Rulebook
Task 0
Task 1
Task 2
Task 3
Task 4
Task 5

Tutorial on Perspective Transform with Open Maze

Progress Task

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

Task 5

Progress Task

[Last Updated on: 19th January 2021, 15:00 Hrs]

NOTE:

Before proceeding further, make sure you have gone through:

- Resources provided for this task and
- Rulebook
- Tutorial for implementing Perspective Transform with Open Maze

Teams should write the solution for this task so that they can easily modify it and solve Task 6 i.e. THE FINAL THEME IMPLEMENTATION.

1. Problem Statement

Develop an algorithm **to navigate the ball through the maze** on top of **2 ball balancing platforms** and **deposit it in the collection box** of the given CoppeliaSim scene.

2. Given

Rulebook	>
Task 0	>
Task 1	>
Task 2	>
Task 3	>
Task 4	>
Task 5	~

Tutorial on Perspective Transform with Open Maze

Progress Task

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

1. CoppeliaSim's Scene File (task_5_scene.ttt)

• A scene file i.e. task_5_scene.ttt of CoppeliaSim software as shown in Figure 1.

Figure 1: CoppeliaSim scene file for Task 5.

• Objects along with their names and uses are provided in Table 1.

Objects	Name in the scene	Use(s)
Green Ball	green_ball_1	Green color ball that is supposed to be steered from one cell of the maze to the other.
Green Ball Convex Hull	green_ball_convex_hull_1	Used for detecting collision with the wall.
Vision Sensor Dummy	vision_sensor_dummy_1, vision_sensor_dummy_4 vision_sensor_dummy_5	Dummy used to position and orient Vision Sensor.
Vision Sensor	vision_sensor_1, vision_sensor_4, vision_sensor_5	Works as the camera in the scene. The output of vision sensor is supposed to be used for Image Processing .
Pedestal	pedestal_t4_1, pedestal_t1_1	Used to provide the necessary height to the ball balancing platform.

Progress Task - eYRC 2020-21: Nirikshak Bot (NB)

Ob	jects	Name in the scene	Use(s)
	ection Box	cb_t1_1, cb_t1_2 cb_t1_3	Used to collect the balls from the exit points of Table-1
	port mmy	import_t1_1, import_t4_1	Used to position the Ball Balancing Platform made by teams in Task 4B.
_	Ball benser	ball_dispenser_respondable_1	Used to dispense balls at regular intervals.

Table 1: Objects in the given scene file along with their names and uses.

- Floating view(s) of the output of vision_sensor_1, vision_sensor_4 and vision_sensor_5 are also shown.
- Important Points to **NOTE**:
 - You are **NOT** allowed to **remove** the above mentioned objects.
 - You are only ALLOWED to change the 'height/z-coordinate' of the following objects:
 - 1. Customizable Conveyor
 - 2. Down Pipe
 - As mentioned in Task 4B, teams CAN decide the resolution of Vision Sensors.
 - Any other change in the properties/position/orientation of the above mentioned objects will lead to POOR/NULL EVALUATION.
- Teams will have to **import their ball balancing platform** from Task 4B.

2. Main Script (task_5.py)

• The python script i.e. task_5.py **NEEDS** to be edited by the teams.

3. Ball Details (ball_details.json)

 This JSON file consists of the details of all balls that will be dispensed by the Ball Dispenser (BD).

4. Maze Images for Table 4 and 1 (maze_t4.jpg , maze_t1.jpg)

eYRC 2020-21: Nirikshak Bot (NB)

Welcome to NB theme!

Rulebook	>
Task 0	>
Task 1	>
Task 2	>
Task 3	>
Task 4	>
Task 5	~

Tutorial on Perspective Transform with Open Maze

Progress Task

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

Rulebook

Task 0

Task 1

Task 2

Task 3

Task 4

Task 5

Tutorial on Perspective Transform with Open Maze

Progress Task

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

 The team should run this executable ONLY after they have completed writing the task_5.py script.

3. Getting Started

- Download the following files in a directory to get started with the task. **Right-click** on the hyperlink and select **Save Link As...** option to download.
 - task 5 scene.ttt
 - task_5.py
 - ball_details.json
 - maze_t4.jpg
 - maze_t1.jpg
 - task5_scene_details

NOTE: The browser might warn that the file can harm your PC, but it will not and you can safely download it.

- Make sure you add following files in the same directory:
 - ∘ sim.py
 - simConst.pv
 - remoteApi.dll (for Windows) OR remoteApi.so (for Linux) OR remoteApi.dylib (for Macintosh)
- Refer **Task 0 Test Setup** for further details.
- Now, read the following instructions carefully.

4. Understanding the Task

A. CoppeliaSim Scene (task_5_scene.ttt)

Rulebook
Task 0
Task 1
Task 2
Task 3
Task 4
Task 5

Tutorial on Perspective Transform with Open Maze

Progress Task

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

Progress Task - eYRC 2020-21: Nirikshak Bot (NB)

(i) General Scene Properties:

- Export the model made by your team in Task 4B as a CoppeliaSim Model File. You can refer
 Figure 10 of Task 1C- Design Ball Balance Platform documentation in order to do so.
- Paste the .ttm file in:
 - Ubuntu OS CoppeliaSim_Edu_V4_0_0_Ubuntu18_04/models/
 - Windows OS C:\Program Files\CoppeliaRobotics\CoppeliaSimEdu\models\
- Refer Figure 2 of Task 1C Design Ball Balance Platform to understand better.
- After you open task_5_scene.ttt, you have to add this model file.
- Use import_t1_1 and import_t4_1 dummies to position your ball balancing platforms. Refer
 Figure 2.

Figure 2: Using import_t1_1 and import_t4_1 dummies to position your ball balancing platforms.

Rulebook	>
Task 0	>
Task 1	>
Task 2	>
Task 3	>
Task 4	>
Task 5	~

Tutorial on Perspective Transform with Open Maze

Progress Task

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

NOTE:

- After positioning your model, make sure to assign the entire model as a child of respective pedestal.
- For example:
 - After positioning base_plate_respondable_t4_1, you will have to assign it as a child of pedestal_t4_1.
- From this task onwards, **you will have to follow the naming convention as mentioned in Table 2.** Make sure to refer the Theme Description to understand the table naming conventio

Object Type No repeated occurrences		Repeated occurrences	
respondables	Insert '_t <table_number>_1'. e.g. base_plate_respondable_t4_1, base_plate_respondable_t3_1</table_number>	Insert '_t <table_number>_<quantity>' after the name. e.g. servo_fin_respondable_t4_1, servo_fin_respondable_t4_2 etc.</quantity></table_number>	
visuals	Insert '_t <table_number>_1'. e.g. yoke_visual_t4_1</table_number>	Insert '_t <table_number>_<quantity>' after the name. e.g. yoke_visual_t4_1, yoke_visual_t4_2 etc.</quantity></table_number>	
force sensors	Insert '_<1st Initial of parent and 1st Initial of child>_t <table_number>_1'. e.g. force_sensor_by_t2_1</table_number>	Insert '_<1st Initial of parent and 1st Initial of child>_t <table_number>_<quantity>' after the name. e.g. force_sensor_by_t2_1, force_sensor_by_t2_2 etc.</quantity></table_number>	
joints (revolute, spherical etc.) Insert '_<1st Initial of parent and 1st Initial of child>_t <table_number>_1'. e.g. revolute_joint_ss_t1_1</table_number>		Insert '_<1st Initial of parent and 1st Initial of child>_t <table_number>_<quantity>' after the name. e.g. revolute_joint_ss_t1_1, revolute_joint_ss_t1_2 etc.</quantity></table_number>	
dummies	Insert '_t <table_number>_1'. e.g. dummy_t3_1</table_number>	Insert '_t <table_number>_<quantity>' after the name. e.g. dummy_t3_1, dummy_t3_2 etc.</quantity></table_number>	

Table 2: Naming convention for respondables, visuals, force sensors, joints and dummies.

- Teams are **ONLY ALLOWED to change the 'height/z-coordinate'** of *customizable conveyor* and *down_pipe*.
- Refer the Figure 3 to learn how to modify the height of conveyor belt.

3/9/2021

Welcome to NB theme!

Rulebook	>
Task 0	>
Task 1	>
Task 2	>
Task 3	>
Task 4	>
Task 5	V

Tutorial on Perspective Transform with Open Maze

Progress Task

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

Progress Task - eYRC 2020-21: Nirikshak Bot (NB)

Figure 3: Modifying the height of conveyor belt.

NOTE:

- **NEVER** click on cross (X) icon next to customizable conveyor. Doing so **will disable the dialog box in the current scene**.
- The conveyor will **have to be inserted again** to bring the dialog box back.
- Teams are **NOT allowed** to modify any other property of the conveyor **such as length**, **width or speed**.

(ii) Collection and Collision Objects:

• For this task, you will have to **create collection and collision object** for **EACH** platform in the scene. Refer Table 3.

Sr. No.	Name of the Collection	Elements to be added in the collection
1	colliding_objects_t1	pegs_t1_1, walls_t1_1
2	colliding_objects_t4	pegs_t4_1, walls_t4_1

Table 3: Naming convention for **Collections**.

Rulebook
Task 0
Task 1
Task 2
Task 3
Task 4
Task 5

Tutorial on Perspective Transform with Open Maze

Progress Task

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

• Click on **Calculation Module Properties** and select **Add new collision object**. Refer Table 4 and Figure 4.

Sr. No.	Name of the Collision Object	Element to be checked	Element to be checked against
1	ball_collision_t1	green_ball_convex_hull_1	colliding_objects_t1
2	ball_collision_t4	green_ball_convex_hull_1	colliding_objects_t4

Table 4: Naming convention for **Collision Objects**.

Collision Object, Selection of Entities

Figure 4: Colliding objects to be added in the Calculation Module dialog box.

• Make sure to check ONLY **Collidee color changes**. On addition of **ball_collision_t1**, the Calculation Module should be as shown in Figure 5.

Rulebook
Task 0
Task 1
Task 2
Task 3
Task 4
Task 5

Tutorial on Perspective Transform with Open Maze

Progress Task

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

 Now click on Adjust collision color -> Ambient/diffuse component and set the RED and GREEN values as 1 whereas the BLUE value as 0.

Figure 5: Addition of *ball_collision_t1* in Calculation Module dialog box.

- This will make sure that the color of collidee i.e. walls and pegs changes to **YELLOW** in case of collision.
- Repeat the same procedure for **ball collision t4**.

(iii) Respondable Objects:

The following objects (apart from the ones given in the scene) are NECESSARY to be kept a
 respondable for ALL the tables.

Sr. No.	Object Name	Global Mask	Local Mask
1	base_plate_respondable	✓	✓
2	servo_holder_respondable	✓	✓
3	yoke_respondable (ONLY the one which is connected to base plate)	✓	✓
4	top_plate_respondable	✓	✓
5	pegs	√	X
6	walls	√	Х

Table 5: Necessary **respondable** elements.

(iv) Collidable Objects:

The following objects (apart from the ones given in the scene) are NECESSARY to be kept a
 collidable for ALL the tables.

Sr. No.	Object Name
1	walls
2	pegs

Table 6: Necessary collidable elements.

(v) Renderable Objects:

3/9/2021

Welcome to NB theme!

Rulebook
Task 0
Task 1
Task 2
Task 3
Task 4
Task 5

Tutorial on Perspective Transform with Open Maze

Progress Task

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

Progress Task - eYRC 2020-21: Nirikshak Bot (NB)

The following objects (apart from the ones given in the scene) are NECESSARY to be kept a
renderable for ALL the tables.

Sr. No.	Object Name
1	top_plate_respondable
2	pegs
3	walls

Table 7: Necessary **renderable** elements.

NOTE:

• In order to set the **walls** as **renderable** and **collidable**, teams will have to using the following API in **createWall()** function of the Lua script:

```
sim.setObjectSpecialProperty(wallObjectHandle,
sim.boolOr32(sim.objectspecialproperty_renderable,
sim.objectspecialproperty_collidable))
```

- You will **not be able** to set an object's special property by repeating the API sim.setObjectSpecialProperty() twice.
- Hence it is necessary to use sim.boolOr32() to enable both the properties of the walls.

B. Python Script (task_5.py)

- The boiler plate code provided contains only 2 functions as follows:
- 1. main(rec_client_id)

Parameters	Details
------------	---------

Rulebook	>
Task 0	>
Task 1	>
Task 2	>
Task 3	>
Task 4	>
Task 5	\checkmark

Tutorial on Perspective Transform with Open Maze

Progress Task

Welcome to NB theme!

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

Parameters	Details
Purpose	Teams are free to design their code in this task. The test executable will only call this function of task_5.py. init_remote_api_server() and exit_remote_api_server() functions are already defined in the executable and hence should NOT be called by the teams. The obtained client_id is passed from the executable to this function so
	that teams can use it in their code. If the executable is not running, teams should call the init_remote_api_server() in the default main function of the task_5.py.
Input Arguments	<pre>rec_client_id : [integer] client_id generated from start connection remote API (called by the</pre>
Return	None
Example Call	main(rec_client_id)

Table 8: *main()* function to be edited by teams in task_5.py.

2. send_color_and_collection_box_identified(ball_color, collection_box_name)

Details
This function should only be called when the task is being evaluated using test executable. The format to send the data to the evaluation script is as 'color::collection_box_name'
<pre>ball_color : [string] Color of the ball identified from vision_sensor_5. collection_box_name : [string]:</pre>
None
<pre>send_color_and_collection_box_identified(ball_color,</pre>

Table 9: **send_color_and_collection_box_identified** function to **NOT** be edited by teams in **task_5.p**:

NOTE: You should **not use sys.exit()** in **task_5.py** or any other dependent Python files, as it will stop the execution and will not generate any output files while testing your solution with **test_task5_exe** file.

Rulebook	>
Task 0	>
Task 1	>
Task 2	>
Task 3	>
Task 4	>
Task 5	~

Tutorial on Perspective Transform with Open Maze

Progress Task

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

5. Expected Output

Teams are provided with a maximum time limit of 180 Simulation Seconds for this task.

NOTE:

- Remember, the task is to *navigate the ball from one table to another by balancing the ball on the platform tables*. So, make sure your solution doesn't let the ball slide
 along or touch each wall of the maze without caring about the collisions that will
 result.
- For the team's submission to be considered VALID, the average Real Time Factor (RTF) of the entire run of task 5 should be >=0.5 (greater than or equal to 0.5).
- Since the entire theme implementation, as per Rulebook has been allotted a
 maximum of 480 simulation seconds, this decision has been taken for the benefit
 of students.
- Having a low RTF will prevent the teams from testing their solution again and again since the real time would be huge.
- o For example:
 - If a team's solutions has a RTF of 0.1 and the entire simulation is taking 400 simulation seconds, in real time it will take 4000 (FOUR THOUSAND) seconds which is around 66.67 minutes per run.
- On running task_5.py, following should happen:
 - 1. **Maze array** of both the tables should be **transferred to the lua's customization scripts**.
 - 2. **Maze should be generated** on top of **both the tables** in the CoppeliaSim scene.
 - 3. **Color of the ball** should be **determined from** *vision_sensor_5*, as soon as the ball is detected.
 - 4. Color of the ball should now be compared with the contents of the *ball_details.json* to **find the correct Collection Box**.
 - 5. Path should be calculated for both the mazes.
 - 6. Paths should be transferred and drawn on top of the mazes.
 - 7. Path on top of **Table 4 should be traversed**.
 - 8. Ball should be passed to conveyor belt.
 - 9. Path on top of Table 1 should be traversed.
 - 10. Ball should be **deposited in the designated collection box**.
- Refer Figure 6 to understand the flow mentioned above.

Rulebook	>
Task 0	>
Task 1	>
Task 2	>
Task 3	>
Task 4	>
Task 5	~

Tutorial on Perspective Transform with Open Maze

Progress Task

Scene Details

App for Grading of Progress Task

Submission Instructions

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

Figure 6: Initial simulation flow of task 5.

6. Testing the Solution and Submission Instructions

- Refer the App for Grading of Progress Task document for testing your solution task_5.py file
- Refer the Submission Instructions document.

ALL THE BEST!!