K₀ and Wall's Finiteness Obstruction

David Mehrle

September 9, 2019

Let X be a (compactly generated, weakly Hausdorff) topological space. To understand this space for the purposes of homotopy theory, we want to see it combinatorially as a CW complex. Fortunately, every space has a CW approximation.

Theorem 0.1 (CW Approximation, [Hat02, Proposition 4.13]). For any space X, there is a CW complex Z and a weak homotopy equivalence $Z \xrightarrow{\sim} X$.

Moreover, the CW complex Z is unique up to homotopy equivalence and can be chosen functorially in X. For example, we might take Z = |Sing(X)| to be the geometric realization of the singular simplicial set for X. This approach, however, leaves some things to be desired:

- (1) What if we want X to be not just weakly homotopy equivalent to a CW complex, but actually homotopy equivalent to a CW complex?
- (2) The space |Sing(Z)| is usually quite large. Can we control the size of the CW approximation? When can we approximate X by a finite CW complex? When is X homotopy equivalent to a finite CW complex?

For the first question, consider the following.

Definition 0.2. We say that a space X is **dominated** by a space Y if X is a retract of Y, i.e. there are maps $f: X \to Y$ and $g: Y \to X$ such that gf is homotopic to the identity on X.

The following corollary to CW approximation gives an approach the first of these questions.

Corollary 0.3 ([Ros05, Paragraph before Theorem 1]). If X is dominated by a CW complex, then X is homotopy equivalent to a CW complex.

This corollary suggests that we should begin by considering spaces that are dominated by a finite CW complex.

Definition 0.4. We say that a space X is **finitely dominated** if it is dominated by a finite CW complex.

Example 0.5 ([Lur14, Lecture 2, Exercise 2]). Finitely dominated spaces aren't so hard to produce. If a space X is a compact (topological) manifold dominated by a CW complex Y via $f: X \to Y$, then the image of f is contained in a finite subcomplex of Y. In this case, X is finitely dominated.

Moreover, finitely dominated spaces have a few nice properties:

Proposition 0.6 ([Lur14, Lecture 2, Lemma 6]). Let X be a finitely dominated space. Then $\pi_0(X)$ is finite and $\pi_1(X)$ is finitely presented.

Proof. If X is dominated by a finite CW-complex Y, then $\pi_0(Y)$ is finite and $\pi_1(Y)$ is finitely presented. The same is true of $\pi_0(X)$ and $\pi_1(X)$, since these are retracts of $\pi_0(Y)$ and $\pi_1(Y)$ respectively.

In light of this new definition, let's make the second question a little more precise:

Question 0.7. When is a finitely dominated space X homotopy equivalent to a finite CW complex?

To answer this question, we're going to take a detour into K-theory. We will see that we can quantify the answer to this question with an element of reduced $K_0(\mathbb{Z}[\pi_1 X])$ related to the Euler characteristic.

1 The Grothendieck Group K₀

To introduce the flavor of algebraic K-theory, we're going to introduce K_0 as a functor from exact categories to abelian groups. There is another way to define K_0 of rings using the group completion of monoids, but higher algebraic K-theory is best approached from this categorical perspective. Roughly speaking, an exact category is an additive category with a class of short exact sequences.

Definition 1.1 ([Qui73, §2]). An **exact category** (\mathcal{C} , \mathcal{E}) is a pair of an additive category \mathcal{C} and a class \mathcal{E} of "short exact sequences" in \mathcal{C} of the form

$$A \hookrightarrow B \twoheadrightarrow C$$

If $A \hookrightarrow B$ occurs as the first morphism of a sequence in \mathcal{E} , we call it an **admissible monomorphism**. If $B \twoheadrightarrow C$ occurs as the second morphism in a sequence in \mathcal{E} , we call it an **admissible epimorphism**. These data must satisfy the following axioms:

(E1) \mathcal{E} is closed under isomorphisms and contains the "split short exact sequences:"

$$A \hookrightarrow A \oplus C \twoheadrightarrow C$$
.

- (E2) Admissible monomorphisms are closed under pushout and composition. Admissible epimorphisms are closed under pullback and composition.
- (E3) Admissible monomorphisms are kernels of the corresponding admissible epimorphisms, and dually.
- (E4) If an admissible epimorphism $A_0 \twoheadrightarrow A_2$ factors as $A_0 \to A_1 \to A_2$ and $A_1 \to A_2$ has a kernel, then $A_1 \to A_2$ is an admissible epimorphism. Dually, if an admissible monomorphism $C_0 \twoheadrightarrow C_2$ factors as $C_0 \to C_1 \to C_2$ and $C_0 \to C_1$ has a cokernel, then $C_0 \to C_1$ is an admissible monomorphism.

We will often abuse notation and write \mathcal{C} instead of $(\mathcal{C}, \mathcal{E})$, the class of exact sequences being understood.

Definition 1.2. An **exact functor** $F: \mathcal{C} \to \mathcal{D}$ between exact categories is an additive functor $F: \mathcal{C} \to \mathcal{D}$ that carries short exact sequences in \mathcal{C} to short exact sequences in \mathcal{D} .

Example 1.3. Any abelian category \mathcal{A} becomes an exact category with \mathcal{E} all exact sequences. Alternatively, we could take \mathcal{E} only the split short exact sequences.

Definition 1.4. We say that a full additive subcategory \mathcal{C} of an abelian category \mathcal{C} is **closed under extensions** if for each short exact sequence

$$0 \to A \to B \to C \to 0$$

in A with A, $C \in Ob(\mathcal{C})$, then $B \in Ob(\mathcal{C})$ as well.

Example 1.5 ([Wei13, II.7.0]). Any additive subcategory \mathcal{C} of an abelian category \mathcal{A} that is closed under extensions is an exact category where \mathcal{E} is the class of all sequences in \mathcal{C} which are exact in \mathcal{A} . In fact, every exact category arises from an abelian category in this way.

Having defined exact categories, we can use these to define K₀.

Definition 1.6. Let $(\mathfrak{C}, \mathcal{E})$ be an exact category. Then $K_0(\mathfrak{C})$ is the abelian group with generators [C], one for each $C \in Ob(\mathfrak{C})$ and relations [B] = [A] + [C] for each short exact sequence:

$$A \hookrightarrow B \twoheadrightarrow C$$
.

Example 1.7. Let R be a unital associative ring. The category $\mathbf{Mod}^{\mathrm{fg}}(R)$ of finitely generated R-modules is exact as a full subcategory of the abelian category $\mathbf{Mod}(R)$ closed under extensions. We define $G_0(R) := K_0(\mathbf{Mod}^{\mathrm{fg}}(R))$.

Let's prove that $G_0(\mathbb{Z}) \cong \mathbb{Z}$, following [Wei13, II.6.2.1]. We can see this because the short exact sequence

$$0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0$$

shows that $[\mathbb{Z}/n\mathbb{Z}]=0$, and then the fundamental theorem of finitely generated abelian groups shows that the class of any abelian group only depends on its torsion free part. Hence $G_0(\mathbb{Z})$ is generated by \mathbb{Z} . We can show that $[\mathbb{Z}]$ is not a torsion element in $G_0(\mathbb{Z})$ using the rank homomorphism

$$r: G_0(\mathbb{Z}) \to \cong \mathbb{Z}$$

defined by $r([A]) = \dim_{\mathbb{Q}}(A \otimes_{\mathbb{Z}} \mathbb{Q})$. The rank homomorphism r in clearly surjective and sends the generator $[\mathbb{Z}]$ to 1, so is an isomorphism.

Example 1.8. Let R be a unital associative ring. The category $\mathbf{Proj}^{\mathrm{fg}}(R)$ of finitely generated projective R-modules is exact as a full subcategory of $\mathbf{Mod}(R)$ that is closed under extensions. We define $K_0(R) := K_0(\mathbf{Proj}^{\mathrm{fg}}(R))$. This is what you usually think of as $K_0(R)$. The sequence

$$0 \rightarrow 0 \rightarrow 0$$

shows that [0] is the unit in K_0 and the sequence

$$0 \to A \xrightarrow{\cong} A'$$

shows that [A] = [A'] when A and A' are isomorphic. Finally, all short exact sequences of projective modules split, so every relation is of the form $[A \oplus B] = [A] + [B]$.

We can describe the group $K_0(R)$ in many cases:

- (a) If R is a field, then any R-module is projective and any two R-module of the same dimension are isomorphic. Hence, $K_0(R) \cong \mathbb{Z}$.
- (b) More generally, if R is a PID, then every finitely generated projective R-module is free and hence isomorphic to R^n for some n. Hence, $K_0(R) \cong \mathbb{Z}$.
- (c) If A is a Dedekind domain, then $K_0(A) \cong \mathbb{Z} \oplus Cl(A)$, where Cl(A) is its class group [Ros94, Theorem 1.4.12].

Remark 1.9 (Eilenberg swindle). What if we don't restrict to finitely generated R-modules? Let R^{∞} be a free R-module on a countably infinite basis. Then $R \oplus R^{\infty} \cong R^{\infty}$. For any countably generated projective R-module P, write P as a direct summand of a free module R^n by $P \oplus Q = R^n$, possibly with $n = \infty$. Then

$$P \oplus R^{\infty} \cong P \oplus (Q \oplus P) \oplus (Q \oplus P) \oplus \ldots \cong R^{n} \oplus R^{n} \oplus \ldots \cong R^{\infty}.$$

Therefore, $[P] = 0 \in K_0(\mathbf{Proj}(R))$. Hence, $K_0(\mathbf{Proj}(R)) = 0$.

Example 1.10 ([Wei13, II.7.1.2]). If X is a topological space, then the category $\mathbf{Vect}_{\mathbb{C}}(X)$ of finite-dimensional complex vector bundles over X is an exact category, and we may define

$$K^0(X) := K_0(\mathbf{Vect}_{\mathbb{C}}(X)).$$

This is the **topological** K**-theory of** X. The Serre–Swan theorem asserts that $K^0(X) \cong K_0(R)$, where R is the ring of continuous functions $X \to \mathbb{C}$.

If $F: \mathcal{C} \to \mathcal{D}$ is an exact functor between exact categories, let $K_0(F): K_0(\mathcal{C}) \to K_0(\mathcal{D})$ be the homomorphism of abelian groups defined by $[C] \mapsto [F(C)]$. Because F sends exact sequences in \mathcal{C} to exact sequences in \mathcal{D} , this is well-defined. With this construction, K_0 becomes a functor from the category of exact categories and functors to the category of abelian groups.

In particular, if $R \to S$ is a ring map, there is an exact functor from $\mathbf{Proj}^{fg}(R) \to \mathbf{Proj}^{fg}(S)$ by extension of scalars. This yields an abelian group homomorphism $K_0(R) \to K_0(S)$.

For any ring R, there is a ring homomorphism $\mathbb{Z} \to R$ sending 1 to the unit of R. This yields an abelian group homomorphism $\mathbb{Z} \cong K_0(\mathbb{Z}) \to K_0(R)$ whose image is the subgroup of $K_0(R)$ generated by the finitely generated free R-modules. In fact, the homomorphism may be described as $n \mapsto [R^n]$.

Definition 1.11. The **reduced** K**-theory** $K_0(R)$ of R is the quotient of $K_0(R)$ by the image of the homomorphism $\mathbb{Z} \to K_0(R)$ induced from $\mathbb{Z} \to \mathbb{R}$.

Finally, the functor K_0 satisfies a universal property: it is the universal additive function on an exact category.

Definition 1.12. An **additive function** $f \colon Ob(\mathfrak{C}) \to \Gamma$ is a function from the objects of an exact category \mathfrak{C} to an abelian group Γ such that f(B) = f(A) + f(C) for every short exact sequence $A \hookrightarrow B \twoheadrightarrow C$ in \mathfrak{C} .

Theorem 1.13 (Universal property of K_0 , [Wei13, II.6.1.2]). Any additive function $f: Ob(\mathfrak{C}) \to \Gamma$ induces a unique group homomorphism $\overline{f}: K_0(\mathfrak{C}) \to \Gamma$, with $\overline{f}([C]) = f(C)$ for all $X \in Ob(\mathfrak{C})$.

$$\begin{array}{ccc}
Ob(\mathcal{C}) & \xrightarrow{f} & \Gamma \\
& & \overline{f} \\
& & K_0(\mathcal{C})
\end{array}$$

This universal property also shows that $K_0(\mathbb{C})$ is in some sense the universal receiver of generalized Euler characteristics.

Definition 1.14. Let C_{\bullet} be a bounded chain complex of objects in an abelian category A. The **Euler characteristic** of C_{\bullet} is the element

$$\chi(C_\bullet) = \sum_{\mathfrak{i}} (-1)^{\mathfrak{i}} [C_{\mathfrak{i}}] \in K_0(A).$$

The **reduced Euler characteristic** is the composition of χ with the quotient homomorphism $K_0 \to \widetilde{K}_0$, and is denoted $\widetilde{\chi}$.

Proposition 1.15 ([Wei13, II.6.6]). If C_{\bullet} is a bounded complex in an abelian category A, then its Euler characteristic depends only on its homology:

$$\chi(C_\bullet) = \sum_{\mathfrak{i}} (-1)^{\mathfrak{i}} [H_{\mathfrak{i}}(C_\bullet)]$$

In fact, this shows that the Euler characteristic is well-defined for the complexes which are only **homologically bounded**, i.e. those with only finitely many nonzero homology groups. Moreover, the Euler characteristic defines a homomorphism $\chi\colon K_0(\mathbf{Ch}^b(R))\to K_0(R)$ from K_0 of the category of bounded chain complexes of R-modules to $K_0(R)$. In particular, if

$$0 \to A_{ullet} \to B_{ullet} \to C_{ullet} \to 0$$

is a short exact sequence of complexes, then

$$\chi(B_{\bullet}) = \chi(A_{\bullet}) + \chi(C_{\bullet}).$$

Using the universal property of K_0 , we can show that $\chi: K_0(\mathbf{Ch}^b(R)) \to K_0(R)$ is an isomorphism [Wei13, II.9.2.2].

2 Wall's Finiteness Obstruction

Recall that we were trying to answer question 0.7: when is a finitely dominated topological space homotopy equivalent to a finite CW complex? Recall that finitely dominated means that X is the retract of a finite CW complex Y.

Definition 2.1. Let X be a finitely dominated topological space with universal cover \widetilde{X} . Let $\pi_1(X)$ act on \widetilde{X} by deck transformations, so that the chain complex $C_*(\widetilde{X})$ becomes a complex of $\mathbb{Z}[\pi_1X]$ -modules. **Wall's finiteness obstruction** is the reduced Euler characteristic of the complex $C_*(\widetilde{X})$:

$$w(X) := \widetilde{\chi}\left(C_*(\widetilde{X})\right) \in \widetilde{K}_0(\mathbb{Z}[\pi_1X]).$$

This is well-defined because $\widetilde{\chi}(C_*(\widetilde{X}))$ depends only on the homology of \widetilde{X} . Wall proved [Ros05, Theorem 1] that when \widetilde{X} is finitely dominated, its homology consists only of finitely generated projective $\mathbb{Z}[\pi_1 X]$ -modules.

Theorem 2.2 (Wall, [Ros05, Theorem 1]). Let X be a finitely dominated space. Then X is homotopy-equivalent to a finite CW-complex if and only if $w(X) \in \widetilde{K}_0(R)$ vanishes.

The following theorem shows that the reduced Euler characteristic detects the difference between a chain complex of projective modules and a chain complex of free ones. This is the key K-theoretic component that Wall proved; the above is merely its translation into the context of the question at the beginning of the talk.

Theorem 2.3 (Wall, [Ros94, Theorem 1.7.12]). Let C_{\bullet} be a chain complex of finitely generated projective R-modules. Then C_{\bullet} is homotopy equivalent to a chain complex of finitely generated free R-modules if and only if the image of $\chi(C_{\bullet})$ in $\widetilde{K}_{0}(R)$ vanishes.

Corollary 2.4. Let X be a finitely dominated space which is simply connected. Then X has the homotopy type of a finite CW complex.

Proof. In this case, w(X) is an alternating sum of finitely generated projective \mathbb{Z} modules. Every finitely generated projective \mathbb{Z} -module is free, so w(X) lies the kernel of $K_0 \to \widetilde{K}_0$. Then apply Wall's theorem.

More generally, the previous corollary is true when $\mathbb{Z}[\pi_1 X]$ is a PID.

References

- [Hat02] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
- [Lur14] Jacob Lurie. Algebraic K-Theory and Manifold Topology (Math 281). http://www.math.harvard.edu/~lurie/281.html, 2014.
- [Qui73] Daniel Quillen. Higher algebraic K-theory: I. In H. Bass, editor, *Higher K-Theories*, Lecture Notes in Mathematics, pages 85–147. Springer Berlin Heidelberg, 1973.

- [Ros94] Jonathan Rosenberg. *Algebraic K-Theory and Its Applications*. Graduate Texts in Mathematics. Springer-Verlag, New York, 1994. https://www.springer.com/gp/book/9780387942483.
- [Ros05] Jonathan Rosenberg. K-Theory and Geometric Topology. In Eric M. Friedlander and Daniel R. Grayson, editors, *Handbook of K-Theory*, pages 577–610. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. https://doi.org/10.1007/978-3-540-27855-9_12.
- [Wei13] Charles Weibel. *The K-Book*, volume 145 of *Graduate Studies in Mathematics*. American Mathematical Society, 2013.