savvasrealize.com

8-5 Additional Practice

Polar Form of Complex Number

1. Graph the complex number 7 $\operatorname{cis}\left(\frac{\pi}{6}\right)$.

- 2. Express $\sqrt{3}$ cis $\left(\frac{5\pi}{6}\right)$ in rectangular form. $-\frac{3}{2} + \frac{\sqrt{3}}{2}i$
- 3. Express $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$ in polar form. Cis $\frac{2\pi}{3}$
- **4.** Find the product of $z_1 = \sqrt{5}$ cis 120° and $z_2 = 7$ cis 80° in polar form.

 $-7\sqrt{5}$ cis 200

- **5.** What is the product of $z_1 = 3 + 4i$ and $z_2 = \sqrt{3} i$? **10 cis 23**
- 6. Use polar form to find z^5 , if z = -2 + 2i. 128 $\sqrt{2}$ cis $\frac{7\pi}{4}$
- 7. What is z^5 in rectangular form, if z = -2 + 2i? 128 128i
- **8.** A student made some mistakes when he was writing $z = 1 + \sqrt{3}i$ in polar form. Correct the mistake next to the row, where the mistake occurred.

$$r = \sqrt{x^2 + y^2} = \sqrt{1^2 + (\sqrt{3})^2} = 2$$

tan
$$\theta = \sqrt{3}$$
, $\theta = \frac{\pi}{6}$ for $0 \le \theta \le 2\pi$ $\theta = \frac{\pi}{3}$

Therefore, $1 + \sqrt{3}i = 2 \operatorname{cis} \frac{\pi}{6}$ 2 cis $\frac{\pi}{3}$

- 9. The current in an electric circuit is defined by $\sqrt{2}$ cis $\frac{\pi}{4}$ and the impedance is 2 cis $\frac{11\pi}{6}$ ohm. Determine the voltage in the circuit. Hint: Use $E = I \cdot Z$, where E is voltage, I is electric current, and Z is impedance. $2\sqrt{2}$ cis $\frac{25\pi}{12}$
- **10.** Explain why the coordinates $\left(-3, \frac{19\pi}{20}\right)$ and $\left(-3, \frac{\pi}{20}\right)$ represent the same point in the coordinate plane.

The endpoints of the terminal side of both angles coincide.