

Machine Learning Based Prediction of Half-Lives of Environmental Pollutants

Bachelor Thesis

Steven Lang

September 13, 2017

The Data

Methods

Experiments

Results

Conclusion

Outlook

The problem:

▶ Industries release chemicals into the environment

The problem:

- ▶ Industries release chemicals into the environment
- ► Chemicals can cause harm (e.g. pesticides)

The problem:

- Industries release chemicals into the environment
- ► Chemicals can cause harm (e.g. pesticides)
- Persistence of harmful chemicals is strongly undesired

The problem:

- Industries release chemicals into the environment
- ► Chemicals can cause harm (e.g. pesticides)
- Persistence of harmful chemicals is strongly undesired
- ▶ It is necessary to know the half-life of a molecule beforehand

The problem:

- Industries release chemicals into the environment
- ► Chemicals can cause harm (e.g. pesticides)
- Persistence of harmful chemicals is strongly undesired
- ▶ It is necessary to know the half-life of a molecule beforehand

⇒ Solution: Machine learning based prediction of half-lives

The Data

Eawag-Soil package:

- ▶ Published by Latino et al. ¹
- Available on enviPath (environmental contaminant biotransformation pathway resource system)
- Microbial biotransformation pathways
- Meta-data of organic contaminants in different environments
- Half-life values for compounds under certain environmental conditions

 $^{^{1}}$ Latino et al., "Eawag-Soil in enviPath: a new resource for exploring regulatory pesticide soil biodegradation pathways and half-life data"

The Data

- Contains:
 - ► 744 unique compounds
 - ▶ 3108 unique **scenarios** (set of environmental conditions)
 - ▶ 4890 half-lives
 - $\frac{4890}{744 \times 3108} = 0.21\%$ occupation rate

Given as SMILES string, e.g. 7-OH-metosulam:

CC1=CC=C(C(=C1CI)NS(=O)(=O)C2=NN3C(=CC(=NC3=N2)OC)O)CI

Given as SMILES string, e.g. 7-OH-metosulam:

$$CC1=CC=C(C(=C1CI)NS(=O)(=O)C2=NN3C(=CC(=NC3=N2)OC)O)CI$$

Fingerprinter:

► Translate molecule structure into bit-vector

Figure: Molecule structure of 7-OH-metosulam

Given as SMILES string, e.g. 7-OH-metosulam:

$$CC1=CC=C(C(=C1CI)NS(=O)(=O)C2=NN3C(=CC(=NC3=N2)OC)O)CI$$

Fingerprinter:

- Translate molecule structure into bit-vector
- Bits correspond to query results against the graph

Figure: Molecule structure of 7-OH-metosulam

Given as SMILES string, e.g. 7-OH-metosulam:

$$CC1=CC=C(C(=C1CI)NS(=O)(=O)C2=NN3C(=CC(=NC3=N2)OC)O)CI$$

Fingerprinter:

- Translate molecule structure into bit-vector
- ► Bits correspond to query results against the graph
- ► "Are there fewer than 3 oxygens?"
- ▶ "Is there a ring of size 4?"

Figure: Molecule structure of 7-OH-metosulam

The Data: Scenarios

Environmental conditions under which the degradation process took place

- ▶ 13 numeric features:
 - acidity
 - biomass
 - temperature
 - water storage capacity
 - . . .

The Data: Scenarios

Environmental conditions under which the degradation process took place

- ▶ 13 numeric features:
 - acidity
 - biomass
 - temperature
 - water storage capacity
 - . . .

- 2 categorical features:
 - soil classification system
 - soiltexture (result)

▶ Standard scaling: $z^{(k)} = \frac{x^{(k)} - \mu^{(k)}}{\sigma^{(k)}}$, for the k-th feature

- ► Standard scaling: $z^{(k)} = \frac{x^{(k)} \mu^{(k)}}{\sigma^{(k)}}$, for the *k*-th feature
- ▶ Target variable transformation: $DT_{50} \rightsquigarrow In(DT_{50})$

- ► Standard scaling: $z^{(k)} = \frac{x^{(k)} \mu^{(k)}}{\sigma^{(k)}}$, for the *k*-th feature
- ▶ Target variable transformation: $DT_{50} \rightsquigarrow In(DT_{50})$
- Cleaning implausible scenarios

- ▶ Standard scaling: $z^{(k)} = \frac{x^{(k)} \mu^{(k)}}{\sigma^{(k)}}$, for the k-th feature
- ▶ Target variable transformation: $DT_{50} \rightsquigarrow In(DT_{50})$
- Cleaning implausible scenarios
- Imputation of missing scenario values:
 - ► Mean Imputation
 - KNN
 - Matrix Factorization
 - Spectral Regularization
 - Multiple Imputation by Chained Equations

Miss.
0.02
0.43
0.32
0.62
0.19
0.04
0.15
0.02
0.16
0.19
0.11
0.12
0.12

The Data: Half-Lives

DT₅₀ Per Compound

Compounds

The Data: Half-Lives

Distribution

Methods: Models

Baseline approaches:

- ▶ Random Forest
- ► Support Vector Regression
- ► Bagged Support Vector Regression

Methods: Models

Baseline approaches:

- Random Forest
- ► Support Vector Regression
- ► Bagged Support Vector Regression

Advanced approaches:

- ► Neural Network Regression
- Denoising Autoencoder as feature encoding

Methods: Denoising Autoencoder Regression Network Architecture

Compound DAE

Methods: Denoising Autoencoder Regression Network

Scenario DAE

Methods: Denoising Autoencoder Regression Network

Methods: Denoising Autoencoder Regression Network Training Phase 1)

Methods: Denoising Autoencoder Regression Network Training Phase 2)

Methods: Denoising Autoencoder Regression Network Training Phase 3)

Methods: Denoising Autoencoder Regression Network Training Phase 4)

Methods: Denoising Autoencoder Regression Network Weight Optimization

$$L = MSE(\mathbf{y}, \hat{\mathbf{y}}) + \lambda_1 R_{weights} + \lambda_2 R_{acts}$$

$$R_{weights} = \sum_{i} ||\mathbf{W}^{(i)}||_2^2$$

$$R_{acts} = \sum_{i} ||\mathbf{z}^{(i)}||_2^2$$

Optimizer: Adam², learning rate = 0.01

Steven Lang

²Kingma and Ba, "Adam: A Method for Stochastic Optimization".

10-fold cross validation with standard bi-relational splitting approach

- ▶ Train datapoint: $x_i = (c_i, s_i)$
- ► Test datapoint: $\mathbf{x}_j = (\mathbf{c}_j, \mathbf{s}_j)$ with $\mathbf{c}_i \neq \mathbf{c}_i \land \mathbf{s}_i \neq \mathbf{s}_i$

Compounds

train test

10-fold cross validation with standard bi-relational splitting approach

- ▶ Train datapoint: $x_i = (c_i, s_i)$
- ► Test datapoint: $\mathbf{x}_j = (\mathbf{c}_j, \mathbf{s}_j)$ with $\mathbf{c}_i \neq \mathbf{c}_i \land \mathbf{s}_i \neq \mathbf{s}_i$
- Where to put $x_k = (c_k, s_k)$ with $c_k = c_i \wedge s_k = s_i$?

Compounds train test

10-fold cross validation with standard bi-relational splitting approach

- ▶ Train datapoint: $x_i = (c_i, s_i)$
- ► Test datapoint: $\mathbf{x}_j = (\mathbf{c}_j, \mathbf{s}_j)$ with $\mathbf{c}_i \neq \mathbf{c}_i \land \mathbf{s}_i \neq \mathbf{s}_i$
- Where to put $x_k = (c_k, s_k)$ with $c_k = c_j \wedge s_k = s_i$?

 \Rightarrow Remove x_k for validation split

Compounds train test

10-fold cross validation with advanced bi-relational splitting approach

 $ightharpoonup DT_{50}$ matrix as graph G

10-fold cross validation with advanced bi-relational splitting approach

- ► DT₅₀ matrix as graph G
- ► Each datapoint x is a node

10-fold cross validation with advanced bi-relational splitting approach

- ► DT₅₀ matrix as graph G
- Each datapoint x is a node
- Two nodes are connected if they share the same compound, or the same scenario

10-fold cross validation with advanced bi-relational splitting approach

- ► DT₅₀ matrix as graph G
- ► Each datapoint x is a node
- Two nodes are connected if they share the same compound, or the same scenario
- Goal: remove nodes, such that G is disconnected into two subgraphs (train, test set)

10-fold cross validation with advanced bi-relational splitting approach

- ► DT₅₀ matrix as graph G
- ► Each datapoint x is a node
- Two nodes are connected if they share the same compound, or the same scenario
- Goal: remove nodes, such that G is disconnected into two subgraphs (train, test set)
- ► Sparseness (0.21%) of the data already builds disconnected subgraphs (408)

10-fold cross validation with advanced bi-relational splitting approach

- ► DT₅₀ matrix as graph G
- ► Each datapoint x is a node
- ► Two nodes are connected if they share the same compound, or the same scenario
- ► Goal: remove nodes, such that *G* is disconnected into two subgraphs (train, test set)
- ► Sparseness (0.21%) of the data already builds disconnected subgraphs (408)
- Select subgraphs for train set and use all others for test set

Compounds

10-fold cross validation with advanced bi-relational splitting approach

- ► DT₅₀ matrix as graph G
- ► Each datapoint x is a node
- ► Two nodes are connected if they share the same compound, or the same scenario
- ► Goal: remove nodes, such that *G* is disconnected into two subgraphs (train, test set)
- Sparseness (0.21%) of the data already builds disconnected subgraphs (408)
- Select subgraphs for train set and use all others for test set
- ⇒ Splitting problem solved while using *all* datapoints available

Validation Metric

Coefficient of determination:

$$R^{2}(\mathbf{y}, \hat{\mathbf{y}}) = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

Validation Metric

Coefficient of determination:

$$R^{2}(\mathbf{y}, \hat{\mathbf{y}}) = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

Interesting values:

Validation Metric

Coefficient of determination:

$$R^{2}(\mathbf{y}, \hat{\mathbf{y}}) = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

Interesting values:

- $P^2(\mathbf{y}, \hat{\mathbf{y}}) = 1 \iff \hat{\mathbf{y}} = \mathbf{y}$
- $P^{2}(\mathbf{y}, \hat{\mathbf{y}}) = 0 \Leftarrow \hat{y}_{i} = \overline{y}, \quad 1 \leq i \leq n$

Results: Baseline Results

Random Forest: Predicted vs. True

Results: Baseline Results

Random Forest: Predictions

Compounds × Scenarios

Fingerprinter

Testing different Fingerprinter from Open Babel³

MACCS: 166 queries, "Are there fewer than 3 oxygens"

 FP2: 1022 queries, locates molecule fragments in linear segments of up to 7 atoms

► FP3: 56 SMARTS patterns

► FP4: 308 SMARTS patterns

³O'Boyle et al., "Open Babel: An open chemical toolbox".

Fingerprinter

Testing different Fingerprinter from Open Babel³

► MACCS: 166 queries, "Are there fewer than 3 oxygens"

 FP2: 1022 queries, locates molecule fragments in linear segments of up to 7 atoms

► FP3: 56 SMARTS patterns

► FP4: 308 SMARTS patterns

Random Forest 0.182	0.181	0.001	0.143
SVR rbf 0.176	0.052	-0.177	0.096
Bagged SVR rbf 0.185	0.070	-0.086	0.126

³O'Boyle et al., "Open Babel: An open chemical toolbox".

Fingerprinter

Testing different Fingerprinter from Open Babel³

► MACCS: 166 queries, "Are there fewer than 3 oxygens"

 FP2: 1022 queries, locates molecule fragments in linear segments of up to 7 atoms

► FP3: 56 SMARTS patterns

► FP4: 308 SMARTS patterns

Model	MACCS	FP2	FP3	FP4
Random Forest	0.182	0.181	0.001	0.143
SVR rbf	0.176	0.052	-0.177	0.096
Bagged SVR rbf	0.185	0.070	-0.086	0.126

 Advanced Fingerprinter do not incorporate more structural information that correlate with the DT₅₀

³O'Boyle et al., "Open Babel: An open chemical toolbox".

Imputation Methods

Model	Mean	KNN	MICE	SoftImpute	Matrix Fact.
Random Forest	0.182	0.174	0.168	0.168	0.160
SVR rbf	0.176	0.174	0.178	0.166	0.166
Bagged SVR rbf	0.185	0.183	0.185	0.173	0.173

Advanced methods do not provide better imputation, regarding the DT_{50} values

Drop datapoints in two different schemes:

Drop datapoints in two different schemes:

1. Half-lives of extraordinary length (short/long)

Drop datapoints in two different schemes:

1. Half-lives of extraordinary length (short/long)

Drop datapoints in two different schemes:

- 1. Half-lives of extraordinary length (short/long)
- 0.15 0.05 0.
- 2. Compounds with too few annotated scenarios

Drop datapoints in two different schemes:

1. Half-lives of extraordinary length (short/long)

2. Compounds with too few annotated scenarios

Autoencoder quality: MNIST

Autoencoder quality: Compounds

Autoencoder quality: Scenarios

Autoencoder quality: Loss

Steven Lang

Results: *DT*₅₀ Regression

Full DAE regression network run with default parameters

Steven Lang

September 13, 2017

Results: DAE Regression Network Parameters Encoding Dimension

► Lower dimension → more dense representation, deeper network

Encoding Dimension

► Lower dimension → more dense representation, deeper network

Compounds: Slight slope towards higher encoding dimension ⇒ Encoding does either not, or negatively impact DT₅₀ predictions

Noise Factor

► Scale of random noise added to the input

Noise Factor

Scale of random noise added to the input

- Peak at ~ 0.5
- Below: No effect of DAE's robust feature generation
- Above: Features get lost in noise

No clear influence for:

► Switch Rate

No clear influence for:

- ► Switch Rate
- ► Compression Factor

No clear influence for:

- ► Switch Rate
- Compression Factor
- Scenario Encoding Dimension

27

Results: Permutation based P-Value Tests

Why is nothing *really* working?

⁴Ojala and Garriga, "Permutation Tests for Studying Classifier Performance".

Why is nothing *really* working?

Permutation based p-value tests⁴

- ► Test 1: Permute labels v
 - ▶ Did the model find a connection between **X** and **y**?
- ► **Test 2:** Permute data columns per class
 - ▶ Does there exist a dependency between features of **X** that may reduce the error score?

27 September 13, 2017 Steven Lang

⁴Ojala and Garriga, "Permutation Tests for Studying Classifier Performance".

Why is nothing really working?

Permutation based p-value tests⁴

- ► Test 1: Permute labels v
 - ▶ Did the model find a connection between **X** and **y**?
- ► Test 2: Permute data columns per class
 - ► Does there exist a dependency between features of **X** that may reduce the error score?

$$p = \frac{\left|\left\{D' \in \hat{D} : e\left(f, D'\right) \leq e\left(f, D\right)\right\}\right| + 1}{\left|\hat{D}\right| + 1}$$

Significance threshold $\alpha = 0.05$

(likelihood of the model achieving the error e(f, D) by chance)

⁴Ojala and Garriga, "Permutation Tests for Studying Classifier Performance".

Setup: Random Forest, 100 permutations, e(f, D) = 0.182

Setup: Random Forest, 100 permutations, e(f, D) = 0.182

Test	Features	<i>p</i> -value	R^2 mean
1	all	0.010	-0.043

 \blacktriangleright Test 1: No permutation achieved a better results \Rightarrow Significant dependency explored

Results: Permutation based P-Value Tests

Setup: Random Forest, 100 permutations, e(f, D) = 0.182

Test	Features	<i>p</i> -value	R^2 mean
1	all	0.010	-0.043
2	all	0.089	0.157

- ► Test 1: No permutation achieved a better results ⇒ Significant dependency explored
- ► Test 2 all: Only slightly worse than $e(f, D) \Rightarrow$ No significant dependency between features of the same class detected by the model

Results: Permutation based P-Value Tests

Setup: Random Forest, 100 permutations, e(f, D) = 0.182

Test	Features	<i>p</i> -value	R^2 mean
1	all	0.010	-0.043
2	all	0.089	0.157
2	compound	0.020	0.149

- \blacktriangleright Test 1: No permutation achieved a better results \Rightarrow Significant dependency explored
- ► Test 2 all: Only slightly worse than $e(f, D) \Rightarrow$ No significant dependency between features of the same class detected by the model
- ► Test 2 compound: p = 0.020 significant, $R^2 = 0.149$ only slight margin to original dataset

Results: Permutation based P-Value Tests

Setup: Random Forest, 100 permutations, e(f, D) = 0.182

Test	Features	<i>p</i> -value	R^2 mean
1	all	0.010	-0.043
2	all	0.089	0.157
2	compound	0.020	0.149
2	scenario	0.525	0.171

- \blacktriangleright Test 1: No permutation achieved a better results \Rightarrow Significant dependency explored
- ► Test 2 all: Only slightly worse than $e(f, D) \Rightarrow$ No significant dependency between features of the same class detected by the model
- ► Test 2 compound: p = 0.020 significant, $R^2 = 0.149$ only slight margin to original dataset
- ► Test 2 scenario: Randomly performs better than the original dataset ⇒ Scenarios are of no help to detect any dependency at all

▶ Baseline models revealed modest dependencies, merely capable of a better regression than mean-value predictor

- Baseline models revealed modest dependencies, merely capable of a better regression than mean-value predictor
- ► Autoencoder worked well for compounds and bad for scenarios

- Baseline models revealed modest dependencies, merely capable of a better regression than mean-value predictor
- Autoencoder worked well for compounds and bad for scenarios
- ▶ DAE regression network parameter evaluation is hard to interpret, due to high variance of the results

- Baseline models revealed modest dependencies, merely capable of a better regression than mean-value predictor
- Autoencoder worked well for compounds and bad for scenarios
- ▶ DAE regression network parameter evaluation is hard to interpret, due to high variance of the results
- P-value tests revealed that scenario data was of no help in dependency exploration

Possible sources for the bad evaluation results:

- 1. Dataset contains an insufficient number of instances, represents only a small fraction of the patterns
 - See performance loss while removing data

⁵Zhang et al., "Understanding deep learning requires rethinking generalization".

Possible sources for the bad evaluation results:

- 1. Dataset contains an insufficient number of instances, represents only a small fraction of the patterns
 - See performance loss while removing data
- Dataset lacks in informative features
 - See p-value test results

30 September 13, 2017

⁵Zhang et al., "Understanding deep learning requires rethinking generalization".

Possible sources for the bad evaluation results:

- 1. Dataset contains an insufficient number of instances, represents only a small fraction of the patterns
 - See performance loss while removing data
- 2. Dataset lacks in informative features
 - ► See *p*-value test results
- 3. Network weights underdetermination
 - See Zhang et al.⁵

⁵Zhang et al., "Understanding deep learning requires rethinking generalization".

Outlook

What next?

► Capturing more features for existing studies is impossible

Outlook

What next?

- ► Capturing more features for existing studies is impossible
- Measuring more datapoints

Outlook

What next?

- Capturing more features for existing studies is impossible
- Measuring more datapoints
- ► Improve autoencoder performance by training on further datasets that are not connected to half-lives

- ► Thank you for your attention!
- ► Any questions?