Singular Value Decomposition

Sharon Wulff

March 7-8, 2013

SVD Exercise 1

- Refresher on class material

SVD Theorem

Let \mathbf{A} be any real M by N matrix, $\mathbf{A} \in \mathbb{R}^{M \times N}$, then \mathbf{A} can be decomposed as $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$.

- $lackbox{ } \mathbf{U}$ is an M by M orthogonal matrix, such that $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_{(M)}.$
- ightharpoonup Is an M by N diagonal matrix
- $ightharpoonup \mathbf{V}^{ op}$ is also an orthogonal matrix, N by N, $\mathbf{V}^{ op}\mathbf{V} = \mathbf{I}_{(N)}$.

SVD Interpretation

"Users", "Movies" and "Concepts":

- ▶ U: Users-to-concept affinity matrix
- ▶ V: Movies-to-concept similarity matrix
- ▶ **D**: The diagonal elements of **D** represent the "expressiveness" of each concept in the data.

$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$:

1	15	0	0	0	0 \	П
11	0	10.67	0	0	0	Ш
Н	0	0	Q	0	0	П
Ш	0	0	0	0	/0	П
Н	0	0	0	% /	0	П
Н	0	0	0	∕ 0`	0	Н
/	0	0	9	0	0)	1
_						_

Concepts: Horror, Comedy

U: Users-to-concept affinity matrix.

Q: What is the affinity between user1 and horror? 0.57

Concepts: Horror, Comedy

D: Expression level of the different concepts in the data.

Q: What is the expression of the comedy concept in the data? 10.67

Concepts: Horror, Comedy

V: Movies-to-concept similarity matrix.

Q: What is the similarity between Clerks and Horror? 0 What is the similarity between Clerks and Comedy? 0.7

Closest matrix approximation

Let the SVD of $\mathbf{A} \in \mathbb{R}^{M \times N}$ be given by $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$

Define \mathbf{A}_k as

$$\mathbf{A}_k = \sum_{i=1}^k d_i \mathbf{u}_i \mathbf{v}_i^\top$$

Where $k < r = \mathsf{Rank}(\mathbf{A})$

Forbenious norm

Def. The Forbenious norm is matrix norm, defined as the square root of the sum of the absolute squares of its elements.

For $\mathbf{A} \in \mathbb{R}^{M \times N}$:

$$\|\mathbf{A}\|_F := \sqrt{\sum_{i=1}^M \sum_{j=1}^N |A_{i,j}|^2}$$

▶ The matrix A_k is also the closets k-rank matrix, under the forbenious norm (why also?).

Forbenious norm

Comparison with the euclidian norm:

- $\|\mathbf{A}\|_2 = d_1$
- $||\mathbf{A}||_F^2 = d_1^2 + \ldots + d_r^2$

Forbenious norm

Comparison with the euclidian norm:

$$\|\mathbf{A}\|_2 = d_1$$

$$||\mathbf{A}||_F^2 = d_1^2 + \ldots + d_r^2$$

Therefore:

$$\min_{\mathsf{Rank}(\mathbf{B})=k} \left\| \mathbf{A} - \mathbf{B} \right\|_2 = \left\| \mathbf{A} - \mathbf{A_k} \right\|_2 = d_{k+1}$$

while

$$\min_{\mathsf{Rank}(\mathbf{B})=k} \left\| \mathbf{A} - \mathbf{B} \right\|_F^2 = \left\| \mathbf{A} - \mathbf{A_k} \right\|_F^2 = d_{k+1}^2 + \ldots + d_r^2$$

SVD Exercise 1

- Solve the "Pen and Paper" exercise

Assignment - PredictMissingValues

Simple solution:

```
X_pred = PredictMissingValues(X, nil)
missing_values_indices = find(X == nil);
% impute missing values
avg_of_some_sort = func(X, existing values);
X_pred = X;
% Fill in imputed values
X_pred(missing_values_indices) =
avg_of_some_sort(missing_values_indices);
```

Assignment - PredictMissingValues

```
X_pred = PredictMissingValues(X, nil)
% Repeat simple solution, obtain a full matrix X_pred
 [U,S,V] = svd(X_pred);
k = model_selection;
approximation_by_svd = ...
X_pred(missing_values_indices) =
approximation_by_svd(missing_values_indices);
```