Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects

Hamed Pirsiavash, Deva Ramanan, and Charless C. Fowlkes University of California, Irvine

Presented By
Albert Haque and Fahim Dalvi

April 29, 2015

Outline

- ► Motivation & Related Work
- ► Mathematical Representation
 - ► Probabilistic Framework
 - ▶ ILP Formulation
- ► Multiple Object Tracking
 - ► Globally Optimal Greedy Algorithm
 - ► Approximate Dynamic Programming Algorithm
- ► Experiments and Results

Motivation

- ► Single object tracking isn't enough
- ▶ In reality, multiple objects appear and occlusion is present

Problem Statement

- ► Input: a video sequence with bounding boxes
- ► Output: assignment of IDs to all tracks
- ightharpoonup Representation: a point x in spacetime
 - ► x includes pixel location, scale, time frame

Answer: stitch together individual tracklets

Examples: trajectory prediction, flow-networks, matching

Answer: stitch together individual tracklets

Examples: trajectory prediction, flow-networks, matching

Track estimation with temporal trajectories [1]

[1] W. Choi and S. Savarese. Multiple target tracking in world coordinate with single, minimally calibrated camera. ECCV, 2010.

Answer: stitch together individual tracklets

Examples: trajectory prediction, flow-networks, matching

Track estimation with temporal trajectories [1]

Joint modeling of trajectory groupings [2]

- [1] W. Choi and S. Savarese. Multiple target tracking in world coordinate with single, minimally calibrated camera. ECCV, 2010.
- [2] S. Pellegrini, A. Ess, and L. Gool. Improving data association by joint modeling of pedestrian trajectories and groupings. ECCV, 2010.

Answer: stitch together individual tracklets

Examples: trajectory prediction, flow-networks, matching

Track estimation with temporal trajectories [1]

Joint modeling of trajectory groupings [2]

Forecasting with Social Affinity Map (SAM) descriptors [3]

^[1] W. Choi and S. Savarese. Multiple target tracking in world coordinate with single, minimally calibrated camera. ECCV, 2010.

^[2] S. Pellegrini, A. Ess, and L. Gool. Improving data association by joint modeling of pedestrian trajectories and groupings. ECCV, 2010.

^[3] A. Alahi, V. Ramanathan, and L. Fei-Fei. Socially-aware large-scale crowd forecasting. CVPR, 2014.

Answer: stitch together individual tracklets

Examples: trajectory prediction, flow-networks, matching

Track estimation with temporal trajectories [1]

Joint modeling of trajectory groupings [2]

Forecasting with Social Affinity Map (SAM) descriptors [3]

Limitations:

- Fails when objects move unpredictably (e.g. sports)
- [1] W. Choi and S. Savarese. Multiple target tracking in world coordinate with single, minimally calibrated camera. ECCV, 2010.
- [2] S. Pellegrini, A. Ess, and L. Gool. Improving data association by joint modeling of pedestrian trajectories and groupings. ECCV, 2010.
- [3] A. Alahi, V. Ramanathan, and L. Fei-Fei. Socially-aware large-scale crowd forecasting. CVPR, 2014.

Hungarian bipartite graph matching [4, 5]

^[4] H. Kuhn, et al. The Hungarian method for the assignment problem. 1993.

^[5] M. Rowan and F. Maire. An efficient multiple object vision tracking system using bipartite graph matching. 2004.

Hungarian bipartite graph matching [4, 5]

Limitations:

- ▶ Is locally optimal but not globally optimal across time
- [4] H. Kuhn, et al. The Hungarian method for the assignment problem. 1993.
- [5] M. Rowan and F. Maire. An efficient multiple object vision tracking system using bipartite graph matching. 2004.

Answer: Integer linear programs (ILP)

▶ Restrict possible locations to a finite set of candidate windows

Answer: Integer linear programs (ILP)

► Restrict possible locations to a finite set of candidate windows

^[6] H. Jiang. et al. A linear programming approach for multiple object tracking. CVPR, 2007.

^[7] A. Andriyenko and S. Konrad. Globally optimal multi-target tracking on a hexagonal lattice. ECCV, 2010.

Answer: Integer linear programs (ILP)

► Restrict possible locations to a finite set of candidate windows

Limitations:

- ▶ Doesn't scale well
- ► Limited or no occlusion modeling
- [6] H. Jiang. et al. A linear programming approach for multiple object tracking. CVPR, 2007.
- [7] A. Andriyenko and S. Konrad. Globally optimal multi-target tracking on a hexagonal lattice. ECCV, 2010.

Contributions

Past attempts require **prior information** while some methods are **not globally optimal**. Linear programs are optimal but **not efficient**.

Contributions

This paper proposes an ILP tracking formulation that:

- ► is globally optimal
- ▶ is locally greedy
- scales linearly in the number of objects
- ► scales quasi-linearly in the number of frames

Research Questions

- ► How can we represent tracking as a probabilistic framework?
- ▶ How can we formulate this as an ILP?
- ▶ How can we efficiently solve it?
- ▶ How can we guarantee optimality?

Outline

- ► Motivation & Related Work
- ► Mathematical Representation
 - ► Probabilistic Framework
 - ▶ ILP Formulation
- ► Multiple Object Tracking
 - ► Globally Optimal Greedy Algorithm
 - ► Approximate Dynamic Programming Algorithm
- ► Experiments and Results

Notation

We define a state vector x (i.e. a point in *spacetime*):

$$x = (p, \sigma, t)$$
 and $x \in V$

Where:

- ▶ p = pixel location
- $ightharpoonup \sigma = \text{scale factor}$
- ightharpoonup t = t frame number
- $ightharpoonup V = ext{set of all spacetime points}$

A track T is a set of state vectors: $T = \{x_1, ..., x_N\}$ Let X denote a set of K tracks: $X = \{T_1, ..., T_K\}$

Hidden Markov Model

Let X denote the output tracking assignments:

$$P(X) = \prod_{T \in X} P(T) \tag{1}$$

Hidden Markov Model

Let X denote the output tracking assignments:

$$P(X) = \prod_{T \in X} P(T) \tag{1}$$

$$P(T) = P_s(x_1) \left(\prod_{n=1}^{N-1} P(x_{n+1}|x_n) \right) P_t(x_N)$$
 (2)

Where:

- $P_s(x_1)$ is the prior for a track starting at x_1
- ▶ $\prod_{n=1}^{N-1} P(x_{n+1}|x_n)$ is the probability we follow some track
- $ightharpoonup P_t(x_N)$ is the prior for a track ending at x_N

To model occlusion:

► Allow tracks to be composed of non-consecutive frames

To model occlusion:

► Allow tracks to be composed of non-consecutive frames

To model occlusion:

► Allow tracks to be composed of non-consecutive frames

To model occlusion:

► Allow tracks to be composed of non-consecutive frames

Note: $P(x_{n+1}|x_n)$ does not refer to the next frame but rather the next spacetime location in the track

- $lacktriangleq Y = \mbox{all features } y_i \mbox{ observed at all spacetime points } i \in V \mbox{ in a video}$
- lacktriangle Goal: Select X^* such that it maximizes the likelihood of Y

- $lacktriangleq Y = \mathsf{all} \ \mathsf{features} \ y_i \ \mathsf{observed} \ \mathsf{at} \ \mathsf{all} \ \mathsf{spacetime} \ \mathsf{points} \ i \in V \ \mathsf{in} \ \mathsf{a} \ \mathsf{video}$
- lacktriangle Goal: Select X^* such that it maximizes the likelihood of Y

$$X^* = \underset{X}{\operatorname{argmax}} P(X)P(Y|X) \tag{3}$$

- $lacktriangleq Y = ext{all features } y_i ext{ observed at all spacetime points } i \in V ext{ in a video}$
- ▶ Goal: Select X* such that it maximizes the likelihood of Y

$$X^* = \underset{X}{\operatorname{argmax}} P(X)P(Y|X) \tag{3}$$

$$= \underset{X}{\operatorname{argmax}} \prod_{T \in X} P(T) \prod_{x \in T} l(y_x) \tag{4}$$

▶ where $l(y_x) = \frac{P_{\rm FG}(y_x)}{P_{\rm BG}(y_x)}$ and $P_{\rm FG}, P_{\rm BG} \sim \mathcal{N}$

- $lacktriangleq Y = ext{all features } y_i ext{ observed at all spacetime points } i \in V ext{ in a video}$
- ▶ Goal: Select X* such that it maximizes the likelihood of Y

$$X^* = \underset{X}{\operatorname{argmax}} P(X)P(Y|X) \tag{3}$$

$$= \underset{X}{\operatorname{argmax}} \prod_{T \in X} P(T) \prod_{x \in T} l(y_x) \tag{4}$$

$$= \underset{X}{\operatorname{argmax}} \sum_{T \in X} \log P(T) + \sum_{x \in T} \log l(y_x)$$
 (5)

▶ where $l(y_x) = \frac{P_{\rm FG}(y_x)}{P_{\rm BG}(y_x)}$ and $P_{\rm FG}, P_{\rm BG} \sim \mathcal{N}$

Answer: Represent MAP as an integer linear program (ILP)

 \blacktriangleright Let i, j be different frames

- ► Let *i*, *j* be different frames
- $f_{ij}, f_i, f_i^s, f_i^t$ are indicator variables

- ► Let *i*, *j* be different frames
- $f_{ij}, f_i, f_i^s, f_i^t$ are indicator variables
- $c_i^s = -\log P_s(x_i) \quad c_i^t = -\log P_t(x_i)$

- ► Let *i*, *j* be different frames
- $f_{ij}, f_i, f_i^s, f_i^t$ are indicator variables
- $c_i^s = -\log P_s(x_i) \quad c_i^t = -\log P_t(x_i)$
- $c_{ij} = -\log P(x_j|x_i)$

- ► Let *i*, *j* be different frames
- $f_{ij}, f_i, f_i^s, f_i^t$ are indicator variables
- $c_i^s = -\log P_s(x_i) \quad c_i^t = -\log P_t(x_i)$
- $c_{ij} = -\log P(x_j|x_i)$
- $ightharpoonup c_i = -\log l(y_i)$

Formal ILP definition:

Formal ILP definition:

$$f^* = \underset{x}{\operatorname{argmin}} C(f) \tag{6}$$

Formal ILP definition:

$$f^* = \underset{r}{\operatorname{argmin}} C(f) \tag{6}$$

with
$$C(f) = \sum_{i} c_i^s f_i^s + \sum_{ij \in E} c_{ij} f_{ij} + \sum_{i} c_i f_i + \sum_{i} c_i^t f_i^t$$
 (7)

Formal ILP definition:

$$f^* = \underset{r}{\operatorname{argmin}} C(f) \tag{6}$$

with
$$C(f) = \sum_{i} c_i^s f_i^s + \sum_{ij \in E} c_{ij} f_{ij} + \sum_{i} c_i f_i + \sum_{i} c_i^t f_i^t$$
 (7)

s.t.
$$f_{ij}, f_i, f_i^s, f_i^t \in [0, 1]$$
 (8)

Formal ILP definition:

$$f^* = \underset{r}{\operatorname{argmin}} C(f) \tag{6}$$

with
$$C(f) = \sum_{i} c_i^s f_i^s + \sum_{ij \in E} c_{ij} f_{ij} + \sum_{i} c_i f_i + \sum_{i} c_i^t f_i^t$$
 (7)

s.t.
$$f_{ij}, f_i, f_i^s, f_i^t \in [0, 1]$$
 (8)

and
$$f_i^s + \sum_i f_{ji} = f_i = f_i^t + \sum_j f_{ij}$$
 (9)

Formal ILP definition:

$$f^* = \underset{r}{\operatorname{argmin}} C(f) \tag{6}$$

with
$$C(f) = \sum_{i} c_i^s f_i^s + \sum_{ij \in E} c_{ij} f_{ij} + \sum_{i} c_i f_i + \sum_{i} c_i^t f_i^t$$
 (7)

s.t.
$$f_{ij}, f_i, f_i^s, f_i^t \in [0, 1]$$
 (8)

and
$$f_i^s + \sum_i f_{ji} = f_i = f_i^t + \sum_j f_{ij}$$
 (9)

Formal ILP definition:

$$f^* = \underset{r}{\operatorname{argmin}} C(f) \tag{6}$$

with
$$C(f) = \sum_{i} c_i^s f_i^s + \sum_{ij \in E} c_{ij} f_{ij} + \sum_{i} c_i f_i + \sum_{i} c_i^t f_i^t$$
 (7)

s.t.
$$f_{ij}, f_i, f_i^s, f_i^t \in [0, 1]$$
 (8)

and
$$f_i^s + \sum_i f_{ji} = f_i = f_i^t + \sum_j f_{ij}$$
 (9)

How can we solve the ILP?

How can we solve the ILP?

► Answer: Represent ILP as a network-flow problem

How can we solve the ILP?

► Answer: Represent ILP as a network-flow problem

$$c_i^s = -\log P_s(x_i) \quad c_i^t = -\log P_t(x_i) \quad c_{ij} = -\log P(x_j|x_i) \quad c_i = -\log l(y_i)$$

Outline

- ► Motivation & Related Work
- Mathematical Representation
 - ► Probabilistic Framework
 - ► ILP Formulation
- ► Multiple Object Tracking
 - ► Globally Optimal Greedy Algorithm
 - ► Approximate Dynamic Programming Algorithm
- ► Experiments and Results

► Answer: Push a flow of *K* through the graph

^[8] L. Zhang et al. Global data association for multi-object tracking using network flows. CVPR, 2008.

^[9] A. Goldberg. An efficient implementation of scaling minimum-cost flow algorithm. Journal of Algorithms, 1997.

- ► Answer: Push a flow of *K* through the graph
- Using properties of our network:
 - All edges are unit capacity
 - ► Network is a DAG

^[8] L. Zhang et al. Global data association for multi-object tracking using network flows. CVPR, 2008.

^[9] A. Goldberg. An efficient implementation of scaling minimum-cost flow algorithm. Journal of Algorithms, 1997.

- ► Answer: Push a flow of *K* through the graph
- Using properties of our network:
 - ► All edges are unit capacity
 - ► Network is a DAG
- ▶ Best previous method [8, 9]: $O(N^3 \log N)$

^[8] L. Zhang et al. Global data association for multi-object tracking using network flows. CVPR, 2008.

^[9] A. Goldberg. An efficient implementation of scaling minimum-cost flow algorithm. Journal of Algorithms, 1997.

- ▶ Answer: Push a flow of K through the graph
- Using properties of our network:
 - ► All edges are unit capacity
 - ► Network is a DAG
- ▶ Best previous method [8, 9]: $O(N^3 \log N)$
- ▶ We achieve a $O(KN \log N)$ algorithm

^[8] L. Zhang et al. Global data association for multi-object tracking using network flows. CVPR, 2008.

^[9] A. Goldberg. An efficient implementation of scaling minimum-cost flow algorithm. Journal of Algorithms, 1997.

This paper proposes three algorithms:

- Successive shortest-paths
- ▶ Approximate One-Pass DP for K > 1
- ▶ Approximate Two-Pass DP for K > 1

► Problem: Using residual graph introduces negative costs

- ► Problem: Using residual graph introduces negative costs
- ► Solution: Convert residual graph to positive costs only
 - ► Requires computing shortest path from source to all nodes
 - $ightharpoonup O(N^2)$ with Bellman-Ford

- ► Problem: Using residual graph introduces negative costs
- ► Solution: Convert residual graph to positive costs only
 - ► Requires computing shortest path from source to all nodes
 - $ightharpoonup O(N^2)$ with Bellman-Ford
- ▶ Our DP approach: O(N)

Start with a partial ordering of the nodes based on time

$$cost(i) = c_i + c_i^s$$

$$cost(i) = c_i + \min(\pi, c_i^s)$$
$$\pi = \min_{j \in N(i)} c_{ij} + cost(j)$$

$$cost(i) = c_i + \min(\pi, c_i^s)$$
$$\pi = \min_{j \in N(i)} c_{ij} + cost(j)$$

Dynamic Programming Approach

$$cost(i) = c_i + \min(\pi, c_i^s)$$
$$\pi = \min_{j \in N(i)} c_{ij} + cost(j)$$

Dynamic Programming Approach

$$cost(i) = c_i + \min(\pi, c_i^s)$$
$$\pi = \min_{j \in N(i)} c_{ij} + cost(j)$$

Dynamic Programming Approach

$$cost(i) = c_i + \min(\pi, c_i^s)$$
$$\pi = \min_{j \in N(i)} c_{ij} + cost(j)$$

How can we track one object?

How can we track one object?

lacktriangle Shortest path corresponds to optimal solution for K=1

How can we track one object?

- lacktriangle Shortest path corresponds to optimal solution for K=1
- ► Conversion algorithm gives us shortest path from source node to terminal node

Approximate One-Pass DP ${\cal O}(KN)$ Algorithm:

▶ Start with original flow graph, perform K+1 iterations:

- ▶ Start with original flow graph, perform K+1 iterations:
 - ightharpoonup Find shortest path from s to t

- ▶ Start with original flow graph, perform K+1 iterations:
 - ightharpoonup Find shortest path from s to t
 - ▶ If path cost is negative, remove nodes on the path

- ▶ Start with original flow graph, perform K+1 iterations:
 - ightharpoonup Find shortest path from s to t
 - ▶ If path cost is negative, remove nodes on the path
- ► At each iteration, we instance one track

Outline

- ► Motivation & Related Work
- Mathematical Representation
 - ► Probabilistic Framework
 - ► ILP Formulation
- ► Multiple Object Tracking
 - ► Globally Optimal Greedy Algorithm
 - ► Approximate Dynamic Programming Algorithm
- ► Experiments and Results

Datasets

► Caltech Pedestrian Dataset [7]: 71 videos, 1800 frames each, 30 fps

► ETHMS Dataset [8]: 4 videos, 1000 frames each, 14 fps

^[7] Dollar, P. et al. Pedestrian detection: A benchmark. CVPR, 2009.

^[8] Ess, A. et al. A Mobile Vision System for Robust Multi-Person Tracking. CVPR, 2008.

$$\label{eq:Detection rate recall} \text{Detection rate (recall)} = \frac{\text{Number of correct ID labelings}}{\text{Total number of ID labelings}}$$

$$\label{eq:Detection rate recall} \text{Detection rate (recall)} = \frac{\text{Number of correct ID labelings}}{\text{Total number of ID labelings}}$$

False positives per image (FPPI) = $\frac{\text{Total number of false positives}}{\text{Number of images (frames)}}$

$$\label{eq:Detection rate recall} \text{Detection rate (recall)} = \frac{\text{Number of correct ID labelings}}{\text{Total number of ID labelings}}$$

False positives per image (FPPI) =
$$\frac{\text{Total number of false positives}}{\text{Number of images (frames)}}$$

$$\label{eq:Identification} \text{Identification error} = \frac{\text{Number of incorrect ID labelings}}{\text{Total number of ID labelings}}$$

Performance Comparison

Algorithm	Detection Rate	FPPI
Stereo Algorithm [10]	47.0	1.50
MAP/Min-Cost Flow [11]	68.3	0.85
MAP/Min-Cost Flow + Occlusion Handling [11]	70.4	0.97
Two-Stage $+$ Occlusion Handling $[12]$	75.2	0.93
Our DP	76.6	0.85
Our DP + NMS	79.8	0.85

^[10] A. Ess et al. Depth and appearance for mobile scene analysis. ICCV, 2007.

^[11] L. Zhang et al. Global data association for multi-object tracking using network flows. CVPR, 2008.

^[12] J. Xing et al. Multi-object tracking through occlusions by local tracklets filtering and global tracklets association. CVPR, 2009.

Detection Rate vs False Positives per Image (FPPI)

Detection Rate vs False Positives per Image (FPPI)

Key Insights:

- ► SSP produces short tracks due to 1st order Markov property
- ▶ DP produces longer tracks because tracks are never cut or edited

Track Label Error vs Allowed Occlusion

Results on ETHMS Dataset (Ideal Detector)

Length of Allowable Occlusion	Windows with ID Errors
1	14.69%
5	13.32%
10	9.39%

Key Insight:

► Larger occlusion windows improve performance

Cost versus iteration number

► DP algorithm is close to optimal (SSP) while being orders of magnitude faster

Algorithm Runtime

► DP algorithm is two orders of magnitude faster than commercial solvers

Given the input, we answered several research questions:

How can we represent tracking as a probabilistic framework?

How can we formulate this as an ILP?

How can we efficiently solve it?

This allowed us solve the multi-object tracking problem:

Questions?