Listing of Claims

This listing of claims replaces all prior versions of claims in the application.

1. (Previously Presented) A manufacturing method of a semiconductor device which is

formed with a bipolar transistor being composed by including a base, an emitter and a collector

on a semiconductor substrate, comprising the steps of:

forming a multilayer film on said semiconductor substrate, and forming an opening,

which is opened on said base and said emitter, in the multilayer film;

forming on an entire surface a compound semiconductor film which contains silicon and

an other semiconductor element, and has a composition with a high content of silicon in an upper

layer region and a lower layer region, and a high content of the other semiconductor element in

an intermediate layer region; and

performing anisotropic dry etching for the compound semiconductor film so as to reach a

certain height of the opening, but performing no isotropic etching.

2. (Original) The manufacturing method of the semiconductor device according to claim

1, wherein the anisotropic dry etching is performed for the compound semiconductor film in a

high vacuum state.

3. (Original) The manufacturing method of the semiconductor device according to claim

2, further comprising the step of: performing quasi-anisotropic dry etching for the compound

semiconductor film in a low vacuum state after the anisotropic dry etching is performed for the

compound semiconductor film in the high vacuum state.

Page 2 of 12

4. (Original) The manufacturing method of the semiconductor device according to claim

2, wherein atmospheric pressure in the high vacuum state is 66.5 (Pa) or lower.

5. (Original) The manufacturing method of the semiconductor device according to claim

3, wherein atmospheric pressure in the low vacuum state is 133 (Pa) or higher.

6. (Original) The manufacturing method of the semiconductor device according to claim

2, wherein atmospheric pressure in the high vacuum state is about 3.3×10^{-1} (Pa).

7. (Original) The manufacturing method of the semiconductor device according to claim

3, wherein atmospheric pressure in the low vacuum state is about 40×10^2 (Pa).

8. (Currently Amended) A manufacturing method of a semiconductor device, comprising

the steps of:

forming a thin film on a semiconductor substrate, and forming an opening in part of the

thin film;

forming on an entire surface a compound semiconductor film which contains a first

semiconductor element and a second semiconductor element, and has a composition with a high

content of the first semiconductor element in an upper layer region and a lower layer region; and

a high content of the second semiconductor element in an intermediate layer region; and

performing anisotropic dry etching for the compound semiconductor film so as to reach a

certain height of the opening, but performing no isotropic etching.

Response under 37 C.F.R. §1.116 Attorney Docket No. 031071

Serial No. 10/649,746

9. (Original) The manufacturing method of the semiconductor device according to claim

8, wherein the anisotropic dry etching is performed for the compound semiconductor film in a

high vacuum state.

10. (Original) The manufacturing method of the semiconductor device according to claim

9, further comprising the step of: performing quasi-anisotropic dry etching for the compound

semiconductor film in a low vacuum state after the anisotropic dry etching is performed for the

compound semiconductor film in the high vacuum state.

11. (Original) The manufacturing method of the semiconductor device according to claim

8, wherein the first semiconductor element comprises silicon, and the second semiconductor

element comprises another semiconductor element.

12. (Original) The manufacturing method of the semiconductor device according to claim

9, wherein atmospheric pressure in the high vacuum state is 66.5 (Pa) or lower.

13. (Original) The manufacturing method of the semiconductor device according to claim

10, wherein atmospheric pressure in the low vacuum state is 133 (Pa) or higher.

14. (Original) The manufacturing method of the semiconductor device according to claim

9, wherein atmospheric pressure in the high vacuum state is about 3.3×10^{-1} (Pa).

Page 4 of 12

Response under 37 C.F.R. §1.116 Attorney Docket No. 031071 Serial No. 10/649,746

- 15. (Original) The manufacturing method of the semiconductor device according to claim 10, wherein atmospheric pressure in the low vacuum state is about 40×10^2 (Pa).
- 16. (Original) The manufacturing method of the semiconductor device according to claim 1, wherein the compound semiconductor film comprises an SiGe film or an SiGeC film.
- 17. (Original) The manufacturing method of the semiconductor device according to claim 2, wherein the compound semiconductor film comprises an SiGe film or an SiGeC film.
- 18. (Original) The manufacturing method of the semiconductor device according to claim 3, wherein the compound semiconductor film comprises an SiGe film or an SiGeC film.
- 19. (Original) The manufacturing method of the semiconductor device according to claim 8, wherein the compound semiconductor film comprises an SiGe film or an SiGeC film.
- 20. (Original) The manufacturing method of the semiconductor device according to claim 9, wherein the compound semiconductor film comprises an SiGe film or an SiGeC film.
- 21. (Original) The manufacturing method of the semiconductor device according to claim 10, wherein the compound semiconductor film comprises an SiGe film or an SiGeC film.
- 22. (Original) The manufacturing method of the semiconductor device according to claim 11, wherein the compound semiconductor film comprises an SiGe film or an SiGeC film.