CMPE 257 Machine Learning Spring 2019 HW#1

Submitted By:- Akshata Deo

SJSU ID:- 012565761

Question 2: - What types of Machine Learning, if any, best describe the following scenarios:

a.

Answer:- None. Machine is not learning from the data.

b.

Answer:- Supervised Learning. With the help of given data, algorithm will try to model relationship dependencies between input and output. To be specific it is a binary classification problem.

c.

Answer: - Supervised Learning. With the help of given data, algorithm will try to model relationship dependencies between input and output. To be specific it is a multiclass classification problem.

d.

Answer: - Unsupervised Learning. We do not have output data to model relationship.

e.

Answer: - Reinforcement learning. Agent is learning its behaviour from the reward feedback by performing actions on the environment.

Question 3:

Answer: We know that, $P(A|B) = P(A \cap B)/P(B)$

where, $P(A \cap B)$ is the probability of 2 kittens in a box = $\frac{1}{2}$ and, P(B) is the probability of the white kitten in a box = $\frac{3}{4}$

So, $P(A|B) = (\frac{1}{2} / \frac{3}{4}) = \frac{2}{3}$

Question 4:

a.

Answer: Given, $\mu = 0.65$.

Probability that any marble we draw is not red = 1-0.65 = 0.35

As each draw is independent (with replacement), the probability to draw one such sample is-

$$P = (0.35)^{10} = 0.00002759$$

h.

Answer: Probability that at least one v=0 exists among 1000 independent samples will be equal to (1-P[no sample has v=0]).

Probability that no marble drawn is red = 0.35

Probability that no marble drawn is red in a sample = $(0.35)^{10}$

Probability that at least one marble is red = $1-(0.35)^{10}$

probability that (at least) one of the samples has v = 0 will be $(1-(1-(0.35)^{10})^{1000})$ which is equal to 0.0272

Question 5.

Answer: -

Considering the remaining combinations {101, 110, 111} we will get 8 possible target functions as described below: -

X _n	Target Functions f(xn)							
	f(x1)	f(x2)	f(x3)	f(x4)	f(x5)	f(x6)	f(x7)	f(x8)
1 0 1	0	0	0	0	1	1	1	1
1 1 0	0	0	1	1	0	0	1	1
1 1 1	0	1	0	1	0	1	0	1

a. g returns 1 for all three points.

Answer: - As per table above and "score" formula in question, f(x8) is the only target function agreeing with hypothesis on all 3 points. f(x4), f(x6), f(x7) are the 3 functions agreeing with hypothesis on exactly 2 points. f(x2), f(x3), f(x5) are the3 target functions agreeing with hypothesis on exactly 1 point. f(x1) is the only target function agreeing with hypothesis on 0 points. So,

Score =
$$(1*3) + (3*2) + (3*1) + (1*0) = 12$$

b. g returns 0 for all three points.

Answer: - f(x1) is the only target function agreeing with hypothesis on all 3 points. f(x2), f(x3), f(x5) are the 3 functions agreeing with hypothesis on exactly 2 points. f(x4), f(x6), f(x7) are the3 target functions agreeing with hypothesis on exactly 1 point. f(x8) is the only target function agreeing with hypothesis on 0 points.

So,

Score =
$$(1*3) + (3*2) + (3*1) + (1*0) = 12$$

c. g is the XOR function applied to x, i.e., if the number of 1s in x is odd, g returns 1; if it is even, g returns 0.

Answer: - f(x2) is the only target function agreeing with hypothesis on all 3 points. f(x1), f(x4), f(x6) are the 3 functions agreeing with hypothesis on exactly 2 points. f(x3), f(x5), f(x8) are the3 target functions agreeing with hypothesis on exactly 1 point. f(x7) is the only target function agreeing with hypothesis on 0 points.

So.

Score =
$$(1*3) + (3*2) + (3*1) + (1*0) = 12$$

d. g returns the opposite of the XOR function.

Answer: - f(x7) is the only target function agreeing with hypothesis on all 3 points. f(x3), f(x5), f(x8) are the 3 functions agreeing with hypothesis on exactly 2 points. f(x1), f(x4), f(x6) are the3 target

functions agreeing with hypothesis on exactly 1 point. f(x2) is the only target function agreeing with hypothesis on 0 points.

So,

Score =
$$(1*3) + (3*2) + (3*1) + (1*0) = 12$$

Question 6. The weight update rule is w(t+1) = w(t) + x(t)y(t)

(a) Show that $y(t)w^{T}(t)x(t) < 0$.

Answer. Given, x(t) is misclassified by w(t),

means $w^{\scriptscriptstyle T}(t)x(t)$ & y(t) has the opposite signs. Therefore, product of these two will always be negative. Hence, $y(t)w^{\scriptscriptstyle T}(t)x(t) < 0$.

(b) Show that $y(t)w^{T}(t+1)x(t) > y(t)w^{T}(t)x(t)$.

Answer. According to the update rule:

$$w(t+1) = w(t) + y(t)x(t)$$

$$w^{T}(t+1) = w^{T}(t) + x^{T}(t)y^{T}(t)$$
 //take transpose of the whole equation.

$$y(t)$$
 $w^{T}(t+1)$ $x(t) = y(t)$ $w^{T}(t)$ $x(t) + y(t)$ $x^{T}(t)$ $y^{T}(t)$ $x(t)$ //multiply $y(t)$ $x(t)$ on both sides.

$$y(t)w^{T}(t+1)x(t) = y(t)w^{T}(t)x(t) + y^{2}(t)|x(t)|^{2}$$

Since $y^2(t)|x(t)|^2 > 0$,

Therefore, $y(t)w^{T}(t+1)x(t) > y(t)w^{T}(t)x(t)$

(c) As far as classifying x(t) is concerned, argue that the move from w(t) to w(t+1) is a move "in the right direction."

Answer. We have already proved-

$$y(t)w^{T}(t)x(t) < 0$$
,

And
$$y(t)wT(t+1)x(t) > y(t)w^{T}(t)x(t)$$

the update rule keep on increases y(t)wT(t)x(t) until it reaches 0, where $\{x(t),y(t)\}$ is perfectly classified by w(t).

Question 7. Given, the perceptron in 2D: $h(x) = sign(w^{T}x)$

Where
$$w = [w0, w1, w2]^T & x = [1, x1, x2]^T$$
.

(a). We express the line by the equation: $x_2 = ax_1 + b$. //equation 1

According to the given data:

$$W_0 + W_1 X_1 + W_2 X_2 = 0$$

$$x_2 = (-w_1/w_2)x_1 + (-w_0/w_2)$$
 // equation 2

On comparing equation 1 & 2.

Slope $a = -w_1/w_2$ & Intercept $b = -w_0/w_2$

(b). First, $w = [1,2,3]^T$

So the equation will be:

$$1 + 2x_1 + 3x_2 = 0$$

$$2x_1 + 3x_2 = -1$$
 // equation 1

If $x_1=0$, then $x_2=-1/3$

& if $x_2=0$, then $x_1=-1/2$

Second, $w = -[1,2,3]^T$

So the equation will be:

$$-1 - 2x_1 - 3x_2 = 0$$

Or
$$1 + 2x_1 + 3x_2 = 0$$

$$2x_1 + 3x_2 = -1$$
 // equation 1

If $x_1=0$, then $x_2=-1/3$

& if $x_2=0$, then $x_1=-1/2$

Question 8. ipynb file attached.

Question 9. ipynb file attached.

Question 10. Choice of Error Measure: Fingerprint Verification: f is +1, if it is authentic user, and f is -1 if it is unauthentic user. Now, error could be of two types: false accept and false reject.

			95		
			+1	-1	
	f	+1	Correct	false Reject	
		-1	false Accept	Correct	

Fingerprint Verification for Supermarket:

		99		
		+1	-1	
f	+1	0	10	
	-1	1	0	

 $E_{in}\!=1/N\;{\textstyle\sum_{n=1toN}}\;[10^*false\;reject+1^*false\;accept]$

Fingerprint Verification for CIA Fingerprint:

		g		
		+1	-1	
f	+1	0	1	
	-1	1000	0	

 $E_{in} = 1/N \sum_{n=1toN} [1*false reject + 1000*false accept]$