

Pesquisa: Diferenças entre hub, switch e roteador.

Izaquiel Queiroz 1

¹ Graduando SI na UFRPE-UAST.

E-mail: izaquielqueiroz@live.com

Resumo: Esta pesquisa tem como objetivo a orientação teórica sobre a diferença entre os equipamentos de redes: Hub, switch e roteador. Tomando como base artigos científicos e livros sobre os assuntos.

Abstract: This research aims to the theoretical guidance on the difference between the network equipment: Hub, switch and router. Based on scientific articles and books on the subjects.

Hub

A principal função do hub é fazer o papel do barramento da rede e permitir a interligação dos computadores por meio desse barramento. Ele, ao receber o dado em uma porta, faz a repetição para todas as outras, ou seja, transmite o dado recebido para todas as portas (broadcasting). Além de propagar para todas as portas o sinal transmitido também amplifica e filtra ruídos do sinal.

Os Hubs também podem ser usados como repetidores para estender o alcance de uma rede local, amplificando o sinal do cabo de rede (que só pode ter no máximo 100 metros) e possibilitando um trecho do barramento de rede a uma distância maior.

São considerados "repetidores", ou seja, eles não distribuem o que recebem, apenas reenviam para todas as suas portas menos para a estação que gerou a informação. Os pacotes são repetidos para todas as portas de forma difusa, de modo que todos recebem a mesma informação, porém, só o destinatário abre a informação. Todo HUB é um repetidor (mas nem todo repetidor é um hub).

Do ponto de vista técnico, os hubs já são obsoletos devido às suas funcionalidades limitadas; por isso estão sendo substituídos pelos switches. Ele não possui a capacidade de aumentas o desempenho da rede.

Os hubs atuam na camada 1 (física). Há modelos de hub mais modernos, chamados gerenciáveis, porque permitem por meio de um software de gerenciamento, que o administrador e redes monitore o tráfego nas portas do hub, habilitando e desabilitando-as remotamente.

Com o HUB, as conexões da rede são concentradas ficando cada equipamento num segmento próprio. Facilitando solução de problemas, umas vez que o defeito fica isolado no segmento de rede.

Classificação de HUBs:

Ativo ou passivo – Ativos quando obtém energia de uma fonte de alimentação para gerar novamente os sinais da rede. Passivos por que simplesmente repartem o sinal entre vários usuários, como usando um fio "Y" em um CD player para usar mais de fone de ouvido, não gerando novamente os bits, ou seja, não estendem o comprimento do cabo, apenas permitem um ou mais hosts se conectarem ao mesmo segmento de rede.

Inteligentes ou não: Os hubs inteligentes têm portas de comunicação serial no console, o que significa que pode ser programados para gerenciar o tráfego de rede. Os não inteligentes simplesmente aceitam um sinal da rede de entrada e o repete em todas as portas sem a habilidade de realizar qualquer gerenciamento.

Switchs (ou Switches)

O switch funciona segmentando redes e permitindo que muitas redes locais se comuniquem entre si, com o tráfego segmentado, ao mesmo tempo, duas a duas. O switch recebe o pacote de dados, lê o endereço de destino (endereço MAC) e envia para a porta do segmento de rede que corresponde ao endereço de destino. Surgiram para permitir a ligação de redes de forma mais rápida e eficiente. O principal benefício no uso do switch é o desempenho da rede.

No início existiam as pontes (bridges) que interligavam duas regiões, podendo ligar também mais de duas redes, dependendo da quantidade de portas que

possuir. Com o passar do tempo e evolução da tecnologia, os equipamentos de rede foram dotados de algum tipo de processamento que exige memória (buffer) e processador. Assim, as pontes passaram a ser fabricadas com muitas portas, as quais fazem a conexão entre os computadores em vez de conectar redes, passando a se chamar switch, tendo a mesma funcionalidade das pontes, porém com novas características como funcionamento em full-duplex e mantendo compatibilidade com as funções do hub.

Dada sua capacidade de processamento, envia os quadros somente para a porta de destino, ao contrário do HUB, que envia em quadro para todas as portas. Dessa forma, o canal fica desocupado para o restante das estações que podem fazer suas transmissões sem mais problemas.

O switch funciona na camada 2(de enlace), pois tem inteligência suficiente para receber o quadro, abri-lo, checar seu endereço de destino e encaminhá-lo para a porta correta. Obviamente, pelo fato de transmitir o quadro pelo cabo, o switch também funciona na camada 1. Os switchs mantêm uma tabela interna com todos os endereços MAC das interfaces de rede dos computadores da rede. Essa tabela é consultada assim que o switch recebe um quadro.

Os switches, por causa do seu alto custo, quase não são usados sozinhos. Em geral são usados em conjunto com hubs.

Roteadores

São utilizados para interligação de redes externas e internas, distantes umas das outras, por meio de canais de comunicações externos. O roteador é um equipamento capaz de interligar redes e equipamentos que operam com protocolos de comunicação diferentes.

O roteador atua na camada 3 de rede modelo OSI, pois possui capacidade de processar os pacotes transmitidos, lendo os endereços de IP, e efetuando o roteamento e o encaminhamento dos pacotes pela rede externa por meio dos protocolos específicos da rede WAN. Ele identifica os endereços de destino dos

pacotes e escolhe uma rota (link ou canal de comunicação) mais adequada para retransmitir essas informações. Uma característica importante dos roteadores é permitir que se faça triangulação entre vários pontos de uma rede, facilitando o acesso por mais de um caminho.

Em ambientes com redes heterogêneas, com protocolos diferentes, o roteador faz a conversa de protocolos, permitindo a interligação de diferentes tipos de rede. Ele é basicamente um equipamento que encaminha os pacotes de dados por uma rede WAN até que atinjam o seu destino. Os dados vão passando de roteador em roteador até atingir os seu destino de acordo com o endereço de IP do pacote.

A internet, por exemplo, é formada por milhares de roteadores. Quando acessamos uma página o sinal deve passar por vários roteadores.

A grande diferença entre uma ponte (switch) e um roteador é que o endereçamento que o switch utiliza é da camada de enlace: o endereço MAC das interfaces de rede. O roteador, por funcionar na camada de rede, utiliza outro sistema de endereçamento, que é o endereço IP. Isso significa que os roteadores não analisam os quadros físicos que estão sendo transmitidos, mas sim os datagramas produzidos pelo protocolo de alto nível, no caso o TCP/IP, onde o TCP opera na camada de transporte e IP, na camada de rede.

Camadas OSI

As camadas do modelo OSI podem ser divididas em três grupos: aplicação, transporte e rede. As camadas de rede(1. física, 2. link de dados e 3. rede) se preocupam com a transmissão e recepção dos dados através da rede e , portanto, são camadas de baixo nível. A camada de transporte(4) é responsável por pegar os dados recebidos pela rede e repassá-los para as camadas de aplicação de uma forma compreensível. As camadas de aplicação (5. sessão, 6. apresentação e 7. aplicação), que são camadas de alto nível, coloca o dado

recebido em um padrão que seja compreensível pelo programa (aplicação) que fará o uso desse dado.

Referências bibliográficas

SOUSA, Lindeberg Barros de. Redes de computadores: guia total – 1ªed. – São Paulo: Érica, 2009.

TORRES, Gabriel. Redes de Computadores Curso Completo. Rio de Janeiro: Axcel Books, 2001.

Diponível em: http://www.4shared.com/get/UCIAnlhU/Gabriel_Torres_-_Redes_de_Comp.html

ALENCAR, Márcio Aurélio dos Santos. Fundamentos de redes de computadores – Manaus: Universidade Federal do Amazonas, CETAM, 2010. Disponível em:

http://redeetec.mec.gov.br/images/stories/pdf/eixo_infor_comun/tec_man_sup/0 08111_fund_redes_comp.pdf

FRANÇA, Milena Cristina. Redes de Computadores. Florianópolis: Publicações do IF-SC, 2010.

Disponível em:

http://ead.ifsc.edu.br/etec/pluginfile.php/10418/mod_folder/content/3/livros/Rede R%20de%20Computadores.pdf?forcedownload=1

AMARAL, Allan Francisco Forzza. Redes de computadores. Colatina : Instituto Federal do Espírito Santo, 2012.

Disponível em:

http://sistemas.riopomba.ifsudestemg.edu.br/dcc/materiais/402283130_redescomputadores.pdf

MIRANDA, Anibal D. A.; Introdução às redes de computadores. Vilha Velha, ESAB: 2008.

Disponível em: http://ftp.feb.unesp.br/autodesk/pos/Disciplina-1-redes.pdf