Sistemas de losas

- Estructura plana horizontal.
- De concreto reforzado
- Que separa un nivel de la edificación de otro o que puede servir de cubierta.
- Llamada comúnmente plancha.

Tipos de losas

Por su posición:

- Horizontales
- Inclinadas

Por su espesor:

- Macizas: losas con un espesor uniforme, de entre 8 cm hasta 15 cm.
- Nervadas: Losas con espesor no uniforme, mayor a 15 cm

Por apoyos

 Pueden estar soportadas por vigas de concreto reforzado, por muros de mampostería o de concreto armado, por columnas, por estructura metálica o directamente sobre el terreno.

Por su sentido de trabajo:

 Losas monodireccionales: también llamadas losas en un sentido, se caracterizan porque trasladan las cargas en una sola dirección. (→)

- a) Losas con un solo apoyo (voladizos)
- b) Losas con apoyos paralelos
- c) Cuando la relación (R) es menor a 0.5.

$$R = A/B < 0.5$$

Donde:

A = lado corto de la losa B = lado largo de la losa

Luz libre de losas

Pre-dimensionamiento

Table 7.3.1.1—Minimum thickness of solid nonprestressed one-way slabs

Support condition	Minimum $h^{[1]}$		
Simply supported	ℓ/20	9	
One end continuous	€/24		
Both ends continuous	ℓ/28		
Cantilever	ℓ/10		

$$\ell$$
= Lado corto (A)

ARMADO DE LOSAS QUE TRABAJAN EN UN SENTIDO

ARMADO DE LOSAS QUE TRABAJAN EN UN SENTIDO

Acero por temperatura

Acero por flexión

Analisis estructural de losas en una dirección por coeficientes

Table 6.5.2—Approximate moments for nonprestressed continuous beams and one-way slabs

Moment	Location	Condition	M_u
	To design	d span Discontinuous end integral with support	$w_u \ell_n^2/14$
Positive End span Discontinuo Interior spans	End span	Discontinuous end unrestrained	$w_u \ell_n^{-2}/11$
	All	$w_u \ell_n^2/16$	
	Interior face of exterior support	Member built integrally with supporting spandrel beam	$w_n \ell_n^2 / 24$
Negative ^[1]		Member built integrally with supporting column	$w_u \ell_n^2/16$
	Exterior face of first interior support	Two spans	$w_u \ell_n^{-2}/9$
		More than two spans	$w_u \ell_n^2/10$
	Face of other supports	All	$w_{\nu}\ell_{n}^{2}/11$
	Face of all supports satisfying (a) or (b)	(a) slabs with spans not exceeding 10 ft (b) beams where ratio of sum of column stiffnesses to beam stiffness exceeds 8 at each end of span	$w_u \ell_n^2/12$

^[1] To calculate negative moments, ℓ_n shall be the average of the adjacent clear span lengths.

Método de los coeficientes del ACI: momentos positivos

Método de los coeficientes del ACI: momentos positivos

(a) Método de los coeficientes del ACI: momentos positivos

(b) Método de los coeficientes del ACI: momentos negativos

(b) Método de los coeficientes del ACI: momentos negativos

(b) Método de los coeficientes del ACI: momentos negativos

:(c) Método de los coeficientes del ACI: fuerzas cortantes