Experiment -8: Gunn diode

1.Aim: To study V-I characteristics of Gunn diode.

2. Requirements

- Gunn Power Supply.
- Gunn Oscillator
- Pin Modulator
- Isolator with termination
- Detector Mount
- Oscilloscope(CRO) or VSWR meter with probe

3. Pre-experiment Exercise

Brief Theory

A Gun diode, also known as a transferred electron device (TED) is a form of diode used in high –frequency electronics. It is somewhat unusual in that it consists only Of N-doped semiconductor material, whereas most diodes consist of both P and N-doped regions. In the Gunn diode, three regions exist: two of them are heavily N-doped on each terminal, with a thin layer of lightly doped material in between. When a voltage is applied to the device, the electrical gradient will be largest across the thin middle layer. Eventually; this layer starts to conduct, reducing the gradient across it, preventing further conduction. In practice, this means a Gunn diode has a region of negative differential resistance.

4. Laboratory Exercise

4.1 Procedure:

- 1. Set the components and Equipments as shown in Fig.1
- 2.Keep the control knob of Gunn Power Supply as below

Meter switch -off

Gunn Bias Knob -Fully anti clockwise

PIN bias knob -Fully anti clockwise

PIN Mode frequency -Any position

- 3. Set the micrometer of Gunn Oscillator for required frequency of operation.
- 4. 'ON' the Gunn Power Supply
- 5. Turn the meter switch of Gunn Power Supply to voltage position.
- 6.Measure the Gunn diode current corresponding to the various voltage controlled by Gunn bias voltage below 10 Volts.
- 7. Plot the voltage and current readings on the graph as shown in fig.2.

Fig.1. SET UP FOR STUDY OF GUNN OSCILLATOR

Fig.2. V-I Characteristics of Gunn Diode

4.2 Observations:

Sr.No.	Gunn Voltage(V)	Gunn Current(mA)		
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

5	Pagt	H'yne	erimen	ıt H	'VAP	cica	٠
J.	I USL	LAPC	1 1111	IL L	ACI	CISC	•

5	1	D	esu	lte	
٦.		- 17			

1. Plot Gunn v/s current in a graph paper.

.2	Conclus	sion/Coi	mments				
-							
-							
-							

5.3 Post Experiment Exercise

Questions:

- 1. Describe different modes of oscillation of Gunn diode.
- 2. Differentiate between Transit time devices and Transferred electron devices.
- 3. Explain the working of a negative resistance parametric amplifier.
- 4. Explain any two avalanche transit time devices