S/W 개발 및 빅데이터 응용과정 국비교육

011里到是

주재영 오병규 이희문 최연웅

서울시 따름이 대여량 예측

목차

Step 1

- 그룹 및 프로그램 소개
- 목표 정의

Step 2

- 진행 과정 설명
- 결과 설명

- 스스로 하는 평가
- 출처

그룹소개

주재영 분석 및 ppt 작성

오병규 ^{분석}

이희문 미디자인

최연웅 UI디자인

			- 0 ×	7				
ata Head								
							-	0
Predict Graph								
				_				
n Path								
20/4/1994	Train Open hour	□ visibility						
	□ tempe	rature ozone	Learning					
t Path	☐ tempe Test Open ☐ precip	rature ozone	Learning					
t Path	☐ tempe Test Open ☐ precip	rature ozone itation pm10 peed pm2.5	Learning	Train Open	□ hour	☐ visibility		
t Path	Test Open precip	rature ozone itation pm10 peed pm2.5	Leaming	Train Open Test Open	☐ hour ☐ temperature ☐ precipitation	ozone	Learn	ing
en Path st Path bmission Path	Test Open precip	rature ozone itation pm10 peed pm2.5	Learning		temperature	ozone	Learn	ing

프로그램

다양한 기후 조금 서울시 따릉이 대여량을 예측

목표

- 첫 번째 목표

특정 변수들을 PyQt5를 이용해 선택하여 따름이 대여량 예측해보기

두 번째 목표

가장 잘 구현한 예측 모델을 시각화를 통해 알아보기

분석기법소개

선형회귀 (Linear)

독립변수 x와 종속변수 y의 관계를 선형으로 모델링

랜덤포레스트 (RandomForest)

배깅 기법의 한 종류로 자료를 랜덤하게 학습시켜 평균낸 값 으로 결과를 내는 모델링

XGBoost

부스팅 기법의 한 종류로 기존 결정트리 방식에서 과적합 방 지에 특화된 모델링

1) LinearRegression

```
# 모델 생성
model_LR = LinearRegression()

# 화출
model_LR.fit(x_train, y_train)

# 예측값
y_pred_LR = model_LR.predict(x_test)
```

2) RandomForestRegressor

```
#모델 생성
model_RF100 = RandomForestRegressor(n_estimators=100, random_state=0)
#모델 화습
model_RF100.fit(x_train, y_train)
# 예측값
y_pred_RF100 = model_RF100.predict(x_test)
```

3) XGBRegressor

```
# 모델 생성
model_XGB = XGBRegressor(max_depth = 4, n_estimators = 500)
# 모델 화습
model_XGB.fit(x_train.astype(np.float32), y_train.astype(np.float32))
# 예측값
y_pred_XGB = model_XGB.predict(x_test.astype(np.float32))
```


각 항목 기능

- Data Head : 불러온 csv 데이터의 head 값을 미리볼 수 있다.
- Predict : 분석한 데이터의 예측값 출력 공간
- Graph : 분석한 데이터의 heatmap 시각화 출력 공간
- Train Path : Trainig 데이터의 full path
- Test Path : Test 데이터의 full path
- Submission Path: Submission 데이터의 full path

버튼 기능

- Train Open, Test Open, Sub Open 버튼으로 계산에 필요한 각데이터를 dialog 탐색으로 불러올 수 있다
- 체크박스 : 분석시 체크된 데이터로만 예측값을 계산할 수 있다
- Learning : 계산 실행 버튼

- ① 훈련 데이터 셋을 불러 옵니다.
- ② 테스트 데이터 셋을 불러 옵니다.
- ③ 서브미션 데이터를 불러 옵니다.
- ④ 특정 환경 변수를 지정합니다.
- ⑤ 학습을 통하여 결과를 보여줍니다.
- ① 각 각의 데이터의 헤드 값을 보여줍니다.
- ② 결과 값을 나타냅니다.
- ③ 결과 값으로 그린 히트맵을 보여줍니다
- ④ 파일 경로를 나타냅니다.

주재영

다양한 분석 기법을 더 잘 구현하지 못한 아쉬움이 남지만 첫 프로젝트를 잘 마무리 했고 많은 것들을 배워 뿌듯하다.

오병규

프로젝트를 진행하면서 기획 디테일의 중요성을 알게 되었고, 혼자 코드를 짜는 것과는 다른 협업 의 즐거움과 고충을 알게되어 좋은 경험이 되었다.

한줄평가

이희문

혼자서 해왔던 프로그래밍에서 다같이 서로 보완할 수 있는 기회가 되어 많이 배웠습니다.

최연웅

QT designer를 활용한 UI 구성에 있어 완벽한 구현을 시키진 못했지만 이외에도 많은 기능을 배 운 것 같아 좋은 경험이 되었습니다.

데이터 출처

데이콘 (서울시 따릉이 대여량 예측 경진대회)

01 딥러닝 텐서플로 교과서 (길벗) 빅데이터 분석 및 인공지능 (인피니티북스)

02 PyQt5 유튜브 자료

O3 PPT 템플릿 https://www.canva.com/

참고자료

감사합니다!

저희 그룹에 궁금하신 게 있나요?