Project No = Book No	9
Page No	
Example: Pendulum	
$F_{T} = m_{f cos} \phi$ $F_{g r} = m_{g s m} \phi$ $F_{g r m}$	
In rad direction: Fretz = Fgr - Fz = mgcost - Fz	
News 2nd law in polar coord TS 3 Fr = m(r-rb2)	
ce TTS constat, r=0 and r=0. Thus,	
Fretz = -Mr p 2	·
mg cosp - F7 = -m-p2	
Not useful since F Ts unknown, so use Aburt. 2=	ed law
$F_{net_{\phi}} = m \left(z \not / \delta + r \not \delta \right)$	
Osmae Fis constant and i = 0	
Freto = mrp	
-Masin & = Mr &	
$0 + \frac{4}{7} \sin \phi = 0$	
$\int \phi = -\frac{2}{f} \sin \phi$	ge No
sed & Understood by me, Date Invented by:	Date
Recorded by:	

10	Project No				
	Book No	T	ITLE		
From Pag	e No				
		Perdulum	continued.	·	
4	1 = 7 smp	-			
	e this numerica	My Usry	E35,		
Analy	the solution is	possible for	- Small a	ngles,	
	\$ 25mp.	for small	of mro	dias,	
	~ - 2 p				Ø
one Solu	tran To $\phi =$	A cos (wt	+0) who	ee w=)	} ~~~
				s the pho	
Proof	, , , , , , , , , , , , , , , , , , ,	(1448)	A 7	s the any	olikele
	$ \phi = -A s_{n} $ $ = -\omega A $	su (w(+0)	as a second		
	$\dot{\phi} = -\omega^2 A$	cas (w ++0)			
ϕ	$A \cos(\omega t + \theta) = -$				
ما	A cos (at+0) = -	w A costat +	(9)		
Thesy	oscillates sur.	soidally. O	can be de	termined to	Dug.

$$\dot{\phi} = -\omega A \sin(\omega t + \theta) \qquad \dot{\phi} = A \cos(\omega t + \theta)$$

$$\dot{\phi} = -\omega A \sin \theta \qquad \dot{\phi}_0 = A \cos \theta$$

$$\tan \theta = \frac{-\phi_0/\omega A}{\phi_0/A} = \frac{-\psi_0}{-\omega \phi_0}$$

To Page N

Witnessed & Understood by me,

Date

Invented by:

Recorded by:

Date