Parseo y Generación de Código – 2^{do} semestre 2019 Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Primer parcial

NOTA: este parcial es a libro abierto. Se permite tener cualquier material manuscrito o impreso, pero no se permite el uso de dispositivos electrónicos. El parcial se califica con una nota numérica de 1 a 10. Se requiere ≥ 4 en ambos parciales para aprobar la materia. Para promocionar se requiere nota ≥ 6 en ambos parciales y promedio ≥ 7 .

Ejercicio 1. La siguiente gramática $G_1 = (\{P, C, E\}, \{id, while, :=, +, \{, \}\}, \mathcal{P}, P)$ describe la sintaxis de los programas (P), comandos (C) y expresiones (E) de un lenguaje de programación. El conjunto \mathcal{P} de producciones está dado por:

$$P \rightarrow \epsilon \mid PC$$

 $C \rightarrow \mathbf{id} := E \mid \text{while } E \mid P \mid P$
 $E \rightarrow \mathbf{id} \mid \mathbf{id} + \mathbf{id}$

- a. Demostrar que G_1 es ambigua.
- b. Proponer una gramática G_2 que genere el mismo lenguaje que G_1 pero que sea LL(1). Armar la tabla LL(1) y mostrar que no tiene conflictos.

Ejercicio 2. Dada la siguiente expresión regular en el alfabeto $\{a, b, c\}$:

$$R = (a|b)^* c(a|b)^* c$$

- a. Proponer una gramática SLR que genere el lenguaje $\mathcal{L}(R)$. Armar la tabla SLR.
- b. Analizar sintácticamente la cadena acbc usando la tabla SLR armada.

Ejercicio 3. Sean $L_1 = \{\alpha \in \{a,b\}^* \mid |\alpha|_a > 2\}$ y $L_2 = \mathcal{L}(a(a|b)^*b)$. Dar una expresión regular para el lenguaje $L_1^c \cap L_2^c$. Recordar que L^c denota el complemento de L, es decir $L^c = \{\alpha \in \{a,b\}^* \mid \alpha \notin L\}$.

Ejercicio 4. Si $L \subseteq \Sigma^*$ es un lenguaje cualquiera, llamamos $L^{[2]}$ al lenguaje que resulta de concatenar un número par de palabras de L:

$$L^{[2]} = \{\alpha_1 \dots \alpha_n \mid n \ge 0 \text{ es par y para todo } 1 \le i \le n \text{ se tiene } \alpha_i \in L\}$$

Por ejemplo, si $L = \{aa, bc\}$ entonces $aabcbcaa \in L^{[2]}$ pero $aabcbc \notin L^{[2]}$. Más en general, llamamos $L^{[k]}$ al lenguaje que resulta de concatenar un número de palabras de L que sea múltiplo de k.

$$L^{[k]} = \{\alpha_1 \dots \alpha_n \mid n \geq 0 \text{ es un m\'ultiplo de } k \text{ y para todo } 1 \leq i \leq n \text{ se tiene } \alpha_i \in L\}$$

Demostrar que si L es un lenguaje regular, entonces para todo $k \ge 2$ se tiene que $L^{[k+1]} \setminus L^{[k]}$ es regular. Recordar que $A \setminus B$ denota la diferencia de conjuntos, es decir $A \setminus B = \{x \mid x \in A \land x \notin B\}$.

Justificar todas las respuestas.