Cell Wall Biosynthesis Inhibitors

- SAR Requirements
 - Fosfomycin
 - 1. PEP mimic
 - 2. Reactive epoxide group

Cycloserine

- 1. D-Ala analogue
- 2. 5- membered ring

- SAR Requirements
 - o Bacitracin
 - Large molecule
 - Contains many peptide bonds

- SAR Requirements
 - Vancomycin
 - Large molecule
 - Contains many peptide bonds
 - Circled atoms form hydrogen bonds with D-Ala-D-Ala

PRACTICE PROBLEM- Mechanism of Action

Which compound below interferes with peptide cross-linking?

- ANSWER: Compound 3 (Vancomycin)
 - Binds directly to the D-Ala-D-Ala terminal to prevent peptide cross-linking

PRACTICE PROBLEM- Mechanism of Action

Which compound below inhibits the conversion of UDP-NAG→ UDP-NAM?

$$H_2N$$
 H_2N
 H_2N
 H_3
 H_4N
 H

- ANSWER: Compound 2 (fosfomycin)
 - Results in irreversible alkylation of the active cysteine on MurA

PRACTICE PROBLEM- Mechanism of Action

Which compound below inhibits Ala racemase & D-Ala ligase?

- ANSWER: Compound 3 (cycloserine)
 - Prevents conversion of L-Ala → D-Ala and the joining of D-Ala & D-Ala

PRACTICE PROBLEM- Mechanism of Action

Which compound below inhibits pyrophosphatase?

- ANSWER: Compound 1 (bacitracin)
 - Inhibits the recycling of bactoprene molecule

- PRACTICE PROBLEM: SAR Clinical Case Study
 - GT is diagnosed with C. difficile. Which oral antibiotic would be best to treat his infection?

- ANSWER: Compound 3 (Vancomycin)
 - Vancomycin is not orally absorbed, so it will stay in the gut to treat the infection in the large intestine

- PRACTICE PROBLEM: SAR Clinical Case Study
 - SM is diagnosed with a UTI infection. Which compound would be best to treat his infection and has few side effects?

$$H_2N$$
 O
 P
 CH_3

- ANSWER: Compound 2 (Fosfomycin)
 - Fosfomycin is indicated for urinary tract infections, and is especially active against E.
 Coli

- PRACTICE PROBLEM: SAR Clinical Case Study
 - GT has a history of psychosis. Which antibiotic below is best avoided in this patient?

OH CH₂CH(CH₃)
OH OH OH CH₂CH(CH₃)
OH OH OH OH OH OH OH OH OH

- ANSWER: Compound 1 (Cycloserine)
 - Cycloserine acts as a partial agonist at the NMDA receptor can result in dose-dependent neurologic and psychiatric disturbances.

- PRACTICE PROBLEM: SAR Clinical Case Study
 - BK has kidney dysfunction. Which 2 antibiotics below have side effects that would be harmful to this patient?

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_3N
 H_4N
 H_5N
 H_5N

- ANSWER: Compound 1 & Compound 2
 - Bacitracin and vancomycin can both result in nephrotoxicity

PRACTICE PROBLEM: SAR Clinical Case Study

AM's bacterial infection is not responding to treatment. The bacteria in her body have become resistant to the antibiotic by producing D-Ala-D-Lac. Which of the antibiotics was she taking?

$$H_2N$$
 H_2N
 H_3N
 H_4N
 H_4N
 H_5N
 H_5N

- ANSWER: Compound 3 (vancomycin)
 - Vancomycin normally binds to D-Ala-D-Ala of the pentapeptide tail, but with this change to D-Ala-D-Lac, it can no longer bind

Beta Lactams

Penicillin SAR Requirements

- B-lactam ring & fused bicyclic system: creates a strained system
- Position 1: must be a nitrogen
- Position 2: must be a carboxylic acid for activity; binds to charged nitrogen of a lysine residue in the binding site
- Position 3: any change will lower activity
- Position 4: sulfur is usual, but not essential
- Position 5: no substitutions allowed; cis stereochemistry with hydrogens at position 5 & 6 is essential
- o R group
 - EWG: increases the acid stability of the compound
 - Bulky group: directly attached to the amide will make the compound more B-lactamase resistant
 - Polar group: broadens the spectrum as this allows the compound to pass through the porins of gram negative bacteria
- Position 7: must be a carbonyl

Cephalosporin SAR Requirements

- B-lactam ring & fused bicyclic system: creates a strained system (but less strain than the penicillins, so less reactive)
- Position 1: must be a nitrogen
- Position 2: must be a carboxylic acid for activity; binds to charged nitrogen of a lysine residue in the binding site
- Position 3: R2 group
 - Non-metabolized group: increases oral activity & acid stability
 - MTT group: extended spectrum, longer-half life, higher potency
 - Pyrimidine ring (positive charge): forms a zwitterion & increases solubility
 - 1,3 thiazole ring: Anti-MRSA activity

Cephalosporin SAR Requirements

- Position 5: sulfur is usual, but not essential
- Position 6: no substitutions allowed;
- Position 7: R3 group- addition of OCH3
 (7-alpha-methoxy) increases B-lactamase
 resistance
- R1 group
 - EWG: increases the acid stability of the compound
 - Bulky group: directly attached to the amide will make the compound more B-lactamase resistant
 - Polar group: broadens the spectrum as this allows the compound to pass through the porins of gram negative bacteria
 - Oxime: increases B-lactamase resistance
- Position 8: must be a carbonyl

- Cephalosporin SAR Requirements
 - Specific requirements for Ceftaroline (5th generation) to be aware of

- Other B-lactam classes:
 - Carbapenems
 - Unsaturated 5-membered ring connected to the B-lactam ring

Imipenem

Monobactams

Only a single B-lactam ring

Aztreonam

B-lactamase Inhibitors

Tazobactam

Avibactam

- PRACTICE PROBLEM: Choose the Correct Answer
 - Which addition to amide side chain (R) broadens the spectrum of penicillins?
 - Bulky group
 - Heterocyclic ring
 - Polar group
 - **■** Electron withdrawing group

ANSWER: Polar group

- PRACTICE PROBLEM: Choose the Correct Answer
 - O Which addition to amide side chain (R) makes penicillins more acid stable?
 - Bulky group
 - Heterocyclic ring
 - Polar group
 - Electron withdrawing group

ANSWER: Electron withdrawing group

- PRACTICE PROBLEM: Choose the Correct Answer
 - Which addition to amide side chain (R) makes penicillins less susceptible to B-lactamases?
 - Bulky group
 - Heterocyclic ring
 - Polar group
 - **■** Electron withdrawing group

ANSWER: Bulky group

- PRACTICE PROBLEM: Activity change
 - Will the following change increase or decrease activity?

- ANSWER: Decrease
 - Sulfate group essential for activity

- PRACTICE PROBLEM: Activity change
 - Will the following change increase or decrease activity?

- ANSWER: Decrease
 - Carboxylic acid essential for activity

- PRACTICE PROBLEM: Choose the correct compound
 - Which compound(s) are acid stable and can be taken orally?

- ANSWER: Compound 1 (cefactor) & compound 2 (cefdinir)
 - Both compounds contain non-metabolizable groups at position 3

- PRACTICE PROBLEM: Choose the correct compound
 - Which compound has increased B-lactamase resistance?

- ANSWER: Compound 1 (cefepime)
 - Contains oxime group as R1

- PRACTICE PROBLEM: Choose the correct compound
 - Which compound has increased B-lactamase resistance?

- ANSWER: Compound 3 (cefotetan)
 - Contains 7-alpha-methoxy group

- PRACTICE PROBLEM: Compare Compounds
 - O Which compound is most active against staph?

- ANSWER: compound 2 (methicillin)
 - Contains bulky R group directly attached to amide

- PRACTICE PROBLEM: Compare Compounds
 - Which compound is the most orally active?

- ANSWER: Compound 1 (amoxicillin)
 - Contains polar R group

- PRACTICE PROBLEM: Compare Compounds
 - Which compound is associated with Disulfiram reaction?

- ANSWER: Compound 2 (cefmandole)
 - R2- contains MTT ring

- PRACTICE PROBLEM: Compare Compounds
 - Which compound is NOT used with B-lactamase inhibitors?

$$HO \longrightarrow HC \longrightarrow CHN$$
 CH_3 CH_3 CH_3 CH_3 $COOH$ $COOH$ $COOH$ $COOH$

- ANSWER: Compound 3 (naficillin)
 - Contains bulky R group

- PRACTICE PROBLEM: Compare Compounds
 - Which compound shows the least amount of antimicrobial activity?

- ANSWER: Compound 2 (clavulanic acid)
 - B-lactamase inhibitor; no antimicrobial activity

- PRACTICE PROBLEM: Compare Compounds
 - Which compound must be used in combination with cilastin?

- ANSWER: Compound 2 (imipenem)
 - Imipenem is hydrolyzed by dehydropeptidase in the kidney to a nephrotoxic metabolite
 - Cilastin inhibits dehydropeptisdase

- PRACTICE PROBLEM: SAR Clinical Case Study
 - Of M is experienced a life-threatening reaction from amoxicillin, which antibiotic is safe to use in him?

- ANSWER: Compound 3 (aztreonam)
 - No cross-allergic reactions with other B-lactams

- PRACTICE PROBLEM: SAR Clinical Case Study
 - RJ has a pseudomonal infection, which antibiotic do you recommend?

- ANSWER: compound 1 (ceftriaxone)
 - Contains heterocyclic ring, which broadens spectrum and increases anti-pseudomonal activity