## **Q-Learning**

- Reinforcement Learning
- Basic Q-learning algorithm
- Common modifications

## Reinforcement Learning

- Delayed reward
  - We don't immediately know whether we did the correct thing
- Encourages exploration
- We don't necessarily know the precise results of our actions before we do them
- We don't necessarily know all about the current state
- Life-long learning

### **Our Problem**

- We don't immediately know how beneficial our last move was
- Rewards: 100 for win, -100 for loss
- We don't know what the new state will be from an action
- Current state is well defined
- Life-long learning?

## **Q-Learning Basics**

- At each step s, choose the action a which maximizes the function Q(s, a)
  - Q is the estimated utility function it tells us how good an action is given a certain state
- Q(s, a) = immediate reward for making an action + best utility (Q) for the resulting state
- Note: recursive definition
- More formally ...

### **Formal Definition**

$$Q(s,a)=r(s,a)+\gamma\max_{a'}(Q(s',a'))$$
 $r(s,a)=$ Immediate reward
 $\gamma=$ relative value of delayed vs. immediate rewards (0 to 1)
 $s'=$ the new state after action a
 $a,a'$ : actions in states  $s$  and  $s'$ , respectively

Selected action:

$$\pi(s) = argmax_a Q(s, a)$$

## **Q** Learning Algorithm

For each state-action pair (s, a), initialize the table entry  $\hat{Q}(s, a)$  to zero Observe the current state s

#### Do forever:

- ---Select an action a and execute it
- ---Receive immediate reward r
- ---Observe the new state s'
- --- Update the table entry for  $\hat{Q}(s, a)$  as follows:

$$\hat{Q}(s,a)=r+\gamma \max_{a'}\hat{Q}(s',a')$$

$$---s=s'$$

## **Example Problem**



 $\gamma = .5$ , r = 100 if moving into state s6, 0 otherwise

## **Initial State**

| s1, a12 | 0 |
|---------|---|
| s1, a14 | 0 |
| s2, a21 | 0 |
| s2, a23 | 0 |
| s2, a25 | 0 |
| s3, a32 | 0 |
| s3, a36 | 0 |
| s4, a41 | 0 |
| s4, a45 | 0 |
| s5, a54 | 0 |
| s5, a52 | 0 |
| s5, a56 | 0 |



# The Algorithm

| s1, a12 | 0 |
|---------|---|
| s1, a14 | 0 |
| s2, a21 | 0 |
| s2, a23 | 0 |
| s2, a25 | 0 |
| s3, a32 | 0 |
| s3, a36 | 0 |
| s4, a41 | 0 |
| s4, a45 | 0 |
| s5, a54 | 0 |
| s5, a52 | 0 |

#### Current Position: Red

Available actions: a12, a14 Chose a12



## Update Q(s1, a12)

| s1, a12 | 0 |
|---------|---|
| s1, a14 | 0 |
| s2, a21 | 0 |
| s2, a23 | 0 |
| s2, a25 | 0 |
| s3, a32 | 0 |
| s3, a36 | 0 |
| s4, a41 | 0 |
| s4, a45 | 0 |
| s5, a54 | 0 |
| s5, a52 | 0 |

#### Current Position: Red

Available actions: a21, a25, a23

Update Q(s1, a12):  
Q(s1, a12) = 
$$r + .5 * max(Q(s2,a21), Q(s2,a25), Q(s2,a25))$$
  
= 0



## **Next Move**

| s1, a12 | 0 |
|---------|---|
| s1, a14 | 0 |
| s2, a21 | 0 |
| s2, a23 | 0 |
| s2, a25 | 0 |
| s3, a32 | 0 |
| s3, a36 | 0 |
| s4, a41 | 0 |
| s4, a45 | 0 |
| s5, a54 | 0 |
| s5, a52 | 0 |

#### Current Position: Red

Available actions: a21, a25, a23 Chose a23



## Update Q(s2, a23)

| s1, a12 | 0 |
|---------|---|
| s1, a14 | 0 |
| s2, a21 | 0 |
| s2, a23 | 0 |
| s2, a25 | 0 |
| s3, a32 | 0 |
| s3, a36 | 0 |
| s4, a41 | 0 |
| s4, a45 | 0 |
| s5, a54 | 0 |
| s5, a52 | 0 |

#### **Current Position: Red**

Available actions: a32, a36

Update Q(s1, a12):  
Q(s2, a23) = 
$$r + .5 * max(Q(s3,a32), Q(s3,a36))$$
  
= 0



## **Next Move**

| s1, a12 | 0 |
|---------|---|
| s1, a14 | 0 |
| s2, a21 | 0 |
| s2, a23 | 0 |
| s2, a25 | 0 |
| s3, a32 | 0 |
| s3, a36 | 0 |
| s4, a41 | 0 |
| s4, a45 | 0 |
| s5, a54 | 0 |
| s5, a52 | 0 |

#### Current Position: Red

Available actions: a32, a36

Chose a36



# Update Q(s3,a36)

| s1, a12 | 0   |
|---------|-----|
| s1, a14 | 0   |
| s2, a21 | 0   |
| s2, a23 | 0   |
| s2, a25 | 0   |
| s3, a32 | 0   |
| s3, a36 | 100 |
| s4, a41 | 0   |
| s4, a45 | 0   |
| s5, a54 | 0   |
| s5, a52 | 0   |

Current Position: Red

FINAL STATE!

Update Q(s1, a12): Q(s2, a23) = r = 100



## **New Game**

| s1, a12 | 0   |
|---------|-----|
| s1, a14 | 0   |
| s2, a21 | 0   |
| s2, a23 | 0   |
| s2, a25 | 0   |
| s3, a32 | 0   |
| s3, a36 | 100 |
| s4, a41 | 0   |
| s4, a45 | 0   |
| s5, a54 | 0   |
| s5, a52 | 0   |

#### Current Position: Red

Available actions: a21, a25, a23

Chose a23



## Update Q(s2, a23)

| s1, a12 | 0   |
|---------|-----|
| s1, a14 | 0   |
| s2, a21 | 0   |
| s2, a23 | 50  |
| s2, a25 | 0   |
| s3, a32 | 0   |
| s3, a36 | 100 |
| s4, a41 | 0   |
| s4, a45 | 0   |
| s5, a54 | 0   |
| s5, a52 | 0   |

#### Current Position: Red

Available actions: a32, a36

Update Q(s1, a12): Q(s2, a23) = r + .5 \* max(Q(s3,a32),

$$= 0 + .5 * 100 = 50$$



Q(s3,a36)

## Final State (after many iterations)

| s1, a12 | 25   |
|---------|------|
| s1, a14 | 25   |
| s2, a21 | 12.5 |
| s2, a23 | 50   |
| s2, a25 | 25   |
| s3, a32 | 25   |
| s3, a36 | 100  |
| s4, a41 | 12.5 |
| s4, a45 | 50   |
| s5, a54 | 25   |
| s5, a52 | 25   |
| s5, a56 | 100  |



## **Properties**

- Convergence: Our approximation will converge to the true Q function
  - But we must visit every state-action pair infinitely many times!
- Table size can be very large for complex environments like a game
- We do not estimate unseen values
- How to we fix these problems?

## **Neural Network Approximation**

- Instead of the table, use a neural network
  - Inputs are the state and action
  - Output is a number between 0 and 1 that represents the utility
- Encoding the states and actions \*properly\* will be challenging
  - Helpful idea: multiple neural networks, one for each action

### **Enhancements**

- Exploration strategy
- Store past state-action transitions and retrain on them periodically
  - The values may change as time progresses
- Temporal Difference Learning

## **Exploration Strategy**

- Want to focus exploration on the good states
- Want to explore all states
- Solution: Randomly choose the next action
  - Give a higher probability to the actions that currently have better utility

$$P(a_i|s) = \frac{k^{\hat{Q}(s,a_i)}}{\sum_{j} k^{\hat{Q}(s,a_i)}}$$

# Temporal Difference (TD) Learning

- Look farther into the future of a move
- Update the Q function after looking farther ahead
- Speeds up the learning process
- We will discuss this more when the time comes