AttAcc! Unleashing the Power of PIM for Batched Transformer-based Generative Model Inference

Jaehyun Park*†, Jaewan Choi*†, **Kwanhee Kyung**†, Michael Jaemin Kim†, Yongsuk Kwon†, Nam Sung Kim‡, Jung Ho Ahn†

[†] Seoul National University, [‡] University of Illinois Urbana Champaign

* Equally contributed

Presenter: Kwanhee Kyung (kwanhee.kyung@scale.snu.ac.kr)

Why Transformer-based Generative Model (TbGM) Inference?

Why Transformer-based Generative Model (TbGM) Inference?

Model size

Why Transformer-based Generative Model (TbGM) Inference?

Sequence length (L) supported by TbGM

TbGM Inference

Characteristics of the Gen Stage

Characteristics of the Gen Stage

FC layers are all general matrix-vector multiplications (GEMVs)

Characteristics of the Gen Stage

The attention layer also has GEMVs (GEMV_{score} and GEMV_{context})

Prior TbGM Accelerators

- Many prior works [1,2,3] for TbGM accelerator focused on accelerating FC layers
 - FC layers account for a significant portion of execution time and energy consumption

Execution time and energy consumption breakdown of TbGM inference (GPT3-175B on DGX-A100 with HBM3 , L_{in} =2048, L_{out} =128)

^[1] S Lee et al., "Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology," ISCA, 2021

^{2]} S Hong et al., "DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation," MICRO, 2022.

D Kwon et al., "A 1ynm 1.25V 8Gb 16Gb/s/Pin GDDR6-Based Accelerator-in-Memory Supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Application," JSSC, 2023

Prior TbGM Accelerators

- Many prior works [1,2,3] for TbGM accelerator focused on accelerating FC layers
 - FC layers account for a significant portion of execution time and energy consumption

However, a key assumption so far is that the batch size is 1

Execution time and energy consumption breakdown of TbGM inference (GPT3-175B on DGX-A100 with HBM3 , L_{in} =2048, L_{out} =128)

^{2]} S Hong et al., "DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation," MICRO, 2022.

Outline

- We discover that the attention layer
 - becomes more important in batched TbGM inference
 - poses several challenges in conventional systems
- To address these challenges, we propose
 - processing-in-memory (PIM)-based accelerator (AttAcc) for the attention layer
 - heterogeneous system with AttAcc and xPU for end-to-end TbGM inference
 - optimizations that improve utilization of the heterogeneous system

Why Large Batch Size Matters

Ensure sufficient requests from increased TbGM inference usage

Chat-GPT sprints to 100 million users

Source: World of Statistics

Why Large Batch Size Matters

- Ensure sufficient requests from increased TbGM inference usage
- Batching technique for TbGM inference [1] enables high throughput and energy efficiency

Throughput and energy consumption per output token of TbGM inference (GPT-3 175B, DGX A100 with HBM3)

What If Batch Size Increases?

- FC layers become more compute-intensive
 - Weight matrices are shared across different requests

What If Batch Size Increases?

- The attention layer is still memory-intensive
 - The attention layer has unique KV matrices per request
 - The arithmetic intensity remains nearly 1 regardless of the batch size

Throughput per output token of TbGM inference (GPT-3 175B, DGX A100 with HBM3)

- Large memory capacity requirement from KV matrices
 - KV matrices require more memory capacity in proportion to batch size.

Throughput and required memory capacity per output token of TbGM inference (GPT-3 175B, DGX A100 with HBM3)

- Large memory capacity requirement from KV matrices
 - KV matrices require more memory capacity in proportion to batch size.

Throughput and required memory capacity per output token of TbGM inference (GPT-3 175B, DGX A100 with HBM3)

- Long latency of the attention layer
 - The latency of the attention layer increases linearly with batch size.
 - It can limit batch sizes under service level objectives (SLOs).

The Gen stage time breakdown and compute utilization (GPT-3 175B, DGX-unlimited memory capacity)

Low utilization of computing units from attention layer

The Gen stage time breakdown and compute utilization (GPT-3 175B, DGX-unlimited memory capacity)

Low utilization of computing units from attention layer

We propose Processing-in-Memory (PIM)-based accelerator for the attention layer

The Gen stage time breakdown and compute utilization (GPT-3 175B, DGX-unlimited memory capacity)

Processing-In-Memory (PIM)

PIM exploits abundant internal bandwidth to processing units (PUs) closer to the memory.

Why Processing-In-Memory (PIM) for the Attention Layer?

- High memory bandwidth requirement
 - The attention layer is memory-intensive GEMV
 - The size of the KV matrices is too large to be cached
- Relatively low external bandwidth requirement
 - KV matrices are written once in the Sum stage and read many times in Gen stages

Why Processing-In-Memory (PIM) for the Attention Layer?

- High memory bandwidth requirement
 - The attention layer is memory-intensive GEMV
 - The size of the KV matrices is too large to be cached
- Relatively low external bandwidth requirement
 - KV matrices are written once in the Sum stage and read many times in Gen stages
 - The input and output of the attention layer are vectors that are much smaller than KV matrices.

AttAcc: PIM-based Attention Accelerator

- We propose AttAcc, which consists of HBM-based PIMs and a controller
- HBM-based PIM has
 - GEMV units
 - Softmax unit
 - Accumulators

Placed on each bank similar to Samsung HBM-PIM [1] and Hynix AiM [2]

- Placed on each bank similar to Samsung HBM-PIM [1] and Hynix AiM [2]
 - AttAcc_{Buffer} vs AttAcc_{BG} vs AttAcc_{Bank}

- Placed on each bank similar to Samsung HBM-PIM [1] and Hynix AiM [2]
 - AttAcc_{Buffer} vs AttAcc_{BG} vs AttAcc_{Bank}

- Placed on each bank similar to Samsung HBM-PIM [1] and Hynix AiM [2]
- FP16 multipliers, FP16 adders, buffer for input vectors, and control unit.

AttAcc: Softmax Unit

Placed on buffer die

AttAcc: Softmax Unit

- Placed on buffer die
 - Communication with multiple GEMV units is required
 - Complex processing units and requirement for large SRAM buffers for intermediate vectors
 - Placing softmax unit on DRAM die is overkill.
 - = For GPT-3 175B, the FLOPs of softmax is **50 times smaller** than GEMVs in the attention layer

AttAcc: Softmax Unit

- Placed on buffer die
- Processing units such as exponents, multipliers, and adders supporting FP32
- Buffer for intermediate vectors and control unit.

AttAcc: Accumulator

- Placed hierarchically between the GEMV and the softmax units
- Supports the reduction of partial results from different GEMV units

AttAcc: Accumulator

- Placed hierarchically between the GEMV and the softmax units
- Supports the reduction of partial results from different GEMV units

Please refer to the full paper for more detailed design exploration and data mapping.

Heterogeneous System with AttAcc

Heterogeneous system with xPUs and AttAccs

Heterogeneous System with AttAcc

- High performance
 - High computing power of xPU for batched FC layers with high FLOPs/Byte
 - Amplified memory bandwidth of PIM for the attention layer with low FLOPs/Byte

Roofline model of the DGX-A100 with HBM3

Heterogeneous System with AttAcc

- High performance
 - High computing power of xPU for batched FC layers with high FLOPs/Byte
 - Amplified memory bandwidth of **PIM for the attention layer** with low FLOPs/Byte
- High energy efficiency
 - Leveraging high reusability of weights of batched FC layers through on-chip caches in xPU
 - Benefit from short data transfer in PIM for the attention layer

Heterogeneous System with AttAcc

- Proposed system consists of multiple xPUs (e.g., GPU, TPU) and attention accelerators *AttAcc*s
 - Batched FC layers on multiple xPUs
 - Attention layers on AttAccs
- AttAccs and xPUs can be connected via an interface such as NVLINK, PCIe, and CXL.

Heterogeneous system with xPUs and AttAccs

Execution Flow of the Heterogeneous System

Naïve Approach: Batch-level Pipelining

Naïve Approach: Batch-level Pipelining

Head-level Pipelining

FC layers that precede or follow the attention layer can be divided into heads.

Head-level Pipelining

FeedForward Co-processing

FeedForward Co-processing

Experimental Setup

- Performance
 - Ramulator2 [1] and in-house simulator to evaluate AttAcc and DGX, respectively
- Energy and area
 - RTL synthesis for compute units and CACTI for buffer
 - The area overhead of AttAccs is 10.84% of a HBM.
 - = Scaling the area to DRAM process for units in DRAM die
- Target model
 - Various size of TbGMs: Llama 65B, GPT-3 175B, and MT-NLG 530B
- Comparison
 - DGX_{Base}: DGX-A100 having 40 HBM stacks
 - DGX_{Large}: DGX-A100 having 80 HBM stacks
 - DGX+AttAcc: DGX_{Base} + 8 AttAccs with 5 HBM stacks each

Evaluation (Performance)

- DGX+AttAccs outperforms DGX_{Base} and even DGX_{Large} up to by 5.93x and 2.81x, repectively
 - 4.84x and 2.48x from *AttAcc*
 - 1.15x from head-level pipelining
 - 1.10x from feedforward co-processing

Evaluation (Performance)

- DGX+AttAccs achieves further throughput improvement under SLO constraint
 - Performance improvement from relieving the batch size constraints caused by SLO

Normalized throughput of GPT-3 175B inference for various SLOs

Evaluation (Energy Efficiency)

- Energy consumption of DGX+AttAccs compared to DGX_{Base} (DGX_{Large}) is reduced by up to
 - 66.7% (62.6%) for Llama 65B
 - 65.9% (48.8%) for GPT-3 175B
 - 66.8% (29.1%) for MT-NLG 530B

Conclusion

- We discovered that the attention layer poses a constraint on the batch size in conventional systems (e.g., DGX) due to the long latency and memory capacity requirements.
- We proposed a **heterogeneous system** (*DGX* + *AttAccs*) with the conventional system for the batched FC layer and *AttAccs* for the attention layer, leveraging PIM architecture.
- We explored GEMV unit placement and data mapping in the PIM architecture and proposed efficient pipelining and co-processing optimizations to improve system utilization.
- *DGX+AttAccs* achieved higher throughput (up to 2.81×) and energy efficiency (up to 2.67×) compared to the monolithic GPU system.

Thank you!

Question?