Индукция

7 сентября, 14 сентября • 8 класс

Правила. Пятёрки получат те, кто до 20 сентября включительно наберут 10 баллов. По умолчанию каждый пункт каждой задачи ст**о**ит 1 балл. Удачи!

Принцип математической индукции. Пусть дана серия утверждений P(n), по одному утверждению для каждого натурального числа. Пусть также для всех натуральных k из утверждения P(k) следует утверждение P(k+1). Тогда из P(1) следует P(n) для всех n.

Игрушечный пример. Пусть P(n) это "сумма n единиц положительна". Так как сумма k+1 единицы это сумма суммы k единиц с ещё одной единицей, а сумма двух положительных чисел положительна, то из P(k) следует P(k+1). Так как единица положительна, то P(1) верно. Значит, P(n) верно для всех n.

Задачи на разбор

Задача 1. Используя индукцию, докажите, что следующие формулы верны.

(a)
$$1 + 2 + \dots + (n-1) + n = \frac{n(n+1)}{2}$$

(b) $1^2 + 2^2 + \dots + (n-1)^2 + n^2 = \frac{n(n+1)(2n+1)}{6}$
(c) $1^3 + 2^3 + \dots + (n-1)^3 + n^3 = \left(\frac{n(n+1)}{2}\right)^2$

Задача 2. Используя индукцию и соотношение $C_{n+1}^{k+1} = C_n^{k+1} + C_n^k$, обоснуйте формулу бинома Ньютона:

$$(a+b)^n = a^n + C_n^1 a^{n-1} b + C_n^2 a^{n-2} b^2 + \dots + C_n^{n-1} a b^{n-1} + b^n.$$

Из-за этой формулы, числа сочетаний C_n^k также принято называть **биномиальными ко-эффициентами**. Часто можно встретить для них обозначение $\binom{n}{k}$. Обратите внимание, что в этих обозначениях n сверху, а k снизу.

Задача 3. Докажите, что для всех натуральных $n \ge 10$ выполнено неравенство $2^n > n^3$.

Задача 4. Несколько прямых делят плоскость на части. Докажите, что можно раскрасить эти части в чёрный и белый цвет так, чтобы части одного цвета не имели общих сторон.

Задача 5. Показать, что ханойскую башню из любого числа колец можно переложить на другой стержень, соблюдая правила игры.

Задача 6. Показать, что для любого n>2 единицу можно представить как сумму n различных дробей вида $\frac{1}{q}$.

Задачи для самостоятельного решения

Задача 1. Показать, что любую сумму, начиная с 12 рублей, можно уплатить монетами в 3 рубля и 7 рублей.

Задача 2. На встрече некоторые люди пожали друг другу руки. **С помощью индукции** докажите, что число людей, сделавших нечётное число рукопожатий, чётно.

Задача 3. Пусть n — любое натуральное число. Показать, что квадрат $2^n \times 2^n$ с вырезанной угловой клеткой можно разрезать на уголки из трёх клеток.

Задача 4. На доске написаны 2 единицы. Каждую минуту между каждой парой соседних чисел на доске вписывают их сумму.

 $1 \quad 1 \quad \mapsto \quad 1 \quad 2 \quad 1 \quad \mapsto \quad 1 \quad 3 \quad 2 \quad 3 \quad 1 \quad \mapsto \quad 1 \quad 4 \quad 3 \quad 5 \quad 2 \quad 5 \quad 3 \quad 4 \quad 1 \quad \mapsto \quad .$

Найдите сумму чисел на доске через 100 минут.

Задача 5. Доказать, что для любого натурального n выполнено неравенство

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} < 2.$$

Задача 6 (2 балла). Доказать, что число $\underbrace{11\dots11}_{3^n$ делится на 3^n для всех натуральных n.

Задача 7 (2 балла). На доске написано 1501 цифра — нули и единицы (в любой комбинации и в любом порядке). Разрешается выполнять два вида действий:

- (1) менять первую цифру,
- (2) менять цифру, стоящую после первой единицы.

Покажите, что комбинируя эти комбинации (в любом количестве) можно получить на доске любую последовательность.

Задача 8 (3 балла). Доказать, что для любого натурального n выполнено неравенство

$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \ldots + \frac{1}{n^2} < 2.$$

Задача 9 (3 балла). На краю пустыни имеется большой запас бензина и машина, которая при полной заправке может проехать 50 километров. Имеются (в неограниченном количестве) канистры, в которые можно сливать бензин из бензобака машины и оставлять на хранение (в любой точке пустыни). Доказать, что машина может проехать любое расстояние. (Канистры с бензином возить не разрешается, пустые можно возить в любом количестве.)