Three ways to show that P and Q are logically equivalent

- 1) Construct a truth table and show that in every line of P and Q that the truth values are the same (Proof by cases)
- 2) Construct a truth table and show that $P \leftrightarrow Q$ is a tautology.
- 3) Apply known logical equivalence to transform both P and Q into X.

DeMorgan's Law $\neg (p \lor q) \equiv \neg p \land \neg q$

P or Q is only false when both P and Q are false. Not enough to hand-wave, show with truth table. Values in the yellow columns are the same so they are logically equivalent:

P	Q	$(P \lor Q)$	$\neg(P \lor Q)$	$\neg P$	$\neg Q$	$\neg P \land \neg Q$
T	T	T	<mark>F</mark>	F	F	F
T	F	T	<mark>F</mark>	F	T	F
F	T	T	<mark>F</mark>	T	F	F
F	F	F	T	T	T	T

You should have these logical equivalences memorized. If the name is marked in green, you should know that as well.

Double Negation	$\neg \neg p \equiv p$	
Identity	$p \wedge True = p$	$p \vee False = p$
Domination	$p \land False = False$	$p \vee True \equiv True$
Negation	$p \land \neg p = False$	$p \vee \neg p \equiv True$
Idempotent	$p \wedge p \equiv p$	$p \lor p \equiv p$
Commutative	$p \wedge q = q \wedge p$	$p \lor q = q \lor p$
Associative	$(p \land q) \land r = q \land (p \land r)$	$(p \vee q) \vee r = q \vee (p \vee r)$
Distributive	$p \land (q \lor r) = (p \land q) \lor (p \land r)$	$p \lor (q \land r) = (p \lor q) \land (p \lor r)$
De Morgan's	$\neg (p \land q) \equiv \neg p \lor \neg q$	$\neg (p \lor q) \equiv \neg p \land \neg q$

Conditional	$p \to q \equiv \neg p \vee q$
	$p \rightarrow q \equiv \neg q \rightarrow \neg p$
Bi-Conditional	$p \Longleftrightarrow q = (p \land q) \lor (\neg p \land \neg q)$
	$p \Longleftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$

There are more equivalences in Tables 7 and 8 on page 28, but you don't strictly need them. You can always get replace the conditional with a formula that uses and/or/not and work from there. You should review those equivalences, as they might be helpful.

Example Proof 1:
$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

We could use a truth table, but lets use a direct proof. Can work on one side or the other or both

LHS:
$$(p \rightarrow q) \land (p \rightarrow r)$$

 $\equiv (\neg p \lor q) \land (\neg p \lor r)$ (by definition of implication)
 $\equiv (\neg p \lor q) \land (\neg p \lor r)$ (by definition of implication)

RHS:
$$p \rightarrow (q \land r)$$

$$\equiv (\neg p \lor (q \land r))$$
 (by definition of implication)

$$\equiv (\neg p \lor q) \land (\neg p \lor r)$$
 (by distributive)

Example Proof 2: $\neg (p \rightarrow q) \equiv p \land \neg q$

LHS:
$$\neg(p \rightarrow q)$$

 $\equiv \neg(\neg p \lor q)$ (by definition of implication)
 $\equiv (\neg \neg p \land \neg q)$ (by De Morgan's)
 $\equiv (p \land \neg q)$ (by Double negation)

RHS: $p \land \neg q$

Satisfiability: Can I find some assignment of truth values to propositional variables that will make a proposition true?

Example

P: Paul has \$100

R: Ron has \$100

S: Sam has \$100

T: Ted has \$100

1) If Paul has \$100 then Ron has \$100	$P \rightarrow R$
2) Sam or Ted has \$100	$S \vee T$
3) If Ron has \$100 then Sam does not have \$100	$R \rightarrow \neg S$
4) Paul has \$100 iff Ted has \$100	$P \Leftrightarrow T$

D	D	C	т	D	. ח	$C \cup T$	D C	D T	AND

P	R	S	T	$P \rightarrow R$	$S \vee T$	$R \rightarrow \neg S$	$P \Leftrightarrow T$	AND
T	T	T	T	Т	T	F	T	
T	T	T	F	T	T	F	F	
\mathbf{T}	T	F	T	T	T	T	T	Т
T	T	F	F	Т	F	T	F	
T	F	T	T	F	T	T	T	
T	F	T	F	F	T	T	F	
T	F	F	T	F	T	T	T	
T	F	F	F	F	F	T	F	
F	T	T	T	Т	T	F	F	
F	T	T	F	Т	T	F	T	
F	T	F	T	Т	T	T	F	
F	T	F	F	Т	F	T	T	
F	F	T	T	Т	T	T	F	
F	F	Т	F	Т	T	T	T	Т
F	F	F	T	Т	T	T	F	
F	F	F	F	Т	F	T	T	

(Blue markings just delineate chunks of four possibilities of our propositional variables.)

So this problem has two possible solutions

- 1) Paul, Ron and Ted have \$100 and Sam does not.
- 2) Paul, Ron and Ted do not have \$100 and Sam does

If we add the proposition: Sam does not have \$100, we end up with a single solution.