SPRAWOZDANIE

Modele Układów Dynamiki (czwartek 13:15-15:00)

Data oddania:	Ćwiczenie: Miniprojekt 7.2.3d
05.01.2021	
	Prowadzący:
Mikołaj Zapotoczny (252939)	Dr Anna Czemplik

1 Wartości przyjęte w obliczeniach oraz schemat modelu nieliniowego

• Objętości:

$$V1=5*5*3=75[m^3]; V2=5*5*3=75[m^3];$$

• Schemat

2 Charakterystyki statyczne

3 Odpowiedzi skokowe modelu nieliniowego

4 Porównanie odpowiedzi skokowych modelu nieliniowego

4.1 Wnioski

- Dla wszystkich 3 punktów pracy i dla tych samych skoków układ stabilizuje się we wszystkich przypadkach po czasie ok. 200[s].
- Korzystając z tej samej skali na wszystkich wykresach możemy zauważyć, że zdecydowanie największa rozbieżność temperatur otrzymujemy dla punktu pracy fp0, notujemy wtedy także znacznie mniejsze temperatury. Podanie realnych punków pracy dla Tkz0 i Tzew0 nie wpływa znacznie na układ.

5 Odpowiedzi skokowe modelu liniowego

6 Porównanie odpowiedzi skokowych modelu liniowego

6.1 Wnioski

- Wartość parametru przypływu nie ma wpływu na układ w modelu liniowym.
- Zmiana punktów pracy dla realnych wartości nie ma znaczącego wpływu na temperaturę. Ponieważ nie podaje skoku układ reaguje liniowo.