Who slowed down my app?

A Measurement Study of Response Times of Android Apps in India

BTP PRESENTATION (SEMESTER-2)

8 CREDITS

Abhivandan Pandey(2017007)
Prince Sachdeva(2017080)

Advisors
Dr. Mukulika Maity
Dr. Arani Bhattacharya

Motivation

App Quality of Experience

- QoE refers to the metrics end users use to judge the quality of services they receive
- Users would like apps to respond quickly to their requests, consume less mobile data and consume less energy to ensure sufficient battery life

App Response Time

- App response time is defined as the time needed to reflect UI changes corresponding to a user's action.
- Amongst all the other QoE metrics, the app response time is the most direct way for end users to judge app performance.
- Response time of an app is influenced by several factors like phone hardware, network conditions, type of network.

Searching a location

Red Balloon appears

Searching a product

Adding to cart

Need for Study of App Response Times in India

- Prior studies in US have shown that smartphone hardware affects app response time the most
- India has non-uniform network coverage, with many areas still lacking adequate internet facilities
- Also there is a huge divergence in the smartphone used by the Indian population

Need for Study of App Response Times in India

- So there is a need for a study to know which factors influence the app response time in developing countries like India.
- This will also help app developers diagnose performance bottlenecks and failures experienced by their apps in the wild.

Field Experiments

- This data must reflect end user experience under real network conditions.
- So we need to conduct field experiments to gather relevant data and make appropriate conclusions.

Problem Statement

To understand which of the factors affect the appressions times the most:

- type of smartphone used,
- location of the users,
- the version of the apps,
- nature of backhaul network,
- network type

Related Work

Related Work

Latency
 Optimization

2. Disparities in GlobalNetwork Latency

3. Network
Characterization
in Developing
Regions

1. Latency Optimization

AppInsight[1]
identified
the critical
path in the
execution of
mobile apps and
web

Aim to
measure and/or
optimize the
latency of
mobile web and
apps

UI-automator provided by the Android framework which requires modification of the APK Yun et al[2]
showed that mobile
apps tend to have
lower latency than
web apps in most
cases

QoE Doctor [3]
and PerfProb[4]
also did not
crowdsource data
collection

2. Disparities in Global Network Latency

M-Lab [5] performed active tests to identify regional variations in Internet latency across the world

Studies the disparities in network latency across time and region

Bozkurt et al[6]
identified the
geographical and
protocol level
differences that lead
to large diversities
in the end-user
Internet latency

Vaibhav et al[7]
identified
the disparities in
last-mile latency
depending on the
time of day, ISP
used, and
geographical
location.

3. Network Characterization in Developing Regions

Rodérick et al[8] and Zaki et al[9] looked at the web latencies within Africa and Ghana resp.

Deals with the performance of smartphones and networks in developing countries

Ravi et al.[10]
characterized the
web pages visited by
the users and
identified memory as
the bottleneck.

Sharma et al.

[11]

studied the
latency observed
by Indian
cellular networks
before the
deployment of
LTE.

Approach

Approach

Crowdsource our desktop application, EvalApp, to collect data in an automated fashion and perform causal analysis

List of Apps and their features for testing performance

App Type	Application	Actions
Entertainment	Youtube	Search a channelPlay a video
	Disnep+ Hotstar hotstar	Play a videoOpening trending page
Social	LinkedIn	View your profileCheck your connectionsSearch person, (Bill Gates)
	Facebook	Search personPost in a Facebook group

List of Apps and their features for testing performance

Category	Application	Testing features
News	G Google News	Search news about DelhiOpen the headlines page
	Dailyhunt dailyhunt	Search news about sportsOpen live tv page
Shopping	Amazon	 Searching a product Opening the product profile Adding the product to cart
	Flipkart	 Go to cart page Removing the product from the cart

List of Apps and their features for testing performance

		
Category	Application	Testing features
Payment	Payim PayTM	• Pay Re. 1/- from the wallet.
Navigation	Google Maps	• Search a location
Messaging	WhatsApp	 Send a hard-coded message ("Hi, this is an automated test") to the respective group.
	Telegram	

Approach

EvalApp, an automated framework that uses Appium to conduct experiments on mobile applications.

Workflow of EvalApp

Field Experiment : Data Collection

Challenges Faced

• Requested about 100+ students to volunteer but only 41

- finally performed the experiments.
- Conducted regular meetings to resolve the issues being faced by the volunteers.
- Some of the issues were:
 - Phone models like Realme, Xiaomi, OnePlus had different set of USB debugging settings
 - Installation issues in different Linux distributions

Challenges Faced

- Some of the reasons because of which the volunteers were not able to perform the experiments:
 - Faulty USB cables
 - Not having enough space in phone to install the apps
 - Our framework is not compatible with MacOS

41# Users

21
Locations

8 # Data Centers

16000

Data Samples

Category: Shopping

Category: Shopping

Amazon

 Median Response Times taken by different actions are:

O Add to Cart: 2023.0 ms

O Go to Cart: 2365.0 ms

O Product Profile: 2717.5 ms

O Remove from Cart: 1126.0 ms

O Search Product: 1535.0 ms

Action	UI Response
Add to cart	Cart value increased
Go to cart	Cart displayed
Product profile	Product rating stars shown

Flipkart

 Median Response Times taken by different actions are:

O Add to Cart: 1627.0 ms

O Go to Cart: 1854.0 ms

O Product Profile: 2835.0 ms

O Remove from Cart: 173.5 ms

O Search Product: 214.5 ms

Action	UI Response
Remove from cart	Cart value decreased
Search Product	Search results displayed

Category: Entertainment

Category: Entertainment

Hotstar:

Median Response Times taken by different actions are:

O Open trending page: 3031.0 ms

O Play video: 927.0 ms

O Search video: 1612.0 ms

YouTube:

 Median Response Times taken by different actions are:

O Search channel: 1169.5 ms

O Play video: 2673.0 ms

Search video: 1223.0 ms

Action	UI Response
Open trending page	Video player box appeared
Play video	Video title displayed
Search video/channel	Search results displayed

Category: Social Media

Category: Social Media

Facebook:

- Median Response Times taken by different actions are:
 - O Searching a person:
 - Search person: 3075.0 ms
 - Person Profile: 1534.5 ms
 - O Post in a group: 1686.0 ms

LinkedIn:

- Median Response Times taken by different actions are:
 - O Searching a person:
 - Search Results: 652.5 ms
 - Profile Page: 833.0 ms
 - O Check connections: 1395.0 ms

Action	UI Response
Search Person	Search result displays
Person profile/Profile Page	Person profile picture appears
Post in a group	Post like button appears
Check connections	List of connections appeares

Category: News

Median Response Time taken for opening a news page by:

Google News: 2609.5 ms
DailyHunt: 2167.0 ms

Action	UI Response
Open News	News title displays

Category: Messaging

Median Response Time taken for sending a message by:

WhatsApp: 1454.5 ms

Telegram: 251.5 ms

Action	UI Response
Send message	Single tick appears

Category: Payment

Median Response Time taken for sending money through wallet by PayTm is 227.0 ms

Action	UI Response	
Send money	Payment successful icon is shown	

Category: Navigation

 Median Response Time taken for loading a location in Google Maps is 3110.0 ms

Action	UI Response
Search a location	Street thumbnail displays

Features Collected

Feature Name	Range of Values
Android Version	7 to 11
RAM of mobile device	2 GB - 8 GB
Distance from datacenter	0 KM - 397 KM (normalized to 0 - 1)
Time of Day	Morning (0) and Evening (1)
Type of Network	WiFi (0), Mobile Data (1) and Mobile Hotspot (2)
RTT of pings to google.com	4 ms to 2000 ms (normalized to 0 - 1)

Features Collected

Feature I	Name
-----------	------

Android Version

RAM of mobile device

Distance from datacenter

Time of Day

Type of Network

RTT of pings to google.com

Which of these features is the most important?

g (0) and Evening (1)

WiFi (0), Mobile Data (1) and Mobile Hotspot (2)

4 ms to 2000 ms (normalized to 0 - 1)

Field Experiment : Causal Analysis

Causal Analysis

- Computing correlation between a feature and the response time values was not possible because the other features were not constant.
- Also if we try to keep all the other features constant then size of data becomes very small and thus insufficient to make correct conclusions.
- So we moved to more sophisticated causal analysis methods.

K-Means
 Clustering

- K-means algorithm is an iterative algorithm that tries to partition the dataset into K distinct non-overlapping clusters.
- Silhouette analysis is used to determine the optimal value of K i.e. number of clusters.
- We then create clusters of app response times using K-means algorithm.

1. K-Means Clustering met

Decision tree methods for classification

• Next, we used decision trees to classify the data samples into these clusters with the help of all the six features.

1. K-Means Clustering

2. Decision tree
 methods for
 classification

3. Analysis using Feature importance scores

• After classification, we found out the importance of all the features to identify the most influential feature for every application.

- K-means algorithm is an iterative algorithm that tries to partition the dataset into K distinct non-overlapping clusters.
- Silhouette analysis is used to determine the optimal value of K i.e. number of clusters.
- We then create clusters of app response times using K-means algorithm.
- Now, we used decision trees to classify the data samples into these clusters with the help of all the six features.
- After classification, we found out the importance of all the features to identify the most influential feature for every applications.

Results

Including

Ping Median

Confirming that Network is the Primary Bottleneck

- Performed a controlled experiment in our campus using a Samsung A50S smartphone (RAM 4GB) during a period of low congestion.
- Median network latency observed with NKN was 9.1ms compared to 67.6ms for commercial home networks used by volunteers.
- We observed a significant reduction in response times for most of the actions.

Confirming that Network is the Primary Bottleneck

Confirming that Network is the Primary Bottleneck

Results

Without

Ping Median

Results

We list down the app-wise important features apart from the ping,

Feature	Apps
Distance	Youtube, LinkedIn, Hotstar, Flipkart, Amazon, Telegram, Whatsapp, Google news, PayTM, Dailyhunt, Google Maps
RAM	Facebook, Google Maps
Android version	Facebook, Dailyhunt

Controlled Experiment : Data

Why is it required?

- Users expect better performance with an updated version of their app.
- But this does not happen always.
- We cannot perform field experiment for this kind of analysis because it will be inconvenient for the volunteers to try out different app versions of the same app repeatedly.
- Also we needed same network conditions across the app versions which will be difficult for us to ensure in a field experiment

Performed on 4 Apps with 3 versions each

Performed on 2 Android OS

Android 5

Android 8

7

1. Flipkart

2. Google Maps

YouTube

4. Telegram

Device Details

Lenovo A6020a40 2 GB RAM

Features Collected

Response Times Rx Bytes Tx Bytes

Controlled Experiment : Analysis

Flipkart with versions: v6.10, v6.15, v7.15 Test Name: Open product profile

Experiment Run on Android 5

Experiment Run on Android 8

Google Maps with versions: v9.67.1, v10.8.1, v10.32.2 Test name: Search a location

Experiment Run on Android 5

Experiment Run on Android 8

Telegram with versions: v5.15, v6.3.0, v7.6.0 Test name: Send a message

Experiment Run on Android 5

Experiment Run on Android 8

65

YouTube with versions: v14.43.55, v15.50.35, v16.02.32 Test Name: Search a channel

Experiment Run on Android 5

Experiment Run on Android 8

- Field Experiment analysis:
 - Network is the most contributing factor in terms of the app response time.
 - Next major factor is the distance from the major cities where the data centers are situated.
 - So our recommendation to the app developers is that they modify their apps to reduce data consumption.

- Controlled Experiment analysis:
 - The response time of apps do not always improve with version upgrades.
 - Also in most cases there exists a relationship between the response times and the amount of data usage across app versions

We have submitted our work as a short paper in IMC-2021

Future Work

Future Work

- Conducting this study across different demography and other regions including remote regions to remove potential bias is an immediate future work.
- A detailed analysis to figure out why network affects the app latencies the most is also a potential future work.

- Field Experiment analysis:
 - Network is the most contributing factor in terms of the app response time.
 - Next major factor is the distance from the major cities where the data centers are situated.
 - So our recommendation to the app developers is that they modify their apps to reduce data consumption.

Any questions?

References

- [1] Ravindranath, Lenin, et al. "Appinsight: Mobile app performance monitoring in the wild." 10th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 12). 2012.
- [2] Ma, Yun, et al. "A tale of two fashions: An empirical study on the performance of native apps and web apps on android." IEEE Transactions on Mobile Computing 17.5 (2017): 990-1003.
- [3] Chen, Qi Alfred, et al. "Qoe doctor: Diagnosing mobile app qoe with automated ui control and cross-layer analysis." Proceedings of the 2014 Conference on Internet Measurement Conference. 2014.
- [4] Hong, David Ke, et al. "Perfprobe: A systematic, cross-layer performance diagnosis framework for mobile platforms." 2019 IEEE/ACM 6th International Conference on Mobile Software Engineering and Systems (MOBILESoft). IEEE, 2019.
- [5] Høiland-Jørgensen, Toke, et al. "Measuring latency variation in the internet." Proceedings of the 12th International on Conference on emerging Networking Experiments and Technologies. 2016.
- [6] Bozkurt, Ilker Nadi, et al. "Why is the internet so slow?!." International Conference on Passive and Active Network Measurement. Springer, Cham, 2017.

References

- [7] Bajpai, Vaibhav, Steffie Jacob Eravuchira, and Jürgen Schönwälder. "Dissecting last-mile latency characteristics." ACM SIGCOMM Computer Communication Review 47.5 (2017): 25-34.
- [8] Fanou, Rodérick, et al. "Exploring and analysing the African web ecosystem." ACM Transactions on the Web (TWEB) 12.4 (2018): 1-26.
- [9] Zaki, Yasir, et al. "Dissecting web latency in ghana." Proceedings of the 2014 Conference on Internet Measurement Conference. 2014.
- [10] Naseer, Usama, Theophilus A. Benson, and Ravi Netravali. "WebMedic: Disentangling the Memory-Functionality Tension for the Next Billion Mobile Web Users." Proceedings of the 22nd International Workshop on Mobile Computing Systems and Applications. 2021.
- [11] Sharma, Asheesh, et al. "Revisiting the state of cellular data connectivity in india." Proceedings of the 2015 Annual Symposium on Computing for Development. 2015.