Matemática Discreta l Clase 10 - Divisibilidad

FAMAF / UNC

25 de abril de 2023

Definición

Dados dos enteros x e y decimos que y divide a x, y escribimos y|x, si

$$x=yq$$
 para algún $q\in\mathbb{Z}.$

También decimos que y es un factor de x, que y es un divisor de x, que x es divisible por y, y que x es múltiplo de y.

Definición

Dados dos enteros x e y decimos que y divide a x, y escribimos y|x, si

$$x=yq$$
 para algún $q\in\mathbb{Z}.$

También decimos que y es un factor de x, que y es un divisor de x, que x es divisible por y, y que x es múltiplo de y.

Observación.

1. Si y|x, es decir si y es divisor de x, existe q tal que x=yq. Luego q es también un divisor de x.

Definición

Dados dos enteros x e y decimos que y divide a x, y escribimos y|x, si

$$x = yq$$
 para algún $q \in \mathbb{Z}$.

También decimos que y es un factor de x, que y es un divisor de x, que x es divisible por y, y que x es múltiplo de y.

Observación.

- 1. Si y|x, es decir si y es divisor de x, existe q tal que x=yq. Luego q es también un divisor de x.
- 2. Si y|x e $y \neq 0$, denotamos $\frac{x}{y}$ al cociente de x dividido y, es decir

$$x = \frac{x}{y} \cdot y$$

4 D > 4 B > 4 B > 4 B > 8 99 C

Clase 10 - Divisibilidad

Si y no divide a x escribimos $y \not| x$.

Si y no divide a x escribimos $y \not| x$.

Ejemplos.

(1) 3|12, pues $12 = 3 \cdot 4$. Es decir, 3 es divisor de 12 y luego 4 es otro divisor de 12.

Si y no divide a x escribimos $y \not| x$.

Ejemplos.

- (1) 3|12, pues $12 = 3 \cdot 4$. Es decir, 3 es divisor de 12 y luego 4 es otro divisor de 12.
- (2) 12 $\sqrt{3}$, pues no existe ningún entero q tal que $3 = q \cdot 12$.

Si y no divide a x escribimos $y \nmid x$.

Ejemplos.

- (1) 3|12, pues $12 = 3 \cdot 4$. Es decir, 3 es divisor de 12 y luego 4 es otro divisor de 12.
- (2) 12 $\sqrt{3}$, pues no existe ningún entero q tal que 3 = $q \cdot 12$.
- (3) 6|18, pues $18=6\cdot 3$. Luego también vale que $18=(-6)\cdot (-3)$ y que $-18=(-6)\cdot 3$ y $-18=6\cdot (-3)$. De esto se sigue que

$$6|18,$$
 $-6|18,$ $-6|-18,$ $6|-18,$ $3|18,$ $-3|18,$ $3|-18,$ $-3|-18.$

Veamos ahora alguna propiedades básicas de la relación "divide a".

Veamos ahora alguna propiedades básicas de la relación "divide a".

Sean a, b, c enteros, entonces

Veamos ahora alguna propiedades básicas de la relación "divide a".

Sean a, b, c enteros, entonces

1. $1|a \ a| \pm a$;

Veamos ahora alguna propiedades básicas de la relación "divide a".

Sean a, b, c enteros, entonces

1. $1|a \ a| \pm a$;

Veamos ahora alguna propiedades básicas de la relación "divide a".

Sean a, b, c enteros, entonces

1. $1|a \ a| \pm a$;

- $a = 1 \cdot a$.
- \bullet $a = a \cdot 1$
- $-a = a \cdot (-1)$.

2. a|0 y 0 sólo divide a 0;

2. *a*|0 y 0 sólo divide a 0;

2. $a \mid 0$ y 0 sólo divide a 0;

- $0 = a \cdot 0$.
- Si 0|a entonces existe q tal que $a = 0 \cdot q = 0$.
- 3. si a|b, entonces a|bc para cualquier c;

2. $a \mid 0$ y 0 sólo divide a 0;

Demostración.

- $0 = a \cdot 0$.
- Si 0|a entonces existe q tal que $a = 0 \cdot q = 0$.
- 3. si a|b, entonces a|bc para cualquier c;

2. a 0 y 0 sólo divide a 0;

Demostración.

- $0 = a \cdot 0$.
- Si 0|a entonces existe q tal que $a = 0 \cdot q = 0$.
- 3. si a|b, entonces a|bc para cualquier c;

Demostración.

• $a|b \Rightarrow b = a \cdot q \Rightarrow bc = a \cdot qc \Rightarrow a|bc$.

4. si a|b y a|c, entonces a|(b+c);

4. si a|b y a|c, entonces a|(b+c);

4. si a|b y a|c, entonces a|(b+c);

- $a|b \ y \ a|c \Rightarrow b = a \cdot q \ y \ c = a \cdot q' \Rightarrow$ $b+c = a \cdot q + a \cdot q' = a \cdot (q+q') \Rightarrow a|(b+c).$
- 5. si a|b y a|c, entonces a|(rb+sc) para cualesquiera $r, s \in \mathbb{Z}$.

4. si a|b y a|c, entonces a|(b+c);

Demostración.

- $a|b \ y \ a|c \Rightarrow b = a \cdot q \ y \ c = a \cdot q' \Rightarrow$ $b+c = a \cdot q + a \cdot q' = a \cdot (q+q') \Rightarrow a|(b+c).$
- 5. si a|b y a|c, entonces a|(rb+sc) para cualesquiera $r,s\in\mathbb{Z}$.

Demostración.

Clase 10 - Divisibilidad

4. si a|b y a|c, entonces a|(b+c);

Demostración.

- $a|b \ y \ a|c \Rightarrow b = a \cdot q \ y \ c = a \cdot q' \Rightarrow$ $b+c = a \cdot q + a \cdot q' = a \cdot (q+q') \Rightarrow a|(b+c).$
- 5. si a|b y a|c, entonces a|(rb+sc) para cualesquiera $r,s\in\mathbb{Z}$.

•
$$a|b \ y \ a|c \Rightarrow b = a \cdot q \ y \ c = a \cdot q' \Rightarrow$$

 $rb + sc = a \cdot rq + a \cdot sq' = a \cdot (rq + sq') \Rightarrow a|(rb + sc).$

6. si a|b+c y a|c, entonces a|b;

6. si a|b+c y a|c, entonces a|b;

6. si a|b+c y a|c, entonces a|b;

•
$$a|b+c$$
 y $a|c$ \Rightarrow $b+c=a\cdot q$ y $c=a\cdot q'$ \Rightarrow
 $b=(b+c)-c=a\cdot q-a\cdot q'=a\cdot (q-q')$ \Rightarrow $a|b$.

6. si a|b+c y a|c, entonces a|b;

- a|b+c y a|c \Rightarrow $b+c=a\cdot q$ y $c=a\cdot q'$ \Rightarrow $b=(b+c)-c=a\cdot q-a\cdot q'=a\cdot (q-q')$ \Rightarrow a|b.
- 7. si a|b, entonces $\pm a|\pm b$;

6. si a|b+c y a|c, entonces a|b;

Demostración.

•
$$a|b+c$$
 y $a|c$ \Rightarrow $b+c=a\cdot q$ y $c=a\cdot q'$ \Rightarrow $b=(b+c)-c=a\cdot q-a\cdot q'=a\cdot (q-q')$ \Rightarrow $a|b$.

7. si a|b, entonces $\pm a|\pm b$;

Demostración.

Clase 10 - Divisibilidad

6. si a|b+c y a|c, entonces a|b;

Demostración.

- a|b+c y a|c \Rightarrow $b+c=a\cdot q$ y $c=a\cdot q'$ \Rightarrow $b=(b+c)-c=a\cdot q-a\cdot q'=a\cdot (q-q')$ \Rightarrow a|b.
- 7. si a|b, entonces $\pm a|\pm b$;

•
$$a|b \Rightarrow b = a \cdot q \Rightarrow$$

$$-b = a \cdot (-q) \Rightarrow a|-b, \qquad b = -a \cdot (-q) \Rightarrow -a|b$$

$$-b = -a \cdot q \Rightarrow -a|-b.$$

Sean $a, b \in \mathbb{N}$. Entonces

$$ab = 1 \implies a = 1 \land b = 1.$$

Sean $a,b \in \mathbb{N}$. Entonces

$$ab = 1 \Rightarrow a = 1 \land b = 1.$$

Sean $a, b \in \mathbb{N}$. Entonces

$$ab = 1 \Rightarrow a = 1 \land b = 1.$$

Demostración.

Como $a, b \in \mathbb{N}$, entonces $a \ge 1$ y $b \ge 1$.

Si
$$a=1$$
, como $ab=1$, obtenemos $1=ab=1 \cdot b=b$.

Si a > 1, como b > 0 por compatibilidad de < con el producto tenemos que ab > b, es decir 1 > b, lo cual no es cierto $(b \in \mathbb{N})$.

Observación

A partir de la proposición no es difícil probar que si $a,b\in\mathbb{Z}$ y ab=1, tenemos que a=1 y b=1 o a=-1 y b=-1.

Sean $a, b, c \in \mathbb{N}$, entonces

(D1) a|a (reflexividad);

(D2) si a|b y b|a, entonces a = b (antisimetría);

(D3) si a|b|y|b|c, entonces a|c| (transitividad).

Sean $a, b, c \in \mathbb{N}$, entonces

- (D1) a a (reflexividad);
- (D2) si a |b|y|b|a, entonces a = b (antisimetría);
- (D3) si a|b y b|c, entonces a|c (transitividad).

Demostración.

(D1) Esto ya fue probado antes.

Sean $a, b, c \in \mathbb{N}$, entonces

- (D1) a a (reflexividad);
- (D2) si a |b|y|b|a, entonces a = b (antisimetría);
- (D3) si a |b|y|b|c, entonces a |c| (transitividad).

- (D1) Esto ya fue probado antes.
- (D2) $a|b \Rightarrow \text{ existe } q \in \mathbb{N} \text{ tal que } b = aq.$

Sean $a, b, c \in \mathbb{N}$, entonces

- (D1) a a (reflexividad);
- (D2) si a |b|y|b|a, entonces a = b (antisimetría);
- (D3) si a |b|y|b|c, entonces a |c| (transitividad).

- (D1) Esto ya fue probado antes.
- (D2) $a|b \Rightarrow \text{ existe } q \in \mathbb{N} \text{ tal que } b = aq.$ $b|a \Rightarrow \text{ existe } q' \in \mathbb{N} \text{ tal que } a = bq'.$

Proposición

Sean $a, b, c \in \mathbb{N}$, entonces

- (D1) a a (reflexividad);
- (D2) si a b y b a, entonces a = b (antisimetría);
- (D3) si a|b y b|c, entonces a|c (transitividad).

Demostración.

- (D1) Esto ya fue probado antes.
- (D2) $a|b \Rightarrow \text{ existe } q \in \mathbb{N} \text{ tal que } b = aq.$ $b|a \Rightarrow \text{ existe } q' \in \mathbb{N} \text{ tal que } a = bq'.$

Luego

$$b = aq = (bq')q = b(q'q).$$

Proposición

Sean $a, b, c \in \mathbb{N}$, entonces

- (D1) a a (reflexividad);
- (D2) si a|b y b|a, entonces a = b (antisimetría);
- (D3) si a|b y b|c, entonces a|c (transitividad).

Demostración.

- (D1) Esto ya fue probado antes.
- (D2) $a|b \Rightarrow \text{ existe } q \in \mathbb{N} \text{ tal que } b = aq.$ $b|a \Rightarrow \text{ existe } q' \in \mathbb{N} \text{ tal que } a = bq'.$

Luego

$$b = aq = (bq')q = b(q'q).$$

Por el axioma de cancelación (cancelando b) obtenemos que $1=q'q\Rightarrow q=q'=1$.

Proposición

Sean $a, b, c \in \mathbb{N}$, entonces

- (D1) a a (reflexividad);
- (D2) si a|b y b|a, entonces a = b (antisimetría);
- (D3) si a|b y b|c, entonces a|c (transitividad).

Demostración.

- (D1) Esto ya fue probado antes.
- (D2) $a|b \Rightarrow \text{ existe } q \in \mathbb{N} \text{ tal que } b = aq.$ $b|a \Rightarrow \text{ existe } q' \in \mathbb{N} \text{ tal que } a = bq'.$

Luego

$$b = aq = (bq')q = b(q'q).$$

Por el axioma de cancelación (cancelando b) obtenemos que $1 = q'q \Rightarrow q = q' = 1$. Luego a = b.

(D3) $a|b\Rightarrow$ existe $q\in\mathbb{N}$ tal que b=aq.

(D3) $a|b \Rightarrow \text{ existe } q \in \mathbb{N} \text{ tal que } b = aq.$

 $b|c\Rightarrow$ existe $q'\in\mathbb{N}$ tal que c=bq' .

(D3)
$$a|b \Rightarrow \text{ existe } q \in \mathbb{N} \text{ tal que } b = aq.$$

$$b|c\Rightarrow$$
 existe $q'\in\mathbb{N}$ tal que $c=bq'$.

Luego

$$c = bq' = aqq' = a(qq').$$

(D3)
$$a|b \Rightarrow \text{ existe } q \in \mathbb{N} \text{ tal que } b = aq.$$

$$b|c\Rightarrow$$
 existe $q'\in\mathbb{N}$ tal que $c=bq'$.

Luego

$$c = bq' = aqq' = a(qq').$$

Luego *a|c*.

(D3) $a|b \Rightarrow \text{ existe } q \in \mathbb{N} \text{ tal que } b = aq.$

$$b|c\Rightarrow$$
 existe $q'\in\mathbb{N}$ tal que $c=bq'$.

Luego

$$c = bq' = aqq' = a(qq').$$

Luego a c.

Observación.

Las propiedades (D1), (D2) y (D3) nos dicen que "divide a" es una *relación* de orden.

Habíamos visto que "<" también era una relación de orden.

Ejercicio

¿Es cierto que si a|bc, entonces a|b ó a|c?

Ejercicio

¿Es cierto que si a|bc, entonces a|b ó a|c?

Solución. No necesariamente (es decir la respuesta es NO).

- Es cierto, por ejemplo que $3|6 \cdot 2$ y que 3|6.
- Pero 6 4 · 3 y 6 /4, 6 /3.

Ejercicio

Determinar todos los divisores de 12.

Ejercicio

¿Es cierto que si a|bc, entonces a|b ó a|c?

Solución. No necesariamente (es decir la respuesta es NO).

- Es cierto, por ejemplo que $3|6 \cdot 2$ y que 3|6.
- Pero 6|4 · 3 y 6 /4, 6 /3.

Ejercicio

Determinar todos los divisores de 12.

Solución.

• ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 , (12 divisores).

Ejercicio.

Mostrar que 4^n-1 es divisible por 3 para todo $n\in\mathbb{N}.$

Ejercicio.

Mostrar que 4^n-1 es divisible por 3 para todo $n\in\mathbb{N}$.

Solución.

Este ejercicio se puede hacer de dos formas.

1° demostración. Por inducción sobre n.

Caso base n = 1. $4^n - 1 = 4^1 - 1 = 4 - 1 = 3$ que obviamente es divisible por 3.

Paso inductivo. Debemos probar que $3|4^k-1$ para $k\geq 1$ (HI) entonces, se deduce que $3|4^{k+1}-1$.

Opción a) Ahora bien,

$$4^{k+1} - 1 = 4 \cdot 4^k - 1 = 3 \cdot 4^k + (4^k - 1).$$

Como $3|3\cdot 4^k$ y por (HI) $3|4^k-1$, tenemos

$$3|3 \cdot 4^k + 4^k - 1 = 4^{k+1} - 1.$$

Opción b) Ahora bien, como por (HI) $3|4^k - 1$, existe q tal que $4^k - 1 = 3q$. Entonces,

$$4^{k+1} - 1 = 4 \cdot (4^k - 1) + 3 = 4 \cdot 3q + 3 = 3(4q + 1).$$

Luego

$$3|3(4a+1)=4^{k+1}-1.$$

Clase 10 - Divisibilidad

2° demostración. Observemos que 4=3+1, luego $4^n-1=(3+1)^n-1$.

$$4^{n} - 1 = (3+1)^{n} - 1 = \sum_{i=0}^{n} \binom{n}{i} 3^{i} 1^{n-i} - 1 \qquad \text{(binomio de Newton)}$$

$$= \sum_{i=0}^{n} \binom{n}{i} 3^{i} - 1$$

$$= 1 + \sum_{i=1}^{n} \binom{n}{i} 3^{i} - 1$$

$$= 1 + 3(\sum_{i=1}^{n} \binom{n}{i} 3^{i-1}) - 1 \quad (i > 0 \text{ en la sumatoria})$$

$$= 3(\sum_{i=1}^{n} \binom{n}{i} 3^{i-1})$$

Luego $4^n - 1 = 3 \cdot q$.

Por lo tanto, $3|4^n-1$.

4 D > 4 B > 4 B > B + 4 Q (*

Clase 10 - Divisibilidad

25/04/2023

Ejercicio

¿Cuál es el menor natural que es divisible por 6 y por 15?

Ejercicio

¿Cuál es el menor natural que es divisible por 6 y por 15?

Solución. Hagamos una lista de múltiplos de 6 y 15.

- Múltiplos de 6: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, ...
- Múltiplos de 15: 15, 30, 45, 60 , 75, ...
- Luego, el menor natural que es divisible por 6 y por 15 es 30.