0.1 一维 $\overline{\partial}$ 的解

定义 0.1

所谓一维 $\bar{\partial}$ 问题, 是指在域 D 上给定一个函数 f, 要求函数 u, 使得在 D 上有

$$\frac{\partial u(z)}{\partial \bar{z}} = f(z), \quad z \in D.$$

u 就称为 $\bar{\partial}$ 问题的解.

定义 0.2

设 φ 是 \mathbb{C} 上的函数, 使 φ 不取零值的点集的闭包称为 φ 的**支集**, 记为 supp φ , 即

$$\operatorname{supp}\varphi = \overline{\{z \in \mathbb{C} : \varphi(z) \neq 0\}}.$$

引理 0.1

设a是 \mathbb{C} 中任意一点,0 < r < R, 则必存在 φ , 满足下列条件:

- (i) $\varphi \in C^{\infty}(\mathbb{C})$;
- (ii) supp $\varphi \subset \overline{B(a,R)}$;
- (iii) 当 $z \in \overline{B(a,r)}$ 时, $\varphi(z) \equiv 1$;
- (iv) 对于任意 $z \in \mathbb{C}, 0 \leq \varphi(z) \leq 1$.

$$h_1(z) = \begin{cases} e^{\frac{1}{|z-a|^2 - R_1^2}}, & z \in B(a, R_1); \\ 0, & z \notin B(a, R_1), \end{cases}$$

$$h_2(z) = \begin{cases} 0, & z \in \overline{B(a,r)}; \\ e^{\frac{1}{r^2 - |z - a|^2}}, & z \notin \overline{B(a,r)}, \end{cases}$$

那么 $h_1, h_2 \in C^{\infty}(\mathbb{C})$.又令

$$\varphi(z) = \frac{h_1(z)}{h_1(z) + h_2(z)},$$

则 $\varphi \in C^{\infty}(\mathbb{C})$. 而且当 $z \in \overline{B(a,r)}$ 时, $\varphi(z) \equiv 1$; 当 $z \notin B(a,R_1)$ 时, $\varphi(z) \equiv 0$, 即 $\operatorname{supp} \varphi \subset B(a,R)$. 对于任意 $z \in \mathbb{C}$, $0 \leqslant \varphi(z) \leqslant 1$ 显然成立. φ 即为所求的函数.

定理 0.1

设 D 是 \mathbb{C} 中的域, $f \in C^1(D)$. 令

$$u(z) = \frac{1}{2\pi i} \int_{D} \frac{f(\zeta)}{\zeta - z} d\zeta \wedge d\bar{\zeta}, \quad z \in D,$$
 (1)

则 $u \in C^1(D)$, 且对任意 $z \in D$, 有 $\frac{\partial u(z)}{\partial \bar{z}} = f(z)$.

 $\widehat{\mathbb{Y}}$ 笔记 在上面的证明中, 容易看出, 如果 $f \in C^{\infty}(D)$, 那么 $\bar{\partial}$ 问题的解 $u \in C^{\infty}(D)$.

证明 把 f 的定义扩充到整个复平面,对于 $z \notin D$, 定义 f(z) = 0. 这时,(1) 式可写为

$$u(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{f(\zeta)}{\zeta - z} d\zeta \wedge d\bar{\zeta} \xrightarrow{\stackrel{\diamondsuit}{=} \zeta = z + \eta} \frac{1}{2\pi i} \int_{\mathbb{C}} f(\zeta + \eta) \frac{1}{\eta} d\eta \wedge d\bar{\eta}.$$

由 $f \in C^1(D)$, 可得 $u \in C^1(D)$.

现固定 $a \in D$, 我们证明

$$\frac{\partial u(a)}{\partial \bar{z}} = f(a).$$

1

为此, 取 $0 < \varepsilon < r$, 使得 $B(a,\varepsilon) \subset B(a,r) \subset D$. 根据引理??, 存在 $\varphi \in C^{\infty}(\mathbb{C})$, 使得当 $z \in B(a,\varepsilon)$ 时, $\varphi(z) \equiv 1$; 而当 $z \notin B(a,r)$ 时, $\varphi(z) \equiv 0$. 记

$$u_1(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\varphi(\zeta)f(\zeta)}{\zeta - z} d\zeta \wedge d\bar{\zeta},$$

$$u_2(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{f(\zeta) - \varphi(\zeta)f(\zeta)}{\zeta - z} d\zeta \wedge d\bar{\zeta},$$

那么 $u = u_1 + u_2$. 由于当 $\zeta \in B(a, \varepsilon)$ 时, $f(\zeta) - \varphi(\zeta)f(\zeta) \equiv 0$, 所以

$$u_2(z) = \frac{1}{2\pi i} \int_{\mathbb{C}\backslash \overline{B(a,\varepsilon)}} \frac{(1-\varphi(\zeta))f(\zeta)}{\zeta-z} d\zeta \wedge d\bar{\zeta}.$$

因而, 当 $z \in B(a,\varepsilon)$ 时, u_2 是全纯函数, 所以由定理??可知 $\frac{\partial u_2}{\partial \bar{z}} = 0$. 于是, 在小圆盘 $B(a,\varepsilon)$ 上就有

$$\frac{\partial u}{\partial \bar{z}} = \frac{\partial u_1}{\partial \bar{z}} \xrightarrow{\frac{\partial \zeta}{\partial z} + \eta} \frac{\partial}{\partial \bar{z}} \left\{ \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\varphi(z+\eta)f(z+\eta)}{\eta} d\eta \wedge d\bar{\eta} \right\}
= \frac{1}{2\pi i} \int_{\mathbb{C}} \left\{ \frac{\partial(\varphi f)}{\partial \zeta} \frac{\partial \zeta}{\partial \bar{z}} + \frac{\partial(\varphi f)}{\partial \bar{\zeta}} \frac{\partial \bar{\zeta}}{\partial \bar{z}} \right\} \frac{1}{\eta} d\eta \wedge d\bar{\eta}
= \frac{1}{2\pi i} \int_{\mathbb{C}} \left\{ \frac{\partial(\varphi f)}{\partial \zeta} \frac{\partial(z+\eta)}{\partial \bar{z}} + \frac{\partial(\varphi f)}{\partial \bar{\zeta}} \frac{\partial(\bar{z}+\bar{\eta})}{\partial \bar{z}} \right\} \frac{1}{\eta} d\eta \wedge d\bar{\eta}
= \frac{1}{2\pi i} \int_{\mathbb{C}} \left\{ \frac{\partial(\varphi f)}{\partial \zeta} \cdot (0+0) + \frac{\partial(\varphi f)}{\partial \bar{\zeta}} \cdot (1+0) \right\} \frac{1}{\eta} d\eta \wedge d\bar{\eta}
= \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\partial(\varphi f)}{\partial \bar{\zeta}} \frac{1}{\eta} d\eta \wedge d\bar{\eta}
= \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\partial(\varphi f)}{\partial \bar{\zeta}} \frac{1}{\zeta - z} d\zeta \wedge d\bar{\zeta}
= \frac{1}{2\pi i} \int_{B(a,r)} \frac{\partial(\varphi f)}{\partial \bar{\zeta}} \frac{1}{\zeta - z} d\zeta \wedge d\bar{\zeta}. \tag{2}$$

最后一个等式成立是因为当 $\zeta \in \mathbb{C} \setminus \overline{B(a,r)}$ 时 $\varphi(\zeta) \equiv 0$. 又因为当 $\zeta \in \partial B(a,r)$ 时 $\varphi(\zeta) \equiv 0$, 所以根据非齐次 Cauchy 积分公式, 有

$$\varphi(z)f(z) = \frac{1}{2\pi i} \int_{B(a,r)} \frac{\partial (\varphi f)}{\partial \bar{\zeta}} \frac{1}{\zeta - z} d\zeta \wedge d\bar{\zeta}.$$

因为当 $z \in B(a, \varepsilon)$ 时 $\varphi(z) = 1$, 所以

$$f(z) = \frac{1}{2\pi i} \int_{B(a,r)} \frac{\partial(\varphi f)}{\partial \bar{\zeta}} \frac{1}{\zeta - z} d\zeta \wedge d\bar{\zeta}. \tag{3}$$

比较 (8) 式和 (9) 式, 即得

$$\frac{\partial u(z)}{\partial \bar{z}} = f(z).$$

特别地, 取 z = a, 即得

$$\frac{\partial u(a)}{\partial \bar{z}} = f(a).$$

由于 a 是 D 中的任意点, 所以 $\frac{\partial u(z)}{\partial \bar{z}} = f(z)$ 在 D 上成立.