Exercício 2.1

a)

b)

c)

Exercício 2.2

a)

$$\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{0},\mathbf{1})}\mathbf{f}\ (\mathbf{x},\mathbf{y})=\mathbf{0}$$

b)

$$\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{0},\mathbf{0})} f(\mathbf{x},\mathbf{y}) = 1$$

c)

$$\lim_{x\to 1} (x^2, e^x) = (1, e)$$

d)

$$\lim_{(x,y)\to(0,0)} \left(\frac{\cos[x]}{x^2 + y^2 + 1}, e^{x^2} \right) = (1, 1)$$

e)

 $\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{0},\mathbf{0})} f(\mathbf{x},\mathbf{y}) = 0$

f)

 $\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{1},\mathbf{1})}\mathbf{f}(\mathbf{x},\mathbf{y})=-2$

g)

 $\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{0},\mathbf{0})} f(\mathbf{x},\mathbf{y}) = 1$

h)

Não existe $\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{0},\mathbf{0})} f(\mathbf{x},\mathbf{y})$

i)

Não existe $\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{0},\mathbf{0})} f(\mathbf{x},\mathbf{y})$

j)

Não existe $\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{0},\mathbf{0})} f(\mathbf{x},\mathbf{y})$

k)

 $\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{0},\mathbf{0})} f(\mathbf{x},\mathbf{y}) = 0$

I)

Não existe $\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{0},\mathbf{0})} f(\mathbf{x},\mathbf{y})$

m)

$$\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{0},\mathbf{0})} f(\mathbf{x},\mathbf{y}) = 0$$

Exercício 2.3

a)

$$f(0, 0) = 1$$

b) Não admite prolongamento contínuo à origem (ver exercício 2.2 i))

f (0, 0) = 0 (ver exercício 2.1 c))

d)

Não admite prolongamento contínuo à origem

e)

$$f(0, 0) = 0$$

f)

$$f(0, 0) = 0$$

Exercício 2.4

a)

A função é contínua em \mathbb{R}^2

b)

A função é contínua em $\mathbb{R}^2 \setminus \{ (0, 0) \}$

c)

$$f(x,y) = \frac{x^{2} y}{x^{2} + y^{2}}, x \neq y, f(x,y) = \frac{x^{2}}{2}, x = y,$$

A função é contínua em {
$$(x, y) \in \mathbb{R}^2 : x \neq -y$$
} $\cup \{(0, 0), (-1, 1)\}$

d)

A função é contínua em $\mathbb{R}^2 \setminus \{ (0, 0) \}$

e)

A função é contínua em \mathbb{R}^2

f)

A função é contínua em \mathbb{R}^2