Precision medicine: NGS variant analysis and interpretation for translational research

PanDrugs: Matching mutations with therapies

Fátima Al-Shahrour ● Javier Perales ● Elena Piñeiro

September 29, 2016

Predisposition

Genomic alterations

Prognosis

Diagnosis

Treatment

Predisposition

Genomic alterations

Prognosis

So you think there's a chance

Diagnosis

Treatment

Pharmacogenomic association

Studies the effect of the genomic alterations in the drug response.

Werner, H. M. J. et al. (2014) Cancer Systems Biology: a peek into the future of patient care? Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2014.6

- Breaks the rule"one size fits all"
- Individual variation predicts:
 - Response
 - No response
 - Side effects
- Tailors a suitable treatment for a stratified patient

PanDrugs

Cancer-oriented computational approach to prioritize and select therapies based on genomic data.

- Definition of a comprehensive catalogue of drugs associated with alterations at gene level.
- A variant/gene prioritization system according to the biological relevance.
- A prioritization system of therapy assignations according to their therapeutic utility in a specific genomic context.

Web page

PANDRUGS Home Query About

What is PanDrugs?

PanDrugs database provides a resource for the drug-gene interactions exploration mainly oriented to cancer disease. This database groups relations between compounds and their respective targets stored in public databases and potential biomarkers identified in cancer cell lines drug response studies.

It also provides extra manual curated information about the drug status and their usage in cancer therapies or clinical studies in this field. All this completed with a ranking score reflecting the strength or evidence level of the

The database contains 55880 drug-gene relations of which 51908 are unique, corresponding to 3886 genes and 6048 drugs in different stages.

PanDrugs is supported by the Spanish National Cancer Research Centre (CNIO).

Miguel Reboiro-Jato

URL: http://pandrugs.bioinfo.cnio.es

38628 unique drug-gene relations **4236** genes **10831** drugs

Sources

Cancer Commons
CIViC
The Clearity Foundation
DoCM
DrugBank
Guide to PHARMACOLOGY
My Cancer Genome
PharmGKB
TTD
TALC
TDG
TEND

Alex H. Wagner et al. (2016) Nucleic Acids Research

Therapeutic monoclonal antibodies

MoAb - Drug-gene interactions

TARGET

(Tumor Alterations Relevant for Genomics driven Therapy)

Drug-gene interactions

Van Allen et al. (2014) Nat Med

Genomics of Drug Sensitivity in Cancer

Drug-gene interactions based on CCL studies

Iorio F et al. (2016) Cell

Cancer Therapeutics Response Portal

Drug-gene interactions based on CCL studies

Rees et al. (2016)Nat Chem Biol

DGIdb

Cancer Commons: drugs approved or undergoing clinical trials for use in lung, prostate and skin cancer

Clearity Foundation Biomarkers: biomarkers that predict response to selected drugs in ovarian tumors

Clearity Foundation Clinical Trials: clinical trials records based on their relevance to breast and ovarian cancer

DrugBank: large resource detailing drugs and drug-target information

My Cancer Genome: with interactions of specific mutations and therapies

My Cancer Genome Clinical Trials: My Cancer Genome interactions obtained from clinical trials

PharmGKB: with potentially clinically actionable drug-gene associations

TALC: targeted agents in lung cancer

TEND: manual curation of FDA approved drugs

and their targets from DrugBank

TTD: therapeutic targets and corresponding

drugs

Monoclonal antibodies

- Highly selective
- Successful treatment in several diseases as rheumatoid arthritis, multiple sclerosis, cancer
 - eg. Rituximab in B-cell lymphoma (CD20 (MS4A1)) Cetuximab in colon cancer (EGFR)

https://en.wikipedia.org/wiki/List_of_therapeutic_monoclonal_antibodies

- Employed in therapy and prevention
- Interacting with human proteins
- With an existing gene symbol

Additional monoclonal antibodies relations found in literature

Diagram showing a monoclonal antibody attached to a cancer cell

TARGET

Home >

TARGET

What is TARGET?

TARGET (tumor alterations relevant for genomics-driven therapy) is a database of genes that, when somatically altered in cancer, are directly linked to a clinical action. TARGET genes may be predictive of response or resistance to a therapy, prognostic, and/or diagnostic.

TARGET is intended to be a community resource for translational oncology. To maintain relevance and keep pace with new preclinical and clinical discoveries, it is updated quarterly.

How do I get the TARGET database?

TARGET is available for download as an Excel spreadsheet.

TARGET_db_v3_02142015.xlsx

TARGET db v2 05042014.xlsx

TARGET db v1 07012013.xlsx

With a specific drug name Additional information about:

- sensitivity / resistance
- target / marker gene
- genomic alteration

How can I contribute to the TARGET database?

If you would like to nominate a particular gene for inclusion as being clinically relevant, please complete this survey.

If your submission is selected for inclusion, you will be notified. Furthermore, if you would like to be acknowledged as the expert for that submission, you will be attributed in future editions of TARGET.

GDSC

~ 1000 cancer cell lines mutations, amplifications, deletions, expression data 140 compounds

http://www.cancerrxgene.org/

Gefitinib: EGFR targeted therapy

	Gene	Effect	P-value	No. of mutations
CCND1		0.568	6.56e-11	29
MLL_AFF1		0.124	0.0000196	2
NRAS		1.96	0.0000422	45
<u>EGFR</u>		0.312	0.0000950	25
<u>KIT</u>		0.574	0.0195	5
SMAD4		0.600	0.0198	31
KRAS		1.44	0.0313	95
MET		1.77	0.0359	13
FBXW7		0.623	0.0461	26

CTRP

http://www.broadinstitute.org/ctrp/

242 cancer cell lines mutations, CNV, expression data 354 small molecules

Sources

Cancer Commons CIViC The Clearity Foundation DoCM DrugBank Guide to PHARMACOLOGY My Cancer Genome **PharmGKB** TTD

> TDG **TEND**

TALC

Alex H. Wagner et al. (2016) Nucleic Acids Research

Therapeutic monoclonal antibodies

MoAb - Drug-gene interactions

TARGET

(Tumor Alterations **Relevant for Genomics** driven Therapy)

Drug-gene interactions

Van Allen et al. (2014) Nat Med

Drug-gene interactions based on CCL studies

Iorio F et al. (2016) Cell

Cancer Therapeutics Response Portal

Drug-gene interactions based on CCL studies

Rees et al. (2016)Nat Chem Biol

Standardization of the drug name

Approval status

Approved

Other

Clinical trials

Cancer clinical trials -----

Other

Repurposing

Experimental

Withdrawn

Undefined

Pathological area and cancer therapy type

Distribution of Disease Category Labels in PanDrugs

Target & marker genes

TARGET human gene that contributes to a disease phenotype and can be targeted directly by a drug (small molecule, monoclonal antibody, ...)

Target & marker genes

TARGET human gene that contributes to a disease phenotype and can be targeted directly by a drug (small molecule, monoclonal antibody, ...)

MARKER its **genetic status** is associated with a drug response by **clinical or experimental** evidences

Sensitivity vs Resistance

Melanoma treatment with BRAF mutation

VEMURAFENIB

Advanced or metastatic pancreatic cancer

Sensitivity vs Resistance

Melanoma treatment with BRAF mutation

Advanced or metastatic pancreatic cancer

Pathways, alteration, drug family

KEGG PATHWAY Database

Pathways in which gene is involved

ALTERATION TYPE

Extracted from several sources

Missense mutation
Amplification
Deletion
Gene fusion

FAMILY DRUG NAME

Target-based classification of drugs

Hydrolases Inhibitor
Cellular antigens Antagonist
Class I cytokines Inhibitor
Epithelial and related channels blocker
Nucleic acid Inhibitor
Receptor tyrosine kinase Agonist
Serine/threonine protein kinases: AGC group Inhibitor
TNF family Monoclonal antibody
Transferases Inhibitor

. . .

Pre-computed values in PanDrugs

0

Gene input level

Indirect associations

DRUG-GENE DIRECT ASSOCIATIONS

The altered gene is the target or biomarker of the drug

DRUG-GENE INDIRECT ASSOCIATIONS

The drug has as a target a gene related to the altered one

D Drug

T Altered target gene

G Altered non target gene

T Wild type target gene

Therapeutic targets **RTK**

Survival, proliferation, invasion and metastasis

- Actionable
- Wild-type or No Actionable
- Tumor suppressor gene mutated
- Oncogene mutated
- Druggable

- Actionable
- Wild-type or No Actionable
- Tumor suppressor gene mutated
- Oncogene mutated
- Druggable
- 1 Direct pharmacological assignation

- Actionable
- Wild-type or No Actionable
- Tumor suppressor gene mutated
- Oncogene mutated
- Druggable
- 1 Direct pharmacological assignation
- 2 Indirect pharmacological assignation driven by an oncogene

- Actionable
- Wild-type or No Actionable
- Tumor suppressor gene mutated
- Oncogene mutated
- Druggable
- 1 Direct pharmacological assignation
- 2 Indirect pharmacological assignation driven by an oncogene
- 3 Indirect pharmacological assignation driven by a tumor suppressor

Drug score (DSCORE) recalculation

Approved and Clinical trials:

Gene factor = # genes (max. 9) - 1 (if indirect and no marker evidence)
Source factor = # expert curated sources

DScore = Pre-computed value - 0.1 + (0.01 * Gene Factor) + (0.001 * Source Factor)

Experimental:

DScore = Pre-computed value - 0.0002 (if indirect)

INDIRECT assignations will have a lower DScore unless a marker evidence supports the association.

If one drug has a sensitivity response due to one gene, but a resistance response due to another one, the drug assignation is updated as RESISTANCE and the score turn into negative.

Home

0

About

What is PanDrugs?

PanDrugs database provides a resource for the drug-gene interactions exploration mainly oriented to cancer disease. This database groups relations between compounds and their respective targets stored in public databases and potential biomarkers identified in cancer cell lines drug response studies.

It also provides extra manual curated information about the drug status and their usage in cancer therapies or clinical studies in this field. All this completed with a ranking score reflecting the strength or evidence level of the association.

The database contains 55880 drug-gene relations of which 51908 are unique, corresponding to 3886 genes and 6048 drugs in different stages.

PanDrugs is supported by the Spanish National Cancer Research Centre (CNIO).

tyrosine_protein_kinases_inhibitor

receptor_tyrosine_kinase_inhibitor

Drugs by family

Other

Download	Download as CSV									
Actions	Gene(s)	Drug ②	Family (2)	Source(s)	Drug status (?)	Type of therapy 🕐	Interaction 🔞	DScore O	GScore ?	
+	KRAS and EGFR	CETUXIMAB	receptor_tyrosine_kinase_monoclonal antibody	CIV/CC/CFB/DoCM/DB/GtPI/MCG/PGKB/TALC/TCGA/TEND/TTD/TCT/moAb	Approved for colon and rectum cancer	Targeted therapy	⊕	0.9300	0.9577	
+	KRAS and EGFR	TRAMETINIB	serine/threonine_protein_kinases:_ste_group_inhibi	CC CFB DB GtPI MCG MCGCT TALC TCT	Approved for skin cancer	Targeted therapy	TD	0.9270	0.9577	
+	KRAS and EGFR	COBIMETINIB	Other	CC CFB DB MCG MCGCT TALC TCT	Approved for skin cancer	Targeted therapy	TD	0.9260	0.9577	
+	KRAS and EGFR	REGORAFENIB	receptor_tyrosine_kinase_inhibitor	DB)GtPI)MCG)MCGCT	Approved for colon, intestine, rectum and stomach cancer	Targeted therapy	TD	0.9240	0.9577	
+	EGFR	LAPATINIB	receptor_tyrosine_kinase_inhibitor	CIVCCCFBCFCTDocMDBGDSCGIPIMCGPKB(TALC)TCGA(TEND)TTDTCT	Approved for breast cancer	Targeted therapy	⊕	0.9200	0.9398	
+	EGFR	TRASTUZUMAB	receptor_tyrosine_kinase_monoclonal antibody	CIV CFB CFCT DOCM DB GIPI MCG PGKB TALC TCGA TEND TTD TCT moAb	Approved for breast and stomach cancer	Targeted therapy	⊕	0.9200	0.9398	
+	KRAS and EGFR	SORAFENIB	receptor_tyrosine_kinase_inhibitor	CIV CFCT DoCM DB MCG MCGCT PGKB TALC TCGA TEND TTD TCT	Approved for kidney cancer	Targeted therapy	⑥→ ⑦ ⊢□	0.9180	0.9577	
+	EGFR	PERTUZUMAB	receptor_tyrosine_kinase_monoclonal antibody	CFB DB GtPI MCG PGKB TALC TCGA TTD TCT moAb	Approved for breast cancer	Targeted therapy	T⊢D	0.9180	0.9398	
+	EGFR	AFATINIB	receptor_tyrosine_kinase_inhibitor	CC DB GDSC GIPI MCG MCGCT TALC TTD	Approved for lung cancer	Targeted therapy	⊕ ⊢®	0.9170	0.9398	

-	KRAS and EGFR TRAMETINIB	serine/threonine_protein_kinases:_ste_group_inhibi	CC CFB DB GtP MCG MCGCT TALC TCT	Approved for skin cancer	Targeted therapy	① ····· D	0.9270	0.9577
	TRAMETINIB is a drug approved by FDA that acts as an inhibitor of MAP2K1, a protein downstream to EGFR and KRAS EGFR and KRAS Sensitivity: SENSITIVITY / RESISTANCE Alteration: WT (sensitivity) / Missense_mutation (resistance) Find more info for "TRAMETINIB"+"MAP2K1" in: [PubMed] [ClinicalTrials.gov]	serine/threonine_protein_kinases:_ste_group_inhibi	CancerCommons, DrugBank, GuideToPharmacologyInteractions, MyCancerGenome, MyCancerGenomeClinicalTrial, TALC, TdgClinicalTrial			⑥→ ⑦ ⊢□	0.9270	0.9577
	Molecular alterations in KRAS are associated to response to TRAMETINIB, a drug approved by FDA KRAS Sensitivity: SENSITIVITY Alteration: Missense_mutation Find more into for "TRAMETINIB"+"KRAS" in: [PubMed] [ClinicalTrials.gov]	serine/threonine_protein_kinases:_ste_group_inhibi	ClearityFoundationBiomarkers			?D	0.8220	0.9577

THE END

Fátima Al-Shahrour falshahrour@cnio.es

Javier Perales-Patón jperales@cnio.es

Elena Piñeiro-Yáñez epineiro@cnio.es