

6BE6-3BE6-4BE6-12BE6

HEPTODE

FOR PENTAGRID CONVERTER APPLICATIONS

6BE6 3BE6 4BE6 12BE6 ET-T891A Page 1

DESCRIPTION AND RATING

The 6BE6 is a miniature heptode primarily designed to perform the combined functions of the mixer and oscillator in superheterodyne circuits in both the standard broadcast and FM bands. Its performance in these applications is characterized by high conversion gain and a high degree of oscillator stability with variations in the applied automatic-volume-control bias voltage.

Except for heater ratings, the 3BE6 and 4BE6 are identical to the 6BE6. In addition, they incorporate a controlled heater-warm-up characteristic which makes them especially suited for use in radio or television receivers that employ series-connected heaters.

The 12BE6, which differs from the 6BE6 only in heater ratings and heater-cathode voltage ratings, is especially useful in a-c/d-c radio receivers.

GENERAL

ELECTRICAL

Cathode—Coated Unipotential **4BE6** 6BE6 12BE6 **3BE6** 12.6 Heater Voltage, AC or DC 3.15 4.2 6.3 Volts 0.45 0.3 0.15 Amperes Seconds 11 Without

Direct Interelectrode Capacitances	Shield†	Shield
Grid-Number 3 to All	7. 0	7.0 μμf
Plate to All	13	8.0 μμf
Grid-Number 1 to All	5.5	5.5 μμ f
Cathode to All Except Grid-Number 1	20	15 μμ f
Grid-Number 3 to Plate, maximum	0.25	0.30 $\mu \mu f$
Grid-Number 1 to Grid-Number 3, maximum	0.15	0.15 $\mu \mu f$
Grid-Number 1 to Plate, maximum	0.05	$0.1 \mu \mu f$
Grid-Number 1 to Cathode		3.0 μμf

MECHANICAL

Mounting Position—Any Envelope—T-5½, Glass Base—E7-1, Miniature Button 7-Pin

MAXIMUM RATINGS

DESIGN-CENTER VALUES			
Plate Voltage		300	Volts
Screen-Supply Voltage		300	Volts
Screen Voltage			
Positive DC Grid-Number 3 Voltage		0	Volts
Negative DC Grid-Number 3 Voltage			
Plate Dissipation			
Screen Dissipation			
DC Cathode Current			
	3BE6		
Heater-Cathode Voltage	4BE6		
Heater Positive with Respect to Cathode	6BE6	12BE	•

GENERAL 🍘 ELECTRIC

Supersedes ET-T891, dated 8-54

BASING DIAGRAM

RETMA 7CH

TERMINAL CONNECTIONS

Pin 1—Grid Number 1 (Oscillator Grid)

Pin 2—Cathode and Grid Number 5

Pin 3-Heater

Pin 4—Heater

Pin 5-Plate

Pin 6—Grids Number 2 and 4 (Screen)

Pin 7—Grid Number 3 (Mixer Grid)

PHYSICAL DIMENSIONS

6BE6 3BE6 4BE6 12BE6 ET-T891 A Page 2

CONVERTED CERVICES

CHARACTERISTICS AND TYPICAL OPERATION

CONVERTER SERVICE:			
Plate Voltage	100	250	Volts
Screen Voltage		100	Volts
Grid-Number 3 Voltage		-1.5	Volts
Grid-Number 1 Voltage, RMS	10	10	Volts
Grid-Number 1 Resistance	0000	20000	Ohms
Plate Resistance, approximate	0.4	1.0	Megohms
Conversion Transconductance	455		Micromhos
Plate Current	2.6		Milliamperes
Screen Current	7.0	6.8	Milliamperes .
Grid-Number 1 Current	0.5		Milliamperes
Cathode Current	10.1	10.2	Milliamperes
Grid-Number 3 Voltage, approximate			•
$G_c = 10$ Micromhos	-30	-30	Volts
Grid-Number 3 Voltage, approximate			
$G_c = 100 \text{ Micromhos}$	-6	-6	Volts
OSCILLATOR CHARACTERISTICS (NOT OSCILLATING)			
Plate Voltage		100	Volts
Screen, Connected to Plate			
Grid-Number 3 Voltage		0	Volts
Grid-Number 1 Voltage		_	Volts
Amplification Factor§		20	
Transconductance §			Micromhos
Cathode Current		25	Milliamperes
Grid-Number 1 Voltage, approximate			
1 _b = 10 Microamperes		-11	Volts

^{*} The time required for the voltage across the heater to reach 80 percent of its rated value after applying 4 times rated heater voltage to a circuit consisting of the tube heater in series with a resistance equal to 3 times the rated heater voltage divided by the rated heater current.

† With external shield (RETMA 316) connected to pin 2.

§ Between grid number 1 and grids number 2 and 4 connected to plate.

[‡] Characteristics shown are obtained in the standard RETMA conversion conductance test set which uses separate excitation. The characteristics under these conditions correspond very closely with those obtained in a self-excited oscillatory circuit operating with zero bias.

AVERAGE PLATE CHARACTERISTICS

6BE6 3BE6 4BE6 12BE6 ET-T891A Page 5

