Algorithms HW

4. Let

$$1 \to N \to G \xrightarrow{\pi} H \to 1$$

be an extension of groups. Show that there is a homomorphism

$$\rho \colon H \to \mathrm{Out}(N)$$

sending an element $h \in H$ to the outer automorphism of N given by conjugation by any $\tilde{h} \in G$ such that $\pi(\tilde{h}) = h$. In the particular case that $G = N \rtimes_{\theta} H$ is the semidirect product of H by N via θ , show that ρ is equal to the composition

$$H \xrightarrow{\theta} \operatorname{Aut}(N) \to \operatorname{Out}(N)$$
.

Firstly, we will show that ρ is a well defined map $H \to Out(N)$. Let $h \in H$ and $\tilde{h}_1, \tilde{h}_2 \in G$ such that $\pi(\tilde{h}_1) = \pi(\tilde{h}_2) = h$. We have $\rho(\tilde{h}_1) = f := (n \mapsto \tilde{h}_1 n \tilde{h}_1^{-1})$ and $\rho(\tilde{h}_2) = g := (n \mapsto \tilde{h}_2 n \tilde{h}_2^{-1})$. Note that these are indeed automorphisms of N, as in the previous homework we showed that conjugation by a fixed element is an automorphism. If we show that $\rho(\tilde{h}_1)$ and $\rho(\tilde{h}_2)$ lie in the same coset of Inn(N) then ρ is well-defined. (Note: I believe this map is not well defined as a map $H \to Aut(N)$).

Recall that two elements g,h of a group lie in the same coset of a normal subgroup N if $g^{-1}h \in N$. For our automorphisms f,g we have $g^{-1} = (n \mapsto \tilde{h}_2^{-1}n\tilde{h}_2)$. And so we have $(g^{-1} \circ f)(n) = \tilde{h}_2^{-1}\tilde{h}_1n\tilde{h}_1^{-1}\tilde{h}_2$. Recall that $N \subseteq G$ and so is closed under conjugation by definition. In particular then $\tilde{h}_1n\tilde{h}_1^{-1} \in N$ and $\tilde{h}_2^{-1}(\tilde{h}_1n\tilde{h}_1^{-1})\tilde{h}_2 \in N$ since $\tilde{h}_1,\tilde{h}_2 \in G$. Thus f,g have the same image in Out(N) and so ρ is well defined with respect to the choice of \tilde{h} .

Next we show that ρ is a group homomorphism. Let $h_1,h_2 \in H$ and $\tilde{h}_1,\tilde{h}_2 \in G$ such that $\pi(\tilde{h}_1)=h_1$ and $\pi(\tilde{h}_2)=h_2$. Moreover, since π is a group homomorphism we have $\pi(\tilde{h}_1\tilde{h}_2)=\tilde{h}_1\tilde{h}_2$. Following a similar, calculation to last week's homework, consider the following

$$\rho(h_1 h_2) = \gamma_{\tilde{h}_1 \tilde{h}_2}
= (n \mapsto \tilde{h}_1 \tilde{h}_2 n (\tilde{h}_1 \tilde{h}_2)^{-1})
= (n \mapsto \tilde{h}_1 \tilde{h}_2 n \tilde{h}_2^{-1} \tilde{h}_1^{-1})
= \gamma_{\tilde{h}_1} \circ \gamma_{\tilde{h}_2}
= \rho(h_1) \rho(h_2).$$

Thus, the given ρ is indeed a group homomorphism.

Now suppose $G = N \rtimes_{\theta} H$. We can state more precisely the outer automorphism given by ρ . Let $h \in H$ and then all lifts are of the form $\tilde{h} = (m,h)$ for some $m \in N$. Then, being explicit about the details of the semidirect product, our map $\rho(h) : \iota(N) \to \iota(N)$ acts as follows

$$\rho_{h}(n) = (m,h) \cdot_{\theta} (n,e_{H}) \cdot_{\theta} (m,h)^{-1}
= (m,h)(n,e_{H})(\theta_{h^{-1}}(m^{-1}),h^{-1})
= (m\theta_{h}(n),h)(\theta_{h^{-1}}(m^{-1}),h^{-1})
= (m\theta_{h}(n)(\theta_{h} \circ \theta_{h^{-1}}(m^{-1}),hh^{-1})
= (m\theta_{h}(n)m^{-1},e_{H}).$$

Which induces the automorphism $f = (n \mapsto m\theta_h(n)m^{-1}) : N \to N$. Note that $(\theta_h\theta_{h^{-1}}) = id_H$ since θ is a group homomorphism $H \to Aut(N)$.

We show that this is the same as the composition $H \to Aut(N) \to Out(N)$. We have $h \mapsto \theta_h \mapsto \overline{\theta_h}$. Notice now that θ_h and f are lie in the same coset of Inn(N). In particular

$$\overline{\theta_h} = \overline{\gamma_m \theta_h} = \overline{f}$$

since $\gamma_m = (n \mapsto mnm^{-1})$ is one of the inner automorphisms of N. Hence, in the case where $G = N \rtimes_{\theta} H$ we have ρ and $H \to Aut(N) \to Out(N)$ give the same map.

One interpretation of this is that, whilst ρ is a well defined map $H \to Out(N)$, it is not a well defined map $H \to Aut(N)$. However, in the case where G is a semidirect product of

N and H via θ , we have a preferred lift $h\mapsto (e_N,h)\in G$, and in fact there is a well defined map $H\to Aut(N)$, namely θ , whose projection gives the same map as ρ .