4.1.5 边界条件的引入

胡茂彬

http://staff.ustc.edu.cn/~humaobin/ humaobin@ustc.edu.cn

网格划分和边界条件

• 网格划分:

- 边界条件:
 - 1 函数值(Dirichilet)
 - 2 导数值(Newman)
 - 3导数值与函数值的关系(Robin)

第1类边界条件

• 点中心: 直接转移

$$T_1 = T_B$$

• 块中心:

直接外推
$$T_1 = T_B$$

$$T_1 = T_R$$

(一阶精度)

插值

$$(3T_1 - T_2)/2 = T_B$$

(二阶精度)

第2第3类边界条件

在处理边界条件时,通常约定通过边界流入系统的热流值为正,流出为负。

第2第3类边界条件

点中心情况: 边界值待求, 需按给定的边 界条件及方程在边界节点上的离散形式建 立代数方程

- 块中心情况:边界上无节点
 - (1) 补充边界节点法(2) 附加源项法

以下均以"一维稳态问题" 的左边界为例进行说明

1. 点中心网格(左边界)

点中心法、外节点法、A法

(1) 采用有限差分方法

为消去T0,利用一维稳态有源导热方程在边界节点'1'的差分离散式:

$$\lambda \frac{T_2 - 2T_1 + T_0}{(\delta x)^2} + S_C + S_P T_1 = 0$$

$$\left(\frac{\lambda}{\delta x} - S_P(\Delta x)_B\right) T_1 = \left(\frac{\lambda}{\delta x}\right) T_2 + S_C(\Delta x)_B + q_B$$

第3类边界条件(点中心左边界)

$$q_B = h(T_f - T_B)$$

$$q_B = -\lambda \left(\frac{dT}{dx}\right)_B$$

$$\frac{\lambda}{\delta x}T_1 = \frac{\lambda}{\delta x}T_2 + q_B \quad - \text{阶精度}$$

$$\left(\frac{\lambda}{\delta x} - S_P(\Delta x)_B\right) T_1 = \left(\frac{\lambda}{\delta x}\right) T_2 + S_C(\Delta x)_B + q_B$$

开拓网格

$$\left(\frac{\lambda}{\delta x} - S_P(\Delta x)_B + h\right) T_1 = \frac{\lambda}{\delta x} T_2 + S_C(\Delta x)_B + h T_f$$

(2) 采用控制容积平衡法

2. 块中心网格(左边界) 块中心法、内节点法, B法

(1) 补充边界节点法(2) 附加源项法

(1) 补充边界节点

$$\frac{\lambda}{\delta x_b} T_B = \frac{\lambda}{\delta x_b} T_1 + q_B$$

• 第3类边界条件

$$q_B = h(T_f - T_B)$$

$$\left(\frac{\lambda}{\delta x_b} + h\right) T_B = \frac{\lambda}{\delta x_b} T_1 + h T_f$$

(1) 补充边界节点

$$q_{B} = -\lambda \left(\frac{dT}{dx}\right)_{B} = \frac{\lambda}{2\delta x_{b}} (T_{0} - T_{1})$$

为消掉TO,假设
$$T_B = (T_1 + T_0)/2$$

得到
$$\frac{\lambda}{\delta x_h} T_B = \frac{\lambda}{\delta x_h} T_1 + q_B$$

第3类边界条件 $q_B = h(T_f - T_B)$ 得到 $\left(\frac{\lambda}{\delta x_b} + h\right)T_B = \frac{\lambda}{\delta x_b}T_1 + hT_f$

(2) 附加源项法

离散方程在节点1上的表达式:

$$a_1 T_1 = a_2 T_2 + a_B T_B + b$$

消去 TB 和 aB
$$(a_1 - a_B)T_1 = a_2T_2 + a_B(T_B - T_1) + b$$

$$a_1 - a_B = a_2 - S_P \delta x$$

$$q_{B} = -\lambda \left(\frac{\partial T}{\partial x}\right)_{B} = \frac{\lambda}{\delta x_{b}} (T_{B} - T_{1}) = a_{B} (T_{B} - T_{1})$$

最终结果热流表现为源项

$$\overline{a_1} T_1 = a_2 T_2 + \overline{b}$$

$$a_2 = \frac{\lambda}{\delta x}, \quad \overline{a_1} = a_2 - S_P \delta x, \quad \overline{b} = S_C \delta x + q_B$$

编程实现方法

$$a_1 T_1 = a_2 T_2 + a_B T_B + b$$

1将内点离散方程应用在边界节点'1'上

- 2 将系数 a。设为0
- 3 将边界热流加到非齐次项 b 上

$$a_2 = \frac{\lambda}{\delta x}, \quad \overline{a_1} = a_2 - S_P \delta x, \quad \overline{b} = S_C \delta x + \overline{q_B}$$

第3类边界条件

$$q_B = h(T_f - T_B) = \frac{\lambda}{\delta x_b} (T_B - T_1) = a_B (T_B - T_1)$$

消去TB

$$q_B = \frac{T_f - T_1}{1/h + \delta x_b/\lambda}$$

$$\overline{\overline{a_1}}T_1 = a_2T_2 + \overline{\overline{b}}$$

$$a_2 = \frac{\lambda}{\delta x}, \quad \overline{a}_1 = a_2 - S_P \delta x + \frac{1}{1/h + \delta x_b/\lambda}, \quad \overline{b} = S_C \delta x + \frac{T_f}{1/h + \delta x_b/\lambda}$$

编程实现方法

$$a_1 T_1 = a_2 T_2 + a_B T_B + b$$

1将内点离散方程应用在边界节点'1'上

2 将系数 as设为0

3 将边界热流加到系数a₁和非齐次项 b 上

$$a_{2} = \frac{\lambda}{\delta x}, \quad \overline{a}_{1} = a_{2} - S_{P} \delta x + \underbrace{\frac{1}{1/h + \delta x_{b}/\lambda}}, \quad \overline{b} = S_{C} \delta x + \underbrace{\frac{T_{f}}{1/h + \delta x_{b}/\lambda}},$$

(ii) 采用有限差分法

• 开拓半个网格, 节点0

$$a_{1}T_{1} = a_{2}T_{2} + a_{0}T_{0} + b$$

$$a_{1}T_{1} = a_{2}T_{2} + a_{0}\left(\frac{2\delta x_{b}}{\lambda}q_{B} + T_{1}\right) + b$$

$$q_{B} = -\lambda\left(\frac{dT}{dx}\right)_{B} = \frac{\lambda}{2\delta x_{b}}(T_{0} - T_{1})$$

4.1.6 离散方程的非线性性质处理

• 非线性: 当导热系数依赖于求解函数温度T时,则离散代数方程的系数也是温度T的函数,方程具有非线性性质。

系数迭代更新法

- 最简单的线化迭代求解方法:
- (1)给出节点温度的试探值作为迭代初值;
- (2) 用迭代初值计算离散方程中系数值,固定系数,将方程线化;
- (3) 求解线化的代数方程组,得到新温度值;
- (4) 用新温度值替代迭代初值,返回至步骤2, 重复其计算过程,一次次更新系数,一次 次线化并求解方程,直到迭代收敛。

流程图

(稳态情况)

建立控制方程、确 流程图 定初始与边界条件 (非稳态情况) 解域离散、方程离散 初边条件离散 给出节点初始温度值 计算系数,固定, 线化代数方程 以新温度值 求解离散的 替代老温度值 线化的代数方程组 No 解收敛否? Yes 进入下一时层求解

4.1.7 线化代数方程组的三对角 阵算法(TDMA,追赶法)

流程图

建立控制方程、确 定初始与边界条件 解域离散、方程离散 初边条件离散 给出节点初始温度值 计算系数,固定, 线化代数方程

进入下一时层求解

1、直接解法 TDMA

2、迭代解法 留待多维情况再介绍

一维扩散方程离散格式

$$a_P T_P = a_E T_E + a_W T_W + b$$

$$a_i T_{i-1} + b_i T_i + c_i T_{i+1} = d_i, \quad i = 1, 2, \dots N - 1, N$$

$$a_1 = 0$$

$$egin{bmatrix} T_1 \ T_2 \ \vdots \ T_{N-1} \ T_N \end{bmatrix} = egin{bmatrix} d_1 \ d_2 \ \vdots \ d_N \ d_{N-1} \ d_N \end{bmatrix}$$

$$c_N = 0$$

TDMA,追赶法

Tri-Diagonal Matrix Algorithm

• 消元过程(追):

自前向后,从第二行开始,利用前一行方程中两个未知量间关系,把本行中第一个非零元素消除,使原来的三元方程变为二元方程。当消元进行到最后一行时,其二元方程化为一元,于是,最后一个未知量之值立即得到。

• 回代过程(赶):

从倒数第二行开始,自后向前逐个进行回代,由消元过程得到的二元方程解出其它未知值

消元过程

$$T_1 = -\frac{c_1}{b_1}T_2 + \frac{d_1}{b_1} = P_1T_2 + Q_1$$

• i=2时:

$$T_2 = \frac{-c_2}{a_2 P_1 + b_2} T_3 + \frac{d_2 - a_2 Q_1}{a_2 P_1 + b_2} = P_2 T_3 + Q_2$$

•
$$\diamondsuit$$
i-1 \Hat{T} $T_{i-1} = P_{i-1}T_i + Q_{i-1}$ $b_iT_i + c_iT_{i+1} = d_i - a_iP_{i-1}T_i - a_iQ_{i-1}$ $a_iT_{i-1} + b_iT_i + c_iT_{i+1} = d_i$

• i 行

$$T_{i} = \frac{-c_{i}}{a_{i}P_{i-1} + b_{i}}T_{i+1} + \frac{a_{i} - a_{i}Q_{i-1}}{a_{i}P_{i-1} + b_{i}} \Rightarrow P_{i}T_{i+1} + Q_{i}$$

递推公式

$$P_{i} = \frac{-c_{i}}{a_{i}P_{i-1} + b_{i}}, \quad Q_{i} = \frac{d_{i} - a_{i}Q_{i-1}}{a_{i}P_{i-1} + b_{i}}$$

• 第1行

$$P_1 = \frac{-c_1}{b_1}, \quad Q_1 = \frac{d_1}{b_1}$$

第N行

$$P_{N} = 0$$
, $Q_{N} = \frac{d_{N} - a_{N}Q_{N-1}}{a_{N}P_{N-1} + b_{N}} = T_{N}$ 正是所求的未知数

回代过程

$$T_{i} = \frac{-c_{i}}{a_{i}P_{i-1} + b_{i}}T_{i+1} + \frac{d_{i} - a_{i}Q_{i-1}}{a_{i}P_{i-1} + b_{i}} = P_{i}T_{i+1} + Q_{i}$$

从Tn开始,逐个回代:

$$P_N = 0, \quad Q_N = \frac{d_N - a_N Q_{N-1}}{a_N P_{N-1} + b_N} \neq T_N$$

编程实现方法

$$P_{i} = \frac{-c_{i}}{a_{i}P_{i-1} + b_{i}}, \quad Q_{i} = \frac{d_{i} - a_{i}Q_{i-1}}{a_{i}P_{i-1} + b_{i}}$$

$$P_{1} = \frac{-c_{1}}{b_{1}}, \quad Q_{1} = \frac{d_{1}}{b_{1}}$$

$$P_{N} = 0, \quad Q_{N} = \frac{d_{N} - a_{N}Q_{N-1}}{a_{N}P_{N-1} + b_{N}} = T_{N}$$

$$T_{i-1} = P_{i-1}T_i + Q_{i-1}$$

TDMA方法的扩展

图 2-1 三对角矩阵示意图

