

planetmath.org

Math for the people, by the people.

precategory

Canonical name Precategory

Date of creation 2013-03-22 16:16:39 Last modified on 2013-03-22 16:16:39

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Definition
Classification msc 18A10
Synonym diagram scheme

Related topic Category
Defines free category

A precategory \mathcal{B} consists of the following

- 1. a class of objects, called objects of \mathcal{B} , written $Ob(\mathcal{B})$
- 2. a set of elements, called arrows or morphisms, for *each* ordered pair (A, B) of objects in \mathcal{B} , usually written hom(A, B). For any arrow $f \in hom(A, B)$, A is called the *domain* of f and B is the *codomain* of f. It is required that $hom(A, B) \cap hom(C, D) = \emptyset$ if $(A, B) \neq (C, D)$.

If $Ob(\mathcal{B})$ is a set, then we say that \mathcal{B} is *small*. A small precategory is just a directed pseudograph (a digraph allowing multiple edges between pairs of vertices), indeed, for the collection of all arrows in \mathcal{B} is a set, written $Mor(\mathcal{B})$. In addition, there are two functions

$$\operatorname{dom}, \operatorname{codom}: Mor(\mathcal{B}) \to Obj(\mathcal{B})$$

such that dom(f) is the domain of f and codom(f) is the codomain of f. Note that both dom and codom are well-defined functions because if $f \in hom(A, B) \cap hom(C, D)$, then A = B and C = D, so that both dom and codom map f to unique objects A and B respectively.

With the realization that a precategory is essentially a directed graph, we may use the language of graph theory to define concepts such as paths and loops in a precategory. This will allow us to enlarge any precategory to a category. We will carry out the construction below.

Paths Defined

Let \mathcal{B} be a precategory. A path p (in \mathcal{B}) is a finite sequence of arrows f_1, \ldots, f_n such that the codomain of f_i is the domain of f_{i+1} . Note that the definition here does not parallel the one given for a graph (as in graph theory), since we allow vertices (domains and codomains), as well as edges (arrows or morphisms) to coincide. The length of a path $p = (p_1, \ldots, p_n)$ is defined to be the non-negative integer n.

Given a path $p = (f_1, \ldots, f_n)$, we may set the domain of p, written dom(p), to be $dom(f_1)$, and codomain of <math>p, written codom(p), to be $codom(f_n)$. A loop is a path p where dom(p) = codom(p).

Next, for each ordered pair of objects (A, B) in a precategory \mathcal{B} , the collection of paths with with domain A and codomain B is a set, and we denote it by Hom(A, B).

Composition of Paths Defined

Now, let $f \in \text{Hom}(A, B)$ and $g \in \text{Hom}(B, C)$. So $f = (f_1, \ldots, f_n)$ and $g = (g_1, \ldots, g_m)$. Since $\text{codom}(f_n) = B = \text{dom}(g_1)$, we can "concatenate" the two paths and form a new path

$$(f_1,\ldots,f_n,g_1,\ldots,g_m),$$

and we write $g \circ f$ for this new path. It is clear that $g \circ f \in \text{Hom}(A, C)$. It is also easy to see that \circ is a function from $\text{Hom}(A, B) \times \text{Hom}(B, C)$ to Hom(A, C), if we set $\circ (f, g) := g \circ f$. As the "concatenation" operation is evidently associative, $(h \circ g) \circ f = h \circ (g \circ f)$.

Empty Paths Defined

Finally, for each object A in $Ob(\mathcal{B})$, we can artificially associate an *empty* path 1_A with A, with the following properties

- 1_A is a path with length 0
- $dom(1_A) = codom(1_A) := A$; in other words, $1_A \in Hom(A, A)$
- for any $f \in \text{Hom}(A, B)$ and $g \in \text{Hom}(C, A)$, $f \circ 1_A := f$ and $1_A \circ g := g$.

The class of all paths, including every empty path for each object, in \mathcal{B} is written $Path(\mathcal{B})$.

Precategory Enlarged to a Category

So if we start out with a precategory \mathcal{B} , we end up with a category $\overline{\mathcal{B}}$ such that

- 1. $Ob(\overline{\mathcal{B}}) = Ob(\mathcal{B})$
- 2. $Mor(\overline{\mathcal{B}}) = Path(\mathcal{B})$, such that
 - domain and codomain of each morphism are defined to be the domain and codomain of the underlying path
 - for each ordered pair (A, B) of objects in $\overline{\mathcal{B}}$, the collection of morphisms with domain A and codomain B is a set, and is denoted by $\operatorname{Hom}(A, B)$

- for every triple of objects A,B,C, a function \circ is defined to be the "concatenation" of a path from A to B and a path from B to C
- the identity morphism 1_A each object A is just the empty path associated with A.

We may embed \mathcal{B} in $\overline{\mathcal{B}}$ so that \mathcal{B} is just a diagram of $\overline{\mathcal{B}}$. Because of this, \mathcal{B} is also known as a diagram scheme. $\overline{\mathcal{B}}$, also written $F(\mathcal{B})$, is known as the free category freely generated by \mathcal{B} .