Table 2. Flow rates and normal boiling point ranges for products from processing of 10,000 BPSD of Brent Crude (119,913 lb/h). Design NBP range and flow rates are from CHEMCAD.

Product	Composition	Spec NBP Range, °C	Design NBP Range, °C	Flow Rate, BPSD	Flow Rate, lb/h
LPG	G C1 to C4 -162 to -1 -17 to -7		258	2,130	
Naphtha	C5 to C12	C5 to C12 30 to 200 80 to		2,773	29,317
Gas oils	C12 to C20	200 to 371	180 to 370	2,650	33,677
Residuum	C20 to C70	371 to 540	370 to 492	4,234	53,805
Sour Gas	H₂S, C1-C3, H2O		-72 to 45	53	534
Sour Water ^a	Sour Water ^a H ₂ O, H ₂ S		~100	31	450
Total				9,998	119,912

Note a: Sour water is reported as the difference between the desalter water outlet and 300 BPSD feed.

Table 3. Sulfur and water content for products from processing of Brent Crude. Design values are from CHEMCAD.

Product	Sulfur, spec	Sulfur, design H₂O, spec		H₂O, design	
LPG	140 mg/kg [1]	186 mg/kg	10 mg/kg ^a [2] [3]	0.001 mg/kg	
Naphtha	80 mg/kg [4]	172 mg/kg	0.005-0.05 vol% [4]	0.016 vol%	
Gas oils	Gas oils 15 mg/kg [5]		0.01 vol% [5]	0.006 vol %	

^a Must pass the Propane Dryness Test (cobalt bromide) or ASTM D 2713-70 (or 2713-91)

Table 7. Overall energy balance, in units of MMBtu/h.

	Input	Output
Feed Streams	-167.251	
Product Streams		-155.87
Total Heating	23.077	
Total Cooling	-11.999	
Power Added	0.351	
Power Generated	-0.039	
Total	-155.860	-155.870

Table 4. Results of economic analysis of atmospheric crude and light ends units.

Capital Investment (millions of dollars)							
Purchased Equipment Cost	3.59						
Working Capital	3.51						
Total Indirect Costs	5.68						
Total Direct Costs	14.21						
Fixed Capital Investment	19.89						
Total Capital Investment	22.40						
Measures of Profitabili	Measures of Profitability						
Return on Investment, %	9.47						
Payback Period, years	4.81						
Net Present Worth, million \$, at 5% interest	6.02						
Net Present Worth, million \$, at 10% interest	-2.53						
Discounted Cash Flow Rate of Return, %	8.34						
Profitability Benchmarks							
Bond Rate, after taxes, from Table 7-1, %	3.25						
Preferred Stock Dividend, from Table 7-1, %	8.00						
Common Stock Dividend, from Table 7-1, %	9.00						
Minimum Acceptable Return, from Table 8-1, %	12.00						
Ref. Payback Period, at MAR, years, eq 8-2c	4.12						

Table 5. List of purchased equipment costs from CHEMCAD for atmospheric crude and light ends units.

Equipment Number	Tag Name	Description	Purchased Cost		
1	P-101	Crude Pump	\$6,877		
2	E-101	Crude / Gas Oil Desalter Preheater	\$117,906		
3	E-102	Crude / Naphtha Desalter Preheater	\$79,448		
4	V-100	Desalter	\$118,754		
5	P-102	Desalter Water Pump	\$5,553		
6	E-103	Crude / Gas Oil ACU Preheater	\$65,677		
7	E-104	Crude / LPG ACU Preheater	\$11,348		
8	E-105	Fired Heater	\$625,399		
9	V-200	Atmospheric Crude Unit Main Column	\$428,718		
10	E-106	Atmospheric Column Condenser	\$587,350		
11	V-201	Atmospheric Column Reflux Drum	\$41,021		
12	P-201	Atmospheric Column Reflux Pump	\$5,400		
13	P-202	Atmospheric Column Naphtha Pump	\$5,134		
14	P-203	Atmospheric Column Gas Oil Pump	\$5,138		
15	E-107	Naphtha Heat to Light Ends	\$18,646		
16	C-301	Light Ends Unit Feed Compressor	\$341,652		
17	E-108	Light Ends Unit Feed Chiller	\$8,922		
18	V-300	Light Ends Unit H ₂ S Splitter Column	\$337,479		
19	E-109	Light Ends Unit H ₂ S Splitter Condenser	\$15,311		
20	V-301	Light Ends Unit H ₂ S Splitter Reflux Drum	\$17,252		
21	P-301	Light Ends Unit H₂S Splitter Reflux Pump	\$7,815		
22	E-110	Light Ends Unit H ₂ S Splitter Reboiler	\$12,567		
23	T-302	Light Ends Unit Expander	\$6,172		
24	V-302	Light Ends Unit LPG-NAP Splitter Column	\$596,273		
25	E-111	Light Ends Unit LPG-NAP Splitter Condenser	\$73,618		
26	V-303	Light Ends Unit LPG-NAP Splitter Reflux Drum	\$29,449		
27	P-302	Light Ends Unit LPG-NAP Splitter Reflux Pump	\$5,589		
28	28 E-112 Light Ends Unit LPG-NAP Reboiler				
Total (carı	Total (carry forward to colorful worksheet) \$3				

Table 6. Utility usage rates from CHEMCAD for atmospheric crude and light ends units.

Equipment Number	Tag Name	Description	Rate
1	P-101	Crude Pump Power, kW	10.24
5	P-102	Desalter Water Pump Power, kW	0.34
12	P-201	Atm. Column Reflux Pump Power, kW	0.69
13	P-202	Atm. Column Naphtha Pump Power, kW	0.15
14	P-203	Atm. Column Gas Oil Pump Power, kW	0.59
21	P-301	H₂S Splitter Reflux Pump Power, kW	0.02
27	P-302	LPG-NAP Splitter Reflux Pump Power, kW	0.08
16	C-301	Light Ends Unit Feed Compressor Power, kW	91.53
23	T-302	Light Ends Unit Expander	-11.44
		Total, kW (Carry Forward to CWS)	92.20
8	E-105	Fired Heater Fuel Usage, SCFH	31,551.66
10	E-106	Atmospheric Column Condenser Water, lb/h	369,008.00
17	E-108	Light Ends Unit Feed Chiller Water, lb/h	16,776.94
19	E-109	H₂S Splitter Condenser Water, lb/h	11,695.50
25	E-111	LPG-NAP Splitter Condenser Water, lb,h	183,884.00
		Total, lb/h (Carry Forward to CWS)	581,364.44
22	E-110	H₂S Splitter Reboiler Steam, 790 kPa, lb/h	1749.35
28	E-112	LPG-NAP Reboiler Steam, 150 kPa, lb/h	986.59
		(Carry Each Forward to CWS)	

Figure 2. Cumulative cash position (from colorful worksheet) for atmospheric crude and light ends units processing 10,000 BPSD of Brent crude, as per Figure 6-2 in Peters, Timmerhaus, and West.

Figure 3. Annual cash flows (from colorful worksheet) for atmospheric crude and light ends units processing 10,000 BPSD of Brent crude, as per Figure 7-4 in Peters, Timmerhaus, and West.

Table 1. Exposure and safety factors for crude oil and distillates.

Species or Fraction	Human Toxicity		Flammability Limits, % in air		Flashpoint, °C	Autoignition Temp., °C	NFPA 704 [6]		
	LD50	LC50	LFL	UFL					
Methane	N/A	500,000 ppm 2h mouse 325 g/m ³ 2h mouse [7] 658 mg/L 4h rat [8]	5.3 [9]	14.0 [9]	-188 [4]	537 [9]	2 [9]	4 [9]	3 [9]
Ethane	N/A	658 mg/L 4h rat [10]	3.0 [11]	12.5 [11]	-135 [11]	472 [11]	1 [11]	4 [11]	0 [11]
H ₂ S	N/A	713 ppm 1h rat [12] 673 ppm 1h mouse [12] 634 ppm 1h mouse [12] 444 ppm 4h rat 4h [12] 700 mg/m³ 35 min rhesus monkey [13]	4.0 [13]	44.0 [13]	-82.4 [12]	260 [13] 232 [12]	4 [13]	4 [13]	0 [13]
LPG	N/A	> 30 mg/L 4h rat [14]	1.8 [15]	13.0 [15]	-5 [15]	400-450 [15]	2 [15]	4 [15]	0 [15]
Naphtha	>5,000 mg/kg rat (oral) [16] >2,000mg/kg rabbit (dermal) [16]	>5 mg/L 4h rat [16]	1.1 [17]	5.9 [17]	37.8 [16]	288 [17]	2 [16]	4 [17]	0 [16]
Gas Oil	>5,000 mg/kg rabbit (dermal) [18] >5,000 mg/kg rabbit (oral) [18]	>6 mg/L 4h rat inhalation [18]	0.6 [18]	6.5 [18]	52 [18] 52-96 [19]	257 [18] 257 [19]	1 [18]	2 [18]	0 [18]
Residuum	>2,000 mg/kg rabbit (dermal) [20] >5,000 mg/kg rat (oral) [20]	>94.4 mg/m³ 5h rat [20]	N/A	N/A	204 [20] 158-275 [21]	485 [20]	0 [20]	3 [20]	0 [20]
Crude Oil	>2,000 mg/kg rabbit (dermal) [22] >4,300 mg/kg rat (oral) [23]	3.95 mg/L [24]	1 [25]	7 [25]	-29 [23] 0-40 [25]	454 [25]	2 [25]	3 [25]	0 [25]

Figure 7. Equipment layout for atmospheric crude and light ends units.

REFERENCES

- [1] R. R. Taylor, "Liquified Petroleum Gas," in Kirk-Othmer Encyclopedia of Chemical Technology, Hoboken, John Wiley & Sons, 2000, pp. 1-11.
- [2] S. M. Thompson, G. Robertson and E. Johnson, "Liquified Petroleum Gas," in Ullmann's Encyclopedia of Industrial Chemistry, Hoboken, John Wiley & Sons, 2011, p. 10.
- [3] "Specifications for Natural Gas Liquid Products," Gas Processing Oil and Gas News, [Online]. Available: http://rawgasprocessing.blogspot.com/search/label/Product%20Specifications%3ANatural%20Gas%20and%20Liquids%28Hydrocarbons%29.. [Accessed 9 May 2019].
- [4] J. Hancsok, "Gasoline Fuels for Spark-Ignition Internal Combustion Engines," in Kirk-Othmer Encyclopedia of Chemical Technology, Hoboken, John Wiley & Sons, 2000, pp. 1-60.
- [5] J. Hancsok, "Diesel Fuels for Compression Ignition Internal Combustion Engines," in Kirk-Othmer Encyclopedia of Chemical Technology, Hoboken, John Wiley & Sons, 2000, pp. 1-34.
- [6] NFPA 704, "Codes & Standards List of NFPA Cades & Standards," 2 April 2019. [Online]. Available: https://www.nfpa.org/.
- [7] Harper College Chemistry Department, "Chemistry at Harper College Mathane Safety Data Sheet (SDS)," 2011. [Online]. Available: http://dept.harpercollege.edu/chemistry/msds1/msds.html. [Accessed 2 April 2019].
- [8] Union Gas, "Union Gas Methane Safety Data Sheet (SDS)," Enbridge Gas Inc. Operating as Union Gas, 2019. [Online]. Available: https://www.uniongas.com/about-us/safety/msds. [Accessed 2 April 2019].
- [9] TOXNET Toxicology Data Network, "TOXNET Methane," National Institutes of Health & Human Services, U.S. National Library of Medicine, [Online]. Available: https://toxnet.nlm.nih.gov/cgibin/sis/search2/f?./temp/~hii7IU:3. [Accessed 2 April 2019].
- [10] Praxair Technology, Inc., "Industrial Gases, Specialty Gases & Process Gases Gases E-L, Ethane Safety Data Sheet (SDS)," 2019. [Online]. Available: Industrial Gases, Specialty Gases & Process Gases. [Accessed 2 April 2019].
- [11] TOXNET Toxicology Data Network, "TOXNET Ethane," National Institutes of Health & Human Services, U.S. National Library of Medicine, [Online]. Available: https://toxnet.nlm.nih.gov/cgibin/sis/search2/f?./temp/~tUtlpL:3. [Accessed 2 April 2019].
- [12] Wikimedia Project, "WIKIPEDIA Hydrogen Sulfide," Wikimedia Foundation, Inc, 2019 March 2019. [Online]. Available: https://en.wikipedia.org/wiki/Hydrogen_sulfide. [Accessed 2 April 2019].
- [13] TOXNET Toxicology Data Network, "TOXNET Hydrogen Sulfide," National Institutes of Health & Human Services, U.S. National Library of Medicine, [Online]. Available: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~uSaP2Q:1. [Accessed 2 April 2019].
- [14] Petrobras, "Liquified Petroleum Gas Safety Data Sheet (SDS)," 20 June 2011. [Online]. Available: http://sites.petrobras.com.br/minisite/reach/downloads/fichas-tecnicas/Ingles/PEL/Liquified-Petroleum-Gas.pdf. [Accessed 2 April 2019].
- [15] ConocoPhillips, "Liquified Petroleum Gas Safety Data Sheet (SDS)," 30 May 2014. [Online]. Available: http://static.conocophillips.com/files/resources/20140530-778984-liquefied-petroleum-gas-canada.pdf. [Accessed 2 April 2019].

- [16] Marathon Petroleum Company LP, "Naphtha Safety Data Sheet (SDS)," 21 May 2015. [Online]. Available at https://www.marathonpetroleum.com/brand/content/documents/mpc/sds/0135MAR020.pdf. [Accessed 3 April 2019].
- [17] TOXNET Toxicology Data Network, "TOXNET Naphtha," National Institutes of Health & Human Services, U.S. National Library of Medicine, [Online]. Available: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~5ilXtr:3.
- [18] Global Comapnies LLC, "Diesel Fuel Safety Data Sheet (SDS)," 3 May 2015. [Online]. Available: http://www.globalp.com/documents/files/SDS%20Diesel%20Fuel%20Final.pdf. [Accessed 3 April 2019].
- [19] TOXNET Toxicology Data Network, "TOXNET Fuel Oil #2," National Institutes of Health & Human Services, U.S. National Library of Medicine, [Online]. Available: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~ntgUeV:1. [Accessed 3 April 2019].
- [20] TOXNET Toxicology Data Network, "TOXNET Asphalt," National Institutes of Health & Human Services, U.S. National Library of Medicine, [Online]. Available: https://toxnet.nlm.nih.gov/cgibin/sis/search2/f?./temp/~qMZFlY:1. [Accessed 2 April 2019].
- [21] HollyFrontier Refining & Marketing LLC, "Residuum Safety Data Sheet (SDS)," 28 May 2015. [Online]. Available: https://s2.q4cdn.com/255514451/files/doc_downloads/safety/new/Residuum-Elevated-Temperature.pdf. [Accessed 3 April 2019].
- [22] Vitol, Inc., "Crude Oil Safety Data Sheet," June 2015. [Online]. Available: https://www.vitol.com/wp-content/uploads/2016/09/Crude-Oil-I5001a-Rev.002.pdf. [Accessed 3 April 2019].
- [23] ConocoPhillips, "Bakken Crude Oil Sfety Data Sheet (SDS)," 20 May 2014. [Online]. Available: http://static.conocophillips.com/files/resources/20140530-825378-bakken-crude-oil-sweet.pdf. [Accessed 3 April 2019].
- [24] C. R. Clark, P. W. Ferguson, M. M. Katchen, M. W. Denis and D. K. Craig, "Comparative Acute Toxicity of Shale and Petroleum Derived Distillates," Toxicology and Industrial Health, vol. 5, no. 6, pp. 1005-1016, 5 December 1989.
- [25] Valero Marketing & Supply Company, "Crude Oil Safety Data Sheet (SDS)," 6 December 2013. [Online]. Available: https://www.valero.com/en-us/Documents/OSHA_GHS_SDS/SDS%20US%20-%20501%20GHS%20-%20Crude%20Oil%20Rev1.pdf. [Accessed 3 April 2019].

Desalter and Fired Heater

Andy Biaglow | May 8, 2023

Atmospheric Crude Unit - Tower Bottom and Side Streams

Andy Biaglow | May 8, 2023

Atmospheric Crude Unit - Tower Top

Andy Biaglow | May 8, 2023

