Selected Problems Chapter 6 Linear Algebra Done Right, Sheldon Axler, 3rd Edition

Mustaf Ahmed

December 19, 2021

Problem Inner Product Bilinearity. Let V be a vector space equipped with an inner product $\langle .,. \rangle : V \times V \to F$. Show that the inner product is bilinear.

Proof. There are two cases: $F = \mathbb{R}$ or $F = \mathbb{C}$. Assume that $F = \mathbb{R}$. We'll first show additivity in the second slot. We have

$$\begin{aligned} \langle u, v + w \rangle &= \overline{\langle v + w, u \rangle} \\ &= \overline{\langle v, u \rangle + \langle w, u \rangle} \\ &= \langle v, u \rangle + \langle w, u \rangle \\ &= \overline{\langle u, v \rangle} + \overline{\langle u, w \rangle} \\ &= \langle u, v \rangle + \langle u, w \rangle \end{aligned}$$

For homogenity in the second slot, we have

$$\begin{split} \langle u, \lambda v \rangle &= \overline{\langle \lambda v, u \rangle} \\ &= \overline{\lambda \langle v, u \rangle} \\ &= \lambda \langle v, u \rangle \\ &= \lambda \overline{\langle u, v \rangle} \\ &= \lambda \langle u, v \rangle \end{split}$$