WHAT IS CLAIMED IS:

1. A compound of the formula I:

I

5

10

15

20

25

wherein:

R¹ is selected from the group consisting of:

- (1) hydrogen,
- (2) $R^{4}-S(O)_{p}N(R^{5})-$,

wherein R⁴ is independently selected from the group consisting of:

- (a) -C₁₋₈alkyl, which is unsubstituted or substituted with 1-6 fluoro,
- (b) $-NR^5R^6$,
- (c) phenyl, and
- (d) benzyl,

wherein R⁵ and R⁶ are independently selected from the group consisting of:

- (a) hydrogen,
- (b) -C₁₋₆alkyl, which is unsubstituted or substituted with 1-6 fluoro,
- (c) phenyl, and
- (d) benzyl,

and wherein p is independently 0, 1, or 2,

- (3) -CN,
- (4) -C₁₋₆alkyl-CN,
- (5) halogen,
- (6) phenyl, which is unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from:

(a) -CN,

(b) halo,

(c) -C₁₋₆alkyl,

(d) $-O-R^5$,

(e) $-CO_2R^5$, and

(f) $-C(O)R^5$,

(7)

wherein n is 1, 2, 3 or 4;

10

15

20

25

30

5

R² is selected from the group consisting of:

- (1) hydrogen,
- (2) -C₁₋₆alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, or -C₃₋₈cycloalkyl which is unsubstituted or substituted with 1-7 substituents where the substituents are independently selected from:
- (a) halo,
 - (b) hydroxy,
 - (c) -O-C₁₋₆alkyl,
 - (d) -C3-6cycloalkyl,
 - (e) $-S(O)_p-C_{1-6}$ alkyl,
- (f) -CN,
 - (g) -CO₂H,
 - (h) -CO₂-C₁-6alkyl,
 - (i) $-CO-NR^5R^6$,
 - (j) phenyl, which is unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from:
 - (i) -C₁₋₆alkyl,
 - (ii) -CN,
 - (iii) halo,
 - (iv) -CF₃,
 - (v) $-O-R^5$, and
 - (vi) -CO₂R⁵,

	(3)	are in	I which is unsubstituted or substituted with 1-5 substituents where the substituents dependently selected from:
		(a)	-C ₁₋₆ alkyl,
_		(b)	-CN,
5		(c)	halo,
		(d)	-CF ₃ ,
		(e)	-O-R ⁵ , and
		(f)	-CO ₂ R ⁵ ;
10	R ³ is selected	from the	e group consisting of:
	(1)	hydro	gen,
	(2)	-C ₁₋₆	alkyl, -C2-6alkenyl, -C2-6alkynyl, or -C3-8cycloalkyl which is unsubstituted or
		substi	tuted with 1-7 substituents where the substituents are independently selected from
		(a)	halo,
15		(b)	hydroxy,
	•	(c)	-O-C ₁₋₆ alkyl,
		(d)	-C ₃₋₆ cycloalkyl,
		(e)	phenyl or pyridyl, which is unsubstituted or substituted with 1-5 substituents
			where the substituents are independently selected from:
20			(i) $-C_{1-6}$ alkyl,
			(ii) -CN,
			(iii) halo,
			(iv) $-CF_3$,
			(v) $-O-R^5$, and
25			(vi) -CO ₂ R ⁵ ,
		(f)	$-S(O)_pN(R^5)-C_{1-6}$ alkyl, and
		(g)	$-S(O)_pN(R^5)$ - phenyl,
	(3)	pheny	I which is unsubstituted or substituted with 1-5 substituents where the substituents
		are in	dependently selected from:
30		(a)	-C ₁₋₆ alkyl,
		(b)	-CN,

(c)

(d)

halo,

-CF₃,

- (e) $-O-R^5$, and
- (f) $-CO_2R^5$;

X is selected from the group consisting of:

- (1) -CH₂-, and
- (2) -O-;

and pharmaceutically acceptable salts thereof.

2. The compound of Claim 1 of the formula II:

10

5

п.

3. The compound of Claim 2 wherein:

- 15 R¹ is selected from:
 - (1) $CH_3-S(O)_2N(CH_3)-;$
 - (2) CH₃CH₂-S(O)₂N(CH₃)-;
 - (3) $(CH_3)_2CH-S(O)_2N(CH_3)_{-}$;
 - (4) phenyl-S(O)₂N(CH₃)-; and
 - (5) (CH₃)₂N-S(O)₂N(CH₃)-;

(3) (0113)/211 5(0)/211(0113);

R² is -C₁₋₆alkyl, unsubstituted or substituted with cyclopropyl or halo;

R³ is -C₁-6alkyl or -C₃-8cycloalkyl; and

X is -CH2- or -O-;

and pharmaceutically acceptable salts thereof.

25

20

4. The compound of Claim 1 of the formula III:

ш.

5. The compound of Claim 1 wherein:

R¹ is selected from:

- (1) $CH_3-S(O)_2N(CH_3)-;$
- (2) $CH_3CH_2-S(O)_2N(CH_3)-;$
- (3) $(CH_3)_2CH-S(O)_2N(CH_3)_{-}$;
- (4) phenyl-S(O)₂N(CH₃)-; and
- (5) $(CH_3)_2N-S(O)_2N(CH_3)-;$

R² is -C₁₋₆alkyl, unsubstituted or substituted with cyclopropyl or halo;

R³ is -C₁-6alkyl or -C₃-8cycloalkyl; and

X is -CH2- or -O-;

10

20

25

and pharmaceutically acceptable salts thereof.

6. The compound of Claim 1 wherein:

 R^1 is R^4 -S(O)₂N(R^5)-,

wherein R⁴ is independently selected from the group consisting of:

- (a) -C₁₋₆alkyl, which is unsubstituted or substituted with 1-6 fluoro,
- (b) phenyl, and
- (c) benzyl,

and wherein R⁵ is independently selected from the group consisting of:

- (a) hydrogen,
- (b) -C₁₋₆alkyl, which is unsubstituted or substituted with 1-6 fluoro,

		(c)	phenyl, and
		(d)	benzyl.
		7. The co	ompound of Claim 6 wherein \mathbb{R}^1 is selected from:
5	(1)	CH3-S(O)2N(-
	(2)	CH ₃ CH ₂ -S(O	
	(3)	(CH ₃) ₂ CH-S(O) ₂ N(CH ₃)-; and
	(4)	phenyl-S(O)2l	N(CH ₃)-;
	(5)	(CH ₃) ₂ N-S(O)2N(CH3)
10			
		8. The co	ompound of Claim 7 wherein R ¹ is CH ₃ -S(O) ₂ N(CH ₃)
		9. The co	ompound of Claim 1 wherein R ² is -C ₁₋₆ alkyl, unsubstituted or substituted
	with cyclopro	oyl or halo.	
15			
		10. The co	ompound of Claim 9 wherein R ² is selected from:
	(1)	CH ₃ -;	
	(2)	CH ₃ CH ₂ -;	
	(3)	(CH ₃) ₂ CH-;	
20	(4)	CH ₃ CH ₂ CH ₂	-;
	(5)	(CH ₃) ₂ CHCH	[2-;
	(6)	CH ₃ CH ₂ CH ₂	CH ₂ -;
	(7)	CH ₃ CH ₂ CH ₂	CH ₂ CH ₂ -;
	(8)	cyclopropyl-C	'H ₂ -;
25	(9)	CF ₃ CH ₂ -; and	I
	(10)	CH ₂ FCH ₂	
		11. The co	ompound of Claim 1 wherein R ³ is -C ₁₋₆ alkyl or -C ₃₋₈ cycloalkyl.
30		12. The co	ompound of Claim 11 wherein R ³ is selected from:
	(1)	CH3-;	
	(2)	CH ₃ CH ₂ -;	
	(3)	(CH ₃) ₂ CH-;	

- (4) CH₃CH₂CH₂-;
- (5) (CH₃)₂CHCH₂-;
- (6) CH₃CH₂CH₂CH₂-;
- (7) CH₃CH₂CH₂CH₂CH₂-; and
- 5 (8) bicyclo[2.2.1]heptyl-.

10

- 13. The compound of Claim 12 wherein R³ is (CH₃)₂CHCH₂-.
- 14. A compound which is selected from the group consisting of:

Ex	Structure	Ex	Structure
2		3	
4		5	O N N N N N N N N N N N N N N N N N N N

Ex	Structure	Ex	Structure
6	O S N HZ HZ	7	
8		9	DE TENTO
10		11	
12	HN HN H	13	

Ex	Structure	Ex	Structure
14	ON NH HN	15	O Z HZ HZ
16	ON PHONE PHO	17	
18	O S N HN HN HN	19	OS O HN HN H

Ex	Structure	Ex	Structure
20	O N N N N N N N N N N N N N N N N N N N	21	
22	ON ON THE PROPERTY OF THE PROP	23	ON NHN NH NH
24		25	

Ex	Structure	Ex	Structure
26		27	
28		29	ON THE STATE OF TH
30	OS N HN H	31	ON O

Ex	Structure	Ex	Structure
32		33	
34	O S O H N O H N O	35	
36		37	

and pharmaceutically acceptable salts thereof.

15. A pharmaceutical composition comprising an effective amount of a compound of
5 Claim 1 and a pharmaceutically acceptable carrier.

16. A method for inhibition of β -secretase activity in a mammal in need thereof which comprises administering to the mammal a therapeutically effective amount of a compound of Claim 1.

5 17. A method for treating Alzheimer's disease in a patient in need thereof comprising administering to the patient an effective amount of a compound of Claim 1.