

B1 - Unix & C Lab Seminar

B-CPE-100

Day 11

Linked lists

1.1

Day 11

language: C

- The totality of your source files, except all useless files (binary, temp files, obj files,...), must be included in your delivery.
- Error messages have to be written on the error output, and the program should then exit with the 84 error code (O if there is no error).

- Don't push your main function into your delivery directory, we will be adding our own. Your files will be compiled adding our main.c.
- If one of your files prevents you from compiling with *.c, the Autograder will not be able to correct your work and you will receive a O.

All .c files from your delivery folder will be collected and compiled with your libmy, which must be found in lib/my/. For those of you using .h files, they must be located in include/ (like the my.h file).

Your libmy. a must have a Makefile in order to be built!

For the tasks regarding linked lists, we will be using the following structure:

```
typedef struct linked_list
{
    void *data;
    struct linked_list *next;
} linked_list_t;
```

This structure must be found in a file named, mylist.h in your includes folder.

Allowed system function(s): write, malloc, free

We still encourage you to write unit tests for all your functions! Check out DayO6 if you need an example, and re-read the guide.

TASK O1 - MY_PARAMS_TO_LIST

Delivery: my_params_to_list.c

Write a function named my_params_to_list that creates a new list from the command line arguments. The address of the list's first node is returned.

It must be prototyped as follows:

```
linked_list_t *my_params_to_list(int ac, char * const *av);
```


If the main function directly transmits its argc/argv arguments to my_params_to_list, the function must place ./a.out first on the list, then test, arg2 and arg3.

When scanning the list, we will have arg3 as the first element, then arg2, ... and finally, ./a.out.

TASK 02 - MY_LIST_SIZE

Delivery: my_list_size.c

Write a function called my_{list_size} that returns the number of elements on the list. It must be prototyped as follows:

```
int my_list_size(linked_list_t const *begin);
```

TASK 03 - MY_REV_LIST

Delivery: my_rev_list.c

Write a function named my_rev_list that reverses the order of the list's elements. It should be prototyped as follows:

```
void my_rev_list(linked_list_t **begin);
```


TASK 04 - MY_APPLY_ON_NODES

Delivery: my_apply_on_nodes.c

Write a function named $my_apply_on_nodes$ that applies a function, given as argument, to the data of each node on the list.

It must be prototyped as follows:

```
int my_apply_on_nodes(linked_list_t *begin, int (*f)(void *));
```


The function pointed by f will be used as follows: (*f)(list_ptr->data);

TASK 05 - MY_APPLY_ON_MATCHING_NODES

Delivery: my_apply_on_matching_nodes.c

Write a function named $my_{apply_on_matching_nodes}$ that applies a function, given as argument, to the data of the nodes on the list equal to the data_ref given as argument.

The function must be prototyped as follows:

```
int my_apply_on_matching_nodes(linked_list_t *begin, int (*f)(), void const *data_ref
    , int (*cmp)());
```


The functions pointed by f and cmp will be used as follows: (*f)(list_ptr->data); and (*cmp)(list_ptr->data, data_ref);

The cmp function could be my_strcmp ; the elements are only considered equal if cmp returns O (data is *equal*).

TASK 06 - MY_FIND_NODE

Delivery: my_find_node.c

Write a function named my_find_node that returns the address of the first node, which contains data *equal* to the reference data.

It must be prototyped as follows:

```
linked_list_t *my_find_node(linked_list_t const *begin, void const *data_ref, int (*
    cmp)());
```

TASK 07 - MY_DELETE_NODES

Delivery: my_delete_nodes.c

Write a function named my_delete_nodes that removes all nodes containing data *equal* to the reference data. It must be prototyped as follows:

```
int my_delete_nodes(linked_list_t **begin, void const *data_ref, int (*cmp)());
```

TASK 08 - MY_CONCAT_LIST

Delivery: my_concat_list.c

Write a function named my_concat_list that puts the elements of a begin2 list at the end of a begin1 list. It must be prototyped as follows:

```
void my_concat_list(linked_list_t **begin1, linked_list_t *begin2);
```


Creating elements is not allowed! You must link the two lists together.

TASK 09 - MY_SORT_LIST

Delivery: my_sort_list.c

Write a function named my_{sort_list} that sorts a list in ascending order by comparing data, node-to-node, with a comparison function.

It must be prototyped as follows:

```
void my_sort_list(linked_list_t **begin, int (*cmp)());
```

TASK 10 - MY_ADD_IN_SORTED_LIST

Delivery: my_add_in_sorted_list.c

Write a function named my_add_in_sorted_list that creates a new element and inserts it into an sorted list, so that the list remains sorted in ascending order.

It must be prototyped as follows:

```
void my_add_in_sorted_list(linked_list_t **begin, void *data, int (*cmp)());
```

TASK 11 - MY_MERGE

Delivery: my_merge.c

Write a function named my_merge that integrates the elements of a sorted list, begin1, into another sorted list, begin1, so that begin1 remains sorted in ascending order.

It must be prototyped as follows:

```
void my_merge(linked_list_t **begin1, linked_list_t *begin2, int (*cmp)());
```


Watch out for NULL pointers!

