1.	bet	ich of the following is true about an observational prospective cohort study being designed to study the association ween cigarette smoking (smoking ≥ 1 pack of cigarettes per day, smoking < 1 pack of cigarettes per day, or no oking) to be assessed on 3/1/19, and catching a cold between 3/2/19 and 3/31/19?
	\circ	This design minimizes the potential for systematic differences between the exposure groups.
	\bigcirc	Both the exposure and outcome are measured at the same point in time.
	•	Subjects self-select to be in the exposure groups, so potential confounders will need to be considered when assessing the outcome/exposure relationship.
	\circ	This design ensures that that smoking increases the chances of getting a cold in March of 2019.
2. Which of the following statements defines the 97.5th pedistribution?		ich of the following statements defines the 97.5th percentile value for a data sample, regardless of the sample data tribution?
	0	The value such that 97.5% of the sample observations are larger than this value, and 2.5% of the sample observations are smaller than this value.
	0	The value such that 2.5% of the sample observations are larger than this value, and 97.5% of the sample observations are smaller than this value.
	\bigcirc	The value that is 97.5% larger than the sample mean.
	\bigcirc	This value always corresponds to the sample mean plus 2 standard deviations.

3.	500 randomly selected university students were selected for a study on smoking status and stress levels. At the time of the study, students were asked to rate their stress levels on a scale of 0 – 100 with 0 indicating no stress. Students were also asked to disclose whether they were a non-smoker, a light smoker, or a heavy smoker.
	Of the 500 students, 75 identified themselves as heavy smokers, 150 identified themselves as light smokers, and 275 identified themselves as non-smokers. The average stress level reported for heavy smokers was 60.4. The average stress level reported for light smokers was 45.7. The average stress level reported by non-smokers was 56.6. Based on these results, which of the following statements is true?
	On average, heavy smokers have stress values of 3.8 greater than non-smokers
	On average, heavy smokers have stress values of 3.8 times less than the stress levels of non-smokers
	On average, heavy smokers have stress values of 3.8 times the stress levels of non-smokers
	On average, heavy smokers have stress values of 3.8 less than non-smokers
4.	Which of the following sample statistics is least sensitive to the influence of outliers for a sample continuous data measures?
	The sample standard deviation.
	O The sample variance.
	The sample median (50th percentile)

5. This graph shows the total payment amounts in 2011 (in thousands of US\$) for a **random sample** of 400 US physicians who received payments from any of 8 major pharmaceutical companies in 2011. The vertical axis represents the percent of physicians. (Source: Propublica "Dollars for Docs" Online Database)

Sample Summary Statistics (n=400))
(estimates in thousands of dollars)

Mean (\overline{x}): 10
Standard Deviation (s): 17
Range: 0.1 to 121

Percentiles: 2.5th: 0.3
25th: 1.5
50th: 3.6
75th: 10
97.5th: 74

Which of the following statements best tells the story of these data?

Wh	ich of the following statements best tells the story of these data?
0	The percentage of physicians receiving a given payment amount was relatively similar for all values across the range of payment values.
0	Physicians did not receive adequate payments from the pharmaceutical companies.
0	The majority of physicians received relatively "large" payments (> \$25,000) and a smaller percentage received payments less than this majority.
(The majority of physicians received relatively "small" payments (<\$25,000) and a smaller percentage received payments greater than this majority.

Given the distribution of the sample data, what is the most likely distribution of the payment data in the population of all US physicians in 2011?

- uniform
- left (negatively) skewed
- approximately normal
- right (positively) skewed

8.	Suppose another researcher takes a random sample of 1000 subjects from the same population (US physicians who received payments from any of 8 major pharmaceutical companies in 2011). You have not yet seen these data. Likely, how will the sample standard deviation of these 1000 values (s_{1000}) compare to the sample standard deviation of individual physician payments in the sample of 400 (s_{400} =17)			
	s ₁₀₀₀ will likely be larger than 17.			
	S1000 will be exactly equal to 17.			
	s ₁₀₀₀ will likely be smaller than 17.			

 $m{s}$ will likely be similar in value to 17 ($m{s}$), but the exact relationship between these two sample standard deviation values cannot be predicted based on the information given .

Sample Summary Statistics (n=400))
(estimates in thousands of dollars)

Mean (\bar{x}) : 10

Standard Deviation (s): 17

Range: 0.1 to 121

Percentiles:

2.5th: 0.3 25th: 1.5

50th: 3.6

97.5th: 74

Using these data from this sample of 400 physicians, estimate the percentage of US physicians who received payments of greater than \$10,000 in 2011. This estimated percentage is:

- **O** 25
- O 50
- 75
- This cannot be estimated without having access to a standard normal table.

10. Which of the following is true about $\bar{\mathbf{x}}$, the sample mean?
\bigcirc The sample mean, $ar{x}$, will always equal the underlying population mean
The sample mean, \bar{x} , is the best estimate of the underlying population mean, based on the sample data.
The sample mean, $\bar{\mathbf{x}}$, tends to increase in value with increasing sample size.
\bigcirc The sample mean, \bar{x} , tends to decrease in value with increasing sample size.