納諾巴伯TM吸氫機標準版

60余项性能优化 只为更好的吸氢体验

高纯氢吸氢机·2%黄金浓度方案倡领者 每分钟生成300ml高纯氢气 Nanobubble

拥有2%黄金吸入浓度

与上海汇康氢医学研究中心联合研发

世界氢医学第一人 太田成男亲自推荐的吸氢机

装备PEM高分子电解质膜 铂金镀层·高效实现氢氧分离

超高纯度+超长使用寿命 超纯氢气:4倍超长设计寿命

无需特殊电解液·纯水省钱又安心

全新升级: 超纯水电解技术 6小时单次长效吸氢模式 支持长效夜吸·守护每一个夜晚

太田成男教授 在上一档日本访谈节目时, 聊到因为 坚持吸入2%浓度的氢气,人也精神了很多。

纯氢吸氢方案与氢氧 混合方案有什么区别

对比项目	纯氢方案	氢氧混合方案	大气流方案	
电解技术	O PEM纯水电解	🗙 碱液电解	🗙 碱液电解	
电解液	〇 纯净水	× 氢氧化钾/ 氢氧化钠	× 氢氧化钾/ 氢氧化钠	
腐蚀性	〇 无	🗙 极强	🗙 极强	
工作电压	〇 低	່★高	× 高	
臭氧生成率	〇 无	່メ高	× 高	
槽内温度	〇 低	× 高	່★高	
长时工作能力	○ 较强	▲ 较弱	★ 弱	
氢气纯度	O >99.9%	× ≈66.7%	× ≈66.7%	
氢气与空气混合比	O < 4%	▲ 2-6%	× 8-12%	
环境安全性	O 高	▲ 中低	× 低	
人体安全性	O 高	▲ 中低	× 低	
能耗比	O 高	▲ 中低	× 低	

纯净氢气 纯享健康

氢氧混合方案

其中生成的臭氧等杂气 会导致不适感

纯氢方案

99.9%高纯氢气 呵护你的每一口呼吸

长效吸氢 VS 短时吸氢

日本Ryo Yamamoto等科学家对氢气吸入后体内 氢气浓度变化进行了研究。研究结果表明:吸氢之后 各组织内达到饱和的速率是不同的,因此使用长效吸氢 比短时吸氢更能够提高组织器官中的氢气浓度, 从而发挥更大的作用。

氢气检测 权威认证

吸氢机出氢量检测、吸氢机氢气穿度检测报告

序号 Serial	检测项目 Test items	单位 Unit	技术要求 Specification	检测结果 Test results	单项评价 Evaluation
1	氮 (H _i) 含量 (体积分数) /10°	13	T	99.99	
2	氧(0,)含量 (体积分数)/10*	1	W-1	23	
3	気气(N)含量 (体积分数)/10*	1 - C	To or to	15	W. Carrie
4	一氧化碳 (CO) 含量 (体积分数) /10*	11-11	OF THE	< 0.03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5	二氧化碳 (CO _i) 含量 (体积分数) /10*	1	LA CONTRACTOR	IL	
6	甲烷 (CH ₄) 含量 (体积分数) /10 ⁴	10 20	15-17	<0.03	-
7	水分 (H _i 0) 含量 (体积分数) /10°	Tre de	7-1	43	-

		Test	results		
F8200	8082802	7 m		TE	- The
79-9 Serial	42 St III of	8-62 Unit	MAR.R. Specification	REPORT R	0.02/FD Evaluation
1	気のい含量 (移程分数) /(0**	12	75	99,99	
2	(((())) (())	-	-	23	No.
1	(移形分数) /10°	-	_	15	
10	(体积分数)/10°	-	-	<0.03	_
5	二氧化碳((0)) 含量((6))(0))		-	pla	
6	平位 (OL) 含量 (体积分数) /20*	-		<0.03	-
7	水分(NO)含量 (体积分数)/10*	(-)	7	0	-
8300	инипанар.	1/1/	VA	-	-1
79-10 Serial	Name Name	792 V Model		T A	
1 2	「作的情化AC 4960-POO PY 605 簡単点が12/2019-25 PY 603				
	内部市	14	70		

产品规格

型号 NB-X71A

产氢量 300 cc/分

电源 AC 220V·50/60 Hz

使用温度 0~+42℃

本体尺寸28x29.6x31.3cm

本体重量

约6kg

电解槽 PEM纯水电解槽

产氢水质 蒸馏水 (纯净水)

消耗电力

约160W