

INSTITUTO POLITÉCNICO DE LEIRIA Redes de Computadores

Laboratório nº 4

Wireshark

Objetivos

Neste laboratório serão realizadas as seguintes tarefas:

- Aprender a utilizar o Wireshark para analisar pacotes na rede;
- Recordar o significado *Portos tcp* e *IPs* de origem e destino;
- Analisar os dados pelas diferentes camadas de rede;
- Analisar os pacotes numa ligação *Telnet* ao terminal virtual do router;
- Perceber a comunicação e equivalência entre endereços físicos MAC e lógicos IP;
- Analisar a conetividade entre computadores intraLAN e interLAN usando o simulador.

Parte 1

1. Analise do tráfego de rede - ICMP

O Wireshark é um software analisador de protocolos ou uma aplicação (packet sniffer) usado para identificar e resover possiveis problemas de rede (network troubleshooting), análise e desenvolvimento de protocolos, etc.

Conforme os fluxos de dados circulam na rede, o *Wireshark* captura a informação (*PDU*), decodifica e analisa seu conteúdo de acordo com as *RFCs* apropriadas ou outras especificações.

Neste laboratório, vamos utilizar o *Wireshark* para capturar informação para posterior análise, a Figura 1 apresenta a interface de programa.

Figura 1 - Interface do Wireshark

Nota: Neste ponto o docente deve mostrar as funcionalidades básicas de captura e analise do software

Exercício 1 - Neste exercício vamos simplesmente capturar informação da rede para verificar o bom funcionamento do *Wireshark*.

- 1) O Wireshark deve ser executado em modo administrador
- 2) Deve seleccionar a interface de rede Ethernet

Estando a funcionar correctamente, deve ver a informação a ser capturada, caso contrário resolva para prosseguir.

Captura dos pacotes ICMP na rede local

Neste exercicio vamos capturar informação da rede, neste caso os pacotes ICMP (ping) entre o seu PC e o default-gateway. Posteriormente analizar e comparar os endereços físicos MAC e os endereços lógicos IP na comunicação.

Exercício 2 - A <u>not</u> e o endereço fisico MAC, endereço IP e o endereço IP do default-gatew

MAC: _	F	 _	 	 	 	
P:		Ę				
Gatew	ay:			孠		

Exercício 3 - Captura da informação de rede do *ICMP*

- 1. Abra a janela da linha de comandos e prepare o ping para o default-gateway
- 2. Inicie o Wireshark para a captura de pacotes na rede
- 3. De volta à linha de comando execute o ping ao default-gateway
- 4. Após o ping terminar, termine a captura do wireshark

Exercício 4 - Análise da informação de rede capturada

1. Aplique um filtro no Wireshark para se visualizar apenas os pacotes referentes ao *ICMP*, como mostra a Figura 2

Figura 2 - Filtro icmp

- 2. Deve ver apenas os pacotes relativos ao *ICMP*, o *ICMP request* e o *ICMP reply*Consegue visualizar?
- 3. Seleccione o primeiro ICMP com IP origem na sua máquina e IP destino ao defaulgateway. Na seccção intermedia do Wireshark analíse:

IP origem:	
IP destino:	
MAC origem:	
MAC destino	
Confira se o endereço MAC origem corresponde ao da sua maquina	
Como foi obtido o MAC destino pelo seu PC?	

Captura dos pacotes ICMP fora rede local

Neste exercicio vamos capturar informação da rede, neste caso os pacotes ICMP (ping) entre o seu PC e o site www.cisco.com. Posteriormente analizar e comparar os endereços fisicos MAC e os endereços lógicos IP na comunicação.

Exercício 5 - Captura da informação de rede do ICMP

- 1. Abra a janela da linha de comandos e prepare o *ping* para www.cisco.com
- 2. Inicie o Wireshark para a captura de pacotes na rede
- 3. De volta à linha de comando execute o *ping* para www.cisco.com
- 4. Após o ping terminar, termine a captura do wireshark

Exercício 6 - Análise da informação de rede capturada

1.	Aplique um filtro no Wireshark para se visualizar apenas os pacotes referentes ao ICMP,
	como mostra a Figura 2.
2.	Deve ver apenas os pacotes relativos ao ICMP, o ICMP request e o ICMP reply
	Consegue visualizar?
3.	Seleccione o primeiro CMP com IP origem na sua máquina e IP destino ao site

MAC destino	
Confira se o endereço MAC origem corresponde ao da sua maqu Confira se o endereço MAC destino corresponde ao do	
Como foi obtido o MAC destino pelo seu PC?	

2. Analise do tráfego de rede - HTTP, DNS

Nesta etapa vamos capturar a informação do tráfego de rede relativo a um pedido a uma página web. Vamos observar os diversos protocolos envolvidos, como o http e o dns.

Exercício 7 - Captura de pacotes pelo Wireshark

- 1. Inicie a captura com o Wireshark
- 2. Inicie a captura de pacotes no *Wireshark* e utilizando o internet explorer navegue até http://www.york.ac.uk/teaching/cws/wws/webpage1.html. O docente ajudá-lo-á nesta parte.
- 3. Confirme que o Wireshark conseguiu capturar pacotes. Pare o wireshark.

Exercício 8 - Identifique quais os pacotes relacionados com a navegação feita ao site. Para isso coloque no wireshark filtro http. Depois escolha um pacote e verifique os portos usados. Com essa informação altere o filtro para: tcp.port eq 80 and tcp.port eq 5 portos consoante aqueles que está a utilizar).

Quais são os protocolos utilizados? ______

Exercício 9 - Altere o filtro para **dns**. Procure os pacotes referentes ao site http://www.york.ac.uk/. Pacote Query e Response.

Construa o pacote Query referente ao protocolo DNS, Figura 3

Figura 3 - Modelo de rede em canadas

Construa o pacote Response referente ao protocolo DNS, Figura 4

Figura 4 - Modelo de rede em camadas

Qual o IP do site www.york.ac.uk?______

Exercício 10 - Volte a colocar o filtro tcp.port eq 80 and tcp.port eq 53233 (pode ter de alterar estes portos consoante aqueles que está a utilizar).

Exercício 11 - Selecione o primeiro pacote **GET**. Preencha a mensagem deste pacote, nomeadamente:

- request _____
- a codificação _____

Exercício 12 - Selecione o segundo pacote HTTP 200 OK. Preencha os dados do pacote, Figura 5

Figura 5 - Modelo de rede em camadas

Consegue visualizar o conteúdo do site através da captura no Wireshark? Onde?	

Exercício 13 - Inicie uma nova captura de pacotes no Wireshark e utilizando o internet explorer navegue até https://www.york.ac.uk/teaching/cws/wws/webpage1.html.

Consegue visualizar o conteúdo do site através da captura no Wireshark?_________

Explique o porquê_______

Parte 2

3. Análise da comunicação no simulador

O ponto anterior foi utilizado um analisador de protocolos, foi importante na aprendizagem e entendimento das comunicações de rede. Neste exemplo, vamos realizar um cenário de teste que permita consolidar a relação entre endereços físicos *MAC* e endereços lógicos *IPs* no processo de comunicação.

A figura seguinte representa um exemplo possível da topologia de rede da *ESTG* com ligação ao exterior (*internet*). Implemente apenas o cenário das duas *LANs* (*LRSC* e *LCA*) interligados ao router *R1* para testes.

Figura 6 - Interligação de redes com um Router.

Após a configuração do cenário e com conectividade entre todos os *PCs*, iremos analisar o endereçamento *IP* e a sua relação com os endereços físicos (*MAC*).

A tabela de ARP (Address Resolution Protocol) existe em todos os PCs e faz o mapeamento entre endereços físicos (MAC) e endereços IPs.

Exercício 14 - Comunicação dentro da mesma rede local:

- Na linha de comandos de M01 faça o comando arp -d
 O que faz este comando?
- -<mark>-</mark>-----
- Faça ping de M01 para M02. Na linha de comando faça arp -a, o que observa?
 - <mark>-</mark>-----

- Mude para o modo simulação e repita o processo de comunicação entre M01 e M02. Neste modo de simulação o cenário fica parado no tempo para ser possível analisar a informação existente nos pacotes.
- Clique no pacote de ICMP existente no desenho ou no Simulation Panel.
- Observe a tab "Outbound PDU Details" e preencha a Tabela 1.

Tabela 1 - Análise dos endereços IPs e físicos MAC

IP Origem	IP Destino
-	-
MAC Destino	<i>MAC</i> Origem
F	-

Exercício 15 - Comunicação entre PCs em redes diferentes:

- Na linha de comandos de M01 faça arp -a
- Faça *ping* de *M01* para *M03*. Na linha de comando faça *arp -a*, o que observa?
- Tem alguma informação sobre o endereço MAC ou endereço IP do PC MO3?
- Mude para o modo simulação e repita o processo de comunicação entre M01 e M03. Neste modo de simulação o cenário fica parado no tempo para ser possível analisar a informação existente nos pacotes.
- Clique no pacote de *ICMP* existente no desenho ou no *Simulation Panel*.
- Observe a tab "Outbound PDU Details" e preencha a Tabela 2.

Tabela 2 - Análise dos endereços IPs e físicos MAC

IP Origem	IP Destino
_ <mark>≡</mark>	
MAC Destino	MAC Origem
=	<u>=</u>

<pré>cpróxima página p.f.>

Lomente as diferenças entre o Exercicio 14 e Exercicio 15?							