Pondelok: 14:00

SYNTÉZA SEKVENČNÝCH LOGICKÝCH OBVODOV

Navrhnite synchrónny sekvenčný obvod so vstupom x a výstupom y s nasledujúcim správaním: na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť **001011** (postupnosti sa môžu prekrývať, v tomto prípade je možné chápať ako dve postupnosti). Vlastné riešenie overte progr. prostriedkami ESPRESSO a LogiSim (príp. LOG alebo FitBoard).

Úlohy:

- 1) V pamäťovej časti použite minimálny počet preklápacích obvodov **JK-PO**.
- 2) Navrhnuté B-funkcie v tvare MDNF overte programom pre ESPRESSO. Pri návrhu B-funkcií klaďte dôraz na skupinovú minimalizáciu funkcií.
- 3) Optimálne riešenie (treba zhodnotiť, ktoré riešenie je lepšie a prečo) vytvorte obvod s členmi NAND (výhradne NAND, t.j. ani žiadne NOT).
- 4) Výslednú schému nakreslite v simulátore LogiSim (príp. LOG alebo FitBoard) a overte simuláciou.
- 5) Riešenie vyhodnoť te (zhodnotenie zadania, postup riešenia, vyjadrenie sa k počtu logických členov).

Zadaná postupnosť: **001011**

Prechodová tabuľka pre automat typu Moore:

	i		ŕ	. , , , ,
	Nový	stav	Y	Čo je
stav	x=0	x=1		splnené?
S 0	S2	S1	0	Nič
S 1	S 3	S1	0	"0"
S2	S2	S4	0	"00"
S3	S5	S1	0	"001"
S4	S2	S6	0	"0010"
S5	S2	S7	0	"00101"
S 6	S2	S 1	1	"001011"

Pondelok: 14:00

Prechodový graf typu Moore (hodnota hrany reprezentuje hodnotu vstupnej premennej):

Kódovanie stavov

			z3	
		z2		
_	S0	S5	S2	S1
z1	X	S4	S6	S3

$Z_1Z_2Z_3$
000
001
011
101
110
010
111

Budiace funkcie pre D preklápacie obvody (D-PO) a výstupná funkcia

				z3	
			z2		
	_	001	001	001	011
	z 1	XXX	001	001	110
		XXX	010	000	000
X		000	111	101	000
			D1,D2,D3		

Arnošt Kábel, ID: 12345 Pondelok: 14:00

			z3	
		z2		
	0	0	0	0
z 1	X	0	0	1
	X	0	0	0
X	0	1	1	0
		D1		

			z3	
		z2		
	0	0	0	1
z 1	X	0	0	1
	X	1	0	0
X	0	1	0	0
		D2		

			z3	
		z2		
	1	1	1	1
z 1	X	1	1	0
	X	0	0	0
X	0	1	1	0
		D3		

			z3	
		z2		_
	0	0	0	0
z 1	X	0	1	0
-	$Y = Z1, Z2, Z3, \bar{X}$			

```
Arnošt Kábel, ID: 12345
Pondelok: 14:00
```

```
Vstup pre program Espresso:
```

```
# prevodník z 2z5 do BCD...+3
.i 4
.o 7
.ilb x z1 z2 z3
.ob J1 K1 J2 K2 J3 K3 Y
.type fr
.p 14
0000 0-0-1-0
1000 0-0-0-0
0010 0--01-0
0110 -0-01-0
1110 -0-10-0
1010 1--11-0
0011 0--0-10
0111 -0-0-11
1111 -0-0-00
1011 1--0-10
0001 0-1--10
0101 -11--00
1101 -00--00
1001 0-0--00
.e
```

Výstup programu Espresso:

```
# prevodník z 2z5 do BCD...+3
J1 = (x&!z1&z2);
K1 = (!x&!z2&z3);
J2 = (!x&!z2&z3);
K2 = (x&!z3);
J3 = (x&!z1&z2) | (!x);
K3 = (!x&z1&z2&z3) | (!x&!z1) | (x&!z1&z2);
Y = (!x&z1&z2&z3);
```

Pondelok: 14:00

Budiace funkcie pre JK preklápacie obvody (JK-PO)

Pondelok: 14:00

			Z 3	
		Z 2		
_	1	1	X	X
Z 1	X	1	X	X
	X	0	X	X
X	0	1	X	X
		$J3 = Z2. X. \overline{Z1}$	$+ \bar{X}$	
			Z3	
		Z2		
_	X	X	1	1
Z1	X	X	1	0
	X	X	0	0
X	X	X	1	0

Prepis na NAND s využitím Shefferovej operácie:

$$J1 = Z2.X = (Z2 \uparrow X) \uparrow (Z2 \uparrow X)$$

$$K1 = Z3.\overline{X}.\overline{Z2} = (Z3 \uparrow (X \uparrow) \uparrow (Z2 \uparrow)) \uparrow (Z3 \uparrow (X \uparrow) \uparrow (Z2 \uparrow))$$

$$J2 = Z3.\overline{X} = (Z3 \uparrow (X \uparrow) \uparrow (Z3 \uparrow (X \uparrow))$$

$$K2 = X.\overline{Z3} = (X \uparrow (Z3 \uparrow)) \uparrow (X \uparrow (Z3 \uparrow))$$

$$J3 = Z2.X.\overline{Z1} + \overline{X} = ((Z2 \uparrow X \uparrow (Z1 \uparrow)) \uparrow (X \uparrow))$$

$$K3 = Z2.\overline{X} + Z2.X.\overline{Z1} + Z3.\overline{X}.\overline{Z1} =$$

$$= ((Z2 \uparrow (X \uparrow)) \uparrow (Z2 \uparrow X \uparrow (Z1 \uparrow)) \uparrow (Z3 \uparrow (X \uparrow) \uparrow (Z1 \uparrow))$$

$$Y = Z1.Z2.Z3.!X = (Z1 \uparrow Z2 \uparrow Z3 \uparrow (X \uparrow)) \uparrow (Z1 \uparrow Z2 \uparrow Z3 \uparrow (X \uparrow))$$

Vyjadrenie k počtu logických členov obvodu: 16 členov NAND Vyjadrenie k počtu vstupov do logických členov obvodu: 37

Pondelok: 14:00

Schéma:

Zhodnotenie

Našou úlohou bolo navrhnúť synchrónny sekvenčný obvod so vstupom x a výstupom y s takým správaním, že na výstupe Y bude hodnota 1 vždy vtedy, ak sa zo vstupnej postupnosti vyskytne postupnosť 001011.

Ako prvé som zostrojil prechodový graf typu Moore, aby som zistil správanie pri jednotlivých vstupoch 0 a 1. Následne som zakódoval dané stavy a prepísal ich hodnoty do Karnaughovej mapy.

Následne som ich rozdelil na mapy D1, D2,D3 a Y a z nich som pomocou budiacich funkcií pre JK preklápacie obvody (JK-PO) spravil J1,J2,J3 a K1,K2 a K3 Karnaughove mapy (s Y sa nič nerobilo.). Princíp bol jednoduchý, stačilo prepísať danú mapu Dx a pri J1 dosadiť za hodnoty pre Z1 všade X a pri K1 naopak, všetky hodnoty okrem Z1 dosadiť X. Potom som zapísal rovnice pre jednotlivé mapy a následne som ich prepísal na NAND pomocou Shefferovej operácie. Na záver som zostrojil obvod v Logisime a zistil, že treba využiť 16 členov NAND a 37 vstupov do logických členov NAND.