Vous pouvez rendre les exercices suivants : 2b, 4a, 5a, 8b.

1. Soient E et F deux ensembles et A(x,y) des assertions indexées par $(x,y) \in E \times F$. Il est clair (pensez-y un instant) que

$$\begin{bmatrix} \forall x \in E, \forall y \in F, A(x,y) \end{bmatrix} \Leftrightarrow \begin{bmatrix} \forall y \in F, \forall x \in E, A(x,y) \end{bmatrix}, \\ \begin{bmatrix} \exists x \in E, \exists y \in F, A(x,y) \end{bmatrix} \Leftrightarrow \begin{bmatrix} \exists y \in F, \exists x \in E, A(x,y) \end{bmatrix}.$$

Le but de cet exercice est de vérifier qu'il n'est cependant pas toujours possible d'interchanger des quantificateurs.

- a) Montrer que $[\exists x \in E, \forall y \in F, A(x,y)] \Rightarrow [\forall y \in F, \exists x \in E, A(x,y)].$
- b) Montrer par un exemple que la réciproque de l'implication précédente est fausse en général.
- 2. Soit E un ensemble. L'opération **différence symétrique** associe à chaque paire de sous-ensembles $A, B \subset E$ l'ensemble $A \triangle B := (A \cap B^c) \cup (B \cap A^c)$. Démontrer les affirmations suivantes :

- a) $A \triangle B = (A \cup B) \setminus (A \cap B)$ b) $A \triangle B = \emptyset \Leftrightarrow A = B$
- 3. Trouver une collection infinie A_1, A_2, \ldots de sous-ensembles de $\mathbb N$ telle que (i) chaque A_i contienne une infinité d'éléments et (ii) chaque entier appartienne à exactement un des ensembles A_i .
- 4. Soient $f: E \to F$ et $g: F \to G$. Démontrer les affirmations suivantes :
 - a) Si f et g sont injectives, alors $g \circ f$ est injective.
 - b) Si f et q sont surjectives, alors $q \circ f$ est surjective.
 - c) Si f et q sont bijectives, alors $q \circ f$ est bijective.
- 5. Soient $f: E \to F$ et $g: F \to G$.
 - a) Supposons $g \circ f$ injective. f est-elle injective? g est-elle injective?
 - b) Supposons $g \circ f$ surjective. f est-elle surjective? g est-elle surjective?
 - c) Supposons $g \circ f$ bijective. f et g sont-elle bijectives?

À chaque fois, prouver le résultat si la réponse est affirmative, sinon donner un contre-exemple.

- 6. Les fonctions suivantes sont-elles bien définies? Lorsque c'est le cas, dire si la fonction est injective, surjective, bijective.

- a) $f_1 \colon \mathbb{N} \to \mathbb{N}$ b) $f_2 \colon \mathbb{R} \to \mathbb{R}$ c) $f_3 \colon \mathbb{N} \to \{-1, 1\}$ d) $f_4 \colon [-1, 0] \to [-1, 0]$ $n \mapsto n + 1$ $x \mapsto 2x$ $n \mapsto (-1)^n$ $x \mapsto x^2$
- e) $f_5 \colon \mathbb{R}^* \to \mathbb{R}^*$ f) $f_6 \colon \mathbb{N} \setminus \{0, 1\} \to \mathbb{N}$

 $x\mapsto rac{1}{x}$ $n\mapsto$ le plus petit nombre premier divisant n

- g) $f_7 \colon \mathscr{P}(E) \to \{0,1\}^E$, où E est un ensemble et χ_A est la fonction caractéristique de A $A \mapsto \chi_A$
- 7. Soit $f: E \to F$ une fonction bijective et f^{-1} sa réciproque. Démontrer les affirmations suivantes :
 - a) $f^{-1} \circ f = \mathbb{I}_E$ et $f \circ f^{-1} = \mathbb{I}_F$.
 - b) Si $g: F \to E$ est telle que $g \circ f = \mathbb{I}_E$ ou $f \circ g = \mathbb{I}_F$, alors $g = f^{-1}$.
 - c) f^{-1} est bijective et $(f^{-1})^{-1} = f$.

- d) Si $g: F \to G$ est bijective, alors $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 8. Soit $f: E \to F$ une fonction.
 - a) Soit $B \subset F$. Dans le cas où f est bijective, montrer que l'image réciproque $f^{-1}(B)$ de B est égale à l'image directe de B par la fonction inverse f^{-1} .
 - b) Montrer que, pour tout $A, B \subset F$,

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \quad \text{ et } \quad f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

c) Montrer que, pour tout $A, B \subset E$,

$$f(A \cup B) = f(A) \cup f(B)$$
 et $f(A \cap B) \subset f(A) \cap f(B)$.

- d) Montrer qu'en général l'assertion $f(A\cap B)=f(A)\cap f(B)$ est fausse, mais qu'elle est toujours vraie lorsque f est injective.
- 9. Soit $f: E \to F$. Montrer que $E = \bigcup_{y \in F} f^{-1}(\{y\})$.