AI学习路径与规划

Self-introduction

和计算机、算法相关

(10岁,清华计算机博士,NOI,ACM比赛,ACM, IEEE,中国人工智能协会,阿里云MVP,CCF专委)

和培训、企业服务相关

(专栏付费订阅人数超过20万,企业客户包括:蚂蚁金) 服,美的,汽车之家,上汽大众,晶科能源,航天信息, 中国银行,中国银联,花旗银行,汇丰银行,杭州银行, 泰隆银行,中原银行,长沙银行,渤海银行,平安银行, 平安保险,平安科技,阳光保险,兴业银行,兴业数金 上海银科,尚诚金融,嘉银金科,马上金融,中泰证券, 富达基金,大恒集团,华润集团,中国外汇交易中心,联 通软研院,梅赛德斯奔驰,雀巢,麦当劳,西门子等)

>> 今天的学习目标

AI学习路径与规划

- 课程安排
- 课程服务
- AI模块梳理
- 学习规划

课程安排

课程大纲

• 主干课

https://rcne0lfduyr7.feishu.cn/wiki/VTBvwDKxJi1SPek52lXcfvrpn1w

【模块一: AI大模型应用开发基础】

序号	课程小结	课程内容	学习收获
		模块1: AI大模型应用开发基础	
1	AI大模型基本原理及API使用	1. AIGC发展:从GPT1到GPT4 - 什么是AI - 分析式AI与生成式AI - GPT是如何训练出来的 - AIGC的表现与优势 - AIGC的通用能力应用 - CASE: 上手车险反欺诈(基于ChatGLM) 2. 大模型API使用 - 全球AI发展现状 - CASE-情感分析-Qwen(掌握DashScope调用大模型) - CASE-天气Function-Qwen(了解Function Call) - CASE-表格提取-Qwen(了解多模态大模型) - CASE-运维事件处置-Qwen	- 理解AIGC与大模型的基本原理 - 理解分析式AI与生成式AI的区别 - 熟悉大模型API的调用方法 - 学会使用DashScope等平台调用大模型(如 Qwen),完成实际任务(情感分析、表格提取等)
2	DeepSeek使用与Prompt工程	1. DeepSeek使用	- 了解DeepSeek的创新技术,熟悉其API调用、本地部署(Ollama)及私有化方案 - 理解Prompt工程的核心原理与优化策略 - 学习提示词的设计逻辑、关键原则及主流框架(如CoT、角色扮演等),掌握不同场景下的Prompt优化技巧。 - 通过案例实战(如JSON格式生成、分步骤推理、Prompt自优化),培养解决复杂问题的Prompt工程思维。
3	Cursor编程-从入门到精通	1. Cursor编程 - 什么是Cursor Rules - Cursor的主要功能 2. Cursor编程实战 - CASE: 多张Excel报表处理 - CASE: 疫情实时监控大屏 3. Trae与CodeBuddy使用 - Trae使用 - CodeBuddy使用	'- 掌握 Cursor 编程的核心概念与功能(如Cursor Rules,熟悉 Cursor 的主要功能等) - 通过实际案例(如多张 Excel 报表处理、疫情实时监控大屏)掌握 Cursor编程 - 掌握数据可视化能力,使用Cursor可以搭建实时监控大屏 - 了解 Trae 和 CodeBuddy 等其他AI工具

序号	课程小结	课程内容	学习收获		
	模块2: AI大模型应用核心开发工具及技术				
4	Embeddings和向量数据库	1. CASE:基于内容的推荐 - 什么是N-Gram - 余弦相似度计算 - 为酒店建立内容推荐系统 2. Word Embedding - 什么是Embedding - Word2Vec进行词向量训练 3. 什么是向量数据库 - FAISS, Milvus, Pinecone的特点 - 向量数据库与传统数据库的对比 4. Faiss工具使用 - Case:文本抄袭自动检测分析 - 使用DeepSeek + Faiss搭建本地知识库检索	'- 掌握Embedding核心原理与应用 - 理解N-Gram、词向量(Word2Vec)和余弦相似度等核心概念,学会训练和使用词嵌入模型 - 了解掌握FAISS、Milvus、Pinecone等向量数据库的特点及适用场景 - 通过酒店内容推荐系统、文本抄袭检测等案例,学会基于Embedding和向量数据库构建实际应用 - 学习使用DeepSeek + FAISS构建本地知识库,实现高效语义检索与问答系统。		
5	RAG(Retrieval Augmented Generation)技术与应用	1. 大模型开发的三种范式 - 提示词工程 - RAG技术 - 模型微调 2. RAG技术 - 什么是RAG技术? 它如何增强大模型的生成能力 - RAG的核心原理与流程 - NativeRAG - NoteBookLM使用 3. CASE: DeepSeek +Faiss搭建本地知识库检索 - PDF文本提取与处理 - 向量数据库构建 - 语义搜索与问答链 - 文本块对应页码信息源 4. 如何提升RAG质量 - 数据准备阶段 - 知识检索阶段 - 答案生成阶段	'- 掌握大模型开发的三大核心范式(提示词工程、RAG技术、模型微调) - 学习RAG的核心原理(检索-增强-生成),掌握 从数据准备、向量检索到答案生成的完整技术链路 。 - 通过DeepSeek+FAISS案例,实现PDF文本处理、 向量数据库构建及语义搜索问答链的开发。 - 学习如何提升RAG系统的召回和回答能力		

序号	课程小结	课程内容	学习收获
6	RAG高级技术与最佳实践	- Small-to-Big 3. GraphRAG使用 - GraphRAG 过程 - 全局搜索 - 局部搜索	- 了解RAG前沿技术体系(RAG技术树,包括模型阶段适配、RAFT微调方法等高级技术) - 掌握查询扩展、双向改写、索引扩展等高效召回方法,提升检索精度与覆盖率 - 学习GraphRAG的全局/局部搜索机制 - 使用Qwen-Agent的三级RAG实现(检索→分块→推理)
7	Text2SQL: 自助式数据报表开 发	- 入侯空API使用 - Function Call - 搭建SQL Copilot - LangChain中的SQL Agent - 自己编写(LLM + Prompt) 2 客例: 保险场景SQL Copilot实战	'- 学习大模型(LLM)在Text2SQL任务中的应用, 掌握模型选型、API调用及Function Call等关键技术。 - 通过LangChain SQL Agent或自研方案(LLM + Prompt),实现自然语言到SQL的自动转换,提升 数据查询效率。 - 结合保险行业需求,开发定制化SQL Copilot,完 成从自然语言提问到精准SQL生成的端到端实现。

序号	课程小结	课程内容	学习收获
8	LangChain: 多任务应用开发	1. LangChain基本概念 - Models, Prompts, Memory, Indexes, Chains, Agents - LangChain中的tools (serpapi, Ilm-math) - LangChain中的Memory - LECL构建任务链 2. LangChain实战 - CASE: 动手搭建本地知识智能客服(理解ReAct) - CASE: 工具链组合设计(LangChain Agent) - CASE: 搭建故障诊断Agent(LangChain Agent) - CASE: 工具链组合设计(LCEL) 3. Al Agent对比	·- 理解LangChain中的Models、Memory、Chains、Agents等核心组件 - 掌握SerpAPI、LLM-Math等Tools的集成方法,学会用LCEL构建复杂任务工作流。 - 通过知识客服、故障诊断等案例,实现具备记忆、推理和工具调用能力的智能体。 - 对比不同Agent架构优劣,具备根据业务需求选择技术方案的能力。
9	Function Calling与智能Agent 开发	1. Function Calling的概念与应用 - 什么是Function Calling? - Function Calling 与 MCP的区别 2. Qwen3 Function Calling使用	'- 理解Function Calling的概念、原理及其与MCP的区别 - 学习Qwen3的特性,并通过实战案例(如天气查询)掌握其Function Calling的调用与集成方法。 - 基于Qwen-Agent,利用Function Calling实现数据库查询、数据可视化等业务功能,完成端到端开发。
10	MCP与A2A的应用	1. MCP的概念与应用 - 什么是MCP? - MCP 的核心概念 (MCP Host, MCP Client, MCP Server) - MCP 的使用场景 - CASE: 旅游攻略MCP - CASE: Fetch网页内容抓取 - CASE: Bing中文搜索 - CASE: 桌面TXT统计器(MCP SDK使用) 2. A2A的概念与应用 - 什么是Agent2Agent - A2A的关键组件 - A2A的工作流程 - A2A与MCP的关系 - CASE: 安排篮球活动(多智能体协作)	'- 理解MCP的核心概念(Host/Client/Server)及使用场景, - 通过旅游攻略生成、网页抓取、中文搜索、桌面 TXT统计等案例,实现MCP的落地应用 - 学习Agent2Agent(A2A)的工作流程与关键组件,掌握多智能体协同的任务分配与决策方法 - 理解MCP与A2A的技术差异与互补关系

序号	课程小结	课程内容	学习收获
11	Agent智能体系统的设计与应 用	1. 智能体的定义与作用 - 什么是AI Agent - AI Agent 的核心概念 (规划、记忆、工具调用等) - AI Agent框架对比(LangChain, LangGraph, Qwen-Agent, Coze, Dify) - 什么时候用Agent - AI Agent与工作流 2. 智能体分类 - 反应式 Reactive - 深思熟虑 Deliberative - 混合式 Hybrid 3. 智能体实战 - CASE: 私募基金运作指引问答助手 - CASE: 投顾AI助手	'- 深入理解Agent的规划、记忆、工具调用等核心模块,掌握主流框架(LangChain/Qwen-Agent等)的技术差异与选型标准。 - 学习反应式、深思熟虑式、混合式Agent的设计模式,能够根据业务需求选择最优架构。 - 通过私募基金问答、智能投研、投顾助手等案例,完成不同类型的Agent实现。
12	视觉大模型与多模态理解	1. VLM在行业中的应用 - Qwen-VL使用 - Qwen-VL微调 - 医疗行业中的应用(病历提取) - 车险承保中的应用(车辆承保、危险驾驶识别、车辆损失评估、事故要素提取、车辆一致性校验) 2. 视频理解SOTA - InternVideo2/2.5 - 视频基础模型 - InternVideo2 预训练 - 视频多模态注释示例 - CASE: 汽车剐蹭视频理解 3. MinerU使用 - PDF 转 Markdown - 网页内容提取 - MinerU的核心技术 - MinerU的应用场景 - MinerU使用(在线使用、客户端) - MinerU使用(API使用) - MinerU表有化部署	'- 学习Qwen-VL等视觉大模型的微调与部署方法, 掌握其在医疗、保险等领域的落地实践。 - 理解InternVideo2/2.5等视频基础模型的预训练与 多模态注释技术,实现场景下的视频分析(如汽车 剐蹭) - 掌握MinerU的文档转换、内容提取及私有化部署 能力,提升多模态数据处理效率

序号	课程小结	课程内容	学习收获
13	Fine-tuning微调艺术	1. 高效微调方法概述 - 参数高效微调(Parameter-Efficient Fine-Tuning, PEFT) - 主要方法对比: Adapter, Prefix-tuning, LoRA 2. LoRA的数学原理 - 低秩分解与矩阵近似 - 两个低秩矩阵的作用与优化 3. 微调数据准备 - 数据质量与数量要求 - 不同模型尺寸与场景的数据需求 4. 硬件需求与显存计算 - 微调显存估算方法 - LoRA显存优化与计算示例	- 掌握高效微调技术 学习LoRA、Adapter等方法,显著降低训练成本, 提升大模型微调效率。 - 深入理解LoRA数学原理 掌握低秩矩阵分解的核心思想,灵活调整参数以适 应不同任务需求。 - 优化数据准备策略 了解数据质量、数量对微调效果的影响,合理规划 数据集规模。 - 精准计算硬件需求 学会估算显存占用,优化GPU资源,降低微调硬件 门槛。
14	Fine-tuning实操	1. 模型微调的方法 - 如何模型微调(以ChatGLM为例) - 李飞飞 50美金 复刻R1模型 - s1: Simple test-time scaling 2. Unsloth: LLM高效微调 - CASE: qwen2.5-7B微调 (alpaca-cleaned) - CASE: 训练垂类模型(中文医疗模型) - CASE: 训练自己的R1模型 - CASE: YAML配置助手(模型微调) - 打造金融垂类大模型(智能客服)	'- 学习从基础微调(如ChatGLM)到高效优化技术(如Unsloth),掌握不同场景下的模型适配策略。 - 掌握低成本微调技术,如何用50美金复刻自己的 R1 - 掌握中文医疗模型、金融客服模型等垂类大模型 的训练与优化,解决行业特定需求

【模块三: Coze和Dify工作原理和应用技术】

序号	课程小结	课程内容	学习收获
15	Coze工作原理与应用实例	1. Coze工作原理 - Agent与Copilot的区别 - 插件使用 - 工作流使用 - RAG知识库 2. Coze应用实例 - CASE: AI新闻Agent - CASE: 创建搜索新闻工作流 - CASE: weather_news工作流(基于意图识别) - CASE: 抖音文案提取&二创 - CASE: 比M联网搜索 - CASE: 搭建古诗词Agent	- 理解Coze的核心机制: 掌握Agent与Copilot的区别, 熟悉插件、工作流及RAG知识库的应用逻辑。 - 掌握Coze实战技能: 通过案例学习, 独立完成新闻Agent、天气新闻工作流等场景的搭建与优化。 - 提升AI自动化效率: 学会利用Coze实现联网搜索、文案提取与二创等任务, 减少人工干预。
16	Coze进阶实战与插件开发	1. Coze进阶实战 - 批处理 - Coze应用 - 数据表使用 - 多Agents模式 - 多工作流复杂应用 2. Coze应用实例 - CASE: 古诗词绘画(批处理) - CASE: 智能投顾助手(风险评测与推荐) - CASE: 客户分层营销助手 - CASE: 智能客服Agent - CASE: 市场舆情监测Agent	'- 掌握Coze高阶功能应用:深入理解批处理、数据表操作、多Agents协作及复杂工作流设计,提升自动化任务处理能力。 - 熟练开发Coze插件与集成:学习插件开发逻辑,实现与外部系统的数据交互,扩展Bot功能边界。 - 实战复杂场景解决方案:通过金融、营销、客服等真实案例,掌握多行业场景的AI应用设计与优化技巧。

序号	课程小结	课程内容	学习收获
17	Dify本地化部署和应用	1. Dify本地化部署 - Dify开发平台 - Docker Compose部署 - 克隆Dify 代码仓库 - 启动 Dify 服务 - 访问 Dify - 如何使用 Dify 2. Dify应用实战 - CASE: LLM联网搜索 - CASE: 搭建古诗词WorkFlow - CASE: 智能客服ChatFlow - CASE: 智能文档分析助手(MinerU+Dify) 3. 如何应用Agent API(Coze, Dify) - Coze API使用 - Cozepy工具 - Dify API使用	- 掌握Dify本地化部署: 学习通过 Docker Compose部署Dify, 完成代码克隆、服务启动及平台访问全流程。 - 熟悉Dify核心功能: 理解Dify开发平台的操作逻辑, 掌握WorkFlow、ChatFlow等工具的应用方法。 - 实战AI应用开发: 通过联网搜索、古诗词生成、智能客服等案例, 掌握基于Dify的AI解决方案搭建。 - 整合API扩展能力: 学会调用Coze与Dify的API, 实现跨平台自动化与功能扩展。

序号	课程小结	课程内容	学习收获
18	分析式AI基础	1. 分析式AI基础 - 分析式AI与生成式AI - 十大经典机器学习算法 - 常用分类算法 - 贝叶斯分类器 - 决策树与随机森林 - SVM支持向量机 - 逻辑回归 2. 项目实战 - CASE: 二手车价格预测 - 分类与回归的关系 - 数据探索 - 特征选择 - 模型训练与预测	- 理解分析式AI核心概念: 掌握分析式AI与生成式AI的区别,认识分析式AI在预测和决策中的独特价值。 - 学习经典机器学习算法:深入理解十大经典机器学习算法,重点掌握分类、回归等核心算法的原理与应用场景。 - 掌握数据建模全流程: 从数据探索、特征选择到模型训练与预测,完整学习分析式AI项目的开发流程。 - AI大赛实战能力:通过二手车价格预测等比赛实战,提升算法建模能力。
19	不同领域的AI算法	1. 金融行业的应用场景 - 银行不同部门的应用场景 - 客户流失分析与预警 - 因客定价 - 长尾客群营销 - 贷款商机挖掘 - 商圈生意机会地图 - 基于评分卡的风控模型开发 - 期货套利模型 - 资金流入流出预测 2. 制造行业的应用场景 - 缺陷检测 3. 快消行业的应用场景 - 供应链补货 4. AI大赛: 二手车价格预测(讲阶)	- 掌握行业AI应用场景: 理解AI在金融、制造、快消等不同领域的典型应用场景及业务价值。 - 提升跨行业解决方案能力: 通过缺陷检测、供应链优化等案例, 培养将AI技术迁移至不同行业的能力。 - 实战进阶: 通过二手车价格预测大赛项目, 强化特征工程的实战经验。

序号	课程小结	课程内容	学习收获
20	机器学习神器	1. 预测全家桶 - Project A: 员工离职预测 - Project B: 男女声音识别 - 分类算法: LR, SVM - 树模型: GBDT, XGBoost, LightGBM, CatBoost 2. 机器学习神器 - 什么是集成学习 - GBDT原理 - XGBoost - LightGBM - CatBoost - AI大赛: 二手车价格预测 - 如何防止模型过拟合	- 掌握核心机器学习算法:系统学习分类算法(LR、SVM)和树模型(GBDT、XGBoost、LightGBM、CatBoost)的原理与应用。 - 实战项目驱动学习:通过员工离职预测、声音识别等案例,掌握从数据预处理到模型训练的全流程。 - 模型调优能力:通过二手车价格预测大赛,学习防止过拟合的策略,提升模型泛化能力。
21	时间序列模型	1. 时间序列分析 - 什么是时间序列预测 - statsmodels工具 - AR、MA、ARMA、ARIMA模型 2. 时间序列实战 - 使用ARMA/ARIMA对沪市指数进行预测 - 资金流入流出预测	- 掌握时间序列分析基础概念: 理解时间序列预测的核心原理, 熟悉常用的统计模型 (AR、MA、ARMA、ARIMA)。 - 熟练使用分析工具: 学会运用Python的statsmodels库进行时间序列建模与预测。 - 实战应用能力: 能够将ARMA/ARIMA模型应用于真实金融数据(如沪市指数、资金流动预测)。
22	时间序列AI大赛	1. Facebook Prophet分析 - 时间序列预测工具 prophet - 饱和增长 - 突变点 - 节日与大事件 - Project A: 页面流量预测 - Project B: 交通流量预测 2. 时间序列Al大赛 - Al大赛: 资金流入流出预测 - 使用prophet指数进行预测 - 周期因子预测	'- 掌握Prophet核心功能: 学习Facebook Prophet工具的核心特性,包括饱和增长、突变点检测和节日效应建模。 - 实战项目演练: 通过页面流量和交通流量预测项目,掌握Prophet在真实场景中的应用。 - AI竞赛能力提升: 参与资金流入流出预测大赛,运用Prophet和周期因子优化预测效果。

序号	课程小结	课程内容	学习收获
23	项目实战:企业知识库 (企业RAG大赛冠军项目)	1. 企业RAG大赛: 搭建RAG知识库 RAG冠军方案(多路由+动态知识库) RAG比赛任务说明 基础RAG系统流程 解析模块、Docling优化、表格序列化 内容提取(ingestion) 检索(Retrieval) LLM 重排序 (LLM reranking) 父页面检索 整合后的检索器 增强 (Augmentation) 生成 (Generation) 思维链、结构化输出、思维链+结构化输出 指令细化 (Instruction Refinement) 提示词创建、Prompt.py 实现 RAG系统调参 2. 搭建自己的RAG系统 选择适合的LLM和Embedding模型 MinerU使用 更新中文知识库、设置相关的问题清单 针对开放式的问题,进行Prompt设置 搭建前端页面,比如使用 streamlit	- 掌握RAG核心技术:深入理解RAG(检索增强生成)系统的工作原理,包括数据预处理、检索优化、生成增强等核心模块。 - 实战冠军方案复现: 学习RAG竞赛优胜方案,掌握多路由、动态知识库等高级技巧,并能优化基础RAG流程。 - 搭建完整RAG系统: 从零构建企业级知识库,涵盖模型选型、数据处理、Prompt优化到前端部署的全流程。

项目实战

企业知识库

序号	课程小结	课程内容	学习收获
24	项目实战:交互式BI报表 (AI量化交易助手)	1. ChatBI功能设计 - 自然语言查询: 用户输入"查询2024年全年贵州茅台的收盘价走势" - 对比分析: 用户输入"对比2024年中芯国际和贵州茅台的涨跌幅" - 趋势分析: 用户输入"预测贵州茅台未来7天的收盘价" - 异常点分析 用户输入"检测贵州茅台近一年超买超卖点" - 新闻查询 用户输入"贵州茅台最近的热点新闻" 2. 数据可视化与交互优化 - 柱状图: 对比分析多个维度的表现 - 折线图: 对比分析多个维度的表现 - 折线图: 对历史数据进行趋势呈现 - 交互设计: 支持用户自定义时间范围(如最近1个月、3个月、1年) 3. 智能分析功能 - 趋势预测: ARIMA模型(未来N天价格预测) - 异常检测: 布林带分析(超买/超卖点识别) - 周期性分析: Prophet模型(趋势分解) 4. 知识库管理 - few shot: 撰写few shot示例,提供大模型处理逻辑的准确性	- 掌握交互式BI系统开发: 学习如何构建支持自然语言查询的BI系统,实现从数据采集到可视化分析的全流程开发。 - 熟练应用智能分析模型: 掌握ARIMA、布林带、Prophet等模型在智能分析中的实际应用。 - 优化数据交互体验: 设计高效的数据查询与可视化方案,提升用户与系统的交互体验。 - 提升问题解决能力: 通过实战项目,培养从需求分析到技术实现的完整问题解决能力。

项目实战

交互式BI报表

序号	课程小结	课程内容	
25	项目实战: AI智慧运营助手 (百万客群经营)	1. 智能客户洞察系统 - 多模态客户画像 - 动态标签生成: 利用大模型生成客户动态标签(如"高净值","潜在高净值"等)。 - 智能分析细化: 基于智能分析模型(分类、聚类等)进一步细化客户画像,为后续精准营销提供更丰富的客户特征维度。 2. 企业知识库引擎 - RAG增强知识库: 营销话术库构建 - 大模型解释: 利用SHAP分析,对个体客户的经营决策进行解释,增强客户经理执行的说服力 3. 智能营销Agent(多Agent协作架构) - 分析Agent: 价值判断,调用决策模型(如逻辑回归、决策树、LightGBM等)判断客户价值。 - 推荐Agent: 个性化方案生成,结合知识库(包括SHAP分析结果等)生成个性化方案 - 话术Agent: 沟通脚本生成,实时生成沟通脚本,融入关联分析(Apriori)得出的产品组合推荐话术。 4. 可视化大屏搭建与对话式BI系统 - 可视化大屏搭建:展示百万经营关键指标 - 对话式BI系统: 客户经理询问具体个体客户信息,通过多Agent协作,完成分析和推荐	- 析Li 户 - 监通

学习收获

- 掌握AI驱动的客户洞察技术: 学习多模态客户画像构建与动态标签生成, 利用大模型和智能分析模型(分类、聚类等) 细化客户特征, 提升精准营销能力。
- 构建企业级知识库与决策解释系统:通过RAG增强知识库,结合SHAP分析,实现营销话术优化与客户经营决策的可解释性,增强执行说服力。
- 设计智能营销Agent协作架构: 掌握多Agent (分析、推荐、话术)协同工作流,结合决策模型 (如LightGBM)和关联分析 (Apriori),实现自动化客户价值判断与个性化方案生成。
- 实现可视化大屏与智能AI交互: 搭建可视化大屏 监控关键指标, 开发对话式AI系统, 支持客户经理 通过自然语言交互快速获取客户洞察与营销建议。

所用技术:RAG、Function Calling、向量数据库、Prompt工程、Agent技术运用

项目实战

AI运营助手

序号	课程小结	课程内容	学习收获
26	项目实战: AI搜索类应用 (知乎直答)	1. AI搜索类应用的架构设计: - 数据准备与索引构建 - 搜索模块开发(基于关键词的检索/基于语义的检索/混合检索) - 大模型推理和回复 - 前端开发与用户体验 2. AI搜索类应用开发 - Version1: 对于多文件快速进行检索和回答 - Version2: 海量文件快速索引(ES) - Version3: 添加向量检索功能 - Version4: 添加外部数据源(AI搜索MCP) - Version5: 界面美化 3. 基于Qwen-Agent的最佳实践 - CASE: 长对话检索与问答 - CASE: 多文档并行问答 - CASE: 多智能体问答 - CASE: 多智能体协作路由	· 掌握AI搜索架构: 学习混合检索系统(关键词+向量)的设计与实现,包括数据索引、搜索优化和大模型集成。 · 完成版本迭代开发: 从单文件检索逐步升级到海量数据+外部数据源的完整AI搜索应用。 · 熟练应用Qwen-Agent: 实现复杂场景下的智能问答(长对话、多文档、多智能体协作)。 · 提升工程与体验优化能力: 结合大模型推理与前端交互,打造高效、用户友好的搜索产品。 所用技术:ElasticSearch、向量数据库、Prompt工程、RAG术、Qwen-Agent最佳实践

项目实战

AI搜索类应用 (知乎直答)

https://zhida.zhihu.com/

【赠课】

课节	主要内容	课程目标
预训练+微调的训练范式 开源生态和OpenAl 的差异详解	 预训练阶段和SFT阶段并没有拉开差距 RLHF为何追不上OpenAl 首席科学家llya Sutskever 的主要成就 Instruct GPT的论文中公开了哪些RLHF的具体细节 尝试Reward Model时的常见问题 Proximal Policy Optimization的实操复杂度 开源生态的另辟蹊径 Direct Preference Optimization的重要尝试 Reinforced Token Optimization的关键进步 开源生态如何成功追赶OpenAl 	 了解开源生态发展史,深入解读开源模型复现GPT进程 其效果差距 掌握不同开源模型与闭源模型技术差异及其原因 具备项目负责人对模型选型的基础能力
探索神经网络的奥秘	1. 设计数学模型的主要工作是设计数学公式 a. 一个公式识别鳄鱼与蛇 b. y=ax+b 就是一条直线 c. 参数a控制直线旋转,参数b控制直线平移 d. 人类数学家如何确定a和b的值 2. 设计数学公式的人类极限 3. 万金油公式 - 神经网络 a. 神经网络经典定义 b. 模拟人脑神经元的电信号传导 4. 案例: 基于MNIST数据库的图像识别 a. 预处理图片数据 b. 设定神经网络公式结构 c. 设计神经网络参数提取特征数据 d. 多层网络提取深度特征 5. 神经网络与机器学习 a. 损失函数评定当前模型水平 b. 梯度下降确定模型迭代方向	 打开黑盒,让专属于算法科学家们的神秘模型,用最通易懂的方式展现在众人面前 深入理解方案专家必备的原理知识,设计方案时游刃有余,也让产品和应用方向更具长期性 理解算法工程师、算法科学家到底在做什么样的工作,跨部门多角色协作奠定基础

课程服务

课程服务

- 学习社群: 讲师+助教+班主任
 - 任何专业问题都可以在群内提问
 - 学习过程中,任何问题可以找班班处理,如果有涉及隐私或者保密的专业性问题,不想在群内提问,也可以找班班转达提问

课程服务

- 线上环境、算力、课程开通等
 - 随着课程进程,班班会提前安排同学们开通,开通过程中有任何问题,可以私聊班班进行处理。

1. DeepSeek系列

- DeepSeek-V3、DeepSeek-R1等模型的推理部署(蒸馏、量化优化)
- API调用及性能调优。

2. 上手生成式AI

- Prompt Engineering (提示工程): 基础技巧、高级方法(包括CoT, Few-Shot等)
- Cursor/Trae应用:完成数据可视化、仿真建模、特征洞察等一系列任务,开发AI大模型的应用

掌握Prompt Engineering与Cursor使用,是大家后续工作和学习的基础

3. Qwen系列

- Qwen全系模型 (72B/7B/Turbo/VL) 的使用
- 多模态 (Qwen-VL) 开发
- 智能体 (Qwen-Agent) 开发,使用Qwen-Agent的自动化任务编排能力。
- 推理模型 QwQ 的应用
- 垂直领域的微调

Qwen系列依然是最好用的生成式AI,生态丰富,包括了文本、视觉、智能体、推理等一系列的模型,并且基座模型优秀,不断更新发展中

4. Al Agent系列

- RAG: 结合检索与生成的问答系统搭建, 重点解决外部知识库集成问题。
- Text2SQL: 自然语言转数据库查询,适合企业数据交互场景。
- MCP开发: Model Context Protocol,模型上下文协议应用与开发
- LangChain应用:构建LLM应用的开发框架,提供链(Chains)、代理(Agents)、记忆(Memory)等核 心组件,支持连接外部数据源和工具,实现问答系统、文本生成等复杂功能
- 向量数据库应用: Embedding训练与使用, Faiss应用
- Coze: 工作流编排, 插件开发
- Dify: 基于LLM构建自主Agent, 函数调用与工具链

Al Agent开发将是大家未来做项目中的主要工具,用于完整的Al项目的呈现

5. 机器学习系列

经典算法(线性回归、决策树、SVM、XGBoost、LightGBM等)的实战,覆盖特征工程、模型选择与调参。机器学习在企业中有非常多的应用场景,包括:仿真建模、趋势预测、分类决策等

6. AI大赛实战

以天池"资金流入流出预测"为例,完整复现数据清洗、特征构建、时序建模(如ARIMA、Prophet)、模型融合等流程。

分析式AI与企业决策息息相关,将是AI应用中的重要一环,并通过生成式AI进行Chat互动,给用户提供 友好的体验和使用

Thinking: AI可以写代码,并且完成的比一般人好; AI可以画图,并且质量比普通设计师强; 未来的工作实现, 不一定是人来完成具体的实现, 而是通过AI工具一起来进行。那么人的主要能力是什么?

- 承接需求:通过各种方式,完成任务,任务驱动、需求驱动
- 问题定义:识别真正需要解决的问题 (例如区分"用户要什么"和"用户需要什么")。
- 广泛的知识面:细节可以通过AI来互动和执行,但是人需要广泛的知识面
- 质量检查: AI可能会出错, 比如参考文献、时间等, 看起来通顺的内容, 不一定真实存在
- 深度思考:将人从碎片化的时间中解放出来,深度思考(没有打扰的情况下, Think Big, not small)
- 成果展示: 向上管理, 呈现自己的作品和交流

新的时代来临,人将逐渐分化。有些人的需求会越来越多,有些人的需求会越来越少 => 什么是关键?

Thinking: 如何学好课程的内容?

- Learning 整理笔记:将关键内容进行梳理,AI无法替代你的思考和整理
- Challenge 问题驱动:思考你工作中遇到的重要的问题,有价值/共性的问题,并将它具象化
- Show 作品呈现:和AI一起工作,不断完成作品,与同学们进行分享

Thinking: 小白如何学好AI?

要花更多的时间 (practice) + 更聪明的学习 (filter)

- 实践: 实践是学习的核心部分,通过实际操作,可以更好地巩固知识 => 要花更多的时间
- 交流: 与他人交流、提问并接受反馈、获取新的见解 => 快速提升, 突破升级
- 培训:包括课堂学习等正式学习 => 提供系统性的知识,明确学习方向

Thinking:对工作有什么帮助?

AI应用是各企业的增长和盈利的最终导向, 也是企业未来的资金投入导向

技术驱动:懂技术,掌握AI大模型技术,能够胜任的岗位: AI应用开发工程师、agent开发工程师、AI测试、AI运维等AI开发、测试、运维等AI技术类相关岗位

业务驱动:懂业务,掌握AI大模型技术,能够胜任的岗位:AI产品经理、AI项目经理、AI解决方案专家等业务驱动型AI相关岗位

