Recall: There're more 2-cycles for F_{λ} .

The one we found is the 2-cycle characteristic to odd functions. $F_{\lambda}(x) = -\chi$.

So F_{λ} has a period doubling bifurcation at $\lambda = -1$.

Let us find the other 2-cycle. $\begin{bmatrix}
-\frac{2}{3}(x) = x & \iff \lambda (\lambda x - x^3) - (\lambda x - x^3)^3 = x \\
& \iff x(x^2 - \lambda - 1) \\
& \iff x(x^2 - \lambda - 1)(x^4 - \lambda x^2 + 1) + 1 \\
& \iff x(x^2 - \lambda - 1)(x^4 - \lambda x^2 + 1) = 0$ $2 - \frac{1}{2} = \frac{\lambda + \sqrt{\lambda^2 - 4}}{2} \qquad \lambda > 2$ $x = \pm \sqrt{\frac{\lambda + \sqrt{\lambda^2 - 4}}{2}} \qquad \lambda > 2$

these 4 pts form 2-cycles check that $\lambda=2$. There are 2 Period-doubling bifurcations.

CHAPTER 7 Quadrotic Family

recall that $(C_{C}(X) = \chi^{2} + C)$ ① For C > 1/4, orbits—> $C_{C}(X) = \chi^{2} + C$ ② For C = 1/4, I fixed pt cat p = 1/2, newtral ③ For C = 1/4, I fixed pts, P_, P_+, P_+ is repelling,

(a). For C = -3/4, P_ newtral

(b). For C = -3/4, P_ repelling.

④ For C = -3/4, one 2-cycle, Q = -2/4(c) For C = -3/4, newtral

(b) C = -5/4, newtral

(c). C < -5/4, repelling

§ 7.1 ase =-2

.2 fixed pts (repelling) P=-1, $P_4=2$ define: $I=[-P_4,P_+]=[-2,2]$ Then $Q_{-2}:]-\rightarrow I$

So for any seed 80 EI, its orbit for Qn will stay in I , but it workt converge.