Méthodes numériques, travaux pratiques

le rapport devra être envoyé par mail (guillaume.fuhr@univ-amu.fr) avant le 06 mars 2016 au format pdf

Contents

1	1D equation				
	1.1	Diffus	ion	2	
	1.2	Advec	tion	2	
	1.3	Advec	tion-Diffusion	3	
2	Apı	oendic	es	4	
	2.1		ats analytiques	4	
		2.1.1	Solution générale de l'équation de la chaleur dans un domaine de taille finie	4	
	2.2	Métho	Méthodes numériques		
		2.2.1	Dérivés	5	
		2.2.2	Euler explicite	5	
		2.2.3	Euler implicite	5	
		2.2.4	Cranck-Nicholson	5	
		2.2.5	Runge-Kutta 4	5	
	2.3	Code	AdvDiff1D	5	
		2.3.1	téléchargement et compilation	5	
		2.3.2	Conditions initiales	6	
	2.4	comm	andes utiles	7	

Introduction

Le but du sujet proposé est d'étudier une équation d'advection-diffusion du point de vue des méthodes numériques de résolution. L'équation de base étudiée est la suivante :

$$\frac{\partial u(x,t)}{\partial t} + V \nabla u(x,t) = C \nabla^2 u(x,t)$$

$$\nabla := \begin{cases} \partial_x \\ \partial_y \\ \partial_z \end{cases}$$
(1)

Le domaine radial sera de taille $[L_x \times L_y] = [2\pi \times 2\pi]$, pour les diverses méthodes étudiées, il faudra choisir des valeurs pour Δt et Δx permettant d'atteindre un temps dans la simulation de l'ordre de $\simeq 10$ fois le temps caractéristique de la dynamique considérée.

Diffusion : $\tau_D = L^2/C$ Advection : $\tau_A = L/V$

Les coefficients et paramètres de grille ne sont pas imposés mais peuvent-être choisi librement. Un point de départ pour ces diverses valeurs vous pouvez utiliser une grille de taille $[8\times 8, 16\times 16, 32\times 32, \cdots, 256\times 256]$ et des valeurs pour C, V de l'ordre de $[10^{-2}, 10]$

1 1D equation

1.1 Diffusion

Dans cette partie, seul le terme de diffusion sera considéré :

$$\frac{\partial u(x,t)}{\partial t} = C \frac{\partial^2 u(x,t)}{\partial x^2} \tag{2}$$

- 1. Utilisez le programme advdiff pour résoudre l'équation utilisant la méthode d'Euler explicite. Déduisez du graphe de la solution aux divers temps les conditions de bords utilisées. Comment cela est-il implémenté dans le code?
- 2. Comparez les solutions obtenues quand $C\Delta t/\Delta x^2$ est $<1/2,=1/2-\epsilon,=1/2,=1/2+\epsilon,>1/2$
- 3. Calculez le taux de croissance obtenu numérique et comparez le au taux analytique.
- 4. Pour Δx donné, observez vous une limite de stabilité pour le schéma RK4 en fonction du pas Δt ? Estimez cette valeur à ± 0.01 prêt et comparez là au Δt correspondant à la méthode d'Euler explicite.
- 5. Théoriquement, il n'y a pas de limitation sur le pas de temps lors de l'utilisation d'un schéma implicite, est-ce vérifié numériquement? Commentez.

1.2 Advection

On s'interesse maintenant uniquement à l'équation d'advection :

$$\frac{\partial u(x,t)}{\partial t} + V \frac{\partial u(x,t)}{\partial x} = 0$$

- 1. Comment sont codées les dérivées spatiales dans le code? Est-ce un schéma avant, arrière ou centré?
- 2. Au sens physique, que fait une advection? en particulier, est-ce que la structure radiale de la solution est modifiée?
- 3. Qu'en est il dans les résultats obtenus avec les simulations numériques dans les deux cas suivant :
 - Quand on prend une fonction sin pour $u_0(x)$
 - Quand on prend une fonction de heavyside pour $u_0(x)$
- 4. Vérifiez si l'utilisation d'une méthode de RK4 permet d'utiliser un terme de dérivé centré en espace.
- 5. Comment évolue le système quand $V\Delta t/\Delta x$ est $<1, \simeq 1, =1, >1$ pour les méthodes d'Euler et RK4.
- 6. Estimez la valeur maximale pour $V\Delta t/\Delta x$ si vous considérez un schéma RK4

1.3 Advection-Diffusion

Regardons maintenant l'équation complète :

$$\frac{\partial u(x,t)}{\partial t} + V \frac{\partial u(x,t)}{\partial x} = C \frac{\partial^2 u(x,t)}{\partial x^2}$$

- 1. Quel type de dérivée est utilisée pour le terme d'advection dans le schéma d'Euler implicite implémenté?
- 2. Comme dans le cas avec uniquement la diffusion, calculez le coefficient de diffusion à partir des données obtenues, ce résultat correspond-il à la valeur attendue?
- 3. Calculez à partir de vos résultats, le taux de croissance suivant qu'une dérivée centrée ou arrière est utilisée en espace pour le terme d'advection? Ce résultat dépend-il de la valeur du coefficient d'advection?
- 4. Dans les parties précédentes, deux critères de stabilités ont pu être mis en évidence, que se passe-t-il si l'on choisit des paramètres ne vérifiant que l'un des 2?

2 Appendices

2.1 Résultats analytiques

2.1.1 Solution générale de l'équation de la chaleur dans un domaine de taille finie

cas 1D

$$\partial_t u(x,t) = C\partial_x^2 u(x,t) + Du(x,t) + S(x)$$
(3)

Domaine:
$$0 \le x \le Lx$$
 (4)

$$u(x,0) = u_0(x) \tag{5}$$

$$u(0,t) = 0 (6)$$

$$u(0, Lx) = 0 (7)$$

$$u(x,t) = \int_0^{Lx} u_0(x)G(x,\xi,t)d\xi + \int_0^t \int_0^{Lx} S(\xi)G(x,\xi,t-\tau)d\xi d\tau$$
 (8)

$$G(x,\xi,t) = \frac{2}{Lx}e^{(Dt)}\sum_{n=1}^{\infty}\sin\left(\frac{n\pi x}{Lx}\right)\sin\left(\frac{n\pi\xi}{Lx}\right)\exp\left(-\frac{Cn^2\pi^2t}{Lx^2}\right)$$
(9)

(10)

cas 2D

$$\partial_t u(x, y, t) = C\partial_x^2 u(x, t) + C\partial_y^2 u(x, y, t) + S(x, y)$$
(11)

Domaine:
$$0 \le x \le Lx$$
 (12)

$$-\infty \le y \le \infty \tag{13}$$

$$u(x, y, 0) = u_0(x, y) (14)$$

$$u(0,y,t) = 0 (15)$$

$$u(Lx, y, t) = 0 (16)$$

$$u(x,t) = \int_{-\infty}^{\infty} \int_{0}^{Lx} u_0(\xi,\eta) G(x,y,\xi,\eta,t) d\xi d\eta$$
 (17)

$$+ \int_0^t \int_0^{Lx} \int_{-\infty}^{\infty} S(\xi, \eta) G(x, y, \xi, \eta, t - \tau) d\xi d\eta d\tau$$
 (18)

$$G(x,\xi,t) = G_1(x,\xi,t)G_2(y,\eta,t)$$
 (19)

$$G_1(x,\xi,t) = \frac{2}{Lx} \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x}{Lx}\right) \sin\left(\frac{n\pi \xi}{Lx}\right) \exp\left(-\frac{an^2\pi^2 t}{Lx^2}\right)$$
(20)

$$G_2(y,\eta,t) = \frac{1}{2\sqrt{\pi Ct}} \left[\exp\left(-\frac{(y-\eta)^2}{4Ct}\right) - \exp\left(-\frac{(y+\eta)^2}{4Ct}\right) \right]$$
 (21)

2.2 Méthodes numériques

La convention suivante est utilisée dans la suite :

$$f(x,t) \to f(x_i,t_j) \to f(x+i\Delta x,t+j\Delta t) \to f_{t+i}^{x+j}$$

2.2.1Dérivés

Partant d'une équation type,

$$\frac{\partial f(x,t)}{\partial t} = L(t, f(x,t)) \tag{22}$$

dérivé avant :
$$\partial_t f(t) = \frac{f^{t+1} - f^t}{\Delta t}$$

dérivé arrière : $\partial_t f(t) = \frac{f^t - f^{t-1}}{\Delta t}$
dérivé centrée : $\partial_t f(t) = \frac{f^{t+1} - f^{t-1}}{2\Delta t}$ (23)

2.2.2Euler explicite

$$\frac{f^{t+1} - f^t}{\Delta t} = L(t, f^t)$$

$$f^{t+1} = f^t + \Delta t L(t, f^t)$$
(24)

$$f^{t+1} = f^t + \Delta t L(t, f^t) \tag{25}$$

2.2.3Euler implicite

$$\frac{f^{t+1} - f^t}{\Delta t} = L(t + \Delta t, f^{t+1})$$

$$f^{t+1} = f^t + \Delta t L(t + \Delta t, f^{t+1})$$
(26)

$$f^{t+1} = f^t + \Delta t L(t + \Delta t, f^{t+1}) \tag{27}$$

2.2.4Cranck-Nicholson

$$\frac{f^{t+1} - f^t}{\Delta t} = \frac{1}{2}L(t, f^t) + \frac{1}{2}L(t + \Delta t, f^{t+1})$$
(28)

$$f^{t+1} = f^t + \Delta t \left(\frac{1}{2} L(t, f^t) + \frac{1}{2} L(t + \Delta t, f^{t+1}) \right)$$
 (29)

Runge-Kutta 4 2.2.5

$$f^{t+1} = f^t + \frac{\Delta t}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right) \tag{30}$$

with
$$(31)$$

$$k_1 = \Delta t L(t, f^t) \tag{32}$$

$$k_2 = \Delta t L(t + \frac{\Delta t}{2}, f^t + \frac{1}{2}k_1)$$
 (33)

$$k_3 = \Delta t L(t + \frac{\Delta t}{2}, f^t + \frac{1}{2}k_2)$$
 (34)

$$k_4 = \Delta t L(t + \Delta t, f^t + k_3) \tag{35}$$

(36)

Code AdvDiff1D 2.3

téléchargement et compilation

adresse de téléchargement : https://github.com/GFuhr/MF_FCM6/zipball/master Code source se trouve dans le dossier TP1.

Comment compiler

- Sous linux (Mac?), la compilation se fait via la commande make.
- Pour éxécuter le programme généré sous linux, tapez ./advdiff.exe
- Sous Windows, dans un éditeur type VisualStudio ou Code::Blocks, chargez les fichiers advdiff.c et advdiff.h.

2.3.2 Conditions initiales

temps

$$\begin{array}{c|cc} & advection & diffusion \\ \hline t = 0 & u^0(x) & u^0(x) \end{array}$$

espace

$$\begin{array}{c|cc} & advection & diffusion \\ \hline x = 0 & u(t,0) & u(t,0) \\ x = L_x & u(t,L_x) \\ \end{array}$$

Champs initiaux

$$\begin{vmatrix} u^{0}(x) \\ u^{0}(x) \\ u^{0}(x) \end{vmatrix} = \begin{vmatrix} A\sin(\sigma \frac{\pi}{L_{x}}(x - x_{0})) \\ A\exp(-(x - x_{0})^{2}/\sigma^{2}) \\ A \text{ if } x \in [x_{0} - \sigma/2, x_{0} + \sigma/2] \\ 0 \text{ else} \end{vmatrix}$$

I/O Inputs:

Signification des entrées initiales.

• "Nx=?": nombre de points en espace

• "Npas=?" : nombre d'itérations en temps

• "Nout=?": chaque Nout iterations, u(t,x) sera exporté dans un fichier

• "C=?" : coefficient de diffusion

• "V=?" : coefficient d'advection

• "A=?": Amplitude initiale, comme décrit en 2.3.2

• "x0=?": Paramètre x_0 défini dans 2.3.2

• "sigma=?": Paramètre σ défini dans 2.3.2

• "Dx=?" : valeur du pas Δx

• "Dt=?" : pas de temps Δt

Sorties:

À chaque éxecution du programme, Nout fichiers de sortie sont générés $\mathbf{out}_{-}\mathbf{XXXX}.\mathbf{dat}$. Remarque, ces fichiers ne sont pas écrasés entre les runs. Chaque fichier est codé en format texte (ASCII) et contient (Nx-2) points avec les valeurs de u_i^j au temps t=j*Nout.

2.4 commandes utiles

- pour mesurer le temps d'éxécution, la commande **time** est utilisée : time ./bin/h2d_gcc.exe Remarque : une mesure ne peut être considérée comme fiable que si elle est supérieure à 10 secondes.
- tracer des données 1D avec gnuplot.

```
gnuplot> plot "out_0000.dat" with lines
```

- with Octave
 - to read datas use function load
 - to plot datas u(x,y), use function surf
 octave> data=load('H2D_0000.dat');
 octave> surf(data)
- download code in a terminal : wget https://github.com/GFuhr/MF_FCM6/zipball/master
- unzip archive: unzip master
- \bullet put unzipped files in a directory with a "friendly name" : mv GFuhr-MF_FCM6* newname
- change directory : cd
- create directory mkdir mkdir directory_name
- delete file : rm filename
- list file in a directory : ls directory_name
- list file in current directory : ls ./