

<u>Course</u> > <u>Unit 8:</u> ... > <u>Lec. 19:</u>... > 10. Exe...

10. Exercise: CLT for the binomial

Exercises due May 1, 2020 05:29 IST Completed

Exercise: CLT for the binomial

3/3 points (graded)

Let X be binomial with parameters n=49 and p=1/10.

The mean of X is: 4.9 \checkmark Answer: 4.9

The standard deviation of X is: 2.1 \checkmark Answer: 2.1

The CLT, together with the 1/2-correction, suggests that

 $\mathbf{P}\left(X=6
ight)pprox$ 0.1623 lacktriangledown Answer: 0.1623

You may want to refer to the <u>normal table</u>.

Normal Table

The entries in this table provide the numerical values of $\Phi\left(z\right)=\mathbf{P}\left(Z\leq z\right), \text{ where }Z$ is a standard normal random variable, for z between 0 and 3.49. For example, to find $\Phi\left(1.71\right),$ we look at the row corresponding to 1.7 and the column corresponding to 0.01, so that $\Phi\left(1.71\right)=.9564.$ When z is negative, the value of $\Phi\left(z\right)$ can be found using the formula $\Phi\left(z\right)=1-\Phi\left(-z\right).$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	648	7

0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
*For $z > 3.50$, the probability is greater than or equal to $.9998$.										

 * For $z \geq 3.50$, the probability is greater than or equal to .9998.

Note: In this case, the CLT may not provide a great approximation. The range of values that X is likely to take is quite narrow, so that its PMF consists of only a few entries of substantial size. But, regardless, we can still calculate what the CLT suggests.

Solution:

We have $\mathbf{E}\left[X
ight]=np=4.9$, and

$$\mathsf{Var}\left(X
ight) = np\left(1-p
ight) = 49 \cdot rac{1}{10} \cdot rac{9}{10} = rac{49 \cdot 9}{10^2},$$

so that the standard deviation of X is 21/10 = 2.1.

The standardized version of X is $\left(X-4.9\right)/2.1$. Thus,

$$egin{array}{ll} \mathbf{P}\left(X=6
ight) &=& \mathbf{P}\left(5.5 < X < 6.5
ight) = \mathbf{P}\left(rac{5.5 - 4.9}{2.1} \leq rac{X - 4.9}{2.1} \leq rac{6.5 - 4.9}{2.1}
ight) \ &pprox & \Phi\left(0.76
ight) - \Phi\left(0.29
ight) pprox 0.7764 - 0.6141 = 0.1623. \end{array}$$

For comparison, the answer calculated by using the binomial PMF directly is

$$\mathbf{P}\left(X=6
ight) = inom{49}{6}(0.1)^6(0.9)^{49-6} pprox 0.1507.$$

Submit

You have used 2 of 3 attempts

• Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 8: Limit theorems and classical statistics:Lec. 19: The Central Limit Theorem (CLT) / 10. Exercise: CLT for the binomial

Show all posts

by recent activity >

✓ 1/4 Correction

<u>Is a 1/4 correction for Binomial legitimate</u>. In this Eg; CAN WE approximate P(X=6) = P(5.75 =<X<= 6.25)

7

© All Rights Reserved

