Wines

January 4, 2023

```
import random
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
```

1 Wine dataset

Dataset column names

- 0. Wine class
- 1. Alcohol: The alcohol content of the wine, measured in % vol.
- 2. Malic acid: The amount of malic acid in the wine, measured in g/l.
- 3. Ash: The ash content of the wine, measured in g/l.
- 4. Alcalinity of ash: The alkalinity of the ash in the wine, measured in g/l.
- 5. Magnesium: The amount of magnesium in the wine, measured in mg/l.
- 6. Total phenols: The total phenol content of the wine, measured in mg/l.
- 7. Flavanoids: The flavanoid content of the wine, measured in mg/l.
- 8. Nonflavanoid phenols: The nonflavanoid phenol content of the wine, measured in mg/l.
- 9. Proanthocyanins: The proanthocyanin content of the wine, measured in mg/l.
- 10. Color intensity: The color intensity of the wine, measured in absorbance units.
- 11. Hue: The hue of the wine, measured in absorbance units.
- 12. OD280/OD315 of diluted wines: The OD280/OD315 ratio of the diluted wine, which is a measure of the wine's color intensity.
- 13. Proline: The proline content of the wine, measured in mg/l.

Loading dataset

```
[5]: url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data'

df = pd.read_csv(url, header=None)
```

```
df.columns = ['Class', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', □

→'Magnesium',

'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', □

→'Proanthocyanins',

'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', □

→'Proline']
```

Dataset preview and descriptive statistics

```
[6]: df.head()
```

	1 1110aa (,					
3]:	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	\
0	1	14.23	1.71	2.43	15.6	127	
1	1	13.20	1.78	2.14	11.2	2 100	
2	1	13.16	2.36	2.67	18.6	101	
3	1	14.37	1.95	2.50	16.8	113	
4	1	13.24	2.59	2.87	21.0	118	
	Total	phenols	Flavanoids	Nonfla	vanoid phenols Pr	oanthocyanin	s \
0		2.80	3.06		0.28	2.2	9
1		2.65	2.76		0.26	1.2	8
2		2.80	3.24		0.30	2.8	1
3		3.85	3.49		0.24	2.1	8
4		2.80	2.69		0.39	1.8	2
	Color	intensity	Hue OD2	80/OD31	5 of diluted wines	Proline	
0		5.64	1.04		3.92	1065	
1		4.38	3 1.05		3.40	1050	
2		5.68	3 1.03		3.17	1185	
3		7.80	0.86		3.45	1480	
4		4.32	2 1.04		2.93	735	

[7]: df.describe()

[7]:		Class	Alcohol	Malic acid	Ash	Alcalinity of ash	\
L/J.	count	178.000000	178.000000	178.000000	178.000000	178.000000	`
	Count	170.000000	170.00000	170.00000	170.000000	178.000000	
	mean	1.938202	13.000618	2.336348	2.366517	19.494944	
	std	0.775035	0.811827	1.117146	0.274344	3.339564	
	min	1.000000	11.030000	0.740000	1.360000	10.600000	
	25%	1.000000	12.362500	1.602500	2.210000	17.200000	
	50%	2.000000	13.050000	1.865000	2.360000	19.500000	
	75%	3.000000	13.677500	3.082500	2.557500	21.500000	
	max	3.000000	14.830000	5.800000	3.230000	30.000000	
		Magnesium	Total phenol	s Flavanoi	ds Nonflava	noid phenols \	

std	14.282484	0.625851	0.99	8859		0.124453
min	70.000000	0.980000 0.34		0000		0.130000
25%	88.000000	1.742500 1.20		5000		0.270000
50%	98.000000	2.355000 2.13		5000		0.340000
75%	107.000000	2.800000 2.87		5000		0.437500
max	162.000000	3.880000 5.08		0000		0.660000
	Proanthocyanins	Color intens	sity	Hue	\	
count	178.000000	178.000	0000	178.000000		
mean	1.590899	5.058	3090	0.957449		
std	0.572359	2.318	3286	0.228572		
min	0.410000	1.280	0000	0.480000		
25%	1.250000	3.220	0000	0.782500		
50%	1.555000	4.690	0000	0.965000		
75%	1.950000	6.200	0000	1.120000		
max	3.580000	13.000	0000	1.710000		
	OD280/OD315 of d	iluted wines		Proline		
count		178.000000	17	8.000000		
mean		2.611685	74	6.893258		
std		0.709990	31	4.907474		
min		1.270000	27	8.000000		
25%		1.937500	50	0.500000		
50%		2.780000	67	3.500000		
75%		3.170000	98	5.000000		
max		4.000000	168	0.00000		

Check for NaN values

[9]: df.isna().sum()

[9]: Class 0 Alcohol 0 Malic acid 0 Ash 0 Alcalinity of ash 0 Magnesium 0 Total phenols 0 Flavanoids 0 Nonflavanoid phenols 0 Proanthocyanins 0 Color intensity 0 Hue 0 OD280/OD315 of diluted wines 0 Proline

dtype: int64

Exploring data distributions

[11]: df.hist(figsize=(10,10))
plt.show()

Visualizing the relationships between pairs of different features

[11]: sns.pairplot(df)
plt.show()

Visualizing the correlations

```
[251]: correlations = df.corr()
    sns.heatmap(correlations, annot=False)

plt.title('Heatmap of correlations between features')
    plt.show()
```


1.0.1 Perform PCA to reduce dimensionality

Scalling data Separate the features from the class labels and scale data for PCA analysis

```
[239]: X = df.iloc[:, 1:]
y = df.iloc[:, 0]

scaler = StandardScaler()

scaler.fit(X)

X_scaled = scaler.transform(X)
```

```
[240]: pca = PCA(n_components=3)
X_pca = pca.fit_transform(X_scaled)
```

Get the explained variance ratio

```
[191]: explained_variance_ratio = pca.explained_variance_ratio_
       print(explained_variance_ratio)
      [0.36198848 0.1920749 0.11123631]
[112]: cc = ColorConverter()
       colors = [cc.to_rgba(c) for c in np.random.rand(len(np.unique(y)), 3)]
[192]: fig = plt.figure(figsize=(20, 8))
       ax = fig.add_subplot(111, projection='3d')
       for i, label in enumerate(np.unique(y)):
           ax.scatter(X_pca[y==label, 0], X_pca[y==label, 1], X_pca[y==label, 2],__
        ⇔color=colors[i], s=70)
       ax.set_xlabel('PC 1', fontsize=12, labelpad=5)
       ax.set_ylabel('PC 2', fontsize=12, labelpad=5)
       ax.text2D(1.0, 0.5, 'PC 3', transform=ax.transAxes, fontsize=12, rotation=90)
       labels = ['Class 1', 'Class 2', 'Class 3']
       ax.legend(labels)
       ax.set_title('PCA analysis of the Wine dataset')
       plt.show()
```

PCA analysis of the Wine dataset

1.0.2 Interactive 3D Scatter Plot

```
ax[0].set_xlabel('PC 1')
ax[0].set_ylabel('PC 2')

# Scatter plot of PC 1 vs PC 3
ax[1].scatter(X_pca[:,0], X_pca[:,2], c=y)
ax[1].set_xlabel('PC 1')
ax[1].set_ylabel('PC 3')

# Scatter plot of PC 2 vs PC 3
ax[2].scatter(X_pca[:,1], X_pca[:,2], c=y)
ax[2].set_xlabel('PC 2')
ax[2].set_ylabel('PC 3')

# Show the plot
plt.show()
```


Create a histogram of the first principal component and histograms for each class

```
[220]: sns.histplot(x=X_pca[:, 0], hue=y, palette=[(1, 0, 0), (0, 1, 0), (0, 0, 1)])

plt.title('Histogram of the first principal component')

plt.show()
```

Histogram of the first principal component


```
[212]: # Select the samples for each class
    class_1 = X_pca[y == 1, 0]
    class_2 = X_pca[y == 2, 0]
    class_3 = X_pca[y == 3, 0]

# Create a histogram for each class
    plt.hist(class_1, histtype='step', color='red')
    plt.hist(class_2, histtype='step', color='green')
    plt.hist(class_3, histtype='step', color='blue')

# Show the plot
    plt.title('Histogram of the first principal component')
    plt.show()
```



```
[213]: # Select the samples for each class
    class_1 = X_pca[y == 1, 1]
    class_2 = X_pca[y == 2, 1]
    class_3 = X_pca[y == 3, 1]

# Create a histogram for each class
    plt.hist(class_1, histtype='step', color='red')
    plt.hist(class_2, histtype='step', color='green')
    plt.hist(class_3, histtype='step', color='blue')

# Show the plot
    plt.title('Histogram of the second principal component')
    plt.show()
```



```
[214]: # Select the samples for each class
    class_1 = X_pca[y == 1, 2]
    class_2 = X_pca[y == 2, 2]
    class_3 = X_pca[y == 3, 2]

# Create a histogram for each class
    plt.hist(class_1, histtype='step', color='red')
    plt.hist(class_2, histtype='step', color='green')
    plt.hist(class_3, histtype='step', color='blue')

# Show the plot
    plt.title('Histogram of the third principal component')
    plt.show()
```


Violion plots

```
[236]: # Create a violin plot of the first principal component
sns.violinplot(x=y, y=X_pca[:, 0])

plt.title('Violin plot of the first principal component')
plt.show()
```



```
[247]: fig = px.violin(title='Interactive Violin plot of the first principal

component', x=y, y=X_pca[:,0])
fig.show()

[216]: # Create a violin plot of the second principal component
sns.violinplot(x=y, y=X_pca[:, 1])

plt.title('Violin plot of the second principal component')
plt.show()
```



```
[249]: fig = px.violin(title='Interactive Violin plot of the third principal_

component', x=y, y=X_pca[:,2])
fig.show()
```

Linear Discriminant Analysis Perform Linear Discriminant Analysis using standard scaler

```
[231]: scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

lda = LinearDiscriminantAnalysis(n_components=2)

lda.fit(X_scaled, y)

X_lda = lda.transform(X_scaled)

for label in np.unique(y):
    mask = y == label
    plt.scatter(X_lda[mask, 0], X_lda[mask, 1], label=f'Class {label}')
```

```
plt.legend(title='Class')

plt.title('Scatter plot of the first discriminant')
plt.show()
```

Scatter plot of the first discriminant


```
[232]: for label in np.unique(y):
    mask = y == label
    plt.scatter(X_lda[mask, 1], X_lda[mask, 0], label=f'Class {label}')

plt.legend(title='Class')

plt.title('Scatter plot of the second discriminant')
plt.show()
```

Scatter plot of the second discriminant

Perform Linear Discriminant Analysis using min-max scaler

```
[233]: scaler = MinMaxScaler()
    X_scaled = scaler.fit_transform(X)

lda = LinearDiscriminantAnalysis(n_components=2)

lda.fit(X_scaled, y)

X_lda = lda.transform(X_scaled)

for label in np.unique(y):
    mask = y == label
    plt.scatter(X_lda[mask, 0], X_lda[mask, 1], label=f'Class {label}')

plt.legend(title='Class')

plt.title('Scatter plot of the first discriminant')
plt.show()
```

Scatter plot of the first discriminant


```
[234]: for label in np.unique(y):
    mask = y == label
    plt.scatter(X_lda[mask, 1], X_lda[mask, 0], label=f'Class {label}')

plt.legend(title='Class')

plt.title('Scatter plot of the second discriminant')
plt.show()
```


<u>-</u>2

-4

ò

2

-6 -

-6