CARDEA: A CONTEXT-AWARE AND INTERACTIVE VISUAL PRIVACY CONTROL FRAMEWORK

$\mathbf{b}\mathbf{y}$

RUI ZHENG

A Thesis Submitted to
The Hong Kong University of Science and Technology
in Partial Fulfillment of the Requirements for
the Degree of Master of Philosophy
in Computer Science and Engineering

October 2016, Hong Kong

Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

RUI ZHENG

CARDEA: A CONTEXT-AWARE AND INTERACTIVE VISUAL PRIVACY CONTROL FRAMEWORK

$\mathbf{b}\mathbf{y}$

RUI ZHENG

This is to certify that I have examined the above M.Phil. thesis and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the thesis examination committee have been made.

ASSISTANT PROF. PAN. HUI, THESIS SUPERVISOR

PROF. QIANG YANG, HEAD OF DEPARTMENT

Department of Computer Science and Engineering
21 October 2016

ACKNOWLEDGMENTS

thank god

TABLE OF CONTENTS

Title Page	i
Authorization Page	ii
Signature Page	iii
Acknowledgments	iv
Table of Contents	v
List of Figures	vi
List of Tables	vii
Abstract	viii
Chapter 1 Introduction	1
Bibliography	2

LIST OF FIGURES

LIST OF TABLES

CARDEA: A CONTEXT-AWARE AND INTERACTIVE VISUAL PRIVACY CONTROL FRAMEWORK

by

RUI ZHENG

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

ABSTRACT

We design and implement Mars, a MapReduce runtime system accelerated with graphics processing units (GPUs). MapReduce is a simple and flexible parallel programming paradigm originally proposed by Google, for the ease of large scale data processing on thousands of CPUs. Compared with CPUs, GPUs have an order of magnitude higher computation power and memory bandwidth. However, GPUs are designed as special-purpose co-processors and their programming interfaces are less familiar than those on the CPUs to MapReduce programmers.

To harness GPUs' power for MapReduce, we developed Mars to run on NVIDIA GPUs, AMD GPUs, as well as multi-core CPUs. Furthermore, we integrated Mars into Hadoop, an open-source CPU-based distributed MapReduce system. Mars hides the programming complexity of GPUs behind the simple and familiar MapReduce interface, and automatically manages task partitioning, data distribution, and parallelization on the processors. We have implemented six representative applications on Mars and evaluated their performance on PCs equipped with GPUs as well as

multi-core CPUs. The GPU acceleration with an NVIDIA GTX280 achieved a speedup of an order of magnitude over a quad-core CPU. Utilizing both the GPU and the CPU further improved GPU-only performance by 40% for some applications. Additionally, integrating Mars into Hadoop enabled GPU acceleration for a network of PCs.

CHAPTER 1

INTRODUCTION

alexnet [1] here

Bibliography

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. "Imagenet classification with deep convolutional neural networks". In: *Advances in neural information processing systems*. 2012, pp. 1097–1105.