

Bac Maths Classe:

Série: Fonctions réciproques

Nom du Prof: Mohamed Hedi

Ghomriani

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

(S) 25 min

4 pts

Dans la figure ci-dessous :

- . (C) est la courbe représentative d'une fonction f définie sur $\mathbb{R}\setminus\left\{1\right\}$.
- . $\Delta: y = -x 3$ est une asymptote oblique à (C) au voisinage de $-\infty$.
- . $D:\mathbf{y}=\mathbf{2}\,$ est une asymptote à (C) au voisinage de $+^{\infty}\,$.
- . $\boldsymbol{\Delta}_{_{1}}:\boldsymbol{x}$ = 1 est une asymptote à la courbe (C) .

$$\text{A)(1) (a) } \lim_{x \to +\infty} \ \frac{x}{f\left(-x\right)} \ ; \ \lim_{x \to +\infty} \ \frac{1}{f\left(x\right)-2} \ \text{et } \lim_{x \to 1} \ f \circ f\left(x\right) + f\left(x\right) \ .$$

$$\text{(b) } f'\Big(-1\Big) \ ; \ \lim_{x \to \left(-2\right)^{+}} \ \frac{f\left(x\right) - 4}{x + 2} \ ; \ \lim_{x \to \left(-2\right)^{-}} \ \frac{f\left(x\right) - 4}{x + 2} \ \text{et} \ \lim_{x \to \left(-4\right)} \ \frac{x + 4}{f\left(x\right) - 2} \ .$$

- (c) f est deux fois dérivable en (-1) déterminer $\lim_{x \to (-1)} \frac{2f'(x) + 1}{x + 1}$
- (2) (a) Donner une équation de la tangente T à la courbe (C) au point d'abscisse $\left(-1\right)$.
 - (b) Dresser le tableau de variation de ${\bf f}$.

- B) Soit h la restriction de f à l'intervalle $\left[-2 \;,\; 1\right[\;.$
 - (1) Montrer que \mathbf{h} admet une fonction réciproque \mathbf{h}^{-1} définie sur un intervalle \mathbf{J} que l'on précisera.
 - (2) Justifier que \mathbf{h}^{-1} est dérivable en 1 puis calculer $\left(\mathbf{h}^{-1}\right)'\left(\mathbf{1}\right)$.
 - (3) Déterminer $\lim_{x \to 4^{-}} \frac{h^{-1}(x) + 2}{x 4}$ et $\lim_{n \to +\infty} h^{-1} \left(\frac{2^{n} n3^{n}}{3^{n} + 2^{n}} \right)$
 - (4) Tracer la courbe de h^{-1}

6 pts

On considère la fonction f définie sur $\left[0, \frac{\pi}{4}\right]$ par $\mathbf{f}(\mathbf{x}) = \sqrt{\sin 2\mathbf{x}}$ et on désigne par C sa courbe représentative dans un repère orthonormé.

- 1) Etudier la dérivabilité de f à droite en 0. Interpréter graphiquement le résultat obtenu.
- 2) a) Montrer que f est dérivable sur]0, $\frac{\pi}{4}$] et calculer f '(x).
 - b) Dresser le tableau de variations de f.
 - c) En déduire que f réalise une bijection de $\left[0, \frac{\pi}{4}\right]$ sur $\left[0, 1\right]$
- 3) a) Calculer $f^{-1}\left(\frac{\sqrt{2}}{2}\right)$ puis $\left(f^{-1}\right)\left(\frac{\sqrt{2}}{2}\right)$.
 - b) Montrer que f-1 est dérivable sur]0,1[et que pour tout $x \in$]0,1[;

$$\left(f^{-1}\right)^{'}=\frac{x}{\sqrt{1-x^{4}}}$$

- c) Etudier la dérivabilité de f-1 à droite en 0.
- 4) a) Montrer que pour tout entier naturel n non nul, l'équation : $f(x) = \frac{1}{n}$ admet, dans]0,], une solution unique an . Calculer a₁.
 - b) Montrer que la suite (a_n) est décroissante et en déduire qu'elle est convergente.
 - c) Montrer que $\lim_{n \to +\infty} a_n = 0$.

(S) 35 min

5 pts

<u>A</u>) 1- Soit h la fonction définie sur $[1,+\infty[$ par $h(x) = -1 + \frac{x}{\sqrt{x^2 + 3}}$

Etudier les variations de h et en déduire que pour tout $x \in \left[1, +\infty\right[; -\frac{1}{2} \le h(x) < 0$

- 2- Soit f la fonction définie sur $[1,+\infty[$ par $f(x) = 1 x + \sqrt{x^2 + 3}$. On désigne par (C) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .
- a) Etudier les variations de f.
- b) Montrer que f est une bijection de [1,+∞[sur un intervalle J que l'on déterminera .
- 3- On désigne par f⁻¹ sa fonction réciproque.
- a) Construire (C) et (C') les courbes respectives de f et de f -1 dans un repère orthonormé $\left(\vec{O},\vec{i},\vec{j}\right)$
- b) Expliciter $f^{-1}(x)$ pour tout $x \in J$.
- 4- a) Montrer que pour tout $n \in IN^* \setminus \{1\}$, l'équation $f(x) = 2 f(x) = 2 \frac{1}{n}$ admet une solution unique α_n dans $[1, +\infty[$.
 - b) Vérifier que pour tout $n \in IN^* \setminus \{1\}$; $f(\alpha_n) < f(\alpha_{n+1})$.
 - c) En déduire que la suite (α_n) est convergente.
 - d) Soit L la limite de $(\alpha_{_n})$, montrer que f(L)=2 et en déduire la valeur de L
 - <u>B</u> 1) Montrer que l'équation f(x)=x admet dans $[1,+\infty[$ une solution unique et que $\alpha \in \left]\frac{3}{2},2\right[$
 - 2) Soit la suite (U_n) définie sur IN par : $\begin{cases} U_0 = \frac{3}{2} \\ U_{n+1} = f(U_n) \end{cases}$ pour tout $n \in IN$
 - a) Montrer que pour tout $n \in IN$, $U_n > 1$
 - b) Montrer que pour tout $n \in IN$, $\left| U_{n+1} \alpha \right| \le \frac{1}{2} \left| U_n \alpha \right|$
 - c) En déduire que pour tout $n \in IN$, $\left| U_n \alpha \right| \le \left(\frac{1}{2} \right)^{n+1}$
 - d) Montrer que (U_n) est convergente vers une limite que l'on déterminera.

(5) 35 min

5 pts

Soit f la fonction définie sur]1,+ ∞ [par : $f(x) = \frac{x}{\sqrt{x^2-1}}$. On désigne par C sa courbe représentative dans un repère orthonormé $\left(\mathbf{0}, \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}\right)$.

- 1) Justifier que $\lim_{x \to +\infty} f(x) = 1$. Interpréter graphiquement ce résultat.
- 2) (a) Montrer que f est dérivable sur $]1,+\infty[$ et que pour tout $x \in]1,+\infty[$, on a :

$$f'(x) = \frac{-1}{\left(\sqrt{x^2 - 1}\right)^3}.$$

- (b) Dresser le tableau de variation de f.
- 3) (a) Justifier que f réalise une bijection de $]1,+\infty[$ sur un intervalle J que l'on précisera

On note $\mathbf{f}^{^{-1}}$ sa fonction réciproque .

(b)Calculer f(2) Justifier que f^{-1} est dérivable en $\frac{2}{\sqrt{3}}$, et donner $\left(f^{-1}\right)^{i}\left(\frac{2}{\sqrt{3}}\right)^{i}$

4) Soit g la fonction définie sur
$$\left]0, \frac{\pi}{2}\right]$$
 par : $\mathbf{g}\left(\mathbf{x}\right) = \begin{cases} \mathbf{f}\left(\frac{1}{\cos \mathbf{x}}\right) & \text{si } \mathbf{x} \in \left]0, \frac{\pi}{2}\right[\\ 1 & \text{si } \mathbf{x} = \frac{\pi}{2} \end{cases}$

- (a) Prouver que pour tout $x \in \left]0, \frac{\pi}{2}\right]$, on a : $g\left(x\right) = \frac{1}{\sin x}$.
- (b) Montrer que g admet une fonction réciproque \mathbf{g}^{-1} définie sur $\left[\mathbf{1},+\infty\right[$.
- (c) Montrer que \mathbf{g}^{-1} est dérivable sur $]1,+\infty[$ et que $\forall x\in]1,+\infty[$, on a :

$$\left(g^{-1}\right)'\left(x\right) = \frac{-1}{x\sqrt{x^2 - 1}} \ .$$