Search for Dark Matter Hints with Machine Learning at new CERN experiment

http://bit.ly/2vqSM19

Dark Matter Intro

Illustrations from J. Cham;

TWO IDENTICAL GALAXIES

THE UNIVERSE:

(A PIE CHART)

https://en.wikipedia.org/wiki/Dark_matter

5% STUFF WE KNOW

(INCLUDING PIES)

Gravitational Lensing

Sometimes displacement effect is much stronger than displacement caused by visible mass in the center. Hence we get a hint for a bigger object in the middle.

https://en.wikipedia.org/wiki/Dark_matter

Why bother?

- What if Dark Matter (DM) is made of some new kind of particle that we are able to produce and study in highenergy colliders?
- What If we could find new fundamental laws of Nature?
- And what if this new discovery lets us manipulate regular matter in new ways? (e.g. new source of energy?)

Two big challenges

1. We do not know what we search for

Unknown fundamental (microscopic) nature impacts the strength of potential signal and implies also macroscopic uncertainties;

2. There is no (totally) clean observable

Direct/indirect detection targets cosmo signals, where there are many other players, "backgrounds" are typically poorly known.

http://bit.ly/2IRPINV

How much dark matter interacts with us

Sea of Models NMSSM R-parity violating M55M Supersymmetry Gravitino DM ek-toleracting DMI pM55M R-parity Conserving Dark Photon Asymmetric DM Light Force Carriers Extra Dimensions Warm DM Solitonic DM UED DM Sterile Neutrinos Warped Extra Dimensions T-odd DM Axion DM Little Higgs QCD Axions Axion-like Particles made by Tim M.P. Tait http://bit.ly/2uq3OmT

Two strategies

1. Direct

Scattering of DM particle target atomic nuclei. Recoil energy measured by light, charge or phonons.

E~3V

Experiments (several examples):

DAMA/LIBRA, ANAIS,
KIMS, DM-Ice, PICO-LON, SABRE,
Nuclear emulsion (NEWS),
Anysotropic crystals (ADAMO),
Liquid Ar TPC, Negative Ion Time Expansion
Chamber (NITEC), Carbon nanotubes, DRIFT, MIMAC, DMTPC,
NEWAGE, D3

Two strategies

2. Indirect

Annihilations (or decays) of DM particles in astrophysical objects generate fluxes of "standard" detectable particles.

Non trivial to discriminate from the background.

Thus we have to include **accelerator searches** for Dark Matter (Hidden Particles).

More details on DM search at http://bit.ly/2uhwfDk

Search for Dark Matter at Accelerator Experiment

Accelerator Search Frontiers

- Energy Frontier
 - Heavy particles → high energy collisions
- Intensity Frontier:
 - Weakly interacting particles → high intensity beam

Dark Matter Candidate

Many theoretical models (in particular portal models) predict new light **very Weakly Interacting Massive Particles** (vWIMP) that can be mediators to DM, or even DM particles.

References:

- SHiP Physics Paper: Rep.Progr.Phys.79(2016) 124201 (137pp),
- Dark Sector Workshop 2016: Community Report arXiv: 1608.08632.

CERN Accelerator Complex

SHiP: Search for Hidden Particles

Light Dark Matter (LDM) Search Experiment
Data taking is expected at 2025+

http://ship.web.cern.ch/ship/

SHiP in a Nutshell

SHiP challenges

Physics challenges:

- Variety of Hidden Sector portals exploration
- Tau neutrino physics
- Light Dark Matter (LDM) Search

Engineering challenges

ML challenges:

- Experiment design (shield, emulsion optimization, tracker)
- Fast simulation
- Speed-up data processing
- Signal/background separation in emulsion

Electromagnetic shower

Background

Dominant background comes from neutrino interactions:

- Elastic scattering on electrons (ES)(topologically irreducible);
- Quasi-elastic scattering (QE) (nuclei neutron);
- Deep inelastic scattering (DIS).

Signal/Background separation

- Find electromagnetic shower;
- Final state is different (QE produces proton, DIS produces hadron jet), so have to be able to identify protons and jets;
- Use energy-angle correlation of the detected electron to discriminate vWIMP against neutrino. Those differences are due to the mass differences between vWIMP and neutrino;

Emulsion has superior sensitivity to identify those processes and such technology has been developed for search for neutrino oscillation at OPERA experiment.

Getting Data Before Experiment is built

Developed for OPERA experiment (2008-2012)

Scattering and Nuclear Emulsion

- After the passage of charged particles through the emulsion, a latent image is produced;
- The emulsion chemical development makes silver grains visible with an optical microscope.

Emulsion Cloud Chamber

Sandwich-like structure: lead (massive target) + emulsion Size of the shower mostly depends on target density

Reconstructed trajectories:

Electromagnetic shower + noise

Electromagnetic shower + noise, realistic

Machine Learning Challenges for

- Tracking in high density environment (both for single tracks and showers)
- Vertex reconstruction
- Particle identification

OPERA Data Example

Data:

- Background consists of tracks randomly scattered around brick. In real brick there are ~ 10⁷ tracks.
- Signal consists of tracks forming a cone-like shape. There are about 10³ tracks per shower.
- Origin (coordinates and angles of the initial particle) of each shower is known.

OPERA Example

- Each BaseTrack (BT) is described by:
 - Coordinates: (X, Y, Z)
 - Angles in the brick-frame: (TX, TY)
 - Goodness of fit of Ag crystals to the BT: χ
- Background consists of basetracks (BT) randomly scattered around brick. In real brick there are ~ 10⁷ tracks, label=0
- Signal consists of BTs forming a cone-like shape. There are about 10³ BTs per shower. label=1
- Origin and Energy of the shower is known $(X_0, Y_0, Z_0, TX_0, TY_0, E_0)$

Figure of Merit: Energy Resolution

• For every shower of energy E_0 we reconstruct number of base tracks (N) that approximate it's energy

- So $E_{rec} = a N + b$, (a, b) can be approximated by linear regression (left);
- Energy resolution E_{res} is a standard deviation of relative residuals (right);

Figure of Merit Proxy

 In terms of ML, we can estimate the following simple metrics for every algorithm, giving predictions for a BT to belong to label=1

	True label = 0	True label = 1
Predicted label = 0	True negative (TN)	False negative
Predicted label = 1	False positive	True positive

- Precision = TP / (TP + FP)
- Recall = TP / (TP + FN)
- If algorithm gives predictions as a float-point number [0, 1], we make plot Precision/Recalcurvel

• Number of BT correspond to TP + FP, so average precision can serve as a proxy of classifier quality. Or similarly - ROC AUC can.

Baseline solution, given origin

- Consider only tracks within cone volume (50 mrad)
- Iterate through all BTs in the cone volume:
- Compute distance from the origin: dX, dY, dZ, dTX, dTY
- Compute Impact Parameter (IP, see figure)
- Compute alpha (see figure)

- Train classifier (e.g. Random Forest) on those features
- Metrics:
 - ROC AUC
- Baseline result: ~0.96, precision ~1.0 at 0.5 recall

Aslope

Going Deeper

Tougher Challenge

No origin information is known apriori;

Methods to apply:

- Clustering;
- Conditional Random Field;
- Message Passing Neural Networks.

Possible solution for no-origin case

- Find Neighbors for selected tracks
- Build chains of 5-track candidates
- Train classification algorithm dealing with 5-tracks
- Cluster showers using DB-SCAN algorithm

Find Nearest Neighbor

Features:

- angle between directions,
- · impact parameters,
- mixed product of two directions and
- vector connecting positions of basetracks,
- some projections.

Going deeper

Building classifier model (e.g. Random Forest) over features of 5-tracks gives Precision ~1 at recall 0.5.

No origin information is used!

Going deeper

This gives Precision ~1 at Recall 0.5.

Clustering and Finding Several Showers. K-means

The simpliest approach: it captures the idea that each point in cluster should be near to the center of that cluster.

- Chose number of clusers (k) and iterate:
 - Update centroids
 - Update cluster members

R

K-means shortcomings

- Works well in case Euclidean metric, but cannot capture more complex dependencies
- Initial choice of K and centroid is annoying

Density-Based Spatial Clustering of Applications with Noise

- Starts with 2 params: ε (maximum distance to neighbors) and minPoints (to form a cluster);
- Add all points within ε distance to the current cluster recursively;
- Pick a new arbitrary point and repeat the process;
- If a point has fewer than minPoints neighbors (in ε-ball) drop it;
- Repeat until no points left.

DBSCAN for OPERA data

Straighforward application doesn't work very well, because Euclidean (default) metric

$$\rho(\mathrm{track}_1,\mathrm{track}_2)^2 = ||\mathbf{x}_1 - \mathbf{x}_2||^2$$

is not very relevant to basetrack alignment

http://bit.ly/2G9Pujv

Adjusting metric

Some of the basetracks may be missing and some are background

Improved metric:

$$\rho(\mathrm{track}_1,\mathrm{track}_2)^2 = ||\mathbf{x}_1 - \mathbf{x}_2||^2 + \alpha ||e_1 - e_2||^2$$

http://bit.ly/2G9Pujv

Showers are better visible, although there is room for improvement (at some plates some tracks may be missing and one have to account for direction alignment)

http://bit.ly/2G9Pujv

Possible Improvement Ideas

- Conditional Random Fields
- Recurrent Neural Networks
- Message Passing Neural Networks
- Estimate origin positions by basetrack densities

Looking Ahead

Even More Tough Challenge

- There are O(100) showers in the volume with significant overlapping probability, no origin is known;
- Background is not random, but mixture of other tracks passing through;
- Add timing information.

Conclusion

- Dark Matter is one of the most challenging Physics topic:
 - many questions, many hypothesis, many approaches.
- SHiP proposed experiment at CERN with rich DM program;
- Emulsion plays important role due to high sensitivity:
 - Electromagnetic shower reconstruction tasks.
- In reality there are many more ML challenges:
 - Emulsion detector design + timing;
 - Optimization of experiment design;
 - Particle identification.

