

Earth

Nanobodies are small antibodies

Can we find alternative nanobodies that are more stable than wild type?

Suggested pipeline:

...ISKHATD**Y**GF...

Suggested pipeline: find functional mutated sequences

Mutation in CDR3

Suggested pipeline: predict 3D structure

6

Suggested pipeline: predict melting temperature

(Jumper, J. et al. 2021. Nature)

But do we trust this model?

Sensitivity analyses and uncertainty estimates are crucial to trust model predictions.

Sensitivity analyses and uncertainty estimates are crucial to trust model predictions.

Random split validation underestimates the error for novel

species

Take-home message

training: great performance

training data
distribution

validation
data distribution

Thank you!

Contributors:
Finnja Becker
Madalina Giurgiu
Dr. Anne Hartebrodt

Project advisor: Dr. Ni Fang

Github repository: https://github.com/AnneHartebrodt/earth-ml-sensitivity

Backup

Validation strategy underestimates the error for novel species and non-homologous sequences

Baseline ML model accuracy

Model improvement ideas

- Ensemble classifier
- More data
- Train different models (e.g. protein melting temp. models) on nanobody data
- Fine-tuning (use protein data to train larger model, fine-tune this model using the limited nanobody data)

NbThermo

Overview Tm in NbThermo data with sequence

NbThermo:

