TargetDB: A target information aggregation tool and tractability predictor

Features: Overall picture

Targets identification

- Genome wide association studies
- RNAi Screens
- Crispr/Cas9 Screens
- Proteomics
- Knock-out phenotypes

Increased number of proposed targets

+

Targets evaluation

DRUGGABILITY

- Binding domains?
- Crystal structure ?
- Assayability?
- Small molecules?

VALIDITY

+

Confidence in the data

- In vivo models
- k.o. phenotypes
- Target validation experiments?

TOXICITY

- Phenotype data
- Tissue expression

TRACTABILITY

- Can be used to make strategic decisions
- Prioritise/rank lists of targets

^{1.} Gashaw, I., Ellinghaus, P., Sommer, A. & Asadullah, K. What makes a good drug target? *Drug Discov. Today* 17, (2011).

^{2.} Brown, K. K. et al. Approaches to target tractability assessment – a practical perspective. Medchemcomm 597–748 (2018). doi:10.1039/C7MD00633K

Aggregated data

Biology

Chemistry / Structural Biology

Literature

All code is open source and available on GitHub

TargetDB: Main workflow

All code is open source and available on GitHub

Step 1: Installing a python distribution

- TargetDB is a python package and needs a python distribution to work.
- It also relies on several other packages to function properly.
- If you already have a python distribution installed you can skip these steps.

After the installation

You should have a folder in your start menu with Anaconda3 (64-bit) in that folder you can **open** the **Anaconda Prompt** software

Note to MacOS and Linux user: Use the terminal app instead

Step 2: Installing TargetDB package

In the Anaconda prompt window simply type: pip install targetDB

After some time, you should see a line saying: Successfully installed targetdb-1.3.0

Step 3: Downloading TargetDB database

• You can download the database here: https://github.com/sdecesco/targetDB/releases/download/v1.3.1/TargetDB_20_12_19.db.zip

After downloading just unzip it in your desired location (unzipped file is > 7Gb)

requirements

Python version >= 3.4

Preferred python distribution

Anaconda 3

(https://www.anaconda.com/distribution/)

Step 4: Starting TargetDB for the first time

- Go back to the Anaconda prompt terminal and type: targetDB
- After a few seconds a window should appear (with empty boxes in the first launch)

	CONFIGURATION		
Databases			
Please browse to a valid targetDB database file:	C:\Users\sdecesco\Documents\databases\TargetDB_20_	02_19.db\TargetDB_20_02_19.db	Browse
Outputs]	
Please select a folder in which to save LISTS outputs:	C:\Users\sdecesco\Documents\TargetDB\list_outputs		Browse
Please select a folder in which to save SINGLE outputs:	C:\Users\sdecesco\Documents\TargetDB\single_output		Browse
Pubmed]	
Enter your email address (used for pubmed searches - pubmed api requires an email for batch requests)	john.doe@jdoe.com		
	Save & Close		

- Fill in the information for each line (4 in total)
 - Database line: tell the software where the database file is saved (see step 3)
 - Outputs (The program generates two types of outputs depending the mode used)
 - LISTS: Please indicate a folder in which it will save the lists outputs
 - SINGLE: Please indicate a folder in which it will save single outputs
 - Note: These two folder can be the same
 - **Pubmed:** TargetDB use a pubmed search to pull out relevant papers on targets or paper numbers if in list mode, it requires the user email address to use this functionality.
- Click on Save and Close button
- The main targetDB window should appear

Step 5: Future TargetDB start

The setting window described in step 4 can be called back if you require to make changes to the output folders / database location and/or email address

Database creation mode

- Not Preferred

- The user can also choose to not use the pre-filled database and generate the database locally
- In order to do so a few extra pieces are required:
 - SQLite database of ChEMBL <u>Download here</u>
 - Blast software <u>Instructions</u>
 - Fpocket software <u>Instructions</u>
- Limitations: will only work on Linux


```
usage: target_DB [-h] [-g] [-i] [-l] [-a] [-s] [-v] [-update] [-blastcore]
                 [-update config] [-create db]
optional arguments:
  -h, --help
                       show this help message and exit
                       enter a single gene name
  -g , --gene
  -i , --in file
                       Name of the input file with a list of genes (.txt - 1
                        gene per line)
  -l , --list genes
                        Enter a list of gene name separated by a ","
  -a, --do all
                       Use this option to create a database with all human
                       genes (list coming from HGNC)
  -s , --sphere size
                       enter a value for the probe size of the pocket finder
                       tool (default = 3.0)
  -v, --verbose
                       Print information
  -update, --update
                       Update record if already in database (default: No)
  -blastcore , --num core
                        Enter the value of processor core to use for the blast
                       search (default=8)
  -update_config, --update_config
                        use this if you want to update the config file
  -create db, --create db
                       Use this option to create an empty targetDB database
```


* Tab only present if data available

General Info

Machine learning model (discussed later)

TargetDB explained: Spider plot

Safety

Height

Amount of information available

Color

Safety issues (red) → No issues (green)

Literature

Height

Amount of information available

Genetic Association

Height

Amount of information available

Color

Quality of associations (p-value) (green) \rightarrow (red)

Diseases

Height

Amount of information available

Beta-secretase 1

Central Number

Probability of tractability (Machine Learning model)

Biology

Height

Amount of information available

Chemistry

Height

Amount of information available

Color

Quality of compounds (selectivity/potency) (green) → (red)

Structural Biology

Height

Amount of information available

Color

Druggability of binding pockets (green) → (red)

Acetylcholinesterase

Beta-secretase 1

Apolipoprotein E 94%

Pubmed search

Simple search using the gene name as query (Caution: could lead to false hits for certain genes (e.g. REST))

Title	Journal Title	Year of Publication	Journal Article	Case Reports	Clinical Trial	Comparative Study	Letter	Meta-Analysis	Review	Neurodegeneration	Chemistry	Major Keywords	Abstract	Author	Affiliation	PMID	MeSH Terms	Other Term
miR-340 reduces accumulation of amyloid-																		
beta through targeting BACE1 (beta-site	Current neurovascul	2020	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE		BACKGRO	['Tan X', 'Luo Y', 'Pi D', 'Xia	["Department of Neurolo	g https://www.ncbi.nlm.nih.gov/pubmed/31957613/		["Alzheime
Exploring 2D-QSAR for prediction of beta-																		
secretase 1 (BACE1) inhibitory activity against	SAR and QSAR in env	2020	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE		We have o	['Kumar V', 'Ojha PK', 'Sah	na ['Drug Theoretics and Che	https://www.ncbi.nlm.nih.gov/pubmed/31865778/		["Alzheime
Curcumin inhibits BACE1 expression through																		
the interaction between ERbeta and	Molecular and cellul	2020	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE		Alzheimei	['Huang P', 'Zheng N', 'Zho	o ["Hubei Key Laboratory o	f https://www.ncbi.nlm.nih.gov/pubmed/31595422/		['AD', 'BACI
Advanced analytical methodologies in	Journal of pharmace	2020	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE		Despite th	['De Simone A', 'Naldi M',	, '['Department for Life Qua	https://www.ncbi.nlm.nih.gov/pubmed/31606562/		["Alzheime
11beta-HSD1 Inhibition Rescues SAMP8	Molecular neurobiol	2020	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE		Ageing an	['Puigoriol-Illamola D', 'Le	ei ['Pharmacology Section, [https://www.ncbi.nlm.nih.gov/pubmed/31399953/		['Ageing', "
MicroRNA-298 reduces levels of human																		
amyloid-beta precursor protein (APP), beta-	Molecular psychiatry	2020	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE []	Alzheimei	['Chopra N', 'Wang R', 'Ma	al ['Laboratory of Molecular	https://www.ncbi.nlm.nih.gov/pubmed/31942037/		
Activation of PKA/SIRT1 signaling pathway by																		
photobiomodulation therapy reduces Abeta	Aging cell	2020	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE		A hallmarl	['Zhang Z', 'Shen Q', 'Wu X	('['MOE Key Laboratory of L	https://www.ncbi.nlm.nih.gov/pubmed/31663252/		['APP proce

Diseases

HumanMine

expression (fi-statistic)

https://www.humanmine.org/humanmine/report.do?id=1188216

OpenTargets Association

https://www.targetvalidation.org

Expression

Selectivity		2	2.45	
OR	GANS			
organ_name	Total_value	n_tissues	avg_value	
Gastrointestinal tract	14	8	1.8	
Liver & gallbladder	5	3	1.7	
Bone marrow & lymphoid tissues	16	10	1.6	
Male tissues	8	5	1.6	
Brain	17	11	1.5	
Pancreas	3	2	1.5	
Kidney & urinary bladder	4	3	1.3	
Lung	5	4	1.3	
Skin	6	5	1.2	
Endocrine tissues	3	3	1.0	
Muscle tissues	3	3	1.0	
Female tissues	11	13	0.8	
Proximal digestive tract	2	3	0.7	
Adipose & soft tissue	1	6	0.2	

SELECTIVITY

$$S_{sel} = -\sum_{i}^{T} \rho_i \log \rho_i$$

 $S_{sel} = Selectivity \ Entropy$ $T = Expression \ in \ different \ tissue$ $\rho_i = Probability \ of \ an \ expression \ value$

$$\rho_{(T)} = \frac{E_T}{\sum_i E_{T_i}}$$

 $E_T = Expression value in tissue T$

ADIPOS	E & SUFT HISSUE			KIDNET	N UNINANT BLADDEN	
tissue name	Cell type	Value		tissue name	Cell type	Value
Adipose tissue	Adipocytes	0	I	Kidney	Cells in glomeruli	1
Soft tissue 1	Chondrocytes	1	ı	Kidney	Cells in tubules	2
Soft tissue 1	Fibroblasts	0	ı	Urinary bladder	Urothelial cells	1
Soft tissue 1	Peripheral nerve	0				
Soft tissue 2	Fibroblasts	0		LIVER	& GALLBLADDER	
Soft tissue 2	Peripheral nerve	0		tissue name	Cell type	Value
			(Gallbladder	Glandular cells	2
BONE MARRO	W & LYMPHOID TISS	UES	ı	Liver	Bile duct cells	1
tissue name	Cell type	Value	ı	Liver	Hepatocytes	2
Appendix	Glandular cells	2				
Appendix	Lymphoid tissue	2			LUNG	
Bone marrow	Hematopoietic cells	1		tissue name	Cell type	Value
Lymph node	Germinal center cel	1 2		Bronchus	Respiratory epithelia	2
Lymph node	Non-germinal cente	2	ı	Lung	Macrophages	2
Spleen	Cells in red pulp	1	ı	Lung	Pneumocytes	0
Spleen	Cells in white pulp	2		Nasopharynx	Respiratory epithelia	1
Tonsil	Germinal center cel	1 2				
Tonsil	Non-germinal cente	1		IV	IALE TISSUES	
Tonsil	Squamous epithelia	1		tissue name	Cell type	Value
				Epididymis	Glandular cells	2
	BRAIN			Prostate	Glandular cells	1
tissue name	Cell type	Value		Seminal vesicle	Glandular cells	1
Caudate	Glial cells	2	-	Testis	Cells in seminiferou	2
Caudate	Neuronal cells	1	-	Testis	Leydig cells	2
Cerebellum	Cells in granular lay	€ 2				
Cerebellum	Cells in molecular la	a 2		MU	JSCLE TISSUES	
Cerebellum	Purkinje cells	2		tissue name	Cell type	Value
Cerebral cortex	Endothelial cells	0	1	Heart muscle	Myocytes	2
Cerebral cortex	Glial cells	1		Skeletal muscle	Myocytes	1
Cerebral cortex	Neuronal cells	2		Smooth muscle	Smooth muscle cells	0
Cerebral cortex	Neuropil	1				
Hippocampus	Glial cells	2			PANCREAS	
Hippocampus	Neuronal cells	2		tissue name	Cell type	Value
				Pancreas	Exocrine glandular o	2

KIDNEY & URINARY BLADDER

ADIPOSE & SOFT TISSUE

https://www.proteinatlas.org/ENSG00000186318-BACE1/tissue

Genotypes

				BACE1-A		
Is Canonical	Yes	Similarity		100	number of residues	501
				BACE1-B		
Is Canonical	No	Similarity		95.01	number of residues	476
SEQUENCE	MAQA	ALPWLLLWMGAGVLPAHGTQHG	IRLPLRSGLGGAPLGLE	RLPRETDEEPEEPGRRGSFVEN	IVDNLRGKSGQGYYVEN	MTVGSPPQTLNILVDTGSSNFAVGAAPHPFL
start	stop	previous_seq	$modification_type$	new_seq	in_domains	comments
190	214		remove		Peptidase A1,Asp	(in isoform B, isoform D and isoform 6)
				BACE1-C		
Is Canonical	No	Similarity		91.22	number of residues	457
				BACE1-D		
Is Canonical	No	Similarity		86.23	number of residues	432
				BACE1-5		
Is Canonical	No	Similarity		78.44	number of residues	401
				BACE1-6		
Is Canonical	No	Similarity		73.45	number of residues	376

Variants / Mutants

start	stop	$modification_type$	previous_seq	new_seq	in_domains	comments
265	265	replace	V	Α	Peptidase A1,Asp	(in dbSNP:rs28989503)
481	481	replace	R	С		(in dbSNP:rs539765)
						MUTANTS
start	stop	modification_type	previous_seq	new_seq	in_domains	comments
93	93	replace	D	N	Peptidase A1,Asp	Decreases beta-cleaved soluble APPproduction. (ECO:0000269 PubMed:10656250)
284	284	replace	D	N	Peptidase A1,Asp	Almost abolishes beta-cleaved soluble APPproduction. (ECO:0000269 PubMed:10656250)
498	498	replace	S	D		No effect on endocytosis form the cellsurface. Decreases recycling from endosomes to the cellsurface. (ECO:0000269 PubMed:15886016)
499	500	replace	LL	AA		Impairs endocytosis and produces a delayedretrograde transport to the trans-Golgi network anddelivery to the lysosmes, decreasinf its degradation. Disrupts location to late endosomes and lysosomes. Locatesmainly at the cell surface. No effect on degradation regulated by GGA3. Effects on protein stability anddefective internalization increases; when associated with R-501. (ECO:0000269 Pub Med:15615712, ECO:0000269 Pub Med:16033761, ECO:0000269 Pub Med:20484053, ECO:0000269 Pub Med:23109336)
501	501	replace	K	R		Inhibits ubiquitination. No effect onendocytosis rate. Induced protein stability and acculmulation in early and late endosomes, lysosomes and cell membrane. Effects on protein stability and defective internalization increases; when associated with A-499-500-A. (ECO:0000269 PubMed:20484053, ECO:0000269 PubMed:23109336, ECO:0000269 PubMed:27302062)

VARIANTS

Structure

start					
5 2 2 1 2	stop	length	source		
75	416	341	Uniprot		
74	418	344	Pfam-A		
DON	MAINS - DrugEbi	llity			
domain_fold	main_superfam	tractable	druggable		
Acid proteases	Acid proteases	1	1		
JNMATCHED	UNMATCHED	1	1		
Ipha-alpha sur	ENTH/VHS dom	1	0		
		PDB BLAST			
Chain	similarity	gene	species	SITES_tractable	ITES_druggable
A.	100	BACE1	HUMAN		
A.	71.5	BACE2	HUMAN		
A.	71.3	BACE2	HUMAN		
1	71.2	BACE2	HUMAN		
1	DON domain_fold cid proteases NMATCHED lpha-alpha sup Chain	DOMAINS - DrugEbi domain_fold main_superfam cid proteases Acid proteases NMATCHED UNMATCHED lpha-alpha sur ENTH/VHS dom Chain similarity 100 71.5 71.3	DOMAINS - DrugEbillity domain_fold main_superfam tractable cid proteases Acid proteases 1 NMATCHED UNMATCHED 1 Ipha-alpha sur ENTH/VHS dom 1 PDB BLAST Chain similarity gene 100 BACE1 71.5 BACE2 71.3 BACE2	TA 418 344 Pfam-A DOMAINS - DrugEbillity domain_fold main_superfam tractable druggable cid proteases Acid proteases 1 1 NMATCHED UNMATCHED 1 1 Ipha-alpha sui ENTH/VHS dom 1 0 PDB BLAST Chain similarity gene species 100 BACE1 HUMAN 71.5 BACE2 HUMAN 71.3 BACE2 HUMAN	DOMAINS - DrugEbillity domain_fold main_superfam tractable druggable cid proteases Acid proteases 1 1 NMATCHED UNMATCHED 1 1 Ipha-alpha sur ENTH/VHS dom 1 0 PDB BLAST Chain similarity gene species SITES_tractables 100 BACE1 HUMAN 71.5 BACE2 HUMAN 71.3 BACE2 HUMAN

Structure

	DOMAINS				
start	stop	length	source		
75	416	341	Uniprot		
74	418	344	Pfam-A		
100	MAINS - DrugEbi	Ility			
domain_fold	main_superfam	tractable	druggable		
Acid proteases	Acid proteases	1	1		
UNMATCHED	UNMATCHED	1	1		
alpha-alpha su	ENTH/VHS dom	1	0		
		PDB BLAST			
Chain	similarity	gene	species	SITES_tractable	SITES_druggable
A	100	BACE1	HUMAN		
Α	71.5	BACE2	HUMAN		
A	71.3	BACE2	HUMAN		
Α	71.2	BACE2	HUMAN		
	75 74 DOI domain_fold Acid proteases UNMATCHED alpha-alpha su Chain A A	start stop 75 416 74 418 DOMAINS - DrugEbi domain_fold main_superfam Acid proteases UNMATCHED alpha-alpha sui Chain similarity A 100 A 71.5 A 71.3	start stop length 75 416 341 74 418 344 DOMAINS - DrugEbillity domain_fold main_superfam tractable Acid proteases Acid proteases 1 UNMATCHED 1 1 alpha-alpha sui ENTH/VHS dom 1 PDB BLAST Chain similarity gene A 100 BACE1 A 71.5 BACE2 A 71.3 BACE2	start stop length source 75 416 341 Uniprot 74 418 344 Pfam-A DOMAINS - DrugEbillity domain_fold main_superfam tractable druggable Acid proteases 1 1 1 UNMATCHED 1 1 1 alpha-alpha su ENTH/VHS dom 1 0 PDB BLAST Chain similarity gene species A 100 BACE1 HUMAN A 71.5 BACE2 HUMAN A 71.3 BACE2 HUMAN	start stop length source 75 416 341 Uniprot 74 418 344 Pfam-A DOMAINS - DrugEbillity domain_fold main_superfam tractable druggable Acid proteases 1 1 UNMATCHED 1 1 alpha-alpha sulpha-alpha sulpha-alpha-alpha sulpha-alpha sulpha-alpha sulpha-alpha sulpha-alpha sulpha-alpha sulpha-alpha sulph

			PE	ЭB							PDB:	Ligan		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ERY INST		rugg
PDB_code	Technique	Resolution	Chain	Domain_name	n_residues	% of full protein	start_stop	type_of_binder	binding_type	operator	value	units	Ligand_name	publication_year	PDBbind_link	SITES_tractable	SITES_druggable
1FKN		1.90 A	-	Asp			46-436	Protein - Ligand	Ki	=	1.6	nM	(7-mer)		1FKN	1	1
1M4H	X-ray	2.10 A	A,B	Asp			56-446	Protein - Ligand	Ki	=			(7-mer)		1M4H	1	1
1PY1	X-ray	2.60 A	F,E,H,G		8	inf	494-501	Protein - Ligand	Kd	=	40	uM	(7-mer) incomple	2003	1PY1	1	0
1SGZ	X-ray	2.00 A	A,B,D,C	Asp	389	inf	58-446									1	1
1TQF	X-ray	1.80 A	Α	Asp	405	inf	43-446	Protein - Ligand	IC50	=	1.4	uM	(32P)	2004	1TQF	1	1
1UJJ	X-ray	2.60 A	С		12	inf	490-501	Protein - Ligand	Kd	=	0.8	uM	(12-mer) Kd=0.84	2004	1UJJ	1	0
1UJK	X-ray	1.90 A	D,C		12	inf	490-501	Protein - Ligand	Kd	=	0.27	uM	(12-mer) Kd=0.27	2004	1UJK	1	1
1W50	X-ray	1.75 A	Α	Asp	411	inf	43-453									1	1
1W51	X-ray	2.55 A	Α	Asp	411	inf	43-453	Protein - Ligand	IC50	=	500	nM	(L01) ligand is co	2004	1W51	1	1
1XN2	X-ray	1.90 A	D,B,C,A	Asp	389	inf	58-446	Protein - Ligand	Ki	=	0.03	nM	(11-mer) incomp	2005	1XN2	1	1
1XN3	X-ray	2.00 A	A,B,D,C	Asp	389	inf	58-446	Protein - Ligand	Ki	=	40	nM	(14-mer)	2005	1XN3	1	1
1XS7	X-ray	2.80 A	D	Asp	389	inf	58-446	Protein - Ligand	Ki	=	25.1	nM	(MMI)	2004	1XS7	1	1
1YM2	X-ray	2.05 A	B,C,A	Asp	402	inf	48-447	Protein - Ligand	IC50	=	0.01	uM	(6-mer)	2006	1YM2	1	1
1YM4	X-ray	2.25 A	B,C,A	Asp	408	inf	48-453	Protein - Ligand	IC50	=	0.039	uM	(5-mer)	2006	1YM4	1	1
2B8L	X-ray	1.70 A	Α	Asp	405	inf	43-446	Protein - Ligand	IC50	=	15	nM	(5HA)	2005	2B8L	1	1
2B8V	X-ray	1.80 A	Α	Asp	405	inf	43-446	Protein - Ligand	IC50	=	98	nM	(3BN)	2005	2B8V	1	1
2F3E	X-ray	2.11 A	A,B,C	Asp	402	inf	48-447	Protein - Ligand	IC50	=	0.156	uM	(AXQ)	2006	2F3E	1	1

DrugEbillity

Pockets

			DRUGGA	ABLE POC	KETS		
PDB_code	druggability_score	pocket_score	pocket_number	volume	area	fraction_apolar	domains
1PY1	0.542	-0.306	p15	2513.7	704.1	50.9	
1PY1	0.85	-0.134	p10	828.2	259.2	62	
1SGZ	0.543	0.128	p5	378.6	100.5	63.7	Peptidase A1 (1.0%), Asp (1.0%)
1SGZ	0.606	0.23	p2	525.9	142.5	69.5	Peptidase A1 (3.0%), Asp (3.0%)
1TQF	0.906	0.536	p1	1424	252.9	34.9	Peptidase A1 (7.0%), Asp (7.0%)
1UJJ	0.67	0.223	p3	357.7	142.5	66.1	
1UJJ	0.681	0.285	p2	465.8	158.4	56.4	
1W51	0.907	0.777	p1	2130.8	354.8	40.2	Peptidase A1 (10.0%), Asp (10.0%)
1XN2	0.736	0.488	p2	320.6	36.7	29.6	Peptidase A1 (2.0%), Asp (2.0%)
1XS7	0.921	0.804	p1	738.1	90.9	38.5	Peptidase A1 (4.0%), Asp (4.0%)
1YM2	0.938	0.615	p1	596.7	100.6	50.4	Peptidase A1 (2.0%), Asp (2.0%)
1YM4	0.927	0.384	p1	663.1	180.4	75	Peptidase A1 (6.0%), Asp (6.0%)
2B8L	0.922	0.878	p1	1417.8	179.2	39.8	Peptidase A1 (7.0%), Asp (7.0%)
2B8V	0.536	-0.133	p12	264.4	110.7	78.5	Peptidase A1 (2.0%), Asp (2.0%)
2B8V	0.572	0.671	p1	1796.7	299.3	42	Peptidase A1 (9.0%), Asp (8.0%)

	ALTERNATE DRUGGABLE POCKETS (PDB from blast)								
PDB_code	druggability_score	pocket_score	pocket_number	volume	area	fraction_apolar	gene	species	similarity
2GCD	0.617	8.653	p7	443.8	253.9	67.7	TAOK2	RAT	99.4
3CKW	0.823	37.173	p0	725.1	393.3	72.9	STK24	HUMAN	61
5J5T	0.711	42.643	p0	815.8	405	63.6	M4K3	HUMAN	60.7
4027	0.696	18.144	p3	518.2	239.4	71.6	STK24	HUMAN	60.6
5AX9	0.851	39.37	p0	699	455.2	54.5	TNIK	HUMAN	60.6
3CKX	0.57	39.585	p0	551.2	343.9	63	STK24	HUMAN	60.6
4U8Z	0.715	40.926	p0	551.8	294.9	63.9	STK24	HUMAN	60.4

Binding / Dose Response / Percent inhibition / Emax Efficacy / ADME / Other bioactivities ChEMBL

Binding	Ki, Kd
Dose Response	IC50, EC50, Potency
Percent Inhibition	%Activity, Residual activity, %Inhibition
Emax Efficacy	Emax, Efficacy
ADME	ADME
Other Bioactivities	All other

		Bioactivi	ty info			Assay info	Assay info Structure					Ligand properties							Ligand info				
lig_id standard_type	operator	value_num units	χď	Selectivity	number of other targets best_target_name	assay_description	SMILES		нва		dgo.	MW	ТРЅА	apKa	bpKa	nAr pass_ro3	ro5_violations	CNS_MPO	molecular_species	indication_class	class_def	max_phase	orai assay_ref
CHEMBL3809870 Kd	=	0.4 nM	9.4	0	1 Beta-secretase 1	Binding affinity to BACE1 (un	9 CC(C)(C)CCNC(=	O)CCc1cc2cc(5	3 7.	.51 7.55	617.77	110	12.41	6.35	5 N	2 1	1 1.5	NEUTRAL			0	0 10.1021/acs.jmedchem.5b01917
CHEMBL3809662 Kd	=	0.6 nM	9.22	0	1 Beta-secretase 1	Binding affinity to BACE1 (un	9 NC1=NC2(CO1)c	3cc(NC(=O)c4	7	2 2.	.59 2.6	488.93	108.06	10.53	5.88	3 N	0	3 3.7	NEUTRAL			0	0 10.1021/acs.jmedchem.5b01917
CHEMBL3808441 Kd	=	8 nM	8.1	0	1 Beta-secretase 1	Binding affinity to BACE1 (un	9 CC(C)(C)CCNC(=	O)CCc1cc2cc(4	3 7.	.11 7.13	590.74	97.11		6.21	4 N	2	9 1.9	NEUTRAL			0	0 10.1021/acs.jmedchem.5b01917
CHEMBL3809897 Kd	=	11 nM	7.96	0	1 Beta-secretase 1	Binding affinity to BACE1 (un	9 CC(C)(C)CCNC(=	O)CCc1cc2cc(5	3 8.	.45 8.47	613.74	110	11.86	6.17	5 N	2	8 1.5	NEUTRAL			0	0 10.1021/acs.jmedchem.5b01917
CHEMBL3808988 Kd	=	16 nM	7.8	0	1 Beta-secretase 1	Binding affinity to BACE1 (un	9 C[C@@H](Cc1cc	2cc(ccc2nc1N	4	2 4.	.93 4.95	404.56	80.9		6.08	3 N	0	6 3.2	NEUTRAL			0	0 10.1021/acs.jmedchem.5b01917
CHEMBL3808967 Kd	=	25 nM	7.6	0	1 Beta-secretase 1	Binding affinity to BACE1 (un	9 CC(C)(C)CCNC(=	O)CCc1cc2cc(4	3 7.	.31 7.33	590.74	97.11	13.87	6.21	4 N	2	8 1.9	NEUTRAL			0	0 10.1021/acs.jmedchem.5b01917
CHEMBL3808672 Kd	=	140 nM	6.85	0	1 Beta-secretase 1	Binding affinity to BACE1 (un	9 Cc1ccccc1c2ccc3r	nc(N)c(CCC(=	3	2 5.	.81 5.83	389.54	68.01		6.38	3 N	1	6 3.3	NEUTRAL			0	0 10.1021/acs.jmedchem.5b01917
CHEMBL2179131 Ki	=	0.017 nM	10.77	0	3 Beta-secretase 1	Inhibition of recombinant BA	8 CC(C)CNC(=O)[C	@@H](NC[C	7	5 2.	.75 2.8	665.86	156.94	13.72	6.51	3 N	1 1	6 2.6	NEUTRAL			0	0 10.1021/jm3008823

BindingDB

ZincID	ICSO(nM)	ECSO(nM)	Kd(nM)	Ki(nM)	kon(M-1s-1)	koff(s-1)	Ŧ	Тетр	Source	<u>I</u> O	Patent_number	Institution
ZINC03965949	20						4.8	37.00 C	Curated fro	10.1021/jm061242y		Elan Pharmaceuticals
ZINC10339547	100000						5	22.00 C	Curated fro	10.1021/jm061197u		Astex
ZINC10339550	310000						5	22.00 C	Curated fro	10.1021/jm061197u		Astex
ZINC10339550	310000						5	22.00 C	Curated fro	10.1021/jm0611962		Astex
ZINC11525586	94000						5	22.00 C	Curated fro	10.1021/jm061197u		Astex
ZINC26492127	82						4.6	22.00 C	Curated fro	10.1016/j.bmcl.2005.09.003		Lilly S.A.
				949			5		US Patent	10.1021/jm021079g	US9687494	Merck Sharp & Dohme Corp.
				1261			5		US Patent	10.1021/jm021079g	US9687494	Merck Sharp & Dohme Corp.
	32.9						5	30.00 C	US Patent		US9540359	Shionogi & Co., Ltd.
	20.7						5	30.00 C	US Patent		US9540359	Shionogi & Co., Ltd.
	113						5	30.00 C	US Patent		US9540359	Shionogi & Co., Ltd.

Commercial compounds

affinity_type	do	affinity_value	price	Source_1 Source_3 Source_5
IC50	=			http://www.sigmaaldrich.com/catalog/product/SIGMA/PZ0261?lang=en®ion=US
IC50	=	7.6 n	M (\$50)/(50 mg) OR (\$65)/(100 r	http://www.https://or.https://w.http://www.medchemexpress.com/Epigallocatechin-Gallate.html
IC50	=	10 n	M	http://www.sigmaaldrich.com/catalog/product/SIGMA/PZ0260?lang=en®ion=US
IC50	=	15 n	M	http://www.sigmaaldrich.com/catalog/product/SIGMA/PZ0262?lang=en®ion=US
Kd	=	15 n	M Vitas-M Laboratory, Ltd.: (26.	https://orde https://www.molport.com/shop/molecule-link/MolPort-002-555-036
IC50	=	17 n	M Selleck Chemicals LLC: (198.9	https://orde https://www.molport.com/shop/molecule-link/MolPort-039-193-829
IC50	=	20 n	M (\$140)/(5 mg) OR (\$230)/(10 r	https://orde https://w http://www.medchemexpress.com/LY2886721.html
IC50	=	22 n	М	https://orderbb.emolecules.com/cgi-bin/more?vid=76739946
€ Kd	=	40 n	M	http://www.sigmaaldrich.com/catalog/product/SIGMA/G8291?lang=en®ion=US
IC50	=	63 n	M	https://orderbb.emolecules.com/cgi-bin/more?vid=49436464
IC50	=	120 n	M InterBioScreen Ltd.: (32.00 US	http://www.https://or.https://www.molport.com/shop/molecule-link/MolPort-002-579-749
Ki	=	170 n	M	http://www.https://orders.emolecules.com/cgi-bin/more?vid=71007646
Ki	=	210 n	М	https://orders.emolecules.com/cgi-bin/more?vid=1984371
Ki	=	233 n	M	https://orderbb.emolecules.com/cgi-bin/more?vid=29914527
IC50	=	240 n	M Angene: (253.00 USD)/(5 mg)	http://www.https://or http://ww.https://www.molport.com/shop/molecule-link/MolPort-009-679-511
IC50	=	410 n	M AK Scientific, Inc.: (98.00 USD	http://www.https://or.https://www.molport.com/shop/molecule-link/MolPort-023-220-646
IC50	=	690 n	M InterBioScreen Ltd.: (44.00 US	http://www.https://or.https://www.molport.com/shop/molecule-link/MolPort-002-577-515
	IC50 IC50 IC50 IC50 IC50 IC50 IC50 IC50	IC50 = IC	IC50 = 7.6 n IC50 = 10 n IC50 = 15 n Kd = 15 n IC50 = 20 n IC50 = 22 n IC50 = 22 n IC50 = 63 n IC50 = 120 n IC50 = 120 n IC50 = 120 n Ki = 170 n Ki = 210 n Ki = 233 n IC50 = 240 n IC50 = 240 n IC50 = 410 n	IC50 = 7.6 nM (\$50)/(50 mg) OR (\$65)/(100 mg) IC50 = 10 nM IC50 = 15 nM IC50 = 15 nM IC50 = 17 nM Selleck Chemicals LLC: (198.5) IC50 = 20 nM (\$140)/(5 mg) OR (\$230)/(10 mg) IC50 = 22 nM IC50 = 22 nM IC50 = 63 nM IC50 = 120 nM InterBioScreen Ltd.: (32.00 U) Ki = 170 nM Ki = 210 nM IC50 = 240 nM IC50 = 240 nM IC50 = 240 nM IC50 = 410 nM AK Scientific, Inc.: (98.00 USD)

Commercial compounds

TargetDB explained: Single output - summary

General Info

Pubmed search

Diseases

OpenTargets Association

Expression

Genotypes

Isoforms

Variants / Mutants

Structure

Pockets

BindingDB

Commercial compounds

Binding / Dose Response / Percent inhibition / Emax Efficacy / ADME / Other bioactivities

Druggability

- Pockets druggability
- Domain druggability
- Druggability of similar targets' pockets

Structure

- % of sequence covered
- % of domains covered
- Number of PDB
- Number of PDB of similar targets

Chemistry

- BindingDB potent ligands
- BindingDB ligands in phase 2 clinic
- ChEMBL potent ligands
- ChEMBL selective ligands

Biology

- Protein expression levels
- Number of antibodies
- Variants
- Mutants
- Mice genotypes
- KEGG/Reactome

Disease Link

- Number of disease areas
- · Max association score
- Diseases count

Genetic links

- GWAS association count
- Genetic association score

Information

 JensenLab Pubmed score

Safety

- Heart protein expression
- Liver protein expression
- Kidney protein expression
- Lethal phenotypes observed in mice

Structure

- % of sequence covered
- % of domains covered
- Number of PDB
- Number of PDB of similar targets

- % of sequence covered
 - Percent of the sequence covered by PDB structures
- % of domains covered
 - Percentage of the domains that are covered by PDB structures
- Number of PDB
 - if count >=1 → Score = 0.25
 - if count >=2 → Score = 0.5
 - if count >=3 \rightarrow Score = 1
- Number of alternate (BLAST) PDB
 - Same as number of PDB * max similarity

Structure Score

Average of all these components

Druggability

- Pockets druggability
- Domain druggability
- Druggability of similar targets' pockets

- Pockets druggability scores
 - Average of pockets with a druggability score > 0.5
- Domain druggability
 - Average of domains druggability and tractability coming from DrugEBIlity
- Alternate (BLAST) pockets druggability scores
 - Average of pockets with a druggability score > 0.5 * max similarity

Druggability Score

Average of all these components

Chemistry

- BindingDB potent ligands
- BindingDB ligands in phase 2 clinic
- ChEMBL potent ligands
- ChEMBL selective ligands

- BindingDB potent cpds (Score = log(count), normalized (0->1))
 - Compounds with activity < 100 nM
- ChEMBL potent cpds (Score = log(count), normalized (0->1))
 - Compounds with activity < 100 nM
- Quality
 - Score = 1
 - Count of BindingDB ligands that are labelled phase 2 > 0
 - Score = 0.8
 - Count of ChEMBL ligands with great selectivity > 0
 - Score = 0.7
 - Count of ChEMBL ligands with good selectivity > 0
 - Score = 0.6
 - Count of ChEMBL ligands with moderate selectivity > 0
 - Score = 0.3
 - Count of potent ChEMBL ligands > 0
 OR
 - Count of potent BindingDB ligands > 0
 - Score = 0
 - All of the above not met

Chemistry Score

Average of all these components

Biology

- Protein expression levels
- Number of antibodies
- Variants
- Mutants
- Mice genotypes
- KEGG/Reactome

- Protein expression levels (bio_EScore = 1 if available)
- Number of antibodies (bio AScore = 1 if count >50)
- Variants (bio VScore = 1 if count >0)
- Mutants (bio_MScore = 1 if count >0)
- Mice genotypes (bio GScore = 1 if count >0)
- KEGG/Reactome (bio_PScore = 1 if KEGG+Reactome data =0.5 if KEGG or Reactome = 0 if none available)

Biology Score

Average of all these components

Information

 JensenLab Pubmed score

• Log(JensenLab Pubmed score) capped at 12 then normalized (0->1)

Druggability Score

Only component

Disease Link

- Number of disease areas
- Max association score
- Diseases count

- Number of disease area (OpenTargets)
 - Score = 0.5 if count = 1 / Score = 1 if count > 1
- Max association score (OT) weight of 2 in average
 - OpenTargets max association score
- Diseases count uniprot
 - Score = 1 if any
- Diseases count tcrd
 - Score = 1 if any

Disease Score

Weighted average of all these components

Genetic links

- GWAS association count
- Genetic association score

- Log₁₀(gwas count*10) capped at 2, normalized (0->1)
- OpenTargets MAX genetic association score * normalisation depending on the number of associations with this maximum score
 - Normalisation factor
 - Log₂(count of association with max score) capped at 5 normalized
 (0->1)
- Count of significant gwas associations (p-value <= 5e-9) / total count of gwas associations
- Avg score for the top10 open-targets associations

Druggability Score

Average of all these components

- Log(Number of genotypes) capped at 6, normalized (0->1) + 0.3 if expression data available, capped to 1
- Genotypes (safe_GScore), capped to 1
 - 2 * Count of homozygote genotype with lethal phenotype + count of heterozygote genotype with lethal phenotype – count of heterozygote genotype with normal phenotype – 2 * count of homozygote genotype with normal phenotype
- Expression profile (safe_EScore)
 - Heart protein expression
 - Liver protein expression
 - Kidney protein expression
 - If any of the above is high or 1stddev higher than all tissue average \rightarrow score = 1
 - Else \rightarrow score = 0

Safety Score

Average of all these components

Heart protein expression

Safety

- Liver protein expression
- Kidney protein expression
- Lethal phenotypes observed in mice

TargetDB explained: List view — MPO Score

∉ tk												-		X
			PI	ease input t	he	desired wei	igt	h for the MP	0	score comp	on	ent		
						,	Vali	idate						
Structura informatio		Structura Druggabi		Chemistr	у	Biology		Diseases Links	6	Genetic Links		Literature Information	Safe	ety
200		200		200		200		200		200		200	200	
150		150		150		150		150		150		150	150	
100 100	\exists	100 100	$oxed{\mathbb{H}}$	100 100	\exists	100 100	\exists	100 100	\exists	100 100	\exists	100 100	100 1	00
50		50		50		50		50		50		50	50	
0		0		0		0		0		0		0	0	
-50		-50		-50		-50		-50		-50		-50	-50	
-100		-100		-100		-100		-100		-100		-100	-100	
-150		-150		-150		-150		-150		-150		-150	-150	
-200		-200		-200		-200		-200		-200		-200	-200	

$$CScoreS = (CScore - 0.5) * 2$$

$$\{-1 \rightarrow 1\}$$

$$W = \frac{Weights}{100}$$

$$\{-2 \rightarrow 2\}$$

$$MPO Score = \frac{\sum_{i} CScoreS_{i} * W_{i}}{\sum_{i} |W_{i}|}$$

$$\{-1 \rightarrow 1\}$$

$$MPO\ Score\ (scaled) = \frac{MPO\ Score}{2} + 0.5$$
 $\{0 \rightarrow 1\}$

Crystallographers

TargetDB explained: List view – building a model

DRUG DISCOVERY INSTITUTE

TargetDB explained: List view – building a model

Step 2: Testing different machine learning algorithms

		Predi	cted Class	
	[Positive	Negative	Sensitivity = Recall
	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
ıal Class 🜙	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
,		Precision $\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN + FN)}$	Accuracy $TP + TN$ $\overline{(TP + TN + FP + FN)}$

Fall-out – FP rate
$$\frac{FP}{FP+TN}$$
F1 – score
$$2*\frac{1}{\frac{1}{precision} + \frac{1}{recal}}$$

AU - ROC

Area under curved when the TP rate and FP rate

are plotted at different threshold values

Random Forest algorithm

Step 3: Looking at feature importance

Step 4: Final tweaking

	AU_ROC	accuracy	f1_score	precision	recall
RF_default	0.927	0.838	0.838	0.835	0.842
RF_random_grid	0.925	0.825	0.825	0.825	0.825
RF_exhaustive_grid	0.924	0.829	0.828	0.832	0.825

			GENER	AL INFO							SC	ORES						
70	ате	82	lass	family	protein_family_detail	Number_isoforms	re		Tractability_probability	_training_set	structure_info_score [mpo coeff= 1.0]	structural_drug_score [mpo coeff= 1.5]	chemistry_score [mpo coeff= -1.0]	biology_score [mpo coeff= 1.0]	disease_score [mpo coeff= 1.0]	genetic_score [mpo coeff= 1.5]	information_score [mpo coeff=-1.0]	safety_score [mpo coeff= 0.0]
Target_id	Gene_name	Synonyms	Pharos_class	protein_family	protein	Number	mpo_score	Tractable	Tractabili	In_traini	structure	structura	chemist	biology_	disease_	genetic_	informat	safety_s
Q12879	GRIN2A	GRIN2A,G		Drotein	Drotein	Number 5		Tractable Tractable	Lactabili 96.52	≦`	0.84	structura 89.0	chemistr		o disease	88.0 genetic	0.59	89.0 89.0
	_		Tclin		_		0.8			⊆ Yes		0.68	0			0.88	0.59	
Q12879	GRIN2A	GRIN2A,G	Tclin Tbio	IC	_	2	0.8 0.79	Tractable	96.52	Yes No	0.84	0.68 0.82	0	1	0.8	0.88	0.59 0.49	0.68
Q12879 Q15149	GRIN2A PLEC	GRIN2A,G HD1,Hemi	Tclin Tbio Tchem	IC Kinase	IC	2 9	0.8 0.79 0.78	Tractable Tractable	96.52 96.87	Yes No No	0.84 0.83	0.68 0.82	0 0 0	1 0.75	0.8 0.6 0.6	0.88 0.92 0.97	0.59 0.49 0.55	0.68
Q12879 Q15149 P37173	GRIN2A PLEC TGFBR2	GRIN2A,G HD1,Hemi 2.7.11.30,1	Tclin Tbio Tchem Tchem	IC Kinase	IC	2 9 2	0.8 0.79 0.78 0.78	Tractable Tractable Tractable	96.52 96.87 99.5	Yes No No No	0.84 0.83 0.95	0.68 0.82 0.66 1	0 0 0	1 0.75 0.83	0.8 0.6 0.6	0.88 0.92 0.97 0.83	0.59 0.49 0.55	0.68 0.74 0.6 0.79
Q12879 Q15149 P37173 P16885	GRIN2A PLEC TGFBR2 PLCG2	GRIN2A,G HD1,Hemi 2.7.11.30,1 1-phospha	Tclin Tbio Tchem Tchem Tbio	IC Kinase	IC	2 9 2 0	0.8 0.79 0.78 0.78 0.78	Tractable Tractable Tractable Tractable	96.52 96.87 99.5 91.7	Yes No No No No	0.84 0.83 0.95 0.52	0.68 0.82 0.66 1 0.81	0 0 0 0	1 0.75 0.83 0.83	0.8 0.6 0.6 0.6	0.88 0.92 0.97 0.83 0.99	0.59 0.49 0.55 0.46 0.62	0.68 0.74 0.6 0.79 0.65
Q12879 Q15149 P37173 P16885 P08603	GRIN2A PLEC TGFBR2 PLCG2 CFH	GRIN2A,G HD1,Hemi 2.7.11.30, 1-phospha CFH,Comp	Tclin Tbio Tchem Tchem Tbio Tchem	IC Kinase	IC	2 9 2 0 2	0.8 0.79 0.78 0.78 0.78 0.76	Tractable Tractable Tractable Tractable Tractable	96.52 96.87 99.5 91.7 97.85	Yes No No No No No	0.84 0.83 0.95 0.52 0.75	0.68 0.82 0.66 1 0.81 0.85	0 0 0 0	1 0.75 0.83 0.83 0.83	0.8 0.6 0.6 0.6 0.6	0.88 0.92 0.97 0.83 0.99	0.59 0.49 0.55 0.46 0.62 0.72	0.68 0.74 0.6 0.79 0.65
Q12879 Q15149 P37173 P16885 P08603 P01137	GRIN2A PLEC TGFBR2 PLCG2 CFH TGFB1	GRIN2A,G HD1,Hemi 2.7.11.30,1 1-phospha CFH,Comp LAP,Laten	Tclin Tbio Tchem Tchem Tbio Tchem Tbio	IC Kinase	IC	2 9 2 0 2	0.8 0.79 0.78 0.78 0.78 0.76	Tractable Tractable Tractable Tractable Tractable Tractable Tractable	96.52 96.87 99.5 91.7 97.85 93.77	Yes No No No No No No	0.84 0.83 0.95 0.52 0.75 0.98	0.68 0.82 0.66 1 0.81 0.85 0.83	0 0 0 0	1 0.75 0.83 0.83 0.83 0.83	0.8 0.6 0.6 0.6 0.6	0.88 0.92 0.97 0.83 0.99 0.72	0.59 0.49 0.55 0.46 0.62 0.72 0.3	0.68 0.74 0.6 0.79 0.65 0.91
Q12879 Q15149 P37173 P16885 P08603 P01137 P63010	GRIN2A PLEC TGFBR2 PLCG2 CFH TGFB1 AP2B1	GRIN2A,G HD1,Hemi 2.7.11.30,1 1-phospha CFH,Comp LAP,Laten ADTB2, CL	Tclin Tbio Tchem Tchem Tbio Tchem Tbio Tbio	IC Kinase Enzyme	IC	2 9 2 0 2 0 3	0.8 0.79 0.78 0.78 0.78 0.76 0.76	Tractable Tractable Tractable Tractable Tractable Tractable Tractable	96.52 96.87 99.5 91.7 97.85 93.77 73.54	Yes No No No No No No No	0.84 0.83 0.95 0.52 0.75 0.98	0.68 0.82 0.66 1 0.81 0.85 0.83	0 0 0 0 0	1 0.75 0.83 0.83 0.83 0.83 0.83	0.8 0.6 0.6 0.6 0.6 0.6	0.88 0.92 0.97 0.83 0.99 0.72 0.5	0.59 0.49 0.55 0.46 0.62 0.72 0.3	0.68 0.74 0.6 0.79 0.65 0.91 0.57

		ŧ	Score		ERATURE/I	PATENT	INFOF		ON		a publications
Target_id	Gene_name	EBI Total Patent Count	JensenLab PubMed Score	NCBI Gene PubMed Count	PubTator Score	total_patent_count	year_max_patents	count_patents_max_year	novelty_score	total # publications	number of Dementia publications
Q12879	GRIN2A	14768	1197.83	172	508.67	14768	2013	1341	7.53E-04	267	5
Q15149	PLEC		359.01	117	262.31				2.92E-03	364	0
P37173	TGFBR2	16731	776.68	464	653.46	16731	2012	2478	1.29E-03	5454	15
P16885	PLCG2		250.87	113	124.53				3.71E-03	127	5
P08603	CFH		1613.64	744	1744.96				6.08E-04	1583	17
P01137	TGFB1		5796.97	4042	16789.31				1.40E-04	7290	24
P63010	AP2B1		36.27	52	24.78				1.12E-02	28	0
P26038	MSN		381.49	182	963.22				2.31E-03	11257	123
P21860	ERBB3	263248	961.8	440	864.45	263248	2014	40081	9.76E-04	2015	3
Q9NZC2	TREM2		352.94	151	243.95				2.96E-03	776	302

Target_id	Gene_name	Brain	Adipose & soft tissue	Bone marrow & lymphoid tissues	Endocrine tissues	Female tissues	Sastrointestinal tract	الدوداللقا تا	>	Liver & gallbladder	gun:	Male tissues	Muscle tissues	Pancreas	Proximal digestive tract	Skin	Expression Selectivity		tissue_max_expression	expression_max_tissue	EXP_LVL_AVG	EXP_LVL_STDDEV	Heart_alert	Heart_value	Liver_alert	Liver_value Kidney_alert	Kidney_value	variants_count	mutants_count	gwas_count	mber_of_genotypes	heterozygotes	_homozygotes_lethal_cc	s_hete		MAb Count
Q12879	GRIN2A	2	0	0	() :	1	0	0	0	0	0	0	0	0	0	0.3	35 E	Brain	2	0.21	0.58	FALSE		FALSE	FALS	E	87	1	23	10				715	208
Q15149	PLEC	1.5	1.3	1.8	1.7	2.:	1 2	.2 2	2.5	2.5	2.3	2	2	2	1.7	2	2	.5	Kidney & urinary bladder	2.5	1.97	0.35	FALSE		FALSE	FALS	E	19		43	14	1	3		1 180	66
P37173	TGFBR2																											38	1	10	37	9	3	1	2 734	62
P16885	PLCG2	1	0	3	1	1 1	1 1	.3	1	2	1	1	1	0	0	3	2.1	15 E	Bone marrow & lymphoid tissues	3	1.16	0.95	FALSE		FALSE	FALS	E	7		16	19	3	2		932	180
P08603	CFH	0	0	0	() (0	0	0	0	0	0	0	0	0	0	1	10	Adipose & soft tissue	0	0.00	0.00	FALSE		FALSE	FALS	E	59	7	136	8	1	1	1	855	368
P01137	TGFB1	0	0	0	() (0	0	0	0	0	0	0	0	0	0	1	10	Adipose & soft tissue	0	0.00	0.00	FALSE		FALSE	FALS	E	13	11	7	38	11	18		1690	795
P63010	AP2B1	3	3	1.7	2	2 1.6	6 1	.6	2	3	1	2	1	3	1.3	2	2.4	14	Adipose & soft tissue	3	2.01	0.73	FALSE		FALSE	FALS	E		9	20	5		1		242	18
P26038	MSN	1.8				1.3		2 1		2		1.5	1	1	2		_	_	Bone marrow & lymphoid tissues				FALSE	_	FALSE	FALS		1	4	1	2				2 925	
P21860	ERBB3	2.8							2.5		2.7	3	2	3	2.3	2.5	_	_	Gastrointestinal tract				FALSE		FALSE	FALS		15	2	11	22	1	10	2	1 2081	750
Q9NZC2	TREM2	2	1.7	2	2	2 1.8	8	2	2	1.5	2	2	1.5	1	1	0	2	.4	Bone marrow & lymphoid tissues	2	1.61	0.59	FALSE		FALSE	FALS	E	29	7	4	6				521	177

													PATHW	AYS A	ND DI	SEASE	ES																
Target_id	Gene_name	kegg_list	kegg_count	reactome_list	reactome_count	disease_count_uniprot disease_list_tcrd	disease_count_tcrd	max_disease_score name_max_disease	OT_number_of_associations	OT_number_of_disease_areas	OT_list_max_disease_area	OT_max_association_diseaseArea_score OT_list_max_diseases	OT_TOP10_diseases	OT_max_association_score	OT_%_genetic_association	OT_%_known_drug	OT_%_litterature_mining	OT_%_animal_model	OT_%_affected_pathway	OT_%_rna_expression	OT_%_somatic_mutation	OT_MAX_VAL_genetic_association	OT_NUM_MAX_genetic_association	OT_MAX_VAL_known_drug	OT_NUM_MAX_known_drug OT_MAX_VAL_litterature_mining	OT_NUM_MAX_litterature_mining	OT_MAX_VAL_animal_model	OT_NUM_MAX_animal_model	_MAX_VAL_affected_	OT_NUM_MAX_affected_pathway OT_MAX_VAL_rna_expression	NUM_MAX_rna	OT_MAX_VAL_somatic_mutation	OT_NUM_MAX_somatic_mutation
Q12879	GRIN2A	Alzheimei	6 Act	tivation	17	1 primary o	1	2.31 primary	0 331			nervous	nervous s	1	0.15	0.5	0.35	0.05	0.06	0.03	0.44	1	14	1	110 0.22	21	0.31	16	0.82	15 0.0	9 9	0.9	13
Q15149	PLEC		Ар	optosis	11	6			207			skin disea	skin disea	1	0.17	0	0.4	0.63	0.14	0	0	1	18	0	0 0.29	10	0.33	64	8.0	7 0.0)4 1	. 0	0
P37173	TGFBR2	Adherens	11 De	ubiquit	21	3			255			neoplasm	neoplasm	1	0.2	0	0.64	0.13	0.2	0.04	0.69	1	26	0	0 0.32	19	0.32	13	1	4 0.0	06 11	. 1	11
P16885	PLCG2	B cell rece	18 Ad	aptive I	26	2			152			immune s	immune s	1	0.22	0	0.33	0.69	0.16	0.01	0.07	1	10	0	0 0.24	3	0.33	66	0.81	9 0.0	J3 2	0.76	11
P08603	CFH	Complem	2 Co	mplem	4	4			176			urinary sy	urinary sy	1	0.35	0	0.59	0.59	0	0.02	0	1	29	0	0 0.31	23	0.33	56	0	0.0	17 4	0	0
P01137	TGFB1	Amoebias	20 Ce	II surfac	49	3			363			bone dise	bone dise	1	0.07	0.1	0.33	0.8	0.05	0.02	0	1	6	0.29	16 0.25	19	0.33	123	1	3 0.0	J3 6	0	0
P63010	AP2B1	Endocrine	3 Ad	aptive I	36	functional	1	1.09 function	al 59			infectious	infectious	1	0.19	0	0.05	0.59	0.22	0	0	0.99	1	0	0 0.04	3	0.31	11	1	2	0 0	0	0
P26038	MSN	Leukocyte	3 Ax	on guid	10	1			158			immune s	immune s	1	0.04	0	0.59	0.23	0.08	0.05	0.63	1	5	0	0 0.28	16	0.32	14	0.6	3 0.0	06 8	0.59	4
P21860	ERBB3	Calcium si	3			2			334			neoplasm	neoplasm	1	0.07	0.29	0.43	0.38	0.13	0.01	0.52	1	5	1	12 0.32	25	0.33	72	1	9 0.0	17 5	1	23
Q9NZC2	TREM2	Osteoclas	1 Ad	aptive I	10	1			72			nervous s	nervous s	1	0.22	0	0.94	0	0.07	0.01	0	1	12	0	0 0.31	23	0	0	0.27	5 0.0	12 1	. 0	0

TargetDB explained: List view

Target_id	Gene_name	PDB_total_count	PDB_with_Ligand_count	_sequence_covered	_domain_covered	PDB_sites_tractable_count	PDB_sites_druggable_count	PDB_blast_close_count	PDB_blast_max_similarity	domains_count	domain_tractable	domain_druggable	mean_druggability_score	stddev_druggability_score	mean_area	mean_volume	mean_fraction_apolar	mean_pocket_score	pdb_with_druggable_pocket	druggable_pockets_total	mean_alt_druggability_score	_stddev_druggability_score	an_alt_area	mean_alt_volume	mean_alt_fraction_apolar	ean_alt_pocket_score	mean_alt_similarity	max_alt_similarity	alt_pdb_with_druggable_pocket	alt_druggable_pockets_total
Q12879	GRIN2A	15	1	% [*]	%' 76%	1	_	51	100	4	1		0.81	0.16	287.23	1023	77.92	-0.02	14	82	0.79	# 0.16	420.19	1263.38	78.75	-0.4	92.65	100	10	90
Q15149	PLEC	14	1	32%		5	2		100	8	1		0.63	0.13	147.38	472.73	74.67	0.19	5	6	0.75	0.10	420.15	1205.50	70.73	-0.4	52.03	100	10	50
P37173	TGFBR2	14	4		100%	2		13	79	2	1			0.11		905.99		0.15	7	7										
P16885	PLCG2	3	1	9%	0%	3	1	16	100	12	1		0.99	0.11	170.2	1080.1	68.3	0.72	1	1										
P08603	CFH	46	8	99%		8	4	4	98.4	21	1	1		0.13	233.28	618.04		-0.1		39	0.74		212.5	1000	57.4	0.35	98.4	98.4	1	1
P01137	TGFB1	7	2		100%	4	1	8	100	2	1	1	0.8		242.35	823.27		0.19	4		0.75	0 14	286.5	1017.38	69.55	0.08	98.2	100	2	4
P63010	AP2B1	13	3	95%	10070	8	5	6	100	_	1	1	0.76	0.14	209.39	741.49		0.05	10	19	0.74	0.13	194.99	682.37	78.51	0.05	97.78	98.4	5	19
P26038	MSN	3			100%	3	2	20	99.7	1	1		0.68		245.12	875.75		0.17	2	4	0.71		180.34	708.84	66.11	0.23	96.76	99.7	6	7
P21860	ERBB3	14	3		100%	5	2		99.7	5	1		0.79	0.13	142.02	692.37		0.32		18	0.9		166.3	1274.2		0.74	99.7		1	1
Q9NZC2	TREM2	4	_		100%		_			1	_	_	0.63	0.13		886.53		0.05	2	3									_	

	mе	B_count	BindingDB_potent_count	BindingDB_potent_phase2_count	ChEMBL_bioactives_count	ChEMBL_bioactives_potent_count	ChEMBL_bioactives_moderate_selectivity_count ス	ChEMBL_bioactives_good_selectivity_count	ChEMBL_bioactives_great_selectivity_count	ial_total	commercial_potent_total
Target_id	Gene_name	BindingDB_count	BindingD	BindingD		ChEMBL	ChEMBL	ChEMBL	ChEMBL	commercial_total	commerc
Q12879	GRIN2A				11					1	1
Q15149	PLEC	234			78					37	
P37173	TGFBR2	305			73	1				23	
P16885	PLCG2				14					9	
P08603	CFH				1						
P01137	TGFB1				7					1	
P63010	AP2B1										
P26038	MSN										
P21860	ERBB3				24	3				15	3
Q9NZC2	TREM2										

			GENER	AL INFO							sc	ORES						
Target_id	Gene_name	Synonyms	Pharos_class	protein_family	protein_family_detail	Number_isoforms	mpo_score	Tractable	Tractability_probability	In_training_set	structure_info_score [mpo coeff= 1.0]	structural_drug_score [mpo coeff= 1.5]	chemistry_score [mpo coeff=-1.0]	biology_score [mpo coeff= 1.0]	disease_score [mpo coeff= 1.0]	genetic_score [mpo coeff= 1.5]	information_score [mpo coeff=-1.0]	safety_score [mpo coeff= 0.0]
Q12879	GRIN2A	GRIN2A,G	Tclin	IC	IC	2	0.8	Tractable	96.52	Yes	0.84	0.68	0	1	0.8	0.88	0.59	0.68
Q15149	PLEC	HD1,Hemi	Tbio			9	0.79	Tractable	96.87	No	0.83	0.82	0	0.75	0.6	0.92	0.49	0.74
P37173	TGFBR2	2.7.11.30,7	Tchem	Kinase	Kinase	2	0.78	Tractable	99.5	No	0.95	0.66	0	0.83	0.6	0.97	0.55	0.6
P16885	PLCG2	1-phospha	Tchem	Enzyme		0	0.78	Tractable	91.7	No	0.52	1	0	0.83	0.6	0.83	0.46	0.79
P08603	CFH	CFH,Comp	Tbio			2	0.78	Tractable	97.85	No	0.75	0.81	0	0.83	0.6	0.99	0.62	0.65
P01137	TGFB1	LAP,Laten	Tchem			0	0.76	Tractable	93.77	No	0.98	0.85	0	0.83	0.6	0.72	0.72	0.91
P63010	AP2B1	ADTB2, CL				3	0.76	Tractable	73.54	No	0.98	0.83	0	0.83	0.6	0.5	0.3	0.57
P26038	MSN	Not found	Tbio			0	0.74	Tractable	79.19	No	0.94	0.79	0	1	0.6	0.48	0.5	0.42
P21860	ERBB3	2.7.10.1,E	Tchem	Kinase	Kinase	5	0.74	Tractable	95.32	Yes	0.94	0.9	0.42	0.92	0.6	0.73	0.57	0.82
Q9NZC2	TREM2	Not found	Tbio			3	0.73	Tractable	87.92	No	0.67	0.63	0	1	0.6	0.76	0.49	0.6
4	Drugga	bility_list	Colu	mns descrip	otion Not in DB	(+)		: [4									þ.

		GENERAL IN	FO		SCORES				
		Column name	Description	datasource	Link				
		Target_id	Uniprot ID of the targets	Uniprot	https://www.uniprot.org/				
		Gene_name	HGNC official name	HGNC	https://www.genenames.org/			_	
		Synonyms		Uniprot/Chembl				-1.0	
			Pharos classify genes in 4 Class					7	
			(Tclin/Tchem/Tbio/Tdark) see their site for			0.	r.	=	0.
		Pharos_class	definition	Pharos/tcrd	https://pharos.nih.gov/idg/help	II	ĬĮ.	Ö	0
		protein_family	family of the protein	Pharos	https://pharos.nih.gov/idg/index	-	efi	0	#
		protein_family_detail	same as above with more details	Pharos	https://pharos.nih.gov/idg/index	c o	00	Ē	00
		Number_isoforms	Number of isoforms described on Uniprot	Uniprot	https://www.uniprot.org/	_ <u>d</u> _	score [mpo coeff= 1.5	score [mpo coeff=	safety_score [mpo coeff= 0
			Score computed from a weighted average f			=	Ė	000	E
	٥	mpo_score	area_scores (see Sup.info for details)	Calculated		ore	ore		e
70	пате		Tractability class (TRUE = tractable / FALSE =			SC	SC.	information	0
-			intractable), defined by the tractability			ase	.2'	nat	S
Target_id	Gene	Tractable	probability (TRUE>=0.5)	Predicted		Sea	enetic	011	et
<u>-</u>	Ö	Too at a believe as a beat site.	Tractability probability coming from the	D		S	p0	Ξ	Saf
Q12879	GRIN2A	Tractability_probability	Random Forest model	Predicted Predicted				0.59	
Q15149	PLEC	In_training_set structure_info_score	Yes if target was in the training set	Calculated		0.6		0.49	0.74
P37173	TGFBR2	structure_inio_score		Calculated		0.6		0.55	0.6
		chemistry_score		Calculated					
P16885	PLCG2	biology_score		Calculated		0.6		0.46	
P08603	CFH	disease_score	individual area score (see Sup.info for deta	(Is) Calculated		0.6		0.62	0.65
P01137	TGFB1	genetic_score	-	Calculated		0.6	0.72	0.72	
P63010	AP2B1	information_score	-	Calculated		0.6	0.5		0.57
P26038	MSN	safety_score		Calculated		0.6	0.48	0.5	0.42
P21860	ERBB3	2.7.10.1,El Tchem Kina	se Kinase 5 0.	74 Tractable 95.	32 Yes 0.94 0.9 0.42 0.92	0.6	0.73	0.57	
Q9NZC2	TREM2	Not found Tbio	3 0.	73 Tractable 87.	92 No 0.67 0.63 0 1	0.6		0.49	0.6
	Drugg	ability_list Columns	description Not in DB +	: 1					Þ

>60% without structure

Tractable Challenging Intractable

47 (13%)

57 (15%)

268 (72%)

Disease link

Literature

AD

64 targets with dementia linked literature

Scope and limitations

TargetDB is ...

TargetDB is **NOT** ...

... quick

... perfect

... good at comparing targets

... exhaustive and 100% accurate

... giving you a good overview on targets

... completely replacing reading papers

THE PREPRINT SERVER FOR BIOLOGY

TargetDB: A target information aggregation tool and tractability predictor

© Stephane De Cesco, John B. Davis, © Paul E. Brennan

doi: https://doi.org/10.1101/2020.04.21.052878 Link here

This article is a preprint and has not been certified by peer review [what does this mean?].