

# **Key Distribution**

## Communicating with symmetric cryptography

- Both parties must agree on a secret key, K
- Message is encrypted, sent, decrypted at other side



#### Key distribution must be secret. Otherwise

- Messages can be decrypted by the adversary
- Users can be impersonated

## Problems With Keys In Symmetric Cryptography

#### Key Management

- Potentially a lot of keys to track
- Every group of users needs a key

#### **Key Distribution**

- How do you communicate with someone you've never met?
- You cannot send them the secret key if the communication line is not secure









## **Key Distribution**

Secure key distribution is the biggest problem with symmetric cryptography

# Public Key Cryptography

## Public-key algorithm

#### Two related keys:

$$C = E_{K1}(P)$$
  $P = D_{K2}(C)$   $K_1$  is a public key  $C' = E_{K2}(P)$   $P = D_{K1}(C')$   $K_2$  is a private key

#### Examples:

RSA, Elliptic curve algorithms DSS (digital signature standard)

#### Trapdoor functions

- Public key cryptography relies on trapdoor functions
- Trapdoor function
  - Easy to compute in one direction
  - Inverse is difficult to compute without extra information

#### • Example:

96171919154952919 is the product of two prime #s. What are they?

But if you're told that one of them is 100225441

... then it's easy to compute the other: 959555959

## RSA Public Key Cryptography

Ron Rivest, Adi Shamir, Leonard Adleman created the first public key encryption algorithm in 1977

Each user generates two keys:

Private key (kept secret)

Public key (can be shared with anyone)

Difficulty of algorithm based on the difficulty of factoring large numbers Keys are functions of a pair of large (~300 digits) prime numbers

#### RSA algorithm: key generation

- 1. Choose two random large prime numbers *p*, *q*
- 2. Compute the product n = pq and  $_{\phi} = (p 1)(q 1)$ n will be presented with the public & private keys. Length(n) is the key length
- 3. Choose the public exponent, e, such that:  $1 < e < \phi$  and  $gcd(e, \phi) = 1$  [e and (p-1)(q-1) are relatively prime]
- 4. Compute the secret exponent, d such that:

```
ed = 1 \mod \phi

d = e^{-1} \mod ((p-1)(q-1))
```

5. Public key = (e, n)Private key = (d, n)Discard  $p, q, \phi$ 

See https://www.di-mgt.com.au/rsa\_alg.html

#### RSA algorithm: key generation and encryption

- •Choose p = 3 and q = 11
- •Compute n = p \* q = 3 \* 11 = 33
- •Compute  $\varphi(n) = (p 1) * (q 1) = 2 * 10 = 20$
- •Choose e such that  $1 < e < \varphi(n)$  and e and  $\varphi(n)$  are coprime. Let e = 7
- •Compute a value for d such that (d \* e) %  $\phi$ (n) = 1. One solution is d = 3 [(3 \* 7) % 20 = 1]
- •Public key is (e, n) => (7, 33)
- •Private key is (d, n) => (3, 33)
- •The encryption of m = 2 is  $c = 2^7 \% 33 = 29$
- •The decryption of c = 29 is  $m = 29^3 \% 33 = 2$

#### **RSA Encryption**

```
Key pair: public key = (e, n)
private key = (d, n)
```

#### **Encrypt**

- Divide data into numerical blocks < n</li>
- Encrypt each block:

 $c = m^e \mod n$ 

#### Decrypt

 $m = c^d \mod n$ 

#### RSA security

The security of RSA encryption rests on the difficulty of factoring a large integer

Public key = { modulus, exponent }, or {n, e}

- The modulus is the product of two primes, p, q
- The private key is derived from the same two primes

## Communication with public key algorithms

Different keys for encrypting and decrypting

No need to worry about key distribution

## Communication with public key algorithms



#### RSA isn't good for communication

Calculations are very expensive relative to symmetric algorithms

Common speeds:

| Algorithm        | Bytes/sec   |
|------------------|-------------|
| AES-128-ECB      | 148,000,000 |
| AES-128-CBC      | 153,000,000 |
| AES-256-ECB      | 114,240,000 |
| RSA-2048 encrypt | 3,800,000   |
| RSA-2048 decrypt | 96,000      |

AES ~1500x faster to decrypt; 40x faster to encrypt than RSA If anyone learns your private key, they can read all your messages

# Key Exchange

#### Diffie-Hellman Key Exchange

#### Key distribution algorithm

- Allows two parties to share a secret key over a non-secure channel
- Not public key encryption
- Based on difficulty of computing discrete logarithms in a finite field compared with ease of calculating exponentiation

Allows us to negotiate a secret common key without fear of eavesdroppers

#### Diffie-Hellman Key Exchange

- All arithmetic performed in a field of integers modulo some large number
- Both parties agree on
  - a large prime number p
  - and a number a < p
- Each party generates a public/private key pair

Private key for user i: Xi

Public key for user *i*: 
$$Y_i = a^{X_i} \text{ m o d}$$

## Diffie-Hellman exponential key exchange

- Alice has secret key X<sub>A</sub>
- Alice sends Bob public key Y<sub>A</sub>
- Alice computes
  - $K = Y_B^{X_A} \mod p$

- Bob has secret key X<sub>B</sub>
- Bob sends Alice public key Y<sub>B</sub>

 $K = (Bob's public key)^{(Alice's private key)} mod p$ 

#### Diffie-Hellman exponential key exchange

- Alice has secret key X<sub>A</sub>
- Alice sends Bob public key Y<sub>A</sub>
- Alice computes

$$K = Y_B^{X_A} \mod p$$

- Bob has secret key XB
- Bob sends Alice public key Y<sub>B</sub>
- Bob computes

$$K = Y_A^{X_B} \mod p$$

 $K' = (Alice's public key)^{(Bob's private key)} mod p$ 

## Diffie-Hellman exponential key exchange

- Alice has secret key XA
- Alice sends Bob public key Y<sub>A</sub>
- Alice computes

$$K = Y_B^{X_A} \mod p$$

expanding:

$$K = Y_B^{X_A} \mod p$$

$$= (a^{X_B} \mod p)^{X_A} \mod p$$

$$= a^{X_B X_A} \mod p$$

- Bob sends Alice public key Y<sub>B</sub>
- Bob computes

$$K = Y_{\Delta}^{X_B} \mod p$$

expanding:

$$K = Y_B^{X_B} \mod p$$

$$= (a^{X_A} \mod p)^{X_B} \mod p$$

$$= a^{X_A X_B} \mod p$$

$$K = K'$$

K is a <u>common key</u>, known only to Bob and Alice

#### Diffie-Hellman simple example

Assume p=1151,  $\alpha$ =57

- Alice's secret key  $X_A = 300$
- Alice's public key  $Y_A = 57^{300} \mod p = 282$
- Alice computes

$$K = Y_B^{X_A} \mod p = 1046^{300} \mod p$$

$$K = 105$$

- Bob's secret key  $X_B = 25$
- Bob's public key  $Y_B = 57^{25} \mod p = 1046$
- Bob computes

$$K = Y_A^{X_B} \mod p = 282^{25} \mod p$$

$$K = 105$$

Given p=1151,  $\alpha=57$ ,  $Y_A=282$ ,  $Y_B=1046$ , you cannot get 105

# Message Integrity

#### One-way functions

- Easy to compute in one direction
- Difficult to compute in the other

#### Examples:

#### Factoring:

pq = Nfind p,q given N

Discrete Log:

 $a^b \mod c = N$ find b given a, c, N EASY

EASY

**DIFFICULT** 

**DIFFICULT** 

Basis for RSA

Basis for Diffie-Hellman & Elliptic Curve

#### Example of a one-way function: middle squares

Example with a 20-digit number

A = 18932442986094014771

 $A^2 = 358437397421700454779607531189166182441$ 

Middle square, B = 42170045477960753118

Given A, it is easy to compute B

Given B, it is difficult to compute A

"Difficult" = no known short-cuts; requires an exhaustive search

## Cryptographic hash functions

## Cryptographic hash functions

#### **Properties**

Arbitrary length input → fixed-length output

- Also called *digests* or *fingerprints*
- Deterministic: you always get the same hash for the same message
- One-way function (pre-image resistance, or hiding)
  - Given H, it should be difficult to find M such that H=hash(M)
- Collision resistant
  - Infeasible to find any two different strings that hash to the same value:
     Find M, M' such that hash(M) = hash(M')
- Output should not give any information about any of the input
  - Like cryptographic algorithms, relies on diffusion
- Efficient

Computing a hash function should be computationally efficient

## Hash functions are the basis of integrity

- Not encryption
- Can help us to detect:
  - Masquerading:
    - Insertion of message from a fraudulent source
  - Content modification:
    - Changing the content of a message
  - Sequence modification:
    - Inserting, deleting, or rearranging parts of a message
  - Replay attacks:
    - Replaying valid sessions

#### Hash Algorithms

Use iterative structure like block ciphers do ... but use no key

- Example:
  - Secure Hash Algorithm, SHA-1
    - Designed by the NSA in 1993; revised in 1995
    - US standard for use with NIST Digital Signature Standard (DSS)
    - Produces 160-bit hash values
    - Chosen prefix collision attacks demonstrated May 2019
- Successors
  - SHA-2 (2001)
    - Produces 224, 256, 384, or 512-bit hashes
    - Approved for use with the NIST Digital Signature Standard (DSS)
  - SHA-3 (2015)
    - Can be substituted for SHA-2
    - Improved robustness

#### Message Integrity

#### How do we detect that a message has been tampered?

- A cryptographic hash acts as a checksum
- Associate a hash with a message
  - we're not encrypting the message
  - we're concerned with *integrity*, not *confidentiality*
- If two messages hash to different values, we know the messages are different

$$H(M) \neq H(M')$$

# Tamperproof Integrity: Message Authentication Codes and Digital Signatures

## Message Integrity: MACs

We rely on hashes to assert the integrity of messages

But an attacker can create a new message & a new hash and replace H(M) with H(M')

So, let's create a checksum that <u>relies on a key for validation</u>

Message Authentication Code (MAC)

Two forms: hash-based & block cipher-based