LFC - 2020, session 4

La prova è composta da 13 esercizi. I primi 12 esercizi valgono un massimo di 27 punti. L'esercizio 13 è l'esercizio evoluto e vale un massimo di 4 punti nell'intervallo 27-31.

Nel seguito, dati

- un automa deterministico A
- uno stato P di A
- una stringa $\beta=X_1X_2....X_n$ si indica con $P[[\beta]]$ lo stato di A che si raggiunge da P tramite il cammino β .

Esercizio 1

Se la seguente affermazione e' vera rispondere "VERO", altrimenti rispondere "FALSO". "Se L1 e L2 sono linguaggi regolari, allora la loro intersezione e' un linguaggio regolare."

Esercizio 2

Se la seguente affermazione e' vera rispondere "VERO", altrimenti rispondere "FALSO". "Se L1 e L2 sono linguaggi liberi, allora la loro intersezione e' un linguaggio libero."

Esercizio 3

Sia L={ww | w e' una parola del linguaggio $L((a|b)^*)$ }. Se L e' un linguaggio regolare rispondere "SI", altrimenti rispondere "NO".

Esercizio 4

Sia $L=\{a^nb^na^nb^n\mid n<4\}$. Se L e' un linguaggio regolare rispondere "SI", altrimenti rispondere "NO".

Esercizio 5

Sia r la seguente espressione regolare:

$$b(b^* \mid \epsilon) \mid b^*a(a \mid b)^*$$

e sia D il DFA minimo per il riconoscimento di L(r). Dire quanti stati ha D e quanti di questi stati sono finali.

Esercizio 6

Sia N lo NFA con stato iniziale A, stato finale E, e con la seguente funzione di transizione:

	ϵ	a	b
A	$\{B,E\}$	Ø	Ø
B	$\{C\}$	Ø	$\{E\}$
C	Ø	$\{D\}$	Ø
D	$\{E\}$	Ø	$\{B\}$
E	Ø	$\{E\}$	$\{A\}$

Chiamiamo D il DFA ottenuto da N per subset construction. Dire quanti stati ha D e quanti di questi stati sono finali.

Esercizio 7

Sia G la seguente grammatica:

$$\begin{array}{ccc} S & \rightarrow & AaB \mid b \\ A & \rightarrow & BaBaA \mid \epsilon \\ B & \rightarrow & \epsilon \end{array}$$

Scrivere l'intera riga della tabella di parsing LL(1) per G relativa al nonterminale A.

Esercizio 8

Sia G la seguente grammatica:

$$\begin{array}{ccc} S & \rightarrow & AaB \mid b \\ A & \rightarrow & BaBaA \mid \epsilon \\ B & \rightarrow & \epsilon \end{array}$$

Chiamiamo A l'automa caratteristico per il parsing LR(1) di G, e chiamiamo J lo stato iniziale di A. Elencare gli item che appartengono allo stato J[[Aa]].

Esercizio 9

Sia G la seguente grammatica:

```
\begin{array}{ccc} S & \rightarrow & AaB \mid b \\ A & \rightarrow & BaBaA \mid \epsilon \\ B & \rightarrow & \epsilon \end{array}
```

Chiamiamo A l'automa caratteristico per il parsing LR(1) di G, J lo stato iniziale di A, e T la tabella di parsing LR(1) per G. Se T non contiene alcun conflitto nello stato J[[BaBa]], rispondere "NO CONFLICT". Atrimenti, per ciascuna x tale che la entry (J[[BaBa]],x) di T contiene un conflitto, dire:

- 1. Di che tipo di conflitto si tratta;
- 2. Quali riduzioni sono coinvolte.

Esercizio 10

Sia G la seguente grammatica:

```
\begin{array}{ccc} S & \rightarrow & AaB \mid b \\ A & \rightarrow & BaBaA \mid \epsilon \\ B & \rightarrow & \epsilon \end{array}
```

Chiamiamo A l'automa caratteristico per il parsing LALR(1) di G, H lo stato iniziale di A, e T la tabella di parsing LALR(1) per G. Se non ci sono riduzioni nello stato H[[Ba]] di T, rispondere "NO RIDUZIONI". Atrimenti, per ciascuna x tale che la entry (H[[Ba]],x) di T contiene almeno una riduzione, dire di che riduzione/i si tratta.

Esercizio 11

Sia V il seguente SDD:

Chiamiamo P lo stato iniziale del parser LALR(1) per la grammatica di V. Il parser ha 4 conflitti shift/reduce. Indicare in quali entry (stato,simbolo) del parser si trovano tali conflitti. Per identificare la prima componente delle entry, usare la notazione $P[[\beta]]$ definita nel preambolo del presente documento.

Esercizio 12

Sia V il seguente SDD:

Il parser LALR(1) per la grammatica di V ha 4 conflitti shift/reduce. Si supponga che tutti questi conflitti siano risolti a favore di "reduce". Si supponga inoltre che l'attributo n.lexval del terminale n sia il numero intero rappresentato da n. Se l'input 3b2a2 non e' riconosciuto, rispondere "ERROR". Altrimenti dire quale valore viene valutato per S.v su input 3b2a2.

Esercizio 13

Sia L il linguaggio libero $L=\{a^nb^n|n>0\}$. Si supponga di voler dimostrare che L e' un linguaggio non libero utilizzando il pumping lemma in una dimostrazione per contraddizione. Spiegare per quale motive non si riuscirebbe a concludere la dimostrazione.