MAT 228A Notes

Sam Fleischer

November 29, 2016

1 Conjugate Gradient Method

Au = f where A is symmetric and positive definite (s.p.d.). It turns out u minimizes ϕ where

$$\phi(u) = u^T A u - u^T f.$$

Remember the definition

$$\kappa = ||A||_2 ||A^{-1}||_2.$$

For symmetric matrices,

$$\kappa = \frac{\max_{j} |\lambda_j|}{\min_{j} |\lambda_j|}.$$

In conjugate gradient method, we will not always go in the direction of steepest descent (the residual direction). Let p_k be the vector to follow.

$$u_{k+1} = u_k + \alpha p_k.$$

Follow this search direction until ϕ increases, i.e. minimize ϕ on a 1D space. We find

$$\alpha = \frac{p_k^T r_k}{p_k^T A p_k}.$$

1.1 Start in 2D

- Initial guess u_0
- compute residual r_0
- Initialize $p_0 = r_0$
- Get $u_1 = u_0 + \alpha p_0$
- Pick p_1 so that $p_1^T A p_0 = 0$.
 - In otherwords, p_0 and p_1 are A-conjugate, or

$$p_1^T A p_0 = \langle p_0, p_1 \rangle_A$$

because A is s.p.d.

- Why do this? Notice that p_0 is tangent to the level set of ϕ at $\phi(u_1)$, i.e. we know $p_0^T r_1 = 0$. So,

1

$$p_0^T r_1 = 0$$

$$p^T (f - Au_1) = 0$$

$$p^T (Au - Au_1) = 0$$

$$p^T A(u - u_1) = 0$$

So p_1 will be pointing in the direction of $u - u_1$. So u_2 is the exact solution.

1.2 3D

- initial guess u_0
- compute residual r_0
- Initialize $p_0 = r_0$
- Get $u_1 = u_0 + \alpha p_0$
- Pick p_1 to be A-conjugate to p_0 .
 - This is a 2D space to choose from. just pick a direction in that space.
- p_1 and r_1 define α
- calculate $u_2 = u_1 + \alpha p_1$.
 - $-p_0$ and p_1 span a plane. This plane, which is $c_0p_0 + c_1p_1 + u_2$, is tangent to the level surface at $\phi(u_2)$.
 - At this point, we've minimized on this plane.
- Pick p_2 to be A-conjuage to $\{p_0, p_1\}$.
- Minimizing ϕ along this direction gives us the exact solution.

$$(c_0p_0 + c_1p_1)^T r_2 = 0$$
$$(c_0p_0 + c_1p_1)^T (f - Au_2) = 0$$
$$(c_0p_0 + c_1p_1)^T (Au - Au_2) = 0$$
$$(c_0p_0 + c_1p_1)^T A(u - u_2) = 0$$

So p_2 is pointing right at the solution.

1.3 In general

So CG will (no round off) give the xact solution in N steps. Usually we get close in far fewer steps.

1.3.1 Pseudocode

- Initialize $u_0, r_0 = f Au_0, p_0 = r_0$
- loop in k

$$- w = Ap_k$$

$$- \alpha = \frac{r_k^T r_k}{w^T p_k}$$

$$- u_{k+1} = u_k + \alpha p_k$$

$$-u_{k+1}-u_k+\alpha p_k$$

$$- r_{k+1} = r_k - \alpha w$$

- check
$$||r_{k+1}||$$
 for stopping

$$- \text{ compute } \beta = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$$

$$-p_{k+1} = r_{k+1} + \beta p_k$$

* This is r_{k+1} without components in $\{p_0, p_1, \dots, p_{k-1}\}$.

$\mathbf{2}$ Analysis of Convergence

Because A is s.p.d. it defines a norm $\|u\|_A^2 = u^T A u$. We can show $\|e_j\|_A \le 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^j \|e_0\|_A$, which shows convergence since $\|e_j\|_A \to 0$ as $j \to \infty$. So, $\kappa \approx 1$ gives fast convergence and $\kappa \gg 1$ gives slow convergence.

2.1 Theorem from Book

The vectors in the CG algorithm have the following properties provided $r_k \neq 0$:

- 1. p_k is A-conjugate to all previous search directions.
- 2. r_k is orthogonal to all previous residuals.
- 3. The following subspaces of \mathbb{R}^n are identical
 - (a) span $\{p_0, p_1, \dots, p_{k-1}\}$
 - (b) span $\{r_0, Ar_0, A^2r_0, \dots, A_{k-1}r_0\}$
 - (c) span $\{e_0, Ae_0, A^2e_0, \dots, A_{k-1}e_0\}$

Define $K_n = \operatorname{span} \{r_0, Ar_0, A^2r_0, \dots, A_{n-1}r_0\}$ as the *n*-dimensional Krylov space associated with r_0 .

$$u_n \in u_0 + K_n$$
.

 u_n minimumzes ϕ in this space. Minimizing $\phi(u)$ is equivalent to minimizing $\|e_j\|_A^2$.

$$||e_{j}||_{A}^{2} = e_{j}^{T} A e_{j}$$

$$= (u_{j} - u)^{T} A (u_{j} - u)$$

$$= u_{j}^{T} A u_{j} - 2 u_{j}^{T} A u + u^{T} A u$$

$$= u_{j}^{T} A u - 2 u_{j}^{T} f + u^{T} A u$$

$$= 2 \phi(u_{j}) + C$$