союз советских СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК

(19) SU (11) 1693366 A1

(51)5 G 01 B 7/18

ГОСУДАРСТВЕННЫЙ КОМИТЕТ по изобретениям и открытиям ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4690763/28

(22) 07.03.89

(46) 23.11.91. Бюл. № 43

(71) Московский авиационный институт им. Серго Орджоникидзе

(72) Р.А.Михеев и А.Г.Дворников

(53) 539.37.531.781.2 (088.8)

(56) Тензометрия в машиностроении. Справочное пособие./Под ред. Р.А.Макарова. -М.: Машиностроение, 1975, с. 24.

(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОМПОНЕНТ

НАПРЯЖЕНИЯ

(57) Изобретение относится к измерительной технике, а именно к тензометрии поверхностей конструкций, находящихся в сложно-напряженном состоянии. Цель изо-

бретения - повышение точности и надежности определения компонент напряжений. Цель достигается благодаря установке четырех тензорезисторов относительно заданной оси Х на конструкции под углами $\varphi_1 = -\arctan \frac{\sqrt{\mu}}{\varphi_2} = +\arctan \frac{\sqrt{\mu}}{\varphi_3} = \frac{90^{\circ}}{\varphi_1}$ - arctg $\sqrt{\mu}$ u $\varphi_4 = 90^\circ + \text{arctg} \sqrt{\mu}$ где μ - коэффициент Пуассона материала конструкции. Способ обеспечивает высокую точность определения компонент напряжений σ_{x} , σ_{y} и τ_{xy} по показаниям четырех тензорезисторов и возможность определения двух компонент $\sigma_{\!\scriptscriptstyle X}$ и $\tau_{\!\scriptscriptstyle XY}$ или Ov и Тху в случае отказа двух тензорезисторов. 1 ил.

2

Изобретение относится к измерительной технике, а именно к тензометрии поверхности конструкций, находящихся в сложно-напряженном состоянии.

Целью изобретения является повышение точности и надежности определения компонент напряжений.

На чертеже показана схема реализации способа.

На схеме приняты следующие обозначения: 1 - исследуемая конструкция: 2 связующее: 3 - электроизолирующая основа; $\varphi_1 - \varphi_4$ - соответственно углы между заданной осью Х и тензорезисторами ТР1, TP2, TP3 и TP4.

Способ осуществляю: дующим обра-30M.

В заданной условиямы эксперимента зоне поверхности исследуемой конструкции 1 при помощи связующего 2 устанавливают четырехкомпонентную розетку тензорезисторов ТР1-ТР4, которая может быть выполнена как в виде четырех чувствительных элементов, закрепленных на общей электроизолирующей основе 3, так и как набранная из отдельно выполненных тензорезисторов. Тензорезисторы ТР1-ТР4 устанавливают относительно заданной оси X на `конструкции (например, совпадающей с направлением действия максимальных нормальных напряжений) соответственно под

$$\varphi_1 = -\operatorname{arctg} \sqrt{\mu}; \quad \varphi_2 = +\operatorname{arctg} \sqrt{\mu};$$

$$\varphi_3 = 90^\circ - \operatorname{arctg} \sqrt{\mu};$$

$$\varphi_4 = 90^\circ + \operatorname{arctg} \sqrt{\mu};$$

где и - коэффициент Пуассона материала конструкции. При $\mu = 0.3 \varphi_1 = -28.7^\circ$, $\varphi_2 = +28.7^{\circ}, \ \varphi_3 = 61.3^{\circ}, \ \varphi_4 = 118.7^{\circ}.$

Если перейти при $0.26 \le \mu \le 0.33$ к радианной мере, то $\varphi_1 \approx -0.74~\mu - 0.28$, $\varphi_2 \approx +0.74~\mu + 0.28$, $\varphi_3 \approx 0.74~\mu + 1.29~\mu$ $\varphi_4 \approx 0.74~\mu + 1.85$. При нагружении конструкции по показаниям тензорезисторов измеряют деформации $\varepsilon_1 - \varepsilon_4$ конструкции вдоль осей тензорезисторов TP1-TP4 и рассчитывают исходные компоненты напряжений $\sigma_{\rm X}$, $\sigma_{\rm Y}$, $\sigma_{\rm X}$ по следующим соотношениям:

$$\sigma_{x} = \frac{E}{2(1-\mu)}(\varepsilon_{1} + \varepsilon_{2}); \qquad (1)$$

$$\tau_{y} = \frac{E}{2(1-\mu)}(\varepsilon_{3} + \varepsilon_{4}); \qquad (2)$$

$$\tau_{xy} = \frac{(1+\mu)\cdot G}{4\sqrt{\mu}} \left(\varepsilon_2 - \varepsilon_1 + \varepsilon_4 - \varepsilon_3\right). \quad (3)$$

где σ_x , σ_y – нормальные напряжения, действующие вдоль осей X и Y;

тху - касательные напряжения;

Е и G – модуль нормальной упругости и модуль сдвига материала конструкции.

Предлагаемый способ характеризуется высокой точностью определения компонент напряжений $\sigma_{\rm X}$, $\sigma_{\rm Y}$, $\tau_{\rm XY}$ — случайная погрешность их определения, выраженная в значениях среднеквадратического отклонения (СКО), составляет при $\mu=0.3$:

CKO
$$(\sigma_x) = CKO (\sigma_y) =$$

= 1,01 · E · CKO (a); (4)
CKO $(\tau_{xy}) = 1,19 \cdot G \cdot CKO(a)$, (5)

где СКО (a) – случайная погрешность измерения деформации.

Предлагаемый способ характеризуется высокой надежностью, поскольку, отказ одного из тензорезисторов приводит 40

лишь к снижению точности определения σ_{x} , σ_{y} , τ_{xy} по показаниям трех оставшихся тензорезисторов, одновременный отказ тензорезисторов ТРЗ и ТР4 позволяет определять σ_{x} по соотношению (1) и τ_{xy} с пониженной точностью по соотношению)

$$\tau_{xy} = \frac{(1+\mu)\cdot G}{2\sqrt{\mu}} \left(\varepsilon_2 - \varepsilon_1\right). \tag{6}$$

отказ тензорезисторов ТР1 и ТР2 позволяет определять σ_y по соотношению (2) и τ_{xy} по соотношению

$$\tau_{xy} = \frac{(1+\mu) G}{2 \sqrt{\mu}} (\varepsilon_4 - \varepsilon_3). \qquad (7)$$

и только совместный отказ других пар тензорезисторов не позволяет определить ни одной искомой компоненты напряжений.

Формула изобретения

Способ определения компонент напряжений, заключающийся в том, что на поверхности исследуемой конструкции устанавливают четырехкомпонентную розетку тензорезисторов, при нагружении конструкции по показаниям тензорезисторов измеряют деформации вдоль осей тензорезисторов, по которым рассчитывают компоненты напряжений в направлении заданной оси на конструкции, о т л и ч а ю щ и йся тем, что, с целью повышения точности и надежности определения компонент напряжений, тензорезисторы устанавливают относительно заданной под углами $\varphi_1 = -\operatorname{arctg} \sqrt{\mu}$, $\varphi_2 = \operatorname{arctg} \sqrt{\mu}$, $\varphi_3 = 90^\circ - \operatorname{arctg} \sqrt{\mu}$, $\varphi_4 = 90^\circ + \operatorname{arctg} \sqrt{\mu}$, где и - коэффициент Пуассона материала конструкции.

Составитель Е.Вакумова
Техред М.Моргентал Корректор А.Осауленко

Заказ 4067 Тираж Подписное
ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101