Numerical Integration Test Results

$$\Gamma(x) = \int_{0}^{1} \ln\left(\frac{1}{t}\right)^{x-1} dt$$

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \cdot \left(\int_{0}^{x} \exp(-t^{2}) dt\right)$$

n	Integral	Calcpad	Expected	Error
1	$I_1 = \int_0^1 \frac{1}{\sqrt{x}} dx$	2	2	2.22×10 ⁻¹⁶
2	$I_2 = \int_0^2 \sqrt{4 - x^2} dx$	3.141592653589794	3.141592653589793	2.83×10 ⁻¹⁶
3	$I_3 = \int_0^1 \ln\left(x\right) dx$	-1	-1	0
4	$I_4 = \int_0^1 x \cdot \ln(x) dx$	-0.25	-0.25	2.22×10 ⁻¹⁶
5	$I_5 = \int_0^1 \frac{\ln\left(x\right)}{\sqrt{x}} dx$	-4.0000000000000001	-4	2.22×10 ⁻¹⁶
6	$I_6 = \int_0^1 \frac{4}{1+x^2} dx$	3.141592653589793	3.141592653589793	0
7	$I_7 = \int_0^{\frac{\pi}{2}} \sin{(x)^4} \cdot \cos{(x)^2} dx$	9.81747704246811×10 ⁻²	9.8174770424681×10 ⁻²	1.13×10 ⁻¹⁵
8	$I_8 = \int_0^\pi \cos(x) dx$	6.73277921735145×10 ⁻¹⁷	0	6.73×10 ⁻¹⁷

9	$I_9 = \int_0^1 \cos\left(\ln\left(x\right)\right) dx$	0.5	0.5	8.88×10 ⁻¹⁶
10	$I_{10} = \int_{0}^{2} \sqrt{4 \cdot x - x^{2}} dx$	3.141592653589794	3.141592653589793	2.83×10 ⁻¹⁶
11	$I_{11} = \int_{0}^{10} 5 \cdot x^2 dx$	1666.66666666667	1666.666666666666	1.36×10 ⁻¹⁶
	$I_{12} = \int_{0}^{1} x^{0.125} dx$	0.888888888889	0.888888888888	1.25×10 ⁻¹⁶
13	$I_{13} = \int_{1}^{10} \frac{1}{x} dx$	2.302585092994047	2.302585092994046	5.79×10 ⁻¹⁶
14	$I_{14} = \int_{0.5}^{1} \frac{\ln(x)}{1 - x} dx$	-0.582240526465013	-0.582240526465013	-5.72×10 ⁻¹⁶
15	$I_{15} = \int_{0}^{\frac{\pi}{3}} \exp\left(\frac{-1}{\cos(x)}\right) dx$	0.307694394903451	0.307694394903451	-5.41×10 ⁻¹⁶
16	$I_{16} = \int_{0}^{128} (x \cdot (x+88) \cdot (x-88) \cdot (x+47) \cdot (x-47) \cdot (x+117) \cdot (x-117))^{2} dx$	6.55134477611335×10 ²⁷	6.55134477611335×10 ²⁷	-5.03×10 ⁻¹⁶
17	$I_{17} = \int_{0}^{1} \frac{1}{2 \cdot \ln\left(\frac{1}{x}\right) + 100} dx$	9.80755496505744×10 ⁻³	9.80755496505743×10 ⁻³	7.08×10 ⁻¹⁶
18	$I_{18} = \int_{0}^{1} \left(\frac{2 \cdot x^{2}}{(x+1) \cdot (x-1)} - \frac{x}{\ln(x)} \right) dx$	3.64899739785764×10 ⁻²	3.64899739785767×10 ⁻²	-7.23×10 ⁻¹⁵
19	$I_{19} = \int_0^1 x \cdot \ln\left(1 + x\right) dx$	0.25	0.25	8.88×10 ⁻¹⁶

20	$I_{20} = \int_{0}^{1} x^2 \cdot \operatorname{atan}(x) dx$	0.210657251225807	0.210657251225807	1.32×10 ⁻¹⁶
21	$I_{21} = \int_{0}^{\frac{\pi}{2}} \exp(x) \cdot \cos(x) dx$	1.905238690482678	1.905238690482676	9.32×10 ⁻¹⁶
22	$I_{22} = \int_{0}^{1} \frac{\operatorname{atan}(\sqrt{x^{2} + 2})}{(1 + x^{2}) \cdot \sqrt{x^{2} + 2}} dx$	0.514041895890071	0.514041895890071	0
23	$I_{23} = \int_{0}^{1} \ln\left(x\right) \cdot \sqrt{x} dx$	-0.444444444444444444444444444444444444	-0.444444444444444444444444444444444444	0
24	$I_{24} = \int_{0}^{1} \sqrt{1 - x^2} dx$	0.785398163397448	0.785398163397448	2.83×10 ⁻¹⁶
	$I_{25} = \int_{0}^{1} \ln{(x)^2} dx$	2	2	0
26	$I_{26} = \int_{0}^{\frac{\pi}{2}} \ln\left(\cos\left(x\right)\right) dx$	-1.088793045151796	-1.088793045151801	-5.1×10 ⁻¹⁵
27	$I_{27} = \int_{0}^{\frac{\pi}{3}} \sqrt{\tan\left(x\right)} dx$	0.787779048098543	0.787779048098542	9.87×10 ⁻¹⁶
28	$I_{28} = \int_{0}^{1} \ln\left(x^{2}\right) dx$	-2	-2	0
29	$I_{29} = \int_{0}^{\pi} \frac{x \cdot \sin(x)}{1 + \cos(x)^{2}} dx$	2.467401100272338	2.46740110027234	-3.6×10 ⁻¹⁶
30	$I_{30} = \int_{0}^{1} \frac{1}{(x-2) \cdot (1-x)^{0.25} \cdot (1+x)^{0.75}} dx$	-0.69118368876706	-0.691183688767296	-3.41×10 ⁻¹³

31	$I_{31} = \int_{0}^{1} \frac{x^{2} \cdot \ln(x)}{(x^{2} - 1) \cdot (x^{4} + 1)} dx$	0.180671262590655	0.180671262590655	9.22×10 ⁻¹⁶
32	$I_{32} = \int_{0}^{1} \frac{1}{1 - 2 \cdot x + 2 \cdot x^{2}} dx$	1.570796326794898	1.570796326794896	8.48×10 ⁻¹⁶
33	$I_{33} = \int_{0}^{1} \frac{(1-x)^4 \cdot x^4}{1+x^2} dx$	1.26448926734962×10 ⁻³	1.26448926734968×10 ⁻³	-4.6×10 ⁻¹⁴
34	$I_{34} = \int_{0}^{1} x^{4} \cdot (1-x)^{4} dx$	1.58730158730159×10 ⁻³	1.58730158730159×10 ⁻³	8.2×10 ⁻¹⁶
35	$I_{35} = \int_{0}^{1} \frac{\operatorname{atan}(\sqrt{x^{2}+1})}{\left(x^{2}+1\right)^{\frac{3}{2}}} dx$	0.590489270886385	0.590489270886385	-1.88×10 ⁻¹⁶
36	$I_{36} = \int_{-1}^{1} \frac{1}{1+x^2+x^4+x^6} dx$	1.40862340353768	1.408623403537679	9.46×10 ⁻¹⁶
37	$I_{37} = \int_{0}^{\frac{\pi}{4}} \left(\frac{\pi}{4} - x \cdot \tan(x) \right) \cdot \tan(x) dx$	0.141798825704517	0.141798825704517	3.91×10 ⁻¹⁶
38	$I_{38} = \int_{0}^{\frac{\pi}{2}} \frac{x^2}{\sin(x)^2} dx$	2.177586090303604	2.177586090303602	6.12×10 ⁻¹⁶
39	$I_{39} = \int_{0}^{\frac{\pi}{2}} \ln(\cos(x))^{2} dx$	2.046622024472451	2.04662202447274	-1.41×10 ⁻¹³
40	$I_{40} = \int_{0}^{1} \frac{\ln(x)^{2}}{x^{2} + x + 1} dx$	1.768047623500161	1.76804762350016	8.79×10 ⁻¹⁶
41	$I_{41} = \int_{1}^{10} \exp(-x^2) \cdot \ln(x)^2 dx$	1.4465125622944×10 ⁻²	1.4465125622944×10 ⁻²	1.8×10 ⁻¹⁵
			· · · · · · · · · · · · · · · · · · ·	

42	$I_{42} = \int_{0}^{1} (1+x)^{2} \cdot \sin\left(\frac{2 \cdot \pi}{1+x}\right) dx$	-1.257734711223892	-1.25773471122389	1.77×10 ⁻¹⁵
43	$I_{43} = \int_{0}^{1} x \cdot (1 - x)^{0.1} dx$	0.432900432900433	0.432900432900432	2.05×10 ⁻¹⁵
	$I_{44} = \int_{0}^{1} \ln(\sin(x)^{3}) \cdot \cos(x) dx$	-2.960136087487444	-2.96013608748744	1.5×10 ⁻¹⁵
45	$I_{45} = \int_{0}^{1} \frac{1}{1 + \exp(x)} dx$	0.379885493041722	0.379885493041722	0
46	$I_{46} = \int_{0}^{1} \exp\left(x\right) dx$	1.718281828459046	1.718281828459045	2.58×10 ⁻¹⁶
47	$I_{47} = \int_{0}^{1} \frac{1}{1+x} dx$	0.693147180559946	0.693147180559945	1.12×10 ⁻¹⁵
48	$I_{48} = \int_{-1}^{1} (0.92 \cdot \cosh(x) - \cos(x)) dx$	0.479428226688802	0.479428226688802	1.62×10 ⁻¹⁵
49	$I_{49} = \int_{0}^{1} \frac{1}{1+x^4} dx$	0.866972987339911	0.866972987339911	2.56×10 ⁻¹⁶
50	$I_{50} = \int_{-1}^{1} \frac{1}{x^4 + x^2 + 0.9} dx$	1.582232963729674	1.58223296372967	2.67×10 ⁻¹⁵
51	$I_{51} = \int_{-1}^{1} \frac{1}{x^2 + 1.01} dx$	1.564396444069051	1.56439644406905	8.52×10 ⁻¹⁶
52	$I_{52} = \int_{0}^{1} 3 \cdot x^{2} dx$	1	1	2.22×10 ⁻¹⁶
53	$I_{53} = \int_{0}^{1} \sqrt{50} \cdot \left(\exp\left(-50 \cdot \pi \cdot x^{2}\right) \right) dx$	0.5	0.5	-5.55×10 ⁻¹⁶

54	$I_{54} = \int_{0}^{10} \frac{50}{\left(1 + 2500 \cdot x^{2}\right) \cdot \pi} dx$	0.499363381076458	0.499363381076457	1.78×10 ⁻¹⁵
55	$I_{55} = \int_0^1 x \cdot \sqrt{x} dx$	0.4	0.4	1.39×10 ⁻¹⁶
56	$I_{56} = \int_{0}^{1} x^{0.5} dx$	0.666666666666667	0.66666666666666	1.67×10 ⁻¹⁶
57	$I_{57} = \int_{0}^{\pi} \cos(\cos(x) + 3\sin(x) + 2\cos(2x) + 3\sin(2x) + 3\cos(3x)) dx$	0.838676342694429	0.838676342694429	-5.3×10 ⁻¹⁶
58	$I_{58} = \int_{0}^{10} \exp\left(-\frac{x}{5}\right) \cdot \left(2 + \sin\left(2 \cdot x\right)\right) dx$	9.108239607323004	9.108239607323	3.9×10 ⁻¹⁶
59	$I_{59} = \int_{0}^{1} x^{-\frac{1}{3}} \cdot (1 - x)^{5} dx$	0.41768525592055	0.41768525592055	7.97×10 ⁻¹⁶
60	$I_{60} = \int_{0}^{1} \sin\left(\pi \cdot x\right) dx$	0.636619772367582	0.636619772367581	1.74×10 ⁻¹⁶
61	$I_{61} = \int_{0}^{1} x^{0.25} dx$	0.8	0.8	1.39×10 ⁻¹⁶
62	$I_{62} = \int_{0}^{2\pi} x \cdot \sin(20 \cdot x) \cdot \cos(50 \cdot x) dx$	5.98398600683869×10 ⁻²	5.9839860068377×10 ⁻²	1.66×10 ⁻¹³
63	$I_{63} = \int_0^1 \ln\left(\frac{1}{x}\right) \cdot x^4 dx$	4×10 ⁻²	4×10 ⁻²	8.67×10 ⁻¹⁶
64	$I_{64} = \int_{0}^{\pi} \cos\left(8 \cdot \sin\left(x\right) - x\right) dx$	0.737131823541404	0.737131823541405	-6.02×10 ⁻¹⁶
65	$I_{65} = \int_{0}^{2\pi} x \cdot \cos(x) \cdot \sin(30 \cdot x) dx$	-0.209672479661179	-0.209672479661165	6.6×10 ⁻¹⁴

66	$I_{66} = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - 0.81 \cdot \sin(x)^2}} dx$	2.280549138422772	2.28054913842277	9.74×10 ⁻¹⁶
67	$I_{66} = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - 0.81 \cdot \sin(x)^2}} dx$	0.355065933151774	0.355065933151774	0
	$I_{68} = \int_{0}^{\pi} \sin{(2 \cdot x)^2} dx$	1.570796326794898	1.570796326794896	8.48×10 ⁻¹⁶
69	$I_{69} = \int_{0}^{4} \frac{x^{\frac{5}{6}} \cdot (4 - x)^{\frac{1}{6}}}{(5 - x) \cdot (6 - x) \cdot (7 - x)} dx$	0.284205410786655	0.284205410786649	2.2×10 ⁻¹⁴
70	$I_{70} = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan(x)^3} dx$	0.785398163397448	0.785398163397448	2.83×10 ⁻¹⁶
71	$I_{71} = \int_{0}^{1} \frac{\operatorname{atan}(\sqrt{x^{2}+1})}{\sqrt{x^{2}+1} \cdot (x^{2}+1)} dx$	0.590489270886385	0.590489270886386	-3.76×10 ⁻¹⁶
72	$I_{72} = \int_{0}^{\pi} \ln(1 - 4 \cdot \cos(x) + 4) dx$	4.355172180607207	4.355172180607204	6.12×10 ⁻¹⁶
73	$I_{73} = \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{1}{1 + \cos(x)^x} dx$	1.570796326794897	1.570796326794896	2.83×10 ⁻¹⁶
74	$I_{74} = \int_0^1 \frac{1}{\sqrt{x}} \cdot \ln\left(\frac{1}{x}\right) dx$	4.000000000000001	4	2.22×10 ⁻¹⁶
75	$I_{75} = \int_0^1 \frac{1}{x^{\frac{1}{4}}} \cdot \ln\left(\frac{1}{x}\right) dx$	1.777777777777778	1.77777777777778	2.5×10 ⁻¹⁶

76	$I_{76} = \int_0^1 \frac{\sin\left(x\right)}{x} dx$	0.946083070367183	0.946083070367183	1.17×10 ⁻¹⁶
77	$I_{77} = \int_{0}^{\pi} \sin(x)^{2} \cdot \cos(x)^{4} dx$	0.196349540849362	0.196349540849362	1.13×10 ⁻¹⁵
78	$I_{78} = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \tan\left(x\right)\right) dx$	0.118214202861016	0.118214202861016	1.17×10 ⁻¹⁶
79	$I_{79} = \int_{0}^{1} \sin\left(\sin\left(x\right)\right) dx$	0.430606103120691	0.430606103120691	-7.73×10 ⁻¹⁶
80	$I_{80} = \int_{0}^{2} x \cdot \cos\left(x^{2} + 1\right) dx$	-0.900197629735518	-0.900197629735517	9.87×10 ⁻¹⁶
81	$I_{81} = \int_{0}^{\frac{\pi}{2}} x^{2} \cdot (x^{2} - 2) \cdot \sin(x) dx$	-0.479158810107196	-0.479158810107194	4.05×10 ⁻¹⁵
82	$I_{82} = \int_{0}^{1} \frac{\ln(x)}{1+x} dx$	-0.822467033424113	-0.822467033424113	1.35×10 ⁻¹⁶
83	$I_{83} = \int_{0}^{\frac{\pi}{2}} \sqrt{1 - 0.5 \cdot \sin(x)^2} dx$	1.350643881047676	1.35064388104768	-2.63×10 ⁻¹⁵
84	$I_{84} = \int_{0}^{1} \ln{(x)^3} dx$	-6.00000000000000007	-6	1.18×10 ⁻¹⁵
85	$I_{85} = \int_{-1}^{0.5} \frac{\ln\left(\frac{1+x}{1-x}\right)}{4 \cdot \ln(2)} dx$	-0.405639062229567	-0.405639062229566	4.11×10 ⁻¹⁶
86	$I_{86} = \int_{-1}^{1} \left(\frac{23}{25} \cdot \cos h(x) - \cos(x) \right) dx$	0.479428226688802	0.479428226688802	1.62×10 ⁻¹⁵

87	$I_{87} = \int_{0}^{1} \frac{2}{2 + \sin(10 \cdot \pi \cdot x)} dx$	1.154700538379245	1.154700538379252	-5.96×10 ⁻¹⁵
88	$I_{88} = \int_0^1 \frac{\sin\left(100 \cdot \pi \cdot x\right)}{\pi \cdot x} dx$	0.498986808693044	0.498986808693045	-3×10 ⁻¹⁵
89	$I_{89} = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cos(x)} dx$	1.0000000000000001	1	8.88×10 ⁻¹⁶
90	$I_{90} = \int_{-1}^{1} \frac{1}{1.01 + x^2} dx$	1.564396444069051	1.56439644406904	7.1×10 ⁻¹⁵
91	$I_{91} = \int_{0}^{1} 4 \cdot \pi^{2} \cdot x \cdot \sin(20 \cdot \pi \cdot x) \cdot \cos(2 \cdot \pi \cdot x) dx$	-0.63466518254339	-0.634665182543392	-3.67×10 ⁻¹⁵
92	$I_{92} = \int_{0}^{1} \frac{1}{1 + (230 \cdot x - 30)^{2}} dx$	1.34924856494686×10 ⁻²	1.34924856494678×10 ⁻²	5.8×10 ⁻¹⁴
93	$I_{93} = \int_{0}^{1} 50 \cdot \left(\frac{\sin(50 \cdot \pi \cdot x)}{50 \cdot \pi \cdot x} \right)^{2} dx$	0.498986808693046	0.498986808693045	2.89×10 ⁻¹⁵
94	$I_{94} = \int_{0}^{\pi} \cos(\cos(x) + 3 \cdot \sin(x) + 2 \cdot \cos(2x) + 3 \cdot \cos(3x)) dx$	0.291018782860052	0.291018782860052	1.14×10 ⁻¹⁵
95	$I_{95} = \int_{0}^{1} x^{63} dx$	1.5625×10 ⁻²	1.5625×10 ⁻²	0
96	$I_{96} = \int_{0}^{1} \frac{1}{x + 0.5} dx$	1.098612288668111	1.09861228866811	1.01×10 ⁻¹⁵
97	$I_{97} = \int_{0}^{1} \sqrt{12.25 - (5 \cdot x - 3)^2} dx$	3.121768371164655	3.121768371164653	5.69×10 ⁻¹⁶

98	$I_{98} = \int_{0}^{1} \frac{10}{1 + (10 \cdot x - 4)^{2}} dx$	2.731465313048306	2.731465313048302	1.63×10 ⁻¹⁵
99	$I_{99} = \int_{0}^{1} \frac{x^{-\frac{3}{4}} \cdot (1-x)^{-0.25}}{3-2 \cdot x} dx$	1.949054259166133	1.949054259166747	-3.15×10 ⁻¹³
100	$I_{100} = \int_{0}^{\pi} \frac{1}{5 + 4 \cdot \cos(x)} dx$	1.047197551196598	1.047197551196598	8.48×10 ⁻¹⁶
101	$I_{101} = \int_{0}^{1} \ln(x) \cdot \sqrt{\frac{x}{1-x}} dx$	-0.606789763508706	-0.606789763508705	9.15×10 ⁻¹⁶
102	$I_{102} = \int_{0}^{1} \frac{1}{1 + 25 \cdot x^{2}} dx$	0.274680153389003	0.274680153389003	6.06×10 ⁻¹⁶
103	$I_{103} = \int_{0}^{\frac{\pi}{2}} \cos(x)^{3} dx$	0.666666666666667	0.666666666666667	8.33×10 ⁻¹⁶
104	$I_{104} = \int_{0}^{\frac{\pi}{4}} \frac{1}{1 + \sin(x)} dx$	0.585786437626905	0.585786437626905	3.79×10 ⁻¹⁶
105	$I_{105} = \int_{0}^{1} \frac{1}{1 - \frac{x^4}{2}} dx$	1.143667254069416	1.14366725406941	5.63×10 ⁻¹⁵
106	$I_{106} = \int_{0}^{1} \frac{1}{1 + 100 \cdot x^{2}} dx$	0.147112767430373	0.147112767430373	2.45×10 ⁻¹⁵
107	$I_{107} = \int_{1}^{2} \frac{\ln\left(x\right)}{x} dx$	0.240226506959101	0.240226506959101	-4.62×10 ⁻¹⁶
108	$I_{108} = \int_{1}^{2} \frac{1}{\exp(x) - 1} dx$	0.313261687518223	0.313261687518223	0

109	$I_{109} = \int_{-4}^{4} \frac{1}{1+x^2} dx$	2.651635327336068	2.651635327336065	1.17×10 ⁻¹⁵
110	$I_{110} = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sin(x)^{2}} dx$	1.110720734539592	1.110720734539592	6×10 ⁻¹⁶
	$I_{111} = \int_{0}^{1} \ln\left(\sin\left(\pi \cdot x\right)\right) dx$	-0.693147180559943	-0.693147180559945	-3.2×10 ⁻¹⁵
112	$I_{112} = \int_{0}^{1} \frac{1}{(x+0.01)^{5}} dx$	24999999.759754907	24999999.759754915	-4.47×10 ⁻¹⁶
113	$I_{113} = \int_{0}^{1} \frac{1}{\sqrt{x + 0.0001}} dx$	1.980099997500124	1.980099997500125	-5.61×10 ⁻¹⁶
114	$I_{114} = \int_{0}^{1} \frac{1}{x + 0.0001} dx$	9.210440366976513	9.210440366976515	-3.86×10 ⁻¹⁶
115	$I_{115} = \int_{0}^{1} \frac{1}{(230 \cdot x - 30)^{2} + 1} dx$	1.34924856494686×10 ⁻²	1.34924856494678×10 ⁻²	5.8×10 ⁻¹⁴
116	$I_{116} = \int_{0}^{1} \frac{1}{x + 0.01} dx$	4.615120516841257	4.61512051684126	-5.77×10 ⁻¹⁶
117	$I_{117} = \int_{0}^{2\pi} x \cdot \sin(30 x) \cdot \cos(x) dx$	-0.209672479661179	-0.209672479661165	6.6×10 ⁻¹⁴
118	$I_{118} = \int_{0}^{2\pi} \exp(-x) \cdot \sin(10 x) dx$	9.88250056701279×10 ⁻²	9.88250056701279×10 ⁻²	2.81×10 ⁻¹⁶
119	$I_{119} = \int_{0}^{1} \frac{x \cdot (1 - x)^{2}}{(1 + x)^{3}} dx$	3.42640972002735×10 ⁻²	3.42640972002739×10 ⁻²	-1.2×10 ⁻¹⁴

120	$I_{120} = \int_{0}^{1} \frac{x^{12} \cdot (1-x)^{12}}{16 \cdot (1+x^{2})} dx$	7.3842442263966×10 ⁻¹⁰	7.38424432711327×10 ⁻¹⁰	-1.36×10 ⁻⁸
121	$I_{121} = \int_{0}^{1} \frac{x^{12} \cdot (1-x)^{12}}{16} dx$	9.24502876313349×10 ⁻¹⁰	9.24502876313349×10 ⁻¹⁰	6.71×10 ⁻¹⁶
122	$I_{122} = \int_{0}^{1} \frac{\operatorname{atan}(\sqrt{x^{2}+2})}{\sqrt{x^{2}+2} \cdot (x^{2}+1)} dx$	0.514041895890071	0.514041895890071	0
123	$I_{123} = \int_{0}^{1} \frac{1}{1 + x^2 + x^4} dx$	0.728102913225582	0.728102913225582	3.05×10 ⁻¹⁶
124	$I_{124} = \int_{0}^{1} (x + 0.1)^{5} dx$	0.29526	0.29526	9.4×10 ⁻¹⁶
125	$I_{125} = \int_{0}^{1} \frac{1}{x^2 + 0.0001} dx$	156.07966601082302	156.079666010823	1.82×10 ⁻¹⁶
126	$I_{126} = \int_{0}^{1} \sqrt{x \cdot (1 - x)} dx$	0.392699081698724	0.392699081698724	5.65×10 ⁻¹⁶
127	$I_{127} = \int_{0}^{1} \frac{1}{9 + x^{6}} dx$	0.109445561283758	0.109445561283758	3.8×10 ⁻¹⁵
128	$I_{128} = \int_{0}^{1} (x + 0.01)^{5} dx$	0.1769200251	0.1769200251	7.84×10 ⁻¹⁶
129	$I_{129} = \int_{0}^{1} \frac{1}{1 - 0.99 \cdot x^{4}} dx$	2.067156143784306	2.06715614378431	-1.93×10 ⁻¹⁵
130	$I_{130} = \int_{0}^{1} x \cdot \left(\exp\left(-3 \cdot x^{2}\right) \right) dx$	0.15836882193869	0.158368821938689	3.15×10 ⁻¹⁵

131	$I_{131} = \int_{0}^{1} x^{2} \cdot \ln\left(\frac{\exp\left(1\right)}{x}\right) dx$	0.444444444444444	0.444444444444444	0
132	$I_{132} = \int_{0}^{\frac{1}{\sqrt{2}}} \frac{4 \cdot \sqrt{2} - 8 \cdot x^3 - 4 \cdot \sqrt{2} \cdot x^4 - 8 \cdot x^5}{1 - x^8} dx$	3.141592653589796	3.141592653589793	8.48×10 ⁻¹⁶
133	$I_{133} = \int_{-1}^{1} \frac{2 \cdot (1 - x^2)}{\tan(0.5)^2 + x^2} dx$	6.180232912385955	6.180232912385958	-5.75×10 ⁻¹⁶
134	$I_{134} = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - 0.5 \cdot \sin(x)^2}} dx$	1.854074677301373	1.85407467730137	1.56×10 ⁻¹⁵
135	$I_{135} = \int_{-1}^{1} \frac{2 \cdot (1 - x^2)}{\cos(4 \cdot \operatorname{atanh}(x)) + \cosh(2)} dx$	0.7119438229706	0.711943822970598	2.18×10 ⁻¹⁵
136	$I_{136} = \int_{0}^{\pi} \sin\left(x\right) dx$	2	2	2.22×10 ⁻¹⁶
137	$I_{137} = \int_{0}^{1} \sin\left(x\right) \cdot \cos\left(x\right) dx$	0.354036709136786	0.354036709136786	1.57×10 ⁻¹⁶
138	$I_{138} = \int_{1}^{9} \sqrt{2 \cdot x + 7} dx$	32.66666666666667	32.66666666666664	2.18×10 ⁻¹⁶
139	$I_{139} = \int_{0}^{5} x^{3} \cdot \left(\exp\left(-x\right)\right) dx$	4.409844508215834	4.40984450821582	3.22×10 ⁻¹⁵
140	$I_{140} = \int_{0}^{10} \sin(10 \cdot x) \cdot (\exp(-x)) dx$	9.9006252443586×10 ⁻²	9.9006252443586×10 ⁻²	0
141	$I_{141} = \int_{0}^{1} \frac{1}{1 + x^{64}} dx$	0.989366989363264	0.989366989363264	-2.24×10 ⁻¹⁶

142	$I_{142} = \int_{0}^{1} \left(\frac{\sqrt{x}}{x - 1} - \frac{1}{\ln(x)} \right) dx$	3.64899739785771×10 ⁻²	3.64899739785773×10 ⁻²	-6.66×10 ⁻¹⁵
143	$I_{143} = \int_{0}^{1} \exp\left(x^{2} \cdot (1-x)^{2}\right) dx$	1.034141051750778	1.03414105175077	8.16×10 ⁻¹⁵
	$I_{144} = \int_{0}^{2\pi} \ln(x) \cdot \sin(10 x) dx$	-0.471793074421961	-0.471793074421961	-1.06×10 ⁻¹⁵
145	$I_{145} = \int_{0}^{\pi} \frac{\cos(8 \cdot \sin(x) - x)}{\pi} dx$	0.234636346853914	0.234636346853914	1.66×10 ⁻¹⁵
146	$I_{146} = \int_{0}^{2\pi} x \cdot \sin(10 \cdot x) \cdot \cos(x) dx$	-0.634665182543388	-0.634665182543392	-6.82×10 ⁻¹⁵
147	$I_{147} = \int_{-1}^{1} \left(\frac{23 \cdot \cosh(x)}{25} - \cos(x) \right) dx$	0.479428226688802	0.479428226688801	2.32×10 ⁻¹⁵
148	$I_{148} = \int_{0}^{1} \frac{x^{3} \cdot \sin(10 \cdot \pi \cdot x)}{\sqrt{1 - x^{2}}} dx$	-0.15091663956089	-0.150916639560889	6.62×10 ⁻¹⁵
149	$I_{149} = \int_{0}^{1} \cos(x) \cdot \ln(x) dx$	-0.946083070367183	-0.946083070367183	0
150	$I_{150} = \int_{0}^{2\pi} \ln(1+x) \cdot \sin(10 \cdot x) dx$	-0.197626807718716	-0.197626807718717	-5.48×10 ⁻¹⁵
151	$I_{151} = \int_{0}^{1} x^{x} dx$	0.783430510712134	0.783430510712134	5.67×10 ⁻¹⁶
152	$I_{152} = \int_{0}^{1} x^{-x} dx$	1.291285997062664	1.29128599706266	2.92×10 ⁻¹⁵
153	$I_{153} = \int_{0}^{\pi} (4 + \cos(x)) \cdot \ln(3 + \cos(x)) dx$	13.980002011627697	13.98000201162768	1.02×10 ⁻¹⁵

154	$I_{154} = \int_{-2}^{4} \left(x^3 - 3 \cdot x^2 \right) dx$	-12	-12	0
155	$I_{154} = \int_{-2}^{4} \left(x^3 - 3 \cdot x^2 \right) dx$	3.141592653589794	3.141592653589793	2.83×10 ⁻¹⁶
156	$I_{156} = \int_{0}^{1} x^{3} \cdot \sin\left(5 \cdot \pi \cdot x\right) dx$	6.21139035839646×10 ⁻²	6.21139035839646×10 ⁻²	1.01×10 ⁻¹⁵
157	$I_{157} = \int_{0.05}^{\frac{1}{3}} \frac{1}{x} \cdot \sin\left(\frac{1}{x}\right) dx$	-0.300410826956028	-0.300410826956028	9.24×10 ⁻¹⁶
158	$I_{158} = \int_{1}^{e} \frac{\ln(x)}{(1 + \ln(x))^{2}} dx$	0.359140914229523	0.359140914229523	1.08×10 ⁻¹⁵
159	$I_{159} = \int_{0}^{1} \frac{\operatorname{atan}(x)}{x \cdot (x^{2} + 1)} dx$	0.73018105837656	0.73018105837656	1.52×10 ⁻¹⁶
160	$I_{160} = \int_{0}^{2\pi} \frac{\cos(3 \cdot x)^{2}}{5 - 4 \cdot \cos(2 \cdot x)} dx$	1.178097245096166	1.178097245096172	-5.84×10 ⁻¹⁵
161	$I_{161} = \int_{0}^{\frac{\pi}{4}} x \cdot \tan(x) dx$	0.185784535800659	0.185784535800659	2.09×10 ⁻¹⁵
162	$I_{162} = \int_{0}^{1} \frac{x^4 \cdot (1-x)^4}{1+x^2} dx$	1.26448926734962×10 ⁻³	1.26448926734968×10 ⁻³	-4.6×10 ⁻¹⁴
163	$I_{163} = \int_{-100}^{-10} \frac{(x^2 - x)^2}{(x^3 - 3 \cdot x + 1)^2} dx$	0.102670322596977	0.102670322596977	2.57×10 ⁻¹⁵
164	$I_{164} = \int_{0}^{\pi} \cos\left(\sin\left(x\right) - x\right) dx$	1.38245968738417	1.38245968738416	6.91×10 ⁻¹⁵

	0.5			
165	$I_{165} = \int_{-1}^{0.5} \frac{1}{4 \cdot \ln(2)} \cdot \ln\left(\frac{1+x}{1-x}\right) dx$	-0.405639062229567	-0.405639062229566	4.11×10 ⁻¹⁶
166	$I_{166} = \int_{0}^{1} \frac{(1+x)^{2} \cdot \exp(-x)}{(1+x^{2})^{2}} dx$	0.816060279414279	0.816060279414279	6.8×10 ⁻¹⁶
167	$I_{167} = \int_{0}^{1} \frac{\ln(1-x)}{x} dx$	-1.644934066848224	-1.644934066848226	-1.21×10 ⁻¹⁵
168	$I_{168} = \int_{0}^{0.5} \frac{x}{1 - x} dx$	0.193147180559945	0.193147180559945	8.62×10 ⁻¹⁶
169	$I_{169} = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan(x)^{\sqrt{2}}} dx$	0.785398163397448	0.785398163397448	2.83×10 ⁻¹⁶
170	$I_{170} = \int_{-1}^{1} \sqrt{1 - x^4} dx$	1.748038369528081	1.74803836952808	7.62×10 ⁻¹⁶
171	$I_{171} = \int_{0}^{1} \left(\frac{1}{(x - 0.3)^{2} + 0.01} + \frac{1}{(x - 0.9)^{2} + 0.04} - 6 \right) dx$	29.858325395498728	29.8583253954987	9.52×10 ⁻¹⁶
172	$I_{172} = \int_{0}^{0.5} \exp(2 \cdot x) dx$	0.859140914229523	0.859140914229523	-3.88×10 ⁻¹⁶
173	$I_{173} = \int_{0}^{1} x^{0.1} dx$	0.909090909090909	0.909090909090909	1.22×10 ⁻¹⁶
174	$I_{174} = \int_{0}^{2} x^{4} \cdot \ln\left(x + \sqrt{x^{2} + 1}\right) dx$	8.153364119811172	8.15336411981117	2.18×10 ⁻¹⁶
175	$I_{175} = \int_{-2}^{2} x^3 \cdot \exp(x) dx$	19.920852960852603	19.9208529608526	1.78×10 ⁻¹⁶

176	$I_{176} = \int_{1}^{3} \frac{100}{x^2} \cdot \sin\left(\frac{10}{x}\right) dx$	-1.426024756346264	-1.42602475634627	-4.36×10 ⁻¹⁵
177	$I_{177} = \int_{0}^{5} x^{15} \cdot (\exp(x-1)) dx$	401146603636.40594	401146603636.406	-1.52×10 ⁻¹⁶
178	$I_{178} = \int_{-1}^{1} \frac{1}{x - 2} dx$	-1.098612288668111	-1.09861228866811	1.01×10 ⁻¹⁵
179	$I_{179} = \int_{0}^{1} \frac{\sin\left(\exp\left(x\right)\right)}{\sqrt{x}} dx$	1.77247907969602	1.77247907969602	1.25×10 ⁻¹⁶
180	$I_{180} = \int_{0}^{4} \frac{x^2 + 2 \cdot x + 4}{x^4 - 7 \cdot x^2 + 2 \cdot x + 17} dx$	2.501822870763166	2.501822870763167	-3.55×10 ⁻¹⁶
181	$I_{181} = \int_{0}^{\frac{\pi}{3}} \tan(x)^{\frac{1}{\pi}} dx$	0.853348093947785	0.853348093947785	0
182	$I_{182} = \int_{-4}^{4} -\ln\left(\cos\left(\frac{\pi}{2} \cdot \tan h\left(\frac{\pi}{2} \cdot \sin h\left(x\right)\right)\right)\right) \cdot \frac{\pi}{2} \cdot \frac{\cos h\left(x\right)}{\cosh\left(\frac{\pi}{2} \cdot \sinh\left(x\right)\right)^{2}} dx$	1.386294361119891	1.38629436111989	9.61×10 ⁻¹⁶
183	$I_{183} = \int_{0}^{1} \frac{1}{16 \cdot \left(x - \frac{\pi}{4}\right)^{2} + \frac{1}{16}} dx$	2.778784419627962	2.77878441962796	9.59×10 ⁻¹⁶
184	$I_{184} = \int_{0}^{\pi} \cos\left(64 \cdot \sin\left(x\right)\right) dx$	0.290880102173724	0.290880102173725	-2.86×10 ⁻¹⁵
185	$I_{185} = \int_{0}^{1} \exp(20 \cdot (x - 1)) \cdot \sin(256 x) dx$	-1.48594479678942×10 ⁻⁴	-1.48594479678924×10 ⁻⁴	1.18×10 ⁻¹³
186	$I_{186} = \int_{0}^{1} \frac{1}{4 \cdot \ln(2)} \cdot \ln\left(\frac{1+x}{1-x}\right) dx$	0.499999999999999	0.5	-1.78×10 ⁻¹⁵

187	$I_{187} = \int_{-1}^{1} \frac{2}{\pi} \cdot \sqrt{1 - x^2} dx$	1	1	4.44×10 ⁻¹⁶
188	$I_{188} = \int_{-1}^{1} \frac{2}{\pi \cdot (1 + x^2)} dx$	1.0000000000000001	1	8.88×10 ⁻¹⁶
189	$I_{189} = \int_{-10}^{10} \frac{x^2}{1 + 4 \cdot x + 3 \cdot x^2 - 4 \cdot x^3 - 2 \cdot x^4 + 2 \cdot x^5 + x^6} dx$	3.140901252819316	3.14090125281914	5.6×10 ⁻¹⁴
190	$I_{190} = \int_{-10}^{20} \left(\frac{2}{1+x^2} + \frac{1}{1+(x-10)^2} \right) dx$	8.975896816130117	8.97589681613007	5.15×10 ⁻¹⁵
191	$I_{191} = \int_{0}^{1} \tan\left(\frac{\pi \cdot x}{2}\right) \cdot \sin\left(4 \cdot \pi \cdot x\right) dx$	-1	-1	4.44×10 ⁻¹⁶
192	$I_{192} = \int_{0}^{\pi} \cos\left(\sin\left(x\right)\right) dx$	2.403939430634415	2.40393943063441	2.03×10 ⁻¹⁵
193	$I_{193} = \int_{0}^{2 \cdot \pi} \frac{x \cdot \pi \cdot \sin(30 \cdot x)}{\sqrt{4 \cdot \pi^{2} - x^{2}}} dx$	-1.271629809446768	-1.27162980944678	-9.43×10 ⁻¹⁵
194	$I_{194} = \int_{0}^{1} \frac{x^{2} \cdot \ln(x) \cdot \ln(x+1)}{x+1} dx$	-3.02622016388889×10 ⁻²	-3.02622016388888×10 ⁻²	2.06×10 ⁻¹⁵
195	$I_{195} = \int_{0}^{10} \left(\frac{\sin(x)}{x} \right)^{2} dx$	1.518645804134111	1.51864580413411	7.31×10 ⁻¹⁶
196	$I_{196} = \int_{0}^{10} 3 \cdot x^{4} \cdot \ln(x) dx$	126155.10557964283	126155.105579643	-1.27×10 ⁻¹⁵
197	$I_{197} = \int_{0}^{\pi} (\pi - x)^{2} \cdot \ln\left(2 \cdot \sin\left(\frac{x}{2}\right)^{2}\right) dx$	-22.2694636315228	-22.2694636315228	0

198	$I_{198} = \int_{0}^{\frac{\pi}{4}} \frac{x^2}{\sin(x)^2} dx$	0.843511841685035	0.843511841685034	6.58×10 ⁻¹⁶
199	$I_{199} = \int_{0}^{1} \frac{16 \cdot x - 16}{x^4 - 2 \cdot x^3 + 4 \cdot x - 4} dx$	3.141592653589796	3.141592653589793	8.48×10 ⁻¹⁶
200	$I_{200} = \int_{0}^{1} \frac{x^4 \cdot (1 - x^4)}{1 + x^2} dx$	5.71428571428572×10 ⁻²	5.71428571428571×10 ⁻²	1.58×10 ⁻¹⁵
201	$I_{201} = \int_{0}^{1} \left(\exp(-x) - \left(\exp(-10 \cdot x) \right) \right) dx$	0.532125098821534	0.532125098821534	8.35×10 ⁻¹⁶
202	$I_{202} = \int_{-1}^{1} \exp\left(\frac{x}{1+x^2}\right) dx$	2.145070539417114	2.14507053941711	2.07×10 ⁻¹⁵
203	$I_{203} = \int_{0}^{2 \cdot \pi} \exp\left(\sin\left(x\right)\right) dx$	7.954926521012853	7.95492652101284	1.56×10 ⁻¹⁵
204	$I_{204} = \int_{0}^{1} \frac{2 \cdot \left(\exp\left(-9 \cdot x^{2}\right) + \left(\exp\left(-1024 \cdot (x - 0.25)^{2}\right)\right)\right)}{\sqrt{\pi}} dx$	0.395825969834334	0.395825969834334	1.12×10 ⁻¹⁵
205	$I_{205} = \int_{0}^{10} \frac{50}{\pi \cdot (2500 \cdot x^2 + 1)} dx$	0.499363381076458	0.499363381076457	1.11×10 ⁻¹⁵
206	$I_{206} = \int_{0}^{1} \frac{1}{\sqrt{ x }} dx$	2	2	2.22×10 ⁻¹⁶
207	$I_{207} = \int_{0}^{1} \frac{2 \cdot \left(\exp\left(-9 \cdot x^{2}\right) + \left(\exp\left(-1024 \cdot (x - 0.25)^{2}\right)\right)\right)}{\sqrt{\pi}} dx$	0.395825969834334	0.395825969834333	3.65×10 ⁻¹⁵
208	$I_{208} = \int_{0}^{1} \frac{1}{\sqrt{1 - x^2 \cdot \sin(x)^2}} dx$	1.122801998041171	1.12280199804117	7.91×10 ⁻¹⁶

209	$I_{209} = \int_{0}^{1} \frac{\ln(1+x)}{x} dx$	0.822467033424112	0.822467033424113	-1.89×10 ⁻¹⁵
210	$I_{210} = \int_{0}^{2} x^{4} \cdot \ln\left(x + \sqrt{x^{2} + 1}\right) dx$	8.153364119811172	8.15336411981117	2.18×10 ⁻¹⁶
211	$I_{211} = \int_{0}^{\frac{\pi}{2}} \cos(x) \cdot (x^{2} + x + 1) dx$	2.038197427067237	2.038197427067236	4.36×10 ⁻¹⁶
212	$I_{212} = \int_{0}^{2} \left(6 \cdot x - x^{4} - 1 \right) dx$	3.6000000000000003	3.6	8.64×10 ⁻¹⁶
213	$I_{213} = \int_{-2}^{2} (\exp(x) + x - 2) dx$	-0.746279184305963	-0.746279184305962	1.34×10 ⁻¹⁵
214	$I_{214} = \int_{-3}^{3} (\exp(x) - 4 \cdot x - 4 + 4 \cdot \ln(4)) dx$	29.306814521697206	29.306814521697206	1.21×10 ⁻¹⁶
215	$I_{215} = \int_{1}^{2} (\exp(x) - 5 \cdot x + 3) dx$	0.170774270471605	0.170774270471605	8.13×10 ⁻¹⁶
216	$I_{216} = \int_{-5}^{5} (\exp(x) - 20 \cdot x + 90) dx$	1048.4064211555783	1048.40642115558	-1.52×10 ⁻¹⁵
217	$I_{217} = \int_{-2}^{2} \left(x^3 - x - 1 \right) dx$	-4.0000000000000001	-4	2.22×10 ⁻¹⁶
	$I_{218} = \int_{-3}^{3} \left(x^3 - 3 \cdot x^2 + 4 \right) dx$	-30.000000000000032	-30	1.07×10 ⁻¹⁵
219	$I_{219} = \int_{-2}^{2} \left(x^9 - x^8 + x^7 - x^6 + x^5 - x^4 - x^3 + 2 \cdot x^2 - x + 0.5 \right) dx$	-150.4825396825398	-150.482539682541	-7.93×10 ⁻¹⁵

220	$I_{220} = \int_{-5}^{5} \left(2 \cdot x^4 - 9 \cdot \exp(x) - 22.5 \right) dx$	939.342209599803	939.342209599802	1.09×10 ⁻¹⁵
221	$I_{221} = \int_{1}^{10} \left(\sqrt{x} - \ln(x) - 0.7 \right) dx$	8.93334711820717×10 ⁻²	8.93334711820677×10 ⁻²	4.5×10 ⁻¹⁴
222	$I_{222} = \int_{-10}^{10} (7 \cdot \sin(x) - \exp(-x) \cdot \cos(x) - 0.7) dx$	15218.321355930431	15218.3213559304	2.03×10 ⁻¹⁵
223	$I_{223} = \int_{-5}^{5} (\exp(x) - 20) dx$	-51.59357884442251	-51.5935788444225	1.38×10 ⁻¹⁶
224	$I_{224} = \int_{1}^{e} \frac{1}{x \cdot \left(1 + \ln\left(x\right)^{2}\right)} dx$	0.785398163397449	0.785398163397448	1.13×10 ⁻¹⁵
225	$I_{225} = \int_{0}^{4} \sqrt{1 + \sqrt{x}} dx$	6.075895917553741	6.07589591755374	2.92×10 ⁻¹⁶
226	$I_{226} = \int_{0}^{1} \frac{1}{\sqrt{\sin(x)}} dx$	2.03480531920757	2.03480531920757	0
227	$I_{227} = \int_{0}^{\pi} \cos\left(100 \cdot \sin\left(x\right)\right) dx$	6.27874004914996×10 ⁻²	6.27874004914927×10 ⁻²	1.1×10 ⁻¹³
228	$I_{228} = \int_{-1}^{1} \frac{1}{x^6 + 0.9} dx$	1.992252407950402	1.9922524079504	7.8×10 ⁻¹⁶
229	$I_{229} = \int_{0}^{1} \sin{(50 \cdot \pi \cdot x)^2} dx$	0.499999999999999	0.5	-2.78×10 ⁻¹⁵
230	$I_{230} = \int_{0}^{1} \frac{x}{\exp(x) + 1} dx$	0.170557349502438	0.170557349502438	1.3×10 ⁻¹⁵
231	$I_{231} = \int_{0}^{2 \cdot \pi} \exp\left(\cos\left(x\right)\right) dx$	7.954926521012849	7.95492652101284	1.12×10 ⁻¹⁵

232	$I_{232} = \int_{0}^{1} \frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}} dx$	0.841116916640328	0.841116916640328	-2.64×10 ⁻¹⁶
233	$I_{233} = \int_{0}^{\pi} \exp(-x) \cdot \sin(50 \cdot x) dx$	1.91280704065611×10 ⁻²	1.91280704065619×10 ⁻²	-4.4×10 ⁻¹⁴
234	$I_{234} = \int_{2}^{7} (\cos(x) + 5 \cdot \cos(1.6x) - 2 \cdot \cos(2x) + 5 \cdot \cos(4.5x) + 7 \cdot \cos(9x)) dx$	-4.527569625160662	-4.52756962516067	-1.77×10 ⁻¹⁵
235	$I_{235} = \int_{0}^{\pi} \exp(x) \cdot \cos(x) dx$	-12.070346316389642	-12.070346316389633	7.36×10 ⁻¹⁶
236	$I_{236} = \int_{0}^{1} \sqrt{-\ln(x)} dx$	0.886226925452758	0.886226925452758	2.51×10 ⁻¹⁶
237	$I_{237} = \int_{-1}^{1} \exp(-20 \cdot x) dx$	24258259.770489533	24258259.7704895	1.38×10 ⁻¹⁵
238	$I_{238} = \int_{0}^{1} \left(\frac{2 \cdot x^{2}}{(x-1) \cdot (x+1)} - \frac{x}{\ln(x)} \right) dx$	3.64899739785764×10 ⁻²	3.64899739785767×10 ⁻²	-7.23×10 ⁻¹⁵
239	$I_{239} = \int_0^1 x^2 \cdot \ln\left(\frac{1}{x}\right) dx$	0.1111111111111111	0.1111111111111111	1.25×10 ⁻¹⁶
240	$I_{240} = \int_{-1}^{1} \left(\frac{23}{50} \cdot (\exp(x) + \exp(-x)) - \cos(x) \right) dx$	0.479428226688802	0.479428226688801	2.55×10 ⁻¹⁵
241	$I_{241} = \int_{0}^{\pi} \cos\left(32 \cdot \sin\left(x\right)\right) dx$	0.433788002634733	0.433788002634731	5.12×10 ⁻¹⁵
242	$I_{242} = \int_{0}^{1} \left(x - \frac{1}{3} \right)^{2} dx$	0.111111111111111	0.1111111111111111	1.12×10 ⁻¹⁵

243	$I_{243} = \int_{0}^{1} \left(x - \frac{\pi}{4} \right)^{2} dx$	0.16478544500397	0.16478544500397	1.01×10 ⁻¹⁵
244	$I_{244} = \int_{0}^{1} \exp(20 \cdot (x - 1)) \cdot \sin(2^{5} \cdot x) dx$	-1.10018355656023×10 ⁻²	-1.10018355656022×10 ⁻²	2.52×10 ⁻¹⁵
245	$I_{245} = \int_{0}^{2\pi} \frac{1 - \sin\left(\frac{\pi}{12}\right)^2}{1 - \sin\left(\frac{\pi}{12}\right) \cdot \cos\left(x\right)} dx$	6.069090959564781	6.06909095956477	1.76×10 ⁻¹⁵
246	$I_{246} = \int_{0}^{1} \sqrt{x} \cdot \ln(x) dx$	-0.444444444444444444444444444444444444	-0.444444444444444444444444444444444444	0
247	$I_{247} = \int_{0}^{1} x^{0.2} dx$	0.833333333333333	0.8333333333333333	1.33×10 ⁻¹⁶
248	$I_{248} = \int_{0}^{1} \sqrt{x} \cdot (1-x)^{0.3} dx$	0.47442115499606	0.474421154996059	1.29×10 ⁻¹⁵
249	$I_{249} = \int_{0}^{1} x^{\frac{5}{2}} dx$	0.285714285714286	0.285714285714286	3.89×10 ⁻¹⁶
250	$I_{250} = \int_{0}^{\frac{\pi}{2}} (x^2 + x + 1) \cdot \cos(x) dx$	2.038197427067237	2.038197427067236	4.36×10 ⁻¹⁶
251	$I_{251} = \int_{0}^{1} \frac{1}{1 - 0.998 \cdot x^{2}} dx$	3.803756514650992	3.803756514651015	-5.95×10 ⁻¹⁵
252	$I_{252} = \int_{0}^{\frac{\pi}{2}} \ln\left(2 \cdot \sin\left(\frac{x}{2}\right)\right) dx$	-0.915965594177219	-0.915965594177219	-1.21×10 ⁻¹⁶

	1 2000 (11)			
253	$I_{253} = \int_{0}^{1} \frac{\exp(x)}{\exp(x) - 0.99} dx$	5.152297938244438	5.152297938244441	-6.9×10 ⁻¹⁶
254	$I_{254} = \int_{0}^{1} \frac{3 + (x - 1) \cdot \exp(x)}{(3 - \exp(x))^{2}} dx$	3.549646778303848	3.549646778303843	1.38×10 ⁻¹⁵
255	$I_{255} = \int_{0}^{1} \frac{\exp(x)}{(3 - \exp(x))^{2}} dx$	3.049646778303847	3.049646778303843	1.31×10 ⁻¹⁵
256	$I_{256} = \int_{1}^{1.5} \left(1 + \tan(x)^2 \right) dx$	12.544012222516827	12.544012222516816	8.5×10 ⁻¹⁶
257	$I_{257} = \int_{0}^{1} \left(1 - x^{\frac{1}{4}}\right)^{4} dx$	1.42857142857143×10 ⁻²	1.42857142857142×10 ⁻²	6.8×10 ⁻¹⁵
258	$I_{258} = \int_{0}^{1} \frac{5}{1 - (\exp(-5))} \cdot (\exp(-5 \cdot x)) dx$	1.0000000000000001	1	8.88×10 ⁻¹⁶
259	$I_{259} = \int_{0}^{1} 100 \cdot (\exp(-100 \cdot x)) dx$	1	1	-4.44×10 ⁻¹⁶
260	$I_{260} = \int_{0}^{1} \frac{1}{1 - 0.98 \cdot x^{2}} dx$	2.6709653148867	2.670965314886704	-1.5×10 ⁻¹⁵
261	$I_{261} = \int_{0}^{2} x \cdot (x - 2) \cdot \ln\left(\frac{x}{2}\right) dx$	1.1111111111111111	1.1111111111111111	0
262	$I_{262} = \int_{0}^{2} (x - 15)^{3} \cdot \ln\left(\frac{x}{2}\right) dx$	6114	6114	0
263	$I_{263} = \int_{0}^{1} \frac{x^{\frac{1}{2}} - x^{\frac{-1}{2}}}{1+x} dx$	-1.141592653589794	-1.141592653589793	3.89×10 ⁻¹⁶

264	$I_{264} = \int_{0}^{1} \frac{x^2 + x}{1 + x^5} dx$	0.660653199838826	0.660653199838825	1.18×10 ⁻¹⁵
265	$I_{265} = \int_{0}^{1} (1 - \sqrt{x})^{2} dx$	0.166666666666666	0.166666666666666	5×10 ⁻¹⁶
266	$I_{266} = \int_{0}^{1} \frac{\left(x^{\frac{1}{2}} - x^{-\frac{1}{2}}\right) \cdot x}{1 - x^{2}} dx$	-0.429203673205103	-0.429203673205103	5.17×10 ⁻¹⁶
267	$I_{267} = \int_{0}^{1} \frac{x^3 + x^{\frac{7}{2}} - 2 \cdot x^7}{1 - x} dx$	1.386294361119892	1.38629436111989	1.12×10 ⁻¹⁵
268	$I_{268} = \int_{0}^{\pi} \frac{\sin(x)}{\sqrt{1 - 4 \cdot \cos(x) + 4}} dx$	1.00000000000000001	1	1.11×10 ⁻¹⁵
269	$I_{269} = \int_{0}^{\frac{\pi}{2}} \frac{\tan(x)}{\cos(x)^{3} + \frac{1}{\cos(x)^{3}}} dx$	0.26179938779915	0.261799387799149	8.48×10 ⁻¹⁶
270	$I_{270} = \int_{0}^{\frac{\pi}{2}} \sin\left(4 \cdot \sin\left(x\right)\right) \cdot \sin\left(2 \cdot x\right) dx$	0.232221498518315	0.232221498518315	1.08×10 ⁻¹⁵
271	$I_{271} = \int_{0}^{1} \frac{1}{1 - x} \cdot \ln(x) dx$	-1.644934066848227	-1.644934066848226	1.35×10 ⁻¹⁶
272	$I_{272} = \int_{0}^{1} \frac{\ln\left(\frac{1-x}{x}\right)}{1+x^{2}} dx$	0.272198261287951	0.27219826128795	3.67×10 ⁻¹⁵
273	$I_{273} = \int_{0}^{3} x \cdot \left(\exp\left(-16 \cdot x^{2}\right) \right) dx$	3.125×10 ⁻²	3.125×10 ⁻²	-4.44×10 ⁻¹⁶

274	$I_{274} = \int_{0}^{1} \frac{x \cdot \exp(x)}{(1+x)^{2}} dx$	0.359140914229523	0.359140914229523	9.27×10 ⁻¹⁶
275	$I_{275} = \int_{0}^{\ln(2)} \frac{x}{\exp(x) + 2 \cdot (\exp(-x)) - 2} dx$	0.27219826128795	0.27219826128795	2.04×10 ⁻¹⁶
276	$I_{276} = \int_{0}^{\pi} \frac{\sin(3 \cdot x) \cdot \cos(2 \cdot x)}{\sin(x)} dx$	3.141592653589794	3.141592653589793	2.83×10 ⁻¹⁶
277	$I_{277} = \int_0^\pi \frac{\sin\left(3 \cdot x\right)}{\sin\left(x\right)} dx$	3.141592653589794	3.141592653589793	4.24×10 ⁻¹⁶
278	$I_{278} = \int_{0}^{\frac{\pi}{2}} \frac{\sin\left(5 \cdot x\right)}{\sin\left(x\right)} dx$	1.570796326794898	1.570796326794896	8.48×10 ⁻¹⁶
279	$I_{279} = \int_{0}^{\pi} \frac{\cos(3 \cdot x)}{1 + \frac{\cos(x)}{2}} dx$	-6.97873324855309×10 ⁻²	-6.97873324855312×10 ⁻²	-3.58×10 ⁻¹⁵
280	$I_{280} = \int_{0}^{\pi} \frac{\sin(3 \cdot x) \cdot \sin(x)}{1 - 4 \cdot \cos(x) + 4} dx$	9.81747704246811×10 ⁻²	9.8174770424681×10 ⁻²	4.24×10 ⁻¹⁶
281	$I_{281} = \int_{0}^{\pi} \frac{\cos(3 \cdot x) - 0.5 \cdot \cos(4 \cdot x)}{1 - \cos(x) + 0.25} dx$	0.392699081698725	0.392699081698724	1.27×10 ⁻¹⁵
282	$I_{282} = \int_{0}^{1} \frac{1}{1 - \frac{x^2}{2}} dx$	1.246450480280462	1.246450480280461	3.56×10 ⁻¹⁶
283	$I_{283} = \int_{0}^{\frac{\pi}{2}} \frac{\cos(x)^{2} \cdot \sin(4 \cdot x)}{\tan(x)} dx$	1.570796326794898	1.570796326794896	8.48×10 ⁻¹⁶

284	$I_{284} = \int_{0}^{\frac{\pi}{2}} \frac{\cos(x)^{3} \cdot \sin(4 \cdot x)}{\sin(x)} dx$	1.570796326794898	1.570796326794896	8.48×10 ⁻¹⁶
285	$I_{285} = \int_{0}^{1} \frac{1}{1 + 10 \cdot x^{2}} dx$	0.399876005055766	0.399876005055766	9.72×10 ⁻¹⁶
286	$I_{286} = \int_{0}^{\pi} \frac{\sin(x)^{3}}{4 + 3 \cdot \cos(x)} dx$	0.384393665059734	0.384393665059734	5.78×10 ⁻¹⁶
287	$I_{287} = \int_{0}^{\frac{\pi}{3}} \frac{\sqrt{\tan(x)}}{\left(\sin(x) + \cos(x)\right) \cdot \sin(x)} dx$	1.842060080520918	1.84206008052091	4.1×10 ⁻¹⁵
288	$I_{288} = \int_{-\pi}^{\pi} \frac{1}{1 - 6 \cdot \cos(x) + 9} dx$	0.785398163397448	0.785398163397448	-2.83×10 ⁻¹⁶
289	$I_{289} = \int_{0}^{\frac{\pi}{2}} \frac{x}{(\sin(x) + 3 \cdot \cos(x))^{2}} dx$	0.361377669171658	0.361377669171658	7.68×10 ⁻¹⁶
	$I_{290} = \int_{0}^{\pi} \frac{x}{9 \cdot \cos(x)^{2} + 16 \cdot \sin(x)^{2}} dx$	0.411233516712057	0.411233516712057	6.75×10 ⁻¹⁶
291	$I_{291} = \int_{0}^{1} \frac{1}{1 + 5 \cdot x^{2}} dx$	0.514412800990546	0.514412800990546	6.47×10 ⁻¹⁶
292	$I_{292} = \int_{0}^{\frac{\pi}{2}} \frac{x^3 \cdot \cos(x)}{\sin(x)^3} dx$	1.328486842936666	1.328486842936664	6.69×10 ⁻¹⁶
293	$I_{293} = \int_{0}^{1} x \cdot \sin\left(10 \cdot \pi \cdot x\right) dx$	-3.18309886183791×10 ⁻²	-3.1830988618379×10 ⁻²	2.18×10 ⁻¹⁵
294	$I_{294} = \int_{0}^{\pi} \exp(3 \cdot \cos(x)) \cdot \sin(x) dx$	6.678583284939942	6.678583284939934	1.06×10 ⁻¹⁵

295	$I_{295} = \int_{0}^{\pi} \frac{\exp\left(4 \cdot \cos\left(x\right)\right) \cdot \sin\left(4 \cdot \sin\left(x\right)\right)}{\sin\left(x\right)} dx$	85.7338033835704	85.7338033835703	1.16×10 ⁻¹⁵
296	$I_{296} = \int_{0}^{\frac{\pi}{2}} \frac{x \cdot \left(\exp\left(-4 \cdot \tan\left(x\right)^{2}\right)\right) \cdot \left(4 - \cos\left(x\right)^{2}\right)}{\cos\left(x\right)^{4}} \cdot \tan\left(x\right) dx$	0.221556731363189	0.22155673136319	-1.25×10 ⁻¹⁶
297	$I_{297} = \int_{-1}^{1} \frac{1}{1 + x^2 + x^4} dx$	1.456205826451165	1.456205826451164	9.15×10 ⁻¹⁶
298	$I_{298} = \int_{0}^{\frac{\pi}{2}} \ln\left(\sin\left(x\right)\right) dx$	-1.088793045151801	-1.088793045151801	0
299	$I_{299} = \int_{0}^{1} 4 \cdot x^{3} dx$	1.0000000000000001	1	8.88×10 ⁻¹⁶
300	$I_{300} = \int_{0}^{\pi} \ln(4 + 2 \cdot \cos(x)) dx$	4.137345254066072	4.137345254066068	1.07×10 ⁻¹⁵
	$3 \cdot \pi$	26.131033083643214	26.131033083643224	-5.44×10 ⁻¹⁶
302	$I_{302} = \int_{0}^{\frac{\pi}{2}} \ln \left(\frac{1 + \sin(1) \cdot \cos(x)^{2}}{1 - \sin(1) \cdot \cos(x)^{2}} \right) dx$	1.640659388684217	1.640659388684216	4.06×10 ⁻¹⁶
303	$I_{303} = \int_{0}^{\frac{\pi}{2}} \ln\left(2 \cdot \tan\left(x\right)\right) dx$	1.088793045151796	1.088793045151801	-5.1×10 ⁻¹⁵
304	$I_{304} = \int_{0}^{\frac{\pi}{2}} \ln\left(9 + 16 \cdot \tan(x)^{2}\right) dx$	6.11325702881799	6.113257028817991	-2.91×10 ⁻¹⁶

305	$I_{305} = \int_{0}^{1} \left(x^2 + 3 \cdot x^3 \right) dx$	1.08333333333333334	1.083333333333333	1.02×10 ⁻¹⁵
306	$I_{306} = \int_{0}^{1} \frac{(1-x) \cdot \ln(x)}{1+x} dx$	-0.644934066848227	-0.644934066848226	8.61×10 ⁻¹⁶
307	$I_{307} = \int_{0}^{1} \frac{x \cdot \ln(x)}{(1+x^{2})^{2}} dx$	-0.173286795139987	-0.173286795139986	1.12×10 ⁻¹⁵
308	$I_{308} = \int_{0}^{1} \left(\frac{1}{1-x} + \frac{x \cdot \ln(x)}{(1-x)^{2}} \right) dx$	0.644934066848225	0.644934066848226	-2.41×10 ⁻¹⁵
309	$I_{309} = \int_{0}^{1} \frac{x \cdot \ln(x)}{\sqrt{1 - x^{4}}} dx$	-0.27219826128795	-0.27219826128795	4.08×10 ⁻¹⁶
310	$I_{310} = \int_{0}^{1} \frac{x \cdot \ln(x)}{\left(1 - x^{3}\right)^{2 \cdot \frac{1}{3}}} dx$	-0.298679853164655	-0.298679853164655	1.86×10 ⁻¹⁶
311	$I_{311} = \int_{0}^{1} \frac{\ln(x)^{2}}{x^{2} - x + 1} dx$	2.2100595293752	2.2100595293752	2.01×10 ⁻¹⁶
312	$I_{312} = \int_{0}^{1} \frac{1 - x}{(1 + x) \cdot \ln(x)} dx$	-0.451582705289455	-0.451582705289455	3.69×10 ⁻¹⁶
313	$I_{313} = \int_{0}^{1} \left(\frac{1}{\ln(x)} + \frac{1}{1 - x} \right) dx$	0.577215664901533	0.577215664901532	2.31×10 ⁻¹⁵
314	$I_{314} = \int_{0}^{1} \frac{1}{\left(\pi^{2} + \ln(x)^{2}\right) \cdot \left(1 + x^{2}\right)} dx$	6.83098861837907×10 ⁻²	6.83098861837907×10 ⁻²	2.03×10 ⁻¹⁶
315	$I_{315} = \int_{0}^{1} \frac{x \cdot \ln(x) + 1 - x}{x} \cdot \frac{\ln(1 + x)}{\ln(x)^{2}} dx$	0.24156447527049	0.24156447527049	-2.53×10 ⁻¹⁵

316	$I_{316} = \int_{0}^{1} x \cdot \exp(x) \cdot \ln(1-x) dx$	-1.718281828459042	-1.718281828459045	-1.55×10 ⁻¹⁵
317	$I_{317} = \int_{0}^{\frac{\pi}{2}} \frac{\sin(x)^{3} \cdot \ln(\sin(x))}{\sqrt{1 + \sin(x)^{2}}} dx$	-7.67132048600137×10 ⁻²	-7.67132048600137×10 ⁻²	5.43×10 ⁻¹⁶
318	$I_{318} = \int_{0}^{\frac{\pi}{2}} \frac{x}{1 + \sin(x)} dx$	0.693147180559946	0.693147180559945	9.61×10 ⁻¹⁶
319	$I_{319} = \int_{0}^{\frac{\pi}{4}} \ln\left(1 + \tan\left(x\right)\right) dx$	0.27219826128795	0.27219826128795	0
320	$I_{320} = \int_{0}^{\frac{\pi}{4}} \ln\left(\frac{1}{\tan\left(x\right)} - 1\right) dx$	0.272198261287955	0.27219826128795	1.6×10 ⁻¹⁴
321	$I_{321} = \int_{0}^{1} \frac{\ln(x)}{1 + x^{2}} dx$	-0.915965594177219	-0.915965594177219	0
322	$I_{322} = \int_{0}^{1} \frac{\ln(x)}{\sqrt{1 - x^2}} dx$	-1.088793045151801	-1.088793045151801	2.04×10 ⁻¹⁶
323	$I_{323} = \int_{0}^{1} \sqrt{1 - x^2} \cdot \ln(x) dx$	-0.937095604274625	-0.937095604274625	1.18×10 ⁻¹⁶
324	$I_{324} = \int_{0}^{1} \frac{\ln(x)^{2} \cdot (1 + x^{2})}{1 + x^{4}} dx$	2.055445171873719	2.055445171873717	8.64×10 ⁻¹⁶
	$I_{325} = \int_{0}^{1} \frac{\ln{(x)^3}}{1+x} dx$	-5.682196976983476	-5.682196976983474	3.13×10 ⁻¹⁶
326	$I_{326} = \int_{0}^{1} \frac{\ln(x)^4}{1+x^2} dx$	23.907787873850136	23.90778787385011	1.04×10 ⁻¹⁵

327	$I_{327} = \int_{0}^{1} \frac{(1-x) \cdot x^{2}}{(1+x) \cdot (1+x^{2}) \cdot \ln(x)} dx$	-0.105009115009482	-0.105009115009482	1.85×10 ⁻¹⁵
328	$I_{328} = \int_{0}^{1} \frac{x^3 - x^2}{\ln(x)} dx$	0.287682072451781	0.287682072451781	5.79×10 ⁻¹⁶
329	$I_{329} = \int_{0}^{1} \frac{(x^{4} - x^{3}) \cdot x^{4}}{\ln(x)} dx$	0.117783035656384	0.117783035656383	1.18×10 ⁻¹⁵
330	$I_{330} = \int_{0}^{1} \frac{\ln\left(\frac{1+x}{2}\right)}{1-x} dx$	-0.582240526465013	-0.582240526465013	7.63×10 ⁻¹⁶
331	$I_{331} = \int_{0}^{1} \frac{\ln(1+x)}{(3\cdot x+3)^{2}} dx$	1.70473788577808×10 ⁻²	1.70473788577808×10 ⁻²	6.11×10 ⁻¹⁶
332	$I_{332} = \int_{0}^{1} \frac{\ln(1+x) \cdot (1+x^{2})}{(1+x)^{4}} dx$	8.83953842577961×10 ⁻²	8.8395384257796×10 ⁻²	9.42×10 ⁻¹⁶
333	$I_{333} = \int_{0}^{1} \frac{\ln\left(\frac{1+x}{1-x}\right)}{1+x^2} dx$	0.915965594177218	0.915965594177219	-1.45×10 ⁻¹⁵
334	$I_{334} = \int_{0}^{1} \frac{\ln\left(\ln\left(\frac{1}{x}\right)\right)}{1+x} dx$	-0.240226506959099	-0.240226506959101	-5.08×10 ⁻¹⁵
335	$I_{335} = \int_{0}^{1} (1-x) \cdot (\exp(-x)) \cdot \ln(x) dx$	-0.632120558828558	-0.632120558828558	7.03×10 ⁻¹⁶
336	$I_{336} = \int_{0}^{\frac{\pi}{2}} \ln(\sin(x)) \cdot \sin(x)^{2} dx$	-0.151697440877176	-0.151697440877176	9.15×10 ⁻¹⁶

337	$I_{337} = \int_{0}^{\frac{\pi}{2}} \sin(x) \cdot \ln\left(\cot\left(\frac{x}{2}\right)\right) dx$	0.693147180559946	0.693147180559945	3.2×10 ⁻¹⁶
338	$I_{338} = \int_{0}^{\frac{\pi}{2}} \ln\left(\sin\left(x\right)\right) \cdot \tan\left(x\right) dx$	-0.411233516712057	-0.411233516712057	1.08×10 ⁻¹⁵
339	$I_{339} = \int_{1}^{11} \exp(x) \cdot \sin(2 \cdot x) dx$	23841.778755227904	23841.7787552279	1.53×10 ⁻¹⁶
340	$I_{340} = \int_{-1}^{1} x^4 \cdot \sin{(\pi \cdot x)^2} dx$	0.114077789739689	0.114077789739689	-1.34×10 ⁻¹⁵
341	$I_{341} = \int_{0}^{\frac{\pi}{4}} sec(x)^{3} dx$	1.14779357469632	1.147793574696319	5.8×10 ⁻¹⁶
342	$I_{342} = \int_{0}^{1} \frac{-\ln(1-x)}{1-x} \cdot \ln(x)^{2} dx$	0.541161616855569	0.54116161685557	-1.44×10 ⁻¹⁵
343	$I_{343} = \int_{-1}^{1} \frac{4 \cdot x^3 - 1}{2 \cdot x^2 + 1} dx$	-1.351021717712081	-1.35102171771207	8.22×10 ⁻¹⁵
344	$I_{344} = \int_{0}^{0.5} \frac{2}{2 \cdot x^2 - 1} dx$	-1.246450480280462	-1.246450480280461	5.34×10 ⁻¹⁶
345	$I_{345} = \int_{0}^{1} \left(\operatorname{atan}\left(\frac{x+1}{3}\right) - \left(\operatorname{atan}\left(\frac{x-1}{3}\right) \right) \right) dx$	0.624418036907159	0.624418036907159	1.78×10 ⁻¹⁶
346	$I_{346} = \int_{-1}^{1} \cos\left(20 \cdot x^2\right) dx$	0.325307509018174	0.325307509018174	1.19×10 ⁻¹⁵
347	$I_{347} = \int_{0}^{\frac{\pi}{4}} \frac{x}{\sin(x) \cdot \cos(x)} dx$	0.91596559417722	0.915965594177219	7.27×10 ⁻¹⁶

		T		
348	$I_{348} = \int_{0}^{\frac{\pi}{4}} \ln\left(\cot\left(x\right)\right) dx$	0.915965594177219	0.915965594177219	1.21×10 ⁻¹⁶
349	$I_{349} = \int_{0}^{1} \ln\left(\ln\left(\frac{1}{x}\right)\right) dx$	-0.577215664901528	-0.577215664901532	-6.15×10 ⁻¹⁵
350	$I_{350} = \int_{0}^{1} \exp(x) \cdot \cos(10 \cdot x) dx$	-0.178899602876759	-0.178899602876758	4.19×10 ⁻¹⁵
351	$I_{351} = \int_{0}^{1} \frac{\operatorname{atan}(x)}{x} dx$	0.915965594177219	0.915965594177219	1.21×10 ⁻¹⁶
352	$I_{352} = \int_0^5 \frac{\sin(3 \cdot x) \cdot \cos(5 \cdot x)}{x} dx$	-3.5681237432045×10 ⁻²	-3.56812374320447×10 ⁻²	9.53×10 ⁻¹⁵
353	$I_{353} = \int_{0}^{\frac{\pi}{2}} \frac{1}{4 + 3 \cdot \cos(x)} dx$	0.273167869100518	0.273167869100518	8.13×10 ⁻¹⁶
354	$I_{354} = \int_{0}^{2\pi} \frac{1}{(4+3\cdot\sin(x))^2} dx$	1.357040470541403	1.357040470541401	1.31×10 ⁻¹⁵
355	$I_{355} = \int_{0}^{1} \sin{(5 \cdot x)^3} dx$	7.81225402995358×10 ⁻²	7.81225402995357×10 ⁻²	1.42×10 ⁻¹⁵
356	$I_{356} = \int_{0}^{1} \frac{x}{1 + \sin(3 \cdot x)} dx$	0.303855179090761	0.303855179090761	1.1×10 ⁻¹⁵
357	$I_{357} = \int_{0}^{1} \frac{\cos(3 \cdot x)}{1 + \cos(3 \cdot x)} dx$	-3.700473315723912	-3.70047331572391	4.8×10 ⁻¹⁶
358	$I_{358} = \int_{-0.1}^{0.1} \frac{\tan(3 \cdot x)}{\tan(3 \cdot x) - 1} dx$	-6.60375263462743×10 ⁻³	-6.60375263462742×10 ⁻³	1.31×10 ⁻¹⁵

359	$I_{359} = \int_{0}^{1} \sec(x)^{2} dx$	1.557407724654903	1.557407724654902	5.7×10 ⁻¹⁶
360	$I_{360} = \int_{0}^{1} \frac{1}{\sec(x) + 1} dx$	0.45369751015621	0.45369751015621	0
361	$I_{361} = \int_{0}^{1} \sin(3 \cdot x) \cdot \cos(3 \cdot x) dx$	3.31914277913615×10 ⁻³	3.31914277913618×10 ⁻³	-8.88×10 ⁻¹⁵
362	$I_{362} = \int_{0}^{1} \sec(x) \cdot \tan(x) dx$	0.850815717680926	0.850815717680926	7.83×10 ⁻¹⁶
363	$I_{363} = \int_{-1}^{1} x^2 \cdot \cos\left(\frac{3 \cdot \pi \cdot x}{2}\right)^2 dx$	0.310817514746148	0.310817514746147	1.07×10 ⁻¹⁵
364	$I_{364} = \int_{0}^{1} \frac{x}{x^2 + 9} \cdot \ln(x^2 + 9) dx$	0.118525566807018	0.118525566807018	-1.87×10 ⁻¹⁵
365	$I_{365} = \int_{5}^{10} \frac{1}{x \cdot \ln(x)} dx$	0.358147449920845	0.358147449920845	1.55×10 ⁻¹⁶
366	$I_{366} = \int_{10}^{20} \frac{1}{\exp(x)} \cdot \left(\frac{1}{x} - \ln(x)\right) dx$	-1.04531026829647×10 ⁻⁴	-1.04531026829647×10 ⁻⁴	9.08×10 ⁻¹⁶
367	$I_{367} = \int_{-2}^{2} \frac{1}{5} \cdot \left(\frac{1}{100} \cdot (322 + 3 \cdot x \cdot (98 + x \cdot (37 + x))) - \frac{24 \cdot x}{1 + x^2} \right) dx$	3.760000000000001	3.76	3.54×10 ⁻¹⁶
368	$I_{368} = \int_{-1}^{1} x^2 \cdot \sin(3 \cdot x)^2 dx$	0.323972608791478	0.323972608791477	1.54×10 ⁻¹⁵
369	$I_{369} = \int_{-1}^{1} x \cdot \sin(3 \cdot x) dx$	0.691354999524712	0.691354999524712	4.82×10 ⁻¹⁶
370	$I_{370} = \int_{-1}^{1} \frac{1}{1 + \cos(3 \cdot x)} dx$	9.400946631447805	9.40094663144781	-5.67×10 ⁻¹⁶

371	$I_{371} = \int_{-1}^{1} \frac{\cos(3 \cdot x)}{1 + \cos(3 \cdot x)} dx$	-7.400946631447809	-7.40094663144781	-1.2×10 ⁻¹⁶
372	$I_{372} = \int_{-1}^{1} \tan{(x)^2} dx$	1.114815449309806	1.1148154493098	4.98×10 ⁻¹⁵
373	$I_{373} = \int_{0}^{1} \ln\left(\frac{1}{x}\right)^{5} dx$	120.0000000000001	120	8.29×10 ⁻¹⁶
374	$I_{374} = \int_{0}^{1} x^{8} \cdot (1 - x)^{4} dx$	1.55400155400156×10 ⁻⁴	1.55400155400155×10 ⁻⁴	1.74×10 ⁻¹⁶
375	$I_{375} = \int_{5}^{10} \operatorname{acosh}(4 \cdot x) dx$	20.374305720887634	20.3743057208876	1.57×10 ⁻¹⁵
376	$I_{376} = \int_{1}^{10} \frac{4 \cdot x + 3}{6 \cdot x^2 + 3 \cdot x + 8} dx$	1.39297177426005	1.39297177426005	0
377	$I_{377} = \int_0^1 \cos\left(\frac{\pi \cdot x^2}{2}\right) dx$	0.779893400376824	0.779893400376822	1.99×10 ⁻¹⁵
378	$I_{378} = \int_0^1 \sin\left(\frac{\pi \cdot x^2}{2}\right) dx$	0.438259147390355	0.438259147390354	2.28×10 ⁻¹⁵
379	$I_{379} = \int_{0}^{1} \frac{1}{3 + 4 \cdot \exp(5 \cdot x)} dx$	3.6971670237415×10 ⁻²	3.69716702374149×10 ⁻²	2.82×10 ⁻¹⁵
380	$I_{380} = \int_{0}^{1} x^4 \cdot \exp\left(3 \cdot x\right) dx$	2.628900075988452	2.62890007598845	5.07×10 ⁻¹⁶
381	$I_{381} = \int_{0}^{1} \frac{x \cdot \exp(3 \cdot x)}{(1 + 3 \cdot x)^{2}} dx$	0.446820470088547	0.446820470088546	1.49×10 ⁻¹⁵
382	$I_{382} = \int_{0}^{1} \sinh{(x)^5} dx$	0.310001628759192	0.310001628759191	2.51×10 ⁻¹⁵

383	$I_{383} = \int_{0}^{1} \cosh{(x)^5} dx$	2.705569516521603	2.7055695165216	9.85×10 ⁻¹⁶
384	$I_{384} = \int_{0}^{1} \sinh{(x)^{4}} \cdot \cosh{(x)^{2}} dx$	0.630014711225807	0.630014711225807	5.29×10 ⁻¹⁶
385	$I_{385} = \int_{0}^{1} \sinh{(x)^{3}} \cdot \cosh{(x)^{3}} dx$	0.915916015118247	0.915916015118245	1.94×10 ⁻¹⁵
386	$I_{386} = \int_{0}^{1} \sinh\left(x\right) \cdot \cosh\left(x\right)^{4} dx$	1.549738310647865	1.54973831064786	3.44×10 ⁻¹⁵
387	$I_{387} = \int_{1}^{5} \frac{1}{\sinh\left(x\right)} dx$	0.758460734966699	0.758460734966698	8.78×10 ⁻¹⁶
388	$I_{388} = \int_{1}^{5} \frac{1}{\cosh\left(x\right)} dx$	0.691551153486393	0.691551153486392	1.28×10 ⁻¹⁵
389	$I_{389} = \int_{0}^{1} \frac{\sinh\left(x\right)}{\cosh\left(x\right)} dx$	0.433780830483027	0.433780830483027	3.84×10 ⁻¹⁶
390	$I_{390} = \int_{0}^{1} \frac{\sinh{(x)^{3}}}{\cosh{(x)^{2}}} dx$	0.191134908479129	0.191134908479129	1.02×10 ⁻¹⁵
391	$I_{391} = \int_{1}^{5} \frac{\cosh\left(x\right)}{\sinh\left(x\right)} dx$	4.145368056908492	4.14536805690849	4.29×10 ⁻¹⁶
392	$I_{392} = \int_{1}^{5} \frac{\cosh(x)^{2}}{\sinh(x)} dx$	73.42532862493938	73.4253286249393	9.68×10 ⁻¹⁶
393	$I_{393} = \int_{1}^{5} \frac{1}{\sinh(x) \cdot \cosh(x)} dx$	0.272250669052244	0.272250669052244	1.43×10 ⁻¹⁵
394	$I_{394} = \int_{0}^{1} \frac{\sinh(2 \cdot x)}{\cosh(x)^{2}} dx$	0.867561660966055	0.867561660966054	6.4×10 ⁻¹⁶

395	$I_{395} = \int_{0}^{1} \frac{\sinh(x)}{\cosh(x) + \sinh(x)} dx$	0.283833820809153	0.283833820809153	1.37×10 ⁻¹⁵
396	$I_{396} = \int_{0}^{1} \frac{1}{\cosh(x) - \sinh(x)} dx$	1.718281828459046	1.71828182845905	-2.46×10 ⁻¹⁵
397	$I_{397} = \int_{1}^{5} \frac{1}{1 - \cosh(x)^2} dx$	-0.312944481517312	-0.312944481517312	5.32×10 ⁻¹⁶
398	$I_{398} = \int_{0}^{1} x \cdot \sinh(x) dx$	0.367879441171443	0.367879441171442	1.66×10 ⁻¹⁵
399	$I_{399} = \int_{0}^{1} x \cdot \cosh(x) dx$	0.632120558828558	0.632120558828558	-3.51×10 ⁻¹⁶
400	$I_{400} = \int_{1}^{5} \frac{x}{\cosh(x)^{2}} dx$	0.364834477500967	0.364834477500966	1.83×10 ⁻¹⁵
401	$I_{401} = \int_{1}^{5} \frac{x}{1 + \cosh(x)} dx$	1.084047011555352	1.08404701155535	2.05×10 ⁻¹⁵
402	$I_{402} = \int_{0}^{1} \sin{(x)^{2}} \cdot \cos{(x)^{2}} dx$	0.148650077978373	0.148650077978373	-9.34×10 ⁻¹⁶
403	$I_{403} = \int_{0}^{1} \sin(x) \cdot \cos(x)^{4} dx$	0.19079096548572	0.19079096548572	1.02×10 ⁻¹⁵
404	$I_{404} = \int_{0}^{1} \sin(x)^{4} \cdot \cos(x)^{4} dx$	3.03161896573114×10 ⁻²	3.03161896573113×10 ⁻²	1.95×10 ⁻¹⁵
405	$I_{405} = \int_{0}^{1} \frac{\sin(x)^{3}}{\cos(x)^{2}} dx$	0.391118023549066	0.391118023549065	1.85×10 ⁻¹⁵
406	$I_{406} = \int_{0}^{1} \frac{\sin(x)}{\cos(x)^{4}} dx$	1.780001358258598	1.7800013582586	-1.5×10 ⁻¹⁵

407	$I_{407} = \int_{1}^{2} \frac{\cos(x)}{\sin(x)^{3}} dx$	0.101416245187177	0.101416245187177	6.84×10 ⁻¹⁶
	$I_{408} = \int_{1}^{1.1} \frac{1}{\sin(x)^4 \cdot \cos(x)^4} dx$	2.934722012588834	2.93472201258883	1.21×10 ⁻¹⁵
409	$I_{409} = \int_{0}^{1} \frac{\cos(2 \cdot x)}{\cos(x)^{2}} dx$	0.442592275345098	0.442592275345098	0
410	$I_{410} = \int_{1}^{2} \frac{\sin(3 \cdot x)}{\sin(x)^{3}} dx$	-0.700749489116151	-0.700749489116151	1.58×10 ⁻¹⁶
411	$I_{411} = \int_{0}^{1} \frac{\cos(3 \cdot x)}{\cos(x)^{3}} dx$	-0.672223173964707	-0.672223173964706	1.82×10 ⁻¹⁵
412	$I_{412} = \int_{1}^{2} \cos\left(\ln\left(x\right)\right) dx$	0.908200177677607	0.908200177677607	0
413	$I_{413} = \int_{0}^{1} \frac{\cos(x)}{\left(1 - 0.01 \cdot \sin(x)^{2}\right)^{\frac{3}{2}}} dx$	0.844466015672369	0.844466015672369	2.63×10 ⁻¹⁶
	$I_{414} = \int_{0}^{1} \cos h(x) \cdot \cos(x) dx$	0.966710748100357	0.966710748100357	-1.15×10 ⁻¹⁶
415	$I_{415} = \int_{0}^{3} x^{2} \cdot \left(\exp\left(-x \cdot \ln\left(3\right)\right) \right) dx$	0.964934760891942	0.96493476089194	1.15×10 ⁻¹⁵
416	$I_{416} = \int_{0}^{3} x \cdot \left(\exp\left(-x \cdot \ln\left(3\right)\right) \right) dx$	0.696711259706122	0.696711259706122	7.97×10 ⁻¹⁶
417	$I_{417} = \int_{0}^{2} \frac{\sin(2 \cdot \pi \cdot x) + \cos(\pi \cdot x)}{\pi \cdot (2 \cdot x + 1)} \cdot 2 \cdot (-1) dx$	-0.128291942774831	-0.12829194277483	5.19×10 ⁻¹⁵

418	$I_{418} = \int_{0}^{2} \frac{\sin(\pi \cdot (x - 0.5)) - \sin(2 \cdot \pi \cdot (x - 0.5))}{\pi \cdot (x - 0.5)} dx$	-0.174295011871843	-0.174295011871843	2.07×10 ⁻¹⁵
419	$I_{419} = \int_{0}^{2} \left(1 + \exp\left(-x\right) \cdot \sin\left(8 \cdot x^{\frac{2}{3}}\right) \right) dx$	2.016279719617098	2.01627971961814	-5.17×10 ⁻¹³
1	$I_{420} = \int_{0}^{3} \left(3 \cdot \left(\exp\left(-x\right) \right) \cdot \sin\left(x^{2}\right) + 1 \right) dx$	3.830868396266901	3.83086839626689	2.9×10 ⁻¹⁵
	$I_{421} = \int_{0}^{2} \exp(-2 \cdot x) \cdot (14 \cdot x - 11 \cdot x^{2}) dx$	1.084260409719399	1.08426040971939	8.6×10 ⁻¹⁵
422	$I_{422} = \int_{0}^{2} x^{10} \cdot \exp(4 \cdot x^{3} - 3 \cdot x^{4}) dx$	7.258395170614287	7.25839517061428	9.79×10 ⁻¹⁶
423	$I_{423} = \int_{0}^{2} \left(2 + \cos\left(2 \cdot \sqrt{x}\right) \right) dx$	3.459997672170805	3.4599976721708	1.54×10 ⁻¹⁵
424	$I_{424} = \int_{0}^{2} \frac{\sin\left(\pi \cdot x\right)}{\pi \cdot x} dx$	0.451411666790141	0.45141166679014	1.72×10 ⁻¹⁵
425	$I_{425} = \int_{0}^{1} x^{4} \cdot \ln\left(x + \sqrt{x^{2} + 1}\right) dx$	0.150948118249087	0.150948118249086	3.49×10 ⁻¹⁵
426	$I_{426} = \int_{0}^{1} x \cdot \exp(x) dx$	1.00000000000000001	1	8.88×10 ⁻¹⁶
427	$I_{427} = \int_{0}^{1} \operatorname{atan}(x) dx$	0.438824573117476	0.438824573117476	3.79×10 ⁻¹⁶
428	$I_{428} = \int_{0}^{1} \exp(x) \cdot \cos(x) dx$	1.378024613547364	1.378024613547364	1.61×10 ⁻¹⁶
429	$I_{429} = \int_{-1}^{1} \frac{\pi}{2} \cdot \cosh(x) \cdot \sin\left(\exp\left(\frac{\pi}{2} \cdot \sinh(x)\right)\right) dx$	1.260710779165728	1.26071077916572	6.69×10 ⁻¹⁵

430	$I_{430} = \int_{0}^{1} 4 \cdot x^{3} \cdot \sqrt{x^{4} + 7} dx$	2.73810521367826	2.73810521367826	1.62×10 ⁻¹⁶
431	$I_{431} = \int_{0}^{1} x \cdot \cos\left(x\right) dx$	0.381773290676036	0.381773290676036	0
432	$I_{432} = \int_{0}^{1} \cos(x)^{2} dx$	0.72732435670642	0.72732435670642	0
433	$I_{433} = \int_{0}^{1} \tan{(x)^{2} \cdot \sec{(x)^{4}}} dx$	3.091663935025338	3.091663935025336	7.18×10 ⁻¹⁶
434	$I_{434} = \int_{0}^{1} \frac{3 \cdot x + 6}{x^2 + 5 \cdot x + 4} dx$	1.139434283188365	1.139434283188365	1.95×10 ⁻¹⁶
435	$I_{435} = \int_{0}^{1} \frac{x}{x^2 + 4} dx$ s	0.111571775657105	0.111571775657105	4.98×10 ⁻¹⁶
436	$I_{436} = \int_{0}^{1} \frac{1}{x^2 + 4} dx$	0.231823804500403	0.231823804500403	1.2×10 ⁻¹⁶
437	$I_{437} = \int_{0}^{1} \frac{x}{(x^2 + 4)^2} dx$	2.5×10 ⁻²	2.5×10 ⁻²	5.55×10 ⁻¹⁶
438	$I_{438} = \int_{0}^{1} \tan(x) dx$	0.615626470386015	0.615626470386014	1.08×10 ⁻¹⁵
439	$I_{439} = \int_{0}^{1} sec(x) dx$	1.226191170883518	1.226191170883517	7.24×10 ⁻¹⁶
440	$I_{440} = \int_{0}^{1} \exp\left(-x^{2}\right) dx$	0.746824132812427	0.746824132812427	1.49×10 ⁻¹⁶
441	$I_{441} = \int_{1}^{2} \left(2 \cdot x + \frac{3}{x} \right)^{2} dx$	25.83333333333357	25.8333333333333	2.2×10 ⁻¹⁵

442	$I_{442} = \int_{0}^{1} x^{0.1} \cdot (1.2 - x) \cdot (1 - \exp(20 \cdot (x - 1))) dx$	0.602298070979271	0.60229807097927	2.21×10 ⁻¹⁵
443	$I_{443} = \int_{-1}^{1} \frac{1}{9+x^2} dx$	0.214500369597762	0.214500369597761	2.59×10 ⁻¹⁶
444	$I_{444} = \int_{0}^{1} \sin\left(1 - 30 \cdot x^{2}\right) dx$	2.18162096596285×10 ⁻²	2.18162096596284×10 ⁻²	2.7×10 ⁻¹⁵
445	$I_{445} = \int_{0}^{2} \left[2 + \frac{\cos\left(1 + x^{\frac{3}{2}}\right) \cdot \exp(0.5 \cdot x)}{\sqrt{1 + \frac{\sin(x)}{2}}} \right] \cdot \exp(0.5 \cdot x) dx$	3.709156039701883	3.70915603970188	7.18×10 ⁻¹⁶
446	$I_{446} = \int_{-1}^{1} \frac{1}{1 + (x+3)^2} dx$	0.218668945873942	0.218668945873942	-1.27×10 ⁻¹⁶
447	$I_{447} = \int_{-1}^{1} \frac{\exp(-x)}{1+x^2} dx$	1.795521283093892	1.79552128309389	1.36×10 ⁻¹⁵
448	$I_{448} = \int_{-1}^{1} \ln(1+x) \cdot \ln(1-x) dx$	-1.101550828099831	-1.10155082809983	1.01×10 ⁻¹⁵
449	$I_{449} = \int_{-8}^{23} \left(\frac{-(x^3)}{10} + 23 \cdot x - 3.5 \right) dx$	-1654.6250000000018	-1654.625	1.1×10 ⁻¹⁵
450	$I_{450} = \int_{0}^{1} x^{25} \cdot (1 - x)^{2} dx$	1.01750101750102×10 ⁻⁴	1.01750101750102×10 ⁻⁴	9.32×10 ⁻¹⁶
451	$I_{451} = \int_{0}^{2} \left(x^{10} - 10 \cdot x^{8} + 33 \cdot x^{6} - 40 \cdot x^{4} + 16 \cdot x^{2} \right) dx$	7.388167388167401	7.38816738816738	2.89×10 ⁻¹⁵
452	$I_{452} = \int_{0}^{1} \frac{\exp(-x) \cdot \sin(x)}{x} dx$	0.60607362835809	0.606073628358089	9.16×10 ⁻¹⁶

1	$I_{453} = \int_{0}^{1} \frac{x^{2} \cdot \ln(x)}{(x^{2} - 1) \cdot (x^{4} + 1)} dx$	0.180671262590655	0.180671262590655	9.22×10 ⁻¹⁶
454	$I_{454} = \int_{0}^{\frac{\pi}{2}} \frac{\operatorname{asin}\left(\frac{\sqrt{2}}{2} \cdot \operatorname{sin}(x)\right) \cdot \operatorname{sin}(x)}{\sqrt{4 - 2 \cdot \operatorname{sin}(x)^{2}}} dx$	0.384946472767795	0.384946472767795	1.01×10 ⁻¹⁵
455	$I_{455} = \int_{0}^{1} \tanh\left(\frac{\pi}{2} \cdot \sinh\left(x\right)\right) dx$	0.603714320414844	0.603714320414843	9.19×10 ⁻¹⁶
456	$I_{456} = \int_{-3}^{3} \left(x^3 + x^2 + 5 \cdot x + 3 \right) dx$	36.0000000000000004	36	1.18×10 ⁻¹⁵
457	$I_{457} = \int_{0}^{1} \frac{\sin(x)^{3}}{\sin(x)^{3} + \cos(x)^{3}} dx$	0.243997012275815	0.243997012275815	7.96×10 ⁻¹⁶
458	$I_{458} = \int_{-1}^{1} \exp(-x) \cdot \sin(x) dx$	-0.663493666631242	-0.663493666631241	1×10 ⁻¹⁵
459	$I_{459} = \int_{0}^{1} \ln\left(x + \sqrt{1 + x^2}\right) dx$	0.467160024646448	0.467160024646448	1.19×10 ⁻¹⁶
460	$I_{460} = \int_{0}^{1} \frac{1}{\sqrt{\exp(2 \cdot x) + 1}} dx$	0.521323942410439	0.521323942410439	8.52×10 ⁻¹⁶
461	$I_{461} = \int_{0}^{1} \sec(x)^{8} \cdot \tan(x) dx$	17.086370163030363	17.086370163030402	-2.29×10 ⁻¹⁵
462	$I_{462} = \int_{-1}^{1} \frac{\exp(-x)}{1+x^4} dx$	1.989031506736586	1.98903150673658	2.9×10 ⁻¹⁵
463	$I_{463} = \int_{0}^{1} 8 \cdot (\exp(-8 \cdot x)) dx$	0.999664537372098	0.999664537372097	1.22×10 ⁻¹⁵

464	$I_{464} = \int_{0}^{1} \left(1 + \cos \left(1.95 \cdot \pi \cdot x \right) \right) dx$	0.97446428883991	0.974464288839908	1.48×10 ⁻¹⁵
465	$I_{465} = \int_{0}^{1} \frac{\exp(-x)}{\sqrt{x}} dx$	1.493648265624854	1.49364826562485	2.97×10 ⁻¹⁵
466	$I_{466} = \int_{-1}^{1} \exp(-x) \cdot \cos(x) dx$	1.933421496200715	1.93342149620071	2.53×10 ⁻¹⁵
467	$I_{467} = \int_{-1}^{1} \exp(-x) \cdot x^2 dx$	0.878884622601834	0.878884622601833	1.39×10 ⁻¹⁵
468	$I_{468} = \int_{-1}^{1} 100 \cdot \left(\exp\left(-200 \cdot x^2\right) \right) dx$	12.533141373155013	12.533141373154997	1.28×10 ⁻¹⁵
469	$I_{469} = \int_{0}^{2} (14 \cdot x - 11 \cdot x^{2}) \cdot (\exp(-2 \cdot x)) dx$	1.084260409719399	1.08426040971939	8.6×10 ⁻¹⁵
470	$I_{470} = \int_{8}^{30} \left(2000 \cdot \ln \left(\frac{140000}{140000 - 2100 \cdot x} \right) - 9.8 \cdot x \right) dx$	11061.335535080996	11061.3355350809	8.72×10 ⁻¹⁵
471	$I_{471} = \int_{-0.01}^{0.01} \frac{1}{x^2 + 10^{-6}} dx$	2942.2553486074494	2942.2553486074703	-6.8×10 ⁻¹⁵
472	$I_{472} = \int_{0}^{1} \left(1 + \frac{\exp(-25 \cdot x)}{2} \right) dx$	1.019999999999723	1.02	-2.71×10 ⁻¹³
473	$I_{473} = \int_{0}^{\frac{\pi}{4}} \exp(3 \cdot x) \cdot \sin(2 \cdot x) dx$	2.588628632507178	2.58862863250717	2.92×10 ⁻¹⁵
474	$I_{474} = \int_{0}^{1} \frac{x \cdot \exp(x)}{(x+1)^{2}} dx$	0.359140914229523	0.359140914229523	9.27×10 ⁻¹⁶

475	$I_{475} = \int_{0}^{\frac{\pi}{2}} \frac{5}{\exp(\pi) - 2} \cdot \exp(2 \cdot x) \cdot \cos(x) dx$	1.000000000000001	1	1.33×10 ⁻¹⁵
476	$I_{476} = \int_{-10}^{10} -(x^3 + 23 \cdot x - 3.5) dx$	70.00000000000001	70	2.03×10 ⁻¹⁶
477	$I_{477} = \int_{-1}^{1} 10 \cdot \left(\exp\left(-100 \cdot x^{2}\right) \right) dx$	1.772453850905518	1.77245385090551	4.76×10 ⁻¹⁵
478	$I_{478} = \int_{0}^{1} x^{3} dx$	0.25	0.25	8.88×10 ⁻¹⁶
479	$I_{479} = \int_{0}^{1} x^{6} dx$	0.142857142857143	0.142857142857143	-1.94×10 ⁻¹⁶
480	$I_{480} = \int_{0}^{1} x^{10} dx$	9.0909090909091×10 ⁻²	9.09090909090909×10 ⁻²	7.63×10 ⁻¹⁶
481	$I_{481} = \int_{0}^{1} \sqrt{x^{7}} dx$	0.22222222222222	0.22222222222222	9.99×10 ⁻¹⁶
482	$I_{482} = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sin(x)^2} dx$	1.110720734539592	1.110720734539592	6×10 ⁻¹⁶
483	$I_{483} = \int_{0}^{5} \frac{(x-1)\cdot(x-2)\cdot(x-3)\cdot(x-4)\cdot(x-5)}{120} dx$	-0.329861111111112	-0.329861111111111	1.18×10 ⁻¹⁵
	\ 100 /	24999999.759754907	24999999.75975491	-2.98×10 ⁻¹⁶
485	$I_{485} = \int_{0}^{10} \frac{50}{\pi \cdot (1 + 2500 \cdot x^{2})} dx$	0.499363381076458	0.499363381076457	1.78×10 ⁻¹⁵

486	$I_{486} = \int_{0.1}^{1} \frac{\sin(100 \cdot \pi \cdot x)}{\pi \cdot x} dx$	9.09863753916653×10 ⁻³	9.09863753916684×10 ⁻³	-3.5×10 ⁻¹⁴
487	$I_{487} = \int_{0}^{2 \cdot \pi} x \cdot \cos(x) \cdot \sin(3 \cdot x) dx$	-2.356194490192348	-2.356194490192345	1.13×10 ⁻¹⁵
488	$I_{488} = \int_{0}^{1} \ln(x) \cdot \ln(1-x) dx$	0.355065933151774	0.355065933151774	0
489	$I_{489} = \int_{0}^{2 \cdot \pi} \frac{x \cdot \sin(30 \cdot x)}{\sqrt{1 - \frac{x^{2}}{4 \cdot \pi^{2}}}} dx$	-2.543259618893532	-2.54325961889354	-2.97×10 ⁻¹⁵
490	$I_{490} = \int_{0}^{1} 5 \cdot x^{4} dx$	1.0000000000000001	1	8.88×10 ⁻¹⁶
491	$I_{491} = \int_{0}^{1} x^{0.95} \cdot \exp(x) dx$	1.020457359171388	1.02045735917138	8.05×10 ⁻¹⁵
492	$I_{492} = \int_{0}^{1} \frac{\ln(x)^{2} \cdot 1}{1 + x^{2}} dx$	1.937892292518739	1.93789229251869	2.5×10 ⁻¹⁴
493	$I_{493} = \int_{0}^{1} \frac{\sqrt{x} \cdot (\exp(-x))}{1+x} dx$	0.256004339008567	0.256004339008567	-4.34×10 ⁻¹⁶
494	$I_{494} = \int_{0}^{1} \ln(3+x) dx$	1.249340578475234	1.249340578475233	3.55×10 ⁻¹⁶
495	$I_{495} = \int_{0}^{1} x^{3} \cdot (1 - x)^{5} dx$	1.98412698412699×10 ⁻³	1.98412698412698×10 ⁻³	8.74×10 ⁻¹⁶
496	$I_{496} = \int_{0}^{4} x \cdot (\exp(-3 \cdot x)) dx$	0.111102236137712	0.111102236137712	1.12×10 ⁻¹⁵

497	$I_{497} = \int_{0}^{1} \frac{x \cdot \exp(x)}{(1+x)^{2}} dx$	0.359140914229523	0.359140914229523	9.27×10 ⁻¹⁶
1	$I_{498} = \int_{0}^{5} \frac{\exp(-4 \cdot x)}{\sqrt{x}} dx$	0.88622692522769	0.88622692522769	2.51×10 ⁻¹⁶
499	$I_{499} = \int_{0}^{\ln(2)} \frac{x}{\exp(x) + 2 \cdot (\exp(-x)) - 2} dx$	0.27219826128795	0.27219826128795	2.04×10 ⁻¹⁶
500	$I_{500} = \int_0^1 \frac{\exp\left(\frac{-5}{x}\right)}{x^2} dx$	1.34758939981709×10 ⁻³	1.34758939981709×10 ⁻³	-4.83×10 ⁻¹⁶
501	$I_{501} = \int_{0}^{\frac{\pi}{2}} \exp\left(-\tan{(x)^2}\right) dx$	0.671646710823367	0.671646710823366	1.32×10 ⁻¹⁵
502	$I_{502} = \int_{0}^{\frac{\pi}{2}} \frac{\sin(7 \cdot x)}{\sin(x)} dx$	1.570796326794898	1.570796326794896	8.48×10 ⁻¹⁶
503	$I_{503} = \int_{0}^{\frac{\pi}{2}} \frac{\sin(8 \cdot x) \cdot \cos(5 \cdot x)}{\sin(x)} dx$	1.570796326794898	1.570796326794896	1.13×10 ⁻¹⁵
504	$I_{504} = \int_{0}^{\pi} \frac{\sin\left(5 \cdot x\right)}{\sin\left(x\right)} dx$	3.141592653589796	3.141592653589793	1.13×10 ⁻¹⁵
505	$I_{505} = \int_{0}^{\pi} \frac{\cos\left(7 \cdot x\right)}{\cos\left(x\right)} dx$	-3.141592653589796	-3.141592653589793	7.07×10 ⁻¹⁶
506	$I_{506} = \int_{0}^{\pi} \frac{\cos(2 \cdot x)}{1 - 6 \cdot \cos(x) + 9} dx$	4.36332312998583×10 ⁻²	4.36332312998582×10 ⁻²	9.54×10 ⁻¹⁶
507	$I_{507} = \int_{0}^{\pi} \frac{\sin(4 \cdot x) \cdot \sin(x)}{1 - 10 \cdot \cos(x) + 25} dx$	5.02654824574371×10 ⁻⁴	5.02654824574367×10 ⁻⁴	7.55×10 ⁻¹⁵

508	$I_{508} = \int_{0}^{\frac{\pi}{4}} \frac{\sin(x)^{6}}{\cos(x)^{8}} dx$	0.142857142857143	0.142857142857143	-7.77×10 ⁻¹⁶
509	$I_{509} = \int_{0}^{\frac{\pi}{2}} \frac{\sin(10 \cdot x) \cdot \cos(x)^{9}}{\sin(x)} dx$	1.570796326794898	1.570796326794896	8.48×10 ⁻¹⁶
510	$I_{510} = \int_{0}^{\frac{\pi}{2}} \sqrt{\sin\left(x\right)} dx$	1.198140234735592	1.198140234733642	1.63×10 ⁻¹²
511	$I_{511} = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin(x)}} dx$	2.62205755429212	2.62205755429212	1.69×10 ⁻¹⁶
512	$I_{512} = \int_{0}^{\frac{\pi}{2}} \frac{\cos(x)^{5} \cdot \cos(5 \cdot x)}{16 \cdot \sin(x)^{2} + 9 \cdot \cos(x)^{2}} dx$	7.9753249570515×10 ⁻³	7.9753249570515×10 ⁻³	1.09×10 ⁻¹⁵
513	$I_{513} = \int_{0}^{\pi} \frac{\sin(x)^{2}}{5 + 4 \cdot \cos(x)} dx$	0.392699081698724	0.392699081698724	8.48×10 ⁻¹⁶
514	$I_{514} = \int_{0}^{\frac{\pi}{4}} \frac{\sin(x)^{0.5}}{(\cos(x) - \sin(x))^{-0.5} \cdot \cos(x)^{3}} dx$	0.392699081698724	0.392699081698724	7.07×10 ⁻¹⁶
515	$I_{515} = \int_{0}^{\frac{\pi}{2}} \frac{\sin(x)}{\sqrt{1 + 25 \cdot \sin(x)^2}} dx$	0.274680153389003	0.274680153389003	4.04×10 ⁻¹⁶
	$I_{516} = \int_{0}^{\pi} \frac{\sin(x)}{\sqrt{1 - 8 \cdot \cos(x) + 16}} dx$	0.5	0.5	6.66×10 ⁻¹⁶
517	$I_{517} = \int_{0}^{1} \sqrt{\frac{\cos(2 \cdot x) - \cos(2)}{\cos(2 \cdot x) + 1}} dx$	0.72209144937841	0.72209144937841	7.69×10 ⁻¹⁶

518	$I_{518} = \int_{0}^{\frac{\pi}{4}} \frac{1}{\left(\tan(x)^{3} + \cot(x)^{3}\right) \cdot \sin(2 \cdot x)} dx$	0.130899693899575	0.130899693899575	6.36×10 ⁻¹⁶
519	$I_{519} = \int_{0}^{\frac{\pi}{2}} \frac{\tan(x)}{\cos(x)^{4} + \sec(x)^{4}} dx$	0.196349540849362	0.196349540849362	1.13×10 ⁻¹⁵
520	$I_{520} = \int_{0}^{\frac{\pi}{2}} \sin\left(4 \cdot \sin\left(x\right)\right) \cdot \sin\left(2 \cdot x\right) dx$	0.232221498518315	0.232221498518315	1.08×10 ⁻¹⁵
521	$I_{521} = \int_{0}^{\frac{\pi}{2}} \sin\left(4 \cdot \cos\left(x\right)\right) \cdot \sin\left(2 \cdot x\right) dx$	0.232221498518315	0.232221498518315	1.08×10 ⁻¹⁵
522	$I_{522} = \int_{0}^{\frac{\pi}{4}} x \cdot \tan(x) dx$	0.185784535800659	0.185784535800659	5.98×10 ⁻¹⁶
523	$I_{523} = \int_{0}^{\frac{\pi}{4}} x \cdot \cot(x) dx$	0.73018105837656	0.73018105837656	1.52×10 ⁻¹⁶
524	$I_{524} = \int_{0}^{\frac{\pi}{2}} \frac{x}{\sin(x)} dx$	1.83193118835444	1.831931188354438	7.27×10 ⁻¹⁶
525	$I_{525} = \int_{0}^{\frac{\pi}{2}} x \cdot \cot(x) dx$	1.088793045151802	1.088793045151801	6.12×10 ⁻¹⁶
526	$I_{526} = \int_{0}^{\frac{\pi}{2}} \left(\frac{\pi}{2} - x\right) \cdot \tan\left(x\right) dx$	1.0887930451518	1.088793045151801	-1.22×10 ⁻¹⁵

527	$I_{527} = \int_{0}^{\frac{\pi}{4}} \frac{x^2}{\cos(x)^2} dx$	0.245281203466767	0.245281203466766	1.47×10 ⁻¹⁵
528	$I_{528} = \int_{0}^{\frac{\pi}{4}} x \cdot \tan(x)^{3} dx$	9.96136275967891×10 ⁻²	9.9613627596789×10 ⁻²	1.53×10 ⁻¹⁵
529	$I_{529} = \int_{0}^{\frac{\pi}{4}} \frac{x^2 \cdot \tan(x)}{\cos(x)^2} dx$	0.178025701950609	0.178025701950609	7.8×10 ⁻¹⁶
530	$I_{530} = \int_{0}^{\frac{\pi}{4}} \frac{x^2 \cdot \tan(x)^2}{\cos(x)^2} dx$	0.139207673291502	0.139207673291502	5.98×10 ⁻¹⁶
531	$I_{531} = \int_{1}^{e} \frac{\ln(x)}{(1 + \ln(x))^2} dx$	0.359140914229523	0.359140914229523	1.08×10 ⁻¹⁵
532	$I_{532} = \int_{0}^{1} \ln(x) \cdot \ln(1-x) dx$	0.355065933151774	0.355065933151774	0
533	$I_{533} = \int_{0}^{\frac{\pi}{4}} \ln (\tan (x))^{4} dx$	23.907787873850136	23.90778787385011	1.04×10 ⁻¹⁵
534	$I_{534} = \int_{0}^{\frac{\pi}{4}} \ln\left(\tan\left(x\right)\right) dx$	-0.915965594177219	-0.915965594177219	1.21×10 ⁻¹⁶
535	$I_{535} = \int_{0}^{\frac{\pi}{4}} \ln\left(1 + \tan\left(x\right)\right) dx$	0.27219826128795	0.27219826128795	0
536	$I_{536} = \int_{0}^{\frac{\pi}{4}} \ln\left(\sqrt{\tan\left(x\right)} + \sqrt{\cot\left(x\right)}\right) dx$	0.73018105837656	0.73018105837656	0

537	$I_{537} = \int_{-1}^{1} -\ln\left(\cos\left(\frac{\pi}{2} \cdot x\right)\right) dx$	1.386294361119888	1.38629436111989	-9.61×10 ⁻¹⁶
538	$I_{538} = \int_{0}^{\frac{\pi}{2}} \frac{\sin(x)}{\sqrt{1 + 9 \cdot \sin(x)^2}} dx$	0.416348590799418	0.416348590799418	6.67×10 ⁻¹⁶
539	$I_{539} = \int_{0}^{\pi} \frac{\sin(x)}{\sqrt{1 - 6 \cdot \cos(x) + 9}} dx$	0.666666666666667	0.666666666666667	8.33×10 ⁻¹⁶
540	$I_{540} = \int_{0}^{1} \sqrt{\frac{\cos(2 \cdot x) - \cos(2)}{\cos(2 \cdot x) + 1}} dx$	0.72209144937841	0.72209144937841	7.69×10 ⁻¹⁶
541	$I_{541} = \int_{0}^{\frac{\pi}{4}} \left(\sqrt{\tan(x)} + \sqrt{\cot(x)} \right) dx$	2.221441469079184	2.221441469079183	2×10 ⁻¹⁶
542	$I_{542} = \int_{0}^{\frac{\pi}{4}} \left(\sqrt{\tan(x)} - \sqrt{\cot(x)} \right) \cdot \tan(x) dx$	-0.221441469079183	-0.221441469079183	1×10 ⁻¹⁵
543	$I_{543} = \int_{0}^{\frac{\pi}{4}} \frac{\frac{1}{\tan(x)^{3} + \cot(x)^{3}}}{\sin(2 \cdot x)} dx$	0.130899693899575	0.130899693899575	6.36×10 ⁻¹⁶
544	$I_{544} = \int_{0}^{\frac{\pi}{2}} \sin\left(5 \cdot \cos(x)\right) \cdot \sin\left(2 \cdot x\right) dx$	-0.190178816158342	-0.190178816158342	7.3×10 ⁻¹⁶
545	$I_{545} = \int_{0}^{1} \frac{1}{\sqrt{1 - 2 \cdot x \cdot \cos(3) + x^{2}}} dx$	0.694402045011473	0.694402045011472	6.4×10 ⁻¹⁶
546	$I_{546} = \int_{0}^{\frac{\pi}{4}} \frac{\cos(x) - \sin(x)}{\cos(x) + \sin(x)} \cdot x dx$	8.64137254872911×10 ⁻²	8.6413725487291×10 ⁻²	1.45×10 ⁻¹⁵

547	$I_{547} = \int_{0}^{\frac{\pi}{4}} \left(\frac{\pi}{4} - x \cdot \tan(x) \right) \cdot \tan(x) dx$	0.141798825704517	0.141798825704517	3.91×10 ⁻¹⁶
548	$I_{548} = \int_{0}^{\frac{\pi}{4}} \frac{\left(\frac{\pi}{4} - x\right) \cdot \tan\left(x\right)}{\cos\left(2 \cdot x\right)} dx$	0.185784535800659	0.185784535800659	-3.14×10 ⁻¹⁵
549	$I_{549} = \int_{0}^{\frac{\pi}{4}} \frac{\frac{\pi}{4} - x \cdot \tan(x)}{\cos(2 \cdot x)} dx$	0.73018105837656	0.73018105837656	4.56×10 ⁻¹⁶
550	$I_{550} = \int_{0}^{\frac{\pi}{4}} \frac{\frac{x}{\sin(x)}}{\cos(x) + \sin(x)} dx$	0.643767332889269	0.643767332889269	6.9×10 ⁻¹⁶
551	$I_{551} = \int_{0}^{\frac{\pi}{4}} \frac{\sin(x) \cdot x}{\left(\sin(x) + \cos(x)\right) \cdot \cos(x)^{2}} dx$	0.166626311829526	0.166626311829525	8.33×10 ⁻¹⁶
552	$I_{552} = \int_{0}^{\frac{\pi}{2}} \left(\frac{1}{x} - \cot(x) \right) dx$	0.451582705289456	0.451582705289455	1.72×10 ⁻¹⁵
553	$I_{553} = \int_{0}^{\frac{\pi}{2}} \frac{4 \cdot x^{2} \cdot \cos(x) + (\pi - x) \cdot x}{\sin(x)} dx$	6.841088463857122	6.841088463857115	9.09×10 ⁻¹⁶
554	$I_{554} = \int_{0}^{\pi} \frac{x \cdot \cos\left(x\right)}{1 + \sin\left(x\right)} dx$	-1.486276286405275	-1.486276286405274	4.48×10 ⁻¹⁶
555	$I_{555} = \int_{0}^{\frac{\pi}{2}} \frac{x}{\left(\sin\left(x\right) + \cos\left(x\right)\right) \cdot \sin\left(x\right)} dx$	1.460362116753121	1.46036211675312	1.06×10 ⁻¹⁵

556	$I_{556} = \int_{0}^{\frac{\pi}{2}} \frac{x \cdot \sin(2 \cdot x)}{9 \cdot \cos(x)^{2} + 16 \cdot \sin(x)^{2}} dx$	5.99287488704021×10 ⁻²	5.99287488704021×10 ⁻²	5.79×10 ⁻¹⁶
557	$I_{557} = \int_{0}^{\frac{\pi}{2}} \frac{x \cdot \sin(2 \cdot x)}{\left(1 + 3 \cdot \sin(x)^{2}\right) \cdot \left(1 + 4 \cdot \sin(x)^{2}\right)} dx$	0.112547741244143	0.112547741244143	1.73×10 ⁻¹⁵
558	$I_{558} = \int_{0}^{\frac{\pi}{4}} \frac{x^2 \cdot \tan(x)}{\cos(x)^2} dx$	0.178025701950609	0.178025701950609	7.8×10 ⁻¹⁶
559	$I_{559} = \int_{0}^{\frac{\pi}{2}} \frac{x^3 \cdot \cos(x)}{\sin(x)^3} dx$	1.328486842936666	1.328486842936664	6.69×10 ⁻¹⁶
560	$I_{560} = \int_{0}^{\pi} \exp(3 \cdot \cos(x)) \cdot \sin(3 \cdot \sin(x)) \cdot \cot(\frac{x}{2}) dx$	59.958982587703176	59.95898258770312	9.48×10 ⁻¹⁶
561	$I_{561} = \int_{0}^{\frac{\pi}{4}} \ln\left(\cos\left(x\right) - \sin\left(x\right)\right) dx$	-0.730181058376557	-0.73018105837656	-3.5×10 ⁻¹⁵
562	$I_{562} = \int_{0}^{\frac{\pi}{4}} \ln\left(\cos\left(x\right) + \sin\left(x\right)\right) dx$	0.185784535800659	0.185784535800659	4.48×10 ⁻¹⁶
563	$I_{563} = \int_{0}^{\frac{\pi}{4}} \ln(\tan(x))^{2} dx$	1.937892292518738	1.937892292518738	0
564	$I_{564} = \int_{0}^{\frac{\pi}{4}} \ln(\tan(x))^{4} dx$	23.907787873850136	23.90778787385011	1.04×10 ⁻¹⁵

565	$I_{565} = \int_{0}^{\frac{\pi}{2}} \ln(\cos(x))^2 dx$	2.046622024472451	2.04662202447274	-1.41×10 ⁻¹³
566	$I_{566} = \int_{0}^{\frac{\pi}{2}} \ln\left(\cos\left(x\right) + \sin\left(x\right)\right) dx$	0.371569071601319	0.371569071601319	4.48×10 ⁻¹⁶
567	$I_{567} = \int_0^{2 \cdot \pi} \frac{x \cdot \sin(30 \cdot x)}{\sqrt{1 - \left(\frac{x}{2 \cdot \pi}\right)^2}} dx$	-2.543259618893549	-2.54325961889353	7.33×10 ⁻¹⁵
568	$I_{568} = \int_{-1}^{1} \cos\left(\sqrt{377} \cdot x\right) dx$	5.53186030042137×10 ⁻²	5.5318603004214×10 ⁻²	-5.39×10 ⁻¹⁵
569	$I_{569} = \int_{-1}^{1} x^{2} \cdot \left(\exp\left(-\left(x^{2}\right)\right)\right) \cdot \tan\left(x\right) \cdot a\cos\left(x\right) dx$	-0.321556002594905	-0.321556002594905	6.91×10 ⁻¹⁶
570	$I_{570} = \int_{-1}^{1} \exp(-3 \cdot x) \cdot \cos(16 \cdot \sqrt{3} \cdot \pi \cdot x) dx$	-0.176358246030565	-0.176358246030565	1.42×10 ⁻¹⁵
571	$I_{571} = \int_{-1}^{1} \exp\left(\cos\left(\sqrt{47 \cdot \pi} \cdot x\right)\right) dx$	2.43808148220335	2.43808148220355	-8.2×10 ⁻¹⁴
572	$I_{572} = \int_{-1}^{1} \cosh\left(\tanh\left(\sinh\left(x\right)\right)\right) dx$	2.2780062213156	2.27800622131559	4.48×10 ⁻¹⁵
573	$I_{573} = \int_{-1}^{1} \left(\frac{23}{25} \cdot \cosh(x) - \cos(x) \right) dx$	0.479428226688802	0.479428226688802	4.63×10 ⁻¹⁶
574	$I_{574} = \int_{-1}^{1} \exp\left(-2 \cdot x\right) \cdot \cos\left(16 \cdot \sqrt{2} \cdot x\right) dx$	-0.218673123892561	-0.21867312389256	3.55×10 ⁻¹⁵
575	$I_{575} = \int_{-1}^{1} x \cdot \operatorname{atan}(x^3) dx$	0.355120831053972	0.355120831053971	1.41×10 ⁻¹⁵

576	$I_{576} = \int_{-1}^{1} \exp(x) \cdot \operatorname{atan}(x^{3}) dx$	0.398130064822845	0.398130064822845	4.18×10 ⁻¹⁶
577	$I_{577} = \int_{-1}^{1} \frac{x \cdot \sin(30 \cdot x)}{\sqrt{1 - \frac{x^2}{4 \cdot \pi^2}}} dx$	-1.26968216456723×10 ⁻²	-1.2696821645673×10 ⁻²	-5.7×10 ⁻¹⁴
578	$I_{578} = \int_{-1}^{1} x \cdot \sin(50 \cdot x) \cdot \cos(75 \cdot x) dx$	3.35187325881552×10 ⁻²	3.3518732588154×10 ⁻²	3.6×10 ⁻¹⁴
579	$I_{579} = \int_{-1}^{1} \frac{1}{x^4 + x^2 + \exp(1)} dx$	0.631299652055893	0.631299652055891	2.64×10 ⁻¹⁵
580	$I_{580} = \int_{-1}^{1} \frac{\tan(x)}{1 + \exp(x) \cdot \sin(\pi \cdot x)} dx$	-0.719818067507943	-0.719818067507943	3.08×10 ⁻¹⁶
581	$I_{581} = \int_{0}^{8} \exp(-3 \cdot x) \cdot \cos(5 \cdot \pi \cdot x) dx$	1.17306589082459×10 ⁻²	1.17306589082458×10 ⁻²	1×10 ⁻¹⁴
582	$I_{582} = \int_{-1}^{1} \exp(x) \cdot \sin(3 \cdot x) \cdot \tanh(5 \cdot \cos(30 \cdot x)) dx$	-1.77905930768801×10 ⁻²	-1.77905930768788×10 ⁻²	7.4×10 ⁻¹⁴
583	$I_{583} = \int_{0}^{1} x^{\frac{-2}{3}} dx$	3	3	0
	$I_{584} = \int_{0}^{1} x^{5} \cdot \ln\left(\frac{1}{x}\right) dx$	2.7777777777778×10 ⁻²	2.7777777777778×10 ⁻²	7.49×10 ⁻¹⁶
	$I_{585} = \int_{0}^{1} x^{-x \cdot \frac{-3}{10} \cdot (-\ln(x))^{\frac{-7}{10}}} dx$	0.897286844094312	0.897286844094311	6.19×10 ⁻¹⁶
586	$I_{586} = \int_{0}^{1} \frac{x^2}{100 \cdot x^{2 \cdot x} + 1} dx$	4.89912103742573×10 ⁻³	4.89912103742572×10 ⁻³	2.48×10 ⁻¹⁵

587	$I_{587} = \int_{0}^{1} \frac{x \cdot (-\ln(x))}{100 \cdot x^{2 \cdot x} + 1} dx$	4.48871788603617×10 ⁻³	4.48871788603617×10 ⁻³	9.66×10 ⁻¹⁶
588	$I_{588} = \int_{0}^{1} \sin\left(\frac{x - \ln(x)}{100 \cdot x^{-2 \cdot x} + 1}\right) dx$	1.39190589978132×10 ⁻³	1.39190589978131×10 ⁻³	4.83×10 ⁻¹⁵
589	$I_{589} = \int_{0}^{1} \frac{\sin(100 \cdot x \cdot - \ln(x))}{100 \cdot x^{-2 \cdot x} + 1} dx$	-6.04120738023785×10 ⁻⁴	-6.04120738023787×10 ⁻⁴	-3.05×10 ⁻¹⁵
590	$I_{590} = \int_{0}^{1} \frac{\sin(70 \cdot x^{2})}{100 \cdot x^{x} + 1} dx$	8.85299549568392×10 ⁻⁴	8.85299549568385×10 ⁻⁴	8.21×10 ⁻¹⁵
591	$I_{591} = \int_{0}^{1} \frac{\sin(70 \cdot (\sin(x \cdot - \ln(x))))}{100 \cdot x^{x} + 1} dx$	-1.62624066757643×10 ⁻³	-1.62624066757643×10 ⁻³	1.33×10 ⁻¹⁵
592	$I_{592} = \int_{0}^{1} \frac{\sin\left(\left(\sqrt{x} \cdot - \ln(x)\right)^{\frac{1}{10}}\right)}{x^{\frac{1}{10}} \cdot \left(-\ln(x)\right)^{\frac{1}{5}}} dx$	0.974956208520589	0.974956208520595	-6.49×10 ⁻¹⁵
	$I_{593} = \int_{0}^{1} \sin \left(\frac{30 \cdot x^{\frac{1}{20}} \cdot (-\ln(x))^{\frac{1}{10}}}{100 \cdot x^{\frac{1}{10}} \cdot (-\ln(x))^{\frac{1}{5}} + 1} \right) dx$	0.325192766706955	0.325192766706954	1.88×10 ⁻¹⁵
594	$I_{594} = \int_{0}^{1} x^{2} \cdot \exp(x) dx$	0.718281828459046	0.718281828459045	9.27×10 ⁻¹⁶
595	$I_{595} = \int_{0}^{1} (-\ln(x))^{5} \cdot x^{4} dx$	7.6800000000001×10 ⁻³	7.68×10 ⁻³	9.04×10 ⁻¹⁶
596	$I_{596} = \int_{0}^{\frac{\pi}{2}} \sin(x)^{6} \cdot \cos(x)^{6} dx$	7.66990393942821×10 ⁻³	7.66990393942821×10 ⁻³	1.02×10 ⁻¹⁵

597	$I_{597} = \int_{0}^{\frac{\pi}{2}} \ln\left(\sin\left(x\right)\right)^{2} dx$	2.046622024472741	2.04662202447274	2.17×10 ⁻¹⁶
598	$I_{598} = \int_{0}^{1} \sqrt{-\ln\left(x\right)} dx$	0.886226925452758	0.886226925452758	2.51×10 ⁻¹⁶
599	$I_{600} = \int_{0}^{1} \left(1 - \sqrt{x}\right)^{9} dx$	0.31970854624595	0.319708546245952	-5.9×10 ⁻¹⁵
600	$I_{600} = \int_{0}^{1} \left(1 - \sqrt{x}\right)^{9} dx$	1.818181818182×10 ⁻²	1.818181818182×10 ⁻²	1.14×10 ⁻¹⁵
601	$I_{601} = \int_{0}^{1} \sqrt{x} \cdot (1 - x)^{0.3} dx$	0.47442115499606	0.47442115499606	-8.19×10 ⁻¹⁶
602	$I_{602} = \int_{0}^{1} \frac{3 \cdot x^{2}}{x^{6} + 1} dx$	0.785398163397449	0.785398163397448	5.65×10 ⁻¹⁶
603	$I_{603} = \int_{0}^{1} \frac{\cos(4 \cdot x)}{\sqrt{x}} dx$	0.461461462433217	0.461461462433216	1.68×10 ⁻¹⁵
604	$I_{604} = \int_{0}^{1} \frac{\cos(x) - \cos(2 \cdot x)}{x} dx$	0.607570274686049	0.607570274686048	1.28×10 ⁻¹⁵
605	$I_{605} = \int_{0}^{\frac{\pi}{2}} \frac{\operatorname{asin}\left(\frac{\sqrt{2}}{2} \cdot \operatorname{sin}(x)\right) \cdot \operatorname{sin}(x)}{\sqrt{4 - 2 \cdot \operatorname{sin}(x)^{2}}} dx$	0.384946472767795	0.384946472767795	1.01×10 ⁻¹⁵
606	$I_{606} = \int_{-2}^{2} \frac{\pi \cdot \cosh(x) \cdot \sin\left(\exp\left(\frac{\pi}{2} \cdot \sinh(x)\right)\right)}{2} dx$	1.570440063849674	1.5704400638497	-1.7×10 ⁻¹⁴

607	$I_{607} = \int_{0}^{1} \frac{\ln(x)^{6} \cdot \operatorname{atan}\left(\left \frac{x \cdot \sqrt{3}}{x - 2}\right \right)}{x + 1} dx$	4.742841654850866	4.74284165485086	1.31×10 ⁻¹⁵
608	$I_{608} = \int_{0}^{4} (x^{2} + \exp(x) \cdot \sin(x)) dx$	19.01719148125282	19.0171914812528	9.34×10 ⁻¹⁶
609	$I_{609} = \int_{0}^{1} 3 \cdot x^{2} \cdot \sin(100 \cdot x)^{3} \cdot \exp\left(\frac{1}{3} \cdot x\right) dx$	-2.74939659971463×10 ⁻²	-2.74939659971493×10 ⁻²	-1.09×10 ⁻¹³
610	$I_{610} = \int_{0}^{2\pi} \exp(\cos(x)) dx$	7.954926521012849	7.95492652101284	1.12×10 ⁻¹⁵
611	$I_{611} = \int_{0}^{2\pi} \sqrt{1 - 0.36 \cdot \sin(x)^2} dx$	5.672333577794892	5.67233357779489	3.13×10 ⁻¹⁶
612	$I_{612} = \int_{0}^{1} 6 \cdot x^{5} dx$	1.0000000000000001	1	8.88×10 ⁻¹⁶
613	$I_{613} = \int_{-\pi}^{\pi} \exp\left(-\left(\tan\left(\frac{x}{2}\right)^2\right)\right) dx$	2.686586843293475	2.68658684329347	1.98×10 ⁻¹⁵
614	$I_{614} = \int_{1}^{2} \frac{1+x}{\left(x^2+2\cdot x+5\right)^{\frac{1}{3}}} dx$	1.146581110259154	1.14658111025915	3.49×10 ⁻¹⁵
615	$I_{615} = \int_{0}^{1} \frac{1}{\sqrt{x}} \cdot \ln\left(\frac{\exp(1)}{x}\right) dx$	6.0000000000000000000000000000000000000	6	2.96×10 ⁻¹⁶
616	$I_{616} = \int_0^1 x^3 \cdot \ln\left(\frac{1}{x}\right)^4 dx$	2.34375×10 ⁻²	2.34375×10 ⁻²	-1.48×10 ⁻¹⁶

617	$I_{617} = \int_{0}^{1} \frac{1}{\sqrt{x} + x^{\frac{1}{3}}} dx$	0.841116916640328	0.841116916640328	2.64×10 ⁻¹⁶
618	$I_{618} = \int_{0}^{1} \frac{\exp(x)}{\sqrt{x + 0.01}} dx$	2.724504212796121	2.72450421279611	4.07×10 ⁻¹⁵
619	$I_{619} = \int_{0}^{1} \frac{1}{(1+x)\cdot\sqrt{x}} dx$	1.570796326794897	1.570796326794896	2.83×10 ⁻¹⁶
620	$I_{620} = \int_{-1}^{1} \exp(-3 \cdot x^{2}) \cdot \ln(1 + x + x^{2}) dx$	8.264445682438×10 ⁻²	8.26444568243798×10 ⁻²	2.02×10 ⁻¹⁵
621	$I_{621} = \int_{0}^{1} \frac{x^{2} \cdot \ln(x)}{\sqrt{1 - x^{2}}} dx$	-0.151697440877176	-0.151697440877176	0
622	$I_{622} = \int_{0}^{\pi} \sqrt{4095 \cdot \cos(x)^2 + 1} dx$	128.0788372812453	128.07883728123699	6.5×10 ⁻¹⁴
623	$I_{623} = \int_{-5}^{5} \left(x^6 - \frac{105}{4} \cdot x^4 + \frac{315}{2} \cdot x^2 - \frac{315}{4} \right) dx$	1846.428571428574	1846.42857142857	2.09×10 ⁻¹⁵
624	$I_{624} = \int_{-3}^{3} \left(x^8 - \frac{104}{3} \cdot x^6 + 658 \cdot x^4 - 2940 \cdot x^2 + 1785 \right) dx$	4459.885714285721	4459.88571428571	2.65×10 ⁻¹⁵
625	$I_{625} = \int_{0}^{\frac{\pi}{2}} (x^2 + x + 1) \cdot \cos(x) dx$	2.038197427067237	2.038197427067236	4.36×10 ⁻¹⁶
626	$I_{626} = \int_{0}^{1} \frac{x^{\frac{2}{3}}}{\left(x^{2} + (1 - x)^{2}\right)^{\frac{4}{3}}} dx$	1.120251300333281	1.120251300333137	1.29×10 ⁻¹³

627	$I_{627} = \int_{1}^{5} \frac{\ln\left(x\right)}{\exp\left(x^{2}\right)} dx$	3.58827495918287×10 ⁻²	3.58827495918286×10 ⁻²	2.13×10 ⁻¹⁵
628	$I_{628} = \int_{0}^{0.64} \frac{\operatorname{atan}(x)}{x^{\frac{3}{2}}} dx$	1.561298647472914	1.56129864747291	2.84×10 ⁻¹⁵
629	$I_{629} = \int_{0}^{0.64} \frac{\operatorname{atan}(x)}{\sqrt{x}} dx$	0.323946328121006	0.323946328121005	1.37×10 ⁻¹⁵
630	$I_{630} = \int_{0}^{1} \frac{1}{x \cdot \left(\exp\left((-\ln(x))^{2}\right)\right)} dx$	0.886226925452759	0.886226925452759	-3.76×10 ⁻¹⁶
631	$I_{631} = \int_{-1}^{2} x \cdot x dx$	2.33333333333333333	2.3333333333333333	-1.9×10 ⁻¹⁶
632	$I_{632} = \int_{0}^{30} \frac{x}{5+x} \cdot \left(\exp\left(\frac{-2 \cdot x}{30}\right) \right) dx$	7.402842400429536	7.40284240042953	8.4×10 ⁻¹⁶
633	$I_{633} = \int_{0.1}^{1} \frac{\exp\left(x\right)}{x^3} dx$	59.825083980864235	59.82508398086411	2.14×10 ⁻¹⁵
634	$I_{634} = \int_{-1.5}^{1.5} 12 \cdot x \cdot (\exp(-2 \cdot x)) dx$	-121.1106663595405	-121.11066635953999	4.11×10 ⁻¹⁵
635	$I_{635} = \int_{0}^{10} \sin\left(2 \cdot \sin\left(2 \cdot \sin\left(x \cdot \sin\left(x\right)\right)\right)\right) dx$	2.373671799713168	2.37367179971318	-4.86×10 ⁻¹⁵
636	$I_{636} = \int_{-6}^{6} \frac{-2}{\sqrt{\pi}} \cdot \ln \left[\frac{\cos\left(\frac{\pi \cdot \tanh(x)}{2}\right)}{\cosh(x)^2} \right] dx$	131.37601758861672	131.37601758862	-2.5×10 ⁻¹⁴
	$I_{637} = \int_{0}^{1} \sqrt{1 + \frac{1}{x}} dx$	2.295587149392638	2.29558714939263	3.48×10 ⁻¹⁵

638	$I_{638} = \int_{0}^{\pi} \frac{x \cdot \sin(x)}{1 + \cos(x)^{2}} dx$	2.467401100272338	2.46740110027233	3.42×10 ⁻¹⁵
639	$I_{639} = \int_{0}^{1} \frac{x^{2} \cdot \ln(x)}{(x^{2} - 1) \cdot (x^{4} + 1)} dx$	0.180671262590655	0.180671262590655	9.22×10 ⁻¹⁶
640	$I_{640} = \int_{5}^{6} \frac{\sin((x-4)\cdot 55)}{x-4.99} dx$	-0.583124927619718	-0.583124927619709	1.5×10 ⁻¹⁴
641	$I_{641} = \int_{0}^{100} \exp(-0.01 \cdot x) \cdot (0.01 \cdot \cos(0.3 \cdot x) + 0.3 \cdot \sin(0.3 \cdot x)) dx$	0.94325406281547	0.94325406281547	-2.35×10 ⁻¹⁶
642	$I_{642} = \int_{0}^{100} \frac{0.2 \cdot (1+x) \cdot \cos(0.2 \cdot x) - \sin(0.2 \cdot x)}{(1+x)^2} dx$	9.03906188839236×10 ⁻³	9.0390618883923×10 ⁻³	7.1×10 ⁻¹⁵
643	$I_{643} = \int_{0}^{10} \frac{80 \cdot \sin\left(\sqrt{1 + 80 \cdot x}\right)}{2 \cdot \sqrt{1 + 80 \cdot x}} dx$	1.539921187451305	1.5399211874513	3.32×10 ⁻¹⁵
644	$I_{644} = \int_{0}^{1} \exp\left(-\sqrt{1+x}\right) \cdot \left(0.5 \cdot \cos\left(0.5 \cdot x\right) - \frac{\sin\left(0.5 \cdot x\right)}{2 \cdot \sqrt{1+x}}\right) dx$	0.116556371349818	0.116556371349818	1.19×10 ⁻¹⁵
645	$I_{645} = \int_{-1}^{1} \exp\left(\frac{-2}{1+x} - \frac{2}{1-x}\right) dx$	1.40597168132193×10 ⁻²	1.40597168132193×10 ⁻²	4.94×10 ⁻¹⁶
646	$I_{646} = \int_{-1}^{1} \frac{1}{\left(1 + x^2\right)^{\frac{5}{4}}} dx$	1.488606159520987	1.48860615952098	4.62×10 ⁻¹⁵
647	$I_{647} = \int_{0}^{2} 3 \cdot x^{4} \cdot \left(x^{6} + (1 - x^{3})^{2}\right)^{\frac{-4}{3}} dx$	1.79777236317549	1.79777236317548	5.68×10 ⁻¹⁵
648	$I_{648} = \int_{0}^{0.1} \left(\sin(21 \cdot \pi \cdot x) + \frac{\sin(31 \cdot \pi \cdot x)}{2} \right) dx$	1.075864992592×10 ⁻²	1.075864992592×10 ⁻²	2.1×10 ⁻¹⁵

649	$I_{649} = \int_{0}^{1} \frac{\cos(x) - 1}{x} dx$	-0.239811742000565	-0.239811742000564	2.78×10 ⁻¹⁵
650	$I_{650} = \int_{1}^{2} \operatorname{csch}(x) dx$	0.499595363993474	0.499595363993473	8.89×10 ⁻¹⁶
651	$I_{651} = \int_{1}^{2} \operatorname{sech}(x) dx$	0.435990852806357	0.435990852806356	1.27×10 ⁻¹⁵
652	$I_{652} = \int_{1}^{2} \coth\left(x\right) dx$	1.126928011042972	1.12692801104297	2.17×10 ⁻¹⁵
653	$I_{653} = \int_{1}^{2} \csc(x) \cdot \cot(x) dx$	8.86449354835048×10 ⁻²	8.86449354835047×10 ⁻²	1.41×10 ⁻¹⁵
654	$I_{654} = \int_{1}^{2} \tanh\left(x\right) dx$	0.891221916874837	0.891221916874837	3.74×10 ⁻¹⁶
655	$I_{655} = \int_{0}^{1} \ln\left(\frac{1}{x}\right)^{5} dx$	120.00000000000001	120.00000000000001	0
656	$I_{656} = \int_{0}^{1} x^{-x} dx$	1.291285997062664	1.29128599706266	2.92×10 ⁻¹⁵
657	$I_{657} = \int_{0}^{1} x^{x} dx$	0.783430510712134	0.783430510712134	5.67×10 ⁻¹⁶
658	$I_{658} = \int_{1}^{2} \frac{\ln\left(x^{4}\right)}{x} dx$	0.960906027836404	0.960906027836403	9.24×10 ⁻¹⁶
659	$I_{659} = \int_{-4}^{2} (x+3) \cdot (x-1)^2 dx$	12.0000000000000005	12	4.44×10 ⁻¹⁶

660	$I_{660} = \int_{0}^{1} \frac{\ln\left(\frac{1}{x}\right)}{x^{0.25}} dx$	1.7777777777778	1.77777777777778	2.5×10 ⁻¹⁶
661	$I_{661} = \int_{0}^{1} \frac{1}{16 \cdot \left(x - \frac{\pi}{4}\right)^{2} + \frac{1}{16}} dx$	2.778784419627962	2.778784419627957	1.92×10 ⁻¹⁵
662	$I_{662} = \int_{0}^{\pi} \cos\left(64 \cdot \sin\left(x\right)\right) dx$	0.290880102173724	0.290880102173725	-2.86×10 ⁻¹⁵
663	$I_{663} = \int_{0}^{1} \exp(20 \cdot (x - 1)) \cdot \sin(256 \cdot x) dx$	-1.48594479678942×10 ⁻⁴	-1.48594479678924×10 ⁻⁴	1.18×10 ⁻¹³
664	$I_{664} = \int_{-1}^{1} x \cdot \sin\left(2 \cdot \exp\left(2 \cdot \sin\left(2 \cdot \exp\left(2 \cdot x\right)\right)\right)\right) dx$	0.336732834781731	0.336732834781727	1.1×10 ⁻¹⁴
665	$I_{665} = \int_{0}^{1} \left \frac{\sin(x)}{\frac{2}{\pi} \cdot \left(x^{x} - \frac{\pi}{2} \right)} \right dx$	0.953989447883289	0.953989447883287	1.75×10 ⁻¹⁵
666	$I_{666} = \int_{1}^{3} \exp(2 \cdot x) \cdot \sin(3 \cdot x) dx$	108.55528121212787	108.55528121212699	7.99×10 ⁻¹⁵
667	$I_{667} = \int_{0}^{5} \left(2 \cdot x \cdot \cos(2 \cdot x) - (x - 2)^{2} \right) dx$	-15.306307985651756	-15.306307985651703	3.6×10 ⁻¹⁵
668	$I_{668} = \int_{0}^{1} \ln(x) \cdot \ln(1-x) dx$	0.355065933151774	0.355065933151773	1.56×10 ⁻¹⁵
669	$I_{669} = \int_{-1}^{1} \frac{1}{1 + 25 \cdot x \cdot x} dx$	0.549360306778007	0.549360306778006	1.82×10 ⁻¹⁵

670	$I_{670} = \int_{-1}^{1} \frac{1}{1 + 0.04 \cdot x \cdot x} dx$	1.973955598498808	1.9739555984988	4.05×10 ⁻¹⁵
671	$I_{671} = \int_{0}^{1} \ln(x) \cdot \cos(10 \cdot \pi \cdot x) dx$	-4.89888171153882×10 ⁻²	-4.89888171153878×10 ⁻²	7.51×10 ⁻¹⁵
672	$I_{672} = \int_{-1}^{1} \cos(10 \cdot x) \cdot \Gamma(x+2) \cdot \operatorname{erf}\left(\sqrt{1+x}\right) dx$	-0.115420768826884	-0.115420768826884	1.92×10 ⁻¹⁵
673	$I_{673} = \int_{0}^{1} 7 \cdot x^{6} dx$	1.0000000000000001	1	8.88×10 ⁻¹⁶
674	$I_{674} = \int_{-1}^{1} \frac{1}{1 + 1000 \cdot x^2} dx$	9.73465489249143×10 ⁻²	9.73465489249131×10 ⁻²	1.2×10 ⁻¹⁴
675	$I_{675} = \int_{-1}^{1} (1-x)^{-0.3} \cdot (1+x)^{0.2} dx$	2.312455379699914	2.31245537970453	-2×10 ⁻¹²
676	$I_{676} = \int_{0}^{1} \ln\left(\frac{1}{x}\right) \cdot a\sin\left(x\right) dx$	0.263943507354842	0.263943507354842	2.1×10 ⁻¹⁶
677	$I_{677} = \int_{1}^{2} \frac{1}{(x - \sqrt{3})^{2} + 0.0001} dx$	309.06300535156714	309.0630053515632	1.3×10 ⁻¹⁴
678	$I_{678} = \int_{\exp(-\pi)}^{\exp(\pi)} \sin(\ln(x)) dx$	11.548739357257748	11.548739357257746	1.54×10 ⁻¹⁶
679	$I_{679} = \int_{0}^{1} \frac{x^{2} \cdot \ln(x)}{\sqrt{1 - x^{2}}} dx$	-0.151697440877176	-0.151697440877176	0
680	$I_{680} = \int_{0}^{1} \operatorname{asinh} \left[\frac{x \cdot \left(1 + \frac{x}{2} \right)}{1 + x} \right] dx$	0.386294361119891	0.386294361119891	1.44×10 ⁻¹⁶

681	$I_{681} = \int_{0}^{1} \frac{1}{x + 10^{-4}} dx$	9.210440366976513	9.210440366976515	-3.86×10 ⁻¹⁶
682	$I_{682} = \int_{0}^{1} \ln\left(\frac{1}{x}\right) \cdot a\sin\left(x\right) dx$	0.263943507354842	0.263943507354842	2.1×10 ⁻¹⁶
683	$I_{683} = \int_{0}^{1} 8 \cdot x^{7} dx$	1.0000000000000001	1	8.88×10 ⁻¹⁶
684	$I_{684} = \int_{0.0127}^{0.318} \frac{\sin\left(\frac{1}{x}\right) + 1 + x \cdot \cos\left(\frac{1}{x}\right)}{x} dx$	2.913298334131767	2.913298334131762	1.83×10 ⁻¹⁵
685	$I_{685} = \int_{0}^{\pi} \cos(x)^{20} \cdot \cos(20 \cdot x) dx$	2.99605622691113×10 ⁻⁶	2.99605622633914×10 ⁻⁶	1.91×10 ⁻¹⁰
686	$I_{686} = \int_{0}^{\pi} \exp(10 \cdot \cos(x)) \cdot \cos(10 \cdot \sin(x)) dx$	3.141592653589058	3.141592653589793	-2.34×10 ⁻¹³
687	$I_{687} = \int_{0}^{16} \frac{\exp\left(-x\right)}{\sqrt{x}} dx$	1.77245382357914	1.77245382357914	1.25×10 ⁻¹⁶
688	$I_{688} = \int_{0}^{1} \frac{\ln(1-x^2)}{\frac{x}{1+x}} dx$	-0.480453013918201	-0.480453013918201	-6.93×10 ⁻¹⁶
689	$I_{689} = \int_{0}^{1} \frac{\exp\left[\frac{-\left(\frac{1}{x} - 1\right)^{2}}{2}\right]}{x^{2}} dx$	1.253314137315502	1.2533141373155	1.24×10 ⁻¹⁵
690	$I_{690} = \int_{0}^{1} \ln\left(\frac{1}{x}\right) \cdot x^{-0.25} dx$	1.777777777777778	1.77777777777777	4.62×10 ⁻¹⁵

691	$I_{691} = \int_{0}^{1} 2 \cdot (\exp(-x^{2})) dx$	1.493648265624854	1.49364826562485	2.97×10 ⁻¹⁵
692	$I_{692} = \int_{0}^{1} \frac{\ln\left(1 + x^{2}\right)}{x} dx$	0.411233516712057	0.411233516712057	-5.4×10 ⁻¹⁶
693	$I_{693} = \int_{0}^{1} 9 \cdot x^{8} dx$	1.0000000000000001	1	8.88×10 ⁻¹⁶
694	$I_{694} = \int_{0}^{1} \cos\left(20 \cdot \sqrt{x}\right) dx$	8.83349353818298×10 ⁻²	8.83349353818297×10 ⁻²	4.71×10 ⁻¹⁶
695	$I_{695} = \int_{1 \times 10^{-05}}^{1} \frac{\exp(-(x^2))}{\sin(x)^{0.7}} dx$	2.919559206682426	2.91955920668242	1.83×10 ⁻¹⁵
	$I_{695} = \int_{1 \times 10^{-05}}^{1} \frac{\exp(-(x^2))}{\sin(x)^{0.7}} dx$	0.398825195241461	0.398825195241461	-8.35×10 ⁻¹⁶
	$I_{697} = \int_{0}^{\frac{\pi}{2}} \frac{\operatorname{asin}\left(\frac{\sqrt{2}}{2} \cdot \operatorname{sin}(x)\right) \cdot \operatorname{sin}(x)}{\sqrt{4 - 2 \cdot \operatorname{sin}(x)^{2}}} dx$	0.384946472767795	0.384946472767795	1.01×10 ⁻¹⁵
698	$I_{698} = \int_{0}^{1} x^{2} \cdot \operatorname{atan}(x) dx$	0.210657251225807	0.210657251225807	1.32×10 ⁻¹⁶
699	$I_{699} = \int_{0}^{\frac{\pi}{2}} \exp(x) \cdot \cos(x) dx$	1.905238690482678	1.905238690482676	9.32×10 ⁻¹⁶
700	$I_{700} = \int_{0}^{1} \frac{\operatorname{atan}\left(\sqrt{2+x^{2}}\right)}{\left(1+x^{2}\right)\cdot\sqrt{2+x^{2}}} dx$	0.514041895890071	0.514041895890071	0
701	$I_{701} = \int_{0}^{1} \sqrt{x} \cdot \ln(x) dx$	-0.444444444444444444444444444444444444	-0.444444444444444444444444444444444444	0

702	$I_{702} = \int_{0}^{1} \sqrt{1 - x^2} dx$	0.785398163397448	0.785398163397448	2.83×10 ⁻¹⁶
703	$I_{703} = \int_{0}^{1} \ln{(x)^2} dx$	2	2	0
704	$I_{704} = \int_{0}^{\frac{\pi}{2}} \ln\left(\cos\left(x\right)\right) dx$	-1.088793045151796	-1.088793045151801	-5.1×10 ⁻¹⁵
705	$I_{705} = \int_{-1}^{10} \frac{\ln(x+1)}{x^2+1} dx$	0.482392639244251	0.482392639244251	9.21×10 ⁻¹⁶
706	$I_{706} = \int_{0}^{2} \sqrt{x \cdot (4 - x)} dx$	3.141592653589794	3.141592653589793	1.41×10 ⁻¹⁶
707	$I_{707} = \int_{-1}^{1} \sqrt{(1-x^2) \cdot (2-x)} dx$	2.203345731824744	2.20334573182474	1.81×10 ⁻¹⁵
708	$I_{708} = \int_0^1 x^{-\frac{1}{4}} \cdot \ln\left(\frac{1}{x}\right) dx$	1.777777777777778	1.77777777777778	2.5×10 ⁻¹⁶
709	$I_{709} = \int_{0}^{3} 0.5 \cdot x^{-0.5} \cdot \left(\exp\left(-x^{0.5}\right) \right) dx$	0.823078793682236	0.823078793682236	1.35×10 ⁻¹⁶
710	$I_{710} = \int_{0}^{3} 1.5 \cdot x^{0.5} \cdot \left(\exp\left(-x^{1.5}\right) \right) dx$	0.994462169285618	0.994462169285617	1.34×10 ⁻¹⁵
711	$I_{711} = \int_{-1}^{0.5} \frac{2}{\pi} \cdot \sqrt{1 - x^2} dx$	0.804498890522115	0.804498890522115	1.38×10 ⁻¹⁶
712	$I_{712} = \int_{-1}^{1} \frac{2}{\pi \cdot (1 + x^2)} dx$	1.0000000000000001	1	8.88×10 ⁻¹⁶

713	$I_{713} = \int_{0}^{1} \frac{2}{\pi \cdot (1 + x^2)} dx$	0.5	0.5	2.22×10 ⁻¹⁶
714	$I_{714} = \int_{-1}^{1} \frac{1}{x - 2} dx$	-1.098612288668111	-1.09861228866811	1.01×10 ⁻¹⁵
715	$I_{715} = \int_{0}^{1} \frac{1}{4 \cdot \ln(2)} \cdot \ln\left(\frac{1+x}{1-x}\right) dx$	0.499999999999999	0.5	-1.78×10 ⁻¹⁵
716	$I_{716} = \int_{0}^{1} \frac{\ln\left(\frac{1}{x}\right)}{x^{0.25}} dx$	1.7777777777777	1.777777777777777	4.62×10 ⁻¹⁵
717	$I_{717} = \int_{0}^{1} \exp\left(-1000 \cdot (x - 0.5)^{2}\right) dx$	5.60499121639793×10 ⁻²	5.60499121639793×10 ⁻²	1.24×10 ⁻¹⁵
718	$I_{718} = \int_{0}^{1} \frac{\ln(\exp(x) + x + 1)}{x^{0.2} + 2} dx$	0.398825195241461	0.398825195241461	-6.96×10 ⁻¹⁶
719	$I_{719} = \int_{0}^{4} \frac{x}{1 + x^{6} \cdot \sin(x)^{2}} dx$	0.963568862681589	0.963568862681576	1.3×10 ⁻¹⁴
720	$I_{720} = \int_{0}^{1} x^{-0.123} dx$	1.140836232958759	1.140836232958759	0
721	$I_{721} = \int_{0}^{1} \cos(x) \cdot x^{-0.123} dx$	0.975361986889054	0.975361986889053	6.83×10 ⁻¹⁶
722	$I_{722} = \int_{0}^{1} \exp\left(\frac{-1}{x} - \frac{1}{1-x}\right) dx$	7.02985840660965×10 ⁻³	7.02985840660965×10 ⁻³	4.94×10 ⁻¹⁶
723	$I_{723} = \int_{-1}^{1} \frac{2 \cdot (1 - x^2)}{\cos(4 \cdot \operatorname{atanh}(x)) + \cosh(2)} dx$	0.7119438229706	0.711943822970598	2.18×10 ⁻¹⁵

724	$I_{724} = \int_{0}^{2} \frac{x}{1 + x^{6} \cdot \sinh(x)^{2}} dx$	0.503134546469862	0.503134546469862	4.41×10 ⁻¹⁶
725	$I_{726} = \int_{0}^{\frac{\pi}{2}} \frac{x^2}{x^2 + \ln(2 \cdot \cos(x))^2} dx$	1.0000000000000001	1	8.88×10 ⁻¹⁶
726	$I_{726} = \int_{0}^{\frac{\pi}{2}} \frac{x^2}{x^2 + \ln(2 \cdot \cos(x))^2} dx$	0.887759656403869	0.887759656403869	0
727	$I_{727} = \int_{60.32}^{146.05} \left \frac{\tan\left(\arcsin\left(\frac{x^2 + 7744}{500 \cdot x}\right) - \frac{22 \cdot \pi}{180}\right)}{x} \cdot \frac{90}{\pi} \right ^2 dx$	2.29047241361082×10 ⁻³	2.29047241361083×10 ⁻³	-2.46×10 ⁻¹⁵
728	$I_{728} = \int_{0}^{1} \left(\cos \left(20 \cdot \sqrt{x} \right) + \left(\exp \left(-1000 \cdot (x - 0.5)^{2} \right) \right) \right) dx$	0.144384847545809	0.144384847545809	1.35×10 ⁻¹⁵
729	$I_{729} = \int_{0}^{\pi} \frac{x}{x^2 + 1} \cdot \cos(10 \cdot x^2) dx$	3.15600493623372×10 ⁻⁴	3.15600493623455×10 ⁻⁴	-2.65×10 ⁻¹³
730	$I_{730} = \int_{-1}^{0} \frac{\sin(x)}{x} \cdot \ln(10 \cdot (1 - x)) dx$	2.53499844271662	2.53499844271662	1.75×10 ⁻¹⁶
731	$I_{731} = \int_{-1}^{1} \frac{1}{1 + 16 \cdot x^2} dx$	0.662908831834017	0.662908831834016	1.51×10 ⁻¹⁵