

PROVA DE FÍSICA MATEMÁTICA II – GEOMETRIA DIFERENCIAL

Sandro Dias Pinto Vitenti

Departamento de Física - CCE - UEL

- 1. Dado um círculo unitário definido por $S^1 = \{(x,y) \in \mathbb{R}^2; x^2 + y^2 = 1\}$, mostre explicitamente que S^1 é uma variedade diferenciável. Para isso faça os itens abaixo:
 - (a) Encontre um conjunto minimo de cartas (U_i, ϕ_i) para 0 < i < m (onde $m \notin o$ número de cartas) e mostre que ele cobre toda a variedade.
 - (b) Mostre que as funções $\varphi_1\circ\varphi_2^{-1}$ e $\varphi_2\circ\varphi_1^{-1}$ são suaves em $U_1\cap U_2.$
- 2. Seja o mapa $h: \mathbb{R}^2 \to \mathbb{R}^3$ dado por

$$h(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \\ w(x,y) \end{pmatrix} = \begin{pmatrix} x \\ y \\ x^2 + y^2 \end{pmatrix}$$
 (1)

E um campo vetorial

$$V = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y},$$

calcule o campo em \mathbb{R}^3 definido pelo *push-forward* $h_*V \in T_{h(x,y)}\mathbb{R}^3$ (lembre-se que h_*V é uma derivação em $C^\infty(\mathbb{R}^3)$).

3. Calcule as curvas integrais do campo vetorial V dado na questão anterior, ou seja, as curvas cuja tangente coincide com V ao longo de suas trajetórias,

$$\sigma_* \frac{\mathrm{d}}{\mathrm{d}t} = \mathrm{V}_{\sigma}.$$

4. Prove que a aplicação de duas derivações na mesma função não forma uma derivação. Em seguida, prove que o comutador de duas derivações, ou seja,

$$[V, U](f) \equiv V(U(f)) - U(V(f))$$

é uma derivação (V, U são derivações e f uma função da variedade).

•