Introduction to Operations Management

运营管理概论

3- Planning

范登波 Thomas VANDENBOGAERDE, CPIM

Thomas.vandenbogaerde@gmail.com

If any question: WeChat: fandengbo85

Capacity Planning

(Long term; years) Changes in Facilities Changes in Equipment

Planning Flow

Aggregate Planning

(Intermediate term; quarterly or monthly)
Facility utilization
Personnel changes
Subcontracting

Master Schedule

(Intermediate term; weekly) Material requirements planning Disaggregate the aggregate plan

Aggregate Production Plan for All Bikes	Aggregate	Production	Plan	for	All	Bikes
---	-----------	------------	------	-----	-----	-------

(Determine personnel or subcontracting necessary to match aggregate demand to existing facilities/capacity)

Month	1	2
Bike Production	800	850

Master Production Schedule for Bike Models (Determine weekly capacity schedule)

		Mon	th 1		Month 2			
Week	1	2	3	4	5	6	7	8
Model 22		200		200		200		200
Model 24	100		100		150		100	
Model 26	100		100		100		100	

Short Term Scheduling

(Short term; days, hours, minutes) Work center loading Job sequencing/dispatching

Work Assigned to Specific Personnel and Work Centers

Make finite capacity schedule by matching specific tasks to specific people and machines

Assemble Model 22 in work center 6

Horizons

The Planning Process

Sales & operations planning

- Specifies what is to be made and when
- Must be in accordance with the aggregate production plan
- Inputs from financial plans, customer demand, engineering, supplier performance
- As the process moves from planning to execution, each step must be tested for feasibility
- The MPS is the result of the production planning process
- MPS is established in terms of specific products
- Schedule must be followed for a reasonable length of time.
- The MPS is quite often **fixed or frozen** in the near term part of the plan
- The MPS is a rolling schedule
- The MPS is a statement of what is to be produced, not a forecast of demand

Aggregate Production Plan VS MPS

Months		January		February				
Aggregate Production Plan (Shows the total quantity of amplifiers)		1,500		1,200				
Weeks	1	2	3	4	5	6	7	8
Master Production Schedule (Shows the specific type and quantity of amplifier to be produced								
240-watt amplifier	100		100		100		100	
150-watt amplifier		500		500		450		450
75-watt amplifier			300				100	

Focus for Different Process Strategies

MRP Structure

Technical data

- What for?
- From which material?
- How?
- Who, on which machine?

Engineering Drawings

Group Technology Scheme

(a) Ungrouped Parts	(b) Grouped Cylindrical Parts (families of parts)							
(u, o.i.g. oop cu i ui u	Grooved	Slotted	Threaded	Drilled	Machined			
		9999						

Multi level Bill of Material

Bills of Material

- List of components, ingredients, and materials needed to make product
- Provides product structure
 - Items above given level are called parents
 - Items below given level are called children

BOM Example

Level

Product structure for "Awesome" (A)

0

1

Part B: 2 x number of As =

(2)(50) =

100

Part C: 3×10^{-2} x number of As =

(3)(50) =

150

Part D: 2 x number of Bs

 $+ 2 \times \text{number of Fs} = (2)(100) + (2)(300) = 800$

2

Part E: 2 x number of Bs

 $+ 2 \times \text{number of Cs} = (2)(100) + (2)(150) = 500$

Part F: 2 x number of Cs =

(2)(150) =

300

Part G: 1 x number of Fs =

(1)(300) =

300

12" Speaker

Amp-booster

12" Speaker

Bills of Material

Modular Bills

- Modules are not final products but components that can be assembled into multiple end items
- Can significantly simplify planning and scheduling

Planning Bills

- Also called "pseudo" or super bills
- Created to assign an artificial parent to the BOM
- Used to group subassemblies to reduce the number of items planned and scheduled
- Used to create standard "kits" for production

Phantom Bills

- Describe subassemblies that exist only temporarily
- Are part of another assembly and never go into inventory

Low-Level Coding

- Item is coded at the lowest level at which it occurs
- ♦ BOMs are processed one level at a time

Accurate Records

- Accurate inventory records are absolutely required for MRP (or any dependent demand system) to operate correctly
- Generally MRP systems require more than 99% accuracy
- Outstanding purchase orders must accurately reflect quantities and scheduled receipts

Assembly Drawing

Shows exploded view of product

 Details relative locations to show how to assemble the product

Assembly Chart

Route Sheet

Lists the operations and times required to produce a component

Process	Machine	Operations	Setup Time	Operation Time/Unit
1	Auto Insert 2	Insert Component Set 56	1.5	.4
2	Manual Insert 1	Insert Component Set 12C	.5	2.3
3	Wave Solder	Solder all components to board	1.5	4.1
4	Test 4	Circuit integrity test 4GY	.25	.5

Work Order

Instructions to produce a given quantity of a particular item, usually to a schedule

Work Order								
Item	Quantit	y	Start Date	Due Date				
157C	125		5/2/08	5/4/08				
Production Dept			Delivery Location					
F32			Dept 1	K11				

Lead Times

- The time required to purchase, produce, or assemble an item
 - For production the sum of the order, wait, move, setup, store, and run times
 - For purchased items the time between the recognition of a need and the availability of the item for production

Time-Phased Product Structure

Figure 14.4

Determining Gross Requirements

- Starts with a production schedule for the end item
- Using the lead time for the item, determine the week in which the order should be released
- This step is often called "lead time offset" or "time phasing"
- The process continues through the entire BOM one level at a time - often called "explosion"
- By processing the BOM by level, items with multiple parents are only processed once, saving time and resources and reducing confusion
- Low-level coding ensures that each item appears at only one level in the BOM

Gross Requirements Schedule

Net Requirements Plan

The logic of net requirements

MRP Management

- MRP is a dynamic system
- Facilitates replanning when changes occur
 - Regenerating
 - Net change
- System nervousness can result from too many changes
- Time fences put limits on replanning (frozen, slushy, liquid)
- Pegging links each item to its parent allowing effective analysis of changes
- BOMs, inventory records, purchase and production quantities may not be perfect
 - Consideration of safety stock may be prudent
 - Should be minimized and ultimately eliminated
 - Typically built into projected on-hand inventory

Bullwhip effect

Extensions of MRP

- **MRP II**
- **Closed-Loop MRP**
 - MRP system provides input to the capacity plan, MPS, and production planning process
- **Capacity Planning**
 - MRP system generates a load report which details capacity requirements
 - This is used to drive the capacity planning process
 - Changes pass back through the MRP system for rescheduling

Smoothing Tactics

Anticipation

- Sends part of the work before the original scheduled date if capacity is available
- Increases inventory, reduces overload

Overlapping 2.

- Sends part of the work to following operations before the entire lot is complete
- Reduces lead time

Operations splitting

- Sends the lot to two different machines for the same operation
- Shorter throughput time but increased setup costs

Order or lot splitting

Breaking up the order into smaller lots and running part earlier (or later) in the schedule

Order Splitting

MRP in Services

- Some services or service items are directly linked to demand for other services
- These can be treated as dependent demand services or items
 - Restaurants
 - Hospitals
 - Hotels

(a) PRODUCT STRUCTURE TREE Veal picante #10001 Chef; Work Center #1 **Prepared veal** Cooked Spinach linguini and sauce #20002 #20004 #20003 Asst. Chef; Helper one; Work Work Center #2 Center #3 Uncooked Sauce Veal linguini #30006 #30005 #30004

MRP in Services

(b) BILL OF MATERIALS

Part Number	Description	Quantity	Unit of Measure	Unit cost
10001	Veal picante	1	Serving	
20002	Cooked linguini	1	Serving	_
20003	Prepared veal and sauce	1	Serving	_
20004	Spinach	0.1	Bag	0.94
30004	Uncooked linguini	0.5	Pound	_
30005	Veal	1	Serving	2.15
30006	Sauce	1	Serving	0.80

MRP in Services

(c) BILL OF LABOR FOR VEAL PICANTE

			Labor	Hours
Work Center	Operation	Labor Type	Setup Time	Run Time
1	Assemble dish	Chef	.0069	.0041
2	Cook linguini	Helper one	.0005	.0022
3	Cook veal and sauce	Assistant Chef	.0125	.0500

Enterprise Resource Planning (ERP)

MRP II uses a LOT of product related information, leading to orders and thus a LOT of financial information

- ERP modules include
 - Basic MRP
 - Finance
 - Human resources
 - Supply chain management (SCM)
 - Customer relationship management (CRM)

ERP

SAP's ERP Modules

CASH TO CASH

Covers all financial related activity:

Accounts receivable Accounts payable

General ledger **Treasury**

Cash management Asset management

PROMOTE TO DELIVER

Covers front-end customer-oriented activities:

Marketing

Quote and order processing

Transportation

Documentation and labeling

After sales service

Warranty and guarantees

DESIGN TO MANUFACTURE

Covers internal production activities:

Design engineering

Production engineering

Plant maintenance

Shop floor reporting

Contract/project management

Subcontractor management

RECRUIT TO RETIRE

Covers all HR- and payroll-oriented activity:

Time and attendance

Payroll

Travel and expenses

PROCURE TO PAY

Covers sourcing activities:

Vendor sourcing

Purchase requisitioning

Purchase ordering

Purchase contracts

Inbound logistics

Supplier invoicing/matching

Supplier payment/

settlement

Supplier performance

DOCK TO DISPATCH

Covers internal inventory management:

Warehousing Distribution planning **Forecasting** Replenishment planning Physical inventory Material handling

Advantages of ERP Systems

- 1. Provides integration of the supply chain, production, and administration
- 2. Creates commonality of databases
- 3. Can incorporate improved best processes
- 4. Increases communication and collaboration between business units and sites
- 5. Has an off-the-shelf software database
- **6.** May provide a strategic advantage

Disadvantages of ERP Systems

- Is very expensive to purchase and even more so to customize
- Implementation may require major changes in the company and its processes
- Is so complex that many companies cannot adjust to it
- 4. Involves an ongoing, possibly never completed, process for implementation
- 5. Expertise is limited with ongoing staffing problems