2. Solve $u_{xx} + u_{yy} = 0$ in the disk r < a with the boundary condition

$$\frac{\partial u}{\partial r} - hu = f(\theta),$$

where $f(\theta)$ is an arbitrary function. Write the answer in terms of the Fourier coefficients of $f(\theta)$.

- 3. Determine the coefficients in the annulus problem of the text.
- 4. Derive Poisson's formula (9) for the exterior of a circle.
- 5. (a) Find the steady-state temperature distribution inside an annular plate $\{1 < r < 2\}$, whose outer edge (r = 2) is insulated, and on whose inner edge (r = 1) the temperature is maintained as $\sin^2 \theta$. (Find explicitly all the coefficients, etc.)
 - (b) Same, except u = 0 on the outer edge.
- 6. Find the harmonic function u in the semidisk $\{r < 1, 0 < \theta < \pi\}$ with u vanishing on the diameter $(\theta = 0, \pi)$ and

$$u = \pi \sin \theta - \sin 2\theta$$
 on $r = 1$.

- 7. Solve the problem $u_{xx} + u_{yy} = 0$ in D, with u = 0 on the two straight sides, and $u = h(\theta)$ on the arc, where D is the wedge of Figure 1, that is, a sector of angle β cut out of a disk of radius a. Write the solution as a series, but don't attempt to sum it.
- 8. An annular plate with inner radius a and outer radius b is held at temperature B at its outer boundary and satisfies the boundary condition $\partial u/\partial r = A$ at its inner boundary, where A and B are constants. Find the temperature if it is at a steady state. (*Hint:* It satisfies the two-dimensional Laplace equation and depends only on r.)
- 9. Solve $u_{xx} + u_{yy} = 0$ in the wedge r < a, $0 < \theta < \beta$ with the BCs $u = \theta$ on r = a, u = 0 on $\theta = 0$, and $u = \beta$ on $\theta = \beta$. (*Hint:* Look for a function independent of r.)
- 10. Solve $u_{xx} + u_{yy} = 0$ in the quarter-disk $\{x^2 + y^2 < a^2, x > 0, y > 0\}$ with the following BCs:

$$u = 0$$
 on $x = 0$ and on $y = 0$ and $\frac{\partial u}{\partial r} = 1$ on $r = a$.

Write the answer as an infinite series and write the first two nonzero terms explicitly.

11. Prove the uniqueness of the Robin problem

$$\Delta u = f$$
 in D , $\frac{\partial u}{\partial n} + au = h$ on bdy D ,

where D is any domain in three dimensions and where a is a positive constant.