Licence 1^{ère} année, 2024-2025, Mathématiques et Calcul 1 (MC1)

Feuille de TD n°4:

Suites réels et complexes (deuxième partie)

Correction Personnelle Pion 17 octobre 2024

Prérequis

(1) Négation de la proposition prédicative

Montrer qu'une proposition quantitative est fause \iff Montrer que sa négation est vraie.

Exemple:

La proposition A est

$$\forall r_u > 0, \exists N \in \mathbb{N}_+, \forall n > N, |u_n - l| < r_u$$

(définition de la convergence de la suite $\{u_n\}_{n\in\mathbb{N}_+}$)

une autre écriture :

$$\forall r_n > 0, \exists N \in \mathbb{N}_+, \forall n, (n > N \implies |u_n - l| < r_n)$$

Alors, la négation de A, i.e. $\neg A$, est :

$$\exists r_u > 0, \forall N \in \mathbb{N}_+, \exists n > N, |u_n - l| \ge r_u$$

ce qui veut dire la non convergence de la suite.

En somme, la négation de \forall est \exists , la négation de \exists est \forall le reste restant inchangé. Pour nier une proposition prédicative complète, on applique de manière récursive les lois de négation.

(2) L'inégalité triangulaire

Forme générale (où $\boldsymbol{x}, \boldsymbol{y}$ sont des vecteurs dans \mathbb{R}^k et $|\boldsymbol{x}|$ est la norme) :

$$orall oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^k, |oldsymbol{x} + oldsymbol{y}| \leqslant |oldsymbol{x}| + |oldsymbol{y}|$$

Formes courantes:

$$\forall x, y \in \mathbb{R}, |x+y| \le |x| + |y|$$

Utilisation avec transformation algébrique et changement de variable :

$$|x-z|=|x-y+y-z|\leqslant |x-y|+|y-z|$$

$$||x| - |y|| \le |x - y| \le |x| + |y|$$

(À vous! Donnez les conditions pour que l'égalité soit vérifiée.)

Remarque

$$(\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N, P(u_n, \varepsilon)) \iff (\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N, P(u_n, c\varepsilon))$$

(où c est une constante positive non nulle et P une relation entre u_n et ε). Démonstration :

$$\varepsilon > 0, c > 0 \implies c\varepsilon > 0, c + \varepsilon > 0, \varepsilon/c > 0, \sqrt{\varepsilon} > 0, \text{etc}$$

$$\text{LHS} \implies (\exists N_1 \in \mathbb{N}, \forall n > N_1, P(u_n, c\varepsilon)) \implies \text{RHS}$$

$$\text{RHS} \implies (\exists N_2 \in \mathbb{N}, \forall n > N_2, P(u_n, \varepsilon/c)) \implies \text{LHS}$$

Donc LHS \iff RHS.

De façon similaire on peut aussi prouver les cas où on remplace $c\varepsilon$ par e.g. $\varepsilon+c$ ou d'autres e.g. ceux listés ci-dessus. L'essenciel (personnellement) reste à montrer que on peut toujours ($\forall \varepsilon>0$ ou $\forall M\in\mathbb{R}_+^*$ ou...) trouver un rang ($\exists N\in\mathbb{N}$) à partir duquel ($\forall n>N$) la distance entre u_n et la limite est arbitrairement petite, c'est aussi de vérifier la définition.

Par exemple, vous verrez dans l'exercise 2(2), que même si on pose $r_v = \frac{\varepsilon}{100(1+|\ell|)}$, il suffit de prendre $r_u = \frac{\varepsilon}{2|\ell'|}$ et $r_v = \frac{\varepsilon}{2(1+|\ell|)}$.

Exercice 1.

Soient $\lambda \in \mathbb{R}$ et u, v deux suites réelles.

- (1) Montrer que si u et v sont minorés alors u + v est aussi minorée.
- (2) Montrer que si $\lambda \leq 0$ et u est majorée alors λu est minorée.
- (3) Montrer que si u et v sont bornées alors uv est aussi bornée.
- (4) Montrer que si u et v sont croissantes à partir d'un certain rang, alors u + v est également croissante à partir d'un certain rang.

Correction possible

(1)

 $\lambda \in \mathbb{R}, u, v \text{ deux suites réelles.}$

u, v sont minorées $\iff \exists m_u, m_v \in \mathbb{R} : \forall n \in \mathbb{N}_+, u_n \geqslant m_u \text{ et } v_n \geqslant m_v.$

Donc $u_n + v_n \geqslant m_u + m_v$,

Donc u + v est minorée.

(2)

u est majorée $\iff \exists M_u \in \mathbb{R} : \forall n \in \mathbb{N}_+, u_n \leqslant M_u.$

Si $\lambda \leq 0$, donc:

$$\forall n \in \mathbb{N}_+, \lambda u_n \geqslant \lambda M_u$$
 (RHS est une constante)

Donc λu est minorée.

(3)

u et v sont bornées

$$\iff \exists m_u, M_u, m_v, M_v \in \mathbb{R} : \forall n \in \mathbb{N}_+, m_u \leqslant u_n \leqslant M_u, m_v \leqslant v_n \leqslant M_v$$

$$\iff \exists b_u, b_v \in \mathbb{R}_+ : |u_n| \leqslant b_u, |v_n| \leqslant b_v \quad (\text{\`A vous! Donnez la démonstration})$$

$$\iff |u_n v_n| = |u_n| |v_n| \leqslant b_u b_v$$

Donc uv est bornée.

PS: Utilisez la définition de bornée sous forme de valeur absolue pour avoir des bornes positives et par conséquent faciliter la multiplication des bornes.

(4) u, v sont croissantes à partir d'un certain rang (APDCR). u est croissante APDCR

$$\iff (\exists N_u \in \mathbb{N}_+, \forall n \in \mathbb{N}_+, n > N_u \implies u_{n+1} \geqslant u_n)$$

v est croissante APDCR

$$\iff (\exists N_v \in \mathbb{N}_+, \forall n \in \mathbb{N}_+, n > N_v \implies v_{n+1} \geqslant v_n)$$

Donc,
$$\forall n \in \mathbb{N}_+, n > N_{uv} = \max(N_u, N_v) \implies n > N_u \text{ et } n > N_v$$

 $\implies u_{n+1} \geqslant u_n \text{ et } v_{n+1} \geqslant v_n \implies u_{n+1} + v_{n+1} \geqslant u_n + v_n$

Donc APDCR (e.g. $N_{uv} = \max(N_u, N_v)$) u + v est croissante.

Exercice 2.

(Opérations sur les suites convergentes) Soit u et v deux suites réelles convergentes de limites respectives $\ell \in \mathbb{R}$ et $\ell' \in \mathbb{R}$.

- (1) Montrer que u + v converge vers $\ell + \ell'$.
- (2) Montrer que la suite produit $uv = (u_n v_n)_{n>0}$ est convergente de limite $\ell\ell'$.
- (3) Supposons de plus $\ell' \neq 0$, alors montrer :
 - (a) v est non nulle à partir d'un certain rang,
 - (b) la suite inverse de terme général $\frac{1}{v_n}$ est bien définie à partir d'un certain rang et est convergente, de limite $\frac{1}{p}$,
 - (c) la suite de terme général $\frac{u_n}{v_n}$ est bien définie à partir d'un certain rang et est convergente, de limite $\frac{\ell}{p}$.
- (4) Soit $d \in \mathbb{N}^*$. Montrer que la suite $(u_n^d)_{n \in \mathbb{N}}$ converge vers ℓ^d .

Correction possible

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n = \ell \iff \forall r_u > 0, \exists N_u \in \mathbb{N}, \forall n \in \mathbb{N}, n > N_u \implies |v_n - \ell| < r_u$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n = \ell' \iff \forall r_v > 0, \exists N_v \in \mathbb{N}, \forall n \in \mathbb{N}, n > N_v \implies |u_n - \ell'| < r_v$$

(1)

Pour tout $r_u > 0$, il existe $N_u \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, lorsque $n > N_u$, posons $r_u = \frac{\varepsilon}{2}$, nous avons

$$|u_n - \ell| < r_u = \frac{\varepsilon}{2}$$

Pour tout $r_v > 0$, il existe $N_v \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, lorsque $n > N_v$, posons $r_v = \frac{\varepsilon}{2}$, nous avons

$$|v_n - \ell'| < r_v = \frac{\varepsilon}{2}$$

Posons $N = \max(N_u, N_v)$. Alors, pour tout n > N, nous avons à la fois :

$$|u_n - \ell| < \frac{\varepsilon}{2}$$
 et $|v_n - \ell'| < \frac{\varepsilon}{2}$

En utilisant l'inégalité triangulaire, nous pouvons obtenir :

$$|u_n + v_n - (\ell + \ell')| = |(u_n - \ell) + (v_n - \ell')| \le |u_n - \ell| + |v_n - \ell'|$$

Ainsi, pour tout n > N, nous avons :

$$|u_n + v_n - (\ell + \ell')| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

c'est-à-dire

 $\forall \varepsilon > 0, \exists N \in \mathbb{N}(i.e.N = \max(N_u, N_v)), \forall n > N, |u_n + v_n - (\ell + \ell')| < \varepsilon$, selon la définition de la limite, nous concluons que :

$$\lim_{n \to +\infty} (u_n + v_n) = \ell + \ell'$$

(2)

L'objectif c'est d'avoir $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N, |u_n v_n - \ell \ell'| < \varepsilon$. Considérons les données qu'on a :

$$\lim_{n \to +\infty} u_n = \ell \iff \forall r_u > 0, \exists N_u \in \mathbb{N}, \forall n > N_u, |u_n - \ell| < r_u$$

$$\lim_{n \to +\infty} v_n = \ell' \iff \forall r_v > 0, \exists N_v \in \mathbb{N}, \forall n > N_v, |v_n - \ell'| < r_v$$

Donc on va s'intérresser à faire apparaitre $|u_n v_n - \ell \ell'| < \varepsilon$ ou la décomposer pour faire apparaitre les données qu'on a.

Une méthode courante dans ce cas est d'essayer de linéaliser le produit $u_n v_n$ avant d'exploiter l'inégalité triangulaire.

Par exemple,

$$|u_n v_n - \ell \ell'| = |u_n v_n - u_n \ell' + u_n \ell' - \ell \ell'| \le |u_n (v_n - \ell')| + |\ell' (u_n - \ell)|$$
$$= |u_n||v_n - \ell'| + |\ell'||u_n - \ell|$$

Ici, les données apparaissent. On va voir comment utiliser les deux inégalités dans lesquelles on peut choisir ARBITRAIREMENT r_u, r_v pour satisfaire notre besoin :

$$|v_n - \ell'| < r_u$$
 et $|v_n - \ell'| < r_v$

pour mener à

$$|u_n||v_n - \ell'| + |\ell'||u_n - \ell| < \varepsilon$$

Soyons vigilant, parce qu'on se concentre seulement sur le processus d'approchement, c'est-à-dire, APDCR.

Et APDCR, on a le fait que $|u_n|$ est bornée parce qu'elle converge. Donc $|u_n|$ ne pose pas de problème parce qu'on peut trouver un N et les index

après lui pour que $|u_n|$ soit assez petit (pour réduire la valeur du produit $|u_n||v_n-\ell'|$)

Et comme $|\ell'|$ est une constante et on peut arbitrairement choisir r_v de sorte que la valeur de $|u_n - \ell|$ soit grandement inférieure à celle de $\frac{\varepsilon}{|\ell'|}$, et ensuite $|u_n||v_n - \ell'| + |\ell'||u_n - \ell|$ est garanti de ne pas dépasser ε .

Voici une solution:

On a:

$$\lim_{n \to +\infty} u_n = \ell \iff \forall r_u > 0, \exists N_u \in \mathbb{N}, \forall n > N_u, |u_n - \ell| < r_u$$

$$\lim_{n \to +\infty} v_n = \ell' \iff \forall r_v > 0, \exists N_v \in \mathbb{N}, \forall n > N_v, |v_n - \ell'| < r_v$$

$$\text{posons } r_u = \frac{\varepsilon}{100|\ell'|}, r_v = \frac{\varepsilon}{100(1+|\ell|)},$$

(C'est pour vous montrer à quel point on a le droite de choisir r_u, r_v pour prendre des valeurs suffisamment petites. Il faut donc bien connaître la puissance de " \forall " dans les définitions.)

et on a APDCR
$$N, |u_n| < |\ell| + 1$$

tkt, on peut prendre le plus grand N_{nice} i.e. $N_{nice} = \max(N_u, N_v, N)$ pour que ces trois conditions précédentes sont satisfaites à la fois.

Donc, $\forall \varepsilon > 0, \exists M \in \mathbb{N}(\text{ça peut être } N_{nice}), \forall n > M,$

$$|u_n||v_n - \ell' < (|\ell| + 1)|\frac{\varepsilon}{100(1 + |\ell|)} = \frac{\varepsilon}{100}, \quad |\ell'||u_n - \ell| < |\ell'|\frac{\varepsilon}{100|\ell'|} = \frac{\varepsilon}{100}$$
$$|u_n||v_n - \ell'| + |\ell'||u_n - \ell| < \frac{\varepsilon}{50} < \varepsilon$$

(3)
$$- \text{ (a) } \lim_{n \to +\infty} v_n = \ell' \iff \forall r_v > 0, \exists N_v \in \mathbb{N}, \forall n > N_u, |v_n - \ell'| < r_v$$
Supposons $\ell' > 0$,
$$\text{prenons } \varepsilon = \frac{\ell'}{2}, \text{ donc on a } \exists N \in \mathbb{N} \text{ tel que } |v_n - \ell'| < \varepsilon = \frac{\ell'}{2}$$

$$\implies 0 < \frac{\ell'}{2} = \ell' - \frac{\ell'}{2} < v_n < \ell' + \frac{\ell'}{2}$$

(Ça veut aussi dire que u_n est bornée APDCR)

— (b)
$$\ell' \neq 0$$
 et APDCR $v_n \neq 0$.

$$\forall \varepsilon > 0 \exists N_v \in \mathbb{N}, \forall n > N_u, |v_n - \ell'| < r_v$$

$$\implies \exists N_1 \in \mathbb{N}, \forall n > N_1, \left| \frac{\ell'}{2} \right| < |v_n| < \left| \frac{3\ell'}{2} \right| \quad \text{(bornée APDCR)}$$

$$\begin{aligned} &\text{et} \quad \exists N_2 \in \mathbb{N}, \forall n > N_2, |\ell' - v_n| < \frac{2r}{|\ell'|^2} \\ &\text{Donc}, \quad \left| \frac{1}{v_n} - \frac{1}{\ell'} \right| = \frac{|\ell' - v_n|}{|v_n \ell'|} < \frac{2r/|\ell'|^2}{|\ell'|^2/2} \\ &\text{Enfin}, \quad \forall r > 0, \exists N \in \mathbb{N}, \forall n > N, \left| \frac{1}{v_n} - \frac{1}{\ell'} \right| < r \\ &- (c) \quad Hint : \quad \left| \frac{u_n}{v_n} - \frac{\ell}{\ell'} \right| = \left| \frac{u_n \ell' - v_n \ell}{\ell \ell'} \right| = \left| \frac{u_n \ell' - \ell' \ell + \ell' \ell - v_n \ell}{\ell \ell'} \right| = \left| \frac{\ell'(u_n - \ell) + \ell(\ell' - v_n)}{\ell \ell'} \right| \text{ et on a l'inégalité triangulaire et les propriétés vues en amont.} \end{aligned}$$

(4)
$$|u_n^d - \ell^d| = |u_n - \ell| \left| \sum_{i=0}^{d-1} u_n^i (-\ell)^{d-1-i} \right|$$
 APDCR, u_n est bornée donc

 $\sum_{i=0}^{d-1} u_n^i (-\ell)^{d-1-i}$ est bornée (e.g. par C. Comme d est une constante, la

valeur de la somme finite des termes finites est finite).

On a la convergence de u_n vers ℓ . $\forall \varepsilon$, on peut prendre un N assez grand pour que à partir de ce rang N, $|u_n - \ell| < \varepsilon/C$. Donc à partir de ce rang N, $|u_n^d - \ell^d|$ est plus petit que ε .

Exercice 3.

Soit u une suite réelle qui tend vers $+\infty$. Montrer que u n'est pas convergente (donc est une suite divergente).

Correction possible

u est une suite réelle qui tend vers $+\infty$

$$\iff \forall M \in \mathbb{R}_+, \exists N \in \mathbb{N}, \forall n > N, u_n > M$$

On va montrer par contradiction en utilisant cette donnée. Supposons que $\lim_{n\to+\infty}u_n=\ell,$ i.e.

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N, |u_n - \ell| < \varepsilon$$

mais prenons $M=2\ell$ (ou bien d'autres valeurs que vous voulez), on a

$$\exists N_1 \in \mathbb{N}, \forall n > N_1, u_n > 2\ell$$

$$\implies \exists N \in \mathbb{N}, \forall n > N_1, |u_n - \ell| > \ell$$

. On voit que quand $\varepsilon < \ell$ il y a une contradiction.

Exercice 4.

(Opérations sur les suites divergentes) Soit u et v deux suites réelles.

- (1) Montrer que si u converge vers $\ell > 0$ et v tend vers $+\infty$, alors le produit uv tend vers $+\infty$.
- (2) Montrer que si u tend vers $+\infty$ et v tend vers $-\infty$, alors uv tend vers $-\infty$.
- (3) Montrer que si u converge vers ℓ et si v tend vers $+\infty$, alors la suite des quotients $\frac{u}{v} = \left(\frac{u_n}{v_n}\right)$ est bien définie à partir d'un certain rang et est une suite convergente, de limite 0.
- (4) Soit u et v deux suites réelles. Montrer que si u est minorée et si v tend vers $+\infty$, alors u+v tend vers $+\infty$. En particulier, montrer que si u est convergente et si v tend vers $+\infty$, alors u+v tend vers $+\infty$.

Correction possible

(1)

u converge vers $\ell > 0$, v tend vers $+\infty$, donc APDCR N_1 , u_n est bornée, i.e.

$$\forall n > N_1, C \leq |u_n|, \quad C \text{ est une constante}$$

De l'autre coté, $\forall M > 0$, APDCR N_2 , $v_n > M$, donc,

$$\forall M > 0$$
, APDCR $N = \max(N_1, N_2), |u_n v_n| > CM$

(ce qui signifie que APDCR $|u_nv_n|$ peut prendre une valeur arbitrairement grande, parce que M est arbitrairement grand et on peut poser M' = CM ensuite $\forall M' > 0$, APDCR $|u_nv_n| > M'$)

(2)

On peut se limiter aux cas où M>1, parce que le reste peut en être déduit $\forall M>1$, APDCR $N_u, \quad u_n>M_u>\sqrt{M}>0$ $\forall M>1$, APDCR $N_v, \quad v_n<-M<-\sqrt{|M|}<0$ Donc, $\forall M>0$ APDCR $N, \quad u_nv_n<-M$

(3) u converge vers ℓ et v tend vers $+\infty$, donc on a

$$\forall \varepsilon > 0, \exists N_u \in \mathbb{N}, \forall n > N_u, |u_n - \ell| < \varepsilon, \quad \text{et}$$
$$\forall M > 0, \exists N_v \in \mathbb{N}, \forall n > N_v, v_n > M$$

 $\forall \delta > 0, \exists m \in \mathbb{N}$ tel que $\frac{1}{m} < \delta$ (Le principe euclidien). Donc,

$$\forall \delta > 0, \exists N \in \mathbb{N}, \forall n > N, v_n > N > 0 \implies 0 < \frac{1}{v_n} < \frac{1}{N} < \frac{1}{m} < \delta$$

La convergence de la suite u nous indique qu'elle est bornée APDCR, donc

$$\forall \delta > 0, \text{APDCR}, \quad \left| \frac{u_n}{v_n} \right| < \frac{c}{m} < \delta$$

(ici c étant un majorant de la suite u APDCR)

(4)

Si u est convergente et v tend vers $+\infty$, alors u est bornée par une constante c i.e. $|u_n| < c$ et $\forall M > 0$ APDCR N, $v_n > M$. Donc,

$$\forall M > 0, \exists N \in \mathbb{N}, \forall n > N, u_n + v_n > M$$

Exercice 5.

(1) On considère les suites de termes généraux suivants. Donner leur domaine de définition ainsi que leur limite.

(a)
$$u_n = \frac{2^n}{n^3}$$

(b)
$$u_n = \frac{(\ln(n))^2}{\sqrt{n}}$$

(c) $u_n = \frac{2^{\ln(n)}}{n^{\ln(3)}}$
(d) $u_n = \frac{2^n}{n!}$

(c)
$$u_n = \frac{2^{\ln(n)}}{n^{\ln(3)}}$$

(d)
$$u_n = \frac{2^n}{n!}$$

(2) On considère les suites de termes généraux suivants. Donner leur domaine de définition et dire si elles convergent. Si c'est le cas, donner leur limite.

(a)
$$u_n = n + \cos(n)$$
,

(b)
$$u_n = \frac{(n+1)(2+(-1)^n)}{n+3}$$
,

(c)
$$u_n = \sqrt{n-2} - \frac{n}{2}$$
,

(d)
$$u_n = \frac{4n + \sin(n)}{n^3}$$
,

(e)
$$u_n = \frac{n - \ln(n)}{n + \ln(n)},$$
(f)
$$u_n = \frac{2^n}{n \ln(n)},$$

$$(f) u_n = \frac{2^n}{n \ln(n)},$$

(g)
$$u_n = \frac{3n+5}{\sqrt{n^2+1}}$$
,

(h)
$$u_n = (-1)^n + \frac{2}{n}$$
,

(i)
$$u_n = \sqrt{n+1} - \sqrt{n+2}$$
.