SRM INSTITUTE OF SCIENCE AND TECHNOLOGY RAMAPURAM CAMPUS DEPARTMENT OF MATHEMATICS SURPRISE TEST – 2

* Required

Answer ALL Questions

Each question carries ONE mark.

1. *

If
$$z = x^2 + y^2 + 3xy$$
 then $\frac{\partial z}{\partial x} =$

(A) 2y + 3x (B) 3y (C) 2x + 3y (D) 2x

- (A
- B
- O

If u is a homogeneous function of degree n then

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} =$$

- (A)n (B) nu (C)u (D)n²u
- () A
- B
- \bigcirc C
- \bigcirc D

3. *

$$u = \sin^{-1} \left(\frac{x^2 + y^2}{x - y} \right)$$
 is a homogeneous function of

degree

- (A) 2 (B) 3 (C) 1 (D) 4
- A
- B
- () C
- O D

4. *	
------	--

The stationary point of $f(x, y) = x^2 + y^2 + 6x + 12$ is

- (A)(-3,0) (B)(0,3) (C)(0,-3) (D)(3,0)

5. *

A point at which there is no extreme value is called

- (A) maximum point (B) minimum point
- (C) saddle point
- (D) dual point

- () D

If $r = f_{xx}$, $s = f_{xy}$, $t = f_{yy}$ then the condition for a function f(x, y) to have a maximum value is

- (A) $rt s^2 > 0$, r > 0 or t > 0 (B) $rt s^2 < 0$
- (C) $rt s^2 > 0$, r < 0 or t < 0 (D) $rt s^2 = 0$, r > 0

- D

7. *

If f(x, y) is an implicit function then $\frac{dy}{dx} =$

$$(A) - \frac{\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)} \quad (B) \quad \frac{\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)} \quad (C) \quad \frac{\left(\frac{\partial f}{\partial y}\right)}{\left(\frac{\partial f}{\partial x}\right)} \quad (D) \quad - \frac{\left(\frac{\partial f}{\partial y}\right)}{\left(\frac{\partial f}{\partial x}\right)}$$

If $f(x, y) = e^x \cos y$ then $f_{xy}(0,0) =$

- (A) 0 (B) -1 (C) 2 (D) 1
- A
- (E
- \bigcirc 0
- O D

9. *

If $J_1 = J\left(\frac{x,y}{u,v}\right)$ and $J_2 = J\left(\frac{u,v}{x,y}\right)$ then $J_1J_2 = J\left(\frac{u,v}{x,y}\right)$

- (A) 0 (B) -1 (C) 2 (D) 1
- (A
- B
- \bigcirc c
- 0

If $x = r \cos \theta$ and $y = r \sin \theta$ then $\frac{\partial(x, y)}{\partial(r, \theta)} =$

(A)r (B) r² (C) 2r (D) 1/r

- A
- () B
- \bigcirc

Back

Submit

Never submit passwords through Google Forms.

reCAPTCHA Privacy Terms

This form was created inside of SRM Institute of Science and Technology. Report Abuse

Google Forms