Analýza vazby mezi teplotou vzduchu ve standardní výšce a v hladině bylinného patra v závislosti na meteorologických podmínkách

Vojtěch Klimeš

Univerzita Karlova

Obhajoba bakalářské práce

(MFF UK) 5.9.2023 1

Obsah

1 Úvod

Problematika Klima nízko nad zemí Analýza faktorů ovlivňující teplotu vzduchu v lesním porostu Použitá data

2 Metody a výsledky
Metody

Metody Výsledky a diskuze

(MFF UK) 5.9.2023

Problematika

- Teplota a jiné meteorologické podmínky jsou typicky měřeny standardizovanými meteorologickými stanicemi.
- Teploty ve 2 m nereflektují podmínky, v kterých žije většina organismů
- Lesní mikroklima je velmi odlišné od klimatu v okolí meteorologické stanice.

(MFF UK) 5.9.2023 3/28

Problematika

Cílem této práce je analyzovat rozdíl mezi teplotami naměřenými v lesním porostu ve výšce $2\,\mathrm{m}$ nad zemí a v $15\,\mathrm{cm}$, resp. $0\,\mathrm{cm}$ nad zemí.

(MFF UK)

Klima nízko nad zemí

Figure: Schéma ukazující rozdíl mezi tokem tepla v noci a přes den

(MFF UK) 5.9.2023 5/28

Klima nízko nad zemí

- Teplota dosahuje maxima 1 až 2 hodiny po maximální insolaci, minima v brzkých ranních hodinách.
- Teplotní gradienty v blízkosti vyhřátého povrchu můžou dosahovat vysokých hodnot (K/mm).

(MFF UK) 5.9.2023 6/28

Topografie a struktura krajiny

Topografie ovlivňuje teploty v lesním porostu

- Okraj lesa
- Sklon svahu
- Nadmořská výška
- Údolí/hřeben

(MFF UK) 5.9.2023

Vegetace

Vegetační faktory ovlivňující teploty v lesním porostu

- Zápoj (otevřenost porostu)
- Plocha koruny stromů
- Procento plochy pokryté dřevinami
- Typ dřeviny

(MFF UK)

Meteorologické podmínky

Vybrané sledované meteorologické podmínky

- Výška sněhu
- Oblačnost
- Půdní vlhkost
- Srážky
- Rychlost větru
- Insolace

(MFF UK)

Použitá data

Stanice: Kvilda, Horská Kvilda, Churáňov, Borová Lada, Javoří Pila

Celkově 157 čidel

Maximální časový interval: 12.10.2019 - 19.5.2021

Rozložení čidel v lesním porostu

(MFF UK) 5.9.2023 11/28

- Použijeme lineární modely se smíšenými efekty
 - Náhodný efekt: identita čidla
 - Fixní efekt: výška sněhu, oblačnost, vlhkost, srážky, rychlost větru, insolace
 - Autokorelace se zbavýme pomocí ARMA modelu
- Celkově spočteme 32 modelů
 - Maximální/minimální teploty
 - 0 cm/15 cm
 - Celé období/teplé období/studené období
 - Sníh jako kategorická proměnná
 - $\Delta T_1 = T_{\mathsf{zem}} T_{\mathsf{2}m}$ nebo $\Delta T_2 = |T_{\mathsf{zem}} T_{\mathsf{2}m}|$

(MFF UK) 5.9.2023 12/28

Ukázka výsledných modelů

Model	Max15all	Max15warm	Max15cold	Max15allc	Max15coldc
R_m^2 R_c^2	0.031 0.20	0.098 0.51	0.066 0.19	0.032 0.20	0.067 0.19
Konstanta	0.42(6)	-0.55(7)	0.96(7)	0.43(6)	0.99(7)
Výška sněhu	0.0045(7)	-	0.0031(7)	0.040(9)	0.005(9)
Oblačnost	-0.041(8)	-0.16(1)	0.03(1)	-0.040(8)	0.03(1)
Vlhkost	-0.6(1)	2.2(1)	-2.4(2)	-0.6(1)	-2.4(2)
Srážky	0.002(2)	-0.04(1)	0.003(2)	0.002(2)	0.003(2)
Rychlost větru	-0.0072(4)	-0.0034(7)	-0.0098(6)	-0.0072(4)	-0.0098(6)
Insolace	0.00042(1)	0.00065(1)	0.00029(2)	0.00042(1)	0.00028(2)

(MFF UK) 5.9.2023 13/28

Hlavní závěry

- Výška sněhu má kladný vliv na rozdíl teplot
- Oblačnost a rychlost větru má záporný vliv
- Insolace má slabý kladný vliv, množství srážek je nejméně průkazný prediktor
- Půdní vlhkost má složitější vztah s rozdílem teplot

Hlavní body diskuze

- Velká nevysvětlená variabilita
- Vzdálenost mezi čidly a stanicemi
- Zanedbání různé topografie a vegetace
- Krátké zpracovávané období

5.9.2023

14/28

(MFF UK)

Konec prezentace

1. otázka oponenta

Statistická významnost regresních koeficientů (tabulky 3.1 až 3.8) je podle textu odhadována na základě F-testu; F-test zavedený v kapitole 1.5.3 je nicméně určen pro test nulové hypotézy předpokládající nulovost všech koeficientů. Jak byla stanovena významnost pro individuální prediktory?

F-test může sloužit k testování statistické významnosti koeficientů lineárního (smíšeného) modelu. Máme-li nulovou hypotézu, že všechny koeficienty modelu $\beta_i=0\ \forall\ i$. Dále máme-li alternativní hypotézu $\exists\ j,\beta_j\neq 0$. Spočteme F statistiku jako podíl vysvětlené a nevysvětlené variance. Následně spočteme pomocí statistického softwaru konfidenční interval I, jako $(1-\alpha)\cdot 100\ \%$, kde $\alpha=0.05$. Zavrhneme nulovou hypotézu, pokud $F\notin I$ a určíme p-hodnotu. V programovacím jazyce $\mathbb R$ můžeme použít například funkci anova.

(MFF UK) 5.9.2023 17/28

Použili jsme ANOVU typu I.

 $SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$, $SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$, y_i je pozorovaná hodnota, \hat{y}_i je predikovaná hodnota, \bar{y} je průměr pozorovaných hodnot.

 $F_{
m sníh} = SSR(
m sníh)/(SSE/(n-p)),$ $F_{
m oblačnost,sníh} = (SSR(
m oblačnost|
m sníh) - SSR(
m sníh))/(SSE/(n-p)) \dots$ V tabulce F hodnot najdeme pro stupně volnosti odpovídající hodnotu. Stanovíme lpha = 0.05.~
m qf ()

Určíme p-hodnotu pomocí statistického softwaru pf ().

(MFF UK) 5.9.2023 18/28

```
data(iris)
model1 <- Im(Sepal.Length ~ Sepal.Width, data = iris)
model2 <- Im(Sepal.Length ~ Sepal.Width + Petal.Length, data = iris)
model3 <- Im(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width, data = iris)

SSE <- sum(model3$residuals^2)
SSR1 <- sum((predict(model1) - mean(iris$Sepal.Length))^2)
SSR2 <- sum((predict(model2) - mean(iris$Sepal.Length))^2)
SSR3 <- sum((predict(model3) - mean(iris$Sepal.Length))^2)
F1 <- (SSR1 / 1) / (SSE / (nrow(iris) - 4))
F2 <- ((SSR2 - SSR1) / 1) / (SSE / (nrow(iris) - 4))
F3 <- ((SSR3 - SSR2) / 1) / (SSE / (nrow(iris) - 4))
print(c(F1,F2,F3))
anova(model3)</pre>
```

(MFF UK) 5.9.2023 19/28

2. otázka oponenta

Jaká metoda byla použita pro kalibraci modelů? (a konkrétně, bylo by možné volbou odlišné techniky neúspěšnou kalibraci jedné z modelových konfigurací, zmiňovanou na straně 42?)

Použili jsme funkce lme balíčku nlme.

Optimalizační metoda BFGS je quasi Newtonova metoda o výpočetní složitosti $O(n^2)$.

Funkce maximalizuje "restricted maximum likelihood" - REML. Rozdílné oproti "maximum likelihood" - ML. Využívá "likelihood function".

S použitím nastavení method = "ML" výpočet konvergoval k řešení.

Model	AMax0all	AMax0warm	AMax0cold (ML)
R_m^2	0.069	0.10	0.085
R_c^2	0.19	0.33	0.15
Konstanta	1.10(2)	1.32(3)	0.92(3)
Výška sněhu	0.0052(3)	-	0.0052(3)
Oblačnost	-0.247(7)	-0.300(6)	-0.209(5)
Vlhkost	0.31(5)	-0.46(6)	0.78(6)
Srážky	-0.020(5)	-0.029(6)	-0.003(7)
Rychlost větru	-0.0012(2)	-0.0011(4)	-0.0023(3)
Insolace	0.000129(5)	0.000 236(7)	0.000078(7)

3. otázka oponenta

V rešeršní části práce je diskutován vliv charakteru vegetace a specifik terénu, tyto nicméně nejsou přímo použity v rámci datové analýzy, pouze zmíněny v kap. 3.1.7. Jaký je autorův názor na možnost jejich kvantitativního zahrnutí do aplikovaného regresního modelu?

2 možnosti

- Rozdělení čidla do kategorií podle charakteru vegetace a specifik terénu.
- Přidat terén a vegetaci jako fixní efekty modelu.

(MFF UK) 5.9.2023 23/28

```
library (nlme)
# data_generation
logger <- 1:150
time <- 1:600
aux <- rnorm(length(time), 0, 3)
x1 <- rnorm(length(time) * length(logger), rep(aux, length(logger)), 2)
x2 <- rnorm(length(time) * length(logger), rep(sample(aux), length(logger)), 2)
x3 <- rep(rnorm(length(time), 0, 2), length(logger))
11 <- rep(rnorm(length(logger), 0, 2), each = length(time))</pre>
resp < -room(length(time) * length(logger), -2 + 2 * x1 - 3 * x2 + 1 * x3 + |1)
dat <- data.frame(resp, logger = factor(rep(logger, each = length(time))),</pre>
  time = factor(rep(time, length(logger))), x1, x2, x3, l1)
# analysis
mod < -ime(resp ~ x1 + x2 + x3 + i1), random = ~ 1 | logger, data = dat)
#plot(mod)
summary(mod)
anova (mod)
```

24/28

(MFF UK) 5.9.2023

1. otázka vedoucího

V rešeršní části autor příliš nezmiňuje studie zabývající se mikroklimatem lesa v Česku (případně Československu), a vlastně ani v regionu střední Evropy. Znamená to, že takové studie nejsou k dispozici nebo nebyly relevantní pro tuto práci? Studie zabývající se mikroklimatem jako např. Zellweger et al., 2019; Vanwalleghem a Meentemeyer, 2009; De Frenne et al., 2021; Lindenmayer et al., 2022 se dotýkají lehce jiného tématu než tato práce. Nalezené studie tedy nebyly relevantní pro hlavní část této práce.

(MFF UK) 5.9.2023 26/28

2. otázka vedoucího

V závěru autor konstantuje, že nebral v úvahu rozdílný vliv topografie a vegetace na každé čidlo, což mohlo být příčinou určité části nevysvětlené variability rozdílu teplot. Mohl by uvést, jaké konkrétně by tyto vlivy mohly pozorovanou variabilitu ovlivnit a za jakých meteorologických situací nejvíce?

- Lokální oblast kam stéká studený vzduch (př. Gruenloch v Alpách, $t_{min} = -56$ °C).
- Obecně přítomnost většího množství vegetace a různého typu vegetace způsobuje anomální rozdíl mezi čidly.
- Sklon svahu ovlivňující množství dopadajícího záření.
- Při dešti může typ porostu způsobit rozdíl dopadlých srážek na zem.

(MFF UK) 5.9.2023 28/28