Lab Assignment - Final

CB.EN.U4CSE20138

A. Data Manipulation-Pandas

Dataset - Birthrate data

```
In [1]:
```

```
import pandas as pd
import numpy as np
```

In [2]:

```
df = pd.read_csv('https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.cs
```

In [3]:

df

Out[3]:

	year	month	day	gender	births
0	1969	1	1.0	F	4046
1	1969	1	1.0	М	4440
2	1969	1	2.0	F	4454
3	1969	1	2.0	М	4548
4	1969	1	3.0	F	4548
15542	2008	10	NaN	М	183219
15543	2008	11	NaN	F	158939
15544	2008	11	NaN	М	165468
15545	2008	12	NaN	F	173215
15546	2008	12	NaN	М	181235

15547 rows × 5 columns

Indexing

In [4]:

```
index = [i for i in range(1,15548)]
df1 = pd.DataFrame(df,index=index)
```

```
In [5]:
```

df1

Out[5]:

	year	month	day	gender	births
1	1969.0	1.0	1.0	М	4440.0
2	1969.0	1.0	2.0	F	4454.0
3	1969.0	1.0	2.0	М	4548.0
4	1969.0	1.0	3.0	F	4548.0
5	1969.0	1.0	3.0	М	4994.0
15543	2008.0	11.0	NaN	F	158939.0
15544	2008.0	11.0	NaN	М	165468.0
15545	2008.0	12.0	NaN	F	173215.0
15546	2008.0	12.0	NaN	М	181235.0
15547	NaN	NaN	NaN	NaN	NaN

15547 rows × 5 columns

Missing values

```
In [6]:
```

```
df1.columns

Out[6]:
Index(['year', 'month', 'day', 'gender', 'births'], dtype='object')

In [7]:
for i in df1.columns:
    print(df1[i].isnull().sum())

1
1
481
1
In [8]:
for i in df1.columns:
    if il='gender':
        df1[i].fillna(np.mean(df1[i]),inplace=True)
```

```
In [9]:
```

```
df1.isna().sum()

Out[9]:

year     0
month     0
day     0
gender     1
births     0
dtype: int64

In [10]:

x = df1['gender'].mode()
df1['gender'].fillna(x[0],inplace=True)
```

In [11]:

```
df1.isna().sum()
```

Out[11]:

year 0 month 0 day 0 gender 0 births 0 dtype: int64

concat

```
In [12]:
```

```
grid = [[1,2,3],[4,5,6]]
print(len(grid[0]))
```

3

In [13]:

```
import math
l = len(df1)
l=math.ceil(1/2)
df3 = df1[:1]
df4 = df1[1:]
df5 = pd.concat([df3,df4])
df5
```

Out[13]:

	year	month	day	gender	births
1	1969.000000	1.000000	1.000000	М	4440.000000
2	1969.000000	1.000000	2.000000	F	4454.000000
3	1969.000000	1.000000	2.000000	М	4548.000000
4	1969.000000	1.000000	3.000000	F	4548.000000
5	1969.000000	1.000000	3.000000	М	4994.000000
15543	2008.000000	11.000000	17.771008	F	158939.000000
15544	2008.000000	11.000000	17.771008	М	165468.000000
15545	2008.000000	12.000000	17.771008	F	173215.000000
15546	2008.000000	12.000000	17.771008	М	181235.000000
15547	1979.038081	6.516274	17.771008	F	9762.661263

15547 rows × 5 columns

Append

```
In [14]:
```

```
df6 = df3.append(df4)
df6
```

C:\Users\ADMIN\AppData\Local\Temp\ipykernel_18064\565437931.py:1: FutureWarn
ing: The frame.append method is deprecated and will be removed from pandas i
n a future version. Use pandas.concat instead.
 df6 = df3.append(df4)

Out[14]:

	year	month	day	gender	births
1	1969.000000	1.000000	1.000000	М	4440.000000
2	1969.000000	1.000000	2.000000	F	4454.000000
3	1969.000000	1.000000	2.000000	М	4548.000000
4	1969.000000	1.000000	3.000000	F	4548.000000
5	1969.000000	1.000000	3.000000	М	4994.000000
15543	2008.000000	11.000000	17.771008	F	158939.000000
15544	2008.000000	11.000000	17.771008	М	165468.000000
15545	2008.000000	12.000000	17.771008	F	173215.000000
15546	2008.000000	12.000000	17.771008	М	181235.000000
15547	1979.038081	6.516274	17.771008	F	9762.661263

15547 rows × 5 columns

merge and join

```
In [15]:
```

```
df7 = pd.merge(df3,df4,how='inner')
df7
```

Out[15]:

year month day gender births

In [16]:

```
print(pd.concat((df1.iloc[:,0:3],df1.iloc[:,2:5]),join="inner").head())
```

- day
- 1 1.0
- 2 2.0
- 3 2.0
- 4 3.0
- 5 3.0

```
In [17]:
```

```
print("Concatenated result (using Outer Join) :")
print(pd.concat((df1,df1.iloc[:,0:3]),join="outer").head())
Concatenated result (using Outer Join) :
          month
                 day gender
                             births
    year
1
  1969.0
            1.0
                 1.0
                          M 4440.0
2
  1969.0
            1.0 2.0
                          F
                             4454.0
3
  1969.0
            1.0 2.0
                          M 4548.0
4
  1969.0
            1.0 3.0
                          F 4548.0
                          M 4994.0
  1969.0
            1.0 3.0
```

Aggregation

```
In [18]:
```

```
df1.sum()
```

Out[18]:

dtype: object

```
In [19]:
```

```
df1.mean()
```

C:\Users\ADMIN\AppData\Local\Temp\ipykernel_18064\2053335143.py:1: FutureWar ning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_on ly=None') is deprecated; in a future version this will raise TypeError. Sel ect only valid columns before calling the reduction.

df1.mean()

Out[19]:

```
year 1979.038081
month 6.516274
day 17.771008
births 9762.661263
```

dtype: float64

In [20]:

```
df1.min()
```

Out[20]:

```
year 1969.0 month 1.0 day 1.0 gender F births 1.0 dtype: object
```

In [21]:

```
df1.max()
```

Out[21]:

year 2008.0 month 12.0 day 99.0 gender M births 199622.0 dtype: object

In [22]:

df1.median()

C:\Users\ADMIN\AppData\Local\Temp\ipykernel_18064\2279417019.py:1: FutureWar ning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_on ly=None') is deprecated; in a future version this will raise TypeError. Sel ect only valid columns before calling the reduction.

df1.median()

Out[22]:

year 1979.0 month 7.0 day 17.0 births 4814.0 dtype: float64

In [23]:

df1.std()

C:\Users\ADMIN\AppData\Local\Temp\ipykernel_18064\3039516898.py:1: FutureWar
ning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_on
ly=None') is deprecated; in a future version this will raise TypeError. Sel
ect only valid columns before calling the reduction.
 df1.std()

Out[23]:

year 6.727859 month 3.449348 day 15.045627 births 28552.429000

dtype: float64

```
In [24]:
```

```
df1.prod()
```

D:\Application\Anaconda\lib\site-packages\numpy\core_methods.py:52: Runtime
Warning: overflow encountered in reduce
 return umr_prod(a, axis, dtype, out, keepdims, initial, where)
C:\Users\ADMIN\AppData\Local\Temp\ipykernel_18064\1211784430.py:1: FutureWar
ning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_on

ly=None') is deprecated; in a future version this will raise TypeError. Sel ect only valid columns before calling the reduction.

df1.prod()

Out[24]:

year inf month inf day inf births inf dtype: float64

In [25]:

```
df1.mad()
```

Out[25]:

year 5.452924 month 2.995740 day 9.204946 births 9853.394172

dtype: float64

Transform

In [26]:

```
df8 = df1.groupby('year').transform(lambda x: x - x.mean())
df8
```

C:\Users\ADMIN\AppData\Local\Temp\ipykernel_18064\1067088748.py:1: FutureWar ning: Dropping invalid columns in DataFrameGroupBy.transform is deprecated. In a future version, a TypeError will be raised. Before calling .transform, select only columns which should be valid for the function.

df8 = df1.groupby('year').transform(lambda x: x - x.mean())

Out[26]:

	month	day	births
1	-5.507171	-17.616688	-248.604954
2	-5.507171	-16.616688	-234.604954
3	-5.507171	-16.616688	-140.604954
4	-5.507171	-15.616688	-140.604954
5	-5.507171	-15.616688	305.395046
15543	4.500000	0.000000	-18359.166667
15544	4.500000	0.000000	-11830.166667
15545	5.500000	0.000000	-4083.166667
15546	5.500000	0.000000	3936.833333
15547	0.000000	0.000000	0.000000

15547 rows × 3 columns

In [27]:

```
def norm_by_data2(x):
    # x is a DataFrame of group values
    x['month'].mean()
    return x
print(df1);
print(df1.groupby('month').apply(norm_by_data2))
df1.groupby('month').apply(norm_by_data2)
vear month day gender births
```

	yeai	morren	uay	genuei	טבו נווס
1	1969.000000	1.000000	1.000000	М	4440.000000
2	1969.000000	1.000000	2.000000	F	4454.000000
3	1969.000000	1.000000	2.000000	М	4548.000000
4	1969.000000	1.000000	3.000000	F	4548.000000
5	1969.000000	1.000000	3.000000	М	4994.000000
• • •		• • •	• • •		• • •
15543	2008.000000	11.000000	17.771008	F	158939.000000
15544	2008.000000	11.000000	17.771008	М	165468.000000
15545	2008.000000	12.000000	17.771008	F	173215.000000
15546	2008.000000	12.000000	17.771008	М	181235.000000
15547	1979.038081	6.516274	17.771008	F	9762.661263
[15547	rows x 5 col	umns]			
	year	month	day	gender	births
1	1969.000000	1.000000	1.000000	М	4440.000000
2	1969.000000	1.000000	2.000000	F	4454.000000
3	1969.000000	1.000000	2.000000	М	4548.000000
4	1969.000000	1.000000	3.000000	F	4548.000000
5	1969.000000	1.000000	3.000000	М	4994.000000
			• • •		• • •
15543	2008.000000	11.000000	17.771008	F	158939.000000
15544	2008.000000	11.000000	17.771008	М	165468.000000
15545	2008.000000	12.000000	17.771008	F	173215.000000
15546	2008.000000	12.000000	17.771008	М	181235.000000
15547					
15547	1979.038081	6.516274	17.771008	F	9762.661263

[15547 rows x 5 columns]

Out[27]:

	year	month	day	gender	births
1	1969.000000	1.000000	1.000000	М	4440.000000
2	1969.000000	1.000000	2.000000	F	4454.000000
3	1969.000000	1.000000	2.000000	М	4548.000000
4	1969.000000	1.000000	3.000000	F	4548.000000
5	1969.000000	1.000000	3.000000	М	4994.000000
15543	2008.000000	11.000000	17.771008	F	158939.000000
15544	2008.000000	11.000000	17.771008	М	165468.000000
15545	2008.000000	12.000000	17.771008	F	173215.000000
15546	2008.000000	12.000000	17.771008	М	181235.000000
15547	1979.038081	6.516274	17.771008	F	9762.661263

15547 rows × 5 columns

Pivot table

```
In [28]:
```

```
df1.pivot_table(index='gender')
```

Out[28]:

	births	day	month	year
gender				
F	9521.802940	17.784698	6.514084	1979.038714
М	10003.674559	17.757308	6.518466	1979.037447

B. Time Series

In [29]:

ts = pd.read_csv('Fremont_Bridge_Bicycle_Counter.csv',index_col='Date',parse_dates=True)

In [30]:

ts

Out[30]:

	Fremont Bridge Total	Fremont Bridge East Sidewalk	Fremont Bridge West Sidewalk
Date			
2012-10-03 00:00:00	13.0	4.0	9.0
2012-10-03 01:00:00	10.0	4.0	6.0
2012-10-03 02:00:00	2.0	1.0	1.0
2012-10-03 03:00:00	5.0	2.0	3.0
2012-10-03 04:00:00	7.0	6.0	1.0
2022-09-30 19:00:00	168.0	57.0	111.0
2022-09-30 20:00:00	73.0	33.0	40.0
2022-09-30 21:00:00	69.0	30.0	39.0
2022-09-30 22:00:00	51.0	10.0	41.0
2022-09-30 23:00:00	59.0	22.0	37.0

87600 rows × 3 columns

In [31]:

```
ts.columns = ['Total','West', 'East']
```

In [32]:

ts

Out[32]:

	Total	West	East
Date			
2012-10-03 00:00:00	13.0	4.0	9.0
2012-10-03 01:00:00	10.0	4.0	6.0
2012-10-03 02:00:00	2.0	1.0	1.0
2012-10-03 03:00:00	5.0	2.0	3.0
2012-10-03 04:00:00	7.0	6.0	1.0
2022-09-30 19:00:00	168.0	57.0	111.0
2022-09-30 20:00:00	73.0	33.0	40.0
2022-09-30 21:00:00	69.0	30.0	39.0
2022-09-30 22:00:00	51.0	10.0	41.0
2022-09-30 23:00:00	59.0	22.0	37.0

87600 rows × 3 columns

In [33]:

ts.dropna().describe()

Out[33]:

	Total	West	East
count	87586.000000	87586.000000	87586.000000
mean	107.240849	48.086623	59.154226
std	134.790561	61.573965	83.567491
min	0.000000	0.000000	0.000000
25%	13.000000	6.000000	7.000000
50%	60.000000	27.000000	30.000000
75%	144.000000	66.000000	75.000000
max	1097.000000	698.000000	850.000000

In [34]:

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(rc={"figure.figsize":(20, 10)})
#plt.figure(figsize=(20,20))
ts.plot()
plt.ylabel('Hourly Bicycle Count')
```

Out[34]:

Text(0, 0.5, 'Hourly Bicycle Count')

In [35]:

```
weekly = ts.resample('W').sum()
weekly.plot(style=[':', '--', '-'])
plt.ylabel('Weekly bicycle count');
```


In [36]:

```
daily = ts.resample('D').sum()
daily.rolling(30, center=True).sum().plot(style=[':', '--', '-'])
plt.ylabel('mean hourly count')
```

Out[36]:

Text(0, 0.5, 'mean hourly count')

In [37]:

daily.rolling(50, center=True,win_type='gaussian').sum(std=10).plot(style=[':', '--', '-'])

Out[37]:

<AxesSubplot:xlabel='Date'>

In [38]:

```
by_time = ts.groupby(ts.index.time).mean()
hourly_ticks = 4 * 60 * 60 * np.arange(6)
by_time.plot(xticks=hourly_ticks, style=[':', '--', '-'])
```

Out[38]:

<AxesSubplot:xlabel='time'>

In [39]:

```
by_weekday = ts.groupby(ts.index.dayofweek).mean()
by_weekday.index = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun']
by_weekday.plot(style=[':', '--', '-']);
```


In [40]:

```
weekend = np.where(ts.index.weekday < 5, 'Weekday', 'Weekend')
by_time = ts.groupby([weekend, ts.index.time]).mean()
# weekday = np.where(ts.index.weekday >= 5, 'Weekday', 'Weekend')
# by_time = ts.groupby([weekday, ts.index.time]).mean()
```

Time shifts

In [41]:

```
fig, ax = plt.subplots(3, sharey=True)
ts = ts.asfreq('D', method='pad')
ts.plot(ax=ax[0])
ts.shift(300).plot(ax=ax[1])
ts.tshift(300).plot(ax=ax[2])
local_max = pd.to_datetime('2006-10-03')
offset = pd.Timedelta(300, 'D')
ax[0].legend(['input'], loc=2)
ax[0].get_xticklabels()[2].set(color='red')
ax[0].axvline(local_max, alpha=0.3, color='red')
ax[1].legend(['shift(300)'], loc=2)
ax[1].get_xticklabels()[2].set(color='red')
ax[1].axvline(local_max + offset, alpha=0.3, color='red')
ax[2].legend(['tshift(300)'], loc=2)
ax[2].get_xticklabels()[1].set( color='red')
ax[2].axvline(local max + offset, alpha=0.3, color='red')
```

C:\Users\ADMIN\AppData\Local\Temp\ipykernel_18064\3600603100.py:5: FutureWar ning: tshift is deprecated and will be removed in a future version. Please u se shift instead.

ts.tshift(300).plot(ax=ax[2])

Out[41]:

<matplotlib.lines.Line2D at 0x1eb4aa648b0>

Q3 - Stocks dataset

In [42]:

```
sd=pd.read_csv("stock_px_2.csv")
```

In [43]:

sd

Out[43]:

	Unnamed: 0	AAPL	MSFT	XOM	SPX
0	2003-01-02 00:00:00	7.40	21.11	29.22	909.03
1	2003-01-03 00:00:00	7.45	21.14	29.24	908.59
2	2003-01-06 00:00:00	7.45	21.52	29.96	929.01
3	2003-01-07 00:00:00	7.43	21.93	28.95	922.93
4	2003-01-08 00:00:00	7.28	21.31	28.83	909.93
2209	2011-10-10 00:00:00	388.81	26.94	76.28	1194.89
2210	2011-10-11 00:00:00	400.29	27.00	76.27	1195.54
2211	2011-10-12 00:00:00	402.19	26.96	77.16	1207.25
2212	2011-10-13 00:00:00	408.43	27.18	76.37	1203.66
2213	2011-10-14 00:00:00	422.00	27.27	78.11	1224.58

2214 rows × 5 columns

In [44]:

```
sd.set_index("Unnamed: 0",inplace=True)
sd
```

Out[44]:

	AAPL	MSFT	XOM	SPX
Unnamed: 0				
2003-01-02 00:00:00	7.40	21.11	29.22	909.03
2003-01-03 00:00:00	7.45	21.14	29.24	908.59
2003-01-06 00:00:00	7.45	21.52	29.96	929.01
2003-01-07 00:00:00	7.43	21.93	28.95	922.93
2003-01-08 00:00:00	7.28	21.31	28.83	909.93
2011-10-10 00:00:00	388.81	26.94	76.28	1194.89
2011-10-11 00:00:00	400.29	27.00	76.27	1195.54
2011-10-12 00:00:00	402.19	26.96	77.16	1207.25
2011-10-13 00:00:00	408.43	27.18	76.37	1203.66
2011-10-14 00:00:00	422.00	27.27	78.11	1224.58

2214 rows × 4 columns

Indexing, selecting and subsetting

```
In [45]:
```

```
#by columns
sd.loc[:,['XOM']]
```

Out[45]:

XOM

Unnamed: 0						
2003-01-02 00:00:00	29.22					
2003-01-03 00:00:00	29.24					
2003-01-06 00:00:00	29.96					
2003-01-07 00:00:00	28.95					
2003-01-08 00:00:00	28.83					
2011-10-10 00:00:00	76.28					
2011-10-11 00:00:00	76.27					
2011-10-12 00:00:00	77.16					
2011-10-13 00:00:00	76.37					
2011-10-14 00:00:00	78.11					

2214 rows × 1 columns

In [46]:

```
sd.loc[:,['AAPL']]
```

Out[46]:

AAPL

Unnamed: 0						
2003-01-02 00:00:00	7.40					
2003-01-03 00:00:00	7.45					
2003-01-06 00:00:00	7.45					
2003-01-07 00:00:00	7.43					
2003-01-08 00:00:00	7.28					
2011-10-10 00:00:00	388.81					
2011-10-10 00:00:00 2011-10-11 00:00:00	388.81 400.29					
	400.29					
2011-10-11 00:00:00	400.29 402.19					

2214 rows × 1 columns

In [47]:

```
#selection example
sd['AAPL'][sd['AAPL']>100]
```

Out[47]:

```
Unnamed: 0
2007-05-02 00:00:00
                       100.39
2007-05-03 00:00:00
                       100.40
2007-05-04 00:00:00
                       100.81
2007-05-07 00:00:00
                       103.92
2007-05-08 00:00:00
                       105.06
                        . . .
2011-10-10 00:00:00
                       388.81
2011-10-11 00:00:00
                       400.29
2011-10-12 00:00:00
                       402.19
2011-10-13 00:00:00
                       408.43
2011-10-14 00:00:00
                       422.00
Name: AAPL, Length: 1023, dtype: float64
```

In [48]:

```
sd['Sum']=sd['AAPL']+sd['SPX']+sd['MSFT']+sd['XOM']
sd
```

Out[48]:

	AAPL	MSFT	XOM	SPX	Sum
Unnamed: 0					
2003-01-02 00:00:00	7.40	21.11	29.22	909.03	966.76
2003-01-03 00:00:00	7.45	21.14	29.24	908.59	966.42
2003-01-06 00:00:00	7.45	21.52	29.96	929.01	987.94
2003-01-07 00:00:00	7.43	21.93	28.95	922.93	981.24
2003-01-08 00:00:00	7.28	21.31	28.83	909.93	967.35
•••					
2011-10-10 00:00:00	388.81	26.94	76.28	1194.89	1686.92
2011-10-11 00:00:00	400.29	27.00	76.27	1195.54	1699.10
2011-10-12 00:00:00	402.19	26.96	77.16	1207.25	1713.56
2011-10-13 00:00:00	408.43	27.18	76.37	1203.66	1715.64
2011-10-14 00:00:00	422.00	27.27	78.11	1224.58	1751.96

2214 rows × 5 columns

In [49]:

```
sd.iloc[:,4].plot(figsize=(12,8),color='red')
plt.xlabel('Price')
plt.ylabel('Year')
```

Out[49]:

Text(0, 0.5, 'Year')

In [50]:

```
sd.rolling(50, center=True,win_type='gaussian').sum(std=10).plot(style= '--',figsize=(12,6)
plt.xlabel("year")
plt.ylabel("stock price")
```

Out[50]:

Text(0, 0.5, 'stock price')

Date Ranges, Frequencies, and Shifting (Leading and Lagging) Data

In [51]:

```
from datetime import datetime
now = datetime.now().time()
print("now =", now)
```

now = 19:09:09.712081

In [52]:

stock=sd

```
In [53]:
```

```
import datetime
datetime.datetime.combine(datetime.date(2011, 1, 1), datetime.time(10, 23))
```

Out[53]:

datetime.datetime(2011, 1, 1, 10, 23)

In [54]:

```
pd.date_range(start='2012-04-01', periods=20)
```

Out[54]:

In [55]:

```
shift1=stock.shift(1, axis = 1)
shift1.head()
```

Out[55]:

	AAPL	MSFI	XOM	SPX	Sum
Unnamed: 0					
2003-01-02 00:00:00	NaN	7.40	21.11	29.22	909.03
2003-01-03 00:00:00	NaN	7.45	21.14	29.24	908.59
2003-01-06 00:00:00	NaN	7.45	21.52	29.96	929.01
2003-01-07 00:00:00	NaN	7.43	21.93	28.95	922.93
2003-01-08 00:00:00	NaN	7.28	21.31	28.83	909.93

In [56]:

```
shift1=stock.shift(-2, axis = 0)
shift1.tail()
```

Out[56]:

	AAPL	MSFT	XOM	SPX	Sum
Unnamed: 0					
2011-10-10 00:00:00	402.19	26.96	77.16	1207.25	1713.56
2011-10-11 00:00:00	408.43	27.18	76.37	1203.66	1715.64
2011-10-12 00:00:00	422.00	27.27	78.11	1224.58	1751.96
2011-10-13 00:00:00	NaN	NaN	NaN	NaN	NaN
2011-10-14 00:00:00	NaN	NaN	NaN	NaN	NaN

Time localisation

```
In [57]:
import pytz
pytz.common_timezones[-5:]
Out[57]:
['US/Eastern', 'US/Hawaii', 'US/Mountain', 'US/Pacific', 'UTC']
In [58]:
tz = pytz.timezone('America/New_York')
Out[58]:
<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>
In [59]:
pd.date_range('3/9/2012 9:30', periods=10, freq='D', tz='UTC')
Out[59]:
DatetimeIndex(['2012-03-09 09:30:00+00:00', '2012-03-10 09:30:00+00:00',
                 '2012-03-11 09:30:00+00:00', '2012-03-12 09:30:00+00:00', '2012-03-13 09:30:00+00:00', '2012-03-14 09:30:00+00:00',
                 '2012-03-15 09:30:00+00:00', '2012-03-16 09:30:00+00:00', '2012-03-17 09:30:00+00:00', '2012-03-18 09:30:00+00:00'],
                dtype='datetime64[ns, UTC]', freq='D')
In [60]:
import numpy as np
rng = pd.date_range('3/9/2012 9:30', periods=6, freq='D')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
Out[60]:
2012-03-09 09:30:00
                         -2.044955
2012-03-10 09:30:00
                         -0.881985
2012-03-11 09:30:00
                          0.672232
2012-03-12 09:30:00
                          0.414242
2012-03-13 09:30:00
                         -0.821002
2012-03-14 09:30:00
                         -0.115646
Freq: D, dtype: float64
```

```
In [61]:
ts utc = ts.tz localize('UTC')
ts_utc
Out[61]:
2012-03-09 09:30:00+00:00
                            -2.044955
2012-03-10 09:30:00+00:00
                           -0.881985
2012-03-11 09:30:00+00:00
                             0.672232
2012-03-12 09:30:00+00:00
                             0.414242
2012-03-13 09:30:00+00:00
                            -0.821002
2012-03-14 09:30:00+00:00
                            -0.115646
Freq: D, dtype: float64
In [62]:
ts_utc.index
Out[62]:
DatetimeIndex(['2012-03-09 09:30:00+00:00', '2012-03-10 09:30:00+00:00',
               '2012-03-11 09:30:00+00:00', '2012-03-12 09:30:00+00:00'
               '2012-03-13 09:30:00+00:00', '2012-03-14 09:30:00+00:00'],
              dtype='datetime64[ns, UTC]', freq='D')
In [63]:
ts_eastern = ts.tz_localize('America/New_York')
ts eastern
Out[63]:
2012-03-09 09:30:00-05:00
                            -2.044955
2012-03-10 09:30:00-05:00
                           -0.881985
2012-03-11 09:30:00-04:00
                             0.672232
2012-03-12 09:30:00-04:00
                             0.414242
2012-03-13 09:30:00-04:00
                            -0.821002
2012-03-14 09:30:00-04:00
                            -0.115646
dtype: float64
In [64]:
ts_eastern.tz_convert('UTC')
Out[64]:
2012-03-09 14:30:00+00:00
                            -2.044955
2012-03-10 14:30:00+00:00
                            -0.881985
2012-03-11 13:30:00+00:00
                             0.672232
2012-03-12 13:30:00+00:00
                             0.414242
2012-03-13 13:30:00+00:00
                            -0.821002
2012-03-14 13:30:00+00:00
                            -0.115646
dtype: float64
```

Periods and Period Arithmetic and Period Frequency Conversion

```
In [65]:
prd = pd.Period(2010, freq='A-DEC')
prd
Out[65]:
Period('2010', 'A-DEC')
In [66]:
rng = pd.period_range('2000-01-01', '2000-06-30', freq='M')
rng
Out[66]:
PeriodIndex(['2000-01', '2000-02', '2000-03', '2000-04', '2000-05', '2000-0
6'], dtype='period[M]')
In [67]:
prd = pd.Period('2012Q4', freq='Q-JAN')
prd
Out[67]:
Period('2012Q4', 'Q-JAN')
In [68]:
rng = pd.date_range('2000-01-01', periods=3, freq='M')
In [69]:
pts=ts.to_period()
pts
Out[69]:
2012-03-09
             -2.044955
             -0.881985
2012-03-10
2012-03-11
             0.672232
2012-03-12
              0.414242
2012-03-13
             -0.821002
2012-03-14
             -0.115646
Freq: D, dtype: float64
C. Classifier
```

Q4

```
In [70]:
kd=pd.read_csv("ckd.csv")
```

In [71]:

kd

Out[71]:

	Age	Blood Pressure	Specific Gravity	Albumin	Sugar	Red Blood Cells	Pus Cell	Pus Cell clumps	Bacteria	Blo Gluco Rand
0	48	70	1.005	4	0	normal	abnormal	present	notpresent	
1	53	90	1.020	2	0	abnormal	abnormal	present	notpresent	
2	63	70	1.010	3	0	abnormal	abnormal	present	notpresent	;
3	68	80	1.010	3	2	normal	abnormal	present	present	•
4	61	80	1.015	2	0	abnormal	abnormal	notpresent	notpresent	
153	55	80	1.020	0	0	normal	normal	notpresent	notpresent	
154	42	70	1.025	0	0	normal	normal	notpresent	notpresent	
155	12	80	1.020	0	0	normal	normal	notpresent	notpresent	
156	17	60	1.025	0	0	normal	normal	notpresent	notpresent	
157	58	80	1.025	0	0	normal	normal	notpresent	notpresent	•

158 rows × 25 columns

4

```
In [72]:
kd.isna().sum()
Out[72]:
                            0
Age
Blood Pressure
                            0
Specific Gravity
                            0
Albumin
                            0
Sugar
                            0
Red Blood Cells
                            0
Pus Cell
                            0
Pus Cell clumps
                            0
Bacteria
Blood Glucose Random
                            0
Blood Urea
                            0
Serum Creatinine
                            0
Sodium
                            0
Potassium
                            0
Hemoglobin
                            0
Packed Cell Volume
                            0
White Blood Cell Count
                            0
Red Blood Cell Count
                            0
Hypertension
                            0
Diabetes Mellitus
                            0
Coronary Artery Disease
                            0
Appetite
                            0
Pedal Edema
                            0
Anemia
                            0
Class
                            0
dtype: int64
In [73]:
len(kd.columns)
Out[73]:
25
In [74]:
# let us take only few featue and extract them
In [75]:
kd=kd[["Hemoglobin","Blood Glucose Random","Class"]]
In [76]:
print("Number of samples in class 1 (With Chronic Kidney Disease) : ",len(kd[kd.Class==1]))
Number of samples in class 1 (With Chronic Kidney Disease): 43
```

localhost:8888/notebooks/Datascience/Assignment Final cb.en.u4cse20138.ipynb#C.-Classifier

In [77]:

```
print("Number of samples in class 0 (Without Chronic Kidney Disease) : ",len(kd[kd.Class==0])
```

Number of samples in class 0 (Without Chronic Kidney Disease): 115

In [78]:

```
to_predict_Hemoglobin = 0
to_predict_Glucose_Level = (1.1 * kd["Blood Glucose Random"].describe()["std"] + kd["Blood
```

In [79]:

```
print("We need to predict whether Alice has CKD")
print("From the question : - ")
print("Alice's Hemoglobin : ",to_predict_Hemoglobin)
print("Alice's Glucose Level : ",to_predict_Glucose_Level)
```

We need to predict whether Alice has CKD From the question : Alice's Hemoglobin : 0
Alice's Glucose Level : 202.7755876116037

localhost:8888/notebooks/Datascience/Assignment Final cb.en.u4cse20138.ipynb#C.-Classifier

In [80]:

```
import matplotlib
from matplotlib.patches import Patch
x_feature = kd.Hemoglobin
y_feature = kd["Blood Glucose Random"]
plt.figure(figsize=(10, 6))
colors=["green","blue"]
plt.scatter(x_feature, y_feature, c=[colors[label] for label in kd.Class])
plt.xlabel("Hemoglobin")
plt.ylabel("Blood Glucose Random")
class_labels = ['With Chronic Kidney Disease', 'Without Chronic Kidney Disease']
patches = [Patch(color=color, label=label) for color, label in zip(colors, class_labels)]
plt.legend(title='Classes', handles=patches)
```

Out[80]:

<matplotlib.legend.Legend at 0x1eb44a34070>

In [81]:

```
x_feature = kd.Hemoglobin
y_feature = kd["Blood Glucose Random"]
plt.figure(figsize=(10, 6))
colors=["green","blue"]
plt.scatter(x_feature, y_feature, c=[colors[label] for label in kd.Class])
new_point = (to_predict_Hemoglobin, to_predict_Glucose_Level)
plt.scatter(new_point[0], new_point[1], c='blue', marker='*', s=200)
plt.annotate("Alice's data", xy=new_point, xytext=(6, 130), arrowprops=dict(facecolor='red'
plt.xlabel("Hemoglobin")
plt.ylabel("Blood Glucose Random")
class_labels = ['With Chronic Kidney Disease', 'Without Chronic Kidney Disease']
patches = [Patch(color=color, label=label) for color, label in zip(colors, class_labels)]
plt.legend(title='Classes', handles=patches)
```

Out[81]:

<matplotlib.legend.Legend at 0x1eb4ffbb5b0>

In [82]:

```
n.model_selection import train_test_split
test, y_train, y_test = train_test_split(kd[["Hemoglobin","Blood Glucose Random"]], kd["Clast")
```

In [83]:

```
x_feature = kd.Hemoglobin
y feature = kd["Blood Glucose Random"]
plt.figure(figsize=(10, 6))
colors=["green","blue"]
plt.scatter(x_feature, y_feature, c=[colors[label] for label in kd.Class])
new_point = (to_predict_Hemoglobin, to_predict_Glucose_Level)
plt.scatter(new_point[0], new_point[1], c='blue', marker='*', s=200)
plt.annotate("Alice's data", xy=new_point, xytext=(6, 130), arrowprops=dict(facecolor='blue
plt.xlabel("Hemoglobin")
plt.ylabel("Blood Glucose Random")
train_features_x=X_train.Hemoglobin
train_features_y=X_train["Blood Glucose Random"]
colors_train=["lightblue","green"]
plt.scatter(train_features_x,train_features_y, c=[colors_train[label] for label in y_train]
class_labels = ['With Chronic Kidney Disease', 'Without Chronic Kidney Disease']
patches = [Patch(color=color, label=label) for color, label in zip(colors, class_labels)]
plt.legend(title='Classes', handles=patches)
print("Light blue and Green color data represents the samples chosen for training")
```

Light blue and Green color data represents the samples chosen for training

In [84]:

#KNN

```
In [85]:
```

```
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=3)
```

In [86]:

```
classifier.fit(X_train,y_train)
```

Out[86]:

```
KNeighborsClassifier
KNeighborsClassifier(n_neighbors=3)
```

In [87]:

```
predictions=classifier.predict(X_test)
```

In [88]:

```
predictions
```

Out[88]:

```
array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0], dtype=int64)
```

In [89]:

```
# validation
```

In [90]:

```
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
```

In [91]:

```
acc = accuracy_score(y_test, predictions)
print("Accuracy : ",acc)
```

Accuracy: 0.90625

```
In [92]:
confusion_matrix_ = confusion_matrix(y_test, predictions)
print("Confusion Matrix : ")
print(confusion_matrix_)
Confusion Matrix :
[[23 1]
[ 2 6]]
In [93]:
report = classification_report(y_test, predictions)
print("Overall Report")
print(report)
Overall Report
                            recall f1-score
              precision
                                                support
           0
                   0.92
                              0.96
                                        0.94
                                                     24
           1
                   0.86
                              0.75
                                        0.80
                                                      8
                                        0.91
                                                     32
    accuracy
                              0.85
                                                     32
   macro avg
                   0.89
                                        0.87
                   0.90
                              0.91
                                        0.90
                                                     32
weighted avg
In [94]:
# Alice
In [95]:
class_Alice = classifier.predict([[to_predict_Hemoglobin, to_predict_Glucose_Level]])
```

D:\Application\Anaconda\lib\site-packages\sklearn\base.py:450: UserWarning:

X does not have valid feature names, but KNeighborsClassifier was fitted wit

h feature names warnings.warn(

In [96]:

```
print("Alice doesn't have CKD")
```

Alice doesn't have CKD

In [97]:

```
from sklearn import tree
```

In [98]:

```
classifier = tree.DecisionTreeClassifier()
```

In [99]:

```
classifier.fit(X_train,y_train)
```

Out[99]:

```
• DecisionTreeClassifier
DecisionTreeClassifier()
```

In [100]:

```
tree.plot tree(classifier)
```

Out[100]:

gini = 0.0
samples = 33
value =
$$[0, 33]$$
 $X[1] \le 175.0$
gini = 0.042
samples = 93
value = $[91, 2]$

gini = 0.0 samples = 2 value = [0, 2]

In [101]:

```
predictions=classifier.predict(X_test)
```

```
In [102]:
```

```
confusion_matrix_ = confusion_matrix(y_test, predictions)
print("Confusion Matrix : ")
print(confusion_matrix_)
```

```
Confusion Matrix :
```

```
[[24 0]
[ 0 8]]
```

In [103]:

```
report = classification_report(y_test, predictions)
print("Overall Report")
print(report)
```

Overall Report

	precision	recall	f1-score	support
0	1.00	1.00	1.00	24
1	1.00	1.00	1.00	8
accuracy			1.00	32
macro avg	1.00	1.00	1.00	32
weighted avg	1.00	1.00	1.00	32

In [104]:

```
from sklearn.linear_model import LogisticRegression
```

In [105]:

```
classifier = LogisticRegression()
```

In [106]:

```
classifier.fit(X_train,y_train)
```

Out[106]:

```
LogisticRegression
LogisticRegression()
```

In [107]:

```
predictions=classifier.predict(X_test)
```

In [108]:

```
confusion_matrix_ = confusion_matrix(y_test, predictions)
print("Confusion Matrix : ")
print(confusion_matrix_)
```

```
Confusion Matrix :
```

[[24 0] [1 7]]

In [109]:

```
report = classification_report(y_test, predictions)
print("Overall Report")
print(report)
```

Overall Report

	precision	recall	f1-score	support
0	0.96	1.00	0.98	24
1	1.00	0.88	0.93	8
accuracy			0.97	32
macro avg	0.98	0.94	0.96	32
weighted avg	0.97	0.97	0.97	32

In []:

Q5

In [110]:

```
x = pd.read_csv('wine.csv')
```

In [111]:

Х

Out[111]:

	Wine	Alcohol	Malic.acid	Ash	Acl	Mg	Phenols	Flavanoids	Nonflavanoid.phenols	Pr
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	

178 rows × 14 columns

In [112]:

x.isna().sum()

Out[112]:

Wine	0
Alcohol	0
Malic.acid	0
Ash	0
Acl	0
Mg	0
Phenols	0
Flavanoids	0
Nonflavanoid.phenols	0
Proanth	0
Color.int	0
Hue	0
OD	0
Proline	0
dtype: int64	

In [113]:

 $\textbf{from} \ \, \textbf{sklearn.neighbors} \ \, \textbf{import} \ \, \textbf{KNeighborsClassifier}$

In [114]:

```
from sklearn.model_selection import train_test_split
X = x.drop(['Wine'],axis='columns')
y = x['Wine']
X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2, random_state=50)
```

In [115]:

```
error1= []
error2= []
for k in range(1,10):
    knn= KNeighborsClassifier(n_neighbors=k)
    knn.fit(X_train,y_train)
    y_pred1= knn.predict(X_train)
    error1.append(np.mean(y_train!= y_pred1))
    y_pred2= knn.predict(X_test)
    error2.append(np.mean(y_test!= y_pred2))

plt.plot(range(1,10),error1,label="train")
plt.plot(range(1,10),error2,label="test")
plt.xlabel('k Value')
plt.ylabel('Error')
plt.legend()
```

Out[115]:

<matplotlib.legend.Legend at 0x1eb539c09d0>

In [116]:

```
knn = KNeighborsClassifier(n_neighbors=1)
```

```
In [117]:
```

```
knn.fit(X_train, y_train)
```

Out[117]:

```
KNeighborsClassifier
KNeighborsClassifier(n_neighbors=1)
```

In [118]:

```
knn.score(X_test, y_test)
```

Out[118]:

0.75

In [119]:

```
from sklearn.metrics import confusion_matrix
y_pred = knn.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
cm
```

Out[119]:

In [120]:

```
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sn
plt.figure(figsize=(7,7))
sn.heatmap(cm, annot=True)
plt.xlabel('Predicted')
plt.ylabel('Truth')
```

Out[120]:

Text(39.5, 0.5, 'Truth')

In [121]:

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
1	0.83	0.77	0.80	13
2	0.72 0.67	0.93 0.44	0.81 0.53	14 9
26644264			0.75	36
accuracy			0.75	36
macro avg	0.74	0.71	0.72	36
weighted avg	0.75	0.75	0.74	36

In [122]:

#other classifier

```
In [123]:
```

```
from sklearn.ensemble import RandomForestRegressor
```

```
In [124]:
```

```
rf = RandomForestRegressor(random_state =1, max_features=4)
```

In [125]:

```
X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2, random_state=50)
```

In [126]:

```
rf.fit(X_train,y_train)
```

Out[126]:

```
RandomForestRegressor
RandomForestRegressor(max_features=4, random_state=1)
```

In [127]:

```
y_pred = rf.predict(X_test)
```

In [128]:

```
rf.score(X_test, y_test)
```

Out[128]:

0.9208835051546392

In [129]:

```
from sklearn.metrics import confusion_matrix
y_pred = knn.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
cm
```

Out[129]:

In [130]:

```
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sn
plt.figure(figsize=(7,7))
sn.heatmap(cm, annot=True)
plt.xlabel('Predicted')
plt.ylabel('Truth')
```

Out[130]:

Text(39.5, 0.5, 'Truth')

In [131]:

#other classifier

In [132]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
```

In [133]:

```
from sklearn.svm import SVC
svm = SVC(C=10000,gamma=0.00001)
svm.fit(X_train,y_train)
```

Out[133]:

```
SVC
SVC(C=10000, gamma=1e-05)
```

In [134]:

```
svm.score(X_test, y_test)
```

Out[134]:

0.9322033898305084

Regression

Q7

In [135]:

```
df=pd.read_csv("Housing.csv")
```

In [136]:

```
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(df.mainroad)
df.mainroad=le.transform(df.mainroad)
le.fit(df.guestroom)
df.guestroom=le.transform(df.guestroom)
le.fit(df.basement)
df.basement=le.transform(df.basement)
le.fit(df.hotwaterheating)
df.hotwaterheating=le.transform(df.hotwaterheating)
le.fit(df.airconditioning)
df.airconditioning=le.transform(df.airconditioning)
le.fit(df.prefarea)
df.prefarea=le.transform(df.prefarea)
le.fit(df.furnishingstatus)
df.furnishingstatus=le.transform(df.furnishingstatus)
```

In [137]:

```
corr_matrix = df.corr()
print(corr_matrix["price"])
```

price 1.000000 0.535997 area bedrooms 0.366494 bathrooms 0.517545 stories 0.420712 0.296898 mainroad 0.255517 guestroom basement 0.187057 hotwaterheating 0.093073 airconditioning 0.452954 parking 0.384394 prefarea 0.329777 furnishingstatus -0.304721 Name: price, dtype: float64

In [138]:

print("Area is highly correlated to price compared to others : So we shall use area for vis

Area is highly correlated to price compared to others : So we shall use area for visualizations

In [139]:

```
x_feature = df.area
y_feature = df.price
plt.figure(figsize=(10, 6))
plt.scatter(x_feature, y_feature,c="blue")
plt.xlabel("Area")
plt.ylabel("Price")
```

Out[139]:

Text(0, 0.5, 'Price')

In [140]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df.drop(columns="area"), df["area"], te
```

In [141]:

#KNN

In [142]:

from sklearn.neighbors import KNeighborsRegressor

In [143]:

```
regressor = KNeighborsRegressor(n_neighbors=3)
```

In [144]:

```
regressor.fit(X_train, y_train)
```

Out[144]:

```
KNeighborsRegressor
KNeighborsRegressor(n_neighbors=3)
```

In [145]:

```
predictions=regressor.predict(X_test)
```

In [146]:

```
# Validation
```

In [147]:

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import r2_score
```

In [148]:

```
mse = mean_squared_error(y_test, predictions)
print("Mean squared Error:", mse)
```

Mean squared Error: 4793420.15188583

In [149]:

```
mae = mean_absolute_error(y_test, predictions)
print("Mean Absolute Error:", mae)
```

Mean Absolute Error: 1641.4220183486236

In [150]:

```
residuals = y_test - predictions
plt.scatter(y_test, residuals)
plt.axhline(y=0, color='g')
plt.xlabel("True values")
plt.ylabel("Residuals")
plt.title("Residual plot")
plt.show()
```


In [151]:

#Residuals are randomly distributed around the horizontal axis, #it suggests that the model is a decent fit for the data. "Decent" not "good" because the #

Q8

In [152]:

```
df_train=pd.read_csv("train.csv")
```

In [153]:

```
df_test=pd.read_csv("test.csv")
```

In [154]:

```
df_train.dropna(inplace=True)
```

In [155]:

```
df_train.isna().sum()
```

Out[155]:

PassengerId 0 Survived 0 **Pclass** 0 Name 0 Sex 0 0 Age 0 SibSp Parch 0 Ticket 0 0 Fare Cabin 0 **Embarked** 0 dtype: int64

In [156]:

```
df_train.drop(columns=["Name","PassengerId"],inplace=True)
```

In [157]:

```
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(df_train.Embarked)
df_train.Embarked=le.transform(df_train.Embarked)
le.fit(df_train.Cabin)
df_train.Cabin=le.transform(df_train.Cabin)
le.fit(df_train.Ticket)
df_train.Ticket=le.transform(df_train.Ticket)
le.fit(df_train.Sex)
df_train.Sex=le.transform(df_train.Sex)
```

In [158]:

```
corr_matrix = df_train.corr()
print(corr_matrix["Survived"])
```

```
Survived
            1.000000
Pclass
           -0.034542
Sex
           -0.532418
           -0.254085
Age
SibSp
            0.106346
            0.023582
Parch
Ticket
            0.022768
Fare
            0.134241
Cabin
           -0.010664
Embarked
           -0.100943
```

Name: Survived, dtype: float64

In [159]:

```
print("Area is highly correlated to Fare,SibSp compared to others : So we shall use area fo
```

Area is highly correlated to Fare, SibSp compared to others : So we shall use area for visualizations

In [160]:

```
x_feature = df_train.Fare
y_feature = df_train.SibSp
plt.figure(figsize=(10, 6))
colors=["green","blue"]
plt.scatter(x_feature, y_feature, c=[colors[label] for label in df_train.Survived])
plt.xlabel("Fare")
plt.ylabel("SibSp")
class_labels = ['Not Survived', 'Survived']
patches = [Patch(color=color, label=label) for color, label in zip(colors, class_labels)]
plt.legend(title='Classes', handles=patches)
```

Out[160]:

<matplotlib.legend.Legend at 0x1eb5460afa0>

In [161]:

```
df_test.dropna(inplace=True)
```

In [162]:

```
df_test.drop(columns=["Name","PassengerId"],inplace=True)
```

```
In [163]:
```

```
le = preprocessing.LabelEncoder()
le.fit(df_test.Embarked)
df_test.Embarked=le.transform(df_test.Embarked)
le.fit(df_test.Cabin)
df_test.Cabin=le.transform(df_test.Cabin)
le.fit(df_test.Ticket)
df_test.Ticket=le.transform(df_test.Ticket)
le.fit(df_test.Sex)
```

In [164]:

```
X=df_train.drop(columns="Survived")
```

In [165]:

```
Y=df_train.Survived
```

In [166]:

```
# Logistic Regression
```

In [167]:

```
from sklearn.linear_model import LogisticRegression
```

In [168]:

```
classifier = LogisticRegression()
```

In [169]:

```
classifier.fit(X,Y)
```

```
D:\Application\Anaconda\lib\site-packages\sklearn\linear_model\_logistic.py: 444: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
```

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-re
gression)

```
n_iter_i = _check_optimize_result(
```

Out[169]:

```
LogisticRegression
LogisticRegression()
```

```
In [170]:
```

```
#Train-test split within df_train to carry out validations
```

In [171]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2,random_state=0)
```

In [172]:

```
classifier = LogisticRegression()
```

In [173]:

```
classifier.fit(X_train,y_train)
```

```
D:\Application\Anaconda\lib\site-packages\sklearn\linear_model\_logistic.py: 444: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
```

```
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)
```

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-re
gression)

```
n_iter_i = _check_optimize_result(
```

Out[173]:

```
v LogisticRegression
LogisticRegression()
```

In [174]:

```
predictions=classifier.predict(X_test)
```

In [175]:

```
confusion_matrix_ = confusion_matrix(y_test, predictions)
print("Confusion Matrix : ")
print(confusion_matrix_)
```

```
Confusion Matrix : [[ 4 3] [ 4 26]]
```

In [176]:

```
report = classification_report(y_test, predictions)
print("Overall Report")
print(report)
```

Overall Report

	precision recall f		f1-score	support	
0	0.50	0.57	0.53	7	
1	0.90	0.87	0.88	30	
accuracy			0.81	37	
macro avg	0.70	0.72	0.71	37	
weighted avg	0.82	0.81	0.82	37	

In []:

localhost:8888/notebooks/Datascience/Assignment_Final_cb.en.u4cse20138.ipynb#C.-Classifier