Auditing Fairness By Betting

by Ben Chugg, Santiago Cortes-Gomez, Bryan Wilder, and Aaditya Ramdas

Dhruv Shah

April 9, 2025

Table of contents

1. Introduction

2. Method

Introduction

Main Idea

Develop sequential methods to track the fairness of real-world systems. Approach based on *Sequential Hypothesis Testing*. The main concepts used in this paper are the following:

- Anytime-valid inference
- Game-theoretic framework ("Testing by betting")

Hypothesis Testing: Brief Overview

Task: Make decisions about the system from the data/information available.

Key Components: - Null Hypothesis (H_0): Assumes no effect or no difference; the default position. - Alternative Hypothesis (H_1): Represents the effect or difference being tested.

Steps:

- 1. Formulate H_0 and H_1 .
- 2. Choose Level of significance (α) .
- 3. Select a test statistic and compute its value.
- 4. Decision Rule: Reject H_0 if p-value $\leq \alpha$. Else fail to reject H_0

Types of Error:

- Type I error: Test reject H_0 when H_0 is true.
- Type II error: Does not reject H_0 when H_0 is false.

Fairness Audit as Hypothesis Test

Task: Determine the model deployed is fair or not. Given the data concerning the system's decision are *gathered over time*.

Therefore, this can be easily framed as a hypothesis test. Define H_0 : Model is fair. and H_1 : Model is unfair.

Here, we might not have fixed, i.i.d data points. So, traditional hypothesis testing isn't realistic. Hence, we need to perform *sequential hypothesis testing*. Therefore, we require the following:

- continuously monitor the data (peeking).
- focus on rejecting null as early as possible.

Sequential Hypothesis Testing

Idea: Continuously test H_0 as data arrives, without specifying a pre-defined sample size.

Method

Thought Experiment

- Imagine a skeptical better evaluating a machine learning system's fairness.
- The better plays an iterated game by betting on audit results over time.
- Betting Strategy:
 - If the system is unfair then Expected payoff is large (wealth increases).
 - If the system is fair then Expected payoff remains small.
- Decision Rule:
 - The null hypothesis of fairness is rejected if the better's wealth surpasses a predetermined threshold.
 - Wealth growth signals potential unfairness in the system.

Definition of Fairness

Main focus on "group" fairness. So, here we ask "Which groups of individuals are at risk for experiencing harms?" (Source: Fairlearn)

Definition: Let $\{\xi_j(A,X,Y)\}_{j\in\{0,1\}}$ denote conditions on sensitive attribute A, covariates X, and outcomes Y. A predictive model $\varphi:\mathcal{X}\to[0,1]$ is fair with respect to $\{\xi_j\}$ if:

$$\mathbb{E}_{X \sim \rho}[\varphi(X) \mid \xi_0(A, X, Y)] = \mathbb{E}_{X \sim \rho}[\varphi(X) \mid \xi_1(A, X, Y)].$$

Fairness Notions:

- 1. Equality of Opportunity: $\xi_0 = \{A = 0, Y = 1\},\$ $\xi_1 = \{A = 1, Y = 1\}.$
- 2. Predictive Equality: Similar to above, but for Y = 0.
- 3. Statistical Parity: $\xi_0 = \{A = 0\}, \ \xi_1 = \{A = 1\}.$
- 4. Other fairness notions arise for appropriate choices of conditions ξ_j .

What is a fairness audit?

- Objective: Test fairness of a model by comparing predictions for two groups (b = 0, 1) over time.
- Predictions:

$$Z^0 = \{\varphi(X_t^0)\}_{t \in T_0}, \quad Z^1 = \{\varphi(X_t^1)\}_{t \in T_1},$$

where T_0 and T_1 are time indices for predictions from groups b=0 and b=1.

- Goal: Construct a sequential hypothesis test:
 - Null Hypothesis (H₀): The model is fair.
 - Alternative Hypothesis (*H*₁): The model is unfair.

Time Indices:

$$T_b[t] = T_b \cap [t],$$

where $T_b[t]$ is the set of times predictions from group b are received up to time t.

Test Function:

$$\phi_t = \phi_t \left(\bigcup_{t \in T_0[t]} Z_t^0, \bigcup_{t \in T_1[t]} Z_t^1 \right),$$

where $\phi_t=1$ means "reject H_0 " and $\phi_t=0$ means "fail to reject H_0 ."

• Stopping Time:

$$\tau = \inf\{t : \phi_t = 1\}.$$

• Sequential level- α test

$$\sup_{P\in \mathcal{H}_0} P(\exists t\geq 1: \phi_t=1) \leq \alpha \quad \text{or equivalently} \quad \sup_{P\in \mathcal{H}_0} P(\tau<\infty) \leq \alpha.$$

To ensure a small false postive rate (Type-I error)

Testing By Betting

Objective: Use a "betting framework" to detect unfairness in a model's predictions between two groups.

Key Idea: A fictitious skeptic places bets on model predictions $(\hat{Y}_t^0, \hat{Y}_t^1)$ under the assumption that the model is fair $(H_0: \mu_0 = \mu_1)$.

Skeptic's Wealth Process:

$$K_t = \prod_{i=1}^t S_i(\hat{Y}_i^0, \hat{Y}_i^1),$$

where S_i is a payoff function chosen to maximize wealth growth if H_0 is false.

Betting Mechanism: - At time t, the skeptic bets on the difference in predictions $(\hat{Y}_t^0 - \hat{Y}_t^1)$ with a payoff function:

$$S_t = 1 + \lambda_t (\hat{Y}_t^0 - \hat{Y}_t^1),$$

where $\lambda_t \in [-1,1]$ is adaptively chosen to maximize wealth growth.

Null Hypothesis (H_0): If the model is fair, the wealth K_t is a supermartingale, i.e., it should not grow on average.

Properties and Stopping Rule

Ville's Inequality: Guarantees that under H_0 , the probability of $K_t > 1/\alpha$ is at most α .

Stopping Rule: - Reject H_0 (detect unfairness) when:

$$K_t > 1/\alpha$$
.

Adaptive Betting Strategy: - Use Online Newton Step (ONS) to choose λ_t , ensuring optimal growth under the alternative hypothesis $(H_1: \mu_0 \neq \mu_1)$:

$$\lambda_t = \left(\frac{g_t}{2 - \ln(3) + \sum_{i=1}^{t-1} z_i^2}\right) \wedge 1 \vee -1,$$

where $g_t = \hat{Y}_t^0 - \hat{Y}_t^1$, and $(z_i = g_i/(1 - \lambda_i g_i)$.

Interpretation: - If the model is unfair (H_1) , K_t grows exponentially, leading to early rejection of H_0 .

- The method guarantees a *controlled false positive rate* (α) and high power.

THANK YOU!