InterSem-INF114 Cryptographie

Sébastien Canard Année 2023-2024

Définitions de base de la cryptologie

- La cryptographie est un ensemble de techniques applicables à l'échange et au traitement de l'information, permettant de garantir la sécurité des services
- Depuis les années 1970: discipline scientifique principalement basée sur les mathématiques (problèmes difficiles, analyse) et l'informatique (complexité, implémentation)

Services de sécurité

Service de sécurité	Outil cryptographique
 Confidentialité Pas de divulgation d'information non autorisée Seules les entités autorisées peuvent observer une information donnée 	Chiffrement à clé secrète/publique
 Intégrité Pas de modification d'information non autorisée Seules les entités autorisées peuvent modifiée une information donnée 	Signature, fonction de hachage, <i>MAC</i>
 Non-répudiation Une entité ne doit pas, après coup, dénier des actions ou engagements antérieur 	Signature
 Authentification Processus pour vérifier l'identité d'une entité ⇒ authentification de personne Processus pour vérifier la provenance d'une information donnée 	Signature, MAC

Voici Alice et Bob... Et Charlie

- Communication de beaucoup de données
- Confidentialité, authenticité, intégrité des données
- Non répudiation

Charlie

- Peut écouter tous les échanges
- Peut modifier les éléments échangés
- Peut utiliser tout ce qu'il a écouté et fait pour mener une attaque

Quelques contextes

- Écoute illicite
- Récupération de données (client et/ou serveur)

Charlie

Faux accès

Charlie

1. Commençons par la confidentialité

Méthode de permutation – Exemple de la Syctale

Principe: mélanger/permuter les lettres/mots d'un texte

- Principe de la Scytale (bâton de Plutarque)
 - Utilisé par les Spartiates (404 av. J.-C.)
 - Il faut pouvoir avoir un moyen facile d'exécuter la permutation inverse, sans qu'un ennemi ne puisse le faire facilement

Méthode de substitution

Principe: remplacer/substituer une lettre/mot par autre chose

- En utilisant un autre alphabet
 - Exemple des « Hommes dansants » (Sir Arthur Conan Doyle) avec Sherlock Holmes

• Problématique : comment rapidement appliquer la substitution inverse sans donner de moyen facile pour l'ennemi de retrouver le texte initial

Système de César

- Utilisé au 1^{er} siècle (par Jules César ?)
- Principe : simplifier la mémorisation de la substitution
 - Rotation de l'alphabet d'une certaine valeur (10 \Rightarrow A = K)
 - Remplacer chaque lettre par la valeur correspondante
 - Déchiffrement : lire la roue dans l'autre sens

Exemple de texte clair

C E M E S S A G E E S T C H I F F R E A V E C L E S Y S T E M E D E C E S A R

• Et du texte chiffré correspondant

MOWOCCKQOOCDMRSPPBOKFOMVOCICDOWONOCKB

TD - Cryptanalyse de César

- Nombre de possibilités assez faible : 26
 - Tester toutes les combinaisons possible...
- Meilleure méthode formalisée par Al-Kindi au IXème siècle
- Exemple :

D	S	U	J	Q	Н	L	G	D	G	Υ	Α	W	W	K	L	D	S	K	U	Α	W	F	U	W	V
M	K	W	U	J	W	L	W	D	D	W	W	F	Υ	D	G	Т	W	D	S	U	J	Q	Н	L	G
Υ	J	S	Н	Z	Α	W	D	W	U	J	Α	L	M	J	W	K	W	U	J	W	L	W	W	L	D
S	U	J	Q	Н	L	S	F	S	D	Q	K	W	D	S	F	S	D	Q	K	W	V	W	U	W	L
L	W	V	W	J	F	Α	W	J	W																

TD - Cryptanalyse de César

L	Α	С	R	Υ	Р	Т	0	L	0	G	I	Е	Е	S	Т	L	Α	S	С	1	Е	N	С	E	D
U	S	Е	С	R	Е	Т	Е	L	L	Е	Е	N	G	L	0	В	Е	L	Α	С	R	Υ	Р	Т	0
G	R	Α	Р	Н	1	Е	L	Е	С	R	1	Т	U	R	Е	S	Е	С	R	Е	Т	Е	Е	Т	L
Α	С	R	Υ	Р	Т	Α	N	Α	L	Υ	S	Е	L	Α	N	Α	L	Υ	S	Е	D	Е	С	Е	Т
Т	Е	D	Е	R	N	I	Е	R	Е																

Système de Vigenère

- Proposé au XVIème siècle par Blaise de Vigenère
- Principe : utiliser successivement plusieurs systèmes de César (plusieurs substitutions) avec des décalages différents
- Exemple avec la clé KEY \Rightarrow A = K, A = E, A = Y, A = K, A = E, A = Y, ...
- Exemple de texte clair

C E M E S S A G E E S T C H I F F R E A V E C L E S Y S T E M E D E C E S A R

• Et du chiffré correspondant

MIKOWQKKCOWRMLGPJPOETOGJOWWCXCWIBOGCCEP

TD – Cryptanalyse de Vigenère

Texte chiffré avec Vigenère :

X	Z	M	Ε	Т	Υ	Р	Р	F	G	W	Р	G	N	M	V	L	X
K	Z	R	U	F	V	N	Р	X	J	Р	Q	G	0		U	D	G
K	Р	R	Ε	P	W	S	F	M	U	P	V	C	Т	X	C	D	W
G	K	X	G	X		Т	L	M	Т	P	Т	Q	F	V	C	Q	J
K	C	Q	G	C	U	W	P	R	Q	F	W	Ε	Z	R	P	L	Т
U	D	S	Р	D		V	Α		Т	N		X	Z	R	U	Ε	S
W	Ε		U	W		U	Q	S	Т	N		U	Ε	S	W	Ε	
U	W		U	Z	R	F	P	W	G	Ε	X	Q	F	W	N	P	W
0	Z	C	G	Υ	W	F	P	G	Q	X	Q	W	Υ	M	Е	L	X
K	Z	R	U	S	Υ	D	P	V	V	С		G	G		U	L	W
V	C	S	R	S	C	U	Т	G	K	Р	R						

Réponse TD – Cryptanalyse de Vigenère

- Cryptanalyse indépendamment proposée par Babbage (1854) et Kasiki (1863)
- Une même lettre est toujours chiffrée de la même façon sur chaque substitution
- 1. Trouver le nombre de substitutions utilisées
 - Chercher des répétitions de séquences (par exemple de 3 lettres), en faisant le pari qu'elle correspond à un même texte clair chiffré avec la même clé
 - Regarder la distance entre ces répétitions en faisant le pari que c'est un multiple du nombre de substitutions
 - Prendre le diviseur commun et avec une bonne probabilité, c'est le nombre de substitutions

2. Utiliser la cryptanalyse de César

 En faire autant qu'il y a de substitutions, en utilisant le résultat de l'étape précédente

Réponse TD – Cryptanalyse de Vigenère

X	Z	M	E	Т	Υ	Р	Р	F	G	W	Р	G	N	M	V	L	X
K	Z	R	U	F	V	N	Р	X	J	Р	Q	G	0	I	U	D	G
K	P	R	Ε	Р	W	S	F	M	U	Р	V	С	Т	X	С	D	W
G	K	X	G	X	I	Т	L	M	Т	Р	Т	Q	F	V	С	Q	J
K	С	Q	G	С	U	W	Р	R	Q	F	W	Ε	Z	R	Р	L	Т
U	D	S	P	D	1	V	Α	1	Т	N	1	X	Z	R	U	Е	S
W	Е	1	U	W	I	U	Q	S	Т	N	1	U	Е	S	W	Е	1
U	W	I	U	Z	R	F	Р	W	G	Е	X	Q	F	W	N	Р	W
0	Z	С	G	Υ	W	F	Р	G	Q	X	Q	W	Υ	M	Ε	L	X
K	Z	R	U	S	Υ	D	Р	V	V	С	I	G	G	I	U	L	W
V	С	S	R	S	С	U	Т	G	K	P	R						

Séquence	Position	Distance	Décomposition
EIU	110-125	15	5.3
TNI	100-118	18	3 .3.2
GKP	36-189	153	17. <mark>3</mark> .3
UES	106-121	15	5.3
KZR	19-163	144	3.3.2.2.2.2
QFW	82-139	144	19. <mark>3</mark>

- PGCD = 3
- Taille probable de la clé : 3
- Cryptanalyse fréquentielle possible sur les 3 tranches

Système de Vernam

- Proposé en 1917 par Gilbert Vernam
- Même principe que Vigenère, dans lequel le nombre de substitutions est la longueur du message
- Ce n'est cependant pas suffisant!
 - Il faut que chaque substitution soit parfaitement aléatoire
 - Il faut que chaque ensemble de substitutions ne soit utilisé qu'une seule fois

Notion de masque jetable : One-Time Pad OTP

Système de Vernam

\oplus	0	1
0	0	1
1	1	0

- En binaire, utilisation de l'opération de « ou exclusif » : ⊕
- Soit M un message à chiffrer et soit K un élément de la taille de M (appelée la clé)
- Le chiffré est alors $C = M \oplus K$
- Pour retrouver M connaissant C et K, il suffit de calculer $M = C \oplus K (= M \oplus K \oplus K = M)$

Sécurité inconditionnelle du OTP

- Formulée et prouvée par Claude Shannon en 1949
- Notion de sécurité inconditionnelle
 - La connaissance du chiffré ne fournit aucune information sur le clair
 - $Pr[M = m_0 | C = c_0] = Pr[M = m_0]$ pour tout message m_0 et tout chiffré c_0
- Utilisations réelles... (?)
 - Espions russes pendant la guerre froide avec des carnets rouges pas très aléatoires
 - Téléphone rouge entre Américains et Russes pendant la guerre froide

19ème et début 20ème – Systèmes composés

- Utilisation majeure de systèmes composés
- Objectif : augmenter la difficulté de la cryptanalyse en utilisant plusieurs opérations secrètes de chiffrement en série
- Exemples: double substitution, double transposition, substitution suivie par une transposition, etc.
- Démarrage aussi de l'âge technique
 - Objectif: les systèmes devenant plus complexes, il faut simplifier l'utilisation pour les humains
 - Exemple de la machine Enigma utilisée par les nazis

Concept de cryptographie à clé secrète

- Transformation d'un message en clair M en un message chiffré C en utilisant une clé secrète K
- La fonction de chiffrement doit être inversible
- La même clé est utilisée pour chiffrer et pour déchiffrer

C'est le concept de cryptographie à clé secrète (ou cryptographie symétrique)

Principes fondamentaux de la cryptographie à clé secrète moderne

- Proposés par Claude Shannon, et largement utilisés aujourd'hui
- La confusion vise à cacher n'importe quelle structure algébrique dans le système
 - Assurée par une substitution non-linéaire (on parle souvent de boîte-S)
 - Il doit s'agir de la seule étape non-linéaire, afin de gagner en efficacité
- La diffusion permet à chaque bit du message d'influer une grande partie du texte chiffré
 - La modification d'un bit en entrée modifie de nombreux bits en sortie
 - Assurée par une permutation linéaire

Toujours utilisé aujourd'hui dans le design de systèmes cryptographiques

Construction générique

Construction: combiner substitutions et permutations sur plusieurs tours

- 1. OTP avec une clé dépendante du tour : $M \oplus K_i$
- 2. Découper le résultat de n bits en plusieurs sous-chaînes de longueur l et exécuter la substitution non-linéaire π_S : $\{0,1\}^l \to \{0,1\}^l$
- 3. Recoller les sous-chaînes et appliquer la permutation π_P : $\{1, \dots, n\} \rightarrow \{1, n\}$
- 4. Recommencer avec le message résultant, et une nouvelle clé de tour

Déchiffrement : opérations inverses, en utilisant les mêmes clés de tour

Illustration avec l'algorithme AES

Quelques détails sur AES

État AES:

$a_{0,0}$	$a_{0,1}$	$a_{0,2}$	$a_{0,3}$
$a_{1,0}$	$a_{1,1}$	$a_{1,2}$	$a_{1,3}$
$a_{2,0}$	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$
$a_{3,0}$	$a_{3,1}$	$a_{3,2}$	$a_{3,3}$

Fonction ByteSub

- Fonction non-linéaire fixe de 8 bits vers 8 bits
 - Exécutée sur chaque octet de l'état, avec la même fonction
- Basée sur une opération algébrique dans $GF(2^8) = \mathbb{Z}_2[X]/P$ avec $P(X) = X^8 + X^4 + X^3 + X + 1$
 - Chaque octet va être représenté par un élément de $GF(2^8)$ (réduits modulo P, de degré < 8)
 - Exemple : $a = 01010100 \rightarrow X^6 + X^4 + X^2$ (Attention : les coefficients sont dans $\mathbb{Z}_2 = \{0,1\}$!)
- Construction de ByteSub
 - Calculer l'inverse de l'octet a dans $GF(2^8) = F_2[X]/P$
 - Calculer l'image du résultat précédent par la fonction $G: GF(2^8) \to GF(2^8)$ telle que

$$G(X) = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \cdot X + \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \text{où } X = \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

Utilisation d'une table de correspondance

poids faible

• En pratique, il est souvent plus simple d'utiliser une table de correspondance pour la fonction *ByteSub*

poids for

	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	CO
2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	СЗ	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	A3	40	8F	92	9D	38	F5	ВС	B6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
Α	E0	32	3A	OA	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
С	ВА	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3 ^E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	В0	54	BB	16

Fonction ShiftRow

- Cette transformation effectue un décalage cyclique des lignes de l'état selon différents offsets
 - La ligne 0 n'est pas décalée
 - La ligne 1 est décalée de 1 octets
 - La ligne 2 est décalée de 2 octets
 - La ligne 3 est décalée de 3 octets
- Il s'agit d'une simple permutation \Rightarrow diffusion au niveau des octets

$a_{0,0}$	$a_{0,1}$	$a_{0,2}$	$a_{0,3}$
$a_{1,0}$	$a_{1,1}$	$a_{1,2}$	$a_{1,3}$
$a_{2,0}$	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$
$a_{3,0}$	$a_{3,1}$	$a_{3,2}$	$a_{3,3}$

$a_{0,0}$	$a_{0,1}$	$a_{0,2}$	$a_{0,3}$
$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,0}$
$a_{2,2}$	$a_{2,3}$	$a_{2,0}$	$a_{2,1}$
$a_{3,3}$	$a_{3,0}$	$a_{3,1}$	$a_{3,2}$

Fonction MixColumn

• Cette transformation consiste à prendre chaque colonne de l'état et à exécuter la fonction $H: (GF(2^8))^4 \rightarrow (GF(2^8))^4$ telle que

$$H(X) = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 00 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot X$$

- Nous devons à nouveau utiliser la multiplication dans $GF(2^8)$ avec $P(X) = X^8 + X^4 + X^3 + X + 1$
- Cette étape est linéaire et participe aussi à la diffusion (cette fois-ci des bits)

AddRoundKey et calcul de la clé étendue

- La fonction AddRoundKey sur chaque octet de l'état : $\forall (i,j), a_{i,j} = a_{i,j} \oplus k_{i,j}$
- Exemple de calcul de la clé étendue : $K \to \{K_i\}$

AddRoundKey et calcul de la clé étendue

- La fonction AddRoundKey sur chaque octet de l'état : $\forall (i,j), a_{i,j} = a_{i,j} \oplus k_{i,j}$
- Exemple de calcul de la clé étendue : $K \rightarrow \{K_i\}$

Que nous dit la théorie sur sa sécurité...

- L'outil idéal pour protéger une information ⇒ Confidentialité des données
- Mais difficile à prouver formellement...

Sécurité par l'absence d'attaque

• Un algorithme secret permet-il moins d'attaques...?

Notion de clé – Principes de Kerckhoffs

- Sortir de la cryptographie par l'obscurité : principes de Kerckhoffs
- Enoncé de six desiderata de la « cryptographie militaire » en 1883 !
 - Trois portent sur la facilité d'usage, un sur l'algorithme de chiffrement
 - Deux portent sur la notion de clé
 « La sécurité d'un système ne doit pas
 être fondée sur son caractère secret »
- « Seule une donnée de petite taille (clé) doit assurer la sécurité »

On préfère un système dont l'algorithme est publié qu'un système dont l'algorithme est secret

- La sécurité de la clé devient essentielle
 - Ne pas utiliser la clé trop longtemps, mais elle est moins coûteuse à changer

Sécurité par l'absence d'attaque

Objectifs

- Un algorithme secret permet-il moins d'attaques...? NON
- Attaques ciblées contre un algorithme particulier
- Attaques génériques (ne dépendent pas de l'algorithme)
 - Principes de Kerckhoffs ⇒ attaque par force brute
- Techniques d'attaques classiques : différentielle, linéaire

Moyens

- Obtenir des couples (entrée, sortie) pour une même clé
- Plus il a de couples, plus fort il sera

Attaque par force brute

- Objectif: tester toutes les clés jusqu'à tomber sur la bonne
 - Hypothèse : je connais un couple (M,C) et je cherche K tel que C=ENC(K,M)
- Exemple avec AES
 - Un ordinateur Intel Core 2 Extreme QX9770, 3.2 GHz effectue 60000 MIPS
 - Une exécution d' AES nécessite environ 1200 instructions élémentaires
 - Pour tester une clé, il faut $\frac{1200}{6\cdot10^{10}} \approx 20 \cdot 10^{-9} = 20 \text{ ns}$
 - Pour tester les 2^{128} clés, il faut $20 \cdot 10^{-9} \cdot 2^{128} \approx 2^{102}$ sec $\approx 10^{23}$ années!
- On estime aujourd'hui que l'on peut effectuer 2⁸⁰ opérations, mais pas 2¹²⁸

Technique de cryptanalyse contre AES

AES est-il l'algorithme magique ?

- AES est né d'une compétition organisée par le NIST à la fin des années 90
- Standards de l'algorithme : FIPS PUB 197, ISO/IEC 18033-3
- Aucune attaque pertinente n'existe aujourd'hui sur cet algorithme

Mais est-il suffisant pour Alice et Bob ?

2. Comment traiter des messages plus gros, et faire plus que la confidentialité ?

Chiffrement par blocs et agencement

- Les systèmes par blocs permettent de traiter des petits blocs
- L'agencement des blocs va permettre des tailles quelconques de messages, et d'assurer
 - La confidentialité: c'est la propriété de base des systèmes par blocs, mais l'agencement des blocs va permettre des approches plus sûres
 - L'authenticité : est-ce que le message provient bien de son détenteur ?
 - L'intégrité : est-ce que le message n'a pas été modifié ?

Un système cryptographique à clé secrète n'est rien sans ces modes opératoires

Mode opératoire et chiffrement par blocs: CTR

Message : $M_1 || M_2 || \cdots || M_n$ où chaque M_n est un bloc de taille t

- Pré-calculs possibles, système parallélisable
- Contrôle d'intégrité impossible avec ce système : C_1 peut être remplacé par $C_1 \oplus \widetilde{M}$ pour envoyer le message $M_1 \oplus \widetilde{M}$

Mode CBC (Cipher Block Chaining)

- Message : $M_1 || M_2 || \cdots || M_n$ où chaque M_n est un bloc de taille t
- Chiffrement: $\forall i, C_i = ENC(M_i \oplus C_{i-1}, K)$ avec $C_0 = I$ un vecteur d'initialisation
- Déchiffrement : $\forall i, M_i = DEC(C_i, K) \oplus C_{i-1}$

Mode CBC-MAC

- Le mode CBC n'est pas préconisé pour la confidentialité
- Mais il donne un MAC (Message Authentication Code): Mode CBC-MAC
 - Alice calcule $\Sigma = C_n = CBC MAC(M, K)$ et envoie (Σ, M) à Bob
 - Bob calcule CBC-MAC(M,K) et vérifie qu'il obtient la valeur \sum
- Que nous apporte ce mode ?
 - Bob sait que le message n'a pas été modifié ⇒ intégrité
 - Bob sait qu'il provient bien d'Alice, puisque ce n'est pas lui qui l'a généré, c'est donc elle ⇒ authenticité
 - Mais il n'y a a priori aucune confidentialité sur le message
- Standards: ANSI X9.9, ANSI X9.19, ISO 8731-1, ISO/IEC 9797-1

Excellentes performances

- Nous savons gérer des messages de taille quelconque
 - AES128-CTR pour assurer la confidentialité
 - AES128-CBCMAC pour l'authenticité et l'intégrité

	Intel Xeon 3,10 GHz, 64-bit	ARM Cortex M0+, 48 MHz
AES128-CBC (table)	135 Mo/s	198 Ko/s
AES128-CBC	32 Mo/s	75 Ko/s
AES128-CTR (table)	127 Mo/s	194 Ko/s
AES128-CTR	32 Mo/s	75 Ko/s

• Mais pour que ces systèmes cryptographiques fonctionnent, n'avons-nous pas oublié un petit détail concernant la clé *K* ?

3. Comment Alice et Bob peuvent-ils partager une même clé ?

Problématique de l'échange de clé

- L'échange de clé doit assurer la confidentialité et l'intégrité de la clé échangée
- Mais ce n'est pas suffisant : il faut partager la clé avec le bon interlocuteur
 - Nécessité d'une authentification qui va différer d'une technique à une autre
 - Notion d'accord de clé authentifié (Authenticated Key Agreement AKA)
 - Prise en compte du rejeu d'une authentification
 - 1. Utiliser une tierce partie de confiance
 - L'échange de clé passe par un « Centre de Distribution de Clé »
 - Exemple de Kerberos

- 2. Utiliser une clé prépartagée
- Clé partagée dans un environnement sécurisé
- Il reste à voir comment utiliser cette clé

3...

Clé pré-partagée et usure de clé

- L'utilisation de la même clé pendant une longue période augmente les risques de compromission
 - Beaucoup de sorties peut servir à casser l'algorithme cryptographique
- Deux principes importants
 - Il faut donc changer la clé régulièrement
 - Une clé ne doit servir qu'à un unique besoin
- Dans le contexte d'une clé pré-partagée, ce n'est pas toujours facile de changer la configuration initiale, ni de stocker plusieurs clés
 - Notion de diversification d'une clé

Les fonctions de hachage

- Définition initiale
 - Fonction $H: \{0,1\}^* \rightarrow \{0,1\}^k$ pour k fixe
 - Connaissant M, le calcul de H(M) doit être facile
- Fonction de hachage cryptographiquement sûre
 - Résistance à la pré-image
 - Infaisable de calculer M connaissant H(M)
 - Résistance à la seconde pré-image
 - Connaissant M et H(M), infaisable de trouver M'tel que H(M) = H(M') et $M \neq M'$
 - Résistance aux collisions
 - Infaisable de trouver M et M' tels que H(M) = H(M')

Détails de la fonction HMAC

- Il y a des similitudes entre une fonction de hachage et un MAC
- Pour une clé *K* et un message *M*
- Clé $K' = \begin{cases} H(K) & \text{si } K \text{ est supérieur au bloc} \\ & K \text{ sinon} \end{cases}$
- Fonction $HMAC(M,K) = H\left((K' \oplus opad)||H\left((K' \oplus ipad)||M\right)\right)$ avec H une fonction de hachage
- Mêmes propriétés que le CBC-MAC
- Standards: FIPS PUB 198, RFC 2104, RFC 2202

De multiples applications aux fonctions de hachage

- Vérification de l'intégrité d'un message
- Code de détection de modification (pour des logiciels téléchargés)
- Fonction de dérivation d'une clé (Hash-based Key Derivation Function HKDF)
 - A partir d'une autre clé : $K_S = HKDF(K, contexte)$
 - En utilisant par exemple la fonction HMAC
 - Standards: NIST SP800-56Cr2, RFC 5869

4. Et si une clé pré-partagée ou un tiers ne sont pas possible ?

TD – Concept de cryptographie à clé publique

• Faisons un jeu...

Concept de cryptographie à clé publique

- L'étape de chiffrement n'implique a priori aucune connaissance particulière
- Diffie et Hellman (1976): « Rendre la clé de chiffrement publique »

C'est le concept de cryptographie à clé publique (ou cryptographie asymétrique)

- Une clé est publique PK peut être utilisée par n'importe qui \implies étape non sensible
- Une clé reste secrète SK (ou privée) \Longrightarrow étape sensible

• Le fait qu'une unique entité connaisse la clé privée, et que l'autre clé devienne publique, rend possible le concept de signature numérique

Concept de chiffrement

Chiffrement

- Génération des clés KeyGen
 - Entrée : paramètre de sécurité λ
 - Sorties : clé de chiffrement ek et clé de déchiffrement dk
- Chiffrement *Enc*
 - Entrées : message m et clé de chiffrement ek
 - Sortie : chiffré c
- Déchiffrement *Dec*
 - Entrées : chiffré c et clé de déchiffrement dk
 - Sortie : message m

- Probabiliste vs. Déterministe
 - Probabiliste si le chiffrement prend en entrée un aléa r
 - Cet aléa n'est pas forcément nécessaire lors de la phase de déchiffrement

Sécurité

- Chiffrement à sens unique
- Chiffrement indistingable

Concept de signature

Signature

- Génération des clés KeyGen
 - Entrée : paramètre de sécurité λ
 - Sorties : clé de signature sk et clé de vérification vk
- Signature Sign
 - Entrées : message m et clé de signature sk
 - Sortie : signature σ
- Vérification Verif
 - Entrées : message m, signature σ et clé de vérification vk
 - Sortie: bit 0/1

- Assure authentification de la source, intégrité et non-répudiation
- Equivalent juridiquement à une signature manuscrite
- Uniquement possible en cryptographie à clé publique : $sk \neq vk$
- Toujours probabiliste
- Sécurité
 - Non falsification

Principe du Certificat

 Une autorité signe le fait que la clé publique appartient bien à Alice

La clé publique d'Alice est pk_A

Certified By Authority

Notion d'infrastructure à clé publique (*Public Key Infrastructure PKI*)

Signature numérique

- La signature est calculée avec la clé privée
- La clé publique associée est certifiée par une autorité
- Bob doit vérifier la validité du certificat, puis la validité de la signature

Signature + Certificat

Chiffrement

- Le certificat contient la clé publique et est certifiée par une autorité. Il doit être vérifié par Bob avant usage
- Le chiffrement est calculé avec la clé publique
- Alice déchiffre en utilisant la clé privée associée Certificat

Chiffré

Deux designs conceptuellement différents

Attardons-nous un peu sur la notion de problème difficile...

Fonctions à sens unique

Fondement des systèmes cryptographiques à clé publique

- Principe
 - Pour une relation y=f(x), calculer y est facile, et retrouver x à partir de y est difficile sans une « trappe » facile

- Comment construire de telles fonctions ?
 - A l'aide des mathématiques...

Calcul d'un logarithme discret

- Problème
 - Soit (G,·) un groupe d'ordre p
 - Alors $(\mathbb{G}, p, g, x) \rightarrow y = g^x$ est facile \Rightarrow exponentiation
 - Et $(\mathbb{G}, p, g, y) \to x \in \mathbb{Z}_p$ t.q. $y = g^x$ difficile \Rightarrow logarithme discret
- Cryptographie basée sur le logarithme discret

Usage autorisé	Jusqu'en 2021	Après 2021
Si la taille minimale d'une clé privée asymétrique dans un groupe est	200 bits	200 bits
Si la taille minimale du module premier du groupe est	2048 bits	3072 bits

- Recherche exhaustive $\Rightarrow \mathcal{O}(N)$
- Baby-Step-Giant-Step $\Rightarrow \mathcal{O}(\sqrt{N})$
- Pollard's rho $\Rightarrow \mathcal{O}(\sqrt{N})$

TD – Système de chiffrement ElGamal

- Standard : ISO/IEC 18033-6
- Génération des clés
 - Choisir un groupe (G,·) d'ordre p
 - Choisir la clé secrète $sk = x \in \mathbb{Z}_p$
 - Choisir la clé publique $pk = y = g^x$
- Chiffrement d'un message $m \in \mathbb{G}$
 - Commençons par un One-Time-Pad...

Instances possibles

- Groupe multiplicatif \mathbb{Z}_p^* des entiers modulo un nombre premier p
- Groupe des éléments inversibles \mathbb{Z}_N^* pour un entier N composé
- Groupe des points entiers sur une courbe elliptique

TD – Système de chiffrement ElGamal

- Génération des clés
 - Choisir un groupe (G,·) d'ordre p
 - Choisir la clé secrète $sk = x \in \mathbb{Z}_p$
 - Choisir la clé publique $pk = y = g^x$
- Chiffrement d'un message $m \in \mathbb{G}$
 - Choisir un aléa $r \in \mathbb{Z}_p$
 - Calculer $T_1 = m \cdot y^r$ et $T_2 = g^r$
- Déchiffrement du chiffré (T_1, T_2)
 - Calculer $m = T_1/T_2^x$

Notion de sécurité pour le chiffrement

- Moyens de l'attaquant
 - Texte clair choisi $(m \to c)$: notion d'IND-CPA
 - Texte chiffré choisi $(c \to m)$ via un « oracle » : notion d'IND-CCA

Sécurité d'ElGamal

- Analyse
 - La recherche de la clé privée x à partir de la clé publique $y = g^x$ est équivalente au problème du logarithme discret
 - Si le problème du logarithme discret est résolu efficacement, alors ElGamal est cassé
 - Le contraire est peut-être faux car rien ne prouve qu'il ne peut pas être cassé par un autre moyen
- Réduction
 - Nous pouvons réduire l'indistingabilité d'ElGamal au problème DDH
 - Etant donnés \mathbb{G} (ordre p), g, g^a , g^b , g^c ($c \stackrel{\$}{\leftarrow} \mathbb{Z}_p$) décider si $g^c = g^{ab}$

Performances d'ElGamal

Performances sur un Intel P4 3 GHz (messages de 256 bits)

• Chiffrement: 22 ms

Déchiffrement : 13 ms

	Intel P4 3 GHz, 32 bits	Intel Xeon 3,10 GHz, 64-bit	ARM Cortex M0+, 48 MHz
AES-128 CBC (table)		135 Mo/s	198 Ko/s
AES-128 CBC		32 Mo/s	75 Ko/s
AES-128 CTR (table)		127 Mo/s	194 Ko/s
AES-128 CTR		32 Mo/s	75 Ko/s
ElGamal Enc	1,4 Ko/s		
ElGamal Dec	2,4 Ko/s		

Conséquence de ces performances

On parle de mécanisme d'encapsulation de clé (KEM)

Schéma de signature de Schnorr

- Standard : ISO/IEC 14888-3
- Génération des clés
 - Choisir un groupe (\mathbb{G} ,·) d'ordre p
 - Choisir la clé secrète $sk = x \in \mathbb{Z}_N$
 - Choisir la clé publique $pk = y = g^x$
- Signature d'un message $m \in \mathbb{G}$
 - Choisir un aléa $r \in \mathbb{Z}_N$
 - Calculer $t = g^r$, $c = \mathcal{H}(g \parallel y \parallel t \parallel m)$ et $s = r c \cdot x$
- Vérification de la signature (c, s) du message m
 - Vérifier que $c = \mathcal{H}(g \parallel y \parallel y^c \cdot g^s \parallel m)$

Notion de sécurité pour la signature

- Notion de non-falsification
 - Connaissant vk, un attaquant ne doit pas être capable de sortir un couple (m, σ) tel que $Verif(m, \sigma, vk) = 1$
- Moyens de l'attaquant
 - Texte choisi $(m \to \sigma)$
- Qu'obtenons-nous ?
 - Authenticité de la provenance du message
 - Intégrité du message
 - Non-répudiation (nouveau par rapport à un MAC!)

Cryptographie à clé secrète vs. à clé publique

	Propriétés	Avantages	Inconvénients	Usages
Cryptographie à clé secrète	 Une clé secrète pour chaque paire d'entités Même clé pour chiffrer et déchiffrer 	• Rapide	 Beaucoup de clés à gérer Pas de service de non-répudiation 	 Chiffrement de grands volumes de données
				 Contrôle d'intégrité de grands volumes de données
Cryptographie à clé publique	 Une paire de clé (l'une publique et l'autre privée/secrète) pour chaque entité Clé publique pour chiffrer, clé privée pour déchiffrer 	 Peu de clés à gérer 	• Lent	 Distribution de clés secrètes
		 Service de non- répudiation fourni Bonne structure mathématique 		 Signatures numériques
				 Cryptographie avancée
	 Clé privée pour signer, clé publique pour vérifier 			

5. Implémentation et cryptographie

Revenons sur l'algorithme d'exponentiation x^n

- Idée : décomposer n en binaire $n=n_t\parallel n_{t-1}\parallel \dots \parallel n_0$ où $n_t=1$
- Algorithme
 - $R \leftarrow x$
 - for (i = t 1) to 0 do
 - $R \leftarrow R \times R$
 - if $(n_i == 1)$ then $R \leftarrow R \times x$

• TD: calculer 3¹¹ avec cet algorithme

Attaques par canaux cachés

- $R \leftarrow x$
- for (i = t 1) to 0 do
 - $R \leftarrow R \times R$
 - if $(n_i == 1)$ then $R \leftarrow R \times x =$

carré

multiplication

Analyse de la consommation électrique

Petit signal = carré

Grand signal = multiplication

Attaques par canaux cachés

- $R \leftarrow x$
- for (i = t 1) to 0 do
 - $R \leftarrow R \times R$
 - if $(n_i == 1)$ then $R \leftarrow R \times x$

- Vert = carré $\Rightarrow n_i = 0$
- Rouge = carré puis multiplication $\Rightarrow n_i = 1$
- On peut reconstituer la clé avec un simple oscilloscope
- Attaque qui fonctionne essentiellement avec les systèmes embarqués

Attaques par canaux cachés

- Idée : consommation constante
- Algorithme résistant à l'attaque précédente :
 - $R \leftarrow x, U \leftarrow R$
 - for (i = t 1) to 0 do
 - if $(n_i == 1)$ then $R \leftarrow R \times R$, $U \leftarrow R \times x$
 - if $(n_i == 1)$ then $R \leftarrow R \times R$, $R \leftarrow R \times x$
- Mais sujet à d'autres attaques par canaux cachés
 - Attaque par faute ⇒ utilisation de l'échelle de Montgomery
 - Attaque différentielle ⇒ nécessite des contremesures spécifiques

6. Cryptographie moderne

TD – Homomorphisme d'ElGamal

- Homomorphisme : une opération sur des chiffrées donne des opérations sur des clairs
- Montrer que le schéma de chiffrement d'ElGamal possède un certain homomorphisme
- Exploiter cette propriété pour montrer que ce schéma ne peut pas atteindre la propriété d'IND-CCA

TD – Homomorphisme d'ElGamal

- Etant donnés (T_1, T_2) le chiffré du message m et (D_1, D_2) le chiffré du message \widetilde{m} , $(T_1 \cdot D_1, T_2 \cdot D_2)$ est le chiffré du message $m \cdot \widetilde{m}$
 - En effet: $T_1 \cdot D_1 = (m \cdot \widetilde{m}) \cdot y^{r+\widetilde{r}}$ et $T_2 \cdot D_2 = g^{r+\widetilde{r}}$
- Propriété d'IND-CCA: l'attaquant d'avoir accès à un oracle de déchiffrement
 - Calculer $D_1 = 2 \cdot y^{\tilde{r}}$ et $D_2 = g^{\tilde{r}}$
 - Envoyer $(T_1 \cdot D_1, T_2 \cdot D_2)$ à l'oracle de déchiffrement et récupérer \widetilde{m}
 - Vérifier si $\widetilde{m} = 2 \cdot m_0$ ou $\widetilde{m} = 2 \cdot m_1$ et sortir le bit correspondant
- Mais cette propriété peut aussi être utilisée à bon escient...

TD – Chiffrement homomorphe et IA

- Prenons l'algorithme d'exponentiation vu tout à l'heure
- Nous considérons que le secret n est chiffré et nous savons faire des additions et des multiplications dans le monde chiffré
- Réécrire l'algorithme en notant les données à chiffrées

Algorithme A Entrées : entiers x, nSortie : entier $R = x^n$ Exécution : - $R \leftarrow x$; - for (i = t - 1 to 0) do- $R \leftarrow R^2$; - If $(n_i == 1) \text{ then } R \leftarrow Rx$; - output R;

Algorithme A

Entrées : entiers x, [n]Sortie : entier $R = x^n$ Exécution :

TD – Chiffrement homomorphe et IA

- Prenons l'algorithme d'exponentiation vu tout à l'heure
- Nous considérons que le secret n est chiffré et nous savons faire des additions et des multiplications dans le monde chiffré
- Maintenant, le réécrire en n'utilisant qu'additions et multiplications

```
Algorithme A
Entrées : entiers x, n
Sortie : entier R = x^n
Exécution :

- R \leftarrow x;

- for (i = t - 1 \text{ to } 0) \text{ do}
- R \leftarrow R^2;
- If (n_i == 1) \text{ then } R \leftarrow Rx;
- output R;
```

```
Algorithme A
Entrées : entiers x, [n]
Sortie : entier [R] = [x^n]
Exécution :

- [R] \leftarrow x;

- for (i = t - 1 \text{ to } 0) \text{ do}
- [R] \leftarrow [R^2];
- If ([n_i] == 1) \text{ then } [R] \leftarrow [Rx];
- output [R];
```

```
Algorithme A
Entrées : entiers x, [n]
Sortie : entier [R] = [x^n]
Exécution :
```


TD – Chiffrement homomorphe et IA

- Prenons l'algorithme d'exponentiation vu tout à l'heure
- Nous considérons que le secret n est chiffré et nous savons faire des additions et des multiplications dans le monde chiffré
- Imaginez si vous avez aussi des boucles « while »...
- Standard (version draft): ISO/IEC WD 18033-8

```
Algorithme A
Entrées : entiers x, n
Sortie : entier R = x^n
Exécution :

- R \leftarrow x;

- for (i = t - 1 \text{ to } 0) \text{ do}
- R \leftarrow R^2;
- If (n_i == 1) \text{ then } R \leftarrow Rx;
- output R;
```

```
Algorithme A
Entrées : entiers x, [n]
Sortie : entier [R] = [x^n]
Exécution :

- [R] \leftarrow x;

- for (i = t - 1 \text{ to } 0) \text{ do}

- [R] \leftarrow [R^2];

- If ([n_i] == 1) \text{ then } [R] \leftarrow [Rx];

- output [R];
```

```
Algorithme A
Entrées : entiers x, [n]
Sortie : entier [R] = [x^n]
Exécution :

- R \leftarrow x; [R] \leftarrow Enc(R);

- for (i = t - 1 \text{ to } 0) \text{ do}

- [R] \leftarrow [R] \cdot [R];

- [R] \leftarrow [R] \cdot x \cdot [n_i] + [R] \cdot (1 - [n_i]);

- output [R];
```


Et les ordinateurs quantiques

Calcul quantique

- Un ordinateur quantique pense différemment
- Superposition et intrication quantiques
- Notion d'algorithme quantique : Grover, Shor, Simon, etc.

Cryptographie à clé publique

- Algorithme de Shor sur la factorisation et le logarithme discret ⇒ cassage total
- 6100 qubits logiques pour casser RSA 3072 bits
- 2300 qubits logiques pour casser ECC 256 bits

Pas une menace maintenant

Paradigme du
« stocker
maintenant et
déchiffrer plus
tard »

Cryptographie post-quantique

- Cryptographie post-quantique créée à partir de problèmes mathématiques pour lesquels les ordinateurs quantiques ne sont pas plus puissants que les ordinateurs classiques
- Plusieurs solutions existent depuis plusieurs décennies

Une cryptographie moderne basée sur les standards

- Le premier standard en cryptographie : algorithme DES (Data Encryption Standard) en 1970
- Principe général de la standardisation de la cryptographie aujourd'hui

- Une procédure aujourd'hui assez classique...
 - Compétition organisée par le NIST sur plusieurs années pour définir un standard
 - Adaptation, nouvelles propositions et usage par les autres (ISO/IEC, IEEE, ...)
 - Il faut au moins 5 ans avant qu'un algorithme cryptographique ne soit standardisé

Toujours s'inspirer des standards et des recommandations des instances officielles (ANSSI, BSI, ENISA, NCSC, NSA, ...)

Cryptographie et législation

- Tout le monde ne peut pas utiliser la cryptologie totalement librement
- Il existe une réglementation en vigueur pour la commercialisation de produits intégrant des moyens de cryptologie
- Voir https://www.ssi.gouv.fr/entreprise/reglementation/controle-reglementaire-sur-la-cryptographie/

Conclusion

ATTENTION

- La cryptographie n'est qu'une composante de la sécurité
- Il en existe d'autres
 - Gestion des personnes, des organisations, des process
 - Gestion de l'implémentation matérielle (hardware)
 - Gestion de l'implémentation logicielle (software)

Références utiles

- Pour aller plus loin
 - Introduction to Cryptography, Johannes Buchmann, (2000)
 - Introduction to Modern Cryptography, Katz, Lindell (2007)
 - Handbook of Applied Cryptography, Alfred Menezes, Paul van Oorschot, Scott Vanstone (1996) http://cacr.uwaterloo.ca/hac/
- Référence des instances officielles
 - ANSSI en France : https://www.ssi.gouv.fr/guide/mecanismes-cryptographiques/
 - BSI en Allemagne : https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Themasortiert/tr02102/tr02102_node.html
 - ENISA en Europe : https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014
- Culture générale
 - L'histoire des codes secrets, Simon Singh, 1999

Merci

Résistance aux collisions et anniversaire

Idée générale

- Choisir M et M' au hasard et espérer que H(M) = H(M')
- Choisir deux personnes au hasard et espérer qu'elles aient la même date d'anniversaire
- Quelle probabilité ? Intuition = très faible
- Calculons cette probabilité Pr(A) (pour 365 jours)
 - Probabilité Pr(A') que dans un groupe de n personnes toutes aient un jour d'anniversaire différent
 - Pr(A) = 1 Pr(A')
 - Evènement n: la personne n n'a pas la même date d'anniversaire que les personnes $n-1,\cdots,2,1$

•
$$Pr(1) = \frac{365}{365}$$
, $Pr(2) = \frac{364}{365}$, $Pr(3) = \frac{363}{365}$, ..., $Pr(n) = \frac{365 - (n-1)}{365}$

- Probabilités conditionnelles
 - $Pr(A') = \frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \dots \times \frac{365 (n-1)}{365} = \frac{365!}{365^n (365 n)!}$
- C'est « paradoxal » !

Preuve de sécurité d'ElGamal

Technique de preuve très classique aujourd'hui

Challenger DDH

Challenger

Attaquant ElGamal

$$\beta \in_{R} \{0,1\}$$

Si $(\beta == 0)$, $(a,b,c) \in_{R} \mathbb{Z}_{p}^{3}$
Si $(\beta == 1)$, $(a,b) \in_{R} \mathbb{Z}_{p}^{3}$, $c = a \cdot b$
 $G = (g,g^{a},g^{b},g^{c})$ où $g \in \mathbb{G}$

 $y = g^{a}$ g, y m_{0}, m_{1} $\tilde{\beta} \in_{R} \{0,1\}$ $T_{1} = m_{\tilde{\beta}} \cdot g^{c}$ $T_{2} = g^{b}$ T_{1}, T_{2} $\tilde{\beta}'$

Si
$$\tilde{\beta}' = \tilde{\beta}$$
, $\beta' = 1$
Sinon $\beta' = 0$

Preuve de sécurité d'ElGamal – Analyse

- Hypothèse : un attaquant contre ElGamal existe
 - Probabilité de réussite = $\frac{1}{2} + \varepsilon_{EG}$ avec ε_{EG} non négligeable
- Cas c = ab
 - Dans ce cas, c'est une vraie instance d'ElGamal : $Pr[\beta' = \beta] = \frac{1}{2} + \varepsilon_{EG}$
- Cas c aléatoire
 - Dans ce cas, ce n'est pas une instance d'ElGamal : $Pr[\beta' = \beta] = \frac{1}{2}$
- En utilisant les probabilités conditionnelles avec des évènements indépendants
 - Probabilité $Pr[\beta' = \beta] = \frac{1}{2} \left(\frac{1}{2} + \varepsilon_{EG} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} + \frac{\varepsilon_{EG}}{2}$ avec $\frac{\varepsilon_{EG}}{2}$ non négligeable