AMS 553.430 - Introduction to Statistics

Lectures by Dwijavanti P Athreya Notes by Kaushik Srinivasan

Johns Hopkins University Fall 2018

Lecture 0 (2018-08-30)	1	Lecture 3 (2018-09-10)	20
Lecture 1 (2018-08-30)	16	Lecture 4 (2018-09-12)	23
Lecture 2 (2018-09-05)	17		

Introduction

Math 553.430 is one of the most important courses that is required/recommended for the engineering-based majors at Johns Hopkins University.

These notes are being live-TeXed, through I edot for Typos and add diagrams requiring the TikZ package separately. I am using Texpad on Mac OS X.

I would like to thank Zev Chonoles from The University of Chicago and Max Wang from Harvard University for providing me with the inspiration to start live-TeXing my notes. They also provided me the starting template for this, which can be found on their personal websites.

Please email any corrections or suggestions to ksriniv40jhu.edu.

Lecture 0 (2018-08-30)

Introduction to Probability (553.420) Review

Part 1 - Counting

- (1) Multiplication rule (Basic Counting Principle)
- (2) Combinations/Permutations
 - ullet Sampling with or without replacement. \Rightarrow Inclusion-Exclusion Principle

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad {}^{n}P_{k} = \frac{n!}{(n-k)!}$$

- (3) Birthday Problem
- 4 Matching Problem (inclusion-exclusion principle)

$$-P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$-P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

- etc...
- (5) n balls going into m boxes (all are distinguishable)

Example. n balls numbered $1, 2, \dots, n$. n boxes labelled $1, 2, \dots, n$. Distribute the balls into the boxes, one in each box. $M_i = \text{ball } i$ is in box i

 $\overbrace{0}$ Multinomial Coefficients e.g. assign A, B, C, D, to different students \rightarrow anagram problem -n distinct objects into r distinct groups

$$\frac{n!}{n_1!n_2!n_3!\dots n_r!} = \binom{n}{n_1,n_2,n_3,\dots,n_r}$$

(7) Pairing Problem

$$2n \text{ people, paired up} \begin{cases} \text{ordered: } \binom{2n}{2,2,\cdots,2} \quad \text{e.g. different courts for players} \\ \text{unordered: } \frac{\binom{2n}{2,2,\cdots,2}}{n!} \end{cases}$$

(8) Partition of integers $\longrightarrow n$: sum of integer, r: number of partitions

$$\binom{n+r-1}{r-1} = \binom{n+r-1}{n}$$

Basics of Probability

Axioms

- $\bigcirc 1$ $0 \le P(A) \le 1, \forall A$
- (2) $P(\Omega) = 1 \rightarrow$ where Ω is the sample space
- (3) Countable additivity
 - if A_1, \dots, A_n are mutually exclusive, then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = P(A_1) + P(A_2) + \dots = \sum_{i=1}^{\infty} P(A_i)$$

$$\Rightarrow P(A) = 1 - P(A^c)$$
$$P(A) = \frac{|A|}{|\Omega|}$$

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Law of Total Probability

$$P(A) = \sum_{j} P(A|B_{j})P(B_{j}) = \sum_{j} P(A \cap B_{j}) \qquad \bigcup_{j \text{ partition of } \Omega} B_{j} = \Omega$$

Bayes Rule

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{j} P(A|B_j)P(B_j)} \qquad \bigcup_{j} B_j = \Omega$$

Independent events

If we have events A_1, A_2, \cdots, A_n , then

$$P(A_1 \cap A_2 \cap A_3 \cdots A_n) = P(A_1) \cdot P(A_2) \cdot P(A_3) \cdot \cdots \cdot P(A_n)$$

Introduction to Discrete and Continuous Random Variables

Random Variable - a real valued function defined on the sample space of an experiment $X : \Omega \to \mathbb{R}$, $\forall \omega \in \Omega, X(\omega) \in \mathbb{R}$

Function	Discrete	Continuous
Probability Function	PMF: $P(X = x)$	PDF: $f_x(x)$
Probability Distribution	$\sum_{x} P(X = x) = 1$	$\int_{x} f_{x}(x)dx = 1$
Expectation	$E[X] = \sum_{x} xP(X = x)$	$E[X] = \int_{x} x f(x) dx$
Variance	$Var[X] = E[X^2] - (E[X])^2$	$Var[X] = E[X^2] - (E[X])^2$

Law of the Unconscious Statistician (LOTUS)

1-dim
$$E[g(x)] = \sum_{x} g(x)P(X=x) \bigg/ E[g(x)] = \int_{x} g(x)f(x)dx$$
 2-dim
$$E[g(X,Y)] = \sum_{y} \sum_{x} g(x,y)P(X=x,Y=y) \bigg/ E[g(X,Y)] = \int_{y} \int_{x} g(x,y)f(x,y)dxdy$$

Discrete Distributions

- 1. Bernoulli(p)
- 2. Binomial(n, p)
- 3. Poisson (λ)

- 4. Geometric(p)
- 5. Negative Binomial(n, p)
- 6. Hypergeometric (N, M, n)

Bernoulli Distribution

X is a random variable with Bernoulli(p) distribution

$$X \sim Bernoulli(p)$$

$$P(X = x) = \begin{cases} p & x = 1\\ 1 - p & x = 0 \end{cases}$$

Binomial Distribution

A sum of i.i.d. (identical, independent distribution) Bernoulli(p) R.V.

$$X \sim Binomial(n, p)$$
 Support : $x \in \{0, 1, \dots n\}$
 n : sample size p : probability of success
$$P(X = k) = \binom{n}{k} p^k (1 - p)^{(n-k)}$$

$$E[X] = np \qquad Var(X) = np(1 - p)$$

• Approximation methods \Rightarrow

- if n is large, p very small and np < 10. \Rightarrow use Normal (np, np(1-p))
- $p \approx \frac{1}{2} \Rightarrow \text{Use Poisson } (\lambda = np)$
- Mode:
 - if (n+1)p integer, mode = (n+1)p or (n+1)p 1.
 - if $(n+1)p \notin \mathbb{Z}$ mode is $\lfloor (n+1)p \rfloor$
 - **Proof:** consider $\frac{P(X=x)}{P(X=x-1)}$ going below 1.

Poisson Distribution

$$X \sim Poisson(\lambda)$$

$$x \in \{0, 1, \cdots\}$$

$$\lambda : \text{parameter}$$

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

$$E[X] = \lambda$$

$$Var(X) = \lambda$$

- Approximations
 - if n is large \Longrightarrow Normal(λ, λ)
- Sums of Poisson Let $X \sim Po(\lambda)$ $Y \sim Po(\mu) \implies X + Y \sim Po(\mu + \lambda)$

Negative Binomial

$$X \sim NB(r, p)$$
Support : $x = \{r, r + 1, ...\}$

$$r = \text{the rth success}$$

$$p = \text{probability of success}$$

$$P(X = k) = \binom{k + r - 1}{k} \cdot (1 - p)^r \cdot p^k$$

A sum of i.i.d Geometric(p) R.V.

 $\blacksquare a^{th}$ head before b^{th} tail

Example. A coin has probability p to land on a head, q = 1 - p to land on a tail.

 $P[5^{th}$ tail occurs before the 10^{th} head]?

$$\begin{cases} = P[5\text{th tail occurs before or on the 14th flip}] \\ = P[\text{Neg Binomial}(5, q) = 5, 6, 7, \cdots, 14] \\ = \sum_{x=5}^{14} {x-1 \choose 4} q^5 p^{x-5} \end{cases}$$
 (or)
$$\begin{cases} = P[\text{at least 5 tails in 14 flips}] \\ = P[binom(14, q) = 5, 6, 7, \cdots, 14] \\ = \sum_{x=5}^{14} {14 \choose x} q^x p^{14-x} \end{cases}$$

Geometric Distribution

$$X \sim Geometric(p)$$
 Support : $x \in \{1, 2, \cdots\}$
$$p : \text{probability of success}$$

$$P(X = r) = (1 - p)^{(r - 1)} \cdot p$$

$$\text{prob for 1st success on } r\text{th trial}$$

$$E[X] = \frac{1}{p} \qquad \qquad Var(X) = \frac{1 - p}{p^2}$$

Example. ■ Coupon Question

<u>Variation A</u>: N different types of coupons $\rightarrow P(\text{ get a specific type}) = \frac{1}{N}$ Question: E[draws to get 10 different coupons]?

Answer:

$$X = X_1 + X_2 + \cdots + X_{10}$$
 $X_i = \#$ draws to get the ith distinct coupon type

 $X_i \sim Geo(p_i)$ p_i : prob to get a new coupon \leftarrow success, given that we have i-1 types of coupons

Hence,
$$E[X_1] = 1$$

 $E[X_2] = \frac{1}{p_2} = \frac{1}{\frac{N-1}{N}} = \frac{N}{N-1}$
 $E[X_3] = \frac{1}{p_3} = \frac{1}{\frac{N-2}{N}} = \frac{N}{N-2}$
 \vdots

$$E[X_{10}] = \frac{1}{p_{10}} = \frac{1}{\frac{N-9}{N}} = \frac{N}{N-9}$$

So,
$$E[X] = E[X_1] + E[X_2] + \dots + E[X_{10}] = E[\sum_{i=1}^{10} X_i] = 1 + \frac{N}{N-1} + \frac{N}{N-2} + \dots + \frac{N}{N-9}$$

Variation B: Same setting, now you draw 10 times.

Question: E[# different types of coupons]?

Answer:

$$X = I_1 + I_2 + \dots + I_N$$

$$I_i \begin{cases} 1 & \text{if we have this type of coupon} \\ 0 & \text{o/w} \end{cases}$$

$$E[I_i] = P(\text{we draw coupon i in 10 draws})$$

$$= 1 - P(\text{we don't have coupon i}) \qquad \text{we use binomial distribution where } 1 - P(N = 0)$$

$$= 1 - \left(\frac{N-1}{N}\right)^{10}$$

$$E[X] = E[\sum_{i=1}^{N} I_i] = NE[I_i] = NE[I_i] = NE[I_i]$$

Hypergeometric Distribution

$$X \sim Hyp(N, M, n)$$

$$N \in \{0, 1, 2, ...\} \quad M \in \{0, 1, ..., N\} \quad n \in \{0, 1, ..., N\}$$
 Support : $k \in \{\max(0, n + M - N), \min(n, M)\}$

N is the population size K is the no. of success states in the population

n is the no. of draws (i.e. quantity drawn in each trial)

k is the no. of observed successes

$$P(X = k) = \frac{\binom{M}{k} \binom{N-M}{M-k-1}}{\binom{N}{n}}$$

Continuous Distributions

Uniform Distribution

$$X \sim Unif(a, b)$$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & o/w \end{cases}$$

$$E[X] = \frac{a+b}{2} \qquad Var(X) = \frac{(b-a)^2}{12}$$

Normal Distribution

$$X \sim N(\mu, \sigma^2) \Rightarrow Z = \frac{X - \mu}{\sigma} \sim N(0, 1) \text{ with CDF } P(Z \le z) = \Phi(z)$$

$$\Phi(-x) = 1 - \Phi(x)$$
Support: $x \in (-\infty, \infty)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

$$E[X] = \mu \qquad Var(X) = \sigma^2$$

• Sums and differences of Normal R.V.

$$X_1 \sim \mathcal{N}(\mu, \sigma^2) \qquad X_2 \sim \mathcal{N}(\mu, \sigma^2)$$

$$Y_1 = X_1 + X_2 \qquad Y_2 = X_1 - X_2$$

$$Y_1 \sim \mathcal{N}(2\mu, 2\sigma^2) \qquad \underbrace{Y_2 \sim \mathcal{N}(0, 2\sigma^2)}_{\text{doesn't have } \mu}$$

- The sum and difference of Normal R.V. are Normal R.V.
- Any Linear Combination of Independent Normal R.V. is a Normal R.V.
- Dependence
 - $Y_2 = X_1 X_2$ density does not depend on μ . But density of $X_1 + X_2$ does.
 - Key idea is used in Data Reduction

Exponential distribution

$$X \sim Exp(\lambda)$$

Support: $x \in [0, \infty)$
 $f_X(x) = \lambda e^{-\lambda x}$
 $E[X] = \frac{1}{\lambda}$ $Var(X) = \frac{1}{\lambda^2}$

Lack of memory property: $P(X \ge s + t | X \ge t) = P(X \ge s)$

- $M = \min \text{ of } exp(\lambda) \text{ and } exp(\mu) \Rightarrow M \backsim exp(\lambda + \mu)$
- $M = \min \text{ of } X_1, X_2, \cdots, X_n, \text{ where } X_i \backsim_{\text{i.i.d.}} exp(\lambda) \Rightarrow exp(n\lambda)$

Gamma Distribution

$$X \sim Gamma(\alpha,\beta)$$
 Support: $x \in [0,\infty)$
$$F_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$

$$E[X] = \frac{\alpha}{\beta} \qquad \qquad Var(X) = \frac{\alpha}{\beta^2}$$
 Gamma Function: $\Gamma(z) = (z-1)! = \int_0^{\infty} x^{z-1} e^{-x} dx$
$$\Gamma(n) = (n-1)!$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

• Sums of Gamma

$$- Gamma(s, \lambda) + Gamma(s, \lambda) = Gamma(s + t, \lambda)$$

Beta Distribution

$$X \sim Beta(\alpha, \beta)$$
Support: $x \in [0, 1]$

$$f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

$$E[X] = \frac{\alpha}{\alpha + \beta}$$

$$Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$$

• Gamma to Beta

$$X \sim Gamma(\alpha_1,\beta) \qquad Y \sim Gamma(\alpha_2,\beta)$$
 Then transformation
$$U = \frac{X}{X+Y} \sim Beta(\alpha_1,\alpha_2) \qquad \text{(Use } X = UV, Y = V - UV)$$

Chi-Square

Chi-Square:
$$\chi_n^2$$
 is Chi-square with degrees of Freedom n

$$\chi_n^2 = Z_1^2 + Z_2^2 + \dots + Z_n^2 \quad \text{where } Z_i \backsim \text{standard normal.} Z_i \backsim Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$$

$$\Rightarrow \chi_n^2 = n \text{ i.i.d. } Z_i \backsim Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$$

$$=Gamma\bigg(\frac{n}{2},\frac{1}{2}\bigg)$$

CDF in General

•
$$F_x(t) = P(X \le t)$$

$$= \sum_{x \le t} P(X = x) \quad \text{discrete}$$

$$= \int_0^t f(x) dx \quad \text{continuous}$$

• **Discrete:** "Left open, right closed" \Rightarrow if you flip the sign (from < to \le) in the left, you flip the sign of a (from a to a^-)

$$- P(a < x \le b) = F(b) - F(a)$$

$$- P(a \le x \le b) = F(b) - F(a^{-})$$

$$-P(a < x < b) = F(b^{-}) - F(a)$$

$$-P(a \le x \le b) = F(b^{-}) - F(a^{-})$$

• Continuous: (because a point doesn't have a mass)

$$P(a \le x \le B) = \int_a^b f(x)dx = F(b) - F(a)$$

Integration by Recognition

$$1 = \int_{-\infty}^{\infty} \frac{e^{-\frac{x^2}{2\sigma^2}}}{\sigma\sqrt{2\pi}} dx \qquad \sigma\sqrt{2\pi} = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2\sigma^2}}$$
 (normal dist.)

Joint Distribution

Discrete Continuous
$$P_{X,Y}(x,y) = P(X = x, Y = y)$$
 Indep $\Rightarrow P_X(x)P_Y(y)$
$$= \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$$

• Marginal Density/PMF:

Continuous:
$$f_X(x) = \int_x f_{X,Y}(x,y) dy$$
 and $f_Y(y) = \int_y f_{X,Y}(x,y) dx$

* the bounds for y in the integration can depend on x, and vice versa

Discrete:
$$P_X(x) = \sum_y P(X = x, Y = y)$$
 and $P_Y(y) = \sum_x P(X = x, Y = y)$

• Use joint pdf to compute probability

• Independence: If X, Y are independent, then

Continuous:
$$f(x,y) = f_X(x)f_Y(y)$$

Discrete: $P(X=x,Y=y) = P(X=x)P(Y=y)$

• Convolution: assume X, Y are independent

Discrete:
$$P_{X+Y}(a) = \sum_{y} P_X(a-y)P_Y(y) = \sum_{x} P_X(x)P_Y(a-x)$$

Continuous:
$$f_{X+Y}(a) = \int_y f_X(a-y) f_Y(y) dy = \int_y f_X(x) f_Y(a-x) dx$$

MGF: we can use this $M_{X+Y}(t) = M_X(t)M_Y(t) \longrightarrow \text{then identify dist of X+Y from mgf}$

• Density Transformation:

 $X_1 \& X_2$ are indep r.v. \Rightarrow want to find density of $\frac{X_1}{X_2}$

Density Transformation

For density transformation e.g. finding pdf of U = X + Y

- Convolution - Jacobian

- MGF - CDF Transformation

• Use CDF: Computer $P(Y \le y) = P(g(x) = y)$

• 1-dim: If Y is monotonically increasing or decreasing: Y = g(x) $f_Y(y) = f_X(x(y)) \cdot |(x^{-1})'(y)|$

• **2-dim:** Joint Density:

$$(X,Y) \to (U,V) \qquad U = h_1(X,Y) \qquad V = h_2(X,Y)$$

$$f_{U,V}(u,v) = f_{X,Y}(x(u,v),y(u,v)) \cdot |J|$$
where
$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
 determinant

• if Z = X + Y (2-dim \to 1-dim) use CDF. Compute $P(Z \le z) = P(X + Y \le z)$. Integrate f(x,y) over this region.

Sterling's Formula

$$n! \approx \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

This is only really useful when n is large, when factorials are represented as ratios.

Conditional distribution

Discrete
$$P_{X|Y=y}(x|y) = \frac{P_{X,Y}(x,y)}{P_Y(y)} = \frac{P(X=x,Y=y)}{P(Y=y)}$$

$$\Rightarrow \sum_y P_{X,Y}(x,y) = \sum_y P_{X|Y=y}(x|y) \cdot P_Y(y)$$
Continuous
$$f_{X|Y=y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

$$\Rightarrow f_X(x) = \int_y f(x,y) dy = \int_y f_{X|Y=y}(x|y) \cdot f_Y(y) dy$$

$$F_{X|Y}(x|y) = \int_{-\infty}^x f_{X|Y}(x|y) dx$$

$$f_{X,Y}(x|y) = \int_{-\infty}^x f_{X,Y}(x|y) dx$$

Conditional Expectation

$$\begin{split} E[X|Y=y] &= \sum_x x P(X=x|Y=y) \\ E[X|Y=y] &= \int_x x f(x|y) dx \\ E[X|Y] &: \text{compute } E[X|Y=y] \text{ first, replace } y \text{ with } Y \end{split}$$

• Properties:

$$- E[aU + bV|Y = y] = aE[U|Y = y] + bE[V|Y = y]$$
 LOTUS

- If
$$g(Y) = X$$
 then $E[X|Y = y] = X$

– If
$$X$$
 and Y are independent, then $E[X|Y=y]=E[X]$

Conditional Variance

$$\boxed{Var(X|Y) = E[(X - E[X|Y])^2]}$$
 (conditional variance)
$$\boxed{Var(X|Y) = E[X^2|Y] - (E[X|Y])^2}$$
 (unconditional variance)

Ordered Statistics

Consider X_1, X_2, \dots, X_n $X_{(j)} = j$ -th smallest

$$F_{\max(X_i)}(t) = P(\max X_i \le t) = P(X_1 \le t) \cdot P(X_2 \le t) \cdots P(X_n \le t)$$

$$= [F_X(t)]^n \qquad f_{\max X_i}(t) = nF(t)^{n-1} f_X(t)$$

$$F_{\min(X_i)}(t) = 1 - P(\min x_i \ge t) = 1 - P(X_1 \ge t) \cdot P(X_2 \ge t) \cdots P(X_n \ge t)$$

$$= 1 - [1 - F_X(t)]^n \qquad f_{\min X_i}(t) = n[1 - F(t)]^{n-1} f_X(t)$$

General: j-th order statistic

$$f_{x(j)}(t) = \binom{n}{j-1, 1, n-j} F_X(t)^{j-1} \cdot f_X(t) \cdot [1 - F_X(t)]^{n-j}$$

As Beta distribution: Let $U_1, U_2, \ldots, U_N \sim i.i.d$. Uniform(0,1) and let $1 \leq j \leq N$ $U_{(j)} = \text{jth smallest in } U_{(1)}, U_{(2)}, \ldots, U_{(N)}$ (ordered statistics). Then,

$$U_{(j)} \sim Beta(j, N - j + 1)$$
$$E[U_{(j)}] = \frac{j}{N+1}$$

Expectation and Variance

Law of Total Expectation:

$$E[X] = E[E[X|Y]]$$

Law of Total Variance:

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)]$$

Expectation

- (1) linearity of expectation
- (2) How to compute
 - (a) LOTUS or definition (use density to integrate)
 - (b) MGF: $M^{(n)}(0) = E[X^n]$ or by recognition
 - (c) $E[X^2] = Var[X] + E[X]^2$
 - (d) Tail probability X is non-neg R.V. (x > 0) then $E[X] = \sum_{t=0}^{\infty} P(X \ge t)$ or $= \int_{0}^{\infty} P(X \ge t) dt$

Variance

①
$$Var(X_1 + X_2 + \dots + X_n) = \sum_{i=1}^n Var(X_i) + \sum_{i \neq j} Cov(X_i, X_j)$$

if X_i, X_j identical (not independent) = $nVar(X_i) + n(n-1)Cov(X_i, X_j)$ $i \neq j$

$$\boxed{Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)}$$

(2) Covariance:

$$\begin{split} Cov(X,Y) &= E[XY] - E[X]E[Y] \\ Cov(X,c) &= 0 \qquad c \ is \ a \ constant \\ Cov(X+Y,Z) &= Cov(X,Z) + Cov(Y,Z) \\ Cov(cX,dZ) &= cd \cdot Cov(X,Z) \\ Cov(aX+b,cY+d) &= ac \cdot Cov(X,Y) \qquad a,b,c,d \ \text{are constants} \\ Cov(X,Y) &= 0 \qquad \text{If} \ X \perp Y \ \text{(independent)} \end{split}$$

(3) Correlation Coefficient:

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{Cov(X,Y)}{\sigma_x \sigma_y}$$

MGFs

Let X be a random variable. Then

$$M_X(t) = E[e^{tX}]$$

it can also be written as:

$$= E\left[\sum_{j=0}^{\infty} \frac{(tX)^j}{j!}\right]$$
$$= E\left[\sum_{j=0}^{\infty} \left(\frac{X^j}{j!} \cdot t^j\right)\right]$$
$$M_X^{(n)}(0) = E[X^n]$$

If X and Y are independent, then

$$M_{X+Y}(t) = E[E^{(X+Y)t}]$$

$$= E[e^{tX}]E[e^{tY}]$$

$$= M_X(t)M_Y(t)$$

Limit Theorems

Markov's Inequality

For any non-negative random variable X

$$P(X \ge a) \le \frac{E(X)}{a}$$
 (for any $a > 0$)

Proof. Let $X \geq 0$ a random variable and let a > 0. Define new random variable from X as Y_a

$$Y_{a} = \begin{cases} 0 & \text{if } X < a \\ a & \text{if } X \ge a \end{cases}$$

$$0 \le Y_{a} \le X \Longrightarrow \underbrace{E[Y_{a}]}_{a \cdot P(X \ge a)} \le E[X]$$

$$E[Y_{a}] = 0 \cdot P(Y_{a} < a) + a \cdot P(X \ge a)$$

$$E[Y_{a}] = a \cdot P(X \ge a) \le E[X] \Longrightarrow \boxed{P(X \ge a) \le \frac{E(X)}{a}}$$

Chebyshev's Inequality

For any random variable Y with mean μ_y and variance σ_y^2

$$P(|Y - \mu)y| \ge c) \le \frac{\sigma_y^2}{c^2}$$
 (for any $c > 0$)

Proof.

$$P(|Y - \mu_y)| \ge c) = P(\underbrace{|Y - \mu_y|^2}_{=X} \ge c^2)$$
$$P(|Y - \mu_y|^2 \ge c^2) \le \frac{E[|Y - \mu_y|^2]}{c^2} = \frac{\sigma_y^2}{c^2}$$

This is the same as

$$-P(|Y - \mu_y| \ge k\sigma_y) \le \frac{1}{k^2}$$

$$-P(|Y - \mu_y| \le k\sigma_y) \ge \underbrace{1 - \frac{1}{k^2}}_{\text{very conservative}}$$

Central Limit Theorem

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu_n, n\sigma_x^2)$$
$$\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}\left(\mu_n, \frac{\sigma_x^2}{n}\right)$$

Weak Law of Large Numbers

If X_1, X_2, \cdots are *i.i.d.* with a mean μ

then
$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 0$$

Strong Law of Large Numbers

$$X \xrightarrow{p} \mu_X$$
 as $n \to \infty$
 $Pr(\lim_{n \to \infty} \bar{X}_n = \mu) = 1$

Lecture 1 (2018-08-30)

Survey Sampling

We have a <u>population of objects</u> under study (people, animals, places, etc.). We will consider a single numerical measurement associated to object $i: x_i$

Example. $N = 5000, x_i = \text{height of person } i$, Population size = N. We denote population measurements $\{x_1, x_2, \dots, x_N\}$

Compute population quantities:

• population total
$$\tau = \sum_{i=1}^{N} x_i$$
 • population mean $\mu = \frac{\tau}{N} = \frac{\sum_{i=1}^{N} x_i}{N}$

Note: τ and μ are population parameters, their computation depends on all the population data.

Question. How to estimate τ and μ based on a sample of observation from this population?

<u>Classical Answer:</u> Choose a "random" sample of objects and associated measurements denoted $\{x_1, x_2, \dots, x_n\}$. Note: capital X_i denote random variables. Whiter "Random"? Two types of ways to sample:

with replacement

Claim 1. If X_i are drawn without replacement, then the distribution of X_1 and X_2 are identical. Is this true? In fact, it is \Rightarrow They are NOT independent but they are identically distributed.

$$P(Ace in Pos 1) = P(Ace in Pos 2) = \frac{4}{52}$$

Combinatorial Approach

"well-shuffled deck" \leftrightarrow all 52! rearrangements of the card are equally likely. How many rearrangements have ace at pos 1? $4 \cdot 51!$

$$P(A_1) = \frac{4 \cdot 51!}{52!} = \frac{4}{52} = P(A_2) = P(A_{19}) = P(A_{36})$$

Question. If X_1 and X_2 are identically distributed, then how do they differ between corresponding draws with replacement?

Answer. Independence. We can have Random Variables that are identically distributed and not independent. Note if independent, $P(A_2|A_1) = P(A_2)$.

with replacement without replacement
$$P(A_1) = \frac{4}{52}, \quad P(A_2) = \frac{4}{52}$$
 $P(A_1) = \frac{4}{52}, \quad P(A_2) = \frac{4}{52}$ $P(A_2|A_1) = \frac{3}{51}$

We can see from this that depending on sampling method, we gain or lose independence. In the finite population sampling method, we have $1, \ldots, N$ objects we care about.

Loss of Independence when choosing sampling method is important.

Lecture 2 (2018-09-05)

Finite Population sampling – without i without replacement. Mean/expected value and variance of \bar{X}

Suppose our population is given by $\{x_1, \ldots, x_N\} = \{1, 2, 2, 7, 8, 9\}$ where

$$N = 6$$
, $x_1 = 1$ $x_2 = 2$ $x_3 = 2$ $x_4 = 7$ $x_5 = 8$ $x_6 = 9$

Could also describe it by counting.

Distinct Value	frequency
$\varphi_1 = 1$	$n_1 = 1$
$\varphi_2 = 2$	$n_2 = 2$
$\varphi_3 = 7$	$n_3 = 1$
$\varphi_4 = 8$	$n_4 = 1$
$\varphi_5 = 9$	$n_5 = 1$

Possible sample of size n = 6, where we sample without replacement

$$X_1 = 7$$
 $X_2 = 2$ $X_3 = 8$ $X_4 = 9$ $X_5 = 1$ $X_6 = 2$

Sample here is the same as population as (n=N)

Same thing with replacement

$$X_1 = 9$$
 $X_2 = 9$ $X_3 = 9$ $X_4 = 9$ $X_5 = 9$ $X_6 = 9$

Typically N is large and $n \ll N$ Recall population parameters

$$\mu = \frac{\sum\limits_{i=1}^{N} X_i}{N} \qquad \qquad \tau = N\mu = \sum\limits_{i=1}^{N} X_i$$

Next, σ^2 (population variance)

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
 (\sigma^2 is pop. variance)

Alternatively, we can also express σ^2 as

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N} = \frac{\sum_{i=1}^{N} (x_{i}^{2} - 2\mu x_{i} + \mu^{2})}{N}$$

$$= \frac{\sum_{i=1}^{N} x_{i}^{2}}{N} - \frac{2\mu}{N} \underbrace{\sum_{i=1}^{N} x_{i}}_{\mu} + \underbrace{\frac{\mathcal{M}\mu^{2}}{\mathcal{M}}}_{\mu}$$

$$= \frac{\sum_{i=1}^{N} x_{i}^{2}}{N} - 2\mu^{2} + \mu^{2}$$

$$= \underbrace{\left(\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}\right)}_{\text{2nd moment}} -\mu^{2} = \mu^{(2)} - \mu^{2}$$

Define: $\mu^{(k)} = \frac{1}{N} \sum_{i=1}^{N} x_i^k$

Sample Mean \bar{X} as an estimator

A function of the sample data for the population μ .

Note: If the sample is random $(X_1, \ldots, X_n \text{ are R.Vs})$, then \bar{X} is **random!** Questions:

- (1) How is \bar{X} distributed? in theory, if we know (1), then we know the answers (2) & (3) too.
- (2) What is $E[\bar{X}]$?
- (3) What is $Var(\bar{X})$?

Let's address (2)

Consider $E[\underbrace{X_1}_{\text{first draw}}]$

possible values for $X_1 = \{x_1, \dots, x_N\}$

$$P(X_1 = x_k) = \frac{1}{\binom{N}{1}} = \frac{1}{N}$$

 $\mathbf{e.x.} \ \{\underbrace{1}_{x_1}, \underbrace{2}_{x_2}, \underbrace{2}_{x_3}, \underbrace{7}_{x_4}, \underbrace{7}_{x_5}, \underbrace{9}_{x_6}\}$

gives every separate entry a unique ticket even if they are the same

$$E[X_1] = \frac{1}{N} \sum_{k=1}^{N} x_k = \mu = E[X_2]$$
 (b/c X_1 & X_2 are identically dist.)

In sampling without replacement $X_i \& X_j$ are still identically distributed, but they are not independent. In sampling with replacement, $X_i \& X_j$ are i.i.d.

Note that whether or not X_1, \dots, X_n are independent,

$$E\left[\sum_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} E[X_i]$$

Note: The sample mean is equal to expected population mean regardless of sampling with or without replacement.

$$E[\bar{X}] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_i\right] = \frac{1}{n}\sum_{i=1}^{N}E[X_i]$$
$$= \frac{n\mu}{n} = \mu$$

Since $E[\bar{X}] = \mu$, we say \bar{X} is an <u>unbiased</u> estimator for μ .

BUT
$$\bar{X}$$
 \neq μ

Let's address (3)

Sampling with replacement.

Theorem. Sampling from finite population with replacement

$$Var(\bar{X}) = \frac{\sigma^2}{n}$$

Proof. Here X_1, \dots, X_n are i.i.d.. In general, X_i 's are R.V. and a_i 's are constants

$$Var\left(\sum_{i} a_{i} X_{i}\right) = \sum_{i} \sum_{j} a_{i} a_{j} cov(X_{i}, X_{j})$$

If X_1, \dots, X_N are independent, $Cov(X_i, X_j) = 0$! Hence $i \neq j$

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \frac{1}{n^2}Var\left(\sum_{i=1}^{n} X_i\right) = \frac{1}{n^2}\sum_{i=1}^{n}\underbrace{Var(X_i)}_{\text{a constant}}$$
$$Var(\bar{X}) = \frac{Var(X_i)}{n} = \frac{\sigma^2}{n}$$

We need to compute $Var(X_i)$. Observe that $Var(X_i)$ are same for all: Why? because they are

Also notice $\frac{Var(X_i)}{n}$ decreases with n. Observe that for all finite n, $Var(\bar{X})$ is not 0 unless $Var(X_i) = 0$!

Note: $Var(X_i) = E[(X_i - E(X_i))^2] = E[(X_i - \mu^2)] = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu^2)^2 = \sigma^2$ So $Var(X_i) = 0$ iff all $X_i \equiv \mu$

Lemma. bX is <u>consistent</u> for μ , i.e. $\forall \delta > 0$, the $P(|\bar{X} - \mu| > \delta) \longrightarrow 0$ as $n \to \infty$

For this Lemma, we need to Prove Chebyshev's Inequality, which is

$$P(|Z - E(Z)| > \delta) \le \frac{Var(Z)}{\delta^2}$$

Use this identity!

$$\begin{split} E[\bar{X}] &= \mu, \qquad Var(\bar{X}) = \frac{\sigma^2}{n} \\ P(|\bar{X} - E(\bar{X})| > \delta) &\leq \frac{Var(\bar{X})}{\delta^2} = \frac{\sigma^2}{n\delta^2} \to 0 \qquad \text{as } n \to \infty \end{split}$$

Lecture 3 (2018-09-10)

Sampling without replacement

 $Var(\bar{X})$ = when sampling without replacement

Theorem. Sampling from finite population without replacement

$$Var(\bar{X}) = \frac{\sigma^2}{n} \left[\underbrace{\frac{N-n}{n-1}}_{FPN} \right]$$
 (finite population correction)

Points to Note - In sample without replacement,

- If n = N, $Var(\bar{X}) = 0$
- If $n=1, Var(\bar{X})=\frac{\sigma^2}{n}=\sigma^2$, same as with replacement
- Check: for n > 1, how does $\frac{N-n}{N-1}$ relate to 1? The $Var(\bar{X})$ is always less without replacement *Proof.* Start

(1)

$$Var(\bar{X}) = Var\bigg(\frac{1}{n}\sum_{i=1}^{n}X_i\bigg) = \frac{1}{n^2}\sum_{i}\sum_{j}Cov(X_i,X_j)$$
 (When sampling with replacement, $Cov(X_i,X_j) = 0$ if $i \neq j$)

In sampling without replacement, we cannot assert that $Cov(X_i, X_j) = 0$ and we'll compute it explicitly.

$$\operatorname{Recall} \quad \operatorname{Cov}(X_i,X_j) = E[X_iX_j] - \underbrace{E[X_i]E[X_j]}_{\mu^2}$$

$$\mu^2 \leftarrow \text{as identical but not independent} \quad = E[X_iX_j] - \mu^2$$

(2) To calculate $E[X_iX_j]$, let us list distinct values in population

Example. $\{\underbrace{5}_{x_1},\underbrace{5}_{x_2},\underbrace{8}_{x_3},\underbrace{11}_{x_4},\underbrace{8}_{x_5},\underbrace{17}_{x_6},\underbrace{9}_{x_7}\}$ Let $n_l=\#$ of times ζ_l appears in population.

Distinct Value	frequency
$\zeta_1 = 5$	$n_1 = 2$
$\zeta_2 = 8$	$n_2 = 2$
$\zeta_3 = 11$	$n_3 = 1$
$\zeta_4 = 17$	$n_4 = 1$
$\zeta_5 = 9$	$n_5 = 1$

$$P[X_{i} = 5] = \frac{2}{7} = \frac{n_{1}}{N}$$
 (i draws identical)
$$\Rightarrow P[X_{i} = \zeta_{l}] = \frac{n_{l}}{N}$$

$$n_{1} + n_{2} + \ldots + n_{m} = \sum_{j=1}^{m} n_{j} = N$$

$$E[X_{i}X_{j}] = \sum_{k=1}^{m} \sum_{l=1}^{m} \zeta_{k}\zeta_{l} \underbrace{P[X_{i} = \zeta_{k}, X_{j} = \zeta_{l}]}_{?}$$

$$P[X_{i} = \zeta_{k}, X_{j} = \zeta_{l}] = \underbrace{P[X_{j} = \zeta_{l}|X_{i} = \zeta_{k}]}_{3} \cdot \underbrace{P[X_{i} = \zeta_{k}]}_{=\frac{n_{k}}{N}}$$

(3) Cases for Conditional probability

$$P[X_j = \zeta_l | X_i = \zeta_k] \stackrel{cases}{=} \begin{cases} \frac{n_l}{N_1} & l \neq k \to \text{numbers are diff.} \\ \frac{n_l - 1}{N - 1} & l = k \to \text{numbers are same} \end{cases}$$

(4) So we have

$$E[X_{i}X_{j}] = \sum_{k=1}^{m} \sum_{l=1}^{m} \zeta_{k} \zeta_{l} P[X_{i} = \zeta_{k}, X_{j} = \zeta_{l}]$$

$$E[X_{i}X_{j}] = \sum_{k=1}^{m} \sum_{l=1}^{m} \zeta_{k} \zeta_{l} P[X_{j} = \zeta_{l} | X_{i} = \zeta_{k}] \cdot P[X_{i} = \zeta_{k}]$$

$$= \sum_{k} \zeta_{k} P[X_{i} = \zeta_{k}] \zeta_{k} \left(\sum_{l} \zeta_{l} P[X_{j} = \zeta_{l} | X_{i} = \zeta_{k}] \right)$$

$$= \sum_{k} \zeta_{k} P[X_{i} = \zeta_{k}] \zeta_{k} \left(\sum_{l \neq k} \zeta_{l} P[X_{j} = \zeta_{l} | X_{i} = \zeta_{k}] + \zeta_{k} P[X_{j} = \zeta_{k} | X_{i} = \zeta_{k}] \right)$$

$$= \sum_{k} \zeta_{k} P[X_{i} = \zeta_{k}] \zeta_{k} \left(\sum_{l \neq k} \zeta_{l} \frac{n_{l}}{N-1} + \zeta_{k} \frac{n_{k}-1}{N-1} \right)$$

$$(5)$$

(5) When $l \neq k$ and we want to remove all l terms

$$\sum_{l \neq k} \zeta_l \frac{n_l}{N-1} = \frac{1}{N-1} \sum_{l \neq k} \zeta_l n_l$$

$$\left(\sum_l \zeta_l n_l = \tau = n\mu\right) \text{ population total}$$

$$= \frac{1}{N-1} (\tau - \zeta_k n_k)$$

(6) Now Back

$$E[X_i X_j] = \sum_k \zeta_k \frac{n_k}{N} \left(\frac{1}{N-1} (\tau - \zeta_k n_k) + \zeta_k \frac{n_k - 1}{N-1} \right)$$

$$= \frac{1}{N(N-1)} \sum_k \zeta_k n_k \left[(\tau - \zeta_k n_k) + \zeta_k n_k - \zeta_k \right]$$

$$= \frac{1}{N(N-1)} \sum_k \zeta_k n_k \left[\tau - \zeta_k \right]$$

$$= \frac{1}{N(N-1)} \left(\sum_k \zeta_k n_k \tau - \sum_k \zeta_k^2 n_k \right)$$

$$= \frac{1}{N(N-1)} \left[\tau^2 - \sum_k \zeta_k^2 n_k \right]$$

7 What is $\sum_{k} (\zeta_k)^2 \frac{n_k}{N}$? Second moment $E[X_i^2]$ $E[X_i^2] = \sigma^2 + \mu^2$

$$E[X_i^2] = \sigma^2 + \mu^2 \qquad \frac{\tau^2}{N} = N\mu^2 a s \mu = \frac{\tau}{N}$$

$$E[X_i X_j] \Longrightarrow \frac{1}{N-1} \left[N\mu^2 - (\sigma^2 + \mu^2) \right]$$

$$= \frac{1}{N-1} [(N-1)\mu^2 - \sigma^2] = \mu^2 - \frac{\sigma^2}{N-1}$$
So $Cov(X_i, X_j) = \mu^2 - \frac{\sigma^2}{N-1} - \mu^2$

$$= -\frac{\sigma^2}{N-1}$$
So $Cov(X_i, X_j) = Var(X_i) = \sigma^2$
(Cov < 0)

8 Putting it all together

$$Var(\bar{X}) = \frac{1}{n^2} \left(\sum_{i \neq j} Cov(X_i, X_j) + \sum_{i=1}^n Var(X_i) \right)$$

$$= \frac{1}{n^2} \left(\sum_{i \neq j} -\frac{\sigma^2}{N-1} + n\sigma^2 \right)$$

$$= \frac{1}{n^2} \left(\frac{-n(n-1)\sigma^2}{N-1} + \frac{\sigma^2}{n} \right)$$

$$= \frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1} \right)$$

$$= \frac{\sigma^2}{n} \left(\frac{N-n}{N-1} \right)$$

Lecture 4 (2018-09-12)

- Binary data- special case.
- Approximate distance of \bar{X} when n is large but n << N
- Estimating population Variance
- Bivariate data

Recall that population is <u>dichotomous</u> or <u>binary</u> then $x_i = \begin{cases} 1 \\ 0 \end{cases}$

Moreover if we consider $x_i = 1$ as a "success" and $x_i = 0$ as a "failure", then

$$\mu = \frac{\sum_{i=1}^{N} X_i}{N} = \frac{\text{\# of successess in population}}{\text{population size}} = p \qquad (pop^n \text{ proportion of success})$$

Now,
$$\sigma^2 = \underbrace{\frac{\sum_{i=1}^{N} X_i}{N}}_{\mu} - \mu^2 = p - p^2 = p(1-p) = pq$$

$$\mu \text{ as } 1 \Rightarrow 1^2 = 1 \qquad 0 \Rightarrow 0^2 = 0$$

Recall that if $Y \sim \text{Bernoulli}(p), Y_i = \begin{cases} 1 & \text{w/ prob } p \\ 0 & \text{w/ prob } 1-p \end{cases}$

$$E[Y] = p$$
$$Var(Y) = p(1 - p)$$

Last few weeks involved an analysis of \bar{X} , $E(\bar{X})$, $Var(\bar{X})$. Could also ask: How is \bar{X} distributed if n is large.

Confidence Intervals - Sampling W.R.

If sampling with replacement, where X_1, \ldots, X_n denotes sample, we know X_i 's are *i.i.d.* Hence when n is large, by CLT \bar{X} has an approximately normal distribution.

$$P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le x\right) \longrightarrow \Phi(x)$$
 as $n \to \infty$

When sampling with replacement, we can use this to obtain confidence intervals for μ : Let $\alpha \in (0,1)$ be given.

Let
$$Z_{\alpha} \in \mathbb{R}$$
 such that $P(Z > Z_{\alpha}) = \alpha$ where $Z \sim N(0, 1)$

By the Central Limit Theorem, for n large (sampling w/replacement)

$$= P\bigg(-Z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le Z_{\alpha/2}\bigg)$$

$$= P\bigg(\underbrace{\bar{X} - Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}}_{\text{Random}} \le \mu \le \underbrace{\bar{X} + Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}}_{\text{Random}}\bigg)$$

$$Var(\bar{X}) = 0 \qquad \text{Never happens}$$

In repeated sampling, approx $(1 - \alpha)$ of intervals contain μ , and (α) frac will not.

We say
$$\overline{\bar{X}} - Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$
 is $100(1-\alpha)\%$ 2-sided confidence interval for μ

Problem: This interval involved σ which is unknown. Observe that if n is large, then $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$ is still approx N(0,1) in distribution where (no population parameters)

$$s^{2} = \frac{1}{n-1} \sum_{i} (X_{i} - \bar{X})$$
 (sample variance)

So we obtain

$$\bar{X} \pm Z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$
 as a $100(1-\alpha)$ CI for μ

In the dichotomous case,

$$\bar{X} = \frac{\text{\# of the succession sample}}{\text{sample size}} = \hat{p}$$

$$100(1-\alpha)\% \text{ CI for } p: \hat{p} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Confidence Intervals - Sampling W.o.R.

Recall now what happens when sampling without replacement

Here, X_1, X_2, \ldots, X_n remain identically distributed, but not independent

We surmised, that if $n \ll N$, $X_i \& X_j$ have an "approximate independence"

Example 1. Let population consist of 1000 elements. In this case:

$$\begin{array}{c} \text{blue } - \fbox{\Large 1} - 200, \qquad \text{red } - \fbox{\Large 2} - 300, \qquad \text{green } - \fbox{\Large 1} - 500 \\ P(X_1 = \fbox{\Large 3}) = \frac{1}{2} \\ P(X_2 = \fbox{\Large 3} | X_1 = \fbox{\Large 3}) = \frac{499}{999} \end{array} \right\} \text{not independent, but have approximate independence.}$$

In short, $n \ll N$, each successive draw does not alter probabilities that much, precisely b/c removal is only of a sample # of population elements.

So if n << N, then even in sampling W.O.R, X_i 's retain an approximate independence. Further if n is "large" and small relative to N, (note delicate point!) then \bar{X} will still have an approx Normal distribution.

$$\frac{\bar{X} - \mu}{\sqrt{\frac{\sigma^2}{n} \left(\frac{N-n}{N-1}\right)}} \sim N(0, 1)$$

Observe σ^2 us still unknown. We'd like to consider estimators for σ^2

Estimator for variance W.o.R

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

Try to understand $E[\hat{\sigma}^2]$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_1^2 - 2x_i \bar{X} + \bar{X}^2)$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n x_i^2}{n} - 2\bar{X}\bar{X} + \bar{X}^2 = \frac{\sum_{i=1}^n x_i^2}{n} - \bar{X}^2$$

$$E[\hat{\sigma}^2] = E\left[\frac{\sum_{i=1}^n x_i^2}{n}\right] - E[\bar{X}^2] \quad \text{can't get } E[\bar{X}^2] \text{ from } Var(\bar{X})$$

$$Var(\bar{X}) = E[\bar{X}^2] - (E[\bar{X}^2])^2$$

$$\underbrace{Var(\bar{X})}_{\text{computed}} + \mu^2 = E[\bar{X}^2]$$

$$E\left[\frac{1}{n}\sum_{i=1}^n\right] = \frac{1}{n}\sum_{i=1}^n E[X_i^2] = \sigma^2 + \mu^2$$

$$\text{Combining, we get:}$$

$$E[\hat{\sigma}^2] = \sigma^2 + \mu^2 - (Var(\bar{X}) + \mu^2)$$

$$= \sigma^2 - \left[\frac{\sigma^2}{n}\left(\frac{N-n}{N-1}\right)\right]$$

The estimator is biased, but

$$= \sigma^2 \left(\underbrace{1 - \frac{N - n}{(n)(N - 1)}}_{\text{constant, } c} \right)$$
$$= C\sigma^2$$

and thus $\frac{\hat{\sigma}^2}{C}$ is an unbiased estimator.