Question I

Suppose $A \in M_{n \times n}(\mathbb{C})$ is normal, i.e., $A = QDQ^*$ for some unitary Q. Also, we suppose there are k dominant eigenvalues of A, i.e.,

$$|\lambda_1| \ge \cdots \ge |\lambda_k| > |\lambda_{k+1}| \ge \cdots \ge |\lambda_n|$$

Consider the power iteration:

$$\mathbf{x}^{m+1} = A\mathbf{x}^m.$$

Define the angle between a non-zero vector \mathbf{x} and a non-trivial subspace W.

$$\cos \angle(\mathbf{x}, W) := \max \big\{ \cos \angle(\mathbf{x}, \mathbf{y}) : \mathbf{y} \in W \setminus \{0\} \big\},$$

$$\sin \angle(\mathbf{x}, W) := \min \big\{ \sin \angle(\mathbf{x}, \mathbf{y}) : \mathbf{y} \in W \setminus \{0\} \big\},$$

$$\tan \angle(\mathbf{x}, W) := \frac{\sin \angle(\mathbf{x}, W)}{\cos \angle(\mathbf{x}, W)}.$$

Using the given definitions, prove that:

1. Let W be a nontrivial subspace of \mathbb{C}^n and P be the orthogonal projection onto W. Then, for $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{x} \notin W$,

$$\cos \angle(\mathbf{x}, W) = \frac{\|P\mathbf{x}\|}{\|\mathbf{x}\|}, \ \sin \angle(\mathbf{x}, W) = \frac{\|\mathbf{x} - P\mathbf{x}\|}{\|\mathbf{x}\|}, \ \tan \angle(\mathbf{x}, W) = \frac{\|\mathbf{x} - P\mathbf{x}\|}{\|P\mathbf{x}\|}$$

Here, $||\cdot||$ is the usual Euclidean norm in \mathbb{C}^n .

2. Let $\{\delta_i : i = 1, \dots, n\}$ be the standard ordered basis for \mathbb{C}^n . Let $W_k := \text{span}\{Q\delta_j : j = 1, \dots, k\}$ and let $\cos \angle(\mathbf{x}^0, W_k) \neq 0$. Then,

$$\tan \angle (\mathbf{x}^{m+1}, W_k) \le \frac{|\lambda_{k+1}|}{|\lambda_k|} \tan \angle (\mathbf{x}^m, W_k).$$

Question II

Consider the linear system Ax = b. The (Generalized minimal residual method) GMRES method is a projection method which obtains a solution in the m-th Krylov subspace K_m so that the residual is orthogonal to AK_m . Let r_0 be the initial residual and let $v_0 = r_0$. The Arnoldi process (see the hint below) is applied to build an orthonormal system $v_1, v_2, \ldots, v_{m-1}$ with $v_1 = Av_0/\|Av_0\|_2$ ($\|\cdot\|_2$ - the l^2 norm). The approximate solution is obtained from the following space

$$K_m = \text{span} \{v_0, v_1, \dots, v_{m-1}\}.$$

1. Show that the approximate solution is obtained as the solution of a least-square problem, and that this problem is triangular.

- 2. Prove that the residual r_k is orthogonal to $\{v_1, v_2, \dots, v_{k-1}\}$.
- 3. Find a formula for the residual norm.
- 4. Derive the complete GMRES algorithm.

Hint: The Arnoldi process uses the stabilized Gram-Schmidt process to produce a sequence of orthonormal vectors v_1, v_2, v_3, \ldots Explicitly, the algorithm is as follows:

- (1.) Start with an arbitrary vector v_1 with norm 1.
- (2.) Repeat for k = 2, 3, ...

i.
$$v_k \leftarrow Av_{k-1}$$

ii. for j from 1 to
$$k-1$$

A.
$$h_{j,k-1} \leftarrow v_j^* v_k$$

B.
$$v_k \leftarrow v_k - h_{j,k-1}v_j$$

iii.
$$h_{k,k-1} \leftarrow ||v_k||_2$$

iv.
$$v_k \leftarrow \frac{v_k}{h_{k,k-1}}$$