Reg. No

B.Tech DEGREE EXAMINATION, NOVEMBER 2023

Fifth & Sixth Semester

18CSE381T - CRYPTOGRAPHY

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
 ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours		Max. Marks: 100			
	PART - A (20 × 1	= 20 Marks)	Mark	s BL	CO
	Answer all Q				
1.	Encryption of the plaintext "security" u "2341" gives the following ciphertext	sing single columnar transposition with key	1	2	1
	(A) uysreict	(B) usecyrit			
	(C) ritysecu	(D) urysetci			
2.	Which involves trying every possible ke plain text is obtained?	y until a proper translation of cipher text into	1	1	1
	(A) Man in the middle attack	(B) Chosen Plain text Attack			
	(C) Brute Force attack	(D) Chosen cipher text			
3.	is a process through which that wishes to access it.	ch a system verifies the identity of an entity	1	1	1
	(A) Integrity	(B) Confidentiality			
	(C) Availability	(D) Authentication			
4.	is a method which realphabetical letter.	places each plaintext letter with another	1	1	1
	(A) Transposition	(B) Confusion			
	(C) Substitution	(D) Diffusion			
5.	5/3 mod 7 =		1	2	2
•	(A) 2	(B) 3			
	(C) 7	(D) 4			
6.	What is the identity element in the gr modulo 10?	soup $G = \{2, 4, 6, 8\}$ under multiplication	1	2	2
	(A) 9	(B) 6			
	(C) 5	(D) 12			
7.	returns the number of integers fro	om 1 to n, that are relatively prime to n. (B) LCM	1	1	2
	(C) Euler Totient function	(D) Primitive root			
8.	multiplication (×) operations that satis	with two binary operations addition (+) and fies six axioms, namely closure, associative, distribute over the addition, identity and the	1	1	2
	(A) Group	(B) Ring			
	(C) Field	(D) Finite Field			
9.	The number of tests required to break th	e DES algorithm are	1	2	3
1 406	(A) 2.8×10^{14}	(B) 4.2×10^9			
	(C) 1.84×10^{19}	(D) 7.2×10^{16}			

10.	algorithm that takes an 8-bit block of produce an 8-bit block of the ciphertext at (A) DES (C) AES	f plaintext and encrypts using a 10-bit key to as output (B) S-DES (D) RC5	1	1	3
11.	How many round are there in AES algor (A) 10 (C) 14	ithm, which uses 256 bit key? (B) 12 (D) 16	1	1	3
12.	Which of the 4 operations are false for ea i) Substitute Bytes ii) Shift Columns iii) Mix Rows iv) XOR Round Key (A) only (iv) (C) (ii) (iii) and (iv)	(B) (i) only (D) (ii) and (iii)	1	2	3
13.	The Elliptic Curve Cryptography encryp (A) $C_m = \{kG, P_m + P_B\}$ (C) $C_m = \{kG, kP_m + kP_B\}$	tion is given by the formula (B) $C_m = \{G, P_m + kP_B\}$ (D) $C_m = \{kG, P_m + kP_B\}$	1	2	4
14.	RSA is an which does not differ private keys of users. (A) Exponential decipher (C) Exponential cipher	(B) Logarithmic cipher (D) Logarithmic decipher	1	1	4
15.	The RSA encryption formula is (A) C = M ^e mod φ(n) (C) C = M ^e mod n	(B) $C = M^d \mod \phi(n)$ (D) $C = M^d \mod n$	1	2	4
16.	Computation of the discrete logarithm is (A) Symmetric cryptography (C) Diffie-Hellman key exchange	the basis of the which cryptographic system (B) Asymmetric cryptography (D) Secret key cryptography	1	1	4
17.	For a 150-bit message and a 10-bit M dependent on? (A) 2140 (C) 215	AC, how many values are the MAC value (B) 2150 (D) 210	1	. 2	3
18.	SHA-1 produces a hash value of (A) 256 bits (C) 160 bits	(B) 180 bits (D) 128 bits	1	2	-3
19.	MAC is a (A) one-to-one mapping (C) one to many mapping	(B) many-to-one mapping (D) no mapping	1	1	4
20.	Which can be used to preserve the integr (A) message digest (C) encrypted message	(B) message summary (D) decrypted message	1	1	4
	PART - B $(5 \times 4 = 20 \text{ Marks})$		Mark	s BL	CO
	Answer any 5	Questions			
21.	21. Explain Play fair cipher substitution technique in detail and encrypt the message "network security" with the key "SCISSORS" (Hint: Use 'x' instead of space)		4	2	1
22.	2. Illustrate the working of Vernam cipher with an example.		4	2	1
23.	3. Apply Euclid's algorithm to check whether 65433 and 23876 are co-primes.		4	3	Ż
24.	Check whether the number given 56743 algorithm	is a prime number or not with Miller Rabin	4	3	2

25.	Outline the RC5 algorithm in detail.	4	2	3
26.	. Explain Elliptic curves over Z _p .		3	4
27.	Discuss the security requirements of Cryptographic hash function.	4	3	4
16.	PART - C ($5 \times 12 = 60 \text{ Marks}$) Answer all Questions	Marks	BL	CO
28.	(a) i. Examine the principle of Steganography (6) ii. Analyze the transposition techniques of Classical Encryption with example (6) (OR)	12	4	1
	(b) Perform encryption and decryption using Hill Cipher. Message is "crypto" with the following key matrix k = 17 17 5 21 18 21 2 2 19			
29.	(a) Examine the algebraic structures - Groups, Rings and Fields with necessary axioms.	12	4	2
	(OR)			
	 (b) State Chinese Remainder Theorem and discover x for the given set of congruent equations using Chinese Remainder Theorem X ≡ 1 (mod 5); X ≡ 2 (mod 7); X ≡ 3 (mod 9); X ≡ 4 (mod 11); 			
30.	 (a) Demonstrate the following modes of operations with block diagrams, and state their advantages and limitations, i. Cipher Block Chaining (CBC) ii. Cipher Feedback Mode (CFB) iii. Output Feedback Mode (OFB) iv. Counter Mode (CTR) 	12	3	3
	(OR)			
	(b) Demonstrate AES algorithm with all its round function in detail with neat block diagram			
31.	(a) Indian Air Force at Chennai is sending a secret code M='23' to their counterpart at Mumbai. They are using RSA algorithm to perform encryption and decryption for the data. Explain the detailed processing of RSA with given specifications: p=17; q=31; e=5.	12	3	4
	(OR)			
8	(b) Infosec crypto agency is experimenting with Diffie – Hellman Key Exchange Problem with given parameters to have a secure communication between two users A and B: prime q = 11, primitive root α = 2, User A's Public key Y _A = 7 and User B's Public Key Y _B = 5. i)Show that 2 is primitive root of 11 ii)Find User A's Private Key X _A iii) Compute Shared Secret key K			
32.	encrypting a message with maximum length of less than 2 ¹²⁶ bits and produces as output a 512-bit message digest. (OR)	12	2	4
	(b) Summarize the concepts of digital signature algorithm with key generation and verification in detail.			

28NF5&6-18CSE381T