MODÉLISATION DE LA PROPAGATION DE L'ÉPIDÉMIE DE DENGUE EN MARTINIQUE

DORÉ CORALIE (1181)

LA DENGUE, UN VIRUS VECTORIEL

LES MODÈLES MATHÉMATIQUES

Modéliser la propagation de l'épidémie par la description de la population

MODÈLE SAINS-INFECTÉS-RÉTABLIS

$$S'(t) = -\beta I(t) S(t)$$

$$I'(t) = \beta I(t) S(t) - \gamma I(t)$$

$$R'(t) = \gamma I(t)$$

MODÈLE EXPONENTIEL DE MALTHUS

Variation d'une population P donnée par l'équation différentielle linéaire d'ordre 1 :

$$P'(t) = (b - d) P(t)$$

$$P(t) = P_0 e^{(b-d)(t-t_0)}$$

b : taux de fertilitéd : taux de mortalité

MODÈLE DE CROISSANCE LOGISTIQUE DE VERHULST

Variation du nombre d'œufs E de moustiques :

$$E'(t) = b A(t) \left(1 - \frac{E(t)}{K_E} \right)$$

o b : taux de fertilité

 \circ K_E : taille critique du milieu

 \circ A: nombre de femelles adultes

http://biodiversite.wallonie.be/fr/le-moustiquejaponais.includehtml?IDC=6000

protecthome.fr/larvicide-moustique-tigre-pour-larve-demoustique.html

Graphe de transmission du virus du chikungunya à la population humaine

R_H: nbre humains rétablis

6

$$E'(t) = b A(t) \left(1 - \frac{E(t)}{K_E}\right) - (s+d) E(t)$$

$$L'(t) = s E(t) \left(1 - \frac{L(t)}{K_L}\right) - (s_L + d_L) E(t)$$

$$A'(t) = s_L L(t) - d_m A(t)$$

$$S'_M(t) = s_L L(t) - \left(d_m + \beta_m \frac{I_H(t)}{N_H(t)}\right) S_M(t)$$

$$I'_M(t) = \beta_m \frac{I_H(t)}{N_H(t)} S_M(t) - d_m I_M(t)$$

$$S'_H(t) = -\beta_H \frac{I_M(t)}{A(t)} S_H(t) + b_H(S_H(t) + I_H(t) + R_H(t)) - d_H S_H(t)$$

$$I'_H(t) = \beta_H \frac{I_M(t)}{A(t)} S_H(t) - (\gamma + d_H) I_H(t)$$

$$R'_H(t) = \gamma I_H(t) - d_H R_H(t)$$

LA DENGUE ET LE CHIKUNGUNYA

Cas du Chikuliguliya

Graphe de transmission du virus de la dengue à la population humaine

 E_S : nbre oeufs sains

E_I: nbre oeufs infectés

L_S: nbre larves saines

L_I: nbre larves infectées

$$E'_{S}(t) = b S_{M}(t) \left(1 - \frac{E_{S}(t)}{K_{E}}\right) - (s + d)E_{S}(t)$$

$$E'_{I}(t) = b I_{M}(t) \left(1 - \frac{E_{I}(t)}{K_{E}}\right) - (s + d)E_{I}(t)$$

$$L'_{S}(t) = s E_{S}(t) \left(1 - \frac{L_{S}(t)}{K_{L}}\right) - (s_{L} + d_{L})E_{S}(t)$$

$$L'_{I}(t) = s E_{I}(t) \left(1 - \frac{L_{I}(t)}{K_{L}}\right) - (s_{L} + d_{L})E_{I}(t)$$

$$S'_{M}(t) = s_{L} L(t) - \left(d_{m} + \beta_{m} \frac{I_{H}(t)}{N_{H}(t)}\right) S_{M}(t)$$

$$I'_{M}(t) = \beta_{m} \frac{I_{H}(t)}{N_{H}(t)} S_{M}(t) - d_{m} I_{M}(t) + s_{L} L_{I}(t)$$

$$S'_{H}(t) = -\beta_{H} \frac{I_{M}(t)}{A(t)} S_{H}(t) + b_{H}(S_{H}(t) + I_{H}(t) + R_{H}(t)) - d_{H} S_{H}(t)$$

$$I'_{H}(t) = \beta_{H} \frac{I_{M}(t)}{A(t)} S_{H}(t) - (\gamma + d_{H}) I_{H}(t)$$

$$R'_{H}(t) = \gamma I_{H}(t) - d_{H} R_{H}(t)$$

RÉSOLUTION NUMÉRIQUE

LE MODÈLE DES GRAPHES

Modéliser la dynamique de transmission du virus par le déplacement des vecteurs

ALGORITHME DE PRIM

Algorithm 1 Recherche de l'arbre couvrant minimal

```
Require: G = (U, E), s_0

F = \{\}

W = \{s\}

while W \neq F do

Choisirl'arête\{x,y\} \in E de poids minimum telle que x \in W et y \neq W

W \leftarrow W \cup \{y\}

F \leftarrow F \cup \{x,y\}

end while

return F
```

ALGORITHME DE DIJKSTRA

```
Algorithm 2 Déterminer le plus court chemin d'un graphe connexe pondéré
```

```
Require: G = (U, E), X, s_0
  for x \in S do
     \delta_s(x) \leftarrow \infty
     \delta_s(s) \leftarrow 0
     X \leftarrow S
     E \leftarrow \emptyset
  end for
  while X \neq \emptyset do
     Sélectionner dans la liste X le sommet x avec \delta_s(x) minimum
     Retirer le sommet x de la liste X
      Ajouter le sommet x à la liste E
     for y \in V^+(x) \cap X do
        if \delta_s(y) > \delta_s(x) + l(x,y) then
           \delta_s(y) \leftarrow \delta_s(x) + l(x,y)
           p(y) \leftarrow x
     end for
  end while
```

RÉSULTAT DE SIMULATION

CONCLUSION

L'ÉPIDÉMIE DE DENGUE EN MARTINIQUE 32 790 cas depuis le début de l'épidémie

Source: Santé publique France - Janvier 2021

https://viaatv.tv/dengue-lepidemie-ne-progresse-plus/