STUDENT PORTFOLIO

Name: Mallela Gnanamrutha Register Number:RA2211003011294 Mail ID:mg6557@srmist.edu.in

Mobile no: 9505595046

Section:D2

Department: COMPUTING TECHNOLOGIES

Semester: IV

Subject Title: 21CSC204J Design and Analysis of Algorithm

Handled By: Dr. Arulalan v

Lab Experiment Completion status

	8	une PS Ground	mouths Consa		LISTE	E EXPE			home						
	X	A Ser and great	A Da			Togeton I	-	matteria (10 Mark		3 1			1	3/
	9.		Върствени	appearer.		1	Maldary 0.55	Contract of the Contract of th	Wilden	100	Securetary and market fill	No. of London	30	BE	Topogod and
	15	a bourtion out b Bubble sort	ch	1		2-	15	25	2.	1	2-	63	5	18	0.9
	1 2	a. Linear sourch b. Hissary sourch	1/2	1		2	1.5	303	1	Jau	3	0.	L	19	0195
	3	Quick sett	46	(1		12.	12.5	20	T.	1	3	1	14	14	0.44
	4	Merge sert	ch.	1/4		£	18	1.5	L	1	1.	1	(4)	1.9/	0.95
	5	Divide and conque a. Strauen's Mate	a multiplication	- 1	-	3.	25	2.5	3-	1	5	1	(4	17	095
		anner	es and Minimum in an	1		2	2.7	9-3	2	14	3	1	1/3	18	040
	7	h Convex Hull per	ing greedy programmy	1		36	12+5	2.7	3-	1	3	11	15	T	0 1
F	5	Enapeack using gree	sdy programming	- 1	ų, i	2	25	35	0	1	2	0	100) 10	104
									100	100		1	1.0	C 138	1 100
		inding the longest i rum a sequence		1	+1	12.	15	3.5	2	1	2		1	-	1 6 42
	10 3	rum a sequence i queen's problem	- 4	- 1	-	4	75	3/4	4.	1	2	1	E	10	
	10 2	тот в ведитое	problem using A	2 1								1		T. In	1 010
	10 2	om a sequence queen's problem cavelling salesman Dynamic program Greedy programm	problem using A		-	4	7.1	34	4.	1	2	1	L	118	2 0.9
	10 2	om a sequence (queen's problem covelling salesman Dynamic program Greedy programm mng matching algo	problem using Aming ing eithns – Rabin Karp	1	-	T P	75	g/A	1	1	~	1	4 19	11	2 0.9

REAL WORLD APPLICATION IN DAA

TITLE OF THE PROJECT: ENERGY-EFFICIENT ROUTING PROTOCOLS FOR WIRELESS SENSOR NETWORKS

ABSTRACT: Networks of distributed devices (sensors) that monitor and record conditions in a different environments and coordinate to pass their data through the network to a main location. WSNs are crucial for applications like environmental monitoring, healthcare, home automation, and military uses. Most sensor nodes are battery-operated, making energy conservation a critical design consideration.

REAL-WORLD APPLICATIONS OF WSNS:

Agriculture: Use WSNs for precision farming techniques, monitoring soil moisture and conditions, optimizing irrigation schedules, and reducing water usage.

Healthcare Monitoring: Implement WSNs for remote health monitoring, tracking patient vital signs, and providing real-time data to medical professionals, enhancing patient care.

Environmental Monitoring: Deploy sensor networks for monitoring air and water quality, detecting forest fires early, and observing wildlife, contributing to conservation efforts.

Smart Cities: Utilize WSNs for managing traffic flows, monitoring public infrastructure, enhancing public safety, and optimizing energy use in urban environments

GITHUB PROFILE

https://github.com/RA2211003011294/daa-real-world-project

NPTEL Certificate

NPTEL Online Certification (Funded by the MoE, Govt. of India)

This certificate is awarded to MALLELA GNANAMRUTHA

for successfully completing the course

Design and Analysis of Algorithms

with a consolidated score of

46

Online Assignments | 15.5/25

Proctored Exam 30/75

Total number of candidates certified in this course: 646

Devendra Jelikal

Prof. Devendra Jalihal Chairperson, Centre for Outreach and Digital Education, ITM Jan-Mar 2024

(8 week course)

Prof. Andrew Thangaraj NPTEL, Coordinator IIT Madras

Indian Institute of Technology Madras

No. of credits recommended: 2 or 3

Roll No: NPTEL24CS23S153404587 To verify the certificate

M. Granamentitho.

Signature