Introduction to IoT Data Stream Mining

Albert Bifet (@abifet)

Paris, 22 November 2017 albert.bifet@telecom-paristech.fr

Who are We

- Jesse Read
 - Associate Professor at École Polytechnique
 - MultiLabel Learning, Data stream mining and Deep Learning
 - MEKA: Multilabel Learning
 - MOA: Massive Online Analytics
- Albert Bifet
 - Associate Professor at Télécom ParisTech
 - Data stream mining algorithms and systems
 - MOA: Massive Online Analytics
 - Apache SAMOA: Scalable Advanced Massive Online Analytics

IoT Data Stream Mining

Outline

- 1. Introduction
- 2. Stream Algorithmics
- 3. Classification in Multi-output Data Streams
- 4. Concept Drift
- 5. Multi-output Learning
- 6. Ensemble Methods
- 7. Regression
- 8. Clustering
- Frequent Pattern Mining

IoT Data Stream Mining

Assessment

10% Lab Assignments 30% Project 60% Test

Classes

22/11, 29/11, 13/12, 20/12 Wednesdays at 9:00

Session Labs: 6/12 and 10/01

Important Dates

Project Presentation: January 17

Test: January 31

INTERNET OF THINGS

IoT: sensors and actuators connected by networks to computing systems.

- Gartner predicts 20.8 billion IoT devices by 2020.
- IDC projects 32 billion IoT devices by 2020

IoT Applications For Energy Management

IoT Applications For Connected/Smart Home

IoT Applications For Smart Cities

IoT Applications For Industrial Automation

Applications IoT Analytics

IOT AND INDUSTRY 4.0

- Interoperability: IoT
- Information transparency: virtual copy of the physical world
- Technical assistance: support human decisions
- Decentralized decisions: make decisions on their own

INTERNET OF THINGS

• EMC Digital Universe, 2014

INTERNET OF THINGS

• EMC Digital Universe, 2014

Classifier Algorithm builds Model Model

Analytic Standard Approach

Finite training sets
Static models

Data Stream Approach

Infinite training sets
Dynamic models

Pain Points

- Need to retrain!
 - Things change over time
 - How often?
- Data unused until next update!
 - Value of data wasted

IoT Stream Mining

- Maintain models online
 - Incorporate data on the fly
 - Unbounded training sets
 - Resource efficient
 - Detect changes and adapts
 - Dynamic models

Approximation Algorithms

- General idea, good for streaming algorithms
- Small error ε with high probability 1-δ
 - True hypothesis H, and learned hypothesis Ĥ
 - $Pr[|H \hat{H}| < \epsilon |H|] > 1-\delta$

Approximation Algorithms

What is the largest number that we can store in 8 bits?

Approximation Algorithms

 What is the largest number that we can store in 8 bits? Programming Techniques

S.L. Graham, R.L. Rivest Editors

Counting Large Numbers of Events in Small Registers

Robert Morris Bell Laboratories, Murray Hill, N.J.

It is possible to use a small counter to keep approximate counts of large numbers. The resulting expected error can be rather precisely controlled. An example is given in which 8-bit counters (bytes) are used to keep track of as many as 130,000 events with a relative error which is substantially independent of the number n of events. This relative error can be expected to be 24 percent or less 95 percent of the time (i.e. $\sigma = n/8$). The techniques could be used to advantage in multichannel counting hardware or software used for the monitoring of experiments or processes.

WHAT IS MOA?

MOA

- {M}assive {O}nline {A}nalysis is a framework for online learning from data streams.
- It is closely related to WEKA
- It includes a collection of offline and online as well as tools for evaluation:

moa

- classification, regression
- clustering, frequent pattern mining
- Easy to extend, design and run experiments

WEKA: the bird

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the Weka, but also extinct.

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the Weka, but also extinct.

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the Weka, but also extinct.

STREAM SETTING

- Process an example at a time, and inspect it only once (at most)
- Use a limited amount of memory
- Work in a limited amount of time

STREAM EVALUATION

Holdout Evaluation

 Interleaved Test-Then-Train or Prequential

GUI

COMMAND LINE

- java -cp .:moa.jar:weka.jar -javaagent:sizeofag.jar moa.DoTask "EvaluatePeriodicHeldOutTest -l DecisionStump -s generators.WaveformGenerator -n 100000 -i 100000000 -f 10000000" > dsresult.csv
- This command creates a comma separated values file:
 - training the DecisionStump classifier on the WaveformGenerator data,
 - using the first 100 thousand examples for testing,
 - training on a total of 100 million examples,
 - and testing every one million examples

Data Streams

Big Data & Real Time