SOLUZIONI APPELLO 2016-01

1.

NO.

NON esiste un automa stati finiti in grado di riconoscere L₁.

2.

NO.

È infatti possibile scegliere z=a^pb^pa^pb^p per dimostrare la validità del NEGATO del Pumping Lemma.

3. SÌ.

5.
$$P_0 = P[[abab]] = \{B\}.$$

6. NO.

7.
$$follow(B) = {a,c,\$}.$$

9.

Sia T la tabella di parsing SLR(1) per G_1 .

 $T[I_7,a]$ contiene un conflitto REDUCE/REDUCE.

Le riduzioni coinvolte sono:

-r4:
$$A \rightarrow \epsilon$$
;

-r5: B
$$\rightarrow \epsilon$$
.

$$J_{11} = J_0[[Aa]] = \{[S \rightarrow Aa \cdot B, \{\$\}], [B \rightarrow \cdot, \{\$\}]\}.$$

PARTE B.

[3]

È facile osservare come i body delle produzioni 'A \rightarrow ab' e 'B \rightarrow abb' differiscano per un solo terminale 'b' (in coda).

Supponendo di aver consumato dall'input la sequenza 'aab' e che il prossimo carattere in lettura sia 'b', il parser non riuscirà a decidere se ridurre sulla produzione ' $A \rightarrow ab'$ o spostarsi (con shift) verso uno stato dove sarà invece possibile ridurre su ' $B \rightarrow abb'$.

Per questo motivo, la grammatica certamente NON è LR(1).