

- 숫자를 더 정확히 표현할 수록 큰 모델 크기가 필요하다.
- 보통의 딥러닝 모델은 FP32(4byte) 사용
 - 。 이 표현값을 줄이고 싶어하는 경향성이 있음 (→ INT8)

Floating Point Formats

• bfloat은 fp를 16비트만으로 표현하고자 하는 방법론

- 。 최근 딥러닝에서 많이 사용되는 표현 방법
- 。 지수에 대한 표현력을 조금 더 높여줌
 - 가수부가 적기때문에 정밀도가 낮지만, 값에 대한 표현력을 증가시켰음

- 전체 메모리 사용량 감소 및 연산 속도를 향상시키는 효과 있음
 - 。 정수형이 하드웨어 친화적이기도 하다.
 - ∘ 처리속도의 경우는 NPU같은 하드웨어 의존적인 경향이 있다.

양자화의 데이터 타입

- MIN/MAX 값 매핑
- 3.14의 경우 round()해서 3으로매핑

어떻게 값을 매핑하는가? →Quantization의 원리와 핵심

- Quantizaton의 핵심 원리는 모델의 파라미터와 activation의 d_type을 더 적은 용량으로 표현하기 위함에 있음
- 높은 정밀도는 수를 표현하는 데 매우 풍부한 표현을 가질 수 있지만 그 만큼 메모리에 trade-off 함
- 다만 이를 Quantization을 통해 더 적은 메모리로 표현할 수 있다면, 더 다양하고 큰 모델을 다루는 데 있어서 매우 핵심적이고 효율적임

Symmetric Quantization

- 원래 모델 weight의 float 범위를 양자화된 공간에서 0을 중시미으로 대칭적으로 매핑
- 양자화 전후의 범위가 0을 중심으로 유지
- 대칭 양자화의 좋은 예는 (absolute maximum, absmax) 양자화임

- 값 목록을 주어진 상태에서 가장 큰 절대값(lpha)을 범위로 사용하여 선형 매핑을 수행
- 0을 중심으로 하기에 매우 간단한 공식으로 매핑할 수 있음
- scaling factor는 양자화 바이트수 (b; 8)와 가장 큰 절대값(a)을 활용하여 구함

Quantization Error

Asymmetric Quantization

• 데이터의 분포를 그대로 잘 반영하겠다.

- 원래 모델의 weight의 float 범위를 양자화된 공간에서 0을 중심으로 매핑하지 않고, 부동소수점의 최소와 최대범위 값을 활용하여 매핑함
- 0의 위치가 기존과 다르게 중심이 아니라 최소값을 반영해서 매핑하겠다.
- 제로 포인트를 데이터의 실제 중심에 맞출 수 있어 양자화가 데이터 분포를 더 잘 반영
- 데이터 분포에 대한 유연성이 있어 정밀도를 높일 수 있지만, 구현의 복잡도와 연산 비용 이 증가

$$S = \frac{128 - -127}{5 - 120}$$
(scale factor)
$$Z = \text{round}\left(-s \cdot \beta\right) - 2^{b-1} \qquad (zeropoint)$$

$$X_{\text{quantized}} = \text{round}\left(s \cdot x + z\right) \qquad (quantization)$$

$$S = \frac{255}{10.8 - -7.59} = 13.86 \qquad (scale factor)$$

$$Z = \text{round}\left(-13.86 \cdot -7.59\right) - 128 = -23 \qquad (zeropoint)$$

$$X_{\text{quantized}} = \text{round}\left(13.86 \cdot -7.59\right) - 128 = -23 \qquad (quantization)$$

- INT8의 최대 최소 범위 차이 [-128, 127]를 사용하여 분자로 하고, 최솟값과 최대값을 활용하여 scale factor를 구함
- 이후 zero point를 scale factor와 최소값을 활용하여 구한 이후 이를 초기 시작점과 같이 활용하여 양자화를 진행함 (zero point quantization)
- dequantize도 이에 대한 역수를 활용하여 기존 데이터 값으로 변환 가능

$$X_{\text{dequantized}} = \frac{-Z}{S}$$
 (dequantize)

두 양자화 기법의 차이

Symmetric Quantization	Asymmetric Quantization
단순한 구현	구현의 복잡성
일관된 스케일링	효과적인 표현범위
효율적인 하드웨어 사용	메모리 사용 증가
정밀도 손실 가능성	정밀도에서 적은 손실
데이터를 유동적으로 처리하지 않음	유연한 표현
	추가연산의 부담

Quantization의 뒷면

- 다음과 같이 256의 큰 Outlier가 있는 Vector
- 이를 기반으로 quantization을 진행하게 되면, outlier 값만 제외하고 모든 값들이 다 0 이 되어버리는 문제가 발생함
- 즉, 특정 가중치 이외의 가중치는 의미없는 가중치가 되어버리고, 모델이 망가지는 문제 가 발생
- 이런 경우 cliping을 통해 이상치를 적당한 값으로 조절하여 quantization 진행

- cliping은 어떠한 가중치가 특정한 값의 범위를 넘어가게 되면,
 이를 INT 범위 내에 적절하게 매핑해준다는 장점
- 이를 통해 이상치에 대해서도 강건하게 값을 매핑해줌으로써 안정적으로 양자화를 진행
- 。 양자화의 핵심은 이상치와 error를 최소화 하는 것

Quantization: Calibration

- 그러면 이런 이상치의 값을 어떻게 판단하는 것이 맞을까?
 - 。 이 이상치라 판단하는 값의 범위를 찾아나가는 게 calibration으로 볼 수 있음
- LLM의 가중치는 Weight와 bias의 affine transformation으로 값을 고려하는 건 bias가 아닌 W에 집중하는 것이 가장 적합
 - o wight의 값이 bias보다 훨씬 많기 때문
- 가중치의 Quantization calibration은 다음과 같이 수행
 - 수동으로 백분위를 선택
 - 。 양자화된 가중치와 기존 가중치 간의 MSE 최소화
 - outlier 판단 범위를 최소화 하는 방법(?)
 - 。 양자화된 가중치와 기존 가중치 간의 KL Divergence
 - KL Divergence: 두 분포 간의 차이점을 최소화 (분포 유사도를 최대한 일치하게)

- 그런데 과연 가중치만 신경써야 하는가?
- 모델을 foward 할 때 생기는 값을 일반적으로 activation이라고 함
- activation은 추론 중 입력 데이터가 모델을 통과할 때마다 달라지게 됨으로, 정확한 양자화를 하기 매우 어려움 (데이터 마다 값이 다르기 떄문)
- activation은 hidden layer를 거칠 때 마다 업데이트 되므로, 모델이 실행될 때 입력 데이터가 모델을 통과할 때 그 값이 무엇인지 알 수 있다.
- 이러한 값들을 기반으로 가중치를 양자화하는 방법론 등이 있으며 PTQ, QAT가 activation을 고려항며 양자화를 실행함

