Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная №9

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Оптимизация работы с массивами

Задание 2

Студенты:

Соболь В.

Темнова А.С.

Группа: 13541/3

Преподаватель:

Антонов А.П.

Содержание

1.	Зада	ние	4
2.	Час	ь 1	12
	2.1.	Исходный код	12
	2.2.	Скрипт выполнения	14
	2.3.	- Моделирование	15
	2.4.	Решение a1	15
		2.4.1. Директивы	15
		2.4.2. Синтез	16
		2.4.3. Анализ решения	19
	2.5.	Решение a2	19
		2.5.1. Директивы	19
		2.5.2. Синтез	20
		2.5.3. Анализ решения	23
	2.6.	Решение аЗ	23
		2.6.1. Директивы	23
		2.6.2. Синтез	23
		2.6.3. Анализ решения	26
	2.7.	Решение a4	26
		2.7.1. Директивы	26
		2.7.2. Синтез	27
		2.7.3. Анализ решения	30
	2.8	Решение a5	30
	2.0.	2.8.1. Директивы	30
		2.8.2. Синтез	31
		2.8.3. Анализ решения	34
	2.9.	Решение аб	$\frac{34}{35}$
	2.9.		35
		2.9.1. Директивы	35
	2.10	2.9.3. Анализ решения	38
	2.10.	Решение а7	39 39
		2.10.1. Директивы	
		2.10.2. Синтез	39
	0.11	2.10.3. Анализ решения	43
	2.11.	Зывод	43
3	Час	r 9	43
J .	3.1.	Исходный код	43
	3.2.	Скрипт выполнения	45
	3.3.		46
		Моделирование	47
	J.4.		47
		3.4.1. Директивы	47
			50
	2 5	1	
	3.5.	Решение b2	50
		З.5.1. Директивы	50

	3.5.2.	Синтез	. 51
	3.5.3.	Анализ решения	. 53
3.6.	Решен	ие b3	. 54
	3.6.1.	Директивы	. 54
	3.6.2.	Синтез	. 54
	3.6.3.	Анализ решения	. 58
3.7.	Решен	ле b4	. 58
	3.7.1.	Директивы	. 58
	3.7.2.	Синтез	. 58
	3.7.3.	Анализ решения	. 62
3.8.	Решен	ле b5	. 62
	3.8.1.	Директивы	. 62
	3.8.2.	Синтез	. 63
	3.8.3.	Анализ решения	. 66
3.9.	Решен	ле b6	. 67
	3.9.1.	Директивы	. 67
	3.9.2.	Синтез	. 67
	3.9.3.	Анализ решения	. 70
3.10.	Решен	ле b7	. 71
	3.10.1.	Директивы	. 71
	3.10.2.	Синтез	. 71
	3.10.3.	Анализ решения	. 75
3.11.	Решен	ле b8	. 76
	3.11.1.	Директивы	. 76
	3.11.2.	Синтез	. 76
	3.11.3.	Анализ решения	. 79
3 12	Вывол		80

1. Задание

- Создать проект lab9 2
- Микросхема: xa7a12tcsg325-1q

ЧАСТЬ 1

• Создать функцию

```
foo\_a: входной массив short d\_in[N]; выходной массив short d\_out\ [N/4]. for (short\ i=0;\ i< N/4;\ i++)\{ d\_out[i]=d\_in[i]*d\_in[i+8]+d\_in[i+4]*d\_in[i+12]; \} N=16
```

- Создать тест lab9_2_test.c для проверки функции. Осуществить моделирование (с выводом результатов в консоль)
- Исследование:
- Solution 1a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию bram; RAM_1P_BRAM для входного (и выходного) массива
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Solution 2a
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ap_memory; RAM_1P для входного (и выходного) массива
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary

- * performance Profile
- * Resource profile
- * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Сравнить два решения (solution_1a и solution_2a) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution_3a
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ap memory; RAM 2P для входного массива
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Сравнить два решения (solution_2a и solution_3a) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution 4a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию ар_memory; RAM_1P для входного массива
 - установить array partition; block; factor =2 для входного массива
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile

- * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Сравнить два решения (solution_3a и solution_4a) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution 5a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию ар_memory; RAM_1P для входного и выходного массивов
 - установить array partition; block; factor =4 для входного массива
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- •
- Сравнить два решения (solution_4a и solution_5a) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution 6a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию ар_memory; RAM_2P для входного и выходного массивов
 - установить array partition; block; factor =2 для входного массива
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary

- * performance Profile
- * Resource profile
- * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval

•

- Сравнить два решения (solution_5a и solution_6a) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution_7a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию ар_memory; RAM_2P для входного и выходного массивов
 - установить array partition; block; factor =4 для входного массива
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - \cdot На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval

•

• Сравнить два решения (solution_6a и solution_7a) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...

Сделать сводную таблицу (S x/Latency/II – номер pewehus/Latency/II)

	RAM_1P	RAM_2P
Без block	$S_x/Latency/II$	
block; factor $=2$		
block; factor =4		

ЧАСТЬ 2

• Создать функцию

```
foo\_b: входной массив short d\_in[N]; выходной массив short d\_out[N]. for (short\ i=0;\ i< N/4;\ i++)\{ d\_out[i]=d\_in[i]*d\_in[i+4]; d\_out[i+1]=d\_in[i+8]*d\_in[i+12]; d\_out[i+2]=d\_in[i]*d\_in[i+12]; d\_out[i+3]=d\_in[i+4]*d\_in[i+8]; \} N=16
```

• Solution_1b

- задать: clock period 10; clock uncertainty 0.1
- установить реализацию ар_memory; RAM_1P для входного и выходного массивов
- осуществить синтез
- привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval

• Solution 2b

- задать: clock period 10; clock uncertainty 0.1
- установить реализацию ар_memory; RAM_1P для входного и выходного массивов
- установить array partition; block; factor =4 для входного массива
- осуществить синтез
- привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval

- * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Сравнить два решения (solution_1b и solution_2b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution 3b
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию ар_memory; RAM_1P для входного и выходного массивов
 - установить array partition; block; factor =4 для входного массива
 - установить array_partition; cyclic; factor =2 для выходного массива
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Сравнить два решения (solution_2b и solution_3b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution 4b
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию ар_memory; RAM_1P для входного и выходного массивов
 - установить array partition; block; factor =4 для входного массива
 - установить array partition; cyclic; factor =4 для выходного массива
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile

- * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Сравнить два решения (solution_3b и solution_4b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution 5b
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ар_memory; RAM_1P для входного и RAM_2P для выходного массивов
 - установить array_partition; block; factor =4 для входного массива
 - установить array partition; cyclic; factor =1 для выходного массива
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Сравнить два решения (solution_3b и solution_5b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution 6b
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию ap_memory; RAM_1P для входного и RAM_2P для выходного массивов
 - установить array partition; block; factor =4 для входного массива
 - установить array partition; cyclic; factor =2 для выходного массива
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)

- * utilization estimates=>summary
- * performance Profile
- * Resource profile
- * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Сравнить два решения (solution_5b и solution_6b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution_7b
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ap_memory; RAM_1P для входного и RAM_2P для выходного массивов
 - установить array partition; block; factor =4 для входного массива
 - установить array_partition; cyclic; factor =4 для выходного массива
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Сравнить два решения (solution_6b и solution_7b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...

Сделать сводную таблицу (S x/Latency/II – номер pewehus/Latency/II)

	RAM_1P	RAM_2P
Без cyclic	$S_x/Latency/II$	
cyclic; factor $=2$		
cyclic; factor =4		

• Solution_8b

- задать: clock period 10; clock uncertainty 0.1
- установить реализацию ар_memory; RAM_1P для входного и выходного массивов
- установить array_partition; block; factor =4 для входного массива
- установить array partition; complete для выходного массива
- осуществить синтез
- привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Сравнить два решения (solution_2b и solution_8b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...

2. Часть 1

2.1. Исходный код

Для выполнения работы был написан код устройства и код теста, которые приведены ниже.

```
#include "lab9_2_1.h"

void foo_a(short d_in[N], short d_out[N/4]) {

for (short i=0; i<N/4; i++) {

    d_out[i] = d_in[i]*d_in[i+4]*d_in[i+12];
}

}
```

Рис. 2.1. Код устройства

```
1 #include < stdio.h>
  \#include "lab9_2 1.h"
3
4
5
  void generate_test_data(short scale, short d_in[N], short d_out[N/4]) {
6
    short i;
7
    for (i = 0; i < N; ++i){
8
      d_{in}[i] = (i + 1) * scale;
9
10
11
    for (i=0; i< N/4; i++){
      d\_out\,[\,i\,] \ = \ d\_in\,[\,i\,]*d\_in\,[\,i+8] \ + \ d\_in\,[\,i+4]*d\_in\,[\,i+12];
12
13
14
15
16
  int compare_array_eq(short actual [N/4], short expected [N/4]) {
17
     for (int i = 0; i < N/4; ++i) {
18
       if (actual[i] != expected[i]) {
         fprintf(stdout, "%d:_Expeced_%d_Actual_%d\n", i, expected[i], actual[i]);
19
20
         return 0;
21
       }
22
23
    return 1;
24
25
26
  int main() {
27
     int pass = 1;
28
     short d_in[N];
29
    short d out [N/4];
30
    short expected out [N/4];
31
32
     for (int i = 1; i < 4; ++i) {
33
       generate test data(i, d in, expected out);
34
35
36
      foo_a(d_in, d_out);
37
38
       if (!compare_array_eq(d_out, expected_out)){
39
         pass = 0;
40
       }
41
42
     }
43
44
     if (pass) {
       45
46
       return 0;
47
     } else
48
       fprintf(stderr, "-----
                                  ---Fail!----
49
       return 1;
50
51
```

Рис. 2.2. Код теста

```
1 #define N 16
```

Рис. 2.3. Заголовочный файл

2.2. Скрипт выполнения

Для автоматизации выполнения работы был написан следующий скрипт:

```
open project -reset lab9 2 1
  add files lab9 2 1.c
3
  set\_top\ foo\_a
  add_files -tb lab9_2_1_test.c
4
5
  set solutions
                    [list la 2a 3a 4a 5a 6a 7a]
6
  foreach sol $solutions {
    open solution solution sol -reset
8
    set_part \{xa7a12tcsg325-1q\}
9
    create_clock -period 10
10
    set_clock_uncertainty 0.1
    if {$sol == "1a"} {
11
12
      set_directive_interface -mode bram foo_a d_in
13
      set_directive_resource -core RAM_1P_BRAM foo_a d_in
14
      set directive interface -mode bram foo a d out
15
      set_directive_resource -core RAM_1P_BRAM foo_a d_out
16
17
    if \{\$sol = "2a"\}
      set_directive_interface -mode ap_memory foo_a d_in
18
19
      set_directive_resource -core RAM_1P foo_a d_in
      \verb|set_directive_interface| -mode ap_memory | foo_a d_out|
20
21
      set_directive_resource -core RAM_1P foo_a d_out
22
23
    if {$sol == "3a"} {
24
      set directive interface -mode ap memory foo a d in
      set directive resource -core RAM 2P foo a d in
25
26
    if \{\$sol = "4a"\}
27
28
      set_directive_interface -mode ap_memory foo_a d_in
29
      set_directive_resource -core RAM_1P foo_a d_in
      set_directive_array_partition -type block -factor 2 foo a d in
30
31
```

Рис. 2.4. Скрипт выполнения, часть 1

```
if \{\$sol = "5a"\}
1
2
      set directive interface -mode ap memory foo a d in
3
      set_directive_resource -core RAM_1P foo_a d in
      set_directive_interface -mode ap_memory foo_a d_out
4
      set_directive_resource -core RAM_1P foo_a d out
5
6
      set_directive_array_partition -type block -factor 4 foo_a d_in
7
8
    if {$sol == "6a"} {
9
      set directive interface -mode ap memory foo a d in
10
      set directive resource -core RAM 2P foo a d in
      set directive interface -mode ap memory foo a d out
11
12
          directive resource -core RAM 2P foo a d out
13
      set directive array partition -type block -factor 2 foo a d in
14
15
    if \{\$sol = "7a"\}
16
      set directive interface -mode ap memory foo a d in
17
      set directive resource -core RAM 2P foo a d in
18
      set_directive_interface -mode ap_memory foo_a d_out
      set_directive_resource -core RAM_2P foo_a d_out
19
20
      set directive array partition -type block -factor 4 foo a d in
21
22
    csim_design
23
    csynth design
24
25
  exit
```

Рис. 2.5. Скрипт выполнения, часть 2

2.3. Моделирование

Ниже приведены результаты моделирования, по которым видно, что тест проходит успешно.

Рис. 2.6. Результаты моделирования

2.4. Решение a1

2.4.1. Директивы

Ниже приведены директивы, установленные для данного решения.

- ▼ foo_a
 - d in
 - % HLS RESOURCE variable=d_in core=RAM_1P_BRAM
 - % HLS INTERFACE bram port=d_in
 - d_out
 - % HLS RESOURCE variable=d out core=RAM 1P BRAM
 - % HLS INTERFACE bram port=d_out
 - for Statement

Рис. 2.7. Директивы

2.4.2. Синтез

По оценке производительности видно, что устройство ${\bf HE}$ соответствует заданным критериям.

Performance Estimates

- □ Timing (ns)
 - □ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	10.437	0.10

- □ Latency (clock cycles)
 - □ Summary

Late	ency	Inte		
min	max	min	max	Туре
25	25	25	25	none

Рис. 2.8. Performance estimates

Utilization Estimates

∃ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	2	-	-
Expression	-	-	0	32
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	86
Register	-	-	67	-
Total	0	2	67	118
Available	40	40	16000	8000
Utilization (%)	0	5	~0	1

Рис. 2.9. Utilization estimates

Рис. 2.10. Performance profile

Interface

□ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	foo_a	return value
ap_rst	in	1	ap_ctrl_hs	foo_a	return value
ap_start	in	1	ap_ctrl_hs	foo_a	return value
ap_done	out	1	ap_ctrl_hs	foo_a	return value
ap_idle	out		ap_ctrl_hs		return value
ap_ready	out	1	ap_ctrl_hs	foo_a	return value
d_in_Addr_A	out	32	bram	d_in	array
d_in_EN_A	out	1	bram	d_in	array
d_in_WEN_A	out	2	bram	d_in	array
d_in_Din_A	out	16	bram	d_in	array
d_in_Dout_A	in	16	bram	d_in	array
d_in_Clk_A	out	1	bram	d_in	array
d_in_Rst_A	out	1	bram	d_in	array
d_out_Addr_A	out	32	bram	d_out	array
d_out_EN_A	out	1	bram	d_out	array
d_out_WEN_A	out	2	bram	d_out	array
d_out_Din_A	out	16	bram	d_out	array
d_out_Dout_A	in	16	bram	d_out	array
d_out_Clk_A	out	1	bram	d_out	array
d_out_Rst_A	out	1	bram	d_out	array

Рис. 2.11. Interface estimates

Рис. 2.12. Scheduler viewer

На рисунке выше видны блоки, которые не укладываются во временной интервал.

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6
1	⊡I/O Ports							
2	d_in(p0)		read	read	read	re	ad	
3	d_out(p0)							write
4	⊡Memory Ports							
5	d_in(p0)		read	read	read	re	ad	
6	d_out(p0)							write
7	⊡Expressions							
8	i_1_fu_116		+					
9	i_phi_fu_94		phi_mux					
10	exitcond_fu_110		icmp					
11	tmp_5_fu_140				^			
12	tmp_4_fu_159					*		
13	grp_fu_165							+

Рис. 2.13. Resource viewer

2.4.3. Анализ решения

На каждой итерации для двух операций умножения в устройстве используются 2 умножителя .

25 тактов задержки – это 1 начальный такт инициализации и 4 итерации цикла, каждый из которых занимает 6 тактов.

Интервал инициализации совпадает с задержкой, так как устройство не конвейеризировано и делает все последовательно.

Стоит отметить, что устройство не уложилось в требуемые 10 нс периода тактовой частоты.

2.5. Решение а2

2.5.1. Директивы

Ниже приведены директивы, установленные для данного решения.

- ▼ 🧶 foo_a e din % HLS RESOURCE variable=d in core=RAM 1P % HLS INTERFACE ap_memory port=d_in d out % HLS RESOURCE variable=d out core=RAM 1P % HLS INTERFACE ap memory port=d out
 - for Statement

25

Рис. 2.14. Директивы

2.5.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates □ Timing (ns) Summary Clock Target Estimated Uncertainty ap clk 10.00 9.332 0.10 Latency (clock cycles) Summary Latency Interval min max min max Type 25 none 25

Рис. 2.15. Performance estimates

25

Utilization Estimates

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	2	-	-
Expression	-	-	0	32
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	77
Register	-	-	67	-
Total	0	2	67	109
Available	40	40	16000	8000
Utilization (%)	0	5	~0	1

Рис. 2.16. Utilization estimates

Рис. 2.17. Performance profile

Interface

∃ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	foo_a	return value
ap_rst	in	1	ap_ctrl_hs	foo_a	return value
ap_start	in	1	ap_ctrl_hs	foo_a	return value
ap_done	out	1	ap_ctrl_hs	foo_a	return value
ap_idle	out	1	ap_ctrl_hs	foo_a	return value
ap_ready	out	1	ap_ctrl_hs	foo_a	return value
d_in_address0	out	4	ap_memory	d_in	array
d_in_ce0	out	1	ap_memory	d_in	array
d_in_q0	in	16	ap_memory	d_in	array
d_out_address0	out	2	ap_memory	d_out	array
d_out_ce0	out	1	ap_memory	d_out	array
d_out_we0	out	1	ap_memory	d_out	array
d_out_d0	out	16	ap_memory	d_out	array

Рис. 2.18. Interface estimates

Рис. 2.19. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6
1	⊡I/O Ports							
2	d_in(p0)		read	read	read	re	ad	
3	d_out(p0)							write
4	⊡Memory Ports							
5	d_in(p0)		read	read	read	re	ad	
6	d_out(p0)							write
7	-Expressions							
8	i_phi_fu_94		phi_mux					
9	i_1_fu_112		+					
10	exitcond_fu_106		icmp					
11	tmp_4_fu_155				*			
12	tmp_5_fu_136				^			
13	grp_fu_161						+	

Рис. 2.20. Resource viewer

2.5.3. Анализ решения

В сравнении с предыдущим, данное решение укладывается в отведённый временной интервал. Это связано с другими используемыми элементами памяти. Остальные параметры не отличаются.

2.6. Решение а3

2.6.1. Директивы

Ниже приведены директивы, установленные для данного решения.

Рис. 2.21. Директивы

2.6.2. Синтез

 Π о оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

∃ Timing (ns)

□ Summary

Cloc	k Targe	et Estima	ted Uncertainty
ap_cl	k 10.0	00 9.3	332 0.10

□ Latency (clock cycles)

□ Summary

Late	ency	Inte		
min	max	min	max	Туре
17	17	17	17	none

Рис. 2.22. Performance estimates

Utilization Estimates

∃ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	2	-	-
Expression	-	-	0	32
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	72
Register	-	-	46	-
Total	0	2	46	104
Available	40	40	16000	8000
Utilization (%)	0	5	~0	1

Рис. 2.23. Utilization estimates

Рис. 2.24. Performance profile

Interface

Summary

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	foo_a	return value
ap_rst	in	1	ap_ctrl_hs	foo_a	return value
ap_start	in	1	ap_ctrl_hs	foo_a	return value
ap_done	out	1	ap_ctrl_hs	foo_a	return value
ap_idle	out	1	ap_ctrl_hs	foo_a	return value
ap_ready	out	1	ap_ctrl_hs	foo_a	return value
d_in_address0	out	4	ap_memory	d_in	array
d_in_ce0	out	1	ap_memory	d_in	array
d_in_q0	in	16	ap_memory	d_in	array
d_in_address1	out	4	ap_memory	d_in	array
d_in_ce1	out	1	ap_memory	d_in	array
d_in_q1	in	16	ap_memory	d_in	array
d_out_address0	out	2	ap_memory	d_out	array
d_out_ce0	out	1	ap_memory	d_out	array
d_out_we0	out	1	ap_memory	d_out	array
d_out_d0	out	16	ap_memory	d_out	array

Рис. 2.25. Interface estimates

Рис. 2.26. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4
1	⊡I/O Ports					
2	d_in(pl)		read	re	ad	
3	d_in(p0)		read	re	ad	
4	d_out(p0)					write
5	⊡Memory Ports					
6	d_in(pl)		read	re	ad	
7	d_in(p0)		read	re	ad	
8	d_out(p0)					write
9	⊡Expressions					
10	i_1_fu_112		+			
11	i_phi_fu_98		phi_mux			
12	exitcond_fu_106		icmp			
13	tmp_4_fu_156			*		
14	tmp_5_fu_136			^		
15	grp_fu_162				+	

Рис. 2.27. Resource viewer

2.6.3. Анализ решения

Как можно заметить, решение 3а не только быстрее, но и экономичнее, чем 2а. Оно используется столько же умножителей, однако благодаря двухпортовой памяти можно производить по 2 чтения из входного массива, что сокращает выполнение 1 итерации с 6 до 4 тактов. Соответственно, задержка и интервал инициализации меньше на 8 (минус 2 такта на 4-х итерациях) тактов.

2.7. Решение а4

2.7.1. Директивы

Ниже приведены директивы, установленные для данного решения.

foo_a
 d_in
 HLS ARRAY_PARTITION variable=d_in block factor=2 dim=1
 HLS RESOURCE variable=d_in core=RAM_1P
 HLS INTERFACE ap_memory port=d_in
 d_out

for Statement

Рис. 2.28. Директивы

2.7.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	9.332	0.10

□ Latency (clock cycles)

■ Summary

Late	ency	Inte						
min	max	min	max	Туре				
17	17	17	17	none				

Рис. 2.29. Performance estimates

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	2	-	-
Expression	-	-	0	32
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	72
Register	-	-	46	-
Total	0	2	46	104
Available	40	40	16000	8000
Utilization (%)	0	5	~0	1

Рис. 2.30. Utilization estimates

Рис. 2.31. Performance profile

Interface

∃ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	foo_a	return value
ap_rst	in	1	ap_ctrl_hs	foo_a	return value
ap_start	in	1	ap_ctrl_hs	foo_a	return value
ap_done	out	1	ap_ctrl_hs	foo_a	return value
ap_idle	out	1	ap_ctrl_hs	foo_a	return value
ap_ready	out	1	ap_ctrl_hs	foo_a	return value
d_in_0_address0	out	3	ap_memory	d_in_0	array
d_in_0_ce0	out	1	ap_memory	d_in_0	array
d_in_0_q0	in	16	ap_memory	d_in_0	array
d_in_1_address0	out	3	ap_memory	d_in_1	array
d_in_1_ce0	out	1	ap_memory	d_in_1	array
d_in_1_q0	in	16	ap_memory	d_in_1	array
d_out_address0	out	2	ap_memory	d_out	array
d_out_ce0	out	1	ap_memory	d_out	array
d_out_we0	out	1	ap_memory	d_out	array
d_out_d0	out	16	ap_memory	d_out	array

Рис. 2.32. Interface estimates

Рис. 2.33. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4
1	⊡I/O Ports					
2	d_in_0(p0)		read	re	ad	
3	d_in_1(p0) read read		ad			
4	d_out(p0)					write
5	⊡Memory Ports					
6	d_in_0(p0)		read	re	ad	
7	d_in_1(p0) read read		ad			
8	d_out(p0)					write
9	⊡Expressions					
10	i_phi_fu_97		phi_mux			
11	i_1_fu_111		+			
12	exitcond_fu_105		icmp			
13	tmp_4_fu_135			*		
14	newIndex_trunc8_fu_123			^		
15	grp fu 141				+	

Рис. 2.34. Resource viewer

2.7.3. Анализ решения

В сравнении с предыдущим решением, данное решение использует не один экземпляр двухпортовой памяти, а 2 экземпляра однопортовой. На результирующие характеристики устройства это не повлияло.

2.8. Решение а5

2.8.1. Директивы

Ниже приведены директивы, установленные для данного решения.

foo_a
 d_in
 HLS ARRAY_PARTITION variable=d_in block factor=4 dim=1
 HLS RESOURCE variable=d_in core=RAM_1P
 HLS INTERFACE ap_memory port=d_in
 d_out
 HLS RESOURCE variable=d_out core=RAM_1P
 HLS INTERFACE ap_memory port=d_out
 for Statement

Рис. 2.35. Директивы

2.8.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	9.332	0.10

□ Latency (clock cycles)

□ Summary

Late	ency	Inte		
min	max	min	max	Туре
13	13	13	13	none

Рис. 2.36. Performance estimates

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	2	-	-
Expression	-	-	0	21
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	36
Register	-	-	61	-
Total	0	2	61	57
Available	40	40	16000	8000
Utilization (%)	0	5	~0	~0

Рис. 2.37. Utilization estimates

Рис. 2.38. Performance profile

Interface

∃ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	foo_a	return value
ap_rst	in	1	ap_ctrl_hs	foo_a	return value
ap_start	in	1	ap_ctrl_hs	foo_a	return value
ap_done	out	1	ap_ctrl_hs	foo_a	return value
ap_idle	out	1	ap_ctrl_hs	foo_a	return value
ap_ready	out	1	ap_ctrl_hs	foo_a	return value
d_in_0_address0	out	2	ap_memory	d_in_0	array
d_in_0_ce0	out	1	ap_memory	d_in_0	array
d_in_0_q0	in	16	ap_memory	d_in_0	array
d_in_1_address0	out	2	ap_memory	d_in_1	array
d_in_1_ce0	out	1	ap_memory	d_in_1	array
d_in_1_q0	in	16	ap_memory	d_in_1	array
d_in_2_address0	out	2	ap_memory	d_in_2	array
d_in_2_ce0	out	1	ap_memory	d_in_2	array
d_in_2_q0	in	16	ap_memory	d_in_2	array
d_in_3_address0	out	2	ap_memory	d_in_3	array
d_in_3_ce0	out	1	ap_memory	d_in_3	array
d_in_3_q0	in	16	ap_memory	d_in_3	array
d_out_address0	out	2	ap_memory	d_out	array
d_out_ce0	out	1	ap_memory	d_out	array
d_out_we0	out	1	ap_memory	d_out	array
d_out_d0	out	16	ap_memory	d_out	array

Рис. 2.39. Interface estimates

Рис. 2.40. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3
1	⊡I/O Ports				
2	d_in_1(p0)		re	ad	
3	d_in_2(p0)		re	ad	
4	d_in_0(p0)		re	ad	
5	d_in_3(p0)		re	ad	
6	d_out(p0)				write
7	⊡Memory Ports				
8	d_in_2(p0)		re	ad	
9	d_in_3(p0)		re	ad	
10	d_in_0(p0)		re	ad	
11	d_in_1(p0)		re	ad	
12	d_out(p0)				write
13	-Expressions				
14	i_1_fu_124		+		
15	i_phi_fu_lll		phi_mux		
16	exitcond_fu_118		icmp		
17	tmp_4_fu_138			*	
18	grp_fu_144				+
10	3-2				

Рис. 2.41. Resource viewer

2.8.3. Анализ решения

Затраты по времени (задержка и интервал инициализации) сократились на 4 такта. Это исходит из того факта, что теперь используется 4 экземпляра однопортовой памяти и

все 4 операции чтения проходят одновременно. Это сокращает выполнение одной итерации на 1, что и создает улучшение в задержке на 4 такта.

2.9. Решение а6

2.9.1. Директивы

Ниже приведены директивы, установленные для данного решения.

foo_a
 d_in
 HLS ARRAY_PARTITION variable=d_in block factor=2 dim=1
 HLS RESOURCE variable=d_in core=RAM_2P
 HLS INTERFACE ap_memory port=d_in
 d_out
 HLS RESOURCE variable=d_out core=RAM_2P
 HLS INTERFACE ap_memory port=d_out
 for Statement

Рис. 2.42. Директивы

2.9.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Рис. 2.43. Performance estimates

Utilization Estimates

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	2	-	-
Expression	-	-	0	32
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	36
Register	-	-	61	-
Total	0	2	61	68
Available	40	40	16000	8000
Utilization (%)	0	5	~0	~0

Рис. 2.44. Utilization estimates

Рис. 2.45. Performance profile

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	foo_a	return value
ap_rst	in	1	ap_ctrl_hs	foo_a	return value
ap_start	in	1	ap_ctrl_hs	foo_a	return value
ap_done	out	1	ap_ctrl_hs	foo_a	return value
ap_idle	out	1	ap_ctrl_hs	foo_a	return value
ap_ready	out	1	ap_ctrl_hs	foo_a	return value
d_in_0_address0	out	3	ap_memory	d_in_0	array
d_in_0_ce0	out	1	ap_memory	d_in_0	array
d_in_0_q0	in	16	ap_memory	d_in_0	array
d_in_0_address1	out	3	ap_memory	d_in_0	array
d_in_0_ce1	out	1	ap_memory	d_in_0	array
d_in_0_q1	in	16	ap_memory	d_in_0	array
d_in_1_address0	out	3	ap_memory	d_in_1	array
d_in_1_ce0	out	1	ap_memory	d_in_1	array
d_in_1_q0	in	16	ap_memory	d_in_1	array
d_in_1_address1	out	3	ap_memory	d_in_1	array
d_in_1_ce1	out	1	ap_memory	d_in_1	array
d_in_1_q1	in	16	ap_memory	d_in_1	array
d_out_address1	out	2	ap_memory	d_out	array
d_out_ce1	out	1	ap_memory	d_out	array
d_out_we1	out	1	ap_memory	d_out	array
d_out_d1	out	16	ap_memory	d_out	array

Рис. 2.46. Interface estimates

Рис. 2.47. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3
1	⊡I/O Ports				
2	d_in_0(p0)		re	ad	
3	d_in_1(p0)		re	ad	
4	d_in_1(p1)		re	ad	
5	d_in_0(pl)		re	ad	
6	d_out(pl)				write
7	⊡Memory Ports				
8	d_in_0(p0)		re	ad	
9	d_in_1(p1)		read		
10	d_in_1(p0)		read		
11	d_in_0(pl)		re	ad	
12	d_out(pl)				write
13	∃Expressions				
14	i_phi_fu_109		phi_mux		
15	i_1_fu_122		+		
16	newIndex_trunc8_fu_134		^		
17	exitcond_fu_116		icmp		
18	tmp_4_fu_146			*	
19	grp_fu_152				+

Рис. 2.48. Resource viewer

2.9.3. Анализ решения

Задержка и интервал инициализации оказались одинаковыми. Использовать 4 однопортовых памяти или 2 двухпортовых оказалось практически одинаково. Разницу можно

заметить только в том, что в решении 6а есть еще одна небольшая операция получения новых индексов для чтения из памяти. Однако эта операция очень быстрая, и все 4 чтения происходят практически одновременно.

2.10. Решение а7

2.10.1. Директивы

Ниже приведены директивы, установленные для данного решения.

Рис. 2.49. Директивы

2.10.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	9.332	0.10

□ Latency (clock cycles)

□ Summary

Latency		Inte		
min	max	min	max	Туре
13	13	13	13	none

Рис. 2.50. Performance estimates

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	2	-	-
Expression	-	-	0	21
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	36
Register	-	-	61	-
Total	0	2	61	57
Available	40	40	16000	8000
Utilization (%)	0	5	~0	~0

Рис. 2.51. Utilization estimates

Pис. 2.52. Performance profile

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	foo_a	return value
ap_rst	in	1	ap_ctrl_hs	foo_a	return value
ap_start	in	1	ap_ctrl_hs	foo_a	return value
ap_done	out	1	ap_ctrl_hs	foo_a	return value
ap_idle	out	1	ap_ctrl_hs	foo_a	return value
ap_ready	out	1	ap_ctrl_hs	foo_a	return value
d_in_0_address0	out	2	ap_memory	d_in_0	array
d_in_0_ce0	out	1	ap_memory	d_in_0	array
d_in_0_q0	in		ap_memory	d_in_0	array
d_in_1_address0	out	2	ap_memory	d_in_1	array
d_in_1_ce0	out	1	ap_memory	d_in_1	array
d_in_1_q0	in		ap_memory	d_in_1	array
d_in_2_address0	out	2	ap_memory	d_in_2	array
d_in_2_ce0	out	1	ap_memory	d_in_2	array
d_in_2_q0	in	16	ap_memory	d_in_2	array
d_in_3_address0	out	2	ap_memory	d_in_3	array
d_in_3_ce0	out	1	ap_memory	d_in_3	array
d_in_3_q0	in	16	ap_memory	d_in_3	array
d_out_address1	out	2	ap_memory	d_out	array
d_out_ce1	out	1	ap_memory	d_out	array
d_out_we1	out	1	ap_memory	d_out	array
d_out_d1	out	16	ap_memory	d_out	array

Рис. 2.53. Interface estimates

Рис. 2.54. Scheduler viewer

	Resource\Control Step	C0	C1	C2	С3
1	∃I/O Ports				
2	d_in_1(p0)		re	ad	
3	d_in_2(p0)		re	ad	
4	d_in_3(p0)		re	ad	
5	d_in_0(p0)		re	ad	
6	d_out(pl)				write
7	⊡Memory Ports				
8	d_in_0(p0)		read		
9	d_in_1(p0)		read		
10	d_in_3(p0)		read		
11	d_in_2(p0)		read		
12	d_out(pl)				write
13	⊡Expressions				
14	i_phi_fu_115		phi_mux		
15	i_1_fu_128		+		
16	exitcond_fu_122		icmp		
17	tmp_4_fu_142			*	
18	grp_fu_148				+

Рис. 2.55. Resource viewer

2.10.3. Анализ решения

Видно, что задержки остались прежними. Поведение по диаграмме аналогично решению 5а. Вообще это решение аналогично по всем параметрам 5а, что означает, что для данного устройства нет необходимость иметь 4 двухпортовых памяти, и программа автоматически создала 4 однопортовых, как более экономичное решение.

2.11. Вывод

Ниже приведено сравнение всех решений первой части.

	RAM_1P	RAM_2P	BRAM_1P
Без block	2a/25/25	3a/17/17	1a/25/25
block; factor $=2$	4a/17/17	6a/13/13	
block; factor =4	5a/13/13	7a/13/13	

Рис. 2.56. Сравнение решений

По таблице видно, что наименьшие задержки получили те решения, где есть возможность осуществлять более 4 чтений массива памяти. Решение, которое имеет больше 4 чтений (7a), реализуется как 5a, так как оно избыточно, ведь в устройстве на каждой итерации всего 4 операции чтения. Такая избыточность может понадобится только если использовать конвейеризацию, а пока все 4 итерации проходят последовательно, этого не требуется.

3. Часть 2

3.1. Исходный код

Для выполнения работы был написан код устройства и код теста, которые приведены ниже.

```
1 #include "lab9 2 2.h"
3
   void foo_b(short d_in[N], short d_out[N/4 + 3]) {
     for (short i=0; i< N/4; i++){
4
                   = d in[i]*d in[i+4];
5
       d out[i]
6
       d\_out\,[\;i+1]\;=\;d\_in\,[\;i+8]*d\_in\,[\;i+12];
7
       d_out[i+2] = d_in[i]*d_in[i+12];
8
       d \text{ out } [i+3] = d \text{ in } [i+4]*d \text{ in } [i+8];
9
10 }
```

Рис. 3.1. Код устройства

```
1 #include < stdio.h>
  #include "lab9 2 2.h"
3
4
  void generate test data(short scale, short d_in[N], short d_out[N/4 + 3]) {
5
6
    short i;
7
    for (i = 0; i < N; ++i){
8
      d_{in}[i] = (i + 1) * scale;
9
10
11
    for (i=0; i< N/4; i++){
12
      d out[i]
                   = d in[i]*d in[i+4];
13
                    = d_{in}[i+8]*d_{in}[i+12];
      d out [i+1]
14
                   = d_{in}[i]*d_{in}[i+12];
      d_{out}[i+2]
15
      d_{out}[i+3] = d_{in}[i+4]*d_{in}[i+8];
16
17
18
19 int compare_array_eq(short actual [N/4 + 3], short expected [N/4 + 3]) {
    for (int i = 0; i < N/4 + 3; ++i) {
20
      if (actual[i] != expected[i]) {
21
22
         fprintf(stdout, "%d: \_Expeced\_%d\_Actual\_%d\n", i, expected[i], actual[i]);
23
        return 0;
24
25
26
    return 1;
27
28
29
  int main() {
30
    int pass = 1;
31
    short d in [N];
32
    short d out [N/4 + 3];
33
    short expected out [N/4 + 3];
34
35
36
    for (int i = 1; i < 4; ++i) {
37
      generate_test_data(i, d_in, expected_out);
38
39
      foo_b(d_in, d_out);
40
      if (!compare_array_eq(d_out, expected_out)){
41
42
         pass = 0;
43
44
45
    }
46
47
    if (pass) {
      48
49
      return 0;
50
    } else {}
51
      fprintf(stderr, "-----Fail!-----\n");
52
      return 1;
53
54
```

Рис. 3.2. Код теста

Рис. 3.3. Заголовочный файл

3.2. Скрипт выполнения

Для автоматизации выполнения работы был написан следующий скрипт:

```
open_project -reset lab9 2 2
  add_files lab9_2_2.c
3
  set top foo b
  add files -tb lab9 2 2 test.c
6
                     [list 1b 2b 3b 4b 5b 6b 7b 8b]
  set solutions
7
8
  foreach sol $solutions {
9
    open_solution solution_$sol -reset
10
    set part \{xa7a12tcsg325-1q\}
11
    create clock -period 10
12
    set clock uncertainty 0.1
13
14
    if {$sol == "1b"} {
      set_directive_interface -mode ap_memory foo_b d_in
15
16
      set_directive_resource -core RAM_1P foo_b d_in
17
      set_directive_interface -mode ap_memory foo_b d_out
18
      set directive resource -core RAM 1P foo b d out
19
20
    if \{\$sol = "2b"\}
21
      set_directive_interface -mode ap_memory foo_b d_in
          _directive_resource -core RAM_1P foo_b d_in
22
23
          _directive_interface -mode ap_memory foo_b d_out
24
      set_directive_resource -core RAM_1P foo_b d_out
25
      set_directive_array_partition -type block -factor 4 foo_b d_in
26
27
    if \{\$sol = "3b"\} \{
28
      set_directive_interface -mode ap_memory foo_b d_in
      set_directive_resource -core RAM_1P foo_b d_in
29
30
          _directive_interface -mode ap_memory foo_b d_out
      set_directive_resource -core RAM_1P foo_b d out
31
32
      set_directive_array_partition -type block -factor 4 foo_b d_in
33
      set_directive_array_partition -type block -factor 2 foo_b d_out
34
```

Рис. 3.4. Скрипт выполнения, часть 1

```
if \{\$sol = "4b"\} \{
2
       set directive interface -mode ap memory foo b d in
3
       set_directive_resource -core RAM_1P foo_b d_in
4
       set_directive_interface -mode ap_memory foo_b d_out
          _directive_resource -core RAM_1P foo_b d out
5
6
       set_directive_array_partition -type block -factor 4 foo_b d_in
7
       set_directive_array_partition -type block -factor 4 foo_b d_out
8
9
    if \{ sol = "5b" \} \{ 
10
       set directive interface -mode ap memory foo b d in
11
       set_directive_resource -core RAM_1P foo_b d_in
12
          directive interface -mode ap memory foo b d out
       set_directive_resource -core RAM_2P foo b d out
13
14
       set_directive_array_partition -type block -factor 4 foo_b d_in
       set_directive_array_partition -type cyclic -factor 1 foo_b d_out
15
16
17
    if \{\$sol = "6b"\} \{
18
       set_directive_interface -mode ap_memory foo_b d_in
       set_directive_resource -core RAM_1P foo_b d_in
19
20
          directive interface -mode ap memory foo b d out
       set_directive_resource -core RAM_2P foo_b d_out
21
22
       set_directive_array_partition -type block -factor 4 foo_b d_in
23
       \operatorname{set\_directive\_array\_partition} -type \operatorname{cyclic} -factor 2 foo_b d out
24
25
    if \{ sol = "7b" \} 
26
       set_directive_interface -mode ap_memory foo_b d_in
       set_directive_resource -core RAM_1P foo_b d in
27
28
          _directive_interface -mode ap_memory foo_b d_out
       set_directive_resource -core RAM_2P foo_b d_out
29
30
       set_directive_array_partition -type block -factor 4 foo_b d_in
31
       set directive array partition -type cyclic -factor 4 foo b d out
32
33
    if {$sol == "8b"} {
34
       set_directive_interface -mode ap_memory foo_b d_in
       set_directive_resource -core RAM_1P foo_b d_in
35
36
       set_directive_interface -mode ap_memory foo_b d_out
37
       set_directive_resource -core RAM_1P foo_b d_out
       set_directive_array_partition -type block -factor 4 foo b d in
38
39
       set_directive_array_partition -type complete foo_b d_out
40
41
42
    csim design
43
    csynth design
44
45
|46|
  exit
```

Рис. 3.5. Скрипт выполнения, часть 2

3.3. Моделирование

Ниже приведены результаты моделирования, по которым видно, что тест проходит успешно.

Рис. 3.6. Результаты моделирования

3.4. Решение b1

3.4.1. Директивы

Ниже приведены директивы, установленные для данного решения.

foo_b
 d_in
 HLS RESOURCE variable=d_in core=RAM_1P
 HLS INTERFACE ap_memory port=d_in
 d_out
 HLS RESOURCE variable=d_out core=RAM_1P
 HLS INTERFACE ap_memory port=d_out
 for Statement

Рис. 3.7. Директивы

3.4.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	9.332	0.10

□ Latency (clock cycles)

■ Summary

Latency			Inte	rval	
m	nin	max	min	max	Туре
	29	29	29	29	none

Рис. 3.8. Performance estimates

Utilization Estimates

BRAM_18K	DSP48E	FF	LUT
-	4	-	-
-	-	0	56
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	134
-	-	116	-
0	4	116	190
40	40	16000	8000
0	10	~0	2
	- - - - - - -	- 4 4	- 4 - 0 - 0

Рис. 3.9. Utilization estimates

Рис. 3.10. Performance profile

Summary

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
	DII	DILS			
ap_clk	in	1	ap_ctrl_hs	foo_b	return value
ap_rst	in	1	ap_ctrl_hs	foo_b	return value
ap_start	in	1	ap_ctrl_hs	foo_b	return value
ap_done	out	1	ap_ctrl_hs	foo_b	return value
ap_idle	out	1	ap_ctrl_hs	foo_b	return value
ap_ready	out	1	ap_ctrl_hs	foo_b	return value
d_in_address0	out	4	ap_memory	d_in	array
d_in_ce0	out	1	ap_memory	d_in	array
d_in_q0	in	16	ap_memory	d_in	array
d_out_address0	out	3	ap_memory	d_out	array
d_out_ce0	out	1	ap_memory	d_out	array
d_out_we0	out	1	ap_memory	d_out	array
d_out_d0	out	16	ap_memory	d_out	array

Рис. 3.11. Interface estimates

Рис. 3.12. Scheduler viewer

На рисунке выше видны блоки, которые не укладываются во временной интервал.

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6	C7
1	⊡I/O Ports								
2	d_in(p0)		read	read	read	re	ad		
3	d_out(p0)					write	write	write	write
4	⊡Memory Ports								
5	d_in(p0)		read	read	read	re	ad		
6	d_out(p0)					write	write	write	write
7	Expressions								
8	i_1_fu_140		+						
9	i_phi_fu_122		phi_mux						
10	exitcond_fu_134		icmp						
11	tmp_2_fu_151			^					
12	tmp_4_fu_209				*				
13	tmp_11_fu_214					*			
14	tmp_12_fu_183						+		
15	tmp_9_fu_220						*		
16	tmp_7_fu_226						*		
17	tmp_s_fu_198								+

Рис. 3.13. Resource viewer

3.4.3. Анализ решения

Согласно ожиданиям устройство использует 4 умножителя, а также имеет большие задержки, так как 4 чтения выполняются последовательно.

3.5. Решение b2

3.5.1. Директивы

Ниже приведены директивы, установленные для данного решения.

- ▼ foo b
 - d_in
 - % HLS ARRAY PARTITION variable=d in block factor=4 dim=1
 - % HLS RESOURCE variable=d_in core=RAM_1P
 - % HLS INTERFACE ap memory port=d in
 - d_out
 - % HLS RESOURCE variable=d out core=RAM 1P
 - % HLS INTERFACE ap_memory port=d_out
 - for Statement

Рис. 3.14. Директивы

3.5.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates Timing (ns) Summary Clock Target Estimated Uncertainty ap_clk 10.00 9.332 0.10 Latency (clock cycles) Summary Latency Interval min max min max Type 25 25 25 25 none

Рис. 3.15. Performance estimates

Utilization Estimates Summary BRAM_18K DSP48E Name FF LUT DSP 0 Expression 45 FIFO Instance Memory Multiplexer 104 Register 112 Total 0 112 149 Available 40 40160008000 Utilization (%) 0 10 ~0 1

Рис. 3.16. Utilization estimates

Рис. 3.17. Performance profile

Summary

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	foo_b	return value
ap_rst	in	1	ap_ctrl_hs	foo_b	return value
ap_start	in	1	ap_ctrl_hs	foo_b	return value
ap_done	out	1	ap_ctrl_hs	foo_b	return value
ap_idle	out	1	ap_ctrl_hs	foo_b	return value
ap_ready	out	1	ap_ctrl_hs	foo_b	return value
d_in_0_address0	out	2	ap_memory	d_in_0	array
d_in_0_ce0	out	1	ap_memory	d_in_0	array
d_in_0_q0	in	16	ap_memory	d_in_0	array
d_in_1_address0	out	2	ap_memory	d_in_1	array
d_in_1_ce0	out	1	ap_memory	d_in_1	array
d_in_1_q0	in	16	ap_memory	d_in_1	array
d_in_2_address0	out	2	ap_memory	d_in_2	array
d_in_2_ce0	out	1	ap_memory	d_in_2	array
d_in_2_q0	in	16	ap_memory	d_in_2	array
d_in_3_address0	out	2	ap_memory	d_in_3	array
d_in_3_ce0	out	1	ap_memory	d_in_3	array
d_in_3_q0	in	16	ap_memory	d_in_3	array
d_out_address0	out	3	ap_memory	d_out	array
d_out_ce0	out	1	ap_memory	d_out	array
d_out_we0	out	1	ap_memory	d_out	array
d_out_d0	out	16	ap_memory	d_out	array

Рис. 3.18. Interface estimates

Рис. 3.19. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6
1	⊟I/O Ports							
2	d_in_0(p0)		re	ad				
3	d_in_1(p0)		re	ad				
4	d_in_3(p0)			re	ad			
5	d_in_2(p0)			re	ad			
6	d_out(p0)				write	write	write	write
7	⊡Memory Ports							
8	d_in_1(p0)		re	ad				
9	d_in_0(p0)		re	ad				
10	d_in_2(p0)			re	ad			
11	d_in_3(p0)			re	ad			
12	d_out(p0)				write	write	write	write
13	-Expressions							
14	i_1_fu_153		+					
15	i_phi_fu_139		phi_mux					
16	exitcond_fu_147		icmp					
17	tmp_4_fu_191			*				
18	tmp_3_fu_203				*			
19	tmp_9_fu_197				*			
20	tmp_7_fu_208				*			
21	tmp_5_fu_169						+	
22	tmp_8_fu_180							+

Рис. 3.20. Resource viewer

3.5.3. Анализ решения

В сравнении с предыдущим решением, количество умножителей не изменилось, однако за счет возможности двух параллельных чтений (хотя их 4 на самом деле) сократились задержки (цикл за 6 тактов, а не за 7).

3.6. Решение b3

3.6.1. Директивы

Ниже приведены директивы, установленные для данного решения.

- 🕶 🏻 foo b
 - d_in
 - % HLS ARRAY_PARTITION variable=d_in block factor=4 dim=1
 - % HLS RESOURCE variable=d_in core=RAM_1P
 - % HLS INTERFACE ap_memory port=d_in
 - d_out
 - % HLS ARRAY PARTITION variable=d out block factor=2 dim=1
 - % HLS RESOURCE variable=d out core=RAM 1P
 - % HLS INTERFACE ap memory port=d out
 - for Statement

Рис. 3.21. Директивы

3.6.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	9.332	0.10

□ Latency (clock cycles)

□ Summary

Late	ency	Inte		
min	max	min	max	Туре
25	25	25	25	none

□ Detail

■ Instance

± Loop

Рис. 3.22. Performance estimates

Utilization Estimates

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	4	-	-
Expression	-	-	0	75
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	146
Register	-	-	159	-
Total	0	4	159	221
Available	40	40	16000	8000
Utilization (%)	0	10	~0	2

Рис. 3.23. Utilization estimates

Рис. 3.24. Performance profile

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs		return value
ap_rst	in	1	ap_ctrl_hs		return value
ap_start	in	1	ap_ctrl_hs	foo_b	return value
ap_done	out	1	ap_ctrl_hs	foo_b	return value
ap_idle	out	1	ap_ctrl_hs	foo_b	return value
ap_ready	out	1	ap_ctrl_hs	foo_b	return value
d_in_0_address0	out	2	ap_memory	d_in_0	array
d_in_0_ce0	out	1	ap_memory	d_in_0	array
d_in_0_q0	in	16	ap_memory	d_in_0	array
d_in_1_address0	out	2	ap_memory	d_in_1	array
d_in_1_ce0	out	1	ap_memory	d_in_1	array
d_in_1_q0	in	16	ap_memory	d_in_1	array
d_in_2_address0	out	2	ap_memory	d_in_2	array
d_in_2_ce0	out	1	ap_memory	d_in_2	array
d_in_2_q0	in	16	ap_memory	d_in_2	array
d_in_3_address0	out	2	ap_memory	d_in_3	array
d_in_3_ce0	out	1	ap_memory	d_in_3	array
d_in_3_q0	in	16	ap_memory	d_in_3	array
d_out_0_address0	out	2	ap_memory	d_out_0	array
d_out_0_ce0	out	1	ap_memory	d_out_0	array
d_out_0_we0	out	1	ap_memory	d_out_0	array
d_out_0_d0	out	16	ap_memory	d_out_0	array
d_out_1_address0	out	2	ap_memory	d_out_1	array
d_out_1_ce0	out	1	ap_memory	d_out_1	array
d_out_1_we0	out	1	ap_memory	d_out_1	array
d_out_1_d0	out	16	ap_memory	d_out_1	array

Рис. 3.25. Interface estimates

Рис. 3.26. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6
1	⊡I/O Ports							
2	d_in_1(p0)		re	ad				
3	d_in_3(p0)		re	ad				
4	d_in_0(p0)		re	ad				
5	d_in_2(p0)		re	ad				
6	d_out_0(p0)				write	write	write	write
7	d_out_1(p0)				write		write	write
8	⊡Memory Ports							
9	d_in_0(p0)		re	ad				
10	d_in_1(p0)		re	ad				
11	d_in_3(p0)		re	ad				
12	d_in_2(p0)		re	ad				
13	d_out_0(p0)				write	write	write	write
14	d_out_1(p0)				write		write	write
15	Expressions							
16	i_1_fu_189		+					
17	i_phi_fu_175		phi_mux					
18	exitcond_fu_183		icmp					
19	tmp_4_fu_277			*				
20	tmp_9_fu_283			*				
21	newIndex_trunc_fu_215				+			
22	tmp_5_fu_227					+		
23	tmp_2_fu_289					*		
24	newIndex_truncl_fu_233					^		
25	newIndex_trunc2_fu_258						+	
26	tmp_8_fu_252						+	
27	tmp 6 fu 293						*	

Рис. 3.27. Resource viewer

3.6.3. Анализ решения

В данном решении 4 чтения выполняются одновременно, однако итерация по-прежнему выполняется долго — за 6 тактов. Это вызвано тем, что устройство не может одновременно писать 4 значения в выходной массив.

3.7. Решение b4

3.7.1. Директивы

Ниже приведены директивы, установленные для данного решения.

foo_b
 d_in
 HLS ARRAY_PARTITION variable=d_in block factor=4 dim=1
 HLS RESOURCE variable=d_in core=RAM_1P
 HLS INTERFACE ap_memory port=d_in
 d_out
 HLS ARRAY_PARTITION variable=d_out block factor=4 dim=1
 HLS RESOURCE variable=d_out core=RAM_1P
 HLS INTERFACE ap_memory port=d_out
 for Statement

Рис. 3.28. Директивы

3.7.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	9.332	0.10

□ Latency (clock cycles)

□ Summary

Late	ency	Inte		
min	max	min	max	Туре
29	29	29	29	none

Рис. 3.29. Performance estimates

Utilization Estimates

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	4	-	-
Expression	-	-	0	70
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	161
Register	-	-	161	-
Total	C	4	161	231
Available	40	40	16000	8000
Utilization (%)	C	10	1	2

Рис. 3.30. Utilization estimates

Рис. 3.31. Performance profile

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs		return value
ap_rst	in	1	ap ctrl hs		return value
ap_start	in	1	ap_ctrl_hs		return value
ap_done	out	1	ap_ctrl_hs		return value
ap_idle	out	1	ap_ctrl_hs		return value
ap_ready	out	1			return value
d_in_0_address0	out	2	ap_memory	d_in_0	array
d_in_0_ce0	out	1	ap_memory	d_in_0	array
d_in_0_q0	in	16	ap_memory	d_in_0	array
d_in_1_address0	out	2	ap_memory	d_in_1	array
d_in_1_ce0	out	1	ap_memory	d_in_1	array
d_in_1_q0	in	16	ap_memory	d_in_1	array
d_in_2_address0	out	2	ap_memory	d_in_2	array
d_in_2_ce0	out	1	ap_memory	d_in_2	array
d_in_2_q0	in	16	ap_memory	d_in_2	array
d_in_3_address0	out	2	ap_memory	d_in_3	array
d_in_3_ce0	out	1	ap_memory	d_in_3	array
d_in_3_q0	in	16	ap_memory	d_in_3	array
d_out_0_address0	out	1	ap_memory	d_out_0	array
d_out_0_ce0	out	1	ap_memory	d_out_0	array
d_out_0_we0	out	1	ap_memory	d_out_0	array
d_out_0_d0	out	16	ap_memory	d_out_0	array
d_out_1_address0	out	1	ap_memory	d_out_1	array
d_out_1_ce0	out	1	ap_memory	d_out_1	array
d_out_1_we0	out	1	ap_memory	d_out_1	array
d_out_1_d0	out	16	ap_memory	d_out_1	array
d_out_2_address0	out	1	ap_memory	d_out_2	array
d_out_2_ce0	out	1	ap_memory	d_out_2	array
d_out_2_we0	out	1	ap_memory	d_out_2	array
d_out_2_d0	out	16	ap_memory	d_out_2	array
d_out_3_address0	out	1	ap_memory	d_out_3	array
d_out_3_ce0	out	1	ap_memory	d_out_3	array
d_out_3_we0	out	1	ap_memory	d_out_3	array
d_out_3_d0	out	16	ap_memory	d_out_3	array

Рис. 3.32. Interface estimates

Рис. 3.33. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6	C7
1	⊡I/O Ports								
2	d_in_1(p0)		re	ad					
3	d_in_0(p0)		re	ad					
4	d_in_3(p0)				re	ad			
5	d_out_1(p0)				write		write	write	write
6	d_out_0(p0)				write		write		
7	d_in_2(p0)				re	ad			
8	d_out_2(p0)						write	write	write
9	d_out_3(p0)								write
10	⊡Memory Ports								
11	d_in_1(p0)		re	ad					
12	d_in_0(p0)		re	ad					
13	d_in_3(p0)				re	ad			
14	d_out_1(p0)				write		write	write	write
15	d_out_0(p0)				write		write		
16	d_in_2(p0)				re	ad			
17	d_out_2(p0)						write	write	write
18	d_out_3(p0)								write
19	⊡Expressions								
20	i_1_fu_209		+						
21	i_phi_fu_195		phi_mux						
22	exitcond_fu_203		icmp						
23	tmp_4_fu_314			*					
24	icmp_fu_241			icmp					
25	tmp_9_fu_320					*			
26	newIndex_truncl_fu_256					٨			
27	tmp_5_fu_268						+		
28	tmp_2_fu_326						*		
29	condl_fu_292						icmp		
30	tmp_8_fu_298							+	
31	tmp_6_fu_330							*	

Рис. 3.34. Resource viewer

3.7.3. Анализ решения

Можно сказать, что при получении возможности на запись 4 памяти сразу, все стало только хуже. В устройстве используется очень много перезаписей в регистры, а не сразу в выходные линии, что не дает ни делать 4 чтения, ни записывать 4 значения на выходы.

3.8. Решение b5

3.8.1. Директивы

Ниже приведены директивы, установленные для данного решения.

foo_b
 d_in
 HLS ARRAY_PARTITION variable=d_in block factor=4 dim=1
 HLS RESOURCE variable=d_in core=RAM_1P
 HLS INTERFACE ap_memory port=d_in
 d_out
 HLS ARRAY_PARTITION variable=d_out cyclic factor=1 dim=1
 HLS RESOURCE variable=d_out core=RAM_2P
 HLS INTERFACE ap_memory port=d_out

Рис. 3.35. Директивы

3.8.2. Синтез

 Π о оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates Timing (ns) Summary Clock Target Estimated Uncertainty ap_clk 10.00 9.332 0.10 Latency (clock cycles) Summary Latency Interval min max min max Type 25 25 25 25 none

Puc. 3.36. Performance estimates

Utilization Estimates

Summary

Name	BRAM_	18K	DSP4	8E	FF	LUT
DSP	-			4	-	-
Expression	-		-		0	45
FIFO	-		-		-	-
Instance	-		-		-	-
Memory	-		-		-	-
Multiplexer	-		-		-	104
Register	-		-		112	-
Total		0		4	112	149
Available		40		40	16000	8000
Utilization (%)		0		10	~0	1

Рис. 3.37. Utilization estimates

Рис. 3.38. Performance profile

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	foo_b	return value
ap_rst	in	1	ap_ctrl_hs	foo_b	return value
ap_start	in	1	ap_ctrl_hs	foo_b	return value
ap_done	out	1	ap_ctrl_hs	foo_b	return value
ap_idle	out	1	ap_ctrl_hs	foo_b	return value
ap_ready	out	1	ap_ctrl_hs	foo_b	return value
d_in_0_address0	out	2	ap_memory	d_in_0	array
d_in_0_ce0	out	1	ap_memory	d_in_0	array
d_in_0_q0	in	16	ap_memory	d_in_0	array
d_in_1_address0	out	2	ap_memory	d_in_1	array
d_in_1_ce0	out	1	ap_memory	d_in_1	array
d_in_1_q0	in	16	ap_memory	d_in_1	array
d_in_2_address0	out	2	ap_memory	d_in_2	array
d_in_2_ce0	out	1	ap_memory	d_in_2	array
d_in_2_q0	in	16	ap_memory	d_in_2	array
d_in_3_address0	out	2	ap_memory	d_in_3	array
d_in_3_ce0	out	1	ap_memory	d_in_3	array
d_in_3_q0	in	16	ap_memory	d_in_3	array
d_out_address1	out	3	ap_memory	d_out	array
d_out_ce1	out	1	ap_memory	d_out	array
d_out_we1	out	1	ap_memory	d_out	array
d_out_d1	out	16	ap_memory	d_out	array

Рис. 3.39. Interface estimates

Рис. 3.40. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6
1	⊡I/O Ports							
2	d_in_1(p0)		re	ad				
3	d_in_0(p0)		re	ad				
4	d_in_2(p0)			re	ad			
5	d_in_3(p0)			re	ad			
6	d_out(pl)				write	write	write	write
7	-Memory Ports							
8	d_in_0(p0)		re	ad				
9	d_in_1(p0)		re	ad				
10	d_in_2(p0)		read					
11	d_in_3(p0)			re	ad			
12	d_out(pl)				write	write	write	write
13	⊡Expressions							
14	i_phi_fu_145		phi_mux					
15	i_1_fu_159		+					
16	exitcond_fu_153		icmp					
17	tmp_4_fu_197			*				
18	tmp_3_fu_209				*			
19	tmp_9_fu_203				*			
20	tmp_7_fu_214				*			
21	tmp_5_fu_175						+	
22	tmp_8_fu_186							+

Рис. 3.41. Resource viewer

3.8.3. Анализ решения

Данное решение с одной двух портовой памятью вышло эффективнее, чем 4 однопортовых. Тем не менее, одновременно 2 записи все также не производится.

3.9. Решение b6

3.9.1. Директивы

Ниже приведены директивы, установленные для данного решения.

- ▼ foo b
 - d_in
 - % HLS ARRAY PARTITION variable=d in block factor=4 dim=1
 - % HLS RESOURCE variable=d_in core=RAM_1P
 - % HLS INTERFACE ap_memory port=d_in
 - d_out
 - % HLS ARRAY_PARTITION variable=d_out cyclic factor=2 dim=1
 - % HLS RESOURCE variable=d_out core=RAM_2P
 - % HLS INTERFACE ap memory port=d out
 - for Statement

Рис. 3.42. Директивы

3.9.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

∃ Timing (ns)

Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	9.332	0.10

□ Latency (clock cycles)

Summary

Late	ency	Inte	rval	
min	max	min	max	Туре
29	29	29	29	none

Рис. 3.43. Performance estimates

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	4	-	-
Expression	-	-	0	45
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	161
Register	-	-	164	-
Total	0	4	164	206
Available	40	40	16000	8000
Utilization (%)	0	10	1	2

Рис. 3.44. Utilization estimates

Рис. 3.45. Performance profile

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	foo_b	return value
ap_rst	in	1	ap_ctrl_hs		return value
ap_start	in	1	ap_ctrl_hs	foo_b	return value
ap_done	out	1	ap_ctrl_hs	foo_b	return value
ap_idle	out	1	ap_ctrl_hs	foo_b	return value
ap_ready	out	1	ap_ctrl_hs	foo_b	return value
d_in_0_address0	out	2	ap_memory	d_in_0	array
d_in_0_ce0	out	1	ap_memory	d_in_0	array
d_in_0_q0	in	16	ap_memory	d_in_0	array
d_in_1_address0	out	2	ap_memory	d_in_1	array
d_in_1_ce0	out	1	ap_memory	d_in_1	array
d_in_1_q0	in	16	ap_memory	d_in_1	array
d_in_2_address0	out	2	ap_memory	d_in_2	array
d_in_2_ce0	out	1	ap_memory	d_in_2	array
d_in_2_q0	in	16	ap_memory	d_in_2	array
d_in_3_address0	out	2	ap_memory	d_in_3	array
d_in_3_ce0	out	1	ap_memory	d_in_3	array
d_in_3_q0	in	16	ap_memory	d_in_3	array
d_out_0_address1	out	2	ap_memory	d_out_0	array
d_out_0_ce1	out	1	ap_memory	d_out_0	array
d_out_0_we1	out	1	ap_memory	d_out_0	array
d_out_0_d1	out	16	ap_memory	d_out_0	array
d_out_1_address1	out	2	ap_memory	d_out_1	array
d_out_1_ce1	out	1	ap_memory	d_out_1	array
d_out_1_we1	out	1	ap_memory	d_out_1	array
d_out_1_d1	out	16	ap_memory	d_out_1	array

Рис. 3.46. Interface estimates

Рис. 3.47. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6	C7
1	⊡I/O Ports								
2	d_in_0(p0)		re	ad					
3	d_in_1(p0)		re	ad					
4	d_out_1(p1)				write		write	write	write
5	d_in_3(p0)				re	ad			
6	d_in_2(p0)				re	ad			
7	d_out_0(p1)				write		write	write	write
8	⊡Memory Ports								
9	d_in_1(p0)		re	ad					
10	d_in_0(p0)		re	ad					
11	d_in_2(p0)				re	ad			
12	d_out_1(p1)				write		write	write	write
13	d_out_0(p1)				write		write	write	write
14	d_in_3(p0)				re	ad			
15	-Expressions								
16	i_phi_fu_186		phi_mux						
17	i_1_fu_200		+						
18	exitcond_fu_194		icmp						
19	tmp_4_fu_290			*					
20	tmp_9_fu_296					*			
21	tmp_3_fu_246						+		
22	tmp_2_fu_302						*		
23	tmp_6_fu_268							+	
24	tmp_5_fu_306							*	

Рис. 3.48. Resource viewer

3.9.3. Анализ решения

В данном решении, 4 чтения выполняются одновременно, а также присутствует одновременную запись в выходной массив, однако задержки остались прежними.

3.10. Решение b7

3.10.1. Директивы

Ниже приведены директивы, установленные для данного решения.

Рис. 3.49. Директивы

3.10.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Рис. 3.50. Performance estimates

Utilization Estimates

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	4	-	-
Expression	-	-	0	45
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	252
Register	-	-	89	-
Total	0	4	89	297
Available	40	40	16000	8000
Utilization (%)	0	10	~0	3

Рис. 3.51. Utilization estimates

Рис. 3.52. Performance profile

Type rn value array array
rn value rn value rn value rn value rn value array
rn value rn value rn value rn value array
rn value rn value rn value array
rn value rn value array
rn value array
array
array
array

Рис. 3.53. Interface estimates

Рис. 3.54. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3
1	⊡I/O Ports				
2	d_in_1(p0)		re	ad	
3	d_in_0(p0)		re	ad	
4	d_in_2(p0)		re	ad	
5	d_in_3(p0)		re	ad	
6	d_out_1(p1)				write
7	d_out_0(p1)				write
8	d_out_3(p1)				write
9	d_out_2(p1)				write
10	⊡Memory Ports				
11	d_in_0(p0)		re	ad	
12	d_in_3(p0)		re	ad	
13	d_in_1(p0)		re	ad	
14	d_in_2(p0)		re	ad	
15	d_out_0(pl)				write
16	d_out_2(p1)				write
17	d_out_3(p1)				write
18	d_out_1(p1)				write
19	⊡Expressions				
20	i_phi_fu_272		phi_mux		
21	i_1_fu_286		+		
22	exitcond_fu_280		icmp		
23	tmp_6_fu_341			+	
24	tmp_3_fu_319			+	
25	tmp_9_fu_369			*	
26	tmp_4_fu_363			*	
27	tmp_2_fu_375			*	
28	tmp_5_fu_381			*	

Рис. 3.55. Resource viewer

3.10.3. Анализ решения

Данное решение аналогично с RAM_1 хуже, чем предыдущее (с factor 2).

3.11. Решение b8

3.11.1. Директивы

Ниже приведены директивы, установленные для данного решения.

Рис. 3.56. Директивы

3.11.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates Timing (ns) Summary Clock Target Estimated Uncertainty ap_clk 10.00 9.332 0.10 Latency (clock cycles) Summary Latency Interval

Рис. 3.57. Performance estimates

25 none

min max min max Type

25

25

25

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	4	-	-
Expression	-	-	0	45
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	104
Register	-	-	112	-
Total	0	4	112	149
Available	40	40	16000	8000
Utilization (%)	0	10	~0	1

Рис. 3.58. Utilization estimates

Рис. 3.59. Performance profile

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	foo_b	return value
ap_rst	in	1	ap_ctrl_hs	foo_b	return value
ap_start	in	1	ap_ctrl_hs	foo_b	return value
ap_done	out	1	ap_ctrl_hs	foo_b	return value
ap_idle	out	1	ap_ctrl_hs	foo_b	return value
ap_ready	out	1	ap_ctrl_hs	foo_b	return value
d_in_0_address0	out	2	ap_memory	d_in_0	array
d_in_0_ce0	out	1	ap_memory	d_in_0	array
d_in_0_q0	in	16	ap_memory	d_in_0	array
d_in_1_address0	out	2	ap_memory	d_in_1	array
d_in_1_ce0	out	1	ap_memory	d_in_1	array
d_in_1_q0	in	16	ap_memory	d_in_1	array
d_in_2_address0	out	2	ap_memory	d_in_2	array
d_in_2_ce0	out	1	ap_memory	d_in_2	array
d_in_2_q0	in	16	ap_memory	d_in_2	array
d_in_3_address0	out	2	ap_memory	d_in_3	array
d_in_3_ce0	out	1	ap_memory	d_in_3	array
d_in_3_q0	in	16	ap_memory	d_in_3	array
d_out_address0	out	3	ap_memory	d_out	array
d_out_ce0	out	1	ap_memory	d_out	array
d_out_we0	out	1	ap_memory	d_out	array
d_out_d0	out	16	ap_memory	d_out	array

Рис. 3.60. Interface estimates

Рис. 3.61. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6
1	⊡I/O Ports							
2	d_in_0(p0)		read					
3	d_in_1(p0)		re	ad				
4	d_in_2(p0)		read					
5	d_in_3(p0)			re	ad			
6	d_out(p0)				write	write	write	write
7	⊡Memory Ports							
8	d_in_1(p0)		read					
9	d_in_0(p0)		read					
10	d_in_3(p0)			read				
11	d_in_2(p0)			read				
12	d_out(p0)				write	write	write	write
13	-Expressions							
14	i_1_fu_153		+					
15	i_phi_fu_139		phi_mux					
16	exitcond_fu_147		icmp					
17	tmp_4_fu_191			*				
18	tmp_9_fu_197				*			
19	tmp_7_fu_208				*			
20	tmp_3_fu_203				*			
21	tmp_5_fu_169						+	
22	tmp_8_fu_180							+

Рис. 3.62. Resource viewer

3.11.3. Анализ решения

Можно увидеть, что проигнорировано разбиение выходного массива. Скорее всего это связано с особенностью устройства, в общем случае это должно дать наивысшую скорость записи выходных данных.

3.12. Вывод

Ниже приведено сравнение решений.

	RAM_1P	RAM_2P
Без cyclic	2b/25/26	5b/25/26
cyclic; factor $=2$	3b/25/26	6b/25/26
cyclic; factor =4	4b/29/30	7b/29/30

Рис. 3.63. Сравнение решений

По сравнению видно, что при разбиении выходной памяти не всегда получается ожидаемый прирост производительности, а часто даже ухудшение. Согласно временным диаграммам, запись в выходную память почти никогда не производится параллельно для нескольких ячеек. Скорее всего, это связано с особенностью устройства, где на выход подаются различные комбинации одних и тех же входов.