Symbolic Music Similarity Presentation

Ali Bektas Paul Kröger

February 3, 2020

Überblick

- 1. Grundlegendes
- 2. A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

Darstellung von Noten

- Melodie: "singbare, in sich geschlossene Folge von Tönen" [?]
- Harmonie: "wohltönender Zusammenklang mehrerer Töne oder Akkorde" [?]
- Schlüssel: "dient in der Musiknotation dazu, im Notensystem festzulegen, welche Tonhöhe die fünf Notenlinien repräsentieren." [?]

Figure: Source: [?]

Darstellung von Noten

Im Grunde genommen , ermöglicht die herkömmliche Methode von Notendarstellung , Informationen über Rhytmus , Tonlage , Gefühl beim Spielen , vortragsbetreffliche Elemente zu übermitteln.

Figure: Source: IMLSP Archive

Darstellung von Noten

"Representing music as a weighted point set in a two-dimensional space has a tradition of many centuries. Since approximately the 10th century, one popular way of writing music has been to use a set of notes (points) in a two-dimensional space, with time and pitch as coordinates."[?]

Ein Graphbasierter Ansatz

"A Measure of Melodic
Similarity Based on a Graph
Representation of the Music
Structure" [?]
von Nicola Orio und Antonio
Rodá.

Ein Graphbasierter Ansatz

- Der Inhalt wird schrittweise vereinfacht.
- Dazu sind die **Gewichte** der einzelnen Noten von Bedeutung.
 - die unterliegende harmonische Funktion (harmonic weight)
 - die metrische Position (metric weight)
 - die Differenz der Tonlagen zwischen dem Ton und dem Grundton(melodic weight)

Ein Graphbasierter Ansatz

Figure: Funktionen der Noten im Skala [?]

Ein auf Graphen beruhender Ansatz

- Der Inhalt wird schrittweise vereinfacht.
- Dazu sind die **Gewichte** der einzelnen Noten von Bedeutung.
 - die unterliegende harmonische Funktion (harmonic weight)
 - die metrische Position (metric weight)
 - die Differenz der Tonlagen zwischen dem Ton und dem Grundton(melodic weight)

Ein mathematischer Ansatz

"Algorithms for Computing Geometric Measures of Melodic Similarity" [?] von Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio Mesa, Yurai Nunez, David Rappaport, and Godfried Toussaint

Ein mathematischer Ansatz

- Melodien werden als Polygonalketten dargestellt
- Tonlänge wird durch Länge der waagerechten Kanten modelliert
- Intervalle werden durch Länge der senkrechten Kanten modelliert

Insert Title

- Ein Wettbewerb und Plattform für Interessierte
- Es gibt verschiedene Kategorien
 - Real-time Audio to Score Alignment (a.k.a Score Following)
 - Discovery of Repeated Themes and Sections
 - Audio Melody Extraction
 - Symbolic Melodic Similarity
 - ...
- Gegeben ein Ziel , treten verschiedene Algorithmen gegeneinander zum Wettkampf an. Derjenige, der die besten Ergebnisse hat , gewinnt.
- Nun eine Frage:Wie kann man Algorithmen miteinander vergleichen?
- Es kommt nicht auf die Laufzeit oder Speicherbedarf an , sondern auf die Qualität der Ergebnisse.
- Welche Messmethoden gibt es , um die Qualität von solcen Ergebnissen zu beurteilen?

Overall	AP1	AP2	AU1	AU2	AU3	GAR1	GAR2	FHAR
ADR	0.031	0.024	0.666	0.698	0.706	0.712	0.739	0.730
NRGB	0.028	0.027	0.601	0.590	0.616	0.617	0.683	0.666
AP	0.017	0.023	0.525	0.477	0.500	0.508	0.545	0.545
PND	0.044	0.056	0.527	0.495	0.515	0.494	0.588	0.557
Fine	0.292	0.281	0.532	0.528	0.532	0.586	0.581	0.540
Psum	0.234	0.190	0.522	0.524	0.527	0.589	0.580	0.517
WCsum	0.179	0.146	0.470	0.480	0.486	0.537	0.526	0.470
SDsum	0.152	0.123	0.444	0.458	0.465	0.511	0.498	0.447
Greater0	0.397	0.323	0.677	0.653	0.650	0.743	0.743	0.657
Greater1	0.070	0.057	0.367	0.393	0.403	0.433	0.417	0.377

Figure: Source: [?]

Overall AP1 AP2 AU1 AU2 AU3 GAR1 GAR2 FHAF									
O	verall	AP1	AP2	AU1	AU2	AU3	GAR1	GAR2	FHAR
	ADR	0.031	0.024	0.666	0.698	0.706	0.712	0.739	0.730
	NRGB	0.028	0.027	0.601	0.590	0.616	0.617	0.683	0.666
	AP	<mark>0</mark> .017	0.023	0.525	0.477	0.500	0.508	0.545	0.545
	PND	0.044	0.056	0.527	0.495	0.515	0.494	0.588	0.557
	Fine	0.292	0.281	0.532	0.528	0.532	0.586	0.581	0.540
	Psum	0.234	0.190	0.522	0.524	0.527	0.589	0.580	0.517
٧	VCsum	0.179	0.146	0.470	0.480	0.486	0.537	0.526	0.470
	SDsum	0.152	0.123	0.444	0.458	0.465	0.511	0.498	0.447
G	reater0	0.397	0.323	0.677	0.653	0.650	0.743	0.743	0.657
G	Greater1 0.0		0.057	0.367	0.393	0.403	0.433	0.417	0.377

Inhaltsübersicht

- 1. Grundlegendes
- 2. A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

Ground Truth

- Experten werden befragt, Stücke aus der RISM A/II Sammlung nach deren Ähnlichkeiten zu einer Anfrage zu beurteilen.
- Die Sammlungen sind groß deswegen sind einige Techniken zur Eliminierung unrelevanter Elementen vorzunehmen , wie z.B
 - Nach der Differenz zwischen dem tiefsten und höchsten Ton.
 - Nach dem Verhältnis der kürzesten Note zu der längsten.
 - usw.
- Nicht für alle Stücke werden dieselben Elimierungsverfahren vorgenommen. Die Aspekte, durch die sich ein Stück auszeichnet sind beizubehalten. Das ist wiederum für die Experten zu entscheiden.

Ground Truth I

Figure: Abbildung: Ergebnisse der Befragung [?]

Ground Truth II

Ground Truth III

Overall	A	P1	AP2	AU1	AU2	AU3	GAR1	GAR2	FHAR
ADR	0.031		0.024	0.666	0.698	0.706	0.712	0.739	0.730
NRGB	0.028		0.027	0.601	0.590	0.616	0.617	0.683	0.666
AP	0.017		0.023	0.525	0.477	0.500	0.508	0.545	0.545
PND	0.044		0.056	0.527	0.495	0.515	0.494	0.588	0.557
Fine	0.292		0.281	0.532	0.528	0.532	0.586	0.581	0.540
Psum	0.	234	0.190	0.522	0.524	0.527	0.589	0.580	0.517
WCsum	0.	79	0.146	0.470	0.480	0.486	0.537	0.526	0.470
SDsum	0.1	52	0.123	0.444	0.458	0.465	0.511	0.498	0.447
Greater0	0.	97	0.323	0.677	0.653	0.650	0.743	0.743	0.657
Greater1	9.0	70	0.057	0.367	0.393	0.403	0.433	0.417	0.377

LAverage Dynamic Recall

Inhaltsübersicht

- 1. Grundlegendes
- A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

Symbolic Music Similarity

MIREX : Algorithmen treten gegeneinander an
Average Dynamic Recall

Average Dynamic Recall - ADR

Inhaltsübersicht

- 1. Grundlegendes
- 2. A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

Urbano MelodyShap

"Melody Retrieval using the Implication/Realization Model" [?]

Maarten Grachten, Josep Lluis Arcos and Ramon Lopez de Mantaras

Inhaltsübersicht

- 1. Grundlegendes
- 2. A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

Urbano MelodyShap

Urbano MelodyShape

"MelodyShape at MIREX 2014 Symbolic Melodic Similarity" [?] von Julian Urbano

Urbano MelodyShape

- Töne werden als Punkt auf Pitch-Time plane dargestellt.
- Darstellung als Funktion durch Interpolation mithile von Splines.

Needlemann - Wunsch Algorithmus

$$D = \begin{pmatrix} - & A & G & T & C \\ - & 0 & -1 & -2 & -3 & -4 \\ A & -1 & 0 & 0 & 0 & 0 \\ C & -2 & 0 & 0 & 0 & 0 \\ G & -3 & 0 & 0 & 0 & 0 \\ T & -4 & 0 & 0 & 0 & 0 \\ C & -5 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 0 & -1 & -2 & -3 & -4 \\ -1 & 1 & 0 & -1 & -2 \\ -2 & 0 & 0 & -1 & 0 \\ -3 & -1 & 1 & 0 & -1 \\ -4 & -2 & 0 & 2 & 1 \\ -5 & -3 & -1 & 1 & 3 \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & -1 & -2 & -3 & -4 \\ -1 & 1 & 0 & -1 & -2 \\ -2 & 0 & 0 & -1 & 0 \\ -3 & -1 & 1 & 0 & -1 \\ -4 & -2 & 0 & 2 & 1 \\ -5 & -3 & -1 & 1 & 3 \end{pmatrix}$$

ShapeH

Insertion : s(-, n) = -(1 - f(n))

Deletion:

$$s(n,-)=-(1-f(n))$$

Match: s(n,n)=1-f(n)

Time

- Insertion : $s(-, n) = -diff_p(n, \Theta(n)) \lambda k_t * diff_t(n, \Theta(n))$
- Deletion: $s(n, -) = -diff_p(n, \Theta(n)) \lambda k_t * diff_t(n, \Theta(n))$
- Match: $2\mu_p + 2\lambda k_t \mu_t = 2\mu_p (1 + k_t)$
- Substitution $s(n, m) = -diff_p(n, m) \lambda k_t * diff_t(n, m)$

Bibliographie I

- [1] Duden: Melodie: Rechtschreibung, Bedeutung, Definition, Herkunft https://www.duden.de/rechtschreibung/Melodie.
- [2] Duden: Harmonie: Rechtschreibung, Bedeutung, Definition, Herkunft https://www.duden.de/rechtschreibung/Harmonie.
- [3] "Notenschlüssel." Wikipedia, Wikimedia Foundation, 11 Dec. 2019, de.wikipedia.org/wiki/Notenschlüssel.
- [4] MIREX,Symbolic Melodic Similarity 2005,https://www.music-ir.org/mirex/wiki/2005:Symbolic_Melodic.
- [5] MIREX,Symbolic Melodic Similarity Results 2007, https://www.musicir.org/mirex/wiki/2007:Symbolic_Melodic_Similarity_Results.

Bibliographie II

- [6] Typke, Rainer. (2007). Music Retrieval based on Melodic Similarity.
- [7] Orio, N., and A. Rodá. 2009. "A Measure of Melodic Similarity Based on a Graph Representation of the Music Structure." In Proceedings of the International Conference for Music Information Retrieval, pp. 543–548.
- [8] Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio Mesa, Yurai Nunez, David Rappaport, and Godfried Toussaint, "Algorithms for Computing Geometric Measures of Melodic Similarity" Computer Music Journal, Vol.30, No. 3 (Autumn, 2006), pp. 67-76

Bibliographie III

- [9] Tonal Degrees [Online]. [Accessed 30 Jan 2020]. Available from: http://www.piano-play-it.com/musical-scales.html
- [10] J. Urbano. MelodyShape at MIREX 2014 Symbolic Melodic Similarity. Technical report, Music Information Retrieval Evaluation eXchange, 2014
- [11] Grachten, Maarten & Arcos, Josep Lluís & Mántaras, Ramon. (2020). Melody Retrieval using the Implication/Realization Model.