~ゼロにこだわり成し遂げた~

[テーマ] 焼き入れ機種判別異常撲滅活動

アイシン・エィ・ダブリュ株式会社 蒲郡工場D/F・O/P 加工グループ1係2組 キートスB サークル たに ゆうすけ 谷 雄介

センサーカバーで<mark>評価が</mark> かった寸法でスリット加工!

異かつに引属	インシント加工会員
スリット幅	1mm
えリット長さ	3mm
焼き入れ水が 流れる時間	1秒
評価	0

焼き入れ水が流れず 付着した状態のままだった!!

ガイドがセンサーカバーと違い、加工時に直 接、焼き入れ水がかかる為スリットでは全 て取り除く事ができない。

対策案の検討をマトリックスを 使用して検討したところ・・・

評価項目対策案	効 果	実 現 性	コスト	合 計
ガイド穴に カバー取付け	0	\triangle	0	5
ガイド穴に エアブローを当てる			<u></u>	8
ガイド形状変更		\triangle	\triangle	4

スリット以外での ガイド穴焼き入れ水除去方法 検討必要

エアーでの焼き入れ水除去トライ実施

センサーカバーはスリット加工で対策で きたのでそのセンサーカバーに付いてい るエアー配管を使えないかなぁ

加工	終了
エアー	停止

加工終了と同時にエアーも停止してしまうとワーク に付着した焼き入れ水がガイドにも付着してしまう

加工中エアーから 加工後のみのエアーへ変更したい

保全Gへ相談

エアーの出るタイミングを変更できませんか?

弊害があるかもしれないので一度、回路図を 見て確認しましょう

保全と相談した結果、回路を2系統に変 更する事で加工中の主軸エアパージと加 工後のガイド穴へのエアーを出す事ができ た。

ガイド穴へのエアブロー時間検証

△ 残る	△ 残る ○ 時々残る ○ 残らない				
1秒	2秒	3秒	4秒	5秒	
Δ	Δ	0	0	0	

回路を2系統にする事で、加工中はガイド穴・加工終了時は主軸エア バージのエアーを停止する事ができエアーのムダも無くす事ができた。

ノズル位置変更→機種判別異常発生なし

弊害検討

設備干渉、エアー狙い変更による機外への焼き入れ水飛散無し

品質確認実施。問題無し。

改善前、MCT33.9秒から改善後、MCT38.9秒になったがネック工程ではない為、生産性の影響なし

安全、品質、生産性共に弊害なし

効果の確認

効果金額

64分/1W×4W×12ヶ月=3,072分 3,072分×30円/分=92,160円

効果金額 92,160円

目標達成

管理方法の取り決め

	いつ	誰が	何を	どのように
(1)	1/D	ライン外	エアーの吐出点検を	手感・圧力計で確認
2	1/D	ライン外	新しいステーを	破損なきことと ネジの緩みなき事を捨て焼き時確認

1.エアー吐出点検を手感・圧力計にて確認 2.ステーの固定ボルト緩み確認

管理項目の教育・展開

伝承ボードへ展開

担当者に現地で教育

チェックシートの作成

何を	なぜ	誰が	いつ	どこで	どのように
標準で決めた事	ルール通り 実施しているか	100 000	1/D	作業現場	チェック表で 管理する

・伝承ボードで周知徹底 ・担当者へ現地教育 ・作業点検とチェックシートで維持

反省と今後の進め方

参加者

他部署との合同発表会を実施 情報の共有と理解を深めていきます

17年活動実績 個人別評価表

難題に挑戦

* 改善能力のアップ

ステップリーダー制

QC的考え方アップ

保全・改善巻き込み

関連部署との連携アップ

サークル能力

—16年実績 ─17年実績

明るい職場 😉

