vSPhere를 이용한 서버 가상화 구현

Rest

강승환 고동우 유세종 최성민 한시완

목 차

서버 가상화

서버가상화의의미와특징

서버 가상화의 장단점

서버 가상화를 통한 장점과 단점

vSphere

vSphere에 대한 소개

vSphere 구현 - 1

4-1. 사전 작업

4-2. Active Directory 구성 4-3. ESXI 구성

vSphere 구현 - 2

5-1. vCenter Server 구성

5-2. vSphere Client 운영

5-3. 고가용성 구현

Chapter.01

서버 가상화

서버 가상화란?

한 대의 물리적인 서버에 여러 대의 논리적인 가상 머신을 구현하는 것

하나의 물리적인 머신에 여러 개의 OS를 운영할 수 있도록 파티셔닝한 구조

캡슐화 구조로 인해 각각의 가상 머신이 독립적으로 존재

가상머신은 캡슐화의 격리에 의해 물리적인 서버에 종속되지 않음

Chapter.02

서버 가상화의 장단점

서버 가상화의 장단점

장점 1. 비용 절감

사용률 낮은 서버들을 한 대의 가상화 서버로 통합하여 한 대에 사용되던 비용을 다수 서버로 운용

단점 1. 라이선스 관리

라이선스에 들어가는 비용이 많으며 사용 기간이 정해져 있는 라이선스는 주의

장점 2. 유지보수의 편의성 증대

클러스터를 구축하여 장애가 발생한 물리 서버를 손쉽게 조치

단점 2. 속도 저하 우려

호스트 OS 위에 또 다른 OS를 실행 시키는 방식의 운영으로 속도 저하 우려

장점 3. 시스템 가용성 증대

가상 머신 팜은 장애가 발생한 서버 위에 동작하던 가상머신들을 다른 쪽으로 자동 이동 이런 기능을 이용해 가상머신 가용성 보장

Chapter.03

vSphere

vSphere

VMWare의 가상화 플랫폼

데이터 센터를 CPU, 스토리지 및 네트워킹 리소스를 포함하는 집계된 컴퓨팅 인프라로 변환

이러한 인프라를 통합 운영 환경으로 관리하며 환경에 참여하는 데이터 센터를 관리하는 도구 제공

Chapter.04

vSphere 구현 - 1

4-1. 사전 작업

IP 할당

	AD	VC	ESXI01	ESXI02	ESXI03	ESXI04
IP 할당	192.168.0.100	192.168.0.110	192.168.0.101	192.168.0.102	192.168.0.103	192.168.0.104

하드디스크 할당

	ISO	ESXI01	ESXI02	ESXI03	ESXI04
추가하는 용량	25G	205G	215G	225G	235G
실제 ISCI 사용 용량	20G	200G	210G	220G	230G

4-2. AD - 네트워크 및 컴퓨터 이름 설정

네트워크 속성에서 사전 설정한 IP 할당

AD로 구현하는 서버 컴퓨터 이름 변경

4-2. AD - 도메인 서비스 설치 및 구성

서버 관리자에서 Active Directory 도메인 서비스 설치

4-2. AD - 도메인 서비스 설치 및 구성

새 포리스트 추가 선택 후 미리 정한 루트 도메인 이름 입력

DNS 선택 후 암호 입력

4-2. AD - 도메인 서비스 설치 및 구성

DNS 관리자의 정방향 조회 영역에서 새 호스트 추가

호스트 이름과 IP 입력

ESXI01부터 04까지 추가

4-2. AD - iSCSI 대상 서버 구현

iSCSI 서버 구현을 위한 하드디스크 추가 (ISO, VM01, VM02, VM03, VM04)

디스크 관리로 들어가 디스크 파티셔닝 시작

ISO, VM01, VM02, VM03, VM04 총 5개 디스크 단순볼륨으로 파티셔닝

4-2. AD - iSCSI 대상 서버 구현

iSCSI에 해당되는 가상 디스크를 선택

사전 작업 표를 참고하여 실제로 사용할 ISO 디스크 용량 지정 및 동적 확장

4-2. AD - iSCSI 대상 서버 구현

같은 과정으로 VM01 ~ VM04 서버 구현

4-3. ESXI - 호스트 구성

ISO image file 삽입 후 네트워크 어댑터 4개가 되도록 설정

사전 작업에서 지정한 ESXI의 IPv4 주소 설정

4-3. ESXI - 호스트 구성

IPv6는 미설정

사전에 정한 도메인 이름으로 DNS 주소 입력

4-3. ESXI - 호스트 구성

```
Where ESXI 6.7.8 (WHKernel Release Build 13886683)

Where, Inc. Where20,1

2 x AMD Ryzen 5 34806 with Radeon Vego Graphics

4 GIB Menory

To manage this host go to:
http://esxi81/
http://192.168.8.181/ (STATIC)
```



```
Testing Management Network

You may interrupt the test at any time.

Pinging address #1 (192.168.0.2).

Pinging address #2 (192.168.0.100).

Resolving hostname (esxi03.rest.kr).

(Enter) OK
```

같은 과정으로 ESXI01 ~ ESXI04 호스트 구성 ESXI01 ~ ESXI04 호스트 ping 연결 확인 (AD를 킨 상태에서)

Chapter.05

vSphere 구현 - 2

5-1. VC - 네트워크 및 컴퓨터 이름, 멤버 PC 등록

Windows 보안

컴퓨터 이름(C):

VC

전체 컴퓨터 이름:

VC

소속 그룹

● 도메인(D):

rest.kr

○ 작업 그룹(W):

WORKGROUP

컴퓨터 이름/도메인 변경

이 컴퓨터의 이름 및 구성원 자격을 변경할 수 있습니다. 변경 내

용은 네트워크 리소스에 대한 액세스에 영향을 미칠 수 있습니다.

사전에 설정한 IP로 설정 (DNS는 AD의 IP주소) 컴퓨터 이름은 VC, 도메인은 AD의 도메인으로 변경 Administrator 계정 권한으로 도메인 변경 및 멤버 PC 등록

5-1. VC – 계정 로그인 및 universalCruntime 설치

Administrator 계정으로 로그인

universalCruntime 설치

5-1. VC – VC 설치

시스템 네트워크 이름은 도메인 이름으로 자동 설정

vCenter Single Sing-on의 도메인 이름과 비밀번호 설정

vCenter Server 서비스 계정은 Windows 로컬 시스템 계정 사용

5-1. VC – 인증서 등록 및 접속

인증서를 다운로드 및 설치

인증서 등록

인증서 설치 후 vSphere Client에 접속

5-2. VC – 호스트 등록

vSphere Client 접속 후 새 데이터 센터 생성 ESXI01로 호스트 등록 후 ESXI04까지 호스트 추가

5-2. VC - 디스크 장치 연결

디스크 장치 연결을 위해 새 클러스터 생성 소프트웨어 iSCSI어댑터 추가 후 iSCSI서버에 AD의 주소를 입력하여 5개의 디스크 장치와 연결 후 확인

5-2. VC – 네트워킹 설정

VMKernel 네트워크 어댑터 포트 설정 (vMotion, Fault Tolerance 로깅 설정)

IPv4 설정에서 호스트당 하나씩 더 설정한 IP 입력

5-2. VC – 네트워킹 설정

VMKernel 추가 후 할당된 어댑터에 물리적 어댑터 추가

추가된 어댑터 확인

5-2. VC – 네트워킹 설정

표준 스위치용 가상 시스템 포트 그룹 선택

새 표준 스위치 설정

남이있는 어댑어 모두 선택 후 두 어댑터 활성화

5-2. VC – 네트워킹 설정

임의의 네트워크 레이블 지정

가상 스위치 생성 확인 (esxi01 ~ esxi04까지 생성)

5-2. VC – 데이터 스토어

데이터스토어 생성 후 운영체제 및 RockyLinux 8 파일 업로드

가상 디스크를 저장하기 위한 데이터 스토어 생성

5-2. VC – 가상머신 생성 및 복제

ESXI 01 호스트에 들어갈 가상머신 생성

다른 호스트도 생성하기 위해 가상머신 복제

5-2. VC – DRS

vSphere에서 클러스터 내의 ESXi 호스트 간에 VM을 자동으로 분산 배치하고 리소스를 최적화하는 기능

5-2. VC – DRS 설정

클러스터 설정 편집 basicCluster					
vSphere DRS T 자동화 주가 옵션 전원	원 관리 고급 옵션				
자동화 수준	완전히 자동화됨 ~				
	DRS는 VM 전원이 켜질 때 자동으로 가상 시스템을 흐스트에 배치하고 리소스 활용률을 최적화하기 위해 가상 시스템을 흐스트 간에 자동으로 마이그레이션합니다.				
마이그레이선 임계값 i	일반 적극적 DRS는 워크로드가 적당히 불균형인 경우에 권장 사항을 제공합니다. 이 임계값은 안정 된 워크로드가 있는 환경에 대해 권장됩니다.(기본값)				
Predictive DRS $\it i$	□ 사용				
가상 시스템 자동화 $m{i}$	☑ 사용				
	취소 확	인			

vSphere DRS 활성화한 뒤 자동화 수준을 완전히 자동화됨으로 설정

5-3. VC – 고가용성 구현 – HA

ESXi 호스트에 장애 발생 시, 해당 호스트에 있던 VM을 자동으로 다른 정상 호스트에서 재시작시켜주는 기능 (서비스 중단 시간 최소화)

5-3. VC – 고가용성 구현 – HA

vSphere HA 활성화

호스트 페일오버 용량 기준 사용 안함 설정

히트비트 데이터스토어 자동으로 선택

5-3. VC – 고가용성 구현 – HA

ESXI01 일시정지 시 호스트 장애 감지

호스트에 장애 발생 시 HA 기능으로 인해 호스트가 자동으로 옮겨진 것을 확인

5-3. VC – 고가용성 구현 – FT

VM의 실시간 복제본을 생성하여 무중단 서비스를 보장 장애 발생 시에도 서비스 중단 없이 복제 VM이 즉시 업무를 이어받음

5-3. VC – 고가용성 구현 – FT

가상머신의 CD/DVD 드라이브 제거

각 FT 설정 VM01 → VM02 , VM02 → VM03 , VM03 → VM01

5-3. VC – 고가용성 구현 – FT

FT 설정 확인

가상 머신 FT 구현 후 기능 확인을 위한 테스트

Thank You

감사합니다.

Rest

강승환 고동우 유세종 최성민 한시완