### Telephone Customer Churn Prediction - Harshit Jain | IIT Kanpur

## 1. Introduction

Customer Churn is when customers leave a service in a given period of time, what is bad for business.

This work has as objective to build a machine learning model to predict what customers will leave the service.

Also, an Exploratory Data Analysis is made to a better understand about the data.

Another point on this work is use the PyCaret Python Module to make all the experiment pipeline.

#### 1.1 Enviroment Setup

```
In [ ]: !pip install pycaret
In [2]: # Standard
        import pandas as pd
        import numpy as np
        # Pycaret
        from pycaret.classification import *
        # PLots
        from plotly.offline import iplot
        import plotly.graph_objects as go
        import plotly.figure factory as ff
        from plotly.subplots import make subplots
        import seaborn as sns
        # Sklearn tools
        from sklearn.preprocessing import LabelEncoder
        from sklearn.metrics import *
        # Extras
        from datetime import date
        import warnings
        warnings.filterwarnings("ignore")
        # Datapath and Setup
        data_path = "/kaggle/input/telco-customer-churn/"
        random seed = 142
```

```
In [3]: # Helper functions for structured data
        ## Get info about the dataset
        def dataset info(dataset, dataset name: str):
            print(f"Dataset Name: {dataset name} | Number of Samples: {dataset.shape[0]}
            print(30*"=")
            print("Column
                                       Data Type")
            print(dataset.dtypes)
            print(30*"=")
            missing data = dataset.isnull().sum()
            if sum(missing_data) > 0:
                print(missing_data[missing_data.values > 0])
            else:
                print("No Missing Data on this Dataset!")
            print(30*"=")
            print(f"Memory Usage: {np.round(dataset.memory usage(index=True).sum() / 10ef
        ## Dataset Sampling
        def data_sampling(dataset, frac: float, random_seed: int):
            data_sampled_a = dataset.sample(frac=frac, random_state=random_seed)
            data sampled b = dataset.drop(data sampled a.index).reset index(drop=True)
            data sampled a.reset index(drop=True, inplace=True)
            return data sampled a, data sampled b
        ## Bar Plot
        def bar plot(data, plot title: str, x axis: str, y axis: str):
            colors = ["#0080ff",] * len(data)
            colors[0] = "#ff8000"
            trace = go.Bar(y=data.values, x=data.index, text=data.values,
                            marker color=colors)
            layout = go.Layout(autosize=False, height=600,
                             title={"text" : plot title,
                                "y" : 0.9,
                                "x" : 0.5,
                                "xanchor" : "center",
                                "yanchor" : "top"},
                             xaxis={"title" : x axis},
                            yaxis={"title" : y axis},)
            fig = go.Figure(data=trace, layout=layout)
            fig.update_layout(template="simple_white")
            fig.update traces(textposition="outside",
                            textfont size=14,
                            marker=dict(line=dict(color="#000000", width=2)))
            fig.update_yaxes(automargin=True)
            iplot(fig)
        ## Plot Pie Chart
        def pie_plot(data, plot_title: str):
            trace = go.Pie(labels=data.index, values=data.values)
            layout = go.Layout(autosize=False,
                             title={"text" : plot_title,
                                "y" : 0.9,
                                "x" : 0.5,
                                "xanchor" : "center",
                                "vanchor" : "top"})
            fig = go.Figure(data=trace, layout=layout)
            fig.update_traces(textfont_size=14,
                            marker=dict(line=dict(color="#000000", width=2)))
            fig.update_yaxes(automargin=True)
            iplot(fig)
```

```
## Histogram
def histogram_plot(data, plot_title: str, y_axis: str):
    trace = go.Histogram(x=data)
    layout = go.Layout(autosize=False,
                    title={"text" : plot title,
                       "y" : 0.9,
                       "x" : 0.5,
                       "xanchor" : "center",
                       "yanchor" : "top"},
                    yaxis={"title" : y axis})
    fig = go.Figure(data=trace, layout=layout)
   fig.update_traces(marker=dict(line=dict(color="#000000", width=2)))
   fig.update layout(template="simple white")
   fig.update_yaxes(automargin=True)
    iplot(fig)
# Particular case: Histogram subplot (1, 2)
def histogram_subplot(dataset_a, dataset_b, feature_a: str,
                        feature_b: str, title: str, title_a: str, title_b: str):
    fig = make_subplots(rows=1, cols=2, subplot_titles=(
                        title a,
                        title_b
                        )
    fig.add trace(go.Histogram(x=dataset a[feature a], showlegend=False), row=1,
    fig.add_trace(go.Histogram(x=dataset_b[feature_b], showlegend=False), row=1,
   fig.update layout(template="simple white")
    fig.update layout(autosize=False,
                        title={"text" : title,
                        "y" : 0.9,
                        "x" : 0.5,
                        "xanchor" : "center",
                        "yanchor" : "top"},
                        yaxis={"title" : "<i>Frequency</i>"})
    fig.update traces(marker=dict(line=dict(color="#000000", width=2)))
    fig.update yaxes(automargin=True)
    iplot(fig)
# Calculate scores with Test/Unseen labeled data
def test score report(data unseen, predict unseen):
    le = LabelEncoder()
   data_unseen["Label"] = le.fit_transform(data_unseen.Churn.values)
   data unseen["Label"] = data unseen["Label"].astype(int)
    accuracy = accuracy_score(data_unseen["Label"], predict_unseen["Label"])
    roc_auc = roc_auc_score(data_unseen["Label"], predict_unseen["Label"])
   precision = precision score(data unseen["Label"], predict unseen["Label"])
    recall = recall_score(data_unseen["Label"], predict_unseen["Label"])
   f1 = f1_score(data_unseen["Label"], predict_unseen["Label"])
    df unseen = pd.DataFrame({
        "Accuracy" : [accuracy],
        "AUC" : [roc auc],
        "Recall" : [recall],
        "Precision" : [precision],
        "F1 Score" : [f1]
    })
    return df_unseen
# Confusion Matrix
def conf_mat(data_unseen, predict_unseen):
```

```
unique_label = data_unseen["Label"].unique()
cmtx = pd.DataFrame(
    confusion_matrix(data_unseen["Label"], predict_unseen["Label"], labels=ur
    index=['{:}'.format(x) for x in unique_label],
    columns=['{:}'.format(x) for x in unique_label]
)
ax = sns.heatmap(cmtx, annot=True, fmt="d", cmap="YlGnBu")
ax.set_ylabel('Predicted')
ax.set_xlabel('Target');
ax.set_title("Predict Unseen Confusion Matrix", size=14);
```

# 2. Load Data

```
In [4]: dataset = pd.read_csv("WA_Fn-UseC_-Telco-Customer-Churn.csv")
    dataset.head(3)
```

### Out[4]:

|   | customerID     | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLines    | lr       |
|---|----------------|--------|---------------|---------|------------|--------|--------------|------------------|----------|
| 0 | 7590-<br>VHVEG | Female | 0             | Yes     | No         | 1      | No           | No phone service |          |
| 1 | 5575-<br>GNVDE | Male   | 0             | No      | No         | 34     | Yes          | No               |          |
| 2 | 3668-<br>QPYBK | Male   | 0             | No      | No         | 2      | Yes          | No               |          |
| 4 |                |        |               |         |            |        |              |                  | <b>•</b> |

## Check for duplicated samples.

```
In [5]:
    dataset[dataset.duplicated()]
```

#### Out[5]:

customerID gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines Int

```
In [6]: dataset_info(dataset, "customers")
```

```
Dataset Name: customers | Number of Samples: 7043 | Number of Columns: 21
_____
Column
                 Data Type
customerID
                   object
                   object
gender
SeniorCitizen
                   int64
                   object
Partner
                   object
Dependents
tenure
                   int64
PhoneService
                   object
MultipleLines
                   object
InternetService
                   object
OnlineSecurity
                   object
                   object
OnlineBackup
DeviceProtection
                   object
TechSupport
                   object
                   object
StreamingTV
StreamingMovies
                   object
                   object
Contract
                   object
PaperlessBilling
PaymentMethod
                   object
MonthlyCharges
                  float64
                   object
TotalCharges
Churn
                   object
dtype: object
_____
No Missing Data on this Dataset!
_____
Memory Usage: 1.183 MB
```

The dataset has a small memory size allocation (1.183 MB) and is composed for many Categorical (object) features and only a few numeric, but one of the categorical features doesn't look right, the TotalCharges, as showed on the displayed dataframe, the festure is numeric.

TotalCharges is converted from Object to float64, the same of MonthlyCharges feature.

```
In [7]: dataset["TotalCharges"] = pd.to_numeric(dataset["TotalCharges"], errors="coerce")
print(f"The Feature TotalCharges is type {dataset.TotalCharges.dtype} now!")
```

The Feature TotalCharges is type float64 now!

# 3. Exploratory Data Analysis

#### 3.1 Churn Distribution

The Client Churn Distribution is checked for any imbalance, as the feature is the target, it's important to choose what strategy to adopt when dealing with imbalanced classes. Below, a Pie Chart shows the feature distribution.

In [8]: pie\_plot(dataset["Churn"].value\_counts(), plot\_title="<b>Client Churn Distribution

### **Client Churn Distribution**



There's some imbalance on Churn Distribution, 26.5% of the clients have churned, and small occurrences of a label could lead to bad predictor. It's possible to choose some ways to work with this case:

- Make a random over-sampling, duplicating some samples of the minority class until this reach
  a balance, but this could lead to an overfitted model.
- Make a random down-sampling, removing some samples from the majority class until this
  reach a balance, but this leads to information loss and not feeding the model with the collected
  samples.
- Another resampling technique, as SMOTE.
- Choosing a metric that deals with imbalanced datasets, like F1 Score.

The Churn problem is about client retention, so is worth to check about false positives, so precision and recall metrics are a must for this situation.

F1 Score is used to check the quality of the model predictions, as the metric is an harmonic mean of precision and recall.

## 3.2 Analysis of the Contract Type

```
In [9]: df_aux = dataset.query('Churn == "No"')
    df_aux = df_aux["Contract"].value_counts()
    bar_plot(df_aux, "<b>Contract Types of not Churned Clients</b>", "<i>Contract</i>
```

## **Contract Types of not Churned Clients**



## **Contract Types of Churned Clients**



Now, the difference between a Month-to-month and annual contracts is bigger, and can lead to a conclusion that annual contracts are better to retain the clients, perhaps fidelity promotions could aid to reduce the churn rate.

As the problem can be examined more deep on Month-to-month contract types, a good idea is see the Monthly Charges and Total Charges distribution for the not churned clients of this contract

## **Charges Distribution for Month-to-month contracts for not Churne**



From the plots, can be said that many clients just got charged with a few values, principally for the Total Charges. On the following plots, the same features are analyzed, but for churned clients.

## **Charges Distribution for Month-to-month contracts for Churned**



Total Charges had the same behaviour, but the Monthly Charges for many churned clients was high, maybe the amount of chage value could lead the client to leave the service. Still on the Month-to-month contract, it's time to analyze the most used Payment methods of churned clients.

# **Payment Method of Month-to-month contract Churned Clie**



Many Churned Clients used to pay with electronic checks, automatic payments, as bank transfers or credit card have a few churned clients. A good idea could make promotions to clients that use automatic payment methods. Lastly, the tenure of the churned clients.

## **Tenure of Month-to-month contract for Churned Clients**



Most clients just used the service for one month, seems like the clients used to service to check the quality or the couldn't stay for the amount of charges, as the Monthly Charges for these clients was high and the Total Charges was small, as the client just stayed a little time

# 4. Setting up PyCaret

Before setting up PyCaret, a random sample of 10% size of the dataset will be get to make predictions with unseen data.

```
In [16]: data, data_unseen = data_sampling(dataset, 0.9, random_seed)
print(f"There are {data_unseen.shape[0]} samples for Unseen Data.")
```

There are 704 samples for Unseen Data.

The PyCaret's setup is made with 90% of data samples and just use one function (setup) from the module.

It's possible configure with variuos options, as data pre-processing, feature engineering, etc. The easy and efficient of PyCaret buy a lot of time when prototyping models.

Each setup is an experiment and for this problem, is used the following options:

- Normalization of the numerical features with Z-Score.
- Feature Selection with permutation importance techniques.
- · Outliers Removal.
- Features Removal based on Multicollinearity.
- Features Scalling Transformation.
- Ignore low variance on Features.
- PCA for Dimensionality Reduction, as the dataset has many features.
- Numeric binning on the features MonthlyCharges and TotalCharges.
- 70% of samples for Train and 30% for test.

|    | Description                            | Value            |
|----|----------------------------------------|------------------|
| 0  | session_id                             | 142              |
| 1  | Target                                 | Churn            |
| 2  | Target Type                            | Binary           |
| 3  | Label Encoded                          | No: 0, Yes: 1    |
| 4  | Original Data                          | (6339, 21)       |
| 5  | Missing Values                         | True             |
| 6  | Numeric Features                       | 4                |
| 7  | Categorical Features                   | 15               |
| 8  | Ordinal Features                       | False            |
| 9  | High Cardinality Features              | False            |
| 10 | High Cardinality Method                | None             |
| 11 | Transformed Train Set                  | (4215, 37)       |
| 12 | Transformed Test Set                   | (1902, 37)       |
| 13 | Shuffle Train-Test                     | True             |
| 14 | Stratify Train-Test                    | False            |
| 15 | Fold Generator                         | StratifiedKFold  |
| 16 | Fold Number                            | 10               |
| 17 | CPU Jobs                               | -1               |
| 18 | Use GPU                                | False            |
| 19 | Log Experiment                         | False            |
| 20 | Experiment Name                        | clf-default-name |
| 21 | USI                                    | 721f             |
| 22 | Imputation Type                        | simple           |
| 23 | Iterative Imputation Iteration         | None             |
| 24 | Numeric Imputer                        | mean             |
| 25 | Iterative Imputation Numeric Model     | None             |
| 26 | Categorical Imputer                    | constant         |
| 27 | Iterative Imputation Categorical Model | None             |
| 28 | Unknown Categoricals Handling          | least_frequent   |
| 29 | Normalize                              | True             |
| 30 | Normalize Method                       | zscore           |
| 31 | Transformation                         | True             |

|    | Description                  | Value       |
|----|------------------------------|-------------|
| 32 | Transformation Method        | yeo-johnson |
| 33 | PCA                          | True        |
| 34 | PCA Method                   | linear      |
| 35 | PCA Components               | 0.99        |
| 36 | Ignore Low Variance          | True        |
| 37 | Combine Rare Levels          | False       |
| 38 | Rare Level Threshold         | None        |
| 39 | Numeric Binning              | True        |
| 40 | Remove Outliers              | True        |
| 41 | Outliers Threshold           | 0.05        |
| 42 | Remove Multicollinearity     | True        |
| 43 | Multicollinearity Threshold  | 0.9         |
| 44 | Remove Perfect Collinearity  | True        |
| 45 | Clustering                   | False       |
| 46 | Clustering Iteration         | None        |
| 47 | Polynomial Features          | False       |
| 48 | Polynomial Degree            | None        |
| 49 | Trignometry Features         | False       |
| 50 | Polynomial Threshold         | None        |
| 51 | Group Features               | False       |
| 52 | Feature Selection            | True        |
| 53 | Feature Selection Method     | classic     |
| 54 | Features Selection Threshold | 0.8         |
| 55 | Feature Interaction          | False       |
| 56 | Feature Ratio                | False       |
| 57 | Interaction Threshold        | None        |
| 58 | Fix Imbalance                | False       |
| 59 | Fix Imbalance Method         | SMOTE       |

# 5. Model Build

In [18]: | compare\_models(fold=10, sort="F1")

| -        | Model                              | Accuracy | AUC    | Recall | Prec.  | F1     | Kappa  | MCC    | TT<br>(Sec) |
|----------|------------------------------------|----------|--------|--------|--------|--------|--------|--------|-------------|
| qda      | Quadratic Discriminant<br>Analysis | 0.7573   | 0.8210 | 0.7025 | 0.5509 | 0.6172 | 0.4435 | 0.4508 | 0.028       |
| lda      | Linear Discriminant<br>Analysis    | 0.7912   | 0.8352 | 0.5610 | 0.6456 | 0.5995 | 0.4594 | 0.4620 | 0.040       |
| svm      | SVM - Linear Kernel                | 0.7822   | 0.0000 | 0.5890 | 0.6191 | 0.5977 | 0.4499 | 0.4538 | 0.043       |
| lr       | Logistic Regression                | 0.7900   | 0.8405 | 0.5525 | 0.6452 | 0.5944 | 0.4540 | 0.4571 | 0.303       |
| nb       | Naive Bayes                        | 0.7625   | 0.7827 | 0.5917 | 0.5721 | 0.5812 | 0.4157 | 0.4162 | 0.020       |
| ridge    | Ridge Classifier                   | 0.7893   | 0.0000 | 0.5175 | 0.6554 | 0.5775 | 0.4399 | 0.4458 | 0.019       |
| gbc      | Gradient Boosting<br>Classifier    | 0.7832   | 0.8313 | 0.5047 | 0.6424 | 0.5635 | 0.4224 | 0.4288 | 3.482       |
| ada      | Ada Boost Classifier               | 0.7725   | 0.8128 | 0.5012 | 0.6143 | 0.5504 | 0.4005 | 0.4052 | 0.803       |
| lightgbm | Light Gradient Boosting<br>Machine | 0.7718   | 0.8129 | 0.4901 | 0.6141 | 0.5437 | 0.3944 | 0.3997 | 0.586       |
| knn      | K Neighbors Classifier             | 0.7523   | 0.7727 | 0.5260 | 0.5594 | 0.5414 | 0.3721 | 0.3730 | 0.230       |
| rf       | Random Forest<br>Classifier        | 0.7746   | 0.8110 | 0.4628 | 0.6299 | 0.5322 | 0.3887 | 0.3974 | 1.820       |
| et       | Extra Trees Classifier             | 0.7694   | 0.7903 | 0.4424 | 0.6221 | 0.5159 | 0.3704 | 0.3803 | 0.780       |
| dt       | Decision Tree Classifier           | 0.7115   | 0.6472 | 0.4671 | 0.4818 | 0.4737 | 0.2753 | 0.2757 | 0.164       |

The best model suggested by PyCaret is the Quadratic Discriminant Analysis (QDA), with a F1 Score around 0.6 and a good Recall, around 0.7.

|      | Accuracy | AUC    | Recall | Prec.  | F1     | Kappa  | MCC    |
|------|----------|--------|--------|--------|--------|--------|--------|
| 0    | 0.7322   | 0.7947 | 0.7373 | 0.5148 | 0.6063 | 0.4130 | 0.4283 |
| 1    | 0.7464   | 0.8169 | 0.6610 | 0.5379 | 0.5932 | 0.4118 | 0.4164 |
| 2    | 0.7512   | 0.8228 | 0.6780 | 0.5442 | 0.6038 | 0.4256 | 0.4310 |
| 3    | 0.7607   | 0.8368 | 0.7094 | 0.5533 | 0.6217 | 0.4506 | 0.4580 |
| 4    | 0.7417   | 0.8063 | 0.6838 | 0.5263 | 0.5948 | 0.4099 | 0.4175 |
| 5    | 0.7696   | 0.8367 | 0.7009 | 0.5694 | 0.6284 | 0.4640 | 0.4692 |
| 6    | 0.7577   | 0.8232 | 0.7350 | 0.5478 | 0.6277 | 0.4538 | 0.4646 |
| 7    | 0.7815   | 0.8393 | 0.7094 | 0.5887 | 0.6434 | 0.4878 | 0.4922 |
| 8    | 0.7458   | 0.7957 | 0.6752 | 0.5338 | 0.5962 | 0.4145 | 0.4206 |
| 9    | 0.7862   | 0.8378 | 0.7350 | 0.5931 | 0.6565 | 0.5039 | 0.5100 |
| Mean | 0.7573   | 0.8210 | 0.7025 | 0.5509 | 0.6172 | 0.4435 | 0.4508 |
| SD   | 0.0166   | 0.0164 | 0.0262 | 0.0245 | 0.0208 | 0.0323 | 0.0315 |

And see the hyper-parameters used for build the base model.





It's possible to tune the base model and optmize a metric, for this case, F1 Score.

In [35]: tuned\_model = tune\_model(base\_model, fold=10, optimize="F1")

|      | Accuracy | AUC    | Recall | Prec.  | F1     | Kappa  | MCC    |
|------|----------|--------|--------|--------|--------|--------|--------|
| 0    | 0.7512   | 0.8137 | 0.7627 | 0.5389 | 0.6316 | 0.4520 | 0.4675 |
| 1    | 0.7630   | 0.8264 | 0.7203 | 0.5592 | 0.6296 | 0.4594 | 0.4674 |
| 2    | 0.7701   | 0.8384 | 0.7373 | 0.5686 | 0.6421 | 0.4769 | 0.4856 |
| 3    | 0.7915   | 0.8458 | 0.7350 | 0.6014 | 0.6615 | 0.5130 | 0.5184 |
| 4    | 0.7464   | 0.8079 | 0.7009 | 0.5325 | 0.6052 | 0.4235 | 0.4322 |
| 5    | 0.7625   | 0.8441 | 0.7436 | 0.5541 | 0.6350 | 0.4645 | 0.4755 |
| 6    | 0.7506   | 0.8160 | 0.7607 | 0.5361 | 0.6290 | 0.4495 | 0.4651 |
| 7    | 0.7933   | 0.8466 | 0.7521 | 0.6027 | 0.6692 | 0.5216 | 0.5283 |
| 8    | 0.7553   | 0.8225 | 0.7179 | 0.5455 | 0.6199 | 0.4445 | 0.4536 |
| 9    | 0.7838   | 0.8426 | 0.7607 | 0.5855 | 0.6617 | 0.5068 | 0.5162 |
| Mean | 0.7668   | 0.8304 | 0.7391 | 0.5625 | 0.6385 | 0.4712 | 0.4810 |
| SD   | 0.0164   | 0.0140 | 0.0199 | 0.0249 | 0.0193 | 0.0310 | 0.0295 |

There's an improvement from the base model on F1 Score! Now, time to see what hyper-parameters were used by the tuned model.





In [37]: bagged\_model = ensemble\_model(tuned\_model)

|      | Accuracy | AUC    | Recall | Prec.  | F1     | Kappa  | MCC    |
|------|----------|--------|--------|--------|--------|--------|--------|
| 0    | 0.7441   | 0.8130 | 0.7627 | 0.5294 | 0.6250 | 0.4402 | 0.4571 |
| 1    | 0.7630   | 0.8268 | 0.7203 | 0.5592 | 0.6296 | 0.4594 | 0.4674 |
| 2    | 0.7678   | 0.8384 | 0.7288 | 0.5658 | 0.6370 | 0.4703 | 0.4784 |
| 3    | 0.7891   | 0.8453 | 0.7350 | 0.5972 | 0.6590 | 0.5087 | 0.5144 |
| 4    | 0.7417   | 0.8072 | 0.6923 | 0.5260 | 0.5978 | 0.4127 | 0.4212 |
| 5    | 0.7625   | 0.8458 | 0.7436 | 0.5541 | 0.6350 | 0.4645 | 0.4755 |
| 6    | 0.7435   | 0.8180 | 0.7607 | 0.5266 | 0.6224 | 0.4377 | 0.4547 |
| 7    | 0.7910   | 0.8473 | 0.7521 | 0.5986 | 0.6667 | 0.5173 | 0.5244 |
| 8    | 0.7530   | 0.8236 | 0.7179 | 0.5419 | 0.6176 | 0.4404 | 0.4499 |
| 9    | 0.7791   | 0.8427 | 0.7607 | 0.5779 | 0.6568 | 0.4984 | 0.5086 |
| Mean | 0.7635   | 0.8308 | 0.7374 | 0.5577 | 0.6347 | 0.4650 | 0.4752 |
| SD   | 0.0174   | 0.0142 | 0.0218 | 0.0260 | 0.0201 | 0.0324 | 0.0307 |

In [38]: blended\_model = blend\_models(estimator\_list=[tuned\_model, bagged\_model], method='

|      | Accuracy | AUC    | Recall | Prec.  | F1     | Kappa  | MCC    |
|------|----------|--------|--------|--------|--------|--------|--------|
| 0    | 0.7464   | 0.8138 | 0.7627 | 0.5325 | 0.6272 | 0.4441 | 0.4606 |
| 1    | 0.7654   | 0.8268 | 0.7203 | 0.5629 | 0.6320 | 0.4636 | 0.4712 |
| 2    | 0.7749   | 0.8386 | 0.7373 | 0.5762 | 0.6468 | 0.4852 | 0.4932 |
| 3    | 0.7915   | 0.8458 | 0.7350 | 0.6014 | 0.6615 | 0.5130 | 0.5184 |
| 4    | 0.7417   | 0.8077 | 0.6923 | 0.5260 | 0.5978 | 0.4127 | 0.4212 |
| 5    | 0.7625   | 0.8454 | 0.7436 | 0.5541 | 0.6350 | 0.4645 | 0.4755 |
| 6    | 0.7458   | 0.8167 | 0.7521 | 0.5301 | 0.6219 | 0.4390 | 0.4543 |
| 7    | 0.7933   | 0.8471 | 0.7521 | 0.6027 | 0.6692 | 0.5216 | 0.5283 |
| 8    | 0.7553   | 0.8227 | 0.7179 | 0.5455 | 0.6199 | 0.4445 | 0.4536 |
| 9    | 0.7815   | 0.8426 | 0.7607 | 0.5817 | 0.6593 | 0.5026 | 0.5124 |
| Mean | 0.7658   | 0.8307 | 0.7374 | 0.5613 | 0.6371 | 0.4691 | 0.4789 |
| SD   | 0.0179   | 0.0142 | 0.0209 | 0.0270 | 0.0210 | 0.0338 | 0.0321 |

In [26]: stacked\_model = stack\_models([tuned\_model, bagged\_model], method="auto")

|      | Accuracy | AUC    | Recall | Prec.  | F1     | Kappa  | MCC    |
|------|----------|--------|--------|--------|--------|--------|--------|
| 0    | 0.7583   | 0.8188 | 0.5339 | 0.5727 | 0.5526 | 0.3873 | 0.3878 |
| 1    | 0.7773   | 0.8439 | 0.4915 | 0.6304 | 0.5524 | 0.4071 | 0.4127 |
| 2    | 0.7844   | 0.8394 | 0.5169 | 0.6421 | 0.5728 | 0.4308 | 0.4353 |
| 3    | 0.7938   | 0.8422 | 0.5128 | 0.6667 | 0.5797 | 0.4462 | 0.4529 |
| 4    | 0.7867   | 0.8202 | 0.5641 | 0.6286 | 0.5946 | 0.4505 | 0.4517 |
| 5    | 0.8052   | 0.8587 | 0.5726 | 0.6768 | 0.6204 | 0.4906 | 0.4937 |
| 6    | 0.7910   | 0.8370 | 0.5812 | 0.6355 | 0.6071 | 0.4651 | 0.4660 |
| 7    | 0.8314   | 0.8639 | 0.5812 | 0.7556 | 0.6570 | 0.5477 | 0.5560 |
| 8    | 0.7886   | 0.8303 | 0.5128 | 0.6522 | 0.5742 | 0.4362 | 0.4418 |
| 9    | 0.7933   | 0.8501 | 0.5385 | 0.6562 | 0.5915 | 0.4550 | 0.4590 |
| Mean | 0.7910   | 0.8405 | 0.5406 | 0.6517 | 0.5902 | 0.4517 | 0.4557 |
| SD   | 0.0178   | 0.0141 | 0.0307 | 0.0439 | 0.0303 | 0.0421 | 0.0433 |

```
In [27]: best_model = blended_model
   plot_model(best_model, plot="auc")
```



In [28]: predict\_model(best\_model);

|   | Model             | Accuracy | AUC    | Recall | Prec.  | F1     | Kappa  | MCC    |
|---|-------------------|----------|--------|--------|--------|--------|--------|--------|
| 0 | Voting Classifier | 0.7702   | 0.8415 | 0.7535 | 0.5449 | 0.6325 | 0.4716 | 0.4847 |

```
In [29]: final_model = finalize_model(best_model)
```

In [33]: plot\_model(final\_model, plot = 'confusion\_matrix')



In [ ]: