Solution for "Quantum Computation and Quantum Information: 10th Anniversary Edition" by Nielsen and Chuang

goropikari

May 16, 2018

Copylight Notice:

@**()**\\$@

This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike $4.0\,$ International License.

Contents

2	Introduction to quantum mechanics	3	
8	Quantum noise and quantum operations	35	

Chapter 2

Introduction to quantum mechanics

2.1

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

2.2

$$A |0\rangle = A_{11} |0\rangle + A_{21} |1\rangle = |1\rangle \Rightarrow A_{11} = 0, \ A_{21} = 1$$

$$A |1\rangle = A_{12} |0\rangle + A_{22} |1\rangle = |0\rangle \Rightarrow A_{12} = 1, \ A_{22} = 0$$

$$\therefore A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

input: $\{|0\rangle, |1\rangle\}$, output: $\{|1\rangle, |0\rangle\}$

$$A |0\rangle = A_{11} |1\rangle + A_{21} |0\rangle = |1\rangle \Rightarrow A_{11} = 1, \ A_{21} = 0$$

$$A |1\rangle = A_{12} |1\rangle + A_{22} |0\rangle = |0\rangle \Rightarrow A_{12} = 0, \ A_{22} = 1$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2.3

From eq (2.12)

$$A |v_i\rangle = \sum_j A_{ji} |w_j\rangle$$
$$B |w_j\rangle = \sum_k B_{kj} |x_k\rangle$$

Thus

$$BA |v_{i}\rangle = B \left(\sum_{j} A_{ji} |w_{j}\rangle \right)$$

$$= \sum_{j} A_{ji} B |w_{j}\rangle$$

$$= \sum_{j,k} A_{ji} B_{kj} |x_{k}\rangle$$

$$= \sum_{k} \left(\sum_{j} B_{kj} A_{ji} \right) |x_{k}\rangle$$

$$= \sum_{k} (BA)_{ki} |x_{k}\rangle$$

$$\therefore (BA)_{ki} = \sum_{j} B_{kj} A_{ji}$$

2.4

$$I |v_j\rangle = \sum_i I_{ij} |v_i\rangle = |v_j\rangle, \ \forall j.$$

$$\Rightarrow I_{ij} = \delta_{ij}$$

2.5

Defined inner product on C^n is

$$((y_1, \dots, y_n), (z_1, \dots, z_n)) = \sum_i y_i^* z_i.$$

Verify (1) of eq (2.13).

$$\left((y_1, \dots, y_n), \sum_i \lambda_i(z_{i1}, \dots, z_{in}) \right) = \sum_i y_i^* \left(\sum_j \lambda_j z_{ji} \right)
= \sum_i y_i^* \lambda_j z_{ji}
= \sum_i \lambda_j \left(\sum_i y_i^* z_{ji} \right)
= \sum_j \lambda_j \left((y_1, \dots, y_n), (z_{j1}, \dots, z_{jn}) \right)
= \sum_i \lambda_i \left((y_1, \dots, y_n), (z_{i1}, \dots, z_{in}) \right).$$

Verify (2) of eq (2.13),

$$((y_1, \dots, y_n), (z_1, \dots, z_n))^* = \left(\sum_i y_i^* z_i\right)^*$$
 (2.1)

$$= \left(\sum_{i} y_i z_i^*\right) \tag{2.2}$$

$$= \left(\sum_{i} z_i^* y_i\right) \tag{2.3}$$

$$=((z_1,\cdots,z_n),(y_1,\cdots,y_n))$$
 (2.4)

Verify (3) of eq (2.13),

$$((y_1, \dots, y_n), (y_1, \dots, y_n)) = \sum_i y_i^* y_i$$

= $\sum_i |y_i|^2$

Since $|y_i|^2 \ge 0$ for all *i*. Thus $\sum_i |y_i|^2 = ((y_1, \dots, y_n), (y_1, \dots, y_n)) \ge 0$. From now on, I will show the following statement,

$$((y_1, \dots, y_n), (y_1, \dots, y_n)) = 0 \text{ iff } (y_1, \dots, y_n) = 0.$$

 (\Leftarrow) This is obvious.

Suppose $((y_1, \dots, y_n), (y_1, \dots, y_n)) = 0$. Then $\sum_i |y_i|^2 = 0$. Since $|y_i|^2 \ge 0$ for all i, if $\sum_i |y_i|^2 = 0$, then $|y_i|^2 = 0$ for all i. Therefore $|y_i|^2 = 0 \Leftrightarrow y_i = 0$ for all i. Thus,

$$(y_1,\cdots,y_n)=0.$$

$$\left(\sum_{i} \lambda_{i} |w_{i}\rangle, |v\rangle\right) = \left(|v\rangle, \sum_{i} \lambda_{i} |w_{i}\rangle\right)^{*}$$

$$= \left[\sum_{i} \lambda_{i} (|v\rangle, |w_{i}\rangle)\right]^{*} (\because \text{ linearlity in the 2nd arg.})$$

$$= \sum_{i} \lambda_{i}^{*} (|v\rangle, |w_{i}\rangle)^{*}$$

$$= \sum_{i} \lambda_{i}^{*} (|w_{i}\rangle, |v\rangle)$$

$$\langle w|v\rangle = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 - 1 = 0$$
$$\frac{|w\rangle}{\||w\rangle\|} = \frac{|w\rangle}{\sqrt{\langle w|w\rangle}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\frac{|v\rangle}{\||v\rangle\|} = \frac{|v\rangle}{\sqrt{\langle v|v\rangle}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

If k = 1,

$$|v_{2}\rangle = \frac{|w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle}{\||w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle\|}$$

$$\langle v_{1}|v_{2}\rangle = \langle v_{1}|\left(\frac{|w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle}{\||w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle\|}\right)$$

$$= \frac{\langle v_{1}|w_{2}\rangle - \langle v_{1}|w_{2}\rangle \langle v_{1}|v_{1}\rangle}{\||w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle\|}$$

$$= 0.$$

Suppose $\{v_1, \dots v_n\}$ $(n \leq d-1)$ is a orthonormal basis. Then

$$\langle v_j | v_{n+1} \rangle = \langle v_j | \left(\frac{|w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle}{\||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle\|} \right) \quad (j \leq n)$$

$$= \frac{\langle v_j | w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle |}{\||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle\|}$$

$$= \frac{\langle v_j | w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle\|}{\||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle\|}$$

$$= \frac{\langle v_j | w_{n+1}\rangle - \langle v_j | w_{n+1}\rangle}{\||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle\|}$$

$$= 0$$

Thus Gram-Schmidt procedure produces an orthonormal basis.

$$\sigma_0 = I = |0\rangle \langle 0| + |1\rangle \langle 1|$$

$$\sigma_1 = X = |0\rangle \langle 1| + |1\rangle \langle 0|$$

$$\sigma_2 = Y = -i |0\rangle \langle 1| + i |1\rangle \langle 0|$$

$$\sigma_3 = Z = |0\rangle \langle 0| - |1\rangle \langle 1|$$

$$\begin{split} |v_{j}\rangle \left\langle v_{k} | &= I_{V} \left| v_{j} \right\rangle \left\langle v_{k} | I_{V} \right. \\ &= \left(\sum_{p} \left| v_{p} \right\rangle \left\langle v_{p} | \right) \left| v_{j} \right\rangle \left\langle v_{k} | \left(\sum_{q} \left| v_{q} \right\rangle \left\langle v_{q} | \right) \right. \\ &= \sum_{p,q} \left| v_{p} \right\rangle \left\langle v_{p} | v_{j} \right\rangle \left\langle v_{k} | v_{q} \right\rangle \left\langle v_{q} | \right. \\ &= \sum_{p,q} \delta_{pj} \delta_{kq} \left| v_{p} \right\rangle \left\langle v_{q} | \right. \end{split}$$

Thus

$$(|v_j\rangle \langle v_k|)_{pq} = \delta_{pj}\delta_{kq}$$

2.11

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \det(X - \lambda I) = \det\left(\begin{bmatrix} -\lambda & 1 \\ 1 & -\lambda \end{bmatrix}\right) = 0 \Rightarrow \lambda = \pm 1$$
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Thus

$$|\lambda = -1\rangle = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

If $\lambda = 1$

If $\lambda = -1$,

$$X = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 w.r.t. $\{|\lambda = -1\rangle, |\lambda = 1\rangle\}$

 $|\lambda = 1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

2.12

$$\det\left(\begin{bmatrix}1 & 0\\ 1 & 1\end{bmatrix} - \lambda I\right) = (1 - \lambda)^2 = 0 \Rightarrow \lambda = 1$$

Therefore the eigenvector associated with eigenvalue $\lambda = 1$ is

$$|\lambda=1\rangle=\begin{bmatrix}0\\1\end{bmatrix}$$
 Because $|\lambda=1\rangle\,\langle\lambda=1|=\begin{bmatrix}0&0\\0&1\end{bmatrix},$

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \neq c |\lambda = 1\rangle \langle \lambda = 1| = \begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix}$$

Suppose $|\psi\rangle$, $|\phi\rangle$ are arbitrary vectors in V.

$$(|\psi\rangle, (|w\rangle\langle v|) |\phi\rangle)^* = ((|w\rangle\langle v|)^{\dagger} |\psi\rangle, |\phi\rangle)^*$$
$$= (|\phi\rangle, (|w\rangle\langle v|)^{\dagger} |\psi\rangle)$$
$$= \langle\phi| (|w\rangle\langle v|)^{\dagger} |\psi\rangle.$$

On the other hand,

$$(|\psi\rangle, (|w\rangle\langle v|) |\phi\rangle)^* = (\langle \psi|w\rangle\langle v|\phi\rangle)^*$$
$$= \langle \phi|v\rangle\langle w|\psi\rangle.$$

Thus

$$\langle \phi | (|w\rangle \langle v|)^{\dagger} | \psi \rangle = \langle \phi | v \rangle \langle w | \psi \rangle$$
 for arbitrary vectors $|\psi\rangle$, $|\phi\rangle$
 $\therefore (|w\rangle \langle v|)^{\dagger} = |v\rangle \langle w|$

2.14

$$((a_i A_i)^{\dagger} | \phi \rangle, | \psi \rangle) = (| \phi \rangle, a_i A_i | \psi \rangle)$$

$$= a_i (| \phi \rangle, A_i | \psi \rangle)$$

$$= a_i (A_i^{\dagger} | \phi \rangle, | \psi \rangle)$$

$$= (a_i^* A_i^{\dagger} | \phi \rangle, | \psi \rangle)$$

$$\therefore (a_i A_i)^{\dagger} = a_i^* A_i^{\dagger}$$

$$((A^{\dagger})^{\dagger} | \psi \rangle, | \phi \rangle) = (| \psi \rangle, A^{\dagger} | \phi \rangle)$$

$$= (A^{\dagger} | \phi \rangle, | \psi \rangle)^{*}$$

$$= (| \phi \rangle, A | \psi \rangle)^{*}$$

$$= (A | \psi \rangle, | \phi \rangle)$$

$$\therefore (A^{\dagger})^{\dagger} = A$$

$$P = \sum_{i} |i\rangle \langle i|.$$

$$P^{2} = \left(\sum_{i} |i\rangle \langle i|\right) \left(\sum_{j} |j\rangle \langle j|\right)$$

$$= \sum_{i,j} |i\rangle \langle i|j\rangle \langle j|$$

$$= \sum_{i,j} |i\rangle \langle j| \delta_{ij}$$

$$= \sum_{i} |i\rangle \langle i|$$

$$= P$$

Suppose $|v\rangle$ is a eigenvector with corresponding eigenvalue λ .

$$\begin{split} U \, |v\rangle &= \lambda \, |v\rangle \, . \\ 1 &= \langle v | v\rangle \\ &= \langle v | \, I \, |v\rangle \\ &= \langle v | \, U^\dagger U \, |v\rangle \\ &= \lambda \lambda^* \, \langle v | v\rangle \\ &= \|\lambda\|^2 \\ \therefore \lambda &= e^{i\theta} \end{split}$$

2.19

$$X^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$\begin{split} U &\equiv \sum_{i} \left| w_{i} \right\rangle \left\langle v_{i} \right| \\ A_{ij}' &= \left\langle v_{i} \middle| A \middle| v_{j} \right\rangle \\ &= \left\langle v_{i} \middle| U U^{\dagger} A U U^{\dagger} \middle| v_{j} \right\rangle \\ &= \sum_{p,q,r,s} \left\langle v_{i} \middle| w_{p} \right\rangle \left\langle v_{p} \middle| v_{q} \right\rangle \left\langle w_{q} \middle| A \middle| w_{r} \right\rangle \left\langle v_{r} \middle| v_{s} \right\rangle \left\langle w_{s} \middle| v_{j} \right\rangle \\ &= \sum_{p,q,r,s} \left\langle v_{i} \middle| w_{p} \right\rangle \delta_{pq} A_{qr}'' \delta_{rs} \left\langle w_{s} \middle| v_{j} \right\rangle \\ &= \sum_{p,r} \left\langle v_{i} \middle| w_{p} \right\rangle \left\langle w_{r} \middle| v_{j} \right\rangle A_{pr}'' \end{split}$$

Suppose M be Hermitian. Then $M = M^{\dagger}$.

$$\begin{split} M &= IMI \\ &= (P+Q)M(P+Q) \\ &= PMP + QMP + PMQ + QMQ \end{split}$$

Now $PMP = \lambda P$, QMP = 0, $PMQ = PM^{\dagger}Q = (QMP)^* = 0$. Thus M = PMP + QMQ. Next prove QMQ is normal.

$$\begin{split} QMQ(QMQ)^\dagger &= QMQQM^\dagger Q \\ &= QM^\dagger QQMQ \quad (M=M^\dagger) \\ &= (QM^\dagger Q)QMQ \end{split}$$

Therefore QMQ is normal. By induction, QMQ is diagonal ... (following is same as Box 2.2)

2.22

Suppose A is a Hermitian operator and $|v_i\rangle$ are eigenvectors of A with eigenvalues λ_i . Then

$$\langle v_i | A | v_j \rangle = \lambda_j \langle v_i | v_j \rangle$$
.

On the other hand,

$$\langle v_i|A|v_j\rangle = \langle v_i|A^\dagger|v_j\rangle = \langle v_j|A|v_i\rangle^* = \lambda_i^* \ \langle v_j|v_i\rangle^* = \lambda_i^* \ \langle v_i|v_j\rangle = \lambda_i \ \langle v_i|v_j\rangle$$

Thus

$$(\lambda_i - \lambda_j) \langle v_i | v_j \rangle = 0.$$

If $\lambda_i \neq \lambda_j$, then $\langle v_i | v_j \rangle = 0$.

2.23

Suppose P is projector and $|\lambda\rangle$ are eigenvectors of P with eigenvalues λ . Then $P^2=P$.

$$P |\lambda\rangle = \lambda |\lambda\rangle$$
 and $P |\lambda\rangle = P^2 |\lambda\rangle = \lambda P |\lambda\rangle = \lambda^2 |\lambda\rangle$.

Therefore

$$\lambda = \lambda^2$$
$$\lambda(\lambda - 1) = 0$$
$$\lambda = 0 \text{ or } 1.$$

2.24

Def of positive $\langle v|A|v\rangle \geq 0$ for all $|v\rangle$.

Suppose A is a positive operator. A can be decomposed as follows.

$$A = \frac{A + A^{\dagger}}{2} + i \frac{A - A^{\dagger}}{2i}$$

$$= B + iC \quad \text{where } B = \frac{A + A^{\dagger}}{2}, \quad C = \frac{A - A^{\dagger}}{2i}.$$

Now operators B and C are Hermitian.

$$\begin{split} \langle v|A|v\rangle &= \langle v|B+iC|v\rangle \\ &= \langle v|B|v\rangle + i\, \langle v|C|v\rangle \\ &= \alpha + i\beta \ \text{ where } \alpha = \langle v|B|v\rangle \,, \ \beta = \langle v|C|v\rangle \,. \end{split}$$

Since B and C are Hermitian, α , $\beta \in \mathbb{R}$. From def of positive operator, β should be vanished because $\langle v|A|v\rangle$ is real. Hence $\beta = \langle v|C|v\rangle = 0$ for all $|v\rangle$, i.e. C = 0.

Therefore $A = A^{\dagger}$.

Reference: MIT 8.05 Lecture note by Prof. Barton Zwiebach.

https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture-notes/MIT8_05F13_Chap_03.pdf

Proposition. 2.0.1. Let T be a linear operator in a complex vector space V. If (u, Tv) = 0 for all $u, v \in V$, then T = 0.

Proof. Suppose u = Tv. Then (Tv, Tv) = 0 for all v implies that Tv = 0 for all v. Therefore T = 0.

Theorem. 2.0.1. If (v, Av) = 0 for all $v \in V$, then A = 0.

Proof. First, we show that (u, Tv) = 0 if (v, Av) = 0. Then apply proposition 2.0.1 Suppose $u, v \in V$. Then (u, Tv) is decomposed as

$$(u,Tv) = \frac{1}{4} \left[(u+v,T(u+v)) - (u-v,T(u-v)) + \frac{1}{i} (u+iv,T(u+iv)) - \frac{1}{i} (u-iv,T(u-iv)) \right].$$

If (v, Tv) = 0 for all $v \in V$, the right hand side of above eqn vanishes. Thus (u, Tv) = 0 for all $u, v \in V$. Then T = 0.

2.25

$$\langle \psi | A^\dagger A | \psi \rangle = \| A \, | \psi \rangle \|^2 \geq 0 \text{ for all } | \psi \rangle \, .$$

Thus $A^{\dagger}A$ is positive.

$$|\psi\rangle^{\otimes 2} = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
$$= \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$
$$= \frac{1}{2}\begin{bmatrix}1\\1\\1\\1\end{bmatrix}$$

$$X \otimes Z = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

$$I \otimes X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$X \otimes I = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

In general, tensor product is not commutable.

2.28

$$(A \otimes B)^* = \begin{bmatrix} A_{11}B & \cdots & A_{1n}B \\ \vdots & \ddots & \vdots \\ A_{m1}B & \cdots & A_{mn}B \end{bmatrix}^*$$

$$= \begin{bmatrix} A_{11}^*B^* & \cdots & A_{1n}^*B^* \\ \vdots & \ddots & \vdots \\ A_{m1}^*B^* & \cdots & A_{mn}^*B^* \end{bmatrix}$$

$$= A^* \otimes B^*.$$

$$(A \otimes B)^{T} = \begin{bmatrix} A_{11}B & \cdots & A_{1n}B \\ \vdots & \ddots & \vdots \\ A_{m1}B & \cdots & A_{mn}B \end{bmatrix}^{T}$$

$$= \begin{bmatrix} A_{11}B^{T} & \cdots & A_{m1}B^{T} \\ \vdots & \ddots & \vdots \\ A_{1n}B^{T} & \cdots & A_{mn}B^{T} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}B^{T} & \cdots & A_{1m}B^{T} \\ \vdots & \ddots & \vdots \\ A_{n1}B^{T} & \cdots & A_{nm}B^{T} \end{bmatrix}$$

$$= A^{T} \otimes B^{T}.$$

$$(A \otimes B)^{\dagger} = ((A \otimes B)^*)^T$$
$$= (A^* \otimes B^*)^T$$
$$= (A^*)^T \otimes (B^*)^T$$
$$= A^{\dagger} \otimes B^{\dagger}.$$

2.29

Suppose U_1 and U_2 are unitary operators. Then

$$(U_1 \otimes U_2)(U_1 \otimes U_2)^{\dagger} = U_1 U_1^{\dagger} \otimes U_2 U_2^{\dagger}$$

= $I \otimes I$.

Similarly,

$$(U_1 \otimes U_2)^{\dagger} (U_1 \otimes U_2) = I \otimes I.$$

2.30

Suppose A and B are Hermitian operators. Then

$$(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger} = A \otimes B. \tag{2.5}$$

Thus $A \otimes B$ is Hermitian.

2.31

Suppose A and B are positive operators. Then

$$\langle \psi | \otimes \langle \phi | (A \otimes B) | \psi \rangle \otimes | \phi \rangle = \langle \psi | A | \psi \rangle \langle \phi | B | \phi \rangle.$$

Since A and B are positive operators, $\langle \psi | A | \psi \rangle \geq 0$ and $\langle \phi | B | \phi \rangle \geq 0$ for all $| \psi \rangle$, $| \phi \rangle$. Then $\langle \psi | A | \psi \rangle \langle \phi | B | \phi \rangle \geq 0$. Thus $A \otimes B$ is positive if A and B are positive.

2.32

Suppose P_1 and P_2 are projectors. Then

$$(P_1 \otimes P_2)^2 = P_1^2 \otimes P_2^2$$
$$= P_1 \otimes P_2.$$

Thus $P_1 \otimes P_2$ is also projector.

2.33

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \tag{2.6}$$

2.34

Suppose $A = \begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix}$.

$$det(A - \lambda I) = (4 - \lambda)^2 - 3^2$$
$$= \lambda^2 - 8\lambda + 7$$
$$= (\lambda - 1)(\lambda - 7)$$

Eigenvalues of A are $\lambda = 1$, 7. Corresponding eigenvectors are $|\lambda = 1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $|\lambda = 7\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Thus

$$A = |\lambda = 1\rangle\langle\lambda = 1| + 7 |\lambda = 7\rangle\langle\lambda = 7|$$
.

$$\begin{split} \sqrt{A} &= |\lambda = 1\rangle\langle\lambda = 1| + \sqrt{7} \,|\lambda = 7\rangle\langle\lambda = 7| \\ &= \frac{1}{2}\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \frac{\sqrt{7}}{2}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \\ &= \frac{1}{2}\begin{bmatrix} 1 + \sqrt{7} & -1 + \sqrt{7} \\ -1 + \sqrt{7} & 1 + \sqrt{7} \end{bmatrix} \end{split}$$

$$\log(A) = \log(1) |\lambda = 1\rangle\langle\lambda = 1| + \log(7) |\lambda = 7\rangle\langle\lambda = 7|$$
$$= \frac{\log(7)}{2} \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix}$$

$$\vec{v} \cdot \vec{\sigma} = \sum_{i=1}^{3} v_i \sigma_i$$

$$= v_1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + v_2 \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + v_3 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} v_3 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 \end{bmatrix}$$

$$\det(\vec{v} \cdot \vec{\sigma} - \lambda I) = (v_3 - \lambda)(-v_3 - \lambda) - (v_1 - iv_2)(v_1 + iv_2)$$
$$= \lambda^2 - (v_1^2 + v_2^2 + v_3^2)$$
$$= \lambda^2 - 1 \quad (\because |\vec{v}| = 1)$$

Eigenvalues are $\lambda = \pm 1$. Let $|\lambda_{\pm 1}\rangle$ be eigenvectors with eigenvalues ± 1 . Since $\vec{v} \cdot \vec{\sigma}$ is Hermitian, $\vec{v} \cdot \vec{\sigma}$ is diagonalizable. Then

$$\vec{v} \cdot \vec{\sigma} = |\lambda_1\rangle\langle\lambda_1| - |\lambda_{-1}\rangle\langle\lambda_{-1}|$$

Thus

$$\begin{split} \exp\left(i\theta\vec{v}\cdot\vec{\sigma}\right) &= e^{i\theta} \left|\lambda_{1}\right\rangle\!\langle\lambda_{1}\right| + e^{-i\theta} \left|\lambda_{-1}\right\rangle\!\langle\lambda_{-1}\right| \\ &= \left(\cos\theta + i\sin\theta\right) \left|\lambda_{1}\right\rangle\!\langle\lambda_{1}\right| + \left(\cos\theta - i\sin\theta\right) \left|\lambda_{-1}\right\rangle\!\langle\lambda_{-1}\right| \\ &= \cos\theta(\left|\lambda_{1}\right\rangle\!\langle\lambda_{1}\right| + \left|\lambda_{-1}\right\rangle\!\langle\lambda_{-1}\right|) + i\sin\theta(\left|\lambda_{1}\right\rangle\!\langle\lambda_{1}\right| - \left|\lambda_{-1}\right\rangle\!\langle\lambda_{-1}\right|) \\ &= \cos(\theta)I + i\sin(\theta)\vec{v}\cdot\vec{\sigma}. \end{split}$$

 \therefore Since $\vec{v} \cdot \vec{\sigma}$ is Hermitian, $|\lambda_1\rangle$ and $|\lambda_{-1}\rangle$ are orthogonal. Thus

$$|\lambda_1\rangle\langle\lambda_1|+|\lambda_{-1}\rangle\langle\lambda_{-1}|=I.$$

$$\operatorname{Tr}(\sigma_1) = \operatorname{Tr}\left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\right) = 0$$

$$\operatorname{Tr}(\sigma_2) = \operatorname{Tr}\left(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\right) = 0$$

$$\operatorname{Tr}(\sigma_3) = \operatorname{Tr}\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\right) = 1 - 1 = 0$$

$$\begin{split} \operatorname{Tr}(AB) &= \sum_{i} \left\langle i | AB | i \right\rangle \\ &= \sum_{i} \left\langle i | AIB | i \right\rangle \\ &= \sum_{i,j} \left\langle i | A | j \right\rangle \left\langle j | B | i \right\rangle \\ &= \sum_{i,j} \left\langle j | B | i \right\rangle \left\langle i | A | j \right\rangle \\ &= \sum_{j} \left\langle j | BA | j \right\rangle \\ &= \operatorname{Tr}(BA) \end{split}$$

$$\begin{aligned} \operatorname{Tr}(A+B) &= \sum_{i} \left\langle i|A+B|i\right\rangle \\ &= \sum_{i} \left(\left\langle i|A|i\right\rangle + \left\langle i|B|i\right\rangle \right) \\ &= \sum_{i} \left\langle i|A|i\right\rangle + \sum_{i} \left\langle i|B|i\right\rangle \\ &= \operatorname{Tr}(A) + \operatorname{Tr}(B). \end{aligned}$$

$$\begin{aligned} \operatorname{Tr}(zA) &= \sum_{i} \langle i|zA|i \rangle \\ &= \sum_{i} z \, \langle i|A|i \rangle \\ &= z \sum_{i} \langle i|A|i \rangle \\ &= z \operatorname{Tr}(A). \end{aligned}$$

(1) $(A, B) \equiv \operatorname{Tr}(A^{\dagger}B)$.

(i)

$$\left(A, \sum_{i} \lambda_{i} B_{i}\right) = \operatorname{Tr}\left[A^{\dagger}\left(\sum_{i} \lambda_{i} B_{i}\right)\right]$$

$$= \operatorname{Tr}(A^{\dagger} \lambda_{1} B_{1}) + \dots + \operatorname{Tr}(A^{\dagger} \lambda_{n} B_{n}) \quad (\because \text{ Execise 2.38})$$

$$= \lambda_{1} \operatorname{Tr}(A^{\dagger} B_{1}) + \dots + \lambda_{n} \operatorname{Tr}(A^{\dagger} B_{n})$$

$$= \sum_{i} \lambda_{i} \operatorname{Tr}(A^{\dagger} B_{i})$$

(ii)

$$(A,B)^* = \left(\operatorname{Tr}(A^{\dagger}B)\right)^*$$

$$= \left(\sum_{i,j} \langle i|A^{\dagger}|j\rangle \langle j|B|i\rangle\right)^*$$

$$= \sum_{i,j} \langle i|A^{\dagger}|j\rangle^* \langle j|B|i\rangle^*$$

$$= \sum_{i,j} \langle j|B|i\rangle^* \langle i|A^{\dagger}|j\rangle^*$$

$$= \sum_{i,j} \langle i|B^{\dagger}|j\rangle \langle j|A|i\rangle$$

$$= \sum_{i} \langle i|B^{\dagger}A|i\rangle$$

$$= \operatorname{Tr}(B^{\dagger}A)$$

$$= (B,A).$$

(iii)

$$(A, A) = \text{Tr}(A^{\dagger}A)$$

= $\sum_{i} \langle i|A^{\dagger}A|i\rangle$

Since $A^{\dagger}A$ is positive, $\langle i|A^{\dagger}A|i\rangle \geq 0$ for all $|i\rangle$.

Let a_i be i-th column of A. If $\langle i|A^{\dagger}A|i\rangle=0$, then

$$\langle i|A^{\dagger}A|i\rangle = a_i^{\dagger}a_i = ||a_i||^2 = 0 \text{ iff } a_i = \mathbf{0}.$$

Therefore (A, A) = 0 iff $A = \mathbf{0}$.

- (2)
- (3)

$$\begin{split} [X,Y] &= XY - YX \\ &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} - \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} - \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix} \\ &= \begin{bmatrix} 2i & 0 \\ 0 & -2i \end{bmatrix} \\ &= 2iZ \end{split}$$

$$[Y, Z] = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 2i \\ 2i & 0 \end{bmatrix}$$
$$= 2iX$$

$$\begin{split} [Z,X] &= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \\ &= 2i \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \\ &= 2iY \end{split}$$

$$\begin{split} \{\sigma_1, \sigma_2\} &= \sigma_1 \sigma_2 + \sigma_2 \sigma_1 \\ &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} + \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix} \\ &= 0 \end{split}$$

$$\{\sigma_2, \sigma_3\} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$= 0$$

$$\begin{cases}
\sigma_3, \sigma_1
\end{cases} = \begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix} \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} + \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix} \\
= 0$$

$$\sigma_0^2 = I^2 = I$$

$$\sigma_1^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^2 = I$$

$$\sigma_2^2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}^2 = I$$

$$\sigma_3^2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^2 = I$$

$$\frac{[A,B] + \{A,B\}}{2} = \frac{AB - BA + AB + BA}{2} = AB$$

2.43

From eq (2.75) and eq (2.76), $\{\sigma_j, \sigma_k\} = 2\delta_{jk}I$. From eq (2.77),

$$\begin{split} \sigma_{j}\sigma_{k} &= \frac{[\sigma_{j},\sigma_{k}] + \{\sigma_{j},\sigma_{k}\}}{2} \\ &= \frac{2i\sum_{l=1}^{3}\epsilon_{jkl}\sigma_{l} + 2\delta_{jk}I}{2} \\ &= \delta_{jk}I + i\sum_{l=1}^{3}\epsilon_{jkl}\sigma_{l} \end{split}$$

2.44

By assumption, [A, B] = 0 and $\{A, B\} = 0$, then AB = 0. Since A is invertible, multiply by A^{-1} from left, then

$$A^{-1}AB = 0$$
$$IB = 0$$
$$B = 0.$$

2.45

$$[A, B]^{\dagger} = (AB - BA)^{\dagger}$$
$$= B^{\dagger}A^{\dagger} - A^{\dagger}B^{\dagger}$$
$$= [B^{\dagger}, A^{\dagger}]$$

$$[A, B] = AB - BA$$
$$= -(BA - AB)$$
$$= -[B, A]$$

$$(i [A, B])^{\dagger} = -i [A, B]^{\dagger}$$

$$= -i [B^{\dagger}, A^{\dagger}]$$

$$= -i [B, A]$$

$$= i [A, B]$$

2.48

(Positive)

Since P is positive, it is diagonalizable. Then $P = \sum_i \lambda_i |i\rangle\langle i|, (\lambda_i \geq 0).$

$$J=\sqrt{P^{\dagger}P}=\sqrt{PP}=\sqrt{P^2}=\sum_i\sqrt{\lambda_i^2}\,|i\rangle\langle i|=\sum_i\lambda_i\,|i\rangle\langle i|=P.$$

Therefore polar decomposition of P is P = UP for all P. Thus U = I, then P = P.

(Unitary)

Suppose unitary U is decomposed by U=WJ where W is unitary and J is positive, $J=\sqrt{U^{\dagger}U}$.

$$J=\sqrt{U^{\dagger}U}=\sqrt{I}=I$$

Since unitary operators are invertible, $W = UJ^{-1} = UI^{-1} = UI = U$. Thus polar decomposition of U is U = U.

(Hermitian)

Suppose H = UJ.

$$J = \sqrt{H^\dagger H} = \sqrt{HH} = \sqrt{H^2}.$$

Thus $H = U\sqrt{H^2}$.

In general, $H \neq \sqrt{H^2}$.

From spectral decomposition, $H = \sum_{i} \lambda_i |i\rangle\langle i|, \lambda_i \in \mathbb{R}$.

$$\sqrt{H^2} = \sqrt{\sum_i \lambda_i^2 |i\rangle\langle i|} = \sum_i \sqrt{\lambda_i^2} |i\rangle\langle i| = \sum_i |\lambda_i| |i\rangle\langle i| \neq H$$

2.49

Normal matrix is diagonalizable, $A = \sum_{i} \lambda_i |i\rangle\langle i|$.

$$\begin{split} J &= \sqrt{A^{\dagger}A} = \sum_{i} |\lambda_{i}| \, |i\rangle\langle i| \, . \\ U &= \sum_{i} |e_{i}\rangle\langle i| \\ A &= UJ = \sum_{i} |\lambda_{i}| \, |e_{i}\rangle\langle i| \, . \end{split}$$

Define
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
. $A^{\dagger}A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$.

Characteristic equation of $A^{\dagger}A$ is $\det(A^{\dagger}A - \lambda I) = \lambda^2 - 3\lambda + 1 = 0$. Eigenvalues of $A^{\dagger}A$ are $\lambda_{\pm} = \frac{3 \pm \sqrt{5}}{2}$ and associated eigenvectors are $|\lambda_{\pm}\rangle = \frac{1}{\sqrt{10 \mp 2\sqrt{5}}} \begin{bmatrix} 2 \\ -1 \pm \sqrt{5} \end{bmatrix}$.

$$A^{\dagger}A = \lambda_{+} |\lambda_{+}\rangle\langle\lambda_{+}| + \lambda_{-} |\lambda_{-}\rangle\langle\lambda_{-}|.$$

$$\begin{split} J &= \sqrt{A^{\dagger}A} = \sqrt{\lambda_{+}} \, |\lambda_{+}\rangle \langle \lambda_{+}| + \sqrt{\lambda_{-}} \, |\lambda_{-}\rangle \langle \lambda_{-}| \\ &= \sqrt{\frac{3+\sqrt{5}}{2}} \cdot \frac{5-\sqrt{5}}{40} \left[\frac{4}{2\sqrt{5}-2} \cdot \frac{2\sqrt{5}-2}{6-2\sqrt{5}} \right] + \sqrt{\frac{3-\sqrt{5}}{2}} \cdot \frac{5+\sqrt{5}}{40} \left[\frac{4}{-2\sqrt{5}-2} \cdot \frac{-2\sqrt{5}-2}{6+2\sqrt{5}} \right] \\ J^{-1} &= \frac{1}{\sqrt{\lambda_{+}}} \, |\lambda_{+}\rangle \langle \lambda_{+}| + \frac{1}{\sqrt{\lambda_{-}}} \, |\lambda_{-}\rangle \langle \lambda_{-}| \, . \end{split}$$

$$U = AJ^{-1}$$

I'm tired.

2.51

$$H^{\dagger}H = \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\right)^{\dagger} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = I.$$

2.52

$$H^{\dagger} = \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right)^{\dagger} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = H.$$

Thus

$$H^2 = I$$
.

$$\det(H - \lambda I) = \left(\frac{1}{\sqrt{2}} - \lambda\right) \left(-\frac{1}{\sqrt{2}} - \lambda\right) - \frac{1}{2}$$
$$= \lambda^2 - \frac{1}{2} - \frac{1}{2}$$
$$= \lambda^2 - 1$$

Eigenvalues are $\lambda_{\pm} = \pm 1$ and associated eigenvectors are $|\lambda_{\pm}\rangle = \frac{1}{\sqrt{4 \mp 2\sqrt{2}}} \begin{bmatrix} 1 \\ -1 \pm \sqrt{2} \end{bmatrix}$.

2.54

Since [A, B] = 0, A and B are simultaneously diagonalize, $A = \sum_i a_i |i\rangle\langle i|$, $B = \sum_i b_i |i\rangle\langle i|$.

$$\exp(A) \exp(B) = \left(\sum_{i} \exp(a_{i}) |i\rangle\langle i|\right) \left(\sum_{i} \exp(b_{i}) |i\rangle\langle i|\right)$$

$$= \sum_{i,j} \exp(a_{i} + b_{j}) |i\rangle\langle i|j\rangle\langle j|$$

$$= \sum_{i,j} \exp(a_{i} + b_{j}) |i\rangle\langle j| \delta_{i,j}$$

$$= \sum_{i} \exp(a_{i} + b_{i}) |i\rangle\langle i|$$

$$= \exp(A + B)$$

2.55

$$H = \sum_{E} E |E\rangle\langle E|$$

$$U(t_2 - t_1)U^{\dagger}(t_2 - t_1) = \exp\left(-\frac{iH(t_2 - t_1)}{\hbar}\right) \exp\left(\frac{iH(t_2 - t_1)}{\hbar}\right)$$

$$= \sum_{E,E'} \left(\exp\left(-\frac{iE(t_2 - t_1)}{\hbar}\right) |E\rangle\langle E|\right) \left(\exp\left(-\frac{iE'(t_2 - t_1)}{\hbar}\right) |E'\rangle\langle E'|\right)$$

$$= \sum_{E,E'} \left(\exp\left(-\frac{i(E - E')(t_2 - t_1)}{\hbar}\right) |E\rangle\langle E'| \delta_{E,E'}\right)$$

$$= \sum_{E} \exp(0) |E\rangle\langle E|$$

$$= \sum_{E} |E\rangle\langle E|$$

$$= I$$

Similarly, $U^{\dagger}(t_2 - t_1)U(t_2 - t_1) = I$.

$$U = \sum_{i} \lambda_{i} |\lambda_{i}\rangle\langle\lambda_{i}| \quad (|\lambda_{i}| = 1).$$

$$\log(U) = \sum_{j} \log(\lambda_{j}) |\lambda_{j}\rangle\langle\lambda_{j}| = \sum_{j} i\theta_{j} |\lambda_{j}\rangle\langle\lambda_{j}| \text{ where } \theta_{j} = \arg(\lambda_{j})$$

$$K = -i\log(U) = \sum_{j} \theta_{j} |\lambda_{j}\rangle\langle\lambda_{j}|.$$

$$K^{\dagger} = (-i \log U)^{\dagger} = \left(\sum_{j} \theta_{j} |\lambda_{j}\rangle\langle\lambda_{j}|\right)^{\dagger} = \sum_{j} \theta_{j}^{*} |\lambda_{j}\rangle\langle\lambda_{j}| = \sum_{j} \theta_{j} |\lambda_{j}\rangle\langle\lambda_{j}| = K$$

$$\begin{split} |\phi\rangle &\equiv \frac{L_l \, |\psi\rangle}{\sqrt{\langle\psi|L_l^\dagger L_l|\psi\rangle}} \\ \langle\phi|M_m^\dagger M_m|\phi\rangle &= \frac{\langle\psi|L_l^\dagger M_m^\dagger M_m L_l|\psi\rangle}{\langle\psi|L_l^\dagger L_l|\psi\rangle} \\ \frac{M_m \, |\phi\rangle}{\sqrt{\langle\phi|M_m^\dagger M_m|\phi\rangle}} &= \frac{M_m L_l \, |\psi\rangle}{\sqrt{\langle\psi|L_l^\dagger L_l|\psi\rangle}} \cdot \frac{\sqrt{\langle\psi|L_l^\dagger L_l|\psi\rangle}}{\sqrt{\langle\psi|L_l^\dagger M_m^\dagger M_m L_l|\psi\rangle}} = \frac{M_m L_l \, |\psi\rangle}{\sqrt{\langle\psi|L_l^\dagger M_m^\dagger M_m L_l|\psi\rangle}} = \frac{N_{lm} \, |\psi\rangle}{\sqrt{\langle\psi|N_{lm}^\dagger N_{lm}|\psi\rangle}} \end{split}$$

2.58

$$\begin{split} \langle M \rangle &= \langle \psi | M | \psi \rangle = \langle \psi | m | \psi \rangle = m \ \langle \psi | \psi \rangle = m \\ \langle M^2 \rangle &= \langle \psi | M^2 | \psi \rangle = \langle \psi | m^2 | \psi \rangle = m^2 \ \langle \psi | \psi \rangle = m^2 \end{split}$$
 deviation = $\langle M^2 \rangle - \langle M \rangle^2 = m^2 - m^2 = 0.$

2.59

$$\begin{split} \langle X \rangle &= \langle 0|X|0 \rangle = \langle 0|1 \rangle = 0 \\ \langle X^2 \rangle &= \langle 0|X^2|0 \rangle = \langle 0|X|1 \rangle = \langle 0|0 \rangle = 1 \\ \text{standard deviation} &= \sqrt{\langle X^2 \rangle - \langle X \rangle^2} = 1 \end{split}$$

$$\vec{v} \cdot \vec{\sigma} = \sum_{i=1}^{3} v_i \sigma_i$$

$$= v_1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + v_2 \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + v_3 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} v_3 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 \end{bmatrix}$$

$$\det(\vec{v} \cdot \vec{\sigma} - \lambda I) = (v_3 - \lambda)(-v_3 - \lambda) - (v_1 - iv_2)(v_1 + iv_2)$$
$$= \lambda^2 - (v_1^2 + v_2^2 + v_3^2)$$
$$= \lambda^2 - 1 \quad (\because |\vec{v}| = 1)$$

Eigenvalues are $\lambda = \pm 1$.

(i) if $\lambda = 1$

$$\vec{v} \cdot \vec{\sigma} - \lambda I = \vec{v} \cdot \vec{\sigma} - I$$

$$= \begin{bmatrix} v_3 - 1 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 - 1 \end{bmatrix}$$

Eigenvector is $|\lambda_1\rangle = \sqrt{\frac{1+v_3}{2}} \begin{bmatrix} 1\\ \frac{1-v_3}{v_1-iv_2} \end{bmatrix}$.

$$|\lambda_1\rangle\langle\lambda_1| = \frac{1+v_3}{2} \begin{bmatrix} 1\\ \frac{1-v_3}{v_1-iv_2} \end{bmatrix} \begin{bmatrix} 1 & \frac{1-v_3}{v_1+iv_2} \end{bmatrix}$$

$$= \frac{1+v_3}{2} \begin{bmatrix} 1 & \frac{v_1-iv_2}{1+v_3}\\ \frac{v_1+iv_2}{1+v_3} & \frac{1-v_3}{1+v_3} \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1+v_3 & v_1-iv_2\\ v_1+iv_2 & 1-v_3 \end{bmatrix}$$

$$= \frac{1}{2} \left(I + \begin{bmatrix} v_3 & v_1-iv_2\\ v_1+iv_2 & -v_3 \end{bmatrix} \right)$$

$$= \frac{1}{2} (I + \vec{v} \cdot \vec{\sigma})$$

(ii) If $\lambda = -1$.

$$\vec{v} \cdot \vec{\sigma} - \lambda I = \vec{v} \cdot \vec{\sigma} + I$$

$$= \begin{bmatrix} v_3 + 1 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 + 1 \end{bmatrix}$$

Eigenvalue is $|\lambda_{-1}\rangle = \sqrt{\frac{1-v_3}{2}} \begin{bmatrix} 1\\ -\frac{1+v_3}{v_1-iv_2} \end{bmatrix}$.

$$|\lambda_{-1}\rangle\langle\lambda_{-1}| = \frac{1-v_3}{2} \begin{bmatrix} 1\\ -\frac{1+v_3}{v_1-iv_2} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1+v_3}{v_1+iv_2} \end{bmatrix}$$

$$= \frac{1-v_3}{2} \begin{bmatrix} 1 & -\frac{v_1-iv_2}{1-v_3}\\ -\frac{v_1+iv_2}{1-v_3} & \frac{1+v_3}{1-v_3} \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1-v_3 & -(v_1-iv_2)\\ -(v_1+iv_2) & 1+v_3 \end{bmatrix}$$

$$= \frac{1}{2} \left(I - \begin{bmatrix} v_3 & v_1-iv_2\\ (v_1+iv_2 & -v_3) \end{bmatrix} \right)$$

$$= \frac{1}{2} (I - \vec{v} \cdot \vec{\sigma}).$$

$$\langle \lambda_1 | 0 \rangle \langle 0 | \lambda_1 \rangle = \langle 0 | \lambda_1 \rangle \langle \lambda_1 | 0 \rangle$$
$$= \langle 0 | \frac{1}{2} (I + \vec{v} \cdot \vec{\sigma}) | 0 \rangle$$
$$= \frac{1}{2} (1 + v_3)$$

Post-measurement state is

$$\frac{|\lambda_1\rangle \langle \lambda_1|0\rangle}{\sqrt{\langle 0|\lambda_1\rangle \langle \lambda_1|0\rangle}} = \frac{1}{\sqrt{\frac{1}{2}(1+v_3)}} \cdot \frac{1}{2} \begin{bmatrix} 1+v_3\\v_1+iv_2 \end{bmatrix}
= \sqrt{\frac{1}{2}(1+v_3)} \begin{bmatrix} 1\\\frac{v_1+iv_2}{1+v_3} \end{bmatrix}
= \sqrt{\frac{1+v_3}{2}} \begin{bmatrix} 1\\\frac{1-v_3}{v_1-iv_2} \end{bmatrix}
= |\lambda_1\rangle.$$

2.62

Suppose M_m is an measurement operator. From the assumption, $E_m = M_m^{\dagger} M_m = M_m$. Then

$$\langle \psi | E_m | \psi \rangle = \langle \psi | M_m | \psi \rangle \ge 0.$$

for all $|\psi\rangle$.

Since M_m is positive operator, M_m is Hermitian. Therefore,

$$E_m = M_m^{\dagger} M_m = M_m M_m = M_m^2 = M_m.$$

Thus the measurement is a projective measurement.

2.63

$$\begin{split} M_m^\dagger M_m &= \sqrt{E_m} U_m^\dagger U_m \sqrt{E_m} \\ &= \sqrt{E_m} I \sqrt{E_m} \\ &= E_m. \end{split}$$

Since E_m is POVM, for arbitrary unitary U, $M_m^{\dagger}M_m$ is POVM.

2.64

Define $E_i = |\psi_i\rangle\langle\psi_i|$ for $1 \le i \le m$ and $E_{m+1} = I - \sum_{i=1}^m E_i$. Then $\sum_{i=1}^{m+1} E_i = I$. And $\langle\psi_i|E_i|\psi_i\rangle = \langle\psi_i|\psi_i\rangle\langle\psi_i|\psi_i\rangle = 1$.

2.65

$$|+\rangle \equiv \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \quad |-\rangle \equiv \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

$$X_1 Z_2 \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}} \right) = \frac{|10\rangle - |01\rangle}{\sqrt{2}}$$

$$\langle X_1 Z_2 \rangle = \left(\frac{\langle 00| + \langle 11|}{\sqrt{2}} \right) X_1 Z_2 \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}} \right) = \frac{\langle 00| + \langle 11|}{\sqrt{2}} \cdot \frac{|10\rangle - |01\rangle}{\sqrt{2}} = 0$$

Unsolved
$$W \subset V \to V = W \oplus W^{\perp}.$$

$$U: W \to V, \ U': V \to V.$$

$$U'|w\rangle = U|w\rangle$$

$$U' \in \mathcal{L}(V)$$

$$U \in \mathcal{L}(W)$$

$$U' = U \oplus I \ ???$$

2.68

$$\begin{aligned} |\psi\rangle &= \frac{|00\rangle + |11\rangle}{\sqrt{2}}. \\ \text{Suppose } |a\rangle &= a_0 |0\rangle + a_1 |1\rangle \text{ and } |b\rangle = b_0 |0\rangle + b_1 |1\rangle. \\ |a\rangle |b\rangle &= a_0 b_0 |00\rangle + a_0 b_1 |01\rangle + a_1 b_0 |10\rangle + a_1 b_1 |11\rangle. \end{aligned}$$

If $|\psi\rangle = |a\rangle |b\rangle$, then $a_0b_0 = 1$, $a_0b_1 = 0$, $a_1b_0 = 0$, $a_1b_1 = 1$ since $\{|ij\rangle\}$ is an orthonormal basis.

If $a_0b_1 = 0$, then $a_0 = 0$ or $b_1 = 0$.

When $a_0 = 0$, this is contradiction to $a_0b_0 = 1$. When $b_1 = 0$, this is contradiction to $a_1b_1 = 1$.

Thus $|\psi\rangle \neq |a\rangle |b\rangle$.

2.69

Define Bell states as follows.

$$|\psi_{1}\rangle \equiv \frac{|00\rangle + |11\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$

$$|\psi_{2}\rangle \equiv \frac{|00\rangle - |11\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}$$

$$|\psi_{3}\rangle \equiv \frac{|01\rangle + |10\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$$

$$|\psi_{4}\rangle \equiv \frac{|01\rangle - |10\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix}$$

First, we prove $\{|\psi_i\rangle\}$ is a linearly independent basis.

$$a_{1} |\psi_{1}\rangle + a_{2} |\psi_{2}\rangle + a_{3} |\psi_{3}\rangle + a_{4} |\psi_{4}\rangle = 0$$

$$\therefore \frac{1}{\sqrt{2}} \begin{bmatrix} a_{1} + a_{2} \\ a_{3} + a_{4} \\ a_{3} - a_{4} \\ a_{1} - a_{2} \end{bmatrix} = 0$$

$$\therefore \begin{cases} a_{1} + a_{2} = 0 \\ a_{3} + a_{4} = 0 \\ a_{3} - a_{4} = 0 \\ a_{1} - a_{2} = 0 \end{cases}$$

$$\therefore a_1 = a_2 = a_3 = a_4 = 0$$

Thus $\{|\psi_i\rangle\}$ is a linearly independent basis.

Moreover $||\psi_i\rangle|| = 1$ and $\langle \psi_i | \psi_j \rangle = \delta_{ij}$ for i, j = 1, 2, 3, 4. Therefore $\{|\psi_i\rangle\}$ forms an orthonormal basis.

2.70

For any Bell states we get $\langle \psi_i | E \otimes I | \psi_i \rangle = \frac{1}{2} (\langle 0 | E | 0 \rangle + \langle 1 | E | 1 \rangle).$

Suppose Eve measures the qubit Alice sent by measurement operators M_m . The probability that Eve gets result m is $p_i(m) = \langle \psi_i | M_m^{\dagger} M_m \otimes I | \psi_i \rangle$. Since $M_m^{\dagger} M_m$ is positive, $p_i(m)$ are same values for all $|\psi_i\rangle$. Thus Eve can't distinguish Bell states.

2.71

From spectral decomposition,

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}|, \quad p_{i} \geq 0, \quad \sum_{i} p_{i} = 1.$$

$$\rho^{2} = \sum_{i,j} p_{i}p_{j} |i\rangle\langle i|j\rangle\langle j|$$

$$= \sum_{i,j} p_{i}p_{j} |i\rangle\langle j| \delta_{ij}$$

$$= \sum_{i} p_{i}^{2} |i\rangle\langle i|$$

$$\operatorname{Tr}(\rho^2) = \operatorname{Tr}\left(\sum_i p_i^2 |i\rangle\langle i|\right) = \sum_i p_i^2 \operatorname{Tr}(|i\rangle\langle i|) = \sum_i p_i^2 \langle i|i\rangle = \sum_i p_i^2 \leq \sum_i p_i = 1 \quad (\because p_i^2 \leq p_i)$$

Suppose $\text{Tr}(\rho^2) = 1$. Then $\sum_i p_i^2 = 1$. If $0 \le p_i < 1$, then $p_i^2 < p_i$. Thus only one $p_i = 1$ and otherwise are 0. Therefore $\rho = |\psi_i\rangle\langle\psi_i|$ is pure state.

Conversely if ρ is pure, then $\rho = |\psi\rangle\langle\psi|$.

$$\operatorname{Tr}(\rho^2) = \operatorname{Tr}(|\psi\rangle \langle \psi | \psi\rangle \langle \psi |) = \operatorname{Tr}(|\psi\rangle \langle \psi |) = \langle \psi | \psi\rangle = 1.$$

(1) Since density matrix is Hermitian, matrix representation is $\rho = \begin{bmatrix} a & b \\ b^* & d \end{bmatrix}$, $a, d \in \mathbb{R}$ and $b \in \mathbb{C}$ w.r.t. standard basis. Because ρ is density matrix, $\text{Tr}(\rho) = a + d = 1$. Define $a = (1 + r_3)/2$, $d = (1 - r_3)/2$ and $b = (r_1 - ir_2)/2$, $(r_i \in \mathbb{R})$. In this case,

$$\rho = \begin{bmatrix} a & b \\ b^* & d \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 + r_3 & r_1 - ir_2 \\ r_1 + ir_2 & 1 - r_3 \end{bmatrix} = \frac{1}{2} (I + \vec{r} \cdot \vec{\sigma}).$$

Thus for arbitrary density matrix ρ can be written as $\rho = \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma})$.

Next, we derive the condition that ρ is positive.

If ρ is positive, all eigenvalues of ρ should be non-negative.

$$\det(\rho - \lambda I) = (a - \lambda)(b - \lambda) - |b|^2 = \lambda^2 - (a + d)\lambda + ad - |b^2| = 0$$

$$\lambda = \frac{(a + d) \pm \sqrt{(a + d)^2 - 4(ad - |b|^2)}}{2}$$

$$= \frac{1 \pm \sqrt{1 - 4\left(\frac{1 - r_3^2}{4} - \frac{r_1^2 + r_2^2}{4}\right)}}{2}$$

$$= \frac{1 \pm \sqrt{1 - (1 - r_1^2 - r_2^2 - r_3^2)}}{2}$$

$$= \frac{1 \pm \sqrt{|\vec{r}|^2}}{2}$$

$$= \frac{1 \pm |\vec{r}|}{2}$$

Since ρ is positive, $\frac{1-|\vec{r}|}{2} \ge 0 \rightarrow |\vec{r}| \le 1$.

Therefore an arbitrary density matrix for a mixed state qubit is written as $\rho = \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma})$.

(2) $\rho = I/2 \rightarrow \vec{r} = 0$. Thus $\rho = I/2$ corresponds to the origin of Bloch sphere.

(3)

$$\rho^2 = \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma}) \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma})$$

$$= \frac{1}{4} \left[I + 2\vec{r} \cdot \vec{\sigma} + \sum_{j,k} r_j r_k \left(\delta_{jk} I + i \sum_{l=1}^3 \epsilon_{jkl} \sigma_l \right) \right]$$

$$= \frac{1}{4} \left(I + 2\vec{r} \cdot \vec{\sigma} + |\vec{r}|^2 I \right)$$

$$\operatorname{Tr}(\rho^2) = \frac{1}{4} (2 + 2|\vec{r}|^2)$$

If ρ is pure, then $Tr(\rho^2) = 1$.

$$1 = \text{Tr}(\rho^2) = \frac{1}{4}(2 + 2|\vec{r}|^2)$$
$$\therefore |\vec{r}| = 1.$$

Conversely, if $|\vec{r}| = 1$, then $\text{Tr}(\rho^2) = \frac{1}{4}(2 + 2|\vec{r}|^2) = 1$. Therefore ρ is pure.

2.73

Theorem 2.6

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}| = \sum_{i} |\tilde{\psi}_{i}\rangle\langle\tilde{\psi}_{i}| = \sum_{j} |\tilde{\varphi}_{j}\rangle\langle\tilde{\varphi}_{j}| = \sum_{j} q_{j} |\varphi_{j}\rangle\langle\varphi_{j}| \quad \Leftrightarrow \quad |\tilde{\psi}_{i}\rangle = \sum_{j} u_{ij} |\tilde{\varphi}_{j}\rangle$$

where u is unitary.

Transformation in theorem 2.6, $|\tilde{\psi}_i\rangle = \sum_j u_{ij} |\tilde{\varphi}_j\rangle$, corresponds to

$$\left[|\tilde{\psi}_1\rangle \cdots |\tilde{\psi}_k\rangle \right] = \left[|\tilde{\varphi}_1\rangle \cdots |\tilde{\varphi}_k\rangle \right] U^T$$

where $k = \text{rank}(\rho)$.

From spectral theorem, density matrix ρ is decomposed as $\rho = \sum_{k=1}^{d} \lambda_k |k\rangle\langle k|$ where $d = \dim \mathcal{H}$. Without loss of generality, we can assume $p_k > 0$ for $k = 1 \cdots, l$ where $l = \operatorname{rank}(\rho)$ and $p_k = 0$ for $k = l + 1, \cdots, d$. Thus $\rho = \sum_{k=1}^{l} p_k |k\rangle\langle k| = \sum_{k=1}^{l} |\tilde{k}\rangle\langle \tilde{k}|$, where $|\tilde{k}\rangle = \sqrt{\lambda_k} |k\rangle$.

Suppose $|\psi_i\rangle$ is a state in support ρ . Then

$$|\psi_i\rangle = \sum_{k=1}^l c_{ik} |k\rangle, \quad \sum_k |c_{ik}|^2 = 1.$$

Define
$$p_i = \frac{1}{\sum_k \frac{|c_{ik}|^2}{\lambda_k}}$$
 and $u_{ik} = \frac{\sqrt{p_i}c_{ik}}{\sqrt{\lambda_k}}$.

Now

$$\sum_{k} |u_{ik}|^2 = \sum_{k} \frac{p_i |c_{ik}|^2}{\lambda_k} = p_i \sum_{k} \frac{|c_{ik}|^2}{\lambda_k} = 1.$$

Next prepare an unitary operator ¹ such that *i*th row of U is $[u_{i1} \cdots u_{ik} \cdots u_{il}]$. Then we can define another ensemble such that

$$\left[\left. |\tilde{\psi}_1\rangle \cdots |\tilde{\psi}_i\rangle \cdots |\tilde{\psi}_l\rangle \right. \right] = \left[\left. |\tilde{k}_1\rangle \cdots |\tilde{k}_l\rangle \right. \right] U^T$$

where $|\tilde{\psi}_i\rangle = \sqrt{p_i} |\psi_i\rangle$. From theorem 2.6,

$$\rho = \sum_{k} |\tilde{k}\rangle\langle\tilde{k}| = \sum_{k} |\tilde{\psi}_{k}\rangle\langle\tilde{\psi}_{k}|.$$

Therefore we can obtain a minimal ensemble for ρ that contains $|\psi_i\rangle$.

Then define unitary
$$U = \begin{bmatrix} \boldsymbol{u}_1 \\ \vdots \\ \boldsymbol{u}_i \\ \vdots \\ \boldsymbol{u}_l \end{bmatrix}$$
.

¹By Gram-Schmidt procedure construct an orthonormal basis $\{u_j\}$ (row vector) with $u_i = [u_{i1} \cdots u_{ik} \cdots u_{il}]$.

Moreover since $\rho^{-1} = \sum_{k} \frac{1}{\lambda_k} |k\rangle\langle k|$,

$$\langle \psi_i | \rho^{-1} | \psi_i \rangle = \sum_k \frac{1}{\lambda_k} \langle \psi_i | k \rangle \langle k | \psi_i \rangle = \sum_k \frac{|c_{ik}|^2}{\lambda_k} = \frac{1}{p_i}.$$

Hence, $\frac{1}{\langle \psi_i | \rho^{-1} | \psi_i \rangle} = p_i$.

2.74

$$\rho_{AB} = |a\rangle\langle a|_A \otimes |b\rangle\langle b|_B$$

$$\rho_A = \operatorname{Tr}_B \rho_{AB} = |a\rangle\langle a| \operatorname{Tr}(|b\rangle\langle b|) = |a\rangle\langle a|$$

$$\operatorname{Tr}(\rho_A^2) = 1$$

Thus ρ_A is pure.

2.75

Define
$$|\Phi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle)$$
 and $|\Psi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle)$.

$$|\Phi_{\pm}\rangle\langle\Phi_{\pm}|_{AB} = \frac{1}{2}(|00\rangle\langle00| \pm |00\rangle\langle11| \pm |11\rangle\langle00| + |11\rangle\langle11|)$$

$$\operatorname{Tr}_{B}(|\Phi_{\pm}\rangle\langle\Phi_{\pm}|_{AB}) = \frac{1}{2}(|0\rangle\langle0| + |1\rangle\langle1|) = \frac{I}{2}$$

$$|\Psi_{\pm}\rangle\langle\Psi_{\pm}| = \frac{1}{2}(|01\rangle\langle01| \pm |01\rangle\langle10| \pm |10\rangle\langle01| + |10\rangle\langle10|)$$

$$\operatorname{Tr}_{B}(|\Psi_{\pm}\rangle\langle\Psi_{\pm}|) = \frac{1}{2}(|0\rangle\langle0| + |1\rangle\langle1|) = \frac{I}{2}$$

2.76

Unsolved. I think the polar decomposition can only apply to square matrix A, not arbitrary linear operators. Suppose A is $m \times n$ matrix. Then size of $A^{\dagger}A$ is $n \times n$. Thus the size of U should be $m \times n$. Maybe U is isometry, but I think it is not unitary.

I misunderstand linear operator.

Quoted from "Advanced Liner Algebra" by Steven Roman, ISBN 0387247661.

A linear transformation $\tau: V \to V$ is called a **linear operator** on V^2 .

Thus coordinate matrices of linear operator are square matrices. And Nielsen and Chaung say at Theorem 2.3, "Let A be a linear operator on a vector space V." Therefore A is a linear transformation such that $A: V \to V$.

$$\begin{split} |\psi\rangle &= |0\rangle |\Phi_{+}\rangle \\ &= |0\rangle \left[\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \right] \\ &= (\alpha |\phi_{0}\rangle + \beta |\phi_{1}\rangle) \left[\frac{1}{\sqrt{2}} (|\phi_{0}\phi_{0}\rangle + |\phi_{1}\phi_{1}\rangle) \right] \end{split}$$

 $^{^{2}}$ According to Roman, some authors use the term linear operator for any linear transformation from V to W.

where $|\phi_i\rangle$ are arbitrary orthonormal states and $\alpha, \beta \in \mathbb{C}$. We cannot vanish cross term. Therefore $|\psi\rangle$ cannot be written as $|\psi\rangle = \sum_i \lambda_i |i\rangle_A |i\rangle_B |i\rangle_C$.

2.78

Proof. Former part.

If $|\psi\rangle$ is product, then there exist a state $|\phi_A\rangle$ for system A, and a state $|\phi_B\rangle$ for system B such that $|\psi\rangle = |\phi_A\rangle |\phi_B\rangle$.

Obviously, this Schmidt number is 1.

Conversely, if Schmidt number is 1, the state is written as $|\psi\rangle = |\phi_A\rangle |\phi_B\rangle$. Hence this is a product state.

Proof. Later part.

- (\Rightarrow) Proved by exercise 2.74.
- (\Leftarrow) Let a pure state be $|\psi\rangle = \sum_i \lambda_i |i_A\rangle |i_B\rangle$. Then $\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|) = \sum_i \lambda_i^2 |i\rangle\langle i|$. If ρ_A is a pure state, then $\lambda_j = 1$ and otherwise 0 for some j. It follows that $|\psi_j\rangle = |j_A\rangle |j_B\rangle$. Thus $|\psi\rangle$ is a product state.

2.79

Procedure of Schmidt decomposition.

Goal: $|\psi\rangle = \sum_{i} \sqrt{\lambda_i} |i_A\rangle |i_B\rangle$

- Diagonalize reduced density matrix $\rho_A = \sum_i \lambda_i |i_A\rangle\langle i_A|$.
- Derive $|i_B\rangle$, $|i_B\rangle = \frac{(I \otimes \langle i_A|) |\psi\rangle}{\sqrt{\lambda_i}}$
- Construct $|\psi\rangle$.

(i)

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
 This is already decomposed.

(ii)

$$\frac{|00\rangle+|01\rangle+|10\rangle+|11\rangle}{2} = \left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) = |\psi\rangle\,|\psi\rangle \ \ \text{where} \ \ |\psi\rangle = \frac{|0\rangle+|1\rangle}{\sqrt{2}}$$

(iii)

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{3}}(|00\rangle + |01\rangle + |10\rangle)$$
$$\rho_{AB} = |\psi\rangle\langle\psi|_{AB}$$

$$\rho_A = \operatorname{Tr}_B(\rho_{AB}) = \frac{1}{3} \left(2 |0\rangle \langle 0| + |0\rangle \langle 1| + |1\rangle \langle 0| + |1\rangle \langle 1| \right)$$
$$\det(\rho_A - \lambda I) = \left(\frac{2}{3} - \lambda \right) \left(\frac{1}{3} - \lambda \right) - \frac{1}{9} = 0$$
$$\lambda^2 - \lambda + \frac{1}{9} = 0$$
$$\lambda = \frac{1 \pm \sqrt{5}/3}{2} = \frac{3 \pm \sqrt{5}}{6}$$

Eigenvector with eigenvalue $\lambda_0 \equiv \frac{3+\sqrt{5}}{6}$ is $|\lambda_0\rangle \equiv \frac{1}{\sqrt{\frac{5+\sqrt{5}}{2}}} \begin{bmatrix} \frac{1+\sqrt{5}}{2} \\ 1 \end{bmatrix}$.

Eigenvector with eigenvalue $\lambda_1 \equiv \frac{3 - \sqrt{5}}{6}$ is $|\lambda_1\rangle \equiv \frac{1}{\sqrt{\frac{5 - \sqrt{5}}{2}}} \begin{bmatrix} \frac{1 - \sqrt{5}}{2} \\ 1 \end{bmatrix}$.

$$\rho_A = \lambda_0 |\lambda_0\rangle\langle\lambda_0| + \lambda_1 |\lambda_1\rangle\langle\lambda_1|.$$

$$|a_0\rangle \equiv \frac{(I \otimes \langle \lambda_0 |) |\psi\rangle}{\sqrt{\lambda_0}}$$
$$|a_1\rangle \equiv \frac{(I \otimes \langle \lambda_1 |) |\psi\rangle}{\sqrt{\lambda_1}}$$

Then

$$|\psi\rangle = \sum_{i=0}^{1} \sqrt{\lambda_i} |a_i\rangle |\lambda_i\rangle.$$

(It's too tiresome to calculate $|a_i\rangle$)

2.80

Let
$$|\psi\rangle = \sum_{i} \lambda_{i} |\psi_{i}\rangle_{A} |\psi_{i}\rangle_{B}$$
 and $|\varphi\rangle = \sum_{i} \lambda_{i} |\varphi_{i}\rangle_{A} |\varphi_{i}\rangle_{B}$. Define $U = \sum_{i} |\psi_{j}\rangle\langle\varphi_{j}|_{A}$ and $V = \sum_{j} |\psi_{j}\rangle\langle\varphi_{j}|$. Then

$$(U \otimes V) |\varphi\rangle = \sum_{i} \lambda_{i} U |\varphi_{i}\rangle_{A} V |\varphi_{i}\rangle_{B}$$
$$= \sum_{i} \lambda_{i} |\psi_{i}\rangle_{A} |\psi_{i}\rangle_{B}$$
$$= |\psi\rangle.$$

Suppose
$$\rho_A = \operatorname{Tr}_R |AR_2\rangle\langle AR_2| = \sum_i \lambda_i |i\rangle\langle i|$$
. Define $|AR_1\rangle = (I_A \otimes U_R) |AR_2\rangle$.
$$\operatorname{Tr}_R(|AR_1\rangle\langle AR_1|) = \operatorname{Tr}_R \left((I_A \otimes U_R) |AR_2\rangle\langle AR_2| (I_A \otimes U_R^{\dagger}) \right)$$

$$= \operatorname{Tr}_R \left(|AR_2\rangle\langle AR_2| (I_A \otimes U_R^{\dagger}) (I_A \otimes U_R) \right)$$

$$= \operatorname{Tr}_R(|AR_2\rangle\langle AR_2|)$$

$$= \rho_A.$$

Thus $|AR_1\rangle$ is also a purification of ρ_A .

2.82

(1) Let
$$|\psi\rangle = \sum_{i} \sqrt{p_i} |\psi_i\rangle |i\rangle$$
.

$$\operatorname{Tr}_{R}(|\psi\rangle\langle\psi|) = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}|$$

Thus $|\psi\rangle$ is a purification of ρ .

(2) Probability

$$\operatorname{Tr}\left[\left(I\otimes|i\rangle\langle i|\right)|\psi\rangle\langle\psi|\right] = \langle\psi|\left(I\otimes|i\rangle\langle i|\right)|\psi\rangle = p_i\,\langle\psi_i|\psi_i\rangle = p_i.$$

Post-measurement state

$$\frac{(I \otimes |i\rangle\langle i| |\psi\rangle)}{\sqrt{p_i}} = \frac{\sqrt{p_i} |\psi_i\rangle}{\sqrt{p_i}} = |\psi_i\rangle.$$

(3)

Suppose $|AR\rangle$ is a purification of ρ such that $|AR\rangle = \sum_i \sqrt{p_i} |\psi_i\rangle |r_i\rangle$. By exercise 2.81, the others purification is written as $(I \otimes U) |AR\rangle$.

$$(I \otimes U) |AR\rangle = (I \otimes U) \sum_{i} \sqrt{p_i} |\psi_i\rangle |r_i\rangle$$
$$= \sum_{i} \sqrt{p_i} |\psi_i\rangle U |r_i\rangle$$
$$= \sum_{i} \sqrt{p_i} |\psi_i\rangle |i\rangle$$

where $U = \sum_{i} |i\rangle\langle r_i|$.

By (2), if we measure the system R w.r.t $|i\rangle$, post-measurement state for system A is $|\psi_i\rangle$ with probability p_i , which prove the assertion.

Problem 2.1

From Exercise 2.35, $\vec{n} \cdot \vec{\sigma}$ is decomposed as

$$\vec{n} \cdot \vec{\sigma} = |\lambda_1\rangle\langle\lambda_1| - |\lambda_{-1}\rangle\langle\lambda_{-1}|$$

where $|\lambda_{\pm 1}\rangle$ are eigenvector of $\vec{n} \cdot \vec{\sigma}$ with eigenvalues ± 1 . Thus

$$\begin{split} f(\theta \vec{n} \cdot \vec{\sigma}) &= f(\theta) \, |\lambda_1\rangle \langle \lambda_1| + f(-\theta) \, |\lambda_{-1}\rangle \langle \lambda_{-1}| \\ &= \left(\frac{f(\theta) + f(-\theta)}{2} + \frac{f(\theta) - f(-\theta)}{2}\right) |\lambda_1\rangle \langle \lambda_1| + \left(\frac{f(\theta) + f(-\theta)}{2} - \frac{f(\theta) - f(-\theta)}{2}\right) |\lambda_{-1}\rangle \langle \lambda_{-1}| \\ &= \frac{f(\theta) + f(-\theta)}{2} \left(|\lambda_1\rangle \langle \lambda_1| + |\lambda_{-1}\rangle \langle \lambda_{-1}|\right) + \frac{f(\theta) - f(-\theta)}{2} \left(|\lambda_1\rangle \langle \lambda_1| - |\lambda_{-1}\rangle \langle \lambda_{-1}|\right) \\ &= \frac{f(\theta) + f(-\theta)}{2} I + \frac{f(\theta) - f(-\theta)}{2} \vec{n} \cdot \vec{\sigma} \end{split}$$

Problem 2.2

Unsolved

Problem 2.3

Unsolved

Chapter 8

Quantum noise and quantum operations

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.19

8.20

8.21

8.22

8.23

8.24

8.25

8.26

8.27

8.28

8.29

8.30

8.31

8.32

8.33

8.34