

SCORE Search Results Details for Application 10531543 and Search Result 20081031_131728_us-10-531-543-1.rng.

Score Home	Retrieve Application	SCORE System	SCORE	Comments /
Page	List	Overview	FAQ	Suggestions

This page gives you Search Results detail for the Application 10531543 and Search Result 20081031_131728_us-10-531-543-1.rng.

[Go Back to previous page](#)

GenCore version 6.3
Copyright (c) 1993 - 2008 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 31, 2008, 16:58:58 ; Search time 455 Seconds
(without alignments)
39457.692 Million cell updates/sec

Title: US-10-531-543-1

Perfect score: 1262

Sequence: 1 ctgggtgggaagggtccaaag.....tgaaaaaaaaaaaaaaaaaaa 1262

Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 11806651 seqs, 7113014948 residues

Total number of hits satisfying chosen parameters: 23613302

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : N_Geneseq_200808:*

- 1: geneseqn1980s:*
- 2: geneseqn1990s:*
- 3: geneseqn2000:*
- 4: geneseqn2001a:*
- 5: geneseqn2001b:*
- 6: geneseqn2002a:*
- 7: geneseqn2002b:*

```

8: geneseqn2003a:*
9: geneseqn2003b:*
10: geneseqn2003c:*
11: geneseqn2003d:*
12: geneseqn2004a:*
13: geneseqn2004b:*
14: geneseqn2004c:*
15: geneseqn2004d:*
16: geneseqn2004e:*
17: geneseqn2004f:*
18: geneseqn2005a:*
19: geneseqn2005b:*
20: geneseqn2005c:*
21: geneseqn2006a:*
22: geneseqn2006b:*
23: geneseqn2006c:*
24: geneseqn2006d:*
25: geneseqn2007a:*
26: geneseqn2007b:*
27: geneseqn2007c:*
28: geneseqn2007d:*
29: geneseqn2008:*

```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result	Query					Description
	No.	Score	Match	Length	DB	
1	1262	100.0	1262	21	AEG21170	Aeg21170 Human Jab
2	1262	100.0	1262	21	AFS77968	Afs77968 Human Jun
3	1260	99.8	1282	29	AOF63552	Aof63552 Mouse Kip
4	966.8	76.6	1288	18	ADY80674	Ady80674 Human JAB
5	966.8	76.6	1288	18	ADY80675	Ady80675 Human JAB
6	966.8	76.6	1309	18	ADY80676	Ady80676 Human JAB
7	966.8	76.6	1510	18	ADY80669	Ady80669 Human JAB
8	959.4	76.0	1292	10	ADI31651	Adi31651 Human cDN
9	959.4	76.0	1292	12	ADS83718	Ads83718 Human lym
10	959.4	76.0	1292	18	ADY80668	Ady80668 Human JAB
11	948.8	75.2	1277	9	ADF81512	Adf81512 Leukaemia
12	948.8	75.2	1277	12	ACN38816	Acn38816 Tumour-as
13	948.8	75.2	1277	20	AFU76250	Afu76250 Human pro
14	948.8	75.2	1277	20	AFU81485	Afu81485 Human pro
15	948.4	75.2	1287	6	AAD24415	Aad24415 Human RNA
16	936.8	74.2	1433	13	ADP56481	Adp56481 Human bre
17	881.6	69.9	981	2	AAT32620	Aat32620 pACT59 co

18	881.6	69.9	981	3	AAA94275	Aaa94275 Murine T
19	874	69.3	1263	9	ADA53665	Ada53665 Human cod
20	823.2	65.2	949	6	ABS51512	Abs51512 Human cDN
21	797.6	63.2	919	2	AAT32621	Aat32621 pACT74 co
22	797.6	63.2	919	3	AAA94276	Aaa94276 Murine T
23	791.2	62.7	1262	13	ADP56483	Adp56483 Human bre
24	791.2	62.7	1937	13	ADP56482	Adp56482 Human bre
25	790.6	62.6	3479	13	ADR08249	Adr08249 Full leng
26	753.2	59.7	871	6	ABS51518	Abs51518 Human cDN
27	750.2	59.4	868	8	ACA57249	Aca57249 Human adi
28	697.8	55.3	1661	27	ARB60069	Arb60069 DNA fragm
29	674.2	53.4	1059	27	ARB75265	Arb75265 DNA fragm
30	674.2	53.4	1729	6	ABZ78075	Abz78075 Human bre
31	669.8	53.1	777	8	ACA57301	Aca57301 Human adi
32	590.4	46.8	680	8	ACA57034	Aca57034 Human adi
33	570.6	45.2	657	8	ACA57385	Aca57385 Human adi
34	567.6	45.0	654	8	ACA57045	Aca57045 Human adi
35	560.4	44.4	642	6	ABS51593	Abs51593 Human cDN
36	554.4	43.9	636	8	ACA57112	Aca57112 Human adi
37	534.4	42.3	757	27	ARB73520	Arb73520 DNA fragm
38	509.8	40.4	585	6	ABS51610	Abs51610 Human cDN
39	495	39.2	579	19	AAE12148	Aee12148 Hamster c
40	495	39.2	579	19	AAE15790	Aee15790 Hamster S
41	475.6	37.7	1314	13	ADP56484	Adp56484 Human bre
42	475	37.6	562	6	ABK39139	Abk39139 cDNA enco
43	475	37.6	562	8	ACA02654	Aca02654 Lung canc
44	475	37.6	562	8	ACA11468	Aca11468 Human lun
45	475	37.6	562	9	ADH46696	Adh46696 Human lun

ALIGNMENTS

RESULT 1

AEG21170

ID AEG21170 standard; DNA; 1262 BP.

XX

AC AEG21170;

XX

DT 04-MAY-2006 (first entry)

XX

DE Human Jab1 DNA.

XX

KW gene; ds; flavivirus infection; pestivirus infection; infection;

KW Jun-activation binding protein 1; West nile virus infection;

KW neurological disease; temperature disorder; fever;

KW cardiovascular disease; bleeding; jaundice; gastrointestinal disease;

KW metabolic disorder; arthralgia; myalgia; musculoskeletal disease;

KW encephalitis; meningitis; Virucide; Antipyretic; Antiinflammatory;

KW Antiallergic; Hemostatic; Hepatotropic; apoptosis inhibitor.

XX

OS Homo sapiens.

XX

FH Key Location/Qualifiers

FT CDS 94. .1098

FT /*tag= a

FT /product= "Jabl"

XX

PN WO2006025623-A1.

XX

PD 09-MAR-2006.

XX

PF 31-AUG-2004; 2004WO-KR002190.

XX

PR 31-AUG-2004; 2004WO-KR002190.

XX

PA (UYSU-) UNIV SUNGKYUNKWAN.

XX

PI Song J, Oh W, Pyo SN, Yang J, Lee H, Lee SR, Sung YH;

XX

DR WPI; 2006-204334/21.

DR P-PSDB; AEG21171.

XX

PT New composition comprising a Jabl (Jun-activation binding protein 1) protein or the nucleic acid sequence encoding the protein, useful for treating or preventing a flavivirus or pestivirus infection, e.g. fever, rash, meningitis.

XX

PS Claim 3; SEQ ID NO 1; 72pp; English.

XX

CC This invention describes a novel composition for treating or preventing a flavivirus or pestivirus infection, comprising a Jabl (Jun-activation binding protein 1) protein AEG21171 or the nucleic acid sequence encoding the protein, AEG21170. The invention also describes; a) a method of screening a compound stimulating expression of a Jabl protein, comprising culturing a cell expressing the Jabl protein, contacting the cultured cell with candidate compounds for stimulating expression of the Jabl protein, comparing an expression level of the Jabl protein with that in a control not contacted with the candidate compounds and identifying a compound increasing expression levels of the Jabl protein and b) a method of screening a compound stimulating interaction between a Jabl protein and a capsid (Cp) protein, comprising culturing a cell transformed with both a recombinant vector expressing the Jabl protein and another recombinant vector expressing the Cp protein of flavivirus or pestivirus, contacting the cultured cell with candidate compounds for stimulating interaction between the Jabl protein and the Cp protein, comparing an expression level of the Cp protein with that in a control not contacted with the candidate compounds and identifying a compound reducing

CC expression levels of the Cp protein. The Jab1 nucleic acid AEG21170 can
 CC be incorporated into a recombinant viral vector selected from recombinant
 CC retrovirus, adenovirus, adeno-associated virus and herpes simplex virus.
 CC The composition of the invention is particularly effective for treating
 CC flavivirus infection e.g. West Nile virus which causes fever, rash,
 CC bleeding, jaundice, arthralgia, myalgia, encephalitis or meningitis. This
 CC sequence encodes the human Jab1 protein. The Jab1 protein is found to
 CC interact with the capsid protein of flavivirus and inhibits apoptosis by
 CC accelerating the degradation of the capsid protein.

XX

SQ Sequence 1262 BP; 394 A; 265 C; 302 G; 301 T; 0 U; 0 Other;

Query Match 100.0%; Score 1262; DB 21; Length 1262;
 Best Local Similarity 100.0%; Pred. No. 0;
 Matches 1262; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy	1 CTGGTGGGAAGGTCAAAGCCCGCACGCTGAGGCCAGTAGAAGAAAGTTGCATCTTGA	60
Db	1 CTGGTGGGAAGGTCAAAGCCCGCACGCTGAGGCCAGTAGAAGAAAGTTGCATCTTGA	60
Qy	61 TTGTGGAGCGACAGCTCTCGGTGCCTCGGCCATGGCAGCTTCGGGAGTGGTATGCC	120
Db	61 TTGTGGAGCGACAGCTCTCGGTGCCTCGGCCATGGCAGCTTCGGGAGTGGTATGCC	120
Qy	121 CAGAAAACCTGGAAATTGCCAACAAACATGCAGGAAGCGCAGAGTATCGATGAAATCTAC	180
Db	121 CAGAAAACCTGGAAATTGCCAACAAACATGCAGGAAGCGCAGAGTATCGATGAAATCTAC	180
Qy	181 AAATATGACAAAAAACACAAGAAATCCTGGCGGAAACCTGGACTAAGGATCAC	240
Db	181 AAATATGACAAAAAACACAAGAAATCCTGGCGGCAACCTGGACTAAGGATCAC	240
Qy	241 CACTACTTAAATACTGAAATCTCAGCATTGGCTCTACTGAAATGGTGTATGCATGCC	300
Db	241 CACTACTTAAATACTGAAATCTCAGCATTGGCTCTACTGAAATGGTGTATGCATGCC	300
Qy	301 AGGTCAGGAGGCAACTTGGAAAGTGATGGTTGATGCTCGGGAAAGTCGACGGCGAGACC	360
Db	301 AGGTCAGGAGGCAACTTGGAAAGTGATGGTTGATGCTCGGGAAAGTCGACGGCGAGACC	360
Qy	361 ATGATCATCATGGACAGTTCTCGTTGCCTGTAGAGGGCACAGAAACTCGAGTAATGCT	420
Db	361 ATGATCATCATGGACAGTTCTCGTTGCCTGTAGAGGGCACAGAAACTCGAGTAATGCT	420
Qy	421 CAAGCTGCTCGTATGAGTATATGGCTGCATACATAGAAAATGCCAACAGGTTGGCCGC	480
Db	421 CAAGCTGCTCGTATGAGTATATGGCTGCATACATAGAAAATGCCAACAGGTTGGCCGC	480
Qy	481 CTTGAGAATGCAATCGGTTGGTATCATAGCCACCCCTGGTTATGGCTGGCTCTCCGGG	540

Db	481	CTTGAGAACATGCCATTGGTATCATAGCCACCCCTGGTTATGGCTGGCTCCGGG	540
Qy	541	ATTGATGTTAGTACACAGATGCTGAACCAGCAGTTCAAGAACATTGTAGCAGTGGTG	600
Db	541	ATTGATGTTAGTACACAGATGCTGAACCAGCAGTTCAAGAACATTGTAGCAGTGGTG	600
Qy	601	ATTGATCCAACCAGAACAACTCTGCAGGAAAAGTGAATCTTGGCCCTTAGGACATAT	660
Db	601	ATTGATCCAACCAGAACAACTCTGCAGGAAAAGTGAATCTTGGCCCTTAGGACATAT	660
Qy	661	CCAAAGGGTACAAACCTCTGATGAAGGACCTCTGAGTACCAAGACTATCCCACTAAT	720
Db	661	CCAAAGGGTACAAACCTCTGATGAAGGACCTCTGAGTACCAAGACTATCCCACTAAT	720
Qy	721	AAAAATAGAAGATTTGGCGTGCAGTCAGAACAAATTATGCCTTAGAAGTCTCATATTTC	780
Db	721	AAAAATAGAAGATTTGGCGTGCAGTCAGAACAAATTATGCCTTAGAAGTCTCATATTTC	780
Qy	781	AAATCATCTTGGATCGAAACTACTTGAGCTTTGTGGAATAAAACTGGGTGAATACC	840
Db	781	AAATCATCTTGGATCGAAACTACTTGAGCTTTGTGGAATAAAACTGGGTGAATACC	840
Qy	841	CTGAGTTCCTCTAGCTTGTACTAATGCAGACTACACCACAGGCCAGGTGTTGATTG	900
Db	841	CTGAGTTCCTCTAGCTTGTACTAATGCAGACTACACCACAGGCCAGGTGTTGATTG	900
Qy	901	TCTGAGAACAGTGGAGCCAACTGGACGTGGCAGTTCATGTTGGCCTTA	960
Db	901	TCTGAGAACAGTGGAGCCAACTGGACGTGGCAGTTCATGTTGGCCTTA	960
Qy	961	GAAACACATGACCGCAAGTCGGAAGACAAACTTGCCAAAGCTACTAGAGACAGCTGAAA	1020
Db	961	GAAACACATGACCGCAAGTCGGAAGACAAACTTGCCAAAGCTACTAGAGACAGCTGAAA	1020
Qy	1021	ACCACCATAGAACGCCATCCATGGACTGATGTCAGGTATTAAGGATAAAACTGTTAAT	1080
Db	1021	ACCACCATAGAACGCCATCCATGGACTGATGTCAGGTATTAAGGATAAAACTGTTAAT	1080
Qy	1081	CAGATTAACGTGCTTAGTACCAAGTACTTCTCAAGCTGGTGTGGAAAGGAAAA	1140
Db	1081	CAGATTAACGTGCTTAGTACCAAGTACTTCTCAAGCTGGTGTGGAAAGGAAAA	1140
Qy	1141	GAAGCTCAAGAACACTTTAACCCAGTTACCAAAACTCAGATTAGAACACTAACGGTGCT	1200
Db	1141	GAAGCTCAAGAACACTTTAACCCAGTTACCAAAACTCAGATTAGAACACTAACGGTGCT	1200
Qy	1201	GTGTGGTGTCTGAGTATTGCACTGTAATAAAACTACACGTGAAAAAAAAAAAAAA	1260

Db 1201 GTGTGGTGTCTGAGTATTAGCACTGTAATAAAACTATCACGTGAAAAAAAAAAAAAAA 1260
 Qy 1261 AA 1262
 ||
 Db 1261 AA 1262

RESULT 2

AFS77968

ID AFS77968 standard; DNA; 1262 BP.

XX

AC AFS77968;

XX

DT 14-JUN-2007 (first entry)

XX

DE Human Jun-activation binding protein 1 gene, SEQ ID NO: 1.

XX

KW gene; ds; Jab1; Jun-activation binding protein 1; apoptosis inhibition;

KW flavivirus infection; gene therapy; protein degradation; capsid;

KW pestivirus infection.

XX

OS Homo sapiens.

XX

FH Key Location/Qualifiers

FT CDS 94..1098

FT /*tag= a

FT /product= "Human Jun-activation binding protein 1"

XX

PN KR2006020531-A.

XX

PD 06-MAR-2006.

XX

PF 31-AUG-2004; 2004KR-00069381.

XX

PR 31-AUG-2004; 2004KR-00069381.

XX

PA (UYSU-) UNIV SUNGKYUNKWAN.

XX

PI Song JW, Oh WK, Sung YH, Lee SR, Lee HW, Pyo SN, Yang JS;

XX

DR WPI; 2006-764085/78.

DR P-PSDB; AFS77969.

XX

PT Composition for treating virus infection diseases comprising jab1

PT inhibiting apoptosis by promotion of decomposition of capsid proteins.

XX

PS Claim 2; SEQ ID NO 1; 26pp; Korean.

XX

CC The invention relates to a composition for treating viral infections

CC comprising a recombinant vector comprising a Jab1 (Jun-activation binding
 CC protein 1) DNA for inhibiting apoptosis by promoting the decomposition of
 CC capsid proteins, useful for treating diseases caused by infection by a
 CC flavivirus or a pestivirus such as pyrexia, eruption, hemorrhage,
 CC jaundice, arthralgia, encephalitis or meningitis. The recombinant vector
 CC of the invention is a recombinant virus vector selected from a
 CC recombinant retrovirus, adenovirus, adeno-associated virus and Herpes
 CC simplex virus. The present sequence encodes the human Jab1 polypeptide of
 CC the current invention.

XX

SQ Sequence 1262 BP; 394 A; 265 C; 302 G; 301 T; 0 U; 0 Other;

Query Match 100.0%; Score 1262; DB 21; Length 1262;
 Best Local Similarity 100.0%; Pred. No. 0;
 Matches 1262; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy	1 CTGGTGGGAAGGTCAAAGCCCGCACGCTGAGGCCAGTAGAAGAAAGTTGCATCTTGA	60
Db	1 CTGGTGGGAAGGTCAAAGCCCGCACGCTGAGGCCAGTAGAAGAAAGTTGCATCTTGA	60
Qy	61 TTGTGGAGCGACAGCTCTCGGTGCCTCGGCCATGGCAGCTTCGGGAGTGGTATGCC	120
Db	61 TTGTGGAGCGACAGCTCTCGGTGCCTCGGCCATGGCAGCTTCGGGAGTGGTATGCC	120
Qy	121 CAGAAAACCTGGAAATTGCCAACAAACATGCAGGAAGCGCAGAGTATCGATGAAATCTAC	180
Db	121 CAGAAAACCTGGAAATTGCCAACAAACATGCAGGAAGCGCAGAGTATCGATGAAATCTAC	180
Qy	181 AAATATGACAAAAAACACAAGAAATCCTGGCGGAAACCTGGACTAAGGATCAC	240
Db	181 AAATATGACAAAAAACACAAGAAATCCTGGCGGCAACCTGGACTAAGGATCAC	240
Qy	241 CACTACTTAAATACTGAAATCTCAGCATTGGCTCTACTGAAATGGTGTATGCATGCC	300
Db	241 CACTACTTAAATACTGAAATCTCAGCATTGGCTCTACTGAAATGGTGTATGCATGCC	300
Qy	301 AGGTCAGGAGGCAACTTGGAAAGTGATGGTTGATGCTCGGGAAAGTCGACGGCGAGACC	360
Db	301 AGGTCAGGAGGCAACTTGGAAAGTGATGGTTGATGCTCGGGAAAGTCGACGGCGAGACC	360
Qy	361 ATGATCATCATGGACAGTTCGTTGCCTGTAGAGGGCACAGAAACTCGAGTAATGCT	420
Db	361 ATGATCATCATGGACAGTTCGTTGCCTGTAGAGGGCACAGAAACTCGAGTAATGCT	420
Qy	421 CAAGCTGCTGCGTATGAGTATATGGCTGCATACATAGAAAATGCCAACAGGTTGGCCGC	480
Db	421 CAAGCTGCTGCGTATGAGTATATGGCTGCATACATAGAAAATGCCAACAGGTTGGCCGC	480
Qy	481 CTTGAGAATGCAATCGGTTGGTATCATAGCCACCCCTGGTTATGGCTGGCTCTCCGGG	540

Db	481	CTTGAGAACATGCCATTGGTATCATAGCCACCCCTGGTTATGGCTGGCTCCGGG	540
Qy	541	ATTGATGTTAGTACACAGATGCTGAACCAGCAGTTCAAGAACATTGTAGCAGTGGTG	600
Db	541	ATTGATGTTAGTACACAGATGCTGAACCAGCAGTTCAAGAACATTGTAGCAGTGGTG	600
Qy	601	ATTGATCCAACCAGAACAACTCTGCAGGAAAAGTGAATCTTGGCCCTTAGGACATAT	660
Db	601	ATTGATCCAACCAGAACAACTCTGCAGGAAAAGTGAATCTTGGCCCTTAGGACATAT	660
Qy	661	CCAAAGGGTACAAACCTCTGATGAAGGACCTCTGAGTACCAAGACTATCCCACTAAT	720
Db	661	CCAAAGGGTACAAACCTCTGATGAAGGACCTCTGAGTACCAAGACTATCCCACTAAT	720
Qy	721	AAAAATAGAAGATTTGGCGTGCAGTCAGAACAAATATTATGCCTTAGAAGTCTCATATTTC	780
Db	721	AAAAATAGAAGATTTGGCGTGCAGTCAGAACAAATATTATGCCTTAGAAGTCTCATATTTC	780
Qy	781	AAATCATCTTGGATCGAAACTACTTGAGCTTTGTGGAATAAAACTGGGTGAATACC	840
Db	781	AAATCATCTTGGATCGAAACTACTTGAGCTTTGTGGAATAAAACTGGGTGAATACC	840
Qy	841	CTGAGTTCCTCTAGCTTGTACTAATGCAGACTACACCACAGGCCAGGTGTTGATTG	900
Db	841	CTGAGTTCCTCTAGCTTGTACTAATGCAGACTACACCACAGGCCAGGTGTTGATTG	900
Qy	901	TCTGAGAACAGTGGAGCCAACTGGACGTGGCAGTTCATGTTGGCCTTA	960
Db	901	TCTGAGAACAGTGGAGCCAACTGGACGTGGCAGTTCATGTTGGCCTTA	960
Qy	961	GAAACACATGACCGCAAGTCGGAAGACAAACTTGCCAAAGCTACTAGAGACAGCTGAAA	1020
Db	961	GAAACACATGACCGCAAGTCGGAAGACAAACTTGCCAAAGCTACTAGAGACAGCTGAAA	1020
Qy	1021	ACCACCATAGAACGCCATCCATGGACTGATGTCAGGTATTAAGGATAAAACTGTTAAT	1080
Db	1021	ACCACCATAGAACGCCATCCATGGACTGATGTCAGGTATTAAGGATAAAACTGTTAAT	1080
Qy	1081	CAGATTAACGTGCTTAGTACCAAGTACTTCTCAAGCTGGTGTGGAAAGGAAAA	1140
Db	1081	CAGATTAACGTGCTTAGTACCAAGTACTTCTCAAGCTGGTGTGGAAAGGAAAA	1140
Qy	1141	GAAGCTCAAGAACACTTTAACCCAGTTACCAAAACTCAGATTAGAACACTAACGGTGCT	1200
Db	1141	GAAGCTCAAGAACACTTTAACCCAGTTACCAAAACTCAGATTAGAACACTAACGGTGCT	1200
Qy	1201	GTGTGGTGTCTGAGTATTGCACTGTAATAAAACTACACGTGAAAAAAAAAAAAAA	1260

Db 1201 GTGTGGTGTCTGAGTATTAGCACTGTAATAAAACTATCACGTGAAAAAAAAAAAAAAA 1260
Qy 1261 AA 1262
||
Db 1261 AA 1262

RESULT 3

AOF63552

ID AOF63552 standard; DNA; 1282 BP.

XX

AC AOF63552;

XX

DT 15-MAY-2008 (first entry)

XX

DE Mouse Kip1 C-terminus interacting protein-2 coding sequence, SEQ ID 1.

XX

KW drug screening; cancer; leukemia; stem cell;

KW Kip1 C-terminus interacting protein-2; Kic2; ds; gene.

XX

OS Mus musculus.

XX

FH Key Location/Qualifiers

FT CDS 116..1120

FT /*tag= a

FT /product= "Kip1 C-terminus interacting protein-2"

XX

PN JP2007330205-A.

XX

PD 27-DEC-2007.

XX

PF 16-JUN-2006; 2006JP-00168160.

XX

PR 16-JUN-2006; 2006JP-00168160.

XX

PA (UYNA-) UNIV NARA.

XX

PI Kato J;

XX

DR WPI; 2008-E37671/30.

DR P-PSDB; AOF63555.

DR GENBANK; AF068223.

DR PC:NCBI; gi7380922.

DR PC_ENCPRO:NCBI; gi7380923.

XX

PT Preparation of cancer stem cell useful in screening antileukemic agents,
PT involves raising leukemia spontaneous transgenic non-human animal over
PT expressing Jab1 gene, and obtaining cancer stem cell from raised animal.

XX

PS Example 1; SEQ ID NO 1; 22pp; Japanese.

XX

CC The present invention relates to a method of producing cancer stem cell.
 CC The method involves raising leukemia spontaneous transgenic animal
 CC capable of over expressing Jabl gene, and obtaining cancer stem cell from
 CC the raised animal. The present invention also provides a method for
 CC screening antileukemic agents comprises contacting the cancer stem cell
 CC with test substance; measuring the Jabl expression level of cancer stem
 CC cell, stem cell activity or survival rate of cancer stem cell; comparing
 CC the measured parameters with Jabl expression level, stem cell activity or
 CC survival rate of control (cancer stem cell not contacted with test
 CC substance); and selecting the test substance as therapeutic agent of
 CC leukemia. Also described is: method of evaluating leukemia therapeutic
 CC effect of test drug with respect to target stem cell. The method of the
 CC invention enables the abundant production of cancer stem cells using
 CC transgenic animal and useful in screening therapeutic and/or preventive
 CC agent of leukemia, evaluating drug efficacy and in elucidating cancer
 CC onset mechanism. The present sequence is a mouse Kip1 C-terminus
 CC interacting protein-2 (Kic2) coding sequence similar to Homo sapiens Jun
 CC activation domain binding protein (Jabl) of the invention.

CC

CC Revised record issued on 29-JAN-2008 : Enhanced with precomputed
 CC information from BOND.

XX

SQ Sequence 1282 BP; 396 A; 268 C; 311 G; 307 T; 0 U; 0 Other;

Query Match	99.8%	Score	1260	DB	29	Length	1282		
Best Local Similarity	100.0%	Pred. No.	0						
Matches	1260	Conservative	0	Mismatches	0	Indels	0	Gaps	0
Qy	1	CTGGTGGGAAGGTCAAAGCCCCGACGCTGAGGCCAGTAGAAGAAAGTTGCATCTTGA	60						
Db	23	CTGGTGGGAAGGTCAAAGCCCCGACGCTGAGGCCAGTAGAAGAAAGTTGCATCTTGA	82						
Qy	61	TTGTGGAGCGACAGCTCTCCGGTGCGCTCGGCCATGGCAGCTCCGGGAGTGGTATGCC	120						
Db	83	TTGTGGAGCGACAGCTCTCCGGTGCGCTCGGCCATGGCAGCTCCGGGAGTGGTATGCC	142						
Qy	121	CAGAAAACCTGGATTGCCAACACATGCAGGAAGCGCAGAGTATCGATGAAATCTAC	180						
Db	143	CAGAAAACCTGGATTGCCAACACATGCAGGAAGCGCAGAGTATCGATGAAATCTAC	202						
Qy	181	AAATATGACAAAAAACACAAGAAATCCTGGCGGCCAACCTGGACTAAGGATCAC	240						
Db	203	AAATATGACAAAAAACACAAGAAATCCTGGCGGCCAACCTGGACTAAGGATCAC	262						
Qy	241	CACTACTTAAATACTGCAGGAAATCTCAGCATTGGCTACTGAAAATGGTATGCC	300						
Db	263	CACTACTTAAATACTGCAGGAAATCTCAGCATTGGCTACTGAAAATGGTATGCC	322						

Qy	301	AGGTCAAGGAGGCAACTTGGAAAGTGATGGGTTGATGCTCGGGAAAGTCGACGGCGAGACC	360
Db	323	AGGTCAAGGAGGCAACTTGGAAAGTGATGGGTTGATGCTCGGGAAAGTCGACGGCGAGACC	382
Qy	361	ATGATCATCATGGACAGTTCGCTTGCCTGTAGAGGGCACAGAAAACTCGAGTAATGCT	420
Db	383	ATGATCATCATGGACAGTTCGCTTGCCTGTAGAGGGCACAGAAAACTCGAGTAATGCT	442
Qy	421	CAAGCTGCTCGGTATGAGTATATGGCTGCATACATAGAAAATGCCAACAGGGTGGCCGC	480
Db	443	CAAGCTGCTCGGTATGAGTATATGGCTGCATACATAGAAAATGCCAACAGGGTGGCCGC	502
Qy	481	CTTGAGAATGCAATCGGTTGGTATCATAGCCACCCCTGGTTATGGCTGCTGGCTCTCCGGG	540
Db	503	CTTGAGAATGCAATCGGTTGGTATCATAGCCACCCCTGGTTATGGCTGCTGGCTCTCCGGG	562
Qy	541	ATTGATGTTAGTACACAGATGCTGAACCAGCAGTTCAAGAACCATTTGTTAGCAGTGGTG	600
Db	563	ATTGATGTTAGTACACAGATGCTGAACCAGCAGTTCAAGAACCATTTGTTAGCAGTGGTG	622
Qy	601	ATTGATCCAACCAGAACAACTCTCTGCAGGAAAAGTGAATCTTGGCCCTTAGGACATAT	660
Db	623	ATTGATCCAACCAGAACAACTCTCTGCAGGAAAAGTGAATCTTGGCCCTTAGGACATAT	682
Qy	661	CCAAAGGGCTACAAACCTCTGATGAAGGACCTCTGAGTACCAAGACTATCCCACTTAAT	720
Db	683	CCAAAGGGCTACAAACCTCTGATGAAGGACCTCTGAGTACCAAGACTATCCCACTTAAT	742
Qy	721	AAAATAGAAGATTGGCGTGCAGTCAGAACAAATTATGCCTTAGAAGTCTCATATTTC	780
Db	743	AAAATAGAAGATTGGCGTGCAGTCAGAACAAATTATGCCTTAGAAGTCTCATATTTC	802
Qy	781	AAATCATCTTGGATCGAAACTACTTGTAGCTTGTGGAATAAAACTGGGTGAATACC	840
Db	803	AAATCATCTTGGATCGAAACTACTTGTAGCTTGTGGAATAAAACTGGGTGAATACC	862
Qy	841	CTGAGTTCCTCTAGCTGTTACTAATGCAGACTACACCCACAGGCCAGGTGTTGATTG	900
Db	863	CTGAGTTCCTCTAGCTGTTACTAATGCAGACTACACCCACAGGCCAGGTGTTGATTG	922
Qy	901	TCTGAGAAGTTAGAGCAGTCGGAAGGCCAACTGGGACGTGGCAGTTCATGTTGGCTTA	960
Db	923	TCTGAGAAGTTAGAGCAGTCGGAAGGCCAACTGGGACGTGGCAGTTCATGTTGGCTTA	982
Qy	961	GAAACACATGACCGCAAGTCGGAAGACAAACTTGCCAAAGCTACTAGAGACAGCTGTAAA	1020
Db	983	GAAACACATGACCGCAAGTCGGAAGACAAACTTGCCAAAGCTACTAGAGACAGCTGTAAA	1042

Qy	1021	ACCAACCATAAGGCCATCCATGGACTGATGTCTCAGGTTATTAAAGGATAAACTGTTAAT	1080
Db	1043	ACCAACCATAAGGCCATCCATGGACTGATGTCTCAGGTTATTAAAGGATAAACTGTTAAT	1102
Qy	1081	CAGATTAACGTTGCTTAGTTACCACCAAGTACTTCTCAAAGCTGGTGTGGAAGGAAAA	1140
Db	1103	CAGATTAACGTTGCTTAGTTACCACCAAGTACTTCTCAAAGCTGGTGTGGAAGGAAAA	1162
Qy	1141	GAAGCTCAAGTAACACTTTAACCCAGTTACCAAAACTCAGATTAGAAGACTAAGGTGCT	1200
Db	1163	GAAGCTCAAGTAACACTTTAACCCAGTTACCAAAACTCAGATTAGAAGACTAAGGTGCT	1222
Qy	1201	GTGTGGTGTCTGAGTATTAGCACTGTAATAAAACTATCACGTGAAAAAAAAAAAAAAA	1260
Db	1223	GTGTGGTGTCTGAGTATTAGCACTGTAATAAAACTATCACGTGAAAAAAAAAAAAAAA	1282