- **26.** Dos partículas, de masas m_1 y m_2 , aisladas del resto del universo, están sometidas sólo a la atracción gravitatoria entre ambas, valiendo r_0 la distancia mínima entre ambas. En esa posición, la velocidad v_0 de m_2 , respecto de un triedro que se traslade con origen en m_1 , vale $\frac{3}{4}$ de la velocidad de escape. Calcular: 1. La excentricidad de la trayectoria de cada partícula respecto al centro de mmasa del sistema. 2. El valor necesario de v_0 para que la distancia entre las partículas se mantenga igual r_0 .
- **27.** Dos partículas, de masas m y M, están unidas entre sí por medio de un hilo (inextensible, de masa despreciable y longitud 2b que pasa por un pequeño agujero O, abierto en una mesa horizontal lisa. Estando el sistema en reposo, sujetando m sobre la mesa a una distancia b de O, se imprime a m una velocidad v_0 horizontal, perpendicular al plano del hilo.

Se pide:

- 1. Plantear las integrales primeras del movimiento del sistema.
- 2. Demostrar que, siendo v_0 no nula, m no alcanzará nunca el punto O, mientras que a partir de un valor de v_0 (que se calculará), M lo alcanzará.
- 3. Encontrar la tensión T del hilo en función de la distancia Om = u.
- 4. Si, en lugar de la masa M, se aplica al extremo del hilo una fuerza F = Mg (constante, vertical, descendente), analizar qué aspectos de los estudiados cambian y cuáles permanecen igual.

(Ejercicio 27, Curso 98/99)

28. Los semiejes de la órbita de un satélite artificial valen a = 3R y $b = 2\sqrt{2R}$ (siendo R el radio de la Tierra). Al pasar por el perigeo se modifica su velocidad para que su nuevo valor v_1 sea $\frac{4}{5}$ de la velocidad de escape. Determinar la dirección que debe tener v_1 para que la excentricidad de la nueva órbita sea mínima, obteniendo su valor.

- 29. Un satélite artificial describe una órbita circular de radio λR (siendo R el radio de la Tierra). Se modifica el módulo de su velocidad (sin variar su dirección) de forma que la nueva energía valga un 80 % de la anterior. Se pide: 1. Demostrar que la excentricidad de la nueva órbita es independiente de λ . 2. Calcular la máxima altura del satélite sobre la superficie de la Tierra, así como el tiempo que se tarda en alcanzarla, contado desde el momento en que se modificó la velocidad.
- **30.** Dos satélites artificiales S_1 y S_2 se encuentran en órbitas coplanarias, siendo la del primero circular, de radio 2R, y la del segundo elíptica, de semieje mayor a=5R y excentricidad e=3/5. R es el radio de la tierra que habrá de suponerse perfectamente esférica.

Inicialmente S_2 se encuentra en su perigeo y S_1 en oposición respecto de él, con referencia al centro de la tierra. En ese instante inicial en el satélite S_1 se reduce la velocidad (sin cambio de dirección) de forma que esta reducción representa el mínimo indispensable para que alcance la superficie terrestre en la nueva órbita. Se pide:

- a. determinar el tiempo que tarda en producirse el contacto de S_1 con la superficie terrestre;
- b. ¿podrá ser observado el impacto desde S_2 ? (lógicamente la tierra debe considerarse como opaca)

situación inicial de los satélites y órbitas, antes de la reducción de velocidad de S_1

(Ejercicio 29, Curso 94/95)