1 ЛІНІЙНИЙ ОБЧИСЛЮВАЛЬНИЙ ПРОЦЕС

Мета: навчитись використовувати лінійну обчислювальну структуру для розв'язку прикладних задач.

1.1 Завдання

Обчислити значення функції використовуючи лінійну структуру та метод декомпозиції задачі на підзадачі.

$$\psi = \sqrt{\frac{a^2 \operatorname{tg}^4 x - 3 \cos^2 y}{e^x + e^y} + \log_2 \frac{|2 a \cdot x^3 - 3 a^2 \cdot x + y|}{3 + \sin x + \cos y + 3} + \cos(ax) \cdot (1 + \operatorname{ctg} y)};$$

1.2 Хід роботи

1.2.1 Постановка задачі

Дано: x, a, $y \in \mathbb{R}$;

Додаткові дані: A , B , C , $D \in \mathbb{R}$

Bизначити: ψ∈ℝ .

1.2.2 Математична модель інформаційного процесу

$$\psi = \sqrt{\frac{a^2 \operatorname{tg}^4 x - 3 \cos^2 y}{e^x + e^y} + \log_2 \frac{|2 a \cdot x^3 - 3 a^2 \cdot x + y|}{3 + \sin x + \cos y + 3}}$$

Скоригована математична модель:

$$A = {}^{2} \operatorname{tg}^{4} x - 3 \cos^{2} y$$

$$B = e^{x} + e^{y}$$

$$C = 3 + \sin x + \cos y + 3$$

$$D = \left| 2 a \cdot x^{3} - 3 a^{2} \cdot x + y \right|$$

$$\psi = \sqrt{\frac{A}{B}} + \log_{2} \frac{5}{F} + \cos(ax) \cdot (1 + \operatorname{ctg} y);$$

1.2.3 Метод реалізації інформаційного процесу

Безпосередні обчислення.

1.2.4 Алгоритм реалізації інформаційного процесу

Рисунок 5.1 — Алгоритм обчислення функції β

1.2.5 Програмування

Побудова таблиці ідентифікаторів.

Таблиця 1.1 — Таблиця ідентифікаторів

№ 3/Π	Змінна або константа	Ідентифікатор	№ 3/П	Змінна або константа	Ідентифікатор
1	x	X	5	C	С
2	а	а	6	D	D
3	A	А	7	ψ	delta
4	В	В	8	у	У

Запуск середовища розробки програмного забезпечення;

Введення тексту програми:

```
#include <iostream>
#include <cmath>
using namespace std;
int main() {
             double x, y, a, A, B, C, D;
              cout << "a = ";
              cin >> a;
              cout << "x = ";
              cin >> x;
              cout << "y = ";
              cin >> y;
             A = a * a * pow(tan(x), 4) - 3 * cos(y) * cos(y);
              B = \exp(x) + \exp(y);
             C = fabs(2 * a * pow(x, 3) - 3 * a * a * x + y);
              D = 3 + \sin(x) + \cos(y) + 3;
             cout << "delta = " << sqrt(A / B) + log2(C / D) + cos(a*x) * (1 + cos(y) / B) + log2(C / D) + cos(a*x) * (1 + cos(y) / B) + log2(C / D) + lo
sin(y)) << '\n';
             return 0;
```

1.2.6 Тестуванння та виявлення помилок

Для виявлення алгоритмічних помилок та вирішення проблеми достовірності отриманих результатів можна виконати обчислення у електронній таблиці і порвняти отримані розв'язки.

Для цього у OpenOffice.org Calc створюємо електронну книгу "Обчислення функцій", яку зберігаємо у особисту теку. Далі *Лист* І перейменовуємо на ЛР5 та виконуємо обчислення за формою:

Обчислення функції								
Вхідні дані			Додаткові позначення				Отриманий результат	
6	X	у	A=	B=	C=	D=	Delta=	
-	2 4	-0,1	=(A5)^2*TAN(B5)^4-3*COS('y')^2	=EXP(B5)+EXP(C5)	=ABS(2*A5*(B5)^3-3*(A5)^2*B5+C5)	=3+SIN(B5)+COS(C5)+3	=SQRT(E5/F5)+LOG((G5/H5); 2)+COS(A5*B5)*(1+(COS(C5)/SIN(C5)))	

У випадку, коли результати отримані двома різними способами не співпадають, необхідно продовжити роботу над виправленням помилок. Одним зі способів ϵ виведення на екран проміжних результатів обчислення. Для цього до коду програми необхідно добавити breakpoints.

1.2.7 Обчислення, обробка і аналіз результатів

У ході виконання даної роботи отримано наступні результати:

```
2 #include <cmath>
   3 using namespace std;
   5 int main() {
        double x, y, a, A, B, C, D;
cout << "a = ";</pre>
       cin >> a;
   8
        cin >> y;
  14
         A = a * a * pow(tan(x), 4) - 3 * cos(y) * cos(y);
        B = \exp(x) + \exp(y);
         C = fabs(2 * a * pow(x, 3) - 3 * a * a * x + y);

D = 3 + \sin(x) + \cos(y) + 3;
          cout << "delta = " << sqrt(A / B) + log2(C / D) + cos(a*x) * (1 + cos(y)/sin(y)) << '\n';
                                                                                                       Thread 1: breakpoint 5.1 (1)
  20
21 }
          return 0;
🔲 🕨 🖟 🍐 🗘 🗓 🕞 🎾 🖁 🐬 │ 🗀 #3 〉 🕦 Thread 1 〉 🚺 0 main
 L y = (double) -0.10000000000000001
                                             a = -2
 A = (double) 4.2181986501309545
                                             y = -0.1
 L a = (double) -2
                                             delta = 7.1876
(11db) |
 \mathbf{L} \mathbf{x} = (\text{double}) \mathbf{4}
 B = (double) 55.502987451180196
 L C = (double) 304.10000000000002
 L D = (double) 6.2382016699700973
```

Результат обчислень у електронній таблиці

	Обчислення функції							
Вхідні дані		цані		Отриманий результат				
а	X	у	A=	B=	C=	D=	Delta=	
-2	4	-0,1	4,1990855631	55,5399145667	304,06	6,2413980446	8,1578961529	

Порівнюючи результати, отримані трьома різними способами з високою вірогідністю можна стверджувати, що обчислення виконано правильно, так як отримані значення співпали.

1.3 Програми та обладнання.

OpenOfice Calc, Xcode

1.4 Висновки.

Під час виконання даної лабораторної роботи я навчився використовувати лінійну обчислювальну структуру для вирішення прикладних завдань за допомогою різноманітних програм і обладнання, зазначеного вище.