Analisi della stabilità interna di sistemi dinamici LTI

Si analizza l'evoluzione libera del sistema, ossia l'effetto di condizioni iniziali non nulle in assenza di ingresso. Le matrici sono triangolari e quindi gli autovalori sono i coefficienti della diagonale principale.

	A_1	A_2	A_3	A_4
Autovalori	-0.5 e -2	-0.5 e -1	-0.5 e 0	-0.5 e 1
Stabilità interna a	Asintoticamente	Asintoticamente	Semplicemente	Instabile
tempo continuo	stabile	stabile	stabile	
Stabilità interna a	Instabile	Semplicemente	Asintoticamente	Semplicemente
tempo discreto		stabile	stabile	stabile

.

• Tempo continuo

Le seguenti osservazioni sono fatte per l'evoluzione degli stati X_1 e X_2 .

L'evoluzione degli stati dei sistemi corrispondenti alle matrici \varLambda_1 e \varLambda_2 converge asintoticamente a zero perché tutti i rispettivi autovalori sono strettamente minori di zero. La matrice \varLambda_3 ha un autovalore nullo e quindi l'evoluzione degli stati si mantiene limitata senza convergere a zero (in questo caso al valore 4). La matrice \varLambda_4 ha un autovalore positivo e quindi l'evoluzione di almeno uno degli stati diverge asintoticamente.

• Evoluzione dello stato x_1

• Evoluzione dello stato x_2

• Proiezione sul piano degli stati X_1 e X_2 (tempo continuo)

Dai grafici si vede che le proiezioni delle evoluzioni degli stati X_1 e X_2 sono stabili nei casi cui è soddisfatta la condizione di asintotica stabilità, ossia per i sistemi aventi come matrici di stato A_1 e A_2 .

• Script Matlab

```
% TEMPO CONTINUO
% stabilità interna di sistemi dinamici LTI
B = [1; 1];
C = [1, 3];
D = [1];
x0 = [1; 2];
A1 = [-0.5, 1; 0, -2];
A2 = [-0.5, 1; 0, -1];
A3 = [-0.5, 1; 0, 0];
A4 = [-0.5, 1; 0, 1];
T = 0:0.1:50;
% INGRESSO NULLO
U = (0*T);
SYS1 = ss(A1,B,C,D);
[YS1,TS1,XS1] = lsim(SYS1,U,T,x0);
SYS2 = ss(A2,B,C,D);
[YS2,TS2,XS2] = lsim(SYS2,U,T,x0);
SYS3 = ss(A3,B,C,D);
[YS3,TS3,XS3] = lsim(SYS3,U,T,x0);
SYS4 = ss(A4,B,C,D);
[YS4, TS4, XS4] = lsim(SYS4, U, T, x0);
% EVOLUZIONE X1
figure(1), plot(TS1,XS1(:,1),'r', TS2,XS2(:,1),'g', TS3,XS3(:,1),'b'),grid on,
title('Evoluzione dello stato x_1');
xlabel('tempo[s]'), ylabel('velocità [m/s]'),
figure(2), plot(TS4,XS4(:,1),'b'), grid on, zoom on,
title('Evoluzione dello stato x_1'),
xlabel('tempo[s]'), ylabel('velocità [m/s]'),
% EVOLUZIONE X2
figure(3), plot(TS1,XS1(:,2),'r', TS2,XS2(:,2),'g', TS3,XS3(:,2),'b'),grid on,
title('Evoluzione dello stato x_2');
xlabel('tempo[s]'), ylabel('velocità [m/s]'),
figure(4), plot(TS4, XS4(:,2), 'b'), grid on, zoom on,
title('Evoluzione dello stato x_2'),
xlabel('tempo[s]'), ylabel('velocità [m/s]'),
% Proiezione di X2 e X1
figure(5),plot(XS1(:,1),XS1(:,2),'r', XS2(:,1),XS2(:,2),'g'),grid on,
title ('Matrice A1 e A2'), xlabel ('Stato X_1'), ylabel ('Stato X_2'),
figure (6), plot (XS3(:,1), XS3(:,2), 'b', XS4(:,1), XS4(:,2), 'r'), grid on,
title('Matrice A3 e A4'), xlabel ('Stato X_1'), ylabel ('Stato X_2'),
```

• Tempo dicreto

Le seguenti osservazioni sono fatte per l'evoluzione degli stati X_1 e X_2 .

La matrice A_1 ha un autovalore (-2) il cui modulo è maggiore di uno e quindi l'evoluzione di almeno uno degli stati diverge asintoticamente. L'evoluzione degli stati del sistema corrispondente alla matrice A_3 converge asintoticamente a zero perché il modulo di tutti gli autovalori è strettamente minore di uno.

Le matrici A_2 e A_4 hanno un autovalore con modulo pari a uno e quindi l'evoluzione degli stati si mantiene limitata senza convergere a zero.

• Proiezione sul piano degli stati X_1 e X_2 (tempo discreto)

Dai grafici si vede che le proiezioni delle evoluzioni degli stati X_1 e X_2 sono stabili nei casi cui è soddisfatta la condizione di asintotica stabilità, cioè per il sistema avente come matrice di stato A_3 .

• Script Matlab

```
% Tempo discreto
B = [1; 1];
C = [1, 3];
D = [1];
x0 = [1; 2];

A1 = [-0.5 1; 0 -2];
A2 = [-0.5 1; 0 -1];
A3 = [-0.5 1; 0 0];
A4 = [-0.5 1; 0 1];
```

```
% INGRESSO NULLO
U = (0*T);
SYS1 = ss(A1, B, C, D, -1);
[YS1,TS1,XS1] = lsim(SYS1,U,T,x0);
SYS2 = ss(A2,B,C,D,-1);
[YS2,TS2,XS2] = lsim(SYS2,U,T,x0);
SYS3 = ss(A3,B,C,D,-1);
[YS3,TS3,XS3] = 1sim(SYS3,U,T,x0);
SYS4 = ss(A4,B,C,D,-1);
[YS4,TS4,XS4] = lsim(SYS4,U,T,x0);
% EVOLUZIONE DELLO STATO X1
figure(13), plot(TS3,XS3(:,1),'g',TS4,XS4(:,1),'b'),grid on,
title('Evoluzione dello stato x_1');
xlabel('tempo[s]'), ylabel('velocità [m/s]'),
figure(12), plot(TS2, XS2(:,1), 'b'), grid on,
title('Evoluzione dello stato x_1 A2');
xlabel('tempo[s]'), ylabel('velocità [m/s]'),
figure(11), plot(TS1, XS1(:,1), 'b'), grid on, zoom on,
title('Evoluzione dello stato x_1'),
xlabel('tempo[s]'), ylabel('velocità [m/s]'),
% EVOLUZIONE DELLO STATO X2
figure(23), plot(TS3,XS3(:,2),'g',TS4,XS4(:,2)),grid on,
title('Evoluzione dello stato x_2');
xlabel('tempo[s]'), ylabel('velocità [m/s]'),
figure(22), plot(TS2, XS2(:,2), 'b'), grid on,
title('Evoluzione dello stato x_2');
figure(21), plot(TS1, XS1(:,2), 'b'), grid on, zoom on,
title('Evoluzione dello stato x_2'),
xlabel('tempo[s]'), ylabel('velocità [m/s]'),
% Proiezione di X2 su X1
figure(1),plot(XS4(:,1),XS4(:,2),'r',XS3(:,1),XS3(:,2),'g'), grid on,
title ('Matrice A3, A4'), xlabel ('Stato X_1'), ylabel ('Stato X_2'),
figure(2),plot (XS1(:,1),XS1(:,2),'b'), grid on ,
title('Matrice A1'), xlabel ('Stato X_1'), ylabel ('Stato X_2'),
figure(3),plot (XS2(:,1),XS2(:,2),'b'), grid on ,
title('Matrice A2'), xlabel ('Stato X_1'), ylabel ('Stato X_2'),
```