MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #10

Midterm Review (Real Number)

Recall the two main theorems

Theorem 1: (Supremum Limit Theorem)

c is upper bound of S

There exists $\{w_n\} \in S$, such that $\lim_{n \to \infty} w_n = c \leftrightarrow c = \sup S$

Theorem 2: (Infimum Limit Theorem)

c is lower bound of S

There exists $\{w_n\} \in S$, such that $\lim_{n \to \infty} w_n = c \leftrightarrow c = \inf S$

Example 1

Compute the supremum and infimum of the set

$$S = \{x + 2y : x \in (-1,1), y \in (-2,5)\}$$

Solution:

(Step 1) First, since -1 < x < 1 and -2 < y < 5, thus we have

$$-5 = -1 + 2(-2) < x + 2y < 1 + 2(5) = 11$$

So the upper bound and lower bound are 11 and -5 respectively.

(Step 2)

To show $\,supS=11\,$ (This maximum is obtained when $\,x\to 1\,$ and $\,y\to 5)$ We construct our $\,w_n\,=x_n\,+2y_n\,$

Pick
$$x_n = 1 - \frac{1}{n}$$
 and $y_n = 5 - \frac{1}{n}$, (note $x_n \in (0,1)$ and $y_n \in (-2,5)$)

Hence
$$w_n = 1 - \frac{1}{n} + 2\left(5 - \frac{1}{n}\right) = 11 - \frac{3}{n} \in S$$
 and $\lim_{n \to \infty} w_n = 11$

Therefore by supremum limit theorem, we get $\sup S = 11$

To show infS = -5 (This minimum is obtained when $x \to -1$ and $y \to -2$)

Pick
$$x_n = -1 + \frac{1}{n}$$
 and $y_n = -2 + \frac{1}{n}$, (note $x_n \in (0,1)$ and $y_n \in (-2,5)$)

So
$$w_n = -1 + \frac{1}{n} + 2\left(-2 + \frac{1}{n}\right) = -5 + \frac{3}{n} \in S$$
 and $\lim_{n \to \infty} w_n = -5$

By infimum limit theorem, we get $\inf S = -5$

Example 2

Find the supreme and infimum of the set

$$S = {3x^2 - y^3 : x \in [-2,3], y \in (0,3)}$$

 $S = \{3x^2 - y^3 \colon x \in [-2,3], y \in (0,3)\}$ (Step 1) Note that $0 \le x^2 \le 9$ and $0 < y^3 < 3^3 = 27$

Hence

$$-27 = 3(0) - 27 < 3x^2 - y^3 < 3(9) - (0)^3 = 27$$

So the upper bound and lower bound are 27 and -27 respectively

(Step 2) To show $\sup S = 27$ (It is obtained when $x^2 = 9 \rightarrow x = 3$ and $y \rightarrow 0$)

Pick
$$x_n = 3$$
 and $y_n = \frac{1}{n}$ (then $x_n \in [-2,3]$ and $y_n \in (0,3)$)

Then
$$w_n = 3x_n^2 - y_n^3 = 3(3)^2 - \left(\frac{1}{n}\right)^3 = 27 - \frac{1}{n^3} \in S$$
 and $\lim_{n \to \infty} w_n = 27$

Therefore by supreme limit theorem, supS = 27

To show infS = -27 (obtained when $x^2 = 0 \rightarrow x = 0$ and $y \rightarrow 3$

Pick
$$x_n = 0$$
 and $y_n = 3 - \frac{1}{n}$ (then $x_n \in [-2,3]$ and $y_n \in (0,3)$)

So
$$w_n = 3x_n^2 - y_n^3 = 3(0)^2 - \left(3 - \frac{1}{n}\right)^3 \in S$$
 and $\lim_{n \to \infty} w_n = (-3)^3 = -27$

Therefore by infimum limit theorem, $\inf S = -27$

Example 3

Find the supreme and infimum of the set

$$A = \{x^6 + \frac{1}{y^3} : x \in (1,2) \backslash \mathbf{Q}, y \in (2,4) \cap \mathbf{Q}\}\$$

(Note: Hence x need to be irrational and y need to be rational)

(Step 1) Note that 1 < x < 2 and 2 < y < 4, so

$$\frac{65}{64} = 1^6 + \frac{1}{4^3} < x^6 + \frac{1}{y^3} < 2^6 + \frac{1}{2^3} = \frac{513}{8}$$

So the upper bound and lower bound are $\frac{513}{8}$ and $\frac{65}{64}$ respectively

(Step 2) To show
$$\sup S = \frac{513}{8}$$
 (when $x \to 2$ and $y \to 2$)

Pick
$$\mathbf{x_n}=\mathbf{2}-\frac{1}{\sqrt{2}n}$$
 (But not $\,x_n=2-\frac{1}{n+1}\!$) and $\,y_n=2+\frac{1}{n}$

So
$$w_n = \left(2 - \frac{1}{\sqrt{2}n}\right)^6 + \frac{1}{\left(2 + \frac{1}{n}\right)^3} \in S$$
 and $\lim_{n \to \infty} w_n = 2^6 + \frac{1}{2^3} = \frac{513}{8}$

By supreme limit theorem, $\sup A = \frac{513}{8}$.

To show infS = $\frac{65}{64}$ (when $x \to 1$ and $y \to 4$)

Pick $x_n=1+\frac{1}{\sqrt{2}n}$ (once again not $x_n=1+\frac{1}{2n}$) and $y_n=4-\frac{1}{n}$

Then $w_n = \left(1 + \frac{1}{\sqrt{2}n}\right)^6 + \frac{1}{\left(4 - \frac{1}{n}\right)^3} \in S$ and $\lim_{n \to \infty} w_n = 1^6 + \frac{1}{4^3} = \frac{65}{64}$

So by infimum limit theorem, infS = $\frac{65}{64}$

Example 4

Find the supreme and infimum of the set

$$S = \{x - \sqrt{y} : x \in \mathbf{Q} \cap (0, \sqrt{3}), y \in \mathbf{Q} \cap (2, \pi)\}$$

Hence we require x and y are both rational numbers.

Solution:

(Step 1) Note that $0 < x < \sqrt{3}$ and $-2 < y < \pi$

Then
$$-\sqrt{\pi} = 0 - \sqrt{\pi} < x - \sqrt{y} < \sqrt{3} - \sqrt{2}$$

Hence the upper bound and lower bound are $\sqrt{3}-\sqrt{2}$ and $-\sqrt{\pi}$ respectively.

(Step 2) To show $\sup S = \sqrt{3} - \sqrt{2}$ (when $x \to \sqrt{3}$ and $y \to 2$)

Pick
$$x_n=\frac{[10^n\sqrt{3}]}{10^n}\in Q$$
 (not $x_n=\sqrt{3}-\frac{1}{n}!!!!$) and $y_n=2+\frac{1}{n}$

Then
$$w_n = x_n - \sqrt{y_n} = \frac{[10^n \sqrt{3}]}{10^n} - \sqrt{2 + \frac{1}{n}} \in S$$
 and $\lim_{n \to \infty} w_n = \sqrt{3} - \sqrt{2}$

By supreme limit theorem, $supS = \sqrt{3} - \sqrt{2}$

To show $\inf S = -\sqrt{\pi}$ (when $x \to 0$ and $y \to \pi$)

Pick
$$x_n = \frac{1}{n}$$
 and $y_n = \frac{[10^n \pi]}{10^n} \in Q$

Then
$$w_n=x_n-\sqrt{y_n}=\frac{1}{n}-\sqrt{\frac{[10^n\pi]}{10^n}}\in S$$
 and $\lim_{n\to\infty}w_n=-\sqrt{\pi}$

By infimum limit theorem, $\inf S = -\sqrt{\pi}$

Difficult situation:

A) Unknown Set

Example 5

Let A be the subset of real numbers which $\sup A = \sqrt{7}$, find the supreme of the set $B = \{x^3 + 7y \colon x, y \in A\}$

Solution:

(Step 1) Note
$$x, y \in A$$
 and $\sup A = \sqrt{7}$, so $x \le \sqrt{7}$ and $y \le \sqrt{7}$

Therefore
$$x^3 + 7y \le (\sqrt{7})^3 + 7(\sqrt{7}) = 14\sqrt{7}$$
. So the upper bound is $14\sqrt{7}$

(Step 2) To show supB =
$$14\sqrt{7}$$

Since $\sup A = \sqrt{7}$. By supreme limit theorem, there exist a sequence $\{a_n\} \in A$ such that $\lim_{n\to\infty} a_n = \sqrt{7}$

Pick
$$x_n = y_n = a_n$$
 (so $x_n, y_n \in A$)

Then
$$\mathbf{w}_{\mathrm{n}} = \mathbf{x}_{\mathrm{n}}^3 + 7\mathbf{y}_{\mathrm{n}} = \mathbf{a}_{\mathrm{n}}^3 + 7\mathbf{a}_{\mathrm{n}} \in \mathbf{B}$$
 and $\lim_{n \to \infty} w_n = 14\sqrt{7}$

By supremum limit theorem, we conclude $\sup B = 14\sqrt{7}$.

(Remark: Some students may set $x_n = y_n = \sqrt{7} - \frac{1}{n}$ or $x_n = y_n = \sqrt{7}$, which is not right since B is unknown set and we do not know what B exactly contains!)

Example 6

Let C be the subset of rational number which $\inf C = \frac{1}{2}$, find the infimum of the set

$$D = \{p^3 - q \colon p \in C, q \in [0,1] \backslash \mathbf{Q}\}$$

(Here q is an irrational number)

Solution:

(Step 1) Note that
$$p \in \mathbf{Q} \to p \ge \frac{1}{2}$$
 and $0 \le q \le 1$

Hence
$$p^3 - q \ge \left(\frac{1}{2}\right)^3 - 1 = -\frac{7}{8}$$
, so the lower bound is $-\frac{7}{8}$

(Step 2) To show infD =
$$-\frac{7}{8}$$
 (when $p \to \frac{1}{2}$ and $q \to 1$)

Since $\inf C = \frac{1}{2}$, by infimum limit theorem, there exist $\{c_n\} \in C$, such that

$$\lim_{n\to\infty} c_n = \frac{1}{2}$$

Pick
$$p_n=c_n$$
 and $q_n=1-\frac{1}{\sqrt{2}n}$ (so $p_n\in C$ and $q_n\in [0,1]\setminus \mathbf{Q}$)

Then
$$w_n = p_n^3 - q_n = c_n^3 - (1 - \frac{1}{\sqrt{2}n}) \in D$$
 and $\lim_{n \to \infty} w_n = -\frac{7}{8}$.

By infimum limit theorem, $\inf D = -\frac{7}{8}$.

Example 7

Let A_1 , A_2 and A_3 be the subsets of real numbers such that $\inf A_1 = 2$, $\inf A_2 = 6$ and $\inf A_3 = 3$. Find the infimum of the set $S = A_1 \cup A_2 \cup A_3$

(Step 1)

For any $x \in S$, then $x \in A_1$ or $x \in A_2$ or $x \in A_3$,

but we must have $x \ge 2$, so the lower bound of S is 2.

(Step 2)

To show infS = 2 (happen when $x \rightarrow 2$ by elements in A_1)

By infimum limit theorem, there exists $a_n \in A_1$ such that $\lim_{n\to\infty} a_n = 2$.

Pick $w_n = a_n$, since $A_1 \subseteq A_1 \cup A_2 \cup A_3$, then $w_n \in A_1 \cup A_2 \cup A_3$)

and $\lim_{n\to\infty} w_n = 2$.

By infimum limit theorem, we conclude $\inf S = 2$

Example 8

Let D be a subset of real number such that supE = 1, find the supremum of the set

$$S = \{x^3 - 3y + 2z^5 : x \in \mathbf{Q} \cap (-1, e), y \in (1,3) \setminus \mathbf{Q}, z \in D\}$$

(Note that x is rational and y is irrational)

(Step 1)

Since
$$-1 < x < e$$
, $1 < y < 3$ and $z \le 1$

So
$$x^3 - 3y + 2z^5 < e^3 - 3(1) + 2(1)^5 = e^3 - 1$$

The upper bound is $e^3 - 1$

(Step 2)

To show $\sup S = e^3 - 2$ (when $x \to e$, $y \to 1$ and $z \to 1$)

We construct $w_n = x_n^3 - 3y_n + 2z_n^5$ as follows:

For
$$x_n$$
, we pick $x_n = \frac{[10^n e]}{10^n} \in \mathbf{Q} \cap (-1, e)$

For
$$y_n$$
, we pick $y_n = 1 + \frac{1}{\sqrt{2}n} \in (1,3) \setminus \mathbf{Q}$

For z_n , by supreme limit theorem, there exist $\{e_n\}\in E$ which $\lim_{n\to\infty}e_n=1$, pick $z_n=e_n$

So
$$w_n = x_n^3 - 3y_n + 2z_n^5 = \left(\frac{[10^n e]}{10^n}\right)^3 - 3\left(1 + \frac{1}{\sqrt{2}n}\right) + 2e_n^5 \in S$$
, and $\lim_{n \to \infty} w_n = \frac{1}{\sqrt{2}n} = \frac{1}{\sqrt{2}n$

$e^3 - 1$. By supreme limit theorem, $supS = e^3 - 1$

Try to finish the following exercises, if you have any questions about the exercises, please feel free to find me.

©Exercise 1

Find the supreme and infimum of the sets by using limit theorem.

a)
$$\{x - 2y : x \in (2,3) \text{ and } y \in [2,5)\}$$

b)
$$\left\{ \frac{3}{n} - \frac{4}{m} : n \in \mathbb{N}, m \in \mathbb{Q} \cap (1,2) \right\}$$

c)
$$\{2 - x^3 + y - z : x \in (2,3) \setminus \mathbf{Q}, y, z \in (1,2) \cap \mathbf{Q}\}\$$

d)
$$\{|x - y| : x, y \in (0, \sqrt{3}) \cap \mathbf{Q}\}$$

e)
$$\{e^{x} - y : x \in (-2, \ln 3) \cap \mathbf{Q}, y \in [2, \infty)\}$$

f)
$$\{4x^5 + 2y^2 : x \in (2,5) \setminus \mathbf{Q} \text{ and } y \in (-3,2)\}$$

©Exercise 2

Let A be the non-empty subset of the real number, which $\sup A=3$ and $\inf A=-2$. Find the supreme of the following sets

a)
$$\left\{\frac{1}{x+5} - y^3, x, y \in A\right\}$$

b)
$$\{3x - 2y : x \in A, y \in \mathbf{Q} \cap (-2,2)\}$$

c)
$$\{6x^3 - 2y + z: x, y \in A \text{ and } z \in (0,2) \setminus \mathbf{Q}\}\$$

d)
$$\{\sqrt{5+x} + y: x \in A, y \in Q \cap (1,\pi]\}$$

©Exercise 3

a) Find the supreme and infimum of the following sets

$$A = \{1 + \frac{2}{n} : n \in \textbf{N}\}, \ B = \{3 - p : p \in \textbf{Q} \cap (2,3)\}, \ C = \{x + \sqrt{2}y : x,y \in [1,2] \setminus \textbf{Q}\}$$

b) Find the supreme and infimum of the set

$$S = A \cup B \cup C$$

©Exercise 4

Find the infimum of the set

$$S = \{x \in \mathbf{Q}: \sum_{k=1}^{\infty} \sin^{\frac{x}{e}} \left(\frac{1}{k}\right) \text{ converges}\}$$

$$T = \{b \in \mathbf{R} \setminus \mathbf{Q}: \sum_{k=1}^{\infty} \ln \left(1 + \frac{b}{k}\right) \text{ diverges, } b \ge 0\}$$