Manifolds

November 15, 2023

Rozdziały

-	Гan	ngent Space
		Definition
4	2.2	Differential
4	2.3	Operations on tangent space
		2.3.1 Bijectivity
		2.3.2 Basis
4	2.4	Cotangent Space
		2.4.1 Basis of Cotangent Space

1 Topology

TODO: add

2 Tangent Space

2.1 Definition

Let (M, τ) be a C^k differentiable manifold, (U, ϕ) chart on M and $p \in U$. Let $\gamma_1, \gamma_2 : (-1, 1) \to U$ be two curves such that $\gamma_1(0) = \gamma_2(0) = p$ and $D_{\phi \circ \gamma_1}(x), D_{\phi \circ \gamma_2}(x) \in C^k[(-1, 1), R^n]$.

Let $_{\sim}$ T be an equivalence relation on the set of curves meeting the above conditions s.t. $\gamma_1 _{\sim} \gamma_2 \iff D_{\phi \circ \gamma_1}(\phi \circ \gamma_1)(0) = D_{\phi \circ \gamma_2}(\phi \circ \gamma_2)(0)$.

Finally, a tangent space T_pM is defined as a set of equivalence classes of curves meeting the above conditions.

$$[\gamma]_{\sim} = \{ \gamma' : (-1, 1) \to U \text{ s.t. } \gamma_{\sim} \gamma' \}$$

$$\tag{1}$$

$$T_p M = \{ [\gamma]_{\sim} : (-1, 1) \to U, \phi \circ \gamma \in C^k[(-1, 1), \mathbb{R}^n], \gamma(0) = p \}$$
 (2)

Since $\gamma_1(0) = \gamma_2(0) = p \implies D_{\phi \circ \gamma_1}(0) = D_{\phi \circ \gamma_2(0)} \phi \circ \gamma_2'(0) \iff [\gamma_1]_{\sim} = [\gamma_2]_{\sim}$, it follows that SHOW INDEPENDENCE FROM CHART.

2.2 Differential 2 TANGENT SPACE

2.2 Differential

Let $(M_1, \tau_1)(M_2, \tau_2)$, be C^k differentiable manifolds, $f: M_1 \to M_2$ be a smooth map and $p \in U \in \tau_1$. We define a differential (or pushforward) as a map between tangent spaces as follows:

$$df: T_pM \to T_{f(p)}M \tag{3}$$

$$df([\gamma]_{\sim}) := D_{f \circ \gamma}(0) \tag{4}$$

(5)

2.3 Operations on tangent space

To define operations on the elements of T_pM , if (U,ϕ) is a chart with $p \in U$, one may define a differential:

$$h_*: T_p M \to T_{\phi(p)} \mathbb{R}^n = \mathbb{R}^n, \tag{6}$$

$$h_*([\gamma]_{\sim}) := D_{\phi \circ \gamma}(0). \tag{7}$$

(8)

Then the operations on T_pM are defined as follows:

for
$$u, v \in T_p M$$
 and $\lambda \in \mathbb{R}$ (9)

$$u + v := h_*^{-1}(h_*(u) + h_*(v)), \tag{10}$$

$$\lambda v := h_*^{-1}(\lambda h_*(v)). \tag{11}$$

(12)

2.3.1 Bijectivity

By the definition of a chart, it has to be a homeomorphism (continuous, bijective) map. Thus T_pM is a vector space isomorphic to \mathbb{R}^n .

2.3.2 Basis

If $B = \{e_1, e_2, ...e_n\}$ is a basis of \mathbb{R}^n , then $B_{T_pM} = \{h_*^{-1}(e_1), h_*^{-1}(e_2), ...h_*^{-1}(e_n)\}$ is a basis of T_pM .

2.4 Cotangent Space

Let M be a C^k differentiable manifold, $p \in M$.

If T_pM is a tangent space, then its dual space T_p^*M is called a cotangent space.

2.4.1 Basis of Cotangent Space

If $B_{T_pM} = \{b_1, b_2, ..., b_n\}$ is a basis of tangent space, then basis of its dual space $B_{T_pM}^* = \{b_1^*, b_2^*, ..., b_n^*\}$ can be found as follows:

$$b_i^* \in \mathcal{L}(T_p M \to \mathbb{R}), b_i \in B_{T_p M} \tag{13}$$

$$b_i^*(b_j) := \delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$
 (14)

3 Submersion

Let M,N be manifolds and $f:M\to N$ be a smooth map. Its pushforward $df:T_pM\to T_{f(p)}N$ is called an immersion if it is bijective.