

SRM Institute of Science and Technology Faculty of Engineering and Technology

DEPARTMENT OF CSE

Vadapalani Campus, Chennai 600026, Tamilnadu Academic Year: 2024-25 Semester: ODD

Mode of Exam

OFFLINE

SET-A

Test: CLAT-3 **Date:** 05.11.2024 Course Code & Title: 21CSC201J & Data Structures and Algorithms Duration:90 min. Max. Marks:50 Year &Sem: II/III

Course Articulation Matrix:

S.			Program Outcomes (PO)									PSO				
No.	Course Outcomes (CO)	1	2	3	4	5	6	7	8	9	1 0	11	1 2	1	2	3
1	Develop programs using data types like structures, pointers and arrays supported by C programming language	1	-	3	-	-	-	-	-	2	-	-	-	1	-	2
2	Analyze the complexity of algorithm and if needed, modify it to improve its efficiency	2	3	2	1	1	-	-	-	-	-	-	-	1	2	-
3	Identify and use appropriate data structure for devising solution	1	3	2	-	ı	-	-	-	-	-	-	-	1	1	2
4	Describe and use tree structure while developing programs	2	-	3	2	ı	-	-	-	-	-	-	-	1	-	2
5	Implement the Graph structure and use it whenever deemed university for provide better solution	3	2	3	-	-	-	-	-	-	-	-	-	1	1	2

	Part – A (11 x 01 = 11 Marks) Instructions: Answer All the Questions				
Q. No	Question	Marks	BL	СО	PO
1	What is the maximum number of children that a binary tree node can have? a) 1 b) n/2 c) 2 d) n	1	2	4	2
2	An array representation of the binary tree is the index number of a child node is 6 then the index number of its present node is a) 2 b)3 c) 4 d) 5	1	2	4	2
3	What is the speciality about the inorder traversal of a binary search tree? a) It traverses in a non increasing order b) It traverses in an increasing order c) It traverses in a random fashion d) It traverses based on priority of the node	1	1	4	2

4	The number of	f nodes in a com	plete binary tree	of level 5 is	1	2	4	1
	a) 64	b) 63	c) 67	d) 32				
5	a) to avoid for b) to save me	mation of skew mory ster memory ac		nt balanced?	1	1	4	1
6	What is the ma a) p b) log(p) c) log(p)/2 d) p/2	aximum height (of an AVL tree w	rith p nodes?	1	2	4	2
7	information is	stored in form of	of an adjacency n	of edges in a graph whose matrix is $\underline{\hspace{1cm}}$ $O(V^2)$	se 1	1	5	1
8	a) ABCDE b) AEDCB c) EDCBA d) ADECB	e the DFS trave	ersal of the give	n Graph?	1	3	5	2
9	a) It is a greedb) It constructweightsc) It can accep	y algorithm	MST	s algorithm? increasing order of the	ir 1	1	5	2
10	(a) Adjacency (b) Incidence	List and Adjac Matrix List, Adjacency	ency Matrix	present a graph? as Incidence Matrix	1	1	5	1

11	What is the time complexity of Dijikstra's algorithm?	1	1	5	1				
	a) O(N) b) O(N3)								
	c) O(N2)								
	d) O(logN)								
	Part – B (3 * 8 = 24 Marks)								
	Instructions: Answer All the Questions								
12.A	Design recursive algorithms for In-Order and Pre-Order tree traversal and explain.	8	3	4	1				
	OR		•						
12.B	Construct a 3-way B-Tree by inserting the following data elements, 7, 8, 9, 10, 11, 16, 21, and 18.	8	3	4	1				
13.A	Consider the hash table of size 7 using quadratic probing, insert the keys 72,27,36,24,63,81,91 and 101 into the table. Assume h1=k mod 7.	8	2	4	2				
	OR		•						
13.B	A 2 B 7 C 9 E 6 8 4 G	8	2	5	3				
	Use Prim's algorithm to find the Minimum spanning tree for the above graph and calculate its cost.								
14.A	Illustrate how queues are employed for graph traversals.	8	2	5	3				
	OR		<u> </u>						

14.B	(i) Define Graph and name the different ways of representing a graph?(ii) What will be the adjacency matrix for the below directed weighted graph?	8	2	5	3
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	Part –C				
	(1 * 15 = 15 Marks) Instructions: Answer ANY ONE out of TWO				
15.	Consider the above balanced AVL tree. Insert 14, 28, 18, 15, 10, 2, 3 and	15	3	4	3
	7 in the same order. Perform suitable rotations to balance the tree. Delete key 9 and show the resultant tree.				
16.	1 8 2 7 3 9 0 11 8 4 14 4 8 7 6 10 7 1 6 2 5	15	3	4	3
	Given a weighted graph and a source vertex in the graph, find the shortest paths from the source to all the other vertices in the given graph. Source: 0.				

