Weekly Meeting

Topic: Issues regarding grouping and permutations

Presenter: Heng-Tse Chou @ NTHU STAT

Date: May 1, 2024

Issues

- 1. Check if m>8 is possible, by trying different mutiplication to the permutation.
- 2. Dig into the grouping algorithm when s=2, and think about if it can be extended to s=3.

Extendable grouping for s=2

$k=4 \rightarrow k=6$

Assume we have A_k , B_k , B_k' , B_k'' .

$$A_{k+2} = (A_k, A_k e_{k+1}, A_k e_{k+1}^2, A_k e_{k+2}, A_k e_{k+2}^2, A_k e_{k+2}^2, A_k e_{k+1}^2 e_{k+2}^2, A_k e_{k+1}^2 e_{k+2}^2, A_k e_{k+1}^2 e_{k+2}^2)$$

$$B_{k+2} = (B_k, B_k e_{k+2}, B_k e_{k+2}^2, B_k e_{k+1} e_{k+2}, B_k e_{k+1}^2 e_{k+2}^2, B_k e_{k+1}^2 e_{k+2}^2, B_k e_{k+1}^2 e_{k+2}^2, B_k e_{k+1}^2, B_k e_{k+1}^2)$$

$$B'_{k+2} = (B'_k, B'_k e_{k+1} e_{k+2}, B'_k e_{k+1}^2 e_{k+2}^2, B'_k e_{k+1} e_{k+2}^2, B'_k e_{k+1}^2 e_{k+2}^2, B'_k e_{k+1}^2 e_{k+2}^2, B'_k e_{k+1}^2 e_{k+2}^2)$$

$$B''_{k+2} = (B''_k, B''_k e_{k+1} e_{k+2}^2, B''_k e_{k+2}^2, B''_k e_{k+2}^2, B''_k e_{k+1}^2, B''_k e_{k+1}^2, B''_k e_{k+1}^2, B''_k e_{k+1}^2, B''_k e_{k+2}^2)$$

$$B''_{k+2} = (B''_k, B''_k e_{k+1} e_{k+2}^2, B''_k e_{k+1}^2 e_{k+2}, B''_k e_{k+1}^2, B''_k e_{k$$

$$k=4 \rightarrow k=6$$

- Now we have m=8 for k=4, s=3.
- 32 effects in total (full factorial: 40 effects).
- ullet By the proposed method, we have m=8 imes9=72~k=6, s=3.
- 288 effects in total (full factorial: 364 effects).

A grouping for k=4

α	β	$\alpha \cdot \beta$	$lpha \cdot eta^2$
14	23	1234	12^234^2
1^24	2^23	1^22^234	$1^2 234^2$
24	1^23	1^2234	1234^2
2^24	13	$12^{2}34$	$1^2 2^2 34^2$
123	12^24	$1^{2}34$	2^234^2
1^22^23	1^224	134	234^2
$12^{2}3$	$1^2 2^2 4$	234	1^234^2
$1^{2}23$	124	$2^{2}34$	134^2

Why 34 cannot be put in α or β

Take the first row for example.

Instead of multiply by (3,4), we multiply it by (3,34).

α	β	$\alpha \cdot \beta$	$\alpha \cdot \beta^2$
3	34	$3^{2}4$	4^2

Why 34 cannot be put in α or β

α	β	$lpha \cdot eta$	$lpha \cdot eta^2$
13	234	123^24	12^24^2
1^24	2^23	1^22^234	$1^2 234^2$
24	1^23	1^2234	1234^2
2^24	13	$12^{2}34$	$1^2 2^2 34^2$
123	12^24	$1^{2}34$	$2^2 3 4^2$
$1^2 2^2 3$	1^224	134	234^2
12^23	$1^2 2^2 4$	234	1^234^2
$1^{2}23$	124	2^234	134^2

Why 34 cannot be put in α or β

- (1, 2) and (7, 3) are duplicated.
- (1, 3) and (4, 4) are duplicated.