SAZ-SENSE, Marine Science Cruise AU0703 - Oceanographic Field Measurements and Analysis

MARK ROSENBERG ACE CRC, Hobart, Australia September, 2007

1 INTRODUCTION

Oceanographic measurements were collected aboard Aurora Australis cruise au0703 (voyage 3 2006/2007, 17th January to 20th February 2007) as part of the "SAZ-SENSE" experiment south of Tasmania, between 43° and 55° south. A total of 109 CTD vertical profile stations were taken to various depths, focussing chiefly on the upper water column. Over 1300 Niskin bottle water samples were collected for the measurement of salinity, dissolved oxygen, nutrients (phosphate, nitrate+nitrite, silicate, ammonia and nitrite), dissolved inorganic carbon, alkalinity, particulate organic carbon/nitrogen/silicate, dissolved and particulate barium, thorium, dissolved organic carbon, ammonium, pigments, phytoplankton, bacteria, viruses, diatoms, amino acids, and other biological parameters (list incomplete), using a 24 bottle rosette sampler. Near surface current profile data were collected by a ship mounted ADCP. Data from the array of ship's underway sensors are included in the data set.

This report describes the processing/calibration of the CTD and ADCP data, and details the data quality. An offset correction is derived for the underway sea surface temperature and salinity data, by comparison with near surface CTD data. CTD station positions are shown in Figure 1, while CTD station information is summarised in Table 1.

During the cruise, various sites were occupied for multiple measurement activities, and these sites were named and referred to as "stations". Note however that in this report "station" refers to a single CTD cast i.e. CTD station 1 to 109 for the cruise.

2 CTD INSTRUMENTATION

SeaBird SBE9plus CTD serial 704, with dual temperature and conductivity sensors and a single SBE43 dissolved oxygen sensor (serial 0178, on the primary sensor pump line), was used for the entire cruise, mounted on a SeaBird 24 bottle rosette frame, together with a SBE32 24 position pylon and 24 x 10 litre General Oceanics Niskin bottles. The following additional sensors were mounted:

- * Tritech 200 kHz and 500 kHz altimeters
- * Wetlabs ECO-AFL/FL fluorometer serial 296
- * Wetlabs C-star transmissometer serial 899DR
- * Biospherical Instruments photosynthetically active radiation (i.e. PAR) sensor
- * old Antarctic Division PAR sensor

CTD data were transmitted up a 6 mm seacable to a SBE11plusV2 deck unit, at a rate of 24 Hz, and data were logged simultaneously on 2 PC's using SeaBird data acquisition software "Seasave". The transmissometer was plumbed inline with the main CTD sensors for the first 35 casts, with a closed tube joining the 2 transmissometer windows. The tube and plumbing to the transmissometer were removed after CTD 35.

The CTD deployment method was as follows:

- * CTD initially deployed down to ~20 m
- * after confirmation of pump operation, CTD returned up to just below the surface (depth dependent on sea state)

* after returning to just below the surface, downcast proper commenced

Cast depths varied according to the sampling requirements at each station, and full depth casts were only taken on 3 occasions.

Pre cruise temperature, conductivity and pressure calibrations were performed by the CSIRO Division of Marine and Atmoshperic Research calibration facility (Table 2) (July to August 2006). Manufacturer supplied calibrations were used for the dissolved oxygen, fluorometer, transmissometer and altimeters. PAR sensors were uncalibrated (raw voltage data only). Final conductivity and dissolved oxygen calibrations derived from in situ Niskin bottle samples are listed later in the report.

For stations 49, 50 and 51, six seal tags (P.I. Judy Horsburgh) were attached to the rosette, to calibrate and check functioning of the tag sensors.

3 CTD DATA PROCESSING AND CALIBRATION

CTD data were processed in Hobart. The first step is application of a suite of the SeaBird "Seasoft" processing programs to the raw data, in order to:

- * convert raw data signals to engineering units
- * remove the surface pressure offset for each station
- * realign the oxygen sensor with respect to time (note that conductivity sensor alignment is done by the deck unit at the time of data logging)
- * remove conductivity cell thermal mass effects
- * apply a low pass filter to the pressure data
- * flag pressure reversals
- * search for bad data (e.g. due to sensor fouling)

Further processing and data calibration were done in a UNIX environment, using a suite of fortran programs. Processing steps here include:

- * forming upcast burst CTD data for calibration against bottle data, where each upcast burst is the average of 10 seconds of data prior to each Niskin bottle firing
- * merging bottle and CTD data, and deriving CTD conductivity calibration coefficients by comparing upcast CTD burst average conductivity data with calculated equivalent bottle sample conductivities
- * forming pressure monotonically increasing data, and from there calculating 2 dbar averaged downcast CTD data
- * calculating calibrated 2 dbar averaged salinity from the 2 dbar pressure, temperature and conductivity values
- * deriving CTD dissolved oxygen calibration coefficients by comparing bottle sample dissolved oxygen values (collected on the upcast) with CTD dissolved oxygen values from the equivalent 2 dbar downcast pressures
- * extracting the appropriate fluorescence and transmittance data to assign to each 2 dbar bin

Full details of the data calibration and processing methods are given in Rosenberg et al. (in preparation), referred to hereafter as the *CTD methodology*. Additional processing steps, in particular for the fluorescence and transmittance data, are discussed below in the results section. For calibration of the CTD oxygen data, whole profile fits were used for each station.

Final station header information, including station positions at the start, bottom and end of each CTD cast, were obtained from underway data for the cruise (see section 6 below). Note the following for the station header information:

- * All times are UTC.
- * "Start of cast" information is at the commencement of the downcast proper, as described above.
- * "Bottom of cast" information is at the maximum pressure value.
- * "End of cast" information is when the CTD leaves the water at the end of the cast, as indicated by a drop in salinity values.
- * 12 kHz depth sounder data were not processed for this cruise. and all bottom depth information are the values recorded at the time of CTD logging i.e. as read from the "Echogram" display, with sound speed 1500 m/s. The Echogram display was often difficult to read through the thruster noise, and bottom depth values are mostly approximate only.

* "Bottom of cast" depths for CTD 38 and 43 are calulated from CTD maximum pressure and altimeter value at the bottom of the casts.

Lastly, data were converted to MATLAB format, and final data quality checking was done within MATLAB.

4 CTD AND BOTTLE DATA RESULTS AND DATA QUALITY

Data from the primary CTD sensor pair (temperature and conductivity) were used for this cruise, with the exception of stations 8 and 30 - for these two stations the primary sensors were fouled, and data from the secondary sensor pair were used.

4.1 Conductivity/salinity

The conductivity calibration and equivalent salinity results for the cruise are plotted in Figures 2 and 3, and the derived conductivity calibration coefficients are listed in Tables 3 and 4. Station groupings used for the calibration are included in Table 3. International standard seawater batch numbers used for salinometer standardisation were as follows:

station 1	P146
station 2 to 30	P147
station 31 to 63	P146
station 64 to 104	P147
station 105 to 109	P146

The salinometer (Guildline Autosal serial 62549) used for stations 1 to 104 appeared stable throughout the cruise. Stations 105 to 109 were analysed back in Hobart immediately following the cruise, using salinometer serial 62550. Overall, CTD salinity for the cruise can be considered accurate to better than 0.0015 (PSS78).

Close inspection of the vertical profiles of the bottle-CTD salinity difference values reveals a slight positive biasing of the order 0.001 (PSS78) for station 1, and a slight negative biasing of the same magnitude for station 47. This is most likely due to salinometer performance and/or bottle samples, and there is no significant diminishing of CTD salinity accuracy.

4.2 Temperature

Primary and secondary CTD temperature data (t_p and t_s respectively) are compared for the cruise in Figure 4. CTD upcast burst data, obtained at each Niskin bottle stop, are used for the comparison. From previous cruises (e.g. Rosenberg, unpublished report, 2006), a very small pressure dependency of t_p - t_s for CTD704 of the order 0.0005° C is evident over the full ocean depth range. For cruise au0703, measurements were only taken down to ~2500 dbar, and a small pressure dependency similar to previous cruises is evident by the deepest measurements (Figure 4). Note that the magnitude of this pressure dependency lies within the assumed temperature accuracy of 0.001° C (i.e. the accredited temperature accuracy of the CSIRO calibration facility). Also note that without some temperature standard for comparison, it cannot be determined whether the 2 temperature sensors have the same or different pressure dependencies.

4.3 Pressure

Surface pressure offsets for each cast (Table 5) were obtained from inspection of the data before the package entered the water. For station 24, logging commenced when the CTD was already in the water, and the surface pressure offset was estimated from surrounding stations.

4.4 Dissolved oxygen

CTD oxygen data for his cruise were calibrated as whole profile fits - with the limited depth range for the CTD deployments, splitting profiles into separate shallow and deep calibrations was not required. The CTD oxygen calibration results are plotted in Figure 5, and the derived calibration coefficients are listed in Table 6. Overall the calibrated CTD oxygen agrees with the bottle data to well within 1% of full scale (where full scale is \sim 350 µmol/l above 750 dbar, and \sim 240 µmol/l below 750 dbar).

Reliable calibration of a CTD dissolved oxygen profile is only possible with an adequate profile of bottle oxygen samples. The Niskin bottle sampling scheme for this cruise resulted in many CTD stations with either low numbers of bottle oxygen samples, or none at all. For the former, only that part of the CTD oxygen profile covered by samples was usable; for the latter, CTD oxygen data were not usable. Figure 6 summarizes calibrated CTD oxygen data coverage.

Note that oxygen bottle samples for stations 105 to 109 were analysed back in Hobart, immediately following the cruise.

4.5 Fluorescence, PAR, transmittance

All fluorescence and transmittance data have a calibration, as supplied by the manufacturer (Table 2), applied to the data. PAR sensor data are uncalibrated, and supplied as raw voltages. The data have **not** been verified by linkage to other data sources (e.g. chlorophyll-a concentration data, particulate data, etc).

In the *CTD 2 dbar averaged data files*, both downcast and upcast data are supplied for fluorescence, PAR and transmittance. In these files, fluorescence and transmittance data are not in fact averages: fluorescence data are the **minimum** value within each 2 dbar bin, providing a profile "envelope" which minimizes the spikiness of the data; transmittance data are the **maximum** value within each 2 dbar bin, again minimizing the spikiness of the data. An additional parameter describing the spikiness of the transmittance data is supplied, calculated as follows. Pressure monotonic data (increasing for downcast, decreasing for upcast) are first formed from the full 24 Hz data, omitting equal pressure points as well as pressure reversals. For each transmittance reading tr_{mon} in the montonic data, transmittance "spike size" trsize is given by the deviation from the transmittance maximum envelope, i.e.

$$trsize = tr_{interp} - tr_{mon}$$

where

$$tr_{interp} = trmax_{bin1} + [(p_{mon} - p_{bin1}) / (p_{bin2} - p_{bin1}) x (trmax_{bin2} - trmax_{bin1})]$$

 p_{mon} = the pressure value corresponding with tr_{mon}

 p_{bin1} = the nearest 2 dbar pressure bin less than p_{mon}

 p_{bin2} = the nearest 2 dbar pressure bin greater than p_{mon}

 $trmax_{bin1}$ = the 2 dbar maximum transmittance value for pressure bin p_{bin1} $trmax_{bin2}$ = the 2 dbar maximum transmittance value for pressure bin p_{bin2}

(i.e. tr_{interp} is the transmittance value from the 2 dbar transmittance maximum envelope, linearly interpolated to p_{mon}). For a small number of cases in steep vertical gradients, tr_{interp} is a small negative value. This is due to the pressure mismatch between the even pressure bin to which tr_{max} is assigned, and the actual pressure value at which tr_{max} occurs. For these cases, the tr_{interp} value is changed to zero. Lastly, the transmittance "spikiness" trspike for each 2 dbar bin is the standard deviation of trsize values in each bin, i.e.

trspike = { [
$$\sum_{i=1}^{n}$$
 (trsize_i - trsize_{mean})²] / (n - 1) } ^{1/2}

where

n = number of trsize values in the 2 dbar bin trsize_{mean} = mean of the trsize values in the 2 dbar bin

In the **bottle data files**, fluorescence and transmittance (and PAR) values are the averages of 10 second bursts of CTD data, and thus include all the data spikes within each 10 second averaging period. For comparison with Niskin bottle data, these 10 second averages best represent (short of referring to the full 24 Hz data) what the Niskin bottle samples as the package moves up and down with the swell prior to bottle closure. Note that these fluorescence and transmittance data are different to the data in the CTD 2 dbar averaged files (described above).

The plumbing arrangement used for the transmissometer during the first 35 stations (mentioned above in section 2) caused bad downcast transmittance data for several stations. These bad data, listed in Table 7, were removed from the data files.

4.6 Nutrients

Nutrients measured on the cruise were phosphate, total nitrate (i.e. nitrate+nitrite), silicate, ammonia, and nitrite (only up to station 86). Appendix 1 (by Neale Johnston) gives some details on analysis methods. Suspect nutrient values not deleted from the bottle data files are listed in Table 8. Nitrate+nitrite versus phosphate data are shown in Figure 7. A group of depressed phosphate values are evident in the figure, around nitrate+nitrite $\approx 5 \ \mu mol/l$. These values are from the tops of various profiles up to station 32, and appear to be real features.

Only limited data were available from other cruises for comparison with the au0703 nutrient data, and only very rough comparisons were possible. In general, low level readings from the Lachat autoanalyser, including low level near surface phosphate and nitrate+nitrite data, and all ammonia and nitrite data, should be used with caution. The accuracy for these low level values is unknown.

4.7 Additional CTD data processing/quality notes

- * Station 3 the primary CTD sensors were fouled for part of the downcast profile, and these data were deleted from the 2 dbar averaged file.
- * Station 7 the salinity value flagged as -1 in the bottle data file was due to a CTD data spike in the primary sensor pair.
- * Station 26 after deployment of the CTD, there was no stop to wait for the pumps to come on. Most of the downcast for this very shallow cast was therefore unusable.
- * Stations 27, 32, 34, 57 after waiting for the pumps to come on, the package was not returned to a shallower position to commence the downcast (due to swell). The downcast profile for these stations commences between 20 and 40 dbar.
- * Station 61 top 2 Niskins tripped on the fly, due to heavy rolling of ship.
- * Station 86 the pressure sensor was fouled just prior to firing of bottle 24. Data used for CTD burst averages were shifted forward by 100 scans (i.e. 4.17 seconds).
- * Stations 1 and 94 logging ended before the CTD left the water. The last few bins of upcast fluorescence, PAR and transmittance data are therefore missing.
- * Station 96 the CTD sensor tubes and fluorometer sensor cap were not removed prior to deployment. The only usable profiles for this station are transmittance and PAR.
- * For version of WOCE "Exchange" format bottle data file with µmol/kg units for nutrient data (available on request) a laboratory temperature of 19°C was used for conversion of units from µmol/l to µmol/kg.

4.8 Additional CTD sensor notes

- * The ocean bottom was rarely approached on this cruise, however on both occasion where the bottom was in altimeter range, the 500 kHz altimeter (50 m range) gave reliable readings, while the 200 kHz altimeter (100 m range) did not work.
- * The secondary temperature sensor malfunctioned on several occasion during the first 9 stations (possibly due to a bad connector), in turn causing bad secondary conductivity data. When this occured, secondary conductivity data took a while to recover.
- * Data from the old Antarctic Division PAR sensor were unusable not a worry, as good data were obtained from the Biospherical Instruments PAR sensor.

5 ADCP

The hull mounted ADCP on the Aurora Australis is described in Rosenberg (unpublished report, 1999), with the following updates:

- (i) There is no longer a Fugro differential GPS system all GPS data, including heading, come from the Ashtech 3D system.
- (ii) Triggering of the 12 kHz sounder and the higher frequency hydroacoustics array are now separate, resulting in a higher ping rate for the ADCP (linked to the higher frequency hydroacoustics array).

Logging parameters and calibration coefficients for the cruise are summarised in Table 9. Current vectors for the cruise are plotted in Figures 8a and b; the apparent vertical current shear error for different ship speed classes is plotted in Figure 9.

In general, ADCP data are contaminated by ship's motion when the ship accelerates i.e. changes direction or speed. Noise and turbulence often diminish ADCP data quality when the ship travels at speeds greater than ~13 knots, or during rough sea states. Thus the best quality ADCP data is when the ship is steaming in a straight line at a suitable constant speed, and during milder sea conditions. The most reliable data are collected when the ship is "on station" (on station data is defined here as data where ship speed ≤ 0.35 m/s).

An erroneous vertical ADCP current shear occurs when the ship is underway. This shear has a magnitude for this cruise of up to ~ 0.13 m/s over the ADCP current profile (Figure 9), although more often ~ 0.05 -0.08 m/s. A likely cause for this error is acoustic ringing against a small air/water interface inside the transducer seachest. From Figure 9, when the ship is underway the effect is most significant over bins 1 to 10, and data from these bins should be treated with caution. Also from the figure, when the ship is travelling at ≤ 1 m/s the effect is no longer significant.

6 UNDERWAY MEASUREMENTS

Underway data were logged to an Oracle database on the ship. Quality control for this cruise was largely automated.

1 minute averaged underway data are contained in the files *sazsense.txt* (column formatted text file) and *sazsenseora.mat* (matlab format). Note that the latitude and longitude data in these files are 1 minute instantaneous values (i.e. not averaged).

Bathymetry data for the cruise were not processed, and depths are all null values in the underway data files.

Underway salinity data from the Antarctic Division thermosalinograph (in the oceanographic lab) display a response lag which becomes significant when crossing frontal regions where the horizontal

gradients are high (Bronte Tilbrook, CSIRO, personal communication); these salinity data should not be used. Alternative underway salinity data were obtained from a separate CSIRO thermosalinograph in lab 1 (P.I. Bronte Tilbrook, CSIRO), and these data are considered reliable. Underway temperature data from the Antarctic Division hull mounted temperature sensor near the sea water inlet are good. A correction for the hull mounted temperature sensor and the lab 1 salinity was derived by comparing the underway data to CTD temperature and salinity data at 8 dbar (Figures 10a and b). The following corrections were then applied to the underway data:

$$T = T_{dls} - 0.022$$

 $S = S_{dls} + 0.077$

for corrected underway temperature and salinity T and S respectively, and uncorrected values T_{dls} and S_{dls} .

REFERENCES

- Rosenberg, M., unpublished. *Aurora Australis ADCP data status*. Antarctic Cooperative Research Centre, unpublished report, November 1999. 51 pp.
- Rosenberg, M., unpublished. *BROKE West Survey, Marine Science Cruise AU0603 Oceanographic Field Measurements and Analysis*. ACE Cooperative Research Centre, unpublished report, July 2006. 24 pp.
- Rosenberg, M., Fukamachi, Y., Rintoul, S., Church, J., Curran, C., Helmond, I., Miller, K., McLaughlan, D., Berry, K., Johnston, N. and Richman, J., in preparation. *Kerguelen Deep Western Boundary Current Experiment and CLIVAR I9 transect, marine science cruises AU0304 and AU0403 oceanographic field measurements and analysis.* ACE CRC Research Report.

ACKNOWLEDGEMENTS

Thanks to all scientific personnel who participated in the cruise, and to the crew of the RSV Aurora Australis. Special thanks to the oceanography team for a great job collecting the data.

<u>Table 1:</u> Summary of station information for cruise au0703. All times UTC; "TEST" = test cast, "transit" = transit station; "process" = process station; "alt" = minimum altimeter value (m), "maxp" = maximum pressure (dbar).

	start of CTD		bottom	of CTD	end of CTD	
CTD station	date time latitude	longitude depth	time latitude	longitude depth	time latitude longitude der	th alt maxp
001 TEST	19 Jan 2007 120309 43 50.48 S		123908 43 50.39 S	•	132700 43 50.21 S 144 43.51 E	
002 transit	19 Jan 2007 155939 43 50.15 S	144 41.57 E 3185	163543 43 50.07 S	144 41.27 E -	171713 43 49.96 S 144 40.93 E	- 1001
003 transit	20 Jan 2007 004550 45 00.01 S		014537 44 59.85 S	142 59.05 E -	025526 44 59.59 S 142 59.20 E	
004 transit	20 Jan 2007 110647 44 55.13 S		112511 44 55.04 S	143 01.69 E -	120755 44 54.80 S 143 01.42 E	
005 transit	20 Jan 2007 135503 44 53.33 S		141311 44 53.26 S	143 03.15 E -	145619 44 53.06 S 143 02.99 E	- 801
006 transit	21 Jan 2007 002451 45 59.84 S		004210 45 59.75 S	141 17.78 E -	011449 45 59.46 S 141 17.82 E	- 1001
007 process1	21 Jan 2007 100833 46 23.46 S	140 39.25 E 4283	105304 46 23.46 S	140 39.35 E -	115939 46 23.29 S 140 39.41 E	- 2504
008 process1	21 Jan 2007 153549 46 18.94 S	140 39.68 E 4500	154038 46 18.95 S	140 39.70 E -	155753 46 18.97 S 140 39.80 E	- 102
009 process1	21 Jan 2007 173724 46 19.07 S	140 39.02 E 4500	175450 46 19.14 S	140 39.04 E -	182249 46 19.24 S 140 39.14 E	- 1001
010 process1	22 Jan 2007 012838 46 19.25 S	140 36.06 E 4400	013910 46 19.34 S	140 36.06 E -	021243 46 19.53 S 140 36.09 E	- 405
011 process1	22 Jan 2007 103533 46 19.30 S	140 36.67 E 4300	105547 46 19.33 S	140 36.67 E -	113846 46 19.46 S 140 36.53 E	- 1002
012 process1	22 Jan 2007 190330 46 22.98 S	140 28.79 E 4800	190930 46 23.01 S	140 28.81 E -	193141 46 23.14 S 140 28.77 E	- 203
013 process1	22 Jan 2007 231116 46 24.64 S	140 25.23 E 4300	231621 46 24.66 S	140 25.21 E -	232959 46 24.73 S 140 25.17 E	- 153
014 process1	23 Jan 2007 015953 46 25.90 S	140 31.23 E 4200	024304 46 26.07 S	140 31.04 E -	035518 46 26.17 S 140 30.58 E	- 2509
015 process1	23 Jan 2007 120040 46 26.61 S	140 30.05 E 4305	121754 46 26.62 S	140 30.00 E -	130217 46 26.73 S 140 29.76 E	- 804
016 process1	23 Jan 2007 154102 46 27.70 S	140 24.66 E 4300	154511 46 27.69 S	140 24.65 E -	155816 46 27.67 S 140 24.69 E	- 101
017 process1	23 Jan 2007 170738 46 27.37 S	140 23.90 E 4050	172930 46 27.37 S	140 23.86 E -	175854 46 27.35 S 140 23.84 E	- 1004
018 process1	23 Jan 2007 210924 46 27.39 S	140 21.20 E 4450	211706 46 27.38 S	140 21.16 E -	215645 46 27.46 S 140 21.09 E	- 202
019 process1	23 Jan 2007 234225 46 29.75 S	140 18.39 E 4700	000110 46 29.79 S	140 18.27 E -	003718 46 29.89 S 140 17.98 E	- 804
020 process1	24 Jan 2007 212618 46 33.29 S	140 38.53 E 4500	213154 46 33.27 S	140 38.54 E -	221404 46 33.17 S 140 38.76 E	- 203
021 process1	25 Jan 2007 000513 46 33.23 S		001119 46 33.22 S		003341 46 33.19 S 140 37.78 E	
022 process1	25 Jan 2007 031002 46 33.10 S		031240 46 33.08 S		032444 46 33.08 S 140 37.72 E	
023 process1	25 Jan 2007 060232 46 32.89 S		060544 46 32.89 S	140 39.77 E -	063317 46 32.87 S 140 39.41 E	
024 process1	25 Jan 2007 092346 46 33.74 S		092954 46 33.74 S		093335 46 33.77 S 140 38.02 E	
025 process1	25 Jan 2007 120839 46 34.12 S		121258 46 34.13 S			- 204
026 process1	25 Jan 2007 150248 46 34.05 S		150400 46 34.05 S			39
027 process1	25 Jan 2007 180424 46 34.72 S		181049 46 34.73 S		181559 46 34.74 S 140 37.46 E	
028 process1	25 Jan 2007 210559 46 35.11 S		211032 46 35.11 S			- 202
029 process1	25 Jan 2007 231020 46 34.64 S		231113 46 34.64 S		231943 46 34.62 S 140 38.99 E	. •
030 process1	25 Jan 2007 235637 46 34.78 S		001939 46 34.76 S			- 1000
031 process1	26 Jan 2007 114447 46 28.55 S		123419 46 28.47 S			- 2504
032 process1	26 Jan 2007 153728 46 29.60 S		154034 46 29.61 S			51
033 process1	28 Jan 2007 140934 46 42.64 S		142727 46 42.62 S		151139 46 42.55 S 140 11.40 E	
034 process1	28 Jan 2007 162405 46 39.15 S		165211 46 39.18 S			- 1004
035 transit	29 Jan 2007 100750 49 00.01 S		101534 48 59.97 S		104408 48 59.74 S 142 59.80 E	
036 transit	29 Jan 2007 123838 48 59.44 S		132347 48 59.21 S			- 2505
037 process2	31 Jan 2007 164644 53 59.86 S		165349 53 59.83 S		170903 53 59.74 S 145 55.20 E	
038 process2	01 Feb 2007 014142 54 00.14 S		023722 54 00.28 S		035256 54 00.26 S 145 52.80 E	
039 process2	01 Feb 2007 052503 54 00.24 S	145 52.11 E 2850	052926 54 00.26 S	145 52.13 E -	054857 54 00.33 S 145 52.27 E	- 201

TOD station	Table 1: (cnto) start of CTD		hottom (of CTD	end of	CTD	
040 process 2								alt mayn
041 process2			•					•
042 process2								
049 process2	.							
044 process2	•							
045 process2								
046 process2	•							
047 process2	•							
048 process2	•							
049 process2								
055 process2								
051 process2	•							
052 process2								
054 process2	•							
055 process2	•							
056 process2	· · · · · · · · · · · · · · · · · · ·							
056 process2	•							
058 process2								
058 process2 05 Feb 2007 180327 54 27.53 \$ 147 07.94 E 3400 183419 54 27.59 \$ 147 08.46 E - 061008 54 27.61 \$ 147 08.81 E - 061000 59 000 59 000 55 00 55 00 5	•							
059 process2	•							
060 fransit	•							
061 transit	•							
062 transit								
063 transit 07 Feb 2007 131448 50 56.28 S 148 34.74 E 4200 132518 50 56.14 S 148 34.87 E - 135219 50 55.83 S 148 35.34 E - 403 064 transit 07 Feb 2007 201106 50 52.48 S 148 39.04 E 4200 203350 50 52.27 S 148 39.38 E - 211505 50 51.98 S 148 40.04 E - 1005 1005 1005 1005 1005 1005 1005 10								
064 transit								
065 transit								
066 transit								
067 transit								
068 transit 08 Feb 2007 210653 48 59.93 \$ 150 20.06 E 1500 213108 48 59.89 \$ 150 20.21 E - 220426 48 59.84 \$ 150 20.39 E - 2506 070 transit 09 Feb 2007 102837 48 01.63 \$ 151 13.10 E 4000 051054 48 00.60 \$ 151 13.16 E - 061318 48 00.89 \$ 151 13.14 E - 2506 070 transit 09 Feb 2007 102837 48 01.63 \$ 151 13.00 E 4171 103633 48 01.66 \$ 151 13.00 E - 110100 48 01.79 \$ 151 13.22 E - 402 071 transit 09 Feb 2007 133227 48 03.50 \$ 151 11.72 E 4300 135125 48 03.67 \$ 151 11.90 E - 143419 48 04.09 \$ 151 12.29 E - 1001 072 transit 09 Feb 2007 232837 46 59.84 \$ 152 04.43 E 4800 234903 46 59.87 \$ 152 04.55 E - 001908 47 00.00 \$ 152 04.70 E - 1001 073 transit 10 Feb 2007 094206 45 31.31 \$ 153 06.26 E 4700 100027 45 31.28 \$ 153 06.38 E - 103930 45 31.13 \$ 153 07.00 E - 1002 075 transit 10 Feb 2007 133500 45 59.89 \$ 153 11.81 E 4700 135626 45 59.79 \$ 153 11.89 E - 103930 45 31.31 \$ 153 07.00 E - 1002 075 transit 10 Feb 2007 134616 45 29.95 \$ 153 11.81 E 4700 135626 45 59.79 \$ 153 11.89 E - 100754 45 29.92 \$ 153 12.23 E - 401 077 process3 11 Feb 2007 011109 45 32.91 \$ 153 10.58 E 4600 045956 45 32.90 \$ 153 10.66 E - 053924 45 33.08 \$ 153 10.71 E - 2502 079 process3 11 Feb 2007 110422 45 33.47 \$ 153 10.58 E 4600 114532 45 33.31 \$ 153 10.66 E - 124738 45 32.94 \$ 153 10.96 E - 2502								
069 transit 09 Feb 2007 042322 48 00.41 S 151 13.10 E 4000 051054 48 00.60 S 151 13.16 E - 061318 48 00.89 S 151 13.14 E - 2506 070 transit 09 Feb 2007 102837 48 01.63 S 151 13.00 E 4171 103633 48 01.66 S 151 13.00 E - 110100 48 01.79 S 151 13.22 E - 402 071 transit 09 Feb 2007 133227 48 03.50 S 151 11.72 E 4300 135125 48 03.67 S 151 11.90 E - 143419 48 04.09 S 151 12.29 E - 1001 072 transit 09 Feb 2007 232837 46 59.84 S 152 04.43 E 4800 234903 46 59.87 S 152 04.55 E - 001908 47 00.00 S 152 04.70 E - 1001 073 transit 10 Feb 2007 061218 45 59.65 S 152 54.55 E 4500 062824 45 59.63 S 152 54.60 E - 070409 45 59.55 S 152 54.56 E - 1000 074 transit 10 Feb 2007 094206 45 31.31 S 153 06.26 E 4700 100027 45 31.28 S 153 06.38 E - 103930 45 31.13 S 153 07.00 E - 1002 075 transit 10 Feb 2007 133500 45 59.89 S 153 11.81 E 4700 135626 45 59.79 S 153 11.89 E - 143724 45 59.66 S 153 12.17 E - 1001 076 process3 10 Feb 2007 011109 45 32.91 S 153 10.74 E 4500 011853 45 32.88 S 153 10.70 E - 014248 45 32.93 S 153 10.57 E - 401 078 process3 11 Feb 2007 044026 45 32.90 S 153 10.58 E 4600 045956 45 32.90 S 153 10.66 E - 124738 45 32.94 S 153 10.96 E - 2502								
070 transit 09 Feb 2007 102837 48 01.63 S 151 13.00 E 4171 103633 48 01.66 S 151 13.00 E - 110100 48 01.79 S 151 13.22 E - 402 - 402 071 transit 09 Feb 2007 133227 48 03.50 S 151 11.72 E 4300 135125 48 03.67 S 151 11.90 E - 143419 48 04.09 S 151 12.29 E - 1001 - 1001 072 transit 09 Feb 2007 232837 46 59.84 S 152 04.43 E 4800 234903 46 59.87 S 152 04.55 E - 001908 47 00.00 S 152 04.70 E - 1001 - 1001 073 transit 10 Feb 2007 061218 45 59.65 S 152 54.55 E 4500 062824 45 59.63 S 152 54.60 E - 070409 45 59.55 S 152 54.56 E - 1000 - 1000 074 transit 10 Feb 2007 094206 45 31.31 S 153 06.26 E 4700 100027 45 31.28 S 153 06.38 E - 103930 45 31.13 S 153 07.00 E - 1002 - 1002 075 transit 10 Feb 2007 133500 45 59.89 S 153 11.81 E 4700 135626 45 59.79 S 153 11.89 E - 143724 45 59.66 S 153 12.17 E - 1001 - 1001 076 process3 10 Feb 2007 011109 45 32.91 S 153 10.74 E 4500 011853 45 32.88 S 153 10.70 E - 014248 45 32.93 S 153 10.57 E - 401 078 process3 11 Feb 2007 044026 45 32.90 S 153 10.58 E 4600 045956 45 32.90 S 153 10.66 E - 124738 45 32.94 S 153 10.96 E - 2502 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
071 transit 09 Feb 2007 133227 48 03.50 S 151 11.72 E 4300 135125 48 03.67 S 151 11.90 E - 143419 48 04.09 S 151 12.29 E - - 1001 072 transit 09 Feb 2007 232837 46 59.84 S 152 04.43 E 4800 234903 46 59.87 S 152 04.55 E - 001908 47 00.00 S 152 04.70 E - 1001 073 transit 10 Feb 2007 061218 45 59.65 S 152 54.55 E 4500 062824 45 59.63 S 152 54.60 E - 070409 45 59.55 S 152 54.56 E - 1000 074 transit 10 Feb 2007 094206 45 31.31 S 153 06.26 E 4700 100027 45 31.28 S 153 06.38 E - 103930 45 31.13 S 153 07.00 E - 1000 075 transit 10 Feb 2007 133500 45 59.89 S 153 11.81 E 4700 135626 45 59.79 S 153 11.89 E - 143724 45 59.66 S 153 12.17 E - - 1001 076 process3 10 Feb 2007 184616 45 29.95 S 153 10.74 E								
072 transit 09 Feb 2007 232837 46 59.84 S 152 04.43 E 4800 234903 46 59.87 S 152 04.55 E - 001908 47 00.00 S 152 04.70 E - - 1001 073 transit 10 Feb 2007 061218 45 59.65 S 152 54.55 E 4500 062824 45 59.63 S 152 54.60 E - 070409 45 59.55 S 152 54.56 E - 1000 074 transit 10 Feb 2007 094206 45 31.31 S 153 06.26 E 4700 100027 45 31.28 S 153 06.38 E - 103930 45 31.13 S 153 07.00 E - - 1002 075 transit 10 Feb 2007 133500 45 59.89 S 153 11.81 E 4700 135626 45 59.79 S 153 11.89 E - 143724 45 59.66 S 153 12.17 E - - 1001 076 process3 10 Feb 2007 184616 45 29.95 S 153 11.99 E 4600 185910 45 29.95 S 153 12.11 E - 190754 45 29.92 S 153 10.57 E - - 401 078 process3 11 Feb 2007 044026 45 32.90 S								
073 transit 10 Feb 2007 061218 45 59.65 S 152 54.55 E 4500 062824 45 59.63 S 152 54.60 E - 070409 45 59.55 S 152 54.56 E - 1000 100027 45 31.28 S 153 06.38 E - 103930 45 31.13 S 153 07.00 E - 100027 100027 45 31.28 S 153 06.38 E - 103930 45 31.13 S 153 07.00 E - 10002 100027 45 31.28 S 153 11.89 E - 103930 45 31.13 S 153 07.00 E - 10002 100027 45 31.28 S 153 11.89 E - 103930 45 31.13 S 153 07.00 E - 10002 100027 45 31.28 S 153 11.89 E - 103930 45 31.13 S 153 07.00 E - 10002 100027 45 31.28 S 153 11.89 E - 10002 100027 45 31.28 S 153 11.89 E - 10002 100027 45 31.28 S 153 11.89 E - 10002 100027 45 31.28 S 153 11.89 E - 10002 100027 45 31.28 S 153 11.89 E - 10002 100027 45 31.28 S 153 11.89 E - 10002 100027 45 31.28 S 153 11.89 E - 10002 100027 45 31.28 S 153 12.11 E - 10002 100027 45 31.28 S 153 12.11 E - 10002 100027 45 31.28 S 153 10.70 E - 10002 100027 1000027 1000027 100027 100027 100027 100027 100027 100027 100027 100027 100027 1000								
074 transit 10 Feb 2007 094206 45 31.31 S 153 06.26 E 4700 100027 45 31.28 S 153 06.38 E - 103930 45 31.13 S 153 07.00 E - 1002 - 1002 075 transit 10 Feb 2007 133500 45 59.89 S 153 11.81 E 4700 135626 45 59.79 S 153 11.89 E - 143724 45 59.66 S 153 12.17 E - 1001 076 process3 10 Feb 2007 184616 45 29.95 S 153 11.99 E 4600 185910 45 29.95 S 153 12.11 E - 190754 45 29.92 S 153 12.23 E - 401 077 process3 11 Feb 2007 011109 45 32.91 S 153 10.74 E 4500 011853 45 32.88 S 153 10.70 E - 014248 45 32.93 S 153 10.57 E - 401 078 process3 11 Feb 2007 044026 45 32.90 S 153 10.58 E 4600 045956 45 32.90 S 153 10.66 E - 124738 45 32.94 S 153 10.96 E - 2502								
075 transit 10 Feb 2007 133500 45 59.89 S 153 11.81 E 4700 135626 45 59.79 S 153 11.89 E - 143724 45 59.66 S 153 12.17 E 1001 076 process3 10 Feb 2007 184616 45 29.95 S 153 11.99 E 4600 185910 45 29.95 S 153 12.11 E - 190754 45 29.92 S 153 12.23 E - 401 077 process3 11 Feb 2007 011109 45 32.91 S 153 10.74 E 4500 011853 45 32.88 S 153 10.70 E - 014248 45 32.93 S 153 10.57 E - 401 079 process3 11 Feb 2007 110422 45 33.47 S 153 10.58 E 4600 114532 45 33.31 S 153 10.66 E - 124738 45 32.94 S 153 10.96 E - 2502								
076 process3 10 Feb 2007 184616 45 29.95 S 153 11.99 E 4600 185910 45 29.95 S 153 12.11 E - 190754 45 29.92 S 153 12.23 E - - 401 077 process3 11 Feb 2007 011109 45 32.91 S 153 10.74 E 4500 011853 45 32.88 S 153 10.70 E - 014248 45 32.93 S 153 10.57 E - - 401 078 process3 11 Feb 2007 044026 45 32.90 S 153 10.58 E 4600 045956 45 32.90 S 153 10.61 E - 053924 45 33.08 S 153 10.71 E - - 1002 079 process3 11 Feb 2007 110422 45 33.47 S 153 10.58 E 4600 114532 45 33.31 S 153 10.66 E - 124738 45 32.94 S 153 10.96 E - - 2502								
077 process3 11 Feb 2007 011109 45 32.91 S 153 10.74 E 4500 011853 45 32.88 S 153 10.70 E - 014248 45 32.93 S 153 10.57 E - 401 078 process3 11 Feb 2007 044026 45 32.90 S 153 10.58 E 4600 045956 45 32.90 S 153 10.61 E - 053924 45 33.08 S 153 10.71 E - 1002 079 process3 11 Feb 2007 110422 45 33.47 S 153 10.58 E 4600 114532 45 33.31 S 153 10.66 E - 124738 45 32.94 S 153 10.96 E - 2502								
078 process3	076 process3							
079 process3 11 Feb 2007 110422 45 33.47 S 153 10.58 E 4600 114532 45 33.31 S 153 10.66 E - 124738 45 32.94 S 153 10.96 E - 2502	077 process3						153 10.57 E -	
'	•							
080 process3	079 process3							
	080 process3	11 Feb 2007 151036 45 30.77	S 153 13.45 E 4700	151838 45 30.73 S	153 13.46 E -	153002 45 30.67 S	153 13.48 E -	- 201

Table 1: (cntd)	staı	rt of CTD			bottom c	of CTD			end of	CTD			
CTD station	date	time	latitude	longitude depth	time	latitude	longitude	depth	time	latitude	longitude	depth	alt	maxp
081 process3	11 Feb 2007	161116	45 30.87 S	153 13.66 E 4600	163326	45 30.79 S	153 13.67 E	-	170144	45 30.71 S	153 13.72 E	-	-	1001
082 process3	11 Feb 2007	190832	45 31.01 S	153 14.20 E 4600	191254	45 30.98 S	153 14.21 E	-	192747	45 30.90 S	153 14.24 E	-	-	200
083 process3	12 Feb 2007	021341	45 26.41 S	153 17.37 E 4500	022101	45 26.39 S	153 17.35 E	-	024711	45 26.42 S	153 17.10 E	-	-	403
084 process3	12 Feb 2007	073226	45 27.14 S	153 16.96 E 4600	074823	45 27.16 S	153 17.09 E	-	082306	45 27.10 S	153 17.51 E	-	-	801
085 process3	12 Feb 2007	164151	45 27.13 S	153 20.51 E 3700	170123	45 27.16 S	153 20.63 E	-	173803	45 27.28 S	153 20.86 E	-	-	1002
086 process3	12 Feb 2007	200730	45 27.86 S	153 21.01 E 4600	202334	45 27.83 S	153 21.16 E	-	210129	45 27.66 S	153 21.61 E	-	-	902
087 transit	13 Feb 2007	020503	44 45.22 S	153 00.28 E 4800	021250	44 45.21 S	153 00.38 E	-	023931	44 45.21 S	153 00.74 E	-	-	413
088 transit	13 Feb 2007	054338	45 06.40 S	153 13.57 E 4750	054954	45 06.38 S	153 13.63 E	-	061458	45 06.37 S	153 14.12 E	-	-	402
089 process3	13 Feb 2007	113237	45 26.09 S	153 27.28 E 4500	113422	45 26.09 S	153 27.27 E	-	114339	45 26.10 S	153 27.29 E	-	-	101
090 process3	13 Feb 2007	150512	45 26.22 S	153 28.27 E 4700	151230	45 26.31 S	153 28.34 E	-	152502	45 26.32 S	153 28.48 E	-	-	207
091 transit	13 Feb 2007	211536	44 56.41 S	152 23.93 E 4700	212306	44 56.41 S	152 23.98 E	-	215058	44 56.33 S	152 24.26 E	-	-	401
092 transit	14 Feb 2007	015641	44 56.72 S	152 27.95 E 4600	020414	44 56.75 S	152 28.06 E	-	023218	44 56.74 S	152 28.45 E	-	-	401
093 transit	14 Feb 2007	035053	44 56.07 S	152 29.59 E 4600	040703	44 56.07 S	152 29.79 E	-	044853	44 55.87 S	152 30.36 E	-	-	1003
094 transit	14 Feb 2007	072416	45 13.50 S	152 45.46 E 4600	073115	45 13.50 S	152 45.49 E	-	080900	45 13.53 S	152 45.72 E	-	-	400
095 transit	14 Feb 2007	102151	45 16.41 S	153 00.79 E 4500	102802	45 16.43 S	153 00.83 E	-	105139	45 16.55 S	153 01.16 E	-	-	408
096 process3	14 Feb 2007	171014	45 30.14 S	153 37.09 E 4500	173419	45 30.19 S	153 37.19 E	-	180330	45 30.32 S	153 37.49 E	-	-	1004
097 process3	14 Feb 2007	220940	45 30.47 S	153 36.47 E 4500	225648	45 30.42 S	153 36.68 E	-	001546	45 30.37 S	153 36.97 E	-	-	2505
098 process3	15 Feb 2007	073453	45 30.70 S	153 38.78 E 4500	074228	45 30.76 S	153 38.87 E	-	080534	45 30.81 S	153 39.10 E	-	-	403
099 process3	15 Feb 2007	130845	45 31.40 S	153 36.14 E 4400	131656	45 31.42 S	153 36.14 E	-	134452	45 31.53 S	153 36.32 E	-	-	438
100 process3	15 Feb 2007	150607	45 32.11 S	153 36.89 E 4600	151050	45 32.14 S	153 36.91 E	-	152320	45 32.17 S	153 36.85 E	-	-	202
101 process3	15 Feb 2007	190610	45 32.05 S	153 41.98 E 4430	191317	45 32.04 S	153 42.00 E	-	195025	45 32.10 S	153 42.17 E	-	-	411
102 process3	16 Feb 2007	010459	45 32.17 S	153 39.77 E 4500	011159	45 32.15 S	153 39.79 E	-	013528	45 32.20 S	153 39.88 E	-	-	403
103 process3	16 Feb 2007	070450	45 33.33 S	153 40.15 E 4400	071131	45 33.34 S	153 40.15 E	-	073729	45 33.19 S	153 40.34 E	-	-	403
104 process3	16 Feb 2007	093308	45 35.42 S	153 40.72 E 4400	094929	45 35.45 S	153 40.79 E	-	102401	45 35.69 S	153 40.99 E	-	-	901
105 transit	18 Feb 2007	033238	44 14.39 S	150 11.81 E 2600	041022	44 14.45 S	150 11.74 E	-	051251	44 14.43 S	150 11.80 E	-	-	2512
106 transit	18 Feb 2007	070422	44 14.06 S	150 12.53 E 2600	071347	44 14.11 S	150 12.61 E	-	073813	44 14.23 S	150 12.85 E	-	-	403
107 transit	19 Feb 2007	035501	43 39.42 S	148 35.83 E 3700	040248	43 39.52 S	148 35.81 E	-	042729	43 39.82 S	148 35.53 E	-	-	405
108 transit	19 Feb 2007	055122	43 41.24 S	148 34.87 E 3700	060935	43 41.42 S	148 34.84 E	-	064703	43 41.88 S	148 34.60 E	-	-	1019
109 transit	19 Feb 2007	090511	43 43.21 S	148 33.23 E 3700	094317	43 43.27 S	148 33.02 E	-	104347	43 43.27 S	148 32.72 E	-	-	2506

<u>Table 2:</u> CTD serial 704 calibration coefficients and calibration dates for cruise au0703. Note that platinum temperature calibrations are for the ITS-90 scale. Pressure slope/offset, temperature and conductivity values are from the CSIRO Division of Marine and Atmospheric Research calibration facility. Remaining values are manufacturer supplied.

Primary Temperature, serial 4248, 24/07/2006	Secondary Temperature, serial 4246, 24/07/2006
--	--

G	: 4.3872750e-003	G	: 3.9791760e-003
Н	: 6.5089714e-004	Н	: 6.2178475e-004
1	: 2.3231241e-005	1	: 1.8665869e-005
J	: 1.8524638e-006	J	: 1.5651022e-006
F0	: 1000.000	F0	: 1000.000
Slope	: 1.00000000	Slope	: 1.00000000
Offset	: 0.0000	Offset	: 0.0000

Primary Conductivity, serial 2977, 24/07/2006 Secondary Conductivity, serial 2808, 24/07/2006

G	: -1.0730631e+001	G	: -9.2832718e+000
Н	: 1.4850393e+000	Н	: 1.4248306e+000
I	: 5.1899715e-005	I	: -7.1457502e-005
J	: 7.3324498e-005	J	: 9.4841234e-005
CTcor	: 3.2500e-006	CTcor	: 3.2500e-006
CPcor	: -9.57000000e-008	CPcor	: -9.57000000e-008
Slope	: 1.00000000	Slope	: 1.00000000
Offset	: 0.00000	Offset	: 0.00000

Pressure, serial 89084, 09/08/2006 Oxygen, serial 0178, 04/11/2006

: 5.6550e-001 : -4.989485e+004 Soc : -1.030675e+000 : 0.0000 C2 Boc C3 : 1.388810e-002 Offset : -0.5039 : 3.863300e-002 D1 Tcor : 0.0020 D2 : 0.000000e+000 Pcor : 1.350e-004 T1 : 3.010350e+001 : 0.0 Tau

T2 : -5.657137e-004

T3 : 3.998260e-006 Fluorometer, serial 296, 23/05/2005

T5 : 0.000000e+000 Scale factor : 7.000e+000

Slope : 1.000061

Offset : 0.9607 Transmissometer, serial 899DR, 08/11/2005

AD590M : 1.276320e-002 A0 : -0.0130705 AD590B : -9.834110e+000 A1 : 0.214270

<u>Table 3:</u> CTD conductivity calibration coefficients. F_1 , F_2 and F_3 are respectively conductivity bias, slope and station-dependent correction calibration terms. n is the number of samples retained for calibration in each station grouping; σ is the standard deviation of the conductivity residual for the n samples in the station grouping. Note: these are for the primary sensor pair; for CTD 8 and 30, data from the secondary sensor pair were used, and the coefficients in the table do not apply.

stn grouping	F ₁	F ₂	F ₃	n	σ
001 to 036	0.85922478E-03	0.99990161E-03	0.48370422E-09	310	0.000742
037 to 060	-0.72274696E-02	0.10001739E-02	-0.58525107E-10	221	0.000747
061 to 080	-0.50080844E-03	0.10000613E-02	-0.16215688E-08	213	0.000499
081 to 098	0.23089863E-02	0.10000102E-02	-0.16264460E-08	129	0.001243
099 to 104	0.29369010E-02	0.10000110E-02	-0.16673300E-08	54	0.000812
105 to 109	0.64693695E-02	0.99867054E-03	0.10596057E-07	67	0.001205

statior number	(- ,	station (F ₂ + F ₃ . N) number		statio numl	on (F ₂ + F ₃ . N) ber	station (F ₂ + F ₃ . N) number		
1	0.99988747E-03	29	0.99990198E-03	57	0.10001614E-02	85	0.99987198E-03	
2	0.99988799E-03	30	0.99966276E-03	58	0.10001614E-02	86	0.99987035E-03	
3	0.99988851E-03	31	0.99990302E-03	59	0.10001613E-02	87	0.99986872E-03	
4	0.99988903E-03	32	0.99990354E-03	60	0.10001613E-02	88	0.99986710E-03	
5	0.99988954E-03	33	0.99990406E-03	61	0.99995909E-03	89	0.99986547E-03	
6	0.99989006E-03	34	0.99990457E-03	62	0.99995752E-03	90	0.99986384E-03	
7	0.99989058E-03	35	0.99990509E-03	63	0.99995596E-03	91	0.99986222E-03	
8	0.99964935E-03	36	0.99990561E-03	64	0.99995439E-03	92	0.99986059E-03	
9	0.99989162E-03	37	0.10001622E-02	65	0.99995282E-03	93	0.99985896E-03	
10	0.99989214E-03	38	0.10001621E-02	66	0.99995125E-03	94	0.99985734E-03	
11	0.99989265E-03	39	0.10001621E-02	67	0.99994969E-03	95	0.99985571E-03	
12	0.99989317E-03	40	0.10001620E-02	68	0.99994812E-03	96	0.99985409E-03	
13	0.99989369E-03	41	0.10001620E-02	69	0.99994655E-03	97	0.99985246E-03	
14	0.99989421E-03	42	0.10001620E-02	70	0.99994498E-03	98	0.99985083E-03	
15	0.99989473E-03	43	0.10001619E-02	71	0.99994342E-03	99	0.99985483E-03	
16	0.99989525E-03	44	0.10001619E-02	72	0.99994185E-03	100	0.99985415E-03	
17	0.99989576E-03	45	0.10001619E-02	73	0.99994028E-03	101	0.99985348E-03	
18	0.99989628E-03	46	0.10001618E-02	74	0.99993872E-03	102	0.99985280E-03	
19	0.99989680E-03	47	0.10001618E-02	75	0.99993715E-03	103	0.99985213E-03	
20	0.99989732E-03	48	0.10001617E-02	76	0.99993558E-03	104	0.99985145E-03	
21	0.99989784E-03	49	0.10001617E-02	77	0.99993401E-03	105	0.99978313E-03	
22	0.99989836E-03	50	0.10001617E-02	78	0.99993245E-03	106	0.99979372E-03	
23	0.99989887E-03	51	0.10001616E-02	79	0.99993088E-03	107	0.99980432E-03	
24	0.99989939E-03	52	0.10001616E-02	80	0.99992931E-03	108	0.99981491E-03	
25	0.99989991E-03	53	0.10001616E-02	81	0.99987848E-03	109	0.99982551E-03	
26	0.99990043E-03	54	0.10001615E-02	82	0.99987686E-03			
27	0.99990095E-03	55	0.10001615E-02	83	0.99987523E-03			
28	0.99990146E-03	56	0.10001614E-02	84	0.99987360E-03			

 $\underline{\text{Table 5:}}$ Surface pressure offsets (i.e. poff, in dbar). For each station, these values are subtracted from the pressure calibration "offset" value from Table 2.

stn	poff		poff		poff		poff			poff		poff
1	0.95	20	0.65	39		58	0.54			1.04	96	0.90
2	0.63	21	0.60	40	0.65	59	0.54	7	'8	0.93	97	0.76
3	0.58	22	0.62	41	0.61	60	0.57	7	' 9	0.88	98	0.90
4	0.58	23	0.63	42	0.71	61	0.59	8	30	0.86	99	0.95
5	0.47	24	0.60	43	0.63	62	0.69	8	31	0.91	100	0.79
6	0.60	25	0.64	44	0.44	63	0.50	8	32	0.81	101	0.81
7	0.61	26	0.56	45	0.55	64	0.54	8	33	0.96	102	0.84
8	0.67	27	0.58	46	0.64	65	0.70	8	34	0.90	103	0.82
9	0.68	28	0.51	47	0.67	66	0.77	8	35	0.89	104	0.76
10	0.65	29	0.58	48	0.67	67	0.76	3	36	0.86	105	0.77
11	0.66	30	0.59	49	0.69	68	0.84	8	37	0.85	106	0.53
12	0.70	31	0.61	50	0.62	69	0.84	8	88	0.81	107	0.76
13	0.57	32	0.61	51	0.62	70	0.78	8	39	0.83	108	0.79
14	0.53	33	0.64	52	0.72	71	0.79	ç	90	0.82	109	0.82
15	0.69	34	0.64	53	0.72	72	0.84	ç	91	0.83		
16	0.65	35	0.52	54	0.74	73	0.84	ç	92	0.87		
17	0.61	36	0.44	55	0.71	74	0.79	ç	93	0.73		
18	0.68	37	0.80	56	0.60	75	0.90	ç	94	0.85		
19	0.65	38	0.75	57	0.50	76	0.86	Ś	95	0.77		

<u>Table 6:</u> CTD dissolved oxygen calibration coefficients for cruise au0703: slope, bias, tcor (= temperature correction term), and pcor (= pressure correction term). dox is equal to 2.8 σ , for σ as defined in the *CTD Methodology*.

stn	slope	bias	tcor	pcor	dox	stn	slope	bias	tcor	pcor	dox
1	0.533531	-0.234971	0.009847	0.000092	0 154112	56	0 622789	-0.361141	-0.001078	0.000227	0.089424
2	0.611262	-0.311012	0.004876	0.000014		57	0.691422		-0.001597	0.000315	0.071593
3	0.502297	-0.212684		0.000110		58	0.592063	-0.298154	-0.001178	0.000145	0.133685
4	0.395942	-0.035662	0.019290	0.000171	0.114435	59	0.627398	-0.379162	-0.000005	0.000257	0.156463
5	0.596545	-0.307282	0.005942	0.000036	0.054670	60	0.537285	-0.167263	-0.001381	0.000017	0.075782
6	0.555232	-0.283225	0.010671	0.000118	0.056833	61	0.592836	-0.296082	-0.000997	0.000136	0.140805
7	0.579410	-0.288913	0.005531	0.000097	0.188718	62	0.573489	-0.267981	0.000511	0.000132	
8	-	-	-	-	-	63	0.626745	-0.374503	-0.000809	0.000150	0.055658
9	0.587934	-0.303937		0.000074		64	0.592590	-0.296243	-0.000576	0.000127	0.155797
10	0.690378	-0.529686 -0.235585	0.005110	0.000117	0.053671	65 66	0.594490	-0.311868	0.000272	0.000143	0.062669
11 12	0.534769 0.691684	-0.233363	0.009539 0.004331	0.000073 0.000080	0.033839 0.054544	66 67	0.599416 0.591138	-0.312167 -0.285446	-0.001156 -0.001907	0.000146 0.000129	0.100290 0.108693
13	0.091004	-0.520502	0.004331	0.000000	0.034344	68	0.596314	-0.300893	-0.001907	0.000129	0.043119
14	0 547492	-0.281555	0.010657	0.000122	0.162841	69	0.559357	-0.261020	0.002699	0.000141	0.076307
15		-0.328808	0.006819	0.000090	0.091898	70	0.594423	-0.311088	0.000173	0.000111	0.029816
16	0.701029	-0.498117	0.000601	0.000083	0.010933	71	0.571187	-0.261287	0.000059	0.000136	0.048912
17	0.568921	-0.268367	0.007028	0.000059	0.14775	72	0.367522	0.040611	0.013573	0.000158	0.062976
18	0.492247		0.008470	0.000001	0.081500	73	0.575099	-0.318771	0.004194	0.000198	0.086627
19	0.495984	-0.165574	0.011230	0.000058	0.074953	74	0.271133	0.206562	0.019226	0.000151	0.135262
20	0.988604	-1.125186	0.000452	0.000260	0.041084	75	0.589002	-0.307428	0.001061	0.000151	0.111337
21	1.215239	-1.407491	-0.013898	0.000062	0.062999	76	-	-	-	-	-
22	-	-	-	-	-	77	0.692697		-0.001887	0.000175	0.114969
23	1.295518	-1.806445	0.000563	0.000659	0.043709	78	0.533933	-0.242146	0.006294	0.000150	0.070821
24	-	-				79	0.587948	-0.296134	-0.000795	0.000144	0.104721
25	0.698083	-0.632700	0.012437	0.000324	0.061084	80	0.258611	-0.058892	0.051674	0.000626	0.065325
26	-	-	-	-	-	81	0.584883	-0.295841	0.000534	0.000138	0.079591
27 28	0.654240	-0.469326	0.007422	0.000141	- 0.000 7 00	82		-0.063277	0.013823	0.000194	0.060979
20 29	0.654240	-0.469326	0.007422	0.000141	0.022733	83 84	0.592021 0.564700	-0.325191 -0.260775		0.000147 0.000124	0.044411 0.029286
30	n 587822	-0.305774	0 005662	0.000074	0.082830	85	0.520790	-0.200773	0.001334	0.000124	0.029280
31	0.538941	-0.241171		0.000074	0.141150	86	0.506763	-0.205110	0.004040	0.000125	0.097307
32	-	-	-	-	-	87	0.742160	-0.500716	-0.008640	0.000047	0.078392
33	0.562691	-0.297560	0.007904	0.000117	0.086732	88	0.595524	-0.321156	0.000602		0.102217
34	0.607250	-0.302570	0.000088	0.000070	0.042354	89	-	-	-	-	-
35	0.692725	-0.519195	0.000733	0.000132	0.035247	90	1.368823	-1.598109	-0.030197	0.001827	0.170616
36	0.518914	-0.236705	0.011278	0.000122	0.136185	91	0.598403	-0.293218	-0.001425	0.000088	0.099030
37	0.807060	-0.842258	0.008534	0.000828	0.071252	92	0.429604	-0.133461	0.014468	0.000274	0.189154
38		-0.312685		0.000135	0.194078	93	0.483383	-0.127786	0.004608	0.000082	0.161821
39	0.797739	-0.791190	0.002442		0.109049	94	0.687870	-0.523619	0.000190	0.000258	0.053776
40	0.619110	-0.358274	-0.002383	0.000167	0.108540	95	0.433505	-0.140748	0.014328	0.000300	0.091396
41	-	-	-	-	-	96	-	-	-	-	-
42	0.586868	-0.331813	0.013843	0.000170	0.096752	97	0.513180	-0.227475	0.009967	0.000154	0.088182
43	0.595966 0.612990	-0.309549	-0.000778	0.000133	0.102832	98	0.392681 0.492491	-0.014353	0.013457	0.000158	0.048359
44 45	0.612990	-0.347827	-0.001774	0.000185	0.069648	99 100	0.492491	-0.129344 -0.439933	0.003370 0.048293	0.000110	0.047894 0.030213
46	0.593856	-0.310385	0 000336	0.000164	0.014020	101	0.569750	-0.439933	0.040293		0.030213
47		-0.325680					0.304088			0.000133	
48		-0.380577					0.486027			0.000140	
49		-0.305578		0.000164				-0.189284	0.003669		0.111832
50	-	-	-	-	-			-0.234044		0.000164	
51	0.604264	-0.320789	0.001301	0.000171	0.124682			-0.133685		0.000255	
52		-0.310360				107	0.695041	-0.495762	-0.001376	0.000137	0.105955
53		-0.362105				108	0.527626	-0.252050	0.007658	0.000160	0.066279
		-0.303347				109	0.549920	-0.269794	0.004601	0.000149	0.158256
55	0.595682	-0.306872	-0.000034	0.000173	0.090291						

Table 7: Bad transmissometer downcast data deleted from the 2 dbar averaged files.

station bad transmissometer number data (dbar)		station number	bad transmissometer data (dbar)
3	2 - 50	25	2 - 94
7	2 - 398	26	2 - 38
16	whole station	27	2 - 22
17	2 - 14	31	2 - 104
19	2 - 6	32	2 - 48
20	2 - 148	33	2 - 158
22	whole station	35	2 - 210

Table 8: Suspect nutrient sample values (not deleted from bottle data file) for cruise au0703.

PHOSPHATE		NITRATE		SILICATE	
station number	rosette position	station number	rosette position	station number	rosette position
19	7	19	 7	19	7
38	12	38	13	38	12
39	8				
42	3	42	3	42	3
		46	19		
50	1,24	50	1,24		
51	whole stn				
		52	23		
62	23				

AMMONIA

station number	rosette position
20	18 22
96	2
103	9
105	12,16

Table 9: ADCP logging and calibration parameters for cruise au0703.

ping parameters bottom track ping parameters

no. of bins: 60 no. of bins: 128 bin length: 8 m bin length: 4 m pulse length: 8 m pulse length: 32 m

delay: 4 m

ping interval: minimum ping interval: same as profiling pings

reference layer averaging: bins 8 to 20

XROT: 822

ensemble averaging duration: 3 min. (for logged data)

30 min. (for final processed data)

calibration

 α (\pm standard deviation) 1+ β (\pm standard deviation) no. of calibration sites

 2.507 ± 0.375 1.0388 ± 0.010 62

Figure 1: CTD cast positions and ship's track for cruise au0703.

Calibration file: a0703.bot Conductivity s.d. = 0.00002

Number of bottles used = 1056 out of 1170 Mean ratio for all bottles = 1.00000

Figure 2: Conductivity ratio c_{bt}/c_{cal} versus station number for cruise au0703. The solid line follows the mean of the residuals for each station; the broken lines are \pm the standard deviation of the residuals for each station. c_{cal} = calibrated CTD conductivity from the CTD upcast burst data; c_{btl} = 'in situ' Niskin bottle conductivity, found by using CTD pressure and temperature from the CTD upcast burst data in the conversion of Niskin bottle salinity to conductivity.

Calibration file: a0703.bot

Mean offset salinity = 0.0000psu (s.d. = 0.0010 psu)

Number of bottles used = 1056 out of 1170

Figure 3: Salinity residual (s_{btl} - s_{cal}) versus station number for cruise au0703. The solid line is the mean of all the residuals; the broken lines are \pm the standard deviation of all the residuals. s_{cal} = calibrated CTD salinity; s_{btl} = Niskin bottle salinity value.

<u>Figure 4:</u> Difference between primary and secondary temperature sensor $(t_p - t_s)$ for CTD upcast burst data from Niskin bottle stops, for cruise au0703.

<u>Figure 5:</u> Dissolved oxygen residual (o_{btl} - o_{cal}) versus station number for cruise au0703. The solid line follows the mean residual for each station; the broken lines are \pm the standard deviation of the residuals for each station. o_{cal} =calibrated downcast CTD dissolved oxygen; o_{btl} =Niskin bottle dissolved oxygen value. Note: values outside vertical axes are plotted on axes limits.

Figure 6: CTD dissolved oxygen data coverage for cruise au0703.

Figure 7: Nitrate+nitrite versus phosphate data for cruise au0703.

(a)

(b)

<u>Figure 8a and b:</u> au0703 hull mounted ADCP 30 minute ensemble data, for (a) whole cruise, and (b) "on station" data only.

<u>Figure 9:</u> au0703 apparent ADCP vertical current shear, calculated from uncorrected (i.e. ship speed included) ADCP velocities. The data are divided into different speed classes, according to ship speed during the 30 minute ensembles. For each speed class, the profile is an average over the entire cruise.

34.5 dls salinity (PSS78) <u>Figure 10a and b:</u> au0703 comparison between (a) CTD and underway temperature data (i.e. hull mounted temperature sensor), and (b) CTD and underway salinity data (i.e. Tilbrook's lab 1 SeaBird), including bestfit lines. Note: dls refers to underway data.

35

35.5

33

33.5

APPENDIX 1 NOTES ON NUTRIENT ANALYSES

Neale Johnston (CSIRO Marine and Atmospheric Research, Floreat, Western Australia)

Nutrient samples were run on a Lachat Quickchem series 8000 FIA. Samples were analysed for silicate, phosphate, nitrate+nitrate, nitrite and ammonia.

The following methods were used:

- * silicate Quickchem Method 31-114-27-1-D (i.e. in Lachat manual)
- * orthophosphate Quickchem Method 31-115-01-1-G
- * nitrate+nitrite Quickchem Method 31-107-04-1-A
- * ammonia used an automated method based on the manual method in Watson et al. (2005); a Shimadzu RF 10Axl fluorescence detector was used in the ammonia analysis.
- * nitrite used the same method as nitrate+nitrite, but with the cadmium reduction column removed.

For all analysis, calibration and reference standards were made using nutrient depleted seawater (reference standards from Ocean Scientific International were diluted with nutrient depleted seawater). Calibration standards were run at the start and end of each run. Reference standards were run every 15 samples. The carrier for silicate, phosphate and nitrate+nitrite was artificial seawater (3.6% sodium chloride). This carrier was taken to contain no silicate, nitrate+nitrite or phosphate, and was checked by observing the baseline voltage reading for each channel each time it was prepared. The carrier for ammonia was a 2ml/l sulphuric acid solution. The carrier solution was subject to contamination from atmospheric-born contamination. This was checked each run by checking the baseline and by running a known ammonia depleted sample against the carrier.

Baseline voltages changed slightly each time reagents were changed so where possible reagents and carrier were not changed at the same time.

Nutrient depleted seawater was depleted for nitrate+nitrite, phosphate and ammonia, but did often have low silicate values. This was corrected for each run.

REFERENCES

Roslyn J. Watson, Edward C. V. Butler, Lesley A. Clementson and Kate M. Berry, 2005. Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater. *Journal of Environmental Monitoring*, Vol. 7, pp 37-42.