Math 725 – Advanced Linear Algebra Paul Carmody Assignment #11 – Due 12/8/23

- **1.** Let A be an invertible square matrix. Show that $|\det A| = \sigma_1 \sigma_2 \cdots \sigma_n$.
- **2.** Let A be a nonzero $m \times n$ matrix. Prove that $\sigma_1 = \max\{||Au|| : ||u|| = 1\}$.
- **3.** Let A and A' be two nonzero $m \times n$ matrices with respective largest singular values σ_1 and σ'_1 . Prove that the largest singular value of A + A' is bounded above by $\sigma_1 + \sigma'_1$.
- **4.** Suppose A is an $m \times n$ matrix and B is $n \times m$ matrix obtained by rotating A ninety degrees clockwise on paper (not a standard matrix operation). Do A and B have the same singular values? Prove or give a counterexample.
- **5.** Let A be an $m \times n$ matrix of rank r > 0 with singular values $\sigma_1, \ldots, \sigma_r$. Show that $||A||_F = \sqrt{\sigma_1^2 + \ldots + \sigma_r^2}$.