Word Prediction With Suffix Trie HMM's

Bernhard Bauer < bauerb@in.tum.de > Jul 4, 2008

The task

- Statistical word prediction
- Online learning

Applications

- Mobile devices (T9)
- Dasher (http://

 www.inference.phy.cam.ac.uk/
 dasher/)

Applications

- Mobile devices (T9)
- Dasher (<u>http://</u> <u>www.inference.phy.cam.ac.uk/</u> <u>dasher/</u>)

HM's

String searching

Finite automaton

String searching

Knuth-Morris-Pratt

Α	В	С	Α	В	D
-1	0	0	0		2

Suffix trie

Suffix trie

State model

Full backlinks

Partial backlinks

Output model

Space complexity

- $O(n^2 \cdot m)$
 - n: word length
 - *m*: number of words
- Less if words share common prefixes
- Suffix trees can achieve $O(n \cdot m)$, but are not applicable

• $O(n^2 \cdot m)$ potential states, but most of them have probability zero

- $O(n^2 \cdot m)$ potential states, but most of them have probability zero
- Sparse representation

- $O(n^2 \cdot m)$ potential states, but most of them have probability zero
- Sparse representation
- Possible states are suffixes of word read so far

- $O(n^2 \cdot m)$ potential states, but most of them have probability zero
- Sparse representation
- Possible states are suffixes of word read so far
- Store only longest suffix and list of probabilities

Word completion

Online version of Baum-Welch algorithm:

- Online version of Baum-Welch algorithm:
 - Baum-Welch algorithm counts estimated transitions

- Online version of Baum-Welch algorithm:
 - Baum-Welch algorithm counts estimated transitions
 - Use intermediate transition counts for inference

Suffix trie construction

Suffix trie construction

- Problem: probabilities stay zero
 ⇒ Smoothing
- Value: current state probability
- Total transition counts increase by I (like during update-step)
- Uses simple estimation of new values for inference, then updates estimation

Evaluation

- English text corpus from Dasher,
 ≈56,000 words, 300 kb
- 90% training, 10% testing
- Measuring number of states and average perplexity of test set

Results

States

Words learned

Avg. Perplexity [bits/char]

Results

Words learned

Avg. Perplexity [bits/char]

Results

An example

• T9-like text input:

http://home.in.tum.de/~bauerb/t9/