

잡초방제, 생리장해 및 15² JOXHOH

충남대학교 최재을 명예교수

⁷목차

- 1. 잡초방제(교재 16장)
- 2. 무기영양 결핍에 의한 생리장해(교재 17장)
- 3. 기상재해 및 대책(교재 18장)

잡초방제

1. 잡초방제

- 1) 잡초의 피해 및 잡초방제의 필요성
- 2) 잡초의 분류 및 분포
- 3) 잡초의 번식
- 4) 잡초방제
- 5) 제초제

1. 잡초의 특성

- 잡초의 정의
- 경작지에 자연적으로 발생하여 ⇒ 작물의 수량이나 품질을 저하시키는 식물을 잡초 (weeds)라 함.
- 잡초의 이점 ⇒ 토양의 침식방지, 유기물 공급, 사료, 식용, 약용, 향료로 이용, 토양의 물리성 개선, 토양 및 수질의 오염원 제거 등
- 잡초의 특성
 - 잡초 종자는 대부분이 광 발아성 ⇒ 땅속에서 발아되지 않아 생존기간 길음.
- ① 대부분의 종자 ⇒ 휴면성, 발아가 균일하지 않으며, 수명이 길음.
- ② 개화가 빠르고 자가 수정, 종자 생산기간이 길고, 종자 생산량이 많음.
- ③ 종자는 물, 바람, 동물, 종자혼입 등 ⇒ 전파수단이 다양
- ④ 특이한 ⇒ 경합기능이 있어 작물보다 생육이 좋음.
- ⑤ 손 제초 시 ⇒ 발취(拔取) 저항성이 있음.

2. 잡초의 피해

- 농경지에서의 피해
 - 잡초종자의 혼입 및 부착 ⇒ 작물의 수량감소 및 품질저하
 - 식물체 기생 잡초 (새삼 등) ⇒ 생육저해 , 해충의 서식처 ⇒ 병충해 피해 증가
 - 이앙, 수확, 탈곡 등 ⇒ 농 작업의 방해, 독성물질이 사료에 혼입 ⇒ 가축피해
- 물 관리상 피해
 - 수로의 흐름을 막음 ⇒ 유속 및 유량이 감소
 - 햇빛의 차단 ⇒ 저수지의 수온 저하
 - 햇빛의 차단 ⇒ 잡초생육 방해로 수질을 오염시켜 용존산소의 농도를 저하
- 기타 피해
 - 잔디밭, 정원, 유적지 ⇒ 경관 저해
 - 골프장, 도로의 자동차 사람 ⇒ 통행 불편
 - 태양광발전시설 ⇒ 관리에 불편

3. 잡초방제의 필요성

- 잡초방제의 개념 및 필요성
- 잡초방제 ⇒ 잡초를 제거하거나 발생을 억제하는 행위
- 생물적 재해 중 잡초로 인한 손실이 가장 큼 ⇒ 손실액은 농업생산의 10-15%
- 농작물의 수량 증대와 품질향상을 위하여 ⇒ 제초 필요
- 제초제 사용 ⇒ 생력재배를 가능하게 함.
- 제초제의 사용에 따른 장점
- ① 제초 노동력 절감 등 ⇒ 생산비 절감
- ② 잡초와 수분, 양분, 광과의 경합 방지, 병해충의 발생 감소, 단위면적당 수량 증대
- ③ 제초 노동력의 감소 ⇒ 노동경합 문제 해결
- ④ 제초효율 증가, 대면적의 작물재배 등 ⇒ 기계화를 용이하게 함.
- ⑤ 수확작업이 편리하고 수확물에 잡초종자의 유입 방지 ⇒ 품질향상 및 가공에 편리
- ⑥ 병원균과 해충의 서식 및 월동처 제거 ⇒ 병해충의 발생을 감소
- ⑦ 목초지 등 ⇒ 인축에 유해한 잡초제거

1. 잡초의 분류

- 1) 식물분류법에 의한 분류 ⇒ 잡초를 과, 속, 종명을 사용한 분류 : 벼과, 국화과, 방동사니과
- 벼과 : 피, 둑새풀, 나도겨풀, 강아지풀, 바랭이, 개기장 등
- 방동사니과: 알방동사니, 매자기, 올방개, 올챙이고랭이, 쇠털꼴, 파대가리, 물달개비, 물옥잠, 여뀌
- 광엽잡초 : 물달개비, 물옥잠, 사마귀풀, 여뀌, 마디꽃, 밭뚝외풀, 생이가래, 자귀풀, 가래, 올미, 개구리밥
- 2) 생활사에 의한 분류
- 1년생 잡초 ⇒ 봄에 발아하여 가을에 결실, 1년 내에 죽는 식물로 대부분이 여기에 속함.
- 하계 1년생 잡초 : 봄, 여름에 발생, 여름, 가을에 결실 고사 논피, 돌피, 바랭이, 강아지풀, 알방동사니, 쇠비름, 명아주 등
- <mark>동계 1년생(월년생)</mark> : 가을, 초겨울에 발생, 월동 후 봄, 여름에 결실 후 말라 죽음 둑새풀, 냉이, 별꽃, 벼룩나물, 갈퀴덩굴
- 2년생(월 년생) 잡초 : 가을에 발아하여 이듬해 여름에 결실 후 말라 죽음.
- 냉이, 망초류, 달맞이, 선개불알풀, 둑새풀, 엉겅퀴, 나도냉이, 갯질경이
- 다년생 잡초 : 생활환이 2년 이상 생존하는 식물. 구근, 숙근, 포복근, 근경 등으로 번식, 방제 어렵다.
- 민들레, 질경이, 나도방동산이, 올방개, 매자기, 쇄뜨기, 제비꽃, 띠, 메꽃, 겨풀, 미나리, 메꽃

사진 1. 화본과 주요 잡초

사진 2. 주요 방동사니과 잡초

알방동사니,

매자기

올방개

올챙이고랭이

쇠털꼴

한글방송통신데학교 Karea National Open University

파대가리

2) 잡초의 분류 및 분포

사진 3. 광엽잡초

물달개비

물옥잠

사마귀풀

올미

여뀌

2. 농경지 잡초의 분포

1) 논 잡초(2013년 조사)

- 일년생 잡초 : 다년생 잡초 = 58% : 42%, 벼과, 사초과, 마디풀과가 54% 차지
- 우점종 : 피, 물달개비, 올방개, 올챙이고랭이, 벗풀, 여뀌바늘, 가막사리, 자귀풀 우점종인 피, 물달개비, 벗풀, 여뀌바늘 등 ⇒ 제초제 저항성으로 많이 분포로 추정

2) 밭 잡초(2014년 조사)

- 일년생 잡초 : 월 년생 잡초 : 다년생 잡초 = 43.2% : 20.8% : 36.0%
- 동계 잡초의 우점도 ⇒ 냉이, 둑새풀, 좀명아주, 망초, 벼룩나물, 황새냉이 등
- 하계 잡초의 우점도 ⇒ 바랭이, 쇠비름, 깨풀, 흰명아주, 돌피, 중대가리풀 순

3) 외래 잡초

- 미국개기장, 미국자리공, 달맞이꽃, 단풍잎돼지풀, 털별꽃아재비, 큰도꼬마리, 미국 까마죽, 돌소리쟁이, 좀소리쟁이, 미국나팔꽃, 미국가막사리, 망초, 개망초, 서양민들레, 소리쟁이, 비름, 가는털비름, 흰명아주, 도깨비가지, 가시비름, 미국외풀

사진 4. 주요 밭잡초

한글방송통신데학교 Karea National Open University

1. 잡초의 번식과 발아

1) 종자번식

- 일년생 잡초 ⇒ 종자번식, 2년생 잡초 ⇒ 종자번식과 영양번식을 겸, 다년생 잡초 ⇒ 주로 영양번식
- 종자의 장점 ⇒ 산포성, 휴면성 강
- 2) 영양번식
 - 야경(바랭이, 나도겨풀), 괴경(올방개, 올미, 벗풀, 매자기), 뿌리(메꽃, 어겅퀴), 포복경(미나리, 병풀), 인경(야생마늘), 지하경(너도방동사니), 줄기(민들레), 절편(쇠비름) 등
 - 영양번식체 장점 ⇒ 적응성 강, 제초제 및 경운조건에 강
- 3) 잡초 종자의 발아 : 수분, 산소, 온도, 광조건
- 광발아종자 ⇒ 바랭이, 쇠비름, 개비름, 참방동사니, 소리쟁이, 메귀리, 향부자, 강피
- 암발아 종자 ⇒ 별꽃, 냉이, 광대나물, 독말풀, 광과 무관한 종자 ⇒ 화곡류
- <mark>잡초의 발아심도</mark> ⇒ 가래가 15~20cm, 올방개 10~25cm, 벗풀 5~10cm, 올미 0~ 5cm, 너도방동산이 15~20cm, 냉이류 2cm 내외, 메귀리 최대심도 17.5cm, 명아주 5cm 내외
- 4) 잡초의 산포 : 이동 형태 바람 ⇒ 민들레와 망초, 꼬투리가 물에 뜸 ⇒ 소리쟁이, 인축에 부착 ⇒ 도깨비바늘, 도꼬마리, 꼬투리가 터져 흩어짐 ⇒ 달개비, 콩과류, 동물의 배설물에 의한 전파 등

2. 잡초 종자의 휴면과 수명

- 1) 휴면의 종류 및 의의
- 종자 및 영양기관이 발아조건에 적합하여도 ⇒ 발아하지 못하는 것을 휴면이라 함.
- 종자의 휴면 ⇒ 수명연장 등으로 종족보존에 유리함 ⇒ 발아기의 분산, 고온 또는 저온 등을 회피 휴면장소는 토양 내에서 함.
- 자발휴면(내적인 휴면), 타발휴면(외적인 환경에 의한 휴면) 이 있음.
- 2) 휴면의 원인
- 수분흡수가 불가능한 경실의 종파 ⇒ 메꽃
- 종피의 기계적 저항 ⇒ 비름류
- 산소 불 투과성 종파 ⇒ 도꼬마리
- 발육이 불완전한 배 및 발아억제물질에 의한 휴면 등
- 3) 종자의 수명
- 수분함량이 낮고 저온이며, 산소분압이 낮은 조건은 종자의 수명을 길다.
- 5년 내외 ⇒ 방동사니, 클로버, 개여뀌, 닭의장풀, 별꽃, 개풀, 털(개)비름, 돌피, 개미자리
- 3년 내외 ⇒ 피, 뽕모시풀, 까마중, 가을강아지풀
- 2년 내외 ⇒ 바랭이, 속속이풀, 냉이, 향유
- 1년 내외 ⇒ 둑새풀, 새포아풀

1. 예방적 방제

- 예방적 방제 ⇒ 잡초위생과 법적 방제
- <mark>잡초위생</mark> ⇒ 재배관리의 합리화, 작물종자의 정선, 농기계 및 기구의 청결, 상토소독, 비산형 종자의 관리, 완숙퇴비의 사용 등 → <mark>잡초종자 및 영양체를 생산할 수 없도록</mark> 청결한 상태를 유지
- 법적 방제 ⇒ 곡물, 사료, 건초 수입과정에서 잡초의 국내진입과 전파를 막는 방법

2. 기계적(물리적) 방제

- 손 제초, 경운, 중경제초, 예취, 토양피복, 흑생비닐 멀칭, 소각, 소토, 침수처리 등
- 생육중인 잡초, 종자 및 영양번식체를 불태워(소각) 잡초의 억제, 사멸시키는 방법

3. 경종작(예방적)방제

- 잡초의 생육조건을 불리 ⇒ 잡초와의 경쟁에서 작물이 유리하도록 함.
- 1) 경합특성 이용법 ⇒ 윤작, 답전윤환재배, 이식재배, 재식밀도 증가, 밀식재배, 재 파종 및 대파, 2모작 등 ⇒ 잡초발생을 억제시키고 작물의 생육을 증진시키는 방법
- 2) 환경제어법
- 관배수 조절 및 답전윤환재배에 의한 수생 잡초와 논 잡초 발생억제
- 제한 경운법에 의한 잡초발생 잠재력 감소 등
 - ⇒ 작물에게는 유리하고, 잡초에게는 불리하도록 인위적인 환경 조성
- 묘포장, 도로, 통로, 주차장, 운동장, 정원의 저수지·관배수로 등 ⇒ 콘크리트나 방 수용 천을 까는 방법

4. 생물적 방제

- 잡초 기생성, 식해성 해충 및 병원성인 미생물 ⇒ 잡초의 세력을 감소시키는 방법
- 대소동물, 잡초식해곤충 등도 활용 ⇒ 오리 농법, 왕우렁이 농법, 참게 농법 등

5. 화학적 방제

- 제초제나 생장조정제를 사용하는 제초법 ⇒ 잡초방제법 중에서 가장 중요한 방법임.

6. 종합적 방제

- 화학적 방제에만 의존하지 않고 ⇒ <mark>물리적 방제, 경종적방제, 생물적방제</mark> 등에서 둘 이상을 활용한 체계적으로 병해충을 방제하는 이론.

1. 제초제의 제형

- 제형화는 제초제의 사용 편리성, 효력증진, 안정성 향상, 환경피해 최소화, 생력화 (1) 입제 (Granule ; GM)
 - 입제 ⇒ 입자크기가 30~1700µm로 살포 간편하고, 약해의 위험이 적은 것이 장점 고른 살포 않으면 ⇒ 약해가 발생하고, 부피가 커서 물류비용이 많이 드는 단점
- (2) 액체(Soluble concentrate, SL): 액상제형으로 물에 용해되는 제형
- (3) 유제(Emulsifiable concentrate, EC)
- 유효성분, 유기용매 및 유화제로 구성, 우유 상태인 제형
- (4) 수화제(Wetable powder, WP)
 - 제초제, 증량제 및 분산제로 구성된 고체를 물속에서 10~20µm의 입자크기로 미분 화되는 제형
- 그 밖에 과립수화제(Water dispersible granule, WG), 과립수용제(Water soluble powder, SP) 및 액상수화제 (Suspension concentrate, SC) 등

2. 제초제의 분류

- (1) 처리형태(처리시기, 처리방법)에 따른 분류
- ① 처리시기에 의한 분류
- 가. 파종(이식 전) 처리제
- 파종전 경엽처리제 ⇒ 묘판의 잡초 종자 및 작물 이식 전에 출아한 잡초의 경엽처리로 고사
- 파종전 토양혼화처리제 ⇒ 살포한 제초제가 발아하는 잡초를 고사시킴.
- 나. 발아전 처리제 ⇒ 작물과 잡초가 발아하기 전에 토양표면 처리, 발아하는 잡초고사
- 다. 발아 후 처리제(생육기 처리제) ⇒ 작물과 잡초가 발아한 후에 처리하는 제초제로 잡초에 경엽처리하여 잡초를 고사시킴. 잡초가 유식물일수록 약제 감수성이 높음.
- ② 처리방법에 따른 분류
- 토양처리형 제초제 ⇒ 토양 표면에 처리 피막형성, 발아하는 잡초의 뿌리에서 흡수로 고사
- 경엽처리제초제 ⇒ 잡초식물체의 잎이나 줄기에 직접 처리하는 제초제로 경엽이 흡수 고사

2. 제초제의 분류

- (2) 제초활성에 의한 분류
 - ① 작용기구에 따른 분류
 - 접촉형 제초제 ⇒ 접촉한 식물체 부위만 고사시키는 형태의 제초제
 - 이행형 제초제 ⇒ 처리된 제초제 성분이 흡수되어 작용부위까지 이행하여 고사시 키는 형태의 제초제
 - ② 선택성 유무에 따른 분류
 - 선택성 제초제 ⇒ 방제대상 잡초를 선택적으로 작용하는 제초제
 - 비선택성 제초제 ⇒ 모든 식물에 살초활성을 보이는 제초제
- (3) 화학물질에 따른 분류
 - 유기물제초제 ⇒ 분자 내에 하나 또는 그 이상의 탄소를 가지고 있는 제초제
 - 무기제초제 ⇒ 탄소를 포함하지 않은 제초제로 현재는 무기화합물 제초제로 대체

무기영양 결핍에 의한 생리장해

1. 무기영양 결핍에 의한 생리장해

1) 필수원소

2) 필수 원소의 생리적 기능, 결핍증상 및 대책

1) 필수원소

1. 필수원소 (1)

- 식물체에 분포하는 여러 가지 원소 가운데 생육에 꼭 필요한 것을 필수원소(essential element)로 정의
- 필수원소의 기준은 다음과 같음
 - 결핍되면 자신의 생활환을 완성할 수 없다.
 - 식물체의 필수적인 성분(엽록소 등)의 구성성분이다.
 - 기능과 효과면 에서 다른 원소로 대체할 수 없다
 - 단순히 상호작용의 효과 때문에 요구되는 것이 아니다.
- 필수원소는 식물조직 내의 상태적인 농도에 따라 흔히 다량영양소 (macroelements)와 미량영양소(microelements)로 분류
- 다량원소는 C, O, H, N, K, Ca, Mg, P, S의 9종이며,
- 미량원소는 Cl, Fe, Mn, Zn, Cu, Ni, Mo의 8종
- 식물체에서 무게 구성 비율은 다량원소가 전체의 약 99.5%를, 0.5%는 미량원소가 차지

1) 필수원소

1. 필수원소 (2)

- 이온형 등 흡수할 수 있는 형태로 존재 해야만 식물이 흡수하여 이용가능
- 체내에서의 이동성의 정도에 따라 분류 하기도 하는데, Ca, S,Fe, B, Cu는 비이동성 원소로 분류
- 유익원소는 모든 식물에서 반드시 요구되지 않아 필수원소에서 제외. 나트륨 (Na), 규소(Si), 셀레늄(Se), 코발트(Co) 등의 4종 인정

표. 17-1 식물의 필수원소별 흡수원, 체내농도 및 흡수형태 (식물의학 2018판, 502페이지)

구분	흡수원	원소	화학기호	건물당 농도(mmol/kg)	흡수형태
다량 원소	물 또는 이산화탄소	수소	Н	0,000,00	H ₂ O
		탄소	С	40,000.0	CO_2
		산소	0	0,000,08	O2, H2O
	토양	질소	N	1,000.0	NO³-, NH⁴+
		칼 륨	K	250.0	K ⁺
		칼슘	Ca	125.0	Ca ²⁺
		마그네슘	Mg	80	Mg ²⁺
		인	P	60.0	${\rm H_2PO^{4-}, HPO_4^{2-}}$
		황	s	30.0	SO4 ²⁻
미량 원소		염소	Cl	3.0	C-
		철	Fe	2.0	Fe ³⁺ , Fe ²⁺
		봉소	В	2,0	H ₃ BO ₃
		망간	Mn	1.0	Mn ²⁺
		아연	Zn	0,3	Zn ²⁺
		구리	Cu	0.1	Cu ⁺ , Cu ²⁺
		니켈	Ni	0.05	Ni ²⁺
		몰리브덴	Мо	0.001	MoO4 ²⁻

1) 필수원소

※ 이동성 vs 비이동성 원소?

이동성 원소인 인의 결핍(옥수수)

비이동성 원소인 철의 결핍(딸기)

- 비이동성원소의 경우 결핍증상이 생육이 왕성한 식물체의 정단이나 어린잎에 잘 나타남!

1. 다량원소 (질소의 예)

- 질소 토양에서 NO³⁻(질산태 이온)이나 NH⁴⁺(암모니아태 질소)의 형태로 흡수. 주로 NO3- 형태로 흡수되지만, NH4+를 선호하는 식물종도 존재. 흡수된 무기질소는 동화과정을 거쳐 아미노산, 단백질, 효소, 핵산, 엽록소, 비타민, 호르몬 등과 같은 생장에 중요
- 질소가 과잉 흡수되면 광합성산물이 단백질합성에 지나치게 소모되어 가용성 탄수화물이 줄어들 어 셀룰로오스와 같은 무질소유기화합물의 합성이 억제
- 이 경우 세포의 크기는 증대하지만 세포벽이 얇아지면서 식물이 도장하고 화아분아가 억제질소가 결핍되면 세포의 신장과 세포분열을 제한. 또한 엽록체 단백질이 분해되어 노엽부터 황백화현상(chlorosis)이 나타난다.

자료: 김광용 외(2001).

[그림 17 - 1] 고추의 정상적인 생육 모습과 질소결핍으로 황화증상을 보이는 고추 포장(식물의학 2018판, 504페이지)

2. 다량원소 (인의 예)

- 인(phosphorus, P)은 H₂PO₄-(인산이수소이온)과 HPO₄²-(인산일수소이온)의 형태로 흡수
- \bigcirc 인은 일차적으로 일가이온인 $H_2PO_4^-$ 로서 흡수되고, 중성 pH나 그 이상의 pH에서는 이가이온인 HPO_4^{2-} 의 형태로 흡수
- 인은 체내에서 쉽게 이동하고 재분배 용이, 영양생장 중에는 줄기나 잎에 많이 분포하지만 생식 생장에 들어가면 종자나과실로 이동하여, 경우에 따라서는 50% 이상이 생식기관에 집중적으로 분포도 가능. 인이 과잉으로 흡수되면 Zn, Fe, Cu 등의 흡수와 전류를 방해

자료: 김광용 외(2001).

[그림 17 - 2,3]pH에 따른 식물체의 인산이온 흡수 비율 및 결핍증상(식물의학 2018판, 505~6페이지)

표. 17-2 생화학적 기능에 따른 식물 무기영양소의 분류

주기능	관련 원소	세부기능	
FFY O JI	N	아미노산, 아미드, 단백질, 핵산, 뉴클레오티드	
탄소유기 화합물의 성분	시스텐인, 시스틴, 메티오닌이 성분, 티아민, 바이오틴 등 비타민의 성분 리포산(lipoic acid)의 성분, 조효소(coenzyme) A의 성분. 다양한 식물 이차대사산물의 성분		
	Р	당 인산, 핵산, 뉴클레오티드, 조효소, 인지질 등의 성분, ATP를 포함하는 반응에서 핵심 역할	
에너지 저장 및 구조 유지	Si	세포벽에 무정형 실리카 형태로 침적되어 세포벽의 기계적 성질(견고성, 탄성)에 기여	
	В	-OH기를 가진 유기화합물(특히 세포벽 성분)과 에스테르 결합 유도, 동화산물의 전류촉진, 옥신의 활성 제어	

표. 17-2 생화학적 기능에 따른 식물 무기영양소의 분류 (계속)

	K	40종 이상의 효소에서 보조인자로 필요함. 세포팽압 형성, 세포의 전기적 중성 을 유지		
이온형태로	Ca	세포벽 중간 반막층(펙틴산칼슘)의 성분, ATP와 인지질의 가수분해에 참여하는 효소들에 대해 보조인자의 역할 수행. 2차 신호 전달자		
존재하여 전기적 균형	Mg	인산기 전달반응에 참여하는 많은 효소들에게 필요, 엽록소 분자의 성분		
(charge balance)	Cl	O ₂ 발생에 관여하는 광합성 반응에 관여		
에 관여	Zn	알코올 탈수소효소(alcohol dehydrogenase), 글루탐산 탈수소효소, 무수탄산효소(carbonic anhydrase)등의 성분		
	Na	C ₄ 식물과 CAM식물의 포스포엔올피루브산(phosphoenolpyruvate, PEP) 재생성에 참여		

표. 17-2 생화학적 기능에 따른 식물 무기영양소의 분류 (계속)

	Fe	광합성, N2 고정, 호흡에 참여하는 시토크롬 및 페레독신 등 철단백질의 성분
וא ויי ויי ויי	Mn	일부 탈수소 효소, 탈카르복실화 효소(decarboxylase), 키나아제(kinase), 옥시다아 제(oxidase), 허옥시다아제(peroxidase)의 활성에 필요. 광합성의 O2 발생에 참여
산화환원 반응에 참여	Cu	플라시토시아닌(plastocyanin)의 구성원소. 엽록소의 합성과 안정에 관여. 폴리페 놀산화효소의 활성에 관여
	Ni	요소분해효소(urease)의 성분. N ₂ 고정 박테리아에서 히드로게나아제(hydroge- nase)의 성분
	Мо	질소교정효소(nitorgenase) 및 질산 환원효소(nitrrate reductase)의 성분

철, 망간: 잎의 황백화 / 구리결핍증상: 잎의 암녹색화, 유엽 정단 괴사나 기형

3. 생화학적 기능에 따른 식물 무기영양소의 분류

- 고등식물은 물, 공기, 태양에너지 및 토양에서 흡수된 필수원소들이 있는 조건하에서 정상적인 생장에 필요한 모든 유기 화합물 및 기타 화합물을-아미노산, 호르몬 및 비타민 등- 합성할 수 있는 독립영양체(autotrophic)
- 식물이 정상적인 생육을 유지하기 위해 토양으로부터 공급받는 무기양분의 균형 있는 획득이 중요
- 특정 무기염류의 결핍은 식물의 대사와 기능을 교란하기 때문에, 무기영양소의 적절한 시비는 재배 식물의 높은 생산성과 깊은 관계가 있음
- 토양의 유기물함량이 충분케 하여, 토양미생물에 의한 토양개량효과와 양분공급에 최대의 효과를 기대하고, 육안진단으로 신속하게 식물의 영양상태를 파악하나, 잎분석과 토양분석으로 정확한 시비처방을 내려야 함

※ 잎분석과 토양분석 요령

- 전문기관에 의뢰
- 셈플링(sampling)의 대표성이 중요
- 좋은 대조구를 찾을 것

기상재해 및 대책

3. 기상재해 및 대책

- 1) 기상과 재해
- 2) 이상기후와 농업기상재해
- 3) 이상재해에 의한 농작물 피해 현황
- 4) 농업기상재해의 종류 및 대책

1) 기상과 재해

1. 기상과 재해

- 기상 ⇒ 기온, 기압, 습도, 바람, 강수량, 구름, 눈, 일조시간, 일조량 등 지구의 대기 중에서 일어나는 자연 현상을 말함.
- 농업기상 ⇒ 농작물의 생육, 수량, 병충해, 농경지의 환경 등 농업과 관련된 기상 을 말함.
- 농작물의 생육과 수량 ⇒ 기온, 강수, 일사, 바람 등의 기상에 영향을 많이 받음.
 - 농업기상 조건 ⇒ 파종, 이식, 수확의 적기 및 재배적부를 결정
- 농업의 기상재해 ⇒ 어느 한계를 초월한 기상조건에 의해서 받은 피해
 - 기상재해 중에서 농업생산에 크게 영향을 미치는 요인 ⇒ 풍해, 수해, 습해, 가뭄 해, 서리해, 냉해, 고온해, 한해, 눈피해 등임.

2. 이상기후와 농업 기상재해

- 이상기후 ⇒ 지구 온난화가 주요 원인
 - 지구의 온난화 ⇒ 폭염, 태풍, 가뭄, 호우 등의 이상기상이 빈번하게 발생
 - 기후변화와 기상이변 ⇒ 농작물의 수량 감소 및 품질저하
- 우리나라의 2040년대는 현재보다 기온이 2.0~3.2℃가 증가가 예상
 - 아열대 기후로 변화 ⇒ 폭염, 폭우, 태풍 등 극한기상이 증가 예상
- 기후변화 적응대책
 - 식량작물은 내재해성 품종 개발로 안정적인 식량 공급,
 - 원예작물의 주산지 북상에 따른 새로운 생산체계 확립,
 - 축산분야는 새로운 생산·유통시스템 정착 등 종합적인 대응전략 구상하고 있음..

3) 이상재해에 의한 농작물 피해 현황

1. 이상재해에 의한 농작물 피해 현황

- 기상재해에 의한 농작물 피해면적 ⇒ 2012년 332,343ha, 2011년 141,391ha, 2010년 97,049ha, 2004년 80,849ha, 2005년 56,208ha 순임.
- 2005년부터 2013년 연간 1,000ha이상 피해를 받은 재해
 - 우박 ⇒ 2004, 2005, 2006, 2007, 2008, 2010, 2011, 2012년 (41,758ha)
 - 호우 ⇒ 2004, 2005, 2009, 2010, 2011, 2012, 2013년 (174, 551ha)
 - 태풍 ⇒ 2005, 2005, 2006, 2007, 2010, 2012년 (457,974ha)
 - 동해 ⇒ 2005, 2009, 2010, 2011년 (41,266ha)

1. 풍해

- 바람에 의한 태풍, 조풍(潮風), 높새바람(푄현상), 강풍, 돌풍 등에 의해 재해의 총칭
 - 태풍피해 ⇒ 농작물의 도복, 경엽과 가지의 손상, 낙엽, 낙과로 수량감수와 품질저하
 - 조풍은 ⇒ 비를 동반 않고, 바닷물의 물보라가 염분을 농작물의 경엽에 부착시켜 피해
- 높새바람 ⇒ 늦봄부터 초여름에 동해안에서 태백산맥을 넘어오는 바람, 샛바람이라고도 함. 높새바람은 온도가 높고 매우 건조하여 농작물의 위조 및 백수를 유발함.
- 풍해대책 ⇒ 상록수로 방풍림 설치, 품종의 선택과 작기를 이동하여 풍해 위험시기를 회피
 - 벼 ⇒ 조기재배에 의한 작기 이동, 도복저항성 품종의 재배, 물을 깊이 대어 벼의 도복 경감
 - 과수와 열매채소 ⇒ 낙과방지제를 살포, 지주를 보강
 - 조해방제 ⇒ 방풍망 설치, 피복 자재로 덮음, 피해를 받은 작물은 물로 씻어줌.

1. 풍해

2. 수해

- 태풍, 장마, 국지호우 등 ⇒ 농작물의 관수, 침수로 도복, 병해, 농경지 유실 피해
 - 벼의 수해 ⇒ 침·관수, 경지 유실, 토사 매몰 또는 토사유입, 벼흰잎마름병 발생
 - 맥류의 수 발아 ⇒ 장마 의해 수확기에 발생하고 품질이 크게 저하, 수량감수
- 수해의 대책 ⇒ 물에 잠긴 벼는 벼 잎의 끝만이라도 물 밖으로 나오게 조치
 - 물이 뺀 후 잎을 씻어주고, 도열병, 벼흰잎마름병 방제하고. 물갈이 시킴.
 - 밭작물과 채소류 ⇒ 속히 배수, 쓰러진 포기는 세워 주고 개별지주 및 지주 보강함.
 - <mark>과수</mark> ⇒ 방풍림 설치, 지주를 보강, 곁가지 묶어주기, 과실은 미리 수확, 지주설치
 - <mark>잎 손상이 심할 경우</mark> ⇒ 잎 수에 알맞게 열매를 솎아 주고 살균제를 살포, 수세 회복 을 위하여 필요 시 요소 등으로 2회 정도 엽면 살포함.

4) 농업기상재해의 종류 및 대책

3. 기상재해 및 대책

2. 수해

3. 습해

- 습해는 토양 과습으로 토양 뿌리 손상 및 지상부가 황화, 위조, 고사 피해
 - 과습 토양 ⇒ 토양 전염성 병해의 발생이 많아지고, 작물도 쇠약
 - 보리의 습해 ⇒ 이른 봄 배수가 불량한 토양, 저습한 논의 답리작에서 많이 발생
- 습해 대책
 - 배수로의 정비, 높은 두둑재배, 내습성이 강한 작물을 재배
 - 보리 ⇒ 이모작 논에서는 휴립광산파나 휴립세조파 재배
 - 객토, 유기물, 토양개량제 시용으로 입단화로 토양의 통기 좋게 함.
 - <mark>콩</mark> ⇒ 내습성이 비교적 강한 태광콩, 대원콩, 나물용에서 풍산나물콩 등을 재배
 - 마늘과 양파 ⇒ 배수구 정비. 마늘의 웃거름은 적기 시용, 병해충 예방과 방제를 실시, 흑색썩음균핵병 발생포기의 조기제거

4) 농업기상재해의 종류 및 대책

3. 기상재해 및 대책

3. 습해

4. 가뭄해

- 가뭄(한발해(旱魃害), 한해(旱害) ⇒ 토양수분 부족으로 생육 저해 및 고사 피해
- 한발 대책 ⇒ 근본적인 대책으로는 농사용 용수를 확보하고, 적절하게 이용
 - 벼 ⇒ 내한발성 및 내만식성 품종 재배
 - 보리 ⇒ 내한성 품종재배, 질소과용을 피하고 인산, 칼리를 증시, 뿌리 골 낮게
 - 중경제초, 짚, 풀, 비닐, 퇴비로 지표면을 피복하여 토양의 입단을 조성
 - 사후대책 ⇒ 메밀, 조, 채소, 기장 등을 대파함.
 - <mark>참깨</mark> ⇒ 파종이 지연되더라도 <mark>강우 후 파종하여 입모율 향상</mark>시키고, 참깨의 솎음 작업은 비온 후에 절단 솎음을 함.
- 참깨 비닐 피복 재배 시 ⇒ 비닐 양측 가장 자리와 파공 부위를 흙으로 잘 덮어 수 분 증발을 억제함.

4) 농업기상재해의 종류 및 대책

3. 기상재해 및 대책

4. 가뭄해

5. 고온해

- 여름의 기온이 작물생육적은 이상의 고온상태가 계속한 경우 발생하는 피해
 - 많은 농작물에서는 35℃이상이 되면 고온피해가 뚜렷이 나타남
 - 벼 ⇒ 수잉기에서 개화기의 고온에 의한 불임립의 발생, 등숙불량 등의 문제시 됨.
 - 인삼의 고온피해는 5∼8월에 30℃ 이상의 기온이 5일 이상 지속될 때 발생
- 고온 대책
- 콩 ⇒ 부직포, 짚이나 산야초 등의 피복처리로 수분증발 방지함.
- 채소 ⇒ 짚, 풀, 퇴비 등을 이랑에 덮어주기, 스프링클러 등으로 토양 습도를 유지
- 고추 ⇒ 살수기 및 관수시설 설치, 피해를 받은 과실은 빨리 수확
- 사과의 일소피해 예방 ⇒ 사전에 탄산칼슘 40~50배액 10~15일 간격 4~5회 엽면살포
- 복숭아 ⇒ 이른 새벽에 수확 그늘진 곳에서 선별포장 작업을 해야 신선도가 유지
- 착색기에 있는 포도 ⇒ 점적 관수 시설 등을 이용하여 주기적으로 물을 뿌려줌

5. 고온해

6. 한해

- 한해(寒害) ⇒ 초봄 서리해(상해,霜害), 겨울철의 동해, 한풍해, 토양 동결 등의 피해 동해와 상해를 합쳐 동상해라 함.
- 동해(凍害) ⇒ 저온으로 인하여 식물체 조직 내에 결빙이 생겨서 조직이 동사
- 서리해(霜害) ⇒ 초봄과 늦가을에 작물의 표면에 서리가 맺혀 작물체 동사
- 서릿발 해((霜柱害) ⇒ 겨울에 가늘고 긴 얼음 기둥이 다발로 솟아오르는 것
- 서리피해 방지법 ⇒ 왕겨나 중유 등을 태우는 연소법, 휀을 설치 윗쪽의 따뜻한 공기를 지표의 농작물로 송풍 하는 송풍법, 물을 뿌려주는 살수빙결법이 있음.
- 동해방지대책 ⇒ 지역특성에 알맞은 작목선택 중부지방은 저온성채소인 시금치, 상추,딸기 등, 남부지방에는 고온성채소인 토마토, 오이, 풋고추, 메론 등을 재배
 - 동해 피해 발생 과수 ⇒ 꽃눈의 피해 정도에 따라 전정시기를 늦추고, 열매가지를 남김.

6. 한해

6. 한해

표 18-2 . 과수류 동해 발생 한계온도

종류	동해 한계온도	지속시간
사과	-25 ~ -30℃	10시간 이상
배	-25 ~ -30℃	8시간 이상
포도	미국종(켐벨얼리): -20 ~ -25℃ 유럽종(거봉): -13 ~ -20℃	6시간 이상
복숭아	-15 ~ -20℃	4시간 이상

[※] 상기 온도는 과원의 토양환경, 경사, 방향, 수분상태, 나무생육 정도 등에 따라 달라질 수 있음.

7. 냉해

- 생육기간 중에 이상 저온 지속으로 생육 저해, 수량의 감소, 품질의 저하를 가져오는 재해
- 벼의 냉해 ⇒ 지연형 냉해(遲延型), 장해형 냉해(障害型), 병해형 냉해(病害型)로 나뉨
 - 지연형 냉해 ⇒ 냉온이나 일조 부족으로 출수가 늦어져 등숙기 저온으로 수량 저하 유형
 - 장해형 냉해 ⇒ 냉온으로 꽃의 형성, 화분의 방출 및 수정 장애로 불임을 초래하는 유형
 - 병해형 냉해 ⇒ 냉온으로 조직의 규질화 불량 등으로 도열병의 발생이 쉬워지는 유형
- 벼의 냉해의 대책 ⇒ 조식재배, 내냉성 품종의 선택, 인산이나 칼륨비료의 증시(增施)
- 차밭 ⇒ 왕겨나 중유 등을 태우는 연소법, 휀을 설치하여 윗쪽의 따뜻한 공기를 지표의 차 잎으로 송풍 하는 송풍법, 물을 뿌려주는 살수빙결법이 있음.

작은 물방울이 찻잎에 닿아 얼면서 잠열을 방출로 찻잎의 온도를 0℃로 유지 서리해 예방

7. 냉해

7. 냉해

표 18-3. 이상한파에 의한 과수의 동상해 피해 면적 및 피해액(농림축산식품부)

구분	2011년	2012년	2013년	2014	2015	계
피해면적(천ha)	32	_	26	4	6	68
피액금액(억 원)	405	_	255	30	60	750

과수 재배면적(ha): 사과30, 배13, 포도16, 복숭아16, 감귤21, 기타 65.

8. 우박해

- 우박이 잎 또는 과실이 떨어지거나 가지가 부러지며, 상처로 병원균 침입 등 생리적 및 병리적인 장해를 일으키는 피해
 - 잎이 찢어짐, 상처, 낙엽. 낙엽은 광합성량을 감소 ⇒ 꽃눈불량의 원인
 - 꽃 눈이나 잎눈 ⇒ 상처를 받거나 탈락되면 다음 해 결실에도 영향 을 줌
 - 과실 ⇒ 마찰로 경미한 상처, 우박과 충돌로 구멍이 생기고 심하면 낙과
 - 과실 비대 후기 ⇒ 봉지가 찢어지고 과실에 상처는 과실의 상품성 저하
- 대책 노지채소 ⇒ 상처 병균 침입 방지 살균제 살포, 회복 불가능한 포장 ⇒ 보파, 대파
- 과수 ⇒ 나무보다 30cm 정도 더 높게 5~10mm의 망을 씌움
- 피해 발생 1주일 이내 ⇒ 약제 살포, 추비 시용, 4종 복비나 요소 0.3%액을 1주일 간격으로 수차례 살포하여 생육을 회복시켜 줌.

9. 우박피해

사과와 양파의 우박 피해

10. 폭설피해

- 폭설(대설) ⇒ 단시간 내에 많은 눈이 내리는 현상을 말하며, 폭설로 비닐하우스, 인삼차광시설 등의 구조물 등에 피해를 주는 것을 폭설피해라 함.
- 인삼 밭 ⇒ 차광 구조물에 피해, 쌓인 눈이 녹으면서 토양 수분과다로 동결 피해
- 하우스의 폭설피해대책
- 노후화 되거나 붕괴우려 시설물 ⇒ 버팀목 보강, 비닐하우스 시설 위 쌓이는 눈을 수 시로 쓸어내림.
- 붕괴우려 하우스 ⇒ 비닐 찢기, 빈 비닐하우스는 비닐을 걷어내기
- 인삼재배시설 ⇒ 해가림 차광망을 말아 올리고 시설 위 쌓인 눈 쓸어내리기, 눈이 녹은 후 주위의 배수시설을 철저히 정비.

10. 폭설피해

10. 폭설피해

표 17-4. 최근 폭설에 의한 비닐하우스와 인삼재배시설의 피해 면적 및 피해액 (농림축산식품부)

구 분		2010	2011	2012	2013	2014년	계
하우스	피해면적(ha)	272	3	32	19	57	383
	피액금액(억원)	344	7	58	37	49	495
인삼밭	피해면적(ha)	266	14	552	136	239	1,207
	피액금액(억원)	50	18	141	32	68	309

*2014년 비닐하우스 총 면적 : 총 63.8천ha, 인삼재배면적 : 15.8천ha.

수고하셨습니다.

15감

잡초방제, 생리장해 및 기상재해

이상으로 식물의학 강의를 모두 마치겠습니다.

