Universidade Federal de Minas Gerais - Departamento de Ciência da Computação - Segundo Semestre de 2017

Introdução aos Sistemas Lógicos

Professor: Luiz Filipe Menezes Vieira

lfvieira@dcc.ufmg.br

Monitor: Vinícius Silva Barros

viniciusbarros@dcc.ufmg.br

Laboratório de Hardware 2: "Somador/Subtrator"

Data da Prática: 20/09/2017 Data da entrega do relatório: 20/09/2017

Objetivo: Esta prática de laboratório tem como principal objetivo possibilitar ao aluno uma experiência inicial com a implementação de um projeto funcional completo. O projeto em questão, descrito em maiores detalhes abaixo, diz respeito a um Somador/Subtrator de um bit.

Funcionamento do somador/subtrator: O circuito de um somador completo (full adder – FAD) é mostrado na Figura 1. Um somador completo, com pequenas modificações, pode ser utilizado para efetuar subtração. A subtração de dois números inteiros em binário pode ser feita utilizando-se a seguinte equação: $A-B=A+(\overline{B}+1)$. Nessa equação, a subtração é efetuada utilizando operações de adição e o conceito de "complemento de 2" $(\overline{B}+1)$.

Figura 1: Circuito para um somador completo (FAD)

A Figura 2 mostra um circuito Somador/Subtrator de 4 bits. Esse circuito é originado do somador paralelo de 4 bits, porém com a adição de portas XOR nas entradas associadas a B, de modo a permitir a negação individual de cada bit de B (\overline{B}) . A Figura 2 representa o circuito em função dos sinais de controle sel_1 e sel_2 . Pode-se observar que sel_1 representa a variável C_0 do primeiro FAD.

Com base na Figura 2, tem-se as seguintes operações:

Figura 2: Circuito para um somador/subtrator de 4 bits

Operações Possíveis									
sel_1	sel_2 Operação Descrição								
0	0	S = A + B + 0	adiciona A e B ($S = A + B$)						
0	1	$S = A + \overline{B} + 0$	subtrai B de A decrementado ($S = A - B - 1$)						
1	0	S = A + B + 1	adiciona A e B incrementado ($S = A + B + 1$)						
1	1	$S = A + \overline{B} + 1$	subtrai B de A ($S = A - B$)						

Atividade:

Implementar um Somador/Subtrator de um bit e preencher a tabela abaixo com as informações obtidas nos experimentos.

Testes a serem realizados										
Operação	Controle		Saída							
Descrição	sel_1	sel_2	S_0	C_1	Binário	Decimal				
0 + 0										
0 + 1										
1 + 0										
1+1										
0 - 1										
1 - 1										

Observação finais:

 Para a aula de laboratório cada aluno deverá ter implementado o somador/subtrator no Winbreadboard (ou Javabreadboard ou similar) e entregar os screenshots impressos dos circuitos obtidos ao monitor responsável, na data da prática para poder participar da prática.