Teoría de Galois

Hoja 2. Extensiones de cuerpos.

Escribiremos E/K para denotar que E es una extensión del cuerpo K. El grado |E:K| de la extensión E/K es la dimensión de E como K-espacio vectorial. Si $a \in E$ es algebraico sobre K, denotaremos por $Irr(K,a) \in K[x]$ al polinomio mínimo (o irreducible) de a sobre K.

- 1. Demuestra la igualdad $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$, y halla un polinomio irreducible de $\mathbb{Q}[x]$ de grado 4 que tenga una raíz en $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- **2.** Calcula el polinomio mínimo de $\alpha = \sqrt[3]{9} + \sqrt[3]{3} 1$ sobre \mathbb{Q} .
- **3.** Estudia cuáles de los siguientes subcuerpos de $\mathbb C$ coinciden: $\mathbb Q(i,\sqrt{2}), \mathbb Q(\sqrt{-2}), \mathbb Q(\sqrt{2}+i), \mathbb Q\left(\sqrt{2},\sqrt{1+\sqrt{2}}\right)$ y $\mathbb Q\left(\sqrt{1+\sqrt{2}}\right)$.
- 4. Halla el grado y una base de las siguientes extensiones de cuerpos.
 - $\begin{array}{cccc} (i) & \mathbb{Q}(\sqrt[6]{3})/\mathbb{Q} & (ii) & \mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q} & (iii) & \mathbb{Q}(\sqrt{2},\sqrt{3},i)/\mathbb{Q} \\ (iv) & \mathbb{Q}(\sqrt{2}i)/\mathbb{Q} & (v) & \mathbb{Q}(\sqrt[5]{2},\sqrt[3]{7})/\mathbb{Q}(\sqrt[5]{2}) & (vi) & \mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2}) \\ (vii) & \mathbb{Q}(\sqrt{1+\sqrt{3}})/\mathbb{Q} & (viii) & \mathbb{Q}(e^{2\pi i/5})/\mathbb{Q} & (ix) & \mathbb{R}(\sqrt[4]{-3})/\mathbb{R}. \end{array}$
- **5.** Halla el grado y una base de la extensión $\mathbb{F}_7(t)/\mathbb{F}_7(t^2)$. Calcula t^{-1} y $(t+1)^{-1}$ como combinación lineal de los elementos de la base que has encontrado.
- 6. Considera las siguientes cuestiones sobre las raíces de la unidad:
 - a) Sea p un número primo y sea $1 \neq \xi \in \mathbb{C}$ tal que $\xi^p = 1$. Demuestra que $|\mathbb{Q}(\xi): \mathbb{Q}| = p 1$.
- b) Sea $\omega = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} = e^{\frac{\pi}{6}i}$. Observa que $\omega^{12} = 1$ pero que $\omega^r \neq 1$ si $1 \leq r < 12$. Demuestra que $|\mathbb{Q}(\omega): \mathbb{Q}| = 4$ y calcula el polinomio mínimo de ω sobre \mathbb{Q} .
- c) Sea p2 un número primo, si p > 2 calcula el grado del polinomio mínimo de $\cos \frac{2\pi}{p}$ sobre \mathbb{Q} . Deduce que $\cos \frac{2\pi}{p} \in \mathbb{Q}$ si, y solo si, $p \in \{2,3\}$.
- 7. Dada E/K una extensión, prueba que el conjunto de elementos de E que son algebraicos sobre K forma un subcuerpo de E. Si $\mathbb A$ es el conjunto de elementos de $\mathbb C$ que son algebraicos sobre $\mathbb Q$, prueba que $\mathbb A/\mathbb Q$ es una extensión de grado infinito.

Sugerencia: para la segunda parte, usa el criterio de Einsestein.

- 8. Sea E/K una extensión de cuerpos y $\alpha \in E$. Prueba que $K[\alpha]$ es un cuerpo si, y solo si, $K(\alpha)/K$ es una extensión algebraica.
- **9.** Considera E/K una extensión de cuerpos y un polinomio $p(x) = a_0 + a_1x + \cdots + a_nx^n \in E[x]$ de modo que los coeficientes a_i de p son algebraicos sobre K. Demuestra que si $u \in E$ es una raíz de p, entonces u es algebraico sobre K.

Sugerencia: considera el subcuerpo $L = K(a_0, \ldots, a_n) \subseteq E$.

10. Sea E/K una extensión y $\alpha \in E$ algebraico sobre K. Si L es un cuerpo intermedio, demuestra que el polinomio mínimo de α sobre L divide al polinomio mínimo de α sobre K. Concluye que $|L(\alpha):L| \leq |K(\alpha):K|$.

- 11. Considera una extensión de cuerpos E/K.
- a) Demuestra que si es una extensión de grado primo, entonces los únicos subcuerpos intermedios $K \subseteq L \subseteq E$ son L = K y L = E.
 - b) Demuestra que una extensión de grado primo es simple.
- c) Suponiendo que el polinomio mínimo de un elemento α sobre un cuerpo K es $x^3 + x 1$, halla el polinomio mínimo de α^2 sobre K.
 - d) Si $\alpha \in E$ es tal que $K(\alpha)/K$ es una extensión de grado impar, calcula $K(\alpha^2)/K$.
- e) Si L_1 y L_2 son cuerpos intermedios tales que L_1/K y L_2/K son extensiones finitas de grados primos entre sí, demuestra que $L_1 \cap L_2 = K$.
- **12.** Sea E/K una extensión y sean $a, b \in E$ algebraicos sobre K con |K(a):K| = n y |K(b):K| = m.
 - a) Prueba que $|K(a,b):K(b)| \leq n$.
- **b)** Si n y m son coprimos, prueba que $K(a) \cap K(b) = K$ y |K(a,b) : K| = nm. Deduce que Irr(K,a) = Irr(K(b),a).
 - c) Calcula $Irr(\mathbb{Q}, a)$ donde $a = \sqrt{3} + \sqrt[3]{2}$.
- **13.** Sea $K = \mathbb{F}_2[x]/(x^2 + x + 1)$.
 - a) Demuestra que K es un cuerpo con cuatro elementos, y escribe la tabla del producto de K.
 - b) Determina todos los automorfismos de K.
 - c) Demuestra que cualquier otro cuerpo con 4 elementos es isomorfo a K.
- **14.** Considera E/K una extensión de cuerpos, y sean $\alpha_1, \ldots, \alpha_n$ elementos de E. Sea $\sigma: E \to L$ un isomorfismo de cuerpos. Prueba la igualdad:

$$\sigma(K(\alpha_1,\ldots,\alpha_n)) = \sigma(K)(\sigma(\alpha_1),\ldots,\sigma(\alpha_n)).$$

15. Supongamos que E_1/K_1 es una extensión finita y que E_2/K_2 es otra extensión tal que existe un isomorfismo de cuerpos

$$\sigma: E_1 \to E_2$$
.

Demuestra que si $\sigma(K_1) = K_2$, entonces $|E_1 : K_1| = |E_2 : K_2|$.

- 16. Decide justificadamente si cada una de las siguientes afirmaciones es verdadera o falsa:
- a) Sea E/K una extensión finita y $p(x) \in K[x]$ irreducible. Si el grado de p y el grado de E/K son coprimos, entonces p no tiene raíces en E.
- b) Sea E/K una extensión finita y $p \in K[x]$ un polinomio irreducible. Si p tiene una raíz en E, entonces el grado de p es igual a |E:K|.
- c) Sea E/K una extensión finita y $p \in K[x]$ un polinomio irreducible. Si p tiene una raíz en E, entonces el grado de p divide a |E:K|.
- d) Sea E/K una extensión y supongamos que $\alpha, \beta \in E$ son algebraicos sobre K. Si existe un isomorfismo de cuerpos $\theta \colon K(\alpha) \to K(\beta)$ tal que $\theta(\alpha) = \beta$ y $\theta(k) = k$ para todo $k \in K$, entonces existe un polinomio irreducible $p(x) \in K[x]$ tal que $p(\alpha) = p(\beta) = 0$.
- e) Sea E/K una extensión y supongamos que $\alpha, \beta \in E$ son algebraicos sobre K. Si existe un isomorfismo de cuerpos $\theta \colon K(\alpha) \to K(\beta)$ tal que $\theta(\alpha) = \beta$, entonces existe un polinomio irreducible $p(x) \in K[x]$ tal que $p(\alpha) = p(\beta) = 0$.