The University of Texas at Austin Department of Electrical and Computer Engineering

EE381K: Convex Optimization — Fall 2019

Lecture 14

Aryan Mokhtari

Wednesday, October 16, 2019.

Goal: In this lecture, we talk about optimality conditions for constrained and unconstrained convex optimization problems.

1 Convex Optimization

Now let us revisit the basic general optimization problem we saw at the beginning of the course:

min:
$$f_0(\mathbf{x})$$

s.t.: $f_i(\mathbf{x}) \le 0, \quad i = 1, ..., m.$
 $h_i(\mathbf{x}) = 0, \quad i = 1, ..., p.$

 \mathbf{x} is **feasible** if $\mathbf{x} \in \mathbf{dom} f_0$ and \mathbf{x} satisfies the constraints.

Optimal value $p^* = \inf\{f_0(\mathbf{x}) \mid \mathbf{x} \in \mathbf{dom} f_0, \ f_i(\mathbf{x}) \leq 0, i = 1, \dots, m, \ h_i(\mathbf{x}) = 0, i = 1, \dots, p\}$ \mathbf{x}^* is (globally) optimal if \mathbf{x}^* is feasible and $f(\mathbf{x}^*) = p^*$.

 X_{opt} is the set of optimal solutions

A feasible point $\tilde{\mathbf{x}}$ is **locally optimal** if there is an R > 0 such that

$$f_0(\tilde{\mathbf{x}}) = \inf\{f_0(\mathbf{x}) \mid \mathbf{x} \in \mathbf{dom} f_0, \ f_i(\mathbf{x}) \le 0, i = 1, \dots, m, \ h_i(\mathbf{x}) = 0, i = 1, \dots, p, \ \|\mathbf{x} - \tilde{\mathbf{x}}\|_2 \le R\}$$

Standard form convex optimization problem

min:
$$f_0(\mathbf{x})$$

s.t.: $f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m.$
 $\mathbf{a}_i^{\top} \mathbf{x} + b_i = 0, \quad i = 1, \dots, p.$

 f_0, f_1, \ldots, f_m are convex, equality constraints are affine. The constraint set is a convex set.

Theorem 1. Any locally optimal point of a convex optimization problem is also (globally) optimal. **Proof:** Suppose $\tilde{\mathbf{x}}$ is a locally optimal point. Then, $\tilde{\mathbf{x}}$ is feasible and

$$f_0(\tilde{\mathbf{x}}) = \inf\{f_0(\mathbf{x}) \mid \mathbf{x} \text{ is feasible }, \|\mathbf{x} - \tilde{\mathbf{x}}\|_2 \leq R\}$$

Now suppose that x is not globally optimal, i.e., there exists a feasible point y such that $f_0(\mathbf{y}) < f_0(\tilde{\mathbf{x}})$. Evidently, $\|\mathbf{y} - \tilde{\mathbf{x}}\| > R$. Now consider the point z defined as $\mathbf{z} = \theta \mathbf{y} + (1 - \theta)\tilde{\mathbf{x}}$ where $\theta = R/(2\|\mathbf{y} - \tilde{\mathbf{x}}\|)$. Thus, $\|\mathbf{z} - \mathbf{x}\| = R/2 < R$ and by convexity of the feasible set z is feasible. By convexity of f_0 we have

$$f_0(\mathbf{z}) \le \theta f_0(\mathbf{y}) + (1 - \theta) f_0(\tilde{\mathbf{x}}) < f_0(\tilde{\mathbf{x}})$$

which contradicts with the fact that $\tilde{\mathbf{x}}$ is a local minimum. Hence, $\tilde{\mathbf{x}}$ is also global minimum.

2 Optimality conditions

We now give optimality conditions for unconstrained optimization. These are the familiar first-order conditions of optimality for convex optimization. While simple, the condition is extremely useful both algorithmically and for analysis.

2.1 Constrained optimization

First we consider a general constrained convex optimization problem.

$$\min f(\mathbf{x})$$

s.t $\mathbf{x} \in \mathcal{X}$,

where $f: \mathcal{X} \to \mathbb{R}$ is convex and differentiable and the set \mathcal{X} is convex. Then a point \mathbf{x}^* is optimal if and only if $\mathbf{x} \in \mathcal{X}$ and

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{y} - \mathbf{x}^*) \ge 0, \quad \text{for all } \mathbf{y} \in \mathcal{X}$$

What does it mean?

- If you move from \mathbf{x}^* towards any feasible \mathbf{y} , you will increase f locally
- It means that $-\nabla f(\mathbf{x}^*)$ defines a supporting hyperplane to the feasible set at \mathbf{x}^*

Proof:

(i) Suppose \mathbf{x}^* satisfies the condition

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{y} - \mathbf{x}^*) \ge 0, \quad \text{for all } \mathbf{y} \in \mathcal{X}.$$

Further, by convexity of function f we have

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^{\top} (\mathbf{y} - \mathbf{x}^*)$$
 for all $\mathbf{y} \in \mathcal{X}$

Combining these two results we can write that

$$f(\mathbf{y}) > f(\mathbf{x}^*)$$
 for all $\mathbf{y} \in \mathcal{X}$

and therefore \mathbf{x}^* is an optimal point.

(ii) Now suppose \mathbf{x}^* is an optimal solution. We prove the optimality condition with contradiction. Suppose there exists a feasible \mathbf{y} such that

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{y} - \mathbf{x}^*) < 0$$

Now consider the feasible point $\mathbf{x}^* + \alpha(\mathbf{y} - \mathbf{x}^*)$ for $\alpha \in [0, 1]$ and define the function $g : \mathbb{R} \to \mathbb{R}$ as $g(\alpha) = f(\mathbf{x}^* + \alpha(\mathbf{y} - \mathbf{x}^*))$. Note that the first derivative of g is given by

$$g'(\alpha) = \nabla f(\mathbf{x}^* + \alpha(\mathbf{y} - \mathbf{x}^*))^{\top}(\mathbf{y} - \mathbf{x}^*)$$

Hence, we have

$$g'(0) = \nabla f(\mathbf{x}^*)^{\top} (\mathbf{y} - \mathbf{x}^*) < 0.$$

If $g(0) = f(\mathbf{x}^*)$ and g'(0) < 0 then for small positive α we have

$$f(\mathbf{x}^* + \alpha(\mathbf{y} - \mathbf{x}^*)) = g(\alpha) < g(0) = f(\mathbf{x}^*).$$

But this contradicts the optimality of \mathbf{x}^* .

2.2 Unconstrained optimization

The formulation of an unconstrained optimization problem is as follows

$$\min: f(\mathbf{x})$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable and convex. In these problems, the necessary and sufficient condition for the optimal solution \mathbf{x}^* is

$$\nabla f(\mathbf{x}^*) = \mathbf{0} \quad \text{at } \mathbf{x} = \mathbf{x}^*. \tag{1}$$

Proof. (i) Suppose \mathbf{x}^* satisfies $\nabla f(\mathbf{x}^*) = 0$. Recall that if f is convex, we have

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{y} - \mathbf{x}^*) \text{ for all } \mathbf{y} \in dom(f).$$

At \mathbf{x}^* , $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and hence this reduces to

$$f(\mathbf{y}) \ge f(\mathbf{x}^*)$$
 for all $\mathbf{y} \in dom(f)$,

which indeed is the statement that \mathbf{x}^* is a global optimum.

(ii) Now suppose \mathbf{x}^* is an optimal solution. From previous theorem $\nabla f(\mathbf{x}^*)^{\top}(\mathbf{y} - \mathbf{x}^*) \geq 0$ for any $\mathbf{y} \in \mathbb{R}^n$. Since with $\mathbf{y} - \mathbf{x}^*$ we can make any direction, $\nabla f(\mathbf{x}^*) = \mathbf{0}$. (Take $\mathbf{y} = \mathbf{x}^* - \alpha \nabla f(\mathbf{x}^*)$).

Note of course that this need not be unique. For uniqueness, we need a stronger version of convexity. This will be addressed later.

Theorem 2. If there exists an interior point \mathbf{x} of the feasible set \mathcal{X} such that $\nabla f(\mathbf{x}) = 0$, then \mathbf{x} is the optimal point of the constrained problem.

For a constrained problem, though, this is not typically the case, as it means the constraints are not binding. Indeed, typically there is no feasible point \mathbf{x} satisfying $\nabla f(\mathbf{x}) = 0$. The generalization of the local optimality condition to the constrained case is natural. The condition $\nabla f(\mathbf{x}) = 0$, recall, is really saying that there are no descent directions from the point \mathbf{x} , i.e., $\langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \geq 0$, for all \mathbf{y} (which as noted above, can only happen when $\nabla f(\mathbf{x}) = 0$). In the constrained case, we need to check that this inequality holds for all feasible directions.

2.3 Examples

Now we study a few examples of convex optimization and use optimality condition to find their solution.

- ${\bf Unconstrained\ quadratic\ optimization.}$ Consider the problem of minimizing the quadratic function

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} + \mathbf{b}^{\top}\mathbf{x} + c$$

where $\mathbf{A} \in \mathbf{S}_{+}^{n}$ which makes f convex. The necessary and sufficient condition for \mathbf{x}^{*} to be a minimizer of f is

$$\nabla f(\mathbf{x}^*) = \mathbf{A}\mathbf{x}^* + \mathbf{b} = \mathbf{0}$$

If $\mathbf{A} \succ \mathbf{0}$ then we have $\mathbf{x}^* = -\mathbf{A}^{-1}\mathbf{b}$

for singular \mathbf{A} , if $\mathbf{b} \in \mathcal{R}(\mathbf{A})$, then the set of optimal points is the (affine) set $X_{opt} = -\mathbf{A}^{\dagger}\mathbf{b} + \mathcal{N}(\mathbf{A})$ for singular \mathbf{A} , if $\mathbf{b} \notin \mathcal{R}(\mathbf{A})$, then the set of optimal points is empty and f is unbounded below.

- Problems with equality constraints only. Consider the problem

$$\min f(\mathbf{x})$$
 s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

Then optimality condition for a feasible \mathbf{x} is that

$$\nabla f(\mathbf{x})^{\top}(\mathbf{y} - \mathbf{x}) \ge 0$$
 for all $\mathbf{A}\mathbf{y} = \mathbf{b}$

Since \mathbf{x} is feasible, every feasible \mathbf{y} has the form $\mathbf{y} = \mathbf{x} + \mathbf{v}$ for some $\mathbf{v} \in \mathcal{N}(\mathbf{A})$. Hence, we can rewrite this condition as

$$\nabla f(\mathbf{x})^{\top} \mathbf{v} \ge 0$$
 for all $\mathbf{v} \in \mathcal{N}(\mathbf{A})$

If a linear function is nonnegative on a subspace, then it must be zero on the subspace, so

$$\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} = 0$$
 for all $\mathbf{v} \in \mathcal{N}(\mathbf{A})$

Hence, $\nabla f(\mathbf{x}) \perp \mathcal{N}(\mathbf{A})$. Using the fact that $\mathcal{N}(\mathbf{A})^{\perp} = \mathcal{R}(\mathbf{A}^{\top})$ we can write the optimality condition as

$$\nabla f(\mathbf{x}) \in \mathcal{R}(\mathbf{A}^{\top})$$

i.e., there exists a \mathbf{v} such that

$$\nabla f(\mathbf{x}) + \mathbf{A}^{\top} \mathbf{v} = \mathbf{0}$$