Computer-Aided VLSI System Design Homework 5 Report

Due Tuesday, Dec. 3, 13:59

Student ID:

Student Name:

APR Results

1. Fill in the blanks below.

Design Stage	Description	Value
P&R	Number of DRC violations (ex: 0)	0
	(Verify -> Verify Geometry)	
	Number of LVS violations (ex: 0)	0
	(Verify -> Verify Connectivity)	
	Die Area (um²)	489062.43
	Core Area (um²)	290445.51
Post-layout	Clock Period for Post-layout Simulation (ex. 10ns)	5ns
Simulation		
Follow your design in HW3?		From TA
(If not, specify student ID of the designer or 'from TA')		

Questions and Discussion

1. Attach the snapshot of CCOpt Clock Tree Debugger result (5%).

2. Attach the snapshot of DRC and LVS checking after routing. (5%)

```
*** Starting Verify DRC (MEM: 1494.3) ***
VERIFY DRC ..... Starting Verification
VERIFY DRC ..... Initializing
VERIFY DRC ..... Deleting Existing Violations
VERIFY DRC ..... Creating Sub-Areas
VERIFY DRC ..... Using new threading
VERIFY DRC ..... Sub-Area: {0.000 0.000 176.800 176.800} 1 of 16
VERIFY DRC ..... Sub-Area : 1 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {176.800 0.000 353.600 176.800} 2 of 16
VERIFY DRC ..... Sub-Area : 2 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {353.600 0.000 530.400 176.800} 3 of 16
VERIFY DRC ..... Sub-Area : 3 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {530.400 0.000 699.200 176.800} 4 of 16
VERIFY DRC ..... Sub-Area : 4 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {0.000 176.800 176.800 353.600} 5 of 16
VERIFY DRC ..... Sub-Area : 5 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {176.800 176.800 353.600 353.600} 6 of 16
VERIFY DRC ..... Sub-Area : 6 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {353.600 176.800 530.400 353.600} 7 of 16
VERIFY DRC ..... Sub-Area : 7 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {530.400 176.800 699.200 353.600} 8 of 16
VERIFY DRC ..... Sub-Area : 8 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {0.000 353.600 176.800 530.400} 9 of 16
VERIFY DRC ..... Sub-Area : 9 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {176.800 353.600 353.600 530.400} 10 of 16
VERIFY DRC ..... Sub-Area : 10 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {353.600 353.600 530.400 530.400} 11 of 16
VERIFY DRC ..... Sub-Area : 11 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {530.400 353.600 699.200 530.400} 12 of 16
VERIFY DRC ..... Sub-Area : 12 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {0.000 530.400 176.800 699.460} 13 of 16
VERIFY DRC ..... Sub-Area : 13 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {176.800 530.400 353.600 699.460} 14 of 16
VERIFY DRC ..... Sub-Area : 14 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {353.600 530.400 530.400 699.460} 15 of 16
VERIFY DRC ..... Sub-Area : 15 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {530.400 530.400 699.200 699.460} 16 of 16
VERIFY DRC ..... Sub-Area : 16 complete 0 Viols.
Verification Complete: 0 Viols.
*** End Verify DRC (CPU: 0:00:01.4 ELAPSED TIME: 2.00 MEM: 0.0M) ***
```

```
****** End: VERIFY CONNECTIVITY ******

Verification Complete : 0 Viols. 0 Wrngs.

(CPU Time: 0:00:00.5 MEM: 4.000M)
```

3. Attach the snapshot of the timing report for setup time and hold time with no timing violation (post-route). (5%)

N/A N/A TNS (ns): 0.000 0.000 0.000 0.000 0.000 Violating Paths: 0 0 0 0 0 All Paths: 649 319 427 16 N/A 0 Density: 36.909%

4. Show the critical path after post-route optimization. What is the path type? (10%) (The slack of the critical path should match the smallest slack in the timing report)

```
Path 1: MET Setup Check with Pin psum_r_reg_12_/CK
Endpoint: psum_r_reg_12_/D (^) checked with leading edge of 'i_clk'
Beginpoint: mem/Q[0] (v) triggered by leading edge of 'i_clk'
Path Groups: {reg2reg}
Analysis View: av_func_mode_max
Other End Arrival Time
                                       0.300
  Setup
                                       0.218
  Phase Shift
                                       5.000
                                       0.000
  CPPR Adjustment
  Required Time
                                       5.082
                                      4.680
  Arrival Time
  Slack Time
                                       0.402
      Clock Rise Edge
                                             0.000
      + Clock Network Latency (Prop)
                                             0.004
      = Beginpoint Arrival Time
                                             0.004
                                                                    Delay |
            Instance
                                    Arc
                                                       Cell
                                                                             Arrival
                                                                                          Required
                                                                               Time
                                                                                            Time
                            CLK ^
                                                                                0.004
                                                                                             0.405
        mem
                             CLK
                                    -> Q[0] v
                                                   sram 4096x8
                                                                    2.709
                                                                                2.712
                                                                                              3.114
        mem
                                                                    0.278
0.224
                             B v -> Y ^
        U3617
                                                   NAND3BX1
                                                                                2.991
                                                                                             3.392
                             A0 ^ -> Y ^
                                                   A021X1
                                                                                3.215
        U3765
                                                                                             3.617
                                                   NOR2X1
        U2987
                                                                    0.085
                                                                                3.300
                                                                                              3.702
                             A0 v -> Y ^
        U5203
                                                   0AI31X2
                                                                    0.183
                                                                                3.483
                                                                                              3.885
                                  -> Y v
        U3168
                                                   INVX3
                                                                    0.083
                                                                                3.566
                                                                                              3.968
                                                                    0.194
                                                                                3.761
        U3880
                                                   A0I2BB1X2
                             A0N v -> Y v
                                                                                             4.162
        U3944
                             A v -> Y v
                                                   OR2X4
                                                                    0.179
                                                                                3.939
                                                                                             4.341
        U3616
                             B v -> Y v
                                                   CLKAND2X3
                                                                    0.147
                                                                                4.086
                                                                                             4.488
                             A0 v -> Y v
        U2709
                                                   0A21XL
                                                                    0.252
                                                                                4.339
                                                                                             4.740
        U4040
                             A0N v -> Y v
                                                   A0I2BB1X1
                                                                    0.260
                                                                                4.599
                                                                                              5.000
                            B v
                                                                    0.081
        U4197
                                                   NAND3BX2
                                                                                4.680
                                                                                              5.082
                                                                                4.680
        psum_r_reg_12_
                             D
                                                   DFFRX1
                                                                    0.000
                                                                                              5.082
```

5. Attach the snapshot of GDS stream out messages. (10%)

6. Attach the snapshot of the final area result. (5%)

```
Die Area(um^2)
                    : 489062.43
  Core Area(um^2)
                    : 290445.51
  Chip Density (Counting Std Cells and MACROs and IOs): 53.654%
  Core Density (Counting Std Cells and MACROs): 90.345% Average utilization : 100.000%
  Number of instance(s)
                    : 13403
                    : 1
  Number of Macro(s)
                    : 33
  Number of IO Pin(s)
  Number of Power Domain(s): 0
 **********************
```

7. Attach the snapshot of your final layout **after adding core filler**. (Remember to switch to **Physical view** and make Pin Shapes visible) (10%)

8. What is your strategy for floorplanning (especially for placing the SRAMs)? What is the reason behind it? (10%)