PHY-112 PRINCIPLES OF PHYSICS-II

RINCIPLES OF PHYSICS-II
AKIFUL ISLAM (AZW)

Spring-24 | Class-4

ELECTRIC DIPOLE

A system consisting of two equal and opposite point charges, typically denoted as q=+ne and q=-ne, separated by a small distance d=2a.

ELECTRIC DIPOLE MOMENT

The direction of \vec{p} indicates the orientation of the dipole The magnitude of \vec{p} measures the strength of the dipole

$$\vec{p} = q \cdot 2\vec{a}.$$

Forces on Electric Dipole in a Uniform $ec{E}$ -field

Forces on Electric Dipole in a Uniform $ec{E}$ -field

- The positive charge experiences a Coulomb force $\vec{F}_+ = +Q\vec{E}$ that points along \vec{E}
- The negative charge of the dipole also feels an equal but opposite force $\vec{F}_- = -Q\vec{E}$ that points opposite to \vec{E}
- \blacksquare The net force on the dipole thus $\vec{F}_{\rm net} = \vec{F}_+ + \vec{F}_- = 0$
- This does not mean the dipole is motionless

Torque on Electric Dipole in a Uniform $ec{E}$ -field

■ The torque for the positive charge would be

$$\tau_{+} = \vec{r}_{+} \times \vec{F}_{+} = a\hat{d} \times Q\vec{E} = (Qa)\hat{d} \times \vec{E} = \frac{1}{2} \left(\vec{p} \times \vec{E} \right)$$

■ The torque for the negative charge would be

$$\tau_{-} = \vec{r}_{-} \times \vec{F}_{-} = \left(-L\hat{d}\right) \times \left(-Q\vec{E}\right) = (Qa)\hat{d} \times \vec{E} = \frac{1}{2} \left(\vec{p} \times \vec{E}\right)$$

■ The total torque of the dipole system

$$\vec{ au} = \vec{ au}_+ + \vec{ au}_- = \frac{1}{2} \left(\vec{p} \times \vec{E} \right) + \frac{1}{2} \left(\vec{p} \times \vec{E} \right) = \vec{p} \times \vec{E}$$

Testing Concepts (1)

■ Q: The permanent electric dipole moment of a particular molecule is 1.1×10^{-30} C m. What is the MAXIMUM possible torque on the molecule in a 8.0×10^{8} N C⁻¹ field?

$$\longrightarrow$$
 Take $\phi = 90^{\circ}$

■ Q: Find the MINIMUM torque

$$\longrightarrow$$
 Take $\phi = 0^{\circ}$

POTENTIAL ENERGY STORED BY AN ELECTRIC DIPOLE

$$U_{\text{dipole}} = -\int \tau d\phi$$

$$= -\int_{90^{\circ}} \phi pE \sin \phi d\phi$$

$$= \left[pE \cos \phi \right]_{90^{\circ}}^{\phi}$$

$$= \vec{p} \cdot \vec{E}$$

TESTING CONCEPTS (2)

■ Q: The permanent electric dipole moment of a particular molecule is 1.1×10^{-30} C m. What is the stored energy on the molecule (when placed parallel) in a 8.0×10^{8} N C⁻¹?

$$\longrightarrow$$
 Take $\phi = 0^{\circ}$

■ Q: What is the stored energy on the molecule (when placed perpendicular)

$$\longrightarrow$$
 Take $\phi = 90^{\circ}$

TESTING CONCEPTS (3)

- Q: Rank the Net Forces experienced by the dipoles in descending order.
- Q: Rank the Net Torques experienced by the dipoles in descending order.
- Q: Rank the Potential Energies stored by the dipoles in descending order.

ELECTRIC DIPOLES IN A NON-UNIFORM $ec{E}$ -FIELD

- Step-1: Orient \vec{p} to \vec{E}
- Step-2: Apply Force \vec{F}_E (push/pull) accordingly

$ec{E}$ -fields due to Continuous

CHARGE DISTRIBUTIONS

ONE PROBLEM SOLVING STRATEGY TO RULE THEM ALL

- Start with $\vec{E} = \left(\frac{Cq}{r^2}\right)\hat{r}$
- Superpose them: $\vec{E} = \sum_{i}^{N} \left(\frac{Cq_i}{r_i^2} \right) \hat{r}_i$ (Discrete)
- Start with $d\vec{E} = \left(\frac{Cdq}{r_{dq}^2}\right)\hat{r}_{dq}$
- Integrate them: $\vec{E} = \int \left(\frac{Cdq}{r_{dq}^2}\right) \hat{r}_{dq}$ (Continuous)

4 Key $ec{E}$ Field Sources: Continuous Distributions

Line Charge	Surface Charge	Volume Charge
	+++++++++++++++++++++++++++++++++++++++	
$dq=\lambda dl$	$dq=\sigma da$	dq= ho dV
$ec{E} = igg(C \int rac{\lambda dl}{r^2}igg) \hat{r}$	$ec{E} = igg(C \int rac{\sigma da}{r^2} igg) \hat{r}$	$ec{E} = igg(C \int rac{ ho dV}{r^2} igg) \hat{r}$
\hat{r} $\stackrel{\text{away is +}}{\longleftrightarrow}$ toward if -	\hat{r} $\stackrel{ ext{away is +}}{\longleftrightarrow}$ toward if -	\hat{r} $\stackrel{\text{away is +}}{\longleftrightarrow}$ toward if -

Gauss's Law for Electrostatics: The 1ST

MAXWELL'S EQUATION

Gauss's Law for Electrostatics: Why do We need it?

- It is more fundamental than Coulomb's law
- 1st of Maxwell's equations
- Relates Electric Charges to Electric Fields and vice versa
- lacksquare Easier to use than superposing many $ec{E}s$
- lacksquare Can measure \vec{E} both inside and outside of sources.
- Suitable for Symmetric \vec{E} -Field models

Gauss's Law for Electrostatics: What do You need?

- Electric Flux, Φ_E
- Gaussian Surfaces: Closed (Symmetric) surfaces
- Surface (Closed) Integral, \oint
- lacksquare Divergence, $\vec{\nabla} \cdot \vec{E}$
- Ideas about Charge Distribution, λ, σ, ρ

ELECTRIC FLUX

Q: What does it measure?

- Visually: the number of electric field lines passing through a given surface.
- Numerically: the surface integral of \vec{E} -fields

$$lackbox{\Phi}_E = \int \vec{E} \cdot d\vec{A} \ (ext{Non-Uniform})$$

- $lacktriangledown \Phi_E = \vec{E} \cdot \vec{A}$ (Uniform)
- ► Unit: $[N m^2 C^{-1}]$ or [V m]
- ► It is a scalar

Electric Flux for Uniform $ec{E}$ -field

ELECTRIC FLUX FOR NON-UNIFORM $ec{E}$ -FIELD

Gauss's Law and \vec{E} -fields

It relates the behavior of the electric field to the distribution of electric charge. **One demands the presence of the other**.

Gauss's Law and $ec{E}$ -fields

■ The total Φ_E passing through a closed surface is proportional to the total electric charge $Q_{\rm enc}$ enclosed within that surface

$$\oint \vec{E} \cdot d\vec{a} = \frac{Q_{\rm enclosed}}{\varepsilon_0}. \qquad \text{(Integral Form)}$$

■ The Divergence of \vec{E} -fields through a closed surface are directly proportional to the charge distribution within that surface

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho_{\text{enclosed}}}{\epsilon_0}$$
. (Differential Form)

TESTING CONCEPTS (4)

Q: Comment on the type of charges enclosed within the cube.

21

Gauss's Divergence Theorem

- Surface Integral (Vector Field) = Volume Integral (Divergence of the same Vector Field)
- The \int count implies the dimension

$$\iint_{S} \vec{V} \cdot d\vec{S} = \iiint_{V} (\vec{\nabla} \cdot \vec{V}) \cdot dV$$

$$\int_{S} \vec{E} \cdot d\vec{a} = \int_{V} (\vec{\nabla} \cdot \vec{E}) \cdot dV$$

Gauss's Divergence Theorem

- Surface Integral (Vector Field) = Volume Integral (Divergence of the same Vector Field)
- The \int count implies the dimension

$$\iint_{S} \vec{V} \cdot d\vec{S} = \iiint_{V} (\vec{\nabla} \cdot \vec{V}) \cdot dV$$

$$\oint_{S} \vec{E} \cdot d\vec{a} = \oint_{V} (\vec{\nabla} \cdot \vec{E}) \cdot dV$$

Suitable Gaussian Surfaces for 4 Key $ec{E}$ Field Sources

- Surface Charge \longrightarrow Capacitors \longrightarrow Wide Cylindrical
- $lue{}$ Volume Charge \longrightarrow Electrodes/Shell Charges \longrightarrow Spherical

Suitable Gaussian Surfaces for 4 Key $ec{E}$ Field Sources

