ANSWER KEYS

- **1.** (3)
- **2.** (3)
- **3.** (4)
- 4. (8)
- **5.** (1)
- **6.** (4)
- 7. (2) mathon
- **8.** (1)

- 9. (21)
- **10.** (3)
- **11.** (3)
- **12.** (1)
- **13.** (4)
- 14. (2) **22.** (1)
- **15.** (2)
- **16.** (3) **24.** (1.5) matho

- **17.** (4) 25. (4)
- **18.** (1) **26.** (3)
- **19.** (2) 27. (6)
- **20.** (4) **28.** (2)
- **21.** (3) **29.** (2)
- **30.** (2)
- **23.** (4) nathor

1. (3) $\alpha + \beta = -a$ and $\alpha\beta = 1$

Let S and P be the sum and product of the roots of the required equation. Then,
$$S = -\alpha - \frac{1}{\beta} - \frac{1}{\alpha} - \beta = -\left(\alpha + \beta\right) - \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$$

$$= -\left(\alpha + \beta\right) - \left(\frac{\alpha + \beta}{\alpha \beta}\right) = -\left(-a\right) - \left(\frac{-a}{1}\right) = 2a$$

$$P = -\left(\alpha + \frac{1}{2}\right) \left(-\left(\frac{1}{2} + \beta\right)\right)$$
mathongo /// mathongo // mat

$$P = -\left(\alpha + \frac{1}{\beta}\right)\left(-\left(\frac{1}{\alpha} + \beta\right)\right)$$

$$=1+lphaeta+rac{1}{lphaeta}+1=1+1+1+1=4$$
 mathongo /// mathongo /// mathongo /// mathongo ///

So, the required equation is

$$x^2 - Sx + P = 0$$
 mathongo // mathongo /

i.e.
$$x^2 - 2ax + 4 = 0$$

- - We have $\frac{k+1}{k} + \frac{k+2}{k+1} = \frac{-b}{a} \dots (i)$ mathongo /// mathongo /// mathongo /// mathongo ///
 - and $\frac{k+1}{k} \cdot \frac{k+2}{k+1} = \frac{c}{a}$ mathongo /// mathongo // ma
 - or $\frac{2}{k} = \frac{c}{a} 1 = \frac{c-a}{a}$ or $k = \frac{2a}{c-a}$ (ii) mathongo /// mathongo // m

 - Now eliminate k putting the value of k in 1^{st} relation, we get ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.
 - $\frac{c+a}{2a} + \frac{2c}{c+a} = \frac{-b}{a}$ mothongo
 - $\Rightarrow \left(c+a
 ight)^2 + 4ac = -2b(a+c)$
 - \Rightarrow $(a+c)^2+2b(a+c)=-4ac$ /// mathongo /// mathongo /// mathongo /// mathongo ///
 - Adding b^2 on both sides.
 - $\left(a+b+c\right)^2=b^2-4ac_{ ext{hongo}}$ /// mathongo /// mathongo /// mathongo /// mathongo ///
- 3. (4) $D = (2n-1)^2 4n(n-1) = 4n^2 + 1 4n 4n^2 + 4n = 1 > 0$
- Product of roots = $\frac{n-1}{n}$ < 0
 - ngo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. Solving this by wavy-curve method, we get-
 - $\Rightarrow n \in (0,1)$

- nongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

- ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

4.' (8) athongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

 $x^2 + 2x - n = 0$: $n \in [5, 100]$

- D = 4 + 4n = 4(1 + n)
- \Rightarrow 1 + n is a perfect square
- //. mathongo //. mathongo //. mathongo //. mathongo //. mathongo \Rightarrow 1 + n = 9, 16, 25, 36, 49, 64, 81, 100
- \Rightarrow n = 8, 15, 24, 35, 48, 63, 80, 99 ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

Therefore, 8 values are possible.

5. (1)

Given equation has more than two roots if it is an identity

- $\Rightarrow \cos 3\theta + 1 = 0$; $2\cos 2\theta 1 = 0$ and $1 2\cos \theta = 0$
- $\Rightarrow \cos 3\theta = -1 \Rightarrow \theta = \pm \frac{\pi}{3}$ which does not satisfy $2\cos 2\theta 1 = 0$ mathongo /// mathongo /// mathongo ///

Hence, no value possible

- **6.** (4) $1, \alpha + \beta, \alpha\beta$ are in A.P. $\Rightarrow 1, \frac{-b}{a}, \frac{c}{a}$ are in A.P. \Rightarrow /// mathongo /// mathongo /// mathongo /// $\Rightarrow 1 + rac{c}{a} = rac{-2b}{a} \Rightarrow a + c + 2b = 0 \dots (1)$
 - $\frac{1}{\alpha}, \frac{1}{2}, \frac{1}{\beta}$ are in A.P. $\Rightarrow \frac{1}{\alpha} + \frac{1}{\beta} = 1 \Rightarrow \alpha + \beta = \alpha\beta$ mathongo w mathongo w mathongo w $\Rightarrow \frac{-b}{a} = \frac{c}{a} \Rightarrow b + c = 0 \dots (2)$
 - From (1) & (2) we get, mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

- Now, $\frac{\alpha^2+\beta^2-2\alpha^2\beta^2}{2(\alpha^2+\beta^2)}=\frac{1}{2}-\frac{1}{(\alpha+\beta)^2-2\alpha\beta}$ mathongo /// mathongo /// mathongo /// mathongo ///
- $=\frac{1}{2}+\frac{(1)^2}{(1)^2-2(1)}=\frac{1}{2}+1=1.5$ /// mathongo /// mathongo /// mathongo /// mathongo ///
- 7. (2) Let a, β be the roots of a quadratic equation and a^2, β^2 be the roots of another quadratic, since the quadratic remains the
 - same, we have $a + \beta = a^2 + \beta^2$

and $\alpha\beta = \alpha^2\beta^2$

Now, $a\beta = a^2\beta^2 \Rightarrow a\beta*(a\beta-1) = 0$ mathongo /// mathongo /// mathongo /// mathongo ///

 $\Rightarrow a = 0 \text{ or } \beta = 0 \text{ or } a\beta = 1$

If a=0, then $\beta=\beta^2$ [putting a=0 in(i)] nathongo ///. mathongo ///. mathongo ///. mathongo ///. matho

 $\Rightarrow \beta(1-\beta)=0 \Rightarrow \beta=0, \beta=1$

Thus, we get two sets of values of a and β viz. $\alpha = 0, \beta = 0$ and $\alpha = 0, \beta = 1$. Now if $a\beta = 1$,

- then $a+\frac{1}{a}=a^2+\frac{1}{a^2}$ [putting $\beta=\frac{1}{a}$ in (i)] hongo /// mathongo /// mathongo /// mathongo ///
- mathongo /// math
- $\Rightarrow a + \frac{1}{a} = 2 \text{ or } a + \frac{1}{a} = \pi 1_0$ /// mathongo /// mathongo /// mathongo /// mathongo ///
 - $\Rightarrow a = 1 \text{ or } a = \omega, \omega^2$
 - Putting a=1, in $\alpha\beta=1$, we get $\beta=1$, and putting $a=\omega$ in $\alpha\beta=1$, we get $\beta=\omega^2$

Putting $a = \omega^2$ in $\alpha\beta = 1$, we get $\beta = \omega$, thus, we get four sets of values of a, β viz.,

- $a = 0, \beta = 0; a = 0, \beta = 1; \alpha = \omega, \beta = \omega^2; \alpha = 1, \beta = 1.$
- Thus, there are four quadratics which remain unchanged by squaring their roots.

8. (1) Given,
$$x^2 + 5\sqrt{2}x + 10 = 0$$
 /// mathongo // mat

$$\text{Now } \frac{P_{17}P_{20}+5\sqrt{2}P_{17}P_{19}}{P_{18}P_{19}+5\sqrt{2}P_{18}^2} = \frac{P_{17}\left(P_{20}+5\sqrt{2}P_{19}\right)}{P_{18}\left(P_{19}+5\sqrt{2}P_{18}\right)} \text{ mathong } \text{mathong }$$

$$P_{17}\left(lpha^{19}(lpha+5\sqrt{2})-eta^{19}(eta+5\sqrt{2})
ight)$$
 hongo /// mathongo /

and
$$\beta + 5\sqrt{2} = -10/\beta$$
 ... (2) /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Now put there values in above expression
$$\frac{P_{17}\left(\alpha^{19}(\alpha+5\sqrt{2})-\beta^{19}(\beta+5\sqrt{2})\right)}{P_{18}\left(\alpha^{18}(\alpha+5\sqrt{2})-\beta^{18}(\beta+5\sqrt{2})\right)} = -\frac{10P_{17}P_{18}}{-10P_{18}P_{17}} = 1$$
 mathong mathons and mathons are sufficiently as $\frac{10P_{17}P_{18}}{P_{18}} = 1$

9. (21) Given
$$\alpha, \beta$$
 are the roots of the quadratic equation $2x^2 - 5x + 1 = 0$
Let us find an equation with roots α^2 and β^2 , let $y = x^2$, so $x = \sqrt{y}$

$$2y-5\sqrt{y}+1=0$$
 $\Rightarrow 2y+1=5\sqrt{y}$ mathongo /// mathongo // mathongo //

$$\Rightarrow 4y^2 + 4y + 1 = 25y$$

$$\Rightarrow 4y^2-21y+1=0$$
 $\stackrel{c}{\swarrow}_d$ mathongo $\stackrel{}{}_{}^{}$ mathongo $\stackrel{}{}_{}^{}$

Put
$$\alpha^2=c$$
 and $\beta^2=d$

Now, $S_n=(c)^n+(d)^n$ athongo /// mathongo // mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo // mathongo /// mathongo // mathongo // mathongo // ma

$$4S_{2021}+S_{2019}=4\left(c^{2021}+d^{2021}
ight)+c^{2019}+d^{2019}$$
 mathong $^{\prime\prime\prime}$ mathong $^{\prime\prime\prime}$ mathong $^{\prime\prime\prime}$ mathong $^{\prime\prime\prime}$ mathong $^{\prime\prime\prime}$

$$=c^{2019}(21c)+d^{2019}(21d)$$
 mathongo mathong

$$=21S_{2020}$$
Hence, $\frac{4S_{2021}+S_{2019}}{S_{2020}}=21$ mathongo /// mathongo // mathongo /

10. (3) Consider
$$x^2 - 47x + k = 0$$

For real roots,
$$47^2-4k\geq 0\Rightarrow k\leq 552$$
 ... $k=1,2,3\ldots,552$

Product of real roots =
$$1 \times 2 \times 3 \times 4 \times \dots \times 552 = 552!$$

 $\Rightarrow 4x^2 + x(3-\lambda) + 1 > 0, x^2 + x(2+\lambda) + 4 > 0$

$$(i)$$
 $4x^2-x(\lambda-3)+1>0$ mathongo matho

$$\Rightarrow (\lambda-3+4)(\lambda-3-4)<0\\ \Rightarrow (\lambda+1)(\lambda-7)<0 \Rightarrow \lambda \in (-1,7)$$
 mathongo /// mathongo // mathongo // mathongo // mathongo /// mathongo // mathongo // mathongo //

$$(ii)~x^2+x(\lambda+2)+4>0$$

 $\Rightarrow D<0\Rightarrow (\lambda+2)^2-4\times 4<0$ mathongo // mathon

$$(\lambda-2)(\lambda+6)<0\Rightarrow \lambda\in(-6,2)$$
 mathong mathon ma

$$0 < b < 4 o ext{four solutions} \ b = 4 o ext{three solutions}$$

13. (4)
$$D = 25b^2 - 4 \times 3a \times 7c$$

= $25(-a-c)^2 - 84ac$ (given that $a+b+c=0$)
= $25(a^2+c^2+2ac)-84ac$

$$=25(a^2+c^2)-34ac$$
 $=17(a^2+c^2-2ac)+8(a^2+c^2)$ /// mathongo // matho

$$=17(a^2+c^2-2ac)+8(a^2+c^2)$$
 wathongs we mathongs we mathongs with mathon $=17(a-c)^2+8(a^2+c^2)$

$$D>0\Rightarrow ext{Roots are real and distinct}$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

14. (2) As
$$ax^2 + 2bx - 5c = 0$$
 has non-real roots, one mathons of mathons of $b < 0$ and $b^2 + 2bac < 0$ and $b^2 + 2bac < 0$ and $b^2 + 3ac < 0$. (iii) attended that of the same of the same of $b^2 + 5ac < 0$ at $b^2 + 5ac < 0$, either (i) $a < 0, c > 0$ (ii) $a > 0, c < 0$ mathons of mathons of mathons of mathons of mathons of mathons of $b^2 + 5ac < 0$. (ii) $b^2 + 5ac < 0$ at $b^2 + c > \frac{b^2}{4}$ mathons of mathons of

Let the roots of
$$I(2)=0$$
 be α , β since α , β are real. Mathematically including a mathematical mathe

0. (2) athongo /// mathongo /// mathongo					
The roots of $f(x)-x=0$ are 1, 2 and 3.					
So, we get,					
f(x)-x = (x-1)(x-2)(x-3)(x-a)					
For $x = -1$, we get,					
f(-1)+1 = (-2)(-3)(-4)(-1-a) = 24(1+a)					
f(x) + 1 = (2)(3)(4)(1-4) = 24(1+6) mat For $x = 5$, we get, hongo					
$f(5)-5=4\cdot 3\cdot 2(5-a)=24(5-a)$					
f(-1)+f(5)=(23+24a)+(125-24a)=148 For $x=0$, we get,					
f(0)-0 = (-1)(-2)(-3)(-a) = 6a For $x = 4$, we get,					
$f(4)-4=3\cdot 2\cdot 1\cdot (4-a)=24-6a$					
f(0)+f(4)=28 athongo /// mathongo					
$\left\lceil \frac{f(-1) + f(5)}{f(0) + f(4)} \right\rceil = \left\lceil \frac{148}{28} \right\rceil$					
$\begin{bmatrix} f(0)+f(4) \end{bmatrix} \begin{bmatrix} 28 \end{bmatrix}$ $\begin{bmatrix} \frac{f(-1)+f(5)}{f(0)+f(4)} \end{bmatrix} = 5$					
$\left\lfloor \frac{f(0)+f(4)}{f(0)+f(4)} \right\rfloor = 5$					
(4) Let, $f(x) = x^2 + ax + a^2 + 6a$ /// mothongo					
$\therefore f(1) \leq 0$					
mathongo /// mathongo /// mathongo					
$\begin{pmatrix} 1 & 2 \end{pmatrix}$					
m mathongo mathongo					
\Rightarrow $a^2 + 7a + 1 < 0$ nathongo /// mathongo					
or $\frac{-7-3\sqrt{5}}{2} < a < \frac{-7+3\sqrt{5}}{2}$ (i)					
$math f(2) \le 0$ /// mathongo /// mathongo					
$\Rightarrow a^2 + 8a + 4 < 0$					
or $-4-2\sqrt{3} < a < -4+2\sqrt{3}$ (ii) and $D>0$					
and $D>0$					
$\Rightarrow a^2 - 4 \cdot 1ig(a^2 + 6aig) > 0$					
$\Rightarrow a^2 + 8a < 0 $ mathongo /// mathongo					
or $-8 < a < 0$ (iii)					
From Eqs. (i), (ii) and (iii), we get, mothongo					
$rac{-7-3\sqrt{5}}{2} \leq a \leq -4+2\sqrt{3}$					
Hence, integral values of a are $-6, -5, -4, -3, -2$, –1				
Required Sum					
$= (-6)^{2} + (-5)^{2} + (-4)^{2} + (-3)^{2} + (-2)^{2} + (-1)^{2}$					
= 91.					

21. (3) athongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

Let α be the common root

$$klpha^2+lpha+k=0$$
 mathongo ///, mathongo

$$\frac{\alpha^2}{1-k^2} = \frac{\alpha}{k^2-k} = \frac{1}{k^2-k}$$

$$\frac{\alpha^2}{\alpha} = \frac{1-k^2}{k^2-k} \text{ and } \frac{\alpha}{1} = \frac{k^2-k}{k^2-k}$$

$$\frac{1-k^2}{k^2-k} = \frac{1-k^2}{k^2-k} = \frac{1-k^2}{k^2-k}$$

$$\Rightarrow lpha = rac{1-k^2}{k^2-k} = 1 \Rightarrow k^2-k = 1-k^2$$
 $\Rightarrow 2k^2-k-1 = 0 \Rightarrow k = -rac{1}{2}, 1$ mathongo /// mathon

For k = 1, equations are identical, thus not possible

Hence,
$$k=-\frac{1}{2}$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

22. (1)

$$(6k+2)x^2+rx+3k-1=0$$
 $(12k+4)x^2+px+6k-2=0$ have

both roots common.

$$12k+4$$
 p $6k-2$ $\Rightarrow \frac{r}{p} = \frac{1}{2} \Rightarrow 2r - p = 0$ thongo /// mathongo /// mathongo /// mathongo /// mathongo ///

23. (4) Let, the roots be α , β , $\alpha + 2$.

$$S_1=lpha+eta+lpha+2=2lpha+eta+2=13\Rightarrow 2lpha+eta=11\Rightarrow eta=11-2lpha$$
 mathongo w mathongo mathongo $S_2=lphaeta+eta(lpha+2)+(lpha+2)lpha=15$

$$\Rightarrow eta(lpha+lpha+2)+lpha(lpha+2)=15 \ \Rightarrow (11-2lpha)(2lpha+2)+lpha(lpha+2)=15$$
 mathongo /// mathongo /// mathongo ///

$$\Rightarrow 22\alpha + 22 - 4\alpha^2 - 4\alpha + \alpha^2 + 2\alpha = 15$$
 $\Rightarrow 3\alpha^2 - 20\alpha - 7 = 0 \Rightarrow (\alpha - 7)(3\alpha + 1) = 0$

mathons

mathons

$$\Rightarrow \alpha=7 \text{ or } -\frac{1}{3}.$$

$$\alpha=7, \beta=11-2\alpha=11-14=-3, \gamma=\alpha+2=9$$

$$\alpha=-\frac{1}{3}, \beta=11-2\alpha=11+\frac{2}{3}=\frac{35}{3}, \gamma=\alpha+2=\frac{5}{3}.$$

Since,
$$\alpha\beta\gamma=-189$$
, hence we will take the first case. /// mathongo //

24. (1.5)
$$x^3 + 3x^2 + 5x + 3 = 0$$
 has one root $x = -1$ method mathod math

$$\Rightarrow a=2,\ b=3$$
Now, value of $\left(\frac{b}{a}\right)=\left(\frac{3}{2}\right)=1.5$ is the answer

$$4\left(x^2 + rac{1}{x^2}
ight) + 16\left(x + rac{1}{x}
ight) - 57 = 0$$

Let,
$$x + \frac{1}{x} = y$$
; $x^2 + \frac{1}{x^2} = y^2 - 2$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$\Rightarrow 4y^2 + 16y - 65 = 0$$

When,
$$y = \frac{5}{2}$$

$$x + \frac{1}{x} = \frac{5}{2} \Rightarrow x = 2 \text{ or } \frac{1}{2} \text{ ongo } \text{ ///} \text{ mathongo } \text{ ///} \text{ //} \text{ //} \text{ mathongo } \text{ ///} \text{ //} \text{$$

When,
$$y = -\frac{13}{2}$$

 $\Rightarrow x + \frac{1}{2} = -13$

$$\Rightarrow x + rac{1}{x} = -13/2$$
 mathongo /// mathongo // mathong

$$\Rightarrow x = rac{-13 \pm \sqrt{153}}{4}$$

$$\Rightarrow x = \frac{-13 \pm \sqrt{133}}{2}$$
Since x is rational, $x = 2$ or $\frac{1}{2}$ /// mathongo // mathongo /

product of rational roots is 1

Case 1: when
$$x^2 - 5x + 5 = 1$$

$$x^2 + 5x + 4 = 0$$
 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

Case 2: when
$$x^2 + 4x - 60 = 0$$
 /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Case 3: when
$$x^2 - 5x + 5 = -1$$
 and $x^2 + 4x - 60 \in \text{even integers}$
Now. $x^2 - 5x + 5 = -1$

Now,
$$x^2 - 5x + 5 = -1$$

$$\Rightarrow x=2,\ 3$$
 Only $x=2$ satisfies the given condition, mathon with mathon with

Hence, sum of all real values of x is 1+4+6-10+2=3

Let
$$\log_x 10 = t$$

$$1/2$$
 \therefore $t^3 + t^2 + 6t = 0$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

$$\Rightarrow tig(t^2-t-6ig)=0 \ \Rightarrow t=0,-2,\ 3$$

$$t=0,-2,3$$
 mathongo /// mathongo // mathongo /// mathongo // math

$$\Rightarrow 10 = x^0, x^{-2}, x^3 \mod m$$
 mathongo $= x^0 + x^2 + x^3 \mod m$ mathongo $= x^0 + x^2 + x^3 \mod m$ mathongo $= x^0 + x^2 + x^3 \mod m$ mathongo $= x^0 + x^2 + x^3 \mod m$

Let
$$\alpha=10^{-\frac{1}{2}}$$
 and $\beta=10^{\frac{1}{3}}$ with mathons of the ma

Now,
$$\left|\frac{1}{\log_{10}\alpha\beta}\right| = \left|\frac{1}{\log_{10}10^{-\frac{1}{6}}}\right|$$
 mathongo // mathong

$$\Rightarrow \left|rac{1}{\log_{10}lphaeta}
ight| = \left|rac{-6}{\log_{10}10}
ight| = 6$$

28. (2) Let,
$$t = 2^{11x}$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$\Rightarrow \frac{\left(2^{11x}\right)^3}{2^2 \log 2} + 2^{11x} \cdot 2^2 = \left(2^{11x}\right)^2 \cdot 2 + 1$$

$$\Rightarrow \frac{t^3}{4} + 4t = 2t^2 + 1$$
mathongo /// mathongo // mathongo // mathongo // mathongo //

$$\Rightarrow$$
 t³ - 8t² + 16t - 4 = 0

Cubic in t has roots
$$t_1, t_2, t_3$$
 mathongo m

$$\Rightarrow 2^{11(x_1+x_2+x_3)} = 2^2 \ \Rightarrow 11(x_1+x_2+x_3) = 2 \Rightarrow x_1+x_2+x_3 = rac{2}{11}$$

29. (2) We have,
$$e^{4x} - e^{3x} = 4e^{2x} - e^x + 1 = 0$$
 thougo /// mathongo ///

Let
$$e^a = t$$
 $t^4 - t^3 - 4t^2 - t + 1 = 0$ mathongo w mathongo

$$\Rightarrow t^2 - t - 4 - \frac{1}{t} + \frac{1}{t^2} = 0$$

$$\left\{t^2 + \left(\frac{1}{t}\right)\right\} - \left\{t + \left(\frac{1}{t}\right)\right\} - 4 = 0\left\{t + \left(\frac{1}{t}\right)\right\}^2 - \left\{t + \left(\frac{1}{t}\right)\right\} - 6 = 0 \text{ let } t + \left(\frac{1}{t}\right) \text{ be } \alpha$$

$$\left\{t^2 + \left(\frac{1}{t^2}\right)\right\} - \left\{t + \left(\frac{1}{t}\right)\right\} - 4 = 0 \left\{t + \left(\frac{1}{t}\right)\right\}^2 - \left\{t + \left(\frac{1}{t}\right)\right\} - 6 = 0 \text{ let } t + \left(\frac{1}{t}\right) \text{ be } \alpha \\ \Rightarrow \alpha^2 - \alpha - 6 = 0, \alpha = t + \frac{1}{t} \geq 2$$

$$lpha \equiv 3, -2 ext{ (reject)}$$
 mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mathongo /// mathongo // mathongo /

$$\Rightarrow$$
 The number of real roots = 2.

"mathongo" mathongo" mathongo mathon

30. (2) Let
$$2^{\frac{a}{\cos^{-1}x}}$$
 be t

$$\Rightarrow t \geq 2$$
equation becomes $t^2 - \left(a + \frac{1}{2}\right)t - a^2 = 0$

mathons // mathon

equation becomes
$$t^2 - \left(a + \frac{1}{2}\right)t - a^2 = 0$$

has one roots 2 or greater than 2 and other root less than 2, $f(2) < 0$

has one roots
$$2$$
 or greater than 2 and other root less than $2,f(2)\leq 0$ $\Rightarrow 4-\left(a+\frac{1}{2}\right)2-a^2\leq 0$

$$a^2+2a-3\geq 0$$
 mathongo /// mathongo // ma