Definition 3.1. A category with families consists of the following.

- A category C.
- A presheaf $\mathcal{T}: \mathcal{C}^{\mathrm{op}} \to \mathcal{S}et$.
- A copresheaf $S: \int \mathcal{T} \to Set$ where \int denotes the Grothendieck construction. In other words, for every $\Gamma \in \mathcal{C}$ and $A \in \mathcal{T}(\Gamma)$, there is a set $S(\Gamma, A)$; for every $s: \Delta \to \Gamma$, there is a function $S(f, A): S(\Gamma, A) \to S(\Delta, \mathcal{T}(f)A)$; and this is functorial.
- For each object Γ of \mathcal{C} and for each $A \in \mathcal{T}(\Gamma)$, there is an object $\pi_{\Gamma} : \Gamma.A \to \Gamma$ of \mathcal{C}/Γ with the following universal property.

$$\hom_{\mathcal{C}/\Gamma}(s, \pi_{\Gamma}) \cong \mathcal{S}(\mathcal{T}(s)A).$$

Theorem 3.1. The syntactic category $C[\mathbb{T}]$ has the structure of a category with families.

Proof. The underlying category is $\mathcal{C}[\mathbb{T}]$.

For the presheaf $\mathcal{T}: \mathcal{C}^{\text{op}} \to \mathcal{S}et$, we set $\mathcal{T}(\Gamma)$ to be the types of \mathbb{T} in context Γ . Given $s: \Gamma \to \Delta$, we set $\mathcal{T}(\Delta) \to \mathcal{T}(\Gamma)$ to be substitution by s, which we have previously denoted -[s].

For the copresheaf $S: \int \mathcal{T} \to Set$, we set $S(\Gamma, A)$ to be the terms of A in context Γ . Given $s: \Delta \to \Gamma$, the function $S(f, A): S(\Gamma, A) \to S(\Delta, \mathcal{T}(f)A)$ is also given by substitution by s.

We have objects $\pi_{\Gamma}: \Gamma.A \to \Gamma$ of \mathcal{C}/Γ . For the universal property, consider an arbitrary $s: \Delta \to \Gamma$. Then an $f \in \text{hom}_{\mathcal{C}/\Gamma}(s, \pi_{\Gamma})$ consists of (many components which must coincide with s and) and one component

$$\Delta \vdash f : A[s],$$

which is exactly an element of $\mathcal{S}(\mathcal{T}(s)A)$.

Exercise 3.1. Construct a category with families from an arbitrary display structure, and show that when you apply this to the display structure of Theorem [2,1], you obtain the same category with families as above.

Exercise 3.2. Show that from any category with families you obtain a display structure. What is the relationship between this construction and the above construction?

Extegories with families from universes

Thum. Consider a category & with a distinguished morphism 5 such that for any $f: \Gamma \rightarrow U$, there exists a pullback.

Thum I such that for any $f: \Gamma \rightarrow U$, there exists a pullback.

Thus, $\Gamma \rightarrow U$

We can construct a entergony with families by taking

- 1) the under lying enterpy to be &
- 2) the preshed Ty: 6°P → Set to be given by hom (-, U)
- 3) context extension 72,: [. A [to be [. A.
- 4) the aspershaf $Tm: fty \rightarrow St$ to be given by $Tm(\Gamma, A) := \{ \text{ sections of } \pi_{\Gamma} \}$ Tm(f, A) := given by the universal purposity

: Th (r,A) - Th (A, fyf)A)

5) $hom(S,\pi_r) \stackrel{\vee}{=} Tm(\Delta,Ty(s)A)$ $\stackrel{\vee}{=} hom(1,\chi(s))$

somes from the universal property

EX. We have such a morphism $\pi_{U}: \tilde{U} \to U$ in groupoids, where U is the larger groupoid of small groupoids.

What is \tilde{U} ?

The Grothendiak construction

We consider functions F: G - U.

Ex. F(x): g/x

Ex. Given any presheaf P: 4P-Set, postempon to get P:4P-U.

Def. The Grothendieck construction pudvices a functor

IF

That is the analog of a Z-type (with projection).

G

The algority of $\int F$ are pairs (G,X) where $G \not= G$ and $X \in FG$. The mapphisms $(G,X) \rightarrow (H,Y)$ consist of $f:G \rightarrow H$ and $g:F(F) \times \rightarrow Y$.

- NB. Notice the similarity between the morphisms of $\int F$ and the chamberiantum of = in Σ -types.
- Obs. Functors of the form $\pi_F: JF G$ have a special grouperty. Lorsidar a fiber $\pi_F'(G)$. This is F(G).

Since there is a fundar F(G) - F(H) her any f:6-H, we smilarly get a fundar between flows.

Furthermore, given $f:G \to H$ and $X \in JF$ such that $\pi_F X = G$, there is an object F(A)X above H and a consimer morphism $(f, id): X \to F(A)X$.

- Def. An isohimtim is a functor F: G D such that for any $f: G \rightarrow H$ in D and X above G, there is a morphism $f: X \rightarrow f*X$ above G.
- Thm. The Gutherdick construction on functors F: g U always produces an isofibration. This underlies an enjoyalone * of atograins.

Now, we wreider

to get $\tilde{U} := \int 1_0 \xrightarrow{\mathcal{R}} U$.

JA Jo

by. There is a an tagony with families whose category of antests is Copd, whose types are functors $G \to U$, and where antest extension is given by the Grothendiak construction.

Why CoF and not display maps?

Functors G - U are easier to work with them isofilantions.

Shict substitution. The who of type then ensure substitution is shirtly hurborial.

E.g. $A[\frac{1}{2}] = A$, A[f][g] = A[f[g]].

but this is only pseudo functional in general.

By moving to an equivalent environment where structures is poss; He/ ensier to express, we resolve this issue.

Nou

Alx/x] is $\Gamma \stackrel{\mathcal{I}}{=} \Gamma \stackrel{\mathcal{A}}{=} U$ Alf)[g] and A[f[g]] are $E \stackrel{\mathcal{G}}{=} \Delta \stackrel{\mathcal{L}}{=} \Gamma \stackrel{\mathcal{A}}{=} U$.

ld types and fibrations

· In an isofibration F: 4 → 10, given f: X - Y in D, get a funtor FX - FY.

This is throught, so is fibrition do not like dependent types.

"The identity type in this model is given by hom/-,-): A.A. = A×A - Lt - U

· Pethexing is given by the identity maghisms.

I - types.

· Given a B: A -U, take

SB.

x: A + B(x) + \(\begin{align*} B(x) \\ x: A \end{align*}

T-4pes

of terms of B, i.e. Schians of A.B. Indeed, remembering that Empl is a 2-ategory, the Set of Satians has the structure of groupoid.