# 编译原理

第四章 语法分析——自上而下分析

### 第四章 语法分析一自上而下分析

- ■语法分析器的功能
- ■自上而下分析面临的问题
- LL(1) 分析法
- ■递归下降分析程序构造
- ■预测分析程序

### 第四章 语法分析一自上而下分析

- ■语法分析器的功能
- ■自上而下分析面临的问题
- LL(1) 分析法
  - □消除文法的左递归
  - □克服回溯
- ■递归下降分析程序构造
- ■预测分析程序

### 4.3.2 消除回溯、提左因子

- ■为了消除回溯必须保证
  - □对文法的任何非终结符,当要它去匹配输入串时,能够根据它所面临的输入符号准确地指派它的一个候选去执行任务,并且此候选的工作结果应是确信无疑的。
- $\blacksquare A \rightarrow \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$



如何做到

■ 令 G 是一个不含左递归的文法,对 G 的 所有非终结符的每个候选 $\alpha$ 定义它的终结 首符集  $FIRST(\alpha)$  为:

$$FIRST(\alpha) = \{a \mid \alpha \Rightarrow a..., a \in V_T\}$$

特别是, 若  $\alpha \Rightarrow \varepsilon$ , 则规定ε∈ FIRST( $\alpha$ )。

■如果非终结符 A 的所有候选首符集两两不相交,即 A 的任何两个不同候选 $\alpha_i$ 和 $\alpha_i$ 

$$\mathsf{FIRST}(\alpha_{\mathsf{i}}) \cap \mathsf{FIRST}(\alpha_{\mathsf{j}}) = \emptyset$$

当要求 A 匹配输入串时, A 就能根据它所面临的第一个输入符号 α , 准确地指派某一个候选前去执行任务。这个候选就是那个终结首符集含α 的α。

M

■提取公共左因子

假定关于A的规则是

那么,可以把这些规则改写成

$$A \rightarrow \delta A' \mid \gamma_1 \mid \gamma_2 \mid \cdots \mid \gamma_m$$
  
 $A' \rightarrow \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$ 

■ 经过反复提取左因子,就能够把每个非终结符(包括新引进者)的所有候选首符集变成为两两不相交

### 4.3.3 LL(1)分析条件

- E→TE' E'→+TE' | ε T→FT' T'→\*FT' | ε F→(E) | i
- i + i

■G(E):  

$$E \rightarrow TE'$$
  
 $E' \rightarrow +TE' \mid \epsilon$   
 $T \rightarrow FT'$   
 $T' \rightarrow *FT' \mid \epsilon$   
 $F \rightarrow (E) \mid i$ 



■G(E):  

$$E \rightarrow TE'$$
  
 $E' \rightarrow +TE' \mid \epsilon$   
 $T \rightarrow FT'$   
 $T' \rightarrow *FT' \mid \epsilon$   
 $F \rightarrow (E) \mid i$ 



■G(E):  

$$E \rightarrow TE'$$
  
 $E' \rightarrow +TE' \mid \epsilon$   
 $T \rightarrow FT'$   
 $T' \rightarrow *FT' \mid \epsilon$   
 $F \rightarrow (F) \mid i$ 

IP

i + i #





i + i #





i + i #



■G(E):  

$$E \rightarrow TE'$$
  
 $E' \rightarrow +TE' \mid \epsilon$   
 $T \rightarrow FT'$   
 $T' \rightarrow *FT' \mid \epsilon$   
 $F \rightarrow (E) \mid i$ 



■G(E):  

$$E \rightarrow TE'$$
  
 $E' \rightarrow +TE' \mid ε$   
 $T \rightarrow FT'$   
 $T' \rightarrow *FT' \mid ε$   
 $F \rightarrow (F) \mid i$ 



■G(E):  $E \rightarrow TE'$   $E' \rightarrow +TE' \mid \epsilon$   $T \rightarrow FT'$   $T' \rightarrow *FT' \mid \epsilon$  $E \rightarrow FT' \mid \epsilon$ 



■G(E):  $E \rightarrow TE'$   $E' \rightarrow +TE' \mid \epsilon$   $T \rightarrow FT'$   $T' \rightarrow *FT' \mid \epsilon$  $F \rightarrow (F) \mid i$ 











■G(E):  

$$E \rightarrow TE'$$
  
 $E' \rightarrow +TE' \mid ε$   
 $T \rightarrow FT'$   
 $T' \rightarrow *FT' \mid ε$   
 $E \rightarrow (E) \mid i$ 



■G(E):  

$$E \rightarrow TE'$$
  
 $E' \rightarrow +TE' \mid \epsilon$   
 $T \rightarrow FT'$   
 $T' \rightarrow *FT' \mid \epsilon$   
 $F \rightarrow (F) \mid i$ 



■G(E):  

$$E \rightarrow TE'$$
  
 $E' \rightarrow +TE' \mid \epsilon$   
 $T \rightarrow FT'$   
 $T' \rightarrow *FT' \mid \epsilon$   
 $F \rightarrow (E) \mid i$ 

4.3.3 LL(1) 分析条件

特别是,若 $S \rightarrow \cdots A$ ,则规定 #  $\in$  FOLLOW(A)

### 构造不带回溯的自上而下分析的文法条件

- 1. 文法不含左递归
- 2. 对于文法中每一个非终结符 A 的各个产生式的候 选首符集两两不相交。即,若

$$A \rightarrow \alpha_1 | \alpha_2 | \cdots | \alpha_n$$

则  $FIRST(\alpha_i) \cap FIRST(\alpha_i) = \phi$   $(i \neq j)$ 

3. 对文法中的第一个 L: 从左到右扫描输入串 首符集包含 第二个 L: 最左推导

1:分析时每一步只需向前查看一个符号

$$i=1,2,...,n$$

如果一个文法 G 满足以上条件,则称该文法 G 为 LL(1) 文法。

### LL(1) 分析法



■ 对于一个满足上述条件的文法,可以对其输入串进行有效的无回溯的自上而下分析。假设要用非终结符 A 进行匹配,面临的输入符号为 a , A 的所有产生式为

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$$

- 1. 若  $\alpha \in FIRST(\alpha_i)$  ,则指派 $\alpha_i$  执行匹配任务;
- 2. 若 a 不属于任何一个候选首符集,则:
  - (1) 若 $\epsilon$ 属于某个 FIRST( $\alpha_i$ ) 且  $\alpha \in FOLLOW(A)$ ,则让 A 与 $\epsilon$ 自动匹配。
  - (2) 否则, a的出现是一种语法错误。

#### ne.

#### 如何构造 FIRST 和 FOLLOW 集合

$$FIRST(\alpha) = \{a \mid \alpha \Longrightarrow a..., a \in V_T\}$$

$$FOLLOW(A) = \{a \mid S \Longrightarrow ...Aa..., a \in V_T\}$$

#### No.

### 构造 FIRST(α)

$$FIRST(\alpha) = \{a \mid \alpha \Rightarrow a..., a \in V_T\}$$

- $\bullet \alpha = X$ ,  $X \in V_T \cup V_N$

#### No.

### 构造 FIRST(α)

$$FIRST(\alpha) = \{a \mid \alpha \Rightarrow a..., a \in V_T\}$$

### 构造每个文法符号的 FIRST 集合

■ 对每一文法符号 X∈V<sub>T</sub>UV<sub>N</sub> 构造 FIRST(X)

连续使用下面的规则,直至每个集合 FIRST 不再增大为止:

- 1. 若 X∈V<sub>T</sub>,则 FIRST(X) = {X}。
- 若 X∈V<sub>N</sub>, 且有产生式 X→α···,则把 α 加入到 FIRST(X) 中; 若 X→ε 也是一条产生式,则把ε也加到 FIRST(X) 中。

### 构造每个文法符号的 FIRST 集合

#### 3.

- 若 X→Y… 是一个产生式且 Y∈V<sub>N</sub>,则把 FIRST(Y) 中的所有非ε 元素都加到 FIRST(X)中;
- 若 X→Y<sub>1</sub>Y<sub>2</sub>···Y<sub>k</sub> 是一个产生式, Y<sub>1</sub>, ···, Y<sub>i-1</sub>
   都是非终结符,
  - 对于任何 j ,  $1 \le j \le i-1$  ,  $FIRST(Y_j)$  都含有ε (即  $Y_1 \cdots Y_{j-1} \Rightarrow *ε$ ) ,则把  $FIRST(Y_i)$  中的所有非ε 元素都加到 FIRST(X) 中
  - 若所有的  $FIRST(Y_j)$  均含有 $\varepsilon$ , j = 1, 2,  $\cdots$ , k, 则把 $\varepsilon$ 加到 FIRST(X) 中。

#### ne.

### 构造 FIRST(α)

$$FIRST(\alpha) = \{ a \mid \alpha \Longrightarrow a..., a \in V_T \}$$

- $\bullet \alpha = X$ ,  $X \in V_T \cup V_N$

#### ne.

#### 构造任何符号串的 FIRST 集合

- 对文法 G 的任何符号串α = X<sub>1</sub>X<sub>2</sub>···X<sub>n</sub> 构
   造集合 FIRST(α)
  - 1. 置  $FIRST(\alpha) = FIRST(X_1) \setminus \{\epsilon\}$ ;
  - 2. 若对任何  $1 \le i \le i 1$  ,  $\epsilon \in FIRST(X_i)$  , 则把  $FIRST(X_i) \setminus \{\epsilon\}$  加至  $FIRST(\alpha)$  中;特别是, 若所有的  $FIRST(X_i)$  均含有 $\epsilon$ ,  $1 \le i \le n$  ,则 把 $\epsilon$ 也加至  $FIRST(\alpha)$  中。显然,若 $\alpha = \epsilon$ 则  $FIRST(\alpha) = \{\epsilon\}$  。



#### 构造 FOLLOW(A)

$$FOLLOW(A) = \{a \mid S \Longrightarrow ...Aa..., a \in V_T\}$$



#### 构造每个非终结符的 FOLLOW 集合

- 对于文法 G 的每个非终结符 A 构造 FOLLOW(A) 的办法是,连续使用下面的规则,直至每个 FOLLOW 不再增大为止:
  - 对于文法的开始符号 S , 置 # 于 FOLLOW(S)中;
  - 2. 若 A→αBβ 是一个产生式,则把 FIRST(β)\{ε} 加至 FOLLOW(B) 中;
  - 若 A→αB 是一个产生式,或 A→αBβ 是一个产生式而β→ ε (即ε∈ FIRST(β)),则把 FOLLOW(A) 加至 FOLLOW(B) 中。



■ 例 4.6 对于文法 G(E)

$$E \rightarrow TE'$$
  
 $E' \rightarrow +TE' \mid \epsilon$   
 $T \rightarrow FT'$   
 $T' \rightarrow *FT' \mid \epsilon$   
 $F \rightarrow (E) \mid i$ 

构造每个非终结符的 FIRST 和 FOLLOW 集合

## 构造每个文法符号的 FIRST 集合

- 对每一文法符号  $X \in V_T \cup V_N$  构造 FIRST(X) 连续使用下面的规则,直至每个集合 FIRST 不再增大为止: 1. 若  $X \in V_T$ ,则 FIRST(X) = {X}。
  - 2. 若 X∈V<sub>N</sub>, 且有产生式 X→a…,则把 a 加入到 FIRST(X)中; 若 X→ε 也是一条产生式,则把ε也加到 FIRST(X)中。
     3.
  - 若 X→Y… 是一个产生式且 Y∈V<sub>N</sub>,则把 FIRST(Y) 中的所有 非ε 元素都加到 FIRST(X) 中;
  - 若 X→Y<sub>1</sub>Y<sub>2</sub>···Y<sub>k</sub> 是一个产生式, Y<sub>1</sub>, ···, Y<sub>i-1</sub> 都是非终结符,
    - 对于任何 j , 1≤j≤i-1 , FIRST(Y<sub>j</sub>) 都含有ε (即 Y<sub>1</sub>···Y<sub>i-1</sub> ⇒\*ε) , 则把 FIRST(Y<sub>i</sub>) 中的所有非ε 元素都加到 FIRST(X) 中
    - 若所有的 FIRST(Y) 均含有 $\epsilon$ .  $i = 1 . 2 . \dots k$  . 则把

#### 构造每个非终结符的 FOLLOW 集合

- ■对于文法 G 的每个非终结符 A 构造 FOLLOW(A) 的办法是,连续使用下面的规则,直至每个 FOLLOW 不再增大为止:
  - 对于文法的开始符号 S , 置 # 于 FOLLOW(S) 中;
  - 2. 若 A→αBβ 是一个产生式,则把 FIRST(β)\{ε} 加至 FOLLOW(B) 中;
  - 若 A→αB 是一个产生式,或 A→αBβ 是一个产生式而β→ ε (即ε∈ FIRST(β)), 则把 FOLLOW(A) 加至 FOLLOW(B) 中。

#### 100

#### ■ 例 4.6 对于文法 G(E)

E→TE'  
E'→+TE' | 
$$\varepsilon$$
  
T→FT'  
T'→\*FT' |  $\varepsilon$   
F→(E) | i

#### 构造每个非终结符的 FIRST 和 FOLLOW 集合

FIRST(E) = 
$$\{(,i)\}$$
 FOLLOW(E) =  $\{(,i)\}$  FIRST(E') =  $\{(,i)\}$  FOLLOW(E') =  $\{(,i)\}$  FOLLOW(T) =  $\{(,i)\}$  FOLLOW(T') =  $\{(,i)\}$  FIRST(T') =  $\{(,i)\}$  FOLLOW(F) =  $\{(,i)\}$ 



### 小结

- ■构造不带回溯的自上而下分析算法
  - □消除文法的左递归
  - □提取左公共因子,克服回溯
- LL(1) 文法的条件
  - □FIRST、FOLLOW 集合