The Strong Effects of Weak Externalities on School Choice

Eduardo Duque Rosas

Facultad de Ciencias Económicas y Empresariales
Universidad de los Andes. Chile

Juan Pablo Torres-Martínez

Departamento de Economía, Universidad de Chile

Introducción

- Abdulkadiroğlu & Sönmez (2003) introducen en la literatura de diseño de mecanismos los problemas de elección escolar, en los cuales se busca emparejar estudiantes con cupos en colegios públicos.
- En un problema de elección escolar, cada estudiante tiene preferencias por los colegios, los cuales tienen un número de cupos disponibles y determinan ordenes de prioridad por los estudiantes.
- Uno de los objetivos de esta literatura es caracterizar la existencia de emparejamientos—distribuciones de estudiantes en colegios—que tengan buenas propiedades, como estabilidad a desvíos de grupos de estudiantes o eficiencia en la distribución de los cupos en los colegios.
- Además, se busca caracterizar la existencia de mecanismos que permitan implementar emparejamientos estables y/o eficientes en situaciones en que las preferencias no son observables.

Introducción

- En el modelo de Abdulkadiroğlu & Sönmez (2003) cada estudiante solo se preocupa por clasificar los colegios.
- Esto permite asegurar que siempre hay emparejamientos estables y con buenas propiedades de
 eficiencia. Además, existen mecanismos que implementan estos emparejamientos y dan
 incentivos a cada estudiantes a reportar sus verdaderas preferencias, independiente de lo que
 hagan los otros postulantes.
- Sin embargo, es natural que los estudiantes consideren la situación de otros postulantes al momento de clasificar los colegios. Para capturar esta dimensión es necesario introducir externalidades en el modelo.
- En este tipo de problemas, la presencia de externalidades compromete la existencia de emparejamientos estables (Dutta & Massó (1997), Echenique & Yenmez (2007), Bykhovskaya (2020)).

En esta charla....

• En problemas de elección escolar con externalidades, estudiamos los incentivos de los estudiantes a revelar información sobre sus preferencias por colegios.

• Asumimos que las externalidades son débiles, en el sentido que constituyen un factor secundario al momento de evaluar un emparejamiento.

 Mostramos que <u>no existen</u> mecanismos que sean estables y strategy-proof o estables y (débilmente) Pareto eficientes.

 Determinamos restricciones sobre los ordenes de prioridad de los colegios que aseguran la existencia de mecanismos estables, strategy-proof y Pareto eficientes.

Modelo

Un problema de elección escolar con externalidades

$$(S,H,(\succ_s)_{s\in S},(q_s)_{s\in S},(R_h)_{h\in H})$$

es caracterizado por:

- *S* : conjunto de colegios.
- *H* : conjunto de estudiantes.
- \succ_s : orden de prioridad (estricto) del colegio s por los estudiantes.
- q_s : cupos del colegios s. Asumiremos que $|H| \leq \sum_{s \in S} q_s$.

Sea \mathcal{M} el conjunto de *emparejamientos* o *matchings*. Esto es, el conjunto de funciones $\mu: H \to S \cup \{ \otimes \}$ tales que $|\mu^{-1}(s)| \leq q_s, \ \forall s \in S$.

• R_h : preferencia completa y transitiva del estudiante h definida sobre \mathcal{M} .

Contexto de elección escolar: $(S, H, \succ, q) \equiv (S, H, (\succ_s)_{s \in S}, (q_s)_{s \in S})$.

Modelo

Una preferencia R_h definida sobre \mathcal{M} es *egocéntrica* si, dados $\mu, \eta \in \mathcal{M}$:

- Si μ y η son indifferentes bajo R_h , entonces $\mu(h) = \eta(h)$.
- Si μ es estrictamente preferido a η y $\mu(h) \neq \eta(h)$, entonces $\mu' P_h \eta'$ cuando $\mu'(h) = \mu(h)$ y $\eta'(h) = \eta(h)$, donde P_h es la parte estricta de R_h .

Denotaremos por \mathcal{R}^{ego} al conjunto de perfiles $(R_h)_{h\in H}$ tales que cada relación de preferencias R_h es egocéntrica.

Una preferencia egocéntrica R_h induce de forma natural una *preferencia estándar* $\sigma(R_h)$ definida sobre $S \cup \{ \otimes \}$, la cual es completa, transitiva y estricta.

Dado $R = (R_h)_{h \in H} \in \mathcal{R}^{\text{ego}}$, denotaremos por $\sigma(R) \equiv (\sigma(R_h))_{h \in H}$ al perfil de preferencias estándar inducidas.

Denotaremos por $\mathcal{R}^{\mathrm{std}}$ al conjunto de perfiles $(\sigma_h)_{h\in H}$ tales que cada σ_h es un orden lineal definido sobre $S \cup \{\otimes\}$.

Estabilidad

Dado un emparejamiento $\mu: H \to S \cup \{ \otimes \}$, diremos que:

- μ es individualmente racional si no existe $h \in H$ tal que $\otimes \sigma(R_h) \mu(h)$.
- μ es libre de envidia justificada si no existe un par $(s,h) \in S \times H$ tal que $|\mu^{-1}(s)| = q_s$ y para algún $h' \in \mu^{-1}(s)$ tenemos que

$$h \succ_s h', \qquad s \sigma(R_h) \mu(h).$$

• μ desperdicia recursos si existe $(s,h) \in S \times H$ tal que

$$|\mu^{-1}(s)| < q_s, \qquad s\,\sigma(R_h)\,\mu(h).$$

Un emparejamiento $\mu \in \mathcal{M}$ es <u>estable</u> si es individualmente racional, libre de envidia justificada y no desperdicia recursos.

Eficiencia

• Un emparejamiento es *Pareto eficiente* si no existe una forma alternativa de distribuir los cupos de los colegios que mejore la situación de al menos un estudiante sin perjudicar a los otros.

• Un emparejamiento es *Pareto eficiente débil* si no existe una forma alternativa de distribuir los cupos de los colegios que sea preferida por <u>todos</u> los estudiantes.

Mecanismos

Sea $\mathcal{R} = \prod_{h \in \mathcal{H}} \mathcal{R}_h$, donde \mathcal{R}_h es un dominio de preferencias para $h \in \mathcal{H}$.

- Un <u>mecanismo</u> es una función $\varphi: \mathcal{R} \to \mathcal{M}$ que selecciona un emparejamiento para cada perfil de preferencias de los estudiantes.
- Un mecanismo φ es <u>estable</u> si para todo $R \in \mathcal{R}$, $\varphi(R)$ es estable en (S, H, \succ, q, R) .
- Un mecanismo φ es *strategy-proof* si para cada $h \in H$ tenemos que

$$\varphi(R) R_h \varphi(\widetilde{R}_h, R_{-h}), \qquad \forall R \in \mathcal{R}, \forall \widetilde{R}_h \in \mathcal{R}_h.$$

Cuando φ es *strategy-proof*, para cada estudiante es una <u>estrategia débilmente dominante</u> reportar sus verdaderas preferencias.

• Un mecanismo φ es *bossy* si existe $h \in H$, $R \in \mathcal{R}$ y $\widetilde{R}_h \in \mathcal{R}_h$ tal que

$$\varphi(\widetilde{R}_h, R_{-h})(h) = \varphi(R)(h)$$
 y $\varphi(\widetilde{R}_h, R_{-h}) \neq \varphi(R)$.

Cuando φ es *bossy*, hay escenarios en los cuales al menos un estudiante podría reportar preferencias falsas con el objetivo de cambiar el emparejamiento implementado sin que cambie su colegio.

Mecanismos

Aceptación Diferida con Preferencias Egocéntricas

Considere el mecanismo $AD^{\mathrm{ego}}_{(\succ,q)}:\mathcal{R}^{ego} o\mathcal{M}$ caracterizado por

$$AD^{\text{ego}}_{(\succ,q)}(R) = AD_{(\succ,q)}(\sigma(R)).$$

Top Trading Cycles con preferencias Egocéntricas

Considere el mecanismo $TTC^{\mathrm{ego}}(\succ,q):\mathcal{R}^{\mathit{ego}} o \mathcal{M}$ caracterizado por

$$TTC_{(\succ,q)}^{\text{ego}}(R) = TTC_{(\succ,q)}(\sigma(R)).$$

Teorema 1

Hay contextos (S, H, \succ, q) en los cuales **no existe** ningún mecanismo estable y *strategy-proof*.

Demostración. Asuma que $S = \{s_1, \dots, s_n\}$ y $H = \{h_1, \dots, h_n\}$.

Cada colegio tiene un cupo disponible $(q_s = 1, para todo s \in S)$.

La estructura de prioridad $\succ = (\succ_s)_{s \in S}$ es caracterizada por

\succ_{s_1}	\succ_{s_2}	\succ_{s_3}	\succ_{s_4}	• • •	$\succ_{s_{n-1}}$	\succ_{s_n}
h_2					h_{n-1}	
h_3	h_2	:	:	:	:	h_n
h_1	÷	:	÷	:	÷	:
:	:	:	:	:	:	:

Teorema 1

Hay contextos (S, H, \succ, q) en los cuales **no existe** ningún mecanismo estable y *strategy-proof*.

Demostración (continuación). Sea $R = (R_h)_{h \in H} \in \mathcal{R}^{ego}$ un perfil de preferencias egocéntricas tal que $\sigma(R)$ cumple las siguientes propiedades:

$\sigma(R_{h_1})$	$\sigma(R_{h_2})$	$\sigma(R_{h_3})$		$\sigma(R_{h_n})$
s_1	<i>s</i> ₂	<i>s</i> ₃	• • •	Sn
<i>s</i> ₂	s_1	:	:	:
:	:	:	÷	:
\otimes	\otimes	\otimes	\otimes	\otimes

Dados los emparejamientos

$$\mu = \begin{pmatrix} h_1 & h_2 & h_3 & \cdots & h_n \\ s_1 & s_2 & s_3 & \cdots & s_n \end{pmatrix} \qquad \mathsf{y} \qquad \mu' = \begin{pmatrix} h_1 & h_2 & h_3 & \cdots & h_n \\ s_2 & s_1 & s_3 & \cdots & s_n \end{pmatrix},$$

asuma que las preferencias del estudiante h_3 cumplen $\mu' P_{h_3} \mu$.

Teorema 1

Hay contextos (S, H, \succ, q) en los cuales **no existe** ningún mecanismo estable y *strategy-proof*.

Demostración (continuación).

En este contexto, μ y μ' son los **únicos** emparejamientos estables del problema de elección escolar (S, H, \succ, q, R) . Por lo tanto, si $\Gamma : \mathcal{R}^{\text{ego}} \to \mathcal{M}$ es un mecanismo estable, entonces $\Gamma(R) \in \{\mu, \mu'\}$.

Asuma que $\Gamma(R) = \mu$. Si \tilde{R}_{h_3} es una preferencia egocéntrica tal que

$$s_1 \, \sigma(\tilde{R}_{h_3}) \, s_3 \, \sigma(\tilde{R}_{h_3}) \cdots,$$

entonces μ' es el **único** emparejamiento estable cuando las preferencias de los estudiantes son $(R_{-h_3}, \tilde{R}_{h_3})$.

Por lo tanto, el estudiante h_3 tiene incentivos a reportar preferencias falsas cuando los otros estudiantes reportan R_{-h_3} , pues

$$\Gamma(R_{-h_3}, \tilde{R}_{h_3})P_{h_3}\Gamma(R).$$

Teorema 1

Hay contextos (S, H, \succ, q) en los cuales **no existe** ningún mecanismo estable y *strategy-proof*.

Demostración (continuación). Asuma que $\Gamma(R) = \mu'$. Si \tilde{R}_{h_2} es una preferencia egocéntrica tal que

$$s_2 \, \sigma(\tilde{R}_{h_2}) \, s_n \, \sigma(\tilde{R}_{h_2}) \cdots,$$

entonces μ es el **único** emparejamiento estable cuando las preferencias de los estudiantes son $(R_{-h_2}, \tilde{R}_{h_2})$.

Por lo tanto, el estudiante h_2 tiene incentivos a reportar preferencias falsas cuando los otros estudiantes reportan R_{-h_2} , pues

$$\Gamma(R_{-h_2}, \tilde{R}_{h_2}) P_{h_2} \Gamma(R).$$

Por lo tanto, en todo problema de elección escolar compatible con las características antes descritas, ningún mecanimo estable $\Gamma: \mathcal{R}^{\mathrm{ego}} \to \mathcal{M}$ es *strategy-proof*.

Externalidades débiles versus ausencia de externalidades

Teorema 2

Dado un contexto de elección escolar (S, H, \succ, q) y un mecanismo $\Phi : \mathcal{R}^{\mathrm{std}} \to \mathcal{M}$, defina

 $\Gamma:\mathcal{R}^{\mathrm{ego}} o \mathcal{M}$ por

$$\Gamma[R] = \Phi[\sigma(R)], \qquad \forall R \in \mathcal{R}^{\text{ego}}.$$

Entonces, Γ es strategy-proof si y solamente si Φ es strategy-proof y non-bossy.

Este resultado implica que para todo contexto de elección escolar existe al menos un mecanismo Pareto eficiente, individualmente racional y *strategy-proof*.

Al momento de evaluar mecanismos centralizados de asignación escolar en la presencia de externalidades, la <u>eficiencia</u> tiene ventajas sobre la <u>estabilidad</u>.

Incompatibilidad entre estabilidad y Pareto eficiencia débil

Suponga que $H = \{h_1, h_2, h_3\}$, $S = \{s_1, s_2, s_3\}$ y $q_{s_1} = q_{s_2} = q_{s_3} = 1$. Sea $R \in \mathcal{R}^{\text{ego}}$ un perfil que induce preferencias estándar que cumplen con las siguientes propiedades:

$\sigma(R_{h_1})$	$\sigma(R_{h_2})$	$\sigma(R_{h_3})$	\succ_{s_1}	\succ_{s_2}	$\succ s_3$
s ₂	s_1	s_1	h_1	h_2	h_2
s_1	s 3	s ₂	h ₂	h ₃	h_3
s 3	s 2	s 3	h ₃	h_1	h_1

Además, asuma que las preferencias de h_2 cumplen con que $\mu' \succ_{h_2} \mu$, donde

$$\mu = \begin{bmatrix} h_1 & h_2 & h_3 \\ s_1 & s_3 & s_2 \end{bmatrix}, \qquad \mu' = \begin{bmatrix} h_1 & h_2 & h_3 \\ s_2 & s_3 & s_1 \end{bmatrix}.$$

En este contexto, μ es el único emparejamiento estable. Sin embargo, todos los estudiantes prefieren estrictamente el emparejamiento μ' .

Por lo tanto, en la presencia de externalidades, hay contextos de elección escolar en los cuales **no existe** ningún mecanismo estable y Pareto eficiente débil.

Aciclicidad de Ergin

Los órdenes de prioridad $\succ = (\succ_s)_{s \in S}$ y el vector de cupos $q = (q_s)_{s \in S}$ son Ergin-acíclicos si <u>no existen</u> colegios $s_1, s_2 \in S$ y estudiantes $h_1, h_2, h_3 \in H$ tales que

- $h_1 \succ_{s_1} h_2 \succ_{s_1} h_3$.
- $h_3 \succ_{s_2} h_1$.
- Existen conjuntos $H_{s_1}, H_{s_2} \subseteq H \setminus \{h_1, h_2, h_3\}$, con $|H_{s_1}| = q_{s_1} 1$ and $|H_{s_2}| = q_{s_2} 1$, tales que $H_{s_1} \subseteq \{h \in H : h \succ_{s_1} h_2\}$ y $H_{s_2} \subseteq \{h \in H : h \succ_{s_2} h_1\}$.

Proposición 1

Dado (S, H, \succ, q) , las siguientes condiciones son equivalentes

- (i) (\succ, q) es Ergin-acíclico.
- (ii) El mecanismo $\mathrm{DA}^{\mathrm{ego}}_{(\succ, a)} : \mathcal{R}^{\mathrm{ego}} \to \mathcal{M}$ es estable y *strategy-proof*.

Además, si (\succ, q) es Ergin-acíclico, entonces $\mathrm{DA}^{\mathrm{ego}}_{(\succ, q)}$ es Pareto eficiente en $\mathcal{R}^{\mathrm{ego}}$.

Existencia de mecanismos estables y strategy-proof

Proposición 2

Dado (S, H, \succ, q) , si existe un mecanismo $\Gamma : \mathcal{R}^{\mathrm{ego}} \to \mathcal{M}$ que es estable y *strategy-proof*, entonces coincide con $\mathrm{DA}^{\mathrm{ego}}_{(\succ, q)}$.

Teorema 3

Dado un contexto de elección escolar (S, H, \succ, q) , existe un mecanismo estable y *strategy-proof* definido en \mathcal{R}^{ego} si y solamente si (\succ, q) es Ergin-acíclico.

Resumen

	Modelo sin Externalidades	Preferencias Egocéntricas
Existe un mecanismo estable y strategy-proof	✓	×
Existe un mecanismo estable y Pareto eficiente débil	√	×
(\succ,q) Ergin-acíclico \iff Existe mecanismo estable y $\textit{strategy-proof}$	×	\checkmark
Existe mecanismo estable, <i>strategy-proof</i> y Pareto eficiente débil Existe mecanismo <i>strategy-proof</i> , Pareto eficiente e individualmente racional	√ √	×

Los efectos de las externalidades sobre los incentivos a revelar información pueden ser relevantes, incluso cuando estas tienen un rol secundario en las preferencias de los estudiantes por colegios.