Содержание

Ι	Ин	нтеграл по мере	2
	0.1	Определения интеграла функции	2
	0.2	Свойства интегралов	3
	0.3	Лемма	4
		0.3.1 Доказательство	4
	0.4	Теорема	4
		0.4.1 Доказательство	4
	0.5	Следствие	5
	0.6	Следствие 2	5
II	П	Гредельный переход под знаком интеграла	5
ΙΙ	0.7	Гредельный переход под знаком интеграла Теорема	
Π			6
II		Теорема	6
II	0.7	Теорема	6 6
П	0.7	Теорема 0.7.1 Доказательство Теорема	6 6 7
П	0.7	Теорема 0.7.1 Доказательство Теорема 0.8.1 Доказательство	6 6 7 7
11	0.7	Теорема 0.7.1 Доказательство Теорема 0.8.1 Доказательство 0.8.2 Следствие	6 6 7 7
11	0.7	Теорема . 0.7.1 Доказательство . Теорема . 0.8.1 Доказательство . 0.8.2 Следствие . Определение .	6 6 7 7

Часть I

Интеграл по мере

 (X, \mathcal{A}, μ) — произвольное пространство с мерой.

 $\mathcal{L}^0(X)$ — множество измеримых почти везде конечных функций.

0.1 Определения интеграла функции

1.
$$f = \sum_{k} \lambda_k \cdot \chi_{E_k}, f \geqslant 0.$$

 $(E_k \in \mathcal{A})$ — допустимое разбиение, тогда

$$\int\limits_X f d\mu = \int\limits_X f(x) d\mu(x) := \sum \lambda_k \mu E_k \ (\text{считаем, что } 0 \cdot \infty = \infty \cdot 0 = 0).$$

Свойства:

• Интеграл не зависит от допустимого разбиения;

$$f = \sum \alpha_j \chi_{F_j} = \sum_{i,j} \lambda_k \chi_{E_k \cap F_j}, \text{тогда} \int F = \int = \sum \lambda_k \mu E_k = \sum_k \lambda_k \sum_j \mu(E_k \cap F_j) = \sum \alpha_j \mu F_i = \int F;$$

•
$$f \leqslant g$$
, to $\int\limits_X f d\mu = \int\limits_X g d\mu$.

2.
$$f\geqslant 0$$
, измерима, тогда $\int\limits_X f d\mu = \sup\limits_{\mathbf{g}\text{ - ступенчатая}, 0\leqslant g\leqslant f} \left(\int g\right)$.

Свойства:

• Для ступенчатых функций $f\geqslant 0$ — это определение даёт тот же интеграл;

•
$$0 \leqslant \int f \leqslant +\infty;$$

•
$$0\leqslant g\leqslant f,\,g$$
 — ступенчатая, f — измеримая, тогда $\int\limits_{Y}g\leqslant\int\limits_{Y}f.$

3.
$$f$$
 — измеримая, f_+ и f_- — срезки, тогда если $\int\limits_X f_+$ или $\int\limits_X f_-$ — конечен, тогда

$$\int\limits_X f d\mu := \int\limits_X f_+ - \int\limits_X f_-.$$

3амечание: Если $\int\limits_X f
eq \pm \infty$, то говорят, что f — суммируемая и $\int |f|$ — конечен $(|f| = f_+ + f_-)$.

Свойства:

ullet Если $f\geqslant 0$ — измерима, то это определение даёт тот же интеграл, что и предыдущее.

4.
$$E\subset X$$
 — измеримое множество, f — измеримо на X , тогда $\int\limits_E f d\mu:=\int\limits_X f\chi_E d\mu.$ f — суммируема на E если $\int\limits_E f + -$ и $\int\limits_E f_-$ — оба конечны.

Замечание

(a)
$$f = \sum \lambda_k \chi_{E_k}$$
 if $\int_E f = \sum \lambda_k \mu(E_k \cap E)$;

(b)
$$f\geqslant 0$$
 — измерима, тогда $\int\limits_{E}fd\mu=\sup_{{\bf g}\text{ - cтуп.},0\leqslant g\leqslant f}igg(\int Gigg).$

0.2 Свойства интегралов

1. Монотонность: $f \leqslant g \Rightarrow \int\limits_{E} f \leqslant \int\limits_{E} g$.

Доказательство

$$\bullet \ 0 \leqslant f \leqslant g, \sum_{\widetilde{f}stup, 0 \leqslant \widetilde{f} \leqslant f} \int \widetilde{f} \leqslant \sum_{\widetilde{g}stup, 0 \leqslant \widetilde{g} \leqslant g} \int \widetilde{g};$$

• f и g — произвольные, то работает со срезками и $f_+ \leqslant g_+$, а $f_- \geqslant g_-$, тогда очевидно и для интегралов.

2.
$$\int_{E} 1d\mu = \mu E, \int_{E} 0d\mu = 0;$$

3.
$$\mu E=0,\,f$$
 — измерима, тогда $\int\limits_{E}f=0.$

Доказательство

- \bullet f ступенчатая, то очевидно;
- $f\geqslant 0$ измеримая, то очевидно;
- f любая, то аналогично.

4.
$$\int -f = -\int f, \forall c > 0: \int cf = c \int f.$$

Доказательство

•
$$(-f)_+ = f_-$$
 и $(-f)_= f_+$.

•
$$f\geqslant 0$$
 — очевидно, $\sum_{gstup,0\leqslant g\leqslant cf}\left(\int G\right)=c\sup_{\widetilde{g}stup,0\leqslant \widetilde{g}\leqslant f}\left(\int g\right).$

5. Пусть существует
$$\int_E f d\mu$$
, тогда $\left| \int_E f \right| \leqslant \int_E |f|$.

Доказательство

$$\begin{aligned} -|f| &\leqslant f \leqslant |f| \\ -\int |f| &\leqslant \int f \leqslant \int |f| \end{aligned}$$

6. f — измерима на $E,\,\mu E<+\infty,\,\forall x\in E\,\,a\leqslant f(x)\leqslant b.$ Тогда $a\mu E\leqslant \int\limits_{-}^{}f\leqslant b\mu E.$

0.3 Лемма

 $A = \bigsqcup A_i,\, A,\, A_i$ — измеримы, $g\leqslant 0$ — ступенчатые. Тогда

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_{i}} g d\mu.$$

0.3.1 Доказательство

$$g = \sum \lambda_k \chi_{E_k}.$$

$$\int_{A} g d\mu = \sum \lambda_k \mu(A \cap E_k) = \sum_k \lambda_k \sum_i \mu(A_i \cap E_k) = \sum_i \left(\sum_k \lambda_k \mu(A_i \cap E_k) \right) = \sum_i \int_{A_i} g.$$

0.4 Теорема

 $f:C \to \overline{R},\, f\geqslant 0$ — измеримая на $A,\, A$ — измерима, $A=\bigsqcup A_i,\,$ все A_i — измеримы. Тогда

$$\int\limits_A f d\mu = \sum\limits_i \int\limits_{A_i} f d\mu$$

0.4.1 Доказательство

• <

$$g$$
 — ступенчатая, $0\leqslant g\leqslant f$, тогда $\int_A g=\sum\int\limits_{A_i}g\leqslant \sum\int\limits_{A_i}f.$ Осталось перейти к sup.

• >

$$A=A_1\sqcup A_2, \sum \lambda_k\chi_{E_k}=g_1\leqslant f\chi_{A_1}, \ g_2\leqslant f\cdot\chi_{A_2}=\sum \lambda_k\chi_{E_k}, \ g_1+g_2\leqslant f\cdot\chi_{A_2}$$

$$\int\limits_{A_1}g_1+\int\limits_{A_2}g_2=\int\limits_{A}g_1+g_2.$$
 переходим к sup g_1 и g_2

$$\int\limits_{A_1} f + \int\limits_{A_2} f \leqslant \int\limits_{A} f$$

по индукции разобьём для $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n,\ A=\bigsqcup_{i=1}^{+\infty}A_i$ и $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n\sqcup B_n,$ где

$$B_n = \bigsqcup_{i\geqslant n+1} A_i$$
, тогда

$$\int\limits_{A}\geqslant\sum_{i=1}^{n}\int\limits_{A_{i}}f+\int\limits_{B}f\geqslant\sum_{i=1}^{n}f\Rightarrow\int\limits_{A}f\geqslant\sum_{i=1}^{+\infty}\int\limits_{A_{i}}f$$

0.5 Следствие

$$f\geqslant 0$$
 — измеримая, $u:\mathcal{A} o\overline{\mathbb{R}}_+,\,
u E=\int\limits_E f d\mu.$ Тогда u — мера.

0.6 Следствие 2

$$A = \bigsqcup_{i=1}^{+\infty} A_i, \ f$$
 — суммируема на A , тогда

$$\int_{A} f = \sum_{i} \int_{A_{i}} f.$$

Часть II

Предельный переход под знаком интеграла

0.7 Теорема

 $(X,\mathcal{A},\mu),\,f_n$ — измерима, $\forall n:0\leqslant f_n(x)\leqslant f_{n+1}(x)$ при почти всех x.

 $f(x) = \lim_{n \to +\infty} f_n(x)$ при почти всех x. Тогда

$$\lim_{X} \int_{X} f_n(x) d\mu = \int_{X} f d\mu.$$

0.7.1 Доказательство

f — измерима как предел, измерима.

- \leqslant $f_n(x)\leqslant f(x)$ почти везде, тогда $\forall n:\int\limits_X f_n(x)d\mu\leqslant\int\limits_X fd\mu,$ откуда следует, что и предел не превосходит.
- >

Достаточно доказать, что для любой ступенчатой функции $g:0\leqslant g\leqslant f$ верно $\lim_{N\to\infty}\int_{N}f_{n}\geqslant\int_{N}g.$

Достаточно доказать, что $\forall c \in (0,1)$ верно $\lim_X \int_X f_n \geqslant c \int_X g$.

$$E_n := X (f_n \geqslant cg), E_n \subset E_{n+1} \subset \dots$$

 $\bigcup E_n = X$, т.е. c < 1, то cg(x) < f(x), $f_n(x) \to f(x) \Rightarrow f_n$ попадёт в с зазор cg(x) < f(x).

$$\int\limits_X f_n \geqslant \int\limits_{E_n} f_n \geqslant \int\limits_{E_n} cg = c \int\limits_{E_n} g,$$

 $\lim_{n\to +\infty}\int\limits_X f_n\geqslant \lim_{n\to +\infty}c\int\limits_{E_n}g=c\int\limits_X g, \text{ потому что это непрерывность снизу меры }A\mapsto \int\limits_A g.$

0.8 Теорема

Пусть f, g — измеримы на $E, f\geqslant 0, g\geqslant 0.$ Тогда $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

0.8.1 Доказательство

Если f, g — ступенчатые, то очевидно.

Разберём общий случай. Существуют ступенчатые функции $f_n:0\leqslant f_n\leqslant f_{n+1}\leqslant\ldots\leqslant f$, и $g_n:0\leqslant g_n\leqslant g_{n+1}\leqslant\ldots\leqslant g$, и $f_n(x)\to f(x)$ и $g_n(x)\to g(x)$. Тогда

$$\int\limits_E f_n+g_n=\int\limits_E f_n+\int\limits_E g_n,$$
 сделаем предельный переход, значит при $n\to +\infty$
$$\int\limits_E f+g=\int\limits_f +\int\limits_E g$$

0.8.2 Следствие

Пусть f, g — суммируемые на множестве E, тогда f+g тоже суммируема и $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

Доказательство

$$(f+g)_{\pm} \le |f+g| \le |f| + |g|.$$

$$h := f + g$$
,

$$h_{+} - h_{-} = f_{+} - f_{-} + g_{+} - g_{-},$$

$$h_+ + f_- + g_- = h_- + f_+ + g_+,$$

$$\int h_{+} + \int f_{-} + \int g_{-} = \int h_{-} + \int f_{+} \int g_{+},$$
 $\int h_{+} - \int h_{-} = \int f_{+} - \int f_{-} + \int g_{+} - \int g_{-},$ тогда $\int h = \int f + \int g.$

0.9 Определение

 $\mathcal{L}(X)$ — множество суммируемых функций. Это линейное пространство.

Интеграл: $\mathcal{L}(X) \to \mathbb{R}$ — это линейная функция, но красивее говорить линейный функционал.

$$f_1,\ldots,f_n\in\mathcal{L}(X),\ \alpha_1,\ldots,\alpha_n\in\mathbb{R},\$$
тогда $\alpha_1f_1+\ldots+\alpha_nf_n\in\mathcal{L}(x).$

$$\int_{X} f = I(f), \int_{X} \alpha_{1} f_{1} + \dots + \alpha_{n} f_{n} = \alpha_{1} \int_{X} f_{1} + \dots + \alpha_{n} \int_{X} f_{n}$$

$$I(\alpha_{1} f_{1} + \dots + \alpha_{n} f_{n}) = I(\alpha_{1} f_{1}) + \dots + I(\alpha_{n} f_{n}).$$

0.10 Теорема об интегрировании положительных рядов

 $u_n \geqslant 0$ почти везде, измеримы на E. Тогда

$$\int_{E} \left(\sum_{i=1}^{+\infty} u_n \right) d\mu = \sum_{i \int =1}^{+\infty} \int_{E} u_n d\mu.$$

0.10.1 Доказательство

Очевидно по теореме Леви.

$$S(x)=\sum_{n=1}^{+\infty}u_n(x)$$
 и $p\leqslant S_N\leqslant S_{N+1}\leqslant\ldots$ и $S_N\to S(X).$

$$\lim_{n \to +\infty} \int_{E} S_N = \int_{E} S$$

$$\lim \sum_{k=1}^{n} \int_{\Sigma} u_k(x) = \int_{\Sigma} S(x) d\mu.$$

0.10.2 Следствие

$$u_n$$
 — измеримая функция, $\sum_{n=1}^{+\infty}\int\limits_{E}|u_n|<+\infty.$ Тогда

 $\sum u_n$ — абсолютно сходится почти везде на E.

Доказательство

$$S(x) = \sum_{n=1}^{+\infty} |u_n(x)|$$

$$\int\limits_E S(x) = \sum_{n=1}^{+\infty} \int |u_n(x)| < +\infty, \ \text{значит } S(x) \ \text{конечна почти всюду}.$$

$$S(x)=+\infty$$
 при $x\in B,\, \mu B>0,\, S(x)\geqslant n\cdot \chi_{B}\int\limits_{E}S(x)\geqslant n\cdot \mu B.$