LABORATORIO DE FÍSICA DE 2.º DE BACHARELATO

Exemplo de uso da folla de cálculo: «FisicaBachLabGal.ods»

Comezo

Ao abrir a folla de cálculo, mostrarase unha alerta de seguridade. Prema sobre o botón Activar macros. Para ir ao índice pode elixir unha destas opcións:

- Prema sobre a pestana **f** Índice situada na parte inferior.
- Pulse a tecla [Ctrl] mentres preme sobre a cela <u>Índice</u> situada na parte superior dereita.

Para ver a axuda pode elixir unha destas opcións:

- Prema sobre a pestana 🕯 Axuda situada na parte inferior.
- Pulse a tecla [Ctrl] mentres preme sobre a cela Axuda situada na parte superior dereita.

• Teclado e rato

	Abreviatura
[←] ([Intro] o [Enter] ou [Entrar])	[←]
[Supr] (o [Del] o [Delete])	[Supr]
[⊲] [←] ou [Backspace])	[🖾]
[Esp]	[Esp]
$[\downarrow]$	[\]
[�] o ([Shift] ou [Mayús])	[合]
$[\stackrel{\longleftarrow}{\hookrightarrow}]$ (o [Tab] ou [tabulador])	$\left[\stackrel{\longleftarrow}{\longleftarrow} \right]$
	[Supr] (o [Del] o [Delete]) [☑] [←] ou [Backspace]) [Esp] [↓] [♣] o ([Shift] ou [Mayús])

Teclas simples

Aceptar	[←]	[←]
Cela seguinte	[×]	[⊬]

Compination de tectas - Fresione à la vez las tectas. Apreviatur	Combinación de teclas	Presione a la vez las teclas:	Abreviatura
--	-----------------------	-------------------------------	-------------

Cela anterior	[�] e [≒]	
Copiar	[Ctrl] e [C]	([Ctrl]+[C])
Pegar	[Ctrl] e [V]	([Ctrl]+[V])
Pegar sen formato (menú)	[Ctrl], [公] e [V]	([Ctrl]+[Alt]+[V])
Pegar sen formato (rápido)	[Ctrl], [Alt], [公] e [V]	$([Ctrl]+[Alt]+[\Delta]+[V])$
Punto multiplicación	[♠] e [3]	([合]+[3])
Subíndice	[�] e [_], {número o signo} e {, [↹] o [↩]}	([_]+n.°+[←])
Superíndice	$[\boldsymbol{\Delta}]$ e $[^{\wedge}]$, {número o signo} e { $[Esp]$, $[\leftrightarrows]$ o $[\leftarrow]$ }	([�]+[^]+n.°+[←])
Ver opcións	[Alt] e [↓]	$([Alt]+[\downarrow])$
Limpar formato	[Ctrl] e [M]	([Ctrl]+[M])

Rato

Seleccionar Premer dúas veces (dobre clic)

Teclado e rato

Seguir ligazón (na folla cálculo) [Ctrl] e premer.

Datos

Para borrar os datos pode elixir unha destas opcións:

- Datos, instrucións e enunciado:
 - 1. Prema sobre o menú: Editar \rightarrow Seleccionar \rightarrow Seleccionar celas desprotexidas
 - 2. Pulse a tecla Supr.
- Tódolos datos:
 - 1. Prema sobre calquera cela de datos:
 - 2. Prema sobre o botón Borrar datos

- 3. No diálogo «Borrar os datos desta folla?», prema sobre o botón Aceptar.
- Só algúns dos datos:
 - 1. Seleccione co rato unha área na que se atopen os datos que desexa borrar.
 - 2. Prema sobre o botón Borrar datos
 - 3. No diálogo «Borrar os datos no intervalo seleccionado?», prema sobre o botón Aceptar.

Para elixir unha opción siga estes pasos:

- 1. Prema sobre a cela:
- 2. Prema sobre a frecha **₹** para ver la lista despregable.
- 3. Desprácese pola lista e elixa unha opción.

Para anotar unha cantidade:

Prema sobre unha cela: , e escriba nela a cantidade.

Se non lle gusta o formato no que se mostra o valor (por exemplo 1,00E-01), prema sobre a cela e pulse ao tempo as teclas [Ctrl] e [M] para limpar o formato (verase 0,1).

Para poñer un valor en notación científica pode elixir unha destas opcións:

- Escriba o número en formato científico 0,0E-0 da folla de cálculo.
- Escriba o número en formato habitual 0,0·10⁻⁰.
- Seleccione o valor noutro documento, cópieo ([Ctrl]+[C]) e pégueo ([Ctrl]+[Alt]+[♠]+[V]).

Exemplos de escritura en formato científico:

Escriba:Na cela aparecerá:Folla de cálculo:3E-93,00E-09Formato habitual: $3,00[\mbox{\ensuremath{$\triangle$}}][3]10[\mbox{\ensuremath{\triangle}}]^{-}[Esp][\mbox{\ensuremath{∞}}][\mbox{\ensuremath{\triangle}}]^{-9}[\mbox{\ensuremath{\leftarrow}}]$ $3,00\cdot10^{-9}$

(Despois do signo – pulse o espazador [Esp]. Pulse a tecla [☒] para borrar o espazo). Se ese número xa estaba nun documento, pode copiar e pegar seguindo estes pasos:

- Seleccióneo: prema sobre o principio do número e arrastre o rato ata o final
 Cópieo: menú Editar → Copiar
 ou dobre clic ou [Ctrl]+[C]
- 3. Prema sobre a cela:
- 4. Pégueo: menú Editar \rightarrow Pegado especial \rightarrow Pegar texto sen formato ou [Ctrl]+[Alt]+[\triangle]+[V]

• Como pegar o enunciado na folla de cálculo

Se o enunciado foi copiado da pestana de exemplos da mesma folla, só necesita pegalo, premendo ao tempo nas teclas [Ctrl] e [V]. Para pegar doutra orixe:

- 1. Prema dúas veces (dobre clic) sobre a cela situada baixo a etiqueta «Problema» da folla de cálculo. Selecciónea:
 - Ou pulsando ao tempo as teclas [Ctrl], [�] e [Esp]
 - ∘ Ou ben, premendo sobre o menú: Editar → Seleccionar todo
- 2. Pégueo, premendo ao tempo as teclas [Ctrl], [Alt], [♣] e [V].

No caso que desaparecese o formato da cela onde vai o enunciado, copie calquera outro enunciado da folla de cálculo e pégueo nela.

Outros cálculos

En tódalas pestanas aparecen unhas celas baixo o epígrafe: OUTROS CÁLCULOS.

Nelas pódense escribir fórmulas para facer cálculos.

Para poñer unha fórmula nunha cela, hai que empezar escribindo «=» e logo poñer símbolos de operacións («+», «-» «*» ou «/») e premer sobre as celas coas que operar.

Por exemplo, para que a cela A3 faga a suma entre os números qua hai nas celas A1 e B1:

- 1. **Prema sobre a cela** na que quere escribir a fórmula.
- 2. Escriba o signo igual [=] na cela. Isto lle indica a LibreOffice que escribe unha fórmula.
- 3. Agora pode seguir de calquera destas maneiras:
 - Prema sobre a cela A1. Pulse a tecla [+]. Prema sobre a cela B1.
 - Ou escriba a fórmula: =A1+B1
 onde A1 e B1 son as coordenadas das celas que quere sumar.
- 4. **Pulse a tecla** $[\leftarrow]$ para completar a entrada.

A cela mostrará agora o resultado da fórmula.

Pode usar unha variedade de funcións matemáticas para as fórmulas, como SUM para sumar ou RAÍZC para calcular a raíz cadrada. Consulte a axuda de LibreOffice para obter unha lista completa das funcións dispoñibles.

Cando a cela que contén o dato está en formato científico, como 6,67·10⁻¹¹, ten que empregar a función AVALOR, para que o transforme nun número. Por exemplo, a fórmula para calcular a velocidade na órbita

$$v = \sqrt{\frac{G \cdot M}{r}}$$
, se os datos se atopan nas celas do cadro (e tendo en conta que r é a suma: $R + h$), sería:

=RAÍZC(AVALOR(J8)*J2/(J3+J6))

	Н	I	l	K
2	Masa	M =	5,97E+24	kg
3	Raio	<i>R</i> =	6,37E+06	m
4				
5	Masa	<i>m</i> =		kg
6	Altura	h =	693 000	m
7				
8	Constante da gravitación	<i>G</i> =	6,67.10-11	$N \cdot m^2 / kg^2$

A cela onde escribiu a fórmula, por exemplo H22, presentaría o resultado: 7508,53966 609 457. Para obter un aspecto máis lexible podería empregar a función NUMFORMA. Se noutra cela, por exemplo J22, escribe a función = NUMFORMA(H22) o que vería en J22 sería: 7,51·10³.

Na pestana «Introd» ten máis información das funcións exclusivas que pode empregar. Para velas, faga clic en funcións.

Outros consellos

Faga unha copia de seguridade da folla de cálculo.

Nunca pegue ([Ctrl]+[V]) nunha cela de cor laranxa.

En vez diso, pegue sen formato:

menú Editar \rightarrow Pegado especial \rightarrow Pegar texto sen formato ou [Ctrl], [Alt] e [V].

Se xa o fixo, probe a desfacelo pulsando á vez as teclas [Ctrl] e [Z].

Se iso non vai, recupere desde a copia de seguridade ou descárguea de novo.

Se cambiou o aspecto dunha cela que era de cor branca e bordo azul probe a pulsar á vez as teclas [Ctrl] e [M].

Si iso non funciona, prema sobre outra cela que estea ben, e cópiea pulsando ao tempo as teclas [Ctrl] e [C]. Prema sobre a cela que cambiou de aspecto e pulse á vez as teclas [Ctrl], [Alt] e [V], e, en Preconfiguracións, prema sobre «Formatos só»

Tipos de problemas

Na páxina **f** Índice, aparecen as ligazóns ás follas cos tipos de problemas que pode resolver.

Para ir a algún deles, manteña pulsada a tecla [Ctrl] mentres fai clic co rato no Tema que contén o tipo de problemas desexado, ou faga clic co rato na pestana inferior correspondente.

O nome da pestana de cada tipo de problemas está na columna de **Pestana** na páxina findice. Pódense resolver exercicios dos seguintes temas:

Bloque	Tema	Pestana
Gravitación	Satélites	Satélites
Vibracións e ondas	Refracción	Refracción
Óptica xeométrica	Diagrama de raios	Óptica
	Cálculo da potencia dunha lente	Lentes
Física moderna	Efecto fotoeléctrico	Fotoelectr

Exemplos

Na columna da dereita da páxina findice, aparecen as ligazóns ás follas que conteñen copias dos datos dos problemas dos tipos que pode resolver. Se quere consultalos, manteña pulsada a tecla [Ctrl] mentres fai

clic co rato no <u>Tema</u> que contén o tipo de problemas desexado, ou faga clic co rato na pestana inferior correspondente. Note que as follas con exemplos comezan todas pola letra D, dende <u>D_Satélites</u> ata <u>D_Fotoel</u>.

◊ Satélites

Na pestana «Satélites», pódense resolver exercicios de laboratorio de satélites para determinar a masa do planeta, utilizando os datos tabulados das distancias ao centro e os períodos de 5 satélites.

En DATOS, escriba ou pegue ([Ctrl]+[Alt]+[Δ]+[V]) os valores das magnitudes nas celas de cor branca correspondentes a elas e <u>elixa</u> as unidades nas celas de cor laranxa situadas á súa dereita.

Na cela de cor laranxa que contén «Planeta», pode elixir a opción «Terra» ou escribir o nome do planeta. Se escolle «Terra», aparecerá o valor da masa da Terra con 5 cifras significativas. Pode cambiar ese dato polo que figura no enunciado. Se elixe «Terra» ou escribe o valor da masa do planeta, mostrarase a incerteza relativa da masa calculada.

Na cela de cor laranxa situada á dereita de «G=», pode elixir o valor da constante da gravitación con 3 ou 6 cifras significativas.

En RESULTADOS, pódese cambiar o número por defecto (3) de cifras significativas por outro entre 1 e 6.

1. a) A partir dos seguintes datos de satélites que orbitan arredor da Terra determina o valor da masa da Terra.

b) Se o valor indicado nos libros de texto para a masa da Terra é de 5,98×10²⁴ kg, que incerteza relativa

obtivemos a partir do cálculo realizado?

Satélites	Distancia media ao centro da Terra / km	Período orbital medio /min
DELTA 1-R/B	7595	158
O3B PFM	14 429	288
GOES 2	36 005	1449
NOAA	7258	102

DATO: $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$.

(A.B.A.U. ord. 24)

Rta.: $M = 3,63 \cdot 10^{24} \text{ kg; b) } \delta = 39 \%.$

Borre os datos.

Para ver o enunciado na mesma folla, seleccióneo na páxina de orixe e cópieo ([Ctrl]+[C]).

Prema sobre a cela da folla de cálculo situada baixo a etiqueta «Problema» e pegue o enunciado.

En DATOS, eliva se magnitudos pos primeiros celas de cor larenyo, eliva se unidados pas celas de

En DATOS, <u>elixa</u> as magnitudes nas primeiras celas de cor laranxa, elixa as unidades nas celas de abaixo e escriba ou pegue ([Ctrl]+[Alt]+[Δ]+[V]) os valores das magnitudes nas celas de cor branca correspondentes a elas.

ies a cias.				
Satélite	r	T		
	km	min		
1	7595	158		
2	14 429	288		
3	36 005	1449		
4	7258	102		
5				
Constante	da gravitación	G =	6,67·10 ⁻¹¹	$N \cdot m^2 / kg^2$
Terra	Masa	$\mathcal{M} =$	5,98·10 ²⁴	kg
O- DECLITAT	200 4 1	2 -:f:	:C t:	_

Os RESULTADOS mostrados, con 3 cifras significativas, son:

	T^2	r^3	r^3/T^2
Satélite	(s^2)	(m³)	(m^3/s^2)
1	8,99·10 ⁷	4,38·10 ²⁰	4,87·1012
2	2,99·10 ⁸	3,00.1021	1,01·10 ¹³
3	7,56·109	4,67·10 ²²	6,18·10 ¹²
4	3,75·10 ⁷	3,82·10 ²⁰	1,02·10 ¹³

		masa	incerteza
A partir da		m (kg)	δ (%)
media	$(4 \cdot \pi^2 / G) \cdot r^3 / T^2$ (media)	4,63.1024	22,5
pendente	$4 \cdot \pi^2 / (a \cdot G)$	3,63.1024	39,2

Análise: A incerteza obtida con estes datos é do 39 %.

Buscando na web atopei un erro no raio medio dos satélites GOES. Resulta que son satélites xeoestacionarios, pero a distancia que da o enunciado do problema é: a altura! en vez da distancia ao centro da Terra. Os datos do satélite DELTA 1-R/B non coinciden cos da páxina web: DELTA 1 R/B Satellite details 1969-101B NORAD 4251 (n2yo.com), nin o período (312 min) nin o raio medio da órbita (na páxina non da o valor do raio medio, senón o perixeo, 375 km, e o apoxeo, 17 342 km, pero a media destes valores é 8860 km). Substituín os valores do enunciado polos da páxina web, e entón a incerteza foi do 0,7 %.

♦ Péndulo

Na pestana «Péndulo» pódense resolver exercicios de laboratorio para determinar a aceleración da gravidade, cos datos (máximo 5) tabulados para os tempos dun n.º de oscilacións e as lonxitudes dos péndulos. En RESULTADOS, pódese cambiar o número por defecto (3) de cifras significativas por outro entre 1 e 6.

- 1. Quérese obter a aceleración da gravidade mediante un péndulo simple a partir das seguintes medidas, nas que o tempo corresponde a 10 oscilacións.
 - a) Represente graficamente o cadrado do período fronte á lonxitude do péndulo.
 - b) Determine a aceleración a partir da gráfica.

Rta.: $g = 9.82 \text{ m/s}^2$ (P.A.U. ord. 25)

Borre os datos.

Dorre ob datob.		
N.º	oscilacións:	
	Lonxitude	Tempo
N.º exp.	m	S
1		
2		
3		
4		
5		
T)	• 1	C 11

Para ver o enunciado na mesma folla, seleccióneo na páxina de orixe e cópieo ([Ctrl]+[C]). Prema sobre a cela da folla de cálculo situada baixo a etiqueta «Problema» e pegue o enunciado. En DATOS, escriba o valore do número de oscilacións na cela situada á dereita da etiqueta: «N.º oscilacións:», elixa a unidade de lonxitude na cela de cor laranxa debaixo de «Lonxitude», e escriba os valores das lonxitudes dos péndulos e dos tempos das oscilacións, nas celas de cor branca correspondentes.

N º	oscilacións:	10
14.	Lonxitude	Tempo
N.º exp.	m	S
1	0,6	15,6
2	0,82	18,2
3	0,9	19,1
4	1,05	20,5
5		

RESULTADOS e GRÁFICA.

The control of the co				
N.º	L (m)	T (s)	T^2 (s^2)	g (m/s²)
1	0,600	1,56	2,43	9,73
2	0,820	1,82	3,31	9,77
3	0,900	1,91	3,65	9,74
4	1,05	2,05	4,20	9,86

Da gráfica
$$y = m \cdot x + b$$

pendente	m =	$4,02 \text{ s}^2/\text{m}$
gravidade	g =	9,82 m/s ²

♦ Refracción

Na pestana «Refracción» pódense resolver exercicios de laboratorio para determinar o índice de refracción, cos datos (máximo 5) tabulados para os ángulos de incidencia e refracción.

En RESULTADOS, pódese cambiar o número por defecto (3) de cifras significativas por outro entre 1 e 6.

- 1. a) Describe o procedemento utilizado no laboratorio para determinar o índice de refracción cun dispositivo como o da figura.
 - b) Determina o índice de refracción a partir dos datos da táboa.

$$\theta_1(^{\circ})$$
 15,0 20,0 25,0 30,0 35,0 $\theta_2(^{\circ})$ 12,0 15,8 20,1 23,6 27,5

DATO: n(aire) = 1. θ_1 : ángulo de incidencia; θ_2 : ángulo de re-

fracción

Rta.: $n_{\rm r} = 1,24$

(A.B.A.U. ord. 23)

Borre os datos.

Ángulo de			
N.º exp.	incidencia	refracción	
1			О
2			О
3			o
4			o
5			o
,	índice	de refracción	medio
		1	incidencia

Para ver o enunciado na mesma folla, seleccióneo na páxina de orixe e cópieo ([Ctrl]+[C]).

Prema sobre a cela da folla de cálculo situada baixo a etiqueta «Problema» e pegue o enunciado.

En DATOS, <u>elixa</u> as unidades na cela de cor laranxa e escriba os valores dos ángulos de incidencia e refracción nas celas de cor branca correspondentes.

Escriba o valor do índice de refracción na cela de cor branca situada baixo o título «índice de refracción» e elixa a que medio corresponde na cela de cor laranxa situada á súa dereita.

Ángulo de			
N.º exp.	incidencia	refracción	
1	15	12	o
2	20	15,8	o
3	25	20,1	o
4	30	23,6	o
5	35	27,5	o
	índice	de refracción	medio
		1	incidencia

RESULTADOS e GRÁFICA.

N.°	seno(φ _r)	$seno(\phi_r)$	n_i/n_r
1	0,259	0,208	1,24
2	0,342	0,272	1,26
3	0,423	0,344	1,23
4	0,500	0,400	1,25
5	0,574	0,462	1,24
	n	$_{i}/n_{r}$ (media) =	1,24
De la gráfica	$y = m \cdot x + b$		
	pendente	<i>m</i> =	0,807
índice de refracción		$n_r =$	1,24
ángulo límite		λ =	53,8
refracció	n/incidencia		

♦ Lentes

Hai dúas pestanas «Óptica» e «Lentes».

Na pestana «Óptica» pódense resolver algúns exercicios de lentes.

- Pódese calcular a posición e o tamaño da imaxe dun obxecto producido por unha lente.
- Pódese ver un diagrama coas posicións e tamaños relativos do obxecto e da súa imaxe.

En RESULTADOS, pódese cambiar o número por defecto (3) de cifras significativas por outro entre 1 e 6.

 Na práctica de óptica xeométrica traballas con lentes converxentes e obtés imaxes nunha pantalla variando a distancia entre o obxecto e a lente. Xustifica con diagramas de raios os casos nos que non obtés imaxes na pantalla.

(A.B.A.U. extr. 19)

Borre os datos.

Lente	converxente	Unidades	cm
	Posición (cm)	Altura (cm)	
Foco			
Obxecto			
Imaxe			

Para ver o enunciado na mesma folla, seleccióneo na páxina de orixe e cópieo ([Ctrl]+[C]).

Prema sobre a cela da folla de cálculo situada baixo a etiqueta «Problema» e pegue o enunciado.

En DATOS, elixa a opción «Lente» na primeira cela de cor laranxa.

Elixa a opción «Foco» na cela de cor laranxa debaixo dela.

Escriba o valor da posición do foco (p. ex.: 20), na cela situada á dereita de «Foco».

Escriba na cela situada á dereita de «Obxecto» o mesmo valor para a posición do obxecto (20). Aparece unha mensaxe de que ten que ser negativa. Poña o signo «-» (-20).

Escriba a altura (p. ej.: 4) do obxecto na cela da dereita.

Escriba a artara (p. cj.: 1) do obxecto na ceia da dereita.			
Lente	converxente	Unidades	cm
	Posición (cm)	Altura (cm)	
Foco	20		
Obxecto	-20	4	
Imaxe			

Posición (cm) Altura (cm)

Obxecto -20,0 4,00 Aumento

Imaxe No se forma

Imaxe

Na pestana «Lentes» pódense resolver exercicios de laboratorio para determinar a potencia dunha lente cos datos tabulados (5 máximo) das distancias á lente do obxecto e a súa imaxe.

- 2. Cos datos das distancias obxecto, *s*, e imaxe, *s*′, dunha lente converxente representados na táboa adxunta:
 - a) Representa graficamente 1/s' fronte a 1/s.
 - b) Determina o valor da potencia da lente.

N.° exp,	s(cm)	s'(cm)
1	11,5	56
2	12,7	35,5
3	15,4	23,6
4	17,2	20,1

(A.B.A.U. extr. 22)

Rta.: b) *P* = 11,3 dioptrías.

<u>Borre os datos</u>. Copie ([Ctrl]+[C]) o enunciado e <u>pégueo</u> na cela situada debaixo de «Problema». Elixa a opción «cm» na cela de cor laranxa.

Escriba nas celas de cor branca as distancias do obxecto e a súa imaxe á lente.

Distancia			
N.º exp.	obxecto	imaxe	
1	11,5	56	cm
2	12,7	35,5	cm
3	15,4	23,6	cm
4	17,2	20,1	cm
5			cm

RESULTADOS e GRÁFICA

	1/s	1/s'	1/f	f
N.º	(m ⁻¹)	(m ⁻¹)	(m ⁻¹)	(m)
1	-8,70	1,79	10,5	0,0954
2	-7,87	2,82	10,7	0,0935
3	-6,49	4,24	10,7	0,0932
4	-5,81	4,98	10,8	0,0927
		media	10,7	0,0937
Da gráfica $y = m \cdot x + b$				
ordenada na orixe		0,113	cm ⁻¹	
	pote	encia da lente	11,3	dioptrías

♦ Efecto fotoeléctrico

Na pestana «Fotoeléctr» pódense resolver exercicios de laboratorio sobre o efecto fotoeléctrico, para calcular o traballo de extracción e a constante de Planck, cos datos tabulados (5 máximo) dos fotóns (enerxía, frecuencia ou lonxitude de onda) e dos electróns emitidos (enerxía, velocidade ou potencial de freada). En RESULTADOS, pódese cambiar o número por defecto (3) de cifras significativas por outro entre 1 e 6.

- 1. Nun experimento sobre o efecto fotoeléctrico nun certo metal observouse a correlación entre o potencial de freado, V(freado), e a frecuencia, v, da radiación empregada que mostra a táboa.
 - a) Representa graficamente a frecuencia f en unidades de 10¹⁴ Hz (eixo Y) fronte a V(freado) en V (eixo X) e razoe se debe esperarse unha ordenada na orixe positiva ou negativa.
 - b) Deduce o valor da constante de Planck a partir da gráfica.

DATO: $|q_e| = 1.6 \times 10^{-19} \text{ C}.$

(A.B.A.U. extr. 24)

Rta.: b) $h = 6.6 \cdot 10^{-34}$ J·s.

Borre os datos.

$clic \rightarrow$		← clic
1		
2		
3		
4		
5		

Para ver o enunciado na mesma folla, seleccióneo na páxina de orixe e cópieo ([Ctrl]+[C]).

Prema sobre a cela da folla de cálculo situada debaixo da etiqueta «Problema», e <u>pegue o enunciado</u>. En DATOS <u>elixa</u> a opción «f» na cela de cor laranxa situada á dereita de «<u>clic</u> \rightarrow » e a unidade (Hz) na cela de cor laranxa de abaixo. Nas celas de cor laranxa á súa dereita escolla «V».

Copie ([Ctrl]+[C]) os valores do enunciado e pégueos ([Ctrl]+[Alt]+[Δ]+[V]) ou escríbaos, en formato «folla de cálculo» científica (4E14) ou na habitual (4·10¹⁴), nas celas situadas debaixo das magnitudes.

Frecuencia Potencia freado		
N.º Exp.	f	V
	Hz	V
1	4·10 ¹⁴	0,15
2	5·10 ¹⁴	0,57
3	6·10 ¹⁴	0,98
4	7·10 ¹⁴	1,4
5	8·10 ¹⁴	1,81

En RESULTADOS, pódese cambiar o número por defecto (3) de cifras significativas por outro entre 1 e 6.

Fotóns		Electróns	Electróns Traballo de extracción	
f	$E = h \cdot f$	$E_c = q_e \cdot V$	$W_o = E - E_c$	J
(Hz)	(J)	(J)	(J)	
4,00.1014	2,65·10 ⁻¹⁹	$2,47 \cdot 10^{-20}$	2,40.10-19	
5,00.1014	3,31.10-19	$9,10\cdot 10^{-20}$	2,40.10-19	
6,00.1014	3,98·10 ⁻¹⁹	$1,57 \cdot 10^{-19}$	2,40.10-19	
7,00.1014	4,64.10-19	$2,24\cdot 10^{-19}$	2,40.10-19	
8,00.1014	5,30.10-19	$2,90 \cdot 10^{-19}$	2,40·10 ⁻¹⁹	
		Wo (media) =	$2,40\cdot10^{-19}$	J
Da gráfica	$y = m \cdot x + b$			
ordenada na orixe		<i>b</i> =	0,363	·10 ¹⁵ Hz
	f (Hz) $4,00\cdot10^{14}$ $5,00\cdot10^{14}$ $6,00\cdot10^{14}$ $7,00\cdot10^{14}$ $8,00\cdot10^{14}$ Da gráfica		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

pendente	<i>m</i> =	2,42·10 ¹⁴ Hz/V
Constante de Planck	h =	6,63·10 ⁻³⁴ J·s
Traballo de extracción	$W_o =$	2,40·10 ⁻¹⁹ J

En GRÁFICOS elixa a opción «fotóns» na cela de cor laranxa situada á esquerda de «← clic», «Frecuencia» á esquerda de «fronte a» e «Potencial de freado» á súa dereita.

Frecuencia	fronte a	Potencial de freado
dos <mark>fotónes</mark>		dos electróns

Cuestións e problemas das <u>Probas de avaliación de Bacha-</u> <u>relato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión <u>CLC09</u> de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 07/08/25

Sumario

LABORATORIO DE FÍSICA DE 2.º DE BACHARELATO	
Comezo	1
Teclado e rato	1
Datos	1
Como pegar o enunciado na folla de cálculo	2
Outros cálculos	2
Outros consellos	3
Tipos de problemas	3
Exemplos	3
Satélites5	
1. a) A partir dos seguintes datos de satélites que orbitan arredor da Terra determina o valor da masa	
da Terra	5
Péndulo	7
1. Quérese obter a aceleración da gravidade mediante un péndulo simple a partir das seguintes medi-	
das, nas que o tempo corresponde a 10 oscilacións	7
Refracción	3
1. a) Describe o procedemento utilizado no laboratorio para determinar o índice de refracción cun dispositivo como o da figura. b) Determina o índice de refracción a partir dos datos da táboa	
Lentes)
Na práctica de óptica xeométrica traballas con lentes converxentes e obtés imaxes nunha pantalla variando a distancia entre o obxecto e a lente. Xustifica con diagramas de raios os casos nos que non obtés imaxes na pantalla	
2. Cos datos das distancias obxecto, s, e imaxe, s', dunha lente converxente representados na táboa adxunta:	1
Efecto fotoeléctrico	2
1. Nun experimento sobre o efecto fotoeléctrico nun certo metal observouse a correlación entre o po-	
tencial de freado, V(freado), e a frecuencia, v, da radiación empregada que mostra a táboa12	2