

Week 08.1: Search and MinHash

DS-GA 1004: Big Data

Finding items in a large collection

- Search and recommendation rely on similarity calculation
- User provides a "query", e.g.:
 - Search string
 - Example document
 - Latent representation
- System returns a list of matching "documents" from the database

Examples

- Text search: search string ⇔ the web (documents)
- Recommender systems: user representation ⇔ item representation
- Reverse image search: photo ⇔ library
- Copyright detection: uploaded video ⇔ all of youtube

Basic approach

- Given a query q
- For each document d in collection
 - \circ Compute **similarity**(q, d)
- Order collection by decreasing similarity
- Return top *k* documents

How can we do this efficiently?

Problems of scale

- Size of collection (N)
- Dimension of representation
- More generally: complexity of computing similarity
- Can we do better than brute force search?

Approximate search

- Use a **fast method** to identify $n \ll N$ candidate nearest neighbors
- Use true similarity on candidate set to discard any false positives
- Fast method usually requires some kind of data structure
 - Search time should be strictly sub-linear: $n \sim o(N)$
 - e.g. log(N) or sqrt(N)

MinHash

[Broder, 1997]

Jaccard similarity for sets

- Items are represented as **sets**, e.g.:
 - o A = {words contained in document A}
 - A = {users who interacted with item A}
- Jaccard similarity is the ratio

$$J(A, B) = |A \cap B| / |A \cup B|$$

MinHash

- Fix a random ordering π of the elements
- Imagine a table of set memberships
- For each set **S**, its hash is:

$$h(S \mid \pi) = \min \{k \mid \pi(k) \in S\}$$

	π(k)	Doc 1	Doc 2	
1	Item 3	1	0	
2	Item 75	0	0	
3	Item 21	0	1	
4	Item 1	0	0	
5	Item 2004	0	1	

$$h(\mathbf{Doc} \ \mathbf{1} \mid \pi) = 1$$

$$h(Doc 2 | \pi) = 3$$

Index of the first (permuted) item belonging to set S

Permutation indexing

```
A = {"T.rex", "Stegosaurus", "PDP-11"}
```

B = {"Apples", "Bananas", "Pine cones"}

C = {"T.rex", "Bananas", "Penguins"}

D = {"Apples", "Turtles", "Pine cones"}

	π(k)	A	В	С	D
1	PDP-11	1	0	0	0
2	Penguins	0	0	1	0
3	Pine cones	0	1	0	1
4	Turtles	0	0	0	1
5	Apples	0	1	0	1
6	T.rex	1	0	1	0
7	Bananas	0	1	1	0
8	Stegosaurus	1	0	0	0

Permutation indexing

$$A = \{\text{"T.rex"}, \text{"Stegosaurus"}, \text{"PDP-11"}\} \rightarrow h(A|\pi) = 1$$

$$B = \{\text{"Apples"}, \text{"Bananas"}, \text{"Pine cones"}\} \rightarrow h(B|\pi) = 3$$

$$\mathbf{C} = \{\text{"T.rex", "Bananas", "Penguins"}\} \rightarrow h(\mathbf{C}|\pi) = 2$$

$$\mathbf{D} = \{\text{``Apples''}, \text{``Turtles''}, \text{``Pine cones''}\} \rightarrow h(\mathbf{D}|\pi) = 3$$

Hash collision is more likely when sets overlap. Let's analyze this!

	π(k)	A	В	С	D
1	PDP-11	1	0	0	0
2	Penguins	0	0	1	0
3	Pine cones	0	1	0	1
4	Turtles	0	0	0	1
5	Apples	0	1	0	1
6	T.rex	1	0	1	0
7	Bananas	0	1	1	0
8	Stegosaurus	1	0	0	0

$$P[h(S_1) = h(S_2)] = Jaccard(S_1, S_2)$$

- For two sets S_1 and S_2 , there are three types of rows:
 - **Type 1**: $\pi(k) \in S_1 \cap S_2$
 - **Type 2**: $\pi(k) \in S_1 \Delta S_2$
 - Type 3: $\pi(k) \notin S_1 \cup S_2$
- Collision
 ⇔ type 1 row occurs before all type 2 rows

	π(k)	А	В	С	D
1	PDP-11	1	0	0	0
2	Penguins	0	0	1	0
3	Pine cones	0	1	0	1
4	Turtles	0	0	0	1
5	Apples	0	1	0	1
6	T.rex	1	0	1	0
7	Bananas	0	1	1	0
8	Stegosaurus	1	0	0	0

$$P[h(S_1) = h(S_2)] = Jaccard(S_1, S_2)$$

- For two sets S_1 and S_2 , there are three types of rows:
 - **Type 1**: $\pi(k) \in S_1 \cap S_2$
 - **Type 2**: $\pi(k) \in S_1 \Delta S_2$
 - Type 3: $\pi(k) \notin S_1 \cup S_2$
- Collision
 ⇔ type 1 row occurs before all type 2 rows
- **P[Collision**] = (# Type 1) / (# Type 1 + # Type 2)

	π(k)	А	В	С	D
1	PDP-11	1	0	0	0
2	Penguins	0	0	1	0
3	Pine cones	0	1	0	1
4	Turtles	0	0	0	1
5	Apples	0	1	0	1
6	T.rex	1	0	1	0
7	Bananas	0	1	1	0
8	Stegosaurus	1	0	0	0

$$P[h(S_1) = h(S_2)] = Jaccard(S_1, S_2)$$

- For two sets S_1 and S_2 , there are three types of rows:
 - **Type 1**: $\pi(k) \in S_1 \cap S_2$
 - **Type 2**: $\pi(k) \in S_1 \Delta S_2$
 - Type 3: $\pi(k) \notin S_1 \cup S_2$
- Collision ⇔ type 1 row occurs before all type 2 rows
- **P[Collision**] = (# Type 1) / (# Type 1 + # Type 2) = $|S_1 \cap S_2|$ / ($|S_1 \cap S_2|$ + $|S_1 \triangle S_2|$)

	π(k)	А	В	С	D
1	PDP-11	1	0	0	0
2	Penguins	0	0	1	0
3	Pine cones	0	1	0	1
4	Turtles	0	0	0	1
5	Apples	0	1	0	1
6	T.rex	1	0	1	0
7	Bananas	0	1	1	0
8	Stegosaurus	1	0	0	0

$$P[h(S_1) = h(S_2)] = Jaccard(S_1, S_2)$$

- For two sets S_1 and S_2 , there are three types of rows:
 - **Type 1**: $\pi(k) \in S_1 \cap S_2$
 - **Type 2**: $\pi(k) \in S_1 \Delta S_2$
 - Type 3: $\pi(k) \notin S_1 \cup S_2$
- Collision
 ⇔ type 1 row occurs before all type 2 rows

• **P[Collision**] = (# Type 1) / (# Type 1 + # Type 2)
=
$$|S_1 \cap S_2|$$
 / $(|S_1 \cap S_2| + |S_1 \Delta S_2|)$
= $|S_1 \cap S_2|$ / $(|S_1 \cup S_2|)$
= $J(S_1, S_2)$ ■

	π(k)	А	В	С	D
1	PDP-11	1	0	0	0
2	Penguins	0	0	1	0
3	Pine cones	0	1	0	1
4	Turtles	0	0	0	1
5	Apples	0	1	0	1
6	T.rex	1	0	1	0
7	Bananas	0	1	1	0
8	Stegosaurus	1	0	0	0

Monte carlo approximation

- **B** and **D** had **P**[collision] = $\frac{1}{2}$ for single permutation π
- But we want the **probability of collision** over all choices of π

• Idea:

- Generate m random permutations π_1 , π_2 , ..., π_m
- \circ Count hash collisions between A and B over all π_i 's
- o J(A, B) ≈ # collisions / m

	π(k)	Α	В	С	D
	PDP-11	1	0	0	0
2	Penguins	0	0	1	0
3	Pine cones	0	1	0	1
1	Turtles	0	0	0	1
5	Apples	0	1	0	1
	T.rex	1	0	1	0
7	Bananas	0	1	1	0
3	Stegosaurus	1	0	0	0

$h(S \mid \pi_i)$	Α	В	С	D
$\pi_{_1}$	0	1	2	1
π_2	2	1	2	5
π_3	0	0	3	6
$\pi_{_{4}}$	9	5	1	1

MinHash signatures

Searching with MinHash

- User provides query q
- Candidates ←{}
- For each π_i :
 - \circ Compute $h(q \mid \pi_i)$
 - Candidates ← Candidates + **colliding documents** $S: h(q \mid \pi_i) = h(S \mid \pi_i)$

	Return	Candidates	ordered	by
--	--------	------------	---------	----

- # Collisions (estimated similarity score), or
- Or full Jaccard similarity (more accurate, but slower)

h(S π _i)	Α	В	С	D
$\pi_{_1}$	0	1	2	1
$\pi_2^{}$	2	1	2	5
π_3	0	0	3	6
π_4	9	5	1	1

Note that we don't to compare to the full collection!

Only those that collide.

Extension to bags / Ruzicka approximation

[Chen, Philbin, Zisserman 2008]

Idea: reduce bags to sets by uniquely identifying each repetition

Jaccard on expanded sets = Ruzicka similarity on original bags

$$R(\mathbf{A}, \mathbf{B}) = \frac{\sum_{i} \min(\mathbf{A}[i], \mathbf{B}[i])}{\sum_{i} \max(\mathbf{A}[j], \mathbf{B}[j])}$$

Improving over word counts

- Word n-grams:
 - "T.rex stomps loudly" → {"T.rex", "stomps", "loudly", "T.rex stomps", "stomps loudly"}
- Character shingles:
 - o "T.rex stomps loudly" → {"T.rex st", ".rex sto", "rex stom", "ex stomp", ...}

Efficient approximation

- Permuting the entire universe is expensive
 - ... and it would not support growing item sets!
- Instead, replace **permutations** π_i with **hashes** H_i
 - A permutation is a **perfect hash**: distinct elements cannot collide
 - Approximate this by an imperfect hash: distinct elements may collide
- As long as H, are unlikely to collide, this can still work

x	H ₁ (x)	H ₂ (x)	A	В	С	D
PDP-11	0	0	1			
Penguins	1	2			1	
Pine cones	2	4		1		1
Turtles	3	0				1
Apples	0	1		1		1
T.rex	1	3	1		1	
Bananas	2	5		1	1	
Stegosaurus	3	1	1			

	A	В	С	D
H ₁	_∞	∞	_∞	∞
H ₂	_∞	_∞	_∞	∞

Signature table is initialized to infinity for each entry

x	H ₁ (x)	H ₂ (x)	A	В	С	D
PDP-11	0	0	1			
Penguins	1	2			1	
Pine cones	2	4		1		1
Turtles	3	0				1
Apples	0	1		1		1
T.rex	1	3	1		1	
Bananas	2	5		1	1	
Stegosaurus	3	1	1			

	A	В	С	D
H ₁	0 😁	∞	∞	∞
H ₂	0 😁	_∞	_∞	∞

A, H_1 : $0 < \infty \rightarrow update$ A, H_2 : $0 < \infty \rightarrow update$

x	H ₁ (x)	H ₂ (x)	A	В	С	D
PDP-11	0	0	1			
Penguins	1	2			1	
Pine cones	2	4		1		1
Turtles	3	0				1
Apples	0	1		1		1
T.rex	1	3	1		1	
Bananas	2	5		1	1	
Stegosaurus	3	1	1			

	A	В	С	D
H ₁	0	∞	1 \infty	∞
H ₂	0	_∞	2 😁	∞

C, H_1 : 1 < $\infty \rightarrow$ update C, H_2 : 2 < $\infty \rightarrow$ update

x	H ₁ (x)	H ₂ (x)	A	В	С	D
PDP-11	0	0	1			
Penguins	1	2			1	
Pine cones	2	4		1		1
Turtles	3	0				1
Apples	0	1		1		1
T.rex	1	3	1		1	
Bananas	2	5		1	1	
Stegosaurus	3	1	1			

	A	В	С	D
H ₁	0	2 \infty	1	2 ∞
H ₂	0	4 😁	2	4 ∞

B, H_1 : $2 < \infty \rightarrow update$ B, H_2 : $4 < \infty \rightarrow update$ D, H_1 : $2 < \infty \rightarrow update$ D, H_2 : $4 < \infty \rightarrow update$

x	H ₁ (x)	H ₂ (x)	A	В	С	D
PDP-11	0	0	1			
Penguins	1	2			1	
Pine cones	2	4		1		1
Turtles	3	0				1
Apples	0	1		1		1
T.rex	1	3	1		1	
Bananas	2	5		1	1	
Stegosaurus	3	1	1			

	A	В	С	D
H ₁	0	2	1	2
H ₂	0	4	2	0 4

D, H_1 : 3 > 2 \rightarrow no update D, H_2 : 0 < 4 \rightarrow update

x	H ₁ (x)	H ₂ (x)	A	В	С	D
PDP-11	0	0	1			
Penguins	1	2			1	
Pine cones	2	4		1		1
Turtles	3	0				1
Apples	0	1		1		1
T.rex	1	3	1		1	
Bananas	2	5		1	1	
Stegosaurus	3	1	1			

	A	В	С	D
H ₁	0	0 2	1	0 2
H ₂	0	13	2	0

B, H_1 : $0 < 2 \rightarrow update$ B, H_2 : $1 < 3 \rightarrow update$ D, H_1 : $0 < 2 \rightarrow update$ D, H_2 : $1 > 0 \rightarrow no update$

x	H ₁ (x)	H ₂ (x)	A	В	С	D
PDP-11	0	0	1			
Penguins	1	2			1	
Pine cones	2	4		1		1
Turtles	3	0				1
Apples	0	1		1		1
T.rex	1	3	1		1	
Bananas	2	5		1	1	
Stegosaurus	3	1	1			

	A	В	С	D
H ₁	0	0	1	0
H ₂	0	1	2	0

A, H_1 : 1 > 0 \rightarrow no update A, H_2 : 3 > 0 \rightarrow no update C, H_1 : 1 = 1 \rightarrow no update C, H_2 : 3 > 2 \rightarrow no update

x	H ₁ (x)	H ₂ (x)	A	В	С	D
PDP-11	0	0	1			
Penguins	1	2			1	
Pine cones	2	4		1		1
Turtles	3	0				1
Apples	0	1		1		1
T.rex	1	3	1		1	
Bananas	2	5		1	1	
Stegosaurus	3	1	1			

	A	В	С	D
H ₁	0	0	1	0
H ₂	0	1	2	0

B, H_1 : 2 > 0 \rightarrow no update B, H_2 : 5 > 1 \rightarrow no update C, H_1 : 2 > 1 \rightarrow no update C, H_2 : 5 > 2 \rightarrow no update

x	H ₁ (x)	H ₂ (x)	A	В	С	D
PDP-11	0	0	1			
Penguins	1	2			1	
Pine cones	2	4		1		1
Turtles	3	0				1
Apples	0	1		1		1
T.rex	1	3	1		1	
Bananas	2	5		1	1	
Stegosaurus	3	1	1			

	A	В	С	D
H ₁	0	0	1	0
H ₂	0	1	2	0

A, H_1 : 3 > 0 \rightarrow no update A, H_2 : 1 > 0 \rightarrow no update

	Α	В	С	D
	1			
			1	
		1		1
				1
		1		1
	1		1	
		1	1	
	1			

	A	В	С	D
H ₁	0	0	1	0
H ₂	0	1	2	0

Collisions:

- H_1 : $A \equiv B \equiv D \neq C$
- H_2 : $A \equiv D \neq B \neq C$

Failure modes of MinHash

- Permutation MinHash:
 - Collisions are more likely when a small set of items are shared across many documents
 - \circ \Rightarrow "Stop-words" can be deadly! "The", "and", "or", etc...
- Hashing approximation only makes things worse
 - Two distinct items can now hash to the same value
 - Collision probability only increases with the hashing approximation
 - High collision likelihood ⇒ large candidate sets ⇒ slow retrieval

sets, but maintain high recall?

How can we reduce the size of candidate

... come back for part 2!