

International Olympiad in Informatics 2012

23-30 September 2012 Sirmione - Montichiari, Italy Competition tasks, day 2: Leonardo's art and science

city

Estonian — 1.2

Ideaalne linn

Leonardo da Vinci, nagu paljud teisedki tema ajastu Itaalia teadlased ja kunstnikud, huvitus ka linnaplaneerimisest. Tema eesmärk oli ideaalne linn — mugav, avar ja ratsionaalse ressursikasutusega — täiesti erinev keskaegsetest kitsastest, klaustrofoobilistest linnadest.

Ideaalne linn

Linn koosneb N kvartalist, mis asuvad lõpmatus ruudustikus. Igal ruudul on koordinaadid (rida, veerg). Ruudu (i, j) naabrid on (i-1, j), (i+1, j), (i, j-1) ja (i, j+1). Iga kvartal katab täpselt ühe ruudu. Kvartalid võivad asuda ruutudes (i, j), kus $1 \le i$, $j \le 2^{31}$ -2. Edaspidises kasutame ruutude koordinaate ka nendes asuvatele kvartalitele viitamiseks. Kahte kvartalit loeme naabriteks, kui nad asuvad naaberruutudes. Ideaalses linnas on kõik kvartalid omavahel ühendatud nii, et linna sisemuses pole "auke"; täpsemalt peavad nad rahuldama mõlemat allpool toodud tingimust.

- Mistahes kahe *tühja* ruudu jaoks on võimalik leida vähemalt üks neid ühendav *tühjade* naaberruutude jada.
- Mistahes kahe *mittetühja* ruudu jaoks on võimalik leida vähemalt üks neid ühendav *mittetühjade* naaberruutude jada.

Näide 1

Mitte ükski allolevad joonisel toodud kvartalite paigitusetest ei ole ideaalne linn: kaks esimest neist ei rahulda esimest tingimust, kolmas ei rahulda teist tingimust ja neljas ei rahulda kumbagi tingimust.

Kaugus

Linnas liikudes tähendab samm liikumist ühest kvartalist selle naaberkvartalisse. Läbi tühjade ruutude minna ei saa. Olgu $v_0, v_1, ..., v_{N-1}$ ruudustikku paigutatud N kvartali koordinaadid. Koordinaatidel v_i ja v_j asuvate kvartalite vaheliseks kauguseks $d(v_i, v_j)$ nimetame minimaalset sammude arvu, mis tuleb teha, et ühest kvartalist teise liikuda.

city - et 1/3

Näide 2

Allolev joonis kujutab ideaalset linna, mille N=11 kvartalit asuvad koordinaatidel $v_0=(2,5)$, $v_1=(2,6)$, $v_2=(3,3)$, $v_3=(3,6)$, $v_4=(4,3)$, $v_5=(4,4)$, $v_6=(4,5)$, $v_7=(4,6)$, $v_8=(5,3)$, $v_9=(5,4)$ ja $v_{10}=(5,6)$. Näiteks $d(v_1,v_3)=1$, $d(v_1,v_8)=6$, $d(v_6,v_{10})=2$ ja $d(v_9,v_{10})=4$.

Ülesanne

Kirjutada programm, mis leiab antud ideaalse linna kõigi kvartalite paaride vaheliste kauguste summa; iga paari tuleb summas arvestada ühekordselt (vaadelda tuleb ainult paare (v_i, v_j) , kus i < j). Formaalsemalt: arvutada summa

$$\sum d(v_i, v_j)$$
, kus $0 \le i \le j \le N-1$.

Täpsemalt tuleb kirjutada funktsioon DistanceSum(N, X, Y), mis saab linna kirjeldusena arvu N ja kaks massiivi X ja Y ning arvutab eeltoodud summa. Kummaski massiivis on N elementi; kvartali i koordinaadid on (X[i], Y[i]), kus $0 \le i \le N-1$ ja $1 \le X[i]$, Y[i] $\le 2^{31}$ -2. Kuna summa tegelik väärtus võib olla väljaspool 32-bitise täisarvu määramispiirkonda, tagastada jääk, mis tekib selle jagamisel arvuga 1 000 000 000 (üks miljard).

Näites 2 on $11 \times 10/2 = 55$ kvartalipaari. Nendevaheliste kauguste summa on 174.

Alamülesanne 1 [11 punkti]

Võib eeldada, et $N \le 200$.

Alamülesanne 2 [21 punkti]

Võib eeldada, et $N \le 2000$.

Alamülesanne 3 [23 punkti]

Võib eeldada, et $N \le 100000$.

city - et 2/3

Lisaks kehtivad järgmised kaks tingimust: kui kaks mittetühja ruutu i ja j asuvad samas reas (X[i] = X[j]), on nende vahel ainult mittetühjad ruudud; kui kaks mittetühja ruutu i ja j asuvad samas veerus (Y[i] = Y[j]), on nende vahel ainult mittetühjad ruudud.

Alamülesanne 4 [45 punkti]

Võib eeldada, et $N \le 100000$.

Realisatsioon

Lahendusena tuleb esitada üks fail nimega city.c, city.cpp või city.pas. See fail peab realiseerima eelpool kirjeldatud alamprogrammid vastavalt alltoodud signatuuridele.

C/C++ programmid

```
int DistanceSum(int N, int *X, int *Y);
```

Pascali programmid

```
function DistanceSum(N : LongInt; var X, Y : array of LongInt) : LongInt;
```

See alamprogramm peab töötama nagu eelpool kirjeldatud. Muidugi võib selle realiseerimiseks kirjutada ka teisi sisemisi alamprogramme. Lahendus ei tohi pöörduda standardsisendi, standardväljundi ega ühegi teise faili poole.

Lokaalne hindaja

Lokaalne hindaja ootab sisendit järgmises vormingus:

1. rida: N;read 2, ..., N+1: X[i], Y[i].

Aja- ja mälupiirangud

Ajapiirang: 1 sekund.Mälupiirang: 256 MiB.

city - et 3/3