4 Übung: Extremwertaufgaben (mit linearen bzw. nicht-linearen Gleichungssystemen)

	Untersuchen Sie die Funktion auf Extremstellen (Maximum, Minimum?) bzw. Sottelburglate (Isai und 2) (Grieblen netword ing und biggeichen de Bediegung und Wifen) Kontrolle	
4.1	punkte (bei $n=2$ Variablen notwendige und hinreichende Bedingung prüfen) $f(x,y) = -4x^2 - 4y^2 + 16x + 12y - xy - 10$	2x2 LGS (1,84 , 1,27) Maximumstelle
4.2	$f(x,y) = y(1-x^2-y^2)$	Nichtlineares Gleichungssystem $(0,\frac{1}{\sqrt{3}})$ Maximumstelle, $(0,-\frac{1}{\sqrt{3}})$ Minimumstelle, $(\pm 1,0)$ Sattelstellen
4.3	$f(x_1, x_2) = \frac{1}{4}x_2^5 + 5\frac{x_1^2}{x_2} - 5x_1$	Nichtlineares Gleichungssystem $(\frac{1}{2},1)$ Minimumstelle, $(-\frac{1}{2},-1)$ Maximumstelle

5.1	Berechnen Sie die Punkte auf der Fläche mit der Gleichung $z=\frac{1}{xy}$ welche vom Ursprung das minimale Abstandsquadrat und damit auch den minimalen Abstand haben.	
5.2	Leistungsanpassung beim Wechselstromgenerator: Ein Wechselstromgenerator mit dem komplexen Innenwiderstand R_i+jX_i liefert eine konstante Quellenspannung \underline{U} mit dem Effektivwert U . Ein Verbraucher mit dem stetig veränderbaren komplexen Widerstand R_a+jX_a soll so abgestimmt werden, dass die von ihm aufgenommene Wirkleistung $P=P(R_a,X_a)=\frac{R_a\cdot U^2}{(R_a+R_i)^2+(X_a+X_i)^2}$ maximal wird. Wie müssen Wirkwiderstand R_a und Blindwiderstand X_a des Verbrauchers gewählt werden und wie groß ist die maximale Wirkleistung? Die Größen U,R_i,X_i sind fest. Die hinreichende Bedingung für das Maximum (2. Ableitungen) muss \underline{nicht} geprüft werden. Hinweis: Erst $\frac{\partial P}{\partial X_a}=0$, \underline{dann} $\frac{\partial P}{\partial R_a}=0$.	$Z_{i} = R_{i} + jX_{i}$ $U = X_{i}$ $Z_{i} = R_{i} + jX_{i}$ $Z_{i} = R_{a} + jX_{a}$ $Z_{i} = R_{a} + jX_{a}$ $Z_{i} = R_{a} + jX_{a}$ $Z_{i} = R_{i} + jX_{i}$ $Z_{i} = R_{i} + jX_{i}$
5.3	Gewinnmaximierung : Es werden mehrere Produkte P_1, P_2, P_3 hergestellt, pro Periode in Mengen x_1, x_2, x_3 (in passenden Mengeneinheiten ME_k). Die Gesamtkosten K (in Geldeinheiten GE) sowie die Stückpreise p_1, p_2, p_3 seien gegeben. Bestimmen Sie die Produktionsmengen, bei denen der Gewinn maximal ist. Für $n>2$ genügt uns, die notwendige Bedingung zu erfüllen. $K(x_1,x_2,x_3)=x_1^2+2x_2^2+3x_3^2+x_1x_2+x_2x_3+100 (x_i\geq 0) (\text{in } GE)$ $p_1=40, p_2=50, p_3=80 (\text{in } GE/ME_k)$ Hinweis: Gewinn = Ertrag – Kosten. Ertrag = $x_1p_1+x_2p_2+x_3p_3$ (Menge mal Stückpreis für jedes Produkt).	$x_1 = 17,5 \text{ (ME)}$ $x_2 = 5 \text{ (ME)}$ $x_3 = 12,5 \text{ (ME)}$
5.4	Wie in Voraufgabe. Hier hängen jedoch die Stückpreise ggf. von den Produktionsmengen ab. Bestimmen Sie den maximalen Gewinn (bei welchen Produktionsmengen wird er erreicht)? $K(x_1,x_2)=0.5x_1^2+x_1x_2+x_2^2+500.000$ $p_1(x_1,x_2)=1.280-4x_1+x_2, p_2(x_1,x_2)=2.360+2x_1-3x_2 \qquad \text{(jeweils GE/ME)}$	$x_1 = 220$, $x_2 = 350$ (ME)

6 Übung: Extrema unter Nebenbedingungen

	Sie mit der Methode der Substitution oder nach Lagrange. Beim Lagrange-Ansatz genügt das den der stationären Punkte (notwendige Bedingung für ein Extremum).	Kontrolle
6.1	Die Erträge einer Produktion hängen nach folgender Gesetzmäßigkeit von den Produktionsfaktoren Arbeit r_1 und Kapital r_2 ab. $f = f(r_1, r_2) = 2 \cdot r_1 \cdot \sqrt{r_2}$ Die Kosten ermitteln sich in Abhängigkeit des Faktoreinsatzes über $K = 8r_1 + 20r_2$ Finden Sie zu für die Produktion einer Zielmenge von 80 ME die Kombination der Produktionsfaktoren r_1, r_2 , mit der die Kosten minimal sind.	$(r_1, r_2) = (20; 4)$
	Finden Sie für $f(x_1, x_2, x_3, x_4) = x_1^4 + x_2^4 + x_3^4 + x_4^4$	
6.2	die relativen Extrema unter der Restriktion $x_1+x_2+x_3+x_4=8.$	(x_1, x_2, x_3, x_4) = (2,2,2,2)
6.3	Finden Sie für $f(x,y,z)=x^2+xy+yz$ die Minimumstelle unter der NB $x-y^3+z=4$.	0, -1,3