Yoneda lemma in every language

1 Introduction

TODO!

2 Yoneda lemma

TODO!

Łengua vèneta (ISO 639-3 vec): (El lema de Yoneda). Toì na categoria pìcoła $\mathcal C$ e un fontor F de sta categoria 'nte la categoria dei insièmi. Alóra, comunque che se toga n'ogeto X de $\mathcal C$ gh'è n'isomorfismo (naturae ent'el sò argomento) tra l'insième dee trasformaßioni naturai $\hom(-,X)\to F$ e l'insième FX, fisà de la regola

$$(\xi : \text{hom}(-, X) \Rightarrow F) \mapsto \xi_X(1_X)$$

(sta fonsion ea xe bijetiva).

Sicilianu (ISO 639-3 scn): (Lemma ri Yuneda). Aviss'a pigghiari na categuria \mathcal{C} , e un funturi F ri sta categuria rint'agl'insèmi. Pi tutti l'oggetti X ri \mathcal{C} , avimu na biggezione naturale 'nta l'insèmi ri tutte le trasformazioni naturali $hom(-,X) \to F$ e l'insèmi FX, fissatu ri la reggola

$$(\xi : \text{hom}(-, X) \Rightarrow F) \mapsto \xi_X(1_X)$$

(ssa funzioni iè biggettiva).

Esperanto (ISO 639-3 epo): (Lemo el Yoneda). Por ĉiuj kategorio $\mathcal C$ kaj functo F de la kategorio $\mathcal C$ en la kategorio de aroj, kaj por ĉiuj objektoj X el $\mathcal C$ estas reciproke unuvalora surĵeto inter la aro de naturaj transformoj $\hom(-,X)\to F$ kaj la aro FX, specifita de funkcio

$$(\xi : \text{hom}(-, X) \Rightarrow F) \mapsto \xi_X(1_X).$$

Zenéise (ISO 639-3 lij): (Lémma de Yoneda). Segge $\mathcal C$ una categuia picenina e F ün funtu' da sta categuia in ta' categuia di insiemmi. Alôa pe tutte e cose X in $\mathcal C$ gh'è üna biiessiun naturale tra l'insiemme de trasfurmasiun naturali $hom(-,X) \to F$ e l'insiemme FX, fisa da-a regula

$$(\xi : \text{hom}(-, X) \Rightarrow F) \mapsto \xi_X(1_X).$$

(sta fonçiún a l'è biiettiva).

Napulitane (ISO 639-3 nap): (Lemma e' Yoneda). Pijətə $\mathcal C$ 'na categuriə piccerella e F 'nu funtorə partenn a' chesta categuriə inte agl'insiemə. Allor pe' tutti quanti l'oggetti X e' $\mathcal C$ ce' sta 'na funzionə ca po' turnà arrete partenn a' l'insiemə de' trashformazionə naturalə $\hom(-,X) \to F$ e l'insiemə FX fissat da' regula

$$(\xi : \text{hom}(-, X) \Rightarrow F) \mapsto \xi_X(1_X).$$

(chesta funzione po' turnà arrete).

Français (ISO 639-3 fra): (Lemme de Yoneda). Soit $\mathcal C$ une catégorie petite et F un foncteur de cette catégorie dans la catégorie des ensembles. Alors, pour tous les objets X de $\mathcal C$ on a une bijection naturelle entre l'ensemble des trasformations naturelles $\hom(-,X)\to F$ et l'ensemble FX, e cet isomorphisme est spécifié par la règle

$$(\xi : \text{hom}(-, X) \Rightarrow F) \mapsto \xi_X(1_X)$$

(cette fonction est bijective).

English (ISO-39-3 eng): (Yoneda lemma). Let $\mathcal C$ be a small category, and F a functor from this category to the category of sets. Then, for every object X of $\mathcal C$ there is a natural bijection between the set of natural transformations $\hom(-,X)\to F$ and the set FX, and this isomorphism is defined by the correspondence

$$(\xi : \text{hom}(-, X) \Rightarrow F) \mapsto \xi_X(1_X)$$

(this function is bijective).

Suomi (ISO 639-3 fin): (Yoneda'n Lemma). Anna olla joku pieni kategoria $\mathcal C$ ja funktori F täältä kategorialta joukkojen kategoriassa. Joten jokaille alkiolle X $\mathcal C$:ssä on luonteva bijektio luonnevan muunnoksen joukosta $\hom(-,X) \to F$ [...]

$$(\xi : hom(-, X) \Rightarrow F) \mapsto \xi_X(1_X)$$

(tämä funktio on bijektiivinen).

Toki pona (ISO 639-2 art): (oko lili pi Jonewa). $\mathcal K$ li lili kulupu en P li suli tawa pana $\mathcal K$ en noka kulupu pi mute. A li ijo pi $\mathcal K$. Suli suli tawa $\hom(-,A)\to P$ en ijo PA li sama; ona sama tan

$$(\xi : hom(-, A) \Rightarrow P) \mapsto \xi_A(1_A)$$

li pona tawa sama.

$$(\xi : hom(-, A) \Rightarrow P) \mapsto \xi_A(1_A)$$

li pona tawa sama.

Latin (ISO 639-2 lat): (Lemma Yonedæ). Sint $\mathcal C$ categoria parva et F functor ab $\mathcal C$ ad categoria totos; tum omne obiecto X in $\mathcal C$ naturalis invertibilis congruentia intra totum naturalium transformationum $\hom(-,X)\to F$ totumque FX exstat.

Enim definitum est telum

$$(\xi : \text{hom}(-, X) \Rightarrow F) \mapsto \xi_X(1_X)$$

qui inversionem habet.