

ATK-LORA-01 无线串口模块用户手册

远距离无线串口模块

用户手册

ALIENTEK 广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V1.00	2018/3/30	第一次发布
V1.10	2018/9/30	增加功能,修改部分内容和图片
V1.20	2019/5/5	修改硬件,硬件版本为 V3.0
		修改部分内容和图片
V1.30	2019/7/7	修改部分内容

目录

1.	. 特性参数	3
2.	. 使用说明	4
	2.1 模块引脚说明	4
	2.2 模块连接图	5
	2.3 模块功能介绍	5
	2.3.1 快速了解	6
	2.3.2 配置功能	6
	2.3.3 通信功能	8
	2.3.4 固件升级功能	10
	2.4 通信功能图解	11
	2.4.1 透明传输	11
	2.4.2 定向传输	13
	2.5 数据流控制	15
	2.6 模块常见问题分析	16
3.	. 结构尺寸	17
4.	. 其他	17

1. 特性参数

ATK-LORA-01_V3.0(V3.0 是版本号,型号是 ATK-LORA-01,下面均以 ATK-LORA-01 表示该产品)是 ALIENTEK 推出的一款体积小、微功率、低功耗、高性能远距离 LORA 无线串口模块。模块设计是采用高效的 ISM 频段射频 SX1278 扩频芯片,模块的工作频率410Mhz~441Mhz,以 1Mhz 频率为步进信道,共 32 个信道,可通过 AT 指令在线修改串口速率,发射功率,空中速率、工作模式等各种参数,并且支持固件升级功能。

ATK-LORA-01 模块具有: 体积小、灵敏度高、支持低功耗省电,特点包括:

- 1、工业频段: 433Mhz 免申请频段
- 2、多种功率等级(最大 20dBm, 最大 100mW)
- 3、多种串口波特率、空中速率、工作模式
- 4、支持空中唤醒功能,低接收功耗
- 5、双 512 环形 FIFO
- 6、频率 410-441Mhz, 提供 32 个信道
- 7、接收灵敏度达-136dBm, 传输距离 3000 米
- 8、自动分包传输,保证数据包的完整性 模块电器参数如表 1.1 所示。

项目	说明	
模块尺寸	36*20mm(不含 SMA 接头和天线)	
工作频段	410-441Mhz (共 32 个通道),1Mhz,出厂默认 433Mhz	
调制方式	LoRa 扩频	
通信距离	约 3000 米 (测试条件: 晴朗、空旷, 最大功率 20dbm, 空中速率 2.4Kbps,	
	天线增益 3dbi)	
发射功率	最大 20dBm(约 100mW),4 级可调(0-3),每一级增减约 3dBm	
空中速率	6级可调(0.3、1.2、2.4、4.8、9.6、19.2Kbps)	
工作电压	3.3~5V	
发射电流	118ma(20dbm 100mw 电压 5V)	
接收电流	17ma(模式 0、模式 1),最低约 2.3uA(模式 2+2S 唤醒)	
通信接口	UART 串口, 8N1、8E1、8O1, 从 1200-115200 共 8 种波特率(默认 9600、	
	8N1)	
发射长度	内部环形 FIFO 缓存 512 字节,内部自动分包发送。某些空速与波特率组合,	
	可发送无限长度数据包。	
接收长度	内部环形 FIFO 缓存 512 字节,内部自动分包发送。某些空速与波特率组合	
	可发送无限长度数据包。	
模块地址	可配置 65536 个地址 (便于组网支持广播和定向传输)	
接收灵敏	-136dBm@0.3Kbps(接收灵敏度和串口波特率、延迟时间无关)	
度		
天线形式	SMA 天线	
工作温度	-40~+85℃	
存储温度	-40~+125℃	

表 1.1 ATK-LORA-01 无线串口模块电器参数

模块典型应用如下:

- 1、无线抄表
- 2、无线传感
- 3、智能家居
- 4、工业遥控、遥测
- 5、智能楼宇、智能建筑
- 6、高压线检测
- 7、空中唤醒功能
- 8、高速公路
- 9、小型气象站
- 10、自动化数据采集
- 11、消费电子
- 12、路灯空中
- 13、其他无线传输应用

2. 使用说明

2.1 模块引脚说明

ATK-LORA-01 无线串口模块通过 1*6 的排针(2.54mm 间距)同外部连接,模块可以与 ALIENTEK 战舰 STM32F103 V3、精英 STM32F103、探索者 STM32F407、阿波罗 STM32F429/767 开发板直接对接(插 ATK-MODULE 接口),而 ALIENTEK MiniSTM32F103 开发板则可以通过杜邦线连接模块进行测试。所有 ALIENTEK STM32 开发板都提供有相应例程,用户可以直接在这些开发板上,对模块进行测试。

ATK-LORA-01 无线串口模块外观如图 2.1.1 正面图和图 2.1.2 背面图所示:

图 2.1.1ATK-LORA-01 无线串口模块实物图正面

图 2.1.2ATK-LORA-01 无线串口模块实物图背面

模块通过一个 1*6 的排针同外部电路连接, 各引脚的详细描述如表 2.1.3 所示:

序号	名称	引脚方向	说明	
1	MD0	输入	1、配置进入参数设置	
			2、上电时与 AUX 引脚配合进入固件升级模式	
2	AUX	1、输出	1、用于指示模块工作状态,用户唤醒外部 MCU	
		2、输入	2、上电时与 MD0 引脚配合进入固件升级模式	
3	RXD	输入	TTL 串口输入,连接到外部 TXD 输出引脚	
4	TXD	输出	TTL 串口输出,连接到外部 RXD 输入引脚	
5	GND		地线	
6	VCC		3.3V~5V 电源输入	

表 2.1.3 ATK-LORA-01 无线串口模块引脚说明

关于模块固件升级功能模式的详细说明,请看"ATK-LORA-01 模块固件升级操作说明_V1.1.pdf"文档。

2.2 模块连接图

模块与 MCU/ARM 设备电气连接,如图 2.2.1 所示:

图 2.2.1 模块连接图

注意:

- (1) 无线串口模块为 TTL 电平,请与 TTL 电平的 MCU 进行连接。
- (2) 模块的引脚电平是 3.3V, 与 5V 的单片机通信需要做电平转换适配。
- (3) MD0、AUX 引脚悬空下为低电平。

2.3 模块功能介绍

模块根据 MD0 的配置与 AUX 引脚的状态会进入不同的功能,如表 2.3.1 所示:

功能	介绍	进入方法
配置功能	模块参数配置(AT 指令)	上电后, AUX 空闲状态
		(AUX=0), MD0=1
通信功能	无线通信	上电后, AUX 空闲状态
		(AUX=0), MD0=0
固件升级功能	固件升级	上 电 后 : AUX=1 ,
		MD0=1(一起持续1秒时
		间,电平不变)

表 2.3-1 功能介绍

其中在通信功能下,包含4种工作模式,如表2.3-2所示:

模式 (0-2)	介绍	备注
0 一般模式	无线透明、定向数据传输	接收方必须是模式 0、1
	和模式0唯一区别:数据包发	接收方可以是模式 0、1、2
1 唤醒模式	射前,自动增加唤醒码,这样	
	才能唤醒工作在模式2的接	
	收方	
2 省电模式	串口接收关闭,无线处于空中	发射方必须是模式1
	唤醒模式,收到的无线数据后	该模式下串口接收关闭,不
	打开串口发出数据	能无线发射
3 信号强度模式	查看通讯双方的信号强度	接收方必须是模式 0、1

表 2.3-2 工作模式

注意: 工作模式需要模块进入配置功能发送 AT 指令设置才能切换。

2.3.1 快速了解

- 1)透明传输:即透传数据,例如: A 设备发 5 字节数据 AA BB CC DD EE 到 B 设备,B 设备就收到数据 AA BB CC DD EE。(透明传输,针对设备相同地址、相同的通信信道之间通信,用户数据可以是字符或 16 进制数据形式)
- 2) 定向传输: 即定点传输,例如: A 设备(地址为: 0x1400,信道为 0x17(23 信道 433Mhz)) 需要向 B 设备(地址为 0x1234,信道为 0x10(16信道、426Mhz)) 发送数据 AA BB CC, 其通信格式为: 12 34 10 AA BB CC, 其中 1234 为模块 B 的地址,10 为信道,则模块 B 可以收到 AA BB CC。同理,如果 B 设备需要向 A 设备发送数据 AA BB CC,其通信格式为: 14 00 17 AA BB CC,则 A 设备可以收到 AA BB CC。(定向传输,可实现设备间地址和通信信道不同之间通信,数据格式为 16 进制,发送格式:高位地址+低位地址+信道+用户数据) 广播与数据监听:将模块地址设置为 0xFFFF,可以监听相同信道上的所有模块的数据传输;发送的数据,可以被相同信道上任意地址的模块收到,从而起到广播和监听的作用。针对表 2.3-1 功能,下面进行详细的介绍:

2.3.2 配置功能

上电后,当 AUX 为空闲状态(AUX=0),MD0 设置高电平(MD0=1)时,模块会工作在"配置功能",此时无法发射和接收无线数据。在"配置功能"下,串口需设置:波特率"115200"、停止位"1"、数据位"8"、奇偶校验位"无",通过 AT 指令设置模块的工作参数,AT 指令如表 2.3.2.1 所示:

指令	作用
AT	测试模块响应情况
AT+MODEL?	查询设备型号
AT+CGMR?	获取软件版本号
AT+UPDATE	查询设备是否处于固件升级模式
ATE1	指令回显
ATE0	指令不回显
AT+RESET	模块复位 (重启)
AT+DEFAULT	恢复出厂设置

AT+FLASH=	参数保存
AT+ADDR=?	查询设备配置地址范围
AT+ADDR?	查询设备地址
AT+ADDR=	配置设备地址
AT+TPOWER=?	查询发射功率配置范围
AT+TPOWER?	查询发射功率
AT+TPOWER=	配置发射功率
AT+CWMODE=?	查询配置工作模式范围
AT+CWMODE?	查询工作模式
AT+CWMODE=	配置工作模式
AT+TMODE=?	查询配置发送状态范围
AT+TMODE?	查询发送状态
AT+TMODE=	配置发送状态
AT+WLRATE=?	查询无线速率和信道配置范围
AT+WLRATE?	查询无线速率和信道
AT+WLRATE=	配置无线速率和信道
AT+WLTIME=?	查询配置休眠时间范围
AT+WLTIME?	查询休眠时间
AT+WLTIME=	配置休眠时间
AT+UART=?	查询串口配置范围
AT+UART?	查询串口配置
AT+UART=	配置串口

表 2.3.2.1 AT 指令集

模块工作参数配置,如表 2.3.2.2 所示:

串口波特率(bps)	1200-115200
校验位	无、偶检验、奇校验
空中速率(单位: Kbps)	0.3、1.2、2.4、4.8、9.6、19.2
休眠时间(单位:秒)	1, 2
模块地址	0-65535
通信信道	0-31(410-441Mhz 1Mhz 步进)
发射功率(单位: dBm)	11、14、17、20
工作模式	一般模式、唤醒模式、省电模式、信号强度
	模式
发送状态	透明传输、定向传输

表 2.3.2.2 模块工作参数

模块出厂默认参数,如表 2.3.2.3 所示:

串口波特率 (bps)	9600
校验位	无
空中速率(单位: Kbps)	19.2
休眠时间(单位:秒)	1
模块地址	0
通信信道	23

发射功率(单位: dBm)	20
工作模式	一般模式
发送状态	透明传输

表 2.3.2.3 模块出厂默认参数

注意:

- (1) 出厂默认参数中"串口波特率"和"检验位"的参数,是指模块工作在通信功能下的配置。
- (2) 休眠时间:对接收方来说是监听间隔的时间;对发射方来说,是持续发射唤醒码的时间。当模块工作模式在"唤醒模式"时,会在用户数据前自动添加配置休眠时间的唤醒码,当模块工作模式在"省电模式"时,以配置的休眠时间为监听间隔的时间。

通过我们提供 ATK-LORA 配置软件,发送 AT 指令即可以对模块参数进行配置,ATK-LORA 配置软件如图 2.3.2.4 所示:

图 2.3.2.4 ATK-LORA-01 配置软件

AT 指令的使用介绍和配置软件的使用说明,请看 "ATK-LORA-01 模块 AT 指令集 _V1.2.pdf"和 "ATK-LORA-01 模块配置软件操作说明_V1.2.pdf"。

注意: 当退出配置功能 (MD0=0), 模块会重新配置参数, 在配置过程中, AUX 保持高电平, 完成后输出低电平, 模块返回空闲状态。

2.3.3 通信功能

上电后,当 **AUX 空闲状态(AUX=0)**,**MD0 为低电平(MD0=0**)时,模块工作在通信功能,根据用户参数的配置,进入不同的工作模式:

一般模式(模式0)

发射 模块接收来自串口的用户数据,模块发射无线数据包长度为 58 字节,当用户输入数据达到 58 字节时,模块将启动无线发射,此时用户可以继续输入需要发射的数据,当用户需要传输的字节小于 58 字节时,模块等待 1 个字节时间,若无

	用户数据继续输入,则认为数据终止,此时模块将所有数据都包经无线发出,
	当模块开始发送第一包用户数据时,AUX 引脚将输出高电平,当模块把所有数
	据通过 RF 芯片并启动发射后,AUX 输出低电平。此时表明最后一包无线数据
	已经发射完毕,用户可以继续输入长达 512 字节的数据,通过模式 0 发出的数
	据包,只能被处于模式0、模式1的接收模块收到。
接收	模块一直打开无线接收功能,可以接收来自模式0、模式1发出的数据包。收到
	数据包后,模块 AUX 输出高电平, 2-3ms 延迟后, 开始将无线数据通过串口
	TXD 引脚发出,所有无线数据都通过串口输出后,模块将 AUX 引脚输出低电
	平。

唤醒模式(模式1)

发射	模块启动数据包发射的条件与 AUX 功能等于模式 0, 唯一不同的是:模块会在
	每个数据包前自动添加唤醒码(休眠时间),唤醒码的长度取决于用户参数中设
	置的休眠时间。唤醒码的目的是用于唤醒工作模式2的接收模块。所以,模式1
	发射的数据可以被模式 0、1、2 接收到。
接收	等同于模式 0。

省电模式 (模式 2)

发射	模块处于休眠状态,串口将关闭,无法接收来自外部 MCU 的串口数据,所以该
	模式不具有无线发射的功能。
接收	在模式2下,要求发射方必须工作在模式1,无线模块定时监听唤醒码,一旦收
	到有效的唤醒码后,模块将持续处于接收状态,在等待整个有效数据包接收接
	收完毕,然后模块将 AUX 输出高电平,并延迟 2-3ms 后,打开串口将收到的无
	线数据通过 TXD 发出,完毕后将 AUX 输出低电平。无线模块将继续进制"休
	眠-监听"的工作状态,通过设置不同的唤醒时间,模块具有不同的接收响应延
	迟和功耗,用户需要在通讯延迟时间和平均功耗之间取得一个平衡点。

信号强度模式(模式3)

本功能可查看通讯双方的信号强度,评估双方的通信质量提供参考

1 7410 1 2 4 2 7 7 7 7 1 7 1 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7		
发射	同一般模式(模式0)一致	
接收	输出信号强度的信息,如图 2.3.3.1 所示	

SNR: 8 RSSI: -14.676000 SNR: 8 RSSI: -14.676000 SNR: 8 RSSI: -14.676000 SNR: 8 RSSI: -15.742600 SNR: 8 RSSI: -15.742600 SNR: 8 RSSI: -14.676000 SNR: 8 RSSI: -14.676000 SNR: 8 RSSI: -14.676000 SNR: 7 RSSI: -11.476200 SNR: 7 RSSI: -11.476200 SNR: 7 RSSI: -10.409600 SNR: 7 RSSI: -10.409600 SNR: 7 RSSI: -11.476200

图 2.3.3.1 信号强度

SNR: 信噪比(越大越稳定), RSSI: 接收信号的强度指示(越大越稳定)注: 此信息仅供参考,实际应用应以丢包率为准

AUX 详解:

功能 1: 串口数据输出指示(用于唤醒休眠的外部 MCU)

功能 2: 无线发射指示

缓冲区空:内部 512 字节缓冲区的数据,都被写入到无线芯片(自动分包),当 AUX=0时用户连续发起小于 512 字节数据,不会溢出。

当 AUX=1 时缓冲区不为空,内部 512 字节缓存区的数据,尚未全部写入到无线芯片并 开启发射,此时模块有可能在等待用户数据结束超时,或正在进行无线分包发射。注意: AUX=0 代表模块全部串口数据通过无线发射完毕。

功能 3: 模块正在配置过程中(在模块复位和退出配置功能的时候)

注意事项:

- (1)上述功能 1 和功能 2,输出高电平优先,即:满足任何一个输出高电平条件,AUX 就输出高电平,当所有高电平条件均不满足时,AUX 就输出低电平。
- (2) 用户从配置功能退出返回通信功能或在复位过程中,模块会重新设置用户参数,期间 AUX 输出高电平。

2.3.4 固件升级功能

上电后,同时检测到 MD0 与 AUX 引脚都为高电平,并且持续 1S 时间,模块则进入固件升级功能,具体固件升级功能介绍请看"ATK-LORA-01 模块固件升级操作说明 V1.2.pdf"。

2.4 通信功能图解

在 2.3.3 通信功能下对工作模式有一定的了解,下面以例子展示:

2.4.1 透明传输

1) 点对点

- 1,地址相同、信道相同、无线速率(非串口波特率)相同的两个模块,一个模块发送,另外一个模块接收(必须是:一个发,一个收)。
- 2,每个模块都可以做发送/接收。
- 3,数据完全透明,所发即所得。

发送模块 (1个):数据接收模块 (1个):数据

图 2.4.1.1 透明传输(点对点)

例如:

设备 A、B 地址为 0X1234, 信道为 0x12, 速率相同。

设备 A 发送: AA BB CC DD 设备 B 接收: AA BB CC DD

2) 点对多

- 1, 地址相同、信道相同、无线速率(非串口波特率)相同的模块,任意一个模块发送, 其他模块都可以接收到。
- 2,每个模块都可以做发送/接收.
- 3,数据完全透明,所发即所得。

发送模块(1个):数据接收模块(N个):数据

点对点: 两个模块地址、信道、速率相同 点对多: **多个**模块地址、信道、速率相同

图 2.4.1.2 透明传输(点对多)

例如:

设备 A~F 地址为 0X1234, 信道为 0x12, 速率相同。

设备 A 发送: AA BB CC DD 设备 B~F 接收: AA BB CC DD

3) 广播监听

- 1,模块地址为 0XFFFF,则该模块处于广播监听模式,发送的数据可以被相同速率和信道的其他所有模块接收到(广播);同时,可以监听相同速率和信道上所有模块的数据传输(监听)。
- 2,广播监听无需地址相同。

发送模块 (1个):数据接收模块 (N个):数据

点对多:多个模块地址、信道、速率相同

广播监听: 多个模块信道、速率相同, **地址可以不同**

图 2.4.1.3 透明传输 (广播监听)

例如:

设备 A 地址为 0XFFFF,设备 $B\sim F$ 地址不全部一样,设备 B 与 C 地址为 0X1234,设备 D、 E、F 地址为 0X5678。设备 $A\sim F$ 速率相同。

广播:

设备 A 广播: AA BB CC DD 设备 B~F 接收: AA BB CC DD

监听:

设备 B 向 C 发送: AA BB CC DD 设备 A 监听: AA BB CC DD 设备 D 向 E、F 发送: 11 22 33 44 设备 A 监听: 11 22 33 44

2.4.2 定向传输

1) 点对点

- 1,模块发送时可修改地址和信道,用户可以指定数据发送到任意地址和信道。
- 2, 可以实现组网和中继功能。

发送模块 (1个): 地址+信道+数据

接收模块 (1个):数据

点对点(透传): 模块地址、信道、速率相同

点对点(定向):模块地址可变、信道可变,速率相同

图 2.4.2.1 定向传输(点对点)

例如:

设备 A 地址 0X1234, 信道 0X17; 设备 B 地址 0xABCD, 信道 0X01; 设备 C 地址 0X1256, 信道 0x13。

设备 A 发送: AB CD 01 AA BB CC DD

设备 B 接收: AA BB CC DD

设备 C 接收: 无

设备 A 发送: 12 56 13 AA BB CC DD

设备 B 接收: 无

设备 C 接收: AA BB CC DD

2) 广播监听

- 1,模块地址为 0XFFFF,则该模块处于广播监听模式,发送的数据可以被具有相同速率和信道的其他所有模块接收到(广播);同时,可以监听相同速率和信道上所有模块的数据传输(监听);
- 2,广播监听无需地址相同。
- 3,信道地址可设置。当地址为 0XFFFF 时,为广播模式;为其他时,为定向传输模式。

发送模块 (1个): **0XFFFF**+信道+数据

接收模块 (N个):数据

发送模块 (1 个): 地址(非 0XFFFF)+信道+数据

接收模块 (1个):数据

图 2.4.2.2 定向通信 广播监听

例如:

设备 A 地址 0XFFFF 信道 0X12;

设备 B、C 地址 0X1234, 信道 0X13;

设备 D 地址 0XAB00, 信道 0X01;

设备 E 地址 0XAB01, 信道 0X12;

设备 F 地址 0XAB02, 信道 0X12;

设备 A 广播: FF FF 13 AA BB CC DD

设备 B、C 接收: AA BB CC DD

设备 A 发送: AB 00 01 11 22 33 44

只有设备 D 接收: 11 22 33 44

设备 E 发送: AB 02 12 66 77 88 99

设备 F 接收: 66 77 88 99 设备 A 监听: 66 77 88 99

2.5 数据流控制

如图所示,模块内部是存在 FIFO 的,发送通过获取 FIFO 里的用户数据 RF 发射出去,接收则将数据存到模块 FIFO,再发送回给用户。这时如果用户设备通过串口到模块的数据量太大,超过模块 512 字节 FIFO 很多时,会存在溢出现象,数据出现丢包,此时建议模块发送方降低串口速率并且提高空中无线速率(串口速率 < 空中无线速率),从而提高缓存区的数据流转效率,减少数据溢出的可能。而模块接收方则应提高串口速率(串口速率 > 空中无线速率),提高输出数据的流转效率。模块在数据包过大的情况下,不同的串口波特率和空中无线速率配置下,会有不同的数据吞吐量,具体数值以用户实测为准。(注意:发射和接收模块需工作在"一般模式"下。)

2.6 模块常见问题分析

	1、环境复杂,障碍物多,改用高增益的天线,天线架高或者引至
	室外。
	2、天气不好,比如雾霾、沙尘、雨雪等,改用高增益天线。
	3、天线不匹配,模块和天线必须匹配频率,有条件的尽量使用好
距离不远或者丢包率	天线。
高	4、天线安装不正确,天线与地平面垂直,离地高度两米左右时效
	果最佳。
	5、传输速度过快,速率越快灵敏度越低,尽量采用低速传输。
	6、可能受到干扰,远离干扰源,或者修改通信信道。
	1、两端的通信功能下串口参数配置不一致,如:波特率、校验位
	不一致。
	2、两端的信道,空中速率不一致。
	3、接口不匹配,模块是 TTL 接口,注意与其他接口区分。
	4、接线不正确,参照管脚定义说明。
	5、接触不良或者虚焊,可能线材老化,重新接好电源线、信号线,
	尽可能焊死。
无法通信或者无法读	6、数据量太大,模块传输能力有限,避免单位时间内灌入大量数
写模块参数	据,建议分包发送。
	7、模块损坏,建议拿到模块后先连接电脑用 ATK-LORA-01 配置
	软件检测模块是否可以通信。
	8、发送数据的时候电压不够,请确保供电稳定。
	9、模块 RF 芯片损坏,需要更换模块。
	10、不是同一家的产品。

3. 结构尺寸

ATK-LORA-01 无线串口模块尺寸结构如图 3.1 所示:

图 3.1 ATK-LORA-01 无线串口模块尺寸结构图

4. 其他

1、购买地址:

官方店铺 1: http://shop62103354.taobao.com 官方店铺 2: http://shop62057469.taobao.com

2、资料下载

模块资料下载地址: http://www.openedv.com/thread-269234-1-1.html

3、技术支持

公司网址: <u>www.alientek.com</u> 技术论坛: <u>www.openedv.com</u> 联系电话: 020-38271790

