Least Squares Approximation

Marieke and Eren

21.05.2024

Problem

- Find a best fit polynomial of degree n for $m+1 \in \mathbb{N}$ points $(x_i, y_i)_{0 \le i \le m}$ in \mathbb{R}^2
- Solution: Find the vector $(a_0, ... a_n) \in \mathbb{R}^{n+1}$ that minimizes $(y_0 (a_0 + a_1 x_0 + ... + a_n x_0^n))^2 + ... + (y_m (a_0 + a_1 x_m + ... + a_n x_m^n))^2$

Transition to linear algebra

Let
$$Y = \begin{pmatrix} y_0 \\ \cdot \\ \cdot \\ y_m \end{pmatrix} \in \mathbb{R}^{m+1}$$
, $X = \begin{pmatrix} a_n \\ \cdot \\ \cdot \\ a_0 \end{pmatrix} \in \mathbb{R}^{n+1}$ and
$$A = \begin{pmatrix} x_0^n & \dots & x_0 & 1 \\ \cdot & \dots & \cdot & \cdot \\ x_m^n & \dots & x_m & 1 \end{pmatrix} \in \mathbb{R}^{m+1 \times n+1}$$
. Now find $\min_{X \in \mathbb{R}^{n+1}} \|Y - AX\|^2$.

Theorem 1

Let $Y \in \mathbb{R}^k$ for some $k \in \mathbb{N}$ and U a subspace of \mathbb{R}^k . Let $Y = Y_U + Y_{U^{\perp}}$ be the orthogonal decomposition of Y with regards to U. Then $\|Y - Y_U\| \le \|Y - X\|$ for all $X \in U$. The inequality is an equality if and only if $X = Y_U$.

Proof

Let
$$X \in U$$
. Then $\|Y - Y_U\|^2 \le \|Y - Y_U\|^2 + \|Y_U - X\|^2 = \|Y - Y_U + Y_U - X\|^2 = \|Y - X\|^2$ by the pythagorean theorem.

Marieke and Eren

Theorem 2

Let $k \leq n$ and let $A \in \operatorname{Mat}(n \times k; \mathbb{R})$ be a matrix, which we think of as a family of k vectors in \mathbb{R}^n . Let P be the matrix, in the canonical basis of \mathbb{R}^n , of the orthogonal projection to $\operatorname{Im} A$. If $\operatorname{rank} A = k$, then the matrix $A^t A \in \operatorname{Mat}(n \times n; \mathbb{R})$ is invertible and we have $P = A(A^t A)^1 A^t$.

Proof - A^tA is invertible

- A full rank ⇒ columns of A form basis of ImA
 Note: dim(ImA) = k
- A^tA invertible \iff left multiplication by A^tA bijective
- Let $Y \in \operatorname{Ker} A^t A$. Then $0 = Y^t A^t A Y = (AY)^t A Y = ||AY||^2$ $\implies AY = 0$. By rank-nullity-theorem we know $\dim(\operatorname{Ker} A) = 0 \implies Y = 0 \implies \operatorname{Ker} A^t A = 0$ $\implies \dim(\operatorname{Ker} A^t A) = 0$. By rank-nullity theorem we obtain $\dim(\operatorname{Im} A^t A) = n$.

Proof - Calculating P

Let $Y \in \mathbb{R}^k$ and $Y = Y_{\text{Im}A} + Y_{(\text{Im}A)^{\perp}}$ be its orthogonal decomposition.

- $\bullet \ Y_{\mathrm{Im}A} \in \ \mathrm{Im}A \implies \exists X \in \ \mathbb{R}^n : AX = Y_{\mathrm{Im}A} \implies Y_{(\mathrm{Im}A)^{\perp}} = \\ Y Y_{\mathrm{Im}A} = Y AX \in \ (\mathrm{Im}A)^{\perp}$
- rank-nullity theorem $\implies \dim(\operatorname{Im} A) + \dim(\operatorname{Im} A)^{\perp} = n = \dim(\operatorname{Ker} A^t) + \dim(\operatorname{Im} A^t) = \dim(\operatorname{Ker} A^t) + \dim(\operatorname{Im} A) \implies \dim(\operatorname{Im} A)^{\perp} = \dim(\operatorname{Ker} A^t) \implies (\operatorname{Im} A)^{\perp} = \operatorname{Ker} A^t$
- $\Longrightarrow 0 = A^t(Y AX) = A^tY A^tAX \implies A^tY = A^tAX \implies (A^tA)^{-1}A^tY = X \implies A(A^tA)^{-1}A^tY = AX = Y_{\text{Im}A}$
- $\bullet \implies P = A(A^tA)^{-1}A^t.$

Corollary 3

Let $k \leq n$ and let $A \in \operatorname{Mat}(n \times k; \mathbb{R})$ be a matrix. If $\operatorname{rank} A = k$, then for all $Y \in \mathbb{R}^n$, the least squares minimisation problem $\min_{X \in \mathbb{R}^k} \|Y - AX\|^2$ admits the vector $X = (A^t A)^{-1} A^t Y$ as its unique solution.

Proof

||Y - AX|| is minimal for $AX = Y_{ImA} = PY$. Then $X = (A^tA)^{-1}A^tY$, from Theorem 2.

Corollary 4

Let $A \in \operatorname{Mat}(n \times n; \mathbb{R})$ be a matrix. If $\operatorname{rank}(A) = n$, then A is invertible and for all $Y \in \mathbb{R}^n$, the least squares minimisation problem $\min_{X \in \mathbb{R}^n} \|Y - AX\|^2$ admits the vector $X = A^{-1}Y$ as its unique solution.

Proof

A has full rank
$$\implies$$
 A is invertible. Corollary 3 \implies $X = (A^t A)^{-1} A^t Y = A^{-1} (A^t)^{-1} A^t Y = A^{-1} Y$

Problem

- Find a polynomial $L(T) \in \mathbb{R}[T]$ of $\deg L \leq m$ that passes through each data point in $(x_i, y_i)_{0 \leq i \leq m}$, so $L(x_i) = y_i$ for each x_i .
- Solution: Solve the system of linear equations $\sum_{i=0}^m a_i x_k^i = y_k, 0 \le k \le m$ where $(a_i)_{0 \le i \le m}$ are the coefficients of L(T) in standard basis.

Transition to linear algebra

Let
$$Y = \begin{pmatrix} y_0 \\ \cdot \\ \cdot \\ y_m \end{pmatrix} \in \mathbb{R}^{m+1}$$
, $X = \begin{pmatrix} a_m \\ \cdot \\ \cdot \\ a_0 \end{pmatrix} \in \mathbb{R}^{m+1}$ and
$$A = \begin{pmatrix} x_0^m & \dots & x_0 & 1 \\ \cdot & \dots & \cdot & \cdot \\ x_m^m & \dots & x_m & 1 \end{pmatrix} \in \mathbb{R}^{m+1 \times m+1}$$
. Then $AX = Y$.

Comparison with Corollary 4 \Longrightarrow If we use least squares method to approximate by a function of $\deg = m$ the polynomial we obtain coincides with the Lagrange polynomial.

4□ > 4□ > 4 = > 4 = > = 90

Theorem 5

For a set of points $(x_i, y_i)_{0 \le i \le n} \subseteq \mathbb{R}^2$ with $x_i \ne x_j$ for $i \ne j$ let $L(x) \in \mathbb{R}[x]$, $\deg L = n$, be defined as $L(x) = \sum_{i=0}^n y_i l_i(x)$ for $l_i(x) = \prod_{0 \le j \le n, j \ne i} \frac{x - x_j}{x_i - x_j}$. Then L(x) is unique and it fulfills $L(x_i) = y_i$ for each i.

Proof - Basis

- Note: $l_i(x_k) = 0$ for $k \neq i$ and $l_i(x_i) = 1$.
- Show: $\{I_i(x)\}_{0 \le i \le n}$ form a generating set of V the vector space of polynomials of degree less than or equal to n over \mathbb{R} .
- $\dim V = n + 1$.
- Let $f(x) \in V$. Def $q(x) := f(x) \sum_{i=0}^{n} f(x_i) l_i(x)$
- $\deg I_i = n$ for each i and $\deg f \leq n \implies \deg q \leq n$
- $q(x_i) = 0$ for each $i \implies q$ has n + 1 roots $\implies q = 0 \implies f(x) = \sum_{i=0}^{n} f(x_i) I_i(x)$
- dimensional reasons $\implies \{l_i(x)\}_{0 \le i \le n}$ form a basis of V.

Proof - Uniqueness

- In particular: $\sum_{i=0}^{n} y_i l_i(x) = \sum_{i=0}^{n} L(x_i) l_i(x)$ is a unique representation of L(x).
- L(x) is unique: Let $P(x) \in V$ be a polynomial with $P(x_i) = y_i$ for each $i \Longrightarrow P(x) = \sum_{i=0}^n P(x_i)l_i(x) = \sum_{i=0}^n y_il_i(x) = \sum_{i=0}^n L(x_i)l_i(x) = L(x)$