```
2019320139 최윤지
#1-1
1) Creat an ADT, Set
ADT Set is
    objects: a group with zero or more elements that meet certain conditions
   functions:
       for all set, set1, set2 \in Set, item \in element
Set Create() ::==
          create an empty set and return
Set Insert(set, item) ::==
         if(IsIn(set, item)) return set
          else insert item into set and return set
Set Remove(set, item) ::==
         if(IsIn(set, item)) remove item from set and return set
          else return set
Boolean IsIn(set, item) ::==
         if(item ∈ set) return TRUE
         else return FALSE
Set Union(set1, set2) ::==
          create an set with elements that either set1 or set2 have
Set Intersection(set1, set2) ::==
         create an set with elements that both set1 and set2 have
Set Difference(set1, set2) ::==
         if(set1 is empty set) return empty set
          else create an set with elements that set1 have but set2 doesn't have
2) Create an ADT, Bag
ADT Bag is
      objects: a group with zero or more elements that meet certain conditions
             and be able to be duplicate
      functions:
         for all bag \in Bag, item \in element
Bag Create() ::==
```

create an empty bag and return

```
Bag Insert(bag, item) ::==
    insert item into bag and return

Bag Remove(bag, item) ::==
    if(IsIn(bag, item)) remove item from bag and return bag
    else return bag

Boolean IsIn(bag, item) ::==
    if(item ∈ bag) return TRUE
    else return FALSE
```

#1-2 step count table

Statement	s/e	Frequency	Total steps
void multi(int a[][MAX_SIZE], int b[][MAX_SIZE], int c[][MAX_SIZE])	0	0	0
{	0	0	0
int i, j, k;	0	0	0
for(i=0: i <max_size:i++){< td=""><td>1</td><td>MAX_SIZE+1</td><td>MAX_SIZE+1</td></max_size:i++){<>	1	MAX_SIZE+1	MAX_SIZE+1
$for(j=0; j$	1	MAX_SIZE×(MAX_SIZE+1)	MAX_SIZE×(MAX_SIZE+1)
c[i][j] = 0;	1	MAX_SIZE×MAX_SIZE	MAX_SIZE×MAX_SIZE
for($k=0$: $k; k++){$	1	MAX_SIZE×MAX_SIZE×(MAX_SIZE+1)	MAX_SIZE×MAX_SIZE×(MAX_SIZE+1)
c[i][j] += a[i][k]*b[k][j];	1	MAX_SIZE×MAX_SIZE×MAX_SIZE	MAX_SIZE×MAX_SIZE MAX_SIZE
}	0	0	0
}	0	0	0
}	0	0	0
}	0	0	0
Total	$2(MAX_SIZE)^3 + 3(MAX_SIZE)^2 + 2MAX_SIZE + 1$		

#1-3

Show that the following statements are incorrect

1)
$$10n^2 + 9 = O(n)$$

For every positive c, $10n^2 + 9 \ge cn$ when $n \ge \frac{c}{10}$.

So, there don't exist c and n_0 that satisfy $10n^2+9 \le cn$ for all $n, n \ge n_0$. $\therefore 10n^2+9 \ne O(n)$

$$2) n^2 \log n = \Theta(n^2)$$

For every positive $c,\; n^2{\log n} \ge cn^2$ when $n \ge 2^c$

So, there don't exist c_2 and n_0 that satisfy $c_1 n^2 \leq n^2 \log n \leq c_2 n^2$ for all n,

$$n \geq n_0$$
.

$$\therefore n^2 \log n \neq \Theta(n^2)$$

3)
$$n^2/\log n = \Theta(n^2)$$

For every positive c, $n^2/\log n \le cn^2$ when $n \ge 2^{\frac{1}{c}}$.

So, there don't exist c_1 and n_0 that satisfy $c_1 n^2 \le n^2/\log n \le c_2 n^2$ for all n, $n \ge n_0$.

$$\therefore n^2/\log n \neq \Theta(n^2)$$

4)
$$n^3 2^n + 6n^2 3^n = O(n^2 2^n)$$

For every positive $c,\ n^32^n+6n^23^n \geq cn^22^n$ when $n \geq c-6$

So, there don't exist c and n_0 that satisfy $n^32^n+6n^23^n \leq cn^22^n$ for all n, $n \geq n_0$

$$n^3 2^n + 6n^2 3^n \neq O(n^2 2^n)$$

5)
$$3^n = O(2^n)$$

For every positive c, $3^n \ge c \cdot 2^n$ when $n \ge \log_{\frac{3}{2}} c$

So, there don't exist c and n_0 that satisfy $3^n \leq c \cdot 2^n$ for all n, $n \geq n_0$.

$$\therefore 3^n \neq O(2^n)$$