Maximum Likelihood Methods

Jesper Riis-Vestergaard Sørensen

University of Copenhagen, Department of Economics

Maximum Likelihood Estimation: Aim

▶ Previously: Modelled [feature(s)] of distribution of $y|\mathbf{x}$.

▶ E.g. $E(y|\mathbf{x})$ and $var(y|\mathbf{x})$.

▶ Maximum likelihood estimation (MLE) more ambitious.

ightharpoonup Model for entire distribution $D(y|\mathbf{x})$

Why MLE? Advantages

Efficiency

- ▶ MLE uses entire $D(y|\mathbf{x})$.
- ightharpoonup Structure \Rightarrow Information.

May estimate any feature

- ▶ Conditional moments: $E(y|\mathbf{x})$ and $var(y|\mathbf{x})$.
- ▶ Conditional prob's: P(y = 1|x) and $P(y \in [a, b]|x)$.
- ► Conditional density.
- ▶ Derivatives (wrt. **x**) thereof...

Why Not MLE? Drawbacks

Nonrobustness

▶ MLE uses entire $D(y|\mathbf{x})$...

► Inconsistent (in general) if misspecified.

► (Exceptions exist.)

Outline

Framework

Example: Probit

Identification and Solution Uniqueness

Asymptotic Properties

Consistency

Asymptotic Normality

Asymptotic Variance Estimation

Example: Probit Avar Estimation

Framework

Truth vs. Model

Object of interest: "True" density $p_o(\mathbf{y}|\mathbf{x})$ of $\mathbf{y}_i|\mathbf{x}_i$.

- ▶ Possible values $(\mathbf{y}, \mathbf{x}) \in \mathcal{Y} \times \mathcal{X}$ for $(\mathbf{y}_i, \mathbf{x}_i)$.
- ▶ Discrete and/or continuous elements allowed.
- ▶ Only discrete: Integrals \rightarrow Sums.

Parametric model: $f(\mathbf{y}|\mathbf{x}; \boldsymbol{\theta}), \boldsymbol{\theta} \in \Theta \subseteq \mathbb{R}^{P}$.

Model Assumptions

Parametric model: $f(\mathbf{y}|\mathbf{x}; \boldsymbol{\theta}), \boldsymbol{\theta} \in \Theta \subseteq \mathbb{R}^{P}$.

Assume

1. Legitimate densities:

$$\begin{split} f\left(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}\right) &\geqslant 0, \text{ all } \left(\mathbf{y},\mathbf{x},\boldsymbol{\theta}\right), \\ \int_{\mathscr{Y}} f\left(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}\right) v\left(\mathrm{d}y\right) &= 1, \text{ all } \left(\mathbf{x},\boldsymbol{\theta}\right). \end{split}$$

2. Correct specification: For some $\theta_o \in \Theta$,

$$p_o(\mathbf{y}|\mathbf{x}) = f(\mathbf{y}|\mathbf{x}; \boldsymbol{\theta}_o), \text{ all } (\mathbf{y}, \mathbf{x}).$$

Identification in Maximum Likelihood Context

Definition: θ_o identified if and only if for all $\theta \in \Theta \setminus \{\theta_o\}$ s.t.

$$f(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) \neq f(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}_o) \text{ for } some(\mathbf{y},\mathbf{x}).$$

Conversely: if θ_o not identified, then some $\theta \neq \theta_o$ yields

$$f(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) = f(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}_o) \text{ for } all(\mathbf{y},\mathbf{x}).$$

data generating process would show the same densities you would not be able to tell true \theta and candidate \theta's apart

▶ I.e., θ and θ_o are observationally equivalent.

Example

Suppose that for some $(\alpha_o, \mu_o) \in \mathbb{R}^2$,

$$y_i = \alpha_o + \varepsilon_i, \quad \varepsilon_i \sim N(\mu_o, 1).$$

Q: Is (α_o, μ_o) identified?

no, they are conditionally dependent on each other Would not be able seperate them apart

A potential reason for non-convergence

Estimand

Identification implies (later): θ_o uniquely solves population problem

$$\max_{\boldsymbol{\theta} \in \Theta} E\left[\ln f\left(\mathbf{y}_{i} | \mathbf{x}_{i}; \boldsymbol{\theta}\right)\right]. \tag{PP}$$

maximizing the expected log density

Equivalently, θ_o solves

$$\min_{\boldsymbol{\theta} \in \Theta} E \left[-\ln f \left(\mathbf{y}_i | \mathbf{x}_i; \boldsymbol{\theta} \right) \right].$$

minimzing the negative log density

Taking $q(\mathbf{w}, \theta) = -\ln f(\mathbf{y}|\mathbf{x}; \theta) \Rightarrow \theta_o \text{ M-estimand}.$

Estimation

Analogy principle suggests sample problem

$$\max_{\boldsymbol{\theta} \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \ell_i(\boldsymbol{\theta}), \qquad (SP)$$

with (conditional) likelihood contribution

$$\ell_i(\boldsymbol{\theta}) := \ln f(\mathbf{y}_i | \mathbf{x}_i; \boldsymbol{\theta}).$$

Maximum likelihood estimator (MLE): Any solution $\widehat{\boldsymbol{\theta}}$ to SP.

► Every MLE an M-estimator!

Example: Probit

Example: Probit

Binary outcome y_i , i.e. $\mathcal{Y} = \{0, 1\}$,

$$p_o(y|\mathbf{x}) = p_o(1|\mathbf{x})^y [1 - p_o(1|\mathbf{x})]^{1-y}, \quad y \in \{0, 1\}.$$

Probit model $\{\Phi(\mathbf{x}\boldsymbol{\theta}); \boldsymbol{\theta} \in \Theta\}$ for $p_o(1|\mathbf{x})$.

- $ightharpoonup \Phi: \mathbb{R} \to (0,1)$: standard normal CDF.
- $lackbox{}\Theta\subseteq\mathbb{R}^{P}.$

Correctly specified if for some $\theta_o \in \Theta$,

$$P(y_i = 1 | \mathbf{x}_i = \mathbf{x}) = \Phi(\mathbf{x}\boldsymbol{\theta}_o) \text{ for all } \mathbf{x} \in \mathcal{X}.$$

Example: Probit

Model implies density of $y_i|\mathbf{x}_i$,

$$f(y|\mathbf{x}; \boldsymbol{\theta}) = \Phi(\mathbf{x}\boldsymbol{\theta})^y [1 - \Phi(\mathbf{x}\boldsymbol{\theta})]^{1-y}, \quad y \in \{0, 1\}.$$

Probit log-likelihood contribution

$$\ell_{i}\left(oldsymbol{ heta}
ight)=y_{i}\ln\Phi\left(\mathbf{x}_{i}oldsymbol{ heta}
ight)+\left(1-y_{i}
ight)\ln\left[1-\Phi\left(\mathbf{x}_{i}oldsymbol{ heta}
ight)
ight].$$

Probit estimator solves

$$\max_{\boldsymbol{\theta} \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \left\{ y_i \ln \Phi \left(\mathbf{x}_i \boldsymbol{\theta} \right) + \left(1 - y_i \right) \ln \left[1 - \Phi \left(\mathbf{x}_i \boldsymbol{\theta} \right) \right] \right\}.$$

Identification and Solution Uniqueness

Claim: θ_o identified \Rightarrow uniquely solves PP,

$$\theta_o = \operatorname*{argmax}_{\theta \in \Theta} E \left[\ln f \left(\mathbf{y}_i | \mathbf{x}_i; \theta \right) \right].$$

Will invoke **Jensen's inequality:** $g \ concave + Z \ random$

$$\Rightarrow E[g(Z)] \leqslant g(E[Z]).$$

Inequality strict provided g strictly concave + Z nonconstant.

▶ Fix $\theta \in \Theta$.

 $ightharpoonup g := ln(\cdot)$

 $ightharpoonup Z := f(\mathbf{y}_i|\mathbf{x}_i;\boldsymbol{\theta})/f(\mathbf{y}_i|\mathbf{x}_i;\boldsymbol{\theta}_o)$

ightharpoonup Cond'n on $\mathbf{x}_i \Rightarrow [\text{FILL IN}]$

 \triangleright Correct specification + legitimate density \Rightarrow

$$E\left[\frac{f(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta})}{f(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}_{o})}\middle|\mathbf{x}_{i}\right] = \int_{\mathscr{Y}}\frac{f(\mathbf{y}|\mathbf{x}_{i};\boldsymbol{\theta})}{f(\mathbf{y}|\mathbf{x}_{i};\boldsymbol{\theta}_{o})}p_{o}(\mathbf{y}|\mathbf{x}_{i})v(d\mathbf{y})$$

$$=$$

► Hence

$$E\left[\ln\left(\frac{f\left(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}\right)}{f\left(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}_{o}\right)}\right)\middle|\mathbf{x}_{i}\right]\leqslant$$

Rearranging,

$$E\left[\ln f\left(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}_{o}\right)|\mathbf{x}_{i}\right]\geqslant E\left[\ln f\left(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}\right)|\mathbf{x}_{i}\right].$$

► Have shown:

$$E\left[\ln f\left(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}_{o}\right)|\mathbf{x}_{i}\right]\geqslant E\left[\ln f\left(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}\right)|\mathbf{x}_{i}\right].$$

► Taking expectations,

$$E\left[\ln f\left(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}_{o}\right)\right]\geqslant E\left[\ln f\left(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}\right)\right].$$

▶ $\theta \in \Theta$ arbitrary $\Rightarrow \theta_o$ solves PP.

▶ Have shown: θ_o solves PP,

$$E\left[\ln f\left(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}_{o}\right)\right]\geqslant E\left[\ln f\left(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}\right)\right] \text{ for all } \boldsymbol{\theta}\in\Theta.$$

▶ θ_o identified $\Rightarrow Z = f(\mathbf{y}_i|\mathbf{x}_i;\theta)/f(\mathbf{y}_i|\mathbf{x}_i;\theta_o)$ nonconstant.

▶ $ln(\cdot)$ strictly concave, so Jensen \Rightarrow

$$E\left[\ln f\left(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}_{o}\right)\right] > E\left[\ln f\left(\mathbf{y}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}\right)\right] \text{ for all } \boldsymbol{\theta} \in \Theta \setminus \left\{\boldsymbol{\theta}_{o}\right\}.$$

▶ Hence, identification implies unique maximizer.

Asymptotic Properties

Asymptotic Properties of MLE

► Recall: Every MLE an M-estimator,

$$\widehat{\boldsymbol{\theta}} \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} rac{1}{N} \sum_{i=1}^{N} - \ln f\left(\mathbf{y}_{i} | \mathbf{x}_{i} ; \boldsymbol{\theta}\right).$$

- ► May appeal to general results:
 - ► Consistency (W. Thm. 12.2)
 - Asymptotic normality (W. Thm. 12.3).
- ▶ Will verify relevant conditions.

Consistency

Recap: Consistency of M-Estimators

Theorem

If

- 1. $\Theta \subseteq \mathbb{R}^P$ compact (i.e. closed + bounded),
- 2. $q(\mathbf{w}, \cdot)$ continuous (in $\boldsymbol{\theta}$),
- 3. θ_o uniquely minimizes $\theta \mapsto E[q(\mathbf{w}_i, \theta)]$ ("identification"),
- (+ technical conditions), then
 - 1. Minimizer $\widehat{\boldsymbol{\theta}}$ of $N^{-1} \sum_{i=1}^{N} q(\mathbf{w}_i, \cdot)$ exists,
 - 2. $\widehat{\boldsymbol{\theta}}$ consistent for $\boldsymbol{\theta}_{o}$.

Consistency of ML-Estimators

Q: Conditions verified?

- 1. Θ compact? Assumed...
- 2. $q(\mathbf{w}, \cdot) = -\ln f(\mathbf{y}|\mathbf{x}; \cdot)$ continuous?
 - Assume $f(\mathbf{y}|\mathbf{x};\cdot)$ cont's.
 - **Probit:** Φ *is* cont's.
- 3. Unique PP solution?
 - \triangleright Follows from θ_0 identified.

$$\theta \neq \theta_o \Rightarrow f(\mathbf{y}|\mathbf{x}; \theta) \neq f(\mathbf{y}|\mathbf{x}; \theta_o) \text{ some } (\mathbf{y}, \mathbf{x}).$$

Compact + LL cont' + ML identification \Rightarrow MLE consistency.

Asymptotic Normality

Recap: Asymptotic Normality of M-Estimators

Theorem

Provided

- ▶ θ_o unique min'r + interior to Θ compact,
- ▶ $q(\mathbf{w}, \cdot)$ cont' + twice cont' diff' on int Θ ,
- ▶ $E[s(\mathbf{w}_i, \theta_o)] = \mathbf{0}$, and $E[H(\mathbf{w}_i, \theta_o)]$ positive definite,
- ightharpoonup (+ technical),

$$\begin{split} \sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_o) &\overset{d}{\to} \mathrm{N}\left(\mathbf{0}, \mathbf{A}_o^{-1} \mathbf{B}_o \mathbf{A}_o^{-1}\right), \\ \mathbf{A}_o &:= E\left[\mathbf{H}\left(\mathbf{w}_i, \boldsymbol{\theta}_o\right)\right], \\ \mathbf{B}_o &:= E\left[\mathbf{s}\left(\mathbf{w}_i, \boldsymbol{\theta}_o\right) \mathbf{s}\left(\mathbf{w}_i, \boldsymbol{\theta}_o\right)'\right]. \end{split}$$

Oh, that Pesky Minus...

- ► Thm. 12.3 designed for *min*imization.
- ► Turn max'n into min'n:

$$q(\mathbf{w}_i, \boldsymbol{\theta}) = -\ln f(\mathbf{y}_i | \mathbf{x}_i; \boldsymbol{\theta}) = -\ell_i(\boldsymbol{\theta}).$$

- ▶ Hence above score (s)/Hessian (H) of $-\ln f$ (wrt. θ).
- ► In what follows,

$$\mathbf{s}_{i}(\boldsymbol{\theta}) := \nabla_{\boldsymbol{\theta}} \ell_{i}(\boldsymbol{\theta})', \qquad \text{(no minus)}$$

$$\mathbf{H}_{i}(\boldsymbol{\theta}) := \nabla_{\boldsymbol{\theta}} \mathbf{s}_{i}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}}^{2} \ell_{i}(\boldsymbol{\theta}), \qquad \text{(no minus)}$$

$$\Rightarrow \mathbf{A}_{o} = -E[\mathbf{H}_{i}(\boldsymbol{\theta}_{o})].$$

Information Matrix Equalities, I

- ► Additionally assuming...
 - \triangleright θ_o interior to Θ ,
 - ▶ $\ln f(\mathbf{y}|\mathbf{x};\cdot)$ twice cont' diff' on int Θ ,
 - ► (+ technical)
- ▶ May now apply Thm. 12.3.
- ▶ But further structure available...

Information Matrix Equalities, II

this is due to interchanging expectations (E) with derivatives since expectations translate to integrals(?)

► Under quite mild conditions,

$$-E\left[\mathbf{H}_{i}\left(\theta_{o}\right)|\mathbf{x}_{i}\right] = E\left[\mathbf{s}_{i}\left(\theta_{o}\right)\mathbf{s}_{i}\left(\theta_{o}\right)'|\mathbf{x}_{i}\right], \qquad (CIME)$$

$$\Rightarrow -E\left[\mathbf{H}_{i}\left(\theta_{o}\right)\right] = E\left[\mathbf{s}_{i}\left(\theta_{o}\right)\mathbf{s}_{i}\left(\theta_{o}\right)'\right]. \qquad (UIME)$$

- ► (Un)Conditional Information Matrix Equality.
- ▶ Implies $\mathbf{A}_o = \mathbf{B}_o$.
- ► Asymptotic variance simplifies.

Asymptotic Normality of ML-Estimators

Theorem

Provided

- ▶ θ_o identified + interior to Θ compact,
- ▶ $\ln f(\mathbf{y}|\mathbf{x};\cdot)$ cont' + twice cont' diff' on $\operatorname{int} \Theta$,
- ► + technical (including CIME justification),

$$\begin{split} \sqrt{N} (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_o) &\overset{d}{\to} \mathrm{N} \left(\boldsymbol{0}, \boldsymbol{\mathsf{A}}_o^{-1} \right), \\ \boldsymbol{\mathsf{A}}_o &:= - E \left[\boldsymbol{\mathsf{H}}_i \left(\boldsymbol{\theta}_o \right) \right]. \end{split}$$

Hence Avar
$$(\widehat{\boldsymbol{\theta}}) = \mathbf{A}_o^{-1}/N$$
.

Asymptotic Variance Estimation

Asymptotic Variance Estimators

Three candidates for $\widehat{\mathbf{A}}$:

$$= -\frac{1}{N} \sum_{i=1}^{N} \mathbf{H}_{i}(\widehat{\boldsymbol{\theta}}), \qquad \text{(least structure)}$$

$$\text{or} \qquad = \frac{1}{N} \sum_{i=1}^{N} \mathbf{s}_{i}(\widehat{\boldsymbol{\theta}}) \mathbf{s}_{i}(\widehat{\boldsymbol{\theta}})', \qquad \text{(per UIME)}$$

$$\text{or} \qquad = \frac{1}{N} \sum_{i=1}^{N} \mathbf{A}(\mathbf{x}_{i}, \widehat{\boldsymbol{\theta}}),$$
where $\mathbf{A}(\mathbf{x}_{i}, \boldsymbol{\theta}_{o}) := -E[\mathbf{H}_{i}(\boldsymbol{\theta}_{o}) | \mathbf{x}_{i}].$

Each $\widehat{\mathbf{A}} \to_{p} \mathbf{A}_{o} (= \mathbf{B}_{o})$ under mild (add'l) cond's.

Avar Estimation: Discussion

$$\widehat{\operatorname{Avar}(\widehat{\boldsymbol{ heta}})} =$$

$$\underbrace{\left(-\sum_{i=1}^{N}\mathbf{H}_{i}(\widehat{\boldsymbol{\theta}})\right)^{-1}}_{(1)},\,\underbrace{\left(\sum_{i=1}^{N}\mathbf{s}_{i}(\widehat{\boldsymbol{\theta}})\mathbf{s}_{i}(\widehat{\boldsymbol{\theta}})'\right)^{-1}}_{(2)},\,\,\mathrm{or}\,\,\underbrace{\left(\sum_{i=1}^{N}\mathbf{A}(\mathbf{x}_{i},\widehat{\boldsymbol{\theta}})\right)^{-1}}_{(3)}?}_{(3)}$$

Pros/Cons:

- 1. Always available, 2nd-order diff', p.s.d.
- 2. Easy to compute, 1st-order diff', p.s.d.
- 3. Harder to derive, often p.d. + good in small sample.

Example: Probit Avar Estimation

Recall: Cond'l probit density

$$f(y|\mathbf{x};\boldsymbol{\theta}) = \Phi(\mathbf{x}\boldsymbol{\theta})^y [1 - \Phi(\mathbf{x}\boldsymbol{\theta})]^{1-y}, \quad y \in \{0,1\}.$$

Cond'l probit LL:

$$\ell_{i}\left(oldsymbol{ heta}
ight)=y_{i}\ln\Phi\left(\mathbf{x}_{i}oldsymbol{ heta}
ight)+\left(1-y_{i}
ight)\ln\left[1-\Phi\left(\mathbf{x}_{i}oldsymbol{ heta}
ight)
ight].$$

We'll use option (3) ("cond'l Hessian"):

- 1. Derive score, $\mathbf{s}_{i}(\boldsymbol{\theta})$.
- 2. Derive $\mathbf{A}(\mathbf{x}_i, \boldsymbol{\theta}_o) = -E[\mathbf{H}_i(\boldsymbol{\theta}_o)|\mathbf{x}_i].$
- 3. Sum + plug in $\hat{\theta}$ + invert.

Step 1: Derive score.

Chain rule + gather \Rightarrow

$$\mathbf{s}_{i}(\boldsymbol{\theta}) = \frac{\partial}{\partial \boldsymbol{\theta}} \ell_{i}(\boldsymbol{\theta}) = \frac{\left[y_{i} - \Phi\left(\mathbf{x}_{i} \boldsymbol{\theta}\right)\right] \varphi\left(\mathbf{x}_{i} \boldsymbol{\theta}\right)}{\Phi\left(\mathbf{x}_{i} \boldsymbol{\theta}\right)\left[1 - \Phi\left(\mathbf{x}_{i} \boldsymbol{\theta}\right)\right]} \mathbf{x}_{i}^{\prime}.$$

Step 2: Derive $A(x_i, \theta_o)$.

$$\mathbf{A}(\mathbf{x}_{i}, \boldsymbol{\theta}_{o}) = -E[\mathbf{H}_{i}(\boldsymbol{\theta}_{o})|\mathbf{x}_{i}]$$

$$= E[\mathbf{s}_{i}(\boldsymbol{\theta}_{o})\mathbf{s}_{i}(\boldsymbol{\theta}_{o})'|\mathbf{x}_{i}]. \qquad (CIME)$$

$$= E\left\{\frac{[\mathbf{y}_{i} - \Phi(\mathbf{x}_{i}\boldsymbol{\theta}_{o})]^{2} \varphi(\mathbf{x}_{i}\boldsymbol{\theta}_{o})^{2}}{\Phi(\mathbf{x}_{i}\boldsymbol{\theta}_{o})^{2}[1 - \Phi(\mathbf{x}_{i}\boldsymbol{\theta}_{o})]^{2}}\mathbf{x}_{i}'\mathbf{x}_{i}\middle|\mathbf{x}_{i}\right\}.$$

outer product product are like squaring

Step 2: Derive $\mathbf{A}(\mathbf{x}_i, \boldsymbol{\theta}_o)$ (ctnd).

$$\mathbf{A}(\mathbf{x}_{i}, \boldsymbol{\theta}_{o}) = \mathbf{E}\left\{ \left[\mathbf{y}_{i} - \Phi(\mathbf{x}_{i}\boldsymbol{\theta}_{o}) \right]^{2} \middle| \mathbf{x}_{i} \right\} \frac{\varphi(\mathbf{x}_{i}\boldsymbol{\theta}_{o})^{2}}{\Phi(\mathbf{x}_{i}\boldsymbol{\theta}_{o})^{2} \left[1 - \Phi(\mathbf{x}_{i}\boldsymbol{\theta}_{o}) \right]^{2}} \mathbf{x}_{i}^{\prime} \mathbf{x}_{i}.$$

$$y_i \text{ binary} + p_o(1|\mathbf{x}_i) = \Phi(\mathbf{x}_i\theta_o)$$

$$\Rightarrow E\left\{\left[y_i - \Phi\left(\mathbf{x}_i \boldsymbol{\theta}_o\right)\right]^2 \middle| \mathbf{x}_i\right\} = \Phi\left(\mathbf{x}_i \boldsymbol{\theta}_o\right) \left[1 - \Phi\left(\mathbf{x}_i \boldsymbol{\theta}_o\right)\right].$$

Hence

$$\mathbf{A}\left(\mathbf{x}_{i}, \boldsymbol{\theta}_{o}\right) = \frac{\varphi\left(\mathbf{x}_{i} \boldsymbol{\theta}_{o}\right)^{2}}{\Phi\left(\mathbf{x}_{i} \boldsymbol{\theta}_{o}\right) \left[1 - \Phi\left(\mathbf{x}_{i} \boldsymbol{\theta}_{o}\right)\right]} \mathbf{x}_{i}^{\prime} \mathbf{x}_{i}$$

Step 3: Sum + plug in $\hat{\theta}$ + invert.

⇒ variance matrix estimator for probit:

$$\widehat{\operatorname{Avar}(\widehat{\boldsymbol{\theta}})} = \left(\sum_{i=1}^{N} \mathbf{A}(\mathbf{x}_{i}, \widehat{\boldsymbol{\theta}})\right)^{-1},$$

$$\mathbf{A}(\mathbf{x}_{i}, \widehat{\boldsymbol{\theta}}) := \frac{\varphi(\mathbf{x}_{i}\widehat{\boldsymbol{\theta}})^{2}}{\Phi(\mathbf{x}_{i}\widehat{\boldsymbol{\theta}})[1 - \Phi(\mathbf{x}_{i}\widehat{\boldsymbol{\theta}})]} \mathbf{x}_{i}' \mathbf{x}_{i}.$$

- ▶ Positive definite when invertible.
- ► Same result possible from 2nd-order diff'n. (Check!)