Take-Home Assignment 02

- 1) List and briefly describe the important duties of the Network Layer of the OSI Model.
 - **Logical Addressing** Assigns IP addresses to devices, helping identify them uniquely across networks.
 - **Routing** Chooses the best path for data to travel from source to destination using routers.
 - **Packet Forwarding** Transfers data packets from one network to another based on their IP addresses.
 - **Fragmentation and Reassembly** Breaks large data packets into smaller ones if needed and reassembles them at the destination.
 - **Error Handling** Helps detect routing errors and controls congestion in the network.
- 2) The IP protocol identifies each computer connected to the network by its corresponding address.
 - a) What is the length of an IPv4 address in bits? The length of an IPv4 address is 32 bits.
 - b) How many octets are there in an IPv4 address, and how many bits are there in an octet?

 An IPv4 address has 4 octets, and each octet is 8 bits long.
 - c) Briefly explain how to write an IPv4 address using decimal numbers and how the decimal numbers can be separated. An IPv4 address is written in decimal format by converting each 8-bit (octet) binary value into a number (0–255). The four decimal numbers are separated by dots (periods).

Example: 192.168.1.1

3) Briefly explain how in each of the IPv4 classes, the 32 bits of the address are divided into the network portion and the host portion by default.

Class	Network Bits	Host Bits	Address Range (1st Octet)
A	8 bits	24 bits	1 to 126
В	16 bits	16 bits	128 to 191
C	24 bits	8 bits	192 to 223

4) With the aid of a suitable example for each class, briefly explain how to identify a given IPv4 address.

Class A

• Example: 10.0.0.1

• First octet: 10 (between 1–126) \rightarrow Class A

Network portion: 10Host portion: 0.0.1

Class B

• Example: 172.16.5.4

• First octet: 172 (between 128–191) \rightarrow Class B

• Network portion: 172.16

• Host portion: 5.4

Class C

• Example: 192.168.1.1

• First octet: 192 (between 192–223) \rightarrow Class C

• Network portion: 192.168.1

• Host portion: 1

5) Write the first 5 and last 5 first octet values of A class IP address in binary numbers. 6) Briefly explain how many network IDs and host addresses can be created for each of the first 3 classes.

Class A range: 1 – 126

- First 5 octet values in binary:
 - \circ 1 \rightarrow 00000001
 - \circ 2 \rightarrow 00000010
 - \circ 3 \rightarrow 00000011
 - $_{\circ}$ 4 \rightarrow 00000100
 - \circ 5 \rightarrow 00000101
- Last 5 octet values in binary:
 - \circ 122 \rightarrow 01111010
 - \circ 123 \rightarrow 01111011
 - \circ 124 \rightarrow 01111100
 - \circ 125 \rightarrow 01111101
 - $0.0126 \rightarrow 011111110$
- 6) Briefly explain how many network IDs and host addresses can be created for each of the first 3 classes.

Class	Network IDs	Hosts per Network
A	126 (1–126)	16,777,214 (2 ²⁴ - 2)
В	16,384 (128.0 – 191.255)	$65,534 (2^{16} - 2)$
C	2,097,152 (192.0.0 – 223.255.255)	$254(2^8-2)$