Benchmarking a BI-Population CMA-ES on the BBOB-2009 Noisy Testbed

Nikolaus Hansen Microsoft Research–INRIA Joint Centre 28 rue Jean Rostand 91893 Orsay Cedex, France Nikolaus.Hansen@inria.fr

ABSTRACT

We benchmark the BI-population CMA-ES on the BBOB-2009 noisy functions testbed. BI-population refers to a multistart strategy with equal budgets for two interlaced restart strategies, one with an increasing population size and one with varying small population sizes. The latter is presumably of little use on a noisy testbed. The BI-population CMA-ES could solve 29, 27 and 26 out of 30 functions in search space dimension 5, 10 and 20 respectively. The time to find the solution ranges between 100D and 10^5D^2 objective function evaluations, where D is the search space dimension.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

Keywords

Benchmarking, Black-box optimization, Direct search, Evolutionary computation, CMA-ES

1. INTRODUCTION

The covariance matrix adaptation evolution strategy (CMA-ES) [2, 6, 7] is a stochastic, population-based search method in continuous search spaces, aiming at minimizing an objective function $f:\mathbb{R}^D\to\mathbb{R}$ in a black-box scenario. In this paper, the $(\mu/\mu_{\rm W},\lambda)$ -CMA-ES is applied in a multistart strategy and benchmarked on 30 noisy functions. The multistart consists of two interlacing strategies, one with increasing population size, the other with varying small population size. The algorithm is given in a complementing paper in the same proceedings [3].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'09, July 8–12, 2009, Montréal Québec, Canada. Copyright 2009 ACM 978-1-60558-505-5/09/07 ...\$5.00.

2. ALGORITHM AND PARAMETER SETTINGS

The algorithm and all parameters are described in [3]. The following parameters have been chosen differently, where λ denotes the offspring population size.

MaxIter = $1000 + 500(D+3)^2/\sqrt{\lambda}$ has been chosen ten times larger, as the noisy functions are expected to be more difficult to solve.

 $c_1 = \frac{0.4}{(D+1.3)^2 + \mu_{\rm W}}$ and $c_{\mu} = \min\left(1 - c_1, 0.4 \frac{\mu_{\rm W} - 2 + 1/\mu_{\rm W}}{(D+2)^2 + \mu_{\rm W}}\right)$, the learning rates for the covariance matrix have been chosen five times smaller than by default. With default learning rates, the learning of the covariance matrix is the algorithm component that is most susceptible to uncertainties in the selection. Surprisingly, this change did not produce a striking improvement, but slightly more consistent results (e.g. f_{105} , f_{108} and f_{117} are solved also in 40-D).

Restarts are launched until 10^6D function evaluations are exceeded. The stagnation termination criterion

Stagnation: terminate a run, if the median of the 20 newest values is not smaller than the median of the 20 oldest values, respectively, in the two arrays containg the best function values and the median function values of the last $\lceil 0.2\,t + 120 + 30D/\lambda \rceil$ iterations, where t denotes the iteration counter,

turns out to be crucial for the noisy testbed. Most other standard termination criteria regularly fail. We presume that restarts with small population size are less valuable on a noisy testbed, which leaves yet room for improvement.

The same parameter setting is used for all functions and therefore the crafting effort according to [4] is CrE = 0.

3. SUCCESSFUL POPULATION SIZE

We investigate the population sizes of the final successful runs. In Table 1 minimal, median (the larger in case of even data) and maximal population size are given for 10-D and 20-D. Functions solved with default offspring population size, $\lambda=10$ and 12, are the sphere function with moderate noise and about half of the functions with Cauchy noise (function numbers in italics). Otherwise is the typical population size 10D or larger.

Table 2 tabulates minimal, median (the larger in case of even data) and maximal initial step-size σ^0 of the final successful runs, whenever $\sigma^0 < 2$ in at least one successful case.

Table 1: Final, successful population sizes. If less than three successful trials included restarts, only the median (default population size) is given

	-	D = 10)	D =	= 20	
f	$_{ m min}$	med	max	\min	med	max
101		10			12	
102		10			12	
103		10			12	
104	20	20	40	96	96	192
105	40	80	80	192	192	384
106		10			12	
107	20	20	20	24	24	48
108	80	160	160	192	192	384
109		10			12	
110	_	_	_	_	_	_
111	_	_	_	_	_	_
112		10			12	
113	40	80	320	192	384	384
114	160	320	640	286	768	768
115	40	80	160	185	192	384
116	80	160	160	192	384	384
117	160	320	640	768	768	768
118		10			12	
119	160	160	160	384	384	384
120	320	640	1280	1536	1536	1536
121		10			12	
122	80	160	320	384	768	768
123	640	1280	1280	_	_	_
124	40	80	160	96	192	192
125	640	1280	2560	3072	6144	6144
126	_	_	_	_	_	_
127	239	640	1280	384	1536	3072
128	11	40	320	37	192	768
129	80	118	1280	1301	3072	6144
130	10	26	166	12	24	192

Table 2: Initial step-size σ^0 of successful restarts for functions, where $\sigma^0 < 2$ was successful at least once

D = 10				D=20			
f	\min	med	\max	f	\min	med	max
115	0.126	2.0	2.0	114	1.06	2.0	2.0
125	0.72	2.0	2.0	115	0.068	2.0	2.0
127	0.158	2.0	2.0	122	0.2	2.0	2.0
128	0.28	1.8	2.0	128	0.64	1.56	2.0
129	0.8	2.0	2.0	129	1.42	2.0	2.0
130	0.06	0.64	2.0	130	0.042	0.38	2.0

The data neither rule out nor suggest that f_{130} might benefit from a small initial step-size. Overall, as expected, the small initial step-size is of little use and, if anything, rather disadvantageous on the BBOB-2009 noisy testbed.

4. RESULTS AND DISCUSSION

The results of CPU timing experiments are given in [3]: using Matlab, about $2\text{--}3\times10^{-4}$ seconds per function evaluation are needed on the BBOB-2009 f_8 function for up to 40-D. Results from the performance experiments according to [4] on the benchmarks functions given in [1, 5] are presented in Figures 1 and 2 and in Tables 3 and 4.

The number of solved functions are 30, 30, 29, 27, 26 and

24 out of 30 functions in 2, 3, 5, 10, 20 and 40-D, respectively.

The typical scaling of the running time (number of function evalutions) is quadratic with the dimension (see Figure 1). With the moderate noise models and with the Cauchy noise model the sphere function can be solved in linear time. More severe noise impairs the scaling behavior by one order of magnitude to quadratic. Similarly, on the Rosenbrock function the severe noise impairs the scaling by one order from roughly quadratic to roughly cubic. Here, the observed failure is presumably due to a too small maximum number of function evaluations allowed.

The expected running times appear rather uniform on the log-scale between 100D and $10^5\,D^2$ function evaluations (upper figures in Figure 2). The graphs suggest that, in higher dimension, with more function evaluations even more functions can be solved.

Acknowledgments

The author would like to acknowledge the great and hard work of the BBOB team with particular kudos to Raymond Ros, Steffen Finck and Anne Auger, and Anne Auger and Marc Schoenauer for their kind and persistent support.

5. REFERENCES

- S. Finck, N. Hansen, R. Ros, and A. Auger.
 Real-parameter black-box optimization benchmarking 2009: Presentation of the noisy functions. Technical Report 2009/21, Research Center PPE, 2009.
- [2] N. Hansen. The CMA evolution strategy: a comparing review. In J. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea, editors, *Towards a new evolutionary* computation. Advances on estimation of distribution algorithms, pages 75–102. Springer, 2006.
- [3] N. Hansen. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In Workshop Proceedings of the GECCO Genetic and Evolutionary Computation Conference. ACM, 2009.
- [4] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [5] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noisy functions definitions. Technical Report RR-6869, INRIA, 2009.
- [6] N. Hansen and S. Kern. Evaluating the CMA evolution strategy on multimodal test functions. In X. Yao et al., editors, Parallel Problem Solving from Nature - PPSN VIII, LNCS 3242, pages 282–291. Springer, 2004.
- [7] N. Hansen, A. Niederberger, L. Guzzella, and P. Koumoutsakos. A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. *IEEE Transactions on Evolutionary Computation*, 13(1):180–197, 2009.

Figure 1: Expected Running Time (ERT, ullet) to reach $f_{\rm opt}+\Delta f$ and median number of function evaluations of successful trials (+), shown for $\Delta f=10,1,10^{-1},10^{-2},10^{-3},10^{-5},10^{-8}$ (the exponent is given in the legend of f_{101} and f_{130}) versus dimension in log-log presentation. The ERT(Δf) equals to $\#{\rm FEs}(\Delta f)$ divided by the number of successful trials, where a trial is successful if $f_{\rm opt}+\Delta f$ was surpassed during the trial. The $\#{\rm FEs}(\Delta f)$ are the total number of function evaluations while $f_{\rm opt}+\Delta f$ was not surpassed during the trial from all respective trials (successful and unsuccessful), and $f_{\rm opt}$ denotes the optimal function value. Crosses (×) indicate the total number of function evaluations $\#{\rm FEs}(-\infty)$. Numbers above ERT-symbols indicate the number of successful trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and quadratic scaling.

f101 in 5-D, N=15, mFE=93		f102 in 5-D, N=15, mFE=882	f102 in 20-D, N=15, mFE=3122
Δf # ERT 10% 90% RT _{suc}	c # ERT 10% 90% RT _{succ}		# ERT 10% 90% RT _{succ}
10	15 3.6e2 3.4e2 3.8e2 3.6e2 15 6.5e2 6.3e2 6.7e2 6.5e2		15 3.7e2 3.5e2 3.9e2 3.7e2 15 6.5e2 6.3e2 6.6e2 6.5e2
1e-1 15 2.0e2 1.9e2 2.1e2 2.0e2			15 9.4e2 9.2e2 9.6e2 9.4e2
1e-3 15 3.8e2 3.6e2 3.9e2 3.8e2	15 1.5e3 1.4e3 1.5e3 1.5e3	1e-3 15 3.7e2 3.6e2 3.8e2 3.7e2	15 1.5e3 1.5e3 1.5e3 1.5e3
1e-5 15 5.6e2 5.4e2 5.7e2 5.6e2			15 2.0e3 2.0e3 2.1e3 2.0e3
1e-8 15 8.2e2 8.0e2 8.3e2 8.2e2		ı ı	15 2.9e3 2.8e3 2.9e3 2.9e3
Δf # ERT 10% 90% RT _{succ}	f103 in 20-D, N=15, mFE=3386 # ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ} #	# ERT 10% 90% RT _{succ}
10 15 3.8e1 3.0e1 4.7e1 3.8e1	15 3.6e2 3.4e2 3.7e2 3.6e2	10 15 2.5e2 2.4e2 2.7e2 2.5e2 1	5 2.4e5 2.0e5 2.8e5 2.4e5
1 15 1.3e2 1.2e2 1.4e2 1.3e2	15 6.6e2 6.4e2 6.7e2 6.6e2		5 2.8e5 2.3e5 3.3e5 2.8e5
1e-1 15 2.2e2 2.1e2 2.3e2 2.2e2 1e-3 15 4.0e2 3.9e2 4.1e2 4.0e2	15 9.5e2 9.3e2 9.6e2 9.5e2 15 1.6e3 1.5e3 1.6e3 1.6e3		5 2.9e5 2.4e5 3.4e5 2.9e5 5 3.0e5 2.5e5 3.5e5 3.0e5
1e-5 15 5.9e2 5.8e2 6.1e2 5.9e2	15 2.2e3 2.2e3 2.2e3 2.2e3		5 3.0e5 2.5e5 3.5e5 3.0e5
1e-8 15 9.1e2 8.9e2 9.2e2 9.1e2	15 3.2e3 3.1e3 3.2e3 3.2e3	1e-8 15 4.3e3 4.0e3 4.6e3 4.3e3 1	
Δf # ERT 10% 90% RT _{SUCC}	# ERT 10% 90% RT _{SUCC}	Δf # ERT 10% 90% RT _{SUCC}	f106 in 20-D, N=15, mFE=86380 # ERT 10% 90% BT aver
Δf # ERT 10% 90% RT _{Succ} 10 15 2.8e2 2.6e2 2.9e2 2.8e2	# ERT 10% 90% RT _{SUCC} 15 5.3e5 4.4e5 6.1e5 5.3e5	Δf # ERT 10% 90% RT _{succ} 10 15 3.0 e2 2.8 e2 3.3 e2 3.0 e2	# ERT 10% 90% RT _{SUCC} 15 1.2e4 1.1e4 1.3e4 1.2e4
1 15 5.2e3 4.4e3 6.2e3 5.2e3	15 6.1e5 5.2e5 7.1e5 6.1e5	1 15 2.3e3 1.6e3 3.0e3 2.3e3	15 2.9e4 2.3e4 3.5e4 2.9e4
le-1 15 8.9e3 7.8e3 1.0e4 8.9e3	15 6.3e5 5.3e5 7.3e5 6.3e5	1e-1 15 3.3e3 2.6e3 4.1e3 3.3e3	15 3.3e4 2.7e4 3.9e4 3.3e4
1e-3 15 1.0e4 9.2e3 1.2e4 1.0e4 1e-5 15 1.1e4 9.7e3 1.2e4 1.1e4	15 6.5e5 5.5e5 7.5e5 6.5e5 15 6.6e5 5.7e5 7.6e5 6.6e5	1e-3 15 4.4e3 3.6e3 5.2e3 4.4e3 1e-5 15 4.8e3 4.0e3 5.6e3 4.8e3	15 3.7e4 3.1e4 4.3e4 3.7e4 15 3.9e4 3.3e4 4.5e4 3.9e4
1e-8 15 1.1e4 1.0e4 1.3e4 1.1e4	15 6.8e5 5.8e5 7.8e5 6.8e5	1e-8 15 5.3e3 4.5e3 6.2e3 5.3e3	15 4.0e4 3.5e4 4.6e4 4.0e4
f107 in 5-D, N=15, mFE=3162	f_{107} in 20-D, N=15, mFE=141332	f108 in 5-D, N=15, mFE=200594	f108 in 20-D, N=15, mFE=3.02e6
Δf # ERT 10% 90% RT _{SUCC} 10 15 7.0e1 4.6e1 9.6e1 7.0e1	# ERT 10% 90% RT _{SUCC} 15 8.6e3 6.9e3 1.0e4 8.6e3	Δf # ERT 10% 90% RT _{SUCC}	# ERT 10% 90% RT _{succ}
10 15 7.0e1 4.6e1 9.6e1 7.0e1 1 15 2.3e2 1.9e2 2.7e2 2.3e2	15 8.6e3 6.9e3 1.0e4 8.6e3 15 1.4e4 1.1e4 1.6e4 1.4e4	10 15 5.3e2 3.1e2 7.7e2 5.3e2 1 15 5.4e3 4.2e3 6.5e3 5.4e3	15 5.8e4 5.1e4 6.5e4 5.8e4 15 9.7e4 8.3e4 1.1e5 9.7e4
1e-1 15 4.5e2 4.0e2 5.1e2 4.5e2	15 1.6e4 1.4e4 1.9e4 1.6e4	1e-1 15 1.4e4 1.2e4 1.8e4 1.4e4	15 2.0 e5 1.7 e5 2.3 e5 2.0 e5
	15 2.7e4 2.4e4 3.0e4 2.7e4 15 5.2e4 4.2e4 6.4e4 5.2e4	1e-3 15 3.1e4 2.6e4 3.6e4 3.1e4 1e-5 15 5.9e4 5.3e4 6.4e4 5.9e4	15 4.5e5 3.9e5 5.0e5 4.5e5 15 6.3e5 5.6e5 7.0e5 6.3e5
	15 5.2e4 4.2e4 6.4e4 5.2e4 15 6.9e4 5.7e4 8.2e4 6.9e4	1e-5 15 5.9e4 5.3e4 6.4e4 5.9e4 1e-8 15 9.7e4 8.3e4 1.1e5 9.7e4	15 6.3e5 5.6e5 7.0e5 6.3e5 15 1.4e6 1.1e6 1.6e6 1.4e6
f109 in 5-D, N=15, mFE=1922	f109 in 20-D, N=15, mFE=6878	f110 in 5-D, N=15, mFE=1.33e6	f ₁₁₀ in 20-D, N=15, mFE=3.09e7
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 3.8e1 3.2e1 4.4e1 3.8e1 1 15 1.2e2 1.1e2 1.4e2 1.2e2	15 4.1e2 3.8e2 4.3e2 4.1e2 15 7.5e2 7.2e2 7.8e2 7.5e2	10 15 9.5e2 4.1e2 1.5e3 9.5e2 1 15 1.6e5 9.9e4 2.2e5 1.6e5	0 $17e+0$ $16e+0$ $17e+0$ 1.8 e7
1e-1 15 2.4e2 2.3e2 2.7e2 2.4e2	15 1.3e3 1.2e3 1.3e3 1.3e3	1e-1 15 4.5e5 3.3e5 5.7e5 4.5e5	
1e-3 15 6.2e2 5.9e2 6.6e2 6.2e2	15 2.6e3 2.5e3 2.7e3 2.6e3	1e-3 15 5.9e5 4.9e5 7.0e5 5.9e5	
1e-5 15 1.0e3 9.5e2 1.1e3 1.0e3 1e-8 15 1.5e3 1.5e3 1.6e3 1.5e3	15 3.9e3 3.8e3 4.1e3 3.9e3 15 6.0e3 5.8e3 6.1e3 6.0e3	1e-5 15 6.0e5 5.0e5 7.1e5 6.0e5 $1e-8$ 15 6.2e5 5.1e5 7.3e5 6.2e5	
f111 in 5-D, N=15, mFE=1.11e7	f111 in 20-D, N=15, mFE=2.51e7	f112 in 5-D, N=15, mFE=9378	f ₁₁₂ in 20-D, N=15, mFE=187012
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 6.9e3 4.4e3 9.5e3 6.9e3	# ERT 10% 90% RT _{succ} 0 18e+0 17e+0 18e+0 1.8e7	10 15 4.3e2 2.6e2 6.1e2 4.3e2	15 2.6 e4 2.4 e4 2.7 e4 2.6 e4
10	# ERT 10% 90% RT _{succ} 0 18e+0 17e+0 18e+0 1.8e7	10 15 4.3e2 2.6e2 6.1e2 4.3e2 1 15 1.7e3 1.4e3 2.0e3 1.7e3	
10	# ERT 10% 90% RTsucc 0 18e+0 17e+0 18e+0 1.8e7	10	15 2.6e4 2.4e4 2.7e4 2.6e4 15 6.9e4 5.6e4 8.1e4 6.9e4 15 7.9e4 6.7e4 9.1e4 7.9e4 15 8.6e4 7.4e4 1.0e5 8.6e4
10 15 6.9e3 4.4e3 9.5e3 6.9e3 1 14 1.5e6 9.3e5 2.2e6 1.1e6 1e-1 8 8.8e6 6.3e6 1.3e7 4.8e6 1e-3 4 2.3e7 1.4e7 5.1e7 5.1e6 1e-5 3 3.1e7 1.8e7 8.8e7 6.8e6	# ERT 10% 90% RT _{succ} 0 18e+0 17e+0 18e+0 1.8e7	10 15 4.3e2 2.6e2 6.1e2 4.3e2 1 15 1.7e3 1.4e3 2.0e3 1.7e3 1e-1 15 4.0e3 3.6e3 4.3e3 4.0e3 1e-3 15 5.8e3 5.4e3 6.1e3 5.8e3 1e-5 15 6.6e3 6.3e3 6.9e3 6.6e3	15 2.6e4 2.4e4 2.7e4 2.6e4 15 6.9e4 5.6e4 8.1e4 6.9e4 15 7.9e4 6.7e4 9.1e4 7.9e4 15 8.6e4 7.4e4 1.0e5 8.6e4 15 9.0e4 7.7e4 1.0e5 9.0e4
10	0 18e+0 17e+0 18e+0 1.8e7	10 15 4.3e2 2.6e2 6.1e2 4.3e2 1 15 1.7e3 1.4e3 2.0e3 1.7e3 1e-1 15 4.0e3 3.6e3 4.3e3 4.0e3 1e-3 15 5.8e3 5.4e3 6.1e3 5.8e3 1e-5 15 6.6e3 6.3e3 6.9e3 6.6e3 1e-8 15 7.6e3 7.2e3 7.9e3 7.6e3 f114 in 5-D, N=15, mFE=140043	15 2.6e4 2.4e4 2.7e4 2.6e4 15 6.9e4 5.6e4 8.1e4 6.9e4 15 7.9e4 6.7e4 9.1e4 7.9e4 15 8.6e4 7.4e4 1.0e5 8.6e4 15 9.0e4 7.7e4 1.0e5 9.0e4 15 9.3e4 8.0e4 1.1e5 9.3e4 f114 in 20-D, N=15, mFE=2.53e6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 1.8e7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4 2.6e4 15 6.9e4 5.6e4 8.1e4 6.9e4 15 7.9e4 6.7e4 9.1e4 7.9e4 15 8.6e4 7.4e4 1.0e5 8.6e4 15 9.0e4 7.7e4 1.0e5 9.0e4 15 9.3e4 8.0e4 1.1e5 9.3e4 f114 in 20-D, N=15, mFE=2.53e6 # ERT 10% 99% RTsucc
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 1.8e7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 2.6c4 2.4c4 2.7c4 2.6c4 15 6.9c4 5.6c4 8.1c4 6.9c4 15 7.9c4 6.7c4 9.1c4 7.9c4 15 8.6c4 7.4c4 1.0c5 8.6c4 15 9.0c4 7.7c4 1.0c5 9.0c4 15 9.3c4 8.0c4 1.1c5 9.3c4 /f114 in 20-D, N=15, mFE=2.53c6 # ERT 10% 90% RT _{succ} 15 2.1c5 1.8c5 2.4c5 2.1c5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 1.8e7 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 2.6c4 2.4c4 2.7c4 2.6c4 15 6.9c4 5.6c4 8.1c4 6.9c4 15 7.9c4 6.7c4 9.1c4 7.9c4 15 8.6c4 7.4c4 1.0c5 8.6c4 15 9.0c4 7.7c4 1.0c5 9.0c4 15 9.3c4 8.0c4 1.1c5 9.3c4 f114 in 20-D, N=15, mFE=2.53c6 # ERT 10% 90% RTsucc 15 2.1c5 1.8c5 2.4c5 2.1c5 15 1.1c6 9.5c5 1.3c6 1.1c6 15 1.4c6 1.3c6 1.6c6 1.4c6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8e7 1.8e7 1.13 in 20-D, N=15, mFE=795352 # ERT 10% 90% RT _{succ} 15 5.0e4 3.7e4 6.3e4 5.0e4 15 3.6e5 3.1e5 4.2e5 3.6e5 15 5.6e5 5.1e5 6.1e5 5.6e5 15 5.9e5 6.4e5 5.9e5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 2.6c4 2.4c4 2.7c4 2.6c4 15 6.9c4 5.6c4 8.1c4 6.9c4 15 7.9c4 6.7c4 9.1c4 7.9c4 15 8.6c4 7.4c4 1.0c5 8.6c4 15 9.0c4 7.7c4 1.0c5 9.0c4 15 9.3c4 8.0c4 1.1c5 9.3c4 f114 in 20-D, N=15, mFE=2.53c6 # ERT 10% 90% RT _{succ} 15 2.1c5 1.8c5 2.4c5 2.1c5 15 1.1c6 9.5c5 1.3c6 1.1c6 15 1.4c6 1.3c6 1.6c6 1.4c6 15 1.4c6 1.3c6 1.6c6 1.6c6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 1.8e7 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 2.6c4 2.4c4 2.7c4 2.6c4 15 6.9c4 5.6c4 8.1c4 6.9c4 15 7.9c4 6.7c4 9.1c4 7.9c4 15 8.6c4 7.4c4 1.0c5 8.6c4 15 9.0c4 7.7c4 1.0c5 9.0c4 15 9.3c4 8.0c4 1.1c5 9.3c4 f114 in 20-D, N=15, mFE=2.53c6 # ERT 10% 90% RTsucc 15 2.1c5 1.8c5 2.4c5 2.1c5 15 1.1c6 9.5c5 1.3c6 1.1c6 15 1.4c6 1.3c6 1.6c6 1.4c6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8e7 1.13 in 20-D, N=15, mFE=795352 # ERT 10% 90% RT _{succ} 15 5.0e4 3.7e4 6.3e4 5.0e4 15 5.6e5 3.1e5 4.2e5 3.6e5 15 5.9e5 5.3e5 6.4e5 5.9e5 15 5.9e5 5.3e5 6.4e5 5.9e5 15 6.0e5 5.4e5 6.5e5 6.0e5 15 6.0e5 5.4e5 6.5e5 6.0e5 15 15 0-D, N=15, mFE=678416	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8e7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8e7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18e+0 17e+0 18e+0 1.8e7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18e+0 17e+0 18e+0 1.8e7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18e+0 17e+0 18e+0 1.8e7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8e7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18e+0 17e+0 18e+0 1.8e7 1113 in 20-D, N=15, mFE=795352 # ERT 10% 90% RT _{succ} 15 5.0e4 3.7e4 6.3e4 5.0e4 15 3.6e5 3.1e5 4.2e5 3.6e5 15 5.0e5 5.3e5 6.4e5 5.9e5 15 5.9e5 5.3e5 6.4e5 5.9e5 15 5.9e5 5.4e5 6.5e5 6.0e5 15 6.0e5 5.4e5 6.5e5 6.0e5 15 1.15 in 20-D, N=15, mFE=678416 # ERT 10% 90% RT _{succ} 15 2.4e3 1.5e3 3.3e3 2.4e3 15 2.0e5 1.5e5 2.4e5 2.0e5 15 3.9e5 3.3e5 4.4e5 3.9e5 15 3.9e5 3.3e5 4.4e5 3.9e5 15 3.9e5 3.3e5 4.4e5 3.9e5 15 4.0e5 3.5e5 4.5e5 4.0e5 f117 in 20-D, N=15, mFE=4.90e6 # ERT 10% 90% RT _{succ}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8e7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18e+0 17e+0 18e+0 1.8e7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8e7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18e+0 17e+0 18e+0 1.8e7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18e+0 17e+0 18e+0 1.8e7 1113 in 20-D, N=15, mFE=795352 # ERT 10% 90% RT _{succ} 15 5.0e4 3.7e4 6.3e4 5.0e4 15 3.6e5 3.1e5 4.2e5 3.6e5 15 5.0e5 5.3e5 6.4e5 5.9e5 15 5.9e5 5.3e5 6.4e5 5.9e5 15 5.9e5 5.4e5 6.5e5 6.0e5 15 6.0e5 5.4e5 6.5e5 6.0e5 15 2.4e3 1.5e3 3.3e3 2.4e3 15 2.0e5 1.5e5 2.4e5 2.0e5 15 3.9e5 3.3e5 4.4e5 3.9e5 15 3.9e5 3.3e5 4.8e6 2.6e6 15 2.5e6 2.3e6 2.6e6 2.5e6 15 2.6e6 2.4e6 2.6e6 2.5e6 15 2.9e6 2.7e6 3.1e6 2.9e6 15 3.2e6 3.1e6 3.4e6 3.2e6 15 3.2e6 3.1e6 3.4e6 3.2e6 15 3.2e6 3.1e6 3.4e6 3.2e6 15 3.8e6 3.6e6 4.0e6 3.8e6 15 13.8e6 3.6e6 4.0e6 3.8e6 15 10 0-D, N=15, mFE=2.99e6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113 in 20-D, N=15, mFE=795352	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18e+0 17e+0 18e+0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18e+0 17e+0 18e+0 1.8e7 113 in 20-D, N=15, mFE=795352	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18e+0 17e+0 18e+0 1.8e7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18e+0 17e+0 18e+0 1.8e7 113 in 20-D, N=15, mFE=795352	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.6e4 2.4e4 2.7e4

Table 3: Shown are, for functions f_{101} - f_{120} and for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{\rm opt} + \Delta f$ (ERT, see Figure 1); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{\rm opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

Figure 2: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running time (left subplots) or versus Δf (right subplots). The thick red line represents the best achieved results. Left subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D, to fall below $f_{\rm opt} + \Delta f$ with $\Delta f = 10^k$, where k is the first value in the legend. Right subplots: ECDF of the best achieved Δf divided by 10^k (upper left lines in continuation of the left subplot), and best achieved Δf divided by 10^{-8} for running times of D, $10\,D$, $100\,D$... function evaluations (from right to left cycling black-cyan-magenta). Top row: all results from all functions; second row: moderate noise functions; third row: severe noise functions; fourth row: severe noise and highly-multimodal functions. The legends indicate the number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D and DIM denote search space dimension, and Δf and Df denote the difference to the optimal function value.

f ₁₂₁ in 5-D, N=15, mFE=17658	f ₁₂₁ in 20-D, N=15, mFE=164174	f122 in 5-D, N=15, mFE=226165	f122 in 20-D, N=15, mFE=1.55e7
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 2.3e1 1.6e1 3.0e1 2.3e1	15 2.9e2 2.6e2 3.2e2 2.9e2	10 15 2.2e1 1.2e1 3.3e1 2.2e1	15 1.2e3 4.7e2 2.0e3 1.2e3
1 15 1.2 e2 1.1 e2 1.4 e2 1.2 e2	15 8.1e2 7.7e2 8.4e2 8.1e2	1 15 1.7e3 1.3e3 2.2e3 1.7e3	15 5.2e4 4.5e4 5.9e4 5.2e4
1e-1 15 2.7e2 2.5e2 2.9e2 2.7e2	15 1.7e3 1.6e3 1.8e3 1.7e3	1e-1 15 9.2e3 7.1e3 1.1e4 9.2e3	15 1.4e5 1.2e5 1.6e5 1.4e5
1e-3 15 1.8e3 1.6e3 2.0e3 1.8e3	15 1.1e4 1.0e4 1.1e4 1.1e4	1e-3 15 3.0e4 2.6e4 3.4e4 3.0e4	15 7.9e5 6.5e5 9.5e5 7.9e5
le-5 15 7.6e3 7.3e3 7.9e3 7.6e3	15 4.6e4 4.5e4 4.7e4 4.6e4	1e-5 15 5.4e4 4.6e4 6.1e4 5.4e4	15 2.0e6 1.8e6 2.2e6 2.0e6
1e-8 15 1.7e4 1.6e4 1.7e4 1.7e4	15 1.5e5 1.4e5 1.5e5 1.5e5	1e-8 15 1.2e5 1.0e5 1.3e5 1.2e5	15 7.5e6 6.2e6 8.9e6 7.5e6
f123 in 5-D, N=15, mFE=5.43e6		f124 in 5-D, N=15, mFE=403943	f124 in 20-D, N=15, mFE=1.12e6
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 9.1e1 3.5e1 1.6e2 9.1e1	15 6.1e3 4.8e3 7.3e3 6.1e3	10 15 1.5e1 1.1e1 1.9e1 1.5e1	15 2.0 e2 1.8 e2 2.3 e2 2.0 e2
1 15 1.6e4 1.3e4 1.9e4 1.6e4	15 5.3e5 4.2e5 6.4e5 5.3e5	1 15 2.2e2 2.0e2 2.4e2 2.2e2	15 2.0e3 1.7e3 2.3e3 2.0e3
1e-1 15 8.2e4 6.6e4 9.8e4 8.2e4	15 1.5e6 1.2e6 1.8e6 1.5e6	1e-1 15 1.0e3 7.3e2 1.4e3 1.0e3	15 4.1 e4 3.2 e4 5.0 e4 4.1 e4
1e-3 15 3.4e5 2.8e5 4.0e5 3.4e5	15 5.3e6 4.6e6 6.0e6 5.3e6	1e-3 15 $2.2e4$ $1.7e4$ $2.6e4$ $2.2e4$	15 1.3e5 1.1e5 1.5e5 1.3e5
1e-5 15 6.7e5 5.7e5 7.8e5 6.7e5	10 2.7e7 2.3e7 3.4e7 1.9e7	1e-5 15 $5.4e4$ $4.5e4$ $6.5e4$ $5.4e4$	15 3.9e5 3.1e5 4.7e5 3.9e5
1e-8 15 2.6e6 2.1e6 3.1e6 2.6e6	0 36e-7 61e-9 16e-6 2.0e7	1e-8 15 9.8e4 7.0e4 1.3e5 9.8e4	15 8.7e5 7.8e5 9.6e5 8.7e5
f125 in 5-D, N=15, mFE=555113		f126 in 5-D, N=15, mFE=6.03e6	f126 in 20-D, N=15, mFE=1.24e7
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 1.1e0 1.0e0 1.1e0 1.1e0	15 1.0e0 1.0e0 1.0e0 1.0e0	10 15 1.0e0 1.0e0 1.0e0 1.0e0	15 1.0e0 1.0e0 1.0e0 1.0e0
1 15 1.7e1 1.3e1 2.2e1 1.7e1	15 3.8e2 3.1e2 4.6e2 3.8e2	1 15 1.6 e2 4.0 e1 2.8 e2 1.6 e2	15 5.8e3 4.6e3 6.9e3 5.8e3
1e-1 15 3.4e3 2.6e3 4.4e3 3.4e3	15 9.8e6 8.2e6 1.1e7 9.8e6	1e-1 15 1.3 e4 1.0 e4 1.6 e4 1.3 e4	0 30e-2 24e-2 32e-2 5.6e6
1e-3 15 2.4e5 2.0e5 2.8e5 2.4e5	10 2.5e7 1.9e7 3.4e7 1.5e7	1e-3 0 67e-4 13e-4 98e-4 2.8e6	
1e-5 15 2.4e5 2.0e5 2.8e5 2.4e5	4 8.0e7 5.3e7 1.6e8 2.3e7	1e-5	
1e-8 15 2.5e5 2.1e5 2.9e5 2.5e5	4 8.1e7 5.2e7 1.7e8 2.3e7	1e-8	
f ₁₂₇ in 5-D, N=15, mFE=1.03e6		f128 in 5-D, N=15, mFE=666537	f ₁₂₈ in 20-D, N=15, mFE=2.37e7
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 1.0e0 1.0e0 1.0e0 1.0e0	15 1.0e0 1.0e0 1.0e0 1.0e0	10 15 2.4e2 9.4e1 3.9e2 2.4e2	15 1.4e5 8.7e4 2.0e5 1.4e5
1 15 1.9e1 1.3e1 2.5e1 1.9e1	15 1.8e2 1.6e2 1.9e2 1.8e2	1 15 2.9e4 8.9e3 5.5e4 2.9e4	10 1.3e7 8.2e6 2.0e7 8.9e6
1e-1 15 2.1e3 1.7e3 2.5e3 2.1e3	15 9.0e5 5.9e5 1.2e6 9.0e5	1e-1 15 8.2 e4 2.8 e4 1.4 e5 8.2 e4	9 1.7e7 1.1e7 2.5e7 1.2e7
1e-3 15 3.4e5 2.5e5 4.3e5 3.4e5	15 4.4e6 3.7e6 5.2e6 4.4e6	1e-3 15 8.2e4 2.8e4 1.4e5 8.2e4	9 1.7e7 1.2e7 2.5e7 1.2e7
1e-5 15 3.9e5 3.0e5 4.8e5 3.9e5	15 7.3e6 6.1e6 8.6e6 7.3e6	1e-5 15 8.2 e4 2.8 e4 1.4 e5 8.2 e4	9 1.7e7 1.1e7 2.5e7 1.2e7
1e-8 15 4.0e5 3.1e5 4.9e5 4.0e5	15 7.5e6 6.2e6 8.8e6 7.5e6	1e-8 15 8.3e4 2.8e4 1.4e5 8.3e4	9 1.7e7 1.2e7 2.6e7 1.2e7
f ₁₂₉ in 5-D, N=15, mFE=6.82e6		f130 in 5-D, N=15, mFE=808354	f130 in 20-D, N=15, mFE=1.62e7
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 7.7e2 4.8e2 1.1e3 7.7e2	12 7.8e6 5.3e6 1.1e7 7.4e6	10 15 1.1e2 8.8e1 1.2e2 1.1e2	15 9.1e3 4.2e3 1.4e4 9.1e3
1 15 7.6e4 2.6e4 1.4e5 7.6e4	5 4.1e7 2.6e7 8.0e7 1.3e7	1 15 4.6e4 2.4e4 7.0e4 4.6e4	15 3.1e6 1.5e6 5.1e6 3.1e6
1e-1 14 5.5e5 5.7e4 1.1e6 5.5e5	5 4.2e7 2.6e7 8.2e7 1.3e7	1e-1 15 1.7e5 9.7e4 2.4e5 1.7e5	15 3.6e6 1.8e6 5.3e6 3.6e6
1e-3 13 1.1e6 9.5e4 2.0e6 1.1e6	5 4.2e7 2.7e7 8.2e7 1.3e7	1e-3 15 1.7e5 9.4e4 2.4e5 1.7e5	15 3.6e6 1.9e6 5.3e6 3.6e6
1e-5 13 1.1e6 9.1e4 2.1e6 1.1e6	5 4.2e7 2.6e7 7.8e7 1.3e7	1e-5 15 1.7e5 9.4e4 2.5e5 1.7e5	15 3.6e6 2.0e6 5.4e6 3.6e6
1e-8 13 1.1e6 9.7e4 2.0e6 1.1e6	5 4.3e7 2.7e7 8.0e7 1.4e7	1e-8 15 1.7e5 9.7e4 2.5e5 1.7e5	15 3.6e6 1.9e6 5.4e6 3.6e6

Table 4: Shown are, for functions f_{121} - f_{130} and for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{\rm opt} + \Delta f$ (ERT, see Figure 1); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{\rm opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 1 for the names of functions.