תרגילים: NP שלמות

שאלה 1 האם הטענה הבאה נכונה, לא נכונה, או שקולה לבעיה פתוחה. $C = \left\{ww \mid w \in A \land w \notin B\right\}$ עבור שתי בעיות $A \in A$ אזי $B \in NP$ אם $A \in NP$ אם $A \in NP$ וגם

 $A \leq_P C$ אזי $B \leq_P C$ וגם $A \leq_P B$ אזי אם $A \in_P B$ אזי אזי אזי $A \subseteq_P C$ הוכיחו כי לכל

שאלה 3 קבעו אם הטענה הבאה נכונה, לא נכונה או שקולה לשאלה פתוחה: $L \in NP \backslash P -$ קיימת שפה רגולירת L כך ש

שאלה לשאלה שקולה לשאלה נכונה, לא נכונה אם הטענה הבאה לבעו אם הטענה הבאה $L_{\rm halt} \notin NP$ אם אם $L_{\rm acc} \notin NP$

שאלה 5 קבעו אם הטענה הבאה נכונה, דא נכונה או שקולה לבעיה פתוחה. $A \leq_P B$ אם $A \in NP$ קשה אזי קיימת רדוקציה $A \in NP$ היא בעיה $A \in NP$

תשובות

שאלה 1 הטענה שקולה לבעיה פתוחה:

 $B = SAT \in NP$, $A = \Sigma^* \in NP$ נבחר

נגדיר את הבעיה

 $C' = A \backslash B = \{ w \in \Sigma^* \mid w \notin SAT \} = \overline{SAT} .$

 $.C' \leq_P C$ ע"י רדוקציה ע"י אז גם $C \in NP$ נראה כי אם נראה ל

 $w \in \Sigma^*$ לכל f(w) = ww בונקצית הרדוקציה:

ניתן להראות כי

 $w \in C' \quad \Leftrightarrow \quad f(w) \in C \ .$

. ואו שאלה פתוחה. $C' = \overline{SAT} \in NP$ אזי אם $C \in NP$ ואו שאלה פתוחה.

 $w \in \Sigma^*$ לכל $w \in A \Leftrightarrow f(w) \in B$ שמקיימת $A \leq_P B$ לכל הרדוקצית הרדוקצית תהי

 $w \in \Sigma^*$ לכל $w \in B \Leftrightarrow f(w) \in C$ שמקיימת שמקיימת הרדוקציה הרדוקציה לכל פונקצית הרדוקציה

 $A \leq_P C$ נוכיח שקיימת רדוקציה

h פונקצית הרדוקציה

 $h(w) = g\left(f(w)
ight)$ נגדיר $w \in \Sigma^*$ לכל

נכונות הרדוקציה

 $w \in A \Leftrightarrow h(w) \in C$ שלב 1. נוכיח כי

- $.h(w) = g\left(f(w)
 ight) \in C \Leftarrow f(w) \in B \Leftarrow w \in A$ אם •
- $.h(w) = g\left(f(w)\right) \notin C \Leftarrow f(w) \notin B \Leftarrow w \notin A$ אם •

שלב 2. נוכיח כי h חשיבה בזמן פולינומיאלי:

f את הפולינום של p_f את הפולינום

g את הפולינום של p_q את הפולינום

: חסום על אזי איי לכל און החישוב א
 h(w) החישוב אזי איי א $w \in \Sigma^*$

$$p_f(|w|) + p_g(|f(w)|) \le p_f(|w|) + p_g(p_f(|w|)) = p_f(|w|) + (p_f \circ p_f)(|w|)$$

.|w| באודל פולינומיאלי באודל הרכבה את הרכבה של שני פולינומים. לכן ניתן לחשב את באח $p_f\circ p_f$

שאלה 3 הטענה לא נכונה.

P -לכל שפה רגולרית קיים אוטומט סופי ולכן שייכת ל-

שאלה 4 הטענה נכונה.

 $L_{
m halt}
otin NP$ מתקיים מתקיים אם הרדוקציה אם ולכן ממשפט ולכנומיאלית בר $L_{
m acc} \leq_P L_{
m halt}$ מתקיים

שלמה. $A \notin NP$ ו- $A \notin NP$ ו- $A \notin NP$ ו- $A \notin NP$ שלמה. בעייה $A \in NP$ הטענה לא נכונה. דוגמה נגדית: $A \in NP$ שלמה מתקיים ש- $A \in NP$ שלמה) מתקיים ש- $A \in NP$ וזו סתירה לבחירה של $A \in NP$