Теоретический минимум

Математический анализ-2 Числовые ряды

Зароднюк Алёна

Числовые ряды

Опр: пусть дана последовательность $\{a_n\}_{n=1}^{\infty}$. Тогда выражение вида $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$ называется числовым рядом.

 a_n называется общим членом ряда.

$$S_N = \sum\limits_{n=1}^N a_n = a_1 + \ldots + a_N$$
 называется N -й частичной суммой.

$$r_N = \sum_{n=N+1}^{\infty} a_n = a_{N+1} + a_{N+2} + \dots$$
 называется N -м остатком ряда.

Опр: ряд $\sum\limits_{n=1}^{\infty}a_n$ называется сходящимся, если существует $\lim\limits_{N\to\infty}S_N=S\in\mathbb{R}.$ В этом случае число S называют суммой этого ряда.

Ряд $\sum\limits_{n=1}^{\infty}a_n$ называется расходящимся, если предел $\lim_{N\to\infty}S_N$ не существует (в том числе бесконечный предел).

Теорема (Критерий Коши):

Ряд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n, m : n > m > N \quad \left| \sum_{k=m+1}^{n} a_k \right| < \varepsilon$$

Теорема (Необходимое условие сходимости ряда):

Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $\lim_{n\to\infty} a_n = 0$.

Опр: Ряд $\sum_{n=1}^{\infty} a_n$ называется абсолютно сходящимся, если $\sum_{n=1}^{\infty} |a_n|$ сходится. Ряд $\sum_{n=1}^{\infty} a_n$ называется условно сходящимся, если он сходится, но ряд $\sum_{n=1}^{\infty} |a_n|$ расходится.

Утверждение (об абсолютной сходимости ряда): Если ряд сходится абсолютно, то он сходится.

Теорема (о группировке членов ряда без изменения порядка):

Пусть дан ряд $\sum_{n=1}^{\infty} a_n$ и строго возрастающая последовательность $\{k_n\}_{n=1}^{\infty}$, причем $k_1=1$. Обозначим $b_n=a_{k_n}+\ldots+a_{k_{n+1}-1}$, ряд $\sum_{n=1}^{\infty}b_n$ – ряд, полученный группировкой членов ряда $\sum_{n=1}^{\infty}a_n$. Тогда

1) если
$$\sum_{n=1}^{\infty} a_n = A$$
, то $\sum_{n=1}^{\infty} b_n = A$, т.е. группировка сходящегося ряда не меняет сумму.

2) если $\sum_{n=1}^{\infty} b_n = B$, $\lim_{n \to \infty} a_n = 0$ и существует $m: k_{n+1} - k_n < m \ \forall n \in \mathbb{N}$ (т.е. группируем не более, чем по m членов), то $\sum_{n=1}^{\infty} a_n = B$.

Теоретический минимум

Математический анализ-2 Числовые ряды

Зароднюк Алёна

Знакопостоянные ряды

Опр: ряд $\sum\limits_{n=1}^{\infty}a_n$ называется знакопостоянным, если или $a_n\geq 0\ \forall n\in\mathbb{N},$ или $a_n\leq 0\ \forall n\in\mathbb{N}.$

Теорема (Первый признак сравнения). Пусть $a_n \geq b_n \geq 0 \ \forall n \in \mathbb{N}$. Тогда

- 1) если сходится $\sum_{n=1}^{\infty} a_n$, то сходится и $\sum_{n=1}^{\infty} b_n$,
- 2) если расходится $\sum\limits_{n=1}^{\infty}b_n$, то расходится и $\sum\limits_{n=1}^{\infty}a_n$

Следствие (Признак Вейерштрасса): если $|a_n| \le b_n$ и ряд $\sum_{n=1}^{\infty} b_n$ сходится, то ряд $\sum_{n=1}^{\infty} a_n$ сходится.

Теорема (Второй признак сравнения). Пусть $a_n, b_n > 0$ и $\exists \lim_{n \to \infty} \frac{a_n}{b_n} = c \neq 0$. Тогда $\sum_{n=1}^{\infty} a_n \sim \sum_{n=1}^{\infty} b_n$ – эквивалентны по сходимости, т.е. сходятся/расходятся одновременно.

Следствие: если $a_n \geq 0$ и $a_n \sim b_n, n \to \infty$, то $\sum\limits_{n=1}^\infty a_n \sim \sum\limits_{n=1}^\infty b_n$.

Теорема (Признак Коши, Лобачевского-Коши). Пусть $a_n \ge 0$ и $\{a_n\}$ – монотонно (нестрого) убывающая последовательность. Тогда $\sum\limits_{n=1}^{\infty}a_n \sim \sum\limits_{n=0}^{\infty}2^na_{2^n}$.

Теорема (Интегральный признак Коши)

Пусть дана функция $f:[1,+\infty)\to\mathbb{R}, \quad f(x)\geq 0$ и f(x) монотонно (нестрого) убывающая. Тогда $\sum_{n=1}^\infty f(n)\sim \int\limits_1^\infty f(x)\;dx.$

Теорема (радикальный признак Коши): пусть $a_n \geq 0$, $\overline{\lim_{n \to \infty} \sqrt[n]{a_n}} = q$. Тогда

- 1) если q < 1, то ряд $\sum_{n=1}^{\infty} a_n$ сходится,
- 2) если q>1, то ряд $\sum\limits_{n=1}^{\infty}a_n$ расходится

Лемма. Пусть $a_n > 0$. Тогда

$$\varliminf_{n\to\infty}\frac{a_{n+1}}{a_n}\le\varliminf_{n\to\infty}\sqrt[n]{a_n}\le\varliminf_{n\to\infty}\sqrt[n]{a_n}\le\varlimsup_{n\to\infty}\frac{a_{n+1}}{a_n}$$

Теорема (признак Даламбера)

Пусть
$$a_n>0,$$
 $d=\lim_{n\to\infty}\frac{a_{n+1}}{a_n},$ $D=\varlimsup_{n\to\infty}\frac{a_{n+1}}{a_n}.$ Тогда

- 1) если d>1, то ряд $\sum\limits_{n=1}^{\infty}a_{n}$ расходится
- 2) если D < 1, то ряд $\sum\limits_{n=1}^{\infty} a_n$ сходится.

Теоретический минимум

Математический анализ—2 Числовые ряды

Зароднюк Алёна

Теорема (Признак Гаусса)

Пусть $a_n > 0$. Если существуют $\alpha \in \mathbb{R}$, $\delta > 0$ такие, что $\frac{a_{n+1}}{a_n} = 1 - \frac{\alpha}{n} + O\left(\frac{1}{n^{1+\delta}}\right)$, то $\sum_{n=1}^{\infty} a_n \sim \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, т.е. при $\alpha > 1$ сходится и при $\alpha \le 1$ расходится.

Знакопеременные ряды

Лемма (Преобразование Абеля)

Пусть даны две последовательности $\{a_n\}, \{b_n\}$. Тогда $\forall n, m \in \mathbb{N}: n > m$ выполнено

$$\sum_{k=m+1}^{n} (a_k - a_{k-1})b_k = a_n b_n - a_m b_{m+1} - \sum_{k=m+1}^{n-1} a_k (b_{k+1} - b_k)$$

Теорема (Признак Дирихле) Пусть

- 1) существует M>0, что $\forall n\in\mathbb{N}$ $\left|\sum_{k=1}^{n}a_{k}\right|\leq M$ (т.е. все частичные суммы ограничены сверхну одной константой)
- 2) последовательность $\{b_n\}$ (нестрого) монотонная (возрастающая или убывающая)
- $3) \lim_{n \to \infty} b_n = 0$

Тогда ряд $\sum\limits_{n=1}^{\infty}a_{n}b_{n}$ сходится.

Теорема (Признак Абеля) Пусть

- 1) ряд $\sum_{n=1}^{\infty} a_n$ сходится
- 2) последовательность $\{b_n\}$ (нестрого) монотонная (возрастающая или убывающая)
- 3) $\exists M > 0$: $\forall n \in \mathbb{N} |b_n| \leq M$

Тогда ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Теорема (Признак Лейбница)

Пусть $b_n \ge 0$, $\{b_n\}$ — монотонно (нестрого) убывающая последовательность и $b_n \to 0, n \to \infty$. Тогда ряд $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ сходится и верна следующая оценка на остаток этого ряда: $|r_n| \le b_{n+1}$.