CLAIMS

What is claimed is:

1	1. A data processing method for generating a digital signature, the method comprising
2	the computer-implemented steps of:
3	receiving and transiently storing a first integer data value relating to a digital signature
4	of an electronic message;
5	digitally computing a multiplicative inverse of the first integer data value modulo a
6	prime modulus data value by computing a first quantity modulo the prime
7	modulus data value;
8	wherein the first quantity substantially equals, modulo the prime modulus data value
9	the first integer data value raised to a power of a second quantity;
10	wherein the second quantity is two less than the prime modulus data value; and
11	storing the multiplicative inverse in a computer hardware storage element for use in
12	determining the digital signature of the electronic message.
1	2. A method for generating a digital output signal indicating a multiplicative inverse of
2	an integer data value modulo a prime modulus, the method comprising the steps of:
3	receiving a first signal, indicating a value of the integer data value, at a base input of
4	modulo exponentiation block of an electronic integrated circuit;
5	sending a second signal, indicating a value of the prime modulus, to a modulus input
6	of the modulo exponentiation block; and
7	sending a third signal, indicating a value of the prime modulus less two, to an
8	exponent input of the modulo exponentiation block;
9	wherein the modulo exponentiation block generates an output based on a first quanti
10	modulo a value at the modulus input; and
11	wherein the first quantity substantially equals, modulo the value at the modulus inpu
12	a value at the base input raised to a power of a value at the exponent input.

1	3. A method for fabricating an electronic circuit that generates an output signal
2	indicating a multiplicative inverse of an integer data value modulo a prime modulus, the
3	method comprising the steps of:
4	connecting a first register holding signals indicating a value of the integer data value
5	to a base input of a modulo exponentiation block;
6	connecting a second register holding signals indicating a value of the prime modulus,
7	to a modulus input of the modulo exponentiation block;
8	connecting a third register holding signals indicating a value of the prime modulus
9	less two, to an exponent input of the modulo exponentiation block;
10	wherein the modulo exponentiation block generates an output based on a first quantit
11	modulo a value at the modulus input; and
12	wherein the first quantity substantially equals, modulo the value at the modulus input
13	a value at the base input raised to a power of a value at the exponent input.
1	4. An apparatus for generating an output signal indicating a multiplicative inverse of an
2	integer modulo a prime modulus comprising:
3	a modulo exponentiation block configured to generate the output signal based on a
4	first quantity modulo a value at a modulus input, the first quantity
5	substantially equal, modulo the value at the modulus input, to a value at a bas
6	input raised to a power of a value at an exponent input;
7	a first input for receiving a first signal indicating a value of the integer, the first input
8	connected to the base input;
9	a second input for receiving a second signal indicating a value of the prime modulus,
10	the second input connected to the modulus input; and
11	a circuit connected to the second input configured to generate on a first output a third
12	signal indicating a value of the prime modulus less two, the first output
13	connected to the exponent input.

- 1 5. An apparatus for performing a particular operation for using digital signatures on a
- 2 network, the apparatus comprising a modulo exponentiation block configured for producing a
- 3 multiplicative inverse of an integer modulo a prime modulus.
- 1 6. The apparatus as recited in Claim 5, further comprising no circuitry block configured
- 2 to perform an extended Euclidian algorithm (EEA) and no general-purpose processor
- 3 configured by instructions to perform the EEA.
- 1 7. The apparatus as recited in Claim 5, wherein:
- 2 the particular operation is performed in a series of sequential computations
- accomplished over a corresponding series of computation cycles; and
- 4 the apparatus further comprises connections configured to use the modulo
- 5 exponentiation block during a plurality of computation cycles of the series of
- 6 computation cycles.
- 1 8. The apparatus as recited in Claim 5, wherein the particular operation is an RSA
- 2 encrypting operation.
- 1 9. The apparatus as recited in Claim 5, wherein the particular operation is an RSA
- 2 decrypting operation.
- 1 10. The apparatus as recited in Claim 5, wherein the particular operation is a digital
- 2 signature algorithm signing operation.
- 1 11. The apparatus as recited in Claim 5, wherein the particular operation is a digital
- 2 signature algorithm verifying operation.

į di
i di
i mi
[]
2
Ĕ.J
ni mi
Ē.,;;

1	12. A computer-readable medium carrying one or more sequences of instructions for
2	generating a multiplicative inverse of an integer modulo a prime modulus, which instructions,
3	when executed by one or more processors, cause the one or more processors to carry out the
4	steps of:
5	sending data indicating a value of the integer as an base input to a modulo
6	exponentiation function;
7	sending data indicating a value of the prime modulus as an modulus input to the
8	modulo exponentiation function; and
9	sending data indicating a value of the prime modulus less two as an exponent input of
10	the modulo exponentiation function,
11	wherein
12	the modulo exponentiation function generates an output based on a first
13	quantity modulo the modulus input, and
14	the first quantity substantially equals, modulo the modulus input, the base
15	input raised to a power of the exponent input.
1	13. The computer-readable medium recited in Claim 12, wherein the exponentiation
2	function sends the base input, the modulus input and the exponent input to a special-purpose
3	block of circuitry configured to perform modulo exponentiation.