Chương 7: Chọn đường – Routing

- Tuần trước
 - Giao thức IP
 - Địa chỉ IP và cấu trúc gói tin IP
 - Giao thức ICMP
- Tuần này: Tiếp tục về tầng mạng
 - Thế nào là chọn đường?
 - Chọn đường tĩnh và chọn đường động
 - Giải thuật và giao thức chọn đường

Chọn đường là gì?

Các nguyên lý chọn đường Cơ chế chuyển tiếp gói tin Quy tắc "Longest matching"

Cơ bản về chọn đường (1)

- Khi một máy trạm gửi một gói tin IP tới một máy khác
 - Nếu địa chỉ đích nằm trên cùng một đường truyền vật lý: Chuyển trực tiếp
 - Nếu địa chỉ đích nằm trên một mạng khác: Chuyến gián tiếp qua bộ định tuyến (chọn đường)

- Cơ chế để máy trạm hay bộ định tuyến chuyển tiếp gói tin từ nguồn đến đích
- Các thành phần của chọn đường
 - Bảng chọn đường
 - Thông tin chọn đường
 - Giải thuật, giao thức chọn đường

- Thiết bị chuyển tiếp các gói tin giữa các mạng
 - Là một máy tính, với các phần cứng chuyên dụng
 - Kết nối nhiều mạng với nhau
 - Chuyến tiếp gói tin dựa trên bảng chọn đường
- Có nhiều giao diện
- Phù hợp với nhiều dạng lưu lượng và phạm vi của mạng

Một số ví dụ...

BUFFALO BHR-4RV

PLANEX GW-AP54SAG

YAMAHA RTX-1500

Cisco 2600

Router ngoại vi

Hitachi GR2000-1B

Juniper M10

Cisco 3700

Foundry Networks NetIron 800

Router co trung

Cisco CRS-1

Router mang truc

http://www.cisco.com.vn

http://www.juniper.net/

http://www.buffalotech.com

Bảng chọn đường

- Chỉ ra danh sách các đường đi có thế, được lưu trong bộ nhớ của router
- Các thành phần chính của bảng chọn đường
 - Địa chỉ đích/mặt nạ mạng
 - Router ké tiép

Bảng chọn đường và cơ chế chuyển tiếp (1)

Lưu ý quy tắc: No routes, no reachability!

- Giả sử một địa chỉ mạng đích lại có nhiều hơn một mục trong bảng chọn đường
- Địa chỉ đích : 11.1.2.5
- Router kế tiếp nào sẽ được sử dụng?

Network	Next hop
11.0.0.0/8	Α
11.1.0.0/16	В
11.1.2.0/24	С

Địa chỉ đích:

11.1.2.5 = 00001011.00000001.00000010.00000101

11.1.3.6 = 00001011.00000001.00000011.00000110

Đường đi 1:

11.1.2.0/24 = 00001011.00000001.00000010.00000000

Đường đi 2:

11.1.0.0/16 = 00001011.00000001.00000000.00000000

Đường đi 3:

"Longest matching" là gì? Tại sao phải cần quy tắc này?

Bảng chọn đường và cơ chế chuyển tiếp (2)

\leftarrow	
Network	Next-hop
10.0.0.0/24	Α
172.16.0.0/24	С
192.168.0.0/24	Direct

Q. Mô tả bảng chọn đường trên C

Nếu C nối vào Internet?

Internet

Đường đi mặc định

- Nếu đường đi không tìm thấy trong bảng chọn đường
 - Đường đi mặc định trỏ đến một router kết tiếp
 - Trong nhiều trường hợp, đây là đường đi duy nhất
- 0.0.0.0/0

Là một trường hợp đặc biệt, chỉ tất cả các đường đi

Kết hợp đường đi (Routing aggregation)

- Có bao nhiêu mạng con trên mạng Internet?
- Sẽ có rất nhiều mục trong bảng chọn đường?
- Các mạng con kế tiếp với cùng địa chỉ đích có thể được tổng hợp lại để làm giảm số mục trong bảng chọn đường.

- Ví dụ về Viettel
 - Không gian địa chỉ IP: khá lớn
 - 203.113.128.0-203.113.191.255
 - Để kết nối đến một mạng con của Vietel (khách hàng): Chỉ cần chỉ ra đường đi đến mạng Viettel
- Đường đi mặc định chính là một dạng của việc kết hợp đường
 - 0.0.0.0/0

Ví dụ về bảng chọn đường – máy trạm

C:\Documents and Settings\hongson>netstat -rn Route Table

Interface List

0x1MS TCP Loopback interface

0x2 ...08 00 1f b2 a1 a3 Realtek RTL8139 Family PCI Fast Ethernet NIC -

Active Routes:

Network	Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	192.168.1.1	192.168.1.34	20
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
192.168.1.0	255.255.255.0	192.168.1.34	192.168.1.34	20
192.168.1.34	255.255.255.255	127.0.0.1	127.0.0.1	20
192.168.1.255	255.255.255.255	192.168.1.34	192.168.1.34	20
224.0.0.0	240.0.0.0	192.168.1.34	192.168.1.34	20
255.255.255.255	255.255.255.255	192.168.1.34	192.168.1.34	1

Default Gateway: 192.168.1.1

Ví dụ về bảng chọn đường – Router (trích)


```
#show ip route
Prefix Next Hop
203.238.37.0/24 via 203.178.136.14
203.238.37.96/27 via 203.178.136.26
203.238.37.128/27 via 203.178.136.26
203.170.97.0/24 via 203.178.136.14
192.68.132.0/24 via 203.178.136.29
203.254.52.0/24 via 203.178.136.14
202.171.96.0/24 via 203.178.136.14
```

Chọn đường tĩnh và chọn đường động

Chọn đường tĩnh Chọn đường động Ưu điểm – nhược điểm

Vấn đề cập nhật bảng chọn đường

- Sự thay đổi cấu trúc mạng: thêm mạng mới, một nút mạng bị mất điện
- Sự cần thiết phải cập nhật bảng chọn đường
 - Cho tất cả các nút mạng (về lý thuyết)
 - Thực tế, chỉ một số nút mạng phải cập nhật

Network	Next- hop
192.168.0.0/24	В
172.16.0.0/24	В

Network	Next- hop
10.0.0.0/24	А
172.16.0.0/24	С

Network	Next- hop
10.0.0.0/24	В
192.168.0.0/24	В

172.16.1.0/24

B

172.16.1.0/24

C

- Chọn đường tĩnh
 - Các mục trong bảng chọn đường được sửa đổi thủ công bởi người quản trị
- Chọn đường động
 - Tự động cập nhật bảng chọn đường
 - Bằng các giao thức chọn đường

Chọn đường tĩnh

- Khi có sự cố:
 - Không thể nối vào
 Internet kể cả khi có tồn
 tại đường đi dự phòng
 - Người quản trị mạng cần thay đổi

Bảng chọn đường của 10.0.0.1 (1 phần)

Prefix	Next-hop	
0.0.0.0/0	10.0.0.3	

Chọn đường động

- Uu
 - Ôn định
 - An toàn
 - Không bị ảnh hưởng bởi các yếu tố tác động
- Nhược
 - Cứng nhắc
 - Không thể sử dụng tự động kết nối dự phòng
 - Khó quản lý

- Uu
 - Dễ quản lý
 - Tự động sử dụng kết nối dự phòng
- Nhược
 - Tính an toàn
 - Các giao thức chọn đường phức tạp và khó hiểu
 - Khó quản lý

Các giải thuật và giao thức chọn đường

Giải thuật Dijkstra và Bellman-Ford Giao thức dạng link-state và dạng distance-vector

- Đồ thị với các nút (bộ định tuyến) và các cạnh (liên kết)
- Chi phí cho việc sử dụng mỗi liên kết c(x,y)
 - Băng thông, độ trễ, chi phí, mức độ tắc nghẽn...
- Giả thuật chọn đường: Xác định đường đi ngắn nhất giữa hai nút bất kỳ

- SPT Shortest Path Tree
- Các cạnh xuất phát từ nút gốc và tới các lá
- Đường đi duy nhất từ nút gốc tới nút v, là đường đi ngắn nhất giữa nút gốc và nút v
- Mỗi nút sẽ có một SPT của riêng nút đó

- Tập trung
 - Thu thập thông tin vào một nút mạng
 - Sử dụng các giải thuật tìm đường đi trên đồ thị
 - Phân bổ bảng chọn đường từ nút trung tâm tới các nút
- Phân tán
 - Mỗi nút tự xây dựng bảng chọn đường riêng
 - Giao thức chọn đường: distance-vector
 - Được sử dụng phổ biến trong thực tế

- Thông tin chọn đường là cần thiết để xây dựng bảng chọn đường
- Tập trung hay phân tán?
 - Tập trung:
 - Mỗi router có thông tin đầy đủ về trạng thái của mạng
 - Giải thuật dạng "link state"
 - Phân tán:
 - Các nút chỉ biết được trạng thái của liên kết vật lý tới nút kế bên
 - Liên tục lặp lại việc tính toán và trao đổi thông tin với nút kế bên
 - Giải thuật dạng "distance vector"
 - "Bạn của bạn cũng là bạn"

Giải thuật Dijkstra's

- Mỗi nút đều có sơ đồ và chi phí mỗi link
 - Quảng bá "Link-state"
 - Mỗi nút có cùng thông tin
- Tìm đường đi chi phí nhỏ nhất từ một nút ('nguồn') tới tất cả các nút khác
 - dùng để xây dựng bảng chọn đường

- G = (V,E) : Đồ thị với tập đỉnh V và tập cạnh E
- c(x,y): chi phí của liên kết x tới y; = ∞ nếu không phải 2 nút kế nhau
- d(v): chi phí hiện thời của đường đi từ nút nguồn tới nút đích. v
- p(v): nút ngay trước nút v trên đường đi từ nguồn tới đích
- T: Tập các nút mà đường đi ngắn nhất đã được xác định

Init():

```
Với mỗi nút v, d[v] = \infty, p[v] = NIL
d[s] = 0
```

 Improve(u,v), trong dó (u,v) u, v là một cạnh nào đó của G

```
if d[v] > d[u] + c(u,v) then

d[v] = d[u] + c(u,v)
p[v] = u
```

Dijsktra's Algorithm

```
    Init();
    T = Φ;
    Repeat
    u: u ∉ T | d(u) là bé nhất;
    T = T ∪ {u};
    for all v ∈ neighbor(u) và v ∉ T
    update(u,v);
    Until T = V
```


Dijkstra's algorithm: Ví dụ

uxyvwz

Step	Т	d(v),p(v)	d(w),p(w)	d(x),p(x)	d(y),p(y)	d(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux ←	2,u	4,x		2,x	∞
2	uxy <mark>⁴</mark>	2,u	3,y			4,y
3	uxyv		3,y			4,y
4	uxyvw 🕶					4,y
5	uxyvwz 🕶					

Bảng chọn đường của u:

ination	link
V	(u,v)
X	(u,x)
У	(u,x)
W	(u,x)
Z	(u,x³)⁵

Giải thuật dạng distance-vector (1)

Phương trình Bellman-Ford (quy hoach động)

Định nghĩa d_x(y) := chi phí của đường đi ngắn nhất từ x tới y

Ta có

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

cho tất cả các v là hàng xóm của x

Minh họa Bellman-Ford Eq.

Dễ thấy,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F eq. cho ta biết:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

Nút nào làm giá trị trên nhỏ nhất → Lựa chọn là nút kế tiếp trong bảng chọn đường

ý tưởng cơ bản:

- DV: Vector khoảng cách, tạm coi là đường đi ngắn nhất của từ một nút tới những nút khác
- Mỗi nút định kỳ gửi DV của nó tới các nút bên cạnh
- Khi nút x nhận được 1 DV, nó sẽ cập nhật DV của nó qua pt Bellman-ford
- Với một số điều kiện, ước lượng $D_x(y)$ sẽ hội tụ dần đến giá trị nhỏ nhất $d_x(y)$

Mỗi nút:

Chờ (Thay đổi trong DV của nút bên cạnh)

Tính lại ước lượng DV

Nếu DV thay đổi, *Báo* cho nút bên cạnh

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

<u>nút x</u>

chi phí tới

chi phí tới

chi phí tới

$$D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$$

= $\min\{2+1, 7+0\} = 3$

	У	2	0	1
ţ	7			

<u>nút z</u>

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

 $D_{x}(z) = \min\{c(x,y) +$ $D_y(z),\ c(x,z)\,+\,D_z(z)\}$ $= min\{2+1, 7+0\} = 3$

<u>nút x</u>

chi phí tới

x y z

0 2 7

ch	i p	hí	tới
X	У	Z	1

0 2 3

chi phí tới

<u>nút y</u>

chi phí tới

	X	y	Z	\bigvee		X	у	Z	
Χ	8	∞	∞ /	/\	X	0	2	7	
.,		^	1	\ /	1/	_	_		

chi phí tới

x y Z Х

<u>nút z</u>

₽

chi phí tới

	om printor						
	X	У	Z	/			
Х	∞	∞	∞				
у	∞	∞	∞	//			
Ζ	7	1	0	4			

chi phí tới

		X	у	Z
>	(0	2	7
)	/	2	0	1
Z	Z (3	1	0

chi phí tới

ţ

ţ

1		X	У	Z	
	Χ	0	2	3	
		2		1	
	Z	3	1	0	

thờigian

So sánh các giải thuật LS và DV

Thông điệp trao đổi

- LS: n nút, E cạnh, O(nE) thông điệp
- DV: Chỉ trao đổi giữa các hàng xóm
 - thay đổi

Tốc độ hội tụ

- LS: Thuật toán: O(n²) cần
 O(nE) thông điệp
- DV: Thay đổi

Sự chắc chắn: Giải sử một router hoạt động sai

<u>LS:</u>

- nút gửi các chi phí sai
- Mỗi nút tính riêng bảng chọn đường -> có vẻ chắc chắn hơn

DV:

- DV có thể bị gửi sai
- Mỗi nút tính toán dựa trên các nút khác
 - Lỗi bị lan truyền trong mạng

- Nguyên lý của bài toán chọn đường
- Tĩnh vs. động, tập trung vs. phân tán
- Link-state vs. distance-vector

Tuần tới: Các giao thức chọn đường trên Internet

- Chọn đường phân cấp
- RIP
- OSPF
- BGP