

پاسخنامه تمرین سری هفتم

مدار منطقی

نيمسال دوم ۰۰–۹۹

```
      0111
      ا محتوای اولیه ثبات :

      1111
      ا محتوا پس از اولین شیفت :

      1100
      ا محتوا پس از سومین شیفت :

      1010
      ا محتوا پس از چهارمین شیفت :

      1010
      ا محتوا پس از پنجمین شیفت :

      1010
      ا محتوا پس از پنجمین شیفت :
```

(۲ S₀ S₁ A_{par} MSB_{in} جبیتی LSB_{in} لیت شیفت ۴-بیتی LSB_{in} دات شیفت ۴-بیتی LSB_{in} دات شیفت ۴-بیتی LSB_{in}

load	shift	function
0	0	بدون تغيير
0	1	شیفت حلقوی به راست
1	0	باز گذاری موازی
1	1	شیفت حلقوی به چپ

۴) برای ساخت این مدار کافیست مقادیر یک شمارنده ۳بیتی بالاشمار با JK-FF را به ورودی های select یک مولتی پلکسر وصل کرده و ورودیهای آن را مقادیر دنباله قرار دهیم.

Pre	Present state Next state			JK-FF inputs							
a_2	a_1	a_0	a_2^+	a_1^+	a_0^+	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	1	0	0	1	X	X	1	X	1
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	0	0	0	X	1	X	1	X	1

 $K_0 = 1$

 $K_1 = a_0$

 $K_2=a_1a_0$

А3	A2	A1	Α0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

ورودی همه فلیپ فلاپها یک است. با توجه به بالا شمار بودن و کار کردن با لبه بالارونده کلاک، هر فلیپ فلاپ کلاک خود را از نقیض خروجی فلیپ فلاپ قبلی می گیرد.

Q ₃	Q_2	Q_1	Q_0	Q_3^+	Q_2^+	Q_1^+	Q_0^+	T ₃	T ₂	T ₁	T_0
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	1	0	0	1	0
0	0	1	1	0	1	1	0	0	1	0	1
0	1	1	0	1	0	0	1	1	1	1	1
1	0	0	1	0	0	0	0	1	0	0	1

10

Χ

$Q_3Q_2 \longrightarrow$									
Q_1Q_0		00	01	11	10				
	00	0	Х	Х	Х				
\	01	0	Х	Х	1				
	11	0	Х	Х	Х				
	10	Χ	1	Х	Χ				

(Q 3Qz ►									
		00	01	11	10					
	00	0	Х	Х	Χ					
	01	0	Х	Х	0					
	11	1	Х	Х	Χ					
	10	Х	1	Χ	Χ	Γ				

 Q_1Q_0

 Q_1Q_0

$T_3 = Q_3 + Q_2$										
$Q_3Q_2 \longrightarrow$										
Q_1Q_0		00	01	11	10					
1	00	0	Х	Х	Х					
\downarrow	01	1	Х	Х	0					
•	11	0	Х	Х	Χ					
	10	Χ	1	Χ	Χ					
		_	_							

$T_2 = Q_1$ $Q_3Q_2 \blacktriangleright$							
			00	01		1	
	00		1	Х		>	
	01		0	Х)	
	11		1	Х	Ī)	
	10		Χ	1		>	

 $T_1 = Q_2 + Q_3'Q_1'Q_0$

 $T_0 = Q_3 + Q_1 + Q_0'$

راه حل ۱)

دو شیفت رجیستر ۵-بیتی و یک شمارنده بالاشمار۳-بیتی قرار می دهیم که اگر مقدار خروجی آن 4 ، ۵، 6 یا ۷ باشد (MSB = 1)، مقدار ورودی شیفت رجیسترها صفر و در غیر این صورت همان مقدار 6 و 1 خواهد شد. شمارنده هر بار به پایان چرخه خود برسد، به 6 باز می گردد.

راه حل ۲)

مدار ترتیبیای میسازیم که حالت ورودی یا خروجی بودن آن را تعیین کند.

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow G \rightarrow H \rightarrow A$$

$$abc = 000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 000$$

Present state			N	ext sta	output	
a	b	c	a ⁺	b^{+}	c^+	isOutput
\overline{X}	0	0	a	0	1	a
X	0	1	a	1	0	a
X	1	0	a	1	1	a
X	1	1	a'	0	0	a

$$a^+=(b.c)\oplus a$$
 $b^+=b\oplus c$ $c^+=c'$ $isOutput=a$ حال مانند راه حل اول مقدار a' را به ورودی های a' مانند راه حل اول است.

