COMP30120

Ensembles

Derek Greene

School of Computer Science and Informatics Autumn 2015

Overview

- Ensemble Classification
- Why do ensembles work?
 - Condorcet Jury Theorem
- Ensemble Generation
 - Bagging v Boosting
- Ensemble Combination
 - Voting v Weighted Voting
- Bias/Variance decomposition of error

Ensemble Idea

 Ensemble Classification: Aggregation of predictions made by multiple classifiers with the goal of improving accuracy.

- An ensemble of "weak learners" can provide a strong committee.
- Applied using many different types of classifiers decision trees,
 k-NNs, neural networks, support vector machines...

Application: Netflix Prize

In 2006, Netflix announced a machine learning competition for movie rating prediction. Prize of \$1 million to whoever improved the accuracy of existing system by 10%.

Top submissions all combine several teams and algorithms as an ensemble.

BellKor Team:

"Our final solution consists of blending 107 individual results"

Ensembles: Motivation

The Condorcet Jury Theorem

- Proposed by the Marquis of Condorcet in 1784, and relates to the relative probability of an ensemble of individuals arriving at a correct decision.
- If each voter has a probability *p* of being correct and the probability of a majority of voters being correct is *M*...
 - Then p > 0.5 implies M > p
 - Also if *p* always > 0.5, then *M* approaches 1.0 as the number of voters approaches infinity.
- → "When the average probability of an individual being correct is > 50%, the chance of the ensemble of them reaching the correct decision increases as more members are added".

Ensembles: Motivation

- Condorcet Jury Theorem revisited....
 - We now know that M will be greater than p only if there is diversity in the pool of voters - i.e. there is some disagreement between their decisions.
 - The probability of a majority of voters being correct will increase as the ensemble grows only if the diversity in the ensemble continues to grow as well.
- Eventually, new ensemble members will have voting patterns collinear with existing members.
- Typically the diversity of the ensemble will plateau as will the accuracy of the ensemble at some size between 10-50 members.

Example: Classification

- Data: Heart attack patient admitted. 19 variables measured during first 24 hours. Blood pressure, age, BMI + 16 other variables, considered important indicators of patient's condition.
- **Task:** Identify high risk patients (i.e. will not survive 30 days), based on evidence of initial 24-hour data.

No	Age	ВМІ	BP	Ok?
1	60	20	140	Yes
2	60	21	145	Yes
3	85	23	130	Yes
4	81	22	160	No
5	70	24	170	No
6	72	26	135	No
7	81	26	145	No
8	66	23	155	No
Q	66	24	148	?

Q	66	24	148	?

Ensemble Idea

- Build many "base" decision trees, using different subsets of the data. These trees can vote on the class of a new input example.
- → Accuracy of ensemble should be better than the individual trees.

Ensemble of Decision Trees

- Q. How do we generate base classifiers that complement each other?
- Q. How do we <u>combine</u> the outputs of base classifiers to maximise accuracy?

Ensemble Generation: Bagging

- Key Idea: Train n classifiers on different subsets of the training data.
- Bootstrap aggregation / Bagging (Breiman, 1996):
 - Randomly sample from training data with replacement.
 - 100% bootstrap sample will contain ~63% of training examples.
 Remaining data is "out-of-bag" (OOB).

Complete dataset has 8 examples

Original	Α	В	С	D	Е	F	G	Н
Set 1	В	G	Ι	С	G	H	С	Α
Set 2	G	Ι	Ш	IL	D	В	G	Α
Set 3	C	H	В	G	Ш	IL	В	В
Set 4	D	Ш	Α	D	Ш	D	O	Н
Set 5	Ш	IL	А	С	Ш	H	А	Н
Set 6	С	Н	В	F	D	В	Н	F

Each bootstrap subset has 8 examples.

Some examples may be duplicated, others left out.

Ensemble Generation: Bagging

 Bootstrap aggregation: Randomly sample from training data with replacement, apply a classifier to each sample.

➡ Encourages diversity in the ensemble, works better for "unstable" classifiers - e.g. decision trees, neural networks.

Ensemble Generation: Random Features

- Key Idea: Train n base classifiers, each on a different subset of features.
- Random Subspace Method:
 - A subset of features is randomly selected without replacement.
 - Train a classifier using only selected features to represent the training data.
 - \Rightarrow Encourages diversity in the ensemble, works well for k-NNs.

Ensemble Combination: Voting

- Simplest way to combine the output of multiple classifiers is to use majority voting.
- All classifiers are run independently in parallel. Results are combined when all runs have completed.
- Each classifier "votes" for a particular class, where all classifiers carry equal weight. The class with the majority vote in the ensemble wins.

Ensemble Combination: Weighted Voting

- Intuition: If individual classifiers do not give equal performance, we should give more power to better classifiers.
- Weighted Voting Combination:
 - Rather than treating every classifier's vote equally, we weight each classifier's vote based on its accuracy/error.
 - → More accurate classifiers contribute more to the ensemble.

Classifier	Accuracy	Weight		
1	0.52	0.14		
2	1.00	0.28		
3	0.57	0.16		
4	0.55	0.15		
5	0.95	0.26		
TOTAL	3.59	1.00		

e.g. C1: 0.52/3.59 = 0.14

Vote "0": $0.28 + 0.26 \approx 0.54$

Vote "1": $0.14 + 0.16 + 0.15 \approx 0.46$

Committees of Experts

- Consider: " ... a medical school that has the objective that all students, given a problem, come up with an identical solution".
- No value in a committee of experts from such a group the committee will not improve on the judgement of an individual.
- There needs to be disagreement for the committee to have the potential to be better than an individual.
- Fundamental work by Krogh & Vedelsby (1995) for regression:
 - Increasing "ambiguity" (disagreement) decreases overall combined error, provided it does not result in an increase of average error.

$$\overline{E}$$
 \overline{A} = E

Average error Ensemble Ensemble of classifiers ambiguity error

We need accuracy + diversity in classifier ensembles!

Ensemble Diversity

Local Learning in Ensembles

- Every single classifier performs well on a subset of the test set.
- The mistakes that one classifier makes are "corrected" by the other classifiers.

Ensemble Specialisation

- Classifiers can specialise on accurately classifying only related examples from certain regions of the input data space.
- Example: Visualisation of specialisation in classifier ensembles...

Want ensemble members to make mistakes in different areas.

Ensemble Diversity

- Recall: Krogh & Vedelsby said an ideal ensemble is one that consists of highly accurate members which at the same time disagree.
- Often face a trade-off between diversity and accuracy when constructing an ensemble of classifiers.

Ensemble Generation: Boosting

- Key idea: Train a series of classifiers such that later classifiers are trained to better predict on examples that earlier ones perform poorly on.
- Focus on previous errors when building next ensemble member.

Boosting Approach:

- 1. Weight all training examples equally.
- 2. FOR i = 1 to T
 - (a) Train classifier using current weights.
 - (b) Compute errors.
 - (c) Increase weights for misclassified examples, decrease weights for those classified correctly.
- 3. Output final model.

Example: Boosting

- **Problem:** Apply a classifier to a training set with 8 examples {A, B, C, D, E, F, G, H}, where example A is an outlier and difficult to classify.
- Selected training sets for 4 runs of <u>bagging</u> - i.e. simple random sampling with replacement.
- → All examples equally weighted.

Original	Α	В	С	D	Ш	F	G	Η
Set 1	В	G	Ι	C	G	H	С	Α
Set 2	G	Ι	Ш	Ш	D	В	G	Α
Set 3	C	H	В	G	Ш	H	В	В
Set 4	D	E	A	D	E	D	С	Н

- Selected training sets for 4 runs of <u>boosting</u> - i.e. increase weights for misclassified examples.
- → The "hard" example A appears more frequently in later sets.

Original	Α	В	С	D	Е	F	G	Н
Set 1	В	G	Ι	C	G	F	С	Α
Set 2	Α	D	Ш	D	Α	Ш	H	D
Set 3	G	Α	E	Ι	Α	Ι	Α	D
Set 4	Α	Α	F	A	А	С	Α	Ε

D. Opitz & R. Maclin. "Popular Ensemble Methods: An Empirical Study" (1999)

Bias and Variance

- We can view the error of a classifier predicting a given target function on a dataset as consisting of three parts:
 - 1. Bias: Measures how close the average classifier's predictions are from the correct target function.
 - 2. Variance: Measures the error from sensitivity to small fluctuations in the training set.
 - 3. Minimum classification error (i.e. the noise in the data).
- Theories relating to ensemble generation methods:
 - Bagging can often reduce variance part of error.
 - Boosting can often reduce variance AND bias, since it focuses on misclassified examples.
 - Boosting may sometimes increase error, as it is susceptible to noise and may lead to overfitting.

Summary

- Ensemble Classification
- Why do ensembles work?
 - Condorcet Jury Theorem
- Ensemble Generation
 - Bagging v Boosting
- Ensemble Combination
 - Voting v Weighted Voting
- Bias/Variance decomposition of error

References

- D. Opitz and R. Maclin. "Popular Ensemble Methods: An Empirical Study" (1999). Journal of Artificial Intelligence Research.
- Breiman, L., (1996) "Bagging predictors". Machine Learning, 24:123-140.
- Krogh, A., Vedelsby, J., (1995) "Neural Network Ensembles, Cross Validation and Active Learning", in Advances in Neural Information Processing Systems 7
- Baur, E., and Kohavi, R. (1999) "An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants", Machine Learning.