Конспект по дискретной алгебре (1-й семестр)

Латыпов Владимир (конспектор)
donrumata03@gmail.com, tg:@donRumata03

Станкевич Андрей Сергеевич (лектор, инструктор по отношениям) tg:@andrewzta

September 15, 2021

Contents

1	Отн	ошения	3
	1.1	Свойства отношений	3
	1.2	Транзитивное замыкание	3
2	Бул	ева алгебра	4
	2.1	Определения	4
	2.2	Перечислим некоторые функиии	4
			4
		2.2.2 Функции $n=1$	5
		2.2.3 Функции $n=2$	
	2.3	Базовые связки базовых функций	

1 Отношения

1.1 Свойства отношений

Отношения бывают:

- Рефлексивные
- Симметричные
- Антисимметричные
- Транзитивные

Транзитивность и квадрат отношения - опрпделения выглядят похоже.

Определение 1 (Композиция отношений).

$$R \subseteq A \times B, G \subseteq A \times B \tag{1}$$

$$T \subseteq A \times C \text{ is } RG \overset{\text{def}}{\Longleftrightarrow} \exists x \in R$$
 (2)

$$H \subset A, H \stackrel{\text{def}}{=} R^2$$
 (3)

$$H^0 = \{(x, x) | x \in A\} \tag{4}$$

1.2 Транзитивное замыкание

Замечание. Квадрат отношения "больше на 1" - это отношение "больше на 2".

Определение 2 (Транзитивное замыкание).

Т.3. отношения R - минимальное по включение транзитивное отношение, содержащие R

Определение 3 (Замкнутое относительно операции свойство). Оно выполняется для результата этой операции над объектами, тоже удовлетворяющими этому свойству.

Замечание. Не всегда есть минимальное по включению множество, удовлетворяющее заданному свойству, но тут есть, так как замкнутое относительно операции пересечения.

Определение 4 (Транзитивное замыкание, эквивалентное). Т.З. отношения R:

$$R^{+} = \bigcup_{i=1}^{\infty} R^{i} \tag{5}$$

То, что определения эквивалентны доказывается, через то, что:

- Первое подмножество второго
- Второе подмножество первого

Определение 5.

$$R^* = \bigcup_{i=0}^{\infty} R^i \tag{6}$$

Замечание. Бывает такая абстрактная ситуация: просто так не получается, но если добавить коспозицию самого с собой бесконечное количество раз, то получится.

Например, пути на графе.

2 Булева алгебра

2.1 Определения

Математические основы компьютера требуют знания двоичной логики, поэтому изучим её основы.

$$\mathbb{B} = \{True(1), False(0)\} \tag{7}$$

Булева функция - возвращает boolean. Бывают также n-арные функции: $\mathbb{B}^n \mapsto \mathbb{B}$

Функций $\mathbb{B}^n \mapsto \mathbb{B}$: 2^{2^n} .

2.2 Перечислим некоторые функиии...

2.2.1 Функции n = 0

$$\mathbb{B}^0 = \{(,)\}$$

- · alwaysTrue
- · alwaysFalse

2.2.2 Функции n=1

- \cdot id x проектор
- · not
- $\cdot 0_1$
- · 1₁

2.2.3 Функции n=2

- $0000:0_2$
- · 0001 : &&, ∧
- 0010 :→
- $0011:P_1$
- $0100:not \leftarrow$
- $0101:P_2$
- 0110 : ⊕
- 0111 : V
- 1000 :↓
- 1001 :==
- $1010 : \neg y$

• ...

Определение 6. Сохранающие ноль

2.3 Базовые связки базовых функций

Но в реальности

Определение 7. Композиция

Определение 8. Подстановка

Теорема 1. Через композии и подстановки операций $\{\land, \neg, \lor\}$ можно выразить любую функцию, которая могла бы появиться в таблице

Proof. Функция задаётся бинарной последовательностью длины n (бит для каждого набора аргументов).

Построим конструкцию. Бит совпадения некой последовательности с заданной получается через конструкцию

$$is(seq) = \bigwedge_{i=0}^{n} (initial_seq_i == seq_i) = \bigwedge_{i=0}^{n} (seq_i \ if \ initial_seq_i \ else \ \neg seq_i)$$
 (8)

Затем выберем те последовательности, где пародируемая функция выдаёт 1 и напишем в ответе:

$$f = \bigvee_{i=0}^{n} is_seq_i \ if \ seq_i$$
 (9)