2.1: Topological Spaces

Alex L.

October 6, 2024

Def: A topology on a set x is a collection \mathcal{T} of subsets of X having the following properties:

- 1. \varnothing and X are in \mathcal{T}
- 2. The union of any number of elements in \mathcal{T} is in \mathcal{T}
- 3. The intersection of any elements in \mathcal{T} is in \mathcal{T}

Def: A topological space is an ordered pair of elements (X, \mathcal{T}) , a set X with a topology \mathcal{T} on X.

Def: If X is a topological space with topology \mathcal{T} , then a subset $U \subset X$ is an **open set** if $U \in \mathcal{T}$.

There can be many topologies on a set.

Def: The collection of all subsets of X is called the **discrete topology**, and the collection of \emptyset , X is called the **trivial topologies**. Both are valid topologies.

Def: Let \mathcal{T}_f be a topology such that any subset U that fulfills the criteria: X - U is finite or all of X is in \mathcal{T}_f . This is called the **finite complement topology**, because the complement of every member is finite (or all of X). \varnothing and X are in \mathcal{T}_f , the complement of \varnothing is all of X, and the complement of X is finite. \mathcal{T}_f is complete under unions because $X - \bigcup U_a = \bigcap (X - U_a)$, where $U_a \in \mathcal{T}_f$, because $X - U_a$, the complements of members of \mathcal{T}_f , are finite, and the intersection of finite sets are finite, so $\bigcup U_a$ is a complement of a finite set. Likewise, the same goes for intersections, and the union of finite sets is finite, so \mathcal{T}_f is closed under union and intersection, therefore, it is a topology.

Def: Consider two topologies, $\mathcal{T}, \mathcal{T}'$ on a set X. If $\mathcal{T}' \supset \mathcal{T}$, then we say that \mathcal{T}' is finer than \mathcal{T} . If the reverse is true, we say that \mathcal{T}' is coarser than \mathcal{T} . If one set contains the other, we say the two are **comparable**. Remember, the superset is finer, the subset is coarser.