5118006-03 Data Structures

Tree

3 May 2024

Shin Hong

Tree

- A tree is a finite set of nodes such that:
 - each node represents a data object,
 - there exists a specifically designated node called the root, and
 - the remaining nodes are partitioned into disjoint sets T₁, T₂, ..., T_n, where each of these sets is a tree (subtree)

Examples

Terminologies

- Node: the item of information
- Degree of a node: the number of subtrees
 - · degree of a tree
- Leaf (terminal) node: node with degree zero
 - non-terminal nodes
- Children, Parent, Siblings, Ancestors
- Level of a node: the number of nodes between the root and the node, plus one
 - the level of the root is 1
- Height (depth) of a tree: the maximum level

Tree Representation (1)

- List of subtrees
 - Data, or (Data (T₁, T₂, ..., T_N))
 - E.g.,

 $(A\left(B\left(E\left(K,L\right),F\right),C\left(G\right),D\left(H\left(M\right),I,J\right)\right))$

Tree Representation (2)

- Two-legged linked list
 - · left for child
 - right for sibling

6

Binary Tree

- A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees
 - A binary tree is a tree with a degree 2
 - each node may have a left child and a right child

Abstract Data Type

- Objects: a finite set of nodes consisting of left BinTree and right BinTree, or empty
- Operations
 - is_empty(bt)
 - make_bintree(left, right)
 - get_data(bt)
 - get_left_child(bt)
 - get_right_child(bt)

Terminologies

• A full binary tree of depth k is a binary tree of depth k having $2^k - 1$ nodes

Terminologies (2/2)

- A binary tree with n nodes and depth k is complete if and only if its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k
- The height of a complete binary tree with n nodes is $\lceil \log_2(n+1) \rceil$
- A tree is called skewed if nodes are skewed at left or right subtrees

Properties of Binary Tree

- The max number of nodes on level i of a binary tree is 2^{i-1} for 0 < i
- The max number of nodes in a binary tree
 of depth k is 2^k-1 for 0 < k
- For a non-empty binary tree, if n₀ is the number of leaf nodes and n₂ is the number of nodes of degree 2, then n₀ = n₂ + 1