Nahin Ul Sadad Lecturer CSE, RUET

Memory Technologies

	Capacity	Latency	Cost/GB
Register	1000s of bits	20 ps	\$\$\$\$
SRAM	~10 KB-10 MB	1-10 ns	~\$1000
DRAM	~10 GB	80 ns	~\$10
Flash (SSD)*	~100 GB	100 us	~\$1
Hard disk*	~1 TB	10 ms	~\$0.10

	Capacity	Latency	Cost/GB
Register	1000s of bits	20 ps	\$\$\$\$
SRAM	~10 KB-10 MB	1-10 ns	~\$1000
DRAM	~10 GB	80 ns	~\$10
Flash (SSD)*	~100 GB	100 us	~\$1
Hard disk*	~1 TB	10 ms	~\$0.10

	Capacity	Latency	Cost/GB
Register	1000s of bits	20 ps	\$\$\$\$
SRAM	~10 KB-10 MB	1-10 ns	~\$1000
DRAM	~10 GB	80 ns	~\$10
Flash (SSD)*	~100 GB	100 us	~\$1
Hard disk*	~1 TB	10 ms	~\$0.10

Capacity Speed Cost
Decrease Increase Increase

We want large, fast and cheap memory. But

Large memories are slow! Fast memories are expensive!

Idea: Can we use a hierarchal system of memories with different tradeoffs to emulate a large, fast, cheap memory?

- Programming model: Single memory, single address space
- Machine transparently stores data in fast or slow memory, depending on usage patterns.

Figure: Memory Hierarchy

Volatile Memory = It only contains data when it is powered ON.

It will lose its contents after power off.

Non-volatile Memory = It contains data even after power off.

Figure: How Memory Hierarchy works

Non-Volatile Storage: Flash

Electrons here diminish strength of field from control gate \Rightarrow no inversion \Rightarrow NFET stays off even when word line is high.

Cyferz (CC BY 2.5)

Flash Memory: Use "floating gate" transistors to store charge

- Very dense: Multiple bits/transistor, read and written in blocks
- Slow (especially on writes), 10-100 us
- Limited number of writes: charging/discharging the floating gate (writes) requires large voltages that damage transistor

Examples: Solid State Disk (SSD) + Pen Drive

Non-Volatile Storage: Hard Disk

Hard Disk: Rotating magnetic platters + read/write head

- Extremely slow (~10ms): Mechanically move head to position, wait for data to pass underneath head
- ~100MB/s for sequential read/writes
- ~100KB/s for random read/writes
- Cheap

Examples: Hard Drive Disk (HDD)

Thank You ©