#### Lecture 8

# Portfolio Diversification and Security Market Line

Instructor: Prof. Chen (Alison) Yao

**CUHK Business School** 

Page 1



#### **Lecture Outline**

Portfolio Diversification

Risk: Systematic and Unsystematic

- Measuring Risk-Expected Return Relationship
  - The Security Market Line (SML)
  - The Capital Asset Pricing Model (CAPM)



# Portfolio Expected Return and Variance

**Expected return** and **variance** for a portfolio can be computed by forecasting the probabilities of future economy states

$$-E(R) = \sum_{s=1}^{S} p_s R_s$$

$$- Var(R) = \sigma^2 = \sum_{s=1}^{S} p_s [R_s - E(R)]^2$$

- where there are S possible states of the economy, s=1,2,...,S
- $p_s$  is the probability that state s occurs
- R<sub>s</sub> is the portfolio return in state s



# Portfolio Expected Return and Variance

**Expected return** for a portfolio can also be computed as:

$$E(R_p) = w_1 \times E(R_1) + w_2 \times E(R_2) + \dots + w_n \times E(R_n)$$

- n is the total number of assets in the portfolio
- $w_i$  is the portfolio weight of asset *i* (percentage of investment in asset *i*)
- E(R<sub>i</sub>) is the expected return of asset i
- $w_1 + w_2 + \dots + w_n = 1$

**Question**: Can we compute portfolio variance as follows?

$$Var(R_p) = w_1 \times \sigma_1^2 + w_2 \times \sigma_2^2 + \dots + w_n \times \sigma_n^2$$

or

$$Var(R_p) = w_1^2 \times \sigma_1^2 + w_2^2 \times \sigma_2^2 + \dots + w_n^2 \times \sigma_n^2$$

or

$$Var(R_p) = [w_1 \times \sigma_1 + w_2 \times \sigma_2 + \dots + w_n \times \sigma_n]^2$$

•  $\sigma_i^2$  is the variance and  $\sigma_i$  is the standard deviation for asset *i* 



# Portfolio Expected Return and Variance

**Expected return** for a portfolio can also be computed as:

$$E(R_p) = w_1 \times E(R_1) + w_2 \times E(R_2) + \dots + w_n \times E(R_n)$$

- n is the total number of assets in the portfolio
- $w_i$  is the portfolio weight of asset i (percentage of investment in asset i)
- $E(R_i)$  is the expected return of asset i
- $w_1 + w_2 + \dots + w_n = 1$

**Question**: Can we compute portfolio variance as follows?

$$Var(R_p) = w_1 \times \sigma_1^2 + w_2 \times \sigma_2^2 + \dots + \sigma_k^2 \times \sigma_k^2$$

or

$$Var(R_p) = w_1^2 \times \sigma_1^2 + w_2^2 \times \sigma_2^2 + \dots + w_n^2 = \sigma_n^2$$

or

$$Var(R_p) = [w_1 \times \sigma_1 + w_2 \times \sigma_2 + \cdots + w_n \times \sigma_n]^2$$

•  $\sigma_i^2$  is the variance and  $\sigma_i$  is the standard deviation for asset *i* 



#### **Portfolio Variance**

Expected return of a two-asset portfolio:

$$E(R_p) = w_1 \times E(R_1) + w_2 \times E(R_2)$$

Variance of a two-asset portfolio:

$$Var(R_p) = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_1 \sigma_2 \rho_{1,2}$$

- $\rho_{1,2}$  is the correlation between asset 1 and 2
- $w_i$  is the portfolio weight of asset i (percentage of investment in asset i)

**Correlation** measure the extent to which returns on different assets tend to move together. It is defined as

$$\rho_{1,2} = \frac{Cov(R_1, R_2)}{\sigma_1 \ \sigma_2}$$

where  $Cov(R_1, R_2) = \sigma_{1,2} = \sum_{s=1}^{S} p_s[(R_{1,s} - E[R_1])(R_{2,s} - E[R_2])]$  is the **covariance** between asset 1 return and asset 2 return



### Correlation

- $\rho_{1,2}$  is the correlation between asset 1 and asset 2
- $-1 \le \rho_{1.2} \le +1$ 
  - if  $\rho_{1,2} = +1$ , returns always move in the same direction (perfect positive correlation)
  - if  $\rho_{1,2} = -1$ , returns always move in opposite direction (perfect negative correlation)





|             | _      | gold stock      | auto stock   |
|-------------|--------|-----------------|--------------|
| scenario    | prob   | return          | return       |
|             |        |                 |              |
| recession   | 0.25 × | + 13% = + 3.25% | <b>- 13%</b> |
| normal      | 0.50 × | + 7% = + 3.50%  | + 17%        |
| boom        | 0.25 × | -11% = -2.75%   | + 27%        |
|             |        | = +4.00%        |              |
| expected re | eturn  | + 4%            | + 12%        |



#### Example Cont' d

|               |       | gold sto               | ck           | auto stock   |  |
|---------------|-------|------------------------|--------------|--------------|--|
| scenario      | prob  | return                 |              | return       |  |
|               |       |                        |              |              |  |
| recession     | 0.25  | $\times$ ( + 13% - 4%) | 2 = 0.002025 | <b>- 13%</b> |  |
| normal        | 0.50  | $\times$ ( + 7% - 4%)  | = 0.000450   | + 17%        |  |
| boom          | 0.25  | × (-11% <u>-4%)</u>    | 2 = 0.005625 | + 27%        |  |
|               |       |                        | = 0.008100   |              |  |
| expected re   | eturn | + 4%                   |              | + 12%        |  |
| variance      |       | 0.0081                 |              | 0.0225       |  |
| St. deviation | on    | √ 0.0081               | = 0.09       | 0.15         |  |



#### Example Cont' d

|                 |      | gold stock                                                                                      | aut          | o stock  |
|-----------------|------|-------------------------------------------------------------------------------------------------|--------------|----------|
| scenario        | prob | return                                                                                          | return       |          |
|                 |      |                                                                                                 |              |          |
| recession       | 0.25 | + 13%                                                                                           | <b>–</b> 13% |          |
| normal          | 0.50 | + 7%                                                                                            | + 17%        |          |
| boom            | 0.25 | <b>– 11%</b>                                                                                    | + 27%        |          |
|                 |      |                                                                                                 |              |          |
| expected return |      | + 4%                                                                                            | + 12%        |          |
| covariance      |      | $0.25 \times (13\% - 4\%) \times (-13\% - 12\%) + 0.50 \times (7\% - 4\%) \times (17\% - 12\%)$ |              |          |
|                 |      | $+0.25 \times (-11\% - 4\%) \times (27\% - 12\%)$                                               | <b>%</b> )   | =-0.0105 |
| correlation     |      | $-0.0105/(0.09 \times 0.15)$                                                                    |              | =-0.7778 |



#### Example Cont' d

|           |      | gold sto                            | ock auto                              | o stock    |
|-----------|------|-------------------------------------|---------------------------------------|------------|
| scenario  | prob | return                              | return                                |            |
|           |      |                                     |                                       |            |
| recession | 0.25 | + 13%                               | - 13%                                 |            |
| normal    | 0.50 | + 7%                                | + 17%                                 |            |
| boom      | 0.25 | <b>–</b> 11%                        | + 27%                                 |            |
|           |      |                                     |                                       |            |
| variance  |      | $0.75^2 \times 0.0081 + 0.0081$     | $0.25^2 \times 0.0225$                |            |
|           |      | $+2 \times 0.75 \times 0.25 \times$ | $< 0.09 \times 0.15 \times (-0.7778)$ | = 0.002025 |



# Portfolio Formed by Different Weights

|   | Portfolio Weights |                           | Portfolio          | Portfolio                       | $w_1\sigma_1+w_2\sigma_2$ |
|---|-------------------|---------------------------|--------------------|---------------------------------|---------------------------|
|   | Gold $(w_1)$      | Auto<br>(w <sub>2</sub> ) | Expected<br>Return | Standard Deviation $(\sigma_p)$ |                           |
| Α | 0%                | 100%                      | 12%                | 15.0%                           | 15.0%                     |
| В | 20%               | 80%                       | 10.4%              | 10.7%                           | 13.8%                     |
| С | 40%               | 60%                       | 8.8%               | 6.6%                            | 12.6%                     |
| D | 60%               | 40%                       | 7.2%               | 3.8%                            | 11.4%                     |
| Е | 80%               | 20%                       | 5.6%               | 5.2%                            | 10.2%                     |
| F | 100%              | 0%                        | 4%                 | 9.0%                            | 9.0%                      |

- $Var(R_p) = \sigma_p^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_1 \sigma_2 \rho_{1,2} \le (w_1 \sigma_1 + w_2 \sigma_2)^2$  as  $-1 \le \rho_{1,2} \le +1$
- $Std(R_p) = \sigma_p \le w_1 \sigma_1 + w_2 \sigma_2$
- The risk of the portfolio is lower than the weighted average of individual stock risk



#### **Diversification**

- Diversification works because losses in one asset may be offset by gains in some of the other assets
- This is only possible if the returns on the assets do not always move together in the same direction (i.e.the correlation is less than perfect  $(\rho_{1,2} < 1)$ ). Hence, the portfolio standard deviation is less than the weighted average.
- The lower the correlation between assets in our portfolio, the more we can reduce our risk
- This is the effect of diversification



### **Lecture Outline**

Portfolio Diversification

Risk: Systematic and Unsystematic

- Measuring Risk-Expected Return Relationship
  - The Security Market Line (SML)
  - The Capital Asset Pricing Model (CAPM)



#### **Diversification and Number of Stocks**



The standard deviation declines as the number of securities is increased

Some of the riskiness associated with individual assets can be eliminated by forming portfolios

There is a minimum level of risk that cannot be eliminated simply by diversifying. This minimum level is 'non-diversifiable risk'



# Systematic and Unsystematic Risk

- There are two types of risk associated with each security.
- Systematic Risk (market risk, non-diversifiable risk):
  - a risk that influences a large number of assets
  - E.g., changes in GDP, recessions, inflation, etc.
- Unsystematic Risk(unique risk, asset-specific risk, diversifiable risk):
  - a risk that affects at most a small number of assets.
  - E.g., labor strikes, part shortages, etc.
- Total risk = Systematic risk + Unsystematic risk



### **Portfolio Diversification**





#### **Total Risk**

- Total risk = systematic risk + unsystematic risk
- The standard deviation of returns is a measure of total risk
- For well-diversified portfolios, unsystematic risk is very small
- Consequently, the total risk for a diversified portfolio is essentially equivalent to the systematic risk



# The Systematic Risk Principle

- There is a reward for bearing risk
- There is not a reward for bearing risk unnecessarily
- The expected return on a risky asset depends only on that asset's systematic risk since unsystematic risk can be diversified away



# **Measuring Systematic Risk**

- How do we measure systematic risk?
  - We use the beta coefficient (β)
  - Beta coefficient ( $\beta$ ): the amount of systematic risk present in a particular risky asset *i* relative to that in the **market portfolio**.
- What is the market portfolio?
  - The market portfolio is a bundle of investments that includes every type of asset available in the world financial market
    - S&P500 index is commonly used as a proxy for the market portfolio
  - The market portfolio is completely diversified, it has only systematic risk, and not unsystematic risk
  - The market portfolio has a beta of  $\beta_{\rm M}=1$



### What Does Beta Tell Us?

- A beta of 1 implies the asset has the same systematic risk as the overall market
- A beta < 1 implies the asset has less systematic risk than the overall market
- A beta > 1 implies the asset has more systematic risk than the overall market

#### Note:

Beta is defined as follows:

$$\beta_i = \frac{Cov(R_i, R_M)}{Var(R_M)} = \frac{\sigma_i}{\sigma_M} \rho_{i,M}$$

Beta of risk-free assets = 0



# **Example for Company Beta**

| Company                                                                                                  | Ticker                              | Industry                                                                                            | Equity Beta                                  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------|
| General Mills Consolidated Edison The Hershey Company Abbott Laboratories Newmont Mining Wal-Mart Stores | GIS                                 | Packaged Foods                                                                                      | 0.20                                         |
|                                                                                                          | ED                                  | Utilities                                                                                           | 0.28                                         |
|                                                                                                          | HSY                                 | Packaged Foods                                                                                      | 0.28                                         |
|                                                                                                          | ABT                                 | Pharmaceuticals                                                                                     | 0.31                                         |
|                                                                                                          | NEM                                 | Gold                                                                                                | 0.32                                         |
|                                                                                                          | WMT                                 | Superstores                                                                                         | 0.35                                         |
| Nike                                                                                                     | NKE                                 | Footwear Systems Software Airlines Semiconductors Food Retail Apparel Retail                        | 0.91                                         |
| Microsoft                                                                                                | MSFT                                |                                                                                                     | 1.01                                         |
| Southwest Airlines                                                                                       | LUV                                 |                                                                                                     | 1.09                                         |
| Intel                                                                                                    | INTC                                |                                                                                                     | 1.09                                         |
| Whole Foods Market                                                                                       | WFM                                 |                                                                                                     | 1.10                                         |
| Foot Locker                                                                                              | FL                                  |                                                                                                     | 1.11                                         |
| Advanced Micro Devices Ford Motor Sotheby's Wynn Resorts Ltd. United States Steel Saks Source: CapitalIQ | AMD<br>F<br>BID<br>WYNN<br>X<br>SKS | Semiconductors Automobile Manufacturers Auction Services Casinos and Gaming Steel Department Stores | 2.24<br>2.38<br>2.39<br>2.41<br>2.52<br>2.57 |

Note: Betas with Respect to the S&P 500 for Individual Stocks (based on monthly data for 2007–2012)



# **Total vs. Systematic Risk**

Consider the following information:

|            | Standard Deviation | Beta |
|------------|--------------------|------|
| Security C | 20%                | 1.25 |
| Security K | 30%                | 0.95 |

- Which security has more total risk?
- Which security has more systematic risk?
- Which security should have the higher expected return?



### **Beta and Risk Premium**

Remember that

Risk premium of a risky asset  $i = E(R_i) - R_f$ 

- The higher the beta, the greater the risk premium should be
- Can we define the relationship between the risk premium and beta so that we can estimate the expected return?



### **Lecture Outline**

Portfolio Diversification

Risk: Systematic and Unsystematic

- Measuring Risk-Expected Return Relationship
  - The Security Market Line (SML)
  - The Capital Asset Pricing Model (CAPM)



# **Security Market Line**

**Security Market Line (SML):** a positively sloped straight line displaying the linear risk-return relationship between the beta of a security and its expected return. SML directly links beta to the expected return.





# **Security Market Line**





#### Reward-to-Risk Ratio

The reward-to-risk ratio is the slope of the SML

$$slope = \frac{E(R_M) - R_f}{\beta_M} = E(R_M) - R_f = market \ risk \ premium$$

- For every unit of beta (systematic risk), the required additional return over the risk-free rate is  $E(R_M) R_f$ .
- In equilibrium, all assets and portfolios must have the same reward-to-risk ratio:

$$\frac{E(R_{\rm A}) - R_f}{\beta_{\rm A}} = \frac{E(R_{\rm B}) - R_f}{\beta_{\rm B}}$$

where A, B are any two assets on SML



### **Fundamental Result**

In equilibrium, all assets must have the same reward-to-risk relation => they must plot on the same line



Question: Can C and D sustain in equilibrium?



#### Overvalued vs. Undervalued

Suppose you are observing the following situation:

| Security  | Beta | Expected return |
|-----------|------|-----------------|
| SWMS Co.  | 1.3  | 14%             |
| Insec Co. | 0.8  | 10%             |

The risk-free rate is currently 6 percent. Is one of the two securities overvalued relative to the other?

#### Solution:

• We compute the reward-to-risk ratio for both:

For SWMS, reward-to-risk ratio is 
$$\frac{14\%-6\%}{1.3} = 6.15\%$$

For Insec, reward-to-risk ratio is 
$$\frac{10\%-6\%}{0.8} = 5\%$$

 Insec offers an insufficient expected return for its level of risk, at least relative to SWMS.



### Overvalued vs. Undervalued

- An asset is said to be overvalued if its price is too high, given its expected return and risk.
- An asset is said to be *undervalued* if its price is too *low*, given its expected return and risk.
- Because Insec's expected return is too low, its price is too high. Insec is overvalued relative to SWMS, and we would expect to see its price fall relative to SWMS's.
- SWMS is undervalued relative to Insec.



### **Lecture Outline**

Portfolio Diversification

Risk: Systematic and Unsystematic

- Measuring Risk-Expected Return Relationship
  - The Security Market Line (SML)
  - The Capital Asset Pricing Model (CAPM)



# The Capital Asset Pricing Model

 The capital asset pricing model (CAPM) defines the relationship between risk and return

$$E(R_i) = R_f + \beta_i \times (E(R_M) - R_f)$$

 If we know an asset's systematic risk, we can use the CAPM to determine its expected return



# Factors Affecting Expected Return

CAPM: 
$$E(R_i) = R_f + \beta_i \times (E(R_M) - R_f)$$

- The pure time value of money: measured by the risk-free rate,  $R_f$ , this is the reward for merely waiting for your money, without taking any risk.
- The *reward for bearing systematic risk*: measured by the market risk premium,  $E(R_M) R_f$ , this is the reward the market offers for bearing an average amount of systematic risk in addition to waiting.
- The amount of systematic risk: measured by  $\beta_i$ , this is the amount of systematic risk present in a particular asset or portfolio, relative to that in the market portfolio.



# **CAPM Example**

A stock has a beta of 1.15, the expected return on the market is 10.3%, and the risk-free rate is 3.8%.

What must the expected return on this stock be?

#### Solution:

Recall the CAPM

$$E(R_i) = R_f + \beta_i \times (E(R_M) - R_f)$$

Substituting the values we are given, we find:

$$E(R_i) = 3.8\% + 1.15 \times (10.3\% - 3.8\%)$$
  
= 11.28%



# **CAPM Example**

Suppose you observe the following situation:

| Security   | Beta | Expected return |
|------------|------|-----------------|
| Pete Co.   | 1.21 | 10.79%          |
| Repete Co. | 0.83 | 8.43%           |

Assume these securities are correctly priced. Based on the CAPM, what is the expected return on the market? What is the risk-free rate?

#### Solution:

 Recall: In equilibrium, all assets and portfolios must have the same reward-to-risk ratio:

$$\frac{E(R_{A}) - R_{f}}{\beta_{A}} = \frac{E(R_{B}) - R_{f}}{\beta_{B}}$$

$$\frac{10.79\% - R_{f}}{1.21} = \frac{8.43\% - R_{f}}{0.83}$$

$$R_{f} = 3.28\%$$

$$10.79\% = 3.28\% + 1.21 \times (E(R_M) - 3.28\%)$$
$$E(R_M) = 9.49\%$$



# **Negative Beta Assets**

#### Consider an asset with negative beta

- the returns on this asset are negatively correlated with the returns on the market
  - in a bull market, the asset performs badly
  - but in a bear market, the asset performs well
- if the CAPM holds, the asset's expected return should be less than R<sub>f</sub> or could even be negative

#### Why hold such an asset?

- as an insurance:
  - a negative-beta asset generates high returns when the market is down. It can function as a hedge against the business cycle.
  - a classic example is gold:
    - average annual return on gold over the last 40 years was 2% lower than the risk-free rate



#### **Portfolio Beta**

#### Beta is additive:

- consider a portfolio with a fraction  $w_i$  (weight) of money invested in asset i
- what is the portfolio's beta?

$$\beta_p = \sum_{i=1}^n w_i \times \beta_i$$

a simple weighted average of individual asset betas

A portfolio containing many different assets all with the same betas

- still has the same beta but
- has less total risk than any of the assets in the portfolio
   Why?
- In the portfolio all unsystematic risks are diversified away



# Portfolio Beta Example

Suppose you form a portfolio out of the following five stocks. What is the beta of this portfolio?

| Stock | <b>Proportions</b> | Beta |
|-------|--------------------|------|
| Α     | 20%                | 1.6  |
| В     | 25%                | 1.2  |
| С     | 10%                | 1.0  |
| D     | 30%                | 0.9  |
| Е     | 15%                | 8.0  |

#### Solution:

$$\beta_p = \sum_{i=i}^n w_i \times \beta_i$$
= 0.20 × 1.6 + 0.25 × 1.2 + 0.10 × 1.0 + 0.30 × 0.9 + 0.15 × 0.8  
= 1.11



# **Summary**

- Diversification lowers investment risks
- In equilibrium, all assets must have the same reward-to-risk relation

$$\frac{E(R_{\rm A}) - R_f}{\beta_{\rm A}} = \frac{E(R_{\rm B}) - R_f}{\beta_{\rm B}}$$

 The capital asset pricing model (CAPM) defines the relationship between risk and return

$$E(R_i) = R_f + \beta_i \times (E(R_M) - R_f)$$

