

Approximation de π La formule de *Leibniz-Gregory*

Cette fiche a été élaborée par des enseignantes et des enseignants des lycées et universités de l'académie de Créteil.

Objectifs:

- \triangleright Justifier une approximation de π ;
- ▷ Utiliser plusieurs notions de Terminale afin de mener à bien une démonstration (Recherche de primitive, encadrement d'intégrale, suite [géométrique] et somme partielle);
- ▷ Introduire (sans en dire le nom) la notion de série numérique.

Mise en place:

Une séance de 2h + le reste en travail à la maison. Les élèves peuvent travailler en groupe ; l'aval du professeur peut être utile pour valider chacune des étapes. Des indications sont proposées à la fin du document.

Contenu:

On propose de démontrer que la suite $(u_n)_{n\geq 0}$ définie par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = u_n + \frac{4 \times (-1)^n}{2n+1}, & n \ge 0 \end{cases}$$

converge vers π , c'est à dire que

$$\pi = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \dots + \frac{4 \times (-1)^n}{2n+1} + \dots$$

ce qui peut se réécrire en utilisant une notation bien utile :

$$\pi = \sum_{n=0}^{\infty} \frac{4 \times (-1)^n}{2n+1}.$$

Cette formule est appelée formule de Leibniz-Gregory.

Ce document correspond à un découpage de la page wikipedia Leibniz formula for π

http://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80.

Etape 0: on observe

- 1) Donner les 10 premiers termes de la suite $(u_n)_{n\geq 0}$ définie par $\begin{cases} u_0=0\\ u_{n+1}=u_n+\frac{4\times (-1)^n}{2n+1}, & n\geq 0 \end{cases}$.
- 2) Que peut-on dire comme premières observations?

Etape 1 : on montre que $\int_0^1 \frac{1}{1+x^2} dx = \frac{\pi}{4}$

 $^{\circ}$ 3) [Avec un logiciel de calcul formel] À l'aide d'un logiciel de calcul formel, déterminer une primitive de $x\mapsto \frac{1}{1+x^2}$.

Afin d'avoir plus de renseignement sur la réponse donnée par le logiciel, vous pouvez traiter la question 3-Bis).

△ 3-Bis) [Sans logiciel de calcul formel] La fonction trigonométrique tangente, est définie par $tan(x) = \frac{\sin(x)}{\cos(x)}$ pour $x \in]-\frac{\pi}{2}; \frac{\pi}{2}[$.

La fonction tangente admet une fonction réciproque qui est arctan (c'est la touche tan^{-1} de la calculatrice), c'est à dire que

pour
$$x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$$
, on a $\arctan[\tan(x)] = x$.

La fonction arctan est définie sur \mathbb{R} .

- a. Montrer que pour tout $x \in]-\frac{\pi}{2}; \frac{\pi}{2}[$, $\tan'(x) = 1 + [\tan(x)]^2$.
- b. On admet la formule suivante :

$$\left[\arctan\left(\tan(x)\right)\right]' = \arctan'\left[\tan(x)\right] \times \tan'(x) \text{ pour } x \in \left] -\frac{\pi}{2}, \frac{\pi}{2}\right[$$

[Cette formule est issue de la formule plus générale $[f\circ g]'=(f'\circ g)\times g'$] Déduire de cette formule que $\arctan'(X)=\frac{1}{1+X^2}$.

4) Calculer $\int_0^1 \frac{1}{1+x^2} dx$.

Etape 2 : on "décompose" $\frac{1}{1+x^2}$ pour $x \in]0,1[$

5) Montrer que pour $x \in]0,1[$ on a $\frac{1}{1+x^2} = \sum_{n=0}^{N} (-x^2)^n + \frac{(-x^2)^{N+1}}{1+x^2}.$

Etape 3 : on calcule $\int_0^1 \frac{1}{1+x^2} dx$ avec un "petit" terme d'erreur

6) Montrer que

$$\int_0^1 \frac{1}{1+x^2} dx = \sum_{n=0}^N \frac{(-1)^n}{2n+1} + (-1)^{N+1} \int_0^1 \frac{x^{2N+2}}{1+x^2} dx.$$

7) Après avoir justifié que $0 \le \frac{x^{2N+2}}{1+x^2} \le x^{2N+2}$, montrer que $\lim_{N \to \infty} \int_0^1 \frac{x^{2N+2}}{1+x^2} dx = 0$.

Etape 4: on fait les comptes!

8) Déduire des questions précédentes que $\lim_{N\to\infty}\sum_{n=0}^N\frac{(-1)^n}{2n+1}=\frac{\pi}{4}$ c'est à dire que

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}.$$

9) Etablir la formule de Leibniz-Gregory.

Indications

- 1) Il suffit de calculer : $u_0 = 0$, $u_1 = u_0 + \frac{4 \times (-1)^0}{2 \times 0 + 1} = 0 + 4 = 4...$
- 2) La suite semble-t-elle croitre/décroitre/osciller autour d'une valeur ?
- (a) [Avec un logiciel de calcul formel] Par exemple avec le logiciel XCas on peut utiliser la commande integrate (f(x)) pour le calcul d'une primitive de f.
- ▲ 3-Bis) [Sans logiciel de calcul formel]
 - a. Ne pas oublier que $tan(x) = \frac{\sin(x)}{\cos(x)}$!
 - b. On pourra dans un premier temps dériver l'égalité $\arctan(\tan(x)) = x$, puis remplacer $\tan(x)$ par X.
 - 4) On propose les questions intermédiaires suivantes :
 - a. Calculer tan(0) et $tan(\pi/4)$, en déduire arctan(0) et arctan(1).
 - b. En déduire $\int_0^1 \frac{1}{1+x^2} dx$.
 - 5) On propose les questions intermédiaires suivantes : On fixe $x \in]0,1[$ et on définit la suite $(v_n)_{n\geq 0}$ comme étant la suite géométrique de raison $q=-x^2$ et de premier terme $v_0=1$.

On définit pour
$$N \geq 0$$
 la suite $S_N = v_0 + ... + v_N = \sum_{n=0}^N v_n$.

- a. Montrer que $S_N = \frac{1 (-x^2)^{N+1}}{1 + x^2}$.
- b. En déduire que pour $x \in]0,1[$ on a $\frac{1}{1+x^2} = \sum_{n=0}^{N} (-x^2)^n + \frac{(-x^2)^{N+1}}{1+x^2}$.
- 6) Intégrez entre 0 et 1 l'égalité de la question précédente !
- 7) On propose les questions intermédiaires suivantes :
 - a. Montrer que $0 \le \frac{x^{2N+2}}{1+x^2} \le x^{2N+2}$.
 - b. Calculer $\int_0^1 x^{2N+2} dx$.
 - c. En appliquant le théorème des gendarmes, montrer que $\lim_{N\to\infty}\int_0^1\frac{x^{2N+2}}{1+x^2}\mathrm{d}x=0.$
- 8) En posant $U_N = \sum_{n=0}^N \frac{(-1)^n}{2n+1}$, déduire des questions précédentes que $\lim_{N\to\infty} U_N = \frac{\pi}{4}$ c'est à dire que

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}.$$

9) Il suffit de multiplier l'égalité de la question précédente par 4.