Mengen und Deterministische Endliche Automaten

Definition Menge

Fast eine beliebige Zahl an Elementen zusammen.

Definition Alphabet

Eine endliche nicht-leere Menge aus Symbolen.

Definition Wort

Eine endliche aneinander Reihung von Symbolen aus einem Alphabet. Wenn ein Wort keine Symbole enthält wird es als *leeres Wort* bezeichnet.

Definition Formale Sprache über einem Alphabet

Eine Menge aus Wörtern die aus den Symbolen des Alphabets gebildet wurden.

Definition Deterministischer Endlicher Automat

Ein endlicher deterministischer Automat $A = (X, S, s_0, \delta, F)$ besteht aus:

 $X: Endliches\ Eingabealphabet$

 $S: Endliche\ Zustandsmenge$

 $s_0: Startzustand \in S$

 $\delta: Zustands \ddot{u}bergangs funktion: \delta: S \times X \rightarrow S$

 $F: Menge \ der \ Endzust \ddot{a}nde \subseteq S$

Aufgabe 1

Beschreiben Sie folgende Mengen Textuell:

a)
$$\{0, 2, 4, 6, 8, ..., 100\}$$

b)
$$\{x \in \mathbb{N} \mid x = y^3, y \in \mathbb{N}\}\$$

c)
$$\{0000,0001,0010,...,1111\}$$

Aufgabe 2

Geben Sie einen DEA (deterministischen endlichen Automaten) mit Eingangsalphabet $X = \{a, b, c\}$ in Form eines Zustandsübergangsgraphen für die folgenden Sprachen an:

a)
$$L1 = \{ x \in X^* \mid |x|_b \ge 2 \}$$

b)
$$L2 = \{x \in X^* \mid |x|_b = 0\}$$

c)
$$L3 = \{x \in X^* \mid |x| \ge 3\}$$

d)
$$L4 = \{ x \in X^* \mid x = a^n b^m, n, m \in \mathbb{N} \}$$

Aufgabe 3

Gegeben sei das Alphabet $X = \{A, B, C\}$.

Konstruieren sie einen deterministischen endlichen Automaten der alle Wörter akzeptiert, welche die Zeichenkette ACAB enthalten. Geben sie den Automaten in Form eines Übergangsgraphen sowie in Form einer Übergangstabelle an.

Aufgabe 4

Sei $X = \{1,2,3,a,b,c\}$ ein Alphabet und w ein Wort über diesem Alphabet. Bestimmen Sie den Wert der nachfolgenden Operationen:

a)
$$|123| =$$

b)
$$w = abccba; |w| =$$

c)
$$w = 123; |w|_a =$$

d)
$$w = 1111221; |w|_1 =$$

e)
$$|\varepsilon| =$$

Aufgabe 5

Welche Sprache akzeptiert der dargestellte DEA mit dem Eingabealphabet $X = \{a,b\}$? Geben Sie diese in Mengenschreibweise an:

Aufgabe 6

Konstruieren sie einen deterministischen endlichen Automaten der alle Wörter der Sprache

$$L = \{ w \in \{x, y\}^* \mid w = y^m x^n mit \ m, n \in \mathbb{N} \land |w| = ungerade \}$$

annimmt (angelehnt an SoSe20 Probeklausur Aufgabe 4).