MO640/MC668

Guilherme P. Telles

IC-Unicamp

Avisado está

- Estes slides são incompletos.
- Estes slides contêm erros.

Parte I

Conceitos

Biologia Molecular

 Ciência que tenta explicar a vida através das interações entre moléculas.

Computação e Biologia Molecular

- Aumentar a produtividade dos métodos em laboratório.
- Permitir aumentar a escala dos experimentos.
- Viabilizar os métodos e ferramentas de análise.

Moléculas

- Três moléculas de grande interesse na biologia molecular:
 - Proteínas
 - DNA
 - RNA

Proteínas

- Proteínas são moléculas que participam de uma quantidade enorme de processos nas células.
- Proteínas são formadas por uma ou mais cadeias de aminoácidos.
- Vamos abusar um pouco do nome e chamar qualquer cadeia de aminoácidos de proteína, embora proteína seja um nome usado para uma cadeia de aminoácidos funcional. Os termos peptídeo ou polipeptídeo deveriam ser usados.

Aminoácidos

- Cada aminoácido contém:
 - ▶ Um carbono central chamado carbono alfa, C_{α} .
 - Um átomo de hidrogênio.
 - ▶ Um grupo amina, NH₂.
 - Um grupo carboxil, COOH.
 - Uma cadeia lateral.
- A cadeia lateral distingue os aminoácidos.

Esqueleto de uma proteína

Aminoácidos

• São 20 os aminoácidos mais freqüentes em proteínas.

Ala	Α	alanina	Gly	G	glicina	Pro	Ρ	prolina
Arg	R	arginina	His	Н	histidina	Ser	S	serina
Asn	Ν	asparagina	lle	1	isoleucina	Thr	Т	treonina
Asp	D	aspartato	Leu	L	leucina	Trp	W	triptofan
Cys	C	cisteína	Lys	K	lisina	Tyr	Υ	tirosina
Glu	Ε	glutamato	Met	M	metionina	Val	V	valina
Gln	Q	glutamina	Phe	F	fenilalanina			

Proteínas como cadeias

 Na maior parte do tempo vamos pensar em proteínas como cadeias de um alfabeto de 20 letras.

Ângulos e estruturas

$$\begin{array}{c} \text{cI} \\ \text{H}_2^+\text{N} - \text{C}_\alpha - \text{COOH} \\ \text{I} \\ \text{H} \end{array}$$

$$\begin{array}{c} \text{H} & \text{O} & \text{cI} \\ \text{I} & \text{C} - \text{C} - \text{C} - \text{C} - \text{C} - \text{C} - \text{C} \end{array}$$

Ângulos e estruturas

- O ângulo ϕ entre os planos dos átomos C_{α} e N pode variar.
- O ângulo ψ entre os planos dos átomos C_{α} e C pode variar.
- Determinando os valores de todos os ângulos podemos determinar a estrutura da molécula.
- A estrutura está diretamente relacionada com a função da proteína.

Estruturas

- Estrutura primária: aminoácidos.
- Estrutura secundária: estrutura tri-dimensional que resulta das interações entre os átomos do esqueleto.
- Estrutura terciária: estrutura tri-dimensional que resulta das interações entre estruturas secundárias.
- Estrutura quaternária: estrutura tri-dimensional que resulta das interações entre mais de uma proteína.

- Função principal é armazenar e transmitir informação.
- Forma uma fita dupla.
- Cada fita simples é uma cadeia de nucleotídeos.
- Cada nucleotídeo é formado por
 - um açúcar (2-deoxi-ribose),
 - um fosfato e
 - uma base.

Esqueleto do DNA

- Os cardonos do açúcar são numerados de 1' a 5'.
- A base está ligada ao açúcar 1'.
- A ligação ao longo da cadeia acontece entre o carbono 3' de uma unidade, o fostato e o carbono 5' de outra unidade.
- Convenciona-se a orientação 5'-3' como padrão.

- Quatro bases principais: adenina (A), citosina (C), guanina (G) e timina (T).
- Podemos pensar em DNA como cadeias de letras de um alfabeto de 4 letras.

5' AGTGTGACCAACCTGTGTGTGTTG 3'

- Fita-dupla anti-paralela: duas cadeias complementares ficam unidas por pontes de hidrogênio.
- Base A emparelha com T e base C emparelha com G.
 - 5' AGTGTGACCAACCTGTGTGTTTG 3'
 - 3' TCACACTGGTTGGACACACACAC 5'
- A operação para obter uma fita a partir da outra é chamada de complemento reverso.

- Livre no citoplansma de procariotos.
- No núcleo de eucariotos.
- Nas mitocôndrias e cloroplastos.

RNA

- Funções principais são regular processos celulares, participar da construção de proteínas a partir do DNA.
- Também é uma cadeia de nucleotídeos.
 - Açúcar é a ribose.
 - ▶ Bases são adenina (A), citosina (C), guanina (G) e uracila (U).
- Normalmente forma fita simples que forma estrutura secundária.
- Podemos pensar em RNA como cadeias de letras de um alfabeto de 4 letras.

Construção das proteínas

Genes

- Um gene é uma região do DNA usada para gerar uma proteína.
- Genes são compostos por regiões regulatórias e por uma região codificante.
- A densidade de genes no RNA é diferente nos eucariotos e procariotos.
- Um mesmo gene pode gerar mais de uma proteína.

Partes dos genes

Densidade de genes

Splicing Alternativo

Transcrição

- O mecanismo celular reconhece a região promotora dos genes.
- A região codificante é copiada em RNA complementar.
- O DNA é copiado na direção 3'-5', gerando mRNA na direção 5'-3'.
- Nos eucariotos, os introns são removidos depois da transcrição.

Transcrição

Tradução

- O mRNA é usado como molde para gerar a proteína.
- Os ribossomos se acoplam ao RNA mensageiro e ao RNA de transferência.

Tradução

Código Genético

- Tabela que relaciona cada tripla de bases (chamada códon) a um aminoácido.
- Nem toda tripla está associada a um tRNA.
- Há códigos diferentes, mas a maioria dos organismos usa o código universal.
- Uma mesma sequência de DNA pode ser traduzida de três maneiras diferentes, uma em cada frame. Considerando a sequência complementar, são seis frames.

Código Genético

AAA	Lys	CAA	Gln	GAA	Glu	TAA	Ter
AAC	Asn	CAC	His	GAC	Asp	TAC	Tyr
AAG	Lys	CAG	Gln	GAG	Glu	TAG	Ter
AAT	Asn	CAT	His	GAT	Asp	TAT	Tyr
ACA	Thr	CCA	Pro	GCA	Ala	TCA	Ser
ACC	Thr	CCC	Pro	GCC	Ala	TCC	Ser
ACG	Thr	CCG	Pro	GCG	Ala	TCG	Ser
ACT	Thr	CCT	Pro	GCT	Ala	TCT	Ser
AGA	Arg	CGA	Arg	GGA	Gly	TGA	Ter
AGC	Ser	CGC	Arg	GGC	Gly	TGC	Cys
AGG	Arg	CGG	Arg	GGG	Gly	TGG	Trp
AGT	Ser	CGT	Arg	GGT	Gly	TGT	Cys
ATA	lle	CTA	Leu	GTA	Val	TTA	Leu
ATC	lle	CTC	Leu	GTC	Val	TTC	Phe
ATG	Met	CTG	Leu	GTG	Val	TTG	Leu
ATT	lle	CTT	Leu	GTT	Val	TTT	Phe

Expressão gênica

- É o volume em que um certo gene está sendo produzido (expresso) em uma célula.
- A expressão não é regular em todas as células. Depende de condições ambientais e do tipo da célula.

Cromossomos

- O DNA de um organismo está organizado em cromossomos.
- Procariotos normalmente tem apenas um cromossomo.
- Eucariotos normalmente têm pares de cromossomos. Cada membro do par é herdado de um dos pais.
- Cromossomos que formam um par são homólogos.
- Genes correspondentes podem ser idênticos ou diferentes (alelos).

Genoma

- Conjunto de todo o DNA em todos os cromossomos de um organismo.
- Bactérias têm genoma de alguns poucos milhões de pares de bases.
- Homem tem genoma de aproximadamente 3 bilhões de pares de bases.

O que é possível fazer com DNA

- Cortar em pontos específicos.
- Quebrar aleatoriamente.
- Separar as fitas.
- Gerar várias cópias.
- Medir o tamanho.
- Obter a composição de letras.
- ...