Multi-Label Classification with Meta Labels

Jesse Read⁽¹⁾, Antti Puurula⁽²⁾, Albert Bifet⁽³⁾

- (1) Aalto University and HIIT, Finland
- (2) University of Waikato, New Zealand
- (3) Huawei Noah's Ark Lab, Hong Kong

17 December 2014

Overview

Multi-label classification:

- \subseteq {beach, sunset, foliage, field, mountain, urban}
- Most multi-label classification methods can be expressed in a general framework of meta-label classification
- Our work combines labels into meta-labels, so as to learn dependence efficiently and effectively.

Multi-label Learning

With input variables *X*, produce predictions for *multiple* output variables *Y*. The basic binary relevance approach,

- does not capture label dependence (among *Y*-variables)
- does not scale to large number of labels

The label powerset approach models label combinations as class values in a multi-class problem.

Meta Labels

We introduce a layer of meta-labels,

- captures label dependence
- meta-labels can be fewer than the original number of labels
- and are deterministically decodable into the labels

Producing Meta Labels

dataset		binary relevance			label powerset	meta labels		
instance	labels	Y_A	Y_B	Y_C	$Y_{A,B,C}$	$Y_{A,C}$	$Y_{B,C}$	
1	В	0	1	0	В	Ø	В	
2	В,С	0	1	1	BC	Ø	BC	
3	C	0	0	1	С	Ø	C	
4	В	0	1	0	В	Ø	В	
5	A,C	1	0	1	AC	AC	С	
6	A,C	1	0	1	AC	AC	С	
7	A,C	1	0	1	AC	AC	C	
8	A,B,C	1	1	1	ABC	Ø	BC	
9	С	0	0	1	С	Ø	С	

- binary relevance: 9 exs, $3 \times 2 \text{ binary classes}$
- *label powerset*: 9 exs, 1×5 multi-class

Producing Meta Labels

dataset		binary relevance			label powerset	meta labels	
instance	labels	Y_A	Y_B	Y_C	$Y_{A,B,C}$	$Y_{A,C}$	$Y_{B,C}$
1	В	0	1	0	В	Ø	В
2	В,С	0	1	1	BC	Ø	BC
3	C	0	0	1	С	Ø	С
4	В	0	1	0	В	Ø	В
5	A,C	1	0	1	AC	AC	С
6	A,C	1	0	1	AC	AC	С
7	A,C	1	0	1	AC	AC	С
8	A,B,C	1	1	1	ABC	Ø	BC
9	С	0	0	1	С	Ø	С

- binary relevance: 9 exs, 3×2 binary classes
- *label powerset*: 9 exs, 1×5 multi-class
- pruned meta labels: 9 exs, 2 meta labels, of 2 and 3 values

$$Y'_{AC} \in \{\emptyset, AC\}, Y'_{BC} \in \{B, C, BC\}$$

(one possible formulation)

Example 2

There is no need to model labels together if there is no strong dependence between them,

$$Y_{A,B}' \in \{\emptyset, B, AB\}, Y_C' \in \{\emptyset, C\}$$

(e.g., no strong relation between C and the other labels)

General process for classification with meta-labels

- Make a partition (either overlapping or disjoint) of the label set
- 2 Relabel the meta-labels, deciding on how many values each label can take (i.e., possibly pruning some)
- Train classifiers to predict meta-labels from the input instances
- Make predictions into the meta-label space
- **5** Recombine predictions into the label space

Voting Using Meta Labels

Table : Meta-label Vote, e.g., for $Y'_{AB} \in \{\emptyset, B, AB\}$

\overline{v}	A	В	$p(Y'_{AB} = \nu \tilde{\mathbf{x}})$
Ø	0	0	0.0
B	0	1	0.9
AB	1	1	0.1
P_{AB}	0.1	1.0	

Table: Labelset Voting: From Meta-labels to Labels

	A	В	C
P_{AB}	0.1	1.0	
P_{BC}		0.7	0.3
$\sum_{k} P_{k,j}$	0.1	1.7	0.3
$\hat{y} (> 0.5)$	0	1	0

Results

Figure : On Enron (1700 emails, 53 labels). RAkEL: random ensembles of 'label-powerset method' on subsets of size k (horizontal axis) vs RAkELp: with pruned meta-labels

Summary

- General framework of meta-labels for multi-label classification
- Unifies various approaches from the literature
- New models RAkELp and EpRd have large improvement in running time
- Part of solution for LSHTC4 (1st place) and WISE (2nd Place) Kaggle challenges
- Code available at

http://meka.sourceforge.net

Multi-Label Classification with Meta Labels

Jesse Read⁽¹⁾, Antti Puurula⁽²⁾, Albert Bifet⁽³⁾

- (1) Aalto University and HIIT, Finland
- (2) University of Waikato, New Zealand
- (3) Huawei Noah's Ark Lab, Hong Kong

17 December 2014

