ST 5203: Experimental Design

(Semester 1, AY 2017/2018)

Text book: Experiments: Planning, Analysis, and Optimization (2nd. edition)

by Jeff Wu and Mike Hamada

Topic 5: Blocking and Confounding

- 2^k design in 2 blocks
- 2³ design in 2² blocks
- 2^k design in 2^q blocks (q < k), determination of confounded effects
- Minimum aberration blocking scheme

2² Design in 2 Blocks

- We start with the simplest situation: arrange a 2^2 experiment in 2 blocks (B1,B2).
- Three possible blocking schemes are listed as follows

Runs	<i>A</i>	В	AB	Scheme 1	Scheme 2	Scheme 3
(1)	_	_	+	B1	<i>B</i> 1	<i>B</i> 1
a	+	_	_	<i>B</i> 1	B2	<i>B</i> 1
Ь	_	+	_	B2	B1	B2
ab	+	+	+	B2	B2	<i>B</i> 1

Which scheme is better and why?

Which Scheme is Better and Why

• Remember the estimates of effects:

$$\mu = \frac{(1) + a + b + ab}{4}$$

$$A = \frac{ab + a - b - (1)}{2}$$

$$B = \frac{ab + b - a - (1)}{2}$$

$$AB = \frac{ab + (1) - a - b}{2}$$

- Scheme 1: A and AB are valid, but B is confused (confounded) with the block.
- Scheme 2: B and AB are valid, but A is confused (confounded) with the block.
- Scheme 3: A, B and AB are all inappropriately estimated (confounded). (Reason: check the orthogonality of two contrast vectors.)
- Is there any better way for blocking?

Improved Blocking Scheme and Reasoning

- Consider scheme 4: B2, B1, B1, B2. Now, main effects A, B are valid, however, AB is confounded with the blocking.
- Scheme 2 is using the column of A as the blocking scheme,
 "—" is used as Block 1 "+" as Block 2. Thus, A is
 confounded with the blocking. Similarly for Scheme 1 (for B)
 and Scheme 4 (for AB).
- The conclusion above does not happen by chance. Usually, in a 2^k design with 2 blocks, if we choose one column of the model matrix as the blocking scheme, the corresponding effect is sacrificed (confounded with the blocking), but all the other effects are estimated appropriately.
- See the example of 2³ design in 2 blocks in the next slide.

Schemes of 2³ Design in 2 Blocks

Trt	Α	В	С	AB	AC	ВС	ABC	Scheme 1	Scheme 2
(1)	_	_	_	+	+	+	_	1	1
a	+	_	_	_	_	+	+	2	2
b	_	+	_	_	+	_	+	1	2
ab	+	+	_	+	_	_	_	1	1
С	_	_	+	+	_	_	+	2	2
ac	+	_	+	_	+	_	_	2	1
bc	_	+	+	_	_	+	_	2	1
abc	+	+	+	+	+	+	+	1	2

Schemes of 2³ Design in 2 Blocks (Cont.)

- Scheme 1 does not use any effect as the blocking reference. If we check results,
 - A, BC, ABC are un-confounded.
 - B, C, AB, AC are confounded.
- Clearly, scheme 2 is using ABC column as the blocking reference. After checking the results, we found that only ABC is confounded with the blocking factor. All the other effects are not confounded.
- Scheme 2 outperforms scheme 1.

Schemes of 2³ Design in 2 Blocks (Cont.)

- Due to blocking, some effects suppose to be confounded with the blocking. A good scheme is to minimize the number of confounded effects.
- Besides, refer to the fundamental principles in factorial experiments, we should try to confound higher order effects instead of lower order ones, because it is preferable to sacrifice less important effects.
- Based on arguments above, for 2³ design, Scheme 2 is the best blocking scheme without further scientific knowledge on the different effects.
- What is the best blocking scheme for a general 2^k design in 2 blocks, if we don't have any (prior) knowledge about which effect is significant in real practice?

Explanation on Blocking: From Mathematical Point of View

Recall the regression equations for a 2³ design:

$$y = \mu + \frac{A}{2}x_1 + \frac{B}{2}x_2 + \frac{C}{2}x_3 + \frac{AB}{2}x_1x_2 + \frac{AC}{2}x_1x_3 + \frac{BC}{2}x_2x_3 + \frac{ABC}{2}x_1x_2x_3$$

where $x_i = \pm 1$ for different runs. In total, there are 8 equations for the 2^3 full factorial design.

(Note that we don't consider the error terms here, since we don't have enough data.)

- Without blocking, all the 8 equations above are sharing the same μ , i.e. all the runs have the same grand mean.
- When we divide the experiment into two blocks, then we will have two grand means: μ_1 for block 1, μ_2 for block 2.

Regression Equations of 2³ Design with Blocking

(1) =
$$\mu_1 - \frac{A}{2} - \frac{B}{2} - \frac{C}{2} + \frac{AB}{2} + \frac{AC}{2} + \frac{BC}{2} - \frac{ABC}{2}$$
 (1)

$$a = \mu_2 + \frac{A}{2} - \frac{B}{2} - \frac{C}{2} - \frac{AB}{2} - \frac{AC}{2} + \frac{BC}{2} + \frac{ABC}{2}$$
 (2)

$$b = \mu_2 - \frac{A}{2} + \frac{B}{2} - \frac{C}{2} - \frac{AB}{2} + \frac{AC}{2} - \frac{BC}{2} + \frac{ABC}{2}$$
 (3)

$$ab = \mu_1 + \frac{A}{2} + \frac{B}{2} - \frac{C}{2} + \frac{AB}{2} - \frac{AC}{2} - \frac{BC}{2} - \frac{ABC}{2}$$
 (4)

$$c = \mu_2 - \frac{A}{2} - \frac{B}{2} + \frac{C}{2} + \frac{AB}{2} - \frac{AC}{2} - \frac{BC}{2} + \frac{ABC}{2}$$
 (5)

$$ac = \mu_1 + \frac{A}{2} - \frac{B}{2} + \frac{C}{2} - \frac{AB}{2} + \frac{AC}{2} - \frac{BC}{2} - \frac{ABC}{2}$$
 (6)

$$bc = \mu_1 - \frac{A}{2} + \frac{B}{2} + \frac{C}{2} - \frac{AB}{2} - \frac{AC}{2} + \frac{BC}{2} - \frac{ABC}{2}$$
 (7)

$$abc = \mu_2 + \frac{A}{2} + \frac{B}{2} + \frac{C}{2} + \frac{AB}{2} + \frac{AC}{2} + \frac{BC}{2} + \frac{ABC}{2}$$
 (8)

Effects Solvable or Un-solvable

- In total, we have 8 equations, but with 9 parameters.
 Generally speaking, this system of equations is not solvable.
 Fortunately, if we carefully check the equations and parameters, some parameters are solvable.
- For example,
 - Add up equations (2), (4), (6) and (8): $a + ab + ac + abc = 2\mu_1 + 2\mu_2 + 2A$;
 - Add up equations (1), (3), (5) and (7): $(1) + b + c + bc = 2\mu_1 + 2\mu_2 2A$.

Thus, A can be solved by the subtraction of the two equations above. Similarly, all the other effects except ABC can be solved.

• Check the effect ABC in the equation. "+ABC" is purposely matched with μ_2 and "-ABC" with μ_1 . This is why ABC is unsolvable.

Rules of Multiplication

- Recall that the uppercase letters (such as *A*, *B*, *AB*) have several meanings, one of which is the contrast vector.
- Here, the operation of multiplication between two or more uppercase letters means the element-wise product of their contrast vectors.
- For example, in the table $A = (-1, 1, -1, 1, -1, 1, -1, 1)^{\top}$, B = (-1, -1, 1, 1, -1, -1, 1, 1). Therefore, $D2 = AB = (1, -1, -1, 1, 1, -1, -1, 1)^{\top}$.
- Define $I = (1, 1, ..., 1)^{\top}$. I is the identity element. Under this definition of multiplication, the product of any effect with itself is always I. For example, $A^2 = A \times A = I$, $B \times I = B$.

2³ Design in 4 Blocks

- For 2 blocks, we need to use one effect column as blocking scheme:

 Block 1; +, Block 2.
- If we want to perform the experiment in 4 blocks, let us try to check two effect columns. Consider the following scheme:

Effect 1 (B_1)	Effect $2(\boldsymbol{B}_2)$	Blocks
_	_	<i>B</i> 1
+	_	B2
_	+	B3
+	+	B4

Thus, two effect columns can totally determine a scheme with 4 blocks. There are 3 block effects: B₁, B₂, and B₁B₂ (explain). The interactions like B₁B₂ are called generalized interactions.

2³ Design in 4 Blocks (Cont.)

The following is an example of 2^3 design in 4 blocks, with ABC and AB as the blocking factors.

Trt	Α	В	С	AC	ВС	$\boldsymbol{B}_1 = ABC$	$\mathbf{B}_2 = AB$	Scheme 1
(1)	_	_	_	+	+	_	+	В3
а	+	_	_	_	+	+	_	B2
b	_	+	_	+	_	+	_	B2
ab	+	+	_	_	_	_	+	<i>B</i> 3
С	_	_	+	_	_	+	+	B4
ac	+	_	+	+	_	_	_	<i>B</i> 1
bc	_	+	+	_	+	_	_	<i>B</i> 1
abc	+	+	+	+	+	+	+	B4

Properties of Scheme 1 and Possible Improvement

- Clearly, since we are using AB and ABC as the blocking scheme, they are confounded with the blocking effects.
- Is there any other effect lost in this scheme? Unfortunately, yes. The main effect C is also confounded, because
 B₁B₂ = ABCAB = C.
- Let us try a different Scheme 2, in which $B_1 = AC$, $B_2 = AB$. Now, both AC and AB are confounded with block effects. Besides, the effect BC is also confounded, because $B_1B_2 = ACAB = BC$. All other effects (including all main effects and ABC) are not confounded.
- How do we identify all confounded effect(s) in general?

2^k Design in 2^q Blocks

- In general, consider a 2^k design in 2^q blocks (q < k).
- *q* effects are required as the coding effects.
- The confounded effects are:

$$\begin{pmatrix} q \\ 1 \end{pmatrix}$$
 coding effects,

- $\begin{pmatrix} q \\ 2 \end{pmatrix}$ multiplications of any two coding effects,
- $\begin{pmatrix} q \\ q \end{pmatrix}$ multiplications of all q coding effects,

Beside, $\binom{q}{0} = 1$ grand mean is also confounded.

Here $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ is the combinatorial number of "n choose m" (also called the binomial coefficient).

2^k Design in 2^q Blocks (Cont.)

- First choose q different effects v_1, \ldots, v_q .
- Define the confounding relations ${m B}_1=v_1,\ {m B}_2=v_2,\ ...,\ {m B}_q=v_q.$
- Take the 2-way, 3-way, ..., q-way products of them: $B_1B_2 = v_1v_2$, ..., $B_{q-1}B_q = v_{q-1}v_q$, $B_1B_2B_3 = v_1v_2v_3$, ..., $B_1 \cdots B_q = v_1 \cdots v_q$.
- In total, there are 2^q 1 possible products of B's. They and the identity element I together form a group, called the block defining contrast subgroup.
- The $2^q 1$ effects of $v_1, \ldots, v_q, v_1 v_2, \ldots, v_1 \cdots v_q$ are all the effects that are confounded with block effects.

How to Choose the Best Blocking Scheme?

- In the previous example of 2^3 design with 2^1 blocks, we prefer the scheme with $\mathbf{B} = ABC$ over the scheme with $\mathbf{B} = AB$.
- Based on the effect hierarchy principle, in the previous example of 2^3 design with 2^2 blocks, we prefer the scheme with $\mathbf{B}_1 = AB$, $\mathbf{B}_2 = AC$, $\mathbf{B}_1\mathbf{B}_2 = BC$ over the scheme with $\mathbf{B}_1 = ABC$, $\mathbf{B}_2 = AB$, $\mathbf{B}_1\mathbf{B}_2 = C$, because the latter scheme has a main effect C confounded while the former one does not.
- In general, we need a systematic way to choose the best blocking scheme.

Minimum Aberration Blocking Scheme

Consider the 2^k design with 2^q blocks.

- If b represents a blocking scheme, define $g_i(b)$ to be the number of i-factor interactions that are confounded with block effects, under the scheme b.
- We check $g_i(b)$ from i = 1, 2, ..., k. $\sum_{i=1}^{k} g_i(b) = 2^q 1$.
- For two blocking schemes b_1 and b_2 , define r to be the smallest integer such that $g_r(b_1) \neq g_r(b_2)$.
- The scheme b_1 is said to have less aberration than the scheme b_2 , if $g_r(b_1) < g_r(b_2)$.
- A blocking scheme is said to have the minimum aberration, if there is no other block scheme with less aberration.

Minimum Aberration Blocking Scheme (Cont.)

- In the previous example of 2^3 design with 2^2 blocks, the scheme b_1 with $\boldsymbol{B}_1 = AB$, $\boldsymbol{B}_2 = AC$, $\boldsymbol{B}_1\boldsymbol{B}_2 = BC$ has $g_1(b_1) = 0$, while the scheme b_2 with $\boldsymbol{B}_1 = ABC$, $\boldsymbol{B}_2 = AB$, $\boldsymbol{B}_1\boldsymbol{B}_2 = C$ has $g_1(b_2) = 1$. Therefore, b_1 has less aberration than b_2 . In fact, b_1 is the minimum aberration blocking scheme for k = 3, q = 2.
- We can consider another example of 2⁴ design with 2² blocks.
 - Scheme b_1 : $\mathbf{B}_1 = ABC$, $\mathbf{B}_2 = ABCD$.
 - Scheme b_2 : $B_1 = AB$, $B_2 = CD$.
 - Scheme b_3 : $\mathbf{B}_1 = ABC$, $\mathbf{B}_2 = ABD$.
- Check that $g_1(b_1) = 1$, $g_1(b_2) = 0$, $g_1(b_3) = 0$, $g_2(b_2) = 2$, $g_2(b_3) = 1$. So Scheme b_3 has less aberration than Schemes b_1 and b_2 . In fact, Scheme b_3 is the minimum aberration blocking scheme for k = 4, q = 2.