Type I error and power simulation

Jianhui Gao

06/04/2022

Simulation Set-up

$$\begin{bmatrix} Y_i \\ \hat{Y}_i \end{bmatrix} \mid Z_{ik} \sim N \Big(\begin{bmatrix} \beta_G G + \beta_0 + \beta_1 * age_i + \beta_2 * sex_i \\ \alpha_0 + \alpha_1 * age_i + \alpha_2 * sex_i \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \Big)$$

- $G \sim Bin(2, maf)$
- $maf = 0.25, age_i \sim N(0, 1), sex_i \sim Bern(0.5)$
- $\alpha_0 = \beta_0 = 1$, $\alpha_1 = \beta_1 = 0.42$, $\alpha_2 = \beta_2 = 0.11$, $\beta_g = 0$
- missing rate $\in \{0, 0.25, 0.5, 0.75\}$
- $\rho \in \{0, 0.25, 0.5, 0.75\}$

Type I error

Table 1: Proportion of test making type I error

mssing	rho	t1e rejection	Chisq
0.00	0.00	0.0473	0.9749307
0.00	0.25	0.0509	1.0044826
0.00	0.50	0.0456	0.9787724
0.00	0.75	0.0483	0.9811161
0.25	0.00	0.0521	0.9964332
0.25	0.25	0.0551	1.0339412
0.25	0.50	0.0505	1.0167177
0.25	0.75	0.0480	1.0019893
0.50	0.00	0.0508	1.0003585
0.50	0.25	0.0500	1.0040915
0.50	0.50	0.0537	0.9967186
0.50	0.75	0.0494	1.0007287
0.75	0.00	0.0485	0.9916063
0.75	0.25	0.0489	0.9992889
0.75	0.50	0.0517	1.0103253
0.75	0.75	0.0524	1.0097825

Increased Power relative to baseline GWAS SNP-heritability = 0.5%

Unlike the Figure 1 in that paper, SNP heritability plays no role in relative efficiency.

