Семинар 8

- Динамика вращательного движения твердого тела
- Закон сохранения импульса
- Закон сохранения момента импульса
- Плоское движение твердого тела

Через блок массой т перекинута нерастяжимая нить, к которой прикреплены два тела массами m_1 и m_2 (причем $m_1 > m_2$). Определить ускорения, с которыми будут двигаться тела и силу натяжения нити. Массой нити пренебречь, блок считать однородным диском, трением пренебречь.

$$T_1 = m_1 (g - a) = \frac{2m_2 + m/2}{m_1 + m_2 + m/2} \cdot m_1 g;$$

Ответ:

$$T_2 = m_2 (g + a) = \frac{2m_1 + m/2}{m_1 + m_2 + m/2} \cdot m_2 g.$$

Вал в виде сплошного цилиндра массой $m_1 = 10$ кг насажен на горизонтальную ось. На цилиндр намотан шнур, к свободному концу которого подвешена гиря массой $m_2 = 2$ кг. С каким ускорением а будет опускаться гиря, если ее предоставить самой себе?

Ombem: a = 2, 8 m/c^2

Маховик в виде диска массой m = 50 кг и радиусом r = 20 см был раскручен до частоты вращения $n_1 = 480$ мин⁻¹ и затем предоставлен самому себе. Вследствие трения маховик остановился. Найти момент M сил трения, считая его постоянным для двух случаев: а) маховик остановился через t = 50 с; б) маховик до полной остановки сделал N = 200 оборотов.

 $Omвет: M = -1 H_M$

Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения $n_1 = 0.5$ с⁻¹. Момент инерции I_0 тела человека относительно оси вращения равен 1.6 кг \cdot м². В вытянутых в стороны руках человек держит по гире массой m=2 кг каждая. Расстояние между гирями $l_1=1.6$ м. Определить частоту вращения n_2 скамьи с человеком, когда он опустит руки и расстояние l_2 между гирями станет равным 0.4 м. Моментом инерции скамьи пренебречь.

Ombem: $n_2 = 1,18 c^{-1}$

Рис. 1

Однородный тонкий стержень длиной $l=1,5\,$ м и массой $M=10\,$ кг может вращаться вокруг неподвижной оси, проходящей через его верхний конец (рис. 1). В середину стержня ударяет пуля массой $m=10\,$ г, летящая в горизонтальном направлении со скоростью $v_0=500\,$ м/с, и застревает в стержене. На какой угол φ отклонится стержень после удара?

Ombem: $\cos \varphi = 0.987 \varphi = 9^{\circ} 20$

Рис. 2

Найти, с каким ускорением будут скатываться без скольжения с наклонной плоскости (рис. 2), составляющей угол а с горизонтом, однородные: а) обруч; б) диск; в) шар.

Omeem:
$$a_{ob} = \frac{g \sin \alpha}{2}$$
; $a_{duc\kappa} = \frac{2g \sin \alpha}{3}$; $a_{uap} = \frac{5g \sin \alpha}{7}$

Какой момент количества движения $L_{\rm cym}$ соответствует суточному вращению Земли?

Ответ: $7,1.10^{33}$ кг · M^2/c