MATH357 - Statistics

Based on lectures from Winter 2025 by Prof. Abbas Khalili. Notes by Louis Meunier

Contents

1 Review of Probability	2
2 Statistics	
2.1 Sample Distributions	
2.2 Order Statistics	
2.3 Large Sample/Asymptotic Theory	
2.4 Parametric Inference	

§1 Review of Probability

⇒ Definition 1.1 (Measurable Space, Probability Space): We work with a set Ω = sample space = {outcomes}, and a σ -algebra \mathcal{F} , which is a collection of subsets of Ω containing Ω and closed under taking complements and countable unions. The tuple (Ω, \mathcal{F}) is called *measurable space*.

We call a nonnegative function $P: \mathcal{F} \to \mathbb{R}$ defined on a measurable space a *probability* function if $P(\Omega) = 1$ and if $\{E_n\} \subseteq \mathcal{F}$ a disjoint collection of subsets of Ω , then $P(\bigcup_{n \geq 1} E_n) = \sum_{n \geq 1} P(E_n)$. We call the tuple (Ω, \mathcal{F}, P) a *probability space*.

 \hookrightarrow Definition 1.2 (Random Variables): Fix a probability space (Ω, \mathcal{F}, P) . A Borel-measurable function $X : \Omega \to \mathbb{R}$ (namely, $X^{-1}(B) \in \mathcal{F}$ for every $B \in \mathfrak{B}(\mathbb{R})$) is called a *random variable* on \mathcal{F} .

- *Probability distribution*: X induces a probability distribution on $\mathfrak{B}(\mathbb{R})$ given by $P(X \in B)$
- *Cumulative distribution function (CDF)*:

$$F_X(x) := P(X \le x).$$

Note that $F(-\infty) = 0$, $F(+\infty) = 1$ and F right-continuous.

We say X discrete if there exists a countable set $S := \{x_1, x_2, ...\} \subset \mathbb{R}$, called the *support* of X, such that $P(X \in S) = 1$. Putting $p_i := P(X = x_i)$, then $\{p_i : i \ge 1\}$ is called the *probability mass function* (PMF) of X, and the CDF of X is given by

$$P(X \le x) = \sum_{i: x_i \le x} p_i.$$

We say X continuous if there is a nonnegative function f, called the *probability distribution* function (PDF) of X such that $F(x) = \int_{-\infty}^{x} f(t) dt$ for every $x \in \mathbb{R}$. Then,

- $\forall B \in \mathfrak{B}(\mathbb{R}), P(X \in B) = \int_B f(t) dt$
- F'(x) = f(x)
- $\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 1$

If $X : \Omega \to \mathbb{R}$ a random variable and $g : \mathbb{R} \to \mathbb{R}$ a Borel-measurable function, then $Y := g(X) : \Omega \to \mathbb{R}$ also a random variable.

1 Review of Probability

Definition 1.3 (Moments): Let *X* be a discrete/random random variable with pmf/pdf *f* and support *S*. Then, if $\sum_{x \in S} |x| f(x) / \int_{S} |x| f(x) dx < \infty$, then we say the first moment/mean of *X* exists, and define

$$\mu_X = \mathbb{E}[X] = \begin{cases} \sum_{x \in S} x f(x) \\ \int_S x f(x) \, \mathrm{d}x \end{cases}.$$

Let $g : \mathbb{R} \to \mathbb{R}$ be a Borel-measurable function. Then, we have

$$\mathbb{E}[g(X)] = \begin{cases} \sum_{x \in S} g(x) f(x) \\ \int_{S} g(x) f(x) \end{cases}.$$

Taking $g(x) = |x|^k$ gives the so-called "kth absolute moments", and $g(x) = x^k$ gives the ordinary "kth moments". Notice that $\mathbb{E}[\cdot]$ linear in its argument.

For $k \ge 1$, if μ exists, define the central moments

$$\mu_k \coloneqq \mathbb{E}\Big[\left(X - \mu\right)^k\Big],$$

where they exist.

 \hookrightarrow **Definition 1.4** (Moment Generating Function (mgf)): If X a r.v., the mgf of X is given by

$$M(t) \coloneqq \mathbb{E}[e^{tX}],$$

if it exists for $t \in (-h, h)$, h > 0. Then, $M^{(n)}(0) = \mathbb{E}[X^n]$.

Definition 1.5 (Multiple Random Variable): $X = (X_1, ..., X_n) : \Omega \to \mathbb{R}^n$ a random vector if $X^{-1}(I) \in \mathcal{F}$ for every $I \in \mathfrak{B}_{\mathbb{R}^n}$. (It suffices to check for "rectangles" $I = (-\infty, a_1] \times \cdots \times (-\infty, a_n]$, as before.)

Let *F* be the CDF of *X*, and let $A \subseteq \{1, ..., n\}$, enumerating *A* by $\{i_1, ..., i_k\}$. Then, the CDF of the subvector $X_A = (X_{i_1}, ..., X_{i_k})$ is given by

$$F_{X_A}(x_{i_1},...,x_{i_k}) = \lim_{\substack{x_{i_j} \to \infty, \\ i_j \in \mathcal{I} \setminus A}} F(x_1,...,x_n).$$

In particular, the marginal distribution of X_i is given by

$$F_{X_i}(x) = \lim_{x_1,...,x_{i-1},x_{i+1},...,x_n \to +\infty} F(x_1,...,x,...,x_n).$$

Let $g: \mathbb{R}^n \to \mathbb{R}$ measurable. Then,

$$\mathbb{E}[g(X_1,...,X_n)] = \begin{cases} \sum_{(x_1,...,x_n)} g(x_1,...,x_n) f(x_1,...,x_n) \\ \int \cdots \int g(x_1,...,x_n) f(x_1,...,x_n) \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_n \end{cases}.$$

We have the notion of a joint mgf,

$$M(t_1,...,t_n) = \mathbb{E}\left[e^{\sum_{i=1}^n t_i X_i}\right],$$

if it exists for $0 < \left(\sum_{i=1}^n t_i^2\right)^{\frac{1}{2}} < h$ for some h > 0. Notice that $M(0, ..., 0, t_i, 0, ..., 0)$ is equal to the mgf of X_i .

1 Review of Probability

Definition 1.6 (Conditional Probability): Let $(X_1,...,X_n)$ a random vector. Let $\mathcal{I} = \{1,...,n\}$ and A,B disjoint subsets of \mathcal{I} with k := |A|, h := |B|. Write $X_A = (X_{i_1},...,X_{i_k})^t$, similar for B. Then, the conditional probability of A given B is given by

$$f_{X_A|X_B}(x_a|x_b) := f_{X_A|X_B = x_B}(x_A) = \frac{f_{X_A,X_B}(x_a,x_b)}{f_{X_b}(x_b)},$$

provided the denominator is nonzero. Sometimes we have information about conditional probabilities but not the main probability function; we have that

$$f(x_1,...,x_n) = f(x_1)f(x_2 \mid x_1)f(x_3 \mid x_1, x_2) \cdots f(x_n \mid x_1,...,x_{n-1}),$$

which follows from expanding the previous definition and observing the cancellation.

Let $X = (X_1, ..., X_n) \sim F$. We say $X_1, ..., X_n$ (mutually) independent and write $\coprod_{i=1}^n X_i$ if

$$F(x_1,...,x_n) = \prod_{i=1}^n F_{X_i}(x_i),$$

where F_{X_i} the marginal cdf of X_i . Equivalently,

$$\prod_{i=1}^{n} X_i \Leftrightarrow f(x_1, ..., x_n) = \prod_{i=1}^{n} f_{X_i}(x_i)$$

$$\Leftrightarrow P(X_1 \in B_1, ..., X_n \in B_n) = \prod_{i=1}^{n} P(X_i \in B_i) \ \forall \ B_i \in \mathfrak{B}_{\mathbb{R}}$$

$$\Leftrightarrow M_X(t_1, ..., t_n) = \prod_{i=1}^{n} M_{X_i}(t_i).$$

If X, Y are two random variables with cdfs F_X , F_Y such that $F_X(z) = F_Y(z)$ for every z, we say X, Y identically distributed and write $X \stackrel{d}{=} Y$ (note that X need not equal Y pointwise). If $X_1, ..., X_n$ a collection of random variables that are independent and identically distributed with common cdf F, we write $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F$.

Further, define the covariance, correlation of two random variables *X*, *Y* respectively:

$$\operatorname{Cov}(X,Y) \coloneqq \sigma_{X,Y} \coloneqq \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mu_X \mu_Y, \qquad \rho_{X,Y} \coloneqq \frac{\sigma_{XY}}{\sigma_X \sigma_Y},$$

$$if \, \mathbb{E}[|X - \mathbb{E}[X]| \, |Y - \mathbb{E}[Y]|] < \infty.$$

Theorem 1.1: If $X_1, ..., X_n$ independent and $g_1, ..., g_n : \mathbb{R} \to \mathbb{R}$ borel-measurable functions, then $g_1(X_1), ..., g_n(X_n)$ also independent.

1 Review of Probability 5

Definition 1.7 (Conditional Expectation): Let *X*, *Y* be random variables and *g* : \mathbb{R} → \mathbb{R} a borel-measurable function. We define the following notions:

$$\mathbb{E}[g(X)|Y = y] = \begin{cases} \sum_{x \in S_X} g(x) f(x|y) \text{ discrete} \\ \int_{S_X} g(x) f(x|y) dx \text{ cnts} \end{cases}$$

$$\text{Var}(X|Y = y) = \mathbb{E}[X^2|Y = y] - \mathbb{E}^2[X|Y = y].$$

Theorem 1.2: If $\mathbb{E}[g(X)]$ exists, then $\mathbb{E}[g(X)] = \mathbb{E}[\mathbb{E}[g(X)|Y]]$, where the first nested \mathbb{E} is with respect to x, the second y.

Theorem 1.3: If $\mathbb{E}[X^2]$ < ∞, then $Var(X) = Var(\mathbb{E}[X|Y]) + \mathbb{E}[Var(X|Y)]$. In particular, $Var(X) \ge Var(\mathbb{E}[X|Y])$.

§2 STATISTICS

§2.1 Sample Distributions

- ⇒ Definition 2.1 (Inference): We consider some population with some characteristic we wish to study. We can model this characteristic as a random variable $X \sim F$. In general, we don't have access to F, but wish to take samples from our population to make inferences about its properties.
- (1) *Parametric inference:* in this setting, we assume we know the functional form of X up to some parameter, $\theta \in \Theta \subset \mathbb{R}^d$, where Θ our "parameter space". Namely, we know $X \sim F_\theta \in \mathcal{F} := \{F_\theta \mid \theta \in \Theta\}$.
- (2) *Non-parametric inference:* in this setting we know noting about *F* itself, except perhaps that *F* continuous, discrete, etc.

Other types exist. We'll focus on these two.

Definition 2.2 (Random Sample): Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F$. Then $X_1, ..., X_n$ called a *random sample* of the population.

We also call X_i the "pre-experimental data" (to be observed) and x_i the "post-experimental data" (been observed).

2.1 Sample Distributions 6

 \hookrightarrow **Definition 2.3** (Statistics): Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F$ where X_i a d-dimensional random vector. Let

$$T: \underbrace{\mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d}_{n-\text{fold}} \to \mathbb{R}^k$$

be a borel-measurable function. Then, $T(X_1,...,X_n)$ is called a *statistic*, provided it does not depend on any unknown.

Example 2.1: $\overline{X_n} := \frac{1}{n} \sum_{i=1}^n X_i$ (the "sample mean") and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X_n} \right)^2$, (the "sample variance") are both typical statistics.

\hookrightarrow **Theorem 2.1**: Let $x_1, ..., x_n \in \mathbb{R}$, then

- (a) $\operatorname{argmin}_{\alpha \in \mathbb{R}} \left\{ \sum_{i=1}^{n} (x_i \alpha)^2 \right\} = \overline{x_n};$
- (b) $\sum_{i=1}^{n} (x_i \overline{x_n})^2 = \sum_{i=1}^{n} (x_i^2) n\overline{x_n}^2$;
- (c) $\sum_{i=1}^{n} (x_i \overline{x_n}) = 0$.

Theorem 2.2: Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F$, and $g : \mathbb{R} \to \mathbb{R}$ borel-measurable such that $\text{Var}(g(X)) < \infty$. Then,

- (a) $\mathbb{E}\left[\sum_{i=1}^{n} g(X_i)\right] = n\mathbb{E}[g(X_1)];$
- (b) $\operatorname{Var}\left(\sum_{i=1}^{n} g(X_i)\right) = n \operatorname{Var}(X_1)$.

Theorem 2.3: Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F$ with $\sigma^2 < \infty$, then

- 1. $\mathbb{E}\left[\overline{X_n}\right] = \mu$, $\operatorname{Var}\left(\overline{X_n}\right) = \frac{\sigma^2}{n}$, $\mathbb{E}\left[S_n^2\right] = \sigma^2$.
- 2. If $M_{X_1}(t)$ exists in some neighborhood of 0, then $M_{\overline{X_n}}(t) = M_{X_1}(\frac{t}{n})^n$, where it exists.

∽Theorem 2.4: Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Then

- 1. $\overline{X_n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n});$
- 2. $\overline{X_n}$, S_n^2 are independent;
- 3. $\frac{(n-1)S_n^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i \overline{X_n})^2}{\sigma^2} \sim \chi_{(n-1)}^2$.

Remark 2.1:

2. actually holds iff the underlying distribution is normal.

PROOF. We prove 2. We first write S_n^2 as a function of $(X_2 - \overline{X}_n, ..., X_n - \overline{X}_n)$:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum_{i=2}^n (X_i - \overline{X}_n)^2 + (X_1 - \overline{X}_n)^2 \right\}$$
$$= \frac{1}{n-1} \left\{ \sum_{i=2}^n (X_i - \overline{X}_n)^2 + \left(\sum_{i=2}^n (X_i - \overline{X}_n) \right)^2 \right\}.$$

Then, it suffices to show that \overline{X}_n and $(X_2 - \overline{X}_n, ..., X_n - \overline{X}_n)$ are independent.

Consider now the transformation

$$\begin{cases} y_1 = \overline{x}_n \\ y_2 = x_2 - \overline{x}_n \\ \vdots \\ y_n = x_n - \overline{x}_n \end{cases} \Rightarrow \begin{cases} x_1 = y_1 - \sum_{i=2}^n y_i \\ x_2 = y_2 + y_1 \\ \vdots \\ x_n = y_n + y_1 \end{cases},$$

which gives Jacobian

$$|J| = \begin{vmatrix} \begin{pmatrix} 1 & -1 & \cdots & -1 \\ 1 & 1 & 0 & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ 1 & 0 & \cdots & 1 \end{vmatrix} = n,$$

and so

$$\begin{split} f_{Y_{1},...,Y_{n}}(y_{1},...,y_{n}) &= |J| \cdot f_{X_{1},...,X_{n}}(x_{1}(y_{1},...,y_{n}),...,x_{n}(y_{1},...,y_{n})) \\ &= n \cdot \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2\sigma^{2}}(x_{i}(y_{1},...,y_{n}) - \mu)^{2}} \\ &\approx \underbrace{e^{-n\frac{(y_{1}-\mu)^{2}}{2\sigma^{2}}} \cdot \underbrace{e^{-\frac{1}{2\sigma^{2}}\left\{\left(\sum_{i=2}^{n}y_{i}\right)^{2} + \sum_{i=2}^{n}y_{i}^{2}\right\}}_{\text{no } y_{1} \text{ dependence}}, \end{split}$$

and hence as the PDFs split, we conclude Y_1 independent of $Y_2, ..., Y_n$ and so \overline{X}_n independent of $(X_2 - \overline{X}_n, ..., X_n - \overline{X}_n)$ and so in particular of any Borel-measurable function of this vector such as S_n^2 , completing the proof.

For 3, note that

$$\begin{split} V \coloneqq \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 &= \frac{1}{\sigma^2} \sum_{i=1}^n \left(\left(X_i - \overline{X}_n\right) - \left(\mu - \overline{X}_n\right)\right)^2 \\ &= \frac{\sum_{i=1}^n \left(X_i - \overline{X}_n\right)^2}{\sigma^2} + \frac{n\left(\overline{X}_n - \mu\right)^2}{\sigma^2} =: W_1 + W_2. \end{split}$$

The first part, W_1 , of this summation is just $(n-1)\frac{S_n^2}{\sigma^2}$, a function of S_n^2 , and the second, W_2 , is a function of \overline{X}_n . By what we've just shown in the previous part, these two are independent. In addition, $V \sim \chi^2_{(n)}$ and

$$W_2 = \frac{n(\overline{X}_n - \mu)^2}{\sigma^2} = \left(\frac{\overline{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}}\right)^2 \sim \chi_{(1)}^2,$$

2.1 Sample Distributions 8

since the inner random variable is a standard normal. Then, since W_1, W_2 independent, $M_V(t) = M_{W_1}(t) M_{W_2}(t)$, so for $t < \frac{1}{2}$,

$$M_{W_1}(t) = \frac{M_V(t)}{M_{W_2}(t)} = \frac{(1-2t)^{-\frac{n}{2}}}{(1-2t)^{-\frac{1}{2}}} = (1-2t)^{-\frac{(n-1)}{2}},$$

hence $W_1 \sim \chi^2_{(n-1)}$.

 \hookrightarrow **Proposition 2.1**: Let $X \sim t(\nu)$, the Student *t*-distribution i.e

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu} \cdot \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}},$$

then

- $Var(X) = \frac{\nu}{\nu 2}$ for $\nu > 2$
- If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi^2_{(\nu)}$ are independent random variables, then $T = \frac{Z}{\sqrt{V/\nu}} \sim t(\nu)$.

→Theorem 2.5: Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Then,

$$T = \frac{\overline{X}_n - \mu}{\sqrt{S_n^2/n}} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n} \sim t(n-1).$$

Remark 2.2: By combing CLT and Slutsky's Theorem, T asymptotes to $\mathcal{N}(0,1)$, but this gives a general distribution. Note that for large n, t(n-1) approximately normal too.

PROOF. Notice that

$$W_1 \coloneqq \sqrt{n} \frac{\overline{X}_n - \mu}{\sigma} \sim \mathcal{N}(0, 1), \qquad W_2 \coloneqq \frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{(n-1)}^2$$

are independent, and

$$T = \frac{W_1}{\sqrt{W_2/(n-1)}}$$

so by the previous proposition $T \sim t(n-1)$.

Proposition 2.2: Given $U \sim \chi^2_{(m)}$, $V \sim \chi^2_{(n)}$ independent, then $F = \frac{U/m}{V/n} \sim F(m,n)$. If $T \sim t(v)$, $T^2 \sim F(1,v)$.

9

Theorem 2.6: Let $X_1, ..., X_m \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu_1, \sigma_1^2)$ and $Y_1, ..., Y_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu_2, \sigma_2^2)$ be mutually independent random samples. Then,

$$F = \frac{S_m^2/\sigma_1^2}{S_n^2/\sigma_2^2} \sim F(m-1, n-1).$$

PROOF. We have that $U=\frac{(m-1)S_m^2}{\sigma_1^2}\sim \chi_{(m-1)}^2$ and $V=\frac{(n-1)S_n^2}{\sigma_2^2}$ are independent so by the previous proposition

$$F = \frac{U/(m-1)}{V/(n-1)} \sim F(m-1, n-1).$$

§2.2 Order Statistics

Definition 2.4: Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F$. Then, the *order statistics* are

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$$

where $X_{(i)}$ the *i*th largest of $X_1, ..., X_n$.

→ Definition 2.5 (Related Functions of Order Statistcs): The sample range is defined

$$R_n \coloneqq X_{(n)} - X_{(1)}.$$

The sample median is defined

$$M(X_1,...,X_n) := \begin{cases} X_{\left(\frac{n+1}{2}\right)} & \text{if } n \text{ odd} \\ X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n+1}{2}\right)} & \text{if } n \text{ even.} \end{cases}$$

→Theorem 2.7 (Distribution of Max, Min): Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F, f$.

(Discrete)

(a)
$$P(X_{(1)} = x) = [1 - F(x^{-})]^{n} - [1 - F(x)]^{n}$$

(b)
$$P(X_{(n)} = y) = [F(y)]^n - [F(y^-)]^n$$

(Continuous)

(c)
$$F_{X_{(1)}}(x) = P(X_{(1)} \le x) = 1 - [1 - F(x)]^n$$
, $f_{X_{(1)}}(x) = n \cdot f(x)[1 - F(x)]^{n-1}$

(d)
$$F_{X_{(n)}}(y) = [F(y)]^n$$
, $f_{X_{(n)}}(y) = n \cdot f(y) [F(y)]^{n-1}$

Proof. (a) Notice

$$P(X_{(1)} = x) = P(X_{(1)} \le x) - P(X_{(1)} < x).$$

2.2 Order Statistics 10

We have

$$\begin{split} P\big(X_{(1)} \leq x\big) &= 1 - P\big(X_{(1)} > x\big) \\ &= 1 - P\big(X_1 > x, X_2 > x, ..., X_n > x\big) \\ &= 1 - P\big(X_1 > x\big) P\big(x_2 > x\big) \cdots P\big(X_n > x\big) \\ &= 1 - \big[1 - F(x)\big]^n, \end{split}$$

and similarly

$$P(X_{(1)} < x) = 1 - P(X_{(1)} \ge x) = 1 - [1 - F(x^{-})]^{n}$$

where $F(x^-) = \lim_{z \to x^-} F(z)$. So in all,

$$P(X_{(1)} = x) = [1 - F(x^{-})]^{n} - [1 - F(x)]^{n}.$$

(b) is very similar. For (c), we have

$$P(X_{(1)} \le x) = 1 - P(X_{(1)} > x)$$

$$= 1 - P(X_1 > x, ..., X_n > x)$$

$$= 1 - [1 - F(x)]^n.$$

(d) is similar.

Theorem 2.8 (Distribution of *j*th Order Statistics): Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F, f$.

(*Discrete*) Suppose the X_i 's take values in $S_x = \{x_1, x_2, ...\}$ and put $p_i = P(X_i)$. Then,

$$F_{X_{(j)}}(x_i) = P(X_{(j)}(x_i) \le x_i) = \sum_{k=j}^n \binom{n}{k} P_i^k (1 - P_i)^{n-k},$$

where $P_i = P(X_i \le x_i) = \sum_{\ell=1}^i p_\ell$.

(Continuous)

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} F^k(x) [1 - F(x)]^{n-k},$$

so

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f(x) [F(x)]^{j-1} [1 - F(x)]^{n-j}.$$

Proof. For discrete, we have

$$P(X_{(j)}(x_i) \le x_i) = P(\text{at least } j \text{ out of } X_1, ..., X_n \le x_i).$$

Then,

$$P(\text{at least } j \text{ out of } X_1, ..., X_n \le x_i) = \sum_{k=j}^n \binom{n}{k} P_i^k (1 - P_i)^{n-k}.$$

Continuous is similar.

§2.3 Large Sample/Asymptotic Theory

 \hookrightarrow **Definition 2.6** (Convergence in Probability): We say $T_n = T(X_1, ..., X_n)$ converges *in probability* to θ $T_n \stackrel{P}{\to} \theta$ as $n \to \infty$ if for any $\varepsilon > 0$,

$$\lim_{n\to\infty} P(|T_n - \theta| > \varepsilon) = 0.$$

 \hookrightarrow **Definition 2.7** (Convergence in Distribution): Find a positive sequence $\{r_n\}$ with $r_n \to \infty$ such that

$$r_n(T_n-\theta)\stackrel{d}{\to} T$$
,

where *T* a random variable.

Theorem 2.9 (Slutsky's): Suppose $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{P} a$ for some $a \in \mathbb{R}$. Then,

$$X_n + Y_n \stackrel{d}{\to} X + a$$

$$X_n Y_n \stackrel{d}{\to} aX$$
,

and if $a \neq 0$,

$$\frac{X_n}{Y_n} \stackrel{d}{\to} \frac{X}{a}$$
.

Theorem 2.10 (Continuous Mapping Theorem (CMT)): Suppose $X_n \stackrel{P}{\to} X$ and g is continuous on the set C such that $P(X \in C) = 1$. Then,

$$g(X_n) \xrightarrow{P} g(X).$$

Example 2.2: Let $X_1,...,X_n \stackrel{\text{iid}}{\sim} F$ with $\mu = \mathbb{E}[X_i], \sigma^2 = \text{Var}(X_i) < \infty$. Then,

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n} \stackrel{d}{\to} \mathcal{N}(0, 1),$$

since we may rewrite

$$\frac{\sqrt{n}(\overline{X}_n - \mu)/\sigma}{S_n/\sigma}.$$

The numerator $\stackrel{d}{\to} \mathcal{N}(0,1)$ by CLT. $S_n^2 \stackrel{P}{\to} \sigma^2$, so the denominator goes to 1 in probability.

- \hookrightarrow **Definition 2.8** (Big O, Little o Notation): Let $\{a_n\}$, $\{b_n\}$ ⊆ \mathbb{R} real sequences.
- We say $a_n = O(b_n)$ if $\exists 0 < c \in \mathbb{R}$ and $N \in \mathbb{N}$ such that $|\frac{a_n}{b}| \le c$ for every $n \ge N$.
- We say $a_n = o(b_n)$ if $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$.
- \hookrightarrow **Definition 2.9** (Big O_p , Little o_p Notation): Let $\{X_n\}$, $\{Y_n\}$ sequences of random variables.
- We say $X_n = O_p(1)$ if $\forall \varepsilon > 0$ there is a $N_{\varepsilon} \in \mathbb{N}$ and $C_{\varepsilon} \in \mathbb{R}$ such that

$$P(|X_n| > C_{\varepsilon}) < \varepsilon$$

for every $n > N_{\varepsilon}$.

- We say $X_n = O_p(Y_n)$ if $X_n/Y_n = O_p(1)$.
- We say $X_n = o_p(1)$ if $X_n \stackrel{P}{\to} 0$.
 - We say $X_n = o_p(Y_n)$ if $X_n/Y_n = o_p(1)$.
- **Proposition 2.3**: If $X_n \stackrel{d}{\rightarrow} X$, then $X_n = O_p(1)$.
- **Proposition 2.4** (The Delta Method (First Order)): Let $\sqrt{n}(X_n \mu) \stackrel{d}{\to} V$ and g a real-valued function such that g' exists at $x = \mu$ and $g'(\mu) \neq 0$. Then,

$$\sqrt{n}(g(X_n) - g(\mu)) \stackrel{d}{\to} g'(\mu)V.$$

In particular, if $V \sim \mathcal{N}(0, \sigma^2)$ then

$$\sqrt{n}(g(X_n) - g(\mu)) \stackrel{d}{\to} \mathcal{N}(0, g'(\mu)^2 \sigma^2).$$

Proof. Taylor expanding the LHS,

$$\sqrt{n}\{g(X_n)-g(\mu)\}=g'(\mu)\sqrt{n}(X_n-\mu)+o_p(1)\to g'(\mu)V.$$

Proposition 2.5 (The Delta Method (Second Order)): Suppose $\sqrt{n}(X - n - \mu) \stackrel{d}{\rightarrow} \mathcal{N}(0, \sigma^2)$ and $g'(\mu) = 0$ but $g''(\mu) \neq 0$. Then,

$$n\{g(X_n) - g(\mu)\} \stackrel{d}{\to} \sigma^2 \frac{g''(\mu)}{2} \cdot \chi^2_{(1)}.$$

Proof.

$$g(X_n) - g(\mu) = \frac{g''(\mu)}{2} (X_n - \mu)^2 + o_p(1),$$

so

$$n(g(X_n) - g(\mu)) = \sigma^2 \frac{g''(\mu)}{2} \left[\frac{\sqrt{n}(X_n - \mu)}{\sigma} \right]^2 + o_p(1).$$

The bracketed term converges in distribution to $\mathcal{N}(0,1)$ and the $o_p(1)$ term converges in probability to zero, so the proposition follows by applying Slutsky's Theorem.

⊗ Example 2.3:
$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2)$$
 by CLT. Letting $g(x) = x^2$, and assuming $\mu \neq 0$, then
$$\sqrt{n}(\overline{X}_n^2 - \mu^2) \to \mathcal{N}(0, 4\mu^2\sigma^2),$$

by the first-order delta method.

- **Proposition 2.6**: Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F$, and denote the ECDF $F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x)$. Then,
- 1. $\mathbb{E}[F_n(x)] = F(x)$;
- 2. Var $(F_n(x)) = \frac{1}{n}F(x)(1 F(x));$
- 3. $nF_n(x) = \sum_{i=1}^n \mathbb{1}(X_i \le x) \sim \text{Bin}(n, F(x));$ 4. $\frac{\sqrt{n}(F_n(x) F(x))}{\sqrt{F(x)(1 F(x))}} \stackrel{d}{\to} \mathcal{N}(0, 1).$ 5. $F_n(x) \stackrel{P}{\to} F(x).$
- 6. $P(|F_n(x) F(x)| \ge \varepsilon) \le 2e^{-2n\varepsilon^2}$, by Hoeffing's Inequality.
- 7. $\sup_{x \in \mathbb{R}} |F_n(x) F(x)| = ||F_n F||_{\infty} \stackrel{\text{a.s.}}{\to} 0$, by the Glivenko-Cantelli Theorem.
- 8. $P(\|F_n F\|_{\infty} > \varepsilon) \le C\varepsilon e^{-2n\varepsilon^2}$ for some constant C (Dvoretzky-Kiefer-Wolfowitz Theorem).

Remark 2.3: The constant in 8. was shown to be 2 by Massart.

§2.4 Parametric Inference

 \hookrightarrow **Definition 2.10** (Point Estimator): Let $X_1, ..., X_n$ a random sample. A point estimator $\hat{\theta} :=$ $\hat{\theta}(X_1,...,X_n)$ is an estimator of a parameter θ if it is a statistic.

Example 2.4: Let *X* be a random variable denoting whether a randomly selected electronic chip is operational or not, i.e. $X = \begin{cases} 1 \text{ operational} \\ 0 \text{ else} \end{cases}$, supposing $X \sim \text{Ber}(\theta)$, then $0 < \theta < 1$ is the probability a randomly selected chip is operational. Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} \text{Ber}(\theta)$. Then,

$$\mathcal{F} = \{ \operatorname{Ber}(\theta) : 0 < \theta < 1 \}, \qquad \Theta = (0, 1).$$

Then, possible estimators are \overline{X}_n , $\frac{X_1+X_2}{2}$, just X_2 , etc.

2.4 Parametric Inference 14 \hookrightarrow **Definition 2.11** (Bias): An estimator $\hat{\theta}_n$ is an *unbiased* estimator of θ if

$$\mathbb{E}_{\theta} [\hat{\theta}_n] = \theta, \qquad \forall \, \theta \in \Theta,$$

where the expected value is taken with respect to the distribution of $\hat{\theta}_n$ (and thus depends on the distribution F_{θ}).

Generally, the *bias* of an estimator $\hat{\theta}_n$ is defined

$$\operatorname{Bias}(\hat{\theta}_n) := \mathbb{E}_{\theta}[\hat{\theta}_n] - \theta, \quad \theta \in \Theta.$$

If $\hat{\theta}_n$ unbiased, then $\text{Bias}(\hat{\theta}_n) = 0$.

★ Example 2.5: For instance, recalling the previous example,

$$\mathbb{E}_{\theta}\left[\overline{X}_{n}\right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\theta}[X_{i}] = \frac{1}{n} n\theta = \theta,$$

so \overline{X}_n unbiased. Also,

$$\mathbb{E}_{\theta}[X_1] = \theta,$$

so just X_1 also unbiased, as is $\frac{X_1+X_2}{2}$.

⊗ Example 2.6: Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F_\theta$, $\theta = \binom{\mu}{\sigma^2}$, $\mu = \mathbb{E}[X_i]$, $\sigma^2 \operatorname{Var}(X_i)$. Then, $\hat{\mu}_n = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ an unbiased estimator of μ . Let $\hat{\sigma}_n^2 = S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2$, then recalling $\mathbb{E}[\hat{\sigma}_n^2] = \sigma^2$, this is an unbiased estimator of σ^2 . However, changing the constant term, to get

$$\hat{\sigma}_n^{*2} = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2,$$

is biased, with

$$\mathbb{E}_{\theta}[\hat{\sigma}_n^{*2}] = \frac{n-1}{n}\sigma^2,$$

so

$$\operatorname{Bias}(\hat{\sigma}_n^{*2}) = -\frac{\sigma^2}{n} < 0,$$

i.e. $\hat{\sigma}_n^{*2}$ underestimates the true parameter on average. Of course, in the limit it becomes 0.

Example 2.7: Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} \mathcal{U}(0, \theta), \, \theta > 0, \, \Theta = (0, \infty)$. Recall $\mathbb{E}_{\theta}[X_i] = \frac{\theta}{2}$. Consider $\hat{\theta}_{n,1} \coloneqq 2X_3, \qquad \hat{\theta}_{n,2} \coloneqq 2\overline{X}_n, \qquad \hat{\theta}_{n,3} \coloneqq X_{(n)}$.

Then, $\mathbb{E}\left[\hat{\theta}_{n,i}\right] = \theta$ for i = 1, 2 and $\frac{n}{n+1}\theta$ for i = 3. Hence, we can scale the last one, $\hat{\theta}_{n,4} := \frac{n+1}{n}\hat{\theta}_{n,3}$, to get an unbiased estimator.

→ Definition 2.12 (Mean-Squared Error): The *Mean-Squared Error* (MSE) of an estimator is defined

$$\begin{aligned} \mathrm{MSE}_{\theta}(\hat{\theta}_n) &\coloneqq \mathbb{E}_{\theta} \Big[\left(\hat{\theta}_n - \theta \right)^2 \Big] \\ &= \mathbb{E}_{\theta} \Big[\left(\left(\hat{\theta}_n - \mathbb{E}_{\theta} \Big[\hat{\theta}_n \Big] \right) + \left(\mathbb{E}_{\theta} \Big[\hat{\theta}_n \Big] - \theta \right) \right)^2 \Big] \\ &= \mathrm{Var}_{\theta}(\hat{\theta}_n) + \left[\mathrm{Bias} \left(\hat{\theta}_n \right) \right]^2. \end{aligned}$$

Remark that if $\mathbb{E}_{\theta}[\hat{\theta}_n] = \theta$, i.e. $\hat{\theta}_n$ unbiased, then $\mathrm{MSE}_{\theta}(\hat{\theta}_n) = \mathrm{Var}_{\theta}(\hat{\theta}_n)$.

Definition 2.13 (Consistency): We say an estimator $\hat{\theta}_n$ of θ is *consistent* if $\hat{\theta}_n \stackrel{P}{\to} \theta$ as $n \to \infty$.

2.4 Parametric Inference