Design

(변경 부분 1)

HW13의 구조는 S/D 영역의 x mesh가 부족하다고 판단하여 S/D 영역의 x mesh를 step size = 1nm로 설정하여 늘렸다. 또한 channel의 길이를 18nm로 바꾸어 구조를 설계했다.

(변경 부분 2)

기존의 전류 계산 방법은 hold doping density << electron doping density라고 판단하여 J_n 만 고려하여 계산하였지만, S/D doping을 p-type으로 한 case를 고려해 hole current 또한 더해주었다.

$$I = J_{tot} \cdot width = (J_n + J_p) \cdot width$$

HW14는 transient mimic simulation을 만드는 것이다.

time step을 설정하고, time에 따라 gate bias를 다르게 하여 current를 계산한다.

 $V_{drain}=V_{DD}=1\,V$ 로 설정하여 drain voltage를 인가한다. 구간별로 time step에 따라 gate bias를 증가 혹은 감소시키며 계산한 전류를 time에 따라 graph로 plot 한다.

gate voltage의 증가분은 1V를 몇 번의 time step으로 증가 혹은 감소시키는 지로 정한다.

- 1) Vd = 1V까지 증가시킨다. 전류 I (Vd=1V, Vg=0V) ≈ 0.0355A이다.
- 2) time step = $0.1\mu s$ 로 설정하여, Vg vs time, I vs time 그래프를 비교한다.
- 3) time step = $0.05\mu s$ 로 설정하여, Vg vs time, I vs time 그래프를 비교한다.

Result

1) transient simulation (time step : $0.1 \mu s$)

time	Gate voltage
0 ~ 1 \mu s	Vg = 0V
$1\mu s \sim 2\mu s$	Vg = 0.1V 증가 / per 0.1 μs
$2\mu s \sim 3\mu s$	Vg = 1V
$3\mu s \sim 4\mu s$	Vg = 0.1V 감소 / per $0.1 \mu s$
$4\mu s \sim 5\mu s$	Vg = 0V

2) transient simulation (time step : $0.05 \, \mu s$)

time	Gate voltage
$0 \sim 1 \mu s$	Vg = 0V
$1\mu s \sim 2\mu s$	Vg = 0.05V 증가 / per 0.05 μs
$2\mu s \sim 3\mu s$	Vg = 1V
$3\mu s \sim 4\mu s$	Vg = 0.05V 감소 / per 0.05 μs
$4\mu s \sim 5\mu s$	Vg = 0V

 $1\mu s \sim 2\mu s$ 구간에 대해서 gate voltage가 linear 하게 증가할 때, 전류는 exponential 하게 증가하는 것을 확인할 수 있다. time step의 개수를 증가시킬 경우, 더 정확한 graph를 plot 할 수 있지만 그만큼 iteration 횟수가 증가하기에 simulation time이 증가할 것으로 생각한다. 따라서 실제 transient simulation을 제작할 경우, convergence problem이 발생하지 않는지 판단하면서 time step의 크기를 증가시켜 time step의 개수를 감소시켜야 할 것이다.