

ARQUITECTURA DE COMPUTADORES

3ª Série de Problemas Programação em Assembly do Processador P3

1. Escreva uma rotina em *assembly* do processador P3 que ordene por ordem crescente os elementos de um vector utilizando o algoritmo de Bubble Sort cujo pseudo código se apresenta de seguida. A dimensão do vector é passada pelo registo R1 e o endereço do vector é passado pela pilha.

Algoritmo de Bubble Sort Ascendente

Objectivo: Ordenar por ordem crescente uma lista de N números

```
\label{eq:for_i} \begin{split} \text{for } i &:= 1 \text{ to } N\text{-}1 \\ & \text{for } j := i\text{+}1 \text{ to } N \\ & \text{if } numeros[i] > numeros[j] \text{ then} \\ & \text{swap[numeros[i],numeros[j])} \\ & \text{end;} \\ & \text{end;} \\ \end{split}
```

- 2. Pretende-se desenvolver uma rotina em *assembly* do processador P3 que lê digitos (0 a 9) do teclado e os escreve no primeiro display de 7 segmentos (o mais à direita). Se o caracter lido pelo teclado não for válido devem acender os leds vermelhos. Nota: os caracteres ASCII dos digitos de 0 a 9 têm códigos compreendidos entre os valores 48 e 57 (em decimal).
- 3. Escreva uma rotina em *assembly* do processador P3 que acende um led de cada vez sequencialmente, com um intervalo de tempo de 1 segundo, aproximadamente. A rotina deve utilizar um dos interruptores para definir a direcção do acendimento do led.
- 4. Considere o seguinte troço de um programa *assembly* do processador P3:

```
; Troco de codigo do
                                                  ; Codigo da ISR Intr
 programa principal
                                                  9 Intr:
1
      ENT
                                                  10
                                                         XOR
                                                                R1,R1
2
      MOVBL R1, FEAAH
                                                  11
                                                         RTI
3
      MOV
             R2,0055H
      MOVBL R3, R2
5 Ciclo:
             R1, R3
6
      ADD
      AND
             R1, R2
8
```

- a) Indique, justificando, o valor de R1 após a execução da instrução na linha 6, nas seguintes condições:
 - i) Ocorre um pedido de interrupção associado a Intr durante a execução da instrução na linha 3.
 - ii) Não ocorre nenhuma interrupção.
- b) Supondo que a rotina Intr deve estar associada a uma interrupção do tipo 7, escreva o código necessário para programação da tabela de vectores de interrupção.
- c) Modifique a rotina Intr de modo a que a linha 6 coloque o valor 1 em R1 se o pedido de interrupção ocorrer durante a execução da linha 4.

d) Escreva o código necessário para realizar uma invocação explícita da rotina Intr na linha 8 do programa principal, considerando novamente que Intr está associada a uma interrupção do tipo 7,

Assembly P3: Instruções e directivas

Pseudo	Aritméticas	Lógicas	Deslocamento	Controlo	Transf.	Genéricas
ORIG	NEG	COM	SHR	BR	MOV	NOP
EQU	INC	AND	SHL	BR.cond	MVBH	ENI
WORD	DEC	OR	SHRA	JMP	MVBL	DSI
STR	ADD	XOR	SHLA	JMP.cond	XCH	STC
TAB	ADDC	TEST	ROR	CALL	PUSH	CLC
	SUB		ROL	CALL.cond	POP	CMC
	SUBB		RORC	RET		
	CMP		ROLC	RETN		
	MUL			RTI		
	DIV			INT		

Modos de endereçamento

Endereçamento	Operação		
Por registo	op = RX		
Indirecto por registo	op = M[RX]		
Imediato	op = W		
Directo	op = M[W]		
Indexado	op = M[RX+W]		
Relativo	op = M[PC+W]		
Baseado	op = M[SP+W]		

Condições de Salto

Condição	Mnemónica		
Zero	Z		
Não zero	NZ		
Transporte (carry)	С		
Não transporte	NC		
Negativo	N		
Não negativo	NN		
Excesso (overflow)	0		
Não excesso	NO		
Positivo	P		
Não positivo	NP		
Interrupção pendente	I		
Não interrupção	NI		