2. Deterministische Endliche Automaten

Definition Deterministischer Endlicher Automat:

Ein endlicher deterministischer Automat A = (X, S, s_0, δ, F) besteht aus:

X: Eingabealphabet

S: Zustandsmenge

s₀: Startzustand

δ: Zustandsübergangsfunktion, δ: S × X \longrightarrow S

F: Endzustandsmenge, $F \subseteq S$.

Aufgabe 1

Gegeben sei das Alphabet X = {A, B, C, D}. Konstruieren Sie einen deterministischen endlichen Automaten A, der alle Wörter akzeptiert, die jeden Buchstaben des Alphabets X mindestens einmal enthalten.

Aufgabe 2

Gegeben sei das Alphabet X = {a, b}. Geben Sie für die nachfolgenden Sprachen einen zugehörigen deterministischen endlichen Automaten in Form seines Zustandsübergangsgraphen an.

- a) $L = \{ w \in X^* \mid |w| = 3 \}$
- b) $L = \{ w \in X^* | |w|_a < 3 \}$
- c) $L = \{ w \in X^* | |w| = 0 \}$
- d) L = { a^nb , $n \in \mathbb{N}_0$ }
- e) $L = \{ w \in X^* | |w|_b \neq 5 \}$
- f) $L = \{ab^naab^m \mid n \in \mathbb{N}_{0}, m \in \mathbb{N}_0\}$
- g) L = { $w \in X^* | die Anzahl der Buchstaben von w ist gerade }$
- h) L = { $w \in X^* | |w|_a = 3 \land |w|_b = 2 }$

Alexander Bleicher Tutorium

Aufgabe 3

Beschreiben Sie die Sprache des folgenden deterministischen endlichen Automaten: $A = (\{a, b\}, \{s0, s1\}, s0, \delta \text{ siehe Tabelle}, \{s1\})$

	a	b
s0	s1	s0
s1	s0	s1

Aufgabe 4

Welche Sprache akzeptiert der dargestellte Automat? Geben Sie diese in Mengenschreibweiße an. (vgl. Tutoriums Aufgabe von Robin Feldmann)

Aufgabe 5

Geben Sie einen deterministischen endlichen Automaten in Form seines Zustandsübergangsgraphen an, der überprüft, ob eine übergebene Eingabe ein korrektes Datum darstellt.