全產鄉電大灣

学生实验实习报告册

字牛字期:			
课程名称:	信号处理实验		
学生学院:	通信与信息工程学院		
专业班级:	01011803		
学生学号:	2018210200		
学生姓名:	性名: 		
联系电话:	15310404664		

重庆邮电大学教务处制

	课程名称	信号处理实验	课程编号		
	实验地点	移动通信技术实验室 YF304	实验时间	10.20 第七周周二	
	校外指导		校内指导	对尽 辿11	
	教师		教师	邵凯	
	实验名称	系统响应及系统稳定性			
	评阅人签		光 体		
	字		成绩		

一、实验目的

学会运用 MATLAB 求解离散时间系统的零状态响应;

学会运用 MATLAB 求解离散时间系统的单位取样响应:

学会运用 MATLAB 求解离散时间系统的卷积和。

二、实验原理

离散时间系统的响应

离散时间 LTI 系统可用线性常系数差分方程来描述, 即

$$\sum_{i=0}^{N} a_i y(n-i) = \sum_{j=0}^{M} b_j x(n-j)$$
(2-1)

其中, a_i (i=0, 1, ..., N) 和 b_i (j=0, 1, ..., M) 为实常数。

MATLAB 中函数 filter 可对式(13-1) 的差分方程在指定时间范围内的输入序列所产生的响应进行求解。函数 filter 的语句格式为

$$y=filter(b,a,x)$$

其中, x 为输入的离散序列; y 为输出的离散序列; y 的长度与 x 的长度一样; b 与 a 分别为差分方程右端与左端的系数向量。

离散时间系统的单位取样响应

系统的单位取样响应定义为系统在 $\delta(n)$ 激励下系统的零状态响应,用 h(n) 表示。MATLAB 求解单位取样响应可利用函数 filter, 并将激励设为单位抽样序列。

MATLAB 另一种求单位取样响应的方法是利用控制系统工具箱提供的函数 impz 来实现。impz 函数的常用语句格式为

impz(b,a,N)

其中, 参数 N 通常为正整数, 代表计算单位取样响应的样值个数。

离散时间信号的卷积和运算

由于系统的零状态响应是激励与系统的单位取样响应的卷积, 因此卷积运算在离散时间信号处理领域被广泛应用。离散时间信号的卷积定义为

$$y(n) = x(n) * h(n) = \sum_{m=-\infty}^{\infty} x(m)h(n-m)$$

可见, 离散时间信号的卷积运算是求和运算, 因而常称为"卷积和"。MATLAB 求 离散时间信号卷积和的命令为 conv, 其语句格式为

$$y=conv(x,h)$$

其中,x与 h表示离散时间信号值的向量;y为卷积结果。用MATLAB进行卷积和运算时,无法实现无限的累加,只能计算时限信号的卷积。

例如,利用 MALAB 的 conv 命令求两个长为 4 的矩形序列的卷积和, 即 g(n) = [u(n) - u(n-4)]*[u(n) - u(n-4)] ,其结果应是长为 7(4+4-1=7) 的三角序列。

对于给定函数的卷积和,我们应计算卷积结果的起始点及其长度。**两个时限序列的卷积和长度等于两个序列长度的和减 1。**

三、实验程序及结果分析

1. (1) 实验代码

```
a=[3 4 1];
b=[1 1];
n=0:30;
x=(n==0);
h=filter(b,a,x);
stem(n,h,'fill'),grid on
xlabel('n'),title('系统单位取样响应h(n)')
```

运行截图

(2) 实验代码

```
a=[2.5 6 10];
b=[1];
n=0:30;
x=(n==0);
h=filter(b,a,x);
stem(n,h,'fill'),grid on
xlabel('n'),title('系统单位取样响应h(n)')
```

运行截图

2. 实验代码

```
nx=-1:6;
nh=-2:12;
x=uDT(nx)-uDT(nx-5);
```

```
h=(7/8).^nh.*(uDT(nh)-uDT(nh-10));
y=conv(x,h);
ny1=nx(1)+nh(1);
ny2=nx (end) + nh (end);
ny=ny1:ny2;
subplot(311)
stem(nx,x,'fill'),grid on
xlabel('n'), title('x(n)')
axis([-4 16 0 5])
subplot(312)
stem(nh,h','fill'),grid on
xlabel('n'),title('h(n)')
axis([-4 16 0 5])
subplot(313)
stem(ny,y,'fill'),grid on
xlabel('n'), title('y(n)=x(n)*h(n)')
axis([-4 20 0 5])
```

运行截图

四、思考题

1. 实验代码

```
nx=-3:3;
nh=-1:4;
x=[3,11,7,0,-1,4,2];
h=[2,3,0,-5,2,1];
ny1=nx(1)+nh(1);
ny2=nx(end)+nh(end);
y=conv(x,h);
ny=ny1:ny2;
stem(ny,y,'fill'),grid on
axis([-4 20 0 5])
```

运行截图 Figure 1 文件(F) 编辑(E) 查看(V) 插入(I) 工具(I) 桌面(D) 窗口(W) 帮助(H) **点**/目①虫Q份 40 30 -20 10 -0 -10 -20 -30 -40 -50 5 10 15 20