

The Standard Model (SM)

Problems of the Standard Mode

Supersymmet Standard Mod

 $U(1)_{B-L} \times U(1)_{B}$ Extended

Model Building Parameter Space

Donalis

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies
New results

Exploring the supersymmetric $U(1)_{B-L} \times U(1)_R$ model with dark matter, muon g-2 and Z' mass limits

based on Phys. Rev. D 97, 015012

Özer Özdal¹ Mariana Frank¹

CONCORDIA UNIVERSITY¹

Winter Nuclear & Particle Physics Conference Mont Tremblant, Québec February 17, 2018

roduction

The Standard

Problems of th Standard Mod

Supersymmetric Standard Mode (MSSM)

 $U(1)_{B-L} imes U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Result

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies New results

Outline

Introduction

The Standard Model (SM)
Problems of the Standard Model
Minimal Supersymmetric Standard Model (MSSM)

- 2 U(1)_{B-L} \times U(1)_R Extended MSSM Model Building Parameter Space & Constraints
- 3 Results

 $\widetilde{\chi}_1^0$ DM scenario

Heavy Z boson

 $\widetilde{
u}_1$ DM scenario

Muon Anomalous Magnetic Moment

4 Conclusion and Future Studies New results

Introduction The Standard

Model (SM)
Problems of the
Standard Model
Minimal
Supersymmetric
Standard Model
(MSSM)

 $U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Result

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies New results

Outline

Introduction
The Standard Model (SM)
Problems of the Standard Model
Minimal Supersymmetric Standard Model (MSSM)

2 U(1)_{B-L} \times U(1)_R Extended MSSM Model Building Parameter Space & Constraints

Results

Heavy Z boson $\widetilde{
u}_1$ DM scenario Muon Anomalous Magnetic Moment

4 Conclusion and Future Studies New results

Introduction

The Standard Model (SM)

Standard Mod Minimal Supersymmetr Standard Mod (MSSM)

$U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Result

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Future Studie

$$G_{321} = SU(3)_C \otimes \underbrace{SU(2)_L \otimes U(1)_Y}_{I}$$

Introductio

The Standard Model (SM)

Standard Mod Minimal Supersymmetr Standard Mod (MSSM)

$U(1)_{B-L} \times U(1)_{R}$ Extended MSSM

Model Building
Parameter Space
& Constraints

Result

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Future Studie

$$G_{321} = SU(3)_C \otimes \underbrace{SU(2)_L \otimes U(1)_Y}_{\downarrow}$$
 $SU(3)_C \otimes U(1)_{EM}$

Introductio

The Standard Model (SM)

Problems of the Standard Model Minimal Supersymmetric Standard Model

$U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Result

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

$$G_{321} = SU(3)_C \otimes \underbrace{SU(2)_L \otimes U(1)_Y}_{\downarrow}$$

 $SU(3)_C \otimes U(1)_{EM}$

	$SU(3)_C \times SU(2)_L \times U(1)_Y$	<i>I</i> ₃	Q_{EM}
$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$(3, 2, \frac{1}{3})$	$\frac{1/2}{-1/2}$	$\frac{2/3}{-1/3}$
u _R	$(\overline{3}, 1, \frac{4}{3})$	0	2/3
d _R	$(\overline{3}, 1, -\frac{2}{3})$	0	-1/3

Introduction

The Standard Model (SM)

Problems of the Standard Model Minimal Supersymmetric Standard Model

$U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Result

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

$$G_{321} = SU(3)_C \otimes \underbrace{SU(2)_L \otimes U(1)_Y}_{\downarrow}$$
$$SU(3)_C \otimes U(1)_{EM}$$

	$SU(3)_C \times SU(2)_L \times U(1)_Y$	l ₃	Q_{EM}
$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$(3, 2, \frac{1}{3})$	$1/2 \\ -1/2$	2/3 - 1/3
u_R	$(\bar{\bf 3},{\bf 1},\frac{4}{3})$	0	2/3
d_R	$(\bar{\bf 3},{\bf 1},-\frac{2}{3})$	0	-1/3
$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	(1, 2, -1)	$1/2 \\ -1/2$	0 -1
e _R	$(\overline{1},1,-2)$	o o	-1

The Standard Model (SM)

Problems of the Standard Model Minimal Supersymmetric Standard Model

$U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Results

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion an Future Studie

New results

The Standard Model of Particle Physics

$$G_{321} = SU(3)_C \otimes \underbrace{SU(2)_L \otimes U(1)_Y}_{SU(3)_C \otimes U(1)_{EM}}$$

$$SU(3)_C o G_\mu^a \qquad a=1,..,8$$
 $SU(2)_L o W_\mu^i \qquad i=1,2,3$

 $U(1)_{Y} \rightarrow B_{u}$

The Standard Model (SM)

Problems of the Standard Model Minimal Supersymmetric Standard Model

$U(1)_{B-L} \times U(1)_R$ Extende MSSM

Model Building
Parameter Space
& Constraints

Result

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

New results

The Standard Model of Particle Physics

$$G_{321} = SU(3)_C \otimes \underbrace{SU(2)_L \otimes U(1)_Y}_{\downarrow}$$

 $SU(3)_C \otimes U(1)_{EM}$

	$SU(3)_C \times SU(2)_L \times U(1)_Y$	l ₃	Q_{EM}
$Q = \begin{pmatrix} u_L \\ d_I \end{pmatrix}$	$(3, 2, \frac{1}{3})$	$1/2 \\ -1/2$	2/3 - 1/3
u_R	$(\overline{3}, 1, \frac{4}{3})$	0	2/3
d_R	$(\bar{\bf 3},{\bf 1},-\frac{2}{3})$	0	-1/3
$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	(1, 2, -1)	$1/2 \\ -1/2$	$0 \\ -1$
e_R	$(\overline{1},1,-2)$	0	-1
$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$	(1, 2, 1)	$1/2 \\ -1/2$	1 0

The Standard Model (SM)

Problems of the Standard Model

Supersymmetric Standard Model (MSSM)

 $U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Results

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Future Studies

New results

The Standard Model cannot be a complete theory!

Gauge Hierarchy Problem!

The Standard Model (SM)

Problems of the Standard Model

Supersymmetric Standard Model (MSSM)

 $U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building Parameter Space & Constraints

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

New results

The Standard Model cannot be a complete theory!

Gauge Hierarchy Problem!

Dark Matter?

The Standard

Problems of the Standard Model

Minimal Supersymmetric Standard Mode (MSSM)

 $U(1)_{B-L} \times U(1)_R$ Extende MSSM

Model Building
Parameter Space
& Constraints

Result

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

New results

The Standard Model cannot be a complete theory!

Gauge Hierarchy Problem!

Dark Matter?

Neutrino Masses & Oscillations!

The Standard

Problems of the

Minimal Mode

(MSSM) $U(1)_{R-I} \times$

 $U(1)_{R} = L \times U(1)_{R}$ Extende MSSM

Model Building
Parameter Space

Result

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous

Conclusion and Future Studies New results

The Standard Model cannot be a complete theory!

Gauge Hierarchy Problem!

Dark Matter?

Neutrino Masses & Oscillations!

Why $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$?

Minimal Supersymmetric Standard Model (MSSM)

Introduction

The Standard Model (SM)

Problems of the Standard Model

Minimal Supersymmetric Standard Model (MSSM)

 $U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Future Studies

roduction

The Standard Model (SM)

Problems of the Standard Model

Minimal Supersymmetric Standard Model (MSSM)

 $U(1)_R = L \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Results

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion ar Future Studie

New results

Minimal Supersymmetric Standard Model (MSSM)

	$SU(3)_C \times SU(2)_L \times U(1)_Y$	<i>I</i> ₃	$Q_{ m EM}$
$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$(3, 2, \frac{1}{3})$	$1/2 \\ -1/2$	$2/3 \\ -1/3$
u_R	$(\overline{\bf 3},{\bf 1},{4\over 3}) \ (\overline{\bf 3},{\bf 1},-{2\over 2})$	0	2/3 -1/3
$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$(3, 1, -\frac{3}{3})$ (1, 2, -1)	$\frac{1/2}{-1/2}$	0 -1
e_R	$(\overline{1},1,-2)$	0	-1
$H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$	(1, 2, 1)	$1/2 \\ -1/2$	1 0
$H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$	(1, 2, 1)	$1/2 \\ -1/2$	1 0

roduction

The Standard Model (SM)

Problems of the Standard Model

Minimal Supersymmetric Standard Model (MSSM)

 $U(1)_R$ Extender MSSM

Model Building
Parameter Space
& Constraints

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Future Studies

New results

Minimal Supersymmetric Standard Model (MSSM)

	$SU(3)_C \times SU(2)_L \times U(1)_Y$	I ₃	$Q_{ m EM}$
$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$(3, 2, \frac{1}{3})$	$1/2 \\ -1/2$	$2/3 \\ -1/3$
u_R d_R	$(\overline{\bf 3},{\bf 1},{4\over 3}) \ (\overline{\bf 3},{\bf 1},-{2\over 3})$	0	2/3 -1/3
$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	(1, 2, -1)	$1/2 \\ -1/2$	0 -1
e_R	$(\overline{1},1,-2)$	0	-1
$H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$	(1, 2, 1)	$1/2 \\ -1/2$	1 0
$H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$	(1, 2, 1)	$1/2 \\ -1/2$	1 0

$$W = \mu H_u H_d + Y_u^{ij} Q_i H_u u_j^c - Y_d^{ij} Q_i H_d d_j^c - Y_e^{ij} L_i H_d e_j^c$$

troductio

The Standard Model (SM) Problems of th

Minimal Supersymmetric Standard Model (MSSM)

 $U(1)_{R} = L \times U(1)_{R}$ Extende MSSM

Model Building Parameter Space & Constraints

Result

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Future Studies

New results

Minimal Supersymmetric Standard Model (MSSM)

	$SU(3)_C \times SU(2)_L \times U(1)_Y$	<i>I</i> ₃	Q_{EM}
$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$(3, 2, \frac{1}{3})$	$1/2 \\ -1/2$	2/3 - 1/3
u_R	$(\overline{\bf 3},{\bf 1},{4\over 3}) \ (\overline{\bf 3},{\bf 1},-{2\over 3})$	0	2/3
$\frac{d_R}{1 - \left(\nu_L\right)}$	J	1/2	-1/3
$L = \begin{pmatrix} u_L \\ e_L \end{pmatrix}$ e_R	(1, 2, -1) $(\overline{1}, 1, -2)$	$-1/2 \\ 0$	$-1 \\ -1$
$H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$	(1, 2, 1)	1/2 -1/2	1 0
$H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$	(1, 2, 1)	1/2 -1/2	1 0

$$W = \mu H_u H_d + Y_u^{ij} Q_i H_u u_i^c - Y_d^{ij} Q_i H_d d_i^c - Y_e^{ij} L_i H_d e_i^c$$

Solutions to the SM problems:

- No Gauge Hierarchy Problem!
- Dark Matter Candidate
- Gauge Coupling Unification

The Standard

Problems of the

Minimal Supersymmetric Standard Model (MSSM)

 $U(1)_{B-L} \times U(1)_{R}$ Extende MSSM

Model Building
Parameter Space
& Constraints

Result

 $\tilde{\chi}_1^{\alpha}$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Future Studies

New results

Minimal Supersymmetric Standard Model (MSSM)

	$SU(3)_C \times SU(2)_L \times U(1)_Y$	13	$Q_{ m EM}$
$Q = \begin{pmatrix} u_L \\ d_I \end{pmatrix}$	$(3, 2, \frac{1}{3})$	$1/2 \\ -1/2$	2/3 - 1/3
u_R	$(\overline{\bf 3},{\bf 1},\frac{4}{3})$	0	2/3
d_R	$(\overline{3}, 1, -\frac{2}{3})$	0	-1/3
$L = \begin{pmatrix} \nu_L \\ e_I \end{pmatrix}$	(1, 2, -1)	$1/2 \\ -1/2$	$0 \\ -1$
e _R	$(\overline{1},1,-2)$	0	-1
$H_u = \begin{pmatrix} H_u^+ \\ H_0^+ \end{pmatrix}$	(1, 2, 1)	1/2	1
$H_u^0 - H_u^0$	(1, 2, 1)	-1/2	0
$H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$	$(1, \overline{2}, 1)$	1/2	1
H_d^-	(1, 2, 1)	-1/2	0

 $W = \mu H_u H_d + Y_u^{ij} Q_i H_u u_i^c - Y_d^{ij} Q_i H_d d_i^c - Y_e^{ij} L_i H_d e_i^c$

Solutions to the SM problems:

- No Gauge Hierarchy Problem!
- Dark Matter Candidate
- Gauge Coupling Unification

But still..

- Neutrino mass ?
 - μ Problem
- MSSM requires substantial fine-tuning

oduction

The Standard Model (SM) Problems of the Standard Model Minimal Supersymmetric Standard Model (MSSM)

$U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building Parameter Space & Constraints

Result

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies New results

Outline

The Standard Model (SM)

Problems of the Standard Model

Minimal Supersymmetric Standard Model (MSSM)

2 $U(1)_{B-L} \times U(1)_R$ Extended MSSM Model Building Parameter Space & Constraints

Results

 χ_1^{ω} DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

4 Conclusion and Future Studies
New results

The Standard

Problems of the Standard Mode

Minimal Supersymmetri Standard Mode

(MSSM)

 $\mathsf{U}(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

New results

Supersymmetric $U(1)_{B-L} \times U(1)_R$ Model (BLRinvSeesaw)

GUT-inspired U(1)_{B-L}× U(1)_R extended MSSM symmetry breaking scheme

$$SO(10) \rightarrow SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

 $\rightarrow SU(3)_C \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$
 $\rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$

The Standard

Model (SM) Problems of the

Standard Mod

Supersymmetr Standard Mod (MSSM)

 $U(1)_R = L \times U(1)_R$ Extended MSSM

Model Building
Parameter Space

& Constraints

Result

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies New results

Supersymmetric $U(1)_{B-L} \times U(1)_R$ Model (BLRinvSeesaw)

GUT-inspired U(1)_{B-L} \times U(1)_R extended MSSM symmetry breaking scheme

$$SO(10) \rightarrow SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

 $\rightarrow SU(3)_C \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$
 $\rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$

$$W = W_{MSSM} + Y_{\nu}^{ij} L_i H_u N_i^c + Y_s^{ij} N_i^c \mathcal{X}_R S - \mu_R \overline{\mathcal{X}}_R \mathcal{X}_R + \mu_S SS$$

Superfield	$SU(3)_c \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$	Generation
ĝ	$(3, 2, 0, +\frac{1}{6})$	3
$\hat{ ilde{d}}^c$	$(\bar{3}, 1, +\frac{1}{2}, -\frac{1}{6})$	3
\hat{u}^c	$(\bar{\bf 3},{\bf 1},-\frac{\bar{\bf 1}}{2},-\frac{\bar{\bf 1}}{6})$	3
Ĺ	$(1, 2, 0, -\frac{1}{2})$	3
\hat{e}^c	$(1, 1, +\frac{1}{2}, +\frac{1}{2})$	3
$\hat{oldsymbol{ u}}^c$	$(1, 1, -\frac{7}{2}, +\frac{7}{2})$	3
Ŝ	$(1, 1, \tilde{0}, 0)^{T}$	3
\hat{H}_u	$(1, 2, +\frac{1}{2}, 0)$	1
\hat{H}_d	$(1, 2, -\frac{1}{2}, 0)$	1
$\hat{\chi}_R$	$(1, 1, +\frac{1}{2}, -\frac{1}{2})$	1
$\hat{\bar{\chi}}_R$	$(1, 1, -\frac{1}{2}, +\frac{1}{2})$	1

Model (SM)

Model Building

Parameter Space & Constraints

Muon Anomalous

New results

Supersymmetric $U(1)_{B-L} \times U(1)_R$ Model (BLRinvSeesaw)

GUT-inspired $U(1)_{B-I} \times U(1)_{R}$ extended MSSM symmetry breaking scheme

$$SO(10) \rightarrow SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

 $\rightarrow SU(3)_C \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$
 $\rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$

$$W = W_{MSSM} + Y_{\nu}^{ij} L_i H_u N_i^c + Y_s^{ij} N_i^c \mathcal{X}_R S - \mu_R \overline{\mathcal{X}}_R \mathcal{X}_R + \mu_S SS$$

Superfield	$SU(3)_c \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$	Generations
<u> </u>	$(3, 2, 0, +\frac{1}{6})$	3
$egin{array}{l} \hat{Q} \ \hat{d}^c \ \hat{u}^c \ \hat{L} \end{array}$	$(\bar{\bf 3},{\bf 1},+\frac{1}{2},-\frac{1}{6})$	3
\hat{u}^c	$(\bar{\bf 3},{\bf 1},-\frac{1}{2},-\frac{1}{6})$	3
Ĺ	$(1, 2, 0, -\frac{1}{2})$	3
\hat{e}^c	$(1, 1, +\frac{1}{2}, +\frac{1}{2})$	3
$\hat{oldsymbol{ u}}^c$ $\hat{oldsymbol{S}}$	$(1, 1, -\frac{1}{2}, +\frac{1}{2})$	3
Ŝ	$(1, 1, \tilde{0}, 0)$	3
\hat{H}_u	$(1, 2, +\frac{1}{2}, 0)$	1
\hat{H}_d	$(1, 2, -\frac{1}{2}, 0)$	1
$\hat{\chi}_R$	$(1, 1, +\frac{1}{2}, -\frac{1}{2})$	1
$\frac{\hat{X}_R}{\hat{X}_R}$	$(1, 1, -\frac{1}{2}, +\frac{1}{2})$	1

Motivation

- Neutrino mass problem → Solved!
 - Extra DM candidate
 - Better resolution to muon g-2
- Relatively light Higgs boson masses

Parameter Space of BLRinvSeesaw

oduction

The Standard Model (SM) Problems of the

Standard Mode

Minimal Supersymmetr Standard Mod (MSSM)

 $U(1)_{B-L} imes U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Results

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

New results

Universal Boundary Conditions

The Standard Model (SM) Problems of the Standard Model Minimal

(MSSM) $U(1)_{B-L} \times$

 $U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies New results

Parameter Space of BLRinvSeesaw

Universal Boundary Conditions

Parameter	Scanned range	Parameter	Scanned range
m_0	[0., 3.] TeV	v_R	[6.5, 20.] TeV
$M_{1/2}$	[0., 3.] TeV	$\mathit{diag}(Y^{ij}_{ u})$	[0.001, 0.99]
A_0/m_0	[-3., 3.]	$diag(Y_s^{ij})$	[0.001, 0.99]
$\tan\beta$	[0., 60.]	sign of μ	positive
$ aneta_{R}$	[1., 1.2]	sign of μ_R	positive or negative

Scanned parameter space

The Standard

Problems of the

Minimal Supersymmetric

Supersymmetric Standard Mode (MSSM)

 $U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Future Studies
New results

Experimental Constraints

Observable	Constraints	Observable	Constraints	
m_{h_1}	[122, 128] GeV	$m_{\widetilde{t}_1}$	≥ 730 GeV	
$m_{\widetilde{g}}$	> 1.75 TeV	$m_{\chi_1^\pm}$	≥ 103.5 GeV	
$m_{\widetilde{ au}_1}$	≥ 105 GeV	$m_{\widetilde{b}_1}$	≥ 222 GeV	
$m_{\widetilde{q}}$	≥ 1400 GeV	$m_{\widetilde{ au}_1}$	> 81 GeV	
$m_{\widetilde{e}_1}$	$> 107 \; GeV$	$m_{\widetilde{\mu}_1}$	> 94 GeV	
$\chi^2(\hat{\mu})$	≤ 2.3	$BR(\mathcal{B}^0_s o\mu^+\mu^-)$	$[1.1, 6.4] imes 10^{-9}$	
$rac{{ m BR}({m B} o au u_ au)}{{ m BR}_{{m SM}}({m B} o au u_ au)}$	[0.15, 2.41]	$BR(B^0 o X_s\gamma)$	$[2.99, 3.87] \times 10^{-4}$	
$m_{Z'}$	> 3.5 TeV	$\Omega_{DM}h^2$	[0.09-0.14]	

ntroduction The Standard

Model (SM) Problems of the Standard Model Minimal Supersymmetric Standard Model (MSSM)

$U(1)_{B-L} \times U(1)_R$ Extende MSSM

Model Building Parameter Space & Constraints

Results

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

New results

Outline

The Standard Model (SM)
Problems of the Standard Model
Minimal Supersymmetric Standard Model (MSSM)

2 U(1)_{B-L} \times U(1)_R Extended MSSM Model Building Parameter Space & Constraints

3 Results

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

4 Conclusion and Future Studies New results

Case I: Neutralino $\widetilde{\chi}_1^0$ Dark Matter Scenario

Introduction

The Standard Model (SM) Problems of the Standard Model Minimal Supersymmetric Standard Model

$U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building Parameter Space & Constraints

Results

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Future Studies

Case I: Neutralino $\tilde{\chi}_1^0$ Dark Matter Scenario

Introduction

The Standard Model (SM) Problems of the Standard Model Minimal Supersymmetric Standard Model

$U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Results

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and

The Standard Model (SM) Problems of the

Standard Mode

Supersymme Standard Mo (MSSM)

$U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Result

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous

Conclusion an Future Studies

New results

Case I: Neutralino $\tilde{\chi}_1^0$ Dark Matter Scenario

Funnel Channels $\rightarrow m_{A_1}, m_{h_3}$

- Excluded solutions
- •Solutions consistent with all constraints except for the relic density bound
- •Solutions consistent with all constraints including the relic density bound

The Standard Model (SM) Problems of the Standard Model Minimal Supersymmetric Standard Model (MSSM)

$U(1)_{B-L} \times U(1)_R$ Extende MSSM

Model Building Parameter Space & Constraints

Result

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson

$\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion an

Z' mass limit

ntroduction

The Standard Model (SM) Problems of the Standard Model Minimal Supersymmetric Standard Model

$U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson

$\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and

The Standard Model (SM) Problems of the Standard Model Minimal Supersymmetric Standard Model

$U(1)_{B-L} \times U(1)_R$ Extended

Model Building
Parameter Space
& Constraints

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson

$\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and

New results

Z' mass limit

 $M_{Z'}>3.5 \text{ TeV}$

The Standard Model (SM) Problems of the

Model Building Parameter Space & Constraints

 $\tilde{\chi}_1^0$ DM scenario

 $\tilde{\nu}_1$ DM scenario Magnetic Moment

New results

Case II: Sneutrino $\tilde{\nu}_1$ Dark Matter Scenario

Only 16 solutions out of 100,000 total solutions are consistent with the relic density bound.

The Standard

Model (SM)
Problems of the

Standard Mode Minimal

Supersymmetr Standard Mod (MSSM)

$U(1)_{B-L} \times U(1)_R$ Extende MSSM

Model Building Parameter Space & Constraints

Result

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson

ν̃₁ DM scenario Muon Anomalous Magnetic Moment

Conclusion an

New results

The Effect of Z' mass in $\widetilde{\nu}_1$ DM Scenario

The Effect of Z' mass in $\widetilde{\nu}_1$ DM Scenario

Introduction

The Standard Model (SM)

Problems of the Standard Model

Minimal Supersymmetr Standard Mod (MSSM)

 $U(1)_{B-L} imes U(1)_R$ Extended MSSM

Model Building Parameter Space & Constraints

Result

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario

Muon Anomalous Magnetic Moment

Conclusion and Future Studies

Muon Anomalous Magnetic Moment

roduction

The Standard Model (SM) Problems of the

Standard Mode Minimal

Supersymmet Standard Mod (MSSM)

$U(1)_{B-L} \times U(1)_{R}$ Extended MSSM

Model Building
Parameter Space
& Constraints

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario

Muon Anomalous Magnetic Moment

Conclusion an

$$\Delta a_{\mu} = a_{\mu}^{\mathrm{exp}} - a_{\mu}^{\mathrm{SM}}$$

$$= 28.7 \times 10^{-10}$$

Muon Anomalous Magnetic Moment

roduction

The Standard Model (SM) Problems of the

Minimal

Supersymmetr Standard Mod (MSSM)

$U(1)_{B-L} imes U(1)_R$ Extended MSSM

Model Building Parameter Space & Constraints

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario

Muon Anomalous Magnetic Moment

Conclusion and

$$\Delta a_{\mu} = a_{\mu}^{\mathrm{exp}} - a_{\mu}^{\mathrm{SM}}$$

$$= 28.7 \times 10^{-10}$$

C

Muon Anomalous Magnetic Moment

ntroduction

The Standard Model (SM)

Problems of the Standard Model Minimal

Supersymn Standard N (MSSM)

$U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Result

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario

Muon Anomalous Magnetic Moment

Future Studies

New results

C

Muon Anomalous Magnetic Moment

ntroduction

The Standard Model (SM)

Problems of the Standard Model Minimal

Supersymme Standard Mo (MSSM)

$U(1)_{B-L} \times U(1)_R$ Extended

Model Building
Parameter Space
& Constraints

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous

Magnetic Moment

Conclusion and Future Studies

roduction

The Standard Model (SM) Problems of the Standard Model Minimal Supersymmetric Standard Model (MSSM)

$U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building Parameter Space & Constraints

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

New results

Outline

1 Introduction

The Standard Model (SM)
Problems of the Standard Model
Minimal Supersymmetric Standard Model (MSSM)

 $0 \ U(1)_{B-L} \times U(1)_R$ Extended MSSM Model Building Parameter Space & Constraints

Results

 $\chi_1^{
m o}$ DM scenario Heavy Z boson $\widetilde
u_1$ DM scenario Muon Anomalous Magnetic Moment

4 Conclusion and Future Studies New results

The Standard Model (SM)

Standard Mod

Minimal Supersymmetr Standard Mod

 $U(1)_{B-L} imes U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson

 $\tilde{\nu}_1$ DM scenario Muon Anomalo

Future Studies

New results

New results based on the non-universality in \mathcal{X}_R masses

Tadpole equations are solved in $(\mu, B_\mu, m_{\overline{\mathcal{X}}_R}^2, m_{\mathcal{X}_R}^2)$ basis $m_{\overline{\mathcal{X}}_R}^2 \neq m_{\mathcal{X}_R}^2 \neq m_0^2$ at M_{GUT}

The Standard

Model (SM)

Problems of the

Minimal Supersymmetri

 $U(1)_{B-L} \times U(1)_R$ Extended

Model Building
Parameter Space

Results

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

New results

New results based on the non-universality in \mathcal{X}_R masses

Tadpole equations are solved in
$$(\mu, B_\mu, m_{\overline{\mathcal{X}}_R}^2, m_{\mathcal{X}_R}^2)$$
 basis $m_{\overline{\mathcal{X}}_R}^2 \neq m_{\mathcal{X}_R}^2 \neq m_0^2$ at M_{GUT}

Parameter	Scanned range	Parameter	Scanned range
m_0	[0., 3.] TeV	v _R	[6.5, 20.] TeV
$M_{1/2}$	[0., 3.] TeV	$ extit{diag}(Y_ u^{ij})$	[0.001, 0.99]
A_0/m_0	[-3., 3.]	$diag(Y_s^{ij})$	[0.001, 0.99]
$tan\beta$	[0., 60.]	sign of μ	positive
$ aneta_R$	[1., 1.2]	μ_R	[-4.2, 6.] TeV
		$\Delta m_{\mathcal{X}_R}^2$	[0, 10.] TeV

where
$$\Delta m_{\mathcal{X}_R}^2 = m_{\overline{\mathcal{X}}_R}^2 - m_{\mathcal{X}_R}^2$$

$\widetilde{\chi}_1^0$ DM based on the non-universality in \mathcal{X}_R masses

Introduction

The Standard

Problems of the Standard Model

Minimal Supersymmetr Standard Mod (MSSM)

$U(1)_{B-L} \times U(1)_R$ Extended

Model Building
Parameter Space
& Constraints

Results

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

$\widetilde{\nu}_1$ DM based on the non-universality in \mathcal{X}_R masses

Introduction

The Standard Model (SM) Problems of the Standard Model Minimal Supersymmetric Standard Model

$U(1)_{B-L} \times U(1)_R$ Extended MSSM

Model Building
Parameter Space
& Constraints

Result

 $\tilde{\chi}_1^0$ DM scenario Heavy Z boson $\tilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

New results

Sneutrino DM solutions can be also obtained with $M_{Z'} > 3.5$ TeV bound.

The Standard Model (SM) Problems of the

Standard Mod

Minimal Supersymmetr

 $U(1)_{B-L} \times$

 $U(1)_{B-L} \times U(1)_{R}$ Extended MSSM

Model Building
Parameter Space
& Constraints

Results

 $\widetilde{\chi}_1^0$ DM scenario Heavy Z boson $\widetilde{\nu}_1$ DM scenario Muon Anomalous Magnetic Moment

Conclusion and Future Studies

New results

Thank you!