

Documentation Parkassist

Graphische Programmierung und Simulation

at the Cooperative State University Baden-Württemberg Stuttgart

by

Nahku Saidy und Hanna Siegfried

07.04.2020

Time of Project
Student ID, Course
Company
Supervisor in the Company

24.03.2020 - 07.04.2020 8540946; XXX, STG-TINF17-ITA Daimler AG, Stuttgart Dr. Kai Pinnow

Contents

Ac	ronyms			
Lis	t of Figures	П		
Lis	et of Tables	Ш		
Lis	Listings			
1	Introduction	1		
2	D1: Time estimate based on three point estimation	2		
3	D2: Feasibility study	3		
4	D3: Analysis of human velocity profile	5		
5	D4*: Consideration of uneven parking spaces	6		
6	D5: Discussion of inaccuracies in velocity measurement	7		
7	D6: Implementation of pulse signal in Simulink	8		
8	D7: Transfer of Simulink model to ASCET	9		
9	D8: Implementation of pule signal in ASCET	10		
10	D9: Implementation of unit tests for ASCET model parts	11		
11	$\begin{tabular}{lll} D10: Development and implementation of a system test environment for \\ ASCET simulation \end{tabular}$	12		
12	D11*: Plausibility check comparing measured velocities and distances	13		
13	D13*: Impact of inaccuracies	14		
1/1	D1//*: Poffection	15		

Acronyms

AABB Axis-Aligned Bounding Box

List of Figures

3.1	UML diagram of the architecture of the software tool	3
3.2	Simulink Modell der Differenzialgleichungen	4

List of Tables

2.1 Three point estimation of effort to:	r meeting requirements	- 2
--	------------------------	-----

Listings

1 Introduction

??

2 D1: Time estimate based on three point estimation

Table 2.1: Three point estimation of effort for meeting requirements ${\bf r}$

Tuble 2.1. Three point estimation of enert for meeting requirements									
Requirement Optimistic	Likely	Pessimistic	<T $>$	${ m sigmahoch 2}$	Actual				
D1	•								

3 D2: Feasibility study

The aim of the feasibility study is to analyse whether the introduced model in section 1 can be implemented based on the given formulas.

$$\frac{\partial v}{\partial t} = -c - b * p \tag{3.1}$$

$$\frac{\partial x}{\partial t} = v \tag{3.2}$$

- Minimale Geschwindigkeit 0,29km/h beachten -> in m/s umrechnen
- Switch -> wenn Geschwindigkeit kleiner 0.29 folgt daraus Geschwindigkeit = 0
- Screenshot Simulink Modell und Ergebnis
- R5 auch beachtet

Figure 3.1: UML diagram of the architecture of the software tool

Figure 3.2: Simulink Modell der Differenzialgleichungen

4 D3: Analysis of human velocity profile

- 1. Import in Matlab
- 2. entschieden Durchschnitt der vier Radgeschwindigkeiten zu nehmen (vllt. vor nachteile) und so auf die Geschwindigkeit des Autos näherungsweise zu bestimmen

todo hier plot von gesamtgeschwindigkeit

idee: verzögerungsphasen extrahieren um so auf "menschliche" negative beschleunigung zu schließen problem: verrauschte messdaten -> dadurch ständiger wehcsel positive negative beschleunigung

lösung: moving average filter zum glätten der messwerte dann extrahieren der negativen beschleunigungen

5 D4*: Consideration of uneven parking spaces

6 D5: Discussion of inaccuracies in velocity measurement

validate findings by numbers from simulation

7 D6: Implementation of pulse signal in Simulink

8 D7: Transfer of Simulink model to ASCET

9 D8: Implementation of pule signal in ASCET

10 D9: Implementation of unit tests for ASCET model parts

11 D10: Development and implementation of a system test environment for ASCET simulation

12 D11*: Plausibility check comparing measured velocities and distances

13 D13*: Impact of inaccuracies

14 D14*: Reflection