Today

Probability: Keep building it formally.. And our intuition.

Poll: blows my mind.

Flip 300 million coins.

Which is more likely?

- (A) 300 million heads.
- (B) 300 million tails.
- (C) Alternating heads and tails.
- (D) A tail every third spot.

Given the history of the universe up to right now.

What is the likelihood of our universe?

- (A) The likelihood is 1. Cuz here it is.
- (B) As likely as any other. Cuz of probability.
- (C) Well. Quantum. IDK-TBH.

Perhaps a philosophical ("wastebasket") question.

Also, "cuz" == "because"

Probability Basics.

Probability Space.

- 1. **Sample Space:** Set of outcomes, Ω .
- **2**. **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$.
 - 2.1 $0 \le Pr[\omega] \le 1$.
 - 2.2 $\sum_{\omega \in \Omega} Pr[\omega] = 1$.

Example: Two coins.

- 1. $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)
- 2. $Pr[HH] = \cdots = Pr[TT] = 1/4$

Consequences of Additivity

Theorem

- (a) Inclusion/Exclusion: $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$;
- (b) Union Bound: $Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n]$;
- (c) Law of Total Probability:

If
$$A_1, ... A_N$$
 are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$, then

$$Pr[B] = Pr[B \cap A_1] + \cdots + Pr[B \cap A_N].$$

Proof Idea: Total probability.

Add it up!

Add it up. Poll.

What does Rao mean by "Add it up."

- (A) Organize intuitions/proofs around $Pr[\omega]$.
- (B) Organize intuition/proofs around *Pr*[*A*].
- (C) Some weird song whose refrain he heard in his youth.
- (A), (B), and (C)

Conditional Probability.

Definition: The **conditional probability** of *B* given *A* is

$$Pr[B|A] = rac{Pr[A \cap B]}{Pr[A]}$$

Note also:

$$Pr[A \cap B] = Pr[B|A]Pr[B]$$

Product Rule

Def:
$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}$$
.

Also:
$$Pr[A \cap B] = Pr[B|A]Pr[B]$$

Theorem Product Rule

Let A_1, A_2, \dots, A_n be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Simple Bayes Rule.

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}, Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$

 $Pr[A \cap B] = Pr[A|B]Pr[B] = Pr[B|A]Pr[A].$

Bayes Rule: $Pr[A|B] = \frac{Pr[B|A]Pr[A]}{Pr[B]}$.

Is you coin loaded?

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$ Now.

$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

= $(1/2)(1/2) + (1/2)0.6 = 0.55.$

Thus,

$$Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$$

Independence

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

- ▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right)$.
- ▶ When rolling two dice, A = sum is 3 and B = red die is 1 are not independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{2}{36}\right)\left(\frac{1}{6}\right)$.
- ▶ When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent; $Pr[A \cap B] = \frac{1}{4}$, $Pr[A]Pr[B] = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$.
- ▶ When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are not independent; $Pr[A \cap B] = \frac{1}{27}, Pr[A]Pr[B] = \left(\frac{8}{27}\right)\left(\frac{8}{27}\right)$.

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that

$$Pr[A|B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B].$$

Conditional Probability: Review

Recall:

- $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}.$
- ► Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A], i.e., if Pr[A∩B] > Pr[A]Pr[B].
- A and B are negatively correlated if Pr[A|B] < Pr[A],
 i.e., if Pr[A∩B] < Pr[A]Pr[B].
- ▶ A and B are independent if Pr[A|B] = Pr[A], i.e., if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated. (Pr[A|B] = 1 > Pr[A])
- Note: $A \cap B = \emptyset \Rightarrow A$ and B are negatively correlated. (Pr[A|B] = 0 < Pr[A])

Conditional Probability: Pictures/Poll.

Illustrations: Pick a point uniformly in the unit square

Which A and B are independent?

- (A) Left.
- (B) Middle.
- (B) Right.

See next slide.

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- Middle: A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- ▶ Right: A and B are negatively correlated. $Pr[B|A] = b_1 < Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_1, b_2)$.

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$\begin{split} Pr[A] &= 0.5; Pr[\bar{A}] = 0.5 \\ Pr[B|A] &= 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5 \\ Pr[B] &= 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \\ Pr[A|B] &= \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} = \frac{Pr[A]Pr[B|A]}{Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]} \\ &\approx 0.46 = \text{fraction of } B \text{ that is inside } A \end{split}$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$\begin{aligned} & Pr[A_n] = p_n, n = 1, \dots, N \\ & Pr[B|A_n] = q_n, n = 1, \dots, N; Pr[A_n \cap B] = p_n q_n \\ & Pr[B] = p_1 q_1 + \dots + p_N q_N \\ & Pr[A_n|B] = \frac{p_n q_n}{p_1 q_1 + \dots + p_N q_N} = \text{ fraction of } B \text{ inside } A_n. \end{aligned}$$

Bayes Rule

A general picture: We imagine that there are N possible causes A_1, \ldots, A_N .

100 situations: $100p_nq_n$ where A_n and B occur, for $n=1,\ldots,N$. In $100\sum_m p_mq_m$ occurrences of B, $100p_nq_n$ occurrences of A_n . Hence,

$$Pr[A_n|B] = \frac{p_nq_n}{\sum_m p_mq_m}.$$

But, $p_n = Pr[A_n], q_n = Pr[B|A_n], \sum_m p_m q - m = Pr[B]$, hence,

$$Pr[A_n|B] = \frac{Pr[B|A_n]Pr[A_n]}{Pr[B]}.$$

Why do you have a fever?

$$Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58$$

$$Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}$$

$$Pr[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42$$

The values $0.58,5 \times 10^{-8}, 0.42$ are the posterior probabilities.

Why do you have a fever?

Our "Bayes' Square" picture:

Note that even though Pr[Fever|Ebola] = 1, one has

 $Pr[Ebola|Fever] \approx 0.$

This example shows the importance of the prior probabilities.

Why do you have a fever?

We found

$$Pr[\text{Flu}|\text{High Fever}] \approx 0.58,$$

 $Pr[\text{Ebola}|\text{High Fever}] \approx 5 \times 10^{-8},$
 $Pr[\text{Other}|\text{High Fever}] \approx 0.42$

'Flu' is Most Likely a Posteriori (MAP) cause of high fever.
'Ebola' is Maximum Likelihood Estimate (MLE) of cause:
 causes fever with largest probability.

Recall that

$$p_m = Pr[A_m], q_m = Pr[B|A_m], Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \dots + p_M q_M}.$$

Thus,

- ► MAP = value of m that maximizes $p_m q_m$.
- MLE = value of m that maximizes q_m.

Bayes' Rule Operations

Bayes' Rule: canonical example of how information changes our opinions.

Thomas Bayes

Portrait used of Bayes in a 1936 book, ^[1] but it is doubtful whether the portrait is actually of him. ^[2] No earlier portrait or claimed portrait survives.

Born c. 1701

Died

London, England

7 April 1761 (aged 59)

Tunbridge Wells, Kent, England

Residence Tunbridge Wells, Kent, England

Nationality English

Known for Bayes' theorem

Source: Wikipedia.

Thomas Bayes

A Bayesian picture of Thomas Bayes.

Testing for disease.

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- ightharpoonup Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ightharpoonup Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- ▶ $Pr[B|\overline{A}] = 0.10$ (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

$$Pr[A|B]$$
???

Bayes Rule.

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.

Quick Review

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

- ▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.
- ► Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

$$Pr[A_n|B] = posterior probability; Pr[A_n] = prior probability$$
.

All these are possible:

$$Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].$$

Independence

Recall:

A and B are independent

$$\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$$

$$\Leftrightarrow Pr[A|B] = Pr[A].$$

Consider the example below:

Which are independent? (A)
$$(A_2,B)$$
 (B) (A_2,\bar{B}) (C) (A_1,B) . (A_2,B) are independent: $Pr[A_2|B]=0.5=Pr[A_2]$. (A_2,\bar{B}) are independent: $Pr[A_2|\bar{B}]=0.5=Pr[A_2]$. (A_1,B) are not independent: $Pr[A_1|B]=\frac{0.1}{0.5}=0.2\neq Pr[A_1]=0.25$.

Pairwise Independence

Flip two fair coins. Let

- $ightharpoonup A = \text{`first coin is H'} = \{HT, HH\};$
- ▶ B = 'second coin is H' = {TH, HH};
- ightharpoonup C = 'the two coins are different' = {TH, HT}.

A, C are independent; B, C are independent;

 $A \cap B$, C are not independent. $(Pr[A \cap B \cap C] = 0 \neq Pr[A \cap B]Pr[C]$.)

False: If A did not say anything about C and B did not say anything about C, then $A \cap B$ would not say anything about C.

Example 2

Flip a fair coin 5 times. Let A_n = 'coin n is H', for n = 1, ..., 5.

Then,

 A_m , A_n are independent for all $m \neq n$.

Also,

 A_1 and $A_3 \cap A_5$ are independent.

Indeed,

$$Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1]Pr[A_3 \cap A_5].$$

Similarly,

 $A_1 \cap A_2$ and $A_3 \cap A_4 \cap A_5$ are independent.

This leads to a definition

Mutual Independence

Definition Mutual Independence

(a) The events $A_1, ..., A_5$ are mutually independent if

$$Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k], \text{ for all } K\subseteq \{1,\dots,5\}.$$

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

$$Pr[\cap_{k\in\mathcal{K}}A_k] = \prod_{k\in\mathcal{K}}Pr[A_k], \text{ for all finite } K\subseteq J.$$

Example: Flip a fair coin forever. Let A_n = 'coin n is H.' Then the events A_n are mutually independent.

Mutual Independence

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

 $\cap_{k \in K_1} A_k$ and $\cap_{k \in K_2} A_k$ are independent.

(b) More generally, if the K_n are pairwise disjoint finite subsets of J, then the events

 $\cap_{k \in K_n} A_k$ are mutually independent.

(c) Also, the same is true if we replace some of the A_k by \bar{A}_k .

Conditional Probability: Review

Recall:

- $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}.$
- ▶ Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A], i.e., if Pr[A∩B] > Pr[A]Pr[B].
- A and B are negatively correlated if Pr[A|B] < Pr[A], i.e., if Pr[A∩B] < Pr[A]Pr[B].</p>
- ▶ A and B are independent if Pr[A|B] = Pr[A], i.e., if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated. (Pr[A|B] = 1 > Pr[A])
- Note: $A \cap B = \emptyset \Rightarrow A$ and B are negatively correlated. (Pr[A|B] = 0 < Pr[A])

Quick Review.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- ▶ Bayes' Rule: $Pr[A_m|B] = p_m q_m/(p_1 q_1 + \cdots + p_M q_M)$.
- Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$