ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΕΠΕΞΕΡΓΑΣΤΩΝ & ΥΛΙΚΟΥ (MHL)

ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2020 ΗΡΥ203 – ΠΡΟΧΩΡΗΜΕΝΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΠΡΟΕΡΓΑΣΙΑ - ΕΡΓΑΣΤΗΡΙΟ 1

Φραγγιάς Γιώργος - Πέτρου Δημήτρης 2018030086 - 2018030070

1. Συναρτήσεις και Θεωρία Σχεδίασης

Κύκλωμα 1

Για την υλοποίηση των απαιτήσεων του κυκλώματος 1 χρησιμοποιήθηκαν η άλγεβρα Boole και τα θεωρήματα της. Σύμφωνα με τις προδιαγραφές το ζητούμενο κύκλωμα έχει 8 εισόδους, πλάτους 1 bit η κάθε μια και μια έξοδο bus πλάτους 6 bit. Το κύκλωμα είναι συνδυαστικό οπότε η διαδικασία σχεδίασης είναι σχετικά απλή.

α) **RESULT** [0]

Α	В	CO	RESULT [0]
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	0
0	0	1	1
0	1	1	1
1	0	1	1
1	1	1	0

Εξίσωση που προκύπτει: **RESULT [0] = A × B × C0**

Μεταφράζεται σε πύλες: **RESULT [0] = (A NAND B) AND CO**

b) RESULT [1]

Α	В	C 1	RESULT [1]
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	0
0	0	1	1
0	1	1	0
1	0	1	0
1	1	1	0

Εξίσωση που προκύπτει: **RESULT [1]** = A + B × C1

Μεταφράζεται σε πύλες: **RESULT [1] = (A NOR B) AND C1**

c) **RESULT [2]**

Α	В	C2	RESULT [2]
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	0
0	0	1	0
0	1	1	0
1	0	1	0
1	1	1	1

Εξίσωση που προκύπτει: **RESULT [2] = (A×B) × C2**

Μεταφράζεται σε πύλες: **RESULT [2] = (A AND B) AND C2**

d) RESULT [3]

Α	В	C3	RESULT [3]
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	0
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	0

Εξίσωση που προκύπτει: **RESULT [3] = (A \oplus B) × C3**

Μεταφράζεται σε πύλες: **RESULT [3] = (A XOR B) AND C3**

e) **RESULT [4]**

Α	В	C4	RESULT [4]
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	0
0	0	1	1
0	1	1	0
1	0	1	0
1	1	1	1

Εξίσωση που προκύπτει: **RESULT [4] = ((A × B) + (\overline{A} × \overline{B})) × C4**

Μεταφράζεται σε πύλες: RESULT [4] = ((A AND B) OR (A NOR B)) AND C4

ή RESULT[4] = (A ⊙ B) × C4 που μεταφράζεται σε πύλες: RESULT[4] = (A XNOR B) AND C4

f) **RESULT [5]**

RESULT [5]	C5	В	Α	
0	0	0	0	
0	0	1	0	
0	0	0	1	
0	0	1	1	
1	1	0	0	
0	1	1	0	
0	1	0	1	
1	1	1	1	

Εξίσωση που προκύπτει: **RESULT [5] = ((\bar{A} \times B)** \oplus ($\bar{A} + B$)) × **C5**

Μεταφράζεται σε πύλες: RESULT [5] = ((NOT(A) AND B)XOR(NOT(A) OR B)) AND C5

Συγκεντρωτικό block diagram

• Κύκλωμα 2

Το δεύτερο κύκλωμα αποτελείται από δύο επιμέρους κομμάτια. Σε πρώτη φάση υλοποιήθηκε ένας half adder σε επίπεδο θεωρητικής σχεδίασης αλλά και σε επίπεδο υλοποίησης κώδικα. Παρακάτω παρατίθεται ο πίνακας αληθείας του half adder καθώς και το block diagram με λογικές πύλες.

O half adder αθροίζει δύο προσθετέους x και y, παράγει το άθροισμα τους και σε περίπτωση υπερχείλισης παράγει και το Carry-Out κρατούμενό τους.

 Α	В	OUT	C-OUT
0	0	0	0
0	1	1	0
 1	0	1	0
 1	1	0	1

Εξισώσεις που προκύπτουν:

OUT =
$$X \oplus Y$$

$$C_OUT = X \times Y$$

Μεταφράζεται σε πύλες:

Στο δεύτερο μέρος σχεδιάζεται και υλοποιείται ένας full adder που αποτελείται από δύο half adders και μία πύλη OR. Αθροίζει δύο προσθετέους x και y λαμβάνοντας υπόψιν ένα κρατούμενό τους Carry-In. Παράγει ένα κρατούμενο Carry-Out και το άθροισμα. Παρατίθεται η θεωρητική σχεδίασή του με χρήση δύο half adders και μια OR.

C_out	OUT	C_in	В	Α
0	0	0	0	0
0	1	1	0	0
0	1	0	1	0
1	0	1	1	0
0	1	0	0	1
1	0	1	0	1
1	0	0	1	1
1	1	1	1	1

Εξισώσεις που προκύπτουν:

OUT =
$$A \oplus B \oplus C_{in}$$

C_OUT = $A \times B + (B \times C_{in} + C_{in} \times A)$

Μεταφράζεται σε πύλες:

Ως επέκταση της σχεδίασης του Full Adder σχεδιάστηκε και υλοποιήθηκε ένας Full Adder ο οποίος προσθέτει δυαδικούς αριθμούς των 2 bit πλάτους. Υλοποιήθηκε τελικά με δύο full adders στη σειρά.

Παρατίθεται ο πίνακας αληθείας:

A (2bit)	B (2bit)	C_in (1bit)	RESULT (2bit)	C_out(1bit)	
00	00	0 / 1	00 / 01	0 / 0	
00	01	0 / 1	01 / 10	0 / 0	
00	10	0 / 1	10 / 11	0 / 0	
00	11	0 / 1	11 / 00	0 / 1	
01	00	0 / 1	01 / 10	0 / 0	
01	01	0 / 1	10 / 11	0 / 0	
01	10	0 / 1	11 / 00	0 / 1	
01	11	0 / 1	00 / 01	1 / 1	
10	00	0 / 1	10 / 11	0 / 0	
10	01	0 / 1	11 / 00	0 / 1	
10	10 0 / 1		00 / 01	1 / 1	
10	11	0 / 1	01 / 10	1 / 1	
11	00	0 / 1	11 / 00	0 / 1	
11	01	0 / 1	00 / 01	1 / 1	
11	10	0 / 1	01 / 10	1 / 1	
11	11	0 / 1	10 / 11	1 / 1	

Εξισώσεις δεν υπολογίστηκαν καθώς η υλοποίηση πραγμοτοποιήθηκε με την σειριακή σύνδεση δύο full adders.

2) Κυματομορφές testbench

Παρατιθένται τα αποτέλεσματα της προσομοίωσης του κάθε κυκλώματος μετά την εκτέλεση του εκάστοτε testbench.

Half Adder

• Equations

						401.210 ns						
Name	Value	0.000 ns		200.000 ns	l	400.000 ns	l	600.000 ns	l t	800.000 ns	l	1,000.
1 8 A	0											
l⊌ B	0											
¹₽ C0	0											
¹₽ C1	0											
¹₿ C2	0											
¹₽ C3	0											
¹₿ C4	0											
¹₿ C5	0											
> W RESULT[5:0	00	33	0	9	34			0	0			

• Full Adder

