Análise de dados: Falsificação de cédulas de Real (R\$)

Neste projeto serão analisados os dados de falsificação de cédulas de Real (R\$) com base nos dados (.csv) do período entre 1995 e 2021 acessíveis no portal de Dados Abertos disponibilizados pelo Banco Central do Brasil.

Demanda da análise

- Demonstrar a evolução das falsificações
- Identificar as cédulas mais falsificadas
- Identificar os estados com mais incidência de falsificações

Indagações a serem respondidas pela análise exploratória dos dados

- 1. Qual o total de falsificações por cédula (1995 a 2021)?
- 2. Qual o total de falsificações por ano (1995 a 2021)?
- 3. Qual o total de falsificações por cédula e por ano (1995 a 2021)?
- 4. Qual o total de falsificações por estado no período de 1995 a 2021?

Importação de pacotes

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings

warnings.filterwarnings('ignore')
sns.set_style('darkgrid')
```

Carregamento dos dados

```
In [2]: # Criando um dataframe atribuindo o arquivo csv no diretório dados e definindo o nome das colunas

df = pd.read_csv('dados/Falsificacao_DadosAbertos.csv', sep=';', header=None)

df.columns = ['Ano', 'Estado', 'Família', 'Denominação', 'Quantidade']
```

Detalhes do dataframe

```
In [3]: # Amostra de dados do dataframe

df.sample(10)
```

ut[3]:		Ano	Estado	Família	Denominação	Quantidade
	2915	2013	MATO GROSSO DO SUL	Cédulas - 2a. família	10.0	7,00
	1010	2004	RIO GRANDE DO NORTE	Cédulas - 1a. família	5.0	352,00
	4516	2018	MINAS GERAIS	Cédulas - 1a. família	50.0	6.075,00
	2277	2011	ACRE	Cédulas - 1a. família	5.0	5,00
	487	2002	ALAGOAS	Cédulas - 1a. família	50.0	702,00
	5257	2020	RIO GRANDE DO NORTE	Cédulas - 2a. família	200.0	1,00
	2044	2009	RONDÔNIA	Cédulas - em polímero	10.0	6,00

	Ano	Estado	Família	Denominação	Quantidade
16	1996	RIO GRANDE DO SUL	Cédulas - 1a. família	10.0	1,00
5312	2020	SÃO PAULO	Cédulas - 2a. família	50.0	19.515,00
2924	2013	MINAS GERAIS	Cédulas - 2a. família	5.0	7,00

```
In [4]:
         # Quantidade de Linhas e colunas
         df.shape
        (5680, 5)
Out[4]:
In [5]:
         # Removendo a coluna que não será utilizada na análise
         df = df.drop(columns=['Família'])
         df.shape
Out[5]: (5680, 4)
In [6]:
         # Informações das colunas como nome, contagem de linhas nulas e tipo de dados
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5680 entries, 0 to 5679
        Data columns (total 4 columns):
                          Non-Null Count Dtype
            Column
         #
        ---
                          5680 non-null
             Ano
             Estado
                          5680 non-null
                                          object
         1
             Denominação 5680 non-null
                                          float64
            Quantidade
                          5680 non-null
                                          object
        dtypes: float64(1), int64(1), object(2)
        memory usage: 177.6+ KB
```

Tratando valores nulos

dtype: int64

```
In [7]: # Identificando a quantidade de valores nulos, no caso não há dados nulos

df.isnull().sum()

Out[7]: Ano 0
Estado 0
Denominação 0
Quantidade 0
```

Tratando os tipos de valores

```
In [8]:
          # Identificando os tipos de dados das colunas
          df.dtypes
Out[8]: Ano
                           int64
                          object
         Estado
         Denominação
                         float64
         Quantidade
                          object
         dtype: object
In [9]:
          # Efetuando as conversões necessárias dos tipos de dados e exibindo novamente as informações das colunas
          df['Ano'] = df['Ano'].astype('int')
          df['Quantidade'] = [(str(i).replace('.', ''))
          for i in df['Quantidade']] # 1.000,00 para 1000,00
df['Quantidade'] = [(str(i).replace(',', '.'))
                               for i in df['Quantidade']] # 1000,00 para 1000.00
```

```
df['Quantidade'] = [float(str(i)) for i in df['Quantidade']]
 df['Quantidade'] = df['Quantidade'].astype('int')
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5680 entries, 0 to 5679
Data columns (total 4 columns):
                Non-Null Count Dtype
# Column
--- -----
                 5680 non-null int32
0
    Ano
    Estado
                 5680 non-null
                                object
 2 Denominação 5680 non-null
                               float64
3 Quantidade 5680 non-null
                                int32
dtypes: float64(1), int32(2), object(1)
memory usage: 133.2+ KB
```

Listando valores únicos e removendo inconsistências

```
In [10]:
# Listando os valores únicos das colunas qualitativas em busca de erros e/ou valores inconsistentes

print(" Ano: ", sorted(df['Ano'].unique()))
print("\n Estado: ", sorted(df['Estado'].unique()))
print("\n Denominação: ", sorted(df['Denominação'].unique()))

Ano: [1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 201
1, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022]

Estado: ['ACRE', 'ALAGOAS', 'AMAPÁ', 'AMAZONAS', 'BAHIA', 'CEARÁ', 'DISTRITO FEDERAL', 'ESPÍRITO SANTO', 'GOIÁS', 'MARANHAÖ', 'MATO GROSSO', 'MATO GROSSO DO SUL', 'MINAS GERAIS', 'NAO INFORMADO', 'PARANÁ', 'PARAÎB A', 'PARÂ', 'PERNAMBUCO', 'PIAUÍ', 'RIO DE JANEIRO', 'RIO GRANDE DO NORTE', 'RIO GRANDE DO SUL', 'RONDÔNIA', 'RORAIMA', 'SANTA CATARINA', 'SERGIPE', 'SÃO PAULO', 'TOCANTINS']

Denominação: [1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0, 200.0]

In [11]:
# Criando um dataframe com todos os estados, exceto com valores "NAO INFORMADO"

df_remover = df.loc[df['Estado'] == 'NAO INFORMADO']

df = df.drop(df_remover.index)
print(sorted(df['Estado'].unique()))

['ACRE', 'ALAGOAS', 'AMAPÁ', 'AMAZONAS', 'BAHIA', 'CEARÁ', 'DISTRITO FEDERAL', 'ESPÍRITO SANTO', 'GOIÁS', 'M ARANHÃO', 'MATO GROSSO', 'MATO GROSSO DO SUL', 'MINAS GERAIS', 'PARANÁ', 'PARAÍBA', 'PARA', 'PERNAMBUCO', 'P IAUÍ', 'RIO DE JANEIRO', 'RIO GRANDE DO NORTE', 'RIO GRANDE DO SUL', 'RONDÔNIA', 'RORAIMA', 'SANTA CATARIN A', 'SERGIPE', 'SÃO PAULO', 'TOCANTINS']
```

Selecionando o período entre 1995 e 2021

```
In [12]: # Criando um dataframe com todos os períodos, exceto o ano corrente de 2022

df_remover = df.loc[df['Ano'] == 2022]

df = df.drop(df_remover.index)

print(df['Ano'].unique())

[1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021]
```

Amostra e resumo estatístico dos dados após tratamento das informações

	Ano	Estado	Denominação	Quantidade
4200	2017	PARÁ	5.0	27
1255	2005	SÃO PAULO	20.0	14253
1416	2006	RIO DE JANEIRO	100.0	2343
3703	2015	SÃO PAULO	100.0	47279
1579	2007	PARÁ	10.0	1285
4430	2018	CEARÁ	50.0	2103
1076	2005	ALAGOAS	100.0	3
3334	2014	RIO GRANDE DO SUL	5.0	2113
3459	2015	BAHIA	10.0	226

In [14]: df.describe()

Out[14]: Ano Denominação Quantidade

count	5603.000000	5603.000000	5603.000000
mean	2011.562913	32.989827	1903.643227
std	6.536916	37.951943	7218.388180
min	1995.000000	1.000000	1.000000
25%	2006.000000	5.000000	19.000000
50%	2013.000000	10.000000	152.000000
75%	2017.000000	50.000000	985.500000
max	2021.000000	200.000000	188792.000000

1. Qual o total de falsificações por cédula (1995 a 2021)?

```
In [15]:
          df_temp = df.groupby(['Denominação'])['Quantidade'].sum()
          df_denominacao_quantidade = pd.DataFrame(df_temp)
          df_denominacao_quantidade['%'] = df_denominacao_quantidade['Quantidade'] / \
              df denominacao quantidade['Quantidade'].sum() * 100
          print(df_denominacao_quantidade)
          plt.figure(figsize=(25, 10))
          plot = sns.barplot(y=df_denominacao_quantidade.index,
                             x=df_denominacao_quantidade['%'],
                             orient='h',
                             palette='hls')
          for i in plot.patches:
              plot.annotate(format(i.get_width(), '.2f'),
                            (i.get_width(), i.get_y() + i.get_height() / 2),
                            ha='center',
                            va='baseline',
                            fontsize=15,
                            color='black',
                            xytext=(30, -5),
                            textcoords='offset points')
          plt.xticks(size=15)
          plt.yticks(size=20)
          plt.xlabel('')
          plt.ylabel('')
          plt.title('\nFalsificações por cédula (1995 a 2021) (%)\n', fontsize=20)
          plt.show(plot)
```

Quantidade %
Denominação
1.0 2427 0.022754
2.0 33633 0.315326

Falsificações por cédula (1995 a 2021) (%)

As notas de R\$ 50, R\$ 100 e R\$ 10 estão entre as notas mais falsificadas, somente a cédula de R\$ 50 responde por mais de 42% (4.538.656) do total das falsificações, sendo a nota de R\$ 100 correspondendo a mais de 25% (2.690.541) do total.

2. Qual o total de falsificações por ano (1995 a 2021)?

```
In [16]:
          df_temp = df.groupby(['Ano'])['Quantidade'].sum()
          df_ano_quantidade = pd.DataFrame(df_temp)
          df ano_quantidade['%'] = df_ano_quantidade['Quantidade'] / \
              df_ano_quantidade['Quantidade'].sum() * 100
          print(df ano quantidade)
          plt.figure(figsize=(25, 10))
          plot = sns.barplot(x=df_ano_quantidade.index,
                              y=df_ano_quantidade['Quantidade'],
                              orient='v'
                              palette=['indianred'])
          for i in plot.patches:
              plot.annotate(format(i.get_height(), '3.0f'),
                             (i.get_x() + i.get_width() / 2, i.get_height()),
                             ha='center',
                             va='baseline',
                             fontsize=13,
                             color='black',
                             xytext=(0, 5),
                             textcoords='offset points')
          plt.xticks(size=13)
          plt.yticks(size=13)
          plt.xlabel('')
          plt.ylabel('')
          plt.title('\nFalsificações por ano (1995 a 2021) (R$)\n', fontsize=20)
          plt.show(plot)
```

```
Quantidade
Ano
1995
             242 0.002269
1996
           16421
                  0.153955
1997
             624 0.005850
1998
            6874 0.064447
1999
           29162
                  0.273408
2000
          329111
                  3.085576
2001
          381709 3.578708
2002
          413862 3.880158
2003
          548882
                  5.146036
2004
          499209 4.680327
2005
          448072 4.200893
```

```
2006
          637949 5.981082
2007
          678873
                  6.364765
2008
          538120 5.045137
2009
          503214 4.717876
2010
          434644 4.074999
2011
          434084 4.069749
2012
          519987
                 4.875131
2013
          551157
                  5.167365
          529578
2014
                 4.965051
2015
          477689
                  4.478567
2016
          506633
                  4.749931
2017
          548542
                  5,142848
2018
          561808
                  5.267223
2019
          498961 4.678002
2020
          324985
                  3.046893
2021
          245721 2.303754
```

Falsificações por ano (1995 a 2021) (R\$)

O período entre 2006 e 2007 corresponde aos anos em que houve a maior quantidade de cédulas falsas identificadas pelo Banco Central, sendo que em 2007 houve um recorde de 678.873 notas falsas. Desde que foi iniciado a contabilização de falsificações em 1995, o período entre 2020 e 2021 foi o intervalo em que ocorreram a mais fortes quedas nas falsificações, coincidentemente em 2020 iniciou-se a pandemia de Covid-19.

3. Qual o total de falsificações por cédula e por ano (1995 a 2021)?

```
In [17]:
          df_temp = df.groupby(['Ano', 'Denominação'])['Quantidade'].sum()
          df_ano_denominacao_quantidade = pd.DataFrame(df_temp)
          df_ano_denominacao_quantidade.reset_index(level=1, inplace=True, col_level=1)
          df_ano_denominacao_quantidade['Denominação'] = df_ano_denominacao_quantidade['Denominação'].astype(
              'str')
          tabela = df_ano_denominacao_quantidade.T
          for i in set(tabela.columns):
              print(tabela[i], "\n")
          plt.figure(figsize=(25, 10))
          plot = sns.lineplot(x=df_ano_denominacao_quantidade.index,
                              y=df_ano_denominacao_quantidade['Quantidade'],
                              hue=df_ano_denominacao_quantidade['Denominação'],
                              data=df_ano_denominacao_quantidade,
                              marker='o',
                              markersize=8, palette='hls',
                              hue_order=['1.0', '2.0', '5.0', '10.0', '20.0', '50.0', '100.0', '200.0'])
          xlabels = list(set(df_ano_denominacao_quantidade.index.tolist()))
          ylabels = np.arange(0, 500000, 50000)
          plt.xticks(xlabels, rotation=45, size=15)
          plt.yticks(ylabels, size=15)
          plt.xlabel('')
          plt.ylabel('')
          plt.title('\nFalsificações por cédula e por ano (1995 a 2021)\n', fontsize=20)
```

Ano Denominação Quantidade	1995 50.0 240	199 100.					
Ano Denominação Quantidade	5.0	1996 10.0 6088	1996 50.0 8001	1996 100.0 2330			
Ano Denominação Quantidade		1997 10.0 108	1997 50.0 154	1997 100.0 180			
Ano Denominação Quantidade	5.0	1998 10.0 3512	1998 50.0 2181	1998 100.0 1109			
Ano Denominação Quantidade		5.0	1999 10.0 12643	1999 50.0 14066	1999 100.0 1570		
Ano Denominação Quantidade	2000 1.0 294	2000 5.0 15914	10	.0 50	000 200 0.0 100 244 46	.0	
Ano Denominação Quantidade	2001 1.0 336	2001 5.0 30340	10	.0 20.0		0.00	
Ano Denominação Quantidade		2.0	2002 5.0 30681	2002 10.0 188644	20.0	2002 50.0 181245	2002 100.0 1831
Ano Denominação Quantidade		2.0	2003 5.0 59426	2003 10.0 136582		2003 50.0 297306	2003 100.0 2740
Ano Denominação Quantidade	1.0	2004 2.0 1061	2004 5.0 29512	2004 10.6 114089	20.0		100.0
Ano Denominação Quantidade		2.0	2005 5.0 31177	2005 10.0 99902	2005 20.0 36367	2005 50.0 274186	2005 100.0 5385
Ano Denominação Quantidade	1.0	2006 2.0 1486	2006 5.0 22157	2006 10.6 15758	20.0	2006 50.0 431793	2006 100.0 5338
Ano Denominação Quantidade	1.0	2007 2.0 2106	2007 5.0 29552	2007 10.0 143720	20.0	50.0	100.0
Ano Denominação Quantidade	1.0	2008 2.0 3070	2008 5.0 24811	2008 10.0 86231	20.0	2008 50.0 342068	2008 100.0 34820
Ano Denominação Quantidade	1.0	2009 2.0 1600	2009 5.0 18221	2009 10.0 52411	20.0	2009 50.0 281581	2009 100.0 92630
Ano Denominação Quantidade	1.0	2010 2.0 1165	2010 5.0 14540		20.0	2010 50.0 227289	2010 100.0 84764
Ano Denominação Quantidade	1.0	2011 2.0 1109	2011 5.0 11028	2011 10.0 37550	20.0	2011 50.0 187149	2011 100.0 149196
Ano Denominação Quantidade		2.0	2012 5.0 5026	2012 10.0 21513	2012 20.0 97134 1		2012 100.0 33417
Ano Denominação Quantidade	1.0	2013 2.0 1122	2013 5.0 4515	2013 10.0 20958	2013 20.0 109298	2013 50.0 140997	2013 100.0 274245
Ano Denominação		2014	2014 5.0	2014 10.0	2014 20.0	2014 50.0	2014 100.0

Quantidade	1	1359	9639	18352	122128	130610	247489
Ano	2015	2015	2015	2015	2015	2015	2015
Denominação	1.0	2.0	5.0	10.0	20.0	50.0	100.0
Quantidade	1	1250	7144	16297	73340	126077	253580
Ano	2016	2016	2016	2016	2016	2016	2016
Denominação	1.0	2.0	5.0	10.0	20.0	50.0	100.0
Quantidade	1	1500	8517	15396	66552	135385	279282
Ano	2017	2017	2017	2017	2017	2017	2017
Denominação	1.0	2.0	5.0	10.0	20.0	50.0	100.0
Quantidade	4	5434	9395	21959	74779	175467	261504
Ano Denominação Quantidade	2018 1.0 3	2018 2.0 3240	2018 5.0 16349	2018 10.0 31751	2018 20.6 108102	50.6	0 100.0
Ano	2019	2019	2019	2019	2019	2019	2019
Denominação	1.0	2.0	5.0	10.0	20.0	50.0	100.0
Quantidade	4	2548	11299	36219	82592	131879	234420
Ano	2020	2020	2020	2020	2020	2020	2020
Denominação	2.0	5.0	10.0	20.0	50.0	100.0	200.0
Quantidade	873	5252	17673	61144	81277	154181	4585
Ano	2021	2021	2021	2021	2021		2021 2021
Denominação	1.0	2.0	5.0	10.0	20.0		100.0 200.0
Quantidade	8	1337	4360	10593	31654		98433 46914

Falsificações por cédula e por ano (1995 a 2021)

No ano de 2001 a cédula de R\$ 10 era mais identificada como falsa, porém em 2003 com o ápice em 2007 a nota de R\$ 50 era a mais falsificada, até 2011 houve um forte declínio, em 2012 a cédula de R\$ 100 passou a ser a que mais apresentava incidência de falsificações e em 2018 iniciou-se uma queda nas três cédulas mais falsificadas (R\$ 100, R\$ 50 e R\$ 20).

4. Qual o total de falsificações por estado no período de 1995 a 2021?

	Ouantidade	%
Estado	C	
SÃO PAULO	3726672	34.939364
RIO DE JANEIRO	1167922	10.949837
MINAS GERAIS	1065724	9.991681
PARANÁ	716458	6.717142
RIO GRANDE DO SUL	661547	6.202325
BAHIA	458700	4.300536
GOIÁS	438440	4.110588
SANTA CATARINA	397738	3.728987
PERNAMBUCO	339519	3.183156
DISTRITO FEDERAL	287291	2.693493
CEARÁ	228143	2.138952
MATO GROSSO DO SUL	227749	2.135258
ESPÍRITO SANTO	125582	1.177392
PARÁ	122316	1.146772
MARANHÃO	97759	0.916538
MATO GROSSO	95812	
PARAÍBA	73503	0.689126
ALAGOAS	69406	0.650715
RIO GRANDE DO NORTE	67881	0.636417
PIAUÍ	66984	0.628008
SERGIPE	63259	0.593084
AMAZONAS	58839	0.551644
RONDÔNIA	45372	0.425385
TOCANTINS	37420	0.350831
AMAPÁ	13332	0.124994
ACRE	7897	0.074038
RORAIMA	4848	0.045452

Falsificações por estado (1995 a 2021) (%)

São Paulo lidera na quantidade de cédulas enviadas ao Banco Central e identificadas como falsas, mais de 34% (3.726.672), somando os estados de Rio de Janeiro com mais de 10% (1.167.922) e Minas Gerais com mais de 9% (1.065.724), ambos da região sudeste, temos mais de 55% (5.960.318) de participação no total de notas falsificadas.