CS101 Algorithms and Data Structures

Red-Black Trees Textbook Ch 13

Outline

In this topic, we will cover:

- The idea behind a red-black tree
- Defining balance
- Insertions and deletions
- The benefits of red-black trees over AVL trees

A red black tree "colours" each node within a tree either red or black

- This can be represented by a single bit
- In AVL trees, balancing restricts the difference in heights to at most one
- For red-black trees, we have a different set of rules related to the colours of the nodes

Define a *null path* within a binary tree as any path starting from the root where the last node is not a full node

– Consider the following binary tree:

All null paths include:

The three rules which define a red-black tree are

- 1. The root must be black,
- 2. If a node is red, its children must be black, and
- 3. Each null path must have the same number of black nodes

These are two examples of red-black trees:

Theorem:

Every red node must be either

- · A full node (with two black children), or
- A leaf node

Proof:

Suppose node S has one child:

- The one child L must be black
- The null path ending at S has k black nodes
- Any null path containing the node L will therefore have at least k + 1 black nodes

In our two examples, you will note that all red nodes are either full or

Another consequence is that if a node P has exactly one child:

- The one child must be red,
- The one child must be a leaf node, and
- That node P must be black

Suppose that the child is black

- then the null path ending in P will have one fewer black nodes than the null path passing through C
- this contradicts the requirement that each null path has the same number of black nodes
- therefore the one child must be red

Suppose the child is not a leaf node:

- Since it is red, its children:
 - cannot be red because that would contradict the requirement that all children of a red node are black, and
 - cannot be black, as that would cause any leaf node under the child to have more black nodes than the null path ending in P
- Contradiction, therefore the child must be a leaf node

Since the one child is red and it must be a leaf node, the parent P must be black

 otherwise, we would contradict the requirement that the child of a red node must be black

Again, in our examples, the only nodes with a single child are black and the corresponding children are red

All red-black trees with 1, 2, 3, and 4 nodes:

All red-black trees with 5 and 6 nodes:

All red-black trees with seven nodes—most are shallow:

Every perfect tree is a red-black tree if each node is coloured black

A complete tree is a red-black tree if:

- each node at the lowest depth is coloured red, and
- all other nodes are coloured black

What is the worst case?

Any worst-case red-black tree must have an alternating red-black pattern down one side

The following are the worst-case red-black trees with 1 and 2 black nodes per null path (*i.e.*, heights 1 and 3)

To create the worst-case for paths with 3 black nodes per path, start with a black and red node and add the previous worst-case for paths with 2 nodes

This, however, is not a red-black tree because the two top nodes do not have paths with three black nodes

 To solve this, add the optimal red-black trees with two black nodes per path

That is, add two perfect trees with height 1 to each of the missing sub-trees

Thus, we have the worst-case for a red-black tree with three black nodes per path (or a red-black tree of height 5)

Note that the left sub-tree of the root has height 4 while the right has height 1

Thus suggests that AVL trees may be better...

To create the worst-case scenario for red-black trees with 4 black nodes per null path (*i.e.*, height 7), again, start with two nodes and add the previous worst-case tree:

To satisfy the definition of the red-black tree, add two perfect trees of height 2:

Thus, with 30 nodes, the worst case red-black tree has height 7

The worst-case AVL tree with 33 nodes has height 6...

Let k represent the number of black nodes per null path and k = 2k - 1 represent the height of the worst-case tree

To determine F(k), the number of nodes in the worst-case tree, we note that F(1) = 2 and:

$$F(k) = F(k-1) + 2 + 2(2^{k-1} - 1)$$

the number of nodes in the worst-case red-black tree with k-1 black nodes per null path

two perfect trees of height k-2

the two extra nodes

Use Maple:

```
> rsolve(\{F(1) = 2, F(k) = 2 + F(k-1) + 2*(2^{(k-1)-1)}\}, F(k));
                                           2 2^{k} - 2
> solve({h = 2*k - 1}, k); # solve equation for k
                                         \{k=\frac{h}{2}+\frac{1}{2}\}
                                 # evaluate at k = h/2 - 1/2
> eval( 2*2^k - 2, % );
                                         2^{\left(\frac{h}{2}+\frac{1}{2}\right)}-2
> solve( {n = %}, h);
                                  # solve for h
                                    \begin{cases} h = \frac{2 \ln \left(\frac{n}{2} + 1\right) - \ln(2)}{\ln(2)} \end{cases}
```

A little manipulation shows that the worst-case height simplifies to

$$h_{\text{worst}} = 2 \lg(n+2) - 3$$

This grows quicker than the worst-case height for an AVL tree

$$h_{\text{worst}} = \log_{\phi}(n) - 1.3277$$

Plotting the growth of the height of the worst-case red-black tree (red) versus the worst-case AVL tree (blue) demonstrates this:

This table shows the number of nodes
in a worst-case trees for the given
heights

Thus, an AVL tree with 131070 nodes has a height of 23 while a red-black tree could have a height as large as 31

	Height	AVL Tree	Tree
	1	2	2
	3	7	6
	5	20	14
	7	54	30
	9	143	62
,	11	376	126
	13	986	254
	15	2583	510
	17	6764	1022
	19	17710	2046
	21	46367	4094
	23	121492	8190
	25	317810	16382
	27	832039	32766
	29	2178308	65534
	31	5702886	131070
	33	14930351	262142

Red-Black

Comparing red-black trees with AVL trees, we note that:

- Red-black trees require one extra bit per node
- AVL trees require one byte per node (assuming the height will never exceed 255)
 - aside: we can reduce this to two bits, storing one of -1, 0, or 1 indicating that the node is left heavy, balanced, or right heavy, respectively

AVL trees are not as deep in the worst case as are red-black trees

- therefore AVL trees will perform better when numerous searches are being performed,
- however, insertions and deletions will require:
 - more rotations with AVL trees, and
 - require recursions from and back to the root
- thus AVL trees will perform worse in situations where there are numerous insertions and deletions

Insertions

We will consider two types of insertions:

- bottom-up (insertion at the leaves), and
- top-down (insertion at the root)

The first will be instructional and we will use it to derive the second case

Bottom-Up Insertions

After an insertion is performed, we must satisfy all the rules of a redblack tree:

- 1. The root must be black,
- 2. If a node is red, its children must be black, and
- 3. Each path from a node to any of its descendants which are not a full node (*i.e.*, two children) must have the same number of black nodes

The first and second rules are local: they affect a node and its neighbours

The third rule is global: adding a new black node anywhere will cause all of its ancestors to become unbalanced

Thus, when we add a new node, we will add a node so as to not break the global rule:

the new node must be red

We will then travel up the tree to the root fixing the requirement that the children of a red node must be black

If the parent of the inserted node is already black, we are done

Otherwise, we must correct the problem

We will look at two cases:

- the initial insertion, and
- the recursive steps back to the root

For the initial insertion, there are two possible cases:

- the grandparent has one child (the parent), or
- the grandparent has two children (both red)

Inserting A, the first case can be fixed with a rotation:

Consequently, we are finished...

The second case can be fixed more easily, just swap the colours:

Unfortunately, we now may cause a problem between the grandparent and the great grandparent....

Fortunately, dealing with problems caused within the tree are identical to the problems at the leaf nodes

Like before, there are two cases:

- the grandparent has one child (the parent), or
- the grandparent has two children (both red)

Suppose that A and D, respectively were swapped

In both these cases, we perform similar rotations as before, and we are finished

In the other case, where both children of the grandparent are red, we simply swap colours, and recurs back to the root

If, at the end, the root is red, it can be coloured black

Given the following red-black tree, we will make a number of insertions

Adding 46 creates a red-red pair which can be corrected with a single rotation

Because the pivot is still black, we are finished

Similarly, adding 5 requires a single rotation

Which again, does not require any additional work

Adding 10 allows us to simply swap the colour of the grand parent and the parent and the parent's sibling

Because the parent of 5 is black, we are finished

Adding 90 again requires us to swap the colours of the grandparent and its two children

This causes a red-red parent-child pair, which now requires a rotation

A rotation does not require any subsequent modifications, so we are finished

Inserting 95 requires a single rotation

And consequently, we are finished

Adding 99 requires us to swap the colours of its grandparent and the grandparent's children

This causes another red-red child-parent conflict between 85 and 90 which must be fixed, again by swapping colours

This results in another red-red parent-child conflict, this time, requiring a rotation

Thus, the rotation solves the problem

Top-Down Insertions and Deletions

With a bottom-up insertion, it is first necessary to search the tree for the appropriate location, and only then recurs back to the root correcting any problems

This is similar to AVL trees

With red-black trees, it is possible to perform both insertions and deletions strictly by starting at the root, but not requiring the recurs back to the root

Top-Down Insertions

The important observation is:

- swapping may require recursive corrections going back all the way to the root
- rotations do not require recursive steps back to the root

Therefore, while moving down from the root, automatically swap the colours of any black node with two red children

this may require at most one rotation at the parent of the now-red node

We will start with the same red-black tree as before, but make topdown insertions (no recursion):

Adding 46 does not find any (necessarily black) parent with two red children

However, it does require one rotation at the end

Similarly, adding 5 does not meet any parent with two red children:

A rotation solves the last problem

Adding 10 causes us to search down two edges before we meet node 5 with two red children

We swap the colours, and this does not cause a problem between 5 and 11

We continue and place 10 in the appropriate location

No further rotations are required

To add the node 90, we traverse down the right tree until we reach 85 which has two red children

We swap the colours, however this creates a red-red pair between 85 and its parent

We require only one rotation to solve this problem, and we are guaranteed that this will not cause any problem for its parents

We continue to search down the right path and add 90 in the appropriate location—no further corrections are required

Next, adding 95, we traverse down the right-hand until we reach node 77 which has two red children

We swap the colours, which causes a red-red parent-child combination which must be fixed by a rotation

The rotation is around the root

Note this rotation was not necessary with the bottom-up insertion of 95

We can now proceed to add 95 by following the right-hand branch, and the insertion causes a red-red parent-child combination

This is fixed with a single rotation

We are guaranteed that this will not cause any further problems

If we compare the result of doing bottom-up insertions (left, seen previously) and top-down insertions (right), we note the resulting trees are different, but both are still valid red-black trees

If we add 99, the first thing we note is that the root has two red children, and therefore we swap the colours

At this point, each path to a non-full node still has the same number of black nodes, however, we violate the requirement that the root is black

We change the colour of the root to black

This adds one more black node to each path

Moving to the right, we now reach node 90 which has two red children and therefore we swap the colours

We continue down the right to add 99

This does not violate any of the rules of the red-black tree and therefore we are finished

Again, comparing the result of doing bottom-up insertions (left) and top-down insertions (right), we note the resulting trees are different, but both are still valid red-black trees

If we are deleting a red leaf node X, then we are finished

If we are deleting a node X with one child, we only need to replace the value of the deleted node with the value of the leaf node

If we are deleting a full node, we use the same strategy used in standard binary search trees:

- replace the node with the minimum element in the right sub-tree
- then delete that element from the right sub-tree

That minimum element must be either:

- a red leaf node,
- a black node with a single red leaf node, or
- a black leaf node

The first two cases are solved, consequently, we need only deal with the possibility that the leaf node we are deleting is black

Similar to top-down insertions, we will adopt a strategy which ensures that the leaf node being deleted is not black (check textbook Ch13)

Red-Black Trees

In this topic, we have covered red-black trees

- simple rules govern how nodes must be distributed based on giving each node a colour of either red or black
- insertions and deletions may be performed without recursing back to the root
- only one bit is required for the "colour"
- this makes them, under some circumstances, more suited than AVL trees

Midterm Review

Data	Stru	cture:

- Array and Linked List
- Stack and Queue
- Hash Table
- Tree and Tree Traversal
- Binary Tree
- ☐ Heap
- □ Binary Search Tree
- **□** AVL,

Algorithm:

- Complexity Analysis
- □ Sorting Algorithms: (Insertion sort, Bubble sort, Merge Sort, Quick Sort, Heap Sort)
- Divide and Conquer (Master Theorem)
- Huffman coding

References

- [1] Cormen, Leiserson, and Rivest, *Introduction to Algorithms*, McGraw Hill, 2009, Ch.13, p.308-338.
- [2] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley, §12.2, p.525-34.

References

Wikipedia, http://en.wikipedia.org/wiki/Hash_function

- [1] Cormen, Leiserson, and Rivest, *Introduction to Algorithms*, McGraw Hill, 1990.
- [2] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley.

These slides are provided for the ECE 250 *Algorithms and Data Structures* course. The material in it reflects Douglas W. Harder's best judgment in light of the information available to him at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. Douglas W. Harder accepts no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.