Stress Orientation Rotation of the 2018 Mw 7.5 Palu Earthquake

Focal Mechanisms Data

Before 2018 Mw7.5 Palu

118 events May 1977 – Sep 2018

After 2018 Mw7.5 Palu

19 events Sep 2018 – Nov 2021

Stress Inversion Result

Before 2018 Mw7.5 Palu

After 2018 Mw7.5 Palu

	σ1 Azimuth	σ1 Plunge	σ2 Azimuth	σ2 Plunge	σ3 Azimuth	σ3 Plunge	SHmax
Before	115.0 ± 5.2	9.0 ± 8.7	78.2 ± 86.0	79.4 ± 8.6	25.3 ± 5.2	6.2 ± 6.1	115.1 ± 5.3
After	89.3 ± 35.1	42.1 ± 39.9	87.3 ± 48.4	45.0 ± 40.0	4.1 ± 12.3	8.1 ± 7.8	90.3 ± 15.0
Δ	-26.2 <u>+</u> 33.9	35.3 ± 41.7	7.6 ± 106.3	-35.9 ± 42.6	-21.2 <u>+</u> 13.4	0.5 ± 10.8	-24.2 ± 15.3

Stress Drop Ratio $\left(\frac{\Delta \tau}{\tau}\right)$ Calculation

To calculate the stress drop ratio, we use equation (4) in Hardebeck 2001

$$\Delta\theta = \tan^{-1}\left(\frac{1 - \frac{\Delta\tau}{\tau}\sin 2\theta - \sqrt{\left(\frac{\Delta\tau}{\tau}\right)^2 + 1 - 2\frac{\Delta\tau}{\tau}\sin 2\theta}}{\frac{\Delta\tau}{\tau}\cos 2\theta}\right) \qquad \qquad \frac{\Delta\tau}{\tau} = -\frac{\sin(2\Delta\theta)}{\cos(2\theta + 2\Delta\theta)}$$

Calculation of θ and $\Delta\theta$

21,874 HARDEBECK AND HAUKSSON: CRUSTAL STRESS FIELD IN CALIFORNIA

Figure 8. Assumed geometry of a stress rotation due to slip on a fault. The postmainshock stress state is equal to the premainshock stress state plus the stress change due to the earthquake. The problem is assumed to be two-dimensional, so it can be represented entirely in the σ_1 - σ_3 plane. θ is the angle from the fault trend to the σ_1 axis, clockwise positive. $\Delta \theta$ is the rotation of the s^* is taken to be positive. The mainshock stress drop, $\Delta \tau$, is taken to be positive for the set A hown and negative for the opposite sense of slip.

Nodal plane 2018 Mw 7.5 Palu 348 · 57 · -15 87 · 77 · -146

$$\theta = strike - before$$
 $\theta_a = strike - after$
 $\Delta \theta = \theta_a - \theta$

Fault | Before | After | $\theta + \Delta \theta$ | θ | $\Delta \theta$

Hardebeck & Hauksson 2001 say that θ and $\Delta\theta$ are calculated on the $\sigma 1 - \sigma 3$ plane. Since the mechanism of the 2018 Mw7.5 Palu earthquake is strike-slip, the $\sigma 1 - \sigma 3$ plane is horizontal, so the angle used is SHmax with respect to the strike of fault.

Model Stress Drop 2018 Mw 7.5 Palu by SHmax

$$\theta_b = 52.95 \pm 5.29 (47.66-58.24)$$

 $\Delta \theta = 23.80 \pm 15.12 (8.69-38.92)$
 $\frac{\Delta \tau}{\tau} = 0.83 \pm 0.23 (0.50-0.97)$