PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2003-068717

(43)Date of publication of application: 07.03.2003

(51)Int.CI. H01L 21/3065 H01L 21/205

(21)Application number: 2001-258116 (71)Applicant: HITACHI LTD

HITACHI INDUSTRIES CO LTD

(22)Date of filing: 28.08.2001 (72)Inventor: TANAKA JUNICHI

KITSUNAI HIROYUKI KAGOSHIMA AKIRA SHIRAISHI DAISUKE

rangarangan programma angar rang paggan pragalangan ang paggan paggan paggan paggan paggan paggan paggan paggan

(54) SEMICONDUCTOR PROCESSING APPARATUS

(57)Abstract:

PROBLEM TO BE SOLVED: To improve the efficiency and the reliability of a processing apparatus by monitoring the state of processing and by detecting abnormal processing or predicting a processing result based on the monitor output.

SOLUTION: There are provided a sensor 3 monitoring the state of processing of a semiconductor processing apparatus processing a semiconductor wafer, a processing result input means 5 inputting the measured value of the processing result of the semiconductor wafer processed by the semiconductor processing apparatus, a model formula generation section 7 generating a model formula for predicting a processing result using the sensor data as explanation variables based on the sensor data the sensor has obtained and the measured value, a

processing result prediction section 9 predicting a processing

result based on the model formula and the sensor data, and a processing requirements control section 10 comparing the predicted processing result with the set value set in advance and controlling the processing requirements of the semiconductor processing apparatus so as to correct the difference between them.

対点なし、世界

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出順公開番号 特開2003-68717 (P2003-68717A)

(43)公開日 平成15年3月7日(2003.3.7)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

HO1L 21/3065

21/205

H01L 21/205

5F004

21/302

E 5F045

審査請求 未請求 請求項の数8 OL (全 8 頁)

(21)出願番号

特欄2001-258116(P2001-258116)

(22)出順日

平成13年8月28日(2001.8.28)

(71)出版人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(74)上記1名の代理人 100093492

弁理士 鈴木 市郎 (外1名)

(71)出廣人 000233077

株式会社 日立インダストリイズ

東京都足立区中川四丁目13番17号

(72) 発明者 田中 潤一

茨城県土浦市神立町502番地 株式会社日

立製作所機械研究所内

最終頁に続く

(54) [発明の名称] 半導体処理装置

(57)【要約】

【課題】処理状態をモニタし、モニタ出力に基づき異常 処理を検出あるいは処理結果を予測することにより、処 理装置の稼働率と信頼性を向上する。

【解決手段】半導体ウェハを処理する半導体処理装置の処理状態を監視するセンサ3と、前記半導体処理装置により処理した半導体ウェハの処理結果の測定値を入力する処理結果入力手段5と、前記センサが取得したセンサデータおよび前記測定値をもとに前記センサデータを説明変数として処理結果を予測するモデル式を生成するモデル式生成部7と、前記モデル式および前記センサデータをもとに処理結果を予測する処理結果予測部9と、前記予測した処理結果と予め設定した設定値を比較してそのずれを補正するように前記半導体処理装置の処理条件を制御する処理条件制御部10を備えた。

10

【特許請求の範囲】

【請求項1】 半導体ウエハを処理する半導体処理装置 の処理状態を監視するセンサと、

前記半導体処理装置により処理した半導体ウエハの処理 結果の測定値を入力する処理結果入力手段と、

前記センサが取得したセンサデータおよび前記測定値を もとに前記センサデータを説明変数として処理結果を予 測するモデル式を生成するモデル式生成部と、

前記モデル式および前記センサデータをもとに処理結果 を予測する処理結果予測部と、

前記予測した処理結果と予め設定した設定値を比較して そのずれを補正するように前記半導体処理装置の処理条 件を制御する処理条件制御部を備えたことを特徴とする 半導体処理装置。

【請求項2】 請求項1の記載において、前記モデル式 生成部はPLS法 (Partial Least Square method) を 用いてモデル式を生成することを特徴とする半導体処理 装置。

【請求項3】 請求項1の記載において、前記モデル式 生成部はロバスト回帰分析法(Robust Regression)を用 いてモデル式を生成することを特徴とする半導体処理装 置。

【請求項4】 請求項1の記載において、前記モデル式 生成部は主成分ロバスト回帰分析法 (Principal Compon ent Robust Regression) を用いてモデル式を生成する ととを特徴とする半導体処理装置。

【請求項5】 半導体ウエハを処理する半導体処理装置 の処理状態を監視するセンサと、

前記半導体処理装置により処理した半導体ウエハの処理 結果の測定値を入力する処理結果入力手段と、

前記センサが取得したセンサデータおよび前記測定値を もとに前記センサデータを説明変数として処理結果を予 測するモデル式を生成するモデル式生成部と、

前記モデル式および前記センサデータをもとに処理結果 を予測する処理結果予測部と、

前記予測した予測値、あるいは該予測値と予め設定した 設定値とのずれを表示する表示部を備えたことを特徴と する半導体処理装置。

【請求項6】 半導体ウエハを処理する半導体処理装置 の処理状態を監視する複数のセンサと、

該複数のセンサが取得した複数のセンサデータをもとに 主成分を抽出する主成分抽出部と、

該抽出部が抽出した主成分の変動のばらつきをもとに処 理の異常を検出する異常検出部を備えたことを特徴とす る半導体処理装置。

【請求項7】 請求項1の記載において、前記複数のセ ンサが取得した複数のセンサデータをもとに主成分を抽 出する主成分抽出部と、

該抽出部が抽出した主成分の変動のばらつきをもとに処 理の異常を検出する異常検出部を備え、

前記モデル式生成部にモデル式が生成されていない場 合、前記異常検出部が異常を検出したとき処理を停止す ることを特徴とする半導体処理装置。

【請求項8】 請求項1および請求項5の記載におい て、前記センサデータを保存するセンサデータ保存部お よび処理結果入力手段に入力した処理結果を保存する処 理結果測定値保存部を備え、前記モデル式生成部は前記 各保存部に保存したセンサデータおよび測定値をもとに 前記モデル式を生成し、生成したモデル式をモデル式保 存部に保存することを特徴とする半導体処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は半導体処理装置に係 り、特に、処理結果を予測して装置の稼働率と信頼性を 向上した半導体処理装置に関する。

[0002]

【従来の技術】近年、半導体デバイスの寸法は微細化し ており、加工の寸法精度は0.1μm以下のゲート電極 を10%以下の寸法精度で加工しなければならないほど 厳しくなっている。一方、熱やプラズマを用いて半導体 ウエハを物理化学的に加工する半導体製造装置では、装 置内部の化学反応により生成される反応生成物などが装 置の内壁に付着して残留し、時間と共にウエハの処理状 態を変化させる。このためウエハの処理を何枚も重ねる につれて、ウエハ上の半導体デバイスの加工形状が徐々 に変化し、性能が劣化する。

【0003】との問題に対しては、通常、チャンパ内壁 の付着物をプラズマによってクリーニングするか、チャ ンバ壁の温度を上げて付着物が付き難くするなどの対策 30 が取られる。しかし、大抵の場合、これらの対策は完全 ではなく、結局半導体デバイスの加工形状は徐々に変化 してしまう。このため、加工形状が問題となる場合に は、加工形状が変わる前に製造装置の部品の交換や洗浄 を行わなければならない。また、前記堆積膜以外にも様 々な装置状態の変動がウエハの加工形状の変動に関与す る。

【0004】とのため、半導体製造装置内部の処理状態 の変化を検出し、検出結果を半導体製造処理装置の入力 にフィードバックして処理状態を一定に保つなどの工夫 40 がなされてきた。

【0005】プラズマ処理の変動を監視する方法は、例 えば特開平10-125660号公報に示されている。 この公報には、ブラズマ処理特性と装置の電気信号の関 係式を用いて装置性能を予測したり、プラズマの状態を 診断する方法が示されている。その方法としては、3つ の電気信号と装置のプラズマ処理特性との関係を表す近 似式を重回帰分析により求める方法が開示されている。 【0006】また、もう一つの例が特開平11-873 23号公報に示されている。との公報には、既存の複数

50 の検出器を取り付けた一般的な検出システムを半導体製

造装置に当てはめ、その検出信号の相関信号から装置の 状態を監視する方法が示されている。その相関信号を生 成する方法としては、6つの電気信号の比による計算式 が開示されている。

3

【0007】また、もう一つの例が米国特許第5658423号に示されている。この公報には、光や質量分析器の数多くの信号を取り込んで相関信号を生成し装置の状態を監視する方法が示されている。また、この相関信号を生成する方法としては主成分分析を用いる方法が示されている。

[0008]

【発明が解決しようとする課題】しかしながら、前記特開平10-125660号公報の方法では、装置を監視するセンサデータが多種類あったときに、予測しようとする処理性能と無関係な多くの信号が説明変数に入るため重回帰分析による予測がうまくいかなくなる。また、前記特開平11-87323号公報の方法は、よく知られた複数の検出手段からの複数の検出信号の相関をとった信号を診断に用いるという一般的な方法である。また、開示された相関をとる方法もいくつかの信号の比をとるという従来の方法であり、これらの方法を、多くの変動原因に応じて多様な状態を取る半導体製造装置の状態を正確に監視するシステムに適用することは困難である。

【0009】前記米国特許第5658423号には、以上の方法とは異なり装置からモニタした多量のデータを主成分分析して装置状態の変動を捉えることによりプラズマの状態を監視する方法が開示されている。しかし、実際の量産に用いられる半導体製造装置では、このように一般的な統計処理の方法をあてはめるだけではうまく稼動しない。例えば、主成分がどのように変化すると処理結果がどうなるのかがわからない場合がほとんどであるからである。

【0010】本発明はとれらの問題点に鑑みてなされたもので、さまざまな種類のデバイスを処理する半導体処理装置において、処理状態をモニタし、モニタ出力に基づき異常処理を検出あるいは処理結果を予測するととにより、装置の稼働率と信頼性を向上した半導体処理装置を提供する。

[0011]

【課題を解決するための手段】本発明は、上記の課題を 解決するために次のような手段を採用した。

【0012】半導体ウエハを処理する半導体処理装置の 処理状態を監視するセンサと、前記半導体処理装置により処理した半導体ウエハの処理結果の測定値を入力する 処理結果入力手段と、前記センサが取得したセンサデー タおよび前記測定値をもとに前記センサデータを説明変 数として処理結果を予測するモデル式を生成するモデル 式生成部と、前記モデル式および前記センサデータをも とに処理結果を予測する処理結果を利割と、前記予測し た処理結果と予め設定した設定値を比較してそのずれを 補正するように前記半導体処理装置の処理条件を制御す る処理条件制御部を備えた。

[0013]

【発明の実施の形態】図1は、本発明の第1の実施形態に係る半導体処理装置を示す図である。図において半導体処理装置1には、処理状態を監視する処理状態監視部2が備えられている。処理状態監視部2は半導体処理装置1の中に組み込まれていてもよいし、処理装置1の外10 側に設置しても良い。また、ネットワークなどを介して離れた場所に設置してもよい。さらに、図2に示すように機能の一部がネットワークなどを介して分離されていてもよい。

【0014】処理状態監視部2の詳細を以下に示す。まず、処理装置1におけるウエハの処理状態を監視するためのセンサ3を備える。センサ3は通常、いくつかの種類のセンサを用いる。例えば、処理装置がプラズマエッチング装置やブラズマCVD装置などである場合、前記センサ3は処理中のブラズマの発光を分光器を用いてスペクトル分解し、分解した各波長ごとの発光強度をセンサデータとして取得する。例えば、1000チャンネルのCCDアレイを有する分光器を用いたときには1000個のセンサデータを1回のサンブリングごとに取得できる。また、装置の圧力や温度、ガス流量などもセンサデータとして用いる。また、電流、電圧、インビーダンスやそれらの高調波成分などの電気的測定結果をセンサデータとして用いることができる。

【0015】ウエハの処理中には適当な時間間隔でこれらのセンサデータを取得し、取得したセンサデータはセンサデータ保存部4に保存する。一方、処理の終わったウエハは、処理装置1の外部あるいは装置に組み込まれた処理結果測定器により処理結果を測定する。処理結果測定は、CDSEMによるゲート幅の測定、断面SEMによる断面形状等の加工形状の測定、あるいは加工したデバイスの電気的特性の測定である。これらの測定は、全てのウエハについて行うことは必要でなく、通常は一部のウエハを抽出して処理結果を測定すればよい。

【0016】処理状態監視部2は、この処理結果の測定値を受け取るために処理結果測定値入力手段5を持つ。 40 入力手段5は、フレキシブルディスクあるいはCDRO M等の可搬媒体に記録された情報を読み取る読み取り装置とすることができる。また、有線あるいは無線のネットワーク接続装置とすることもできる。

【0017】入力手段5により受け取った処理結果の測定値は、処理結果測定値保存部6に保存する。保存部6には処理結果の測定値が各種のデバイス毎に保存されることになる。

数として処理結果を予測するモデル式を生成するモデル 【0018】モデル式生成部7は、センサデータ保存部 式生成部と、前記モデル式および前記センサデータをも 4および処理結果測定値保存部6から、センサデータお とに処理結果を予測する処理結果予測部と、前記予測し 50 よび処理結果測定値データが保存されている同種のデバ

イスのサンブルを取り出す。このサンブルの数が、例え は3個以上あるときセンサデータを説明変数として処理 結果測定値を予測するモデル式を作成することができ る。通常、このときのセンサの種類およびセンサデータ の数は多数であり、予測に用いるセンサおよびセンサデ ータを自動的に選び出すことは困難である。特に様々な デバイスが処理される場合などでは、デバイスととに予 測に有効なセンサデータの種類は異なるので、あらかじ め予測に用いるセンサを決めておくことは困難である。 を説明する図である。図6に示すように、PLS法で は、予測すべきデータの変動と最も相関が強くなるよう な説明変数を多数のセンサデータから自動的に生成す る。とのとき、同時にセンサデータから説明変数を計算 するための関数も得られる。

【0020】まず、n枚のウエハの処理結果測定値を予 測対象とし、Yiでi番目のウエハの処理結果測定値を 表すとととする。また、一つのウエハからm個のセンサ データを得た場合は、Sijでi番目のウエハのj番目*

> Xik = Fk(Sil,S i 2.

との説明変数Xikのうちのいくつかを用いて処理結果 測定値を予測する。通常は、説明変数Xi1が最も処理 結果測定値Yiとの相関が強いので、Xil, Xi2, Xi3などを説明変数として選ぶ。PLS法では式

Yi = p(Xi1, Xi2,

ところで、処理結果測定値の中には、ウエハの処理状態 が悪く、異常な処理を施されたウエハの異常データも入 っている。このようなデータ含めて通常の重回帰分析で 予測を行うと、前記異常データに影響されて予測精度の 悪いモデル式が生成される。

【0025】図8は、ロバスト回帰分析を説明するグラ フである。ロバスト回帰分析を予測に用いると、図8に 示すように、異常のあるデータがアウトライアとして予 測対象からはずされる。このため正しい予測モデル式を 生成することができる。

【0026】図9は、モデル式生成部7のモデル式作成 処理を説明するフローチャートである。モデル式生成部 7において、センサデータの種類がたくさんあるときに は、センサデータの主成分解析を行い(ステップ90 1,902)、得られた第1主成分を用いてロバスト回 40 帰分析を行い処理結果を予測する (ステップ905~9 06)。このとき、処理結果の予測に必要のない主成分 も説明変数に含まれるので、回帰係数が小さい主成分を 除去して(ステップ907)、別の主成分(第2主成 分)を説明変数に追加(ステップ904)し、再び重回 帰分析を行う(ステップ906)という処理を、予測誤 差が設定値より小さくなるまで (ステップ908) 繰り 返し行う。予測誤差が設定値より小さくなると処理を終 了する(ステップ909)。とれらの回帰分析は線形で もよいし、処理の物理的特性や経験値から導かれる非線 50

*のセンサデータを示すこととする。この場合、m個のセ ンサデータは同じセンサの異なる時間におけるデータで もよいし、異なるセンサからのデータであってもよい。 【0021】図7は、センサデータSijの例を説明す る図である。図7に示すように、処理装置1の、1枚の ウエハ1に対して施す処理が3ステップ(ステップ1な いしステップ3)あり、また、このとき処理状態を監視 するセンサがA、B、Cの3種類であるとき、各ステッ ブ毎の各センサのセンサデータSijを、それぞれ図に 【0019】図6は、PLS法によるモデル式生成処理 10 示すようにSllないしSn9として取得する。なお、 Sijは、各ステップ処理中のセンサデータの平均値と してもよいし、2乗や逆数等のセンサデータを変換した

> 【0022】PLS法を用いると、複数のセンサデータ Sijを、ウエハの処理結果測定値Yiの変動との相関 の強さの順に並んだm個の説明変数Xikに変換すると とができる。センサデータSijから説明変数Xkへと 変換する関数Fkは式(1)で表される。

[0023]

. . . . Sim) · · · (1)

値とすることもできる。

※(2)のような予測式が同時に生成される。しかし、先 に述べたXi1などの説明変数を用いて予測式(2)を 生成した方がよいこともある。

[0024]

 $X i 3) \cdot \cdot \cdot (2)$

形の回帰分析を用いてもよい。

【0027】このような方法で生成したモデル式は、図 1に示すモデル式保存部8に保存する。モデル式は同様 のデバイスごとに作成するため、モデル式保存部には処 30 理装置1で処理するデバイスの数だけのモデル式が保存 されるととになる。

【0028】処理装置1による処理が開始し、処理装置 1に特定のデバイスを形成すべきウエハをロードして処 理するとき、予測部9はモデル式保存部8から前記特定 のデバイスに対応するモデル式をロードする。このウエ ハの処理中にセンサ3から得られた信号は、例えばPL S法により得られた式1を用いて説明変数に変換する か、あるいは主成分分析により主成分に変換し、式2の モデル式を用いて処理結果の予測値を計算する。計算し た予測値は処理条件制御部10に渡す。処理条件制御部 10は前記予測値と処理結果の設定値とのずれを補正す るように処理条件を変更する。

【0029】次に前記処理条件制御部10による処理条 件の補正を説明する。ととで、再びPLS法を用いる。 通常の半導体デバイスの処理では、加工の要求としてい くつかの相反する処理性能が要求されることが多い。例 えば、ゲート電極のエッチング加工などでは、ゲート電 極の側壁の垂直性と下地酸化膜と、ゲートポリシリコン のエッチング選択性が要求される。

【0030】すなわち、側壁の垂直性を改善するために

(5)

は堆積性の低いエッチング条件を用いたほうがよく、下地酸化膜との高選択性を達成するためには堆積性の高いエッチング条件を用いたほうがよい。このように二つの相反する要求がある場合には処理条件の制御は難しい。【0031】図10、11、12は、このような相反する要求を満足する処理条件を求める方法を説明する図である。

【0032】例えば、処理装置1の経時変化により側壁の垂直性が悪くなったときに、処理条件1(ここではガスAの流量)を減少させると垂直性が良くなるとしても、同時に下地酸化胰の選択性が悪くなる場合は処理条件としては好ましくない。

【0033】このため、例えば、処理条件1と処理条件2(ここではウェハバイアス電力)を組み合わせ、側壁の垂直性を改善しながら、かつ、下地酸化膜の選択性が悪化しない条件を見出さなければならない。

【0034】このためには、まず、図10に示すように、通常の処理条件(中心条件)の周りに数点から数十点の処理条件を変えた実験条件を設定して加工処理を行い、処理結果を測定する。図12中の点1~4は、図10の実験条件1~4にあたる。ここでは処理結果測定値Aとして側壁の垂直性の測定値をとり、処理結果測定値Bとして下地酸化膜選択比をとる。

【0035】次に、図11に示すように、以上の実験に 対してPLS法を適用し、二種類の処理条件と二種類の 処理結果測定値の相関を調べる。そうすると、図12に 示すように側壁垂直性に相関の強い条件の方向Aが得ら れる。また、同様にしてPLS法により得られる下地酸 化膜選択比に相関の強い方向から、方向Aに直交し下地 酸化膜選択比に相関の強い方向Bが計算できる。この条 30 件方向Aと条件方向Bを、図1に示す処理条件制御部1 0に設定しておく。このように設定しておけば、モデル 式をもとに予測部9が側壁の垂直性が悪化していると予 測したとき、処理条件を条件方向Aに振れば下地酸化膜 選択比を犠牲にせずに側壁垂直性のみを改善するととが できる。計算した処理条件の制御方向は、制御条件制御 部10の処理条件制御方向保存手段14に保存してお き、モデル式による処理結果予測値が設定値からずれた 場合に処理条件を修正するのに用いる。

【0036】以上の例では、二種類の処理条件を変化させたが、PLS法ではさらに多くの種類の処理条件を変化させることができ、多くの処理条件を変化させるほど好ましい結果が得られる。また、相反する処理結果測定値も、二種類だけでなく、もっと多数の処理結果を対象とすることができる。例えば、側壁の垂直性と下地酸化膜選択比に加えて、マスク選択比などを対象とすることができる。

【0037】図3は、本発明の他の実施形態を示す図で た処理製 ある。図において、11は予測値表示部であり、予測 【図6】 値、あるいは該予測値と予め設定した設定値とのずれを 50 である。

警告表示する。なお、図において図1に示される部分と同一部分については同一符号を付してその説明を省略する。なお、前記表示部は、警報を発するブザーあるいは電子メール等の発信手段とすることができる。

【0038】図4は、本発明のさらに他の実施形態を示す図である。以上の説明では、モデル式が生成されていることを前提に処理条件制御部10の監視制御を説明した。しかし、モデル式を未だ生成していない種類のデバイスに対しては監視制御することができない。処理結果の測定が行われない場合があり、そのようなデバイスに対してはモデル式を生成することができない。図4は、このような場合でも監視制御することのできる処理状態監視部(副処理状態監視部)2 を示す図である

【0039】図4に示すように、多数のセンサ3からの多種のセンサデータをもとに主成分抽出部12で主成分を抽出する。異常監視部13は前記抽出した主成分の変動のばらつきを監視することにより処理の異常を検出する。異常を検出した場合には次のウエハ処理の着手を停止すると良い。異常の検出には、例えばSPC(Statistical Process Control)と呼ばれるばらつきの管理方法を用いればよい。このためには、該当するデバイスの処理中の主成分の平均値と分散を記憶しておき、測定された主成分が平均値から分散の数倍以上離れたときに処理を異常と判定する。

【0040】図5は、処理状態監視部2および副処理状態監視部2の双方を備えた処理装置に好適な処理フローを説明する図である。まず、処理しようとするデバイスに対するモデル式を生成し保存しているか否かを判定する(ステップ501)。モデル式が保存されている場合は処理状態監視部2により監視制御を実行する(ステップ502)。モデル式が保存されていない場合は処理状態監視部2、により監視制御を実行する(ステップ503)。

[0041]

【発明の効果】以上説明したように本発明によれば、処理状態をモニタし、モニタ出力に基づき異常処理を検出 あるいは処理結果を予測するので、処理装置の稼働率および信頼性を向上することができる。

【図面の簡単な説明】

【図1】本発明の実施形態にかかる半導体処理装置を示す図である。

【図2】半導体処理装置の変形例を示す図である。

【図3】本発明の他の実施形態を示す図である。

【図4】本発明のさらに他の実施形態を示す図である。

【図5】処理状態監視部および副処理状態監視部を備えた処理装置に好適な処理フローを説明する図である。

【図6】PLS法によるモデル式生成処理を説明する図である。

(6)

9

- 【図7】センサデータの例を示す図である。
- 【図8】ロバスト回帰分析を説明するグラフである。
- 【図9】モデル式生成部のモデル式作成処理を説明するフローチャートである。
- 【図10】処理条件を求める方法を説明する図である。
- 【図11】処理条件を求める方法を説明する図である。
- 【図12】処理条件を求める方法を説明する図である。 【符号の説明】
- 1 半導体処理装置
- 2 処理状態監視部
- 3 センサ

- * 4 センサデータ保存部
 - 5 処理結果測定値入力手段
 - 6 処理結果測定値保存部
 - 7 モデル式生成部
 - 8 モデル式保存部
 - 9 モデル式による予測部
 - 10 処理条件制御部
 - 11 予測値表示部
 - 12 主成分抽出部
- 10 13 異常検出部
- * 14 処理条件制御方向保存手段

[図10]

2010

毎種条件2 (ウエ/い(イアス電力) 50W

60W

			処理条件 1 (ガスAの資金)	(,
		中心条件	500accas	
	[図9]	突破条件1	520eccas	
		突駛条件2	520eccm	
	概 9	突胎条件3	480sccm	
	センサデータ ~ 901	突破条件4	480sccm	
	主成分の計算 902		【図】	1 }
	第2の主点分を一つ範疇変数に追加する			心理条件
906	906			

907

908

重国条分析により 処理結果課定値を予測

回帰係徴の絶対値が最も小さな 主成分を説明変数から除去

> 予測観景が 設定観景より小さいか

モデル式作成終了~ DOD

是理能是男定惟

【図12】

フロントページの続き

(72)発明者 橘内 浩之

茨城県土浦市神立町502番地 株式会社日

立製作所機械研究所内 (72)発明者 鹿子嶋 昭

山口県下松市大字東豊井794番地 株式会

社日立製作所笠戸事業所内

(72)発明者 白石 大輔

山口県下松市大字東豊井794番地 株式会

社日立製作所笠戸事業所内

(72)発明者 山本 秀之

山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸事業所内

(72)発明者 幾原 祥二

東京都足立区中川四丁目13番17号 日立テ

クノエンジニアリング株式会社内

(72)発明者 増田 俊夫

茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内

Fターム(参考) 5F004 AA16 CB01 CB02 CB05

5F045 AF01 BB08 GB04 GB05 GB06

GB11 GB17