Planificación por prioridad

Adaptación (ver referencias)

Planificación por prioridad

- En planificación apropiativa
 - Si prioridad de proceso en CPU es mayor a proceso que llega a cola de listo, se expulsa proceso en CPU y se ejecuta proceso recién llegado.
 - Proceso expulsado pasa a la cola de listo.
- En planificación no apropiativa
 - Proceso recién llegado (de menor prioridad) se pone de primero en la cola de listo pero no se expulsa al que está en CPU.

Procesos	Tiempo requerido en CPU	Prioridad
P_{1}	10 ms	3
P_{2}	1 ms	1
P_3	2 ms	4
P_4	1 ms	5
P ₅	5 ms	2

Tiempo espera $P_1 = 6 \text{ ms}$ Tiempo espera $P_2 = 0 \text{ ms}$ Tiempo espera $P_3 = 16 \text{ ms}$ Tiempo espera $P_4 = 18 \text{ ms}$ Tiempo espera $P_5 = 1 \text{ ms}$ Tiempo espera promedio = 8.2 ms

• Procesos llegan todos en t_0 en orden: P_1 , P_2 , etc.

Planificación por prioridad

- Suceden problemas de inanición
 - Procesos de menor prioridad se pueden quedar esperado indefinidamente la CPU si siempre están llegando procesos de mayor prioridad
- Posible solución
 - Aumentar la prioridad de un proceso conforme pasa el tiempo en cola de listo.
 - Por ejemplo, aumentar la prioridad en uno cada segundo que el proceso pasa en espera en la cola de listo.
- Otra solución: cíclica + prioridad
 - Se ejecutan primero procesos de mayor prioridad
 - Procesos de misma prioridad se ejecutan de manera cíclica

Procesos	Tiempo requerido en CPU	Prioridad
P ₁	4 ms	3
P_2	5 ms	2
P_3	8 ms	2
$P_{_{m{4}}}$	7 ms	1
P ₅	3 ms	3

Tiempo espera $P_1 = 20 + 2 = 22 \text{ ms}$ Tiempo espera $P_2 = 7 + 2 + 2 = 11 \text{ ms}$ Tiempo espera $P_3 = 9 + 2 + 1 = 12 \text{ ms}$ Tiempo espera $P_4 = 0 \text{ ms}$ Tiempo espera $P_5 = 22 + 2 = 24 \text{ ms}$ Tiempo espera promedio = 13.8 ms

- Procesos llegan todos en t_0 en orden: P_1 , P_2 , etc.
- Quantum = 2 ms

Referencias

• Silberschatz, A., Baer Galvin, P., & Gagne, G. (2018). CPU Scheduling. In *Operating Systems Concepts* (10th ed., pp. 207–209). John Wiley & Sons, Inc.