Build, Scale, and Deploy Deep Learning Pipelines Using Apache Spark

Sue Ann Hong, Databricks Tim Hunter, Databricks

About Us

Sue Ann Hong

- Software engineer @ Databricks
- Ph.D. from CMU in Machine Learning

Tim Hunter

- Software engineer @ Databricks
- Ph.D. from UC Berkeley in Machine Learning
- Very early Spark user

This talk

- Deep Learning at scale: current state
- Deep Learning Pipelines: the vision
- End-to-end workflow with DL Pipelines
- Future

Deep Learning at Scale

: current state

What is Deep Learning?

- A set of machine learning techniques that use layers that transform numerical inputs
 - Classification
 - Regression
 - Arbitrary mapping
- Popular in the 80's as Neural Networks
- Recently came back thanks to advances in data collection, computation techniques, and hardware.

Success of Deep Learning

Tremendous success for applications with complex data

- AlphaGo
- Image interpretation
- Automatic translation
- Speech recognition

But requires a lot of effort

- No exact science around deep learning
- Success requires many engineer-hours

- Low level APIs with steep learning curve
- Not well integrated with other enterprise tools
- Tedious to distribute computations

What does Spark offer?

Very little in Apache Spark MLlib itself (multilayer perceptron)
Many Spark packages

Integrations with existing DL libraries

- Deep Learning Pipelines (from Databricks)
- Caffe (CaffeOnSpark)
- Keras (Elephas)
- mxnet
- Paddle
- TensorFlow (TensorFlow on Spark, TensorFrames)
- CNTK (mmlspark)

Implementations of DL on Spark

- BigDL
- DeepDist
- DeepLearning4J
- MLlib
- SparkCL
- SparkNet

Deep Learning in industry

- Currently limited adoption
- Huge potential beyond the industrial giants
- How do we accelerate the road to massive availability?

Deep Learning Pipelines

Deep Learning Pipelines: Deep Learning with Simplicity

- Open-source Databricks library
- Focuses on ease of use and integration
 - without sacrificing performance
- Primary language: Pythom
- Uses Apache Spark for scaling out common tasks
- Integrates with MLlib Pipelines to capture the ML workflow concisely

A typical Deep Learning workflow

- Load data (images, text, time series, ...)
- Interactive work
- Train
 - Select an architecture for a neural network
 - Optimize the weights of the NN
- Evaluate results, potentially re-train
- Apply:
 - Pass the data through the NN to produce new features or output

A typical Deep Learning workflow

Load data

Interactive work

Train

Evaluate

Apply

Image loading in Spark

Pre-trained models

Transfer learning

Part 1

Distributed tuning

Part 2

- Distributed batch prediction
- Deploying models in SQL

End-to-End Workflow with Deep Learning Pipelines

Deep Learning Pipelines

Load data

Interactive work

- Train
- Evaluate model
- Apply

Adds support for images in Spark

```
from sparkdl import readImages
image_df = readImages(sample_img_dir)
```

filePath	image
dbfs:/tmp/flower_photos/sample/100080576_f52e8ee070_n.jpg	▶ {"mode":"RGB","height":263,"width":320,"nChannels":3,"data":"h4eFioqljo6OkZ0
dbfs:/tmp/flower_photos/sample/100930342_92e8746431_n.jpg	▶ {"mode":"RGB","height":209,"width":320,"nChannels":3,"data":"Ey4PEC8QDi8QI

- ImageSchema, reader, conversion functions to/from numpy arrays
- Most of the tools we'll describe work on ImageSchema columns

Upcoming: built-in support in Spark

- Spark-21866
- Contributing image format & reading to Spark
- Targeted for Spark 2.3
- Joint work with Microsoft

Deep Learning Pipelines

Load data

Interactive work

Train

Evaluate model

Apply

Applying popular models

 Popular pre-trained models accessible through MLlib Transformers

Applying popular models

dbfs:/tmp/flower_photos/sample/100930342_92e8746431_n.jpg

dbfs:/tmp/flower_photos/sample/100080576_f52e8ee070_n.jpg [{"class":"n11939491","description":"daisy","probability":0.8805494}, {"class":"n02219486","description":"ant","probability":0.00084249553}, {"class":"n02206856","description":"ladybug","probability":0.000675952}, {"class":"n03691459","description":"loudspeaker","probability":0.00063085736}, {"class":"n02190166","description":"fly","probability":0.0006220306}, {"class":"n02281406","description":"sulphur_butterfly","probability":0.0006154293}, {"class":"n07930864","description":"cup","probability":0.0004993835}, {"class":"n07745940","description":"strawberry","probability":0.00048750438}]

[{"class":"n03930313","description":"picket_fence","probability":0.18473865},

Deep Learning Pipelines

Load data

Interactive work

• Train

Transfer learning

Hyperparameter tuning

- Evaluate model
- Apply

Deep Learning Pipelines

Load data

Interactive work

• Train Transfer learning

Hyperparameter tuning

- Evaluate model
- Apply

Transfer learning

- Pre-trained models may not be directly applicable
 - New domain, e.g. shoes
- Training from scratch requires
 - Enormous amounts of data
 - A lot of compute resources & time
- Idea: intermediate representations learned for one task may be useful for other related tasks

Transfer Learning

...

...

Transfer Learning

...

Transfer Learning

Rose: 0.7

Daisy: 0.3

MLlib Pipelines primer

- MLlib: the machine learning library included with Spark
- Transformer
 - Takes in a Spark dataframe
 - Returns a Spark dataframe with new column(s) containing "transformed" data
 - e.g. a Model is a Transformer
- Estimator
 - A learning algorithm, e.g. lr = LogisticRegression()
 - Produces a Model via lr.fit()
- Pipeline: a sequence of Transformers and Estimators

Transfer Learning as a Pipeline

Transfer Learning as a Pipeline

MLlib Pipeline

Transfer Learning as a Pipeline

```
featurizer = DeepImageFeaturizer(inputCol="image",
                                  outputCol="features",
                                 modelName="InceptionV3")
lr = LogisticRegression(labelCol="label")
p = Pipeline(stages=[featurizer, lr])
p model = p.fit(train df)
```


Transfer Learning

- Usually for classification tasks
 - Similar task, new domain

 But other forms of learning leveraging learned representations can be loosely considered transfer learning

Featurization for similarity-based ML

Featurization for similarity-based ML

Featurization for similarity-based ML

Duplicate Detection

Anomaly Detection

Recommendatio n

Search result diversification

databricks

Break?

Load data

Interactive work

• Train Transfer learning

Hyperparameter tuning

Evaluate model

Apply

Distributed Hyperparameter Tuning

MLlib Components

Estimators

- Learning algorithms
- Implement

Evaluators

- Metric used to measure model's goodness on validation data
- e.g. BinaryClassificationEvaluator computes accuracy

Model Selection (Parameter Search)

Estimators
Map of params
Evaluators

```
paramGrid = ( ParamGridBuilder()
  .addGrid(hashingTF.numFeatures, [10, 100])
  .addGrid(lr.regParam, [0.1, 0.01])
  .build() )
```

```
cv = CrossValidator(
    estimator=pipeline,
    estimatorParamMaps=paramGrid,
    evaluator=BinaryClassificationEvaluator())

best_model = cv.fit(train_df)
```

Deep Learning Estimators

Transfer learning Pipelines

KerasImageFileEstimator

Deep Learning Estimators

Transfer learning Pipelines

KerasImageFileEstimator

Distributed Tuning Transfer Learning

Distributed Tuning Transfer Learning

```
pipeline = Pipeline([DeepImageFeaturizer(), LogisticRegression()])
paramGrid = ( ParamGridBuilder()
    .addGrid(modelName=["ResNet50", "InceptionV3"]) )
cv = CrossValidator (estimator = pipeline,
                    estimatorParamMaps=paramGrid,
                    evaluator=BinaryClassificationEvaluator(),
                    numFolds=3)
best model = cv.fit(train df)
```


Deep Learning Estimators

Transfer learning Pipelines

KeraslmageFileEstimator

Keras

- A popular, declarative interface to build DL models
- High level, expressive API in python
- Executes on TensorFlow, Theano, CNTK

```
model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))
```


Keras Estimator

```
model = Sequential()
model.add(...)
model.save(model_filename)

estimator = KerasImageFileEstimator(
    kerasOptimizer="adam",
    kerasLoss="categorical_crossentropy",
    kerasFitParams={"batch_size":100},
    modelFile=model_filename)

model = model.fit(dataframe)
```


Keras Estimator in Model Selection

```
estimator = KerasImageFileEstimator(
   kerasOptimizer="adam",
   kerasLoss="categorical crossentropy",
   kerasFitParams={"batch size":100},
   modelFile=model filename)
model = model.fit(dataframe)
estimator = KerasImageFileEstimator(
    kerasOptimizer="adam",
    kerasLoss="categorical crossentropy")
paramGrid = ( ParamGridBuilder()
    .addGrid(kerasFitParams=[{"batch size":100}, {"batch size":200}])
    .addGrid(modelFile=[model1, model2]) )
```

Keras Estimator in Model Selection

```
estimator = KerasImageFileEstimator(
    kerasOptimizer="adam",
    kerasLoss="categorical crossentropy")
paramGrid = ( ParamGridBuilder()
    .addGrid(kerasFitParams=[{"batch size":100}, {"batch size":200}])
    .addGrid(modelFile=[model1, model2]) )
cv = CrossValidator (estimator=estimator,
                    estimatorParamMaps=paramGrid,
                    evaluator=BinaryClassificationEvaluator(),
                    numFolds=3)
best model = cv.fit(train df)
```

Load data

Interactive work

Train

Evaluate mode

Apply

Load data

Interactive work

Train

Evaluate model

• Apply Batch prediction
Spark SQL

Load data

Interactive work

Train

Evaluate model

• Apply

Batch prediction

Spark SQL

Batch prediction as an MLIib Transformer

Recall a model is a Transformer in MLlib

Hierarchy of DL transformers for images

Hierarchy of DL transformers for images

Hierarchy of DL transformers

Defined by tf.Graph

- 1. Convert ImageSchema data into a vector
- 2. Use tensorframes to
 - Efficiently distribute tf.Graph to workers
 - Apply the graph to the partitioned data
- 3. Return the result as a spark.ml.Vector

Aside: high performance with Spark

- TensorFlow (and other frameworks) have 2 mechanisms to ingest data:
 - memory-based API (tensors)
 - file-based API (Queue, ...)
- DLP makes all data transfers in memory
- Spark responsible for reading and assembling data
- Low-level transformations handled by TensorFrames

High performance with Spark

 Every DL transform is a TensorFlow graph

High performance with Spark

 Every DL transform is a TensorFlow graph

 Applied on each of the rows of the dataframe

Example: running batch inference

Load data

Interactive work

Train

Evaluate model

• Apply Spark SQL Batch prediction

Shipping predictors in SQL

Take a trained model / Pipeline, register a SQL UDF usable by anyone in the organization

In Spark SQL:

```
select image, my_object_recognition_function(image) as objects
from traffic_imgs
```

This means you can apply deep learning models in streaming!

Almost done

Deep Learning Pipelines: Future

In progress 🛦

- Scala API for DeepImageFeaturizer
- Text featurization (embeddings)
- TFTransformer for arbitrary vectors

Future

- Distributed training
- Support for more backends, e.g. MXNet, PyTorch, BigDL

Deep Learning without Deep Pockets

- Simple API for Deep Learning, integrated with MLlib
- Scales common tasks with transformers and estimators

Embeds Deep Learning models in MLlib and SparkSQL

Check out https://github.com/databricks/spark-deep-learning !

Thank you!

Questions?

Resources

Blog posts & webinars (http://databricks.com/blog)

- Deep Learning Pipelines
- GPU acceleration in Databricks
- BigDL on Databricks
- Deep Learning and Apache Spark

Docs for Deep Learning on Databricks (http://docs.databricks.com)

- Getting started
- Deep Learning Pipelines Example
- Spark integration

