MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 1/16

CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo	,
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA	

ELÉTRICA MEMÓRIA DE CÁLCULO DE SPDA

0	AVG	MIK	MIK	25/09/17	EMISSÃO INICIAL / PARA INFORMAÇÃO
REVISÃO	ELABORADO	VERIFICADO	APROVADO	DATA	DESCRIÇÃO DA REVISÃO / PROPÓSITO DA EMISSÃO

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 2/16

CLIENTE: UFABC - Campus São Bernardo do Campo LOCAL: São Bernardo do Campo
PROJETO: Wikilab ATIVIDADE: ELÉTRICA

CONTROLE DE REVISÃO DO DOCUMENTO

1. Deverá ser emitido o documento completo onde será indicado a folha revisada, conforme tabela abaixo.

Revisão	0	1	2	3	4	5	Revisão	0	1	2	3	4	5	Revisão	0	1	2	3	4	5
Folha							Folha							Folha						
1	Х						21							41						
2	Х						22							42						
3	Х						23							43						
4	Х						24							44						
5	X						25							45						
6	Х						26							46						
7	Х						27							47						
8	Х						28							48						
9	Х						29							49						
10	Х						30							50						
11	Х						31							51						
12	Х						32							52						
13	Х						33							53						
14	X						34							54						
15	Х						35							55						
16	X						36							56						
17							37							57						
18							38							58						
19							39							59						
20							40							60						

DOCUMENTOS DE REFERÊNCIA

01) Projeto Executivo - Wikilab

NOTAS

1- MATERIAIS MISCELÂNEAS (PARAFUSOS, PORCAS, ARRUELAS, BUCHAS ETC.) DEVERÃO SER FORNECIDOS PELA MONTADORA COM ESPECIFICAÇÃO CONFORME DETALHES TÍPICOS.

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 3/16

CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA

1- Objetivo:

Este documento tem por finalidade determinar a necessidade, de implantação de uma proteção contra descargas atmosféricas e nos casos onde for necessária a implantação calcular os parâmetros necessários para a elaboração do projeto de SPDA.

2- Introdução:

Descargas atmosféricas para a terra podem ser perigosas para as estruturas e para as linhas de energia e de sinal.

Os perigos para uma estrutura podem resultar em:

- a) Danos à estrutura e ao seu conteúdo;
- b) Falhas aos sistemas eletroeletrônicos associados;
- c) Ferimentos a seres vivos dentro ou perto das estruturas.

Os efeitos consequentes dos danos e falhas podem ser estendidos às vizinhanças da estrutura ou podem envolver o meio ambiente.

Para reduzir as perdas devidos às descargas atmosféricas, podem ser necessárias medidas de proteção. Quando estas são necessárias, e em qual medida, deve ser determinado pela análise de risco.

O risco, definido pela norma ABNT NBR 5419:2015 como a provável perda média anual em uma estrutura devido às descargas atmosféricas, depende de:

- a) O número anual de descargas atmosféricas que influenciam a estrutura;
- b) A probabilidade de dano por uma das descargas atmosféricas que influenciam;
- c) A quantidade média das perdas causadas.

As descargas atmosféricas que influenciam a estrutura podem ser divididas em:

- a) Descargas diretas à estrutura;
- b) Descargas próximas à estrutura, diretas às linhas conectadas (linhas de energia, linhas de telecomunicações) ou perto das linhas.

Descargas atmosféricas diretas à estrutura ou a uma linha conectada podem causar danos físicos e perigo à vida.

Descargas atmosféricas próximas à estrutura ou à linha, assim como as descargas atmosféricas diretas à estrutura ou à linha, podem causar falhas dos sistemas eletroeletrônicos devido às sobretensões resultantes do acoplamento resistivo e indutivo destes sistemas com a corrente da descarga atmosférica.

Entretanto, as falhas causadas pelas sobretensões atmosféricas nas instalações do usuário e nas linhas de suprimento de energia podem também gerar sobretensões do tipo de chaveamento nas instalações.

NOTA: O mau funcionamento dos sistemas eletroeletrônicos não é coberto pela série ABNT NBR 5419:2015. Para tanto, recomenda-se consultar a IEC 61000-4-5.

O número das descargas atmosféricas que influenciam a estrutura depende das dimensões e das características das estruturas e das linhas conectadas, das características do ambiente da estrutura e das linhas, assim como da densidade de descargas atmosféricas para a terra na região onde estão localizadas a estrutura e as linhas.

A probabilidade de danos devido à descarga atmosférica depende da estrutura, das linhas conectadas, e das características da corrente da descarga atmosférica, assim como do tipo e da eficiência das medidas de proteção efetuadas.

A quantidade média da perda consequente depende da extensão dos danos e dos efeitos consequentes, os quais podem ocorrer como resultado de uma descarga atmosférica.

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 4/16

CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA

O efeito das medias de proteção resulta das características de cada medida de proteção e pode reduzir as probabilidades de danos ou a quantidade média da perda consequente.

A decisão de prover uma proteção contra descargas atmosféricas pode ser tomada independentemente do resultado da análise de risco, onde exista o desejo de que não haja este.

3- Referências normativas:

ABNT NBR 5419-1:2015 – Proteção contra descargas atmosféricas – Parte 1: Princípios Gerais; ABNT NBR 5419-2:2015 – Proteção contra descargas atmosféricas – Parte 2: Gerenciamento de Risco:

ABNT NBR 5419-3:2015 – Proteção contra descargas atmosféricas – Parte 3: Danos físicos a estrutura e perigos à vida;

ABNT NBR 5419-4:2015 – Proteção contra descargas atmosféricas – Parte 4: Sistemas elétricos e eletrônicos internos na estrutura;

4- Símbolos e abreviaturas:

а	Taxa de amortização	
~	, and are announced	

- A_D Área de exposição equivalente para descargas atmosféricas a uma estrutura isolada
- A_{n.ı} Área de exposição equivalente para descargas atmosféricas a uma estrutura adjacente
- A_D Área de exposição equivalente atribuída a uma saliência elevada na cobertura
- A_I Área de exposição equivalente para descargas atmosféricas perto de uma linha
- A_L Área de exposição equivalente para descargas atmosféricas em uma linha
- A_M Área de exposição equivalente para descargas atmosféricas perto de uma estrutura
- B Edificação
- C_D Fator de localização
- C_{DJ} Fator de localização de uma estrutura adjacente
- C_E Fator ambiental
- C_I Fator de uma instalação de uma linha
- C_L Custo anual das perdas totais na ausência de medidas de proteção
- C_{LD} Fator dependente da blindagem, aterramento e condições de isolação da linha para descargas atmosféricas na linha
- C_{LI} Fator dependente da blindagem, aterramento e condições de isolação da linha para descargas atmosféricas perto da linha
- C_{LZ} Custo de perdas em uma zona
- C_P Custo das medidas de proteção
- C_{OM} Custo anual das medidas de proteção selecionadas
- C_{RL} Custo anual de perdas residuais
- C_{RLZ} Custo de perdas residuais em uma zona
- C_T Fator de tipo de linha para um transformador AT/BT na linha
- C_a Valor de animais em uma zona, em espécie
- C_b Valor do edifício relevante a zona, em espécie
- C_c Valor do conteúdo em uma zona, em espécie
- C_e Valor total dos bens em locais perigosos fora da estrutura, em espécie
- C_s Valor dos sistemas internos (incluindo suas atividades) em uma zona, em espécie
- C_t Valor total da estrutura, em espécie
- C_z Valor do patrimônio cultural em uma zona, em espécie
- D1 Ferimentos a seres vivos por choque elétrico
- D2 Danos físicos
- D3 Falhas de sistemas eletroeletrônicos
- h_z Fator de aumento de perda quando um perigo especial está presente
- H Altura da estrutura
- H_J Altura de uma estrutura adjacente
- i Taxa de juros
- K_{MS} Fator relevante ao desempenho das medidas de proteção contra LEMP
- K_{S1} Fator relevante à efetividade da blindagem por malha de uma estrutura

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 5/16

			D711711 20/00/2011 1 211 0/10
CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA

K_{S2}	Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura
K _{S3}	Fator relevante as características do cabeamento interno
K _{S4}	Fator relevante à tensão suportável de impulso de um sistema
	· · · · · · · · · · · · · · · · · · ·
L	Comprimento da estrutura
La	Comprimento da estrutura adjacente
L_A	Perda relacionada aos ferimentos a seres vivos por choque elétrico (descargas atmosféricas
	à estrutura)
L_B	Perda em uma estrutura relacionada a danos físicos (descargas atmosféricas à estrutura)
	Comprimento de uma seção da linha
L_{C}	Perda relacionada a falha dos sitemas internas (descargas atmosféricas à estrutura)
L_E	Perda adicional quando os danos envolvem estruturas ao redor
L _F	Perda em uma estrutura devido a danos físicos
L _{FE}	Perda devido a danos físicos fora da estrutura
	Perda total devido a danos físicos dentro e fora da estrutura
L _{FT}	
L_M	Perda relacionada à falha de sistemas internas (descargas atmosféricas perto de uma
	estrutura)
Lo	Perda em uma estrutura devido à falha de sistemas internos
L_{T}	Perda devido a ferimentos por choque elétrico
L_U	Perda relacionada a ferimentos de seres vivos por choque elétrico (descargas atmosféricas
	na linha
L_V	Perda em uma estrutura devido a danos físicos (descargas atmosféricas na linha)
L_W	Perda devido à falha de sistemas internos (descargas atmosféricas na linha)
L_{X}	Perda consequente a danos relevantes a estrutura
L_z	Perda relacionada à falha de sistemas internos (descargas atmosféricas na linha)
L1	Perda de vida humana
L2	Perda de serviço ao público
L3	Perda de patrimônio cultural
L4	Perda de valor econômico
m	Taxa de manutenção
N _X	Número de eventos perigosos por ano
N_D	Número de eventos perigosos devido às descargas atmosféricas em uma estrutura
N_{DJ}	Número de eventos perigosos devido às descargas atmosféricas em uma estrutura adjacente
N_{G}	Densidade de descargas atmosféricas para a terra
N_1	Número de eventos perigosos devido às descargas atmosféricas perto de uma linha
N_{L}	Número de eventos perigosos devido às descargas atmosféricas a uma linha
N_{M}	Número de eventos perigosos devido às descargas atmosféricas perto de uma estrutura
n_{z}	Número de possíveis pessoas em perigo (vítimas ou usuários não servidos)
n _t	Número total de pessoas (ou usuários atendidos) esperado
P	Probabilidade de danos
P_A	Probabilidade de ferimentos de seres vivos por choque elétrico (descargas atmosféricas à
• А	estrutura)
P_{B}	Probabilidade de danos físicos à estrutura (descargas atmosféricas à estrutura)
	, · · · · · · · · · · · · · · · · · · ·
Pc	Probabilidade de falha de sistemas internos (descargas atmosféricas à estrutura)
P_{EB}	Probabilidade de reduzir P _U e P _V dependendo das características da linha e da tensão
_	suportável do equipamento quando EB (ligação equipotencial) é instalada
P_{LD}	Probabilidade de reduzir P _U , P _V e P _W dependendo das características da linha e da tensão
	suportável do equipamento (descargas atmosféricas na linha conectada)
P_{LI}	Probabilidade de reduzir P _Z dependendo das características da linha e da tensão suportável
	do aquipamento (descargas atmosféricas porto da linha conoctada)

 P_{SPD} Probabilidade de reduzir P_{C} , P_{M} , P_{W} e P_{Z} quando um sistema coordenado de DPS está instalado

Probabilidade de falha de sistemas internos (descargas atmosféricas perto da linha

do equipamento (descargas atmosféricas perto da linha conectada)

 P_{M}

conectada)

do equipamento

 P_TA Probabilidade de reduzir P_A dependendo das medidas de proteção contra tensões de toque e

Probabilidade de reduzir P_M dependendo da blindagem, cabeamento e da tensão suportável

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX

 DATA:
 25/09/2017

 FL.:
 6/16

			D71174 20/00/2011 1211 0/10	
CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo	
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA	

passo	
-------	--

- P_U Probabilidade de ferimentos de seres vivos por choque elétrico (descargas atmosféricas perto da linha conectada)
- P_V Probabilidade de danos físicos à estrutura (descargas atmosféricas perto da linha conectada)
- P_w Probabilidade de falha de sistemas internos (descargas atmosféricas na conectada)
- P_X Probabilidade de danos relevantes à estrutura (descargas atmosféricas à estrutura)
- P_Z Probabilidade de falha de sistemas internos (descargas atmosféricas perto da linha conectada)
- r_t Fator de redução associado ao tipo de superfície do solo
- r_f Fator redutor de perda dependente do risco de incêndio
- $r_{\mbox{\tiny p}}$ Fator redutor de perda devido às precauções contra incêndio
- R Risco
- R_A Componente de risco (ferimentos a seres vivos descarga atmosférica na estrutura)
- R_B Componente de risco (danos físicos na estrutura descarga atmosférica na estrutura)
- R_C Componente de risco (falha dos sistemas internos descarga atmosférica na estrutura)
- R_M Componente de risco (falha dos sistemas internos descarga atmosférica perto da estrutura)
- R_S Resistência da blindagem por unidade de comprimento de um cabo
- R_T Risco tolerável
- R_{II} Componente de risco (ferimentos a seres vivos descarga atmosférica na linha conectada)
- R_V Componente de risco (danos físicos na estrutura descarga atmosférica na linha conectada)
- R_W Componente de risco (falha dos sistemas internos descarga atmosférica na linha conectada)
- R_X Componente de risco para uma estrutura
- R_Z Componente de risco (falha dos sistemas internos descarga atmosférica perto da linha)
- R₁ Risco de perda de vida humana em uma estrutura
- R₂ Risco de perda de serviço ao público em uma estrutura
- R₃ Risco de perda de patrimônio cultural em uma estrutura
- R₄ Risco de perda de valor econômico em uma estrutura
- R'₄ Risco R₄ quando medidas de proteção forem adotadas
- S Estrutura
- S Economia anual de dinheiro
- S_L Seção de uma linha
- S₁ Fonte de dano descargas atmosféricas na estrutura
- S₂ Fonte de dano descargas atmosféricas perto da estrutura
- S₃ Fonte de dano descargas atmosféricas na linha
- S₄ Fonte de dano descargas atmosféricas perto da linha
- t_e Tempo, em horas por ano, da presença de pessoas em locais perigosos fora da estrutura
- t_z Tempo, em horas por ano, que pessoas estão presentes em um local perigoso
- T_D Dias de tempestades por ano
- U_W Tensão suportável nominal de impulso de um sistema
- w Largura da malha
- W Largura da estrutura
- W_J Largura da estrutura adjacente
- X Identificador subscrito do componente de risco relevante
- Z_S Zonas de uma estrutura

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 7/16

CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo	
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA	

5- Análise da quantidade de perda Lx:

A perda L_x se refere à quantidade relativa média de um tipo particular de dano para um evento perigoso causado por uma descarga atmosférica considerando a sua extensão e os efeitos. O valor de perda L_x varia com o tipo de perda considerada:

Tabela 1 – Fontes de danos, tipos de danos e tipos de perdas de acordo com o ponto de impacto

Descarga atmo	sférica	Estrutura				
Ponto de impacto	Fonte de danos	Tipo de danos	Tipo de perda			
	S1	D1 D2 D3	L1, L4 ^a L1, L2, L3, L4 L1 ^b , L2, L4			
	S2	D3	L1 b, L2 , L4			
	S3	D1 D2 D3	L1, L4 ^a L1, L2, L3, L4 L1 ^b , L2, L4			
	S4	D3	L1 ^b , L2, L4			

Somente para propriedades onde animais possam ser perdidos.

Tabela 1, ABNT NBR 5419-2:2015, pg.15

Fontes dos danos

- a) S1: descargas atmosféricas na estrutura;
- b) S2: descargas atmosféricas perto da estrutura;
- c) S3: descargas atmosféricas na linha;
- d) S4: descargas atmosféricas perto da linha.

Tipos de danos:

- a) D1: ferimentos aos seres vivos por choque elétrico;
- b) D2: danos físicos;
- c) D3: falhas de sistemas eletroeletrônicos.

Tipos de perdas:

- a) L1: perda de vida humana (incluindo ferimentos permanentes);
- b) L2: perda de serviço ao público;
- c) L3: perda de patrimônio cultural;
- d) L4: perda de valores econômicos (estrutura, conteúdo e perdas de atividades).

Somente para estruturas com risco de explosão ou para hospitais ou outras estruturas onde falhas de sistemas internos podem imediatamente colocar em perigo a vida humana.

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 8/16

CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA

Relevância de perdas para o tipo de estrutura:

É de responsabilidade da autoridade que tenha jurisdição identificar o valor do risco tolerável. Valores representativos de risco tolerável R_T, onde as descargas atmosféricas envolvem perdas de vida humana ou perda de valores sociais ou culturais, são fornecidos na Tabela 4 da ABNT NBR 5419-2:2015.

Em princípio, para perda de valor econômico (L4), a rotina a ser seguida é a comparação custo/benefício dada no anexo D da NBR 5419-2:2015. Se os dados para esta análise não estão disponíveis, o valor representativo de risco tolerável R_T= 10⁻³ pode ser utilizado.

6-Características da estrutura e do meio ambiente:

Para a determinação do valor da Densidade de descargas atmosféricas para terra N_G, consultar o site: http://www.inpe.br/webelat/ABNT_NBR5419_Ng/

O valor adotado é de 10,7 Ng.

Os dados da dimensão da estrutura (largura, comprimento e altura) são obtidos através de levantamento de campo ou informações de projeto e foram adotadas as seguintes dimensões:

Comprimento (m):	10,9	Largura (m):	4,5	Altura (m):	4,7
Área de exposição equivalente da estrutura (m²):				1107.9100354	6

Os dados para o fator de localização da estrutura C_D são dados na tabela A.1 da ABNT NBR 5419-2:2015, e foi adotada a seguinte opção:

Estrutura cercada por objetos mais altos

Os dados para a probabilidade P_B de uma descarga atmosférica em uma estrutura causar danos físicos são dados na tabela B.2 da ABNT NBR 5419-2:2015, e foi adotada a seguinte opção:

Estrutura não protegida por SPDA

Na tabela B.7 da ABNT NBR 5419-2:2015 é dado o valor da probabilidade P_{EB} em função do NP para o qual os DPS foram projetados. Para a definição de valor para ligação equipotencial foi adotado:

DPS: III-IV

Para os valores da blindagem espacial externa, dados na Tabela B.5 da ABNT NBR 5419-2:2015, foi adotada a seguinte opção:

Não blindado (grandes laços > 10 m²)

7-Linha de energia:

Definir o comprimento de uma seção da linha L_L (em m). Quando o comprimento L_L da seção da linha é desconhecido, L_L = 1000 m é assumido conforme itens A.4 e A.5, da ABNT NBR 5419-2:2015.

Comprimento (m): 25

O fator de instalação da linha $C_{\rm l}$ é encontrado na Tabela A.2 da ABNT NBR 5419-2:2015 e foi adotada a seguinte opção:

Enterrado

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 xxx

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 9/16

			2711711 2070072011 1 211 07
CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo
DPO IETO:	Wikilah	ATIVIDADE:	EL ÉTRICA

O fator tipo de linha C_T é encontrado na Tabela A.3 da ABNT NBR 5419-2:2015 e foi adotada a seguinte opção:

Linha de energia ou sinal

O fator ambiental da linha C_E é encontrado na Tabela A.4 da ABNT NBR 5419-2:2015 e foi adotada a seguinte opção:

Urbano

O valor para a blindagem da linha (Ω /Km) é encontrado na Tabela B.8 da ABNT NBR 5419-2:2015 e foi adotada a seguinte opção:

Linha aérea ou enterrada, não blindada ou com blindagem não interligada

Os valores C_{LD} (Fator dependente da blindagem, aterramento e condições de isolação da linha para descargas atmosféricas na linha) e C_{LI} (Fator dependente da blindagem, aterramento e condições de isolação da linha para descargas atmosféricas perto da linha) podem ser encontrados na Tabela B.4 da ABNT NBR 5419-2:2015 e foi adotada a seguinte opção:

C_{LD} = Linha enterrada não blindada

C_{LI} = Linha enterrada não blindada

Os dados da dimensão da estrutura adjacente (largura, comprimento e altura) são obtidos através de levantamento de campo ou informações de projeto e foram adotadas as seguintes dimensões:

Comprimento (m): 0 Largura (m): 0 Altura (m): 0

Os dados do fator de localização da estrutura adjacente são obtidos na Tabela A.1 da ABNT NBR 5419-2:2015 e foi adotada a seguinte opção:

Nenhuma

A tensão suportável nominal de impulso dos sitemas internos U_W é dado em (KV) em valor constante constante de 2,5.

O fator K_{S4} é dado na equação K_{s4} = 1/U_w. O valor máximo de K_{S4} é limitado a 1. Se existirem equipamentos com níveis diferentes de tensão suportável a impulso em um sistema interno, o fator K_{S4} correspondente ao menor nível de tensão suportável de impulso deve ser escolhido.

 $K_{S4} = 0,40$

O valor de P_{LD} , Probabilidade de reduzir P_U , P_V e P_W dependendo das características da linha e da tensão suportável do equipamento (descargas atmosféricas na linha conectada) é dado na Tabela B.8 da ABNT NBR 5419-2:2015 e foi adotado o seguinte valor:

 $P_{LD} = 1,00$

O valor de P_{LI} , probabilidade de reduzir P_Z dependendo das características da linha e da tensão suportável do equipamento (descargas atmosféricas perto da linha conectada) é dado na Tabela B.9 da ABNT NBR 5419-2:2015 e foi adotado o seguinte valor:

 $P_{11} = 0.30$

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 10/16

			D7(17() 20/00/2011 12() 10/10
CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA

8-Linha de sinal:

Definir o comprimento de uma seção da linha L_L (em m). Quando o comprimento L_L da seção da linha é desconhecido, L_L = 1000 m é assumido conforme itens A.4 e A.5, da ABNT NBR 5419-2:2015.

Comprimento (m): 25

O fator de instalação da linha C_1 é encontrado na Tabela A.2 da ABNT NBR 5419-2:2015 e foi adotada a seguinte opção:

Enterrado

O fator tipo de linha C_T é encontrado na Tabela A.3 da ABNT NBR 5419-2:2015 e foi adotada a seguinte opção:

Linha de energia ou sinal

O fator ambiental da linha C_E é encontrado na Tabela A.4 da ABNT NBR 5419-2:2015 e foi adotada a seguinte opção:

Urbano

O valor para a blindagem da linha (Ω /Km) é encontrado na Tabela B.8 da ABNT NBR 5419-2:2015 e foi adotada a seguinte opção:

Linha aérea ou enterrada, não blindada ou com blindagem não interligada

Os valores C_{LD} (Fator dependente da blindagem, aterramento e condições de isolação da linha para descargas atmosféricas na linha) e C_{LI} (Fator dependente da blindagem, aterramento e condições de isolação da linha para descargas atmosféricas perto da linha) podem ser encontrados na Tabela B.4 da ABNT NBR 5419-2:2015 e foi adotada a seguinte opção:

 $C_{LD} =$ Linha enterrada não blindada $C_{LI} =$ Linha enterrada não blindada

Os dados da dimensão da estrutura adjacente (largura, comprimento e altura) são obtidos através de levantamento de campo ou informações de projeto e foram adotadas as seguintes dimensões:

Comprimento (m): 0 Largura (m): 0 Altura (m): 0

Os dados do fator de localização da estrutura adjacente são obtidos na Tabela A.1 da ABNT NBR 5419-2:2015 e foi adotada a seguinte opção:

Nenhuma

A tensão suportável nominal de impulso dos sitemas internos U_W é dado em (KV) em valor constante constante de 2,5.

O fator K_{S4} é dado na equação K_{s4} = 1/U_W. O valor máximo de K_{S4} é limitado a 1. Se existirem equipamentos com níveis diferentes de tensão suportável a impulso em um sistema interno, o fator K_{S4} correspondente ao menor nível de tensão suportável de impulso deve ser escolhido.

 $K_{S4} = 0.40$

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX

 DATA:
 25/09/2017

 FL.:
 11/16

CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA

O valor de P_{LD} , Probabilidade de reduzir P_{U} , P_{V} e P_{W} dependendo das características da linha e da tensão suportável do equipamento (descargas atmosféricas na linha conectada) é dado na Tabela B.8 da ABNT NBR 5419-2:2015 e foi adotado o seguinte valor:

$$P_{LD} = 1,00$$

O valor de P_{LI}, probabilidade de reduzir P_Z dependendo das características da linha e da tensão suportável do equipamento (descargas atmosféricas perto da linha conectada) é dado na Tabela B.9 da ABNT NBR 5419-2:2015 e foi adotado o seguinte valor:

$$P_{LI} = 0.20$$

9- Fatores para definição das Zonas:

Para avaliar cada componente de risco, a estrutura pode ser dividida em zonas Z_S cada uma com características homogêneas. Entretanto, a estrutura pode ser, ou pode assumir ser, uma zona única.

- a) Zonas Z_S são principalmente definidas por:
 - * tipo de solo ou piso (componentes de risco RA e RU);
 - * compartimentos à prova de fogo (componentes de risco RB e RV);
 - * blindagem espacial (componentes de risco R_C e R_M).
- b) Zonas adicionais podem ser definidas de acordo com:
 - * leiaute dos sistemas internos (componentes de risco R_C e R_M);
 - * medidas de proteção existentes ou a serem instaladas (todos componentes de risco);
 - * valores de perdas L_X (todos componentes de risco).

A divisão da estrutura em zona Z_S deve levar em conta a exequibilidade da implementação da maioria das medidas de proteção adequadas.

Zona		Nº pessoas	Tempo de Presença (Horas)
Z1	Externo	1	8760
Z2	Interno	21	8760

Fatores válidos para a zona:

Z1

Para a definição do fator de redução r_t em função do tipo da superfície do solo ou piso, são dados os valores na Tabela C.3 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Agricultura, concreto

Os valores da probabilidade P_{TA} de uma descarga atmosférica em uma estrutura causar ferimentos a seres vivos por meio de choque elétrico, são dados na Tabela B.1 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Nenhuma medida de proteção

Os valores da probabilidade P_{TU} de uma descarga atmosférica em uma linha que adentre a estrutura causar choque a seres vivos devido a tensões de toque perigosas, <u>não são aplicáveis para área</u> externa e são dados na Tabela B.6 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Não Aplicável

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 12/16

			2711711 2070072011 1211 12710
CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA

Os valores do fator de redução r_f em função do risco de incêndio ou explosão na estrutura são dados na Tabela C.5 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Incêndio - Baixo	

Os valores do fator de redução r_p em função das providências tomadas para reduzir as consequências de um incêndio, são dados na Tabela C.4 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Extintores, inst. Oper. Manual, hidrantes, etc.

Os valores da blindagem espacial interna, dentro de uma ZPR (zona de proteção contra descarga atmosférica), em uma distância de segurança do limite da malha no mínimo igual à largura da malha W_m , fator K_{S2} para SPDA ou blindagem tipo malha espacial podem ser avaliado como $K_{S2} = 0.12 \text{ x } W_{m2}$, onde W_{m2} é a largura da blindagem em forma de grade, ou dos condutores de descidas do SPDA tipo malha ou o espaçamento entre as colunas metálicas da estrutura, ou o espaçamento entre as estruturas de concreto armado como um SPDA natural. Para blindagens metálicas contínuas com espessura não inferior a $0.1 \text{ mm } K_{S1} = K_{S2} = 10^{-4}$.

NOTA 1: Onde uma rede de equipotencialização tipo malha for utilizada de acordo com a ABNT NBR 5419-4, valores de K_{S1} e K_{S2} podem ser repartidos ao meio.

Onde o laço de indução estiver passando próximo aos condutores do limite da malha da ZPR a uma distância da blindagem menor que a distância de segurança, os valores de $K_{\rm S1}$ e $K_{\rm S2}$ devem ser dobrados onde a distância para a blindagem varia de 0,1 $W_{\rm m}$ a 0,2 $W_{\rm m}$. Para uma cascata de ZPR, o valor final de $K_{\rm S2}$ é o produto dos $K_{\rm S2}$ resultantes de cada ZPR.

NOTA 2: Os valores máximos de K_{S1} e K_{S2} são limitados a 1.

O valor do fator K_{S3} dependendo da fiação interna (Energia e Telecom) <u>não é aplicável para área externa</u> e é obtido na Tabela B.5 da ABNT NBR 5419-2:2015. Foi adotado a seguinte opção:

Energia	Não Aplicável
Telecom	Não Aplicável

O valor de probabilidade de P_{SPD} (probabilidade de reduzir P_C, P_M, P_W e P_Z quando um sistema coordenado de DPS está instalado) em função do NP (nível de proteção) para o qual o DPS foi projetado (Energia e Telecom), <u>não é aplicável para área externa</u>, é dado na Tabela B.3 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Energia	Nenhum
•	
Telecom	Nenhum

NOTA 1: Um sistema DPS coordenado é efetivo na redução de P_C (probabilidade de falha de sistemas internos - descargas atmosféricas à estrutura) somente em estruturas protegidas por um SPDA ou estruturas com colunas metálicas contínuas ou com colunas de concreto armado atuando como um SPDA natural, onde os requisitos de interligação e aterramento descritos na ABNT NBR 5419-3 forem satisfeitos.

 $\underline{\text{NOTA 2:}}$ Os valores de P_{SBD} podem ser reduzidos para os DPS que tenham características melhores de proteção (maior corrente nominal I_{N} , menor nível de proteção U_{p} , etc.) comparados com os requisitos definidos para NP I nos locais relevantes da instalação (ver ABNT NBR 5419-1:2015, Tabela A.3 para informação das probabilidades de corrente da descarga atmosférica e ABNT NBR 5419-1:2015, Anexo E e ABNT NBR 5419-4:2015, Anexo D ou a divisão da corrente da descarga atmosférica). Os mesmos anexos podem ser utilizados para DPS que tenham maiores probabilidades P_{SPD} .

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 13/16

CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo)
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA	

Os valores do fator Hz aumentando a quantidade relativa de perda na presença de um perigo especial, são dados na Tabela C.6 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Sem perigo especial

Os valores do tipo de perda L1: Valores médios típicos de L_T , L_F e L_O , são obtidos na Tabela C.2 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Tipo de Dano D1

Todos os tipos

Tipo de Dano D2

Hospital, hotel, escola, ed. cívico

Tipo de Dano D3

Nenhum

NOTA 1: Os valores da Tabela C.2 se referem ao atendimento contínuo de pessoas na estrutura.

NOTA 2: No caso de uma estrutura com risco de explosão, os valores para L_F e L_O podem necessitar de uma avaliação mais detalhada, considerando o tipo de estrutura, risco de explosão, o conceito de zona de áreas perigosas e as medidas para encontrar o risco.

O fator para pessoas em perigo é dado na fórmula: $n_Z \div n_t \times t_Z \div 8760$ (Horas)

Os valores do tipo de perda L4: Valores médios típicos de L_T , L_F e L_O , são obtidos na Tabela C.12 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Tipo de Dano D3

Não aplicável

Não aplicável

Fatores válidos para a zona: Z2

Para a definição do fator de redução r_t em função do tipo da superfície do solo ou piso, são dados os valores na Tabela C.3 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Mármore, cerâmica

Os valores da probabilidade P_{TA} de uma descarga atmosférica em uma estrutura causar ferimentos a seres vivos por meio de choque elétrico, são dados na Tabela B.1 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Nenhuma medida de proteção

Os valores da probabilidade P_{TU} de uma descarga atmosférica em uma linha que adentre a estrutura causar choque a seres vivos devido a tensões de toque perigosas, <u>não são aplicáveis para área externa</u> e são dados na Tabela B.6 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Nenhuma medida de proteção

Os valores do fator de redução r_f em função do risco de incêndio ou explosão na estrutura são dados na Tabela C.5 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Incêndio - Baixo

Os valores do fator de redução r_p em função das providências tomadas para reduzir as consequências de um incêndio, são dados na Tabela C.4 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 14/16

			DATA. 23/09/2017 FL 14/10
CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA

Extintores, inst. Oper. Manual, hidrantes, etc.

Os valores da blindagem espacial interna, dentro de uma ZPR (zona de proteção contra descarga atmosférica), em uma distância de segurança do limite da malha no mínimo igual à largura da malha W_m , fator K_{S2} para SPDA ou blindagem tipo malha espacial podem ser avaliado como $K_{S2} = 0.12 \text{ x } W_{m2}$, onde W_{m2} é a largura da blindagem em forma de grade, ou dos condutores de descidas do SPDA tipo malha ou o espaçamento entre as colunas metálicas da estrutura, ou o espaçamento entre as estruturas de concreto armado como um SPDA natural. Para blindagens metálicas contínuas com espessura não inferior a $0.1 \text{ mm } K_{S1} = K_{S2} = 10^{-4}$.

NOTA 1: Onde uma rede de equipotencialização tipo malha for utilizada de acordo com a ABNT NBR 5419-4, valores de K_{S1} e K_{S2} podem ser repartidos ao meio.

Onde o laço de indução estiver passando próximo aos condutores do limite da malha da ZPR a uma distância da blindagem menor que a distância de segurança, os valores de $K_{\rm S1}$ e $K_{\rm S2}$ devem ser dobrados onde a distância para a blindagem varia de 0,1 $W_{\rm m}$ a 0,2 $W_{\rm m}$. Para uma cascata de ZPR, o valor final de $K_{\rm S2}$ é o produto dos $K_{\rm S2}$ resultantes de cada ZPR.

NOTA 2: Os valores máximos de K_{S1} e K_{S2} são limitados a 1.

O valor do fator K_{S3} dependendo da fiação interna (Energia e Telecom) <u>não é aplicável para área externa</u> e é obtido na Tabela B.5 da ABNT NBR 5419-2:2015. Foi adotado a seguinte opção:

Energia	Não blindado (grandes laços > 10 m²)
Telecom	Não blindado (grandes laços > 10 m²)

O valor de probabilidade de P_{SPD} (probabilidade de reduzir P_C , P_M , P_W e P_Z quando um sistema coordenado de DPS está instalado) em função do NP (nível de proteção) para o qual o DPS foi projetado (Energia e Telecom), <u>não é aplicável para área externa</u>, é dado na Tabela B.3 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Energia	Nenhum
Telecom	Nenhum

 $\underline{\text{NOTA 1:}}$ Um sistema DPS coordenado é efetivo na redução de P_C (probabilidade de falha de sistemas internos - descargas atmosféricas à estrutura) somente em estruturas protegidas por um SPDA ou estruturas com colunas metálicas contínuas ou com colunas de concreto armado atuando como um SPDA natural, onde os requisitos de interligação e aterramento descritos na ABNT NBR 5419-3 forem satisfeitos.

NOTA 2: Os valores de P_{SBD} podem ser reduzidos para os DPS que tenham características melhores de proteção (maior corrente nominal I_N, menor nível de proteção U_p, etc.) comparados com os requisitos definidos para NP I nos locais relevantes da instalação (ver ABNT NBR 5419-1:2015, Tabela A.3 para informação das probabilidades de corrente da descarga atmosférica e ABNT NBR 5419-1:2015, Anexo E e ABNT NBR 5419-4:2015, Anexo D ou a divisão da corrente da descarga atmosférica). Os mesmos anexos podem ser utilizados para DPS que tenham maiores probabilidades P_{SPD}.

Os valores do fator Hz aumentando a quantidade relativa de perda na presença de um perigo especial, são dados na Tabela C.6 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Baixo nível de pânico (2 pav. até 100 pessoas)

Os valores do tipo de perda L1: Valores médios típicos de L_T , L_F e L_O , são obtidos na Tabela C.2 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX

 DATA:
 25/09/2017

 FL.:
 15/16

CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA

Tipo de Dano D1	Todos os tipos
Tipo de Dano D2	Hospital, hotel, escola, ed. cívico
Tipo de Dano D3	Nenhum

NOTA 1: Os valores da Tabela C.2 se referem ao atendimento contínuo de pessoas na estrutura.

 $\underline{\text{NOTA 2:}}$ No caso de uma estrutura com risco de explosão, os valores para L_F e L_O podem necessitar de uma avaliação mais detalhada, considerando o tipo de estrutura, risco de explosão, o conceito de zona de áreas perigosas e as medidas para encontrar o risco.

O fator para pessoas em perigo é dado na fórmula: $n_Z \div n_t \times t_Z \div 8760$ (Horas)

Os valores do tipo de perda L4: Valores médios típicos de L_T , L_F e L_O , são obtidos na Tabela C.12 da ABNT NBR 5419-2:2015 e foi adotado a seguinte opção:

Tipo de Dano D2	Não aplicável
Tipo de Dano D3	Não aplicável

10- Cálculo das quantidades relevantes:

Cálculo das áreas de exposição equivalentes da estrutura e das linhas:

	Símbolo	Resultado (m²)
Estrutura	A_D	1,11E+03
LStrutura	A_{M}	8,01E+05
Linha de	$A_{L/P}$	1,00E+03
energia	$A_{I/P}$	1,00E+05
energia	$A_{DA/P}$	0
Linha de	$A_{L/T}$	1,00E+03
sinal	$A_{I/T}$	1,00E+05
Siliai	$A_{DA/T}$	0,00E+00

Cálculo do número anual de eventos perigosos esperados:

	Símbolo	Resultado (m²)
Estrutura	N_D	2,96E-03
Estitutura	N_{M}	8,57E+00
Linha de	$N_{L/P}$	5,35E-04
	$N_{I/P}$	5,35E-02
energia	$N_{DA/P}$	0
Linha de	$N_{L/T}$	5,35E-04
sinal	$N_{I/T}$	5,35E-02
Sirial	$N_{DA/T}$	0,00E+00

MEMÓRIA DE CÁLCULO DE SPDA

 N° EMPRESA:
 XXX

 N° CLIENTE:
 XXX

 OS:
 XXX
 REV.:
 0

 DATA:
 25/09/2017
 FL.:
 16/16

CLIENTE:	UFABC - Campus São Bernardo do Campo	LOCAL:	São Bernardo do Campo
PROJETO:	Wikilab	ATIVIDADE:	ELÉTRICA

11- Risco R1 - Decisão das medidas de proteção:

Tipos de danos	Símbolo	Z1	Z2	Estrutura
D1 Ferimentos	R_A	0,001	0,003	0,004
devido a choque	$R_U=R_{U/P}+R_{U/T}$	0,000	0,001	0,002
D2 Danos físicos	R_B	0,001	0,028	0,029
	$R_V = R_{V/P} + R_{V/T}$	0,000	0,001	0,001
	R_{C}	0,000	0,000	0,000
D3 Falha de	R_{M}	0,000	0,000	0,000
sistemas interno	$R_W = R_{W/P} + R_{W/T}$	0,000	0,000	0,000
	$R_Z=R_{Z/P}+R_{Z/T}$	0,000	0,000	0,000
TOTAL		0,003	0,033	R ₁ : 0,04

R₁ ≥ R_T: Proteção contra descargas atmosféricas é necessária. (RT = 1).

R₁=	0,04	Proteção contra descargas atmosféricas
111	0,04	é desnecessária

12- Risco R1 - Seleção das medidas de proteção:

SPDA	Nenhuma aplicação
Ligação equipotencial	Nenhuma aplicação

Resultado após seleção da medida de proteção:

Tipos de danos	Símbolo	Z1	Z2	Estrutura
D1 Ferimentos	R_A	0,001	0,003	0,004
devido a choque	$R_U=R_{U/P}+R_{U/T}$	0,000	0,001	0,002
D2 Danos	R_B	0,001	0,028	0,029
físicos	$R_V = R_{V/P} + R_{V/T}$	0,000	0,001	0,001
	R_{C}	0,000	0,000	0,000
D3 Falha de sistemas interno	R_{M}	0,000	0,000	0,000
	$R_W = R_{W/P} + R_{W/T}$	0,000	0,000	0,000
	$R_Z=R_{Z/P}+R_{Z/T}$	0,000	0,000	0,000
TOTAL		0,003	0,03265	R ₁ : 0,04

R₁ ≥ R_T: Proteção contra descargas atmosféricas é necessária. (RT = 1).

R ₁ =	0,04	Proteção contra descargas atmosféricas foi atendida

13- Conclusão:

Tipo de proteção SPDA para a estrutura:

Nenhuma aplicação

Número de descidas de SPDA: 0

Tipo de proteção por DPS:

Nenhuma aplicação