

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 01291153 A

(43) Date of publication of application: 22.11.89

(51) Int. CI

G01N 27/28 G01N 27/30

(21) Application number: 63121002

(22) Date of filing: 18.05.88

(71) Applicant:

MATSUSHITA ELECTRIC IND CO

LTD

(72) Inventor:

NANKAI SHIRO KAWAGURI MARIKO FUJITA MAYUMI IIJIMA TAKASHI

(54) BIOSENSOR

(57) Abstract:

PURPOSE: To easily measure the concn. of a substrate with an extremely small volume of liquid to be inspected and with good accuracy by forming a space part including a reaction layer on a substrate having an electrode system and the reaction layer.

CONSTITUTION: The substrate 1 and the respective members of a spacer 7 and cover 9 consisting of plastic plates are adhered and integrated to attain the relative positions shown by broken lines. Namely, the spacer 7 has about 300 µm thickness and is formed to the shape in which the central part is cut to a U shape of 2mm width and 7mm length. The end part of the cut part constitutes an introducing port 10 for a sample liquid when the spacer is integrated. The central part forms the space part 8. The cover has a hole of 2mm diameter which constitutes a discharge port 11 when integrated. The sample liquid is introduced from the port 10 into the inside when the port 10 at the front end of the glucose sensor constituted in such a manner is brought into contact with the sample liquid, standard glucose liquid. The air in the space part 8 is rapidly discharged from the discharge port 11 at this time and the space part 8 is simultaneously filled with the sample liquid up to the level near the discharge port

 The concn. of the substrate is thereby measured with the extremely small volume of the liquid to be inspected and with the good accuracy.

COPYRIGHT: (C)1989,JPO&Japio

平1-291153 ⑫ 公 開 特 許 公 報(A)

@Int. Cl. 4

識別配号

庁内整理番号

@公開 平成1年(1989)11月22日

G 01 N 27/28 3 3 1 3 5 3

7363-2G J-7363-2G

審査請求 未請求 請求項の数 6 (全8頁)

9発明の名称 パイオセンサ

> 願 昭63-121002 ②特

顧 昭63(1988)5月18日 20出

海 ⑫発 明 者 南 君

史 朗 真 理 子 大阪府門真市大字門真1006番地 松下電器産業株式会社内 大阪府門真市大字門真1006番地 松下電器產業株式会社內

⑩発 明 @発 明 者

真由美

大阪府門真市大字門真1006番地

松下電器産業株式会社内

藤田 個発 明 者 飯

志

大阪府門真市大字門真1006番地 松下電器産業株式会社内 大阪府門真市大字門真1006番地

松下電器産業株式会社 ①出 願 人 個代 理 人

河 栗

外1名

弁理士 中尾 敏男

細

1、発明の名称

パイオセンサ

2、特許請求の範囲

(1) 電極系と反応層を有する基板上に前記反応 囮を含む空間部を形成し、 前記空間部に被検検を 導入する導入口と、 前記空間部の気体を前記被検 彼の流入によって排出する排出口を設けてなり、 前記電極系は少くとも測定種と対極を備え、 前記 反応層には酵素を担持してなり、前記酵素と前記 被検波の反応に際しての物質協度変化を前記電極 系で検知し、 前記被検被中の基質濃度を測定する パイオセンサ。

- (2) 電極系が複数組の電極系からなり、前配複 数組の電極系に各々対応した反応層と、共通の空 間部を有してなる額求項1記載のパイオセンサ。
- (3) 電極系が複数組の電極系からなり、前記複 数組の領極系に対応した反応層と空間部を各々有 してなる請求項1記載のパイオセンサ。
- (4) 反応圏が、酵素と親水性高分子からなる期

求項1、2または3記載のパイオセンサ。

- (5) 反応履が、酵素と観水性高分子と電子受容 体からなる請求項1、 2または3記載のパイオセ ンサ。
- (8)空間部を構成する部材の表面が親水性を有 してなる請求項1、 2または3記載のパイオセン
- 3、発明の詳細な説明

産業上の利用分野

本発明は、種々の微量の生体試料中の特定成分 について、は料液を希釈することなく迅速かつ簡 何に定量することのできるパイオセンサに関する。

従来の技術

従来、血液などの生体試料中の特定成分につい て、 試料被の希釈や撹拌などを行なうことなく簡 曷に定量し得る方式として、 特開昭 B 1 - 2 9 4 351号公報に記載のパイオセンサを掲案した(第10図)。 このパイオセンサは、 絶縁性の基板 5 1上にスクリーン印刷等の方法でカーポンなど からなる電極系52(52′), 53(53′), 54(54')を形成し、 始線図55を設けた後、電極系の上を酸化還元酵素と電子受容体を担持した多孔体57で電い保持枠58とカバー58で全体を一体化したものである。 試料液を多孔体上へ満下すると、 多孔体に担持されている酸化運元酵素と電子受容体が試料液に溶解し、 試料液中の基質との間で酵素反応が進行し電子受容体が避元される。 反応終了後、 このとき得られる酸化電流値から試料液中の基質濃度を求める。

発明が解決しようとする課題

. . .

この様な従来の構成では、 電極系を含む基板面の濡れが必ずしも一様とならないため、 多孔体と基板との間に気泡が残り、 応答電流に影響を与えたり反応速度が低下する場合があった。 また、 周囲の湿度が低いときには測定中に試料液の水分が蒸発し、 応答の変動がみうけられた。

課題を解決するための手段

本発明は上記録題を解決するため、 電極系と反 応暦を有する基板上に該反応層を含む空間部を形

ポリエチレンテレフタレートからなる絶縁性の 甚板1に、スクリーン印刷により銀ペーストを印刷しリード2、3(3')を形成する。次に、樹脂パインダーを含む導電性カーポンペーストを印刷し、加熱乾燥することにより、制定極4、対極5(5')からなる電極系を形成する。さらに、電極系を部分的に覆い、電極の露出部分の面積を一定とし、かつリードの不要部を覆うように絶縁性ペーストを印刷し、加熱処理をして絶縁層6を形成する。

次に、超極系 4、 5(5′)の露出部分を研磨 後、空気中で 1 0 0 ℃にて 4 時間熱処理を施した。 このようにして超極部分を構成した後、 親水性高 分子として、 カルボキシメチルセルロース (以下 CMCと略す)の 0. 5 *t% 水溶液を電極上へ腹 関、乾燥し CMC層を形成する。 次に、 この CM C 個を覆うように、 酵素としてグルコースオキシ ダーゼ (G 0 D)をリン酸緩衝被に溶解したもの を膜明し、 乾燥させ、 CMCーG 0 D層からなる 反応圏 1 4 を形成した。 この場合、 CMCと G 0 成し、 前記空間部に被検被を導入する導入口と、 前記空間部の気体を前記被検液の流入によって排 出する排出口設けたものである。

作用

本発明によれば、ごく頃かの被検放量で極めて 容易に、かつ精度よく蒸質濃度を測定することの できるディスポーザブルタイプのバイオセンサを 構成することができる。

爽施例

以下、本発明を実施例により説明する。

(実施例1)

バイオセンサの一例とし*て*、グルコースセンサ について説明する。

第1図は本発明のパイオセンサの一実施例として作製したグルコースセンサの分解斜視図であり、第2図はその外観図、また第3図は、第2図に示すパイオセンサを長手方向に中央部で切断した場合の断面図である。なお、第1図には、第3図に示す反応圏14は示されていない。

以下に、センサの作製方法について説明する。

Dは部分的に混合された状態で厚き数ミクロンの 態態状となっている。

次に、この基板1と樹脂板からなるスペーサ7とカバー9の3つの部材について、第1図に示す様に、各部材間が破線で示す位置関係になるように接着し、第2図の外観図に示すように一体化した。ここで、スペーサは約300μmの厚みを有し、その中央部を幅2mm、長さ7mmのリ字型に切りとった形状をしており、切りとられた部分の端略は一体化したときに試料液の導入口10となり、中央部は空間部8を形成する。また、カバー9は直径2mmの穴を有しており、一体化したときに排出口11となる。

上記のように構成したグルコースセンサの先端の導入口を試料被であるグルコース標準被(200mg/dl)に接触させると、試料被は導入口10より内部へ導かれる。このとき空間部8内の空気は排出口11から速やかに排出され、同時に空間部は排出口近傍まで試料液で満たされた。このように試料液は電極面上を速やかに拡がり空間

部を満たすため、気泡の残留は認められなかった。 これは、導入口と排出口を設けることにより試 料液の流れが一方向となり、また、短極上に予め 形成された叙水性高分子層により電極面の濡れが 向上し、気液の交換が円滑に行なわれることによ るものと考えられる。

. . .

さらに、カバーやスペーサなど、空間部を構成 する部材の表面を界面活性剤で予め処理して類水 性とすることにより、さらに円滑な試料液の導入 か可能であった。

一方、 添加された試料被は CM C を溶解し結構 な 体体となり、 試料液中のグルコースは電極上に 担持されたグルコースオキンダーゼの作用で 酸 まで して 過酸化水素を生成する。 そこで、 試料 で を 導入して 1分後に 電極間に 1 V の電圧を 分加する ことにより、 測定極を アノード方向への 運圧印加 に 上記のアノード方向への 運圧印加 に より、 生 成 し 過酸化水素の酸化電流が 得られた。 この 確 値 は 基質であるグルコースの 適度に対応する。

上記機成になるセンサの応答特性の一例として、

CMC-GOD層を形成するまでは実施例1と全く同様に作製した後、さらに以下に示す方法でCMC-GOD-電子受容体層からなる反応層を形成した。

電子受容体としてはフェリシアン化カリウムを用い、平均粒系が約10μm以下のものをトルエン中にレシチンを用いて分散し、得られた分散核をCMCーGOD層上へ展開した。この後、トルエンを蒸発させて、CMCーGODー電子受容体層からなる反応層を電極系上に形成し、さらに実施例1と同様にしてスペーサ、カバーとともに一体化し、第2図に示す構造のグルコースセンサとした。

次に、前記同様にしてセンサ先端部分よりグルコース標準被を導入し、約1分後に両極間に800m vの電圧を印加することにより、静森反応で生成したフェロシアン化カリウムを測定極で酸化し、このときの電圧印加5秒後の電流値を測定した。この結果、第4図Bに示す様にグルコース濃度と応答電流値の間に極めて良好な直線関係が得

可圧印加5砂後の電統値とグルコース濃度との関係を第4図Aに示すが、良好な応答特性が得られ

また、上記と同一仕様のグルコーセンサス30 ケについて同じ試料液で試験したところ、変動係 数は約5%と良好であった。

さらに、第10図に示す従来例の構成で試作したグルコースセンサとともに、湿度が30%と80%の条件下で、蒸発による影響についてそれぞれ10ケのセンサを用いて比較検討したところ、本発明になるグルコースセンサにおいては5分放置後においてもその影響は無視し得るものであったが、従来構成のものについては低湿度の方が2分後において約3%高値を示した。

以上のように、本発明になる上記構成のグルコースセンサは、微量の試料液をすみやかに反応層領域へ吸入し、周囲の退度等による影響を受けることなく、簡易、迅速かつ高精度にグルコース適度を測定することができる。

(実施例2)

られた。 また、 3 0 ケのセンサを用いて変動係数を調べたところ、 グルコース 標準液について 2.8%、 全血は料について 3 %と極めて良好な値を示した。 また、 蒸発の影響について実施例 1 と同様に試験したところ、 前記同様の効果が得られた。

また、第7図の分解斜視図に示すように、スペーサを7と7′の2つに分けることにより、空間 部8と導入口10及び排出口11とすることもできる。

(実施例3)

実施例1と同様の方法により、第8図に示すで 極部を構成した。すなわち、基板上に観リード3、 21、22、23とこれらに対応する対極5及び 3ヶの測定極41、42、43を形成することに より、対極を共有する3組の電極系を構成した。 次に、各々の測定極近傍に実施例2と同様にして CMC-GOD-フェリシアン化カリウム圏から なる反応層を形成した。

. . . .

次に、スペーサおよびカバーを実施例1と同様に接着して一体化した。ここで、スペーサはその一部が「くし状」に切りとられており、この切りとられた部分が空間部8を形成している。この空間部はそれぞれの電極系上に分割されているが、全体としては連続しており、共通の空間部となっている。また、始部は導入口10となる。

これらの各電極系上に分割されて構成された空間部に対応して、カバー9には3ケの穴をあけ排出口11、12、13を設けている。 導入口10 を試料液に接触させると、3ケの排出口より空間部内の空気が排出されながら試料液は空間部内へ強やかに導入される。

実施例2と同様にして、グルコース標準被に対する応答を3ケの電極系について測定し、その平均値を求めて1ケのセンサの応答値とした。これを、30ケの同一仕様の上記グルコースセンサに

板上に観リード21、22、3とこれらに対応する測定極41、42と共通の対極5からなる2組の電極系を構成した。次に、実施例2と同様にして、CMC-GOD-フェリンアン化カリウム層からなる反応層を各々の電極系上へ形成した後、スペーサ7とカバー9を接着した。ここでスペーサは独立した空間部81、82となる2ケの穴を有しており、これに対応する排出口11、12と共通の導入口10がカバーに設けてある。

上記構成のグルコースセンサについて、 異施例 3 に述べたと同様に、 グルコース 標準液に対する 2 組の電極系の広答値を平均して 1 ケのセンサの 測定値とし、 3 0 ケの同一仕様のセンサについて 試験したところ、 変動係数は 2. 2%と良好であった。

この様に、第9図に示すセンサにおいては、より高精度な測定ができるほか、独立した空間部を有しているので、1ケのセンサで異なる試料核、あるいは時間や温度等の異なる条件下での測定に供することもできる。

ついて試験したところ、変動係数は2%と良好な値を示した。

ディスポーザブルタイプのセンサにおいては、 各センサ毎の電極面積などの差異をはじめとする 誤差要因をいかに小さくするかが信頼性向上において重要である。 これらセンサ間の差異は同一試 料液に対する測定値の差を生ずる原因となっている。 しかしながら、上記のように、同一センサに 複数の電極系を設け、その応答値の平均値を得る ことにより、より高精度な測定を迅速に行なうことができる。

第8図には3組の電極を有する例について示したが、これに限定されることはなく、さらに多数の電極系を設置することが可能である。また、空間部の形状については、電極系の形状や配置も同様であるが、図示したものに限定されるものではない。

(実施例4)

第9図に複数の電極系を有する構成の変形例を 示す。すでに述べた実施例1と同様の方法で、基

上記においては、カバーに1ケの穴を設けて共通の導入口としたが、この構成に限定されることはない。 複数組の電極系と複数の独立した空間部からなる測定系を構成することが重要な点であり、2ケの穴を設けて、それぞれの空間部に対する導入口を構成してもよい。

以上に述べた実施例1~4においては、空間部につながる導入口と排出口については、その好適な位置関係の一例を実施例として図示したものであり、排出口を導入口として、また導入口を排出口として用いてもよい。さらに、各々の図に示したスペーサおよびカバーは独立した部材からなっているが、成形などにより1ケの一体部材とすれば量産上有利である。

また上記、空間部を構成する部材表面を新水性 とすることにより、 試料被の導入がより円滑となるが、 このためには観水性の材料を用いるか、 あるいは実施例に述べたように、 予め界面活性剤で 処理し観水性とすればよい。

一方、基板とカバーの間隔は、スペーサの厚み

あるいはこれに相当する部分の寸法を変えることによって調節することができるが、大きすぎると空間部を満たすに要する試料液が多くなり、また毛管現象による液導入にも支障をきたす。また、間隔が小さすぎると、電極間の抵抗の増大や電流分布の乱れを生ずる。以上の点から、間隔としては 0. 05~1. 0 m が適当であり、さらに好ましくは 0. 1~0. 5 m である。

実施例においては、 類水性高分子として C M C を用いたが、 その役割は、 すでに述べたように試料故の円滑な導入の他に、 試料液に含まれる吸管性物質が電極へ吸管し応答に影響するのを防止することにある。

類水性高分子としてはCMCの他にゼラチンやメチルセルロースなども使用でき、デンブン系、カルボキシメチルセルロース系、ゼラチン系、アクリル酸塩系、ビニルアルコール系、ビニルビロリドン系、無水マレイン酸系のものが好ましい。これらの吸水性あるいは水溶性の類水性高分子を適当な過度の溶液にしたものを堕布、乾燥するこ

発明の効果

, y 3

以上のように本発明によれば、 電極系と反応層を有する基板上に反応層を含む空間部を形成し、 この空間部につながる試料液の導入口と気体の排出口を設けることにより、 ごく僅かの被検液量で 極めて容易に、 かつ精度よく基質濃度を測定する ことのできる安価なディスポーザブルタイプのバ イオセンサを提供することができる。

4、 図面の簡単な説明

第1図は本発明の一実施例であるバイオセンサの分解斜視図、第2図はその外観図、第3図はその所面模式図、第4図はパイオセンサの応答特性図、第5図は別の実施例であるバイオセンサの分解斜視図、第6図はその外観図、第7図、第8図および第9図はさらに別の実施例であるバイオセンサの分解斜視図、第10図は従来のバイオセンサの分解斜視図である。

とにより、 必要な数厚の類水性高分子層を電極上 に形成することができる。

なお、以上の実施例においては電極部分が測定極と対極の2電極からなる電極系について述べたが、電極系を参照極を加えた3電極から構成することにより、さらに精度を向上することがでる。 また、電極材料としては、実施例に示したカーボンは安定で安価な材料として適しているが、これに制限されることはなく、他の貴金属材料や酸化物材料を用いてもよい。

また、電子受容体としては、実施例に示したフェリシアン化カリウムは安定性や反応速度の点で優れたものであるが、これ以外に、例えばキノン系化合物やフェロセン系化合物などのレドックス化合物を用いることもできる。

さらに、酸化還元酵素としては上記実施例に示したグルコースオキシダーゼに限定されることはなく、 アルコールオキシダーゼやコレスチロールオキシダーゼなど値々の酵素を用いることができ

代理人の氏名 弁理士 中尾敏男 ほか1名

ត 2 ⊠

்த¥ 3 ⊠

第 4 図

第 5 図

ま 6 図

25X 7 1971

第 8 図

第10図

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第1区分 【発行日】平成5年(1993)8月24日

【公開番号】特開平1-291153 【公開日】平成1年(1989)11月22日 【年通号数】公開特許公報1-2912 【出願番号】特願昭63-121002 【国際特許分類第5版】

GO1N 27/28 331 A 7235-2J 27/327

(FI)

GO1N 27/30 353 J 7235-2J R 7235-2J

手続補正書

平成 4年 7月 / 6日

特許庁長官殿

1 事件の表示

昭和63年特許願第121002号

2 発明の名称

バイオセンサ

3 補正をする者

事件との関係 特 許 出 願 人住 所 大阪府門真市大字門真1006番地名 称 (582)松下電器産業株式会社 代表者 谷 井 昭 雄

4 代理人 〒571

住 所 大阪府門真市大字門真1006番地 松下電器産業株式会社内

氏 名 (7242) 弁理士 小鍜治 明 (ほか 2名) [連紡先電話(03)3434-9471 知的財産額センタ-]

5 補正の対象

明細費の発明の詳細な説明の欄

- 6 補正の内容
- (1) 明細睿第3頁第8行の「電子受容を」を 「電子受容体を」に補正します。
- (2) 同第4頁第3行の「排出口設けた」を 「排出口を設けた」に補正します。
- (3) 同第7頁第17行~第18行の「生成し過酸化水素の酸化電流が得られた。」を「酵素反応で生成した過酸化水素が測定電極で酸化され、これにともなう酸化電流が得られた。」に補正します。
- (4) 同第8頁第4行の「グルコーセンサス」を「グルコースセンサ」に補正します。
- (5) 同第10頁第5行と第6行の間に「上記においては、CMC、GOD、電子受容体の層を 頭次形成して反応層を作成したが、これら3成分 の混合水溶液を電極上へ展開、乾燥することによ り、均質な反応層を製造することができた。この ようにして得られたセンサ30箇について前記同 様にグルコース標準液に対する応答電流値を測定 したところ、変動係数は2.3%と良好であった。」

を挿入します。

- (6) 同第12頁第17行と第18行の間に「さらに、上記3組の電極系に各々異なる酸化還元酵素を担持することにより、1箇のセンサで多成分を同時に計測しうるマルチセンサを構成することができる。」を挿入します。
- (7) 同第14頁第15行の「新水性」を「親水性」に補正します。