Identification of At-Risk Gamers through Gamers' Engagement Levels

Project Presentation

INTRODUCTION

THE STRAITS TIMES

Gaming addiction on the rise among children in S'pore amid pandemic:
Counsellors

Counsellors say they have seen a stark increase in reports from parents about their children being hooked on online gaming since the pandemic hit, with the number of cases rising by 60 per cent. ST PHOTO ILLUSTRATION: GIN TAY

Overview of gaming addiction as a global concern

- Adverse impact on cognitive, behavioural and emotional well-being
- Recognition of gaming disorder by World Health
 Organisation, added to International Classification List in 2022
 - World Health Organization. (n.d.). *Gaming disorder*. Retrieved 26 August 2024, from https://www.who.int/standards/classifications/frequently-asked-questions/gaming-disorder

Gaming addiction trend in Singapore

- MCI's response to PQ on Measures in Place to Manage Gaming Addiction among Youths. (n.d.). Retrieved 26
 August 2024, from https://www.mddi.gov.sg/media-centre/parliamentary-questions/gaming-addiction-among-youths/
- Teng, H., Zhu, L., Zhang, X., & Qiu, B. (2024). When Games Influence Words: Gaming Addiction among College Students Increases Verbal Aggression through Risk-Biased Drifting in Decision-Making. *Behavioral Sciences*, 14(8), 699. https://doi.org/10.3390/bs14080699

Importance of identifying at-risk gamers

Enable early intervention

Objectives of the project

Construct an end-to-end machine learning pipeline to identify at-risk gamers

RECAP OF EXPLORATORY DATA ANALYSIS

. Dataset

- Obtained from Kaggle
- Purpose of EDA
 - Understanding the dataset
- . Steps involved
 - Data extraction
 - Exploration and cleaning
 - Subset analysis and visualization
 - Key findings from the EDA

df.head()

Target Variable

	PlayerID	Age	Gender	Location	GameGenre	PlayTimeHours	InGamePurchases	GameDifficulty	SessionsPerWeek	AvgSessionDurationMinutes	PlayerLevel	AchievementsUnlocked	EngagementLevel
0	9000	43	Male	Other	Strategy	16.271119	0	Medium	6	108	79	25	Medium
1	9001	29	Female	USA	Strategy	5.525961	0	Medium	5	144	11	10	Medium
2	9002	22	Female	USA	Sports	8.223755	0	Easy	16	142	35	41	High
3	9003	35	Male	USA	Action	5.265351	1	Easy	9	85	57	47	Medium
4	9004	33	Male	Europe	Action	15.531945	0	Medium	2	131	95	37	Medium

df.tail()

	PlayerID	Age	Gender	Location	GameGenre	PlayTimeHours	InGamePurchases	GameDifficulty	SessionsPerWeek	AvgSessionDurationMinutes	PlayerLevel	AchievementsUnlocked	EngagementLevel
40029	49029	32	Male	USA	Strategy	20.619662	0	Easy	4	75	85	14	Medium
40030	49030	44	Female	Other	Simulation	13.53928	0	Hard	19	114	71	27	High
40031	49031	15	Female	USA	RPG	0.240057	1	Easy	10	176	29	1	High
40032	49032	34	Male	USA	Sports	14.017818	1	Medium	3	128	70	10	Medium
40033	49033	19	Male	USA	Sports	10.083804	0	Easy	13	84	72	39	Medium
				•									

df.sample(n=5)

	PlayerID	Age	Gender	Location	GameGenre	PlayTimeHours	InGamePurchases	GameDifficulty	SessionsPerWeek	AvgSessionDurationMinutes	PlayerLevel	AchievementsUnlocked	EngagementLevel
38406	47406	31	Female	USA	Sports	0.087878	0	Hard	2	96	31	5	Low
1875	10875	32	Male	Other	Action	10.612119	0	Easy	1	75	63	21	Low
39848	48848	37	Male	Europe	Simulation	22.208582	0	Hard	8	152	4	7	Medium
32650	41650	20	Female	Europe	RPG	20.482825	0	Hard	14	123	81	3	High
19555	28555	24	Male	Other	Sports	10.613646	0	Medium	9	94	37	4	Medium

Bivariate Analysis Numerical Fields vs Engagement Levels

Engagement Levels vs Age:

- Even data distribution across all variables.

Engagement Levels vs Sessions per Week:

- Players with High engagement levels generally spent more time gaming every week.

Engagement Levels vs Player Level:

- The median of Low engagement level is slightly lower than Medium and High levels.
- More players with Low engagement levels also have lower levels of playing skills.
- Converse is true for players with High engagement levels.

Violin Plot of Engagement Levels by PlayerLevel

Bivariate Analysis Numerical Fields vs Engagement Levels

Engagement Levels vs Play Time Hours:

- Even data distribution across all variables.

Engagement Levels vs Avg Session Duration Minutes:

- Players with High engagement levels generally spent more time gaming every session.

Engagement Levels vs Achievements Unlocked:

- The median of Low engagement level is slightly lower than Medium and High levels.
- More players with Low engagement levels also unlocked fewer game achievements.
- Converse is true for players with High engagement levels.

Violin Plot of Engagement Levels by AchievementsUnlocked

Correlation Matrix

- +ve correlation between
 Engagement Level and
 Sessions Per Week
 (0.61)
- +ve correlation between
 Engagement Level and
 Avg Session Duration
 Minutes (0.48)

- 0.8

- 0.6

- 0.4

- 0.2

Multivariate Analysis

EngagementLevel
AvgSessionDuration
AvgSessionPerWeek

- Distinct groups identified
- Players who spent more time are likely to be highly engaged

Scatter Plot of Sessions Per Week vs Avg Session Duration

The Machine Learning Pipeline

Model Model Evaluation Feature Importance Hyperparameter Tuning Model Deployment

Random Forest

Logistic Regression

kNN

Support Vector Machines

Gradient Boosting

MACHINE LEARNING MODELS

Objective: To predict Engagement Levels (Low, Medium, High)

Classification Models

Decision Tree

- Easy to interpret and visualise
- Handles categorial features well

Random Forest

- Ensemble method combining multiple decision trees
- Robust to overfitting and feature correlations

Support Vector Machines (SVM)

- Effective for high-dimensional data
- Robust to noise and outliers

K-Nearest Neighbours (kNN)

- Simple, intuitive and efficient
- Sensitive to feature scaling

- Logistic Regression

- Assume linear relationship, easy to interpret and efficient
- Not effective when applied to complex datasets

Gradient Boosting

- Combines weak learners to create strong predictive model
- Prone to overfitting

EVALUATION OF ML MODELS

Model Development

Decision Tree

Random Forest

Logistic Regression

kNN

Support Vector Machines

Gradient Boosting

DecisionTreeClassifier Model:

Accuracy: 0.84 +/- 0.01 Precision: 0.84 +/- 0.01 Recall: 0.84 +/- 0.01 F1 Score: 0.84 +/- 0.01 Runtime: 4.12 seconds

RandomForest Model Performance:

Accuracy: 0.90 +/- 0.00 Precision: 0.90 +/- 0.00 Recall: 0.90 +/- 0.00 F1 Score: 0.89 +/- 0.00 Runtime: 7.89 seconds

LogisticRegression Model Performance:

Accuracy: 0.82 +/- 0.01 Precision: 0.83 +/- 0.01 Recall: 0.82 +/- 0.01 F1 Score: 0.82 +/- 0.01 Runtime: 0.42 seconds kNN Model Performance: Accuracy: 0.81 +/- 0.00 Precision: 0.82 +/- 0.01 Recall: 0.81 +/- 0.00

F1 Score: 0.80 +/- 0.00 Runtime: 1.43 seconds

SVC Model Performance:

Accuracy: 0.90 +/- 0.00 Precision: 0.90 +/- 0.00 Recall: 0.90 +/- 0.00

F1 Score: 0.90 +/- 0.00

Runtime: 261.51 seconds

GradientBoosting Model Performance:

Accuracy: 0.91 +/- 0.00 Precision: 0.91 +/- 0.00 Recall: 0.91 +/- 0.00 F1 Score: 0.91 +/- 0.00 Runtime: 26.18 seconds

Importance Score

Model	Observations
	'Sacaian DariWaala'
	'SessionPerWeek ' and
	'AvgSessionDurationMinutes' emerge as
Lagistia Bagyassian	significant predictors. While a range of other
Logistic Regression	features also gain prominence, they have lower
	absolute values compared to tree-based
	models.

SVM

'SessionPerWeek' and 'AvgSessionDurationMinutes' emerge as significant predictors. Similar to Logistic Regressions, a range of other features also gain prominence. The higher absolute values reflect the model's ability to capture more interactions between features compared to Logistic Regression.

Model	Observations
Gradient Boosting	This model narrows the variables to two key features, 'AvgSessionDurationMinutes' and 'SessionsPerWeek'. In addition, the
	analysis also shows weaker
	interactions in
	'AchievementsUnlocked ' and
	PlayerLevel.

Model	Observations
	This model ranked 'Gender', 'Location', 'Age' and 'PlayerLevel' as prominent features.
K-Nearest Neighbours	However, as kNN performed badly in predicting engagement levels, its feature importance analysis will be ignored.

Per	mutation Importance of Feat	tures for kNN model:
	Feature	Importance
0	Gender_Male	0.334036
1	Location_Asia	0.269925
2	Location_Other	0.016341
3	Location_Europe	0.013992
4	Age	0.005698
5	PlayerLevel	0.005082
6	${\bf AvgSession Duration Minutes}$	0.001908
7	SessionsPerWeek	0.001647
8	PlayTimeHours	0.001168
9	Gender_Female	0.000454
10	AchievementsUnlocked	0.000142
11	GameGenre_Strategy	0.000000
12	${\sf GameDifficulty_Hard}$	0.000000
13	GameDifficulty_Easy	0.000000
14	<pre>InGamePurchases_1</pre>	0.000000
15	InGamePurchases_0	0.000000
16	Location_USA	0.000000
17	GameGenre_Sports	0.000000
18	GameGenre_Simulation	0.000000
19	GameGenre_RPG	0.000000
20	GameGenre_Action	0.000000
21	GameDifficulty_Medium	0.000000

FEATURE IMPORTANCE ANALYSIS SUMMARY

Categories	Variables
Engagement Metrics	SessionsPerWeek AvgSessionDurationMinutes PlayTimeHours
Player Characteristics	Age AchievementsUnlocked PlayerLevel

Objective

 To find a set of hyperparameters that minimises a predefined loss function on given data

Method

 Uses cross-validation to estimate generalisation performance and determine the best hyperparameter values

Grid Search	Random Search
Comprehensive search of every possible combination of hyperparameters	Random sampling of combinations of hyperparameters
Inefficient when searching in large spaces	Quicker exploration of hyperparameter space
Computationally expensive and time- consuming	Suitable for larger dataset with high dimensional hyperparameter spaces

DECISION TREE CLASSIFIER

Best Parameters and Accuracy Score for Random Forest, 10-Fold	Best Parameters and Accuracy Score for Random Forest, 3-Fold
Fitting 10 folds for each of 50 candidates, totalling 500 fits	Fitting <mark>3 folds</mark> for each of 50 candidates, totalling 150 fits
Best parameters for Random Forest:	Best parameters for Random Forest:
{'classifiern_estimators': 1000,	{'classifiern_estimators': 700,
'classifiermin_samples_split': 2,	'classifiermin_samples_split': 2,
'classifiermin_samples_leaf': 1,	classifiermin_samples_leaf': 1,
'classifiermax_features': 'sqrt',	'classifiermax_features': 'sqrt',
'classifiermax_depth': None}	'classifiermax_depth': None}
Best score for Random Forest: 0.899710332136013	Best score for Random Forest: 0.8943078436344779

GRADIENT BOOSTING

Best Parameters and Accuracy Score for Gradient Boosting, 10-Fold	Best Parameters and Accuracy Score for Gradient Boosting, 3-Fold
Fitting 10 folds for each of 50 candidates, totalling	500 fits Fitting <mark>3 folds</mark> for each of 50 candidates, totalling 150 fits
Best parameters for Gradient Boosting:	Best parameters for Gradient Boosting:
{'classifiern_estimators': 900	{'classifiern_estimators': 900,
'classifiermin_samples_split': 2	'classifiermin_samples_split': 2,
'classifiermin_samples_leaf': 2	'classifiermin_samples_leaf': 2,
'classifiermax_depth': 7,	'classifiermax_depth': 7,
'classifierlearning_rate': 0.01}	'classifierlearning_rate': 0.01}
Best score for Gradient Boosting: 0.91866900274	Best score for Gradient Boosting: 0.9159771821436102

DECISION TREE CLASSIFIER

GRADIENT BOOSTING

Best Parameters and Accuracy Score for Random Forest, 10-Fold	Best Parameters and Accuracy Score for Gradient Boosting, 3-Fold
Fitting 10 folds for each of 50 candidates, totalling 500 fits	Fitting <mark>3 folds</mark> for each of 50 candidates, totalling 150 fits
Best parameters for Random Forest:	Best parameters for Gradient Boosting:
{'classifiern_estimators': 1000,	{'classifiern_estimators': 900,
'classifiermin_samples_split': 2,	'classifiermin_samples_split': 2,
'classifiermin_samples_leaf': 1,	'classifiermin_samples_leaf': 2,
'classifiermax_features': 'sqrt',	'classifiermax_depth': 7,
'classifiermax_depth': None}	'classifierlearning_rate': 0.01}
Best score for Random Forest: 0.899710332136013	Best score for Gradient Boosting: 0.9159771821436102

MODEL TRAINING & TESTING

- 1. Applying best hyperparameters onto Random Forest and Gradient Boosting models
- 2. Train models using X_train and y_train datasets
- 3. Evaluate using X_test and y_test datasets

Random Forest Random Forest Model Evaluation: Accuracy: 0.8996003996003996 Classification Report:					Gradient Boosting				
					Gradient Boosting Model Evaluation: Accuracy: 0.9215784215784216 Classification Report:				
High	0.93	0.84	0.88	1047	High	0.93	0.89	0.91	1047
Low	0.92	0.87	0.90	1045	Low	0.92	0.90	0.91	1045
Medium	0.88	0.95	0.91	1912	Medium	0.92	0.95	0.93	1912
accuracy			0.90	4004	accuracy			0.92	4004
macro avg	0.91	0.89	0.90	4004	macro avg	0.92	0.91	0.92	4004
weighted avg	0.90	0.90	0.90	4004	weighted avg	0.92	0.92	0.92	4004
Confusion Matr	rix:				Confusion Matr	rix:			
[[875 31 141]					[[936 32 79]				
[19 914 112]					[21 942 82]				
[48 51 18	313]]				[48 52 18	B12]]			

MODEL SELECTION

Gradient Boosting before Tuning Validation Dataset

Gradient Boosting Tuned with Hyperparameters Testing Dataset

GradientBoosting Model Performance:

Accuracy: 0.91 +/- 0.00

Precision: 0.91 +/- 0.00

Recall: 0.91 +/- 0.00

F1 Score: 0.91 +/- 0.00

Runtime: 26.18 seconds

```
Gradient Boosting Model Evaluation:
Accuracy: 0.9215784215784216
Classification Report:
               precision
                            recall f1-score
                                               support
        High
                   0.93
                             0.89
                                       0.91
                                                 1047
         Low
                   0.92
                             0.90
                                       0.91
                                                 1045
      Medium
                   0.92
                             0.95
                                       0.93
                                                 1912
                                       0.92
                                                 4004
    accuracy
                   0.92
                             0.91
                                       0.92
                                                 4004
   macro avg
weighted avg
                                       0.92
                                                 4004
                   0.92
                             0.92
Confusion Matrix:
             79]
              821
    21 942
         52 1812]]
```

MODEL DEPLOYMENT

Local web application using Flask

User access http://127.0.0.1:5000

Engagement Prediction Form

Age:
Gender:
Location:
GameGenre:
PlayTimeHours:
InGamePurchases:
GameDifficulty:
SessionsPerWeek:
AvgSessionDurationMinutes:
PlayerLevel:
AchievementsUnlocked:
Predict

Engagement Prediction Form

Age: 17						
Gender: Male						
Location: USA						
GameGenre: RPG						
PlayTimeHours: 12.4						
InGamePurchases: 0						
GameDifficulty: Easy						
SessionsPerWeek: 0						
AvgSessionDurationMinutes: 100						
PlayerLevel: 49						
AchievementsUnlocked: 14						
Predict						

MODEL DEPLOYMENT

Local web application using Flask

Engagement Prediction Form

Age: 17					
Gender: Male					
Location: USA					
GameGenre: RPG					
PlayTimeHours: 12.4					
InGamePurchases: 0					
GameDifficulty: Easy					
SessionsPerWeek: 0					
AvgSessionDurationMinutes: 100					
PlayerLevel: 49					
AchievementsUnlocked: 14					
Predict					
Your predicted engagement level is: Low					

Classification	Description		
Low	Players interact minimally with gaming. Play infrequently and may abandon game after a short period.		
Medium	Deeper involvement, may not have fully explored all aspects of the game.		
High	Highly active and invested in gaming. Spend significant time in gaming.		

LIMITATIONS OF THE PROJECT

Based on assumption that individuals suffering from gaming disorder equates to highly engaged players.

Project <u>primarily focuses on quantitative measures</u>. The qualitative factors, such as emotional and psychological aspects, are not measured.

- for example, escapism, social interaction.

It is critical to collaborate with relevant medical professionals to develop a standardised assessment tool for evaluating gaming disorder.

--- END ---