

FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Monday 08th April, 2024)

TIME: 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

- If the image of the point (-4, 5) in the line 1. x + 2y = 2 lies on the circle $(x + 4)^2 + (y-3)^2 = r^2$, then r is equal lo:
 - (1) 1

- (2)2
- (3)75
- (4) 3

Ans. (2)

Sol. Image of point (-4, 5)

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = -2\left(\frac{ax_1 + by_1 + c}{a^2 + b^2}\right)$$

Line: x + 2y - 2 = 0

$$\frac{x+4}{1} = \frac{y-5}{2} = -2\left(\frac{-4+10-2}{1^2+2^2}\right)$$
$$= \frac{-8}{5}$$

$$x = -4 - \frac{8}{5} = -\frac{28}{5}$$

$$y = -\frac{16}{5} + 5 = \frac{9}{5}$$

Point lies on circle $(x + 4)^2 + (y - 3)^2 = r^2$

$$\frac{64}{25} + \left(\frac{9}{5} - 3\right)^2 = r^2$$

$$\frac{100}{25} = r^2, \boxed{r=2}$$

- Let $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} 5\hat{k}$ and 2. $\vec{c} = 3\hat{i} - \hat{j} + \lambda \hat{k}$ be three vectors. Let \vec{r} be a unit vector along $\vec{b} + \vec{c}$. If $\vec{r} \cdot \vec{a} = 3$, then 3λ is equal to:

 - (1)27
- (2)25
- (3) 25
- (4) 21

Ans. (2)

TEST PAPER WITH SOLUTION

Sol.
$$\vec{r} = k(\vec{b} + \vec{c})$$

$$\vec{r} \cdot \vec{a} = 3$$

$$\vec{r} \cdot \vec{a} = k(\vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a})$$

$$3 = k(2 + 6 - 15 + 3 - 2 + 3\lambda)$$

$$3 = k(-6 + 3\lambda) \qquad \dots (1)$$

$$\vec{r} = k(5\hat{i} + 2\hat{j} - (5 - \lambda)\hat{k})$$

$$|\vec{r}| = k\sqrt{25 + 4 + 25 + \lambda^2 - 10\lambda} = 1$$
 ...(2)

$$k = \frac{3}{-6+3\lambda} = \frac{1}{-2+\lambda}$$
 put in (2)

$$4 + \lambda^2 - 4\lambda = 54 + \lambda^2 - 10\lambda$$

$$6\lambda = 50$$

$$3\lambda = 25$$

If $\alpha \neq a$, $\beta \neq b$, $\gamma \neq c$ and $\begin{vmatrix} \alpha & b & c \\ a & \beta & c \\ a & b & \gamma \end{vmatrix} = 0$, then

$$\frac{a}{\alpha - a} + \frac{b}{\beta - b} + \frac{\gamma}{\gamma - c}$$
 is equal to :

(1)2

(2) 3

(3)0

(4) 1

Ans. (3)

Sol.
$$R_1 \rightarrow R_1 - R_2, R_2 \rightarrow R_2 - R_3$$

$$\begin{vmatrix} \alpha - a & b - \beta & 0 \\ 0 & \beta - b & c - \gamma \\ a & b & \gamma \end{vmatrix} = 0$$

$$(\alpha - a) (\gamma(\beta - b) - b(c - \gamma)) - (b - \beta) (-a(c - \gamma)) = 0$$

$$\gamma(\alpha - a)(\beta - b) - b(\alpha - a)(c - \gamma) + a(b - \beta)(c - \gamma)$$

$$\frac{\gamma}{\gamma - c} + \frac{b}{\beta - b} + \frac{a}{\alpha - a} = 0$$

Download the new ALLEN app & enroll for Online Programs

- 4. In an increasing geometric progression of positive terms, the sum of the second and sixth terms is $\frac{70}{3}$ and the product of the third and fifth terms is
 - 49. Then the sum of the 4th, 6th and 8th terms is :-
 - (1)96
- (2)78
- (3)91
- (4) 84

Ans. (3)

Sol. $T_2 + T_6 = \frac{70}{3}$

$$ar + ar^5 = \frac{70}{3}$$

- $T_3 \cdot T_5 = 49$
- $ar^2 \cdot ar^4 = 49$
- $a^2r^6 = 49$

$$ar^3 = +7, \ a = \frac{7}{r^3}$$

- $ar(1+r^4) = \frac{70}{3}$
- $\frac{7}{r^2}(1+r^4) = \frac{70}{3}, r^2 = t$
- $\frac{1}{t}(1+t^2) = \frac{10}{3}$
- $3t^2 10t + 3 = 0$
- $t=3,\frac{1}{3}$

Increasing G.P. $r^2 = 3$, $r = \sqrt{3}$

- $T_4 + T_6 + T_8$
- $= ar^3 + ar^5 + ar^7$
- $= ar^3(1 + r^2 + r^4)$
- =7(1+3+9)=91
- 5. The number of ways five alphabets can be chosen from the alphabets of the word MATHEMATICS, where the chosen alphabets are not necessarily distinct, is equal to:
 - (1) 175
- (2) 181
- (3) 177
- (4) 179

Ans. (4)

- **Sol.** AA, MM, TT, H, I, C, S, E
 - (1) All distinct

$${}^{8}C_{5} \rightarrow 56$$

(2) 2 same, 3 different

$${}^{3}C_{1} \times {}^{7}C_{3} \rightarrow 105$$

(3) 2 same Ist kind, 2 same 2nd kind, 1 different

$${}^{3}C_{2} \times {}^{6}C_{1} \rightarrow 18$$

- $Total \rightarrow 179$
- 6. The sum of all possible values of $\theta \in [-\pi, 2\pi]$, for which $\frac{1 + i\cos\theta}{1 2i\cos\theta}$ is purely imaginary, is equal

to

 $(1) 2\pi$

(2) 3π

- $(3) 5\pi$
- $(4) 4\pi$

Ans. (2)

Sol. $Z = \frac{1 + i\cos\theta}{1 - 2i\cos\theta}$

$$Z = -\overline{Z} \Rightarrow \frac{1 + i\cos\theta}{1 - 2i\cos\theta} = -\left(\frac{\overline{1 + i\cos\theta}}{1 - 2i\cos\theta}\right)$$

- $(1+i\cos\theta)(\overline{1-2i\cos\theta}) = -(1-2i\cos\theta)(\overline{1+i\cos\theta})$
- $(1+i\cos\theta)(1+2i\cos\theta) = -(1-2i\cos\theta)(1-i\cos\theta)$
- $1 + 3i\cos\theta 2\cos^2\theta = -(1 3i\cos\theta 2\cos^2\theta)$
- $2 4\cos^2\theta = 0$

$$\Rightarrow \cos^2\theta = \frac{1}{2} \Rightarrow \theta = -\frac{\pi}{4}, -\frac{3\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

- $sum = 3\pi$
- 7. If the system of equations $x + 4y z = \lambda$, $7x + 9y + \mu z = -3$, 5x + y + 2z = -1 has infinitely many solutions, then $(2\mu + 3\lambda)$ is equal to:
 - (1) 2

(2) -3

(3) 3

- (4) -2
- Ans. (2)

Sol.
$$\Delta = \begin{vmatrix} 1 & 4 & -1 \\ 7 & 9 & \mu \\ 5 & 1 & 2 \end{vmatrix} = 0$$

$$\Rightarrow$$
 $(18-\mu) - 4(14-5\mu) - (7-45) = 0 \Rightarrow \mu = 0$

$$\Delta = \Delta_x = \Delta_y = \Delta_z = 0$$
 (For infinite solution)

$$\Delta_{x} = \begin{vmatrix} \lambda & 4 & -1 \\ -3 & 9 & \mu \\ -1 & 1 & 2 \end{vmatrix} = 0$$

$$\lambda(18 - \mu) - 4(-6 + \mu) - 1(-3 + 9) = 0$$

$$18\lambda + 24 - 6 = 0 \implies \lambda = -1$$

Download the new ALLEN app & enroll for Online Programs

CLICK HERE TO DOWNLOAD

8. If the shortest distance between the lines

$$\frac{x-\lambda}{2} = \frac{y-4}{3} = \frac{z-3}{4}$$
 and

$$\frac{x-2}{4} = \frac{y-4}{6} = \frac{z-7}{8}$$
 is $\frac{13}{\sqrt{29}}$, then a value

of λ is:

$$(1) - \frac{13}{25}$$

(2)
$$\frac{13}{25}$$

$$(4) -1$$

Ans. (3)

Sol.
$$\overline{r}_1 = (\lambda \hat{i} + 4\hat{j} + 3\hat{k}) + \alpha(2\hat{i} + 3\hat{j} + 4\hat{k}) \begin{cases} \overline{b} = 2\hat{i} + 3j + 4\hat{k} \\ \overline{a}_1 + \lambda \hat{i} + 4\hat{j} + 3\hat{k} \end{cases}$$

 $\overline{r}_2 = (2\hat{i} + 4\hat{j} + 7\hat{k}) + \beta(2\hat{i} + 3\hat{j} + 4\hat{k}) \begin{cases} \overline{a}_1 + \lambda \hat{i} + 4\hat{j} + 3\hat{k} \\ \overline{a}_2 = 2\hat{i} + 4\hat{j} + 7\hat{k} \end{cases}$

Shortest dist. =
$$\frac{\left|\overline{b} \times (\overline{a}_2 - \overline{a}_1)\right|}{|b|} = \frac{13}{\sqrt{29}}$$

$$\frac{\left| \left(2\hat{i} + 3\hat{j} + 4\hat{k} \right) \times \left((2 - \lambda)\hat{i} + 4\hat{k} \right) \right|}{\sqrt{29}} = \frac{13}{\sqrt{29}}$$

$$\left| -8\hat{j} - 3(2 - \lambda)\hat{k} + 12\hat{i} + 4(2 - \lambda)\hat{j} \right| = 13$$

$$\left|12\hat{\mathbf{i}} - 4\lambda\hat{\mathbf{j}} + (3\lambda - 6)\hat{\mathbf{k}}\right| = 13$$

$$144 + 16 \lambda^2 + (3\lambda - 6)^2 = 169$$

$$16\lambda^2 + (3\lambda - 6)^2 = 25 = \lambda \Rightarrow = 1$$

9. If the value of
$$\frac{3\cos 36^{\circ} + 5\sin 18^{\circ}}{5\cos 36^{\circ} - 3\sin 18^{\circ}}$$
 is $\frac{a\sqrt{5} - b}{c}$,

where a, b, c are natural numbers and gcd(a, c) = 1, then a + b + c is equal to :

Ans. (3)

Sol.
$$\frac{3(\sqrt{5}+1)}{4} + 5(\frac{\sqrt{5}-1}{4}) = \frac{8\sqrt{5}-2}{2\sqrt{5}+8}$$
$$= \frac{4\sqrt{5}-1}{\sqrt{5}+4} \times \frac{\sqrt{5}-4}{\sqrt{5}-4}$$

$$= \frac{20 - 16\sqrt{5} - \sqrt{5} + 4}{-11}$$
$$= \frac{17\sqrt{5} - 24}{11} \Rightarrow a = 17, b = 27, c = 11$$

10. Let y = y(x) be the solution curve of the differential equation secy $\frac{dy}{dx} + 2x\sin y = x^3\cos y$,

y(1) = 0. Then $y(\sqrt{3})$ is equal to:

$$(1) \frac{\pi}{3}$$

(2)
$$\frac{\pi}{6}$$

$$(3) \frac{\pi}{4}$$

(4)
$$\frac{\pi}{12}$$

Ans. (3)

Sol. $\sec^2 y \frac{dy}{dx} + 2x\sin y \sec y = x^3 \cos y \sec y$

$$\sec^2 y \frac{dy}{dx} + 2x \tan y = x^3$$

$$tany = t \implies sec^2 y \frac{dy}{dx} = \frac{dt}{dx}$$

$$\frac{dt}{dx} + 2xt = x^3$$
, If $= e^{\int 2x dx} = e^{x^2}$

$$te^{x^2} = \int x^3 . e^{x^2} dx + c$$

$$x^{2} = Z \implies t.e^{Z} = \frac{1}{2} \int e^{Z}.ZdZ = \frac{1}{2} [e^{Z}.Z - e^{Z}] + c$$

$$2 \tan y = (x^2 - 1) + 2ce^{-x^2}$$

$$y(1) = 0 \implies c = 0 \implies y(\sqrt{3}) = \frac{\pi}{4}$$

11. The area of the region in the first quadrant inside the circle $x^2 + y^2 = 8$ and outside the pnrabola $y^2 = 2x$ is equal to:

(1)
$$\frac{\pi}{2} - \frac{1}{3}$$

(2)
$$\pi - \frac{2}{3}$$

(3)
$$\frac{\pi}{2} - \frac{2}{3}$$

(4)
$$\pi - \frac{1}{3}$$

Ans. (2)

Download the new ALLEN app & enroll for Online Programs

CLICK HERE TO DOWNLOAD

Sol.

Required area = Ar(circle from 0 to 2) ar(para from 0 to 2)

$$= \int_{0}^{2} \sqrt{8 - x^{2}} \, dx - \int_{0}^{2} \sqrt{2x} \, dx$$

$$= \left[\frac{x}{2} \sqrt{8 - x^{2}} + \frac{8}{2} \sin^{-1} \frac{x}{2\sqrt{2}} \right]_{0}^{2} - \sqrt{2} \left[\frac{x\sqrt{x}}{3/2} \right]_{0}^{2}$$

$$= \frac{2}{2} \sqrt{8 - 4} + \frac{8}{2} \sin^{-1} \frac{2}{2\sqrt{2}} - \frac{2\sqrt{2}}{3} (2\sqrt{2} - 0)$$

$$\Rightarrow 2 + 4 \cdot \frac{\pi}{4} - \frac{8}{3} = \pi - \frac{2}{3}$$

12. If the line segment joining the points (5, 2) and (2, a) subtends an angle $\frac{\pi}{4}$ at the origin, then the absolute value of the product of all possible values of a is:

Ans. (4)

Sol.

$$m_{OA} = \frac{2}{5}$$

$$m_{OB} = \frac{a}{2}$$

$$\tan\frac{\pi}{4} = \left| \frac{2}{5} - \frac{a}{2} \right|$$

$$1 = \left| \frac{4 - 5a}{10 + 2a} \right|$$

$$4-5a = \pm (10 + 2a)$$

$$4 - 5a = 10 + 2a$$

$$4 - 5a = -10 - 2a$$

$$\Rightarrow$$
 7a + 6 = 0

$$3a = 14$$

$$\Rightarrow a = -\frac{6}{7} \qquad \qquad a = +\frac{14}{3}$$

$$a = +\frac{14}{3}$$

$$-\frac{6}{7} \times \frac{14}{3} = -4$$

Let $\vec{a} = 4\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = 11\hat{i} - \hat{j} + \hat{k}$ and \vec{c} be a vector such that

$$(\vec{a} + \vec{b}) \times \vec{c} = \vec{c} \times (-2\vec{a} + 3\vec{b}).$$

If $(2\vec{a} + 3\vec{b}) \cdot \vec{c} = 1670$, then $|\vec{c}|^2$ is equal to:

Ans. (2)

Sol.
$$(\vec{a} + \vec{b}) \times \vec{c} - \vec{c} \times (-2\vec{a} + 3\vec{b}) = 0$$

$$(\vec{a} + \vec{b}) \times \vec{c} + (-2\vec{a} + 3\vec{b}) \times \vec{c} = 0$$

$$\Rightarrow (\vec{a} + \vec{b}) - 2\vec{a} + 3\vec{b}) \times \vec{c} = 0$$

$$\Rightarrow \vec{c} = \lambda(4\vec{b} - \vec{a})$$

$$\Rightarrow = \lambda \left(44\hat{i} - 4\hat{j} + 4\hat{k} - 4\hat{i} + \hat{j} - \hat{k} \right)$$

$$= \lambda \left(40\hat{i} - 3\hat{j} + 3\hat{k} \right)$$

Now

$$(8\hat{i} - 2\hat{j} + 2\hat{k} + 33\hat{i} - 3\hat{j} + 3\hat{k}) \cdot \lambda(40\hat{i} - 3\hat{j} + 3\hat{k}) = 1670$$

$$\Rightarrow$$
 $(41\hat{i} - 5\hat{j} + 5\hat{k}).(40\hat{i} - 3\hat{j} + 3\hat{k}) \times \lambda = 1670)$

$$\Rightarrow$$
 $(1640 + 15 + 15)\lambda = 1670 \Rightarrow \lambda = 1$

so
$$\vec{c} = 40\hat{i} - 3\hat{j} - 3\hat{k}$$

$$\Rightarrow |\vec{c}|^2 = 1600 + 9 + 9 = 1618$$

- If the function $f(x) = 2x^3 9ax^2 + 12a^2x + 1$, a > 014. has a local maximum at $x = \alpha$ and a local minimum $x = \alpha^2$, then α and α^2 are the roots of the equation:

 - (1) $x^2 6x + 8 = 0$ (2) $8x^2 + 6x 8 = 0$
 - (3) $8x^2 6x + 1 = 0$ (4) $x^2 + 6x + 8 = 0$

Ans. (1)

Sol. $f(x) = 6x^2 - 18ax + 12a^2 = 0$

$$\alpha + \alpha^2 = 3a \& \alpha \times \alpha^2 = 2a^2$$

$$(\alpha + \alpha^2)^3 = 27a^3$$

$$\Rightarrow 2a^2 + 4a^4 + 3(3a)(2a^2) = 27a^3$$

$$\Rightarrow$$
 2 + 4a² + 18a = 27a

$$\Rightarrow 4a^2 - 9a + 2 = 0$$

$$\Rightarrow 4a^2 - 8a - a + 2 = 0$$

$$\Rightarrow$$
 $(4a-1)(a-2)=0 \Rightarrow a=2$

so
$$6x^2 - 36x + 48 = 0$$

$$\Rightarrow$$
 x² - 6x + 8 = 0

If we take $a = \frac{1}{4}$ then $\alpha = \frac{1}{2}$ which is not possible

- 15. There are three bags X, Y and Z. Bag X contains 5 one-rupee coins and 4 five-rupee coins; Bag Y contains 4 one-rupee coins and 5 five-rupee coins and Bag Z contains 3 one-rupee coins and 6 five-rupee coins. A bag is selected at random and a coin drawn from it at random is found to be a one-rupee coin. Then the probability, that it came from bag Y, is:
 - $(1) \frac{1}{3}$
- (2) $\frac{1}{2}$
- $(3) \frac{1}{4}$

Ans. (1)

Sol. X

5 one & 4 five 4 one & 5 five 3 one & 6 five

$$P = \frac{4/9}{5/9 + 4/9 + 3/9} = \frac{4}{12} = \frac{1}{3}$$

Let $\int\limits_{-\infty}^{\log_e 4} \frac{dx}{\sqrt{e^x-1}} = \frac{\pi}{6}$. Then e^α and $e^{-\alpha}$ are the

roots of the equation:

- (1) $2x^2 5x + 2 = 0$ (2) $x^2 2x 8 = 0$
- (3) $2x^2 5x 2 = 0$ (4) $x^2 + 2x 8 = 0$

Ans. (1)

$$\textbf{Sol.} \quad \int\limits_{\alpha}^{\log_e 4} \frac{dx}{\sqrt{e^x - 1}} = \frac{\pi}{6}$$

Let
$$e^x - 1 = t^2$$

$$e^x dx = 2t dt$$

$$=\int \frac{2dt}{t^2+1}$$

$$= 2 \tan^{-1} t$$

$$= 2 \tan^{-1} \left(\sqrt{e^x - 1} \right) \Big|_{\alpha}^{\log_e^4}$$

$$= 2 \left[\tan^{-1} \sqrt{3} - \tan^{-1} \sqrt{e^{\alpha} - 1} \right] = \frac{\pi}{6}$$

$$=\frac{\pi}{3}-\tan^{-1}\sqrt{e^{\alpha}-1}=\frac{\pi}{12}$$

$$\Rightarrow \tan^{-1} \sqrt{e^{\alpha} - 1} = \frac{\pi}{4}$$

$$e^{\alpha} = 2 \qquad e^{-\alpha} = \frac{1}{2}$$

$$x^2 - \left(2 + \frac{1}{2}\right)x + 1 = 0$$

$$2x^2 - 5x + 2 = 0$$

17. Let
$$f(x) = \begin{cases} -a & \text{if } -a \le x \le 0 \\ x + a & \text{if } 0 < x \le a \end{cases}$$

where a > 0 and g(x) = (f|x|) - |f(x)|/2.

Then the function $g: [-a, a] \rightarrow [-a, a]$ is

- (1) neither one-one nor onto.
- (2) both one-one and onto.
- (3) one-one.
- (4) onto

Ans. (1)

Download the new ALLEN app & enroll for Online Programs

Sol. y = f(x)

$$y = f|x|$$

$$y = |f(x)|$$

$$g(x) = \frac{f(|x|) - |f(x)|}{2}$$

- 18. Let $A=\{2, 3, 6, 8, 9, 11\}$ and $B=\{1, 4, 5, 10, 15\}$ Let R be a relation on $A \times B$ define by (a, b)R(c, d)if and only if 3ad-7bc is an even integer. Then the relation R is
 - (1) reflexive but not symmetric.
 - (2) transitive but not symmetric.
 - (3) reflexive and symmetric but not transitive.
 - (4) an equivalence relation.

Ans. (3)

Sol.
$$A = \{2, 3, 6, 8, 9, 11\}$$
 (a, b)R (c, d)
 $B = \{1, 4, 5, 10, 15\}$ 3ad – 7bc
Reflexive: (a, b) R(a, b)

 \Rightarrow 3ab – 7ba = – 4ab always even so it is reflexive.

Symmetric : If 3ad - 7bc = Even

Case-II: odd odd Case-II: even even

 $(c, d) R(a, b) \Rightarrow 3bc - 3ab$

Case-II: odd odd Case-II: even even

so symmetric relation

Transitive:

Set (3, 4)R (6, 4) Satisfy relation

Set (6, 4)R(3, 1) Satisfy relation

but (3, 4) R(3, 1) does not satisfy relation so not transitive.

19. For a, b > 0, let

$$f(x) = \begin{cases} \frac{\tan((a+1)x) + b \tan x}{x}, & x < 0\\ \frac{3}{\sqrt{ax + b^2 x^2} - \sqrt{ax}}, & x > 0\\ \frac{b\sqrt{a} x \sqrt{x}}{\sqrt{x}}, & x > 0 \end{cases}$$

be a continuous function at x = 0. Then $\frac{b}{a}$ is equal

to

Ans. (4)

Sol.
$$\lim_{x\to 0} f(x) = f(0) = 3$$

$$\lim_{x \to 0^+} \frac{\sqrt{ax + b^2x^2} - \sqrt{ax}}{b\sqrt{a} \ x\sqrt{x}} = 3$$

$$\lim_{x \to 0^+} \frac{ax + b^2 x^2 - ax}{b\sqrt{a} x^{3/2} \left(\sqrt{ax + b^2 x^2} + \sqrt{ax}\right)}$$

$$\lim_{x\to 0^+}\frac{b^2}{b\sqrt{a}\left(\sqrt{a+b^2x}+\sqrt{a}\right)}$$

$$\frac{b}{\sqrt{a}.2\sqrt{a}} \Rightarrow \frac{b}{2a} = 3 \Rightarrow \frac{b}{a} = 6$$

Download the new ALLEN app & enroll for Online Programs

CLICK HERE TO DOWNLOAD

If the term independent of x in the expansion of 20.

$$\left(\sqrt{ax^2 + \frac{1}{2x^3}}\right)^{10}$$
 is 105, then a^2 is equal to :

(1)4

(2)9

(3)6

(4)2

Ans. (1)

Sol. $\left(\sqrt{a}x^2 + \frac{1}{2x^3}\right)^{10}$

General term =
$${}^{10}C_r \left(\sqrt{a}x^2\right)^{10-r} \left(\frac{1}{2x^3}\right)^r$$

$$20 - 2r - 3r = 0$$

r = 4

10
 C₄ $a^3 \cdot \frac{1}{16} = 105$

$$a^3 = 8$$

$$a^2 = 4$$

SECTION-B

Let A be the region enclosed by the parabola 21. $y^2 = 2x$ and the line x = 24. Then the maximum area of the rectangle inscribed in the region A is

Ans. (128)

Sol.

$$A = 2\left(24 - \frac{b^2}{2}\right).b$$

$$\frac{dA}{db} = 0$$
 \Rightarrow $b = 4$

$$A = 2(24 - 8)4$$

= 128

If $\alpha = \lim_{x \to 0^+} \left(\frac{e^{\sqrt{\tan x}} - e^{\sqrt{x}}}{\sqrt{\tan x} - \sqrt{x}} \right)$ and 22.

> $\beta = \lim_{x \to 0} (1 + \sin x)^{\frac{1}{2} \cot x}$ are the roots of the quadratic equation $ax^2 + bx - \sqrt{e} = 0$, then 12 log_e(a + b) is equal to _____

Ans. (6)

Sol.
$$\alpha = \lim_{x \to 0^+} e^{\sqrt{x}} \frac{\left(e^{\sqrt{\tan x} - \sqrt{x}} - 1\right)}{\sqrt{\tan x} - \sqrt{x}}$$

$$\beta = \lim_{x \to 0} (1 + \sin x)^{\frac{1}{2} \cot x}$$
$$= e^{1/2}$$

$$= e^{1/2}$$

$$x^2 - (1 + \sqrt{e}) + \sqrt{e} = 0$$

$$ax^2 + bx - \sqrt{e} = 0$$

On comparing

$$a = -1, b = \sqrt{e} + 1$$

$$12 \ln(a+b) = 12 \times \frac{1}{2} = 6$$

Let S be the focus of the hyperbola $\frac{x^2}{3} - \frac{y^2}{5} = 1$, 23. on the positive x-axis. Let C be the circle with its centre at $A(\sqrt{6}, \sqrt{5})$ and passing through the point S. if O is the origin and SAB is a diameter of C then the square of the area of the triangle OSB is equal to -

Ans. (40)

Sol.

Area =
$$\frac{1}{2}$$
 (OS) h = $\frac{1}{2}\sqrt{8} \ 2\sqrt{5} = \sqrt{40}$

Let $P(\alpha, \beta, \gamma)$ be the image of the point Q(1, 6, 4) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$. Then $2\alpha + \beta + \gamma$ is equal to _____. Ans. (11)

Sol.

$$\begin{split} & \underbrace{A(t,2t+1,3t+2)} \\ & \overline{QA} = (t-1)\hat{i} + (2t-5)\hat{j} + (3t-2)\hat{k} \\ & \overline{QA} \cdot \vec{b} = 0 \\ & (t-1) + 2(2t-5) + 3(3t-2) = 0 \\ & 14t = 17 \\ & \alpha = \frac{20}{14} \qquad \beta = \frac{12}{14} \qquad \gamma = \frac{102}{14} \\ & 2\alpha + \beta + \gamma = \frac{154}{14} = 11 \end{split}$$

25. An arithmetic progression is written in the following way

The sum of all the terms of the 10th row is Ans. (1505)

Sol. 2, 5, 11, 20,

General term =
$$\frac{3n^2 - 3n + 4}{2}$$

$$T_{10} = \frac{3(100) - 3(10) + 4}{2}$$
$$= 137$$

10 terms with c.d. = 3

$$sum = \frac{10}{2} (2(137) + 9(3))$$
$$= 1505$$

The number of distinct real roots of the equation **26.** |x + 1| |x + 3| - 4 |x + 2| + 5 = 0, is

Ans. (2)

Sol. |x + 1| |x + 3| - 4|x + 2| + 5 = 0

case-1

$$x \le -3$$

$$(x + 1)(x + 3) + 4(x + 2) + 5 = 0$$

$$x^2 + 4x + 3 + 4x + 8 + 5 = 0$$

$$x^2 + 8x + 16 = 0$$

$$(x+4)^2=0$$

$$x = -4$$

case-2

$$-3 < x < -2$$

$$-3 \le x \le -2$$

 $-x^2 - 4x - 3 + 4x + 8 + 5 = 0$

$$-x^2 + 10 = 0$$

$$x = \pm \sqrt{10}$$

case-3

$$-2 \le x \le -1$$

$$-x^2 - 4x - 3 - 4x - 8 + 5 = 0$$

$$-x^2 - 8x - 6 = 0$$

$$x^2 + 8x + 6 = 0$$

$$x = \frac{-8 \pm 2\sqrt{10}}{2} = -4 \pm \sqrt{10}$$

case-4

$$x \ge -1$$

$$x^2 + 4x + 3 - 4x - 8 + 5 = 0$$

$$\mathbf{x}^2 = \mathbf{0}$$

$$\mathbf{x} = \mathbf{0}$$

No. of solution
$$= 2$$

27. Let a ray of light passing through the point (3, 10) reflects on the line 2x + y = 6 and the reflected ray passes through the point (7, 2). If the equation of the incident ray is ax + by + 1 = 0, then $a^2 + b^2 + 3ab$ is equal to .

Ans. (1)

Sol.

Download the new ALLEN app & enroll for Online Programs

For B'
$$\frac{x-7}{2} = \frac{y-2}{1} = -2\left(\frac{14+2-6}{5}\right)$$
$$\frac{x-7}{2} = \frac{y-2}{1} = -4$$
$$x = -1 \quad y = -2 \quad B'(-1, -2)$$

incident ray AB'

$$M_{AB'} = 3$$

$$y + 2 = 3(x + 1)$$

$$3x - y + 1 = 0$$

$$a = 3 \ b = -1$$

$$a^2 + b^2 + 3ab = 9 + 1 - 9 = 1$$

28. Let a, b, $c \in N$ and a < b < c. Let the mean, the mean deviation about the mean and the variance of the 5 observations 9, 25, a, b, c be 18, 4 and $\frac{136}{5}$, respectively. Then 2a + b - c is equal to ______.

Ans. (33)
Sol.
$$a, b, c \in N$$

$$\overline{x} = mean = \frac{9 + 25 + a + b + c}{5} = 18$$

$$a + b + c = 56$$

$$Mean deviation = \frac{\sum |x_i - \overline{x}|}{n} = 4$$

$$= 9 + 7 + |18 - a| + |18 - b| + |18 - c| = 20$$

$$= |18 - a| + |18 - b| + |18 - c| = 4$$

Variance =
$$\frac{\sum |\mathbf{x}_i - \overline{\mathbf{x}}|^2}{n} = \frac{136}{5}$$

$$= 81 + 49 + |18 - a|^2 + |18 - b|^2 + |18 - c|^2 = 136$$

$$= (18 - a)^2 + (18 - b)^2 + (18 - c)^2 = 6$$

Possible values $(18-a)^2 = 1$, $(18-b)^2 = 1$ $(18-c)^2 = 4$ a < b < c

so

a + b + c = 56

$$2a + b - c$$
 $34 = 19 - 20 = 33$

Sol.
$$a|x| = |y| e^{yx-\beta}, a, b \in N$$

$$xdy - ydx + xy(xdy + ydx) = 0$$

$$\frac{\mathrm{d}y}{y} - \frac{\mathrm{d}x}{x} + (x\mathrm{d}y + y\mathrm{d}x) = 0$$

$$\ell n|\mathbf{y}| - \ell n|\mathbf{x}| + \mathbf{x}\mathbf{y} = \mathbf{c}$$

$$y(1) = 2$$

$$\ell n|2| - 0 + 2 = c$$

$$c = 2 + \ell n2$$

$$\ell n|y| - \ell n|x| + xy = 2 + \ell n2$$

$$\ell n|x| = \ell n \left| \frac{y}{2} \right| - 2 + xy$$

$$|\mathbf{x}| = \left| \frac{\mathbf{y}}{2} \right| e^{\mathbf{x}\mathbf{y} - 2}$$

$$2|\mathbf{x}| = |\mathbf{y}|\mathbf{e}^{\mathbf{x}\mathbf{y}-2}$$

$$\alpha = 2$$
 $\beta = 2$ $\alpha + \beta = 4$

30. If
$$\int \frac{1}{\sqrt[5]{(x-1)^4 (x+3)^6}} dx = A \left(\frac{\alpha x - 1}{\beta x + 3} \right)^B + C$$
,

where C is the constant of integration, then the value of $\alpha + \beta + 20AB$ is

Ans. (7)

Sol.
$$\int \frac{1}{\sqrt[5]{(x-1)^4 (x+3)^6}} dx = A \left(\frac{\alpha x - 1}{\beta x + 3} \right)^B + C$$

$$I = \int \frac{1}{(x-1)^{4/5} (x+3)^{6/5}} dx$$

$$I = \int \frac{1}{\left(\frac{x-1}{x+3}\right)^{4/5} (x+3)^2} dx$$

$$\left(\frac{x-1}{x+3}\right) = t \quad \Rightarrow \frac{4}{(x+3)^2} dx = dt \qquad t^{-4/5+1}$$

$$I = \frac{1}{4} \int \frac{1}{t^{4/5}} dt = \frac{1}{4} \frac{t^{1/5}}{1/5} + c$$

$$I = \frac{5}{4} \left(\frac{x-1}{x+3} \right)^{1/5} + C$$

$$A = \frac{5}{4} \qquad \alpha = \beta = 1 \qquad B = \frac{1}{5}$$

$$\alpha + \beta + 20AB = 2 + 20 \times \frac{5}{4} \times \frac{1}{5} = 7$$

Download the new ALLEN app & enroll for Online Programs

CLICK HERE TO DOWNLOAD

Are you targeting JEE 2025?

Ace it with ALLEN's

Leader Course

Online Program

18 APRIL '24

Offline Program

24 APRIL '24

Get The Latest

IIT-JEE Special Books at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING

with

SCORE TEST PAPERS | HANDBOOKS | JEE-MAIN PYQ's | JEE-Adv. PYQ's

Available in HINDI & ENGLISH