ANÁLISIS Y ESPECIFICACIÓN DE SISTEMAS SOFTWARE

TEMA 3.6: DIAGRAMAS DE ACTIVIDAD

Índice

- Diagramas de actividad
- Elementos
- Representación gráfica
- Flujos de control
- Particiones
- Flujos de objetos
- Ejercicios

Diagrama de actividad

- Los diagramas de actividad se utilizan para describir la lógica de los procesos, los procesos de negocio y el flujo de trabajo
- Son similares a los diagramas de flujo
- La principal diferencia entre los diagramas de actividad y los diagramas de flujo es que los diagramas de actividad soportan actividades en paralelo

Diagramas de actividad

- Una Actividad es una ejecución no atómica, dentro de una máquina de estados
- La estructura de una actividad es un flujo entre nodos de actividad (subactividades o acciones)
 - La ejecución de una actividad produce la ejecución de los nodos de actividad incluidos en la actividad
 - Un nodo de actividad es una agrupación anidada de acciones o de otros nodos de actividad
 - Una acción es un tipo de nodo de actividad atómico (que no puede descomponerse)
 - Nodos de actividad y acciones se representan igual

Diagramas de actividad

 Los nodos de actividad sirven como unidades organizativas dentro de las actividades

Procesar factura(f)

Construir()

- Las acciones son computaciones ejecutables atómicas como:
 - Llamadas a otras operaciones acción simple

Ofertar plano

- Envío de señales
- Creación o destrucción de objetos
- Simples cálculos
 - (evaluación de una expresión)

indice := buscar(e)+7

expresión

Diagrama de actividad

- Un Diagrama de Actividad muestra el flujo de control entre actividades
- Cada diagrama representa una actividad, que puede estar formada por otras actividades más pequeñas
- Mientras un diagrama de interacción muestra objetos que pasan mensajes, uno de actividades muestra las operaciones que se pasan entre objetos
- Sirven para modelar:
 - La dinámica de un conjunto de objetos
 - El flujo de control de una operación o un caso de uso
 - Un proceso de negocio o un flujo de trabajo (Workflow)

Elementos

Nodos

- Acciones (nodos de actividad atómicos)
- Actividades (nodos de actividad con estructura interna)
- Nodos de Control (controlan el flujo)
- Objetos de valor (objetos o datos utilizados)

Final de flujo

- Flujos
 - Flujos de control
 - Flujos de objetos

Elementos

El Diagrama de Actividad muestra los pasos de la computación (transición entre actividades)

- Cada paso define un 'estar haciendo algo' (estado de actividad)
- El paso de una actividad a otra (transición) se realiza mediante un disparador, que normalmente es el fin de la actividad
- Una transición se puede disparar n veces (iteración)
- Símbolos especiales para determinar el inicio y el fin de la actividad.

Representación gráfica.

- Ejemplo de diagrama de actividad:
 - Construir una casa

- Cuando se completa una acción o un nodo de actividad, el flujo de control pasa a la siguiente acción o nodo de actividad
- Debe haber un inicio (evento inicio) y una terminación (eventos de finalización, pueden ser varios)

- Existen varios tipos de nodos de control:
- Bifurcaciones [Decision Node]:
 - Representan caminos alternativos, elegidos en función del valor de una expresión booleana
 - Se representa con un rombo
 - Puede tener un flujo de entrada y dos o más de salida
 - En cada flujo de salida se coloca una guarda (expresión booleana), que se evalúa al entrar en la bifurcación
 - Las guardas no deben solaparse (para que solo una sea cierta a la vez)
 - Pero deben cubrir todas las posibilidades (para que siempre haya una cierta).
 - Se puede usar "else" para marcar un flujo de salida alternativo

Definición de bifurcaciones en el flujo

 Se usa cuando en una actividad no hay lógica involucrada, sino sólo comparación.

•Todas las ramas deben tener asociada una condición de guarda. Una rama puede tener la cond. de guarda predefinida [else]

- Fusiones. [Merge Node]:
 - Los caminos antes separados se pueden juntar a un rombo con varias entradas y una salida. Aquí no hay guardas
- Ejemplo con bifurcaciones y fusiones:

Divisiones. [Fork Node]:

- Representan la separación de un flujo de control sencillo en dos o más flujos de control concurrentes
- Tienen una transición de entrada y dos o más de salida.,
 cada una de las cuales representa un flujo independiente
- Las actividades de cada camino después de la división continúan en paralelo

• Uniones. [Join Node]:

- Representan la sincronización de dos o más flujos de control concurrentes
 - Cada flujo de entrada espera hasta que todos han alcanzado la unión
- Tienen dos o más transiciones de entrada y una de salida

Definición de concurrencia en el flujo de actividades

• no obliga a concurrencia en la implementación

• Ejemplo con divisiones y uniones:

Particiones [Partition / Swimlane]

- Los diagramas de actividad describen lo que sucede pero no quién hace qué
- En programación se traduce en que no se sabe qué clase es responsable de cada acción
- En un proceso de negocio se traduce en que no se sabe qué parte de la organización lleva a cabo una acción
- Esto no acarrea grandes problemas, ya que, a menudo interesa saber únicamente qué es lo que se hace

Particiones. [Partition / Swimlane]:

- Son agrupaciones de flujos de procesos
- Tienen un nombre único dentro del diagrama
- Las transiciones pueden cruzarlas
- Cada partición representa una responsabilidad de alto nivel de la actividad global de un diagrama de actividades
- Al modelar procesos de negocio cada partición representa una unidad organizacional o una organización diferente, responsable de la realización de la parte correspondiente
- Conceptualmente, las actividades de cada partición se consideran (casi siempre) independientes de las actividades de las demás particiones

Particiones [Partition / Swimlane]

- Si se desea mostrar quién hace cada cosa, se puede dividir un diagrama de actividad en particiones
- Cada partición mostrará qué acciones se llevan a cabo por una clase o una unidad de la organización

Dimension name

Partition Partition Name-3

Name-1

Partition Name-4

Name-3

Name-4

c) Partition using a multidimensional hierarchical swimlane notation

• Ejemplo con particiones: Venta de billetes de avión

- Los Flujos de Objetos son flujos en los cuales se ven involucrados objetos
 - Los objetos se representan como nodos objeto conectados con flechas a las acciones que los crean o los consumen

- También se puede mostrar cómo cambia el estado del objeto
 - Se muestra el estado entre corchetes debajo del nombre del objeto

Nodos Objeto

 Indican que una instancia de una clase (opcionalmente en un cierto estado) está disponible en un punto particular de una actividad

Parámetros de Acciones. [Pin]

- Son una manera especial de flujo de objetos
- Representan elementos que proveen valores de entrada para las acciones o valores resultantes de ellas
- Se representan como pequeños cuadrados en el borde del símbolo de la acción.

- Almacen de Datos. [Data Store]
 - Tipo especial de nodo objeto que representa un repositorio persistente de información

• Ejemplo con particiones: Gestión de pedidos

Diagramas de Actividad

- Tipo especial de Diagrama de Transición de Estados: focalizado en las acciones del sistema y no en sus estados de espera.
- Proporciona una vista funcional del sistema: captura los constructores de secuencia, repetición y condición que permiten reflejar el flujo de proceso de la aplicación. Además, añade concurrencia (más potente que la técnica de DFDs).
- Distintos Usos:
 - Permiten entender el proceso de negocio antes de comenzar a describir casos de uso
 - Rellenan el hueco existente entre Casos de Uso y diagramas de interacción (secuencia y colaboración)
 - Permiten diseñar algoritmos complejos, secuenciales o concurrentes (aplicados a operaciones)

Estados del D. Actividad

- Los estados de actividad del diagrama de actividad reflejan estados de cálculo que normalmente no deberían ser interrumpibles por eventos
 - Las transiciones entre estados de actividad se produce normalmente cuando finaliza la actividad origen (no suelen tener eventos asociados a las transiciones).
 - Si hay muchas transiciones dirigidas por eventos, es preferible usar un diagrama de estado, que se compone de estados de espera.
- Los estados de acción son similares a los de actividad pero se supone que su ejecución es atómica (no pueden existir eventos asociados a sus transiciones) Normalmente corresponden a invocación de operaciones atómicas del D. Clases.
- Los estados de subactividad son estados compuestos, que pueden ser especificados mediante nuevos D.A.

- Reglas Evento/Condición/Acción: se asocian a las transiciones.
 - Eventos: normalmente implícito (finalización de actividad)
 - Condiciones de Guarda: se sitúan sobre los disparadores para restringir la navegación a través del diagrama de actividad
 - La condición debe ser cierta antes de poder activar la transición
 - Acciones: determinan el disparo de nuevos eventos como resultado de haber completado la actividad actual.

Relación con el Caso de uso

- El **D.C.U**. describe el sistema exclusivamente desde el punto de vista de la funcionalidad esperada por el usuario.
- El **D.A.**, cuando se asocia a un caso de uso, permite definir el funcionamiento interno de cada requisito funcional.
- Si el DCU se ha completado con descripciones de flujo principal y alternativos, los estados de actividad que describen el caso de uso pueden ser descubiertos a partir de esta descripción.
- Cada Diagrama de Actividad puede incorporar muchos casos de uso o sólo parte de un caso de uso, en función de cómo los hayamos modelado previamente.

Uso del diagrama de actividad

- Mecanismo de Comunicación: Permite definir los elementos esenciales del problema de un modo familiar para el usuario, que de este modo los puede validar. Puede ser usado para entender el proceso de negocio de una aplicación incluso antes de que se definan los casos de uso.
- Mecanismo de Reingeniería: el diseñador puede modificar estos Diagramas de Actividad durante el proceso de diseño para introducir mejoras en los procesos.

Ejemplo: Tramitar Pedido

Relación entre estados y Flujos de Datos

- Las acciones operan por y sobre objetos. Esos objetos pueden por tanto:
 - Tener la responsabilidad de iniciar la acción: implican la definición de Calles (Swimlanes)
 - columnas que permiten definir qué objeto se hace responsable de cada actividad y decisión.
 - Ser usados o determinados por la acción: implican la definición de Flujos de datos (Dataflows)
- Por tanto las acciones normalmente especifican llamadas entre el objeto que inicia las acciones y los objetos que son destino de esas acciones

Asig. de Resp. (diseño)

Mapeo de D. A. a Operaciones y Métodos

- Las actividades pueden mapearse directamente a operaciones.
- Las barras de sincronización indican que no hay dependencia secuencial. En algún caso puede ser interesante plantearse el manejo de hilos de ejecución como la mejor alternativa de implementación.
- La bifurcación identifica puntos en el proceso que requieren lógica de decisión para controlar la reunificación o separación de control.
- Los disparadores identifican el flujo de una actividad a otra. Las iteraciones identifican lógica de repetición en la implementación.
- Las condiciones de guarda se convierten en lógica condicional en los métodos, y gobiernan cuándo se debe invocar otra operación o cuándo usar un camino lógico.

Ejercicio: Alquiler Vídeo

Ejercicio: / tidarie: Viaco	
CU	Alquilar Video
Breve Descr.	El usuario alquila un vídeo de la estantería del videoclub o pregunta por una reserva. Si el usuario no debe dinero, se le alquila la película. Si la cinta no se devuelve a tiempo, se envía una nota de recargo al cliente por mail.
Actores	Empleado, dispositivo de scanner
Precond	La cinta de vídeo está disponible. El cliente tiene una tarjeta de cliente. El dispositivo de scanner funciona correctamente. El empleado conoce cómo usar el sistema.
Postc	El vídeo se alquila y se actualiza la base de datos del videoclub

Ejercicio: Alquiler Vídeo

P Un cliente pregunta por una película (reservada o no) o coge una película de la estantería del videoclub. El vídeo y la tarjeta de cliente se escanean, y el programa presenta cualquier pago pendiente para que el empleado solicite al cliente su pago. Si el cliente no tiene ningún pago pendiente, se le permite alquilar el video. Sin embargo, si el estado del cliente es 'no fiable', se pide que el cliente adelante el equivalente a un período de alquiler por cada cinta alquilada. Si se puede efectuar el alquiler, se actualiza el stock de cintas y se le entrega al cliente sus cintas y un recibo de alquiler. El cliente puede pagar en efectivo o mediante tarjeta de crédito. Cada registro de alquiler guarda el identificador del empleado, la fecha de alquiler y la fecha de devolución.

F A

- •No se pueden alquilar vídeos porque el cliente no está registrado
- No se pueden alquilar vídeos porque el cliente tiene el estado 'impago'
- La tarjeta está en mal estado y no puede ser escaneada
- El pago por tarjeta de crédito es rechazado por el banco

Solución

Ejercicio

- Realizar el diagrama de actividad de los objetos "Fantasma" del juego Pacman. En este juego los fantasmas persiguen a Pacman y huyen de Pacman el tiempo en el que éste tiene poder para comérselos.
- Los objetos "Fantasma" pueden realizar las siguientes acciones: Nacer, CazarPacman, HuirDePacman, Morir.

Solución

Ejercicio

Realizar el diagrama de actividad que represente la validación e identificación de un usuario en *Facebook*. Inicialmente el usuario debe introducir su usuario y contraseña disponiendo de tres intentos. En caso de agotar los tres intentos se bloqueará la cuenta y se enviará un correo al usuario con los detalles del bloqueo. Cuando estas dos acciones se hayan completado se mostrará al usuario una pantalla con el motivo del bloqueo de su cuenta y finalizará el proceso de validación e identificación. Si el usuario y contraseña son correctos, se deberán recuperar todas las notificaciones, los mensajes privados y las solicitudes. Hasta que no estén completas estas tres acciones no se cargará el muro del usuario. Una vez cargado el muro, se deberá comprobar si en las preferencias el usuario tiene su estado inicial como oculto o no. En caso de tener su estado como oculto se mantendrá su estado "offline" y se mostrará el muro. En otro caso, su estado será "online" y se mostrará el muro finalizando el proceso de validación e identificación.

Solución

