Vehicle Routing Problem

Grupo 2:

- Ana Pinto 97168
- Ana Sofia Caetano 96326
- Afonso Miao 78167
- Afonso Meireles 96018

Inteligência Computacional e Otimização Prof^a Rosário Laureano Prof^o Vítor Basto Fernandes

27 de Maio de 2021

O Grupo

Afonso Miao MEI

Ana Pinto MCD

Ana Sofia Caetano MIG

Afonso Meireles MSIAD

Índice

- Mockup inicial
- Interface
- Processamento no Backend
- Criação das soluções
- Avaliação das soluções
- Seleção das soluções

Mockup da interface: Vehicle Routing Problem

Centro de Fornecimento:

Long./Lat.:

9.87543

39.5471

Pontos de Entrega

1 Long./Lat.:

9.7590

38.1209

Carga:

Prioridade:

2 Long./Lat.:

8.9656

39.0123

Carga:

Prioridade:

3 Long./Lat.:

9.5231

38.3487

Carga:

Prioridade:

Veículos

Capacidade: Consumo:

Veículo A:

100

1.5

Veículo B:

80

1.8

Veículo A: 0 - 2 - 0

Veículo B: 0 - 1 - 3 - 0

Definição dos objetivos, restrições e inputs do user

Objetivos:

- Minimizar distância percorrida
- Minimizar veículos utilizados
- Minimizar custo
- Minimizar duração ao ultimo cliente

Restrições:

- Número de veículos disponíveis
- Capacidade de cada veículo
- Só 1 visita por cliente
- Carga a entregar por cliente
- Prioridade entre clientes (facultativo)
- Rotas começam e acabam no Cen. Fornecimento

Inputs do User:

- Coordenadas do Centro de Fornecimento (Nó 0)
- Coordenadas dos Clientes (Nós 1, 2, 3,)
- Requisitos de cada cliente (facultativo)
- Prioridade entre clientes (facultativo)
- Número de veículos disponíveis
- Capacidade de cada veículo (facultativo)
- Consumo / Custo/KM de cada veículo (facultativo)

Matriz de Distâncias / Matriz de Durações

	0	1	2	3	4	5
0	0	1.5	3.3	2.2	0.5	1.4
1	2.1	0	0.2	1.1	1	2
2	3.3	2	0	4.5	9	3
3	1.1	5	5.4	0	8.1	0.2
4	3.9	7.2	6.8	11	0	14
5	5.3	2.3	4.9	3.2	6	0

Requisitos de cada cliente

1	2	3	4	5
15	24	32	54	90

Capacidade de cada veículo

Α	В	С	
100	180	150	

Custo/KM de cada veículo

Α	В	С	
1.5	1.2	1.8	

Algoritmo Genético

Soluções: Cromossomas em que cada gene é um nó, cada cromossoma representa uma rota Terminam e comecam em 0

					Distância	Custo	Carga
A	0	1	0		1.5+2.1 = 3.6	3.6*1.5 = 5.4	15 / 100
В	0	5	4	0	1.4+6+3.9 = 11.3	11.3*1.2 = 13.56	144 / 180
С	0	2	3	0	3.3+4.5+1.1 = 8.9	8.9*1.8 = 16.02	56 / 150
					Total = 23.8	Total = 34.98	

Duração do último cliente:

Veículo A: 01 - 1.5h

Veículo B: 054 - 7.4h

Veículo C: 023 - 7.8h -> este é o valor mais elevado que se guer minimizar

Interface

- Inputs do User:
- Coordenadas do Centro de Fornecimento (Nó 0)
- Coordenadas dos Clientes (Nós 1, 2, 3,)
- Requisitos de cada cliente (carga)
- Número de veículos disponíveis
- Capacidade de cada veículo
- Consumo / Custo/KM de cada veículo
- API OpenRouteService
- Matriz de distâncias reais, com base nos percursos de estrada
- Matriz de tempo

Análise do CVRP – Solução atual

Pressupostos iniciais:

- Existe apenas 1 centro de Fornecimento
- Todos os veiculos começam e regressam ao centro de Fornecimento
- 4 Objetivos:
 - Minimizar a distância percorrida;
 - Minimizar o custo;
 - Minimizar o tempo;
 - Minimizar o número de veículos.

Otimização

- Minimizar distância
- Minimizar custo
- Minimizar tempo
- Minimizar veículos

Otimizar

Solução 0

Veículo 1:

Veículo 2: 3,4

Veículo 3: 1,2

Solução 1 (Optimal)

Veículo 1:

Veículo 2: 3,4

Veículo 3: 1,2

Solução 2

Veículo 1:

Veículo 2: 1,2

Veículo 3: 3,4

Processamento no Backend

Interface: JavaScript – React

Backend: Django

Integração com jMetalPy

Algoritmo

- Algoritmo Genético para Single-Objective
- NSGAII para multiobjetivo


```
"optimization": [
"data_vehicles": [
       "capacity": "100",
        "cost": "0.5"
        "cost": "0.6"
       "id": "1",
        "capacity": "30",
        "cost": "1.5"
"data nodes": [
        "node": 0,
        "city": "Lisboa",
        "latitude": "38.7452",
        "longitude": "-9.1604",
        "depot": "true",
        "demand": "0"
        "node": 1,
        "city": "Porto",
        "latitude": "41.1495",
        "longitude": "-8.6108",
        "depot": "false",
        "demand": "10"
       "node": 2,
       "city": "Braga",
        "latitude": "41.5333",
        "longitude": "-8.4167",
        "depot": "false",
```

Criação das soluções – single-objective TSP

TSP:

- Variável: número de cidades (nós);
- Objetivo: minimizar a distância.

Criação da solução – multiobjetivo/single-objective

```
[ 3 2 -1 1 5 4 ]
```

Separamos as sub-rotas pelos negativos (-1, -2, [3 2 -1 1 5 4] \longrightarrow [1 2 -1 3 5 4] -3...) consoante o número de veículos

- Sub-rota: rota de cada veículo
- Número de carros: consoante o número de carros escolhidos pelo utilizador, inserimos no array números negativos

Criação da solução – multiobjetivo/singleobjective

Algoritmo NSGA-II:

- População inicial: número de objetivos x número de veículos x pontos de entrega x 10
- Iterações: número de veículos x pontos de entrega x 1000
- Mutação: PermutationSwapMutation (Prob = 0.20)
- Crossover: PMXCrossover (Prob = 0.90)

```
max_evaluations = len(data['data_vehicles']) * len(data['data_nodes']) * 1000
print("Number of evaluations: ", max_evaluations)
dimension = number_of_objectives * len(data['data_vehicles']) * len(data['data_nodes']) * 10
print("population_size: ", dimension)
algorithm = NSGAII(
    problem=problem,
    population_size=dimension,
    offspring_population_size=dimension,
    mutation=PermutationSwapMutation(probability=0.2),
    crossover=PMXCrossover(probability=0.9),
    termination_criterion = StoppingByEvaluations(max_evaluations=max_evaluations)
)
```

Avaliação das soluções

- Fitness 1: variável que faz o somatório das distâncias
- Fitness 2: variável que faz o somatório do custo
- Fitness 3: variável correspondente à rota com o maior tempo
- Fitness 4: variável que faz o somatório de veículos que possuem rotas

```
fitness1 = 0 #distance
fitness2 = 0 #cost
fitness3 = 0 #tempo
fitness4 = 0 #veiculos
matrix route = []
sub route = []
#Creating matrix with subroutes of each vehicle
for i in range(len(solution.variables)):
    node = solution.variables[i]
    if i == 0 and node < 0:
        matrix route.append([])
                                                                     #]
    elif node > 0: # nó positivo --> append subroute
        #print("Appending to sub route: ", node)
        sub route.append(node)
    else: # nó negativo --> append matrix
        #print("Appending subroute: ", sub route)
        matrix route.append(sub route)
        sub route = []
```

Matriz com a rota de cada veículo

[1,2,3]

Avaliação das soluções

Distância:

- Calculamos a distância perocorrida em cada subrota e somamos o total;
- Ao primeiro e último nó soma-se a distância ao centro de fornecimento;

Custo:

 Distância percorrida em cada sub-rota multiplicada pelo custo (€/Km) do veículo que a percorre

Tempo:

 Da mesma forma que se calculam as distâncias de cada sub-rota são calculadas as durações e preserva-se a sub-rota com a maior duração.

Número de veículos:

 Contabilizam-se as sub-rotas que não estão vazias na solução (número de veículos utilizados)

```
for i in range(len(sub route) - 1):
    x = sub route[i]
    y = sub route[i + 1]
    if i == 0:
        distance to warehouse = self.distance to warehouse[x-1]
        fitness1 += distance to warehouse
        fitness2 += distance to warehouse * self.vehicle costs[car]
        time_compare += self.times_to_warehouse[x-1]
        route_demand += self.demand_section[x-1]
        #Changes here
        if route_demand > self.vehicle_capacities[car]:
            fitness1 += 999999999
            fitness2 += 99999999
            fitness3 += 999999999
        continue
    route_demand = self.demand_section[y-1]
    if route demand > self.vehicle capacities[car]:
            fitness1 += 999999999
            fitness2 += 999999999
            fitness3 += 999999999
            continue
    fitness1 += self.distance matrix[x][y]
    fitness2 += self.distance matrix[x][y] * self.vehicle costs[car]
    time compare += self.time matrix[x][y]
#Soma nó final até à warehouse
fitness1 += self.distance to warehouse[y-1]
fitness2 += self.distance to warehouse[y-1] * self.vehicle costs[car]
time compare += self.times to warehouse[y-1]
if time compare > fitness3:
    fitness3 = time compare
```

Seleção das soluções

```
array_index = calculate_solutions_more_2_objectives(front)
for index in array_index:
    solutions_to_pass.append(front[index].variables)
```

Soluções para single-objective:

- Apresenta-se a solução ótima para o objetivo selecionado

Soluções para *multiobjetivo*:

 Apresenta-se uma solução por objetivo (a solução que minimiza esse objetivo na frente de pareto) + a solução mais equilibrada, que minimiza a fórmula:

```
\sqrt{\textbf{Objetivo 1}^2 + \textbf{Objetivo 2}^2 + \textbf{Objetivo 3}^2 + \dots}
```

```
calculate solutions more 2 objectives(objectives array: list):
array_pd = []
for solution in objectives array:
   array_pd.append(solution.objectives)
df = pd.DataFrame(array_pd)
result = df.idxmin(axis=0, skipna=True)
solution_index_each_objective = result.tolist()
results_array = []
for objective_array in objectives_array:
    for objective in objective_array.objectives:
       total += objective**2
   results array.append(math.sqrt(total))
front pareto index = results array.index(min(results array))
solution index each objective.append(front pareto index)
print(solution index each objective)
print("Indexes of best solution each objective + frontpareto: ", solution index each objective)
return solution index each objective
```

Apresentação da Interface

