Intersection

Epipolar Plane

Intersection Example

▶ Input data

Image Point Observations (reduced to PP)			
ID	Image	x (mm)	y (mm)
72	Left	70.964	4.907
127	Left	-0.931	-7.284
72	Right	-15.581	-0.387
127	Right	-85.407	-8.351

EO parameters determined by resection			
	Left	Right	
$X^{c}(m)$	6349.488	7021.897	
$Y^{c}(m)$	3965.252	3775.680	
\mathbf{Z}^{c} (m)	1458.095	1466.702	
ω (°)	0.9885	1.8734	
φ (°)	0.4071	1.6751	
κ (°)	-18.9049	-15.7481	

Input data

Approximate parameter values			
	72	127	
X (m)	6869.168	6316.136	
Y (m)	3844.536	3934.676	
Z(m)	283.202	283.227	

Other Information	
c (mm)	152.150
Approximate image format size (mm x mm)	229 x 229
$\sigma_{\rm obs} (\mu {\rm m})$	15
$Tol_{coords}(m)$	0.012

▶ Partial solution—first iteration (point 72)

A matrix			
	X_{72}	\mathbf{Y}_{72}	\mathbf{Z}_{72}
X _{left}	0.123571	-0.043199	0.059096
yleft	0.042202	0.123057	0.006023
Xright	0.122718	-0.034164	-0.017824
y right	0.034704	0.123132	0.002685

w vector (mm)		
X _{left}	-0.00007	
y left	0.00118	
Xright	0.00000	
y right	-0.00116	

Final solution (point 72)

Residual vector v (mm)		
X _{left}	0.000	
yleft	0.001	
Xright	0.000	
y _{right} -0.001		

Parameters and standard deviations				
X_{72} (m) 6869.168 0.094				
Y ₇₂ (m)	3844.536	0.082		
Z ₇₂ (m) 283.202 0.277				

▶ Final solution—first iteration (point 127)

A matrix			
	X_{127}	Y ₁₂₇	${\bf Z}_{127}$
X _{left}	0.122561	-0.041942	-0.002388
y left	0.041932	0.122664	-0.004383
Xright	0.119090	-0.031736	-0.075282
y right	0.033963	0.121402	-0.003944

w vector (mm)		
X _{left}	-0.00015	
y left	0.00274	
Xright	-0.00001	
y right	-0.00267	

▶ Final solution (point 127)

Residual vector v (mm)		
X _{left}	0.000	
y left	0.003	
Xright	0.000	
y right	-0.003	

Parameters and standard deviations				
X_{127} (m) 6316.136 0.119				
Y_{127} (m)	3934.675	0.084		
$\mathbf{Z}_{127}\left(\mathbf{m}\right)$	283.227	0.285		

▶ Final solution

Redundancy numbers	Point 72	Point 127
X _{left}	0.00	0.00
y left	0.49	0.49
Xright	0.00	0.00
Y right	0.51	0.51
Sum	1.00	1.00

Questions for Discussion

- Comment on the residuals
- Comment on the precision of the co-ordinates
- How does the precision compare with that computed by the approximate equations?

$$\sigma_{\rm X} = {\rm S}\sigma_{\rm obs} \qquad \sigma_{\rm Y} = {\rm S}\sigma_{\rm obs} \qquad \qquad \sigma_{\rm Z} = \frac{\sqrt{2}{\rm S}}{\rm B/H}\sigma_{\rm obs}$$

where S≈7800 and B/H=0.6

Is the precision realistic? Why or why not?

DEM Production

- Objective: estimate heights at regular intervals in object space by space intersection
- The search space for conjugate points in the image is reduced using the planimetric position of a feature point in object space as a constraint (vertical line locus method, VLL)—the space intersection is constrained with known X and Y co-ordinates
- Using the assumed height range from the elevation range constraint, ΔZ, the line segments to search in each image can be determined by back projection

Backprojection

Backprojection Applications

- Automated target tracking and measurement
 - Motion capture systems
 - Computer-assisted surgery
- Orthoimage production

L: http://www.ccad.uiowa.edu/vsr/research/motion-capture/R: http://www.vicon.com/applications/gait analysis.html

Image sequence

 Objective: to automatically track and measure a set of tokens (e.g. targets) in a sequence of images captured at regular intervals in time

Composite image compiled from a 12-image sequence

Intersection from 2D measurements

Prediction of 3D target location

Backprojection and 2D target search

Precise measurement and intersection

Prediction of next 3D target location

Rectification

- Rectification: the process of transforming an image from a perspective projection to an orthogonal projection
- This removes the perspective distortion caused by tilted imagery
- Ortho-rectification: rectification in which distortions due to relief displacement are also corrected
- The effects of lens distortions are also corrected

Methods

- Polynomial
- Projective transformation
- Differential*

Perspective image (acquired)

Differential rectification

Each point is individually transformed via back projection into the original image with the collinearity equations augmented with the lens distortion models

Inputs:

- Exterior orientation parameters from AT
- Interior orientation parameters from calibration
- DEM from an external source or generated from the imagery after AT
- Resampling or interpolation is needed to determine the grey value or RGB values at the non-integer, back-projected locations
- ▶ The coarse DEM spacing can be overcome by interpolation

