TD de Logique, feuille 2

Les exercices marqués d'une flèche sont à chercher en priorité. Je recommande d'y réfléchir à l'avance. Ceux qu'on aura pu corriger en TD sont à connaître. Les corrections seront concentrées sur ceux-là, mais vous pouvez toujours me demander des précisions concernant les autres exercices. Les questions ou exercices marqués d'une étoile sont plus difficiles.

\longrightarrow Exercice 1 (Quelques plongements):

- 1. Soit \mathbb{A} un anneau de Boole. Montrer qu'il existe un ensemble I et un morphisme d'anneaux injectif $\mathbb{A} \to (\mathbb{Z}/2\mathbb{Z})^I$.
- 2. Soit X un espace de Stone. Montrer qu'il existe un ensemble I et une injection continue ouverte sur son image $X \to 2^I$, où $2^I = \{0, 1\}^I$ est muni de la topologie produit, qui en fait un espace de Stone.

→ Exercice 2 (Un exemple d'espace de Stone) :

Soit $\mathbb{A}_{\mathbb{R}} \leq \mathcal{P}(\mathbb{R})$ l'algèbre de Boole constituée des unions finies d'intervalles. On note $S(\mathbb{R})$ l'espace de ses ultrafiltres. L'objectif de cet exercice est de décrire l'espace $S(\mathbb{R})$. Soit $U \in S(\mathbb{R})$ un ultrafiltre non principal.

- 1. Montrer que, pour tout intervalle $I \in U$, l'intérieur de I (qui est un intervalle ouvert) appartient à U.
- 2. On suppose que U contient un intervalle borné. Soit $a = \sup\{x \in \mathbb{R} \mid]x, x + 1[\in U\}$.
 - a) Si I est un intervalle borné, on note l(I) sa longueur. Montrer que $\inf_{I\in U} l(I)=0$.
 - b) On suppose que $]a, a+1[\in U$. Montrer que, pour tout $\varepsilon > 0$, l'intervalle $]a, a+\varepsilon[$ est dans U. Puis, montrer que U est égal à $\{X \in \mathbb{A}_{\mathbb{R}} \mid \exists \, \varepsilon > 0 \]a, a+\varepsilon[\subseteq X\}$. On notera $U=a^+$ dans ce cas.
 - c) On suppose que $]a, a+1[\notin U$. Montrer que, pour tout $\varepsilon > 0$, l'intervalle $]a-\varepsilon, a[$ est dans U. Puis, montrer que U est égal à $\{X \in \mathbb{A}_{\mathbb{R}} \mid \exists \, \varepsilon > 0 \]a-\varepsilon, a[\subseteq X\}$. On notera $U=a^-$.
- 3. On suppose que U ne contient pas d'intervalle borné, et que $]-\infty,0[\in U]$. Montrer que, pour tout $b\in\mathbb{R}$, on a $]-\infty,b[\in U]$. En déduire que U est égal à $\{X\in\mathbb{A}_{\mathbb{R}}\mid X \text{ n'est pas minorée}\}$.
- 4. Déduire des questions précédentes une description de l'ensemble sous-jacent à $S(\mathbb{R})$.
- 5. Montrer que les ultrafiltres principaux sont les points isolés de $S(\mathbb{R})$.
- 6. Soit $a \in \mathbb{R}$, et $(x_i)_{i \in \mathbb{N}}$ une suite d'ultrafiltres principaux. Donner une condition nécessaire et suffisante pour que $(x_i)_i$ converge vers a^+ .

Exercice 3 (Compactification):

Soit E un ensemble, et $\mathbb{A} \leq \mathcal{P}(E)$ une algèbre de Boole, contenant tous les singletons. On note S l'espace des ultrafiltres de \mathbb{A} . Soit $f: E \to S$ l'application qui à $x \in E$ associe le filtre engendré par l'élément $\{x\}$ (qui est un ultrafiltre). Montrer que f(E) est dense dans S.

Exercice 4 (Anneaux des formules à équivalence près):

Soient V un ensemble de variables. On rappelle qu'on définit une relation d'équivalence $\equiv \sup \mathcal{F}(V)$, où $\varphi \equiv \psi$ si et seulement si, pour tout $\alpha: V \to \{0,1\}$, on a $[\![\varphi]\!](\alpha) = [\![\psi]\!](\alpha)$. L'ensemble quotient est noté $\mathcal{F}_{\equiv}(V)$. On rappelle les abréviations usuelles : $\top = \bot \to \bot$, $\neg \varphi = \varphi \to \bot$, $\varphi \lor \psi = (\neg \varphi) \to \psi$, $\varphi \land \psi = \neg(\neg \varphi \lor \neg \psi)$. On notera aussi $\varphi \Delta \psi = (\varphi \land \neg \psi) \lor (\psi \land \neg \varphi)$.

- 1. Soient $\varphi_1, \varphi_2, \psi_1, \psi_2 \in \mathcal{F}(V)$ telles que $\varphi_1 \equiv \varphi_2$ et $\psi_1 \equiv \psi_2$. Montrer que $(\varphi_1 \to \psi_1) \equiv (\varphi_2 \to \psi_2)$. En déduire que les opérations logiques \neg , \lor , \land et Δ passent au quotient par la relation \equiv .
- 2. Soit $f: V \to \{0,1\}$. On rappelle que f s'étend en une fonction définie sur $\mathcal{F}(V)$, qu'on note encore f. On munit l'ensemble $\{0,1\}$ de la structure d'anneau de Boole évidente.

```
Vérifier que f(\varphi \wedge \psi) = f(\varphi) \cdot f(\psi), f(\varphi \Delta \psi) = f(\varphi) + f(\psi), f(\bot) = 0 et f(\top) = 1, pour tous \varphi, \psi \in \mathcal{F}(V).
```

- 3. En déduire que $(\mathcal{F}_{\equiv}(V), \Delta, \wedge)$ est un anneau de Boole. Pour démontrer des égalités entre classes de formules, on pourra choisir des représentants adéquats, et utiliser la question 2.
 - Vérifier que la relation d'ordre sur $\mathcal{F}_{\equiv}(V)$ définie en cours coïncide avec celle donnée par la structure d'anneau de Boole.
- 4. Montrer que les opérations \vee , \wedge , \neg et \rightarrow , telles que définies de manière générale pour les anneaux de Boole, coïncident avec les opérations induites par les connecteurs logiques sur l'anneau de Boole $(\mathcal{F}_{\equiv}(V), \Delta, \wedge)$.
- 5. Soit \mathbb{A} un anneau de Boole. Pour toute fonction $f: V \to \mathbb{A}$, on étend f en un fonction définie sur $\mathcal{F}(V)$, via $f(\bot) = 0$ et $f(\varphi \to \psi) = f(\varphi) \to f(\psi)$. Cela généralise sans difficulté la construction vue en cours.
 - a) Soient $\varphi, \psi \in \mathcal{F}(V)$ telles que $\varphi \equiv \psi$. Soit $f: V \to \mathbb{A}$. Montrer que $f(\varphi) = f(\psi)$. Indication: Utiliser l'exercice 1 pour plonger \mathbb{A} dans un $(\mathbb{Z}/2\mathbb{Z})^I$, afin de se ramener à des fonctions $V \to \mathbb{Z}/2\mathbb{Z}$.
 - b) En déduire que toute fonction $f: V \to \mathbb{A}$ induit un morphisme d'anneaux $f: \mathcal{F}_{\equiv}(V) \to \mathbb{A}$
 - c) Montrer que tout morphisme d'anneaux $\mathcal{F}_{\equiv}(V) \to \mathbb{A}$ provient d'une unique fonction $f: V \to \mathbb{A}$.

On dit alors que l'anneau de Boole $\mathcal{F}_{\equiv}(V)$ est l'anneau de Boole libre sur l'ensemble V.

Exercice 5 (D'autres exemples d'espaces de Stone) :

Décrire les espaces d'ultrafiltres (ensemble sous-jacent et topologie) des algèbres de Boole suivantes :

- 1. L'algèbre de Boole $\mathbb{A}_{\mathbb{Z}} \leq \mathcal{P}(\mathbb{R})$ constituée des unions finies d'intervalles à bornes entières ou infinies.
- 2. L'algèbre de Boole $\mathbb{A} \leq \mathcal{P}(E)$ constituée des parties finies ou de complémentaire fini, pour E un ensemble infini.

Exercice 6 (Produits d'anneaux de Boole) :

- 1. Soient \mathbb{A}, \mathbb{B} des anneaux de Boole. Quel est l'espace de Stone correspondant à l'anneau de Boole $\mathbb{A} \times \mathbb{B}$?
- 2. Soit I un ensemble. Décrire les idéaux premiers de l'anneau de Boole $(\mathbb{Z}/2\mathbb{Z})^I$. On pourra, pour \mathfrak{p} un idéal premier de $(\mathbb{Z}/2\mathbb{Z})^I$, considérer $\mathcal{U} = \{A \subseteq I | \mathbf{1}_A \notin \mathfrak{p}\}$, et montrer qu'il s'agit d'un ultrafiltre sur P(I).

Exercice 7 (Dualité de Stone, morphismes):

- 1. Soient X,Y des espaces de Stone, et $f:OF(X)\to OF(Y)$ un morphisme d'anneaux. Montrer qu'il existe une unique fonction continue $F:Y\to X$ telle que $f=F^{-1}$, i.e., pour tout ouvert-fermé $O\subseteq X$, on a $f(O)=F^{-1}(O)$.
- 2. Soient \mathbb{A}, \mathbb{B} des anneaux de Boole, et $F: Spec \mathbb{A} \to Spec \mathbb{B}$ une application continue. Montrer qu'il existe un unique morphisme d'anneaux $f: \mathbb{B} \to \mathbb{A}$ tel que $F = f^{-1}$, i.e., pour tout idéal premier $\mathfrak{p} \in Spec \mathbb{A}$, on a $F(\mathfrak{p}) = f^{-1}(\mathfrak{p})$.