

Graph-based Neural Architecture Search with Operation Embeddings

Michail Chatzianastasis, George Dasoulas, Georgios Siolas, Michalis Vazirgiannis

Introduction

Neural Architecture Search (NAS) is a technique that automatically designs a neural network architecture. A crucial part of the NAS pipeline is the *encoding* of the architecture.

Motivation: Most of the existing approaches either fail to capture the structural properties of the architectures or use fixed hand-engineered vectors, that cannot exploit information from data, to encode the operators.

Contributions:

- We propose **operation embeddings**:
 - a continuous representation of the applied operators,
 - integration into various graph autoencoders as parameters.
- We demonstrate that the learnable representations of the operations lead to generation of state-of-the-art architectures.
- We observe that the top-performing architectures share similar structural patterns:
 - clustering coefficient
 - average path length.

Neural Network as a DAG

Computation graph

 $\mathbf{G}_{\mathcal{A}} = (\mathbf{V}, \mathbf{E})$

- of an architecture \mathcal{A} :
 · Nodes V: the applied operations
- Edges E: the signal flow the applied operations
- · Adjacency matrix $\mathbf{A} \in \{0,1\}^{|V| \times |V|}$
- · Feature matrix $\mathbf{X} \in \mathbb{Z}^{|V| \times |K|}$

Operation Embeddings in Graph Variational Autoencoders

- We propose the **incorporation of the embedding** $\mathcal{O}: K \to \mathbb{R}^{|K| \times d_{op}}$ into the autoencoder model. The mapping $\mathcal{O}(\cdot)$ projects the set of available operations into a d_{op} -dimensional continuous space in a differentiable manner.
- **GNN model** $\phi: \mathbb{Z}^{|V| \times |V|} \times \mathbb{Z}^{|V| \times |K|} \to \mathbb{R}^{|V| \times d}$ that takes as input the architecture graph, and outputs a representation of every node.
- $\psi_1, \psi_2 : \mathbb{R}^{|V| \times d} \to \mathbb{R}^l$ denote two differentiable pooling functions that.
- Encoder: $\mu_G = \psi_1(\phi(\mathbf{A}, \mathcal{O}(\mathbf{X}))), \sigma_G = \psi_2(\phi(\mathbf{A}, \mathcal{O}(\mathbf{X}))).$
- Loss function: $L(\phi, \theta; \mathbf{A}, \mathbf{X}) = \mathbb{E}_{q_{\phi}(\mathbf{Z}|\mathbf{A}, \mathbf{X})}[\log p_{\theta}(\mathbf{A}, \mathbf{X}|\mathbf{Z})] \mathrm{KL}[q_{\phi}(\mathbf{Z}|\mathbf{A}, \mathbf{X})||p(\mathbf{Z})], \text{ where KL denotes the Kullback-Leibler divergence.}$

Best Generated Architectures

- **DVAE-EMB** [1] architectures Acc%: **95.35**, 95.33, 95.17 (above)
- **DVAE** [2] architectures Acc%: **94.8**, 94.74, 94.7 (below)
- Exhibit similarstructural characteristics.
- DVAE-EMB present a **smoother** operation transition than those generated from D-VAE.

Experiments

Basic abilities of Variational Graph Auto-Encoders

Model	Accuracy	Validity	Uniqueness
D-VAE	99.96	100.00	37.26
GCN	98.70	99.53	34.00
S-VAE	99.98	100.00	37.03
GraphRNN	99.85	99.84	29.77
DVAE-EMB	99.99	100.00	39.15
GCN-EMB	98.87	99.95	32.63

Predictive Performance of Encoded Latent Embeddings

Model	RMSE	Pearson's r
D-VAE	0.384 ± 0.002	0.920 ± 0.001
GCN	0.485 ± 0.006	0.870 ± 0.001
S-VAE	0.478 ± 0.002	0.873 ± 0.001
GraphRNN	0.726 ± 0.002	0.669 ± 0.001
DVAE-EMB	$0.371\ \pm0.003$	0.925 ± 0.001
GCN-EMB	0.441 ± 0.002	0.892 ± 0.001

Architecture Performance with respect to Graph Properties

References

- [1] Chatzianastasis, M., Dasoulas, G., Siolas, G., Vazirgiannis, M. (2021). Graph-Based Neural Architecture Search With Operation Embeddings. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops.
- [2] Zhang, M., Jiang, S., Cui, Z., Garnett, R., Chen, Y. D-VAE: A Variational Autoencoder for Directed Acyclic Graphs, NeurIPS (2019)