Tracking Transport-Layer Evolution with *PATHspider*

Brian Trammell, Mirja Kühlewind, and **Piet De Vaere,** ETH Zürich, Switzerland Iain Learmonth and Gorry Fairhurst, University of Aberdeen, Scotland Applied Networking Research Workshop — Prague — 15 July 2017

measurement and architecture for a middleboxed internet

measurement

architecture

experimentation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 688421. The opinions expressed and arguments employed reflect only the authors' view. The European Commission is not responsible for any use that may be made of that information.

Supported by the Swiss State Secretariat for Education, Research and Innovation under contract number 15.0268. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the Swiss Government.

The problem, a solution

Middleboxes interfere with connections

- → Transport protocols must react
- & Reaction must be data-driven

Data can be provided by active internet measurement

We build a toolchain for:

Controlled experiments

Diverse protocol features

Diverse targets

That observes **conditions** associated with **paths**

Overview

PATHspider architecture

Scaling up cloud-based measurements Long term evolution & reducing noise floor

Measurement methodology for

DSCP Increasing deployment
TFO

+ Results and insights

A/B testing of path transparency

Controlled measurement setup

Baseline: vanilla TCP, {no|default} option

Experimental: protocol feature under test

Find feature-dependent issues

Design of *PATHspider*

measuremen

Site versus path dependency

Impairments exist

Close to target

Close to internet core

More troubling!

Distinguish by

Measuring from diverse vantage points

Repeat measurements to detect transients

Scaling up

Cloud based measurements

Orchestrated using SaltStack

Results analysed on Path Transparency Observatory

Methodology Differentiated Services (DSCP)

Target

Send SYNs with default (0), and non-default DSCP

Interpret connection failure on non-default as dropped SYN.

Observe DSCP codepoint on SYN+ACK.

Methodology Differentiated Services (DSCP)

Send SYNs with default (0), and non-default DSCP

Interpret connection failure on non-default as dropped SYN.

Observe DSCP codepoint on SYN+ACK.

Methodology Differentiated Services (DSCP)

Send SYNs with default (0), and non-default DSCP

Interpret connection failure on non-default as dropped SYN.

Observe DSCP codepoint on SYN+ACK.

Results: DSCP blocking

Measurements from Digital Ocean DCs

Negligible blocking of codepoint 46 (EF)

Most blocking seems path-dependent.

January 2017				
IPv4		IPv6		
n = 620 611		n = 52766		
hosts	pct	hosts	pct	
63 177	10.18%	28 985	54.93%	Completely failed to connect
557 434	89.82%	23 781	45.06%	Successfully connted with DSCP 0 (default); of which:
1 770	0.32%	124	0.52%	Failed to connect when DSCP 46 (EF) used;
1 334	0.24%	121	0.50%	but succeeded from at least one vantage point
556 998	99.92%	23 778	99.98%	Successfully connected with 46 (EF)

Results: DSCP return codepoint

DSCP on return not dependent on DSCP on request.

Target

Check connectivity without TFO, abort on fail.

API issue → long timeout

TFO experiment:

Connect once with TFO:

tfo.cookie.received

tfo.cookie.not received

Connect again with TFO:

tfo.syndata.acked

tfo.syndata.not_acked

Check connectivity without TFO, abort on fail.

API issue → long timeout

TFO experiment:

Connect once with TFO:

tfo.cookie.received

tfo.cookie.not received

Connect again with TFO:

tfo.syndata.acked

tfo.syndata.not_acked

Check connectivity without TFO, abort on fail.

API issue → long timeout

TFO experiment:

Connect once with TFO:

tfo.cookie.received

tfo.cookie.not received

Connect again with TFO:

tfo.syndata.acked

tfo.syndata.not_acked

Check connectivity without TFO, abort on fail.

API issue → long timeout

TFO experiment:

Connect once with TFO:

tfo.cookie.received

tfo.cookie.not received

Connect again with TFO:

tfo.syndata.acked

tfo.syndata.not_acked

Results: TFO

Web, Jan '17		DNS, Jan '17			
n = 939 680		$n = 53\ 267$			
hosts	pct	hosts	pct	description	
29 839	3.18%	4 906	9.21%	Completely failed to connect	
177	0.019%	26	0.049%	Failed to connect w/TFO option	
908 464	96.7%	48 276	90.6%	Did not negotiate TFO	
866	0.092%	56	0.105%	Negotiated TFO (exchanged a cookie); of which:	
830	95.8%	54	96.4%	ACKed data on SYN †	
0	0%	2	3.57%	Failed connection with data on SYN	
33	3.81%	0	0%	Returned a cookie on ACKed data	
12	1.39%	2	3.57%	Responded with a 6-byte cookie	
31	3.58%	0	0%	Responded with an experimental option †	
690	79.7%	53	94.6%	are in AS15169 (Google)	

Correct TFO limited mostly to Google.

One anomaly linked to a single firm: unique implementation?

No path dependency seen (but N is small...)

Previous findings (Paasch): TFO impairment is in access networks

Methodology Explicit Congestion Notification (ECN)

Connect with and without ECN

Measure

ECN off ECN on

Target

ecn.connectivity.status
works: off + on OK
broken: off OK, on fails
transient: on OK, off fails
offline: no connection
ecn.codepoint.seen

generate traffic
negotiation → ECT marking

Connect with and without ECN

Measure

ECN off ECN on Target

ecn.connectivity.status

works: off + on OK

broken: off OK, on fails

transient: on OK, off fails

offline: no connection

ecn.codepoint.seen

generate traffic

Methodology Explicit Congestion Notification (ECN)

Connect with and without ECN

Measure

ECN off ECN on Target

S
SEW
SA
SAE

ecn.connectivity.status
works: off + on OK
broken: off OK, on fails

transient: on OK, off fails

offline: no connection

ecn.codepoint.seen

generate traffic

Connect with and without ECN

Measure

ECN off ECN on Target

S

SEW

SA

SAE

A + ECTO

ecn.connectivity.*status* works: off + on OK

broken: off OK, on fails

transient: on OK, off fails

offline: no connection

ecn.codepoint.seen

generate traffic

Connect with and without ECN

Measure

ECN off ECN on Target

S
SEW
SA
SAE
A + ECTO
A + CE

ecn.connectivity.status
works: off + on OK
broken: off OK, on fails

transient: on OK, off fails

offline: no connection

ecn.codepoint.seen

generate traffic

Results: ECN

Continued: no change in errors in ECN once negotiated

June 2016				January 2017				
IPv4		IPv6		IPv4		IPv6		Description
n = 617 873		n = 24 472		$n = 675 \ 289$		n = 90 531		
hosts	pct	hosts	pct	hosts	pct	hosts	pct	
9221	1.49%	2637	10.78%	12583	1.863%	3621	4.000%	Completely failed to connect
432544	68.78%	20262	76.77%	498866	73.874%	82722	95.232%	Capable of negotiating ECN, of which:
11718	1.86%	2167	8.21%	15000	3.007%	6622	8.005%	Never mark ECT
-	-	-	-	30	0.006%	16	0.019%	Mark ECT1
1112	0.18%	964	3.65%	1851	0.274%	23	0.025%	Failed to connect w/ECN

On censorship and ECN interference

Heterogeneous TCP-layer censorship → more ECN path dependency Automated measurements reduce path dependency noise floor

Conclusions

ECN brokenness good indicator for path impairments at L3/ L4 Comprises additional codepoints both in IP and TCP

Correlates with purposeful interference (censorship)

TCP Fast Open remains effectively a niche extension.

Impairments are mainly access network linked

DSCP may be widely bleached

But using DSCP doesn't lead to connectivity risk.

Learn More

https://github.com/mami-project/pathspider

https://pathspider.net

apt install pathspider
(2.0.0 release pending fixes to curl)

