Differientiable Manifold

hsz

November 29, 2021

1 Manifold: the Local Trivialization

Def 1.1 (C^r Manifold). $\{M, \mathcal{S}\}$ called a $C^{r \in \mathbb{N}}$ Manifold consists of:

- (i) A A_2 , T_2 Topological Space M.
- (ii) A differential structure \mathscr{S} i.e. A collection of coordinate systems $\{(U_{\alpha}, \varphi_{\alpha})\}$:
 - An open cover of M $\{U_{\alpha}\}_{\alpha}$: $\bigcup_{\alpha} U_{\alpha} = M$.
 - An atlas $\{(U_{\alpha}, \varphi_{\alpha})\} = \{(U, x^1, \cdots, x^n)\}$: the coordinate chart φ_{α} is a homeomorphism into: $U_{\alpha} \to \varphi_{\alpha}(U_{\alpha}) \subset R^n$, and the coordinate funtion x^i is the ith Euclidean coordinate of φ_{α} .
 - Transition mappings $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ is C^r , for all α, β .

Remark. The construction of $\mathscr S$ implies the fundamental idea of the topics relate to *manifolds*, namely:

the LOCAL TRIVALIZATION.

We will see the idea embodied as the so-called duality *intrinsic definitions* and *local coordinate expressions* in the next section, albeit the word *intrinsic* means "regardless of coordinates" but not always *global*.

Attdef 1.1.1 (*morphism*). It's a natural idea from the perspective of Category Theory as a corollary of the Remark above:

Any definition relate to C^r differentiability denpends on the C^r differentiability of coordinate chart transformation, like C^r mapping, C^r diffeomorhism, and C^r compatible. Especially we suppose diffeomorphic maniflods are same, and it's an unsovived core problem to find all the different differential structures on S^n .

Attdef 1.1.2. Unfortunately, you still have to learn some information from the definition:

- According to the fact that $R^n \ncong R^m$ if $n \ne m$, we denotes n as the dimension of M if M is connected.
- Notice that exists a unique $\mathscr{S}_{max}\supset\mathscr{S}, \forall\mathscr{S}$. Thus we identity \mathscr{S} with \mathscr{S}_{max} WLOG(pf. by AC).
- Besides, for any $C^{r\geqslant 1}$ Manifold, there exists a compatible C^{∞} differential structure. Thus we often ignore " C^{∞} " for the sake of convinience when comes to diffeomorphic manifolds.

Def 1.2 (*Lie Group*). G is a C^r *Lie Group* if G is a C^r *manifold* and a *group*, while the group operation $\mu: G \times G \to G$ is C^r .

Def 1.3 (*Fibre Bundle*). the 5-tuple (E, M, π, F, G) is the *fibre bundle* over M, if:

- (i) M, E, F are manifolds, $\pi : E \rightarrow M$ is a projection.
- (ii) G is a lie group and has a (right) C^r action on F.
- (iii) $\forall U_{\alpha}$, exists a local trivalization ψ_{α} is a homeomorphism:

$$\pi^{-1}(U_{\alpha}) \to U_{\alpha} \times F,$$

 $\pi^{-1}(p) \to \{p\} \times F.$

(iv) Exists a C^{∞} connection function $g_{\beta\alpha}:U_{\alpha}\cap U_{\beta}\to G$:

$$(p,v) \mapsto \psi_{\beta} \circ \psi_{\alpha}^{-1}(p,v) = (p, g_{\beta\alpha}(p)v), \forall v \in \{p\} \times F.$$

We notes π as the *fibre projection*, and F as the *fiber*.Besides,the space B is called the *base space*, E is the *total space*, G is the *structue group*.

To be mentioned, readers should be aware that another definition of *fibre bundles* on some books does not include the *group structure* G.

Attdef 1.3.1 (Pirincipal Bundle and Vector Bundle). Especially,

• (P, M, π) is called the *Pirincipal Bundle* if G has a (right) C^r action on P, and each fiber $\pi^{-1}(p)$ is a G- torsor/G- principal homogeneous spcae(that G acts freely and transitively).

• (E, M, π) is called the *k-Vector Bundle* if F is a *k*-module of *dimension* r and G = GL(r, k), and we will write *Real Vector Bundle* as *Bundle* for short in the following text.

Attdef 1.3.2 (morphism). Similar with the remark on the def of Manifold, Bundle Mapping is just the C^r mapping pair (F,f) satisfying a natural commute diagram and F is linear pointwisely, and (F,f) is a Bundle Equivalence if f(F,f) and (G,g) are inverses to each other. Especially, called a Bundle Morphism and a Bundle Isomorhism if $f=id_M$.

Attdef 1.3.3. We can also define *Manifold* and *Vector Bundle* in the perspective of *Quotient Topology i.e.* "locally gluing trival Manifolds or Bundles together":

- A Manifold $M \triangleq \bigsqcup_{\alpha} U_{\alpha} / \sim$.
- A Vector Bundle $E \triangleq \bigsqcup_{\alpha} (U_{\alpha} \times k^{r}) / \sim$, where $g_{\beta\alpha} : U_{\alpha} \cap U_{\beta} \to GL(r,k)$ statisfying (to provide local linearlization):

$$g_{lphalpha}=id,$$
 the *cocycle* condition: $g_{etalpha}\cdot g_{lpha\gamma}\cdot g_{\gammaeta}=id.$

Attdef 1.3.4. There are some basic *Algebraic Operations* over *Bundles* defined pointwisely:

Whitney Sum (Direct Sum) \oplus , Dual Bundles*, Tensor Product \otimes , and wedge product \wedge .

Lemma 1.1 (Paracompact). A locally compact, Lindelof space X is paracompact. Especially if we consider a manifold M, a secondly countable LCH, then each open cover of M has a countable, locally finite refinement consisting of open sets with compact closures (i.e. compact closure).[cf.Warner]

Proof. (hint) Consider the "exhaution(穷竭)" construction $\{G_i\}_i \in \mathbb{N}$:

$$\bar{G}_i \subset G_{i+1}, \ \bar{G}_i \ compact; \ \bigcup_i G_i = M$$

Q.E.D.

Lemma 1.2 (bulge/truncation function). There exists several smooth functions with special properties:

(i) A truncation function ϕ exists, if $\phi:\mathbb{R}\to[0,1]$ is smooth s.t.:

$$\phi(x) = \begin{cases} 1, x \geqslant 1\\ 0, x \leqslant 0 \end{cases}$$

 $\textit{Proof.} \ \ \text{Consider a} \ C^{\infty} \ \text{function} \ \varphi(x) = \begin{cases} e^{-\frac{1}{x}}, x > 0 \\ 0, x \leqslant 0 \end{cases} \text{, where } \varphi : \mathbb{R}^n \to [0, 1].$

Then let

$$\phi(x) = \frac{\varphi(x)}{\varphi(x) + \varphi(1-x)}.$$

Q.E.D.

(ii) A bulge function ψ exists, if $\psi: \mathbb{R}^n \to [0,1]$ is smooth s.t.:

$$\psi(x) = \begin{cases} 1, x \in D_{r_1} \\ 0, x \notin D_{r_2} \end{cases}$$

Proof.

$$\psi(x) = \phi(\frac{r_2 - ||x||}{r_2 - r_1})$$

Q.E.D.

(ii+) A ultra-bulge function $\widetilde{\psi}$ exists for any open (coordinate) neighborhood U, if exists V with its compact closure $\overline{V} \subset U$ s.t.:

$$\psi(x) = \begin{cases} 1, x \in V \\ 0, x \notin U \end{cases}$$

Proof. (hint) To combine a set of bulge functions $\{\psi_i\}$, consider the function:

$$\psi = 1 - \prod_{i} (1 - \psi_i)$$

Q.E.D.

Thm-Lem 1.3 (P.O.U.). For every (countable) open cover $\{U_i\}$ of a manifold M, there exists $\{g_{\alpha}: 0 \leqslant g_{\alpha} \leqslant 1\}$ s.t.:

- (i) $\exists i$, supp $(g_{\alpha}) \subset U_i(\alpha)$ compact for each α ;
- (i') $supp(g_{\alpha}) \subset \subset U_{\alpha}$ for each α ;
- (ii) $\sum_{\alpha} g_{\alpha} = 1$, and for each $x \in M$, cofinite $\{g_{\alpha}\}$ are zero.

For the i' version, we sometimes call $\{g_{\alpha}\}$ as the P.O.U. subordinate to $\{U_{\alpha}\}$. 1

2 From (Co-)Tangent to Differentiation, finally Calculus

Def 2.1 (Section, as a generalization of $\ (vector-valued)\ function)$. s is a C^r section of a bundle E, if $s:M\to E$ satisfying $\pi\circ s=id_M$. We noted $\Omega(E)$ as the collection of all sections of E.

Remark. A section s is a $C^{\infty}(M)$ -module, where $C^{\infty}(M)$ is the vector space of C^{∞} function from M to \mathbb{R} .

Def 2.2 (*Tangent*, *Cotangent*). Let M be a manifold and p be a point at M, then:

• $T_p^*M \triangleq F_p/F_p^2$ is called the *Cotangent Space* to M at p, where F_p is all finite linear combinations of k-fold products of elements of \tilde{F}_p , the C^{∞} function germ at p, that vanishes at p.

 $\forall V$ with compact closure $\bar{V} \subset U$, $\exists V'$ with compact closure, s.t. $\bar{V} \subset V' \subset \bar{V'} \subset U$

¹A hint for the proof: Combine the two lemmas above, while using a property of *LCH*:

• A tangent vector $v_p: C^{\infty}(U_p) \to \mathbb{R}$ is a special linear functional satisfying the so-called Leibniz's Rule.

Then T_pM denotes the set of *tangent vectors* to M at p and is called the *Tangent Space* to M at p.

The tangent mapping df_p (or f_{*p}) and the cotangent mapping f^{*p} are induced by nutural diagrams of f. Besides, it's clear that T_pM , T_p^*M are both vector spaces, and $T_p^*M = (T_pM)^*$. Let:

$$TM \triangleq \bigcup_{p} T_{p}M, T^{*}M \triangleq \bigcup_{p} T_{p}^{*}M.$$

They are both *real vector bundles* and are respectively called the *Tangent Bundle* and the *Cotangent Bundle*.

Remark (intrinsic def). let

$$<\cdot,\cdot>: T_pM \times T_p^*M \to \mathbb{R},$$

 $(x,u) \mapsto < x,u>|_p = x_p(u).$

It's clear that the definitions above does not depend on the coordinate system, which is called *intrinsic*.

Def-Thm 2.3 (tangent vector fields and 1-parameter transformation groups). There exists a 1-1 correspondence to M between:

- the collection of tangent vector fields $TM = \{X_i\}_i$,
- a collection of C^k additive group actions $\{\phi: I_{\epsilon>0} \times U_{p\in M} \to M\}$ where $\phi(t \in I_{\epsilon}, \cdot) \triangleq \phi_t$ is a diffeomorphism.

If $\phi(\cdot, q)$ is the unique *integral curve* passing through $q, \forall q \in U$:

$$\phi'(\cdot, q) = X_{\phi(\cdot, q)},$$

$$\phi(0, q) = q.$$

Specifically, ϕ is called a *1-parameter transformation groups* if there exists a continuation $\phi : \mathbb{R} \times M \to M$, and its corresponding X is then *complete*.

Prop-Thm 2.3.1 (Local expressions for (co-)tangent vectors).

Lemma 2.1 (inverse mapping). $f: M^n \to N^n$ is a $C^{r\geqslant 1}$ mapping and df_p is invertible, then exists $U\ni x$ s.t. $f\mid_U: U\to V$ is a C^r diffeomorphism.

Remark. df_p need be a topological morphism if r = 1.

Def 2.4 (immersion, embedding, submersion and submanifold). Let $f:M^m\to N^n$ be a $C^{r\geqslant 1}$ mapping, then:

- (i) f is immersed/submersed, if df is injective/surjective;
- (ii) f is emebedded, if f is homeomorphic from M to f(M) and immersed, i.e. f is open and injective and df is injective;
- (iii) And if f is an inclusion, we say M is an immersed/regular manifold of N if f is immersed/embedded.

Remark. We give the structue of a regular manifold as its "coordinate" definition:

$$\forall p \in M, \exists \{U_p, x^1, \dots, x^n\}, \ s.t. \ M \cap U = \{q \in U : x^i(q) = 0, \ m+1 \leqslant i \leqslant n\}.$$

It's clear that *immersions/submersions* also have their local coordinate structure, albeit this note is too small to contain them.

Besides, this remark immediately lead to the following theorem 2.2.

Thm 2.2. Let $f: M \to N$ be a $C^{r\geqslant 1}$ mapping and $q \in f(M)$, then $f^{-1}(q)$ is a regular submanifold of M, if: $\operatorname{rank}(df_p) \equiv l$, $\forall p \in f^{-1}(q)$. And $\operatorname{codim}(f^{-1}(q)) = l$. Especially, this thm is always presented as the following two useful versions:

- (i) Regular Level Set Thm: if df_p is epimorphic;
- (ii) Constant Rank Thm: if $\operatorname{rank}(df_p) \equiv l, \ \forall p \in M.$

Def 2.5 (transversal intersection).

Thm 2.3 (transversal intersection).

Thm 2.4 (Sard).

Def 2.6 (*Derivation* on an Algebra). Let A be a k-algebra, then a derivation of A is a linear endomorphism X of A that satisfys the Leibniz's Rule:

$$X(fg) = fXg + gXf$$

And the collection on *derivations* of A is denoted by Der(A).

²A hint for the proof: rank is unchanging under perturbation.

Remark. Notice that the *commutator* of arbitrary two derivations [X,Y] := XY - YX is still a *commutator*, immediately we find that $Der(C^{\infty}(M)) = TM$ actually is a \mathbb{R} -lie algebra. (BUT NOT homogeneous over $C^{\infty}(M)$!)

Def 2.8 (Differential form and Exterior Differentiation). Let $\bigwedge (T^*M)$ be the Grassmann algebra (one kind of graded algebra) of a tangent bunlde T^*M over $C^{\infty}(M)$, then:

- $\omega \in \bigwedge^k(T^*M)$ is called a k-(differential) form.
- A linear endomorphism $d: \bigwedge(T^*M) \to \bigwedge(T^*M)$ $(k \in \mathbb{N}^*)$ is called the exterior differentiation operator over $\bigwedge(T^*M)$ if:
 - (i) d(f) = df, if $f \in C^{\infty}(M)$.
 - (ii) graded Leibniz's rule: $d(\omega \wedge \nu) = d\omega \wedge \nu + (-1)^{deg(\omega)}\omega \wedge d\nu$.
 - (iii) $d^2 = 0$.

Remark. For $d: \bigwedge^{k\in\mathbb{N}}(T^*M) \to \bigwedge^{k+1}(T^*M)$ and $d\circ d=0$, we then have a *chain*, called *De Rham cohomology* and denoted by $H^k_{dR}(M)$:

$$0 \xrightarrow{d} \bigwedge^{1}(T^{*}M) \xrightarrow{d} \cdots \xrightarrow{d} \bigwedge^{n-1}(T^{*}M) \xrightarrow{d} \bigwedge^{n}(T^{*}M) \xrightarrow{d} 0$$

Prop 2.8.1 (the 2rd Def of Exterior Differentiation).

$$d\omega(X_0, \dots, X_k) = \sum_{i=0}^k (-1)^i X_i \omega(X_0, \dots, \hat{X}_i, \dots, X_k) + \sum_{0 \le i < j \le k} (-1)^{i+j} \omega([X_i, X_j], X_0, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_k)$$

Def 2.9 (Distribution and its annihilator). \mathscr{D} is a k-dimensional Distribution on a manifold M^n , if there exists a collection of non-zero vector fields $\{X_i\}_{1\leqslant i\leqslant k}$, s.t. $\mathscr{D}(p)=span\{X_i(p)\}_{1\leqslant i\leqslant k}\subset T_pM$.

And we denoted the ideal in $\bigwedge(T^*M)$ generated by n-k independent annihilators of $\mathscr D$ as $\mathscr I(\mathscr D):=< anni(\mathscr D)>$.

Def 2.7 (*Lie algebra* and *Lie bracket*). \mathfrak{g} is a k-Lie algebra, if \mathfrak{g} is a k-module together with a Lie bracket $[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$, which is a bilinear, anti-communitative operator satisfying the Jocobian identity:

$$[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0, \forall X,Y,Z \in \mathfrak{q}$$

Lemma 2.5. Let X be a vector field and $p \in M$, then X has a local expression $\{U_p, y^1, \dots, y^n\}$ if p is not a signlar point of X:

 $X \mid_{U_p} = \frac{\partial}{\partial y_1}.$

Even further, Let $\{X_i\}_{i \leq k}$ be a set of vector fields doesn't vanash at $p \in M$, then $\{X_i\}$ still has a local expression $\{U_p, y^1, \cdots, y^n\}$, if X_i linear independent pointwisely and $[X_i, X_j] = 0$ for each i, j:

$$X_i \mid_{U_p} = \frac{\partial}{\partial y_i}, \ 1 \leqslant i \leqslant k$$

Def-Thm 2.10 (Frobenius: completely integrable conditions). Let a k-dimensional Distribution \mathcal{D} and its ideal $\mathcal{I}(\mathcal{D})$ be defined on M^n as above. We say \mathcal{D} is completely integrable and F is the integral (sub)manifold of \mathcal{D} , if(TFAE):

- There exists a unique k-dimensional maximal integral (sub)manifold F of \mathscr{D} "passing through" any point $q \in M$, if exists an injective immersion $i : F \to M$ s.t. $i_{*p}(T_pF) = \mathscr{D}(q = i(p))$.
 - Specifically, we could have an atlas $\{(V, y^1, \cdots, y^k, y^{k+1}(q), \cdots, y^n(q))\}$ glued by coordinate slices locally which passes through q.
- The *distribution* \mathscr{D} is *involutive*, if the *commutator* $[\cdot, \cdot]$ is well-defined (close) on \mathscr{D} .
- Equivalently, let N be a manifold and τ be an injective immersion $\tau: N \to M$, then N satisfys the so-called *Pfaff's equations*:

$$\omega^{\alpha} \mid_{N} = 0. (\omega^{\alpha} \in T^*M, \alpha = 1, 2, \cdots, n - k)$$

then the equations ought to be *completely integrable*, i.e. exists the above-mentioned F that "passes through" q and an *injective immersion* $i: F \to M$ s.t. $i^*\omega^\alpha \equiv 0$.

• The ideal $\mathscr{I}(\mathscr{D})$ is a differential ideal, if $d(\mathscr{I})\subset\mathscr{I}$, i.e.

$$d\omega^{\alpha} \equiv 0 \ (mod \ \omega^{1}, \cdots, \omega^{n-k}), \ 1 \leqslant \alpha \leqslant n-k.$$

Def 2.11 (*Lie Derivate*). For each $X \in TM$, there exists a *Lie derivate* $\mathcal{L}_X \in End(\Omega(E))$ defined by:

$$(\mathcal{L}_X S)(p) = \lim_{t \to 0} \frac{(\phi_{-t})_* S_{\phi(t)} - S_p}{t}$$

Especially, we have $\mathcal{L}_X f = \langle X, f \rangle$ and $\mathcal{L}_X Y = [X, Y]$.

Prop 2.11.1 (Cartan formulas).

$$d\mathcal{L}_X - \mathcal{L}_X d = 0,$$

$$\mathcal{L}_X i(Y) - i(Y)\mathcal{L}_X = i_{[X,Y]},$$

$$\mathcal{L}_X \mathcal{L}_Y - \mathcal{L}_Y \mathcal{L}_X = \mathcal{L}_{[X,Y]},$$

$$di_X + i_X d = \mathcal{L}_X.$$

Def 2.12 (Boundary operator).

Def 2.13 (Orientation). M^m is orientable, if exists a nowhere-vanishing m-form ω . We denote $[\omega] \triangleq \{f\omega: f>0\}$ as an orientation on M, then it's clear that every connected manifold (only) has 2 orientatations \mathcal{O}^+ and \mathcal{O}^- .

Thm 2.6 (Newton-Leibniz).

$$\int_{D} d\omega = \int_{\partial D} \omega$$

3 Further formal constructions

Def 3.1 (Pricipal bundle and Associate Bundle).

Def 3.2 (Connection).