1. Load the dataset

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
dataset=pd.read_csv('Heart_Disease_Data.txt',na_values='?')
dataset.to_csv('cleve.csv',index=None)
ds=pd.read csv('cleve.csv')
ds.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 303 entries, 0 to 302
    Data columns (total 14 columns):
        Column Non-Null Count Dtype
    ---
                     -----
                     303 non-null
     0
                                   int64
       age
                    303 non-null int64
     1
       sex
     2 ср
                    303 non-null int64
     3 trestbps
                    303 non-null int64
     4 chol
                     303 non-null int64
     5 fbs
                     303 non-null int64
     6 restecg
                    303 non-null int64
       thalach
                     303 non-null int64
     7
     8
                     303 non-null int64
       exang
     9 oldpeak
                    303 non-null float64
                     303 non-null int64
     10 slop
                     299 non-null float64
     11 ca
     12 thal
                     301 non-null float64
     13 pred_attribute 303 non-null
                                  int64
    dtypes: float64(3), int64(11)
    memory usage: 33.3 KB
```

ds.head(6)

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slop	ca	th
0	63	1	1	145	233	1	2	150	0	2.3	3	0.0	(
1	67	1	4	160	286	0	2	108	1	1.5	2	3.0	3
2	67	1	4	120	229	0	2	129	1	2.6	2	2.0	7
3	37	1	3	130	250	0	0	187	0	3.5	3	0.0	3
4	41	0	2	130	204	0	2	172	0	1.4	1	0.0	3
5	56	1	2	120	236	0	0	178	0	0.8	1	0.0	3

ds.shape

(303, 14)

2. Explore the Data

Let's describe the dataset using descriptive statistics.

ds.describe()

	age	sex	ср	trestbps	chol	fbs	reste
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.0000
mean	54.438944	0.679868	3.158416	131.689769	246.693069	0.148515	0.9900
std	9.038662	0.467299	0.960126	17.599748	51.776918	0.356198	0.9949
min	29.000000	0.000000	1.000000	94.000000	126.000000	0.000000	0.0000
25%	48.000000	0.000000	3.000000	120.000000	211.000000	0.000000	0.0000
50%	56.000000	1.000000	3.000000	130.000000	241.000000	0.000000	1.0000
75%	61.000000	1.000000	4.000000	140.000000	275.000000	0.000000	2.0000
max	77.000000	1.000000	4.000000	200.000000	564.000000	1.000000	2.0000

Check if there are any Null values in the dataset

ds.isnull()

```
age sex cp trestbps chol fbs restecg thalach exang oldpeak slo
```

No of Nan values in the dataframe are : 2

pred_attribute is the target attribute
ds.pred_attribute.value_counts()

- 0 164
- 1 55
- 2 36
- 3 35
- 4 13

Name: pred_attribute, dtype: int64

Double-click (or enter) to edit

ds.hist(figsize=(12,12), grid=False)

```
array([[<matplotlib.axes. subplots.AxesSubplot object at 0x7f83766b9f50>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f83766b11d0>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f837668ab50>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f837663abd0>],
       (<matplotlib.axes._subplots.AxesSubplot object at 0x7f83765f8110>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f83765aa610>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f8376561b90>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f8376599fd0>],
       (<matplotlib.axes._subplots.AxesSubplot object at 0x7f8376525050>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f8376558650>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f83764c5f50>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f8376488490>],
       (<matplotlib.axes._subplots.AxesSubplot object at 0x7f837643e990>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f83763f4e90>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f83763b63d0>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f837636b8d0>]],
      dtype=object)
```


target attribute classes

- 0 healthy
- 1 sick level 1
- 2 sick level 2
- 3 sick level 3
- 4 sick level 4

Text(0.5, 1.0, 'Heart Disease Frequency for Ages')


```
import matplotlib.pyplot as plt
import seaborn as sns
print(ds['pred_attribute'].describe())
plt.figure(figsize=(9, 8))
sns.distplot(ds['pred_attribute'], color='g', bins=100, hist_kws={'alpha': 0.4});
```

count	303.000000
mean	0.937294
std	1.228536
min	0.000000
25%	0.000000
50%	0.000000
75%	2.000000
max	4.000000
IIIax	4.00000

Name: pred_attribute, dtype: float64

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

sns.pairplot(ds.loc[:, ['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'pred_attribute']], r


```
dtype='object')

ds['ca'] = ds['ca'].fillna(ds['ca'].mode()[0])
ds['thal'] = ds['thal'].fillna(ds['thal'].mode()[0])
```

3. Build the Predictive Model

3.1- k Nearest Neighbor (KNN)

4. Evaluate the Model

✓ 0s completed at 4:53 PM