Document Number:
 P0267R8

 Date:
 2018-06-26

 Revises:
 P0267R7

Revises: P0267R7 Reply to: Michael H

Michael B. McLaughlin mikebmcl@gmail.com

Herb Sutter Microsoft Inc.

hsutter@microsoft.com

Jason Zink

jzink_1@yahoo.com

Guy Davidson

guy@creative-assembly.com

Michael Kazakov

mike.kazakov@gmail.com

Audience:

A Proposal to Add 2D Graphics Rendering and Display to C++

Note: this is an early draft. It's known to be incomplet and incorrekt, and it has lots of bad formatting.

Contents

Co	ontents	
Li	st of Tables	:
Li	st of Figures	
0	Revision history 0.1 Revision 8 0.2 Revision 7 0.3 Revision 6	
1	Scope	
2	Normative references	
3	Terms and definitions	
4	Error reporting	
5	Header <experimental io2d=""> synopsis</experimental>	-
6	Colors6.1Introduction to color6.2Color usage requirements6.3Class rgba_color	
7	Graphics math 7.1 General 7.2 Requirements	:
8	Graphics surfaces 8.1 General	
9	Linear algebra 9.1 Class basic_point_2d	ı
10	Geometry	
	10.1 Class template basic_display_point	
11	Text rendering and display	
12	Paths 12.1 Overview of paths	1 1
	12.5 Class basic_path_builder	

Contents

P0267R8

13 Brus	shes	122
13.1	Overview of brushes	122
13.2	Gradient brushes	122
13.3	Enum class wrap_mode	125
13.4	Enum class filter	126
13.5	Enum class brush_type	127
13.6	Class gradient_stop	127
13.7	Class template basic_brush	128
14 Surf	ace state props	132
14.1	Overview	132
14.2	Enum class antialias	132
14.3	Enum class fill_rule	133
14.4	Enum class line_cap	133
14.5	Enum class line_join	134
14.6	Enum class compositing_op	134
14.7	Enum class format	139
14.8	Enum class scaling	140
14.9	Class template basic_render_props	143
14.10	Class basic_brush_props	145
14.11	Class template basic_clip_props	146
14.12	Class basic_stroke_props	149
14.13	Class template basic_fill_props	150
14.14	Class basic_mask_props	151
14.15	Class template basic_dashes	152
15 Surf	aces	155
15.1	Enum class refresh_style	155
15.2	Enum class image_file_format	156
15.2	Overview of surface classes	157
15.4	Class basic_image_surface	165
15.5	Class basic_output_surface	168
15.6	Class basic_unmanaged_output_surface	174
16 Inpu	ıt	178
17 Stan	dalone functions	179
17.1	Standalone functions synopsis	179
17.2	copy_surface	179
17.3	degrees_to_radians	179
17.4	radians_to_degrees	179
17.5	angle_for_point	179
17.6	point_for_angle	180
17.7	arc_start	180
17.8	arc_center	180
17.9	arc_end	180
A Bibl	iography	181
Index		182
	f library names	183
maex o	f implementation-defined behavior	189

Contents

List of Tables

1	Class identifiers modified since Rb	2
2	rgba_color static members values	25
3	Graphics math summary	29
4	X typedef-names	29
5	GraphicsMath type member data	29
6	GraphicsMath requirements	30
7	X::brushes requirements	38
8	X::paths typedef-names	41
9	X::paths type member data	42
10	X::paths requirements	42
11	X::surface_state_props typedef-names	47
12	X::surface_state_props type member data	47
13	X::surface_state_props requirements	48
14	X::surfaces typedef-names	53
15	X::surfaces type member data	53
16	Graphics surfaces requirements	54
10	Grapines surfaces requirements	01
17	Path interpretation state data	113
18	Figure item interpretation effects	113
19	wrap_mode enumerator meanings	126
20		127
21	brush_type enumerator meanings	127
22	antialias enumerator meanings	132
23		133
$\frac{20}{24}$	= 0	134
25		134
$\frac{25}{26}$	=•	136
$\frac{20}{27}$		137
28	• •	137 139
20 29		139 140
	· ·	
30	scaling enumerator meanings	141
31	refresh_style value meanings	155
32	imagefileformat enumerator meanings	156
33		157
34		158
35	9 1 9	158
36		159
37		161

List of Tables iv

List of Figures

1	Example 1 result	88
2	Example 2 result	89
3	Path example 3	90
4	Path example 4	91

List of Figures

0 Revision history

[io2d.revisionhistory]

0.1 Revision 8

[io2d.revisionhistory.r8]

- ¹ Modified the revision 7 notes (0.2) to denote trademarks where applicable, and to use the correct capitalization for the cairo graphics library. The contents of those notes is otherwise unchanged.
- ² Changed the Revision history Clause, to be Clause 0.
- ³ Added a new Clause, Graphics math (Clause 7), which defines the requirements of a type that conforms to the GraphicsMath template parameter used by various classes.
- ⁴ Updated the relevant class member functions in this proposal to define their effects to include calls to the appropriate GraphicsMath functions. This completes the work, begun in P0267R7, of abstracting the implementation of the linear algebra and geometry classes, thereby allowing users to specify a preferred implementation of the mathematical functionality used in this proposal.
- ⁵ Added a new Clause , Graphics surfaces (Clause 8), which defines the requirements of a type that conforms to the GraphicsSurfaces template parameter used by various classes.
- ⁶ Updated the relevant class member functions in this proposal to define their effects to include calls to the appropriate GraphicsSurfaces functions. This completes the work, begun in P0267R7, of abstracting the implementation of the brush, paths, surface state, and surface classes, thereby allowing users to specify a preferred implementation of the functionality specified in this proposal.
- Added a new Clause, Surface state props (Clause 14) and moved the relevant enum class types and the basic_render_props, basic_brush_props, basic_clip_props, basic_stroke_props, and basic_mask_props class templates to it.
- ⁸ Added Michael Kazakov as a co-author. He has written an implementation of this proposal using the Core Graphics framework of Cocoa®, thus providing a native implementation for iOS®and OS X®. It is available as part of the reference implementation (See 0.2).
- ⁹ He has also written a series of tests for compliance. This has drawn attention to several issues that have require some revision.
- Eliminated format::rgb16_565 and format::rgb30.
- Eliminated compositing_op::dest since it is a no-op.
- ¹² Significant cleanup of terms and definitions.
- 13 Added overload of copy_surface for basic_output_surface.
- 14 Removed format_stride_for_width; it has had no use since mapping functionality was removed.
- ¹⁵ Added functions degrees_to_radians and radians_to_degrees.
- Added equality comparison operators for a number of classes.
- 17 Removed the copyright notice that stated that the proposal was copyrighted by ISO/IEC. Neither organization, jointly or severally, made any contribution to this document and no assignment of interests by the authors to either organization, jointly or severally, has ever been executed. The notice was there unintentionally and its presence in all revisions of P0267 was a mistake.
- ¹⁸ Added basic_dashes which was added in R7 but had its description omitted accidentally.
- 19 Removed the mandate of underlying layout of pixel formats in enum class format and made it and, the interpretation of the data (i.e. what each bit value in each channel means), and whether data is in a premultiplied format implementation defined.
- Added GraphicsSurfaces::additional_formats This allows implementations to support additional visual data formats.
- ²¹ Eliminated all flush and mark_dirty member functions. These only existed to allow users to modify surfaces externally. Implementations that wish to allow users to modify surfaces externally should provide and document their own functionality for how to do that. The errors, etc., are all implementation dependent anyway so a uniform calling interface provides no benefit at all in the current templated-design.

 $\S 0.1$ 1

- Renamed enum class refresh_rate to refresh_style to more accurately reflect its meaning. This was already done in parts of the R7; it is now complete.
- ²³ Changed the order of items in the basic_figure_items::figure_item type alias from alphabetical to grouping by function (e.g. abs_new_figure, rel_new_figure, and close_figure are grouped together and abs_line and rel_line are grouped together). While it's not expected that any new figure item types will be added, there is no chance that the existing ones will be augmented with additional types. So if new figure items are added, grouping by type will simply add them to the end, thus preserving the validity of the existing index values without having the existing entries be alphabetized and new entries not being alphabetized.
- Moved the class template definitions for the nested classes within basic_figure_items<GraphicsSurfaces> to the descriptions of each of those types from the synopsis of basic_figure_items<GraphicsSurfaces> itself.
- Added format::xrgb16. The number of bits per channel is left to the implementation since, e.g., Windows®is 565 whereas OS X®and iOS®are 555 with an unused bit. This is useful for platforms with limited memory where supported so having it as an official enumerator will help.
- Users can now request a different output device format when calling the overloads of the basic_output_surface ctor and the basic_unmanaged_output_surface ctor that take separate output device width and height preferences.
- ²⁷ Eliminated redraw_required from basic_unmanaged_output_surface. Users can and should track the need to redraw in their own code when they manage the output device.
- Eliminated user_scaling_callback functionality from basic_output_surface and basic_unmanaged_output_surface since the output device is intentionally not fully specified (same as stdout, etc.).
- 29 begin_show now returns void instead of int and has an error_code overload in case the user tries to show more output surfaces than the system permits.
- 30 render_props now has a filter instead of an antialias.
- 31 stroke_props now has an antialias instead of a filter.
- New type basic_fill_props for parameters specific to the fill operation.
- 33 Removed the fill_rule from basic_brush_props as it was only being used for fill operations.

0.2 Revision 7

[io2d.revisionhistory.r7]

- ¹ The significant difference between R7 and R6 is the abstraction of the implementation into separate classes. These classes provide math and rendering support. The linear algebra and geometry classes are templated over any appropriate math support class, while the path, brush and surface classes are templated over any appropriate rendering support class.
- ² The reference implementation of this paper provides a software implementation of the math and rendering support classes. This is based on cairo; indeed, so far the reference implementation has been based on cairo. However, it is now possible to provide an implementation more appropriate to the target platform.
- ³ For example, a Windows®implementation could provide support classes based on DirectX®, while a Linux®implementation could provide support classes based on OpenGL®. In fact, any hardware vendor could provide a support library, targeting a specific implementation and their particular silicon if they wanted to exploit particular features of their hardware.
- ⁴ Additionally, the surface classes have been modified: now there are simply managed and unmanaged output surfaces, the latter of which offers developers the opportunity to take finer control of the drawing surface
- 5 The modified classes are as follows

Table 1 — Class identifiers modified since R6

R6 identifier	R7 identifier	
vector_2d	basic_point_2d	
matrix_2d	basic_matrix_2d	
rectangle	basic_bounding_box	
circle	basic_circle	
path_group	basic_interpreted_path	
path_builder	basic_path_builder	
color_stop	<pre>gradient_stop</pre>	

§ 0.2

R6 identifier	R7 identifier	
brush	basic_brush	
render_props	basic_render_props	
brush_props	basic_brush_props	
clip_props	basic_clip_props	
stroke_props	basic_stroke_props	
mask_props	basic_mask_props	
image_surface	basic_image_surface	
display_surface	basic_output_surface	

- ⁶ The surface class and the mapped_surface class have been withdrawn, while the basic_unmanaged_output_surface class has been introduced.
- 7 The reference implementation, including a software-only implementation of math and rendering support classes, is available at $\frac{1}{1000} = \frac{1}{1000} = \frac{$

0.3 Revision 6

[io2d.revisionhistory.r6]

 $^{\rm 1}$ $\,$ Presented to LEWG in Toronto, July 2017

 $\S 0.3$

1 Scope

[io2d.scope]

¹ This Technical Specification specifies requirements for implementations of an interface that computer programs written in the C++programming language may use to render and display 2D computer graphics.

Scope 4

2 Normative references

[io2d.refs]

- ¹ The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
- (1.1) ISO/IEC 14882, Programming languages C++
- (1.2) ISO/IEC 2382 (all parts), Information technology Vocabulary
- (1.3) ISO/IEC 10646-1:1993, Information technology Universal Multiple-Octet Coded Character Set (UCS) Part 1: Architecture and Basic Multilingual Plane
- (1.4) ISO/IEC 10918-1, Information technology Digital compression and coding of continuous-tone still images: Requirements and guidelines
- (1.5) ISO 12639, Graphic technology Prepress digital data exchange Tag image file format for image technology (TIFF/IT)
- (1.6) ISO/IEC 15948 Information technology Computer graphics and image processing Portable Network Graphics (PNG) Functional specification
- (1.7) ISO/IEC TR 19769:2004, Information technology Programming languages, their environments and system software interfaces Extensions for the programming language C to support new character data types
- (1.8) ISO 15076-1, Image technology colour management Architecture, profile format and data structure Part 1: Based on ICC.1:2004-10
- (1.9) IEC 61966-2-1, Colour Measurement and Management in Multimedia Systems and Equipment Part 2-1: Default RGB Colour Space sRGB
- (1.10) ISO 32000-1:2008, Document management Portable document format Part 1: PDF 1.7
- (1.11) ISO 80000-2:2009, Quantities and units Part 2: Mathematical signs and symbols to be used in the natural sciences and technology
- (1.12) Tantek Çelik et al., CSS Color Module Level 3 W3C Recommendation 07 June 2011, Copyright © 2011 W3C® (MIT, ERCIM, Keio)
 - 2 The compressed image data format described in ISO/IEC 10918-1 is hereinafter called the *JPEG format*.
 - ³ The tag image file format described in ISO 12639 is hereinafter called the *TIFF format*. The datastream and associated file format described in ISO/IEC 15948 is hereinafter called the *PNG format*.
 - ⁵ The library described in ISO/IEC TR 19769:2004 is hereinafter called the C Unicode TR.
 - 6 The document CSS Color Module Level 3 W3C Recommendation 07 June 2011 is hereinafter called the CSS Colors Specification.

Normative references 5

3 Terms and definitions

[io2d.defns]

For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp
- ¹ Terms that are used only in a small portion of this document are defined where they are used and italicized where they are defined.

[io2d.defns.point]

point

coordinate designated by a floating-point x axis value and a floating-point y axis value

[io 2d. defns. origin]

origin

point with an x axis value of 0 and a y axis value of 0

point with an x axis value of 0 and a y axis value of 0

$3 \hspace{1.5cm} [io 2d. defns. stnd crdspace]$

standard coordinate space

Euclidean plane described by a Cartesian coordinate system where the x axis is a horizontal axis oriented from left to right, the y axis is a vertical axis oriented from top to bottom, and rotation of a point, excluding the origin, around the origin by a positive value in radians is counterclockwise

3.4 [io2d.defns.point.integral] integral point

point where the x axis value and the y axis value are integers

3.5 [io2d.defns.normalize]

normalize

map a closed set of evenly spaced values in the range [0,x] to an evenly spaced sequence of floating-point values in the range [0,1] [*Note:* The definition of normalize given is the definition for normalizing unsigned input. Signed normalization, i.e. the mapping of a closed set of evenly spaced values in the range [-x,x) to an evenly spaced sequence of floating-point values in the range [-1,1] is not used in this Technical Specification . — end note

3.6 [io2d.defns.aspectratio]

aspect ratio

ratio of the width to the height of a rectangular area

3.7 [io2d.defns.visdata]

visual data

data in a possibly bounded Euclidean plane consisting of one or more components representing color, transparency, or some other quality where the component values are not necessarily uniform throughout the plane

3.8 [io2d.defns.visdataelem]

visual data element

unit of visual data at a specific point

3.9 [io2d.defns.channel]

channel

component of visual data

3.10 [io2d.defns.colorchannel]

color channel

channel that only represents the intensity of a specific color

3.11 [io2d.defns.alphachannel]

alpha channel

channel that only represents transparency

[io2d.defns.visdatafmt]

visual data format

specification of information necessary to transform a set of one or more channels into colors in a color model

premultiplied format

[io 2d. defns. premultiplied format]

visual data format with one or more color channels and an alpha channel where each color channel is normalized and then multiplied by the normalized alpha channel value [Example: Given the 32-bit non-premultiplied RGBA pixel with 8 bits per channel {255, 0, 0, 127} (half-transparent red), when normalized it would become {1.0f, 0.0f, 0.0f, 0.5f}. When premultiplied it would become {0.5f, 0.0f, 0.0f, 0.5f} as a result of multiplying each of the three color channels by the alpha channel value. — end example]

3.14 [io2d.defns.rastergfxdata]

raster graphics data

data comprised of a rectangular array of visual data elements together with their visual data format where the top-left visual data element is located at the origin in the standard coordinate space and additional visual data elements are located at integral points of consecutive values

[io2d.defns.pixel]

pixel

discrete element of raster graphics data

3.16 [io2d.defns.vectorgfxdata]

vector graphics data

data comprised of zero or more paths together with a sequence of rendering and composing operations and graphics state data that produces continuous visual data when processed

[io2d.defns.colormodel]

color model

ideal, mathematical representation of color

3.18 [io2d.defns.additivecolor]

additive color

color defined by the emissive intensity of its color channels

[io 2d. defns.rgb color model]

RGB color model

color model using additive color comprised of red, green, and blue color channels

3.20 [io2d.defns.rgbacolormodel]

RGBA color model

RGB color model with an alpha channel

3.21 [io2d.defns.colorspace]

color space

systematic mapping of values to colorimetric colors

[io2d.defns.srgbcolorspace]

sRGB color space

color space defined in IEC 61966-2-1 that is based on the RGB color model

[io2d.defns.startpt]

start point

point that begins a segment

[io2d.defns.endpt]

end point

point that ends a segment

[io2d.defns.controlpt]

control point

point, other than the start point and the end point, that is used in defining a curve

3.26 [io2d.defns.bezier.quadratic]

Bézier curve

 $\langle \text{quadratic} \rangle$ curve defined by the equation $f(t) = (1-t)^2 \times P_0 + 2 \times t \times (1-t) \times P_1 + t^2 \times t \times P_2$ where t is in the range [0, 1], P_0 is the start point, P_1 is the control point, and P_2 is end point

3.27 [io2d.defns.bezier.cubic]

Bézier curve

 $\langle \text{cubic} \rangle$ curve defined by the equation $f(t) = (1-t)^3 \times P_0 + 3 \times t \times (1-t)^2 \times P_1 + 3 \times t^2 \times (1-t) \times P_2 + t^3 \times t \times P_3$ where t is in the range [0, 1], P_0 is the start point, P_1 is the first control point, P_2 is the second control point, and P_3 is the end point

[io2d.defns.seg]

segment

line, Bézier curve, or arc

3.29 [io2d.defns.initialseg]

initial segment

segment in a figure whose start point is not defined as being the end point of another segment in the figure [Note: It is possible for the initial segment and final segment to be the same segment. $-end\ note$]

[io2d.defns.newfigpt]

new figure point

point that is the start point of the initial segment

3.31 [io2d.defns.finalseg]

final segment

segment in a figure whose end point does not define the start point of any other segment [Note: It is possible for the initial segment and final segment to be the same segment. $-end \ note$]

3.32 [io2d.defns.currentpt]

current point

point used as the start point of a segment

3.33 [io2d.defns.openfigure]

open figure

figure with one or more segments where the new figure point is not used to define the end point of the figure's final segment [Note: Even if the start point of the initial segment and the end point of the final segment are assigned the same coordinates, the figure is still an open figure. This is because the final segment's end point is not defined as being the new figure point but instead merely happens to have the same value as that point.

— end note

3.34 [io2d.defns.closedfigure]

${\bf closed \ figure}$

figure with one or more segments where the new figure point is used to define the end point of the figure's final segment

[io2d.defns.degenerateseg]

degenerate segment

segment that has the same values for its start point, end point, and, if any, control points

3.36

[io2d.defns.command.closefig]

command

(close figure command) instruction that creates a line segment with a start point of current point and an end point of new figure point

3.37

[io2d.defns.command.newfig]

command

(new figure command) an instruction that creates a new path

3.38

[io2d.defns.figitem]

figure item

segment, new figure command, close figure command, or path command

3.39 figure [io2d.defns.figure]

collection of figure items where the end point of each segment in the collection, except the final segment, defines the start point of exactly one other segment in the collection

3.40

[io2d.defns.path]

path

collection of figures

3.41

[io2d.defns.pathtransform]

path transformation matrix

affine transformation matrix used to apply affine transformations to the points in a path

[io2d.defns.pathcommand]

path command

instruction that modifies the path transformation matrix

3.43

[io2d.defns.degenfigure]

degenerate figure

figure containing a new figure command, zero or more degenerate segments, zero or more path commands, and, optionally, a close figure command

3.44

[io2d.defns.graphicsstatedata]

graphics state data

data which specify how some part of the process of rendering or composing is performed in part or in whole

3.45 render [io2d.defns.render]

transform a path into visual data

3.46

[io2d.defns.compositionalgorithm]

composition algorithm

algorithm that combines source visual data and destination visual data producing visual data that has the same visual data format as the destination visual data

3.47

[io2d.defns.compose]

compose

apply a composition algorithm

3.48

[io2d.defns.renderingandcomposingop]

rendering and composing operation

operation that is either a composing operation or a rendering operation followed by a composing operation that uses the data produced by the rendering operation

3.49

[io2d.defns.filter]

filter

algorithm that determines a color value from a raster graphics data source for a non-integral point

§ 3.49

9

[io 2d. defns. sample]

sample

apply a filter

[io2d.defns.alias]

aliasing

errors in the appearance of the results of rendering where the resulting visual data is raster graphics data because of inaccuracies in transforming continuous data into discrete data

3.52 [io2d.defns.antialias]

anti-aliasing

application of an algorithm while rendering to reduce aliasing

4 Error reporting

[io2d.err.report]

- ¹ 2D graphics library functions that can produce errors occasionally provide two overloads: one that throws an exception to report errors and another that reports errors using an error_code object. This provides for situations where errors are not truly exceptional.
- ² report errors as follows, unless otherwise specified:
- When an error prevents the function from meeting its specifications:
- (3.1) Functions that do not take argument of type error_code& throw an exception of type system_error or of an implementation-defined type that derives from system_error. The exception object shall include the enumerator specified by the function as part of its observable state.
- (3.2) Functions that take an argument of type error_code& assigns the specified enumerator to the provided error_code object and then returns.
 - ⁴ Failure to allocate storage is reported by throwing an exception as described in [res.on.exception.handling] in C++ 2017.
 - ⁵ Destructor operations defined in this Technical Specification shall not throw exceptions. Every destructor in this Technical Specification shall behave as-if it had a non-throwing exception specification.
 - ⁶ If no error occurs in a function that takes an argument of type error_code&, error_code::clear shall be called on the error_code object immediately before the function returns.

Error reporting 11

5 Header <experimental/io2d> synopsis [io2d.syn]

```
namespace std { namespace experimental {
 namespace io2d { inline namespace v1 {
    template <class T>
    constexpr T pi = T(3.14159265358979323846264338327950288L);
    template <class T>
    constexpr T two_pi = T(6.28318530717958647692528676655900577L);
    template <class T>
    constexpr T half_pi = T(1.57079632679489661923132169163975144L);
    template <class T>
    {\tt constexpr\ T\ three\_pi\_over\_two\ =\ T(4.71238898038468985769396507491925432L);}
    template <class T>
    constexpr T tau = T(6.28318530717958647692528676655900577L);
    template <class T>
    constexpr T three_quarters_tau = T(4.71238898038468985769396507491925432L);
    template <class T>
    constexpr T half_tau = T(3.14159265358979323846264338327950288L);
    template <class T>
    constexpr T quarter_tau = T(1.57079632679489661923132169163975144L);
    template <class T>
    constexpr T degrees_to_radians(T deg) noexcept;
    template <class T>
    constexpr T radians_to_degrees(T rad) noexcept;
    class rgba_color;
    constexpr bool operator==(const rgba_color& lhs, const rgba_color& rhs)
      noexcept;
    constexpr bool operator!=(const rgba_color& lhs, const rgba_color& rhs)
      noexcept;
    template <class T>
    constexpr rgba_color operator*(const rgba_color& lhs, T rhs) noexcept;
    template <class U>
    constexpr rgba_color operator*(const rgba_color& lhs, U rhs) noexcept;
    template <class T>
    constexpr rgba_color operator*(T lhs, const rgba_color& rhs) noexcept;
    template <class U>
    constexpr rgba_color operator*(U lhs, const rgba_color& rhs) noexcept;
    class gradient_stop;
    constexpr bool operator==(const gradient_stop& lhs,
      const gradient_stop& rhs) noexcept;
    constexpr bool operator!=(const gradient_stop& lhs,
      const gradient_stop& rhs) noexcept;
    template <class GraphicsMath>
    class basic_bounding_box;
    template <class GraphicsMath>
    bool operator == (const basic_bounding_box < Graphics Math > & lhs,
      const basic_bounding_box<GraphicsMath>& rhs) noexcept;
    template <class GraphicsMath>
    bool operator!=(const basic_bounding_box<GraphicsMath>& lhs,
      const basic_bounding_box<GraphicsMath>& rhs) noexcept;
```

```
template <class GraphicsSurfaces>
class basic_brush;
template <class GraphicsSurfaces>
bool operator==(const basic_brush<GraphicsSurfaces>& lhs,
  const basic_brush<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const basic_brush<GraphicsSurfaces>& lhs,
  const basic_brush<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
class basic_brush_props;
template <class GraphicsSurfaces>
bool operator==(const basic_brush_props<GraphicsSurfaces>& lhs,
  const basic_brush_props<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const basic_brush_props<GraphicsSurfaces>& lhs,
  const basic_brush_props<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsMath>
class basic_circle;
template <class GraphicsMath>
bool operator==(const basic_circle<GraphicsMath>& lhs,
  const basic_circle<GraphicsMath>& rhs) noexcept;
template <class GraphicsMath>
bool operator!=(const basic_circle<GraphicsMath>& lhs,
  const basic_circle<GraphicsMath>& rhs) noexcept;
template <class GraphicsSurfaces>
class basic_clip_props;
template <class GraphicsSurfaces>
bool operator == (const basic_clip_props < Graphics Surfaces > & lhs,
  const basic_clip_props<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const basic_clip_props<GraphicsSurfaces>& lhs,
 const basic_clip_props<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
class basic_dashes;
template <class GraphicsSurfaces>
bool operator == (const basic_dashes < Graphics Surfaces > & lhs,
  const basic_dashes<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const basic_dashes<GraphicsSurfaces>& lhs,
  const basic_dashes<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsMath>
class basic_display_point;
template <class GraphicsSurfaces>
class basic_figure_items;
template <class GraphicsSurfaces>
bool operator==(
  const typename basic_figure_items<GraphicsSurfaces>::abs_new_figure& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::abs_new_figure& rhs)
 noexcept;
template <class GraphicsSurfaces>
bool operator!=(
  const typename basic_figure_items<GraphicsSurfaces>::abs_new_figure& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::abs_new_figure& rhs) noexcept;
template <class GraphicsSurfaces>
bool operator == (
  const typename basic_figure_items<GraphicsSurfaces>::rel_new_figure& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::rel_new_figure& rhs)
  noexcept;
```

```
template <class GraphicsSurfaces>
bool operator!=(
 const typename basic_figure_items<GraphicsSurfaces>::rel_new_figure& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::rel_new_figure& rhs)
 noexcept;
template <class GraphicsSurfaces>
bool operator==(
 const typename basic_figure_items<GraphicsSurfaces>::close_figure& lhs,
 const typename basic_figure_items<GraphicsSurfaces>::close_figure& rhs)
 noexcept;
template <class GraphicsSurfaces>
bool operator!=(
  const typename basic_figure_items<GraphicsSurfaces>::close_figure& lhs,
 const typename basic_figure_items<GraphicsSurfaces>::close_figure& rhs)
 noexcept;
template <class GraphicsSurfaces>
bool operator==(
  const typename basic_figure_items<GraphicsSurfaces>::abs_matrix& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::abs_matrix& rhs)
 noexcept;
template <class GraphicsSurfaces>
bool operator!=(
  const typename basic_figure_items<GraphicsSurfaces>::abs_matrix& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::abs_matrix& rhs)
 noexcept;
template <class GraphicsSurfaces>
bool operator==(
  const typename basic_figure_items<GraphicsSurfaces>::rel_matrix& lhs,
 const typename basic_figure_items<GraphicsSurfaces>::rel_matrix& rhs)
 noexcept;
template <class GraphicsSurfaces>
bool operator!=(
 const typename basic_figure_items<GraphicsSurfaces>::rel_matrix& lhs,
 const typename basic_figure_items<GraphicsSurfaces>::rel_matrix& rhs)
 noexcept;
template <class GraphicsSurfaces>
bool operator==(
 const typename basic_figure_items<GraphicsSurfaces>::revert_matrix& lhs,
 const typename basic_figure_items<GraphicsSurfaces>::revert_matrix& rhs)
 noexcept:
template <class GraphicsSurfaces>
bool operator!=(
  const typename basic_figure_items<GraphicsSurfaces>::revert_matrix& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::revert_matrix& rhs)
 noexcept;
template <class GraphicsSurfaces>
bool operator==(
 const typename basic_figure_items<GraphicsSurfaces>::abs_line& lhs,
 const typename basic_figure_items<GraphicsSurfaces>::abs_line& rhs)
 noexcept:
template <class GraphicsSurfaces>
bool operator!=(
  const typename basic_figure_items<GraphicsSurfaces>::abs_line& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::abs_line& rhs)
 noexcept;
template <class GraphicsSurfaces>
bool operator==(
  const typename basic_figure_items<GraphicsSurfaces>::rel_line& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::rel_line& rhs)
 noexcept;
template <class GraphicsSurfaces>
bool operator!=(
  const typename basic_figure_items<GraphicsSurfaces>::rel_line& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::rel_line& rhs)
```

```
noexcept;
template <class GraphicsSurfaces>
bool operator == (const typename
 basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve&
 rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const typename
  basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve&
  rhs) noexcept;
template <class GraphicsSurfaces>
bool operator == (const typename
  basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve&
  rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const typename
  basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve&
  rhs) noexcept;
template <class GraphicsSurfaces>
bool operator == (const typename
  basic_figure_items<GraphicsSurfaces>::abs_cubic_curve& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::abs_cubic_curve&
  rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const typename
  basic_figure_items<GraphicsSurfaces>::abs_cubic_curve& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::abs_cubic_curve&
  rhs) noexcept;
template <class GraphicsSurfaces>
bool operator == (const typename
 basic_figure_items<GraphicsSurfaces>::rel_cubic_curve& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::rel_cubic_curve&
  rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const typename
  basic_figure_items<GraphicsSurfaces>::rel_cubic_curve& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::rel_cubic_curve&
  rhs) noexcept;
template <class GraphicsSurfaces>
bool operator == (const typename basic_figure_items < GraphicsSurfaces >:: arc&
 lhs, const typename basic_figure_items<GraphicsSurfaces>::arc& rhs)
 noexcept;
template <class GraphicsSurfaces>
bool operator!=(const typename basic_figure_items<GraphicsSurfaces>::arc&
  lhs, const typename basic_figure_items<GraphicsSurfaces>::arc& rhs)
 noexcept;
template <class GraphicsSurfaces>
class basic_fill_props;
template <class GraphicsSurfaces>
bool operator == (const basic_fill_props < Graphics Surfaces > & lhs,
  const basic_fill_props<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const basic_fill_props<GraphicsSurfaces>& lhs,
  const basic_fill_props<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
class basic_image_surface;
template <class GraphicsSurfaces>
class basic_interpreted_path;
```

```
template <class GraphicsSurfaces>
bool operator == (const basic_interpreted_path < Graphics Surfaces > & lhs,
 const basic_interpreted_path<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const basic_interpreted_path<GraphicsSurfaces>& lhs,
  const basic_interpreted_path<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
class basic_mask_props;
template <class GraphicsSurfaces>
bool operator == (const basic_mask_props < Graphics Surfaces > & lhs,
  const basic_mask_props<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const basic_mask_props<GraphicsSurfaces>& lhs,
  const basic_mask_props<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsMath>
class basic_matrix_2d;
template <class GraphicsMath>
basic_matrix_2d<GraphicsMath> operator*(
  const basic_matrix_2d<GraphicsMath>& lhs,
  const basic_matrix_2d<GraphicsMath>& rhs) noexcept;
template <class GraphicsMath>
basic_point_2d<GraphicsMath> operator*(
  const basic_point_2d<GraphicsMath>& lhs,
 const basic_matrix_2d<GraphicsMath>& rhs) noexcept;
template <class GraphicsMath>
bool operator == (const basic_matrix_2d < GraphicsMath > & lhs,
  const basic_matrix_2d<GraphicsMath>& rhs) noexcept;
template <class GraphicsMath>
bool operator!=(const basic_matrix_2d<GraphicsMath>& lhs,
 const basic_matrix_2d<GraphicsMath>& rhs) noexcept;
template <class GraphicsSurfaces>
class basic_output_surface;
template <class GraphicsSurfaces, class Allocator =</pre>
  allocator<typename basic_figure_items<GraphicsSurfaces>::figure_item>>
class basic_path_builder;
template <class GraphicsSurfaces, class Allocator>
bool operator == (const basic_path_builder < Graphics Surfaces, Allocator > & lhs,
  const basic_path_builder<GraphicsSurfaces, Allocator>& rhs) noexcept;
template <class GraphicsSurfaces, class Allocator>
bool operator!=(const basic_path_builder<GraphicsSurfaces, Allocator>& lhs,
 const basic_path_builder<GraphicsSurfaces, Allocator>& rhs) noexcept;
template <class GraphicsSurfaces, class Allocator>
void swap(basic_path_builder<GraphicsSurfaces, Allocator>& lhs,
 basic_path_builder<GraphicsSurfaces, Allocator>& rhs) noexcept(noexcept(lhs.swap(rhs)));
template <class GraphicsMath>
class basic_point_2d;
template <class GraphicsMath>
bool operator==(const basic_point_2d<GraphicsMath>& lhs,
  const basic_point_2d<GraphicsMath>& rhs) noexcept;
template <class GraphicsMath>
bool operator!=(const basic_point_2d<GraphicsMath>& lhs,
  const basic_point_2d<GraphicsMath>& rhs) noexcept;
template <class GraphicsMath>
basic_point_2d<GraphicsMath> operator+(
  const basic_point_2d<GraphicsMath>& val) noexcept;
template <class GraphicsMath>
basic_point_2d<GraphicsMath> operator+(
  const basic_point_2d<GraphicsMath>& lhs,
```

```
const basic_point_2d<GraphicsMath>& rhs) noexcept;
template <class GraphicsMath>
basic_point_2d<GraphicsMath> operator-(
 const basic_point_2d<GraphicsMath>& val) noexcept;
template <class GraphicsMath>
basic_point_2d<GraphicsMath> operator-(
 const basic_point_2d<GraphicsMath>& lhs,
 const basic_point_2d<GraphicsMath>& rhs) noexcept;
template <class GraphicsMath>
basic_point_2d<GraphicsMath> operator*(
  const basic_point_2d<GraphicsMath>& lhs,
  float rhs) noexcept;
template <class GraphicsMath>
basic_point_2d<GraphicsMath> operator*(float lhs,
  const basic_point_2d<GraphicsMath>& rhs) noexcept;
template <class GraphicsMath>
basic_point_2d<GraphicsMath> operator*(
  const basic_point_2d<GraphicsMath>& lhs,
  const basic_point_2d<GraphicsMath>& rhs) noexcept;
template <class GraphicsMath>
basic_point_2d<GraphicsMath> operator/(
  const basic_point_2d<GraphicsMath>& lhs,
  float rhs) noexcept;
template <class GraphicsMath>
basic_point_2d<GraphicsMath> operator/(float lhs,
  const basic_point_2d<GraphicsMath>& rhs) noexcept;
template <class GraphicsMath>
basic_point_2d<GraphicsMath> operator/(
 const basic_point_2d<GraphicsMath>& lhs,
  const basic_point_2d<GraphicsMath>& rhs) noexcept;
template <class GraphicsSurfaces>
class basic_render_props;
template <class GraphicsSurfaces>
bool operator == (const basic_render_props < Graphics Surfaces > & lhs,
 const basic_render_props<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const basic_render_props<GraphicsSurfaces>& lhs,
  const basic_render_props<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
class basic_stroke_props;
template <class GraphicsSurfaces>
bool operator == (const basic_stroke_props < Graphics Surfaces > & lhs,
 const basic_stroke_props<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
bool operator!=(const basic_stroke_props<GraphicsSurfaces>& lhs,
 const basic_stroke_props<GraphicsSurfaces>& rhs) noexcept;
template <class GraphicsSurfaces>
class basic_unmanaged_output_surface;
using bounding_box = basic_bounding_box<default_graphics_math>;
using brush = basic_brush<default_graphics_surfaces>;
using brush_props = basic_brush_props<default_graphics_surfaces>;
using circle = basic_circle<default_graphics_math>;
using clip_props = basic_clip_props<default_graphics_surfaces>;
using dashes = basic_dashes<default_graphics_surfaces>;
using display_point = basic_display_point<default_graphics_math>;
using figure_items = basic_figure_items<default_graphics_surfaces>;
using fill_props = basic_fill_props<default_graphics_surfaces>;
using image_surface = basic_image_surface<default_graphics_surfaces>;
using interpreted_path = basic_interpreted_path<default_graphics_surfaces>;
using mask_props = basic_mask_props<default_graphics_surfaces>;
```

```
using matrix_2d = basic_matrix_2d<default_graphics_math>;
    using output_surface = basic_output_surface<default_graphics_surfaces>;
    using path_builder = basic_path_builder<default_graphics_surfaces>;
    using point_2d = basic_point_2d<default_graphics_math>;
    using render_props = basic_render_props<default_graphics_surfaces>;
    using stroke_props = basic_stroke_props<default_graphics_surfaces>;
    using unmanaged_output_surface =
     basic_unmanaged_output_surface<default_graphics_surfaces>;
    template <class GraphicsSurfaces>
    basic_image_surface<GraphicsSurfaces> copy_surface(
     basic_image_surface<GraphicsSurfaces>& sfc) noexcept;
    template <class GraphicsSurfaces>
    basic_image_surface<GraphicsSurfaces> copy_surface(
     basic_output_surface<GraphicsSurfaces>& sfc) noexcept;
    template <class T>
    constexpr T degrees_to_radians(T d) noexcept;
    template <class T>
    constexpr T radians_to_degrees(T r) noexcept;
    float angle_for_point(point_2d ctr, point_2d pt) noexcept;
    point_2d point_for_angle(float ang, float rad = 1.0f) noexcept;
    point_2d point_for_angle(float ang, point_2d rad) noexcept;
    point_2d arc_start(point_2d ctr, float sang, point_2d rad,
      const matrix_2d& m = matrix_2d{}) noexcept;
    point_2d arc_center(point_2d cpt, float sang, point_2d rad,
      const matrix_2d& m = matrix_2d{}) noexcept;
    point_2d arc_end(point_2d cpt, float eang, point_2d rad,
      const matrix_2d& m = matrix_2d{}) noexcept;
} } } }
```

6 Colors

[io2d.colors]

6.1 Introduction to color

[io2d.colors.intro]

- Color involves many disciplines and has been the subject of many papers, treatises, experiments, studies, and research work in general.
- ² While color is an important part of computer graphics, it is only necessary to understand a few concepts from the study of color for computer graphics.
- 3 A color model defines color mathematically without regard to how humans actually perceive color. These color models are composed of some combination of channels which each channel representing alpha or an ideal color. Color models are useful for working with color computationally, such as in composing operations, because their channel values are homogeneously spaced.
- ⁴ A color space, for purposes of computer graphics, is the result of mapping the ideal color channels from a color model, after making any necessary adjustment for alpha, to color channels that are calibrated to align with human perception of colors. Since the perception of color varies from person to person, color spaces use the science of colorimetry to define those perceived colors in order to obtain uniformity to the extent possible. As such, the uniform display of the colors in a color space on different output devices is possible. The values of color channels in a color space are not necessarily homogeneously spaced because of human perception of color.
- ⁵ Color models are often termed *linear* while color spaces are often termed *gamma corrected*. The mapping of a color model, such as the RGB color model, to a color space, such as the sRGB color space, is often the application of gamma correction.
- ⁶ Gamma correction is the process of transforming homogeneously spaced visual data to visual data that, when displayed, matches the intent of the untransformed visual data.
- ⁷ For example a color that is 50% of the maximum intensity of red when encoded as homogeneously spaced visual data, will likely have a different intensity value when it has been gamma corrected so that a human looking at on a computer display will see it as being 50% of the maximum intensity of red that the computer display is capable of producing. Without gamma correction, it would likely have appeared as though it was closer to the maximum intensity than the untransformed data intended it to be.
- ⁸ In addition to color channels, colors in computer graphics often have an alpha channel. The value of the alpha channel represents transparency of the color channels when they are combined with other visual data using certain composing algorithms. When using alpha, it should be used in a premultiplied format in order to obtain the desired results when applying multiple composing algorithms that utilize alpha.

6.2 Color usage requirements

[io2d.colors.regs]

During rendering and composing operations, color data is linear and, when it has an alpha channel associated with it, in premultiplied format. Implementations shall make any necessary conversions to ensure this.

6.3 Class rgba_color

[io2d.rgbacolor]

6.3.1 rgba_color overview

[io2d.rgbacolor.intro]

- The class rgba_color describes a four channel color in premultiplied format.
- ² There are three color channels, red, green, and blue, each of which is a float.
- 3 There is also an alpha channel, which is a float.
- ⁴ Legal values for each channel are in the range [0.0f, 1.0f].

6.3.2 rgba_color synopsis

[io2d.rgbacolor.synopsis]

```
namespace std::experimental::io2d::v1 {
  class rgba_color {
   public:
      // 6.3.3, construct/copy/move/destroy:
      constexpr rgba_color() noexcept;
```

 $\S 6.3.2$

```
template <class T>
constexpr rgba_color(T r, T g, T b, T a = static_cast<T>(0xFF)) noexcept;
template <class U>
constexpr rgba_color(U r, U g, U b, U a = static_cast<U>(1.0f)) noexcept;
// 6.3.4, modifiers:
template <class T>
constexpr void r(T val) noexcept;
template <class U>
constexpr void r(U val) noexcept;
template <class T>
constexpr void g(T val) noexcept;
template <class U>
constexpr void g(U val) noexcept;
template <class T>
constexpr void b(T val) noexcept;
template <class U>
constexpr void b(U val) noexcept;
template <class T>
constexpr void a(T val) noexcept;
template <class U>
constexpr void a(U val) noexcept;
// 6.3.5, observers:
constexpr float r() const noexcept;
constexpr float g() const noexcept;
constexpr float b() const noexcept;
constexpr float a() const noexcept;
// 6.3.6, static members:
static const rgba_color alice_blue;
static const rgba_color antique_white;
static const rgba_color aqua;
static const rgba_color aquamarine;
static const rgba_color azure;
static const rgba_color beige;
static const rgba_color bisque;
static const rgba_color black;
static const rgba_color blanched_almond;
static const rgba_color blue;
static const rgba_color blue_violet;
static const rgba_color brown;
static const rgba_color burly_wood;
static const rgba_color cadet_blue;
static const rgba_color chartreuse;
static const rgba_color chocolate;
static const rgba_color coral;
static const rgba_color cornflower_blue;
static const rgba_color cornsilk;
static const rgba_color crimson;
static const rgba_color cyan;
static const rgba_color dark_blue;
static const rgba_color dark_cyan;
static const rgba_color dark_goldenrod;
static const rgba_color dark_gray;
static const rgba_color dark_green;
static const rgba_color dark_grey;
static const rgba_color dark_khaki;
static const rgba_color dark_magenta;
static const rgba_color dark_olive_green;
static const rgba_color dark_orange;
static const rgba_color dark_orchid;
static const rgba_color dark_red;
static const rgba_color dark_salmon;
```

§ 6.3.2 20

```
static const rgba_color dark_sea_green;
static const rgba_color dark_slate_blue;
static const rgba_color dark_slate_gray;
static const rgba_color dark_slate_grey;
static const rgba_color dark_turquoise;
static const rgba_color dark_violet;
static const rgba_color deep_pink;
static const rgba_color deep_sky_blue;
static const rgba_color dim_gray;
static const rgba_color dim_grey;
static const rgba_color dodger_blue;
static const rgba_color firebrick;
static const rgba_color floral_white;
static const rgba_color forest_green;
static const rgba_color fuchsia;
static const rgba_color gainsboro;
static const rgba_color ghost_white;
static const rgba_color gold;
static const rgba_color goldenrod;
static const rgba_color gray;
static const rgba_color green;
static const rgba_color green_yellow;
static const rgba_color grey;
static const rgba_color honeydew;
static const rgba_color hot_pink;
static const rgba_color indian_red;
static const rgba_color indigo;
static const rgba_color ivory;
static const rgba_color khaki;
static const rgba_color lavender;
static const rgba_color lavender_blush;
static const rgba_color lawn_green;
static const rgba_color lemon_chiffon;
static const rgba_color light_blue;
static const rgba_color light_coral;
static const rgba_color light_cyan;
static const rgba_color light_goldenrod_yellow;
static const rgba_color light_gray;
static const rgba_color light_green;
static const rgba_color light_grey;
static const rgba_color light_pink;
static const rgba_color light_salmon;
static const rgba_color light_sea_green;
static const rgba_color light_sky_blue;
static const rgba_color light_slate_gray;
static const rgba_color light_slate_grey;
static const rgba_color light_steel_blue;
static const rgba_color light_yellow;
static const rgba_color lime;
static const rgba_color lime_green;
static const rgba_color linen;
static const rgba_color magenta;
static const rgba_color maroon;
static const rgba_color medium_aquamarine;
static const rgba_color medium_blue;
static const rgba_color medium_orchid;
static const rgba_color medium_purple;
static const rgba_color medium_sea_green;
static const rgba_color medium_slate_blue;
static const rgba_color medium_spring_green;
static const rgba_color medium_turquoise;
static const rgba_color medium_violet_red;
static const rgba_color midnight_blue;
static const rgba_color mint_cream;
```

§ 6.3.2 21

```
static const rgba_color misty_rose;
  static const rgba_color moccasin;
  static const rgba_color navajo_white;
  static const rgba_color navy;
  static const rgba_color old_lace;
  static const rgba_color olive;
  static const rgba_color olive_drab;
  static const rgba_color orange;
  static const rgba_color orange_red;
  static const rgba_color orchid;
  static const rgba_color pale_goldenrod;
  static const rgba_color pale_green;
  static const rgba_color pale_turquoise;
  static const rgba_color pale_violet_red;
  static const rgba_color papaya_whip;
  static const rgba_color peach_puff;
  static const rgba_color peru;
  static const rgba_color pink;
  static const rgba_color plum;
  static const rgba_color powder_blue;
  static const rgba_color purple;
  static const rgba_color red;
  static const rgba_color rosy_brown;
  static const rgba_color royal_blue;
  static const rgba_color saddle_brown;
  static const rgba_color salmon;
  static const rgba_color sandy_brown;
  static const rgba_color sea_green;
  static const rgba_color sea_shell;
  static const rgba_color sienna;
  static const rgba_color silver;
  static const rgba_color sky_blue;
  static const rgba_color slate_blue;
  static const rgba_color slate_gray;
  static const rgba_color slate_grey;
  static const rgba_color snow;
  static const rgba_color spring_green;
  static const rgba_color steel_blue;
  static const rgba_color tan;
  static const rgba_color teal;
  static const rgba_color thistle;
  static const rgba_color tomato;
  static const rgba_color transparent_black;
  static const rgba_color turquoise;
  static const rgba_color violet;
  static const rgba_color wheat;
  static const rgba_color white;
  static const rgba_color white_smoke;
  static const rgba_color yellow;
  static const rgba_color yellow_green;
  // 6.3.7, operators
  template <class T>
  constexpr rgba_color& operator*=(T rhs) noexcept;
  template <class U>
  constexpr rgba_color& operator*=(U rhs) noexcept;
};
// 6.3.7, operators:
constexpr bool operator==(const rgba_color& lhs, const rgba_color& rhs)
  noexcept:
constexpr bool operator!=(const rgba_color& lhs, const rgba_color& rhs)
  noexcept;
```

§ 6.3.2 22

```
template <class T>
            constexpr rgba_color operator*(const rgba_color& lhs, T rhs) noexcept;
            template <class U>
            constexpr rgba_color operator*(const rgba_color& lhs, U rhs) noexcept;
            template <class T>
            constexpr rgba_color operator*(T lhs, const rgba_color& rhs) noexcept;
            template <class U>
            constexpr rgba_color operator*(U lhs, const rgba_color& rhs) noexcept;
        }
                   rgba_color constructors and assignment operators
                                                                                                                                                   [io2d.rgbacolor.cons]
    constexpr rgba_color() noexcept;
               Effects: Equivalent to: rgba_color{ 0.0f, 0.0f, 0.0f. 0.0f }.
    template <class T>
    constexpr rgba_color(T r, T g, T b, T a = static_cast<T>(255)) noexcept;
2
               Requires: r \ge 0 and r \le 255 and g \ge 0 and g \le 255 and b \ge 0 and b \le 255 and a \ge 0 and
3
              Effects: Constructs an object of type rgba_color. The alpha channel is a / 255.0F. The red channel
              is r / 255.0F * a / 255.0F . The green channel is g / 255.0F * a / 255.0F . The blue channel
              is b / 255.0F * a / 255.0F.
4
               Remarks: This constructor shall not participate in overload resolution unless is_integral_v<T> is
              true.
    template <class U>
    constexpr rgba_color(U r, U g, U b, U a = static_cast<U>(1.0f)) noexcept;
5
               Requires: r \ge 0.0f and r \le 1.0f and g \ge 0.0f and g \le 1.0f and g \ge 0.0f and g \le 0.0f and g \ge 0.0f
              and a \ge 0.0f and a \le 1.0f.
6
               Effects: Constructs an object of type rgba_color. The alpha channel is a. The red channel is r * a.
              The green channel is g * a. The blue channel is b * a.
7
               Remarks: This constructor shall not participate in overload resolution unless is_floating_point_v<U>
              is true.
                                                                                                                                         [io2d.rgbacolor.modifiers]
    6.3.4 rgba_color modifiers
    template <class T>
    constexpr void r(T val) noexcept;
1
               Requires: val \geq 0 and val \leq 255.
2
               Effects: The red channel is val / 255.0F * a().
3
               Remarks: This function shall not participate in overload resolution unless is_integral_v<T> is true.
    template <class U>
    constexpr void r(U val) noexcept;
4
               Requires: val \geq= 0.0f and val \leq= 1.0f.
5
               Effects: The red channel is val * a().
               Remarks: This function shall not participate in overload resolution unless is_floating_point_v<U> is
               true.
    template <class T>
    constexpr void g(T val) noexcept;
               Requires: val >= 0 and val <= 255.
7
8
               Effects: The green channel is val / 255.0F * a().
9
               Remarks: This function shall not participate in overload resolution unless is_integral_v<T> is true.
```

§ 6.3.4 23

```
template <class U>
   constexpr void g(U val) noexcept;
10
         Requires: val >= 0.0f and val <= 1.0f.
11
         Effects: The green channel is val * a().
12
         Remarks: This function shall not participate in overload resolution unless is_floating_point_v<U> is
         true.
   template <class T>
   constexpr void b(T val) noexcept;
13
         Requires: val \geq 0 and val \leq 255.
14
         Effects: The blue channel is val / 255.0F * a().
15
         Remarks: This function shall not participate in overload resolution unless is_integral_v<T> is true.
   template <class U>
   constexpr void b(U val) noexcept;
16
         Requires: val >= 0.0f and val <= 1.0f.
17
         Effects: The blue channel is val * a().
18
         Remarks: This function shall not participate in overload resolution unless is_floating_point_v<U> is
         true.
   template <class T>
   constexpr void a(T val) noexcept;
19
         Requires: val >= 0 and val <= 255.
20
         Effects: If a() == 0.0f the alpha channel is val / 255.0F, otherwise:
           1. The red channel is set to (r() / a()) * val / 255.0F;
           2. The green channel is set to (g() / a()) * val / 255.0F;
           3. The blue channel is set to (b() / a()) * val / 255.0F;
           4. The alpha channel is set to val / 255.0F.
21
         Remarks: This function shall not participate in overload resolution unless is_integral_v<T> is true.
   template <class U>
   constexpr void a(U val) noexcept;
22
         Requires: val \geq 0.0f and val \leq 1.0f.
23
         Effects: If a() == 0.0f the alpha channel is val, otherwise:
           1. The red channel is set to (r() / a()) * val;
           2. The green channel is set to (g() / a()) * val;
           3. The blue channel is set to (b() / a()) * val;
           4. The alpha channel is val.
24
         Remarks: This function shall not participate in overload resolution unless is_floating_point_v<U> is
         true.
                                                                             [io2d.rgbacolor.observers]
   6.3.5
           rgba_color observers
   constexpr float r() const noexcept;
 1
         Returns: The red channel.
   constexpr float g() const noexcept;
         Returns: The green channel.
   constexpr float b() const noexcept;
 3
         Returns: The blue channel.
```

§ 6.3.5

constexpr float a() const noexcept;

4 Returns: The alpha channel.

$6.3.6 \quad {\tt rgba_color \ static \ members}$

[io2d.rgbacolor.statics]

¹ The alpha value of all of the predefined rgba_color static member object in Table 2 is 1.0F except for transparent_black, which has an alpha value of 0.0F.

Table 2 — $rgba_color$ static members values

Member name	red	green	blue
alice_blue	240	248	255
antique_white	250	235	215
aqua	0	255	255
aquamarine	127	255	212
azure	240	255	255
beige	245	245	220
bisque	255	228	196
black	0	0	0
blanched_almond	255	235	205
blue	0	0	255
blue_violet	138	43	226
brown	165	42	42
burly_wood	222	184	135
cadet_blue	95	158	160
chartreuse	127	255	0
chocolate	210	105	30
coral	255	127	80
cornflower_blue	100	149	237
cornsilk	255	248	220
crimson	220	20	60
cyan	0	255	255
dark_blue	0	0	139
dark_cyan	0	139	139
dark_goldenrod	184	134	11
dark_gray	169	169	169
dark_green	0	100	0
dark_grey	169	169	169
dark_khaki	189	183	107
dark_magenta	139	0	139
dark_olive_green	85	107	47
dark_orange	255	140	0
dark_orchid	153	50	204
dark_red	139	0	0
dark_salmon	233	150	122
dark_sea_green	143	188	142
=	72	61	139
dark_slate_blue	47	79	
dark_slate_gray	47	79 79	79 79
dark_slate_grey			
dark_turquoise	0	206 0	209
dark_violet	148		211
deep_pink	255	20	147
deep_sky_blue	0	191	255
dim_gray	105	105	105
dim_grey	105	105	105
dodger_blue	30	144	255
firebrick	178	34	34
floral_white	255	250	240
forest_green	34	139	34

§ 6.3.6 25

Table 2 — rgba_color static members values (continued)

Member name	red	green	blue
fuchsia	255	0	255
gainsboro	220	220	220
ghost_white	248	248	248
gold	255	215	0
goldenrod	218	165	32
gray	128	128	128
green	0	128	0
green_yellow	173	255	47
grey	128	128	128
honeydew	240	255	240
hot_pink	255	105	180
indian_red	205	92	92
indigo	75	0	130
ivory	255	255	240
khaki	240	230	140
lavender	230	230	250
lavender_blush	255	240	245
lawn_green	124	252	0
lemon_chiffon	255	250	205
light_blue	173	216	230
light_coral	240	128	128
light_cyan	224	255	255
light_goldenrod_yellow	250	250	210
light_gray	211	211	211
light_green	144	238	144
light_grey	211	211	211
light_pink	255	182	193
light_salmon	255	160	122
light_sea_green	32	178	170
light_sky_blue	135	206	250
light_slate_gray	119	136	153
light_slate_grey	119	136	153
light_steel_blue	176	196	222
light_yellow	255	255	224
lime	0	255	0
lime_green	50	205	50
linen	250	240	230
magenta	255	0	255
maroon	128	0	0
medium_aquamarine	102	205	170
medium_blue	0	0	205
medium_orchid	186	85	211
medium_purple	147	112	219
medium_sea_green	60	179	113
medium_slate_blue	123	104	238
medium_spring_green	0	250	154
medium_turquoise	72	209	204
medium_violet_red	199	21	133
midnight_blue	25	25	112
mint_cream	245	255	250
misty_rose	255	228	225
moccasin	255	228	181
navajo_white	255	222	173
navy	0	0	128
old_lace	253	245	230

§ 6.3.6 26

Table 2 — rgba_color static members values (continued)

Member name	red	green	blue
olive	128	128	0
olive_drab	107	142	35
orange	255	69	0
orange_red	255	69	0
orchid	218	112	214
pale_goldenrod	238	232	170
pale_green	152	251	152
pale_turquoise	175	238	238
pale_violet_red	219	112	147
papaya_whip	255	239	213
peach_puff	255	218	185
peru	205	133	63
pink	255	192	203
plum	221	160	221
powder_blue	176	224	230
purple	128	0	128
red	255	0	0
rosy_brown	188	143	143
royal_blue	65	105	225
saddle_brown	139	69	19
salmon	250	128	114
sandy_brown	244	164	96
sea_green	46	139	87
sea_shell	255	245	238
sienna	160	82	45
silver	192	192	192
sky_blue	135	206	235
slate_blue	106	90	205
slate_gray	112	128	144
slate_grey	112	128	144
snow	255	250	250
spring_green	0	255	127
steel_blue	70	130	180
tan	210	180	140
teal	0	128	128
thistle	216	191	216
tomato	255	99	71
transparent_black	0	0	0
turquoise	64	244	208
violet	238	130	238
wheat	245	222	179
white	255	255	255
white_smoke	245	245	245
yellow	255	255	0
yellow_green	154	205	50

6.3.7 rgba_color operators

[io2d.rgbacolor.ops]

```
template <class T>
  constexpr rgba_color& operator*=(T rhs) noexcept;

Requires: rhs >= 0 and rhs <= 255.

Effects: r(min(r() * rhs / 255.0F, 1.0F)).

g(min(g() * rhs / 255.0F, 1.0F)).

b(min(b() * rhs / 255.0F, 1.0F)).</pre>
```

§ 6.3.7 27

```
5
        a(min(a() * rhs / 255.0F, 1.0F)).
         Returns: *this.
         Remarks: This function shall not participate in overload resolution unless is_integral_v<T> is true.
   template <class U>
   constexpr rgba_color& operator*=(U rhs) noexcept;
7
         Requires: rhs \ge 0.0F and rhs \le 1.0F.
8
         Effects: r(min(r() * rhs, 1.0F)).
9
         g(\min(g() * rhs, 1.0F)).
10
         b(\min(b() * rhs, 1.0F)).
11
         a(min(a() * rhs, 1.0F)).
         Returns: *this.
12
         Remarks: This function shall not participate in overload resolution unless is_floating_point_v<T> is
   constexpr bool operator==(const rgba_color& lhs, const rgba_color& rhs)
     noexcept:
13
         Returns: lhs.r() == rhs.r() && lhs.g() == rhs.g() && lhs.b() == rhs.b() && lhs.a() ==
   template <class T>
   constexpr rgba_color operator*(const rgba_color& lhs, T rhs) noexcept;
14
         Requires: rhs >= 0 and rhs <= 255.
15
         Returns:
           rgba_color(min(lhs.r() * rhs / 255.0F, 1.0F), min(lhs.g() * rhs / 255.0F, 1.0F),
             min(lhs.b() * rhs / 255.0F, 1.0F), min(lhs.a() * rhs / 255.0F, 1.0F))
16
         Remarks: This function shall not participate in overload resolution unless is_integral_v<T> is true.
   template <class U>
   constexpr rgba_color& operator*(const rgba_color& lhs, U rhs) noexcept;
17
         Requires: rhs >= 0.0F and rhs <= 1.0F.
18
         Returns:
           rgba_color(min(lhs.r() * rhs, 1.0F), min(lhs.g() * rhs, 1.0F),
             min(lhs.b() * rhs, 1.0F), min(lhs.a() * rhs, 1.0F))
19
         Remarks: This function shall not participate in overload resolution unless is floating point v<U> is
         true.
   template <class T>
   constexpr rgba_color operator*(T lhs, const rgba_color& rhs) noexcept;
20
         Requires: lhs >= 0 and lhs <= 255.
21
         Returns:
           rgba_color(min(lhs * rhs.r() / 255.0F, 1.0F), min(lhs * rhs.g() / 255.0F, 1.0F),
             min(lhs * rhs.b() / 255.0F, 1.0F), min(lhs * rhs.a() / 255.0F, 1.0F))
22
         Remarks: This function shall not participate in overload resolution unless is_integral_v<T> is true.
   template <class U>
   constexpr rgba_color& operator*(U lhs, const rgba_color& rhs) noexcept;
23
         Requires: lhs \geq= 0.0F and lhs \leq= 1.0F.
24
         Returns:
           rgba_color(min(lhs * rhs.r(), 1.0F), min(lhs * rhs.g(), 1.0F),
             min(lhs * rhs.b(), 1.0F), min(lhs * rhs.a(), 1.0F))
25
         Remarks: This function shall not participate in overload resolution unless is_floating_point_v<U> is
         true.
```

§ 6.3.7

7 Graphics math

[io2d.graphmath]

7.1 General

[io2d.graphmath.general]

- ¹ This Clause describes components that are used to describe certain geometric types and to perform certain linear algebra operations. [Note: These types are intended for use in 2D graphics input/output operations. They are not meant to provide a full set of linear algebra types and operations. end note]
- ² The following subclauses describe graphics math requirements and components for linear algebra classes and geometry classes, as summarized in Table 3.

Table 3 — Graphics math summary

Subclause		$\operatorname{Header}(\mathbf{s})$
7.2	GraphicsMath traits	
Clause 9	Linear algebra classes	<experimental io2d=""></experimental>
Clause 10	Geometry classes	<pre><experimental io2d=""></experimental></pre>

7.2 Requirements

[io2d.graphmath.reqs]

- ¹ This subsection defines requirements on *GraphicsMath* types.
- ² Most classes specified in Clause 9 through Clause 15 need a set of related types and functions to complete the definition of their semantics. These types and functions are provided as a set of member *typedef-names* and static member functions in the template parameter GraphicsMath used by each such template. This subclause defines the semantics of these members.
- 3 Let X be a GraphicsMath type.
- ⁴ Table 8 defines required *typedef-names* in X, which are identifiers for class types capable of storing all data required to support the corresponding class template.

Table 4 — X typedef-names

$typedef ext{-}name$	Class data
bounding_box_data_type	basic_bounding_box <x></x>
circle_data_type	basic_circle <x></x>
display_point_data_type	basic_display_point <x></x>
matrix_2d_data_type	basic_matrix_2d <x></x>
point_2d_data_type	basic_point_2d <x></x>

⁵ In order to describe the observable effects of functions contained in Table 6, Table 5 describes the types contained in X as-if they possessed certain member data.

Table 5 — GraphicsMath type member data

Type	Member	data Member data type
bounding_box_data_type	x	float
bounding_box_data_type	У	float
bounding_box_data_type	W	float
bounding_box_data_type	h	float
circle_data_type	х	float
circle_data_type	У	float
circle_data_type	r	float
display_point_data_type	x	int
display_point_data_type	У	int

§ 7.2

Type	Member	data	Member data type
matrix_2d_data_type	mOO	float	
matrix_2d_data_type	mO1	float	
matrix_2d_data_type	m02	float	
matrix_2d_data_type	m10	float	
matrix_2d_data_type	m11	float	
matrix_2d_data_type	m12	float	
matrix_2d_data_type	m20	float	
matrix_2d_data_type	m21	float	
matrix_2d_data_type	m22	float	
point_2d_data_type	х	float	
point_2d_data_type	у	float	

⁶ In Table 6, B denotes the type X::bounding_box_data_type, C denotes the type X::circle_data_type, D denotes the type X::display_point_data_type, M denotes the type X::matrix_2d_data_type, and P denotes the type X::point_2d_data_type.

 $Table \ 6 - {\tt GraphicsMath} \ requirements$

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
X::create_point 2d()	Р	Equivalent to: create_point_2d(0.0f, 0.0f);	
<pre>X::create_point 2d(float x, float y)</pre>	Р	Returns an object p.	Postconditions: p.x == x and p.y == y.
X::x(P& p, float x)	void		Postconditions: p.x == x.
X::y(P& p, float y)	void		Postconditions: p.y == y.
X::x(const P& p)	float	Returns p.x.	
X::y(const P& p)	float	Returns p.y.	
X::dot(const P& p1, const P& p2)	float	Returns p1.x * p2.x + p1.y * p2.y.	
X::magnitude(const P& p)	float	Returns sqrt(p.x * p.x + p.y * p.y).	
X::magnitude squared(const P& p)	float	Returns p.x * p.x + p.y * p.y.	
X::angular direction(const P& p)	float	Returns atan2(p.y, p.x) < 0.0f ? atan2(p.y, p.x) + two_pi <float> : atan2(p.y, p.x).</float>	Remarks: The purpose of adding two_pi <float> if the result is negative is to produce values in the range [0.0f, two pi<float>)</float></float>
<pre>X::to_unit(const P& p)</pre>	P	Returns an object r.	<pre>Postconditions: r.x == p.x / magnitude(p) and r.y == p.y / magnitude(p).</pre>

 $^{^7}$ All expressions in Table 6 are noexcept. For purposes of brevity, noexcept is omitted in the table.

 ${\bf Table} \ {\bf 6-GraphicsMath} \ {\bf requirements} \ ({\bf continued})$

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
X::add(const P& p1,	P	Returns an object r.	Postconditions:
const P& p2)	•	recuiris air object 1.	r.x == p1.x +
70m20 1 m p2,			p2.x and r.y
			== p1.y +
			p2.y.
X::add(const P& p,	P	Returns an object r.	$\frac{Postconditions}{Postconditions}$
float f)		200000000000000000000000000000000000000	r.x == p.x +
,			f and r.y ==
			p.y + f.
X::add(float f,	P	Returns an object r.	Postconditions:
const P& p)		3	r.x == f +
17			p.x and r.y ==
			f + p.y.
X::subtract(const	P	Returns an object r.	Postconditions:
P& p1, const P& p2)		3	r.x == p1.x -
			p2.x and r.y
			== p1.y -
			p2.y.
X::subtract(const	P	Returns an object r.	Postconditions:
P& p, float f)	-	Tootariis air osjeet 2.	r.x == p.x -
F,,			f and r.y ==
			p.y - f.
X::subtract(float f,	P	Returns an object r.	Postconditions:
const P& p)	•	restariis air object 1.	r.x == f -
comportal py			p.x and r.y ==
			f - p.y.
X::multiply(const	P	Returns an object r.	$\frac{1}{Postconditions}$
P& p1, const P& p2)	•	restariis air object 1.	r.x == p1.x *
i w pi, combo i w pz,			p2.x and r.y
			== p1.y *
			p2.y.
X::multiply(const	P	Returns an object r.	Postconditions:
P& p, float f)	-	Tootariis air osjeet 2.	r.x == p.x *
1 w p, 11000 1,			f and r.y ==
			p.y * f.
X::multiply(float f,	P	Returns an object r.	Postconditions:
const P& p)	-		r.x == f *
Transfer I to F,			p.x and r.y ==
			f * p.y.
X::divide(const P&	P	Returns an object r.	Postconditions:
p1, const P& p2)		3	r.x == p1.x /
			p2.x and r.y
			== p1.y /
			p2.y.
X::divide(const P&	P	Returns an object r.	Postconditions:
p, float f)			r.x == p.x /
			f and r.y ==
			p.y / f.
X::divide(float f,	P	Returns an object r.	Postconditions:
const P& p)		<i>y</i>	r.x == f /
1 -			p.x and r.y ==
			f / p.y.
X::equal(const P& 1,	bool	Returns 1.x == r.x && 1.y	· 1 J
const P& r)		•	
const P& r)		== r.y	

 ${\bf Table} \ {\bf 6-GraphicsMath} \ {\bf requirements} \ ({\bf continued})$

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
X::not_equal(const P& 1, const P& r)	bool	Equivalent to return !equal(1, r);	
X::negate(const P& p)	P	Returns r, where r.x == -p.x and r.y == -p.y	
<pre>X::create_matrix 2d()</pre>	М	Equivalent to return create_matrix_2d(1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f);	
<pre>X::create_matrix 2d(float m00, float m01, float m10, float m11, float m20, float m21)</pre>	М	Returns an object m	Postconditions: m.m00 == m00, m.m01 == m01, m.m02 == 0.0f m.m10 == m10, m.m11 == m11, m.m12 == 0.0f m.m20 == m20, m.m21 == m21, m.m22 == 1.0f
X::create translate(const P& p)	М	Equivalent to return X::create_matrix_2d(1.0f, 0.0f, 0.0f, 1.0f, p.x, p.y);	
X::create scale(const P& p)	М	Equivalent to return X::create_matrix_2d(p.x, 0.0f, 0.0f, p.y, 0.0f, 0.0f);	
<pre>X::create rotate(float r)</pre>	М	Equivalent to return X::create_matrix_2d(cos(r), sin(r), sin(r), -cos(r), 0.0f, 0.0f);	
X::create rotate(float r, const P& p)	М	Equivalent to return multiply(multiply(create translate(p), create_rotate(r)), create translate(negate(p)));	
<pre>X::create reflect(float r)</pre>	М	Equivalent to return X::create_matrix_2d(cos(r * 2.0f), sin(r * 2.0f), sin(r * 2.0f), -cos(r * 2.0f), 0.0f;	
<pre>X::create_shear x(float f)</pre>	М	Equivalent to return create_matrix_2d(1.0f, 0.0f, f, 1.0f, 0.0f, 0.0f);	
<pre>X::create_shear y(float f)</pre>	М	Equivalent to return create_matrix_2d(1.0f, f, 0.0f, 1.0f, 0.0f, 0.0f);	

§ 7.2 32

 ${\bf Table} \ {\bf 6-GraphicsMath} \ {\bf requirements} \ ({\bf continued})$

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
X::multiply(const	M	Equivalent to return	
M& 1, const M& r)		create_matrix_2d(1.m00 *	
		r.m00 + 1.m01 * r.m10,	
		1.m00 * r.m01 + 1.m01 *	
		r.m11, l.m10 * r.m00 +	
		1.m11 * r.m10, 1.m10 *	
		r.m01 + 1.m11 * r.m11,	
		1.m20 * r.m00 + 1.m21 *	
		r.m10 + r.m20, 1.m20 *	
		r.m01 + 1.m21 * r.m11 +	
		r.m21);	
X::translate(M& m,	void	Equivalent to m = multiply(m,	
const P& p)		<pre>create_translate(p));</pre>	
X::scale(M& m,	void	Equivalent to m = multiply(m,	
const P& p)		<pre>create_scale(p));</pre>	
X::rotate(M& m,	void	Equivalent to m = multiply(m,	
float r)		<pre>create_rotate(r));</pre>	
X::rotate(M& m,	void	Equivalent to m = multiply(m,	
float r, const P&	1014	create_rotate(r, p));	
p)		create_rotate(r, p//,	
X::reflect(M& m,	void	Equivalent to m = multiply(m,	
float r)		<pre>create_reflect(r));</pre>	
X::shear_x(M& m,	void	Equivalent to m = multiply(m,	
float f)		<pre>create_shear_x(f));</pre>	
X::shear_y(M& m,	void	Equivalent to m = multiply(m,	
float f)		<pre>create_shear_y(f));</pre>	
X::is_finite(const	bool	Equivalent to return	
M& m)		isfinite(m.m00) &&	
		isfinite(m.m01) &&	
		isfinite(m.m10) &&	
		isfinite(m.m10) &&	
		isfinite(m.11) &&	
		isfinite(m.20) &&	
		isfinite(m.21);	
X::is	bool	Equivalent to return (m.m00 *	
invertible(const M&	5001	m.11 - m.m01 * m.10) !=	
m)		0.0f;	
•	£1+		
X::determinant(const	float	Equivalent to return m.m00 *	
M& m)		m.11 - m.01 * m.10;	
X::inverse(const M&	M	Equivalent to: float id =	
m)		<pre>1.0f / determinant(m);</pre>	
		return	
		<pre>create_matrix_2d((m.m11 *</pre>	
		1.0f - 0.0f * m.m21) * id,	
		-(m.m01 * 1.0f - 0.0f *	
		m.m21) * id, -(m.m10 *	
		1.0f - 0.0f * m.m20) * id,	
		(m.m00 * 1.0f - 0.0f *	
		m.m20) * id, (m.m10 *	
		m.m21 - m.m11 * m.m20) *	
		id, -(m.m00 * m.21 - m.m01	
		* m.m20) * id)	

 ${\bf Table} \ {\bf 6-GraphicsMath} \ {\bf requirements} \ ({\bf continued})$

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
X::transform	P	return	
pt(const M& m,		<pre>create_point_2d(m.m00 *</pre>	
const P& p)		p.x + m10 * p.y + m.m20,	
		m.01 * p.x + m.m11 * p.y +	
		m.21);	
X::equal(const M& 1,	bool	Returns 1.m00 == r.m00 &&	
const M& r)		1.m01 == r.m01 && 1.m11 ==	
		r.m11 && 1.m20 == r.m20 &&	
		1.m21 == r.m21.	
X::not_equal(const	bool	Equivalent to return	
M& 1, const M& r)		!equal(1, r);	
create_display	D	Equivalent to return	
<pre>point()</pre>		<pre>create_display_point(0,</pre>	
		0);	
create_display	D	Returns an object d.	Post conditions:
point(int x, int			d.x == x and
y)			d.y == y.
X::x(D& d, int x)	void		Post conditions:
			d.x == x.
X::y(D& d, int y)	void		Post conditions:
			d.y == y.
X::x(const D&d)	int	Returns d.x.	
X::y(const D&d)	int	Returns d.y.	
X::equal(const D& 1,	bool	Returns 1.x == r.x && 1.y	
const D& r)		== r.y.	
X::not_equal(const	bool	Equivalent to return	
D& 1, const D& r)		!equal(1, r);	
X::create_bounding	В	Equivalent to return	
box()		create_bounding_box(0.0f,	
		0.0f, 0.0f, 0.0f);	
X::create_bounding	В	Returns an object b.	Post conditions:
box(float x, float		v	b.x == x, b.y
y, float w, float			== y, b.w == w,
h)			and b.h == h.
X::create_bounding	В	Equivalent to return	
box(const P& tl,		create_bounding_box(tl.x,	
const P& br)		tl.y, max(0.0f, br.x -	
		tl.x), max(0.0f, br.y -	
		tl.y));	
X::x(B& b, float x)	void	• • • •	Postconditions:
. ,			b.x == x.
X::y(B& b, float y)	void		Postconditions:
J = J,			b.y == y.
X::width(B& b,	void		$\frac{Postconditions:}{}$
float w)			b.w == w.
X::height(B& b,	void		Postconditions:
float h)			b.h == h.
X::top_left(B& b,	void		Postconditions:
const P& p)			b.x == p.x
			and b.y ==
			p.y.
			r · J ·

 ${\bf Table} \ {\bf 6-GraphicsMath} \ {\bf requirements} \ ({\bf continued})$

Expression	Return type	$egin{array}{c} \mathbf{Operational} \\ \mathbf{semantics} \end{array}$	Assertion/note pre-/post-condition
X::bottom_right(B&b, const P&p)	void		Postconditions: b.w ==
			max(p.x - b.x, 0.0f)
			and b.h == max(p.y -
			b.y, 0.0f).
X::x(const B& b)	float	Returns b.x.	
X::y(const B& b)	float	Returns b.y.	
X::width(const B&b)	float	Returns b.w.	
<pre>X::height(const B& b)</pre>	float	Returns b.h.	
X::top_left(const	P	Returns an object p.	Post conditions:
B& b)			p.x == b.x and p.y ==
V h . + +	P	Datuma an abject -	b.y. Postconditions:
<pre>X::bottom right(const B&</pre>	r	Returns an object p.	p.x == b.x +
b)			b.w and p.y ==
-,			b.y + b.h.
X::equal(const B& 1,	bool	Returns 1.x == r.x && 1.y	•
const B& r)		== r.y && 1.w == r.w &&	
Vnot ogual(aangt	bool	1.h == r.h. Equivalent to return	
<pre>X::not_equal(const B& 1, const B& r)</pre>	0001	equal(1, r);	
X::create_circle()	C	Equivalent to return	
_		create_circle(create	
		point_2d(0.0f, 0.0f),	
		0.0f);	
X::create	C	Returns an object c.	Requires: r >=
<pre>circle(const P& p, float r)</pre>			${\tt 0.0f.} \ Postconditions:$
lloat r)			
			c.x == p.x, c.y == p.y,
			and $c.r == r$.
X::center(C& c,	void		Postconditions:
const P&p)			c.x == p.x
			and c.y ==
			p.y.
X::radius(C& c,	void		Requires: r >=
float r)			$0.0 f. \\ Postconditions:$
			c.r == r.
X::center(const C&	P	Returns an object p.	Postconditions:
c)	-		p.x == c.x
			and p.y ==
			с.у.
X::radius(const C& c)	float	Returns c.r.	
X::equal(const C& 1, const C& r)	bool	Returns 1.x == r.x && 1.y == r.y && 1.r == r.r.	
X::not_equal(const	bool	Equivalent to return	
C& 1, const C& r)	5001	!equal(1, r);	
ow i, const ow i/		. oquar(1, 1/,	

 ${\bf Table} \ {\bf 6-GraphicsMath} \ {\bf requirements} \ ({\bf continued})$

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
X::point_for	P	Returns transform	
angle(float a,		<pre>pt(create_rotate(a),</pre>	
float m)		<pre>create_point_2d(m, 0.0f)).</pre>	
X::point_for	P	Returns multiply(transform	
angle(float a,		<pre>pt(create_rotate(a),</pre>	
const P& r)		<pre>create_point_2d(1.0f,</pre>	
		0.0f)), r).	
X::angle_for	float	Equivalent to: const float co	
point(const P& c,		= pi <float> / 180'000.0f;</float>	
const P& p)		auto a = $atan2(-(p.y -$	
		c.y), p.x - c.x);	
		if (abs(a) < co abs(a -	
		two_pi <float>) < co) {</float>	
		return 0.0f;	
		}	
		if (a < 0.0f) {	
		return	
		a + two_pi <float>;</float>	
		}	
		return a;	
X::arc_start(const	P	Equivalent to: auto $lm = m$;	
P& c, float sa,		lm.m20 = 0.0f;	
const P& r, const		lm.m21 = 0.0f;	
M& m)		return add(c,	
		transform_pt(lm,	
		<pre>point_for_angle(sa, r)));</pre>	
X::arc_center(const	P	Equivalent to: auto 1m = m;	
P& c, float sa,		lm.m20 = 0.0f;	
const P& r, const		lm.m21 = 0.0f;	
M& m)		<pre>auto o = point_for</pre>	
		<pre>angle(two_pi<float> - sa,</float></pre>	
		r); o.y = -o.y;	
		return subtract(c,	
		transform_pt(lm, o));	
X::arc_end(const P&	P	Equivalent to: auto lm = m;	
c, float ea, const		lm.m20 = 0.0f;	
P& r, const M& m)		lm.m21 = 0.0f;	
		auto pt = transform	
		<pre>pt(create_rotate(ea), r);</pre>	
		pt.y = -pt.y;	
		return add(c,	
		<pre>transform_pt(lm, pt));</pre>	

§ 7.2 36

8 Graphics surfaces

[io2d.graphsurf]

8.1 General

[io2d.graphsurf.general]

- ¹ This Clause defines requirements on *GraphicsSurfaces* types.
- Most classes specified in Clause 12, Clause 13, and Clause 15 need a set of related types and functions to complete the definition of their semantics. These types and functions are provided as a set of typedefnames and nested classes containing typedefnames and static member functions in the template parameter GraphicsSurfaces used by each such template. This Clause defines the names of the classes and the semantics of their members.

8.2 Requirements

[io2d.graphsurf.reqs]

8.2.1 Classes

[io2d.graphsurf.reqs.classes]

- ¹ A GraphicsSurfaces type is a class template with one type parameter. The template type argument of an instantiation of a GraphicsSurfaces specialization shall meet the requirements of a GraphicsMath type (See: Clause 7).
- ² A GraphicsSurfaces type contains a *typedef-name* graphics_math_type, which is an identifier for the template argument. It also contains a *typedef-name* graphics_surfaces_type, which is an identifier for the GraphicsSurfaces type.
- ³ [Example:

```
template <class GraphMath>
struct GraphSurf {
  using graphics_math_type = GraphMath;
  using graphics_surfaces_type = GraphSurf;
  // ...
};
```

- end example]
- ⁴ A GraphicsSurfaces is required to have the following public nested classes:
 - 1. additional_image_file_formats
 - 2. additional formats
 - 3. brushes
 - 4. paths
 - 5. surface_states
 - 6. surfaces

8.2.2 additional_image_file_formats requirements [io2d.graphsurf.reqs.addimgform]

- ¹ Let X be a GraphicsSurfaces type.
- ² The X::additional_image_file_formats class contains zero or more image_file_format enumerators that represent implementation-defined additional data formats that the implementation can both construct an image_surface object from using the appropriate constructor and save an image_surface object to using image surface::save. These are called read/write image format enumerators.
- ³ The values of read/write image format enumerators shall be in the range [10000, 19999].
- 4 The X::additional_image_file_formats class also contains the following nested classes:
 - 1. read_only
 - 2. write_only
- The additional_image_file_formats class contains zero or more image_file_format enumerators that represent implementation-defined additional data formats that the implementation can construct an image_surface object from using the appropriate constructor but cannot save an image_surface object to using image_surface::save. These are called *read only image format enumerators*.

 $\S 8.2.2$ 37

- ⁶ The values of read only image format enumerators shall be in the range [20000, 29999].
- ⁷ The additional_image_file_formats::write_only class contains zero or more image_file_format enumerators that represent implementation-defined additional data formats that the implementation can construct an image_surface object from using the appropriate constructor and save an image_surface object to using image_surface::save but cannot construct an image_surface object from using any constructor. These are called write only image format enumerators.
- ⁸ The values of write only image format enumerators shall be in the range [30000, 39999].

8.2.3 additional_formats requirements

[io2d.graphsurf.reqs.addform]

- ¹ Let X be a GraphicsSurfaces type.
- ² The X::additional_formats class contains zero or more format enumerators that represent implementation-defined additional visual data formats that the implementation supports.
- ³ The size in bytes, byte order, and interpretation of values within each channel of each additional visual data format is *implementation-defined*.
- ⁴ The values of the additional visual data format enumerators shall be in the range [10000, 39999].

8.2.4 brushes requirements

[io2d.graphsurf.reqs.brushes]

- ¹ Brushes are described in Clause 13.
- ² Let X be a GraphicsSurfaces type.
- 3 Let M be X::graphics_math_type.
- ⁴ Table 7 describes the observable effects of a member functions of X::brushes.
- ⁵ X::brushes contains a *typedef-name*, brush_data_type, which is an identifier for a class type capable of storing all data required to support a brush of any type described in Clause 13. [*Note:* The information in 13.7.3 is particularly important. *end note*]

Table 7 — X::brushes requirements

Expression	Return type	Operational	${f Assertion/note}$
		semantics	pre-/post-condition
X::brushes::create	brush_data_type	Returns an object b.	Post conditions:
brush(const			b is a solid color
rgba_color& c)			brush, its visual
			data is c (See:
			13.7.3.1), and
			X::brushes::get
			brush_type(b)
			== brush
			type::solid
			color. [Note:
			Solid color does
			not imply
			opaque. The
			color may be
			translucent or
			even
			transparent.
			$-\mathit{end}\;\mathit{note}]$

Table 7 — X::brushes requirements (continued)

Expression	Return type	Operational semantics	$\begin{array}{c} {\bf Assertion/note} \\ {\bf pre-/post-condition} \end{array}$
template <class inputiterator=""> create_brush(const basic_point_2d<m>& be, const basic_point_2d<m>& en, InputIterator first, InputIterator last)</m></m></class>	brush_data_type	Returns an object b.	Postconditions: b is a linear gradient brush, its begin point is be, its end point is en, its gradient stops are formed using the sequential series of gradient_stop objects beginning at first and ending at last - 1 (See 13.2.2 and 13.2.4), and X::brushes::get brush_type(b) == brush type::linear.
create_brush(const basic_point_2d <m>& be, const basic_point_2d<m>& en, initializer list<gradient_stop> il)</gradient_stop></m></m>	brush_data_type	Returns an object b.	Postconditions: b is a linear gradient brush, its begin point is be, its end point is en, its gradient stops are formed using the sequential series of gradient_stop objects in il (See 13.2.2 and 13.2.4), and X::brushes::get brush_type(b) == brush type::linear.

Table 7 — X::brushes requirements (continued)

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
template <class inputiterator=""> create_brush(const basic_circle<m>& be, const basic_circle<m>& en, InputIterator first, InputIterator last)</m></m></class>	brush_data_type	Returns an object b.	pre-/post-condition Postconditions: b is a radial gradient brush, its start circle is be, its end circle is en, its gradient stops are formed using the sequential series of gradient_stop objects beginning at first and ending at last - 1 (See 13.2.3 and 13.2.4), and X::brushes::get brush_type(b) == brush
<pre>create_brush(const basic_circle<m>& be, const basic_circle<m>& en, initializer list<gradient_stop> il)</gradient_stop></m></m></pre>	brush_data_type	Returns an object b.	type::radial. Postconditions: b is a radial gradient brush, its start circle is be, its end circle is en, its gradient stops are formed using the sequential series of gradient_stop objects in il (See 13.2.3 and 13.2.4), and X::brushes::get brush_type(b) == brush
<pre>create_brush(basic image surface<graphics surfaces_type="">&& i)</graphics></pre>	brush_data_type	Returns an object b.	type::radial. Postconditions: b is a surface brush, its visual data is the raster graphics data from i, and X::brushes::get brush_type(b) == brush type::surface

Table 7 — X::brushes requirements (continued)

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
<pre>get_brush type(const brush_data_type& data)</pre>	brush_type	Returns the brush type of data.	

8.2.5 paths requirements

[io2d.graphsurf.reqs.paths]

- ¹ Paths are described in Clause 12.
- ² Let X be a GraphicsSurfaces type.
- 3 Let G be X::graphics_math_type.
- 4 Table 10 describes the observable effects of the member functions of X::paths.
- Table 8 defines the required *typedef-names* in X::paths, which are identifiers for class types capable of storing all data required to support the corresponding class template.

Table 8 — X::paths typedef-names

typedef-name	Class data
abs_cubic_curve_data_type	basic_figure_items <x>::abs_cubic_curve</x>
abs_line_data_type	basic_figure_items <x>::abs_line</x>
abs_matrix_data_type	<pre>basic_figure_items<x>::abs_matrix</x></pre>
abs_new_figure_data_type	<pre>basic_figure_items<x>::abs_new_figure</x></pre>
abs_quadratic_curve_data_type	basic_figure_items <x>::abs_quadratic_curve</x>
arc_data_type	basic_figure_items <x>::arc</x>
close_figure_data_type	basic_figure_items <x>::close_data</x>
interpreted_path_data_type	basic_interpreted_path <x></x>
rel_cubic_curve_data_type	basic_figure_items <x>::rel_cubic_curve</x>
rel_line_data_type	basic_figure_items <x>::rel_line</x>
rel_matrix_data_type	basic_figure_items <x>::rel_matrix</x>
rel_new_figure_data_type	basic_figure_items <x>::rel_new_figure</x>
rel_quadratic_curve_data_type	basic_figure_items <x>::rel_quadratic_curve</x>
revert_matrix_data_type	<pre>basic_figure_items<x>::revert_matrix</x></pre>

- 6 [Note: An object of type basic_interpreted_path<X> is an immutable object. As such, the contents of the class type for which X::paths::interpreted_path_data_type is an identifier are able to be highly tailored to the platform and environment targeted by X. —end note]
- In Table 10, AC denotes the type X::paths::abs_cubic_curve_data_type, AL denotes the type X::paths::abs_-line_data_type, AM denotes the type X::paths::abs_matrix_data_type, AN denotes the type X::paths::abs_-new_figure_data_type, AQ denotes the type X::paths::abs_quadratic_curve_data_type, ARC denotes the type X::paths::arc_data_type, IP denotes the type X::paths::interpreted_path_data_type, RC denotes the type X::paths::rel_cubic_curve_data_type, RL denotes the type X::paths::rel_line_-data_type, RM denotes the type X::paths::rel_matrix_data_type, RN denotes the type X::paths::rel_-new_figure_data_type, RQ denotes the type X::paths::rel_quadratic_curve_data_type, M denotes the type basic_matrix_2d<X::graphics_math_type, and P denotes the type basic_point_2d<X::graphics_math_type>.
- 8 In order to describe the observable effects of functions contained in Table 10, Table 9 describes the types contained in X as-if they possessed certain member data.
- ⁹ [Note: Certain types do not require any member data to describe the observable effects of the functions they are used by and thus do not appear in Table (9). end note]

 $\S 8.2.5$ 41

Table 9 — X::paths type member data

Type	Member data	Member data type
abs_cubic_curve_data_type	cpt1	basic_point_2d <g></g>
abs_cubic_curve_data_type	cpt2	basic_point_2d <g></g>
abs_cubic_curve_data_type	ept	basic_point_2d <g></g>
abs_line_data_type	pt	basic_point_2d <g></g>
abs_matrix_data_type	m	basic_matrix_2d <g></g>
abs_new_figure_data_type	pt	basic_point_2d <g></g>
abs_quadratic_curve_data_type	cpt	basic_point_2d <g></g>
abs_quadratic_curve_data_type	ept	basic_point_2d <g></g>
arc_data_type	rad	basic_point_2d <g></g>
arc_data_type	rot	float
arc_data_type	sa	float
rel_cubic_curve_data_type	cpt1	basic_point_2d <g></g>
rel_cubic_curve_data_type	cpt2	basic_point_2d <g></g>
rel_cubic_curve_data_type	ept	basic_point_2d <g></g>
rel_line_data_type	pt	basic_point_2d <g></g>
rel_matrix_data_type	m	basic_matrix_2d <g></g>
rel_new_figure_data_type	pt	basic_point_2d <g></g>
rel_quadratic_curve_data_type	cpt	basic_point_2d <g></g>
rel_quadratic_curve_data_type	ept	basic_point_2d <g></g>

Table 10 — X::paths requirements

Expression	Return type	$egin{array}{c} \mathbf{Operational} \\ \mathbf{semantics} \end{array}$	Assertion/note pre-/post-condition
X::paths::create abs_cubic_curve()	AC	<pre>Effects: Equivalent to return create_abs_cubic_curve(P(), P(), P());</pre>	
<pre>X::paths::create abs_cubic curve(const P& cpt1, const P& cpt2, const P& ept)</pre>	abs_cubic_curve data_type	Returns: An object ac.	Postconditions: ac.cpt1 == cpt1, ac.cpt2 == cpt2, and ac.ept == ept.
X::paths::control pt1(AC& ac, const P& pt)	void		Postconditions: ac.cpt1 == pt.
X::paths::control pt2(AC& ac, const P& pt)	void		Postconditions: ac.cpt2 == pt.
X::paths::end pt(AC& ac, const P& pt)	void		Postconditions: ac.ept == pt.
X::paths::control pt1(const AC& ac)	P	Returns: ac.cpt1.	
X::paths::control pt2(const AC& ac)	P	Returns: ac.cpt2.	
X::paths::end pt(const AC& ac)	P	Returns: ac.ept.	
X::paths::create abs_line()	AL	<pre>Effects: Equivalent to return create_abs_line(P);</pre>	

Table 10 — X:: paths requirements (continued)

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
X::paths::create	AL	Returns: An object al.	Postconditions:
abs_line(const P&		Ü	al.pt == p.
p)			
X::paths::to(AL& al,	void		Post conditions:
const P& p)			al.pt == p.
X::paths::to(const	P	Returns: al.pt.	
AL& al)			
X::paths::create	AM	Equivalent to return	
abs_matrix()		<pre>create_abs_matrix(M());</pre>	
X::paths::create	AM	Returns: An object am.	Post conditions:
abs_matrix(const M&			am.m == m.
m)			
X::paths::matrix(AM&	void		Post conditions:
am, const M& m)			am.m == m.
X::paths::matrix(cons	tM	Returns: am.m.	
AM& am)			
X::paths::create	AN	Effects: Equivalent to return	
abs_new_figure()		create_abs_new	
3 - 0		figure(P());	
X::paths::create	AN	Returns: An object an.	Postconditions:
abs_new			an.pt == p.
figure(const P&			ш. р.
p)			
X::paths::at(AN& an,	void		Postconditions:
const P& p)	VOIG		an.pt == p.
X::paths::at(const	P	Returns: an.pt.	<u>un.po</u> p.
AN& an)	1	necumis. an. po.	
X::paths::create	AQ	Equivalent to return create	
abs_quadratic		abs_quadratic_curve(P(),	
curve()		P());	
X::paths::create	AQ	Returns: An object aq.	Postconditions:
abs_quadratic	114	recourted. The object aq.	aq.cpt == cpt
curve(const P& cpt,			and aq.ept ==
const P& ept)			ept.
X::paths::control	void		Post conditions:
pt(AQ& aq, const P&	VOIG		aq.cpt == p.
p)			aq.cpu p.
X::paths::end	void		Post conditions:
pt(AQ& aq, const P&	VOIU		aq.ept == p.
p)			~4.0ho h.
X::paths::control	P	Returns: aq.cpt.	
pt(const AQ&	•	1000 ar 100. aq. op 0.	
aq)			
X::paths::end	P	Returns: aq.ept.	
pt(const AQ&	•	iccommo. aq.ept.	
aq)			
X::paths::create	ARC	Effects: Equivalent to return	
arc()	AII.O	create_arc(P(), 0.0f,	
arc()		0.0f);	
Ynathaarasta	ARC		Postconditions:
X::paths::create	MNU	Returns: An object arc.	arc.rad ==
arc(const P& rad,			
float rot, float			rad, arc.rot
sa)			== rot, and
			arc.sa == sa.

Table 10 — X:: paths requirements (continued)

Expression	Return type	$egin{array}{c} { m Operational} \ { m semantics} \end{array}$	Assertion/note pre-/post-condition
**		semantics	
X::paths::radius(ARC&	vold		Postconditions:
arc, const P& rad)			arc.rad ==
V	000-11		rad.
X::paths::rotation(AF	CWO1d		Post conditions:
arc, float rot)			arc.rot ==
			rot.
X::paths::start	void		Post conditions:
angle(ARC& arc,			arc.sa == sa.
float sa)			
<pre>X::paths::radius(cons ARC& arc)</pre>	stP	Returns: arc.rad.	
X::paths::rotation(co	on £t oat	Returns: arc.rot.	
X::paths::start	float	Returns: arc.sa.	
angle(const ARC&	11000	Tecturius. arc.ba.	
arc)			
X::paths::center(cons	+D	Returns: As-if:	Note: spt is
ARC& arc, const P&	501	auto lmtx = m;	the starting
spt, const M& m)		lmtx.m20 = 0.0f;	point of the arc.
spt, const na m)		1mtx.m20 = 0.01; 1mtx.m21 = 0.0f;	m is the
		auto ctrOffset =	transformation
		point_for_angle <g>(</g>	matrix being
		two_pi <float> - arc.sa,</float>	used. $-end$
		arc.rad);	note
		ctrOffset.y(-ctrOffset.y);	note]
		· ·	
		return spt - ctrOffset *	
V	P	lmtx; Returns: As-if:	[Motor and is
X::paths::end	P		[Note: spt is
pt(const ARC& arc,		auto lmtx = m;	the starting
const P& spt, const		1mtx.m20 = 0.0f;	point of the arc.
M& m)		lmtx.m21 = 0.0f;	m is the
		auto tfrm =	transformation
		M::create_rotate(arc.sa +	matrix being
		arc.rot);	used. $-end$
		<pre>auto pt = arc.rad * tfrm;</pre>	note]
		pt.y(-pt.y());	
••		return spt + pt * lmtx;	D / 1111
X::paths::create	IP	Returns: An object ip.	Postconditions:
<pre>interpreted_path()</pre>			ip has zero
			figures (See:
			12.3.16)

Table 10 — X:: paths requirements (continued)

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
template <class< td=""><td>IP</td><td>Returns: An object ip.</td><td>Postconditions:</td></class<>	IP	Returns: An object ip.	Postconditions:
ForwardIterator>		· -	ip contains a
X::paths::create			zero or more
interpreted			figure items as
path <forwarditerator< td=""><td></td><td></td><td>determined by</td></forwarditerator<>			determined by
first,			evaluating the
ForwardIterator			sequence of
last			figure
			items::figure
			item objects
			beginning with
			first and
			ending with
			last in the
			manner
			described in
			12.3.16.
			Remarks: The
			internal data of
			the interpreted
			path should be
			in a form that is
			best suited to
			take advantage
			of the platform
			and
			environment
			targeted by X.
X::paths::create	RC	Effects: Equivalent to return	
rel_cubic_curve()		<pre>create_rel_cubic_curve(P(), P(), P());</pre>	
X::paths::create	RC	Returns: An object rc.	Postconditions:
rel_cubic	100	Tievarius. Tiii object 16.	rc.cpt1 ==
curve(const P& cpt1,			cpt1, rc.cpt2
const P& cpt2,			== cpt2, and
const P& ept)			rc.ept ==
True true true			ept.
X::paths::control	void		Postconditions:
pt1(RC& rc, const			rc.cpt1 ==
P& pt)			pt.
X::paths::control	void		Postconditions:
pt2(RC& rc, const			rc.cpt2 ==
P& pt)			pt.
X::paths::end	void		Postconditions:
pt(RC& rc, const P&			rc.ept == pt.
pt)			-
X::paths::control	P	Returns: rc.cpt1.	
pt1(const RC&			
a)			
X::paths::control	P	Returns: rc.cpt2.	
pt2(const RC&			
rc)			
	<u></u>		

Table 10 — X:: paths requirements (continued)

Expression	Return type	$egin{array}{c} \mathbf{Operational} \\ \mathbf{semantics} \end{array}$	Assertion/note pre-/post-condition
X::paths::end pt(const RC& rc)	P	Returns: rc.ept.	
<pre>X::paths::create rel_line()</pre>	RL	<pre>Effects: Equivalent to return create_rel_line(P);</pre>	
X::paths::create	RL	Returns: An object rl.	Postconditions:
rel_line(const P& p)		·	rl.pt == p.
X::paths::to(RL& al,	void		Postconditions:
const P& p)			rl.pt == p.
X::paths::to(const RL& rl)	P	Returns: rl.pt.	
X::paths::create	RM	Equivalent to return	
rel_matrix()		<pre>create_rel_matrix(M());</pre>	
<pre>X::paths::create rel_matrix(const M& m)</pre>	RM	Returns: An object rm.	Postconditions: rm.m == m.
X::paths::matrix(RM&	void		Postconditions:
am, const M& m)	VOIG		rm.m == m.
X::paths::matrix(cons:	tM	Returns: am.m.	
X::paths::create	RN	Effects: Equivalent to return	
rel_new_figure()		<pre>create_rel_new figure(P());</pre>	
X::paths::create	RN	Returns: An object rn.	Postconditions:
rel_new figure(const P&			rn.pt == p.
<pre>p) X::paths::at(RN& rn, const P& p)</pre>	void		Postconditions: rn.pt == p.
X::paths::at(const RN& rn)	P	Returns: rn.pt.	тп.рс р.
X::paths::create	RQ	Equivalent to return create	
rel_quadratic curve()		<pre>rel_quadratic_curve(P(), P());</pre>	
X::paths::create	RQ	Returns: An object rq.	Postconditions:
rel_quadratic curve(const P& cpt,		-	rq.cpt == cpt and rq.ept ==
const P& ept)	rrai d		ept. Postconditions:
X::paths::control pt(RQ& rq, const P&	void		rq.cpt == p.
p) X::paths::end	void		Postconditions:
pt(RQ& rq, const P& p)			rq.ept == p.
X::paths::control pt(const RQ& rq)	P	Returns: rq.cpt.	
X::paths::end pt(const RQ& rq)	P	Returns: rq.ept.	

8.2.6 surface_state_props requirements

[io2d.graphsurf.reqs.surfstate]

- ¹ Surface state data are described in Clause 14.
- ² Let X be a GraphicsSurfaces type.
- 3 Let G be X::graphics_math_type.
- 4 Table 13 describes the observable effects of the member functions of X::surface_state_props.
- Table 11 defines the required *typedef-names* in X::surface_state_props, which are identifiers for class types capable of storing all data required to support the corresponding class template.

Table 11 — X::surface_state_props typedef-names

typedef- $name$	Class data
render_props_data_type	basic_render_props
brush_props_data_type	basic_brush_props
clip_props_data_type	basic_clip_props
stroke_props_data_type	basic_stroke_props
mask_props_data_type	basic_mask_props
dashes_data_type	basic_dashes

- In Table 13, RE denotes the type X::surface_state_props::render_props_data_type, BR denotes the type X::surface_state_props::brush_props_data_type, CL denotes the type X::surface_state_props::clip_-props_data_type, ST denotes the type X::surface_state_props::stroke_props_data_type, FP denotes the type X::surface_state_props::fill_props_data_type, MA denotes the type X::surface_state_-props::mask_props_data_type, DA denotes the type X::surface_state_props::dashes_data_type, BB denotes the type basic_bounding_box<G>, IP denotes the type basic_interpreted_path<X>, FI denotes the type basic_figure_items<X>::figure_item, M denotes the type basic_matrix_2d<G>, and P denotes the type basic_point_2d<G>.
- In order to describe the observable effects of functions contained in Table 13, Table 12 describes the types contained in X as-if they possessed certain member data.

Table 12 — X::surface_state_props type member data

Type	Member data	Member data type
render_props_data_type	fi	filter
render_props_data_type	m	M
render_props_data_type	С	compositing_op
brush_props_data_type	W	wrap_mode
brush_props_data_type	fi	filter
brush_props_data_type	m	М
clip_props_data_type	optional <ip></ip>	С
clip_props_data_type	fr	fill_rule
stroke_props_data_type	lw	float
stroke_props_data_type	ml	float
stroke_props_data_type	lc	line_cap
stroke_props_data_type	lj	line_join
stroke_props_data_type	aa	antialias
fill_props_data_type	fr	fill_rule
fill_props_data_type	aa	antialias
mask_props_data_type	wm	wrap_mode
mask_props_data_type	fi	filter
mask_props_data_type	m	М
dashes_props_data_type	0	float
dashes_props_data_type	р	vector <float></float>

Table 13 — $\mathtt{X::surface_state_props}$ requirements

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
X::surface_state	RE	Returns: An object r.	Post conditions:
props::create		3	r.fi == f, r.m
render_props(filter			== m, and r.c
f = filter::good, M			== c.
$m = M\{\},$			
compositing op c =			
compositing			
op::over)			
X::surface_state	void		Post conditions:
props::filtering(RA&			r.fi == fi.
r, filter fi)			
X::surface_state	void		Post conditions:
props::surface			ra.m == m.
matrix(RA& r, const			
M& m)			
X::surface_state	void		Post conditions:
props::compositing(RA	1&		ra.c == c.
r, compositing_op			
c)			
X::surface_state	filter	Returns: r.fi.	
props::filtering(cons	st		
RA& r)			
X::surface_state	M	Returns: r.m.	
props::surface			
matrix(const RA&			
r)			
X::surface_state	compositing_op	Returns: r.c.	
props::compositing(co			
RA& r)			
X::surface_state	BR	Returns: An object b.	Post conditions:
props::create			b.w == w, b.fi
brush_props(wrap			== fi, and b.m
mode w =			== m.
wrap_mode::none,			
filter fi =			
filter::good, const			
$M\& m = M\{\})$			
X::surface_state	void		Post conditions:
props::brush_wrap			b.w == w.
mode(BR& b,			
wrap_mode w)			
X::surface_state	void		Post conditions:
props::brush			b.fi == fi.
filter(BR& b,			
filter fi)			
X::surface_state	void		Post conditions:
props::brush			b.m == m.
matrix(BR& b, const			
M& m)			
X::surface_state	wrap_mode	Returns: b.w.	
props::brush_wrap	<u>-</u>		
mode(const BR&			
b)			

Table 13 — $X::surface_state_props$ requirements (continued)

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
X::surface_state props::brush filter(const BR& b)	filter	Returns: b.fi.	pro / post condition
X::surface_state props::brush matrix(const BR& b)	М	Returns: b.m.	
<pre>X::surface_state props::create_clip props()</pre>	CL	Returns: An object c.	Postconditions: c.c == nullopt and c.fr == fill rule::winding.
X::surface_state props::create_clip props(const BB& b, fill_rule fr)	CL	Returns: An object c.	Postconditions: c.c == clip(c, b) and c.fr == fr.
<pre>template <class allocator=""> X::surface_state props::create_clip props(const basic_path builder<x, allocator="">& pb,</x,></class></pre>	CL	Returns: An object c.	Postconditions: c.c == IP(pb) and c.fr == fr.
<pre>fill_rule fr) template <class inputiterator=""> X::surface_state props::create_clip props(InputIterator first, InputIterator last, fill_rule fr)</class></pre>	CL	Returns: An object c.	Postconditions: c.c == IP(first, last) and c.fr == fr.
<pre>X::surface_state props::create_clip props(initializer list<fi> il, fill_rule fr)</fi></pre>	CL	Returns: An object c.	Postconditions: c.c == IP(i1) and c.fr == fr.
<pre>X::surface_state props::create_clip props(const IP& ip, fill_rule fr)</pre>	CL	Returns: An object c.	Postconditions: c.c == ip and c.fr == fr.
<pre>X::surface_state props::clip(CL& c, nullopt_t)</pre>	void		Postconditions: c.c == nullopt.
X::surface_state props::clip(CL& c, const BB& b)	void		Postconditions: c.c == IP(b).

Table 13 — $X::surface_state_props$ requirements (continued)

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
template <class< td=""><td>void</td><td></td><td>Post conditions:</td></class<>	void		Post conditions:
Allocator>			c.c ==
X::surface_state			IP(pb).
props::clip(CL& c,			(P = /)
const basic_path			
builder <x,< td=""><td></td><td></td><td></td></x,<>			
Allocator>& pb)			
template <class< td=""><td>void</td><td></td><td>Postconditions:</td></class<>	void		Postconditions:
InputIterator>	V014		c.c ==
X::surface_state			IP(first,
props::clip(CL& c,			last).
InputIterator first,			1450).
InputIterator last)			
X::surface_state	void		Postconditions:
props::clip(CL& c,	VOIG		C.C ==
initializer			IP(i1).
list <fi></fi>			11 (11/.
il)			
			Postconditions:
X::surface_state	void		
props::clip(CL& c,			c.c == ip.
const IP& ip)			D / 1:1:
X::surface_state	void		Postconditions:
props::clip_fill			c.fr == fr.
rule(CL&c,			
fill_rule fr)			
X::surface_state	IP	Returns: c.c.	
props::clip(const			
CL& c)			
X::surface_state	fill_rule	Returns: c.fr.	
props::clip_fill			
rule(const CL&			
c)			
X::surface_state	ST	Returns: An object s.	Requires: lw >=
props::create			O.Of, ml >=
stroke_props(float			1.0f, and ml
<pre>lw = 2.0f, line_cap</pre>			<= max_miter
<pre>lc = line_cap::none,</pre>			<pre>limit().</pre>
line_join lj =			Post conditions:
line_join::miter,			s.lw == lw,
float ml = 10.0f,			s.lc == lc,
antialias aa =			s.lj == lj,
antialias::good)			s.ml == ml,
			and s.aa ==
			aa.
X::surface_state	void		Post conditions:
props::line			s.lw == lw.
width(ST& s, float			
lw)			
X::surface_state	void		Post conditions:
props::stroke_line			s.lc == lc.
cap(ST& s, line_cap			
1c)			

Table 13 — $X::surface_state_props$ requirements (continued)

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
X::surface_state	void		Postconditions:
props::stroke_line			s.lj == lj.
join(ST& s,			
line_join lj)			
X::surface_state	void		Post conditions:
props::miter			s.ml == ml.
limit(ST& s, float			
ml)	.,	D 1 111	
X::surface_state	void	Postconditions: s.aa == aa.	
<pre>props::anti aliasing(ST& s,</pre>			
antialias aa)			
X::surface_state	float	Returns: s.lw.	
props::line	11000	Tecourino. B. Iw.	
width(const ST&			
s)			
X::surface_state	line_cap	Returns: s.lc.	
props::stroke_line			
cap(const ST&			
s)			
X::surface_state	line_join	Returns: s.lj.	
<pre>props::stroke_line</pre>			
join(const ST&			
s)			
X::surface_state	float	Returns: s.ml.	
props::miter			
limit(const ST&			
s)		Returns: s.aa.	
X::surfaces_state	antialias	neturns: s.aa.	
<pre>props::anti aliasing(const ST&</pre>			
s)			
X::surface_state	float	Returns: An	
props::max_miter	11000	implementation-defined	
limit()		maximum value for ST::ml.	
X::surface_state	FP	Returns: An object f.	Postconditions:
props::create_fill		v	f.fr == fr
props(fill_rule fr			and f.aa ==
=			aa.
fill_rule::winding,			
antialias aa =			
antialias::good)			
X::surface_state	void		Post conditions:
props::fill_fill			f.fr == fr.
rule(FP& f,			
fill_rule fr)			Dt 1:1:
X::surface_state	void		Postconditions:
<pre>props::antialiasing(F f antialias as)</pre>	ra		f.aa == aa.
f, antialias aa)	fill_rule	Returns: f.fr.	
V a	1 1 1 1 TILLA	DELUTUS: T.TT.	
X::surface_state	TIII_IUIC	100000.7007 1711	
<pre>X::surface_state props::fill_fill rule(const FP&</pre>	TITI_TUTE	100000, 100, 21, 21,	

Table 13 — $X::surface_state_props$ requirements (continued)

Expression	Return type	Operational semantics	$\begin{array}{c} \textbf{Assertion/note} \\ \textbf{pre-/post-condition} \end{array}$
X::surface_state	antialias	Returns: f.aa.	
<pre>props::antialiasing(c FP& f)</pre>	const		
X::surface_state	MA	Returns: An object ma.	Post conditions:
props::create_mask			ma.wm == wm,
<pre>props(wrap_mode wm</pre>			ma.fi == fi,
<pre>= wrap_mode::none, filter fi =</pre>			and $ma.m == m$.
<pre>filter::good, const M& m = M())</pre>			
X::surface_state	void		Post conditions:
<pre>props::mask_wrap mode(MA& ma,</pre>	7014		ma.wm == wm.
wrap_mode wm)			
X::surface_state	void		Postconditions:
props::mask			ma.fi == fi.
<pre>filter(MA& ma, filter fi)</pre>			
X::surface_state	void		Post conditions:
props::mask			ma.m == m.
matrix(MA& ma,			
const M& m)			
X::surface_state	wrap_mode	Returns: ma.wm.	
props::mask_wrap			
mode(const MA&			
ma)			
X::surface_state	filter	Returns: ma.fi.	
props::mask			
filter(const MA&			
ma)			
X::surface_state	M	Returns: ma.m.	
props::mask			
matrix(const MA&			
ma)			
X::surface_state	DA	Returns: An object d.	Post conditions:
props::create		, and the second	d.o == 0.0f
dashes()			and d.p ==
			vector <float>{}.</float>
template <class< td=""><td>DA</td><td>Returns: An object d.</td><td>Post conditions:</td></class<>	DA	Returns: An object d.	Post conditions:
InputIterator>		J	d.o == o and
X::surface_state			d.p ==
props::create			vector <float>(first,</float>
dashes(float o,			last).
InputIterator first,			•
InputIterator last)			
X::surface_state	DA	Returns: An object d.	Postconditions:
props::create			d.o == o and
dashes(float o,			d.p ==
initializer			vector <float>(il).</float>
list <float></float>			133331 11340 (11).
il)			

Table 13 — X::surface_state_props requirements (continued)

Expression	Return type	$egin{array}{c} \mathbf{Operational} \\ \mathbf{semantics} \end{array}$	$\begin{array}{c} {\bf Assertion/note} \\ {\bf pre-/post-condition} \end{array}$
X::surface_state props::equal(const DA& lhs, const DA& rhs)	bool	Returns: lhs.o == rhs.o && lhs.p == rhs.p.	
<pre>X::surface_state props::not equal(const DA& lhs, const DA& rhs)</pre>	bool	Returns: lhs.o != rhs.o lhs.p != rhs.p.	

8.2.7 surfaces requirements

[io2d.graphsurf.reqs.surfaces]

- ¹ Let X be a GraphicsSurfaces type.
- ² Let G be a GraphicsMath type.
- 3 Let IM be an object of unspecified type that contains visual data.
- ⁴ Let OU be an object of *unspecified* type that provides all functionality needed to display visual data on an output device and to process all operations required to create, maintain, and destroy the mechanism used to display visual data. [*Example:* In a windowing environment the mechanism would typically be a window. *end example*]
- ⁵ Let UN be an object of *unspecified* type that provides all functionality needed to display visual data on an output device which does not process the operations required to create, maintain, and destroy the mechanism used to display visual data. [Note: This type lets the user draw on an existing output mechanism which the user manages. end note]
- ⁶ The types OU and UN may be the same type.
- ⁷ The definition of an output device is provided in 15.3.8.
- ⁸ Table 16 describes the observable effects of the member functions of X::surfaces.
- Table 14 defines the required *typedef-names* in X::surfaces, which are identifiers for class types capable of storing all data required to support the corresponding class template.

Table 14 — X::surfaces typedef-names

typedef-name	Class data
image_surface_data_type	basic_image_surface
output_surface_data_type	basic_output_surface
unmanaged_output_surface_data_type	basic_unmanaged_output_surface

- In Table 15 and Table 16, I denotes the type image_surface_data_type, O denotes the type output_surface_data_type, U denotes the type unmanaged_output_surface_data_type, BB denotes the type basic_bounding_box<G>, BP denotes the type basic_brush_props<X>, BR denotes the type basic_brush<X>, CP denotes the type basic_clip_props<X>, D denotes the type basic_dashes<X>, DP denotes the type basic_display_point<G>, FI denotes the type basic_figure_items<X>::figure_item, IMS denotes the type basic_image_surface<X>, IP denotes the type basic_interpreted_path<X>, M denotes the type basic_matrix_2d<G>, MP denotes the type basic_mask_properties<X>, OUS denotes the type basic_render_props<X>, SP denotes the type basic_stroke_props<X>, and UOS denotes the type basic_unmanaged_output_surface<X>.
- 11 In order to describe the observable effects of functions contained in Table 16, Table 15 describes the types contained in X as-if they possessed certain member data.

Table 15 — X::surfaces type member data

	Type	Member data		Member data type
I		im	IM	

Type	Member data	Member data type
I	fmt	format
I	dm	DP
0	ou	OU
0	fmt	format
0	dm	DP
0	bb	I
0	lb	optional
0	lbp	BP
0	sc	scaling
0	ac	bool
0	rr	bool
0	rs	refresh_style
0	dfr	float
0	dc	function <void(ous&)></void(ous&)>
0	scc	function <void(ous&)></void(ous&)>
U	un	UN
U	dm	DP
U	bb	I
U	lb	optional
U	lbp	BP
U	sc	scaling
U	ac	bool
U	dc	function <void(ous&)></void(ous&)>
U	scc	function <void(ous&)></void(ous&)>

- 12 [Note: In the same way that stdin, stdout, and stderr do not specify how they meet certain requirements, the requirements set forth in Table 16 also do not specify how they meet certain requirements, most or all of which relate to the output device. end note]
- [Note: Operations on objects of types IM, OU, and UO follow the C++requirements regarding observable behavior (See: C++ 2017[intro.execution]). Successive operations on such objects are not observable unless and until the visual data of such objects can be observed, such as when the visual data is displayed on an output device or is written out to a file. As such, implementations that use graphics acceleration hardware can use batching and other deferred processing techniques to improve performance. end note]

Table 16 — Graphics surfaces requirements

Expression	Return type	$egin{array}{c} \mathbf{Operational} \\ \mathbf{semantics} \end{array}$	Assertion/note pre-/post-condition
X::surfaces::max image_dimensions()	DP	Returns: An object dp where dp.x() is the maximum width in pixels of the visual data of an object of type IM and dp.y() is the maximum height in pixels of the visual data of an object of type IM.	
<pre>X::surfaces::max output_dimensions()</pre>	DP	Returns: An object dp where dp.x() is the maximum width in pixels of the visual data of an object of type OU and dp.y() is the maximum height in pixels of the visual data of an object of type OU.	

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
X::surfaces::max unmanaged_output dimensions()	DP	Returns: An object dp where dp.x() is the maximum width in pixels of the visual data of an object of type UN and dp.y() is the maximum height in pixels of the visual data of an object of type UN.	
X::surfaces::create image surface(format fmt, int w, int h)	I	Returns: An object i.	Requires: fmt != format::invalid, w > 0, w <= max_image dimensions().x(), h > 0, and h <= max_image dimensions().y(). Postconditions: The bounds of i.im are [0, w) along the x axisand [0, h) along the y axis, the visual data format of i.im is fmt, i.fmt == fmt, and i.dm == DP(x, y). The values of the visual data of i.im are unspecified.

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
<pre>X::surfaces::create I image surface(filesystem::path f, image_file_format iff, format fmt) X::surfaces::create image surface(filesystem::path f, image_file_format iff, format fmt, error_code& ec) noexcept</pre>	Return type		Assertion/note pre-/post-condition Requires: f is a file, the contents of f are valid data in the data format (15.2.1) specified by iff, the bounds of the visual data contained in the contents of f do not exceed the values returned by max_image dimensions(),
noexcept			<pre>dimensions(), and fmt != format::invalid. Postconditions: The visual data format of i.im is fmt. The bounds and visual data of i.im are the result of processing the</pre>
			contents of f and transforming the visual data it contains into the visual data format fmt. i.fmt == fmt.
			<pre>i.dm is equal to the result of creating an object of type DP using the bounds obtained from processing the contents of f.</pre>

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
(Continued)			Throws: As specified in Error reporting (Clause 4). Error conditions: Any error that could result from trying to access f, open f for reading, or reading data from f. Other errors, if any, are implementation-
<pre>X::surfaces::save(I& v i, filesystem::path f, image_file_format iff) X::surfaces::save(I& i, filesystem::path f, image_file_format iff, error_code& ec) noexcept</pre>	roid	Any pending rendering and composing operations (15.3.2) on i.im are performed. The visual data of i.im is written to f in the data format specified by iff.	defined. Requires: f shall be a valid path to a file. It is not required that the file exist provided that the other components of the path are valid. Throws: As specified in Error reporting (Clause 4). Error conditions: Any error that could result from trying to access f, open f for writing, or write data to f. Other errors, if any, are implementation- defined.
X::surfaces::format(com	n s2 d::format	Returns: i.fmt.	denned.
<pre>I& i) noexcept X::surfaces::dimensionB I& i) noexcept</pre>	Rconst	Returns: i.dm.	

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
X::surfaces::clear(I& voi	ld	Effects: Equivalent to:	
i)		<pre>X::surfaces::paint(i,</pre>	
		BR(rgba	
		<pre>color::transparent_black),</pre>	
		nullopt, make	
		optional <rp>(antialias::none</rp>	,
		M(),	
		<pre>compositing_op::clear);</pre>	
X::surfaces::paint(I& voi	id	Effects: Perform the painting	
i, const BB& b,		operation on i.im as specified	
const BP& bp, const		in 15.3.4. b is the source brush.	
RP& rp, const CP&		bp is the brush properties. rp is	
cl);		the surface properties. cl is the	
		clip properties.	
X::surfaces::stroke(I&voi	id	Effects: Perform the stroking	
i, const BB& b,		operation on i.im as specified	
const IP& ip, const		in 15.3.6.	
BP& bp, const SP&			
sp, const D& d,			
const RP& rp, const			
CP& cl);			
X::surfaces::fill(I& voi	id	Effects: Perform the filling	
i, const BB& b,		operation on i.im as specified	
const IP& ip, const		in 15.3.5.	
BP& bp, const RP&			
rp, const CP& cl);			
X::surfaces::mask(I& voi	id	Effects: Perform the masking	
i, const BB& b,		operation on i.im as specified	
const BB& m, const		in 15.3.7.	
BP& bp, const MP&			
mp, const RP& rp,			
const CP& cl);			

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
X::surfaces::create 0		Returns: An object o.	Requires: pw >
output_surface(int			0, pw <=
pw, int ph,			min(max
io2d::format pfmt,			image
io2d::scaling scl,			dimensions().x(),
io2d::refresh_style			max_output
rs, float fps)			dimensions().x()),
X::surfaces::create			ph > 0, ph <=
output_surface(int			min(max
pw, int ph,			image
io2d::format pfmt,			<pre>dimensions().y(),</pre>
error_code& ec,			max_output
io2d::scaling scl,			dimensions().y()),
io2d::refresh_style			pfmt !=
rs, float fps)			format::invalid,
noexcept			and fps <
noexcept			0.0f.
			Post conditions:
			The bounds of
			o.ou are
			[0, pw) along
			the x axis and
			[0, ph) along
			the y axis. The
			visual data
			format of o.ou
			is fmt or, if
			pfmt is not
			supported for
			o.ou then an
			implementation-
			defined visual
			data format.
			o.fmt is set to
			the format
			enumerator that
			corresponds to
			the visual data
			format of o.ou,
			which may be a
			value in
			X::additional
			formats. o.dm
			== DP(pw, ph).
			The values of
			the visual data
			of o.ou are
			${\it unspecified}.$

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
Continued)			The bounds of
			o.bb.im are
			[0, pw) along
			the x axis and
			[0, ph) along
			the y axis, the
			visual data
			format of
			o.bb.im is
			pfmt, o.bb.fmt
			== pfmt, and
			o.bb.dm ==
			DP(pw, ph).
			The values of
			the visual data
			of o.bb.im are
			unspecified.
			o.lb.value()
			== BR(rgba
			color::black).
			o.lbp == BP().
			0.15p DI ().
			scaling::letterbox
			o.ac == false.
			o.rr == false.
			o.rs == rs.
			o.dfr == fps.
			o.dc ==
			nullptr. o.scc
			== nullptr.
			Remarks: Imple-
			mentations may
			defer the
			creation of o.ou
			and o.bb until
			begin_show(o,
) is called.
			Implementa-
			tions may defer
			the creation of
			the visual data
			of the object
			contained in
			o.lb until it is
			used.

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	$egin{array}{c} \mathbf{Operational} \\ \mathbf{semantics} \end{array}$	$\begin{array}{c} \textbf{Assertion/note} \\ \textbf{pre-/post-condition} \end{array}$
(Continued)			When o.ou and
,			o.bb are
			created, the
			implementation
			shall ensure
			that the values
			of o.dm and
			o.bb.dm are set
			to the bounds
			of o.ou, and if
			either value
			changed it shall
			then invoke
			o.scc if o.scc
			!= nullptr.
			Throws: As
			specified in
			Error reporting
			(Clause 4).
			Error
			conditions:
			errc::not
			supported if
			creating o
			would exceed
			the maximum
			number of
			simultaneous
			basic
			display
			surface objects
			or combination
			of basic
			display
			surface objects
			and basic
			unmanaged
			display
			surface objects
			supported by
			the
			implementation
			(See: 15.3.8).

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
<pre>X::surfaces::create 0 output_surface(int pw, int ph, io2d::format pfmt, int pdw, int pdh, io2d::scaling scl, io2d::refresh_style rs, float fps) X::surfaces::create output_surface(int pw, int ph, io2d::format pfmt, int pdw, int pdh, io2d::scaling scl, io2d::refresh_style rs, float fps) noexcept</pre>	Return type	Returns: An object o.	Requires: pw > 0, pw <= max_image dimensions().x()), ph > 0, ph <= max_image dimensions().y(), pfmt != format::invalid, pdw > 0, pdh <= max_output dimensions().x(), pdh > 0, pdh <= max_output dimensions().y(), pdfmt != format::invalid, and fps < 0.0f. Postconditions: The bounds of o.ou are [0, pdw) along the x axis and [0, pdh) along the y axis. The visual data format of o.ou is pdfmt or, if pdfmt is not supported for o.ou then an implementation-defined visual data format. o.fmt is set to the format enumerator that corresponds to the visual data format of o.ou, which may be a value in
			enumerator that corresponds to
			which may be a
			<pre>X::additional formats. o.dm == DP(pdw,</pre>
			pdh). The values of the visual data of
			o.ou are unspecified.

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
ontinued)			The bounds of
			o.bb.im are
			[0, pw) along
			the x axis and
			[0, ph) along
			the y axis, the
			visual data
			format of
			o.bb.im is
			pfmt, o.bb.fmt
			== pfmt, and
			o.bb.dm ==
			DP(pw, ph).
			The values of
			the visual data
			of o.bb.im are
			unspecified.
			o.lb.value()
			== BR(rgba
			color::black).
			o.lbp == BP().
			0.sc ==
			scaling::letterbo
			o.ac == false.
			o.rr == false.
			o.rs == rs.
			o.dfr == fps.
			o.dc ==
			nullptr. o.scc
			== nullptr.
			Remarks: Imple-
			mentations may
			defer the
			creation of o.ou
			and o.bb until
			begin_show(o,
) is called.
			Implementa-
			tions may defer
			the creation of
			the visual data
			of the object
			contained in
			o.lb until it is
			used.

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
(Continued)			When o.ou and
,			o.bb are
			created, the
			implementation
			shall ensure
			that the values
			of o.dm and
			o.bb.dm are set
			to the bounds
			of o.ou, and if
			either value
			changed it shall
			then invoke
			o.scc if o.scc
			!= nullptr.
			Throws: As
			specified in
			Error reporting
			(Clause 4).
			Error
			conditions:
			errc::not
			supported if
			creating o
			would exceed
			the maximum
			number of
			simultaneous
			basic
			display surface objects
			or combination
			of basic
			-
			display
			surface objects
			and basic
			unmanaged
			display
			surface objects
			supported by
			the
			implementation
			(See: 15.3.8).

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
X::surfaces::begin show(0& o, OUS& sfc) X::surfaces::begin show(0& o, OUS& src, error_code& ec) noexcept	void	Performs the following actions in a continuous loop: 1. Handle any implementation and host environment matters, including updating the value of o.dm if the output device bounds have changed; then, 2. If the value of o.dm changed and o.scc != nullptr, invoke o.scc; then, 3. If o.rr == true or the values of o.rs and o.dfr require that o.dc be called: a) Set o.rr to false; then, b) If o.ac == true, invoke clear(o.bb); then, c) Invoke o.dc; then, d) Transfer o.bb.im to o.ou, performing the scaling and letterboxing, if any, required by o.sc and the color space conversion, if any, required to transform o.bb.im from	Requires: sfc.data() == o. Throws: As specified in Error reporting (Clause 4). Error conditions: errc::not supported if creating or displaying o.im would exceed the maximum number of simultaneous basic display surface objects or combination of basic display surface objects and basic unmanaged display surface objects supported by the implementation (See: 15.3.8).

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
(Continued)		semantics	Remarks: All
(Continued)			observable
			effects to visual
			data produced
			as a result of
			steps 3-b and
			3-c above are
			as-if they were
			applied to
			o.bb.im ${ m in}$
			those steps. Im-
			plementations
			may apply those
			observable
			effects directly
			to o.ou
			provided that
			they do so as-if
			the scaling,
			letterboxing, and color space
			conversion
			behavior
			specified in 3-d
			occurs. [Note:
			This allows im-
			plementations
			which do not
			wish to use a
			back buffer the
			freedom to do
			so. $-end$
			note]
X::surfaces::end	void	Initiates the process of exiting	Remarks: This
show(O&		the continuous loop resulting	function shall
0)		from the invocation of	not wait until
		begin_show(o,).	the continuous
		Implementations should follow	loop from
		any procedures that the host	begin_show(o,
		environment requires in order to) ends
		stop the continuous loop without error. If the continuous	before returning. [Note: The
		loop resulting from the	correct way to
		invocation of begin_show(o,	exit the
) is not executing or is	begin_show(o,
		already exiting due to a	begin_snow(o,
		previous call to this function,	continuous loop
		this function does nothing.	is to call this
			function from
			o.dc or from
			another thread.
			$-\mathit{end}\;\mathit{note}]$

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
dimensions(0& o, const DP& dm)	void	Attempts to change the bounds of o.bb.im to dm. If successful, o.bb.dm == dm, otherwise there are no effects.	<pre>Requires: dm.x() > 0, dm.x() <= max_image dimensions().x()), dm.y() > 0, dm.y() <= max_image dimensions().y()</pre>
output dimensions(0% o, const DP% dm)	void	Attempts to change the bounds of o.ou to dm. If successful sets o.dm to the value of dm and then invokes o.scc unless o.scc != nullptr, otherwise there are no effects.	<pre>Requires: dm.x() > 0, dm.x() <= max_output dimensions().x()), dm.y() > 0, dm.y() <= max_output dimensions().y()</pre>
scaling(0% o,	void		Postconditions:
io2d::scaling sc)			o.sc == sc.
<pre>refresh_style(0& o, io2d::refresh_style rs)</pre>	void		Postconditions: o.rs == rs.
desired_frame	void		Requires: dfr >
rate(0% o, float dfr)			<pre>0.0f. Postconditions: o.dfr == dfr.</pre>
letterbox_brush(0& o, const optional <bb>& 1b, const optional<bp>& 1bp)</bp></bb>	void		Postconditions: If lb.has value() == true then o.lb == lb.value(), otherwise o.lb == BB(rgba color::black). If lbp.has value() == true then o.lpb == lbp.value(), otherwise o.lbp == BP().
<pre>letterbox_brush properties(0& o, const optional < BP > & lbp)</pre>	void		Postconditions: If lbp.has value() == true then o.lpb == lbp.value(), otherwise o.lbp == BP().
auto_clear(0& o, bool ac)	void		Postconditions: o.ac == ac.
<pre>redraw_required(0& o, bool rr)</pre>	void		Postconditions: o.rr == rr.

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational semantics	Assertion/note pre-/post-condition
draw_callback(0% o,	void		Postconditions:
function <void(ous&)></void(ous&)>			o.dc == dc.
dc)			
size_change	void		Postconditions:
callback(0% o,			o.scc == scc.
function <void(ous&)></void(ous&)>			5.266 E66.
scc)			
X::surfaces::clear(0&	void	Effects: Equivalent to:	
0)	7014	paint(o.bb).	
X::surfaces::paint(0&	void	Effects: Equivalent to:	
o, const BB& b,	7014	paint(o.bb, <todo>).</todo>	
const BP& bp, const		paint(0.00, (1000)).	
RP& rp, const CP&			
cl);			
X::surfaces::stroke(I	kwoid	Perform the stroking operation	
i, const BB& b,	wv 0 ± u	on i.im as specified in 15.3.6.	
const IP& ip, const		on 1.1m as specified III 10.5.0.	
BP& bp, const SP&			
sp, const D& d,			
-			
<pre>const RP& rp, const CP& cl);</pre>			
		Danfarra the filling energtion on	
•	void	Perform the filling operation on	
i, const BB& b,		i.im as specified in 15.3.5.	
const IP& ip, const			
BP& bp, const RP&			
rp, const CP& cl);		Df	
	void	Perform the masking operation	
i, const BB& b,		on i.im as specified in 15.3.5.	
const BB& m, const			
BP& bp, const MP&			
mp, const RP& rp,			
const CP& cl);		D / 11 1	
X::surfaces::dimension	nBKconst	Returns: o.bb.dm.	
O& o) noexcept	77	D /	
X::surfaces::output	אע	Returns: o.dm.	
dimensions(const 0&			
o) noexcept		D (
X::surfaces::refresh_	-102d::refresh_style	Returns: o.rs	
style(const 0% o)			
noexcept		D. (
X::surfaces::desired_	-float	Returns: o.dfr.	
frame_rate(const 0&			
o) noexcept			
X::surfaces::scaling(con2d::scaling	Returns: o.sc.	
O& o) noexcept			
X::surfaces::letterbox	x <u>o</u> ptional <bb></bb>	Returns: o.lb.	
brush(const 0% o)			
noexcept			
X::surfaces::letterbox	х <u>В</u> Р	Returns: o.lbp.	
brush_props(const			
O& o) noexcept			
X::surfaces::auto	bool	Returns: o.ac.	
clear(const 0% o)			
noexcept			

§ 8.2.7

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational	Assertion/note
		semantics	pre-/post-condition
X::surfaces::redraw required(const 0& o) noexcept	- bool	Returns: o.rr.	
<pre>X::surfaces::copy surface(const I& i)</pre>	IMS	Returns: An object c.	Postconditions: c.data().im is a copy of the data in i.im. c.data().fmt == i.fmt. c.data().dm == i.dm.
X::surfaces::copy surface(const 0& o)	IMS	Returns: An object c.	Postconditions: c.data().im is a copy of the data in o.bb.im. c.data().fmt == o.bb.fmt. c.data().dm == o.bb.dm.

§ 8.2.7

Table 16 — Graphics surfaces requirements (continued)

Return type	Operational	Assertion/note
JN */)	All details of this function other than its name and return type are implementation-defined. It is not required that this function be provided by an implementation. This function may be overloaded.	[Note: This function exists to allow users to take an existing output device, such as a window or a smart phone display, and draw to it using this library via the basic unmanaged output surface class template. Implementers are not required to support this functionality; among other reasons, it may be impossible to provide it on certain platforms. If this function is not provided, it is impossible for the basic unmanaged output surface class template to be instantiated. — end note
void	<todo></todo>	Requires: f shall be CopyConstructible.
	JN */)	All details of this function other than its name and return type are implementation-defined. It is not required that this function be provided by an implementation. This function may be overloaded.

§ 8.2.7

Table 16 — Graphics surfaces requirements (continued)

Expression	Return type	Operational	Assertion/note pre-/post-condition
		semantics	pre-/post-condition
			·

§ 8.2.7 71

9 Linear algebra

[io2d.linearalgebra]

9.1 Class basic_point_2d

[io2d.point2d]

9.1.1 basic_point_2d description

[io2d.point2d.intro]

- ¹ The class template basic_point_2d is used as both a point and as a two-dimensional Euclidean vector.
- ² It has an *x coordinate* of type float and a *y coordinate* of type float.
- The data are stored in an object of type typename GraphicsMath::point_2d_data_type. It is accessible using the data member functions.

9.1.2 basic_point_2d synopsis

[io2d.point2d.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsMath>
  class basic_point_2d {
 public:
    using data_type = typename GraphicsMath::point_2d_data_type;
    // 9.1.3, constructors:
    basic_point_2d() noexcept;
    basic_point_2d(float x, float y) noexcept;
    basic_point_2d(const typename GraphicsMath::point_2d_data_type& data) noexcept;
    // 9.1.4, accessors:
    const data_type& data() const noexcept;
    data_type& data() noexcept;
    // 9.1.5, modifiers:
    void x(float val) noexcept;
    void y(float val) noexcept;
    // 9.1.6, observers:
    float x() const noexcept;
    float y() const noexcept;
    float dot(const basic_point_2d& other) const noexcept;
    float magnitude() const noexcept;
    float magnitude_squared() const noexcept;
    float angular_direction() const noexcept;
    basic_point_2d to_unit() const noexcept;
    // 9.1.7, member operators:
    basic_point_2d& operator+=(const basic_point_2d& rhs) noexcept;
    basic_point_2d& operator+=(float rhs) noexcept;
    basic_point_2d& operator-=(const basic_point_2d& rhs) noexcept;
    basic_point_2d& operator-=(float rhs) noexcept;
    basic_point_2d& operator*=(const basic_point_2d& rhs) noexcept;
    basic_point_2d& operator*=(float rhs) noexcept;
    basic_point_2d& operator/=(const basic_point_2d& rhs) noexcept;
    basic_point_2d& operator/=(float rhs) noexcept;
 };
  // 9.1.8, non-member operators:
  template <class GraphicsMath>
 bool operator==(const basic_point_2d<GraphicsMath>& lhs,
    const basic_point_2d<GraphicsMath>& rhs) noexcept;
  template <class GraphicsMath>
 bool operator!=(const basic_point_2d<GraphicsMath>& lhs,
    const basic_point_2d<GraphicsMath>& rhs) noexcept;
```

 $\S 9.1.2$

```
template <class GraphicsMath>
      basic_point_2d<GraphicsMath> operator+(
        const basic_point_2d<GraphicsMath>& val) noexcept;
      template <class GraphicsMath>
      basic_point_2d<GraphicsMath> operator+(
        const basic_point_2d<GraphicsMath>& lhs,
        const basic_point_2d<GraphicsMath>& rhs) noexcept;
      template <class GraphicsMath>
      basic_point_2d<GraphicsMath> operator-(
        const basic_point_2d<GraphicsMath>& val) noexcept;
      template <class GraphicsMath>
      basic_point_2d<GraphicsMath> operator-(
        const basic_point_2d<GraphicsMath>& lhs,
        const basic_point_2d<GraphicsMath>& rhs) noexcept;
      template <class GraphicsMath>
      basic_point_2d<GraphicsMath> operator*(
        const basic_point_2d<GraphicsMath>& lhs,
        float rhs) noexcept;
      template <class GraphicsMath>
      basic_point_2d<GraphicsMath> operator*(float lhs,
        const basic_point_2d<GraphicsMath>& rhs) noexcept;
      template <class GraphicsMath>
      basic_point_2d<GraphicsMath> operator*(
        const basic_point_2d<GraphicsMath>& lhs,
        const basic_point_2d<GraphicsMath>& rhs) noexcept;
      template <class GraphicsMath>
      basic_point_2d<GraphicsMath> operator/(
        const basic_point_2d<GraphicsMath>& lhs,
        float rhs) noexcept;
      template <class GraphicsMath>
      basic_point_2d<GraphicsMath> operator/(float lhs,
        const basic_point_2d<GraphicsMath>& rhs) noexcept;
      template <class GraphicsMath>
      basic_point_2d<GraphicsMath> operator/(
        const basic_point_2d<GraphicsMath>& lhs,
        const basic_point_2d<GraphicsMath>& rhs) noexcept;
    }
  9.1.3 basic_point_2d constructors
                                                                                [io2d.point2d.cons]
  basic_point_2d() noexcept;
1
        Effects: Constructs an object of type basic_point_2d.
2
        Postconditions: data() == GraphicsMath::create_point_2d().
  basic_point_2d(float x, float y) noexcept;
3
        Effects: Constructs an object of type basic_point_2d.
4
        Postconditions: data() == GraphicsMath::create point 2d(x, y).
  basic_point_2d(const data_type& d) noexcept;
        Effects: Constructs an object of type basic_point_2d.
        Postconditions: data() == d.
  9.1.4 basic_point_2d accessors
                                                                           [io2d.point2d.accessors]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
        Returns: A reference to the basic_point_2d object's data object (See: 9.1.1).
```

§ 9.1.4 73

```
9.1.5 basic_point_2d modifiers
                                                                          [io2d.point2d.modifiers]
   void x(float val) noexcept;
        Effects: Equivalent to GraphicsMath::x(data(), val);
   void y(float val) noexcept;
        Effects: Equivalent to GraphicsMath::y(data(), val);
                                                                         [io2d.point2d.observers]
   9.1.6 basic_point_2d observers
   float x() const noexcept;
        Returns: GraphicsMath::x(data()).
   float y() const noexcept;
        Returns: GraphicsMath::y(data()).
   float dot(const basic_point_2d& other) const noexcept;
        Returns: GraphicsMath::dot(data(), other).
   float magnitude() const noexcept;
        Returns: GraphicsMath::magnitude(data()).
   float magnitude_squared() const noexcept;
        Returns: GraphicsMath::magnitude_squared(data()).
   float angular_direction() const noexcept;
        Returns: GraphicsMath::angular_direction(data()).
   basic_point_2d to_unit() const noexcept;
        Returns: basic_point_2d(GraphicsMath::to_unit(data())).
   9.1.7 basic_point_2d member operators
                                                                      [io2d.point2d.member.ops]
   basic_point_2d& operator+=(const basic_point_2d& rhs) noexcept;
1
        Effects: Equivalent to data() = GraphicsMath::add(data(), rhs.data());
2
        Returns: *this.
   basic_point_2d& operator-=(const basic_point_2d& rhs) noexcept;
3
        Effects: Equivalent to data() = GraphicsMath::subtract(data(), rhs.data());
4
        Returns: *this.
   basic_point_2d& operator*=(float rhs) noexcept;
5
        Effects: Equivalent to data() = GraphicsMath::multiply(data(), rhs);
6
        Returns: *this.
   basic_point_2d& operator*=(const basic_point_2d& rhs) noexcept;
7
        Effects: Equivalent to data() = GraphicsMath::multiply(data(), rhs.data());
        Returns: *this.
   basic_point_2d& operator/=(float rhs) noexcept;
9
        Effects: Equivalent to: data() = GraphicsMath::divide(data(), rhs);
10
        Returns: *this.
   basic_point_2d& operator/=(const basic_point_2d& rhs) noexcept;
11
        Effects: Equivalent to: data() = GraphicsMath::divide(data(), rhs.data());
12
        Returns: *this.
```

§ 9.1.7

```
9.1.8
          basic_point_2d non-member operators
                                                                                  [io2d.point2d.ops]
   bool operator == (const basic_point_2d& lhs, const basic_point_2d& rhs) noexcept;
1
        Returns: GraphicsMath::equal(lhs.data(), rhs.data()).
   bool operator!=(const basic_point_2d& lhs, const basic_point_2d& rhs) noexcept;
2
        Returns: GraphicsMath::not_equal(lhs.data(), rhs.data()).
   basic_point_2d operator+(const basic_point_2d& val) noexcept;
3
        Returns: val.
   basic_point_2d operator+(const basic_point_2d& lhs, const basic_point_2d& rhs) noexcept;
        Returns: basic_point_2d(GraphicsMath::add(lhs.data(), rhs.data())).
   basic_point_2d operator-(const basic_point_2d& val) noexcept;
5
        Returns: basic_point_2d(GraphicsMath::negate(val.data())).
   basic_point_2d operator-(const basic_point_2d& lhs, const basic_point_2d& rhs) noexcept;
6
        Returns: basic_point_2d(GraphicsMath::subtract(lhs.data(), rhs.data())).
   basic_point_2d operator*(const basic_point_2d& lhs, const basic_point_2d& rhs) noexcept;
7
        Returns: basic_point_2d(GraphicsMath::multiply(lhs.data(), rhs.data())).
   basic_point_2d operator*(const basic_point_2d& lhs, float rhs) noexcept;
        Returns: basic_point_2d(GraphicsMath::multiply(lhs.data(), rhs)).
   basic_point_2d operator*(float lhs, const basic_point_2d& rhs) noexcept;
9
        Returns: basic_point_2d(GraphicsMath::multiply(lhs, rhs.data())).
   basic_point_2d operator/(const basic_point_2d& lhs, const basic_point_2d& rhs) noexcept;
10
        Requires: rhs.x() != 0.0f and <math>rhs.y() != 0.0f.
11
        Returns: basic_point_2d(GraphicsMath::divide(lhs.data(), rhs.data())).
   basic_point_2d operator/(const basic_point_2d& lhs, float rhs) noexcept;
12
        Requires: rhs != 0.0f.
13
        Returns: basic_point_2d(GraphicsMath::divide(lhs.data(), rhs)).
   basic_point_2d operator/(float lhs, const basic_point_2d& rhs) noexcept;
14
        Requires: rhs.x() != 0.0f and rhs.y() != 0.0f.
15
        Returns: basic_point_2d(GraphicsMath::divide(lhs, rhs.data())).
   9.2
         Class basic_matrix_2d
                                                                                     [io2d.matrix2d]
                                                                              [io2d.matrix2d.intro]
   9.2.1
           basic_matrix_2d description
<sup>1</sup> The class template basic_matrix_2d represents a three row by three column matrix. Its purpose is to
   perform affine transformations.
   The matrix is composed of nine float values: m00, m01, m02, m10, m11, m12, m20, m21, and m22. The ordering
   of these float values in the basic_matrix_2d class is unspecified.
3 The specification of the basic_matrix_2d class, as described in this subclause, uses the following ordering:
   [ [ m00 \ m01 \ m02 ] ]
    [ m10 \ m11 \ m12 ]
```

⁵ The performance of any mathematical operation upon a basic_matrix_2d shall be carried out as-if the omitted third column data members were present with the values prescribed in the previous paragraph.

⁴ [Note: The naming convention and the layout shown above are consistent with a row-major layout. Though the naming convention is fixed, the unspecified layout allows for a column-major layout (or any other layout,

though row-major and column-major are the only layouts typically used). -end note

 $[[m20 \ m21 \ m22]]$

§ 9.2.1 75

The data are stored in an object of type typename GraphicsMath::matrix_2d_data_type. It is accessible using the data member functions.

9.2.2 basic_matrix_2d synopsis

[io2d.matrix2d.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsMath>
  class basic_matrix_2d {
    using data_type = typename GraphicsMath::matrix_2d_data_type;
    // 9.2.3, constructors:
    basic_matrix_2d() noexcept;
    basic_matrix_2d(float v00, float v01, float v10, float v11, float v20, float v21) noexcept;
    basic_matrix_2d(const typename GraphicsMath::matrix_2d_data_type& v) noexcept;
    // 9.2.4, accessors:
    const data_type& data() const noexcept;
    data_type& data() noexcept;
    // 9.2.5, static factory functions:
    static basic_matrix_2d init_translate(const basic_point_2d<GraphicsMath>& v) noexcept;
    static basic_matrix_2d init_scale(const basic_point_2d<GraphicsMath>& v) noexcept;
    static basic_matrix_2d init_rotate(float radians) noexcept;
    static basic_matrix_2d init_rotate(float radians,
     const basic_point_2d<GraphicsMath>& origin) noexcept;
    static basic_matrix_2d init_reflect(float radians) noexcept;
    static basic_matrix_2d init_shear_x(float factor) noexcept;
    static basic_matrix_2d init_shear_y(float factor) noexcept;
    // 9.2.6, modifiers:
    void m00(float v) noexcept;
    void m01(float v) noexcept;
    void m10(float v) noexcept;
    void m11(float v) noexcept;
    void m20(float v) noexcept;
    void m21(float v) noexcept;
    basic matrix 2d& translate(const basic point 2d<GraphicsMath>& v) noexcept;
    basic matrix_2d& scale(const basic_point_2d<GraphicsMath>& v) noexcept;
    basic_matrix_2d& rotate(float radians) noexcept;
    basic_matrix_2d& rotate(float radians, const basic_point_2d<GraphicsMath>& origin) noexcept;
    basic_matrix_2d& reflect(float radians) noexcept;
    basic_matrix_2d& shear_x(float factor) noexcept;
    basic_matrix_2d& shear_y(float factor) noexcept;
    // 9.2.7, observers:
    float m00() const noexcept;
    float m01() const noexcept;
    float m10() const noexcept;
    float m11() const noexcept;
    float m20() const noexcept;
    float m21() const noexcept;
    bool is_finite() const noexcept;
    bool is_invertible() const noexcept;
    float determinant() const noexcept;
    basic_matrix_2d inverse() const noexcept;
    basic_point_2d<GraphicsMath> transform_pt(const basic_point_2d<GraphicsMath>& pt)
     const noexcept;
    // 9.2.8, member operators:
    basic_matrix_2d& operator*=(const basic_matrix_2d& other) noexcept;
  };
```

 $\S 9.2.2$

```
// 9.2.9, member operators:
      template <class GraphicsMath>
      basic_matrix_2d<GraphicsMath> operator*(
        const basic_matrix_2d<GraphicsMath>& lhs,
        const basic_matrix_2d<GraphicsMath>& rhs) noexcept;
      template <class GraphicsMath>
      basic_point_2d<GraphicsMath> operator*(
        const basic_point_2d<GraphicsMath>& lhs,
        const basic_matrix_2d<GraphicsMath>& rhs) noexcept;
      template <class GraphicsMath>
      bool operator==(const basic_matrix_2d<GraphicsMath>& lhs,
        const basic_matrix_2d<GraphicsMath>& rhs) noexcept;
      template <class GraphicsMath>
      bool operator!=(const basic_matrix_2d<GraphicsMath>& lhs,
        const basic_matrix_2d<GraphicsMath>& rhs) noexcept;
    }
  9.2.3 basic_matrix_2d constructors
                                                                             [io2d.matrix2d.cons]
  basic_matrix_2d() noexcept;
1
       Effects: Constructs an object of type basic_matrix_2d.
2
       [ Note: The resulting matrix is the identity matrix. — end note]
3
       Postconditions: data() == GraphicsMath::create_matrix_2d().
  basic_matrix_2d(float m00, float m01, float m10, float m11,
    float m20, float m21) noexcept;
4
       Effects: Constructs an object of type basic matrix 2d.
5
       Postconditions: data() == GraphicsMath::create_matrix_2d(m00, m01, m10, m11, m20, m21).
  basic_matrix_2d(const data_type& v) noexcept;
       Effects: Constructs an object of type basic_matrix_2d.
7
       Postconditions: data() == v.
  9.2.4 basic matrix 2d accessors
                                                                        [io2d.matrix2d.accessors]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
       Returns: A reference to the basic_matrix_2d object's data object (See: 9.2.1).
         basic_matrix_2d static factory functions
                                                                  [io2d.matrix2d.staticfactories]
  static basic_matrix_2d init_translate(basic_point_2d<GraphicsMath> v) noexcept;
       Returns: basic_matrix_2d(GraphicsMath::create_translate(v.data())).
  static basic_matrix_2d init_scale(basic_point_2d<GraphicsMath> v) noexcept;
       Returns: basic_matrix_2d(GraphicsMath::create_scale(v.data()).
  static basic_matrix_2d init_rotate(float radians) noexcept;
3
       Returns: basic_matrix_2d(GraphicsMath::create_rotate(radians)).
  static basic_matrix 2d init_rotate(float radians, basic_point_2d<GraphicsMath> origin) noexcept;
        Returns: basic_matrix_2d(GraphicsMath::create_rotate(radians, origin.data())).
  static basic_matrix_2d init_reflect(float radians) noexcept;
5
       Returns: basic_matrix_2d(GraphicsMath::create_reflect(radians))
  static basic_matrix_2d init_shear_x(float factor) noexcept;
       Returns: basic_matrix_2d(GraphicsMath::create_shear_x(factor)).
```

§ 9.2.5

```
static basic_matrix_2d init_shear_y(float factor) noexcept;
7
        Returns: basic_matrix_2d(GraphicsMath::create_shear_y(factor)).
   9.2.6 basic_matrix_2d modifiers
                                                                         [io2d.matrix2d.modifiers]
   void m00(float v) noexcept;
        Effects: Equivalent to GraphicsMath::m00(data(), v);
   void m01(float v) noexcept;
        Effects: Equivalent to GraphicsMath::m01(data(), v);
   void m10(float v) noexcept;
        Effects: Equivalent to GraphicsMath::m10(data(), v);
   void m11(float v) noexcept;
        Effects: Equivalent to GraphicsMath::m11(data(), v);
   void m20(float v) noexcept;
5
        Effects: Equivalent to GraphicsMath::m20(data(), v);
   void m21(float v) noexcept;
6
        Effects: Equivalent to GraphicsMath::m21(data(), v);
   basic_matrix_2d& translate(basic_point_2d<GraphicsMath> v) noexcept;
        Effects: Equivalent to data() = GraphicsMath::translate(data(), v.data());
        Returns: *this.
   basic_matrix_2d& scale(basic_point_2d<GraphicsMath> v) noexcept;
9
        Effects: Equivalent to data() = GraphicsMath::scale(data(), v.data());
10
        Returns: *this.
   basic_matrix_2d& rotate(float radians) noexcept;
11
        Effects: Equivalent to data() = GraphicsMath::rotate(data(), radians);
12
        Returns: *this.
   basic_matrix_2d& rotate(float radians, basic_point_2d<GraphicsMath> origin) noexcept;
13
        Effects: Equivalent to data() = GraphicsMath::rotate(data(), radians, origin.data());
14
        Returns: *this.
   basic_matrix_2d& reflect(float radians) noexcept;
15
        Effects: Equivalent to data() = GraphicsMath::reflect(data(), radians);
16
         Returns: *this.
   basic_matrix_2d& shear_x(float factor) noexcept;
17
        Effects: Equivalent to data() = GraphicsMath::shear_x(data(), factor);
18
        Returns: *this.
   basic_matrix_2d& shear_y(float factor) noexcept;
19
        Effects: Equivalent to data() = GraphicsMath::shear_y(factor);
20
        Returns: *this.
           basic_matrix_2d observers
                                                                        [io2d.matrix2d.observers]
   float m00() const noexcept;
        Returns: GraphicsMath::m00(data()).
```

§ 9.2.7 78

```
float m01() const noexcept;
2
        Returns: GraphicsMath::m01(data()).
   float m10() const noexcept;
        Returns: GraphicsMath::m10(data()).
   float m11() const noexcept;
        Returns: GraphicsMath::m11(data()).
   float m20() const noexcept;
        Returns: GraphicsMath::m20(data()).
   float m21() const noexcept;
        Returns: GraphicsMath::m21(data()).
   bool is_finite() const noexcept;
7
        Returns: GraphicsMath::is_finite(data()).
   bool is_invertible() const noexcept;
8
        Requires: is_finite() == true.
9
        Returns: GraphicsMath::is_invertible(data()).
   basic_matrix_2d inverse() const noexcept;
10
        Requires: is_invertible() == true.
11
        Returns: basic_matrix_2d(GraphicsMath::inverse(data())).
   float determinant() const noexcept;
12
        Requires: is_finite() == true.
13
        Returns: GraphicsMath::determinant(data()).
   basic_point_2d<GraphicsMath> transform_pt(basic_point_2d<GraphicsMath> pt) const noexcept;
14
        Returns: basic_point_2d<GraphicsMath>(GraphicsMath::transform_pt(data(), pt.data())).
   9.2.8 basic_matrix_2d member operators
                                                                    [io2d.matrix2d.member.ops]
   basic_matrix_2d& operator*=(const basic_matrix_2d& rhs) noexcept;
1
        Effects: Equivalent to data() = GraphicsMath::multiply(data(), rhs.data());
        Returns: *this.
                                                                              [io2d.matrix2d.ops]
          basic_matrix_2d non-member operators
   basic_matrix_2d operator*(const basic_matrix_2d& lhs, const basic_matrix_2d& rhs)
     noexcept;
        Returns: basic_matrix_2d(GraphicsMath::multiply(lhs.data(), rhs.data()).
   basic_point_2d<GraphicsMath> operator*(basic_point_2d<GraphicsMath> v, const basic_matrix_2d& m) noexcept;
2
        Returns: Equivalent to m.transform_pt(v).
   bool operator == (const basic_matrix_2d& lhs, const basic_matrix_2d& rhs) noexcept;
3
        Returns: GraphicsMath::equal(lhs.data(), rhs.data()).
   bool operator!=(const basic_matrix_2d& lhs, const basic_matrix_2d& rhs) noexcept;
        Returns: Equivalent to GraphicsMath::not_equal(lhs.data(), rhs.data()).
```

 $\S 9.2.9$

10 Geometry

[io2d.geometry]

10.1 Class template basic_display_point

[io2d.displaypt]

10.1.1 basic_display_point description

[io2d.displaypt.intro]

- The class template basic_display_point describes an integral point used to describe certain properties of surfaces.
- ² It has an *x coordinate* of type int and a *y coordinate* of type int.
- ³ The data are stored in an object of type typename GraphicsMath::display_point_data_type. It is accessible using the data member functions.

```
10.1.2 basic_display_point synopsis
```

[io2d.displaypt.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsMath>
  class basic_display_point {
  public:
    using data_type = typename GraphicsMath::display_point_data_type;
    // 10.1.3, constructors:
    basic_display_point() noexcept;
    basic_display_point(int x, int y) noexcept;
    basic_display_point(const data_type& val) noexcept;
    // 10.1.4, accessors:
    const data_type& data() const noexcept;
    data_type& data() noexcept;
    // 10.1.5, modifiers:
    void x(int val) noexcept;
    void y(int val) noexcept;
    // 10.1.6, observers:
    int x() const noexcept;
    int y() const noexcept;
  };
  // 10.1.7, operators:
  template <class GraphicsMath>
  bool operator == (const basic_display_point < GraphicsMath > & lhs,
    const basic_display_point<GraphicsMath>& rhs) noexcept;
  template <class GraphicsMath>
  bool operator!=(const basic_display_point<GraphicsMath>& lhs,
    const basic_display_point<GraphicsMath>& rhs) noexcept;
}
```

10.1.3 basic_display_point constructors

[io2d.displaypt.cons]

```
basic_display_point() noexcept;

Effects: Constructs an object of type basic_display_point.

Postconditions: data() == GraphicsMath::create_display_point().

Remarks: The x coordinate is 0 and the y coordinate is 0.

basic_display_point(int x, int y) noexcept;

Effects: Constructs an object of type basic_display_point.

Postconditions: data() == GraphicsMath::create_display_point(x, y).

Remarks: The x coordinate is x and the y coordinate is y.
```

§ 10.1.3

```
basic_display_point(const data_type& val) noexcept;
7
       Effects: Constructs an object of type basic_display_point.
       Postconditions: data() == val.
8
9
       Remarks: The x coordinate is GraphicsMath::x(val) and the y coordinate is GraphicsMath::y(val).
                                                                        [io2d.displaypt.accessors]
           basic_display_point accessors
  const data_type& data() const noexcept;
  data_type& data() noexcept;
       Returns: A reference to the basic_display_point object's data object (See: 10.1.1).
          basic_display_point modifiers
                                                                        [io2d.displaypt.modifiers]
  void x(int v) noexcept;
       Effects: Equivalent to GraphicsMath::x(data(), v);
  void y(int v) noexcept;
       Effects: Equivalent to GraphicsMath::y(data(), v);
  10.1.6 basic_display_point observers
                                                                        [io2d.displaypt.observers]
  int x() const noexcept;
1
       Returns: GraphicsMath::x(data()).
  int y() const noexcept;
       Returns: GraphicsMath::y(data()).
  10.1.7 basic_display_point operators
                                                                               [io2d.displaypt.ops]
  bool operator == (const basic_display_point < Graphics Math > & lhs,
    const basic_display_point<GraphicsMath>& rhs) noexcept;
       Returns: GraphicsMath::equal(lhs.data(), rhs.data()).
  bool operator!=(const basic_display_point<GraphicsMath>& lhs,
    const basic_display_point<GraphicsMath>& rhs) noexcept;
       Returns: GraphicsMath::not_equal(lhs.data(), rhs.data()).
         Class basic bounding box
                                                                             [io2d.bounding_box]
  10.2.1 basic bounding box description
                                                                       [io2d.bounding_box.intro]
<sup>1</sup> The class template basic_bounding_box describes a bounding_box.
<sup>2</sup> It has an x coordinate of type float, a y coordinate of type float, a width of type float, and a height of
  type float.
3 The data are stored in an object of type typename GraphicsMath::bounding_box_data_type. It is accessible
  using the data member functions.
                                                                   [io2d.bounding_box.synopsis]
  10.2.2 basic_bounding_box synopsis
    namespace std::experimental::io2d::v1 {
      template <class GraphicsMath>
      class basic_bounding_box {
      public:
        using data_type = typename GraphicsMath::bounding_box_data_type;
        // 10.2.3, constructors:
        basic_bounding_box() noexcept;
        basic_bounding_box(float x, float y, float width, float height) noexcept;
        basic_bounding_box(const basic_point_2d<GraphicsMath>& tl,
          const basic_point_2d<GraphicsMath>& br) noexcept;
        basic_bounding_box(const data_type& val) noexcept;
```

§ 10.2.2

```
// 10.2.4, accessors:
        const data_type& data() const noexcept;
        data_type& data() noexcept;
        // 10.2.5, modifiers:
        void x(float val) noexcept;
        void y(float val) noexcept;
        void width(float val) noexcept;
        void height(float val) noexcept;
        void top_left(const basic_point_2d<GraphicsMath>& val) noexcept;
        void bottom_right(const basic_point_2d<GraphicsMath>& val) noexcept;
        // 10.2.6, observers:
        float x() const noexcept;
        float y() const noexcept;
        float width() const noexcept;
        float height() const noexcept;
        basic_point_2d<GraphicsMath> top_left() const noexcept;
        basic_point_2d<GraphicsMath> bottom_right() const noexcept;
      // 10.2.7, operators:
      template <class GraphicsMath>
      bool operator == (const basic_bounding_box < Graphics Math > & lhs,
        const basic_bounding_box<GraphicsMath>& rhs) noexcept;
      template <class GraphicsMath>
      bool operator!=(const basic_bounding_box<GraphicsMath>& lhs,
        const basic_bounding_box<GraphicsMath>& rhs) noexcept;
    }
                                                                        [io2d.bounding_box.cons]
  10.2.3 basic_bounding_box constructors
  basic_bounding_box() noexcept;
        Effects: Constructs an object of type basic_bounding_box.
2
        Postconditions: data() == GraphicsMath::create_bounding_box().
  basic_bounding_box(float x, float y, float w, float h) noexcept;
3
        Requires: w is not less than 0.0f and h is not less than 0.0f.
4
        Effects: Constructs an object of type basic bounding box.
        Postconditions: data() == GraphicsMath::create_bounding_box(x, y, w, h).
  basic_bounding_box(const basic_point_2d<GraphicsMath>& tl,
    const basic_point_2d<GraphicsMath>& br) noexcept;
6
        Effects: Constructs an object of type basic_bounding_box.
7
        Postconditions: data() == GraphicsMath::create bounding box(tl.data(), br.data().
  basic_bounding_box(const data_type& val) noexcept;
8
        Effects: Constructs an object of type basic_bounding_box.
        Postconditions: data() == val.
                                                                   [io2d.bounding_box.accessors]
  10.2.4 basic_bounding_box accessors
  const data_type& data() const noexcept;
  data_type& data() noexcept;
        Returns: A reference to the basic_bounding_box object's data object (See: 10.2.1).
                                                                  [io2d.bounding_box.modifiers]
  10.2.5 basic_bounding_box modifiers
  void x(float v) noexcept;
        Effects: Equivalent to GraphicsMath::x(data(), v);
```

§ 10.2.5

```
void y(float v) noexcept;
2
       Effects: Equivalent to GraphicsMath::y(data(), v);
  void width(float v) noexcept;
       Effects: Equivalent to GraphicsMath::width(data(), v);
  void height(float val) noexcept;
4
       Effects: Equivalent to GraphicsMath::height(data(), v);
  void top_left(const basic_point_2d<GraphicsMath>& v) noexcept;
       Effects: Equivalent to GraphicsMath::top_left(data(), v.data());
  void bottom_right(const basic_point_2d<GraphicsMath>& v) noexcept;
       Effects: Equivalent to GraphicsMath::bottom_right(data(), v.data());
  10.2.6 basic_bounding_box observers
                                                                 [io2d.bounding_box.observers]
  float x() const noexcept;
       Returns: GraphicsMath::x(data()).
  float y() const noexcept;
       Returns: GraphicsMath::y(data()).
  float width() const noexcept;
       Returns: GraphicsMath::width(data()).
  float height() const noexcept;
4
       Returns: GraphicsMath::height(data()).
  basic_point_2d<GraphicsMath> top_left() const noexcept;
5
       Returns: basic_point_2d<GraphicsMath>(GraphicsMath::top_left(data())).
  basic_point_2d<GraphicsMath> bottom_right() const noexcept;
6
       Returns: basic_point_2d<GraphicsMath>(GraphicsMath::bottom_right(data())).
                                                                        [io2d.bounding_box.ops]
  10.2.7 basic_bounding_box operators
  bool operator == (const basic_bounding_box < Graphics Math > & lhs,
    const basic_bounding_box<GraphicsMath>& rhs) noexcept;
1
       Returns: GraphicsMath::equal(lhs.data(), rhs.data()).
  bool operator!=(const basic_bounding_box<GraphicsMath>& lhs,
    const basic_bounding_box<GraphicsMath>& rhs) noexcept;
       Returns: GraphicsMath::not_equal(lhs.data(), rhs.data()).
                                                                                       [io2d.circle]
  10.3 Class basic_circle
                                                                                 [io2d.circle.intro]
  10.3.1 basic_circle description
<sup>1</sup> The class template basic circle describes a circle.
<sup>2</sup> It has a center of type basic_point_2d<GraphicsMath> and a radius of type float.
3 The data are stored in an object of type typename GraphicsMath::circle_data_type. It is accessible
  using the data member functions.
  10.3.2 basic_circle synopsis
                                                                             [io2d.circle.synopsis]
    namespace std::experimental::io2d::v1 {
      template <class GraphicsMath>
      class basic_circle {
      public:
        using data_type = typename GraphicsMath::circle_data_type;
```

§ 10.3.2

```
// 10.3.3, constructors:
        basic_circle() noexcept;
        basic_circle(const basic_point_2d<GraphicsMath>& ctr, float rad) noexcept;
        basic_circle(const typename GraphicsMath::circle_data_type& val) noexcept;
        // 10.3.4, accessors:
        const data_type& data() const noexcept;
        data_type& data() noexcept;
        // 10.3.5, modifiers:
        void center(const basic_point_2d<GraphicsMath>& ctr) noexcept;
        void radius(float r) noexcept;
        // 10.3.6, observers:
        basic_point_2d<GraphicsMath> center() const noexcept;
        float radius() const noexcept;
      };
      // 10.3.7, operators:
      template <class GraphicsMath>
      bool operator==(const basic_circle<GraphicsMath>& lhs,
        const basic_circle<GraphicsMath>& rhs) noexcept;
      template <class GraphicsMath>
      bool operator!=(const basic_circle<GraphicsMath>& lhs,
        const basic_circle<GraphicsMath>& rhs) noexcept;
    }
  10.3.3
           basic_circle constructors
                                                                                   [io2d.circle.cons]
  basic_circle() noexcept;
1
        Effects: Constructs an object of type basic_circle.
2
        Postconditions: data() == GraphicsMath::create_circle().
  basic_circle(const basic_point_2d<GraphicsMath>& ctr, float r) noexcept;
        Requires: r >= 0.0f.
3
        Effects: Constructs an object of type basic_circle.
        Postconditions: data() == GraphicsMath::create_circle(ctr, r).
                                                                             [io2d.circle.accessors]
  10.3.4 basic_circle accessors
  const data_type& data() const noexcept;
  data_type& data() noexcept;
        Returns: A reference to the basic_circle object's data object (See: 10.3.1).
  10.3.5 basic_circle modifiers
                                                                             [io2d.circle.modifiers]
  void center(const basic_point_2d<GraphicsMath>& ctr) noexcept;
       Effects: Equivalent to GraphicsMath::center(data(), ctr.data());
  void radius(float r) noexcept;
        Requires: r >= 0.0f.
        Effects: Equivalent to GraphicsMath::radius(data(), r);
                                                                             [io2d.circle.observers]
  10.3.6 basic_circle observers
  basic_point_2d<GraphicsMath> center() const noexcept;
        Returns: (basic_point_2d<GraphicsMath>(GraphicsMath::center(data())).
  float radius() const noexcept;
        Returns: GraphicsMath::radius(data()).
```

§ 10.3.6

10.3.7 basic_circle operators

 $[{\bf io2d.circle.ops}]$

§ 10.3.7

11 Text rendering and display [io2d.text]

¹ [Note: Text rendering and matters related to it, such as font support, will be added at a later date. This section is a placeholder. The integration of text rendering is expected to result in the addition of member functions to the surface class templates and changes to other parts of the text. — end note]

12 Paths

[io2d.paths]

12.1 Overview of paths

[io2d.paths.overview]

- ¹ Paths define geometric objects which can be stroked (Table 33), filled, and used to define a clip area (See: 14.11.1.
- 2 A path contains zero or more figures.
- ³ A figure is composed of at least one segment.
- ⁴ A figure may contain degenerate segments. When a path is interpreted (12.3.16), degenerate segments are removed from figures. [Note: If a path command exists or is inserted between segments, it's possible that points which might have compared equal will no longer compare equal as a result of interpretation (12.3.16). end note]
- ⁵ Paths provide vector graphics functionality. As such they are particularly useful in situations where an application is intended to run on a variety of platforms whose output devices (??) span a large gamut of sizes, both in terms of measurement units and in terms of a horizontal and vertical pixel count, in that order.
- 6 A basic_interpreted_path object is an immutable resource wrapper containing a path (12.4). A basic_interpreted_path object is created by interpreting the path contained in a basic_path_builder object. It can also be default constructed, in which case the basic_interpreted_path object contains no figures. [Note: basic_interpreted_path objects provide significant optimization opportunities for implementations. Because they are immutable and opaque, they are intended to be used to store a path in the most efficient representation available. —end note]

12.2 Path examples (Informative)

[io2d.paths.example]

12.2.1 Overview

[io2d.paths.example.intro]

- ¹ Paths are composed of zero or more figures. The following examples show the basics of how paths work in practice.
- ² Every example is placed within the following code at the indicated spot. This code is shown here once to avoid repetition:

```
#include <experimental/io2d>
using namespace std;
using namespace std::experimental::io2d;

int main() {
    auto imgSfc = make_image_surface(format::argb32, 300, 200);
    brush backBrush{ rgba_color::black };
    brush foreBrush{ rgba_color::white };
    render_props aliased{ antialias::none };
    path_builder pb{};
    imgSfc.paint(backBrush);

// Example code goes here.

// Example code ends.

imgSfc.save(filesystem::path("example.png"), image_file_format::png);
    return 0;
}
```

12.2.2 Example 1

[io2d.paths.examples.one]

¹ Example 1 consists of a single figure, forming a trapezoid:

```
pb.new_figure({ 80.0f, 20.0f }); // Begins the figure.
pb.line({ 220.0f, 20.0f }); // Creates a line from the [80, 20] to [220, 20].
pb.rel_line({ 60.0f, 160.0f }); // Line from [220, 20] to
```

```
// [220 + 60, 160 + 20]. The "to" point is relative to the starting point. pb.rel_line({ -260.0f, 0.0f }); // Line from [280, 180] to // [280 - 260, 180 + 0]. pb.close_figure(); // Creates a line from [20, 180] to [80, 20] // (the new figure point), which makes this a closed figure. imgSfc.stroke(foreBrush, pb, nullopt, nullopt, nullopt, aliased);
```


Figure 1 — Example 1 result

12.2.3 Example 2

[io2d.paths.examples.two]

¹ Example 2 consists of two figures. The first is a rectangular open figure (on the left) and the second is a rectangular closed figure (on the right):

Figure 2 — Example 2 result

- The resulting image from example 2 shows the difference between an open figure and a closed figure. Each figure begins and ends at the same point. The difference is that with the closed figure, that the rendering of the point where the initial segment and final segment meet is controlled by the line_join value in the stroke_props class, which in this case is the default value of line_join::miter. In the open figure, the rendering of that point receives no special treatment such that each segment at that point is rendered using the line_cap value in the stroke_props class, which in this case is the default value of line_cap::none.
- ³ That difference between rendering as a line_join versus rendering as two line_caps is what causes the notch to appear in the open segment. Segments are rendered such that half of the stroke width is rendered on each side of the point being evaluated. With no line cap, each segment begins and ends exactly at the point specified.
- 4 So for the open figure, the first line begins at point_2d{ 20.0f, 20.0f} and the last line ends there. Given the stroke width of 10.0f, the visible result for the first line is a rectangle with an upper left corner of point_2d{ 20.0f, 15.0f} and a lower right corner of point_2d{ 120.0f, 25.0f}. The last line appears as a rectangle with an upper left corner of point_2d{ 15.0f, 20.0f} and a lower right corner of point_2d{ 25.0f, 180.0f}. This produces the appearance of a square gap between point_2d{ 15.0f, 15.0f} and point_2d{20.0f, 20.0f}.
- For the closed figure, adjusting for the coordinate differences, the rendering facts are the same as for the open figure except for one key difference: the point where the first line and last line meet is rendered as a line join rather than two line caps, which, given the default value of line_join::miter, produces a miter, adding that square area to the rendering result.

12.2.4 Example 3

[io2d.paths.examples.three]

¹ Example 3 demonstrates open and closed figures each containing either a quadratic curve or a cubic curve.

Figure 3 — Path example 3

² [Note: pb.quadratic_curve({ 80.0f, 140.0f }, { 140.0f, 20.0f }); would be the absolute equivalent of the first curve in example 3. — end note]

12.2.5 Example 4

[io2d.paths.examples.four]

- ¹ Example 4 shows how to draw "C++" using figures.
- ² For the "C", it is created using an arc. A scaling matrix is used to make it slightly elliptical. It is also desirable that the arc has a fixed center point, point_2d{ 85.0f, 100.0f }. The inverse of the scaling matrix is used in combination with the point_for_angle function to determine the point at which the arc should begin in order to get achieve this fixed center point. The "C" is then stroked.
- ³ Unlike the "C", which is created using an open figure that is stroked, each "+" is created using a closed figure that is filled. To avoid filling the "C", pb.clear(); is called to empty the container. The first "+" is created using a series of lines and is then filled.
- ⁴ Taking advantage of the fact that path_builder is a container, rather than create a brand new figure for the second "+", a translation matrix is applied by inserting a figure_items::change_matrix figure item before the figure_items::new_figure object in the existing plus, reverting back to the old matrix immediately after the and then filling it again.

```
// Create the "C".
const matrix_2d scl = matrix_2d::init_scale({ 0.9f, 1.1f });
auto pt = scl.inverse().transform_pt({ 85.0f, 100.0f }) +
  point_for_angle(half_pi<float> / 2.0f, 50.0f);
pb.matrix(scl);
pb.new_figure(pt);
pb.arc({ 50.0f, 50.0f }, three_pi_over_two<float>, half_pi<float> / 2.0f);
imgSfc.stroke(foreBrush, pb, nullopt, stroke_props{ 10.0f });
// Create the first "+".
pb.clear();
pb.new_figure({ 130.0f, 105.0f });
pb.rel_line({ 0.0f, -10.0f });
pb.rel_line({ 25.0f, 0.0f });
pb.rel_line({ 0.0f, -25.0f });
pb.rel_line({ 10.0f, 0.0f });
pb.rel_line({ 0.0f, 25.0f });
pb.rel_line({ 25.0f, 0.0f });
pb.rel_line({ 0.0f, 10.0f });
pb.rel_line({ -25.0f, 0.0f });
pb.rel_line({ 0.0f, 25.0f });
pb.rel_line({ -10.0f, 0.0f });
pb.rel_line({ 0.0f, -25.0f });
```

```
pb.close_figure();
imgSfc.fill(foreBrush, pb);
// Create the second "+".
pb.insert(pb.begin(), figure_items::change_matrix(
    matrix_2d::init_translate({ 80.0f, 0.0f })));
imgSfc.fill(foreBrush, pb);
```


Figure 4 — Path example 4

12.3 Class template basic_figure_items

[io2d.paths.figureitems]

12.3.1 Introduction

[io2d.paths.figureitems.intro]

- ¹ The nested classes within the class template basic_figure_items describe figure items.
- ² A figure begins with an abs_new_figure or rel_new_figure object. A figure ends when:
- (2.1) a close_figure object is encountered;
- (2.2) a abs_new_figure or rel_new_figure object is encountered; or
- (2.3) there are no more figure items in the path.
 - The basic_path_builder class is a sequential container that contains a path. It provides a simple interface for building a path. A path can also be created using any container that stores basic_figure_items<GraphicsSurfaces>::figure_item objects.

12.3.2 Synopsis

[io2d.paths.figureitems.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsSurfaces>
  class basic_figure_items {
  public:
    class abs_new_figure;
    class rel_new_figure;
    class close_figure;
    class abs_matrix;
    class rel_matrix;
    class revert_matrix;
    class abs_cubic_curve;
    class rel_cubic_curve;
    class abs_line;
    class rel_line;
    class abs_quadratic_curve;
    class rel_quadratic_curve;
    class arc;
```

§ 12.3.2

```
using figure_item = variant<abs_new_figure, rel_new_figure,
    close_figure, abs_matrix, rel_matrix, revert_matrix, abs_cubic_curve,
    rel_cubic_curve, abs_line, rel_line, abs_quadratic_curve,
    rel_quadratic_curve, arc>;
};
```

Class template basic_figure_items<GraphicsSurfaces>::abs_new_figure [io2d.absnewfigure]

12.3.3.1 Overview

[io2d.absnewfigure.intro]

- 1 The class template basic_figure_items<GraphicsSurfaces>::abs_new_figure describes a figure item that is a new figure command.
- It has an at point of type basic_point_2d<GraphicsSurfaces::graphics_math_type>.
- 3 The data are stored in an object of type typename GraphicsSurfaces::paths::abs_new_figure_data_type. It is accessible using the data member functions.

12.3.3.2 Synopsis

[io2d.absnewfigure.synopsis]

```
namespace std::experimental::io2d::v1 {
    template <class GraphicsSurfaces>
    class basic_figure_items<GraphicsSurfaces>::abs_new_figure {
      using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
        typename GraphicsSurfaces::paths::abs_new_figure_data_type;
      // 12.3.3.3, construct:
      abs_new_figure();
      explicit abs_new_figure(const basic_point_2d<graphics_math_type>& pt);
      abs_new_figure(const abs_new_figure& other) = default;
      abs_new_figure(abs_new_figure&& other) noexcept = default;
      // assign:
      abs_new_figure& operator=(const abs_new_figure& other) = default;
      abs_new_figure& operator=(abs_new_figure&& other) noexcept = default;
      // 12.3.3.4, accessors:
      const data_type& data() const noexcept;
      data_type& data() noexcept;
      // 12.3.3.5, modifiers:
      void at(const basic_point_2d<graphics_math_type>& pt) noexcept;
      // 12.3.3.6, observers:
      basic_point_2d<graphics_math_type> at() const noexcept;
   };
    // 12.3.3.7, equality operators:
    template <class GraphicsSurfaces>
   bool operator==(
      const typename basic_figure_items<GraphicsSurfaces>::abs_new_figure& lhs,
      const typename basic_figure_items<GraphicsSurfaces>::abs_new_figure& rhs)
      noexcept;
    template <class GraphicsSurfaces>
   bool operator!=(
      const typename basic_figure_items<GraphicsSurfaces>::abs_new_figure& lhs,
      const typename basic_figure_items<GraphicsSurfaces>::abs_new_figure& rhs)
      noexcept;
 }
12.3.3.3 Constructors
                                                                            [io2d.absnewfigure.ctor]
```

abs_new_figure();

Effects: Constructs an object of type abs_new_figure.

§ 12.3.3.3 92

```
2
       Postconditions: data() == GraphicsSurfaces::paths::create_abs_new_figure().
3
       Remarks: The at point is basic_point_2d<graphics_math_type>().
  explicit abs_new_figure(const basic_point_2d<graphics_math_type>& pt);
       Effects: Constructs an object of type abs_new_figure.
5
       Postconditions: data() == GraphicsSurfaces::paths::create_abs_new_figure(pt).
6
       Remarks: The at point is pt.
  12.3.3.4 Accessors
                                                                             [io2d.absnewfigure.acc]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
1
       Returns: A reference to the abs_new_figure object's data object (See: 12.3.3.1).
  12.3.3.5 Modifiers
                                                                           [io2d.absnewfigure.mod]
  void at(const basic_point_2d<graphics_math_type>& pt) noexcept;
       Effects: Calls GraphicsSurfaces::paths::at(data(), pt).
       Remarks: The at point is pt.
  12.3.3.6 Observers
                                                                             [io2d.absnewfigure.obs]
  basic_point_2d<graphics_math_type> at() const noexcept;
       Returns: GraphicsSurfaces::paths::at(data()).
       Remarks: The returned value is the at point.
  12.3.3.7 Equality operators
                                                                              [io2d.absnewfigure.eq]
  template <class GraphicsSurfaces>
  bool operator == (
    const typename basic_figure_items<GraphicsSurfaces>::abs_new_figure& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::abs_new_figure& rhs)
    noexcept;
       Returns: GraphicsSurfaces::paths::equal(lhs, rhs).
  template <class GraphicsSurfaces>
  bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::abs_new_figure& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::abs_new_figure& rhs)
       Returns: GraphicsSurfaces::paths::not_equal(lhs, rhs).
           Class template basic_figure_items<GraphicsSurfaces>::rel_new_figure
  12.3.4
            [io2d.relnewfigure]
  12.3.4.1 Overview
                                                                            [io2d.relnewfigure.intro]
<sup>1</sup> The class template basic_figure_items<GraphicsSurfaces>::rel_new_figure describes a figure item
  that is a new figure command.
It has an at point of type basic_point_2d<GraphicsSurfaces::graphics_math_type>.
3 The data are stored in an object of type typename GraphicsSurfaces::paths::rel_new_figure_data_-
  type. It is accessible using the data member functions.
                                                                        [io2d.relnewfigure.synopsis]
  12.3.4.2 Synopsis
    namespace std::experimental::io2d::v1 {
      template <class GraphicsSurfaces>
      class basic_figure_items<GraphicsSurfaces>::rel_new_figure {
      public:
        using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
        using data_type =
          typename GraphicsSurfaces::paths::rel_new_figure_data_type;
```

§ 12.3.4.2

```
// 12.3.4.3, construct:
        rel_new_figure();
        explicit rel_new_figure(const basic_point_2d<graphics_math_type>& pt);
        rel_new_figure(const rel_new_figure& other) = default;
        rel_new_figure(rel_new_figure&& other) noexcept = default;
        // assign:
        rel_new_figure& operator=(const rel_new_figure& other) = default;
        rel_new_figure& operator=(rel_new_figure&& other) noexcept = default;
        // 12.3.4.4, accessors:
        const data_type& data() const noexcept;
        data_type& data() noexcept;
        // 12.3.4.5, modifiers:
        void at(const basic_point_2d<graphics_math_type>& pt) noexcept;
        // 12.3.4.6, observers:
        basic_point_2d<graphics_math_type> at() const noexcept;
      // 12.3.4.7, equality operators:
      template <class GraphicsSurfaces>
      bool operator==(
        const typename basic_figure_items<GraphicsSurfaces>::rel_new_figure& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::rel_new_figure& rhs)
        noexcept;
      template <class GraphicsSurfaces>
      bool operator!=(
        const typename basic_figure_items<GraphicsSurfaces>::rel_new_figure& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::rel_new_figure& rhs)
    }
  12.3.4.3 Constructors
                                                                               [io2d.relnewfigure.ctor]
  rel_new_figure() noexcept;
        Effects: Constructs an object of type rel_new_figure.
        Postconditions: data() == GraphicsSurfaces::paths::create rel new figure().
3
        Remarks: The at point is basic_point_2d<graphics_math_type>().
  explicit rel_new_figure(const basic_point_2d<typename
    GraphicsSurfaces::graphics_math_type>& pt) noexcept;
4
        Effects: Constructs an object of type rel_new_figure.
5
        Postconditions: data() == GraphicsSurfaces::paths::create_rel_new_figure(pt).
6
        Remarks: The at point is pt.
  12.3.4.4 Accessors
                                                                                [io2d.relnewfigure.acc]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
        Returns: A reference to the rel_new_figure object's data object (See: 12.3.4.1).
  12.3.4.5 Modifiers
                                                                              [io2d.relnewfigure.mod]
  void at(const basic_point_2d<graphics_math_type>& pt) noexcept;
1
        Effects: Calls GraphicsSurfaces::paths::at(data(), pt).
        Remarks: The at point is pt.
```

§ 12.3.4.5

```
12.3.4.6 Observers [io2d.relnewfigure.obs]
basic_point_2d<graphics_math_type> at() const noexcept;
Returns: GraphicsSurfaces::paths::at(data()).
Remarks: The returned value is the at point.
```

[io2d.relnewfigure.eq]

```
template <class GraphicsSurfaces>
bool operator==(
  const typename basic_figure_items<GraphicsSurfaces>::rel_new_figure& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::rel_new_figure& rhs)
  noexcept;
    Returns: GraphicsSurfaces::paths::equal(lhs, rhs).

template <class GraphicsSurfaces>
bool operator!=(
  const typename basic_figure_items<GraphicsSurfaces>::rel_new_figure& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::rel_new_figure& rhs)
  noexcept;
```

Returns: GraphicsSurfaces::paths::not_equal(lhs, rhs).

12.3.5 Class template basic_figure_items<GraphicsSurfaces>::close_figure [io2d.closefigure]

12.3.5.1 Overview

12.3.4.7 Equality operators

1

2

[io2d.closefigure.intro]

The class template basic_figure_items<GraphicsSurfaces>::close_figure describes a figure item that is a close figure command.

12.3.5.2 Synopsis

[io2d.closefigure.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsSurfaces>
  class basic_figure_items<GraphicsSurfaces>::close_figure {
 public:
    // construct:
    close_figure() = default;
    close_figure(const close_figure& other) = default;
    close_figure(close_figure&& other) noexcept = default;
    // assign:
    close_figure& operator=(const close_figure& other) = default;
    close_figure& operator=(close_figure&& other) noexcept = default;
 };
  // 12.3.5.3, equality operators:
 template <class GraphicsSurfaces>
 bool operator==(
    const typename basic_figure_items<GraphicsSurfaces>::close_figure& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::close_figure& rhs)
    noexcept;
  template <class GraphicsSurfaces>
 bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::close_figure& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::close_figure& rhs)
    noexcept;
}
```

12.3.5.3 Equality operators

[io2d.closefigure.eq]

```
template <class GraphicsSurfaces>
bool operator==(
  const typename basic_figure_items<GraphicsSurfaces>::close_figure& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::close_figure& rhs)
```

§ 12.3.5.3

```
noexcept;

Returns: true.

template <class GraphicsSurfaces>
bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::close_figure& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::close_figure& rhs)
    noexcept;

Returns: false.
```

12.3.6 Class template basic_figure_items<GraphicsSurfaces>::abs_matrix [io2d.absmatrix]

12.3.6.1 Overview

[io2d.absmatrix.intro]

- The class template basic_figure_items<GraphicsSurfaces>::abs_matrix describes a figure item that is a path command.
- It has a transform matrix of type basic_matrix_2d<GraphicsSurfaces::graphics_math_type>.
- ³ The data are stored in an object of type typename GraphicsSurfaces::paths::abs_matrix_data_type. It is accessible using the data member functions.

12.3.6.2 Synopsis

[io2d.absmatrix.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsSurfaces>
 class basic_figure_items<GraphicsSurfaces>::abs_matrix {
 public:
    using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
    using data_type =
      typename GraphicsSurfaces::paths::abs_matrix_data_type;
    // 12.3.6.3, construct:
    abs_matrix();
    explicit abs_matrix(const basic_matrix_2d<graphics_math_type>& m) noexcept;
    abs_matrix(const abs_matrix& other) = default;
    abs_matrix(abs_matrix&& other) noexcept = default;
    // assign:
    abs_matrix& operator=(const abs_matrix& other) = default;
    abs_matrix& operator=(abs_matrix&& other) noexcept = default;
    // 12.3.6.4, accessors:
    const data_type& data() const noexcept;
    data_type& data() noexcept;
    // 12.3.6.5, modifiers:
    void matrix(const basic_matrix_2d<graphics_math_type>& m) noexcept;
    // 12.3.6.6, observers:
    basic_matrix_2d<graphics_math_type> matrix() const noexcept;
 };
 // 12.3.6.7, equality operators:
  template <class GraphicsSurfaces>
 bool operator==(
    const typename basic_figure_items<GraphicsSurfaces>::abs_matrix& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::abs_matrix& rhs)
    noexcept;
  template <class GraphicsSurfaces>
 bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::abs_matrix& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::abs_matrix& rhs)
    noexcept;
}
```

§ 12.3.6.2

```
12.3.6.3 Constructors
                                                                               [io2d.absmatrix.ctor]
  abs_matrix() noexcept;
1
       Effects: Constructs an abs_matrix object.
2
       Postconditions: data() == GraphicsSurfaces::paths::create_abs_matrix().
3
       Remarks: The transform matrix is basic_matrix_2d<graphics_math_type().
  explicit abs_matrix(const basic_matrix_2d<graphics_math_type>& m) noexcept;
       Requires: m.is_invertible() is true.
5
       Effects: Constructs an abs_matrix object.
6
       Postconditions: data() == GraphicsSurfaces::paths::create_abs_matrix(m).
       Remarks: The transform matrix is m.
  12.3.6.4 Accessors
                                                                                [io2d.absmatrix.acc]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
       Returns: A reference to the abs_matrix object's data object (See: 12.3.6.1).
  12.3.6.5 Modifiers
                                                                               [io2d.absmatrix.mod]
  void matrix(const basic_matrix_2d<tgraphics_math_type>& m) noexcept;
       Requires: m.is_invertible() is true.
2
       Effects: The transform matrix is m.
  12.3.6.6 Observers
                                                                                [io2d.absmatrix.obs]
  basic_matrix_2d<typename GraphicsSurfaces::graphics_math_type> matrix() const noexcept;
       Returns: The transform matrix.
  12.3.6.7 Equality operators
                                                                                 [io2d.absmatrix.eq]
  template <class GraphicsSurfaces>
  bool operator==(
    const typename basic_figure_items<GraphicsSurfaces>::abs_matrix& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::abs_matrix& rhs)
       Returns: lhs.matrix() == rhs.matrix().
  template <class GraphicsSurfaces>
  bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::abs_matrix& lhs,
    const typename basic figure items<GraphicsSurfaces>::abs matrix& rhs)
    noexcept;
       Returns: lhs.matrix() != rhs.matrix().
  12.3.7
           Class template basic_figure_items<GraphicsSurfaces>::rel_matrix
            [io2d.relmatrix]
  12.3.7.1 Overview
                                                                               [io2d.relmatrix.intro]
<sup>1</sup> The class template basic_figure_items<GraphicsSurfaces>::rel_matrix describes a figure item that is
  a path command.
 It has a transform matrix of type basic_matrix_2d<GraphicsSurfaces::graphics_math_type>.
 The data are stored in an object of type typename GraphicsSurfaces::paths::rel_matrix_data_type.
```

§ 12.3.7.1

It is accessible using the data member functions.

[io2d.relmatrix.synopsis]

```
namespace std::experimental::io2d::v1 {
      template <class GraphicsSurfaces>
      class basic_figure_items<GraphicsSurfaces>::rel_matrix {
        using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
        using data_type =
          typename GraphicsSurfaces::paths::rel_matrix_data_type;
        // 12.3.7.3, construct:
        rel_matrix();
        explicit rel_matrix(const basic_matrix_2d<graphics_math_type>& m) noexcept;
        rel_matrix(const rel_matrix& other) = default;
        rel_matrix(rel_matrix&& other) noexcept = default;
        // assign:
        rel_matrix& operator=(const rel_matrix& other) = default;
        rel_matrix& operator=(rel_matrix&& other) noexcept = default;
        // 12.3.7.4, accessors:
        const data_type& data() const noexcept;
        data_type& data() noexcept;
        // 12.3.7.5, modifiers:
        void matrix(const basic_matrix_2d<graphics_math_type>& m) noexcept;
        // 12.3.7.6, observers:
        basic_matrix_2d<graphics_math_type> matrix() const noexcept;
      };
      // 12.3.7.7, equality operators:
      template <class GraphicsSurfaces>
      bool operator==(
        const typename basic_figure_items<GraphicsSurfaces>::rel_matrix& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::rel_matrix& rhs)
        noexcept;
      template <class GraphicsSurfaces>
      bool operator!=(
        const typename basic_figure_items<GraphicsSurfaces>::rel_matrix& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::rel_matrix& rhs)
        noexcept;
  12.3.7.3 Constructors
                                                                                  [io2d.relmatrix.ctor]
  rel_matrix() noexcept;
1
        Effects: Equivalent to: rel matrix{ basic matrix 2d() };
        Postconditions: data() == GraphicsSurfaces::paths::create_rel_matrix().
  explicit rel_matrix(const basic_matrix_2d<graphics_math_type>& m) noexcept;
3
        Requires: m.is_invertible() is true.
4
        Effects: Constructs an object of type rel matrix.
        Remarks: The transform matrix is m.
  12.3.7.4 Accessors
                                                                                   [io2d.relmatrix.acc]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
        Returns: A reference to the rel_matrix object's data object (See: 12.3.7.1).
```

12.3.7.2 Synopsis

§ 12.3.7.4

```
12.3.7.5 Modifiers
                                                                                [io2d.relmatrix.mod]
  void matrix(const basic_matrix_2d<tgraphics_math_type>& m) noexcept;
       Requires: m.is_invertible() is true.
       Effects: The transform matrix is m.
  12.3.7.6 Observers
                                                                                 [io2d.relmatrix.obs]
  basic_matrix_2d<typename GraphicsSurfaces::graphics_math_type> matrix() const noexcept;
       Returns: The transform matrix.
  12.3.7.7 Equality operators
                                                                                  [io2d.relmatrix.eq]
  template <class GraphicsSurfaces>
  bool operator==(
    const typename basic_figure_items<GraphicsSurfaces>::rel_matrix& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::rel_matrix& rhs)
    noexcept;
1
       Returns: lhs.matrix() == rhs.matrix().
  template <class GraphicsSurfaces>
  bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::rel_matrix& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::rel_matrix& rhs)
    noexcept;
       Returns: lhs.matrix() != rhs.matrix().
           Class template basic_figure_items<GraphicsSurfaces>::revert_matrix
            [io2d.revertmatrix]
           Overview
  12.3.8.1
                                                                            [io2d.revertmatrix.intro]
  The class template basic_figure_items<GraphicsSurfaces>::revert_matrix describes a figure item
  that is a path command.
  12.3.8.2 Synopsis
                                                                        [io2d.revertmatrix.synopsis]
    namespace std::experimental::io2d::v1 {
      template <class GraphicsSurfaces>
      class basic_figure_items<GraphicsSurfaces>::revert_matrix {
      public:
        // construct:
        revert_matrix() = default;
        revert_matrix(const revert_matrix& other) = default;
        revert_matrix(revert_matrix&& other) noexcept = default;
        revert_matrix& operator=(const revert_matrix& other) = default;
        revert_matrix& operator=(revert_matrix&& other) noexcept = default;
      };
      // 12.3.8.3, equality operators:
      template <class GraphicsSurfaces>
      bool operator==(
        const typename basic_figure_items<GraphicsSurfaces>::revert_matrix& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::revert_matrix& rhs)
        noexcept;
      template <class GraphicsSurfaces>
      bool operator!=(
        const typename basic_figure_items<GraphicsSurfaces>::revert_matrix& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::revert_matrix& rhs)
        noexcept;
    }
```

§ 12.3.8.2

12.3.8.3 Equality operators

[io2d.revertmatrix.eq]

```
template <class GraphicsSurfaces>
bool operator==(
    const typename basic_figure_items<GraphicsSurfaces>::revert_matrix& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::revert_matrix& rhs)
    noexcept;

Returns: true.

template <class GraphicsSurfaces>
bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::revert_matrix& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::revert_matrix& rhs)
    noexcept;

Returns: false.
```

12.3.9 Class template basic_figure_items<GraphicsSurfaces>::abs_cubic_curve [io2d.abscubiccurve]

12.3.9.1 Overview

[io2d.abscubiccurve.intro]

- The class basic_figure_items<GraphicsSurfaces>::abs_cubic_curve describes a figure item that is a segment.
- It has a first control point of type basic_point_2d<GraphicsSurfaces::graphics_math_type>, a second control point of type basic_point_2d<GraphicsSurfaces::graphics_math_type>, and an end point of type basic_point_2d<GraphicsSurfaces::graphics_math_type>.
- The data are stored in an object of type typename GraphicsSurfaces::paths::abs_cubic_curve_data_type. It is accessible using the data member functions.

12.3.9.2 Synopsis

[io2d.abscubiccurve.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsSurfaces>
 class basic_figure_items<GraphicsSurfaces>::abs_cubic_curve {
 public:
    using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
    using data_type =
      typename GraphicsSurfaces::paths::abs_cubic_curve_data_type;
    // 12.3.9.3, construct:
    abs_cubic_curve();
    abs_cubic_curve(const basic_point_2d<graphics_math_type>& cpt1,
       const basic_point_2d<graphics_math_type>& cpt2,
       const basic_point_2d<graphics_math_type>& ept) noexcept;
    abs_cubic_curve(const abs_cubic_curve& other) = default;
    abs_cubic_curve(abs_cubic_curve&& other) noexcept = default;
    // assign:
    abs_cubic_curve& operator=(const abs_cubic_curve& other) = default;
    abs_cubic_curve& operator=(abs_cubic_curve&& other) noexcept = default;
    // 12.3.9.4, accessors:
    const data_type& data() const noexcept;
    data_type& data() noexcept;
    // 12.3.9.5, modifiers:
    void control_pt1(const basic_point_2d<graphics_math_type>& cpt) noexcept;
    void control_pt2(const basic_point_2d<graphics_math_type>& cpt) noexcept;
    void end_pt(const basic_point_2d<graphics_math_type>& ept) noexcept;
    // 12.3.9.6, observers:
    basic_point_2d<graphics_math_type> control_pt1() const noexcept;
    basic_point_2d<graphics_math_type> control_pt2() const noexcept;
    basic_point_2d<graphics_math_type> end_pt() const noexcept;
```

§ 12.3.9.2

```
};
      // 12.3.9.7, equality operators:
      template <class GraphicsSurfaces>
      bool operator==(
        const typename basic_figure_items<GraphicsSurfaces>::abs_cubic_curve& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::abs_cubic_curve& rhs)
        noexcept:
      template <class GraphicsSurfaces>
      bool operator!=(
        const typename basic_figure_items<GraphicsSurfaces>::abs_cubic_curve& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::abs_cubic_curve& rhs)
        noexcept;
    }
  12.3.9.3 Constructors
                                                                             [io2d.abscubiccurve.ctor]
  abs_cubic_curve() noexcept;
1
        Effects: Equivalent to abs_cubic_curve{ basic_point_2d(), basic_point_2d(), basic_point_-
        2d() }.
  abs_cubic_curve(const basic_point_2d<typename GraphicsSurfaces::graphics_math_type>& cpt1,
    const basic_point_2d<typename GraphicsSurfaces::graphics_math_type>& cpt2,
    const basic_point_2d<typename GraphicsSurfaces::graphics_math_type>& ept) noexcept;
2
        Effects: Constructs an object of type abs_cubic_curve.
3
        Remarks: The first control point is cpt1.
        Remarks: The second control point is cpt2.
        Remarks: The end point is ept.
  12.3.9.4 Accessors
                                                                              [io2d.abscubiccurve.acc]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
        Returns: A reference to the rel matrix object's data object (See: 12.3.9.1).
  12.3.9.5 Modifiers
                                                                             [io2d.abscubiccurve.mod]
  void control_pt1(const basic_point_2d<typename</pre>
    GraphicsSurfaces::graphics_math_type>& cpt) noexcept;
1
        Effects: The first control point is cpt.
  void control_pt2(const basic_point_2d<typename</pre>
    GraphicsSurfaces::graphics_math_type>& cpt) noexcept;
        Effects: The second control point is cpt.
  void end_pt(const basic_point_2d<typename GraphicsSurfaces::graphics_math_type>& ept) noexcept;
3
        Effects: The end point is ept.
  12.3.9.6 Observers
                                                                              [io2d.abscubiccurve.obs]
  basic_point_2d<graphics_math_type> control_pt1() const noexcept;
1
        Returns: The first control point.
  basic_point_2d<graphics_math_type> control_pt2() const noexcept;
        Returns: The second control point.
  basic_point_2d<graphics_math_type> end_pt() const noexcept;
        Returns: The end point.
```

§ 12.3.9.6

12.3.9.7 Equality operators

[io2d.abscubiccurve.eq]

```
template <class GraphicsSurfaces>
bool operator==(
    const typename basic_figure_items<GraphicsSurfaces>::abs_cubic_curve& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::abs_cubic_curve& rhs)
    noexcept;

Returns: lhs.control_pt1() == rhs.control_pt1() && lhs.control_pt2() == rhs.control_pt2()
    && lhs.end_pt() == rhs.end_pt().

template <class GraphicsSurfaces>
bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::abs_cubic_curve& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::abs_cubic_curve& rhs)
    noexcept;

Returns: lhs.control_pt1() != rhs.control_pt1() || lhs.control_pt2() != rhs.control_pt2()
    || lhs.end_pt() != rhs.end_pt().
```

12.3.10 Class template basic_figure_items<GraphicsSurfaces>::rel_cubic_curve [io2d.relcubiccurve]

12.3.10.1 Overview

[io2d.relcubiccurve.intro]

- The class basic_figure_items<GraphicsSurfaces>::rel_cubic_curve describes a figure item that is a segment.
- ² It has a *first control point* of type basic_point_2d<GraphicsSurfaces::graphics_math_type>, a *second control point* of type basic_point_2d<GraphicsSurfaces::graphics_math_type>, and an end point of type basic_point_2d<GraphicsSurfaces::graphics_math_type>.
- The data are stored in an object of type typename GraphicsSurfaces::paths::rel_cubic_curve_data_type. It is accessible using the data member functions.

12.3.10.2 Synopsis

[io2d.relcubiccurve.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsSurfaces>
 class basic_figure_items<GraphicsSurfaces>::rel_cubic_curve {
 public:
    using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
    using data_type =
      typename GraphicsSurfaces::paths::rel_cubic_curve_data_type;
    // 12.3.10.3, construct:
    rel_cubic_curve();
    rel_cubic_curve(const basic_point_2d<graphics_math_type>& cpt1,
       const basic_point_2d<graphics_math_type>& cpt2,
       const basic_point_2d<graphics_math_type>& ept) noexcept;
    rel_cubic_curve(const rel_cubic_curve& other) = default;
    rel_cubic_curve(rel_cubic_curve&& other) noexcept = default;
    // assign:
    rel_cubic_curve& operator=(const rel_cubic_curve& other) = default;
    rel_cubic_curve& operator=(rel_cubic_curve&& other) noexcept = default;
    // 12.3.10.4, accessors:
    const data_type& data() const noexcept;
    data_type& data() noexcept;
    // 12.3.10.5, modifiers:
    void control_pt1(const basic_point_2d<graphics_math_type>& cpt) noexcept;
    void control_pt2(const basic_point_2d<graphics_math_type>& cpt) noexcept;
    void end_pt(const basic_point_2d<graphics_math_type>& ept) noexcept;
```

§ 12.3.10.2

```
// 12.3.10.6, observers:
        basic_point_2d<graphics_math_type> control_pt1() const noexcept;
        basic_point_2d<graphics_math_type> control_pt2() const noexcept;
        basic_point_2d<graphics_math_type> end_pt() const noexcept;
      };
      // 12.3.10.7, equality operators:
      template <class GraphicsSurfaces>
      bool operator==(
        const typename basic_figure_items<GraphicsSurfaces>::rel_cubic_curve& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::rel_cubic_curve& rhs)
      template <class GraphicsSurfaces>
      bool operator!=(
        const typename basic_figure_items<GraphicsSurfaces>::rel_cubic_curve& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::rel_cubic_curve& rhs)
        noexcept;
    }
  12.3.10.3 Constructors
                                                                              [io2d.relcubiccurve.ctor]
  rel cubic curve() noexcept;
1
        Effects: Equivalent to rel_cubic_curve{ basic_point_2d(), basic_point_2d(), basic_point_-
  rel_cubic_curve(const basic_point_2d<typename GraphicsSurfaces::graphics_math_type>& cpt1,
    const basic_point_2d<typename GraphicsSurfaces::graphics_math_type>& cpt2,
    const basic_point_2d<typename GraphicsSurfaces::graphics_math_type>& ept) noexcept;
2
        Effects: Constructs an object of type rel_cubic_curve.
3
        Remarks: The first control point is cpt1.
4
        Remarks: The second control point is cpt2.
        Remarks: The end point is ept.
  12.3.10.4 Accessors
                                                                               [io2d.relcubiccurve.acc]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
        Returns: A reference to the rel_matrix object's data object (See: 12.3.10.1).
  12.3.10.5 Modifiers
                                                                              [io2d.relcubiccurve.mod]
  void control_pt1(const basic_point_2d<typename</pre>
    GraphicsSurfaces::graphics_math_type>& cpt) noexcept;
        Effects: The first control point is cpt.
  void control_pt2(const basic_point_2d<typename</pre>
    GraphicsSurfaces::graphics_math_type>& cpt) noexcept;
        Effects: The second control point is cpt.
  void end_pt(const basic_point_2d<typename GraphicsSurfaces::graphics_math_type>& ept) noexcept;
3
        Effects: The end point is ept.
  12.3.10.6 Observers
                                                                               [io2d.relcubiccurve.obs]
  basic_point_2d<graphics_math_type> control_pt1() const noexcept;
        Returns: The first control point.
  basic_point_2d<graphics_math_type> control_pt2() const noexcept;
2
        Returns: The second control point.
```

§ 12.3.10.6

```
basic_point_2d<graphics_math_type> end_pt() const noexcept;
       Returns: The end point.
  12.3.10.7 Equality operators
                                                                              [io2d.relcubiccurve.eq]
  template <class GraphicsSurfaces>
  bool operator==(
    const typename basic_figure_items<GraphicsSurfaces>::rel_cubic_curve& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::rel_cubic_curve& rhs)
    noexcept:
1
       Returns: lhs.control pt1() == rhs.control pt1() && lhs.control pt2() == rhs.control pt2()
       && lhs.end pt() == rhs.end pt().
  template <class GraphicsSurfaces>
  bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::rel_cubic_curve& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::rel_cubic_curve& rhs)
       Returns: lhs.control_pt1() != rhs.control_pt1() || lhs.control_pt2() != rhs.control_pt2()
       || lhs.end_pt() != rhs.end_pt().
             Class template basic_figure_items<GraphicsSurfaces>::abs_line
             [io2d.absline]
  12.3.11.1 Overview
                                                                                  [io2d.absline.intro]
1 The class basic_figure_items<GraphicsSurfaces>::abs_line describes a figure item that is a segment.
It has an end point of type basic_point_2d<GraphicsSurfaces::graphics_math_type>.
3 The data are stored in an object of type typename GraphicsSurfaces::paths::abs_line_data_type. It
  is accessible using the data member functions.
  12.3.11.2 Synopsis
                                                                              [io2d.absline.synopsis]
    namespace std::experimental::io2d::v1 {
      template <class GraphicsSurfaces>
      class basic_figure_items<GraphicsSurfaces>::abs_line {
      public:
        using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
        using data_type =
          typename GraphicsSurfaces::paths::abs_line_data_type;
        // 12.3.11.3, construct:
        abs_line();
        explicit abs_line(const basic_point_2d<graphics_math_type>& pt);
        abs_line(const abs_line& other) = default;
        abs_line(abs_line&& other) noexcept = default;
        // assign:
        abs_line& operator=(const abs_line& other) = default;
        abs_line& operator=(abs_line&& other) noexcept = default;
        // 12.3.11.4, accessors:
        const data_type& data() const noexcept;
        data_type& data() noexcept;
        // 12.3.11.5, modifiers:
        void at(const basic_point_2d<graphics_math_type>& pt) noexcept;
        // 12.3.11.6, observers:
        basic_point_2d<graphics_math_type> at() const noexcept;
```

§ 12.3.11.2

};

```
// 12.3.11.7, equality operators:
      template <class GraphicsSurfaces>
      bool operator==(
        const typename basic_figure_items<GraphicsSurfaces>::abs_line& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::abs_line& rhs)
        noexcept;
      template <class GraphicsSurfaces>
      bool operator!=(
        const typename basic_figure_items<GraphicsSurfaces>::abs_line& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::abs_line& rhs)
    }
                                                                                    [io2d.absline.ctor]
  12.3.11.3 Constructors
  abs_line() noexcept;
       Effects: Equivalent to: abs_line{ basic_point_2d() };
  explicit abs_line(const basic_point_2d<typename
    GraphicsSurfaces::graphics_math_type>& pt) noexcept;
2
        Effects: Constructs an object of type abs_line.
3
        Remarks: The end point is pt.
  12.3.11.4 Accessors
                                                                                    [io2d.absline.acc]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
        Returns: A reference to the abs_line object's data object (See: 12.3.11.1).
  12.3.11.5 Modifiers
                                                                                   [io2d.absline.mod]
  void to(const basic_point_2d<graphics_math_type>& pt) noexcept;
       Effects: The end point is pt.
  12.3.11.6 Observers
                                                                                    [io2d.absline.obs]
  basic_point_2d<graphics_math_type> to() const noexcept;
       Returns: The end point.
  12.3.11.7 Equality operators
                                                                                     [io2d.absline.eq]
  template <class GraphicsSurfaces>
  bool operator==(
    const typename basic_figure_items<GraphicsSurfaces>::abs_line& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::abs_line& rhs)
        Returns: lhs.to() == rhs.to().
  template <class GraphicsSurfaces>
  bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::abs_line& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::abs_line& rhs)
    noexcept;
        Returns: lhs.to() != rhs.to().
  12.3.12 Class rel_line
                                                                                        [io2d.relline]
  12.3.12.1 Overview
                                                                                   [io2d.relline.intro]
1 The class basic_figure_items<GraphicsSurfaces>::rel_line describes a figure item that is a segment.
 It has an end point of type basic_point_2d<GraphicsSurfaces::graphics_math_type>.
3 The data are stored in an object of type typename GraphicsSurfaces::paths::rel_line_data_type. It
```

§ 12.3.12.1

is accessible using the data member functions.

[io2d.relline.synopsis]

```
namespace std::experimental::io2d::v1 {
    template <class GraphicsSurfaces>
    class basic_figure_items<GraphicsSurfaces>::rel_line {
      using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
      using data_type =
        typename GraphicsSurfaces::paths::rel_line_data_type;
      // 12.3.12.3, construct:
      rel_line();
      explicit rel_line(const basic_point_2d<graphics_math_type>& pt);
      rel_line(const rel_line& other) = default;
      rel_line(rel_line&& other) noexcept = default;
      // assign:
      rel_line& operator=(const rel_line& other) = default;
      rel_line& operator=(rel_line&& other) noexcept = default;
      // 12.3.12.4, accessors:
      const data_type& data() const noexcept;
      data_type& data() noexcept;
      // 12.3.12.5, modifiers:
      void at(const basic_point_2d<graphics_math_type>& pt) noexcept;
      // 12.3.12.6, observers:
      basic_point_2d<graphics_math_type> at() const noexcept;
    };
    // 12.3.12.7, equality operators:
    template <class GraphicsSurfaces>
    bool operator==(
      const typename basic_figure_items<GraphicsSurfaces>::rel_line& lhs,
      const typename basic_figure_items<GraphicsSurfaces>::rel_line& rhs)
      noexcept;
    template <class GraphicsSurfaces>
    bool operator!=(
      const typename basic_figure_items<GraphicsSurfaces>::rel_line& lhs,
      const typename basic_figure_items<GraphicsSurfaces>::rel_line& rhs)
      noexcept;
12.3.12.3 Constructors
                                                                                    [io2d.relline.ctor]
rel_line() noexcept;
     Effects: Equivalent to: rel line{ basic point 2d() };
explicit rel_line(const basic_point_2d<typename
  GraphicsSurfaces::graphics_math_type>& pt) noexcept;
     Effects: Constructs an object of type rel_line.
     Remarks: The end point is pt.
12.3.12.4 Accessors
                                                                                     [io2d.relline.acc]
const data_type& data() const noexcept;
data_type& data() noexcept;
     Returns: A reference to the rel_line object's data object (See: 12.3.12.1).
                                                                                   [io2d.relline.mod]
12.3.12.5 Modifiers
void to(const basic_point_2d<graphics_math_type>& pt) noexcept;
     Effects: The end point is pt.
§ 12.3.12.5
                                                                                                   106
```

12.3.12.2 Synopsis

1

```
12.3.12.6 Observers [io2d.relline.obs]
```

```
basic_point_2d<graphics_math_type> to() const noexcept;
```

Returns: The end point.

12.3.12.7 Equality operators

[io2d.relline.eq]

```
template <class GraphicsSurfaces>
bool operator==(
    const typename basic_figure_items<GraphicsSurfaces>::rel_line& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::rel_line& rhs)
    noexcept;

Returns: lhs.to() == rhs.to().

template <class GraphicsSurfaces>
bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::rel_line& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::rel_line& rhs)
    noexcept;

Returns: lhs.to() != rhs.to().
```

12.3.13 Class template basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve [io2d.absquadraticcurve]

12.3.13.1 Overview

[io2d.absquadraticcurve.intro]

- The class basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve describes a figure item that is a segment.
- It has a control point of type basic_point_2d<GraphicsSurfaces::graphics_math_type> and an end point of type basic_point_2d<GraphicsSurfaces::graphics_math_type>.
- The data are stored in an object of type typename GraphicsSurfaces::paths::abs_quadratic_curve_-data_type. It is accessible using the data member functions.

12.3.13.2 Synopsis

[io2d.absquadraticcurve.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsSurfaces>
  class basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve {
  public:
    using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
    using data_type =
      typename GraphicsSurfaces::paths::abs_quadratic_curve_data_type;
    // 12.3.13.3, construct:
    abs_quadratic_curve();
    abs_quadratic_curve(const basic_point_2d<graphics_math_type>& cpt,
      const basic_point_2d<graphics_math_type>& ept);
    abs_quadratic_curve(const abs_quadratic_curve& other) = default;
    abs_quadratic_curve(abs_quadratic_curve&& other) noexcept = default;
    abs_quadratic_curve& operator=(const abs_quadratic_curve& other) = default;
    abs_quadratic_curve& operator=(abs_quadratic_curve&& other) noexcept = default;
    // 12.3.13.4, accessors:
    const data_type& data() const noexcept;
    data_type& data() noexcept;
    // 12.3.13.5, modifiers:
    void control_pt(const basic_point_2d<graphics_math_type>& cpt) noexcept;
    void end_pt(const basic_point_2d<graphics_math_type>& ept) noexcept;
```

§ 12.3.13.2

```
// 12.3.13.6, observers:
        basic_point_2d<graphics_math_type> control_pt() const noexcept;
        basic_point_2d<graphics_math_type> end_pt() const noexcept;
      };
      // 12.3.13.7, equality operators:
      template <class GraphicsSurfaces>
      bool operator==(
        const typename basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve& rhs)
      template <class GraphicsSurfaces>
      bool operator!=(
        const typename basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve& lhs,
        const typename basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve& rhs)
        noexcept;
    }
  12.3.13.3 Constructors
                                                                        [io2d.absquadraticcurve.ctor]
  abs_quadratic_curve() noexcept;
       Effects: Equivalent to: abs_quadratic_curve{ basic_point_2d(), basic_point_2d() };
  abs_quadratic_curve(const basic_point_2d<graphics_math_type>& cpt,
    const basic_point_2d<graphics_math_type>& ept) noexcept;
        Effects: Constructs an object of type abs_quadratic_curve.
3
        Remarks: The control point is cpt.
       Remarks: The end point is ept.
  12.3.13.4 Accessors
                                                                        [io2d.absquadraticcurve.acc]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
1
        Returns: A reference to the abs_quadratic_curve object's data object (See: 12.3.13.1).
  12.3.13.5 Modifiers
                                                                       [io2d.absquadraticcurve.mod]
  void control_pt(const basic_point_2d<graphics_math_type>& cpt) noexcept;
       Effects: The control point is cpt.
  void end_pt(const basic_point_2d<graphics_math_type>& ept) noexcept;
        Effects: The end point is ept.
  12.3.13.6 Observers
                                                                        [io2d.absquadraticcurve.obs]
  basic_point_2d<graphics_math_type> control_pt() const noexcept;
        Returns: The control point.
  basic_point_2d<graphics_math_type> end_pt() const noexcept;
        Returns: The end point.
  12.3.13.7 Equality operators
                                                                         [io2d.absquadraticcurve.eq]
  template <class GraphicsSurfaces>
  bool operator==(
    const typename basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve& rhs)
    noexcept;
       Returns: lhs.control_pt() == rhs.control_pt() && lhs.end_pt() == rhs.end_pt().
```

§ 12.3.13.7

```
template <class GraphicsSurfaces>
bool operator!=(
  const typename basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve& lhs,
  const typename basic_figure_items<GraphicsSurfaces>::abs_quadratic_curve& rhs)
  noexcept;

  Returns: lhs.control pt() != rhs.control pt() || lhs.end pt() != rhs.end pt().
```

12.3.14 Class template basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve [io2d.relquadraticcurve]

12.3.14.1 Overview

[io2d.relquadraticcurve.intro]

- The class basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve describes a figure item that is a segment.
- It has a control point of type basic_point_2d<GraphicsSurfaces::graphics_math_type> and an end point of type basic_point_2d<GraphicsSurfaces::graphics_math_type>.
- The data are stored in an object of type typename GraphicsSurfaces::paths::rel_quadratic_curve_-data_type. It is accessible using the data member functions.

12.3.14.2 Synopsis

[io2d.relquadraticcurve.synopsis]

```
namespace std::experimemtal::io2d::v1 {
 template <class GraphicsSurfaces>
 class basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve {
 public:
   using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
   using data type =
      typename GraphicsSurfaces::paths::rel_quadratic_curve_data_type;
   // 12.3.14.3, construct:
   rel_quadratic_curve();
   rel_quadratic_curve(const basic_point_2d<graphics_math_type>& cpt,
      const basic_point_2d<graphics_math_type>& ept);
   rel_quadratic_curve(const rel_quadratic_curve& other) = default;
   rel_quadratic_curve(rel_quadratic_curve&& other) noexcept = default;
   // assign:
   rel_quadratic_curve& operator=(const rel_quadratic_curve& other) = default;
   rel_quadratic_curve& operator=(rel_quadratic_curve&& other) noexcept = default;
   // 12.3.14.4, accessors:
   const data_type& data() const noexcept;
   data_type& data() noexcept;
   // 12.3.14.5, modifiers:
   void control_pt(const basic_point_2d<graphics_math_type>& cpt) noexcept;
   void end_pt(const basic_point_2d<graphics_math_type>& ept) noexcept;
   // 12.3.14.6, observers:
   basic_point_2d<graphics_math_type> control_pt() const noexcept;
   basic_point_2d<graphics_math_type> end_pt() const noexcept;
 };
 // 12.3.14.7, equality operators:
 template <class GraphicsSurfaces>
 bool operator==(
   const typename basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve& lhs,
   const typename basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve& rhs)
   noexcept;
 template <class GraphicsSurfaces>
 bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve& rhs)
   noexcept;
```

§ 12.3.14.2

```
}
  12.3.14.3 Constructors
                                                                        [io2d.relquadraticcurve.ctor]
  rel_quadratic_curve() noexcept;
        Effects: Equivalent to: rel_quadratic_curve{ basic_point_2d(), basic_point_2d() };
  rel_quadratic_curve(const basic_point_2d<typename GraphicsSurfaces::graphics_math_type>& cpt,
    const basic_point_2d<typename GraphicsSurfaces::graphics_math_type>& ept) noexcept;
        Effects: Constructs an object of type rel_quadratic_curve.
3
        Remarks: The control point is cpt.
        Remarks: The end point is ept.
  12.3.14.4 Accessors
                                                                         [io2d.relquadraticcurve.acc]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
        Returns: A reference to the rel_quadratic_curve object's data object (See: 12.3.14.1).
  12.3.14.5 Modifiers
                                                                       [io2d.relquadraticcurve.mod]
  void control_pt(const basic_point_2d<graphics_math_type>& cpt) noexcept;
        Effects: The control point is cpt.
  void end_pt(const basic_point_2d<graphics_math_type>& ept) noexcept;
        Effects: The end point is ept.
  12.3.14.6 Observers
                                                                        [io2d.relquadraticcurve.obs]
  basic_point_2d<graphics_math_type> control_pt() const noexcept;
        Returns: The control point.
  basic_point_2d<graphics_math_type> end_pt() const noexcept;
       Returns: The end point.
  12.3.14.7 Equality operators
                                                                          [io2d.relquadraticcurve.eq]
  template <class GraphicsSurfaces>
  bool operator==(
    const typename basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve& rhs)
    noexcept;
        Returns: lhs.control_pt() == rhs.control_pt() && lhs.end_pt() == rhs.end_pt().
  template <class GraphicsSurfaces>
  bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::rel_quadratic_curve& rhs)
    noexcept;
        Returns: lhs.control_pt() != rhs.control_pt() || lhs.end_pt() != rhs.end_pt().
            Class template basic_figure_items<GraphicsSurfaces>::arc
                                                                                           [io2d.arc]
  12.3.15
  12.3.15.1 Overview
                                                                                      [io2d.arc.intro]
<sup>1</sup> The class basic_figure_items<GraphicsSurfaces>::arc describes a figure item that is a segment.
<sup>2</sup> It has a radius of type basic_point_2d<GraphicsSurfaces::graphics_math_type>, a rotation of type
  float, and a start angle of type float.
```

§ 12.3.15.1

³ It forms a portion of the circumference of a circle. The centre of the circle is implied by the start point, the

radius and the start angle of the arc.

[io2d.arc.synopsis]

The data are stored in an object of type typename GraphicsSurfaces::paths::arc_data_type. It is accessible using the data member functions.

12.3.15.2 Synopsis

```
namespace std::experimental::io2d::v1 {
    template <class GraphicsSurfaces>
    class basic_figure_items<GraphicsSurfaces>::arc {
   public:
      using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
      using data_type =
       typename GraphicsSurfaces::paths::arc_data_type;
      // 12.3.15.3, construct:
      arc();
      arc(const basic_point_2d<graphics_math_type>& rad, float rot, float sang) noexcept;
      arc(const arc& other) = default;
      arc(arc&& other) noexcept = default;
      // assign:
      arc& operator=(const arc& other) = default;
      arc& operator=(arc&& other) noexcept = default;
      // 12.3.15.4, accessors:
      const data_type& data() const noexcept;
      data_type& data() noexcept;
      // 12.3.15.5, modifiers:
      void radius(const basic_point_2d<graphics_math_type>& rad) noexcept;
      void rotation(float rot) noexcept;
      void start_angle(float radians) noexcept;
      // 12.3.15.6, observers:
      basic_point_2d<typename GraphicsSurfaces::graphics_math_type> radius() const noexcept;
      float rotation() const noexcept;
      float start_angle() const noexcept;
      basic_point_2d<graphics_math_type> center(const basic_point_2d< graphics_math_type>& cpt,
        const basic_matrix_2d<graphics_math_type>& m =
          basic_matrix_2d<graphics_math_type>{}) const noexcept;
      basic_point_2d<graphics_math_type> end_pt(const basic_point_2d<graphics_math_type>& cpt,
        const basic_matrix_2d<graphics_math_type>& m =
          basic_matrix_2d<graphics_math_type>{}) const noexcept;
   };
    // 12.3.15.7, equality operators:
    template <class GraphicsSurfaces>
   bool operator==(
      const typename basic_figure_items<GraphicsSurfaces>::arc& lhs,
      const typename basic_figure_items<GraphicsSurfaces>::arc& rhs)
      noexcept;
    template <class GraphicsSurfaces>
   bool operator!=(
      const typename basic_figure_items<GraphicsSurfaces>::arc& lhs,
      const typename basic_figure_items<GraphicsSurfaces>::arc& rhs)
      noexcept;
 }
12.3.15.3 Constructors
                                                                                      [io2d.arc.ctor]
arc() noexcept;
     Effects: Equivalent to: arc{ basic_point_2d(10.0f, 10.0f), pi<float>, pi<float>};.
```

§ 12.3.15.3

```
arc(const basic_point_2d<graphics_math_type>& rad,
    float rot, float sang) noexcept;
2
        Effects: Constructs an object of type arc.
3
        The radius is rad.
4
        The rotation is rot.
        The start angle is sang.
                                                                                           [io2d.arc.acc]
  12.3.15.4 Accessors
  const data_type& data() const noexcept;
  data_type& data() noexcept;
        Returns: A reference to the arc object's data object (See: 12.3.15.1).
  12.3.15.5 Modifiers
                                                                                         [io2d.arc.mod]
  void radius(const basic_point_2d<typename GraphicsSurfaces::graphics_math_type>& rad) noexcept;
        Effects: The radius is rad.
  constexpr void rotation(float rot) noexcept;
2
        Effects: The rotation is rot.
  void start_angle(float sang) noexcept;
        Effects: The start angle is sang.
  12.3.15.6 Observers
                                                                                          [io2d.arc.obs]
  basic_point_2d<typename GraphicsSurfaces::graphics_math_type> radius() const noexcept;
        Returns: The radius.
  float rotation() const noexcept;
        Returns: The rotation.
  float start_angle() const noexcept;
3
        Returns: The start angle.
  basic_point_2d<graphics_math_type> center(
    const basic_point_2d<graphics_math_type>& cpt,
    const basic_matrix_2d<graphics_math_type>& m =
      basic_matrix_2d<graphics_math_type>{}) const noexcept;
4
        Returns: As-if:
          auto lmtx = m;
          lmtx.m20 = 0.0f;
          lmtx.m21 = 0.0f;
          auto centerOffset = point_for_angle(two_pi<float> - start_angle(), radius());
          centerOffset.y = -centerOffset.y;
          return cpt - centerOffset * lmtx;
  basic_point_2d<graphics_math_type> end_pt(
    const basic_point_2d<graphics_math_type>& cpt,
    const basic_matrix_2d<graphics_math_type>& m =
      basic_matrix_2d<graphics_math_type>{}) const noexcept;
5
        Returns: As-if:
          auto lmtx = m:
          auto tfrm = matrix_2d::init_rotate(start_angle() + rotation());
          lmtx.m20 = 0.0f;
          lmtx.m21 = 0.0f;
          auto pt = (radius() * tfrm);
          pt.y = -pt.y;
          return cpt + pt * lmtx;
```

§ 12.3.15.6

12.3.15.7 Equality operators

[io2d.arc.eq]

```
template <class GraphicsSurfaces>
  bool operator==(
    const typename basic_figure_items<GraphicsSurfaces>::arc& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::arc& rhs)
    noexcept;
1
        Returns:
         lhs.radius() == rhs.radius() && lhs.rotation() == rhs.rotation() &&
         lhs.start_angle() && rhs.start_angle()
  template <class GraphicsSurfaces>
  bool operator!=(
    const typename basic_figure_items<GraphicsSurfaces>::arc& lhs,
    const typename basic_figure_items<GraphicsSurfaces>::arc& rhs)
    noexcept;
        Returns:
         lhs.radius() != rhs.radius() || lhs.rotation() != rhs.rotation() ||
         lhs.start_angle() != rhs.start_angle()
```

12.3.16 Path interpretation

[io2d.paths.interpretation]

- ¹ This subclause describes how to interpret a path for use in a rendering and composing operation.
- ² Interpreting a path consists of sequentially evaluating the figure items contained in the figures in the path and transforming them into zero or more figures as-if in the manner specified in this subclause.
- ³ The interpretation of a path requires the state data specified in Table 17.

Table 17 — Path interpretation state data

Name	Description	Type	Initial value
mtx	Path transformation matrix	matrix_2d	<pre>matrix_2d{ }</pre>
currPt	Current point	point_2d	unspecified
lnfPt	Last new figure point	point_2d	unspecified
mtxStk	Matrix stack	stack <matrix_2d></matrix_2d>	<pre>stack<matrix_2d>{ }</matrix_2d></pre>

- When interpreting a path, until a figure_items::abs_new_figure figure item is reached, a path shall only contain path command figure items; no diagnostic is required. If a figure is a degenerate figure, none of its figure items have any effects, with two exceptions:
- (4.1) the path's figure_items::abs_new_figure or figure_items::rel_new_figure figure item sets the value of currPt as-if the figure item was interpreted; and,
- (4.2) any path command figure items are evaluated with full effect.

The effects of a figure item contained in a figure_items::figure_item object when that object is being evaluated during path interpretation are described in Table 18.

⁶ If evaluation of a figure item contained in a figure_items::figure_item during path interpretation results in the figure item becoming a degenerate segment, its effects are ignored and interpretation continues as-if that figure item did not exist.

Table 18 — Figure item interpretation effects

Figure item	Effects	
figure_items::abs_new	Creates a new figure. Sets currPt to p.at() * mtx. Sets lnfPt to	
figure	currPt.	
p		
figure_items::rel_new	Let mm equal mtx. Let mm.m20 equal 0.0f. Let mm.m21 equal 0.0f.	
figure	Creates a new figure. Sets currPt to currPt + p.at() * mm. Sets	
p	lnfPt to currPt.	

§ 12.3.16

Table 18 — Figure item interpretation effects (continued)

Figure item	Effects
figure_items::close_figure	Creates a line from currPt to lnfPt. Makes the current figure a
p	closed figure. Creates a new figure. Sets currPt to lnfPt.
figure_items::abs_matrix p	Calls mtxStk.push(mtx). Sets mtx to p.matrix().
figure_items::rel_matrix p	Calls mtxStk.push(mtx). Sets mtx to p.matrix() * mtx.
figure_items::revert	If mtxStk.empty() is false, sets mtx to mtxStk.top() then calls
matrix	mtxStk.pop(). Otherwise sets mtx to its initial value as specified in
p	Table 17.
figure_items::abs_line p	Let pt equal p.to() * mtx. Creates a line from currPt to pt. Sets currPt to pt.
figure_items::rel_line p	Let mm equal mtx. Let mm.m20 equal 0.0f. Let mm.m21 equal 0.0f. Let
ligare_reemsrer_rine p	pt equal currPt + p.to() * mm. Creates a line from currPt to pt.
	Sets currPt to pt.
figure_items::abs	Let cpt equal p.control_pt() * mtx. Let ept equal p.end_pt() *
quadratic_curve	mtx. Creates a quadratic Bézier curve from currPt to ept using cpt
p	as the curve's control point. Sets currPt to ept.
figure_items::rel	Let mm equal mtx. Let mm.m20 equal 0.0f. Let mm.m21 equal 0.0f. Let
quadratic_curve	cpt equal currPt + p.control_pt() * mm. Let ept equal currPt
p	+ p.control_pt() * mm + p.end_pt() * mm. Creates a quadratic
r	Bézier curve from currPt to ept using cpt as the curve's control
	point. Sets currPt to ept.
figure_items::abs_cubic	Let cpt1 equal p.control_pt1() * mtx. Let cpt2 equal
curve	p.control_pt2() * mtx. Let ept equal p.end_pt() * mtx.
p	Creates a cubic Bézier curve from currPt to ept using cpt1 as the
	curve's first control point and cpt2 as the curve's second control
	point. Sets currPt to ept.
figure_items::rel_cubic	Let mm equal mtx. Let mm.m20 equal 0.0f. Let mm.m21 equal 0.0f. Let
curve	<pre>cpt1 equal currPt + p.control_pt1() * mm. Let cpt2 equal</pre>
p	<pre>currPt + p.control_pt1() * mm + p.control_pt2() * mm. Let</pre>
	<pre>ept equal currPt + p.control_pt1() * mm + p.control_pt2()</pre>
	* mm + p.end_pt() * mm. Creates a cubic Bézier curve from
	currPt to ept using cpt1 as the curve's first control point and cpt2
	as the curve's second control point. Sets currPt to ept.
figure_items::arc p	Let mm equal mtx. Let mm.m20 equal 0.0f. Let mm.m21 equal 0.0f.
	Creates an arc. It begins at currPt, which is at p.start_angle()
	radians on the arc and rotates p.rotation() radians. If
	p.rotation() is positive, rotation is counterclockwise, otherwise it is
	clockwise. The center of the arc is located at p.center(currPt,
	mm). The arc ends at p.end_pt(currPt, mm). Sets currPt to
	<pre>p.end_pt(currPt, mm).</pre>
	[Note: p.radius(), which specifies the radius of the arc, is implicitly
	included in the above statement of effects by the specifications of the
	center of the arc and the end of the arcs. The use of the current point
	as the origin for the application of the path transformation matrix is
	also implicitly included by the same specifications. $-end\ note$

12.4 Class basic_interpreted_path

[io2d.pathgroup]

- ¹ The class basic_interpreted_path contains the data that result from interpreting (12.3.16) a sequence of figure_items::figure_item objects.
- ² A basic_interpreted_path object is used by most rendering and composing operations.

12.4.1 basic_interpreted_path synopsis

[io2d.pathgroup.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsSurfaces>
  class basic_interpreted_path {
```

§ 12.4.1

```
public:
         // 12.4.2, construct:
        basic_interpreted_path() noexcept;
        explicit basic_interpreted_path(
          const basic_bounding_box<GraphicsSurfaces>& bb);
        template <class Allocator>
        explicit basic_interpreted_path(
          const basic_path_builder<GraphicsSurfaces, Allocator>& pb);
        template <class InputIterator>
        basic_interpreted_path(InputIterator first, InputIterator last);
        explicit basic_interpreted_path(initializer_list<typename</pre>
          basic_figure_items<GraphicsSurfaces>::figure_item>> il);
      };
    }
                                                                               [io2d.pathgroup.cons]
          basic_interpreted_path constructors
  12.4.2
  basic_interpreted_path() noexcept;
1
        Effects: Constructs a basic_interpreted_path that contains an empty path.
  template <class Allocator>
  explicit basic_interpreted_path(const basic_path_builder<GraphicsSurfaces, Allocator>& pb);
        Effects: Equivalent to: basic_interpreted_path{ begin(pb), end(pb) };.
  template <class InputIterator>
  basic_interpreted_path(InputIterator first, InputIterator last);
        Effects: Constructs an object of type interpreted_path.
4
        The contained path is as-if it was the result of interpreting a path containing the values of the elements
        from first to the last element before last.
  explicit basic_interpreted_path(initializer_list<typename
    basic_figure_items<GraphicsSurfaces>::figure_item> il);
        Effects: <TODO>
                                                                                   [io2d.pathbuilder]
         Class basic_path_builder
<sup>1</sup> The class basic_path_builder is a container that stores and manipulates objects of type figure_-
  items::figure_item from which interpreted_path objects are created.
<sup>2</sup> A basic_path_builder is a contiguous container. (See [container.requirements.general] in C++ 2017.)
3 The collection of figure_items::figure_item objects in a path builder is referred to as its path.
                                                                         [io2d.pathbuilder.synopsis]
  12.5.1 basic_path_builder synopsis
    namespace std::experimental::io2d::v1 {
      template <class GraphicsSurfaces,
                class Allocator = ::std::allocator<typename</pre>
                  basic_figure_items<GraphicsSurfaces>::figure_item>>
      class basic_path_builder {
      public:
                                      = typename basic_figure_items<GraphicsSurfaces>::figure_item;
        using value_type
        using allocator_type
                                      = Allocator;
        using reference
                                      = value_type&;
        using const_reference
                                      = const value_type&;
        using size_type
                                      = implementation-defined. // See [container.requirements] in C++ 2017.
                                      = implementation-defined. // See [container.requirements] in C++ 2017.
        using difference_type
                                      = implementation-defined. // See [container.requirements] in C++ 2017.
        using iterator
                                      = implementation-defined. // See [container.requirements] in C++ 2017.
        using const_iterator
        using reverse_iterator
                                      = std::reverse_iterator<iterator>;
        using const_reverse_iterator = std::reverse_iterator<const_iterator>;
```

```
// 12.5.3, construct, copy, move, destroy:
basic_path_builder() noexcept(noexcept(Allocator()));
explicit basic_path_builder(const Allocator&) noexcept;
explicit basic_path_builder(size_type n, const Allocator& = Allocator());
basic_path_builder(size_type n, const value_type& value, const Allocator& = Allocator());
template <class InputIterator>
basic_path_builder(InputIterator first, InputIterator last, const Allocator& = Allocator());
basic_path_builder(const basic_path_builder& x);
basic_path_builder(basic_path_builder&&) noexcept;
basic_path_builder(const basic_path_builder&, const Allocator&);
basic_path_builder(basic_path_builder&&, const Allocator&);
basic_path_builder(initializer_list<value_type>, const Allocator& = Allocator());
~basic_path_builder();
basic_path_builder& operator=(const basic_path_builder& x);
basic_path_builder& operator=(basic_path_builder&& x) noexcept(
  allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
  allocator_traits<Allocator>::is_always_equal::value);
basic_path_builder& operator=(initializer_list<value_type>);
template <class InputIterator>
void assign(InputIterator first, InputIterator last);
void assign(size_type n, const value_type& u);
void assign(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;
// 12.5.4, capacity
bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;
size_type capacity() const noexcept;
void resize(size_type sz);
void resize(size_type sz, const value_type& c);
void reserve(size_type n);
void shrink_to_fit();
// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
const_reference at(size_type n) const;
reference at(size_type n);
reference front();
const_reference front() const;
reference back();
const_reference back() const;
// 12.5.5, modifiers:
void new_figure(const basic_point_2d<typename</pre>
  GraphicsSurfaces::graphics_math_type>& pt) noexcept;
void rel_new_figure(const basic_point_2d<typename</pre>
  GraphicsSurfaces::graphics_math_type>& pt) noexcept;
void close_figure() noexcept;
void matrix(const basic_matrix_2d<typename</pre>
  GraphicsSurfaces::graphics_math_type>& m) noexcept;
void rel_matrix(const basic_matrix_2d<typename</pre>
  GraphicsSurfaces::graphics_math_type>& m) noexcept;
void revert_matrix() noexcept;
void line(const basic_point_2d<typename GraphicsSurfaces::graphics_math_type>& pt) noexcept;
void rel_line(const basic_point_2d<typename</pre>
  GraphicsSurfaces::graphics_math_type>& dpt) noexcept;
void quadratic_curve(const basic_point_2d<typename</pre>
  GraphicsSurfaces::graphics_math_type>& pt0, const basic_point_2d<typename</pre>
  GraphicsSurfaces::graphics_math_type>& pt2) noexcept;
void rel_quadratic_curve(const basic_point_2d<typename</pre>
  GraphicsSurfaces::graphics_math_type>& pt0, const basic_point_2d<typename
  GraphicsSurfaces::graphics_math_type>& pt2) noexcept;
```

```
GraphicsSurfaces::graphics_math_type>& pt0, const basic_point_2d<typename
      GraphicsSurfaces::graphics_math_type>& pt1, const basic_point_2d<typename
      GraphicsSurfaces::graphics_math_type>& pt2) noexcept;
    void rel_cubic_curve(const basic_point_2d<typename</pre>
      GraphicsSurfaces::graphics_math_type>& dpt0, const basic_point_2d<typename</pre>
      GraphicsSurfaces::graphics_math_type>& dpt1, const basic_point_2d<typename
      GraphicsSurfaces::graphics_math_type>& dpt2) noexcept;
    void arc(const basic_point_2d<typename</pre>
      GraphicsSurfaces::graphics_math_type>& rad, float rot, float sang = pi<float>) noexcept;
    template <class... Args>
    reference emplace_back(Args&&... args);
    void push_back(const value_type& x);
    void push_back(value_type&& x);
    void pop_back();
    template <class... Args>
    iterator emplace(const_iterator position, Args&&... args);
    iterator insert(const_iterator position, const value_type& x);
    iterator insert(const_iterator position, value_type&& x);
    iterator insert(const_iterator position, size_type n, const value_type& x);
    template <class InputIterator>
    iterator insert(const_iterator position, InputIterator first, InputIterator last);
    iterator insert(const_iterator position,
    initializer_list<value_type> il);
    iterator erase(const_iterator position);
    iterator erase(const_iterator first, const_iterator last);
    void swap(basic_path_builder&) noexcept(
      allocator_traits<Allocator>::propagate_on_container_swap::value ||
      allocator_traits<Allocator>::is_always_equal::value);
    void clear() noexcept;
    // 12.5.6, iterators:
    iterator begin() noexcept;
    const_iterator begin() const noexcept;
    const_iterator cbegin() const noexcept;
    iterator end() noexcept;
    const_iterator end() const noexcept;
    const_iterator cend() const noexcept;
    reverse_iterator rbegin() noexcept;
    const_reverse_iterator rbegin() const noexcept;
    const_reverse_iterator crbegin() const noexcept;
    reverse_iterator rend() noexcept;
    const_reverse_iterator rend() const noexcept;
    const_reverse_iterator crend() const noexcept;
 };
  template <class GraphicsSurfaces, class Allocator>
 bool operator==(const basic_path_builder<GraphicsSurfaces, Allocator>& lhs,
    const basic_path_builder<GraphicsSurfaces, Allocator>& rhs) noexcept;
  template <class GraphicsSurfaces, class Allocator>
 bool operator!=(const basic_path_builder<GraphicsSurfaces, Allocator>& lhs,
    const basic_path_builder<GraphicsSurfaces, Allocator>& rhs) noexcept;
  template <class GraphicsSurfaces, class Allocator>
  void swap(basic_path_builder<GraphicsSurfaces, Allocator>& lhs,
    basic_path_builder<GraphicsSurfaces, Allocator>& rhs) noexcept(noexcept(lhs.swap(rhs)));
}
```

12.5.2 basic_path_builder container requirements [io2d.pathbuilder.containerrequirements]

void cubic_curve(const basic_point_2d<typename</pre>

¹ This class is a sequence container, as defined in [containers] in C++ 2017, and all sequence container requirements that apply specifically to vector shall also apply to this class.

12.5.3 basic_path_builder constructors, copy, and assignment[io2d.pathbuilder.cons]

basic_path_builder() noexcept(noexcept(Allocator()));

1 Effects: Constructs an empty basic_path_builder.

explicit basic_path_builder(const Allocator&);

- 2 Effects: Constructs an empty basic_path_builder, using the specified allocator.
- 3 Complexity: Constant.

```
explicit basic_path_builder(size_type n, const Allocator& = Allocator());
```

- 4 Effects: Constructs a basic_path_builder with n default-inserted elements using the specified allocator.
- 5 Complexity: Linear in n.

```
basic_path_builder(size_type n, const value_type& value,
  const Allocator& = Allocator());
```

- 6 Requires: value_type shall be CopyInsertable into *this.
- ⁷ Effects: Constructs a basic_path_builder with n copies of value, using the specified allocator.
- 8 Complexity: Linear in n.

```
template <class InputIterator>
basic_path_builder(InputIterator first, InputIterator last,
  const Allocator& = Allocator());
```

- 9 Effects: Constructs a basic_path_builder equal to the range [first, last), using the specified allocator.
- Complexity: Makes only N calls to the copy constructor of value_type (where N is the distance between first and last) and no reallocations if iterators first and last are of forward, bidirectional, or random access categories. It makes order N calls to the copy constructor of value_type and order $\log(N)$ reallocations if they are just input iterators.

12.5.4 basic_path_builder capacity

[io2d.pathbuilder.capacity]

```
size_type capacity() const noexcept;
```

1 Returns: The total number of elements that the path builder can hold without requiring reallocation.

```
void reserve(size_type n);
```

- 2 Requires: value_type shall be MoveInsertable into *this.
- Effects: A directive that informs a path builder of a planned change in size, so that it can manage the storage allocation accordingly. After reserve(), capacity() is greater or equal to the argument of reserve if reallocation happens; and equal to the previous value of capacity() otherwise. Reallocation happens at this point if and only if the current capacity is less than the argument of reserve(). If an exception is thrown other than by the move constructor of a non-CopyInsertable type, there are no effects.
- 4 Complexity: It does not change the size of the sequence and takes at most linear time in the size of the sequence.
- 5 Throws: length_error if n > max_size().1
- Remarks: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the sequence. No reallocation shall take place during insertions that happen after a call to reserve() until the time when an insertion would make the size of the vector greater than the value of capacity().

```
void shrink_to_fit();
```

- 7 Requires: value_type shall be MoveInsertable into *this.
- Effects: shrink_to_fit is a non-binding request to reduce capacity() to size(). [Note: The request is non-binding to allow latitude for implementation-specific optimizations. end note] It does not

¹⁾ ${\tt reserve()}$ uses ${\tt Allocator::allocate()}$ which may throw an appropriate exception.

```
increase capacity(), but may reduce capacity() by causing reallocation. If an exception is thrown other than by the move constructor of a non-CopyInsertable value_type there are no effects.

*Complexity:* Linear in the size of the sequence.

*Remarks:* Reallocation invalidates all the references, pointers, and iterators referring to the elements in
```

```
void swap(basic_path_builder&)
  noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||
  allocator_traits<Allocator>::is_always_equal::value);
```

Effects: Exchanges the contents and capacity() of *this with that of x.

the sequence. If no reallocation happens, they remain valid.

12 Complexity: Constant time.

resize

9

10

void resize(size_type sz);

- Effects: If sz < size(), erases the last size() sz elements from the sequence. Otherwise, appends sz size() default-inserted elements to the sequence.
- 14 Requires: value_type shall be MoveInsertable and DefaultInsertable into *this.
- Remarks: If an exception is thrown other than by the move constructor of a non-CopyInsertable value_type there are no effects.

resize

void resize(size_type sz, const value_type& c);

- Effects: If sz < size(), erases the last size() sz elements from the sequence. Otherwise, appends sz size() copies of c to the sequence.
- Requires: value_type shall be CopyInsertable into *this.
- 18 Remarks: If an exception is thrown there are no effects.

12.5.5 basic path builder modifiers

[io2d.pathbuilder.modifiers]

void new_figure(point_2d pt) noexcept;

Effects: Adds a figure_items::figure_item object constructed from figure_items::abs_new_-figure(pt) to the end of the path.

```
void rel_new_figure(point_2d pt) noexcept;
```

Effects: Adds a figure_items::figure_item object constructed from figure_items::rel_new_-figure(pt) to the end of the path.

void close_figure() noexcept;

- 3 Requires: The current point contains a value.
- 4 Effects: Adds a figure_items::figure_item object constructed from figure_items::close_figure() to the end of the path.

void matrix(const matrix_2d& m) noexcept;

- 5 Requires: The matrix m shall be invertible.
- Effects: Adds a figure_items::figure_item object constructed from (figure_items::abs_matrix(m) to the end of the path.

void rel_matrix(const matrix_2d& m) noexcept;

- 7 Requires: The matrix m shall be invertible.
- 8 Effects: Adds a figure_items::figure_item object constructed from (figure_items::rel_matrix(m) to the end of the path.

void revert matrix() noexcept;

9 Effects: Adds a figure_items::figure_item object constructed from (figure_items::revert_-matrix() to the end of the path.

```
void line(point_2d pt) noexcept;
10
         Adds a figure_items::figure_item object constructed from figure_items::abs_line(pt) to the
         end of the path.
   void rel_line(point_2d dpt) noexcept;
11
         Effects: Adds a figure_items::figure_item object constructed from figure_items::rel_line(pt)
         to the end of the path.
   void quadratic_curve(point_2d pt0, point_2d pt1) noexcept;
12
         Effects: Adds a figure_items::figure_item object constructed from
         figure_items::abs_quadratic_curve(pt0, pt1) to the end of the path.
   void rel_quadratic_curve(point_2d dpt0, point_2d dpt1)
     noexcept;
13
         Effects: Adds a figure_items::figure_item object constructed from
         figure_items::rel_quadratic_curve(dpt0, dpt1) to the end of the path.
   void cubic_curve(point_2d pt0, point_2d pt1,
     point_2d pt2) noexcept;
14
        <sup>1</sup>Effects: Adds a figure_items::figure_item object constructed from figure_items::abs_cubic_-
         curve(pt0, pt1, pt2) to the end of the path.
   void rel_cubic_curve(point_2d dpt0, point_2d dpt1,
     point_2d dpt2) noexcept;
16
         Effects: Adds a figure_items::figure_item object constructed from figure_items::rel_cubic_-
         curve(dpt0, dpt1, dpt2) to the end of the path.
   void arc(point_2d rad, float rot, float sang) noexcept;
17
         Effects: Adds a figure_items::figure_item object constructed from
         figure_items::arc(rad, rot, sang) to the end of the path.
   iterator insert(const_iterator position, const value_type& x);
   iterator insert(const_iterator position, value_type&& x);
   iterator insert(const_iterator position, size_type n, const value_type& x);
   template <class InputIterator>
   iterator insert(const_iterator position, InputIterator first,
     InputIterator last);
   iterator insert(const_iterator position, initializer_list<value_type>);
   template <class... Args>
   reference emplace_back(Args&&... args);
   template <class... Args>
   iterator emplace(const_iterator position, Args&&... args);
   void push_back(const value_type& x);
   void push_back(value_type&& x);
18
         Remarks: Causes reallocation if the new size is greater than the old capacity. Reallocation invalidates
         all the references, pointers, and iterators referring to the elements in the sequence. If no reallocation
        happens, all the iterators and references before the insertion point remain valid. If an exception is
         thrown other than by the copy constructor, move constructor, assignment operator, or move assignment
        operator of value_type or by any InputIterator operation there are no effects. If an exception is
        thrown while inserting a single element at the end and value_type is CopyInsertable or is_nothrow_-
        move_constructible_v<value_type> is true, there are no effects. Otherwise, if an exception is thrown
        by the move constructor of a non-CopyInsertable value type, the effects are unspecified.
19
         Complexity: The complexity is linear in the number of elements inserted plus the distance to the end of
         the path builder.
   iterator erase(const_iterator position);
```

§ 12.5.5

Effects: Invalidates iterators and references at or after the point of the erase.

iterator erase(const_iterator first, const_iterator last);

void pop_back();

20

- Complexity: The destructor of value_type is called the number of times equal to the number of the elements erased, but the assignment operator of value_type is called the number of times equal to the number of elements in the path builder after the erased elements.
- Throws: Nothing unless an exception is thrown by the copy constructor, move constructor, assignment operator, or move assignment operator of value_type.

12.5.6 basic_path_builder iterators

[io2d.pathbuilder.iterators]

```
iterator begin() noexcept;
const_iterator begin() const noexcept;
const_iterator cbegin() const noexcept;
```

- Returns: An iterator referring to the first figure_items::figure_item item in the path.
- Remarks: Changing a figure_items::figure_item object or otherwise modifying the path in a way that violates the preconditions of that figure_items::figure_item object or of any subsequent figure_items::figure_item object in the path produces undefined behavior when the path is interpreted as described in 12.3.16 unless all of the violations are fixed prior to such interpretation.

```
iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cend() const noexcept;
```

- 3 Returns: An iterator which is the past-the-end value.
- Remarks: Changing a figure_items::figure_item object or otherwise modifying the path in a way that violates the preconditions of that figure_items::figure_item object or of any subsequent figure_items::figure_item object in the path produces undefined behavior when the path is interpreted as described in 12.3.16 unless all of the violations are fixed prior to such interpretation.

```
reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
const_reverse iterator crbegin() const noexcept;
```

- 5 Returns: An iterator which is semantically equivalent to reverse_iterator(end).
- Remarks: Changing a figure_items::figure_item object or otherwise modifying the path in a way that violates the preconditions of that figure_items::figure_item object or of any subsequent figure_items::figure_item object in the path produces undefined behavior when the path is interpreted as described in 12.3.16 all of the violations are fixed prior to such interpretation.

```
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;
const_reverse_iterator crend() const noexcept;
```

- 7 Returns: An iterator which is semantically equivalent to reverse_iterator(begin).
- Remarks: Changing a figure_items::figure_item object or otherwise modifying the path in a way that violates the preconditions of that figure_items::figure_item object or of any subsequent figure_items::figure_item object in the path produces undefined behavior when the path is interpreted as described in 12.3.16 unless all of the violations are fixed prior to such interpretation.

12.5.7 basic_path_builder specialized algorithms

[io2d.pathbuilder.special]

```
template <class Allocator>
void swap(basic_path_builder<Allocator>& lhs, basic_path_builder<Allocator>& rhs)
noexcept(noexcept(lhs.swap(rhs)));
```

Effects: As if by lhs.swap(rhs).

13 Brushes

[io2d.brushes]

13.1 Overview of brushes

[io2d.brushes.general]

- Brushes contain visual data and serve as sources of visual data for rendering and composing operations.
- ² There are four types of brushes:
- (2.1) solid color;
- (2.2) linear gradient;
- (2.3) radial gradient; and,
- (2.4) surface.
 - ³ Once a brush is created, its visual data is immutable.
 - ⁴ [Note: While copy and move operations along with a swap operation can change the visual data that a brush contains, the visual data itself is not modified. end note]
 - ⁵ A brush is used either as a source brush or a mask brush (15.3.2.2).
 - When a brush is used in a rendering and composing operation, if it is used as a source brush, it has a brush_props object that describes how the brush is interpreted for purposes of sampling. If it is used as a mask brush, it has a mask_props object that describes how the brush is interpreted for purposes of sampling.
 - ⁷ The basic_brush_props (14.10.1) and basic_mask_props (14.14.1) classes each have a wrap mode and a filter. The basic_brush_props class also has a brush matrix and a fill rule. The basic_mask_props class also has a mask matrix. Where possible, the terms that are common between the two classes are referenced without regard to whether the brush is being used as a source brush or a mask brush.
 - 8 Solid color brushes are unbounded and as such always produce the same visual data when sampled from, regardless of the requested point.
 - ⁹ Linear gradient and radial gradient brushes share similarities with each other that are not shared by the other types of brushes. This is discussed in more detail elsewhere (13.2).
 - ¹⁰ Surface brushes are constructed from a basic_image_surface object. Their visual data is raster graphics data, which has implications on sampling from the brush that are not present in the other brush types.

13.2 Gradient brushes

[io2d.gradients]

13.2.1 Common properties of gradients

[io2d.gradients.common]

- 1 Gradients are formed, in part, from a collection of gradient_stop objects.
- ² The collection of gradient_stop objects contribute to defining a brush which, when sampled from, returns a value that is interpolated based on those gradient stops.

13.2.2 Linear gradients

[io2d.gradients.linear]

- ¹ A linear gradient is a type of gradient.
- ² A linear gradient has a begin point and an end point, each of which are objects of type basic_point_2d.
- ³ A linear gradient for which the distance between its begin point and its end point is <TODO>basic_-point_2d::zero() is a degenerate linear gradient.
- ⁴ All attempts to sample from a degenerate linear gradient return the color rgba_color::transparent_-black. The remainder of 13.2 is inapplicable to degenerate linear gradients. [Note: Because a point has no width and this case is only met when the distance is between the begin point and the end point is zero (such that it collapses to a single point), the existence of one or more gradient stops is irrelevant. A linear gradient requires a line segment to define its color(s). Without a line segment, it is not a linear gradient. —end note]
- ⁵ The begin point and end point of a linear gradient define a line segment, with a gradient stop offset value of 0.0f corresponding to the begin point and a gradient stop offset value of 1.0f corresponding to the end point.
- ⁶ Gradient stop offset values in the range [0.0f, 1.0f] linearly correspond to points on the line segment.

§ 13.2.2

- ⁷ [Example: Given a linear gradient with a begin point of <TODO>basic_point_2d(0.0f, 0.0f) and an end point of <TODO>basic_point_2d(10.0f, 5.0f), a gradient stop offset value of 0.6f would correspond to the point <TODO>basic_point_2d(6.0f, 3.0f). —end example]
- ⁸ To determine the offset value of a point p for a linear gradient, perform the following steps:
 - a) Create a line at the begin point of the linear gradient, the *begin line*, and another line at the end point of the linear gradient, the *end line*, with each line being perpendicular to the *gradient line segment*, which is the line segment delineated by the begin point and the end point.
 - b) Using the begin line, p, and the end line, create a line, the p line, which is parallel to the gradient line segment.
 - c) Defining dp as the distance between p and the point where the p line intersects the begin line and dt as the distance between the point where the p line intersects the begin line and the point where the p line intersects the end line, the offset value of p is $dp \div dt$.
 - d) The offset value shall be negative if
- (8.1) p is not on the line segment delineated by the point where the p line intersects the begin line and the point where the p line intersects the end line; and,
- (8.2) the distance between p and the point where the p line intersects the begin line is less than the distance between p and the point where the p line intersects the end line.

13.2.3 Radial gradients

[io2d.gradients.radial]

- ¹ A radial gradient is a type of gradient.
- ² A radial gradient has a *start circle* and an *end circle*, each of which is defined by a basic_circle object.
- ³ A radial gradient is a degenerate radial gradient if:
- (3.1) its start circle has a negative radius; or,
- (3.2) its end circle has a negative radius; or,
- (3.3) the distance between the center point of its start circle and the center point of its end circle is <TODO>basic_point_2d::zero(); or,
- (3.4) its start circle has a radius of 0.0f and its end circle has a radius of 0.0f.
 - ⁴ All attempts to sample from a brush object created using a degenerate radial gradient return the color rgba_color::transparent_black. The remainder of 13.2 is inapplicable to degenerate radial gradients.
 - ⁵ A gradient stop offset of 0.0f corresponds to all points along the diameter of the start circle or to its center point if it has a radius value of 0.0f.
 - ⁶ A gradient stop offset of 1.0f corresponds to all points along the diameter of the end circle or to its center point if it has a radius value of 0.0f.
 - 7 A radial gradient shall be rendered as a continuous series of interpolated circles defined by the following equations:
 - a) $x(o) = x_{start} + o \times (x_{end} x_{start})$
 - b) $y(o) = y_{start} + o \times (y_{end} y_{start})$
 - c) $radius(o) = radius_{start} + o \times (radius_{end} radius_{start})$

where o is a gradient stop offset value.

- 8 The range of potential values for o shall be determined by the wrap mode (13.1):
- (8.1) For wrap_mode::none, the range of potential values for o is [0, 1].
- (8.2) For all other wrap_mode values, the range of potential values for o is [numeric_limits<float>::lowest(),numeric_limits<float>::max()].
 - ⁹ The interpolated circles shall be rendered starting from the smallest potential value of o.
 - An interpolated circle shall not be rendered if its value for o results in radius(o) evaluating to a negative value.

13.2.4 Sampling from gradients

[io2d.gradients.sampling]

¹ For any offset value o, its color value shall be determined according to the following rules:

§ 13.2.4

- a) If there are less than two gradient stops or if all gradient stops have the same offset value, then the color value of every offset value shall be rgba_color::transparent_black and the remainder of these rules are inapplicable.
- b) If exactly one gradient stop has an offset value equal to o, o's color value shall be the color value of that gradient stop and the remainder of these rules are inapplicable.
- c) If two or more gradient stops have an offset value equal to o, o's color value shall be the color value of the gradient stop which has the lowest index value among the set of gradient stops that have an offset value equal to o and the remainder of 13.2.4 is inapplicable.
- d) When no gradient stop has the offset value of 0.0f, then, defining n to be the offset value that is nearest to 0.0f among the offset values in the set of all gradient stops, if o is in the offset range [0, n), o's color value shall be $rgba_color::transparent_black$ and the remainder of these rules are inapplicable. [Note: Since the range described does not include n, it does not matter how many gradient stops have n as their offset value for purposes of this rule. end note]
- e) When no gradient stop has the offset value of 1.0f, then, defining n to be the offset value that is nearest to 1.0f among the offset values in the set of all gradient stops, if o is in the offset range (n, 1], o's color value shall be $rgba_color::transparent_black$ and the remainder of these rules are inapplicable. [Note: Since the range described does not include n, it does not matter how many gradient stops have n as their offset value for purposes of this rule. end note]
- f) Each gradient stop has, at most, two adjacent gradient stops: one to its left and one to its right.
- g) Adjacency of gradient stops is initially determined by offset values. If two or more gradient stops have the same offset value then index values are used to determine adjacency as described below.
- h) For each gradient stop a, the set of gradient stops to its left are those gradient stops which have an offset value which is closer to 0.0f than a's offset value. [Note: This includes any gradient stops with an offset value of 0.0f provided that a's offset value is not 0.0f. end note]
- i) For each gradient stop b, the set of gradient stops to its right are those gradient stops which have an offset value which is closer to 1.0f than b's offset value. [Note: This includes any gradient stops with an offset value of 1.0f provided that b's offset value is not 1.0f. end note]
- j) A gradient stop which has an offset value of 0.0f does not have an adjacent gradient stop to its left.
- k) A gradient stop which has an offset value of 1.0f does not have an adjacent gradient stop to its right.
- 1) If a gradient stop a's set of gradient stops to its left consists of exactly one gradient stop, that gradient stop is the gradient stop that is adjacent to a on its left.
- m) If a gradient stop b's set of gradient stops to its right consists of exactly one gradient stop, that gradient stop is the gradient stop that is adjacent to b on its right.
- n) If two or more gradient stops have the same offset value then the gradient stop with the lowest index value is the only gradient stop from that set of gradient stops which can have a gradient stop that is adjacent to it on its left and the gradient stop with the highest index value is the only gradient stop from that set of gradient stops which can have a gradient stop that is adjacent to it on its right. This rule takes precedence over all of the remaining rules.
- o) If a gradient stop can have an adjacent gradient stop to its left, then the gradient stop which is adjacent to it to its left is the gradient stop from the set of gradient stops to its left which has an offset value which is closest to its offset value. If two or more gradient stops meet that criteria, then the gradient stop which is adjacent to it to its left is the gradient stop which has the highest index value from the set of gradient stops to its left which are tied for being closest to its offset value.
- p) If a gradient stop can have an adjacent gradient stop to its right, then the gradient stop which is adjacent to it to its right is the gradient stop from the set of gradient stops to its right which has an offset value which is closest to its offset value. If two or more gradient stops meet that criteria, then the gradient stop which is adjacent to it to its right is the gradient stop which has the lowest index value from the set of gradient stops to its right which are tied for being closest to its offset value.
- q) Where the value of o is in the range [0, 1], its color value shall be determined by interpolating between the gradient stop, r, which is the gradient stop whose offset value is closest to o without being less than o and which can have an adjacent gradient stop to its left, and the gradient stop that is adjacent to r on r's left. The acceptable forms of interpolating between color values is set forth later in this section.

§ 13.2.4

- r) Where the value of o is outside the range [0,1], its color value depends on the value of wrap mode:
- (1.1) If wrap mode is wrap_mode::none, the color value of o shall be rgba_color::transparent_black.
- (1.2) If wrap mode is wrap_mode::pad, if o is negative then the color value of o shall be the same as-if the value of o was 0.0f, otherwise the color value of o shall be the same as-if the value of o was 1.0f.
- (1.3) If wrap mode is wrap_mode::repeat, then 1.0f shall be added to or subtracted from o until o is in the range [0,1], at which point its color value is the color value for the modified value of o as determined by these rules. [Example: Given o == 2.1, after application of this rule o == 0.1 and the color value of o shall be the same value as-if the initial value of o was o.1.

Given o == -0.3, after application of this rule o == 0.7 and the color value of o shall be the same as-if the initial value of o was 0.7. — end example]

(1.4) — If wrap mode is wrap_mode::reflect, o shall be set to the absolute value of o, then 2.0f shall be subtracted from o until o is in the range [0,2], then if o is in the range (1,2] then o shall be set to 1.0f - (o - 1.0f), at which point its color value is the color value for the modified value of o as determined by these rules. [Example: Given o == 2.8, after application of this rule o == 0.8 and the color value of o shall be the same value as-if the initial value of o was 0.8.

Given o == 3.6, after application of this rule o == 0.4 and the color value of o shall be the same value as-if the initial value of o was 0.4.

Given o == -0.3, after application of this rule o == 0.3 and the color value of o shall be the same as-if the initial value of o was 0.3.

Given o == -5.8, after application of this rule o == 0.2 and the color value of o shall be the same as-if the initial value of o was 0.2. — end example

² Interpolation between the color values of two adjacent gradient stops is performed linearly on each color channel.

13.3 Enum class wrap_mode

[io2d.wrapmode]

13.3.1 wrap_mode summary

[io2d.wrapmode.summary]

- ¹ The wrap_mode enum class describes how a point's visual data is determined if it is outside the bounds of the source brush (15.3.2.2) when sampling.
- ² Depending on the source brush's filter value, the visual data of several points may be required to determine the appropriate visual data value for the point that is being sampled. In this case, each point is sampled according to the source brush's wrap_mode value with two exceptions:
 - 1. If the point to be sampled is within the bounds of the source brush and the source brush's wrap_mode value is wrap_mode::none, then if the source brush's filter value requires that one or more points which are outside of the bounds of the source brush be sampled, each of those points is sampled as-if the source brush's wrap_mode value is wrap_mode::pad rather than wrap_mode::none.
 - 2. If the point to be sampled is within the bounds of the source brush and the source brush's wrap_mode value is wrap_mode::none, then if the source brush's filter value requires that one or more points which are inside of the bounds of the source brush be sampled, each of those points is sampled such that the visual data that is returned is the equivalent of rgba_color::transparent_black.
- ³ If a point to be sampled does not have a defined visual data element and the search for the nearest point with defined visual data produces two or more points with defined visual data that are equidistant from the point to be sampled, the returned visual data shall be an unspecified value which is the visual data of one of those equidistant points. Where possible, implementations should choose the among the equidistant points that have an x axisvalue and a y axisvalue that is nearest to 0.0f.
- ⁴ See Table 19 for the meaning of each wrap_mode enumerator.

13.3.2 wrap_mode synopsis

[io2d.wrapmode.synopsis]

```
namespace std::experimental::io2d::v1 {
  enum class wrap_mode {
    none,
    repeat,
    reflect,
```

§ 13.3.2

```
pad
};
}
```

13.3.3 wrap_mode enumerators

[io2d.wrapmode.enumerators]

Table 19 — wrap_mode enumerator meanings

Enumerator	Meaning
none	If the point to be sampled is outside of the bounds of the
	source brush, the visual data that is returned is the
	equivalent of rgba_color::transparent_black.
repeat	If the point to be sampled is outside of the bounds of the
	source brush, the visual data that is returned is the visual
	data that would have been returned if the source brush was
	infinitely large and repeated itself in a
	left-to-right-left-to-right and top-to-bottom-top-to-bottom
	fashion.
reflect	If the point to be sampled is outside of the bounds of the
	source brush, the visual data that is returned is the visual
	data that would have been returned if the source brush was
	infinitely large and repeated itself in a
	left-to-right-to-left-to-right and
	top-to-bottom-to-top-to-bottom fashion.
pad	If the point to be sampled is outside of the bounds of the
	source brush, the visual data that is returned is the visual
	data that would have been returned for the nearest defined
	point that is in inside the bounds of the source brush.

13.4 Enum class filter

[io2d.filter]

13.4.1 filter summary

[io2d.filter.summary]

- ¹ The filter enum class specifies the type of filter to use when sampling from raster graphics data.
- ² Three of the filter enumerators, filter::fast, filter::good, and filter::best, specify desired characteristics of the filter, leaving the choice of a specific filter to the implementation.

The other two, filter::nearest and filter::bilinear, each specify a particular filter that shall be used.

- ³ [Note: The only type of brush that has raster graphics data as its visual data is a brush with a brush type of brush_type::surface. end note]
- ⁴ See Table 20 for the meaning of each filter enumerator.

13.4.2 filter synopsis

[io2d.filter.synopsis]

```
namespace std::experimental::io2d::v1 {
  enum class filter {
    fast,
    good,
    best,
    nearest,
    bilinear
  };
}
```

13.4.3 filter enumerators

[io2d.filter.enumerators]

§ 13.4.3

Table 20 — filter enumerator meanings

Enumerator	Meaning		
fast	The filter that corresponds to this value is		
	implementation-defined. The implementation shall ensure		
	that the time complexity of the chosen filter is not greater		
	than the time complexity of the filter that corresponds to		
	filter::good. [Note: By choosing this value, the user is		
	hinting that performance is more important than quality.		
	- end note]		
good	The filter that corresponds to this value is		
	implementation-defined. The implementation shall ensure		
	that the time complexity of the chosen formula is not		
	greater than the time complexity of the formula for		
	filter::best. [Note: By choosing this value, the user is		
	hinting that quality and performance are equally important. $-\operatorname{end} \operatorname{note}]$		
best	The filter that corresponds to this value is		
	implementation-defined. [Note: By choosing this value, the		
	user is hinting that quality is more important than		
	performance. — end note]		
nearest	Nearest-neighbor interpolation filtering		
bilinear	Bilinear interpolation filtering		

13.5 Enum class brush_type

[io2d.brushtype]

13.5.1 brush_type summary

[io2d.brushtype.summary]

- ¹ The brush_type enum class denotes the type of a brush object.
- ² See Table 21 for the meaning of each brush_type enumerator.

13.5.2 brush_type synopsis

[io2d.brushtype.synopsis]

```
namespace std::experimental::io2d::v1 {
  enum class brush_type {
    solid_color,
    surface,
    linear,
    radial
  };
}
```

13.5.3 brush_type enumerators

[io2d.brushtype.enumerators]

Table 21 — brush_type enumerator meanings

Enumerator	Meaning
solid_color	The brush object is a solid color brush.
surface	The brush object is a surface brush.
linear	The brush object is a linear gradient brush.
radial	The brush object is a radial gradient brush.

13.6 Class gradient_stop

[io2d.gradientstop]

13.6.1 Overview

[io2d.gradientstop.intro]

- ¹ The class gradient_stop describes a gradient stop that is used by gradient brushes.
- ² It has an *offset* of type float and an *offset color* of type rgba_color.

§ 13.6.1

```
[io2d.gradientstop.synopsis]
  13.6.2 gradient_stop synopsis
    namespace std::experimental::io2d::v1 {
      class gradient_stop {
      public:
        // 13.6.3, construct:
        constexpr gradient_stop() noexcept;
        constexpr gradient_stop(float o, rgba_color c) noexcept;<TODO><Implementation mismatch>
        // 13.6.4, modifiers:
        constexpr void offset(float o) noexcept;
        constexpr void color(rgba_color c) noexcept;
        // 13.6.5, observers:
        constexpr float offset() const noexcept;
        constexpr rgba_color color() const noexcept;
      };
      // 13.6.6, operators:
      constexpr bool operator==(const gradient_stop& lhs, const gradient_stop& rhs)
      constexpr bool operator!=(const gradient_stop& lhs, const gradient_stop& rhs)
        noexcept;
                                                                           [io2d.gradientstop.cons]
  13.6.3 gradient_stop constructors
  constexpr gradient_stop() noexcept;
1
        Effects: Equivalent to: gradient_stop(0.0f, rgba_color::transparent_black).
  constexpr gradient_stop(float o, rgba_color c) noexcept;
2
        Requires: \circ >= 0.0f and \circ <= 1.0f.
3
        Effects: Constructs a gradient_stop object.
       The offset is o rounded to the nearest multiple of 0.00001f. The offset color is c.
  13.6.4 gradient_stop modifiers
                                                                     [io2d.gradientstop.modifiers]
  constexpr void offset(float o) noexcept;
1
        Requires: o \ge 0.0f and o \le 1.0f.
        Effects: The offset is o rounded to the nearest multiple of 0.00001f.
  constexpr void color(rgba_color c) noexcept;
        Effects: The offset color is c.
  13.6.5 gradient_stop observers
                                                                     [io2d.gradientstop.observers]
  constexpr float offset() const noexcept;
       Returns: The offset.
  constexpr rgba_color color() const noexcept;
        Returns: The offset color.
  13.6.6 gradient_stop operators
                                                                            [io2d.gradientstop.ops]
  constexpr bool operator==(const gradient_stop& lhs, const gradient_stop& rhs)
        Returns: lhs.offset() == rhs.offset() && lhs.color() == rhs.color();
         Class template basic_brush
                                                                                         [io2d.brush]
  13.7.1
           Summary
                                                                                  [io2d.brush.intro]
<sup>1</sup> The class template basic_brush describes an opaque wrapper for visual data. It takes one type parameter,
```

§ 13.7.1

which is a GraphicsSurfaces.

- A basic_brush object is usable with any basic_image_surface basic_output_surface, and basic_-unmanaged_output_surface object provided that they have the same GraphicsSurfaces as the basic_brush object.
- ³ A basic_brush object's visual data is immutable. It is observable only by the effect that it produces when the brush is used as a *source brush* or as a *mask brush* (15.3.2.2).
- ⁴ A basic_brush object has a brush type of brush_type, which indicates which type of brush it is (Table 21).
- ⁵ As a result of technological limitations, a basic_brush object's visual data may have less precision than the data from which it was created.
- 6 The data are stored in an object of type typename GraphicsMath::brushes::brush_data_type.

13.7.2 Synopsis

[io2d.brush.synopsis]

```
namespace std::experimental::io2d::v1 {
template <class GraphicsSurfaces>
class basic_brush {
 public:
    using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
    using data_type = typename GraphicsSurfaces::brushes::brush_data_type;
    // 13.7.4, constructors:
    explicit basic_brush(const rgba_color& c);
    template <class InputIterator>
    basic_brush(const basic_point_2d<graphics_math_type>& begin,
      const basic_point_2d<graphics_math_type>& end,
      InputIterator first, InputIterator last);
    basic_brush(const basic_point_2d<graphics_math_type>& begin,
      const basic_point_2d<graphics_math_type>& end,
      ::std::initializer_list<gradient_stop> il);
    template <class InputIterator>
    basic_brush(const basic_circle<graphics_math_type>& start,
      const basic_circle<graphics_math_type>& end,
      InputIterator first, InputIterator last);
    basic_brush(const basic_circle<graphics_math_type>& start,
      const basic_circle<graphics_math_type>& end,
      ::std::initializer_list<gradient_stop> il);
    basic_brush(basic_image_surface<GraphicsSurfaces>&& img);
        // 13.7.5, accessors:
    const data_type& data() const noexcept;
    brush_type type() const noexcept;
 };
}
```

13.7.3 Sampling from a basic brush object

[io2d.brush.sampling]

- ¹ A basic_brush object is sampled from either as a source brush (15.3.2.2) or a mask brush (15.3.2.2).
- ² If it is being sampled from as a source brush, its *wrap mode*, *filter*, and *brush matrix* are defined by a basic_brush_props object (15.3.2.4 and 15.3.2.6).
- ³ If it is being sampled from as a mask brush, its wrap mode, filter, and *mask matrix* are defined by a basic_mask_props object (15.3.2.5 and 15.3.2.6).
- When sampling from a basic_brush object b, the brush_type returned by calling b.type() determines how the results of sampling are determined:
 - 1. If the result of b.type() is brush_type::solid_color then b is a solid color brush.
 - 2. If the result of b.type() is brush_type::surface then b is a surface brush.
 - 3. If the result of b.type() is brush_type::linear then b is a linear gradient brush.
 - 4. If the result of b.type() is brush_type::radial then b is a radial gradient brush.

§ 13.7.3

13.7.3.1 Sampling from a solid color brush

[io2d.brush.sampling.color]

When b is a solid color brush, then when sampling from b, the visual data returned is always the visual data used to construct b, regardless of the point which is to be sampled and regardless of the return values of wrap mode, filter, and brush matrix or mask matrix.

13.7.3.2 Sampling from a linear gradient brush

[io2d.brush.sampling.linear]

When b is a linear gradient brush, when sampling point pt, where pt is the return value of calling the transform_pt member function of brush matrix or mask matrix using the requested point, from b, the visual data returned are as specified by 13.2.2 and 13.2.4.

13.7.3.3 Sampling from a radial gradient brush

[io2d.brush.sampling.radial]

¹ When b is a radial gradient brush, when sampling point pt, where pt is the return value of calling the transform_pt member function of brush matrix or mask matrix using the requested point, from b, the visual data are as specified by 13.2.3 and 13.2.4.

13.7.3.4 Sampling from a surface brush

[io2d.brush.sampling.surface]

When b is a surface brush, when sampling point pt from b, where pt is the return value of calling the transform_pt member function of the brush matrix or mask matrix using the requested point, the visual data returned are from the point pt in the raster graphics data of the brush, as modified by the values of wrap mode (13.3) and filter (13.4).

13.7.4 Constructors

5

6

[io2d.brush.ctor]

explicit basic_brush(const rgba_color& c);<TODO><Implementation mismatch> MM: I'm not seeing a mismatch. Am I mis

- 1 Effects: Constructs an object of type basic_brush.
- 2 Postconditions: data() == GraphicsSurfaces::brushes::create_brush(c).
- 3 Remarks: The visual data format of the visual data are as-if it is that specified by format::argb32.

```
Sampling from the brush produces the results specified in 13.7.3.1.
template <class InputIterator>
basic_brush(const basic_point_2d<graphics_math_type>& begin,
  const basic_point_2d<graphics_math_type>& end,
  InputIterator first, InputIterator last);
     Effects: Constructs an object of type basic brush.
     Postconditions: data() == GraphicsSurfaces::brushes::create brush(begin, end, first, last).
     Remarks: Sampling from this brush produces the results specified in 13.7.3.2.
basic_brush(const basic_point_2d<graphics_math_type>& begin,
  const basic_point_2d<graphics_math_type>& end,
  initializer_list<gradient_stop> il);
     Effects: Constructs an object of type basic_brush.
```

- 8
- 9 Postconditions: data() == GraphicsSurfaces::brushes::create brush(begin, end, il).
- 10 Remarks: Sampling from this brush produces the results specified in 13.7.3.2.

```
template <class InputIterator>
basic_brush(const basic_circle<graphics_math_type>& start,
  const basic_circle<graphics_math_type>& end,
  InputIterator first, InputIterator last);
     Effects: Constructs an object of type basic_brush.
```

- 11
- Postconditions: data() == GraphicsSurfaces::brushes::create_brush(start, end, first, last). 12
- 13 Remarks: Sampling from this brush produces the results specified in 13.7.3.3.

```
basic_brush(const basic_circle<graphics_math_type>& start,
  const basic_circle<graphics_math_type>& end,
  initializer_list<gradient_stop> il);
```

14 Effects: Constructs an object of type basic_brush.

§ 13.7.4 130

```
15
        Postconditions: data() == GraphicsSurfaces::brushes::create_brush(start, end, il).
16
        Remarks: Sampling from this brush produces the results specified in 13.7.3.3.
   basic_brush(basic_image_surface<GraphicsSurfaces>&& img);
17
        Effects: Constructs an object of type basic_brush.
18
         Postconditions: data() == GraphicsSurfaces::brushes::create_brush(move(img)).
19
        Sampling from this brush produces the results specified in 13.7.3.4.
   13.7.5
            Accessors
                                                                                     [io2d.brush.acc]
   const data_type& data() const noexcept;
        Returns: A reference to the basic_brush object's data object (See 13.7.1).
   brush_type type() const noexcept;
2
        Returns: GraphicsSurfaces::brushes::get_brush_type(data()).
```

§ 13.7.5

14 Surface state props

[io2d.surfacestate]

14.1 Overview

[io2d.surfacestate.general]

- ¹ In order to produce effects beyond simply drawing raster graphics data or a path to a surface, graphics state data is supplied when performing rendering and composing operations (15.3.2) on surfaces.
- ² Surface state types group together related graphics state data. Objects of those types are then supplied as arguments to the functions that carry out rendering and composing operations on surfaces. [Note: This allows surfaces to be stateless, which typically provides significant performance gains on modern graphics acceleration hardware. end note]
- 3 The enum class types and surface state class templates that define and provide the graphics state data are described below.

14.2 Enum class antialias

[io2d.antialias]

14.2.1 antialias summary

[io2d.antialias.summary]

¹ The antialias enum class specifies the type of anti-aliasing that the rendering system uses for rendering paths. See Table 22 for the meaning of each antialias enumerator.

14.2.2 antialias synopsis

[io2d.antialias.synopsis]

```
namespace std::experimental::io2d::v1 {
  enum class antialias {
    none,
    fast,
    good,
    best
  };
}
```

14.2.3 antialias enumerators

[io2d.antialias.enumerators]

Table 22 — antialias enumerator meanings

Enumerator	Meaning		
none	No anti-aliasing is performed when performing a rendering		
	operation.		
fast	Some form of anti-aliasing should be used when performing		
	a rendering operation but performance is more important		
	than the quality of the results. The technique used is		
	implementation-defined.		
good	Some form of anti-aliasing should be used when performing		
	a rendering operation and the sacrificing some performance		
	to obtain better anti-aliasing results than would likely be		
	obtained from antialias::fast is acceptable. The		
	technique used is implementation-defined.		
best	Some form of anti-aliasing should be used when performing		
	a rendering operation and better anti-aliasing results than		
	would likely be obtained from antialias::fast and		
	antialias::good are desired even if performance degrades		
	significantly. The technique used is implementation-defined.		
	[Note: This might commonly be chosen when a user is		
	going to render something once and cache the results for		
	repeated use or when a user is rendering something that		
	does not necessarily need performance suitable for real-time		
	computer graphics applications. $-end\ note$		

§ 14.2.3

14.3 Enum class fill_rule

[io2d.fillrule]

14.3.1 fill_rule summary

[io2d.fillrule.summary]

- ¹ The fill_rule enum class determines how the filling operation (15.3.5) is performed on a path.
- ² For each point, draw a ray from that point to infinity which does not pass through the start point or end point of any non-degenerate segment in the path, is not tangent to any non-degenerate segment in the path, and is not coincident with any non-degenerate segment in the path.
- ³ See Table 23 for the meaning of each fill_rule enumerator.

14.3.2 fill_rule synopsis

[io2d.fillrule.synopsis]

```
namespace std::experimental::io2d::v1 {
  enum class fill_rule {
    winding,
    even_odd
  };
}
```

14.3.3 fill_rule enumerators

[io2d.fillrule.enumerators]

Table 23 — fill_rule enumerator meanings

Enumerator	Meaning
winding	If the fill rule (14.10.1) is fill_rule::winding, then using
	the ray described above and beginning with a count of zero,
	add one to the count each time a non-degenerate segment
	crosses the ray going left-to-right from its begin point to its
	end point, and subtract one each time a non-degenerate
	segment crosses the ray going from right-to-left from its
	begin point to its end point. If the resulting count is zero
	after all non-degenerate segments that cross the ray have
	been evaluated, the point shall not be filled; otherwise the
	point shall be filled.
even_odd	If the fill rule is fill_rule::even_odd, then using the ray
	described above and beginning with a count of zero, add
	one to the count each time a non-degenerate segment
	crosses the ray. If the resulting count is an odd number
	after all non-degenerate segments that cross the ray have
	been evaluated, the point shall be filled; otherwise the point
	shall not be filled. [Note: Mathematically, zero is an even
	number, not an odd number. $-end note$

14.4 Enum class line_cap

[io2d.linecap]

14.4.1 line_cap summary

[io2d.linecap.summary]

¹ The line_cap enum class specifies how the ends of lines should be rendered when a interpreted_path object is stroked. See Table 24 for the meaning of each line_cap enumerator.

14.4.2 line_cap synopsis

[io2d.linecap.synopsis]

```
namespace std::experimental::io2d::v1 {
  enum class line_cap {
    none,
    round,
    square
  };
}
```

14.4.3 line_cap enumerators

[io2d.linecap.enumerators]

§ 14.4.3

Table 24 — line_cap enumerator meanings

Enumerator	Meaning
none	The line has no cap. It terminates exactly at the end point.
round	The line has a circular cap, with the end point serving as
	the center of the circle and the line width serving as its
	diameter.
square	The line has a square cap, with the end point serving as the
	center of the square and the line width serving as the
	length of each side.

14.5 Enum class line_join

[io2d.linejoin]

14.5.1 line_join summary

[io2d.linejoin.summary]

¹ The line_join enum class specifies how the junction of two line segments should be rendered when a interpreted_path is stroked. See Table 25 for the meaning of each enumerator.

14.5.2 line_join synopsis

[io2d.linejoin.synopsis]

```
namespace std::experimental::io2d::v1 {
  enum class line_join {
    miter,
    round,
    bevel
  };
}
```

14.5.3 line_join enumerators

[io2d.linejoin.enumerators]

Table 25 — line_join enumerator meanings

Enumerator	Meaning
miter	Joins will be mitered or beveled, depending on the miter
	limit (see: 14.12.1).
round	Joins will be rounded, with the center of the circle being
	the join point.
bevel	Joins will be beveled, with the join cut off at half the line
	width from the join point. Implementations may vary the
	cut off distance by an amount that is less than one pixel at
	each join for aesthetic or technical reasons.

14.6 Enum class compositing_op

[io2d.compositingop]

14.6.1 compositing_op Summary

[io2d.compositingop.summary]

¹ The compositing_op enum class specifies composition algorithms. See Table 26, Table 27 and Table 28 for the meaning of each compositing_op enumerator.

14.6.2 compositing_op Synopsis

[io2d.compositingop.synopsis]

```
namespace std::experimental::io2d::v1 {
  enum class compositing_op {
    // basic
    over,
    clear,
    source,
    in,
    out,
    atop,
    dest_over,
    dest_in,
    dest_out,
```

```
dest_atop,
    xor_op,
    add,
    saturate,
    // blend
    multiply,
    screen.
    overlay,
    darken,
    lighten,
    color_dodge
    color_burn,
    hard_light,
    soft_light,
    difference,
    exclusion.
    //\ hsl
    hsl_hue,
    hsl_saturation,
    hsl_color,
    hsl_luminosity
}
```

14.6.3 compositing_op Enumerators

[io2d.compositingop.enumerators]

- ¹ The tables below specifies the mathematical formula for each enumerator's composition algorithm. The formulas differentiate between three color channels (red, green, and blue) and an alpha channel (transparency). For all channels, valid channel values are in the range [0.0, 1.0].
- Where a visual data format for a visual data element has no alpha channel, the visual data format shall be treated as though it had an alpha channel with a value of 1.0 for purposes of evaluating the formulas.
- ³ Where a visual data format for a visual data element has no color channels, the visual data format shall be treated as though it had a value of 0.0 for all color channels for purposes of evaluating the formulas.
- ⁴ The following symbols and specifiers are used:
 - The R symbol means the result color value
 - The S symbol means the source color value
 - The D symbol means the destination color value
 - The c specifier means the color channels of the value it follows
 - The a specifier means the alpha channel of the value it follows
- ⁵ The color symbols R, S, and D may appear with or without any specifiers.
- ⁶ If a color symbol appears alone, it designates the entire color as a tuple in the unsigned normalized form (red, green, blue, alpha).
- ⁷ The specifiers c and a may appear alone or together after any of the three color symbols.
- ⁸ The presence of the c specifier alone means the three color channels of the color as a tuple in the unsigned normalized form (red, green, blue).
- 9 The presence of the a specifier alone means the alpha channel of the color in unsigned normalized form.
- The presence of the specifiers together in the form ca means the value of the color as a tuple in the unsigned normalized form (red, green, blue, alpha), where the value of each color channel is the product of each color channel and the alpha channel and the value of the alpha channel is the original value of the alpha channel. [Example: When it appears in a formula, Sca means ($(Sc \times Sa), Sa)$, such that, given a source color Sc = (1.0, 0.5, 0.0) and an source alpha Sa = (0.5), the value of Sca when specified in one of the formulas would be $Sca = (1.0 \times 0.5, 0.5 \times 0.5, 0.0 \times 0.5, 0.5) = (0.5, 0.25, 0.0, 0.5)$. The same is true for Dca and Rca. $end\ example$]
- No space is left between a value and its channel specifiers. Channel specifiers will be preceded by exactly one value symbol.
- When performing an operation that involves evaluating the color channels, each color channel should be evaluated individually to produce its own value.

- The basic enumerators specify a value for bound. This value may be 'Yes', 'No', or 'N/A'.
- ¹⁴ If the bound value is 'Yes', then the source is treated as though it is also a mask. As such, only areas of the surface where the source would affect the surface are altered. The remaining areas of the surface have the same color value as before the compositing operation.
- ¹⁵ If the bound value is 'No', then every area of the surface that is not affected by the source will become transparent black. In effect, it is as though the source was treated as being the same size as the destination surface with every part of the source that does not already have a color value assigned to it being treated as though it were transparent black. Application of the formula with this precondition results in those areas evaluating to transparent black such that evaluation can be bypassed due to the predetermined outcome.
- ¹⁶ If the bound value is 'N/A', the operation would have the same effect regardless of whether it was treated as 'Yes' or 'No' such that those bound values are not applicable to the operation. A 'N/A' formula when applied to an area where the source does not provide a value will evaluate to the original value of the destination even if the source is treated as having a value there of transparent black. As such the result is the same as-if the source were treated as being a mask, i.e. 'Yes' and 'No' treatment each produce the same result in areas where the source does not have a value.
- ¹⁷ If a clip is set and the bound value is 'Yes' or 'N/A', then only those areas of the surface that the are within the clip will be affected by the compositing operation.
- ¹⁸ If a clip is set and the bound value is 'No', then only those areas of the surface that the are within the clip will be affected by the compositing operation. Even if no part of the source is within the clip, the operation will still set every area within the clip to transparent black. Areas outside the clip are not modified.

Table 26 — compositing_op	basic enumerat	or meanings
-----------------------------	----------------	-------------

Enumerator	Bound	Color	Alpha
clear	Yes	Rc = 0	Ra = 0
source	Yes	Rc = Sc	Ra = Sa
over	N/A	$Rc = \frac{(Sca + Dca \times (1 - Sa))}{Ra}$	$Ra = Sa + Da \times (1 - Sa)$
in	No	Rc = Sc	$Ra = Sa \times Da$
out	No	Rc = Sc	$Ra = Sa \times (1 - Da)$
atop	N/A	$Rc = Sca + Dc \times (1 - Sa)$	Ra = Da
dest_over	N/A	$Rc = \frac{(Sca \times (1 - Da) + Dca)}{Ra}$	$Ra = (1 - Da) \times Sa + Da$
dest_in	No	Rc = Dc	$Ra = Sa \times Da$
dest_out	N/A	Rc = Dc	$Ra = (1 - Sa) \times Da$
dest_atop	No	$Rc = Sc \times (1 - Da) + Dca$	Ra = Sa
xor_op	N/A	$Rc = \frac{(Sca \times (1 - Da) + Dca \times (1 - Sa))}{Ra}$	$Ra = Sa + Da - 2 \times Sa \times Da$
add	N/A	$Rc = \frac{(Sca + Dca)}{Ra}$	Ra = min(1, Sa + Da)
saturate	N/A	$Rc = \frac{(min(Sa, 1 - Da) \times Sc + Dca)}{Ra}$	Ra = min(1, Sa + Da)

- The blend enumerators and hsl enumerators share a common formula for the result color's color channel, with only one part of it changing depending on the enumerator. The result color's color channel value formula is as follows: $Rc = \frac{1}{Ra} \times ((1 Da) \times Sca + (1 Sa) \times Dca + Sa \times Da \times f(Sc, Dc))$. The function f(Sc, Dc) is the component of the formula that is enumerator dependent.
- ²⁰ For the blend enumerators, the color channels shall be treated as separable, meaning that the color formula shall be evaluated separately for each color channel: red, green, and blue.

- The color formula divides 1 by the result color's alpha channel value. As a result, if the result color's alpha channel is zero then a division by zero would normally occur. Implementations shall not throw an exception nor otherwise produce any observable error condition if the result color's alpha channel is zero. Instead, implementations shall bypass the division by zero and produce the result color (0, 0, 0, 0), i.e. transparent black, if the result color alpha channel formula evaluates to zero. [Note: The simplest way to comply with this requirement is to bypass evaluation of the color channel formula in the event that the result alpha is zero. However, in order to allow implementations the greatest latitude possible, only the result is specified.—end note]
- For the enumerators in Table 27 and Table 28 the result color's alpha channel value formula is as follows: $Ra = Sa + Da \times (1 Sa)$. [Note: Since it is the same formula for all enumerators in those tables, the formula is not included in those tables. end note]
- ²³ All of the blend enumerators and hsl enumerators have a bound value of 'N/A'.

Table 27 — compositing_op blend enumerator meanings

```
Enumerator
                                             Color
                 f(Sc, Dc) = Sc \times Dc
multiply
                 f(Sc, Dc) = Sc + Dc - Sc \times Dc
screen
                 if(Dc \leq 0.5f) {
overlay
                   f(Sc, Dc) = 2 \times Sc \times Dc
                 else {
                   f(Sc, Dc) =
                      1 - 2 \times (1 - Sc) \times
                      (1 - Dc)
                 [ Note: The difference between this enumerator and
                 hard light is that this tests the destination color (Dc)
                 whereas hard_light tests the source color (Sc). — end
                 note
darken
                 f(Sc, Dc) = min(Sc, Dc)
                 f(Sc, Dc) = max(Sc, Dc)
lighten
color_dodge
                 if(Dc < 1) {
                   f(Sc, Dc) = min(1, \frac{Dc}{(1 - Sc)})
                 else {
                   f(Sc, Dc) = 1\}
                 if (Dc > 0) {
color_burn
                   f(Sc, Dc) = 1 - min(1, \frac{1 - Dc}{Sc})
                 else {
                   f(Sc, Dc) = 0
                 if (Sc \le 0.5f)  {
hard_light
                   f(Sc, Dc) = 2 \times Sc \times Dc
                 else {
                   f(Sc, Dc) =
                      1 - 2 \times (1 - Sc) \times
                      (1-Dc)
                 [Note: The difference between this enumerator and
                 overlay is that this tests the source color (Sc) whereas
                 overlay tests the destination color (Dc). — end note
```

Table 27 — compositing_op blend enumerator meanings (continued)

```
Color
Enumerator
soft_light
                  if (Sc \le 0.5) {
                     f(Sc, Dc) =
                        Dc - (1 - 2 \times Sc) \times Dc \times Dc
                        (1 - Dc)
                  else {
                     f(Sc, Dc) =
                        Dc + (2 \times Sc - 1) \times
                        (g(Dc) - Sc)
                  }
                  g(Dc) is defined as follows:
                  if (Dc \le 0.25)  {
                     g(Dc) =
                        ((16 \times Dc - 12) \times Dc +
                        4) \times Dc
                  else {
                     g(Dc) = \sqrt{Dc}
                   f(Sc, Dc) = abs(Dc - Sc)
difference
                   f(Sc, Dc) = Sc + Dc - 2 \times Sc \times Dc
exclusion
```

- For the hsl enumerators, the color channels shall be treated as nonseparable, meaning that the color formula shall be evaluated once, with the colors being passed in as tuples in the form (red, green, blue).
- 25 The following additional functions are used to define the hsl enumerator formulas:

```
 \begin{array}{lll} 26 & min(x,\ y,\ z) = min(x,\ min(y,\ z)) \\ 27 & max(x,\ y,\ z) = max(x,\ max(y,\ z)) \\ 28 & sat(C) = max(Cr,\ Cg,\ Cb) - min(Cr,\ Cg,\ Cb) \\ 29 & lum(C) = Cr \times 0.3 + Cg \times 0.59 + Cb \times 0.11 \\ 30 & clip\_color(C) = \{ \\ & L = lum(C) \\ & N = min(Cr, Cg, Cb) \\ & X = max(Cr, Cg, Cb) \\ & if\ (N < 0.0)\ \{ \\ & Cr = L + \frac{((Cr - L) \times L)}{(L - N)} \\ & Cg = L + \frac{((Cg - L) \times L)}{(L - N)} \\ & Cb = L + \frac{((Cb - L) \times L)}{(X - L)} \\ & Cr = L + \frac{((Cg - L) \times (1 - L))}{(X - L)} \\ & Cg = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{((Cb - L) \times (1 - L))}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)} \\ & Cb = L + \frac{(Cb - L) \times (1 - L)}{(X - L)}
```

```
return C
31 \ set \ lum(C, L) = \{
                            D = L - lum(C)
                           Cr = Cr + D
                           Cg = Cg + D
                           Cb=Cb+D
                            return\ clip\_color(C)
32
             set\_sat(C,S) = \{
                            R = C
                            auto\&\ max = (Rr > Rg)\ ?\ ((Rr > Rb)\ ?\ Rr : Rb) : ((Rg > Rb)\ ?\ Rg : Rb)
                            auto \& \ mid = (Rr > Rg) \ ? \ ((Rr > Rb) \ ? \ ((Rg > Rb) \ ? \ Rg : Rb) : Rr) : ((Rg > Rb) \ ? \ ((Rr > Rb) \ ? \ Rr : Rr) : ((Rg > Rb) \ ? \ Rr : Rr) : ((Rg > Rb) \ ? \ Rr : Rr) : ((Rg > Rb) \ ? \ Rr : Rr) : ((Rg > Rb) \ ? \ Rr : Rr) : ((Rg > Rb) \ ? \ Rr : Rr) : ((Rg > Rb) \ ? \ Rr) : ((Rg > Rb) \ ? \ Rr : Rr) : ((Rg > Rb) \ ? \ Rr) : ((Rg > Rb) : ((Rg > Rb) \ ? \ Rr) : ((Rg > Rb) : ((Rg > Rb) \ ? \ Rr) 
                            auto& min = (Rr > Rg)? ((Rg > Rb)? Rb : Rg) : ((Rr > Rb)? Rb : Rr)
                            if (max > min) \{
                                     mid = \frac{((mid - min) \times S)}{}
                                                                                          max - min
                                      max = S
                            }
                           else {
                                      mid = 0.0
                                      max = 0.0
                           min = 0.0
                            return R
```

Table 28 — compositing_op hsl enumerator meanings

Enumerator	Color & Alpha
hsl_hue	$f(Sc,Dc) = set_lum(set_sat(Sc, sat(Dc)), lum(Dc))$
hsl_saturation	$(Sc,Dc) = set_lum(set_sat(Dc,sat(Sc)),\ lum(Dc))$
hsl_color	$f(Sc, Dc) = set_lum(Sc, lum(Dc))$
hsl_luminosity	$f(Sc, Dc) = set_lum(Dc, lum(Sc))$

14.7 Enum class format

[io2d.format]

14.7.1 **Summary**

[io2d.format.summary]

¹ The format enum class indicates a visual data format. See Table 29 for the meaning of each format enumerator.

14.7.2 Synopsis

[io2d.format.synopsis]

```
namespace std::experimental::io2d::v1 {
  enum class format {
    invalid,
    argb32,
    xrgb32,
    xrgb16,
    a8
  };
}
```

operations modify the values of R directly. — end note

14.7.3 Enumerators

[io2d.format.enumerators]

§ 14.7.3

		Maan	ino
10010 20	TOTMAO	ciidiiiciatoi	meanings

Table 20 — format enumerator meanings

Enumerator	Meaning
invalid	A previously requested format is unsupported by the
	implementation.
argb32	A 32-bit RGB color model pixel format. There is an 8 bit
	alpha channel, an 8-bit red color channel, an 8-bit green
	color channel, and an 8-bit blue color channel. The byte
	order, interpretation of values within each channel, and
	whether or not this is a premultiplied format are
	implementation-defined.
xrgb32	A 32-bit RGB color model pixel format. There is an 8 bit
	channel that is not used, an 8-bit red color channel, an 8-bit
	green color channel, and an 8-bit blue color channel. The
	byte order and interpretation of values within each channel
	are implementation-defined.
xrgb16	A 16-bit RGB color model pixel format. There is a red
	color channel, a green color channel, and a blue color
	channel. The number of bits, byte order, and interpretation
	of values within each channel are implementation-defined.
a8	An 8-bit transparency data pixel format. All 8 bits are an
	alpha channel.

1 Implementations may support additional visual data formats (See: 8.2.3).

14.8 Enum class scaling

[io2d.scaling]

14.8.1 scaling summary

[io2d.scaling.summary]

- The scaling enum class specifies the type of scaling a display_surface will use when the size of its display buffer (??) differs from the size of its back buffer (??).
- ² See Table 30 for the meaning of each scaling enumerator.

14.8.2 scaling synopsis

[io2d.scaling.synopsis]

```
namespace std::experimental::io2d::v1 {
  enum class scaling {
    letterbox,
    uniform,
    fill_uniform,
    fill_exact,
    none
  };
}
```

14.8.3 scaling enumerators

[io2d.scaling.enumerators]

1 [Note: In the following table, examples will be given to help explain the meaning of each enumerator. The examples will all use a display_surface called ds.

The back buffer (??) of ds is 640x480 (i.e. it has a width of 640 pixels and a height of 480 pixels), giving it an aspect ratio of $1.\overline{3}$.

The display buffer (??) of ds is 1280x720, giving it an aspect ratio of $1.\overline{7}$.

When a rectangle is defined in an example, the coordinate (x1, y1) denotes the top left corner of the rectangle, inclusive, and the coordinate (x2, y2) denotes the bottom right corner of the rectangle, exclusive. As such, a rectangle with (x1, y1) = (10, 10), (x2, y2) = (20, 20) is 10 pixels wide and 10 pixels tall and includes the pixel (x, y) = (19, 19) but does not include the pixels (x, y) = (20, 19) or (x, y) = (19, 20). — end note

§ 14.8.3

Table 30 — scaling enumerator meanings

Enumerator Meaning

letterbox

Fill the display buffer with the letterbox brush (??) of the display_surface. Uniformly scale the back buffer so that one dimension of it is the same length as the same dimension of the display buffer and the second dimension of it is not longer than the second dimension of the display buffer and transfer the scaled back buffer to the display buffer using sampling such that it is centered in the display buffer.

[Example: The display buffer of ds will be filled with the brush object returned by ds.letterbox_brush();. The back buffer of ds will be scaled so that it is 960x720, thereby retaining its original aspect ratio. The scaled back buffer will be transfered to the display buffer using sampling such that it is in the rectangle

sampling such that it is in the rectangle $(x1,y1)=(\frac{1280}{2}-\frac{960}{2},0)=(160,0),$ $(x2,y2)=(960+(\frac{1280}{2}-\frac{960}{2}),720)=(1120,720).$ This fulfills all of the conditions. At least one dimension of the scaled back buffer is the same length as the same dimension of the display buffer (both have a height of 720 pixels). The second dimension of the scaled back buffer is not longer than the second dimension of the display buffer (the back buffer's scaled width is 960 pixels, which is not longer than the display buffer's width of 1280 pixels. Lastly, the scaled back buffer is centered in the display buffer (on the x axis there are 160 pixels between each vertical side of the scaled back buffer and the nearest vertical edge of the display

buffer and on the y axis there are 0 pixels between each horizontal side of the scaled back buffer and the nearest horizontal edge of the display buffer). — end example

§ 14.8.3

Table 30 — scaling enumerator meanings (continued)

Enumerator	Meaning
uniform	Uniformly scale the back buffer so that one dimension of it
	is the same length as the same dimension of the display
	buffer and the second dimension of it is not longer than the
	second dimension of the display buffer and transfer the
	scaled back buffer to the display buffer using sampling such
	that it is centered in the display buffer.
	[Example: The back buffer of ds will be scaled so that it is
	960x720, thereby retaining its original aspect ratio. The
	scaled back buffer will be transferred to the display buffer
	using sampling such that it is in the rectangle
	$(x1, y1) = (\frac{1280}{2} - \frac{960}{2}, 0) = (160, 0),$ $(x2, y2) = (960 + (\frac{1280}{2} - \frac{960}{2}), 720) = (1120, 720).$ This
	$\frac{2}{1280}$ $\frac{2}{060}$
	$(x2, y2) = (960 + (\frac{1200}{2} - \frac{300}{2}), 720) = (1120, 720).$ This
	fulfills all of the conditions. At least one dimension of the
	scaled back buffer is the same length as the same dimension
	of the display buffer (both have a height of 720 pixels). The
	second dimension of the scaled back buffer is not longer
	than the second dimension of the display buffer (the back
	buffer's scaled width is 960 pixels, which is not longer than
	the display buffer's width of 1280 pixels. Lastly, the scaled
	back buffer is centered in the display buffer (on the x axis
	there are 160 pixels between each vertical side of the scaled
	back buffer and the nearest vertical edge of the display
	buffer and on the y axis there are 0 pixels between each
	horizontal side of the scaled back buffer and the nearest
	horizontal edge of the display buffer). — end example
	[Note: The difference between uniform and letterbox is
	that uniform does not modify the contents of the display
	buffer that fall outside of the rectangle into which the
	scaled back buffer is drawn while letterbox fills those
	areas with the display_surface object's letterbox brush
	(see: $??$). $-end\ note$]
fill_uniform	Uniformly scale the back buffer so that one dimension of it
_	is the same length as the same dimension of the display
	buffer and the second dimension of it is not shorter than
	the second dimension of the display buffer and transfer the
	scaled back buffer to the display buffer using sampling such
	that it is centered in the display buffer.
	[Example: The back buffer of ds will be drawn in the
	rectangle $(x1, y1) = (0, -120), (x2, y2) = (1280, 840).$ This
	fulfills all of the conditions. At least one dimension of the
	scaled back buffer is the same length as the same dimension
	of the display buffer (both have a width of 1280 pixels).
	The second dimension of the scaled back buffer is not
	shorter than the second dimension of the display buffer (the
	back buffer's scaled height is 840 pixels, which is not shorter
	than the display buffer's height of 720 pixels). Lastly, the
	scaled back buffer is centered in the display buffer (on the x
	axis there are 0 pixels between each vertical side of the
	rectangle and the nearest vertical edge of the display buffer
	and on the y axis there are 120 pixels between each
	horizontal side of the rectangle and the nearest horizontal
	edge of the display buffer). — end example
	G

§ 14.8.3

Table 30 — scaling enumerator meanings (continued)

Enumerator	Meaning
fill_exact	Scale the back buffer so that each dimension of it is the
	same length as the same dimension of the display buffer
	and transfer the scaled back buffer to the display buffer
	using sampling such that its origin is at the origin of the
	display buffer.
	[Example: The back buffer will be drawn in the rectangle
	(x1, y1) = (0, 0), (x2, y2) = (1280, 720). This fulfills all of
	the conditions. Each dimension of the scaled back buffer is
	the same length as the same dimension of the display buffer
	(both have a width of 1280 pixels and a height of 720 pixels)
	and the origin of the scaled back buffer is at the origin of
	the display buffer. $-end\ example$]
none	Do not perform any scaling. Transfer the back buffer to the
	display buffer using sampling such that its origin is at the
	origin of the display buffer.
	[Example: The back buffer of ds will be drawn in the
	rectangle $(x1, y1) = (0, 0), (x2, y2) = (640, 480)$ such that
	no scaling occurs and the origin of the back buffer is at the
	origin of the display buffer. — end example]

14.9 Class template basic_render_props

[io2d.renderprops]

14.9.1 Overview

[io2d.renderprops.intro]

- The basic_render_props class template provides general state information that is applicable to all rendering and composing operations (15.3.2).
- ² It has a *filter algorithm* of type filter, a *surface matrix* of type basic_matrix_2d, and a *compositing operator* of type compositing_op.
- ³ The data are stored in an object of type typename GraphicsSurfaces::surface_state_props::render_-props_data_type. It is accessible using the data member functions.

14.9.2 Synopsis

[io2d.renderprops.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsSurfaces>
  class basic_render_props {
  public:
    using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
    using data_type =
      typename GraphicsSurfaces::surface_state_props::render_props_data_type;
    // 14.9.3, constructors:
    basic_render_props() noexcept;
    explicit basic_render_props(filter f,
      const basic_matrix_2d<graphics_math_type>& m = basic_matrix_2d<graphics_math_type>{},
      compositing_op co = compositing_op::over) noexcept;
    // 14.9.4, accessors:
    const data_type& data() const noexcept;
    data_type& data() noexcept;
    // 14.9.5, modifiers:
    void filtering(filter f) noexcept;
    void compositing(compositing_op co) noexcept;
    void surface_matrix(const basic_matrix_2d<graphics_math_type>& m) noexcept;
    // 14.9.6, observers:
    filter filtering() const noexcept;
    compositing_op compositing() const noexcept;
```

§ 14.9.2

```
basic_matrix_2d<graphics_math_type> surface_matrix() const noexcept;
      };
    }
           Constructors
                                                                          [io2d.renderprops.ctor]
  14.9.3
  basic_render_props() noexcept;
1
       Effects: Constructs an object of type basic_render_props.
       Postconditions: data() == X::surface_state_props::create_render_props().
  explicit basic_render_props(filter f,
    const basic_matrix_2d<graphics_math_type>& m = basic_matrix_2d<graphics_math_type>{},
    compositing_op co = compositing_op::over) noexcept;
3
       Requires: m.is_invertible() == true.
4
       Effects: Constructs an object of type basic_render_props.
       Postconditions: data() == GraphicsSurfaces::surface_state_props::create_render_props(f,
       m, co).
  14.9.4 Accessors
                                                                           [io2d.renderprops.acc]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
        Returns: A reference to the basic_render_props object's data object (See: 14.9.1).
  14.9.5 Modifiers
                                                                          [io2d.renderprops.mod]
  void filtering(filter f) noexcept;
       Effects: Calls GraphicsSurfaces::surface_state_props::filtering(data(), f)).
       Remarks: The filtering algorithm is f.
  void compositing(compositing_op co) noexcept;
2
       Effects: Calls GraphicsSurfaces::surface_state_props::compositing(data(), co).
       Remarks: The compositing operator is co.
  void surface matrix(const basic matrix 2d<graphics math type>& m) noexcept;
3
       Requires: m.is_invertible() == true.
4
       Effects: Calls GraphicsSurfaces::surface_state_props::surface_matrix(data(), m).
5
       Remarks: The surface matrix is m.
  14.9.6 Observers
                                                                           [io2d.renderprops.obs]
  filter filtering() const noexcept;
       Returns: GraphicsSurfaces::surface_state_props::filtering(data()).
2
       Remarks: The returned value is the filter algorithm.
  compositing_op compositing() const noexcept;
3
       Returns: GraphicsSurfaces::surface_state_props::compositing(data()).
4
       Remarks: The returned value is the compositing operator.
  basic_matrix_2d<graphics_math_type> surface_matrix() const noexcept;
5
       Returns: GraphicsSurfaces::surface_state_props::surface_matrix(data()).
       Remarks: The returned value is the surface matrix.
```

§ 14.9.6

14.10 Class basic_brush_props

[io2d.brushprops]

14.10.1 basic_brush_props summary

[io2d.brushprops.summary]

- ¹ The basic_brush_props class provides general state information that is applicable to all rendering and composing operations (15.3.2).
- ² It has a wrap mode of type wrap_mode, a filter of type filter, a fill rule of type fill_rule, and a brush matrix of type basic matrix 2d.

1

2

```
[io2d.brushprops.synopsis]
14.10.2 basic brush props synopsis
  namespace std::experimental::io2d::v1 {
    template <class GraphicsSurfaces>
    class basic_brush_props {
     public:
     using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
      // 14.10.3, constructor:
     basic_brush_props(io2d::wrap_mode w = io2d::wrap_mode::none,
        io2d::filter fi = io2d::filter::good,
        io2d::fill_rule fr = io2d::fill_rule::winding,
       const basic_matrix_2d<graphics_math_type>& m = basic_matrix_2d<graphics_math_type>{})
       noexcept;
     // 14.10.4, modifiers:
     void wrap_mode(io2d::wrap_mode w) noexcept;
     void filter(io2d::filter fi) noexcept;
     void fill_rule(io2d::fill_rule fr) noexcept;
     void brush_matrix(const basic_matrix_2d<graphics_math_type>& m) noexcept;
     // 14.10.5, observers:
     io2d::wrap_mode wrap_mode() const noexcept;
     io2d::filter filter() const noexcept;
     io2d::fill_rule fill_rule() const noexcept;
     basic_matrix_2d<graphics_math_type> brush_matrix() const noexcept;
 }
                                                                         [io2d.brushprops.cons]
14.10.3 basic_brush_props constructor
basic_brush_props(io2d::wrap_mode w = io2d::wrap_mode::none,
  io2d::filter fi = io2d::filter::good,
  io2d::fill_rule fr = io2d::fill_rule::winding,
 const basic_matrix_2d<graphics_math_type>& m = basic_matrix_2d<graphics_math_type>{})
 noexcept;
     Requires: m.is_invertible() == true.
     Effects: Constructs an object of type basic brush props.
     The wrap mode is w. The filter is fi. The fill rule is fr. The brush matrix is m.
14.10.4 basic_brush_props modifiers
                                                                    [io2d.brushprops.modifiers]
     Effects: The wrap mode is w.
```

```
void wrap_mode(io2d::wrap_mode w) noexcept;
  void filter(io2d::filter fi) noexcept;
        Effects: The filter is fi.
  void fill_rule(io2d::fill_rule fr) noexcept;
        Effects: The fill rule is fr.
  void brush_matrix(const basic_matrix_2d<graphics_math_type>& m) noexcept;
4
        Requires: m.is invertible() == true.
        Effects: The brush matrix is m.
```

§ 14.10.4 145

14.10.5 basic_brush_props observers

[io2d.brushprops.observers]

```
io2d::wrap_mode wrap_mode() const noexcept;

Returns: The wrap mode.
io2d::filter filter() const noexcept;

Returns: The filter.
io2d::fill_rule fill_rule() const noexcept;

Returns: The fill rule.
basic_matrix_2d<graphics_math_type> brush_matrix() const noexcept;

Returns: The brush matrix.
```

14.11 Class template basic_clip_props

[io2d.clipprops]

14.11.1 Overview

[io2d.clipprops.intro]

- ¹ The basic_clip_props class template provides general state information that is applicable to all rendering and composing operations (15.3.2).
- ² It has a *clip area* of type optional<interpreted_path> and a *fill rule* of type fill_rule. If the clip area has no value, the clip area is boundless.
- ³ The data are stored in an object of type typename GraphicsSurfaces::surface_state_props::clip_props_data_type. It is accessible using the data member functions.

14.11.2 basic_clip_props synopsis

[io2d.clipprops.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsSurfaces>
 class basic_clip_props {
 public:
    using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
    using data_type =
      typename GraphicsSurfaces::surface_state_props::clip_props_data_type;
    // 14.11.3, constructors:
    basic_clip_props() noexcept;
    template <class Allocator>
    explicit basic_clip_props(
      const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
      io2d::fill_rule fr = io2d::fill_rule::winding);
    explicit basic_clip_props(
      const basic_interpreted_path<GraphicsSurfaces>& ip,
      io2d::fill_rule fr = io2d::fill_rule::winding) noexcept;
    explicit basic_clip_props(const basic_bounding_box<graphics_math_type>& r,
      io2d::fill_rule fr = io2d::fill_rule::winding);
    // 14.11.4, accessors:
    const data_type& data() const noexcept;
    data_type& data() noexcept;
    // 14.11.5, modifiers:
    void clip();
    template <class Allocator>
    void clip(const basic_path_builder<GraphicsSurfaces, Allocator>& pb);
    void clip(const basic_interpreted_path<GraphicsSurfaces>& ip) noexcept;
    void fill_rule(io2d::fill_rule fr) noexcept;
    // 14.11.6, observers:
    optional<basic_interpreted_path<GraphicsSurfaces>> clip() const noexcept;
    io2d::fill_rule fill_rule() const noexcept;
 };
}
```

§ 14.11.2

[io2d.clipprops.ctor] 14.11.3 basic_clip_props constructors basic_clip_props() noexcept; 1 Effects: Constructs an object of type basic_clip_props. 2 Postconditions: data() == GraphicsSurfaces::surface_state_props::create_clip_props(). Remarks: The clip area is optional clip are is io2d::fill rule::winding. template <class Allocator> explicit basic_clip_props(const basic_path_builder<GraphicsSurfaces, Allocator>& pb, io2d::fill_rule fr = io2d::fill_rule::winding); Effects: Constructs an object of type basic clip props. 5 Postconditions: data() == GraphicsSurfaces::surface_state_props::create_clip_props(pb, fr). R@marks: The clip area is optional < basic interpreted path < Graphics Surfaces >> (basic interpreted path<GraphicsSurfaces>(pb)). The fill rule is fr. template <class InputIterator> basic_clip_props(InputIterator first, InputIterator last, io2d::fill_rule fr = io2d::fill_rule::winding); 8 Effects: Constructs an object of type basic_clip_props. 9 Postconditions: data() == GraphicsSurfaces::surface_state_props::create_clip_props(first, last, fr). Remarks: The clip area is optional < basic_interpreted_path < Graphics Surfaces >> (basic_interpreted_path<GraphicsSurfaces>(first, last)). 11 The fill rule is fr. template <class Allocator> explicit basic_clip_props(initializer_list<basic_figure_items<GraphicsSurfaces>::figure_item> il, io2d::fill_rule fr = io2d::fill_rule::winding); 12 Effects: Constructs an object of type basic_clip_props. 13 Postconditions: data() == GraphicsSurfaces::surface state props::create clip props(il, fr). path<GraphicsSurfaces>(il)). 15 The fill rule is fr. explicit basic_clip_props(const basic_interpreted_path<GraphicsSurfaces>& ip, io2d::fill_rule fr = io2d::fill_rule::winding) noexcept; 16 Effects: Constructs an object of type basic_clip_props. 17 Postconditions: data() == GraphicsSurfaces::surface state props::create clip props(ip, fr). Remarks: The clip area is optional basic interpreted path Graphics Surfaces (ip. 19 The fill rule is fr.

§ 14.11.3

Postconditions: data() == GraphicsSurfaces::surface_state_props::create_clip_props(r, fr).

Remarks: The clip area is optional

basic interpreted path

GraphicsSurfaces >> (basic interpreted -

explicit basic_clip_props(const basic_bounding_box<graphics_math_type>% r,

Effects: Constructs an object of type basic_clip_props.

io2d::fill_rule fr = io2d::fill_rule::winding)

path<GraphicsSurfaces>(r));

The fill rule is fr.

20

21

23

```
14.11.4 Accessors
                                                                          [io2d.clipprops.acc]
   const data_type& data() const noexcept;
   data_type& data() noexcept;
        Returns: A reference to the basic_clip_props object's data object (See: 14.11.1).
   14.11.5 basic_clip_props modifiers
                                                                         [io2d.clipprops.mod]
   template <class Allocator>
   void clip();
        Effects: The clip area is optional cliparea area is optional cliparea ()).
   void clip(const basic_bounding_box<GraphicsSurfaces>& bb);
2
        Effects: Calls GraphicsSurfaces::surface_state_props::clip(data(), bb);
3
        Remarks: The clip area is optional Space interpreted_path GraphicsSurfaces (basic_interpreted_-
       path<GraphicsSurfaces>(bb)).
   template <class Allocator>
   void clip(const basic_path_builder<GraphicsSurfaces, Allocator>& pb);
4
        Effects: Calls GraphicsSurfaces::surface_state_props::clip(data(), pb);
5
        Remarks: The clip area is optional < basic_interpreted_path < Graphics Surfaces >> (basic_interpreted_-
       path<GraphicsSurfaces>(pb)).
   template <class InputIterator>
   void clip(InputIterator first, InputIterator last);
        Effects: Calls GraphicsSurfaces::surface_state_props::clip(data(), first, last);
        path<GraphicsSurfaces>(first, last)).
   void clip(
     const initializer_list<typename</pre>
    basic_figure_items<GraphicsSurfaces>::figure_item> il);
8
        Effects: Calls GraphicsSurfaces::surface_state_props::clip(data(), il);
9
        Remarks: The clip area is optional < basic interpreted path < Graphics Surfaces >> (basic interpreted -
       path<GraphicsSurfaces>(il)).
   void clip(const basic_bounding_box<GraphicsSurfaces>& bb);
10
        Effects: Calls GraphicsSurfaces::surface_state_props::clip(data(), ip);
11
        Remarks: The clip area is optional clip area is optional clip interpreted_path GraphicsSurfaces
   void fill_rule(experimental::io2d::fill_rule fr) noexcept;
12
        Effects: Calls GraphicsSurfaces::surface_state_props::clip_fill_rule(fr).
13
        Remarks: The fill rule is fr.
   14.11.6 basic_clip_props observers
                                                                          [io2d.clipprops.obs]
   Returns: GraphicsSurfaces::surface_state_props::clip(data()).
2
        Remarks: The return value is the clip area.
   io2d::fill_rule fill_rule() const noexcept;
3
        Returns: GraphicsSurfaces::surface_state_props::clip_fill_rule(data()).
4
        Remarks: The return value is the fill rule.
```

§ 14.11.6

14.12 Class basic_stroke_props

[io2d.strokeprops]

14.12.1 basic_stroke_props summary

[io2d.strokeprops.summary]

- The basic_stroke_props class provides state information that is applicable to the stroking operation (see: 15.3.2 and 15.3.6).
- ² It has a *line width* of type float, a *line cap* of type line_cap, a *line join* of type line_join, and a *miter limit* of type float.

```
14.12.2 basic_stroke_props synopsis
```

1

2

3

1

2

[io2d.strokeprops.synopsis]

```
namespace std::experimental::io2d::v1 {
    template <class GraphicsSurfaces>
   class basic_stroke_props {
   public:
          using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
      // 14.12.3, constructors:
      basic_stroke_props() noexcept;
      explicit basic_stroke_props(float w, io2d::line_cap lc = io2d::line_cap::none,
        io2d::line_join lj = io2d::line_join::miter, float ml = 10.0f) noexcept;
      // 14.12.4, modifiers:
      void line_width(float w) noexcept;
      void line_cap(io2d::line_cap lc) noexcept;
      void line_join(io2d::line_join lj) noexcept;
      void miter_limit(float ml) noexcept;
      // 14.12.5, observers:
      float line_width() const noexcept;
      io2d::line_cap line_cap() const noexcept;
      io2d::line_join line_join() const noexcept;
      float miter_limit() const noexcept;
      float max_miter_limit() const noexcept;
 }
14.12.3
         basic_stroke_props constructors
                                                                          [io2d.strokeprops.cons]
basic_stroke_props() noexcept;
     Effects: Equivalent to: basic_stroke_props(2.0f).
explicit basic_stroke_props(float w, io2d::line_cap lc = io2d::line_cap::none,
 io2d::line_join lj = io2d::line_join::miter,
 float ml = 10.0f) noexcept;
     Requires: w > 0.0f. ml >= 10.0f. ml <= max_miter_limit().
     Effects: The line width is w. The line cap is 1c. The line join is 1j. The miter limit is m1.
14.12.4 basic_stroke_props modifiers
                                                                    [io2d.strokeprops.modifiers]
void line_width(float w) noexcept;
     Requires: w >= 0.0f.
     Effects: The line width is w.
void line_cap(io2d::line_cap lc) noexcept;
     Effects: The line cap is 1c.
void line_join(io2d::line_join lj) noexcept;
     Effects: The line join is 1j.
```

§ 14.12.4

```
void miter_limit(float ml) noexcept;
5
        Requires: ml >= 1.0f and ml <= max_miter_limit.
6
        Effects: The miter limit is ml.
            basic_stroke_props observers
                                                                       [io2d.strokeprops.observers]
  float line_width() const noexcept;
        Returns: The line width.
  io2d::line_cap line_cap() const noexcept;
        Returns: The line cap.
  io2d::line_join line_join() const noexcept;
3
        Returns: The line join.
  float miter_limit() const noexcept;
        Returns: The miter limit.
  float max_miter_limit() const noexcept;
5
        Requires: This value shall be finite and greater than 10.0f.
6
        Returns: The implementation-defined maximum value of miter limit.
  14.13 Class template basic_fill_props
                                                                                        [io2d.fillprops]
  14.13.1
             Overview
                                                                                 [io2d.fillprops.intro]
<sup>1</sup> The basic_fill_props class template provides state information that is applicable to the filling rendering
  and composing operation (15.3.2).
<sup>2</sup> It has a fill rule of type fill_rule and an antialiasing algorithm of type antialias.
3 The data are stored in an object of type typename GraphicsSurfaces::surface_state_props::fill_-
  props_data_type. It is accessible using the data member functions.
                                                                             [io2d.fillprops.synopsis]
  14.13.2 Synopsis
    namespace std::experimental::io2d::v1 {
      template <class GraphicsSurfaces>
      class basic_fill_props {
      public:
        using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
        using data_type =
          typename GraphicsSurfaces::surface_state_props::fill_props_data_type;
        // 14.13.3, constructors:
        basic_fill_props() noexcept;
        explicit basic_fill_props(io2d::fill_rule fr,
          antialias aa = antialias::good) noexcept;
        // 14.13.4, accessors:
        const data_type& data() const noexcept;
        data_type& data() noexcept;
        // 14.13.5, modifiers:
        void fill_rule(io2d::fill_rule fr) noexcept;
        void antialiasing(antialias aa) noexcept;
        // 14.13.6, observers:
        io2d::fill_rule fill_rule() const noexcept;
        antialias antialiasing() const noexcept;
      };
```

§ 14.13.2

}

```
14.13.3 Constructors
                                                                               [io2d.fillprops.ctor]
  basic_fill_props() noexcept;
1
       Effects: Constructs an object of type basic_fill_props.
2
       Postconditions: data() == X::surface_state_props::create_fill_props().
  explicit basic_fill_props(io2d::fill_rule fr, antialias aa = antialias::good)
    noexcept;
       Effects: Constructs an object of type basic_fill_props.
       Postconditions: data() == GraphicsSurfaces::surface_state_props::create_fill_props(fr, aa).
  14.13.4 Accessors
                                                                                [io2d.fillprops.acc]
  const data_type& data() const noexcept;
  data_type& data() noexcept;
       Returns: A reference to the basic_fill_props object's data object (See: 14.13.1).
  14.13.5
           Modifiers
                                                                               [io2d.fillprops.mod]
  void fill_rule(io2d::fill_rule fr) noexcept;
1
       Effects: Calls GraphicsSurfaces::surface state props::fill fill rule(data(), fr)).
       Remarks: The fill rull is fr.
  void compositing(compositing_op co) noexcept;
       Effects: Calls GraphicsSurfaces::surface_state_props::antialiasing(data(), aa).
       Remarks: The antialiasing algorithm is aa.
                                                                                [io2d.fillprops.obs]
  14.13.6 Observers
  io2d::fill_rule fill_rule() const noexcept;
1
       Returns: GraphicsSurfaces::surface_state_props::fill_fill_rule(data()).
2
       Remarks: The returned value is the fill rule.
  antialias antialiasing() const noexcept;
3
       Returns: GraphicsSurfaces::surface_state_props::antialiasing(data()).
4
       Remarks: The returned value is the antialiasing algorithm.
  14.14 Class basic_mask_props
                                                                                 [io2d.maskprops]
  14.14.1 basic_mask_props summary
                                                                      [io2d.maskprops.summary]
<sup>1</sup> The basic_mask_props class provides state information that is applicable to the mask rendering and
  composing operation (15.3.2).
2 It has a wrap mode of type wrap_mode, a filter of type filter, and a mask matrix of type matrix_2d.
                                                                       [io2d.maskprops.synopsis]
  14.14.2 basic_mask_props synopsis
    namespace std::experimental::io2d::v1 {
      template <class GraphicsSurfaces>
      class basic_mask_props {
        public:
        using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
        // 14.14.3, constructor:
        basic_mask_props(io2d::wrap_mode w = io2d::wrap_mode::repeat,
          io2d::filter fi = io2d::filter::good,
          const basic_matrix_2d<graphics_math_type>& m = basic_matrix_2d<graphics_math_type>{})
          noexcept;
```

§ 14.14.2

```
// 14.14.4, modifiers:
        void wrap_mode(io2d::wrap_mode w) noexcept;
        void filter(io2d::filter fi) noexcept;
        void mask_matrix(const basic_matrix_2d<graphics_math_type>& m) noexcept;
        // 14.14.5, observers:
        io2d::wrap_mode wrap_mode() const noexcept;
        io2d::filter filter() const noexcept;
        basic_matrix_2d<graphics_math_type> mask_matrix() const noexcept;
      };
    }
                                                                             [io2d.maskprops.cons]
  14.14.3 basic_mask_props constructor
  basic_mask_props(io2d::wrap_mode w = io2d::wrap_mode::repeat,
    io2d::filter fi = io2d::filter::good,
    const basic_matrix_2d<graphics_math_type>& m = basic_matrix_2d<graphics_math_type>{}) noexcept;
        Requires: m.is_invertible() == true.
        Effects: The wrap mode is w. The filter is fi. The mask matrix is m.
                                                                       [io2d.maskprops.modifiers]
  14.14.4 basic_mask_props modifiers
  void wrap_mode(io2d::wrap_mode w) noexcept;
1
        Effects: The wrap mode is w.
  void filter(io2d::filter fi) noexcept;
2
       Effects: The filter is fi.
  void mask_matrix(const basic_matrix_2d<graphics_math_type>& m) noexcept;
        Requires: m.is_invertible() == true.
        Effects: The mask matrix is m.
  14.14.5 basic_mask_props observers
                                                                       [io2d.maskprops.observers]
  io2d::wrap_mode wrap_mode() const noexcept;
       Returns: The wrap mode.
  io2d::filter filter() const noexcept;
        Returns: The filter.
  basic_matrix_2d<graphics_math_type> mask_matrix() const noexcept;
        Returns: The mask matrix.
  14.15 Class template basic dashes
                                                                                        [io2d.dashes]
             basic_dashes class template
                                                                                 [io2d.dashes.intro]
<sup>1</sup> The class template basic_dashes describes a pattern for determining, in conjunction with other properties,
  what points on a path are included when a stroking operation is performed.
 It has an offset of type float and a pattern of an unspecified type capable of sequentially storing floating-
  point values.
3 The data are stored in an object of type typename GraphicsSurfaces::surface_props_data::dashes_-
  props_data_type. It is accessible using the data member function.
  14.15.2 Synopsis
                                                                             [io2d.dashes.synopsis]
    namespace std::experimental::io2d::v1 {
      template <class GraphicsSurfaces>
      class basic_dashes {
      public:
      using data_type =
        typename GraphicsSurfaces::surface_state_props::dashes_data_type;
```

§ 14.15.2

```
public:
         // 14.15.3, constructors:
         basic_dashes() noexcept;
         template <class InputIterator>
         basic_dashes(float o, InputIterator first, InputIterator last);
         basic_dashes(float o, initializer_list<float> il);
         // 14.15.4, observers:
         const data_type& data() const noexcept;
       // 14.15.5, operators:
       template <class GraphicsSurfaces>
       bool operator == (const basic_dashes < Graphics Surfaces > & lhs,
         const basic_dashes<GraphicsSurfaces>& rhs) noexcept;
       template <class GraphicsSurfaces>
       bool operator!=(const basic_dashes<GraphicsSurfaces>& lhs,
         const basic_dashes<GraphicsSurfaces>& rhs) noexcept;
   14.15.3
              Constructors
                                                                                    [io2d.dashes.cons]
   basic_dashes() noexcept;
         Effects: Constructs an object of type basic_dashes.
2
         Postconditions: data() == GraphicsSurfaces::surface_state_props::create_dashes().
3
         Remarks: The offset is 0.0f and the pattern contains no values.
   template <class InputIterator>
   basic_dashes(float o, InputIterator first, InputIterator last);
         Requires: The value type of InputIterator is float.
5
        Each value from first through last - 1 is greater than or equal to 0.0f.
6
         Effects: Constructs an object of type basic dashes.
         Postconditions: data() == GraphicsSurfaces::surface_state_props::create_dashes(o, first,
        last).
         Remarks: The offset is o and the pattern is the sequential list of value beginning at first and ending
        at last - 1.
   basic_dashes(float o, initializer_list<float> il);
9
         Requires: Each value in il is greater than or equal to 0.0f.
10
         Effects: Constructs an object of type basic_dashes.
11
         Postconditions: data() == GraphicsSurfaces::surface_state_props::create_dashes(o, il).
   14.15.4 Observers
                                                                              [io2d.dashes.observers]
   const data_type& data() const noexcept;
         Returns: A reference to the basic_dashes object's data object (See 14.15.1).
                                                                                     [io2d.dashes.ops]
   14.15.5
              Operators
1
   template <class GraphicsSurfaces>
   bool operator == (const basic_dashes < Graphics Surfaces > & lhs,
     const basic_dashes<GraphicsSurfaces>& rhs) noexcept;
         Returns: GraphicsSurfaces::surface_state_props::equal(lhs.data(), rhs.data()).
```

§ 14.15.5

3

```
template <class GraphicsSurfaces>
bool operator!=(const basic_dashes<GraphicsSurfaces>& lhs,
  const basic_dashes<GraphicsSurfaces>& rhs) noexcept;
  Returns: GraphicsSurfaces::surface_state_props::not_equal(lhs.data(), rhs.data()).
```

§ 14.15.5

15 Surfaces

[io2d.surfaces]

15.1 Enum class refresh_style

[io2d.refreshstyle]

15.1.1 refresh_style summary

[io2d.refreshstyle.summary]

¹ The refresh_style enum class describes when the *draw callback* (Table ??) of a display_surface object shall be called. See Table 31 for the meaning of each refresh_style enumerator.

15.1.2 refresh_style synopsis

[io2d.refreshstyle.synopsis]

```
namespace std::experimental::io2d::v1 {
  enum class refresh_style {
    as_needed,
    as_fast_as_possible,
    fixed
  };
}
```

15.1.3 refresh_style enumerators

[io2d.refreshstyle.enumerators]

Table 31 — refresh_style value meanings

Enumerator	Meaning	
as_needed	The draw callback shall be called when the implementation	
	needs to do so. [Note: The intention of this enumerator is	
	that implementations will call the draw callback as little as	
	possible in order to minimize power usage. Users can call	
	display_surface::redraw_required to make the	
	implementation run the draw callback whenever the user	
	requires. — end note]	
as_fast_as_possible	The draw callback shall be called as frequently as possible,	
	subject to any limits of the execution environment.	

§ 15.1.3

Table 31 — refresh_style value meanings (continued)

Enumerator	Meaning
fixed	The draw callback shall be called as frequently as needed to maintain the desired frame rate (Table ??) as closely as possible. If more time has passed between two successive calls to the draw callback than is required, it shall be called excess time and it shall count towards the required time, which is the time that is required to pass after a call to the draw callback before the next successive call to the draw callback shall be made. If the excess time is greater than the required time, implementations shall call the draw callback and then repeatedly subtract the required time from the excess time until the excess time is less than the required time. If the implementation needs to call the draw callback for some other reason, it shall use that call as the new starting point for maintaining the desired frame rate. [Example: Given a desired frame rate of 20.0f, then as per the above, the implementation would call the draw callback at 50 millisecond intervals or as close thereto as possible. If for some reason the excess time is 51 milliseconds, the implementation would call the draw callback, subtract 50 milliseconds from the excess time, and then would wait 49 milliseconds before calling the draw callback again. If only 15 milliseconds have passed since the draw callback was last called and the implementation needs to call the draw callback again, then the implementation shall call the
	draw callback immediately and proceed to wait 50 milliseconds before calling the draw callback again. — end example]

15.2 Enum class image_file_format

[io2d.imagefileformat]

15.2.1 image_file_format summary

[io2d.imagefileformat.summary]

- ¹ The image_file_format enum class specifies the data format that an image_surface object is constructed from or saved to. This allows data in a format that is required to be supported to be read or written regardless of its extension.
- ² It also has a value that allows implementations to support additional file formats if it recognizes them.

15.2.2 image_file_format synopsis

[io2d.imagefileformat.synopsis]

```
namespace std::experimental::io2d::v1 {
  enum class image_file_format {
    unknown,
    png,
    jpeg,
    tiff
  };
}
```

15.2.3 image_file_format enumerators

[io2d.imagefileformat.enumerators]

Table 32 — imagefileformat enumerator meanings

Enumerator	Meaning
unknown	The format is unknown because it is not an image file
	format that is required to be supported. It may be known
	and supported by the implementation.
png	The PNG format.

§ 15.2.3

Table 32 — imagefileformat enumerator meanings (continued)

Enumerator		Meaning
jpeg	The JPEG format.	
tiff	The TIFF format.	

15.3 Overview of surface classes

[io2d.surface]

15.3.1 Surface class templates description

[io2d.surface.intro]

- ¹ There are three *surface class templates*:
- (1.1) basic_image_surface
- (1.2) basic_output_surface
- (1.3) basic_unmanaged_output_surface
 - ² For ease of description, an instantiation of a surface class template will be called a *surface*.
 - ³ A surface contains visual data and provides an interface for managing and manipulating that visual data.
 - ⁴ Surface class templates are MoveConstructible and MoveAssignable. They are neither CopyConstructible nor CopyAssignable. [Note: On many platforms, especially those that use specialized hardware to accelerate various graphics operations, copying a surface is highly detrimental to performance and is rarely desired. The copy surface function (17.2) exists for those situations where a copy is desired. —end note]
 - ⁵ The surface class templates manipulate visual data through rendering and composing operations.
 - The rendering and composing operations 15.3.2 are described in terms of operating on each integral point of the visual data of a surface. The reason for that is to support the discrete nature of raster graphics data. Operating on each integral point of the surface is the coarsest granularity allowed. Implementations may perform rendering and composing operations at a finer granularity than that of each integral point. [Note: Vector graphics data, being continuous, has the finest granularity possible since it resolves at the limits imposed by the precision of the floating-point types used to determine its visual data at any particular point. end note]

15.3.2 Rendering and composing

[io2d.surface.rendering]

15.3.2.1 Operations

[io2d.surface.rendering.ops]

¹ The surface classes provide four fundamental rendering and composing operations:

Table 33 — surface rendering and composing operations

Operation	l	Function(s)
Painting	paint	
Filling	fill	
Stroking	stroke	
Masking	mask	

- ² All composing operations shall happen as-if in a linear color space, regardless of the color space of the visual data that is involved.
- ³ [Note: While a color space such as sRGB helps produce expected, consistent results when visual data are viewed by people, composing operations only produce expected results when the valid values for the color channel and alpha channel data in the visual data involved are uniformly (i.e. linearly) spaced. end note]

15.3.2.2 Rendering and composing brushes

[io2d.surface.rendering.brushes]

- ¹ All rendering and composing operations use a *source brush* of type basic_brush.
- ² The masking operation uses a *mask brush* of type basic_brush.

15.3.2.3 Rendering and composing source path [io2d.surface.rendering.sourcepath]

¹ In addition to brushes (15.3.2.2), all rendering and composing operation except for painting and masking use a source path. The source path is either a basic path builder<Allocator> object or a basic interpreted -

§ 15.3.2.3

path object. If it is a basic_path_builder<Allocator> object, it is interpreted (12.3.16) before it is used as the source path.

15.3.2.4 Common state data

[io2d.surface.rendering.commonstate]

¹ All rendering and composing operations use the following state data:

Table 34 — surface rendering and composing common state data

Name		Type	
Brush properties	brush_props		
Surface properties	render_props		
Clip properties	clip_props		

15.3.2.5 Specific state data

[io2d.surface.rendering.specificstate]

¹ In addition to the common state data (15.3.2.4), certain rendering and composing operations use state data that is specific to each of them:

Table 35 — surface rendering and composing specific state data

Operation	Name	Type
Stroking	Stroke properties	stroke_props
Stroking	Dashes	dashes
Masking	Mask properties	mask_props

15.3.2.6 State data default values

[io2d.surface.rendering.statedefaults]

- ¹ For all rendering and composing operations, the state data objects named above are provided using optional<T> class template arguments.
- ² If there is no contained value for a state data object, it is interpreted as-if the optional<T> argument contained a default constructed object of the relevant state data object.

15.3.3 Standard coordinate spaces

$[{\bf io2d.surface.coordinatespaces}]$

- ¹ There are four standard coordinate spaces relevant to the rendering and composing operations (15.3.2):
- (1.1) the brush coordinate space;
- (1.2) the mask coordinate space;
- (1.3) the user coordinate space; and
- (1.4) the surface coordinate space.
 - ² The *brush coordinate space* is the standard coordinate space of the source brush (15.3.2.2). Its transformation matrix is the brush properties' brush matrix (14.10.1).
 - ³ The mask coordinate space is the standard coordinate space of the mask brush (15.3.2.2). Its transformation matrix is the mask properties' mask matrix (14.14.1).
 - ⁴ The *user coordinate space* is the standard coordinate space of basic_interpreted_path objects. Its transformation matrix is a default-constructed basic_matrix_2d.
 - ⁵ The *surface coordinate space* is the standard coordinate space of the surface object's visual data. Its transformation matrix is the surface properties' surface matrix (14.9.1).
 - ⁶ Given a point pt, a brush coordinate space transformation matrix bcsm, a mask coordinate space transformation matrix mcsm, a user coordinate space transformation matrix ucsm, and a surface coordinate space transformation matrix scsm, the following table describes how to transform it from each of these standard coordinate spaces to the other standard coordinate spaces:

Table 36 — Point transformations

From	To	${f Transform}$
brush coordinate space	mask coordinate space	mcsm.transform
		<pre>pt(bcsm.invert().transform</pre>
		pt(pt)).
brush coordinate space	user coordinate space	<pre>bcsm.invert().transform_pt(pt).</pre>
brush coordinate space	surface coordinate space	scsm.transform
		<pre>pt(bcsm.invert().transform</pre>
		pt(pt)).
user coordinate space	brush coordinate space	bcsm.transform_pt(pt).
user coordinate space	mask coordinate space	<pre>mcsm.transform_pt(pt).</pre>
user coordinate space	surface coordinate space	scsm.transform_pt(pt).
surface coordinate space	brush coordinate space	bcsm.transform
		<pre>pt(scsm.invert().transform</pre>
		pt(pt)).
surface coordinate space	mask coordinate space	mcsm.transform
		<pre>pt(scsm.invert().transform</pre>
		pt(pt)).
surface coordinate space	user coordinate space	<pre>scsm.invert().transform_pt(pt).</pre>

15.3.4 surface painting

[io2d.surface.painting]

- When a painting operation is initiated on a surface, the implementation shall produce results as-if the following steps were performed:
 - 1. For each integral point sp of the surface's visual data, determine if sp is within the clip area (14.11.1); if so, proceed with the remaining steps.
 - 2. Transform sp from the surface coordinate space (15.3.3) to the brush coordinate space (Table 36), resulting in point bp.
 - 3. Sample from point bp of the source brush (15.3.2.2), combine the resulting visual data with the visual data at point sp in the surface's visual data in the manner specified by the surface's current compositing operator (14.9.1), and modify the visual data of the surface at point sp to reflect the result produced by application of the compositing operator.

15.3.5 surface filling

[io2d.surface.filling]

- ¹ When a filling operation is initiated on a surface, the implementation shall produce results as-if the following steps were performed:
 - 1. For each integral point sp of the surface's visual data, determine if sp is within the clip area (14.11.1); if so, proceed with the remaining steps.
 - 2. Transform sp from the surface coordinate space (15.3.3) to the user coordinate space (Table 36), resulting in point up.
 - 3. Using the source path (15.3.2.3) and the fill rule (14.10.1), determine whether up shall be filled; if so, proceed with the remaining steps.
 - 4. Transform up from the user coordinate space to the brush coordinate space (15.3.3 and Table 36), resulting in point bp.
 - 5. Sample from point bp of the source brush (15.3.2.2), combine the resulting visual data with the visual data at point sp in the surface's visual data in the manner specified by the surface's current compositing operator (14.9.1), and modify the surface's visual data at point sp to reflect the result produced by application of the compositing operator.

15.3.6 surface stroking

[io2d.surface.stroking]

- When a stroking operation is initiated on a surface, it is carried out for each figure in the source path (15.3.2).
- ² The following rules shall apply when a stroking operation is carried out on a figure:
 - 1. No part of the surface's visual data that is outside of the clip area shall be modified.

- 2. If the figure is a closed figure, then the point where the end point of its final segment meets the start point of the initial segment shall be rendered as specified by the *line join* value (see: 14.12.1 and 15.3.2.5); otherwise the start point of the initial segment and end point of the final segment shall each by rendered as specified by the line cap value. The remaining meetings between successive end points and start points shall be rendered as specified by the line join value.
- 3. If the dash pattern (Table 35) has its default value or if its vector<float> member is empty, the segments shall be rendered as a continuous path.
- 4. If the dash pattern's vector<float> member contains only one value, that value shall be used to define a repeating pattern in which the path is shown then hidden. The ends of each shown portion of the path shall be rendered as specified by the line cap value.
- 5. If the dash pattern's vector<float> member contains two or more values, the values shall be used to define a pattern in which the figure is alternatively rendered then not rendered for the length specified by the value. The ends of each rendered portion of the figure shall be rendered as specified by the line cap value. If the dash pattern's float member, which specifies an offset value, is not 0.0f, the meaning of its value is implementation-defined. If a rendered portion of the figure overlaps a not rendered portion of the figure, the rendered portion shall be rendered.
- When a stroking operation is carried out on a figure, the width of each rendered portion shall be the *line width* (see: 14.12.1 and 15.3.2.5). Ideally this means that the diameter of the stroke at each rendered point should be equal to the line width. However, because there are an infinite number of points along each rendered portion, implementations may choose an unspecified method of determining minimum distances between points along each rendered portion and the diameter of the stroke between those points shall be the same. [Note: This concept is sometimes referred to as a tolerance. It allows for a balance between precision and performance, especially in situations where the end result is in a non-exact format such as raster graphics data. end note]
- ⁴ After all figures in the path have been rendered but before the rendered result is composed to the surface's visual data, the rendered result shall be transformed from the user coordinate space (15.3.3) to the surface coordinate space (15.3.3).

15.3.7 surface masking

[io2d.surface.masking]

- ¹ When a masking operation is initiated on a surface, the implementation shall produce results as-if the following steps were performed:
 - 1. For each integral point sp of the surface's visual data, determine if sp is within the clip area (14.11.1); if so, proceed with the remaining steps.
 - 2. Transform sp from the surface coordinate space (15.3.3) to the mask coordinate space (Table 36), resulting in point mp.
 - 3. Sample the alpha channel from point mp of the mask brush and store the result in mac; if the visual data format of the mask brush does not have an alpha channel, the value of mac shall always be 1.0.
 - 4. Transform sp from the surface coordinate space to the brush coordinate space, resulting in point bp.
 - 5. Sample from point bp of the source brush (15.3.2.2), combine the resulting visual data with the surface's visual data at point sp in the manner specified by the surface's current compositing operator (14.9.1), multiply each channel of the result produced by application of the compositing operator by map if the visual data format of the surface's visual data is a premultiplied format and if not then just multiply the alpha channel of the result by map, and modify the surface's visual data at point sp to reflect the multiplied result.

15.3.8 output surface miscellaneous behavior

[io2d.outputsurface.misc]

- What constitutes an *output device* is implementation-defined, with the sole constraint being that an output device must allow the user to see the dynamically-updated contents of the display buffer. [Example: An output device might be a window in a windowing system environment or the usable screen area of a smart phone or tablet. end example]
- ² Implementations may allow more than one basic_output_surface object, basic_unmanaged_output_surface object, or a combination thereof to exist and be displayed co-synchronously. [Note: In windowing environments, implementations would likely support multiple objects of these types. In contrast, on a

smart phone it is unlikely that an implementation would support multiple objects of these types due to environmental and platform constraints. $-end\ note$

- 3 It is not required that implementations support the existence of any basic_unmanaged_output_surface objects. See Table 16.
- ⁴ All functions that perform rendering and composing operations operate on the back buffer. <TODO> Specify on a per-function basis rather than with a blanket statement that is probably inaccurate.

15.3.9 output surface state

[io2d.outputsurface.state]

 1 Table 37 specifies the name, type, function, and default value for each item of a display surface's observable state.

Table 37 — Output surface observable state

}
}
giblo
ssible face
ig a
alue;
arao,
ote
,
-

Table 37 — Output surface observable state (continued)

Name	Type	Function	Default value
Draw height	int	The height in pixels of the back buffer. The minimum value is 1. The maximum value is unspecified. Because users can only request a preferred value for the draw height when setting and altering it, the maximum value may be a run-time determined value. If the preferred draw height exceeds the maximum value, then if a preferred draw width has also been supplied then implementations should provide a back buffer with the largest dimensions possible that maintain as nearly as possible the aspect ratio between the preferred draw width and the preferred draw height otherwise implementations should provide a back buffer with the largest dimensions possible that maintain as nearly as possible that maintain as nearly as possible the aspect ratio between the current draw width and the preferred draw height	N/A [Note: It is impossible to create an output surface object without providing a preferred draw height value; as such a default value cannot exist. — end note]
Draw format	format	The pixel format of the back buffer. When an output surface object is created, a preferred pixel format value is provided. If the implementation does not support the preferred pixel format value as the value of draw format, the resulting value of draw format is implementation-defined	N/A [Note: It is impossible to create an output surface object without providing a preferred draw format value; as such a default value cannot exist. — end note]

Table 37 — Output surface observable state (continued)

Name		Type	Function	Default value
Display width	int		The width in pixels of the display buffer. The minimum value is unspecified. The maximum value is unspecified. Because users can only request a preferred value for the display width when setting and altering it, both the minimum value and the maximum value may be run-time determined values. If the preferred display width is not within the range between the minimum value and the maximum value, inclusive, then if a preferred display height has also been supplied then implementations should provide a display buffer with the largest dimensions possible that maintain as nearly as possible the aspect ratio between the preferred display width and the preferred display buffer with the largest dimensions possible that maintain as nearly as possible the aspect ratio between the preferred display width and the current display height	N/A [Note: It is impossible to create an output surface object without providing a preferred display width value since in the absence of an explicit display width argument the mandatory preferred draw width argument is used as the preferred display width; as such a default value cannot exist. — end note]

Table 37 — Output surface observable state (continued)

Name	Type	Function	Default value
Display height	int	The height in pixels of the display buffer. The minimum value is unspecified. The maximum value is unspecified. Because users can only request a preferred value for the display height when setting and altering it, both the minimum value and the maximum value may be run-time determined values. If the preferred display height is not within the range between the minimum value and the maximum value, inclusive, then if a preferred display width has also been supplied then implementations should provide a display buffer with the largest dimensions possible that maintain as nearly as possible the aspect ratio between the preferred display width and the preferred display buffer with the largest dimensions possible that maintain as nearly as possible the aspect ratio between the current display width and the preferred display width and the preferred display width and the preferred display width and the	N/A [Note: It is impossible to create an output surface object without providing a preferred display height value since in the absence of an explicit display height argument the mandatory preferred draw height argument is used as the preferred display height; as such a default value cannot exist. — end note]
Auto clear	bool	If true the implementation shall call clear, which shall clear the back buffer, immediately before it executes the draw callback	false
Refresh style	refresh_style	The refresh_style value that determines when the draw callback shall be called while basic_outputsurface <t>::begin_show is being executed</t>	refresh_style::as_fast as_possible
Desired frame rate	float	This value is the number of times the draw callback shall be called per second while basic_output surface <t>::begin_show is being executed when the value of refresh style is refresh_style::fixed, subject to the additional requirements documented in the meaning of refresh_style::fixed (See: Table 31).</t>	30.0f

15.4 Class basic_image_surface

[io2d.imagesurface]

15.4.1 basic_image_surface summary

[io2d.imagesurface.summary]

- ¹ The class basic_image_surface provides an interface to raster graphics data.
- ² It has a pixel format of type format, a width of type int, and a height of type int.
- Note: Because of the functionality it provides and what it can be used for, it is expected that developers familiar with other graphics technologies will think of the basic_image_surface class as being a form of render target. This is intentional, though this Technical Specification does not formally define or use that term to avoid any minor ambiguities and differences in its meaning between the various graphics technologies that do use the term render target. end note

15.4.2 basic_image_surface synopsis

[io2d.imagesurface.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsSurfaces>
  class basic_image_surface {
  public:
    using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
    // 15.4.3, construct/copy/move/destroy:
    basic_image_surface(io2d::format fmt, int width, int height);
    basic_image_surface(filesystem::path f, io2d::image_file_format iff, io2d::format fmt);
    basic_image_surface(filesystem::path f, io2d::image_file_format iff, io2d::format fmt,
      error_code& ec) noexcept;
    basic_image_surface(basic_image_surface&&) noexcept;
    basic_image_surface& operator=(basic_image_surface&&) noexcept;
    // 15.4.4, members:
    void save(filesystem::path p, image_file_format i);
    void save(filesystem::path p, image_file_format i, error_code& ec) noexcept;
    // 15.4.5, static members:
    static basic_display_point<graphics_math_type> max_dimensions() noexcept;
    // 15.4.6, observers:
    io2d::format format() const noexcept;
    basic_display_point<graphics_math_type> dimensions() const noexcept;
    // 15.4.7, modifiers:
    void clear();
    void paint(const basic_brush<GraphicsSurfaces>& b,
      const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
      const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
      const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
    template <class Allocator>
    void stroke(const basic_brush<GraphicsSurfaces>& b,
      const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
      const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
      const optional<basic_stroke_props<GraphicsSurfaces>>& sp = nullopt,
      const optional<basic_dashes<GraphicsSurfaces>>& d = nullopt,
      const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
      const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
    void stroke(const basic_brush<GraphicsSurfaces>& b,
      const basic_interpreted_path<GraphicsSurfaces>& ip,
      const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
      const optional<basic_stroke_props<GraphicsSurfaces>>& sp = nullopt,
      const optional<basic_dashes<GraphicsSurfaces>>& d = nullopt,
      const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
      const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
    template <class Allocator>
    void fill(const basic_brush<GraphicsSurfaces>& b,
      const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
      const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
```

§ 15.4.2

```
const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
    const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);

void fill(const basic_brush<br/>
    const basic_interpreted_path<GraphicsSurfaces>& ip,
    const optional<br/>
    const optional<br/>
    basic_brush_props<GraphicsSurfaces>& bp = nullopt,
    const optional<br/>
    const optional<br/>
    basic_render_props<GraphicsSurfaces>>& rp = nullopt,
    const optional<br/>
    basic_clip_props<GraphicsSurfaces>>& cl = nullopt);

    void mask(const basic_brush<br/>
    GraphicsSurfaces>& b,
    const basic_brush<br/>
    GraphicsSurfaces>& mb,
    const optional<br/>
    basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
    const optional<br/>
    basic_mask_props<GraphicsSurfaces>>& mp = nullopt,
    const optional<br/>
    basic_render_props<GraphicsSurfaces>>& rp = nullopt,
    const optional<br/>
    basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
};
}
```

15.4.3 basic_image_surface constructors and assignment operators [io2d.imagesurface.cons]

```
basic_image_surface(io2d::format fmt, int w, int h);

Requires: w is greater than 0 and not greater than basic_image_surface::max_width().

h is greater than 0 and not greater than basic_image_surface::max_height().

fmt is not io2d::format::invalid.

Effects: Constructs an object of type basic_image_surface.

The pixel format is fmt, the width is w, and the height is h.

basic_image_surface(filesystem::path f, io2d::image_file_format i, io2d::format fmt);
basic_image_surface(filesystem::path f, io2d::image_file_format i, io2d::format fmt,
error_code& ec) noexcept;
```

- Requires: f is a file and its contents are data in either JPEG format, TIFF format or PNG format.
- 7 fmt is not io2d::format::invalid.
- 8 Effects: Constructs an object of type basic_image_surface.
- The raster graphics data is the result of processing f into uncompressed raster graphics in the manner specified by the standard that describes how to transform the contents of data contained in f into raster graphics data and then transforming that transformed raster graphics data into the format specified by fmt.
- The data of f is processed into uncompressed raster graphics data as specified by the value of i.
- If i is image_file_format::unknown, implementations may attempt to process the data of f into uncompressed raster graphics data. The manner in which it does so is unspecified. If no uncompressed raster graphics data is produced, the error specified below occurs.
- [Note: The intent of image_file_format::unknown is to allow implementations to support image file formats that are not required to be supported. —end note]
- If the width of the uncompressed raster graphics data would be less than 1 or greater than basic_-image_surface::max_width() or if the height of the uncompressed raster graphics data would be less than 1 or greater than basic_image_surface::max_height(), the error specified below occurs.
- The resulting uncompressed raster graphics data is then transformed into the data format specified by fmt. If the format specified by fmt only contains an alpha channel, the values of the color channels, if any, of the surface's visual data are unspecified. If the format specified by fmt only contains color channels and the resulting uncompressed raster graphics data is in a premultiplied format, then the value of each color channel for each pixel is be divided by the value of the alpha channel for that pixel. The visual data is then set as the visual data of the surface.
- The width is the width of the uncompressed raster graphics data. The height is the height of the uncompressed raster graphics data.
- 16 Throws: As specified in Error reporting (Clause 4).

§ 15.4.3

- Error conditions: Any error that could result from trying to access f, open f for reading, or reading data from f
- errc::not_supported if image_file_format::unknown is passed as an argument and the implementation is unable to determine the file format or does not support saving in the image file format it determined.
- errc::invalid_argument if fmt is io2d::format::invalid.
- errc::argument_out_of_domain if the width would be less than 1, the width would be greater than basic_image_surface::max_width(), the height would be less than 1, or the height would be greater than basic_image_surface::max_height().

15.4.4 basic_image_surface members

[io2d.imagesurface.members]

```
void save(filesystem::path p, image_file_format i);
void save(filesystem::path p, image_file_format i, error_code& ec) noexcept;
```

- Requires: p shall be a valid path to a file. The file need not exist provided that the other components of the path are valid.
- If the file exists, it shall be writable. If the file does not exist, it shall be possible to create the file at the specified path and then the created file shall be writable.
- 3 Effects: Any pending rendering and composing operations (15.3.2) are performed.
- The surface's visual data is written to p in the data format specified by i.
- If i is image_file_format::unknown, it is implementation-defined whether the surface is saved in the image file format, if any, that the implementation associates with p.extension() provided that p.has_extension() == true. If p.has_extension() == false, the implementation does not associate an image file format with p.extension(), or the implementation does not support saving in that image file format, the error specified below occurs.
- 6 Throws: As specified in Error reporting (Clause 4).
- Figure 2 Error conditions: Any error that could result from trying to create f, access f, or write data to f.
- errc::not_supported if image_file_format::unknown is passed as an argument and the implementation is unable to determine the file format or does not support saving in the image file format it determined.

15.4.5 basic_image_surface static members

[io2d.imagesurface.staticmembers]

```
\verb|static basic_display_point<graphics_math_type>| max_dimensions()| | no except; \\
```

Returns: <TODO>The maximum height and width for a basic_image_surface object.

15.4.6 basic_image_surface observers

[io2d.imagesurface.observers]

```
io2d::format format() const noexcept;
```

Returns: The pixel format.

basic_display_point<graphics_math_type> dimensions() const noexcept;

Returns: <TODO>The height and width.

15.4.7 basic_image_surface modifiers

[io2d.imagesurface.mofifiers]

void clear();

```
Effects: <TODO>
```

```
void paint(const basic_brush<GraphicsSurfaces>& b,
  const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
  const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
  const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
```

- 2 Effects: Performs the painting rendering and composing operation as specified by 15.3.4.
- The meanings of the parameters are specified by 15.3.2.
- 4 Throws: As specified in Error reporting (Clause 4).

§ 15.4.7

```
Error conditions: The errors, if any, produced by this function are implementation-defined.
   template <class Allocator>
   void stroke(const basic_brush<GraphicsSurfaces>& b,
     const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
     const optional<basic_stroke_props<GraphicsSurfaces>>& sp = nullopt,
     const optional<basic_dashes<GraphicsSurfaces>>& d = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
   void stroke(const basic_brush<GraphicsSurfaces>& b,
     const basic_interpreted_path<GraphicsSurfaces>& ip,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
     const optional<basic_stroke_props<GraphicsSurfaces>>& sp = nullopt,
     const optional<basic_dashes<GraphicsSurfaces>>& d = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
6
         Effects: Performs the stroking rendering and composing operation as specified by 15.3.6.
         The meanings of the parameters are specified by 15.3.2.
         Throws: As specified in Error reporting (Clause 4).
         Error conditions: The errors, if any, produced by this function are implementation-defined.
   template <class Allocator>
   void fill(const basic_brush<GraphicsSurfaces>& b,
     const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
   void fill(const basic_brush<GraphicsSurfaces>& b,
     const basic_interpreted_path<GraphicsSurfaces>& ip,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
10
         Effects: Performs the filling rendering and composing operation as specified by 15.3.5.
11
         The meanings of the parameters are specified by 15.3.2.
12
         Throws: As specified in Error reporting (Clause 4).
13
         Error conditions: The errors, if any, produced by this function are implementation-defined.
   void mask(const basic_brush<GraphicsSurfaces>& b,
     const basic_brush<GraphicsSurfaces>& mb,
     const optional <br/>basic_brush_props < Graphics Surfaces >> & bp = nullopt,
     const optional<basic_mask_props<GraphicsSurfaces>>& mp = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
14
         Effects: Performs the masking rendering and composing operation as specified by 15.3.7.
15
         The meanings of the parameters are specified by 15.3.2.
16
         Throws: As specified in Error reporting (Clause 4).
17
         Error conditions:
        The errors, if any, produced by this function are implementation-defined.
                                                                                  [io2d.outputsurface]
          Class basic output surface
   15.5.1
            basic_output_surface summary
                                                                      [io2d.outputsurface.summary]
1 <TODO>
                                                                       [io2d.outputsurface.synopsis]
   15.5.2 basic_output_surface synopsis
     namespace std::experimental::io2d::v1 {
       template <class GraphicsSurfaces>
```

```
class basic_output_surface {
public:
 using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
  // 15.5.3, constructors:
 basic_output_surface(int preferredWidth, int preferredHeight,
    io2d::format preferredFormat,
    io2d::scaling scl = io2d::scaling::letterbox,
    io2d::refresh_style rr = io2d::refresh_style::as_fast_as_possible,
    float fps = 30.0f);
 basic_output_surface(int preferredWidth, int preferredHeight,
    io2d::format preferredFormat,
    error_code& ec, io2d::scaling scl = io2d::scaling::letterbox,
    io2d::refresh_style rr = io2d::refresh_style::as_fast_as_possible,
    float fps = 30.0f) noexcept;
 basic_output_surface(int preferredWidth, int preferredHeight,
    \verb"io2d::format" preferred Format", int preferred Display Width,
    int preferredDisplayHeight, io2d::format preferredDisplayFormat,
    io2d::scaling scl = io2d::scaling::letterbox,
    io2d::refresh_style rr = io2d::refresh_style::as_fast_as_possible,
    float fps = 30.0f);
 basic_output_surface(int preferredWidth, int preferredHeight,
    io2d::format preferredFormat, int preferredDisplayWidth,
    int preferredDisplayHeight, io2d::format preferredDisplayFormat,
    error_code& ec, io2d::scaling scl = io2d::scaling::letterbox,
    io2d::refresh_style rr = io2d::refresh_style::as_fast_as_possible,
    float fps = 30.0f) noexcept;
 // 15.5.4, modifiers:
 int begin_show();
 void end_show();
 void clear():
 void paint(const basic_brush<GraphicsSurfaces>& b,
    const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
    const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
    const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
 template <class Allocator>
 void stroke(const basic_brush<GraphicsSurfaces>& b,
    const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
    const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
    const optional<basic_stroke_props<GraphicsSurfaces>>& sp = nullopt,
    const optional<basic_dashes<GraphicsSurfaces>>& d = nullopt,
    const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
    const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
 void stroke(const basic_brush<GraphicsSurfaces>& b,
    const basic_interpreted_path<GraphicsSurfaces>& ip,
    const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
    const optional<basic_stroke_props<GraphicsSurfaces>>& sp = nullopt,
    const optional<basic_dashes<GraphicsSurfaces>>& d = nullopt,
    const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
    const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
 template <class Allocator>
 void fill(const basic_brush<GraphicsSurfaces>& b,
    const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
    const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
    const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
    const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
 void fill(const basic_brush<GraphicsSurfaces>& b,
    const basic_interpreted_path<GraphicsSurfaces>& ip,
    const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
    const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
    const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
```

```
const basic_brush<GraphicsSurfaces>& mb,
        const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
        const optional<basic_mask_props<GraphicsSurfaces>>& mp = nullopt,
        const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
        const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
     void draw_callback(const function<void(basic_output_surface& sfc)>& fn);
     void size_change_callback(
        const function<void(basic_output_surface& sfc)>& fn);
     void dimensions(basic_display_point<graphics_math_type> dp);
     void dimensions(basic_display_point<graphics_math_type> dp, error_code& ec) noexcept;
     void output_dimensions(basic_display_point<graphics_math_type> dp);
     void output_dimensions(basic_display_point<graphics_math_type> dp,
        error_code& ec) noexcept;
     void scaling(io2d::scaling scl) noexcept;
     void user_scaling_callback(const
        function<basic_bounding_box<graphics_math_type>(const basic_output_surface&, bool&)>& fn);
     void letterbox_brush(const optional<basic_brush<GraphicsSurfaces>>& b,
        const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt) noexcept;
     void letterbox_brush_props(const optional<basic_brush_props<GraphicsSurfaces>>& bp) noexcept;
     void auto_clear(bool val) noexcept;
     void redraw_required(bool val = true) noexcept;
     // 15.5.5, observers:
     io2d::format format() const noexcept;
     basic_display_point<graphics_math_type> dimensions() const noexcept;
     basic_display_point<graphics_math_type> max_dimensions() const noexcept;
     basic_display_point<graphics_math_type> output_dimensions() const noexcept;
     basic_display_point<graphics_math_type> max_output_dimensions() const noexcept;
     io2d::scaling scaling() const noexcept;
     optional<basic_brush<GraphicsSurfaces>> letterbox_brush() const noexcept;
     optional<br/>dasic_brush_props<GraphicsSurfaces>> letterbox_brush_props() const noexcept;
     bool auto_clear() const noexcept;
   };
 }
15.5.3
         basic_output_surface constructors
                                                                       [io2d.outputsurface.cons]
basic_output_surface(int preferredWidth, int preferredHeight,
 io2d::format preferredFormat,
  io2d::scaling scl = io2d::scaling::letterbox,
  io2d::refresh_style rr = io2d::refresh_style::as_fast_as_possible,
 float fps = 30.0f);
basic_output_surface(int preferredWidth, int preferredHeight,
 io2d::format preferredFormat,
 error_code& ec, io2d::scaling scl = io2d::scaling::letterbox,
 io2d::refresh_style rr = io2d::refresh_style::as_fast_as_possible,
 float fps = 30.0f) noexcept;
     <TODO>
basic_output_surface(int preferredWidth, int preferredHeight,
  io2d::format preferredFormat, int preferredDisplayWidth,
  int preferredDisplayHeight, io2d::format preferredDisplayFormat,
  io2d::scaling scl = io2d::scaling::letterbox,
  io2d::refresh_style rr = io2d::refresh_style::as_fast_as_possible,
  float fps = 30.0f);
basic_output_surface(int preferredWidth, int preferredHeight,
  io2d::format preferredFormat, int preferredDisplayWidth,
  int preferredDisplayHeight, io2d::format preferredDisplayFormat,
  error_code& ec, io2d::scaling scl = io2d::scaling::letterbox,
  io2d::refresh_style rr = io2d::refresh_style::as_fast_as_possible,
  float fps = 30.0f) noexcept;
     <TODO>
```

void mask(const basic_brush<GraphicsSurfaces>& b,

15.5.4 basic_output_surface modifiers

[io2d.outputsurface.mofifiers]

int begin_show();

- 1 Effects: Performs the following actions in a continuous loop:
 - 1. Handle any implementation and host environment matters. If there are no pending implementation or host environment matters to handle, proceed immediately to the next action.
 - 2. Run the size change callback if doing so is required by its specification and it does not have a value equivalent to its default value.
 - 3. If the refresh style requires that the draw callback be called then:
 - a) Evaluate auto clear and perform the actions required by its specification, if any.
 - b) Run the draw callback.
 - c) Ensure that all operations from the draw callback that can effect the back buffer have completed.
 - d) Transfer the contents of the back buffer to the display buffer using sampling with an unspecified filter. If the user scaling callback does not have a value equivalent to its default value, use it to determine the position where the contents of the back buffer shall be transferred to and whether or not the letterbox brush should be used. Otherwise use the value of scaling type to determine the position and whether the letterbox brush should be used.
- If basic_output_surface::end_show is called from the draw callback, the implementation shall finish executing the draw callback and shall immediately cease to perform any actions in the continuous loop other than handling any implementation and host environment matters needed to exit the loop properly.
- No later than when this function returns, the output device shall cease to display the contents of the display buffer.
- What the output device shall display when it is not displaying the contents of the display buffer is unspecified .
- 5 Returns: The possible values and meanings of the possible values returned are implementation-defined.
- 6 Throws: As specified in Error reporting (Clause 4).
- 7 Remarks: Since this function calls the draw callback and can call the size change callback and the user scaling callback, in addition to the errors documented below, any errors that the callback functions produce can also occur.
- 8 Error conditions: errc::operation_would_block if the value of draw callback is equivalent to its default value or if it becomes equivalent to its default value before this function returns.
- Other errors, if any, produced by this function are implementation-defined.

```
void end_show();
```

- Effects: If this function is called outside of the draw callback while it is being executed in the basic_output_surface::begin_show function's continuous loop, it does nothing.
- Otherwise, the implementation initiates the process of exiting the basic_output_surface::begin_-show function's continuous loop.
- If possible, any procedures that the host environment requires in order to cause the basic_output_-surface::show function's continuous loop to stop executing without error should be followed.
- The basic_output_surface::begin_show function's loop continues execution until it returns.

void clear();

14 Effects: <TODO>

```
void paint(const basic_brush<GraphicsSurfaces>& b,
  const optional<br/>
basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
  const optional<br/>
basic_render_props<GraphicsSurfaces>>& rp = nullopt,
  const optional<br/>
basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
```

15 Effects: Performs the painting rendering and composing operation as specified by 15.3.4.

```
16
         The meanings of the parameters are specified by 15.3.2.
17
         Throws: As specified in Error reporting (Clause 4).
18
         Error conditions: The errors, if any, produced by this function are implementation-defined.
   template <class Allocator>
   void stroke(const basic_brush<GraphicsSurfaces>& b,
     const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
     const optional<basic_stroke_props<GraphicsSurfaces>>& sp = nullopt,
     const optional<basic_dashes<GraphicsSurfaces>>& d = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
   void stroke(const basic_brush<GraphicsSurfaces>& b,
     const basic_interpreted_path<GraphicsSurfaces>& ip,
     const optional <br/>basic_brush_props < Graphics Surfaces >> & bp = nullopt,
     const optional<basic_stroke_props<GraphicsSurfaces>>& sp = nullopt,
     const optional<basic_dashes<GraphicsSurfaces>>& d = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
19
         Effects: Performs the stroking rendering and composing operation as specified by 15.3.6.
20
         The meanings of the parameters are specified by 15.3.2.
21
         Throws: As specified in Error reporting (Clause 4).
22
         Error conditions: The errors, if any, produced by this function are implementation-defined.
   template <class Allocator>
   void fill(const basic_brush<GraphicsSurfaces>& b,
     const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
   void fill(const basic_brush<GraphicsSurfaces>& b,
     const basic_interpreted_path<GraphicsSurfaces>& ip,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
23
         Effects: Performs the filling rendering and composing operation as specified by 15.3.5.
24
         The meanings of the parameters are specified by 15.3.2.
25
         Throws: As specified in Error reporting (Clause 4).
26
         Error conditions: The errors, if any, produced by this function are implementation-defined.
   void mask(const basic_brush<GraphicsSurfaces>& b,
     const basic_brush<GraphicsSurfaces>& mb,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
     const optional<basic_mask_props<GraphicsSurfaces>>& mp = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
27
         Effects: Performs the masking rendering and composing operation as specified by 15.3.7.
28
         The meanings of the parameters are specified by 15.3.2.
29
         Throws: As specified in Error reporting (Clause 4).
30
         Error conditions:
        The errors, if any, produced by this function are implementation-defined.
   void draw_callback(const function<void(basic_output_surface& sfc)>& fn);
31
         Effects: <TODO>
   void size_change_callback(const function<void(basic_output_surface& sfc)>& fn);
32
         Effects: <TODO>
```

```
void dimensions(basic_display_point<graphics_math_type> dp);
   void dimensions(basic_display_point<graphics_math_type> dp, error_code& ec) noexcept;
33
         Effects: <TODO>
   void display_dimensions(basic_display_point<graphics_math_type> dp);
   void display_dimensions(basic_display_point<graphics_math_type> dp, error_code& ec) noexcept;
34
         Effects: < TODO >
   void scaling(io2d::scaling scl) noexcept;
35
         Effects: <TODO>
   void user_scaling_callback(const
     function < basic_bounding_box < graphics_math_type > (const basic_output_surface&, bool&) > & fn);
36
         Effects: <TODO>
   void letterbox_brush(const optional<basic_brush<GraphicsSurfaces>>& b,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt) noexcept;
   void letterbox_brush_props(const optional<basic_brush_props<GraphicsSurfaces>>& bp) noexcept;
37
         Effects: <TODO>
   void auto_clear(bool val) noexcept;
38
         Effects: < TODO >
   void redraw_required(bool val = true) noexcept;
39
         Effects: <TODO>
                                                                       [io2d.outputsurface.observers]
   15.5.5 basic_output_surface observers
   io2d::format format() const noexcept;
         Returns: The pixel format.
   basic_display_point<graphics_math_type> dimensions() const noexcept;
         Returns: <TODO>The height and width.
   basic_display_point<graphics_math_type> max_dimensions() const noexcept;
 3
         Returns: <TODO>The maximum available height and width of a basic_output_surcace for the
         device.
   basic_display_point<graphics_math_type> display_dimensions() const noexcept;
         Returns: <TODO>
   basic_display_point<graphics_math_type> max_output_dimensions() const noexcept;
 5
         Returns: <TODO>
   io2d::scaling scaling() const noexcept;
 6
         Returns: The scaling type.
   optional<basic_brush<GraphicsSurfaces>> letterbox_brush() const noexcept;
 7
         Returns: An optional <a href="mailto:basic_brush</a> <a href="mailto:GraphicsSurfaces">GraphicsSurfaces</a> object constructed using the user-provided
         letterbox brush or, if the letterbox brush is set to its default value, an empty optional <br/>
basic_-
         brush<GraphicsSurfaces>> object.
   optional <br/>basic_brush_props <br/> Graphics Surfaces >> letterbox_brush_props () const no except;
 8
         Returns: An optional basic brush props Graphics Surfaces >> object constructed using the user-
         provided letterbox brush props or, if the letterbox brush props is set to its default value, an empty
         optional <br/>basic_brush_props <br/> Graphics Surfaces >> object.
   bool auto_clear() const noexcept;
 9
         Returns: The value of auto clear.
```

15.6 Class basic_unmanaged_output_surface

[io2d.unmanagedoutputsurface]

15.6.1 basic_unmanaged_output_surface summary [io2d.unmanagedoutputsurface.summary]

1 <TODO>

15.6.2 basic_unmanaged_output_surface synopsis [io2d.unmanagedoutputsurface.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsSurfaces>
  class basic_unmanaged_output_surface {
 public:
    using graphics_math_type = typename GraphicsSurfaces::graphics_math_type;
    using data_type =
      typename GraphicsSurfaces::surfaces::unmanaged_output_surface_data_type;
    // 15.6.3, constructor:
    basic_unmanaged_output_surface(data_type&& data) noexcept;
    // 15.6.4, observers:
    bool has_draw_callback() const noexcept;
    bool has_size_change_callback() const noexcept;
    bool has_user_scaling_callback() const noexcept;
    io2d::format format() const noexcept;
    basic_display_point<graphics_math_type> dimensions() const noexcept;
    basic_display_point<graphics_math_type> max_dimensions() const noexcept;
    basic_display_point<graphics_math_type> display_dimensions() const noexcept;
    basic_display_point<graphics_math_type> max_display_dimensions() const
      noexcept:
    io2d::scaling scaling() const noexcept;
    optional<basic_brush<GraphicsSurfaces>> letterbox_brush() const noexcept;
    optional<br/>dsaic_brush_props<GraphicsSurfaces>> letterbox_brush_props() const
      noexcept;
    bool auto_clear() const noexcept;
    // 15.6.5, modifiers:
    void invoke_draw_callback();
    void invoke_size_change_callback();
    void draw_to_output();
    void clear();
    void paint(const basic_brush<GraphicsSurfaces>& b,
      const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
      const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
      const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
    template <class Allocator>
    void stroke(const basic_brush<GraphicsSurfaces>& b,
      const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
      const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
      const optional<basic_stroke_props<GraphicsSurfaces>>& sp = nullopt,
      const optional<basic_dashes<GraphicsSurfaces>>& d = nullopt,
      const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
      const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
    void stroke(const basic_brush<GraphicsSurfaces>& b,
      const basic_interpreted_path<GraphicsSurfaces>& ip,
      const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
      const optional<basic_stroke_props<GraphicsSurfaces>>& sp = nullopt,
      const optional<basic_dashes<GraphicsSurfaces>>& d = nullopt,
      const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
      const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
    template <class Allocator>
    void fill(const basic_brush<GraphicsSurfaces>& b,
      const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
      const optional lossic_brush_props loss Surfaces loss bp = nullopt,
```

§ 15.6.2

```
const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
        void fill(const basic_brush<GraphicsSurfaces>& b,
          const basic_interpreted_path<GraphicsSurfaces>& ip,
          const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
          const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
          const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
        void mask(const basic_brush<GraphicsSurfaces>& b,
          const basic_brush<GraphicsSurfaces>& mb,
          const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
          const optional<basic_mask_props<GraphicsSurfaces>>& mp = nullopt,
          const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
          const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
        void draw_callback(
          const function<void(basic_unmanaged_output_surface& sfc)>& fn);
        void size_change_callback(
          const function<void(basic_unmanaged_output_surface& sfc)>& fn);
        void dimensions(basic_display_point<graphics_math_type> dp);
        void dimensions(basic_display_point<graphics_math_type> dp, error_code& ec)
        void display_dimensions(basic_display_point<graphics_math_type> dp);
        void display_dimensions(basic_display_point<graphics_math_type> dp,
          error_code& ec) noexcept;
        void scaling(io2d::scaling scl) noexcept;
        void letterbox_brush(const optional<basic_brush<GraphicsSurfaces>>& b,
          const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt)
          noexcept;
        void letterbox_brush_props(
          const optional<basic_brush_props<GraphicsSurfaces>>& bp) noexcept;
        void auto_clear(bool val) noexcept;
        void redraw_required(bool val = true) noexcept;
    }
  15.6.3
           basic_unmanaged_output_surface constructor
           [io2d.unmanagedoutputsurface.cons]
  basic_unmanaged_output_surface(data_type&& data) noexcept;
       <TODO>
  15.6.4 basic unmanaged output surface observers
           [io2d.unmanagedoutputsurface.observers]
  bool has_draw_callback() const noexcept;
1
       Returns: <TODO>
  bool has_size_change_callback() const noexcept;
       Returns: <TODO>
  io2d::format format() const noexcept;
       Returns: <TODO>
  basic_display_point<graphics_math_type> dimensions() const noexcept;
4
       Returns: <TODO>
  basic_display_point<graphics_math_type> max_dimensions() const noexcept;
       Returns: <TODO>
  basic_display_point<graphics_math_type> display_dimensions() const noexcept;
       Returns: <TODO>
```

const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,

§ 15.6.4

```
basic_display_point<graphics_math_type> max_display_dimensions() const noexcept;
7
         Returns: <TODO>
   io2d::scaling scaling() const noexcept;
         Returns: <TODO>
   optional<basic_brush<GraphicsSurfaces>> letterbox_brush() const noexcept;
         Returns: <TODO>
   optional < basic_brush_props < Graphics Surfaces >> letterbox_brush_props () const
10
         Returns: <TODO>
   bool auto_clear() const noexcept;
11
         Returns: <TODO>
             basic_unmanaged_output_surface modifiers
             [io2d.unmanagedoutputsurface.mofifiers]
   void clear();
1
        Effects: <TODO>
   void paint(const basic_brush<GraphicsSurfaces>& b,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
2
         Effects: Performs the painting rendering and composing operation as specified by 15.3.4.
3
         The meanings of the parameters are specified by 15.3.2.
         Throws: As specified in Error reporting (Clause 4).
5
         Error conditions: The errors, if any, produced by this function are implementation-defined.
   template <class Allocator>
   void stroke(const basic_brush<GraphicsSurfaces>& b,
     const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
     const optional<basic_stroke_props<GraphicsSurfaces>>& sp = nullopt,
     const optional<basic_dashes<GraphicsSurfaces>>& d = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
   void stroke(const basic_brush<GraphicsSurfaces>& b,
     const basic_interpreted_path<GraphicsSurfaces>& ip,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
     const optional<basic_stroke_props<GraphicsSurfaces>>& sp = nullopt,
     const optional<basic_dashes<GraphicsSurfaces>>& d = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
6
         Effects: Performs the stroking rendering and composing operation as specified by 15.3.6.
        The meanings of the parameters are specified by 15.3.2.
         Throws: As specified in Error reporting (Clause 4).
         Error conditions: The errors, if any, produced by this function are implementation-defined.
   template <class Allocator>
   void fill(const basic_brush<GraphicsSurfaces>& b,
     const basic_path_builder<GraphicsSurfaces, Allocator>& pb,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
```

§ 15.6.5

```
void fill(const basic_brush<GraphicsSurfaces>& b,
     const basic_interpreted_path<GraphicsSurfaces>& ip,
     const optional <br/>basic_brush_props < Graphics Surfaces >> & bp = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
10
         Effects: Performs the filling rendering and composing operation as specified by 15.3.5.
11
         The meanings of the parameters are specified by 15.3.2.
12
         Throws: As specified in Error reporting (Clause 4).
13
         Error conditions: The errors, if any, produced by this function are implementation-defined.
   void mask(const basic_brush<GraphicsSurfaces>& b,
     const basic_brush<GraphicsSurfaces>& mb,
     const optional <br/>basic_brush_props < Graphics Surfaces >> & bp = nullopt,
     const optional<basic_mask_props<GraphicsSurfaces>>& mp = nullopt,
     const optional<basic_render_props<GraphicsSurfaces>>& rp = nullopt,
     const optional<basic_clip_props<GraphicsSurfaces>>& cl = nullopt);
14
         Effects: Performs the masking rendering and composing operation as specified by 15.3.7.
15
         The meanings of the parameters are specified by 15.3.2.
16
         Throws: As specified in Error reporting (Clause 4).
17
         Error conditions:
        The errors, if any, produced by this function are implementation-defined.
   void draw_callback(const function<void(basic_unmanaged_output_surface& sfc)>& fn);
18
         Effects: <TODO>
   void size_change_callback(const function<void(basic_unmanaged_output_surface& sfc)>& fn);
19
         Effects: <TODO>
   void dimensions(basic_display_point<graphics_math_type> dp);
   void dimensions(basic_display_point<graphics_math_type> dp, error_code& ec) noexcept;
20
         Effects: <TODO>
   void display_dimensions(basic_display_point<graphics_math_type> dp);
   void display_dimensions(basic_display_point<graphics_math_type> dp, error_code& ec) noexcept;
21
         Effects: <TODO>
   void scaling(io2d::scaling scl) noexcept;
22
         Effects: <TODO>
   void letterbox_brush(const optional<basic_brush<GraphicsSurfaces>>& b,
     const optional<basic_brush_props<GraphicsSurfaces>>& bp = nullopt) noexcept;
   void letterbox_brush_props(const optional<basic_brush_props<GraphicsSurfaces>>& bp) noexcept;
23
         Effects: <TODO>
   void auto clear(bool val) noexcept;
24
         Effects: <TODO>
```

§ 15.6.5

16 Input

[io2d.input]

[Note: Input, such as keyboard, mouse, and touch, to user-visible surfaces will be added at a later date. This section is a placeholder. It is expected that input will be added via deriving from a user-visible surface. One possibility is that an io_surface class deriving from display_surface. This would allow developers to choose not to incur any additional costs of input support where the surface does not require user input. — end note]

Input 178

17 Standalone functions

[io2d.standalone]

17.1 Standalone functions synopsis

[io2d.standalone.synopsis]

```
namespace std::experimental::io2d::v1 {
  template <class GraphicsSurfaces>
  basic_image_surface<GraphicsSurfaces> copy_surface(
    basic_image_surface<GraphicsSurfaces>& sfc) noexcept;
  template <class GraphicsSurfaces>
  basic_image_surface<GraphicsSurfaces> copy_surface(
    basic_output_surface<GraphicsSurfaces>& sfc) noexcept;
  template <class T>
  constexpr T degrees_to_radians(T d) noexcept;
  template <class T>
  constexpr T radians_to_degrees(T r) noexcept;
  float angle_for_point(point_2d ctr, point_2d pt) noexcept;
  point_2d point_for_angle(float ang, float rad = 1.0f) noexcept;
 point_2d point_for_angle(float ang, point_2d rad) noexcept;
 point_2d arc_start(point_2d ctr, float sang, point_2d rad,
    const matrix_2d& m = matrix_2d{}) noexcept;
  point_2d arc_center(point_2d cpt, float sang, point_2d rad,
    const matrix_2d& m = matrix_2d{}) noexcept;
  point_2d arc_end(point_2d cpt, float eang, point_2d rad,
    const matrix_2d& m = matrix_2d{}) noexcept;
}
```

17.2 copy_surface

[io2d.standalone.copysurface]

```
template <class GraphicsSurfaces>
basic_image_surface<GraphicsSurfaces> copy_surface(
   basic_image_surface<GraphicsSurfaces>& sfc) noexcept;
template <class GraphicsSurfaces>
basic_image_surface<GraphicsSurfaces> copy_surface(
   basic_output_surface<GraphicsSurfaces>& sfc) noexcept;

Returns: GraphicsSurfaces::surfaces::copy_surface(sfc).
```

17.3 degrees_to_radians

[io2d.standalone.degtorad]

```
template <class T>
constexpr T degrees_to_radians(T d) noexcept;
```

Returns: If d is positive and is less than one thousandth of a degree, then static_cast<T>(0). If d is negative and is less than one thousandth of a degree, then -static_cast<T>(0). Otherwise, the value obtained from converting the degrees value d to radians.

Remarks: This function shall not participate in overload resolution unless T is a floating-point type.

17.4 radians_to_degrees

[io2d.standalone.radtodeg]

```
template <class T>
constexpr T radians_to_degrees(T r) noexcept;
```

Returns: If r is positive and is less than one thousandth of a degree in radians, then static_cast<T>(0). If r is negative and is less than one thousandth of a degree in radians, then -static_cast<T>(0). Otherwise, the value obtained from converting the radians value r to degrees.

Remarks: This function shall not participate in overload resolution unless T is a floating-point type.

17.5 angle_for_point

[io2d.standalone.angleforpoint]

float angle_for_point(point_2d ctr, point_2d pt) noexcept;

Returns: The angle, in radians, of pt as a point on a circle with a center at ctr. If the angle is less that pi<float> / 180000.0f, returns 0.0f.

§ 17.5

17.6 point_for_angle

[io2d.standalone.pointforangle]

```
point_2d point_for_angle(float ang, float rad = 1.0f) noexcept;
point_2d point_for_angle(float ang, point_2d rad) noexcept;
```

- Requires: If it is a float, rad is greater than 0.0f. If it is a point_2d, rad.x or rad.y is greater than 0.0f and neither is less than 0.0f.
- Returns: The result of rotating the point point_2d{ 1.0f, 0.0f }, around an origin of point_2d{ 0.0f, 0.0f } by ang radians, with a positive value of ang meaning counterclockwise rotation and a negative value meaning clockwise rotation, with the result being multiplied by rad.

17.7 arc_start

1

2

2

[io2d.standalone.arcstart]

```
point_2d arc_start(point_2d ctr, float sang, point_2d rad,
  const matrix_2d& m = matrix_2d{}) noexcept;

  Requires: rad.x and rad.y are both greater than 0.0f.

  Returns: As-if:
    auto lmtx = m;
    lmtx.m20 = 0.0f; lmtx.m21 = 0.0f;
    auto pt = point_for_angle(sang, rad);
    return ctr + pt * lmtx;
```

[Note: Among other things, this function is useful for determining the point at which a new figure should begin if the first item in the figure is an arc and the user wishes to clearly define its center.

— end note]

17.8 arc_center

[io2d.standalone.arccenter]

```
const matrix_2d& m = matrix_2d{}) noexcept;
    Requires: rad.x and rad.y are both greater than 0.0f.
    Returns: As-if:
    auto lmtx = m;
    lmtx.m20 = 0.0f; lmtx.m21 = 0.0f;
    auto centerOffset = point_for_angle(two_pi<float> - sang, rad);
    centerOffset.y = -centerOffset.y;
    return cpt - centerOffset * lmtx;
```

point_2d arc_center(point_2d cpt, float sang, point_2d rad,

17.9 arc end

[io2d.standalone.arcend]

```
point_2d arc_end(point_2d cpt, float eang, point_2d rad,
  const matrix_2d& m = matrix_2d{}) noexcept;
  Requires: rad.x and rad.y are both greater than 0.0f.
  Returns: As-if:
    auto lmtx = m;
```

auto tfrm = matrix_2d::init_rotate(eang);

lmtx.m20 = 0.0f; lmtx.m21 = 0.0f;

auto pt = (rad * tfrm);

return cpt + pt * lmtx;

pt.y = -pt.y;

§ 17.9

Annex A (informative) Bibliography

[bibliography]

- $^{1}\,$ The following is a list of informative resources intended to assist in the understanding or use of this Technical Specification .
- (1.1) Porter, Thomas and Duff, Tom, 1984, Compositing digital images. ACM SIGGRAPH Computer Graphics. 1984. Vol. 18, no. 3, p. 253-259. DOI 10.1145/964965.808606. Association for Computing Machinery (ACM)
- (1.2) Foley, James D. et al., *Computer graphics: principles and practice*. 2nd ed. Reading, Massachusetts: Addison-Wesley, 1996.

Index

2D graphics synopsis, 12–18
additive color, 7 aliasing, 10 alpha channel, 6 anti-aliasing, 10 aspect ratio, 6
Bézier curve, 8 cubic, 8 quadratic, 8
C Unicode TR, 5 channel, 6 closed figure, 8 color transparent black, 137
color channel, 6 color model, 7 RGB, 7 RGBA, 7 color space, 7 sRGB, 7 command, 8, 9 compose, 9 composition algorithm, 9 control point, 8 CSS Colors Specification, 5 current point, 8
definitions, 6–10 degenerate figure, 9 degenerate segment, 8
end point, 7
figure, 9 figure item, 9 filter, 9 final segment, 8 format JPEG, 5 PNG, 5 TIFF, 5
graphics state data, 9
initial segment, 8 integral point, 6
new figure point, 8 normalize, 6
open figure, 8

origin, 6 output device, 160
path, 9
path, 9 path command, 9
path command, 9 path transformation matrix, 9
pixel, 7
point, 6
premultiplied format, 7
raster graphics data, 7
references
normative, 5
render, 9
rendering and composing operation, §
sample, 9
scope, 4
segment, 8
standard coordinate space, 6
start point, 7
surface, 157
surface class templates, 157
vector graphics data, 7
visual data, 6
visual data element, 6
visual data format, 7

Index of library names

a	basic_unmanaged_output_surface, 176, 177
$rgba_color, 24, 25$	
abs_cubic_curve, 100	b
constructor, 101	rgba_color, 24
$\mathtt{control_pt1}, 101$	$\mathtt{basic_bounding_box}, 81$
$\mathtt{control_pt2}, 101$	bottom_right, 83
$\mathtt{data},101$	constructor, 82
$\mathtt{end_pt},101$	$\mathtt{data},82$
operator==, 102	$\mathtt{height},83$
abs_line, 104	operator==, 83
constructor, 105	$\mathtt{top_left}, 83$
$\mathtt{data},105$	$\mathtt{width}, 83$
operator==, 105	x, 82, 83
to, 105	y, 83
abs_matrix, 96	basic_brush, 128
constructor, 97	constructor, 130, 131
$\mathtt{data},97$	$\mathtt{data},131,153$
$\mathtt{matrix},97$	type, 131
operator==, 97	${\tt basic_brush_props},145$
abs_new_figure, 92	$brush_matrix, 145, 146$
at, 93	constructor, 145
constructor, 92, 93	$\mathtt{fill_rule},145,146$
$\mathtt{data},93$	$\mathtt{filter},145,146$
operator==, 93	$\texttt{wrap_mode}, 145, 146$
abs_quadratic_curve, 107	basic_circle, 83
constructor, 108	center, 84
control_pt, 108	constructor, 84
data, 108	$\mathtt{data},84$
$\mathtt{end_pt},108$	operator==, 85
operator==, 108	$\mathtt{radius},84$
angle_for_point, 179	basic_clip_props
angular_direction	clip, 148
basic_point_2d, 74	constructor, 147
antialias, 132	$\mathtt{data},148$
antialiasing	fill_rule, 148
basic_fill_props, 151	$\mathtt{basic_dashes},152$
arc, 110	constructor, 153
${\tt basic_path_builder}, 120$	basic_display_point, 80
center, 112	constructor, 80, 81
constructor, 111, 112	data, 81
data, 112	operator==, 81
operator==, 113	x, 81
radius, 112	y, 81
rotation, 112	basic_fill_props
start_angle, 112	antialiasing, 151
arc_center, 180	constructor, 151
arc_end, 180	data, 151
arc_start, 180	fill_rule, 151
at	filtering, 151
$abs_new_figure, 93$	basic_image_surface, 165
rel_new_figure, 94, 95	clear, 167
auto_clear	constructor, 166
basic_output_surface, 173	dimensions, 167
	fill, 168

format, 167	scaling, 173
$\mathtt{mask},168$	${\tt size_change_callback},172$
$\mathtt{max_dimensions},167$	$\mathtt{stroke},172$
paint, 167	user_scaling_callback, 173
save, 167	basic_path_builder, 119
stroke, 168	${\tt basic_path_builder}, 115$
basic_interpreted_path, 114	arc,120
constructor, 115	begin, 121
basic_mask_props	capacity, 118
constructor, 152	cbegin, 121
filter, 152	cend, 121
${ t mask_matrix}, 152$	close_figure, 119
wrap_mode, 152	constructor, 118
basic_matrix_2d, 75	crbegin, 121
constructor, 77	crend, 121
data, 77	cubic_curve, 120
determinant, 79	emplace_back, 120
init_reflect, 77	end, 121
init_rotate, 77	erase, 120
init_scale, 77	insert, 120
init_shear_y, 77, 78	line, 120
init_translate, 77	modify_matrix, 119
inverse, 79	new_figure, 119
is_finite, 79	pop_back, 120
is_invertible, 79	push_back, 120
m00, 78	
m00, 78 m01, 78, 79	quadratic_curve, 120
	rbegin, 121
m10, 78, 79	rel_cubic_curve, 120
m11, 78, 79	rel_line, 120
m20, 78, 79	rel_new_figure, 119
m21, 78, 79	rel_quadratic_curve, 120
operator*, 79	rend, 121
operator*=, 79	reserve, 118
operator==, 79	revert_matrix, 119
reflect, 78	set_matrix, 119
rotate, 78	shrink_to_fit, 118
scale, 78	swap, 119
shear_x, 78	basic_point_2d, 72
shear_y, 78	angular_direction, 74
transform_pt, 79	constructor, 73
translate, 78	$\mathtt{data}, 73$
basic_output_surface, 168	$\mathtt{dot},74$
auto_clear, 173	$\mathtt{magnitude}, 74$
begin_show, 171	${ t magnitude_squared},74$
clear, 171	operator*, 75
constructor, 170	operator $*=$, 74
dimensions, 173	operator+, 75
${\tt display_dimensions},173$	operator+=, 74
draw_callback, 172	${ t operator-, 75}$
$\mathtt{end_show},\ 171$	operator-=, 74
fill, 172	operator/, 75
format, 173	operator/=, 74
letterbox_brush, 173	operator==, 75
letterbox_brush_props, 173	to_unit, 74
mask, 172	x, 74
max_dimensions, 173	y, 74
max_output_dimensions, 173	basic_render_props
paint, 171	compositing, 144
redraw_required, 173	constructor, 144

$\mathtt{data},144$	${\tt gradient_stop}, 128$
filtering, 144	compositing
surface_matrix, 144	basic_render_props, 144
surface_member, 144	control_pt
basic_stroke_props	$abs_quadratic_curve, 108$
constructor, 149	rel_quadratic_curve, 110
$\texttt{line_cap},149,150$	control_pt1
line_join, 149 , 150	abs_cubic_curve, 101
$\texttt{line_width}, 149, 150$	${\tt rel_cubic_curve}, 103$
max_miter_limit, 150	control_pt2
miter_limit, 150	abs_cubic_curve, 101
basic_unmanaged_output_surface, 174	rel_cubic_curve, 103
auto_clear, 176, 177	copy_surface, 179
clear, 176	crbegin
constructor, 175	basic_path_builder, 121
dimensions, 175, 177	crend
display_dimensions, 175, 177	basic_path_builder, 121
draw_callback, 177	cubic_curve
fill, 176	basic_path_builder, 120
format, 175	basic_path_bullder, 120
has_draw_callback, 175	data
has_size_change_callback, 175	abs_cubic_curve, 101
letterbox_brush, 176, 177	abs_line, 105
	abs_matrix, 97
letterbox_brush_props, 176	abs_new_figure, 93
mask, 177	
max_dimensions, 175	abs_quadratic_curve, 108
max_display_dimensions, 176	arc, 112
paint, 176	basic_bounding_box, 82
scaling, $176, 177$	basic_brush, 131, 153
size_change_callback, 177	basic_circle, 84
$\mathtt{stroke},176$	basic_clip_props, 148
begin	basic_display_point, 81
basic_path_builder, 121	basic_fill_props, 151
begin_show	basic_matrix_2d, 77
basic_output_surface, 171	basic_point_2d, 73
bottom_right	basic_render_props, 144
basic_bounding_box, 83	${ t rel_cubic_curve},103$
brush_matrix	${\tt rel_line},106$
basic_brush_props, 145, 146	$\mathtt{rel_matrix},98$
	${\tt rel_new_figure},94$
capacity	${\tt rel_quadratic_curve}, 110$
${\tt basic_path_builder}, 118$	determinant
cbegin	basic_matrix_2d, 79
basic_path_builder, 121	dimensions
cend	basic_image_surface, 167
basic_path_builder, 121	basic_output_surface, 173
center	basic_unmanaged_output_surface, 175, 177
arc, 112	display_dimensions
basic_circle, 84	basic_output_surface, 173
clear	basic_unmanaged_output_surface, 175, 177
basic_image_surface, 167	dot
basic_output_surface, 171	basic_point_2d, 74
basic_unmanaged_output_surface, 176	draw_callback
clip	basic_output_surface, 172
basic_clip_props, 148	basic_unmanaged_output_surface, 177
close_figure, 95	basic_umanageu_output_surrace, 177
	emplace_back
basic_path_builder, 119	basic_path_builder, 120
operator==, 95	end
color	onu

basic_path_builder, 121	interpreted_path
end_pt	constructor, 115
abs_cubic_curve, 101	inverse
abs_quadratic_curve, 108	basic_matrix_2d, 79
$rel_cubic_curve, 103, 104$	is_finite
rel_quadratic_curve, 110	basic_matrix_2d, 79
end_show	is_invertible
basic_output_surface, 171	basic_matrix_2d, 79
erase	
basic_path_builder, 120	letterbox_brush
<pre><experimental io2d="">, 12</experimental></pre>	basic_output_surface, 173
	${\tt basic_unmanaged_output_surface}, 176, 177$
fill	letterbox_brush_props
basic_image_surface, 168	basic_output_surface, 173
basic_output_surface, 172	${\tt basic_unmanaged_output_surface},\ 176$
${\tt basic_unmanaged_output_surface},\ 176$	line
fill_rule	$ exttt{basic_path_builder}, exttt{120}$
$\mathtt{basic_brush_props},\ 145,\ 146$	line_cap
basic_clip_props, 148	$ exttt{basic_stroke_props},\ 149,\ 150$
basic_fill_props, 151	line_join
filter	${\tt basic_stroke_props},149,150$
$\mathtt{basic_brush_props},145,146$	line_width
${\tt basic_mask_props},152$	${\tt basic_stroke_props},149,150$
filtering	
basic_fill_props, 151	m00
basic_render_props, 144	basic_matrix_2d, 78
format	m01
basic_image_surface, 167	basic_matrix_2d, 78, 79
basic_output_surface, 173	m10
${\tt basic_unmanaged_output_surface},\ 175$	basic_matrix_2d, 78, 79
	m11
g	basic_matrix_2d, 78, 79
rgba_color, 23, 24	m20
gradient_stop, 127	basic_matrix_2d, 78, 79
color, 128	m21
constructor, 128	basic_matrix_2d, 78, 79
offset, 128	magnitude
operator==, 128	basic_point_2d, 74
has dues callback	magnitude_squared
has_draw_callback	basic_point_2d, 74
basic_unmanaged_output_surface, 175	mask
has_size_change_callback	basic_image_surface, 168
basic_unmanaged_output_surface, 175	basic_output_surface, 172
height	basic_unmanaged_output_surface, 177
${\tt basic_bounding_box},83$	mask_matrix
image_file_format, 156	$ exttt{basic_mask_props},152$
init_reflect	matrix
basic_matrix_2d, 77	abs_matrix, 97
init_rotate	$\mathtt{rel_matrix},99$
_	max_dimensions
basic_matrix_2d, 77	${\tt basic_image_surface},167$
<pre>init_scale basic_matrix_2d, 77</pre>	basic_output_surface, 173
init_shear_y	${\tt basic_unmanaged_output_surface},175$
hagic matrix Od 77 70	max_display_dimensions
basic_matrix_2d, 77, 78	max_display_dimensions basic_unmanaged_output_surface, 176
init_translate	max_display_dimensions basic_unmanaged_output_surface, 176 max_miter_limit
<pre>init_translate basic_matrix_2d, 77</pre>	max_display_dimensions basic_unmanaged_output_surface, 176 max_miter_limit basic_stroke_props, 150
init_translate	max_display_dimensions basic_unmanaged_output_surface, 176 max_miter_limit

miter_limit	push_back
basic_stroke_props, 150	basic_path_builder, 120
modify_matrix	-
basic_path_builder, 119	quadratic_curve
·	$\mathtt{basic_path_builder}, 120$
new_figure	
basic_path_builder, 119	r
	$rgba_color, 23, 24$
offset	radius
${\tt gradient_stop}, 128$	arc, 112
operator*	$ exttt{basic_circle},84$
basic_matrix_2d, 79	rbegin
basic_point_2d, 75	$\mathtt{basic_path_builder},\ 121$
rgba_color, 28	redraw_required
operator*=	basic_output_surface, 173
basic_matrix_2d, 79	reflect
basic_point_2d, 74	$\mathtt{basic_matrix_2d},78$
rgba_color, 27, 28	rel_cubic_curve, 102
operator+	$basic_path_builder, 120$
basic_point_2d, 75	constructor, 103
operator+=	control_pt1, 103
basic_point_2d, 74	control_pt2, 103
operator-	data, 103
basic_point_2d, 75	end_pt, 103, 104
operator=	operator==, 104
basic_point_2d, 74	rel_line, 105
operator/	basic_path_builder, 120
basic_point_2d, 75	constructor, 106
operator/=	data, 106
basic_point_2d, 74	operator==, 107
operator==	to, 106, 107
abs_cubic_curve, 102	rel_matrix, 97
abs_line, 105	constructor, 98
abs_matrix, 97	data, 98
abs_new_figure, 93	matrix, 99
abs_quadratic_curve, 108	operator==, 99
arc, 113	rel_new_figure, 93
basic_bounding_box, 83	at, 94, 95
basic_circle, 85	basic_path_builder, 119
basic_display_point, 81	constructor, 94
basic_matrix_2d, 79	data, 94
basic_point_2d, 75	operator==, 95
close_figure, 95	rel_quadratic_curve, 109
gradient_stop, 128	basic_path_builder, 120
rel_cubic_curve, 104	constructor, 110
rel_line, 107	$\mathtt{control_pt}, 110$
$\mathtt{rel_matrix},99$	$\mathtt{data},110$
${ t rel_new_figure}, 95$	end_pt, 110
${\tt rel_quadratic_curve},110$	operator==, 110
${\tt revert_matrix}, 100$	rend
rgba_color, 28	$\mathtt{basic_path_builder},\ 121$
	reserve
paint	basic_path_builder, 118
${\tt basic_image_surface},167$	revert_matrix, 99
basic_output_surface, 171	basic_path_builder, 119
${\tt basic_unmanaged_output_surface},176$	operator==, 100
point_for_angle, 180	rgba_color, 19
pop_back	a, 24, 25
basic_path_builder, 120	b, 24

constructor, 23	basic_bounding_box, 83
g, 23, 24	wrap_mode
operator*, 28	basic_brush_props, 145, 146
operator*=, 27 , 28	$\mathtt{basic_mask_props},152$
operator==, 28	
r, 23, 24	x
rotate	basic_bounding_box, 82, 83
basic_matrix_2d, 78	basic_display_point, 81
rotation	$\mathtt{basic_point_2d},74$
arc, 112	
	У
save	$\mathtt{basic_bounding_box},~83$
basic_image_surface, 167	$\mathtt{basic_display_point}, 81$
scale	$\mathtt{basic_point_2d}, 74$
basic_matrix_2d, 78	
scaling	
basic_output_surface, 173	
basic_unmanaged_output_surface, 176, 177	
set_matrix basic_path_builder, 119	
——————————————————————————————————————	
shear_x	
basic_matrix_2d, 78	
shear_y	
basic_matrix_2d, 78	
shrink_to_fit	
basic_path_builder, 118	
size_change_callback	
basic_output_surface, 172	
basic_unmanaged_output_surface, 177	
start_angle	
arc, 112	
stroke	
${\tt basic_image_surface},168$	
basic_output_surface, 172	
basic_unmanaged_output_surface, 176	
surface, 157	
surface_matrix	
basic_render_props, 144	
surface_member	
basic_render_props, 144	
swap	
basic_path_builder, 119, 121	
to	
${\tt abs_line}, 105$	
rel_line, 106, 107	
to_unit	
basic_point_2d, 74	
top_left	
basic_bounding_box, 83	
transform_pt	
basic_matrix_2d, 79	
translate	
basic_matrix_2d, 78	
Dubio_mutii_zu, 10	
user_scaling_callback	
basic_output_surface, 173	
23210_040P40_D411400, 110	
width	

Index of implementation-defined behavior

The entries in this section are rough descriptions; exact specifications are at the indicated page in the general text.

```
additional data formats, 37
additional read only data formats, 37
additional visual data formats, 38
additional write only data formats, 38
antialiasing
    antialiasing
      best, 132
    antialiasing
      fast, 132
    antialiasing
      good, 132
basic_image_surface
    fill, 168
    mask, 168
    paint, 168
    save, 167
    stroke, 168
basic_output_surface
    begin_show, 171
    begin_show return value, 171
    fill, 172
    paint, 172
    stroke, 172
basic_unmanaged_output_surface
    fill, 177
    mask, 177
    paint, 176
    stroke, 176
create_unmanaged_output_surface, 70
dash pattern
    offset value, 160
display surface
    unsupported draw format, 162
filter
    best, 127
    fast, 127
    good, 127
format::argb32, 140
format::xrgb16, 140
format::xrgb32, 140
implementation system_error-derived type, 11
max miter limit, 51
output device, 160
output device visual format support, 59, 62
```