的文件抽象符。写操作将数据放在后面,而读操作则从前面把数据移去。一旦数据被读出,该数据就会被删掉。

5.1.2 FAT 文件系统的内部表示

5.1.2.1 分配表(File Allocation Table)概述

FAT(File allocation table)即文件分配表,它不用于表示引导区、文件目录表的信息,也不真正存储文件内容,只反映磁盘空间当前的使用情况,是整个文件系统的核心。

文件在磁盘的分布情况,是以簇链的方式记录在 FAT 中。每个文件都有自己的存储簇,可以是连续的也可以是不连续的,通过 FAT 表来实现其完整性。 FAT 记录了除文件首簇以外文件使用的所有簇的情况(文件的首簇的使用情况记录在文件所在的目录项中,关于目录项的详细说明见§5.1.1.1)。FAT 项的序号与文件所使用的簇号有一一对应的关系。

图 5-2 给出的是 FAT 与文件磁盘分配的关系,配合这个例子及其说明,可以很清楚地了解 FAT 在文件系统中的作用以及文件系统是如何利用 FAT 完成工作的。

图 5-2 FAT 与文件磁盘分配的关系

说明:

为了避免混淆,在没有特别说明的情况下我们所说的 FAT 就是指

文件分配表;指文件系统时会用 FAT12、FAT16、FAT32 或 FAT 文件系统。

- 2. 图 5-2 中是以典型的 MS-DOS FAT16 为例。
- 3. 文件系统为用户提供文件的按名存取。当用户使用文件系统的系统调用时,文件系统使用用户给出的文件名在磁盘上查找文件。从目录项中找出它的开始簇,实际上就是文件在 FAT 中所占据的首项,这是一个链表的开始。链表的每一项中存储的是文件所用下一个 FAT 项的序号,也是文件使用的下一个簇的簇号。从这个链中可以得到存储文件数据的所有扇区在磁盘上的物理位置,从而得到整个文件的数据。

5.1.2.2 FAT12 和 FAT16 的结构

FAT 由 FAT 项组成,每个 FAT 表项记录了一个特定簇的使用情况,文件区的起始簇号为 0x0002,FAT 项有两种结构 (仅限于该系统中);一种是每个表项占 1.5 个字节共 12 位,用于软盘(图 5-3(a));另一种为每个表项占 2 个字节共16 位,用于硬盘(图 5-3(b))。(以上说明对 FAT32 不具可推性,它使用 28 位作为一个 FAT 项)

图 5-3 FAT12/FAT16 的结构 FAT12 和 FAT16 表项的含义分别见表 5-1 和表 5-2。

FAT 表项内容	描述
000	未占用
001~002	不使用
FFO~FF6	未占月
FF7	坏焦
FF8-FFF	最后一族
其它	己用,下簇簇号
表 5-1	FAT12表项的含义
FAT 表项内容	描述
0000	未占用
0001-0002	不使用
FFF0-FFF6	未占用
FFF7	坏簇
FFF8~FFFF	最后一簇
其它	包用, 下鉄線号

表 5-2 FAT16 表项的含义

从上面的比较可以看出, 2 字节的 FAT 表项和 1.5 字节的 FAT 表项基本相同。 根据 FAT 表项在簇中的表项值可以知道该簇是未用的、坏的、还是属于某一 文件或属于某一子目录的。

文件分配表的表项依据分区上簇的序号,依次顺序存放在 FAT 区中。FAT 表的表项号和分区的簇号相同。查找表项也就是在查找簇号。

在记录文件的簇中,FAT 表项值还包含了指向该文件下一个簇的簇号。在进行文件操作时,就是根据当前目录项查出该文件在 FAT 表中的首簇地址,再在

FAT 表中查出链接簇号, 转换为逻辑扇区, 定位磁头进行读写等操作的。

5.1.2.3 介质格式字节 (Media Format Byte)

介质格式字节是 FAT 的头一个字节, 所以习惯性地称为 FAT 表头(见图 5-3)。 在早一些版本的 MS-DOS 时是用来标识卷的格式, 但是现在已经被 BIOS 参数块 所代替。介质格式字节仅在格式化磁盘的时候写入, 以后基本对其忽略不计。

表项	长度	说明
l	1字节	FF: 每道 8 扇区的双面软盘
		FE: 每道 8 扇区的单面软盘
		FD: 每道9扇区的双面软盘
		FC: 每道 8 扇区的单面软盘
		F8: 硬盘

 2
 1字节
 恒为FF

 3
 1字节
 恒为FF

表 5-3 介质格式字节

5.1.3 簇

5.1.3.1 簇的概念

簇是磁盘上的最小存储分配单位,每一个簇包含一个或以上扇区,每簇包含的扇区数必须是 2 的整数幂,通常的取值范围是 1~128。

簇在 FAT 文件系统中有重要的作用: FAT 表实际上是一个以簇号为下标的一维数组,数组纪录的内容是下一簇的簇号。在 FAT 中采用簇号来管理磁盘有效的达到了以下两个目的:

- 规格化目录结构。由于有 FAT 专门记录文件的分配情况,在目录项中只用记录文件的首簇号,即使很大的文件也只需要一个目录项。
- 文件的易扩充性。可以在磁盘的任意位置存储文件的任意部分而不用考 虑物理存放位置的连续性,文件的可存放长度只受磁盘容量的限制。