RS/Conference2019

San Francisco | March 4–8 | Moscone Center

SESSION ID: MLAI-W12

Build Intelligent Vulnerability Scoring to Optimize Security Residual Risks

Bill Chen

Chief Security Architect

Gyan Prakash

Chief Security Architect

Agenda

- 1 Ambiguity Effect Risk Categories and Scope
 - Observations on Attack Pivot Patterns
 - Risk Anatomy Where It Fails
 - 4 Back to Simplicity
 - 5 Existing Vulnerability Scoring Systems
 - 6 Next Gen Intelligent Risk Management
- 7 Transforming Risk Management

Ambiguity Effect – Risk Categories & Scope

"Anything that can go wrong will go wrong." - Murphy's Law

2018 - Successful Attack Pivot Patterns*

Over 53,000 incidents and 2,216 confirmed data breaches in 2018

Step

RS∧°Conference2019

^{*} Source: Verizon Data Breach Report, 2018.

Anatomy of Risk

Subjective Ambiguity

Subjective to Objective

Known Vulnerabilities

Static Code Testing

Dynamic Testing

Design Vuln.

Pen Testing

Risk = Likelihood x Size of Loss

Likelihood = (vd) * (RTv) * (Compliance Violations) * (Config Violations)

$$Vd = Vulnerbility \ Density = \left(\frac{\text{Total known Vulnerability}}{\text{Size of Software}}\right)$$

RTv = RunTime Vuln. = $\frac{\text{# Failed Applications Attacks 24 hrs}}{\text{Total Traffic Volume in m per 24 hrs.}}$

Compliance Violations = $\frac{\text{Failed Complaince Requirements}}{\text{Total Compliance Requirements}}$

Ops Violations =
$$\left(\frac{\text{Configurations Violations}}{\text{Total Servers}}\right)$$

Known Unknown

Open Source Vuln

NW & Infra Scans

Configurations Scans

Daily Attack Pattern

Back to Simplicity

It's all about prioritization.

It is about sorting a list of findings.

In the end of the day, it is all about the ability to compare the risk of any two vulnerabilities.

Existing Vulnerability Scoring Systems

^{*} https://www.first.org/cvss

Next Gen Intelligent Risk Management

Bayesian/Neural Networks for Vulnerability Scoring

Cost Function

- Prioritizing is a sorting problem
- Pairwise comparison from Expert Opinion to Model Prediction *

If Expert says Vuln i is more sever than Vuln j, but The prediction model says the reverse, then it is counted as a clash

Model Performance

Accuracy of prediction

= Number of agreements/Total Number of comparisons

In the sampled training set.

^{*} Bill Chen, "Software Security Economics and Threat Modeling Based on Attack Path Analysis", PhD Dissertation, USC, 2007

Estimate ROI of Security Investment with Result Chain

Transforming Risk Management

Today Next Gen Risk Management Subjective Objective Repeatable Non repeatable Exactly traceable to specific vulnerabilities Lack of technical traceability Focus on scoring model training & calibration Focus on rating every finding Real time risk profile based on findings, alerts, One rating fits a year and mitigation implementation status

