Ferienkurs: Mechanik

Ferienkurs

Theoretische Physik: Mechanik

Sommer 2013

Übung 3 - Angabe

1 Zweiteilchenproblem im Lagrange-Formalismus

Betrachten Sie ein System aus zwei Teilchen der Massen m_1 und m_2 , die unter dem Einfluss eines Potentials $V(\vec{r})$ stehen, welches nur vom Relativvektor $\vec{r} = \vec{r}_2 - \vec{r}_1$ der beiden Teilchen abhängt.

- 1. Stellen Sie die Lagrange-Funktion $L(\vec{r}_1, \vec{r}_2, \dot{\vec{r}}_1, \dot{\vec{r}}_2)$ des Systems auf.
- 2. Führen Sie den Relativvektor \vec{r} und den Schwerpunktsvektor $\vec{R} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}$, also verallgemeinerte Koordinaten, ein und bestimmen Sie die Euler-Lagrange-Gleichungen.

2 Achterbahn

Ferienkurs: Mechanik

Der Wagen einer Achterbahn gleitet aus dem Stand reibungslos von der Anfangshöhe H in den kreisförmigen Looping mit Radius R.

- 1. Formulieren Sie die Bewegungsgleichungen
 - i) in Polarkoordinaten unter der Zwangsbedingung R r = 0 und bestimmen Sie die Winkelgeschwindigkeit $\dot{\varphi}$ mithilfe des Energieerhaltungssatzes.
 - ii) im mit dem Wagen verbundenen Bezugssystem mit der x'-Achse senkrecht zur Bahn. Bestimmen Sie die Zwangskraft.

Hinweis: Wählen Sie den Koodinatenursprung im Zentrum des Kreises und geben Sie nur die Bewegungsgleichung für die x'-Komponente an.

- 2. Bestimmen Sie für H = 2R die Höhe h_{max} , bei der der Wagen den Bahnkontakt verliert. Hinweis: Der Kontakt geht verloren, wenn die Zwangskraft nach außen gerichtet wäre.
- 3. Betrachten Sie nun den Fall H > 2R. Bestimmen Sie die Höhe h_{min} , die mindestens nötig ist, um den Wagen immer auf der Bahn zu halten.

3 Zwangskräfte

Ferienkurs: Mechanik

Ein Massepunkt der Masse m bewege sich in der x-z-Ebene im homogenen Schwerefeld der Erde $(\vec{F} = -mg\vec{e}_z)$, unter der Zwangsbedingung:

$$f(x,z) = \frac{x^2}{2} + bz = 0 \tag{1}$$

1. Die Bewegungsgleichungen (Lagrange-Gleichungen 1.Art) für den Bahnvektor $\vec{r}(t) = (x(t), z(t))^T$ lauten:

$$m\ddot{\vec{r}} = \vec{F} + \vec{F}^* = -mg\vec{e}_z + \lambda \vec{\nabla} f \tag{2}$$

Bestimmen Sie den Lagrange-Multiplikator λ als Funktion der Koordinaten und Geschwindigkeiten mittels der Bewegungsgleichungen und der Zwangsbedingung.

- 2. Eliminieren Sie λ aus den Bewegungsgleichungen.
- 3. Für welche Wahl des Parameters b verschwindet die Zwangskraft $\vec{F}^* = \lambda \vec{\nabla} f$? Interpretieren Sie dieses Ergebnis!

4 Verallgemeinerte Koordinaten

An den Enden einer masselosen Stange der Länge l sitzen zwei gleiche Massen m, die in Schienen längs der x- bzw. z-Achse gehalten werden. Es wirkt das homogene Schwerefeld. Die Bewegungsgleichungen (Lagrange-Gleichungen 1.Art) für die Koordinaten $x_1(t)$, $z_2(t)$ lauten:

$$m\ddot{x}_1 = 0 + \lambda \frac{\partial f}{\partial x_1} \tag{3}$$

$$m\ddot{z}_2 = -mg + \lambda \frac{\partial f}{\partial z_2} \tag{4}$$

dabei gilt die Zwangsbedingung:

$$f(x_1, z_2) = x_1^2 + z_2^2 - l^2 = 0 (5)$$

Mit der Einführung der verallgemeinerten Koordinate $\varphi(t)$:

$$x_1(t) = lsin\varphi(t)$$
 $z_2(t) = -lcos\varphi(t)$ (6)

lässt sich die Zwangsbedingung automatisch erfüllen.

- 1. Drücken Sie die Bewegungsgleichungen durch die neue Variable φ aus.
- 2. Eliminieren Sie den Lagrange-Multiplikator λ aus den Bewegungsgleichungen und finden Sie die Bewegungsgleichung für den Winkel φ .

Ferienkurs: Mechanik

3. Lösen Sie die Bewegungsgleichung im Falle kleiner Winkel $\varphi \ll 1$.

Hinweis: $sinx \approx x$ für $x \ll 1$

5 Ebenes Doppelependel

Betrachten Sie ein ebenes Doppelpendel im homogenen Schwerefeld der Erde im dreidimensionalen Raum. Der Aufhängepunkt befinde sich im Ursprung O. Die Positionen der Massenpunkte mit den Massen m_1 und m_2 werden beschrieben durch die Vektoren $\vec{r}_1 = (x_1, y_1, z_1)$ und $\vec{r}_2 = (x_2, y_2, z_2)$.

- 1. Zeigen Sie, dass es für dieses System vier holonome Zwangsbedingungen gibt und schreiben Sie diese auf. Wie viele unabhängige Freiheitsgrade bleiben dem System folglich? Geben sie geeignete verallgemeinerte Koordinaten an.
- 2. Drücken Sie die kinetische Energie T des Systems durch die verallgemeinerten Koordinaten aus und schrieben Sie diese mithilfe der Matrix $A = (a_{ij})_{\{i,j\}}$ als:

$$t = \frac{1}{2}a_{ij}(q)\dot{q}_i\dot{q}_j \tag{7}$$

Geben Sie A an.

3. Drücken Sie schließlich die potentielle Energie U des Systems durch die verallgemeinerten Koordinaten aus.

6 Rotierendes Teilchen in drei Dimensionen

Ferienkurs: Mechanik

Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer Stange gehalten, auf der es sich reibungsgrei bewegen kann. Die Stange rotiere in einem festen Winkel ϑ_0 zur z-Achse mit der konstanten Winkelgeschwindigkeit ω . Es wirken keine weiteren Kräfte.

- 1. Wie lautet die Lagrangefunktion?
- 2. Geben Sie die Bewegungsgleichung an und lösen Sie diese mit den Anfangsbedingungen $r(0) = r_0$ und $\dot{r}(0) = 0$.
- Nun befinde sich das Teilchen unter dem Einfluss des homogenen Schwerefeldes (0, 0, -g)^T der Erde.
 Geben Sie die Lagrangefunktion an.
- 4. Lösen Sie die Bewegungsgleichung bei Berücksichtigung der Anfangsbedingungen $r(0) = r_0$ und $\dot{r}(0) = 0$.
- 5. Diskutieren Sie Ihr Ergebnis in Abhängigkeit vom Verhältnis $\frac{r_0\omega^2}{g}$.