Нейрон сулжээ ашиглах

Шугаман регрессийг нейрон сүлжээ ашиглан тооцоолъё.

Регресс нь өгөгдсөн цэгүүдэд хамгийн сайн дөхөх муруйг байгуулдаг.

Шугаман регресс $y = b_0 + b_1 x$ тэгшитгэлээр өгөгдөнө. Шугаман регрессийг байгуулна гэдэг нь b_0 , b_1 коэффициентуудыг олно гэсэн үг.

 b_0 , b_1 коэффициентуудыг хамгийн бага квадратын аргаар олдог.

$$E(b_0, b_1) = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2 \to min$$

$$y = b_0 + b_1 x$$

$$E(b_0, b_1) = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2 \to min$$

$$\begin{cases} \frac{dE}{db_0} = -2 \sum_i (y_i - b_0 - b_1 x_i) = 0 \\ \frac{dE}{db_1} = -2 \sum_i (y_i - b_0 - b_1 x_i) x_i = 0 \end{cases}$$

$$b_1 = \frac{\overline{XY} - \overline{XY}}{\overline{X^2} - X^2} \quad b_0 = \overline{Y} - b_1 \overline{X}$$

Жишээ:

Их сургуулийн ойролцоох пиццаны газрын улирлын борлуулалтын орлого өгөгдсөн бол шугаман регрессийн тэгшитгэлийг бич.

Ресторан	Оюутны тоо (Мянгаар)	Орлого	
i	Xi	y i	
1	2	58	
2	6	105	
3	8	88	
4	8	118	
5	12	117	
6	16	137	
7	20	157	
8	20	169	
9	22	149	
10	26	202	

Бодолт

а. Томъёогоор бодох

Ресторан	Оюутны тоо (Мянгаар)	Орлого		
i	Xi	y i	X^2	X*Y
1	2	58	4	116
2	6	105	36	630
3	8	88	64	704
4	8	118	64	944
5	12	117	144	1404
6	16	137	256	2192
7	20	157	400	3140
8	20	169	400	3380
9	22	149	484	3278
10	26	202	676	5252
Дундаж	14	130	252.8	2104
b ₁	5			

b₀ 60

$$Y=b_0+b_1x = 60+5x$$

b. Нейрон сүлжээ ашиглан бодъё.

Шугаман регрессийг нейрон сүлжээгээр зурагт өгөгдсөн байдлаар илэрхийлж болно.

Нейрон сүлжээгээр бодох алгоритм

- **1.** b_0 , b_1 жингүүдэд анхны утгыг таамгаар өгнө.
- **2.** Өгөгдсөн жингээр оролтонд харгалзах $y_{pred} = b_0, +b_1 x$ утгыг тооцоолно.
- 3. Дундаж квадрат алдааг дараах томъёогоор олно.

$$E = \frac{1}{n} \sum_{i=1}^{n} (y_i - y_{pred})^2$$

$$E = \frac{1}{n} \sum_{i=1}^{n} (y_i - (b_0 - b_1 x_i))^2$$

Градиент нь функцийн хамгийн бага, эсвэл их утгыг олоход ашиглагддаг. Дундаж квадрат алдааг бага байлгахаар b_0 , b_1 коэффициетуудыг олно. Градиентын эсрэг чиглэлд явахад функцийн утга буурдаг. Эндээс b_0 , b_1 коэффициетуудыг дараах томъёонуудыг ашиглан өөрчилж болно.

$$b_0 = b_0 - l \frac{\partial E}{\partial b_0}$$

$$b_1 = b_1 - l \frac{\partial E}{\partial b_1}$$

Тухайн уламжлалыг олбол:

$$grad_{b_0} = \frac{\partial E}{\partial b_0} = -\frac{2}{n} \sum_{i=1}^{n} (y_i - (b_0 - b_1 x_i))$$

$$grad_{b_1} = \frac{\partial E}{\partial b_1} = -\frac{2}{n} \sum_{i=1}^{n} (y_i - (b_0 - b_1 x_i))(x_i)$$

Эндээс

$$b_0 = b_0 - lgrad_b_0$$

$$b_1 = b_1 - lgrad_b_1$$

болно. Энд *I* -ийг сургалтын эрчим(learning rate) гээд бага эерэг тоогоор сонгодог.

4. 3-р алхамд тооцоолсон b₀, b₁ коэффициентуудыг ашиглан алхам 2-т шилжиж давталтыг хангалттай гүйцэтгэнэ.

Python код:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (12.0, 9.0)
# Өгөгдөл унших
data = pd.read_csv('data.csv')
X = data.iloc[:, 0]
Y = data.iloc[:, 1]
b1 = 0
b0 = 0
L = 0.0001 # The learning Rate
epochs = 200000 # Давталтын тоо
n = float(len(X)) # Өгөгдлийн урт
# Градиентыг бодох
for i in range(epochs):
  Y_pred = b1*X + b0 # The current predicted value of Y
  grad_b1 = (-2/n) * sum(X * (Y - Y_pred)) # b1-ээр авсан уламжлал
  grad_b0 = (-2/n) * sum(Y - Y_pred) # b0-оор авсан уламжлал
```

```
b1 = b1 - L * grad_b1 # b1 -ийн утгыг шинэчлэх
b0 = b0 - L * grad_b0 # b0 -ын утгыг шинэчлэх

print (b0, b1)

#
Y_pred = b1*X + b0

plt.scatter(X, Y)
plt.plot([min(X), max(X)], [min(Y_pred), max(Y_pred)], color='red') # regression line
plt.show()
```

Үр дүн:

b₀= 59.99235261782694 b₁= 5.000423885676826

Даалгавар: Дараах хүчин зүйлүүдийг ашиглан байшингийн үнийг таамаглах загварыг зохио. Өгөглийн файлын нэр: USA_Housing.csv

Predicting Housing Prices for regions in the USA.

The data contains the following columns:

- 'Avg. Area Income': Avg. Income of residents of the city house is located in.
- 'Avg. Area House Age': Avg Age of Houses in same city
- 'Avg. Area Number of Rooms': Avg Number of Rooms for Houses in same city
- 'Avg. Area Number of Bedrooms': Avg Number of Bedrooms for Houses in same city
- 'Area Population': Population of city house is located in
- 'Price': Price that the house sold at
- 'Address': Address for the house