Math 521 Homework 4

Due on Tuesday, April 17, 2018

Kristin Holmbeck

Contents

Theo																										2
1.												 														2
2.												 														2
3.												 														2
Comj 1.	out	tir	ıg 				•		·			 	•			 				٠					٠	3
Code Gr		ı-S	ch	m	idt							 				 										4

List of Figures

Theory

1.

Consider the two eigenvector problems

$$C_x \boldsymbol{u} = \lambda_x \boldsymbol{u}$$

and

$$C_{s}v = \lambda_{s}v$$

where the matrices are related by $C_x = C_x + \alpha I$, where α is a real number and I is the usual identity matrix. Show that if u is an eigenvector of C_x , then it is also an eigenvector of C_s associated with eigenvalue $\lambda_s = \lambda_x - \alpha$.

$$C_x \boldsymbol{u} = \lambda_x \boldsymbol{u} = C_s \boldsymbol{u} + \alpha I \boldsymbol{u}$$
 $C_s \boldsymbol{u} = \lambda_x \boldsymbol{u} - \alpha I \boldsymbol{u}$
 $C_s \boldsymbol{u} = (\lambda_x - \alpha) \boldsymbol{u}$
but $C_s \boldsymbol{v} = \lambda_s \boldsymbol{v}$
 $\Longrightarrow \lambda_s = \lambda_x - \alpha$ is an eigenvalue with associated eigenvector \boldsymbol{u}

2.

Let $A \in \mathbb{R}^{m \times n}$. Show that the matrix M defined as

$$M = \alpha^2 I + AA^T, \quad \alpha \neq 0 \in \mathbb{R}$$

is nonsingular, where $I = I_m$ and α is a nonzero real number.

For the trivial case, suppose $A = 0_{m \times n}$. Then $M = \alpha^2 I$ which is clearly nonsingular since $\alpha \neq 0$.

3.

Show that the between-class scatter matrix, S_B , in the multi-class Fisher Discriminant Analysis is given by

$$S_B = \sum_{i=1}^M n_i (\boldsymbol{m}_i - \boldsymbol{m}) (\boldsymbol{m}_i - \boldsymbol{m})^T,$$

where M is the total number of distinct classes, n_i is the number of data points in class i, m_i is the class mean of the ith class, and m is the mean across all n data points. You may use the facts that

$$S_T = S_B + S_W$$
, $S_W = \sum_{i=1}^{M} \sum_{x \in D_i} (x - m_i)(x - m_i)^T$, and $S_T = \sum_{i=1}^{n} (x_i - m)(x_i - m)^T$

Computing

1.

This project concerns the application of the KL procedure for incomplete data [3]. Let the complete data set be translation-invariant:

$$f(x_m, t_\mu) = \frac{1}{N} \sum_{k=1}^{N} \frac{1}{k} \sin[k(x_m - t_\mu)],$$

where $m=1,\ldots,M$, with M dimension of the ambient space (size of the spatial grid), and $\mu=1,\ldots,P$, with P the number of points in the ensemble.

Let
$$x_m = \frac{2\pi(m-1)}{M}$$
 and $t_{\mu} = \frac{2\pi(\mu-1)}{P}$.

Select an ensemble of masks $\{\boldsymbol{m}^{(\mu)}\}\$, $\mu=1,\ldots,P$. where 10% of the indices are selected to be zero for each mask. Each pattern in the incomplete ensemble may be written as

$$\tilde{\boldsymbol{x}}^{(\mu)} = \boldsymbol{m}^{(\mu)}.\boldsymbol{f}^{(\mu)},$$

where
$$(f^{(\mu)})_m = \frac{1}{N} \sum_{k=1}^{N} \frac{1}{k} \sin[k(x_m - t_\mu)]$$
. Let $P = M = 64$ and $N = 3$.

- a. Compute the eigenvectors of this ensemble using the gappy algorithm [3].
- b. Plot the eigenvalues as a function of the iteration, and continue until they converge.
- c. Plot your final eigenfunctions corresponding to the 10 largest eigenvalues.
- d. Plot the element $\tilde{x}^{(1)}$ and the vector \tilde{x}_D repaired according to Equation

$$\tilde{\boldsymbol{x}} \approx \tilde{\boldsymbol{x}}_D = \sum_{n=1}^D \tilde{a}_n \phi^{(n)}. \tag{1}$$

Determine the value of D that provides the best approximation to the original non-gappy pattern vector.

Kristin Holmbeck Math 521 : Homework 4

Code

Gram-Schmidt

References

- [1] Chang, Jen-Mei. Matrix Methods for Geometric Data Analysis and Recognition. 2014.
- [2] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman, "Eigenfaces vs. Fisherfaces: recognition using class specific linear projection," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 19, no. 7, pp. 711-720, Jul 1997.
- [3] R. Everson and L. Sirovich. The karhunen-loeve transform for incomplete data. J. Opt. Soc. Am., A, 12(8):16571664, 1995.