Keras -- MLPs on MNIST

```
In [1]:
```

```
# if you keras is not using tensorflow as backend set "KERAS_BACKEND=tensorflow" use this c
from keras.utils import np_utils
from keras.datasets import mnist
import seaborn as sns
from keras.initializers import RandomNormal
```

Using TensorFlow backend.

In [2]:

```
%matplotlib notebook
import matplotlib.pyplot as plt
import numpy as np
import time
# https://gist.github.com/greydanus/f6eee59eaf1d90fcb3b534a25362cea4
# https://stackoverflow.com/a/14434334
# this function is used to update the plots for each epoch and error
def plt_dynamic(x, vy, ty, ax, colors=['b']):
    ax.plot(x, vy, 'b', label="Validation Loss")
    ax.plot(x, ty, 'r', label="Train Loss")
    plt.legend()
    plt.grid()
    fig.canvas.draw()
```

In [3]:

```
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
```

In [4]:

```
print("Number of training examples :", X_train.shape[0], "and each image is of shape (%d, %
print("Number of training examples :", X_test.shape[0], "and each image is of shape (%d, %d)
```

```
Number of training examples: 60000 and each image is of shape (28, 28) Number of training examples: 10000 and each image is of shape (28, 28)
```

In [5]:

```
# if you observe the input shape its 3 dimensional vector
# for each image we have a (28*28) vector
# we will convert the (28*28) vector into single dimensional vector of 1 * 784

X_train = X_train.reshape(X_train.shape[0], X_train.shape[1]*X_train.shape[2])

X_test = X_test.reshape(X_test.shape[0], X_test.shape[1]*X_test.shape[2])
```

In [6]:

after converting the input images from 3d to 2d vectors
print("Number of training examples :", X_train.shape[0], "and each image is of shape (%d)"%
print("Number of training examples :", X_test.shape[0], "and each image is of shape (%d)"%(

Number of training examples: 60000 and each image is of shape (784) Number of training examples: 10000 and each image is of shape (784)

In [7]:

An example data point
print(X_train[0])

In [8]:

```
# if we observe the above matrix each cell is having a value between 0-255
# before we move to apply machine learning algorithms lets try to normalize the data
# X => (X - Xmin)/(Xmax-Xmin) = X/255

X_train = X_train/255
X_test = X_test/255
```

In [9]:

```
# example data point after normlizing
print(X_train[0])
              0.
                            0.
[0.
                                         0.
                                                       0.
                                                                     0.
              0.
                            0.
                                         0.
0.
                                                       0.
                                                                    a
0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
 0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
 0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
 0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
 0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
 0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
 0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
 0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
 0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
 0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
                                         0.
                                                       0.
                                                                    0.
 0.
              0.
                            0.
 0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
 0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
                                                       0.
                                                                    0.
0.
              0.
                            0.
                                         0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
0.
              0.
                            0.
                                         0.
                                                       0.
                                                                    0.
 0.
```

In [10]:

```
# here we are having a class number for each image
print("Class label of first image :", y_train[0])

# lets convert this into a 10 dimensional vector
# ex: consider an image is 5 convert it into 5 => [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
# this conversion needed for MLPs

Y_train = np_utils.to_categorical(y_train, 10)
Y_test = np_utils.to_categorical(y_test, 10)

print("After converting the output into a vector : ",Y_train[0])
```

```
Class label of first image : 5
After converting the output into a vector : [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
```

Softmax classifier

In [11]:

```
# https://keras.io/getting-started/sequential-model-quide/
# The Sequential model is a linear stack of layers.
# you can create a Sequential model by passing a list of layer instances to the constructor
# model = Sequential([
     Dense(32, input_shape=(784,)),
#
#
      Activation('relu'),
#
     Dense(10),
#
      Activation('softmax'),
# ])
# You can also simply add layers via the .add() method:
# model = Sequential()
# model.add(Dense(32, input_dim=784))
# model.add(Activation('relu'))
###
# https://keras.io/layers/core/
# keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_unif
# bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regula
# kernel_constraint=None, bias_constraint=None)
# Dense implements the operation: output = activation(dot(input, kernel) + bias) where
# activation is the element-wise activation function passed as the activation argument,
# kernel is a weights matrix created by the layer, and
# bias is a bias vector created by the layer (only applicable if use_bias is True).
# output = activation(dot(input, kernel) + bias) => y = activation(WT. X + b)
####
# https://keras.io/activations/
# Activations can either be used through an Activation layer, or through the activation arg
# from keras.layers import Activation, Dense
# model.add(Dense(64))
# model.add(Activation('tanh'))
# This is equivalent to:
# model.add(Dense(64, activation='tanh'))
# there are many activation functions ar available ex: tanh, relu, softmax
from keras.models import Sequential
from keras.layers import Dense, Activation
```

```
In [12]:
```

```
# some model parameters

output_dim = 10
input_dim = X_train.shape[1]

batch_size = 128
nb_epoch = 20
```

```
In [13]:
```

```
print(X_train.shape[1])
```

784

MLP + ReLU + ADAM with 2 layers without Dropout and Batch Normalisation

```
In [14]:
```

```
model_relu = Sequential()
model_relu.add(Dense(364, activation='relu', input_shape=(input_dim,), kernel_initializer=R
model_relu.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_relu.add(Dense(output_dim, activation='softmax'))

print(model_relu.summary())

model_relu.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

history = model_relu.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
```

```
Layer (type)
                       Output Shape
                                             Param #
______
dense_1 (Dense)
                       (None, 364)
                                             285740
dense 2 (Dense)
                       (None, 52)
                                             18980
dense 3 (Dense)
                       (None, 10)
                                             530
Total params: 305,250
Trainable params: 305,250
Non-trainable params: 0
None
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 6s 95us/step - loss: 0.2546 -
acc: 0.9248 - val_loss: 0.1287 - val_acc: 0.9603
Epoch 2/20
60000/60000 [============= ] - 6s 96us/step - loss: 0.0997 -
acc: 0.9703 - val_loss: 0.0878 - val_acc: 0.9728
Epoch 3/20
60000/60000 [============= ] - 5s 85us/step - loss: 0.0641 -
acc: 0.9806 - val loss: 0.0810 - val acc: 0.9757
Epoch 4/20
acc: 0.9857 - val_loss: 0.0864 - val_acc: 0.9748
Epoch 5/20
60000/60000 [============ ] - 5s 89us/step - loss: 0.0356 -
acc: 0.9884 - val loss: 0.0704 - val acc: 0.9781
Epoch 6/20
60000/60000 [============= ] - 6s 93us/step - loss: 0.0241 -
acc: 0.9930 - val_loss: 0.0732 - val_acc: 0.9783
Epoch 7/20
60000/60000 [================== ] - 6s 95us/step - loss: 0.0189 -
acc: 0.9943 - val_loss: 0.0737 - val_acc: 0.9782
Epoch 8/20
60000/60000 [============= ] - 8s 125us/step - loss: 0.0150
- acc: 0.9952 - val_loss: 0.0699 - val_acc: 0.9809
Epoch 9/20
60000/60000 [============== ] - 7s 115us/step - loss: 0.0121
- acc: 0.9963 - val loss: 0.0692 - val acc: 0.9797
Epoch 10/20
60000/60000 [============= ] - 7s 113us/step - loss: 0.0101
- acc: 0.9969 - val loss: 0.0756 - val acc: 0.9805
Epoch 11/20
```

```
- acc: 0.9963 - val_loss: 0.1052 - val_acc: 0.9741
Epoch 12/20
60000/60000 [============ ] - 7s 117us/step - loss: 0.0122
- acc: 0.9961 - val loss: 0.0850 - val acc: 0.9799
60000/60000 [============ ] - 8s 127us/step - loss: 0.0122
- acc: 0.9958 - val_loss: 0.0838 - val_acc: 0.9796
Epoch 14/20
60000/60000 [============ ] - 7s 115us/step - loss: 0.0072
- acc: 0.9978 - val loss: 0.0788 - val acc: 0.9816
Epoch 15/20
60000/60000 [============= ] - 6s 95us/step - loss: 0.0057 -
acc: 0.9983 - val_loss: 0.0999 - val_acc: 0.9783
Epoch 16/20
60000/60000 [============ ] - 6s 92us/step - loss: 0.0091 -
acc: 0.9970 - val loss: 0.0921 - val acc: 0.9797
Epoch 17/20
60000/60000 [============ ] - 5s 88us/step - loss: 0.0055 -
acc: 0.9982 - val_loss: 0.1007 - val_acc: 0.9792
Epoch 18/20
60000/60000 [============ ] - 5s 85us/step - loss: 0.0102 -
acc: 0.9968 - val_loss: 0.1081 - val_acc: 0.9788
Epoch 19/20
60000/60000 [============= ] - 5s 80us/step - loss: 0.0067 -
acc: 0.9978 - val_loss: 0.0874 - val_acc: 0.9807
Epoch 20/20
60000/60000 [============ ] - 6s 96us/step - loss: 0.0039 -
acc: 0.9989 - val_loss: 0.0861 - val_acc: 0.9821
```

In [15]:

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.08614989673080777

Test accuracy: 0.9821

In [16]:

```
w_after = model_relu.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + Batch-Norm on 2 hidden Layers + AdamOptimizer

In [17]:

```
# Multilayer perceptron

# https://intoli.com/blog/neural-network-initialization/
# If we sample weights from a normal distribution N(0, \(\sigma\)) we satisfy this condition with \(\sigma=\) \(\text{v}\) \(\text{n}\) + \(\text{n}\) = \(\sigma=\) \(\sigma=\) \(\text{N}\) \(\sigma=\) = \(\text{N}\) \(\sigma=\) \(\text{N}\) \(\sigma=\) \(\text{N}\) \(\sigma=\) \(\text{N}\) \(\sigma=\) \(\text{N}\) \(\sigma=\) \(\text{N}\) \(\sigma=\) \(\text{N}\) \(\text{n}\
```

Layer (type)	Output	Shape	Param #
dense_4 (Dense)	(None,	364)	285740
batch_normalization_1 (Batch	(None,	364)	1456
dense_5 (Dense)	(None,	52)	18980
batch_normalization_2 (Batch	(None,	52)	208
dense_6 (Dense)	(None,	10)	530

Total params: 306,914 Trainable params: 306,082 Non-trainable params: 832

In [18]:

```
model_batch.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']
history = model_batch.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 6s 101us/step - loss: 0.2357
- acc: 0.9333 - val_loss: 0.1332 - val_acc: 0.9596
Epoch 2/20
60000/60000 [============= ] - 5s 85us/step - loss: 0.0887 -
acc: 0.9737 - val_loss: 0.1011 - val_acc: 0.9693
Epoch 3/20
60000/60000 [============= ] - 5s 83us/step - loss: 0.0585 -
acc: 0.9826 - val_loss: 0.0838 - val_acc: 0.9760
Epoch 4/20
60000/60000 [================= ] - 5s 83us/step - loss: 0.0427 -
acc: 0.9871 - val_loss: 0.0793 - val_acc: 0.9749
Epoch 5/20
60000/60000 [============ ] - 5s 82us/step - loss: 0.0306 -
acc: 0.9904 - val loss: 0.0888 - val acc: 0.9748
Epoch 6/20
60000/60000 [================= ] - 5s 84us/step - loss: 0.0266 -
acc: 0.9915 - val_loss: 0.0750 - val_acc: 0.9794
Epoch 7/20
60000/60000 [============= ] - 5s 83us/step - loss: 0.0224 -
acc: 0.9931 - val_loss: 0.0798 - val_acc: 0.9771
Epoch 8/20
60000/60000 [============== ] - 5s 84us/step - loss: 0.0169 -
acc: 0.9952 - val_loss: 0.0846 - val_acc: 0.9746
Epoch 9/20
60000/60000 [============= ] - 5s 84us/step - loss: 0.0143 -
acc: 0.9957 - val_loss: 0.0946 - val_acc: 0.9752
Epoch 10/20
60000/60000 [============= ] - 5s 87us/step - loss: 0.0162 -
acc: 0.9947 - val_loss: 0.0827 - val_acc: 0.9780
Epoch 11/20
60000/60000 [============== ] - 9s 149us/step - loss: 0.0115
- acc: 0.9962 - val loss: 0.0796 - val acc: 0.9778
Epoch 12/20
- acc: 0.9969 - val_loss: 0.0961 - val_acc: 0.9764
Epoch 13/20
60000/60000 [============== ] - 6s 95us/step - loss: 0.0103 -
acc: 0.9967 - val_loss: 0.0934 - val_acc: 0.9760
Epoch 14/20
60000/60000 [============= ] - 6s 102us/step - loss: 0.0094
- acc: 0.9972 - val_loss: 0.0873 - val_acc: 0.9788
Epoch 15/20
60000/60000 [============= ] - 8s 126us/step - loss: 0.0103
- acc: 0.9966 - val loss: 0.0959 - val acc: 0.9762
Epoch 16/20
60000/60000 [============= ] - 6s 103us/step - loss: 0.0094
- acc: 0.9970 - val_loss: 0.0901 - val_acc: 0.9789
Epoch 17/20
60000/60000 [============= ] - 6s 100us/step - loss: 0.0074
- acc: 0.9977 - val_loss: 0.0829 - val_acc: 0.9795
Epoch 18/20
60000/60000 [============== ] - 5s 88us/step - loss: 0.0088 -
acc: 0.9971 - val_loss: 0.0912 - val_acc: 0.9773
```

In [20]:

```
score = model_batch.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.08952085421274897

Test accuracy: 0.9792

In [21]:

```
w_after = model_batch.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + Dropout (rate = 0.5) + AdamOptimizer with 2 hidden layers

In [22]:

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-funct
from keras.layers import Dropout

model_drop = Sequential()

model_drop.add(Dense(364, activation='relu', input_shape=(input_dim,), kernel_initializer=R
model_drop.add(Dropout(0.5))

model_drop.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_drop.add(Dropout(0.5))

model_drop.add(Dense(output_dim, activation='softmax'))

model_drop.summary()
```

Layer (type)	Output Sh	nape	Param #
dense_7 (Dense)	(None, 36	54)	285740
dropout_1 (Dropout)	(None, 36	54)	0
dense_8 (Dense)	(None, 52	2)	18980
dropout_2 (Dropout)	(None, 52	2)	0
dense_9 (Dense)	(None, 10)) 	530 ======

Total params: 305,250 Trainable params: 305,250 Non-trainable params: 0

In [23]:

```
model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 6s 97us/step - loss: 0.9070 -
acc: 0.7097 - val_loss: 0.2468 - val_acc: 0.9309
Epoch 2/20
60000/60000 [============ ] - 5s 82us/step - loss: 0.4398 -
acc: 0.8680 - val_loss: 0.1933 - val_acc: 0.9446
Epoch 3/20
60000/60000 [============= ] - 5s 83us/step - loss: 0.3459 -
acc: 0.8991 - val_loss: 0.1679 - val_acc: 0.9530
Epoch 4/20
60000/60000 [================= ] - 5s 83us/step - loss: 0.3020 -
acc: 0.9151 - val_loss: 0.1473 - val_acc: 0.9577
Epoch 5/20
60000/60000 [============ ] - 5s 82us/step - loss: 0.2697 -
acc: 0.9248 - val_loss: 0.1346 - val_acc: 0.9635
Epoch 6/20
60000/60000 [================ ] - 5s 83us/step - loss: 0.2425 -
acc: 0.9330 - val_loss: 0.1258 - val_acc: 0.9637
Epoch 7/20
60000/60000 [============= ] - 5s 81us/step - loss: 0.2166 -
acc: 0.9393 - val_loss: 0.1239 - val_acc: 0.9664
Epoch 8/20
60000/60000 [============== ] - 5s 84us/step - loss: 0.2087 -
acc: 0.9416 - val_loss: 0.1113 - val_acc: 0.9706
Epoch 9/20
60000/60000 [============= ] - 5s 81us/step - loss: 0.1947 -
acc: 0.9464 - val_loss: 0.1106 - val_acc: 0.9709
Epoch 10/20
60000/60000 [============= ] - 5s 80us/step - loss: 0.1828 -
acc: 0.9490 - val_loss: 0.1110 - val_acc: 0.9702
Epoch 11/20
60000/60000 [============= ] - 5s 79us/step - loss: 0.1713 -
acc: 0.9524 - val loss: 0.1102 - val acc: 0.9718
Epoch 12/20
- acc: 0.9533 - val_loss: 0.1041 - val_acc: 0.9725
Epoch 13/20
60000/60000 [============= ] - 5s 82us/step - loss: 0.1594 -
acc: 0.9558 - val_loss: 0.1029 - val_acc: 0.9735
Epoch 14/20
60000/60000 [============== ] - 6s 92us/step - loss: 0.1524 -
acc: 0.9574 - val_loss: 0.1051 - val_acc: 0.9737
Epoch 15/20
60000/60000 [============== ] - 6s 100us/step - loss: 0.1457
- acc: 0.9592 - val loss: 0.1000 - val acc: 0.9746
Epoch 16/20
60000/60000 [=============== ] - 6s 100us/step - loss: 0.1384
- acc: 0.9602 - val_loss: 0.1041 - val_acc: 0.9763
Epoch 17/20
60000/60000 [============= ] - 5s 90us/step - loss: 0.1372 -
acc: 0.9613 - val_loss: 0.0975 - val_acc: 0.9759
Epoch 18/20
60000/60000 [============ ] - 5s 82us/step - loss: 0.1306 -
acc: 0.9638 - val_loss: 0.0993 - val_acc: 0.9753
```

In [24]:

```
score = model_drop.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.09625575973058877

Test accuracy: 0.9756

In [25]:

```
w_after = model_drop.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


In []:

MLP + Dropout (rate = 0.3) + AdamOptimizer with 2 hidden layers

In [26]:

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-funct
from keras.layers import Dropout

model_drop = Sequential()

model_drop.add(Dense(364, activation='relu', input_shape=(input_dim,), kernel_initializer=F
model_drop.add(Dropout(0.3))

model_drop.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_drop.add(Dropout(0.3))

model_drop.add(Dense(output_dim, activation='softmax'))

model_drop.summary()
```

Layer (type)	Output Shape	Param #
dense_10 (Dense)	(None, 364)	285740
dropout_3 (Dropout)	(None, 364)	0
dense_11 (Dense)	(None, 52)	18980
dropout_4 (Dropout)	(None, 52)	0
dense_12 (Dense)	(None, 10)	530

Total params: 305,250 Trainable params: 305,250 Non-trainable params: 0

```
In [27]:
```

```
model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 6s 99us/step - loss: 0.5129 -
acc: 0.8458 - val_loss: 0.1645 - val_acc: 0.9502
Epoch 2/20
60000/60000 [============ ] - 5s 79us/step - loss: 0.2464 -
acc: 0.9262 - val_loss: 0.1239 - val_acc: 0.9634
Epoch 3/20
60000/60000 [============= ] - 5s 77us/step - loss: 0.1909 -
acc: 0.9432 - val_loss: 0.1123 - val_acc: 0.9677
Epoch 4/20
60000/60000 [================ ] - 5s 76us/step - loss: 0.1577 -
acc: 0.9533 - val_loss: 0.0969 - val_acc: 0.9705
Epoch 5/20
60000/60000 [============== ] - 5s 84us/step - loss: 0.1387 -
acc: 0.9594 - val loss: 0.0890 - val acc: 0.9736
Epoch 6/20
60000/60000 [================= ] - 5s 84us/step - loss: 0.1246 -
acc: 0.9627 - val_loss: 0.0855 - val_acc: 0.9765
Epoch 7/20
60000/60000 [============= ] - 5s 86us/step - loss: 0.1100 -
acc: 0.9670 - val_loss: 0.0869 - val_acc: 0.9757
Epoch 8/20
60000/60000 [============= ] - 5s 83us/step - loss: 0.1032 -
acc: 0.9685 - val_loss: 0.0859 - val_acc: 0.9756
Epoch 9/20
60000/60000 [============= ] - 5s 80us/step - loss: 0.0941 -
acc: 0.9706 - val_loss: 0.0826 - val_acc: 0.9755
Epoch 10/20
60000/60000 [============ ] - 5s 80us/step - loss: 0.0895 -
acc: 0.9725 - val_loss: 0.0767 - val_acc: 0.9787
Epoch 11/20
60000/60000 [============ ] - 5s 80us/step - loss: 0.0824 -
acc: 0.9740 - val loss: 0.0795 - val acc: 0.9776
Epoch 12/20
60000/60000 [============== ] - 5s 80us/step - loss: 0.0777 -
acc: 0.9761 - val_loss: 0.0731 - val_acc: 0.9798
Epoch 13/20
60000/60000 [============= ] - 5s 80us/step - loss: 0.0720 -
acc: 0.9772 - val_loss: 0.0770 - val_acc: 0.9802
Epoch 14/20
60000/60000 [============== ] - 5s 81us/step - loss: 0.0722 -
acc: 0.9776 - val_loss: 0.0756 - val_acc: 0.9796
Epoch 15/20
60000/60000 [============== ] - 5s 85us/step - loss: 0.0659 -
acc: 0.9795 - val loss: 0.0705 - val acc: 0.9810
Epoch 16/20
60000/60000 [================= ] - 5s 80us/step - loss: 0.0627 -
acc: 0.9811 - val_loss: 0.0737 - val_acc: 0.9818
Epoch 17/20
60000/60000 [============= ] - 6s 104us/step - loss: 0.0592
- acc: 0.9815 - val_loss: 0.0741 - val_acc: 0.9809
Epoch 18/20
```

- acc: 0.9834 - val_loss: 0.0764 - val_acc: 0.9798

In [28]:

```
score = model_drop.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.07972456046559565

Test accuracy: 0.9802

In [29]:

```
w_after = model_drop.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + BatchNormalization + Dropout(rate = 0.5) + AdamOptimizer

with 2 hidden layers

```
In [30]:
```

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-funct
from keras.layers import Dropout

model_drop = Sequential()

model_drop.add(Dense(364, activation='relu', input_shape=(input_dim,), kernel_initializer=F
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.5))

model_drop.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.5))

model_drop.add(Dense(output_dim, activation='softmax'))

model_drop.summary()
```

Layer (type)	Output	Shape	Param #
dense_13 (Dense)	(None,	364)	285740
batch_normalization_3 (Batch	(None,	364)	1456
dropout_5 (Dropout)	(None,	364)	0
dense_14 (Dense)	(None,	52)	18980
batch_normalization_4 (Batch	(None,	52)	208
dropout_6 (Dropout)	(None,	52)	0
dense_15 (Dense)	(None,	10)	530

Total params: 306,914 Trainable params: 306,082 Non-trainable params: 832

In [31]:

```
model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============== ] - 7s 115us/step - loss: 0.6007
- acc: 0.8222 - val_loss: 0.1861 - val_acc: 0.9449
Epoch 2/20
60000/60000 [============== ] - 6s 101us/step - loss: 0.3093
- acc: 0.9088 - val_loss: 0.1419 - val_acc: 0.9576
Epoch 3/20
60000/60000 [============= ] - 6s 102us/step - loss: 0.2488
- acc: 0.9279 - val_loss: 0.1245 - val_acc: 0.9627
Epoch 4/20
60000/60000 [================ ] - 6s 94us/step - loss: 0.2162 -
acc: 0.9373 - val_loss: 0.1098 - val_acc: 0.9646
Epoch 5/20
60000/60000 [============= ] - 6s 96us/step - loss: 0.1912 -
acc: 0.9440 - val loss: 0.0955 - val acc: 0.9707
Epoch 6/20
acc: 0.9489 - val_loss: 0.0954 - val_acc: 0.9714
Epoch 7/20
60000/60000 [============= ] - 6s 100us/step - loss: 0.1659
- acc: 0.9525 - val_loss: 0.0879 - val_acc: 0.9751
Epoch 8/20
60000/60000 [============= ] - 6s 93us/step - loss: 0.1504 -
acc: 0.9550 - val_loss: 0.0859 - val_acc: 0.9729
Epoch 9/20
60000/60000 [============= ] - 6s 93us/step - loss: 0.1415 -
acc: 0.9587 - val_loss: 0.0836 - val_acc: 0.9736
Epoch 10/20
60000/60000 [============ ] - 6s 97us/step - loss: 0.1365 -
acc: 0.9601 - val_loss: 0.0850 - val_acc: 0.9747
Epoch 11/20
60000/60000 [============= ] - 7s 113us/step - loss: 0.1301
- acc: 0.9619 - val loss: 0.0830 - val acc: 0.9765
Epoch 12/20
acc: 0.9637 - val_loss: 0.0820 - val_acc: 0.9755
Epoch 13/20
60000/60000 [============= ] - 7s 115us/step - loss: 0.1196
- acc: 0.9650 - val_loss: 0.0756 - val_acc: 0.9775
Epoch 14/20
60000/60000 [============= ] - 7s 114us/step - loss: 0.1112
- acc: 0.9674 - val_loss: 0.0745 - val_acc: 0.9778
Epoch 15/20
60000/60000 [============= ] - 7s 114us/step - loss: 0.1071
- acc: 0.9686 - val_loss: 0.0714 - val_acc: 0.9795
Epoch 16/20
60000/60000 [============== ] - 7s 110us/step - loss: 0.1020
- acc: 0.9700 - val_loss: 0.0752 - val_acc: 0.9776
Epoch 17/20
60000/60000 [============= ] - 7s 110us/step - loss: 0.0977
- acc: 0.9708 - val_loss: 0.0815 - val_acc: 0.9775
Epoch 18/20
- acc: 0.9700 - val_loss: 0.0728 - val_acc: 0.9782
```

In [33]:

```
score = model_drop.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.07286214664807195

Test accuracy: 0.9806

In [34]:

```
w_after = model_drop.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + BatchNormalization + Dropout(rate = 0.3) + AdamOptimizer

with 2 hidden layers

```
In [36]:
```

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-funct
from keras.layers import Dropout

model_drop = Sequential()

model_drop.add(Dense(364, activation='relu', input_shape=(input_dim,), kernel_initializer=F
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.3))

model_drop.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.3))

model_drop.add(Dense(output_dim, activation='softmax'))

model_drop.summary()
```

Layer (type)	Output	Shape	Param #
dense_16 (Dense)	(None,	364)	285740
batch_normalization_5 (Batch	(None,	364)	1456
dropout_7 (Dropout)	(None,	364)	0
dense_17 (Dense)	(None,	52)	18980
batch_normalization_6 (Batch	(None,	52)	208
dropout_8 (Dropout)	(None,	52)	0
dense_18 (Dense)	(None,	10)	530

Total params: 306,914 Trainable params: 306,082 Non-trainable params: 832

```
In [37]:
```

```
model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 7s 114us/step - loss: 0.3831
- acc: 0.8881 - val_loss: 0.1457 - val_acc: 0.9558
Epoch 2/20
60000/60000 [============== ] - 6s 105us/step - loss: 0.1861
- acc: 0.9443 - val_loss: 0.1056 - val_acc: 0.9669
Epoch 3/20
60000/60000 [============= ] - 6s 98us/step - loss: 0.1469 -
acc: 0.9556 - val_loss: 0.0942 - val_acc: 0.9686
Epoch 4/20
60000/60000 [================ ] - 5s 91us/step - loss: 0.1253 -
acc: 0.9615 - val_loss: 0.0818 - val_acc: 0.9751
Epoch 5/20
60000/60000 [============ ] - 6s 97us/step - loss: 0.1083 -
acc: 0.9672 - val loss: 0.0777 - val acc: 0.9756
Epoch 6/20
acc: 0.9694 - val_loss: 0.0744 - val_acc: 0.9778
Epoch 7/20
60000/60000 [============= ] - 5s 87us/step - loss: 0.0892 -
acc: 0.9716 - val_loss: 0.0752 - val_acc: 0.9778
Epoch 8/20
60000/60000 [============= ] - 5s 86us/step - loss: 0.0813 -
acc: 0.9748 - val_loss: 0.0697 - val_acc: 0.9776
Epoch 9/20
60000/60000 [============= ] - 5s 90us/step - loss: 0.0758 -
acc: 0.9757 - val_loss: 0.0642 - val_acc: 0.9811
Epoch 10/20
60000/60000 [============ ] - 6s 93us/step - loss: 0.0705 -
acc: 0.9784 - val_loss: 0.0641 - val_acc: 0.9812
Epoch 11/20
60000/60000 [============ ] - 5s 91us/step - loss: 0.0664 -
acc: 0.9789 - val loss: 0.0638 - val acc: 0.9805
Epoch 12/20
60000/60000 [================ ] - 6s 100us/step - loss: 0.0636
- acc: 0.9799 - val_loss: 0.0686 - val_acc: 0.9791
Epoch 13/20
60000/60000 [============ ] - 6s 94us/step - loss: 0.0583 -
acc: 0.9817 - val_loss: 0.0608 - val_acc: 0.9807
Epoch 14/20
60000/60000 [============= ] - 6s 92us/step - loss: 0.0560 -
acc: 0.9823 - val_loss: 0.0638 - val_acc: 0.9823
Epoch 15/20
60000/60000 [============= ] - 6s 93us/step - loss: 0.0535 -
acc: 0.9825 - val loss: 0.0649 - val acc: 0.9817
Epoch 16/20
60000/60000 [================= ] - 5s 91us/step - loss: 0.0503 -
acc: 0.9842 - val_loss: 0.0667 - val_acc: 0.9808
Epoch 17/20
60000/60000 [============= ] - 6s 104us/step - loss: 0.0509
- acc: 0.9833 - val_loss: 0.0618 - val_acc: 0.9816
Epoch 18/20
60000/60000 [============= ] - 6s 98us/step - loss: 0.0484 -
acc: 0.9847 - val_loss: 0.0572 - val_acc: 0.9831
```

In [38]:

```
score = model_drop.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06437753892600304

Test accuracy: 0.9825

In [39]:

```
w_after = model_drop.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + ReLU + ADAM with 3 layers without Dropout and Batch Normalisation

```
In [40]:
```

```
model_relu = Sequential()
model_relu.add(Dense(364, activation='relu', input_shape=(input_dim,), kernel_initializer=R
model_relu.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdc
model_relu.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_relu.add(Dense(output_dim, activation='softmax'))

print(model_relu.summary())

model_relu.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

history = model_relu.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
```

Layer (type)	Output Shape	Param #
dense_19 (Dense)	(None, 364)	285740
dense_20 (Dense)	(None, 128)	46720
dense_21 (Dense)	(None, 52)	6708
dense_22 (Dense)	(None, 10)	530

Total params: 339,698

Trainable params: 339,698 Non-trainable params: 0

```
None
Train on 60000 samples, validate on 10000 samples
60000/60000 [============ ] - 6s 92us/step - loss: 0.2579 -
acc: 0.9240 - val_loss: 0.1299 - val_acc: 0.9621
Epoch 2/20
60000/60000 [============= ] - 5s 79us/step - loss: 0.0937 -
acc: 0.9717 - val loss: 0.0970 - val acc: 0.9708
Epoch 3/20
acc: 0.9809 - val_loss: 0.0834 - val_acc: 0.9741
Epoch 4/20
60000/60000 [============ ] - 4s 68us/step - loss: 0.0455 -
acc: 0.9858 - val loss: 0.0703 - val acc: 0.9798
Epoch 5/20
60000/60000 [============= ] - 5s 82us/step - loss: 0.0323 -
acc: 0.9893 - val_loss: 0.0714 - val_acc: 0.9778
Epoch 6/20
60000/60000 [================= ] - 5s 82us/step - loss: 0.0235 -
acc: 0.9924 - val_loss: 0.0888 - val_acc: 0.9745
Epoch 7/20
60000/60000 [============= ] - 5s 78us/step - loss: 0.0218 -
acc: 0.9928 - val_loss: 0.0952 - val_acc: 0.9740
Epoch 8/20
60000/60000 [============== ] - 5s 77us/step - loss: 0.0196 -
acc: 0.9939 - val loss: 0.0866 - val acc: 0.9768
Epoch 9/20
60000/60000 [============== ] - 5s 78us/step - loss: 0.0147 -
acc: 0.9951 - val loss: 0.0988 - val acc: 0.9772
Epoch 10/20
60000/60000 [================= ] - 6s 92us/step - loss: 0.0155 -
```

```
acc: 0.9947 - val_loss: 0.0893 - val_acc: 0.9792
Epoch 11/20
60000/60000 [============ - - 6s 106us/step - loss: 0.0159
- acc: 0.9945 - val loss: 0.1069 - val acc: 0.9745
60000/60000 [============ ] - 5s 83us/step - loss: 0.0129 -
acc: 0.9958 - val_loss: 0.0797 - val_acc: 0.9806
Epoch 13/20
60000/60000 [============ ] - 5s 77us/step - loss: 0.0122 -
acc: 0.9958 - val_loss: 0.0905 - val_acc: 0.9810
Epoch 14/20
60000/60000 [============ ] - 5s 77us/step - loss: 0.0128 -
acc: 0.9958 - val_loss: 0.1108 - val_acc: 0.9765
Epoch 15/20
60000/60000 [============ ] - 5s 77us/step - loss: 0.0087 -
acc: 0.9971 - val loss: 0.0922 - val acc: 0.9805
Epoch 16/20
60000/60000 [============= ] - 5s 77us/step - loss: 0.0075 -
acc: 0.9977 - val_loss: 0.1271 - val_acc: 0.9749
Epoch 17/20
60000/60000 [============ ] - 5s 77us/step - loss: 0.0132 -
acc: 0.9959 - val_loss: 0.0947 - val_acc: 0.9799
Epoch 18/20
60000/60000 [============ ] - 5s 79us/step - loss: 0.0098 -
acc: 0.9967 - val_loss: 0.0982 - val_acc: 0.9793
Epoch 19/20
60000/60000 [============ ] - 5s 89us/step - loss: 0.0089 -
acc: 0.9970 - val_loss: 0.0940 - val_acc: 0.9806
Epoch 20/20
60000/60000 [============ ] - 5s 80us/step - loss: 0.0095 -
acc: 0.9970 - val_loss: 0.1108 - val_acc: 0.9788
```

In [41]:

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss: training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.1108168175617167

Test accuracy: 0.9788

In [43]:

```
w_after = model_relu.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
h3_w = w_after[4].flatten().reshape(-1,1)
out_w = w_after[6].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 4, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 4, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 4, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h3_w, color='cyan')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 4, 4)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + Batch-Norm on 3 hidden Layers + AdamOptimizer

In [44]:

```
# Multilayer perceptron
# https://intoli.com/blog/neural-network-initialization/
# If we sample weights from a normal distribution N(\theta,\sigma) we satisfy this condition with \sigma=v
# h1 \Rightarrow \sigma = \sqrt{(2/(ni+ni+1))} = 0.039 \Rightarrow N(0,\sigma) = N(0,0.039)
# h2 \Rightarrow \sigma = \sqrt{(2/(ni+ni+1))} = 0.055 \Rightarrow N(0,\sigma) = N(0,0.055)
# h1 \Rightarrow \sigma = \sqrt{(2/(ni+ni+1))} = 0.120 \Rightarrow N(0,\sigma) = N(0,0.120)
from keras.layers.normalization import BatchNormalization
model_batch = Sequential()
model_batch.add(Dense(364, activation='relu', input_shape=(input_dim,), kernel_initializer=
model_batch.add(BatchNormalization())
model_batch.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, std
model_batch.add(BatchNormalization())
model_batch.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdd
model_batch.add(BatchNormalization())
model_batch.add(Dense(output_dim, activation='softmax'))
model_batch.summary()
```

Layer (type)	Output	Shape	Param #
dense_23 (Dense)	(None,	364)	285740
batch_normalization_7 (Batch	(None,	364)	1456
dense_24 (Dense)	(None,	128)	46720
batch_normalization_8 (Batch	(None,	128)	512
dense_25 (Dense)	(None,	52)	6708
batch_normalization_9 (Batch	(None,	52)	208
dense_26 (Dense)	(None,	10)	530

Total params: 341,874
Trainable params: 340,786
Non-trainable params: 1,088

In [45]:

```
model_batch.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']
history = model_batch.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 7s 110us/step - loss: 0.2334
- acc: 0.9338 - val_loss: 0.1146 - val_acc: 0.9651
Epoch 2/20
60000/60000 [============== ] - 6s 100us/step - loss: 0.0870
- acc: 0.9744 - val_loss: 0.0894 - val_acc: 0.9718
Epoch 3/20
60000/60000 [============= ] - 6s 100us/step - loss: 0.0557
- acc: 0.9826 - val_loss: 0.0884 - val_acc: 0.9715
60000/60000 [================= ] - 6s 97us/step - loss: 0.0400 -
acc: 0.9876 - val_loss: 0.0823 - val_acc: 0.9760
Epoch 5/20
60000/60000 [============= ] - 6s 92us/step - loss: 0.0318 -
acc: 0.9901 - val loss: 0.0830 - val acc: 0.9758
Epoch 6/20
60000/60000 [================ ] - 7s 111us/step - loss: 0.0281
- acc: 0.9907 - val_loss: 0.0779 - val_acc: 0.9770
Epoch 7/20
60000/60000 [============= ] - 6s 102us/step - loss: 0.0226
- acc: 0.9930 - val_loss: 0.0812 - val_acc: 0.9746
Epoch 8/20
60000/60000 [============= ] - 7s 124us/step - loss: 0.0202
- acc: 0.9934 - val_loss: 0.0760 - val_acc: 0.9788
Epoch 9/20
60000/60000 [============ ] - 7s 122us/step - loss: 0.0170
- acc: 0.9944 - val_loss: 0.0818 - val_acc: 0.9777
Epoch 10/20
60000/60000 [============= ] - 6s 108us/step - loss: 0.0150
- acc: 0.9949 - val_loss: 0.0788 - val_acc: 0.9778
Epoch 11/20
60000/60000 [============== ] - 6s 105us/step - loss: 0.0130
- acc: 0.9959 - val loss: 0.0798 - val acc: 0.9788
Epoch 12/20
- acc: 0.9948 - val_loss: 0.0847 - val_acc: 0.9777
Epoch 13/20
60000/60000 [============== ] - 5s 91us/step - loss: 0.0121 -
acc: 0.9961 - val_loss: 0.0773 - val_acc: 0.9794
Epoch 14/20
60000/60000 [============= ] - 5s 90us/step - loss: 0.0115 -
acc: 0.9960 - val_loss: 0.0802 - val_acc: 0.9798
Epoch 15/20
60000/60000 [============= ] - 6s 95us/step - loss: 0.0091 -
acc: 0.9970 - val loss: 0.0752 - val acc: 0.9803
Epoch 16/20
60000/60000 [================ ] - 6s 92us/step - loss: 0.0124 -
acc: 0.9956 - val_loss: 0.1012 - val_acc: 0.9752
Epoch 17/20
60000/60000 [============= ] - 5s 89us/step - loss: 0.0112 -
acc: 0.9961 - val_loss: 0.0907 - val_acc: 0.9775
Epoch 18/20
- acc: 0.9966 - val_loss: 0.0792 - val_acc: 0.9799
```

In [46]:

```
score = model_batch.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.08674843371730385

Test accuracy: 0.9795

In [47]:

```
w after = model batch.get weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
h3_w = w_after[4].flatten().reshape(-1,1)
out_w = w_after[6].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 4, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 4, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 4, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h3_w, color='g')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 4, 4)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + Dropout(rate = 0.5) + AdamOptimizer with 3 hidden layers

In [48]:

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-funct
from keras.layers import Dropout
model_drop = Sequential()
model_drop.add(Dense(364, activation='relu', input_shape=(input_dim,), kernel_initializer=F
model_drop.add(Dropout(0.5))
model_drop.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdc
model_drop.add(Dropout(0.5))
model_drop.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdc
model_drop.add(Dropout(0.5))
model_drop.add(Dense(output_dim, activation='softmax'))
model_drop.summary()
```

	Outrout Chair	D#
Layer (type)	Output Shape	Param #
dense_27 (Dense)	(None, 364)	285740
dropout_9 (Dropout)	(None, 364)	0
dense_28 (Dense)	(None, 128)	46720
dropout_10 (Dropout)	(None, 128)	0
dense_29 (Dense)	(None, 52)	6708
dropout_11 (Dropout)	(None, 52)	0
dense_30 (Dense)	(None, 10)	530

Total params: 339,698 Trainable params: 339,698 Non-trainable params: 0

In [49]:

```
model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 6s 100us/step - loss: 1.3778
- acc: 0.5752 - val_loss: 0.3179 - val_acc: 0.9180
Epoch 2/20
60000/60000 [============= ] - 5s 91us/step - loss: 0.5697 -
acc: 0.8389 - val_loss: 0.2357 - val_acc: 0.9406
Epoch 3/20
60000/60000 [============= ] - 6s 106us/step - loss: 0.4437
- acc: 0.8838 - val_loss: 0.2002 - val_acc: 0.9455
Epoch 4/20
60000/60000 [=============== ] - 7s 121us/step - loss: 0.3701
- acc: 0.9034 - val_loss: 0.1784 - val_acc: 0.9543
Epoch 5/20
60000/60000 [============= ] - 6s 103us/step - loss: 0.3346
- acc: 0.9151 - val_loss: 0.1610 - val_acc: 0.9578
Epoch 6/20
60000/60000 [================ ] - 6s 94us/step - loss: 0.3017 -
acc: 0.9235 - val_loss: 0.1637 - val_acc: 0.9576
Epoch 7/20
60000/60000 [============= ] - 6s 93us/step - loss: 0.2769 -
acc: 0.9303 - val_loss: 0.1512 - val_acc: 0.9607
Epoch 8/20
60000/60000 [============== ] - 6s 100us/step - loss: 0.2577
- acc: 0.9356 - val_loss: 0.1434 - val_acc: 0.9621
Epoch 9/20
60000/60000 [============ - - 6s 101us/step - loss: 0.2455
- acc: 0.9385 - val_loss: 0.1340 - val_acc: 0.9660
Epoch 10/20
60000/60000 [============ ] - 6s 98us/step - loss: 0.2290 -
acc: 0.9429 - val_loss: 0.1325 - val_acc: 0.9661
Epoch 11/20
60000/60000 [============= ] - 6s 106us/step - loss: 0.2208
- acc: 0.9442 - val loss: 0.1257 - val acc: 0.9683
Epoch 12/20
- acc: 0.9477 - val_loss: 0.1286 - val_acc: 0.9702
Epoch 13/20
60000/60000 [============= ] - 6s 101us/step - loss: 0.2008
- acc: 0.9485 - val_loss: 0.1258 - val_acc: 0.9699
Epoch 14/20
60000/60000 [============= ] - 6s 99us/step - loss: 0.1956 -
acc: 0.9515 - val_loss: 0.1284 - val_acc: 0.9693
Epoch 15/20
60000/60000 [============= ] - 7s 118us/step - loss: 0.1862
- acc: 0.9537 - val_loss: 0.1253 - val_acc: 0.9703
Epoch 16/20
60000/60000 [============== ] - 6s 107us/step - loss: 0.1797
- acc: 0.9547 - val_loss: 0.1183 - val_acc: 0.9694
Epoch 17/20
60000/60000 [============= ] - 7s 114us/step - loss: 0.1766
- acc: 0.9546 - val_loss: 0.1206 - val_acc: 0.9718
Epoch 18/20
- acc: 0.9570 - val_loss: 0.1203 - val_acc: 0.9703
```

In [50]:

```
score = model_drop.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.11365028675964568

Test accuracy: 0.9741

In [51]:

```
w_after = model_drop.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
h3_w = w_after[4].flatten().reshape(-1,1)
out_w = w_after[6].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 4, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 4, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 4, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h3_w, color='g')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 4, 4)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + Dropout(rate = 0.3) + AdamOptimizer with 3 hidden layers

In [52]:

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-funct
from keras.layers import Dropout
model_drop = Sequential()
model_drop.add(Dense(364, activation='relu', input_shape=(input_dim,), kernel_initializer=F
model_drop.add(Dropout(0.3))

model_drop.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdc
model_drop.add(Dropout(0.3))

model_drop.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_drop.add(Dropout(0.3))

model_drop.add(Dense(output_dim, activation='softmax'))

model_drop.summary()
```

Layer (type)	Output Shape	Param #
dense_31 (Dense)	(None, 364)	285740
dropout_12 (Dropout)	(None, 364)	0
dense_32 (Dense)	(None, 128)	46720
dropout_13 (Dropout)	(None, 128)	0
dense_33 (Dense)	(None, 52)	6708
dropout_14 (Dropout)	(None, 52)	0
dense_34 (Dense)	(None, 10)	530

Total params: 339,698 Trainable params: 339,698 Non-trainable params: 0

```
In [53]:
```

```
model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 7s 113us/step - loss: 0.6964
- acc: 0.7865 - val_loss: 0.1897 - val_acc: 0.9470
Epoch 2/20
60000/60000 [============== ] - 6s 108us/step - loss: 0.2802
- acc: 0.9218 - val_loss: 0.1425 - val_acc: 0.9601
Epoch 3/20
60000/60000 [============= ] - 6s 96us/step - loss: 0.2134 -
acc: 0.9400 - val_loss: 0.1135 - val_acc: 0.9674
Epoch 4/20
60000/60000 [================= ] - 5s 81us/step - loss: 0.1782 -
acc: 0.9506 - val_loss: 0.1015 - val_acc: 0.9721
Epoch 5/20
60000/60000 [============ ] - 5s 79us/step - loss: 0.1472 -
acc: 0.9601 - val loss: 0.0982 - val acc: 0.9723
Epoch 6/20
acc: 0.9646 - val_loss: 0.0883 - val_acc: 0.9757
Epoch 7/20
60000/60000 [============= ] - 6s 95us/step - loss: 0.1164 -
acc: 0.9681 - val_loss: 0.0880 - val_acc: 0.9763
Epoch 8/20
60000/60000 [============== ] - 6s 93us/step - loss: 0.1076 -
acc: 0.9702 - val_loss: 0.0868 - val_acc: 0.9761
Epoch 9/20
60000/60000 [============ ] - 6s 98us/step - loss: 0.0982 -
acc: 0.9726 - val_loss: 0.0881 - val_acc: 0.9772
Epoch 10/20
60000/60000 [============= ] - 6s 105us/step - loss: 0.0911
- acc: 0.9751 - val_loss: 0.0777 - val_acc: 0.9785
Epoch 11/20
60000/60000 [============ ] - 6s 94us/step - loss: 0.0851 -
acc: 0.9759 - val loss: 0.0810 - val acc: 0.9799
Epoch 12/20
- acc: 0.9782 - val_loss: 0.0853 - val_acc: 0.9786
Epoch 13/20
60000/60000 [============ ] - 6s 94us/step - loss: 0.0719 -
acc: 0.9791 - val_loss: 0.0756 - val_acc: 0.9799
Epoch 14/20
60000/60000 [============= ] - 6s 99us/step - loss: 0.0716 -
acc: 0.9803 - val_loss: 0.0721 - val_acc: 0.9794
Epoch 15/20
60000/60000 [============= ] - 6s 101us/step - loss: 0.0699
- acc: 0.9804 - val loss: 0.0834 - val acc: 0.9789
Epoch 16/20
60000/60000 [================= ] - 6s 94us/step - loss: 0.0635 -
acc: 0.9818 - val_loss: 0.0845 - val_acc: 0.9799
Epoch 17/20
60000/60000 [============= ] - 6s 93us/step - loss: 0.0625 -
acc: 0.9828 - val_loss: 0.0773 - val_acc: 0.9803
Epoch 18/20
- acc: 0.9835 - val_loss: 0.0743 - val_acc: 0.9823
```

In [55]:

```
score = model_drop.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.0763443440160543

Test accuracy: 0.9806

In [56]:

```
w_after = model_drop.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
h3_w = w_after[4].flatten().reshape(-1,1)
out_w = w_after[6].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 4, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 4, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 4, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h3_w, color='g')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 4, 4)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + BatchNormalization + Dropout(rate = 0.5) + AdamOptimizer with 3 hidden layers

In [57]:

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-funct
from keras.layers import Dropout

model_drop = Sequential()

model_drop.add(Dense(364, activation='relu', input_shape=(input_dim,), kernel_initializer=F
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.5))

model_drop.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdc
model_drop.add(BatchNormalization())
model_drop.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdc
model_drop.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdc
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.5))

model_drop.add(Dense(output_dim, activation='softmax'))

model_drop.summary()
```

Layer (type)	Output	Shape	Param #
dense_35 (Dense)	(None,	364)	285740
batch_normalization_10 (Batch_	c (None,	364)	1456
dropout_15 (Dropout)	(None,	364)	0
dense_36 (Dense)	(None,	128)	46720
batch_normalization_11 (Batch_	c (None,	128)	512
dropout_16 (Dropout)	(None,	128)	0
dense_37 (Dense)	(None,	52)	6708
batch_normalization_12 (Batch_normalization_12)	c (None,	52)	208
dropout_17 (Dropout)	(None,	52)	0
dense_38 (Dense)	(None,	10)	530

Total params: 341,874 Trainable params: 340,786 Non-trainable params: 1,088

localhost:8888/notebooks/Different architectures on MNIST dataset/Keras_Mnist.ipynb

In [58]:

```
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 8s 133us/step - loss: 0.9536
- acc: 0.7001 - val_loss: 0.2521 - val_acc: 0.9256
Epoch 2/20
60000/60000 [============== ] - 6s 107us/step - loss: 0.4609
- acc: 0.8654 - val_loss: 0.1837 - val_acc: 0.9456
Epoch 3/20
60000/60000 [============= ] - 7s 108us/step - loss: 0.3600
- acc: 0.8969 - val_loss: 0.1557 - val_acc: 0.9529
Epoch 4/20
- acc: 0.9157 - val_loss: 0.1426 - val_acc: 0.9560
Epoch 5/20
60000/60000 [============= ] - 7s 110us/step - loss: 0.2653
- acc: 0.9260 - val_loss: 0.1260 - val_acc: 0.9624
Epoch 6/20
60000/60000 [=============== ] - 7s 113us/step - loss: 0.2374
- acc: 0.9345 - val_loss: 0.1145 - val_acc: 0.9660
Epoch 7/20
60000/60000 [============= ] - 7s 111us/step - loss: 0.2146
- acc: 0.9404 - val_loss: 0.1085 - val_acc: 0.9691
Epoch 8/20
60000/60000 [============== ] - 7s 111us/step - loss: 0.1971
- acc: 0.9455 - val_loss: 0.1016 - val_acc: 0.9689
Epoch 9/20
60000/60000 [============ ] - 7s 111us/step - loss: 0.1864
- acc: 0.9488 - val_loss: 0.0927 - val_acc: 0.9721
Epoch 10/20
60000/60000 [============= ] - 7s 112us/step - loss: 0.1710
- acc: 0.9527 - val_loss: 0.0948 - val_acc: 0.9714
Epoch 11/20
60000/60000 [============== ] - 7s 115us/step - loss: 0.1629
- acc: 0.9552 - val loss: 0.0933 - val acc: 0.9722
Epoch 12/20
- acc: 0.9558 - val_loss: 0.0903 - val_acc: 0.9742
Epoch 13/20
60000/60000 [============= ] - 7s 111us/step - loss: 0.1505
- acc: 0.9584 - val_loss: 0.0852 - val_acc: 0.9749
Epoch 14/20
60000/60000 [============= ] - 8s 136us/step - loss: 0.1406
- acc: 0.9608 - val_loss: 0.0831 - val_acc: 0.9766
Epoch 15/20
60000/60000 [============= ] - 8s 130us/step - loss: 0.1397
- acc: 0.9609 - val_loss: 0.0859 - val_acc: 0.9755
Epoch 16/20
- acc: 0.9641 - val_loss: 0.0792 - val_acc: 0.9766
Epoch 17/20
60000/60000 [============= ] - 8s 137us/step - loss: 0.1305
- acc: 0.9632 - val_loss: 0.0803 - val_acc: 0.9778
Epoch 18/20
- acc: 0.9645 - val_loss: 0.0776 - val_acc: 0.9787
```

model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

```
Epoch 19/20
60000/60000 [============] - 8s 126us/step - loss: 0.1207
- acc: 0.9661 - val_loss: 0.0778 - val_acc: 0.9782
Epoch 20/20
60000/60000 [===================] - 9s 148us/step - loss: 0.1140
- acc: 0.9693 - val_loss: 0.0768 - val_acc: 0.9797
```

In [59]:

```
score = model_drop.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.07683449132365058

Test accuracy: 0.9797

In [60]:

```
w_after = model_drop.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 4, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 4, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 4, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h3_w, color='g')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 4, 4)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + BatchNormalization + Dropout(rate = 0.3) + AdamOptimizer with 3 hidden layers

In [61]:

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-funct
from keras.layers import Dropout

model_drop = Sequential()

model_drop.add(Dense(364, activation='relu', input_shape=(input_dim,), kernel_initializer=F
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.3))

model_drop.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdc
model_drop.add(BatchNormalization())
model_drop.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdc
model_drop.add(Dense(52, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdc
model_drop.add(BatchNormalization())
model_drop.add(Dense(output_dim, activation='softmax'))

model_drop.add(Dense(output_dim, activation='softmax'))
```

(None, 3	========= 364)	285740
c (None, 3	364)	1456
(None, 3	364)	0
(None, 1	128)	46720
c (None, 1	128)	512
(None, 1	128)	0
(None, 5	52)	6708
c (None, 5	52)	208
(None, 5	52)	0
(None, 1	10)	530
	(None, 1) (None, 2) (None, 2) (None, 3) (None, 4) (None, 4) (None, 4)	(None, 364) (None, 364) (None, 364) (None, 128) (None, 128) (None, 128) (None, 52) (None, 52) (None, 52) (None, 52)

Total params: 341,874 Trainable params: 340,786 Non-trainable params: 1,088

In [62]:

```
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 9s 145us/step - loss: 0.5354
- acc: 0.8428 - val_loss: 0.1646 - val_acc: 0.9491
Epoch 2/20
60000/60000 [============= ] - 8s 131us/step - loss: 0.2464
- acc: 0.9281 - val_loss: 0.1239 - val_acc: 0.9613
Epoch 3/20
60000/60000 [============= ] - 9s 155us/step - loss: 0.1866
- acc: 0.9460 - val_loss: 0.1056 - val_acc: 0.9687
Epoch 4/20
60000/60000 [================ ] - 9s 156us/step - loss: 0.1574
- acc: 0.9528 - val_loss: 0.0967 - val_acc: 0.9694
Epoch 5/20
60000/60000 [============== ] - 9s 158us/step - loss: 0.1442
- acc: 0.9573 - val_loss: 0.0887 - val_acc: 0.9729
Epoch 6/20
60000/60000 [================ ] - 9s 158us/step - loss: 0.1263
- acc: 0.9619 - val_loss: 0.0780 - val_acc: 0.9776
Epoch 7/20
60000/60000 [============= ] - 8s 138us/step - loss: 0.1125
- acc: 0.9672 - val_loss: 0.0806 - val_acc: 0.9757
Epoch 8/20
60000/60000 [============== ] - 9s 145us/step - loss: 0.1040
- acc: 0.9682 - val_loss: 0.0790 - val_acc: 0.9764
Epoch 9/20
60000/60000 [============ ] - 9s 144us/step - loss: 0.0973
- acc: 0.9709 - val_loss: 0.0759 - val_acc: 0.9773
Epoch 10/20
60000/60000 [============= ] - 9s 142us/step - loss: 0.0921
- acc: 0.9727 - val_loss: 0.0733 - val_acc: 0.9782
Epoch 11/20
60000/60000 [============== ] - 9s 150us/step - loss: 0.0845
- acc: 0.9739 - val loss: 0.0677 - val acc: 0.9794
Epoch 12/20
- acc: 0.9748 - val_loss: 0.0687 - val_acc: 0.9799
Epoch 13/20
60000/60000 [============= ] - 9s 148us/step - loss: 0.0783
- acc: 0.9760 - val_loss: 0.0685 - val_acc: 0.9801
Epoch 14/20
60000/60000 [============== ] - 10s 159us/step - loss: 0.0727
- acc: 0.9775 - val_loss: 0.0618 - val_acc: 0.9808
Epoch 15/20
60000/60000 [============= ] - 9s 153us/step - loss: 0.0645
- acc: 0.9798 - val_loss: 0.0645 - val_acc: 0.9813
Epoch 16/20
60000/60000 [============== ] - 9s 151us/step - loss: 0.0656
- acc: 0.9798 - val_loss: 0.0663 - val_acc: 0.9823
Epoch 17/20
60000/60000 [============= ] - 9s 156us/step - loss: 0.0613
- acc: 0.9808 - val_loss: 0.0606 - val_acc: 0.9823
Epoch 18/20
- acc: 0.9815 - val_loss: 0.0671 - val_acc: 0.9814
```

model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

In [63]:

```
score = model_drop.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06322702438611887

Test accuracy: 0.9835

In [64]:

```
w_after = model_drop.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 4, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 4, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 4, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h3_w, color='g')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 4, 4)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + ReLU + ADAM with 5 layers without Dropout and Batch Normalisation

In [65]:

```
model relu = Sequential()
model_relu.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_initializer=R
model_relu.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdc
model_relu.add(Dense(64, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_relu.add(Dense(32, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_relu.add(Dense(16, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_relu.add(Dense(output_dim, activation='softmax'))
print(model_relu.summary())
model_relu.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_relu.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
```

Layer (ty	rpe)	Output	Shape	Param #
dense_43	(Dense)	(None,	256)	200960
dense_44	(Dense)	(None,	128)	32896
dense_45	(Dense)	(None,	64)	8256
dense_46	(Dense)	(None,	32)	2080
dense_47	(Dense)	(None,	16)	528
dense_48	(Dense)	(None,	10)	170

Total params: 244,890 Trainable params: 244,890 Non-trainable params: 0

```
None
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 4s 70us/step - loss: 0.5227 -
acc: 0.8537 - val_loss: 0.1814 - val_acc: 0.9456
Epoch 2/20
60000/60000 [============ ] - 4s 61us/step - loss: 0.1297 -
acc: 0.9628 - val loss: 0.1234 - val acc: 0.9640
60000/60000 [============= ] - 3s 47us/step - loss: 0.0845 -
acc: 0.9744 - val_loss: 0.0956 - val_acc: 0.9720
Epoch 4/20
60000/60000 [================ ] - 3s 47us/step - loss: 0.0605 -
acc: 0.9817 - val loss: 0.0815 - val acc: 0.9738
Epoch 5/20
60000/60000 [============== ] - 3s 44us/step - loss: 0.0440 -
acc: 0.9865 - val loss: 0.0836 - val acc: 0.9751
Epoch 6/20
60000/60000 [============== ] - 3s 45us/step - loss: 0.0388 -
acc: 0.9875 - val loss: 0.0808 - val acc: 0.9774
Epoch 7/20
60000/60000 [============= ] - 3s 44us/step - loss: 0.0312 -
acc: 0.9898 - val loss: 0.0765 - val acc: 0.9802
Epoch 8/20
60000/60000 [================ ] - 3s 44us/step - loss: 0.0244 -
```

```
acc: 0.9919 - val loss: 0.0875 - val acc: 0.9764
Epoch 9/20
60000/60000 [============ ] - 3s 44us/step - loss: 0.0205 -
acc: 0.9934 - val loss: 0.0840 - val acc: 0.9784
Epoch 10/20
60000/60000 [============ ] - 3s 46us/step - loss: 0.0191 -
acc: 0.9937 - val_loss: 0.1042 - val_acc: 0.9761
Epoch 11/20
60000/60000 [============ ] - 3s 45us/step - loss: 0.0200 -
acc: 0.9933 - val_loss: 0.1077 - val_acc: 0.9743
Epoch 12/20
60000/60000 [============ ] - 3s 45us/step - loss: 0.0161 -
acc: 0.9947 - val_loss: 0.1308 - val_acc: 0.9662
Epoch 13/20
60000/60000 [============ ] - 3s 45us/step - loss: 0.0145 -
acc: 0.9954 - val loss: 0.1026 - val acc: 0.9762
Epoch 14/20
60000/60000 [============= ] - 3s 47us/step - loss: 0.0125 -
acc: 0.9960 - val_loss: 0.1330 - val_acc: 0.9746
Epoch 15/20
60000/60000 [============ ] - 3s 50us/step - loss: 0.0139 -
acc: 0.9951 - val_loss: 0.1005 - val_acc: 0.9766
Epoch 16/20
60000/60000 [============= ] - 3s 43us/step - loss: 0.0105 -
acc: 0.9965 - val_loss: 0.1085 - val_acc: 0.9771
Epoch 17/20
60000/60000 [============ ] - 3s 43us/step - loss: 0.0136 -
acc: 0.9957 - val_loss: 0.1148 - val_acc: 0.9746
Epoch 18/20
60000/60000 [============ ] - 3s 44us/step - loss: 0.0118 -
acc: 0.9963 - val loss: 0.0982 - val acc: 0.9776
Epoch 19/20
60000/60000 [============= ] - 3s 45us/step - loss: 0.0096 -
acc: 0.9968 - val_loss: 0.0994 - val_acc: 0.9792
Epoch 20/20
60000/60000 [============ ] - 3s 47us/step - loss: 0.0074 -
acc: 0.9976 - val_loss: 0.1014 - val_acc: 0.9809
```

In [67]:

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.10143251653150177

Test accuracy: 0.9809

In [68]:

```
w after = model relu.get weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
h3_w = w_after[4].flatten().reshape(-1,1)
h4_w = w_after[6].flatten().reshape(-1,1)
h5_w = w_after[8].flatten().reshape(-1,1)
out_w = w_after[10].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 6, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 6, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 6, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h3_w, color='g')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 6, 4)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h4_w, color='cyan')
plt.xlabel('Hidden Layer 4 ')
plt.subplot(1, 6, 5)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h4_w, color='brown')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 6, 6)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + Batch-Norm on 5 hidden Layers + AdamOptimizer

In [69]:

```
# Multilayer perceptron
# https://intoli.com/blog/neural-network-initialization/
# If we sample weights from a normal distribution N(\theta,\sigma) we satisfy this condition with \sigma=v
# h1 \Rightarrow \sigma = \sqrt{(2/(ni+ni+1))} = 0.039 \Rightarrow N(0,\sigma) = N(0,0.039)
# h2 \Rightarrow \sigma = \sqrt{(2/(ni+ni+1))} = 0.055 \Rightarrow N(0,\sigma) = N(0,0.055)
# h1 \Rightarrow \sigma = \sqrt{(2/(ni+ni+1))} = 0.120 \Rightarrow N(0,\sigma) = N(0,0.120)
from keras.layers.normalization import BatchNormalization
model_batch = Sequential()
model_batch.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_initializer=
model_batch.add(BatchNormalization())
model_batch.add(Dense(132, activation='relu', kernel_initializer=RandomNormal(mean=0.0, std
model_batch.add(BatchNormalization())
model_batch.add(Dense(64, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdd
model_batch.add(BatchNormalization())
model_batch.add(Dense(32, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdd
model batch.add(BatchNormalization())
model_batch.add(Dense(16, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdd
model_batch.add(BatchNormalization())
model_batch.add(Dense(output_dim, activation='softmax'))
model_batch.summary()
```

Output Shape	Param #
(None, 256)	200960
(None, 256)	1024
(None, 132)	33924
(None, 132)	528
(None, 64)	8512
(None, 64)	256
(None, 32)	2080
(None, 32)	128
(None, 16)	528
(None, 16)	64
(None, 10)	170
	(None, 256) (None, 256) (None, 132) (None, 64) (None, 64) (None, 64) (None, 32) (None, 32) (None, 16)

Total params: 248,174

Trainable params: 247,174 Non-trainable params: 1,000

```
In [70]:
```

```
model_batch.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']
history = model_batch.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 6s 99us/step - loss: 0.3940 -
acc: 0.9010 - val_loss: 0.1705 - val_acc: 0.9525
Epoch 2/20
60000/60000 [============= ] - 4s 72us/step - loss: 0.1194 -
acc: 0.9662 - val_loss: 0.1321 - val_acc: 0.9620
Epoch 3/20
60000/60000 [============= ] - 4s 71us/step - loss: 0.0810 -
acc: 0.9761 - val_loss: 0.1025 - val_acc: 0.9690
60000/60000 [================ ] - 4s 70us/step - loss: 0.0632 -
acc: 0.9812 - val_loss: 0.0927 - val_acc: 0.9718
Epoch 5/20
60000/60000 [============ ] - 4s 71us/step - loss: 0.0488 -
acc: 0.9851 - val loss: 0.0833 - val acc: 0.9759
Epoch 6/20
60000/60000 [================ ] - 4s 72us/step - loss: 0.0433 -
acc: 0.9864 - val_loss: 0.0792 - val_acc: 0.9765
Epoch 7/20
60000/60000 [============= ] - 4s 73us/step - loss: 0.0349 -
acc: 0.9892 - val_loss: 0.0881 - val_acc: 0.9750
Epoch 8/20
60000/60000 [============= ] - 5s 78us/step - loss: 0.0321 -
acc: 0.9900 - val_loss: 0.0759 - val_acc: 0.9786
Epoch 9/20
60000/60000 [============= ] - 4s 69us/step - loss: 0.0287 -
acc: 0.9909 - val_loss: 0.0840 - val_acc: 0.9771
Epoch 10/20
60000/60000 [============ ] - 4s 70us/step - loss: 0.0261 -
acc: 0.9915 - val_loss: 0.0810 - val_acc: 0.9778
Epoch 11/20
60000/60000 [============= ] - 4s 72us/step - loss: 0.0237 -
acc: 0.9920 - val loss: 0.0764 - val acc: 0.9797
Epoch 12/20
60000/60000 [============== ] - 5s 78us/step - loss: 0.0234 -
acc: 0.9924 - val_loss: 0.0791 - val_acc: 0.9785
Epoch 13/20
60000/60000 [============= ] - 4s 71us/step - loss: 0.0198 -
acc: 0.9934 - val_loss: 0.0763 - val_acc: 0.9801
Epoch 14/20
60000/60000 [============== ] - 5s 75us/step - loss: 0.0177 -
acc: 0.9942 - val_loss: 0.0852 - val_acc: 0.9785
Epoch 15/20
60000/60000 [============== ] - 4s 71us/step - loss: 0.0176 -
acc: 0.9940 - val loss: 0.0802 - val acc: 0.9781
Epoch 16/20
60000/60000 [================ ] - 4s 72us/step - loss: 0.0162 -
acc: 0.9945 - val_loss: 0.0783 - val_acc: 0.9801
Epoch 17/20
60000/60000 [============= ] - 4s 73us/step - loss: 0.0130 -
acc: 0.9955 - val_loss: 0.0743 - val_acc: 0.9811
Epoch 18/20
60000/60000 [============= ] - 4s 73us/step - loss: 0.0138 -
```

acc: 0.9954 - val_loss: 0.0809 - val_acc: 0.9813

```
Epoch 19/20
60000/60000 [============= ] - 4s 74us/step - loss: 0.0126 -
acc: 0.9958 - val loss: 0.0898 - val acc: 0.9785
Epoch 20/20
60000/60000 [============= ] - 4s 71us/step - loss: 0.0119 -
acc: 0.9964 - val_loss: 0.0782 - val_acc: 0.9812
In [71]:
score = model_batch.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
Test score: 0.07821065115529928
```

Test accuracy: 0.9812

In [72]:

```
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict keys(['val loss', 'val acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss: training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt dynamic(x, vy, ty, ax)
```

In [73]:

```
w after = model relu.get weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
h3_w = w_after[4].flatten().reshape(-1,1)
h4_w = w_after[6].flatten().reshape(-1,1)
h5_w = w_after[8].flatten().reshape(-1,1)
out_w = w_after[10].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 6, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 6, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 6, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h3_w, color='g')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 6, 4)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h4_w, color='cyan')
plt.xlabel('Hidden Layer 4 ')
plt.subplot(1, 6, 5)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h4_w, color='brown')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 6, 6)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + Dropout(rate = 0.5) + AdamOptimizer with 5 hidden layers

In [74]:

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-funct
from keras.layers import Dropout

model_drop = Sequential()

model_drop.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_initializer=F
model_drop.add(Dropout(0.5))

model_drop.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdc
model_drop.add(Dropout(0.5))

model_drop.add(Dense(64, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddc
model_drop.add(Dropout(0.5))

model_drop.add(Dense(32, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddc
model_drop.add(Dropout(0.5))

model_drop.add(Dense(16, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddc
model_drop.add(Dropout(0.5))

model_drop.add(Dense(output_dim, activation='softmax'))

model_drop.summary()

*
```

Layer (type)	Output	Shape	Param #
	=====:		
dense_55 (Dense)	(None,	256)	200960
dropout_21 (Dropout)	(None,	256)	0
dense_56 (Dense)	(None,	128)	32896
dropout_22 (Dropout)	(None,	128)	0
dense_57 (Dense)	(None,	64)	8256
dropout_23 (Dropout)	(None,	64)	0
dense_58 (Dense)	(None,	32)	2080
dropout_24 (Dropout)	(None,	32)	0
dense_59 (Dense)	(None,	16)	528
dropout_25 (Dropout)	(None,	16)	0
dense_60 (Dense)	(None,	10)	170

Total params: 244,890 Trainable params: 244,890 Non-trainable params: 0

```
In [75]:
```

```
model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 5s 77us/step - loss: 2.0919 -
acc: 0.2437 - val_loss: 1.4719 - val_acc: 0.5675
Epoch 2/20
60000/60000 [============ ] - 5s 76us/step - loss: 1.5121 -
acc: 0.4698 - val_loss: 1.0775 - val_acc: 0.6651
Epoch 3/20
60000/60000 [============= ] - 4s 65us/step - loss: 1.2592 -
acc: 0.5563 - val_loss: 0.9283 - val_acc: 0.7135
Epoch 4/20
60000/60000 [=============== ] - 4s 60us/step - loss: 1.1274 -
acc: 0.5964 - val_loss: 0.8500 - val_acc: 0.7431
Epoch 5/20
60000/60000 [============= ] - 4s 64us/step - loss: 1.0385 -
acc: 0.6244 - val loss: 0.7729 - val acc: 0.7404
Epoch 6/20
60000/60000 [================ ] - 4s 69us/step - loss: 0.9854 -
acc: 0.6372 - val_loss: 0.7186 - val_acc: 0.7485
Epoch 7/20
60000/60000 [============= ] - 4s 62us/step - loss: 0.9358 -
acc: 0.6564 - val_loss: 0.7074 - val_acc: 0.7570
Epoch 8/20
60000/60000 [============= ] - 4s 61us/step - loss: 0.9070 -
acc: 0.6706 - val_loss: 0.6708 - val_acc: 0.7626
Epoch 9/20
60000/60000 [============= ] - 4s 64us/step - loss: 0.8758 -
acc: 0.6771 - val_loss: 0.6378 - val_acc: 0.7682
Epoch 10/20
60000/60000 [============ ] - 4s 68us/step - loss: 0.8545 -
acc: 0.6867 - val_loss: 0.6129 - val_acc: 0.7741
Epoch 11/20
60000/60000 [============== ] - 4s 61us/step - loss: 0.8247 -
acc: 0.6961 - val loss: 0.5988 - val acc: 0.7782
Epoch 12/20
60000/60000 [============== ] - 4s 70us/step - loss: 0.8060 -
acc: 0.7010 - val_loss: 0.5926 - val_acc: 0.7778
Epoch 13/20
60000/60000 [============= ] - 4s 60us/step - loss: 0.7989 -
acc: 0.7045 - val_loss: 0.5832 - val_acc: 0.7754
Epoch 14/20
60000/60000 [============= ] - 4s 63us/step - loss: 0.7900 -
acc: 0.7084 - val_loss: 0.5665 - val_acc: 0.7786
Epoch 15/20
60000/60000 [============= ] - 4s 69us/step - loss: 0.7791 -
acc: 0.7119 - val loss: 0.5853 - val acc: 0.7789
Epoch 16/20
60000/60000 [================= ] - 4s 65us/step - loss: 0.7677 -
acc: 0.7154 - val_loss: 0.5975 - val_acc: 0.7814
Epoch 17/20
60000/60000 [============= ] - 4s 64us/step - loss: 0.7564 -
acc: 0.7220 - val_loss: 0.5574 - val_acc: 0.7841
Epoch 18/20
60000/60000 [============== ] - 4s 70us/step - loss: 0.7600 -
```

acc: 0.7284 - val_loss: 0.5639 - val_acc: 0.7812

```
Epoch 19/20
60000/60000 [============] - 4s 65us/step - loss: 0.7450 - acc: 0.7352 - val_loss: 0.5385 - val_acc: 0.8084
Epoch 20/20
60000/60000 [=============] - 4s 64us/step - loss: 0.7221 - acc: 0.7454 - val_loss: 0.5309 - val_acc: 0.8095

In [76]:
score = model_drop.evaluate(X_test, Y_test, verbose=0)
```

```
score = model_drop.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

Test score: 0.5309434900760651

Test accuracy: 0.8095

In [77]:

```
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```


In [78]:

```
w after = model relu.get weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
h3_w = w_after[4].flatten().reshape(-1,1)
h4_w = w_after[6].flatten().reshape(-1,1)
h5_w = w_after[8].flatten().reshape(-1,1)
out_w = w_after[10].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 6, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 6, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 6, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h3_w, color='g')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 6, 4)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h4_w, color='cyan')
plt.xlabel('Hidden Layer 4 ')
plt.subplot(1, 6, 5)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h4_w, color='brown')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 6, 6)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + Dropout(rate = 0.3) + AdamOptimizer with 5 hidden layers

In [79]:

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-funct
from keras.layers import Dropout

model_drop = Sequential()

model_drop.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_initializer=Fmodel_drop.add(Dropout(0.3))

model_drop.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdcmodel_drop.add(Dropout(0.3))

model_drop.add(Dense(64, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddemodel_drop.add(Dropout(0.3))

model_drop.add(Dense(32, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddemodel_drop.add(Dropout(0.3))

model_drop.add(Dense(16, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddemodel_drop.add(Dropout(0.3))

model_drop.add(Dense(16, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddemodel_drop.add(Dropout(0.3))

model_drop.add(Dense(output_dim, activation='softmax'))

model_drop.summary()

*
```

Layer (type)	Output Shape	Param #
dense_61 (Dense)	(None, 256)	200960
dropout_26 (Dropout)	(None, 256)	0
dense_62 (Dense)	(None, 128)	32896
dropout_27 (Dropout)	(None, 128)	0
dense_63 (Dense)	(None, 64)	8256
dropout_28 (Dropout)	(None, 64)	0
dense_64 (Dense)	(None, 32)	2080
dropout_29 (Dropout)	(None, 32)	0
dense_65 (Dense)	(None, 16)	528
dropout_30 (Dropout)	(None, 16)	0
dense_66 (Dense)	(None, 10)	170
	=======================================	==========

Total params: 244,890 Trainable params: 244,890 Non-trainable params: 0

In [80]:

```
model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============ ] - 5s 79us/step - loss: 1.2953 -
acc: 0.5550 - val_loss: 0.3444 - val_acc: 0.9196
Epoch 2/20
60000/60000 [============= ] - 4s 62us/step - loss: 0.6133 -
acc: 0.8158 - val_loss: 0.2037 - val_acc: 0.9518
Epoch 3/20
60000/60000 [============= ] - 4s 68us/step - loss: 0.4686 -
acc: 0.8674 - val_loss: 0.1706 - val_acc: 0.9584
Epoch 4/20
60000/60000 [================ ] - 4s 69us/step - loss: 0.3907 -
acc: 0.8955 - val_loss: 0.1666 - val_acc: 0.9600
Epoch 5/20
60000/60000 [============ ] - 4s 73us/step - loss: 0.3488 -
acc: 0.9061 - val loss: 0.1574 - val acc: 0.9633
Epoch 6/20
60000/60000 [=============== ] - 4s 68us/step - loss: 0.3226 -
acc: 0.9148 - val_loss: 0.1406 - val_acc: 0.9700
Epoch 7/20
60000/60000 [============= ] - 4s 60us/step - loss: 0.2941 -
acc: 0.9220 - val_loss: 0.1450 - val_acc: 0.9679
Epoch 8/20
60000/60000 [============= ] - 4s 62us/step - loss: 0.2711 -
acc: 0.9304 - val_loss: 0.1344 - val_acc: 0.9682
Epoch 9/20
60000/60000 [============= ] - 4s 63us/step - loss: 0.2582 -
acc: 0.9318 - val_loss: 0.1334 - val_acc: 0.9721
Epoch 10/20
60000/60000 [============ ] - 4s 65us/step - loss: 0.2399 -
acc: 0.9374 - val_loss: 0.1381 - val_acc: 0.9713
Epoch 11/20
60000/60000 [============= ] - 4s 67us/step - loss: 0.2325 -
acc: 0.9389 - val loss: 0.1267 - val acc: 0.9736
Epoch 12/20
60000/60000 [============= ] - 4s 61us/step - loss: 0.2199 -
acc: 0.9426 - val_loss: 0.1407 - val_acc: 0.9708
Epoch 13/20
60000/60000 [============ ] - 4s 64us/step - loss: 0.2073 -
acc: 0.9456 - val_loss: 0.1249 - val_acc: 0.9734
Epoch 14/20
60000/60000 [============= ] - 4s 67us/step - loss: 0.2039 -
acc: 0.9464 - val_loss: 0.1340 - val_acc: 0.9731
Epoch 15/20
60000/60000 [============= ] - 4s 72us/step - loss: 0.2019 -
acc: 0.9470 - val loss: 0.1302 - val acc: 0.9746
Epoch 16/20
60000/60000 [================= ] - 5s 75us/step - loss: 0.1932 -
acc: 0.9503 - val_loss: 0.1149 - val_acc: 0.9756
Epoch 17/20
60000/60000 [============= ] - 4s 73us/step - loss: 0.1823 -
acc: 0.9527 - val_loss: 0.1123 - val_acc: 0.9785
Epoch 18/20
60000/60000 [============== ] - 4s 74us/step - loss: 0.1789 -
```

Test score: 0.1157619362520054

print('Test accuracy:', score[1])

Test accuracy: 0.9794

In [82]:

```
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```


In [83]:

```
w after = model relu.get weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
h3_w = w_after[4].flatten().reshape(-1,1)
h4_w = w_after[6].flatten().reshape(-1,1)
h5_w = w_after[8].flatten().reshape(-1,1)
out_w = w_after[10].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 6, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 6, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 6, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h3_w, color='g')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 6, 4)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h4_w, color='cyan')
plt.xlabel('Hidden Layer 4 ')
plt.subplot(1, 6, 5)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h4_w, color='brown')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 6, 6)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + BatchNormalization + Dropout(rate = 0.5) + AdamOptimizer with 3 hidden layers

In [84]:

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-funct
from keras.layers import Dropout
model_drop = Sequential()
model_drop.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_initializer=R
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.5))
model_drop.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdd
model drop.add(BatchNormalization())
model_drop.add(Dropout(0.5))
model_drop.add(Dense(64, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.5))
model_drop.add(Dense(32, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.5))
model_drop.add(Dense(16, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.5))
model_drop.add(Dense(output_dim, activation='softmax'))
model_drop.summary()
```

Layer (type)	Output	Shape	Param #
dense_67 (Dense)	(None,	256)	200960
batch_normalization_21 (Batc	(None,	256)	1024
dropout_31 (Dropout)	(None,	256)	0
dense_68 (Dense)	(None,	128)	32896
batch_normalization_22 (Batc	(None,	128)	512
dropout_32 (Dropout)	(None,	128)	0
dense_69 (Dense)	(None,	64)	8256
batch_normalization_23 (Batc	(None,	64)	256
dropout_33 (Dropout)	(None,	64)	0
dense_70 (Dense)	(None,	32)	2080
batch_normalization_24 (Batc	(None,	32)	128
dropout_34 (Dropout)	(None,	32)	0

dense_71 (Dense)	(None,	16)	528
batch_normalization_25 (Batc	(None,	16)	64
dropout_35 (Dropout)	(None,	16)	0
dense_72 (Dense)	(None,	10)	170

Total params: 246,874 Trainable params: 245,882 Non-trainable params: 992

```
In [85]:
```

```
model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============== ] - 7s 121us/step - loss: 2.2357
- acc: 0.2311 - val_loss: 1.3396 - val_acc: 0.7074
Epoch 2/20
60000/60000 [============ ] - 5s 83us/step - loss: 1.5868 -
acc: 0.4290 - val_loss: 0.8430 - val_acc: 0.7752
Epoch 3/20
60000/60000 [============= ] - 5s 83us/step - loss: 1.2666 -
acc: 0.5369 - val_loss: 0.6421 - val_acc: 0.8368
Epoch 4/20
60000/60000 [================= ] - 5s 87us/step - loss: 1.0828 -
acc: 0.6060 - val_loss: 0.5345 - val_acc: 0.8755
Epoch 5/20
60000/60000 [============ ] - 6s 96us/step - loss: 0.9650 -
acc: 0.6517 - val loss: 0.4411 - val acc: 0.9000
Epoch 6/20
acc: 0.6906 - val_loss: 0.3809 - val_acc: 0.9190
Epoch 7/20
60000/60000 [============= ] - 5s 85us/step - loss: 0.7947 -
acc: 0.7292 - val_loss: 0.3086 - val_acc: 0.9374
Epoch 8/20
60000/60000 [============= ] - 5s 89us/step - loss: 0.7309 -
acc: 0.7568 - val_loss: 0.2643 - val_acc: 0.9387
Epoch 9/20
60000/60000 [============= ] - 5s 87us/step - loss: 0.6728 -
acc: 0.7874 - val_loss: 0.2188 - val_acc: 0.9487
Epoch 10/20
60000/60000 [============ ] - 5s 90us/step - loss: 0.6153 -
acc: 0.8104 - val_loss: 0.2023 - val_acc: 0.9529
Epoch 11/20
60000/60000 [================== ] - 5s 85us/step - loss: 0.5722 -
acc: 0.8287 - val loss: 0.1780 - val acc: 0.9557
Epoch 12/20
60000/60000 [============== ] - 5s 85us/step - loss: 0.5389 -
acc: 0.8404 - val_loss: 0.1658 - val_acc: 0.9583
Epoch 13/20
60000/60000 [============= ] - 5s 90us/step - loss: 0.5108 -
acc: 0.8528 - val_loss: 0.1583 - val_acc: 0.9609
Epoch 14/20
60000/60000 [============== ] - 5s 86us/step - loss: 0.4867 -
acc: 0.8607 - val_loss: 0.1645 - val_acc: 0.9599
Epoch 15/20
60000/60000 [============== ] - 5s 92us/step - loss: 0.4716 -
acc: 0.8661 - val loss: 0.1575 - val acc: 0.9626
Epoch 16/20
60000/60000 [================= ] - 5s 87us/step - loss: 0.4561 -
acc: 0.8706 - val_loss: 0.1447 - val_acc: 0.9651
Epoch 17/20
60000/60000 [============== ] - 5s 82us/step - loss: 0.4360 -
acc: 0.8786 - val_loss: 0.1449 - val_acc: 0.9658
Epoch 18/20
60000/60000 [============== ] - 5s 84us/step - loss: 0.4191 -
```

acc: 0.8827 - val_loss: 0.1466 - val_acc: 0.9661

```
Epoch 19/20
60000/60000 [==============] - 5s 82us/step - loss: 0.4146 -
acc: 0.8872 - val_loss: 0.1389 - val_acc: 0.9674
Epoch 20/20
60000/60000 [==============] - 5s 82us/step - loss: 0.3964 -
acc: 0.8903 - val_loss: 0.1381 - val_acc: 0.9688

In [86]:
score = model_drop.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

Test score: 0.13805706812888383

Test accuracy: 0.9688

In [87]:

```
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```


In [88]:

```
w after = model relu.get weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
h3_w = w_after[4].flatten().reshape(-1,1)
h4_w = w_after[6].flatten().reshape(-1,1)
h5_w = w_after[8].flatten().reshape(-1,1)
out_w = w_after[10].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 6, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 6, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 6, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h3_w, color='g')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 6, 4)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h4_w, color='cyan')
plt.xlabel('Hidden Layer 4 ')
plt.subplot(1, 6, 5)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h4_w, color='brown')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 6, 6)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + BatchNormalization + Dropout(rate = 0.3) + AdamOptimizer with 3 hidden layers

In [89]:

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-funct
from keras.layers import Dropout
model_drop = Sequential()
model_drop.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_initializer=R
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.3))
model_drop.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdd
model drop.add(BatchNormalization())
model_drop.add(Dropout(0.3))
model_drop.add(Dense(64, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.3))
model_drop.add(Dense(32, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.3))
model_drop.add(Dense(16, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stdde
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.3))
model_drop.add(Dense(output_dim, activation='softmax'))
model_drop.summary()
```

Layer (type)	Output	Shape	Param #
dense_73 (Dense)	(None,	256)	200960
batch_normalization_26 (Bat	tc (None,	256)	1024
dropout_36 (Dropout)	(None,	256)	0
dense_74 (Dense)	(None,	128)	32896
batch_normalization_27 (Bat	tc (None,	128)	512
dropout_37 (Dropout)	(None,	128)	0
dense_75 (Dense)	(None,	64)	8256
batch_normalization_28 (Bat	tc (None,	64)	256
dropout_38 (Dropout)	(None,	64)	0
dense_76 (Dense)	(None,	32)	2080
batch_normalization_29 (Bat	tc (None,	32)	128
dropout_39 (Dropout)	(None,	32)	0

dense_77 (Dense)	(None,	16)	528
batch_normalization_30 (Batc	(None,	16)	64
dropout_40 (Dropout)	(None,	16)	0
dense_78 (Dense)	(None,	10)	170

Total params: 246,874 Trainable params: 245,882 Non-trainable params: 992

```
In [90]:
```

```
model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 8s 127us/step - loss: 1.3488
- acc: 0.5626 - val_loss: 0.3823 - val_acc: 0.9094
Epoch 2/20
60000/60000 [============ ] - 5s 87us/step - loss: 0.6504 -
acc: 0.8141 - val_loss: 0.2155 - val_acc: 0.9436
Epoch 3/20
60000/60000 [============= ] - 5s 84us/step - loss: 0.4596 -
acc: 0.8756 - val_loss: 0.1916 - val_acc: 0.9499
Epoch 4/20
60000/60000 [================ ] - 5s 84us/step - loss: 0.3727 -
acc: 0.9042 - val_loss: 0.1556 - val_acc: 0.9577
Epoch 5/20
60000/60000 [============= ] - 5s 86us/step - loss: 0.3184 -
acc: 0.9225 - val_loss: 0.1419 - val_acc: 0.9614
Epoch 6/20
acc: 0.9301 - val_loss: 0.1332 - val_acc: 0.9652
Epoch 7/20
60000/60000 [============= ] - 5s 84us/step - loss: 0.2605 -
acc: 0.9364 - val_loss: 0.1287 - val_acc: 0.9680
Epoch 8/20
60000/60000 [============= ] - 5s 85us/step - loss: 0.2333 -
acc: 0.9447 - val_loss: 0.1204 - val_acc: 0.9717
Epoch 9/20
60000/60000 [============= ] - 5s 86us/step - loss: 0.2152 -
acc: 0.9466 - val_loss: 0.1132 - val_acc: 0.9721
Epoch 10/20
60000/60000 [============= ] - 5s 85us/step - loss: 0.2051 -
acc: 0.9512 - val_loss: 0.1213 - val_acc: 0.9713
Epoch 11/20
60000/60000 [============= ] - 5s 84us/step - loss: 0.1973 -
acc: 0.9532 - val loss: 0.1044 - val acc: 0.9735
Epoch 12/20
60000/60000 [============== ] - 5s 86us/step - loss: 0.1844 -
acc: 0.9558 - val_loss: 0.1013 - val_acc: 0.9764
Epoch 13/20
60000/60000 [============= ] - 5s 89us/step - loss: 0.1732 -
acc: 0.9595 - val_loss: 0.0936 - val_acc: 0.9770
Epoch 14/20
60000/60000 [============== ] - 5s 88us/step - loss: 0.1682 -
acc: 0.9610 - val_loss: 0.0920 - val_acc: 0.9782
Epoch 15/20
60000/60000 [============= ] - 6s 92us/step - loss: 0.1559 -
acc: 0.9627 - val loss: 0.0934 - val acc: 0.9777
Epoch 16/20
60000/60000 [============ ] - 7s 113us/step - loss: 0.1485
- acc: 0.9651 - val_loss: 0.0998 - val_acc: 0.9765
Epoch 17/20
60000/60000 [============== ] - 5s 91us/step - loss: 0.1447 -
acc: 0.9668 - val_loss: 0.1004 - val_acc: 0.9765
Epoch 18/20
60000/60000 [============= ] - 6s 93us/step - loss: 0.1361 -
```

acc: 0.9673 - val_loss: 0.0935 - val_acc: 0.9793

Test score: 0.09172347799413838

Test accuracy: 0.9776

In [92]:

```
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbos
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```


In [93]:

```
w after = model relu.get weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
h3_w = w_after[4].flatten().reshape(-1,1)
h4_w = w_after[6].flatten().reshape(-1,1)
h5_w = w_after[8].flatten().reshape(-1,1)
out_w = w_after[10].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 6, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 6, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 6, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h3_w, color='g')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 6, 4)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h4_w, color='cyan')
plt.xlabel('Hidden Layer 4 ')
plt.subplot(1, 6, 5)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h4_w, color='brown')
plt.xlabel('Hidden Layer 3 ')
plt.subplot(1, 6, 6)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


Comparisons

In [100]:

+ Architecture y	I	parameters	İ	Accurac
+ 2 layer		without Dropout and Batch Normalization	1	97.9
 2 layer	I	with Dropuot(rate = 0.5)		97.44
 2 layer	l	<pre>with Dropuot(rate = 0.3)</pre>	I	98.02
 2 layer	I	with Batch Normalization		97.98
2 layer	with	Dropuot(rate = 0.5) and Batch Normalization	I	98.08
2 layer	with	Dropuot(rate = 0.3) and Batch Normalization	I	98.25
3 layer	I	without Dropout and Batch Normalization	I	97.87
3 layer	I	with Dropuot	I	97.38
3 layer	I	<pre>with Dropuot(rate = 0.3)</pre>		98.06
3 layer		with Batch Normalization	I	97.59
3 layer	with	Dropuot(rate = 0.5) and Batch Normalization	I	97.84
3 layer	with	Dropuot(rate = 0.3) and Batch Normalization	I	98.35
 5 layer		without Dropout and Batch Normalization		98.09

	5 layer	with Dropuot(rate = 0.5)		85.8
	5 layer	<pre>with Dropuot(rate = 0.3)</pre>	I	97.54
	5 layer	with Batch Normalization	I	98.14
	5 layer	with Dropuot(rate = 0.5) and Batch Normalization		95.9
	5 layer	with Dropuot(rate = 0.3) and Batch Normalization	I	97.76
+		-+	-+-	
+	-			

Procedure followed

- 1. Flattened the 28*28 dimensional MNIST data to 784
- 2. Normalized the data
- 3. Used a softmax classifier of output dimensions = 10
- 4. Created multiple models in Keras with various parameter combinations like activation function = 'relu', optimizer = 'Adam', with/without dropout of different rates, with/without Batch normalization
- 5. Plotted the epoch vs Train/Test loss of each model
- 6. Plotted the weights of each model