Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе \mathbb{N}^3

Дисциплина: Телекоммуникационные технологии

Тема: Апериодические сигналы

Работу выполнил: Ляшенко В.В. Группа: 3530901/80201 Преподаватель:

Богач Н.В.

 ${
m Caнкт-}\Pi{
m e}{
m Te}{
m p}{
m бург}$

Оглавление

1	Упражнение 3.1	4
2	Упражнение 3.2 2.1 Класс SawtoothChirp	
3	Упражнение 3.3	8
4	Упражнение 3.4	10
5	Упражнение 3.5 5.1 Класс TromboneGliss	11 11 11
6	Упражнение 3.6 6.1 Спектрограмма 6.2 Спектры гласных звуков 6.2.1 Звук а 6.2.2 Звук э 6.2.3 Звук и 6.2.4 Звук о	13 13 14 14 14 15

Список иллюстраций

1.1 1.2	Утечка. Окно Хэмминга	4 5
2.1	Спектрограмма	
3.1	Спектр чирпа	8
4.1	Спектрограмма глиссандо	10
5.1	Спектрограмма глиссандо С3-F3	12
6.1 6.2	- r r	13 14
6.3	- r	15
6.4		15
6.5	Спектр звука о	16

Листинги

1.1	Вычисление разных оконных функций	4
2.1	Класс SawtoothChirp	6
2.2	Создание спектрограммы	6
3.1	Создание пилообразного чирпа	8
3.2	Получение спектра чирпа	8
4.1	Получение звука глиссандо	10
4.2	Получение спектрограммы	10
5.1	Класс TromboneCliss	11
5.2	Создание сигнала	11
5.3	Получение спектрограммы	11
6.1	Получение спектрограммы гласных звуков	13
6.2	Получение спектра звука а	14
6.3	Получение спектра звука э	14
6.4	Получение спектра звука и	15
6.5	Получение спектра звука о	16

Упражнение 3.1

В начале нам требуется загрузить и послушать примеры из блокнота chap03. ipynb. Теперь в примере с утечкой заменим окно Хэмминга одним из окон, предоставляемых NumPy, и посмотрим как они влияют на утечку. Утечка при использовании окна Хэмминга имеет вид, представленный на Puc.1.1.

Рис. 1.1: Утечка. Окно Хэмминга

NumPy дает функции для вычисления других оконных функций, такие как bartlett, blackman, hanning и kaiser. Используем их (Puc.1.2).

```
import thinkplot
import numpy as np

wave = signal.make_wave(duration)
wave.window(np.bartlett(len(wave)))
spectrum = wave.make_spectrum()
spectrum.plot(high=880, label="bartlett")

wave = signal.make_wave(duration)
wave.window(np.blackman(len(wave)))
```

```
spectrum = wave.make_spectrum()
spectrum.plot(high=880, label="blackman")

wave = signal.make_wave(duration)
wave.window(np.hanning(len(wave)))
spectrum = wave.make_spectrum()
spectrum.plot(high=880, label="hanning")

wave = signal.make_wave(duration)
wave.window(np.kaiser(len(wave),5))
spectrum = wave.make_spectrum()
spectrum.plot(high=880, label="kaiser")

thinkplot.config(xlabel='Frequency (Hz)', legend=True)
Листинг 1.1: Вычисление разных оконных функций
```


Рис. 1.2: Применение разных окон

Все окна хорошо справляются с уменьшением утечки.

Упражнение 3.2

2.1 Класс SawtoothChirp

Haпишем класс SawtoothChirp, расширяющий Chirp и переопределяющий evaluate для генерации пилообразного сигнала с линейно увеличивающейся частотой.

```
from thinkdsp import Chirp, normalize, unbias, PI2

class SawtoothChirp(Chirp):

def evaluate(self, ts):
    freqs = np.linspace(self.start, self.end, len(ts))
    dts = np.diff(ts, prepend=0)
    dphis = PI2 * freqs * dts
    phases = np.cumsum(dphis)
    cycles = phases / PI2
    frac, _ = np.modf(cycles)
    ys = normalize(unbias(frac), self.amp)
    return ys

Листинг 2.1: Класс SawtoothChirp
```

2.2 Спектрограмма

Нарисуем эскиз спектрограммы этого сигнала, а затем распечатаем.

```
signal = SawtoothChirp(start=220, end=880)
wave = signal.make_wave(duration=1, framerate=4000)
spectrogram = wave.make_spectrogram(128)
spectrogram.plot()
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
Листинг 2.2: Создание спектрограммы
```


Рис. 2.1: Спектрограмма

Мы можем увидеть на рис.2.1, как гармоники с наложенными частотами отражаются от частоты сворачивания.

Послушаем получившийся сигнал. Именно отрожающиеся гармоники мы слышим как фоновое шипение.

Упражнение 3.3

Создадим пилообразный чирп, меняющийся от 2500 до 3000 Гц, и на его основе сгенерируем сигнал длительностью 1 с и частотой кадров 20 кГц.

```
signal = SawtoothChirp(start=2500, end=3000)
wave = signal.make_wave(duration=1, framerate=20000)
```

Листинг 3.1: Создание пилообразного чирпа

Теперь нам нужно вывести спектр данного сигнала. Но прежде мы должны предположить как он будет выглядеть. Так как основная частота меняется в диапазоне от 2500 до 3000 Гц, то здесь будет большой всплеск. На первой гармоники (диапазон от 5000 до 6000 Гц,) будет всплеск поменьше, а на второй гармоники ([7500;9000]) - ещё ниже. Выведем спектр.

```
spectrogram = wave.make_spectrogram(128)
spectrogram.plot()
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
Листинг 3.2: Получение спектра чирпа
```


Рис. 3.1: Спектр чирпа

Как мы можем видеть из рис.3.1 полученный спектр совпал с ожидаемым.

Упражнение 3.4

В данном упражнении нам необходимо распечатать спектрограмму первых нескольких секунд звука глиссандо. Воспользуемся подсказкой из пособия и скачаем произведение "Rhapsody in Blue" Джорджа Гершвина, которое содержит глиссандо.

```
from thinkdsp import read_wave
wave = read_wave('sounds/rhapblue11924.wav')
segment = wave.segment(start=2, duration=9)
segment.make_audio()
Листинг 4.1: Получение звука глиссандо
```

Теперь выведем его спектрограмму (Рис.4.1).

```
spectrogram = segment.make_spectrogram(512)
spectrogram.plot()
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
```

Листинг 4.2: Получение спектрограммы

Рис. 4.1: Спектрограмма глиссандо

Упражнение 3.5

5.1 Класс TromboneGliss

Haпишем класс TromboneGliss, расширяющий Chirp и предоставляющий evaluate. class TrombonGliss(Chirp):

```
def evaluate(self, ts):
    start, end = 1.0 / self.start, 1.0 / self.end
    freqs = 1.0 / np.linspace(start, end, len(ts))

dts = np.diff(ts, prepend=0)
    dphis = PI2 * freqs * dts
    phases = np.cumsum(dphis)
    ys = self.amp * np.cos(phases)
    return ys
```

Листинг 5.1: Класс TromboneCliss

Создадим сигнал, имитирующий глиссандо на тромбоне от С3 до F3, и обратно до С3. С3 - 262 Γ ц, F3 - 349 Γ ц.

```
C3 = 262
F3 = 349
signal = TromboneGliss(C3, F3)
wave_CF = signal.make_wave(duration=1)
wave_CF.apodize()
signal = TromboneGliss(F3, C3)
wave_FC = signal.make_wave(duration=1)
wave_FC.apodize()
wave = wave_CF | wave_FC
wave.make_audio()
```

Листинг 5.2: Создание сигнала

5.2 Спектрограмма

Напечатаем спектрограмму полученного сигнала.

```
spectrogram = wave.make_spectrogram(1024)
spectrogram.plot(high=1000)
```

decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
Листинг 5.3: Получение спектрограммы

Рис. 5.1: Спектрограмма глиссандо С3-F3

Как мы можем видеть на рис.5.1, глиссандо больше похоже на линейный чирп.

Упражнение 3.6

6.1 Спектрограмма

Ckaчaem c https://freesound.org запись серии гласных звуков и посмотрим на спектрограмму.

Листинг 6.1: Получение спектрограммы гласных звуков

Рис. 6.1: Спектрограмма гласных звуков

Как мы можем видеть на рис.6.1, разные гласные звуки имеют разные частоты, так что различить гласные по спектру возможно, но очень трудно.

6.2 Спектры гласных звуков

Пики на спектрограмме называются формантами. Гласные звуки различаются соотношением амплитуд первых двух формант относительно основного тона.

Посмотрим на спектры каждого звука.

6.2.1 Звук а

```
segment = vowels.segment(start=0.5, duration=0.75)
segment.make_spectrum().plot(high=1000)
decorate(xlabel='Frequency (Hz)')
Листинг 6.2: Получение спектра звука а
```


Рис. 6.2: Спектр звука а

На рис.6.2 видно, что основная частота находится между 200 и 300 Гц. Следующие самые высокие пики находятся между 500-600 Гц и 700-800 Гц соответственно.

6.2.2 Звук э

```
segment = vowels.segment(start=1.5, duration=0.9)
segment.make_spectrum().plot(high=1000)
decorate(xlabel='Frequency (Hz)')
Листинг 6.3: Получение спектра звука э
```


Рис. 6.3: Спектр звука э

На рис.6.3 мы видим два похожих пика на 300 и 500 Гц соответственно.

6.2.3 Звук и

```
segment = vowels.segment(start=2.7, duration=0.7)
segment.make_spectrum().plot(high=1000)
decorate(xlabel='Frequency (Hz)')
```

Листинг 6.4: Получение спектра звука и

Рис. 6.4: Спектр звука и

На рис.6.4 мы видим основную частоту на 200, а следующий пик на 500 Гц.

6.2.4 Звук о

```
segment = vowels.segment(start=3.6, duration=0.8)
segment.make_spectrum().plot(high=1000)
decorate(xlabel='Frequency (Hz)')
```

Листинг 6.5: Получение спектра звука о

Рис. 6.5: Спектр звука о

Звук о имеет высокоамплитудную форманту около 500 Γ ц, даже выше основной частоты.

6.2.5 Звук у

```
segment = vowels.segment(start=4.5, duration=0.6)
segment.make_spectrum().plot(high=1000)
decorate(xlabel='Frequency (Hz)')
```

Листинг 6.6: Получение спектра звука у

Рис. 6.6: Спектр звука у

Звук у имеет высокоамплитудную форманту около 300 Γ ц и не имеет высокочастотных составляющих.