My Story of Ployhedral Theory of Mixed-integer Programming

Xue Sen

March 22, 2022

1 Basic Form of

Problems of the form

$$\begin{cases}
Max & cx + hy \\
Ax + Gy \le b \\
x \ge 0 & integral \\
y \ge 0,
\end{cases}$$
(1)

where $c \in Q^n$, $h \in Q^p$, the matrices $A \in Q^{m \cdot n}$, $G \in Q^{m \cdot p}$ and $b \in Q^m$. Set S of feasible solution to the problem above is called a mixed integer set when $p \geq 1$.

2 Fundamental Definition

Here we explain some concepts of Ployhedral Theory.

Polyhedron: a ployhedron in \mathbb{R}^n is a set of the form $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ where A is a real matrix and b a real vector.

Rational Ployhedron: a Rational Ployhedron is a ployhedron and its A and b are rational.

Ployhedron Cone: a ployhedron cone is a ployhedron of the form $\{x \in \mathbb{R}^n : Ax \leq 0\}$

Convex Hull: a convex hull of a set S is condensed as conv(S). $Conv(S) = \{x \in R^n x = 0\}$ $\sum_{i=1}^{k} \lambda_i x^i, \quad where \ k \geq 1 \ and \ \sum \lambda_i = 1, \quad \lambda_i > 0, \quad x^i \in S \}$

Proporties of convex hull:

Ploytope: convex hull of a finite set of points in R^n is called a ploytope. **Conic Hull**: the conic hull of a nonempty set $S \in R^n$ is cone(S)= $\{x \in R^n \mid x = \sum_{i=1}^k \lambda_i x^i \mid wherek \geq 1$ and $\lambda > 0$, $x^i \in S\}$. If S is a finite set then cone(S) is said to be finitely generated.

Ray: Given a cone C and $r \in C - \{0\}$, the set cone(r)= $\{\lambda r : \lambda \geq 0\}$ is called a ray of C.

Pointed Cone: We say a cone C is pointed if for every $r \in C - \{0\}, -r \notin C$.

3 **Projections**

Let $P \subseteq R^{n+p}$. The projection of P onto the x-space R^n is

$$Proj_x P = \{x \in \mathbb{R}^n : \exists y \in \mathbb{R}^p with(x, y) \in P\}$$

Valid inequalities

An inequality $cx \leq \sigma$ is valid for the set $P \subseteq R^n$ if $cx \leq \sigma$ is satisfied by every point in P.

5 Facets

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a polyhedron. A face of P is a set of the form:

$$F = P \cap \{x \in R^n : cx = \sigma\}$$

where $cx \leq \sigma$ is a valid inequality for P.

A face is itself a polyhedron.

A face is said proper if it is nonempty and properly contained in P. Maximal proper faces of P are called facets.

6 Relationship of Feasible

Theorem 1. A system of linear equation Ax=b is infeasible $\iff uA=0$, ub<0 is feasible.

Proof: using Gaussian elimination on Ax=b.

Theorem 2. A system of linear inequalities $Ax \le b$ is infeasible \iff the system uA = 0, ub < 0, $u \ge 0$ is feasible.

Theorem 3. Linear Programming Duality:

$$P = \{x : Ax \le b\}$$
 and $D = \{u : uA = c, u \ge 0\}$

if P and D are both nonempty, then

$$max\{cx : x \in P\} = min\{ub : u \in D\}$$

Example:

The proof of the form of duality using Lagrange relaxation:

Suppose a integer programming problem:

$$Min \quad cx$$

$$S.t.$$

$$Ax \ge b$$

$$x \ge 0$$

We assume the lagrange function:

$$L(u) = cx - u^T (Ax - b) \qquad u \ge 0$$

$$Min\{L(u)\} \le cx^* - u^T(Ax^T - b) \le cx^*$$

Convert the problem as find the maximum lower bound of the original problem.

$$Max\{u^Tb + Min_{x \ge 0}\{(c - u^TA)x\}\}$$

if
$$c - u^T A < 0$$
, then $Min\{(c - u^T A)x\} = -\infty$

So we need only another situation

$$Max \quad u^T b$$

$$s.t. \quad u^T A \le c$$

$$u > 0$$

Theorem 4. Minkowski-Weyl theorem for polyhedra:

For a subset P of \mathbb{R}^n , the following two conditions are equivalent:

- 1. P is a polyhedron, i.e., there is a matrix A and a vector b such that $P = \{x \in \mathbb{R}^n : Ax \leq b\}$
- 2. There exist vectors $v^1, ..., v^p, r^1, ..., r^q$ such that

$$P = conv(v^1, ..., v^p) + cone(r^1, ..., r^q)$$

PRIMAL	minimize	maximize	DUAL
	$\geq b_i$	≥ 0	
constraints	$\leq b_i$	≤ 0	variables
	$= b_i$	free	
	≥ 0	$\leq c_j$	
variables	≤ 0	$\geq c_j$	constraints
	free	$= c_j$	

Figure 1: Dual Problem

7 Union of polyhedra

Let $P_i = \{x \in \mathbb{R}^n : A_i x \le b^i\}, \quad i = 1, ..., k.$

 $\overline{conv}(\bigcup_{i=1}^k P_i)$ is the smallest closed convex set that contains $\bigcup_{i=1}^k P_i$.

We can rise an example to show that $conv(P_1 \cup P_2)$ may not be a closed set.

Theorem 5. According to Minkowski-Weil's Theorem, let $P_i = Q_i + C_i$ be nonempty polyhedra i=1,...,k. Then $Q = conv(\bigcup_{i=1}^k Q_i)$ is a polytope, $C = conv(\bigcup_{i=1}^k C_i)$ is a finitely generated cone.

$$\overline{conv}(\cup_{I=1}^k P_i) = Q + C$$

8 Split disjunctions

Let $P = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^p : Ax + Gy \leq b\}$ and let $S = P \cap (\mathbb{Z}^n \times \mathbb{R}^p)$. For $\pi \in \mathbb{Z}^n$ and $\pi_0 \in \mathbb{Z}$, define

$$\Pi_1 = P \cap \{(x, y) : \pi x < \pi_0\}$$

$$\Pi_2 = P \cap \{(x, y) : \pi x \ge \pi_0 + 1\}$$

Clearly $S \subseteq \Pi_1 \cup \Pi_2$ and therefore $conv(S) \subseteq conv(\Pi_1 \cup \Pi_2)$.

9 One-side splits, Chvatal inequalities

Let P and S be the same as the last section. Let $\pi \in Z^n$, $z = max\{\pi x(x,y) \in P\}$. A split defined by $(\pi, \pi_0) \in Z^n \times Z$ is a one-side split for P if

$$\pi_0 \le z \le \pi_0 + 1$$

10 Gomory's mixed-integer inequalities

Let $P = \{(x,y) \in R_+^n \times R_+^p : Ax + Gy \leq b\}$ and let $S = P \cap (Z^n \times R^p)$. Here P is defined by a system of inequalities together with nonnegativity constraints. Any system of linear programming can be converted into a system of this type.

Consider

$$Ax + Gy + Is = b, x, y, s \ge 0 \tag{2}$$

For $\lambda \in Q^m$, Consider

$$\sum_{j=1}^{n} a_j^{\lambda} x_j + \sum_{j=1}^{p} g_j^{\lambda} y_j + \sum_{i=1}^{m} \lambda_i s_i = \beta^{\lambda}$$

$$\tag{3}$$

11 Decomposition

11.1 Lagrangian

The conventional statement of a general problem (P) of optimization from this point of view is

minimize
$$f_0(x)$$
 over all $x \in X$
such that $f_i(x) \begin{cases} \leq 0 & \text{for } i = 1, \dots, s, \\ = 0 & \text{for } i = s + 1, \dots, m. \end{cases}$ (4)

We'll refer to the convex case of (P) when the objective and inequality constraint functions $f_0, f_1, ..., f_s$ are convex and the equality constraint functions $f_{s+1}, ..., f_m$ are affine(linear-plus-constant).

Optimality conditions for (P) involve the Lagrangian function.

$$L(x,y) = f_0(x) + y_1 f_1(x) + \dots + y_m f_m(x) \text{ for } x \in X \text{ and } y \in Y$$
 (5)

where

$$Y = \mathbb{R}^{s}_{+} \times \mathbb{R}^{m-s} = \{ y = (y_1, \dots, y_m) \mid y_i \ge 0 \text{ for } i \in [1, s] \}$$
 (6)

f has the Lagrangian representation

$$f(x) = \sup_{y \in Y} L(x, y) = \sup_{v \in Y} \{ f_0(x) + y_1 f_1(x) + \dots + y_m f_m(x) \} \text{ for } x \in X,$$
 (7)

we can state the problem(D)

maximize
$$g(y) = \inf_{x \in X} \{ f_0(x) + y_1 f_1(x) + \dots + y_m f_m(x) \}$$
 over $y \in Y$ (8)

Theorem 6. In the convex case of (\mathcal{P}) , the existence for \bar{x} of a multiplier vector \bar{y} satisfying the Lagrange multiplier rule (\mathcal{L}) is sufficient for \bar{x} to be a globally optimal solution to (\mathcal{P}) . The vectors \bar{y} that appear in this condition along with \bar{x} are then precisely the optimal solutions to the dual problem (\mathcal{D}) , and the optimal values in the two problems agree: one has

$$\min(\mathcal{P}) = \max(\mathcal{D}) \tag{9}$$

12 Test Data

f. Origin
xed
xed
xed
mbinatorial game
easible chip verification
ted charge transportation
orts scheduling
ked charge network flow
pacitated network design
xed integer knapsack