Latent variables

Building blocks

Sarah Cubaynes

Martijn van de Pol

Cubaynes et al. (2012) *Ecology*van de Pol et al. (2021) *Journal of Animal Ecology*

This module's question: what if we're kinda measuring the same thing?

What is a latent (or hidden) variable?

A random variable that is unmeasured but not necessarily unmeasureable.

-P Spirtes (2001)

A variable that is hypothesized to exist, but that has not been measured directly -J Grace (2006)

A variable that is not directly observable but is inferred from other variables that can be measured

-Generative AI (yesterday)

Variables that can only be inferred indirectly through a mathematical model from other observable variables

-Wikipedia (also yesterday)

What is a latent (or hidden) variable?

Everything is a latent variable – LA Dyer

Is temperature a latent variable?

A random variable that is unmeasured but not necessarily unmeasureable.
-P Spirtes (2001)

Temperature is the average kinetic energy of particles

Temperature is a latent variable

Temperature is the average kinetic energy of particles We measure it (with error) via the expansion of mercury (or lasers)

Is survival a latent variable?

S: survival of a population, S': survival of a marked sample

Size

'Size' is a human construct (i.e., latent variable)

Forest maturity

These 'seral stages' are human constructs

Forest maturity [expanded]

We could structure this differently

Path analysis: we don't have to use latent variables!

They're just very useful...

Further, I argue that we use them all the time subconsciously

Subconscious model

Actual model

Further, I argue that we use them all the time subconsciously

Subconscious model

Actual model

Further, I argue that we use them all the time subconsciously

Subconscious model

Actual model

Arrow directionality

1. Latent variables are intuitive, and <u>we already informally use them all</u> the time

2. They can be used to link multiple measurements of similar processes

Our first example: forest age as a latent variable

We generally assume they're normally distributed

$$\boldsymbol{m} \sim \operatorname{normal}(\mu, \sigma_m^2)$$

They're really kind of like random effects...

We assume that they are zero-centered b/c they're human constructs

i.e., what should the scale of forest maturity be?

$$m \sim \text{normal}(0, \sigma_m^2)$$

Assigning an intercept would be entirely subjective, plus the math is easier if $\mu = 0$

Let's simulate some data

Data: counts (y) of 'yellow-footed weeble-wobbles' at sites with different canopy (c) and sub-canopy (s) heights

Step 1: simulate variation in forest maturity

Step 2: simulate variation in canopy height (c)

$$\boldsymbol{c} \sim \operatorname{lognormal}(\alpha_1 + \beta_1 \boldsymbol{m}, \sigma_c = 0.05)$$

Step 3: simulate variation in sub-canopy height (s)

$$s \sim \text{lognormal}(\alpha_2 + \beta_2 m, \sigma_s = 0.05)$$

The hypothesis: older forests will have greater canopy heights and greater sub-canopy heights

The most important caveat: if things aren't collinear, then you can't assign them to a latent variable

A note on drawing graphs

Squares or rectangles represent measured variables

Arrows represent paths (linear models). The direction of the arrow indicates how to parameterize the relationship

Step 4: simulate variation in warbler counts (y)

$$y \sim \text{Poisson}(e^{\alpha_3 + \beta_3 m})$$

 $\alpha_3 = 0.5$
 $\beta_3 = 0.75$

Step 4: simulate variation in warbler counts (y)

 $y \sim \text{Poisson}(e^{\alpha_3 + \beta_3 m})$

The ecological hypothesis: older forests will have more birds

$$m \sim \text{normal}(0, \sigma_m^2)$$

$$\boldsymbol{c} \sim \operatorname{normal}(\alpha_1 + \beta_1 \boldsymbol{m}, \sigma_c^2)$$

$$s \sim \text{normal}(\alpha_2 + \beta_2 m, \sigma_s^2)$$

$$y \sim \text{normal}(\alpha_3 + \beta_3 m, \sigma_y^2)$$

$$m \sim \text{normal}(0, \sigma_m^2)$$

$$m \sim \text{normal}(0, \sigma_m^2)$$

$$\boldsymbol{c} \sim \operatorname{normal}(\alpha_1 + \beta_1 \boldsymbol{m}, \sigma_c^2)$$

$$m \sim \text{normal}(0, \sigma_m^2)$$

$$\boldsymbol{c} \sim \operatorname{normal}(\alpha_1 + \beta_1 \boldsymbol{m}, \sigma_c^2)$$

$$s \sim \text{normal}(\alpha_2 + \beta_2 m, \sigma_s^2)$$

Our (first) model

There is one <u>very</u> non-intuitive thing to discuss

We must fix a 'loading' to 1

There is one <u>very</u> non-intuitive thing to discuss

We must fix a 'loading' to 1

Why?!

Well, so the model will be identifiable...

1. The latent variable will be on the same scale as whatever path we fix = 1

- 1. The latent variable will be on the same scale as whatever path we fix = 1.
- 2. Our estimates of parameter relationships will be a function of that scale.

- 1. The latent variable will be on the same scale as whatever path we fix = 1
- 2. Our estimates of parameter relationships will be a function of that scale.
- 3. That's it. It won't change our predictions (i.e., warbler counts)

All we're really assuming when we fix that beta is that there is a positive relationship between our latent variable and the measured variable

So, let's talk about this 'fixing a loading to 1' thing

Let's simulate some data

$$\delta y = \delta x \beta$$

$$\delta y = \delta x \beta$$

$$\beta = 0.5$$

$$\delta y = \delta x \beta$$

$$\beta = 0.25$$

$$\delta y = \delta x \beta$$

$$\beta = 0.75$$

Our latent variable is unobservable...

We don't know its scale...

Shoot...

Forest maturity

Forest maturity

Forest maturity

Forest maturity

There's a big problem:

We don't know the range of maturity

$$m \sim \text{normal}(0, \sigma_m^2)$$

Small groups!

Forest maturity

Forest maturity

Forest maturity

Forest maturity

$$m \sim \text{normal}(0, \sigma_m^2)$$

What if we fix a beta (to give it a scale)?

$$m \sim \text{normal}(0, \sigma_m^2)$$

Now we have a scale!!

We can estimate all the betas

$$m \sim \text{normal}(0, \sigma_m^2)$$

The scale of our latent variable is arbitrary

$$m \sim \text{normal}(0, \sigma_m^2)$$

The scale of our latent variable is arbitrary

$$m \sim \text{normal}(0, \sigma_m^2)$$

Scale of latent variable can change, predictions don't

lavaan **syntax**

Imagine that we're not just interested in deer, but in deer and elk abundance

 Imagine that we're not just interested in deer, but in modeling deer and elk abundance simultaneously

Do wolves prefer high or low elevation ungulates?

Do wolves prefer high or low elevation ungulates?

• Imagine that we're not just interested in wolves, but in how ungulates respond to the landscape, and which ungulates wolves prefer...

Do wolves prefer high or low elevation ungulates?

