-130%(2V 阀控式蓄电池为 125%) 直流标称电压。
- 5.2.3 蓄电池组充电电压调整范围

电压调整范围为 90%-125% (2V 铅酸式蓄电池); 90%-130% (6V、12V 阀控式蓄电池); 90%-145% (镉镍蓄电池) 直流标称电压。

- 5.2.4 恒流充电时, 充电电流调整 范围为 (20%-100%) In。
- 5.2.5 恒压运行时,负荷电流调整范围为(0-100%) In。
- 5.2.6 恒流充电稳流精度范围
  - a) 磁放大型充电装置,稳流精度应不大于土(2%-5%);
  - b) 相控型充电装置, 稳流精度应不大于土(1%-2%);
  - c) 高频开关模块型充电装置,稳流精度应不大于土(0.5%-1%)。
- 5.2.7 恒压充电稳压精度范围
  - a) 磁放大型充电装置,稳压精度应不大于土(1%-2%);
  - a) 相控型充电装置, 稳压精度应不大于± (0.5%-1%):
  - c) 高频开关模块型充电装置,稳压精度应不大于±(0.1%-0.5%)。
- 5.2.8 直流母线纹波系数范围
  - a) 磁放大型充电装置, 纹波系数应不大于 2%;
  - b) 相控型充电装置, 纹泚系数应不大于 (1%-2%);
  - c) 高频开关模块充电装置, 纹波系数应不大于(0.2%-0.5%)
- 5.2.9 噪声要求≤55dB(a), 若装设有通风机时应不大于 60dB(a)。
- 5.2.10 直流电源装置中的自动化装置应具有电磁兼容的能力。
- 5.2.11 充电装置返回交流电源侧的各次电流谐波,应符合 DL/T459-2000 的要求。
- 5.3 交接验收

直流电源装置,当安装完毕后,应做投运前的交接验收试验,运行接收单位应派人参加试验,所试项目应达到技术要求后才能投入试运行,在72h试运行中若一切正常,接收单位方可签字接收。交接验收试验及要求如下。

- 5.3.1 绝缘监察及信号报警试验
- a) 直流电源装置在空载运行时,额定电压为 220V,ET 25kΩ电阻;额定电压为 110V,用 7KΩ电阻;额定电压为 48V,用 1.7kΩ电阻。分别使直流母线接地,应发出声光报警。
  - b) 直流母线电压低于或高于整定值时,应发出低压或过压信号及声光报警。
  - c) 充电装置的输出电流为额定电流的 105%-110%时, 应具有限流保护功能。
- d) 若装有微机型绝缘监察仪的直流电源装置,任何一支路的绝缘状态或接地都能监测、显示和报警。
  - e) 远方信号的显示、监测及报警应正常。
- 5.3.2 耐压及绝缘试验
- a) 在做耐压试验之前,应将电子仪表、自动装置从直流母线上脱离开, 用工频 2kV, 对直流母线及各支路, 耐压 1min,应不闪络、不击穿。
- b) 直流电源装置的直流母线及各支路,用 1000V 摇表测量,绝缘电阻应不小于 10MΩ。 5.3.3 蓄电池组容量试验

不同的蓄电池组种类具有不同的充电率和放电率。

- a) 防酸蓄电池组的恒流充电电流及恒流放电电流均为110, 其中一个单体蓄电池放电终止电压到 1.8V 时,应停止放电。在三次充放电循环之内,若达不到额定容量值的 100%,此组蓄电池为不合格。]
  - b) 關镍蓄电组容量试验。

福镍蓄电池组的恒流充电电流和恒流放电电流均为15,其中一个电池放电终止电压到1V,应停止放电。在三次充放电循环之内,若达不到额定容量值的100%,此组蓄电池为不合格。

b) 阀控蓄电池组容量试验

阀控蓄电池组的恒流限压充电电流和恒流放电电流均为 110,额定电压为 2V 的蓄电池,放电终止电压为 1.8V;额定电压为 6V 的组合式电池,放电终止电压为 5.25V;额定电压为 12V 的组合蓄电池,放电终止电压为 10.5V。只要其中一个蓄电池放到了终止电压,应停止放电。在三次充放电循环之内,若达不到额定容量值的 100%,此组蓄电池为不合格。

- d) 防酸蓄电池、镉镍蓄电池在充放电后,应测电解液的密度并符合技术要求。
- 5.3.4 充电装置稳流精度范围见 5.2.6 规定
- 5.3.5 充电装置稳压精度范围见 5.2.7 规定
- 5.3.6 充电装置纹波系数范围见 5.2.8 规定
- 5.3.7 直流母线连续供电试验

交流电源突然中断,直流母线应连续供电,电压波动不应大于额定电压的10%

- 5.3.8 微机控制自动转换程序试验
- a) 阀控蓄电池的充电程序(恒流→恒压→浮充):

根据蓄电池不同种类, 确定不同的充电率进行恒流充电, 蓄电池组端电压达到某一定值时, 微机将控制充电装置自动转为恒压充电, 当充电电流逐渐减小到某一整定值时, 微机将控制充电装置自动转为浮充电运行。

b) 阀控蓄电池的补充充电程序:

微机将按所定的时间(1个月或者3个月),控制充电装置自动地进行恒流充电→恒压充电→浮充电并进入正常运行,始终保证蓄电池组具有额定容量。交流电源中断,蓄电池组将无时间间断地向直流母线供电,交流电源恢复送电时,充电装置将进行恒流充电,再进入恒压充电和浮充电,并转入正常运行。

c)"三選"功能

控制中心通过遥信、遥测、遥控接口(RS485、422、232), 去了解和控制动议变电所中正在运行的直流电源的装置。

遜信內空: 直流母线电压过高或过低信号、直流母线接地信号, 充电装置故障等信号。

遥测内容:直流母线电压及电流值、电池组电压值,充电电流值等参数。

遥控内容: 直流电源装置的开机、停机、充电装置的切换。

- 5.3.9 验收单位应取得资料。
- a) 安装使用说明书、设备出厂试验报告、装箱清单、自动装置说明书、蓄电池充电记录 及曲线;
  - b) 蓄电池组在投运前交接试验及各项参数测试报告;
  - c) 电气原理接线图和二次接线图:
  - d) 双方签字的交接验收报告。
- 5.4 运行监视
- 5.4.1 绝缘状态监视

运行中的直流母线对地绝缘电阴值应不小于 10MΩ。值班员每天应检查正母线和负母线对地的绝缘值。若有接地现象,应立即寻找和处理。

5.4.2 电压及电流监视

值班员对运行中的直流电源装置,主要监视交流输入电压值、充电装置输出的电压值和电流值,蓄电池组电压值、直流母线电压值、浮充电流值及绝缘电压值等是否正常。

5.4.3 信号报警监视

值班员每日应对直流电源装置上的各种信号灯、声响报警装置进行检查。

- 5.4.4 自劝装置监视
- a)检查自动调压装置是否工作正常,若不正常,启动手动调压装置,退出自动调压装置,通知检修人员调试修复,
- b) 检查微机监控器工作状态是否正常,若不正常应退出运行,通知检修人员调试修复。 微机监控器退出运行后,直流电源装置仍能正常工作,运行参数由值班员进行调整。

6 蓄电池运行及维护

6.1 防酸蓄电池组的运行及维护

6.1.1 防酸蓄电池组的运行方式及监视



- a) 防酸蓄电池组在正常运行中均以浮充方式运行, 浮充电压值一般控制为(2.15~2.17) V×N(N为电池个数)。GFD 防酸蓄电池组浮充电压值可控制到 2.23V×N。
- b) 防酸蓄电池组在正常运行中主要监视端电压值、每只单体蓄电池的电压值、蓄电池液面的高度、电解液的比重、蓄电池内部的温度、蓄电池室的温度、浮充电流值的大小。 6.1.2 防酸蓄电池组的充电方式
  - a) 初充电

按制造厂家的使用说明书进行初充电。

b) 浮充电

防酸蓄电池组完成初充电后,以浮充电的方式投入正常运行,浮充电流的大小,根据具体使用说明书的数据整定,使蓄电池组保持额定容量。

c) 均衡充电

防酸蓄电池组在长期浮充电运行中,个别蓄电池落后,电解液密度下降,电压偏低,采用 均衡充电方法,可使蓄电池消除硫化恢复到良好的运行状态。

均衡充电的程序: 先用 II0 电流对蓄电池组进行恒流充电, 当蓄电池端电压上升到 (2.30~2.33) V×N, 将自动或手动转为恒压充电, 当充电电流减小到 0.1110 时, 可认为蓄电池组已被充满容量,并自动或手动转为浮充电方式运行。

6.1.3 核对性放电

长期浮充电方式运行的防酸蓄电池,极板表面将逐渐生产硫酸铅结晶体(一般称之为"硫化"),堵极板的微孔,阻碍电解液的渗透,从而增大了蓄电池的内电阻,降低了极板中活性物质的作用,蓄电池容量大为下降。核对性放电,可使蓄电池得到活化,容量得到恢复,使用寿命延长,确保发电厂和变电站的安全运行。

核对性放电程序如下:

a) 一组防酸蓄电池

发电厂或变电所只有一组蓄电池组,不能退出运行,也不能作全核对性放电,只允许用 110 电流 放出其额定容量的 50%,在放电过程中,单体蓄电池电压还不能低于是 1.9V。放电后,应立即用 110 电流进行恒流充电,在蓄电池组电压达到(2.30~2.33)V×N 时转为恒压充电,当充电电流下降到此为止 0.1110 电流时,应转为浮充电运行,反复几次上述放电充电方式后,可认为蓄电池组得到了活化,容量得到了恢复。

#### b) 两组防酸蓄电池

发电厂或变电所,若具有两组蓄电池,则一组运行,另一组断开负荷,进行全核对性放电。放电电流为110恒流。当单体电压为终止电压 1.8V 时,停止放电,放电过程中,记下蓄电池组的端电压,每个蓄电池端电压,电解液密度。若蓄电池组第一次核对性放电,就放出了额定容量,不再放电,充满容量后便可投入运行。若放充三次均达不到额定容量的 80%,可判此组蓄电池使用年限已到,并安排更换。

e) 防酸蓄电池核对性放电周期

新安裝或大修中更換过电解液的防酸蓄电池组,第1年,每6个月进行一次核对性放电;运行1年以后的防酸电池组,1~2年进行一次核对性放电。 6.1.4 运行维护

- a) 对防酸蓄电池组,值班员每目应进行巡视,主要检查每只蓄电池的液面高度,看有无漏液,若面低于下线,应补充蒸馏水,调整电解液的比重在合格范围内。
- b) 防酸蓄电池单体电压和电解液的比重的测量,发电厂两周测量一次,变电所每月测量一次,按录表填好测量记录,并记下环境温度。
- c) 个别落后的防酸蓄电池,应通过均衡充电方法进行处理,不允许长时间保留在蓄电池组中运行若处理无效,应更换。