

THAN MEMBERS:

N TULSI RAM N NAVYA SRI P BHOOMIKA P JAHNAVI T SAI MANISH

- ❖ More than 10 million people are living with Parkinson's Disease worldwide, according to the Parkinson's Foundation.
- While Parkinson's cannot be cured, early detection along with proper medication can significantly improve symptoms and quality of life.
- The researchers found that the drawing speed was slower and the pen pressure is lower among Parkinson's patients.
- ❖One of the indications of Parkinson's is tremors and rigidity in the muscles, making it difficult to draw smooth spirals and waves.
- It is possible to detect Parkinson's disease using the drawings alone instead of measuring the speed and pressure of the pen on paper.

INTRODUCTION

PROBLEM STATEMENT:

- > TO DETECT PARKINSON'S DISEASE BY QUANTIFING THE SPIRALS AND WAVES DRAWN BY THEM.
- > Our goal is to quantify the visual appearance(using HOG method) of these drawings and then train a machine learning model to classify them.
- In this project, We are using, Histogram of Oriented Gradients (HOG) image descriptor along with a Random Forest classifier to automatically detect Parkinson's disease in hand-drawn images of spirals and waves.

Architecture:

STEPS FOR BUILDING THE MODEL::

DATA COLLECTION:

 Collect the required datasets of spirals and waves drawn by the Parkinson's Diseased effected people.

IMAGE PREPROCESSING:

- Load the required libraries for image processing
- Load the collected data sets and quantify the images to the required size.

MODEL BUILDING:

- Convert the data into binary format using Label Encoding
- Now split the sata into train and test and train the model
- Test the model using required cv2 and hog libraries
- Now save the model as pkl file

Output of the model building:

- This is the output of the model evaluation
- The output is displayed in the app used for model building
- (eg:spyder,jupyter notebook)

Application Building:

- Build the html pages for the web pages
- Build the css for styling
- Build the python code and connect the HTML and CSS files to the python code
- Save the python code
- Run the python code

Running the Python code:

- Open the anaconda prompt
- Navigate to the folder where your python code is saved
- Now type python file_name.py
- Python code will run and if there are no errors then the app.py will run in the port you have given in the code
- Now in the browser type localhost:port_number given in the code
- The web application for your trained model will open
- Now predict the output by giving new patient's observation images

Home page

This will be the demo home page when you redirect to the localhost port

Info page

When you click info on the hover panel in your home page this page will be opened

Predict page

- > This is predict page.
- When you click on predict on the hover panel at the top this will be opened
- ➤ In this page you will give the new patient's observation images and predict whether that patient is healthy or parkinson

Running the app:

Click on choose and select the image and click on the "Predict!" button

- ❖ Based on the result you can predict whether a person has Parkinson's disease or not.
- ❖ And Finally, deploy your app on IBM cloud for https:// link

- ❖ PROJECT DEMO VIDEO →>> ---→https://us04web.zoom.us/j/74482083811?pwd=b2R1TlJrNVNIN01uQXNrdmFHNmd5QT09
- We cannot cure this disease but we can predict the disease based on the symptoms and proper care and treatment can be given to patients and prevent it.

PREVENTION IS BETTER THAN CURE

THANK YOU