MAT246 Concepts in Abstract Mathematics Midterm Theorem Checklist

Tianyu Du

October 25, 2018

1 Chapter 1

Lemma 1.1 (1.1.1). Every natural numbers greater than 1 has a prime divisor.

Proof. Iteratively factorize n.

Theorem 1.1 (1.1.2). There's no largest prime.

Proof. (Contradiction) Let p_n be the largest prime and consider

$$M = p_1 p_2 \dots p_n + 1$$

2 Chapter 2

Theorem 2.1 (2.1.1 PMI). $S \subset \mathbb{N}$ and

1. $1 \in S$.

 $2. \ k \in S \implies k+1 \in S, \ \forall k \in \mathbb{N}.$

then $S = \mathbb{N}$.

Proof. (WOP and Contradiction) Let $T = S^c$ and show that $T = \emptyset$.

Theorem 2.2 (2.1.2 WOP). $T \subset \mathbb{N} \wedge T \neq \emptyset \implies \exists \min\{T\}$

Proof. (Contradiction) Let $T \neq \emptyset$, $t = \min\{T\}$.

Then $t-1 \notin T \implies t-1 \in S \implies t-1+1=t \in S$.

Theorem 2.3.