

Table des matières

1	Espaces annelés et localement annelés	5
2	Variétés abstraites	7
3	Se remémorer les schémas3.1 Topologie	
4	Recoller	11
5	Schémas	13
6	Le spectre maximal et le nullstellensatz 6.1 Nullstellensatz 1	
	On s'en fout si c'est pas dans le bon ordre.	

TABLE DES MATIÈRES

Espaces annelés et localement annelés

Je viens de me rendre compte que les morphismes d'espaces localement annelés c'est clair mais pas tant que ça. Déjà

- 1. Annelés veut juste dire \mathcal{O}_X est un faisceau d'anneau.
- 2. Localement annelés faut rajouter que les $\mathcal{O}_{X,x}$ sont des anneaux locaux.
- 3. Le morphisme f^{\sharp} est entre $\mathcal{O}_Y \to f_*\mathcal{O}_X$, sinon $f^{\flat} \colon f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$.

Donc si

- 1. $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ sont des espaces annelés.
- 2. $(f, f^{\sharp}) \colon X \to Y$ un morphisme. Alors le f^{\sharp} est juste un morphisme de faisceaux.
- 3. Pour avoir l'intuition habituelle, on regarde localement annelé. C'est à dire si f(x) = y alors $f^{\sharp} \colon \mathcal{O}_{Y,y} \to (f_*\mathcal{O}_X)_y \to \mathcal{O}_{X,x}$ est local :

$$f^{\sharp}\mathfrak{m}_{y}\subset\mathfrak{m}_{x}.$$

Remarque 1. Et la ! En fait $(f_*\mathcal{O}_X)_y$ c'est la limite des $\mathcal{O}_{X,x}$ pour f(x) = y! J'avais jamais tilt mdr trop bizarre.

Remarque 2. Ducoup on a ces comparaisons,

et les colimites sont filtrantes donc existent et on peut relever. Est-ce que y'a des égalités ?

Variétés abstraites

Ducoup

1. Une variété abstraite affine c'est juste un ensemble algébrique affine X muni du faisceau

Se remémorer les schémas

Définition 3.0.1 (Schéma affine). $(Spec(A), \mathcal{O}_{Spec(A)}(Spec(A)))$ où pour $f \in A$:

$$D(f) := \{ \mathfrak{p} \in Spec(A) | f \notin \mathfrak{p} \}$$

et $V(I) = \{ \mathfrak{p} \in Spec(A) | I \subset \mathfrak{p} \}$. Ensuite

$$\mathcal{O}_{Spec(A)}(D(f)) := A_f$$

et $\mathcal{O}_{Spec(A)}(U = \bigcup_i D(f_i)) = \text{recollements unique.}$

3.1 Topologie

Pour la topologie aller voir 2.1 du Gortz. Ensuite déf en 3.1/3.2 de la topologie des schémas.

Définition 3.1.1. Dans le cas des schémas. On

3.2 Cas k-schéma de type fini

3.2 Cas k-schéma de type fini

Recoller

Schémas

Quelques questions sur les définitions de schémas.

- 1. Sous-schéma réduit est un sous-schéma ? (ça ca à l'air)
- 2. Pourquoi cette déf d'immersions ouvertes/fermés ? Simplement pour les conditions d'avoir un faisceau sur l'image compatible ?

Le spectre maximal et le nullstellensatz

6.1 Nullstellensatz 1

Comme dans les notes, le spectre maximal suffit pour les variétés parce qu'on regarde des k-algèbres et qu'on a la normalisation de Noether. Ou plutôt on a le **nullstellensatz!** Ce qui permet de voir que

• $A \to B$ définit $Spm(A) \to Spm(B)$

Dans algebraic groups de Milne il a l'air d'en parler. Faut voir avec la sobrification aussi?

6.2 Nullstellensatz 2

En fait je dis 2 parce que

$$\bigcap_{I\subset \mathfrak{p}}\mathfrak{p}=\sqrt{I}$$

c'est le nullstellensatz fort qui donne

$$I(V(J)) = \sqrt(J)$$