Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner

 $Sommersemester\ 2011$ Mittelklausur 24. Juni 2011

Diskrete	Wahrsc	heinli	ichl	keitst	heorie
	V V CLILL DO.				1100110

	Disk	rete	e VI	an	rscr	ıeın	ucn	ıkeı	tstn	1eo1	11e		
Name	9		Vor	name	9		Studiengang Diplom Inform. Bachelor BioInf. Lehramt WirtInf. Sitzplatz		N	Matrikelnummer Unterschrift			
						\square B			•				
Hörsaa	al		Re	eihe									
					• • • •								
Code:													
• Bitte fül	len Sie o	bige		•	meir Druck				und u	m nters	chrei	ben S	Sie!
• Bitte sch	reiben S	Sie nie	cht m	it Bl	eistift	oder	in rot	er/gr	üner l	Farbe	!		
• Die Arbe	eitszeit b	eträg	gt 90	Minu	iten.			·					
• Alle Ant seiten) d Sie Nebe werden,	er betref enrechnu	ffende ingen	en Au mac	ıfgabe hen.	en ein: Der S	zutrag Schmie	en. A erblat	uf de	m Sch	mier	blatt	boge	n könr
Hörsaal verla	ssen		von		b	is		/	von		. b	is	
Vorzeitig abg	gegeben		um										
Besondere Be	emerkun	gen:											
	A1	A2	A3	A4	A5	Σ	Kor	rekto	or				
Erstkorrektu	ır												
Zweitkorrekt	ur												

Aufgabe 1 (6 Punkte)

Wahr oder falsch? Begründen Sie Ihre Antwort!

- 1. In jedem diskreten Wahrscheinlichkeitsraum $\langle \Omega, \Pr \rangle$ gibt es ein Elementarereignis $e \in \Omega$ mit $\Pr[e] \neq 0$.
- 2. Es gibt keinen diskreten Wahrscheinlichkeitsraum $\langle \Omega, Pr \rangle$ mit $|\Omega| = 1$.
- 3. Für jede diskrete Zufallsvariable X ist das zweite zentrale Moment gleich der Varianz Var[X].
- 4. Sei $\lambda \in \mathbb{R}$ mit $\lambda < 0$. Dann ist die Funktion $f : \mathbb{R} \to [0,1]$ mit $f(i) = \frac{e^{-\lambda}\lambda^i}{i!}$ für alle $i \in \mathbb{N}_0$ und f(i) = 0 für alle $i \in \mathbb{R} \setminus \mathbb{N}_0$ keine (diskrete) Dichtefunktion.
- 5. Falls X Poisson-verteilt ist, dann ist auch X+1 Poisson-verteilt.
- 6. Jede konstante Folge $(H_i)_{i\in\mathbb{N}}$, die für alle $i\in\mathbb{N}$ aus Ereignissen H_i gleich einem Ereignis H besteht (d. h. $H_i=H$), ist rekurrent.

Aufgabe 2 (8 Punkte)

Seien $W = \langle \Omega, \Pr \rangle$ und $\overline{A} = \Omega \setminus A$ für Ereignisse A über Ω . Wir betrachten Ereignisse A und B, so dass die folgenden bedingten bzw. unbedingten Wahrscheinlichkeiten gelten.

$$\Pr[A] = \frac{1}{3}, \quad \Pr[B|A] = \frac{5}{12}, \quad \Pr[A|B] = \frac{1}{5}.$$

- 1. Zeigen Sie, dass die Ereignisse A und B abhängig sind.
- 2. Berechnen Sie $Pr[B|\overline{A}]$ als Bruchzahl.
- 3. Berechnen Sie $\Pr[A \cup B]$ als Bruchzahl.

Aufgabe 3 (10 Punkte)

Wir werfen gleichzeitig und unabhängig mit einem blauen und einem roten fairen Würfel und definieren eine diskrete Zufallsvariable X wie folgt:

Falls der rote Würfel eine höhere Augenzahl zeigt als der blaue Würfel, dann sei der Wert von X gleich 0. Andernfalls sei X durch die Augenzahl des blauen Würfels gegeben. Wenn beispielsweise der blaue Würfel die Augenzahl 6 zeigt, dann hat X stets den Wert 6. Es gilt $W_X = \{0, 1, 2, \dots, 6\}$.

- 1. Geben Sie die Dichtefunktion f_X für X an.
- 2. Berechnen Sie den Erwartungswert $\mathbb{E}[X|X\neq 0]$ der bedingten Variablen $X|X\neq 0$.
- 3. Wir wiederholen das Werfen der Würfel so lange, bis im n-ten Wurf zum ersten Mal der rote Würfel eine höhere Augenzahl zeigt als der blaue Würfel.

Sei X_i für $i \in \mathbb{N}$ die Zufallsvariable für den *i*-ten Wurf. Die Verteilung der X_i ist also identisch mit der Verteilung von X.

Seien N und Y Zufallsvariable, wobei N den Wert n liefere und $Y = \sum_{i=1}^{N} X_i$ gelte.

Berechnen Sie den Erwartungswert $\mathbb{E}[N]$ von N.

Berechnen Sie nun den Erwartungswert $\mathbb{E}[Y]$ von Y.

Aufgabe 4 (10 Punkte)

Wir betrachten ein Münzwurfexperiment, das darin besteht, jede von drei unterschiedlichen Münzen A bzw. B bzw. C so lange zu werfen, bis Kopf erscheint. Dabei nehmen wir an, dass die Erfolgswahrscheinlichkeiten für einen einzigen Wurf mit A bzw. B bzw. C die Werte $p_1 = \frac{1}{3}$ bzw. $p_2 = \frac{1}{2}$ bzw. $p_3 = \frac{2}{3}$ sind. Die Münzen A und C sind also unfair.

 X_A bzw. X_B bzw. X_C seien die entsprechenden unabhängigen Zufallsvariablen, die die Anzahl der Würfe mit A bzw. B bzw. C zählen. Die Gesamtzahl der Würfe sei gegeben durch die Zufallsvariable $Y=X_A+X_B+X_C$.

- 1. Sei $G_Y(s)$ die wahrscheinlichkeitserzeugende Funktion für Y. Bestimmen Sie $G_Y'(0)$.
- 2. Sei f_Y die Dichtefunktion von Y. Bestimmen Sie $f_Y(4)$.
- 3. Bestimmen Sie den Erwartungwert $\mathbb{E}[Y]$.
- 4. Zeigen Sie $\Pr[Y \ge 16,5] \le \frac{1}{10}$. Hinweis: Benutzen Sie die Ungleichung von Chebyshev.

Aufgabe 5 (6 Punkte)

Wir betrachten die Menge {A, U, T, 0} der Buchstaben des Wortes AUTO als Box, aus der wir einzelne Buchstaben Laplace-verteilt und unabhängig genau 5 Mal (mit Zurücklegen) zufällig auswählen wollen. Beispiel: Es könnten dreimal 0 und zweimal U gewählt werden.

Seien X bzw. Y diskrete Zufallsvariablen, die die Anzahl der gewählten 0 bzw. T in der 5-elementigen Auswahl der Buchstaben zählen.

- 1. Geben Sie die Dichtefunktionen für X und Y explizit an. Bekannte Funktionen können Sie dabei verwenden. Geben Sie insbesondere für $\Pr[X=2]$ einen arithmetischen Ausdruck an.
- 2. Berechnen Sie die gemeinsame Dichte Pr[X = 1, Y = 1].
- 3. Sind die Ereignisse X = 1 und Y = 1 unabhängig? Begründen Sie Ihre Antwort!