Name: **Dissanayake D.M.A.K**

Index No.: 220135N

Build a 0 to 7 counter using D Flip Flops

We want to buld a counter like above using D type Flip Flops. Following are the steps to do that:-

- 1. State table of the Counter
- 2. K-Maps for D_2,D_1,D_0
- 3. Simplfied Boolean expressions of D_2, D_1, D_0
- 4. Counter circuit diagram

Excitation table of D Flip Flop

Q_t	Q_{t+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

Counter

State table of Counter

	Q_t			Q_{t+1}		Q_2	Q_1	\mathbf{Q}_{0}
Q ₂	Q_1	Q_0	Q ₂	Q_1	Q_0	D ₂	D ₁	D ₀
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0	0
1	0	0	1	0	1	1	0	1
1	0	1	1	1	0	1	1	0
1	1	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0

K-Maps

D₂ – Map

Q_0 Q_2Q_1	0	1
00	0	0
01	0	1
11	1	0
10	1	1

$$D_2 = Q_2.Q_0' + Q_2.Q_1' + Q_2'.Q_1.Q_0$$

= $Q_2.(Q_0' + Q_1') + Q_2'.Q_1.Q_0$
= $Q_2.(Q_0.Q_1)' + Q_2'.Q_1.Q_0$

D₁ - Map

$egin{array}{c} Q_0 \ Q_2Q_1 \end{array}$	0	1
00	0	1
01	1	0
11	1	0
10	0	1

$$D_1 = Q_1.Q_0' + Q_1'.Q_0$$

= $Q_1 \oplus Q_0$

D₀ - Map

$egin{array}{c} Q_0 \ Q_2Q_1 \end{array}$	0	1
00	1	0
01	1	0
11	1	0
10	1	0

$$D_0 = Q_0'$$

Counter Circuit Diagram

