



# Extracting Facets from Lost Fine-grained Categorizations in Dataspaces

Riccardo Porrini<sup>1,2</sup>, Matteo Palmonari<sup>1</sup> and Carlo Batini<sup>1</sup>

<sup>1</sup> DISCo, University of Milano-Bicocca [matteo.palmonari, carlo.batini]@disco.unimib.it

<sup>2</sup> **7Pixel s.r.l.** riccardo.porrini@trovaprezzi.it

## **Dataspaces with Multiple Classifications**







## Taxonomy-based Classification in Price Comparison Engines

Taxonomy: categories organized through a hierarchical structure (informal)





## Facet-based Classification in Price Comparison Engines

Facet: a clearly defined, mutually exclusive, and collectively exhaustive aspect, property, or characteristic of a class or specific subject [Ta04]







## **Mappings**

#### category mapping



source taxonomy

global taxonomy

#### instance mapping

#### **TECHSHOPS**



ottenuto presso gli ulenti di tutto il mondo, lo smartphone per ecci

Samsung 19300 Galaxy S3 16GB da € 245,00 a € 740,41

Android Phone prodotto da Samsung, con siste da 4.8 Pollici, processore quad-core, 16 ( NFC\\Bluetooth 4.0\\IEEE 802.11a/b/g/n, U Fotocamera digitale\\seconda telecamera\\ Wi-Fi\\ricevitore GLONASS\\registratore vocale. Aggiungi a confronto

source instance

global instance



## **Motivation**

## Faceted classification bootstrapping

- time and effort consuming
- requires detailed knowledge about dataspace instances



#### Motivation

## Faceted classification bootstrapping

- time and effort consuming
- requires detailed knowledge about dataspace instances

#### However

- source taxonomies usually provide much more granular classification
- this granular information is lost when mapping specific source categories to generic global ones



#### Motivation

## Faceted classification bootstrapping

- time and effort consuming
- requires detailed knowledge about dataspace instances

#### However

- source taxonomies usually provide much more granular classification
- this granular information is lost when mapping specific source categories to generic global ones

## How about extracting facets from those lost fine-grained source taxonomies?



#### Facet Fg

a finite set of values  $v_1, \ldots, v_n$  associated with a label used to describe a characteristic of the objects belonging to a global category g



#### Facet Fg

a finite set of values  $v_1, \ldots, v_n$  associated with a label used to describe a characteristic of the objects belonging to a global category g

#### **Facet Extraction Problem**

given a global leaf category g, a set of mappings M from source categories  $s_1, \ldots, s_n$ to g in the form  $g \leftarrow s_1, \dots, g \leftarrow s_n$  , extract a set  $\mathcal{F}^g$  of facets  $\mathcal{F}^g$  , each one associated with a label

#### Facet Fg

a finite set of values  $v_1, \ldots, v_n$  associated with a label used to describe a characteristic of the objects belonging to a global category g

#### **Facet Extraction Problem**

given a global leaf category g, a set of mappings M from source categories  $s_1, \ldots, s_n$ to g in the form  $g \leftarrow s_1, \dots, g \leftarrow s_n$  , extract a set  $\mathcal{F}^g$  of facets  $\mathcal{F}^g$  , each one associated with a label

#### Wines



#### Facet Fg

a finite set of values  $v_1, \ldots, v_n$  associated with a label used to describe a characteristic of the objects belonging to a global category g

#### **Facet Extraction Problem**

given a global leaf category g, a set of mappings M from source categories  $s_1, \ldots, s_n$ to g in the form  $g \leftarrow s_1, \dots, g \leftarrow s_n$  , extract a set  $\mathcal{F}^g$  of facets  $\mathcal{F}^g$  , each one associated with a label

#### Wines

| Winery Country of Origin | Wine Alcohol By Volume | Grape Variety      | Wine Bottle Volume |
|--------------------------|------------------------|--------------------|--------------------|
| USA                      | Under 10%              | Blend - White      | ☐ 375 mL           |
| China                    | 10% to 12%             | Blend - Other      | ☐ 500 mL           |
| Australia                | 2% to 14%              | Fruit              | ☐ 750 mL           |
| Italy                    | 14% & Up               | Muscadine          |                    |
| Specialty Wine Type      | Wine Vintage           | Cabernet Sauvignon |                    |
| Sustainable              | 2011                   | ☐ Pinot Noir       |                    |
| Small Lot                | 2010                   | Chardonnay         |                    |
| Kosher                   | 2009                   |                    |                    |
| Gluten-Free              | 2008                   |                    |                    |
|                          | 2007                   |                    |                    |
|                          |                        |                    |                    |



## Source taxonomies are:

many

3900 within the TrovaPrezzi italian price comparison engine



#### Source taxonomies are:

- many 3900 within the TrovaPrezzi italian price comparison engine
- noisy type > white > by vine > chardonnay > producer > firriato



#### Source taxonomies are:

- many **3900** within the TrovaPrezzi italian price comparison engine
- noisy type > white > by vine > chardonnay > producer > firriato
- heterogeneous type > white > by vine > chardonnay > producer > firriato wines > white wines > greco di tufo



#### Source taxonomies are:

- many **3900** within the TrovaPrezzi italian price comparison engine
- noisy type > white > by vine > chardonnay > producer > firriato
- heterogeneous type > white > by vine > chardonnay > producer > firriato wines > white wines > greco di tufo
- ▶ ambiguous different semantics for different contexts red is a wine type for wines and a color for shirts



## Language independent facet extraction





 $V_S^g = \{s \mid \exists \ g \leftarrow s \ or \ \exists \ g \leftarrow s', \ with \ s \in S \ and \ s' \ is \ a \}$ descendant of s}





## Normalization and stemming





$$V^g = \bigcup_{i=1}^n V_{S^i}^g$$





Set  $V_{\nu}^{g}$  of the top k frequent values over all  $V_{Si}^{g}$ 



## **Value Clustering**



## DBSCAN [Es96] Density based clustering



## Value Clustering



## DBSCAN [Es96] Density based clustering

▶ incorporates the concept of *noise* 



## Value Clustering



# DBSCAN [Es96] Density based clustering

- ▶ incorporates the concept of *noise*
- number of clusters (i.e., facets) not known a priori



## **Source Category Mutual Exclusivity Principle**

#### **SCME** principle

the more two values refer to mutually exclusive categories, the more they should be grouped together into the same facet





## **Source Category Mutual Exclusivity Principle**

#### SCME principle

the more two values refer to mutually exclusive categories, the more they should be grouped together into the same facet



#### Hint

given two source categories  $s_1$  and  $s_2$ , their occurrence as siblings indicates that  $s_1$  and so are mutually exclusive





captures the **SCME** principle by considering the co-occurrence of categories on a same taxonomy layer



captures the **SCME** principle by considering the co-occurrence of categories on a same taxonomy layer



A taxonomy layer  $I^S$  of S is the set of all categories that are at the same distance from the taxonomy root

captures the **SCME** principle by considering the co-occurrence of categories on a same taxonomy layer



A value v is represented by the set  $L_v = \bigcup_{i=1}^n L_v^{S^i}$  of layers containing v for each source taxonomy S, where  $L_v^S = \{I^S \mid v \in I^S\}$  is the set of layers containing v in the source taxonomy S



$$\mathsf{TLD}(v_1, v_2) = 1 - \frac{|L_{v_1} \cap L_{v_2}|}{|L_{v_1} \cup L_{v_2}|}$$

Jaccard Distance between the two sets of taxonomy layers where two values  $v_1$  and  $v_2$  occur

$$\mathsf{TLD}(v_1, v_2) = 1 - \frac{|L_{v_1} \cap L_{v_2}|}{|L_{v_1} \cup L_{v_2}|}$$

Jaccard Distance between the two sets of taxonomy layers where two values v<sub>1</sub> and v<sub>2</sub> occur







## cabernet



Chianti

Cabernet

Cantina

Nero d'Avola



Vermentino

Verdicchio Cabernet

Lombardy

Cantina

Almeria

Nero d'Avola

Cabernet

#### cabernet chianti

Cabernet



Chianti

Sicily

$$\mathsf{TLD}(v_1, v_2) = 1 - \frac{|L_{v_1} \cap L_{v_2}|}{|L_{v_1} \cup L_{v_2}|}$$

Jaccard Distance between the two sets of taxonomy layers where two values  $v_1$  and  $v_2$  occur



### cabernet chianti

$$\mathsf{TLD}(\textit{cabernet}, \textit{chianti}) = 1 - \frac{|L_{\textit{cabernet}} \cap L_{\textit{chianti}}|}{|L_{\textit{cabernet}} \cup L_{\textit{chianti}}|} = 1 - \frac{2}{3} = \frac{1}{3}$$



## **Facet Labelling**



Reconcile the values of each facet  $F^g$  to the Freebase knowledge base



Reconcile the values of each facet  $F^g$  to the Freebase knowledge base

submit each facet value as a keyword query





Reconcile the values of each facet  $F^g$  to the Freebase knowledge base

- submit each facet value as a keyword query
- obtain a list of Freebase entities





Reconcile the values of each facet  $F^g$  to the Freebase knowledge base

- submit each facet value as a keyword query
- obtain a list of Freebase entities
- select the type of each entity





Reconcile the values of each facet  $F^g$  to the Freebase knowledge base

- submit each facet value as a keyword query
- obtain a list of Freebase entities
- select the type of each entity
- pick the most frequent type



### **Evaluation**

#### Goal

show that TLD effectively captures the SCME principle and supports domain experts in facets definition

#### **Evaluation**

#### Goal

show that TLD effectively captures the SCME principle and supports domain experts in facets definition

## Comparison with:

- ► Leacock and Chodorow (LC) similarity [Le98] shortest path scaled by the depth of the taxonomy
- ► Wu and Palmer (WP) similarity [Wu94] distance from nearest common ancestor and distance of the nearest common ancestor from the taxonomy root

#### **Evaluation**

#### Goal

show that TLD effectively captures the SCME principle and supports domain experts in facets definition

## Comparison with:

- ► Leacock and Chodorow (LC) similarity [Le98] shortest path scaled by the depth of the taxonomy
- Wu and Palmer (WP) similarity [Wu94]
   distance from nearest common ancestor and distance of the nearest
   common ancestor from the taxonomy root

Evaluation using real world data from the italian PCE TrovaPrezzi

- ► 10 global categories
- ▶ 688 source taxonomies
- ▶ 22594 leaf mappings
- ran the extraction phase
- values manually grouped in facets by domain experts



State-of-the-art evaluation campaign [Do11, Ka12]

State-of-the-art evaluation campaign [Do11, Ka12]

▶ Value Effectiveness: Precision(P), Recall(R), FMeasure( $F_1$ ) evaluate the ability to filter noisy values out

State-of-the-art evaluation campaign [Do11, Ka12]

- ▶ Value Effectiveness: Precision(P), Recall(R), FMeasure( $F_1$ ) evaluate the ability to filter noisy values out
- ▶ Value Clustering Effectiveness: Purity (*P*\*), Normalized Mutual Information ( $NMI^*$ ), Entropy ( $E^*$ ), FMeasure ( $F^*$ )

State-of-the-art evaluation campaign [Do11, Ka12]

- ▶ Value Effectiveness: Precision(P), Recall(R), FMeasure( $F_1$ ) evaluate the ability to filter noisy values out
- ▶ Value Clustering Effectiveness: Purity (*P*\*), Normalized Mutual Information ( $NMI^*$ ), Entropy ( $E^*$ ), FMeasure ( $F^*$ )
- ▶ Overall quality: aggregates facet value precision P, facet value recall R and clustering F-measure  $F^*$

$$PRF^* = \frac{3 * P * R * F^*}{R * P + P * F + P * R}$$



|     | Value Effectiveness |       |       | Clustering Effectiveness |       |        |       | Quality |
|-----|---------------------|-------|-------|--------------------------|-------|--------|-------|---------|
|     | Р                   | R     | $F_1$ | F*                       | NMI*  | Purity | E*    | PRF*    |
| LC  | 0.394               | 0.953 | 0.537 | 0.666                    | 0.709 | 0.220  | 0.685 | 0.531   |
| WP  | 0.377               | 0.984 | 0.525 | 0.682                    | 0.714 | 0.210  | 0.744 | 0.520   |
| TLD | 0.416               | 0.901 | 0.541 | 0.719                    | 0.746 | 0.286  | 0.416 | 0.558   |



|     | Value Effectiveness |       |       | Clustering Effectiveness |       |        |       | Quality |
|-----|---------------------|-------|-------|--------------------------|-------|--------|-------|---------|
|     | Р                   | R     | $F_1$ | F*                       | NMI*  | Purity | E*    | PRF*    |
| LC  | 0.394               | 0.953 | 0.537 | 0.666                    | 0.709 | 0.220  | 0.685 | 0.531   |
| WP  | 0.377               | 0.984 | 0.525 | 0.682                    | 0.714 | 0.210  | 0.744 | 0.520   |
| TLD | 0.416               | 0.901 | 0.541 | 0.719                    | 0.746 | 0.286  | 0.416 | 0.558   |

▶ TLD more effective in finding relevant facet values and discarding noisy ones (high  $F_1$ )



|     | Value Effectiveness |       |       | Clustering Effectiveness |       |        |       | Quality |
|-----|---------------------|-------|-------|--------------------------|-------|--------|-------|---------|
|     | Р                   | R     | $F_1$ | F*                       | NMI*  | Purity | E*    | PRF*    |
| LC  | 0.394               | 0.953 | 0.537 | 0.666                    | 0.709 | 0.220  | 0.685 | 0.531   |
| WP  | 0.377               | 0.984 | 0.525 | 0.682                    | 0.714 | 0.210  | 0.744 | 0.520   |
| TLD | 0.416               | 0.901 | 0.541 | 0.719                    | 0.746 | 0.286  | 0.416 | 0.558   |

- ▶ TLD more effective in finding relevant facet values and discarding noisy ones (high  $F_1$ )
- ▶ TLD more effective in clustering homogeneous values (high clustering effectiveness)



| LC            | $F_1^{\rm g}=\{{ m Wine,\ Red\ Wine,\ White\ Wine,\ \dots,\ Piedmont,\ Lombardy,\ \dots,\ Sicily,\ Donnafugata,\ Cusumano,\ \dots,\ Alessandro\ di\ Camporeale,\ \dots,\ France\}\ (98)$                                                                                                                                                                                                                                          |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WP            | $F_1^{g} = \{ \text{Wine, Red Wine, White Wine, } \dots, \text{Piedmont, Lombardy, } \dots, \text{Sicily, Donnafugata, Cusumano, } \dots, \text{France} \} $ (100)                                                                                                                                                                                                                                                                |
| TLD           | $ F_6^g = \{ \text{ Piedmont, Tuscany, Sicily, }, \dots, \text{ France } \} (14) $ $ F_2^g = \{ \text{ Red, White, Rosé } \} (3) $ $ F_3^g = \{ \text{ Red Wine, White Wine, Rosé Wine } \} (3) $ $ F_4^g = \{ \text{ Moscato, Chardonnay, }, \dots, \text{ Merlot } \} (13) $ $ F_5^g = \{ \text{ Tuscany Wine, Sicily Wine} \} (2) $ $ F_6^g = \{ \text{ Donnafugata, Cusumano, }, \dots, \text{ Principi di Butera } \} (27) $ |
| Gold Standard | $F_1^g = \{ \text{ Piedmont, Lombardy, } \dots, \text{ Sicily } \} $ (21) $F_2^g = \{ \text{ Red Wine, White Wine, } \dots, \text{ Rosé Wine } \} $ (14) $F_3^g = \{ \text{ Donnafugata, Cusumano, } \dots, \text{ Alessandro di Camporeale} \} $ (12)                                                                                                                                                                            |



#### **Conclusions**

► semi-automatic, language independent approach to facets extraction from heterogeneous taxonomies within dataspaces



## **Conclusions**

- semi-automatic, language independent approach to facets extraction from heterogeneous taxonomies within dataspaces
- TLD, a novel metric that captures the source categories mutual exclusivity

## **Conclusions**

- semi-automatic, language independent approach to facets extraction from heterogeneous taxonomies within dataspaces
- ▶ TLD, a novel metric that captures the source categories mutual exclusivity
- evaluation shows that TLD outperforms state-of-the-art metrics



## **Conclusions**

- semi-automatic, language independent approach to facets extraction from heterogeneous taxonomies within dataspaces
- ▶ TLD, a novel metric that captures the source categories mutual exclusivity
- evaluation shows that TLD outperforms state-of-the-art metrics

#### Future work

▶ improvement of the labelling phase (e.g., reconciliation with known Semantic Web ontologies)



## **Conclusions**

- semi-automatic, language independent approach to facets extraction from heterogeneous taxonomies within dataspaces
- ▶ TLD, a novel metric that captures the source categories mutual exclusivity
- evaluation shows that TLD outperforms state-of-the-art metrics

- ▶ improvement of the labelling phase (e.g., reconciliation with known Semantic Web ontologies)
- ▶ integration of evidence coming from additional input (e.g., user queries)



# **Questions?**

riccardo.porrini@disco.unimib.it http://rporrini.info



# **Backup**



#### Related Work

### Facet extraction

- document corpora [St07, Da08, We13, Me13] focus on faceted hierarchies - specific for unstructured data
- ▶ search engines' query logs and documents [Li09, Pa09, Po11] user search queries as a primary source of information
- ▶ search engines' query results [Ya10, Do11, Ka12, Ko13] integrate and rank facets already present in web documents

# Similarity-Relatedness between taxonomy categories

- Leacock and Chodorow similarity [Le98]
- Wu and Palmer similarity [Wu94]
- not designed for heterogeneous taxonomies



## **Evaluation - Number of discovered facets**

|                             | $ \mathcal{F}_*^{g} $ | LC | WP | TLD |
|-----------------------------|-----------------------|----|----|-----|
| Dogs and Cats Food          | 3                     | 1  | 1  | 7   |
| Grappe, Liquors, Aperitives | 1                     | 1  | 1  | 6   |
| Wines                       | 3                     | 1  | 1  | 6   |
| Beers                       | 2                     | 6  | 3  | 14  |
| DVD Movies                  | 2                     | 2  | 1  | 3   |
| Rings                       | 4                     | 1  | 2  | 7   |
| Blu-Ray Movies              | 2                     | 2  | 2  | 5   |
| Musical Instruments         | 6                     | 1  | 1  | 5   |
| Ski and Snowboards          | 1                     | 1  | 1  | 7   |
| Necklaces                   | 8                     | 2  | 3  | 11  |

#### References

- [Fr05] Franklin et al. From Databases to Dataspaces: A New Abstraction for Information Management. ACM SIGMOD Record, 2005
- [Ta04] Taylor et al. Wynars introduction to cataloging and classification. Libraries Unlimited, 2004
- [Da08] Dakka et al. Automatic extraction of useful facet hierarchies from text databases. ICDE, 2008
- [Me13] Medelyan et al. Constructing a focused taxonomy from a document collection. ESWC, 2013
- [St07] Stoica et al. Automating creation of hierarchical faceted metadata structures. HLT-NAACL. 2007
- [We13] Wei et al. Dft-extractor: a system to extract domain-specific faceted taxonomies from wikipedia. WWW. 2013
- [Li09] Li et al. Extracting structured information from user queries with semi-supervised conditional random fields. SIGIR. 2009
- [Pa09] Pasca et al. Web-derived resources for web information retrieval: from conceptual hierarchies to attribute hierarchies. SIGIR. 2009
- [Po11] Pound et al. Facet discovery for structured web search: a query-log mining approach. SIGMOD, 2011
- Dou et al. Finding dimensions for queries. CIKM, 2011 Do11
- [Ka12] Kawano et al. On-the-fly generation of facets as navigation signs for web objects. DASFAA, 2012
- [Ko13] Kong et al. Extracting query facets from search results. SIGIR, 2013
- [Ya10] Yan et al. Facetedpedia: enabling query-dependent faceted search for wikipedia. CIKM, 2010
- [Le98] Leacock et al. Combining local context and wordnet similarity for word sense identification, MIT Press. 1998
- [Wu94] Wu et al. Verb semantics and lexical selection. ACL, 1994
- [Es96] Ester et al. A density-based algorithm for discovering clusters in large spatial databases with noise. KDD, 1996

