Capstone Project

The Battle of Neighborhoods

TAN WEI KHANG

28.07.2020

INTRODUCTION

As we known, New York city is main and important financial centre in the world and also described as the cultural, financial, and media capital of the world, significantly influencing commerce, entertainment, research, technology, education, politics, tourism, art, fashion, and sports. To survive in the competitive market in the New York city, ensure a correct location for starting own business is the key of success. I will use my exploratory data analysis to help on suggesting which location is suitable for restaurant opening.

TARGET AUDIENCE

To help the stakeholder who is interested in opening his/ her restaurant in the New York city and suggest them on correct location for his/ her business.

DATA

- 1. Free and existing New York City dataset via https://geo.nyu.edu/catalog/nyu 2451 34572
- 2. Foursquare API

METHODOLOGY

1. Import all dependencies and libraries

```
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
#!conda install -c conda-forge geopy --yes
#convert an address into latitude and longitude values
from geopy.geocoders import Nominatim
import requests # library to handle requests
import json
from pandas.io.json import json_normalize
# Matplotlib and associated plotting modules
import matplotlib.cm as cm
import matplotlib.colors as colors
# import k-means from clustering stage
from sklearn.cluster import KMeans
#!conda install -c conda-forge folium=0.5.0 --yes # uncomment this line if you haven't completed the Foursquare API lab
print('Libraries imported.')
Libraries imported.
```

2. Download and Explore Dataset

3. Define and Transform the Dataset into DataFrame

Tranform the data into a pandas dataframe

```
# define the dataframe coLumns
column_names = ['Borough', 'Neighborhood', 'Latitude', 'Longitude']
# instantiate the dataframe
neighborhoods = pd.DataFrame(columns=column_names)
neighborhoods
```

Borough Neighborhood Latitude Longitude

Loop in the neighborhood data into the dataframe for each rows

#Quick look the neighborhood dataframe neighborhoods

	Borough	Neighborhood	Latitude	Longitude
0	Bronx	Wakefield	40.894705	-73.847201
1	Bronx	Co-op City	40.874294	-73.829939
2	Bronx	Eastchester	40.887556	-73.827806
3	Bronx	Fieldston	40.895437	-73.905843
4	Bronx	Riverdale	40.890834	-73.912585
5	Bronx	Kingsbridge	40.881687	-73.902818
6	Manhattan	Marble Hill	40.876551	-73.910880

4. Check the number of borough and neighborhoods in New York City

Check the number of borough and neighborhoods in New York

The dataframe has 5 boroughs and 306 neighborhoods.

5. Use geopy to get the Latitude and Longitude of NYC

Use geopy to get the latitude and longitude values of New York.

```
address = 'New York City, NY'

geolocator = Nominatim(user_agent="ny_explorer")
location = geolocator.geocode(address)
latitude = location.latitude
longitude = location.longitude
print('The geograpical coordinate of New York City are {}, {}.'.format(latitude, longitude))

The geograpical coordinate of New York City are 40.7127281, -74.0060152.
```

6. Visualize and plot the neighborhoods in NYC

7. Find the borough with the most neighborhoods in NYC, Queens is the borough with most neighborhoods, total number 81 .

8. Visualize and plot Queens's neighborhoods in the map

9. Explore neighborhoods in Queens by Foursquare API

10. Check the unique venues

11. Analyze the neighborhoods with visit frequency

```
queens_onehot = pd.get_dummies(queens_venues[['Venue Category']], prefix="", prefix_sep="")
 # add neighborhood column back to dataframe
queens_onehot['Neighborhood'] = queens_venues['Neighborhood']
 # move neighborhood column to the first column
fixed_columns = [queens_onehot.columns[-1]] + list(queens_onehot.columns[:-1])
queens_onehot = queens_onehot[fixed_columns]
 # new dataframe size
print(queens_onehot.shape)
 Group the neighborhood and take the mean of frequency of occurance of each category
 \label{eq:queens_grouped} $$ = \text{queens\_onehot.groupby('Neighborhood').mean().reset_index() } $$ queens\_grouped.head() $$ $$ $$
           Neighborhood Studio Store Restaurant Restaur
                                                                                   0.000000
                                                                                                                                  0.0 0.010000
                                                                                                                                                                                                                                     0.0
                                                                                                                                                                                                                                                                                                                                                    0.0
                                                                                                                                                                                                                                                                                                                                                                                     0.0
                                                                                                                                                                                                                                                                                                                                                                                                              0.00
                              Astoria
                                                            0.0
                                                                                                                                                                                                    0.0
                                                                                                                                                                                                                                                             0.0
                                                                                                                                                                                                                                                                                       0.0
                                                                                                                                                                                                                                                                                                            0.0
   2 Astoria Heights 0.0 0.000000 0.0 0.000000
                                                                                                                                                                                                                                  0.0 0.0
                                                                                                                                                                                                 0.0
                                                                                                                                                                                                                                                                                    0.0 0.0
                                                                                                                                                                                                                                                                                                                                                   0.0
                                                                                                                                                                                                                                                                                                                                                                                    0.0
                                                                                                                                                                                                                                                                                                                                                                                                             0.00
                     Aubumdale 0.0
                                                                                   0.000000
                                                                                                                                0.0 0.050000
                                                                                                                                                                                                    0.0
                                                                                                                                                                                                                                     0.0
                                                                                                                                                                                                                                                             0.0
                                                                                                                                                                                                                                                                                       0.0
                                                                                                                                                                                                                                                                                                                                                    0.0
                                                                                                                                                                                                                                                                                                                                                                                     0.0
                                                                                                                                                                                                                                                                                                                                                                                                              0.05
   4 Bay Terrace 0.0 0.026316 0.0 0.052632 0.0 0.0 0.0 0.0 0.0
                                                                                                                                                                                                                                                                                                                                                   0.0 0.0 0.00
4
```

12. Get the restaurant, cafe and bars for further investigation

Get the columns with Restaurant, Cafe, Bar to investigate which neighborhood has highest frequency of visit on food and drink

```
grouped_columns = queens_grouped.columns
restaurant_columns = []
for restaurant in grouped_columns:
    if 'Restaurant' in restaurant:
         restaurant_columns.append(restaurant)
    count+=1
elif 'Food & Drink Shop' in restaurant:
         restaurant_columns.append(restaurant)
    count+=1
elif 'Café' in restaurant:
    restaurant_columns.append(restaurant)
    count+=1
elif 'BBQ' in restaurant:
         restaurant_columns.append(restaurant)
    count+=1
elif 'Bar' in restaurant:
         restaurant_columns.append(restaurant)
         count+=1
    elif 'Cafe' in restaurant:
    restaurant_columns.append(restaurant)
print("Total {} of Restaurants, Cafe, Bars are added and available.".format(count))
Total 76 of Restaurants, Cafe, Bars are added and available.
['Afghan Restaurant'
  American Restaurant'
 'Arepa Restaurant',
  'Argentinian Restaurant'.
 'Asian Restaurant',
'BBQ Joint',
 'Bar
 'Bar',
'Beach Bar',
'Brazilian Restaurant',
```

13. Find the Top 10 venues without any Japanese restaurant

Get Top 10 highest visited neighborhoods for food and drink by sorting dataframe in descending order

```
queens_grouped_sorted = queens_grouped.sort_values(ascending=False,by=['Total Visited Frequecy']).reset_index(drop=True)
print(queens_grouped_sorted.shape)
queens_grouped_sorted.head(10)

(81, 274)
```

	Neighborhood	Yoga Studio	Accessories Store	Afghan Restaurant	American Restaurant	Arepa Restaurant		Art Gallery	Art Museum	Crafts Store	Arts & Entertainment	Asian Restaurant	Athletics & Sports	Auto
0	Elmhurst	0.000000	0.0	0.000000	0.000000	0.000000	0.030303	0.0	0.0	0.0	0.0	0.000000	0.0	0.
1	Murray Hill	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.021277	0.0	0.
2	Ravenswood	0.000000	0.0	0.038462	0.000000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.000000	0.0	0.
3	Astoria	0.000000	0.0	0.000000	0.010000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.000000	0.0	0.
4	Jackson Heights	0.000000	0.0	0.000000	0.000000	0.000000	0.012500	0.0	0.0	0.0	0.0	0.012500	0.0	0.
5	Laurelton	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.000000	0.0	0.
6	Bayside	0.013158	0.0	0.000000	0.039474	0.000000	0.000000	0.0	0.0	0.0	0.0	0.013158	0.0	0.
7	Rockaway Beach	0.000000	0.0	0.000000	0.000000	0.046512	0.000000	0.0	0.0	0.0	0.0	0.000000	0.0	0.
8	Flushing	0.016667	0.0	0.000000	0.000000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.016867	0.0	0.
9	St. Albans	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.000000	0.0	0.
∢]														-

Filter out the Neighborhoods without Japanese Restaurant opened before to explore out brand new place for Japanese restaurant opening without competitive with other existing japanese restaurants

Filter out the Neighborhoods without Japanese Restaurant opened before to explore out brand new place for Japanese restaurant opening without competitive with other existing japanese restaurants

```
no_jp_neighborhood = queens_grouped_sorted[queens_grouped_sorted['Japanese Restaurant']==0].reset_index(drop=True)
print(no_jp_neighborhood.shape)
no_jp_neighborhood

(67, 274)
```

	Neighborhood	Yoga Studio	Accessories Store	Afghan Restaurant	American Restaurant	Arepa Restaurant	Argentinian Restaurant	Art Gallery	Art Museum	Arts & Crafts Store	Arts & Entertainment	Asian Restaurant	Athletics & Sports	A
0	Elmhurst	0.000000	0.000000	0.000000	0.000000	0.000000	0.030303	0.000000	0.000000	0.000	0.000000	0.000000	0.00	
1	Jackson Heights	0.000000	0.000000	0.000000	0.000000	0.000000	0.012500	0.000000	0.000000	0.000	0.000000	0.012500	0.00	
2	Laurelton	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000	0.000000	0.000000	0.00	
3	Bayside	0.013158	0.000000	0.000000	0.039474	0.000000	0.000000	0.000000	0.000000	0.000	0.000000	0.013158	0.00	
4	Rockaway Beach	0.000000	0.000000	0.000000	0.000000	0.046512	0.000000	0.000000	0.000000	0.000	0.000000	0.000000	0.00	
5	Flushing	0.016667	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000	0.000000	0.016867	0.00	
6	St. Albans	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000	0.000000	0.000000	0.00	
7	Sunnyside	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000	0.000000	0.000000	0.00	
8	Oakland Gardens	0.080000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000	0.000000	0.000000	0.00	
9	Jamaica Hills	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000	0.000000	0.000000	0.00	

14. Print top 5 visit venues for each of neighborhoods

Print each neighborhoods along with the top 5 most common venues

15. Visualize the most visit venue with table

Create the new dataframe and display the top 10 venues for each neighborhood.

```
num_top_venues = 10
indicators = ['st', 'nd', 'rd']

# create columns according to number of top venues
columns = ['Neighborhood']
for ind in np.arange(num_top_venues):
    try:
        columns.append('{}} Most Common Venue'.format(ind+1, indicators[ind]))
        except:
            columns.append('{}th Most Common Venue'.format(ind+1))

# create a new dataframe
neighborhoods_venues_sorted = pd.DataFrame(columns = columns)
neighborhoods_venues_sorted['Neighborhood'] = food_drink_neighborhoods['Neighborhood']
for ind in np.arange(food_drink_neighborhoods.shape[0]):
            neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(food_drink_neighborhoods.iloc[ind, :], num_top_venues)
neighborhoods_venues_sorted.head()
```

N	leighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	Elmhurst	Thai Restaurant	Mexican Restaurant	Chinese Restaurant	Vietnamese Restaurant	South American Restaurant	Bubble Tea Shop	Pizza Place	Park	Salon / Barbershop	Malay Restaurant
1	Jackson Heights	Latin American Restaurant	Peruvian Restaurant	South American Restaurant	Mobile Phone Shop	Bakery	Grocery Store	Mexican Restaurant	Thai Restaurant	Clothing Store	Diner
2	Laurelton	Caribbean Restaurant	Park	Train Station	Women's Store	Event Space	Falafel Restaurant	Farm	Farmers Market	Fast Food Restaurant	Filipino Restaurant
3	Bayside	Bar	Pizza Place	American Restaurant	Sushi Restaurant	Indian Restaurant	Spa	Cosmetics Shop	Pharmacy	Bakery	Mediterranean Restaurant
4	Rockaway Beach	Beach	loe Cream Shop	Arepa Restaurant	Seafood Restaurant	BBQ Joint	Fast Food Restaurant	Latin American Restaurant	Spanish Restaurant	New American Restaurant	Supermarket

16. Clustering the neighborhoods

Run k-means to cluster the neighborhood into 5 clusters.

```
# set number of clusters
kclusters = 5
queens_grouped_clustering = food_drink_neighborhoods.drop('Neighborhood', 1)
# run k-means clustering
kmeans = KWeans(n_clusters=kclusters, random_state=0).fit(queens_grouped_clustering)
# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
```

Create a new dataframe that includes the cluster as well as the top 10 venues for each neighborhood.

```
# add clustering labels
neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_)

queens_merged = queens_data

queens_merged = queens_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Neighborhood')

queens_merged = queens_merged.dropna().reset_index(drop=True)

queens_merged.head() # check the last columns!
```

	Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue
0	Queens	Jackson Heights	40.751981	-73.882821	0.0	Latin American Restaurant	Peruvian Restaurant	South American Restaurant	Mobile Phone Shop	Bakery	Grocery Store	Mexican Restaurant	Thai Restaurant
1	Queens	Elmhurst	40.744049	-73.881656	0.0	Thai Restaurant	Mexican Restaurant	Chinese Restaurant	Vietnamese Restaurant	South American Restaurant	Bubble Tea Shop	Pizza Place	Park
2	Queens	Corona	40.742382	-73.856825	0.0	Mexican	Supermarket	Convenience	Bakery	Pizza	Donut Shop	Restaurant	Park

17. Visualize the clustering, Cluster 1(Red), Cluster 2(Purple), Cluster 3(Light blue)

18. Examine each of the clusters

19. List out 10 of most visited venues for food and drinks

```
top_10_neigh = []
for neigh in queens_grouped_sorted['Neighborhood'].head(10):
    top_10_neigh.append(neigh)

top_10_neigh

['Elmhurst',
'Murray Hill',
'Ravenswood',
'Astoria',
'Jackson Heights',
'Laurelton',
'Bayside',
'Rockaway Beach',
'Flushing',
'St. Albans']
```

20. Visualize and plot the most common visit venues for food and drinks(dots which has red color covered with light blue color)

RESULTS

- Top 10 Neighborhoods has been defined by using frequency of visit of each venues for food and drinks, the venues are:
 - Elmhurst *freq*=0.787879,
 - o Murray Hill *freq*=0.595745,
 - Ravenswood *freq*=0.576923,
 - Astoria *freq*=0.550000,
 - o Jackson Heights *freq*=0.525000,
 - Laurelton *freq*=0.500000,
 - o Bayside *freq*=0.473684,
 - Rockaway Beach freq=0.465116,
 - Flushing *freq*=0.450000,
 - o St. Albans *freq*=0.444444
- Top 10 Neighborhoods are clustered in Cluster 1(Red) and also they are covered with light blue color.
- Based on the above frequency, we can assume that Elmhurst has the highest frequency of visits, hence most of the people will travel to Elmhurst for food and drinks.

CONCLUSION

In New York City, Queens has the most neighborhoods among other boroughs. Inside the Queens, there are a total 81 Neighborhoods with 273 Venues including 76 of Restaurants, Cafes and Bars. Among all of the neighborhoods, Elmhurst is the most common visit venue as there are lots of restaurants, cafes and bars and there is no Japanese restaurant opened yet. Hence, stakeholder may visit Elmhurst or another 9 venues for further investigation and consideration on Japanese Restaurant opening.