GROUP - 5: PIED PIPERS

Crypto Price Forecasting

Tirth Patel AU1940137, Nipun Patel AU1940033, Neel Shah AU1940055, Vinay Kakkad AU1940012

INTRODUCTION

Cryptocurrencies amounting to billions of dollars are traded every day. These currencies are extremely volatile. So, in order to minimize financial risks while trading them, one needs an approach to quantify these uncertainties and predict their future prices with appreciable accuracy.

PROBLEM STATEMENT

To devise an approach to predict the short term (15 mins) return of crypto currencies using machine learning algorithms so that we can minimize the financial risk which occurs while trading them

GANTT Chart

Existing Body of Work

- Bontempi G: [5]
 - linear statistical models (ARIMA)
 - non-linear autoregressive models
 - decision trees, SVMs
 - ANNs
 - Role of ML in dealing with forecasting problems.
- Velankar S: [3]
 - how crypto assets are different from stocks and sales
- Southern Methodist University: [4]
 - using sentimental analysis of tweets
 - The research showed a high correlation of searches with cryptocurrency prices both when prices rise and when they fall, as are tweet volumes.

Our Approach

Dataset

G-Reserach's dataset providing features like opening price, closing price, timestamp, etc of 14 different crypto currencies

Data Preprocessing

Removing redundant data and handling missing and null values

Data Analysis

Various visualizations to build intutions about data

Feature Engineering

Transforming features(lag feature) to derive more information from the data and removing redundant features

Model Selection

Testing regressive, ARIMA and ensemble algorithms

Parameters Tuning

Tune the hyperparameters of the model to improve accuracy

By plotting the closing price vs time of different currencies, we could observe that in the recent past all the assets follow a very similar trend

By plotting the closincorrelation vs time of different currencies(ethereum is the base asset), we could observe that the correlation is highly volatile

The autocorrelation plot does not show any strong correlation with any of the lagged values, which shows that the data is performing a random walk

- By plotting the closing price at time t against the closing price at time t + k, could observe that those are highly correlated
- It motivated us to take into account the data from past while predicting the current returns

closing price at t vs closing price at t + k

Results

Linear Regression

0.15 0.1 0.05 -0.05 -0.1 Jan 31 Feb 14 Feb 28 Mar 14 Mar 28 Apr 11 Apr 25 May 9

target(returns) vs time plots

ARIMA

target(returns) vs time plots

- For linear regression, we have performed feature engineering with 20 lagged variables
- For the ARIMA model the hyperparameters are:
 - number of lag observations P = 4

Bitcoin Cash

- o number of times data is differenced D = 1
- size of moving average window Q = 2
- We can see that ARIMA is better able to capture the complexity of time series data

Results

Model	Perfomance		
Simple Linear Regression	0.013		
Multioutput Linear Regression	0.0231		
Regression(after feature Engineering)	0.0365		
ARIMA	0.0423		
LGBM	0.0372		

Conclusions

- Classical ML algorithms cannot completely capture the volatility completely
 - The data is performing a random walk
- ARIMA gives us the best score as it takes into past values and past errors
- Adding lagged features significantly improves the performances of Linear Regression

Role of each group member

	EDA	Pre- prcessing	Feature Engineering	Linear Regression	ARIMA	LGBM
Neel			✓			
Nipun		✓		✓	✓	✓
Tirth	✓			✓		✓
Vinay	✓		√	√	√	

References

- [1] J. Fattah, L. Ezzine, Z. Aman, H. Moussami, and A. Lachhab, "Forecasting of demand using arima model," International Journal of Engineering Business Management, vol. 10, p. 184 797 901 880 867, Oct. 2018. DOI: 10.1177/1847979018808673.
- [2] Konradb, Ts-2: Linear vision, Mar. 2022. [Online]. Available: https://www.kaggle.com/code/konradb/ts-2-linear-vision/notebook.
- [3] S. Velankar, S. Valecha, and S. Maji, "Bitcoin price prediction using machine learning," in 2018 20th International Conference on Advanced Communication Technology (ICACT), 2018, pp. 144–147. DOI: 10.23919/ICACT.2018.8323676.
- [4] J. Abraham, D. Higdon, J. Nelson, and J. Ibarra, Cryptocurrency price prediction using tweet volumes and sentiment analysis. [Online]. Available: https://scholar.smu.edu/datasciencereview/vol1/iss3/1.
- [5] G. Bontempi, S. Ben Taieb, και Y.-A. Le Borgne, 'Machine Learning Strategies for Time Series Forecasting', τ. 138, 01 2013.
- [6] G. P. Zhang, "Time series forecasting using a hybrid arima and neural network model," Neurocomputing, vol. 50, pp. 159–175, 2003.