Recursion (Cont.), Recurrences and Merge Sort

Subhabrata Samajder

IIIT, Delhi Winter Semester, 11th March, 2023 Recursion: A Recap (Cont.)

Fibonacci Sequence

Fibonacci sequence is defined recursively as

$$f_1 = 1$$
, $f_2 = 1$, $f_{i+1} = f_i + f_{i-1}$ for $i = 1, 2, ...$

Every element $(i \ge 3)$ is the sum of it's previous two elements.

The sequence begins as $1, 1, 2, 3, 5, \ldots$

Fibonacci Sequence

Consider the sequence f_{n+1}/f_n :

```
2/1 = 2.0 (bigger)

3/2 = 1.5 (smaller)

5/3 = 1.67 (bigger)

8/5 = 1.6 (smaller)

13/8 = 1.625 (bigger)

21/13 = 1.615 (smaller)

34/21 = 1.619 (bigger)

55/34 = 1.618 (smaller)

89/55 = 1.618
```

Fibonacci Sequence

Consider the sequence f_{n+1}/f_n :

```
2/1 = 2.0 (bigger)

3/2 = 1.5 (smaller)

5/3 = 1.67 (bigger)

8/5 = 1.6 (smaller)

13/8 = 1.625 (bigger)

21/13 = 1.615 (smaller)

34/21 = 1.619 (bigger)

55/34 = 1.618 (smaller)

89/55 = 1.618
```

Note:

- This sequence seem to be converging!
- It converges to the golden ratio.

$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1.6180339887498948482$$

- It is a special number.
- Couple of ways to visually understand it are with
 a line segment Golden rectangles

• It is an irrational number that is a root of the quadratic equation

$$x^2 - x - 1 = 0$$

- Reciprocal of φ , i.e., φ^{-1} :
 - $f_n/f_{n+1} \rightarrow 0.618$ as $n \rightarrow \infty$.
 - This is the reciprocal of φ : 1/1.618 = 0.618.
 - It is highly unusual for the decimal representation of the fractional part of a number and its reciprocal to be exactly the same.

• Some examples:

The ancient temple in Greece fits almost precisely into a golden rectangle.

• Some examples:

1:1.618

Butterflies.

Recursive Fibonacci Sequence: Function Calls

```
int RecFibonacci (int n) {
  if (n <= 1)
    return n;
  else
  return (RecFibonacci(n - 1) + RecFibonacci(n - 2)); }</pre>
```

Recursive Fibonacci Sequence: Function Calls

Value of n	Value of	Number of function calls required to
	RecFibonacci(n)	recursively compute RecFibonacci(n)
0	0	1
1	1	1
2	1	3
23	28657	92735
24	46368	150049
42	267914296	866988873
43	433494437	1402817465

Requires a large number of function calls even for moderate values of n.

- It is seductive to use recursion.
- But one must be careful about run-time limitations and inefficiencies.

- It is seductive to use recursion.
- But one must be careful about run-time limitations and inefficiencies.
- It is sometimes necessary to recode to an equivalent iterative method.

- It is seductive to use recursion.
- But one must be careful about run-time limitations and inefficiencies.
- It is sometimes necessary to recode to an equivalent iterative method.
- Some programmers feel that because the use of recursion is inefficient, it should not be used.

- It is seductive to use recursion.
- But one must be careful about run-time limitations and inefficiencies.
- It is sometimes necessary to recode to an equivalent iterative method.
- Some programmers feel that because the use of recursion is inefficient, it should not be used.
- The inefficiencies, however, are often of little consequence as in the case of the quicksort algorithm.

- It is seductive to use recursion.
- But one must be careful about run-time limitations and inefficiencies.
- It is sometimes necessary to recode to an equivalent iterative method.
- Some programmers feel that because the use of recursion is inefficient, it should not be used.
- The inefficiencies, however, are often of little consequence as in the case of the quicksort algorithm.
- For many applications, recursive code is easier to write, understand, maintain.

- It is seductive to use recursion.
- But one must be careful about run-time limitations and inefficiencies.
- It is sometimes necessary to recode to an equivalent iterative method.
- Some programmers feel that because the use of recursion is inefficient, it should not be used.
- The inefficiencies, however, are often of little consequence as in the case of the quicksort algorithm.
- For many applications, recursive code is easier to write, understand, maintain.
- These reasons often prescribe its use.

Towers of Hanoi

Towers of Hanoi: Problem Statement

- There are three towers.
- n disks of decreasing radius are placed on the 1^{st} tower.
- Move all of the disks from the 1st tower to the 3rd tower.
- Condition: At no moment of time can a larger disk be placed on top of smaller disks.
- The remaining tower can be used to temporarily hold disks.

Step 1: Move disks *a* to tower 3.

Step 1: Move disks *a* to tower 3.

Step 2: Move disks *b* to tower 2.

Step 1: Move disks *a* to tower 3.

Step 2: Move disks *b* to tower 2.

Step 3: Move disks *a* to tower 2.

- **Step 1:** Move disks *a* to tower 3.
- **Step 2:** Move disks *b* to tower 2.
- **Step 3:** Move disks *a* to tower 2.
- **Step 4:** Move disks *c* to tower 3.

Step 1: Move disks *a* to tower 3.

Step 2: Move disks *b* to tower 2.

Step 3: Move disks *a* to tower 2.

Step 4: Move disks *c* to tower 3.

Step 5: Move disks *a* to tower 1.

- **Step 1:** Move disks *a* to tower 3.
- **Step 2:** Move disks *b* to tower 2.
- **Step 3:** Move disks *a* to tower 2.
- **Step 4:** Move disks *c* to tower 3.
- **Step 5:** Move disks *a* to tower 1.
- **Step 6:** Move disks *b* to tower 3.

- **Step 1:** Move disks *a* to tower 3.
- **Step 2:** Move disks *b* to tower 2.
- **Step 3:** Move disks *a* to tower 2.
- **Step 4:** Move disks *c* to tower 3.
- **Step 5:** Move disks *a* to tower 1.
- **Step 6:** Move disks *b* to tower 3.
- **Step 7:** Move disks *a* to tower 3.

Homework:

- Write a recursive algorithm that solves the Towers of Hanoi problem for n disks.
- Implement your algorithm in C.

Recurrences

Recurrence

Definition

A **recurrence relation** is an equation that expresses each element of a sequence $\{a_n\}_{n=0}^{\infty}$ as a function of the preceding ones, i.e,

$$a_n = \psi(a_0, a_1, \ldots, a_{n-1}).$$

ullet Computing time/space complexity \equiv a counting problem.

- ullet Computing time/space complexity \equiv a counting problem.
- : a sequence.

- Computing time/space complexity \equiv a counting problem.
- : a sequence.
- Recursive algorithms: It is not easy to compute the number of instructions by looking at code.

- Computing time/space complexity \equiv a counting problem.
- : a sequence.
- Recursive algorithms: It is not easy to compute the number of instructions by looking at code.
 - The number of instructions in one instance of function call depends on the number of instructions executed when recursive calls are made.

- Computing time/space complexity \equiv a counting problem.
- : a sequence.
- Recursive algorithms: It is not easy to compute the number of instructions by looking at code.
 - The number of instructions in one instance of function call depends on the number of instructions executed when recursive calls are made.
 - In such cases it is easier for us to express it as some *recurrence relation* of the times/space complexity.

Why Recurrences?

- Computing time/space complexity \equiv a counting problem.
- : a sequence.
- Recursive algorithms: It is not easy to compute the number of instructions by looking at code.
 - The number of instructions in one instance of function call depends on the number of instructions executed when recursive calls are made.
 - In such cases it is easier for us to express it as some *recurrence relation* of the times/space complexity.
- Appears frequently in the analysis of algorithms.

• How to form recurrence relation for a counting problem?

• How to form recurrence relation for a counting problem? Easy!!

• How to form recurrence relation for a counting problem? Easy!!

How to solve such relations?

• How to form recurrence relation for a counting problem? Easy!!

How to solve such relations?

Outline

We briefly discuss few useful technique for solving recurrences.

 Present general solutions of two classes of recurrences that are among the most common recurrences involved in analyzing algorithms.

Intelligent Guesses

- Guessing a solution may seem like a nonscientific method!
- But, keeping our pride aside, it works very well for a wide class of recurrence relations.
- It works even better when we are *not* trying to find the exact solution, but only an upper bound.
- Why guess? Proving a certain bound is valid is easier than deriving that bound.

$$F(n) = F(n-1) + F(n-2), \quad F(1) = 1, F(2) = 1.$$

$$F(n) = F(n-1) + F(n-2), \quad F(1) = 1, F(2) = 1.$$

• Can compute the value of the function for every *n*.

Example:

$$F(3) = F(2) + F(1) = 2$$
, $F(4) = F(3) + F(2) = 3$,...

$$F(n) = F(n-1) + F(n-2), \quad F(1) = 1, F(2) = 1.$$

• Can compute the value of the function for every *n*.

Example:

$$F(3) = F(2) + F(1) = 2$$
, $F(4) = F(3) + F(2) = 3$,...

• **Note:** By definition we need n-2 steps to compute F(n).

$$F(n) = F(n-1) + F(n-2), \quad F(1) = 1, F(2) = 1.$$

• Can compute the value of the function for every *n*.

Example:

$$F(3) = F(2) + F(1) = 2$$
, $F(4) = F(3) + F(2) = 3$,...

- **Note:** By definition we need n-2 steps to compute F(n).
- Would be more convenient to have an explicit (or closed-form) expression for F(n).
 - It would enable us to compute F(n) quickly.
 - We can also compare F(n) with other known functions.

$$F(n) = F(n-1) + F(n-2), \quad F(1) = 1, F(2) = 1.$$

• F(n) is the sum of two previous values.

$$F(n) = F(n-1) + F(n-2), \quad F(1) = 1, F(2) = 1.$$

- F(n) is the sum of two previous values.
- Possible guess: F(n) is doubled every time, i.e., $F(n) \approx 2^n$.

$$F(n) = F(n-1) + F(n-2), \quad F(1) = 1, F(2) = 1.$$

- F(n) is the sum of two previous values.
- **Possible guess:** F(n) is doubled every time, i.e., $F(n) \approx 2^n$.
- Let $F(n) = ca^n$, then we get

$$ca^n = ca^{n-1} + ca^{n-2} \Rightarrow a^2 = a+1$$
 (Characteristic equation).

$$F(n) = F(n-1) + F(n-2), \quad F(1) = 1, F(2) = 1.$$

- F(n) is the sum of two previous values.
- Possible guess: F(n) is doubled every time, i.e., $F(n) \approx 2^n$.
- Let $F(n) = ca^n$, then we get

$$ca^n = ca^{n-1} + ca^{n-2} \Rightarrow a^2 = a+1$$
 (Characteristic equation).

• Solving: $a_1 = (1 + \sqrt{5})/2 \ (> 0)$ and $a_2 = (1 - \sqrt{5})/2 \ (< 0)$.

$$F(n) = F(n-1) + F(n-2), \quad F(1) = 1, F(2) = 1.$$

- F(n) is the sum of two previous values.
- Possible guess: F(n) is doubled every time, i.e., $F(n) \approx 2^n$.
- Let $F(n) = ca^n$, then we get

$$ca^n = ca^{n-1} + ca^{n-2} \Rightarrow a^2 = a+1$$
 (Characteristic equation).

- Solving: $a_1 = (1 + \sqrt{5})/2$ (> 0) and $a_2 = (1 \sqrt{5})/2$ (< 0).
- :. $F(n) = \mathcal{O}((a_1)^n)$.
 - Find a constant c such that $c(a_1)^n \ge F(1)$ and F(2).

• Need to consider the initial values more carefully.

- Need to consider the initial values more carefully.
- General Solution: $c_1(a_1)^n + c_2(a_2)^n$.

- Need to consider the initial values more carefully.
- General Solution: $c_1(a_1)^n + c_2(a_2)^n$.
- Find c_1 and c_2 , s.t., F(1) = 1 and F(2) = 1.

- Need to consider the initial values more carefully.
- General Solution: $c_1(a_1)^n + c_2(a_2)^n$.
- Find c_1 and c_2 , s.t., F(1) = 1 and F(2) = 1.
- **Solving:** $c_1 = 1/\sqrt{5}$, and $c_2 = -1/\sqrt{5}$.

- Need to consider the initial values more carefully.
- General Solution: $c_1(a_1)^n + c_2(a_2)^n$.
- Find c_1 and c_2 , s.t., F(1) = 1 and F(2) = 1.
- **Solving:** $c_1 = 1/\sqrt{5}$, and $c_2 = -1/\sqrt{5}$.
- Exact solution:

$$F(n) = \frac{1}{\sqrt{5}} \left[\frac{1+\sqrt{5}}{2} \right]^n - \frac{1}{\sqrt{5}} \left[\frac{1-\sqrt{5}}{2} \right]^n.$$

- Need to consider the initial values more carefully.
- General Solution: $c_1(a_1)^n + c_2(a_2)^n$.
- Find c_1 and c_2 , s.t., F(1) = 1 and F(2) = 1.
- **Solving:** $c_1 = 1/\sqrt{5}$, and $c_2 = -1/\sqrt{5}$.
- Exact solution:

$$F(n) = \frac{1}{\sqrt{5}} \left\lceil \frac{1+\sqrt{5}}{2} \right\rceil^n - \frac{1}{\sqrt{5}} \left\lceil \frac{1-\sqrt{5}}{2} \right\rceil^n.$$

Note: This idea, can be used to solve recurrences of the form

$$F(n) = b_1 F(n-1) + b_2 F(n-2) + \cdots + b_k F(n-k)$$
 (k constant).

Sorting

Sorting Problem

Sorting Problem

Given n numbers x_1, x_2, \ldots, x_n arrange them in *increasing order*. In other words, find a sequence of distinct indices $1 \le i_1, i_2, \ldots, i_n \le n$, such that $x_{i_1} \le x_{i_2} \le \cdots \le x_{i_n}$.

In-place Sorting: A sorting algorithm is called **in-place** if no additional memory is used besides the input array.

Sorting Problem

Sorting Problem

Given n numbers x_1, x_2, \ldots, x_n arrange them in *increasing order*. In other words, find a sequence of distinct indices $1 \le i_1, i_2, \ldots, i_n \le n$, such that $x_{i_1} \le x_{i_2} \le \cdots \le x_{i_n}$.

In-place Sorting: A sorting algorithm is called **in-place** if no additional memory is used besides the input array.

Mergesort Algorithm

The Merge Algorithm

Problem: Suppose we have two lists $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_m)$ of numbers sorted in an increasing order. Merge them to get a bigger sorted list.

The Merge Algorithm

Problem: Suppose we have two lists $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_m)$ of numbers sorted in an increasing order. Merge them to get a bigger sorted list.

Basic Idea: For each numbers in the second set, find it's correct place in the first set.

B: 1 2 5 6 8 9 10 12

A: 3 4 7 11 13 14 15 16

 B:
 1
 2
 5
 6
 8
 9
 10
 12

A: 3 4 7 11 13 14 15 16

M:

 B:
 1
 2
 5
 6
 8
 9
 10
 12

A: 3 4 7 11 13 14 15 16

M:

A: 3 4 7 11 13 14 15 16

M: 1

A: 3 4 7 11 13 14 15 16

M: 1 2

A: 3 4 7 11 13 14 15 16

M: 1 2 3

A: | 1 | 13 | 14 | 15 | 16

M: 1 2 3 4

M: 1 2 3 4 5

M: 1 2 3 4 5 6

M: 1 2 3 4 5 6 7

A: 3 4 7 11 13 14 15 16

M: 1 2 3 4 5 6 7 8

M: 1 2 3 4 5 6 7 8 9

M: 1 2 3 4 5 6 7 8 9 10

M: 1 2 3 4 5 6 7 8 9 10 11

M: 1 2 3 4 5 6 7 8 9 10 11 12

M: 1 2 3 4 5 6 7 8 9 10 11 12 13

M: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• Scan the first set until the right place to insert b_1 is found.

• Scan the first set until the right place to insert b_1 is found.

• Insert b_1 .

• Scan the first set until the right place to insert b_1 is found.

• Insert b_1 .

• Continue the scan from that place until the right place to insert b_2 is found.

- Scan the first set until the right place to insert b_1 is found.
- Insert b_1 .
- Continue the scan from that place until the right place to insert b_2 is found.
- Repeat this for all elements of *B*.

Note:

• Since the b's are sorted, we never have to go back.

Note:

- Since the b's are sorted, we never have to go back.
- The total number of comparisons, in the worst case, is m + n.

Note:

- Since the b's are sorted, we never have to go back.
- The total number of comparisons, in the worst case, is m + n.

Question: What about data movements?

Note:

- Since the b's are sorted, we never have to go back.
- The total number of comparisons, in the worst case, is m + n.

Question: What about data movements?

• It is inefficient to move elements each time an insertion is performed.

Note:

- Since the b's are sorted, we never have to go back.
- The total number of comparisons, in the worst case, is m + n.

Question: What about data movements?

- It is inefficient to move elements each time an insertion is performed.
- Since the merge produces the elements one by one in sorted order, we copy them to a temporary array.

Note:

- Since the b's are sorted, we never have to go back.
- The total number of comparisons, in the worst case, is m + n.

Question: What about data movements?

- It is inefficient to move elements each time an insertion is performed.
- Since the merge produces the elements one by one in sorted order, we copy them to a temporary array.
- Each element is copied exactly once.

Note:

- Since the b's are sorted, we never have to go back.
- The total number of comparisons, in the worst case, is m + n.

Question: What about data movements?

- It is inefficient to move elements each time an insertion is performed.
- Since the merge produces the elements one by one in sorted order, we copy them to a temporary array.
- Each element is copied exactly once.

Complexity:

- Time: $\mathcal{O}(n+m)$ comparisons.
- Space: $\mathcal{O}(n+m)$ data.

Question?

Can we use the Merge algorithm to sort a given array?

Merging Phase:

2 5 6 8

Merging Phase:

2 5 6 8

Merging Phase:

2 5 6 8

Merging Phase:

2 5 6 8

Merging Phase:

2 5 6 8 1 9 10 12

Merging Phase:

2 5 6 8 1 9 10 12

Merging Phase:

2 5 6 8 1 9 10 12

Mergesort

The merge procedure is used as a basis for the divide-and-conquer sorting algorithm, known as the **mergesort**.

Mergesort

The merge procedure is used as a basis for the divide-and-conquer sorting algorithm, known as the **mergesort**.

The Algorithm:

- Divide the sequence into two equal or close-to-equal parts.
- Sort each part separately using recursion.
- Merge the two sorted parts into one sorted sequence, using the merge algorithm.

Mergesort

The merge procedure is used as a basis for the divide-and-conquer sorting algorithm, known as the **mergesort**.

The Algorithm:

- Divide the sequence into two equal or close-to-equal parts.
- Sort each part separately using recursion.
- Merge the two sorted parts into one sorted sequence, using the merge algorithm.

Worst-Case Complexity:

$$T(n) = 2T(n/2) + \mathcal{O}(n)$$

Books Consulted

Introduction to Algorithms: A Creative Approach by Udi Manber.

Introduction to Algorithms by Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein. Thank You for your kind attention!