第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

- 一、移位运算
 - -1、移位运算的数学意义
 - -2、算术移位规则
 - -3、算术移位的硬件实现
 - -4、算术移位与逻辑移位的区别

- 一、移位运算
 - 1. 移位的意义

15 m = 1500 cm

小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

在计算机中,移位与加减配合,能够实现乘除运算

2. 算术移位规则

6.3

$x=-0.x_1x_2...x_k100...000$

$$[x]_{1/2} = 1.\overline{x}_1 \overline{x}_2...\overline{x}_k 100...000$$

符号位不变

	码制	添补代码
正数	原码、补码、反码	0
	原码	0
负数	补 码	左移添0
	小小	右移添1
	反 码	1

表示真值的0

例6.16

6.3

设机器数字长为 8 位(含 1 位符号位),写出 A = +26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解: A = +26 = +11010

则 $[A]_{\mathbb{R}} = [A]_{\mathbb{A}} = [A]_{\mathbb{D}} = 0,0011010$

移位操作	机器数 $[A]_{\mathbb{F}}=[A]_{\mathbb{F}}=[A]_{\mathbb{F}}$	对应的真值
移位前	0,0011010	+26
左移一位	0,0110100	+52
左移两位	0,1101000	+104
右移一位	0,0001101	+13
右移两位	0,0000110	+6

例6.17

6.3

设机器数字长为 8 位(含 1 位符号位),写出 A = -26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:

$$A = -26 = -11010$$

原码

移位操作	机器数	对应的真值
移位前	1,0011010	-26
左移一位	1,0110100	- 52
左移两位	1,1101000	- 104
右移一位	1, <mark>0</mark> 001101	-13
右移两位	1,0000110	-6

补	码
---	---

移位操作	机器数	对应的真值
移位前	1,1100110	-26
左移一位	1,1001100	- 52
左移两位	1,0011000	- 104
右移一位	1,1110011	- 13
右移两位	1,1111001	-7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	-26
左移一位	1,1001011	- 52
左移两位	1,0010111	- 104
右移一位	1,1110010	- 13
右移两位	1, <mark>11</mark> 11001	-6

3. 算术移位的硬件实现

6.3

正确

影响精度

2016/2/26

影响精度

→丢1

哈尔滨工业大学 刘宏伟

影响精度

4. 算术移位和逻辑移位的区别

6.3

算术移位 有符号数的移位 符号位保持不动

逻辑移位 无符号数的移位 所有位参加移位运算

逻辑左移 低位添 0, 高位移丢

高位添 0, 低位移丢

例如 01010011 10110010

逻辑左移 10100110 逻辑右移 01011001

算术左移 00100110 算术右移 11011001 (补码)

高位1移丢

逻辑右移

- 一、移位运算
 - -1、移位运算的数学意义
 - -2、算术移位规则
 - -3、算术移位的硬件实现
 - -4、算术移位与逻辑移位的区别

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

但是用原码作加法时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
加法	正	正	加	正
加法	正	负	减	可正可负
加法	负	正	减	可正可负
加法	负	负	加	负

能否 只作加法?

找到一个与负数等价的正数 来代替这个负数

就可使 减 —— 加

- 二、加减法运算
 - -1、补码加减法运算的公式
 - 2、举例
 - -3、溢出的判断
 - -4、补码加减法的硬件配置

二、加减法运算

6.3

1. 补码加减运算公式

(1) 加法

整数
$$[A]_{\nmid h} + [B]_{\nmid h} = [A+B]_{\nmid h} \pmod{2^{n+1}}$$

小数
$$[A]_{\stackrel{?}{\nmid 1}} + [B]_{\stackrel{?}{\nmid 1}} = [A+B]_{\stackrel{?}{\nmid 1}} \pmod{2}$$

(2) 减法

$$A-B = A+(-B)$$

整数
$$[A-B]_{\stackrel{?}{\nmid h}} = [A+(-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2^{n+1}}$$

少数
$$[A - B]_{\nmid h} = [A + (-B)]_{\nmid h} = [A]_{\nmid h} + [-B]_{\nmid h} \pmod{2}$$

连同符号位一起相加,符号位产生的进位自然丢掉

实际实现时、考虑机器字长!!!

6.3

0.1011

0.0110

-0.0101

例 6.18 设
$$A = 0.1011$$
, $B = -0.0101$

求
$$[A+B]$$

验证

解:
$$[A]_{\uparrow \downarrow} = 0.1011$$

$$+[B]_{36} = 1.1011$$

$$[A]_{\dot{\uparrow}\dot{\uparrow}} + [B]_{\dot{\uparrow}\dot{\uparrow}} = 10.0110 = [A + B]_{\dot{\uparrow}\dot{\uparrow}}$$

$$A + B = 0.0110$$

例 6.19 设
$$A = -9$$
, $B = -5$

求
$$[A+B]$$
补

验证

解:
$$[A]_{i} = 1,0111$$

$$+[B]_{k} = 1, 1011$$

$$-1001 \\ +-0101$$

-1110

$$[A]_{
eq}$$

$$[A]_{\nmid h} + [B]_{\nmid h} = 11, 0010 = [A + B]_{\nmid h}$$

$$\therefore A + B = -1110$$

例 6.20 设机器数字长为 8 位 (含 1 位符号位) 6.3 且 A = 15, B = 24,用补码求 A - B

解:
$$A = 15 = 0001111$$
 $B = 24 = 0011000$
 $[A]_{\dag} = 0,0001111$
 $[B]_{\dag} = 0,0011000$
 $+ [-B]_{\dag} = 1,1101000$

$$[A]_{\not \uparrow \uparrow} + [-B]_{\not \uparrow \uparrow} = 1,11101111 = [A-B]_{\not \uparrow \uparrow}$$

$$\therefore A - B = -1001 = -9$$

- 练习 1 设 $x = \frac{9}{16}$ $y = \frac{11}{16}$,用补码求 x+y 假设机器字长5位,含1位符号位 $x+y=-0.1100=-\frac{12}{16}$ 错 超过了小数定点机能表示的范围,溢出
- 练习 2 设机器数字长为 8 位(含 1 位符号位) 且 A = -97,B = +41,用补码求 A - B 假设机器字长8位,含1位符号位

$$A - B = +11101110 = +118$$
 错

2016/2/26

3. 溢出判断

6.3

(1) 一位符号位判溢出

参加操作的两个数(减法时即为被减数和"求补"以后的减数)<u>符号相同</u>,其结果的符号与原操作数的符号不同,即为溢出

硬件实现

数值的进位 两个操作数都为负数时发生 最高有效位的进位 中符号位的进位 = 1 溢出 如 1 中 0 = 1 两个正数相加 0 中 1 = 1 一两个负数相加

$$\{ \begin{array}{c} 0 \oplus 0 = 0 \\ 1 \oplus 1 = 0 \end{array} \}$$
 无 溢出

(2) 两位符号位判溢出

$$[x]_{\frac{x}{|x|}} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\lambda h'} + [y]_{\lambda h'} = [x + y]_{\lambda h'} \pmod{4}$$

$$[x-y]_{k} = [x]_{k} + [-y]_{k}$$
 (mod 4)

最高符号位 代表其 真正的符号

4. 补码加减法的硬件配置

6.3

A、X均n+1位

用减法标记 Gs 控制求补逻辑

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

- 三、乘法运算
 - 计算机中怎么做二进制的乘法运算呢
 - 可以分析一下笔算乘法是怎么做的
 - 笔算乘法的分析
 - 笔算乘法的改进
 - 原码的乘法运算
 - 补码的乘法运算

三、乘法运算

6.3

1. 分析笔算乘法

$$A = -0.1101$$
 $B = 0.1011$

$$A \times B = -0.10001111$$
 乘积的符号心算求得

- 0.1101
- ×0.1011 ✓ 🎋
- ✓ 符号位单独处理 ff或电路
 - 1101
- ✓ 乘数的某一位决定是否加被乘数
- 1101
- 0000

? 4个位积一起相加 累加器

1101

✓ 乘积的位数扩大一倍

0.10001111

2. 笔算乘法改进

6.3

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

有移一位 =
$$0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 2^{-1} \{ 1 \cdot A + 2^{-1} [0 \cdot A + 2^{-1} (1 \cdot A + 2^{-1} (1 \cdot A + 2^{-1} (1 \cdot A + 0))] \}$$

第一步 被乘数A+0

第二步 右移一位,得新的部分积

第三步 部分积+被乘数

第八步 右移一位,得结果

<u>(1)</u>
<u>(2)</u>
<u>(3)</u>

3) n次加法,n次移位

3. 改进后的笔算乘法过程(竖式) 6.3

部分积	乘数	说明
0.0000	1011	初态,部分积 = 0
+0.1101	II	乘数为1,加被乘数
0.1101		
0.0110	1101	→1,形成新的部分积
+0.1101	II	乘数为1,加被乘数
1.0011	1 部分积的低位,	移出来的部分
0.1001	1110	$\rightarrow 1$,形成新的部分积
+ 0.0000	Ш	乘数为0,加0
0.1001	11	
0.0100	1111	→ 1, 形成新的部分积
+0.1101		乘数为1,加被乘数
1.0001	111	
0.1000	1111	→1 ,得结果

小结 6.3

- ightharpoonup 乘法 运算可用 <u>加和移位</u>实现 n = 4,加 4 次,移 4 次
- ▶ 由乘数的末位决定被乘数是否与原部分积相加,然后→1位形成新的部分积,同时乘数→1位 (末位移丢),空出高位存放部分积的低位。
- > 被乘数只与部分积的高位相加

只和ACC中的相加,不与MQ中的低位相加

- 硬件 3 个寄存器,其中2个具有移位功能 ACC, X, MQ 1 个全加器
- 2016/2/26

- 三、乘法运算
 - 计算机中怎么做二进制的乘法运算呢
 - 可以分析一下笔算乘法是怎么做的
 - 笔算乘法的分析
 - 笔算乘法的改进
 - 原码的乘法运算
 - 补码的乘法运算

运算规则 递推公式 举例 硬件配置

4. 原码乘法

6.3

(1) 原码一位乘运算规则 以小数为例

设
$$[x]_{\mathbb{R}} = x_0 \cdot x_1 x_2 \cdots x_n$$

$$[y]_{\mathbb{R}} = y_0 \cdot y_1 y_2 \cdots y_n$$

$$[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0) \cdot (0 \cdot x_1 x_2 \cdots x_n) (0 \cdot y_1 y_2 \cdots y_n)$$

$$= (x_0 \oplus y_0) \cdot x^* y^*$$
式中 $x^* = 0 \cdot x_1 x_2 \cdots x_n$ 为 x 的绝对值
$$y^* = 0 \cdot y_1 y_2 \cdots y_n$$
 为 y 的绝对值

乘积的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相乘 $x^* \cdot y^*$

(2) 原码一位乘递推公式

$$z_{0} = 0$$

$$z_{1} = 2^{-1}(y_{n}x^{*} + z_{0})$$

$$z_{2} = 2^{-1}(y_{n-1}x^{*} + z_{1})$$

$$\vdots$$

$$z_{n} = 2^{-1}(y_{1}x^{*} + z_{n-1})$$

例 6.21 已知 x = -0.1110 y = 0.1101 求 $[x \cdot y]_{\mathbb{R}}$ 6.3

解:	致 值 部分	的运算	1
师 : 	部分积	乘数	说 明
	0.0000	1101	部分积 初态 $z_0 = 0$
_+	0.1110	II	+ x*
\m.4\r. 14. m4.m/	0.1110		
逻辑右移	0.0111	0110	→1 ,得 z ₁
+	0.0000	II	+ 0
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.0111	0	
逻辑右移	0.0011	1011	→1 , 得 z ₂ + x*
_+	0.1110	_	+ x*
<u>} } </u>	1.0001	10	
逻辑右移	0.1000	1 1 0 <u>1</u>	→1, 得 z ₃ + x*
_+	0.1110		+ x*
<u>} </u>	1.0110	110	
逻辑右移	$^{\bullet}$ 0.1011	0110	→1 ,得 Z ₄

例6.21 结果

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则
$$[x \cdot y]_{\mathbb{R}} = 1.10110110$$

特点 绝对值运算

用移位的次数判断乘法是否结束

而不是加法的次数,因为+0可以不做加法

逻辑移位

(3) 原码一位乘的硬件配置 6.3 0 n n 右移 法 器 移位和加控制 加 控制X是否送入加法器 控 制 门 符号位 0 计数器 C S G_{M}

记录移位的次数

n

乘法标志

A、X、Q均*n*+1位

移位和加受末位乘数控制

被乘数,保持不变