DATA WAREHOUSE ASSIGNMENT

QUESTION 1

1 BUSINESS PROCESS

Design a Data Warehouse for IPL Cricket Tournament

- Where is the tournament taking place?
- How many countries are participating in the tournament?
- When is the tournament starting and ending?
- How many games are played per day?

2 THE GRAIN

Each team involved in the tournament. A single entry in the fact table will describe the entire tournament activities.

3 DIMENSION

QUESTION 2

1 BUSINESS PROCESS

Design a Data Warehouse for Food Delivery App e.g Swiggi

- Where is the tournament taking place?
- How many countries are participating in the tournament?
- When is the tournament starting and ending?
- How many games are played per day?

2 THE GRAIN

The granularity of FactDeliveres is each line on the invoice. The Product dimension includes supplier information.

3 DIMENSION

Dimension Tables are: Invoice, Delivery, Product, Supplier, Payment, User_Account, Card_details

4 FACT

QUESTION 3

1 BUSINESS PROCESS

Design a Data Warehouse for Cab Ride Services e.g Uber

- Track rides done by a driver and their performance?
- How many rides are taken to known destinations each day?
- How many trips were cancelled per day?
- How many rides and the average price during peak hours per day?

2 THE GRAIN

An individual trip on each transaction level. One single entry in the fact table that will describe the entire process of the business trip.

3 DIMENSION

Dimension Tables are: Customer, Driver, Car, Location, Payment, Card_details and Document

4 FACT

Fact tables are: Trip

QUESTION 4

1 BUSINESS PROCESS

Design a Data Warehouse for Restaurant Table Booking

- Where is the Restaurant located?
- How many people are the reservations for?
- When is the reservation booking?
- What time is the reservation?

2 THE GRAIN

The granularity of FactReservation is one row per reservation per customer.

3 DIMENSION

Dimension Tables are: Customer, Restaurant, Employee, Date, Payment, Card_details, Cuisine, Department and Confirmation

4 FACT

Fact tables are: Reservation

1 BUSINESS PROCESS

Design a Data Warehouse for Covid Vaccination Application

- Where is the Hospital located?
- How many recovered cases are reported?
- How many people test positive?
- How many death cases are reported?
- Number of reported cases?

2 THE GRAIN

The granularity of FactCovid 19 is one row per patient per vaccination.

3 DIMENSION

Dimension Tables are: Hospital, Patient, Vaccine, Staff, Location, Sample, Storage

4 FACT

Fact tables are: Covid_19

SCENARIO 1

1 BUSINESS PROCESS

Design a Data Warehouse for Student enrolment in Stanford Courses

- Which courses are most popular?
- Which Instructors are most popular?
- Which courses are most popular among graduate students?
- Which courses are most popular among undergraduate students?
- Are there courses for which the assigned classrooms are too large or too small?

2 THE GRAIN

The granularity of Factcourse_enrolment, is one row per student per course enrolment.

3 DIMENSIONS

Dimension Tables are Courses, Department, Student, Term, Classroom, and Instructor

4 FACT

Fact tables are: Course_enrolment (course_id, depart_id, student_id, term_id, classroom_id, instructor_id, EnrollmentCount)

Question 1

Option A		
Strengths	Weaknesses	
It allows for Course Instructor choices to be	Data access and data processing time is	
made	increased	
Instructor dimension is added to the fact table	Added row increases the size of the instructor entity	
It includes all entities and the relationship		
among them		
Option B		
Database records are easily enhanced	Too many entity rows created	
Create a normalised instructor entity	Improper aggregation of an enrollment count	
	value	
Easy data transformation process		
Ease of writing data to the entity instructor		
Option C		
Create a normalized Instructor entity i.e	Create confusion for warehouse users	
normalization occurs here		
Trusted database stored in data warehouse	Double entry in the Fact table	
	A bit more effort is required to enhance the data	

Question 2

Option a will be most appropriate due to the following reasons;

- 1. It's easy to extract data from the source application
- 2. Data transformation and filtration are easy to complete
- 3. Less complication
- 4. Limited dimensions entity
- 5. Easy to query the data warehouse

Question 3

My response to the question would change and option C would have been chosen based on the circumstances described because option C would guarantee data integrity in the data warehouse. This is because normalized data is created for easy data transformation before being loaded into the data warehouse.

SCENARIO 2

1 BUSINESS PROCESS

Design a Data Warehouse for an Online Brokerage Company

- How often do they make transactions?
- What is the average transaction size?
- How recent is the transaction?
- How much profit is earned by each customer per trade?

2 THE GRAIN

The granularity of the Trades fact table is one row per stock trade.

3 DIMENSIONS

Dimension Tables are Date, Customer, Account, Security, Trade_Type, CustomerScore

4 FACT

Fact tables is: Trades (date_id, customer_id, account_id, trade_type_id)

Query

Write a query to find how many trades were placed in July by customers in each activity segment.

Question 1

Option A		
Advantages	Disadvantages	
Easy to update data	Not ideal for historical data storage or retrieval	
Changes happen on the current or latest date	Not recommended for analytical data	
Option B		
Encourages data consistency and integrity when	The size of the entity increases as the update	
new rows are created	happens	
Score update is straightforward	Cannot access inactive records.	
Option C		
Easy to use for a transactional process	Score updates for the customers will require row	
	by row record filter of an entire database table	
Proper Fact value aggregation	The update process takes longer	
Option D		
Normalization happens at this level	Too many dimension tables are created	
Record updates are quick and easy	The outcome of a customer score cannot be	
	enhanced In the Fact table	

Question 6

Option A would be preferable. This is because this option conforms with the Star Schema architecture. Also, the fact table has a relationship with all the dimension tables as minimal dimension tables are created and because it's a Type 1 Slowly Changing Dimension, data filtration and update are easy to complete. The task also required the customer's score to be updated in the database to ensure data integrity and option B provided an easy platform to do this.

Question 7

Based on the given information, Option D would be chosen. This is because option D allows Normalization to occur, which will ensure easy data transformation. Data segmentation in the data warehouse will allow easy access to information and data integrity is maintained. With option D, data warehouse update happens in the outrigger table, which allows for a faster update process, rather than going through the entire table to do a row-by-row filter.

Question 8

Another reasonable alternative would be a Type 3 Slowly Changing Dimensions (Partial History).

Here the scores are the attributes of the Customer dimension. When scores change, the new score is updated in the destination table and the updated date will be the system date at the time. There are no in-between transactions, just the current and updated records in the database.

Advantages	Disadvantages
Access to recent and updated record	Increases memory consumption
Easy data transformation process	Cannot retrieve historical data