Computing Parameters Analytically

Normal Equation

Assume we have a dataset as follows:

Size (ft^2)	Beds	Floors	Age	Price (\$ 10 ³)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Here, m=4

We'll construct matrices X and Y as follows:

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}_{[m*(n+1)]} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}_{[m*1]}$$

Add an extra column x_0 with all 1's to the matrix X.

Now, we'll compute $\theta = (X^T \cdot X)^{-1} \cdot X^T \cdot y$

For using this in Octave,

Note: Feature scaling is not necessary in case we're using Normal Equation

Gradient Descent	Normal Equation		
Need to choose the learning rate $lpha$	No need to choose the learning rate $lpha$		
Needs many iteration	Doesn't need any iteration		
Requires less computation	Requires huge computation of $\mathrm{O}(\mathrm{n}^3)$ since calculation of $(X^T\cdot X)^{-1}$ is needed		
Works well even when n is large (n is the number of features)	Becomes slow if n is large		

What if X^TX is non-invertible?

In rare cases, X^TX might turn out to be non-invertible (singular/degenerate). Our Octave code which we're using will take care of it (since we're using **pinv** instead of **inv**).

Causes for this:

• Redundant features (linearly dependent)

For example, we might have two features like:

- \circ x_1 = size in $feet^2$
- $\circ x_2$ = size in m^2
- Too many features ($m \le n$)

m = Number of training examples

n = Number of features

Delete some features in this case, or use regularization