Homework 4

Problem 1. Let A be a wff which does not contain \neg . Show that the length of A is odd. Show that no proper initial segment of A is a wff.

Proof. We induct on the complexity of A. For the base case, let A be a single sentence symbol. Then (A) has length 3. Furthermore none of $(, (A \text{ or the empty string are wffs. Now suppose that } A = ((B) \land (C))$ for some wffs B and C which satisfy the stated properties. Then B and C both have odd length, and there are 7 more elements of \mathcal{L} added to create A. Therefore A has odd length. Furthermore, since no proper initial segment of B is a wff, we know that no initial segment of A which doesn't include all of B will not be a wff. This follows because adding parentheses to the beginning of any proper initial segment of B will not make it a wff. The same is true for the initial segments $((B, (B), (B) \land (B)))$ and proper initial segments which contain initial segments of B using a similar argument. Also B is not a wff since the first parenthesis is never closed, and the empty string is not a wff. Therefore no proper initial string of A is a wff. Since A doesn't contain \neg , we have shown by induction that the statement is true for all wffs which don't contain \neg .

Problem 2. Let T, Γ be sets of wffs. Suppose $T \vdash A$ for all $A \in \Gamma$.

- (a) If $T \cup \Gamma \vdash B$, then $T \vdash B$.
- (b) If T is consistent then Γ is consistent. In particular the set of all wffs which can be deduced from T is consistent.

Proof. (a) Let C_1, C_2, \ldots, C_n be a deduction of B from $T \cup \Gamma$. For each $C_i \in \Gamma$, replace C_i with the deduction $C_{i_1}, C_{i_2}, \ldots, C_{i_{m_i}}$ of C_i from T. Then $C_{1_1}, \ldots, C_{1_{m_1}}, \ldots, C_{n_1}, \ldots, C_{n_{m_n}}$ is a deduction of B from T so $T \vdash B$.

(b) Suppose T is consistent. Then there exists M, a model for T. Let C_{ij} be an element of the deduction of C_i as in part (a). Then C_{ij} is either in T, in which case $M \models C_{ij}$, a tautology, so that once again $M \models C_{ij}$ or the result of modus ponens from two earlier elements in the deduction. In the last case, $M \models C_{ij}$ since \rightarrow can be written using \neg and \land . Since Γ can be written entirely as deductions of elements from T, we see that $M \models \Gamma$ as well.

Problem 3. Let T, Σ be sets of wffs and let A, B be wffs. Prove or refute the following statements:

- (a) If $T, \Sigma \models A$ then either $T \models A$ or $\Sigma \models A$.
- (b) If $T \models A \lor B$ then either $T \models A$ or $T \models B$.

Do either of the answers change if we assume T is maximal consistent?

Proof. (a) Let $T = S_1$, $\Sigma = S_2$ and $A = S_1 \wedge S_2$. Then $T, \Sigma \models A$, but T does not model A and Σ does not model A.

(b) Suppose $T \models A \lor B$ and let M be a model of T. Then $M \models A \lor B$ and thus $M \models \neg(\neg A \land \neg B)$. But then M does not model $\neg A \land \neg B$, which means M does not model $\neg A$ or M does not model $\neg B$. Therefore $M \models A$ or $M \models B$.

If T is maximal consistent then if $T, \Sigma \models A$ then either $T \models A$ or $\Sigma \models A$. This follows from the fact that either $T \cup \Sigma$ is not maximally consistent, or $T \cup \Sigma = T$. The answer to part (b) is the same.

Problem 4. Let IP_x be the statement that:

Let P(x) be some property and suppose that $k \in \mathbb{N}$ is fixed. If

- (a) P(k) holds, and
- (b) For all $n \ge k$, if P(n) holds then P(n+1) holds

then P(n) holds for all natural numbers $n \geq k$.

Prove that, for fixed k, our first induction principle implies IP_k . What is IP_0 ?

Proof. Let $Q_k(x)$ be the statement such that $Q_k(x-k)$ holds whenever P(x) holds. Then $Q_k(0)$ is true if P(k) is true. If $Q_k(n)$ is true for $n \geq 0$, then P(k+n) is true. Thus P(k+n+1) is true implies that $Q_k(n+1)$ is true. Therefore $Q_k(x)$ holds for all $x \in \mathbb{N}$ and therefore P(x+k) holds for $x+k \geq k$. Thus IP_k is implied by induction. IP_0 is the first induction principle.

Problem 5. Suppose \mathcal{L} contains two ternary relations, one binary relation, and two constants and consider the model $\langle \mathbb{N}, +, \times, <, 0, 1 \rangle$ (with the usual meanings). Give a formula which defines: (a) $\{0\}$.

- (b) $\{m \mid m \text{ is divisible by 3}\}.$
- (c) $\{(m,n) \mid m, n \text{ have no common divisors besides } 1\}$.

Give an example of a set which is not definable (you do not need to justify your answer).

Proof. (a) $\exists x \forall y ((x < y) \land (\neg (x = y))).$ (b) $\exists m \exists n (m = ((1 + 1 + 1) \times n)).$

(c) $\exists m \exists n (\neg (\exists d \exists p \exists q ((\neg (d=1)) \land (m=dp) \lor (n=dq))))$

The set $\{2\}$ is not definable.