Concours marocain 2006: $\mathcal{M}aths\ II$, \mathcal{MP}

Mr Mamouni : myismail@altern.org

PCSI-CPGE Med V Casablanca-Maroc Source disponible sur:

©http://www.chez.com/myismail

CORRIGÉ

PRÉLIMINAIRES

1) a) On a
$$A = \sum_{1 \le k, l \le n} a_{k,l} E_{k,l}$$
, donc:
$$AE_{i,j} = \sum_{1 \le k, l \le n} a_{k,l} E_{k,l} E_{i,j}$$
$$= \sum_{1 \le k, l \le n} a_{k,l} \delta_{l,i} E_{k,j}$$
$$= \sum_{k=1} a_{k,i} E_{k,j} \quad \text{car} : \delta_{l,i} = 0 \text{ si } l \ne i$$
$$= 1 \text{ si } l = i$$

$$E_{i,j}A = \sum_{\substack{1 \le k,l \le n \\ n}} a_{k,l}E_{i,j}E_{k,l}$$

$$= \sum_{\substack{1 \le k,l \le n \\ n}} a_{k,l}\delta_{k,j}E_{i,l}$$

$$= \sum_{l=1} a_{j,l}E_{i,l} \quad \text{car} : \quad \delta_{k,j} = 0 \text{ si } k \ne j$$

$$= 1 \text{ si } k = j$$

$$= \sum_{k=1}^{n} a_{j,k}E_{i,k}$$

b)
$$AM = MA \implies AM - MA = 0$$

$$\implies AE_{i,j} = E_{i,j}A$$

$$\implies \sum_{k=1}^{n} a_{k,i}E_{k,j} - a_{j,k}E_{i,k} = 0$$

$$\implies \sum_{k\neq i,j}^{n} a_{k,i}E_{k,j} - a_{j,k}E_{i,k} +$$

$$a_{i,i}E_{i,j} - a_{j,i}E_{i,i} + a_{j,i}E_{i,j} - a_{j,j}E_{i,j} = 0$$

$$\implies \sum_{k\neq i,j}^{n} a_{k,i}E_{k,j} - a_{j,k}E_{i,k} + (a_{i,i} - a_{j,j})E_{i,j} = 0$$

Ainsi $a_{k,i} = a_{j,k} = 0$ si $k \neq i, j$ et $a_{i,i} = a_{j,j} = \lambda$, d'où $M = \lambda I_n$

2) On sait que la trace est linéaire et que : $Tr(E_{k,j}) = 0$ si $k \neq j$,

donc
$$Tr(AE_{i,j}) = Tr\left(\sum_{k=1}^{n} a_{k,i}E_{k,j}\right) = a_{j,i}.$$

- b) $Tr(AM) = 0 \Longrightarrow Tr(AE_{i,j}) = 0, \ \forall i, j \Longrightarrow a_{i,i}, \ \forall i, j \Longrightarrow A = 0.$
- 3) Posons $A = (a_{i,j}), B = (b_{i,j}), AB = (c_{i,j}), BA = (d_{i,j}), \text{ on a } :$ $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$ et $Tr(AB) = \sum_{i=1}^{n} c_{i,i} = \sum_{k=1}^{n} \sum_{k=1}^{n} a_{i,k} b_{k,i}$ et on a aussi : $Tr(BA) = \sum_{i=1}^{n} d_{i,i} = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i,k} a_{k,i}$, en échangeant les indices i et k, on voit bien que : Tr(AB) = Tr(BA).
- D'aprés le cours, toute composé à droite ou à gauche par un autmorphisme laisse invariant le rang, donc toute multiplication à gauche ou à droite par une matrice inversible laisse le rang invariant, d'où rq(PMQ) = rq(M) et $rq(P^tMQ) = rq(tM) = rq(M)$

PREMIŘE PARTIE

A. Étude des endomorphismes de $\mathcal{M}_n(\mathbb{C})$ qui conservent le déterminant.

1) Posons $\lambda J_s + A = (b_{i,j})$, on a $b_{i,i} = \lambda_{i,i} + a_{i,i}$ si $1 \le i \le s$ et $b_{i,j} = a_{i,j}$ dans les cas restants. $\det(\lambda J_s+A)=\sum \prod \varepsilon(\sigma)b_{i,\sigma(i)},$ or parmi les $b_{i,\sigma(i)},$ au maximum s coefficients dépondent de λ ceux pour lesquels $1 \leq i \leq s$ et $i = \sigma(i)$, donc det $(\lambda J_s + A) = P(\lambda)$ où P est un polynôme en λ de degré inférieur à s.

- 2) C'est un résultat du cours, qui te dit que toute matrice de rang, r est équivalente à la matrice J_r .
 - b) $\det(\lambda M + N) = \det(R(\lambda J_r + K_r)S) = \det(R[(\lambda 1)J_r + I_n]S) =$ $\det(R) \det((\lambda - 1)J_r + I_n) \det(S) = \det(R)(\lambda - 1)^r \det(S)$, parceque $(\lambda - 1)J_r + I_n$ est la matrice diagonale dont les r premiers termes sont tous égaux à $\lambda - 1$ et les autres égaux à 1.
 - $rg(\Phi(M)) = s$, donc $\exists R, S$ matrices inversibles telles que: $\Phi(M) = RJ_{\circ}S$, d'où $\det(\lambda\Phi(M) + \Phi(N)) = \det(\lambda RJ_{\circ}S + \Phi(N)) =$ $\det(R) \det(\lambda J_s + A) \det(S)$ avec $A = R^{-1}\Phi(N)S^{-1}$, or $\det(\lambda J_s + A)$ $A) = P(\lambda)$ où P est un polynôme en λ de degré inférieur à s, d'où $\det(\lambda\Phi(M) + \Phi(N))$ est un polynôme en λ de degré inférieur à s. D'autre part : Φ est linéaire et conserve le déterminant, donc $\det(\lambda \Phi(M) + \Phi(N)) = \det(\lambda M + N) = \det(R)(\lambda - 1)^r \det(S)$, d'aprés la question précédente, c'est un donc un polynôme en λ de degré égal à r, d'où r < s.
- 3) $M \in Ker(\Phi) \Longrightarrow \Phi(M) = 0 \Longrightarrow rg(\Phi(M)) = 0 \Longrightarrow rg(M) = 0$ car $rq(\Phi(M)) < rq(M)$, donc M = 0, d'où Φ injective, comme c'est un endomorphisme en dimension finie alors c'est un automorphisme donc inversible.
- Φ conserve le déterminant, donc $\det(M) = \det(\Phi(\Phi^{-1}(M))) =$ $\det(\Phi^{-1}(M))$, donc Φ^{-1} conserve le déterminant.
- On sait que, $rg(M) = \max\{\det(A) \text{ tel que } A \text{ sous-matrice de } M\}$, donc $rg(\Phi(M)) = \max\{\det(B) \text{ tel que } B = \Phi^{-1}(A) \text{ sous-matrice de } M\}$ car Φ^{-1} conserve le déterminant, d'où $rq(\Phi(M)) < rq(M)$ $\{\det(B) \text{ tel que } B$ $\Phi^{-1}(A)$ sous-matrice de M= $\{\det(A) \text{ tel que } A \text{ sous-matrice de } M\} \text{ or } rq(M) < rq(\Phi(M)) \text{ d'aprés}$ la question précédente, d'où l'égalite, et donc Φ conserve le rang. D'aprés la supposition au début de la 1ère partie, on conclut que :

 $\Phi = u_{PQ}$ ou $\Phi = v_{PQ}$.

B. Étude des endomorphismes de $\mathcal{M}_n(\mathbb{C})$ qui conservent le polynôme caractéristique.

- 1) On sait que les valeurs propres d'une matrice sont exactement les racines de son polynôme caractéristique associé, que son déterminant est égal à leurs produit et que sa trace est égale à leurs somme, comptées avec leurs multiplicités. Donc deux matrices qui ont même polynôme caractéristique ont même déterminant et même trace, en particulier Φ conserve le déterminant et la trace.
- 2) C'est une conséquence immediate de la propriété admise au début de la 1ère partie.
- 3) a) Si $\Phi = u_{P,Q}$, alors $Tr(PE_{i,j}Q) = Tr(\Phi(E_{i,j})) = Tr(E_{i,j})$ car Φ conserve la trace. Si $\Phi = u_{P,Q}$, alors $Tr(PE_{i,j}Q) = Tr(\Phi(^tE_{i,j})) = Tr(^tE_{i,j}) = Tr(E_{i,j})$.
 - b) On a Tr(AB) = Tr(BA), qu'on peut généraliser ainsi : Tr(ABC) = Tr(CAB), en particulier : $Tr(QPE_{i,j}) = Tr(PE_{i,j}Q) = Tr(E_{i,j})$, or la trace est linéaire et $(E_{i,j})$ constitue une base de $\mathcal{M}_n(\mathbb{C})$ donc Tr(QPM) = Tr(M), pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$, d'où $Tr((QP I_n)M) = 0$, d'aprés la question 2.b) 1ère partie, on déduit que $PQ = I_n$, d'où $Q = P^{-1}$.
- 4) D'aprés tout ce qui précède on conclut que les endomorphismes qui conservent le polynôme caractéristique sont ceux de la forme $u_{P,Q}$ ou $v_{P,Q}$ tel que $Q = P^{-1}$.

DEUXIÉME PARTIE

- 1) a) On a $\chi_{\Phi(A)\Phi(B)} = \chi_{AB}$, donc d'aprés la question 1.B), lère partie, $\Phi(A)\Phi(B)$ et AB ont même trace, en particulier $Tr(\Phi(E_{i,j})\Phi(E_{k,l})) = Tr(E_{i,j}E_{k,l}) = Tr(\delta_{j,k}E_{i,l}) = \delta_{j,k}Tr(E_{i,l}) = \delta_{j,k}\delta_{i,l}$.
 - b) On a $\operatorname{Card}(\Phi(E_{i,j})) = n^2 = \dim(\mathcal{M}_n(\mathbb{C}))$, pour montrer que c'est une base il suffit alors de montrer qu'elle est libre. En effet soit $(\lambda_{i,j})$ des nombres complexes tels que $\sum_{1 \leq i,j \leq n} \lambda_{i,j} \Phi(E_{i,j}) = 0$, on multiplie par $\Phi(E_{k,l})$, la trace de la somme

est toujours nulle, tenant compte de la linéarité de la trace et de la relation pécédente on obtient : $\sum_{1 \leq i,j \leq n} \lambda_{i,j} \delta_{j,k} \delta_{i,l} = \lambda_{l,k} = 0 \quad \forall \ k, \forall \ l,$ d'où la famille est libre.

- 2) a) $Tr((\Phi(A+B) \Phi(A) \Phi(B))\Phi(E_{i,j}))$ $= Tr(\Phi(A+B)\Phi(E_{i,j}) \Phi(A)\Phi(E_{i,j}) \Phi(B)\Phi(E_{i,j}))$ $= Tr(\Phi(A+B)\Phi(E_{i,j})) Tr(\Phi(A)\Phi(E_{i,j})) Tr(\Phi(B)\Phi(E_{i,j}))$ $= Tr((A+B)E_{i,j}) Tr(AE_{i,j}) Tr(BE_{i,j}))$ = 0 car la trace est linéaire et . distributive par rapport à +
 - b) Comme la trace est linéaire et que $(\Phi(E_{i,j}))$ est une base de $\mathcal{M}_n(\mathbb{C})$ et tenant compte de la question précédente alors $Tr((\Phi(A+B)-\Phi(A)-\Phi(B))M)$ pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$, et enfin d'aprés la question 2.b) 1ére partie, on conclut que $\Phi(A+B)-\Phi(A)-\Phi(B)=0$.
- 3) Soit $\lambda \in \mathbb{C}$, mn montre comme dans la question précédente que : $Tr((\Phi(\lambda A) \lambda \Phi(A))\Phi(E_{i,j})) = 0$, puis on en déduit que $Tr((\Phi(\lambda A) \lambda \Phi(A))M)) = 0 \ \forall \ M \in \mathcal{M}_n(\mathbb{C})$, puis enfin que : $\Phi(\lambda A) \lambda \Phi(A)$, d'où Φ est linéaire.

 D'autre part : Soit $A \in \text{Ker}(\Phi)$, donc $Tr(AE_{i,j}) = Tr(\Phi(A)\Phi(E_{i,j})) = 0$, comme $(E_{i,j})$ est une base de $\mathcal{M}_n(\mathbb{C})$, alors $Tr(AM) = 0 \ \forall \ M \in \mathcal{M}_n(\mathbb{C})$, donc A = 0 et par suite Φ est injective, comme c'est un endomrphisme en dimension finie, alors c'est un automorphisme.
- 4) $E_{i,j}^2 = E_{i,j} E_{i,j} = \delta_{i,j} \delta_{j,i} = 0$ car $i \neq j$, donc $E_{i,j}$ est nilpotente. D'autre part : $\chi_{\Phi(E_{i,j}^2)}(X) = \chi_{E_{i,j}^2}(X) = (-1)^n X^n$ car $E_{i,j}^2 = 0$, en utilisant le théorème de Cayley-Hamiltion on conclut que $\Phi(E_{i,j}^{2n} = 0, \text{ donc } \Phi(E_{i,j})$ est nilpotente.
- 5) a) D'aprés la supposition de la partie 3, on a : $\chi_{AG} = \chi_{\Phi(A)\Phi(G)} = \chi_{\Phi(A)}$ car $\Phi(G) = I_n$.
 - b) Tout calcul fait $E_{i,j}G$ est la matrice dont toutes les lignes sont nulle

sauf la i éme,
$$E_{i,j}G = \begin{pmatrix} 0 & \dots & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & \dots & 0 \\ g_{j,1} & \dots & g_{j,i} & \dots & g_{j,n} \\ 0 & \dots & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & \dots & 0 \end{pmatrix}$$
, donc sont po-

lynôme caractéristique est $(-1)^n X^{n-1} (X - g_{j,i})$.

- c) Pour $i \neq j$, la matrice $\Phi(E_{i,j})$ est nilpotente, donc $\chi_{\Phi(E_{i,j})} = (-1)^n X^n$, or $(-1)^n X^{n-1} (X g_{j,i}) = \chi_{E_{i,j}G} = \chi_{\Phi(E_{i,j})} = (-1)^n X^n$, donc $g_{j,i} = 0$ si $i \neq j$, d'où G est diagonale. D'autre part, $\chi_{G^2} = \chi_{\Phi(G)}$ (1), d'aprés 5.a) 3éme partie, or $\Phi(G) = I_n$ et $G^2 = Diag(g_{1,1}^2, \dots, g_{n,n}^2)$, (matrice diagonale), la relation (1) devient $(-1)^n (X 1)^n = (-1)^n \prod_{i=1}^n (X g_{i,i}^2)$, d'où $g_{i,i}^2 = 1$ et par suite $G^2 = I_n$.
- 6) a) Soit $A \in \mathcal{M}_n(\mathbb{C})$, on a : $\chi_{\Psi(A)} = \chi_{\Phi(AG)} = \chi_{AG^2} = \chi_A$ en utilisant la question 5.a) 3éme partie pour AG et le fait que $G^2 = I_n$. Donc Ψ conserve le polynôme caractéristique.
 - b) On a Ψ conserve le polynôme caractéristique, d'aprés les résultats de la 2ème partie $\exists G$ inversible telle que $\Psi = u_{P,P^{-1}}$ ou $\Psi = v_{P,P^{-1}}$, or $\Phi(M) = \Psi(MG^{-1}) = \Psi(MG)$ car $G^{-1} = G$ puisque $G^2 = I_n$, donc $\Phi(M) = \Psi(MG) = u_{P,P^{-1}} = PMGP^{-1}$ ou $\Phi(M) = \Psi(MG) = v_{P,P^{-1}} = P^tMGP^{-1}$.
- 7) a) Tr(AGBG) = Tr(AB) car le produit matriciel est commutatif à l'interieur de la trace et que $G^2 = I_n$.
 - b) D'aprés la question précédente et vu que la trace est linéaire, on conclut que : $Tr((GBG B)A) = 0 \quad \forall A \in \mathcal{M}_n(\mathbb{C})$, d'aprés la question 2.b) 1ére partie, on concult que GBG B = 0.
 - c) $GBG=B\Longrightarrow GB=BG^{-1}=BG$ et d'aprés 1.b) 1
ére partie, on a $G=\lambda I_n,$ or $G^2=I_n,$ d'où $\lambda\in\{-1,1\}.$
- 8) Si $w = \varepsilon u_{P,P^{-1}}$, on a: $\chi_{w(A)w(B)} = \chi_{\varepsilon PAP^{-1}\varepsilon PBP^{-1}} = \chi_{PABP^{-1}} = \chi_{AB}$ car

deux matrices semblables ont même polynôme caractéristique. Le même raisonnement est encore valable pour le cas où $w = \varepsilon v_{PP^{-1}}$.

TROISIÉME PARTIE

- 1) a) C'est un résultat du cours, qui dit que toute matrice symétrique peut étre diagonalisable dans une base orthonormée, donc la matrice de passage, P est une matrice orthogonale, donc $P^{-1} = {}^{t}P$, d'où $A = {}^{t}PDP$ avec D diagonale dont les coéfficients diagonaux $(\lambda_{i})_{1 \leq i \leq n}$ sont exactement les valeurs propres de A.
 - b) A positive $\iff^t XAX \ge 0 \ \forall X \in \mathbb{R}^n$ $\iff^t X^tPDPX \ge 0 \ \forall X \in \mathbb{R}^n$ $\iff^t (PX)PDPX \ge 0 \ \forall Y \in \mathbb{R}^n$ $\iff^t YPDY \ge 0 \ \forall Y \in \mathbb{R}^n$ $\text{car } \forall Y \in \mathbb{R}^n, \exists X = P^{-1}Y \text{ tel que } y = PX$ $\iff^t E_iDE_i \ge 0 \ \forall i \in \{1, \dots, n\}$ $\text{avec } (E_i) \text{la base canonique de } \mathbb{R}^n$ $\iff \lambda_i \ge i \ \forall i \in \{1, \dots, n\}$ \iff Toutes les valeurs propres de A sont positives
 - c) Même raisonnement que ce qui précède.
- 2) a) $\lambda \in \operatorname{Sp}_{\mathbb{R}}(A + \mu I_n) \iff \exists X \neq 0 \text{ tel que } (A + \mu I_n)X = \lambda X$ $\iff \exists X \neq 0 \text{ tel que } AX = (\lambda - \mu)X$ $\iff \lambda - \mu \in \operatorname{Sp}_{\mathbb{R}}(A)$ $\iff \lambda \in \operatorname{Sp}_{\mathbb{R}}(A) + \mu$ Donc $\operatorname{Sp}_{\mathbb{R}}(A + \mu I_n) = \operatorname{Sp}_{\mathbb{R}}(A) + \mu$.
 - b) $A + xI_n$ définie positive $\iff \operatorname{Sp}_{\mathbb{R}}(A + xI_n) \subset]0, +\infty[$ D'aprés 1.b) 3ème partie $\iff \operatorname{Sp}_{\mathbb{R}}(A) + x \subset]0, +\infty[$ D'aprés 2.a) 3ème partie $\iff \operatorname{Sp}_{\mathbb{R}}(A) \subset]-x, +\infty[$ $\iff -x < \min(\operatorname{Sp}_{\mathbb{R}}(A)), \ \forall x > \alpha$ $\iff x > -\min(\operatorname{Sp}_{\mathbb{R}}(A)), \ \forall x > \alpha$

En prenant $\alpha = -\min(\operatorname{Sp}_{\mathbb{R}}(A))$, on obtient le résultat.

3) a) $I_n \in \mathcal{S}_n^{++}(\mathbb{R}) = \Phi(\mathcal{S}_n^{++}(\mathbb{R})) \subset Phi(\mathcal{S}_n(\mathbb{R})), \text{ donc } \exists J \in \mathcal{S}_n(\mathbb{R}) \text{ tel que } I_n = \Phi(J).$ D'autre part, soit A matrice symétrique, d'aprés 2.b) 3ème partie, on peut trouver alpha et x des réels tels que $x > \alpha$ et $A + xI_n \in \mathcal{S}_n^{++}(\mathbb{R}) = \Phi\left(\mathcal{S}_n^{++}(\mathbb{R})\right)$, donc $\exists B \in \mathcal{S}_n^{++}(\mathbb{R})$ tel que $A + xI_n = \Phi(B)$, d'où $A = \Phi(B) - xI_n = \Phi(B) - x\Phi(J) = \Phi(C)$ où C = B - xJ car Φ est linéaire, donc Φ est surjectif.

- b) Φ est un endomorphisme surjectif, en dimension finie, donc c'est un automorphisme.
- 4) Pour réponde aux deux questions a) et b), on va d'abord montrer que $\overline{\mathcal{S}_n^{++}(\mathbb{R})} = \mathcal{S}_n^+(\mathbb{R})$, où $\overline{\mathcal{A}}$ désigne l'adhérance de la partie \mathcal{A} dans $\mathcal{M}_n(\mathbb{R})$. En effet, soit $A \in \mathcal{S}_n^+(\mathbb{R})$, donc ses valeurs propres, λ_i sont positives, d'où $A_k = A + \frac{1}{k}I_n \in \mathcal{S}_n^{++}(\mathbb{R})$, car ses valeurs propres, $\lambda_i + \frac{1}{k}$ sont strictement positives, de plus $\lim_{k \longrightarrow +\infty} A_k = A$, d'où $A \in \overline{\mathcal{S}_n^{++}(\mathbb{R})}$, et par suite $\mathcal{S}_n^+(\mathbb{R}) \subset \overline{\mathcal{S}_n^{++}(\mathbb{R})}$.

D'autre part, soit $A \in \overline{\mathcal{S}_n^{++}(\mathbb{R})}$, alors $\exists A_k \in \mathcal{S}_n^{++}(\mathbb{R})$ tel que $\lim_{k \longrightarrow +\infty} A_k = A$, donc $\forall X \in \mathbb{R}^n$ tel que $X \neq 0$, on a ${}^tA_k = A_k$ et ${}^tA_kX > 0$, en passant à la limite, quand $k \longrightarrow +\infty$, car les fonctions $A \mapsto {}^tA$ et $A \mapsto {}^tXAX$ sont continues sur $\mathcal{M}_n(\mathbb{R})$, puisque linéaires en dimension finie, on obtient ${}^tA = A$ et ${}^tXAX \ge 0$, d'où A symétrique et postive, d'où $A \in \mathcal{S}_n^+(\mathbb{R})$ et par suite : $\overline{\mathcal{S}_n^{++}(\mathbb{R})} \subseteq \mathcal{S}_n^+(\mathbb{R})$.

Conclusion: $\overline{\mathcal{S}_n^{++}(\mathbb{R})} = \overline{\mathcal{S}_n^{+}(\mathbb{R})}$.

- a) $S_n^+(\mathbb{R})$ est fermé car $\overline{S_n^{++}(\mathbb{R})} = S_n^+(\mathbb{R})$
- b) Φ autoprphisme, en dimension finie, donc continue et Φ^{-1} aussi, donc pour toute partie \mathcal{A} de $\mathcal{M}_n(\mathbb{R})$, on a : $\overline{\Phi}(\overline{\mathcal{A}}) = \overline{\mathcal{A}}$, or $\Phi(\mathcal{S}_n^{++}(\mathbb{R})) = \mathcal{S}_n^{++}(\mathbb{R})$, en passant à l'adhérance, on obtient $\Phi(\mathcal{S}_n^{+}(\mathbb{R})) = \mathcal{S}_n^{+}(\mathbb{R})$.
- 5) a) A est symétrique, donc diagonalisable, or elle admet une unique valeur propre, λ , donc $D = \lambda I_2$, d'où $A = P^{-1}\lambda I_2 P = \lambda I_2$ et donc $\Phi(A) = \Phi(\lambda I_2) = \lambda \Phi(I_2) = \lambda I_2 = A$.
 - b) i. $A-\mu I_2$ est symetrique car A et I_2 sont symétriques, d'autre part $\operatorname{Sp}_{\mathbb{R}}(A-\mu I_2) = \operatorname{Sp}_{\mathbb{R}}(A) \mu = \{\lambda, \mu\} \mu = \{\lambda \mu, 0\} \subset \mathbb{R}^+,$ donc $A \mu I_2$ est positive.

On a $0 \le rg(A - \mu I_2) \le 2$, et μ valeur propre de A, donc A n'est pas inversible, donc $rg(A - \mu I_2) \ne 2$, de plus $A \ne \mu I_2$ car admet deux valeurs propres distinctes, donc $A - \mu I_2 \ne 0$, donc $rg(A - \mu I_2) \ne 0$, donc $rg(A - \mu I_2) = 1$

- ii. On a : $\Phi(S_n^+(\mathbb{R})) = S_n^+(\mathbb{R})$, or $A \mu I_2$ est symétrique, positive, donc $\phi(A) \mu I_2 = \phi(A \mu I_2) \in \Phi(S_n^+(\mathbb{R})) = S_n^+(\mathbb{R})$, symétrique, positive. Supposons que : $rg(\Phi(A) - \mu I_2) = 0$, alors $\Phi(A) = \mu I_2 = \mu \Phi(I_2) = \Phi(\mu I_2)$, or Φ est bijective, donc $A = \mu I_2$, absurde. Supposons que : $rg(\Phi(A) - \mu I_2) = 2$, alors $\Phi(A) - \mu I_2$ est inversible, donc n'admet pas de valeur propre nulle, or elle est symétrique, positive, donc devient symétrique définie positive, c'est à dire $\Phi(A) - \mu I_2 = \Phi(A - \mu I_2) \in (S_n^{++}(\mathbb{R})) = \Phi(S_n^{++}(\mathbb{R}))$, or Φ automorphisme, donc $A - \mu I_2 = \Phi^{-1} \circ \Phi(A - \mu I_2) \in \Phi^{-1}(S_n^{++}(\mathbb{R})) = S_n^{++}(\mathbb{R})$, en particulier $A - \mu I_2$ est inversible, impossible puisque μ est une valeur propre de A. Conclusion : $rg(\Phi(A) - \mu I_2) = 1$, et par suite μ est une valeur propre de $\Phi(A)$.
- iii. Les valeurs propres de -A sont $-\lambda$ et $-\mu$ avec $-\mu > lambda$, de la même façon que dans 5.b.i) on montre que $-A + \lambda I_2$ est symétrique, positive et de rang 1, puis que $-\Phi(A) + \lambda I_2$ est aussi de rang 1, puis on conclut que λ est une valeur propre de $\Phi(A)$.
- e) D'aprés ce qui précède on a : $\operatorname{Sp}_{\mathbb{R}}(A) = \operatorname{Sp}_{\mathbb{R}}(\Phi(A))$, d'où $\chi_{\Phi(A)} = \chi_A = X^2 (\lambda + \mu)X + \lambda\mu$.

Fin