1	-	
300	ATTGGAAATGTACAAGTGTCAGCTAAGGAAAGGAGGCTGGCAACATAACAGAACAGG	
) 	TCCTCGTCAATGCCAGACACAGGTCACATCTACTTGAGTACTGACATGAGATGGGTCTTA E Q L R S V S S V D E L M T V L Y P E Y	-
240		
) }	TGGAGAGCCTGGGGCTGCGCCCGCTCCGGTGCCGAATACGTTCGTT	
180	ACCTCTCGGACGCGCGACGCGGGGGGGCGACGGCTTATGCAAGCAA	
) 1	61	
ייי	CGCTGCTCCC	
)))	CAGGAAGGTGGTACGTGAGCACCGAAGAGAGACACCGCACAAGAGACGAGCGGCGAC	
6.0	GTCCTTCCATGCACTCGCTGGGCTTCTTCTCTGTGCCGTGTTCTCTGTGCCTTCTT	

F1G 1A

MATCH WITH FIG. 1B

CCAACCTCAACTCAAGGACAGAGAGAGACTATAAAATTTGCTGCAGCACATTATAATACAG

MATCH WITH FIG.

	CACAGACATTTTGTTTGAGA MATCH))
1020	GTGTCTGTAAAACAAACTCTTCCCCAGCCAATGTGGGGCCAACCGAGAATTTGATGAAA	961
)))	GCCCCGAAGCCGGACGGTCACCTGGGGTGTTTCTTGATCTGTCTTTGAGTA G L R P A S C G P H K E L D R N S C	۲ 0 7
096	CGGGGCTTCGGCCTGCCAGTGTGGACCCCCACAAGAACTAGACAGAAACTCATGCCAGT	0
. 006	ATGACATCTGTGGACCAAACAAGGAGCTGGATGAAGAGACCTGTCAGTGTGTCTGCAGAG 1++++++	841
) r 0 I.	1++++++	781
780	AGGCAGCGAACAAGACCTGCCCCACCAATTACATGTGGAATAATCACATCTGCAGATGCC 1+++++++	721
	AAATGTCTGTTCAAGTAAGGTAATAATCTGCAAGGGACGGTCGTTGTGATGTGTCACAG Y R Q V H S I I R R S L P A T L P Q C Q	199
720	TTTACAGACAAGTTCAT	,

1260

GTCCTAAAAGTATATCACTTCTTCACACACACACAGGGAAGTATAACCGTTTCTGGTG

œ

ш

S

ഗ

1201

Ø

3

ഗ

	MATCH WITH FIG. 1C		
	V C K N K L F P S Q C G A N R E F D E N	D E N -	
,	ACACATGCCAGTGTGTATGTAAAAGAACCTGCCCCAGAAATCAACCCCTAAATCCTGGAA	CCTGGAA 1080	c
○ -	TGTGTACGGTCACATACATTTTCTTGGACGGGGTCTTTAGTTGGGGATTTAGGACCTT T C Q C V C K R T C P R N Q P L N P G K		>
7		AAGTTCC 1146	c
O T	1081	+ 1140 TTCAAGG K F H -	>
	•	TGTGAGC	c
- - - 	TI4I+++	ACACTCG	-
	CAGGATTTTCATATAGAAGAAGTGTGTGTGTTTTGTGTTCTTTTATATTGGCAAAGACCAC	AGACCAC	

MATCH WITH FIG. 1E FIG 1D

AAATGAGCTAAGATTGTACTGTTTTCCAGTTCATCGATTTTTCTATTATGGAAAACTGTGT

WITH FIG.

MATCH

5/47

1500 1440 1380 1560 1620 **ITTCAGACAGAAAGGACTTGGTACACCTATTGAAATGTCTTTACCTGACCTCGAGTAGAC** CAAAAGGCCTCTTGTAAAGAETGGTTTTCTGCCAATGACCAAACAGCCAAGATTTTCCTC STTTTCCGGAGAACATTTCTGACCAAAAGACGGTTACTGGTTTGTCGGTTCTAAAAGGAG TGCCACAGTAGAACTGTGTGAACAGAGAGCCCTTGTGGGTCCATGCTAACAAGACA **AACACTAAAGAAATTTTCTTACTGATATAATTAAATAAGGTGATTTTTTATAACAAAGACG** ACGGTGTCATCTTGACAGACACTTGTCTCTGGGAACACCCCAGGTACGATTGTTTCTGT TTGTGATTTCTTTAAAGAATGACTATATATTTTTTCCACTAAAAATATTTCTGC ATTCATTTTTATAGCAACAATTGGTAAACTCACTGTGATCAATATTTTATATCAT TTTACTCGATTCTAACATGACAAAAGGTCAAGTAGCTAAAAGATAATACCTTTTGACACA TAAGTAAAAATATCGTTGTTGATTAACCATTTTGAGTGACACTAGTTATAAAAATATAGTA 1321 1381 1441 1561 1621 1501

FIG. 2A	
ATNTFF KPPCVSVYRCGGCC	
CGCGACAAACACCTTCTTTAAACCTCCATGTGTGTCCGTCTACAGATGTGGGGGTTGCTG	301
Н	
GAGAAAGACTCAATGCCACGGGAGGTGTGTATAGATGTGGGGAAGGAGTTTGGAGT	241
IKFAAAHYNTEILKSIDNEW	
TATAAAATTTGCTGCAGCACATTATAATACAGATCTTGAAAAGTATTGATAATGAGTG	181
Q H N R E Q A N	
GAAAGGAGGCTGGCAACATAACAGAGAACAGGCCAACCTCAACTCAAGGACAGAAGAGACAC	121
M T V L Y P E Y W K M Y K C Q L R	
AGATGAACTCATGACTCTCTACCCAGAATATTGGAAAATGTACAAGTGTCAGCTAAG	71
CGAGGCCACGGCTTATGCAAGCAAAGATCTGGAGGAGCAGTTACGGTCTGTGTCCAGTGT	⊢

361	CAA	TAG	TGA	.666	,GC1	GCP.	\GTC	CAT	GAA	CAC	CAG	CAC	CAATAGTGAGGGGCTGCAGTGCATGAACACCAGCACGAGCTACCTCAGCAAGACGTTATT	CTA	CCT	CAG	CAA(GAC	STT.	YTT
			. +	: לי	_ - -	O	+ U	Σ	z	 [-	S	E	LQCMNTSTSYLSKTL	>	ᄓ	W	× ×	H	Ţ	Гъ
421	TGA	AAT	TGAAATTACAG	AGT	ງວຽ	TCI	CTC	TCA	AGG	သည	CAA	ACC	TGCCTCTCTCTCAAGGCCCCCAAACCAGTAACAATCAGTTTTGCCAATCA	AAC	AAT	CAG	TTT.	TGC	CAA'	ICA
	<u>i</u> [1]	ıH) L	>	<u>-</u>	ļ	S 0	O	ָ ט	† L	i X	i Cu	PLSQGPKPVTISFANH	1 !	1 I → I	S	 - [I4	A	N	± ==
481	CAC	TTC	CTG		ATC	CAT	GTC	TAP	ACT	GGA	TGT	TTA	CACTTCCTGCCGATGCTATATTAGATGTTTACAGACAAGTTCATTCCATTATTAG	ACA	AGT	TCA	TTC	CAT	TAT'	rag
	<u> </u>	S	SCR	+ ~	U	Σ	+ S	×		‡ Ω	; >	i } i	C M S K L D V Y R Q V H S I I R	 0 		H	, W	Н	н	ಜ
541	ACG	TTC	CCT	gcc	AGC	AAC	ACT	ארנ	ACA	GTG	TCA	255	ACGITCCCTGCCAGCACACTACCACAGTGTCAGGCAGCGAACAAGACCTGCCCCACCAA	GAA	CAA	GAC	CTG	CCC	CAC	CAA.
		S	L	1 1 4	A	<u> </u>	+ 1	і П Н	0	† 0	i o	- K	A T L'P Q C Q A A N K T C P T N	 Z 	 	! ! [→ !	 - 	i di	E E	z
601	TTA	CAT	GTG	GAA	TAA	TCA	.CA1	יכדק	CAG	ATG	CCT	CCC	TTACATGTGGAATAATCACATCTGCAGATGCCTGGCTCAGGAAGATTTTATGTTTTCCTC	GGA	AGA	$ ext{TTT}$	TAT	GTT	ITC	CTC
	<u> </u> >	Σ	N M W			H	; + H !	י ני	l &	ָ י י י	1	4	N H I C R C L A Q E D F M F S S	 四 	Ω	 [4 	Σ.	<u> </u>	Ŋ	ัช
661	GGA	TGC	TGG	AGA	TGA	CTC	AAC	AGA	TGG	ATT	CCA	TGA	GGATGCTGGAGATGACTCAACAGATGGATTCCATGACATCTGTGGACCAAACAAGGAGCT	CTG	TGG.	ACC.	AAA(CAA(GGA(3CT
		A	D A G D			S	+ !	S T D G	ו ט	H H H H	 	Ω	DSTDGFHDICGPNKEL	ຸ່ບ	U	۵	- z	×	ធា	ı
									正	FIG. 2B	<u>2</u> B									

FIG. 2C
PCTNRQKACEPGFSYSEEVC
1021 GCCATGTACGAACCGCCAGAAGGCTTGTGAGCCAGGATTTTCATATAGTGAAGAAGTGTG
961 ACAGAAATGCTTGTTAAAAGGAAAGTTCCACCACCAAACATGCAGCTGTTACAGACG
CPRNQPLNPGKCACECTESP
901 CTGCCCCAGAAATCAACCCCTAAATCCTGGAAAATGTGCCTGTGAATGTACAGAAAGTCC
z z
841 CCAATGTGGGGCCAACCGAGAATTTGATGAAAACACATGCCAGTGTGTATGTA
H K E L D R N S C Q C V C K N K L F P S
781 CCACAAAGAACTAGACAGAAACTCATGCCAGTGTGTGTGT
U
721 GGATGAAGACCTGTCAGTGTGTCTGCAGAGCGGGGCTTCGGCCTGCCAGCTGTGGACC

TAACTTTACAGAAATGGACTGGAGCTCATCTGCAAAAGGCCTCTTGTAAAGACTGGTTTT CTGCCAATGACCAAACAGCCAAGATTTTCCTCTTGTGATTTCTTTAAAAGAATGACTATA TCGTTGTGTCCCTTCATATTGGCAAAGACCACAAATGAGCTAAGATTGTACTGTTTTCCA S Σ F16, 2D Ø 召 TTGTATTAAAAAAAAAAAAAAAA Ŏ 3 S U α 1081 1201 1141 1261 1321 1501 1381 1441

50 SIRDLQRLLE SFDDLQRLLH .LHHAKWSQA .LRKGGWQHN	100 EEAVP SLTIAEPAMI	150 NTSSVKCOPS NNRNVOCRPT NDEGLECVPT NSEGLOCMNT	200 AT ETVAAARPVT DRARQEKKSV DVYRQVHS11
1 Pdgfo .MRTLACLLL LGCGYLAHVL AEEAEIPREV IERLARSOIH SIRDLORLLE Pdgfb MNRCWA.LFL SLCCYLRLVS AEGDPIPEEL YEMLSDHSIR SFDDLQRLLH VegfMNFLL SWVHWSLALL LY	100 Pdgfa IDSVGSEDSL DTSLRAHGVH ATKHVPEKRP LPIRRKRSIEEAVP Pdgfb GDP.GEEDGA ELDLNMTRSH SGGELES LARGRRSLG SLTIAEPAMI Vegf APMAEGGGO NHHEVVKFMD .VYQR	Pdgfa AVCKTRTVIY EIPRSOVDPT SANFLIMPPC VEVKRCTGCC NTSSVKCOPS Pdgfb AECKTRTEVF EISRRLIDRT NANFLVMPPC VEVORCSGCC NNRNVOCRPT Vegf SYCHPIETLV DIFQEYPDEI EYIFKPPC VSVYRCGGCC NSEGLOCMNT	Pdgfa RVHHRSVKVA KVEYVRKKPK LKEVQVRLEE HLEGAG AT Pdgfb QVQLRPVQVR KIEIVRKKPI FKKATVTLED HLACKG ETVAAARPV Vegf EESNITMOIM RIK.PHQC QHIGEMSFLQ HNKCECRPKK DRARQEKKSV Vegf2 STSYLSKTLF EIT.VPLSQC PKPVTISFAN HTSCRCMSKL DVYRQVHSI
AEEAE IPREV S AEGDP IPEEL LY	1 ATKHVPEKRP 1 SGGELES 2 NHHEVVKFMD 1 YNTEILKSID	SANFL IMPPC NANFL VMPPC EY IFKPSC NTFFKPPC	LKEVQVRLEE FKKATVTLED QHIGEMSFLQ PKPVTISFAN
L LGCGYLAHVI L SLCCYLRLVS L SWYHWSLALI V LYPEYWKMYH	DTSLRAHGVHA ELDLNMTRSH	E I PRSQVDPT E I SRRL I DRT O I FQE YPDE I DVGKE FGVAT	KVEYVRKKPK KIEIVRKKPI RIK.PHQG EIT.VPLSQG
MNRTLACLLI MNRCWA.LFIMNFLI	51 IDSVGSEDSL GDP.GEEDGA APMAE	101 AVCKTRTV1Y AECKTRTEVF SYCHPIETLV TQCMPREVCI	151 RVHHRSVKVA QVQLRPVQVR EESNITMQIM STSYLSKTLF
Pdgfc Pdgfb Vegf Vegf2	Pdgfa Pdgfb Vegf Vegf	Pdgfa Pdgfb Vegf Vegf	Pdgfa Pdgfb Vegf Vegf

FIG. 34

250 H DKTALKETLG W SLPGPHP	300	350 DKPRR	398
RIVRVRRPPK GKHRKFKHTH KSRYKSWSVY VGARCCLMPW NYMMNHICR CLAQEDFMFS	RRKHLFVQDP PHKELDR	PLNPGKCACE	SEEVCRCVPS
	RAGLRPASCG		Pdgfa
YREEDTDVR. AKTPQTRVTI .GKGQKRKRK CQAANKTCPT	LDEETCOCVC	301DSRCKARQ LELNERTCRC LFPSQCGANR .EFDENTCQC	SCYRRPCTNR
201 PdgfaTSLNPD Y Pdgfb RSPGGSQEQR AI Vegf RGK	Pdgfa	301 osrckaro LFPSQCGANR	351 KGKKF HHQTC
Pdgfa Pdgfb Vegf Vegf	Pdgfa Pdgfb Vegf Vegf	Pdgfa Pdgfb Vegf Vegf2	Pdgfa Pdgfb Vegf Vegf2

FIG. 3B

12/47

••					
BETWEEN E	VEGF2				
DENTITIES HOWN IN THI	VEGF				30.0
GENES IS SILLWING TABI	PDGFβ			22.7	22.4
PERCENTAGE (%) OF AMINO ACID IDENTITIES BETWEEN EACH PAIR OF GENES IS SHOWN IN THE FOLLWING TABLE	PDGFa		48.0	20.7	23.5
PERCEN		PDGFa	PDGFB	VEGF	VEGF2

F1(5, 4

BEST AVAILABLE COPY

Expression of VEGF2 mRNA in Human Breast Tumor Cells

Lane 1. normal breast tissue Lane 2. breast tumor tissue Lane 3-9. breast tumor cell lines.

FIG.5

Expression of VEGF2 mRNA in human adult tissues.

FIG.6

BEST AVAILABLE COPY

15/47

Lane 1: 14-C and rainbow M.W. marker

Lane 2: FGF control

Lane 3: VEGF2 (M13-reverse \$ forward primers)
Lane 4: VEGF2 (M13-reverse & VEGF-F4 primers)
Lane 5: VEGF2 (M13-reverse & VEGF-F5 primers)

FIG.7

Marker vector Cytoplasm vector medium VEGF2 Cytoplasm VEGF2 medium

FIG.8B

Lane M: Lane 1: Lane 2: Lane 3: Lane 4:

vector medium VEGF2 medium

Lane Lane Lane

non-reducing gel 30 | 88 – **45**

Lane 1: Molelular weight marker Lane 2: Precipitates containing VEGF2 FIG.9

18/47

FIG. 11

FIG.13

SUBSTITUTE SHEET (RULE 26)

BEST AVAILABLE COPY

20/47

tetal kidney
tetal lung
tetal lung
tetal liver
brain
brain
tides
tidney

FIG.14A

M B 1 2 3 4 5 6 7 8 9 10 11 12 13

FIG.14B

1_ 2 3

2.4 kb

- 1.
- Molecular Weight Marker umbelical vein endothelial cells 2.
- 3. aortic smooth muscle cells
- Dermal fibroblast

FIG.15

	22/47	
	— 54 kd	
5. vector control		α
4 VEGF2-HA		lysate 16B
3. control protein-HA		cell lysate
1. m.w. marker 2. blank		L1_
	— 53 kd 68 kd 64 d — 45 kd — 30 kd — 30 kd — 21 kd — 14.3 kd —	
2. VEGF2-HA	•• • •	dium <
4. vector control		۳ يق - يق
3. control protein-HA		conditioned medium
S. blank		cond T
1. m.w. marker	96 kd 68 kd 30 kd 14.3 kd	

FIG.17

FIG.18

FIG.19

FIG.20A

VEGF-2 CONCENTRATION (ng/ml)

FIG.20B

PCT/US99/05021

FIG. 21B SUBSTITUTE SHEET (RULE 26)

FIG. 22
SUBSTITUTE SHEET (RULE 26)

FIG. 24
SUBSTITUTE SHEET (RULE 26)

31/47

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

35/47

FIG.251 SUBSTITUTE SHEET (RULE 26)

PCT/US99/05021

38/47

SUBSTITUTE SHEET (RULE 26)

FIG.26C

FIG.26D SUBSTITUTE SHEET (RULE 26)

45/47

TREATMENT

FIG.27

FIG.28

