Optimization Model for Scrum-based Software Development

Decision Variables

d_s : Sprint duration in days	$7 \le d_s \le 30, d_s \in \mathbb{Z}$
e_t : Effort estimate for task t	$0.5 \le e_t \le 40$
n_{team} : Team size	$3 \le n_{\text{team}} \le 15, n_{\text{team}} \in \mathbb{Z}$
sp_s : Story points planned in sprint s	$5 \le sp_s \le 50, sp_s \in \mathbb{Z}$
l_{sk} : Skill level of skill k	$1 \le l_{sk} \le 5, l_{sk} \in \mathbb{Z}$
sev_b : Severity of blocker b	$1 \le sev_b \le 10, sev_b \in \mathbb{Z}$
av_e : Availability of employee e	$0 \le av_e \le 100$
f_r : Number of features in release r	$1 \le f_r \le 20, f_r \in \mathbb{Z}$
n_{sprint} : Number of sprints for velocity calculation	$1 \le n_{sprint} \le 10, n_{sprint} \in \mathbb{Z}$
c_t : Task t completion status	$c_t \in \{0, 1\}$

Objectives

$$\max \sum_{s} v_{s} \qquad \qquad \text{(Maximize sprint velocity)}$$

$$\min \sum_{b} \text{bugs}_{b} \qquad \qquad \text{(Minimize bugs)}$$

$$\max \sum_{r} f_{r} \qquad \qquad \text{(Maximize features delivered)}$$

$$\min \sum_{t} e_{t} \qquad \qquad \text{(Minimize total task effort)}$$

$$\max \sum_{e} av_{e} \qquad \qquad \text{(Maximize team availability)}$$

Constraints

$$\forall T, \quad \exists P : \operatorname{assigned}(T,P) \qquad \qquad \text{(Team assigned to at least one project)} \\ \forall e, \quad \sum_{k} \operatorname{hasSkill}(e,k) \geq 1 \qquad \qquad \text{(Employee has at least one skill)} \\ \forall e, \quad \sum_{k} \operatorname{hasRole}(e,r) \geq 1 \qquad \qquad \text{(Employee has at least one role)} \\ \forall T, \quad \sum_{k} \operatorname{supports}(k,k) = 1 \qquad \qquad \text{(One Scrum Master per team)} \\ \forall sb, \quad \exists s: \operatorname{belongs}(sb,s) \qquad \qquad \text{(Sprint backlog belongs to sprint)} \\ \forall f, \quad \operatorname{status}(f) \neq \operatorname{Cancelled} \qquad \qquad \text{(Feature status restriction)} \\ \forall s, \quad \sum_{k \in sb_s} e_k \leq C_s \qquad \qquad \text{(Task effort within sprint capacity)} \\ \forall b, \quad \operatorname{sev}_b \leq S_{max} \qquad \qquad \text{(Blocker severity limit)} \\ \forall pb, \quad \operatorname{status}(pb) = \operatorname{Active} \qquad \qquad \text{(Active product backlog)} \\ \forall t, \quad \operatorname{status}(t) \in \{\operatorname{ToDo}, \operatorname{In Progress}, \operatorname{Done}\} \qquad \qquad \text{(Allowed task statuses)} \\ \end{aligned}$$