REVIEW OF CONFIDENCE INTERVALS

• Confidence interval for the mean; σ is unknown

$$\bar{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

where $t_{\alpha/2}$ is a critical value from T-distribution with n-1 degrees of freedom

• Confidence interval for the difference of means; equal, unknown variances

$$\bar{X} - \bar{Y} \pm t_{\alpha/2} \, s_p \sqrt{\frac{1}{n} + \frac{1}{m}}$$

where s_p is the pooled standard deviation

$$s_p = \sqrt{s_p^2};$$
 $s_p^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{i=1}^m (Y_i - \bar{Y})^2}{n + m - 2} = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n + m - 2}$

and $t_{\alpha/2}$ is a critical value from T-distribution with (n+m-2) degrees of freedom.

• Confidence interval for the difference of means; unequal, unknown variances

$$\bar{X} - \bar{Y} \pm t_{\alpha/2} \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}$$

where $t_{\alpha/2}$ is a critical value from T-distribution with k degrees of freedom given by the Satterthwaite approximation $(e^2 - e^2)^2$

$$k = \frac{\left(\frac{s_X^2}{n} + \frac{s_Y^2}{m}\right)^2}{\frac{s_X^4}{n^2(n-1)} + \frac{s_Y^4}{m^2(m-1)}}$$

REVIEW OF HYPOTHESIS TESTING

• Summary of T-tests

Hypothesis H_0	Conditions	Test statistic t	Degrees of freedom
$\mu = \mu_0$	Sample size n ; unknown σ	$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$	n-1
$\mu_X - \mu_Y = D$	Sample sizes n, m ; unknown but equal standard deviations, $\sigma_X = \sigma_Y$	$t = \frac{\bar{X} - \bar{Y} - D}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$	n+m-2
$\mu_X - \mu_Y = D$	Sample sizes n, m ; unknown, unequal standard deviations, $\sigma_X \neq \sigma_Y$	$t = \frac{\bar{X} - \bar{Y} - D}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}$	Satterthwaite approximation, see page 1

• P-value

P-value is the lowest significance level α that forces rejection of the null hypothesis. P-value is the highest significance level α that forces acceptance of the null hypothesis. P-value is the probability of observing a test statistic that is as extreme as or more extreme than the test statistic computed from a given sample.

• Computing P-values for T-tests and Stating Conclusions

Hypothesis H_0	Alternative H_A	P-value	Computation
	$\begin{array}{c} \text{right-tail} \\ \theta > \theta_0 \end{array}$	$\mathbf{P}\left\{t \geq t_{\mathrm{obs}}\right\}$	$1 - F_k(t_{\rm obs})$
$\theta = \theta_0$	$\begin{array}{c} \text{left-tail} \\ \theta < \theta_0 \end{array}$	$\mathbf{P}\left\{t \leq t_{\mathrm{obs}}\right\}$	$F_k(t_{ m obs})$
	two-sided $\theta \neq \theta_0$	$ \mathbf{P} \{ t \ge t_{\text{obs}} \} $	$2(1 - F_k(t_{\text{obs}}))$

$$\begin{cases} \text{For } \alpha < P, & \text{accept } H_0 \\ \text{For } \alpha > P, & \text{reject } H_0 \\ \end{cases}$$

$$\begin{cases} Practically, & \text{If } P < 0.01, & \text{reject } H_0 \\ \text{If } P > 0.1, & \text{accept } H_0 \end{cases}$$

 F_k is the cdf of T-distribution with the suitable number kof degrees of freedom

• Equivalence of two-sided tests and confidence intervals

A level α T-test of H_0 : $\theta = \theta_0$ vs H_A : $\theta \neq \theta_0$ accepts H_0 if and only if a symmetric $(1 - \alpha)100\%$ confidence T-interval for θ contains θ_0 .

• Two-sample F-tests for Variances

Null Hypothesis $H_0: \sigma_X^2 = \sigma_Y^2$		Test statistic $F_{\text{obs}} = \frac{s_X^2}{s_Y^2}$
Alternative Hypothesis	Rejection region	P-value Use $F(n-1, m-1)$ distribution
$\sigma_X^2 > \sigma_Y^2$	$F_{\text{obs}} \ge F_{\alpha}(n-1, m-1)$	$\mathbf{P}\left\{ F \geq F_{\mathrm{obs}} \right\}$
$\sigma_X^2 < \sigma_Y^2$	$F_{\text{obs}} \le F_{\alpha}(n-1, m-1)$	$P\{F \le F_{\mathrm{obs}}\}$
$\sigma_X^2 \neq \sigma_Y^2$	$F_{\text{obs}} \ge F_{\alpha/2}(n-1, m-1) \text{ or } F_{\text{obs}} < 1/F_{\alpha/2}(m-1, n-1)$	$2 \min (\mathbf{P} \{ F \ge F_{\text{obs}} \}, \mathbf{P} \{ F \le F_{\text{obs}} \})$