ECE-GY 9343 Data Structure and Algorithm

Lecture 1: Syllabus, Introduction, and Asymptotic notation

Instructor: Yong Liu

Why taking this course

- You can learn
 - Classic algorithms for classic problems, mathematical insights
 - Techniques for analyzing performance of various algorithms
 - How to design good algorithms for solving real-world problems
- Improving programming skills
 - Then you can rock in classes, job interviews, etc.
- It's also fun!

Prerequisites

- Basic knowledge of fundamental data structures
 - stacks, queues, heaps, ...
- Some programming experience
 - C, C++, Python, Java, etc.
- Discrete mathematics, probabilities, ...
- Should not take this course if you have taken a similar course e.g. CS6033 with a B or better grade.

Textbook

Introduction to Algorithms, 3rd Edition, by Thomas H. Cormen, Charles E. Leiserson, Rondald L. Rivest and Clifford Stein, MIT Press, 2009; ISBN-13: 9780262033848. It is known as CLRS.

Free access to CLRS on books24x7 (on the library web site http://library.poly.edu, go to Databases A-Z, then letter B, then books24x7).

Grading policy

Your final grade will be calculated as:

Homework	10%
Midterm	40%
Final	50%

No extra work to improve grade!

Homework

- Key component to mastering the course material
 - Very good exercise and practice
 - Will not do well on exams if you have not done the hw
 - Will be assigned weekly

Exams

- One mid-term
- One final exam
- Close-book and limited notes
- Attendance at exams is mandatory

Remember: If you miss an exam without a valid excuse (need documents to prove), you will receive a grade of zero.

What is an algorithm?

- An algorithm is any well-defined computational procedure that takes some values as input and produces some values as output.
- Provide a step-by-step method for solving a computational problem. (Like cooking recipes)
- Not dependent on a particular programming language, machine, system, or compiler. (Unlike programs)

Example on sorting

- Problem: Sorting
 - Input: sequence of n numbers (a₁,a₂,··· ,aₙ)
 - Output: a permutation $(a'_1, a'_2, \dots, a'_n)$ of the input instance such that $a'_1 \le a'_2 \le \dots \le a'_n$

For example:

Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

Algorithms: Insertion sort, merge sort, quick sort, . . .

Issues in algorithm analysis & design

- ▶ Two fundamental issues: correctness and efficiency
- Steps to analyze and design an algorithm
 - Formally define a problem
 - Clearly describe an algorithm
 - Prove correctness of the algorithm
 - Analyze the efficiency of the algorithm

Efficiency of algorithms

Goal

▶ To compare algorithms mainly in terms of running time but also in terms of other factors (e.g., memory requirement, programmer's effort).

Running time analysis

Determine how running time increases as the size of the problem increases.

How do we compare algorithms?

- Need to define a number of objective measures
 - (1) Compare execution time?

Not good: time is specific to a particular computer !!

(2) Count the number of statements executed?

Not good: number of statements vary with the programming language as well as the style of the individual programmer.

- Ideal solution
 - Express running time as a function of the input size n (i.e., f(n)).
 - Compare different functions corresponding to running time.
 - Such an analysis is independent of machine time, programming style, etc.

Random-Access Machine (RAM)

- A computational model
 - All memory equally expensive to access
 - No concurrent operations
 - All reasonable instructions take unit time
 - Except, of course, function calls

Example

- Associate a "cost" with each statement.
- Find the "total cost" by finding the total number of times each statement is executed.

Algorithm	Cost				
sum = 0;	C ₁				
for(i=0; i <n; i++)<="" td=""><td>C₂</td></n;>	C ₂				
for(j=0; j <n; j++)<="" td=""><td>C₂</td></n;>	C ₂				
sum += arr[i][j];	c ₃				
$c_1 + c_2 x (N+1) + c_2 x N x (N+1) + c_3 x N^2$					

Input size (number of elements in the input)

- How we characterize input size is problem-specific:
 - Sorting: number of input items
 - Multiplication: total number of bits
 - Graph algorithms: number of nodes & edges
 - ...

Common orders of magnitude

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Types of analysis

Worst case

- Provides an upper bound on running time
- An absolute guarantee that the algorithm would not run longer

Best case

- Provides a lower bound on running time
- Input is the one for which the algorithm runs the fastest

Lower Bound ≤ Running Time ≤ Upper Bound

Average case

- Provides a prediction about the running time
- Very useful, but treat with care: what is "average"?
 - Random (equally likely) inputs
 - Real-life inputs

Asymptotic Analysis

To compare two algorithms with running times f(n) and g(n), we need a rough measure that characterizes how fast each function grows.

- Simplifications
 - Ignore actual and abstract statement costs
 - Order of growth: highest-order term is what counts
 - Remember, we are doing asymptotic analysis
 - As the input size grows larger, the high order term dominates
- For example: $5n^3 + 100n^2 + 10n + 50 \sim n^3$

Asymptotic notation: Big-Oh notation

▶ Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$.

Ex. $T(n) = 32n^2 + 17n + 1$.

- T(n) is $O(n^2)$. choose c=50, n_0 =1
- ightharpoonup T(n) is also O(n³).
- T(n) is neither O(n) nor O(n log n).

Asymptotic notation: Big-Omega notation

Lower bounds. T(n) is Ω (f(n)) if there exist constants c > 0 and n₀ ≥ 0 such that T(n) ≥ c · f(n) for all n ≥ n₀.

Ex. $T(n) = 32n^2 + 17n + 1$.

- T(n) is $\Omega(n^2)$. choose c=32,n₀=1
- ightharpoonup T(n) is also $\Omega(n)$.
- T(n) is neither $\Omega(n^3)$ nor $\Omega(n^3 \log n)$.

Asymptotic notation: Big-Theta notation

► Tight bounds. T(n) is Θ(f(n)) if there exist constants $c_1 > 0$, $c_2 > 0$ and $n_0 \ge 0$ such that $c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$ for all $n \ge n_0$.

Ex. $T(n) = 32n^2 + 17n + 1$.

- ► T(n) is $\Theta(n^2)$. choose $c_1=32, c_2=50, n_0=1$
- T(n) is neither Θ(n) nor $Θ(n^3)$.

Asymptotic notation: little-o, and little-ω

- Little-o: T(n) is o(f(n)) if for any constant c > 0, there exists $n_0 \ge 0$ such that T(n) < c ⋅ f(n) for all $n \ge n_0$
- Little-ω: T(n) is ω(f(n)) if for any constant c > 0, there exists $n_0 \ge 0$ such that $T(n) > c \cdot f(n)$ for all $n \ge n_0$.
- Intuitively
 - ▶ o() is like < O() is like \le
 - ▶ ω () is like > Ω () is like ≥
 - ▶ Θ() is like =

Properties

Theorem:

```
f(n) = \Theta(g(n)) \Leftrightarrow f = O(g(n)) \text{ and } f = \Omega(g(n))
```

Transitivity:

- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
- Same for O and Ω

▶ Reflexivity:

- $f(n) = \Theta(f(n))$
- Same for O and Ω

Symmetry:

- $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

What's next...

- Recurrences, Divide-and-Conquer
 - Substitution, Iteration, Master method
 - Read CLRS Chapter 4