# Reducing Churn with Supervised Learning

Min Tan Jon Lee Helen Tong Temesgen Tesfay Chelsea Ramos

# Data Wrangling

- Target as 1
  - Trip date is above June 1st 2014
  - Meaning active user if last trip was on or after June 1
- Columns with null values:
  - Avg\_rating\_by\_driver, Avg\_rating\_of\_driver
    - Continuous data (1.0-5.0)
    - imputed NaNs with mean by city
  - o Phone
    - Categorical data, used Pandas get\_dummies
- Data Leakage
  - There were records after June 1st
  - Prediction data leak into training
  - CV using time series cross validation



## Alternative Models on Training Data

- Logistic Regression
  - Precision score: 0.67
  - Recall score: 0.48
  - Mean 5-fold cv score: 0.66
- Random Forest
  - Precision score: 0.73
  - Recall score: 0.66
  - Mean 5-fold cv score: 0.75
- Gradient Boost
  - Precision score: 0.74
  - Recall score: 0.66
  - Mean 5-fold cv score: 0.78

#### Final Model

- Gradient Boosting Classifier with Grid Search CV
  - Precision score: 0.706
  - Recall score: 0.672
  - Mean 5-fold cv score with training data: 0.78
- Features: Used all (all columns except target)
- Hyperparameters:
  - Loss: deviance
  - Max depth: 4
  - Max features: auto
  - Min leaf samples: 0.1
  - Estimators: 300

### Performance Metrics

- Seek to maximize
- Average Precision Recall
  - o .598
- ROC AUC
  - 0.75
- Accuracy not good
  - Imbalanced class



|                 |        | Actual Class       |                 |
|-----------------|--------|--------------------|-----------------|
|                 |        | Active             | Churn           |
| Predicted Class | Active | True Positives     | False Positives |
|                 | Churn  | False<br>Negatives | True Negatives  |

|                 |        | Actual Class |       |
|-----------------|--------|--------------|-------|
|                 |        | Active       | Churn |
| Predicted Class | Active | 2534         | 1238  |
|                 | Churn  | 1054         | 5174  |

# Plan Proposed to Reduce Churn

- Reduce surge times/pricing
- Promote more on weekdays/toward weekday commuters
- Promote more in King's Landing



# Potential Impact

- Increase customer retention
  - Increase profit
  - Retain customer loyalty
- Reduce churn cost
- Predicted churn
  - Outreach campaign to retrieve churned customers

#### **Planning**

- How did you compute the target?
  - a. Target: 'active' = 1 if 'last\_trip\_date' > June 1, 2014
- What model did you use in the end? Why?
  - a.
- Alternative models you considered? Why are they not good enough?
  - a. Logistic regression
  - b. Decision tree
  - c. Random forest
  - d. Gradient boost/Adaboost
- What performance metric did you use to evaluate the *model*? Why?
  - a. Precision, since data was imbalanced (~36.6 Active vs 63.4% Inactive), accuracy was not a good metric
- Based on insights from the model, what plans do you propose to reduce churn?
  - a. Reduce surge times/pricing
  - b. Promote more on weekdays/toward weekday commuters?
  - c. Promote more in King's Landing
- What are the potential impacts of implementing these plans or decisions? What performance metrics did you use to evaluate these decisions, why?
  - a. Potential impacts of implementing plans or decisions