M725–Functional Analysis Homework– Spring 2019

Prof. Andrea R. Nahmod

Problems listed are from Schechter's Principles of Functional Analysis (2nd edition).

• Set 1. Due date: 02/28/2019

First, read carefully Sections 1.2; 1.3 and 1.4 in Chapter 1.

Chapter 1 Section 1.5: 5, 9, 10, 2, 3, 4, 14.

Additional Problem 1: Let X be the vector space of all sequences $\{a_n\}_{n\geq 1}$ of real numbers with only finitely many nonzero terms. Consider the ℓ^1 -norm $\|\{a_n\}\|_1 = \sum_{n=1}^{\infty} |a_n|$ and the ℓ^2 -norm, $\|\{a_n\}\|_2 = \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{1/2}$. Prove that $\|\cdot\|_1$ and $\|\cdot\|_2$ are **not** equivalent norms.

<u>Chapter 2 Section 2.5</u>: 1, 2, 5, 9, 15, 18.

Additional Problem 2: Let a and b be two positive real numbers. Let x_0 be a vector in a normed space X. Assume that $|f(x_0)| \le a$ for all $f \in X^*$ (= X') with $||f||_{X^*} \le b$. Probe that $||x_0||_X \le \frac{a}{b}$

Optional: Do 23, 24 in Chapter 2 Section 2.5.

• Set 2. Due date: 04/04/2019

Note more problems will be added to this set soon so please start.

<u>Chapter 3 Section 3.8</u>: 1, 2, 4, 7, 8, 13, 15, 19, 25, 28.

• Set 3. Due date: 04/30/2019

<u>Chapter 4 Section 4.5</u>: 1, 2, 3, 4, 5, 6, 8, 11, 13, 18, 22.

<u>Hint for 1</u>: prove sequential compactness.

<u>Hint for 11</u>: use Gram-Schmidt

<u>Hint for 18</u>. Consider a set $L = \{x_k\}_{k \geq 1}$ of normalized (to have norm one) linearly independent vectors in X (infinite dimensional normed v.s). Consider the subspace Y of X consisting of all finite linear combination so of vectors in L. Next consider a sequence of functions $\{h_\ell\}_{j\geq 1}$ defined on Y defined as $h_\ell(y) = a\ell$ if $y = ax_\ell$ and zer otherwise and let $H(y) = \sum_{\ell=1}^{\infty} h_\ell(y)$. Show that H is well-defined in Y but unbounded on the unit ball in Y.