

MAP Estimation and Bayesian

Iran University of Science and Technology
M. S. Tahaei PhD.
Fall 2024

Courtesy: slides are adopted partly from Dr. Soleymani, Sharif University

Outline

- Maximum A Posteriori (MAP) estimation
- Bayes classifier
- Naïve Bayes classifier

Maximum A Posteriori (MAP) estimation

MAP estimation

$$\boldsymbol{\theta}_{MAP} = \operatorname*{argmax} p(\boldsymbol{\theta}|\mathcal{D})$$

▶ Since $p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$

$$\boldsymbol{\theta}_{MAP} = \operatorname*{argmax} p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

Example of prior distribution:

$$p(\theta) = \mathcal{N}(\theta_0, \sigma^2)$$

MAP estimation Gaussian: unknown μ

$$p(x|\mu) \sim N(\mu, \sigma^2)$$
 μ is the only unknown parameter $p(\mu|\mu_0) \sim N(\mu_0, \sigma_0^2)$ μ_0 and σ_0 are known

$$\frac{d}{d\mu} \ln \left(p(\mu) \prod_{1=i}^{N} p(x^{(i)}|\mu) \right) = 0$$

$$\Rightarrow \sum_{i=1}^{N} \frac{1}{\sigma^2} (x^{(i)} - \mu) - \frac{1}{\sigma_0^2} (\mu - \mu_0) = 0$$

$$\Rightarrow \mu_{MAP} = \frac{\mu_0 + \frac{\sigma^2}{\sigma^2} \sum_{i=1}^{N} x^{(i)}}{1 + \frac{\sigma_0^2}{\sigma^2} N}$$

$$\frac{\sigma_0^2}{\sigma^2} \gg 1 \text{ or } N \to \infty \Rightarrow \mu_{MAP} = \mu_{ML} = \frac{\sum_{i=1}^{N} x^{(i)}}{N}$$

Maximum A Posteriori (MAP) estimation

• Given a set of observations \mathcal{D} and a prior distribution $p(\theta)$ on parameters, the parameter vector that maximizes $p(\mathcal{D}|\theta)p(\theta)$ is found.

$$\mu_{N} = \frac{\sigma^{2}}{N\sigma_{0}^{2} + \sigma^{2}}\mu_{0} + \frac{N\sigma_{0}^{2}}{N\sigma_{0}^{2} + \sigma^{2}}\mu_{ML}$$

MAP estimation Gaussian: unknown μ (known σ)

$$p(\mu|\mathcal{D}) \propto p(\mu)p(\mathcal{D}|\mu)$$

$$p(\mu|\mathcal{D}) = N(\mu|\mu_N, \sigma_N)$$

$$\mu_{N} = \frac{\mu_{0} + \frac{\sigma_{0}^{2} \sum_{i=1}^{N} x^{(i)}}{1 + \frac{\sigma_{0}^{2}}{\sigma^{2}} N}}{1 + \frac{\sigma_{0}^{2}}{\sigma^{2}} N}$$

$$\frac{1}{\sigma_{N}^{2}} = \frac{1}{\sigma_{0}^{2}} + \frac{N}{\sigma^{2}}$$

More samples \Rightarrow sharper $p(\mu|\mathcal{D})$ Higher confidence in estimation

Definitions

- Posterior probability: $p(C_k | x)$
- Likelihood or class conditional probability: $p(x|C_k)$
- Prior probability: $p(C_k)$

p(x): pdf of feature vector x ($p(x) = \sum_{k=1}^{K} p(c_k|x) p(c_k)$) $p(x|C_k)$: pdf of feature vector x for samples of class C_k $p(C_k)$: probability of the label be C_k

Bayes decision rule

If
$$P | \mathcal{C}_1 | \mathbf{x} > P(\mathcal{C}_2 | \mathbf{x})$$
 decide \mathcal{C}_1 otherwise decide \mathcal{C}_2

$$p(error|\mathbf{x}) = \begin{cases} p(C_2|\mathbf{x}) & \text{if we decide } C_1 \\ P(C_1|\mathbf{x}) & \text{if we decide } C_2 \end{cases}$$

If we use Bayes decision rule:

$$P(error|\mathbf{x}) = \min\{P(\mathcal{C}_1|\mathbf{x}), P(\mathcal{C}_2|\mathbf{x})\}$$

Using Bayes rule, for each x, P (error x) is as small as possible and thus this rule minimizes the probability of error

Optimal classifier

The optimal decision is the one that minimizes the expected number of mistakes

We show that Bayes classifier is an optimal classifier

Bayes theorem

Payes' theorem posterior for the likelihood for the prior for the posterior for th

- ▶ Posterior probability: $p(C_k|x)$
- Likelihood or class conditional probability: $p(x|C_k)$
- Prior probability: $p(C_k)$

p(x): pdf of feature vector x ($p(x) = \sum_{k=1}^{K} p(x|\mathcal{C}_k)p(\mathcal{C}_k)$) $p(x|\mathcal{C}_k)$: pdf of feature vector x for samples of class \mathcal{C}_k $p(\mathcal{C}_k)$: probability of the label be \mathcal{C}_k

Bayes decision rule: example

b Bayes decision: Choose the class with highest $p\left(\mathcal{C}_k|\mathbf{x}\right)$

Bayesian decision rule If $P(C_1|x) > P(C_2|x)$ decide C_1

otherwise decide \mathcal{C}_2

 $If \frac{p(x|\mathcal{C}_1)P(\mathcal{C}_1)}{p(x)} > \frac{p(x|\mathcal{C}_2)P(\mathcal{C}_2)}{p(x)} decide \mathcal{C}_1$

otherwise decide \mathcal{C}_2

Equivalent

▶ If $p(x|C_1)P(C_1) > p(x|C_2)P(C_2)$ decide C_1 otherwise decide C_2

Bayes decision rule: example

b Bayes decision: Choose the class with highest $p\left(\mathcal{C}_k|\mathbf{x}\right)$

Bayes Classier

Simple Bayes classifier: estimate posterior probability of each class

- What should the decision criterion be?
 - ▶ Choose class with highest $p(C_k|x)$
- The optimal decision is the one that minimizes the expected number of mistakes

white blood cell count

This example has been adopted from Sanja Fidler's slides, University of Toronto, CSC411

- ▶ Doctor has a prior p(y = 1) = 0.2
 - Prior: In the absence of any observation, what do I know about the probability of the classes?
- ▶ A patient comes in with white blood cell count *x*
- ▶ Does the patient have diabetes p(y = 1|x)?
 - posterior posterior

Estimate probability densities from data

- If we assume Gaussian distributions for $p(x|\mathcal{C}_1)$ and $p(x|\mathcal{C}_2)$
- Recall that for samples $\{x^{(1)}, ..., x^{(N)}\}$, if we assume a Gaussian distribution, the MLE estimates will be

$$\mu = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$$

$$\sigma^2 = \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - \mu)^2$$

▶ Add a second observation: Plasma glucose value

Generative approach for this example

Multivariate Gaussian distributions for $p(x|\mathcal{C}_k)$:

$$p(\mathbf{x}|\mathbf{y} = k) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\}$$

$$k = 1.2$$

- ▶ Prior distribution $p(x|C_k)$:
 - $p(y = 1) = \pi, \quad p(y = 0) = 1 \pi$

MLE for multivariate Gaussian

For samples $\{x^{(1)}, ..., x^{(N)}\}$, if we assume a multivariate Gaussian distribution, the MLE estimates will be:

$$\boldsymbol{\mu} = \frac{\sum_{n=1}^{N} \boldsymbol{x}^{(n)}}{N}$$

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \boldsymbol{\mu}) (\mathbf{x}^{(n)} - \boldsymbol{\mu})^{T}$$

Correlation matrix

$$X = \begin{bmatrix} x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_d^{(N)} \end{bmatrix} \begin{bmatrix} x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(1)} & \dots & x_d^{(N)} \end{bmatrix} \begin{bmatrix} x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_d^{(N)} \end{bmatrix}$$

$$= \frac{1}{N} \begin{bmatrix} \sum_{n=1}^{N} x_1^{(n)} x_1^{(n)} & \dots & \sum_{n=1}^{N} x_1^{(n)} x_d^{(n)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_d^{(N)} \end{bmatrix}$$

$$= \frac{1}{N} \begin{bmatrix} \sum_{n=1}^{N} x_1^{(n)} x_1^{(n)} & \dots & \sum_{n=1}^{N} x_1^{(n)} x_d^{(n)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_d^{(N)} \end{bmatrix}$$

Covariance Matrix

$$\mu_{x} = \begin{bmatrix} \mu_{1} \\ \vdots \\ \mu_{d} \end{bmatrix} = \begin{bmatrix} E(x_{1}) \\ \vdots \\ E(x_{d}) \end{bmatrix}$$

$$\Sigma = E[(x - \mu_{x})(x - \mu_{x})^{T}]$$

ML estimate of covariance matrix from data points $\{x^{(i)}\}_{i=1}^N$:

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) (\mathbf{x}^{(i)} - \boldsymbol{\mu})^{T} = \frac{1}{N} (\mathbf{X}^{T} \mathbf{X})$$

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}^{(1)} \\ \vdots \\ \boldsymbol{x}^{(N)} \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}^{(1)} - \boldsymbol{\mu} \\ \vdots \\ \boldsymbol{x}^{(N)} - \boldsymbol{\mu} \end{bmatrix} \qquad \boldsymbol{\mu} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)}$$

Generative approach: example

Maximum likelihood estimation $(D = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N})$:

$$\pi = \frac{N_1}{N}$$

$$\mu_1 = \frac{\sum_{n=1}^{N} y^{(n)} x^{(n)}}{N_1}, \mu_2 = \frac{\sum_{n=1}^{N} (1 - y^{(n)}) x^{(n)}}{N_2}$$

$$N_1 = \sum_{n=1}^{N} y^{(n)}$$

$$\Sigma_{1} = \frac{1}{N_{1}} \sum_{n=1}^{N} y^{(n)} (x^{(n)} - \mu) (x^{(n)} - \mu)^{T}$$

$$\Sigma_{2} = \frac{1}{N_{2}} \sum_{n=1}^{N} (1 - y^{(n)}) (x^{(n)} - \mu) (x^{(n)} - \mu)^{T}$$

$$N_{2} = N - N_{1}$$

$$\Sigma_2 = \frac{1}{N_2} \sum_{n=1}^{N} (1 - y^{(n)}) (x^{(n)} - \mu) (x^{(n)} - \mu)^{n}$$

Decision boundary for Gaussian Bayes classifier

$$p(\mathcal{C}_{1}|\mathbf{x}) = p(\mathcal{C}_{2}|\mathbf{x})$$

$$p(\mathcal{C}_{k}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_{k})p(\mathcal{C}_{k})}{p(\mathbf{x})}$$

$$\ln p(\mathcal{C}_{1}|\mathbf{x}) = \ln p(\mathcal{C}_{2}|\mathbf{x})$$

$$\ln p(\mathbf{x}|\mathcal{C}_{1}) + \ln p(\mathcal{C}_{1}) - \ln p(\mathbf{x})$$

$$= \ln p(\mathbf{x}|\mathcal{C}_{2}) + \ln p(\mathcal{C}_{2}) - \ln p(\mathbf{x})$$

$$\ln p(\mathbf{x}|\mathcal{C}_{1}) + \ln p(\mathcal{C}_{1}) = \ln p(\mathbf{x}|\mathcal{C}_{2}) + \ln p(\mathcal{C}_{2})$$

$$\ln p(\mathbf{x}|\mathcal{C}_k)$$

$$= -\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\mathbf{\Sigma}_k^{-1}| - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)$$

Decision boundary

Shared covariance matrix

When classes share a single covariance matrix $\mathbf{\Sigma} = \mathbf{\Sigma}_1$ = $\mathbf{\Sigma}_2$

$$p(\mathbf{x}|C_k) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\}$$
$$k = 1.2$$

$$p(C_1) = \pi, \quad p(C_2) = 1 - \pi$$

Likelihood

$$\prod_{n=1}^{N} p(\mathbf{x}^{(n)}, \mathbf{y}^{(n)} | \pi, \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma})$$

$$= \prod_{n=1}^{N} p(\mathbf{x}^{(n)} | \mathbf{y}^{(n)}, \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}) p(\mathbf{y}^{(n)} | \pi)$$

Shared covariance matrix

Maximum likelihood estimation $(D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n)$:

$$\pi = \frac{N_1}{N}$$

$$\mu_1 = \frac{\sum_{n=1}^{N} y^{(n)} x^{(n)}}{N_1}$$

$$\mu_2 = \frac{\sum_{n=1}^{N} (1 - y^{(n)}) x^{(n)}}{N_2}$$

$$\Sigma = \frac{1}{N} \left(\sum_{n \in C_1} (x^{(n)} - \mu_1) (x^{(n)} - \mu_1)^T + \sum_{n \in C_2} (x^{(n)} - \mu_2) (x^{(n)} - \mu_2)^T \right)$$

Decision boundary when shared covariance matrix

$$\ln p(\mathbf{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) = \ln p(\mathbf{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2)$$

$$\ln p(\mathbf{x}|\mathcal{C}_k)$$

$$= -\frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\mathbf{\Sigma}_k^{-1}| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)$$

Naïve Bayes classifier

- Generative methods
 - High number of parameters
- Assumption: Conditional independence

$$p(\mathbf{x}|C_k) = p(x_1|C_k) \times p(x_2|C_k) \times \cdots \times p(x_d|C_k)$$

Naïve Bayes classifier

In the decision phase, it finds the label of x according to:

$$\underset{k=1,...,K}{\operatorname{argmax}} p(C_k | \mathbf{x})$$

$$n$$

$$\underset{k=1,...,K}{\operatorname{argmax}} p(C_k) \prod_{i=1}^{n} p(x_i | C_k)$$

$$i=1$$

$$p(\mathbf{x}|C_k) = p(x_1|C_k) \times p(x_2|C_k) \times \cdots \times p(x_d|C_k)$$
$$p(C_k|\mathbf{x}) \propto p(C_k) \prod_{i=1}^{n} p(x_i|C_k)$$

Naïve Bayes: discrete example

$$p(H = Yes) = 0.3$$

$$p(D = Yes|H = Yes) = \frac{1}{3}$$

$$p(S = Yes|H = Yes) = \frac{2}{3}$$

$$p(D = Yes|H = No) = \frac{2}{7}$$

$$p(S = Yes|H = No) = \frac{2}{7}$$

Diabetes (D)	Smoke (S)	Heart Disease (H)
Υ	N	Y
Υ	N	N
N	Y	N
N	Y	N
N	N	N
N	Y	Y
N	N	N
N	Y	Y
N	N	N
Υ	N	N

- Decision on x = [Yes, Yes] (a person that has diabetes and also smokes):
 - $p(H = Yes | \mathbf{x}) \propto p(H = Yes)p(D = yes | H = Yes)p(S = yes | H = Yes) = 0.066$
 - $p(H = No|x) \propto p(H = No)p(D = yes|H = No)p(S = yes|H = No) = 0.057$
 - Thus decide H = yes

Probabilistic classifiers

How can we find the probabilities required in the Bayes decision rule?

Probabilistic classification approaches can be divided in two main categories:

Generative

- Estimate pdf $p(x, C_k)$ for each class C_k and then use it to find $p(C_k|x)$
 - \square or alternatively estimate both pdf $p(x|\mathcal{C}_k)$ and $p(\mathcal{C}_k)$ to find $p(\mathcal{C}_k|x)$

Discriminative

Directly estimate $p(\mathcal{C}_k|x)$ for each class \mathcal{C}_k

Generative approach

- ▶ Inference stage
 - Determine class conditional densities $p(x|\mathcal{C}_k)$ and priors $p(\mathcal{C}_k)$
 - Use the Bayes theorem to find $p(C_k|x)$

- Decision stage: After learning the model (inference stage), make optimal class assignment for new input
 - if $p(C_i|x) > p(C_j|x)$ $\forall j \neq i$ then decide C_i

Resource

- Yaser S. Abu-Mostafa, MalikMaghdon-Ismail, and Hsuan Tien Lin, "Learning from Data", 2012.
- C. Bishop, "Pattern Recognition and Machine Learning", Chapter 2.