

FIG. 1A

pET22b(+) forward primer:

5'-CGGGATCCT TCT GTT GAT CAC GGC TTC-3' (SEQ ID NO:3)

pET22b(+) reverse primer:

5'-CCCAAGCTT TGT TCT TCT CAT ACA GAC-3' (SEQ ID NO:4)

pPICZ α A forward primer:

5'-TTCGGAAATTCTCT GTT GAT CAC GGC TTC-3' (SEQ ID NO:15)

pPICZ α A reverse primer:

5'-TGCTCTAGAGG TGT TCT TCT CAT ACA GAC TTG GCA-3' (SEQ ID NO:16)

5	10	15	20	25	30	35	40	45
tct	qtt	qat	cac	qqc	ttc	ctt	gtg	acc
50	55	60	65	70	75	80	85	90
gat	gac	cca	cag	tgt	cct	tct	ggg	acc
95	100	105	110	115	120	125	130	135
tac	tct	ttg	ctc	tac	gtg	caa	ggc	aat
140	145	150	155	160	165	170	175	180
gac	ttg	ggc	acg	gcc	ggc	agc	tgc	ctg
185	190	195	200	205	210	215	220	225
ccc	ttc	ctg	ttc	tgc	aat	att	aac	aac
230	235	240	245	250	255	260	265	270
cga	aat	gac	tac	tcg	tac	tgg	ctg	tcc
275	280	285	290	295	300	305	310	315
atg	tca	atg	gca	ccc	atc	acg	ggg	gaa
320	325	330	335	340	345	350	355	360
agt	agg	tgt	gct	gtg	tgt	gag	gcg	cct
365	370	375	380	385	390	395	400	405
cac	agc	cag	acc	att	cag	atc	cca	ccg
410	415	420	425	430	435	440	445	450
tcg	ctg	tgg	atc	ggc	tac	tct	ttt	gtg
455	460	465	470	475	480	485	490	495
gca	gaa	ggc	tct	ggc	caa	gcc	ctg	gcg
500	505	510	515	520	525	530	535	540
gag	gag	ttt	aga	agt	gcg	cca	ttc	atc
545	550	555	560	565	570	575	580	585
acc	tgc	aat	tac	tac	gca	aac	gct	tac
590	595	600	605	610	615	620	625	630
ata	gag	agg	agc	gag	atg	ttc	aag	aag
635	640	645	650	655	660	665	670	675
aag	gca	ggg	gag	ctg	cgc	acg	cac	gtc
680	685	690						
atq	aga	aga	aca	taa	(SEQ ID NO:1)			

FIG. 1B

5	10	15	20	25	30	35	40	45						
SVD	HGF	LVT	RHS	QTI	DDP	QCP	SGT	KIL	YHG	YSL	LYV	QGN	ERA	HGQ
50	55	60	65	70	75	80	85	90						
DLG	TAG	SCL	RKF	STM	PFL	FCN	INN	VCN	FAS	RND	YSY	WLS	TPE	PMP
95	100	105	110	115	120	125	130	135						
MSM	API	TGE	NIR	PFI	SRC	AVC	EAP	AMV	MAV	HSQ	TIQ	IPP	CPS	GWS
140	145	150	155	160	165	170	175	180						
SLW	IGY	SFV	MHT	SAG	AEG	SGQ	ALA	SPG	SCL	EEF	RSA	PFI	ECH	GRG
185	190	195	200	205	210	215	220	225						
TCN	YYA	NAY	SFW	LAT	IER	SEM	FKK	PTP	STL	KAG	ELR	THV	SRC	QVC

229

MRR T (SEQ ID NO:2)

FIG. 2

Forward primer: 5'-cgggatcctctgttgcacggcttc-3'

Reverse primer: 5'-cccaagctttgttcttcatacagac-3'

FIG. 3A

FIG. 3B

FIG. 4A

FIG. 4B

FIG. 4C

FIG. 4D

Docket No.: 1440.1027-016
Title: ANTI-ANGIOGENIC PROTEINS AND...
Inventors: Raghuram Kalluri

FIG. 5A

Control

FIG. 5B

Arresten 2 μ g/ml

FIG. 5C

Endostatin 20 μ g/ml

FIG. 6

FIG. 7

FIG. 8A

FIG. 8B

FIG. 9A

FIG. 9B

FIG. 9C

FIG. 9D

FIG. IOA

FIG. IOB

FIG. 11A

pET22b(+) forward primer:

5'-CGGGATCCT GTC AGC ATC GGC TAC CTC-3' (SEQ ID NO:7)

pET22b(+) reverse primer:

5'-CCCAAGCTT CAG GTT CTT CAT GCA CAC-3' (SEQ ID NO:8)

pPICZ α A forward primer:

5'-TTCGGAATTC GTC AGC ATC GGC TAC CTC CTG-3' (SEQ ID NO:17)

pPICZ α A reverse primer:

5'-GGGGTACCCC CAG GTT CTT CAT GCA CAC CTG G-3' (SEQ ID NO:18)

5	10	15	20	25	30	35	40	45
gtc	aqc	atc	qac	tac	ctc	ctq	gtg	aag
50	55	60	65	70	75	80	85	90
gag	ccc	atg	tgc	ccg	gtg	ggc	atg	aac
95	100	105	110	115	120	125	130	135
agc	ctg	ctg	tac	ttc	gag	ggc	cag	gag
140	145	150	155	160	165	170	175	180
ctg	ggg	ctg	gcg	ggc	tcc	tgc	ctg	gag
185	190	195	200	205	210	215	220	225
ttc	ctg	tac	tgc	aac	cct	ggt	gat	gtc
230	235	240	245	250	255	260	265	270
aac	gac	aag	tcc	tac	tgg	ctc	tct	acc
275	280	285	290	295	300	305	310	315
atg	ccc	gtg	gcc	gag	gac	gag	atc	aag
320	325	330	335	340	345	350	355	360
tct	gtg	tgt	gag	gcc	ccg	atc	gcc	atc
365	370	375	380	385	390	395	400	405
gat	gtc	tcc	atc	cca	cac	tgc	cca	gct
410	415	420	425	430	435	440	445	450
atc	gga	tat	tcc	ttc	ctc	atg	cac	acg
455	460	465	470	475	480	485	490	495
ggt	ggc	caa	tca	ctg	gtg	tca	ccg	ggc
500	505	510	515	520	525	530	535	540
cgc	gcc	aca	cca	ttc	atc	gaa	tgc	aat
545	550	555	560	565	570	575	580	585
cac	tac	tac	gcc	aac	aag	tac	agc	ttc
590	595	600	605	610	615	620	625	630
gag	cag	agc	ttc	cag	ggc	tgc	ccc	tcc
635	640	645	650	655	660	665	670	675
ggc	ctc	atc	cgc	aca	cac	atc	agc	cgc
680								
aac	ctq	tga						

(SEQ ID NO:5)

FIG. 11B

5	10	15	20	25	30	35	40	45						
VSI	GYL	LVK	HSQ	TDQ	EPM	CPV	GMN	KLW	SGY	SLL	YFE	GQE	KAH	NQD
50	55	60	65	70	75	80	85	90						
LGL	AGS	CLA	RFS	TMP	FLY	CNP	GDV	CYY	ASR	NDK	SYW	LST	TAP	LPM
95	100	105	110	115	120	125	130	135						
MPV	AED	EIK	PYI	SRC	SVC	EAP	AIA	IAV	HSQ	DVS	IPH	CPA	GWR	SLW
140	145	150	155	160	165	170	175	180						
IGY	SFL	MHT	AAG	DEG	GGQ	SLV	SPG	SCL	EDF	RAT	PFI	ECN	GGR	GTC
185	190	195	200	205	210	215	220	225						
HYY	ANK	YSF	WLT	TIP	EQS	FQG	SPS	ADT	LKA	GLI	RTH	ISR	CQV	CMK

227

NL (SEQ ID NO:6)

FIG. 12

Forward primer: 5'-cgggatccgtcagcatcggtaccc-3'

Reverse primer: 5'-cccaagcttcaggttttcatgcacac-3'

FIG. 13A

FIG. 13B

FIG. 13C

FIG. 13D

FIG. 14

FIG. 15

FIG. 16

FIG. 17A

FIG. 17B

FIG. 17C

FIG. 17D

FIG. 18A

pET22b(+) forward primer:

5'-CGGGAT CCA GGT TTG AAA GGA AAA CGT-3' (SEQ ID NO:11)

pET22b(+) reverse primer:

5'-CCCAAGCTT TCA GTG TCT TTT CTT CAT-3' (SEQ ID NO:12)

5	10	15	20	25	30	35	40	45						
cca	qgt	ttg	aaa	qga	aaa	cgt	gga	gac	agt	gga	tca	cct	gca	acc
50	55	60	65	70	75	80	85	90						
tgg	aca	acg	aga	ggc	ttt	gtc	ttc	acc	cga	cac	agt	caa	acc	aca
95	100	105	110	115	120	125	130	135						
gca	att	cct	tca	tgt	cca	gag	ggg	aca	gtg	cca	ctc	tac	agt	ggg
140	145	150	155	160	165	170	175	180						
ttt	tct	ttt	ctt	ttt	gta	caa	gga	aat	caa	cga	gcc	cac	gga	caa
185	190	195	200	205	210	215	220	225						
gac	ctt	gga	act	ctt	ggc	agc	tgc	ctg	cag	cga	ttt	acc	aca	atg
230	235	240	245	250	255	260	265	270						
cca	ttc	tta	ttc	tgc	aat	gtc	aat	gat	gta	tgt	aat	ttt	gca	tct
275	280	285	290	295	300	305	310	315						
cga	aat	gat	tat	tca	tac	tgg	ctg	tca	aca	cca	gct	ctg	atg	cca
320	325	330	335	340	345	350	355	360						
atg	aac	atg	gct	ccc	att	act	ggc	aga	gcc	ctt	gag	cct	tat	ata
365	370	375	380	385	390	395	400	405						
agc	aga	tgc	act	gtt	tgt	gaa	ggt	cct	gcg	atc	gcc	ata	gcc	gtt
410	415	420	425	430	435	440	445	450						
cac	agc	caa	acc	act	gac	att	cct	cca	tgt	cct	cac	ggc	tgg	att
455	460	465	470	475	480	485	490	495						
tct	ctc	tgg	aaa	gga	ttt	tca	ttc	atc	atg	ttc	aca	agt	gca	ggt
500	505	510	515	520	525	530	535	540						
tct	gag	ggc	acc	ggg	caa	gca	ctg	gcc	tcc	cct	ggc	tcc	tgc	ctg
545	550	555	560	565	570	575	580	585						
gaa	gaa	ttc	cga	gcc	agc	cca	ttt	cta	gaa	tgt	cat	gga	aga	gga
590	595	600	605	610	615	620	625	630						
acg	tgc	aac	tac	tat	tca	aat	tcc	tac	agt	ttc	tgg	ctg	gct	tca
635	640	645	650	655	660	665	670	675						
tta	aac	cca	gaa	aga	atg	ttc	aga	aag	cct	att	cca	tca	act	gtg
680	685	690	695	700	705	710	715	720						
aaa	gct	ggg	gaa	tta	gaa	aaa	ata	ata	agt	cgc	tgt	cag	gtg	tgc
725	730	735												
<u>atq aag aaa aga cac tqa</u> (SEQ ID NO:9)														

pET22b- α 3(IV) NC1 = nucleotides 4 through 735

Tumstatin 333 = nucleotides 4 through 375

Tumstatin 334 - nucleotide 376 through 735

FIG. 18B

*
5 10 15 20 25 30 35 40 45
PGL KGK RGD SGS PAT WTT RGF VFT RHS QTT AIP SCP EGT VPL YSG

50 55 60 65 70 75 80 85 90
FSF LFV QGN QRA HGQ DLG TLG SCL QRF TTM PFL FCN VND VCN FAS

*+
95 100 105 110 115 120 125 130 135
RND YSY WLS TPA LMP MNM API TGR ALE PYI SRC TVC EGP AIA IAV

140 145 150 155 160 165 170 175 180
HSQ TTD IPP CPH GWI SLW KGF SFI MFT SAG SEG TGQ ALA SPG SCL

185 190 195 200 205 210 215 220 225
EEF RAS PFL ECH GRG TCN YYS NSY SFW LAS LNP ERM FRK PIP STV

+
230 235 240 245
KAG ELE KII SRC QVC MKK RH (SEQ ID NO:10)

pET22b α 3(IV) NC1 = residues 2 through 245

Tumstatin 333 = residues 2 through 125

Tumstatin 334 = residues 126 through 245

FIG. 19

FIG. 20

FIG. 21C

FIG. 21B

FIG. 21A

FIG. 22

FIG. 23A

FIG. 23B

FIG. 24A

FIG. 24B

FIG. 24C

FIG. 24D

FIG. 25

FIG. 26

FIG. 27A

FIG. 27B

FIG. 28

FIG. 29

FIG. 30

FIG. 31

FIG. 32A

FIG. 32B

FIG. 32C

FIG. 33A

FIG. 33B

FIG. 34A

FIG. 34B

FIG. 35

FIG. 36A

FIG. 36B

FIG. 36C

FIG. 37

FIG. 38A

FIG. 38B

FIG. 38C

FIG. 38D

FIG. 38E

FIG. 39

FIG. 40

FIG. 41

FIG. 42

T1

GP-A

PGLKGK**RGD**SGSPATWTT**RGFV**FTRHSQTTA**I**PSCPEGTVPLY

T3

T2

T4

SGFSFLFVQGNQRAHGQDLGTLGSCLQRFTT**MPFL**FCNVNDVC

T3

T5

T6

T4

NFASRNDYSYWLSTPALMPMNM**APITGRALEPYI**SRCTVCEGP

T6

GP-B

AIAIAVHSQ**TTDIPPCPHGI**SLWKGFSFIMFTSAGSEGTGQA
LASPGSCLEEFRAASPFL**ECHGRGT**CNYYNSYSFWLASLNPER
MFRKPIPSTVKAGELEKIISRCQVCMKKRH

FIG. 43A

FIG. 43B

FIG. 43C

FIG. 43D

FIG. 44A

FIG. 44B

FIG. 44C

FIG. 44D

FIG. 44E

FIG. 44F

FIG. 44G

FIG. 45

FIG. 46

FIG. 47

FIG. 48

FIG. 49

Fig. 50

Fig. 51

Fig. 52

Fig. 53
Fig. 54

Fig. 56

Fig. 57

Fig. 55A

Fig. 55B

Fig. 58A

Fig. 58B

Fig. 58C

Fig. 58D

Fig. 58E

Fig. 58F

Fig. 58G

Fig. 58H

Fig. 59A

Fig. 59B

Fig. 60A

Fig. 60B

Fig. 60C

Fig. 60D

Fig. 60E

Fig. 60F

Fig. 60G

Fig. 60H

Fig. 61A

Fig. 61B

Fig. 61C

Fig. 61D

Fig. 61E

Fig. 61F

Fig. 62

Fig. 63

Fig. 64A

Fig. 64B

Fig. 65A

Fig. 65B