

EMC TEST REPORT

Report No. : TS13060079-EME

Model No. : 001

Issued Date : Aug. 30, 2013

Applicant: Peloton Interactive LLC

227 West 29th Street, Ninth Floor. New York, NY 10001

Test Method/ Standard: FCC Part 15 Subpart C Section §15.205 \ §15.207 \

§15.209 \ §15.247, and ANSI C63.4/2003.

Test By: Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

The test report was prepared by:

Candy Liu / Assistant

These measurements were taken by:

William Shia/ Senior Engineer

The test report was reviewed by:

Name Jimmy Yang
Title Engineer

Table of Contents

1. Summary of Test Data	
2. General Information	
3. Maximum 6 dB Bandwidth	
4. Maximum Output Power	12
5. Power Spectral Density	
6. RF Antenna conducted Spurious	
7. Radiated Spurious Emission	
8. Emission on Band Edge	

1. Summary of Test Data

Test/Requirement Description	Applicable Rule	Result
Minimum 6 dB Bandwidth	15.247(a)(2)	Pass
Maximum Output Power	15.247(b)	Pass
Power Spectral Density	15.247(e)	Pass
RF Antenna Conducted Spurious	15.247(d)	Pass
Radiated Spurious Emission	15.247(d), 15.205, 15.209	Pass
Emission on the Band Edge	15.247(d)	Pass
AC Power Line Conducted Emission	15.207	Pass

2. General Information

Identification of the EUT

Product: Peloton Cycle Console

Model No.: 001

FCC ID.: 2AA3N-QUARTZ

Frequency Range: 2412MHz ~ 2462MHz

Channel Number: 11 channels
Access scheme: DSSS, OFDM

Rated Power: DC12 V from adapter

Power Cord: N/A

Sample Received: Jun. 07, 2013

Test Date(s): Jun.26, 2013 ~ Aug. 02, 2013

Note 1: This report is for the exclusive use of Intertek's Client and is provided

pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is

or has ever been under an Intertek certification program.

Note 2: When determining the test conclusion, the Measurement Uncertainty

of test has been considered.

Description of EUT

The EUT is Peloton Cycle Console, and was defined as information technology equipment.

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

Antenna description

The antenna is affixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.

Antenna Gain : 3 dBi max

Antenna Type : PIFA printed antenna

Connector Type : I-PEX

Adapter information

The EUT will be supplied with a power supply from below list:

No.	Brand	Model no.	Specification
Adoptor	TECH	ATS050-P121	I/P: 100-240V, 50-60Hz, 1.2A
Adapter	IEUN	A13000-P121	O/P: 12V, 4.2A

Operation mode

The EUT was supplied with DC 12 V from Adapter(Test voltage: 120Vac, 60 Hz) and the transmission mode was executed test by "Engineer Mode" WiFi TX Test mode.

With individual verifying, the maximum output power was found at 1 Mbps data rate for 802.11b mode, 6 Mbps data rate for 802.11g mode and 6.5 Mbps data rate for 802.11n HT20 mod. The final tests were executed under these conditions and recorded in this report individually.

802.11b ch6 chain0

Data rate	PK	AV
(Mbps)	(dBm)	(dBm)
1	17.79	14.21
2	17.19	13.77
5.5	16.69	13.39
11	17.86	14.55

802.11g ch6 chain0

Data rate (Mbps)	PK (dBm)	AV (dBm)
6	17.89	12.24
9	18.32	12.43
12	16.78	11.44
18	18.58	12.5
24	18.63	12.52
36	17.57	11.91
48	18.43	12.74
54	18.81	12.65

802.11n HT20 ch6 chain0

Data rate	PK	AV
(Mbps)	(dBm)	(dBm)
6.5	17.58	12.28
13	18.85	12.6
19.5	18.07	11.06
26	18.53	12.39
39	18.92	12.85
52	17.12	12.51
58.5	18.98	13.48
65	18.52	12.68

3. Maximum 6 dB Bandwidth

Name of Test	Maximum 6 dB Bandwidth		
Base Standard	FCC 15.247 (a)(2)		

Test Result: Complies

Measurement Data: See Table 1 & plots below

Method of Measurement:

Reference FCC document: KDB558074

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz, video bandwidth (VBW) $\geq 3 \times \text{RBW}$. In order to make an accurate measurement, set the span greater than DTS channel bandwidth. The - 6dB bandwidth must be greater than 500 kHz.

Test Diagram:

Spectrum Analyzer

Table1. Maximum 6 dB Bandwidth

Mode	Channel	Frequency	6dB Bandwidth	Min. Limit	Pass/Fail
Wode	Onamici	(MHz)	(MHz)	(MHz)	1 433/1 411
	1	2412	9.081	0.5	Pass
802.11b	6	2437	9.036	0.5	Pass
	11	2462	9.067	0.5	Pass
	1	2412	15.147	0.5	Pass
802.11g	6	2437	15.018	0.5	Pass
	11	2462	15.137	0.5	Pass
802.11n	1	2412	15.076	0.5	Pass
HT20	6	2437	15.099	0.5	Pass
11120	11	2462	15.125	0.5	Pass

6 dB Bandwidth @ 802.11b mode channel 6

Title: 6dB Occupied Bandwidth (innocomm , 001)
Comment A: 802.11b_ChainO_Ch06_2437
Date: 03.JUL.2013 18:08:11

6 dB Bandwidth @ 802.11b mode channel 11

6 dB Bandwidth @ 802.11g mode channel 1

Title: 6dB Occupied Bandwidth (innocomm , 001)
Comment A: 802.11g_ChainO_Ch01_2412
Date: 03.JUL.2013 18:14:23

6 dB Bandwidth @ 802.11g mode channel 6

6 dB Bandwidth @ 802.11g mode channel 11

Title: 6dB Occupied Bandwidth (innocomm , 001)
Comment A: 802.11g_ChainO_Ch11_2462
Date: 03.JUL.2013 18:18:43

6 dB Bandwidth @ 802.11n HT20 mode channel 1

Title: 6dB Occupied Bandwidth (innocomm, 001)
Comment A: 802.11n(HT20)_Chain0_Ch01_2412
Date: 03.JUL.2013 18:22:16

6 dB Bandwidth @ 802.11n HT20 mode channel 6

Title: 6dB Occupied Bandwidth (innocomm, 001)
Comment A: 802.11n(HT20)_Chain0_Ch06_2437
Date: 03.JUL.2013 18:24:19

Page 12 of 58

6 dB Bandwidth @ 802.11n HT20 mode channel 11

Title: 6dB Occupied Bandwidth (innocomm, 001)
Comment A: 802.11n(HT20)_Chain0_Ch11_2462
Date: 03.JUL.2013 18:26:49

4. Maximum Output Power

Name of Test	Maximum output power	
Base Standard	FCC 15.247(b)	

Measurement Uncertainty: ±0.392 dB (k=2)

Test Result: Complies

Measurement Data: See Table below

Method of Measurement:

Reference FCC document: KDB558074

The power output was measured on the EUT using a 50 ohm SMA Cable connected to peak power meter via power sensor. Connect 20 dB attenuator and DC block at the input port of the power sensor. Measure conducted transmit power of at each antenna port ,besides another ports were terminated by 50 ohm and sum these power in linear power units, Power output was measured with the maximum rated input level.

Test Diagram:

Note 1: §15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note 2: §15.247 (b) (4) (ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Table 3. Maximum output power

Mode Chann	Channel	Frequency	Conducted Peak Output Power		Limit	Margin
		(MHz)	(dBm)	(mW)	(dBm)	(dB)
	1	2412	17.53	56.62	30	-12.47
802.11b	6	2437	17.79	60.12	30	-12.21
	11	2462	17.46	55.72	30	-12.54
	1	2412	17.34	54.20	30	-12.66
802.11g	6	2437	17.89	61.52	30	-12.11
	11	2462	17.97	62.66	30	-12.03
802.11n	1	2412	17.74	59.43	30	-12.26
HT20	6	2437	17.58	57.28	30	-12.42
11120	11	2462	17.82	60.53	30	-12.18

5. Power Spectral Density

Name of Test	Power Spectral Density	
Base Standard	FCC 15.247(e)	

Test Result: Complies

Measurement Data: See Table & plots below

Method of Measurement:

Reference FCC document: KDB558074

The power spectrum density was measured from the antenna port of the EUT using a 50 ohm spectrum analyzer. Set RBW = 100 kHz, VBW $\geq 300 \text{ kHz}$, sweep= auto couple. The peak level measured must be no greater than + 8 dBm. Power spectrum density was read directly and cable loss (1 dB)/external attenuator (20 dB) correction was added to the reading to obtain power at the EUT antenna terminals.

Test Diagram:

Spectrum Analyzer

Table 4. Power Spectral Density

Mode	Channel	Frequency	Power spectrum	Limit
Wiode	Charmer	(MHz)	density (dBm)	(dBm)
	1	2412	-11.28	8
802.11b	6	2437	-11.24	8
	11	2462	-10.26	8
	1	2412	-14.45	8
802.11g	6	2437	-15.19	8
	11	2462	-15.35	8
802.11n	1	2412	-15.34	8
802.1111 HT20	6	2437	-15.02	8
11120	11	2462	-13.66	8

Power Spectral Density @ 802.11b mode channel 1

Title: Power Density (innocomm , 001)
Comment A: 802.11b_ChainO_Ch01_2412
Date: 03.JUL.2013 18:07:27

Power Spectral Density @ 802.11b mode channel 6

Title: Power Density (innocomm , 001)
Comment A: 802.11b_ChainO_Ch06_2437
Date: 03.JUL.2013 18:09:45

Power Spectral Density @ 802.11b mode channel 11

Title: Рожег Density (innocomm , DO1)
Comment A: 802.11b_ChainO_Ch11_2462
Date: 03.JUL.2013 18:12:21

Power Spectral Density @ 802.11g mode channel 1

Title: Power Density (innocomm , 001)
Comment A: 802.11g_ChainO_Ch01_2412
Date: 03.JUL.2013 18:15:57

Power Spectral Density @ 802.11g mode channel 11

Title: Power Density (innocomm , 001)
Comment A: 802.11g_ChainO_Ch11_2462
Date: 03.JUL.2013 18:20:17

Power Spectral Density @ 802.11n HT20 mode channel 1

Power Spectral Density @ 802.11n HT20 mode channel 6

Title: Power Density (innocomm, 001)
Comment A: 802.11n(HT20)_Chain0_Ch06_2437
Date: 03.JUL.2013 18:25:54

Power Spectral Density @ 802.11n HT20 mode channel 11

Title: Power Density (innocomm, 001)
Comment A: 802.11n(HT20)_Chain0_Ch11_2462
Date: 03.JUL.2013 18:28:23

6. RF Antenna conducted Spurious

Name of Test	RF Antenna Conducted Spurious
Base Standard	FCC 15.247(d)

Test Result: Complies

Measurement Data: See plots below

Method of Measurement:

Reference FCC document: KDB558074

The measurements were performed from 30 MHz to 25 GHz RF antenna conducted per FCC 15.247 (d) was measured from the EUT antenna port using a 50 ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 100 kHz. Harmonics and spurious noise must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.

Test Diagram:

conducted spurious @ 802.11b mode channel 1 (2 of 3)

Conducted Spurious (innocomm , 801) Title: Comment A: 802.11b_ChainO_Ch01_2412 Date: 03.JUL.2013 18:06:45

conducted spurious @ 802.11b mode channel 1 (3 of 3)

conducted spurious @ 802.11b mode channel 6 (1 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11b_ChainO_Ch06_2437
Date: 03.JUL.2013 18:08:54

conducted spurious @ 802.11b mode channel 6 (2 of 3)

conducted spurious @ 802.11b mode channel 6 (3 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11b_ChainO_Ch06_2437
Date: 03.JUL.2013 18:09:18

conducted spurious @ 802.11b mode channel 11 (1 of 3)

conducted spurious @ 802.11b mode channel 11 (2 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11b_ChainO_Ch11_2462
Date: 03.JUL.2013 18:11:39

conducted spurious @ 802.11b mode channel 11 (3 of 3)

conducted spurious @ 802.11g mode channel 1 (1 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11g_ChainO_Ch01_2412
Date: 03.JUL.2013 18:15:07

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11g_ChainO_Ch01_2412
Date: 03.JUL.2013 18:15:16

conducted spurious @ 802.11g mode channel 1 (3 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11g_ChainO_Ch01_2412
Date: 03.JUL.2013 18:15:31

conducted spurious @ 802.11g mode channel 6 (1 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11g_ChainO_Ch06_2437
Date: 03.JUL.2013 18:17:21

conducted spurious @ 802.11g mode channel 6 (2 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11g_ChainO_Ch06_2437
Date: 03.JUL.2013 18:17:30

conducted spurious @ 802.11g mode channel 11 (1 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11g_ChainO_Ch11_2462
Date: 03.JUL.2013 18:19:27

conducted spurious @ 802.11g mode channel 11 (2 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11g_ChainO_Ch11_2462
Date: 03.JUL.2013 18:19:36

conducted spurious @ 802.11g mode channel 11 (3 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11g_ChainO_Ch11_2462
Date: 03.JUL.2013 18:19:51

conducted spurious @ 802.11n HT20 mode channel 1 (1 of 3)

conducted spurious @ 802.11n HT20 mode channel 1 (2 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11n(HT20)_ChainO_Ch01_2412
Date: 03.JUL.2013 18:23:09

conducted spurious @ 802.11n HT20 mode channel 1 (3 of 3)

conducted spurious @ 802.11n HT20 mode channel 6 (1 of 3)

Title: Conducted Spurious (innocomm, 001)
Comment A: 802.11n(HT20)_ChainO_Ch06_2437
Date: 03.JUL.2013 18:25:03

conducted spurious @ 802.11n HT20 mode channel 6 (2 of 3)

conducted spurious @ 802.11n HT20 mode channel 6 (3 of 3)

conducted spurious @ 802.11n HT20 mode channel 11 (1 of 3)

conducted spurious @ 802.11n HT20 mode channel 11 (2 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11n(HT20)_Chain0_Ch11_2462
Date: 03.JUL.2013 18:27:42

conducted spurious @ 802.11n HT20 mode channel 11 (3 of 3)

Title: Conducted Spurious (innocomm , 001)
Comment A: 802.11n(HT20)_Chain0_Ch11_2462
Date: 03.JUL.2013 18:27:57

7. Radiated Spurious Emission

Name of Test	Radiated Spurious Emission
Base Standard	FCC 15.247(d), 15.209, 15.205, 15.33(a)

Test Result: Complies

Measurement Data: See Tables below

Method of Measurement:

Reference FCC document: KDB558074, ANSI C63.4

The signal is maximized through rotation and placement in the three orthogonal axes. According to §15.33(a), the spectrum shall be investigated from the lowest radio frequency signal generated in the device, to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. Spectrum Analyzer Resolution Bandwidth is 100kHz or greater for frequencies 30MHz to 1GHz, 1MHz – for frequencies above 1GHz.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter. The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent 3 meters reading using inverse scaling with distance.

The EUT configuration please refer to the "Spurious set-up photo.pdf".

According to §15.33(a), the spectrum shall be investigated from the lowest radio frequency signal generated in the device, to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. Spectrum Analyzer Resolution Bandwidth is 100kHz or greater for frequencies 30MHz to 1GHz, 1MHz – for frequencies above 1GHz.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent 3 meter reading using inverse scaling with distance.

Test Diagram:

Radiated emission from 30MHz to 1GHz uses Bilog Antenna:

Radiated emission above 1GHz uses Horn Antenna:

Emission Limit:

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency	Field Strength
(MHz)	(microvolts/meter)
0.009~0.490	2400/F(kHz)
0.490~1.705	2400/F(kHz)
1.705~30	30
30-88	100
88-216	150
216-960	200
Above 960	500

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Measurement results: frequency range from 9kHz to 30MHz

Freq.	Receiver	ceiver Corr. Reading Corrected		Corrected	Limit	Margin
		Factor		Level	@ 3 m	
(MHz)	Detector	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Measurement results: frequencies equal to or less than 1 GHz

The test was performed on EUT under802.11b, 802.11g and 802.11n HT20 continuously transmitting mode. The worst case occurred at 802.11g Tx channel 11.

EUT : 001

Worst Case : 802.11g Tx at channel 11

Antenna	Freq.	Receiver	Corr.	Reading	Corrected	Limit	Margin
Polariz.			Factor		Level	@ 3 m	
(V/H)	(MHz)	Detector	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
V	251.16	QP	12.36	17.10	29.46	46.00	-16.54
V	321.00	QP	14.10	18.34	32.44	46.00	-13.56
V	518.88	QP	18.56	22.19	40.74	46.00	-5.26
V	621.70	QP	20.75	18.55	39.30	46.00	-6.70
V	970.90	QP	25.34	18.50	43.83	54.00	-10.17
V	990.30	QP	25.49	17.94	43.43	54.00	-10.57
Н	247.28	QP	12.36	17.33	29.69	46.00	-16.31
Н	520.82	QP	18.77	22.43	41.20	46.00	-4.80
Н	648.86	QP	21.55	17.45	38.99	46.00	-7.01
Н	771.08	QP	23.02	18.12	41.14	46.00	-4.86
Н	960.00	QP	25.54	16.39	41.93	46.00	-4.07
Н	992.24	QP	25.83	17.23	43.05	54.00	-10.95

Remark:

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor

Note: The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Measurement results: frequency above 1GHz

EUT : 001

Test Condition : 802.11b Tx at channel 1

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
7110	PK	V	33.0	44.60	32.45	44.05	54	-9.95
9648	PK	V	32.7	49.30	33.29	49.89	54	-4.11
12060	PK	V	31.6	50.87	32.86	52.13	54	-1.87
4824	PK	Н	35.1	38.54	35.80	39.24	54	-14.76
7236	PK	Н	33.0	44.60	32.02	43.62	54	-10.38
9390	PK	Н	33.8	47.59	34.25	48.04	54	-5.96
12030	PK	Н	31.6	50.87	31.09	50.36	54	-3.64

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

Test Condition : 802.11b Tx at channel 6

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4950	PK	V	35.1	38.54	36.38	39.82	54	-14.18
7311	PK	V	33.0	44.60	32.88	44.48	54	-9.52
9540	PK	V	32.7	49.30	32.16	48.76	54	-5.24
12420	PK	V	31.6	50.87	30.20	49.47	54	-4.53
4874	PK	Н	35.1	38.54	36.07	39.51	54	-14.49
7311	PK	Н	33.0	44.60	32.55	44.15	54	-9.85
9660	PK	Н	32.7	49.30	33.04	49.64	54	-4.36
12185	PK	Н	31.6	50.87	30.69	49.96	54	-4.04

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor

Test Condition : 802.11b Tx at channel 11

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4924	PK	V	35.1	38.54	35.87	39.31	54	-14.69
7350	PK	V	33.0	44.60	33.44	45.04	54	-8.96
9848	PK	V	32.7	49.30	32.43	49.03	54	-4.97
12310	PK	V	31.6	50.87	29.74	49.01	54	-4.99
4890	PK	Н	35.1	38.54	36.05	39.49	54	-14.51
7170	PK	Н	33.0	44.60	32.32	43.92	54	-10.08
9780	PK	Н	32.7	49.30	32.66	49.26	54	-4.74
12310	PK	Н	31.6	50.87	30.27	49.54	54	-4.46

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

Test Condition : 802.11g Tx at channel 1

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4890	PK	V	35.1	38.54	36.83	40.27	54	-13.73
7320	PK	V	33.0	44.60	32.34	43.94	54	-10.06
9648	PK	V	32.7	49.30	32.07	48.67	54	-5.33
12060	PK	V	31.6	50.87	29.21	48.48	54	-5.52
4860	PK	Н	35.1	38.54	36.03	39.47	54	-14.53
7170	PK	Н	33.0	44.60	32.10	43.70	54	-10.30
9648	PK	Н	32.7	49.30	32.11	48.71	54	-5.29
12060	PK	Н	31.6	50.87	30.47	49.74	54	-4.26

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

Test Condition : 802.11g Tx at channel 6

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4874	PK	V	35.1	38.54	35.81	39.25	54	-14.75
7350	PK	V	33.0	44.60	32.59	44.19	54	-9.81
9748	PK	V	32.7	49.30	31.37	47.97	54	-6.03
12210	PK	V	31.6	50.87	29.26	48.53	54	-5.47
4874	PK	Н	35.1	38.54	36.19	39.63	54	-14.37
7311	PK	Н	33.0	44.60	31.85	43.45	54	-10.55
9748	PK	Н	32.7	49.30	32.80	49.40	54	-4.60
12185	PK	Н	31.6	50.87	30.49	49.76	54	-4.24

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

Test Condition : 802.11g Tx at channel 11

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
7320	PK	V	33.0	44.60	33.14	44.74	54	-9.26
9848	PK	V	32.7	49.30	32.96	49.56	54	-4.44
12310	PK	V	31.6	50.87	29.88	49.15	54	-4.85
4924	PK	Н	35.1	38.54	35.99	39.43	54	-14.57
7320	PK	Н	33.0	44.60	32.82	44.42	54	-9.58
4924	PK	Н	35.1	38.54	35.99	39.43	54	-14.57
9848	PK	Н	32.7	49.30	32.12	48.72	54	-5.28
12310	PK	Н	31.6	50.87	31.23	50.50	54	-3.50

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

Test Condition : 802.11n HT20 Tx at channel 1

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4824	PK	V	35.1	38.54	36.56	40.00	54	-14.00
7320	PK	V	33.0	44.60	32.51	44.11	54	-9.89
9648	PK	V	32.7	49.30	31.87	48.47	54	-5.53
12060	PK	V	31.6	50.87	29.96	49.23	54	-4.77
4824	PK	Н	35.1	38.54	36.33	39.77	54	-14.23
7236	PK	Н	33.0	44.60	31.45	43.05	54	-10.95
9540	PK	Н	32.7	49.30	32.03	48.63	54	-5.37
12060	PK	Н	31.6	50.87	30.91	50.18	54	-3.82

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

Test Condition : 802.11n HT20 Tx at channel 6

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4874	PK	V	35.1	38.54	36.12	39.56	54	-14.44
7380	PK	V	33.0	44.60	32.34	43.94	54	-10.06
9748	PK	V	32.7	49.30	32.10	48.70	54	-5.30
12185	PK	V	31.6	50.87	28.63	47.90	54	-6.10
4874	PK	Н	35.1	38.54	35.66	39.10	54	-14.90
7410	PK	Н	33.0	44.60	32.44	44.04	54	-9.96
9748	PK	Н	32.7	49.30	31.75	48.35	54	-5.65
12300	PK	Н	31.6	50.87	30.24	49.51	54	-4.49

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

Test Condition : 802.11n HT20 Tx at channel 11

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4924	PK	V	35.1	38.54	36.93	40.37	54	-13.63
7230	PK	V	33.0	44.60	31.32	42.92	54	-11.08
9848	PK	V	32.7	49.30	33.34	49.94	54	-4.06
12310	PK	V	31.6	50.87	30.33	49.60	54	-4.40
4924	PK	Н	35.1	38.54	34.91	38.35	54	-15.65
7386	PK	Н	33.0	44.60	31.19	42.79	54	-11.21
9690	PK	Н	32.7	49.30	32.57	49.17	54	-4.83
12310	PK	Н	31.6	50.87	30.33	49.6	54	-4.40

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

8. Emission on Band Edge

Name of Test	Emission Band Edge
Base Standard	FCC 15.247(d)

Test Result: Complies

Measurement Data: See Tables & plots below

Method of Measurement:

Reference FCC document: KDB558074, ANSI C63.4

The frequency range from 30 MHz to 1000 MHz using Bilog Antenna.

The frequency range over 1 GHz using Horn Antenna.

Radiated emissions were invested cover the frequency range from 30 MHz to 1000 MHz using a receiver RBW of 120 kHz record QP reading, and the frequency over 1 GHz using a spectrum analyzer RBW of 1 MHz and 10 Hz VBW record Average reading. (15.209 paragraph), the Peak reading (1 MHz RBW/VBW) recorded also on the report.

	Channel	Frequency (MHz)		The Max. Field Strength	Limit	Margin
Mode			Detector	in Restrict Band	@ 3 m	
				(dBuV/m)	(dBuV/m)	(dB)
	1	2412	PK	58.03	74	-15.97
802.11b	1	2412	AV	45.86	54	-8.14
002.110	11	2462	PK	59.21	74	-14.79
	11	2462	AV	47.56	54	-6.44
	1	2412	PK	58.33	74	-15.67
802.11g	1	2412	AV	45.88	54	-8.12
	11	2462	PK	62.88	74	-11.12
	11	2462	AV	49.00	54	-5.00
	1	2412	PK	58.32	74	-15.68
802.11n	1	2412	AV	46.04	54	-7.96
(HT20)	11	2462	PK	67.28	74	-6.72
	11	2462	AV	49.82	54	-4.18

9. AC power line conducted emission

Name of Test	AC power line conducted emission
Base Standard	FCC 15.207

Test Result: Complies

Measurement Data: See Tables & plots below

Method of Measurement:

Reference FCC document: KDB558074, ANSI C63.4

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50 uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm/ 50 uH coupling impedance with 50 ohm termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement.

The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9kHz.

The EUT configuration please refer to the "Conducted set-up photo.pdf".

Test Diagram:

Emission Limit:

Freq.	Conducted Limit (dBuV)				
(MHz)	Q.P.	Ave.			
0.15~0.50	66 – 56*	56 – 46*			
0.50~5.00	56	46			
5.00~30.0	60	50			

^{*}Decreases with the logarithm of the frequency.

Phase: Line Model No.: 001

Operating mode: Adapter mode

Frequency	Corr. Factor	Level Qp	Limit Qp	Level Av	Limit Av		rgin dB)
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp	Av
0.152	0.13	47.42	65.87	27.68	55.87	-18.45	-28.19
0.190	0.13	50.22	64.02	34.71	54.02	-13.79	-19.30
0.207	0.14	48.96	63.32	33.32	53.32	-14.36	-20.00
0.255	0.14	41.87	61.60	27.15	51.60	-19.72	-24.44
0.491	0.17	38.88	56.14	22.62	46.14	-17.26	-23.52
18 622	1 10	41 11	60.00	34.08	50.00	-18.89	-15.92

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Lével (dBuV) Limit (dBuV)

Phase: Neutral Model No.: 001

Operating mode: Adapter mode

Frequency	Corr. Factor	Level Qp	Limit Qp	Level Av	Limit Av		rgin dB)
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp	Av
						1201510	
0.152	0.10	47.03	65.87	27.86	55.87	-18.84	-28.01
0.188	0.10	49.59	64.11	32.98	54.11	-14.51	-21.12
0.207	0.11	48.93	63.32	33.75	53.32	-14.39	-19.57
0.253	0.11	41.95	61.64	26.23	51.64	-19.69	-25.41
0.510	0.13	38.13	56.00	25.47	46.00	-17.87	-20.53
18.328	0.86	41.63	60.00	34.13	50.00	-18.37	-15.87

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

Appendix A: Test Equipment List

Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100018	2012/11/30	2013/11/29
Spectrum Analyzer	Rohde&schwarz	FSP30	100137	2013/06/21	2014/06/21
Spectrum Analyzer	Rohde&schwarz	FSEK30	100186	2013/01/23	2014/01/23
Horn Antenna (1-18G)	Schwarzbeck	BBHA 9120 D	9120D-456	2012/09/03	2014/09/03
Horn Antenna (14-42G)	SHWARZBECK	BBHA 9170	BBHA9170159	2012/09/05	2014/09/05
Broadband Antenna	SCHWARZBECK	VULB 9168	9168-172	2011/07/26	2013/07/25
Loop Antenna	RolfHeine	LA-285	02/10033	2012/03/20	2014/03/20
Pre-Amplifier	MITEQ	AFS44-001026 5042-10P-44	1495287	2011/10/27	2013/10/26
Pre-Amplifier	MITEQ	JS4-26004000 27-8A	828825	2012/09/18	2014/09/18
Power Meter	Anritsu	ML2495A	0844001	2012/10/09	2013/10/09
Power Senor	Anritsu	MA2411B	0738452	2012/10/09	2013/10/09
Temperature&H umidity Test Chamber	TERCHY	MHU-225LRU (SA)	950838	2013/06/14	2014/06/14
Two-Line -V-Network	Rohde&schwarz	ESH3-Z5	825562/003	2012/10/29	2013/10/29
Two-Line V-Network	Rohde&schwarz	ESH3-Z5	838979/014	2012/10/29	2013/10/29

Measurement Uncertainty:

Measurement uncertainty was calculated in accordance with TR 100 028-1.

Parameter	Uncertainty			
	Below 1 GHz	Vertical	3.90 dB	
Radiated Emission	Delow I GHZ	Horizontal	3.86 dB	
Radiated Emission	Above 1 GHz	Vertical	5.74 dB	
	Above I GHZ	Horizontal	5.55 dB	
Conducted Emission	2.08 dB			

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of *k*=2.