Polynomial Time Algorithm for Easy Knapsack Problem

Input: $A = \{a_1, ...a_n\}$ is super-increasing sequence, SOutput From and P—binary array of n elements, P[i] = 1means: a_i becomes to subset of A that sums to S, P[0] = 0otherwise. The algorithm returns FALSE if the subset doesn't exist

for
$$i \leftarrow n$$
 to 1
if $S \ge a_i$
then $P[i] \leftarrow 1$ and $S \leftarrow S - a_i$
else $P[i] \leftarrow 0$
if $S != 0$

then return (FALSE – no solution) else return (P[1], P[2], ..., P[n]).

Example

Public Key:
$$M = 17, W = 7, 2 \le W < 17, (7, 17) = 1$$

$$B=\{7 \mod 17, 14 \mod 17, 28 \mod 17, 56 \mod 17\}=\{7, 14, 11, 5\}$$
Rob Encryption:

- Bob Encryption:
- Plaintext: 1101
 Ciphertext = 7 + 14 + 5 = 26
- Alice Decryption:

 - w = 5 multiplicative inverse of 7 (mod 17) $5*26 \pmod{17} = 11$
 - = Plaintext: 1101 (11 = 1*1 + 1*2 + 0*4 + 1*8)

Alice Knapsack Cryptosystem Construction

- Chooses $A = \{a_1, \dots a_n\}$ super-increasing sequence,
 - A is a private (easy) knapsack
 - $a_1 + \cdots + a_n \neq E$
- \sim Chooses M the next prime larger than E.
- Chooses W that satisfies $2 \le W < M$ and (W, M) = 1
- Computes Public (hard) knapsack $B = \{b_1, \dots b_n\}$, where $b_i = Wa_i \pmod{M}$, $1 \le i \le n$
- Keeps Private Key: A, W, M
- Publishes Public key: B

Bob - Encryption Process

- Binary Plaintext P breaks up into sets of n elements long: $P = \{P_1, ... P_k\}$
 - For each set P_i compute $\sum_{j=1}^n P_i b_j = C_i$
- C_i is the ciphertext that corresponds to plaintext P_i
- $C = \{C_1, ..., C_k\}$ is ciphertext that corresponds to the plaintext P
- C is sent to Alice

Alice - Decryption Process

- Computes w, the multiplicative inverse of $W \mod M$: $wW \equiv 1 \pmod{M}$
- The composition between easy and hard knapsacks: $Wa_i = b_i \pmod{M}$ or $wb_i = a_i \pmod{M}$ $1 \le i \le n$
 - For each C_i computes: $S_i = wC_i \pmod{M}$

$$S_i = wC_i = w\sum_{j=1}^n P_{ij}b_j = \sum_{j=1}^n P_{ij}wb_j = \sum_{j=1}^n P_{ij}a_j$$

Plaintext P_i could be found using polynomial time algorithm for easy knapsack