Student Names: Elif Güler, Samed Düzçay Student IDs: 2015400099, 2015400027

Group ID: 5

Experiment 4 (Analysis of a Sequential Circuit)

Preliminary Work:

Step 1: State the inputs and outputs of the state registers.

Inputs: N2, N1, N0

Outputs: S2, S1, S0

Step 2: State the inputs and outputs of the combinational block.

Inputs: S2, S1, S0, X

Outputs: N2, N1, N0, Y1, Y0

Step 3: Write each output (including next state bits) as a function of the inputs.

N2 = X((S2(S1+S0)')+S2'S1S0)

 $N1 = (S2'X)(S1^S0)$

N0 = ((S2'X')+((S1+S0)'(S2X')))+(S1X(S2+S0)')

Y1 = X'((S2(S1+S0)')+(S2'S1S0))

 $Y0 = (S2^S1)(S0+X)'$

Step 4: Draw the truth table for the combinational circuit.

#	S2	S 1	S0	Χ	N2	N1	N0	Y1	Y0
0	0	0	0	0	0	0	1	0	0
1	0	0	0	1	0	0	0	0	0
2	0	0	1	0	0	0	1	0	0
3	0	0	1	1	0	1	0	0	0
4	0	1	0	0	0	0	1	0	1
5	0	1	0	1	0	1	1	0	0
6	0	1	1	0	0	0	1	1	0
7	0	1	1	1	1	0	0	0	0
8	1	0	0	0	0	0	1	1	1
9	1	0	0	1	1	0	0	0	0
10	1	0	1	0	0	0	0	0	0
11	1	0	1	1	0	0	0	0	0
12	1	1	0	0	0	0	0	0	0
13	1	1	0	1	0	0	0	0	0
14	1	1	1	0	0	0	0	0	0
15	1	1	1	1	0	0	0	0	0

Student Names: Elif Güler, Samed Düzçay Student IDs: 2015400099, 2015400027

Group ID: 5

Experiment 4 (Analysis of a Sequential Circuit)

Step 5: Draw the finite state machine by using the truth table.

(Mealy FSM with state encoding A: 000 - B: 001 - C: 010 - ... - H: 111)

Step 6: How many unreachable states does the finite state machine contain? (No explanation, only short answer)

of Unreachable States: 3

Step 7: Briefly explain the relation between the input and the output.

Explanation: It's a sequence detector that:

- Ignores the initial 1's.
- Gives output y=01 on input sequence 010.
- Gives output y=10 on input sequence 0110.
- Gives output y=11 on input sequence 011...10 (3 or more 1's).
- Detects overlapping input sequences such as 01010 (gives output y=01 twice for this case).
- Gives output y=00 otherwise.