Section 0.2:

Problem 1c. Convert 79 to Binary.

Solution:

$$79/2 = 39r1$$

$$39/2 = 19r1$$

$$19/2 = 9r1$$

$$9/2 = 4r1$$

$$4/2 = 2r0$$

$$2/2 = 1r0$$

$$1/2 = 0r1$$
(1)

Answer = 1001111;

Problem 3d. Convert 12.8 to Binary

Solution:

$$12/2 = 6r0$$
 $0.8 * 2 = 1.6$
 $6/2 = 3r0$ $0.6 * 2 = 1.2$
 $3/2 = 1r1$ $0.2 * 2 = 0.4$
 $1/2 = 0r1$ $0.4 * 2 = 0.8$

 $Answer = 1100.\overline{1100}$

Problem 4b. convert 2/3 to binary

Solution:

$$\overline{.66} * 2 = 1.\overline{33}$$
 $\overline{.33} * 2 = 0.\overline{66}$
 $\overline{.66} * 2 = 1.\overline{33}$
 $\overline{.33} * 2 = 0.\overline{66}$

Answer = $.\overline{10}$

Problem 7b. convert 1011.101 to Decimal

Solution:

$$2^{3} + 2^{1} + 2^{0} + 2^{-1} + 2^{-3} = 11\frac{5}{8}$$
 (2)

Problem 7c. convert $10111.\overline{01}$ to decimal

Solution:

$$2^{4} + 2^{2} + 2^{1} + 2^{0} = 23$$

$$2^{2}x - x = 01 : x = \frac{1}{3}$$
(3)

Answer = $23\frac{1}{3}$

Section 0.3:

Problem 1b. convert 1/3 to Binary rounding to the nearest rule.

Solution:

$$1/3 = 0.\overline{33} * 2 = 0.\overline{66}$$

$$\overline{.66} * 2 = 1.\overline{33}$$

$$\overline{.33} * 2 = 0.\overline{66}$$

$$\overline{.66} * 2 = 1.\overline{33}$$

. . .

Problem 1d. Convert the following base 10 numbers to binary and express each as a floating point number fl(x) by using the Rounding to Nearest Rule:

Solution:

$$0.9 * 2 = 1.8$$

 $0.8 * 2 = 1.6$
 $0.6 * 2 = 1.2$
 $0.2 * 2 = 0.4$
 $0.8 * 2 = 1.6$

Problem 2b. Convert the following base 10 numbers to binary and express each as a floating point number fl(x) by using the Rounding to Nearest Rule:

Solution:

$$9/2 = 4r1$$
 $.6 * 2 = 1.2$ $4/2 = 2r0$ $.2 * 2 = 0.4$ $2/2 = 1r0$ $.4 * 2 = 0.8$ $1/2 = 0r1$ $.8 * 2 = 1.6$

П

Problem 3. For which positive integers k can the number $5 + 2^{-k}$ be represented exactly (with no rounding error) in double precision floating point arithmetic?

Solution:

$$5/2 = 2r1$$
$$2/2 = 1r0$$
$$1/2 = 0r1$$

Answer = $1.01 * 2^2$; 52 - 2 = 50; The numbers $k = \{x : 0 < x \le 50\}$ will not produce an overflow.

Problem 5a. Do the following sums by hand in IEEE double precision computer arithmetic, using the Rounding to Nearest Rule. (Check your answers, using MATLAB.) (a)(1 + (2 - 51 + 2 - 53)) - 1

Solution:

On line two, the col 53 gets truncated; Therefore, the answer is $1 * 2^{-51}$

Section 0.4:

Problem 1c. Identify for which values of x there is subtraction of nearly equal numbers, and find an alternate form that avoids the problem.

Solution: For values that are small; $x \approx 0$; The formula needs to be changed. We can revaluate the formula by multiplying by the conjugate.

$$= \frac{1}{1+x} - \frac{1}{1-x}$$

$$= \frac{1-x-(1+x)}{(1+x)(1-x)}$$

$$= \frac{-2x}{x^2-1}$$
(4)

Problem 2. Find the roots of the equation $x^2 + 3x - 8^{-14} = 0$ with three-digit accuracy.

Solution: Using the quadratic formula, we find the roots of the problem to be:

$$\frac{-3 \pm \sqrt{9 - 4(8^{-14})}}{2} \tag{5}$$

When the sign is negative, we get

$$x_1 = \frac{-3 - \sqrt{9 - 4(8^{-14})}}{2} \tag{6}$$

if the sign is positive, we must revaluate the equation because the answer will be very close to 0.

$$x_2 = \frac{-3 + \sqrt{9 - 4(8^{-14})}}{2} \tag{7}$$

We can muliply the formula by $(3+\sqrt{9-48^-14})$ and simplify. We are able to get the answer to 3 significant digits.

$$x_2 = \frac{-2(8^{-14})}{3 + \sqrt{9 - 4(8^{-14})}} \tag{8}$$

Therefore, the answers are $x_1 = 2.99, x_2 = -7.58$;