

Overall Process Design

1.PREPROCESSING: Plotting, Optional Transformation, and Splitting for Supervised Learning

2. PROCESSING: Checking for Stationarity and Identifying the trends

2. PROCESSING: Splitting the Dataset into Trend, Seasonal Component, and Residuals

2:PROCESSING(cont.)&3FORECAASTING: Residual Analysis and Forecasting

DB size for Number of Transactions

APPENDIX

1.Initial Plotting of Dataset (after converting to natural logarithmic scale)

- Since the Variation is number of transactions is varying with time, we have applied natural logarithmic transformation to change the variability scale
- Existence of general upward trend

2. Checking for Stationarity of Existing Dataset

```
Results of Dickey-Fuller Test:
Test Statistic
                                -0.425168
p-value
                                 0.905811
#Lags Used
                                 2.000000
Number of Observations Used
                                55.000000
Critical Value (1%)
                                -3.555273
Critical Value (5%)
                                -2.915731
Critical Value (10%)
                                -2.595670
dtype: float64
```

Diagnostics

 We cannot reject the Null Hypothesis of ADF test, hence concluded that Dataset is non stationary

3. Testing a Holt Linear Approximation for forecasting

Diagnostics

Holt linear model provides a reasonable estimate with Mean Squared Error of 221.34

4A. Checking for Trend (Moving average Method)

Results of Dickey-Fuller Test	:
Test Statistic	-9.044735e+00
p-value	5.022276e-15
#Lags Used	1.000000e+00
Number of Observations Used	4.300000e+01
Critical Value (1%)	-3.592504e+00
Critical Value (5%)	-2.931550e+00
Critical Value (10%)	-2.604066e+00
dtype: float64	

- Presence of an upward trend
- Removal of Trend renders the Dataset Stationary (indicative of absence of no seasonal component)

4A. Checking for Trend (Exponential Smoothening)

Results of Dickey-Fuller Test	:
Test Statistic	-6.750889e+00
p-value	2.953126e-09
#Lags Used	1.000000e+00
Number of Observations Used	4.600000e+01
Critical Value (1%)	-3.581258e+00
Critical Value (5%)	-2.926785e+00
Critical Value (10%)	-2.601541e+00
dtype: float64	

- Presence of an upward trend
- Removal of Trend renders the Dataset Stationary (indicative of absence of no seasonal component)

4A. Checking for Trend (Linear Trend)

Results of Dickey-Fuller Test	:
Test Statistic	-8.183560e+00
p-value	8.010773e-13
#Lags Used	1.000000e+00
Number of Observations Used	4.500000e+01
Critical Value (1%)	-3.584829e+00
Critical Value (5%)	-2.928299e+00
Critical Value (10%)	-2.602344e+00
dtype: float64	

- Presence of an upward trend
- Removal of Trend renders the Dataset Stationary (indicative of absence of no seasonal component)
- We can use the linear trend for modelling as this will reduce bias in predicted model compared to the previous two methods

5. Checking for Seasonality (Periodogram Analysis)

- There is no specific Frequency that is largely responsible for the signature of the variation
- Smoothening reveals that there is no significant periodicity

5. Checking for Stationarity of Residuals (Results from TS decomposition)

```
Results of Dickey-Fuller Test:
Test Statistic
                               -3.191501
p-value
                                0.020482
#Lags Used
                                7.000000
Number of Observations Used
                               28.000000
Critical Value (1%)
                            -3.688926
                            -2.971989
Critical Value (5%)
Critical Value (10%)
                               -2.625296
dtype: float64
```

Diagnostics

The results further strengthens the assumption that residuals are stationary

5A. Residual Modelling (AR and MA modelling)

- The plots suggests three possible models
 - ARMA(0,1,1) model
 - MA(1,0,1) model
 - ARMA(1,1,1) model
 - ARMA(0,1,1) model is selected based upon model diagonisitics

5B. Comparison among three models

- ARMA(0,1,1) model can be used for modelling the residuals as it provides the least AIC among all the models
- All models more or less approximates the residuals as Normal Distribution with 0 mean

6. Plotting the predicted Results for Test Set

Diagnostics

The model fairly approximates the test result set.

6. Forecasted Values Set (with 95% confidence interval)

```
Actual
                            LowerBound UpperBound
DateTime
2018-01-31
            572.739130
                            96.366266
                                       310.730319
2018-02-28
                            89.422482
             96.761905
                                       317.674103
            396.909091
2018-03-31
                            82.877606
                                       324.218979
2018-04-30
            338.238095
                            76.669892
                                       330.426693
2018-05-31
            492.478261
                            70.752049
                                       336.344536
2018-06-30
            470.000000
                            65.086903
                                       342.009682
2018-07-31
            296.565217
                            59.644609
                                       347.451976
2018-08-31
            275.130435
                            54.400768
                                       352.695817
2018-09-30
                            49.335135
            491.105263
                                       357.761450
2018-10-31
            704.565217
                            44.430689
                                       362.665896
2018-11-30
                            39.672957
                                       367.423629
2018-12-31
                            35.049510
                                       372.047075
                   NaN
2019-01-31
                            30.549583
                                       376.547002
                   NaN
2019-02-28
                            26.163774
                                       380.932811
                   NaN
2019-03-31
                   NaN
                            21.883818
                                       385.212767
2019-04-30
                            17.702401
                   NaN
                                       389.394184
2019-05-31
                            13.613016
                                       393.483569
                   NaN
2019-06-30
                             9,609841 397,486744
The Root Mean Squared Error of Test Set(2018 Jan to 2018 Oct) is 197.63
```

- All test Values are within 95% confidence interval range barring few extreme observations
- MSE for the model is 197.63 (better than Holt Linear Approximation model)

Current Status

- Time Series Modelling of SCF and IRD type of transactions
- Time Series Modelling of Market Dataset
- Linear Regression between Number of Transactions and DB size (for final volume prediction)

TASK(s)		Status		
Time Series Modelling to forecast number of transactions Market Data Set	Asset Based Transactions	CURR (Currency)	Complete	
		COM(Commodity)	Complete	
		IRD(Interest Rate	In Progress	
		Derivatives)		
	SCF (Simplified CashFlow)	In Progress		
	Market Data	Normal Data Set & Binary	Complete	
	Set	Data Set	Complete	
	Asset Based		Waiting for	
	Transactions		input (
Linear (Multiple) Regression modelling to	& Market		Historical DB	
check for the DB size for individual types of	Related		size)	
transactions	Transactions		31201	

