Celeste Spinner Analysis - the SPIN theory

The name "SPIN theory" is derived from the fact that this theory can be visualized as a recursive set of sliding windows "spinning" / looping around in a residual number field

Introduction

Celeste's spinners can "load" and "unload" (= turn collision on or off by setting Collidable) only on certain frames where Scene.OnInterval(float interval, float offset) returns true. interval is always 0.05f for loading and 0.25f for unloading, while offset is a random float in [0;1) chosen when the room is loaded. The following code is a decompilation of Scene.OnInterval:

```
public bool OnInterval(float interval, float offset) {
   return Math.Floor((TimeActive - offset - Engine.DeltaTime) /
        interval) < Math.Floor((TimeActive - offset) / interval);
}</pre>
```

Scene.OnInterval is intended to only return true for only one frame every interval seconds. As such the game uses this additional requirement to limit the number of collidable checks happening every frame.

This behavior leads to spinners being grouped into so called "spinner groups": the number of spinner groups is determined through the following formula:

$$n_g = \left \lfloor \frac{interval}{dt} \right \rceil = \left \lfloor interval * 60 \right \rceil$$

Note that the group count can be chosen arbitrarly as either $\left\lfloor \frac{interval}{dt} \right\rfloor$ or $\left\lceil \frac{interval}{dt} \right\rceil$ (except for $\frac{interval}{dt} \in (1;2)$, in which case one has to round upwards), though the bigger $|interval - n_g * dt| = |r|$ is, where $r = interval - n_g * dt$ is called the residual drift of the groups, the less the spinners will follow the group pattern consistently over time.

Spinners will check whether they should load on every frame $t=i*n_g+g$ for some integer i, where $g\in[0;n_g)$ is called the spinner's $group\ (index)$. A "group cycle" consists of n_g frames, where every spinner checks if it should load exactly once at some frame offset corresponding to its group number g. The following

formula can be used to determine a spinner's group from its offset (the later analysis will contain a proof of a more general version of this statement):

$$g_{\mathit{off}} = \left\lceil \frac{\mathit{off}}{\mathit{dt}} \right\rceil = \left\lceil \mathit{off} * 60 \right\rceil \mod n_g$$

*Note: the above equivalence $\left\lceil \frac{off}{dt} \right\rceil = \left\lceil off * 60 \right\rceil$ assumes that dt is exactly $\frac{1}{60}$ -th of a second. The actual dt obersved in game will be different vary over time, which will be explored later.

For the scope of this document, frame indices are defined as the number of frames which have ellapsed since the scene (=Level) has become active.

As briefly mentioned above, spinners don't strictily adhere to this group pattern, can actually change which group they belong to at certain points in time - the rest of the document will be an analysis of why and when these spinner group changes occur.

Why spinner offsets drift

NOTE: This analysis assumes that all operations are performed with perfect accuracy. While real-world floating point operations are subject to imprecision, for reasons beyond the scope of this document, the 32 bit floating point operations are actually executed with 80 bits of precision, which means that in practice floating point imprecision can be neglected for OnInterval.

Let dt be the game's delta time (Engine.DeltaTime in the code), T the time since the scene / level has been instantiated (TimeActive in the code), intv and off the interval and offset parameters respectively, and n_g be the number of spinner groups same as above (note that even though intv is fixed for spinner load groups, this analysis will be a generic analysis for every possible intv and off). Note that because T is incremented by dt, we can set T = t * dt, where t is the current frame index.

"Translating" the C# code into mathmatical notation yields

$$\left| \frac{T - off - dt}{intv} \right| < \left| \frac{T - off}{intv} \right|$$

which is equivalent to

$$\frac{T - \mathit{off} - \mathit{dt}}{\mathit{intv}} < \left\lfloor \frac{T - \mathit{off}}{\mathit{intv}} \right\rfloor$$

By multiplying both sides by *intv* and substituting $\lfloor \frac{a}{b} \rfloor * b = a - (a \mod b)$ we can reformulate this to obtain:

$$T - off - dt < T - off - ((T - off) \mod intv)$$

Subtracting T - off - dt from both sides yields

$$-\mathit{dt} < -((\mathit{T-\mathit{off}}) \bmod \mathit{intv}) \iff (\mathit{T-\mathit{off}}) \bmod \mathit{intv} < \mathit{dt}$$

and because $intv > dt \iff dt \mod intv = dt$ we get

$$T - off = t * dt - off < dt \mod intv$$

For purposes which will become apparent later, let us relax our assumptions slightly from our implict dt > 0 to |dt| > 0. This will allow dt to be negative, which essentially means that time is flowing "backwards" through the cycle, and as such we are stepping through the cycle backwards. Additionally, we will decouple the right hand side of the condition from |dt| by instead introducing a new symbol thr, which in this case equals thr = |dt|. The relaxed statement we will continue to further analyse is:

$$t * dt - off < thr \mod intv$$

Now, because of spinner groups, we expect this expression to evaluate to the same value for every $t = c * n_g + i$, where c is the index of the group cycle and i is the offset into the cycle. Inserting this value of t into the expression yields:

$$t*dt-o\!f\!f=(c*n_q+i)*dt-o\!f\!f=c*n_q*dt+i*dt-o\!f\!f< thr\mod intv$$

Let us now define the residual drift r as $r = intv - |dt| * n_g$ just like we did earlier. Inserting this new symbol into our condition we get:

$$\begin{split} c*n_g*dt+i*dt-o\!f\!f&< thr \mod intv\\ \iff c*\operatorname{sgn} dt*(intv-r)+i*dt-o\!f\!f&< thr \mod intv\\ \iff i*dt-o\!f\!f&-\operatorname{sgn} dt*r*c&< thr \mod intv\\ \iff \mathbf{i}*dt-(o\!f\!f+\operatorname{sgn} dt*\mathbf{r}*\mathbf{c})&< thr \mod intv \end{split}$$

Note that the final expression differs from what we would expect if all spinner cycles were exactly equal! Instead of $i*dt-off < thr \mod intv$, which would mean that the values of our expression would loop every group cycle (as it is only dependent on the group offset i), we got $i*dt-(off+\operatorname{sgn} dt*r*c) < thr \mod intv$. This means that the effective offset of each spinner shifts by $\operatorname{sgn} dt*r$ every n_a frames!

When group changes happen

A spinner will change its group as soon as $i*dt-(off+\operatorname{sgn} dt*r*c)< thr$ mod intv no longer evaluates to the same value as i*dt-off< thr mod intv. For convience, let $r'=\operatorname{sgn} dt*r$ and $off_c=off+r'*c$, . The two expressions from above can now be written as i*dt-off< thr mod intv and $i*dt-off_c< thr$ mod intv.

Observe that the expression, $i * dt - off < thr \mod intv$ is only ever true if i is the spinner's group index. Solving for i yields

$$\left\lceil \frac{\mathit{off}}{|\mathit{dt}|} \right\rceil \leq \mathit{sgn}\,\,\mathit{dt} * i < \left\lceil \frac{\mathit{off}}{|\mathit{dt}|} \right\rceil + \left\lceil \frac{\mathit{thr} - (-\mathit{off} \bmod |\mathit{dt}||)}{|\mathit{dt}|} \right\rceil \mod n_g$$

This means that spinner groups are not actually discrete values, but ranges of length $\left\lceil \frac{thr-(-off \bmod{|dt|})}{|dt|} \right\rceil$ for which all frame offsets in the range will pass the check! We will continue to call $g=\operatorname{sgn} dt*\left\lceil \frac{off}{|dt|} \right\rceil$ the group of the spinner, however keep in mind that in practice, the actual check results can differ from what we expect using the regular definition of spinner groups.

Note that we will focus on the left-hand side of the expression for the rest of this analysis, namely $g' = \left\lceil \frac{off}{|dt|} \right\rceil$. This definition is useful as it still allows for checking if group changes occur, but also has the following relation hold:

$$r' > 0 \iff off_{c-1} < off_c \iff g'_{c-1} \le g'_c$$

(note that $r > 0 \iff g_{c-1} \le g_c$ holds for the original definition - this means that group indices will change by $\operatorname{sgn} r$ after drifting)

We can now differentiate two different cases depending on the sign of r':

• When r' < 0, then $g'_{c-1} \ge g'_c$. As such we want to find all values of c for which $g'_{c-1} > g'_c \iff \left\lceil \frac{off_{c-1}}{|dt|} \right\rceil > \left\lceil \frac{off_c}{|dt|} \right\rceil$ holds. Multiplying both sides by -1 we get:

$$\begin{split} -\left\lceil\frac{of\!f_{c-1}}{|dt|}\right\rceil < -\left\lceil\frac{of\!f_c}{|dt|}\right\rceil \\ \iff \left\lfloor\frac{-(of\!f + c*r' - r')}{|dt|}\right\rfloor < \left\lfloor\frac{-(of\!f + c*r')}{|dt|}\right\rfloor \\ \iff \left\lfloor\frac{\mathbf{c}*(-\mathbf{r}') - of\!f - (-\mathbf{r}'))}{|dt|}\right\rfloor < \left\lfloor\frac{\mathbf{c}*(-\mathbf{r}') - of\!f}{|dt|}\right\rfloor \end{split}$$

• When r'>0, then $g_{c-1}\leq g_c$. As such we want to find all values of c for which $g_{c-1}< g_c\iff \left\lceil\frac{off_{c-1}}{|dt|}\right\rceil<\left\lceil\frac{off_c}{|dt|}\right\rceil\iff \left\lceil\frac{off_{c-1}}{|dt|}\right\rceil<\frac{off_c}{|dt|}$ holds. Multiplying both sides by |dt| and substituting $\left\lceil\frac{a}{b}\right\rceil*b=a+(-a\bmod b)$ we get:

$$\begin{split} \textit{off}_{c-1} + (-\textit{off}_{c-1} \bmod |dt|) &< \textit{off}_{c} \\ \iff \textit{off}_{c-1} + (-\textit{off}_{c-1} \bmod |dt|) &< \textit{off}_{c-1} + r' \\ \iff -\textit{off}_{c-1} \bmod |dt| &< r' \end{split}$$

Because 0 < r' < dt (as $|r'| = |intv - n_g * |dt|| = |intv - \left\lfloor \frac{intv}{|dt|} \right\rceil * |dt|| < |dt|$), it holds that $r' \mod |dt| = r'$, and as such:

$$\iff -off_{c-1} < r' \mod |dt| \\ \iff -(off + r' * c - r') < r' \mod |dt| \\ \iff \mathbf{c} * (-\mathbf{r}') - (off - \mathbf{r}') < |\mathbf{r}'| \mod |dt|$$

• When r' = 0, then there is no drift, and as such group changes will never occur

Note how both non-trivial cases match the exact structure of our original statement derived from OnInterval! This means that the problem is recursive, and the indices of spinner cycles when spinners change groups behave just like a recursive instance of the original problem with the following parameters:

$$\begin{split} dt_R &= -r' = -\operatorname{sgn} dt * r \\ t_R &= c \\ intv_R &= |dt| \\ of\!f_R &= \begin{cases} of\!f & \text{for } r' < 0 \iff \operatorname{sgn} dt \neq \operatorname{sgn} r \\ of\!f - r' &= of\!f + \operatorname{sgn} dt * r \end{cases} &\text{for } r' < 0 \iff \operatorname{sgn} dt = \operatorname{sgn} r \\ thr_R &= |r'| \\ (\text{where } r = intv - |dt| * n_q) \end{split}$$

(note that because $thr_R = |dt_R|$, recursive cycles are not affected by length drift - their group range will always have a length of 1)

All of this implies that the cycle indices c during which spinners change groups are also cyclic, with spinners changing groups ever group cycle index c where $c=j*n_{g_R}+g_R$, where $n_{g_R}=\left\lfloor\frac{intv_R}{|dt_R|}\right\rfloor$ is the period of these recursive "group drift cycles", and g_R is the recursive "group drift cycle group". It initially starts as $g_R=\operatorname{sgn} dt_R*\left\lceil\frac{off_R}{|dt_R|}\right\rceil \mod n_{g_R}$, but is then also recursively affected by group drifting! Because of $r>0\iff g_{c-1}\leq g_c$, drifts decrement the group index (= load checks happen one frame earlier than expected) when r>0, and increment it (= load checks happen one frame later than expected) when r<0

The length of the check range

As we derived above, the actual group of a spinner is not a discrete value, but instead a range of values, namely:

$$\begin{split} \left\lceil \frac{of\!f}{|dt|} \right\rceil & \leq \operatorname{sgn} dt * i < \left\lceil \frac{of\!f}{|dt|} \right\rceil + \left\lceil \frac{thr - (-of\!f \operatorname{mod} |dt||)}{|dt|} \right\rceil \quad \operatorname{mod} \, n_g \\ & \iff \begin{cases} i \in [g;g+L) & \text{for } dt > 0 \\ i \in (g-L;g] & \text{for } dt < 0 \end{cases} \\ & (\operatorname{where} \, L = \left\lceil \frac{thr - (-of\!f \operatorname{mod} |dt|)}{|dt|} \right\rceil) \end{split}$$

(from now on, we will consider L over off_c instead of off)

L is the length of this range, and by setting thr = k * |dt| + o, where $k = \left\lfloor \frac{thr}{|dt|} \right\rfloor$

and $o = thr \mod |dt|$, we can reformulate L as

$$L = \left\lceil \frac{k * |dt| + o - (-o\textit{ff}_c \bmod |dt|)}{|dt|} \right\rceil = k + \left\lceil \frac{o - (-o\textit{ff}_c \bmod |dt|)}{|dt|} \right\rceil = k + l$$

Because of $0 \le o < |dt|$, l can only ever be 0 or 1, as $-|dt| < o - (-off \mod |dt|) < |dt|$. l is 1 (which is called a length drift) only if

$$\begin{split} o - (-\mathit{off}_c \bmod |\mathit{dt}|) > 0 \\ \iff o > (-\mathit{off}_c \bmod |\mathit{dt}|) \\ \Leftrightarrow -\mathit{off}_c < o \mod |\mathit{dt}| \\ \Leftrightarrow -(\mathit{off} + r' * c) < o \mod |\mathit{dt}| \\ \Leftrightarrow \mathbf{c} * (-\mathbf{r}') - \mathit{off} < \mathbf{o} \mod |\mathit{dt}| \end{split}$$

This defines another recursive cycle with

$$\begin{split} dt_L &= -r' \\ t_L &= c \\ intv_L &= |dt| \\ of\!f_L &= o\!f\!f \\ thr_L &= o = t\!hr \operatorname{mod} |dt| \end{split}$$

Note that this almost exactly matches the definition of the regular recursive cycle! The only two differences are:

- $|r'| = thr_R \neq thr_L = o$
 - This difference does not affect the group indicies $g_R = g_L$, however a further recursive cycle is required to predict the recursive length drift of L_L .
- when r' > 0: $\mathit{off} r' = \mathit{off}_R \neq \mathit{off}_L = \mathit{off}$
 - In this case, the recursive group drift cycle is one tick behind of the length drift cycle. The regular recursive cycle can still be used to predict the length drift, but one must look at the values from the next tick instead of the current value. The recursive length drift cycle of L_L must then also be adjusted to use off_R instead of off_L , as this cancels out the fact that values are taken from the next tick.
 - This also means that length drifts either happen in the same group cycle, or in the group cycle before an actual group drift happens.

Why this even happens

Careful readers might have noticed that all of the above analysis implicitly assumed that $r=intv \mod dt \neq 0$, meaning that spinner offsets drift at all. However, as $dt=\frac{1}{60}$ and intv=0.05, r should be $r=0.05 \mod \frac{1}{60}=0$. Then why is the above analysis relevant at all?

Simply put, in practice, the imprecisions of floating point numbers mean that neither dt nor intv are their ideal, non-drifting values. The following effects cause them to be ever so slightly different:

- 0.05 is not exactly representable as a floating point number the values used by the game's calculations is actually 0.0500000007450580596923828125 (this also affects dt)
- TimeActive is incremented every frame by 0.0166667-ish. However, as it only is a 32 bit float, depending on the current magnitude of TimeActive, the actual effective dt will vary slightly because of float cancellation, and become less and less precise as time goes on. This results in "ranges" of different effective dt values, which will be examined later.
 - Note that thr is unaffected this effective deltatime imprecision it will always remain the at the same precision and always equal the closest float value of 0.0166667

The effective deltatime ranges

When adding two floating point numbers (like TimeActive and DeltaTime) with different exponents, a phenomenon called "float cancellation" occurs. This means that the lowest bits of the mantissa, which can now no longer be stored in the result are cut off. Additionally, the mantissa is rounded either up or down, depending on the highest trimmed of bit.

All of this effectively causes the effective deltatime to loose precision as the exponent of TimeActive gets bigger and bigger. Note that the effective deltatime is the same between two values of TimeActive with the same exponent, which allows for entire ranges of TimeActive values to be assigned the same effective deltatime. One edge case has to be taken into account though, which is when the next TimeActive value is already in the next range. In this case, the effective deltatime will be unique in some cases for one frame.

Included in the appendix are tables with various bits of information regarding the effective deltatime ranges.

Appendix: Some data

Effective Deltatime - Frame Ranges

TimeActive Exponent	Start Frame	End Frame
121	00000000	00000001
122	00000001	00000003
123	00000003	00000007
124	00000007	00000014
125	00000014	00000029
126	00000029	00000059
127	00000059	00000119
128	00000119	00000240
129	00000240	00000479
130	00000479	00000960
131	00000960	00001920
132	00001920	00003840
133	00003840	00007679
134	00007679	00015361
135	00015361	00030724
136	00030724	00061452
137	00061452	00122683
138	00122683	00246044
139	00246044	00492768
140	00492768	00986216
141	00986216	01918283
142	01918283	04015435
143	04015435	08209739
144	08209739	16598346
145	16598346	24986954
146	24986954	

Effective Deltatime - First ${\tt TimeActive}$ value in range

TimeActive Exponent	First TimeActive value in range
121	0.016666699200868606567382812500
122	0.033333398401737213134765625000
123	0.066666796803474426269531250000
124	0.133333608508110046386718750000
125	0.2500004768371582031250000000000
126	0.500001132488250732421875000000
127	1.000002503395080566406250000000
128	2.000001668930053710937500000000
129	4.01666641235351562500000000000000
130	8.0000534057617187500000000000000
131	16.0165977478027343750000000000000
132	32.0163536071777343750000000000000

TimeActive Exponent	First TimeActive value in range
133	64.0158691406250000000000000000000
134	128.01287841796875000000000000000000
135	256.01495361328125000000000000000000
136	512.0024414062500000000000000000000000000000000000
137	1024.010742187500000000000000000000000
138	2048.0156250000000000000000000000000000000000
139	4096.0009765625000000000000000000000
140	8192.00488281250000000000000000000000
141	16384.01367187500000000000000000000000
142	32768.0039062500000000000000000000000000000000000
143	65536.0078125000000000000000000000000000000000000
144	131072.0156250000000000000000000000000000000000
145	262144.00000000000000000000000000000000000
146	524288.0000000000000000000000000000000000

Effective Deltatime - Effective dt values

TimeActive Exponent	Effective dt value
121	-
122	0.0166666992008686065673828125
123	0.0166666954755783081054687500
124	0.0166666954755783081054687500
125	0.0166667103767395019531250000
126	0.0166667103767395019531250000
127	0.0166666507720947265625000000
128	0.0166666507720947265625000000
129	0.0166668891906738281250000000
130	0.01666641235351562500000000000
131	0.01666641235351562500000000000
132	0.01666641235351562500000000000
133	0.01667022705078125000000000000
134	0.01666259765625000000000000000
135	0.01666259765625000000000000000
136	0.01666259765625000000000000000
137	0.016723632812500000000000000000
138	0.016601562500000000000000000000
139	0.016601562500000000000000000000
140	0.016601562500000000000000000000
141	0.017578125000000000000000000000
142	0.0156250000000000000000000000000000000000
143	0.0156250000000000000000000000000000000000
144	0.0156250000000000000000000000000000000000

TimeActive Exponent	Effective dt value
145 146	$\begin{array}{c} 0.031250000000000000000000000000\\ 0.0000000000$

Effective Deltatime - Transition dt values

TimeActive Exponent	Transition dt value
121	0.01666669920086860656738281250000000000000
122	0.01666669920086860656738281250000000000000
123	0.01666669547557830810546875000000000000000
124	0.01666669547557830810546875000000000000000
125	0.01666668057441711425781250000000000000000
126	0.01666671037673950195312500000000000000000
127	0.01666665077209472656250000000000000000000
128	0.01666688919067382812500000000000000000000
129	0.0166664123535156250000000000000000000000000000000000
130	0.01666736602783203125000000000000000000000
131	0.0166664123535156250000000000000000000000000000000000
132	0.016670227050781250000000000000000000000000
133	0.016662597656250000000000000000000000000000000000
134	0.016677856445312500000000000000000000000000000000000
135	0.016662597656250000000000000000000000000000000000
136	0.016662597656250000000000000000000000000000000000
137	0.0166015625000000000000000000000000000000
138	0.01684570312500000000000000000000000000000000000
139	0.0166015625000000000000000000000000000000
140	0.017578125000000000000000000000000000000000000
141	0.017578125000000000000000000000000000000000000
142	0.0195312500000000000000000000000000000000000
143	0.023437500000000000000000000000000000000000
144	0.0156250000000000000000000000000000000000
145	0.0312500000000000000000000000000000000000
146	-

Recursive cycle periods

Note: cycle 0 is the spinner group cycle (which always has a length of 3 for all exponents other than 145), and cycle 1 is the first recursive group change cycle.

TimeActive Exponent	C0	C1	C2	С3	C4	C5	C6	C7	C8
121	0	0	0	0	0	0	0	0	0
122	3	172074	3	9	0	0	0	0	0

TimeActive Exponent	C0	C1	C2	С3	C4	C5	C6	C7	C8
123	3	194519	5	2	2	0	0	0	0
124	3	194519	5	2	2	0	0	0	0
125	3	127827	4	9	0	0	0	0	0
126	3	127827	4	9	0	0	0	0	0
127	3	344148	3	4	0	0	0	0	0
128	3	344148	3	4	0	0	0	0	0
129	3	24994	3	12	2	2	0	0	0
130	3	21824	3	5	13	0	0	0	0
131	3	21824	3	5	13	0	0	0	0
132	3	21824	3	5	13	0	0	0	0
133	3	1561	6	3	10	4	2	2	0
134	3	1365	12	273	0	0	0	0	0
135	3	1365	12	273	0	0	0	0	0
136	3	1365	12	273	0	0	0	0	0
137	3	98	7	48	3	4	6	2	0
138	3	85	3084	17	0	0	0	0	0
139	3	85	3084	17	0	0	0	0	0
140	3	85	3084	17	0	0	0	0	0
141	3	6	2	3	11651	2	4	0	0
142	3	5	838861	0	0	0	0	0	0
143	3	5	838861	0	0	0	0	0	0
144	3	5	838861	0	0	0	0	0	0
145	2	3	2	1677721	0	0	0	0	0
146	0	0	0	0	0	0	0	0	0

How this can be used to efficiently predict spinner group changes

TODO