Bootcamp Data Science

Przemysław Spurek

Testy Normalności

- Omnibus
- Shapiro-Wilk
- Lilliefors
- Kolmogorov-Smirnov

Weryfikujemy hipotezę:

• H₀: próbka pochodzi z okładu normalnego,

Hipoteza alternatywna:

H₁: próbka nie pochodzi z okładu normalnego,

Test t-studenta dla jednej próbki

Sprawdzamy, czy średnia z jednej próbki wynosi μ_0 :

Zał: Próbka musi pochodzić z rozkładu normalnego.

Weryfikujemy hipotezę:

•
$$H_0$$
: $\mu = \mu_0$,

Możliwe hipotezy alternatywne:

- H_1 : $\mu = \mu_1 > \mu_0$
- H_1 : $\mu = \mu_1 < \mu_0$
- H_1 : $\mu = \mu_1 \neq \mu_0$.

import scipy.stats as stats
stats.ttest_1samp(data, checkValue)

Test wilcoxon dla jednej próbki

Sprawdzamy, czy średnia z jednej próbki wynosi μ_0 :

Zał: Wykonujemy, gdy testy normalności nie przejda.

Weryfikujemy hipotezę:

•
$$H_0$$
: $\mu = \mu_0$,

Możliwe hipotezy alternatywne:

- H_1 : $\mu = \mu_1 > \mu_0$
- H_1 : $\mu = \mu_1 < \mu_0$
- H_1 : $\mu = \mu_1 \neq \mu_0$.

import scipy.stats as stats
stats.wilcoxon(data-checkValue)

Test t-studenta dla dwóch próbek

Sprawdzamy, czy średnie w dwóch próbkach są takie same:

Zał: Obie próbki muszą pochodzić z rozkładu normalnego.

Weryfikujemy hipotezę:

• H_0 : $\mu_1 = \mu_2$,

Możliwe hipotezy alternatywne:

- H_1 : $\mu_1 > \mu_2$
- H_1 : $\mu_1 < \mu_2$.
- $H_1: \mu_1 \neq \mu_2$

```
import scipy.stats as stats
stats.ttest_ind(data1, data2)
stats.ttest_rel(data1, data2)
```

Test Mann-Whitneyu dla dwóch próbek

Sprawdzamy, czy średnie w dwóch próbkach są takie same: Wykonujemy, gdy co najmniej jeden testy normalności nie przejdzie.

Weryfikujemy hipotezę:

- H_0 : $\mu_1 = \mu_2$,
- 5 Możliwe hipotezy alternatywne:
 - H_1 : $\mu_1 > \mu_2$.
 - H_1 : $\mu_1 < \mu_2$
 - H_1 : $\mu_1 \neq \mu_2$.

Analysis of Variance (ANOVA) jednoczynnikowa

Na podstawie wyników w próbie należy zweryfikować hipotezę:

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_n = \mu$$

względem hipotezy alternatywnej

$$H_1: \mu_i \neq \mu_j$$
, gdzie $i \neq j$.

```
from scipy import stats

(W,p) = stats.levene(data1, data2, data3)
print(('p={0}'.format(p)))

f, p = stats.f_oneway(data1, data2, d3)
```

Kruskal-Wallis

Jeżeli test Levena nie przejdzie to zamiast ANOV-y wykonujemy test Kruskal-Wallis

Na podstawie wyników w próbie należy zweryfikować hipotezę:

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_n = \mu$$

względem hipotezy alternatywnej

$$H_1: \mu_i \neq \mu_j$$
, gdzie $i \neq j$.

```
from scipy import stats
from scipy.stats.mstats import kruskalwallis
stats.kruskalwallis(data1, data2, data3)
```

Analysis of Variance (ANOVA) wieloczynnikowa

Za pomocą dwuczynnikowej analizy wariancji testować będziemy zestaw hipotez:

 H_{A0} : Źródło zmienności A nie różnicuje wyników.

 H_{B0} : Źródło zmienności B nie różnicuje wyników.

 H_{AB0} : Źródło zmienności AB nie różnicuje wyników.

```
import numpy as np
import pandas as pd
import scipy.stats as stats
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm

formula = 'target~C(name1)+C(name1)+C(name1)'.C(name1)',
model = ols(formula, data).fit()
anov_table = anova_lm(model, typ=2)
print(anov_table)
```

Test chi kwadrat równości rozkładów

Weryfikujemy hipotezę:

• H₀: wiersze w tabeli częstości mają ten sam rozkład,

Hipoteza alternatywna:

H₁: wiersze w tabeli częstości mają inne rozkłady,

```
import scipy.stats as stats
stats.chisquare(f_obs= observed,f_exp= expected)
```

Test chi kwadrat niezależności (Chi-Square Contingency Test)

Weryfikujemy hipotezę:

• H₀: wiersze z kolumnami w tabeli częstości są niezależne,

Hipoteza alternatywna:

• H1: wiersze z kolumnami w tabeli częstości są zależne,

```
import numpy as np
import pandas as pd
from scipy import stats

data = np.array([[43,9],[44,4]])
V, p, dof, expected = stats.chi2_contingency(data)
print(p)
```

McNemar's Test

W tym przykładzie zerowa hipoteza mówi o "jednorodności marginalnej", co oznacza, że leczenie nie daje żadnego efektu.

• H₀: leczenie nie daje żadnego efektu,

Hipoteza alternatywna:

• H₁: leczenie daje efektu.

```
import numpy as np
import pandas as pd
from scipy import stats
from statsmodels.sandbox.stats.runs import mcnemar

f_obs = np.array([[101, 121],[59, 33]])
(statistic, pVal) = mcnemar(f_obs)

print(pVal)
```