

Aprendizado Supervisionado

Modelos Lineares

Prof. Raphael Carvalho Introdução

- Uma das principais aplicações de aprendizado de máquina é a previsão, isto é, quando queremos prever algum atributo tendo somente alguns dados de entrada.
- Determinamos como fazer essa previsão com base em exemplos históricos de dados de entrada e saída, isto é, baseado em comportamentos observados no passado, conseguimos fazer inferências sobre o futuro.

Modelo Preditivo

- É aquele responsável por relacionar dados de entrada (variáveis independentes) com o resultado esperado (variável dependente ou variável alvo contínua)
- Diferentes modelos geram formas matematicamente muito diferentes de construir a relação entre as variáveis de entrada e de saída, tornando-os assim capazes de captar padrões estatísticos também diferentes.

Modelo Preditivo

- Em regra, é preciso realizar experimentos computacionais, avaliando o desempenho de modelos de tipos diferentes para descobrir qual é o mais adequado a uma tarefa e um conjunto específico de dados. Por que?
- Porque cada tipo de modelo tem suas características, seus pontos fortes e fracos e sua lógica de funcionamento.
 Não é preciso reimplementar um algoritmo do zero para entender suas propriedades fundamentais e utilizá-lo adequadamente

Modelos Preditivos

- São basicamente uma função matemática que, quando aplicada a uma massa de dados, é capaz de identificar padrões e oferecer uma previsão do que pode ocorrer.
- Existem vários tipos de modelos de predição, dentre eles se destacam os modelos lineares.
- Esses modelos compreendem uma ampla família de modelos derivados da estatística, embora apenas dois deles (regressão linear e a regressão logística) sejam frequentemente utilizados.

- São fáceis de entender, rápidos de criar e moleza de implementar do zero.
- Se você os dominar, você realmente tem o equivalente a um canivete suíço para aprendizado de máquina que não pode fazer tudo perfeitamente, mas pode atendê-lo prontamente e com excelentes resultados.
- Os dois modelos lineares mais conhecidos são a regressão linear e a regressão logística.

Regressão Linear

• É a ferramenta estatística que nos ajuda a quantificar a relação entre uma variável específica e um resultado

 Podemos isolar o efeito de uma variável enquanto mantemos os efeitos das outras variáveis constantes.
A imensa maioria dos estudos que você lê nos jornais é baseada em análise de regressão.

Regressão Linear

• Em essência, a regressão linear busca encontrar o "melhor encaixe" para uma relação linear entre duas variáveis.

Exemplo de Regressão Linear

• Relação entre altura e peso.

Ç

Exemplo de Regressão Linear

• Se lhe fosse pedido que descrevesse o padrão, você

- poderia dizer algo mais ou menos do tipo: "O peso parece aumentar com a altura".
- A regressão linear nos dá a possibilidade de ir além e "encaixar uma reta" que melhor descreva uma relação linear entre as duas variáveis (Peso e Altura)
- Muitas retas possíveis são amplamente consistentes com os dados de altura e peso, mas como sabemos qual é a melhor reta para esses dados?

Exemplo de Regressão Linear

Possível resultado de uma reta

Como resolver?

• É aqui que entra em cena o aprendizado de máquina! •

A ideia do algoritmo é oferecer vários dados para que ele encontre a equação que melhor descreve e se ajusta aos dados, isto é, que minimize a variância dos erros em uma predição.

 A Regressão Linear utiliza tipicamente uma metodologia chamada de Mínimos Quadrados Ordinários (MQO)

Como resolver?

 MQO encaixa a reta que minimiza a soma dos residuais elevados ao quadrado.

- Residual é a distância vertical a partir da reta de regressão, exceto para aquelas observações que se situam diretamente em cima da reta, para as quais o residual vale zero.
- A fórmula pega o quadrado de cada residual antes de somar todos e isso aumenta o peso dado àquelas observações mais distantes da reta de regressão – chamadas de extremos ou outliers.
- Dessa forma, os mínimos quadrados ordinários "encaixam" a reta que minimiza a soma dos residuais ao quadrado conforme é ilustrado na imagem da página anterior.

Resultados

Os mínimos quadrados ordinários nos dão a melhor

descrição de uma relação linear entre duas variáveis. • O resultado não é somente uma reta, mas uma equação que descreve essa reta.

• Essa equação é conhecida como equação de regressão linear simples e assume a seguinte forma:

$$y = a + bx ou y = \alpha + \beta x$$

Equação de regressão linear simples

$$y = a + bx$$

- y: peso em quilos;
- a: intercepto, isto é, ponto em que a reta intercepta o eixo y (valor de y quando x = 0)
- b: inclinação da reta
- x: altura em centímetros.

Analisando o resultado

• A inclinação da reta que encaixamos descreve a "melhor"

relação linear entre altura e peso para essa amostra, conforme definida pelos mínimos quadrados ordinários. • A reta de regressão é perfeita?

- É claro que não!
- Ela com certeza não descreve perfeitamente toda observação nos dados.

Regressão Logística

• É um algoritmo de aprendizagem de máquina supervisionado utilizado para classificação

- Em geral, a utilização da regressão logística se dá com categorias binárias, isto é, aquelas que podem assumir somente dois valores
- Ex: grande ou pequeno, alto ou baixo, sim ou não, lucro ou prejuízo, válido ou inválido...

Regressão Logística

 Vamos imaginar que queiramos definir se um determinado paciente está ou não infectado com coronavírus

- Para tal, vamos reunir diversas informações contidas em um exame de sangue como contagem de anticorpos, contagem de plaquetas, contagem de leucócitos (variáveis independentes)
- Em seguida, aplica-se um coeficiente ou peso a cada uma dessas variáveis que comporão uma função de regressão linear múltipla e retornará um determinado valor como resposta (variável dependente).

Regressão Logística

 Ocorre que a regressão logística é um tipo de algoritmo de classificação, logo precisamos transformar esse valor

- real retornado pela regressão linear em uma das categorias pré-definidas por um supervisor.
- Para tal, temos que utilizar um modelo logístico para fazer um mapeamento desse valor dentro de um intervalo entre [0, 1], que pode ser interpretado como a probabilidade de ser da categoria que nos interessa. 21

Função Sigmóide

 Função de ativação que recebe como entrada um número real [-∞, +∞] e retorna um número entre [0,1]

Como isso é feito?

 Com o conjunto de casos em que sabemos se a pessoa estava infectada ou não, podemos treinar o modelo de

- modo que possa ir ajustando até encontrar um valor razoável.
- O modelo calcula os coeficientes das variáveis independentes da minha regressão linear para refletir um valor coerente de probabilidade após aplicar a regressão logística

```
resultado = a + b*(qtd_anticorpos) + c*(qtd_leucócitos) + d*(qtd_plaquetas) ...
```

Como isso é feito?

• Em seguida, coloca-se os valores de quantidade de anticorpos,

- leucócitos e plaquetas de uma pessoa que está com coronavírus, o modelo ajusta os coeficientes (a, b, c, d) e retorna um resultado.
- Depois, após aplicar a função sigmóide nesse resultado, espera-se que retorne uma alta probabilidade de essa pessoa estar com coronavírus (Ex: 0,9), dado que a pessoa realmente está infectada com coronavírus, logo esse seria um resultado coerente.
- Se retornar um valor como 0,2 (isto é, 20% de probabilidade de essa pessoa estar infectada com coronavírus), significa que o modelo ainda não está bom pois sabemos que pessoa efetivamente está infectada com coronavírus