Gymnázium Brno, třída Kapitána Jaroše 14 Školní rok 2008/2009 třída 4.A

ZÁVĚREČNÁ MATURITNÍ PRÁCE

Základní pojmy z algebry a teorie čísel

Autor: Tereza Eliášová

Vedoucí práce: RNDr. Pavel Boucník

<u>Prohlášení</u>

Prohlašuji, že jsem předloženou závěrečnou maturitní práci zpracovala samostatně a					
že jsem použila pouze materiál uvedený v seznamu literatury.					
Dne 19. ledna 2009					
_					
	Tereza Eliášová				

Obsah:

I. Teorie množin, výroková logika

§1. Základní pojmy z teorie množin	4
§2. Číselné množiny, zápis čísel, intervaly	8
§3. Výroky a jejich negace	10
§4. Složené výroky, operace s výroky	12
§5. Negace složených výroků. Obměny a obrácení implikací	15
§6. Výrokové formy	18
II. Algebraické výrazy, věty, důkazy, mocniny a odmocr	iny
§1. Algebraické výrazy a jejich úpravy	21
§2. Rovnice a nerovnice s jednou neznámou, soustavy rovnic a nerovnic,	
výpočet neznámé ze vzorce	24
§3. Matematické věty	26
§4. Základní typy důkazů	27
§5. Důkaz matematickou indukcí	29
§6. Mocniny s celočíselnými exponenty	31
§7. Mocniny s racionálními exponenty	33
III. Teorie čísel	
§1. Základní pojmy teorie čísel	35
§2. Největší společný dělitel	38
§3. Nejmenší společný násobek	42
§4. Prvočísla a čísla složená	45
§5. Rozklad přirozeného čísla na prvočinitele	47
§6. Kritéria dělitelnosti	50
§7. Reálná čísla	53

I. Teorie množin, výroková logika

§1. Základní pojmy z teorie množin

Pozn.: 1. <u>Množinou</u> nazýváme souhrn objektů, o kterých můžeme rozhodnout, zda do daného souhrnu patří nebo ne. Tyto objekty nazýváme <u>prvky množiny</u>.

- 2. <u>Konečnou množinou</u> nazýváme množinu s konečným počtem prvků, v opačném případě se množina nazývá <u>nekonečná</u>. Množina, která neobsahuje žádný prvek, se nazývá <u>prázdná</u>. Zapisujeme $A = \emptyset$ nebo $A = \{\}$.
- 3. Je-li prvek x prvkem množiny A, zapisujeme $x \in A$. Není-li jejím prvkem, zapisujeme $x \in A$.

Zadání množiny: a) výčtem prvků (u konečných množin): $A = \{a,b,c\}$

b) pomocí charakteristické vlastnosti (u nekonečných, někdy i u konečných množin): $S = \{2k, k \in N\}$; k - proměnná, N - obor proměnné

Def.: Podmnožinou množiny A nazýváme množinu B, jestliže pro každý její prvek x platí, že $x \in A$. Zapisujeme $B \subseteq A$.

Pozn.: 1. \subseteq je znak <u>inkluze</u>.

2. Jestliže $A \neq \emptyset$, pak množina A má alespoň dvě podmnožiny, které nazýváme <u>nevlastní podmnožiny</u> množiny A (= množina prázdná a množina A). Všechny ostatní (pokud existují) nazýváme <u>vlastní podmnožiny</u> množiny A. Ty někdy označujeme tzv. ostrou inkluzí \subset .

Def.: Řekneme, že $\underline{\text{množiny}} A$ a B $\underline{\text{se rovnaj}}(A=B)$ právě tehdy, když A je podmnožinou B a zároveň B je podmnožinou A.

Def.: Nechť $A \subseteq B$ a $B \neq \emptyset$. Množinu všech prvků B, které nepatří do A, nazýváme

doplněk (komplement) množiny A v množině B. Značíme A'_B nebo jen A' za předpokladu, že víme, ve které množině jej tvoříme.

Pozn.: $(A'_B)'_B = A$, $A'_A = \emptyset$, $\emptyset'_A = A$

Pozn.: Označení číselných množin:

N ... množina všech <u>přirozených čísel</u>

Z ... množina všech <u>celých čísel</u>

Q ... množina všech racionálních čísel

R ... množina všech <u>reálných čísel</u>

 N_0 ... množina všech přirozených čísel včetně nuly

 Z^+ , Q^+ , R^+ ... pouze kladná čísla

Z₀ ... množina všech nekladných celých čísel

Sjednocením množin A a B nazýváme množinu označenou $A \cup B$, která obsahuje ty prvky, které patří aspoň do jedné z množin A, B. $A \cup B = \{x \in A \lor x \in B\}$

Def.: Nechť *A,B* jsou dvě množiny.

<u>Průnikem množin</u> A a B nazýváme množinu označenou $A \cap B$, která obsahuje ty prvky, které patří zároveň i do množiny A i do množiny B. $A \cap B = \{x \in A \land x \in B\}$

Pozn.: Dá se dokázat, že platí:

1. $A \cap B = B \cap A$, $A \cup B = B \cup A - KOMUTATIVNOST$

2. $(A \cap B) \cap C = A \cap (B \cap C)$, $(A \cup B) \cup C = A \cup (B \cup C) - ASOCIATIVNOST$

3. $A \cup A'_B = B$, $A \cap A'_B = \emptyset$

Def.: Řekneme, že <u>množiny</u> A,B jsou <u>disjunktní</u>, pokud $A \cap B = \emptyset$. Množiny jsou konjunktní, když $A \cap B \neq \emptyset$.

Pozn.: V B'_A je navíc podmínka $B \subseteq A$.

Pozn.: 1.Rozdíl množin není komutativní.

 $2. A \setminus B = B'_{A \cup B}$

3.Jestliže jsou množiny disjunktní, jejich rozdílem je A.

4. Jestliže $B \subseteq A$, pak $A \setminus B = B'_A$.

 $A \div B = \{x \in A : x \notin B\} \cup \{x \in B : x \notin A\}$

Pozn.: Systém všech podmnožin množiny M se nazývá <u>potenční množina množiny</u>. Značí se P(M).

Z

Má-li množina M n prvků, pak má její potenční množina P(M) 2^n prvků.

V.1.1. <u>De Morganova pravidla</u>:

Pro každé 2 množiny $A, B \subseteq Z$ platí, že:

- a) $(A \cup B)'_{Z} = A'_{Z} \cap B'_{Z}$
- b) $(A \cap B)'_{Z} = A'_{Z} \cup B'_{Z}$

[Dk.: a)

b)

Příklady k §1.:

Př.: Určete všechny podmnožiny množin $A = \{x, y\}, B = \{a, b, c\}$:

A: \emptyset , $\{x\}$, $\{y\}$, $\{x,y\}$

 $B: \emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}$

Př.: Nakreslete diagramy pro 3 množiny a symbolicky označte všechny oblasti:

- I. $A \cap B' \cap C'$
- II. $A \cap B \cap C'$
- III. $A' \cap B \cap C'$
- IV. $A \cap B \cap C$
- V. $A \cap B' \cap C$
- VI. $A' \cap B \cap C$
- VII. $A' \cap B' \cap C$
- VIII. $A' \cap B' \cap C'$

Př.: Určete, čemu se rovná:

- a) $\langle 4, \infty \rangle'_R = (-\infty, 4)$
- c) $\langle -3,1 \rangle \cap \langle 3,5 \rangle = \emptyset$
- e) $\langle -2,5\rangle \cap (0,7\rangle = (0,5)$

- b) $(-3,\pi) \cup (1,4) = (-3,4)$
- d) $(-\infty,2) \cap (2,\infty) = \emptyset$
- f) $(-7,-1) \cap \langle -2,0 \rangle \cap \langle -3,1 \rangle = \langle -2,-1 \rangle$

Př.: Zjednodušte zápisy množin:

a) $(A \cap B \cap C) \cup [B \cap (A' \cup C)'] = A \cap B$

b) $[(A \cup B')' \cap C] \cup (A \cap B' \cap C) \cup (A' \cap B' \cap C) \cup [(A' \cup B')' \cap C] =$ $= [A' \cap B \cap C] \cup (A \cap B' \cap C) \cup (A' \cap B' \cap C) \cup [A \cap B \cap C] = C$

Pozn.: Diagramy z předchozích příkladů se nazývají Vennovy diagramy.

§2. Číselné množiny, zápis čísel, intervaly

Pozn.: <u>Číselné množiny</u>: označení v předchozím paragrafu

vztahy mezi číselnými množinami:

1.
$$N \subseteq Z \subseteq Q \subseteq R$$

2.
$$I = Q_R \implies Q \cup I = R$$
; $I - \text{množina všech } \underline{\text{iracionálních čísel}}$

3.
$$O \cap I = \emptyset$$

Pozn.: a) Přirozená čísla zapisujeme pomocí <u>číslic</u> 0,1,2,3,4,5,6,7,8,9.

- b) Každé <u>přirozené číslo</u> má <u>číslicový zápis</u> tvořený skupinou číslic, který chápeme takto: $4503 = 4 \cdot 10^3 + 5 \cdot 10^2 + 0 \cdot 10^1 + 3 \cdot 10^0$
- c) V číslicovém zápisu záleží na poloze (pozici) každé číslice, říkáme, že čísla zapisujeme v <u>desítkové poziční soustavě</u> (v <u>dekadickém pozičním systému</u>).
- d) Velká přirozená čísla budeme zapisovat ve tvaru $a \cdot 10^b$, $1 \le a < 10$, $b \in N_o$ Např.: $70000 = 7 \cdot 10^4$, $342000 = 3,42 \cdot 10^5$

Def.: Celá čísla jsou čísla, která vyjadřují počty prvků množin, čísla k nim opačná a číslo 0.

Def.: Racionálním číslem a nazýváme číslo tvaru $a = \frac{p}{q}$, kde $p \in Z, q \in N$; p,q jsou nesoudělná (D(p,q)=1).

Pozn.: a) V dekadickém pozičním systému je každé <u>racionální číslo</u> vyjádřeno buď ukončeným desetinným rozvojem nebo neukončeným periodickým rozvojem. <u>Iracionální číslo</u> je vyjádřeno neukončeným neperiodickým rozvojem.

b) Zápis racionálního čísla zlomkem není jednoznačný. Každé racionální číslo může být zapsáno mnoha zlomky (např.: $0, \bar{3} = \frac{1}{3} = \frac{2}{6} = ...$).

c) Iracionální čísla často zapisujeme tak, že udáme číslo menší a větší než uvažované číslo.

$$1 < \sqrt{2} < 2$$

např.: $1,4 < \sqrt{2} < 1,5$
 $1,41 < \sqrt{2} < 1,42$

Pozn.: <u>Číselnou osou</u> nazýváme přímku s vyznačeným počátkem a určenou délkovou jednotkou.

Def.: Reálnými čísly nazýváme všechna čísla, která jsou velikostmi úseček (při zvolené jednotkové úsečce), čísla k nim opačná a číslo 0.

Pozn.: Každý bod číselné osy je obrazem právě jednoho reálného čísla a naopak každé reálné číslo je na číselné ose reprezentováno právě jedním bodem.

- Př.: Zapište zlomkem v základním tvaru čísla: a) $0,\overline{14}$, b) $2,5\overline{36}$.
 - a) $a = 0, \overline{14}$
- /·100

$$100a = 14, \overline{14}$$

- Rovnice od sebe odečtu:
- 99a = 14
 - $a = \frac{14}{99}$
- b) $b = 2.5\overline{36}$ /·10 /·1000
 - $10b = 25,\overline{36}$
 - $1000b = 2536, \overline{36}$
 - Rovnice od sebe odečtu:
 - 990b = 2511
 - $b = \frac{2511}{990} = \frac{279}{110}$
- Př.: Zakreslete na číselné ose: a) racionální číslo $-\frac{4}{3}$
 - b) iracionální číslo $\sqrt{3}$
- a) $-\frac{4}{3} = \frac{-\frac{4}{3}}{1}$

 $(\sqrt{2})^2 = 1^2 + 1^2$ $(\sqrt{3})^2 = (\sqrt{2})^2 + 1^2$

Def.: Nechť $a, b \in R, a < b$. Pak následující množiny reálných čísel se nazývají <u>intervaly</u>.

Charakteristická vlastnost prvků intervalu	Symbol intervalu	Znázornění	
x < a	(-∞, <i>a</i>)	 0	(1)
$x \le a$	$(-\infty,a\rangle$		(2)
a < x < b	(a,b)		(3)
$a \le x < b$	$\langle a,b\rangle$		(4)
$a < x \le b$	(a,b)		(5)
$a \le x \le b$	$\langle a,b \rangle$		(6)
b < x	(b,∞)		(7)
$b \le x$	$\langle b, \infty \rangle$		(8)

<u>Interval</u> (6) se nazývá <u>uzavřený</u>, <u>intervaly</u> (1),(3),(7) <u>otevřené</u>, ostatní <u>polozavřené</u>. <u>Intervaly</u> (3)-(6) se nazývají <u>omezené (ohraničené)</u>, ostatní <u>neomezené (neohraničené)</u>.

§3. Výroky a jejich negace

Pozn.: a) <u>Výrokem</u> rozumíme každou oznamovací větu, která je buď pravdivá nebo nepravdivá.

- b) <u>Pravdivostní hodnotou výroku</u> rozumíme jednu z jeho kvalit pravdivost/nepravdivost. (Každý výrok má právě jednu z těchto hodnot.)
- c) <u>Hypotézou (domněnkou)</u> nazýváme výrok, jehož pravdivostní hodnota není známa.

Def.: Negací výrok *V* nazýváme výrok *V*', který má opačnou pravdivostní hodnotu než původní výrok *V*.

Př.:

Výrok V	Výrok V'				
Prší.	Neprší.				
Číslo 1 je prvočíslo.	Číslo 1 není prvočíslo.				
Mám červený svetr.	Nemám červený svetr.				
Kořen této rovnice je kladný.	Kořen této rovnice není kladný.				
Kořen této rovnice je záporný není negací výroku <i>V</i> , neboť ještě může nastat možnost ,je roven 0."					

Pozn.: Vyjadřuje-li výrok *V* jednu a více možností, které mohou nastat, musí jeho negace *V* zahrnout všechny ostatní.

Pozn.: a) Je-li výrok *V* pravdivý, je výrok *V'* nepravdivý a naopak.

b) Místo "výrok je pravdivý" říkáme také "výrok platí".

Pozn.: V matematice často pracujeme s výroky, které udávají počet objektů – <u>kvantifikované výroky</u>.

Obecný kvantifikovaný výrok: Pro každé ... platí ...

∀ - obecný kvantifikátor

Negativní obecný kvantifikovaný výrok: Pro žádné ... neplatí ...

Existenční kvantifikovaný výrok: Existuje alespoň 1 ..., pro které platí ...

∃ - existenční kvantifikátor

Zesílený existenční kvantifikovaný výrok: Existuje právě 1 ..., pro které platí ...

∃! – <u>zesílený existenční kvantifikátor</u>

Pozn.: Negace kvantifikovaných výroků:

výrok negace	negace výrok
Každý je	Alespoň 1 není
Alespoň 1 je	Žádný není
Alespoň $n \dots$ je $\dots (n > 1)$	Nejvýše (<i>n</i> -1) je
Nejvýše $n \dots$ je $\dots (n \ge 1)$	Alespoň (<i>n</i> +1) je

Př.: Negujte následující výroky:

- a) A: Všichni žáci naší třídy se dobře učí.
 - A': Aspoň 1 žák naší třídy se neučí dobře.
- b) B: Aspoň jeden kořen této rovnice není kladný.
 - B': Každý kořen této rovnice je kladný.
- c) C: Aspoň 1 číslo z dané množiny je záporné.
 - C': Žádné číslo z dané množiny není záporné.
- d) D: Žádný žák naší třídy nenosí brýle.
 - D': Aspoň 1 žák naší třídy nosí brýle.
- e) E: V daném čtyřúhelníku jsou alespoň 2 tupé úhly.
 - E': V daném čtyřúhelníku je nejvýše 1 tupý úhel.
- f) F: Nejvýše 3 z daných funkcí nejsou lineární.
 - F': Alespoň 4 z daných funkcí nejsou lineární.
- g) G: Potkali jsme právě 3 kamarády.
 - G': Potkali jsme nejvýše 2 nebo alespoň 4 kamarády.
- h) H: Daná rovnice má právě 1 kořen.
 - H': Daná rovnice nemá žádný nebo má alespoň 2 kořeny.

Pozn.: Analogie negací výroků a doplňků množin:

Množina A a její doplněk A '	Výrok V a jeho negace V'
-nemají společný prvek v Z	-nezahrnují společný případ
-dohromady zahrnují všechny prvky ze Z	-dohromady zahrnují všechny možné případy
-každý prvek ze Z patří právě do 1 z A a A'	-každý případ je zahrnut právě v 1 z <i>V</i> a <i>V</i> '
-(A')'=A	- (V')'= V

§4. Složené výroky, operace s výroky

Pozn.: <u>Složeným výrokem</u> rozumíme výrok – souvětí, ve kterém jsou jednotlivé věty spojeny slůvky nebo souslovími, které nazveme <u>logické spojky</u>.

Def.:

Chceme vyjádřit, že	Použijeme spojku	Vytvoříme výrok	Zapisujeme	Název
výrok X neplatí	Není pravda, že	Není pravda, že X	Χ'	<u>Negace</u> výroku <i>X</i>
platí současně oba výroky <i>X,Y</i>	a	X a Y	$X \wedge Y$	Konjunkce X,Y
platí alespoň jeden z výroků <i>X,Y</i>	nebo	X nebo Y	$X \vee Y$	<u>Alternativa</u> výroků <i>X,Y</i>
pokud platí <i>X</i> , pak platí i <i>Y</i>	Jestliže, pak	Jestliže <i>X</i> , pak <i>Y</i>	$X \Rightarrow Y$	<u>Implikace</u> výroku Y výrokem X
výroky <i>X,Y</i> mají stejnou pravdivostní hodnotu	právě tehdy, když	X právě tehdy, když Y	$X \Leftrightarrow Y$	<u>Ekvivalence</u> výroků <i>X,Y</i>

Pozn.: a) Spojku "nebo" chápeme v logice ve významu "alespoň jeden z …", tj. nevylučujeme současnou platnost jí spojených výroků.

b) Při implikaci $X \Rightarrow Y$ platnost výroku X není zaručena. Tedy za nepravdivý považujeme pouze případ, kdy výrok X platí a výrok Y neplatí.

Pozn.: Písmena, jež užíváme k označení libovolných výroků, nazýváme <u>výrokové proměnné</u>. Výrazy sestavené z výrokových proměnných, závorek a logických spojek nazýváme <u>výrokové formule</u>.

Pozn.: Je-li výrok X pravdivý, klademe jeho pravdivostní hodnotu 1. Je-li výrok X nepravdivý, klademe jeho pravdivostní hodnotu 0.

Pozn.: Pravdivostní hodnoty výrokových formulí s jednou logickou spojkou:

X	Y	Χ'	<i>Y</i> '	$X \wedge Y$	$X \vee Y$	$X \Rightarrow Y$	$X \Leftrightarrow Y$
1	1	0	0	1	1	1	1
1	0	0	1	0	1	0	0
0	1	1	0	0	1	1	0
0	0	1	1	0	0	1	1

Př.: Jestliže svítí lampa, (pak) je vidět na čtení.

- a) Lampa svítí, na čtení je vidět.
- b) Lampa svítí, na čtení není vidět. 0
- c) Lampa nesvítí, na čtení je vidět. 1
- d) Lampa nesvítí, na čtení není vidět.

Př.: Napište tabulku pravdivostních hodnot výrokové formule $(X \wedge Y) \Rightarrow (X \vee Y)$.

X	Y	$X \wedge Y$	$X \vee Y$	$(X \wedge Y) \Rightarrow (X \vee Y)$
1	1	1	1	1
1	0	0	1	1
0	1	0	1	1
0	0	0	0	1

Pozn.: Výroková formule, která nabývá pravdivostní hodnoty 1 bez ohledu na pravdivostní hodnoty elementárních výroků, se nazývá <u>tautologie</u>.

Př. Dokažte, že výroková formule $[(X \Rightarrow Y) \land (Y \Rightarrow X)] \Leftrightarrow (X \Leftrightarrow Y)$ je tautologií.

X	Y	$[(X \Rightarrow Y)$	٨	$(Y \Rightarrow X)]$	\Leftrightarrow	$(X \Leftrightarrow Y)$
1	1	1	1	1	1	1
1	0	0	0	1	1	0
0	1	1	0	0	1	0
0	0	1	1	1	1	1

Pozn.: Formule $X \Leftrightarrow Y$ a $(X \Rightarrow Y) \land (Y \Rightarrow X)$ nabývají stejných pravdivostních hodnot, nazýváme je logicky ekvivalentními formulemi. Proto se ekvivalenci někdy též říká oboustranná implikace.

Příklady k §4.:

Př.: Některý z žáků *A,B,C* rozbil okno. Je zjištěno, že u okna byl v tu chvíli nejvýše jeden z žáků *A,B*; žák *C* byl u okna právě tehdy, když tam nebyl žák *A*; když žák *B* nebyl u okna, nebyl tam ani *C*. Určete pachatele za předpokladu, že byl právě jeden.

A	В	С	Α'	В'	C'	$(A \wedge B)'$	$C \Leftrightarrow A'$	$B' \Rightarrow C'$
1	0	0	0	1	1	1	1	1
0	1	0	1	0	1	1	0	1
0	0	1	1	1	0	1	1	0

Pachatelem byl žák A.

Př.: Na modelu kolejiště je možno uvést do pohybu tři vlakové soupravy A,B,C. V daném okamžiku je jejich situace charakterizována formulí $[(A' \lor B') \Rightarrow C] \land [(A \lor C) \Rightarrow B']$. Které soupravy jsou v pohybu?

(*X*- vlaková souprava *X* je v pohybu; *X* '- vlaková souprava *X* je v klidu)

_						Α		1	
A	В	C	Α'	B '	$(A' \lor B')$	$(A' \lor B') \Rightarrow C$	$(A \lor C)$	$(A \lor C) \Rightarrow B'$	$X \wedge Y$
1	0	0	0	1	1	0	1	1	0
1	0	1	0	1	1	1	1	1	1
1	1	0	0	0	0	1	1	0	0
1	1	1	0	0	0	1	1	0	0
0	1	0	1	0	1	0	0	1	0
0	0	1	1	1	1	1	1	1	1
0	1	1	1	0	1	1	1	0	0
0	0	0	1	1	1	0	0	1	0

V pohybu jsou buď soustavy A a C nebo jen C.

Př.: Dokažte, že výroková formule $[(A \Rightarrow B) \land B'] \Rightarrow A'$ je tautologií.

A	В	Α'	B	$A \Rightarrow B$	$(A \Rightarrow B) \wedge B'$	$[(A \Rightarrow B) \land B'] \Rightarrow A'$
1	0	0	1	0	0	1
0	1	1	0	1	0	1
1	1	0	0	1	0	1
0	0	1	1	1	1	1

§5. Negace složených výroků. Obměny a obrácení implikací

V.5.1.: Pro každé dva výroky *X*, *Y* platí:

- a) Negaci výroku $X \wedge Y$ lze vyjádřit výrokem $X' \vee Y'$.
- b) Negaci výroku $X \vee Y$ lze vyjádřit výrokem $X' \wedge Y'$.
- c) Negaci výroku $X \Rightarrow Y$ lze vyjádřit výrokem $X \wedge Y'$.
- d) Negaci výroku $X \Leftrightarrow Y$ lze vyjádřit výrokem $(X \land Y') \lor (X' \land Y)$.

[D	k.:								Α		В	
X	Y	Χ'	<i>Y</i> '	$(X \wedge Y)'$	<i>X</i> '∨ <i>Y</i> '	$(X \vee Y)$	<i>X</i> '∧ <i>Y</i> '	$(X \Rightarrow Y)$	$X \wedge Y'$	$(X \Leftrightarrow Y)$	<i>X</i> '∧ <i>Y</i>	$A \vee B$
1	1	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	0	0	1	1	1	0	1
0	1	1	0	1	1	0	0	0	0	1	1	1
0	0	1	1	1	1	1	1	0	0	0	0	0

Př.: Negujte následující výroky:

- a) A: Vlakem pojede právě tehdy, když nepojede vhodný autobusový spoj.
 - A': Vlakem pojede a pojede vhodný autobusový spoj nebo vlakem nepojede a nepojede vhodný autobusový spoj.
- b) B: Bude-li pršet, vezmu si s sebou deštník.
 - B': Bude pršet a nevezmu si s sebou deštník.
- c) C: Přijedu k vám v sobotu nebo v neděli.
 - C': Nepřijedu k vám ani v sobotu ani v neděli.
- d) D: Mám žízeň a hlad.
 - D': Nemám žízeň nebo nemám hlad.

Př.: Napište negace následujících výroků:

- a) A: Každý trolejbus jezdí rychlostí nejvýše 50 km/h.
 - A': Alespoň jeden trolejbus jezdí rychlostí vyšší než 50 km/h.
- b) B: Bude-li na trhu čerstvé ovoce, nekoupím kompot.
 - B': Na trhu bude čerstvé ovoce a koupím kompot.
- c) C: Nebude-li na trhu čerstvé ovoce, koupím kompot.
 - C': Na trhu nebude čerstvé ovoce a nekoupím kompot.
- d) D: Nemám žízeň ani hlad.
 - D': Mám žízeň nebo hlad.
- e) E: Budu-li obědvat uzené, budu mít pivo.
 - E': Budu obědvat uzené a nebudu mít pivo.
- f) F: Číslo *a* je záporné a rovnice má řešení.
 - F': Číslo *a* je nezáporné nebo rovnice nemá řešení.
- g) G: Pro každé reálné číslo a platí $a^2 \ge 0$.
 - G': Existuje reálné číslo a, pro které platí $a^2 < 0$.

Př.: Negujte následující výroky:

a) A: Přijde-li k nám Věra nebo Zuzana, přijde k nám i Petr.

$$[(V \lor Z) \Rightarrow P]' \Leftrightarrow [(V \lor Z) \land P']$$

A': Přijde k nám Věra nebo Zuzana a Petr nepřijde.

b) B: Přijde-li Věra, pak přijde také Zuzana a Petr.

$$[V \Rightarrow (Z \land P)]' \Leftrightarrow [V \land (Z \land P)'] \Leftrightarrow [V \land (Z' \lor P')]$$

B': Věra přijde a alespoň 1 z dvojice Zuzana, Petr nepřijde.

- V.5.2.: a) Výrokové formule $X \Rightarrow Y, Y' \Rightarrow X', X' \lor Y$ mají stejnou pravdivostní hodnotu, jsou tedy logicky ekvivalentními formulemi.
 - b) Implikace $X \Rightarrow Y, Y \Rightarrow X$ nenabývají vždy týchž pravdivostních hodnot, nejsou tedy logicky ekvivalentními formulemi.

[Dk.:

X	Y	X'	Y'	$X \Rightarrow Y$	$Y' \Rightarrow X'$	$X \lor Y$	$Y \Rightarrow X$
1	1	0	0	1	1	1	1
1	0	0	1	0	0	0	1
0	1	1	0	1	1	1	0
0	0	1	1	1	1	1	1

Def.: Nechť $X \Rightarrow Y$ je implikace. Pak implikaci $Y \Rightarrow X$ nazýváme <u>obrácením</u> původní <u>implikace</u> a implikaci $Y' \Rightarrow X'$ <u>obměnou</u> původní <u>implikace</u>.

Pozn.: a) Implikaci $X \Rightarrow Y$ můžeme dokázat tak, že místo ní dokážeme její obměnu $Y' \Rightarrow X'$. Hovoříme pak o tzv. nepřímém důkazu.

b) Je-li dokázána implikace $X\Rightarrow Y$, nelze na základě toho nic říct o pravdivosti obrácené implikace $Y\Rightarrow X$.

Př.: Vytvořte obměny a obrácení daných implikací:

- a) Je-li konstrukce provedena přesně, pak procházejí všechny 3 kružnice jedním bodem.
 - obměna: Neprocházejí-li všechny 3 kružnice jedním bodem, pak není konstrukce

provedena přesně.

<u>obrácení</u>: Procházejí-li všechny 3 kružnice jedním bodem, je konstrukce provedena přesně.

- b) Nejsou-li dané přímky rovnoběžné, pak úloha má alespoň jedno řešení.
 - obměna: Nemá-li úloha žádné řešení, pak jsou dané přímky rovnoběžné.

obrácení: Má-li úloha alespoň jedno řešení, pak nejsou dané přímky rovnoběžné.

Příklady k §5.:

Na ostrově poctivců a padouchů žijí dvě skupiny obyvatel – **Poctivci**, kteří vždy mluví pravdu a **Padouši**, kteří vždy lžou.

Př.: Cizinec potká tři obyvatele ostrova -A,B,C. Zeptá se obyvatele A: "Jste padouch nebo poctivec?" A odpoví potichu, takže mu cizinec nerozumí. Zeptá se tedy B: "Co řekl A?" B odpoví: "A říkal, že je padouch." V tom okamžiku C dodá: "Nevěřte B, ten lže!". Kdo jsou A,B a C?

Nikdo o sobě nikdy nemůže říct, že je padouch, protože kdyby to o sobě řekl poctivec, lhal by, a kdyby to o sobě řekl padouch, mluvil by pravdu. A tedy nemohl říci, že je padouch. Proto **B** musel lhát, když to o A řekl, a tedy je **padouch.** C mluvil pravdu, když říkal, že B lže, a proto je **poctivec**. O **A nelze rozhodnout.**

Př.: A řekne: "Já jsem padouch nebo B je poctivec." Kdo jsou A a B?

Pokud by A byl padouch, lhal by, tedy by platila negace jeho výroku: "Já jsem poctivec a B je padouch." Ta ale neplatí, protože A je padouch. Tato situace tedy nemůže nastat, proto A je **poctivec.** Mluví tedy pravdu. První část jeho výroku však není pravdivá, proto musí být pravdivá jeho druhá část (spojka "nebo"), tedy že **B** je **poctivec**.

Př.: A řekne: "Já jsem padouch, ale B je poctivec." Kdo jsou A a B?

Pokud by A byl poctivec, lhal by v tom, že je padouch, tedy **A** musí být **padouch**. Lže, platí tedy negace jeho výroku: "Jsem poctivec nebo B je padouch." První část výroku neplatí, tedy musí platit alespoň ta druhá - **B** je **padouch**.

Př.: Na ostrov zavítá cizinec a potká tři domorodce A, B a C. A řekne: "Všichni jsme padouši.", načež B prohlásí: "Právě jeden z nás je poctivec." Kdo jsou A,B, a C?

Pokud by A byl poctivec, lhal by, tedy **A** je určitě **padouch**. Musí tedy platit negace jeho výroku: "Alespoň jeden z nás je poctivec."

Pokud by B byl padouch, musela by platit negace jeho výroku: "Žádný nebo alespoň dva z nás jsou poctivci." Ta ale neplatí, protože podle A alespoň jeden z nich poctivcem být musí a alespoň dva být nemohou, protože celkem jsou tři a A a B už jsou padouši. **B** je tedy **poctivec**.

Mluví tedy pravdu – jen jeden z nich je poctivec a to už je sám B, proto C musí být **padouch**.

Př.: Uvažme tři obyvatele ostrova A,B,C. A a B pronesou následující výroky:

A: "B je poctivec."

B: "Pokud A je poctivec, pak je i C poctivcem."

Kdo jsou A,B,C?

Pokud by A byl padouch, lhal by, tedy i B by byl padouch a musela by platit negace jeho výroku: "A je poctivec a C je padouch." Ta ale neplatí, proto **B** je **poctivec**. **A** tedy mluví pravdu a je také **poctivcem**.

B mluví pravdu, jeho výrok platí, tedy protože A je poctivec, i C je poctivec.

§6. Výrokové formy

Pozn.: a) <u>Výroková forma</u> je tvrzení obsahující proměnné. Po dosazení konstant za proměnné dostáváme výrok.

- b) <u>Definičním oborem výrokové formy</u> nazýváme množinu *D* všech takových prvků, po jejichž dosazení přechází výroková forma ve výrok (pro které má výroková forma smysl).
- c) Oborem pravdivosti výrokové formy nazýváme tu podmnožinu P množiny D, pro jejíž prvky přechází výroková forma v pravdivý výrok.

Pozn.: a) Výrokovou formu s 1 proměnnou budeme označovat např. V(x), A(x), se 2 proměnnými V(x, y), A(x, y), ...

Negaci výrokové formy A(x) budeme označovat A'(x).

b) Obor pravdivosti výrokové formy A(x) označíme P nebo A. Obor pravdivosti výrokové formy A'(x) označíme A'_D .

Určete definicni obol a 555-1

1. $V(x): \frac{1}{x} > 0$ $D = R \setminus \{0\}$ $P = R^+$ 2. V(y): y = 4 D = R $P = \{4\}$ 3. $A(a): a^2 \le 0$ D = R $A = \{0\}$ Př.: Určete definiční obor a obor pravdivosti výrokových forem:

1.
$$V(x): \frac{1}{x} > 0$$

$$D = R \setminus \{0\}$$

$$P = R^{-1}$$

2.
$$V(y): y = 4$$

$$D = R$$

$$P = \{4\}$$

3.
$$A(a): a^2 \le 0$$

$$D = R$$

$$A = \{0\}$$

4.
$$B(x): \sqrt{-x^2-1}=3$$
 $D=$

$$B = Q$$

Pozn.: Výrokové formy spojujeme stejnými logickými spojkami jako výroky, užíváme stejné symboly a názvy.

Pozn.: Nechť A(x), B(x) jsou výrokové formy se společným definičním oborem D. Označme A (resp.B) jejich obory pravdivosti. Pak platí:

a) Výroková forma $A(x) \wedge B(x)$ má obor pravdivosti $A \cap B$.

b) Výroková forma $A(x) \vee B(x)$ má obor pravdivosti $A \cup B$.

c) Výroková forma $A(x) \Rightarrow B(x)$ má obor pravdivosti $A'_D \cup B$.

d) Výroková forma $A(x) \Leftrightarrow B(x)$ má obor pravdivosti $(A \div B)^{\vee}$.

Pozn.: Kvantifikované výrokové formy mají zpravidla tvar $\forall x \in D : V(x), \exists x$ kde V(x) je výroková forma s definičním oborem D a oborem pravdivosti P. Množinový význam těchto výrokových forem je tento:

a)
$$\forall x \in D : V(x)$$

a)
$$\forall x \in D : V(x)$$
 $D \subseteq P \land P \subseteq D(def.) \Rightarrow P = D$

b)
$$\exists x \in D : V(x)$$

Pozn.: Nechť A(x) (B(x)) je výroková forma se společným definičním oborem D a oborem pravdivosti A (B). Pak množinový význam následujících výrokových forem je tento:

a)
$$\forall x \in D : A(x) \land B(x)$$

$$P = A \cap B$$

b)
$$\exists x \in D : A(x) \land B(x)$$

$$A \cap B \neq \emptyset$$

c)
$$\forall x \in D : A(x) \lor B(x)$$
 $P = A \cup B$

d)
$$\forall x \in D : A(x) \Rightarrow B(x)$$
 $P = A'_D \cup B, A \subseteq B$

e)
$$\forall x \in D : A(x) \Leftrightarrow B(x)$$
 $P = (A \cap B) \cup (A'_D \cap B'_D)$
 $A \subset B \land B \subset A \Rightarrow A = B$

Př.: Zapište pomocí symbolů následující výrokové formy:

- a) Pro každé reálné číslo b platí: $(b+1)^2 = b^2 + 2b + 1$ $\forall b \in R : (b+1)^2 = b^2 + 2b + 1$
- b) Existuje takové reálné číslo m, že platí: $(m+1)^3 = m^3 + 1$ $\exists m \in R : (m+1)^3 = m^3 + 1$
- c) Všechna reálná čísla mají nezáporné druhé mocniny. $\forall x \in R : x^2 \ge 0$
- d) Lze nalézt racionální číslo mezi $\frac{1}{98}$ a $\frac{1}{99}$.

$$\exists x \in Q : \frac{1}{98} > x > \frac{1}{99}$$

e) Některá přirozená čísla jsou větší než 10^{20} .

 $\exists n \in N : n > 10^{20}$

f) Přirozená čísla jsou sudá nebo lichá.

 $\forall n \in N : (n = 2k) \lor (n = 2k + 1), k \in N$

Příklady k §6.:

Př.: Jsou dány výrokové formy

A(n): Číslo $3n-2n^2-1$ je přirozené číslo dělitelné pěti

B(n): Číslo n(n-1)-5 je přirozené číslo dělitelné sedmi

Najdi $n \in N$ takové, aby výrok $V(n) = A(n) \vee B(n)$ byl pravdivý.

Výrok V(n) je pravdivý, pokud alespoň jeden z výroků A(n), B(n) je pravdivý.

$$\underline{A(n)}: \quad 5 \mid 3n - 2n^2 - 1 \Leftrightarrow 3n - 2n^2 - 1 = 5k, k \in \mathbb{N}$$
$$-2n^2 + 3n - (1 + 5k) = 0$$

$$D = 3^{2} - 4 \cdot (-2) \cdot [-(1+5k)] = 9 - 8 - 40k = 1 - 40k$$

$$D \ge 0 \Leftrightarrow 1 - 40k \ge 0 \Leftrightarrow k \le \frac{1}{40}, k \in N$$
 - takové k neexistuje

Tedy výrok A(n) není pravdivý pro žádné $n \in N$.

B(n):
$$7 \mid n(n-1) - 5 \Leftrightarrow n(n-1) - 5 = 7l, l \in N$$

 $n^2 - n - (5+1l) = 0$

$$D = (-1)^2 - 4 \cdot 1 \cdot [-(5+1l)] = 1 + 20 + 28l = 28l + 21$$

$$n_{1,2} = \frac{1 \pm \sqrt{28l + 21}}{2} \Rightarrow n_1 = \frac{1 - \sqrt{28l + 21}}{2} < 0, n_2 = \frac{1 + \sqrt{28l + 21}}{2}$$

Pro l = 1 vyjde $n \in N$:

$$n_2 = \frac{1 + \sqrt{28 \cdot 1 + 21}}{2} = \frac{1 + 7}{2} = 4$$

Výrok B(4) je pravdivý $\Rightarrow V(4)$ je pravdivý.

II. Algebraické výrazy, věty, důkazy, mocniny a odmocniny

§1. Algebraické výrazy a jejich úpravy

- Pozn.: a) <u>Algebraickým výrazem</u> rozumíme každý zápis, který je správně utvořený podle úmluv o zápisech čísel, proměnných, výsledků operací a hodnot funkcí a závorek.
 - b) U výrazů obsahujících proměnné musíme uvést obor jednotlivých proměnných.
 - c) Výrazy budeme označovat symboly a(x), b(x,y),... (v závorce jsou uvedeny všechny proměnné).

Pozn.: Nejběžnějšími výrazy s proměnnou jsou <u>mnohočleny</u> s jednou proměnnou – <u>polynomy</u> – výrazy $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, kde x je <u>proměnná</u>, čísla a_n , a_{n-1} ,..., a_1 , a_0 <u>koeficienty</u>, číslo n <u>stupeň polynomu</u> (mnohočlenu). Např.: 7x - 6, $5x^4 - 3x^2 + 2x - 1$

Pozn.: Dva <u>výrazy</u> s týmiž proměnnými <u>jsou si rovny</u> v dané množině *M* (společném oboru proměnných), jestliže platí:

- 1. do obou lze na místa proměnných dosadit symboly všech prvků množiny M
- 2. oba dávají pro stejné hodnoty proměnných stejné výsledky

Např.: výrazy $a^3 - b^3$, $(a - b)(a^2 + ab + b^2)$ jsou si rovny $\forall a, b \in R$ výrazy $\frac{x}{x}$, 1 si nejsou rovny v množině R, ale jen v množině $R \setminus \{0\}$

Pozn.: a) Úpravy výrazů v dané množině spočívají v tom, že jeden nahradíme druhým, který je mu v této množině roven.

b) Za jednodušší budeme považovat ten výraz, který obsahuje méně znaků operací, funkcí, závorek nebo proměnných.

Pozn.:
$$\underline{Z\acute{a}kladn\'i\'upravy}$$
: $a(b\pm c) = ab\pm ac$ roznásobování vytýkání rozklad $\underline{(a+b)(a-b) = a^2 - b^2}$ roznásobování rozklad $\underline{(a\pm b)(a^2\mp ab+b^2) = a^3\pm b^3}$ roznásobování rozklad $\underline{(a\pm b)^2 = a^2\pm 2ab+b^2}$ umocňování úprava na mocninu dvojčlenu $\underline{(a\pm b)^3 = a^3\pm 3a^2b+3ab^2\pm b^3}$ umocňování úprava na mocninu dvojčlenu $\underline{ac} = \frac{a}{b}, b \neq 0, c \neq 0$ krácení rozšiřování

Pozn.: Se základními úpravami algebraických výrazů jsme se již seznámili. Nyní se seznámíme s dalšími možnostmi úprav.

A) SUBSTITUCE – nahrazení výrazu, respektive části výrazu a(x), a(x,y) jednou novou proměnnou t

výraz
$$a(x)$$
 $\xrightarrow{substituce}$ výraz $a(t)$ \downarrow úprava upravený výraz $a(x)$ \leftarrow $zp.substituce$ upravený výraz $a(t)$

Př.: Upravte v *R* výraz
$$d(x) = (x+16)(x+17)(x+18) - (x+17)^2(x+19)$$

$$\underline{x+17 = t} : d(t) = (t-1)t(t+1) - t^2(t+2) = t(t^2 - 1 - t^2 - 2t) = t(-1-2t) = -t(2t+1)$$

$$d(x) = -(x+17)(2x+34+1) = -(x+17)(2x+35)$$

- B) ÚPRAVY DVOJIC VÝRAZŮ na základě úpravy 1.výrazu upravíme bez řešení 2.výraz
- Př.: Upravte výraz V_1 a s využitím tohoto výsledku upravte výrazy V_2 a V_3 :

Př.: Upravte výraz
$$V_1$$
 a s využitím tohoto výsledku upravte výrazy V_2 a V_3 :
$$V_1 = (1 - \frac{2}{a})(1 - \frac{2}{a - 2}) = \frac{a - 2}{a} \cdot \frac{a - 2 - 2}{a - 2} = \frac{a - 4}{a}, (a \neq 0, a \neq 2)$$

$$V_2 = (1 - \frac{2}{2a + 1})(1 - \frac{2}{2a - 1}) = \frac{2a + 1 - 4}{2a + 1} = \frac{2a - 3}{2a + 1}, (a \neq -\frac{1}{2}, a \neq \frac{1}{2})$$

$$V_3 = (1 - \frac{1}{a})(1 - \frac{1}{a - 1}) = \frac{2a - 4}{2a} = \frac{a - 2}{a}, (a \neq 0, a \neq 1)$$

C) "PRODLUŽOVÁNÍ" A "ZKRACOVÁNÍ" VÝRAZŮ - přechod od
$$V(n)$$
 k $V(n+1)$ a $V(n-1)$

- Pozn.: Předpokládáme, že platí tvrzení, které je vyjádřeno pro každé i = 1, 2, ..., n. Potřebujeme jej aplikovat na každé i = 1,2,...,n,n+1 (i = 1,2,...,n,n-1), tzn. přejít od výrazu V(n) k V(n+1)(V(n-1)).
- $V(n): \forall n \in N: \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \le \frac{1}{\sqrt{3n+1}}$ Př.:

Zapište tuto nerovnost pro případ, kdy je na levé straně:

- a) n+1 zlomků: $V(n+1): \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n+1}{2n+2} \le \frac{1}{\sqrt{3n+4}}$
- b) $n-1 \text{ zlomků: } V(n-1): \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-3}{2n-2} \le \frac{1}{\sqrt{3n-2}}$

- D) VYČLENĚNÍ VÝRAZU V(n) Z VÝRAZU V(n+1) vyjádření, jak V(n+1) závisí na V(n)
- Př.: Ve výrazu V(n+1) vyčleňte daný výraz V(n):

 - b) $V(n) = 16^n 15n 1$ $V(n+1) = 16^{n+1} - 15n - 16 = 16 \cdot 16^n - 15n - 16 = 16 \cdot V(n) + 16 \cdot 15n + 16 - 15n - 16 = 16 \cdot V(n) + 225n$
 - c) $V(n) = 2^{4n+1} 4^n$ $V(n+1) = 2^{4n+5} - 4^{n+1} = 2^4 \cdot 2^{4n+1} - 4 \cdot 4^n = 16 \cdot V(n) + 16 \cdot 4^n - 4 \cdot 4^n = 16 \cdot V(n) + 12 \cdot 4^n$

§2. Rovnice a nerovnice s jednou neznámou, soustavy rovnic a nerovnic, výpočet neznámé ze vzorce

Def.: Rovnicí s neznámou $x \in R$ rozumíme každou výrokovou formu tvaru L(x) = P(x), kde L(x) a P(x) jsou výrazy s proměnnou $x \in R$. Řešit rovnici znamená stanovit její obor pravdivosti P, tzn. určit všechna taková $c \in R$, po jejichž dosazení ze neznámou přejde rovnice v pravdivý výrok.

Pozn.: Rovnice řešíme pomocí ekvivalentních úprav = úpravy, které nemění obor pravdivosti:

- 1. úprava výrazů L(x) a P(x) na jedné straně rovnice
- 2. přičtení nebo odečtení stejného výrazu k oběma stranám rovnice
- 3. násobení nebo dělení obou stran rovnice stejným číslem různým od nuly (rovnici nenásobíme nebo nedělíme (to nikdy!) výrazem, který obsahuje proměnnou, neboť se může změnit obor pravdivosti P)

Pozn.: Prvky oboru pravdivosti P rovnice nazveme kořeny rovnice a množinu všech kořenů označíme K.

Př.: V *R* řešte rovnice:

Def.: Nerovnicí s neznámou $x \in R$ rozumíme každou výrokovou formu zapsanou některým z tvarů L(x) < P(x), L(x) > P(x), $L(x) \le P(x)$, $L(x) \ge P(x)$, kde L(x) a P(x) isou výrazy s proměnnou $x \in R$.

Řešit nerovnici znamená stanovit její obor pravdivosti P.

Pozn.: Nerovnice řešíme pomocí ekvivalentních úprav:

- 1. úprava výrazu L(x) nebo P(x) na jedné straně
- 2. vzájemná výměna obou stran nerovnice, přitom se znak nerovnosti mění v opačný
- 3. přičtení nebo odečtení stejného výrazu k oběma stranám rovnice
- 4. násobení nebo dělení obou stran rovnice stejným číslem různým od nuly (jde-li o číslo záporné, znak nerovnosti se mění v opačný).

V *R* řešte nerovnici: Př.:

$$(x-3)x \ge x^2 - 3$$

$$x^2 - 3x \ge x^2 - 3$$

$$-3x \ge -3 \qquad /: (-3)$$

$$\underline{x \le 1} \qquad \Rightarrow \qquad \underline{K = (-\infty, 1)}$$

Def.: Soustavou rovnic (soustavou nerovnic) s neznámou $x \in R$ rozumíme konjunkci výrokových forem $L_1(x) = P_1(x), L_2(x) = P_2(x), ..., L_n(x) = P_n(x)$ ($L_1(x) < P_1(x), L_2(x) < P_2(x), ..., L_n(x) < P_n(x), L_1(x) \le P_1(x), ..., L_n(x) \ge P_n(x)$). Řešit soustavu rovnic (soustavu nerovnic) znamená stanovit její obor pravdivosti P, který je roven průniku oborů pravdivosti jednotlivých rovnic (nerovnic).

Př.: V R a Z řešte soustavu nerovnic:
$$3x - 5(2 - x) \le 4(2x - 1)$$

 $2x - 3(x + 4) < 5x + 6$
 $6x + 2(5 - 3x) \ge x + 7$

$$3x - 5(2 - x) \le 4(2x - 1) \qquad 2x - 3(x + 4) < 5x + 6 \qquad 6x + 2(5 - 3x) \ge x + 7$$

$$3x + 5x - 8x \le -4 + 10 \qquad 2x - 3x - 5x < 6 + 12 \qquad 6x - 6x - x \ge 7 - 10$$

$$0x \le 6 \qquad -6x < 18 \qquad -x \ge -3$$

$$\underline{K_1 = R} \qquad x > -3 \qquad x \le 3$$

$$\underline{K_2 = (-3, \infty)} \qquad \underline{K_3 = (-\infty, 3)}$$

$$\underline{\frac{K_R}{K_Z}} = K_1 \cap K_2 \cap K_3 = \underline{(-3.3)}$$

$$\underline{K_Z} = \{-2, -1, 0, 1, 2, 3\}$$

Pozn.: Nerovnici A(x) < B(x) < C(x) chápeme jako soustavu nerovnic A(x) < B(x). B(x) < C(x)

Pozn.: a) Rovnici $A(x) \cdot B(x) = 0$ řešíme: buď A(x) = 0 nebo B(x) = 0b) Nerovnici $A(x) \cdot B(x) < 0$ řešíme: $[A(x) > 0 \land B(x) < 0] \lor [A(x) < 0 \land B(x) > 0]$

Př.:
$$VR$$
 řešte nerovnici $x^2 - 5x + 6 \ge 0$:
$$x^2 - 5x + 6 = (x - 2)(x - 3) \ge 0 \Leftrightarrow (x \ge 2 \land x \ge 3) \lor (x \le 2 \land x \le 3)$$
$$K_1 = \langle 3, \infty \rangle \qquad K_2 = (-\infty, 2)$$
$$\underline{K} = K_1 \cup K_2 = (-\infty, 2) \cup \langle 3, \infty \rangle$$

Pozn.: <u>Výpočet neznámé ze vzorce</u> provádíme tak, jako bychom řešili rovnici o jedné neznámé, všechny ostatní neznámé považujeme za konstanty.

Př.: a) Ze vzorce pro povrch válce $S = 2\pi r(r+v)$ vyjádřete neznámou v:

$$S = 2\pi r^2 + 2\pi r v \Rightarrow \underline{v} = \frac{S - 2\pi r^2}{2\pi r} = \frac{S}{2\pi r} - r$$

b) Ze vzorce pro dráhu rovnoměrně zrychleného pohybu $s = \frac{at^2}{2}$

 $(s_0 = 0m, v_0 = 0ms^{-1})$ vyjádřete neznámou t:

$$s = \frac{at^2}{2} \Rightarrow t^2 = \frac{2s}{a} \Rightarrow t = \sqrt{\frac{2s}{a}}$$

§3. Matematické věty

Pozn.: Výroky nebo výrokové formy s matematickým obsahem nazýváme <u>matematické věty</u>. Často se týkají prvků jisté množiny *D* a mívají:

Tvar	Množinový význam
$\forall x \in D : A(x)$	A = D
$\exists x \in D : A(x)$	$A \neq \emptyset$
$\forall x \in D : A(x) \Rightarrow B(x)$	$A \subseteq B$
$\forall x \in D : A(x) \Leftrightarrow B(x)$	A = B

kde A(x), B(x) jsou výrokové formy s definičním oborem D a oborem pravdivosti A(B).

Def.: Nechť $\forall x \in D : A(x) \Rightarrow B(x)$ je matematická věta. Pak větu $\forall x \in D : B(x) \Rightarrow A(x)$ nazýváme <u>obrácením</u> původní <u>věty</u>, větu $\forall x \in D : B'(x) \Rightarrow A'(x)$ <u>obměnou</u> původní <u>věty</u> a větu $\exists x \in D : A(x) \land B'(x)$ <u>negací</u> původní <u>věty</u>.

V.3.1.: a) Matematická věta a její obměna mají stejnou pravdivostní hodnotu.

- b) Matematická věta a její obrácení nemají vždy stejnou pravdivostní hodnotu.
- c) Matematická věta a její negace mají opačnou pravdivostní hodnotu.

[Dk.: plyne bezprostředně z V.5.2. I.kapitoly a z definice negace]

Pozn.: Matematickou větu $A(x) \Rightarrow B(x)$ můžeme dokázat tak, že místo ní dokážeme její obměnu $B'(x) \Rightarrow A'(x)$. Hovoříme o nepřímém důkazu.

Př.: Vytvořte obměny, obrácení a negace matematických vět:

a) Kvadrát sudého přirozeného čísla je sudé číslo.

$$\forall n \in \mathbb{N} : n = 2k \Rightarrow n^2 = 2l; k, l \in \mathbb{N}$$

obměna:
$$\forall n \in \mathbb{N} : n^2 = 2l - 1 \Rightarrow n = 2k - 1; k, l \in \mathbb{N}$$

obrácení:
$$\forall n \in \mathbb{N} : n^2 = 2l \Rightarrow n = 2k; k, l \in \mathbb{N}$$

negace:
$$\exists n \in N : n = 2k \land n^2 = 2l - 1; k, l \in N$$

b) Součin dvou kladných reálných čísel *a,b* je kladné číslo.

$$\forall a, b \in R^+ : a > 0 \land b > 0 \Rightarrow a \cdot b > 0$$

obměna:
$$\forall a, b \in \mathbb{R}^+ : a \cdot b \le 0 \Rightarrow a \le 0 \lor b \le 0$$

obrácení:
$$\forall a, b \in \mathbb{R}^+ : a \cdot b > 0 \Rightarrow a > 0 \land b > 0$$

negace:
$$\exists a, b \in R^+ : a > 0 \land b > 0 \land a \cdot b \le 0$$

§4. Základní typy důkazů

- Pozn.: <u>Důkazem matematické věty</u> rozumíme úvahu, která ukazuje, že pravdivost matematické věty je logickým důsledkem pravdivosti jiných známých matematických vět nebo axiomů.
- 1) <u>Přímý důkaz</u>: $A, A \Rightarrow B \dots B$ platí

 Jestliže to takto nejde, pak vytvoříme řetězec implikací na sebe navazujících: $A, A \Rightarrow B_1, B_1 \Rightarrow B_2, \dots, B_{n-1} \Rightarrow B_n, B_n \Rightarrow B \dots B \text{ platí}$
- Př.: Když n je sudé, je i n^2 sudé, $n \in N$. Dokažte.

$$n \in N$$
, n je sudé $\Rightarrow \exists k \in N : n = 2k \Rightarrow n^2 = 4k^2 = 2 \cdot (2k^2) = 2m \Rightarrow n^2$ je sudé

- 2) Nepřímý důkaz: Místo $A \Rightarrow B$ dokazujeme obměnu $B' \Rightarrow A'$.
- Př.: Je-li n^2 sudé, je i n sudé, $n \in N$. Dokažte.

obměna:
$$n$$
 je liché $\Rightarrow n^2$ je liché, $n \in N$.
 n je liché $\Rightarrow \exists k \in N : n = 2k - 1 \Rightarrow n^2 = (2k - 1)^2 = 4k^2 - 4k + 1 = 2 \cdot (2k^2 - 2k) + 1 \Rightarrow n^2 = 2m + 1, m \in N_0 \Rightarrow n^2$ je liché

- 3) Důkaz sporem: 1. Předpokládáme, že věta V neplatí, tzn. platí její negace V'.
 - 2. Z ní řetězcem implikací odvodíme důsledek Z, který neplatí: $V' \Rightarrow Z, Z$ neplatí.
 - 3. Tedy věta V' neplatí, tzn. platí V.
- Př.: Dokažte, že každým bodem roviny lze vést k dané přímce nejvýše jednu kolmici.

sporem: Existuje bod roviny, jímž lze vést k dané přímce alespoň dvě kolmice.

⇒ $\exists a,b \subseteq \rho : a \perp p$ (p je daná přímka), $b \perp p, a \neq b, M \in a$, $M \in b$ (M je daný bod) ⇒ $\exists A, B \in p, A \in a \cap p, B \in b \cap p$, $A \neq B \Rightarrow \exists \Delta ABM \subseteq \rho : AB \perp AM \land BA \perp BM \Rightarrow |\angle MAB| = 90° \land |\angle MBA| = 90° - spor s tím, že součet vnitřních úhlů v trojúhelníku je 180°$

Příklady k §10.:

Př.: Vn ∈ N : n-liché $\Rightarrow n^3$ -liché. Dokažte.

Nechť *n*-liché
$$\Rightarrow$$
 $n = 2k + 1, k \in N_0 \Rightarrow \underline{n^3} = (2k + 1)^3 = 8k^3 + 12k^2 + 6k + 1 = 2(4k^3 + 6k^2 + 3k) + 1 = 2l + 1, l \in N_0 \Rightarrow n^3$ -liché

- Př.: Dokažte a) nepřímo, b) sporem: $Vn \in N : n^3$ -liché $\Rightarrow n$ -liché.
 - a) obměna: $Vn \in N$: n-sudé $\Rightarrow n^3$ -sudé Nechť n-sudé $\Rightarrow n = 2k, k \in N \Rightarrow \underline{n^3} = (2k)^3 = 8k^3 = 2(4k^3) = 2l, l \in N \Rightarrow n^3$ -sudé
 - b) sporem: $\exists n \in \mathbb{N} : n^3$ -liché $\land n$ -sudé

 Nechť n-sudé $\Rightarrow n = 2k, k \in \mathbb{N} \Rightarrow \underline{n^3} = (2k)^3 = 8k^3 = 2(4k^3) = 2l, l \in \mathbb{N} \Rightarrow n^3$ -sudé

 spor s předpokladem, že n^3 -liché
- Př.: Dokažte, že $\sqrt{2}$ je iracionální číslo.

<u>sporem</u>: Nechť $\sqrt{2}$ je racionální číslo $\Rightarrow \exists m, n \in \mathbb{N} : \sqrt{2} = \frac{m}{n}, D(m, n) = 1$

 $\sqrt{2} = \frac{m}{n} \Rightarrow 2 = \frac{m^2}{n^2} \Rightarrow \underline{m^2 = 2n^2} \Rightarrow m^2$ -sudé $\Rightarrow m$ -sudé (viz důkaz ve 2.př. tohoto paragrafu) $\Rightarrow \exists p \in N : \underline{m = 2p} \Rightarrow \underline{m^2 = (2p)^2}$

Z jedenkrát <u>podtržených</u> vztahů plyne: $2n^2 = (2p)^2 \Rightarrow 2n^2 = 4p^2 \Rightarrow n^2 = 2p^2 \Rightarrow n^2$ -sudé $\Rightarrow n$ -sudé (viz výše) $\Rightarrow \exists q \in N : n = 2q$

Z dvakrát podtržených vztahů plyne, že m,n jsou dělitelná dvěma, tedy soudělná, což je spor s předpokladem, že jsou nesoudělná.

Př.: Dokažte, že číslo utvořené z rozdílu třetí mocniny přirozeného čísla *n* a tohoto čísla je dělitelné šesti:

 $n^3 - n = n(n^2 - 1) = (n - 1)n(n + 1)$ - 3 po sobě jdoucí přirozená čísla, z nichž právě jedno je dělitelné třemi a alespoň jedno dělitelné dvěma, tedy celý výraz je dělitelný třemi a zároveň dvěma. Protože 3 a 2 jsou čísla nesoudělná, je celý výraz dělitelný šesti.

Př.: Dokažte, že součet dvou dvouciferných přirozených čísel, které se liší jen pořadím cifer, je dělitelný 11.

1. číslo: 10x + y

2. číslo: 10y + x

 $10x + y + 10y + x = 11x + 11y = 11(x + y) \Rightarrow 11 | V(x, y)$

§5. Důkaz matematickou indukcí

Pozn.: Matematickou indukcí dokazujeme věty typu $\forall n \in N : V(n)$.

V.5.1: Princip matematické indukce:

Nechť V(n) je tvrzení, které máme dokázat pro $\forall n \in \mathbb{N}$. Dokážeme-li:

- 1) V(1) (tzn. pro n = 1 výrok platí)
- 2) $\forall n \in N : V(n) \Rightarrow V(n+1)$,

pak můžeme uzavřít, že tvrzení V(n) platí pro $\forall n \in N$.

- Pozn.: a) Důkaz matematickou indukcí se skládá ze dvou částí tzv. prvního kroku (1)) a indukčního kroku (2)).
 - b) Předpoklad, že výrok platí pro n(V(n)), se nazývá <u>indukční předpoklad</u>.
- [Dk. V.5.1.: sporem: Nechť existuje alespoň jedno n, pro které V(n) neplatí. Označme Mmnožinu všech n, pro které V(n) neplatí, $M \neq \emptyset$.

Označme n_0 nejmenší prvek množiny M. Platí: $n_0 > 1$ (pro n = 1 V(1) platí podle prvního kroku) $\Rightarrow n_0 - 1 \in N$. Protože n_0 je nejmenší prvek M, tvrzení $V(n_0-1)$ platí.

Protože podle 2) platí implikace $V(n_0 - 1) \Rightarrow V(n_0)$, $V(n_0)$ platí – spor.]

Dokažte matematickou indukcí: $\forall n \in \mathbb{N} : 1+2+3+...+n = \frac{n(n+1)}{2}$ Př.!:

1)
$$n = 1$$
: $L = 1, P = \frac{1(1+1)}{2} = 1 \Rightarrow L = P$

2)
$$\forall n \in \mathbb{N} : 1+2+3+...+n = \frac{n(n+1)}{2} \Rightarrow 1+2+3+...+n+(n+1) = \frac{(n+1)(n+2)}{2}$$

$$\underline{1+2+3+...+n+(n+1)} = \frac{n(n+1)}{2} + n+1 = (n+1)(\frac{n}{2}+1) = \frac{(n+1)(n+2)}{2}$$

$$\forall n \in N : 1+2+3+...+n = \frac{n(n+1)}{2}$$

Je dáno schéma Př.:

1 2 1 1 2 3 2 1 Zkoumejte součty v jednotlivých řádcích, 1 2 3 4 3 2 1 vyslovte hypotézu o součtu v *k*-tém řádku

Hypotéza: v k-tém řádku bude součet $S_k = k^2$

Hypotézu nyní dokážeme matematickou indukcí:

1)
$$k = 1$$
: $S_1 = 1^2 = 1$ platí

2)
$$\forall k \in N : S_k = k^2 \implies S_{k+1} = (k+1)^2$$

$$\underline{S_{k+1}} = S_k + (k+1) + k = k^2 + 2k + 1 = \underline{(k+1)^2}$$

Př.: Dokažte:
$$\forall n \in N : 1^2 - 2^2 + 3^2 - 4^2 + ... + (-1)^{n-1} \cdot n^2 = (-1)^{n-1} \cdot \frac{n(n+1)}{2}$$

1)
$$n = 1: L = 1, P = (-1)^0 \cdot \frac{2}{2} = 1 \Rightarrow L = P$$

2)
$$\forall n \in \mathbb{N} : 1^2 - 2^2 + 3^2 - 4^2 + \dots + (-1)^{n-1} \cdot n^2 = (-1)^{n-1} \cdot \frac{n(n+1)}{2} \Rightarrow$$

$$\Rightarrow 1^2 - 2^2 + 3^2 - 4^2 + \dots + (-1)^{n-1} \cdot n^2 + (-1)^n \cdot (n+1)^2 = (-1)^n \cdot \frac{(n+1)(n+2)}{2}$$

$$\frac{1^{2}-2^{2}+...+(-1)^{n-1}\cdot n^{2}+(-1)^{n}\cdot (n+1)^{2}}{2}=(-1)^{n-1}\cdot \frac{n(n+1)}{2}+(-1)^{n}\cdot (n+1)^{2}=$$

$$=\frac{(-1)^{n}}{-1}\cdot \frac{n(n+1)}{2}+(-1)^{n}\cdot (n+1)^{2}=(-1)^{n}\cdot (n+1)\cdot \left(-\frac{n}{2}+n+1\right)=$$

$$=(-1)^{n}\cdot (n+1)\cdot \frac{n+2}{2}=(-1)^{n}\cdot \frac{(n+1)(n+2)}{2}$$

§6. Mocniny s celočíselnými exponenty

Pozn.: V dosavadních úvahách byly exponenty mocnin přirozená čísla. Rozšíříme nyní pojem mocniny tak, že exponent bude 0 nebo záporné číslo.

Mocniny $a^0, a^{-1}, a^{-2},...$ definujeme tak, aby zůstaly v platnosti věty o mocninách s přirozenými exponenty, zejména věta:

$$\forall a \in R, \forall n \in N : a^1 = a, a^{n+1} = a^n \cdot a,$$

která vychází z definice mocniny a^n jakou součinu n činitelů rovných a:

$$\forall a \in R, \forall n \in N : a^n \equiv \underbrace{a \cdot a \cdot \dots \cdot a}_{n}$$

$$a^{n+1} = a^{n} \cdot a$$

$$a^{-1+1} = a^{-1} \cdot a$$

$$a^{0+1} = a^{0} \cdot a$$

$$1 = a^{-1} \cdot a \Rightarrow a^{-1} = \frac{1}{a}$$

$$a = a^{0} \cdot a$$

$$a^{-2} = \frac{1}{a^{2}}$$

•
$$a = 0 \Rightarrow a^0$$
 nedefinujeme
$$\underline{a^{-k} = \frac{1}{a^k}}$$

•
$$a \neq 0 \Rightarrow \underline{a^0 = 1}$$

Def.: $\forall a \in R \setminus \{0\}, \forall k \in Z, k \leq 0 : a^0 \equiv 1$

$$a^k \equiv \frac{1}{a^{-k}}$$

V.6.1:
$$\forall a, b \in R \setminus \{0\}, \forall r, s \in Z$$
: a) $a^{-r} = \frac{1}{a^r}$

a)
$$a^{-r} = \frac{1}{a^r}$$

b)
$$a^r \cdot a^s = a^{r+s}$$

c)
$$\frac{a^r}{a^s} = a^{r-s}$$

d)
$$(a^r)^s = a^{r \cdot s}$$

e)
$$(a \cdot b)^r = a^r \cdot b^r$$

f)
$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

a) plyne přímo z definice [Dk.:

b) 1. Předpokládáme platnost věty pro $r, s \in N$ (dokáže se přímo z definice mocniny):

$$a^{r} \cdot a^{s} = \underbrace{a \cdot a \cdot \dots \cdot a}_{r} \cdot \underbrace{a \cdot a \cdot \dots \cdot a}_{s} = \underbrace{a \cdot a \cdot \dots \cdot a}_{r+s} = a^{r+s}$$
2. $r > 0, s < 0 \Rightarrow -s > 0, r - s > 0$

$$a^r \cdot a^s = a^r \cdot \frac{1}{a^{-s}} = \frac{a^r}{a^{-s}} = a^{r-(-s)} = a^{r+s}$$

3. $r < 0, s > 0 \Rightarrow$ analogicky

4.
$$r < 0, s < 0 \Rightarrow -s > 0 \land -r > 0$$

$$a^{r} \cdot a^{s} = \frac{1}{a^{-r}} \cdot \frac{1}{a^{-s}} = \frac{1}{a^{-r} \cdot a^{-s}} = \frac{1}{a^{-r-s}} = \frac{1}{a^{-(r+s)}} = a^{r+s}$$

5.
$$r = 0 \Rightarrow a^r \cdot a^s = a^0 \cdot a^s = 1 \cdot a^s = a^s = a^{0+s} = a^{r+s}$$

6. $s = 0 \Rightarrow$ analogicky

c)- f) podobně jako b)]

Př.: Vypočtěte a vyjádřete desetinným číslem:

Příklady k §6.:

Př.: Zjednodušte:

a)
$$\frac{5^{-3} + 2^{-3}}{5^{-3} \cdot 2^{-3}} = \frac{\frac{1}{5^3} + \frac{1}{2^3}}{\frac{1}{5^3 \cdot 2^3}} = \frac{2^3 + 5^3}{5^3 \cdot 2^3} \cdot \frac{5^3 \cdot 2^3}{1} = 2^3 + 5^3 = \underline{133}$$

b)
$$\frac{5^{-2}}{\left(\frac{1}{5}\right)^4 \cdot 25^{-6}} = \frac{\frac{1}{5^2}}{\frac{1}{25^2} \cdot \frac{1}{25^6}} = \frac{1}{5^2} \cdot \frac{25^8}{1} = \underline{25^7}$$

c)
$$(2^{-5} + 5^{-2})(5^2 - 2^5) = \frac{5^2}{2^5} - \frac{2^5}{2^5} + \frac{5^2}{5^2} - \frac{2^5}{5^2} = \frac{5^2}{2^5} - \frac{2^5}{5^2} = \frac{25 - 32}{32 - 25} = \frac{-7}{7} = \underline{-1}$$

d)
$$(x^{-1} - y^{-1})^{-1}(x^4 - y^4) = \left(\frac{1}{x} - \frac{1}{y}\right)^{-1}(x^2 + y^2)(x^2 - y^2) =$$

$$= \left(\frac{y - x}{xy}\right)^{-1}(x^2 + y^2)(x + y)(x - y) = \frac{xy}{y - x}(x^2 + y^2)(x + y)(x - y) =$$

$$= \frac{-xy(x^2 + y^2)(x + y)}{x^2 + y^2}(x + y) \quad (x \neq 0, y \neq 0, x \neq y)$$

e)
$$(x^3y - xy^3)x^{-1}y^{-1} = x^2y^0 - x^0y^2 = x^2 - y^2 = (x+y)(x-y)$$
 $(x, y \ne 0)$

f)
$$(x^{-1} + y^{-1})^2 : (x^{-3}y^{-2} + x^{-2}y^{-3}) = \frac{x^{-2} + 2x^{-1}y^{-1} + y^{-2}}{x^{-3}y^{-2} + x^{-2}y^{-3}} = \frac{x^3y^2 + x^2y^3}{x^2 + 2xy + y^2} = \frac{x^2y^2(x+y)}{(x+y)^2} = \frac{x^2y^2}{\underline{x^2y^2}} \qquad (x, y \neq 0, x \neq -y)$$

§7. Mocniny s racionálními exponenty

Def.: Nechť $a \in R_0^+$. Druhou odmocninou čísla a nazveme to nezáporné číslo $x \in R_0^+$, pro něž platí: $x^2 = a$ a zapisujeme $\sqrt{a} = x$.

Pozn.: Platí tedy např. $\sqrt{9} = 3$, <u>nikdy</u> $\sqrt{9} = \pm 3$.

Pozn.: Zřejmě platí $\sqrt{a} \cdot \sqrt{a} = a^1$. Chápeme-li tedy \sqrt{a} jako mocninu a^r , musí platit $a^r \cdot a^r = 1 \Rightarrow 2r = 1 \Rightarrow r = \frac{1}{2}$. Druhou odmocninu lze chápat jako mocninu s exponentem $\frac{1}{2}$, kterou definujeme pro nezáporný základ a.

V.7.1:
$$\forall a, b \in R_0^+; \forall n \in N : a) (\sqrt{a})^2 = a$$
 $(a^{\frac{1}{2}})^2 = a$ $(a^2)^{\frac{1}{2}} = a^n$ $(a^2)^{\frac{1}{2}} = a^n$

[Dk.: b) Označme $\sqrt{a} = x, \sqrt{b} = y \Rightarrow a = x^2, b = y^2 \Rightarrow ab = x^2y^2 = (xy)^2 \Rightarrow \sqrt{ab} = \sqrt{(xy)^2} = xy = \sqrt{a} \cdot \sqrt{b}$ ostatní obdobně]

Př.: Odstraňte odmocniny ze jmenovatele:

a)
$$\frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}} \cdot \frac{\sqrt{x}}{\sqrt{x}} = \frac{\sqrt{x}}{2x}, x > 0$$
b)
$$\frac{1}{\sqrt{6} - \sqrt{5}} = \frac{1}{\sqrt{6} - \sqrt{5}} \cdot \frac{\sqrt{6} + \sqrt{5}}{\sqrt{6} + \sqrt{5}} = \frac{\sqrt{6} + \sqrt{5}}{6 - 5} = \frac{\sqrt{6} + \sqrt{5}}{6 - 5}$$
c)
$$\frac{x - 4y}{\sqrt{x} - 2\sqrt{y}} = \frac{x - 4y}{\sqrt{x} - 2\sqrt{y}} \cdot \frac{\sqrt{x} + 2\sqrt{y}}{\sqrt{x} + 2\sqrt{y}} = \frac{x\sqrt{x} - 4y\sqrt{x} - 8y\sqrt{y} + 2x\sqrt{y}}{x - 4y} = \frac{\sqrt{x}(x - 4y) + 2\sqrt{y}(x - 4y)}{x - 4y} = \frac{\sqrt{x} + 2\sqrt{y}}{x - 4y}, x \ge 0, y \ge 0, x \ne 4y$$

Pozn.: Odstraňování odmocniny ze jmenovatele se nazývá usměrňování zlomků.

Def.: Nechť $a \in R_0^+$, $n \in N$, $n \ge 2$. <u>n-tou odmocninou</u> čísla a nazveme to nezáporné číslo $x \in R_0^+$, pro něž platí: $x^n = a$ a zapisujeme $\sqrt[n]{a} = x$.

Pozn.: a) *n*-tou odmocninu lze chápat jako mocninu s racionálním exponentem:

$$\sqrt[n]{a} = a^{\frac{1}{n}}, a \in R_0^+$$

b) Význam mocniny $a^{\frac{m}{n}}, \frac{m}{n} \in Q$: $a^{\frac{m}{n}} = (\sqrt[n]{a})^n = \sqrt[n]{a^m}$. Tuto mocninu definujeme jen pro $a \in R^+$.

V.7.2:
$$\forall a,b \in R^+; \forall r,s \in Q$$
: a) $a^r \cdot a^s = a^{r+s}$

b)
$$\frac{a^r}{a^s} = a^{r-s}$$

c)
$$(a^r)^s = a^{r \cdot s}$$

d)
$$(a \cdot b)^r = a^r \cdot b^r$$

e)
$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

Pozn.: Rozšíření oboru exponentu si vyžádalo zúžení oboru základu mocniny.

- exponent přirozený základ libovolný
- exponent celočíselný základ ≠ 0
- exponent racionální základ obecně kladný (exponent kladný racionální základ nezáporný)

Př.: Zjednodušte:

a)
$$\left(\frac{125}{8}\right)^{\frac{2}{3}} = \left(\frac{8}{125}\right)^{\frac{2}{3}} = \left[\left(\frac{2}{5}\right)^{3}\right]^{\frac{2}{3}} = \left(\frac{2}{5}\right)^{2} = \frac{4}{25}$$

b) $\sqrt[5]{\left(\frac{\sqrt{x} \cdot x}{\sqrt[3]{x}}\right)^{-3}} = \left(\frac{x^{\frac{1}{2}} \cdot x^{-1}}{x^{\frac{1}{3}}}\right)^{\frac{3}{5}} = \left(x^{-\frac{5}{6}}\right)^{-\frac{3}{5}} = x^{\frac{1}{2}} = \frac{1}{2} =$

III. Teorie čísel

§1. Základní pojmy teorie čísel

Def.: Nechť $a,b \in Z$. Říkáme, že <u>číslo</u> a <u>dělí číslo</u> b (a je <u>dělitelem</u> b, b je <u>dělitelné</u> a, b je <u>násobek</u> a), jestliže $\exists c \in Z : b = a \cdot c$; zapisujeme $a \mid b$.

 $a \mid b \Leftrightarrow \exists c \in Z : b = a \cdot c$

V opačném případě (tzn. když žádné takové $c \in Z$ neexistuje) říkáme, že <u>číslo</u> a <u>nedělí</u> <u>číslo</u> b a píšeme $a \nmid b$.

Pozn.: Přímo z definice plyne: $\forall c \in Z : c \mid 0$ (protože $0 = c \cdot 0$). Naopak číslo 0 je dělitelem pouze 0 a žádného jiného celého čísla.

Def.: Necht' $a \in \mathbb{Z}$. Absolutní hodnotu čísla a označujeme |a| a definujeme takto:

1.
$$a > 0 \Rightarrow |a| = a$$

2.
$$a = 0 \Rightarrow |a| = 0$$

3.
$$a < 0 \Rightarrow |a| = -a$$

Pozn.: $\forall a \in Z : |a| \ge 0$

V.1.1: $\forall a, b, c \in Z$: a) a | a, 1 | a

b)
$$a \mid b \land b \mid a \Rightarrow |a| = |b|$$

c)
$$a \mid b \land b \mid c \Rightarrow a \mid c$$

[Dk.: a) $\forall a \in Z : a = a \cdot 1 \Rightarrow a \mid a \wedge 1 \mid a$

- b) Necht' $a \mid b \land b \mid a \Rightarrow \exists c, d \in Z : b = a \cdot c, a = b \cdot d \Rightarrow b = a \cdot c = b \cdot d \cdot c \Rightarrow d \cdot c = 1 \Rightarrow c = d = 1 \lor c = d = -1 \Rightarrow a = b \lor a = -b \Rightarrow |a| = |b|$
- c) Nechť $a \mid b \land b \mid c \Rightarrow \exists e, f \in Z : b = a \cdot e \land c = b \cdot f \Rightarrow c = b \cdot f = a \cdot e \cdot f = a \cdot m, m \in Z \Rightarrow c = a \cdot m \Rightarrow a \mid c$

Pozn.: Jsou-li speciálně $a,b \in N$: $a \mid b \land b \mid a \Rightarrow a = b$.

V.1.2: $\forall a, b \in Z : b \neq 0 \land a \mid b \Rightarrow |a| \leq |b|$

[Dk.: Nechť $a \mid b \Rightarrow \exists c \in Z : b = a \cdot c \Rightarrow |b| = |a \cdot c| = |a| \cdot |c|$ $b \neq 0 \Rightarrow |b| \neq 0 \Rightarrow |a| \neq 0 \land |c| \neq 0 \Rightarrow |c| \ge 1 \Rightarrow |a| \le |b|$]

V.1.3: Nechť $\forall a, b, c \in Z \land a \mid b$. Pak platí:

1)
$$a \mid (b+c) \Leftrightarrow a \mid c$$

2)
$$a \mid (b-c) \Leftrightarrow a \mid c$$

[Dk.: 1) "⇒": Necht'
$$a \mid b \land a \mid (b+c) \Rightarrow \exists e, f \in Z : b = a \cdot e \land b + c = a \cdot f \Rightarrow$$

 $\Rightarrow c = a \cdot f - b = a \cdot f - a \cdot e = a(f-e) = a \cdot m, m \in Z \Rightarrow a \mid c$
"←": Necht' $a \mid b \land a \mid c \Rightarrow \exists e, f \in Z : b = a \cdot e \land c = a \cdot f \Rightarrow b + c = a \cdot e + a \cdot f =$
 $= a(e+f) = a \cdot n, n \in Z \Rightarrow a \mid (b+c)$
2) analogicky]

V.1.4: <u>Věta o dělení se z</u>bytkem:

Necht' $a \in Z, b \in N$. Pak $\exists ! q \in Z, r \in N_0 : a = b \cdot q + r, 0 \le r < b$.

- [Dk.: a) <u>existence</u>: Mezi všemi násobky čísla b vybereme takový násobek $q \cdot b$, že platí: $q \cdot b \le a < (q+1)b$ (číslo $q \cdot b$ je nejbližší menší, číslo $(q+1) \cdot b$ nejbližší větší násobek čísla b vzhledem k a). Označme $r = a bq \Rightarrow a = bq + r$, $0 \le r < b$.
 - b) <u>jednoznačnost</u>: sporem: Nechť $a = bq + r, 0 \le r < b \land a = bq' + r', 0 \le r' < b$. Pak platí: $bq bq' = r' r \Rightarrow b(q q') = r' r \Rightarrow b \mid (r' r)$. Nechť např. $r' \ge r \Rightarrow$ protože $0 \le r' r < b \land b \mid (r' r)$, platí $r' r = 0 \Rightarrow r = r' \Rightarrow q = q'$]

Def.: Nechť čísla *q,r* vyhovují požadavkům V.1.4. Pak *q* se nazývá <u>neúplný podíl</u> a *r* <u>zbytek po dělení čísla *a* číslem *b*.</u>

Př.: Vyjádřete ve tvaru podle V.1.4., určete q,r.

a)
$$a = 60, b = 8$$
: $60 = 8 \cdot 7 + 4$ $q = 7, r = 4$

b)
$$a = -60, b = 8$$
: $-60 = 8 \cdot (-8) + 4$ $q = -8, r = 4$

c)
$$a = -56, b = 11:$$
 $-56 = 11 \cdot (-6) + 10$ $q = -6, r = 10$

Pozn.: $b \mid a \Leftrightarrow r = 0$

Důkazy o dělitelnosti:

Př.!: Dokažte: $\forall a \in \mathbb{Z} : 3 | (a^3 - a)$. Jde o příklad malé Fermatovy věty pro p = 3 - obecně: $\forall a \in \mathbb{Z}, \forall p \in \mathbb{N}, p$ - prvočíslo: $p | (a^p - a)$

I. způsob – obecný postup: Označme $V(a) = a^3 - a$

1.
$$a = 3k, k \in \mathbb{Z} \Rightarrow V(a) = (3k)^3 - 3k = 27k^3 - 3k = 3(9k^3 - k) \Rightarrow 3|V(a)$$

2.
$$a = 3k + 1, k \in \mathbb{Z} \Rightarrow V(a) = (3k + 1)^3 - (3k + 1) = 27k^3 + 27k^2 + 9k + 1 - 3k - 1 = 3(9k^3 + 9k^2 + 2k) \Rightarrow 3|V(a)$$

3.
$$a = 3k + 2, k \in \mathbb{Z} \Rightarrow V(a) = (3k + 2)^3 - (3k + 2) = 3 \cdot 9k^3 + 3 \cdot 18k^2 + 3 \cdot 12k + 8 - 3k - 2 =$$

= $3(9k^3 + 18k^2 + 11k + 2) \Rightarrow 3|V(a)$

Tedy $\forall a \in \mathbb{Z} : 3 | (a^3 - a)$.

II. způsob – úvahou přes rozklad:

 $a^3 - a = a(a^2 - 1) = (a - 1)a(a + 1) - 3$ po sobě jdoucí přirozená čísla, z nichž právě jedno je dělitelné třemi, tedy celý výraz je dělitelný třemi.

- Př.: Dokažte: $\forall n \in N : 8 \mid ((2n+1)^2 1)$ $(2n+1)^2 - 1 = 4n^2 + 4n + 1 - 1 = 4n(n+1) - 2$ po sobě jdoucí čísla, tudíž právě jedno z nich je dělitelné $2 \Rightarrow 4n(n+1) = 4 \cdot 2k, k \in N = 8k \Rightarrow 8 \mid ((2n+1)^2 - 1)$
- Př.: Dokažte: $\forall n \in \mathbb{N} : 6 \mid (n^3 + 11n)$.
 - $n = 3k, k \in \mathbb{N} \Rightarrow V(n) = (3k)^3 + 11(3k) = 27k^3 + 33k = 3(9k^3 + 11k) \Rightarrow 3 \mid V(n)$
 - $n = 3k + 1, k \in \mathbb{N} \Rightarrow V(n) = (3k + 1)^3 + 11(3k + 1) = 27k^3 + 27k^2 + 9k + 1 + 33k + 11 =$ = $3(9k^3 + 9k^2 + 14k + 4) \Rightarrow 3|V(n)$
 - $n = 3k 1, k \in \mathbb{N} \Rightarrow V(n) = (3k 1)^3 + 11(3k 1) = 27k^3 27k^2 + 9k 1 + 33k 11 =$ = $3(9k^3 - 9k^2 + 14k - 4) \Rightarrow 3|V(n)$
 - $n = 2k, k \in \mathbb{N} \Rightarrow V(n) = (2k)^3 + 11(2k) = 8k^3 + 22k = 2(4k^3 + 11k) \Rightarrow 2|V(n)$
 - $n = 2k + 1, k \in \mathbb{N} \Rightarrow V(n) = (2k + 1)^3 + 11(2k + 1) = 8k^3 + 12k^2 + 6k + 1 + 22k + 11 =$ = $2(4k^3 + 6k^2 + 14k + 6) \Rightarrow 2|V(n)$
 - $3 | V(n) \land 2 | V(n) \Rightarrow 6 | V(n)$, neboť čísla 2 a 3 jsou nesoudělná
- Př.: Dokažte: $\forall n \in N : 7 \mid (2^{3n} 1)$ MI: 1) n = 1: $7 \mid (2^3 - 1) \Rightarrow 7 \mid 7$ - platí 2) $\forall n \in N : 7 \mid (2^{3n} - 1) \Rightarrow 7 \mid (2^{3(n+1)} - 1)$ $V(n+1) = 2^{3n+3} - 1 = 8 \cdot V(n) + 8 - 1 = 8 \cdot V(n) + 7$ z indukčního předpokladu $7 \mid V(n) \land 7 \mid 7 \Rightarrow 7 \mid V(n+1)$
- Př.: Dokažte: $\forall n \in \mathbb{N} : 24 \mid (25^n + 23)$ MI: 1) n = 1: $24 \mid (25 + 23) \Rightarrow 24 \mid 48$ - platí 2) $\forall n \in \mathbb{N} : 24 \mid (25^n + 23) \Rightarrow \underline{24 \mid (25^{n+1} + 23)}$ $V(n+1) = 25^{n+1} + 23 = 25 \cdot V(n) - 25 \cdot 23 + 23 = 25 \cdot V(n) - 24 \cdot 23$ z indukčního předpokladu $24 \mid V(n) \land 24 \mid 24 \cdot 23 \Rightarrow 24 \mid V(n+1)$

§2. Největší společný dělitel

- Pozn.: a) V tomto paragrafu se omezíme na vyšetřování dělitelnosti v N, i když mnohé výsledky lze jednoduše zobecnit do Z.
 - b) S pojmem <u>dělitel</u> jsme se seznámili v §1.
 - c) Každému přirozenému číslu n lze přiřadit neprázdnou množinu všech jeho dělitelů, kterou označíme D(n).
- Určete všechny dělitele čísel 48 a 64. Př.:

$$D(48) = \{1,2,3,4,6,8,12,16,24,48\}$$

$$D(64) = \{1, 2, 4, 8, 16, 32, 64\}$$

Def.: Necht' $a, b \in N$.

Číslo $c \in N$ nazýváme společným dělitelem čísel a,b, jestliže $c \mid a \land c \mid b$.

Číslo $d \in N$ nazýváme největším společným dělitelem čísel a,b, který označujeme d = D(a,b) (někdy jen (a,b)), jestliže platí:

- 1) $d \mid a \wedge d \mid b$
- 2) $\forall c \in N : c \mid a \land c \mid b \Rightarrow c \mid d$
- Pozn.: Největší společný dělitel 2 přirozených čísel a,b je ten společný dělitel d, který má tuto vlastnost:

Každý jiný společný dělitel čísel a,b je dělitelem čísla d.

- V.2.1: Ke každým dvěma přirozeným číslům $a,b \in N$ existuje právě jeden největší společný dělitel.
- [Dk.!: konstruktivní Euklidův algoritmus:
 - a) $a = b \Rightarrow (a,b) = a$
 - b) $a \neq b \land a > b$: Proveď me nyní postupně posloupnost dělení se zbytkem:

$$a = b \cdot q_1 + r_1, \quad 0 < r_1 < b$$

$$b = r_1 \cdot q_2 + r_2, \quad 0 < r_2 < r_1$$

$$r_1 = r_2 \cdot q_3 + r_3, \quad 0 < r_3 < r_2$$

$$r_{n-2} = r_{n-1} \cdot q_n + r_n, \quad 0 < r_n < r_{n-1}$$

$$r_{n-1} = r_n \cdot q_{n+1}, \qquad r_{n+1} = 0$$

Toto dělení ukončíme, až dostaneme nulový zbytek. Vzhledem k nerovnostem platí:

 $b > r_1 > r_2 > \dots > r_{n-1} > r_n > r_{n+1} = 0$, takže tento nulový zbytek existuje.

Ukážeme, že poslední nenulový zbytek, tzn. číslo r_n , je největším společným dělitelem čísel *a,b*:

1) Ukážeme, že
$$r_n \mid a \land r_n \mid b$$
: platí: $r_n \mid r_n \land r_n \mid r_{n-1} \Rightarrow r_n \mid r_{n-2}$

$$r_n \mid r_{n-1} \wedge r_n \mid r_{n-2} \Longrightarrow r_n \mid r_{n-3}$$

$$r_n \mid r_2 \wedge r_n \mid r_1 \stackrel{:}{\Rightarrow} r_n \mid b$$

$$r_n \mid r_1 \wedge r_n \mid b \Longrightarrow r_n \mid a$$

2) Nechť $c \in N : c \mid a \land c \mid b$. Ukážeme, že $c \mid r_n$. $a = bq_1 + r_1 \Rightarrow c \mid r_1 \land c \mid b \Rightarrow c \mid r_2 \land c \mid r_1 \Rightarrow ... \Rightarrow c \mid r_{n-1} \land c \mid r_{n-2} \Rightarrow c \mid r_n$

Př.: Vypočtěte *D*(525,231); *D*(9694,4181).

$$525 = 2 \cdot 231 + 63$$
 $9694 = 2 \cdot 4181 + 1332$
 $231 = 3 \cdot 63 + 42$ $4181 = 3 \cdot 1332 + 185$
 $63 = 1 \cdot 42 + 21$ $1332 = 7 \cdot 185 + 37$
 $42 = 2 \cdot 21$ $185 = 5 \cdot 37$
 $D(525,231) = 21$ $D(9694,4181) = 37$

V.2.2: Nechť $a,b,c \in N \land D(a,b) = d$. Potom D(a,b,c) = D(d,c).

[Dk.: Označme $d_1 = D(a,b,c), d_2 = D(d,c).$ a) $d_1 = D(a,b,c) \Rightarrow d_1 \mid a \land d_1 \mid b \land \underline{d_1 \mid c} \Rightarrow d_1 \mid D(a,b) \Rightarrow \underline{d_1 \mid d} \Rightarrow d_1 \mid D(d,c) \Rightarrow d_1 \mid d_2$ b) $d_2 = D(d,c) \Rightarrow d_2 \mid d \land \underline{d_2 \mid c} \Rightarrow \overline{d_2 \mid D(a,b)} \Rightarrow \underline{d_2 \mid a} \land \underline{d_2 \mid b} \Rightarrow \underline{d_2 \mid D(a,b,c)} \Rightarrow \underline{d_2 \mid d_1}$ $d_1 \mid d_2 \land d_2 \mid d_1 \Rightarrow d_1 = d_2$]

Př.: Určete *D*(432,720,1080).

$$720 = 432 \cdot 1 + 288$$
 $1080 = 144 \cdot 7 + 72$ $432 = 288 \cdot 1 + 144$ $144 = 2 \cdot 72$ $288 = 144 \cdot 2$ $D(432,720) = 144$ $D(144,1080) = D(432,720,1080) = 72$

Def.: Nechť $a,b \in N$. Říkáme, že <u>čísla</u> a,b jsou <u>nesoudělná</u>, jestliže platí D(a,b) = 1. Je-li D(a,b) > 1, říkáme, že <u>čísla</u> a,b jsou <u>soudělná</u>.

Pozn.: Uvedenou definici lze rozšířit na konečnou množinu přirozených čísel.

V.2.3:
$$\forall a,b \in N : a \mid b \Leftrightarrow D(a,b) = a$$

[Dk.: Označme $d = D(a,b)$.
1) ,,⇒": $a \mid b \Rightarrow d = D(a,b) \Rightarrow \underline{d} \mid \underline{a} \land d \mid b$.
Platí $a \mid a \land a \mid b \Rightarrow a \mid D(a,b) \Rightarrow \underline{a} \mid \underline{d} \Rightarrow a = d$
2) ,, ∈": $\underline{a = d} = D(a,b) \Rightarrow d \mid a \land \underline{d} \mid \underline{b} \Rightarrow a \mid \underline{b}$]

 $V.2.4: \forall a,b,n \in N: D(an,bn) = n \cdot D(a,b)$

[Dk.: Označme
$$d_1 = D(a,b), d_2 = D(an,bn)$$
. Ukážeme, že $d_2 = nd_1$:

a) $d_1 = D(a,b) \Rightarrow d_1 \mid a \land d_1 \mid b \Rightarrow nd_1 \mid na \land nd_1 \mid nb \Rightarrow nd_1 \mid D(na,nb) \Rightarrow nd_1 \mid d_2$

b) Platí: $n \mid na \land n \mid nb \Rightarrow n \mid D(na,nb) \Rightarrow n \mid d_2 \Rightarrow \exists c \in N : d_2 = n \cdot c$

$$d_2 = D(nA,nB) \Rightarrow d_2 \mid na \land d_2 \mid nb \Rightarrow nc \mid na \land nc \mid nb \Rightarrow c \mid a \land c \mid b \Rightarrow c \mid D(a,b) \Rightarrow c \mid d_1 \Rightarrow nc \mid nd_1 \Rightarrow d_2 \mid nd_1$$

$$nd_1 \mid d_2 \land d_2 \mid nd_1 \Rightarrow d_2 = nd_1$$

V.2.5: Fundamentální věta aritmetiky:

Nechť $a_1, a_2, b \in N, b > 1$. Pak platí: $b \mid a_1 a_2 \land D(a_1, b) = 1 \Rightarrow b \mid a_2$.

[Dk.: $b \mid a_1 a_2 \Rightarrow D(a_1 a_2, b) = b$. Ukážeme, že $D(a_1 a_2, b) = b = D(a_2, b) \Rightarrow b \mid a_2$.

Označme $d_1 = D(a_1a_2,b), d_2 = D(a_2,b)$. Ukážeme, že $d_1 = d_2$:

a)
$$d_1 = D(a_1 a_2, b) \Rightarrow \underline{d_1 \mid a_1 a_2} \land \underline{d_1 \mid b} \Rightarrow \underline{d_1 \mid a_2 b} \Rightarrow d_1 \mid D(a_1 a_2, a_2 b) \Rightarrow d_1 \mid a_2 D(\underline{a_1, b}) \Rightarrow \underline{d_1 \mid a_2 a_2 \mid b} \Rightarrow \underline{d_1 \mid a_2 \mid \mid$$

$$\Rightarrow d_1 \mid a_2 \Rightarrow d_1 \mid D(a_2b) \Rightarrow d_1 \mid d_2$$

b)
$$d_2 = D(a_2, b) \Rightarrow d_2 \mid a_2 \land \underline{d_2 \mid b} \Rightarrow \underline{d_2 \mid a_1 a_2} \Rightarrow d_2 \mid D(a_1 a_2, b) \Rightarrow d_2 \mid d_1$$

 $d_1 \mid d_2 \land d_2 \mid d_1 \Rightarrow d_1 = d_2$]

V.2.6: $\forall a, b \in N, a \ge b$: a) D(a,b) = D(a+b,b)

b)
$$D(a,b) = D(a-b,b)$$

- [Dk.: a) Označme $d_1 = D(a,b), d_2 = D(a+b,b)$,,⇒": $d_1 = D(a,b) \Rightarrow d_1 \mid a \land d_1 \mid b \Rightarrow d_1 \mid (a+b) \land d_1 \mid b \Rightarrow d_1 \mid D(a+b,b) \Rightarrow d_1 \mid d_2$,, \(\infty\): $d_2 = D(a+b,b) \Rightarrow d_2 \mid (a+b) \land d_2 \mid b \Rightarrow d_2 \mid (a+b-b) \Rightarrow d_2 \mid a \land d_2 \mid b \Rightarrow$ $\Rightarrow d_2 \mid D(a,b) \Rightarrow d_2 \mid d_1$ $d_1 \mid d_2 \land d_2 \mid d_1 \Rightarrow d_1 = d_2$ b) analogicky]
- Př.: Dokažte $\forall c, d \in N : D(8c + 5d, 5c + 3d) = D(c, d)$ D(8c + 5d, 5c + 3d) = D(8c + 5d - 5c - 3d, 5c + 3d) = D(3c + 2d, 5c + 3d) == D(3c + 2d, 2c + d) = D(c + d, 2c + d) = D(c + d, c) = D(c, d)
- Def.: Nechť $M = \{a_1, a_2, ..., a_n\}$ je konečná množina přirozených čísel. Říkáme, že <u>čísla</u> $a_1, a_2, ..., a_n$ jsou <u>po dvou nesoudělná</u>, jestliže platí: $D(a_1, a_2) = D(a_1, a_3) = ... = D(a_1, a_n) = D(a_2, a_3) = D(a_2, a_4) = ... = D(a_{n-1}, a_n) = 1$
- Pozn.: a) Podmínku k definici lze symbolicky zapsat takto: $D(a_i, a_j) = 1, \forall i, j \in \{1, 2, ..., n\}, i \neq j$
 - b) Jsou-li čísla $a_1, a_2, ..., a_n$ po dvou nesoudělná, pak jsou nesoudělná, tedy $D(a_1, a_2, ..., a_n)$ =1, přičemž obrácení věty neplatí. Např.: D(5,7,35)=1, ale D(5,7)=1, D(35,7)=7, D(35,5)=5

c) Pro n=2 definice po dvou nesoudělných a nesoudělných čísel splývají.

V.2.7:
$$\forall a,b \in N : d = D(a,b) \Rightarrow \exists q_1, q_2 \in N : a = dq_1 \land b = dq_2 \land D(q_1,q_2) = 1$$

[Dk.: sporem: Necht'
$$D(q_1, q_2) = d' > 1 \Rightarrow \exists r_1, r_2 \in N : q_1 = d'r_1 \land q_2 = d'r_2 \Rightarrow a = d \cdot d' \cdot r_1 \Rightarrow (d \cdot d') \mid a$$

$$b = d \cdot d' \cdot r_2 \Rightarrow (d \cdot d') \mid b$$

$$\Rightarrow (d \cdot d') | D(a,b) \Rightarrow (d \cdot d') | d$$
 - spor $(d'=1) \Rightarrow D(q_1,q_2) = 1$]

Příklady k §2.:

Př.: Najděte všechny dvojice přirozených čísel, jejichž součin je 864 a jejichž největší společný dělitel je 6.

Hledaná čísla označme a,b a předpokládejme, že a < b.

$$D(a,b) = 6 \Rightarrow a = 6p, b = 6q; D(p,q) = 1, p < q$$

$$ab = 36 pq$$

$$36pq = 864 \Rightarrow pq = 24$$

Nyní číslo 24 rozložíme všemi možnými způsoby na součin dvou činitelů a vybereme ty rozklady, v nichž jsou činitelé nesoudělná čísla:

$$24 = \underline{1 \cdot 24} = 2 \cdot 12 = \underline{3 \cdot 8} = 4 \cdot 6$$

•
$$p = 1, q = 24 \Rightarrow \underline{a} = 6 \cdot 1 = \underline{6}, \underline{b} = 6 \cdot 24 = \underline{144}$$

•
$$p = 3, q = 8 \Rightarrow \underline{a} = 6 \cdot 3 = \underline{18}, \underline{b} = 6 \cdot 8 = \underline{48}$$

Existují dvě dvojice hledaných čísel: [6,144], [18,48].

Př.: Najděte všechny dvojice přirozených čísel, jejichž součet je 432 a jejichž největší společný dělitel je 36.

Hledaná čísla označme a,b a předpokládejme, že a < b.

$$D(a,b) = 36 \Rightarrow a = 36p, b = 36q; D(p,q) = 1, p < q$$

$$a + b = 36(p + q)$$

$$36(p+q) = 432 \Rightarrow p+q = 12$$

Nyní číslo 12 rozložíme všemi možnými způsoby na součet dvou sčítanců a vybereme ty rozklady, v nichž jsou sčítanci nesoudělná čísla:

$$12 = 1 + 11 = 2 + 10 = 3 + 9 = 4 + 8 = 5 + 7 = 6 + 6$$

•
$$p = 1, q = 11 \Rightarrow \underline{a} = 36 \cdot 1 = \underline{36}, \underline{b} = 36 \cdot 11 = \underline{396}$$

•
$$p = 5, q = 7 \Rightarrow a = 36 \cdot 5 = 180, b = 36 \cdot 7 = 252$$

Existují dvě dvojice hledaných čísel: [36,396], [180,252].

§3. Nejmenší společný násobek

- Pozn.: a) V tomto paragrafu se také omezíme na množinu *N*.
 - b) S pojmem násobek jsme se seznámili v §1.
- Def.: Necht' $a, b \in N$.

Číslo $m \in N$ <u>nazýváme společným násobkem</u> čísel a,b, jestliže $a \mid m \land b \mid m$. Číslo $n \in N$ nazýváme <u>nejmenším společným násobkem</u> čísel a,b, který označujeme n = n(a,b), jestliže platí:

- 1) $a \mid n \wedge b \mid n$
- 2) $\forall m \in N : a \mid m \land b \mid m \Rightarrow n \mid m$
- Pozn.: a) Ke každé dvojici přirozených čísel $a,b \in N$ existuje nekonečně mnoho společných násobků, ale právě jeden mezi nimi je nejmenší společný násobek.
 - b) Analogicky lze definovat společný a nejmenší společný násobek množiny čísel, která je podmnožinou *N* (libovolné konečné množiny přirozených čísel).
- V.3.1: $\forall a,b,k \in N : n(ka,kb) = k \cdot n(a,b)$
- [Dk.: Označme $m_1 = n(a,b), m_2 = n(ka,kb)$. Ukážeme, že $m_2 = k \cdot m_1$.
 - a) $m_1 = n(a,b) \Rightarrow a \mid m_1 \land b \mid m_1 \Rightarrow ka \mid km_1 \land kb \mid km_1 \Rightarrow km_1$ je společným násobkem čísel ka a $kb \Rightarrow m_2 \mid km_1$
 - b) Platí: $k \mid ka \land k \mid kb \Rightarrow k \mid n(ka, kb) \Rightarrow k \mid m_2 \Rightarrow \exists c \in N : m_2 = kc$ $m_2 = n(ka, kb) \Rightarrow ka \mid m_2 \land kb \mid m_2 \Rightarrow ka \mid kc \land kb \mid ke \Rightarrow a \mid c \land b \mid c \Rightarrow c \text{ je}$ společný násobek čísel $a \text{ a } b \Rightarrow m_1 \mid c \Rightarrow km_1 \mid kc \Rightarrow km_1 \mid m_2$ $m_2 \mid km_1 \land km_1 \mid m_2 \rightarrow m_2 = km_1$
- Pozn.: Z předchozí věty je patrno, že při výpočtu nejmenšího společného násobku lze společného činitele obou čísel vytknout.
- V.3.2: Nechť $\forall a,b,c \in N$ platí: n(a,b) = m. Potom n(a,b,c) = n(m,c).
- [Dk.: Označme $m_1 = n(a, b, c), m_2 = n(m, c)$.
 - a) $m_1 = n(a,b,c) \Rightarrow a \mid m_1 \land b \mid m_1 \land c \mid m_1 \Rightarrow m \mid m_1 \Rightarrow m_2 \mid m_1$
 - b) $m_2 = n(m,c) \Rightarrow m \mid m_2 \land c \mid m_2 \Rightarrow \underline{a \mid m_2} \land \underline{b \mid m_2} \Rightarrow m_1 \mid m_2$ $m_2 \mid m_1 \land m_1 \mid m_2 \Rightarrow m_1 = m_2$]
- V.3.3: $\forall a,b \in N : a \cdot b = D(a,b) \cdot n(a,b)$
- [Dk.: Označme d=D(a,b), m=n(a,b). Ukážeme, že $\underline{a\cdot b=d\cdot m}$: $d=D(a,b)\Rightarrow \exists !q_1,q_2\in N: a=d\cdot q_1, b=d\cdot q_2, D(q_1,q_2)=1.$ $\underline{a\cdot b}=dq_1\cdot dq_2=\underline{d\cdot dq_1q_2}$. Ukážeme, že $\underline{dq_1q_2=n}$ je nejmenší společný násobek čísel a a b (=m):
 - 1) $a=dq_1, n=dq_1q_2 \Rightarrow a\mid n; b=dq_1, n=dq_1q_2 \Rightarrow b\mid n\Rightarrow n$ je společný násobek čísel a a b.

2)
$$a \mid n \land b \mid n \Rightarrow m \mid n \Rightarrow \exists c \in N : n = m \cdot c$$

$$\underline{a \cdot b} = d \cdot dq_1q_2 = d \cdot n = \underline{d \cdot mc} \Rightarrow a = \frac{med}{b} = k_1cd, k_1 \in N \land b = \frac{med}{a} = k_2cd, k_2 \in N \Rightarrow cd \mid a \land cd \mid b \Rightarrow cd \mid D(a,b) \Rightarrow cd \mid d \Rightarrow c = 1 \Rightarrow n = m] \Rightarrow n \text{ je nejmenší spol.}$$
násobek

Př.: Určete
$$n(396,444)$$
.

$$444 = 396 \cdot 1 + 48 \qquad D(396,444) = 12$$

$$396 = 48 \cdot 8 + 12 \qquad n(396,444) = \frac{396 \cdot 444}{D(396,444)} = \frac{175824}{12} = 14652$$

$$48 = 12 \cdot 4$$

Důsledek V.3.3.:
$$\forall a,b \in N : D(a,b) = 1 \Rightarrow a \cdot b = n(a,b)$$

[Dk.: V.3.3.:
$$D(a,b) \cdot n(a,b) = a \cdot b$$

 $D(a,b) = 1 : n(a,b) = a \cdot b$

Př.: Největší společný dělitel čísel *a,b* je 15, jejich nejmenší společný násobek je 900. Určete čísla *a,b*.

$$D(a,b) = d = 15, n(a,b) = m = 900$$

$$D(a,b) = d \Rightarrow a = dq_1, b = dq_2; q_1, q_2 \in N; D(q_1, q_2) = 1$$

$$m = n(a,b) = dq_1q_2$$

$$900 = 15q_1q_2 \Rightarrow q_1q_2 = \frac{900}{15} = 60$$

$$60 = 1 - 60 = 2 \cdot 30 = 3 \cdot 20 = 4 \cdot 15 = 5 \cdot 12 = 6 - 40$$

(Vyškrtáme čísla soudělná.)

Existují 4 dvojice hledaných čísel:

15,900; 45,300; 60,225; 75,180.

q_1	q_2	d	а	b
1	60	15	15	900
2=-	=30	15	30	450
3	20	15	45	300
4	15	15	60	225
5	12	15	75	180
<u>6</u>	_1 0	15	90	150

Pozn.: Důsledek V.3.3. lze zobecnit i pro více čísel $a_1, a_2, ..., a_n$: $n(a_1, a_2, ..., a_n)$, která jsou po dvou nesoudělná, je roven jejich součinu $n(a_1, a_2, ..., a_n) = a_1 \cdot a_2 \cdot ... \cdot a_k$.

V.3.4:
$$\forall a,b \in N : a \mid b \Leftrightarrow n(a,b) = b$$

[Dk.: Platí
$$a \mid b \Leftrightarrow D(a,b) = a$$
; $\underline{a \cdot b} = D(a,b) \cdot n(a,b) = \underline{a \cdot n(a,b)} \Leftrightarrow n(a,b) = b$]

V.3.5:
$$\forall a, b_1, b_2 \in N : b_1 \mid a \land b_2 \mid a \Rightarrow n(b_1, b_2) \mid a$$

[Dk.:
$$b_1 \mid a \land b_2 \mid a \Rightarrow a$$
 je společným násobkem čísel $b_1, b_2 \Rightarrow n(b_1, b_2) \mid a$]

Důsledek V.3.5.:
$$\forall a, b_1, b_2 \in N : b_1 \mid a \land b_2 \mid a \land D(b_1, b_2) = 1 \Longrightarrow b_1 b_2 \mid a$$

[Dk.:
$$D(b_1,b_2) = 1 \Rightarrow n(b_1,b_2) = b_1b_2$$
 a tvrzení plyne z V.3.5.]

Příklady k §3.:

Př.: Najděte všechny dvojice přirozených čísel, jejichž nejmenší společný násobek je o 7 větší než jejich největší společný dělitel.

$$a = dq_1, b = dq_2; d = D(a,b); n(a,b) = dq_1q_2; D(q_1,q_2) = 1$$

 $7 = dq_1q_2 - d = d(q_1q_2 - 1) = 7 \cdot 1 = 1 \cdot 7$

- $d = 7 \land (q_1q_2 1) = 1 \Rightarrow d = 7 \land q_1q_2 = 2 = 1 \cdot 2 \Rightarrow \underline{a} = 7 \cdot 1 = \underline{7}, \underline{b} = 7 \cdot 2 = \underline{14}$
- $d = 1 \land (q_1q_2 1) = 7 \Rightarrow d = 1 \land q_1q_2 = 8 = \underline{1 \cdot 8} = 2 \cdot 4 \Rightarrow \underline{a} = 1 \cdot 1 = \underline{1}, \underline{b} = 1 \cdot 8 = \underline{8}$ Existují dvě dvojice hledaných čísel: [7,14], [1,8].
- Př.: Najděte všechny dvojice přirozených čísel a,b, platí-li a+b=100, n(a,b)=210.

$$a = dq_1, b = dq_2; d = D(a,b); n(a,b) = dq_1q_2; D(q_1,q_2) = 1$$

$$d(q_1 + q_2) = 100, dq_1q_2 = 210$$

$$D(d(q_1 + q_2), dq_1q_2) = d \Leftrightarrow D(q_1 + q_2, q_1q_2) = 1$$

$$D(d(q_1 + q_2), dq_1q_2) = d = D(100,210) = 10 \Rightarrow q_1 + q_2 = 10, q_1q_2 = 21 = 1 \cdot 21 = 3 \cdot 7$$
 Dvojice 1, 21 nevyhovuje 1.rovnici soustavy, ale dvojice 3, 7 ano (3 + 7 = 10). Tedy $q_1 = 3 \land q_2 = 7 \Rightarrow \underline{a} = 10 \cdot 3 = \underline{30}, \underline{b} = 10 \cdot 7 = \underline{70}$ Existuje jedna dvojice hledaných čísel: [30,70].

Př.: Najděte všechna přirozená čísla a, pro která D(76,a) = 19 a zároveň n(40,a) = 760.

$$76 = 2 \cdot 2 \cdot 19$$

 $D(76, a) = 19$, což je prvočíslo
 $D(76, a) = 19 \Leftrightarrow a = 19 p, p...$ součin prvočísel, 2ł p
 $40 = 8 \cdot 5 = 2 \cdot 2 \cdot 2 \cdot 5$
 $n(40, a) = 760 = 10 \cdot 76 = 10 \cdot 4 \cdot 19 = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 19$
 $n(40, a) = 760 \Leftrightarrow a = 19q$, kde $q \mid 2 \cdot 2 \cdot 2 \cdot 5$

Protože p není dělitelné 2, mohou nastat pouze dva případy:

$$a = 19p = 19q \Rightarrow p = q \Rightarrow p \in \{1,5\}$$

 $a = 19 \cdot 1 = 19 \lor a = 19 \cdot 5 = 95 \Rightarrow \underline{a \in \{19,95\}}$

Př.: Najděte prvočíslo *p* tak, aby pro vhodná přirozená čísla *a,b* platilo:

$$D(a,b) = 77; n(a,b) = 105 p; ab = 735 p^2$$

Řešíme podle vzorce $a \cdot b = D(a,b) \cdot n(a,b)$:

$$735 p^2 = 77 \cdot 105 p$$
$$p^2 = 11 p \Rightarrow p = 11$$

§4. Prvočísla a čísla složená

- Pozn.: Podle V.1.1. má každé přirozené číslo n, n > 1 alespoň dva dělitele $1 \mid n, n \mid n$. Tyto dělitele nazýváme <u>triviálními</u> (<u>samozřejmými</u>) <u>děliteli</u>; ostatní dělitele čísla n (pokud existují) nazveme netriviálními (nesamozřejmými) děliteli.
- Def.: Nechť $n \in N, n > 1$. Má-li číslo n pouze triviální dělitele, nazýváme jej <u>prvočíslem</u>; má-li alespoň jednoho netriviálního, nazýváme jej číslem složeným.
- Pozn.: a) Číslo 1 není ani prvočíslo, ani číslo složené.
 - b) Množinu N lze vyjádřit $N = \{1\} \cup N_P \cup N_S$, kde N_P je množina všech prvočísel (je nekonečná) a N_S je množina všech složených čísel (je nekonečná). Všechny tyto tři množiny jsou po dvou disjunktní.
- V.4.1: Nechť $p \in N$ je prvočíslo, $n \in N$ libovolné číslo. Pak platí: $p \nmid n \Leftrightarrow D(p,n) = 1$.
- [Dk.: 1. ,, \Rightarrow ": nepřímo: $D(p,n) > 1 \Rightarrow p \mid n$ Nechť $D(p,n) = d \Rightarrow d \mid n \land d \mid p \Rightarrow d = 1 \lor d = p$. Platí $d \mid n \Rightarrow p \mid n$.
 - 2. " \Leftarrow ": nepřímo: $p \mid n \Rightarrow D(p,n) > 1$ $p \mid n \Rightarrow D(p,n) = p, p \text{ je prvočíslo } \Rightarrow p > 1 \Rightarrow D(p,n) > 1]$
- V.4.2: Nechť $p \in N$ je prvočíslo, $a,b \in N$. Pak platí: $p \mid a \cdot b \land p \nmid a \Rightarrow p \mid b$ [Dk.: $p \nmid a \Rightarrow D(p,a) = 1$ a tvrzení plyne z fundamentální věty aritmetiky (V.2.5.)]
- Pozn.: a) Předpoklad, že p je prvočíslo, je v předchozí větě podstatný a bez něj věta neplatí. Např.: $6 \mid 12 = 3 \cdot 4,6 \nmid 3 \Rightarrow 6 \mid 4$ neplatí
 - b) Logickým důsledkem předchozí věty je tvrzení: $p \mid ab \Rightarrow p \mid a \lor p \mid b$, kterého se někdy užívá k definici prvočísla.
- V.4.3: Každé přirozené číslo n, n > 1 má alespoň jednoho prvočíselného dělitele p.
- [Dk.: Označme M množinu všech dělitelů čísla n větších než 1. Platí: $M \neq \emptyset$ ($n \in M$), tedy existuje její nejmenší prvek a ukážeme, že je to prvočíslo -p sporem: Nechť p je složené číslo $\Rightarrow \exists a,b \in N: p=ab,1 < a < p,1 < b < p \Rightarrow a \mid p \land p \mid n \Rightarrow (V.1.1.c)) \Rightarrow a \mid n \Rightarrow a \in M, a < p$ spor s tím, že p je nejmenší ze všech dělitelů čísla $n \Rightarrow p$ je prvočíslo]
- V.4.4: Každé složené číslo n má alespoň jednoho prvočíselného dělitele $p: p \le \sqrt{n}$
- [Dk.: Nechť n je složené číslo $\Rightarrow \exists a,b \in N: n=ab,1 < a < n,1 < b < n$. Nechť např. $a \le b \Rightarrow a^2 \le ab = n \Rightarrow \underline{a \le \sqrt{n}}$. Podle V.4.3. má a alespoň 1 prvočíselného dělitele $p,p \mid a,1 < \underline{p \le a} \Rightarrow p \le a \le \sqrt{n} \Rightarrow p \le \sqrt{n}$. Platí: $p \mid a \land a \mid n \Rightarrow p \mid n$]

Pozn.: Předchozí větu lze ekvivalentně zformulovat takto: Jestliže číslo n má tu vlastnost, že není dělitelné žádným prvočíslem $p:p\leq \sqrt{n}$, pak číslo n je prvočíslo (n>1). (Jde o obměnu předchozí věty.)

- V.4.5: Prvočísel je nekonečně mnoho.
- [Dk.: Euklides sporem: Předpokládejme, že je prvočísel konečně mnoho, tzn. $N_p = \{p_1, p_2, ..., p_k\}$. Uvažujme o čísle $p = p_1 \cdot p_2 \cdot ... \cdot p_k + 1$. Platí: $\forall i \in \{1, 2, ..., k\}$: $p \neq p_i \Rightarrow p$ je složené číslo a nepatří do $N_p \Rightarrow \exists a \in N_p : a \mid p \Rightarrow a = p_i \Rightarrow p_i \mid p_1 p_2 ... p_k \land p_i \mid p$ (protože $a \mid p$) $\Rightarrow p_i \mid 1$ spor]
- Př.: Dokažte, že $\forall a,b \in N : D(a,b) = 1 \Rightarrow D(ab,a+b) = 1$ sporem: Nechť $\exists a,b \in N : D(a,b) = 1 \land D(ab,a+b) = d > 1 \Rightarrow d \mid ab \land d \mid (a+b),$ $d > 1 \Rightarrow \exists$ prvočíslo p tak, že $p \mid d \land d \mid ab \Rightarrow p \mid ab \Rightarrow p \mid a \lor p \mid b.$ Nechť $p \mid a \land p \mid d \land d \mid (a+b) \Rightarrow p \mid (a+b) \Rightarrow p \mid b \Rightarrow p \mid D(a,b) \Rightarrow p \mid 1$ - spor

§5. Rozklad přirozeného čísla na prvočinitele

Pozn.: $\forall n \in \mathbb{N}, n > 1$ existuje podle V.4.3. alespoň jedno prvočíslo $p_1 : p_1 \mid n \Rightarrow n = p_1 n_1$. Je-li $n_1 = 1$, je $n = p_1$. Nechť $n_1 > 1 \Rightarrow \exists p_2$ - prvočíslo: $p_2 \mid n_1 \Rightarrow n = p_2 n_2$. Je-li $n_2 = 1$, je $n_1 = p_2 \land n = p_1 p_2$. Je-li $n_2 > 1$, opakujeme tento postup.

Protože $n > n_1 > n_2 > ... > n_k$, tento postup lze po konečném počtu kroků ukončit.

Tedy $n = p_1 p_2 ... p_k$, kde $p_i (i = 1, 2, ..., k)$ jsou prvočísla (ne nutně jsou navzájem všechna různá).

Lze tedy psát $n=p_1^{m_1}\cdot p_2^{m_2}\cdot ...\cdot p_r^{m_r}$, kde p_i jsou prvočísla a $m_i\in N$ jsou exponenty, s nimiž se prvočísla p_i vyskytují v rozkladu čísla n na součin prvočísel. Dále ukážeme, že toto vyjádření je až na pořadí činitelů jednoznačné.

V.5.1: Nechť p_1, p_2 jsou prvočísla . Pak platí: $p_1 \neq p_2 \Rightarrow p_1 \nmid p_2 \land p_2 \nmid p_1$

[Dk.: Nechť $p_1 \neq p_2$ jsou prvočísla . $\Rightarrow D(p_1, p_2) = 1 \Rightarrow p_1 \nmid p_2 \land p_2 \nmid p_1$ podle V.4.1.]

V.5.2: Nechť p_1, p_2 jsou prvočísla . Pak platí: $p_1 \neq p_2 \Rightarrow p_1 \nmid p_2^2$

[Dk.: sporem: Necht' $p_1 \neq p_2 \land p_1 \mid p_2 \stackrel{?}{\Rightarrow} p_1 \mid p_2 \cdot p_2 \Rightarrow p_1 \mid p_2 - \text{spor s V.5.1.}$]

Důsledek V.5.1. a V.5.2.:

- 1. Nechť p_1, p_2 jsou prvočísla, $n \in N$. Pak platí: $p_1 \neq p_2 \Rightarrow p_1 \nmid p_2^n$
- 2. Nechť p_1, p_2 jsou prvočísla, $n_1, n_2 \in N$. Pak platí: $p_1 \neq p_2 \Rightarrow D(p_1^{n_1}, p_2^{n_2}) = 1$ [Dk.: zobecněním úvah z důkazů vět V.5.1. a V.5.2.]

V.5.3: Základní věta aritmetiky:

Věta o existenci a jednoznačnosti rozkladu přirozeného čísla na součin prvočinitelů: Každé přirozené číslo n,n>1 lze zapsat ve tvaru $n=p_1^{m_1}\cdot p_2^{m_2}\cdot ...\cdot p_r^{m_r}$, kde $p_i,i\in\{1,2,...,r\}$ jsou navzájem různá prvočísla, $m_i\in N_0$. Toto vyjádření je jednoznačné až na pořadí činitelů.

[Dk.: 1. existence: plyne z poznámky v úvodu paragrafu

2. jednoznačnost: Nechť $n = p_1^{m_1} \cdot p_2^{m_2} \cdot ... \cdot p_r^{m_r} = q_1^{l_1} \cdot q_2^{l_2} \cdot ... \cdot q_s^{l_s}$.

Platí: $p_1 | q_1^{l_1} \cdot q_2^{l_2} \cdot ... \cdot q_s^{l_s}$. Necht' např. $p_1 | q_1^{l_1} \Rightarrow p_1 = q_1$.

Analogicky $p_2 = q_2,..., p_r = q_s \Rightarrow r = s$.

Ukážeme, že jsou si rovny i exponenty $(m_1 = l_1, m_2 = l_2, ..., m_r = l_r)$:

Platí: $p_1^{m_1} \mid q_1^{l_1} \cdot q_2^{l_2} \cdot ... \cdot q_s^{l_s} \Rightarrow p_1^{m_1} \mid q_1^{l_1} \Rightarrow \underline{m_1 \leq l_1}$. Analogicky platí $q_1^{l_1} \mid p_1^{m_1} \Rightarrow l_1 \leq m_1 \Rightarrow m_1 = l_1$. Analogicky $m_2 = l_2, ..., m_r = l_r$.]

Př.: Nalezněte prvočíselné rozklady těchto čísel:

- a) $180 = 5 \cdot 36 = 5 \cdot 2 \cdot 18 = 5 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 2^2 \cdot 3^2 \cdot 5$
- b) $644 = 2^2 \cdot 161 = 2^2 \cdot 7 \cdot 23$
- c) $8448 = 2^3 \cdot 1056 = 2^3 \cdot 2^3 \cdot 132 = 2^6 \cdot 2^2 \cdot 33 = 2^8 \cdot 3 \cdot 11$

Def.: Necht' $x_1, x_2 \in R$. Pak definujeme:

a)
$$\min(x_1, x_2) = x_1 \Leftrightarrow x_1 \le x_2$$

 $\min(x_1, x_2) = x_2 \Leftrightarrow x_2 \le x_1$

b)
$$\max(x_1, x_2) = x_1 \Leftrightarrow x_1 \ge x_2$$

 $\max(x_1, x_2) = x_2 \Leftrightarrow x_2 \ge x_1$

Pozn.: Rozklad přirozeného čísla na prvočinitele lze vhodně užít při hledání největšího společného dělitele a nejmenšího společného násobku dvou (ale i více) čísel.

Př.: Určete D(a,b) a n(a,b) následujících čísel:

a)
$$12 = 2^2 \cdot 3$$

 $28 = 2^2 \cdot 7$
 $28 = 2 \cdot 3 \cdot 7$
 $38 = 2 \cdot 3$

V.5.4: Nechť
$$a,b \in N, a > 1, b > 1$$
. Nechť $a = p_1^{m_1} \cdot p_2^{m_2} \cdot ... \cdot p_r^{m_r}$, $b = p_1^{l_1} \cdot p_2^{l_2} \cdot ... \cdot p_r^{l_r}$, kde $p_i(i = 1,2,...,r)$

jsou různá prvočísla; $m_i, l_i \in N_0$. Pak platí:

a)
$$D(a,b) = p_1^{x_1} \cdot p_2^{x_2} \cdot ... \cdot p_r^{x_r}$$
, kde $x_i = \min(m_i, l_i)$

b)
$$n(a,b) = p_1^{y_1} \cdot p_2^{y_2} \cdot ... \cdot p_r^{y_r}$$
, kde $y_i = \max(m_i, l_i)$

V.5.5: Věta o iracionálnosti odmocnin:

Nechť $n \in N$. Pak platí:

n není druhou mocninou přirozeného čísla $\Rightarrow \sqrt{n} \in I$.

[Dk.: nepřímo: dokážeme $\sqrt{n} \in Q \Rightarrow \exists m \in N : n = m^2$:

Necht'
$$\sqrt{n} \in Q \Rightarrow \exists a, b \in N : \sqrt{n} = \frac{a}{b}, D(a,b) = 1 \Rightarrow n = \frac{a^2}{b^2} \Rightarrow \underline{a^2 = n \cdot b^2}$$

$$a = p_1^{r_1} \cdot p_2^{r_2} \cdot \dots \cdot p_k^{r_k}$$

$$b = p_1^{s_1} \cdot p_2^{s_2} \cdot \dots \cdot p_k^{s_k}$$

$$n = p_1^{t_1} \cdot p_2^{t_2} \cdot \dots \cdot p_k^{t_k}, \text{ kde } r_i, s_i, t_i \in N_0, i \in \{1, 2, \dots, k\}$$

$$p_1^{2r_1} \cdot p_2^{2r_2} \cdot \dots \cdot p_k^{2r_k} = p_1^{t_1} \cdot p_2^{t_2} \cdot \dots \cdot p_k^{t_k} \cdot p_1^{2s_1} \cdot p_2^{2s_2} \cdot \dots \cdot p_k^{2s_k}$$

$$p_1^{2r_1} \cdot p_2^{2r_2} \cdot \dots \cdot p_k^{2r_k} = p_1^{t_1 + 2s_1} \cdot p_2^{t_2 + 2s_2} \cdot \dots \cdot p_k^{t_k + 2s_k}$$

$$2r_1 = t_1 + 2s_1 \Rightarrow t_1 = 2l_1$$

$$2r_2 = t_2 + 2s_2 \Rightarrow t_2 = 2l_2$$

$$\vdots \qquad \vdots$$

$$2r_k = t_k + 2s_k \Rightarrow t_k = 2l_k, \text{ kde } l_i \in N$$

$$\underline{n} = p_1^{2l_1} \cdot p_2^{2l_2} \cdot \dots \cdot p_k^{2l_k} = (p_1^{l_1} \cdot p_2^{l_2} \cdot \dots \cdot p_k^{l_k})^2 = m^2, m \in N]$$

Př.: Najděte takové nejmenší přirozené číslo *a*, že jeho 1224-násobek je druhou mocninou přirozeného čísla.

$$\underline{n^2} = 1224 \cdot a = 2^2 \cdot 306 \cdot a = 2^3 \cdot 153 \cdot a = \underline{2^3 \cdot 3^2 \cdot 17 \cdot a}$$

$$a = 2^{4-3} \cdot 3^{2-2} \cdot 17^{2-1} = 2 \cdot 17 = 34$$
(potom $n^2 = 2^4 \cdot 3^2 \cdot 17^2 = (2^2 \cdot 3 \cdot 17)^2 = 204^2$)

Př.: Najděte nejmenší dvojici přirozených čísel x, y, aby platilo $28x^4 = 75y^3$.

$$2^2 \cdot 7 \cdot x^4 = 3 \cdot 5^2 \cdot y^3$$
, $x = 2^{a_1} \cdot 3^{a_2} \cdot 5^{a_3} \cdot 7^{a_4}$, $y = 2^{b_1} \cdot 3^{b_2} \cdot 5^{b_3} \cdot 7^{b_4}$

Dosazení za *x* a *v*:

$$2^{2+4a_{1}} \cdot 7^{1+4a_{4}} \cdot 3^{4a_{2}} \cdot 5^{4a_{3}} = 3^{1+3b_{2}} \cdot 5^{2+3b_{3}} \cdot 2^{3b_{1}} \cdot 7^{3b_{4}}$$

$$2+4a_{1}=3b_{1} \qquad \wedge \qquad 4a_{2}=1+3b_{2} \qquad \wedge \qquad 4a_{3}=2+3b_{3} \qquad \wedge \qquad 1+4a_{4}=3b_{4}$$

$$a_{1}=\frac{3b_{1}-2}{4} \qquad \qquad a_{2}=\frac{3b_{2}+1}{4} \qquad \qquad a_{3}=\frac{3b_{3}+2}{4} \qquad \qquad a_{4}=\frac{3b_{4}-1}{4}$$

$$\underline{b_{1}}=2,a_{1}=1 \qquad \qquad \underline{b_{2}}=1,a_{2}=1 \qquad \qquad \underline{b_{3}}=2,a_{3}=2 \qquad \qquad \underline{b_{4}}=3,a_{4}=2$$

(nebot'
$$a_i, b_i \in N$$
 - nejmenší, $i \in \{1, 2, 3, 4\}$)

$$\underline{\underline{x}} = 2^1 \cdot 3^1 \cdot 5^2 \cdot 7^2 = \underline{7350} \qquad \underline{y} = 2^2 \cdot 3^1 \cdot 5^2 \cdot 7^3 = \underline{102900}$$

Př.: V autobusu je 45 sedadel, v osobním vagonu 120 sedadel. Výprava fotbalových fanoušků se přesouvala vlakem a vlakového nádraží potom přistavenými autobusy. Kolik bylo ve výpravě osob, když byla obsazena všechna sedadla ve vlaku i v autobusech a nikdo nemusel stát? Kolik nejméně vagonů měl vlak?

Počet fanoušků musí být zároveň dělitelný 45 i 120. Počet členů výpravy proto musí být společným násobkem čísel 45 a 120.

$$45 = 5 \cdot 9 = 3 \cdot 3 \cdot 5$$

 $120 = 12 \cdot 10 = 3 \cdot 4 \cdot 2 \cdot 5 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5$
Tedy $n(45,120) = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 360$

Počet členů výpravy byl tedy některý násobek čísla 360.

$$360 = 120 = 3$$

Vlak měl nejméně 3 vagony.

III. Teorie čísel §6. Kritéria dělitelnosti

§6. Kritéria dělitelnosti

Pozn.: <u>Kritériem dělitelnosti</u> čísla $n \in N$ číslem $d \in N, d > 1$ rozumíme větu tvaru $\forall n, d \in N : d \mid n \Leftrightarrow d \mid f(n)$, kde f(n) je číslo přiřazené číslu n určitým předpisem, zpravidla tak, že f(n) < n a o dělitelnosti f(n) číslem d lze snadno rozhodnout.

Pozn.:
$$\forall a,b \in \mathbb{N}$$
:
 $(a+b)^1 = a+b$
 $(a+b)^2 = a^2 + 2ab + b^2 = a^2 + b(2a+b) = b^2 + a(2b+a)$
 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + b(3a^2 + 3ab + b^2) = b^3 + a(3b^2 + 3ab + a^2)$

V.6.1: $\forall a, b, n \in \mathbb{N}$: $\exists k, al \in \mathbb{N}$: $(a+b)^n = a^n + bk = b^n + al$

[Dk.: plyne z binomické věty]

Pozn.: $a^{1} + b^{1} = a + b$

Př.: Dokažte:
$$3 | \underbrace{41^{97} - 26^{79}}_{A} |$$

 $A = 41^{97} = (42 - 1)^{97} = (-1 + 42)^{97} = (-1)^{97} + 42k = -1 + 42k, k \in \mathbb{N}$
 $B = 26^{79} = (27 - 1)^{79} = (-1 + 27)^{79} = (-1)^{79} + 27l = -1 + 27l, l \in \mathbb{N}$
 $A - B = -1 + 42k - (-1 + 27l) = -1 + 1 + 42k - 27l = 3(14k - 9l) \Rightarrow$
 $\Rightarrow 3 | (41^{97} - 26^{79})$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$a^{1} - b^{1} = a - b$$

$$a^{2} - b^{2} = (a-b)(a+b)$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

$$a^{4} - b^{4} = (a-b)(a^{3} + a^{2}b + ab^{2} + b^{3})$$

V.6.2:
$$\forall a, b \in Z : 1$$
) $\forall n \in N : (a-b) | (a^n - b^n)$
2) $\forall n \in N, n \text{ liché: } (a+b) | (a^n + b^n)$

[Dk.: 1)
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + ... + ab^{n-2} + b^{n-1})$$

2) $a^n + b^n = (a + b)(a^{n-1} - a^{n-2}b + a^{n-3}b^2 - ... - ab^{n-2} + b^{n-1})$

Př.: Dokažte:
$$\forall n \in N : 7 \mid (2^{5n} - 5^{2n})$$

 $2^{5n} - 5^{2n} = 32^n - 25^n = (32 - 25)\underbrace{(32^{n-1} + 32^{n-2} \cdot 25 + ... + 25^{n-1})}_{k} = 7k, k \in N \Rightarrow 7 \mid (2^{5n} - 5^{2n})$

Př.: Dokažte:
$$\forall n \in \mathbb{N} : 17 \mid (5^{2n} + 2^{3n+4})$$

 $5^{2n} + 2^{3n+4} = 25^n + 16 \cdot 8^n = 25^n - 8^n + 17 \cdot 8^n = (25-8)k + 17l = 17k + 17l = 17(\underbrace{k+l}) = 17m, m \in \mathbb{N} \Rightarrow 17 \mid (5^{2n} + 2^{3n+4})$

III. Teorie čísel §6. Kritéria dělitelnosti

Pozn.: Nechť $n \in N$, v jehož dekadickém zápisu je k+1 číslic. Potom se dá n vyjádřit:

$$\underline{n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + \dots + a_1 \cdot 10 + a_0} = \sum_{i=0}^k a_i \cdot 10^i,$$

kde $a_k \neq 0, a_i \in \{0,1,...,9\}, i \in \{1,2,...,k\}.$

Např.: $3532 = 3 \cdot 10^3 + 5 \cdot 10^2 + 3 \cdot 10 + 2$

- V.6.3: Necht' $n \in N$, $n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + ... + a_1 \cdot 10 + a_0$. Pak platí:
 - a) $2 \mid n \Leftrightarrow 2 \mid a_0$
 - b) $4 \mid n \Leftrightarrow 4 \mid (a_1 \cdot 10 + a_0)$
 - c) $5 \mid n \Leftrightarrow 5 \mid a_0$
 - d) $8 \mid n \Leftrightarrow 8 \mid (a_2 \cdot 10^2 + a_1 \cdot 10 + a_0)$
 - e) $10 \mid n \Leftrightarrow a_0 = 0$
 - f) $25 \mid n \Leftrightarrow 25 \mid (a_1 \cdot 10 + a_0)$

[Dk.:
$$n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + \dots + a_1 \cdot 10 + a_0 = 10(\underbrace{a_k \cdot 10^{k-1} + a_{k-1} \cdot 10^{k-2} + \dots + a_1}_{l}) + a_0 = 10l + a_0, l \in N$$

c) 1. ,,
$$\Rightarrow$$
": $5 \mid n \land 5 \mid 10l \Rightarrow 5 \mid a_0$
2. ,, \Leftarrow ": $5 \mid a_0 \land 5 \mid 10l \Rightarrow 5 \mid n$

- Def.: Nechť $n \in N$, $n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + ... + a_1 \cdot 10 + a_0$. Pak <u>ciferným součtem</u> čísla n nazveme číslo $S(n) = a_k + a_{k-1} + ... + a_1 + a_0$.
- V.6.4: Nechť $n \in N$, $n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + ... + a_1 \cdot 10 + a_0$, S(n) je ciferný součet čísla n. Pak platí: a) $3 \mid n \Leftrightarrow 3 \mid S(n)$ b) $9 \mid n \Leftrightarrow 9 \mid S(n)$

[Dk.: b)
$$10^k = (9+1)^k = 9l+1^k = 9l+1, l \in N$$

$$n = a_k \cdot (9l_k + 1) + a_{k-1} \cdot (9l_{k-1} + 1) + \dots + a_1 \cdot (9l_1 + 1) + a_0$$

$$n = 9\underbrace{(a_k l_k + a_{k-1} l_{k-1} + \dots + a_1 l_1)}_{m} + \underbrace{(a_k + a_{k-1} + \dots + a_0)}_{S(n)} = 9m + S(n), m \in N$$

- 1. \Rightarrow ": $9 \mid n \land 9 \mid 9m \Rightarrow 9 \mid S(n)$
- 2. $... \Leftarrow$ ": $9 \mid S(n) \land 9 \mid 9m \Rightarrow 9 \mid n \mid$
- V.6.5: Necht' $n \in N$, $n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + ... + a_1 \cdot 10 + a_0$. Pak platí: $11 \mid n \Leftrightarrow 11 \mid (a_0 - a_1 + a_2 - a_3 + ... + (-1)^k a_k)$

III. Teorie čísel §6. Kritéria dělitelnosti

$$n = 11\underbrace{(b_1 + b_2 + b_3 + \dots + b_k)}_{m} + \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_k)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i} - \dots + (-1)^k a_i)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i-1} + \dots + (-1)^k a_i)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i-1} + \dots + (-1)^k a_i)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + a_{2i-1} + \dots + (-1)^k a_i)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots - a_{2i-1} + \dots + (-1)^k a_i)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots + a_{2i-1} + \dots + (-1)^k a_i)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a_3 + \dots + a_{2i-1} + \dots + (-1)^k a_i)}_{S \pm (n)} = \underbrace{(a_0 - a_1 + a_2 - a$$

 $=11m+S\pm(n)$, $m\in N$

1. ,, \Rightarrow ": 11| $n \land 11$ |11 $m \Rightarrow 11$ | $S \pm (n)$

2. ,, \Leftarrow ": 11| $S \pm (n) \land 11$ |11 $m \Rightarrow 11$ |n]

Př.: Rozhodněte, zda jsou daná čísla dělitelná 11:

- a) 8628341 $S \pm (n) = 14 18 = -4$

není

b) 18436572 $S \pm (n) = 18 - 18 = 0$

ie

V.6.6: Nechť $n \in N$, $n = 10k + a_0$, $k \in N$. Pak platí:

- a) $7 \mid n \Leftrightarrow 7 \mid (k+5a_0)$
- b) $13 \mid n \Leftrightarrow 13 \mid (k + 4a_0)$

[Dk.: $n = 10k + a_0$

a) $b = k + 5a_0$

$$\underline{10b} = 10k + 50a_0 = 10k + a_0 + 49a_0 = n + 49a_0$$

1. ,,
$$\Rightarrow$$
": $7 \mid n \land 7 \mid 49a_0 \Rightarrow 7 \mid 10b \Rightarrow 7 \mid b$, nebot $D(7,10)=1$

2. ,,
$$\Leftarrow$$
": $7 \mid b \Rightarrow 7 \mid 10b \land 7 \mid 49a_0 \Rightarrow 7 \mid n$

b) $b = k + 4a_0$

$$\underline{10b} = 10k + 40a_0 = 10k + a_0 + 39a_0 = n + 39a_0$$

1. ,,
$$\Rightarrow$$
": 13 | $n \land 13$ | 39 $a_0 \Rightarrow 13$ | 10 $b \Rightarrow 13$ | b , nebot $D(13,10) = 1$

2. ,,
$$\Leftarrow$$
": 13| $b \Rightarrow$ 13|10 $b \land$ 13|39 $a_0 \Rightarrow$ 13| n]

Př.: Rozhodněte, zda jsou daná čísla dělitelná 7:

> a) 10248 1024 + 5.8 = 1064

$$106 + 5.4 = 126$$

$$12 + 5.6 = 42$$
 je

169 + 5.8 = 209b) 1698

$$20 + 5.9 = 65$$
 není

Určete, zda číslo 281 je prvočíslo nebo číslo složené Př.:

Podle V.4.4. vyzkoušíme dělitelnost prvočísly menšími než $\sqrt{281} = 16.8$:

2ł281, neboť 2ł1

 $3 \nmid 281$, neboť $3 \nmid (2 + 8 + 1)$

5ł281, neboť 5ł1

71281, neboť 71(28 + 5.1)

111281, neboť 31(2-8+1)

 $13{1281}$, nebot' $13{1(28 + 4.1)}$

Číslo 281 nemá žádného prvočíselného dělitele menšího než jeho odmocnina, tedy číslo 281 je prvočíslo.

III. Teorie čísel §7. Reálná čísla

§7. Reálná čísla

Pozn.: Ukážeme méně obvyklý způsob vytvoření obrazů množin Q a I:

Zvolme v rovině systém souřadnic a vyznačme v něm body s celočíselnými souřadnicemi – tzv.mřížové body.

Libovolná přímka $p_M \Longrightarrow PM$, která prochází počátkem P, protne přímku x=1 v bodě K (p_M je různá od x,y): K[1,k] Přímka p_M má rovnici $y=kx,k\in R$. Bod K budeme považovat za obraz reálného čísla k.

V.7.1: Nechť $M[q, p], q \neq 0$ je mřížový bod. Pak přímka p_M vytváří na přímce x = 1 obraz racionálního čísla $\frac{p}{q}$.

[Dk.: Rovnice přímky $p_M: y = kx, k \in R$. Platí $M \in p_M \Rightarrow p = kq \Rightarrow k = \frac{p}{q} \Rightarrow k \in Q$]

V.7.2: a) Číslo $k \in Q \Leftrightarrow$ přímka y = kx prochází alespoň jedním mřížovým bodem $M \neq P$. b) Číslo $k \in I \Leftrightarrow$ přímka y = kx neprochází žádným mřížovým bodem

[Dk.: a) "
$$\Rightarrow$$
": $k \in Q \Rightarrow \exists p,q; p \in Z, q \in N : k = \frac{p}{q}$ $y = kx \Rightarrow y = \frac{p}{q}x \Rightarrow \text{bod } M \text{ o souřadnicích } [q,p] \text{ na této přímce leží,}$ protože $p = \frac{p}{q} \cdot q$ platí

"

— ": Nechť p_M prochází mřížovým bodem $M[m,n]; m,n \in Z, m \neq 0$.

Pak rovnice přímky p_M je y = kx, $M \in p_M \Rightarrow n = km \Rightarrow k = \frac{n}{m} \Rightarrow k \in Q$

Pozn.: Nyní se budeme zabývat číslicovými zápisy racionálních a iracionálních čísel v dekadické soustavě.

Př.: Určete podíl
$$\frac{430}{132}$$
.
 $430:132 = 3,2575757... = 3,2\overline{57}$

III. Teorie čísel §7. Reálná čísla

Pozn.: Při výpočtu podílu $\frac{p}{q}$, $p \in Z$, $q \in N$ se mohou objevit jen takové zbytky z, že

 $0 \le z < q$. Těchto čísel je konečně mnoho (nejvýše q), a z toho plyne, že po nejvýše q krocích výpočtu se objeví stejný zbytek. Tedy v desetinném rozvoji se začnou opakovat číslice a vytvoří skupinu číslic, která se nazývá perioda.

Číslice nebo skupina číslic za desetinnou čárkou před touto periodou (která se neopakuje), se nazývá <u>předperioda</u>.

např.: 430:132 = 3,2575757... = 3,257

celé číslo předperioda perioda (nejmenší perioda)

V.7.3: Každé racionální číslo $\frac{p}{q}$, $p \in Z$, $q \in N$ má periodický desetinný rozvoj, v němž má (nejmenší) perioda nejvýše q číslic.

[Dk.: plyne z předchozí poznámky]

Př.: Určete racionální číslo s desetinným rozvojem 1,287 = r.

$$1000r = 1287, \overline{7}$$

$$-(100r = 128, \overline{7})$$

$$900r = 1159 \Rightarrow r = \frac{1159}{900}$$

Pozn.: $0, \overline{9} = 0,9999...$ $10r = 9, \overline{9}$ $-r = -0, \overline{9}$ $9r = 9 \Rightarrow r = 1$ Tedy $0, \overline{9} = 1 = 1, \overline{0}$

Periodický rozvoj, který má nejmenší periodu 9, můžeme vždy nahradit periodickým rozvojem s periodou 0, který představuje desetinné číslo s konečným počtem míst. Proto v dalších úvahách budeme čísla s periodou 9 vylučovat.

V.7.4: Každé iracionální číslo má nekonečný neperiodický desetinný rozvoj. např.: $\pi = 3.1415926535...$

V.7.5: Každé reálné číslo má nekonečný desetinný rozvoj. Pokud vyloučíme rozvoje s periodou 9, má každé reálné číslo právě jeden nekonečný desetinný rozvoj.

[Dk.: plyne z V.7.3., V.7.4. a předchozích poznámek]

Pozn.: Protože reálné číslo má nekonečný desetinný rozvoj, lze pro $\forall a \in R^+, \forall r \in R$ určit číslo a^r , tedy mocninu s reálným exponentem.

Pro počítání s takovými mocninami platí stejné věty jako pro mocniny s racionálními

III. Teorie čísel §7. Reálná čísla

Př.: Vypočtěte pro
$$a \in R^+$$
:
 $(a^{\sqrt{5}-\sqrt{2}})^{\sqrt{5}+\sqrt{2}} = a^{5-2} = a^3$

Seznam použité literatury:

A. <u>Literatura</u>

- Dr. Jaroslav Šedivý: ZÁKLADNÍ POZNATKY Z ALGEBRY A TEORIE ČÍSEL
 pro I.ročník gymnázií se zaměřením na matematiku, Praha, SPN 1986
- RNDr. Pavel Boucník, RNDr. Jiří Herman, Ph.D., RNDr. Peter Krupka, Ph.D., doc. RNDr. Jaromír Šimša, CSc.: ODMATURUJ Z MATEMATIKY 3, sbírka řešených příkladů, Brno, Didaktis 2004

B. <u>Přednášky</u>

- RNDr. Pavel Boucník přednášky v matematické třídě pro I. ročník gymnázií
- Mgr. Aleš Kobza, Ph.D. cvičení v matematické třídě pro I. ročník gymnázií

Resumé:

Úkolem mé závěrečné maturitní práce bylo obsáhnout a systematizovat učivo 1. ročníku z matematiky.

Převedla jsem do elektronické podoby přednášky z vlastních hodin matematiky a doplnila je o příklady ze cvičení a dalších učebnic.

Tato práce bude užitečná pro zefektivnění a usnadnění další výuky.

Tereza Eliášová	