Week 9

3/7:

Solid-Liquid Solutions and Electrochemistry

9.1 Solute Activity

• At low concentration, solute activity is unity, with the chosen measure of concentration.

• Activity of ions in electrolytes initially decreases rapidly with concentration below 1 M. The effect is much stronger than for neutral solutes.

• The Debye-Hückel model reasonably explains why ion activity drops so quickly.

• Practical solution concentration measures are the **molarity** and **molality**, in addition to the mole fraction x.

• Molality: The number of moles of solute per kilogram solvent. Denoted by m. Given by

$$m = \frac{n_2}{1 \, \text{kg solvent}}$$

• Concentration: The number of moles of solute per liter solution. Also known as molarity. Denoted by c. Given by

$$c = \frac{n_2}{1 L \text{ solution}}$$

• As the solvent gets purer, its vapor pressure approaches the Raoult's law limit.

$$-a_1 = P_1/P_1^* \to x_1 \text{ as } x_1 \to 1.$$

• As the solute's concentration diminishes, the solute activity approaches the Henry's law limit.

$$-a_2 = P_2/k_H \to x_2 \text{ as } x_2 \to 0.$$

• Using the vapor pressure of the solvent to determine the activity of the non-volatile solute.

- Use the Gibbs-Duhem relation,

$$0 = n_1 d \ln a_1 + n_2 d \ln a_2$$

= $(55.506 \,\text{mol kg}^{-1}) d \ln a_1 + m d \ln a_2$
$$\ln a_2 = \int_0^m -\frac{55.506}{m'} d(\ln a_1) dm'$$

- But $d(\ln a_1)$ may not be very precise; thus, we define the **osmotic coefficient**.

- With this quantity, we have

$$d\ln a_1 = -d(m\phi) \cdot \frac{1}{55,506}$$

- Thus, we have that

$$0 = -\operatorname{d}(m\phi) + m\operatorname{d}\ln a_2$$

$$\phi\operatorname{d}m + m\operatorname{d}\phi = m\operatorname{d}\ln\gamma_2 + \operatorname{d}m$$

$$\frac{\operatorname{d}m}{m}\phi + \operatorname{d}\phi = \operatorname{d}\ln\gamma_2 + \frac{\operatorname{d}m}{m}$$

$$\operatorname{d}\ln\gamma_2 = \operatorname{d}\phi + \left(\frac{\phi - 1}{m}\right)\operatorname{d}m$$

$$\ln\gamma_2 = (\phi - 1) + \int_0^m \frac{\phi - 1}{m'}\operatorname{d}m'$$

• Osmotic coefficient: The following quantity. Denoted by ϕ . Given by

$$\phi = -\frac{\ln a_1}{x_2} = -\ln a_1 \cdot \frac{55.506 \,\text{mol kg}^{-1}}{m}$$

- It is called the osmotic coefficient since $\Pi \overline{V} = -RT \ln a_1$ implies that as $x_2 \to 0$, $\ln a_1 \to -x_2$, so $\phi \to 1$.
- Even in the case of an ideal solution, $\phi \neq 1$ exactly, though, since we must mathematically approximate $\ln a_1 \approx -x_2$.
- Ionic solutions deviate strongly from ideal solution, even at small molality.
- Mean ionic activity, molality, and activity coefficient.
 - The salt $C_{\nu_+}A_{\nu_-}$ dissociates into ν_+ C^{z_+} ions and $\nu_ A^{z_-}$ ions where

$$\nu_{+}z_{+} + \nu_{-}z_{-} = 0$$

for charge neutrality.

- Let $\nu = \nu_+ + \nu_-$.
- The chemical potential of the salt is

$$\mu_{\text{salt}} = \nu_{+}\mu_{+} + \nu_{-}\mu_{-}$$

$$= \nu_{+}\mu_{+}^{\circ} + \nu_{-}\mu_{-}^{\circ} + RT(\nu_{+}\ln a_{+} + \nu_{-}\ln a_{-}) + RT\ln\left(\underbrace{a_{+}^{\nu_{+}}a_{-}^{\nu_{-}}}_{a_{2}}\right)$$

- Hence,

$$\begin{split} a_2 &= a_+^{\nu_+} a_-^{\nu_-} \\ &= (\gamma_+^{\nu_+} \gamma_-^{\nu_-}) (m_+^{\nu_+} m_-^{\nu_-}) \\ &= a_\pm^{\nu} \\ &= \gamma_\pm^{\nu} m_\pm^{\nu} \end{split}$$

where a_{\pm} is the **mean activity**, γ_{\pm} is the **mean activity coefficient**, and m_{\pm} is the **mean molality**.

- It follows that

$$\mu_2 = \mu_2^{\circ} + RT \ln a_{\pm}^{\nu}$$

= $\mu_2^{\circ} + \nu RT \ln a_{\pm}$

- Consider a solution of $CaCl_2$ with molality m.
 - It has

$$m_{+} = m \qquad m_{-} = 2m$$

- Thus,

$$m_{\pm} = \sqrt{m_{+}^{1} m_{-}^{2}}$$
$$= \sqrt{4m^{3}}$$
$$= 4^{1/3} m$$

- We can do something similar for γ_{\pm} and a_{\pm} .
- Determining the activity of electrolytes.
 - The derivation is pretty similar to before (for nonvolatile solvents), except that now $\ln a_1 = -\nu m\phi/55.506$.
 - It follows that

$$0 = n_1 d \ln a_1 + n_2 d \ln a_2$$

= $-\nu d(m\phi) + m\nu d \ln a_+$

so ν cancels.

- This yields the same overall equation as before:

$$\ln \gamma_{\pm} = (\phi - 1) + \int_0^m \frac{\phi - 1}{m'} dm'$$

• We can do the above, but ion activity can also be measured by electrochemistry.

9.2 Chapter 25: Solutions II — Solid-Liquid Solutions

From McQuarrie and Simon (1997).

3/8:

- Oppositely charged ions in solution interact with each other via a Coulombic potential, which varies proportionally to 1/r.
 - Note the difference between the strength of this potential and the LDF potential of $1/r^6$ attracting ordinary neutral molecules.
 - It follows that solutions of electrolytes deviate from ideality much more quickly (i.e., at much lower concentrations).
- When ions with higher charges (e.g., CaCl₂ vs. NaCl) are produced, the deviation from ideality is exacerbated.
- a-b electrolyte: An electrolyte for which $\nu_{+} = a$ and $\nu_{-} = b$.
 - For example, $CaCl_2$ is a 1-2 electrolyte and $Gd_2(SO_4)_3$ is a 2-3 electrolyte.
- The chemical potential of a salt depends on the potentials of its constituent ions as per

$$\mu_2 = \nu_+ \mu_+ + \nu_- \mu_-$$

where $\mu_j = \mu_j^{\circ} + RT \ln a_j$ for j = 2, +, -.

• It follows from the above and the fact that $\mu_2^{\circ} = \nu_+ \mu_+^{\circ} + \nu_- \mu_-^{\circ}$, too, that

$$\mu_{2}^{\circ} + RT \ln a_{2} = \nu_{+}(\mu_{+}^{\circ} + RT \ln a_{+}) + \nu_{-}(\mu_{-}^{\circ} + RT \ln a_{-})$$

$$RT \ln a_{2} = \nu_{+}RT \ln a_{+} + \nu_{-}RT \ln a_{-}$$

$$\ln a_{2} = \nu_{+} \ln a_{+} + \nu_{-} \ln a_{-}$$

$$a_{2} = a_{+}^{\nu_{+}} a_{-}^{\nu_{-}}$$

- We define $\nu = \nu_{+} + \nu_{-}$.
- Mean ionic activity: The following quantity. Denoted by a_{\pm} . Given by

$$a_+^{\nu} = a_+^{\nu_+} a_-^{\nu_-}$$

- We take the activity a_2 of an electrolyte to be its mean ionic activity to the $\nu^{\rm th}$ power, i.e., $a_2=a_\pm^\nu$.
- We cannot determine the activities of single ions.
- We define the molalities of individual ions by

$$m_+ = \nu_+ m \qquad m_- = \nu_- m$$

• We define single-ion activity coefficients by

$$\gamma_{+} = \frac{a_{+}}{m_{+}} \qquad \qquad \gamma_{-} = \frac{a_{-}}{m_{-}}$$

• Mean ionic molarity: The following quantity. Denoted by m_{\pm} . Given by

$$m_{\pm}^{\nu} = m_{+}^{\nu_{+}} m_{-}^{\nu_{-}}$$

• Mean ionic activity coefficient: The following quantity. Denoted by γ_{\pm} . Given by

$$\gamma_+^{\nu} = \gamma_+^{\nu_+} \gamma_-^{\nu_-}$$

• It follows that

$$a_2 = a_\pm^\nu = (m_+^{\nu_+} m_-^{\nu_-}) (\gamma_+^{\nu_+} \gamma_-^{\nu_-}) = m_\pm^\nu \gamma_\pm^\nu$$

• McQuarrie and Simon (1997) derives

$$\ln \gamma_{\pm} = (\phi - 1) + \int_{0}^{m} \frac{\phi - 1}{m'} dm'$$

• For colligative properties, since x_2 is scaled up by a factor of ν , we get

$$\Delta T_{\text{fus}} = \nu K_f m$$
 $\Delta T_{\text{vap}} = \nu K_b m$ $\Pi = \nu cRT$

for solutions of electrolytes.

• Debye and Hückel showed theoretically in 1925 that at low concentrations, the natural logarithms of the j^{th} ion's activity coefficient and the mean ionic activity coefficient are given by

$$\ln \gamma_j = -\frac{\kappa q_j^2}{8\pi\varepsilon_0\varepsilon_r k_B T} \qquad \qquad \ln \gamma_{\pm} = -|q_+ q_-| \frac{\kappa}{8\pi\varepsilon_0\varepsilon_r k_B T}$$

where $q_+ = z_+ e$ and $q_- = z_- e$, ε_r is the (unitless) relative permittivity of the solvent, and κ is given by

$$\kappa^2 = \sum_{j=1}^s \frac{q_j^2}{\varepsilon_0 \varepsilon_r k_B T} \left(\frac{N_j}{V} \right)$$

s being the number of ionic species and N_i/V being the number density of species j.

- Converting N_i/V to molarity allows us to rewrite the above as

$$\kappa^2 = N_A (1000 \,\mathrm{L}\,\mathrm{m}^{-3}) \sum_{j=1}^s \frac{q_j^2 c_j}{\varepsilon_0 \varepsilon_r k_B T}$$

- This result is derived in Problems 25-50 through 25-58.
- Debye-Hückel limiting law: The above expression for $\ln \gamma_{\pm}$.
- Ionic strength: The following quantity. Denoted by I_c . Given by

$$I_c = \frac{1}{2} \sum_{j=1}^{s} z_j^2 c_j$$

- $-c_j$ is the molarity of the j^{th} ionic species.
- Having defined the ionic strength, we can write express κ in a third form as

$$\kappa^2 = \frac{2e^2 N_A (1000 \,\mathrm{L}\,\mathrm{m}^{-3})}{\varepsilon_0 \varepsilon_r k_B T} (I_c/\mathrm{mol}\,\mathrm{L}^{-1})$$

- In the Debye-Hückel limiting law, $\ln \gamma_{\pm} \propto \kappa \propto \sqrt{I_c} \propto \sqrt{c}$.
 - This is why we curve fit ϕ vs. m data to a polynomial in $m^{1/2}$.
- As $m \to 0$, all curves $\ln \gamma_{\pm}$ vs. m converge to the same straight line (hence this being a limiting law).
- Physically interpreting κ .
 - The net charge in a spherical shell of radius r and thickness dr surrounding an ion of charge q_i is given by

$$p_i(r) dr = -q_i \kappa^2 r e^{-\kappa r} dr$$

- Integrating this equation over all space yields $-q_i$.
- Thus, "the total charge surrounding an ion of charge q_i is equal and of the opposite sign to q_i . In other words, it expresses the electroneutrality of the solution" (McQuarrie & Simon, 1997, pp. 1033-34).
- The above equation describes the **ionic atmosphere** about the central ion.
- Additionally, its maximum occurs at κ^{-1} , so we say that κ is a measure of the thickness of the ionic atmosphere.
- For a 1-1 electrolyte in aqueous solution at 25 °C,

$$\kappa = \frac{304 \,\mathrm{pm}}{\sqrt{c/\mathrm{mol}\,\mathrm{L}^{-1}}}$$

- Assumptions of the Debye-Hückel theory:
 - Ions are point particles.
 - They interact with a purely Coulombic potential.
 - The solvent is a continuous medium with a uniform relative permittivity ε_r .
- Clearly, these will start to break down as their concentration increases.
- The Debye-Hückel model has been of important utility mainly in that all models that attempt to treat higher concentrations must reduce to it at lower temperatures.

- Real progress toward a more general theory wasn't made until the 1970s, though.
- **Primitive model**: Ions are considered hard spheres with charges at their centers and the solvent is considered a continuous medium with a uniform relative permittivity.
 - Although, well, primitive, long-range Coulombic interactions and short-range repulsions, which this model encapsulates well, turn out to be major considerations, so the model is pretty good.
- The mean spherical approximation (MSA) provides analytical solutions.
 - A central result is that

$$\ln \gamma_{+} = \ln \gamma_{+}^{\rm el} + \ln \gamma^{\rm HS}$$

where $\ln \gamma_{\pm}^{\rm el}$ is an electrostatic (Coulombic) contribution to $\ln \gamma_{\pm}$ and $\ln \gamma^{\rm HS}$ is a hard-sphere contribution.

- For a 1-1 electrolyte,

$$\ln \gamma_{\pm}^{\text{el}} = \frac{x\sqrt{1+2x} - x - x^2}{4\pi\rho d^3}$$

where ρ is the number density of charged particles, d is the sum of the radius of a cation and anion, and $x = \kappa d$. Also,

$$\ln \gamma^{\text{HS}} = \frac{4y - \frac{9}{4}y^2 + \frac{3}{8}y^3}{\left(1 - \frac{y}{2}\right)^3}$$

where $y = \pi \rho d^3/6$.