Задача 10.1. Переносы...

Часть 1 Перенос вещества.

Для

В двух сосудах A и B находятся растворы слои в воде. Начальные концентрации растворов равны x_0 в сосуде A и y_0 в сосуде B. Объемы растворов одинаковы и равны V. Под концентрацией раствора понимается отношение массы растворенного вещества к объему раствора.

перемешивания

небольшой сосуд объема v. Этот сосуд полностью X^{k} заполняют раствором из сосуда A и вливают в сосуд B, затем получившийся раствор хорошо перемешивают и заполняют им сосуд v, и вливают в сосуд A. После этого цикл повторяют. Обозначим x_k , y_k - концентрации растворов в сосудах A и B, соответственно, после k циклов переливания (один цикл – два переливания из первого во второй, а затем из второго в первый).

1.7 Найдите начальные массы растворенных веществ в обоих сосудах.

растворов

- 1.8 Найдите концентрации растворов x_1 , y_1 после одного цикла переливаний.
- 1.9 Найдите разность концентраций растворов после одного переливания $(y_1 x_0)$.

используют

- 1.10 Найдите разность концентраций растворов после второго переливания $(x_1 y_1)$.
- 1.11 Найдите концентрации растворов x_k , y_k после k циклов переливания (получите явные выражения для этих концентраций чрез начальные концентрации и объемы сосудов)

Часть 2. Перенос теплоты «вручную».

В двух сосудах A и B находятся вода. Начальные температуры воды равны x_0 в сосуде A и y_0 в сосуде B. Массы воды в обоих сосудах одинаковы и равны m, удельная теплоемкость воды равна c. Для выравнивания температур используется небольшое тело теплоемкость которого равна C_0 . Первоначально это тело находится в сосуде A. Его достают и перемещают в сосуд B, после установления теплового равновесия возвращают в сосуд A, после этого цикл повторяют. Потерями теплоты в окружающую среду пренебречь.

2.1 Найдите температуры воды в сосудах x_k , y_k после k циклов переноса теплоты.

Задача 10.2. На грани...

Удельное сопротивление металлов в жидком состоянии значительно больше, чем в твердом. Например, жидкая медь или жидкий свинец приблизительно в два раза хуже проводят электрический ток. При этом их плотность увеличивается очень незначительно. В этой задаче Вам предстоит исследовать резистор,

находящийся на грани перехода из одного агрегатного состояния в другое.

Исследуемый элемент изображен на рисунке. Непроводящая оболочка имеет незначительное сужение с одной стороны и расширение с другой. Это сделано для того, чтобы плавление твердого проводника начиналось слева, а кристаллизация справа. При расчетах пренебрегайте этими участками и считайте форму проводника цилиндрической. Также считайте, что граница раздела жидкой и твердой фаз всегда перпендикулярна оси системы (см. рисунок).

В данной задаче температура исследуемого элемента будет всегда близка к температуре плавления (немного больше, немного меньше), поэтому можете пренебречь зависимостью удельного сопротивления материала от температуры.

Часть 1. Исследование элемента

Сопротивление проводника в твердом состоянии равно R_0 , а в жидком в два раза больше. Длина проводника равна l.

1.1 Чему равно сопротивление элемента, если длина расплавившейся области равна x?

Оболочка элемента рассеивает тепло в атмосферу, причем мощность тепловых потерь прямо пропорциональна разности температур элемента и окружающей среды. Температура окружающей среды остается постоянной.

Напряжение на элементе медленно увеличивают, и при некотором значении U_0 температура элемента достигает температуры плавления материала.

- 2.1 При каком напряжении материал элемента полностью расплавится?
- 3.1 Напряжение на элементе плавно увеличивается от $0.5U_0$ до $2U_0$. Нарисуйте график зависимости сопротивления элемента от напряжения.
- 4.1 Изобразите вольт-амперную характеристику (BAX) элемента зависимость тока от напряжения в том же диапазоне, что и в предыдущем пункте.

Часть 2. Элемент и резистор

Последовательно к элементу подключают резистор с сопротивлением $r=R_{\scriptscriptstyle 0}$. На цепь подают напряжение U .

- $2.1\,$ В каком интервале напряжений ($U_{\it MIN}\,$ и $U_{\it MAX}\,$) материал элемента будет частично расплавлен?
- 2.2 Определите значение тока в цепи в трех различных случаях: $U = U_{M\!I\!N}$, $U = U_{M\!A\!X}$, $U = \left(U_{M\!A\!X} + U_{M\!I\!N}\right)/2$

Последовательно к элементу подключают резистор с сопротивлением $r = 2R_0$.

 $2.3~{\rm Ka}\kappa$ будет изменяться сила тока при медленном увеличении напряжения от $2{\rm U}_{\rm 0}$ до $4{\rm U}_{\rm 0}$.