Student ID:

Student Name:

For the circuit on the right,

a) Its frequency response follows the form:

$$\frac{\mathbf{V_o}}{\mathbf{V_i}} = \frac{A}{1 + \omega_c / j\omega}$$

Find the value of A and derive the expression for ω_c in terms of the component symbols (e.g. R, C);

Note that general form of high pass filter in notes is $\frac{V_0}{V_i} = \frac{A(j\omega/\omega_c)}{1+j\omega/\omega_c} = \frac{A}{1+\omega_c/(j\omega)}$

$$\frac{V_o}{V_i} = \frac{Z_2}{Z_1 + Z_2} = \frac{1}{1 + \frac{Z_1}{Z_2}}$$

$$Z_1 = \frac{1}{2j\omega C}$$
, $Z_2 = \frac{\frac{R}{j\omega C}}{\frac{1}{j\omega C} + R} = \frac{R}{1 + j\omega RC}$ \rightarrow $\frac{Z_1}{Z_2} = 2 + \frac{2}{j\omega CR}$

$$\frac{V_o}{V_i} = \frac{1}{\frac{3}{2} + \frac{1}{2j\omega CR}} = \frac{\frac{2}{3}}{1 + \frac{1}{3CR}/j\omega}$$

$$\therefore A = \frac{2}{3}, \omega_c = \frac{1}{3CR}$$

b) Determine $|V_0/V_i|$ when $\omega = 0$, $\omega = \omega_c$, and $\omega \rightarrow \infty$;

$$\left|\frac{V_o}{V_i}\right| = \left|\frac{A}{1 + \frac{\omega_c}{j\omega}}\right| = \left|\frac{A}{1 - \frac{\omega_c}{\omega}j}\right| = \frac{A}{\sqrt{1 + \left(\frac{\omega_c}{\omega}\right)^2}}$$

$$\omega = 0, \left| \frac{V_o}{V_i} \right| = 0$$

$$\omega = \omega_c, \left| \frac{V_o}{V_i} \right| = \frac{A}{\sqrt{1 + \left(\frac{\omega_c}{\omega}\right)^2}} = \frac{2/3}{\sqrt{2}} = \frac{\sqrt{2}}{3}$$

$$\omega \to \infty$$
, $\left| \frac{V_o}{V_i} \right| \to A = \frac{2}{3}$

c) Determine $\angle(V_o/V_i)$ when $\omega = 0$, $\omega = \omega_c$, and $\omega \rightarrow \infty$;

Denominator:
$$1 + j\left(-\frac{\omega_c}{\omega}\right)$$

$$\angle \left(\frac{V_o}{V_i} \right) = -\tan^{-1} \left(-\frac{\omega_c}{\omega} \right)$$

$$\omega = 0, \angle \left(\frac{V_o}{V_i} \right) = -\tan^{-1}(-\infty) = \frac{\pi}{2}$$

$$\omega = \omega_c$$
 , $\angle \left(\frac{V_o}{V_i} \right) = -\tan^{-1}(-1) = \frac{\pi}{4}$

$$\omega \to \infty, \angle {V_o/V_i} = -\tan^{-1}(0) = 0$$

d) Circle the corresponding plot of $|V_o/V_i|$ vs ω from the following choices;

 $\sqrt{}$

e) When $\omega = 10\omega_c$, and the amplitude of $V_i = 2$ V, estimate the amplitude of V_o in V.

When
$$\omega = 10\omega_c$$
, $\frac{V_0}{V_i} = \frac{A}{1 + \frac{\omega_c}{j10\omega_c}} = \frac{A}{1 + \frac{1}{10j}} = \frac{A}{1 - 0.1j}$

$$|V_0| = \frac{A}{\sqrt{1.01}} |V_i| = \frac{4}{3\sqrt{1.01}} V$$

Note that we may also approximate $\omega \rightarrow \infty$ when ω is much larger than ω_c , i.e.

$$\left|\frac{V_o}{V_i}\right| \to A = \frac{2}{3}, \ V_o = \frac{4}{3} \text{ V}.$$