

NA 24032 NA 93943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

AN ANALYSIS OF THREE APPROACHES TO THE HELICOPTER PRELIMINARY DESIGN PROBLEM

by

Allen C. Hansen

March 1984

Thesis Advisor:

D. M. Layton

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)											
READ INSTRUCTIONS BEFORE COMPLETING FORM											
3. RECIPIENT'S CATALOG NUMBER											
Master's Thesis March 1984 6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*)											
10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS											
12. REPORT DATE											
March 1984 13. NUMBER OF PAGES 116											
15. SECURITY CLASS. (of this report)											
Unclassified											
154. DECLASSIFICATION/DOWNGRADING SCHEDULE											

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

- 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
- 18. SUPPLEMENTARY NOTES
- 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Sensitivity Preliminary Helicopter Design Carpet Plots HESCOMP

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Three methodologies from which to approach the problem of preliminary helicopter design are explored in this paper. The first is a sensitivity analysis of the basic helicopter performance equations. The purpose here is to ascertain where reasonable simplifications can be made that do not seriously degrade the accuracy of the results. The second is a graphical parametric design method, known as Carpet Plots. In this method

CURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

a graphical solution is developed to meet the design criteria of the helicopter. In the third, an overview of Boeing Vertol's Helicopter Sizing and Performance Computer Program is given. The computer routines which enable a person to access HESCOMP on the Naval Postgraduate School main frame IBM system are also provided.

Approved for public release; distribution unlimited.

An Analysis of
Three Approaches to the Helicopter Preliminary
Design Problem

bу

Allen C. Hansen Lieutenant, United States Navy B.A., University of Pennsylvania, 1976

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL March 1984

ABSTRACT

Three methodologies from which to approach the problem of preliminary helicopter design are explored in this paper. The first is a sensitivity analysis of the basic helicopter performance equations. The purpose here is to ascertain where reasonable simplifications can be made that do not seriously degrade the accuracy of the results. The second is a graphical parametric design method, known as Carpet Plots. In this method a graphical solution is developed to meet the design criteria of the helicopter. In the third, an overview of Boeing Vertol's Helicopter Sizing and Performance Computer Program is given. The computer routines which enable a person to access HESCOMP on the Naval Postgraduate School main frame IBM system are also provided.

TABLE OF CONTENTS

Ι.	INT	RODUCTION	10
	Α.	GENERAL	10
	В.	OBJECTIVE	11
II.		SITIVITY ANALYSES OF BASIC ICOPTER EQUATIONS	13
	Α.	DESCRIPTION OF PROBLEM	13
	В.	SOLIDITY	13
	С.	DISK LOADING	14
	D.	POWER LOADING	14
	Ε.	COEFFICIENT OF THRUST AND POWER	14
	F.	HOVER POWER	16
	G.	HELICOPTER SIZING	18
	Н.	FIGURE OF MERIT	19
	I.	TAIL ROTOR SIZING	2 3
	J.	FORWARD FLIGHT POWER CONSIDERATIONS	23
	К.	DENSITY EFFECTS ON TOTAL POWER	30
III.	CARI	PET PLOT DESIGN STUDY	32
	Α.	DESCRIPTION OF PROBLEM	32
	В.	ASSUMPTIONS	3 3
	С.	METHODOLOGY	34
	D.	HOVER EQUATIONS	35
	Ε.	WEIGHT EQUATIONS	39
	F.	GRAPHICAL ANALYSIS	4 5

IV.	HESC	OMP					•	•	•	•	•	54
	Α.	DESCRIPTION O	F PRO	GRAM				•				54
	В.	PROGRAM MODIFIMPLEMENTATIO		ONS								56
	С.	PROGRAM FLOW					•				•	5 7
	D.	PROGRAM INPUT						•	•		•	59
	Ε.	PROGRAM OUTPU	т.					•		•	•	59
V.	CON	LUSIONS AND R	ЕСОММ	EN DA	TION	IS .		•		•	•	60
APPENDI	X A:	NOMENCLATURE				•		•				62
APPENDI	Х В:	CARPET PLOT 20,000 LB. C					•			•		6 4
APPENDI	X C:	CARPET PLOT CHART AND EX						•				7 3
APPENDI	X D:	PROGRAMS TO	ACCES	S HE	SCON	IP .			•	•	•	87
APPENDI	X E:	HESCOMP INPL	T ANI	OUT	PUT	EX	AMP I	LES	S	•	•	9 2
LIST OF	REF	RENCES				•		•	•	•		115
INITIAL	DIST	RIBUTION LIST						•				116

LIST OF TABLES

2.1	HELICOPTER WEIGHT COMPARISON	•	•	•	 20
2.2	TAIL ROTOR SIZING				 24
4.1	HELICOPTER CONFIGURATIONS WHICH MAY BE STUDIED USING HESCOMP			•	 5.5
4.2	PARTITIONED DATA SET				 57

LIST OF FIGURES

2.1	FM	VERS	US	BLAD	E I	LOAD	ING	ı	CT/	σ	•	•	•	•	•	•	•	•	•	21
2.2	POWE	R RE	QUI	RE D	VE F	RSUS	FO	RW.	A RD	VI	ELC	CI	TY		•		•	•	•	2 5
3.1	WEIG	НТ Е	QUA	TION	PΙ	LOT:	С	LR	=	0.	5	•	•			•		•	•	40
3.2	HELI	COPT	ER	CARP	ЕΤ	PLOT	rs:		C _{LR}	=	0.	. 5				•	•		•	46
3.3	HELI FAMI	COPT LY O	ER F S	CARP: OLUT	ET ION	PLOT	rs •			•		•		•	•	•	•	•		48
3.4	HELI DIAM	COPT ETER	ER AN	CARP D WE	ET IGH	PLO IT L	TS IMI	RO TS	TOR •	•	•	•	•	•	•		•	•	•	49
3.5	ASPE	CT R	ATI	о во	UNI	DARY	PL	ОТ		•	•		•	•	•	•	•	•	•	51
3.6	HELI FINA	COPT L SO	ER LUT	CARP ION	ET •	PLOT	ΓS ·			•		•	•	•						5 3
4.1				GRAM																

ACKNOWLEDGMENT

I would like to acknowledge the invaluable assistance of Professor Donald M. Layton in this endeavor. His encouragement and support greatly contributed to making this both an interesting and worthwhile experience.

I. INTRODUCTION

A. GENERAL

The helicopter design process, the subject of numerous articles and studies is an evolving discipline that borders on being an art. A successful design must balance the user's needs and desires against practical capabilities.

With the introduction of composite materials and new technologies, principally in rotor and engine performance, significant advances have been made in helicopter capabilities. In some instances, the performances of hybrid helicopter designs rivals that of a similarly sized conventional aircraft. For example, the YVX, a joint Boeing-Bell venture, will have the hover and low speed capabilities of a helicopter while being able to cruise at 300 knots.

Viable commercial and military helicopter designs are only thirty years old. The first major use of helicopters occurred during the Korean conflict. To put this in perspective, the first large scale use of conventional type aircraft was in World War I.

Helicopter design can proceed on a number of different levels, ranging from comprehensive computer design programs to preliminary analysis using simplifications of the basic performance equations. Each has its merit and place.

Computer-aided design provides a great deal of data.

Generally, these programs integrate aircraft configuration sizing, performance and weight calculations in an iterative process. An example of a computer design program for helicopters is the Helicopter Sizing and Performance Computer Program [HESCOMP], originally developed by Boeing-Vertol for NASA. This program is currently used as a wide number of institutions conducting studies in helicopter design.

On the opposite end of the spectrum would be sensitivity design studies using the performance equations. Surprisingly accurate simplications of these equations can be made. This provides the designer with an excellent method for doing first cut preliminary helicopter sizing at a low cost.

B. OBJECTIVE

This report is an investigation of several of the methods employed in the preliminary design of a helicopter. Conceptually, the report can be divided into three parts. In the first section, a sensitivity analysis of the basic performance equations is performed. The purpose here is to ascertain where reasonable simplications can be made that do not seriously degrade the accuracy of the result.

In the second section a graphical method of doing parametric design studies, known as Carpet Plots, is developed. This method allows the user to formulate a graphical solution matrix to meet the design criteria specified for the helicopter. Carpet Plots are

particularly instructive since they give visual insight into the interplay of the various design parameters.

In the last section, an overview of HESCOMP is given.

Programs are developed which enable a person to access

HESCOMP on the Naval Postgraduate School Main Frame IBM system.

•

II. SENSITIVITY ANALYSES OF BASIC HELICOPTER EQUATIONS

A. DESCRIPTION OF PROBLEM

In preliminary helicopter design, there are a number of instances where a quick first cut analysis would be extremely helpful. This is especially true in determining the preliminary size of the helicopter required to meet the specifications.

Historically, there are a number of variables in the performance equations of helicopters which may be treated as constants. This may allow for significant simplifications and aid in the preliminary design process.

In this section, a sensitivity analysis of the performance equations is done. In a sensitivity analysis, each parameter [or variable] is varied in order to determine its effect on the equation. Variables which are shown to have little effect may be treated as constants and the equation simplified accordingly.

B. SOLIDITY

Solidity, σ , is the fraction of the disk area that is composed of blades. It is a function of b , the number of blades, of a constant cord, c , at a radius, R:

$$\sigma = \frac{bc}{\pi R} \tag{2.1}$$

C. DISK LOADING:

Disk loading is defined as the ratio of the weight to the total area of the rotor disk.

DL =
$$\frac{\text{WEIGHT}}{\text{AREA}}$$

= $\frac{\text{W}}{\text{A}} = \frac{\text{W}}{\pi R^2} [1\text{b/ft}^2]$

D. POWER LOADING

Power loading is the ratio of weight to input power.

$$PL = \frac{W}{P_{in}} [1b/hp] \qquad (2.3)$$

In a hover, thrust equals weight; this allows us to rewrite the power loading for the hover condition as

$$PL = \frac{T}{P_{in}} = \frac{ROTOR\ THRUST}{ROTOR\ HORSEPOWER} [1b/hp]$$
 (2.4)

E. COEFFICIENT OF THRUST AND POWER

The coefficient of thrust, C_{T} , is a non-dimensional coefficient which facilitates computations and comparisons:

$$C_{T} = \frac{T}{A \rho V_{T}^{2}} = \frac{T}{\pi R^{2} \rho (\Omega R)^{2}}$$
 (2.5)

Similarly, a coefficient of power, $C_{\rm p}$, has been established as:

$$C_p = \frac{P}{A \rho V_T^{3}} = \frac{P}{\pi R^2 \rho (\Omega R)^{3}}$$
 (2.6)

No significant simplifications can be made to either of these coefficients. However, it should be observed that the coefficient of thrust is inversely proportional to the square of the rotor tip velocity, while the coefficient of power is inversely proportional to the cube.

Assuming all other factors being equal, increasing the rotor tip velocity from 600 fps to 700 fps [an increase of 16.7 percent] will have the following result on these coefficients.

$$C_{T} = \frac{T}{A\rho V_{T}^{2}}$$

$$= \frac{T}{A\rho (1.167)^{2}}$$

$$= \frac{T}{A\rho (1.361)}$$
(2.5)

The coefficient of thrust is reduced by 26.9 percent. Similarly, for the coefficient of power:

$$C_{P} = \frac{P}{A\rho V_{T}^{3}}$$

$$= \frac{P}{A\rho (1.167)^{3}}$$

$$= \frac{P}{A\rho (1.589)}$$
(2.6)

The coefficient of power is reduced by 37.1 percent.

F. HOVER POWER

The total power in a hover is made up of two terms, profile power, $P_{\rm o}$, and induced power, $P_{\rm i}$.

Utilizing black element theory the profile power required to hover can be expressed as:

$$P_{o} = \frac{1}{8} \sigma_{r} \overline{C}_{do} \rho A(\Omega R)^{3}$$
 (2.7)

The induced power predicted by momentum theory is:

$$P_{i} = V_{in} T$$

$$= \frac{T^{3/2}}{\sqrt{2\pi \alpha R^{2}}}$$
(2.8)

The total power required to hover is:

$$P_{T} = P_{i} + P_{o} \tag{2.9}$$

$$P_{T} = \frac{T^{3/2}}{\sqrt{2\pi \rho R^{2}}} + \frac{1}{8} \sigma_{r} \overline{C}_{do} \rho A(\Omega R)^{3}$$
 (2.10)

Donald M. Layton in <u>Helicopter Performance</u>, [Ref. 1], found that for the optimum hover power, the induced power is equal to twice the profile power. The analysis was performed in the following manner.

By assuming constant weight, density, solidity, and an average profile drag coefficient, as well as a fixed rotational velocity, equation (2.10) reduces to

$$P = \frac{C_1}{R} + C_2 R^2 \tag{2.11}$$

where C_1 and C_2 are constants.

As equation (2.12) shows, profile power increases as the square of the blade radius while the induced power decreases with increasing blade radius.

The optimum hover power with respect to rotor radius can be determined by taking the differential and setting it equal to zero.

$$\frac{dP}{dR} = 0 = -\frac{C_1}{R_2} + 2 C_2 R \qquad (2.12A)$$

or
$$\frac{C_1}{R} = 2 C_2 R^2$$
 (2.12B)

which implies
$$P_i = 2 P_0$$
 (2.12C)

G. HELICOPTER SIZING

A simplified relationship between the total power required, gross weight and rotor radius can be developed in the following manner.

The total power required to hover equation for the main rotor was developed in the preceding section and is repeated here for clarity.

$$P_{T} = P_{i} + P_{O} \tag{2.9}$$

$$P_{T} = \frac{T^{3/2}}{\sqrt{2\pi\rho}} \cdot \frac{1}{R} + \frac{1}{8} \sigma_{r} \overline{C}_{do} \rho \pi V_{tip}^{3} R^{2}$$
 (2.10)

In a hover, thrust equals weight. Solving equation (2.11) for weight one obtains:

$$W^{3/2} = [P_T - \frac{1}{8} \sigma C_{do} \rho \pi V_T^3 R^2] \sqrt{\rho A}$$
 (2.13)

This equation may be further simplified if it is assumed that the density, average profile drag coefficient and tip velocity are constants; these are reasonable assumptions. Historically, the average profile drag coefficient of a helicopter has been approximately 0.01. The operating environment of today's helicopters, especially military, is below 5,000 feet agl. This allows for the use of the standard sea level value for density with little error. Primarily, due to tip mach effects, the upper limit on the rotor tip velocity is in the range of 700 fps.

The resulting equation with these assumptions incorporated into a constant, K, is:

$$W = [47.527 P_T R - K_1 bc]^{2/3}$$
 (2.13)

Equation (2.13) can be further reduced when the order of magnitude of the two terms is considered.

$$47.527 P_T R >> K_1 bc$$

Thus,

$$W \approx [47.527 P_T R]^{2/3}$$
 (2.14)

To determine how accurate this simplification is, the equation is used to approximate the total weight of a number of helicopters for which the parameters are available. As Table 2.1 indicates, the weight approximation formula yields values within six percent of the actual total weight of these helicopters.

H. FIGURE OF MERIT

A figure of merit, FM, has been defined for the helicopter as the ratio of the ideal rotor induced power to the actual power required to hover, with non-uniform induced velocity, tip losses and profile drag power.

TABLE 2.1

HELICOPTER WEIGHT COMPARISON

HELICOPTER	TOTAL GROSS WEIGHT	CALCULATED GROSS WEIGHT	PERCENT OF ACTUAL
	(1000 1bs)	(1000 lbs)	GROSS WEIGHT
AH - 64	14.66	14.69	101%
UH-1N	14.20	13.74	97%
Н-3Н	21.00	20.63	98%
S76	10.00	9.90	99%
UH-60A	20.25	19.33	95%
H-54B	42.00	42.00	100%
H-53D	42.00	41.00	98%
H-53E	73.50	69.00	84%

In a hover, the figure of merit may be written as:

$$FM = \frac{1}{\sqrt{2}} \cdot PL \cdot \frac{DL}{\sqrt{\rho}}$$

$$= \frac{CT^{1 \cdot 5}}{\sqrt{2C_p}}$$
(2.15)

The figure of merit is customarilty plotted against the quantity CT/σ . According to Zalesch [Ref. 2], CT/σ , is proportional to the average blade angle of attack and can be used as a measure of rotor efficiency. The curve in Figure 2.1 is based on data from Reference 2 for a typical tail rotor helicopter.

Main Rotor Hover Performance

Figure 2.1. FM Versus Blade Loading CT/σ

Previous studies have shown that a figure of merit between 0.70 and 0.80 is considered average. [Ref. 3]

If the induced power is between 70 and 80 percent of the total power, the figure of merit will be approximately 0.75.

With the figure of merit limited to values between 0.70 and 0.80, the following simplification can be made, assuming the hover condition of thrust equaling weight and standard sea level conditions:

$$FM = \frac{W^{3/2}}{67.214 P_T R}$$
 (2.16)

For Navy helicopter design, the rotor radius has been limited by flight deck spotting constraints to less than 30 feet; the exception to this is the H-3, R = 31 feet and the H-53, R = 36 to 38 feet [depending on the model]. However, these two helicopters work almost exclusively from large air dedicated ships such as the LPH, LHA and CV.

If the small deck operating assumption is made, equation (2.16) can be further simplified to [assuming R = 28 feet]:

$$P = \frac{W^{3/2}}{1881.98 \text{ FM}}$$
 (2.17)

An FM of 0.80 will yield a P to W relationship of:

$$P_{T} = \frac{W^{3/2}}{1505.58} \tag{2.18}$$

while an M of 0.70 yields a relationship

$$P = \frac{W^{3/2}}{1317.39} \tag{2.19}$$

If equation (2.17) is solved utilizing the approximate weight relationship developed earlier of

$$W^{3/2} = 47.527 P_T R (2.14)$$

a value for the figure of merit of 0.707 is obtained. This is within the historical range of values.

I. TAIL ROTOR SIZING

A historical analysis of typical helicopters [Ref. 3), shows the following empirical relationship for the tail rotor radius

$$R_{\rm T} \simeq 1.3 \left[\frac{\text{GW}}{1000} \right]^{1/2} \text{ [ft]}$$
 (2.20)

when comparing the results of this equation with actual tail rotor radius data, it was found that if a multiplication factor of 1.2 is used vice 1.3 a better approximation is obtained. The results are tabulated in Table 2.2.

J. FORWARD FLIGHT POWER CONSIDERATIONS

The total power in forward flight consists of induced, profile and parasite power. If the helicopter is a single rotor vehicle, the tail rotor power should be taken into

TABLE 2.2

TAIL ROTOR SIZING

HELICOPTER	ACTUAL TAIL ROTOR RADIUS [FT]	APPROXIMA'	TION [FT] [2.21]
AH - 64	4.6	4.98	4.59
UH-1N	4.3	4.90	4.52
SH-3H	5.3	5.95	5.5
S-76 ·	4.0	4.11	3.79
UH-60A	5.5	5.85	5.4
CH - 53D	8.0	8.42	7.78
CH - 53E	10.0	11.15	10.29

account, as well as all mechanical losses [transmission, etc.] for accurate calculations. However, a reasonable approximation can be obtained by considering only the main rotor and increasing this power figure by several percent to account for these losses.

Figure 2.2 is a plot of the induced, profile, parasite and total power curves for typical tail rotor helicopter.

Figure 2.2. Power Required Versus Forward Velocity

The induced power drops off rapidly with increasing forward-velocity, whereas the parasite power increases rapidly.

Parasite power is the power required to overcome the drag forces created by the aircraft's geometry. These drag forces are due to pressure drag and skin friction.

Parasite drag is extremely sensitive to the helicopter's loading. It is generally a minimum for forward flight and increases for sideways flight. Helicopters are generally streamlined for forward flight and the flat plate area is a minimum in this direction. The equation for the parasite power is:

$$P_p = \frac{1}{2} \rho V_f^3 f_f$$
 (2.21)

The parasite power is a function of the cube of the forward velocity. As such, with the advent of high speed helicopters a great deal of consideration has been placed on streamlining the geometric shape in order to reduce this power requirement.

Blade element theory is commonly used to develop the profile power equation for forward flight. An excellent development of this equation is given in Reference 1.

The profile power equation in forward flight is:

$$P_{\text{of}} = \frac{1}{8} \sigma C_{\text{do}} \rho A V_{\text{T}}^{3} [1 + 4.3 \mu^{2}]$$
 (2.22)

Equation (2.23) is a function primarily of the main rotor geometry. The variable with the most significance is the rotor tip velocity; increasing the tip velocity from 600 to 700 fps results in a 58.8 percent increase in profile power [assuming other factors are constant].

The induced power is a function of the induced velocity. In a hover, the total flow through the rotor system is induced. As the forward velocity increases, the mass flow rate through the rotor disc increases due to the forward translation of the helicopter. This reduces the induced velocity.

The equation for the induced power requirements at all forward velocities is:

$$P = T \cdot V_{it}$$
 (2.23)

where

$$V_{it} = \left\{ -\frac{V_f^2/V^2}{2} + \sqrt{\left[V_f^2/2V^2\right]^2 + 1} \right\}^{1/2} .V \qquad (2.23a)$$

At high forward velocities, the induced power required can be approximated as:

$$P_{i} = WV_{it} = \frac{W^{2}}{2\rho AV_{f}}$$
 (2.24)

The total power for forward flight is the sum of the induced, profile and parasite powers.

$$P_{T} = P_{i} + P_{o} + P_{p}$$
 (2.25)

$$P_{T} = T.V_{it} + \frac{1}{8} \sigma C_{do} \rho A V_{T}^{3} [1 + 4.3 \mu^{2}]$$

$$+ \frac{1}{2} \rho f_{f} V_{f}^{3}$$
(2.25a)

At high forward velocities, equation (2.23) can be substituted into equation (2.25), resulting in:

$$P_{T} = \frac{W^{2}}{2\rho AV_{f}} + \frac{1}{8} \sigma C_{do} \rho A V_{T}^{3} [1 + 4.3 \frac{V_{f}}{\Omega R}]$$

$$+ \frac{1}{2} \rho f_{f} V_{f}^{3}$$
(2.26)

If one makes the following assumptions:

$$W = const$$
 $C_{do} = const$ $\rho = const$ $\sigma = const$ $VT = const$

Equation (2.26) reduces to

$$P_{T} = \frac{K_{1}}{R^{2}} + K^{2} R^{2} + P_{p}$$
 (2.27)

The derivative of equation (2.27) with respect to radius is:

$$\frac{dP_T}{dR} = -\frac{2K_1}{R^3} + 2K_2R$$
 (2.28)

Setting this equal to zero, one obtains:

$$-\frac{2K_1}{R^3} + 2K_2R = 0 (2.28a)$$

$$\frac{R}{2} * \left[-\frac{2K_1}{R^3} + 2 K_2 R \right] = 0$$
 (2.28b)

$$\frac{K_1}{R^2} = K_2 R^2 \tag{2.28c}$$

$$P_{i} = P_{0}$$
 (2.28d)

This defines point of minimum total power required for VMAX range. This corroborates with the results obtained by Waldo Carmona [Ref. 4].

If the total power required is differentiated with respect to forward velocity and is set equal to zero, it can be seen that

$$P_{i} = 3 P_{o}$$
 (2.29)

or

$$\frac{W^2}{2\rho AV_f} = \frac{3\rho f V_f^2}{2}$$
 (2.30)

Solving this equation for velocity results in:

$$V_{f} = \left[\left(\frac{W}{A} \frac{A}{3f_{f}} \right)^{1/2} \right]^{1/2}$$
 ft/sec (2.31)

According to Carmona [Ref. 4], this corresponds to the best endurance velocity.

K. DENSITY EFFECTS ON TOTAL POWER

The effect of density on the total power required in forward flight is as follows:

The general operating altitudes of a helicopter are below 10,000 feet. The corresponding ICAO STANDARD ATMOSPHERE range for density is

$$\rho = 0.0023769 [1b sec^2/ft^4] SSL$$

$$\rho = 0.0017553$$
 [lb sec²/ft⁴] at 10,000 feet

 ρ/ρ SSL varies from 1 to .7385.

The effect on the components of $P_{\overline{T}}$ are as follows: Induced Power:

$$1/\rho/\rho SSL => 1 \text{ to } \frac{1}{.7385}$$

This translates to a 35 percent increase in the induced power.

Parasite and Profile Power:

Both parasite and profile powers are directly proportional to the density ratio. Therefore, as you go up in altitude both $P_{\rm o}$ and $P_{\rm p}$ are reduced.

III. CARPET PLOT DESIGN STUDY

A. DESCRIPTION OF PROBLEM

Preliminary helicopter design involves one with a wide range of choices. For any given payload and performance specifications, there a number of helicopter designs that satisfy the requirements. The problem in the preliminary design process is narrowing these possibilities and selecting the design which will provide the best helicopter for the mission.

Obviously, the operating environmental constraints help to define the basic configuration. These constraints are usually specified in the Request for Proposal [RFP], in the case of a military helicopter. For example, typical constraints placed on the design of a Navy helicopter are the size of the ship deck and hangar from which it will be operating, the requirement for a blade fold system, dual engine configuration and IFR capability.

Even with these design constraints, there is still a great deal of leeway. In order to insure that the best helicopter design is selected, an appropriate number of solutions satisfying the specifications should be investigated. Since each solution is generally characterized by a different combination of design parameters, the

selection, according to Greenfield [Ref. 5], can best be made through a parametric study which allows for the optimization of many design parameters.

One method of parametric analysis used is Carpet Plots. This method is based on the simultaneous graphical solution of the weight and hover performance equations. To this solution set is added to the environmental constraints to the helicopters size. This effectively brackets the area of acceptable design solutions.

This method assumes that minimum gross weight is the criterion by which the best [or optimum] design parameters are selected.

B. ASSUMPTIONS

- 1. Airfoil used is a derivative of the NACA 0012 with the following mean approximate values from Reference 5.
 - a = slope of airfoil section lift curve, $dC_{t}/d\alpha$, per rad.
 - a = 5.73
 - δ = blade section drag coefficient
 - $\delta_0 = .009$
 - $\delta_2 = .3$
- 2. a) The tail rotor radius is assumed to be .16 times the main rotor radius [Ref. 5].

- b) The distance between the rotors, or tail rotor moment arm, ℓ_{TR} is 1.19R [Ref. 5]. These ratios reflect the values of maximum rotor diameter and overall length specified as size limitations.
 - 3. B = .97. Historical approximation [Ref. 7].

C. METHODOLOGY

In order to properly develop the weight and performance equations required for a carpet plot design study, the payload and performance specifications of the helicopter are needed. This data is used to tailor the equations for the design.

The equations will be developed here for a four-place light helicopter. The equation development procedure is applicable to other size helicopters; the development for a medium helicopter, 20,000 lb weight class, is to be found in Appendix B.

The following specification requirements which are similar to those in Reference 5 will apply to this design:

- 1. The rotor diameter should be less than 35.2 feet.
- 2. The overall length should be less than 41.4 feet.
- 3. The gross weight of the helicopter should not exceed 2,450 lbs.
- 4. The helicopter should be capable of hovering, out of ground effect at 6,000 feet with an ambient air temperature of $95^{\circ}F$.

- 5. The useful load at hover shall consist of, as a minimum, 200 lbs for the pilot, 400 lbs of payload and sufficient fuel to give the helicopter up to three hours endurance at sea level conditions.
- 6. Maximum speed of at least 110 knots using Normal Rated Power, at sea level.
- 7. Total Power Required at 6,000 feet and $95^{\circ}F$ shall be not more than 206.

D. HOVER EQUATIONS

1. The main rotor power required to hover out of ground effect is

Total Main Rotor Power [Hover] = Rotor Profile Power + Rotor Induced Power

$$P_{T} = \frac{1.13W}{550B\sqrt{2\rho_{o}}} \sqrt{\frac{DL}{\rho/\rho_{o}}}$$

$$+ \frac{6WV_{T}}{4400} \frac{\rho/\rho_{o}}{C_{LRo}} \left[\delta_{0} + \delta_{2} \left[\frac{C_{LRo}}{\alpha\rho/\rho_{o}}\right]^{2}\right]$$
(3.1)

At an altitude of 6,000 feet and a temperature of 95° , $\rho/\rho_{\circ} = .749395$. Therefore, equation (1) can be simplified to:

$$P_{T6000/95}^{\circ} = .035479W[DL]^{1/2} + \frac{.91971}{C_{LRO}} [10]^{-5} (1 + 1.80779 C_{LRO}^{2})W V_{T}$$
(3.2)

The tail rotor thrust required to counterbalance the main rotor torque is:

$$T_{TR} = \frac{550 P_{T}R}{\ell_{TR} V_{T}} = \frac{550 P_{T}}{1.19 V_{T}}$$
 (3.3)

where ℓ_{TR} has been defined as 1.19R . With R_{TR} defined as .16R , the tail rotor disk loading can be written, using equation (3) as:

$$DL_{TR} = \frac{T_{TR}}{A_{TR}} = \frac{550 P_{T}}{1.19 V_{T}} \frac{1}{\pi (.16R)^{2}}$$

$$= \frac{550 P_{T}}{1.19 (.0256) V_{T}} \frac{DL}{W}$$
(3.4)

Greenfield [Ref. 5], in his development, assumes that the tail rotor tip speed is equal to the main rotor tip speed and that δ_{TR} = .02 and β_{TR} = .90. With these assumptions the equation for the tail rotor power required to hover can be written as:

$$P_{T_{TR}_{Hover}} = 2055.7 \left[\frac{DL}{W \rho/\rho_{o}} \right]^{1/2} \left[\frac{P_{T_{Hover}}}{V_{T}} \right]^{3/2}$$

$$+ \frac{.012605 P_{T_{Hover}}}{C_{LRTR}}$$
(3.5)

The equation for the tail rotor mean blade lift coefficient can be written as

$$C_{LRTR} = \frac{P_T}{562.5(\rho/\rho_0)}$$
 (3.6)

if it is assumed that the tail rotor is designed to counterbalance a sea level main rotor torque equivalent to 90 percent of the installed power.

Substituting equation (3.6) into equation (3.5) one obtains the following expression for hover tail rotor power:

$$P_{T_{TR6000/950}} = 2374.7 \left[\frac{DL}{W} \right]^{1/2} \left[\frac{P_{T_H}}{V_T} \right]^{3/2} + 5.3134$$
 (3.7)

It is assumed that the gear losses amount to 3 percent and that there is a 1 percent cooling power loss, the total brake horsepower required to hover becomes:

$$P_{T} = \frac{P_{Tm} + P_{TTR}}{96}$$
 (3.8)

Empirical studies have shown that the tail rotor power required to hover can be approximated by

$$P_{TAC} \sim$$
 .8 [total horsepower to hover]

This allows one to write the main rotor power required to hover as:

$$P_{Tm} = (.88)(P_{Tm})$$
 (3.9)

Following Greenfield's [Ref. 5] development further, if equations (3.2) and (3.7) are substituted in equation (3.8), one obtains

$$P_{\text{T}_{\text{H6000/95}}}^{\text{P}_{\text{T}_{\text{H6000/95}}}} = .036757 \text{ W } \sqrt{\text{DL}}$$

$$+ \frac{.95803}{C_{\text{LRo}}} (10)^{-5} [1 + 1.80779 C_{\text{LRo}}^{2}] \text{ W } V_{\text{T}} (3.10)$$

$$+ 2473.6 \sqrt{\frac{\text{DL}}{\text{W}}} \left(\frac{P_{\text{Tm}}}{V_{\text{T}}}\right)^{3/2} + 5.5348$$

Utilizing the approximation for tail rotor power, equation (3.9), equation (3.10) can be solved for W (gross weight) as a function of variables V_T (tip speed), DL (rotor disk loading), C_{LRo} (rotor mean lift coefficient) and P_{T_H} (total power to hover).

$$W = \frac{K_1 \left[1 - 411.51 \frac{DL^{3/4}}{V_T^{3/2}} \left(1 + K_2 \frac{V_T}{\sqrt{DL}} \right)^{1/2} \right] - K_3}{V_T + K_4 \sqrt{DL}}$$
(5.11)

where:

$$K_1 = P_{T6000/90} \circ \frac{(10)^5}{K_5}$$
 (3.11a)

$$K_2 = \frac{.00025929}{C_{LRO}} (1 + 1.80779 C_{LRO}^2)$$
 (3.11b)

$$K_3 = \frac{553480}{K_5} \tag{3.11c}$$

$$K_4 = \frac{3695.7}{K_5} \tag{3.11d}$$

$$K_5 = \frac{.95803}{C_{LRo}} (1 + 1.80779 C_{LRo}^2)$$
 (3.11e)

Equation (3.11) has been programmed in Appendix B and solved for tip speeds from 600 to 700 cps and $\mbox{$C_{\rm LR}$}$ of .3 to .7.

Equation (3.11) is one of the two primary equations used to obtain the data required for a carpet plot design analysis. Generally, the variables $V_{\rm T}$, DL, $C_{\rm LRo}$ and $P_{\rm T}$, that are required for solution have specific ranges of values, depending on the weight class of the helicopter being designed. The graphical results of equation (3.11) for tip speeds of 600 to 700 fps and mean lift coefficients between .3 and .7 are illustrated in Figure 3.1.

Both the Fortran and Disspla programs, as well as a decision making flow chart are provided in Appendix C to aid in using this method for a design solution.

E. WEIGHT EQUATIONS

Weight equations need to be developed that realistically reflect the sizing class of the helicopter being designed.

The evolution is greatly simplified if a specific engine

Figure 3.1. Weight Equation Plot: $C_{\rm LR} = 0$.

installation [# and horsepower] is assumed, since the weight of a number of components depend only on the installed power; this would include such terms as the engine controls and accessories. Another category would be those components whose weights depend on either the gross weight on two or more of the following in combination: rotor tip speed (V_T) , rotor diameter (R), rotor solidity (σ) .

The equations developed here are taken from the Hiller Aircraft Corporation Performance Data Report. [Ref. 5] In this report they assumed a specific engine installation, the Allison T-63 with a military power rating at sea level of 250 horsepower.

There is a possible problem of the validity of these weight relationships when applied to different helicopter design categories. However, assuming a specific engine determines a number of the component weights, and thus minimizes the inaccuracies. Using the weight estimation relationships developed in the Helicopter Design Manual [Ref. 2], the engine, control and accessory weight can be calculated and the weight formulas developed here applied to give a representative useful load and empty weight formula for preliminary design analysis. This is done in Appendix C, for a 20,000 pound class helicopter.

The following relations are used to reduce the component weight formulas for the specification helicopter:

$$W/DL = A = \pi R^2$$
 (3.12)

$$W/PL = MHP = 250$$
 (3.13)

(Military rating for Allison T-63 at sea level.) (PL = Power Loading.)

$$P = \sqrt{A/V_T}$$
 (3.14)

Using these equations the component weight for the specified helicopter empty weight may be reduced to the following:

Engine, Controls and Accessories = 617.5 lbs.

Engine Section Group $.053[W/PL]^{1.07} = 19.5 \text{ lbs.} (3.15)$

Main Transmission $10.43 \frac{\text{W}^{1.295}}{(\text{PL V}_{\text{T}}).863} = 1221 \text{ p}.803$ (3.16)

Rotor Drive Shaft $5.56 \frac{W^{1.05}}{(PL V_T)^{.7}(DL)^{.35}} = 266 p^{.7}$ (3.17)

Tail Rotor $32.22 \frac{W^{1.14}}{(PL V_T)^{1.7}} = \frac{17449}{V_T^{1.14}}$ (3.18)

The engine, controls and accessories category includes such items as lubrication and oil cooling system, engines, communications, engine controls, engine accessories, instruments starting system, furnishing, flight controls, electrical system and stabilization. These are considered fixed weight items determined from specification of the engine and weight class of the helicopter.

Tail Rotor
Gear Box 3.7
$$\frac{W.75}{(PL V_T.5(DL).25} = 59.47 \sqrt{P}$$
 (3.19)

Tail Rotor
$$W^{1.355}$$
 Drive .124 $\frac{W^{1.355}}{(PL V_T)^{.57}(DL)^{.785}} = 2.886 P^{.57} \sqrt{A}$ (3.20)

Body and Gear = 1.91 W.916 + .0294 W.99 Landing

Rotor Blade Teetering
$$35.15 \frac{W^{1.185} \sigma.33}{V_T(DL).185} = 35.15 \frac{W}{V_T} A.^{185} \sigma.^{33}$$
 (3.21)

Rotor Blade Artic- 19.77
$$\frac{W^{1.205}_{\sigma}.33}{V_{T}(DL).205} = 19.77 \frac{W}{V_{T}} A.205_{\sigma}.33$$
 (3.22)

Rotor Hub
Teetering .0088
$$\frac{\text{W}^{1.21}}{\text{DL}^{.21}} = .0088 \text{ WA}^{.21}$$
 (3.23)

Rotor Hub
Artic-
$$00975 \frac{W^{1.21}}{DL.21} = 00975 WA.21$$
 (3.24)

Fuel System .416 per gallon capacity = .0615 W_F (3.25) where W_F = fuel weight.

The individual component weights may now be combined into a single expression for the helicopter empty weight.

$$W_{e} = 617.5 + .0617W_{F} = 1221P \cdot ^{863} + 266P \cdot ^{7} + \frac{17449}{V_{T}^{1.14}}$$

$$+ 58.47\sqrt{P} + 2.886P \cdot ^{57}\sqrt{A} + .191W \cdot ^{916} + .0294W \cdot ^{99}$$

+ appropriate rotor blade and hub weights.

As stated earlier, the design specifications called for a useful load consisting of a pilot (200 lbs), payload (400 lbs) and the required fuel weight ($W_{\rm F}$). The fuel weight is calculated for the Allison T-63 in the following manner: endurance of three hours at 85 percent of normal rated powered for the T-63 is 180.2 HP and the specific fuel consumption at this power is .783 lbs fuel/BHP HR. Including an allowance for a three-minute warm-up at NRP and using a 5 percent correction factor on SFC, as specified in Reference 5, the fuel weight becomes:

$$W_F = 3(180.2)(.822) + \frac{3}{60}(212)(777)$$
 (3.27)

An allowance should also be made for oil plus trapped fuel. This is estimated at 20 lbs.

The total useful load is the sum of the useful load items.

$$W_{u} = 200 + 400 + 452.6 + 20 = 1072.6 \text{ lbs}$$
 (3.28)

A new variable, $W_{\rm BAR}$, is defined as the sum of the emply weight plus useful load. It is the of equations (3.26) and (3.28).

$$W_{BAR} = 1717.9 + 1221P^{.863} = 266P^{.7} + \frac{17449}{V_{T}^{1.14}} + 58.47\sqrt{P}$$

$$+ 2.886P^{.57}\sqrt{A} + .191W^{.916} + .0294W^{.99}$$
(3.29)

+ appropriate rotor blade and hub weights.

Equation (3.11) together with equation (3.29) form the basis of a carpet plot design study. These equations are solved simultaneously for $W_{\rm BAR}$. This solution is best illustrated graphically, as in Figure 3.2. The graph in Figure 3.2 was generated for a specific value of $C_{\rm LR}$ over a range of tip speeds [600 to 700].

F. GRAPHICAL ANALYSIS

Graphs similar to Figure 3.1 are generated for several value of C_{LR} , and are then cross plotted to form Figure 3.2.

The mean lift coefficient, \mathbf{C}_{LR} , values are selected based on what is considered the historical average range of

values. Figure 3.3 is basic plot for a carpet plot design study. Programs are provided in Appendix D which will generate the required data sets and plots of Figures 3.2 and 3.3.

The solution field depicted in Figure 3.3 is too large to be of great analytic value and as such must be reduced. Three parameters, maximum gross weight, rotor diameter (both specified in the Design Specification) and the aspect ratio can be used to narrow the field of solutions.

1. Rotor Diameter Boundary

A net to exceed value for the rotor diameter is generally given in the design specifications. This limiting value is based on the operating environment of the helicopter. With R max specified, there is a linear relationship between the disk loading and the gross weight.

DL =
$$\frac{W}{A}$$
 = $\frac{W}{\pi R^2}$

The resulting bracketing of the solution field by applying both the maximum gross weight and maximum rotor diameter limits to the carpet plot are shown in Figure 3.4.

2. Respect Ratio Boundary

It is evident that a further restriction is still necessary to completely define the region of acceptable

Figure 3.4. Helicopter Carpet Plots Rotor Diameter and Weight Limits

design solutions. Studies have indicated that a main rotor aspect ratio of 21, 1 is a representative upper limit. Thus

$$21 \ge \frac{R < mr}{C < mr} = \frac{b}{\pi \sigma} = \frac{b \rho_0 C_{LR} V_T^2}{\sigma \pi DL}$$

or

$$DL \geq \frac{b \rho C_{LR} V_T^2}{126\pi}$$

For the case of a two bladed main rotor equation (3.30) reduces to:

DL
$$\geq$$
 .000012 $C_{LR} V_T^2$

The detemination of this boundary graphically is as follows:

The hover solution plot of Figure 3.2 is replotted 2 relative to the coordinates disk loading and design mean blade lift coefficient. The limiting curves for DL = .000012 $C_{LR} V_T^2$ are then plotted. The intersection with the appropriate constant tip speed lines of the hover solution represent the aspect ratio boundary; Figure 3.5.

¹For a helicopter rotor, the aspect ratio is defined as the radius divided by the chord.

²For clarity lines of constant gross weight are omitted.

Figure 3.5. Aspect Ratio Boundary Plot

These intersection points are then cross plotted onto Figure 3.4. Figure 3.6 represents a graphical plot of the solution set satisfying the performance and structural design criteria of a small observation helicopter as specified in this study.

IV. HESCOMP

A. DESCRIPTION OF PROGRAM

HESCOMP is a helicopter sizing and performance computer program developed by the Boeing Vertol Company. The program was originally formulated to provide for rapid configuration design studies.

A number of programming options are available to the user of HESCOMP. When the type and mission profile of the helicopter are known, HESCOMP may be used to size the aircraft. Alternately, it may be used for mission profile calculations when the sizing details [gross weight, payload, engine size, etc.] are specified. A combination of these two options is also available; the program may be used to first size a helicopter for a primary mission and then calculate the off-design performance for other missions. Finally, HESCOMP may be used solely for obtaining helicopter weight.

Sensitivity studies involving both design and performance tradeoffs can easily be done with HESCOMP. Incremental multiplicative and additive factors can be imbedded in the input data.

The various helicopter configurations that may be studied using HESCOMP are detailed in Table 4.1.

TABLE 4.1

HELICOPTER CONFIGURATIONS WHICH MAY BE STUDIED USING HESCOMP

HELICOPTER CONE	IGURAT	tons Hitch I	ANY BE STUDIE	D USING II	ESCOMP.	
Additional Lift/Propulsion System Components Which Hust be Added to Helicopter Type Conf.		Propeller for Auxiliary	Auxiliary Independent	Type of Auxiliary Independent Engines		
(Both Single & Tandem Rotor)	Hing	Propulsion	Engines	T/Shaft	T/Fan	T/Jet
Pure Helicopter						
Winged Helicopter	x					
Compound Helicopter						
(i) Coupied (prim. engines drive auxiliary propulsion system)	х	х				
(2) Auxiliary independent propulsion system						
(u) T/Shaft engine (b) T/Fan engine (c) T/Jet engine	X X X	х.	X X X	X	x	х
Auxiliary Propulsion Hellcopter						
(1) Coupled (prim. engines drive auxiliary propulsion system)		x				
(2) Auxiliary independent propulsion system						
(a) T/Shaft engine (b) T/Fan engine (c) T/Jet engine		x	х х х	x	х	x
Coaxial Rotor Hellcopter		•				
(1) Coupled (prim, engines drive auxiliary propulation system)		х				
(2) Auxiliary independent propulsion system						
(a) T/Shaft engine (b) T/Fan engine		x	x x	х.	x	
(c) T/Jet engine			, х			x

B. PROGRAM MODIFICATIONS AND IMPLEMENTATION

The computer program received from Boeing Vertol required some modification and reformating in order to run properly on the Naval Postgraduate School IBM system.

These alterations did not, however, alter the program output or usability.

HESCOMP, as received from Boeing Vertol, was 17821 lines long and set-up as a sequential data set to be assemble on a 'G compiler'. The Batch processing system at the Naval Postgraduate School accepts only programs set to run on 'H compiler'. Normally, the differences between these two compilers are minor and programs that run on one will run on the other. However, this was not the case with HESCOMP.

In order to facilitate the program debugging process, HESCOMP was reformatted as a partitioned data set. What this effectively did was to break the program down into eight members of approximately 2000 lines. The program breakdown is illustrated in Table 4.2.

Each of these were compiled individually and then error codes analyzed. The member data set was then modified as required to properly compile.

Once all the members of the partitioned data set compiled properly, HESCOMP was again formated as a sequential data set and run utilizing input data for

which there was a known output. This insured that the modifications made to the original program had not altered the logic, ie., gave faulty results.

The control language program to access HESCOMB on the Batch processing system and a sample input and out data set are shown in Appendix D. These are also available on the Aero disk for copying and use.

TABLE 4.2

PARTITIONED DATA SET

MEMBER N	AME LINE	NU	JMBER	SIZE	FIRST	ROUTINE
S1	1	-	1681	1681	AE	RO
S2	1682	-	4132	2451	CL	IMB
S3	4133	-	6531	2399	XI	BIV
S4	6532	-	8974	2443	PC	WAVL
S 5	8975	-	10870	1896	PF	RINT 1
S 6	10871	-	13042	2172	RC	T POW
S 7	13043	-	15383	2341	CF	RUS 3
S8	15384	-	17821	2448	TA	XI

C. PROGRAM FLOW

The program is conceptually outlined in Figure 4.1, [Ref. 7]. The program flow is monitored by a general loop, which controls a series of peripheral programs. There are

Figure 4.1. HESCOMP Program Flow

a total of 44 subroutines. Detailed program descriptions cam be found in Section 4 of the HESCOMP User's Manual.

D. PROGRAM INPUT

Program input can be loosely group into ten categories: general information, aircraft descriptive information, mission profile information, rotor tip speed schedule, incremental rotor performance, auxiliary propulsion input schedule, engine cycle information, rotor performance information, propeller performance information, and supplementary input information.

The actual amount of input data requires varies greatly with the program options selected. An example of a data set formatted to run on the IBM system is shown in Appendix E. A more detailed explantion is available in Section 5 of the HESCOMP User's Manual.

E. PROGRAM OUTPUT

An example of the program output is included in Appendix E. The printout consists of general data, input data, sizing data [program output] and mission performance data [for the size helicopter]. Detailed descriptions of these and diagnostic error statements are described in Section 6 of Reference 6.

V. CONCLUSIONS AND RECOMMENDATIONS

Three approaches to analyzing a preliminary helicopter design were explored in the course of this paper. It was found that a number of the performance equations could be greatly simplified with little degradation in the final results. A sensitivity analysis brought further insight into the inter-play of the parameters and how changes in them tended to effect the helicopter performance equations.

Carpet Plots provided the most interesting method of analysis. Development of a graphical solution matrix using this method provides a usual interpretation of what is occurring when key parameters are varied.

Two cases were explored; a light observation helicopter in the 3,000 pound weight class and a heavier utility helicopter in the 20,000 pound weight class. The Carpet Plot method provided reasonable solutions in both cases. In doing the analysis for the utility helicopter, the initial weight estimation equation had to be adjusted upward by approximately 2,000 pounds for the equations to intersect properly. This is not considered a limitation to this method of analysis, however, it does point up an area for further investigation. It may be possible to develop more accurate weighing factors for this equation when dealing with higher gross weight helicopters.

HESCOMP provides a plethora of information to the user. However, the price is the amount of inputed data required for even a simplified analysis. At a preliminary design level of analysis, the other methods explored provide a quicker first-cut look at the potential design.

APPENDIX A: NOMENCLATURE

TERM	DEFINITION	UNITS
a	Slope of Airfoil Section Lift Curve	Radians
A	Rotor Disk Area	ft ²
AR	Aspect Ratio	Dimensionless
A_{TR}	Tail Rotor Disk Area	ft ²
b	Number of Rotor Baldes	Dimensionless
В	Tip Loss Factor	Dimensionless
С	Main Rotor Cord	ft
C _{do}	Profile Drag Coefficient at Zero Lift	Dimensionless
C _{LRo}	Design Mean Blade Lift Coefficient at Sea Level	Dimensionless
C_{T}	Coefficient of Thrust	Dimensionless
Ср	Coefficient of Power	Dimensionless
δ	Blade Section Drag Coefficient	Dimensionless
DL	Disk Loading	1b/ft ²
FM	Figure of Merit	Dimensionless
НР	Horsepower	
L _{TR}	Tail Rotor Moment Arm	ft
ρ	Air Density	$1b \sec^2/ft^4$
μ	Advance Ratio	Dimensionless
R	Rotor Radius	ft

TERM	DEFINITION	UNITS
$P_{\overline{T}}$	Total Power	НР
P _{TM}	Main Rotor Total Power	НР
P _{TTR}	Tail Rotor Total Power	Нр
Po	Profile Power	НР
Pi	Induced Power	HP
Рр	Parasite Power	HP
PL	Power Loading	LB/HP
R	Rotor Radius	ft
T	Thrust	НР
VI	Induced Velocity	ft/sec
V _F	Forward Velocity	ft/sec
V	Aircraft Forward Speed	ft/sec
V_{T}	Rotor Tip Speed	ft/sec
W	Aircraft Gross Weight	1bs
Wc	Empty Weight	1bs
W _F	Fuel Weight	1bs
Wu	Useful Load	lbs
WBAR	Empty Weight Plust Useful Load	1bs
σ	Solidity	Dimensionless

APPENDIX B: CARPET PLOT FORMULATION FOR 20,000 LB. CLASS HELICOPTER

B1 SPECIFICATIONS:

Maximum Gross Weight: 20,000 pounds Maximum Rotor Diameter: 30 feet

- B2 PRELIMINARY ENGINE SIZING:
 - B2.1 Utilize equation (2.14) to determine engine horsepower category.

$$W = [4.753P_{T}R]^{2/3}$$

$$20,000 = [47.53P_T \ 30]^{2/3}$$

$$P_T = 1983 HP$$

- B2.2 Use the engine selection parameters tables B.1 to determine the number and type of power plant [table taken from Reference 3].
 - B2.2a Type and number selected: 2 type C.
 - B2.2b Specifications:

Dry Weight Per Engine: 423 pounds

Shaft Horsepower at Standard Sea Level:

Military 1561 HP

Normal 1318 HP

- B3 WEIGHT EQUATION FORMULATION
 - B3.1 To obtain the engine control and accessory weight use items 7, 9, 10, 11, 12 and 13 of the weight estimation relationships developed in Reference 3 for a utility helicopter: #7: 609 lbs; #9: 129 lbs; #10: 76 lbs; #11: 410 lbs; #12: 439 lbs; and #13: 302 lbs.

TABLE B.1

ENGINE SELECTION PARAMETERS

The following turboshat power plant data are presented for one engine.

Engines:		A	В	С	D*	Е	F
Dry Weight	(1bs)	158	288	423	709	580	750
SHP (ss1)	Military Normal Cruise	420 370 278	708 659 494	1561 1318 1989	1800 1530 1148	2500 2200 1650	3400 3000 2250
SFC (ss1)	Military Normal Cruise	.650 .651 .709	.573 .573 .599	.460 .470 .510	.595 .606 .661	.615 .622 .678	.543 .562 .610
Initial Co	sts	\$93K	\$100K	\$580K	\$360K	\$640K	\$700K
Operating per hour/e		\$8	\$16	\$20	\$35	\$40	\$60
Preventati per hour/e		\$25	\$50	\$100	\$125	\$160	\$220
MTBMA (hrs	;)	3.5	3.0	2.0	3.0	4.0	3.5
MDT (hrs)		0.7	0.6	0.5	1.3	2.0	2.6
MTBF (hrs)		185	210	205	285	280	320
MTBR (hrs)		600	750	800	800	1000	750

B3.2 Simplifications

$$\frac{W}{DL}$$
 - A = πR^2 , $\frac{W}{2pm}$ = MHP = 31,00 ; P = $\sqrt{\frac{A}{V_T}}$

B3.3 Engine Group

$$.053(5100)^{1.07} = 272 \text{ lbs}$$

B3.4 Main Transmission

10.43
$$\frac{\text{W}^{1.295}}{(\text{lpm V}_{t})} = 10.43 \frac{\text{W}.863 \text{A}^{+.432}}{(\text{lpm}).863 \text{V}_{T}.863}$$

- = (10.43)(3100).863_P.863
- = 10,748P.863

B3.5 Rotor Drive Shaft

5.56
$$\frac{W^{1.05}}{(\text{lpm V}_T)^{.7}} = 5.56(3100)^{.7} P^{.7}$$

$$= 1545P.7$$

B3.6 Tail Rotor

$$32.22 \frac{\text{W}^{1.14}}{(\text{lpm V}_{\text{T}})^{1.14}} = \frac{307,600}{\text{V}_{\text{T}}^{1.14}}$$

B3.7 Tail Rotor Gear Box

3.7
$$\frac{W.75}{(\ell pm \ V_T) \cdot 5} = (3.7)(3100) \cdot 5 p.5$$

$$= 206P.5$$

B3.8 Tail Rotor Drive Shaft

.124
$$\frac{W^{1.355}}{(\text{lpm}) \cdot \frac{57}{A \cdot 785}} = (.124)(3100) \cdot \frac{57}{P} \cdot \frac{57}{A}$$

$$= 12.12P.57 \sqrt{A}$$

B3.9 Landing Gear

$$= .191W.916 + .0294W.99$$

B3.10 Rotor Blades Articulated

19.77
$$\frac{\text{W}^{1.206}_{\text{g}}.33}{\text{V}_{\text{T}} \text{DL} \cdot 205}$$

= 19.77
$$\frac{W}{V_T}$$
 A .205_{\sigma}.33

B3.11 Rotor Hub Articulated

$$.00975 \frac{\text{W}^{1.21}}{\text{DL}^{21}} = .00975 \text{WA}^{21}$$

B3.12 Fuel System .0615 $W_{
m F}$ Calculation of fuel weight three hours at cruise SHP 1513 lbs + 10% 1664 lbs

B3.13 Total Equation

WB = 12,987,* + 107948P.863 + 1545P.7
+
$$\frac{307600}{V_T^{1.14}}$$
 + 206P.5 + 12.12P.57 \sqrt{A}
+ .191W.916 + .0294W.99
+ 19.77 $\frac{W}{V_T}$ A.205S.33 + .00975WA.21

B4 HOVER EQUATION

Following the formulation in Section of Chapter 3, the weight equation based on the design mean lift coefficient and power required is:

$$W = \frac{K_{2} \left[1 - 411.51 \frac{DL^{3/4}}{V_{T}^{3/2}} \left(1 + K_{3} \frac{V_{T}}{\sqrt{DL}} \right)^{1/2} \right] - K_{4}}{V_{T} + K_{5} \sqrt{DL}}$$

^{*}This number was increased from 8987 to 12987 to bring the curves together. This reflects a 4000 lb useful load.

where:

$$K_{1} = \frac{.9583}{C_{LRo}} (1 + 1.8078 C_{LRo}^{2})$$

$$K_{2} = P_{T6000/950} \frac{(10^{5})}{K_{1}}$$

$$K_{3} = \frac{0.00025929}{C_{LRo}} (1 + 1.8078C_{LRo}^{2})$$

$$K_{4} = \frac{553480.0}{K_{1}}$$

$$K_{5} = \frac{3695.7}{K_{1}}$$

B.5 GRAPHICAL RESULTS

Figure B.1 is an example of equation (3.13) plotted against equation (B.4) for a specific design mean lift coefficient.

Figure B.2 illustrates the family of curves obtained when the design mean lift coefficient is varied from $0.3 \ \text{to} \ 0.7$.

In Figure B.3 the solution matrix depicted in Figure B.2 is narrowed by the constraints placed on the gross weight, rotor diameter and aspect ratio.

Helicopter Carpet Plots: CLR=.70 Utility Class

Figure B2. Helicopter Carpet Plots Utility Class

Figure B3. Helicopter Carpet Plots Utility Class

APPENDIX C. CARPET PLOT METHODOLOGY FLOW CHART AND EXAMPLE PROGRAMS:

This section contains a flow chart to help organize a carpet analysis and example IBM computer programs to produce the data sets and disspla graphs.


```
********

GRAPHICAL FELICCPTEF DESIGN FFOGRAM

********

*******

CARFET PLCT NUMBER 1

********

BY AL HANSEN
C
 C C C DEFINE FILES ----
             DC 10 I=1,99

CRET1 DATA A

BEAD (3,70) DL (1),W1(1),WE1(1),W2(1),WE2(1)

CBFI2 DATA A

BEAD (4,71) W3(1),WE3(1),W4(1),WB4(1),W5(1),WB5(1)

CONTINUE
 C
  C
  10
  C C---- CALL DISSFLA RCTTINES FOR PLOT ---
              CALL DISSELA RECTINES FOR PLOT

CALL TEK618

CALL MEDEUF

CALL RESET (3HAIL)

CALL PAGE (12-C, 9-5)

CALL PAGE (12-C, 9-5)

CALL PHYSCR (1.0, 1.2)

CALL AREAZD (1C-C, 0-5)

CALL FRAME

CALL SHISSL

CALL MIXALF ('I/CSTE')

CALL MIXALF ('STAND')

CALL YTICKS (5)

CALL YTICKS (5)

CALL YTICKS (5)

CALL SHDCHR (-90, 1, 015, 1)

CALL HEIGET (-16)

CALL YNAME ('(D) ISK (L) OADING$', 100)

CALL YNAME ('(D) RCSS (M) EIGHT ((LBS)) $', 100)

CALL HEADIN ('(D) RCSS (M) EIGHT (F) LCTS: (CLR=0.5) $',

1 CALL MESSAG ('(E) ELICOPTEE (C) ARPET (F) LCTS: (CLR=0.5) $',

1 CALL MESSAG ('(E) ELICOPTEE (C) APPET (F) LCTS: (CLR=0.5) $',
  C
```



```
CALL HEIGET (.20)

CALL HEIGET (.20)

CALL GRAP (2-3-1,2-9,2250.,50.,2500.)

CALL THKCRV (.C18)

CALL LEGVE (DI, W1,95,0)

CALL CURVE (DI, W2,95,0)

CALL CURVE (DI, W3,95,0)

CALL CURVE (DI, W5,95,0)

CALL CURVE (DI, W6,95,0)

CALL BLREC (4,2,4,65,1,6,1,35,1)

CALL BLREC (4,2,4,65,1,6,1,35,1)

CALL HEIGHT (2,1)

CALL LINNES (1,4)

CALL LINNES (1,4
```



```
LESIGN MEAN LIFT COEFFICENT
TIP VELOCITY
LISK ICADING
WEIGHT AS CALCULATED FFCM POWER EQUATION
CSEPUL LCAD FLUS EMPTY WEIGHT
FCWER AVAILABLE IN HCRSEPOWER
                                             CLB
VI
DL
          C*
C*
C*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            **
C* WE CSPUL LCAD FLUS EMPTY WEIGHT
C* FA FOWER AVAILABLE IN HORSEPOWER

C*****

C*****

C*****

C*****

C* D13 EQUALS THE DISK IOADING FOR CLR=.5

C* D14 EQUALS THE DISK IOADING FOR CLR=.5

C* D15 EQUALS THE DISK IOADING FOR CLR=.5

C* D17 EQUALS THE DISK IOADING FOR CLR=.7

C* H18 EQUALS THE DISK IOADING FOR CLR=.7

C* H19 EQUALS THE WEIGHT FOR CLR=.3

C* H19 EQUALS THE WEIGHT FOR CLR=.3

C* H20 EQUALS THE WEIGHT FOR CLR=.7

C* H3 EQUALS THE WEIGHT FOR CLR=.7

C* H20 EQUALS THE WEIGHT FOR CLR=.7

C* H20 EQUALS THE WEIGHT FOR CLR=.7

C* H20 EQUALS THE WEIGHT FOR CLR=.7

C* H21 EQUALS WEIGHTS AT VT=650

C* H22 EQUALS WEIGHTS AT VT=650

C* H22 EQUALS WEI
                                                 NE
PA
                                              **VT5 (5) , CVT1 (5) , DVT2 (5) , DVT3 (5) , DVT4 (5) , DVT5 (5)

DEFINE DATA

LATA DL3/2.06 , 247E. 2.07 , 2.07 , 2.433.85 , 2418.25/

DATA DL4/2.42 , 247 , 2455.46 , 247/2.47/2

DATA DL4/2.46 , 17 , 244/2.95 , 2419 , 62 , 2399 , 72 , 2382.99/

DATA DL5/2.63 , 72, 271 , 2399 , 60 , 2379 , 13 , 2364.65/

DATA DL5/2.63 , 72, 271 , 2399 , 60 , 2379 , 13 , 2364.65/

DATA DL6/2.74 , 2.71 , 2.71 , 2.399 , 60 , 2379 , 13 , 2364.65/

DATA DL6/2.74 , 2.71 , 2.71 , 2.79 , 2.81 , 52 , 2365 , 10 , 2352 , /

DATA DL7/2.80 , 62 , 23 , 2.85 , 2.86 , 26 , 77 , 2411 , 292/

DATA DL7/2.80 , 62 , 236 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 277 , 27
           C
```



```
CALL DISSELA ROUTINES FOR PLOT -----

CALL TEK618
CALL MEDEUF
CALL BESST (3HALL)
CALL PAGACI (15 CK 5.5)
CALL PAGACI (10 CK 5.5)
CALL PHYSICR (10 J.2)
CALL ARGALI (10 CK 5.5)
CALL PHYSICR (10 J.2)
CALL ARGALI (10 CK 5.5)
CALL SWISSE
CALL CURVE (DLG SWISSE
CALL CURVE (DLG SWISSE
CALL CURVE (DLG SWISSE
CALL CURVE (DVTI, SVT1, 5, 0)
CALL CURVE (DVTI, SVT3, 5, 0)
CALL BRIEC (4 22 465, 1.6, 1.35, 1)
CALL LINES (4 (F) ARASITES, FRAK1, 3)
CALL LINES (
C---- CALL DISSELA RCUTINES FOR PLOT ---
      C
C 7 0
C 7 1
```



```
*DVI1(5), BVI2(5), B.13(7), B.13(7), B.13(8), B.
                             --- CALL DISSFLA RCUTINES FOR PLOT -----
                                                       CALL DISSELA ROUTINES FOR PLOT

CALL TEK618
CALL MEDEUF
CALL RESET (3HALL)
CALL HWSCAL ("SCREEN")
CALL PAGE (12.0, 9.5)
CALL GRACE (0.0)
CALL PHYSCR (1.0, 1.2)
CALL AREAZD (10.0,6.5)
CALL FRAME
CALL SWISL
CALL BASALF ("L/CSTD")
CALL INTAXS
CALL SHDCER (.90, 1, 015, 1)
CALL HEIGHT (.16)
CALL XNAME ("C) CEFFICENT OF (1) IFT5", 100)
CALL HEIGHT (.290)
CALL MESSAG ("H) FLICOPTER (C) PRPET (P) LOTSD",
```



```
C*******

C********

C*******

C******

C*****

C*****

C****

C***

C**

C***

C***

C***

C**

C**
```



```
DATA D1/2.52,2.9/
LAIA WMG/2450.,2450./
DATA D2/2.36,2.52/
DATA RDB/2300.,2450./
C C--- CALL DISSFLA RCUTINES FOR PLOT -----
```



```
* * *
                                                 VARIABLES:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   * *
                                                            CLR DESIGN MEAN LIPT COEFFICENT
VT TIP VELCCITY

LL DISK LCADING
W REIGHT AS CALCULATED FFCM POWER EQUATION
WE USEFUL LCAD FLUS EMPTY WEIGHT
PA FCWER AVAILABLE IN HORSEFOWER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            **
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  * *
    C* C****

C* C**

C* C* D14 EQUALS THE LISK IOADING PCF CLR=-3

C* D15 EQUALS THE LISK IOADING FCF CLR=-5

C* D16 EQUALS THE LISK IOADING FCF CLR=-5

C* D17 EQUALS THE LISK IOADING FCF CLR=-6

C* D17 EQUALS THE DISK IOADING FCF CLR=-6

C* W1 EQUALS THE WEIGHT FOR CLR=-3

C* W4 EQUALS THE WEIGHT FOR CLR=-3

C* W4 EQUALS THE WEIGHT FOR CLR=-5

C* W4 EQUALS THE WEIGHT FOR CLR=-5

C* W7 EQUALS THE WEIGHT FOR CLR=-5

C* W7 EQUALS THE WEIGHT FOR CLR=-6

C* W7 EQUALS WEIGHTS AT VT=650

C* W7 EQUALS WEIGHTS AT VT=650

C* W7 EQUALS WEIGHTS AT VT=650

C* W7 EQUALS WEIGHTS AT VT=675

C* W7 EQUALS WEIGHTS AT VT=675

C* W7 EQUALS WEIGHTS AT VT=650

C* W7 EQUALS WEIGHTS AT VT=675

C* W7 EQUALS WEIGHTS AT VT=650

C* W7 EQUALS WEIGHTS AT VT=675

C* W7 EQUALS WEIGHTS AT VT=700

C* D7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=650

C* W7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=650

C* D7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=650

C* D7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=675

C* W7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=675

C* W7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=675

C* W7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=675

C* D7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=675

C* D7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=675

C* D7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=675

C* D7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=675

C* D7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=675

C* D7 EQUALS THE CCRRESPONDING LISK LCADING AT VT=675

C* D7 EQUALS THE CRRESPONDING LISK LCADING AT VT=675

C* D7 EQUALS THE CRRESPONDING LISK LCADING AT VT=675

C* D7 EQUALS THE CRRESPONDING LISK LCADING AT VT=675

C* D7 EQUALS THE CRRESPONDING LISK LCADING AT VT=675

C* D7 EQUALS THE LISK LOBERT LISK LOBERT LISK LOBERT LI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   **
                       DEFINE DATA

CATA DL3/2.06, 2.07, 2.07, 2.07, 2.05/

DATA W3/2505., 2478.2.2445.2.46, 2433.85, 2418.25/

DATA DL4/2.42, 2.444, 2.46, 2.47, 2.47, 2.47, 2.47

DATA W4/2467.17, 2442.95, 2419.62, 2399.72, 2382.99/

DATA DL5/2.63, 2.65, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.69, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.67, 2.
```



```
DATA DVT2/2.07,2.44,2.65,2.77,2.83/
L2TA DVT5/2.07,2.46,2.67,2.79,2.69/
DATA DVT5/2.05,2.47,2.69,2.81,2.87/
DATA DVT5/2.05,2.47,2.69,2.81,2.87/
DATA D1/2.52,2.9/
DATA WMG/2450.,2450.,
DATA BDB/23600.,2450.,
DATA AR/2374.461,2390.,2405.,2420.,2450.,
DATA D3/2.44,2.65,2.715,2.745,2.78/
                                                      CALL DISSELA FCCTINES FOR PLOT

CALL TEK618

CALL MEDEUF

CALL MEDEUF

CALL MEDEUF

CALL PAGE (12.C, 5.5)

CALL PAGE (12.C, 6.5)

CALL PHYSOR (1.0, 1.2)

CALL AREAZD (1.0, 6.5)

CALL HEADER

CALL STOCK

CALL INTAXS

CALL INTAXS

CALL INTAXS

CALL XIICKS (5)

CALL NAME ('STAND')

CALL HEIGET (1.6)

CALL YNAME ('G) FCCS (A) EIGHT (LDS) $',100)

CALL HEIGET (2.0)

CALL HEIGET (2.0)

CALL HEIGET (2.0)

CALL GRAF (2.0)

CALL GRAF (2.0)

CALL CURVE (D15, 1.3, 2.230 C., 50., 2550 .)

CALL CURVE (D15, 1.5, 0)

CALL CURVE (D17, 1.5, 0)
--- CALL DISSFLA FCTTINES FOR PLOT -----
```



```
THIS PROGRAM IS DESIGN TO GENERALE THE DATA FOR THE GRAPHICAL SCHOOL OF THE AFIGHT AND THE USEFUL LCAD BOUNTION. THIS IS THE FIRST STEP IN A CARRET FLOT HELICOPTER DESIGN PARAMETRIC OPTIMIZATION
TUDOUDU T
         ASSUMPTIONS: 1> ENGINESPECIFIED
  VARIABLE OPTIONS
         REAL*4 CIE, PA, DI, K1, K2, K3, K4, K5, R, S, A, F, W(10), WB(10) INTEGER VI, D, I, CI
       CAIL FRICMS ('FILFDEF','02 ','DISK ','CRPT1', >'DATA','A')
       CALL FRICES ('FILEDEF','03 ','DISK ','CRPT2', >'DATA ','A ')
C-
C
         CLB= DESIGN MEAN LIFT COEFFICIENT
DC 90 CL=3,7
CLB=CL*(C.1)
WRITE(2,10) CLR
EA= POWER AVAIIABLE EP
С
          PA=206
          LL= DISK LOADING
VI= TIP VELOCITY FI/SEC
00000
          CONSTANTS BASED ON CIR
         K1=(0.9583)/CIF*(1+1.8078*CLF**2)

K2=PA*10**5/K1

K3=(0.00C25929)/CIF*(1+1.8078*CLF**2)

K4=55348C.0/K1

K5=3695.7/K1

DC 100 D=200,300

DL=D*(0.C1)
              DO 11C VT=60C,70C,25
C
              ARRAY INCREMENTER
              I=I+1
WEIGHT EOUATICN
CC
        W(I)=(K2*(1-(411.51*DL**.75)/(NT**1.5)*(1+K3*VT/DL**.5)**.5)-K4)
1/(VT+K5*DI**.5)
000
          CALCULATION OF WE DATA
          A=%(I)/DI
R=(A/3.14)**.5
P=A**.5/VI
S=(6.*DL)/(0.0023679*CLR*VT**2)
000
        ASSUMING A TEETERING SYSTEM
C
  110
  100
С
  10
31
```



```
VABIABLE OPTIONS
REAL*4 VI(5), DI(5), CIR(5), W(5)
DATA CLR/-625, 575, 535, 460, 42/
DATA VI/600, 625, 650, 675, 700/
DATA DL/2-75, 2.75, 2.72, 2.67, 2.53/
                                            CALL PRICES ('FILEDEF','03 >'DATA','A')
                                                                                                                                                                                                                                                                                                                               ','DISK ','CRPTAR',
                                                     DC 90 L=1,5
WRITE (3,10)CLF(1)
WEITE (3,20)VT(1)
WRITE (3,30)DL(1)
PA= POWER AVAILABLE BP
PA=206
LL= DISK LOADING
VI= TIP VELOCITY FI/SEC
    C
   00000
                                                      CONSTANTS BASED ON CIR
                                                     K1=(0.9583)/CIR(I)*(1+1.8078*CIR(I)**2)

K2=PA*10**5/K1

K3=(0.00025929)/CIR(I)*(1+1.8078*CLR(I)**2)

K4=55348C.0/K1

K5=3695.7/K1

WEIGHI EQUATIC)
    C
                                              W(I) = (K2*(1-(411.51*PL(L)**.75)/(VI(I)**1.5)*
1(1+K3*VI(I)/PL(I)**.5)**.5)-K4)/(VI(I)+K5*(DL(L)**.5))
WRITE (3,51)W(I)
CONTINUE
             90
                                                     FORMAT
FORMAT
FORMAT
FORMAT
FORMA
FO
                                                                                                          STATEMENTS

('1' 'CLR=', 1F10.4///)

(2X, 'VI=', 1F10.4///)

(2X, 'DI=', 1F10.4///)

(2X, F10.3)
      C
              10
20
30
31
```


APPENDIX D. PROGRAMS TO ACCESS HESCOMP

This section contains the control language programs needed to access HESCOMP on the IBM main-frame computer.

**************************************	0 0380 0
TINESS DO SECONDESS SECOND	7, 700
E RASE THE SE TH	0 00000
N	N 00
CC	E DRIG OF BROWNER OF BROWN OF ABROAD OF ABROCE WROOT OF BROWN OF BROWNER ABROWN OF BROWN OF B

16.				в.0	.0095		90		;	250.	•																		
- 075		2.0 2.0		9.0	900.			• 33			•		• •																
10.		0 · · · · · · · · · · · · · · · · · · ·		7 0	.007		•	0		250.					•										=				1. 165 0. 165 0. 165
900.	3.	0 - 2 - 6 3 - 5 5 5	E 066.28			50	1431			250°2 250°2	- •				•					117 1	,3 (O	00		01:				5.00 5.00	1.105
24622 24851 254851	25 42 8 25 72 14 26 114	26 240. 27 24. 85 31 24 1 13	32621.	33150	3355.00 3442.00	602322	60650. 613525	6 2 2 5 1 2 6 2 2 5 1 2	63251. 637544	64753	65451	66451	34753	36131. 36831.	40110	43110	46121.0	50126.	5412.02	5512.1	59120 6012. 61120	6212500	65 121	67121. 68121.	70121	73111	7513	78132. 791360	080131, 105 081130, 082131, 105 083130,

.00. .00. .00. .00. .00. .00. .00. .00	0.000000000000000000000000000000000000				4 69 6
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		. 276 1.17 . 007 . 1012 1.154			ro 000
	100				2
0 59==-0== - 73					
13.755180C. 138450. 138450. 13965.1055 14965.186 14085.26 14185.56 14265.56 14325.62 14325.62 14326.19 146030.82	0.000000000000000000000000000000000000	6666 60123 60123 601428 61427 62165 62165 6316 6311	00000000000000000000000000000000000000	2011 2012 2012 2012 2012 2013	249131.5 221331.0 221331.0 221331.0 22131.0 22131.0 22131.0 24211.1

0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

08411.55 1085110.10 1045120.10 1065120.10 10721.105 110721.105 110721.105 110721.105 110721.105 111711.100.10 118111.100.10

APPENDIX E: HESCOMP INPUT AND OUTPUT EXAMPLES

This section contains samples of the IBM computer input and output.

													E-01								
				VALU		0.	950.00 3.0003 1800.0		.23600 .48510	1.1150	2.2444	5.00000	110000	12500 42500 42500	61000			200	000	. 90000 1.02000 1.02000	131
					CREATED																
					E E		E-01						E-01								
	CASE	X. = 5)		VAL3	ONS CAN	2.3000	32000 030-0	.5.	7. 7.7.	. 96 4 1 0 1 . 2 5 2 0	. • ±	65	000	101 m =	25,4	98		300	15/20 10/30 10/30	. 93 000 1. 3 5 000	
	THIS	(HAX			II																
1	RIDGE	ILINGE.		V	E ENTE	0.	200 143	2 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	 E.E.			220	 5	36	 	160	. 30	220	1000	3850.	o <u>.</u>
E	THE I	EET STAR			GINE AHDAR																
р Рвоси	S. P.	ALUES LOC. +C	•		RY ENC								ر ا								
o M UTER	FION	TN PU TO TO T		-	AILIAR EHIND		277	000	00	200	220		2.1	020	200	ຄຸດ	300 300 300	000	300	2000	000
SCOMPU	RODUCI	N OUT OF THE PERSON TO THE PERSON THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON		VAL	AUA1 D BEI	0.	1856	4430	27	24.	875	202	2=2	25.	25.0	970	8.46	2000	226	1.0000000000000000000000000000000000000	
H E	C REP	SESPECTATION OF THE PROPERTY O	1		ES:								-								
PGRHA	CABE	COCCER			ENGIN																
PEB	FD BY	N NO CP S ELES			IABY DED IN	03	2000	000	200	2023	200	_ !	000 000 000 000	000	200	00	200	00	200	0000	70
3 SNJ	A CAF	AREF		14 7	X II I	000	2000	200	رون روسی	, C	4410	၁၂	ბ <u>ლ</u> ლ.	これの	5.0	اب ر	325	ಌ೦	MIACE	986 +	رر
S I 2 I	1.5	TO LC			36 AU																
CPTER	ChING	SAPES PERSON		E C	LSI bG A	·Ω	ഹഹവ	n aru	หาษาเ	กหานาษ	ונטוטי	ກທາ	വധാഹം	an un un	יטינעו	331	نعا ددا لم	หาษาษา	സസസ	านานานาน	ייאועי
ELICCPT	FCLL	DESECTION OF THE PROPERTY OF T		z	LACI																
Ξ	THE	CORR STAN FOUA	ETC.		NOTE EY P																
		LOC. NUM VAL VAL 2		1 0C.		001	1001	- ~~	mm:	4-70 KD V	200	~ m	200	\sim	200	~ ナ	n o o	00-	-~-	アナナセ	000


```
. 900 00E - 02
15500E - 01
1.23 30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       124 00E-02
                                                                                                                                                                                                                                                                          204110

264110

264110

26450

26450

26500

26500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

27500

275000

275000

275000

275000

27500

27500

27500

27500

27
12000 E-01
63000
13000
10000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .1700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.7
                                                                                                                                                                                                                                             221128
22128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
23128
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               500
500
500
500
500
500
500
500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C00E-01
C00E-01
```


1.3000	5000	3.0000	300000	7200	0.000 4	0026				.80000	.95000E-02	0,	o.	24.100	1.0 250.00 250.00			000	
6.5000 .55000	45.0 73.0	000	75003E-01 165.00 1.3500	1.0000 E-01	1,0000	0 750		- 80000 - 74000 1.5000		. 60000	. 80000 E-02		00	300 100 100			0000	5300	
7.0	0.5 0.5	U 1	~	 	00-0	m 0		. 40 . 40 . 75		04.	. 70	3004) 7 •0		S: 1	200	0 .	
5000	15000 15000 2.30008-01	2300	-9.5000 12000 00001	-4.1000 .31000 1.0100	00000000000000000000000000000000000000	105 00-00	3.0000	. 20000 83300 55500	6.2800	2000		000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24 - 2000 25 - 2000 25 - 2000	3000	200	5000	. 300
162c 0 . ccu	145000 145000 135000 135000 10000	200			-5333		200 200 200 200 200 200 200 200 200 200	9 5 C C C C C C C C C C C C C C C C C C	1.0200 114640E+07	0000	. 6CCCOE-02 . 12COUE-01 22CC.J	200	000	100	3, CC00	1769	0000		1.0000

BITCHT BEHANAHARDEMBRYSTABEIGEAMNINNITATEMBERWICHBEMBARDERGINGELBONGON SONT SONTRETEMBRANINGELAGONORETETEMBRANITATEM


```
0.1
                                U-0
U-512283E+04
J-453304E+04
            1 3003
1.3300
                                                                  3 4 3
6 7 6
7 7 2
                                                                   0.738579 E+04
0.580161 E+04
5 C C S U E - 0 1 5 C C S U E - 0 1 1 1 1 C S U
                                                             -13cc.0
11cc0E-01
1.cc00
                                                , 4ccoo
                                                                  ****
****
****
                                                                 C.250CCCE+05
0.250CCCE+05
0.217672E+C5
```


H E S C O K P ELICCETER SIZING & PERFORMANCE COMPUTER PROGRAM E-

1	AUX. INDEPENDENT I/SHAFT CRUIISION	
FROGRAM	IZSHAFT	
HELICULIA SIZING & FEMICANDANCE COMPUTER PROGRAM E-	TUBERBENT	
1 C C C C	CCFFCUND AELICOPTER	
) II 7 7 1 C	лир иег	
77777777		
3 8	SINGLE RUTCB	
	SINGL	

		€ ≎•-		
	• Ен Сва	F 5 07	£ 1	er T
		ு ப		OFF F
Caulls Lon	5 525 525 525 525 525 525 525 525 525 5	2 - 000- 2 - 1 - 10 2 - 1 - 1004 - 1 2 - 1 - 1004 -	70 OUT	1.5523 2.1.2 2.1.2 2.1.2 2.4.5 0.8.60 0.8.00
				BATIO
AUX, INDEPENDENT I/SHAFT CCNVERGED IN 3 IFERATIONS GBOSS ALIGHT = 17043, LB	LENGTH (EDDY*TALLGODS) LENGTH (CALIS) LENGTH (CALIS) LENGTH (TALIS) LENGTH (TALIS) END. BOTOF LCCATION MICTAL METTAL			ASPECT BATIO SERA SERA FRAN CHCRD TABER HANGE TAIL BOTOB (VERT.) LUCATION TAIL BOTOB (VERT.) TAIL BOTOB (VERT.)
E DATA IHIS 2021 FUSETACE	합 많은 다음 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	C T T T T T T T T T T T T T T T T T T T	CENC HOR. TAIL ARYT EHT CEANHT (17C) HT	VERT. TAIL ARVI EVI EVI CEARVI CEARVI ZIRAVI (I/C) VI

P Paroussam HEILCUPTER SIZEMG & FERFURANCE COMPUTER

SINGLE ROTCH

CCFFORID AELICOPTER

-S

LBS/50. F.T. 0.000 2.000 50.1 27.5 22.5 25.5 15.1 15.1 15.1 2000 - 20 1,523 2,123 6,137 0,850 0,150 AUX. INDEPENDENT LYSHAFT CRUISION ASPECT EATIO
AREA
TEAN CHORD
TABL ROIDEN VERT.) LUCATION
THIL NOIDEN VERT. TAIL OVERLAP AATIO ALIGHE = 17041. HATIO THIS BUN CCAVERGED IN 3 ITERATIONS LENGTH (EODY-TAILDOJM)
LENGTH (CAEIN)
LENGTH (EODY)
LENGTH (TAILEOJA)
LENGTH (TAILEOJA)
LENGTH (TAILEOJA)
LENGTH (TAILEOJA)
LENGTH (TAILEOJA) ASPECT BATIO ABEAN MEAN CHORD TAPEN RATIO TAPEN RATIOND ECK. PAIL ARM GROSS こ/4 ABUT SHT EEHT IEBBHT IEBBHT (1/C) HT ٧T ARVT SVT CEARVT I PREECA V 221 B 2E 1AVT (1/C) VI CONTRACTOR VERT. TAIL HOR. TAIL FUSELACE 4 H PING × 2 7

PT.

	0.5500 0.9400 0.0400 0.0400 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000		5.d FT. 60.3 SC. PT.		11.4 19. SHR		. 0. SC. PT. 2.8 FT.		140.3 FT. 0.171 900. PT. /SEC		45.2 PT. 1.1.0 La/SQ. FT. 1.1.0 DEG. 1.1.0 DEG. 7.25. PT./SEC.		10.3 PT. 0.170 LE./SQ. PT. 0.170 DEG. -4.060 DEG. 0.1300 PT. 690. FT./SEC.
Z	ASPECT RATIO herred arrange from the fourth arrange from the fourth arrange from the	NACPILE	LENGTH MEAN DIAMETER MEITED AREA(TOTAL FOR ALL ENGINES)	ENDENT ENGINE NACELLE	FENGTH FEAN DIANETER METTED ANEA(TOTAL FOR ALL ENGINES)	ENDEAT ENGINE NACELLE STHUT	WETTED AREA(TOTAL) SEAN MEAN CHCKD	TABY FROPULSICN)	IIAMETER ACTIVITY FACTOR PER BLADE SCIDILY NC. OF ENGELLERS NC. OF ELADES/PROP IIP SPEED		CLAMETE WELL STATE		CLIDITY NET DIST V NET DIST COLF F./SOLIDITY NC. OF ELADES/ROTOR FIADE TWIST ELADE CUTOUT/RABIUS BATIO EAIN/TAIL FOTOR GAP
MAIN FCICE FYLO	AR ESPE CERTE LIMBER (1/C) T	PRIMABY ENGINE	NNN NNN	AUXIIIALY INDEP	IIII S S S III	AUXILIAEY INDEP	SS ST SE ST	PROFELLER (AUXILIA	IAB SIGAN NRA NCA VTIE	MAIN FCICE	CTAR FOLGAR CTAR CTAR NG ELADES VTIE	TAIL ECTCE	SIGTE (1/SIGEA (1/SIGEA NO. ELADES THEIA XCTF

	ů.
2.	PROGRAM
ב ט	COMPUTER
=	PERP CRMANCE
	SIZING 6 F
	LICCPIER

		. 1 60 s	3272.	н70.
	ACTUR H ACTOR	LOTOR GROUP ER ROTOR) LOTOR HUM (PER ROTOR) ECLLING (PER ROTOR) FROPULZION ACTOR (ROUP THE SYSTEM ECTOR DRIVE SYSTEM ECTOR DRIVE SYSTEM ECTOR DRIVE SYSTEM ECTOR DRIVE SYSTEM TANY PROPULSION DRIVE SYSTEM AGINE INSTALLATION MENGINE INSTALLATION ERGINE INSTALLATION ERGINE INSTALLATION ERGINE INSTALLATION ERGINE INSTALLATION ERGUN WEIGHT INCREMENT	CCTION 123. INCENT SECTION 145. GHI NUMBERT 565. CONTROLS 7700LS 7700	FIGHT CONTROLS 24. FROPULSION ACTOR SYS. CCNFGO 32. LIANEOUS CONTROLS 5. EIGHT INCREMENT
IN 18S	MANEUVER LOAD P GUST LOAD FACTO UITIMATE LCAD F	E TCTAL MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN	AND THE PROPERTY OF THE PROPER	
GHTS EA1A	2020 2114 200	PROFULSICA GROUD RILL WERE	RO I	KK 65 S S S S S S S S S S S S S S S S S S

2200. 11433. 450. 11883. 2000. 3760.

WEIGHT OF PIXEC EQUIPMENT WEIGHT EMPTY
FIXEL GSEFUL LCAD
CPERATING WEIGHT EMPTY
FAYLCAD
FUEL
GROSS WEIGHT

HPE HED OWE HPL (MF) A


```
A E B O E Y N A H I C S D A T A EFFECTIVE FLATPLATE AHEA SOFT TICTAL METED AREA TO SET TICTAL METED AREA TO SET TICTAL METED AREA TO SET TICTED AR
```


DATA

BOTOB


```
XMSN SIZED AT 100. FERCENT CE AUX. PROPULSION CRUISE PCHRE AT VC =170. KT, HC = 3660. FT, TERE = 91.5 C DEG. F.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     871.
                                                                                                                                                                                                                                                                                                                                                                                                            H. F.
                                                                                                                                                                   ENGINE SIZED FOF TAKED FF AT 1/W = 1.00
95.0 FERCENT MILITARY FOWER SETTING,
H = 4000, F7, TEMPERATURE = 95.04 DEG.F.
G.C ENGINES INOFERATIVE, AND 0.0 FT/MIN VERTI OF CLIME.
                                                                                                                                         н. Р.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               н.Р.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 AT H = 400C. P1, TELE = 95.04 DEG.E., 133.0 PERCENT HOVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             MESN SIZED AT 100, FEECENT OF TALL ROTOR HOVER FOWEE BEQ AT H = 4600. PI, TEFF = 95.04 DEG.E., 100.0 PERCENT HOVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             AUXILIARY INTEPFUDENT PROPULSION DRIVE SYSTEM FA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      436.
                                                                                                                                                                                                                                                                                                                                                                                                 FAX. STANLAND S.L. STATIC H.P.
                                                                                                                                    EEX. STANDARD S.L. STATIC H.P.
                                                                                                                                                                                                                                                                                                                                                                                                                                           ENGINE SIZEE POF CHUISE AT VC = 170. KNOIS.
ACREAL POWER STITING
bC = 3000. T. TEMBATURE = 91.50 DEG.F.,
ANC 0.0 ENGINES INDEFENTIVE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        MAIN AND TAIL ROTOR DRIVE SYSTEM RATING
                                                                                                                                                                                                                                                                                       1,761
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TAIL BOTOR DRIVE SYSTEM MATING
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          BAIN ROTOR CEIVE SYSTEM RATING
                                                                                                                                                                                                                                                                                       AUX. INFEFENDENT PRCFULSION CYCLE HO. TURBOSHAPT FAGINE
O P U L S I C h D A T P PRIMABY PROPULSION CYCLE NG. TURBOSHAPT FAGINE
                                                                                                                                                                                                                                                                                                                                                         1. ENGINES
                                                                                            2. ENGINES
                                                                                                                                                                                                                                                                                                                                                                                                    EHP + PI
  عد
مد
```


H E S C O M P
HELICCFIER SIZING & PERFCRMANCE COMPUJER PROGRAM E-

Э.	
ċ	
•	
-	
•	
•	
1	
•	
•	
-	
٦	
•	
3	
4	
7	
-	
1	
•	
٠	
÷	
3	
1	
3	
9	
1	
-	
_	
3	
-	
•	
,	
•	
-	
٠	
~	
01.7.0	
7	
•	
٠.	
J	
1	
,	
2	
•	
•	
•	
•	

PISSIEN FERFCRMANCE CATA

	TEMP UEG.	59.0		21/S 16MA	202	J .073	0.373 0.3068	0.0073	0.072 0.0068	0.0072 0.006	0.0068	0.0368
	AUK. ENG. FULL FLCA ILES/HK)	25. 20.		5	CPTNU	0.0093	9.000.0	6.0003	0.0393	0.0093	0.0092 0.0018	0.0092 0.00078
	AUX. GNG. PEHF	000		внР	CPPRC	0.00011	0.00011	0.00011	0.00011	0.00011	2848 0.00011	2848
	ENG. CODE			<u>Α</u>	٦ ٢	0.705	0.705	0.705	0.705	0.705	0.705	0.705
	ACX. TURB. TEMP.	950.0		TPPUST 10 MEIGHT	регосм	0.00	1.C60	090 000	09000	0.00	090 0 0 0	0.0
	TCTAL FUEL FLEW (LBS/HR)	438.		TOTAL FUEL FLCW ILES/HR)							1513. 59.0	
	FP. M. CCDE			FRIP. ENG.	RCT11 CCCE	٥٩	.	ΦΦ	ΦΦ	٥٩	ΦΦ	ΦÆ
NG	PRIM TURB: TEYP:	950.0	DO HRS.	PRIM. TURB. TEMP.	~ - -						1678.5	
GREEND IDIE ENGINE RATI	TAS (KTS)	0.0	C FOR 0.100	1AS (K1S)	PRIM.ENG FUEL FLOM ILBS/HR)	1432.	0.0	1427.	1424.	1421.	0.0	0.0
101 g	PRESS.	ಚ	1.06	PRES.	VRC RHP	00	<u></u> 0	دىن	ບໍ່ບໍ່	;;	 00	÷.
AT	PRESS.	17643.	NO AT 17V	WE IGHT		17628.	17598.	17567.	17537.	17507.	17476.	17476.
0.033 HPS.	700	0.0	VER, CR LA	FUEL (SEC TERS)	1.FCICE VIIF IFPS)	6.153	45.1	9.559	106.0	136.4	166.7	166.1
TAXI FCR	RANGE (H.F.)	00	TAKEOFF, HOVER, CR LAND AT	RANGE IN.M.)	M. RCICR RHP	23£7.	23£C.	2373.	2367.	236C	23.5	2353.
r-	TIME (HRS)	0.0	-	TIPE (HRS)	M. FCICE VIIP	0.033	0.053	0.673	0.553	0.113	0.133	0.133

	ВИР	AUX. BHP GR IHRUSI	Z 1	2545. 1119. 0.682	2534. 1119. 0.640	2523. 1119. 0.677	25 12. 1119. 3.674	2501. 1119. 0.671
	SPLC: RANGE IMAGE)		۲ <u>0</u> 0	.10066	1,001.	.1011c	.0.037	2: 101. 7. 0.0
	ALPHA 07L 1 EEG 1	ALX ENG: PEHF	ССМ	C.500	0.615 0.615 0.50c	C.503	0.500	0.617 C.500
	CT PRIME OVER SIGMA	APCX CCOSE	CT	0.046	0.046	0.045	C. C45	0.044
		AUX. TURB. TEMP.	СР	1679.4	0.396	3.396	0.396	0.396
	EAS IKIS)	UX. ENG. LEL FICA (LBS/HR)	7	400.3	176.0	170.c 40c.	399.	399°.
RATING	PRIM CCCE	ETAP	CXR	0.821	C.821	9.821 0.0cc516	0.821 0.000516	0.821
ENGINE	PRITORY.	AUX	регсри	1604.6	1602.8	1606.9	1599.1 P 0.821 0.00515 0.00516	0.00500.0
Y NGRMAL	TAS	PRI 1.ENG FUEL FLUS (LBS/HR)	CELCOS	170.0 1239. 0.00012	170.3 1233 0.00010	170.3 1281. 0.00003	170.0 1277. 0.00008	1273. C.00008
IAS, LIMITEC PY	PRES. ALT: IFT:	PROF VTIP IFPSI	CDO	0.01735	0.01727	0.01720	0.01713	0.01767
	WEIGHT ILBS.)	1. FOICE RHP	CPNUD	17476.	17327. 155. 0.0000042	17175.	17036.0	16 8 8 2 . 15 2 . 0 . 00 0 0 4 C
17C.C KNOTS	FULL LSEC (LBS)	1.FCICE T.F. VIIF RHI IFFS!	CPPBR	166.7 650.0 0.000269	215.7 650.0 0.000265	464.4 650.0 6.000269	¢12.7 ¢50.0 c.000268	76C.6 65C.6 0.00C266
CRLISE AT	RANGE IN .M.)	M.ROIOR M.ROICR VIIP RHP IFFSI	CP INC	725.0 725.0 0.000478 0.000049 0.000269	7252 0.000476 0.000049 c.ccc265	72 210 72 20 2155 2.030474 3.00CC47 C.CCC265	72 £ 0 0.000472 0.00 CC46 C.0 CC26	725.0 0.000471 0.000044 0.000266
CF	TIPE	M.RGTOR VT 1P 1 F P S 1	CPFRO	0.133 725.0 0.0047e	725.0	5. 2 ± 10 72 ± 0 3. 030474	0.000472	0.486 725.0 0.000471

	ВНР	AUX. ENG. BPP OR TARUST	X N	1877. 549. 3.761	1467. 546. 0.775	1856. 247. 3.178	1846. 547. U. 776	1636. 546. 0.774	1826. 546. 0.172	1822. 545. 3.772
	SPEC RANCE (NWFP)	SPEC RAPLE (NMPP)		.11667	.11700	.11734	.11766	65211:	.11432	.11847
	ALPHA C/L (DEG(AUX. ENG. PEHF	CLW	0.471 C.50C	0.471 C.500	C-2.3 C-47C U-5UO	C-41C C-500	0.469	0.469	-2.5 0.468 0.500
	T PRIME OVER SIGMA	ALX CODE	CI	0.059	250.0	0.058	C . C58.	C.057	C.056	0.056
	J	AUX. TURE. TEMP.	CP	15387	1537.1	1537.3	1536.6	1536.4	0.347	1535.7
HEADWIND CF C.C	EAS (KIS)	LX. ENG. UEL FLOW (LBS/FR)	7	138.4	138.4	139.4	138.4	138.4 284.	138.4	138.4
	PR LY CCCE	ETAP FRCP	CXR	C.826	0.826 0.00379	0. CCC370	C.CCC370	0.000369	0.000369	0.000368
	PRIM TURB TEMP			1517.6	1515.6	1513.6	1511.6	1509.7	1507.7 F. C. E26 0.00815 0.000369	1506.8
RANGE WITH !	14 S (K T S)	PR (3.ENG FLEL FLOW (LBS/HR(CELCOS		145.1 991. 0.30319		149.1 934.	149.1 \$81. 0.30015	149.1 977:	
BES 1	PRE S. ALT	PROP VIIF (FPS(060	50CC. 0.01654	5000.	5900.	50 CO. 0.01 £33	5000.	50CC. 0.01620	50CC. C.01610
SPEEC FCR 49 PER CENT	WEIGHT (LES.(T.FOTGF		CPAUD	16797. 0.000054	16665. 107. C. COOC54		1641 3.	16285. 106. 0.000052	16156. 106. c. 000052	16095. 1961 C. COOC\$1
	FUEL LSEC (LBS)	1.PCICE VIE	CFPIR	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	974.1 650.5 0.000152	1102.3 650.0 0.000152	123C.2 65C.0 0.00C152	1 5 7 5 6 0 0 0 0 0 0 1 5 2	1464.6 650.0 C.CCC152	1544.4 690.0 6.000.0
CRUISE AT SP	RANGE (N. M. C	M. ROICR RHP	CP INC	25.0 25.0 .060412 0.00CC52 C	2 5 0 974 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	97.95 1102.3 151.65.65.0 0.006088 0.006152	25.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	127.95 1578. 0. cocc84	25.0 . c004c2 0. c0c(83	25.0 .£604c2 0.00cc82 c.ccc152
CRL	TCPE (HRS)	M. PCICE VI (P (FPS(CPFRC	0.597	72 £ E B 72 £ 00 0.000410	9.7.68 72.6.6 3.03040E	725.0 0.00406	3.569 725.0 0.00405	1.090 725.0 0.000403	1.137 725.0 6.00402

	R/C (FPM)			1012.	976.	935.	902.	864.	825.	786.	747.	707.	666.	626.
	внр	AUX. Enc. BnP CR INRUSI	Z	1949.	192d.	1907.	1887. 0.960	1866. J.	1840. U.961	1825.	1804.	1784. 0.901	1763.	1743. 3. 0.902
	GANNA (CEG)	23	CDA	1.3	1.1	6.4	6.5	6.07	5.9	5.0	5.3	5.0	1.00.0	4.4
	ALPHA O/L (CEG)	ALX PENG.	CLW	0.835 C.300	0-837 C.300	0.438 C.30C	0-2-3 0-340 C-30C	0-841 C.30C	C. 843 C. 300	0-844 C-300	0.846 0.300	C-847 C-300	0-349 C-300	0.850 C.30C
	T PRIME OVER SIGMA	AUX. ENG.	10	C • 06 3	490.0 T	290.0	990.0	0.067	990.0	5 90 ° 0	C.070	C.071	C.072	£ 10.0
	D,	AUX. TURE. TEMP.	C P	C.18C 1856.C	13.18C 1856.C	3.180	0.183 1856.C	0.183 1856.0	0.183 1856.C	0.185 1856.0	0.185 1856.0	0.187	1356.0	1856.0
	EAS (KIS)	LX. ENG. LEL FLCW	٦	76.4	75.3 	15.3	75.7	75.2 	74.6	75.0	74.5	74.8	74.3	73.7
GINE RAT	PPFI FAG CCCE.	ETAF U	CXR	C. C. C. 820	0.3cc333	0.000334	0.000342	0.000343	C.82C 0.000344	C. CC0352	C.0CC353	C.820 0.000361	0.000362	C.82C 0.000364
MAL ENG	PRIVE TURB TREPS	EHP AUX	DELCDM	1856.0	1856.0 0.00c51	1856.0	1856.0	1856.0	1 H5 6. 0	1856.0	1856.0	1856.0	1856.0	0.00100.0
CCMFCNENT OF THE FLICHT PATH	TAS	PRIJ.ENG FUEL FLUM (LBS/HR)	DELCOS	76.4 896. 0.33003	16.6 885. 0.00000	16.1 874. 0.30033	77.4 864. 0.00000	17.4 35.3 0.00001	77.4 842. C. 30001.	18.4 832. 0.30001	78.4 821. 0.00001	79.4 811. 6.30002	79.4 801. 0.00002	79.4 790.0 0.00003
XIMUN R	PRES. ALT	PROF VIIP (FPS)	coo	0.30630	5 00.0	1000.00	1500.	2000. 0.00650	2500. 0.00£55	3000.0	3500. 0.00 £70	4000.0	4500.0	5000.0
WITH MAXIMUM THE HCFIZCHTAL	WE IGHT	1. KOTCF RHP	C P NUD	16882. 64. 0.000011	16875.	16666.0	16866.	16854.	16844.	16835.	1682¢. 0.000013	16817.	168C7. 0.000013	16797.
CCC. FASO	FLEL LSEG (LES)	1.8CICH VIIP (FFS)	CPPAR	7 60 6 6 50 5 0 0 0 0 0 0 6 1	768.0 650.0 0.000000	775. 5 690.0 0.000001	7£3.3 650.0 C.CCCC63	751.3 650.0 C.000064	789.5	992320°0 0°858 0°058	816.E 550.0	826.C 650.C 0.C0CO69	650°5°5°5°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°	845.5 650.0 0.0000.0
IMB TC SC	RANGE (N. P.)	M. RUICR RHP	OP INE	0, 05, 00	60.64 1123. 0.000206	61:30 11:55 0.000:13	61:99 11:29: 0.000016	62.71 1132. 0.000223	0.000230	64.26 1140. 0.000233	65.11 1144 0.000240	65.59 1149. 0.000244	66.94	67.55 1156. 0.000260
011	T IME (HRS)	M. HCTOR VIIP (FPS)	СРРАО	0.486 125.0 C. CC0152	0.494 725.0 0.000153	0.503 725.0 0.000154	0. 5.12 725.0 0.000156	0.521 725.0 0.001117	0.531 725.0 0.000157	0.541 725.0 0.000160	0.551 725.0 0.000161	0.565 7250 0.000163	0.574 725.0 0.000165	0.587 725.0 0.000166

0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 110000 0.00000 1.00000 0.0087 0.0091 0.0086 C - C 0 6 B 0.0007 9800°. • 0 0.00011 0.00011 2497. ..6531: 2517 249C. 2524. 9.705 0.739 901.0 9.709 501.0 0,000 1.060 1,060 0,000 0,000 0,000 0,000 1.ceo 1380. 55.4 1376. 128.00 12 RC T L I 1631.9 92. 1630.6 1027.0 1624.6 1629.4 1628.2 PRIM.EMS FUEL FLUM (LBS/HR) TAS (KTS) 0.0 1255. 1253. 1291. 1286. 1286. 0.0 = 1.060 1300. 1300. 1000. 1000 1000 .000. 1000. 0001 000 WE 1GHT (LES.1 1.RUTOR 5933 16015 266 596C 5905 5878 RANSFER ALTITLEE TO 696.0 710.4 1737.9 650.0 RANGE (N.M.) W.ROICR RHP 56.50 2055. 50.60 20.79. 50.50 50.CC 50.00 2056. 50.00 2051. 50.0c 11ME (FRS) 1.137 125.0 125.0 125.0 125.0 125.0 125.0 25.0 25.0 25.0 25.0 25.0 25.0


```
CHANGE FAYLCAE, REACVE 1000. LE.

FUEL FUEL WEIGHT ALT.

(HRS) (N.W.) (LBS) (LBS.)

1.347 150.00 1820.2 15823. 1000.
```


	ЗНР	AUX. BHP GR (HRUST	Ric	10 93. 55. 0. 942	109C.	1087.	10 83 · 55 · 0 · 942	1380.	1017.	1374.	1970.	1068. 53. 0.942	1065.	1361. 53. 0.942
	101 AE FLEL - LUM (1857 HR)		r:00	361. 0.037	96c. 0.047	964. 0.007	964.	96.1.	9620	961.	966.	955. 0.007	958.	957.
	ALPHA 07L (CEG)	AUX. ENG.	СГЖ	0.044 0.40 0.400	0.044	0.043	0.043 0.400	0.043	0.043	0.043 0.43 0.400	0.043 0.40C	0-1-5 0-045 0-400	0.400 0.400	-1.5 0.042 0.400
	CT PRIME OVER SIGMA	ALX CCDE	CT	0.056	0.056	0.056 p	0.056	0.055	0.055	0.055	0.055 p	0.055	0.055	0.054
	Ď	AUX. TURE. TEMP.	C P	120176	1267.6	120176	1207.6	3.176	1207.5	1201.4	1207.4	1206.2	1206.2	1266.2
	EAS (KIS)	LX. ENG. LEL FLOM (LBS/HR)	7	155.	156.5	155.	14.5	74.5	14.5	14:5	156.5	13.5	73.5	73.5
	P P P C C C C C C C C C C C C C C C C C	E1AP PRCP	CXR	0.000163	C.835	C.0C0183	0.835	0.835	C.000183	C.E35	0.000182	0.000179	c. cc0173	0.835 0.CCC178
	TURB. TEMP.	BHP AUX	DEL COM	1375.0	1374.4	1373.8 0.00C38	1373.2 0.00038	1372.6 0.00C38	1372.0	1371.4	137C.8 0.00037	1370.5	1369.9	1369.3 0.00034
	14 S (K T S)	PR14.EUG FUEL FLUM (LBS/HR)	DELCOS	75.6 813.	75.6 812.	3.9	15.6 810.	75.0 809.	15.6 808 0.0	75.0 807.	15.6	805.	74.6 834.	74.6 803.
	PRES.	PROP VIIP (FPS)	000	1000.0	1000.0	1000.	10 CO.	1000.0	1000.000.0	1000.0	1000.0	1000.0	1000.0	0.00 818
S.	WE 1GHT (L ES.)	1. RUTOR REP	CPNUD	14623.	14774.	14726.	14676.	14636.	14581.	14533.	14485.	14437.	14385.	14341.
C.5CC HR	FLEL (SEC (LES)	1. PCTCP VT)P (FFS)	CFFIR	1820.2 650.0 C.0CCC33	1666.6 650.0 C.CCC033	1516.5 650.03 0.000033	1565.2 650.0 0.000033	2013.4	2061.6 650.0 0.000033	2169.7 560003.2	2157.7 650.0 c.ccc032	2205.7 690.0 0.000031	2253.7	2301.6 650.0 0.000031
ITER FOR	RANGE (N.W.)	4. ROJICR RHP	CP INE	156.00	156.00	15C.30 0.0000.0	156,00	156.00	15C.3C 0.00C156	156.00 0.000155	156.00 865 0.000154	15C.30 663 0.00C155	156,99	156,00 976, 3.000153
וכו	TIME	M.RCICR VIIP (FPS)	CPFAC	125.0	1,357 725.0 0.000150	1250	12550 C. CC0150	1,547 725.0 0,00150	1.597 725.0 C. 000150	125.0 0.000150	125.0 0.00150	125.0	125.0	125.0

	R/C (FPM)			1469.	1429.	1389.	1349.	1 308.
	бнР	AUX. ENG. BAP LA IMRUSI	X Z	1905.	1844. 1429. U.540	1864. 1389. U. 945	1843. 1349. 0. 0.940	1823. 1308.
	GAMMA (CEU)	כה	CDW	11.5 C.CO7	11.0	10.0	10.00	10.0
		AUX. PEHF	CLW	-2.6 0.838 0.400	C-2.6 0.400	0.84) 0.490	-2. ¢ 0.843 C.400	0.844 C.400
	CT PRIME MU SIGMA	AUX. CODE.	C.1	0.055	0.055	950.0	0.057	0.058 T
) 1	AUX TURR. TEMP.	СР	0.169 1856.C	0.169 (856.0	7.171 1956.C	0.171 1856.6	1856.0
	EAS (KIS)	UX. ENG. UEL FLCW (LES/HR)	7	70.5	65.3	10.4	6.59	69.4
GINE RAT	PRIM ENG CCOE	ETAP L	CXR	C. 82c	0.82C	C.82C	C.826	T CCC328
MAL ENI	PR(M. TURM. TEMP.	ВНР АUX	CEL CDM	1856.0	1856.0	1850.0 C.82C	1856.0	1856.0
CLIMS TO SCCC. FI. WITH MAXIMUM RIC AT NORMAL ENGINE RAT ** TASIANC EAS) IS THE HOPIZONTAL COMPONENT OF THE FLIGHT PATH	IAS (KTS)	PR (M.ENG FUEL FLOW (LUS/HR)	DELCUS	71.5 874.	71.5 863.	12.5 852.	72.5 842.	12.5 831.
NATHUP R	PRES.	PRO F VI) P (FP §)	CDO	1000.	1500.	2000. C.00 E2C	25 CO. 0.00 E23	3000.
THE HOP (2	WEIGHT (Les.)	T. FUT OF	CPNUD	1434[. 5. 6. cooce	14334. 57: C. COOCCE	14331. 2000. 51. C. COOOCS C. OO E2C	14326.	14321.
CCC. F1.	FUEL (SEC (LHS)	1.FCTCR T.F VIDF RH (FPS)	CPPAR	2 ± 2 1 . £ 2 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .	2306.6 650.0 C.CGCG54	2311.6 650.0 0.000056	2:16.7	2321.9
1743 TC 3	RANGE (N.M.)	M. ROICR RHP	CPINC	125.0 0.356147 0.000159 0.000054	1.853 725.0 6.000147 0.00c164 C.cccc54	12 £ 59 72 £ 6 0.330149 0.006166 c.cocces	1,550 0,660145 0,606171 0,006657	1.871 725.0 0.060150 0.006177 6.056657 0.
CF	TIME (HRS)	M. RCICR VIJP (EFS)	CPFRC	1.847 725.0 0.300147	1.853 725.0 C.000147	1. £59 725°C 0.330149	1, £65 725.0 0, cc0149	1.871 725.0 0.060150

	вир	AUX. ENG. BEP UA THRUST	Ş	1613. 672. 0.723	1905. 072. 0.721	1597. 671. 0.718	1590. 679. 0.716	1582. 070. 0.713	1575. 669. 0.711	1568. 66 d. 0. 708	1561. 007. 0.705	1553. 067. U.7C3	1546. 606. 0.700	1540.
	SPEC. RANCE (MMPP)		CON	11017	111842	120.0	.11852	11911.	11541	111960	.11550	.12015	.12038	0,021.
	ALPHA D/L (DEG)	AUX PEFF	410	C.547 0.530	C.547	C-546 C-546	C. 546 0.500	C - 545 C - 503	0.544 C.50C	0.544 0.544 0.500	0.543 C.500	0.543 C.50C	C.542	0.542 C.50C
	CI PRIME CVER SIGMA	ALX CCDE	10	C . C 4 4	0.044	0.043 p	0.042 p	C.C42	1 + 0 - 0	0.041	C.040	C - 040	0.039 p	0.039
	O O	ALX. TURE. TEMF.	СР	15091	1608.7	0.345	1607.7	1667.2	1606.8	1666.3	3.349 1605.8	1665.3	0.349	0.345
	EA §	LX. ENG. LEL FLCW (LBS/HR)	7	143.6	143.6	143.6	143.6	143.6	143.6	143.6	143.6	143.6	143.6	143.6
HEADWIND OF C.C	PR1M. ERG. CCOE	ETAP PFCP	CXR	0.000213	C.826 0.000213	0.62243	0.9c0272	0.008242	C.CCC272	0.000271	C.CCC271	0.000271	0.000271	0.82¢
	PRIM. TURB. TEMP.	PHP AUX	OEL CDM	1460.1	1458.7	1457.3	1455.9	1454.6	1453.2	1451.9	1450.0	1445.3	1443.0	1446.9
RANGE WITH	1A S (K I S)	PRIM.ENG FUEL FLOW (LBS/HR)	DELCOS	150.1	150.1	150.1 932 0.30031	1,50,1	150.1 927. 0.00000	150.1	150.1	150.1	150.1 918.0	150.1	150.1
BEST RA	PRES. ALT: (FT)	PROF VIIP (FPS)	000	3000.	30 00.	30 66.	3000.	3000.	3000.	3000.	3000.	30CC. 0.014C8	3000.	3000.
99 PER CENI	WE IGHT	I.ROICE RHP	CPNUO	14 32 1. 10C 0. CU CC 41	14194. 0.00040	14067. 190. 0. COOC40	13941. 0. C00035	1381 5.	13685.	13562. 0.330038	13438.	1331 3. 0. COOC31	13196.	130,78.
EEC FCR	FUEL L'SEC (LBS)	1.FCICE VIIP (FPS)	CPFAR	2321.9 650.0 6.000114	2448.5 650.0 0.000114	2515.5	27 <u>61.9</u> c.c0c1113	2828.1 650.0 0.000113	2553.5	3675.6	2264.5 650.6 c.eccii3	2.0555 6.0550 0.050.0	3454.9 650.0 0.000113	3565.1 650.0 0.000112
RUISE AT SP	RANGE (N.W.)	P. RCICK	CP 1 NC	151.73 0.000000	1 06.73 1 3 60. 0. 0000049	181:73 13:33 0. CCCC48	196.73	211.73	226:73	241:73 13255 0.0000043	256.73 1318 0.000042	271.73	286.13 1205. 0. cccc40	30C 00 1259. 0.00CC39
CAL	TI VE (HRS)	P. RCICR VIIP (FFS)	СРРВО	1. e71 725.0 0. 000 261	1.571 725.0360 6.000360	2.071 725.0 0.000359	2.171 724.00 C.000357	22 271 72 200356	2.311 725.0 C.CC0355	2,471 725.0 0.000354	725.0 0.000353	72 £ 70 6.000352	2.770 725.0 0.000351	725.0 0.000350

	аНя	AUX. E.4G. BEP UK THRUST	X Z	1022.	1019. 0.942	1017.	1014. 0. 0.942	10 11. 0. 0. 942	1308.
	101 AL FLEL FI UN (1857 HK I		້າລົວ	435.	835. 0.00?	434.	433. 0.0C7	832. 0.067	831. 0.007
	ALPHA 0/L (CEGI	ALX ENG: PEHF	CL W	3-2-2	0-5-3 0-40C	0.0	0-0.0	0.0 0.0 0.400	0.00
	CVER SIGMA	AUX ENG: CCDE	CI	C.053	0.052 p	0.052	0.052	C.052	C.052
	Đ.	AUX. TURE. TEMP.	СР	0.170	0.17C 852.1	9.170	0.170	0.170	0.168
	EAS (KISI	UX. ENG. LEL FLCW (LBS/HR)	7		69.9			69.9	
	PALM ENG. CCCE	E1AP PRCP	CXR	C. C. C. 2 64	C.E35	C.835	0.000263	0.835 0.000263	0.825 0.0258
	PRIV. TURB. TEMP.	енр АОХ	ОЕГСВМ	1361.3	1366.9	1363.3	1355.1	1359.2	1358.6
_	14.S (K 1 S 1	PRIMENS FUEL FLOW (LBS/HRI	DELCDS	73.1	13.1	13.1	73.1	13:1	3.3
FESERVE FUEI	ALT:	PROF VIIP (FPS)	000	3000.	3000.	3000.	3000.0	3000. 0.00 620	3000.
FOR	WEIGHT (LES.)	T. FUTOR	CPNUD	1307£. 3.0000čå	13036. 0.000368	12994. 0.000000	1295 2. 0. cood ce	12911. 53. 0.000000	12865. 0.00000
C.250 FRS.	FUEL (SEC (LES)	1.RCICR VIIP (FES)	CPPAR	3565.1 556.0 0.000045	3606.9 650.0 C.CCC045	2648.6 650.0 c.ccc045	2,650.3 5,60.3 0,000.0	3731.5	3773.5 ¢\$6.6 c.ccco44
LCITER FOR	RANGE	M. ROICR RHP	CP INC	725.0 6.00014E 0.000140 0.000045	7,550 7,250 6,00014E 0,000145 C,00045	2550 2550 3650 3650 3650 3650 3650 3650 3650 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3, C55 725.0 0.000148 3.00C142 C.CCC045	3.109 725.0 0.300147 0.000144 c.ccc044
01	T L'AE (HRS)	M. RCIOR VIIP (FPS)	CPFFO	2.659 725.0 0.00014E	2.505 725.0 C. C0014E	72559 0.550148	3.509 7250 0.000149	3.659 725.0 0.000148	3.109

MISSICH FLEL REGLIPEC = 3565.08 FESERVE FUEL REGLIREC = 206.46 101AL FLEL REGLIREC = 3773.53

114

LIST OF REFERENCES

- 1. Layton, Donald M., <u>Helicopter Performance</u>, Naval Post-graduate School, Monterey, California, 1980
- 2. Zalesch, Steven E., <u>Preliminary Design Methods Applied</u> to Advanced Rotary Wing Concepts, University of Maryland, May 1973.
- 3. Layton, Donald M., <u>Helicopter Design Manual</u>, Naval Postgraduate School, Monterey, California, July 1983.
- 4. Carmona, W. F., Computer Programs for Helicopter High Speed Flight Analysis, Master's Thesis, Naval Postgraduate School, Monterey, California, 1983.
- 5. Hiller Aircraft Corporation Report 60-92, <u>Proposal for the Light Observation Helicopter Performance Data Report</u>, 1960.
- 6. <u>Class Notes</u>, Helicopter Performance Course, Naval Postgraduate School, Monterey, California, 1963

INITIAL DISTRIBUTION LIST

		No. Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93943	2
3.	Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93943	1
4.	LT Allen C. Hansen, USN Air Department USS Enterprise (CVN-65) FPO San Francisco 96601	5
5.	Professor Donald M. Layton Code 67Ln Department of Aeronautics Naval Postgraduate School Monterey, California 93943	5
6.	Aviation Safety Programs Code 034 Zg Naval Postgraduate School Monterey, California 93943	2

3 MAR 94. 31 MAR 94

3

Keep this card in the book pocket Book is due on the latest date stamped

£06967

Thesis

Hansen

c.l

An analysis of three approaches to the helicopter preliminary design problem.

thesH1996
An analysis of three approaches to the h

3 2768 002 07637 4
DUDLEY KNOX LIBRARY