Regras Derivadas e Equivalências Populares

Douglas O. Cardoso douglas.cardoso@cefet-rj.br docardoso.github.io

Roteiro

1 Regras Derivadas

2 Equivalências Populares

Roteiro

1 Regras Derivadas

2 Equivalências Populares

Informações Gerais

- Regras derivadas são sequências "auto-contidas" de aplicações das regras básicas de inferência (DN).
- São "atalhos" na descrição de provas, evitando repetições de passos.
- Não há impedimentos para o uso ou mesmo criação de regras derivadas, mas é necessário prová-las.
- Algumas regras derivadas são tão conhecidas quanto as regras básicas.

Modus Tollens

Modus Tollens (mt):

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi}$$

1.
$$p \rightarrow q$$

$$e \rightarrow 1, 3$$

Princípio do Terceiro Excluído

Princípio do Terceiro Excluído (pte):

$$\frac{\varnothing}{\phi \vee \neg \phi}$$

1.
$$[\neg(p \lor \neg p)]$$

1.1.
$$[p]$$

1.1.1.
$$p \vee \neg p$$

$$1.1.2. \perp$$

1.2.
$$\neg p$$

1.3.
$$p \vee \neg p$$

2.
$$p \vee \neg p$$

$$i$$
 \vee 1.1

$$i \vee 1.2$$

Regra de Resolução 1

Regra de Resolução 1 (res_1) :

$$\frac{\phi \vee \psi \qquad \neg \phi}{\psi}$$

1.
$$p \lor q$$

$$2. \neg p$$

3.
$$[\neg q]$$

$$3.1.1. \perp$$

4. q

$$\frac{\psi \cdot \psi}{\psi}$$

$$e \lor 1$$
, 3.1, 3.1.1, 3.2, 3.2.1

Regra de Resolução 2

Regra de Resolução 2 (res_2) :

$$\frac{\phi \vee \psi \qquad \neg \phi \vee \chi}{\psi \vee \chi}$$

1.
$$p \vee q$$

2.
$$\neg p \lor r$$

3.2.
$$q \vee r$$

4.1.
$$q \vee r$$

5.
$$q \vee r$$

$$res_1$$
 2, 3

$$i \lor 3.1$$

$$i \vee 4$$

$$e \lor 1$$
, 3, 3.2, 4, 4.1

Roteiro

1 Regras Derivadas

2 Equivalências Populares

Douglas O. Cardoso CEFET-RJ Petrópolis

Informações Gerais

- Duas fórmulas ϕ e ψ para as quais vale $\phi \vdash \psi$ assim como $\psi \vdash \phi$ são ditas equivalentes (segundo prova).
- Para provar uma equivalência $\phi \dashv \vdash \psi$ é necessário provar tanto a "ida" $\phi \vdash \psi$ quanto a "volta" $\psi \vdash \phi$.
- Assim como as regras derivadas, algumas equivalências são populares pelo seu uso frequente em provas.
- São apresentadas a seguir algumas dessas equivalências, e a prova da ida de cada uma delas. É sugerido como exercício provar cada volta.

Contraposição

Contraposição (cp): $\phi \to \psi \dashv \vdash \neg \psi \to \neg \phi$

1.
$$p \rightarrow q$$

2.
$$[\neg q]$$

2.2.
$$\neg p$$

3.
$$\neg q \rightarrow \neg p$$

premissa

suposição

suposição

$$e
ightarrow$$
 1, 2.1

$$i \rightarrow$$
 2, 2.2

* Usando modus tollens

1.
$$p \rightarrow q$$

2.1.
$$\neg p$$

3.
$$\neg q \rightarrow \neg p$$

$$i \rightarrow 3.1, 2.1$$

$$i \to 3.1, 2.1$$

Leis de (Augustus) De Morgan: $\neg \phi \lor \neg \psi \dashv \vdash \neg (\phi \land \psi)$

De Morgan (dm): $\neg p \lor \neg q \dashv \vdash \neg (p \land q)$

1.
$$\neg p \lor \neg q$$
 premissa

 2. $[p \land q]$
 suposição

 2.1. $[\neg p]$
 suposição

 2.1.1. p
 $e \land 2$

 2.1.2. \bot
 abs 2.1, 2.1.1

 2.2. $[\neg q]$
 suposição

 2.2.1. q
 $e \land 2$

 2.2.2. \bot
 abs 2.2, 2.2.1

 2.3. \bot
 $e \lor 1$, 2.1, 2.1.2, 2.2, 2.2.2

 3. $\neg (p \land q)$
 rra 2, 2.3

Leis de (Augustus) De Morgan: $\neg \phi \land \neg \psi \dashv \vdash \neg (\phi \lor \psi)$

De Morgan (dm): $\neg p \land \neg q \dashv \vdash \neg (p \lor q)$

1.
$$\neg p \land \neg q$$
 premissa

 2. $[p \lor q]$
 suposição

 2.1. $[p]$
 suposição

 2.1.1. $\neg p$
 $e \land 1$

 2.1.2. \bot
 abs 2.1, 2.1.1

 2.2. $[q]$
 suposição

 2.2.1. $\neg q$
 $e \land 1$

 2.2.2. \bot
 abs 2.2, 2.2.1

 2.3. \bot
 $e \lor 1$, 2.1, 2.1.2, 2.2, 2.2.2

 3. $\neg (p \lor q)$
 rra 2, 2.3

Equivalência implicação-disjunção $\neg \phi \lor \psi \dashv \vdash \phi \to \psi$

Equivalência implicação-disjunção (eid): $\neg p \lor q \dashv \vdash p \to q$

1.
$$\neg p \lor q$$

premissa

suposição

 res_1 1, 2

3.
$$p \rightarrow q$$

$$i \rightarrow 2, 2.1$$

Propriedade distributiva, conjunção sobre disjunção

Distribuição de conjução sobre disjunção: $p \land (q \lor r) \dashv \vdash (p \land q) \lor (p \land r)$

Propriedade distributiva, disjunção sobre conjunção

Distribuição de disjunção sobre conjunção: $p \lor (q \land r) \dashv \vdash (p \lor q) \land (p \lor r)$

1. $p \lor (q \land r)$	premissa
2. [<i>p</i>]	suposição
2.1. $p \lor q$	$i \lor 2$
2.2. $p \lor r$	$i \lor 2$
2.3. $(p \lor q) \land (p \lor r)$	$i \wedge 2.1, 2.2$
3. $[q \wedge r]$	suposição
3.1. <i>q</i>	$e \wedge 3$
3.2. <i>r</i>	$e \wedge 3$
3.3. $p \lor q$	$i \vee 3.1$
3.4. $p \vee r$	$i \vee 3.2$
3.5. $(p \lor q) \land (p \lor r)$	$i \wedge 3.3, 3.4$
$4. \ (p \lor q) \land (p \lor r)$	$e \lor 1, 2, 2.3, 3, 3.5$