# Leinster - Basic Category Theory - Selected problem solutions for Chapter 3

# Adam Barber

# December 14, 2021

# 3.1.1

There are bijections

$$(A+B,C) \leftrightarrow ((A,B),\Delta C)$$
  
 $f \leftrightarrow \overline{f}$ 

where  $\overline{f} = (f, f)$ 

$$(\Delta A, (B, C)) \leftrightarrow (A, B \times C)$$
$$g = (p, q) \leftrightarrow \overline{g}$$

where  $\overline{g}(x) = (p(x), q(x))$ 

So the sum is left adjoint to  $\Delta$ , and the product is its right adjoint.

# 3.1.2

We are given the definition of a sequence, where there is a unique function x such that the square below commutes.

We have  $x_0 = a$ , and  $x_{n+1} = r(x_n)$ .

$$\begin{array}{ccc}
\mathbb{N} & \xrightarrow{s} & \mathbb{N} \\
\downarrow^{x} & & \downarrow^{x} \\
X & \xrightarrow{r} & X
\end{array}$$

This is precisely the definition of the comma category  $(\mathbb{N} \Rightarrow X)$ , where objects are  $(n \in \mathbb{N}, x, t \in X)$ .