Mata Kuliah : Sistem Operasi

Kode MK : IK393330

6

Penjadualan CPU

Tim Teaching Grant Mata Kuliah Sistem Operasi

Made Agung Raharja., M.Cs

Mengetahui konsep dari Manajemen Proses

Pengalaman Belajar:

 Menjelaskan tentang manajemen proses antara lain penjadwalan (FCFS, SJF, RR),

 Mahasiswa mampu memahami dan menjelaskan tentang manajemen penjadwalan CPU.

Penjadualan CPU

- Konsep Dasar
- Kriteria Penjadualan
- Algoritma Penjadualan
- Evaluasi Algorithm

- Algoritma scheduling:
 - Memilih dari proses-proses yang berada di memori (ready to execute) dan memberikan jatah CPU ke salah satu proses tersebut.
- Kapan keputusan untuk algoritma dilakukan:
 - Saat suatu proses:
 - 1. Switch dari status running ke waiting.
 - 2. Switch dari status running ke ready.
 - 3. Switch dari status waiting ke ready.
 - 4. Terminates.
 - Penjadualan 1 dan 4 termasuk nonpreemptive
 - Penjaudualan lainnya termasuk preemptive

- Preemptive: OS dapat mengambil (secara interrupt, preempt) CPU dari satu proses setiap saat.
- Non-preemptive: setiap proses secara sukarela (berkala) memberikan CPU ke OS.
- Contoh:
 - Penjadualan untuk switch dari running ke wait atau terminate: non-preemptive.
 - Penjadualan proses dari running ke ready: pre-emptive.
 - Prasyarat untuk OS real-time system.

- Utilisasi CPU: menjadikan CPU terus menerus sibuk (menggunakan CPU semaksimal mungkin).
- Throughput: maksimalkan jumlah proses yang selesai dijalankan (per satuan waktu).
- Turn around time: minimalkan waktu selesai eksekusi suatu proses (sejak di submit sampai selesai).
- Waiting time: minimalkan waktu tunggu proses (jumlah waktu yang dihabiskan menunggu di ready queue).
- Response time: minimalkan waktu response dari sistim terhadap user (interaktif, time-sharing system), sehingga interaksi dapat berlangsung dengan cepat.

- Memaksimumkan utilisasi CPU
- Memaksimumkan throughput
- Meminimukan turnaround time
- Meminimumkan waiting time
- Meminimumkan response time

- First-come, first-served (FCFS)
- Shortest-Job-First (SJF)
- Priority
- Round-Robin (RR)

First-Come, First-Served (FCFS)

Algoritma:

- Proses yang request CPU pertama kali akan mendapatkan jatah CPU.
- Sederhana algoritma maupun struktur data: menggunakan FIFO queue (ready queue).

FIFO: Non preemptive

- Timbul masalah "waiting time" terlalu lama jikadidahului oleh proses yang waktu selesainya lama.
 - Tidak cocok untuk time-sharing systems.
 - Digunakan pada OS dengan orientasi batch job.

FCFS (Cont.)

 Diketahui proses yang tiba adalah P₁, P₂, P₃. Gant chartnya adalah :

- Waiting
- Average waiting time: (0 + 24 + 27)/3 = 17

FCFS (Cont.)

Diketahui proses yang tiba adalah P₂, P₃, P₁.
 Gant chart-nya adalah :

- Waiting time untuk P1 = 6; P2 = 0; P3 = 3
- Average waiting time: (6 + 0 + 3)/3 = 3
 - Lebih baik dari kasus sebelumnya
- Convoy effect proses yang pendek diikuti proses yang panjang

- Penggabungan setiap proses merupakan panjang dari burst CPU berikutnya. Panjang tersebut digunakan untuk penjadualan proses pada waktu terpendek
- Terdapat 2 skema :
 - nonpreemptive CPU hanya satu kali diberikan pada suatu proses, maka proses tersebut tetap akan memakai CPU hingga proses tersebut melepaskannya
 - preemptive –jika suatu proses tiba dengan panjang CPU burst lebih kecil dari waktu yang tersisa pada ekseksusi proses yang sedang berlangsung, maka dijalankan preemtive. Skema ini dikenal dengan Shortest-Remaining-Time-First (SRTF).
- SJF akan optimal, keteika rata-rata waktu tunggu minimum untuk set proses yang diberikan

Process Arrival Time Burst Time

 P_1 0.0
 7

 P_2 2.0
 4

 P_3 4.0
 1

 P_4 5.0
 4

SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Contoh Preemptive SJF

<u>Process</u>	Arrival	TimeBurst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

SJF (preemptive)

• Average waiting time = (9 + 1 + 0 + 2)/4 = 3

- Algoritma:
 - Setiap proses akan mempunyai prioritas (bilangan integer).
 - CPU diberikan ke proses dengan prioritas tertinggi (smallest integer of highest priority).
 - Preemptive: proses dapat di interupsi jika terdapat prioritas lebih tinggi yang memerlukan CPU.
 - Nonpreemptive: proses dengan prioritas tinggi akan mengganti pada saat pemakain time-slice habis.
 - SJF adalah contoh priority scheduling dimana prioritas ditentukan oleh waktu pemakaian CPU berikutnya.
- Problem = Starvation
 - Proses dengan prioritas terendah mungkin tidak akan pernah dieksekusi
 - Solution = Aging
 - Prioritas akan naik jika proses makin lama menunggu waktu jatah CPU.

PROSES	BRUST TIME	WKT KEDATANGAN	PRIORITY
P1	9	0	3
P2	6	1	2
P3	3	2	1

Gant Chart:

Waiting Time P1 = 0 + (10 - 1) = 9 | P2 = 0 + (5 - 2) = 3 | P3 = 0
Average Waiting Time =
$$\frac{9 + 3 + 0}{3}$$
 4

Turn Around Time P1 =
$$\frac{18}{18}$$
 | P2 = $\frac{10}{10}$ | P3 = $\frac{5}{10}$ = $\frac{3}{10}$

Average Turn Arround Time =
$$\frac{18 + 9 + 3}{3}$$
 10

PROSES	BRUST TIME	WKT KEDATANGAN	PRIORITY
P1	9	0	3
P2	6	1	2
P3	3	2	1

Gant Chart:

Waiting Time P1 = 0 | P2 =
$$(12-1)$$
 = 11 | P3 = $(9-2)$ = 7
Average Waiting Time = $\frac{0+11+7}{3}$ = 6

Turn Around Time P1 = 9 | P2 =
$$18-1 = 17$$
 | P3 = $12-2 = 10$

Average Turn Arround Time =
$$\frac{9 + 17 + 10}{3}$$
 12

CONTOH

Proses	AT	BT	Size (kb)
P1	0	10	100
P2	2	8	150
P3	3	12	175
P4	5	5	100

Round Robin (RR)

- Setiap proses mendapat jatah waktu CPU (time slice/quantum) tertentu misalkan 10 atau 100 milidetik.
 - Setelah waktu tersebut maka proses akan di-preempt dan dipindahkan ke ready queue.
 - Adil dan sederhana.
- Jika terdapat n proses di "ready queue" dan waktu quantum q (milidetik), maka:
 - Maka setiap proses akan mendapatkan 1/n dari waktu CPU.
 - Proses tidak akan menunggu lebih lama dari: (n-1) q time units.
- Performance
 - q besar ⇒ FIFO
 - q kecil $\Rightarrow q$ harus lebih besar dengan mengacu pada context switch, jika tidak overhead akan terlalu besar

<u>Process</u>	Burst Time
P_1	53
P_2	17
P_3	68
P_4	24

Gantt Chart

 Tipikal: lebih lama waktu rata-rata turnaround dibandingkan SJF, tapi mempunyai response terhadap user lebih cepat.

Latihan Soal...

PROSE S	BURST TIME	PRIORITY	WKT KEDATANGAN
P1	10	3	0
P2	4	1	2
P3	5	2	4

Gambar Gant Chart dan Tentukan Avg. Waiting Time serta Avg. Turn Arround Time dari ketiga proses di atas dengan algoritma :

- a) FCFS
- b) SJF (preemptive)
- c) Round-Robin, q = 2
- d) Round-Robin, q = 5
- e) Priority (preemptive)

Waktu Kuantum dan Waktu Context Switch

- Algortima penjadwalan yang terdiri atas Firstcome, first-served (FCFS), Shortest-Job-First (SJF), Priority dan Round-Robin (RR) merupakan beberapa algoritma yang digunakan dalam suatu sistem operasi.
- Setiap model algoritma penjadwalan memiliki kelebihan dan kekurangan masing-masing tergantung kasus yang diguanakan.

Q & A

