Bab 1

Enzim dan Metabolisme

- A. Berilah tanda silang (X) huruf a, b, c, d, atau e pada jawaban yang paling benar!
- Faktor eksternal berikut ini yang ber- 4. pengaruh terhadap laju transpirasi dan penyerapan air serta mineral adalah
 - a. pH
- d. kelembapan
- b. air
- e. cahaya
- c. topografi
- 2. Respirasi anaerobik merupakan respirasi yang tidak menggunakan oksigen. Reaksi ini disebut juga dengan istilah
 - a. glikolisis
 - b. transpor energi
 - c. fermentasi
 - d. dialisis
 - e. reaksi asam sitrat
- Enzim dapat mengalami denaturasi pada suhu panas. Dengan demikian dikatakan bahwa enzim memiliki sifat
 - a. efisien
- d. seperti protein
- b. katalis
- e. spesifik
- c. unik

- Enzim yang tidak dapat bekerja tanpa adanya suatu zat nonprotein tambahan dinamakan
 - a. kofaktor
 - b. koenzim
 - c. endoenzim
 - d. ektoenzim
 - e. koloid
- Pada proses glikolisis dari satu molekul glukosa dihasilkan 2 asam piruvat, 2 NADH, dan 2 ATP. Kemudian asam piruvat yang dihasilkan dari proses glikolisis akan memasuki tahap
 - a. dekarboksilasi oksidatif di dalam membran luar mitokondria
 - b. siklus Krebs di dalam membran dalam mitokondria
 - c. siklus Krebs di dalam sitosol
 - d. transpor elektron di membran dalam mitokondria
 - e. transpor elektron di dalam matriks mitokondria

- 6. Fiksasi karbon dalam reaksi fotosintesis terjadi dalam tahapan
 - a. reaksi gelap
 - b. reaksi terang
 - c. aliran elektron siklik
 - d. aliran elektron nonsiklik
 - e. fotolisis air
- 7. Proses pengubahan molekul kompleks menjadi molekul sederhana dan melepaskan energi dalam bentuk ATP disebut
 - a. anabolisme
 - b. katabolisme
 - c. metabolisme
 - d. fotosintesis
 - e. fotosistem
- 8. Pada proses fermentasi alkohol, yang membedakannya dengan proses respirasi lainnya adalah pada fermentasi alkohol diakhiri dengan pembentukan
 - a. ATP dalam jumlah lebih banyak
 - b. asam piruvat sebagai produk antara
 - c. energi panas dari penguraian alkohol
 - d. asetaldehida hasil penguraian asam piruvat
 - e. etanol dari asam piruvat secara tidak langsung

- Proses yang terjadi dalam tahap regenerasi pada siklus Calvin adalah
- a. peningkatan CO₂ oleh ribulosa
 1,5-bifosfat menjadi PGA
- b. pembentukan kembali ribulosa 1,5-bifosfat dari PGAL
- c. pengikatan ion H⁺ oleh NADP₂
- d. pengubahan 3-difosfogliserat menjadi fosfogliseraldehida
- e. transpor elektron dari NADPH₂ untuk membentuk fosfogliseraldehida
- Sekelompok siswa melakukan percobaan mengenai enzim katalase. Siswa tersebut menggunakan tiga tabung reaksi yang diberi perlakuan berbeda-beda. Adapun data hasil percobaan sebagai berikut.

		Hasil yang Diperoleh	
Tabung Reaksi	Perlakuan	Keadaan Gelembung Udara	Keadaan Nyala Api
Α	Ekstrak hati ayam + H ₂ O ₂	+++	+++
В	Ekstrak hati ayam + ${\rm H_2O_2}$ + ${\rm HC}\ell$	+	+
С	Ekstrak hati ayam + H ₂ O ₂ + KOH	+	+

Berdasarkan data hasil percobaan tersebut, dapat disimpulkan bahwa HOTS

- a. aktivitas enzim katalase tidak dipengaruhi oleh pH
- b. enzim katalase bekerja optimum dalam lingkungan asam
- c. enzim katalase bekerja optimum dalam lingkungan basa
- d. enzim katalase bekerja optimum dalam lingkungan netral
- e. peningkatan aktivitas enzim katalase berbanding lurus dengan pH

- Pada percobaan enzim katalase, pemanasan 70°C mengakibatkan inaktifnya enzim tersebut karena pada suhu tinggi
 - a. inhibitor enzim katalase akan semakin meningkat kemampuannya
 - b. sisi aktif katalase berubah sehingga tidak dapat berikatan dengan substratnya
 - c. protein penyusunan enzim katalase mengalami denaturasi
 - d. substrat tidak dapat berikatan dengan sisi aktif enzim katalase
 - e. energi aktivasi enzim akan meningkat
- 12. Pernyataan berikut yang berkaitan dengan kerja enzim pada suhu tertentu adalah
 - a. suhu rendah akan mengganggu dan merusak kerja enzim
 - b. jika suhu dinaikkan terus, jumlah enzim yang aktif juga terus meningkat
 - c. meningkatnya suhu lingkungan akan meningkatkan kecepatan reaksi
 - d. sebagian kecil enzim menjadi tidak aktif pada pemanasan sampai suhu kurang lebih 60°C
 - e. enzim tidak dapat menjalankan aktivitasnya pada suhu lingkungan di luar batas kisaran
- Enzim amilase di mulut dapat bekerja dengan baik, tetapi setelah di lambung, amilase tidak lagi berfungsi, hal ini menunjukkan enzim mempunyai ciri
 - a. bekerja pada organ tertentu
 - b. dipengaruhi pH
 - c. bekerja secara spesifik
 - d. dipengaruhi suhu
 - e. memerlukan kofaktor

- 14. Pernyataan yang tepat tentang pengaruh konsekuensi substrat terhadap kecepatan reaksi enzim adalah
 - a. jika semua sisi aktif enzim bekerja walaupun terjadi penambahan substrat tidak ada penambahan kecepatan reaksi enzim
 - b. jika semua sisi aktif enzim bekerja dan terjadi penambahan substrat, akan terjadi penambahan kecepatan reaksi enzim
 - konsekuensi enzim dan substrat berbanding lurus dengan kecepatan reaksi enzim
 - d. makin banyak substrat makin banyak enzim yang dibutuhkan
 - e. kecepatan reaksi enzim berbanding terbalik dengan jumlah substrat
- 15. Asam sitrat merupakan inhibitor nonkompetitif yang menyebabkan enzim fosfofruktokinase menjadi tidak aktif. Hal ini terjadi karena asam sitrat
 - a. menempati sisi aktif dari enzim
 - b. mengubah bentuk sisi aktif dari enzim
 - c. mengubah bentuk substrat sehingga tidak dikenali enzim
 - d. merusak protein penyusun enzim
 - e. dapat berfungsi seperti enzim

- Pada fotosintesis, tahap reaksi gelap dapat terjadi bila
 - a. ada cahaya, terjadi di stroma, dan energi dari ATP dan NADPH dari reaksi terang
 - b. ada cahaya maupun tidak ada cahaya,
 terjadi di stroma, dan tanpa energi ATP
 dan NADPH
 - c. ada maupun tidak ada cahaya serta energi dari ATP dan NADPH dari reaksi terang
 - d. tanpa ada cahaya, terjadi di grana,dan energi dari ATP dan NADPH
 - e. ada cahaya bisa terjadi di stroma dengan energi NADPH
- 17. Pada fotosintesis nonsiklik terjadi pemecahan molekul air yang membebaskan oksigen dan hidrogen yang diikat oleh molekul akseptor. Berikut ini yang merupakan akseptor hidrogen adalah
 - a. flavin adenin dinukleotida (FAD)
 - b. nikotiamin adenin dinukleotida (NAD)
 - c. nikotiamin adenin dinukleotida phospat (NADP)
 - d. asam phospoenolpiruvat (PEP)
 - e. ribulose diphospat (RDP)

- Perhatikan pernyataan tentang metabolisme berikut!
 - (1) Asam piruvat menjadi asetil KoA.
 - (2) Reaksi dehidrogenasi dan dekarboksilasi.
 - (3) Merupakan proses eksergonik.
 - (4) Pemecahan molekul air oleh cahaya.
 - (5) Perputaran elektron yang dihasilkan ditangkap akseptor.
 - (6) Merupakan proses endergonik.

Pernyataan yang benar tentang katabolisme adalah **HOTS**

- a. (1), (2), dan (3)
- b. (1), (3), dan (5)
- c. (2), (4), dan (6)
- d. (3), (4), dan (5)
- e. (4), (5), dan (6)
- 19. Transpor elektron yang berlangsung di dalam mitokondria, prosesnya akan berakhir setelah elektron H⁺ bereaksi dengan oksigen yang berfungsi sebagai akseptor elektron berakhir dan akan membentuk
 - a. CO₂
 - b. H₂O
 - c. asam piruvat
 - d. FADH
 - e. NADH

20. Perhatikan bagian dekarboksilasi oksidatif berikut!

Berdasarkan gambar tersebut, X; Y; dan Z yang dimaksud adalah **HOTS**

	Χ	Υ	Z
a.	ATP	CO ₂	Asetil KoA
b.	Asetil KoA	H ₂ O	O ₂
C.	Asetil KoA	CO ₂	Koenzim A
d.	NADH	CO ₂	ATP
e.	H ₂ O	O ₂	CO ₂

- 21. Perbedaan jumlah ATP yang dihasilkan pada respirasi aerobik dan respirasi anaerobik dapat terjadi karena HOTS
 - a. sebagian besar energi pada respirasi anaerobik terperangkap pada senyawa hasil akhir
 - b. pada tahap glikolisis respirasi anaerobik terjadi penguraian sempurna senyawa karbon
 - seluruh tahap reaksi pada respirasi aerobik dihasilkan energi dalam bentuk ATP
 - d. pada respirasi aerobik hasil dari glikolisis akan langsung memasuki transpor elektron yang menghasilkan ATP dalam jumlah besar
 - e. pada tahap glikolisis respirasi aerobik dihasilkan NADH, FADH₂, dan ATP dalam jumlah besar saat memasuki transpor elektron

- Pernyataan-pernyataan berikut berkaitan dengan fotosintesis.
 - (1) Hasil fiksasi CO₂ berupa PGA.
 - (2) Sinar matahari merupakan sumber energi dalam sintesis.
 - (3) Asam malat merupakan senyawa antara sebelum terbentuk glukosa.
 - (4) NADPH₂ dan ATP merupakan faktor penting dalam reaksi gelap.
 - (5) CO₂ dan H₂O berlebihan akan dibuang dalam fotosintesis.

Pernyataan yang benar tentang reaksi gelap fotosintesis adalah **HOTS**

- a. (1) dan (3)
- b. (1) dan (4)
- c. (2) dan (4)
- d. (3) dan (5)
- e. (4) dan (5)
- 23. Berikut ini yang merupakan alasan daging yang dibekukan di dalam lemari es tidak membusuk adalah
 - a. tidak adanya cahaya dalam lemari es
 - tidak adanya oksigen di dalam lemari es
 - c. enzim mikroorganisme pembusuk tidak bekerja pada suhu rendah
 - d. tidak terjadi respirasi aerobik di dalam lemari es
 - e. daging tidak mengalami metabolisme

- 24. Glikolisis adalah proses penguraian karbohidrat menjadi piruvat. Berikut ini yang *bukan* merupakan sifat-sifat peristiwa glikolisis adalah
 - a. oksidasi glikogen/glukosa menjadi piruvat dan laktat
 - b. dapat berlangsung secara aerobik dan anaerobik
 - c. diperlukan energi dan enzim
 - d. terjadi sintesis ATP dari ADP + Pi
 - e. terjadi penguraian karbohidrat, etanol, dan CO₂

- 5. Perhatikan pernyataan berikut!
 - (1) Oksigen diperlukan dalam siklus asam sitrat.
 - (2) Diperlukan dua kali siklus asam sitrat untuk satu molekul glukosa.
 - (3) Dihasilkan total 2CO₂ pada siklus asam sitrat yang menggunakan 2 Asetil KoA.
 - (4) Dihasilkan 6NADH, 2FADH₂, dan 2 ATP pada siklus asam sitrat yang berasal dari 1 molekul glukosa.

Pernyataan yang tepat mengenai siklus asam sitrat, yaitu

- a. (1) dan (2)
- d. (2) dan (3)
- b. (1) dan (3)
- e. (2) dan (4)
- c. (1) dan (4)

B. Jawablah pertanyaan-pertanyaan di bawah ini dengan benar!

- 1. Laju fotosintesis dipengaruhi oleh beberapa faktor, salah satunya adalah konsentrasi gas karbon dioksida di udara. Jelaskan pengaruh konsentrasi karbon dioksida terhadap fotosintesis!
- 2. Enzim mempercepat suatu reaksi dengan cara menurunkan energi aktivasi. Jelaskan yang Anda ketahui mengenai energi aktivasi!
- 3. Metabolisme dibedakan menjadi anabolisme dan katabolisme. Jelaskan perbedaan anabolisme dengan katabolisme!
- 4. Fermentasi tidak hanya terjadi pada mikroorganisme saja, melainkan juga dapat terjadi pada tubuh manusia, tepatnya pada sel otot. Jelaskan proses fermentasi yang terjadi di dalam sel otot!
- 5. Respirasi dapat dibedakan menjadi respirasi aerobik dan anaerobik. Menurut pendapat Anda, lebih menguntungkan mana antara respirasi aerobik dengan respirasi anaerobik? Mengapa demikian?