STSCI 5080 Probability Models and Inference

Lecture 5: Continuous Random Variables

September 6, 2018

Binomial coefficients

For a positive integer n and k = 0, 1, ..., n,

$$\binom{n}{k} = \text{number of } k\text{-element subsets of } \{1, \dots, n\}$$
$$= \frac{n!}{(n-k)!k!},$$

where

$$n! = n(n-1)\cdots 1$$
 and $0! = 1$.

For example, $3! = 3 \cdot 2 \cdot 1 = 6, 4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$, and

$$\binom{4}{2} = \frac{4!}{2!2!} = \frac{24}{2 \cdot 2} = 6.$$

PMF of Bin(n, p)

Theorem

The pmf of $Y \sim Bin(n, p)$ is

$$p(k) = P(Y = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \ k = 0, 1, \dots, n.$$

Proof?

Poisson random variable

Definition

Let $\lambda>0$. X is a Possion random variable with parameter λ if its takes values in $\{0,1,2,\dots\}$ and its pmf is

$$p(k) = \frac{\lambda^k}{k!} e^{-\lambda}, \ k = 0, 1, 2, \dots$$

"X follows the Poisson distribution with parameter λ "

$$X \sim Po(\lambda)$$
.

Continuous random variable

Definition (probability density function (pdf))

A function f on $\mathbb R$ is a probability density function (pdf) if $f(x) \geq 0$ for any real x and

$$\int_{-\infty}^{\infty} f(x)dx = 1.$$

Definition (Continuous random variable)

A random variable X is continuous if there exists a pdf f such that

$$P(X \in B) = \int_{B} f(x)dx$$

for any $B \subset \mathbb{R}$.

Some properties of continuous random variables

If X has pdf f, then for any fixed real x,

$$P(X = x) = \int_{x}^{x} f(y)dy = 0.$$

In addition, for any a < b,

$$P(a < X < b) = P(a \le X < b)$$

= $P(a < X \le b) = P(a \le X \le b) = \int_{a}^{b} f(x)dx$.

Cumulative distribution function

Definition

Let X be a continuous random variable with pdf f. Then the cumulative distribution function (cdf) F(x) of X is defined by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y)dy$$

for any real x.

7

• For any a < b,

$$P(a < X \le b) = \int_a^b f(x)dx = \int_{-\infty}^b f(x)dx - \int_{-\infty}^a f(x)dx$$
$$= F(b) - F(a).$$

• For $h \neq 0$,

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(y) dy.$$

So, as long as f is continuous at x, taking $h \to 0$, we have

$$F'(x) = f(x).$$

Example 5.1

Example (Uniform distribution)

Let a < b. A function defined by

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b\\ 0 & \text{otherwise} \end{cases}$$

is a pdf. A random variable X with this pdf is called a uniform random variable on [a,b]. The variable X concentrates on [a,b], i.e., $P(X \in [a,b]) = 1$.

"X follows the uniform distribution on [a, b]"

$$X \sim U[a,b]$$
.

What is the cdf of X?

Example 5.2

Example

Let f be a function defined by

$$f(x) = \begin{cases} cx^2 & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases},$$

where c > 0 is a constant. If f is a pdf, find the value of c, and compute the corresponding cdf.

Exponential random variable

Definition

Let $\lambda > 0$. A random variable *X* with pdf

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

is called an exponential random variable with parameter λ . The variable X concentrates on $[0, \infty)$, i.e., $P(X \in [0, \infty)) = 1$.

"X follows the exponential distribution with parameter λ "

$$X \sim Exp(\lambda)$$
.

What is the cdf of an exponential random variable?

Standard normal random variable

Definition

A random variable X with pdf

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}, -\infty < x < \infty,$$

is called a standard normal random variable.

"X follows the standard normal distribution"

$$X \sim N(0, 1)$$
.

Normal random variable with mean μ and variance σ^2

Definition

Let $-\infty < \mu < \infty, \sigma > 0$, and let $X \sim N(0, 1)$. The random variable

$$Y = \mu + \sigma X$$

is called a normal random variable with mean μ and variance σ^2 .

"Y follows the normal distribution with mean μ and variance σ^2 "

$$Y \sim N(\mu, \sigma^2)$$
.

PDF of $N(\mu, \sigma^2)$

Theorem

Let $Y \sim N(\mu, \sigma^2)$. Then Y has pdf

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-\mu)^2/(2\sigma^2)}, -\infty < y < \infty.$$

Proof?