REQUIREMENTS NOT MET

• Requirement 1: The final Breadboard implementation was not met due to a missing $0.1\mu F$ capacitor. A $0.01\mu F$ capacitor was used instead to demonstrate ability.

PROBLEMS ENCOUNTERED

• Problem 1: Missing capacitor mentioned above...

INTRODUCTION

Now we start our introduction to our write up For your write up, write a brief introduction to what you are doing in the in lab. two to four sentences. Omit this section for the prelab.

DISCUSSION

9.5 Pre-Lab Requirements: 9.5.1 LTSpice Simulations:

- 1. Review AC Analysis in LTSpice
- 2. Build a simple lowpass filter, Figure 9.2a, but set R=10 k Ohm and $C=0.001~\mu F$. Set the voltage source to an AC amplitude of 1 and run an AC analysis with the following settings: Decade, 100, 1, 1Meg. Save an image of the circuit, a plot of the output, and table the 3 dB frequency for submission.

Figure 1: Plot of Low Pass Filter

Figure 2: Circuit of Low Pass Filter

3. High Pass Filter

Figure 3: Plot of High Pass Filter

Figure 4: Circuit of High Pass Filter

HIGH-PASS | 1.063 kHz | 45 deg

4. Active Low Pass Filter with $R=1k\Omega$ and $C=0.1\mu F$

Figure 5: Plot of Active Low Pass Filter

Figure 6: Circuit of Active Low Pass Filter

ACTIVE LOW-PASS | 1.59 kHz | 45 deg

5. Active High Pass Filter with $R_1=3.3k\Omega, R_2=33k\Omega$ and $C=0.1\mu F$

Figure 7: Plot of Active High Pass Filter

Figure 8: Circuit of Active High Pass Filter

ACTIVE HIGH-PASS | 482.3 Hz | 45 deg

9.5.2 Breadboard Implementation:

- 1. Review Network Analyzer tool in Digilent Waveforms.
- 2. Build Active Low Pass Filter with $R=1k\Omega$ and $C=0.1\mu F$.
- 3. Network Analysis of Circuit

Figure 9: Plot of Active Low Pass Filter

CONCLUSION

This is where I start to answer the questions in the lab. We only need to do this for the write up.