Урок 7. Теорема Больцано-Коши о промежуточном значении. Метод половинного деления

1°. Теорема Больцано-Коши о промежуточном значении

1) Сформулируем и докажем одну из самых важных теорем математического анализа:

Теорема (Больцано-Коши о промежуточном значении).

Пусть функция f(x) непрерывна на отрезке [a,b] и принимает на концах этого отрезка значения разных знаков. Тогда на интервале (a,b) существует такая точка ξ , что $f(\xi) = 0$.

Доказательство теоремы: Воспользуемся методом, который часто называют методом Больцано в честь чешского математика и философа B.Bolzano. Мы будем опираться на аксиому Кантора (лемму о вложенных отрезках) и теорему о сохранении знака.

Разделим отрезок $[a,b]=\Delta_0$ пополам. Если в точке деления f(x)=0, то теорема доказана. В противном случае рассмотрим получившиеся отрезки длины $\frac{b-a}{2}$. Среди них найдется один, на концах которого f(x) принимает значения разных знаков. Обозначим его Δ_1 . Разделим отрезок Δ_1 пополам. Если в точке деления f(x)=0, то теорема доказана. В противном случае обозначим Δ_2 ту половину, на концах которой f(x) принимает значения разных знаков.

Повторяя эту операцию, мы либо найдем точку, в которой f(x)=0, либо получим бесконечную стягивающуюся систему вложенных отрезков $\Delta\supset\Delta_1\supset\Delta_2\supset\dots$, на концах каждого из которых f(x) принимает значения разных знаков. Согласно аксиоме Кантора, эти отрезки имеют общую точку. Обозначим эту точку ξ . Если $f(\xi)=0$, то теорема доказана. Пусть $f(\xi)\neq 0$. Тогда в силу непрерывности функции f(x) существует окрестность точки ξ , в которой f(x) сохраняет знак. Но некоторый отрезок Δ_n лежит в этой окрестности. Полученное противоречие доказывает теорему.

2) Из теоремы Больцано-Коши сразу получаем несколько очень полезных следствий:

Следствие 1.

Пусть функция f(x) непрерывна на отрезке [a,b] и пусть f(a)=A, f(b)=B. Тогда для любого C, лежащего между A и B, существует точка $\xi\in(a;b)$ такая, что $f(\xi)=C$.

Доказательство: Рассмотрим функцию $\varphi\left(x\right)=f\left(x\right)-C$. Эта функция непрерывна на [a,b] и, очевидно, принимает на концах отрезка [a,b] значения разных знаков. Следовательно, по теореме Больцано-Коши существует такая точка $\xi\in(a,b)$, что $\varphi\left(\xi\right)=0$, т. е. $f\left(\xi\right)=C$.

Следствие 2.

Пусть функция f(x) непрерывна на отрезке [a,b] и пусть $m=\inf_{x\in [a,b]}f(x)$, $M=\sup_{x\in [a,b]}f(x)$. Тогда для любого C такого, что m< C< M, существует точка $\xi\in (a;b)$ такая, что $f(\xi)=C$.

Доказательство: Т. к. функция f(x) непрерывна на [a,b], то она достигает на [a,b] своей точной верхней и нижней грани. Пусть $f(\alpha)=m$, а $f(\beta)=M$. Тогда, согласно следствию 1, существует такое $\xi\in(\alpha,\beta)$, что $f(\xi)=C$. Но $(\alpha,\beta)\subset(a,b)$. Следствие 2 доказано.

Следствие 3.

Пусть функция f(x) непрерывна на отрезке [a,b] и не обращается в нуль на интервале (a;b). Тогда f(x) сохраняет один и тот же знак во всех точках интервала (a;b).

Доказательство: Предположим противное. Пусть, например, $f\left(\alpha\right)<0$, а $f\left(\beta\right)>0$. Но тогда в силу теоремы Больцано-Коши на интервале $\left(\alpha,\beta\right)$ найдется такая точка ξ , для которой $f\left(\xi\right)=0$. Противоречие.

Замечание. Следствие 3 служит обоснованием, в частности, применения метода интервалов для решения дробно-рациональных неравенств.

3) Упражнения.

- (1) Докажите, что уравнение $\cos x = x$ имеет корень на интервале $(0; \pi)$.
- (2) Числа a, b и c таковы, что $(a+b+c)\,c<0$. Докажите, что $b^2>4ac$.

2° . Метод половинного деления

- 1) Теорема Больцано-Коши о промежуточном значении позволяет обосновать один из наиболее известных алгоритмов численного решения уравнений метод половинного деления.
- 2) Пусть f(x) непрерывная на отрезке [a,b] функция, причем $f(a) \cdot f(b) < 0$. Тогда в силу теоремы Больцано-Коши на интервале (a,b) существует такая точка ξ , что $f(\xi) = 0$. Найдем ξ (точнее, найдем один из корней функции f(x), лежащий в интервале (a;b)). Для этого разделим отрезок [a,b] пополам. Если в точке деления f(x) = 0, то мы нашли корень. В противном случае на концах одной из половинок f(x) принимает значения разных знаков и

процесс можно продолжить. В итоге мы либо за конечное число шагов находим корень, либо получаем стягивающуюся систему вложенных отрезков. Очевидно, что общая точка этой системы – корень f(x). За конечное число шагов мы сможем найти этот корень с любой наперед заданной точностью.

3) **Упражнение**. Докажите, что уравнение $x^3 - 3x + 1 = 0$ имеет корень на интервале (0;1) и найдите его с точностью до 0,05.

Домашнее задание

- 1) Докажите, что уравнения: а) $x^6 + 2x 13 = 0$; б) $2^x = \frac{1}{3}\sin x + 2$ имеют по крайней один действительный корень.
- 2) Пусть $f(x) = -x^3 + 7x + 2$. Вычислите f(-1), f(0), f(-3), f(3). На каких интервалах функция имеет корни? На каких интервалах функция сохраняет знак?
- 3) Докажите, что уравнение $x^5+x-\frac{1}{x}=0$ имеет корень на интервале [0,5;1]. Найдите этот корень с точностью до 0,1.
- 4) Докажите, что всякий многочлен нечётной степени с действительными коэффициентами имеет действительный корень.
- 5) Докажите, что квадратный трёхчлен ax^2+bx+c , для которого a+b+c>0 и a-b+c<0, имеет действительный корень.
- 6) Пусть a, b, c попарно различные числа. Докажите, что уравнение

$$\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} = 0$$

имеет два различных действительных корня.