Neural Ordinary Differential Equation

Dario Zurlo Matteo Facci

Introduction

Deep Neural Networks

- ResNet
- NeuralODE

Applications

- System Identification
- ECG Heartbeat Classification

ResNet

Generic state transformation

$$z_{t+1} = z_t + f(z_t, \theta_{t+1})$$

Recursive relationship

$$z_1 = z_0 + f(z_0, \theta_1)$$

$$z_2 = z_1 + f(z_1, \theta_2)$$

•

•

.

$$z_{t+1} = z_t + f(z_t, \theta_{t+1})$$

ODENet

Set of ordinary differential equations

$$\frac{\partial z}{\partial t} = f(z(t), t, \theta_t)$$

Loss function

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$

Backprop Using Adjoint Method

Adjoint state

$$\mathbf{a}(t) = \frac{dL}{d\mathbf{z}(t)}$$

Time derivative of the adjoint state

$$\frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t) \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}(t)}$$

Solution of the adjoint state

$$\mathbf{a}(t_N) = \dfrac{dL}{d\mathbf{z}(t_N)}$$
 initial condition of adjoint diffeq.

$$\mathbf{a}(t_0) = \mathbf{a}(t_N) + \int_{t_N}^{t_0} \frac{d\mathbf{a}(t)}{dt} dt = \mathbf{a}(t_N) - \int_{t_N}^{t_0} \mathbf{a}(t)^T \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}(t)}$$

gradient wrt. initial value

Backprop Using Adjoint Method

The goal is to optimize the loss function with respect to its parameters $z(t_0), t_0, t_1, \theta$

Adjoint state
$$a(t) = -\frac{\partial \mathcal{L}}{\partial z(t)}$$

Time derivative of the adjoint state

$$\frac{da(t)}{dt} = -a(t)\frac{\partial f(z(t), t, \theta)}{\partial z}$$

Solution of the adjoint state with respect to $z(t_0)$

$$\frac{\partial \mathcal{L}}{\partial z(t_0)} = \int_{t_1}^{t_0} a(t) \frac{\partial f(z(t), t, \theta)}{\partial z} dt$$

Backprop Using Adjoint Method

Augmented state for computing all the gradients

$$\frac{d}{dt} \begin{bmatrix} z \\ \theta \\ t \end{bmatrix} (t) = f_{\text{aug}}([z, \theta, t]) := \begin{bmatrix} f([z, \theta, t]) \\ 0 \\ 1 \end{bmatrix}$$

New augmented adjoint state and gradient of the augmented dynamics

$$a_{\text{aug}} := \begin{bmatrix} a \\ a_{\theta} \\ a_{t} \end{bmatrix}, a_{\theta}(t) := \frac{\partial \mathcal{L}}{\partial \theta(t)}, a_{t}(t) := \frac{\partial \mathcal{L}}{\partial t(t)} \qquad \qquad \frac{\partial f_{\text{aug}}}{\partial [z, \theta, t]} = \begin{bmatrix} \frac{\partial f}{\partial z} & \frac{\partial f}{\partial \theta} & \frac{\partial f}{\partial t} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

New augmented adjoint ODE

$$\frac{da_{\text{aug}}}{dt} = -\begin{bmatrix} a\frac{\partial f}{\partial z} & a\frac{\partial f}{\partial \theta} & a\frac{\partial f}{\partial t} \end{bmatrix}$$

$$\frac{da_{\text{aug}}}{dt} = -\left[a\frac{\partial f}{\partial z} \quad a\frac{\partial f}{\partial \theta} \quad a\frac{\partial f}{\partial t}\right]$$
Solutions:
$$\frac{\partial \mathcal{L}}{\partial z(t_0)} = \int_{t_1}^{t_0} a(t)\frac{\partial f(z(t),t,\theta)}{\partial z}dt \qquad \frac{\partial \mathcal{L}}{\partial \theta} = \int_{t_1}^{t_0} a(t)\frac{\partial f(z(t),t,\theta)}{\partial \theta}dt$$

$$\frac{\partial \mathcal{L}}{\partial t_0} = \int_{t_1}^{t_0} a(t)\frac{\partial f(z(t),t,\theta)}{\partial t}dt \qquad \frac{\partial \mathcal{L}}{\partial t_1} = -a(t)\frac{\partial f(z(t),t,\theta)}{\partial t}$$

Backprop Implementation

```
1 class ODEAdjoint(torch.autograd.Function):
 2 @staticmethod
      def forward(ctx, z0, t, flat parameters, func):
          assert isinstance(func, ODEF)
          bs, *z shape = z0.size()
          time len = t.size(0)
          with torch.no grad():
              z = torch.zeros(time len, bs, *z shape).to(z0)
10
11
              for i t in range(time len - 1):
12
                   z\theta = ode_solve(z\theta, t[i_t], t[i_t+1], func)
13
                   z[i t+1] = z0
14
15
           ctx.func = func
16
           ctx.save for backward(t, z.clone(), flat parameters)
17
           return z
18
19
      @staticmethod
20
       def backward(ctx, dLdz):
21
22
           dLdz shape: time len, batch size, *z shape
23
24
          func = ctx.func
25
          t, z, flat_parameters = ctx.saved_tensors
           time len, bs, *z shape = z.size()
26
27
          n dim = np.prod(z shape)
28
           n params = flat parameters.size(0)
29
30
          # Dynamics of augmented system to be calculated backwards in time
31
           def augmented dynamics(aug z i, t i):
32
33
              tensors here are temporal slices
34
              t i - is tensor with size: bs, 1
35
              aug z i - is tensor with size: bs, n dim*2 + n params + 1
36
37
              z i, a = aug z i[:, :n dim], aug z i[:, n dim:2*n dim] # ignore parameters and time
38
39
              # Unflatten z and a
40
              z i = z i.view(bs. *z shape)
41
              a = a.view(bs, *z shape)
42
              with torch.set_grad_enabled(True):
43
                  t i = t i.detach().requires grad (True)
44
                   z i = z i.detach().requires grad (True)
45
                   func eval, adfdz, adfdt, adfdp = func.forward with grad(z i, t i, grad outputs=a) # bs, *z shape
46
                   adfdz = adfdz.to(z i) if adfdz is not None else torch.zeros(bs, *z shape).to(z i)
47
                   adfdp = adfdp.to(z i) if adfdp is not None else torch.zeros(bs, n params).to(z i)
48
                   adfdt = adfdt.to(z i) if adfdt is not None else torch.zeros(bs, 1).to(z i)
49
50
              # Flatten f and adfdz
51
              func eval = func eval.view(bs, n dim)
52
              adfdz = adfdz.view(bs, n dim)
53
              return torch.cat((func eval, -adfdz, -adfdp, -adfdt), dim=1)
```

```
55
           dLdz = dLdz.view(time len, bs, n dim) # flatten dLdz for convenience
56
           with torch.no grad():
57
               ## Create placeholders for output gradients
58
               # Prev computed backwards adjoints to be adjusted by direct gradients
59
               adj z = torch.zeros(bs, n dim).to(dLdz)
60
               adj p = torch.zeros(bs, n params).to(dLdz)
61
               # In contrast to z and p we need to return gradients for all times
62
               adj t = torch.zeros(time len, bs, 1).to(dLdz)
63
64
               for i t in range(time len-1, 0, -1):
65
                   z i = z[i t]
66
                   t i = t[i t]
67
                   f i = func(z i, t i).view(bs, n dim)
68
69
                   # Compute direct gradients
70
                   dLdz i = dLdz[i t]
71
                   dLdt i = torch.bmm(torch.transpose(dLdz i.unsqueeze(-1), 1, 2), f i.unsqueeze(-1))[:, 0]
72
73
                   # Adjusting adjoints with direct gradients
74
                   adj z += dLdz i
75
                   adj t[i t] = adj t[i t] - dLdt i
76
77
                   # Pack augmented variable
78
                   aug z = torch.cat((z i.view(bs, n dim), adj z, torch.zeros(bs, n params).to(z), adj t[i t]), dim=-1)
79
80
                   # Solve augmented system backwards
81
                   aug ans = ode solve(aug z, t i, t[i t-1], augmented dynamics)
82
83
                   # Unpack solved backwards augmented system
84
                   adj z[:] = aug ans[:, n dim:2*n dim]
85
                   adj p[:] += aug ans[:, 2*n dim:2*n dim + n params]
86
                   adj t[i t-1] = aug ans[:, 2*n \dim + n \text{ params}:]
87
88
                   del aug z, aug ans
89
90
               ## Adjust 0 time adjoint with direct gradients
91
               # Compute direct gradients
92
               dLdz \theta = dLdz[\theta]
93
               dLdt \theta = torch.bmm(torch.transpose(dLdz \theta.unsqueeze(-1), 1, 2), f i.unsqueeze(-1))[:, \theta]
94
95
               # Adjust adjoints
96
               adj z += dLdz 0
97
               adj t[0] = adj t[0] - dLdt 0
           return adj z.view(bs, *z shape), adj t, adj p, None
```

Experiment Implementation

```
1 def conduct experiment(ode true, ode trained, n steps, name, plot freq=10):
      # Create data
      z0 = Variable(torch.Tensor([[0.6, 0.3]]))
    t max = 6.29*5
      n points = 200
     index np = np.arange(0, n points, 1, dtype=np.int)
      index np = np.hstack([index np[:, None]])
10
     times np = np.linspace(0, t max, num=n points)
11
      times np = np.hstack([times_np[:, None]])
12
      times = torch.from numpy(times np[:, :, None]).to(z0)
      obs = ode true(z0, times, return whole sequence=True).detach()
15
      obs = obs + torch.randn like(obs) * 0.01
16
      # Get trajectory of random timespan
18
      min delta time = 1.0
19
      max delta time = 5.0
      max points num = 32
21
      def create batch():
22
          t0 = np.random.uniform(0, t max - max delta time)
          t1 = t0 + np.random.uniform(min delta time, max delta time)
23
24
25
          idx = sorted(np.random.permutation(index np[(times np > t0) & (times np < t1)])[:max points num])</pre>
26
27
          obs = obs[idx]
28
          ts = times[idx]
29
          return obs , ts
30
31
     # Train Neural ODE
      optimizer = torch.optim.Adam(ode trained.parameters(), lr=0.01)
33
     for i in range(n steps):
34
          obs , ts = create batch()
35
36
           z = ode trained(obs [0], ts , return whole sequence=True)
37
          loss = F.mse loss(z , obs .detach())
38
39
           optimizer.zero grad()
40
          loss.backward(retain graph=True)
41
          optimizer.step()
42
43
          if i % plot freq == 0:
44
              z p = ode trained(z0, times, return whole sequence=True)
45
46
              #plot trajectories(obs=[obs], times=[times], trajs=[z p], save=f"{i}.png")
47
              plot trajectories(obs=[obs], times=[times], trajs=[z p])
              clear output(wait=True)
```

System Identification Results

$$\frac{dz}{dt} = \begin{bmatrix} -0.1 & -1.0\\ 1.0 & -0.1 \end{bmatrix} z$$

More complicated random dynamics

ECG Heartbeat Classification

MIT-BIH ECG dataset

110.000 annotated samples

5 classes

0: Normal beat

1: Supraventricular premature beat

2: Premature ventricular contraction

3: Fusion of ventricular and normal beat

4: Unclassified beat

Class	Training set [#]	%	Test set [#]	%
N	72471	0.828	18118	0.828
S	6431	0.073	1608	0.073
P	5788	0.066	1448	0.066
F	2223	0.025	556	0.025
U	641	0.007	162	0.007
Total	87554		21892	

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	1.000000	0.758264	0.111570	0.000000	0.080579	0.078512	0.066116	0.049587	0.047521	0.035124	0.030992	0.028926	0.035124	0.026860	0.039256
1	0.908425	0.783883	0.531136	0.362637	0.366300	0.344322	0.333333	0.307692	0.296703	0.300366	0.304029	0.336996	0.377289	0.391941	0.439560
2	0.730088	0.212389	0.000000	0.119469	0.101770	0.101770	0.110619	0.123894	0.115044	0.132743	0.106195	0.141593	0.128319	0.150442	0.132743
3	1.000000	0.910417	0.681250	0.472917	0.229167	0.068750	0.000000	0.004167	0.014583	0.054167	0.102083	0.122917	0.150000	0.168750	0.172917
4	0.570470	0.399329	0.238255	0.147651	0.000000	0.003356	0.040268	0.080537	0.070470	0.090604	0.080537	0.104027	0.093960	0.117450	0.097315

5 rows x 188 columns

Dataset Samples

Normal beat

Supraventricular premature beat

Premature ventricular contraction

Unclassified beat

Model Building

- ResNet feature layers:
 - Six residual blocks stacked
 - Each residual block consists of two convolutions, normalizations and ReLU activations

```
(0): Conv1d(1, 64, kernel_size=(3,), stride=(1,))
(1): GroupNorm(32, 64, eps=1e-05, affine=True)
(2): ReLU(inplace=True)
(3): Conv1d(64, 64, kernel_size=(4,), stride=(2,), padding=(1,))
(4): GroupNorm(32, 64, eps=1e-05, affine=True)
(5): ReLU(inplace=True)
(6): Conv1d(64, 64, kernel_size=(4,), stride=(2,), padding=(1,))
(7): ResBlock(
 (gn1): GroupNorm(32, 64, eps=1e-05, affine=True)
 (conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
 (gn2): GroupNorm(32, 64, eps=1e-05, affine=True)
 (conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
 (relu): ReLU(inplace=True)
 (gn1): GroupNorm(32, 64, eps=1e-05, affine=True)
 (conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
 (gn2): GroupNorm(32, 64, eps=1e-05, affine=True)
 (conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
 (relu): ReLU(inplace=True)
 (gn1): GroupNorm(32, 64, eps=1e-05, affine=True)
 (conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
 (gn2): GroupNorm(32, 64, eps=1e-05, affine=True)
 (conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
 (relu): ReLU(inplace=True)
(10): ResBlock(
 (gn1): GroupNorm(32, 64, eps=1e-05, affine=True)
 (conv1); Conv1d(64, 64, kernel_size=(3.), stride=(1.), padding=(1.), bias=False)
 (gn2): GroupNorm(32, 64, eps=1e-05, affine=True)
 (conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
 (relu): ReLU(inplace=True)
(11): ResBlock(
 (gn1): GroupNorm(32, 64, eps=1e-05, affine=True)
 (conv1); Conv1d(64, 64, kernel_size=(3.), stride=(1.), padding=(1.), bias=False)
 (gn2): GroupNorm(32, 64, eps=1e-05, affine=True)
 (conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
 (relu): Rel U(inplace=True)
 (gn1): GroupNorm(32, 64, eps=1e-05, affine=True)
 (conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
 (gn2): GroupNorm(32, 64, eps=1e-05, affine=True)
 (conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
 (relu): ReLU(inplace=True)
(13): GroupNorm(32, 64, eps=1e-05, affine=True)
(14): ReLU(inplace=True)
(15): AdaptiveAvgPool1d(output_size=1)
(16): Flatten()
(17): Linear(in_features=64, out_features=5, bias=True)
```

- ODENet feature layers:
 - Same structure as a single residual block
 - Uses odeint_adjoint function from torchdiffeq library:
 - Forward: dopri5 solver
 - Backward: adjoint method

```
Sequential(
 (0): Conv1d(1, 64, kernel_size=(3,), stride=(1,))
 (1): GroupNorm(32, 64, eps=1e-05, affine=True)
 (2): ReLU(inplace=True)
 (3): Conv1d(64, 64, kernel_size=(4,), stride=(2,), padding=(1,))
 (4): GroupNorm(32, 64, eps=1e-05, affine=True)
 (5): ReLU(inplace=True)
 (6): Conv1d(64, 64, kernel_size=(4,), stride=(2,), padding=(1,))
 (7): ODENet(
  (odefunc): ODEfunc(
   (norm1): GroupNorm(32, 64, eps=1e-05, affine=True)
   (relu): ReLU(inplace=True)
   (conv1): ConcatConv1d(
    (_layer): Conv1d(65, 64, kernel_size=(3,), stride=(1,), padding=(1,))
   (norm2): GroupNorm(32, 64, eps=1e-05, affine=True)
   (conv2): ConcatConv1d(
    (_layer): Conv1d(65, 64, kernel_size=(3,), stride=(1,), padding=(1,))
   (norm3): GroupNorm(32, 64, eps=1e-05, affine=True)
 (8): GroupNorm(32, 64, eps=1e-05, affine=True)
 (9): ReLU(inplace=True)
 (10): AdaptiveAvgPool1d(output_size=1)
 (11): Flatten()
 (12): Linear(in_features=64, out_features=5, bias=True)
```

ResNet vs. ODENet

ResNet training phase:

```
Training... epoch 1
Percent trained: 100.0% Time elapsed: 2.9 min val loss: 0.22

Training... epoch 2
Percent trained: 100.0% Time elapsed: 2.9 min val loss: 0.13

Training... epoch 3
Percent trained: 100.0% Time elapsed: 2.9 min val loss: 0.11

Training... epoch 4
Percent trained: 100.0% Time elapsed: 2.9 min val loss: 0.1

Training... epoch 5
Percent trained: 100.0% Time elapsed: 2.9 min val loss: 0.09
```

Overall validation results:

ResNet accuracy: 0.974 ODENet accuracy: 0.969

ODENet training phase:

```
Training... epoch 1
Percent trained: 100.0% Time elapsed: 14.3 min val loss: 0.23

Training... epoch 2
Percent trained: 100.0% Time elapsed: 17.8 min val loss: 0.16

Training... epoch 3
Percent trained: 100.0% Time elapsed: 18.7 min val loss: 0.12

Training... epoch 4
Percent trained: 100.0% Time elapsed: 18.8 min val loss: 0.11

Training... epoch 5
Percent trained: 100.0% Time elapsed: 18.8 min val loss: 0.12
```

Number of tunable parameters in...

ResNet: 182853 ODENet: 59333

Conclusions

•	Pros:
	Ability to parametrize the ODE which describes the input
	Trade-off between speed and memory
	Can adjust errors
	Continuous dynamics
	Method generally applicable to numerous tasks
•	Cons:
	Very slow training phase
	No advantage with respect to other architectures in case of data sampled at regular time intervals
	Issues with mini-batching
	Uniqueness of the ODE solution only if the nonlinearities be Lipschitz-continuous