Ayrık Matematik Bağıntılar ve Fonksiyonlar

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2013

Lisans

©2001-2013 T. Uyar, A. Yayımlı, E. Harmancı

- to Share to copy, distribute and transmit the work
 to Remix to adapt the work

Under the following conditions:

- Attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial You may not use this work for commercial purposes.
 Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Legal code (the full license):

http://creativecommons.org/licenses/by-nc-sa/3.0/

Konular

Bağıntılar

Giriş

Bağıntı Nitelikleri Eşdeğerlilik

Fonksiyonlar

Giriş

Güvercin Deliği İlkesi

Rekürsiyon

Bağıntı

bağıntı: $\alpha \subseteq A \times B \times C \times \cdots \times N$

- çoklu: bağıntının her bir elemanı
- $ightharpoonup \alpha \subseteq A \times B$: ikili bağıntı
 - ▶ $a\alpha b$ ile $(a, b) \in \alpha$ aynı
- bağıntı gösterilimi:
 - çizimle
 - matrisle

Bağıntı Örneği

Örnek

$$A = \{a_1, a_2, a_3, a_4\}, B = \{b_1, b_2, b_3\}$$

$$\alpha = \{(a_1, b_1), (a_1, b_3), (a_2, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_3), (a_4, b_1)\}$$

	b_1	b_2	<i>b</i> ₃
a_1	1	0	1
a_2	0	1	1
a_3	1	0	1
<i>a</i> ₄	1	0	0

$$M_{\alpha} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix}$$

Bağıntı Bileşkesi

Tanım

bağıntı bileşkesi:

$$\alpha \subseteq A \times B, \ \beta \subseteq B \times C \text{ olsun}$$

$$\alpha \beta = \{(a,c) \mid a \in A, c \in C, \exists b \in B \ [a\alpha b \wedge b\beta c]\}$$

- $M_{\alpha\beta} = M_{\alpha} \times M_{\beta}$
 - mantiksal işlemlerle:
 - $1:\mathit{T},0:\mathit{F},\cdot:\wedge,+:\vee$

Bağıntı Bileşkesi Örneği

Örnek

7 / 79

Bağıntı Bileşkesi Matrisi Örneği

Örnek

Bağıntı Bileşkesinde Birleşme

▶ bağıntı bileşkesi birleşme özelliği gösterir

$$(\alpha\beta)\gamma = \alpha(\beta\gamma).$$

$$(a,d) \in (\alpha\beta)\gamma$$

$$\Leftrightarrow \exists c \ [(a,c) \in \alpha\beta \land (c,d) \in \gamma]$$

$$\Leftrightarrow \exists c [\exists b [(a,b) \in \alpha \land (b,c) \in \beta] \land (c,d) \in \gamma]$$

$$\Leftrightarrow \exists b \ [(a,b) \in \alpha \land \exists c \ [(b,c) \in \beta \land (c,d) \in \gamma]]$$

$$\Leftrightarrow \exists b [(a,b) \in \alpha \land (b,d) \in \beta \gamma]$$

 \Leftrightarrow $(a,d) \in \alpha(\beta\gamma)$

9 / 79

Bağıntı Bileşkesi Teoremleri

- $\alpha, \delta \subseteq A \times B$, ve $\beta, \gamma \subseteq B \times C$ olsun
- $\qquad \qquad \alpha(\beta \cap \gamma) \subseteq \alpha\beta \cap \alpha\gamma$
- $(\alpha \cup \delta)\beta = \alpha\beta \cup \delta\beta$
- $(\alpha \cap \delta)\beta \subseteq \alpha\beta \cap \delta\beta$

10 / 79

Bağıntı Bileşkesi Teoremleri

$$\alpha(\beta \cup \gamma) = \alpha\beta \cup \alpha\gamma.$$

$$(a,c) \in \alpha(\beta \cup \gamma)$$

$$\Leftrightarrow \ \exists b \ [(a,b) \in \alpha \land (b,c) \in (\beta \cup \gamma)]$$

$$\Leftrightarrow \exists b [(a,b) \in \alpha \land ((b,c) \in \beta \lor (b,c) \in \gamma)]$$

$$\Leftrightarrow \exists b [((a,b) \in \alpha \land (b,c) \in \beta)]$$

$$\vee ((a,b) \in \alpha \land (b,c) \in \gamma)]$$

$$\Leftrightarrow (a,c) \in \alpha\beta \lor (a,c) \in \alpha\gamma$$

 \Leftrightarrow $(a, c) \in \alpha\beta \cup \alpha\gamma$

Evrik Bağıntı

Tanım

$$\alpha^{-1} = \{(\mathit{b}, \mathit{a}) \mid (\mathit{a}, \mathit{b}) \in \alpha\}$$

 $M_{\alpha^{-1}} = M_{\alpha}^T$

Evrik Bağıntı Teoremleri

$$(\alpha^{-1})^{-1} = \alpha$$

$$(\alpha \cup \beta)^{-1} = \alpha^{-1} \cup \beta^{-1}$$

$$\blacktriangleright (\alpha \cap \beta)^{-1} = \alpha^{-1} \cap \beta^{-1}$$

$${\color{red} \blacktriangleright} \ \overline{\alpha}^{-1} = \overline{\alpha^{-1}}$$

$$(\alpha - \beta)^{-1} = \alpha^{-1} - \beta^{-1}$$

Evrik Bağıntı Teoremleri

$$\overline{\alpha}^{-1} = \overline{\alpha^{-1}}.$$

$$(b,a) \in \overline{\alpha}^{-1}$$

$$\Leftrightarrow (a,b) \in \overline{\alpha}$$

$$\Leftrightarrow (a,b) \notin \alpha$$

$$\Leftrightarrow (b,a) \notin \alpha^{-1}$$

$$\Leftrightarrow (b,a) \in \overline{\alpha}^{-1}$$

16 / 79

13 / 79

Evrik Bağıntı Teoremleri

$$(\alpha \cap \beta)^{-1} = \alpha^{-1} \cap \beta^{-1}.$$

$$(b,a)\in(\alpha\cap\beta)^{-1}$$

$$\Leftrightarrow$$
 $(a,b) \in (\alpha \cap \beta)$

$$\Leftrightarrow$$
 $(a,b) \in \alpha \land (a,b) \in \beta$

$$\Leftrightarrow$$
 $(b, a) \in \alpha^{-1} \land (b, a) \in \beta^{-1}$

$$\Leftrightarrow$$
 $(b,a) \in \alpha^{-1} \cap \beta^{-1}$

Evrik Bağıntı Teoremleri

$$(\alpha - \beta)^{-1} = \alpha^{-1} - \beta^{-1}$$
.

$$(\alpha - \beta)^{-1} = (\alpha \cap \overline{\beta})^{-1}$$

$$= \alpha^{-1} \cap \overline{\beta}^{-1}$$

$$= \alpha^{-1} \cap \overline{\beta}^{-1}$$

$$= \alpha^{-1} - \beta^{-1}$$

15 / 79

Bileşke Evriği

$$(\alpha\beta)^{-1} = \beta^{-1}\alpha^{-1}$$

Tanıt.

$$(c,a)\in(lphaeta)^{-1}$$

$$\Leftrightarrow$$
 $(a,c) \in \alpha\beta$

$$\Leftrightarrow \exists b [(a, b) \in \alpha \land (b, c) \in \beta]$$

$$\Leftrightarrow \exists b \ [(b,a) \in \alpha^{-1} \land (c,b) \in \beta^{-1}]$$

$$\Leftrightarrow$$
 $(c,a) \in \beta^{-1}\alpha^{-1}$

Bağıntı Nitelikleri

 $ightharpoonup \alpha \subseteq A \times A$

► A kümesinde ikili bağıntı

 $lackbox{} \alpha^n$ ifadesi $\alpha \alpha \cdots \alpha$ anlamına gelsin

▶ birim bağıntı: $E = \{(x, x) \mid x \in A\}$

Yansıma

yansımalı

$$\alpha \subseteq A \times A$$
$$\forall a \ [a\alpha a]$$

- $ightharpoonup E \subseteq \alpha$
- yansımasız: ∃a [¬(aαa)]
- ters yansımalı: $\forall a \ [\neg(a\alpha a)]$

Yansıma Örnekleri

$$\begin{split} & \text{Örnek} \\ & \mathcal{R}_1 \subseteq \{1,2\} \times \{1,2\} \\ & \mathcal{R}_1 = \{(1,1),(1,2),(2,2)\} \end{split}$$

► R₁ yansımalıdır

► R₂ yansımasızdır

tüm elemanların ikilileri varsa yansımalı (1,1), (2,2), (3,3) gibi hiçbir elemanın tersi yoksa ters yansımalı (1,1), (2,2), (3,3) hiçbiri olmamalı tüm elemanların sadece bazı ikilileri varsa yansımalı (1,1), (2,2) gibi o zaman yansımasız

19/79

20 / 79

Yansıma Örnekleri

Örnek

 $\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\} \\ \mathcal{R} = \{(1, 2), (2, 1), (2, 3)\}$

 $\blacktriangleright~\mathcal{R}$ ters yansımalıdır

Yansıma Örnekleri

Örnek

 $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $\mathcal{R} = \{(a, b) \mid ab \ge 0\}$

► R yansımalıdır

22 / 7

Bakışlılık simetri

bakışlı

$$\begin{array}{l} \alpha \subseteq A \times A \\ \forall a, b \; [(a=b) \vee (a\alpha b \wedge b\alpha a) \vee (\neg (a\alpha b) \wedge \neg (b\alpha a))] \\ \forall a, b \; [(a=b) \vee (a\alpha b \leftrightarrow b\alpha a)] \end{array}$$

- $^{-1}=\alpha$
- bakışsız:

 $\exists a, b \ [(a \neq b) \land (a \alpha b \land \neg (b \alpha a)) \lor (\neg (a \alpha b) \land b \alpha a))]$

ters bakışlı:

$$\forall a, b \ [(a = b) \lor (a\alpha b \to \neg(b\alpha a))]$$

$$\Leftrightarrow \forall a, b \ [(a = b) \lor \neg(a\alpha b) \lor \neg(b\alpha a)]$$

$$\Leftrightarrow \forall a, b \ [\neg(a\alpha b \land b\alpha a) \lor (a = b)]$$

$$\Leftrightarrow \forall a, b \ [(a\alpha b \land b\alpha a) \to (a = b)]$$

23 / 79

Bakışlılık Örnekleri

Örnel

 $\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$ $\mathcal{R} = \{(1, 2), (2, 1), (2, 3)\}$

 $ightharpoonup \mathcal{R}$ bakışsızdır

Bakışlılık Örnekleri

Örnek

 $\mathcal{R}\subseteq\mathbb{Z}\times\mathbb{Z}$

 $\mathcal{R} = \{(a,b) \mid ab \geq 0\}$

▶ R bakışlıdır

Bakışlılık Örnekleri

Örnek

 $\mathcal{R} \subseteq \{1,2,3\} \times \{1,2,3\}$

 $\mathcal{R} = \{(1,1),(2,2)\}$

 $ightharpoonup \mathcal{R}$ bakışlıdır ve ters bakışlıdır

Geçişlilik

gecisli

 $\alpha \subseteq {\it A} \times {\it A}$

 $\forall \mathsf{a}, \mathsf{b}, \mathsf{c} \ [(\mathsf{a}\alpha \mathsf{b} \wedge \mathsf{b}\alpha \mathsf{c}) \to (\mathsf{a}\alpha \mathsf{c})]$

- $\quad \bullet \ \alpha^2 \subseteq \alpha$
- geçişsiz:

 $\exists a, b, c \ [(a\alpha b \wedge b\alpha c) \wedge \neg(a\alpha c)]$

► ters geçişli:

 $\forall a, b, c \ [(a\alpha b \wedge b\alpha c) \rightarrow \neg(a\alpha c)]$

Geçişlilik Örnekleri

Örnek

 $\mathcal{R} \subseteq \{1,2,3\} \times \{1,2,3\} \\ \mathcal{R} = \{(1,2),(2,1),(2,3)\}$

 $ightharpoonup \mathcal{R}$ ters geçişlidir

7 / 79

Geçişlilik Örnekleri

Örnek

 $\mathcal{R}\subseteq\mathbb{Z}\times\mathbb{Z}$

 $\mathcal{R} = \{(a,b) \mid ab \ge 0\}$

 $ightharpoonup \mathcal{R}$ geçişsizdir

Evrik Bağıntı Nitelikleri

Teorem

Yansıma, bakışlılık ve geçişlilik nitelikleri evrik bağıntıda korunur.

Örtüler

- ▶ yansımalı örtü: $r_{\alpha} = \alpha \cup E$
- ▶ bakışlı örtü: $\mathit{s}_{\alpha} = \alpha \cup \alpha^{-1}$
- ► geçişli örtü: $t_{\alpha} = \bigcup_{i=1,2,3,\dots} \alpha^i = \alpha \cup \alpha^2 \cup \alpha^3 \cup \dots$

Özel Bağıntılar

önce gelen - sonra gelen

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$
 $\mathcal{R} = \{(a, b) \mid a - b = 1\}$

- ▶ ters yansımalı
- ► ters bakışlı
- ▶ ters geçişli

Özel Bağıntılar

bitişiklik

 $\mathcal{R}\subseteq\mathbb{Z}\times\mathbb{Z}$ $\mathcal{R} = \{(a, b) \mid |a - b| = 1\}$

- ters yansımalı
- bakışlı
- ► ters geçişli

Özel Bağıntılar

dar sıra

 $\mathcal{R}\subseteq\mathbb{Z}\times\mathbb{Z}$ $\mathcal{R} = \{(a,b) \mid a < b\}$

- ters yansımalı
- ► ters bakışlı
- geçişli

Özel Bağıntılar

kısmi sıra

 $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $\mathcal{R} = \{(a, b) \mid a \leq b\}$

- yansımalı
- ► ters bakışlı
- geçişli

Özel Bağıntılar

önsıra

 $\mathcal{R}\subseteq \mathbb{Z}\times \mathbb{Z}$ $\mathcal{R} = \{(a,b) \mid |a| \leq |b|\}$

- yansımalı
- bakışsız
- geçişli

Özel Bağıntılar

sınırlı fark

$$\begin{split} \mathcal{R} &\subseteq \mathbb{Z} \times \mathbb{Z}, \, m \in \mathbb{Z}^+ \\ \mathcal{R} &= \{ (a,b) \mid |a-b| \leq m \} \end{split}$$

- yansımalı
- bakışlı
- geçişsiz

Özel Bağıntılar

karşılaştırılabilirlik

$$\mathcal{R} \subseteq \mathbb{U} \times \mathbb{U}$$

 $\mathcal{R} = \{(a, b) \mid (a \subseteq b) \lor (b \subseteq a)\}$

- yansımalı
- bakışlı
- geçişsiz

37 / 79

8 / 79

Özel Bağıntılar

kardeşlik

- ▶ ters yansımalı
- bakışlı
- geçişli
- bir bağıntı nasıl bakışlı, geçişli ve yansımasız olabilir?

Uyuşma Bağıntıları

Tanım

uyuşma bağıntısı: γ

- yansımalı
- bakışlı
- çizerek gösterilimde oklar yerine çizgiler
- matris gösterilimi merdiven şeklinde
- lacktriangle $lpha lpha^{-1}$ bir uyuşma bağıntısıdır

40 / 79

Uyuşma Bağıntısı Örneği

Örnek

$$A = \{a_1, a_2, a_3, a_4\}$$

$$\mathcal{R} = \{(a_1, a_1), (a_2, a_2), (a_3, a_3), (a_4, a_4), (a_1, a_2), (a_2, a_1), (a_2, a_4), (a_4, a_2), (a_3, a_4), (a_4, a_3)\}$$

$$\begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{vmatrix}$$

Uyuşma Bağıntısı Örneği

Örnek
$$(\alpha \alpha^{-1})$$

 P : kişiler, L : diller
 $P = \{p_1, p_2, p_3, p_4, p_5, p_6\}$
 $L = \{l_1, l_2, l_3, l_4, l_5\}$
 $\alpha \subseteq P \times L$

$$M_{\alpha} = \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{vmatrix}$$

$$M_{\alpha^{-1}} = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{vmatrix}$$

Uyuşma Bağıntısı Örneği

Örnek
$$(\alpha \alpha^{-1})$$

 $\alpha \alpha^{-1} \subseteq P \times P$

$$\textit{M}_{\alpha\alpha^{-1}} = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \end{vmatrix}$$

Uyuşanlar Sınıfı

Tanım

uyuşanlar sınıfı: $C \subseteq A$ $\forall a, b \ [a \in C \land b \in C \rightarrow a\gamma b]$

en üst uyuşanlar sınıfı:

başka bir uyuşanlar sınıfının altkümesi değil

- ▶ bir eleman birden fazla EÜS'ye girebilir
- eksiksiz örtü: C_γ tüm EÜS'lerin oluşturduğu küme

Uyuşanlar Sınıfı Örneği

Örnek ($\alpha\alpha^{-1}$)

- $ightharpoonup C_1 = \{a_4, a_6\}$
- $ightharpoonup C_2 = \{a_2, a_4, a_6\}$
- $ightharpoonup C_3 = \{a_1, a_2, a_4, a_6\} \ (E\ddot{U}S)$

$$C_{\gamma}(A) = \{\{a_1, a_2, a_4, a_6\}, \{a_3, a_4, a_6\}, \{a_4, a_5\}\}$$

Eşdeğerlilik Bağıntıları

Tanım

eşdeğerlilik bağıntısı: ϵ

- yansımalı
- bakışlı
- geçişli
- eşdeğerlilik sınıfları (bölmelemeler)
- ▶ her eleman tek bir eşdeğerlilik sınıfına girer
- eksiksiz örtü: C_{ϵ}

Eşdeğerlilik Bağıntısı Örneği

Örnek

 $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$

 $\mathcal{R} = \{(a,b) \mid \exists m \in \mathbb{Z} \ [a-b=5m]\}$

 $ightharpoonup \mathcal{R}$ bağıntısı \mathbb{Z} kümesini 5 eşdeğerlilik sınıfına bölmeler

Kaynaklar

Okunacak: Grimaldi

- ► Chapter 5: Relations and Functions
 - ▶ 5.1. Cartesian Products and Relations
- ▶ Chapter 7: Relations: The Second Time Around
 - 7.1. Relations Revisited: Properties of Relations
 7.4. Equivalence Relations and Partitions

Yardımcı Kitap: O'Donnell, Hall, Page

► Chapter 10: Relations

Fonksiyonlar

Tanım

fonksiyon: $f: X \to Y$ $\forall x \in X \ \forall y_1, y_2 \in Y \ (x, y_1), (x, y_2) \in f \Rightarrow y_1 = y_2$

- ▶ X: tanım kümesi, Y: değer kümesi
- ▶ y = f(x) ile $(x, y) \in f$ aynı
- ▶ y, x'in f altındaki görüntüsü
- ▶ $f: X \to Y$ ve $X_1 \subseteq X$ olsun altküme görüntüsü: $f(X_1) = \{f(x) \mid x \in X_1\}$

Altküme Görüntüsü Örnekleri

Örnek $f: \mathbb{R} \to \mathbb{R}$ $f(x) = x^2$ $f(\mathbb{Z}) = \{0, 1, 4, 9, 16, \dots\}$ $f(\{-2, 1\}) = \{1, 4\}$

49 / 7

Fonksiyon Nitelikleri

Tanım

 $f: X \to Y$ fonksiyonu birebir (ya da injektif): $\forall x_1, x_2 \in X$ $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

Tanım

 $f: X \to Y$ fonksiyonu örten (ya da sürjektif): $\forall y \in Y \ \exists x \in X \ f(x) = y$

ightharpoonup f(X) = Y

Tanım

 $f: X \to Y$ fonksiyonu bijektif: f fonksiyonu birebir ve örten

Birebir Fonksiyon Örnekleri

Örnek
$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = 3x + 7$

 $\Rightarrow x_1$

$$f(x_1) = f(x_2)$$

$$\Rightarrow 3x_1 + 7 = 3x_2 + 7$$

$$\Rightarrow 3x_1 = 3x_2$$

Karşı Örnek

$$g: \mathbb{Z} \to \mathbb{Z}$$

 $g(x) = x^4 - x$

$$g(0) = 0^4 - 0 = 0$$

 $g(1) = 1^4 - 1 = 0$

51 / 79

Örten Fonksiyon Örnekleri

Örnek
$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = x^3$

Karşı Örnek
$$f: \mathbb{Z} \to \mathbb{Z}$$
 $f(x) = 3x + 1$

Fonksiyon Bileşkesi

Tanım

$$f: X \to Y, g: Y \to Z$$
 olsun

$$g \circ f : X \to Z$$

 $(g \circ f)(x) = g(f(x))$

- ▶ fonksiyon bileşkesi değişme özelliği göstermez
- ▶ fonksiyon bileşkesi birleşme özelliği gösterir: $f \circ (g \circ h) = (f \circ g) \circ h$

53 / 79

54 / 79

Fonksiyon Bileşkesi Örnekleri

Örnek (değişme özelliği)

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x^2$$
$$g: \mathbb{R} \to \mathbb{R}$$

$$g(x) = x + 5$$

$$g \circ f : \mathbb{R} \to \mathbb{R}$$

 $(g \circ f)(x) = x^2 + 5$

$$f\circ g:\mathbb{R}\to\mathbb{R}$$

$$(f\circ g)(x)=(x+5)^2$$

Fonksiyon Bileşkesi Teoremleri

Teorem

 $f: X \to Y, g: Y \to Z$ olsun f birebir \land g birebir \Rightarrow g \circ f birebir

Tanıt.

$$(g \circ f)(a_1) = (g \circ f)(a_2)$$

$$\Rightarrow g(f(a_1)) = g(f(a_2))$$

$$\Rightarrow f(a_1) = f(a_2)$$

$$\Rightarrow a_1 = a_2$$

55 / 7

Teorem

 $\begin{array}{l} f: X \rightarrow Y, g: Y \rightarrow Z \ \textit{olsun} \\ f \ \textit{\"{o}rten} \ \land \ g \ \textit{\"{o}rten} \Rightarrow g \circ f \ \textit{\"{o}rten} \end{array}$

Fonksiyon Bileşkesi Teoremleri

Tanıt

$$\forall z \in Z \exists y \in Y \ g(y) = z$$

$$\forall y \in Y \exists x \in X \ f(x) = y$$

$$\Rightarrow \forall z \in Z \ \exists x \in X \ g(f(x)) = z$$

Birim Fonksiyon

Tanım

birim fonksiyon: 1_X

$$1_X: X \to X$$
$$1_X(x) = x$$

58 / 79

Evrik Fonksiyon

Tanım

 $f: X \to Y$ fonksiyonu evrilebilir: $\exists f^{-1}: Y \to X \ [f^{-1} \circ f = 1_X \wedge f \circ f^{-1} = 1_Y]$

 $ightharpoonup f^{-1}$: f fonksiyonunun evriği

Evrik Fonksiyon Örnekleri

Örnek

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = 2x + 5$$

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$
$$f^{-1}(x) = \frac{x-5}{2}$$

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(2x+5) = \frac{(2x+5)-5}{2} = \frac{2x}{2} = x$$
$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(\frac{x-5}{2}) = 2\frac{x-5}{2} + 5 = (x-5) + 5 = x$$

60 / 7

Fonksiyon Evriği

Teorem

Bir fonksiyon evrilebilirse evriği tektir.

Tanıt.

 $f: X \to Y \text{ olsun}$

 $g, h: Y \rightarrow X$ olsun, öyle ki:

$$g \circ f = 1_X \wedge f \circ g = 1_Y$$

$$h \circ f = 1_X \wedge f \circ h = 1_Y$$

$$h = h \circ 1_Y = h \circ (f \circ g) = (h \circ f) \circ g = 1_X \circ g = g$$

Evrilebilir Fonksiyon

Teorem

Bir fonksiyon yalnız ve ancak birebir ve örten ise evrilebilir.

50./=

Evrilebilir Fonksiyon

Evrilebilir ise birebirdir.

 $f: A \rightarrow B$

$$f(a_{1}) = f(a_{2}) \qquad b$$

$$\Rightarrow f^{-1}(f(a_{1})) = f^{-1}(f(a_{2})) \qquad = 1_{B}(b)$$

$$\Rightarrow (f^{-1} \circ f)(a_{1}) = (f^{-1} \circ f)(a_{2}) \qquad = (f \circ f^{-1})(b)$$

$$\Rightarrow 1_{A}(a_{1}) = 1_{A}(a_{2}) \qquad = f(f^{-1}(b))$$

$$\Rightarrow a_{1} = a_{2}$$

 \Box

Evrilebilir ise örtendir.

 $f:A\to B$

Evrilebilir Fonksiyon

Birebir ve örten ise evrilebilirdir.

 $f:A\to B$

- ▶ f örten $\Rightarrow \forall b \in B \exists a \in A \ f(a) = b$
- ▶ $g: B \rightarrow A$ fonksiyonu a = g(b) ile belirlensin
- $g(b) = a_1 \neq a_2 = g(b)$ olabilir mi?
- $ightharpoonup f(a_1) = b = f(a_2)$ olması gerekir
- ▶ olamaz: f birebir

64 / 79

Güvercin Deliği İlkesi

Tanım

Güvercin Deliği İlkesi (Dirichlet kutuları):

m adet güvercin n adet deliğe yerleşirse ve m > n ise, en az bir delikte birden fazla güvercin vardır.

- ▶ $f: X \to Y$ olsun: |X| > |Y| ise f birebir bir fonksiyon olamaz
- $\exists x_1, x_2 \in X \ [x_1 \neq x_2 \land f(x_1) = f(x_2)]$

Güvercin Deliği İlkesi Örnekleri

Örnek

- \blacktriangleright 367 kişinin arasında en az ikisinin doğum günü aynıdır.
- 0 ile 100 arasında tamsayı notlar alınan bir sınavda, en az iki öğrencinin aynı notu almasının kesin olması için sınava kaç öğrenci girmiş olmalıdır?

66 /

Genelleştirilmiş Güvercin Deliği İlkesi

Tanım

Genelleştirilmiş Güvercin Deliği İlkesi:

m adet nesne n adet kutuya dağıtılırsa, en az bir kutuda en az $\lceil m/n \rceil$ adet nesne olur.

Örnek

100 kişinin arasında en az 9 kişi ($\lceil 100/12 \rceil$) aynı ayda doğmuştur.

Güvercin Deliği İlkesi Örneği

Teorem

 $S = \{1,2,3,\ldots,9\}$ kümesinin 6 elemanlı herhangi bir altkümesinde toplamı 10 olan iki sayı vardır.

Bu sorunun cevabunda he zaman toplamı 10 olan en az bir ikili alınması gerektiğini göstermemiz gerekmektedir. Oncelikle S kümesinde toplamları 10 olan ikili grupları sıralayalım. 1+9=10; 2+8=10; 3+7=10; 4+6=10; ve geripe yalınızca "5" sayısı kalmaktadır. Sönuç olarak 10 toplamasını sağlayan 4 ikili ve ayrı kalan "5" ile 5 grup oluşur. Delik: Sayıların seçilebileceği grup sayısı burada 5 'tir.

Güvercin: Seçilecek elaman sayısı burada 6'dır.

Bu durumda 5 gruptan 6 sayı almamız gerekmektedir. Güvercin Deliği ilkesine göre en az bir gruptan iki elaman almamız gerekir. Bu da, her zaman toplamı 10 olan en az bir ikili seçilecek demektir.

67/79

Güvercin Deliği İlkesi Örneği

Teorem

S kümesi en büyüğü 14 olabilen 6 elemanlı bir pozitif tamsayılar kümesi olsun. S'nin boş olmayan altkümelerinin eleman toplamlarının hepsi birbirinden farklı olamaz.

Tanıt Denemesi

 $A \subseteq S$

s_A: A'nın elemanlarının toplamı

delik

$$1 \leq \textit{s}_\textit{A} \leq 9 + \cdots + 14 = 69$$

• güvercin: $2^6 - 1 = 63$

Tanıt.

 $|{\it A}| \leq 5$ olan altkümelere bakalım.

delik

$$1 \le s_A \le 10 + \cdots + 14 = 60$$

П

69 / 79

• güvercin: $2^6 - 2 = 62$

Güvercin Deliği İlkesi Örneği

Teorem

 $S = \{1, 2, 3, \dots, 200\}$ kümesinden seçilecek 101 elemanın içinde en az bir çift vardır ki, çiftin bir elemanı diğerini böler.

Tanıt Yöntemi

- ▶ $\forall n \exists ! p \ [n = 2^r p \land r \in \mathbb{N} \land \exists t \in \mathbb{Z} \ [p = 2t + 1]]$ olduğu gösterilecek
- ▶ bu teorem kullanılarak asıl teorem tanıtlanacak

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 ve 199

46 sayı

70 / 79

Güvercin Deliği İlkesi Örneği

Teorem

 $\forall n \; \exists ! p \; [n = 2^r p \land r \in \mathbb{N} \land \exists t \in \mathbb{Z} \; [p = 2t + 1]]$

Varlık Tanıtı.

n = 1: r = 0, p = 1

 $n \le k$: $n = 2^r p$ varsayalım n = k + 1: n = 2: r = 1, p = 1n asal (n > 2): r = 0, p = n

 $\begin{array}{ll} n \; asal \; (n>2): & r=0, p=n \\ \neg (n \; asal): & n=n_1n_2 \\ & n=2^{r_1}p_1 \cdot 2^{r_2}p_2 \\ & n=2^{r_1+r_2} \cdot p_1p_2 \end{array}$

Teklik Tanıtı.

tek değilse:

П

$$p_1 = 2^{r_1} p_1 = 2^{r_2} p_2$$

 $\Rightarrow 2^{r_1 - r_2} p_1 = p_2$
 $\Rightarrow 2|p_2$

Teorem

 $S = \{1,2,3,\dots,200\} \ \text{kümesinden seçilecek 101 elemanın içinde} \\ \text{en az bir çift vardır ki çiftin bir elemanı diğerini böler.}$

Tanıt

▶ $T = \{t \mid t \in S, \exists i \in \mathbb{Z} [t = 2i + 1]\}, |T| = 100$

▶ let $f: S \to T$, $r \in \mathbb{N}$ $s = 2^r t \to f(s) = t$

Güvercin Deliği İlkesi Örneği

▶ S'den 101 eleman seçilirse en az ikisinin T'deki görüntüsü aynı olur: $f(s_1) = f(s_2) \Rightarrow 2^{m_1}t = 2^{m_2}t$

$$\frac{s_1}{s_2} = \frac{2^{m_1}t}{2^{m_2}t} = 2^{m_1-m_2}$$

71 / 79

Rekürsif Fonksiyonlar

Tanım

rekürsif fonksiyon: kendisi cinsinden tanımlanan fonksiyon

$$f(n) = h(f(m))$$

tümevarımla tanımlanan fonksiyon: her adımda boyutu rekürsif bir fonksiyon

$$f(n) = \begin{cases} k & n = 0 \\ h(f(n-1)) & n > 0 \end{cases}$$

Rekürsiyon Örneklerii

Örnek
$$f91(n) = \begin{cases} n-10 & n > 100 \\ f91(f91(n+11)) & n \le 100 \end{cases}$$

M(99) = M(M(110)); $99 \le 100$ = M(100); 110 > 100

= M(M(111)); $100 \le 100$

= M(101) ; 111 > 100

= 91 : 101 > 100

Euclid Algoritması

Örnek (ortak bölenlerin en büyüğü)
$$obeb(a,b) = \left\{ \begin{array}{ll} b & b | a \\ obeb(b,a \ mod \ b) & b \nmid a \end{array} \right.$$

$$obeb(333,84) = obeb(84,333 \mod 84)$$

= $obeb(84,81)$
= $obeb(81,84 \mod 81)$
= $obeb(81,3)$
= 3

Fibonacci Dizisi

Fibonacci dizisi
$$F_n = fib(n) = \begin{cases} 1 & n = 1\\ 1 & n = 2\\ fib(n-1) + fib(n-2) & n > 2 \end{cases}$$

 F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 ... 1 1 2 3 5 8 13 21 ...

Fibonacci Dizisi

$$\textstyle\sum_{i=1}^n F_i^2 = F_n \cdot F_{n+1}$$

Tanit.

$$n = 2$$
: $\sum_{i=1}^{2} F_i^2 = F_1^2 + F_2^2 = 1 + 1 = 1 \cdot 2 = F_2 \cdot F_3$
 $n = k$: $\sum_{i=1}^{k} F_i^2 = F_k \cdot F_{k+1}$
 $n = k + 1$: $\sum_{i=1}^{k+1} F_i^2 = \sum_{i=1}^{k} F_i^2 + F_{k+1}^2$
 $= F_k \cdot F_{k+1} + F_{k+1}^2$
 $= F_{k+1} \cdot (F_k + F_{k+1})$
 $= F_{k+1} \cdot F_{k+2}$

Ackermann Fonksiyonu

$$ack(x,y) = \begin{cases} y+1 & x=0\\ ack(x-1,1) & y=0\\ ack(x-1,ack(x,y-1)) & x>0 \land y>0 \end{cases}$$

https://en.wikipedia.org/wiki/McCarthy_91_function

Kaynaklar

Okunacak: Grimaldi

- ► Chapter 5: Relations and Functions

 - 5.2. Functions: Plain and One-to-One
 5.3. Onto Functions: Stirling Numbers of the Second Kind
 - ▶ 5.5. The Pigeonhole Principle
 - ▶ 5.6. Function Composition and Inverse Functions

Yardımcı Kitap: O'Donnell, Hall, Page

► Chapter 11: Functions