

SysEng 6542 Model Based Systems Engineering

Modeling Behavior – Part 2

Dr Quoc Do

Scope

SysML Taxonomy of Diagrams

Sequence Diagram

- UML Behavior Diagram
- Represents Message-based behavior and interaction between system components and any externals (actors, environment, etc.)
- Only represent interactions, so no model element type necessary

Sequence Diagram An example

 Interactions take place in the context of a block. The example show interaction within a System Context block.

Events and Occurrences

- Events an ordered list of things that happen along a lifeline
- Occurrences instances of events during interaction
- Trace an interaction to validate an ordered set of occurrences in time
- There are three categories of events:
 - The sending and receiving of messages;
 - The start and completion of execution of actions and behavior; and
 - Creation and destruction of instances

Synchronous/Asynchronous

- Synchronous wait for a response (closed arrowhead)
- Asynchronous send message and continue (open arrowhead)
- Reply dashed line & open arrowhead

Weak Sequencing

Message can Trigger Execution

Create and Destroy Messages

Message Overtaking

Time on a Sequence Diagram

Modelling Complex Scenarios Interaction Operators

- Seq Weak sequencing
- Par Parallel, each following seq
- Alt/else One selected based on guard. Has a choice between fragments
- Opt unary operator (go/no-go)
- Loop repeat fragment until constraint is met

Lifelines obscured if not used

Sequence Diagram

More Interaction Operators

- Strict like seq, but also affects receives
- Break if satisfied, operand is executed instead of remainder of fragment
- Critical indicates that operand must be performed with no interleaving
- Consider only use messages from a specified set of operations/signals
- Ignore do not consider messages from a specified set of operations/signals
- Assert overrides consider and ignore operators within the assert's operand

Consider/Ignore/Assert

Interaction References

- Interactions can reference previously defined interactions (interaction use) for:
 - Reuse; and
 - Scalability
- Gates used to show message exchange
 - Formal gate on the called interaction; and
 - Actual gate on the calling interaction
- Reference operands denoted as ref

Reference Usage

Reference Usage

Interactions within the Alarm System

Reference Usage

Nesting of Lifeline Decomposition

Example – A security guard wishes to log into a company security system

Use Case

SysML Taxonomy of Diagrams

Use Case Diagram

- UML Behavior Diagram
- Provides a means for describing functionality in terms of system usage by actors
- Typically used only at high levels
- Actors represent any external system that participates in the use of the system (human, organization, etc.)
- Typically shown as a stick figure with a name underneath

Use Case Diagram

Use Case Diagram

Use Case Relationships

- Inclusion allows a base use case to include the functionality of another use case as part of its overall functionality when performed.
- Extension a fragment of functionality that describes an exceptional behavior
 - Must specify extension point

Use Case Description

- Text based document to support use case definition
 - Preconditions: must be met to begin
 - Postconditions: must exist when completed
 - Primary flow: most likely scenario(s)
 - Alternate/exception flows: other scenario(s)

Elaborating Use Cases

- Detailed Definition of a Use Case can be modelled with interaction, activities or stake machines:
 - Interactions are useful where a scenarios is largely message-based;
 - Activities are useful where the scenarios include considerable control logic, flow of i/p and o/p or algorithm that transform data;
 - State machines are useful when the interaction between the actors and the subject is asynchronous (event-based), not easily represented by an ordered sequence

Context Diagram

Essential to start detailed modelling with a Context Diagram

High-Level Use Case

Detailed modelling of Use Case using Interaction

Handling Alert of the Manually Monitor Environment use case

Detailed modelling of Use Case using Activity

 Manual Track Intruder activity of the Manually Monitor Environment use case

Detailed modelling of Use Case using State Machines

- Key states in the Manually Monitor Environment use case are: operator idle, intruder present, automatic tracking enabled
- Focus on states rather than messages.

Program Completed

Missouri University of Science & Technology