

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/050053

International filing date: 07 January 2005 (07.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: FR
Number: 0450025
Filing date: 07 January 2004 (07.01.2004)

Date of receipt at the International Bureau: 03 March 2005 (03.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

22 02 2005

(44)

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 9 JAN. 2005

Pour le Directeur général de l'Institut
national de la propriété industrielle
Le Chef du Département des brevets

A handwritten signature in black ink, appearing to read 'Martine Planche'.

Martine PLANCHE

**INSTITUT
NATIONAL DE
LA PROPRIETE
INDUSTRIELLE**

SIEGE
26 bis, rue de Saint-Petersbourg
75800 PARIS cedex 08
Téléphone : 33 (0)1 53 04 53 04
Télécopie : 33 (0)1 53 04 45 23
www.inpi.fr

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

26bis, rue de Saint-Pétersbourg
75800 Paris Cédex 08
Téléphone: 01 53.04.53.04 Télécopie: 01.42.94.86.54

Code de la propriété intellectuelle-livreVI

REQUÊTE EN DÉLIVRANCE

DATE DE REMISE DES PIÈCES: N° D'ENREGISTREMENT NATIONAL: DÉPARTEMENT DE DÉPÔT: DATE DE DÉPÔT:	Brigitte RUELLAN-LEMONNIER Mme 46 Quai Alphonse Le Gallo 92648 BOULOGNE cedex France
Vos références pour ce dossier: PF040002	

1 NATURE DE LA DEMANDE

Demande de brevet

2 TITRE DE L'INVENTION

	Plaque optique et dispositif d'affichage à projection utilisant une telle plaque		
3 DECLARATION DE PRIORITE OU REQUETE DU BENEFICE DE LA DATE DE DEPOT D'UNE DEMANDE ANTERIEURE FRANCAISE	Pays ou organisation	Date	N°

4-1 DEMANDEUR

Nom Rue Code postal et ville Pays Nationalité Forme juridique N° SIREN Code APE-NAF N° de téléphone N° de télécopie Courrier électronique	THOMSON LICENSING S.A 46 Quai Alphonse Le Gallo 92100 BOULOGNE-BILLANCOURT France France Société anonyme 383 461 191 322A 01 41 86 50 00 01 41 86 56 33 brigitte.ruellan@thomson.net
---	--

5A MANDATAIRE

Nom Prénom Qualité Cabinet ou Société Rue Code postal et ville N° de téléphone N° de télécopie Courrier électronique	RUELLAN-LEMONNIER Brigitte Liste spéciale: 11311, Pas de pouvoir Mme 46 Quai Alphonse Le Gallo 92648 BOULOGNE cedex 01 41 86 52 77 01 41 86 56 33 brigitte.ruellan@thomson.net
--	--

6 DOCUMENTS ET FICHIERS JOINTS		Fichier électronique	Pages	Détails
Texte du brevet		textebrevet.pdf	12	D 9, R 2, AB 1
Dessins		dessins.pdf	3	page 3, figures 5
Désignation d'inventeurs				
7. MODE DE PAIEMENT				
Mode de paiement		Prélèvement du compte courant		
Numéro du compte client		3334		
8 RAPPORT DE RECHERCHE				
Etablissement immédiat				
9 REDEVANCES JOINTES		Devise	Taux	Quantité
062 Dépôt		EURO	0.00	1.00
063 Rapport de recherche (R.R.)		EURO	320.00	1.00
Total à acquitter		EURO		320.00

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire.
Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par

Signataire: FR, THOMSON, B.Ruelian

Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

THOMSON LICENSING S.A (Demandeur 1)

BREVET D'INVENTION CERTIFICAT D'UTILITE

Réception électronique d'une soumission

Il est certifié par la présente qu'une demande de brevet (ou de certificat d'utilité) a été reçue par le biais du dépôt électronique sécurisé de l'INPI. Après réception, un numéro d'enregistrement et une date de réception ont été attribués automatiquement.

Demande de brevet : X

Demande de CU :

DATE DE RECEPTION	7 janvier 2004	
TYPE DE DEPOT	INPI (PARIS) - Dépôt électronique	Dépôt en ligne: X
N° D'ENREGISTREMENT NATIONAL ATTRIBUE PAR L'INPI	0450025	Dépôt sur support CD:
Vos références pour ce dossier	PF040002	

DEMANDEUR

Nom ou dénomination sociale	THOMSON LICENSING S.A
Nombre de demandeur(s)	1
Pays	FR

TITRE DE L'INVENTION

Plaque optique et dispositif d'affichage à projection utilisant une telle plaque

DOCUMENTS ENVOYES

package-data.xml	Requetefr.PDF	fee-sheet.xml
Design.PDF	ValidLog.PDF	textebrevet.pdf
FR-office-specific-info.xml	application-body.xml	request.xml
dessins.pdf	indication-bio-deposit.xml	

EFFECTUE PAR

Effectué par:	B.Ruellan
Date et heure de réception électronique:	7 janvier 2004 15:08:28
Empreinte officielle du dépôt	69:B7:27:1B:E9:BD:E7:55:07:6F:A8:5B:C3:2D:46:BC:9F:14:AC:80

/ INPI PARIS, Section Dépôt /

SIEGE SOCIAL
 INSTITUT 28 bis, rue du Saint-Petersbourg
 NATIONAL DE 75800 PARIS cedex 08
 LA PROPRIETE Téléphone : 01 63 04 53 04
 INDUSTRIELLE Télécopie : 01 42 93 59 30

L'invention concerne une plaque optique et un dispositif d'affichage à projection utilisant une telle plaque.

Il est bien connu d'utiliser en optique une lentille de Fresnel pour obtenir un effet général de collimation avec une épaisseur de lentille réduite. Ainsi, afin de collimater un faisceau incident émis par une source de lumière, la lentille comporte des éléments prismatiques qui redressent les rayons reçus de la source en un faisceau de rayons parallèles.

10 Comme cela est décrit dans la demande de brevet publiée sous la référence JP 2002-221 605, les éléments prismatiques sont conçus pour redresser les rayons incidents soit par réfraction (angle d'incidence faible), soit par réflexion (angle d'incidence élevé).

15 De telles lentilles sont par exemple utilisées dans un dispositif d'affichage à projection. En effet, dans un tel dispositif, un imageur de taille réduite est projeté sur un écran de visualisation par un système de projection, avec des angles d'incidence sur l'écran qui s'étendent sur une plage déterminée de valeurs, par exemple de 30° à 60°.

20 Le flux reçu du système de projection doit donc être globalement collimaté par une lentille de Fresnel, c'est-à-dire redressé selon une direction horizontale, avant d'être généralement micro-focalisé à travers une matrice sombre puis diffusé dans le champ d'observation souhaité.

25 L'efficacité optique (ou rendement) des éléments prismatiques de la lentille de Fresnel est toutefois médiocre sous certaines incidences, et notamment pour des angles d'incidence de 20° à 40°. En effet, de tels angles ne permettent un bon rendement ni par réflexion ni par réfraction pour des structures prismatiques situées sur la face incidente.

Afin notamment de résoudre ce problème, l'invention propose d'utiliser à la place de la lentille de Fresnel une plaque optique comportant sur une première face un premier ensemble d'au moins deux éléments optiques apte à redresser des rayons reçus d'une source lumineuse en un faisceau de rayons essentiellement parallèles à une

première direction dans un plan contenant un axe principal, avec des moyens sur la seconde face pour redresser ledit faisceau selon une seconde direction différente de la première direction.

Selon une solution possible, la seconde face porte au moins un
5 premier élément optique pour redresser le faisceau selon la seconde direction. Dans ce cas, le premier élément optique comporte de manière préférée au moins une face ayant une orientation telle que les rayons selon la première direction sont réfractés selon la seconde direction.

De façon avantageuse, la seconde face peut alors porter un second
10 élément optique ayant une face essentiellement parallèle à ladite face du premier élément optique dans ledit plan.

Selon une autre solution possible, la seconde face comporte un dispositif holographique pour redresser le faisceau selon la seconde direction.

15 De manière générale, les éléments optiques sont de préférence symétriques de révolution autour de l'axe principal et la seconde direction est dirigée essentiellement selon l'axe principal.

Dans un premier mode de réalisation, les éléments optiques sont aptes à redresser les rayons issus de la source par réfraction. Dans un
20 second mode de réalisation, les éléments optiques comportent chacun une face apte à réfléchir les rayons issus de la source selon la première direction.

L'invention propose d'utiliser la plaque optique dans un écran d'un dispositif d'affichage à projection comprenant également des moyens de
25 génération d'une image et des moyens de projection de l'image sur l'écran. L'écran peut également comporter des éléments optiques de focalisation et/ou de diffusion.

Selon une construction particulièrement avantageuse, les moyens de projection sont tels que les rayons sont reçus par la plaque optique
30 avec des angles d'incidence par rapport à la direction générale de la plaque optique variant sur une plage continue d'orientations non nulles

par rapport à l'axe principal et la première direction correspond à l'une des orientations de ladite plage continue.

D'autres caractéristiques de l'invention apparaîtront à la lumière de la description suivante faite en référence aux dessins annexés dans

5 lesquels :

- la figure 1 représente un exemple de dispositif d'affichage auquel s'applique l'invention ;

- la figure 2 représente l'écran de la figure 1 utilisant un premier mode de réalisation de l'invention ;

10 - la figure 3 représente un détail de la figure 2 ;

- la figure 4 représente l'écran de la figure 1 utilisant un second mode de réalisation de l'invention ;

- la figure 5 représente un détail de la figure 4.

Le dispositif d'affichage schématiquement représenté à la figure 1
15 comprend un système d'éclairage 2 qui génère un faisceau de lumière primaire B_{III} reçu par un imageur (ou valve) 4.

L'imageur 4 détermine quelles parties du faisceau primaire B_{III} doivent être transmises à un système d'imagerie, créant ainsi un faisceau de lumière secondaire B_{img} qui représente l'image à afficher.

20 L'imageur 4 est par exemple réalisé sous forme d'une matrice de pixels. Chaque pixel agit sur le rayon incident (partie du faisceau primaire B_{III}) en fonction de l'intensité à laquelle le pixel correspondant dans l'image à afficher doit être éclairé.

La lumière issue de l'imageur 4 est projetée par un système
25 d'imagerie 6 en direction d'un écran d'affichage 10.

Dans l'exemple représenté sur la figure 1, les rayons incidents sur l'écran 10 ont un angle d'incidence qui varie d'un angle Θ_1 (de l'ordre de 10°) dans sa partie inférieure à un angle Θ_2 (de l'ordre de 60°) dans sa partie supérieure.

30 Dans la suite, on dénommera moteur optique l'ensemble des éléments qui génère le faisceau destiné à l'écran 10, à savoir ici

l'ensemble comprenant le système d'éclairage 2, l'imageur 4 et le système d'imagerie 6.

Un premier mode de réalisation de l'écran 10 selon l'invention est représenté en figure 2.

5 L'écran 10 comprend une plaque optique 12 dont la fonction est de collimater le faisceau incident R_I en un faisceau R_C essentiellement parallèle à un axe principal AA'. (En général, l'axe principal AA' est horizontal et perpendiculaire au plan défini par la plaque optique 12.)

Pour ce faire, la plaque optique 12 comprend sur sa première face
10 (face qui reçoit la lumière de la source, c'est-à-dire ici du moteur optique) de premiers éléments prismatiques 14 et, sur sa seconde face (face de sortie de la lumière, donc dirigée vers les éléments de focalisation mentionnés ci-dessous), de seconds éléments prismatiques 16.

15 La plaque optique 12 est symétrique de révolution autour de l'axe principal AA' (axe de sortie du moteur optique) et la figure 2 représente une section selon un plan contenant l'axe principal AA', ici le plan vertical contenant l'axe principal AA'.

Dans chaque plan contenant l'axe principal AA', les premiers
20 éléments prismatiques 14 redressent le faisceau incident R_I en un faisceau globalement parallèle à une première direction R_{int} différente de la direction de l'axe principal AA'. (La direction R_{int} dépend donc du plan contenant l'axe principal considéré.)

Ainsi, quel que soit l'angle d'incidence θ sur le premier élément
25 primitif 14 (c'est-à-dire quelle que soit la hauteur du premier élément primitif 14 sur la plaque 12), le rayon incident R_I est réfracté en un rayon R_{int} qui forme avec l'axe principal AA' un angle θ_{int} fixe, comme cela sera expliqué en détail plus loin en référence à la figure 3.

30 Les seconds éléments prismatiques 16 sont donc conçus tels qu'ils redressent le faisceau R_{int} essentiellement parallèle (dans chaque plan

contenant l'axe principal AA') en un faisceau R_c selon une seconde direction essentiellement parallèle à l'axe principal AA'. Les seconds éléments prismatiques sont donc identiques quelle que soit la hauteur sur la plaque 12 (c'est-à-dire quel que soit l'éloignement de l'axe principal AA' du second élément prismatique 16 considéré).

Le faisceau collimaté R_c en sortie de la plaque optique 12 tombe sur un ensemble 18 d'éléments de focalisation 20 qui permettent le passage du faisceau à travers une matrice sombre 22, ce qui permet une amélioration du contraste. Les éléments de focalisation 20 permettent en général également une diffusion verticale et horizontale du faisceau afin de projeter les images dans un angle solide suffisant.

D'autres éléments optiques peuvent naturellement être prévus pour modifier les caractéristiques optiques du faisceau, par exemple au niveau de la matrice sombre 22.

Le détail d'un premier et d'un second éléments prismatiques 14, 16 est donné en figure 3 en section dans le plan vertical contenant l'axe principal AA'.

Le premier élément prismatique 14 comporte une première face 24 optiquement active qui forme un angle α avec la direction générale de la plaque 18, c'est-à-dire ici avec la verticale. Comme précédemment décrit, un rayon R_i incident sur la plaque optique 12 avec un angle θ (angle formé avec l'axe principal AA') sera réfracté par la première face 24 à l'intérieur de la plaque optique 12 sous forme d'un rayon R_{int} selon une première direction qui forme avec l'axe principal un angle θ_{int} fixe, et donc notamment indépendant de θ .

D'après les lois de la réfraction, on a donc pour une plaque optique d'indice n :

$$\sin(\theta - \alpha) = n \cdot \sin(\theta_{int} - \alpha)$$

ce qui donne en développant :

$$30 \quad \alpha = \text{atan}\left(\frac{n \cdot \sin \theta_{int} - \sin \theta}{n \cdot \cos \theta_{int} - \cos \theta}\right).$$

On choisit de préférence θ_{int} de telle sorte que l'angle d'incidence effectif ($\theta - \alpha$) sur la première face 24 reste faible sur l'ensemble de la plaque pour obtenir un bon rendement en réfraction des premiers éléments 14. C'est notamment le cas lorsque l'on choisi θ_{int} dans la 5 plage des angles d'incidence, soit entre Θ_1 et Θ_2 , par exemple $\theta_{int} = \frac{1}{2}(\Theta_1 + \Theta_2)$.

La seconde face 28 du premier élément prismatique 14, qui forme un angle β avec la direction de l'axe principal AA', n'est pas optiquement active et devra donc intercepter le moins de rayons lumineux possibles.

10 Dans la partie où θ est inférieur à θ_{int} , on prendra donc de préférence β proche de θ et/ou θ_{int} (pour éviter l'interception de rayons par la face 28 à l'intérieur ou à l'extérieur de la plaque optique 12). Naturellement, β n'est pas nécessairement constant sur la plaque 12 ; on peut prendre par exemple pour chaque premier élément prismatique 15 14 : $\beta = \theta$. Une solution alternative est d'utiliser pour l'ensemble des prismes considérés précisément $\beta = \theta_{int}$. Ces solutions sont notamment intéressantes dans le cas mentionné ci-dessus (θ_{int} entre Θ_1 et Θ_2) où θ est proche de θ_{int} sur toute la hauteur de la plaque 12. Pour la partie où 20 θ est supérieur à θ_{int} , on prendra par exemple la face 28 suivant AA' ($\beta=3^\circ$).

Le second élément prismatique 16 comporte une première face 26 optiquement active qui forme un angle γ avec la direction générale de la plaque 12 (ici avec la verticale). Comme vu précédemment, le second élément prismatique 16, et donc sa première face 26, redresse par 25 réfraction le faisceau R_{int} interne à la plaque dirigé selon la première direction en un faisceau collimaté R_c selon une seconde direction essentiellement parallèle à l'axe principal AA'.

D'après les lois de la réfraction on a donc :

$$\sin \gamma = n \cdot \sin(\gamma - \theta_{int})$$

30 et γ est ainsi défini par :

$$\gamma = a \tan\left(\frac{n \cdot \sin \theta_{int}}{n \cdot \cos \theta_{int} - 1}\right).$$

On peut remarquer que, bien que la première direction R_{int} ne soit constante que dans chaque plan contenant l'axe principal AA', la seconde direction R_c est dirigée selon l'axe principal AA' et donc 5 constante dans tous les plans contenant cet axe, c'est-à-dire sur toute la plaque.

La seconde face 30 du second élément prismatique 16 n'est pas optiquement active et est donc déterminée de manière à obtenir des prismes le moins aigus possibles pour faciliter leur réalisation, par 10 exemple en formant un angle δ avec l'axe principal AA' proche de, voire égal à, θ_{int} .

Un seconde mode de réalisation de l'écran 10 est représenté en figure 4. Sur cette figure, les éléments qui sont identiques à ceux présents dans le premier mode de réalisation (figure 2) portent les 15 mêmes références et ne seront pas décrits à nouveau.

L'écran 10 comprend ici également une plaque optique 32 dont la fonction est de collimater le faisceau incident R_I en un faisceau R_C essentiellement parallèle à l'axe principal AA'.

Comme dans le premier mode de réalisation, la plaque optique 32 20 comprend à cet effet sur sa première face de premiers éléments prismatiques 34 et sur sa seconde face de seconds éléments prismatiques 36.

La plaque optique 32 est elle-aussi symétrique de révolution autour de l'axe principal AA' (axe de sortie du moteur optique) et la figure 4 25 représente une section selon un plan contenant l'axe principal AA', ici le plan vertical contenant l'axe principal AA'.

Comme pour le premier mode de réalisation, les premiers éléments prismatiques 34 redressent dans chaque plan contenant l'axe principal AA' le faisceau incident R_I en un faisceau globalement parallèle à une 30 première direction R_{int} différente de la direction de l'axe principal AA'.

(La direction R_{int} dépend donc du plan contenant l'axe principal considéré.)

Ainsi, quel que soit l'angle d'incidence θ sur le premier élément prismatique 34 (c'est-à-dire quelle que soit la hauteur du premier élément prismatique 34 sur la plaque 32), le rayon incident R_I est réfracté puis réfléchi en un rayon R_{int} qui forme avec l'axe principal AA' un angle θ_{int} fixe, ici négatif, comme cela sera expliqué en détail plus loin en référence à la figure 5.

Les seconds éléments prismatiques 36 sont donc conçus tels qu'ils redressent le faisceau R_{int} essentiellement parallèle (dans chaque plan contenant l'axe principal AA') en un faisceau R_C selon une seconde direction essentiellement parallèle à l'axe principal AA'. Les seconds éléments prismatiques sont donc identiques quelle que soit la hauteur sur la plaque 32 (c'est-à-dire quel que soit l'éloignement de l'axe principal AA' du second élément prismatique 36 considéré).

Le détail d'un premier et d'un second éléments prismatiques 34, 36 est donné en figure 5 en section dans le plan vertical contenant l'axe principal AA'.

Le premier élément prismatique 34 comporte une première face 38 et une seconde face 40. Un rayon R_I incident sur la plaque optique 12 avec un angle θ (angle formé avec l'axe principal AA') est réfracté par la seconde face 40 à l'intérieur de la plaque optique 12 sous forme d'un rayon R_R dirigé vers la première face 38 ; la première face 38 réfléchit ce rayon R_R en un rayon R_{int} selon une première direction qui forme avec l'axe principal un angle θ_{int} non nul fixe, et donc notamment indépendant de θ .

Le second élément prismatique 36 comporte une première face 42 optiquement active qui forme un angle non nul avec la direction générale de la plaque 12 (ici avec la verticale). Comme vu précédemment, le second élément prismatique 36, et donc sa première face 42, redresse par réfraction le faisceau R_{int} interne à la plaque dirigé

selon la première direction en un faisceau collimaté R_C selon une seconde direction essentiellement parallèle à l'axe principal AA'.

La seconde face 44 du second élément prismatique 36 n'est pas optiquement active et est donc déterminée de manière à obtenir des 5 prismes le moins aigus possible pour faciliter leur réalisation. La seconde face 44 est donc de préférence orientée parallèlement à l'axe principal AA'.

L'invention n'est naturellement pas limitée aux modes de réalisation décrits ci-dessus. Notamment, les moyens de redressement 10 du faisceau interne R_{int} en un faisceau collimaté selon l'axe principal peuvent par exemple être réalisés par une surface holographique sur la seconde face de la plaque optique. Cette solution est d'ailleurs particulièrement avantageuse grâce au parallélisme des rayons internes R_{int} dans la plaque dans chaque plan contenant l'axe principal.

REVENDICATIONS

1. Plaque optique (12 ; 32) comportant sur une première face un premier ensemble d'au moins deux éléments optiques (14 ; 34) apte à redresser des rayons (R_I) reçus d'une source lumineuse en un faisceau de rayons (R_{int}) essentiellement parallèles à une première direction dans un plan contenant un axe principal (AA'), caractérisée par des moyens (16 ; 36) sur la seconde face pour redresser ledit faisceau selon une seconde direction (R_C) différente de la première direction (R_{int}).
5
2. Plaque optique selon la revendication 1, dans laquelle la seconde face porte au moins un premier élément optique (16 ; 36) pour redresser le faisceau selon la seconde direction (R_C).
10
3. Plaque optique selon la revendication 2, dans laquelle le premier élément optique (16 ; 36) comporte au moins une face (26 ; 42) ayant une orientation telle que les rayons selon la première direction (R_{int}) sont réfractés selon la seconde direction (R_C).
15
4. Plaque optique selon la revendication 3, dans laquelle la seconde face porte un second élément optique ayant une face essentiellement parallèle à ladite face du premier élément optique dans ledit plan.
20
5. Plaque optique selon la revendication 1, dans laquelle la seconde face comporte un dispositif holographique pour redresser le faisceau selon la seconde direction (R_C).
25
6. Plaque optique selon l'une des revendications 1 à 5, dans laquelle les éléments optiques (14 ; 34) sont symétriques de révolution autour de
30

l'axe principal (AA') et dans laquelle la seconde direction (R_C) est dirigée essentiellement selon l'axe principal (AA').

7. Plaque optique selon l'une des revendications 1 à 6, dans laquelle les
5 éléments optiques (14) sont aptes à redresser les rayons issus de la
source par réfraction.

8. Plaque optique selon l'une des revendications 1 à 6, dans laquelle les
éléments optiques (34) comportent chacun une face (38) apte à
10 réfléchir les rayons (R_I) issus de la source selon la première direction
(R_{int}).

9. Dispositif d'affichage à projection comprenant :

- des moyens de génération d'une image (2, 4) ;
15 - des moyens de projection (6) de l'image sur un écran (10) ;
- l'écran (10) comportant au moins une plaque optique (12 ; 32),
dans lequel la plaque optique (12 ; 32) est conforme à l'une des
revendications 1 à 8.

20 10. Dispositif d'affichage selon la revendication 9, dans lequel les
moyens de projection (6) sont tels que les rayons (R_I) sont reçus par la
plaqué optique (12) avec des orientations (θ) par rapport à la direction
générale de la plaque optique (12) variant sur une plage continue
d'orientations non nulles par rapport à l'axe principal (AA') et dans
25 lequel la première direction (R_{int}) correspond à l'une (θ_{int}) des
orientations de ladite plage continue.

Fig. 1

1er dépôt

Fig. 2

Fig. 3

1er dépôt

Fig. 4

Fig. 5

BREVET D'INVENTION CERTIFICAT D'UTILITE

Désignation de l'inventeur

Vos références pour ce dossier	PF040002
N°D'ENREGISTREMENT NATIONAL	
TITRE DE L'INVENTION	
Plaque optique et dispositif d'affichage à projection utilisant une telle plaque	
LE(S) DEMANDEUR(S) OU LE(S) MANDATAIRE(S):	
DESIGNE(NT) EN TANT QU'INVENTEUR(S):	
Inventeur 1	
Nom	SARAYEDDINE
Prénoms	Khaled
Rue	12 rue du Douaire
Code postal et ville	35410 NOUVOITOU
Société d'appartenance	M.
Inventeur 2	
Nom	BENOIT
Prénoms	Pascal
Rue	6 rue Jean Marin
Code postal et ville	35700 Rennes
Société d'appartenance	M.
Inventeur 3	
Nom	SCHUBERT
Prénoms	Arno
Rue	27 bis rue Lariboisière
Code postal et ville	35235 Thorigné-Fouillard
Société d'appartenance	M.

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire.
Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par

Signataire: FR, THOMSON, B.Ruellan

Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

THOMSON LICENSING S.A (Demandeur 1)