

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/21
Paper 2			May/June 2013
			1 hour 15 minutes
Candidates ans	wer on the Question Paper.		
No Additional M	laterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For
Examiner's
Use

1 The electronic structures of five atoms of different elements, **A**, **B**, **C**, **D** and **E**, are shown below.

Α	В	С		D	E
	the following questions an once or not at all.	about these s	structures. Ea	ach struct	ure may be used once,
(a) Wh	ich structure				
(i)	is in Period 4 of the Peri	odic Table,			
(ii)	is a noble gas,				
(iii)	is in Group II of the Peri	odic Table,			
(iv)	has five electrons in its	outer shell,			
(v)	has a proton (atomic) nu	ımber of 7,			
(vi)	represents a fluorine ato	om?			[6]
(b) Co	mplete the following sente	ences about e	elements usir	ng words f	rom the list below.
	alkali	atom o	covalent	ion	
	monatomic	three	transition	two	
An	element is a substance c	ontaining only	y one type of	F	
The	e Group VII elements exis	t as molecule	es containing	١	atoms.
Cai	rbon has a giant	struc	ture with ma	ny strong	bonds.
Ele	ments such as iron an	d copper, w	hich form c	coloured o	compounds, are called
	elements.				[4]
					[Total: 10]

2 The table below shows some properties of the Group I elements.

metal	density in g/cm ³	melting point/°C	boiling point/°C
lithium	0.53	181	1342
sodium	0.97	98	883
potassium	0.86	63	
rubidium	1.53	39	686
caesium	1.88	29	669

(a)		e the information in the table to explain why caesium is a liquid when the temperate 4°C.	
(b)	Sug	ggest a value for the boiling point of potassium.	
` ,		°C	[1]
(c)	(i)	Describe the general trend in density down the group.	
	(ii)	Which element does not follow this trend?	[1]
	` '		[1]
(d)	Sta	te three physical properties of potassium, other than density, melting point and boil nt.	ing
(0)			 [3]
(e)	(i)	assium reacts with water. The products are potassium hydroxide and hydrogen. Describe two observations when potassium reacts with water.	
	(ii)	Complete the symbol equation for this reaction.	 [2]
	\-·/	2K +H₂O → 2KOH +	[2]
		[Total:	

3 (a) Match the name of the homologous series on the left with its formula on the right. The first one has been done for you.

(b) Draw the full structural formula of the compound, C_2H_6 , showing all atoms and bonds.

[1]

[4]

(c)	The compound with the formula C_2H_4 is an unsaturated hydrocarbon. Describe the difference between a saturated and an unsaturated hydrocarbon in terms of the bonds they contain.
	[2]
(d)	Describe a test to distinguish between a saturated and unsaturated hydrocarbon.
	test
	result with saturated hydrocarbon
	result with unsaturated hydrocarbon
	[3]

[Total: 10]

- **4** Farmers spread fertilisers on the soil where crops are to be grown.
 - (a) Why do farmers use fertilisers? In your answer, include
 - the names of the essential elements present in most fertilisers,
 - the reasons why farmers use fertilisers.

[41

(b) Urea can be used as a fertiliser.
The structure of urea is shown below.

(i) Deduce the molecular formula of urea.

[1]
 L'.

(ii) Calculate the relative molecular mass of urea. You must show all your working.

[2]

(c)	Urea is a solid at room temperature. Complete the diagram below to show the arrangement of the molecules in solid urea.			
	Show a molecule of urea as			
		[2]		
(d)	d) When urea is heated with an alkali, ammonia is g Describe a test for ammonia.	iven off.		
	test			
	result	[2]		
		[Total: 11]		

[3]

5 The table shows some properties of four substances, A, B, C and D.

substance	melting point/°C	does the solid conduct electricity?	does a solution of the solid conduct electricity?	
Α	962	yes	does not dissolve	
В	747	no	dissolves and conducts	
С	113	no	does not dissolve	
D	3550	no	does not dissolve	

(a) '	Which	one	of	these	substances	has
-------	-------	-----	----	-------	------------	-----

(iii) a metallic structure?

with excess hydrochloric acid.

(i)	a giant covalent structure,	
(ii)	a simple molecular structure,	

(b) A student carried out an experiment to determine the rate of reaction of calcium carbonate

$$CaCO_{3}(s) \ + \ 2HC\mathit{l}(aq) \ \rightarrow \ CaC\mathit{l}_{2}(aq) \ + \ CO_{2}(g) \ + \ H_{2}O(I)$$

He recorded the loss of mass of the reaction mixture over a period of time.

1	Æ١	Evolain who	v tha	reaction	mivtura	dacraseae	in	mace
(U	Explain why	y me	reaction	mixture	uecreases	Ш	mass.

[1]

He carried out the reaction at constant temperature using 2g of calcium carbonate in small pieces. The hydrochloric acid was in excess. He plotted his results on a grid. This is shown below.

(ii) At what time has the reaction just finished?

.....s [1]

(iii) From the graph, deduce the loss in mass in the first 100 seconds.

.....g [1]

(iv) The student repeated the experiment keeping everything the same except for the size of the pieces of calcium carbonate. He used smaller pieces of calcium carbonate but the mass used was the same.

On the grid above, draw a line to show how the loss of mass changes with time when smaller pieces of calcium carbonate are used. [2]

(v) State the effect of increasing the concentration of hydrochloric acid on the rate (speed) of this reaction when all other factors remain constant.

.....[1]

[Total: 9]

6	(a)	Propanol is a solvent.
		Sugar is soluble in propanol. Salt (sodium chloride) is insoluble in propanol.
		A student wants to separate a mixture of solid salt and solid sugar.

(i) Describe how she could separate the salt from the sugar. You may draw a labelled diagram to help you answer this question.

[3]
Describe how the student could obtain solid sodium chloride from a solution of sodium chloride in water.
[1]

 $\begin{array}{c|c} Cl^{-} & Na^{+} & Cl^{-} & Na^{+} \\ \hline Na^{+} & Cl^{-} & Na^{+} & Cl^{-} \\ \hline Cl^{-} & Na^{+} & Cl^{-} & Na^{+} \\ \hline \end{array}$

Na⁺

Cl-

Na

Cl

(b) The diagram shows the structure of sodium chloride.

(i) Deduce the simplest formula for sodium chloride.

(ii) What type of bonding is present in sodium chloride? Put a ring around the correct answer.

covalent ionic metallic weak [1]

(c) The diagram shows the apparatus used to electrolyse a concentrated aqueous solution of sodium chloride.

(i)	Which letter on the diagram, A , B , C or D , represents the electrolyte?	
		[1]
(ii)	Name the product formed at	
	the positive electrode,	
	the negative electrode.	[2]
		[Total: 9]

7 (a) A student set up the apparatus shown below.

The concentrated hydrochloric acid gives off hydrogen chloride gas.

After 15 seconds, the damp blue litmus paper begins to turn red.

After 25 seconds, the litmus paper has turned completely red.

(d) A student investigates various methods of protecting iron from rusting. She sets up four tubes as shown in the diagram below.

For Examiner's Use

[Total: 13]

(-)	The second conference and purpose of the conference and purpose of the conference and conference	
		[1]
(ii)	State the names of the two substances needed for iron to rust.	
	and	[2]
(iii)	Explain why the iron in tube 4 does not rust.	
		[1]
(iv)	Explain why the iron in tube 3 eventually rusts.	
		[1]

8 The diagram shows a silvered light bulb.

Some properties of metals used in the light bulb are shown in the table below.

metal	hardness	electrical conductivity	melting point /°C	price /\$ per tonne	
brass	hard	good	about 1000	7 000	
copper	fairly soft	very good	1083	9 600	
silver	fairly soft	very good	962	1 300 000	
tungsten	hard	good	3410	450	

(a)	(i)	Suggest why copper rather than tungsten is used for electrical wiring?
		[1]
	(ii)	Suggest why silver is not used for electrical wiring.
		[1]
	(iii)	Suggest two reasons why tungsten rather than copper is used to make the bulb filament.
		reason 1
		reason 2[2]
	(iv)	Explain why the copper wires are covered with plastic.
		[2]

(b) Brass is an alloy. Which one of the following diagrams, A, B, C or D, best represents an alloy? For Examiner's Use

Α	В	С	D
			[1]

[Total: 7]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium 2	20 Neon 10 Atom	18	84	Krypton 36	131	Xe	Xenon 54		Radon 86		175 Lu Lutetium	:	Lawrendum 103
	II/		19 Fluorine 9 35.5 C.1	17	8 (en.	1	н	lodine 53		At Astatine 85		Yb Ytterbium		Nobelium 102
	>			16	62 (=		Те	Tellurium 52		Po Polonium 84		169 Tm Thulium	3	Mendelevium 101
	>			15	75		1	Sb	Antimony 51	209	Bis Bismuth 83		167 Er Erbium	3	Fermium 100
	2		Carbon 6 Carbon 8 Silicon Silicon	14	73	Ε		Sn		207	Pb		165 Ho Holmium	i i	Einsteinium 99
	=		11 B Boron 27 A.1 Aluminium	13	0 (Ga Gallium 31	115	'n	Indium 49	204	T1 Thallium 81		162 Dy Dysprosium 66	3	Californium 98
						Zinc 30		S	Cadmium 48	201	Hg Mercury 80		159 Tb Terbium	٥	Berkelium 97
					9 (Copper 29	108	Ag			Au Gold		157 Gd Gadolinium 64		Curium 96
Group					59			Pd	Palladium 46	195	Pt Platinum 78		152 Eu Europium	3	Americium 95
Gr					26	Cobalt 27			Rhodium 45	192			Sm Samarium	3	Plutonium 94
		T Hydrogen			26	Fe Iron	101		Ruthenium 44	190	Osmium 76		Pm Promethium	<u> </u>	Neptunium 93
					55	2≥ ≤			Technetium 43	186	Rhenium		Neodymium	238	Uranium 92
					52	Chromium 24	96	Mo	Molybdenum 42	184	_		Pr Praseodymium	3	Protactinium 91
					51	Vanadium 23	93	qN	Niobium 41	181	Ta Tantalum 73		140 Ce	232 4	Thorium 90
					48	Titanium 22	16	Zr	Zirconium 40	178	Hafnium 72			nic mass	ooi nic) number
					42	Scandium 21	88	>	Yttrium 39	139	La Lanthanum 57 *	227 Ac Actinium †	l series eries	a = relative atomic mass	a a a comic symbolb = proton (atomic) number
	=		Be Beryllium 4 24 Mg	12	4 (Calcium 20	88	Š	Strontium 38	137	Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	a >	
	_		Lithium 3 23 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7	36	Potassium	85	Rb	Rubidium 37	133	Cs Caesium 55	Francium 87	*58-71 L	2	o V

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.