Traveling Salesman Problem (7. Hamiltonians Cycle	ŚP

Given the set of distances, order of cities in a tour V_i , V_{i2} , ... N_{in} with $i_1 = 1$ so t it minimizes $\sum_{i=1}^{n} d(V_{i1}, V_{ij+1}) + d(V_{in}, V_{in})$

Def. A cycle C in G is a Hamiltonian Cycle if it visits each vertex exactly once
Cycle if it visits each vertex
exactly once
Show that the Ham Cycle problem is NP complete
is NP- complete

 1 - Show that HC is in NP.
- certificate: ordered list of the vertices on the HC
•
- Certifier: There is an eagle between last & first notes.
each pair of adjacent rodes
in the list.

nodes do not repeat.
nodes do not regent.
-> HC problem in in NP
2- Choose vertex Cover
3_ Show that votex cover & HC

Ġ'	$\begin{bmatrix} U,V,1 \end{bmatrix}$ $\begin{bmatrix} U,V,2 \end{bmatrix}$ $\begin{bmatrix} U,V,6 \end{bmatrix}$ $\begin{bmatrix} V,U,6 \end{bmatrix}$
G	UV

- Selector vertices: There are k

Selector vertices: There are k

Selector vertices: There are k

- Other edges: G'

1- For each vertex VeV we add edges

to join pairs of gaspets in order to

form a path going thru all othe

gadgets Corresponding to edges

incident on U in G.

Form a HC := G' by following

there nodes := this order:

Start at 5, and go to $\begin{bmatrix} U_1, U_1', 1 \\ U_1, U_2', 1 \end{bmatrix} = \begin{bmatrix} U_1, U_1', 6 \\ U_1, U_2', 6 \end{bmatrix}$ Then go to S_2 Then to $[U_2, U_2', 1] = [U_2, U_2', 6]$

B) Suppose & has a Ham. Cycle C
Thus the set

S= {V; e V : (S; , [Uj, Uj', 1]) \in C}

for some 1\(\sij\) \(\k\) \}