"তরঙ্গ"

প্রশ্ন \rightarrow (১) তরঙ্গ বলতে কি বুঝ? তরঙ্গ কত প্রকার ও কি কি? উদাহারণ সহ বুঝিয়ে দাও। এদেরে মধ্যে পার্থক্য কর।

উ: তরঙ্গ: স্থিতিস্থাপক মাধ্যমের বিভিন্ন কণাগুলোর সমষ্টিগত পর্যায়বৃত্ত কম্পনের ফলে মাধ্যমে যে আলোড়ন সৃষ্টি হয় তাকে তরঙ্গ বলে। যেমন: শব্দ তরঙ্গ, পানির তরঙ্গ, বিদ্যুৎ চুম্বকীয় তরঙ্গ ইত্যাদি। মাধ্যমের স্থিতিস্থাপকতা, জড়তা এবং সংসক্তি ধর্মের জন্য তরঙ্গ সৃষ্টি হয়।

মাধ্যমের কণা সমুহের কম্পনের দিক এবং তরঙ্গ প্রবাহের দিকের উপর ভিত্তি করে তরঙ্গ দুই প্রকার। যথা (i) আড় তরঙ্গ এবং (ii) লম্বিক তরঙ্গ।

- (i) আড় তরঙ্গ ঃ যে তরঙ্গের ক্ষেত্রে মাধ্যমের কণাগুলির কম্পনের দিক তরঙ্গ প্রবাহের দিকের সাথে সমকোনী হয় তাকে আড় তরঙ্গ বলে। একে অনুপ্রস্থ তরঙ্গ ও বলা হয়। উদাহরন স্বরূপ পুকুরের পানিতে ঢিল ছুঁড়লে যে তরঙ্গের সৃষ্টি হয় সেই তরঙ্গই আড় তরঙ্গ। এক্ষেত্রে ভালভাবে লক্ষ্য করলে দেখা যায়-পানির কণাগুলি উপরে-নিচে দুলতে থাকে এবং তরঙ্গ কণা সমুহের কম্পনের দিকের সাথে সমকোণে কিনারার দিকে অগ্রসর হয়।
- (ii) **লম্বিক তরঙ্গ** ঃ যে তরঙ্গের ক্ষেত্রে মাধ্যমের কণাগুলির কম্পনের দিকে তরঙ্গ প্রবাহের দিকের সাথে সমান্তরাল হয় তাকে লম্বিক তরঙ্গ বলে । একে অনুদৈর্ঘ্য তরঙ্গও বলা হয়। উদাহরণ স্বরূপ শব্দ সঞ্চালনের সময় বাতাসের কণাগুলোর কম্পনের দিক এবং শব্দ তরঙ্গ প্রবাহের দিক একই হয়।

নিম্নে আড় তরঙ্গ ও লম্বিক তরঙ্গের মধ্যে পার্থক্য করা হলোঃ

আড় তরঙ্গ	লম্বিক তরঙ্গ
🕽 । সংগা ।	১। সংগা
২। এই তরঙ্গের ক্ষেত্রে মাধ্যমে তরঙ্গ শীষ ও তরঙ্গ পাদ	২। এই তরঙ্গের ক্ষেত্রে মাধ্যমে সংকোচন ও প্রসারণ সৃষ্টি
সৃষ্টি হয়।	र्य ।
৩। পরপর দুটি তরঙ্গ শীর্ষ বা পর পর দুটি তরঙ্গ পাদের	৩। পরপর দুটি সংকোচন বা পর পর দুটি প্রসারণের
মধ্যবর্তী দূরত্বকে তরঙ্গ দৈর্ঘ্য বলে।	মধ্যবর্তী দূরত্বকে তরঙ্গ দৈর্ঘ্য বলে।
৪। আড় তরঙ্গের ক্ষেত্রে মাধ্যমের সমাবর্তন বা	৪। লম্বিক তরঙ্গের ক্ষেত্রে মাধ্যমের সমবর্তন বা পোলারন
পোলারন ঘটে।	घटि नो ।
৫। আড় তরঙ্গ যান্ত্রিক তরঙ্গ নাও হতে পারে। যান্ত্রিক	৫। লম্বিক তরঙ্গ হচেছ যান্ত্রিক তরঙ্গ। কাজেই স্থিতিস্থাপক
তরঙ্গ না হলে মাধ্যম ছাড়াই সঞ্চালিত হয়।	মাধ্যম ছাড়া সঞ্চালিত হয় না।

প্রশ্ন→(২) সংজ্ঞা লিখ: (i) পূর্ণ কম্পন (ii) তরঙ্গ দৈর্ঘ্য (iii) কম্পাংক বা কম্পনি (iv) দোলন কাল (v) বিস্তার (vi) দশা (vii) তরঙ্গ মুখ এবং (viii) তরঙ্গ বেগ।

- উ: (i) পূর্ণ কম্পন: তরঙ্গস্থিত কোন একটি কম্পমান বস্তু একটি বিন্দু হতে যাত্রা শুরু করে আবার একই দিক হতে সেই বিন্দুতে ফিরে এলে যে কম্পন হয় তাকে পূর্ণ কম্পন বলে।
- (ii) তরঙ্গ দৈর্ঘ্য: তরঙ্গ সৃষ্টিকারী কোন কম্পমান বস্তু একটি পূর্ণ কম্পন দিতে যে সময় নেয় সেই সময়ে তরঙ্গ যে দূরত্ব অতিক্রম করে তাকে তরঙ্গ দৈর্ঘ্য বলে। তরঙ্গের উপর অবস্থিত পরপর দুটি সমদশা সম্পন্ন কণার মধ্যবর্তী দূরত্ব দ্বারা তরঙ্গ দৈর্ঘ্য বুঝানো হয়। তরঙ্গ দৈর্ঘ্যকে ৯ (ল্যামডা) দ্বারা প্রকাশ করা হয়।
- (iii) কম্পাংক বা কম্পনি: একটি কম্পমান বস্তু এক সেকেন্ডে যতটি পূর্ণ কম্পন দেয় তাকে তার কম্পাংক বা কম্পনি বলে। একে সাধারনতঃ n দ্বারা প্রকাশ করা হয়। কম্পাংকের একক সাইকেল/সে:। সাইকেল/সেকেন্ড কে সংক্ষেপে হার্টজ (Hz) বলা হয়।
- (iv) দোলন কাল: একটি কম্পমান বস্তু একটি পূর্ণ কম্পন সম্পন্ন করতে যে সময় নেয় তাকে তার দোলন কাল বলে। দোলন কালকে T দারা প্রকাশ করা হয়।
 - (v) বিস্তার: একটি কম্পমান বস্তু তার সাম্যাবস্থান হতে যে কোন একদিকে সর্বাধিক যে দূরত্ব অতিক্রম করে তাকে বিস্তার বলে।
- (vi) দশা : কোন একটি কম্পমান বস্তুর যে কোন মুহুর্তের গতির সম্যক অবস্থা যার দ্বারা ঐ বস্তুর সরণ, বেগ, তুরণ, বল ইত্যাদি নির্দেশ করা হয় তাকে দশা বলে।
- (vii) তরঙ্গ মুখ: কোন তরঙ্গের উপর অবস্থিত সমদশা সম্পন্ন সব বিন্দুর মধ্যদিয়ে অংকিত তলকে তরঙ্গ মুখ বলে। যেমন পানির তরঙ্গের ক্ষেত্রে তরঙ্গ শীর্ষে অবস্থিত সব কনার দশা একই তেমনি তরঙ্গ পাদে অবস্থিত সব কণার দশা একই। অতএব তরঙ্গ শীর্ষ বরাবর অঙ্কিত বা তরঙ্গ পাদ বরাবর অঙ্কিত তল হবে একটি তরঙ্গ মুখ।
- (viii) তরঙ্গ বেগ: কোন একটি মাধ্যমে কোন একটি তরঙ্গ এক সেকেন্ডে যে দূরত্ব অতিক্রম করে তাকে ঐ মাধ্যমে ঐ তরঙ্গের তরঙ্গ বেগ বলে। তরঙ্গ বেগকে V দ্বরা প্রকাশ করা হয়।

প্রশ্ন \rightarrow (৩) শব্দের বেগ, তরঙ্গ দৈর্ঘ্য এবং কম্পাংকের মধ্যে সম্পর্ক স্থাপন কর।

অথবা: দেখাও যে, $V=n\lambda$ যেখানে প্রতীকগুলো প্রচলিত অর্থ বহন করে। মনেকরি, কোন একটি শব্দ তরঙ্গের তরঙ্গ দৈর্ঘ্য $=\lambda$ এবং কম্পাংক =n এবং কোন একটি মাধ্যমে তরঙ্গটির বেগ=V । বেগ=V একথার অর্থ হচ্ছে তরঙ্গটি এক সেককেন্ডে V দূরত্ব অতিক্রম করে। অর্থাৎ, V=1 সেকেন্ডে তরঙ্গ কর্তৃক অতিক্রান্ত দূরত্ব....(1) আবার তরঙ্গ দৈর্ঘ্য $=\lambda$, এ কথাটির অর্থ হচ্ছে একবার পূর্ণ কম্পনে তরঙ্গ কর্তৃক অতিক্রান্ত দূরত্ব $=\lambda$ $\therefore n$ বার পূর্ণ কম্পনে অতিক্রান্ত দূরত্ব $=n\lambda$

এখানে n বার পূর্ণ কম্পন দেয় 1 সেকেন্ড সময়ে। অতএব আমরা পাই, $n\lambda=1$ সেকেন্ড তরঙ্গ কর্তৃক অতিক্রান্ত দূরত্ব ………(2) এখন সমীকরণ (1) ও (2) হতে পাই, $V=n\lambda$ ………(3) সমীকরণ (3) ই শব্দ তরঙ্গের বেগ, কম্পাংক এবং তরঙ্গ দৈর্ঘ্যের মধ্যে কম্পর্ক নির্দেশ করে।

প্রশ্ন→(৪) অগ্রগামী তরঙ্গ এবং স্থির তরঙ্গ বলতে কি বুঝ? স্থির তরঙ্গ কিভাবে সৃষ্টি হয়? অগ্রগামী তরঙ্গ এবং স্থির তরঙ্গের মধ্যে পার্থক্য নির্দেশ কর।

উ: অগ্র**গামী তরঙ্গ** : যদি কোন তরঙ্গ কোন বিস্তৃত মাধ্যমের একস্তর হতে অন্যস্তরে সঞ্চালিত হয়ে ক্রমাগত সম্মুখের দিকে অগ্রসর হতে থাকে তবে তাকে অগ্রগামী তরঙ্গ বলে। অগ্রগামী তরঙ্গ আড় তরঙ্গ ও লম্বিক তরঙ্গ উভয়ই হতে পারে । যেমন-বাতাসে শব্দ তরঙ্গ অগ্রগামী লম্বিক তরঙ্গ এবং সাধারণ পানির তরঙ্গ অগ্রগামী আড় তরঙ্গ।

স্থির তরঙ্গ: কোন মাধ্যমের একটি সীমিত অংশে দুটি একই ধরনের অগ্রগামী তরঙ্গ বিপরীত দিক হতে সমবেগে অগ্রসর হয়ে একে অপরের উপর আপতিত হলে যে নতুন তরঙ্গ সৃষ্টি হয় তাকে স্থির তরঙ্গ বা দন্ডায়মান তরঙ্গ বলে। যেমন গীটারের তারের তরঙ্গ।

স্থির তরঙ্গ সৃষ্টি হওয়ার কৌশল: ধরি একটি তার টান টান ভাবে দুটি শক্ত খুটির সাথে বাঁধা আছে। এই টানা তারের মাঝে কোথাও আঘাত করলে একটি তরঙ্গের সৃষ্টি হয়। এই তরঙ্গ তার বেয়ে দুই প্রান্তের দিকে অগ্রসর হয়, পরিশেষে দুই প্রান্তে বাধাপ্রাপ্ত হয়ে প্রতিফলিত হয় এবং ভিতরের দিকে অগ্রসর হয়। এই প্রতিফলিত তরঙ্গ এবং মূল তরঙ্গের কম্পাংক ও বিস্তার একই থাকে। ফলে এই প্রতিফলিত তরঙ্গ এবং বিপরীত দিকে গতিশীল মূল তরঙ্গের মিলিত ক্রিয়ায় স্থির তরঙ্গের সৃষ্টি হয়। ভালভাবে লক্ষ্য করলে দেখা যায় তারের সকল বিন্দুর বিস্তার সমান হয় না। বিভিন্ন বিন্দুর বিস্তার বিভিন্ন হয় আবার কোন কোন বিন্দুর বিস্তার শূন্য হয়। স্থির তরঙ্গের ক্ষেত্রে যে সকল বিন্দুর বিস্তার শূন্য হয় তাদের কে নিস্পন্দ বিন্দু (Node) বলে। নিস্পন্দ বিন্দু গুলোকে N দ্বারা চিহ্নিত করা হয়েছে।

আবার, স্থির তরঙ্গের ক্ষেত্রে যে সকল বিন্দুর বিস্তার সর্বাধিক হয় তাদেরকে সুস্পন্দ বিন্দু (Antinode) বলে। চিত্রে সুস্পন্দ বিন্দুগুলোকে A দ্বারা চিহ্নিত করা হয়েছে।

চিত্র-স্থির তরংগ

ে। অগ্রগামী তরঙ্গ ও স্থির তরঙ্গের মধ্যে পার্থক্যঃ-

অগ্রগামী তরঙ্গ	স্থির তরঙ্গ
🕽 । সংজ্ঞা	১। সংজ্ঞা
২। অগ্রগামী তরঙ্গের ক্ষেত্রে তরঙ্গের বিভিন্ন বিন্দুর বিস্তার	২। স্থির তরঙ্গের ক্ষেত্রে তরঙ্গের বিভিন্ন কণা বিভিন্ন
একই থাকে।	বিস্তারে কম্পিত হয়।
৩। অগ্রগামী তরঙ্গের মধ্যে কোন নিম্পন্দ বিন্দু থাকে না।	৩। স্থির তরঙ্গের মধ্যে নিম্পন্দ বিন্দু থাকে।
৪। অগ্রগামী তরঙ্গের মধ্যকার সকল বিন্দুর গতি	৪। স্থির তরঙ্গের মধ্যকার নিস্পন্দ বিন্দু ছাড়া সকল বিন্দুর
সরলদোল গতি।	গতি সরল দোল গতি।
ে। তরঙ্গ প্রবাহে মাধ্যমের বিভিন্ন অংশের চাপ ও ঘনত্বের	৫। তরঙ্গ প্রবাহে মাধ্যমের বিভিন্ন অংশের চাপ ও ঘনত্বের
একই প্রকার পরিবর্তন ঘটে।	প্রিবর্তন একই রকম হয় না।
৬। অগ্রগামী তরঙ্গ একটি সুষম মাধ্যমের মধ্য দিয়ে একটি	৬। স্থির তরঙ্গ মাধ্যমের সীমিত অংশে সৃষ্টি হয় এবং
নির্দিষ্ট দ্রুতি বা বেগে প্রবাহিত হয়।	অগ্রসর না হয়ে একই স্থানে সীমাবদ্ধ থাকে।
৭। অগ্রগামী আড় তরঙ্গের ক্ষেত্রে পাশাপাশি দুটি তরঙ্গ	৭। স্থির তরঙ্গের ক্ষেত্রে পাশাপাশি তিনটি সুস্পন্দ বিন্দু
শীর্ষ অথবা পাশাপাশি দুটি তরঙ্গ পাদের মধ্যবর্তী দূরত্বকে	অথবা পাশাপাশি তিনটি নিম্পন্দ বিন্দুর মধ্যবর্তী দূরত্বকে
এবং অগ্রগামী লম্বিক তরঙ্গের ক্ষেত্রে পাশাপাশি দুটি	তরঙ্গ দৈর্ঘ্য বলে।
সংকোচন অথবা পাশাপাশি দুটি প্রসারনের মধ্যবতী	
দূরত্বকে তরঙ্গ দৈর্ঘ্য বলে।	

প্রশ্ন \rightarrow (৬) একটি অগ্রগামী তরঙ্গের সরল দোলগতি সম্পন্ন একটি কণার সরণের রাশিমালা বের কর। অথবা: একটি অগ্রগামী তরঙ্গের সাধারণ গানিতিক রূপ বের কর।

উ: মনেকরি, একটি অগ্রগামী তরঙ্গ × অক্ষের ধনাত্মক দিকে OC বরাবর অগ্রসর হচ্ছে। এক্ষেত্রে তরঙ্গ বহনকারী কণাগুলির কম্পন সরল দোলগতি হবে। প্রথমে 🕜 বিন্দুতে অবস্থিত কম্পমান কণার সরণ বিবেচনা করি। লম্বিক তরঙ্গ হলে কণাটির কম্পনের দিক হবে× অক্ষ বরাবর এবং আড় তরঙ্গের ক্ষেত্রে কণাটির কম্পনের দিক হবে ν অক্ষ বরাবর।

ধরি, কণাটির বিস্তার =A এবং যে কোন সময় t তে দশা $\theta=\omega t$ এবং সরণ =y । যেহেতু কণাটি সরল দোল (বা সরল ছন্দিত স্পন্দন) গতিতে আছে, অত্রএব কণাটির গতির সমীকরণ, $y=A\sin\omega t$(1) এখানে $\omega=$ কৌণিক বেগ বা কৌনিক কম্পাংক।

এখন অগ্রগামী তরঙ্গের ক্ষেত্রে কণাগুলির কম্পন বা আলোড়ন তরঙ্গ প্রবাহের দিকে এক কণা হতে ক্রমশ পরবর্তী কণাতে স্থানান্তরিত হয়; এবং এই স্থানান্তরের জন্য একটি নির্দিষ্ট সময় লাগে। অতএব, O বিন্দু হতে যতই সম্মুখের দিকে যাওয়া যাবে, তরঙ্গ মধ্যস্থিত কণাগুলোর দশা ততই কমতে থাকবে। এখন O বিন্দু হতে x দূরত্বে p অপর একটি বিন্দু কল্পনা করি; তাহলে p বিন্দুর দশা O বিন্দুর অপেক্ষা কম হবে।

চিত্র (খ) হতে দেখা যাচ্ছে যে, O বিন্দু এবং B বিন্দুর মধ্যে পথ পার্থক্য $=\lambda$ এবং দশা পার্থক্য $=2\pi$ । অতএব, আমরা পাই, পথ পার্থক্য λ হলে দশা পার্থক্য $=2\pi$

[অর্থাৎ, দশা পার্থক্য = $\frac{2\pi}{\lambda}$ \times পথ পর্থক্য] অতএব, O বিন্দু এবং P বিন্দুর মধ্যে দশা পার্থক্য = $\frac{2\pi}{\lambda}$ x । সুতরাং P বিন্দুর দশা

$$=\omega t-rac{2\pi}{\lambda}x$$
। অতএব, P বিন্দুর সরণের রাশিমালা,

$$y = A\sin(\omega t - \frac{2\pi}{\lambda}x)...(2)$$

সমীকরণ (2) ই অগ্রগামী তরঙ্গের গাণিতিক রাশিমালা।

তরঙ্গটি X -অক্ষের ঋনাত্বক দিকে অগসর হলে সমীকরটি হবে, $y = A\sin(\omega t + \frac{2\pi}{\lambda}x)$(3)

প্রশ্ন \rightarrow (৭) দেখাও যে অগ্রগামী তরঙ্গের সমীকরণ $y = A\sin(\omega t - \frac{2\pi}{\lambda}x)$ কে নিম্নোক্তভাবেও প্রকাশ করা যায়-

$$(i) y = A \sin \frac{2\pi}{\lambda} (vt - x)$$
 $(ii) y = A \sin \omega (t - \frac{x}{v})$

$$(i)y = A\sin(\omega t - \frac{2\pi}{\lambda}x)$$
 $\forall i, y = A\sin\frac{2\pi}{\lambda}(\omega t.\frac{\lambda}{2\pi} - x)$

$$\left[\omega = \frac{2\pi}{T}; \frac{1}{T} = n; n\lambda = v\right]$$
 (প্রমানিত)

$$(ii) y = A \sin(\omega t - \frac{2\pi}{\lambda} x) \text{ at, } y = A \sin(\frac{2\pi}{T} t - \frac{2\pi}{2\lambda} x) \text{ at, } y = A \sin 2\pi (\frac{t}{T} - \frac{x}{\lambda}) \text{ at, } y = A \sin 2\pi (nt - \frac{x}{\lambda})$$

বা,
$$y = A \sin 2\pi n (t - \frac{x}{n\lambda})$$
 : $y = A \sin \omega (t - \frac{x}{v})$ (প্রমানিত)

প্রশ্ন→(৮) স্থির তরঙ্গের গাণিতিক রাশিমালা বাহির কর। উহা থেকে নিস্পন্দ ও সুস্পন্দ বিন্দুর শর্তগুলো দেখাও। অথবা, কিভাবে স্থির তরঙ্গের সৃষ্টি হয়, তা গাণিতিক বিশ্লেষনের সাহায্যে ব্যাখ্যা কর।

উ: মনেকরি, × অক্ষের সমান্তরালে একটি তার দুটি শক্ত অবলম্বনের সাথে টান করে বাধা আছে। তার বেয়ে দুটি একই ধরনের অগ্রগামী তরঙ্গ যথাক্রমে ধনাত্মক ও ঋণাত্মক × অক্ষ বরাবর অগ্রসর হচেছ। এই তরঙ্গদ্বয়ের উপরিপাতনের ফলেই স্থির তরঙ্গের সৃষ্টি হবে। ধরি ধনাত্মক এবং ঋণাত্মক × অক্ষ বরাবর চলমান তরঙ্গদ্বয় যথাক্রমে,

$$y_1 = a \sin \frac{2\pi}{\lambda} (vt - x)$$
....(1) এবং $y_2 = a \sin \frac{2\pi}{\lambda} (vt + x)$(2)

এখানে, a , v , এবং λ উভয় তরঙ্গের যথাক্রমে বিস্তার, বেগ ও তরঙ্গদৈর্ঘ্য । এই তরঙ্গদ্ধয়ের লব্ধি সরণ-

$$Y = y_1 + y_2 = a \sin \frac{2\pi}{\lambda} (vt - x) + a \sin \frac{2\pi}{\lambda} (vt + x) \text{ dif, } y = a [\sin \frac{2\pi}{\lambda} (vt + x) + \sin \frac{2\pi}{\lambda} (vt - x)]$$

$$\exists t, \ y = 2a \cos \frac{2\pi}{\lambda} x \sin \frac{2\pi}{\lambda} vt$$

$$\begin{bmatrix} \therefore \sin C + \sin D \\ = 2 \sin \frac{C + D}{2} \cos \frac{C - D}{2} \end{bmatrix}$$

এখানে $2a\cos\frac{2\pi}{\lambda}x=$ ছির তরঙ্গের বিস্তার =A (ধরি)। অতএব, আমরা পাই, $y=A\sin\frac{2\pi}{\lambda}vt$(3)

সমীকরণ (3) ই স্থির তরঙ্গের গণিতিক রাশিমালা।

সুস্পন্দ বিন্দু : সুস্পন্দ বিন্দু সমুহের বিস্তার সর্বাধিক হয়। অতএব সুস্পন্দ বিন্দুর ক্ষেত্রে বিস্তার,

$$A=\pm 2a$$
 বা, $2a\cos\frac{2\pi}{\lambda}x=\pm 2a$ বা, $\cos\frac{2\pi}{\lambda}x=\pm 1$ $\therefore\frac{2\pi}{\lambda}x=n\pi$; এখানে $n=0,1,2,3,4,\ldots$

$$\therefore x = 0, \frac{\lambda}{2}, \lambda, \frac{3\lambda}{2}, 2\lambda$$
....ইত্যাদি

x এর উপরোক্ত মানগুলিতে সুস্পন্দ বিন্দুর সৃষ্টির হয়। এখান থেকে দেখা যাচ্ছে যে, পরপর দুটি সুস্পন্দ বিন্দুর মধ্যবর্তী দূরত্ব $=rac{\lambda}{2}$

নিস্পন্দ বিন্দু: নিস্পন্দ বিন্দু সমুহের বিস্তার শূন্য। অতএব, নিস্পন্দ বিন্দু সমুহের বিস্তার,

$$A = O$$
বা, $2a\cos\frac{2\pi}{\lambda}x = O$ বা, $\cos\frac{2\pi}{\lambda}x = O$

বা,
$$\frac{2\pi}{\lambda}x = (2n+1)\frac{\pi}{2}$$
 এখানে $n = 0,1,2,3,4,...$

বা,
$$x = (2n+1)\frac{\lambda}{4}$$

দেখা যাচ্ছে যে, পরপর দুটি নিস্পন্দ বিন্দুর মধ্যবর্তী দূরত্ব $= rac{\lambda}{2}$ । চিএ (গ) এ সুস্পন্দ ও নিস্পন্দ বিন্দুর অবস্থান গুলো দেখানো হয়েছে।

প্রশ্ন→(৯) তরঙ্গের উপরিপাতন নীতি বর্ণনা ও ব্যাখ্যা কর।

উ: ১৮০৯ সালে বিখ্যাত বিজ্ঞানি টমাস ইয়ং তরঙ্গের উপরিপাতের নীতি প্রদান করেন। নিম্নে নীতিটি নর্ণনা ও ব্যাখ্যা করা হল: তরঙ্গের উপরিপাতের নীতি: "দুই বা ততোধিক তরঙ্গ একই সময়ে মাধ্যমের কোন একটি কণাকে অতিক্রম করে গেলে কণাটি তরঙ্গগুলোর সম্মিলিত প্রভাবে আলোড়িত হবে। কোন মুহূর্তে কণাটির লব্ধি সরণ, প্রত্যেকটি তরঙ্গ পৃথকভাবে কণাটির যে সরণ সৃষ্টি করতো তাদের ভেকটর যোগফলের সমান।"

ব্যাখ্যা: মনেকরি, মাধ্যমের কোন একটি কণাকে দুটি তরঙ্গ একই সময়ে অতিক্রম করে গেল। এদের একটি তরঙ্গের জন্য কণাটির সরন= y_1 এবং অপর তরঙ্গের জন্য সরণ = y_2 । তাহলে উপরিপাতের নীতি অনুসারে কণাটির লব্ধি সরণ, $y=y_1\pm y_2$ যদি তরঙ্গদ্বয় কণাটিকে একই দশায় অতিক্রম করে তাহলে ধনাত্মক (+) চিহ্ন হবে এবং বিপরীত দশায় অতিক্রম করলে ঋণাত্মক (-) চিহ্ন হবে।

প্রশ্ন→(৮) শব্দের ব্যতিচার কি? ব্যতিচারের গাণিতিক ব্যাখ্যা প্রদান কর। ইহা হতে গঠনমূলক ব্যতিচার এবং বিনাশী ব্যতিচারের শর্ত প্রতিপাদন কর। ব্যতিচার সৃষ্টির শর্তগুলি লিখ।

অথবা, শব্দের ব্যতিচার কি? ইহার গাণিতিক রাশিমালা বাহির কর। ইহা থেকে গঠনমূলক ও ধ্বংসাত্মক ব্যতিচারের শর্ত প্রতিপাদন কর।

উ: শব্দের ব্যতিচার (Interference of sound): একই দিকে চলমান সমান কম্পাঙ্ক ও বিস্তারের দুটি শব্দ তরঙ্গের উপরিপাতনের ফলে কখনো শব্দের তীব্রতা খুব বেড়ে যায় আবার কখনো খুব কমে যায় বা একেবারে শূন্য হয়। এ ঘটনাকে শব্দের ব্যতিচার বলে। শব্দের ব্যতিচার দুই প্রকার। যথা (i) গঠনমূলক ব্যতিচার এবং (ii) বিনাশী বা ধ্বংসাত্মক ব্যতিচার।

- (i) **গঠনমূলক ব্যতিচার**: ব্যতিচারী তরঙ্গদ্বয় মাধ্যমের যে অংশে একই দশায় মিলিত হয় সেখানে শব্দের তীব্রতা সবচেয়ে বেশী হয়। একে গঠনমূলক ব্যতিচার বলে।
- (ii) বিনাশী বা ধ্বংসাত্মক ব্যতিচার: ব্যতিচারী তরঙ্গদ্বয় মাধ্যমের যে অংশে বিপরীত দশায় মিলিত হয় সেখানে শব্দের তীব্রতা একেবারে শূন্য হয়। একে বিনাশী বা ধ্বংসাত্মক ব্যতিচার বলে।

শব্দের ব্যতিচারের গাণিতিক ব্যাখ্যা (বা গাণিতিক রাশিমালা): ধরি, একই ধরনের দুটি শব্দ তরঙ্গ একই রেখায় সঞ্চালিত হয়ে মাধ্যমের কোন একটি বিন্দুতে মিলিত হল। t সময় পর এদের সরণ যথাক্রমে y_1 এবং y_2 হলে আমরা পাই,

 $y_1=a\sinrac{2\pi}{\lambda}(vt-x_1)$ এবং $y_2=a\sinrac{2\pi}{\lambda}(vt-x_2)$ এখানে a,λ , ও v যথাক্রমে তরঙ্গদ্বয়ের বিস্তার, তরঙ্গদৈর্ঘ্য এবং বেগ। আবার x_1 ও x_2 যথাক্রমে প্রথম ও দ্বিতীয় তরঙ্গ কর্তৃক অতিক্রান্ত পথ। উপরিপাতের নিয়ম অনুসারে কণাটির লব্ধি সরণ,

$$\boxed{1}, \ \ y = a \left[2\sin\frac{2\pi}{\lambda} \left(\frac{vt - x_1 + vt - x_2}{2} \right) \cos\frac{2\pi}{\lambda} \left(\frac{vt - x_1 - vt + x_2}{2} \right) \right]$$

সমীকরণ (1) ব্যতিচারের গাণিতিক রাশিমালা; যার বিস্তার, $A=2a\cos\frac{\pi}{\lambda}(x_2-x_1)$ ।

গঠনমূলক ব্যতিচারে : গঠনমূলক ব্যতিচারের ক্ষেত্রে বিস্তার, $A=\pm 2a$ বা, $2a\cos\frac{\pi}{\lambda}(x_2-x_1)=\pm 2a$

বা,
$$\cos \frac{\pi}{\lambda}(x_2 - x_1) = \pm 1$$
 : $\frac{\pi}{\lambda}(x_2 - x_1) = n\pi$ যেখানে, $n = 0,1,2,3,...$

এখানে, $x_2 - x_1$ তরঙ্গদ্বয়ের মধ্যকার পথ পার্থক্য। অতএব, দেখা যাচ্ছে যে, যে সকল বিন্দুতে তরঙ্গদ্বয়ের পথ পার্থক্য শূন্য অথবা তরঙ্গ দৈর্ঘ্যের পূর্ন সংখ্যার গুনিতক সে সকল বিন্দুতে গঠন মূলক ব্যতিচার সৃষ্টি হবে।

বিনাশী ব্যতিচার: বিনাশী বা ধ্বংসাত্মক ব্যতিচারের ক্ষেত্রে বিস্তার,

$$A = O \ \text{বা}, \ 2a\cos\frac{\pi}{\lambda}(x_2 - x_1) = O \ \text{বা}, \ \cos\frac{\pi}{\lambda}(x_2 - x_1) = O \ \therefore \frac{\pi}{\lambda}(x_2 - x_1) = (2n+1)\frac{\pi}{2} \ \text{বোধান,} \ n = o,1,2,3,4....$$
 বা, $x_2 - x_1 = (2n+1)\frac{\lambda}{2} \ \therefore x_2 - x_1 = \frac{\lambda}{2}, \ \frac{3\lambda}{2}, \frac{5\lambda}{2}, \frac{7\lambda}{2}...$

অতএব, দেখা যাচ্ছে যে, যে বিন্দুতে তরঙ্গ দ্বয়ের পথ পার্থক্য $\frac{\lambda}{2}$ এর বিজোড় সংখ্যার গুণিতক, সে সকল বিন্দুতে বিনাশী ব্যতিচার সৃষ্টি হবে।

শব্দের ব্যতিচার সৃষ্টি হওয়ার শর্ত সমূহ:

- (i) তরঙ্গদ্বয়ের কম্পাঙ্ক ও বিস্তার সমান হতে হবে এবং এদের দশা অপরিবর্তিত থাকবে।
- (ii) তরঙ্গ দুটির দরুন মাধ্যমের কোন একটি কণার সরণ একই রেখায় হতে হবে।
- (iii) বিনাশী ব্যতিচারের জন্য তরঙ্গদ্বয়ের পথ পার্থক্য $\frac{\lambda}{2}$ এর বিজোড় গুণিতক এবং গঠন মূলক ব্যতিচারের জন্য তরঙ্গদ্বয়ের পথ পার্থক্য শূন্য বা $\frac{\lambda}{2}$ এর জোড় গুণিতক (অর্থাৎ λ এর সরল গুণিতক) হতে হবে।

প্রশ্ন→(১১) দেখাও যে, শব্দ একটি অগ্রগামী লম্বিক তরঙ্গ।

- উ: নিম্নের কারন গুলোর জন্য আমরা বলতেপারি-শব্দ একটি অগ্রগামী লাম্বিক তরঙ্গ।
- (i) তরঙ্গ সৃষ্টির জন্য যেমন কম্পন প্রয়োজন, ঠিক তেমনি শব্দ সৃষ্টির জন্যও বস্তুর কম্পন প্রয়োজন।
- (ii) তরঙ্গ সঞ্চালনের জন্য স্থিতিস্থাপক মাধ্যম এবং সময়ের প্রয়োজন হয় তদ্রুপ শব্দ সঞ্চলনের জন্যও স্থিতিস্থাপক মাধ্যম ও সময়ের প্রয়োজন হয়।
 - (iii) তরঙ্গ সঞ্চালনের সময় মাধ্যম স্থানান্তরিত হয় না; শব্দ সঞ্চালনের ক্ষেত্রেও মাধ্যম স্থান ত্যাগ করে না।
 - (iv) সকল প্রকার তরঙ্গের যেমন প্রতিফলণ, প্রতিসরণ, ব্যতিচার এবং অপবর্তন মটে; শব্দের বেলায়ও তা ঘটে।

উপরোক্ত ধর্ম সমুহের আলোকে নির্দ্বিধায় বলা যায়, শব্দ এক প্রকার তরঙ্গ। এখন নিম্নের ধর্ম সমুহের আলোকে আমরা প্রমাণ করব শব্দ অগ্রগামী লম্বিক তরঙ্গ।

- (৮) শব্দ তরঙ্গ সঞ্চালনের সময় মাধ্যমের সংকোচন ও প্রসারণ ঘটে যা লম্বিক তরঙ্গের বৈশিষ্ট্য।
- (vi) গ্যাসীয় মাধ্যমে শব্দ তরঙ্গের সমাবর্তন হয় না। অতএব, শব্দ তরঙ্গ অবশ্যই লম্বিক তরঙ্গ।
- (vii) শব্দ কঠিন, তরল ও বায়বীয় মাধ্যমে সঞ্চলিত হতে পারে, যা কেবল মাত্র অগ্রগামী লম্বিক তরঙ্গের ক্ষেত্রেই ঘটে। অতএব, প্রমাণিত হল-শব্দ হল অগ্রগামী লম্বিক তরঙ্গ।

প্রশ্ন→(১২) শব্দের ব্যতিচার প্রদর্শনের জন্য কুইল্কের পদ্ধতি বর্ণনা কর।

উ: বিজ্ঞানী কুইঙ্কের উদ্ভাবিত পরীক্ষার সাহায্যে সহজেই শব্দের ব্যতিচার প্রমাণ করা যায়। কুইঙ্কের যন্ত্রে B ও C দুটি দুইমুখ খোলা U আকৃতি বিশিষ্ট দুটি নল থাকে। B নলের সাথে আরও দুটি পার্শ্ব নল A ও F থাকে। B নলের দুই খোলামুখ C নলের দুই খোলা মুকের মধ্যে প্রবেশ করানো থাকে। C নলটিকে প্রয়োজন মত সামনে বা পিছনে সরিয়ে শব্দ চলাচলের পথের দৈর্ঘ্য পরিবর্তন করা যায়।

শব্দের ব্যতিচার সৃষ্টির জন্য একটি সুর শলাকাকে শব্ধায়িত করে A নলের খোলা মুখে ধরা হয়। নলের মধ্যে শব্দ তরঙ্গ A B F ও ACF এই দুটি পথে বিভক্ত হয়ে উহারা আবার F বিন্দুতে মিলিত হয়। C নলটি যদি এমন অবস্থানে থাকে যে, পথ ABF ও ACF পরস্পার সমান হয় তাহলে F বিন্দুতে তরঙ্গদ্বয় একই দশায় মিলিত হয়। ফলে F নলে গঠন মূলক ব্যতিচার সৃষ্টি হবে; অর্থাৎ শব্দ জোরে শোনা যাবে। আবার C নলটিকে বাইরের দিকে টেনে এমন অবস্থানে নেয়া হয় যাতে ABF ও ACF পথদ্বয়ের পার্থক্য λ বা λ -এর সরল গুণিতক হয়, তখনও F বিন্দুতে গঠনমূলক ব্যতিচার হবে।

আবার, যদি C নলটিকে এমন অবস্থানে রাখা হয় যেন ABF ও ACF পথদ্বয়ের মধ্যে পার্থক্য $\frac{\lambda}{2}$ বা $\frac{\lambda}{2}$ এর বিজোড় গুণিতক হয় তাহলে F বিন্দুতে বিনাশী ব্যতিচার সৃষ্টি হবে।

প্রশ্ন→(১৩) তরঙ্গের তীব্রতা বলতে কি বুঝ?

উ: তরঙ্গের তীব্রতা: কোন অগ্রগামী তরঙ্গের অভিমুখে লম্বভাবে স্থাপিত বা কল্পিত কোন তলের একক ক্ষেত্রফলের মধ্যদিয়ে একক সময়ে যে পরিমান শক্তি প্রবাহিত হয় তাকে ঐ তরঙ্গের তীব্রতা বলে। একে মাধ্যমের শক্তি প্রবাহও বলে।

তরংগ "গানিতিক সমস্যাবলী"

[বি:দ্র: একই মাধ্যমে সকল (কম্পাঙ্ক ও তরঙ্গদৈর্ঘ্যের) ধরনের শব্দের বেগ সমান। একই উৎস থেকে নির্গত শব্দের কম্পাঙ্ক বিভিন্ন মাধ্যমে একই থাকবে; তবে বেগ এবং তরঙ্গ দৈর্ঘ্য বিভিন্ন মাধ্যমে বিভিন্ন হবে]

সমস্যা \rightarrow (১): একজন স্বাভাবিক মানুষ নিমুতর যে কম্পাঙ্গের শব্দ শুনতে পায় তার মান $20H_Z$ এবং সর্বাধিক যে কম্পাঙ্গের শব্দ শুনতে পায় তার

 $20000H_Z$ ৷ বাতাসে শব্দের বেগ $332ms^{-1}$ হলে উপরোক্ত শব্দ দ্বয়ের তরঙ্গ দৈর্ঘ্য কত হবে? উ: 16.6m এবং 0.0166m

সমস্যা \rightarrow (২): তরঙ্গস্থিত একটি কণার 10টি পূর্ন কম্পানের সময়ে তরঙ্গ কোন মাধ্যমে 7m দূরত্ব অতিক্রম করে। তরঙ্গ উৎসের কম্পাংক 480 হার্টজহলে ঐ মাধ্যমে তরঙ্গের বেগ কত?

সমস্যা \rightarrow (৩): একটি সুর শলাকা যে সময়ে 200 বার কম্পন দেয় সে সময়ে এটি দ্বারা সৃষ্টি শব্দ তরঙ্গ বাতাসে 140m দূরত্ব অতিক্রম করে। সুর শলাকার কম্পান্ক $500H_Z$ হলে বায়ুতে শব্দের বেগ নির্ণয় কর। উ: 350ms ।

সমস্যা→(8): প্রতি সেকেন্ডে 250 সাইকেল কম্পাঙ্ক বিশিষ্ট একটি সুর শলাকা হতে শব্দ 3 সেকেন্ডে 1020m দূরত্ব অতিক্রম করে। শব্দের তরঙ্গ দৈর্ঘ্য নির্ণয় কর। উ: 1.36m।

সমস্যাightarrow(৫): একটি শব্দ তরঙ্গ বায়ুতে 3মিনিটে 1020 মিটার দূরত্ব অতিক্রম করে। শব্দের তরঙ্গ দৈর্ঘ্য 50cm হলে তরঙ্গের পর্যায়কাল কত? ightarrow উ: $0.09\,S$ ।

[সংকেত: $v=n\lambda$ হতে কম্পাঙ্ক n নির্ণয় কর। অত:পর পর্যায়কাল $T=rac{1}{n}$]

সমস্যা—(৬): বায়ুতে শব্দের বেগ $332ms^{-1}$ । বায়ুতে $664H_Z$ কম্পাঙ্কের একটি সুরেলী কাটার শব্দ কাটাটির 100টি পূর্ণ কম্পনকালে কত দূরত্ব অতিক্রম করবে? [সংকেত: 100টি পূর্ণ কম্পনকালে অতিক্রান্ত দূরত্ব $= 100\lambda$ । $v = n\lambda$ থেকে λ বের কর] উ: 50m ।

সমস্যা \rightarrow (৭): একটি সুর শলাকার কম্পাঙ্ক $384H_Z$ । বাতাসে শব্দের বেগ $332ms^{-1}$ হলে 50টি পূর্ণ কম্পনের সময়ে শব্দ কত দূরত্ব অতিক্রম করবে?

সমস্যা \rightarrow (৮): কোন একটি মাধ্যমে একটি সুর শলাকা হতে উৎপন্ন শব্দের তরঙ্গ দৈর্ঘ্য 3cm । একই মাধ্যমে শব্দের বেগ $330ms^{-1}$ । অপর একটি মাধ্যমে শব্দের বেগ $300ms^{-1}$ হলে এই মাধ্যমে 55টি পূর্ণ কম্পনে শব্দ কত দূর যাবে? উ: 1.5m ।

[সংকেত: $\lambda_1=3cm=.03m,\ v_1=330ms^{-1},\ v_2=300ms^{-1};$ উভয় মাধ্যমে কম্পাঙ্ক =n ধর; দ্বিতীয় মাধ্যমে তরঙ্গ দৈর্ঘ্য λ_2 নির্ণয় কর। অতপর অতিক্রান্ত দূরত্ব $=55\lambda_2$]

সমস্যাightarrow(৯):=কোন মাধ্যমে 480Hz এবং 320Hz কম্পাঙ্গের দুটি শব্দের তরঙ্গ দৈর্ঘ্যের পার্থক্য 2m হলে মাধ্যমে শব্দের বেগ কত হবে।? উ: $1920ms^{-1}$ । এখানে, $n_1=480Hz$, $n_2=320Hz$, যেহেতু $n_1>n_2$ অতএব, $\lambda_2>\lambda_1$ । অতএব, $\lambda_2-\lambda_1=2$ বা, $\lambda_2=\lambda_1+2$ । উভয় কম্পাঙ্গের

শব্দের বেগ =v হলে পাই $v=n_1\lambda_1$(1) এবং $v=n_2\lambda_2$(2) $\therefore n_1\lambda_1=n_2\lambda_2$ বা, $n_1\lambda_1=n_2(\lambda_1+2)$ $\therefore \frac{n_1}{n_2}=\frac{\lambda_1+2}{\lambda_1}$

এখানে থেকে পাওয়া যায় $\lambda_{_{\! 1}}=4m$ । এখন, $v=n_{_{\! 1}}\lambda_{_{\! 1}}$ ব্যবহার কর]

সমস্যা—>(১০): বায়ু ও পানিতে $300H_Z$ কম্পাঙ্গের একটি শব্দের তরঙ্গ দৈর্ঘ্যের পার্থক্য 4.16m । বায়ুতে শব্দের বেগ $352ms^{-1}$ হলে পানিতে শব্দের বেগ নির্ণয় কর।

সিংকেতঃ এখানে, উভয় মাধ্যমে শব্দের কম্পাঙ্ক $n=300H_Z$, বায়ুতে শব্দের বেগ, $v_a=352ms^{-1}$, পানিতে শব্দের বেগ $v_\omega=?$ ধরি, বায়ু ও পানিতে শব্দের তরঙ্গ দৈর্ঘ্য যথাক্রমে λ_a ও λ_ω । যেহেতু কম্পাঙ্ক একই এবং $V_\omega>V_a$ $\therefore \lambda_\omega>\lambda_a$ । অতএব,

$$\lambda_{\omega}-V_{a}=4.16m$$
.....(1) এখন, $v_{a}=n\lambda_{a}$ \therefore $\lambda_{a}=\frac{v_{a}}{n}=\frac{352}{300}$ এবং $V_{\omega}=n\lambda_{\omega}$ \therefore $\lambda_{\omega}=\frac{v_{\omega}}{n}=\frac{v_{\omega}}{300}$ । এখন

 λ_a ও λ_ω এর মান (1) এ বসাই]

[সংকেত: ধরি, A ও B মাধ্যমে শব্দের বেগ যথাক্রেমে v_A ও v_B | $\therefore v_A=5v_B$ | এখন যদি শব্দের তরঙ্গ দৈর্ঘ্য λ_A ও λ_B হর] তাহলে $\lambda_A>\lambda_B$ হবে (যেহেত $\lambda_A>\lambda_B$) | শর্তানুযায়ী, $\lambda_A-\lambda_B=4m$ \therefore $\lambda_A=\lambda_B+4$ | এখানে, $V_B=380ms^{-1}$, শব্দের কম্পাঙ্ক, n=? এখন,

 $v_A=n$ λ_A বা, $5v_B=n(\lambda_B+4)$(1) এবং $v_B=n\lambda_B$(2) । $(1)\div(2)$ করিলে λ_B এর মান পাওয়া যাবে । λ_B এর মান (2) এ বসাও]

সমস্যা \rightarrow (১২): A মাধ্যমে শব্দের বেগ B মাধ্যমে বেগের চেয়ে 5 গুন বেশি। B মাধ্যমে একটি শব্দ উৎসের তরঙ্গ দৈর্ঘ্য 10cm হলে A মাধ্যমে উৎসের 100 বার কম্পনে শব্দ কতদুর যাবে?

[সংকেত: $v_A=5v_B$, $\lambda_B=10cm=0.1m$, A মাধ্যমে100 বার কম্পনে অতিক্রান্ত দূরত্ব $=100\lambda_A$ । শব্দের কম্পাঙ্ক= n হলে,

 $v_A=n\lambda_A.....(1)$ এবং $v_B=n\lambda_B....(2)+(1)\div(2)$ করে λ_A বের কর]

সমস্যা \rightarrow (১৩): দুটি সুর শলাকার কম্পাঙ্ক যথাক্রমে $128H_Z$ ও $384H_Z$ । সুরেলী কাটা দুটি হতে নি:সৃত শব্দের তরঙ্গ দৈর্ঘ্যের অনুপাত নির্ণয় কর । উ:3:1 । সিংকেত: এখানে, $n_1=128H_Z$, $n_2=384H_Z$, $\lambda_1:\lambda_2=?$ শব্দের বেগ =v হলে পাই, $v=n_1\lambda_1$(1) এবং

 $v=n_2\lambda_2$(2) । এখন (1) ও (2) হতে পাই $n_1\lambda_1=n_2\lambda_2$]

সমস্যা→(১৪): তিনটি সুর শলাকার কম্পাঙ্ক যথাক্রমে 123, 369 ও 615 সাইকেল/সে.। এরা বায়ুতে যে তরঙ্গ সৃষ্টি করে তাদের তরঙ্গ দৈর্ঘ্যের অনুপাত নির্ণয় কর। উ: 15:5:3।

[সংকেত: $v=n_1\lambda_1$(1), $v=n_2\lambda_2$(2) এবং $v=n_3\lambda_3$(3) এখন (1) ও (2) এবং (1) ও (3) নং সমীকরণ তুলনা করলে পাই, $\lambda_1:\lambda_2=3:1$(4) এবং $\lambda_1:\lambda_3=5:1$(5) এখন (4) কে 5 দ্বারা এবং (5) নং সমীকরণকে 3 দ্বারা গুন কর]

সমস্যা \rightarrow (১৫): একটি সুর শলাকা কর্তৃক বাতাসে সৃষ্ট তরঙ্গ দৈর্ঘ্য 100.6cm এবং হাইড্রোজেনে সৃষ্ট তরঙ্গ দৈর্ঘ্য 382.4cm । বাতাসে শব্দের বেগ $332ms^{-1}$ হলে হাইড্রোজেনে শব্দের বেগ কত?

[সংকেত: $v_a = n\lambda_a$(1) $v_H = n\lambda_H$(2) এখন (1) ÷ (2) কর]

সমস্যা \rightarrow (১৬): দুটি সুর শলাকার কম্পাঙ্কের পার্থক্য $118H_Z$ । বাতাসে শলাকা দুটি যে তরঙ্গ উৎপন্ন করে তাদের একটির দু'টি পূর্ণ তরঙ্গ দৈর্ঘ্য অপরটির তিনটি পূর্ণ তরঙ্গ দৈর্ঘ্যের সমান । শলাকা দুটির কম্পাঙ্ক বের কর । উ: $354H_Z$ ও $236H_Z$ ।

[সংকেত: ধরি শলাকা দুটির কম্পাঙ্ক যথাক্রমে n_1 ও n_2 এবং $n_1>n_2$ । তাহলে $\lambda_2>\lambda_1$ হবে । এখানে, $n_1-n_2=118$ $\therefore n_1=n_2+118$; আবার

 $2\lambda_2=3\lambda_1$:. $\lambda_1=rac{2}{3}\,\lambda_2$,শব্দের বেগ $\,v\,$ হলে, $\,v=n_1\lambda_1\,$ এবং $\,v=n_2\lambda_2\,;$ অতএব, $\,n_1\lambda_1=n_2\lambda_2\,;$ এখন $\,n_1\,$ ও $\,\lambda_1\,$ এর মান বসাও]

সমস্যা \rightarrow (১৭): P ও Q মাধ্যমে শব্দের বেগ যথাক্রমে $300ms^{-1}$ এবং $350ms^{-1}$ । মাধ্যম দুটিতে শব্দের তরঙ্গ দৈর্ঘ্যের পার্থক্য 0.1m হলে সুর শলাকার 50টি পূর্ণ কম্পনে শব্দ Q মাধ্যমে কতদুর যাবে?

[সংকেত: এখানে, $V_p=300ms^{-1}$, $V_Q=350ms^{-1}$; যেহেছু $v_Q>v_P$ যেহেছু $\lambda_Q>\lambda_P$; অতএব, $\lambda_Q-\lambda_P=0.1m......(1)$ যেহেছু উৎস একটি মাত্র সুর শলাকা অতএব, উভয় মাধ্যমে কম্পাংক একই হবে। ধরি কম্পঙ্ক = $n+\therefore v_P=n\lambda_P$ এবং $v_Q=n\lambda_Q$

 $\therefore v_Q - v_P = n(\lambda_Q - \lambda_P)$ বা $350 - 300 = n \times 0.1$ $\therefore n = 500 Hz$ । এখন $v_Q = n\lambda_Q$ থেকে λ_Q বের কর । তাহলে Q মাধ্যমে 50টি কম্পনে দূরত্ব $= 50\lambda_Q$ ।

সমস্যা \rightarrow (১৮): কোন একটি সীমাবদ্ধ মাধ্যমে সৃষ্ট স্থির তরঙ্গের কম্পাঙ্ক $480H_Z$ । তরঙ্গস্থিত দুটি পরপর নিস্পন্দ বিন্দুর দূরত্ব 0.346m । মাধ্যমে তরঙ্গের বেগ নির্ণয় কর । উ: $332.2ms^{-1}$ ।

সমস্যা→(১৯): তরঙ্গস্থিত 0.297m ব্যবধানে অবস্থিত দুটি কণার মধ্যে দশা পার্থক্য 1.57 r adian । তরঙ্গ উৎসের কম্পাঙ্ক 280Hz হলে মাধ্যমে শব্দের বেগ কত? উ: 332.64m ।

[সংকেত: পথ পার্থক্য x=0.297m, দশা পার্থক্য=1.57~rad, কম্পাঙ্ক $280H_Z$, শব্দের বেগ, v=?ধরি তরঙ্গ দৈর্ঘ্য $=\lambda$, $\therefore v=n\lambda$ বা, $v=280\lambda$(1) এখন আমরা জানি, দশা পার্থক্য $=\frac{2\pi}{\lambda}$ \times পথ পার্থক্য। এখান থেকে λ এর মান বের কর। এরপর λ এর মান সমীকরণ (1) এ বসাও।

সমস্যা→(২০): কোন একটি শব্দ তরঙ্গের তরঙ্গ দৈর্ঘ্য 0.65m। এই তরঙ্গের উপর অবস্থিত দুটি কণার মধ্যে দশা পার্থক্য $3.14\,r\,ad$ হলে উক্ত কণাদ্বয়ের মধ্যে পথ পার্থক্য নির্ণয় কর। উ: 0.325m।

সমস্যা \rightarrow (২১): কোন একটি তরঙ্গের তরংগ দৈর্ঘ্য 0.65m। এই তরঙ্গের উপর অবস্থিত দুটি কণার মধ্যে পথ পার্থক্য 0.325m হলে উহাদের দশা পার্থক্য নির্ণয় কর।

সমস্যা \rightarrow (২২): বাতাসে একটি সুর শলাকার দ্বারা সৃষ্ট শব্দ তরঙ্গের দৈর্ঘ্য 50cm এবং অন্য একটি সুর শলাকার সৃষ্ট শব্দ তরঙ্গের দৈর্ঘ্য 70cm । প্রথম সুর শলাকার কম্পাঙ্ক $350H_Z$ হলে দ্বিতীয়টির কম্পাঙ্ক কত? উ: $250H_Z$ ।

[সংকেত: এখানে , $\lambda_1=50cm=.5m$, $\lambda_2=70cm=.7m$, $n_1=350Hz$, $n_2=?$ শব্দের বেগ =v হলে পাই, $v=n_1\lambda_1$ এবং $v=n_2\lambda_2$ $\therefore n_1\lambda_1=n_2\lambda_2$]

সমস্যা \rightarrow (২৩): একটি অগ্রগামী তরঙ্গের সমীকরণ, $Y = 5\sin(200\pi t - 1.57x)$, এখানে সকল রাশি এস.আই.এককে প্রদন্ত। তরঙ্গটির বিস্তার, কম্পাঙ্ক, বেগ, তরঙ্গদৈর্ঘ্য ও পর্যায়কাল নির্ণয় কর।

দেওয়া আছে, অগ্রগামী তরঙ্গের সমীকরণ, $Y = 5\sin(200\pi t - 1.57x)$(1) আমরা জানি অগ্রগামী তরঙ্গের প্রমাণ সমীকরণ,

$$Y = A\sin\frac{2\pi}{\lambda} (vt - x)$$

বা, $Y = A \sin(\frac{2\pi v}{\lambda}t - \frac{2\pi}{\lambda}x)$(2) এখন সমীকরণ (1) ও (2) তুলনা করে পাই, বিস্তার,

$$A=5m(Ans)$$
, $\frac{2\pi v}{\lambda}=200\pi$ বা, $\frac{2v}{\lambda}=200$ বা, $\frac{2n\lambda}{\lambda}=200$: $2n=200$ বা, কম্পান্ধ $n=100Hz(Ans)$

আবার,
$$\frac{2\pi}{\lambda} = 1.57$$
 বা, $\lambda = \frac{2\pi}{1.57} = \frac{2\times3.14}{1.57} = 4m(Ans)$ । বেগ, $v = n\lambda = 100\times4 = 400ms^{-1}(Ans)$

পর্যায়কাল,
$$T = \frac{1}{n} = \frac{1}{100} = 0.01 \operatorname{sec.}(Ans)$$

সমস্যা \rightarrow (২8): একটি অগ্রগামী তরঙ্গের সমীকরণ $y=1.15\sin(2000t+0.01x)$ যেখানে সবকটি রাশি এস.আই.এককে প্রকাশিত। তরঙ্গের বিস্তার, তরঙ্গ দৈর্ঘ্য, কম্পাঙ্ক ও তরঙ্গবেগ নির্ণয় কর। উ: $A=1.15m,~\lambda=628m,~n=318.5Hz,~v=200000ms^{-1}$ ।

সমস্যা \rightarrow (২৫): একটি তারের উপর উৎপন্ন একটি অগ্রগামী তরঙ্গের সমীকরণ $y=0.8\sin 2\pi (\frac{t}{0.3}-\frac{x}{30})$ । এক্ষেত্রে x ও y সেন্টিমিটারে এবং t কে সেকেন্ডে প্রকাশ করা হয়েছে । তরঙ্গটির বিস্তার, তরঙ্গ দৈর্ঘ্য ও বেগ নির্ণয় কর ।

[এক্ষেত্রে প্রদত্ত তরঙ্গকে প্রমাণ তরঙ্গের রূপে রূপান্তর কর]

সমস্যা \rightarrow (২৬): $y=0.9\sin\pi\left(\frac{x}{15}+\frac{2t}{0.3}\right)$ একটি অগ্রগামী তরঙ্গের সাধারণ সমীকরণ। এখানে xও y সেন্টিমিটার এ প্রকাশিত হলে তরঙ্গটির

কৌণিক কম্পাঙ্ক, তরঙ্গদৈর্ঘ্য পর্যায়কাল ও বেগ নির্ণয় কর । উ: $\omega=0.209~rad~s^{-1}$, $\lambda=30cm$, T=0.1s, $v=300cm~s^{-1}$ ।

[সংকেত: প্রদান্ত তরঙ্গকে $y=0.9\sin\left(\frac{2\pi}{0.3}+\frac{\pi}{15}x\right)$ রূপে ও প্রমাণ তরঙ্গকে $y=A\sin\left(\frac{2\pi v}{\lambda}t+\frac{2\pi}{\lambda}x\right)$ রূপে রূপান্তরিত করে তুলনা কর]

সমস্যা→(২৭): $y = 5\sin\frac{\pi x}{3}\cos 40\pi$ সমীকরনটি একটি টানা তারে সৃষ্ট স্থির তরঙ্গকে বুঝাচ্ছে। সবকটি রাশির একক সি.জি.এস-এ প্রকাশিত। যে দুটি তরঙ্গের উপরি পাতের ফলে এরূপ তরঙ্গের সৃষ্টি হয়েছে তাদের বিস্তার তরঙ্গদৈর্ঘ্য ও বেগ নির্ণয় কর।

উ: A = 2.5cm, $\lambda = 6cm$, $v = 120cms^{-1}$

সিংকেত: $2\sin A\cos B = \sin(A+B) + \sin(A-B)$ সূত্রাসুসারে প্রদত্ত সমীকরণ কে বিশ্লেষণ করে দুটি অগ্রগামী তরঙ্গ y_1 ও y_2 তে বিভক্ত কর। এরপর প্রমাণ রূপের সাথে যে কোনটি কে তুলনা কর।]