Familienname:	Bsp.	1	2	3	4	$\sum /40$	
Vorname:							
Matrikelnummer:							
Studienkennzahl(en):		Note:					

Prüfung zu Grundbegriffe der Topologie

Sommerersemester 2015, Roland Steinbauer

1. Termin, 3.7.2015

1. Topologische Räume

- (a) Definiere den Begriff eines topologischen Raumes sowie die Begriffe Basis und Subbasis eines topologischen Raumes. (3 Punkte)
- (b) Auf einer beliebigen nichtleeren Menge ist die kofinite Topologie definiert durch

$$\mathcal{O}_{\text{co}} := \{ O \subseteq X | O^c \text{ ist endlich } \} \cup \{\emptyset\}.$$

Zeige, dass \mathcal{O}_{CO} diesen Namen auch verdient, d.h. dass es sich tatsächlich um eine Topologie handelt. (3 Punkte)

- (c) Was bedeutet es für zwei Topologien \mathcal{O}_1 und \mathcal{O}_2 auf einer Menge X, dass \mathcal{O}_1 feiner als \mathcal{O}_2 ist? Sind je 2 Topologien auf X (in diesem Sinne) immer vergleichbar? (2 Punkte)
- (d) Gib eine Basis und eine Subbasis für die natürliche Topologie auf \mathbb{R}^2 an. (2 Punkte)
- 2. Inneres, Äußeres, Rand und Abschluss.

Sei A eine Teilmenge eines topologischen Raumes (X, \mathcal{O}) .

- (a) Definiere, was man unter dem Inneren, dem Äußeren, dem Rand und dem Abschluss von A versteht. Fertige eine Skizze an. (4 Punkte)
- (b) Gib Inneres, Äußeres, Rand und Abschluss der folgenden Teilmengen von \mathbb{R} mit der natürlichen Topologie an: $A_1 = [a, b), A_2 = \mathbb{Q}$ (2 Punkte)
- (c) Wie lässt sich die Tatsache $x \in \overline{A}$ mittels Umgebungen von x ausdrücken? Was ist ein Häufungspunkt der Menge A? (2 Punkte)
- (d) Die Menge A' der Häufungspunkte von A kann in A enthalten sein, muss aber nicht. Illustriere an zwei einfachen Beispielen von Teilmengen von \mathbb{R} , dass tatsächlich beide Möglichkeiten auftreten können. (2 Punkte)

Bitte umblättern!

3. Vermischtes

- (a) T_2 und die Eindeutigkeit von Grenzwerten. Formuliere das Hausdorffsche Trennungsaxiom T_2 und zeige, dass T_2 gilt, falls die Grenzwerte von Netzen eindeutig bestimmt sind. (4 Punkte)
- (b) Kompaktheit. Definiere den Begriff eines kompakten topologischen Raums und zeige, dass stetige Bilder kompakter Räume wieder kompakt sind. (3 Punkte)
- (c) Fixpunktsatz von Banach. Erkläre den Begriff einer Kontraktion auf einem metrischen Raum und formuliere den Fixpunktsatz von Banach. (3 Punkte).

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib ein (möglichst explizites und einfaches) Gegenbeispiel an oder argumentiere für oder gegen die Richtigkeit der Aussage. (je 2 Punkte)

- (a) Kompakte Mengen sind abgeschlossen.
- (b) Jeder metrische Raum ist AA1.
- (c) Jede Verfeinerung einer Folge in einem topologischen Raum ist wieder eine Folge.
- (d) Stetige Bilder abgeschlossener Mengen sind abgeschlossen.
- (e) Jede mindestens zweipunktige Menge mit der diskreten Topologie ist *nicht* zusammenhängend.

Prifungsousorbeitung 1 TERITIN

- 1) (a) Ein top. Roum ist ein Poor (X,0) bestehendows einer Renge X und einer Topolopie O ouf X, d.h einem Tatsystem & de Polentmenge ZX non X mit den 3 Eipenscholken
 - (01) X, \$ E &
 - (OL) O; & O + ; & I => U O; & O
 - (03) Oi 60 15isn (nort) => 10:60
 - Ein Tailsysten Bron & heist Boss de Topolopie O folls jedes Oe & Vertiniques von Plenger in Bist.
 - Ein Teilsystem I von & haiM Subhosis von O, folls die Fomilie de endlicher Durchschnible () Si (Sie I) Boss von O, 21.
 - (b) Oc = {0=x/0 end(. }o {\$\$} ist Top oct X,

 den- espellen (01)-103)
 - (01) War [\$\phi \O co \go def; X = \phi endlich]
 - (02) 0: ED co oBdA olle 0: +\$ (0:=\$ linner Weg pelosse-verse, olle 0:=\$ = 00:=\$ ED co)
 - =) O: endlich => 10: coullis
 - =) (UDi) code. =) UDi coo
 - (03) 0; cos odd olle 0; + \$ (sout 10:=\$eds)
 - =) O; end(=) O; end(.
 - =1 (10:) End(=) 10. e des

$$S = \{(0,6) \times R \mid 0, 6 \in R, 0 < 6\}$$

$$U \{R \times \{0,6\}\} \mid 0, 6 \in R, 0 < 6\}$$
oftene Streete- $1 = -\frac{1}{2} = -\frac{1}{2}$

$$|Z|(\omega) \text{ in } A = A^{\circ} = \left\{ x \cdot X \middle| \mathcal{J} U \in \mathcal{U}_{x} : U \subseteq A \right\}$$

$$ext A = \left\{ x \in X \middle| \mathcal{J} U \in \mathcal{U}_{x} : U \subseteq A^{\circ} \right\}$$

$$\mathcal{D}A = \left\{ x \in X \middle| \mathcal{V} u \in \mathcal{U}_{x} : \mathcal{U}_{n} A \neq \emptyset \neq \mathcal{U}_{n} A^{\circ} \right\}$$

$$\overline{A} = A^{\circ} \mathcal{D}A$$

(b)
$$A_{n}^{\circ} = (0, b)$$
 $A_{n}^{\circ} = (0, b)$
 $A_{n}^{\circ} = (0,$

Ang micht, old Jx +y ober YUEUx YVEUy: UNV + \$

Soion Ox, Vy U-Bosen hoix byo. y. Definion $\Lambda = \left\{ (U_1 V) \middle| U \in \mathcal{V}_{\chi}, V \in \mathcal{V}_{y} \right\}, \\
(U_1 V_1) \in (U_2, V_2) : \rightleftharpoons U_1 2U_2, V_1 2V_2$ Donnist 1 perichtete 120-je: (R), (T), (A) sind blee

(not) ist genode (UB2) [Y U.U'6 Vx =>]U'' = U'nU]

Xunwihle for (U.V) & 1 = 1 + CnV [UNV + \$\phi]

und definice dos Not? Xunw = 2.

Donn pill X(UN) \Rightarrow X und X(UN) \Rightarrow Y \in \text{I}

(b) (X.8) heilt kompoht, folls jede offene Who - declay von X eine endl. Tatabudeday hol.

13)(b) Fortschung
11: 4: X-) y sbby, Xkp => f(X)=y kp Sci (Oi) is I offenc (D) von f(X)=) (f-1(Oi)) is I offenc (D) (10i) ofen tie I and X=f"/f(x))=f"/voi)=Uf'(0:1)

=> Jin. in: X= Of 10; => $f(x) = f(\hat{U}_{k-1}^{-1}/O_{i_k}) = \hat{U}_{k-1}^{-1}/O_{i_k}|_{k-1}^{-1}/O_{i_k}|_{k-1}^{-1}$

(c) T: (M,d) -> (M,d) hoils Konholdion, lolls -JOKK < 1 sodos Vx, y & M $d(T_X,T_Y) \leq Kd(X,Y).$

Ponochsche Fixpunlet sotz.

Sci (Pid) ein vollstöndige metrische Koum und TID-> Dane Kontrolhion.

Don besited T penau einer rixpull 7 el7, d.h. 12=2.

Aududen pill

2 = lim Tx

für jeden belie bisen Stortvert x ET.

- 14) (0) nais, denn is Oke sind endliche Menpen kp ober milt obg
 - (b) Jo, wähle for x e 17 die mehrscher Boble

 B1(x) (keAl) ob Umpehungshos.)
 - (C) Noin, Si (Xn), line Folge out II, John it $y_k := x_{[k]}$ (ke [1,00), L I nothed kluine ponte soul)

 line Verleinering und ein Nett out de per.

 Nege K = [1,0) oher keine Folge mehr (K ibvobjāh(bor).
 - (d) Nain: $f: [1,\infty) \rightarrow \mathbb{R}$, f(x)=1/x $f([1,\infty)) = (0,1) \text{ nichtobs.}$ $Obj \subseteq \mathbb{R}$
 - (e) Jo, danse: X={016} mit Odis.

 Don-pilt fo), {6} sind offer, disjunkt

 und ihre Vereinipul ergibt X.

 Also ist {0}, {6} eine Dijunktion und X

 nicht 75h.