Fundamental Physical Constants — Non-SI units

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
		10		0
electron volt: (e/C) J	eV	$1.602176565(35)\times10^{-19}$	J	2.2×10^{-8}
(unified) atomic mass unit: $\frac{1}{12}m(^{12}C)$	u	$1.660538921(73)\times10^{-27}$	kg	4.4×10^{-8}
	Natu	ral units (n.u.)		
n.u. of velocity	c, c_0	299 792 458	${ m m~s^{-1}}$	exact
n.u. of action: $h/2\pi$	\hbar	$1.054571726(47) \times 10^{-34}$	J s	4.4×10^{-8}
		$6.58211928(15)\times10^{-16}$	eV s	2.2×10^{-8}
	$\hbar c$	197.3269718(44)	MeV fm	2.2×10^{-8}
n.u. of mass	$m_{ m e}$	$9.10938291(40) \times 10^{-31}$	kg	4.4×10^{-8}
n.u. of energy	$m_{ m e}c^2$	$8.18710506(36) \times 10^{-14}$	J	4.4×10^{-8}
		0.510998928(11)	MeV	2.2×10^{-8}
n.u. of momentum	$m_{ m e}c$	$2.73092429(12) \times 10^{-22}$	${ m kg~m~s^{-1}}$	4.4×10^{-8}
		0.510998928(11)	MeV/c	2.2×10^{-8}
n.u. of length: $\hbar/m_{\rm e}c$	$\lambda_{ m C}$	$386.15926800(25)\times 10^{-15}$	m	6.5×10^{-10}
n.u. of time	$\hbar/m_{ m e}c^2$	$1.28808866833(83)\times 10^{-21}$	S	6.5×10^{-10}
	Aton	nic units (a.u.)		
a.u. of charge	e	$1.602176565(35)\times10^{-19}$	С	2.2×10^{-8}
a.u. of mass	$m_{ m e}$	$9.10938291(40) \times 10^{-31}$	kg	4.4×10^{-8}
a.u. of action: $h/2\pi$	\hbar	$1.054571726(47) \times 10^{-34}$	Js	4.4×10^{-8}
a.u. of length: Bohr radius (bohr)		()		
$lpha/4\pi R_{\infty}$	a_0	$0.52917721092(17)\times10^{-10}$	m	3.2×10^{-10}
a.u. of energy: Hartree energy (hartree)	0	()		
$e^2/4\pi\epsilon_0 a_0 = 2R_{\infty}hc = \alpha^2 m_e c^2$	$E_{ m h}$	$4.35974434(19) \times 10^{-18}$	J	4.4×10^{-8}
a.u. of time	$\hbar/E_{ m h}$	$2.41888432\dot{6}50\dot{2}(12)\times10^{-17}$	S	5.0×10^{-12}
a.u. of force	$E_{ m h}/a_0$	$8.23872278(36) \times 10^{-8}$	N	4.4×10^{-8}
a.u. of velocity: αc	$a_0 E_{\rm h}/\hbar$	$2.18769126379(71) \times 10^{6}$	${ m m~s^{-1}}$	3.2×10^{-10}
a.u. of momentum	\hbar/a_0	$1.992851740(88) \times 10^{-24}$	${ m kg}~{ m m}~{ m s}^{-1}$	4.4×10^{-8}
a.u. of current	$eE_{ m h}/\hbar$	$6.62361795(15)\times10^{-3}$	A	2.2×10^{-8}
a.u. of charge density	e/a_0^3	$1.081202338(24)\times10^{12}$	${ m C}~{ m m}^{-3}$	2.2×10^{-8}
a.u. of electric potential	$E_{ m h}/e$	27.21138505(60)	V	2.2×10^{-8}
a.u. of electric field	$E_{\rm h}/ea_0$	$5.14220652(11)\times10^{11}$	${ m V}~{ m m}^{-1}$	2.2×10^{-8}
a.u. of electric field gradient	$E_{\rm h}/ea_0^2$	$9.71736200(21) \times 10^{21}$	${ m V~m^{-2}}$	2.2×10^{-8}
a.u. of electric dipole moment	ea_0	$8.47835326(19) \times 10^{-30}$	C m	2.2×10^{-8}
a.u. of electric quadrupole moment	ea_0^2	$4.486551331(99) \times 10^{-40}$	${\sf C}\ {\sf m}^2$	2.2×10^{-8}
a.u. of electric polarizability	$e^2 a_0^2 / E_{\rm h}$	$1.6487772754(16) \times 10^{-41}$	$\mathrm{C}^2~\mathrm{m}^2~\mathrm{J}^{-1}$	9.7×10^{-10}
a.u. of 1 st hyperpolarizability	$e^3 a_0^{3} / E_{\rm h}^2$	$3.206361449(71)\times 10^{-53}$	$\mathrm{C}^3~\mathrm{m}^3~\mathrm{J}^{-2}$	2.2×10^{-8}
a.u. of 2 nd hyperpolarizability	$e^4 a_0^{4} / E_{\rm h}^{3}$	$6.23538054(28)\times10^{-65}$	$\mathrm{C}^4~\mathrm{m}^4~\mathrm{J}^{-3}$	4.4×10^{-8}
a.u. of magnetic flux density	\hbar/ea_0^2	$2.350517464(52)\times10^5$	T	2.2×10^{-8}
a.u. of magnetic dipole moment: $2\mu_{\rm B}$	$\hbar e/m_{ m e}$	$1.854801936(41)\times10^{-23}$	$ m J~T^{-1}$	2.2×10^{-8}
a.u. of magnetizability	$e^2 a_0^2 / m_{\rm e}$	$7.891036607(13)\times10^{-29}$	$ m J~T^{-2}$	1.6×10^{-9}
a.u. of permittivity: $10^7/c^2$	$e^2/a_0E_{\rm h}$	$1.112650056 \times 10^{-10}$	${ m F}{ m m}^{-1}$	exact