个人简历

个人简介

姓名:苏瑞涛 性别:男

职务: 甬江实验室研究员, 先进功能增材制造课题组负责人

研究领域: 增材制造, 低温等离子体打印, 功能薄膜-薄壳结构

人才称号: 浙江省高层次人才, 宁波市领军人才

个人主页: https://suruitao.github.io 电子邮箱: ruitao-su@ylab.ac.cn

教育经历					
2015.8 - 2020.10	明尼苏达大学双城分校	机械工程专业	博士		
	导师: Michael McAlpine 教授	邮箱: mcalpine@umn.edu			
	博士论文: 3D 打印多功能光电子器件和微流控器件				
2013.8 – 2015.7	辛辛那提大学	机械与材料工程专业	硕士		
	导师: Mark Schulz 教授	邮箱: schulzmk@ucmail.uc.edu			
	硕士论文:应用多物理场方法合成碳纳米管及其组装产品				
2009.9 – 2013.7	华中科技大学	机械设计制造及其自动化专业	学士		
工作经历					
2024.7 - 至今	甬江实验室	先进功能增材制造课题组负责人 研乳			
2022.11 – 2024.6	郑州大学	机械与动力工程学院 副教授			
2021.8 – 2022.10	麻省理工学院	数字化设计与制造	博士后		
	计算机科学与人工智能实验室				
	课题组负责人: Wojciech Matusik 教授	邮箱: wojciech@mit.edu			
2020.11 – 2021.7	明尼苏达大学双城分校	机械工程专业	博士后		
	课题组负责人: Michael McAlpine 教授	邮箱: mcalpine@umn.edu			

国内承担项目

- 1. 国家自然科学基金青年项目,基于触变性流体的屈服特性 3D 打印自支撑微观薄壳结构的机理研究,主持, 2024-2026 年
- 2. 中国博士后科学基金面上项目,面向电子器件封装的自支撑微观薄壳结构的 3D 打印成型机理研究,主持, 2024-2025 年
- 3. 国家重点研发计划青年科学家项目,泛在计算环境下产品协同设计 CAD 云架构技术,参与,2023-2026 年

国外参与项目

纵向项目参与:

- 1. 以**主要参与完成人**身份参与**美国国家科学基金材料研究项目**,明尼苏达大学材料研究科学与工程中心的课题 "3D 打印以硅纳米颗粒作为发光层的发光二极管"(基金号码 DMR-1420013)。首次探究了以硅纳米材料作为 打印墨汁的方法和器件的标定,研究成果以专著的形式发表。
- 2. 以**主要参与完成人**身份参与**美国陆军研究办公室**科学课题"3D 打印以抗菌多肽为传感材料的多路复通微流传感器"(基金号码 W911NF1820175)。首次建立了 3D 打印微流网络和微电子芯片的集成方法,研究成果发表于 Science Advances。
- 3. 以**主要参与完成人**身份参与**美国国立卫生研究院**科学课题"3D 打印纳米仿生器官"(基金号码 1DP2EB020537-01)。探究了用 3D 打印有机光敏材料的方法来实现商业级别量子效率的光电探测器,研究成果发表于 *Advanced Materials*。

横向项目参与:

4. 以**主要参与人**身份完成**波音公司**课题"3D 打印发光二极管柔性显示屏",主导大规模有机二极管阵列的理论 建模和实验验证,研究成果发表于 *Science Advances*。

学术成果

以第一作者(含共同第一作者)身份发表论文、专著:

- 1. **R. Su**, F. Wang, M. C. McAlpine, 3D Printed Microfluidics: Advances in Strategies, Integration, and Applications, *Lab on a Chip* **23**, 1279-1299 (2023) 【─⊠ top, IF 7.52】
- 2. **R. Su**, S. H. Park, X. Ouyang, S. I. Ahn, M. C. McAlpine, 3D Printed Flexible Organic Light-Emitting Diode Displays, *Science Advances* 8, eabl8798 (2022) 【─区 top, IF 14.14】

报道: Nature (2022). DOI: 10.1038/d41586-022-00043-4

- 3. **R. Su**, J. Wen, Q. Su, M. S. Wiederoder, S. J. Koester, J. R. Uzarski, M. C. McAlpine, 3D Printed Self-Supporting Elastomeric Structures for Multifunctional Microfluidics, *Science Advances* 6, eabc9846 (2020) 【─区 top, IF 14.14】
- 4. **R. Su**, S. H. Park, Z. Li, M. C. McAlpine, "3D Printed Electronic Materials and Devices," in Robotic Systems and Autonomous Platforms: Advances in Materials and Manufacturing. Eds: S. M. Walsh, M. S. Strano. CH 13 (Woodhead, Cambridge, 2019)
- 5. S. H. Park* (共一), **R. Su* (共一)**, J. Jeong, S.-Z. Guo, K. Qiu, D. Joung, F. Meng, M. C. McAlpine, 3D Printed Polymer Photodetectors. *Advanced Materials* **30**, 1803980 (2018) 【一区 top, IF 32.09 】 报道: *Nature* (2018). DOI: 10.1038/d41586-018-06193-8

以共同作者身份发表论文:

- 7. K. Qiu, Z. Zhao, G. Haghiashtiani, S.-Z. Guo, M. He, **R. Su**, Z. Zhu, D. Bhuiyan, P. Murugan, F. Meng, S. H. Park, C.-C. Chu, B. M. Ogle, D. A. Saltzman, B. R. Konety, R. M. Sweet, M. C. McAlpine, 3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors. *Advanced Materials Technologies* **3**, 1700235 (2017) 【─⊠ top IF 8.43】
- 8. G. Hou, D. Chauhan, V. Ng, C. Xu, Z. Yin, M. Paine, **R. Su**, V. Shanov, D. Mast, M. Schulz, Y. Liu, Gas Phase Pyrolysis Synthesis of Carbon Nanotubes at High Temperature. *Materials and Design* **132**, 112-118 (2017) [—区 top, IF 8.94]
- 9. G. Hou, **R. Su**, A. Wang, V. Ng, W. Li, Y. Song, L. Zhang, M. Sundaram, V. Shanov, D. Mast, D. Lashmore, M. Mark, Y. Liu, The effect of a convection vortex on sock formation in the floating catalyst method for carbon nanotube synthesis. *Carbon* **102**, 513–519, (2016) 【─⊠ top, IF 11.31】

以共同作者身份发表会议:

10. J. R. Uzarski, M. S. Wiederoder, C. Luckhardt, R. Paffenroth, **R. Su**, M. C. McAlpine, Novel data science driven chemical and biological agent sensors: towards better discrimination in complex environments, *18th International Meeting on Chemical Sensors*, Montreal, Canada (2020)

授权美国专利 1 项,申请美国专利 3 项,申请国际专利 4 项:

- 11. M. C. McAlpine, X. Ouyang, D. Pearson, **R. Su**, "Photodetectors for Measuring Real-Time Optical Irradiance," 美国专利申请: 18/874,948. 国际专利申请: WO2023/244975A2.
- 12. M. C. McAlpine, **R. Su**, S. H. Park, "Organic Light-Emitting Diode (OLED) Display and Methods of Fabrication Using a Multimodal Three-Dimensional (3D) Printing Technique," 美国临时专利申请: 63/247,358. 国际专利申请: PCT/US22/44322.
- 13. M. C. McAlpine, **R. Su**, S. J. Koester, J. R. Uzarski, "Additively Manufactured Self-Supporting Microfluidics," 美国专利: US 11,820,061 B2. 国际专利申请: PCT/US2020/061072.
- 14. E. Crist, D. K. Wood, R. Su, M. C. McAlpine, "Three-Dimensional Microfluidic Metastasis Array," 美国专利申请: 18/556,529. 国际专利申请: PCT/US22/71843.

学术活动

受邀讲座或报告:

- 1. R. Su, "3D Printing Multifunctional Microfluidics," Washington State University, Online, 2022
- 2. **R. Su**, "3D Printing Optoelectronic Materials and Devices," KLA Instruments Display Materials Technology Asia Symposium, Online, 2022
- 3. **R. Su**, "3D Printed Microfluidics with Applications in Drug Screening and Oncology Research," the 6th Annual 3D Tissue Models Summit, Boston, MA, USA, 2021
- 4. **R. Su**, "3D Printed Self-Supporting Elastomeric Microfluidics with Yield-Stress Polymers," Korea Institute of Industrial Technology, Online, 2021

5. **R. Su**, "3D Printing Functional Materials for the Next-Generation Optoelectronic & Microfluidic Devices," 华中科技大学第九届国际青年学者东湖论坛, online, 2020

国际会议演讲报告:

- 6. **R. Su**, "3D Printed Flexible Organic Optoelectronic Arrays," LOPEC 2023 SCIENTIFIC CONFERENCE, Munich, Germany, 2023
- 7. **R. Su**, "3D Printed Flexible Organic Light Emitting Diode Displays," Materials Research Society, Boston, MA, USA, 2021
- 8. R. Su, "3D Printed Multifunctional Devices for Biomedical Applications," Materials Research Society, Online, 2020
- 9. **R. Su**, "3D Printed Self-Supporting Elastomeric Structures for Multifunctional Microfluidics," Materials Research Society, Online, 2020
- 10. R. Su, "3D Printed Polymer Photodetector," Materials Research Society, Boston, MA, USA, 2018

学术期刊服务

- 1. 期刊编委: Micromachines (影响因子 3.5)主题编辑, Additive Manufacturing Frontier 青年编委
- 2. 期刊审稿: Nature Communications, ACS Applied Materials & Interfaces, Communications Engineering, Lab on a Chip, Journal of Materials Chemistry C, npj Flexible Electronics, PLOS ONE, MRS Advances

主要荣誉、获奖				
2022	裴有康 (David Y. H. Pui) 最佳博士论文奖 明尼苏达大学			
2021	最佳博士论文奖	明尼苏达大学机械工程系		
2020	最佳会议报告奖	国际材料协会(Materials Research Society)		
2018	博士生银奖	国际材料协会(Materials Research Society)		
2015-2016	研究生奖学金	明尼苏达大学双城分校		
2015	优秀科研奖	辛辛那提大学机械与材料学院		
2013-2015	研究生奖学金	辛辛那提大学研究生院		
2011	优秀学生奖学金	华中科技大学		
2010	国家励志奖学金		中国教育部	
2010	优秀新生奖学金	华中科技大学机械学院		
教学及领导力				
学生指导	Nicholas Fuhr(2017 夏季 NSF M	MRSEC 本科研究员,	2022 年于波士顿大学获博士学位)	
客座讲师	纳米科学概论	2021 年秋季	弗吉尼亚联邦大学物理系	
	生物制造	2021 年春季	内布拉斯加大学林肯分校机械系	
	纳米技术概论	2019 年秋季	明尼苏达大学双城分校机械系	
教学助理	振动工程	2016 年春季	明尼苏达大学机械系	
	机器运动学与动力学	2013 年秋季	辛辛那提大学机械系	
公共服务	McAlpine 实验室安全负责人	2017-2020	明尼苏达大学双城分校机械系	
144 / L. LIT NA	研究生学生会秘书	2017-2019	明尼苏达大学双城分校机械系	

媒体报道

- 1. "<u>郑大学者提出多模态打印是领域发展趋势,为微流控器件 3D 打印提供系统指南</u>,"麻省理工科技评论,2023 年 3 月
- 2. "MIT 博士后研发世界第一块全 3D 打印 OLED 屏幕,"麻省理工科技评论,2022 年 1 月
- 3. "Print job completed: a bendable image display." 《自然》研究亮点, 2022 年 1 月
- 4. "3D printing microfluidic channels for medical testing." 美国工程院《工程前沿》, 2021年1月
- 5. "How the US Army's scientists are 3D printing cyberpunk-style biological sensors," 3D 打印工业,2020 年 11 月
- 6. "Eyes, wasps and asteroid dust August's best science images," 《自然》新闻, 2018 年 9 月
- 7. "12 innovations that will revolutionize the future of medicine," 国家地理, 2018年12月