VE311 Electronic Circuit HW9

Due: Aug 3rd 11:59 p.m.

Note

- 1. Please use A4 size paper or page.
- 2. Please clearly state your final result for each question.
- 3. This is your last assignment:)
 Congratulations on surviving this course.

Problem 1

Here M_3 and M_5 double cascode the current source M_2 . Transistors M_1 - M_5 are identical having width W and length L. Both M_6 and M_7 also have width W. This problem concerns the lengths of M_6 and M_7 . Assume M4 is in saturation. Ignore the body effect. What are the minimum lengths for transistors M6 and M_7 so that the cascode transistors have the appropriate bias voltages?

Figure 1: circuit for problem 1

Problem 2

Assume $\lambda = 0$ and both M_1 and M_2 are in saturation. M_1 and M_2 are identical. Ignore the body effect.

- a) Write an expression for the low-frequency small-signal differential gain.
- b) Write an expression for the low-frequency small-signal common mode gain

Figure 2: circuit for problem 2

Problem 3 (Not Graded)

In the circuit of Fig below, the voltage amplifier is ideal (i.e., it has an infinite input resistance and a zero output resistance).

- (a) Use the Miller approach to find an expression for the input capacitance C_{in} in terms of A and C.
- (b) Use the expression for C_{in} to obtain the transfer function $V_o(s)/V_{sig}(s)$.
- (c)If $R_{sig} = 1 \text{ k}\Omega$, and the gain $V_o(s)/V_{sig}(s)$ is to have a dc value of 40 dB and a 3-dB frequency of 100 kHz, find the values required for A and C.

Figure 3: circuit for problem 3

Problem 4 (Not Graded)

Assume that the amplifier is operating in FAR. Ignore all capacitances except those shown. Ignore r_o .

- (a) Draw the small-signal model of the given circuit.
- (b) Write an expression for the low-frequency small-signal gain, v_o/v_i .
- (c) Next, write an expression for the frequency-dependent small-signal gain v_o/v_i . What are the pole/zero frequencies? (Consider only the capacitors shown in the figure. Use open-circuit short circuit time consatnt method)

Figure 4: circuit for problem 4