A CONFUSION ABOUT THE STERN INTEGRAL INEQUALITY

Henry Ruben Fischer

Everything below is pretty much directly adopted from my Bachelor's Thesis (which more or less just followed [Bra+19]), though I have tried to keep track of additional terms (marked in red) to strengthen the encountered inequalities into equalities.

The following is adopted from [Bra+19, Proposition 4.2] but (surely due to some mistake I made somewhere) I have seemingly proven an equality without even requiring any additional terms.

Proposition 1. Let (Ω, g) be a compact 3-dimensional oriented Riemannian manifold with piecewise smooth boundary $\partial\Omega = P_1 \sqcup P_2$, having outward unit normal ν . Let $u: \Omega \to \mathbb{R}$ be a harmonic function (i.e. $\Delta u = 0$) such that $\partial_{\nu} u = 0$ on P_1 and $|\nabla u| > 0$ on P_2 . If \overline{u} and \underline{u} denote the maximum and minimum of u and S_t are t-level sets of u, then

$$\int_{\underline{u}}^{\overline{u}} \int_{S_t} \frac{1}{2} \left(\frac{|\nabla^2 u|}{|\nabla u|^2} + R \right) dA + \int_{\partial S_t \cap P_1} H_{P_1} dl dt
= \int_{\underline{u}}^{\overline{u}} \left(2\pi \chi(S_t) - \int_{\partial S_t \cap P_2} \kappa_{\partial S_t} dl \right) dt + \int_{\tilde{P}_2} \partial_{\nu} |\nabla u| dA,$$

where $\chi(S_t)$ denotes the Euler characteristic of the level sets, $\kappa_{\partial S_t}$ denotes the geodesic curvature of ∂S_t in S_t and H_{P_1} denotes the mean curvature of P_1 .

Proof of Proposition 1. During the following proof, we will be considering

$$\phi_{\varepsilon} \coloneqq \sqrt{|\nabla u|^2 + \varepsilon}$$

for $\varepsilon > 0$ instead of $|\nabla u|$, since we cannot control the behavior of integrands like $\Delta |\nabla u|$ and $\partial_{\nu} |\nabla u|$ at critical points of u (where $|\nabla u| = 0$).

We find

$$\Delta \phi_{\varepsilon} = \nabla_{i} \nabla^{i} \sqrt{|\nabla u|^{2} + \varepsilon}$$

$$= \nabla_{i} \frac{\nabla^{i} |\nabla u|^{2}}{2\phi_{\varepsilon}}$$

$$= \frac{\Delta |\nabla u|^{2}}{2\phi_{\varepsilon}} - \frac{|\nabla |\nabla u|^{2}|^{2}}{4\phi_{\varepsilon}^{3}}$$

$$= \phi_{\varepsilon}^{-1} (|\nabla^{2} u|^{2} + \operatorname{Ric}(\nabla u, \nabla u) - \phi_{\varepsilon}^{-2} |\nabla u|^{2} |\nabla |\nabla u||^{2}.$$
Bothner's identity
$$(1)$$

Thus on a regular level set S [Bra+19, Lemma 4.1] yields

$$\Delta \phi_{\varepsilon} = \frac{1}{2\phi_{\varepsilon}} (|\nabla^2 u|^2 + |\nabla u|^2 (R_{\Omega} - R_S) + \frac{2 \cdot (1 - \phi_{\varepsilon}^{-2} |\nabla u|^2) |\nabla |\nabla u|^2}{|\nabla u|^2}). \tag{2}$$

Let now $\mathcal{A} \subset [\underline{u}, \overline{u}]$ be an open set containing all the critical values of u (images of points where $\nabla u = 0$), and let $\mathcal{B} = [\underline{u}, \overline{u}] \setminus \mathcal{A}$ be the complementary set.

Then the divergence theorem yields

$$\int_{P_1 \cap u^{-1}(\mathcal{X})} \partial_{\nu} \phi_{\varepsilon} \, dA + \int_{P_1 \cap u^{-1}(\mathcal{B})} \partial_{\nu} \phi_{\varepsilon} \, dA + \int_{P_2} \partial_{\nu} \phi_{\varepsilon} \, dA = \int_{\partial \Omega} \partial_{\nu} \phi_{\varepsilon} \, dA
= \int_{\Omega} \Delta \phi_{\varepsilon} \, dV = \int_{u^{-1}(\mathcal{X})} \Delta \phi_{\varepsilon} \, dV + \int_{u^{-1}(\mathcal{B})} \Delta \phi_{\varepsilon} \, dV . \quad (3)$$

We first deal with the integrals over $P_1 \cap u^{-1}(\mathcal{A})$ and $u^{-1}(\mathcal{A})$. Since

$$\frac{|\nabla u|}{\phi_{\varepsilon}}|\nabla|\nabla u|| = \frac{1}{2\phi_{\varepsilon}}\nabla(g(\nabla u, \nabla u)) = \frac{g(\nabla^2 u, \nabla u)}{\phi_{\varepsilon}} \underset{\text{Cauchy-Schwarz}}{\leqslant} \frac{|\nabla^2 u||\nabla u|}{\phi_{\varepsilon}} \underset{|\nabla u| \leqslant \phi_{\varepsilon}}{\leqslant} |\nabla^2 u|,$$

Eq. (1) and another application of Cauchy–Schwarz give on $u^{-1}(\mathcal{A})$

$$\Delta \phi_{\varepsilon} \geqslant \phi_{\varepsilon}^{-1} \operatorname{Ric}(\nabla u, \nabla u) \geqslant -|\operatorname{Ric}||\nabla u|.$$

Thus we can decompose into level sets of u using the coarea formula to get

$$-\int_{u^{-1}(\mathcal{A})} \Delta \phi_{\varepsilon} \, dV \leqslant \int_{u^{-1}(\mathcal{A})} |\operatorname{Ric}| |\nabla u| \, dV \,,$$

$$= \int_{t \in \mathcal{A}} \int_{S_{t}} |\operatorname{Ric}| \, dA \, dt$$

$$\leqslant C \int_{t \in \mathcal{A}} \mathcal{H}^{2}(S_{t}) \, dt$$

$$(4)$$

where $\mathcal{H}^2(S_t)$ is the Hausdorff measure of the level sets and C is some constant bounding the Ricci curvature.

Similarly, on $P_1 \cap u^{-1}(\mathcal{A})$ we have

$$\partial_{\nu}\phi_{\varepsilon} = \frac{\nu^{i}\nabla_{i}\nabla_{j}u\nabla^{j}u}{\phi_{\varepsilon}},$$

$$= \frac{\nabla^{i}u\nabla_{i}\nabla_{j}u\nu^{j}}{\phi_{\varepsilon}}$$

$$= \frac{g(\nabla_{\nabla u}\nabla u, \nu)}{\phi_{\varepsilon}}$$

$$= -\frac{g(\nabla_{\nabla u}\nu, \nabla u)}{\phi_{\varepsilon}}$$

$$\leq |\nabla u||A_{P_{1}}| \leq |\nabla u|C$$

where we have used $g(\nabla u, \nu) = 0$ by the Neumann boundary condition of u on P_1 . We thus get by the coarea formula

$$\int_{P_1 \cap u^{-1}(\mathcal{A})} \partial_{\nu} \phi_{\varepsilon} \, dA \leqslant \int_{t \in \mathcal{A}} \int_{P_1 \cap S_t} |A_{P_1}| \, dl \, dt \leqslant C \int_{t \in \mathcal{A}} \mathcal{H}^1(\partial S_t \cap P_1) \, dt \,. \tag{5}$$

Let us now deal with the integrals over $P_1 \cap u^{-1}(\mathcal{B})$ and $u^{-1}(\mathcal{B})$. On P_1 we have as before

$$\partial_{\nu}\phi_{\varepsilon} = -\frac{g(\nabla_{\nabla u}\nu, \nabla u)}{\phi_{\varepsilon}}$$

where we have used the Neumann boundary condition in the last line. Let n now denote the normal vector $n^i = \frac{\nabla^i u}{|\nabla u|}$ to S_t . This yields

$$\partial_{\nu}\phi_{\varepsilon} = -\phi_{\varepsilon}^{-1}|\nabla u|^{2}A_{P_{1}}(n,n) = -\phi_{\varepsilon}^{-1}|\nabla u|^{2}(H_{P_{1}} - \operatorname{tr}_{S_{t}}A_{P_{1}}).$$

Let $v \in T_p P_1 \cap T_p S_t$ be a normed vector (there are only two choices, since the vector space is one-dimensional). Then (as S_t is orthogonal to P_1 by the Neumann boundary condition of u on P_1)

$$\operatorname{tr}_{S_t} A_{P_1} = A_{\partial\Omega}(v, v) = \langle \nabla_v v, -n \rangle = \kappa_{S_t \cap P_1} = \kappa_{\partial S_t}.$$

Thus decomposing P_1 into level sets of u using the coarea formula yields

$$\int_{P_1 \cap u^{-1}(\mathcal{B})} \partial_{\nu} \phi_{\varepsilon} dA = -\int_{t \in \mathcal{B}} \left(\int_{\partial S_t \cap P_1} \phi_{\varepsilon}^{-1} |\nabla u| (H_{P_1} - \kappa_{\partial S_t}) \right) dt.$$
 (6)

Meanwhile on \mathcal{B}^{-1} applying the coarea formula and Eq. (2) produces

$$\int_{u^{-1}(\mathcal{B})} \Delta \phi_{\varepsilon} \, dV = \frac{1}{2} \int_{t \in \mathcal{B}} \int_{S_t} \frac{|\nabla u|}{\phi_{\varepsilon}} \left(\frac{|\nabla^2 u|^2}{|\nabla u|^2} + (R_{\Omega} - R_{S_t}) + 2 \cdot (|\nabla u|^{-2} - \phi_{\varepsilon}^{-2}) \cdot |\nabla |\nabla u|^2 \right) dA \, dt \,. \tag{7}$$

We combine Eq. (7) and Eq. (6) with Eq. (3) and obtain

$$\frac{1}{2} \int_{t \in \mathcal{B}} \int_{S_{t}} \frac{|\nabla u|}{\phi_{\varepsilon}} \left(\frac{|\nabla^{2} u|^{2}}{|\nabla u|^{2}} + R_{\Omega} \right) dA dt
- \int_{t \in \mathcal{B}} \left(\frac{1}{2} \int_{S_{t}} \frac{|\nabla u|}{\phi_{\varepsilon}} R_{S_{t}} dA + \int_{\partial S_{t} \cap P_{1}} \frac{|\nabla u|}{\phi_{\varepsilon}} (\kappa_{\partial S_{t}} - H_{P_{1}}) \right) dt - \int_{P_{2}} \partial_{\nu} \phi_{\varepsilon} dA = \int_{P_{1} \cap u^{-1}(\mathcal{A})} \partial_{\nu} \phi_{\varepsilon} dA - \int_{u^{-1}(\mathcal{A})} \Delta \phi_{\varepsilon} dV + \int_{t \in \mathcal{B}} \int_{S_{t}} (\phi_{\varepsilon}^{-2} - |\nabla u|^{-2}) \cdot |\nabla |\nabla u||^{2}.$$

Taking absolute values and using Eq. (4) and Eq. (5) yields

$$\left| \frac{1}{2} \int_{t \in \mathcal{B}} \int_{S_{t}} \frac{|\nabla u|}{\phi_{\varepsilon}} \left(\frac{|\nabla^{2} u|^{2}}{|\nabla u|^{2}} + R_{\Omega} \right) dA dt \right|
- \int_{t \in \mathcal{B}} \left(\frac{1}{2} \int_{S_{t}} \frac{|\nabla u|}{\phi_{\varepsilon}} R_{S_{t}} dA + \int_{\partial S_{t} \cap P_{1}} \frac{|\nabla u|}{\phi_{\varepsilon}} (\kappa_{\partial S_{t}} - H_{P_{1}}) \right) dt - \int_{P_{2}} \partial_{\nu} \phi_{\varepsilon} dA \right| \leqslant
C \int_{t \in \mathcal{A}} (\mathcal{H}^{1}(\partial S_{t} \cap P_{1}) + \mathcal{H}^{2}(S_{t})) dt + \int_{t \in \mathcal{B}} \int_{S_{t}} (\phi_{\varepsilon}^{-2} - |\nabla u|^{-2}) \cdot |\nabla |\nabla u||^{2}. \quad (8)$$

Since Ω is compact and \mathcal{B} closed, $|\nabla u|$ and $|\nabla |\nabla u||$ are uniformly bounded from below on $u^{-1}(\mathcal{B})$. In particular note that the additional term is bounded! Also, on P_2 (where $|\nabla u| \neq 0$) we have

$$\partial_{\nu}\phi_{\varepsilon} = \frac{|\nabla u|}{\phi_{\varepsilon}}\partial_{\nu}|\nabla u| \to \partial_{\nu}|\nabla u| \quad \text{as } \varepsilon \to 0$$

We can thus now take the limit $\varepsilon \to 0$ in Eq. (3) and get

$$\left| \frac{1}{2} \int_{t \in \mathcal{B}} \int_{S_{t}} \left(\frac{|\nabla^{2} u|^{2}}{|\nabla u|^{2}} + R_{\Omega} \right) dA dt \right|
- \int_{t \in \mathcal{B}} \left(2\pi \chi(S_{t}) - \int_{\partial S_{t} \cap P_{2}} \kappa_{\partial S_{t}} - \int_{\partial S_{t} \cap P_{1}} H_{P_{1}} \right) dt - \int_{P_{2}} \partial_{\nu} |\nabla u| dA \right| \leqslant
C \int_{t \in \mathcal{B}} \left(\mathcal{H}^{1}(\partial S_{t} \cap P_{1}) + \mathcal{H}^{2}(S_{t}) \right) dt + \mathbf{0}. \quad (9)$$

where we have also applied the Gauss–Bonnet theorem to S_t .

By Sard's theorem ([Sar42]), the set of critical values has measure 0 and we thus may take the measure of \mathcal{A} to be arbitrarily small. Since

$$t \mapsto \mathcal{H}^1(\partial S_t \cap P_1) + \mathcal{H}^2(S_t)$$

is integrable by the coarea formula, taking $|\mathcal{A}| \to 0$ in Eq. (9) leads to

$$\int_{\underline{u}}^{\overline{u}} \int_{S_t} \frac{1}{2} \left(\frac{|\nabla^2 u|}{|\nabla u|^2} + R \right) dA + \int_{\partial S_t \cap P_1} H_{P_1} dl dt
= \int_{\underline{u}}^{\overline{u}} \left(2\pi \chi(S_t) - \int_{\partial S_t \cap P_2} \kappa_{\partial S_t} dl \right) dt + \int_{P_2} \partial_{\nu} |\nabla u| dA.$$

By carrying this result through the calculations in [Bra+19, Section 6], while only changing the step in Equation 6.4, where we do not do not use $\chi(S_t) \leq 1$ and just leave $\chi(S_t)$ as it is, one arrives at

Corollary 2 (Equality version of [Bra+19, Theorem 1.2]). Let $(M_{\rm ext}, g)$ be an exterior region of an asymptotically flat Riemannian 3-manifold (M,g) with mass m. Let u be a harmonic function on $(M_{\rm ext},g)$ satisfying Neumann boundary conditions at ∂M , and which is asymptotic to one of the asymptotically flat coordinate functions of the associated end. Then there exists a closed region Ω bounded by an infinite coordinate cylinder $\partial \Omega$ such that all the level sets S_t of u meet $\partial \Omega$ transversally and have Euler characteristic $\chi(S_t \cap \Omega) \leq 1$, and we have

$$m = \frac{1}{16\pi} \int_{M_{\text{ext}}} \left(\frac{|\nabla^2 u|^2}{|\nabla u|} + R_g |\nabla u| \right) dV + \frac{1}{2} \int_{-\infty}^{\infty} (1 - \chi(S_t \cap \Omega)) dt.$$

In particular, if the scalar curvature is nonnegative, then $m \ge 0$. Furthermore, if m = 0 then $(M, g) = (\mathbb{R}^3, \delta)$.

References

- [Bra+19] Hubert L. Bray, Demetre P. Kazaras, Marcus A. Khuri, and Daniel L. Stern. "Harmonic Functions and The Mass of 3-Dimensional Asymptotically Flat Riemannian Manifolds". Nov. 15, 2019. arXiv: 1911.06754 [gr-qc]. URL: http://arxiv.org/abs/1911.06754 (visited on 03/22/2022).
- [Sar42] Arthur Sard. "The Measure of the Critical Values of Differentiable Maps". In: Bulletin of the American Mathematical Society 48.12 (1942), pp. 883–890. ISSN: 0273-0979, 1088-9485. DOI: 10.1090/S0002-9904-1942-07811-6. URL: https://www.ams.org/bull/1942-48-12/S0002-9904-1942-07811-6/ (visited on 09/03/2023).