

cassandro

从零开始Cassandra

应用,原理,选型

李力

2022年11月16日

Code: https://github.com/xiaozhiliaoo/cassandra-practice

Slide: https://github.com/xiaozhiliaoo/my-slides/blob/master/Database-Cassandra.pptx

简介Cassandra是什么?

2 数据建模与开发 项目使用指南

3 系统架构 Cassandra单机,分布式原理

NoSQL存储选型
_{我们应该关注什么?}

5 参考资料 _{基础与进阶}

回顾&QA_{思维导图}

1. 简介

The content of the title

Apache Cassandra is an open source, distributed, shared-nothing, decentralized (P2P对等结构化覆盖 网络), elastically scalable, highly available, fault-tolerant, tuneably consistent (C"A"P, PACELC), row-oriented (宽列) database that bases its distribution design on Amazon's Dynamo and its data model on Google's Bigtable. Created at Facebook, it is now used at some of the most popular sites on the Web.

Apache Cassandra is an open source NoSQL distributed database trusted by thousands of companies
for scalability and high availability without compromising performance. Linear scalability and proven
fault-tolerance on commodity hardware or cloud infrastructure make it the perfect platform for mission-

critical data.

Cassandra=Bigtable(数据模型)+Dynamo(分布式特性)

Cassandra World Party

1. 简介-db-engines排名

111				397 systems in ranking, November 2022				
Nov 2022	Rank Oct 2022	Nov 2021	DBMS	Database Model	Nov 2022	Oct 2022	Nov 2021	
1.	1.	1.	Oracle 6	Relational, Multi-model 📷	1241.69	+5.32	-31.04	
2.	2.	2.	MySQL 👸	Relational, Multi-model 🔃	1205.54	+0.17	-5.98	
3.	3,	3,	Microsoft SQL Server	Relational, Multi-model 🔞	912.51	-12.17	-41.78	
4.	4.	4.	PostgreSQL	Relational, Multi-model 🔞	623.16	+0.44	+25.88	
5.	5.	5,	MongoDB 🔠	Document, Multi-model 👔	477.90	-8.33	-9.45	
6.	6.	6.	Redis 😝	Key-value, Multi-model 😈	182.05	-1.33	+10.55	
7.	7.	↑ 8.	Elasticsearch	Search engine, Multi-model 📳	150.32	-0.74	-8.76	
8.	8.	₩7.	IBM Db2	Relational, Multi-model 🔞	149.56	-0.10	-17.96	
9.	9.	1 11.	Microsoft Access	Relational	135.03	-3.14	+15.79	
10.	10,	♣9,	SQLite #	Relational	134.63	-3.17	+4.83	
11.	11	4 10.	Cassandra 👸	Wide column	118.12	+0.18	-2.76	
12.	↑ 13.	1 8.	Snowflake 🔠	Relational	110.15	+3.43	+45.97	
13.	4 12.	4 12.	MariaDB 🔠	Relational, Multi-model 🔞	104.91	-4.40	+2.72	
14.	14,	4 13,	Splunk	Search engine	94.23	-0.43	+1.92	
15.	15.	1 16.	Amazon DynamoDB 🔠	Multi-model 🛐	85.40	-2.95	+8.41	
16.	16.	4 15.	Microsoft Azure SQL Database	Relational, Multi-model 📷	83.66	-1.30	+2.34	
17.	17.	4 14.	Hive	Relational	81.89	+1.29	-1.42	
18.	18.	4 17.	Teradata	Relational, Multi-model 🔞	65.23	-0.84	-4.35	
19.	1 20.		Databricks	Multi-model 📷	60.89	+3.28		
20.	4 19.	4 19.	Neo4j 😝	Graph	57.30	-1.38	-0.68	
21.	1 23.	21.	FileMaker	Relational	54.31	+1.90	+0.08	
22.	22.	1 24.	Google BigQuery	Relational	54.13	+1.68	+9.13	
23.	1 24.	4 20.	SAP HANA	Relational, Multi-model 👩	51.45	-0.63	-4.08	
24.	4 21.	4 22.	Solr	Search engine, Multi-model	51.33	-2.17	-2.52	
25.	25.	4 23.	SAP Adaptive Server	Relational, Multi-model 🔞	43.58	+0.62	-7.35	
26.	26	4 25,	HBase	Wide column	40.41	-1.25	-4.59	
27.	27,	4 26.	Microsoft Azure Cosmos DB 🖪	Multi-model 🛐	39.75	-0.67	-1.08	
28.	28.	4 27.	PostGIS	Spatial DBMS, Multi-model	30.78	-0.08	-1.14	
29.	29.	29.	InfluxDB #	Time Series, Multi-model 🗾	29.96	+0.38	+1.42	
30.	30.	4 28.	Couchbase 🚦	Document, Multi-model 📵	28.62	+0.66	-1.25	
31.	31.	↑ 32.	Amazon Redshift	Relational	27.04	+0.03	+2.17	
32.	↑ 33.	4 30.	Firebird	Relational	25.37	+0.36	-1.54	
33.	4 32.	4 31,	Memcached	Key-value	24.45	-0.95	-1.92	
34.	34,	1 39.	Microsoft Azure Synapse Analytics	Relational	23.03	-0.07	+5.13	
35.	35.	4 34.	Informix	Relational, Multi-model 👩	22.82	-0.05	-0.41	
36.	36.	4 33.	Spark SQL	Relational	21.90	-0.68	-1.43	
37.	37.	4 36.	Firebase Realtime Database	Document	19.84	-0.29	-0.23	
38.	38.	4 35.	Vertica 🖰	Relational, Multi-model 👩	19.70	-0.15	-0.63	
39.	1 40.	4 38.	Impala	Relational, Multi-model 🔞	17.92	+0.24	-1.01	
40.	4 39,	4 37,	Netezza	Relational	17.27	-0.57	-2.52	
41.	41.	4 0.	CouchDB	Document, Multi-model 🜃	1.5.98	-0.27	-0.82	

	Rank				Score		
Nov 2022	Oct 2022	Nov 2021	DBMS	Database Model	Nov 2022	Oct 2022	Nov 202
1.	1.	1.	Cassandra 🚦	Wide column	118.12	+0.18	-2.76
2.	2.	2.	HBase	Wide column	40.41	-1.25	-4.5
3.	3.	3.	Microsoft Azure Cosmos DB 🚦	Multi-model 🔃	39.75	-0.67	-1.0
4.	4.	4.	Datastax Enterprise 🚹	Wide column, Multi-model 🛐	8.68	+0.39	-1.0
5.	5.	5.	Microsoft Azure Table Storage	Wide column	6.02	+0.05	+0.3
6.	6.	6.	Google Cloud Bigtable	Multi-model 🔞	5.24	-0.20	+0.9
7.	1 8.	↑ 8.	Accumulo	Wide column	4.98	+0.41	+1.0
8.	4 7.	↓ 7.	ScyllaDB 🚦	Wide column, Multi-model 🔞	4.95	+0.26	+1.0
9.	9.	9.	HPE Ezmeral Data Fabric	Multi-model 🔃	1.26	+0.13	+0.3
10.	10.	↑ 11.	Amazon Keyspaces	Wide column	0.77	-0.02	+0.2
11.	11.	↓ 10.	Elassandra	Wide column, Multi-model 🛭	0.57	+0.09	-0.0
12.	12.	12.	Alibaba Cloud Table Store	Wide column	0.33	-0.03	-0.0
13.	13.	13.	SWC-DB	Wide column, Multi-model	0.07	-0.02	+0.0

1. 简介

The content of the title

Bigtable: A Distributed Storage System for Structured Data

2006

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{fay,jeff,sanjay,wilsonh,kerr,m3b,tushar,fikes,gruber}@google.com

Google, Inc.

2007 Dynamo: Amazon's Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall and Werner Vogels

Amazon.com

2009 Cassandra - A Decentralized Structured Storage System

Avinash Lakshman Facebook

Prashant Malik Facebook

1. 简介

1. 简介-研究模型

The content of the title

- COSEA模型
 - 参考链接

Main documentation

Getting started	Newbie starting point
What's new in 4.1	What's new in Cassandra 4.1
Architecture	Cassandra's big picture
Data modeling	Hint: it's not relational
Cassandra Query Language (CQL)	CQL reference documentation
Configuration	Cassandra's handles and knobs
Operation	The operator's corner
Tools	cqlsh, nodetool, and others
Tuesdelanhautine	THE PROPERTY OF THE PROPERTY O
Troubleshooting	What to look for when you have a problem
FAQ	What to look for when you have a problem Frequently asked questions
10-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	

2. 数据建模-概念

- 理论
 - 范式和反范式,数仓(Star/Snowflake),可变和不可变
- 产品
 - 网状,关系型,NoSQL(KV,文档,宽列,图形),搜索,数仓列式
- 案例
 - 预定酒店建模
- 重要
 - 模型影响数据存储以及查询。

2. 数据建模-过程

The content of the title

• 建模过程: 查询驱动建模

2. 数据建模-案例

The content of the title

• 酒店预定

2. 数据建模-案例-工作流

The content of the title

• 定义应用查询

2. 数据建模-案例-逻辑数据建模

- •逻辑数据建模
 - 酒店领域
 - 预定领域

Figure 5-5. Hotel domain logical model

Figure 5-6. A denormalized logical model for reservations

2. 数据建模-案例-物理数据建模

- 物理数据建模(Chebotko图)
 - 酒店keyspace
 - 预定keyspace

Figure 5-8. Hotel physical model

Figure 5-9. Reservation physical model

2. 数据建模-案例-评估和改进

The content of the title

• 计算分区大小

$$N_{v} = N_{r} \left(N_{c} - N_{pk} - N_{s} \right) + N_{s}$$

• 计算磁盘大小

- 分解大分区
 - 分区键加列,分桶

2. 数据建模-案例-定义数据Schema

The content of the title

• 酒店: 参考

• 预定: 参考

2. 数据建模-案例-总结

- 反范式化
- 查询驱动建模
- 主键查询优先
- •搜索/聚合转es,分析spark或数仓
- 常见错误整理:参考

2.2. 数据建模-客户端

- 线上服务器版本 [cqlsh 5.0.1 | Cassandra 3.11.4 | CQL spec 3.4.4 | Native protocol v4]
- Driver版本: 3.7.0

2. 数据建模-客户端

- 存储层的封装非常成熟,模式非常固定,机制却因人而异
 - 同步, 异步, 反应式
 - 技术演进
 - JDBC->DBUtils->Spring JDBC (JDBCTemplate, RDBMSOperation) -> Spring ORM->Spring data.
 - MyBatis->MyBatis-Spring->MyBatis-Spring-starter.
 - 3.11.0 statement/mapper/accessor 4.0.0 processor
- Cluster和Session
 - 所有keyspace一个session
 - 每个keyspace一个session

2. 数据建模-客户端

The content of the title

• common-cassandra

2. 数据建模-客户端

The content of the title

• common-cassandra

2. 数据建模-项目使用

- 直播
 - course_live_msg: live_stu_voice live_notice live_all_chat live_stu_praise
- 电商
 - course_process: user_lesson_progress user_watch_process user_point_history user_process user_point_product
 - course naive: user profile
- 智学
 - adaplearn_tiku: answers_by_user quiz_user_progress progress_by_user quiz user answer exam user answer
- 题库
 - course_tiku: user_answer, user_live_answer2, user_paper_answer

2. 数据建模-CQRS+Event Source

The content of the title

Akka Persistent Cassandra

3. 系统架构

The content of the title

• 架构

- 内部实现,外部交互,系统属性
- 单机特性-对标数据库
 - 数据模型,存储模型,查询模型(读写性能)
- 分布式特性-对标分布式系统
 - 用户视角: 读写路径
 - 系统视角: 复制和一致性, 容错, 分区, 共识
- 其他模型: https://xiaozhiliaoo.github.io/reading-note/tech-quotes/chapter8.html 820条

3. 系统架构

- 单机
 - Commit Log, Memmory table, SSTable, 布隆过滤器, 墓碑, 合并, 压缩
- 分布式
 - 数据中心和机架
 - Gossip和故障检测, Snitch感应策略
 - DHT和一致性Hash, 环和令牌, 虚拟节点
 - 分区器
 - 复制策略
 - 一致性级别
 - 查询和协调器节点
 - hint handoff, anti-entory, repair, merkle tree
 - 轻量级事务和Paxos
 - SEDA
- 基本问题
 - 读写路径是什么? (一条SQL执行/打开网页发生了什么)

3. 系统架构-数据中心和机架

3. 系统架构-通信Gossip,故障检测,和Snitch

- Gossip
 - Information Dissemination模型的epidemic protocol两大类: anti-entropy和rumor-mongering
 - 设计考虑
 - reconciliation: precise, Scuttlebutt
 - flow control: Spreading Capacity Fairly, Local Adaptation
 - Scuttlebutt: https://awinterman.github.io/simple-scuttle/
- 故障检测
 - Phi Accrual FD
- Snitch
 - 确定相对主机远近程度。收集网络拓扑有关信息,处理路由请求。
 - SimpleSnitch
 - PropertyFileSnitch
 - GossipingPropertyFileSnitch
 - DynamicEndpointSnitch

3. 系统架构-Token Ring

- 一致性Hash和DHT
 - Ring和Range
 - Token
 - 虚拟节点(num_tokens)
- Hash算法评估
 - 单调性: 旧数据不变性
 - 平衡性: 节点各尽所能
 - 平衡不是平均,马太效应
- 通过环保证单调性 通过虚拟节点保证平衡性

3. 系统架构-分区器

- 找到key在token ring的位置, token = partationFunction(partation key)
 - Murmur3Partitioner(MP-默认)
 - Mu:multiply R:rotate
 - Redis, Nginx, libmemcached, npm, Hadoop, Cassandra, Solr, Elasticsearch, Guava, Kafka, HBase Lucene
 - OrderPreservingPartitioner(OPP)
 - RandomPartitioner(RP)
 - ByteOrderedPartitioner(BOP)
- Murmur3
 - 即使键是有规律的, 算法仍能给 出一个很好的随机分布性, 并且算法 的计算速度也非常快

3. 系统架构-分区器

The content of the title

• 深入Hash算法

CRC-64 (1975)

→ Used in networking for error detection.

MurmurHash (2008)

→ Designed to a fast, general purpose hash function.

Google CityHash (2011)

→ Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)

→ From the creator of zstd compression.

Google FarmHash (2014)

→ Newer version of CityHash with better collision rates.

3. 系统架构-复制

- LeaderLess Replication
 - Versioned timestamp data(时钟同步), LWW-Element-Set CRDT
 - 策略
 - SimpleStrategy
 - NetworkTopologyStrategy
 - LocalStrategy(system keyspace)

3. 系统架构-复制

The content of the title

NetworkTopologyStrategy

3. 系统架构-一致性

- 一致性: Tunable Consistency
 - ANY
 - ONE, TWO, THREE
 - LOCAL_ONE, QUORUM, LOCAL_QUORUM, EACH_QUORUM ALL
- Read Path
 - read-repair, Merkle Trees
- Write Path
 - Hinted Handoff(可用性)

3. 系统架构-线程模型SEDA

The content <u>of the title</u>

SEDA: staged event-driven architecture

Figure 6: A SEDA Stage: A stage consists of an incoming event queue, a thread pool, and an application-supplied event handler. The stage's operation is managed by the controller, which adjusts resource allocations and scheduling dynamically.

Figure 7: **SEDA resource controllers:** Each stage has an associated controller that adjusts its resource allocation and behavior to keep the application within its operating regime. The thread pool controller adjusts the number of threads executing within the stage, and the batching controller adjusts the number of events processed by each iteration of the event handler.

3. 系统架构-线程模型SEDA

The content of the title

- Stage
 - •读,写
 - Gossip
 - 和其他节点交互
 - anti entropy
 - read repair
 - hinted handoff

• org.apache.cassandra.concurrent.Stage

3. 系统架构-单机存储引擎

- Memtables, SSTables, and Commit Logs
- Compress
- Compact (读,写,时序)
 - STCS(写多读少),LCS(读多写少),DTCS

3. 系统架构-单机存储引擎案例

```
CREATE TABLE course process.user process (
    userid text,
    courseid text.
    lessonid text.
    all bigint,
    duration bigint,
    finish bigint,
    mark bigint,
    time bigint,
    PRIMARY KEY (userid, courseid, lessonid)
 WITH CLUSTERING ORDER BY (courseid ASC, lessonid ASC)
    AND bloom filter fp chance = 0.01
    AND caching = {'keys': 'ALL', 'rows per partition': 'NONE'}
    AND comment = ''
    AND compaction = {'class': 'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy', 'max threshold': '32', 'min threshold': '4'}
    AND compression = {'chunk length in kb': '64', 'class': 'org.apache.cassandra.io.compress.LZ4Compressor'}
    AND crc check chance = 1.\overline{0}
    AND dclocal read repair chance = 0.1
    AND default time to live = 0
    AND gc grace seconds = 864000
    AND max index interval = 2048
    AND memtable flush period in ms = 0
    AND min index interval = \overline{128}
    AND read repair chance = 0.0
    AND speculative retry = '99PERCENTILE';
CREATE INDEX lesson index ON course process.user process (lessonid);
```

3. 系统架构-写路径

- 正常写
- 轻量级事务(条件插入,更新)
- 批处理
- 删除

Write Operation in Cassandra

3. 系统架构-读路径

- 正常读/allow filtering查询
- 范围查询
- 排序,过滤,分页,UDF,UDA

```
二级索引,物化视图
                   Data Center 1
                                                       Data Center 2
         Local
                                             Remote
                                                           Node
       coordinator
                                            coordinator
                                                                    Node
      read→ Node
                      full read
                        digest
                                                      digest
                 digest
                                                             digest
                                                                    Node
```


The content of the title

• 模型: 属性占比法,决策树,案例分析法,成本收益分析法

- 如何比较存储?
 - 单机 ---> 最终会对标单机数据库
 - 分布式 ---> 最终会对标CAP/PACELC
- 同类优先性能,不同优先功能
 - 性能提高不易,功能实现变易。

分类	对比项	RabbitMQ	RocketMq	Kafka	Pulsar
794年7	架构	单体	单体	单体	计算存储分离
	消费模式	推 + 拉	推+拉	拉模式	推+拉
	重试队列	不支持	支持	不支持	支持
	死信队列	支持	支持	不支持	支持
	海量Topic	不支持	支持	不支持	支持
基础能力	延迟消息	支持	支持	不支持	支持
	堆积能力	一般	海量	海量	海量
	消息回溯	不支持	支持	支持	支持
	多协议支持	AMQP、MQTT等协议	私有协议	私有协议	私有协议、AMQP、MQTT等
	安全机制	支持	支持 82	支持	支持
	事务性消息	支持	支持	支持	支持
	吞吐量	一般	高	非常高	非常高
	低延迟	非常好	好	一般(分区数多越明显)	好
服务能力	可靠性	主备模式	多副本同/异步刷盘	多副本异步刷盘	多副本同/异步刷盘
	一致性	主从模式	主从模式	ISR算法	Quorum算法
	可用性	一般	较高	较高	高
	多租户	支持	不支持	不支持	支持
	动态扩容	横向扩容	需手动同步配置	需平衡数据	友好(即时扩容)
运营能力	故障恢复	不友好	不友好	较友好	友好
	数据清理	Topic级别	集群级别	Topic级别	Topic级别
	安全机制	身份认证+权限	不支持	身份认证+权限	身份认证+权限
使用场景	典型场景	传统业务场景	高性能电商场景	高吞吐大数据场景	金融场景和大数据场景

The content of the title

• 属性分析法-NoSQL Toolbox: 你觉得哪些因素最重要?

The content of the title

• 决策树模型: 你觉得哪些选择很重要?

- 技术工具: https://dbdb.io/
 - 查找竞品
 - Hazelcast竞品
 - 研究学习
 - 学习Java, MVCC, 嵌入式, 开源
 - 根据特性查找
 - MapDB

5. 参考资料

- 项目
 - https://github.com/xiaozhiliaoo/cassandra-practice
- 书
 - 《Cassandra权威指南-第二和三版》
 - 《数据库系统内幕》 第7,9,11,12章
 - 《数据密集型应用系统设计》第2,3,5,6,9章
 - 《云计算与分布式系统》第8章
- 论文
 - Dynamo/Bigtable
 - 原始论文: Cassandra A Decentralized Structured Storage System
 - 线程模型: SEDA: An Architecture for Well-Conditioned,Scalable Internet Services
 - 通信协议: Efficient Reconciliation and Flow Control for Anti-Entropy Protocols
 - 数据建模: A Big Data Modeling Methodology for Apache Cassandra
 - NoSQL选型: NoSQL database systems: a survey and decision guidance

6. 回顾

The content of the title

• 分布式系统泛型

- 体系结构: 非集中式(去中心化)
- 进程: SEDA
- 通信: 多播-Gossip(逆熵, Scuttlebutt), Snitch, Information 【Vector clock(generation(monotonic timestamp), version(logical clock)】
- 命名: 无层次命名-DHT
- 协调: 时钟同步, Last-Write-Wins-Element-Set, Paxos-LWT
- 一致性和复制:可调一致性,逆熵,修复,一致性Hash复制
- 容错性: FD故障检测器
- 安全:认证,授权,加密,SSL,TLS和证书

6. 回顾

