

Instituto Federal de Ciências, Tecnologia e educação de Santa Catarina – IFSC.

Amplificadores Operacionais-AMPOP

Prof°: Luis Carlos Martinhago Schlichting.

Aluno: Marcelo Brancalhão Gaspar.

Introdução.

Neste relatório será apresentado dois tipos de ampop's: 741 e 324. Mostrando como trabalhar com os circuito somador, circuito integrador e circuito derivador. O relatório será constituído em três etapas: introdução teórica, simulação (utilizando o Protheus), montagem e conclusão com análise dos resultados e explicação das diferenças entre a teoria, simulação e prática em cada experimento.

OBJETIVOS

- Analisar, projetar e montar amplificadores operacionais: somador, derivador e integrador.
- > Analisar teoria, simulação e prática.
- > Otimizar o conhecimento na utilização do osciloscópio digital.
- > Analisar as formas de onda de saída e entrada do circuito.
- > Entender melhor o funcionamento dos somadores.
- > Entender a aplicação do somadores.

Etapa 1: Introdução Teórica

Um amplificador operacional ideal possui um ganho muito elevado e é suposto que a resistência de entrada seja infinita e que a impedância de saída igual a zero. Em situações práticas, a característica de transferência de um amplificador permanece linear apenas em uma faixa limitada de tensões de entrada e saída, além da variação do ganho em função da frequência do sinal de entrada. Além dessas restrições de ordem prática, pode existir um desbalanceamento no estágio de entrada do amplificador operacional que leva ao surgimento de uma tensão DC na saída. Para a eliminação da tensão DC na saída (chamada de tensão de off set), os amplificadores operacionais tem em geral pinos adicionais que podem ser utilizados para evitar esse problema. Uma outra maneira é através da implementação da configuração somadora, onde adiciona-se uma tensão DC na entrada tal que a saída sem sinal seja de zero volts DC.

As características de um amplificador operacional são:

- Alta resistência de entrada Ideal infinita. Na prática na ordem de 10 $M\Omega$;
- Baixa resistência de saída Ideal nula. Na prática na ordem de 75 Ω;
- Alto ganho Ideal infinito. Na prática na ordem de 200.000;
- Alta resposta em frequência Ideal de 0 ao infinito. Na prática se opta por tipos com resposta bastante acima da frequência, na qual, irão operar para dar uma aproximação do ideal;
- Tempo de resposta Ideal zero. Na prática varia de 0,25 a 0,8 μs;
- Insensibilidade à temperatura Ideal invariável. Na prática sua variação é quase que estável.
- Relação de Rejeição em Modo Comum (CMRR) Ideal infinito, ou seja, o AMPOP tem sua saída nula se as entradas são iguais. Na prática, há sempre uma pequena saída com as entradas iguais, condição esta chamada de modo comum. A condição usual, com tensões de entrada diferentes é chamada modo diferencial. E o parâmetro é dado pela relação, expressa em decibéis, dos ganhos em ambas condições CMRR=20 log |A_d/A_{cm}|.

O AMPOP possui entrada diferencial (duas entradas), na qual a amplificação ocorre a partir da diferença das duas entradas.

A Figura 1 mostra o símbolo mais utilizado do AMPOP, que é um triângulo, tendo duas entradas e no vértice uma saída.

Figura 1 – Símbolo do Amplificador Operacional

Amplificador Somador:

A configuração somadora também pode ser utilizada para somar sinais de entrada como apresentado na figura 2.

Na figura 2, o sinal de saída do amplificador é a soma dos sinais de entrada v1, v2 e v3. A expressão do sinal de saída é dado por:

Levando em conta que:

E supondo que Va≈ 0, chega-se a seguinte relação entrada saída para o amplificador somador.

OBS: (Rf=R5)

$$V_{O} = -\sum_{i=1}^{n} \left(\frac{R_{f}}{R_{i}} V_{i} \right) = -\left(\frac{R_{f}}{R_{1}} V_{1} + \frac{R_{f}}{R_{2}} V_{2} + \frac{R_{f}}{R_{3}} V_{3} + \dots + \frac{R_{f}}{R_{n}} V_{n} \right)$$

Circuito integrador:

o Circuito integrador é um circuito que executa a operação de integração, que é semelhante a de soma, um vez que constitui uma soma da área sob a forma de onda ou curva em um período de tempo. Se uma tensão fixa for aplicada como entrada para um circuito integrador, a tensão de saída cresce sobre o período de tempo, fornecendo uma tensão em forma de rampa. A equação característica do integrador mostra que a rampa de tensão de saída (para uma tensão de entrada fixa) é oposta em polaridade a tensão de entrada e é multiplicada pelo fato 1/RC.

Figura 3(esquemático de um ampop integrador genético.)

$$I1=V1/R1$$

$$Ic=C.(d\ Vc(t)/D\ t)$$

$$I1+Ic=I-$$

$$I1+Ic=0$$

$$I1=-Ic$$

$$Ve(t)/R1=-C.(D\ Vc(t)/D\ t)$$

$$Ve(t)/R1.C=-(D\ Vs(t)/D\ t)$$

$$D\ Vs(t)=(-1/R1.C).\ Ve(t).D\ t$$

$$Vs(t)=(-1/R1.C)\ Vc(t)\ D\ t$$

Exemplo para melhor compreensão do funcionamento e comportamento de um ampop integrador;

Determine Vs(t):

Figura 4(exemplo integrador)

Sabendo que:

Figura 5(dados para exemplo de integrador.)

Resolução do exemplo;

Figura 6(resolução gráfica do exemplo.)

$$5m - 15m$$

$$Vs(t) = (-1/-Ri.C) \int 4 D t$$

$$Vs(t) = (-1/R1.C).4t$$

$$Vs(15m) = (1/-5.10^3*1.10^-6)*4.10^-3$$

$$Vs(15m) = -8V$$

Circuito Derivador:

O circuito do derivador é apresentado na figura 7. A corrente no capacitor é determinada pela variação de tensão sobre ele. Esta corrente, ao passar por R1 produz na saída do circuito uma tensão proporcional a derivada da tensão de entrada.

Figura 7(esquemático genérico de uma ampop derivador)

Ic=I1
Ic=c.D Vc(t)/D t
I1=Vs/R1
Ic+I1=1Ic=-I1

Vs(t)=-R.C D Vc(t)/D t

Exemplo para melhor compreensão do funcionamento e comportamento de um ampop derivador;

Determine Vs:

Figura 8(exemplo de derivador)

Sabendo que:

Figura 9(dados para resolução do exemplo de derivador.)

Resolução do exemplo;

Figura 10(resolução grafico do exemplo de um ampop derivador.)

É possível notar analisando o exemplo de integrador e derivado, as resoluções gráficas dos mesmos e as figuras 5,6, 9 e 10. Que quando se mantem o mesmo intervalo de tempo no caso 10 um torna se o inverso da outra e isso é algo muito fácil de ser compreendido para quem tem um pouco de conhecimento de calculo aplicado. Uma integral também pode ser chamada de antiderivada e isso claramente quer dizer que uma derivada é o inverso de uma integral, quando se integra uma função e em seguia a deriva obtemos a mesma função e é isso que ocorre nos exemplos de derivador e integrador.

Etapa 2: introdução teórica, simulação (utilizando o Protheus), montagem e análise dos resultados.

Este experimento de somador será utilizando um circuito integrado LM324 com demostração dos resultados teórico, simulação e pratica.

Mudando a configuração das entradas vamos descobrir Vs para todas as possibilidades pedidas nos para o experimento.

Com V1=0V, V2=0V, V3=0V e V4=0V. (esquematizado na figura 11)

Figura11(1°simulação circuito somador.)

Vs = 0V como mostra a figura 12.

Figura12 (imagem do osciloscópio virtual,1° circuito somador.)

Figura 13(imagem do osciloscópio digital na pratica. 1° circuito somador.)

No 1° experimento foi comprovado que a teoria neste caso é igual a pratica, podemos comprovar este fato observando as figuras 11, 12 e 13. Os dois resultados obtidos foram iguais

Com V1=1V, V2=0V, V3=0V e V4=0V. (esquematizado na figura 14)

Figura14(2°simulação circuito somador.)

Vs = -1V como mostra a figura 15.

Figura15 (imagem do osciloscópio virtual, 2° circuito somador.)

Figura 16(imagem do osciloscópio digital na pratica. 2° circuito somador.)

No 2° experimento foi comprovado que a teoria neste caso é igual a pratica, podemos comprovar este fato observando as figuras 14, 15 e 16. Os dois resultados obtidos foram iguais. Como no 1° experimento.

Com V1=0V, V2=1V, V3=0V e V4=0V. (esquematizado na figura 17)

Figura17(3°simulação circuito somador.)

Vs = -2V como mostra a figura 18.

Figura 18 (imagem do osciloscópio virtual, 3° circuito somador.)

Figura 19(imagem do osciloscópio digital na pratica. 3° circuito somador.)

No 3° experimento foi comprovado que a teoria neste caso é igual a pratica, podemos comprovar este fato observando as figuras 17, 18 e 19. Os dois resultados obtidos foram iguais. Como no 1° e 2° experimento.

Com V1=1V, V2=1V, V3=0V e V4=0V. (esquematizado na figura 20)

Vs = -3V como mostra a figura 21.

Figura21 (imagem do osciloscópio virtual, 4° circuito somador.)

Figura 22 (imagem do osciloscópio digital na pratica. 4° circuito somador.)

No 4° experimento foi comprovado que a teoria neste caso é igual a pratica, podemos comprovar este fato observando as figuras 20, 21 e 22. Os dois resultados obtidos foram iguais. Como no 1°, 2° e 3° experimento.

Com V1=0V, V2=0V, V3=1V e V4=0V. (esquematizado na figura 23)

Figura23 (5°simulação circuito somador.)

Vs = -4V como mostra a figura 24.

Figura24 (imagem do osciloscópio virtual, 5° circuito somador.)

Figura 25 (imagem do osciloscópio digital na pratica. 5° circuito somador.)

No 5° experimento foi comprovado que a teoria neste caso é igual a pratica, podemos comprovar este fato observando as figuras 23, 24 e 25. Os dois resultados obtidos foram iguais. Como no 1°, 2°, 3° e 4° experimento.

Com V1=1V, V2=0V, V3=1V e V4=0V. (esquematizado na figura 26)

Figura 26 (6° simulação circuito somador.)

Vs = -5V como mostra a figura 25.

Figura 27 (imagem do osciloscópio virtual, 6° circuito somador.)

Figura 28 (imagem do osciloscópio digital na pratica. 6° circuito somador.)

No 6° experimento foi comprovado que a teoria não é igual a pratica, podemos comprovar este fato observando as figuras 26, 27 e 28. Os dois resultados obtidos foram parecidos mas não iguai. Na simulação foi encontrado Vs=-5V e na pratica Vs=-5,2V.

Com V1=0V, V2=1V, V3=1V e V4=0V. (esquematizado na figura 29)

Figura29 (7°simulação circuito somador.)

Vs = -6V como mostra a figura 30.

Figura 30 (imagem do osciloscópio virtual, 7° circuito somador.)

Figura 31 (imagem do osciloscópio digital na pratica. 7° circuito somador.)

No 7° experimento foi comprovado que a teoria não é igual a pratica, podemos comprovar este fato observando as figuras 29, 30 e 31. Os dois resultados obtidos foram parecidos mas não iguai. Na simulação foi encontrado Vs=-6V e na pratica Vs=-6,20V.

Com V1=1V, V2=1V, V3=1V e V4=0V. (esquematizado na figura 32)

Figura 32 (8°simulação circuito somador.)

Vs = -7V como mostra a figura 33.

Figura 33 (imagem do osciloscópio virtual, 8° circuito somador.)

Figura 34 (imagem do osciloscópio digital na pratica. 8° circuito somador.)

No 8° experimento foi comprovado que a teoria não é igual a pratica, podemos comprovar este fato observando as figuras 32, 33 e 34. Os dois resultados obtidos foram parecidos mas não iguai. Na simulação foi encontrado Vs=-7V e na pratica Vs=-7,20V.

Com V1=0V, V2=0V, V3=0V e V4=1V. (esquematizado na figura 35)

Vs = -8V como mostra a figura 36.

Figura 36 (imagem do osciloscópio virtual, 9° circuito somador.)

Figura 37 (imagem do osciloscópio digital na pratica. 9° circuito somador.)

No 9° experimento foi comprovado que a teoria não é igual a pratica, podemos comprovar este fato observando as figuras 35, 36 e 37. Os dois resultados obtidos foram parecidos mas não iguai. Na simulação foi encontrado Vs=-8V e na pratica Vs=-8,48V.

Com V1=1V, V2=0V, V3=0V e V4=1V. (esquematizado na figura 36)

Figura 37 (10° simulação circuito somador.)

Vs = -9V como mostra a figura 38.

Figura 38 (imagem do osciloscópio virtual, 10° circuito somador.)

Figura 39 (imagem do osciloscópio digital na pratica. 10° circuito somador.)

No 10° experimento foi comprovado que a teoria não é igual a pratica, podemos comprovar este fato observando as figuras 37, 38 e 39. Os dois resultados obtidos foram parecidos mas não iguai. Na simulação foi encontrado Vs=-9V e na pratica Vs=-9,36V.

Resumo dos resultados encontrados com o ampop somador utilizando o lm324.

V1	V2	V3	V4	Vs (simulação)	Vs (experimento)
0V	0V	0V	0V	0V	0V
1V	0V	0V	0V	-1V	-1V
0V	1 V	0V	0V	-2V	-2V
1V	1V	0V	0V	-3V	-3V
0V	0V	1V	0V	-4V	-4V
1V	0V	1V	0V	-5V	-5,20V
0V	1V	1V	0V	-6V	-6,20V
1V	1V	1V	0V	-7V	-7,20V
0V	0V	0V	1 V	-8V	-8,48V
1 V	0V	0V	1V	-9V	-9,36V

Este experimento integrador será utilizando um circuito integrado LM741 para demostrar o funcionamento do circuito variando a sua frequência e explicando o comportamento do integrador.

Figura40(simulação do ampop741 integrador.)

Figura 41(comportamento de um ampop integrador no osciloscópio virtual.)

Figura 42 (comportamento de um ampop integrador no osciloscópio digital.)

Este ampop integrador está com uma frequência alta igual a 5 KHz com um entrada quadrada (amarelo). Podemos notar que o ampop tente a saturar como é de costume para Vcc ou Vee entretanto como a frequência é muito alta ele não tem tempo o bastante para permanecer em Vcc ou Vee e fica oscilando entre eles, também podemos notar que entre o tempo que ele leva para sua saturação sua onda não é reta isso é devido ao uso de um capacitor no circuito e por característica é impossível ter uma onda reta. Agora na figura 43 iremos observar um integrador com uma frequência mais baixa e analisar seu comportamento.

Figura 43(comportamento de um ampop integrador no osciloscópio virtual.)

Figura 44 (comportamento de um ampop integrador no osciloscópio digital.)

Nestes gráficos das figuras 43 e 44 comprovam que o ampop integrador satura entretanto com uma frequência mais alta ele não tempo o suficiente para permanecer neste estado e com um frequência mais baixa claramente ele tem tempo suficiente para notarmos com clareza a sua saturação.

Este experimento derivador será utilizando um circuito integrado LM741 para demostrar o funcionamento do circuito variando a sua frequência e explicando o comportamento do derivador.

Figura 45(esquemático de um ampop derivador)

Figura 46(comportamento de um ampop derivador no osciloscópio virtual.)

Figura 47(comportamento de um ampop derivador no osciloscópio digital.)

Podemos notar que o comportamento do derivador com frequência baixa de 200Hz do inverso do comportamento do integrador, mas observar o que ocorre com o derivador em um frequência alta.

Figura 48(comportamento de um ampop derivador no osciloscópio virtual.)

Figura 49 (comportamento de um ampop derivador no osciloscópio digital.)

É possível observar que o derivador em frequência alta é o integrador em frequência baixa é isto é um fato, a matemática nos prova isso a derivada é o inverso da integral e a integral e o inverso da derivada é o que está acontecendo com o ampop 741 nesse estudo.

Conclusão

Este relatório proporcionou a compreensão de trabalhar com os ampop's integrador, derivador e somador. Todos os objetivos traçados no inicio do relatório foram alcançados com êxito, a compreensão teórica, pratica e de simulação, apenas com pouca dificuldade do entendimento teórica do somador, entretanto sanado durante a execução do relatório.

Sobre a prática não houve qualquer problema na montagem dos circuitos, todos foram montados e funcionaram como visto no relatório.

Anexos

Lm741

LM741

www.tt.oom

SNOSC258 -MAY 2004 - REVISED OCTOBER 2004

LM741 Operational Amplifier

Check for Samples: LM741

DESCRIPTION

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

Connection Diagram

LM741H is available per JM38510/10101

Figure 1. Metal Can Package

Figure 2. Dual-In-Line or \$.O. Package

Figure 3. Ceramic Flatpak

Figure 4. Offset Nulling Circuit

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1) (2)

	LM741A	LM741	LM741C		
Supply Voltage	±22V	±22V	±18V		
Power Dissipation (3)	500 mW	500 mW	500 mW		
Differential Input Voitage	±30V	±30V	±3DV		
Input Voltage (4)	±15V	±15V	±15V		
Output Short Circuit Duration	Continuous	Continuous	Continuous		
Operating Temperature Range	-55°C to +125°C	-55°C to +125°C	0°C to +70°C		
Storage Temperature Range	-65°C to +150°C	-65°C to +150°C	-65°C to +150°C		
Junction Temperature	150°C	150°C	100°C		
Soldering Information	5.000	7774777			
N-Package (10 seconds)	260°C	260°C	260°C		
J- or H-Package (10 seconds)	300°C	300°C	300°C		
M-Package	40 000000		0.000		
Vapor Phase (60 seconds)	215*C	215°C	215°C		
Infrared (15 seconds)	215*C	215°C	215°C		
See AN-450 "Surface Mounting Methods and	d Their Effect on Product Reliability*	for other methods of soldering			
surface mount devices.	0.5	- 5)	0		
ESD Tolerance (5)	400V	400V	400V		

 [&]quot;Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
 For military specifications see RETS741X for LM741 and RETS741AX for LM741A.
 For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_j max. (listed under "Absolute Maximum Ratings"). T_j = T_A + (θ_A P_D).
 For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
 Human body model, 1.5 kΩ in series with 100 pF.

Parameter	Conditions		LM741			LM741C			Units		
		Min	Тур	Max	Min	TVD	Max	Min	Тур	Max	8
Input Offset Voltage	T _A = 25°C			C. C. STOCK							
	R _S ≤ 10 kΩ			-	000	1.0	5.0	-	2.0	6.0	mV
	R ₈ ≤ 50Ω	7.6	0.8	3.0	200	7	2 3	× 5	- 00		mV
	TAMIN STASTAMAX	1		(8	ŝ	8 - 3	6 8	- 3	Max	8
	R ₈ ≤ 50Ω			4.0							mV
7	R ₆ ≤ 10 kΩ	\$	*		(c)		6.0		-	7.5	mV
Average Input Offset		3	1	15	8	5 - 1	3	3	- 3	14440	uv/*
Voltage Drift	4				-			-			
Input Offset Voltage	T _A = 25°C, V _S = ±20V	±10	* = 1	Ċ.	(0)	±15	9		±15		mV
Adjustment Range				8	8	-	1	3			85
Input Offset Current	T _A = 25°C		3.0	30	-	20	200	-	20	200	nA
100	TAMIN = TA = TAMAX	*	*	70	(d)	85	500		-		nΑ
Average Input Offset	'AND TABLE	18		0.5	10			8 8	- 8		nA/*0
Current Drift	48	-		- 515	-	1	2	-	-		
Input Blas Current	T ₄ = 25°C	*	30	80	60	80	500	9	80	500	пA
mper cross serious	TAMIN S TA S TAMAX	18		0.210	0	-	1.5	1 3	- 2	-	uA
Input Resistance	T _A = 25°C, V _S = ±20V	1.0	6.0	0.210	0.3	2.0		0.3	2.0	0.8	MΩ
input recording	TAMIN S TA S TAMAX	0.5	200	9	0.0		2 3	0.0			MΩ
	Vs = ±20V	1			22	8	8 3	8 3	- 2		(A)
Input Voltage Range	T _A = 25°C	200	8 3	8	100		2	±12	+13		V
mpar rounge manage	TAMIN S TA S TAMAX	*	*	9	±12	±13	7	7:5			V
Large Signal Voltage Gain	T _A = 25°C, R _L ≥ 2 kΩ	1	9	ž	-	2	8 3	8 8	- 3		
20030 000000	V ₈ = ±20V, V _O = ±15V	50						1	±13	V/mV	
	V ₈ = ±15V, V _O = ±10V	-			50	200		20	200		V/mV
	TAMIN S TA S TAMAX.	34	8 9	Ŕ	-		2 3	2 3	-		55
	$R_{L} \ge 2 k\Omega$	76	3 3	6	8	5 1	8 3	6 3	- 3		8
	V ₈ = ±20V, V _O = ±15V	32	- 3		200		5 3	8 2	- 83		V/m\
	Vs = ±15V, Vo = ±10V	1	6 5	Ŕ	25	7	5 3	15	100		V/m\
	V ₈ = ±5V, V _O = ±2V	10	3	6	8	5 1	8 3		- 3		V/mV
Output Voltage Swing	V ₈ = ±20V	- 22			-		-	-	- 3		
output votage owing	R _L ≥ 10 kΩ	±16	÷ ÷	ė –	100		÷ +	0 0	- 4		V
	R _L ≥2 kΩ	±15	1	6	8	(6	8 3	3	- 3	7.5 200 300 0.8	٧
	V ₈ = ±15V	210	2 2	-	23	28	5 2	-	- 3		2
	R _L ≈ 10 kΩ	*	÷ ÷	ė –	±12	±14	<u> </u>	±12	+14		v
	R ₁ ≥ 2 kΩ	18	1 1	š	±10	±13	9 9	±10	±13		V
Output Short Circuit	T _A = 25°C	10	25	35		25	2	210	25		mA
Current	TAMIN S TA S TAMAX	10	-	40	(0)	20	÷ +	0 0			mA
Common-Mode	TAMIN S TA S TAMAX	10		70	0	82	8 9	8 8	- 3		1000
Rejection Ratio	Rs = 10 kΩ, V _{CM} = ±12V	× 2		-	70	90		70	90		dB
rejeveni reasv	R _S = 50Ω, V _{CM} = ±12V	80	95	9	10	54	7	10	30		dB
Supply Voltage Rejection	TAMIN S TA S TAMAX.	-	-	Š.	22	3		8 8	- 9		-
Ratio	V _S = ±20V to V _S = ±5V	28	6 8		(6)		1 2		- 3		(C)
Course of the Co	Rs ≤ 50Ω	86	96	1	100	-	7	9	- 6		dB
	R _S ≤ 10 kΩ	00	30	×.	77	96	9 9	77	96		dB
Transient Response	T ₄ = 25°C, Unity Gain	28	8 8	8	0.00	90	1 1	rr.	30	_	ub

LM741

Electrical Characteristics (1) (continued) Conditions LM741A LM741 LM741C Units Min Тур Max Min Typ Max Min Typ Max Rise Time 0.25 8.0 0.3 0.3 με Overshoot 6.0 20 5 5 % Bandwidth (2) TA - 25°C 0.437 1.5 MHz Slew Rate TA - 25°C, Unity Gain 0.3 0.7 0.5 0.5 V/µs TA - 25°C 1.7 2.8 1.7 Supply Current 2.8 mA Power Consumption TA - 25°C Vs - ±20V 80 150 mW V₈ = ±15V 50 85 50 85 mW LM741A V₈ - ±20V TA - TAMIN 165 mW 135 TA - TAMAX mW LM741 Vs - ±15V mW TA - TAMIN 60 100 45 75 mW TA - TAMAX

⁽²⁾ Calculated value from: BW (MHz) = 0.35/Rise Time(µs).

www.tl.oom Thermal Resistance	Cerdip (J)	DIP (N) SNO	9025 8149,64,814 004-R	EVISED &9004MB R 2004
θ _{IA} (Junction to Ambient)	100°C/W	100°C/W	170°C/W	195*C/W
θ _{jC} (Junction to Case)	N/A	N/A	25°C/W	N/A

Schematic Diagram

LM2902,LM324/LM324A,LM224/ LM224A

Quad Operational Amplifier

Features

- · Internally Frequency Compensated for Unity Gain
- Large DC Voltage Gain: 100dB
- Wide Power Supply Range: LM224/LM224A, LM324/LM324A : 3V~32V (or ±1.5 ~
 - LM2902: 3V~26V (or ±1.5V ~ 13V)
- Input Common Mode Voltage Range Includes Ground
 Large Output Voltage Swing. 0V to VCC -1.5V
- Power Drain Suitable for Battery Operation

Description

The LM324/LM324A,LM2902,LM224/LM224A consist of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide voltage range. Operation from split power supplies is also possible so long as the difference between the two supplies is 3 volts to 32 volts. Application areas include transducer amplifier, DC gain blocks and all the conventional OP-AMP circuits which now can be easily implemented in single power supply systems.

Internal Block Diagram

Schematic Diagram

(One Section Only)

Absolute Maximum Ratings

Parameter	Symbol	LM224/LM224A	LM324/LM324A	LM2902	Unit
Power Supply Voltage	Vcc	±16 or 32	±16 or 32	±13 or 26	٧
Differential Input Voltage	VI(DIFF)	32	32	26	V
Input Voltage	VI	-0.3 to +32	-0.3 to +32	-0.3 to +26	V
Output Short Circuit to GND Vcc≤15V, TA=25°C(one Amp)	RE .	Continuous	Continuous	Continuous	~
Power Dissipation, TA=25°C 14-DIP 14-SOP	PD	1310 640	1310 640	1310 640	mW
Operating Temperature Range	TOPR	-25 ~ +85	0~+70	-40 ~ +85	°C
Storage Temperature Range	TSTG	-65 ~ +150	-65 ~ +150	-65 ~ +150	°C

Thermal Data

Parameter	Symbol	Value	Unit
Thermal Resistance Junction-Ambient Max. 14-DIP	Reja	95	°C/W
14-SOP		195	

Electrical Characteristics

(VCC = 5.0V, VEE = GND, TA = 25 °C, unless otherwise specified)

Parameter	Symbol	Conditions		LM224			LM324			1	Unit			
rarameter	Symbol	Con	idicions	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	7.0 50 250 VCC -1.5 3	Un	
Input Offset Voltage	Vio	-1.5V	V to VCC 1.4V, Rs	32	1.5	5.0	0	1.5	7.0	8	1.5	7.0	m\	
Input Offset Current	lio		£.	12	2.0	30	3	3.0	50	9	3.0	50	nΑ	
Input Bias Current	IBIAS		#3		40	150	8	40	250	8	40	250	nA	
Common-Mode Input Voltage Range	VI(R)	Note1		0	100	VCC -1.5	0	VCC -1.5	28	0	10		V	
				32	1.0	3	8	1.0	3	8	1.0	3	m/	
Supply Current	Icc	RL = ∞,VCC = 5V (all Amps) (VCC = 26V for LM2902)		122	0.7	1.2	8	0.7	1.2	2	0.7	. Max. 7.0 r	m/	
Large Signal Voltage Gain	GV			50	100	2	25	100	23	22	100	82	V/ m\	
Output Voltage	VI(R) Note1 0 - VCC 1.5 - 0 - 1.5 VCC 1.5	VO(H)	Note1	2ΚΩ	26		8.	26	#		22	8	35	٧
Swing		٧												
Š.	VO(L)	VCC = 5	V,RL≥10KΩ	195	5	20	3	5	20	84	5	7.0 50 250 VCC -1.5 3 1.2 - 100 - 60	m\	
Common-Mode Rejection Ratio	CMRR	6	£.	70	85	9	65	75	10	50	75	152	dB	
Power Supply Rejection Ratio	PSRR		SI.	65	100		65	100	78	50	100	3	dB	
Channel Separation	cs	f= 1KH	z to 20KHz	38	120	92	8	120	4 8	20	120	136	dB	
Short Circuit to GND	Isc		8	122	40	60	8	40	60	25	40	60	m/	
	ISOURCE	VCC = 1		20	40	8	20	40	-	20	40	35	m/	
Output Current	lens			10	13	8	10	13	28	10	13	12	m/	
	ISINK		IV, VI(-) = 1V 5V, VO(R) =		12	82	μА							
Differential Input Voltage	VI(DIFF)	6	žį.	12	100	Vcc	8	82	Vcc	9	12	Voc	٧	

Electrical Characteristics (Continued)

(VCC = 5.0V, VEE = GND, TA = 25°C, unless otherwise specified)

		0	nditions		LM224	A	- 31	Unit		
Parameter	Symbol	Co	Min.	Тур.	Max.	Min.	Тур.	Max.	Offic	
Input Offset Voltage	Vio	VCM = 0V to VCC -1.5V VO(P) = 1.4V, RS = 0 Ω		132	1.0	3.0	92	1.5	3.0	mV
Input Offset Current	llo	D/65 E5 (2		87	2	15	100	3.0	30	nΑ
Input Bias Current	IBIAS	5		87	40	80	100	40	100	nΑ
Input Common-Mode Voltage Range	VI(R)	220		0	23	Voc -1.5	0	22	VCC -1.5	V
S (All A)	loo	VCC = 3	OV	577	1.5	3	25	1.5	3	mA
Supply Current (All Amps)	Icc	VCC = 5	7/2	0.7	1.2	12	0.7	1.2	mA	
Large Signal Voltage Gain	GV	VO(P) = 1V to 11V		50	100	323	25	100	92	V/m\
Output Voltage Swing	Vo(H)	Note1	RL = 2 KΩ	26	53		26	10.00	· 18	٧
			RL = 10 KΩ	27	28	200	27	28	15	V
	VO(L)	VCC = 5V, RL≥ 10 KΩ		15	5	20	(5)	5	20	mV
Common-Mode Rejection Ratio	CMRR			70	85	328	65	85	12	dB
Power Supply Rejection Ratio	PSRR	VCC = 15V, RL≥ 2 KΩ VO(P) = 1V to 11V S Note1 RL = 2 KΩ 2 RL = 10 KΩ 2 VCC = 5V, RL≥ 10 KΩ 7 - 66 f = 1KHz to 20KHz VI(+) = 1V, VI(-) = 0V V(CC = 15V) V(CA) = 0V, V(CA) = 1V		65	100	(N=2)	65	100	38	dB
Channel Separation	CS	- 6 f = 1KHz to 20KHz		188	120	198	-	120		dB
Short Circuit to GND	ISC		ris .	188	40	60	-	40	60	mA
	ISOURCE			20	40	850	20	40	8	mA
Output Current			0V, V _I (-) = 1V 5V, V _O (P) = 2V	10	20	MHS.	10	20	×	mA
	ISINK	VI(+) = 0v, VI(-) = 1V VCC = 15V, VO(P) = 200mV		12	50	55+65 55+65	12	50	×	μА
Differential Input Voltage	VI(DIFF)		25	7/2	100	Vcc	99	528	Vcc	V

Note:

1. VCC=30V for LM224A, LM324A