Table 1: Endogenous

Variable	Ŀ TEX	Description
С	C	Consumption
ii	i	Interest Rate
рi	π	Inflation
m	m	Real balances
N	N	Labor
phi	φ	Marginal cost
Delta	Δ	Price Dispersion
W	w	Wage
S	s	Optimal price
g1	g1	NKPC Var1
g2	g2	NKPC Var2
z	z	Technology shock
${\tt m_dot}$	\dot{M}	Nominal money growth

Table 2: Exogenous

Variable	ĿŒX	Description
nu	ν	Monetary shock
eps_z	$arepsilon^z$	Technology shock

Table 3: Parameters

Variable	Ŀ TEX	Description
siggma	σ	Inverse of intertemporal elasticity
betta	β	Intertemporal discount factor
gama	γ	Real balances parameter
chi	χ	Labor parameter
b	b	Inverse of interest elasticity
etta	η	Inverse of Fisch elasticity
thetta	θ	Elasticity of substitution
omegga	ω	Calvo price setting parameter
mu	μ	mark-up
${\tt rho_m}$	$ ho_m$	Monetary policy AR
delta_pi	δ_{π}	Taylor rule parameter
rho_z	$ ho_z$	Technology AR

Table 4: Parameter Values

Parameter	Value	Description
σ	2.500	Inverse of intertemporal elasticity
β	0.990	Intertemporal discount factor
γ	0.010	Real balances parameter
χ	1.000	Labor parameter
b	2.000	Inverse of interest elasticity
η	1.500	Inverse of Fisch elasticity
heta	1.500	Elasticity of substitution
ω	0.600	Calvo price setting parameter
μ	3.000	mark-up
$ ho_m$	0.600	Monetary policy AR
δ_{π}	1.500	Taylor rule parameter
$ ho_z$	0.800	Technology AR

$$C_t^{(-\sigma)} = \frac{\beta (1+i_t) C_{t+1}^{(-\sigma)}}{\pi_{t+1}}$$
 (1)

$$[name = '2']$$

$$\frac{\gamma m_t^{(-b)}}{C_t^{(-\sigma)}} = \frac{i_t}{1 + i_t} \tag{2}$$

$$[name='3']$$

$$\frac{\chi N_t^{\eta}}{C_t^{(-\sigma)}} = w_t \tag{3}$$

$$\varphi_t = \frac{w_t}{z_t} \tag{4}$$

[name= 'Delta']

$$\Delta_t = (1 - \omega) \ s_t^{(-\theta)} + \omega \, \pi_t^{\theta} \, \Delta_{t-1} \tag{5}$$

[name = 'c']

$$C_t = \frac{N_t \, z_t}{\Delta_t} \tag{6}$$

[name = 's']

$$s_t = \frac{\theta g 1_t}{(\theta - 1) g 2_t} \tag{7}$$

[name= '8']

$$1 = (1 - \omega) \ s_t^{1-\theta} + \omega \, \pi_t^{\theta-1} \tag{8}$$

[name= 'g1']

$$g1_{t} = \varphi_{t} C_{t}^{1-\sigma} + \beta \omega \pi_{t+1}^{\theta} g1_{t+1}$$
(9)

[name= 'g2']

$$g2_t = C_t^{1-\sigma} + \beta \omega \,\pi_{t+1}^{\theta-1} \,g2_{t+1} \tag{10}$$

 $[name = 'm_dot']$

$$\dot{M}_t = \frac{m_t \, \pi_t}{m_{t-1}} \tag{11}$$

[name = '12']

$$\log\left(\dot{M}_{t}\right) = \rho_{m} \log\left(\dot{M}_{t-1}\right) + \nu_{t} \tag{12}$$

[name= '13']

$$\log(z_t) = \rho_z \log(z_{t-1}) + \varepsilon^z_t \tag{13}$$