MLT Homework 4

Ana Borovac Bas Haver

October 8, 2018

Question 1

We have shown that for a finite hypothesis class \mathcal{H} , $VCdim(\mathcal{H}) \leq \lfloor \log(|\mathcal{H}|) \rfloor$. However, this is just an upper bound. The VC-dimension of a class can be much lower than that.

Subquestion 1.1

Find an example of a class \mathcal{H} of functions over the real interval $\mathcal{X} = [0,1]$ such that \mathcal{H} is infinite while $VCdim(\mathcal{H}) = 1$.

Solution

Let's define hypothesis class as:

$$\mathcal{H} = \{h_a : a \in [0,1]\}$$

$$h_a(x) = \begin{cases} 1; & x \ge a \\ 0; & x < a \end{cases}$$

From definition we know $|\mathcal{H}| = \infty$. Now we need to prove that $VCdim(\mathcal{H}) = 1$.

- (a) If point is labeled "1".
- (b) If point is labeled "0".

Figure 1: Proof that $VCdim(\mathcal{H}) \geq 1$.

- $VCdim(\mathcal{H}) \geq 1$: The proof we can see from the figure 1.
- $VCdim(\mathcal{H}) \leq 1$: From the figure 2 it is seen that hypothesis class \mathcal{H} does not shatter a set of two points (no matter how we position them).

Figure 2: The problem we have when trying to shatter a set of two points.

Subquestion 1.2

Give an example of a finite hypothesis class \mathcal{H} over domain $\mathcal{X} = [0,1]$, where $VCdim(\mathcal{H}) = \lfloor \log_2(|\mathcal{H}|) \rfloor$

Solution

Let's define hypothesis class:

$$\mathcal{H} = \{h_0, h_1\}$$

where $h_0(x) = 0$ ($\forall x$) and $h_1(x) = 1$ ($\forall x$). We would like to prove that $VCdim(\mathcal{H}) = |\log_2(|\mathcal{H}|)| = |\log_2(2)| = 1$.

- $VCdim(\mathcal{H}) \geq 1$: If we want to label a $x \in [0,1]$ as 1, we pick h_1 as hypothesis, otherwise we pick h_0 . So, $VCdim(\mathcal{H}) \geq 1$.
- $VCdim(\mathcal{H}) \leq 1$: Let say that we have a set of two points. If we want to label one of the point with 1 and the other with 0, there does not exist a hypothesis in hypothesis class which can label two points differently.

We can conclude that $VCdim(\mathcal{H}) = 1$.

Question 2

It is often the case that the VC-dimension of a hypothesis class equals (or can be bounded above by) the number of parameters one needs to set in order to define each hypothesis in the class. For instance, if \mathcal{H} is the class of axis aligned rectangles in \mathbb{R}^d , then $VCdim(\mathcal{H})=2d$, which is equal to the number of parameters used to define a rectangle in \mathbb{R}^d . Here is an example that shows that this is not always the case. We will see that a hypothesis class might be very complex and even not learneble, although it has a small number of parameters.

Consider the domain $\mathcal{X} = \mathbb{R}$, and the hypothesis class

$$\mathcal{H} = \{x \mapsto \lceil \sin(\theta x) \rceil : \theta \in \mathbb{R}\}\$$

(here, we take [-1] = 0). Prove that $VCdim(\mathcal{H}) = \infty$.

Hint: There is more than one way to prove the required result. One option is by applying the following lemma: If $-x_1x_2x_3...$, is the binary expansion of $x \in (0,1)$, then for any natural number m, $\lceil \sin(2^m \pi x) \rceil = (1-x_m)$, provided that $\exists k \geq m \text{ s.t. } x_k = 1$.

Solution

Assume $VCdim(\mathcal{H}) = k < \infty$. We will reach towards a contradiction by finding k+1 elements which are shattered by \mathcal{H} , from which we can conclude that $VCdim(\mathcal{H}) = \infty$. All these k+1 elements will be found in the interval (0,1), such that they can be written as a binary expansion. We choose our elements to have all different combinations of zeros and ones for every entry of the x_m . This can of course be done in multiple way, we just choose one. For example x_1 can be chosen to be one for all elements, x_2 one for all elements except for the first element, where we choose x_2 to be zero, x_3 one for all elements except for the second one, where we choose x_3 zero. We proceed this way until we have $x_{2^{k+1}}$ all zero. Now place a one for $x_{2^{k+1}+1}$ in order to always be able to apply the lemma as stated in the hint. Note now that all these elements are different, so that we really have contructed k+1 elements. Now the lemma as in the hint gives us, when we choose $\theta = 2^m \pi$, that we label $[\sin(\theta x)] = 1 - x_m$. So if $x_m = 1$ we label it zero and if $x_m = 0$ we label it one. Now for any combination of the k+1 elements we can fix an arbitrarily chosen labeling. This labeling can then be constructed by choosing m such that x_m would give the 'opposite' labeling (which is such that $1-x_m$ is the admired labeling). This m exists by construction. Since our labeling was fixed arbitrarily, we can construct any labeling. Therefore our k+1 elements are shattered by \mathcal{H} .

Since we assumed $VCdim(\mathcal{H}) = k < \infty$ and found k+1 shattered elements, we have a contradiction and conclude $VCdim(\mathcal{H}) = \infty$.

Question 3

Let \mathcal{H} be the class of signed intervals, that is, $\mathcal{H} = \{h_{a,b,s} : a \leq b, s \in \{-1,1\}\}$ where

$$h_{a,b,s}(x) = \begin{cases} s & \text{if } x \in [a,b] \\ -s & \text{if } x \notin [a,b] \end{cases}$$

 $Calculate\ VCdim(\mathcal{H}).$

Solution

Claim: $VCdim(\mathcal{H}) = 3$.

• $VCdim(\mathcal{H}) \geq 3$: On figure 3 it is seen that set of three points can be shattered. Furthermore $VCdim(\mathcal{H}) \geq 3$.

Figure 3: Proof that $VCdim(\mathcal{H}) \geq 3$.

• $VCdim(\mathcal{H}) \leq 3$: There does not exist a hypothesis $h \in \mathcal{H}$ that lables the situation on figure 4. From here we can conclude $VCdim(\mathcal{H}) \leq 3$.

Figure 4: Proof that $VCdim(\mathcal{H}) \leq 3$.

Question 4

VC of union: Let $\mathcal{H}_1, \ldots, \mathcal{H}_r$ be hypothesis classes over some fixed domain set \mathcal{X} . Let $d = \max_i VCdim(\mathcal{H}_i)$ and assume for simplicity that $d \geq 3$.

Subquestion 4.1

Prove that

$$VCdim(\bigcup_{i=1}^{r} \mathcal{H}_i) \le 4d \log_2 \left(\frac{2d}{\ln 2}\right) + 2 \log_2(r).$$

Solution

First, denote a union class as $\mathcal{H}_{\cup} = \bigcup_{i=1}^{r} \mathcal{H}_{i}$. Second, assume that $\mathrm{VCdim}(\mathcal{H}_{\cup}) = k$ and therefore \mathcal{H}_{\cup} shatters a set of k elements. Furthermore, the union class can produce all 2^{k} possible labelings on these elements.

Let's recall Sauer's lemma: Let \mathcal{H} be a hypothesis class with $\operatorname{VCdim}(\mathcal{H}) \leq d < \infty$. Then for all m,

$$\Pi_{\mathcal{H}}(m) \le m^d$$

From our assumption it follows:

$$\Pi_{\mathcal{H}_{\perp\perp}}(k) = 2^k$$

The definition of shatter function gives as the following inequality:

$$\Pi_{\mathcal{H}_{\cup}}(k) \leq \Pi_{\mathcal{H}_{1}}(k) + \dots + \Pi_{\mathcal{H}_{r}}(k)$$

Now, we can use Sauer's lemma on each summand:

$$2^k = \Pi_{\mathcal{H}_{\cup}}(k) \le \Pi_{\mathcal{H}_1}(k) + \dots + \Pi_{\mathcal{H}_r}(k) \le \underbrace{k^d + \dots k^d}_r = rk^d$$

If we use \log_2 on the inequality, we get:

$$k \le d\log_2 k + \log_2 r \tag{1}$$

In the next step we are going to use Lemma A.2 from the book, which says: Let $a \ge 1$ and b > 0. Then $x \ge 4a \log_2\left(\frac{2a}{\ln 2}\right) + 2b \implies x \ge a \log_2(x) + b$. Let's assume that $\operatorname{VCdim}(\mathcal{H}_{\cup}) > 4d \log_2\left(\frac{2d}{\ln 2}\right) + 2 \log_2(r)$. From our first

assumption we get:

$$k > 4d\log_2\left(\frac{2d}{\ln 2}\right) + 2\log_2(r)$$

Now, we can use Lemma A.2 (where $a=d\geq 3,\, b=\log_2 r>0$):

$$k > d\log_2 k + \log_2 r$$

We got into a contradiction with (1), this means that our assumption was not correct and it holds:

$$VCdim(\mathcal{H}_{\cup}) \le 4d \log_2 \left(\frac{2d}{\ln 2}\right) + 2 \log_2(r)$$

Subquestion 4.2

Prove that for r = 2 it holds that

$$VCdim(\mathcal{H}_1 \cup \mathcal{H}_2) \leq 2d + 1$$

Solution

This question was solved with the help of [?].

As same as before:

$$\Pi_{\mathcal{H}_1 \cup \mathcal{H}_2}(m) \leq \Pi_{\mathcal{H}_1}(m) + \Pi_{\mathcal{H}_2}(m)$$

Now we use Sauer's lemma:

$$\Pi_{\mathcal{H}_1 \cup \mathcal{H}_2}(m) \le \Pi_{\mathcal{H}_1}(m) + \Pi_{\mathcal{H}_2}(m) \le \sum_{i=0}^d \binom{m}{i} + \sum_{i=0}^d \binom{m}{i}$$

If we use the fect $\binom{m}{i} = \binom{m}{m-i}$, we get:

$$\sum_{i=0}^{d} \binom{m}{i} + \sum_{i=0}^{d} \binom{m}{i} = \sum_{i=0}^{d} \binom{m}{i} + \sum_{i=0}^{d} \binom{m}{m-i}$$

$$= \sum_{i=0}^{d} \binom{m}{i} + \sum_{i=m-d}^{d} \binom{m}{i}$$

$$= \underbrace{\binom{m}{i} + \dots + \binom{m}{d}}_{d+1} + \underbrace{\binom{m}{m-d} + \dots + \binom{m}{m}}_{d+1}$$

If m > 2d + 1:

$$\binom{m}{0} + \dots + \binom{m}{d} + \binom{m}{m-d} + \dots + \binom{m}{m} \le \sum_{i=0}^{m} \binom{m}{i} - \binom{m}{d+1} < 2^{m}$$

Let's sum up what we just calculated:

$$\Pi_{\mathcal{H}_1 \cup \mathcal{H}_2}(m) < 2^m$$

So, if m > 2d + 1 the set with m elements can not be shattered, therefore:

$$VCdim(\mathcal{H}_1 \cup \mathcal{H}_2) \le 2d + 1$$