HOJA PARÁMETROS PRUEBAS INYECCIÓN

FECHA	23/09/2021	REF. MOLDE	1822/0/1	TERMOPLÁSTICO	PLA LUMINY LX175
		CAVIDADES	6 / 4		NATURAL
TÉCNICO		COLORANTE (%	N/A	TIEMPO/R.P.M	
)blanc MTB 2457		COLORIMETRO	
MÁQUINA	44	ADITIVO		TIEMPO/R.P.M	
				COLORIMETRO	

TEMPERATURAS HUSILLO

	BOQUILLA	Z1	Z2	Z3	Z4
Nominal	185	175	170	165	165
Real	185	175	170	165	165

TEMPERATURAS CÁMARA MOLDE

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	RC1	RC2
N		170		215	158	180								
R		170		215	158	180								
	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	RC3	RC4
N	155	155												
R	155	155												

B. Boquilla R. Ramal RC. Ramales Centrales MOLDE TEMPERATURAS

LADO INYECCIÓN			LADO EXPULSIÓN			
Zona Molde	о С	Zona	Molde	о С		
Placa bebedero	Refrigeración cerrada	Punchones	grados			
Culotes	Agua directa	40				
Vasos	45 grados					

TIEMPOS/PRESIONES

T. CICLO	92	T.ENFRIAMIENTO	55	P. LIMITE	1300
T.PLASTIFICACIÓN	16	T. 2ª. PRESIÓN	13	P. REAL INY.	1270
T. INYECCIÓN	15.44	T. SEG. MOLDE	0.5	P. REAL C.C	1266

REGISTRO VELOCIDADES/PRESIONES

Perfiles	1	2	3	4	5	6
m.m/s	12	12	12	10	8	6
m.m	0	30	40	120	130	140
140Presión	1300	1300	1300	1300	1300	1300
2	PRESIÓN	COTA	CAMBIO: 12	m.m C	OJÍN: 10	m.m
	1	2	3	4	5	6
Presión	0	1000	1050	1075	1100	
Tiempo	13	12.5	10	5	0	

PLASTIFICACIÓN

r.p.m	125	125	125	Succión	
m.m	20	100	150	m.m/s	10
Ср	120	125	125	m.m	10

VARIOS

ABERTURA MOLDE	REC. SEG. MOLDE	P. SEG. MOLDE	PIEZAS/HORA
308 m.m	80 m.m	10 V Bar	und.
Φ BOQUILLA	CARRO	PESO PIEZA	PESO INYECTADA
m.m	M()F(x)	35.97 g.	143.88 g.

REGISTRO CAMBIOS

FECHA	PARAMETRO	CAMBIO	MOTIVO	TÉCNICO

APROBADO RESPONSABLE INYECCIÓN:	APROBADO RESPONSABLE CALIDAD:
Firma/fecha	Firma/fecha:

OBSERVACIONES:

23/09/2021:

Prueba de molde con material PLA LUMINY LX175 (TOTAL/CORBION).

Hemos trabajo por debajo de las temperaturas recomendadas en el Data Sheet, el motivo es porque al trabajar con temperaturas mas altas tenemos problemas de material enganchado en molde (zona boquillas) y las piezas tienden a salir deformadas.

Podemos conseguir trabajar con este material, pero tendremos que ajustar el proceso en los tiempos de refrigeración, con un posible aumento del tiempo de ciclo.

Aleatoriamente detectamos algunas piezas con chispeados y pequeñas uniones.

Las piezas presentan un color amarillento, este color ya se aprecia en la granza sin inyectar.

Fotos de piezas inyectadas:

Product Data Sheet Luminy® LX175

Revision date 07 May 2019 Page 1 of 3 Date previous version 01 Sep 2017 Version & language 6/0975 - EN Product availability Global Product status Commercial

PRODUCT DATA SHEET LUMINY® LX175

Interested in solutions for bioplastics? Please contact us at

www.total-corbion.com pla@total-corbion.com

DESCRIPTION

PLA is a biobased polymer derived from natural resources and offers a significant reduction in carbon footprint compared to oil-based plastics. Luminy LX175 is a high viscosity, low flow, amorphous, transparent PLA resin suitable for film extrusion, thermoforming or fiber spinning.

TYPICAL PROPERTIES!

Physical properties	Method	Typical value
Density	Literature value	1.24 g/cm ²
Melt flow index	ISO 1133-A (210°C/2.16kg)	6 g/10 min
Melt flow index	ISO 1133-A (190°C/2.16kg)	3 g/10 min
Stereochemical purity	Total Corbion PLA method	96% (L-isomer)
Appearance	Visual	Crystaline white pellets
Residual monomer	Total Corbion PLA method	s 0.3%
Water / moisture	Coulometric Karl-Fischer	≤ 400 ppm
Melting temperature	DSC	155°C
Glass transition temperature	DSC	60°C
Mechanical properties	Method	Typical value
Tensile modulus	ISO 527-1	3500 MPa
Tensile strength	ISO 527-1	45 MPa
Elongation at break	ISO 527-1	≤ 5%
Charpy notched impact, 23°C	ISO 179-1eA	≤ 5 kJ/m2
Heat deflection temp., amorphous?	ISO 75-1	60°C

PROCESSING INFORMATION & RECOMMENDATIONS

Standard PLA can be processed on conventional extrusion equipment and can be used as nest resin or as part of a compound to further optimize overall material properties. It is recommended to use a general purpose screw with L/D ratios between 24 and 32. Pre-drying of the resin is recommended.

Start-up and shutdown

- 1. Purge the system with a polyolefin or a purging compound (e.g. Dyna-Purge, Clean LDPE) at its recommended temperature settings.
- 2. Reset the temperature settings to the recommended PLA temperature profile.
- 3. Purge with PLA resin or PLA compound until stable processing is obtained free of contaminants.
- 4. Reset the temperature settings to the recommended purging compound temperature profile.
- 5. Purge with a polyolefin or a purging compound for 5 times the average residence time.

After completion of the run, PLA must be removed from the whole system. PLA can degrade into lactic acid causing corrosion of the equipment (e.g. die plates).

Downtourbed, reproduced, transactive a retrieval by term or transmitted in any flore by any means, efections, mechanical phospacy and consists or otherwise, without permission of the publisher his representation or wainerry to main as to the both or accuracy of any data, information or opinional contained herein or acts their putability for any purpose, condition or application. None of the date, information or opinions herein may be relied upon for any purpose or resion. Total Cortision PLA the use of the data inflormation or naireons contained herers, in addition, nothing contained herein ery material or its one TOTAL is a mademark owned and regiment by Total S.A., used under licer to Total Corbins PLA BY CORRION is a rederror's owned and requiremed by CORRON N.V. used Scenarios Total Codiner PLATIV

Processing recommendations

Feed zone

Mixing & conveying

Die head temperature

4-6 hours at 85°C

170-190°C

190-210°C

190-210°C

Product Data Sheet Luminy® LX175

Revision date 07 May 2019 Page 2 of 3 Version & language 6/0975 - EN

MOISTURE & PRE-DRYING

It is recommended to dry Luminy* LX175 from the packaging for 4-6 hours at 85°C. Drying of standard PLA can be performed in a desiccant hot air dryer, with a dew point of -40°C or less. It is recommended to reduce the moisture content before melt processing to a level less than 250ppm and preferably less than 100 ppm, measured by e.g. Karl-Fischer or Brabender aquatrac method. Predrying is in particular important prior to injection molding, film and sheet production. Moisture causes hydrolysis of the PLA polymer during melt processing, resulting in reduced mechanical performance in the final part.

PACKAGING & STORAGE CONDITIONS

Luminy# LX175 is available in 1250 kg form-stable aluminum-lined big bags and 25 kg sample bags (moisture level not guaranteed for sample bags). It is recommended to store PLA polymer in its closed, original moisture-barrier packaging at temperatures below 50°C. Storage in direct sunlight should be avoided. The supplied PLA polymer pellets are typically semi-crystalline, unless otherwise stated.

COMPOSTABILITY

Composting of organic waste helps to divert organic waste from landfill or incineration. Composting is a biological process in which organic wastes are degraded by microorganisms into carbon dioxide, water and humus, a soil nutrient. Luminy^a PLA polymers are in compliance with the EN-13432 standard. Luminy® LX175 has been certified compostable by TUV Austria (OK Compost S478) and by European Bioplastics (Seedling 7W2030) up to a thickness of 3.5 mm. As the compostability of the end product is also dependent on the geometry of product, it is the responsibility of the manufacturer of the end product to ensure compliance with the regulations.

BIOBASED CONTENT

Luminy® LX175 has a biobased content of 100% (confidence level 1) and a biobased carbon content of 100% according to EN16785-1 under certificate number DIC-00001. Luminy® LX175 is certified 100% biobased according to ASTM D6866 under the USDA Biopreferred program.

FOOD CONTACT STATUS

In the European Union, Luminy® PLA polymers are compliant with EU commission regulation 10/2011 of 14 January 2011 (and amendments) on plastic materials and articles intended to come into contact with food. Lactic acid is considered a dual use substance. since lactic acid is approved as a food additive (additive number E270). There are no SMLs or SML(T)s for the ingredients used to produce Luminy® PLA. The regulation does include an migration limit of 10 mg/dm2 on the overall migration from finished plastic articles. into food. It is the responsibility of the manufacturer of the final product, when intended as a food contact product, to determine that the use of the product is safe and also suitable for the intended application. While it is Total Corbion PLA's conclusion that the above mentioned polymers are permitted, it is the final product which must meet the given regulations and the manufacturer should take responsibility to check if the final product is in compliance with these regulations.

In the United States of America, Luminy® PLA as supplied by Total Corbion PLA has been evaluated and was found to be suitable for use in food contact applications. On 30 November 2018, FCN 001926 as applied for by Total Corbion PLA to the FDA became effective. It is included in the list of effective notifications for FCNs on the website of the FDA. The evaluation performed was in line with the requirements of Section 201(s) and Section 409 of the Federal, Drug and Cosmetic Act, and Parts 182, 184 and 185 of the Food Additive Regulations. Luminy* PLA neat resin is approved for all food types and conditions of use B through H.

