Supplementary Tables

Supplementary Table 1: Candidate predictive features that were initially evaluated for use in the CHASM classifier. The most informative features that are currently being used in CHASM are highlighted in yellow in Supplementary Table 3.

	Feature	Description				
1	Net residue charge change	The change in formal charge resulting from the mutation. Histidine is assumed protonated (formal charge of +1)				
2	Net residue volume change	The change in residue volume resulting from the mutation (27).				
3	Net residue hydrophobicity change	The change in hydrophobicity resulting from the substitution (28).				
4	Positional Hidden Markov model (HMM) conservation score	This feature is calculated based on the degree of conservation of the residue estimated from a multiple sequence alignment built with SAM-T2K software (29), using the protein in which the mutation occurred as the seed sequence (30). The SAM-T2K alignments are large, superfamily-level alignments that include distantly related homologs (as well as close homologs and orthologs) of the protein of interest.				
5	Entropy of HMM alignment	The Shannon entropy calculated for the column of the SAM-T2K multiple sequence alignment, corresponding to the location of the mutation (31).				
6	Relative entropy of HMM alignment	Difference in Shannon entropy calculated for the column of the SAM-T2K multiple sequence alignment (corresponding to the location of the mutation) and that of a background distribution of amino acid residues computed from a large sample of multiple sequence alignments (31). These multiple sequence alignments are calculated using groups of orthologous proteins from the OMA database				
7	Compatibility score for amino acid substitution in the column of a multiple sequence alignment of orthologs					
8	Grantham Score	The Grantham substitution score for the wild type to mutant transition (34).				
9-11	Predicted residue solvent accessibility	These features consist of the probability of the wild type residue being buried, intermediate or exposed as predicted by a neural network trained with Predict-2 nd software (29) on a set of 1763 proteins with high-resolution X-ray crystal structures sharing less than 30% homology (35).				
12-14	Predicted contribution to protein stability	These features consist of the probability that the wild type residue contributes to overall protein stability in a manner that is highly stabilizing, average or destabilizing, as predicted by a neural network trained with Predict-2 nd software (29) on a set of 1763 proteins with less than 30% homology. Stability estimates for the neural network training data were calculated using the FoldX force field (36, 37).				
15-17	Predicted flexibility (Bfactor)	These features consist of the probability that the wild				

		type residue backbone is stiff, intermediate or flexible as			
		predicted by a neural network trained with Predict-2 nd			
		software (29) on a set of 1763 proteins with less than			
		30% homology. Flexibilities for the neural net training			
		data were estimated based on normalized temperature			
		factors, computed using the method of (38) from the X-			
		ray crystal structure files.			
18-20	Predicted secondary structure	These features consist of the probability that the			
		secondary structure of the region in which the wild type			
		residue exists is helix, loop or strand as predicted by a			
		neural net trained with Predict-2 nd software (29) on a set			
		of 1763 proteins with crystal structures and with less than			
		30% homology.			
21	Change in hydrophobicity	Change in residue hydrophobicity due to the wild type to			
		mutant transition.			
22	Change in volume	Change in residue volume due to the wild type to mutant			
		transition.			
23	Change in charge	Change in residue charge due to the wild type to mutant			
		transition. Histidine is assumed neutral.			
24	Change in polarity	Change in residue polarity due to the wildtype to mutant			
2.5		transition calculated in (34)			
25	EX substitution score	Amino acid substitution score from the EX matrix (37).			
26	PAM250 substitution score	Amino acid substitution score from the PAM250 matrix			
27	DI COURT (O. 1. ii. ii.	(39).			
27	BLOSUM 62 substitution score	Amino acid substitution score from the BLOSUM 62			
20	NAT 1 ('A A'	matrix (40).			
28	MJ substitution score	Amino acid substitution score from the Miyazawa-			
20	HCMD2002 mutation against	Jernigan contact energy matrix (37, 41).			
29	HGMD2003 mutation count	Number of times that the wild type to mutant substitution occurs in the Human Gene Mutation Database, 2003			
		version (25, 30, 31).			
30	VB mutation count	Amino acid substitution score from the VB (Venkatarajan			
30	VB mutation count	and Braun) matrix (37, 42).			
31-33	Probability of seeing the wild type	Calculated by joint frequencies of amino acid triples in			
31 33	residue in the first, middle, or last	human proteins found in UniProtKB* (10).			
	position of an amino acid triple	namum proteins round in Chir rottes (10).			
34-36	Probability of seeing the mutant	Calculated by joint frequencies of amino acid triples in			
3.30	residue in the first, middle, or last	human proteins found in UniProtKB* (10).			
	position of an amino acid triple	(10).			
37-39	Difference in probability of seeing	Calculated by joint frequencies of amino acid triples in			
	the wildtype vs. the mutant reside in	human proteins found in UniProtKB* (10).			
	the first, middle, or last position of an	(**),			
	amino acid triple				
40	Background probability of wildtype	Estimated as frequency of amino acid residue type			
	residue in UniProtKB* human	occurrence.			
	proteins				
41	Background probability of mutant	Estimated as frequency of amino acid residue type			
	residue in UniProtKB* human	occurrence.			
	proteins				
42	Probability of seeing the wild type at	Calculated by a Markov chain of amino acid quintuples			
	the center of a window of 5 amino	in human proteins found in UniProtKB* (10).			
	acid residues				
43	Probability of seeing the mutant at	Calculated by a Markov chain of amino acid quintuples			
	the center of a window of 5 amino	in human proteins found in UniProtKB* (10).			
	acid residues				

44-46	Frequency of missense change type in the Catalog of Somatic Mutations	Frequency that missense change type (amino acid type X to amino acid type Y, e.g. ALANINE to GLYCINE) is
	in Cancer (COSMIC) database	seen in COSMIC. These frequencies were calculated during the week of August 14, 2008, using COSMIC
		release 38 (43) and normalized by the occurrences of the wild type residue in human proteins found in
		UniProtKB* (10), the occurrences of the wild type reside
		in cosmic or the number of times the change type is
		observed in the HapMap SNPs database (44).
47-55	Regional AA composition	The percentage of amino acids in a 15 residue window
		surrounding the mutation that fall into one of the
		following categories (P,C,G,DE,Q,H,KR,WYF,ILVM).
56	17way exon conservation	The conservation score for the entire exon calculated
		from a 17-species phylogenetic alignment using the
		UCSC Genome Browser (45). Scores are given for
		windows of nucleotides. We retrieve the scores for each
		region that overlaps the exon in which the base
		substitution occurred and calculated a weighted average
		of the conservation scores where the weight is the
		number of bases with a particular score.
57-59	SNP Density	The number of genetic variants, polymorphisms or
		verified HapMap SNPs (44) in the exon where the
		mutation is located
60-80	UniProt Annotations (fingerprints)	These features give annotations, curated from the
		literature, of general binding sites, general active sites,
		lipid, metal, carbohydrate, DNA, phosphate and calcium
		binding sites, disulfides, modified residues, propeptide
		residues, signal peptide residues, known mutagenic sites,
		transmembrane regions, compositionally biased regions,
		repeat regions, known motifs, and zinc fingers. The
		integer 1 indicates that a feature is present and the integer
		0 indicates that it is absent at a mutated position

Supplementary Table. 2:

Synthetic Mutations were generated from eight multinomial distributions that depend on both tumor type and DNA context. The columns of the table show the eight contexts for each wild type DNA base and the rows show the (multinomial) probability distributions of base substitutions in GBM, based on (46).

Glioblastoma Multiforme (GBM)

	C in CpG	G in CpG	C in TpC	G in GpA	A	С	G	T
A	0.05	0.97	0.31	0.44	0.00	0.29	0.50	0.39
C	0.00	0.02	0.00	0.22	0.13	0.00	0.13	0.39
G	0.02	0.00	0.21	0.00	0.62	0.20	0.00	0.22
T	0.93	0.01	0.48	0.33	0.25	0.51	0.37	0.00

Supplementary Table 3. 80 candidate predictive features ranked according to their mutual information (in units of bits) with respect to driver and passenger classes. Detailed feature descriptions are in Supplementary Table 1. FP = fingerprint (a binary feature that takes on values of either 0 or 1).

Rank	Abbreviated Name	Feature	Mutual Information	Rank	Abbreviated Name	Feature	Mutual Information
1	17-Way Exon Conservation	56	0.0611	41	FP14 Signal Peptide Domain	64	0.00199
2	COSMIC subst frequency	45	0.0267	42	FP8 NTP Binding Domain	61	0.00197
3	FP30 PTM Enzyme Domain	80	0.026	43	Pred 2ndary Structure: Helix	18	0.00185
4	COSMIC	44	0.0258	44	FP13 Propeptide Domain	63	0.00172
5	PAM250 substitution score	26	0.0203	45	Pred 2ndary Structure: Strand	20	0.00134
6	JM substitution score	28	0.0202	46	FP27 Membrane Binding DM	77	0.00131
7	FP7 DNA Binding Domain	60	0.018	47	Difference in hydrophobicity	21	0.00126
8	VB substitution count	30	0.0178	48	Pred backbone flex: Low	15	0.00124
9	Positional HMM_Cons.	4	0.0168	49	Plastwt	38	0.00122
10	SNPDensity –all variants	57	0.0152	50	pdiff_last	33	0.0011
11	SNPDensity - validated only	58	0.0152	51	FP16 Domain contains variants	66	0.00106
12	Rel. Entropy of alignment	6	0.0152	52	Grantham substitution score	7	0.00104
13	Ex substitution score	25	0.0141	53	FP18 Domain has comp bias	68	0.000995
14	Entropy of alignment	5	0.0135	54	Region Composition H	52	0.000907
15	HGMD substitution count	29	0.0123	55	FP23 Protein-Protein Inter. DM	73	0.000784
16	BLOSUM substitution score	27	0.00872	56	Plastmut	39	0.000709
17	pdiff_middle	32	0.00723	57	FP15_Mutagen	65	0.000642
18	Background prob of WT res	40	0.00682	58	p5resmut	43	0.000478
19	Background prob of mut res	41	0.00527	59	FP26 Localization/Transport	76	0.000385
20	Pfirstmut	35	0.00495	60	Pred 2ndary structure: Loop	19	0.000371
21	Difference in polarity	24	0.0049	61	FP25 Transcription Factor Dom	75	0.000343
22	Pred solvent access:Intermed	10	0.0044	62	Region Composition KR	53	0.000283
23	Change in hydrophobicity	3	0.00433	63	FP29 PTM Recognition Dom.	79	0.000261
24	OMA alignment score	8	0.00376	64	Pred backbone flex: High	17	0.000194
25	Charge change (H neutral)	23	0.00332	65	Region Composition DE	50	0.000133
26	Pred backbhone flex: Med	16	0.00331	66	Region Composition Q	51	9.59E-05
27	COSMICvsHAPMAP	46	0.00331	67	FP20 Region Contains Motif	70	2.62E-05
28	Volume change	2	0.00307	68	SNPDensity hapmap only	59	0
29	Pred solvent access:Exposed	11	0.00292	69	FP9 CA Binding	62	0
30	Volume difference	22	0.00282	70	FP28 Chromatin Domain	78	0
31	Pred solvent access:Buried	9	0.00282	71	Charge change (H protonated)	1	-0.000187
32	FP24 RNA Binding	74	0.00253	72	FP19 Region Contains Repeats	69	-0.000345
33	FP22_REGION	72	0.00252	73	Region Composition C	48	-0.000359
34	p5reswt	42	0.00237	74	FP21 Zinc Finger Domain	71	-0.000638
35	FP17 Transmembrane	67	0.00234	75	pmiddlewt	36	-0.000728
36	Pfirstwt	34	0.00231	76	Region Composition WYF	54	-0.000822
37	Region Composition G	49	0.00231	77	Region Composition ILVM	55	-0.000926
38	Pmiddlemut	37	0.00226	78	Pred stability @ res: Low	12	-0.00139
39	pdiff_first	31	0.00213	79	Pred stability @ res: Med	13	-0.00147
40	Region Composition_P	47	0.00205	80	Pred stability @ res: High	14	-0.00226