Lista 2

Victor Sena Molero - 8941317

28 de agosto de 2016

1 Exercícios

Ex 3. Construa instâncias do MINCC com custos unitários, ou seja, instâncias (E, \mathcal{S}, c) com $c_S = 1$ para todo S em \mathcal{S} , para as quais o custo da cobertura produzida pelo algoritmo MINCC-CHVÁTAL pode chegar arbitrariamente perto de H_n opt (E, \mathcal{S}, c) , onde n := |E|.

$$Resposta$$
. Não sei :(

Ex 4. Lembre-se que $\ln x$ é a primitiva da função $\frac{1}{x}$. Usando esse fato, deduza que $H_n \leq 1 + \ln n$. Conclua que o algoritmo MINCC-CHVÁTAL é uma $O(\log n)$ -aproximação polinomial para o MINCC.

Resposta. Se $\ln n$ é primitiva de $\frac{1}{n}$, pela Soma de Riemann, para qualquer m inteiro positivo e partição $x_0 < x_1 < \cdots < x_m$ do intervalo [1,n] temos que existe uma sequência c onde $c_i \in [x_{i-1},x_i]$ para todo $i \le n$ inteiro positivo tal que $\ln n = \sum_{i=1}^m \frac{1}{c_i}(x_i - x_{i-1})$.

Podemos escolher m = n-1 e tal partição como sendo $x_0 = 1 < x_1 = 2 < \cdots < x_{n-1} = n$

e escrever l
n $n=\sum\limits_{i=1}^{n-1}\frac{1}{\bar{c_i}}(i+1-i)$ para alguma sequência $\bar{c}.$ E, com isso, temos

$$\ln n \ge \sum_{i=1}^{n-1} \frac{i}{i+1} = H_n - 1$$

, já que $\bar{c}_i \leq i+1$ para todo i, portanto

$$H_n \le \ln n + 1$$

.

Com isso, concluimos que $H_n = O(\lg n)$, portanto, MINCC-CHVÁTAL é uma $O(\log n)$ -aproximação polinomial para o MINCC.