Predicting Recurrence of Cancer for Post-Treatment Patients

Content

- Problem Statement
- Description of Dataset
- Data Wrangling
- Exploratory Data Analysis (EDA)
- Feature Engineering
- Modeling
- Result Analysis & Limitations
- Conclusion, Future Work, & Improving the model

Problem Statement

- To make a predictive model for thyroid cancer patients to see how likely after treatment their cancer will reoccur.
 - New patient eligibility test for the treatment
- Accuracy
 - At least 95%
- Stakeholders
 - o company developing the treatment, doctors, patients
- Solution Space
 - Decision Tree based model using Pandas.
- Constraints
 - limited amount of data
- Time Frame
 - This will be completed within the next 3 months.

Description of Dataset

This data was provided by the UCI Machine Learning Repository: https://archive.ics.uci.edu/dataset/915/differentiated+thyroid+cancer+recurrence

And is available on Kaggle:

https://www.kaggle.com/datasets/jainaru/thyroid-disease-data

This data under the license CC BY 4.0 ATTRIBUTION 4.0 INTERNATIONAL Deed: https://creativecommons.org/licenses/by/4.0/

Data Wrangling

0	Age		
1	Gender		
2	Smoking		
3	Hx Smoking		
4	Hx Radiothreapy		
5	Thyroid Function		
6	Physical Examination		
7	Adenopathy		
8	Pathology		
9	Focality		
10	Risk		
11	Т		
12	N		
13	M		
14	Stage		
15	Response		
16	Recurred		

age	0
gender	1
smoking	2
hx_smoking	3
hx_radiotherapy	4
thyroid_function	5
physical_examination	6
adenopathy	7
pathology	8
focality	9
risk	10
t	11
n	12
m	13
stage	14
response	15
posuppopeo	16

```
0
    age
    age_group
    gender
    smoking
    hx_smoking
    hx_radiotherapy
    thyroid function
    thyroid_function_3cat
    thyroid_function_2cat
    physical examination
    adenopathy
    pathology
    focality
   risk
14
   t_4cat
16
17
18
    stage
    stage_4cat
19
20
    stage_2cat
    response
   response_3cat
23
   recurrence
```


Bar Graph of 'gender' Column

Feature Engineering

Encoding

- Dummy encode binary
- One hot encode categories
- Label encode categories

Modeling

macro avg weighted avg

0.96

Native with imbalance data:

Decision Tree	2:			
	precision	recall	f1-score	support
False	0.95	0.97	0.96	58
True	0.89	0.84	0.86	19
			0.01	
accuracy			0.94	77
macro avg	0.92	0.90	0.91	77
weighted avg	0.93	0.94	0.93	77
Random Forest				
	precision	recall	f1-score	support
False	0.98	1.00	0.99	58
True	1.00	0.95	0.97	19
accuracy			0.99	77
macro avg	0.99	0.97	0.98	77
weighted avg	0.99	0.99	0.99	77
Gradient Boos	ting:			
	precision	recall	f1-score	support
False	0.97	0.98	0.97	58
True	0.94	0.89	0.92	19
Truc	0.54	0.03	0.52	- 15
accuracy			0.96	77
macro avg	0.96	0.94	0.95	77

0.96

0.96

77

Balanced Data Modifications:

Decision Tree	with SMOTE:			
	precision	recall	f1-score	support
False	0.96	0.93	0.95	58
True	0.81	0.89	0.85	19
accuracy			0.92	77
macro avg	0.89	0.91	0.90	77
weighted avg	0.93	0.92	0.92	77

Random Forest	with class_ precision		lanced: f1-score	support
False	0.98	1.00	0.99	58
True	1.00	0.95	0.97	19
accuracy			0.99	77
macro avg	0.99	0.97	0.98	77
weighted avg	0.99	0.99	0.99	77

False 0.97 1.00 0.98 55 True 1.00 0.89 0.94 15 accuracy 0.97 77 macro avg 0.98 0.95 0.96 77					
False 0.97 1.00 0.98 55 True 1.00 0.89 0.94 15 accuracy 0.97 77 macro avg 0.98 0.95 0.96 77	Gradient Boo	sting with SM	ЮТЕ:		
True 1.00 0.89 0.94 19 accuracy 0.97 77 macro avg 0.98 0.95 0.96 77		precision	recall	f1-score	support
accuracy 0.97 7 macro avg 0.98 0.95 0.96 7	False	0.97	1.00	0.98	58
macro avg 0.98 0.95 0.96 7	True	1.00	0.89	0.94	19
	accuracy			0.97	77
weighted avg 0.97 0.97 7	macro avg	0.98	0.95	0.96	77
	weighted avg	0.97	0.97	0.97	77

For those that need a quick read, focus on:

F1 Scores and Accuracy

The higher the better

Conclusion, Future Work, & Improving the model

Conclusion:

• Chose the Gradient Booster with SMOTE model

Future Works:

- Partner with hospitals to get more consented user data.
- Explore more if overfitting.
- Explore the Random Forest model more.
- Expand the model to include cross reactions.

Possible issues:

• CC 4.0 Attribution license

Thank You

Questions?