STOR 565 Spring 2018 Homework 3

Due on 02/09/2018 in Class

YOUR NAME

Remark. This homework aims to help you further understand the model selection techniques in linear model. Credits for **Theoretical Part** and **Computational Part** are in total 100 pt. For **Computational Part**, please complete your answer in the **RMarkdown** file and summit your printed PDF homework created by it.

Computational Part

Hint. Before starting your work, carefully read Textbook Chapter 6.5-6.7 (Lab 1-3). Mimic the related analyses you learn from it. Related packages have been loaded in setup.

- 1. (Model Selection, Textbook 6.8, 25 pt) In this exercise, we will generate simulated data, and will then use this data to perform model selection.
 - (a) Use the rnorm function to generate a predictor \boldsymbol{X} of length n=100, as well as a noise vector $\boldsymbol{\epsilon}$ of length n=100.
 - (b) Generate a response vector \mathbf{Y} of length n = 100 according to the model

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon,$$

where
$$\beta_0 = 3$$
, $\beta_1 = 2$, $\beta_2 = -3$, $\beta_3 = 0.3$.

- (c) Use the regsubsets function from leaps package to perform best subset selection in order to choose the best model containing the predictors (X, X^2, \dots, X^{10}) . What is the best model obtained according to C_p , BIC, and adjusted R^2 ? Show some plots to provide evidence for your answer, and report the coefficients of the best model obtained.
- (d) Repeat (c), using forward stepwise selection and also using backwards stepwise selection. How does your answer compare to the results in (c)?
- (e) Now fit a LASSO model with glmnet function from glmnet package to the simulated data, again using (X, X^2, \dots, X^{10}) as predictors. Use cross-validation to select the optimal value of λ . Create plots of the cross-validation error as a function of λ . Report the resulting coefficient estimates, and discuss the results obtained.
- (f) Now generate a response vector Y according to the model

$$Y = \beta_0 + \beta_7 X^7 + \epsilon,$$

where $\beta_7 = 7$, and perform best subset selection and the LASSO. Discuss the results obtained.

- 2. (Prediction, Textbook 6.9, 25 pt) In this exercise, we will predict the number of applications received using the other variables in the College data set from ISLR package.
 - (a) Randomly split the data set into a training set and a test set (1:1).
 - (b) Fit a linear model using least squares on the training set, and report the test error obtained.
 - (c) Fit a ridge regression model on the training set, with λ chosen by 5-fold cross-validation. Report the test error obtained.
 - (d) Fit a LASSO model on the training set, with λ chosen by 5-fold cross-validation. Report the test error obtained, along with the number of non-zero coefficient estimates.

- (e) Fit a PCR model on the training set, with M chosen by 5-fold cross-validation. Report the test error obtained, along with the value of M selected by cross-validation.
- (f) Comment on the results obtained. How accurately can we predict the number of college applications received? Is there much difference among the test errors resulting from these four approaches?