Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	7
1.2 Описание выходных данных	8
2 МЕТОД РЕШЕНИЯ	10
З ОПИСАНИЕ АЛГОРИТМОВ	11
3.1 Алгоритм метода get_ptr класса Cls	11
3.2 Алгоритм метода set_ptr класса Cls	11
3.3 Алгоритм функции main	12
3.4 Алгоритм функции func	13
3.5 Алгоритм метода input класса Cls	13
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	15
5 КОД ПРОГРАММЫ	17
5.1 Файл Cls.cpp	17
5.2 Файл Cls.h	19
5.3 Файл main.cpp	19
6 ТЕСТИРОВАНИЕ	21
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	22

1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- конструктор по умолчанию, вначале работы выдает сообщение;
- параметризированный конструктор, передается целочисленный параметр. Параметр должен иметь значение больше 2 и быть четным. Вначале работы выдает сообщение;
- конструктор копии, обеспечивает создание копии объекта в новой области памяти. Вначале работы выдает сообщение;
- метод деструктор, который в начале работы выдает сообщение;
- метод который создает целочисленный массив в закрытой области, согласно ранее заданной размерности.
- метод ввода значений элементов созданного массива;
- метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- метод, который суммирует значения элементов массива и возвращает это значение;
- метод последовательного вывода содержимого элементов массива,

которые разделены двумя пробелами;

- метод, который возвращает значение указателя на массив из закрытой области;
- метод, который присваивает значение указателя массива из закрытой области.

Назовём класс описания данного объекта cl_obj (для примера, у вас он может называться иначе).

Разработать функцию func, которая имеет один целочисленный параметр, содержащий размерность массива. В функции должен быть реализован алгоритм:

- 1. Инициализация указателя на объект класса cl_obj адресом объекта, созданного с использованием параметризированного конструктора.
- 2. С использованием указателя на объект класса cl_obj вызов метода создания массива.
- 3. С использованием указателя на объект класса cl_obj вызов метода ввода значений элементов массива.
- 4. С использованием указателя на объект класса cl_obj вызов метода 2.
- 5. Возврат указателя на объект класса cl_obj.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Объявить первый указатель на объект класса cl_obj.
- 5. Присвоение первому указателю результата работы функции func с аргументом, содержащим значение размерности массива.
- 6. С использованием первого указателя вызов метода 1.
- 7. Инициализация второго указателя на объект класса cl_obj адресом

объекта, созданного с использованием конструктора копии с аргументом первого объекта.

- 8. С использованием второго указателя вызов метода 2.
- 9. Вывод содержимого массива первого объекта.
- 10. Вывод суммы элементов массива первого объекта.
- 11. Вывод содержимого массива второго объекта.
- 12. Вывод суммы элементов массива второго объекта.
- 13. Второму объекту присвоить первый объект.
- 14. С использованием первого указателя вызов метода 1.
- 15. Вывод содержимого массива второго объекта.
- 16. Вывод суммы элементов массива второго объекта.
- 17. Удалит первый объект.
- 18. Удалить второй объект.

Добавить в этот алгоритм пункты, которые обеспечат корректное завершение работы программы.

1.1 Описание входных данных

```
Первая строка:

«целое число»
Вторая строка:

«целое число» «целое число» . . .

Пример:

4
3 5 1 2
```

1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копии в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

Метод последовательного вывода содержимого элементов массива, с новой строки выдает:

```
«Целое число» «Целое число» «Целое число» . . .
```

Пример вывода:

```
4
Constructor set
Copy constructor
20 5 4 2
31
100 5 8 2
```

115 100 5 8 2 115 Destructor Destructor

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj1 класса Cls предназначен для Первый объект для решения задачи;
- объект obj2 класса Cls предназначен для Второй объект для решения задачи;
- функция func для Функция для решения задачи.

Класс Cls:

- функционал:
 - о метод get_ptr Получение указателя на arr;
 - о метод set_ptr Установка указателя arr;
 - о метод input Метод ввода данных.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм метода get_ptr класса Cls

Функционал: Получение указателя на arr.

Параметры: нет.

Возвращаемое значение: int*.

Алгоритм метода представлен в таблице 1.

Таблица 1 – Алгоритм метода get_ptr класса Cls

No	Предикат	Действия	No
			перехода
1		Возврат указателя на arr	Ø

3.2 Алгоритм метода set_ptr класса Cls

Функционал: Установка указателя arr.

Параметры: int* narr - новый указатель.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода set_ptr класса Cls

No	Предикат	Действия	N₂
			перехода
1		Присваивание указателю агт указателя пагт	Ø

3.3 Алгоритм функции main

Функционал: Основная функция программы.

Параметры: нет.

Возвращаемое значение: int - код ошибки.

Алгоритм функции представлен в таблице 3.

Таблица 3 – Алгоритм функции таіп

Nº	Предикат	Действия	№ перехода
1		Объявление переменной n типа int	2
2		Ввод значения п	3
3	n % 2 != 0 n <= 2	Вывод п?	20
			4
4		Вывод п	5
5		Создание указателя obj1 на класс Cls	6
6		Присваивание obj1 значение результата функции	7
		func c параметорм n	
7		Вызов метода m1 у объекта по указателю obj1	8
8		Создание указателя obj на класс Cls и передачей	9
		объекта указателя obj1 как параметра	
9		Вызов метода m2 у объекта по указателю obj2	10
10		Вызов метода output у объекта по указателю obj1	11
11		Вывод значения вызова метода m3 у объекта по	12
		указателю obj1	
12		Вызов метода output у объекта по указателю obj2	13
13		Вывод значения вызова метода тЗ у объекта по	14
		указателю obj2	
14		Присвоение объекта указателя obj2 объекту	15
		указателя obj1	
15		Вызов метода m2 у объекта по указателю obj1	16

N₂	Предикат	Действия	No
			перехода
16		Вызов метода output у объекта по указателю obj2	17
17		Вывод значения вызова метода m3 у объекта по	18
		указателю obj2	
18		Удаление obj1	19
19		Удаление obj2	20
20		Возврат значения 0	Ø

3.4 Алгоритм функции func

Функционал: Инициализация объекта класса Cls.

Параметры: int n - размер массива для объекта класса Cls.

Возвращаемое значение: Cls* - указатель на объекта класса Cls.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции func

N₂	Предикат	Действия	N₂
			перехода
1		Создание указателя obj на класс Cls и передачей п как параметра	2
2		Вызов метода init_arr у объекта по указателю obj	3
3		Вызов метода input у объекта по указателю obj	4
4		Вызов метода m2 у объекта по указателю obj	5
5		Возврат обј	Ø

3.5 Алгоритм метода input класса Cls

Функционал: Метод ввода данных.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода input класса Cls

N₂	Предикат	Действия	No
			перехода
1		Инициализация i = 0 типа int	2
2	i < length	Ввод значения arr[i]	3
			Ø
3		i++	1

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Cls.cpp

Листинг 1 - Cls.cpp

```
#include "Cls.h"
#include <iostream>
using namespace std;
Cls::Cls()
  cout << endl << "Default constructor";</pre>
Cls::Cls(int n)
  cout << endl << "Constructor set";</pre>
  length = n;
Cls::~Cls()
  cout << endl << "Destructor";</pre>
Cls::Cls(const Cls & ob)
  cout << endl << "Copy constructor";</pre>
  length = ob.length;
  arr = new int[ob.length];
  for(int i = 0; i < length; i++)
      arr[i] = ob.arr[i];
}
void Cls::init_arr()
  arr = new int[length];
void Cls::input()
  for(int i = 0; i < length; i++)
```

```
cin >> arr[i];
  }
}
void Cls::output()
  cout << endl;</pre>
  for(int i = 0; i < length; i++)
      cout << arr[i];</pre>
     if(i != length - 1) cout << " ";</pre>
  }
}
void Cls::m1()
  for(int i = 0; i < length; i+=2)
     arr[i] = arr[i] + arr[i + 1];
}
void Cls::m2()
  for(int i = 0; i < length; i+=2)
     arr[i] = arr[i] * arr[i + 1];
}
int Cls::m3()
  int sum = 0;
  for(int i = 0; i < length; i++)
     sum += arr[i];
  return sum;
}
int* Cls::get_ptr(){
  return arr;
void Cls::set_ptr(int* narr){
  arr = narr;
}
```

5.2 Файл Cls.h

Листинг 2 – Cls.h

```
#ifndef __CLS__H
#define __CLS__H
class Cls
private:
  int* arr = nullptr;
  int length;
public:
  Cls();
  Cls(int n);
  ~Cls();
  Cls(const Cls &ob);
  void init_arr();
  void input();
  void output();
  void m1();
  void m2();
  int m3();
  int* get_ptr();
  void set_ptr(int* arr);
};
#endif
```

5.3 Файл таіп.срр

Листинг 3 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include "Cls.h"
#include <iostream>

using namespace std;

Cls* func(int n){
    Cls* obj = new Cls(n);

    obj->init_arr();
    obj->input();
    obj->m2();

return obj;
```

```
}
int main()
{
  int n;
  cin >> n;
  if(n % 2 != 0 || n <= 2){
     cout << n << "?";
     return(0);
  }
  cout << n;
  Cls* obj1;
  obj1 = func(n);
  obj1->m1();
  Cls* obj2 = new Cls(*obj1);
  obj2->m2();
  obj1->output();
  cout << endl << obj1->m3();
  obj2->output();
  cout << endl << obj2->m3();
  *obj2 = *obj1;
  obj1->m2();
  obj2->output();
  cout << endl << obj2->m3();
  delete obj1;
  delete obj2;
  // program here
  return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 6.

Таблица 6 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
4 3 5 1 2	4 Constructor set Copy constructor 20 5 4 2 31 100 5 8 2 115 100 5 8 2 115 Destructor Destructor	4 Constructor set Copy constructor 20
5	5?	5?

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).