Discrete Math 2 HW 4

Ben Awad

October 13, 2016

Problem 10.2.22.

Yes. Group 1: [a, c] Group 2: [b, d, e]

Problem 10.2.24.

Yes. Group 1: [f, c] Group 2: [a, b, e, d]

Problem 10.2.50.

112

Problem For the graph in 10.2.24, what is the subgraph induced by {a, b, c, d}?.

Problem 10.3.2.

Vertex	Adjacent Vertices
a	b,d
b	a,d,e
С	d,e
d	a,b,c
e	$_{\mathrm{b,c}}$

Problem 10.3.4.

Initial Vertex	Terminal Vertices
a	b,d
b	a,c,d,e
c	$_{\rm c,d}$
d	a,e
e	e,c

Problem 10.3.6.

	Α	В	С	D	Е
A	0	1	0	1	0
В	1	0	0	1	1
С	0	0	0	1	1
D	1	1	1	0	0
Е	0	1	1	0	0

Problem 10.3.8.

		То					
		Α	В	С	D	Е	
From	Α	0	1	0	1	0	
	В	1	0	1	1	1	
	С	0	1	1	0	0	
	D	1	0	0	0	1	
	Ε	0	0	1	0	1	

Problem 10.3.36.

No: V has a vertex with degree 4 and U does not

Problem 10.3.38.

Yes: $u_2 \rightarrow v_5$

 $u_4 \rightarrow v_3$

 $u_1 \rightarrow v_1$

 $u_5 \rightarrow v_4$

 $u_3 \rightarrow v_2$

Problem 10.3.40.

No: V has a vertex with degree 4 and U does not

Problem 10.4.22.

No because H has 2 symmetric rhombuses for paths which G does not have.

Problem 10.4.12.

- a. weak
- b. strong
- c. neither

Problem 10.4.14.

- a. Component 1: a, b, e
- Component 2: d
- Component 3: c
- b. Component 1: f
- Component 2: c, e, d
- Component 3: a
- Component 4: b
- c. Component 1: a, b, c, d, f, g, h, i
- Component 2: e

Problem 10.4.50.

- a. $\lambda(G) = 2$, K(G) = 1, min deg = 2 so $K(G) < \lambda(G) \le \min$ deg
- b. $\lambda(G) = 3$, K(G) = 1, min deg = 3 so $K(G) < \lambda(G) \le \min$ deg
- c. $\lambda(G) = 2$, K(G) = 2, min deg = 3 so $K(G) \le \lambda(G) < \min$ deg
- d. $\lambda(G) = 4$, K(G) = 4, min deg = 4 so $K(G) \le \lambda(G) \le \min$ deg