Modele układów dynamicznych - laboratorium

SIMULINK - wprowadzenie

SIMULINK

Simulink to przybornik (toolbox) pakietu Matlab przeznaczony do symulacji układów dynamicznych w trybie graficznym.

Simulink to interfejs graficzny do:

- konstrukcji schematu badanego modelu dynamiki,
- wyboru i konfiguracji algorytmu obliczeniowego (algorytmu całkowania, tzw. solvera),
- uruchamiania symulacji i rejestrowania wyników,
- uruchamiania innych narzędzi (toolbox'ów), na przykład do projektowania układów regulacji

Schemat badanego układu (modelu)

Budowanie modelu polega na przeciąganiu bloków z bibliotek Simulinka do obszaru roboczego i łączenie ich w jedną stukturę za pomoca połączeń liniowych.

Bloki w obszarze roboczym można:

- wybierać,
- kopiować,
- usuwać,
- obracać o kąt 90 (Ctr-R),
- edytować wybór lub zamiana funkcji, parametrów warunków początkowych, zmiana nazwy, itd...

Badanie układów dynamiki w trybie graficznym

1. Schemat modelu

- konstruowany z bloków dostępnych w bibliotekach Simulinka,
- zapamiętywany w pliku *.mdl,

2. Wartości zmiennych i parametrów modelu

- wprowadzane w blokach Simulinka,
- podawane w postaci:
 - wartości,
 - zmiennych odczytywanych z przestrzeni roboczej Matlaba,
 - wyrażeń matematycznych na wartościach i zmiennych,

3. Sterowanie symulacją

- poprzez menu w oknie edycji schematu,
- w trybie wsadowym (za pomocą funkcji sim),

4. Wyniki symulacji

- wykresy graficzne: wykres czasowy, wykres fazowy)
- przestrzeń robocza Matlaba
- plik wyjściowy

Badanie układów dynamiki w trybie graficznym

Wariant 1 (najprostszy):

- 1. Przygotowanie schematu ze wszystkimi danymi
- 2. Uruchomienie poprzez menu
- 3. Obserwacja na wykresach (np. blok Scope)

Wariant 2 (zaawansowany):

- 1. Przygotowanie sparametryzowanego schematu
 - jako parametry bloków używane są zmienne a nie wartości
 - zastosowane są bloki do rejestrowania wyników symulacji
- 2. Przygotowanie skryptu zawierającego:
 - definicje wszystkich zmiennych
 - uruchomienie symulacji
 - generowanie wykresów na podstawie wyników z symulacji
- 3. Uruchomienie skryptu realizującego program bada

> Sources

- funkcje wymuszające, czyli bloki z których sygnały tylko wypływają

Wybrane parametry:

Wymuszenie stałe

liczba, zmienna, wyrażenie

Constant value

Wymuszenie skokowe

w chwili *ts* sygnał o wartości początkowej *wp* zmienia się do wartości końcowej *wk*

- Step time (ts)
- Initial value (wp)
- Final value (wk)

Generator sinus

- Amplitude (=1),
- Bias (=0)
- Frequency (rad/s) (=1)
- phase (rad) (0=)

Zegar

Podaje bieżący czas symulacji (momenty w których wykonywane są obliczenia)

> Sinks

– końcówki układów, do których informacja tylko dopływa

Wybrane parametry:

Oscyloskop

jedno wejście na które można podać pojedynczy sygnał lub wektor

- General ilość osi, zakres czasu
- Data History wielkość bufora danych

Zbieranie danych

sygnał wejściowy zostanie zapamiętany w zmiennej o podanej nazwie (xx)

- Variable name (xx)
- Save format najprostszy Array

Wyświetlacz cyfrowy

pokazuje wartość pojedynczego sygnału lub wektora

- Format (np. short, long, ...)
- Decimation

> Continuous

- elementy liniowe ciągłe

Wybrane parametry:

Blok całkujący

całkuje z sygnał wejściowy
Parametr wp określa wartość na wyjściu w chwili zero

• Initial condition (wp)

Równania stanu

równania zdefiniowane za pomocą macierzy A, B, C, D Na wyjściu bloku dostępny jest tylko wektor sygnałów wyjściowych *y*. Można podać wektor wartości początkowych *wp* zmiennych stanu *x*

- A, B, C, D
- wp

Transmitancja

definiowana w postaci funkcji wymiernej (stopień liczniku < stopień mianownika)

- Numerator coefficients, np.: [1]
- Denominator coefficients, np.: [1 1]

Człon opóźniający

blok opóźniający sygnał wejściowy o stałą wartość (70)

Transpor Delay

- Time delay (*T0*)
- Initial output (wp)
- · Initial buffer size

> Math Operations

operacje matematyczne

Wybrane parametry:

Wzmocnienie

mnożenie sygnału przez wartość (liczba, zmienna, wyrażenie)

• Gain

Suma

dodawanie zadanej ilości sygnałów lub dodawanie/odejmowanie sygnałów (zgodnie z podanym wektorem działań)

- Icon shape (rectangular, round)
- List of signs (np.: +-)

lloczyn

mnożenie zadanej ilości sygnałów lub mnożenie/dzielenie sygnałów (zgodnie z podanym wektorem działań)

Number of inputs
 (lub lista znaków, np.:*/)

> User-Defined Function

– wyrażenia matematyczne (liniowe/nieliniowe)

Wybrane parametry:

Wyrażenie matematyczne

na sygnałach z wektora wejściowego *u* i zmiennych

expression,
 np. sin(u(1)*exp(2.3*(-u(2))))
 (na wejście można podać sygnał lub wektor)

> Signal Routing

– przekazywanie sygnałów

Multiplekser

łączenie sygnałów w wektor

Wybrane parametry:

- Number of input ilość lub wektor, np. [2,1,3]
- Display option (none, bar, signals)

Demultiplekser

rozdzielanie wektora sygnałów

- Number of input ilość lub wektor, np. [2,1,3]
- Display option (none, bar, signals)

Etykieta "Go to"

Etykieta "From"

wirtualne połączenia

- Go Tag nazwa sygnału (domyślnie A)
- Tag Visibility zasięg

Tag – nazwa sygnału (domyślnie A)

> Port & Subsystem

– złożone schematy

Podsystem

możliwość zgrupowania części schematu w jeden blok

Wybrane parametry:

Ilość wejść i wyjść zależy od portów wejściowych i wyjściowych zawartych w bloku. Nazwy portów są widoczne na bloku. Schemat można sparametryzować (Mask Subsystem)

Port wejściowy

Port number

Można zmieniać podpis pod blokiem (pojawi się automatycznie na bloku Subsytem)

Port wyjściowy

Port number

Można zmieniać podpis pod blokiem (pojawi się automatycznie na bloku Subsytem)

Przykład – równanie liniowe n-tego rzędu

Liniowe równanie różniczkowe

$$a\ddot{x}(t) + b\dot{x}(t) + cx(t) = u(t)$$

ze skokowym sygnałem wymuszającym

$$u(t) = \begin{cases} u_0 & \text{dla } t < t_0 \\ u_0 + dt & \text{dla } t \ge t_0 \end{cases}$$

i zadanymi warunkami początkowymi

$$\dot{x}(0) = x10 \qquad x(0) = x0$$

1) Przekształcić równanie – po lewej stronie zostaje najwyższa pochodna zmiennej x

$$\ddot{x}(t) = \frac{1}{a} \left(u(t) - b\dot{x}(t) - cx(t) \right)$$

2) Wprowadzić "łańcuch" bloków całkujących

3) Narysować schemat blokowy na podstawie równania na najwyższą pochodną

- 4) Wpisać parametry bloków
- 5) Dodać bloki wyjściowe (np. oscylosop)

Przykład – równanie liniowe n-tego rzędu

$$a\ddot{x}(t) + b\dot{x}(t) + cx(t) = u(t)$$

$$u(t) = \begin{cases} u_0 & \text{dla } t < t_0 \\ u_0 + dt & \text{dla } t \ge t_0 \end{cases}$$

$$\dot{x}(0) = x10 \qquad x(0) = x0$$

$$a = 2$$
; $b = 8$; $c = 2$;

u0=2; du=0.5; %skok wartości na wejściu

t0=5; %czas skoku

x0=u0/c; x10=0; %warunki początkowe

%(stan równowagi)

Prezentacja wykresów:

• w oddzielnych oknach

• bieżąca prezentacja i rejestracja danych

• w jednym układzie współrzędnych, różnymi kolorami.

 w oddzielnych układach współrzędnych (analogicznie jak subplot)

Przykład - równanie nieliniowe n-tego rzędu

$$\ddot{x} - m(1 - b^2 \sin^2 x)\dot{x} + w^2 \sin x = 0 \qquad \Longrightarrow \qquad \ddot{x} = m(1 - b^2 \sin^2 x)\dot{x} - w^2 \sin x$$

Przykład – układ równań (liniowe/nielinowe)

$$\begin{cases} \dot{x}_1 - m(1 - b^2 x_2^2) x_1 = 0 \\ \dot{x}_2 + x_1 + x_2 = 0 \end{cases} \implies \begin{cases} \dot{x}_1 = m(1 - b^2 x_2^2) x_1 \\ \dot{x}_2 = -x_1 - x_2 \end{cases}$$

Parametry algorytmu obliczeniowego

Rozwiązanie równania różniczkowego po zbudowaniu modelu i ustawieniu wartości początkowych (menu *Simulations*).

Wybór algorytmu całkowania i parametrów procesu w oknie Configuration parameters:

- czas początkowy (Start time) analizy,
- czas końcowy (Stop time) analizy,
- minimalny krok całkowania (*Min step size*),
- maksymalny krok całkowania (*Max step size*),
- początkowy krok całkowania (Initial step size),
- typ algorytmu: stało- lub zmiennokrokowy (*Type*),
- rodzaj algorytmu całkowania (Solver).

Uruchamianie w trybie wsadowym

Przyk¹ad

$$a\ddot{x}(t) + b\dot{x}(t) + cx(t) = u(t)$$

Odpowiedź na wymuszenie skokowe (skok u od u0 o wartość du)

```
tytul = 'Wpływ parametru b';
                       %nazwa pliku ze schematem
model = 'wzor2':
                      %czas trwania symulacji (patrz: sim)
czas = 50:
kolor = 'rgbcmy';
                      %red,green,blue,cyan,magenta,yellows
a=3:c=2:
tab b = [1 \ 2 \ 3];
                         %tablica parametru b
imax = size(tab b, 2);
                          %ilość parametrów (ograniczenie pętli)
                          %parametry skoku (w bloku Step)
u0=0: du=1:
x10=0:
                          %war.poczatkowy x1(0)
                         %war.początkowy x(0)
x0 = u0/c;
fig1=figure, hold on, grid on, ylabel(strcat(tytul, ' - x'))
fig2=figure, hold on, grid on, ylabel(strcat(tytul, ' - x1'))
for i=1:imax
   form = kolor(i);
                                 % format linii
                                 % kolejna wartość parametru b
   b = tab b(i);
   [t] = sim(model, czas);
                                 % "[t]=" zamiast bloku "Clock"
                                 % dane z bloków "To Workspace"
   figure(fig1), plot(t, x, form);
   figure(fig2), plot(t, x1, form);
                                 % iw
end
```