L3 A, M363, contrôle 1 10 Mars 2015

Exercice 1 Soient (X, A), (Y, B) deux espaces mesurables et f une application de X vers Y.

1. Montrer que la famille :

$$\mathcal{C} = \left\{ B \in \mathcal{B} \mid f^{-1}(B) \in \mathcal{A} \right\}$$

est une σ -algèbre.

2. On suppose que \mathcal{B} est engendrée par une famille \mathcal{F} de parties de Y ($\mathcal{B} = \sigma(\mathcal{F})$). Montrer que f est mesurable si, et seulement si, $f^{-1}(F) \in \mathcal{A}$ pour tout $F \in \mathcal{F}$.

Exercice 2 Soit $f : \mathbb{R} \to \mathbb{R}$ une application continue et bijective, \mathbb{R} étant muni de la tribu de Borel $\mathcal{B}(\mathbb{R})$.

1. Montrer que la famille :

$$\mathcal{A} = \{ A \in \mathcal{P} (\mathbb{R}) \mid f (A) \in \mathcal{B} (\mathbb{R}) \}$$

est une σ -algèbre qui contient tous les intervalles fermés bornés.

2. Montrer que l'image par f de tout borélien de \mathbb{R} est un borélien.

Exercice 3 Soient (X, A) un espace mesurable et $(\mu_n)_{n \in \mathbb{N}}$ une famille de mesures sur X telle que pour tout $A \in A$, la suite $(\mu_n(A))_{n \in \mathbb{N}}$ est croissante.

- 1. Montrer que, pour tout $A \in \mathcal{A}$, la suite $(\mu_n(A))_{n \in \mathbb{N}}$ converge vers un élément $\mu(A)$ de $\mathbb{R}^+ \cup \{+\infty\}$.
- 2. Montrer que l'application :

$$\mu: A \to \mathbb{R}^+ \cup \{+\infty\}$$

 $A \mapsto \lim_{n \to \infty} \mu_n(A)$

définit une mesure sur X.

Exercice 4 (X, \mathcal{A}, μ) est un espace mesuré avec $\mu \neq 0$ et \mathbb{R} est muni de la tribu de Borel.

- 1. Montrer que si f est une fonction mesurable de X dans \mathbb{R} , la fonction |f| est alors mesurable.
- 2. En supposant qu'il existe des parties non mesurables dans X, donner un exemple de fonction $f: X \to \mathbb{R}$ non mesurable telle que |f| soit mesurable.
- 3. En supposant qu'il existe des parties non mesurables dans X, donner un exemple de fonctions $f: X \to \mathbb{R}$ et $g: X \to \mathbb{R}$ non mesurables telles que f+g et fg soient mesurables.
- 4. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de X dans \mathbb{R} . On dit que $(f_n)_{n\in\mathbb{N}}$ converge en mesure vers une fonction mesurable $f:X\to\mathbb{R}$ si:

$$\forall \varepsilon > 0, \lim_{n \to +\infty} \mu \left\{ x \in X \mid |f_n(x) - f(x)| > \varepsilon \right\} = 0$$

On suppose que $(f_n)_{n\in\mathbb{N}}$ converge en mesure vers les fonctions mesurables $f:X\to\mathbb{R}$ et $g:X\to\mathbb{R}$.

(a) Montrer que :

$$\forall \varepsilon > 0, \; \mu \left\{ x \in X \mid \left| f \left(x \right) - g \left(x \right) \right| > \varepsilon \right\} = 0$$

(b) Montrer que f = g presque partout.

Exercice 5 Soient (X, \mathcal{A}, μ) un espace mesuré, la mesure μ étant finie, et f une fonction mesurable de X dans \mathbb{R}^+ (\mathbb{R} étant muni de la tribu de Borel).

On définit la suite $(A_n)_{n\in\mathbb{N}}$ de parties mesurables de X par :

$$\forall n \in \mathbb{N}, \ A_n = f^{-1}\left([n, +\infty[\right)]\right)$$

et g est la fonction définie sur X par :

$$g = \sum_{n=1}^{+\infty} \mathbf{1}_{A_n}$$

- 1. Montrer que g est la partie entière de f.
- 2. Montrer que f est intégrable si, et seulement si, la série $\sum_{n>1} \mu\left(A_n\right)$ est convergente.

Exercice 6 Soient a, b deux réels strictement positifs et f la fonction définie sur $\mathbb{R}^{+,*}$ par :

$$\forall x \in \mathbb{R}^{+,*}, \ f(x) = \frac{xe^{-ax}}{1 - e^{-bx}}$$

Montrer que :

$$\int_{\mathbb{R}^{+,*}} f(x) dx = \sum_{n=0}^{+\infty} \frac{1}{(a+nb)^2}$$

Exercice 7

1. Soit $(u_{n,k})_{(n,k)\in\mathbb{N}^2}$ une suite double de nombres complexes telle que :

$$\forall k \in \mathbb{N}, \ \lim_{n \to +\infty} u_{n,k} = \ell_k \in \mathbb{C}$$

On suppose qu'il existe une suite $(\alpha_k)_{k\in\mathbb{N}}$ de réels positifs telle que la série $\sum \alpha_k$ soit convergente et :

$$\forall n \in \mathbb{N}, \ |u_{n,k}| \le \alpha_k$$

Montrer que:

$$\lim_{n \to +\infty} \sum_{k=0}^{+\infty} u_{n,k} = \sum_{k=0}^{+\infty} \ell_k$$

2. Soit $(a_k)_{k\in\mathbb{N}}$ une suite réelle telle que la série $\sum a_k$ soit absolument convergente et $(b_k)_{k\in\mathbb{N}}$ une suite réelle bornée.

Calculer:

$$\lim_{n \to +\infty} \sum_{k=0}^{+\infty} a_k \left(1 + \frac{b_k}{n} \right)^n$$