Counting up to symmetry

Peter Rowlett

1 Symmetries as permutations

Recall that $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$ represents a function that maps

$$\sigma(1) = 2$$

$$\sigma(2) = 4$$

$$\sigma(3) = 3$$

$$\sigma(4) = 1.$$

We can write this as a product of disjoint cycles. In general:

- $(\dots xy \dots)$ means x shifts to y;
- $(x \dots y)$ means y shifts to x.

For example

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} = (124)(3);$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = (14)(23);$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = (1234);$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = (1)(2)(3)(4).$$

We can write the symmetries of a square as permutations. Consider the square

1

First we consider the rotations.

e:
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = (1)(2)(3)(4).$$

$$r:$$
 $\begin{pmatrix} 4 & -1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = (1234).$

$$r^2$$
: $\begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = (13)(24).$

$$r^3$$
: $\begin{pmatrix} 2 & 3 & 4 \\ 1 & 4 & 4 \end{pmatrix} = (1234).$

Next we consider the reflections, labelled as follows.

$$\rho_2:$$

$$\begin{array}{cccc}
3 & 2 \\
4 & 1
\end{array}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{pmatrix} = (13)(2)(4).$$

$$\rho_3:$$

$$\begin{array}{cccc}
3 & 2 \\
4 & 1
\end{array}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{pmatrix} = (12)(34).$$

$$\rho_3: \begin{array}{cccc} 1 & 4 \\ \hline 2 & 3 & 4 \\ \hline 2 & 3 & 2 \end{array} = (1)(24)(3).$$

2 Cycle notation

Let x_i represent a cycle of length i.

Then, for example, we can represent

- (1) as x_1 ;
- (12) as x_2 ;

- (1234) as x_4 ;
- (13)(24) as x_2^2 ;
- (1)(2)(3)(4) as x_1^4 ;
- (1)(2)(34) as $x_1^2x_2$.

We can represent the symmetries of a square in cycle notation.

In a colouring problem, each member of a cycle must be coloured the same way, since the elements are mapped onto each other by the symmetry in question.

For example, (13) means $1 \to 3$ and $3 \to 1$, so 1 and 3 must be the same colour.

So if there are m colours, each x_i represents a set of elements that can be coloured m different ways.

3 Burnside's Theorem

Theorem. For G a group of permutations of $\{1, 2, ..., n\}$, the cycle index of G is

$$P(x_1, x_2, \dots, x_n) = \frac{1}{|G|} \sum_{\pi \in G} (cycle \ representation \ of \ \pi).$$

Then the number of m-colourings of configurations acted upon by G is P(m, m, ..., m).

3.1 Example

For colouring the vertices of a square, we have

$$P(x_1, x_2, x_3, x_4) = \frac{1}{8} \left(x_1^4 + x_4 + x_2^2 + x_4 + x_2^2 + x_1^2 x_2 + x_2^2 + x_1^2 x_2 \right)$$
$$= \frac{1}{8} \left(x_1^4 + 2x_4 + 3x_2^2 + 2x_1^2 x_2 \right).$$

We can 2-colour this in

$$P(2,2,2,2) = \frac{1}{8}(2^4 + 2 \times 2 + 3 \times 2^2 + 2 \times 2^2 \times 2) = 6$$

ways.

4 Example

How many ways are there to colour the vertices of a regular pentagon with up to 5 colours?

First we consider the five rotations.

Next we consider the following five reflections.

Collecting the cycle representations together, we have

$$P(x_1, x_2, x_3, x_4, x_5) = \frac{1}{10} \left(x_1^5 + 4x_5 + 5x_1 x_2^2 \right).$$

Thus we can 5-colour the shape in

$$P(5,5,5,5,5) = \frac{1}{10} \left(5^5 + 4 \times 5 + 5 \times 5 \times 5^2 \right) = 377$$

ways.

5 Pólya enumeration

For colouring the vertices of a square like this

we obtained the function

$$P(x_1, x_2, x_3, x_4) = \frac{1}{8} (x_1^4 + 2x_4 + 3x_2^2 + 2x_1^2 x_2).$$

Elements in x_1 (e.g. (1)) can be coloured either

• blue: 1 + b;

• green: 1+g.

So together these can be coloured (1+b)(1+g) = 1+b+g+bg ways.

There is one element in x_1 and we require that it has a colour, therefore its colours can be expressed as b + g.

For x_2 (e.g. (12)), we have

- blue: $1 + b + b^2$;
- green: $1 + q + q^2$.

This gives $(1+b+b^2)(1+g+g^2) = 1+g+g^2+b+bg+bg^2+b^2+b^2g+b^2g^2$. Those terms which represent two elements coloured with the same colour are: $b^2 + g^2$.

In general, x_i can be coloured in $b^i + g^i$ ways.

Now consider

$$P(b+g,b^2+g^2,b^3+g^3,b^4+g^4) = \frac{1}{8} \left((b+g)^4 + 2(b^4+g^4) + 3(b^2+g^2)^2 + 2(b+g)^2(b^2+g^2) \right)$$
$$= b^4 + b^3g + 2b^2g^2 + bg^3 + g^4.$$

These terms generate the 6 ways of colouring the square.

5.1 Example

For colouring the vertices of the regular pentagon we found

$$P(x_1, x_2, x_3, x_4, x_5) = \frac{1}{10} (x_1^5 + 4x_5 + 5x_1x_2^2).$$

Then

$$P(b+g,...,b^5+g^5) = \frac{1}{10} \left((b+g)^5 + 4(b^5+g^5) + 5(b+g)(b^2+g^2)^2 \right)$$

= $b^5 + b^4 q + 2b^3 q^2 + 2b^2 q^3 + bq^4 + q^5$.

These terms generate the 8 ways to 2-colour the regular pentagon.

6 Colour Match puzzle

The problem of how many different tiles are used in the Colour Match puzzle can be answered as part of the wider question of four-colouring the vertices of a square.

Here we only have the identity and the rotations, since the tiles cannot be flipped over (the coloured dots don't show through to the back of the tiles). This means

$$P(x_1, x_2, x_3, x_4) = \frac{1}{4} (x_1^4 + 2x_4 + x_2^2).$$

Elements of a cycle x_i of length i can be coloured the same in $b^i + g^i + r^i + y^i$ ways. To generate the ways of colouring, we use

$$\begin{split} &P(b+g+r+y,r^2+b^2+g^2+y^2,r^3+b^3+g^3+y^3,r^4+b^4+g^4+y^4)\\ &=\frac{1}{4}\left((r+b+g+y)^4+2(r^4+b^4+g^4+y^4)+(r^2+b^2+g^2+y^2)^2\right)\\ &=b^4+b^3g+b^3r+b^3y+2b^2g^2+3b^2gr+3b^2gy+2b^2r^2+3b^2ry+2b^2y^2+bg^3+3bg^2r\\ &+3bg^2y+3bgr^2+6bgry+3bgy^2+br^3+3br^2y+3bry^2+by^3+g^4+g^3r+g^3y+2g^2r^2\\ &+3g^2ry+2g^2y^2+gr^3+3gr^2y+3gry^2+gy^3+r^4+r^3y+2r^2y^2+ry^3+y^4. \end{split}$$

The relevant term is 6bgry, the coefficient of which tells us there are six ways of colouring the tiles with each colour used for exactly one vertex.