Álgebra Linear

Subespaços Vetoriais

- **1.** Mostra que $F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ é subespaço vetorial de \mathbb{R}^3 .
- **2.** Mostra que $G = \{(x, y, z) \in \mathbb{R}^3 : x = 0 \ e \ y = 0 \}$ é subespaço vetorial de \mathbb{R}^3 .
- **3.** Verifica se $H = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2\times 2}(\mathbb{R}): a \geq 0 \right\}$ é subespaço vetorial de $M_{2\times 2}(\mathbb{R})$.
- **4.** Mostra que $I = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2\times 2}(\mathbb{R}): a = -c \ e \ b = d \right\}$ é subespaço vetorial de $M_{2\times 2}(\mathbb{R})$.
- **5.** Sejam U e W dois subespaços do espaço vetorial E.

Mostra que o conjunto $U\cap W$ é subespaço de E.

6. Mostra que \mathbb{R}^3 é a soma direta de $F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ e $G = \{(x, y, z) \in \mathbb{R}^3 : x = 0 \ e \ y = 0\}$