

IF: 12.35

pubs.acs.org/jacsau

Article

Deep Retrosynthetic Reaction Prediction using Local Reactivity and **Global Attention**

Shuan Chen and Yousung Jung*

Cite This: https://doi.org/10.1021/jacsau.1c00246

Background

Reactants

Synthesis (forward)

Retrosynthesis (backward)

(a) Chemical reaction

Products

Reaction template

(b) Reaction template

Overview

Target Product Predicted Reactants

Motivation

- All existing methods suggest reactants based on the global structures of the molecules.
- However, only local structure are edited in reaction.

Atom reaction template

Bond reaction template

System

Implementation details

• MPNN:

$$v'_a = MPNN(v_a, \{v_b\}, \{e_{ab}\})$$

$$e'_{ab} = w(v'_a || v'_b) + c$$

• Graph attention (GRA):

$$x_{a} = GRA(v_{a}', \{v_{a}'\}_{a \in V}, \{e_{ab}'\}_{ab \in E})$$

$$x_{ab} = GRA(e_{ab}', \{v_{a}'\}_{a \in V}, \{e_{ab}'\}_{ab \in E})$$

Output

$$o_a = u_A^T (\sigma(w_A x_a + c_A))$$

$$o_{ab} = u_B^T (\sigma(w_B x_{ab} + c_B))$$

$$s(T|a) = \text{Softmax}(o_a), T \in \{T_{\text{atom}}\}$$

 $s(T|ab) = \text{Softmax}(o_{ab}), T \in \{T_{\text{bond}}\}$

Table 1. Top-k Exact Match Accuracy on USPTO-50K Dataset and USPTO-MIT Dataset without Given Reaction Class^a

		top-k accuracy (%)						
dataset	model	K = 1	3	5	10	50		
USPTO-	GLN ¹⁴	52.5	69.0	75.6	83.7	92.4		
50K	$G2G^{15}$	48.9	67.6	72.5	75.5			
	GraphRetro ¹⁶	53.7	68.3	72.2	75.5			
	Augmented Transformer ²⁵	53.5	69.4	81.0	85.7			
	MEGAN ¹⁷	48.1	70.7	78.4	86.1	93.2		
	LocalRetro wo/ GRA (this work)	49.8	75.8	84.0	91.3	97.7		
	LocalRetro (this work)	53.4	77.5	85.9	92.4	97.7		
USPTO- MIT	LocalRetro wo/ GRA (this work)	49.9	70.7	77.0	83.1	89.8		
	LocalRetro (this work)	54.1	73.7	79.4	84.4	90.4		

^aThe best top-k exact match accuracy is highlighted with bold font.

Table 2. Top-k Exact Match Accuracy on USPTO-50K Dataset with Given Reaction Class^a

		top-k accuracy (%)					
dataset	model	K = 1	3	5	10	50	
USPTO-	GLN^{14}	64.2	79.1	85.2	90.0	93.2	
50K	$G2G^{15}$	61.0	81.3	86.0	88.7		
	GraphRetro ¹⁶	63.9	81.5	85.2	88.1		
	MEGAN ¹⁷	60.7	82.0	87.5	91.6	95.3	
	LocalRetro wo/ GRA (this work)	62.3	86.1	91.8	96.0	97.9	
	LocalRetro (this work)	63.9	86.8	92.4	96.3	97.9	

^aThe best top-k exact match accuracy is highlighted with bold font.

Table 3. Top-k Round-Trip Accuracy on the USPTO-50K Dataset and USPTO-MIT Dataset^a

		top-k	accuracy	y (%)
dataset	model	<i>K</i> = 1	3	5
USPTO-50K	GLN^{14}	88.4	95.0	97.1
	LocalRetro wo/GRA (this work)	88.2	97.8	98.9
	LocalRetro (this work)	89.5	97.9	99.2
USPTO-MIT	LocalRetro wo/GRA (this work)	85.7	95.7	97.3
	LocalRetro (this work)	87.0	95.9	97.4

^aThe best top-k round-trip accuracy is highlighted with bold font.

Study of GRA

Target Product

Predicted Reactants

Expected Product

Case study

Case study on considered in various retrosynthesis and inverse design works in the literature: lenalidomide, salmeterol, kinase inhibitors, etc.

a. Lenalidomide

Identical as reported in literature

Case study

e. DDR1 kinase inhibitor INS015_032

Take home message

• Local reactivity is essential for retrosynthesis.

Retrosynthesis via Contrastive Learning

Hankook Lee^{1*} Sungsoo Ahn² Seung-Woo Seo³ You Young Song⁴ Eunho Yang¹⁵ Sung-Ju Hwang¹⁵ Jinwoo Shin¹

¹Korea Advanced Institute of Science and Technology (KAIST)

²Mohamed bin Zaeyed University of Artificial Intelligence

³Standigm ⁴Samsung Electronics ⁵AITRICS

IJCAI21

Motivation

- Formulate the retrosynthesis as a retrieval task rather than generation task, therefore:
 - Can consider the availability.
 - Generalize to unseen templates.

Compare different paradigms

- Template free methods: choose from whole space of (possibly unavailable) molecules.
- Template based methods: choose from reactants extracted from known reaction templates.
- This work: choose from expert defined template library, which can be updated during inference.

Overview

Figure 2: Illustration of the search procedure in RetCL. It first (1-3) selects reactants sequentially based on $\psi(R|P, \mathcal{R}_{given})$, and then (4) check the synthesizability of the selected reactant-set based on $\phi(P|\mathcal{R})$. The overall score is the average over all scores from (1) to (4).

The score function

The score function

$$\begin{split} \psi(R|P,\mathcal{R}_{\texttt{given}}) &= \texttt{CosSim}\left(f_{\theta}(P) - \sum\nolimits_{S \in \mathcal{R}_{\texttt{given}}} g_{\theta}(S), \ h_{\theta}(R)\right), \\ \phi(P|\mathcal{R}) &= \texttt{CosSim}\left(\sum\nolimits_{R \in \mathcal{R}} g_{\theta}(R), \ h_{\theta}(P)\right), \end{split}$$

 $f_{ heta}$ - Query of product

 $g_{ heta}$; Query of reactant

 $h_{ heta}$ Key of a molecule

Contrastive learning

$$p(R|P, \mathcal{R}_{\texttt{given}}, \mathcal{C}) = \frac{\exp(\psi(R|P, \mathcal{R}_{\texttt{given}})/\tau)}{\sum_{R' \in \mathcal{C} \setminus \{P\}} \exp(\psi(R'|P, \mathcal{R}_{\texttt{given}})/\tau)},$$
$$q(P|\mathcal{R}, \mathcal{C}) = \frac{\exp(\phi(P|\mathcal{R})/\tau)}{\sum_{P' \in \mathcal{C} \setminus \mathcal{R}} \exp(\phi(P'|\mathcal{R})/\tau)},$$

$$\mathcal{L}_{\text{backward}}(P, \mathcal{R}|\theta, \mathcal{C}) = -\max_{\pi \in \Pi} \sum_{i=1}^{n+1} \log p(R_{\pi(i)}|P, \{R_{\pi(1)}, \dots, R_{\pi(i-1)}\}, \mathcal{C}),$$

$$\mathcal{L}_{\text{forward}}(P, \mathcal{R}|\theta, \mathcal{C}) = -\log q(P|\mathcal{R}, \mathcal{C}),$$

Contrastive learning

It's costly to use all (6*10^5) negative examples

$$\mathcal{C}_{\mathcal{B}} = \{ M \mid \exists (\mathcal{R}, P) \in \mathcal{B} \text{ such that } M = P \text{ or } M \in \mathcal{R} \},$$

$$\mathcal{L}(\mathcal{B}|\theta) = \frac{1}{|\mathcal{B}|} \sum_{(\mathcal{R},P) \in \mathcal{B}} \bigg(\mathcal{L}_{\texttt{backward}}(P,\mathcal{R}|\theta,\mathcal{C}_{\mathcal{B}}) + \mathcal{L}_{\texttt{forward}}(P,\mathcal{R}|\theta,\mathcal{C}_{\mathcal{B}}) \bigg).$$

Hard negative mining

$$\widetilde{\mathcal{C}}_{\mathcal{B}} = \mathcal{C}_{\mathcal{B}} \cup \bigcup_{M \in \mathcal{C}_{\mathcal{B}}} \{ \text{Top-}K \text{ nearest neighbors of } M \text{ from } \mathcal{C} \},$$

Category	Method	Top-1	Top-3	Top-5	Top-10	Top-20	Top-50		
Reaction type is unknown									
	Transformer (Karpov et al., 2019)	37.9	57.3	62.7	-	-	-		
Template-free	SCROP (Zheng et al., 2019)	43.7	60.0	65.2	68.7	-	-		
Template-free	Transformer (Chen et al., 2019)	44.8	62.6	67.7	71.1	-	-		
	G2Gs (Shi et al., 2020)	48.9	67.6	72.5	75.5	-	-		
	retrosim (Coley et al., 2017b)	37.3	54.7	63.3	74.1	82.0	85.3		
Template-based	neuralsym (Segler & Waller, 2017)	44.4	65.3	72.4	78.9	82.2	83.1		
	GLN (Dai et al., 2019)	52.5	69.0	75.6	83.7	89.0	$\boldsymbol{92.4}$		
Selection-based	Bayesian-Retro (Guo et al., 2020)	47.5	67.2	77.0	80.3	-	-		
Selection-based	Retcl (Ours)	71.3	$\bf 86.4$	92.0	94.1	95.0	$\boldsymbol{96.4}$		
	Reaction type is	given	as prior	•					
	seq2seq (Liu et al., 2017)	37.4	52.4	57.0	61.7	65.9	70.7		
Tomplete free	Transformer [†] (Chen et al., 2019)	54.1	70.0	74.2	77.8	80.4	83.3		
Template-free	SCROP (Zheng et al., 2019)	59.0	74.8	78.1	81.1	-	-		
	G2Gs (Shi et al., 2020)	61.0	81.3	86.0	88.7	-	-		
	retrosim (Coley et al., 2017b)	52.9	73.8	81.2	88.1	91.8	92.9		
Template-based	neuralsym (Segler & Waller, 2017)	55.3	76.0	81.4	85.1	86.5	86.9		
	GLN (Dai et al., 2019)	64.2	79.1	85.2	90.0	92.3	93.2		
Selection-based	Bayesian-Retro (Guo et al., 2020)	55.2	74.1	81.4	83.5	-	-		
selection-based	Retcl (Ours)	78.9	$\boldsymbol{90.4}$	93.9	$\boldsymbol{95.2}$	95.8	$\boldsymbol{96.7}$		

Table 2: The top-k exact match accuracy (%) of our RetCL, Transformer (Chen et al., 2019) and GLN (Dai et al., 2019) with discarding predictions not in the candidate set C.

Category	Method	Top-1	Top-5	Top-10	Top-50	Top-100	Top-200			
	Reaction type is unknown									
Template-free	Transformer (Chen et al., 2019) RetCL (Ours)	59.6 71.3	74.3 92.0	77.0 94.1	79.4 96.4	79.5 96.7	79.6 97.1			
Template-based	GLN (Dai et al., 2019)	77.3	90.0	92.5	93.3	93.3	93.3			
	Reaction type	e is give	en as pr	ior						
Template-free	Transformer (Chen et al., 2019) RETCL (Ours)	68.4 78.9	82.4 93.9	84.3 95.2	85.9 96.7	86.0 97.1	86.1 97.5			
Template-based	GLN (Dai et al., 2019)	82.0	91.7	92.9	93.3	93.3	93.3			

Case study

Figure 3: Failure cases of RetCL.

Example A	Top 4 nearest neighbors of A	Example B	Top 4 nearest neighbors of B
NH ₂	THE COLUMN COLUM	700	

Figure 4: The top-4 nearest neighbors of two randomly sampled molecules in \mathcal{C} .

Ablation

Table 3: Ablation study.

$\phi(P \mathcal{R})$	K	sum	Top-1	Top-10
✓			59.5	79.8
\checkmark	1		69.6	92.2
\checkmark	2		70.9	92.7
\checkmark	4		71.1	92.9
	4		69.8	90.3
√	4	✓	71.3	94.1

Generalization to unseen templates

Table 4: The top-10 exact match accuracy (%) of our RetCL and GLN (Dai et al., 2019) trained on USPTO-50k without reaction types from 6 to 10. The average column indicates the average of class-wise accuracy for each reaction type.

		Reaction type									
Method	Average	1	2	3	4	5	6	7	8	9	10
GLN (Dai et al., 2019) RETCL (Ours)	39.7 55.6		92.2 97.6						0.0 18.3	0.5 26.1	0.0

Generalization to larger dataset

Table 5: Generalization to USPTO-full.

Method	Top-1	Top-10	Top-50
Transformer (Chen et al., 2019)	29.9	46.6	51.0
GLN (Dai et al., 2019)	26.7	42.2	46.7
Retcl (Ours)	39.9	57.1	60.9

Generalization to unseen candidates

Table 6: Generalization to unseen candidates.

$ \mathcal{C}_{ exttt{train}} $	Top-1	Top-5	Top-10	Top-20	Top-50
91,297	69.0	88.1	91.0	92.8	94.4
$671,\!518$	71.3	92.0	94.1	95.0	96.4

Multi-step retrosynthesis

Table 7: Multi-step retrosynthesis.

	Single		Hybrid		
Single-step model	MLP	TF	TF+TF	RetCL+TF	
Succ. rate (%) Avg. length	86.84	91.05 4.30	90.54 4.31	96.84 3.90	

Take home message

• Retrieval based methods may be a new direction.