Université Laval	Examen final traditionnel
Faculté des Sciences et de Génie	Hiver 2016
École d'actuariat	Date: Mercredi 27 avril 2016

Act-2001 Introduction à l'actuariat 2

Professeur: Etienne Marceau

Nom de famille de l'étudiant	Prénom de l'étudiant	Matricule

- L'examen contient 11 questions à développement.
- La durée est de 170 minutes.
- Veuillez écrire votre nom sur le questionnaire.
- Veuillez écrire vos réponses dans le cahier de réponse seulement.
- Voir les dernières pages de l'examen pour les annexes supplémentaires.
- Veuillez faire vos brouillons sur les documents prévus à cet effet.
- Veuillez retourner le présent cahier, les annexes et le papier brouillon à la fin de l'examen.

Questions	Points obtenus	Points
1		10
2		16
3		9
4		14
5		14
6		10
7		16
8		8
9		16
10		10
11		9
Total		120 (bonus = 12 pts)

© Etienne Marceau, 2016.

1. (10 points). Soit la v.a. $X \sim BinomComp(2, 0.3; F_B)$ avec $B_1 \sim B_2 \sim B \sim Gamma(2, \frac{1}{200})$. On fournit les valeurs suivantes de la fonction de répartition $H(x; \alpha, 1)$ de la loi gamma avec les paramètres $\alpha = k$ and $\beta = 1$:

$x \mid k$	1	2	3	4	5	6	7
0.5	0.3935	0.0902	0.0144	0.0018	0.0002	0.0000	0.0000
1	0.6321	0.2642	0.0803	0.0190	0.0037	0.0006	0.0001
1.5	0.7769	0.4422	0.1912	0.0656	0.0186	0.0045	0.0009
2	0.8647	0.5940	0.3233	0.1429	0.0527	0.0166	0.0045
2.5	0.9179	0.7127	0.4562	0.2424	0.1088	0.0420	0.0142
3	0.9502	0.8009	0.5768	0.3528	0.1847	0.0839	0.0335
3.5	0.9698	0.8641	0.6792	0.4634	0.2746	0.1424	0.0653
4	0.9817	0.9084	0.7619	0.5665	0.3712	0.2149	0.1107
4.5	0.9889	0.9389	0.8264	0.6577	0.4679	0.2971	0.1689
5	0.0033	0.9596	0.8753	0.7350	0.5595	0.3840	0.2378

Note: $H(x; \alpha, \beta) = H(\beta x; \alpha, 1)$. Example: H(2000; 3, 0.001) = H(2; 3, 1) = 0.3233.

Questions:

- (a) (3 points). Calculer \overline{F}_X (400).
- (b) (2 points). Calculer $\overline{F}_{X|X>0}$ (400).
- (c) (3 points). Calculer $E\left[X \times 1_{\{X>400\}}\right]$.
- (d) (2 points). Calculer $TVaR_{\kappa}(X)$ où la valeur de κ est telle que $VaR_{\kappa}(X) = 400$. Fournir la valeur de κ .

Solution OK:

(a) (3 points). Calculer \overline{F}_X (400).

On a

$$F_{X}\left(x
ight) = f_{M}\left(0
ight) + f_{M}\left(1
ight)H\left(x;2,\frac{1}{200}
ight) + f_{M}\left(2
ight)H\left(x;4,\frac{1}{200}
ight)$$

Alors, on conclut

$$\overline{F}_{X}(x) = 1 - F_{X}(x)
= 1 - \left(f_{M}(0) + f_{M}(1) H\left(x; 2, \frac{1}{200}\right) + f_{M}(2) H\left(x; 4, \frac{1}{200}\right) \right)
= f_{M}(0) - f_{M}(0) + f_{M}(1) \left(1 - H\left(x; 2, \frac{1}{200}\right) \right) + f_{M}(2) \left(1 - H\left(x; 4, \frac{1}{200}\right) \right)
= f_{M}(1) \left(1 - H\left(x; 2, \frac{1}{200}\right) \right) + f_{M}(2) \left(1 - H\left(x; 4, \frac{1}{200}\right) \right)$$

On obtient : $\overline{F}_X(400) = 0.42 \times (1 - 0.594) + 0.09 \times (1 - 0.1429) = 0.247659$

(b) (2 points). Calculer $\overline{F}_{X|X>0}$ (400).

Alors, on a

$$\overline{F}_{X|X>0} (400) = \frac{\overline{F}_X (400)}{1 - f_M (0)}$$

$$= \frac{0.247659}{1 - 0.49}$$

$$= 0.485606$$

(c) (3 points). Calculer $E\left[X \times 1_{\{X>400\}}\right]$. On a

(d) (2 points). Calculer $TVaR_{\kappa}(X)$ où la valeur de κ est telle que $VaR_{\kappa}(X)=400$. Fournir la valeur de κ .

On a

$$\kappa = 1 - 0.247659 = 0.752341$$

Comme $VaR_{\kappa}(X) = 400 > 0$ et que cette portion de la distribution est continue, on a

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} E\left[X \times 1_{\{X>400\}}\right]$$
$$= \frac{1}{0.247659} 181.8912$$
$$= 734 442115974$$

:

2. (16 points). On considère un portefeuille de m contrats d'assurance continue vie entière émis à des assurés d'âge x = 30 dont les durées de vie sont i.i.d.

La durée de vie de l'assuré i, désignée par $T_{x,i}$, i = 1, 2, ..., m.

La durée de vie d'un assuré d'âge x obéit à une loi Gompertz avec

$$F_{T_x}(t) = 1 - e^{-\frac{\beta}{\gamma}e^{\gamma x}\left(e^{\gamma t} - 1\right)},$$

où $\beta = 0.00004$ et $\gamma = \ln(1.1)$. Voir en **annexe** des valeurs pertinentes pour cette questions.

La prestation b = 1000 est versée au décès.

On utilise une force d'intérêt de 2% pour les calculs.

La v.a. Z_i correspond à la valeur présente pour le contrat i (i = 1, 2, ..., m).

On définit la v.a. $W_{PTF,m}$ par

$$W_{PTF,m} = \frac{Z_1 + \dots + Z_m}{m}.$$

On définit les primes $\Pi_{m,\kappa}^{VaR} = VaR_{\kappa}\left(W_{PTF,m}\right)$ et $\Pi_{\kappa}^{TVaR} = TVaR_{\kappa}\left(W_{PTF,m}\right)$.

Questions:

- (a) Calculer l'espérance et la variance de Z_i (i = 1, 2, ..., m).
- (b) Calculer la valeur exacte de la prime $\Pi^{VaR}_{m,\kappa}$ pour m=1 et $\kappa=99\%$.
- (c) Calculer la valeur exacte de la prime $\Pi_{m,\kappa}^{TVaR}$ pour m=1 et $\kappa=99\%$.
- (d) Calculer l'espérance et la variance de $W_{PTF,m}$ pour m = 500.
- (e) Utiliser l'approximation normale pour évaluer approximativement $\Pi_{m,\kappa}^{VaR}$ et $\Pi_{m,\kappa}^{TVaR}$ pour m = 500 et $\kappa = 99\%$.
- (f) On définit l'économie due à la mutualisation par $EC^{VaR}_{2000,\kappa}=\Pi^{VaR}_{1,\kappa}-\Pi^{VaR}_{500,\kappa}$ ou $EC^{TVaR}_{500,\kappa}=\Pi^{TVaR}_{1,\kappa}-\Pi^{TVaR}_{500,\kappa}$.
 - i. Calculer $EC_{500,\kappa}^{VaR}$ et $EC_{500,\kappa}^{TVaR}$ pour $\kappa = 99\%$.
 - ii. Commenter sur les deux valeurs obtenues.

Solution:

(a) **3pts.** Calculer l'espérance et la variance de Z_i (i = 1, 2, ..., m).

Définition de Z_i :

$$Z_i = 1000v^{T_{x,i}}$$

Espérance :

$$E[Z_i] = \int_0^\infty 1000 v_{0.02}^t f_{T_x}(t) dt$$

= 1000 \times 0.4127000
= 412.7

2e moment :

$$E[Z_i^2] = \int_0^\infty 1000^2 v^{2t} f_{T_x}(t) dt$$

$$= \int_0^\infty 1000^2 e^{-0.04t} f_{T_x}(t) dt$$

$$= 1000^2 \times 0.1838682$$

$$= 183868.2$$

Variance:

$$Var(Z_i) = E[Z_i^2] - E[Z_i]^2$$

= 183868.2 - 412.7²
= 13546.91

(b) **2pts.** Calculer la valeur exacte de la prime $\Pi_{m,\kappa}^{VaR}$ pour m=1 et $\kappa=99\%$. On a

$$\Pi_{1,\kappa}^{VaR} = VaR_{\kappa} (Z_1)
= 1000e^{-0.02VaR_{1-\kappa}(T_x)}
= 1000e^{-0.02VaR_{1-0.99}(T_x)}
= 1000 \times e^{-0.02 \times 9.064092}
= 834.200214572$$

(c) **3pts.** Calculer la valeur exacte de la prime $\Pi_{m,\kappa}^{TVaR}$ pour m=1 et $\kappa=99\%$. On a

$$\Pi_{1,\kappa}^{TVaR} = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(Z_{1}) du$$

$$= \frac{1}{1-\kappa} E \left[Z_{1} \times 1_{\{Z_{1} > VaR_{\kappa}(Z_{1})\}} \right]$$

$$= \frac{1}{1-\kappa} \int_{0}^{VaR_{1-\kappa}(T_{x})} 1000e^{-0.02t} f_{T_{x}}(t) dt$$

$$= \frac{1}{1-0.99} 1000 \times \overline{A}_{1}$$

$$= \frac{1}{1-0.99} 1000 \times (\overline{A}_{30} - e^{-0.02 \times 9.064092} \times \overline{F}_{T_{30}}(9.064092) \overline{A}_{39.064092})$$

qui devient

$$\Pi_{1,\kappa}^{TVaR} = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(Z_{1}) du$$

$$= \frac{1}{1-0.99} 1000 \times (\overline{A}_{30} - e^{-0.02 \times 9.064092} \times \overline{F}_{T_{30}} (9.064092) \overline{A}_{39.064092})$$

$$= \frac{1}{1-0.99} 1000 \times (0.4127 - e^{-0.02 \times 9.064092} \times 0.99 \times ((1-0.064092) \times 0.4882166 + 0.064092) \times 0.99 \times ((1-0.064092) \times 0.4882166 + 0.064092)$$

$$= : 902.709249284$$

(d) **2pts.** Calculer l'espérance et la variance de $W_{PTF,m}$ pour m = 500.

Espérance:

$$E\left[W_{PTF,m}\right] = E\left[Z_1\right]$$

Variance:

$$Var(W_{PTF,m}) = \frac{1}{500} Var(Z_1)$$

$$= \frac{1}{500} 13546.91$$

$$= 27.09382$$

(e) **2pts.** Utiliser l'approximation normale pour évaluer approximativement $\Pi_{m,\kappa}^{VaR}$ et $\Pi_{m,\kappa}^{TVaR}$ pour m=500 et $\kappa=99\%$.

Prime $\Pi_{m,\kappa}^{VaR}$:

$$\Pi_{m,\kappa}^{VaR} = VaR_{\kappa} (W_{PTF,m})$$

$$= E [W_{PTF,m}] + \sqrt{Var (W_{PTF,m})} \Phi^{-1} (0.99)$$

$$= 412.7 + \sqrt{27.09382} \times 2.326348$$

$$= 424.809042$$

Prime $\Pi_{m,\kappa}^{TVaR}$:

$$\begin{split} \Pi_{m,\kappa}^{TVaR} &= TVaR_{\kappa} \left(W_{PTF,m} \right) \\ &= E \left[W_{PTF,m} \right] + \sqrt{Var \left(W_{PTF,m} \right)} \frac{1}{1 - 0.99} \frac{1}{\sqrt{2\pi}} e^{-\frac{\Phi^{-1}(0.99)^2}{2}} \\ &= 412.7 + \sqrt{27.09382} \times \frac{1}{1 - 0.99} \frac{1}{\sqrt{2\pi}} e^{-\frac{2.326348^2}{2}} \\ &= : 426.572\,895\,508 \end{split}$$

- (f) **2pts.** On définit l'économie due à la mutualisation par $EC^{VaR}_{2000,\kappa}=\Pi^{VaR}_{1,\kappa}-\Pi^{VaR}_{500,\kappa}$ ou $EC^{TVaR}_{500,\kappa}=\Pi^{TVaR}_{1,\kappa}-\Pi^{TVaR}_{500,\kappa}$.
 - i. 1pts. Calculer $EC^{VaR}_{500,\kappa}$ et $EC^{TVaR}_{500,\kappa}$ pour $\kappa=99\%$. Économie $EC^{VaR}_{500,\kappa}$:

$$EC^{VaR}_{500.\kappa} = 834.200215 - 424.809042 = 409.391173$$

Économie $EC_{500,\kappa}^{TVaR}$:

$$EC_{500,\kappa}^{TVaR} = 902.709249 - 426.572896 = 476.136353$$

- ii. 1pts. Commenter sur les deux valeurs obtenues.
 - En mutualisant les risques, il y a un importante économie
 - (Bonus) Bien que la mesure VaR ne soit pas sous-additive, on observe aussi une économie selon ce principe.

3. (9 points). Les coûts pour un portefeuille sont représentés par la v.a. S où

$$F_S(x) = \frac{1}{1 + \left(\frac{x}{\lambda}\right)^{-\tau}},$$

où $\lambda = 100$ et $\tau = 4$.

Le revenu total de primes est P = 120.

La prime P et un capital initial u=100 sont investis dans un fonds dont le rendement instantanné est représenté par la v.a. R où

$$R \sim Norm (\mu = 0.06, \sigma = 0.2)$$
.

La probabilité de ruine pour la période est définie par

$$\psi\left(u\right) = \Pr\left(S > V\left(1\right)\right)$$

οù

$$V(1) = (u+P)e^{R}.$$

Les v.a. S et R sont indépendantes.

On utilise la méthode Monte-Carlo pour évaluer approximativement $\psi(u)$.

On dispose des réalisations de U_1 pour simuler des réalisations de S et des réalisation de U pour produire des réalisations de R:

j	$U_1^{(j)}$	$S^{(j)}$	$U_2^{(j)}$	$R^{(j)}$
1	0.1491		0.8159	
2	0.8315		0.5793	
3	0.9792		0.0107	

Questions:

- (a) (4 points). Produire les 3 réalisations de S.
- (b) (4 points). Produire les 3 réalisations de R et de V(1).
- (c) (1 points). Utiliser les réalisations pour évaluer approximativement $\psi(u)$.

Solution (9 points) OK

(a) (4 points). Produire les 3 réalisations de SOn sait que

$$F_S(x) = \frac{1}{1 + \left(\frac{x}{\lambda}\right)^{-\tau}}$$

(1 points)On trouve l'inverse de fonction de répartition

$$F_S^{-1}(y) = \lambda \times \left(\frac{1}{y} - 1\right)^{-\frac{1}{\tau}}$$

(3 points)On trouve donc les réalisation de S par la méthode inverse

$$S^{(j)} = \begin{cases} 64.69933 & , j = 1\\ 149.0437 & , j = 2\\ 261.94012 & , j = 3 \end{cases}$$

- (b) (4 points). Produire les 3 réalisations de R et de V(1)
 - (2 points)Par la méthode inverse on simules les réalisations normales

$$R^{(j)} = \begin{cases} 0.24 & , j = 1 \\ 0.10 & , j = 2 \\ -0.40 & , j = 3 \end{cases}$$

(2 points)Et on a

$$V(1)^{(j)} = (u+P) \exp\left(R^{(j)}\right)$$
$$= \begin{cases} 279.6664 & , j=1\\ 243.1426 & , j=2\\ 147.4453 & , j=3 \end{cases}$$

(c) (1 points). Evaluer approximativement la $\psi\left(u\right)$ On sait que

$$\psi(u) = \Pr(S > V(1))$$

$$\simeq \frac{\sum^{3} 1_{\{S > V(1)\}}}{3} = \frac{1}{3}$$

4. (14 points). Soit les v.a. i.i.d. $X_{1,1},...,X_{1,n_1}$ avec

$$X_{1,i} \sim X_1 \sim BNComp\left(r, q; F_{B_1}\right)$$

où $r=0.1, q=\frac{1}{3}, B_1 \sim LNorm\left(\mu=\ln{(10)}-\frac{1}{2}, \sigma=1\right)$, pour $i=1,2,...,n_1$. Soit les v.a. i.i.d. $X_{2,1},...,X_{2,n_2}$ avec

$$X_{2,j} \sim X_2 \sim PComp(\lambda; F_{B_2}),$$

où $\lambda = 0.2, B_2 \sim Gamma\left(\alpha = 5, \beta = \frac{5}{10}\right), \text{ pour } j = 1, 2, ..., n_2.$

Les v.a. $X_{1,1}, ..., X_{1,n_1}, X_{2,1}, ..., X_{2,n_2}$ sont indépendantes.

On définit

$$S_1 = \sum_{i=1}^{n_1} X_{1,i}$$
 $S_2 = \sum_{j=1}^{n_2} X_{2,j}$ $S = S_1 + S_2$.

On définit la mesure

$$\rho_{\kappa}\left(Y\right) = E\left[Y\right] + \frac{1}{1-\kappa}\sqrt{Var\left(Y\right)}\frac{1}{\sqrt{2\pi}}e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}}.$$

Questions:

(a) (2 points). Montrer que la fonction

$$\varphi\left(X_{1,1},...,X_{1,n_{1}},X_{2,1},...,X_{2,n_{2}}\right)=\rho_{\kappa}\left(S\right)=\rho_{\kappa}\left(\sum_{i=1}^{n_{1}}X_{1,i}+\sum_{j=1}^{n_{2}}X_{2,j}\right)$$

est homogène.

- (b) (4 points). Calculer $\rho_{\kappa}(S)$, pour $\kappa = 0.99$, $n_1 = 100$ et $n_2 = 100$.
- (c) (4 points). Appliquer le théorème d'Euler à la mesure $\rho_{\kappa}(S)$ pour calculer les contributions $C_{\kappa}^{\rho}(S_1; S)$ et $C_{\kappa}^{\rho}(S_2; S)$ de chaque ligne d'affaires. Commenter brièvement.
- (d) (4 points). Appliquer le théorème d'Euler à la mesure $\rho_{\kappa}(S)$ pour calculer les contributions $C_{\kappa}^{\rho}(X_{1,1};S)$ et $C_{\kappa}^{\rho}(X_{2,1};S)$ d'un contrat de chaque ligne d'affaire. Commenter brièvement.

Solution OK:

(a) (2 points). Montrer que la fonction

$$\varphi\left(X_{1,1},...,X_{1,n_{1}},X_{2,1},...,X_{2,n_{2}}\right) = \rho_{\kappa}\left(S\right) = \rho_{\kappa}\left(\sum_{i=1}^{n_{1}}X_{1,i} + \sum_{j=1}^{n_{2}}X_{2,j}\right)$$

est (positive) homogène.

On a

$$\begin{split} \varphi\left(\lambda X_{1,1},...,\lambda X_{1,n_{1}},\lambda X_{2,1},...,\lambda X_{2,n_{2}}\right) &= \rho_{\kappa}\left(\lambda\sum_{i=1}^{n_{1}}X_{1,i}+\lambda\sum_{j=1}^{n_{2}}X_{2,j}\right) \\ &= \rho_{\kappa}\left(\lambda S\right) \\ &= E\left[\lambda S\right] + \frac{1}{1-\kappa}\sqrt{Var\left(\lambda S\right)}\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}} \\ &= \lambda\left(E\left[S\right] + \frac{1}{1-\kappa}\sqrt{Var\left(S\right)}\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}}\right) \\ &= \lambda\rho_{\kappa}\left(S\right) \\ &= \lambda\varphi\left(X_{1,1},...,X_{1,n_{1}},X_{2,1},...,X_{2,n_{2}}\right). \end{split}$$

La fonction (i.e. la mesure) est homogène.

(b) **(4 points).** Calculer $\rho_{\kappa}(S)$, pour $\kappa = 0.99$, $n_1 = 100$ et $n_2 = 100$.

•
$$E[X_1] = r \frac{1-q}{q} E[B_1] = 0.1 \times \frac{1-\frac{1}{3}}{\frac{1}{3}} \times 10 = 2$$

•
$$E[X_2] = \lambda E[B_2] = 0.2 \times \frac{\alpha}{\beta} = 0.2 \times 10 = 2$$

•
$$Var(X_1) = 0.1 \times \frac{1 - \frac{1}{3}}{\frac{1}{3}} \times Var(B_1) + 0.1 \times \frac{1 - \frac{1}{3}}{\left(\frac{1}{3}\right)^2} E[B_1]^2 = 0.2 \times \left(e^{2\left(\ln(10) - \frac{1}{2}\right) + 2 \times 1} - 10^2\right) + \frac{0.2}{\left(\frac{1}{3}\right)} \left(10^2\right) = 94.365637$$

•
$$Var(X_2) = \lambda E[B_2^2] = 0.2 \times \left(\frac{5 \times 6}{\left(\frac{1}{2}\right)^2}\right) = 24$$

•
$$E[S_1] = n_1 E[X_1] = 100 \times 2 = 200$$

•
$$E[S_2] = n_2 E[X_2] = 100 \times 2 = 200$$

•
$$E[S] = E[S_1] + E[S_2] = 400$$

•
$$Var(S_1) = n_1 Var(X_1) = 100 \times 94.365637 = 9436.5637$$

•
$$Var(S_2) = n_2 Var(X_2) = 100 \times 24 = 2400$$

•
$$Var(S) = Var(S_1) + Var(S_2) = 9436.5637 + 2400 = 11836.5637$$

•
$$\rho_{0.99}(S) = 400 + \frac{1}{1 - 0.99} \sqrt{11836.5637} \frac{1}{\sqrt{2\pi}} e^{-\frac{(2.326348)^2}{2}} = 689.964488887$$

• Note:

(c) (4 points). Appliquer le théorème d'Euler à la mesure $\rho_{\kappa}(S)$ pour calculer les contributions $C_{\kappa}^{\rho}(S_1; S)$ et $C_{\kappa}^{\rho}(S_2; S)$ de chaque ligne d'affaires. Commenter brièvement. Selon le Théorème d'Euler, on obtient

$$C_{\kappa}^{\rho}(S_{1};S) = E[S_{1}] + \frac{1}{1-\kappa} \frac{Var(S_{1})}{\sqrt{Var(S)}} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}}$$

$$= 200 + \frac{1}{1-0.99} \frac{9436.5637}{\sqrt{11836.5637}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(2.326348)^{2}}{2}}$$

$$= 431.17084$$

 et

$$C_{\kappa}^{\rho}(S_2; S) = E[S_2] + \frac{1}{1 - \kappa} \frac{Var(S_2)}{\sqrt{Var(S)}} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^2}{2}}$$

$$= 200 + \frac{1}{1 - 0.99} \frac{2400}{\sqrt{11836.5637}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(2.326348)^2}{2}}$$

$$= 258.793.649151$$

Pour cette mesure, comme $E[S_1] = E[S_2]$ et comme tous les risques sont indépendants, seules variances (ou écart-types) permettent de distinguer de façon claire les contributions de chaque ligne d'affaires

(d) (4 points). Appliquer le théorème d'Euler à la mesure $\rho_{\kappa}(S)$ pour calculer les contributions $C_{\kappa}^{\rho}(X_{1,1};S)$ et $C_{\kappa}^{\rho}(X_{2,1};S)$ d'un contrat de chaque ligne d'affaire. Commenter brièvement.

Selon le Théorème d'Euler, on obtient

$$C_{\kappa}^{\rho}(X_{1,1};S) = E[X_{1,1}] + \frac{1}{1-\kappa} \frac{Var(X_{1,1})}{\sqrt{Var(S)}} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}}$$

$$= 2 + \frac{1}{1-0.99} \frac{94.365637}{\sqrt{11836.5637}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(2.326348)^{2}}{2}}$$

$$= 4.31170.84$$

et

$$C_{\kappa}^{\rho}(X_{2,1};S) = E[X_{2,1}] + \frac{1}{1-\kappa} \frac{Var(X_{2,1})}{\sqrt{Var(S)}} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}}$$

$$= 2 + \frac{1}{1-0.99} \frac{24}{\sqrt{11836.5637}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(2.326348)^{2}}{2}}$$

$$= 2.58793649151$$

Les risques sont iid dans chaque ligne d'affaires. C'est pourquoi les contributions de la chaque lignes d'affaire est $\frac{1}{100}$ de la contribution totale de la ligne d'affaires.

5. (14 points). On considère un portefeuille de m = 5000 contrats d'assurance temporaire n = 3 ans à des individus de 70 ans dont les durées de vie sont i.i.d.

La v.a. $T_{x,i}$ représente la durée de vie de l'assuré i d'âge x, i = 1, 2, ..., m, où

$$F_{T_{x,i}}(t) = 1 - e^{-0.00006 \times 1.1^x (1.1^t - 1)},$$

pour $t \geq 0$.

La prestation de décès est de 20000, versée en fin d'année.

La valeur présente des coûts pour le contrat i est représentée par la v.a. Z_i qui est définie en fonction de la v.a. $T_{x,i}$ (i = 1, 2, ..., m).

Les valeurs présentes (actualisées) sont calculées avec une force d'intérêt de 4%.

On définit la v.a. Z_{PTF} comme étant la valeur présente des coûts pour l'ensemble du porte-feuille où

$$Z_{PTF} = Z_1 + \dots + Z_m.$$

Questions:

- (a) (4 points). Calculer la prime pure et le revenu total de primes.
- (b) (5 points). Calculer les valeurs espérées des sorties de fonds pour les années 1, 2, 3.
- (c) (5 points). Déterminer les montants qui doivent être investis dans des obligations 0-coupon au temps 0 pour financer les valeurs espérées des sorties de fonds pour les années 1, 2, 3 (voir en (5b)). Les prix des obligations sont calculés en supposant le modèle de taux d'intérêt déterministe (avec force d'intérêt 4%). Expliquer brièvement comment le revenu total de primes sera alloué en considérant les montants à investir au temps 0 (qui ont été déterminés en (5b)).

Solution: OK

(a) (4 points). Calculer la prime pure et le revenu total de primes pures.(3 points). On a

$$E[Z] = 20000 \left(v F_{T_x}(1) + v^2 \left(F_{T_x}(2) - F_{T_x}(1) \right) + v^3 \left(F_{T_x}(3) - F_{T_x}(2) \right) \right)$$

$$= 20000 \left(e^{-0.04} F_{T_x}(1) + e^{-0.04 \times 2} \left(F_{T_x}(2) - F_{T_x}(1) \right) + e^{-0.04 \times 3} \left(F_{T_x}(3) - F_{T_x}(2) \right) \right)$$

$$= 20000 \left(e^{-0.04} \left(1 - e^{-0.00006 \times 1.1^{70} \left(1.1^{1} - 1 \right)} \right) + e^{-0.04 \times 2} \left(e^{-0.00006 \times 1.1^{70} \left(1.1^{1} - 1 \right)} - e^{-0.00006 \times 1.1^{70} \left(1.1^{2} - 1 \right)} \right) + e^{-0.04 \times 3} \left(e^{-0.00006 \times 1.1^{70} \left(1.1^{2} - 1 \right)} - e^{-0.00006 \times 1.1^{70} \left(1.1^{3} - 1 \right)} \right) \right)$$

$$= 286 775050$$

(1 points). Revenu total:

$$\Pi^{TOT} = 5000 \times 286.775059$$

$$= 1433875.295$$

(b) **(5 points).** Calculer les valeurs espérées des sorties de fonds pour les années 1, 2, 3. On a

$$E[CF(1)] = 5000 \times 20000 \times F_{T_x}(1)$$

$$= 5000 \times 20000 \times \left(1 - e^{-0.00006 \times 1.1^{70} \left(1.1^1 - 1\right)}\right)$$

$$= 472727 284756$$

$$E[CF(2)] = 5000 \times 20000 \times (F_{T_x}(2) - F_{T_x}(1))$$

$$= 5000 \times 20000 \times \left(e^{-0.00006 \times 1.1^{70} \left(1.1^1 - 1\right)} - e^{-0.00006 \times 1.1^{70} \left(1.1^2 - 1\right)}\right)$$

$$= 517419.329342$$

$$E[CF(3)] = 5000 \times 20000 \times (F_{T_x}(3) - F_{T_x}(2))$$

$$= 5000 \times 20000 \times \left(e^{-0.00006 \times 1.1^{70} \left(1.1^2 - 1\right)} - e^{-0.00006 \times 1.1^{70} \left(1.1^3 - 1\right)}\right)$$

$$= 566054.916308$$

(c) (5 points). Déterminer les montants qui doivent être investis dans des obligations 0-coupon au temps 0 pour financer les valeurs espérées des sorties de fonds pour les années 1, 2, 3 (voir en (??)). Les prix des obligations sont calculés en supposant le modèle de taux d'intérêt déterministe (avec force d'intérêt 4%). Expliquer brièvement comment le revenu total de primes sera alloué en considérant les montants à investir au temps 0 (qui ont été déterminés en (??)).

 $(\frac{4}{3} \text{ point})$. Montant #1

$$A(1) = vE [CF (1)]$$

$$= e^{-0.04} \times 472727.284756$$

$$= 454191.382793$$
(1)

 $(\frac{4}{3}$ **point).** Montant #2

$$A(2) = v^{2}E[CF(2)]$$

$$= e^{-0.04 \times 2} \times 517419.329342$$

$$= 477638.240852$$

 $(\frac{4}{3} \text{ point})$. Montant #3

$$A(3) = v^{3}E[CF(3)]$$

$$= e^{-0.04 \times 3} \times 566054.916308$$

$$= 502045.673578$$

(1 point). La compagnie va acheter des obligations 0 coupon avec échéance 1, 2, 3 de telle sorte que la compagnie puisse financer l'espérance des sorties de fonds aux échéances 1,2 3. Les coûts sont A(1), A(2) et A(3)

6. (10 points). Soit les v.a. i.i.d. $X_1, ..., X_n$ avec

$$X_i \sim BNComp\left(r, q; F_C\right)$$
,

où $r = 2.5, q = \frac{1}{3}, C \sim Pareto(\alpha = 1.5, \lambda = 5), \text{ pour } i = 1, 2, ..., n.$

On définit $S_n = \sum_{i=1}^n X_i$ et $W_n = \frac{1}{n} S_n$.

On ne peut pas identifier une forme explicite pour F_{W_n} .

Parmi les deux méthodes proposées, on choisit une **seule** méthode appropriée pour approximer F_{W_n} :

- méthode #1 approximation basée sur la loi normale ;
- méthode #2 approximation basée sur la loi du montant de sinistre maximal.

Note: les méthodes ne sont pas utilisées deux fois dans ce numéro.

Questions:

- (a) (2 points). Calculer la valeur de $E[W_n]$.
- (b) (4 points). Démontrer que la part allouée W_n tend (en distribution) vers $E[W_n]$. (Note: il faut démontrer le résultat qui permet d'obtenir cette conclusion).
- (c) (4 points). La prime pour un contrat du portefeuille est

$$\Pi_{\kappa,n}\left(X\right) = VaR_{\kappa}\left(W_{n}\right).$$

Pour $\kappa = 0.99$ et n = 100, évaluer approximativement $VaR_{\kappa}(W_n)$ en utilisant une seule des 2 méthodes proposées. Justifier brièvement votre choix.

Solution OK:

(a) (2 points). Calculer la valeur de $E[W_n]$. où $r=2.5, q=\frac{1}{3}, C \sim Pareto(\alpha=1.5, \lambda=5),$ pour i=1,2,...,n.

On a

$$E[W_n] = E[X_1]$$

$$= 2.5 \times 2 \times \frac{5}{1.5 - 1}$$

$$= 50$$

(b) (4 points). Démontrer que la part allouée W_n tend (en distribution) vers $E[W_n]$. (Note: il faut démontrer le résultat qui permet d'obtenir cette conclusion).

We define

$$W_n = \frac{X_1 + \dots + X_n}{n}$$

where

$$L_{W_n}\left(t\right) = L_X\left(\frac{t}{n}\right).$$

Near the origin, we have

$$L_X(t) = 1 - \mu t + o(t).$$

It implies that

$$\lim_{n \to \infty} L_{W_n}(t) = \lim_{n \to \infty} \left(1 - \mu \frac{t}{n}\right)^n$$

$$= e^{-\mu t}$$

$$= L_Z(t),$$

where the rv Z is defined such that

$$\Pr(Z = \mu) = 1.$$

Then, we conclude that W_n converges in distribution to the rv Z i.e.

$$W_n \stackrel{d}{\to} Z$$
.

We have proven Khinchine's version of the weak law of large numbers.

The proof requires the rvs $X_1, X_2, ...$ to be positive.

(c) (4 points). La prime pour un contrat du portefeuille est

$$\Pi_{\kappa,n}(X) = VaR_{\kappa}(W_n)$$
.

Pour $\kappa = 0.99$ et n = 100, évaluer approximativement $VaR_{\kappa}(W_n)$ en utilisant une seule des 2 méthodes proposées. Justifier brièvement votre choix.

On ne peut pas prendre la méthode #1, car elle est applicable si l'espérance et la variance de X existent, ce qui n'est pas le cas.

On applique la méthode #2 car elle est appropriée quand le montant de sinistre est de loi Pareto.

On propose d'approximer S_n par la v.a. V_n $(W_n = \frac{S_n}{n}, \text{ par } \frac{V_n}{n})$ et qui représente le montant maximal de sinistre pour l'ensemble du portefeuille.

On a

$$S_n \sim BNComp\left(nr, q; F_C\right)$$

On a

$$N_n \sim BN(nr,q)$$

On

$$F_{S_n}(x) \simeq F_{V_n}(x)$$

οù

$$F_{V_n}(x) = \dots$$

$$= P_{N_n}(F_B(x))$$

$$= \left(\frac{q}{1 - (1 - q)F_B(x)}\right)^{nr}$$

$$\kappa = \left(\frac{q}{1 - (1 - q)F_B(x)}\right)^{nr}$$

qui devient

$$\frac{q}{\kappa^{\frac{1}{nr}}} = 1 - (1 - q) F_C(x)$$

On obtient

$$F_{V_n}^{-1}(\kappa) = F_B^{-1} \left(\frac{1 - \frac{q}{\frac{1}{\kappa nr}}}{1 - q} \right)$$

$$= \lambda \left(\frac{1}{\left(1 - \frac{1 - \frac{q}{\frac{1}{\kappa nr}}}{1 - q}\right)^{\frac{1}{\alpha}}} - 1 \right)$$

Comme $r=1.5, q=\frac{1}{3}, \ C \sim Pareto\left(\alpha=1.5, \lambda=5\right),$ on obtient

$$VaR_{\kappa}(S_n) \simeq VaR_{\kappa}(V_n)$$

$$= F_V^{-1}(\kappa)$$

$$= 5 \left(\frac{1}{\left(1 - \frac{1 - \frac{1}{3}}{0.99 \frac{250}{1 - \frac{1}{3}}}\right)^{\frac{1}{1.5}}} - 1 \right)$$

$$= 6758.276417$$

Alors, on a

$$VaR_{\kappa}(W_{n}) = \frac{1}{n}VaR_{\kappa}(S_{n})$$

$$\simeq \frac{1}{n}VaR_{\kappa}(V_{n})$$

$$= \frac{1}{100}6758.276417$$

$$= 67.58276417$$

7. (16 points). Soit la v.a. $X \sim Makeham(\alpha, \beta, \gamma)$ avec

$$\mu(x) = \alpha + \beta e^{\gamma x}, \ x \ge 0.$$

Questions:

(a) (2 points). Montrer que

$$T_x \sim Makeham(\alpha, \beta_x, \gamma)$$

οù

$$\beta_x = \beta e^{\gamma x}$$

(b) (2 points). Montrer que

$$T_x = \min\left(W, Y_x\right)$$

où W et Y_x sont des v.a. indépendantes avec

$$W \sim Exp(\alpha)$$
 (cause accidentelle)

et

$$Y_x \sim Gompertz(\beta_x, \gamma)$$
 (cause "biologique").

(c) (12 points). On considère un contrat de rente vie-entière émis à un individu de 55 ans. La rente annuelle est g=10000, payable en début d'année. La force d'intérêt est de 3%. La v.a. Z représente la valeur présente des coûts pour le contrat. Hypothèses : $\alpha=0.001, \,\beta=0.00006$ et $\gamma=0.08$.

Soit la v.a. $U \sim Unif(0,1)$. Dans le tableau ci-dessous, on fournit 5 réalisations $W^{(j)}$ de W et 5 réalisations $U^{(j)}$ de U:

i	$W^{(j)}$	$U^{(j)}$	$Y_x^{(j)}$	$T_x^{(j)}$	$Z^{(j)}$
1	16.90	0.75			
2	864.22	0.59			
3	6.71	0.92			
4	1077.70	0.44			
5	199.64	0.87			

Sous-questions:

- i. Calculer les réalisations $Y_x^{(j)}$ de Y_x (avec les réalisations $U^{(j)}$ de U).
- ii. Calculer les réalisations $T_x^{(j)}$ de T_x .
- iii. Calculer les réalisations $Z^{(j)}$ de Z.
- iv. Utiliser les réalisations de $Z^{(j)}$ de Z pour calculer une approximation ...
 - ... de E[Z];
 - ... de $VaR_{0.6}(Z)$;
 - ... de $E\left[Z \times 1_{\{Z > VaR_{0.6}(Z)\}}\right]$; et
 - ... de $TVaR_{0.6}(Z)$.

Solution OK:

(a) (2 points). Montrer que

$$T_x \sim Makeham(\alpha, \beta_x, \gamma)$$

οù

$$\beta_x = \beta e^{\gamma x}$$

Pour la v.a. T_x , on obtient

$$\overline{F}_{T_x}(t) = \frac{\exp\left(-\alpha \left(x+t\right) - \frac{\beta}{\gamma} \left(e^{\gamma(x+t)} - 1\right)\right)}{\exp\left(-\alpha x - \frac{\beta}{\gamma} \left(e^{\gamma x} - 1\right)\right)} = \exp\left(-\alpha t - \frac{\beta}{\gamma} e^{\gamma x} \left(e^{\gamma t} - 1\right)\right)$$

Alors, si $X \sim Makeham(\alpha, \beta, \gamma)$, cela implique $T_x \sim Makeham(\alpha, \beta e^{\gamma x}, \gamma)$.

(b) (2 points). Montrer que

$$T_x = \min(W, Y_x)$$

où W et Y_x sont des v.a. indépendantes avec

$$W \sim Exp(\alpha)$$

et

$$Y_x \sim Gompertz\left(\beta_x, \gamma\right)$$

On peut représenter T_x en fonction de deux v.a. indépendantes $W_x \sim Gompertz\left(\beta e^{\gamma x}, \gamma\right)$ et $Z \sim Exp\left(\alpha\right)$ avec

$$T_x = \min(W, Y_x)$$
.

En effet, on a

$$\Pr\left(\min\left(W, Y_{x}\right) > t\right) = \Pr\left(W > t, Y_{x} > t\right)$$

$$= \Pr\left(W > t\right) \Pr\left(Y_{x} > t\right)$$

$$= \exp\left(-\alpha t\right) \exp\left(-\frac{\beta}{\gamma} e^{\gamma x} \left(e^{\gamma t} - 1\right)\right)$$

$$= \exp\left(-\alpha t - \frac{\beta}{\gamma} e^{\gamma x} \left(e^{\gamma t} - 1\right)\right),$$

où le dernier terme correspond à la fonction de survie de la loi de Gompertz-Makeham. Cette représentation permet de simuler des réalisations de T_x .

(c) (12 points).On considère un contrat de rente continue vie-entière émis à un assuré de 50 ans. En supposant un taux de rente g=20000 et une force d'intérêt de 4%, la v.a. Z représente la valeur présente des coûts pour le contrat. Hypothèses : $\alpha=0.001$, $\beta=0.00005$ et $\gamma=0.06$.

Soit la v.a. $U \sim Unif(0,1)$. Dans le tableau ci-dessous, on fournit 5 réalisations $W^{(j)}$

de W et 5 réalisations $U^{(j)}$ de U:

i	$W^{(j)}$	$U^{(j)}$	$Y_x^{(j)}$	$T_x^{(j)}$	$Z^{(j)}$
1	16.90	0.75			
2	864.22	0.59			
3	6.71	0.92			
4	1077.70	0.44			
5	199.64	0.87			

Sous-questions:

- i. (2.5 points). Calculer les réalisations $Y_x^{(j)}$ de Y_x (avec les réalisations $U^{(j)}$ de U). 73.81188 66.56560 83.72019 59.55826 80.18842
- ii. (1.5 points). Calculer les réalisations $T_x^{(j)}$ de T_x . 16.90000 66.56560 6.71000 59.55826 80.18842
- iii. (2.5 points). Calculer les réalisations $Z^{(j)}$ de Z. 245676.2 465117.5 117699.1 453832.4 479771.9
- iv. Utiliser les réalisations de $Z^{(j)}$ de Z pour calculer une approximation ...
 - (1.5 points).... de E[Z]; On obtient

$$E[Z] \simeq 352419.4$$

• (1 points).... de $VaR_{0.6}(Z)$; On obtient

$$VaR_{0.6}(Z) \simeq 453832.4$$

• (1.5 points).... de $E\left[Z \times 1_{\{Z > VaR_{0.6}(Z)\}}\right]$; On obtient

$$E\left[Z \times 1_{\{Z > VaR_{0.6}(Z)\}}\right] \simeq \frac{1}{5} \sum_{j=1}^{5} Z^{(j)} \times 1_{\left\{Z^{(j)} > \widetilde{VaR}_{0.6}(Z)\right\}}$$

$$= 188977.9$$

• (1.5 points).... de $TVaR_{0.6}(Z)$. On obtient

$$TVaR_{0.6}(Z) = \frac{1}{1 - 0.6} E\left[Z \times 1_{\{Z > VaR_{0.6}(Z)\}}\right]$$

$$\simeq \frac{1}{1 - 0.6} \times \frac{1}{5} \sum_{j=1}^{5} Z^{(j)} \times 1_{\left\{Z^{(j)} > \widetilde{VaR_{0.6}(Z)}\right\}}$$

$$= 472444.7$$

- 8. (8 points). Deux questions distinctes.
 - (a) (4 points). On rappelle l'énoncé du Théorème de la fonction quantile dans le cas particulier d'une v.a. continue.

Théorème 1 Soit une v.a. continue X avec fonction de répartition F_X et fonction quantile F_X^{-1} . Soit une v.a. $U \sim U(0,1)$. Alors, la fonction de répartition de $F_X^{-1}(U)$ est F_X .

Questions:

- i. (3 points). Faire la démonstration du théorème.
- ii. (1 point). Indiquer une application concrète de ce théorème dans le cours et en actuariat.
- (b) (4 points). On rappelle l'énoncé du Théorème d'Euler.

Théorème 2 Soit $\varphi(x_1,...,x_n)$ une fonction définie sur \mathbb{R}^n avec valeur dans \mathbb{R} , que l'on suppose différentiable en tout point. Si la fonction φ est (positivement) homogène de degré m, alors on a

$$m\varphi(x_1,...,x_n) = \sum_{i=1}^{n} x_i \frac{\partial \varphi}{\partial x_i}(x_1,...,x_n)$$

pour tout $(x_1,...,x_n) \in \mathbb{R}^n$.

Question: Démontrer le théorème.

Solution – (8 points). Deux questions distinctes. OK

(a) (4 points). On rappelle l'énoncé du Théorème de la fonction quantile dans le cas particulier d'une v.a. continue.

Théorème 3 Soit une v.a. continue X avec fonction de répartition F_X et fonction quantile F_X^{-1} . Soit une v.a. $U \sim U(0,1)$. Alors, la fonction de répartition de $F_X^{-1}(U)$ est F_X .

Questions:

i. (3 points). Faire la démonstration du théorème. Comme la v.a. X est continue, on a

$$\Pr\left(F_X^{-1}\left(U\right) \le x\right) = \Pr\left(U \le F_X\left(x\right)\right),\,$$

car les évènements $\left\{F_X^{-1}\left(U\right) \leq x\right\}$ et $\left\{U \leq F_X\left(x\right)\right\}$ coïncident. De la fonction de répartition de $U \sim U\left(0,1\right)$, on déduit

$$\Pr\left(F_X^{-1}\left(U\right) \le x\right) = \Pr\left(U \le F_X\left(x\right)\right) = F_X\left(x\right).$$

ii. (1 point). Indiquer une application concrète de ce théorème dans le cours et en actuariat.

Réponse : La simulation M-C

(b) (4 points). On rappelle l'énoncé du Théorème d'Euler.

Si $\varphi(x_1,...,x_n)$ est homogène d'ordre m, on sait que

$$\varphi(\lambda x_1, ..., \lambda x_n) = \lambda^m \varphi(x_1, ..., \lambda_n)$$
(2)

pour tout $\lambda > 0$. On dérive de part d'autre par rapport à λ et on pose $\lambda = 1$. Du côté gauche de l'égalité en (2), on a

$$\frac{d\varphi(\lambda x_1, ..., \lambda x_n)}{d\lambda} \Big|_{\lambda=1} = \sum_{i=1}^n \frac{\partial \varphi(\lambda x_1, ..., \lambda x_n)}{\partial (\lambda x_i)} \times \frac{\partial (\lambda x_i)}{\partial \lambda} \Big|_{\lambda=1}$$

$$= \sum_{i=1}^n \frac{\partial \varphi(\lambda x_1, ..., \lambda x_n)}{\partial (\lambda x_i)} \times x_i \Big|_{\lambda=1}$$

$$= \sum_{i=1}^n \frac{\partial \varphi(x_1, ..., x_n)}{\partial x_i} \times x_i.$$

Ensuite, pour le côté droit de l'égalité en (2), on a

$$\frac{d(\lambda^{m}\varphi(x_{1},...,x_{n}))}{d\lambda}\bigg|_{\lambda=1} = m\lambda^{m-1}\varphi(x_{1},...,x_{n})\bigg|_{\lambda=1}$$
$$= m\varphi(x_{1},...,x_{n}).$$

9. (16 points). Soit le couple de v.a. discrètes (M_1, M_2) . Les hypothèses A, B, C suivantes sont considérées pour les valeurs de $\Pr(M_1 = m_1, M_2 = m_2)$:

Hypothèse A					
$m_1 m_2$	0	1	2		
0	0	$\frac{1}{4}$	0		
1	$\frac{1}{4}$	0	$\frac{1}{4}$		
2	0	$\frac{1}{4}$	0		

Hypothe	Hypothèse B					
$m_1 m_2$	0	1	2			
0	$\frac{1}{4}$	0	0			
1	0	$\frac{1}{2}$	0			
2	0	0	$\frac{1}{4}$			

Hypoth	Hypothèse C					
$m_1 m_2$	0	1	2			
0	0	0	$\frac{1}{4}$			
1	0	$\frac{1}{2}$	0			
2	$\frac{1}{4}$	0	0			

On définit $N = M_1 + M_2$.

Questions:

- (a) (2 points). Pour chaque hypothèse, les valeurs de $Pr(M_i = k)$, pour k = 0, 1, 2 et i = 1, 2. Commenter brièvement.
- (b) (3 points). Pour chaque hypothèse, on doit calculer $Cov(M_1, M_2)$.
- (c) (3 points). Pour chaque hypothèse, on doit indiquer si elle correspond à l'une des situations suivantes (note 1 : il s'agit ci-dessous du coefficient de corrélation de Pearson) (note 2 : il y a une situation par hypothèse) :
 - les v.a. M_1 et M_2 sont négativement corrélées ;
 - \bullet les v.a. M_1 et M_2 sont positivement corrélées ;
 - les v.a. M_1 et M_2 sont indépendantes (si oui, il faut le démontrer);
 - les v.a. M_1 et M_2 sont non-corrélées (i.e. corrélation nulle, il faut trouver un contre-exemple pour indiquer qu'elles ne sont pas indépendantes).
- (d) (5 points). Pour chaque hypothèse, on doit calculer $TVaR_{0.8}(M_1)$, $TVaR_{0.8}(M_2)$, $TVaR_{0.8}(N)$.
- (e) (3 points). Pour chaque hypothèse, on doit calculer le bénéfice de mutualisation

$$B_{0.8} = TVaR_{0.8}(M_1) + TVaR_{0.8}(M_2) - TVaR_{0.8}(N)$$
.

Indiquer pour quelle hypothèse le bénéfice est le plus grand et indiquer pour quelle hypothèse le bénéfice est le plus petit.

Solution (16 points) OK:

(a) (2 points). Pour chaque hypothèse, on doit calculer les valeurs de $Pr(M_i = k)$, pour k = 0, 1, 2 et i = 1, 2. Commenter brièvement.

Clairement, pour lses 4 hypothèses, on a

$$\Pr(M_1 = 0) = \Pr(M_2 = 0) = \frac{1}{4}$$

 $\Pr(M_1 = 1) = \Pr(M_2 = 1) = \frac{1}{2}$
 $\Pr(M_1 = 2) = \Pr(M_2 = 2) = \frac{1}{4}$

(b) (3 points). Pour chaque hypothèse, on doit calculer $Cov(M_1, M_2)$. On a

$$Cov(M_1, M_2) = E[M_1M_2] - E[M_1]E[M_2]$$

(1 point). Hypothèse A : $E[M_1M_2] = 1$ et $Cov(M_1, M_2) = 1 - 1 \times 1 = 0$

(1 point). Hypothèse B : $E[M_1M_2] = 1 \times \frac{1}{2} + 4 \times \frac{1}{4} = 1.5$ et $Cov(M_1, M_2) = 1.5 - 1 \times 1 = 0.5$

(1 point). Hypothèse C : $E[M_1M_2] = 1 \times \frac{1}{2} = 0.5$ et $Cov(M_1, M_2) = 0.5 - 1 \times 1 = -0.5$

- (c) (3 points). Pour chaque hypothèse, on doit indiquer si elle correspond à l'une des situations suivantes (note 1 : il s'agit ci-dessous du coefficient de corrélation de Pearson) (note 2 : il y a une situation par hypothèse) :
 - les v.a. M_1 et M_2 sont négativement corrélées ;
 - ullet les v.a. M_1 et M_2 sont positivement corrélées ;
 - \bullet les v.a. M_1 et M_2 sont indépendantes (si oui, il faut le démontrer) ;
 - les v.a. M_1 et M_2 sont non-corrélées (i.e. corrélation nulle, il faut trouver un contre-exemple pour indiquer qu'elles ne sont pas indépendantes).

(1 point). Hypothèse A : non-corrélées. Clairement les v.a. M_1 et M_2 ne sont pas indépendantes, car (par exemple)

$$\Pr(M_1 = 0, M_2 = 0) = 0 \neq \Pr(M_1 = 0) \Pr(M_2 = 0) = \frac{1}{8}$$

Il y a plusieurs autres contre-exemples.

(1 point). Hypothèse B : positivement corrélées

(1 point). Hypothèse C : négativement corrélées

(d) (5 points). Pour chaque hypothèse, on doit calculer $TVaR_{0.8}(M_1)$, $TVaR_{0.8}(M_2)$, $TVaR_{0.8}(N)$.

(1 point). Pour toutes les hypothèses :

- $F_{M_i}(0) = 0.25, F_{M_i}(1) = 0.75, F_{M_i}(2) = 1$
- $VaR_{0.8}(M_1) = VaR_{0.8}(M_1) = 2$
- $TVaR_{0.8}(M_1) = TVaR_{0.8}(M_2) = 2$

(1.5 points). Hypothèse A:

- $f_N(0) = 0$, $f_N(1) = 0.5$, $f_N(2) = 0$, $f_N(3) = 0.5$, $f_N(4) = 0$,
- $F_N(0) = 0$, $F_N(1) = 0.5$, $F_N(2) = 0.5$, $F_N(3) = 1$, $F_N(4) = 1$
- $VaR_{0.8}(N) = VaR_{0.8}(N) = 3$
- $TVaR_{0.8}(M_1) = TVaR_{0.8}(M_2) = 3$

(1.5 points). Hypothèse B:

- $f_N(0) = 0.25$, $f_N(1) = 0$, $f_N(2) = 0.5$, $f_N(3) = 0$, $f_N(4) = 0.25$,
- $F_N(0) = 0.25$, $F_N(1) = 0.25$, $F_N(2) = 0.75$, $F_N(3) = 0.75$, $F_N(4) = 1$
- $VaR_{0.8}(N) = VaR_{0.8}(N) = 4$
- $TVaR_{0.8}(M_1) = TVaR_{0.8}(M_2) = 4$

(1 point). Hypothèse C:

- $f_N(0) = 0$, $f_N(1) = 0$, $f_N(2) = 1$, $f_N(3) = 0$, $f_N(4) = 0$,
- $F_N(0) = 0$, $F_N(1) = 0$, $F_N(2) = 1$, $F_N(3) = 1$, $F_N(4) = 1$
- $VaR_{0.8}(N) = VaR_{0.8}(N) = 2$
- $TVaR_{0.8}(M_1) = TVaR_{0.8}(M_2) = 2$
- (e) (3 points). Pour chaque hypothèse, on doit calculer le bénéfice de mutualisation

$$B_{0.8} = TVaR_{0.8}(M_1) + TVaR_{0.8}(M_2) - TVaR_{0.8}(N)$$
.

Indiquer pour quelle hypothèse le bénéfice est le plus grand et indiquer pour quelle hypothèse le bénéfice est le plus petit.

- (1 point). Bénéfice le plus grand = Hypothèse C : $B_{0.8} = 2 + 2 2 = 2$
- (1 point). Bénéfice le plus petit = Hypothèse B : $B_{0.8} = 2 + 2 4 = 0$
- (1 point). Hypothèse A : $B_{0.8} = 2 + 2 3 = 1$

10. (10 points). Soit la v.a. $\Theta \sim Bern(0.2)$.

Soient les v.a. strictement positives $X_1, ..., X_n$ où, sachant $\Theta = \theta$,

$$(X_1|\Theta=\theta),...,(X_n|\Theta=\theta)$$

sont conditionnellement indépendantes, et

$$E[X_i|\Theta=\theta]=1+5\theta,$$

pour i = 1, 2, ..., n.

On définit $S_n = X_1 + ... + X_n$ et $W_n = \frac{S_n}{n}$.

Questions:

- (a) (2 points). Calculer $\lim_{n\to\infty} E[W_n|\Theta=0]$ et $\lim_{n\to\infty} E[W_n|\Theta=1]$.
- (b) (1 points). Calculer $\lim_{n\to\infty} E[W_n]$.
- (c) (2 points). Calculer $\lim_{n\to\infty} Var(W_n)$.
- (d) (5 points). En utilisant la transformée de Laplace-Stieljes (notation : $L_Y(t) = E\left[e^{-tY}\right]$ pour une v.a. positive Y), démontrer que W_n tend en distribution vers la v.a. Z où

$$\Pr(Z=z_0) = \Pr(\Theta=0)$$

et

$$\Pr\left(Z=z_1\right) = \Pr\left(\Theta=1\right)$$

avec $z_0 = \lim_{n \to \infty} E[W_n | \Theta = 0]$ et $z_1 = \lim_{n \to \infty} E[W_n | \Theta = 1]$.

- i. Étape 1: Identifier $\lim_{n\to\infty} L_{W_n|\Theta=0}(t)$.
- ii. Étape 2: Identifier $\lim_{n\to\infty} L_{W_n|\Theta=1}(t)$.
- iii. Étape 3: Identifier $\lim_{n\to\infty} L_{W_n}\left(t\right)$ et conclure.

Solution OK:

(a) (2 points). Calculer $\lim_{n\to\infty} E[W_n|\Theta=0]$ et $\lim_{n\to\infty} E[W_n|\Theta=1]$. On a

$$E[W_n|\Theta=0] = E[X_1|\Theta=0]$$
= 1

On a

$$E[W_n|\Theta=1] = E[X_1|\Theta=0]$$
= 6

On conclut

$$\lim_{n\to\infty} E\left[W_n|\Theta=0\right] = 1$$

$$\lim_{n \to \infty} E\left[W_n \middle| \Theta = 1\right] = 6$$

(b) (1 points). Calculer $\lim_{n\to\infty} E[W_n]$.

Pour tout n, on a

$$E[W_n] = \Pr(\Theta = 0) E[W_n | \Theta = 0] + \Pr(\Theta = 1) E[W_n | \Theta = 1]$$

= 0.8 × 1 + 0.2 × 6
= 2

On conclut

$$\lim_{n\to\infty} E\left[W_n\right] = 2$$

(c) **(2 points).** Calculer $\lim_{n\to\infty} Var(W_n)$.

On a

$$\lim_{n \to \infty} Var(W_n) = Var(E[W_n|\Theta])$$

$$= 0.8 \times (1-2)^2 + 0.2 \times (6-2)^2$$

$$= 4$$

(d) (5 points). En utilisant la transformée de Laplace-Stieljes (notation : $L_Y(t) = E\left[e^{-tY}\right]$ pour une v.a. positive Y), démontrer que W_n tend en distribution vers la v.a. Z où

$$\Pr\left(Z=z_0\right) = \Pr\left(\Theta=0\right)$$

et

$$\Pr(Z=z_1) = \Pr(\Theta=1)$$

avec $z_0 = \lim_{n \to \infty} E[W_n | \Theta = 0]$ et $z_1 = \lim_{n \to \infty} E[W_n | \Theta = 1]$.

i. (1.5 points). Étape 1: Identifier $\lim_{n\to\infty} L_{W_n|\Theta=0}(t)$. On a

$$\lim_{n \to \infty} L_{W_n | \Theta = 0} (t) = \lim_{n \to \infty} \left(1 - E \left[W_n | \Theta = 0 \right] \frac{t}{n} \right)^n$$

$$= e^{-E[W_n | \Theta = 0]t}$$

$$= e^{-1t}$$

ii. (1.5 points). Étape 2: Identifier $\lim_{n\to\infty} L_{W_n\mid\Theta=1}\left(t\right)$. On a

$$\lim_{n \to \infty} L_{W_n|\Theta=1}(t) = \lim_{n \to \infty} \left(1 - E\left[W_n|\Theta=1\right] \frac{t}{n}\right)^n$$

$$= e^{-E\left[W_n|\Theta=1\right]t}$$

$$= e^{-6t}$$

iii. (2 points). Étape 3: Identifier $\lim_{n\to\infty} L_{W_n}(t)$ et conclure.

On a

$$\lim_{n \to \infty} L_{W_n}(t) = \Pr(\Theta = 0) \lim_{n \to \infty} L_{W_n \mid \Theta = 0}(t) + \Pr(\Theta = 0) \lim_{n \to \infty} L_{W_n \mid \Theta = 1}(t)$$

$$= 0.8 \times e^{-1t} + 0.2 \times e^{-6t}$$

$$= L_Z(t)$$

où la v.a. \boldsymbol{Z} prend 2 valeurs, soit 1 et 6, avec

$$Pr(Z = 1) = 0.8 \text{ et } Pr(Z = 6) = 0.1.$$

Then, we conclude that W_n converges in distribution to the rv Z i.e.

$$W_n \stackrel{d}{\to} Z$$
.

11. (9 points). Les coûts pour un contrat d'assurance santé sont définis par la v.a. X.

Soit la v.a. d'hétérogénéité $\Theta \sim LNorm \left(\mu = -\frac{1}{2}\sigma^2, \sigma = 1\right)$.

Sachant $\Theta = \theta$, on a

$$(X|\Theta = \theta) \sim PoisComp(\lambda\theta, F_B)$$

avec $\lambda = 10$ et $B \sim Gamma\left(\alpha = 1.5, \beta = \frac{1}{100}\right)$.

La prime pour le contrat avec la mesure décomposée comme suit :

$$\rho_{\kappa}(X) = E[X] + C_{\kappa}(X) + D_{\kappa}(X)$$

οù

$$C_{\kappa}(X) = \frac{E_{\Theta}\left[Var\left(X|\Theta\right)\right]}{Var\left(X\right)} \frac{1}{1-\kappa} \sqrt{Var\left(X\right)} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}}$$

$$D_{\kappa}(X) = \frac{Var_{\Theta}\left(E\left[X|\Theta\right]\right)}{Var\left(X\right)} \frac{1}{1-\kappa} \sqrt{Var\left(X\right)} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}}.$$

La composante $D_{\kappa}(X)$ correspond à la portion expliquée par l'hétérogénéité.

Questions:

- (a) (2 points). Calculer E[X]
- (b) **(5 points).** Calculer $C_{0.99}(X)$ et $D_{0.99}(X)$.
- (c) (2 points). Calculer $\rho_{0.99}(X)$ et commenter brièvement par rapport à l'hétérogénéité.

Solution OK:

(a) (2 points). Calculer E[X].

On a

$$E[X|\Theta] = \lambda \Theta \frac{\alpha}{\beta}$$

On a

$$E[X] = E_{\Theta} [E[X|\Theta]]$$

$$= E \left[\lambda \Theta \frac{\alpha}{\beta} \right]$$

$$= \lambda \frac{\alpha}{\beta} E[\Theta]$$

$$= \lambda \frac{\alpha}{\beta}$$

$$= 10 \times 150 = 1500$$

(b) **(5 points).** Calculer $C_{0.99}(X)$ et $D_{0.99}(X)$.

On a

$$E_{\Theta} [Var (X|\Theta)] = E_{\Theta} \left[\lambda \Theta \frac{\alpha (\alpha + 1)}{\beta^2} \right]$$
$$= \lambda \frac{\alpha (\alpha + 1)}{\beta^2} E_{\Theta} [\Theta]$$
$$= 10 \times \frac{1.5 \times 2.5}{\left(\frac{1}{100}\right)^2} = 375000$$

On a

$$Var_{\Theta}(E[X|\Theta]) = Var\left(\lambda\Theta\frac{\alpha}{\beta}\right)$$

$$= \left(\lambda\frac{\alpha}{\beta}\right)^{2} Var(\Theta)$$

$$= (1500^{2}) \left(e^{-1+2} - 1^{2}\right)$$

$$= 3866134.114$$

On conclut

$$Var(X) = 375000 + 3866134.114 =: 4241134.114$$

On obtient

$$C_{0.99}(X) = \frac{375000}{4241134.114} \frac{1}{1 - 0.99} \sqrt{4241134.114} \frac{1}{\sqrt{2\pi}} e^{-\frac{(2.326348)^2}{2}}$$

$$= 485.31337369$$

$$D_{\kappa}(X) = \frac{3866134.114}{4241134.114} \frac{1}{1 - 0.99} \sqrt{4241134.114} \frac{1}{\sqrt{2\pi}} e^{-\frac{(2.326348)^2}{2}}$$

$$= 5003 \ 430.90668$$

(c) (2 points). Calculer $\rho_{0.99}(X)$ et commenter brièvement par rapport à l'hétérogénéité.

$$\rho_{\kappa}(X) = E[X] + C_{\kappa}(X) + D_{\kappa}(X)$$
$$= 1500 + 485.3134 + 5003.4309$$

L'hétérogénéit a un impact important sur la prime.

FIN

Annexes

• Values of the quantile function Φ^{-1} of the standard normal distribution.

u	0.5	0.9	0.95	0.99	0.999	0.9999
$\Phi^{-1}\left(u\right)$	0	1.281552	1.644854	2.326348	3.090232	3.719016

• See the next page for values of actuarial functions.

Valeurs de \overline{A}_x et \overline{a}_x ($\delta=0.02,\,0.03,\,0.04$ et $\mu_x=0.00004\times 1.1^x)$

• Dan	ns l'ordre: x	$; \overline{A}_{x @ \delta = 0.02}$	$\overline{A}_{x @ \delta=0.03}$	$\overline{A}_{x @ \delta = 0.04}$	\overline{a}_x @ $\delta=0.02$ \overline{a}_x	$c @ \delta = 0.03 \overline{a}_x @ \delta = 0.04$
• 30	0.4127000	0.2726145	0.1838682	29.36500	24.246184	20.403294
• 31	0.4206056	0.2803791	0.1907650	28.96972	23.987363	20.230874
• 32	0.4286344	0.2883329	0.1978884	28.56828	23.722238	20.052791
• 33	0.4367857	0.2964776	0.2052427	28.16071	23.450747	19.868931
• 34	0.4450591	0.3048149	0.2128325	27.74705	23.172838	19.679187
• 35	0.4534536	0.3133460	0.2206619	27.32732	22.888465	19.483453
• 36	0.4619681	0.3220722	0.2287346	26.90160	22.597593	19.281634
• 37	0.4706012	0.3309940	0.2370544	26.46994	22.300198	19.073639
• 38	0.4793514	0.3401120	0.2456246	26.03243	21.996266	18.859386
• 39	0.4882166	0.3494261	0.2544480	25.58917	21.685797	18.638801
• 40	0.4971947	0.3589360	0.2635271	25.14027	21.368801	18.411822
• 41	0.5062830	0.3686408	0.2728642	24.68585	21.045307	18.178396
• 42	0.5154786	0.3785393	0.2824607	24.22607	20.715356	17.938483
• 43	0.5247782	0.3886298	0.2923177	23.76109	20.379007	17.692058
• 44	0.5341782	0.3989099	0.3024357	23.29109	20.036335	17.439108
• 45	0.5436746	0.4093769	0.3128145	22.81627	19.687437	17.179638
• 46	0.5532627	0.4200272	0.3234533	22.33686	19.332425	16.913668
• 47	0.5629378	0.4308569	0.3343505	21.85311	18.971436	16.641238
• 48	0.5726946	0.4418612	0.3455037	21.36527	18.604626	16.362407
• 49	0.5825271	0.4530348	0.3569098	20.87364	18.232175	16.077256
• 50	0.5924293	0.4643714	0.3685646	20.37853	17.854286	15.785886
• 51	0.6023944	0.4758644	0.3804631	19.88028	17.471187	15.488422
• 52	0.6124152	0.4875061	0.3925994	19.37924	17.083130	15.185015
• 53	0.6224841	0.4992882	0.4049664	18.87580	16.690395	14.875840
• 54	0.6325929	0.5112014	0.4175561	18.37035	16.293286	14.561099
• 55	0.6427331	0.5232359	0.4303592	17.86335	15.892136	14.241020

- $\bullet \ 56 \quad 0.6528956 \quad 0.5353809 \quad 0.4433655 \quad 17.35522 \quad 15.487302 \quad 13.915862$
- $\bullet \ 57 \quad 0.6630708 \quad 0.5476248 \quad 0.4565636 \quad 16.84646 \quad 15.079172 \quad 13.585911$
- $\bullet \ 58 \quad 0.6732489 \quad 0.5599553 \quad 0.4699408 \quad 16.33756 \quad 14.668158 \quad 13.251480$
- $\bullet \ 59 \quad 0.6834194 \quad 0.5723591 \quad 0.4834834 \quad 15.82903 \quad 14.254697 \quad 12.912914$
- $\bullet \ 60 \quad 0.6935716 \quad 0.5848223 \quad 0.4971765 \quad 15.32142 \quad 13.839256 \quad 12.570587$
- Interpolation : pour $x \in \{30, 31, ..., 60\}$ et $s \in [0, 1]$,

$$\overline{A}_{x+s} = (1-s) \times \overline{A}_x + s \times \overline{A}_{x+1}$$
 et $\overline{a}_{x+s} = (1-s) \times \overline{a}_x + s \times \overline{a}_{x+1}$

• Relations : $\overline{A}_x = \overline{A}_{1 \atop x:t|} + v^t t p_x \overline{A}_{x+t}$ et $\overline{a}_x = \overline{a}_{x:t|} + v^t t p_x \overline{a}_{x+t}$