

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

GABRIEL MARTINS JOÃO PAULO RODRIGUES DE ANDRADE

TRABALHO DE DIFERENÇAS FINITAS.

Sumário

Prova da média harmônica da permeabilidade	6
Definição da transmissibilidade da face para escoamento monofásico	
Problema bidimensional (Escoamento em regime permanente)	
1001cma biamicholoma (Ebedamento em regime permanente)	•••

Prova da média harmônica da permeabilidade

Dados dois volumes (E e D) adjacentes da face e, com permeabilidades K_E e K_D temos para a equação da velocidade:

$$\vec{v} = -\frac{K_E}{\mu} \frac{(p_e - p_E)}{\frac{h_E}{2}}$$
 (Equação 1)

$$\vec{v} = -\frac{K_D}{\mu} \frac{(p_D - p_e)}{\frac{h_D}{2}}.$$
 (Equation 2)

Igualando as equações 1 e 2 temos:

$$\frac{K_E}{h_E} (p_e - p_E) = \frac{K_D}{h_D} (p_D - p_e).$$
 (Equation 3)

Isolando o termo p_e , chega-se à:

$$p_e = \frac{h_E K_D p_D + h_D K_E p_E}{h_E K_D + h_D K_E}.$$
 (Equation 4)

Substituindo a equação 4 na equação 1:

$$\vec{v} = -\frac{2K_E}{\mu h_E} \left[\frac{h_E K_D p_D + h_D K_E p_E}{h_E K_D + h_D K_E} - p_E \right].$$
 (Equation 5)

Após algumas manipulações, a equação 5 pode ser escrita como

$$\vec{v} = -\frac{2}{\mu} \left[\frac{1}{\frac{h_D}{K_D} + \frac{h_E}{K_E}} \right] (p_D - p_E).$$
 (Equation 6)

Da mesma forma que as equações 1 e 2, a velocidade pode ser escrita como:

$$\vec{v} = -\frac{K_e}{\mu} \frac{(p_D - p_E)}{\frac{h_D + h_E}{2}}.$$
 (Equation 7)

Igualando as equações 6 e 7 temos:

$$\frac{K_e}{h_D + h_E} = \frac{1}{\frac{h_D}{K_D} + \frac{h_E}{K_E}},$$
 (Equation 8)

o que leva à

$$K_e = \frac{h_D + h_E}{\frac{h_D}{K_D} + \frac{h_E}{K_E}}.$$
 (Equation 9)

Fazendo $h_D = h_E = h$, temos:

$$K_e = \frac{2K_D K_E}{K_D + K_E}.$$
 (Equation 10)

Quando $K_D = K_E = K$, a equação 10 se torna

$$K_e = K$$
 (Equação 11)

Definição da transmissibilidade da face para escoamento monofásico

Para chegarmos ao valor da transmissibilidade na face, se faz necessário aplicar a equação de conservação da massa, dada por (desprezando os efeitos de compressibilidade e gravidade):

$$\nabla \cdot (\vec{v}) = q \tag{Equation 12}$$

onde q é o termo fonte. Tomando como exemplo o escoamento unidimensional, a equação 12 tem a forma:

$$\frac{\partial}{\partial x} \left(-\frac{K}{\mu} \frac{\partial p}{\partial x} \right) = q.$$
 (Equação 13)

Aplicando o método das diferenças finitas para discretizar a equação 13, chega-se à:

$$-\frac{1}{\mu h_i} \left[K_{i+1/2} \left(\frac{p_{i+1} - p_i}{h_{i+1/2}} \right) - K_{i-1/2} \left(\frac{p_i - p_{i-1}}{h_{i-1/2}} \right) \right] = q_i \qquad \text{(Equação 14)}$$

onde

$$\begin{cases} h_{i+1/2} = \frac{h_i + h_{i+1}}{2} \\ h_{i-1/2} = \frac{h_i + h_{i-1}}{2} \end{cases}$$
 (Equação 15)

Os termos da equação 14, que estão dentro dos colchetes, tem a forma da equação 7. Por exemplo, no primeiro termo, $K_{i+1/2}$ é equivalente a K_e , $h_{i+1/2}$ é equivalente a $\frac{h_D + h_E}{2}$ e $p_{i+1} - p_i$ é equivalente a $p_D - p_E$. Essa comparação pode ser feita também para o segundo termo dentro dos colchetes. Podemos então generalizar a equação 14 para um determinado elemento E em todas as direções cartesianas da seguinte forma:

$$\sum_{e \in E} T_e \left(p_E - p_D \right) = q_E \tag{Equação 16}$$

onde T_e é definida como a transmissibilidade da face e, dada por:

$$T_e = \frac{K_e}{\mu h_E \left(\frac{h_D + h_E}{2}\right)}$$
 (Equação 17)

onde K_e é dada pela equação 9 e

$$\begin{cases} h_D = \frac{V_D}{A_e} \\ h_E = \frac{V_E}{A_e} \end{cases}$$
 (Equação 18)

onde V_D e V_E são os volumes dos elementos D e E respectivamente e A_e é a área da face e. Se $h_D=h_E=h$, a equação 17 se torna

$$T_e = \frac{K_e}{\mu h^2}.$$
 (Equação 19)

Problema bidimensional (Escoamento em regime permanente)

- Esquema de 1/4 de Cinco Poços.
- Reservatório quadrado de Largura L =100,
- P bloco canto inferior esquerdo = 500,
- P_bloco_canto_superior_direito = 100.
- Use uma malha quadrilateral com 16 blocos de comprimento h=25.
- O reservatório tem uma barreira no centro do domínio que é representada, por 4 blocos centrais. Para esses use uma permeabilidade de Kb= 1.
- Para o restante dos blocos da malha use Ka=10000.
- Viscosidade unitária

Ť.				
	13	14	15	16
	9	10	11	12
	5	6	7	8
	1	2	3	4

$$K_6 = K_7 = K_{10} = K_{11} = Kb$$

 $p_1 = 500$
 $p_{16} = 100$

Quando as permeabilidades na interface entre os elementos forem diferentes, a permeabilidade na face é dada por (eq 10) $K_e=\frac{2KaKb}{Ka+Kb}=\frac{2*1*10000}{1+10000}=2$. Para as transmissibilidades temos os seguintes valores (eq 19):

• para
$$K_e=2$$
: $T_e=\frac{2}{25^2}=0.0032=T2$;

• para
$$K_e = 1$$
: $T_e = \frac{1}{25^2} = 0.0016 = T1$;

• para
$$K_e = 10000$$
: $T_e = \frac{10000}{25^2} = 16 = T3$.

Equações dos blocos

1:

$$p_1 = 500$$

2:

$$T3(p_2 - p_1) + T2(p_2 - p_6) + T3(p_2 - p_3) = 0$$
$$p_2(2T3 + T2) - T3p_1 - T2p_6 - T3p_3 = 0$$

3:

$$T3(p_3 - p_2) + T2(p_3 - p_7) + T3(p_3 - p_4) = 0$$
$$p_3(2T3 + T2) - T3p_2 - T2p_7 - T3p_4 = 0$$

4:

$$T3(p_4 - p_3) + T3(p_4 - p_8) = 0$$
$$p_4(2T3) - T3p_3 - T3p_8 = 0$$

5:

$$T3(p_5 - p_1) + T2(p_5 - p_6) + T3(p_5 - p_9) = 0$$
$$p_5(2T3 + T2) - T3p_1 - T2p_6 - T3p_9 = 0$$

6:

$$T2(p_6 - p_2) + T2(p_6 - p_5) + T1(p_6 - p_7) + T1(p_6 - p_{10}) = 0$$
$$p_6(2T2 + 2T1) - T2p_2 - T2p_5 - T1p_7 - T1p_{10} = 0$$

7:

$$T2(p_7 - p_3) + T2(p_7 - p_8) + T1(p_7 - p_6) + T1(p_7 - p_{11}) = 0$$
$$p_7(2T2 + 2T1) - T2p_3 - T2p_8 - T1p_6 - T1p_{11} = 0$$

8:

$$p_8(2T3 + T2) - T3p_4 - T2p_7 - T3p_{12} = 0$$

9:

$$p_9(2T3 + T2) - T3p_5 - T2p_{10} - T3p_{13} = 0$$

10:

$$p_{10}(2T2 + 2T1) - T2p_9 - T2p_{14} - T1p_6 - T1p_{11} = 0$$

11:

$$p_{11}(2T2 + 2T1) - T2p_{12} - T2p_{15} - T1p_7 - T1p_{10} = 0$$

12:

$$p_{12}(2T3 + T2) - T3p_8 - T2p_{11} - T3p_{16} = 0$$

13:

$$p_{13}(2T3) - T3p_9 - T3p_{14} = 0$$

14:

$$p_{14}(2T3 + T2) - T3p_{13} - T2p_{10} - T3p_{15} = 0$$

15:

$$p_{15}(2T3 + T2) - T3p_{14} - T2p_{11} - T3p_{16} = 0$$

16:

$$p_{16} = 100$$

O sistema de equações obtido é Tp=q, onde a matriz T é

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1															
2	-16	32.0032	-16			-0.0032										
3		-16	32.0032	-16			-0.0032									
4			-16	32				-16								
5	-16				32.0032	-0.0032			-16							
6		-0.0032			-0.0032	0.0096	-0.0016			-0.0016						
7			-0.0032			-0.0016	0.0096	-0.0032			-0.0016					
8				-16			-0.0032	32.0032				-16				
9					-16				32.0032	-0.0032			-16			
10						-0.0016			-0.0032	0.0096	-0.0016			-0.0032		
11							-0.0016			-0.0016	0.0096	-0.0032			-0.0032	
12								-16			-0.0032	32.0032				-16
13									-16			Ť	32	-16		
14										-0.0032			-16	32.0032	-16	
15											-0.0032			-16	32.0032	-16
16																1

e

O vetor de pressões obtido é:

 $p = \begin{bmatrix} 500 & 433.32 & 366.65 & 299.99 & 433.19 & 388.82 & 299.98 & 233.34 & 366.55 & 299.93 & 211.09 & 166.67 & 299.92 & 233.29 & 166.65 & 100 \end{bmatrix}^T$