DeepMath-103K: A Large-Scale, Challenging, Decontaminated, and Verifiable Mathematical Dataset for Advancing Reasoning

arxiv.org/abs/2504.11456

Zhiwei He*,1,2 Tian Liang*,1 Jiahao Xu*,1 Qiuzhi Liu1 Xingyu Chen1,2 Yue Wang1 Linfeng Song¹ Dian Yu¹ Zhenwen Liang¹ Wenxuan Wang¹ Zhuosheng Zhang² Rui Wang^{†,2} Zhaopeng Tu^{†,1} Haitao Mi¹ Dong Yu¹

¹Tencent ²Shanghai Jiao Tong University

https://github.com/zwhe99/DeepMath

https://hf.co/datasets/zwhe99/DeepMath-103K

本文提出DeepMath-103K,它是一个专为强化LLM数学推理能力而构建的大规模、高质量、有难度、题目新 的数学数据集。与现有数学数据集相比,DeepMath的特点:难度高,如果将数学题难度划分为1-9级, DeepMath中的题目主要位于难度5-9;重合率低,作者并非对已有数据集整合,而是从Math StackExchange中筛选,有82K道新题目;元数据丰富,每道题都包含可验证的答案(可用于RLVR)、难度、 主题、3个R1生成的solution(可用于sft)。

数学推理可以说是LLM REASONING中最受关注的一个 任务,现在学术界主流方法是RLVR,但是RLVR也不是 万能的,它也需要高质量的训练集。而现有数学数据 集普遍存在的第一个问题是难度偏低了,现在LLM能 力越来越强,在很多数据集上效果准的飞起,如果追 求排名的考试中人人都能得100分,那么这次考试是没 有意义的;第二个问题是很多"新"数据集就是用已有 的数据集整合整合做二次开发,就那么多源题目折腾 来折腾去,导致训练集与测试基准重合(污染)。为 此,一个高质量的、有难度的、新题目的数据集就显 得尤为重要。

数据来源 Verifiable Pool 95K MMIQC 1,202K High-Difficulty Pool Unverifiable Filtered Decontaminated Pool Raw Pool 2,670K 2,869K WebInstSub Difficulty Filtered 1,580K NuminaMath-CoT 55K Decontamination Filtered Math StachExchange负责提供高难度题目,

NuminaMath-CoT负责提供简单题目

示例数据

Question: Calculate the line integral $\oint_C P dx + Q dy$, over the ellipse $\frac{x^2}{25} + \frac{y^2}{36} = 1$, where the vector fields are given by: $P = \frac{x-1}{(x-1)^2 + y^2}$, $Q = \frac{x-1}{(x-1)^2 + y^2}$. Determine the value of the integral, considering that the vector field is undefined at the point (0,1) inside the ellipse.

Final Answer: 2π

Difficulty: 8

Topic: Mathematics -> Calculus -> Integral Calculus -> Techniques of Integration -> Multi-variable

R1 Solution 1: Okay, so I need to calculate the line integral ... Hmm, the problem also mentions that ... Thus, the value of the line integral is: 2π

R1 Solution 2: Okay, so I need to calculate the line integral Hmm, first things first, let me recall what line integrals are about ... Thus, the value of the line integral is: 2π

R1 Solution3: Okay, so I need to calculate the line integral ... So, first, maybe I should visualize the ellipse ... Thus, the value of the line integral is: 2π

Figure 2: A data sample from DeepMath-103K.

题目难度对比

难度定义来自AoPS网站,然后用GPT-4o对数据集中题目做 few-shot 标注难度

Table 3: Math reasoning performance. "DeepMath" denotes models trained on DeepMath-103K

Model	MATH 500	AMC 23	Olympiad Bench	Minerva Math	AIME 24	AIME 25	Pol Mat
Prop	rietary Mo	odels					
o1-mini	_	-	_	_	63.6	-	
o3-mini (low effort)	_	-	-	-	60.0	-	
Zero RL	from Bas	e Model					
Qwen-2.5-7B (Team, 2024)	54.8	35.3	27.8	16.2	7.7	5.4	28.
→ Open-Reasoner-Zero-7B (Hu et al., 2025)	81.8	58.9	47.9	38.4	15.6	14.4	40.
→ Qwen-2.5-7B-SRL-Zoo (Zeng et al., 2025a)	77.0	55.8	41.0	41.2	15.6	8.7	33.
→ DeepMath-Zero-7B (Ours)	85.5	64.7	51.0	45.3	20.4	17.5	42.
Qwen-2.5-Math-7B (Team, 2024)	46.9	31.9	15.8	15.5	11.2	4.4	22.
Qwen-2.5-Math-7B-SRL-Zoo (Hu et al., 2025)	75.8	59.7	37.4	29.9	24.0	10.2	36.
→ Qat-Zero-7B (Liu et al., 2025)	80.0	66.7	43.4	40.8	32.7	11.7	40.
→ Eurus-2-7B-PRIME (Cui et al., 2025)	80.2	64.7	44.9	42.1	19.0	12.7	38
→ DeepMath-Zero-Math-7B (Ours)	86.9	74.7	52.3	49.5	34.2	23.5	46.
RL fron	Instruct .	Models					
R1-Distill-Qwen-1.5B (Guo et al., 2025)	84.7	72.0	53.1	36.6	29.4	24.8	39.
→ DeepScaleR-1.5B-Preview (Luo et al., 2025)	89.4	80.3	60.9	42.2	42.3	29.6	46.
→ Still-3-1.5B-Preview (Chen et al., 2025)	86.6	75.8	55.7	38.7	30.8	24.6	43.
→ DeepMath-1.5B (Ours)	89.9	82.3	61.8	42.5	37.3	30.8	46.
OpenMath-Nemotron-1.5B (Moshkov et al., 2025)	91.8	90.5	70.3	26.3	61.3	50.6	56.
→ DeepMath-Omn-1.5B (Ours)	93.2	94.2	73.4	28.3	64.0	57.3	58.

用DeepMath-103K训练的模型效果着实不错, 佐证了数据集的质量。