We will construct / define the heat kernel
We will construct define the heat kernel of a generalité Laplacian on E ® Dens
over oupout, Ramonion M.
Schwart kennels
Def: The space of distributional (or generalized) sections of Evi:
T(H,E) = (T(H,E@Dens))
Rusk: Hove enbedding
$T(H,E) \longrightarrow T(H,E)$.

 $\frac{1}{(KS)(z)} = \int k(z,y) s(y)$ y E M If k, k on two kennels s.t. K, Kz are composable the KoKz is the operator of Lemel k (z, y) = k, (z, y). 4 E H Thus: Schwart founded line kerna/5 operators P(HxM,(F&)Den'e) B(E° @Dens') Hom (F(E)Dens"), T(F)Pens")

· Dirac notation: If I is any
Dirac notation: If I is any bounded live operator the we denote
$p(x,y) = \langle x \mathcal{F}(y) \rangle$
its associated kuml. This
(Ps)(x) = (x)Py7s(y).
y EH (fourtly of)
We are intersted in the operator:
-tH
e + H
where H = generalitéed Laplacian.

Dfn: Let H be generalised hoplosers on E@Dens'in

A heat bernel for H is

P+(x,y) E [(R+xHxH,(E®Donb")) (E®Donb"))

5 4

(1) pt(x,y) is C' wrt t.

2) Pt(x, 1) is c2 wrt 2, for ony courdinate 2 of M.

(3) $(3 + H_{+}) P_{+}(x,y) = 0$.

in other words

 $\lim_{t\to 0} p_t(x, y) = \left(x - y\right).$

We	show	ملى ك	•	hest	kenel	7.5	unig	u.
								1

eurna: Assume the Germal adviset H
has a heat kernel, pa. If
) (t
St: Rt - 1 (E @ Deus'12)
is C'in t. C'in x
$\lim_{s \to \infty} S_{t} = O_{s} \left(\partial_{t} + H \right) S_{t} = 0$
t-10 tim 5t) (ot 14)5t
$=) S_1 = 0$
f: If S, (t,-), se sections
of E @ Dens'/2 the
\\\ \(\(\tau_{,-} \) \\ \(\tau_{,-} \) \\ \(\tau_{,-} \) \\\ \
H
$=$ $\int \langle 5, (t, -), H_{5_2}(t, -) \rangle$
M
A + 10

$$\frac{f(\Theta) = \int \langle s(\Theta, x), \eta_{t-\Theta}(x, y) u(y) \rangle}{(x,y) \in H_{r}H}$$

fu olbet.

$$\frac{\partial}{\partial \theta} f_{\mu}(\theta) = \int \left\langle \partial_{\theta} s(\theta, \mathbf{z}), \rho_{\xi-\theta}(\mathbf{z}, \mathbf{y}) u(\mathbf{y}) \right\rangle$$

$$= \frac{\partial}{\partial \theta} f_{\mu}(\theta) = \int \left\langle \partial_{\theta} s(\theta, \mathbf{z}), \rho_{\xi-\theta}(\mathbf{z}, \mathbf{y}) u(\mathbf{y}) \right\rangle$$

$$= \int \left(\left(\partial_{\Theta} + H \right) s \left(\Theta_{1} \right) \right) \left(\frac{\partial_{\Phi} + H}{\partial_{\Phi}} \right) \left($$

$$\Rightarrow$$
 $f(\theta)$ is constart.

$$\lim_{\Theta \to t} f(\Theta) = \int (s(\Theta, x), u(x))$$

But
$$f_{\mathbf{u}}(\mathbf{p}) = 0. = 0$$

$$\int S(t,x) u(x) = 0 \quad \forall \quad t > 0.$$

$$\forall$$
 $u \in \Gamma(E^* \otimes Dens''^2). \rightarrow 5(t,-)=0.$

$$\mathcal{P}_{t}(x,y) = (\mathcal{P}_{t}(y,x))^{2}.$$

$$f_{u}(\theta) = \int \left(P_{\theta}s\right)(x), \left(P_{t-\theta}u\right)(x)$$

H

As defere, f 15 constat =)

 $(P_t s, u) = (s, P_t u)$

This prous 1,21.

Semigrop Pts = Pt Ps

lim 5 = P65 =) 5 = P4+85

Glenne.