1 σ-Algebren und Maße

Definition 1

Eine σ -Algebra über einer Grundmenge $X \neq \emptyset$ ist eine Familie $\mathcal{A} \subseteq \mathcal{P}(X)$ von Mengen mit

- (Σ_1) $X \in \mathcal{A}$
- (Σ_2) $A \in \mathcal{A} \Rightarrow A^{\complement} = X \backslash A \in \mathcal{A}$
- $(\Sigma_1) \ (A_n)_{n \in \mathbb{N}} \subseteq \mathcal{A} \ \Rightarrow \ \bigcup\nolimits_{n \in \mathbb{N}} A_n \in \mathcal{A}$

Satz 2

Sei \mathcal{A} eine σ -Algebra über X.

- a) $\emptyset \in \mathcal{A}$
- b) $A, B \in A \Rightarrow A \cup B \in A$ mittels (Σ_3) .
- c) $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A} \Rightarrow \bigcap_{n\in\mathbb{N}}A_n\in\mathcal{A}$ (Schnitt = Vereinigung von Komplementen, de Morgan)
- d) $A, B \in A \Rightarrow A \cap B \in A$
- e) $A, B \in A \Rightarrow A \setminus B \in A$

Beispiel 3

Die üblichen Beispiele $\mathcal{P}(X)$, $\{\emptyset, X\}$, . . . sind klar.

- \triangleright **Spur**-σ-**Algebra.** $\mathsf{E} \subseteq \mathsf{X}$ beliebig, \mathcal{A} σ-Algebra in X . \Rightarrow $\mathcal{A}_\mathsf{E} := \{\mathsf{E} \cap \mathsf{A} : \mathsf{A} \in \mathcal{A}\}$ ist σ-Algebra.
- ightharpoonup **Urbild-**σ**-Algebra.** f: X ightharpoonup X' eine Abbildung, X, X' Mengen, m A' sei σ-Algebra in X'. Dann ist $m A:=\{f^{-1}(A'):A'\in A'\}$ eine σ-Algebra.

Definition 4

Die von $\mathbb{O}=\mathbb{O}(\mathbb{R}^d):=\{U\subseteq\mathbb{R}^d:U\text{ offen}\}$ erzeugte $\sigma\text{-Algebra}$ in \mathbb{R}^d heißt Borel- σ -Algebra $\mathbb{B}(\mathbb{R}^d)$.

Definition 5

Ein Maß ist eine Abbildung $\mu: \mathcal{A} \to [0, \infty]$ mit

- (M_0) \mathcal{A} ist σ -Algebra.
- (M_1) $\mu(\emptyset) = 0.$
- (M_2) $(A_n)_{n\in\mathbb{N}}$ paarweise disjunkt. $\Rightarrow \mu(\biguplus_{n\in\mathbb{N}} A_n) = \sum_{n\in\mathbb{N}} \mu(A_n) \in \mathcal{A}$

Ein Maß μ heißt *endlich*, falls $\mu(X) < \infty$ und σ-endlich, falls

$$\exists (A_n)_{n \in \mathbb{N}} \subseteq \mathcal{A}, A_n \uparrow X : \mu(A_n) < \infty \text{ für alle } n \in \mathbb{N}$$

Theorem 6 (Eindeutigkeitssatz)

Sei (X, \mathcal{A}) ein beliebiger Messraum, μ, ν zwei Maße und $\mathcal{A} = \sigma(\mathcal{G})$. Weiter sei $\mathcal{G} \cap \text{-stabil}$ und $\exists (G_n)_{n \in \mathbb{N}} \subseteq \mathcal{G}, G_n \uparrow X : \mu(G_n), \nu(G_n) < \infty$. Dann gilt

$$\forall G \in \mathfrak{G} : \mu(G) = \nu(G) \ \Rightarrow \ \forall A \in \sigma(\mathfrak{G}) : \mu(A) = \nu(A)$$

$$\forall G \in \mathcal{G} : \mu|_G = \nu|_G \Rightarrow \mu = \nu$$

Beweis. Beweisidee: Wunschkonzert

Zeige, dass $\mathcal{D}_n:=\{A\in\mathcal{A}:\mu(G_n\cap A)=\nu(G_n\cap A)\}$ für alle $n\in\mathbb{N}$ ein Dynkin-System ist $(X\in\mathcal{D},D^\complement\in\mathcal{D},\biguplus_{n\in\mathbb{N}}D_n\in\mathcal{D}).$

Verwende die Eigenschaft $\sigma(\mathcal{G}) = \delta(\mathcal{G})$ für \cap -stabile \mathcal{G} um zu zeigen, dass $\mathcal{A} = \mathcal{D}_{\mathfrak{f}}$ Nutze Maßstetigkeit um $\mu(A \cap G_n) = \nu(A \cap G_n) \rightsquigarrow \mu(A) = \nu(A)$.

Theorem 7 (Fortsetzungssatz nach Carathéodory)

Sei $\mathbb S$ ein Halbring über $\mathbb X$ und $\mu\colon \mathbb S\to [0,\infty]$ ein Prämaß, d.h. $\mu(\emptyset)=0$ und

$$\forall (S_i)_{i\in\mathbb{N}}\subseteq \textbf{S}, \text{ paarweise disjunkt und } \biguplus_{i\in\mathbb{N}} S-i\in \textbf{S}: \quad \mu\left(\biguplus_{i\in\mathbb{N}} S_i\right)=\sum_{i\in\mathbb{N}} \mu(S_i)$$

Dann existiert eine Fortsetzung von μ zu einem Maß auf $\sigma(S)$.

Wenn $(G_i)_{i \in \mathbb{N}} \subseteq \mathcal{S}$, $G_i \uparrow X$, $\mu(G_i) < \infty$ gilt, dann ist die Fortsetzung eindeutig.

Satz 8

 λ^1 ist Prämaß auf J.

Beweis. Beweisidee:

 (M_1) ist wegen $\emptyset = [\mathfrak{a}, \mathfrak{a})$ klar.