1.2 Logical Operators (Connectives)

Important Logical Operators (unary, binary)

Expression	Name	Parlance
¬ a	Negation, NOT	it is not true, that a
a ∧ b	Conjunction, AND	a and b
$\mathbf{a} \vee \mathbf{b}$	Disjunction, OR	a or b
$\mathbf{a} \longleftrightarrow \mathbf{b}$	Alternative, XOR	either a or b
$\mathbf{a} \longrightarrow \mathbf{b}$	Conditional, material implication, subjunction	if a, then b
$\mathbf{a} \longleftrightarrow \mathbf{b}$	Biconditional, material equivalence, bijunction	a if and only if b

Truth Table

Value assignment		truth values					
a	b	¬а	a∧b	a ∨ b	$\mathbf{a} \longleftrightarrow \mathbf{b}$	$\mathbf{a} \longrightarrow \mathbf{b}$	$\mathbf{a} \longleftrightarrow \mathbf{b}$
t	t	f	t	t	f	t	t
t	ſ	f	f	t	t	f	f
f	t	t	f	t	t	t	f
ſ	f	t	ſ	ſ	ſ	t	t

A)	Laws (Tautologies, Equivalences)					
	of Boolean propositional algebra Principle o	$(\{\mathbf{t},\mathbf{f}\};\wedge,\vee,\neg)$ f duality:				
(1)	$\mathbf{a}\wedge\mathbf{b} \Longleftrightarrow \mathbf{b}\wedge\mathbf{a}; \ \mathbf{a}\vee\mathbf{b} \Longleftrightarrow \mathbf{b}$					
(2)	$\begin{split} &(\mathbf{a} \ \wedge \ \mathbf{b}) \wedge \mathbf{c} \Longleftrightarrow \mathbf{a} \wedge (\mathbf{b} \ \wedge \ \mathbf{c}) \\ &(\mathbf{a} \ \vee \ \mathbf{b}) \vee \mathbf{c} \Longleftrightarrow \mathbf{a} \vee (\mathbf{b} \ \vee \ \mathbf{c}) \end{split}$	Associativity				
(3)	$\begin{split} \mathbf{a} \wedge (\mathbf{b} \ \lor \ \mathbf{c}) &\Longleftrightarrow (\mathbf{a} \ \land \ \mathbf{b}) \lor (\mathbf{a} \ \land \ \mathbf{c}) \\ \mathbf{a} \vee (\mathbf{b} \ \land \ \mathbf{c}) &\Longleftrightarrow (\mathbf{a} \ \lor \ \mathbf{b}) \land (\mathbf{a} \ \lor \ \mathbf{c}) \end{split}$	Distributivity				
(4)	$a \wedge a \Longleftrightarrow a \ \ ; \ \ a \vee a \Longleftrightarrow a$	Idempotence				
(5)	$\begin{aligned} \mathbf{a} \wedge (\mathbf{a} \ \lor \ \mathbf{b}) &\Longleftrightarrow \mathbf{a} \\ \mathbf{a} \vee (\mathbf{a} \ \land \ \mathbf{b}) &\Longleftrightarrow \mathbf{a} \end{aligned}$	Absorption				
(6)	$a \wedge t \mathop{\Longleftrightarrow} a \ ; \ a \vee f \mathop{\Longleftrightarrow} a$	Neutral element				
(7)	$a \mathrel{\wedge} f \mathop{\Longleftrightarrow} f ; \ a \mathrel{\vee} t \mathop{\Longleftrightarrow} t$	Domination				
(8)	$\mathbf{a} \wedge \neg \mathbf{a} \! \Longleftrightarrow \! \mathbf{f} \; ; \; \; \mathbf{a} \vee \neg \mathbf{a} \! \iff \! \mathbf{t}$	Complementary element				
(9)	$\neg \ (\neg \ a) \Longleftrightarrow a$	Double negation				
(10)	$\neg (a \land b) \Longleftrightarrow \neg a \lor \neg b$ $\neg (a \lor b) \Longleftrightarrow \neg a \land \neg b$	De Morgan				

```
B) Laws (Tautologies, Equivalences) of Alternative ( ←→ , ⊕ )
  (1)
                              \mathbf{a} \longleftrightarrow \mathbf{b} \iff \mathbf{b} \longleftrightarrow \mathbf{a} Commutativity
 (2) (\mathbf{a} \longleftrightarrow \mathbf{b}) \longleftrightarrow \mathbf{c} \iff \mathbf{a} \longleftrightarrow (\mathbf{b} \longleftrightarrow \mathbf{c}) Associativity
                \mathbf{a} \wedge (\ \mathbf{b} \longleftrightarrow \mathbf{c}\ ) \iff \mathbf{a} \wedge \mathbf{b} \longleftrightarrow \mathbf{a} \wedge \mathbf{c} \quad \text{Distributivity of} \, \wedge \, \text{over} \, \longleftrightarrow \,
  (3)
                     \mathbf{a} \longleftrightarrow \mathbf{f} \iff \mathbf{a}
  (4)
                                                                                                               Neutral element
  (5)
                         a \leftrightarrow t \iff \neg a
                                                                                                              Negation
                     \neg (a \longleftrightarrow b) \iff a \longleftrightarrow b \longleftrightarrow t \iff \neg a \longleftrightarrow b \iff a \longleftrightarrow \neg b
  (6)
                       a \longleftrightarrow \neg a \iff t
                                                                                                               Complementary element
                                 a \longleftrightarrow a \iff f
                  \mathbf{a} \longleftrightarrow \mathbf{a} \longleftrightarrow \mathbf{a} \iff \mathbf{a}
  (7)
                                                                                                               Idempotence
 (8)
                                \mathbf{a} \longleftrightarrow \mathbf{b} \iff \neg \mathbf{a} \longleftrightarrow \neg \mathbf{b} Contraposition
 (9)
                              \mathbf{a} \longleftrightarrow \mathbf{b} \iff (\mathbf{a} \land \neg \mathbf{b}) \lor (\neg \mathbf{a} \land \mathbf{b})
                                 \mathbf{a} \longleftrightarrow \mathbf{b} \iff (\mathbf{a} \lor \mathbf{b}) \land (\neg \mathbf{a} \lor \neg \mathbf{b})
(10)
                              \mathbf{a} \longleftrightarrow \mathbf{b} \iff \neg (\mathbf{a} \longleftrightarrow \mathbf{b})
(11)
                           a \leftrightarrow b \iff (a \rightarrow b) \rightarrow \neg (b \rightarrow a)
(12)
(13)
                                   \mathbf{a} \vee \mathbf{b} \iff \mathbf{a} \longleftrightarrow \mathbf{b} \longleftrightarrow (\mathbf{a} \wedge \mathbf{b})
                                    \mathbf{a} \wedge \mathbf{b} \iff \mathbf{a} \longleftrightarrow \mathbf{b} \longleftrightarrow (\mathbf{a} \vee \mathbf{b})
(14)
```


E) I	aws (Tautologies) using I	mplica	tion	(\Rightarrow)
(1)	f	\Rightarrow	a	ex falso quodlibet
(2)	a	\Rightarrow	t	ex quodlibet verum
(3)	a	\Rightarrow	a	identity law
(4)	a ∧ b	\Rightarrow	a	simplification
(5)	a	\Rightarrow	a ∨ b	addition
(6)	a ∧ b	\Rightarrow	a ∨ b	conjunction implies disjunction
(7)	$\neg \mathbf{a}$	\Rightarrow	$\mathbf{a} \mathop{\longrightarrow} \mathbf{b}$	denial of the antecedent
(8)	b	\Rightarrow	$\mathbf{a} \longrightarrow \mathbf{b}$	affirmation of the consequent
(9)	$\mathbf{a} \wedge (\mathbf{a} \longrightarrow \mathbf{b})$ $\mathbf{a} \wedge (\mathbf{a} \vee \mathbf{b} \longrightarrow \mathbf{c})$			modus ponens
(10)	$\neg \mathbf{b} \wedge (\mathbf{a} \longrightarrow \mathbf{b})$			modus tollens
	$(\mathbf{a} \longrightarrow \mathbf{b}) \wedge (\mathbf{b} \longrightarrow \mathbf{c})$ $\mathbf{a} \longrightarrow \mathbf{b}) \wedge (\mathbf{b} \vee \mathbf{c} \longrightarrow \mathbf{d})$			hypothetical syllogism (modus barbara)
	$(\mathbf{a} \longrightarrow \mathbf{b}) \wedge (\neg \mathbf{a} \longrightarrow \mathbf{b})$			constructive dilemma
	$(\mathbf{a} \mathop{\longrightarrow} \mathbf{b}) \land (\neg \mathbf{a} \mathop{\longrightarrow} \mathbf{b})$	\Leftrightarrow	b	
(13)	$\begin{aligned} &(\mathbf{a} \longrightarrow \mathbf{b}) \wedge (\mathbf{a} \longrightarrow \neg \mathbf{b}) \\ &(\mathbf{a} \longrightarrow \mathbf{b}) \wedge (\mathbf{a} \longrightarrow \neg \mathbf{b}) \end{aligned}$			destructive dilemma (reductio ad absurdum)

Let $B(\underline{z})$ be an arbitrary propositional form and $x_i \in \operatorname{set}(\underline{x})$ of $A(\underline{x})$. Then:

RT1)

RT2)

 $\operatorname{IF} \mathbf{A}(\dots,\mathbf{x}_i,\dots) \Longleftrightarrow \mathbf{t}, \operatorname{THEN} \mathbf{A}(\dots,\mathbf{B}(\underline{\mathbf{z}}),\dots) \Longleftrightarrow \mathbf{t}$

e.g. IF $a \land (a \longrightarrow b) \Longrightarrow b$, THEN $A(\underline{x}) \land (A(\underline{x}) \longrightarrow B(\underline{x})) \Longrightarrow B(\underline{x})$ e.g. IF $A(\underline{x}) \Longleftrightarrow B(\underline{x})$, THEN $dual(A(\underline{x})) \Longleftrightarrow dual(B(\underline{x}))$ e.g. IF $A(x) \Longrightarrow B(x)$, THEN $dual(B(x)) \Longrightarrow dual(A(x))$

Replacement theorem for equivalent partial propositional forms Let A(x, B(z)) be an arbitrary propositional form and B a partial form of A,

with $\operatorname{set}(\underline{z}) \subseteq \operatorname{set}(\underline{x})$. Then: IF $B(\underline{z}) \Longleftrightarrow C(\underline{z})$, THEN $A(\underline{x}, B(\underline{z})) \Longleftrightarrow A(\underline{x}, C(\underline{z}))$

e.g. IF $\mathbf{x} \longrightarrow \mathbf{a} \Longleftrightarrow \neg \mathbf{x} \lor \mathbf{a}$,

Replacement theorem for tautologies

THEN $(\mathbf{x} \longrightarrow \mathbf{a}) \land (\neg \mathbf{x} \longrightarrow \mathbf{b}) \Longleftrightarrow (\neg \mathbf{x} \lor \mathbf{a}) \land (\neg \mathbf{x} \longrightarrow \mathbf{b})$

 $x_i \wedge A(x) \iff x_i \wedge A(x_i \Leftrightarrow t); \neg x_i \wedge A(x) \iff \neg x_i \wedge A(x_i \Leftrightarrow f)$

SR) Substitution rule

$$\mathbf{x}_i \vee \mathbf{\Lambda}(\underline{\mathbf{x}}) \Longleftrightarrow \mathbf{x}_i \vee \mathbf{\Lambda}(\mathbf{x}_i \Leftrightarrow \mathbf{f}); \quad \neg \mathbf{x}_i \vee \mathbf{\Lambda}(\underline{\mathbf{x}}) \Longleftrightarrow \neg \mathbf{x}_i \vee \mathbf{\Lambda}(\mathbf{x}_i \Leftrightarrow \mathbf{t})$$

ER) Expansion rules for propositional logic functions Let $\mathbf{A}(\underline{\mathbf{x}})$ be a propositional logic function with $\mathbf{x}_i \in \operatorname{set}(\underline{\mathbf{x}})$.

(1)
$$\mathbf{A}(\underline{\mathbf{x}}) \Longleftrightarrow [\mathbf{x}_i \wedge \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t})] \vee [\neg \mathbf{x}_i \wedge \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f})]$$
 (Shannon)
(Boole's fundamental theorem)

 $(2) \ \mathbf{A}(\underline{\mathbf{x}}) \Longleftrightarrow [\neg \mathbf{x}_i \lor \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t})] \land [\mathbf{x}_i \lor \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f})]$

 $(3)\ A(\underline{x}) \Longleftrightarrow [x_i \longrightarrow A(x_i \Leftrightarrow t)] \wedge [\neg x_i \longrightarrow A(x_i \Leftrightarrow f)]$

$$(4)\ \Lambda(\underline{x}) \Longleftrightarrow [x_i \land (\Lambda(x_i \Leftrightarrow t) \longleftrightarrow \Lambda(x_i \Leftrightarrow f))] \longleftrightarrow \Lambda(x_i \Leftrightarrow f) \tag{Davio}$$

RS) Rule of specialization

$$\begin{array}{c} A(x_i \Leftrightarrow t) \wedge A(x_i \Leftrightarrow f) \Longrightarrow A(\underline{x}) \Longrightarrow A(x_i \Leftrightarrow t) \vee A(x_i \Leftrightarrow f) \\ x_i \in \mathrm{set}(\underline{x}) \end{array}$$

RRD) Resolution rule in disjunctive form $(\mathbf{x} \wedge \mathbf{a}) \vee (\neg \mathbf{x} \wedge \mathbf{b}) \iff (\mathbf{x} \wedge \mathbf{a}) \vee (\neg \mathbf{x} \wedge \mathbf{b}) \vee (\mathbf{a} \wedge \mathbf{b})$ $(\mathbf{x} \wedge \mathbf{a}) \vee (\neg \mathbf{x} \wedge \mathbf{a}) \Longleftrightarrow \mathbf{a}$ (special case) $(\mathbf{a} \wedge \mathbf{b}) \Longrightarrow (\mathbf{x} \wedge \mathbf{a}) \vee (\neg \mathbf{x} \wedge \mathbf{b})$ (from RRD)

RRP) Resolution rule in conditional clause form (premise form)
$$(\mathbf{x} \longrightarrow \mathbf{a}) \wedge (\neg \mathbf{x} \longrightarrow \mathbf{b}) \Longleftrightarrow (\mathbf{x} \longrightarrow \mathbf{a}) \wedge (\neg \mathbf{x} \longrightarrow \mathbf{b}) \wedge \underbrace{(\neg \mathbf{a} \longrightarrow \mathbf{b})}_{\text{resolvent}}$$

$$(\mathbf{x} \longrightarrow \mathbf{a}) \wedge (\neg \mathbf{x} \longrightarrow \mathbf{a}) \Longleftrightarrow \mathbf{a} \quad \text{(special case)}$$

$$(\neg \mathbf{a} \longrightarrow \neg \mathbf{x}) \wedge (\neg \mathbf{x} \longrightarrow \mathbf{b}) \Longrightarrow (\neg \mathbf{a} \longrightarrow \mathbf{b}) \quad \text{(from RRP)}$$

Let
$$A \Longrightarrow B$$
. Then:
IF $A \Longleftrightarrow t$, THEN $B \Longleftrightarrow t$

FRE)

FRI) Fundamental rule for implication

Fundamental rule for equivalence Let $A \iff B$. Then:

$$A \Longleftrightarrow t \text{ IF AND ONLY IF } B \Longleftrightarrow t$$

FRC) Fundamental rule for tautological conjunction $A \land B \iff t \text{ IF AND ONLY IF } A \iff t \text{ AND } B \iff t$

RI)	Rules of inference (meta rules) for tautologies	
	Equivalence and implication	
(1)	$A \Longleftrightarrow B \text{ IF AND ONLY IF } A \Longrightarrow B \text{ AND } B \Longrightarrow A$	C11
	Contraposition	
(2)	$\mathbf{A} \Longrightarrow \mathbf{B}$ IF AND ONLY IF $\neg \mathbf{B} \Longrightarrow \neg \mathbf{A}$	D3
	Enhancement rule	
(3)	$A \Longrightarrow B$ IF AND ONLY IF $A \Longleftrightarrow A \land B$	D12
	$\mathbf{A} \Longrightarrow \mathbf{B} \text{ IF AND ONLY IF } \mathbf{B} \Longleftrightarrow \mathbf{A} \vee \mathbf{B}$	D12
	Expansion rule	
(4)	$\mathbf{A}(\underline{x}) \Longleftrightarrow \mathbf{t} \text{ IF AND ONLY IF } \mathbf{A}(x_i \Leftrightarrow \mathbf{t}) \Longleftrightarrow \mathbf{t} \text{ AND } \mathbf{A}(x_i \Leftrightarrow \mathbf{f}) \Longleftrightarrow \mathbf{t}$	
	$\mathbf{x_i} \in \operatorname{set}(\underline{\mathbf{x}})$	
	Affirmation of the consequent	
(5)	IF $\mathbf{B} \Longleftrightarrow \mathbf{t}$, THEN $\mathbf{A} \Longrightarrow \mathbf{B}$	E8
	Modus ponens	
(6)	IF $\mathbf{A} \Longleftrightarrow \mathbf{t}$ AND $\mathbf{A} \Longrightarrow \mathbf{B},$ THEN $\mathbf{B} \Longleftrightarrow \mathbf{t}$	E9
	Transitivity	
(7)	IF $A \Longrightarrow B$, AND $B \Longrightarrow C$, THEN $A \Longrightarrow C$	E11
	IF $\mathbf{A} \Longleftrightarrow \mathbf{B},$ AND $\mathbf{B} \Longleftrightarrow \mathbf{C},$ THEN $\mathbf{A} \Longleftrightarrow \mathbf{C}$	
	Compatibility	
(8)	IF $A \Longrightarrow B$, THEN $A \land C \Longrightarrow B \land C$	E14
	IF $A \Longrightarrow B$, THEN $A \lor C \Longrightarrow B \lor C$	E15
	IF $A \Longleftrightarrow B$, THEN $A \land C \Longleftrightarrow B \land C$	

IF $A \iff B$, THEN $A \lor C \iff B \lor C$

BB) The $\beta - \mathbf{t} - \mathbf{f}$ -basis

(1) $\mathbf{a} \iff \beta(\mathbf{a}, \mathbf{t}, \mathbf{f})$;

$$\iff \beta(\mathbf{a}, \mathbf{t}, \mathbf{a});$$

$$\iff \beta(\mathbf{t}, \mathbf{a}, \mathbf{b});$$

$$\iff \beta(\mathbf{f}, \mathbf{b}, \mathbf{a});$$

$$\iff \beta(\mathbf{x}, \mathbf{a}, \mathbf{a});$$

$$(2) \qquad \mathbf{t} \iff \beta(\mathbf{a}, \mathbf{t}, \mathbf{t});$$

$$\iff \beta(\mathbf{a}, \mathbf{a}, \mathbf{t});$$

 $\iff \beta(\mathbf{a}, \mathbf{a}, \mathbf{f})$:

(2) $\mathbf{t} \iff \beta(\mathbf{a}, \mathbf{t}, \mathbf{t});$ $\mathbf{f} \iff \beta(\mathbf{a}, \mathbf{f}, \mathbf{f})$ $\iff \beta(\mathbf{a}, \mathbf{a}, \mathbf{t});$ $\iff \beta(\mathbf{a}, \neg \mathbf{a}, \mathbf{f})$ $\iff \beta(\mathbf{a}, \mathbf{a}, \neg \mathbf{a});$ $\iff \beta(\mathbf{a}, \neg \mathbf{a}, \mathbf{a})$ $\iff \beta(\mathbf{a}, \mathbf{t}, \neg \mathbf{a});$ $\iff \beta(\mathbf{a}, \mathbf{f}, \mathbf{a})$ (3) $\mathbf{a} \land \mathbf{b} \iff \beta(\mathbf{a}, \mathbf{b}, \mathbf{f});$ $\mathbf{a} \lor \mathbf{b} \iff \beta(\neg \mathbf{a}, \mathbf{b}, \mathbf{t})$ $\iff \beta(\mathbf{a}, \mathbf{b}, \mathbf{a});$ $\iff \beta(\neg \mathbf{a}, \mathbf{b}, \mathbf{a})$

 $\neg a \iff \beta(a, f, t)$

 $\iff \beta(\mathbf{a}, \neg \mathbf{a}, \mathbf{t})$

 $\iff \beta(\mathbf{a}, \mathbf{f}, \neg \mathbf{a})$

 $\iff \beta(\mathbf{t}, \neg \mathbf{a}, \neg \mathbf{b})$

 $\iff \beta(\mathbf{f}, \neg \mathbf{b}, \neg \mathbf{a})$

 $\iff \beta(\mathbf{x}, \neg \mathbf{a}, \neg \mathbf{a})$

 $\iff \beta(\mathbf{a}, \mathbf{t}, \mathbf{b})$

$$\iff \beta(\neg \mathbf{a}, \mathbf{a}, \mathbf{b}); \iff \beta(\mathbf{a}, \mathbf{a}, \mathbf{b})$$

$$(4) \mathbf{a} \longrightarrow \mathbf{b} \iff \beta(\mathbf{a}, \mathbf{b}, \mathbf{t}) \iff \beta(\mathbf{b}, \mathbf{t}, \neg \mathbf{a})$$

$$\iff \beta(\neg \mathbf{a}, \mathbf{t}, \mathbf{b}) \iff \beta(\mathbf{a}, \mathbf{b}, \neg \mathbf{a})$$

 $\iff \beta(\neg \mathbf{a}, \mathbf{f}, \mathbf{b})$:

(5)
$$\mathbf{a} \longleftrightarrow \mathbf{b} \iff \beta(\mathbf{a}, \mathbf{b}, \neg \mathbf{b})$$

 $\mathbf{a} \longleftrightarrow \mathbf{b} \iff \beta(\mathbf{a}, \neg \mathbf{b}, \mathbf{b})$

BO) Laws using the β -operation

(1)
$$\beta(\mathbf{x}, \mathbf{t}, \mathbf{t}) \iff \mathbf{t}; \qquad \beta(\mathbf{x}, \mathbf{f}, \mathbf{f}) \iff \mathbf{f}$$

(2)
$$\beta(\mathbf{x}, \mathbf{t}, \mathbf{f}) \iff \mathbf{x}; \qquad \beta(\mathbf{x}, \mathbf{f}, \mathbf{t}) \iff \neg \mathbf{x}$$

(3)
$$\beta(\mathbf{t}, \mathbf{a}, \mathbf{b}) \iff \mathbf{a}; \qquad \beta(\mathbf{f}, \mathbf{a}, \mathbf{b}) \iff \mathbf{b}$$

(4)
$$\neg \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \iff \beta(\mathbf{x}, \neg \mathbf{a}, \neg \mathbf{b})$$

(5)
$$\beta(\neg x, a, b) \iff \beta(x, b, a)$$

(6) dual
$$\beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \iff \beta(\mathbf{x}, \mathbf{b}, \mathbf{a})$$

(7)
$$\beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \iff \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \lor (\mathbf{a} \land \mathbf{b})$$

(8)
$$\beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \iff \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \wedge (\mathbf{a} \vee \mathbf{b})$$
 resolution rules

(9)
$$\beta(\mathbf{x}, \mathbf{a}, \mathbf{a}) \iff \mathbf{a}$$

(10)
$$\beta(\mathbf{x}, \mathbf{A}, \mathbf{B}) \iff [\mathbf{x} \wedge (\mathbf{A} \wedge \neg \mathbf{B})] \vee [\neg \mathbf{x} \wedge (\neg \mathbf{A} \wedge \mathbf{B})] \vee (\mathbf{A} \wedge \mathbf{B})$$

 $\mathbf{A} \wedge \neg \mathbf{B}, \neg \mathbf{A} \wedge \mathbf{B}, \mathbf{A} \wedge \mathbf{B} \text{ are pairwise disjoint}$

laws of duality

$$(11) \quad \beta(\mathbf{x}, \mathbf{A}, \mathbf{B}) \quad \Longleftrightarrow \quad [\neg \mathbf{x} \vee (\mathbf{A} \vee \neg \mathbf{B})] \wedge [\mathbf{x} \vee (\neg \mathbf{A} \vee \mathbf{B})] \wedge (\mathbf{A} \vee \mathbf{B})$$

(12)
$$\mathbf{f} \Longrightarrow \mathbf{a} \wedge \mathbf{b} \Longrightarrow \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \Longrightarrow \mathbf{a} \vee \mathbf{b} \Longrightarrow \mathbf{t}$$
 enclosure law using $\beta(\mathbf{x}, \mathbf{a}, \mathbf{b})$

(13)
$$\beta(\mathbf{x}, \beta(\mathbf{y}, \mathbf{a}, \mathbf{b}), \beta(\mathbf{y}, \mathbf{c}, \mathbf{d})) \iff \beta(\mathbf{y}, \beta(\mathbf{x}, \mathbf{a}, \mathbf{c}), \beta(\mathbf{x}, \mathbf{b}, \mathbf{d}))$$

$$(14) \quad \beta(\mathbf{x_i}, \mathbf{A}(\underline{\mathbf{x}}), \mathbf{B}(\underline{\mathbf{x}})) \Longleftrightarrow \beta(\mathbf{x_i}, \mathbf{A}(\mathbf{x_i} \Leftrightarrow \mathbf{t}), \mathbf{B}(\mathbf{x_i} \Leftrightarrow \mathbf{f}))$$

 $\mathbf{x_i} \in \text{set}(\mathbf{\underline{x}})$ substitution rule

(15)
$$\beta(\mathbf{x}, \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}), \mathbf{c}) \iff \beta(\mathbf{x}, \mathbf{a}, \mathbf{c})$$

special cases of substitution rules

(16)
$$\beta(\mathbf{x}, \mathbf{a}, \beta(\mathbf{x}, \mathbf{b}, \mathbf{c})) \Longleftrightarrow \beta(\mathbf{x}, \mathbf{a}, \mathbf{c})$$

(17) $A(x) \iff \beta(x_i, A(x_i \Leftrightarrow t), A(x_i \Leftrightarrow f))$

 $\mathbf{x}_i \in \operatorname{sct}(\underline{\mathbf{x}});$ From BO14 with $\mathbf{A}(\underline{\mathbf{x}}) \Longleftrightarrow \mathbf{B}(\underline{\mathbf{x}})$ Expansion rules for propositional logic functions

(18) $\beta(\mathbf{A}(\mathbf{x}), \mathbf{B}(\mathbf{x}), \mathbf{C}(\mathbf{x})) \iff \mathbf{A}(\mathbf{t} := \mathbf{B}, \mathbf{f} := \mathbf{C})$

composition rule (if A in PNF)

 $(19) \quad \beta(\beta(\mathbf{x},\mathbf{y},\mathbf{z}),\mathbf{a},\mathbf{b}) \Longleftrightarrow \beta(\mathbf{x},\beta(\mathbf{y},\mathbf{a},\mathbf{b}),\beta(\mathbf{z},\mathbf{a},\mathbf{b}))$

special case of composition rule

- (20) $A \iff \beta(A, t, f)$
- (21) $\neg A \iff \beta(A, f, t) \iff A(t := f, f := t)$
- (22) $A \wedge B \iff \beta(A, B, f) \iff A(t := B)$
- (23) $\mathbf{A} \vee \mathbf{B} \iff \beta(\mathbf{A}, \mathbf{t}, \mathbf{B}) \iff \mathbf{A}(\mathbf{f} := \mathbf{B})$
- (24) $A \longrightarrow B \iff \beta(A, B, t) \iff A(t := B, f := t)$
- (25) $A \longleftrightarrow B \iff \beta(A, B, \neg B) \iff A(t := B, f := \neg B)$
- (26) $A \longleftrightarrow B \iff \beta(A, \neg B, B) \iff A(t := \neg B, f := B)$

