Student: Duong Doan Tung - 21010294 Course: Applied Mathematics for Artificial Intelligence

Assignment 4

This latex only cover part 3 of Assignment, for other parts please refer to Assignment4.ipynb file on google colab.

Hyper link to google colab notebook: Assignment 4.ipynb

Hyper link to github repository: Assignment 4

Part 3

Problem 1

We define that:

A is "Test positive" B is "Has Ebola"

According to the problem, we have:

P(A|B) = 84% $P(A|\overline{B}) = 11\%$ P(B) = 0.9%

If a random person is tested positive, the probability that he/she actually has Ebola is:

$$\begin{array}{ll} P(B|A) & = & \frac{P(A|B) \cdot P(B)}{P(A)} \\ & = & \frac{P(A|B) \cdot P(B)}{P(A|B) \cdot P(B) + P(A|\overline{B}) \cdot P(\overline{B})} \\ & = & \frac{P(A|B) \cdot P(B) + P(A|\overline{B}) \cdot (1 - P(B))}{P(A|B) \cdot P(B) + P(A|\overline{B}) \cdot (1 - P(B))} \\ & = & \frac{84\% \cdot 0.4\%}{84\% \cdot 0.4\% + 11\% \cdot (1 - 0.4\%)} \\ & = & 2.98\% \end{array}$$

Problem 2

We define that:

A is "players type 1" B is "players type 2" C is "players type 3" W is "winning a game"

```
According to the problem, we have:
```

$$P(A) = 0,5$$

$$P(B) = 0.25$$

$$P(B) = 0.25$$

$$P(W|A) = 0.3$$

$$P(W|B) = 0.4$$

$$P(W|C) = 0.5$$

(A) The probability of winning against a random player is:

$$P(W) = P(W|A) \cdot P(A) + P(W|B) \cdot P(B) + P(W|C) \cdot P(C)$$

= 0, 3 \cdot 0, 5 + 0, 4 \cdot 0, 25 + 0, 5 \cdot 0, 25
= 0, 375

(B) The probability of winning against a player of type 1 is:

$$\begin{array}{rcl} P(W|A) & = & \frac{P(W|A) \cdot P(A)}{P(W)} \\ & = & \frac{0.3 \cdot 0.5}{0.375} \\ & = & 0.4 \end{array}$$

Problem 3

Sample space:

 $\Omega = red, green, blue, orange, yellow$

(A) The smallest possible vaild event space A is:

$$\mathcal{A} = \{\emptyset, \{red, green, blue, orange, yellow\}\}$$

(B) Smallest possible event space that contains the event set {blue} is:

$$\mathcal{B} = \{\emptyset, \{blue\}, \{red, green, blue, orange, yellow\}\}$$

(C) Smallest possible event space that contains both the event set {blue} and {red, green} is:

$$C = \{\emptyset, \{blue\}, \{red, green\}, \{orange, yellow\}, \{blue, orange, yellow\}, \{red, green, blue\}, \{red, green, orange, yellow\}, \{red, green, blue, orange, yellow\}\}$$

Problem 4

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \begin{bmatrix} 0.01 & 0.02 & 0.03 & 0.1 & 0.1 \\ 0.05 & 0.1 & 0.05 & 0.07 & 0.2 \\ 0.1 & 0.05 & 0.03 & 0.05 & 0.04 \\ \hline x_1 & x_2 & x_3 & x_4 & x_5 \\ X \end{bmatrix}$$

Figure 1: Problem 4

(A) Marginal distribution of X is:

X	1	2	3	4	5
P(X)	0.16	0.17	0.11	0.22	0.34

(B) Marginal distribution of Y is:

Y	1	2	3
P(Y)	0.26	0.47	0.27

(C) Conditional distribution of X given Y = y_1 is: $P(X|Y=1) = \frac{P(X,y_1)}{P(y_1)}$,

$$P(X|Y=1) = \frac{P(X,y_1)}{P(y_1)}$$

X	1	2	3	4	5
P(X Y=1)	$\frac{1}{26}$	$\frac{1}{13}$	$\frac{3}{26}$	$\frac{5}{13}$	$\frac{5}{13}$

(D) Conditional distribution of Y given X = x_3 is: $P(Y|x_3) = \frac{P(x_3,Y)}{P(x_3)},$

$$P(Y|x_3) = \frac{P(x_3,Y)}{P(x_3)},$$

	(9)	
Y	1	2	3
$P(Y x_3)$	$\frac{3}{11}$	$\frac{5}{11}$	$\frac{3}{11}$

(E) Conditional distribution of X given Y $\neq y_1$ is: $P(X|Y \neq y_1) = \frac{P(X,Y=y_{23})}{P(Y=y_{23})},$

$$P(X|Y \neq y_1) = \frac{P(X,Y=y_{23})}{P(Y=y_{23})},$$

(923)					
X	1	2	3	4	5
$P(X Y \neq y_1)$	$\frac{15}{74}$	$\frac{15}{74}$	$\frac{4}{37}$	$\frac{6}{37}$	$\frac{12}{37}$

Problem 5

The solution for this problem is in the attached ipynb file.