Mikroprozessortechnik

Prof. Dr. Michael Lipp

8-Bit Speicher

16-Bit Speicher

- Zugriff immer auf 16-bit gleichzeitig
- Abhängig vom Kontext kann die Adresse auch in "Byte zum Anfang" angegeben werden

fbeit FACHBEREICH ELEKTROTECHNIK UND INFORMATIONSTECHNIK

Generelle Darstellung von Speicher

Terminologie

- Bit Binary Digit
- Byte 8 bit
- KiB 2^{10} Byte = 1024 Byte ("Kibibyte")
- MiB 2^{20} Byte = 1.048.576 Byte ("Mebibyte")
- GiB 2^{30} Byte = 1.073.741.824 ("Gibibyte")
- TiB 2^{40} Byte = 1.099.511.627.776 ("Tebibyte")

• ...

Prinzip Speichermatrix

- Speicher besteht aus matrixförmig angeordneten Speicherzellen
- Jede Zelle kann ein Bit darstellen (0 oder 1)

15 1	14 0	13 1	12 1
11 1	10 1	9 0	8
⁷ 0	6 1	5 O	4 1
³ 0	² 0	1 1	⁰ 1

Prinzip Speichermatrix

 Beispiele für Speicherzugriffe via Matrix-Index

Prinzip Speichermatrix

Prinzip Speichermatrix

Prinzip Speichermatrix

 Verbreiterung der Wortbreite durch ,Hintereinanderschalten' mehrerer 1-bit Matrizen

Prinzip Speichermatrix

 Wie jedes einzelne Bit physikalisch abgespeichert wird ist technologieabhängig

SRAM, FLASH, ...

Prinzip Speichermatrix

 Wie jedes einzelne Bit physikalisch abgespeichert wird ist technologieabhängig

SRAM, FLASH, ...

... oder "old fashioned" (Ferritkernspeicher)

fbeit

 Frühe DRAM Bausteine waren auch 1-Bit-Speicher (z.B. TMS4116) CAS --

Verschiedene Speichertypen

RAM flüchtig

Random Access Memory Der Speicher kann beliebig oft in beliebiger Reihenfolge gelesen und geschrieben werden.

ROM nicht flüchtig

Read Only Memory Speicher kann im normalen Betrieb nur gelesen werden.

ROM erhält bei der Herstellung seinen Speicherinhalt, anschließend nicht mehr veränderbar

Festprogrammierte ROI

- Maskenprogrammiert
- Fuse-Technik
- Gatter-Logik

Löschbare ROMs

- UV löschbar (EPROM)
- Elektrisch löschbar (EEPROM, Flash)

Under the hood USB Stick

Interner Aufbau STM32F41RE

Bus

• Letzter Teil der "von Neumann" Architektur

Bus

• ... oder der Harvard-Architektur...

Bus

• ... oder der ARM-Architektur

Figure 4. Multi-AHB matrix

- AHB: Advanced High Performance Bus
- APB: Advanced Peripheral Bus
- I-bus: Instruction Fetch
- D-bus: Data and Debug access to Code memory
- S-bus: System Interface

h_da

....
HOCHSCHULE DARMSTADT
UNIVERSITY OF APPLIED SCIENCES

Gesamtarchitektur (Vorschau ESY)

• Block Diagramm [F401-DS], S. 14

Taktversorgung (Vorschau ESY)

