Claims:

1. A compound of general formula (I):

$$X_3$$
 X_2
 X_2
 X_3
 X_4
 X_5
 X_5
 X_5
 X_5
 X_5
 X_5
 X_5
 X_5
 X_1
 X_1
 X_2
 X_2
 X_1
 X_2
 X_3

5

25

wherein R_1 and R_2 are independently selected from the group consisting of hydrogen, optionally substituted alkyl which may be interrupted by one or more heteroatoms 10 or functional groups selected from the group consisting of O, S, -N=, NR₇ and -(Y)_mC=(Z)(T)_n-, optionally substituted alkenyl which may be interrupted by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR₇ and -(Y)_mC=(Z)(T)_n-, 15 optionally substituted aralkyl which may be interrupted within the alkyl moiety by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR₇ and -(Y)_mC=(Z)(T)_n-, optionally substituted heterocyclic, optionally substituted aryl, optionally 20 substituted acyl and a carbohydrate moiety;

or R_1 and R_2 together with the nitrogen atom from which they depend form a saturated or unsaturated, optionally substituted heterocyclic group which may include additional heteroatoms selected from the group consisting of O, N and S;

A is selected from the group consisting of O, S, SO, SO₂, Se, Te, NR₈, CR₉R'₉, N->O and C(O);

 $X_1 \text{ is selected from the group consisting of } OR_3, \\ SR_3, NR_3R'_3, hydrogen, halogen, -(Y)_mC=(Z)(T)_nR_3, - \\ N(C=(Z)(T)_nR_3)_2, N_3, CN, OCN, SCN, OSO_3R_3, OSO_2R_3, OPO_3R_3R'_3, \\ OPO_2R_3R'_3, S(O)R_3, S(O)_2R_3, S(O)_2OR_3, PO_3R_3R'_3, NR_3NR'_3R''_3, \\ SNR_3R'_3, NR_3SR'_3, SSR_3 \text{ and } R_3, \text{ or is an oxo group, =S, =NOR}_3 \\ or = CR_3R'_3 \text{ and } X_1' \text{ is absent, or } X_1 \text{ is } C=(Z) \text{ and } R_2 \text{ is}$

bonded thereto so as to form a cyclic moiety - $C=(Z)NR_1S(O)_p-;$

10

15

20

25

30

35

 X_2 is selected from the group consisting of OR_4 , SR_4 , $NR_4R'_4$, hydrogen, halogen, $-(Y)_mC=(Z)(T)_nR_4$, $-N(C=(Z)(T)_nR_4)_2$, N_3 , CN, OCN, SCN, OSO_3R_4 , OSO_2R_4 , $OPO_3R_4R'_4$, $OPO_2R_4R'_4$, $S(O)_2R_4$, $S(O)_2R_4$, $S(O)_2OR_4$, $PO_3R_4R'_4$, $NR_4NR'_4R''_4$, $SNR_4R'_4$, $NR_4SR'_4$, SSR_4 and R_4 , or is an oxo group, =S, $=NOR_4$ or $=CR_4R'_4$ and X_2' is absent;

 X_3 and X_3 'are independently selected from the group consisting of OR_5 , SR_5 , $NR_5R'_5$, hydrogen, halogen, - $(Y)_mC=(Z)(T)_nR_5$, - $N(C=(Z)(T)_nR_5)_2$, N_3 , CN, OCN, SCN, OSO $_3R_5$, OSO $_2R_5$, OPO $_3R_5R'_5$, OPO $_2R_5R'_5$, S(O) $_2R_5$, S(O) $_2R_5$, S(O) $_2OR_5$, PO $_3R_5R'_5$, NR $_5NR'_5R''_5$, SNR $_5R'_5$, NR $_5SR'_5$, SSR $_5$ and R $_5$, or X $_3$ is an oxo group, =S, =NOR $_5$ or =CR $_5R'_5$ and X $_3$ ' is absent;

 X_4 is selected from the group consisting of OR_6 , SR_6 , $NR_6R'_6$, hydrogen, halogen, $-(Y)_mC=(Z)(T)_nR_6$, $-N(C=(Z)(T)_nR_6)_2$, N_3 , CN, OCN, SCN, OSO_3R_6 , OSO_2R_6 , $OPO_3R_6R'_6$, $OPO_2R_6R'_6$, $S(O)_2R_6$, $S(O)_2OR_6$, $PO_3R_6R'_6$, $NR_6NR'_6R''_6$, $SNR_6R'_6$, $NR_6SR'_6$, SSR_6 and R_6 , or is an oxo group, =S, $=NOR_6$ or $=CR_6R'_6$ and X_4 ' is absent;

 X_5 is selected from the group consisting of hydrogen, CN, $-C=(Z)(T)_nR_{11}$, $S(0)R_{11}$, $S(0)_2R_{11}$, $S(0)_2R_{11}$, $PO_3R_{11}R'_{11}$, optionally substituted alkyl, optionally substituted aryl, optionally substituted aryl, optionally substituted aryl, and optionally substituted acyl;

 X_1' , X_2' , X_4' and X_5' are the same or different and are selected from the group consisting of hydrogen, CN, optionally substituted alkyl, optionally substituted alkaryl, optionally substituted aryl, optionally substituted acyl;

or one of X_1 and X_2 , X_2 and X_5 , X_5 and A when A contains a carbon or nitrogen atom, X_5 and A when A contains a carbon or nitrogen atom, and X_5 and X_1 together constitute a double bond, or X_5 and X_4 or X_3 and X_4 together constitute a double bond, or R_1 and R_2 , R_3 and R_4 and R_5 , R_5 and R_5 , R_6 and R_5 , R_7 and R_7 , R_8 , R_9 and R_9 , R_9 and

 X_2 and X_2 ', X_3 and X_3 ' or X_4 and X_4 ' together form part of a ring structure which optionally includes at least one heteroatom selected from O, S and N and is optionally substituted;

m and n are independently zero or one and Y, Z and T are independently selected from the group consisting of O, S, and NR_{10}

p is 1 or 2
q is 0 or 1;

5

30

 R_3 , R'_3 , R''_3 , R_4 , R'_4 , R''_4 , R_5 , R'_5 , R''_5 , R_6 , R'_6 , 10 R''_{6} , R_{7} , R_{8} , R_{9} , R'_{9} , R_{10} , R_{11} and R'_{11} are the same or different and are selected from the group consisting of hydrogen, optionally substituted alkyl which may be interrupted by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR7 15 and $-(Y)_mC=(Z)(T)_n-$, optionally substituted alkenyl which may be interrupted by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR₇ and -(Y)_mC=(Z)(T)_n-, optionally substituted aryl, optionally substituted heterocyclic, optionally 20 substituted aralkyl which may be interrupted within the alkyl moiety by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR7 and $-(Y)_mC=(Z)(T)_n-$, optionally substituted acyl and a carbohydrate moiety; 25

with the proviso that at least two of X_1 , X_2 , X_3 and X_4 are other than hydrogen or a group linked to the ring through a carbon-carbon bond; or a pharmaceutically acceptable salt thereof.

- 2. A compound as claimed in claim 1 wherein one or both of R_1 and R_2 is alkyl.
- 3. A compound as claimed in claim 2 wherein one or both of R_1 and R_2 is C_{4-30} alkyl.
- 4. A compound as claimed in claim 3 wherein one or 35 both of R_1 and R_2 is C_{6-12} alkyl.
 - 5. A compound as claimed in claim 4 wherein one or both of R_1 and R_2 is C_{8-10} alkyl.
 - 6. A compound as claimed in claim 1 wherein one or

both or R_1 and R_2 is aralkyl.

15

20

30

- 7. A compound as claimed in claim 6 wherein one or both R_1 and R_2 is $(CH_2)_r$ Ph where Ph is phenyl and r is an integer in the range 1 to 12 inclusive.
- 8. A compound as claimed in claim 1 wherein one or both of R_1 and R_2 is alkyl interrupted by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR₇, and -(Y)_mC=(Z)(T)_n.
- 9. A compound as claimed in claim 8 wherein one or 10 both of R_1 and R_2 is alkyl interrupted by one or more oxygen atoms.
 - 10. A compound as claimed in claim 9 wherein one or both of R_1 and R_2 is $CH_3(CH_2)_xO(CH_2)_yO(CH_2)_z$ wherein x is an integer in the range 0 to 12 inclusive and y and z are independently integers in the range 1 to 12 inclusive.
 - 11. A compound as claimed in claim 1 wherein one or both of R_1 and R_2 is alkenyl.
 - 12. A compound as claimed in claim 1 wherein R_1 and R_2 together with the nitrogen atom from which they depend form a saturated or unsaturated heterocyclic group.
 - 13. A compound as claimed in claim 1 wherein R_1 and R_2 together with the nitrogen atom from which they depend form a lactam or cyclic imide.
- 14. A compound as claimed in any one of claims 1 to 25 13 wherein q is 1.
 - 15. A compound as claimed in any one of claims 1 to 13 wherein q is 0.
 - 16. A compound as claimed in any one of claims 1 to 15 wherein A is selected from the group consisting of O, S and NR_8 .
 - 17. A compound as claimed in claim 16 wherein A is O.
 - 18. A compound as claimed in any one of claims 1 to 17 wherein X_1 is OR_3 .
- 35 19. A compound as claimed in claim 18 wherein R_3 is hydrogen or optionally substituted acyl.
 - 20. A compound as claimed in any one of claims 1 to 19 wherein X_2 is OR_4 .

- 21. A compound as claimed in claim 20 wherein R4 is hydrogen or optionally substituted acyl.
- 22. A compound as claimed in any one of claims 1 to 21 wherein X_3 is OR_5 .
- $_5$ 23. A compound as claimed in claim 22 wherein R_5 is hydrogen or optionally substituted acyl.
 - 24. A compound as claimed in any one of claims 1 to 14 and 16 to 23 wherein X_4 is OR_6 .
- 25. A compound as claimed in claim 24 wherein R_6 is hydrogen or optionally substituted acyl.
 - 26. A compound as claimed in any one of claims 1 to 25 wherein p is 1.
 - 27. A compound as claimed in any one of claims 1 to 25 wherein p is 2.
- 28. A compound selected from the group consisting of:

N, N-dibutyl-S-(2,3,5,6-tetra-O-benzoyl- β -D-galactofuranosyl) sulfonamide

N,N-dihexyl-S-(2,3,5,6-tetra-O-acetyl- β -D-galactofuranosyl) sulfonamide

20

25

30

35

N, N-dioctyl-S-(2,3,5,6-tetra-O-benzoyl- β -D-galactofuranosyl) sulfonamide

N,N-didecyl-S-(2,3,5,6-tetra-O-acetyl- β -D-galactofuranosyl) sulfonamide

N,N-dibenzyl-S-(2,3,5,6-tetra-O-benzoyl- β -D-galactofuranosyl) sulfonamide

N, N-di(2-methoxyethoxyethyl)-S-(2,3,5,6-tetra-O-acetyl- β -D-galactofuranosyl) sulfonamide

N,N-dioctyl-S-(2,3,5,6-tetra-O-acetyl- β -D-glucofuranosyl) sulfonamide

N, N-dioctyl-S-(2,3-di-O-acetyl-5-O-[tert-butyldiphenylsilyl] - α -D-arabinofuranosyl) sulfonamide

N,N-dibutyl-S- (β -D-galactofuranosyl) sulfonamide N,N-dihexyl-S- (β -D-galactofuranosyl) sulfonamide N,N-dioctyl-S- (β -D-galactofuranosyl) sulfonamide N,N-didecyl-S- (β -D-galactofuranosyl) sulfonamide N,N-dibenzyl-S- (β -D-galactofuranosyl) sulfonamide N,N-di (2-methoxyethoxyethyl) -S- (β -D-

galactofuranosyl) sulfonamide

N, N-dioctyl-S-(β -D-glucofuranosyl) sulfonamide

29. A method of preparation of a compound of general formula (I)

 X_3 X_4 X_4 X_5 X_7 X_7

comprising reacting a compound of general formula (II):

$$X_3$$
 X_2 X_2 X_1 X_5 X_5 X_5 X_5 X_5 X_5 X_5 X_1 X_2 X_1 X_2 X_1 X_2 X_2 X_1

10

15

5

wherein R_1 , R_2 , A, p, q, X_1 , X_1 , X_2 , X_2 , X_3 , X_3 , X_4 , X_4 , X_5 and X_5 are as defined above;

with an oxidising agent.

- 30. A method for the treatment of a microbial infection comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound of general formula (I) as claimed in any one of claims 1 to 28.
- 31. The use of a compound of general formula (I) as
 20 claimed in any one of claims 1 to 28 in the manufacture of
 a medicament for use in the treatment of a microbial
 infection.
 - 32. A pharmaceutical composition comprising a compound of general formula (I) as claimed in any one of claims 1 to 28 and a pharmaceutically acceptable carrier.
 - 33. A method of killing a microorganism, comprising exposing said microorganism to a compound of general formula (I) as claimed in any one of claims 1 to 28.

25