Course No.	Туре	Subject	L	Т	P	Credits	CA	MS	ES	CA	ES	Pre-requisites
COCSC14	CC	Principles of Compiler Construction	3	0	2	4	15	15	40	15	15	Theory Automata and Formal Languages

COURSE OUTCOMES

- 1 Understand the internal organization and behavior of the compilers and other language processors.
- 2 Apply the formal constructs for designing a compiler.
- 3 Study and understand the functioning of a compiler.
- 4 Gain an ability to design simple domain-specific languages (DSLs) using compiler construction tools.
- 5 Go for the translation of languages or design the tools for online processing.

COURSE CONTENTS

Unit 1

Introduction: Language processors, structure of a compiler, compiler-construction tools, evolution of programming languages, applications of compiler technology, Transition diagrams, bootstrapping, just-in-time compilation.

Unit 2

Lexical analysis: Input buffering, specification and recognition of tokens, lexical analyzer generator.

Unit 3

Syntax analysis: Specification of syntax using grammar. Top-down parsing – recursive-descent, predictive. Bottom-up parsing – shift-reduce, SLR, CLR, LALR. Parser generator.

Unit 4

Intermediate-code generation: Syntax-directed translation. Three-address code. Translation of declarations, expressions, control flow. Backpatching. Runtime environment: Activation trees and records.

Unit 5

Code optimization: Sources of optimization, basic blocks, optimization of basic blocks, data-flow analysis, loop optimizations. Code generation: Issues, register allocation and assignment, peephole optimization

Practical:

- 1. Develop simple language processors like desk calculator and assembler.
- 2. Design a small high-level language.
- 3. Develop a lexical analyzer and a syntax analyzer for the same using the LEX and YACC tools. Also implement the bookkeeper module.
- 4. Design a small high-level language and implement a compiler for the same. If the target machine of the compiler is a hypothetical machine, then implement a simulator for it.
- 5. Develop a simple calculator using LEX and YACC tools.
- 6. Implement a program for symbol table using hashing
- 7. Implement a two-pass assembler

- 8. Implement a bottom-up parser using YACC tool.
- 9. Represent 'C' language using Context Free Grammar
- 10. Add assignment statement, If then else statement and while loop to the calculator and generate the three address code for the same.

SUGGESTED READINGS

- 1. Aho, A. V., Lam, M. S., Sethi, R. and Ullman J. D., "Compilers Principles, Techniques and Tools (2nd ed.)", Pearson.
- 2. Chattopadhyay, S. 2005, "Compiler Design, PHI".
- 3. Appel, A. W. 200, "Modern Compiler Implementation in C", Cambridge University Press.
- 4. Kenneth C. Louden (1997), Compiler Construction—Principles and Practice, 1st edition, PWS Publishing.

Course No.	Туре	Subject	L	Т	Р	Credits	CA	MS	ES	CA	ES	Pre-requisites
COCSC15	СС	Cloud Computing	3	1	0	4	25	25	50			Networking

COURSE OUTCOMES

- 1. Understand the concept of cloud computing, its quality issues, services, applications, benefits and limitations.
- 2. Understand the underlying technologies that drive a cloud computing environment.
- 3. To keep abreast of the trends in cloud technology
- 4. To get acquainted with available cloud environments such as GoogleApps, Microsoft Azure and Amazon Web Services.
- 5. To be able to use the cloud services.

COURSE CONTENT

UNIT I

Introduction: Concept of a cloud, Purpose, characteristics, challenges and developments in cloud computing, Virtualization, On-demand Cloud Computing, Current cloud Technologies and Environments, Benefits and limitations.

UNIT II

Virtualization: Characteristics of virtualization, Types of virtualization, Hypervisors and some case studies.

UNIT III

Cloud architectures: Software as a Service, Platform as a Service, Infrastructure as a Service, Storage as a Service, Applications as a Service, other services

UNIT IV

Types of cloud architectures: Public, Private, Hybrid, Design issues with cloud: scalability, fault tolerance, security, trust, privacy.