Yapay Zeka

Ders 13 - Bölüm 1

Doç. Dr. Mehmet Dinçer Erbaş Bolu Abant İzzet Baysal Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

- Çözülme (İng: Resolution)
 - Çözülme bütün bir çıkarım algoritmasıdır.
 - Çelişki bulma yöntemi ile çalışır
 - BT $|= \alpha$ olduğunu göstermek için BT $\wedge \neg \alpha$ olamayacağını ispatlar.
 - Çözülmenin çalışması için BT ve ¬α birleşme normal formu (CNF) olmalıdır.
 - Çözülme ile iki koşul birleşerek yeni bir tane oluşturur.

- Boş koşul oluşuncaya kadar çıkarım devam eder.
 - Boş koşul bir çelişki anlamına gelir.

- Çözülme çıkarım kuralı
 - Basit önerimsel versiyonunu hatırlayalım

$$\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma} \qquad \frac{\neg \alpha \Rightarrow \beta, \ \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

- Tam birinci-derece versiyonu

$$\frac{p_1 \vee \dots \vee p_m,}{q_1 \vee \dots \vee q_k \dots \vee q_n}$$
$$\frac{(p_1 \vee \dots p_{j-1} \vee p_{j+1} \dots p_m \vee q_1 \dots q_{k-1} \vee q_{k+1} \dots \vee q_n)\sigma}$$

- $p_j \sigma = \neg q_k \sigma$ Olduğunda
- Örnek: ¬Zengin(x) v Mutsuz(x)

Mutsuz(Ali)

σ = {x/Ali}

- Birleştirim normal formu
 - İfade = (olumsuz olabilir) atomik cümle, örneğin ¬Zengin(Ali)
 - Koşul = İfadelerin ayrışması, örneğin ¬Zengin(Ali) v Mutsuz(Ali)
 - BT, koşulların birleşimidir.
 - Her birinci-derece mantık BT CNF haline aşağı belirtilen adımların uygulanması ile dönüştürülebilir.
 - P → Q kurallarını ¬P V Q haline dönüştür.
 - ¬ içeri hareket ettir. Örneğin ¬∀x P, ∃x¬P olur.
 - Kullanılan değişken isimlerini değiştir. Örneğin ∀xP v ∃xQ, ∀xP v ∃yQ haline gelir.
 - Niceleyicileri sola sırasıyla heraket ettir. Örneğin ∀xP v ∃yQ, ∀x∃yP v Q
 - Skolem işlemi ile ∃ sembollerinden kurtul
 - Evrensel niceleyicileri at
 - Λ işlemini v üzerine dağıt. Örneğin (P Λ Q) v R, (P v R) Λ (Q v R) olur

- Birleştirim normal formu
 - Skolem formu
 - ∃ x Zengin(x) yerine Zengin(G1) yazılır.
 - G1 yeni bir "skolem sabit" olarak tanımlanır.
 - ∀ içinde ∃ olduğunda "skolem fonksiyonu" kullanılır.
 - Her insanın bir kalbi vardır.
 - \forall x İnsan(x) → \exists y Kalp(y) \land Sahip(x,y) yerine
 - \forall x İnsan(x) → Kalp(H(x)) \land Sahip(x,H(x))
 - Skolem fonksiyonun argümanları evrensel nicelenmiş değişkenleri kapsar.

- Birinci-derece mantık cümlesini koşul formuna çevirme
 - $(\forall x)(P(x) => ((\forall y)(P(y) => P(f(x,y))) \land \neg (\forall y)(Q(x,y) => P(y))))$
 - → eleme
 - $(\forall x)(\neg P(x) \lor ((\forall y)(\neg P(y) \lor P(f(x,y))) \land \neg(\forall y)(\neg Q(x,y) \lor P(y))))$
 - Olumsuzun etki alanını azalt
 - $(\forall x)(\neg P(x) \lor ((\forall y)(\neg P(y) \lor P(f(x,y))) \land (\exists y)(Q(x,y) \land \neg P(y))))$
 - Değişkenleri standartlaştır
 - $(\forall x)(\neg P(x) \lor ((\forall y)(\neg P(y) \lor P(f(x,y))) \land (\exists z)(Q(x,z) \land \neg P(z))))$
 - \exists eleme
 - $(\forall x)(\neg P(x) \lor ((\forall y)(\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \neg P(g(x)))))$
 - ∀ kaldır
 - $(\neg P(x) \lor ((\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \neg P(g(x)))))$

- Birinci-derece mantık cümlesini koşul cümlesine çevirme
 - $(\neg P(x) \lor ((\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \neg P(g(x)))))$
 - Ayrılmaların birleşimine çevir
 - $(\neg P(x) \lor \neg P(y) \lor P(f(x,y))) \land (\neg P(x) \lor Q(x,g(x))) \land (\neg P(x) \lor \neg P(g(x)))$
 - Ayrı koşullar oluştur
 - $\neg P(x) \lor \neg P(y) \lor P(f(x,y))$ $\neg P(x) \lor Q(x,g(x))$

$$\neg P(x) \lor \neg P(g(x))$$

- Değişkenleri standartlaştır
- $\neg P(x) \lor \neg P(y) \lor P(f(x,y))$

$$\neg P(z) \vee Q(z,g(z))$$

$$\neg P(w) \lor \neg P(g(w))$$

- Çözülme ile ispat
 - α cümlesini ispatlamak için
 - Olumsuz yap
 - CNF haline getir
 - CNF durumundaki BT'ye ekle
 - Çelişki bul
 - Örnek: Zengin(Ali) cümlesini ispatlamak için ¬Zengin(Ali) cümlesini CNF BT'ye ekle
 - ¬PhD(x) v YüksekNitelikli(x)
 - PhD(x) v ErkenKazanç(x)
 - ¬YüksekNitelikli(x) v Zengin(x)
 - ¬ErkenKazanç(x) v Zengin(x)

- Mantık programlama (İng: Logic programming)
 - Mantıksal BT üzerinde otomatik çıkarım yapma

Mantik Programlama	Normal Programlama
1. Problemi tanımla	Problemi tanımla
2. Bilgi topla	Bilgi topla
3. Çay molası	Çözümü oluştur
4. Bilgiyi BT'de tanımla	Çözümü programla
5. Problem örneklerini gerçek olarak tanımla	Problem örneklerini veri olarak tanımla
6. Sorgu gönder	Programa veri gönder
7. Yanlış gerçekleri bul	Fonksiyon hatalarını bul ve düzelt

- Prolog ile mantik programlama
 - Temel: Horn cümleleri ve zil-ıslık ile geri zincirleme
 - Avrupa ve Japonya'da birçok kullanıcısı vardır.
 - Program = koşullar kümesi = baş :- ifade₁, ... ifade_n
 - Birleştirme açık kodlama ile verimli şekilde yapılır
 - Direkt eşleme ile verimli şekilde bilgi elde edilir.
 - Derinlik-öncelikli, soldan sağa geri zincirleme
 - Artimetik için önceden tanımlı önerimler içerir.