一般拓扑学基础——部分答案

Chern Class 凯森森

	录

1	练习 3.3	3
2	练习 4.1	4
3	练习 4.2	5
4	练习 4.3	6
5	练习 4.4	7
6	练习 5.1	8
7	练习 5.2	9
8	练习 5.3	11
9	练习 6.1	13
10	练习 6.2	14
11	练习 6.3	16
12	练习 7.1	17
13	练习 7.2	18
14	练习 8.1	19
15	练习 9.1	21
16	练习 9.2	22
17	练习 9.4	23
18	2022 点集拓扑期末试题	24

19 2020 点集拓扑期末试题	27
20 基础知识	30

1 练习3.3

1.证明 一方面,若 (X,d) 全有界,为说明每个序列都有 Cauchy 子列,我们直接构造,核心是利用了全有界的子集仍然全有界,给定序列 $\{x_n\}$,则存在有限个 B(x,1) 覆盖 X,因此存在 $B(x^1,1)$ 中含序列无穷多项,取其中下标最小的一项,即 x_{n_1} ,注意到 $B(x^1,1)$ 全有界,因此存在有限个 B(x,1/2) 覆盖,进而有 $B(x^2,1/2)$ 包含序列无穷多项,取其中下标第 2 小的一项,即 x_{n_2} ,由此归纳下去可得到一个子列 $\{x_{n_k}\}$,其中当 $k \geq N$ 时,任意 s > k, x_{n_s} 均在 $B(x^N,1/N)$ 中,因此不难有这确实为一个 Cauchy 列.

另一方面,若每个序列都有 Cauchy 子列,我们欲证明其全有界,自然是反证法,若不然,即存在 $\varepsilon > 0$,使得 $B(x,\varepsilon)$ 不存在有限子覆盖,任取 $x_0 \in X$,取 $x_1 \in X \setminus B(x_0,\varepsilon)$,归纳下去取 $x_n \in X \setminus \bigcup_{1 \le k \le n-1} B(x_k,\varepsilon)$,从而不难看到任意 n,m 有 $d(x_n,x_m) > \varepsilon$,必然不含 Cauchy 子列,综上我们完成了证明.

- **2.证明** (1) 利用全有界的子集全有界,不难得到一个方向. 下设 A 全有界,则对任意 ε ,存在 $B(x_k,\varepsilon)$, $1 \le k \le n$ 覆盖 A,事实上它们也刚好覆盖 \overline{A} ,因为任取 $y \in \overline{A}$,有 $x_y \in A$, $d(x_y,y) < \varepsilon/2$,而存在 $1 \le j \le n$ 使得 $d(x_j,x_y) < \varepsilon/2$,因此有 $y \in B(x_j,\varepsilon)$,这即表明 \overline{A} 全有界.
- (2) 有界子集一定包含在一个紧球之中,紧球一定全有界,从而其为全有界子集可得全有界.
- (3) 一方面若 $K \subseteq X$ 序列紧,则可知其紧,也可知其全有界且完备,因此其是 X 的全有界子集,而我们又知道完备度量空间的完备子集一定是闭子集,因此 K 是 X 的全有界闭子集.

另一方面,利用完备度量空间的闭子集完备,知道 K 作为度量空间全有界且完备,因此可知 K 序列紧.

注: 关键在于记忆对度量空间: 序列紧等价于紧等价于全有界且完备.

1.解 我们事实上有 $A \cap B \subseteq A \cap B$,但是不一定相等,因为考虑 $A = \{-1/n\}, B = \{1/n\}$ 即可. 我们还有 $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$,但是不一定相等,因为考虑 $A = \mathbb{Q}, B = \mathbb{Q}^{c}$.	ı} □
2.解 注意到 $\operatorname{int}_X A \subseteq A \subseteq Y$,且为 X 中开集,因此 $\operatorname{int}_X A$ 是 Y 中包含 A 的开集,自然 $\operatorname{int}_X A \subseteq \operatorname{int}_Y A$. 等号不一定成立,因为考虑 $A = [0,1) \subseteq Y = [0,2]$, $X = \mathbb{R}$.	有□
3.证明 (b) 任取 $x \in U \cap \overline{A}$,则存在 x 邻域 $V \subseteq U$,进而任取 x 包含于 V 中的邻域,总不 $U \cap A$ 中元素,因此 $x \in \overline{U \cap A}$. (c) 直接利用 (b) 并结合 $\overline{A} = X$ 即可.	有
4.证明 利用内部是包含的最大开集,我们只需证明 $(F \cup A)^{\circ} \subseteq F \cup A^{\circ}$,同时取补集,该 $O = X \setminus F$,则即要证明 $O \cap \overline{(X \setminus A)} \subseteq \overline{O \cap (X \setminus A)}$,利用上一题的 (b) 即知成立.	殳 □

5.**解** 考虑 $\{n+1/n\}$ 为闭集,其像不为闭集,因为不含极限点 (1,0). 对 g,考虑开集 [0,1),其像不为 S^1 的开圆弧,不为开映射.

7.**证明** (a) 推 (b): 若 f 开,从而有 $f(f^{-1}(B)^{\circ})$ 为开集,而 $f(f^{-1}(B)^{\circ}) \subseteq f(f^{-1}(B)) \subseteq B$,从 而有 $f(f^{-1}(B)^{\circ}) \subseteq B^{\circ}$,因此即 $f^{-1}(B)^{\circ} \subseteq f^{-1}(B^{\circ})$;

- (b) 推 (c): 注意到 $X \setminus \overline{f^{-1}(B)} = (X \setminus f^{-1}(B))^{\circ} = f^{-1}(Y \setminus B)^{\circ} \subseteq f^{-1}((Y \setminus B)^{\circ}) = f^{-1}(Y \setminus \overline{B}) = X \setminus f^{-1}(\overline{B}),$ 进而即有 $f^{-1}(\overline{B}) \subseteq \overline{f^{-1}(B)};$
- (c) 推 (a): (c) 推 (b) 将上面一步操作完全照搬即可,下证 (b) 推 (a),任取 U 为 X 中开集,则 $f^{-1}(f(U)^{\circ}) \supseteq f^{-1}(f(U))^{\circ} \supseteq U^{\circ} = U$,同时作用 f,即有 $f(U) \subseteq f(f^{-1}(f(U)^{\circ})) \subseteq f(U)^{\circ}$,因此可知 f(U) 为开集,即为开映射.
- 8.证明 (a) 推 (b): 注意到 $f(\overline{A})$ 是包含 f(A) 的闭集即可;
- (b) 推 (c): 反证法,若不然,即存在 $y \in Y$,以及 X 中开集 U 满足 $f^{-1}(y) \subseteq U$,有任意 y 的邻域 V, $f^{-1}(V) \setminus U$ 非空,也即 $f^{-1}(V) \cap U^c \neq \varnothing$,因此存在 $y_n \to y$ 使得 $f^{-1}(y_n) \subseteq U^c$,又注意到 $f^{-1}(y) \subseteq U$,因此 $y \notin f(U^c)$,而 $y_n \in f(U^c)$ 进而 $y \in \overline{f(U^c)}$,但易见 U^c 为闭集,因此可知矛盾.
- (c) 推 (a): 反证法,若 f 不为闭映射,从而存在闭集 A, f(A) 不为闭集,也即存在 $y \in \overline{f(A)} \setminus f(A)$,考虑 $f^{-1}(y) \subseteq X \setminus A$,任取 y 邻域 V,有 $f^{-1}(V) \subseteq X \setminus A$,而 $y \in \overline{f(A)}$,则存在 $z \in V \cap f(A)$,说明 $f^{-1}(z) \subseteq f^{-1}(V) \cap A \neq \emptyset$,矛盾!

1.证明 由 \mathcal{B} 为 \mathcal{O} 的子基,设生成基为 \mathcal{B}' ,任取 $U \in \mathcal{B}'$,从而存在 $U_i \in \mathcal{B}$, $1 \leq i \leq n$ 使得 $U = U_1 \cap \cdots \cap U_n$,而 $\mathcal{B} \subseteq \mathcal{T}$,从而有任意 $1 \leq i \leq n$, $U_i \in \mathcal{T}$,进而 $U \in \mathcal{T}$,也即 $\mathcal{B}' \subseteq \mathcal{T}$,进一步不难有任意 $V \in \mathcal{O}$,其为 \mathcal{B}' 中元素的并,从而在 \mathcal{T} 中,也即 $\mathcal{O} \subseteq \mathcal{T}$.

应用:验证连续性 $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$,只需要对 \mathcal{O}_Y 的子基 \mathcal{B}_Y 验证即可,因为考虑 $\mathcal{T}_Y=\{V\subseteq Y|f^{-1}(Y)\in\mathcal{O}_X\}$ 也是 Y 上一个拓扑,且 $\mathcal{B}_Y\subseteq\mathcal{T}_Y$,进而 $\mathcal{O}_Y\subseteq\mathcal{T}_Y$,故连续.

2.证明 任取 U 为 X 中开集,从而由 \mathcal{B} 为 X 的基,存在 $1 \leq i \leq n$, $U_i \in \mathcal{B}$,使得 $U = U_1 \cap \cdots \cap U_n$,从而 $f(U) = f(U_1 \cap \cdots \cap U_n) = f(U_1) \cup \cdots \cap f(U_n)$ 为 Y 中开集,因此 f 为开映射.

3.证明 设 $Y \subseteq X \in \mathsf{Top}$,对 X 的基 \mathcal{B} ,不难验证 $T \cap \mathcal{B}$ 是 Y 的基,从而第二可数是遗传性质;设 $y \in Y$,其在 X 中有可数邻域基 \mathcal{N} ,则 $Y \cap \mathcal{N}$ 是 y 在 Y 中的可数邻域基,因此第一可数也是遗传性质;设 $A \subseteq X$ 为一可数稠子集,则对 Y 为开子空间,从而 $A \cap Y$ 与 Y 中任意开集 U,由 $U = \widetilde{U} \cap Y$,从而 U 为 X 中开集,故 $A \cap U \neq \emptyset$,进而 $A \cap Y$ 与 Y 中任一开集相交非空,因此为可数稠集,进而 Y 可分,从而为开遗传性质.

注: 可分不是遗传性质,如考虑 \mathbb{R}^2_ℓ 的闭子集 $\{(x,-x)|x\in\mathbb{R}\}$,证明见 [1] 的 P87.

4.证明 设 $f: X \to Y$ 为开连续映射,且 Y = f(X),若 X 第二可数,从而有可数基 \mathcal{B} ,我 们断言 $f(\mathcal{B})$ 是 Y 的可数基,可数性显然,任取 V 为 Y 的开集,从而有 $f^{-1}(V)$ 为 X 中开集,故存在 $1 \le i \le n$, $U_i \in \mathcal{B}$ 使得 $f^{-1}(V) = U_1 \cup \cdots \cup U_n$,进一步结合 f 满射,故 $V = f(f^{-1}(V)) = f(U_1 \cup \cdots \cup U_n) = f(U_1) \cup \cdots \cup f(U_n)$,从而可知 $f(\mathcal{B})$ 为 Y 可数基.

第一可数空间开连续像第一可数证明类似,考虑 $f(\mathcal{N})$ 即可.

1.证明 任取 $A \subseteq X$,以及 $x \in \overline{A}$,从而存在 $\{x_n\} \subseteq A$ 使得 $x_n \to x$,从而有 $f(x_n) \to f(x)$,因此 $f(x) \in \overline{f(A)}$,故 $f(\overline{A}) \subseteq \overline{f(A)}$ 由此可知 f 连续,即证.

2.证明 由 $x \in \{x_n\}$ 的聚点,从而 $\{x_n\}$ 常在 x 的每个邻域,从而由 X 第一可数,设 $\{U_n\}$ 为 x 的可数邻域基,考虑 $V_n = \cap U_i$,从而存在 $x_{n_i} \in V_i$,则 $\{x_{n_i}\}$ 为一收敛到 x 的子列.

3.证明 一方面,若 $f: K \to X$ 连续,从而取 $A = \{1/n | n \in \mathbb{N}\}$,从而 $\overline{A} = K$,则 $a = f(0) \in f(K) = f(\overline{A}) \subseteq \overline{f(A)}$,而 $f(A) = \{x_n\}$,从而可知 $\{x_n\}$ 收敛到 a.

另一方面,若 $\{x_n\}$ 收敛到 a,任取 $A \subseteq K$,若 $0 \in A$,或 $|A| < \infty$,从而 $\overline{A} = A$,显 然 $f(\overline{A}) \subseteq \overline{f(A)}$,若 $0 \notin A$,且 $|A| = \infty$,故 $\overline{A} = A \cup \{0\}$,从而由 $\{x_n\}$ 收敛到 a,因此 $a \in \overline{f(A)}$,故仍有 $f(\overline{A}) \subseteq \overline{f(A)}$,即证 f 连续.

4.证明 一方面,若 $f: X \to Y$ 连续,从而任取 $x \in \text{clust}\xi$,则 ξ 常在 x 的任一邻域,我们希望要证 $f \circ \xi$ 常在 f(x) 的任一邻域,因此任取 f(x) 的开邻域 V,从而 $f^{-1}(V)$ 为 x 开邻域,因此任意 $d \in D$,存在 $e \in D$, $d \sqsubseteq e$ 使得 $\xi(e) \in f^{-1}(V)$,从而 $f \circ \xi(e) \in V$,即证 $f \circ \xi$ 常在 V 中,因此 $f(\text{clust}\xi) \subseteq \text{clust}(f \circ \xi)$.

另一方面,为证连续性,只需对任一 $A\subseteq X$,证明 $f(\overline{A})\subseteq f(A)$,任取 $x\in \overline{A}$,从而存在 A 中的网 ξ 收敛于 x,则 $x\in \lim \xi\subseteq \operatorname{clust}\xi$,从而 $f(x)\in \operatorname{clust}(f\circ\xi)$,也即存在 f(A) 中的网 $f\circ\xi$ 常在 f(x) 的任一邻域中,故任取 f(x) 邻域 V, $f\circ\xi$ 常在 V 中,也即任意 $d\in D$,存在存在 $e\in D$, $d\subseteq e$ 使得 $f\circ\xi(e)\in V$,而 $f\circ\xi(e)\in f(A)$,从而可知 $V\cap f(A)\neq\emptyset$,进而可知 $f(x)\in\overline{f(A)}$,由此 $f(\overline{A})\subseteq\overline{f(A)}$,即证连续.

注:从上述几题可以看到,联系连续性与网收敛之间关系最密切的 $f(\overline{A}) \subseteq \overline{f(A)}$ 这一条件.

5.解 有限补空间的开集为 $\{\emptyset\} \cup \{U : |\mathbb{R} \setminus U| < \infty\}$,从而 $\{x_n\}$ 收敛于 x 当且仅当任意 x 开邻域 U,存在 N,任意 n > N,有 $x_n \in U$,当且仅当 X 中任意有限个不为 x 的点 a_1, \dots, a_k ,有 N,任意 n > N, $x_n \neq a_1, \dots, a_k$,当且仅当任意 $a \neq x$, $\{x_n\}$ 中只有有限项为 a.

6 练习5.1

1.证明 内容... 2. \mathbf{M} 我们将说明 (ℝ,S) 中的紧子集要么为空集,要么有最小值. 设 K 为 ℝ 中的非空集合,若 K 紧,则 K 可以被有限覆盖,而易见有限个 $(a_i,+\infty)$ 相交仍为 $(a,+\infty)$,从而 K 有下确界, 进一步若下确界为b但 $b \notin K$,则考虑覆盖 $(b+1/n,+\infty)$,易见没有有限子覆盖,从而不紧. 另一方面,若 K 有最小元 b,从而其任意覆盖 U,一定存在一个 a < b,且 $(a, +\infty) \in U$,其 即构成 K 的一个开覆盖,从而 K 紧. 综上, (\mathbb{R}, S) 上紧子集为空集,或有最小元. 3.证明 内容... 4.证明 可数紧即任意可数覆盖都有有限子覆盖,从而设 X 可数紧, V = f(X) 是其连续像, 从而设 $\{V_n\}$ 是 Y 的可数开覆盖,则 $\{f^{-1}(V_n)\}$ 是 X 的可数开覆盖,从而存在有限子覆盖 $f^{-1}(V_k)$, $\bigcup Y = f(X) = f(f^{-1}(\cup V_k)) = \cup V_k$, $\bigcup W$. 5.**证明**一方面,若可数紧,我们采用反证法,若有单调递减闭集列 $F_1 \supseteq F_2 \supseteq \cdots$,使得 $\bigcap F_i =$ Ø, 注意到 $\{X \setminus F_i\}$ 为 X 的一个开覆盖,从而存在有限开覆盖,则可知 $\bigcap_{i=1}^k (X \setminus F_{i_i}) = X$, 进而可知 $F_{i_k} = \emptyset$,矛盾! 另一方面,设 $\mathcal{U} = \{U_n\}$ 为X的可数开覆盖,则有 $\left\{X \setminus \left(\bigcup_{i=1}^n U_i\right)\right\}$ 为单调递减闭集列, 从而由 \mathcal{U} 为 X 的开覆盖,从而这个闭集列相交为空,从而可知存在 N , $X\setminus \left(\bigcup_{i=1}^{N}U_{i}\right)=\varnothing$, 也即 $X = \bigcup_{i=1}^{N} U_i$ 有有限覆盖. 6.证明 内容...

7.**解** 考虑拓扑空间 $X = \{a, b\}$,赋予拓扑 $\mathcal{T} = \{\emptyset, \{a\}, X\}$,从而可见 $\{a\}$ 为紧子集,但不是闭子集 (注意有限集无论赋予何种拓扑,它的任意子集都是紧集).

考虑拓扑空间 $Y=\{e,\pi\}\cup\mathbb{N}$,其上开集为 \mathbb{N} 的离散拓扑并上 $\{e\}\cup\mathbb{N}$, $\{\pi\}\cup\mathbb{N}$ 以及 Y,从而可知 $\{e\}\cup\mathbb{N}$, $\{\pi\}\cup\mathbb{N}$ 均为紧子集,但是相交为 \mathbb{N} 不为紧子集,考虑离散开覆盖即可. \square

7 练习5.2

1.证明 (a) 一方面,若 X 是 T_0 空间,从而若有 $\mathcal{N}(x) = \mathcal{N}(y)$,则若 $x \neq y$,则不妨设存在 x 邻域 U 有 $y \notin U$,则 $U \in \mathcal{N}(x)$,但 $U \notin \mathcal{N}(y)$,矛盾!

另一方面,任取 $x \neq y$,从而 $\mathcal{N}(x) \neq \mathcal{N}(y)$,不妨设 $\mathcal{N}(x) \not\subseteq \mathcal{N}(y)$,从而存在 $U \in \mathcal{N}(x)$,但不在 $\mathcal{N}(y)$ 中,因此可知 $x \in U$,但 $y \notin U$,即证 $X \in U$ 0。

(b) 一方面,若 $X \in T_1$ 空间,从而若有 $\mathcal{N}(x) \subseteq \mathcal{N}(y)$,则若 $x \neq y$,则有开集 U 使得 $x \in U$,但 $y \notin U$,因此 $U \in \mathcal{N}(x)$,但不在 $\mathcal{N}(y)$ 中,矛盾!

另一方面,任取 $x \neq y$,则可知 $\mathcal{N}(x)$ 与 $\mathcal{N}(y)$ 互不包含,因此可取 $U \in \mathcal{N}(x) \setminus \mathcal{N}(y)$, $V \in \mathcal{N}(y) \setminus \mathcal{N}(x)$,则可知 U, V 为符合要求的开集,即知 X 为 T_1 空间.

8.证明 我们考虑证明 $(A^d)^c$ 为开集,而回忆凝聚点之定义,即 $x \in A^d$,则 $x \in \overline{A \setminus \{x\}}$,也即 x 任一邻域包含 $A \setminus \{x\}$ 中点,进而若 $x \notin A^d$,若不存在开邻域 U 使得 $U \cap A^d = \varnothing$,则任一开邻域 U,存在 $x' \in U \cap A^d$,且 $x' \neq x$,由 X 为 T_1 空间,进而存在 x' 开邻域 $V \subseteq U$ 且 $x \notin V$,故有 $A \setminus \{x, x'\}$ 中点,因此 U 中有 $A \setminus \{x\}$ 中点,这与 $x \notin A^d$ 矛盾!因此可知 A^d 是闭集.

9.证明 一方面,若 X 可数紧,从而任取无限子集中的一个序列 $A = \{x_n\}$,若序列无凝聚点,即任意 $x \in X \setminus A$,存在 x 开邻域 V 使得 $V \cap A = \emptyset$,进而可知 A 为闭集,进一步任意 $x_n \in A$,有开邻域 U_n 使得 $U_n \cap A = \{x_n\}$,否则 x_n 为 A 的一个凝聚点. 因此考虑 X 的一个可数开覆盖 $\{X \setminus A, U_1, \dots, U_n, \dots\}$,则存在有限开覆盖,进而可知有 $U_{i_1} \cap \dots \cup U_{i_n} = A$,则表明 $A = \{x_{i_1}, \dots, x_{i_n}\}$,这与 A 为可数无穷集矛盾!

另一方面,反证法若 X 不可数紧,从而存在一个可数开覆盖 $\{U_n\}$ 使得其不存在有限子覆盖,设 $V_n = \bigcup_{i \leq n} U_i$,从而有 $\{V_n\}$ 是 X 的一个可数开覆盖,且若存在 N 使得任意 n > N, $V_n = V_{n+1}$,则可知 $V_N = X$,因此 $\{U_n\}$ 有有限子覆盖,矛盾! 因此存在子列 $\{V_{i_k}\}$ 严格单增. 不妨设为 $\{W_k\}$,进而其为严格单增的开覆盖. 取 $x_k \in W_k \setminus W_{k-1}$,则任取 $y \notin X \setminus \{x_1, \cdots\}$,存在 k_y 使得 $y \in W_{k_y}$,则对 x_1, \cdots, x_{k_y} ,由 X 为 T_1 空间,从而有 y 的开邻域 B_y 不含 x_1, \cdots, x_{k_y} ,且 $B_y \subseteq V_{k_y}$,进而也不含 x_k ,其中 $k \geq k_y$,因此 B_y 与序列相交为空,进而可知序列没有凝聚点,矛盾!(画图来看是很直观的,找 y 邻域夹在 W_{k_y} 和 W_{k_y-1} 之间.)

注:在上述证明中可见,可数紧推无限集有聚点是不依赖于 T_1 的限制.

10.证明 一方面,显然 $f(\cap A_n) \subseteq \cap f(A_n)$,另一方面,注意到 X 紧,因此对单调递减闭集列 $\{A_n\}$,其交 $\cap A_n$ 非空,因此 $\cap f(A_n)$ 非空,任取 $y \in \cap f(A_n)$,则任意 n,存在 $x_n \in A_n$ 使 得 $y = f(x_n)$,由 X 紧,因此 $\{x_n\}$ 存在凝聚点 x,从而可知 $x \in \overline{\cap A_n}$,而 A_n 为闭集,从而 $\cap A_n$ 为闭集,因此 $x \in \overline{\cap A_n}$,下证 $x \in \overline{\cap A_n}$,不然,则由 $x \in \overline{\cap A_n}$,存在 $x \in \overline{\cap A_n}$,有

 $f(x) \notin U$,进而 $x \notin f^{-1}(U)$,而注意到 $x_n \in f^{-1}(U)$,对任意 n,从而这与 x 是 $\{x_n\}$ 聚点矛盾! 因此 $y = f(x) \in f(\cap A_n)$,因此 $f(\cap A_n) = \cap f(A_n)$,即证.

8 练习5.3

1.证明 回忆正则是指任意不交一点和一个闭集可用开集分离,从而任取正则空间 $X,Y\subseteq X$ 从而设 $y\in Y,\ F\subseteq Y$ 为闭集,且 $y\notin F$,又存在 X 中闭集 \widetilde{F} 使得 $F=Y\cap \widetilde{F}$,且易见 $y\notin \widetilde{F}$,否则 $y\notin Y$,因此由 X 正则可知存在不交开集 U,V ,有 $y\in U$, $\widetilde{F}\subseteq V$,故取 $U\cap Y$ 即可.
2.证明 设 X 为正则空间, A 为其紧子集,
3.证明 任取 $x \in K$,从而对任意 $y \in H$, $x \neq y$,因此存在 U_y 和 V_y 不交,且 $x \in U_y$, $y \in V_y$ 进而 $\{V_y\}_{y \in H}$ 构成 H 的开覆盖,由 H 紧可知存在有限子覆盖,不妨设为 $\{V_1, \dots, V_n\}$,从而对应的考虑 $U_1 \cap \dots \cup U_n$ 为 x 的开邻域,且与 $V_1 \cup \dots \cup V_n$ 不交,也即任意 $x \in K$,存在 $U_y \in V_x$ 使得为不交开集,且 $x \in U_x$, $H \subseteq V_x$,进一步对 $\{U_x\}$ 构成 K 的开覆盖,因此做类价操作不难得到开集分离 K, H .
4.证明 回忆正规是指任意不交闭集可用不交开集分离,从而任取正规空间 $X, Y \subseteq X$ 为民子空间,则任取 F_1, F_2 为 Y 中不交闭集,从而由 Y 闭,可知 F_1, F_2 是 X 中不交闭集,因此存在 X 中不交开集 U, V 分离,进而 $U \cap Y$ 和 $V \cap Y$ 即符合要求.
5.证明 利用 [1] 中的命题 5.3.6 即可,正规空间即每个闭集存在一个闭邻域,其证明是类似于命题 5.3.3 的.
6.证明
7. 证明 (b) 设 A, B 为不交闭集,从而 $A^c, B^c \in \mathcal{O}$,从而若 A, B 均不为空集,则有 $0 \notin A^c, B^c$ 即 $0 \in A \cap B$,这与不交矛盾,因此 $(\mathbb{N}, \mathcal{O})$ 中没有非平凡的不交闭集,进而正规. (c) 显然 $\mathbb{N} \setminus \{0\}$ 开,但注意到取其中不交闭集 $\{1\}$, $\{2\}$,若有不交开集区分它们,则有 \mathbb{N} 中开集 U, V 使得 $1 \in U \setminus \{0\}$, $2 \in V \setminus \{0\}$,但 $0 \notin U, V$,且 $\mathbb{N} \setminus U$ 与 $\mathbb{N} \setminus V$ 有限,因此自然 $\mathbb{N} \setminus (U \cap V)$ 也有限,因此可知 $U \cap V \cap \mathbb{N} \setminus \{0\} \neq \emptyset$,矛盾.
8.证明 任取 $a \neq b \in \mathbb{R}$,则有开集 $(a - \varepsilon, a + \varepsilon)$ 和 $(b - \varepsilon, b + \varepsilon)$ 区分它们,这里 $\varepsilon < b - a /2$ 从而可知其为 Hausdorff 空间;另一方面,注意到 K 是闭集,若 $(\mathbb{R}, \mathcal{O}_K)$ 是正则空间,从而存在不交开集 U, V 区分 0 和 K ,而易见此时存在 $c < 0, d > 0$ 使得 $0 \in (c, d) \setminus K \subseteq U$,这 $1/m < d$,则存在 $1/m$ 的邻域 $(e, f) \subseteq V$,但显然 $(c, d) \setminus K \cap (e, f) \neq \varnothing$,也即 $U \cap V = \varnothing$ 因此不是正则空间.

- 9.证明 (1) 推 (2): 若 X 为 Baire 空间,也即任意可数个开稠集的交仍为稠子集,设 $\{A_n\}$ 是 X 的可数个无处稠子集,也即任意 n, $(\overline{A_n})^\circ = \varnothing$,设 $U_n = X \setminus \overline{A_n}$,因此有 U_n 为开稠集,从而有 $X \setminus (\cup \overline{A_n}) = \cap U_n$ 为稠子集,从而我们有 $(\cup A_n)^\circ \subseteq (\cup \overline{A_n})^\circ = (X \setminus \cap U_n)^\circ$,注意到 $A^\circ = X \setminus \overline{A^c}$,因此上式可进一步写成 $X \setminus (\overline{\cap U_n}) = X \setminus X = \varnothing$,即证;
- (2) 推 (3): 回忆第二纲集是指非第一纲集,也即不是可数个无处稠密集的并,反证法,若有开集 $U = \cup A_n$,其中 A_n 为无处稠密集,因此有 $U = U^\circ = (\cup A_n)^\circ = \varnothing$,矛盾!
- (3) 推 (1): 要证 X 是 Baire 空间,即对任意可数多个开稠集 $\{U_n\}$,证其交仍为稠集,反证法,若有 $\cap U_n$ 不稠,则存在开集 V 使得 $V \cap (\cap U_n) = \emptyset$,也即 $V = \cup ((X \setminus U_n) \cap V)$,由 U_n 为开稠集,从而 $X \setminus U_n$ 为无处稠密集,因此交上 V 后仍为无处稠密集,进而可知 V 为第一纲集,矛盾!
- 13.**证明** 注意到 f 连续,从而任意 $D \subseteq X$,有 $f(\overline{D}) \subseteq \overline{f(D)}$,因此若 $D \in X$ 中的开稠集,则由 f 开连续,且 $Y = f(X) = f(\overline{D_n}) = \overline{f(D_n)}$,于是 $f(D_n)$ 也为开稠集.

对偶地,我们说明若 A 是 Y 的无处稠密集,则 $f^{-1}(A)$ 是 X 的无处稠密集,若不然,则 $(\overline{f^{-1}(A)})^{\circ} \neq \varnothing$,因此存在开集 $U \subseteq \overline{f^{-1}(A)}$,注意到 f 连续,从而 $f^{-1}(A) \subseteq f^{-1}(\overline{A})$,且后者为闭集,因此 $\overline{f^{-1}(A)} \subseteq f^{-1}(\overline{A})$,进而 $f(U) \subseteq f(f^{-1}(\overline{A})) \subseteq \overline{A}$,这与 A 为无处稠密矛盾.

因此我们选择上述一个事实即可完成证明,以第二个为例,若 Y = f(X) 不为 Baire 空间,从而存在开集 A 为可数个无处稠密集 $\{A_n\}$ 的并,因此 $f^{-1}(A) = \cup f^{-1}(A_n)$,则 $f^{-1}(A)$ 为 X 中开集,且为可数个无处稠密集的并,矛盾!

9 练习6.1

1.证明 回忆正则空间是指可以用开集区分点和闭集,等价地也可理解为每一点都有闭邻域,从而对由映射族 $\{f_i: X \to Y_i\}_{i \in I}$ 生成的初始拓扑,且 Y_i 为正则空间,则任取一点 x 及其开邻域 U ,从而存在子基中的元素相交得到的基包含于 U ,也即有 $\bigcap_{i \leq n} f_i^{-1}(U_i)$,其中 U_i 为 Y_i 中开集,进而由 Y_i 正则,因此由 $f_i(x) \in U_i$,存在闭集 V_i 使得 $f_i(x) \subseteq V_i^\circ \subseteq V_i \subseteq U_i$,因此有闭集 $V = \bigcap_{i \leq n} f_i^{-1}(V_i)$,进而有 $x \in \bigcap_{i \leq n} f_i^{-1}(V_i^\circ) \subseteq V^\circ \subseteq V \subseteq U$,即证正则.
2.证明 对 T_0 ,任给 $x \neq y \in X$,从而存在 $j \in J$ 使得 $f_j(x) \neq f_j(y)$,由 Y_j 为 T_0 空间,因此 有开集 V 使得不妨 $f_j(x) \in V$,但 $f_j(y) \notin V$,因此 $x \in f_j^{-1}(V)$, $y \notin f_j^{-1}(V)$,从而表明 X 是 T_0 的,其余都是类似的,人生苦短,证明从略.
4. 证明 这是管形引理的一个直接推广,只需要对 H 中每个点用一下管形引理,再结合 H 紧 就可以找到所需要的开集,不再赘述.
5.证明 任意 $(x,y) \notin K$,这里 $K = \{(x,f(x)) x \in X\}$,从而 $y \neq f(x)$,因此由 Y 为 Hausdorff 空间,存在不交开集 U,V 使得 $y \in U$, $f(x) \in V$,则有 $(x,y) \in f^{-1}(V) \times U$,且若有 $(z,f(z)) \in f^{-1}(V) \times U$,则 $z \in f^{-1}(V)$, $f(z) \in U$,即 $f(z) \in U \cap V$ 矛盾!即知 K 为闭集. \square
注: 若取 $Y = X$,以及 $f = id_X$,则为 [1] 中的命题 6.1.6.
9.证明 (a) 这是容易的,依次验证对称性、正定性以及三角不等式即可; (b) 为证明不同的度量诱导相同的拓扑,最省力的办法是验证对同一序列,具有相同的敛散性,有了这个想法,验证也是不难的; (c) 显然.
10.证明 考虑映射 $h:U\to\mathbb{R},\ h(x)=\frac{1}{d(x,X\setminus U)},\ $ 从而取 $V=\{(x,h(x)) x\in U\}\subseteq X\times\mathbb{R},$ 构造 $f:U\to V,\ f(x)=(x,h(x)),\ $ 以及 $\pi:(x,h(x))\mapsto x,\ $ 从而不难有 f 和 π 互为逆映射,为证 f 和 π 的连续性,只需对任意收敛序列证明保持序列收敛即可,不难结合 $\frac{1}{d(x,X\setminus U)}$ 的连续性得到. 从而可知 U 和 V 同胚. 为了说明 V 是闭集,只需要利用 h 连续和 \mathbb{R} 是 Hausdorff 空间即可 (练习 6.1 题 5).
12.证明 设 X_1, X_2 序列紧,从而对 $X_1 \times X_2$ 中的序列 $\{(x_n, y_n)\}$,则对 $\{x_n\}$ 有收敛子列 $\{x_{n_k}\}$,进一步对 $\{y_{n_k}\}$,有收敛子列 $\{y_{n_{k_l}}\}$,故 $\{(x_{n_{k_l}}, y_{n_{k_l}})\}$ 是 $\{(x_n, y_n)\}$ 的收敛子列,即证.

10 练习6.2

1.证明 回忆第一可数是指有可数个邻域基,从而对 $X = \prod X_i$,任意 $x = (x_i) \in X$,则每个 x_i ,设其有可数邻域基 $\{U_n^i\}_{n \in \mathbb{N}}$,则考虑 $\mathcal{N}(x) = \{\bigcap_{j \le k} p_{i_j}^{-1}(U_{n_j}^{i_j}) | i_j \in I, n_j \in \mathbb{N} \}$,一方面显然 其可数,另一方面任取 x 邻域 U,则有 $\prod_{j \le k} U^{i_j} \times \prod_{i \ne i_j} X_i \subseteq U$,这里 U^{i_j} 为 X_{i_j} 中开集,因 此由 $\{U_{n_j}^{i_j}\}$ 为邻域基,因此有 $U_{n_j}^{i_j} \subseteq U^{i_j}$,进而 $\bigcap_{j \le k} p_{i_j}^{-1}(U_{n_j}^{i_j}) \in \mathcal{N}(x)$ 包含于 U,即证 $\mathcal{N}(x)$ 为可数邻域基,从而第一可数.

第二可数空间可数乘的证明是完全类似的, 仿照上述即可.

下面我们构造一个例子说明第一可数与第二可数均不为任意可乘的,考虑 $X = \{0,1\}$,赋予离散拓扑,J 为一不可数集,从而对 X^J , 0^J 的邻域基形如 $\mathcal{N} = \{\bigcap_{i \leq k} p_{j_i}^{-1}(0) | j_i \in J\}$,则 对 \mathcal{N} 中任意可数个元素,可将出现的所有指标排列成一个可数集,而指标集 J 不可数,这意味着一定有一个指标 $j \in J$ 未出现,从而 $p_j^{-1}(0)$ 不含于选出这可数个元素中的任一个,因 此表明 \mathcal{N} 不存在可数个元素生成,进而 X^J 不第一可数,也即不第二可数.

2.证明 设 $X = \prod X_i$,任意 X_i 均为 T_0 空间,从而任取 $x = (x_i) \neq y = (y_i) \in X$,则必存在 $i \in I$ 使得 $x_i \neq y_i$,进而由 X_i 为 T_0 空间,从而不妨存在开集 $U_i \subseteq X_i$ 使得 $x_i \in U_i$, $y_i \notin U_i$,则有 $x \in U_i \times \prod_{j \neq i} X_j$, $y \notin U_i \times \prod_{j \neq i} X_j$,因此 X 为 T_0 空间,进而 T_0 可数可乘,至于 T_1 , T_2 都是完全类似的,不再赘述.

3.**证明** 不难验证是度量,唯一需要费点口舌的是三角不等式,但也不困难,略去. 为了验证诱导相同的拓扑,我们只需要说明对收敛序列相同,因此若 $\{x^k\} \subseteq \prod X_n$ 按乘积拓扑收敛 到 x,则等价于按每个分量对应收敛,等价于每个分量按度量收敛,因此利用 ρ 的表达式可知等价于按度量收敛到 x,因此可知诱导的拓扑相同.

6.证明 由 [1] 的命题 6.2.2 可知 C 同胚于 $\{0,1\}^{\mathbb{N}}$,其中 $\{0,1\}$ 赋予离散拓扑,因此我们只需要证 $\{0,1\}^{\mathbb{N}}$ 和 $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ 同胚即可,显然 $X = \{0,1\}^{\mathbb{N}}$ 紧,且 $Y = \{0,1\}^{\mathbb{N}\times\mathbb{N}}$ 为 Hausdorff(因为 T_2 可数可乘),从而只需要构造一个从 X 到 Y 的连续双射即可.

注意到 $\mathbb{N} \times \mathbb{N}$ 可数,从而与 \mathbb{N} 等势,因此可构造一个完全——映射 $\varphi: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$,使得对 X 中元素 (x^n) ,以及 Y 中元素 $(x^{(s,t)})$,定义双射 $f: X \to Y$, $(x^n) \mapsto (x^{\varphi(n)})$,这 里 $x \in \{0,1\}$,下面证明连续性,只需对 $p_n: Y \to X$,证明 $p_n \circ f$ 连续即可,进一步我们只需对 X 的子基 $\{p_m^{-1}(0), p_m^{-1}(1) | m \in \mathbb{N}\}$,证明其在 $f^{-1} \circ p_n^{-1}$ 下仍为开集,而注意到 $f^{-1} \circ p_m^{-1} \circ p_m^{-1}(0) = p_{\varphi^{-1}(n,m)}^{-1}(0)$ 为开集,另一个同理,从而可知这是连续的,即证同胚.

锐评: 没马玩意儿.

7.**证明** 由 C 同胚于 $\{0,1\}^{\mathbb{N}}$,我们只需证后者没有孤立点即可,而回忆孤立点意味着存在

其一个邻域使得只有其自己,因此我们只需对每个基中元素说明其不只含一个点即可,而 基形如 $p_1^{-1}(x_1)\cap\cdots p_k^{-1}(x_k)$,这里 $x_i=0,1$,从而对每个这样的基,注意到总至少含点 $x^1=(x_1,\cdots,x_n,0,0,\cdots)$ 和 $x^2=(x_1,\cdots,x_n,1,1,\cdots)$,即证.

8.**证明** 这是经典的对角线法,设有序列 $\{x^n\}$,每个 $x^n = (x_1^n, x_2^n, \cdots, x_k^n, \cdots)$,记 $k_i^0 = i$,任 意 $i \in \mathbb{N}$,由 X_1 序列紧,从而存在 k_i^1 使得 $\{x_1^{k_i^1}\}$ 为 $\{x_1^n\}$ 收敛子列,且收敛到 x_1 ,进而归纳,假设 $\{k_i^n\}$ 已经构造好,且使得 $\{x_t^{k_i^t}\}$ 收敛到 x_t ,进一步在 $\{x_{n+1}^{k_n^n}\}$ 中存在收敛子列,记为 $\{x_{n+1}^{k_n^{n+1}}\}$,收敛到 x_{n+1} ,因此我们考虑 $\{x^n\}$ 的子列 $\{x_n^{k_n^n}\}$,对其每个分量如 $\{x_t^{k_n^n}\}$,当 n > t时,收敛到 x_t ,从而可知 $\{x_n^{k_n^n}\}$ 收敛到 $\{x_n^n\}$

11 练习 6.3

1.证明 (a) 回忆商映射的定义无非就是满射 + 集合开当且仅当原像开,从而由 f,g 都是商映射,不难有 $g \circ f$ 是满射,进一步任取 W 为 Z 开集,从而 $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ 在 X 中开,另一方面若 $f^{-1}(g^{-1}(W))$ 在 X 中开,则 $g^{-1}(W)$ 在 Y 中开,进而 W 在 Z 中开,即证为商映射.

(b) 首先任取 $z \in Z$,则由 $g \circ f$ 满可知存在 $x \in X$, g(f(x)) = z,进而 $f(x) \in Y$,从而 g 为连续满射,若对 $W \in Z$ 且 $g^{-1}(W)$ 为 Y 中开集,则由 f 连续,从而 $f^{-1}(g^{-1}(W))$ 为 X 中开集,进而由 $g \circ f$ 为商映射,从而 W 为 Z 中开集,即证 g 为商映射.

2.证明 由 f 已经为连续满射,从而我们只需说明任取 V 为 Y 子集,若 $f^{-1}(V)$ 为 X 中开集, \square

5.**证明** 要证明一个商空间和一个拓扑空间同胚,就是要构造一个从原空间到拓扑空间的商映射,且商映射下的等价关系恰好就是商掉的部分. 从而考虑 $f:[0,1] \to \cup S_n$,其中当 $x \in (1/(n+1),1/n)$ 时,定义 f(1/(n+1)) = f(1/n) = 0,区间内点依次映在 S_n 上,易见 f 满,且 E(f) = A,任取 $\cup S_n$ 中开集 U,其赋予的是 \mathbb{R}^2 子空间拓扑,从而 $U = \widetilde{U} \cap \cup S_n$,若 $(0,0) \notin U$,则 U 为有限段开圆弧的并,进而 $f^{-1}(U)$ 为有个开区间的并为开集,若 $(0,0) \in U$,则有 $f^{-1}(U)$ 为可数个开区间的并,从而有 f 连续,又注意到 [0,1] 紧, $\cup S_n$ 为 Hausdorff 空间,从而 f 为闭映射,进而 f 为商映射,即证 [0,1]/E(f) = [0,1]/A 同胚于 $\cup S_n$.

8.证明 设 $\pi: X \to X/E(f)$ 为商映射,从而 f 连续,则诱导出的 $\overline{f}: X/E(f) \to Y$ 也连续,从 而任取 $[x] \neq [y] \in X/E(f)$,则有 $f(x) \neq f(y)$,也即 $\overline{f}([x]) \neq \overline{f}([y])$,从而由 Y 为 Hausdorff 空间,存在不交开集 V_1, V_2 使得 $\overline{f}([x]) \in V_1$, $\overline{f}[y] \in V_2$,则考虑 $U_i = \overline{f}^{-1}(V_i)$,则 U_1, U_2 分别为 [x], [y] 的开邻域,若存在 $[z] \in U_1 \cap U_2$,则有 $f(z) = \overline{f}([z]) \in V_1 \cap V_2$,矛盾!从而可知 X/E(f) 是 Hausdorff 空间.

9.证明 任取 $[x] \neq [y] \in X/E$,从而 $(x,y) \notin E$,由 E 为 $X \times X$ 中开集,因此存在 X 中开集 U,V 使得 $(x,y) \in U \times V$,且 $(U \times V) \cap E = \emptyset$,进而由 q 为开映射,从而 $[x] \in q(U)$, $[y] \in q(V)$,若有 $[z] \in q(U) \cap q(V)$,则存在 $z_1 \in U$, $z_2 \in V$,使得 $[z_1] = [z_2] = [z]$,从而 $(z_1, z_2) \in (U \times V) \cap E$,即证 X/E 为 Hausdorff 空间.

12 练习 7.1

1.证明 若 X 不能写成两个非空分离集的并,且反证法,若 X 不连通,从而存在这	下交闭集
A,B 使得 $A\cup B=X$,因此 A,B 为分离集,矛盾! 另一方面,若 X 连通,且能写	成两个非
空分离集 A,B 的并,从而由 $\overline{A} \cap B = \varnothing$,且 $A \cup B = X$,进而 $B = X \setminus \overline{A}$ 为开集,	,同理 <i>A</i>
为开集,因此 X 可写成不交开集的并,与连通矛盾!	
2.证明 注意到连通是拓扑性质,从而 $f(X)$ 为 $\mathbb R$ 的连通子集,进而为区间.	
3. <mark>证明</mark> 内容	
4. <mark>证明</mark> 挖点即可,一个不够就挖两个.	
「)
5.证明 注意到 $(A \times B)^c = (A^c \times Y) \cup (X \times B^c)$,取定 $b \in B^c$,任给 $x \in A^c$,有 $\{x \in A^c \in A^c$	
$X \times \{b\}$ 均连通,且 $(x,b) \in (\{x\} \times Y) \cap (X \times \{b\})$,从而可知 $T_x = (\{x\} \times Y) \cup (X \times \{b\})$	
为连通空间,同理取定 $a \in A^c$,对任意 $y \in Y$,有 $T_y = (\{a\} \times Y) \cup (X \times \{y\})$ 为这	
显然 $(A^c \times Y) \cup (X \times B^c) = \bigcup_{x \in A} T_x \bigcup_{y \in A} T_y$, 且所有 T . 的交为 (a,b) , 故 $A \times B$ 补集	€连通. □
$x \in A^c$ $y \in B^c$	

13 练习 7.2

1.证明 设 $t_0=\sup\{t \gamma(t)\in A\}$,注意到 $\gamma(1)\notin A$,从而 $t_0\in[0,1]$,若 $\gamma(t)\in A^\circ$,从而存	在
$\delta>0,\ \gamma(t_0-\delta,t_0+\delta)\in A^\circ,\ \textit{ 矛盾,同理可知 }\gamma(t_0)\notin (A^c)^\circ,\ \textrm{而}\ X=A^\circ\sqcup\partial A\sqcup (A^c)^\circ\textrm{为}$	不
交并, 进而可知 $\gamma(t_0) \in \partial A$, 即证.	
2.证明 任取 $a < b \in \mathbb{R}$,则考虑道路 $\gamma(t)$,使得 $\gamma(0) = a$, $\gamma((0,1]) = b$,从而显然 γ 连续	即
为一条道路,即证道路连通.	
5.证明 \mathbb{R}^2 上任两点之间存在不可数多条完全不交的道路,则必存在一条上无 A 的点.	

14 练习8.1

2.证明 一方面若 $F = f^{-1}(0)$,则 $F = f^{-1}\left(\bigcap_{n\geq 1}\left[0,\frac{1}{n}\right)\right) = \bigcap_{n\geq 1}f^{-1}\left(\left[0,\frac{1}{n}\right)\right)$ 从而为可数个开集的交;另一方面,若 $F = \cap G_n$,这里 G_n 为开集,设 $V_n = \cap_{i\leq n}G_i$ 也为开集,从而 $F \cap V_n^c = \varnothing$,进而两个为不交闭集,从而对正规空间 X,考虑 Urysohn 引理,存在连续函数 $f_n: X \to [0,1]$,使得 $f_n(F) = \{0\}$, $f_n(V_n^c) = \left\{\frac{1}{n^2}\right\}$,从而考虑 $f: X \to [0,1]$, $f = \frac{6}{\pi^2}\sum_{n=1}^{\infty}f_n$,因此由一致收敛可知 f 连续,且 $f(F) = \{0\}$,又注意到,若 $x \notin F$,则存在 n 使得 $x \in V_n^c$,因此 $f(x) \geq \frac{1}{n^2}$,进而可知 $f = f^{-1}(0)$,即证.

4.证明 (a) 由 $\bigcup_{i=1}^{n} U_{i} = X$,从而有 $\bigcap_{i=2}^{n} U_{i}^{c} \subseteq U_{1}$,由 X 正规,从而存在开集 V_{1} ,使得 $\bigcap_{i=1}^{n} U_{i}^{c} \subseteq V_{1}$,则 $\bigcap_{i=3}^{n} U_{i}^{c} \cap V_{1}^{c} \subseteq U_{2}$,故再次利用 X 正规,可知存在 开集 V_{2} 使得 $\bigcap_{i=3}^{n} U_{i}^{c} \cap V_{1}^{c} \subseteq V_{2} \subseteq V_{2}$,由此不难归纳得到一列开集 V_{k} 满足

$$\bigcap_{i=k+1}^{n} U_{i}^{c} \cap V_{1}^{c} \cap \dots \cap V_{k-1}^{c} \subseteq V_{k} \subseteq \overline{V_{k}} \subseteq U_{k},$$

因此有 $\bigcup_{i=1}^n V_i = \left(\bigcap V_i^c\right)^c = X$,且显然 $\overline{V_i} \subseteq U_i$,即符合要求.

(b) 由 U_1, \dots, U_n 为开集,且 $\bigcup_{i=1}^n U_i = X$,故由 (a) 可知,存在开集 $\{I_k\}$ 和 $\{V_k\}$ 使得 $\bigcup_{i=1}^n U_i = X$,且任意 $1 \le k \le n$ 有 $I_k \subseteq \overline{I_k} \subseteq V_k \subseteq \overline{V_k} \subseteq U_k$,因此由 Uryshon 引理,存在连续函数 $g_i: X \to [0,1]$,有 $g_k(\overline{I_k}) = 1$, $g_k(V_k^c) = 0$,从而有 $g_k^{-1}((0,1]) \subseteq V_k$,进而 $\overline{g_k^{-1}((0,1])} \subseteq \overline{V_k} \subseteq U_k$,又由 $\cup I_k = X$,从而 $\sum_{k=1}^n g_k(x) \neq 0$,故考虑 $f_k(x) = \frac{g_k(x)}{\sum_{k=1}^n g_k(x)}$,可知

 \Box

为满足要求的函数构造.

6.证明 一方面,若 X 完全正规,从而对任意分离集 A,B,由子空间 $Y = X \setminus (\overline{A} \cap \overline{B})$ 中,其也为正规空间,且有 $\overline{A} \cap Y$ 和 $\overline{B} \cap Y$ 为 Y 中不交闭集,从而存在 X 中开集 U,V 使得 $U \cap Y$ 和 $V \cap Y$ 分离这两个闭集,且此时 $U \cap V \cap Y = \emptyset$,即 $U \cap V \subseteq \overline{A} \cap \overline{B}$,从而为了分离 A,B,只需要取 $U' = U \setminus \overline{B}$ 和 $V' = V \setminus \overline{A}$ 即可.

另一方面,任取子空间 A,以及 X 中闭集 U,V,且 $(U \cap A) \cap (V \cap A) = \emptyset$,则我们断言 $U \cap A$ 和 $V \cap A$ 是分离集,任取 $x \in V \cap A$,若 $x \in \overline{U \cap A}$,则 $x \in \overline{U} = U$,进而 $x \notin V \cap A$,矛

盾! 因此存在 M, N 不交,使得 $U \cap A \subseteq M$, $V \cap A \subseteq N$,因此取 $M' = M \cap A$, $N' = N \cap A$ 即符合题意.

补:证明:若正规空间的子集 A 能写成可数个闭集的并,则子空间 A 是正规空间. 证明 设 $A = \bigcup_{i=1}^{\infty} F_i$, F_i 均为 X 中的闭集,任取 A 中不交闭集 $\widetilde{U},\widetilde{V}$,则存在 X 中闭集 U,V 使得 $\widetilde{U} = U \cap A$, $\widetilde{V} = V \cap A$,且 $U \cap V \cap A = \varnothing$,也即任意 i,有 $U \cap V \cap F_i = \varnothing$,也即有任意 i,j,($U \cap F_i$) \cap ($V \cap F_j$) $= \varnothing$,注意到 $U \cap F_i$ 与 $V \cap F_j$ 均为闭集且不交,从而由 X 为正规空间,可知存在开集 B_{ij} , C_{ij} 使得 $U \cap F_i \subseteq B_{ij}$, $V \cap F_j \subseteq C_{ij}$,且 $B_{ij} \cap C_{ij} = \varnothing$,进而考虑 $D_i = \bigcap_{j=1}^{i} B_{ij}$, $E_j = \bigcap_{i=1}^{j} C_{ij}$,从而易见每个 D_i, E_j 均为开集,且 $U \cap F_i \subseteq D_i$, $V \cap F_j \subseteq E_j$,且任意 i,j 均有 $D_i \cap E_j = \varnothing$,进而取 $D = \cup D_i$, $E = \cup E_j$,有 $D \cap E = \varnothing$,且 $U \cap A \subseteq D$, $V \cap A \subseteq E$,则 $D \cap A$ 和 $E \cap A$ 为 A 中开集且恰分离 \widetilde{U} 和 \widetilde{V} .

15 练习 9.1

1.证明 一方面,若存在 $\mathcal{G} \in \mathcal{F}(X)$,使得 $x \in \lim \mathcal{G}$,以及 $\mathcal{F} \subseteq \mathcal{G}$,则有 $\mathcal{N}(x) \subseteq \mathcal{G}$,进而任 取 $U \in \mathcal{N}(x)$, $A \in \mathcal{F}$,又 $A, U \in \mathcal{G}$,从而结合 \mathcal{G} 为滤子,则存在非空集合 $C \subseteq A \cap N$,从 而可知 $\mathcal{F} \in \mathcal{N}(x)$ 相容,即证 $x \in \text{clust}\mathcal{F}$.

另一方面, 若 $x \in \text{clust}\mathcal{F}$, 则 $\mathcal{F} \in \mathcal{N}(x)$ 相容, 进而考虑子集族

$$\mathcal{G} = \{ U \cap A | U \in \mathcal{N}(x), F \in \mathcal{F} \},\$$

不难验证 $\mathcal{N}(x) \subseteq \mathcal{G}$,且 \mathcal{G} 为滤子,即证.

- 2.证明 注意 $f(\mathcal{F})$ 为滤子,由 $f^{-1}(F)$ 即那些滤子中集合的原像组成,而 $f(\lim \mathcal{F})$ 单纯为集合的像.
- (1) 推 (2): 若 f 连续,从而任意 $x \in \lim \mathcal{F}$,从而 $\mathcal{N}(x) \subseteq \mathcal{F}$,从而为证明 $f(\lim \mathcal{F}) \subseteq \lim f(\mathcal{F})$,只需证 $\mathcal{N}(f(x)) \subseteq f(\mathcal{F})$,任给 $V \in \mathcal{N}(f(x))$,则 $f^{-1}(V) \in \mathcal{N}(x)$,从而 $f^{-1}(V) \in \mathcal{F}$,进而 $V \in f(\mathcal{F})$,即证.
 - (2) 推(3): 由超滤也为滤子, 即证.
- (3) 推 (1): 任取 $x \in X$,我们证 f 在 x 处连续,任取包含滤子 $\mathcal{N}(x)$ 的超滤 \mathcal{G} ,从而由 $f(\lim \mathcal{G}) \subseteq \lim f(\mathcal{G})$,不难有 $x \in \lim \mathcal{G}$,则 $f(x) \in \lim f(\mathcal{G})$,从而 $\mathcal{N}(f(x)) \subseteq f(\mathcal{G})$,即任取 $U \in \mathcal{N}(f(x))$,有 $f^{-1}(U) \in \mathcal{G}$,又注意到任意滤子都可以写成一族超滤的交,从而设 $\mathcal{N}(x) = \bigcap \mathcal{G}_{\lambda}$,则 $f^{1}(U) \in \bigcap \mathcal{G}_{\lambda} = \mathcal{N}(x)$,即证.

16 练习 9.2

1.证明 为了证明 X 是完全正则空间,则对任意 x 与包含其的开集 U,存在 $V \in \mathcal{B}$ 使得 $x \in V \subseteq U$,且 V 既开又闭,从而 V^c 也既开又闭,因此定义 $f: X \to [0,1]$ 使得 f(V) = 0,f(V) = 1,则显然 f 连续,且 f(x) = 0, $f(X \setminus U) \subseteq f(V) = \{1\}$,即证.

3.证明 当 C 为空集的时候,显然取 $k \equiv 1$ 即可;当 C 不为空集时,由 X 为完全正则空间知,任意 $x \in C$,存在连续函数 $f_x : X \to [0,1]$ 使得 $f_x(x) = 0$,且 $f_x(X \setminus U) \subseteq \{1\}$,因此自然想到 $V_x = f_x^{-1}([0,-1/2)$ 为包含 x 的一个开邻域,从而其构成了 C 的一个开覆盖,进而存在有限子覆盖 $\{V_{x_k}\}_{1 \le k \le n}$,一个自然的想法是取 $\prod f_{x_k}$,但这不一定保证在 C 上为 0,因此考虑 $\varphi : [0,1] \to [0,1]$,有 $\varphi(y) = 0$,当 $0 \le y < 1/2$, $\varphi(y) = 2(y-1/2)$,当 $1/2 \le y \le 1$,则对 $k_x = \varphi \circ f_x$,此时有 $k_x(V_x) = 0$,进而考虑 $k = \prod_{k=1}^n k_{x_k}$,则 k(C) = 0,且显然 $k(X \setminus U) = 1$,综上我们完成了证明.

17 练习 9.4

剩下的都是臭长的论述, 略去.

18 2022 点集拓扑期末试题

Problem 1. (10 分) 设 \mathcal{O} 是实数集 \mathbb{R} 上的欧氏拓扑,定义

 $\mathcal{O}' = \{ U \in \mathcal{O} | \mathbb{R} \setminus U \neq \mathbb{R} \} \cup \{\emptyset\},$

证明: \mathcal{O}' 是 \mathbb{R} 上的拓扑.

证明 (O1) 显然 \mathbb{R} , $\emptyset \in \mathcal{O}'$;

(O2) 若 $U_i \in \mathcal{O}'$,任意 $i \in I$,I 为指标集,从而 $\bigcup_{i \in I} U_i \in \mathcal{O}$,且 $\mathbb{R} \setminus \left(\bigcup_{i \in I} U_i\right) = \bigcap_{i \in I} (\mathbb{R} \setminus U_i)$ 显然也有界,因此在 \mathcal{O}' 中;

 \Box

(O3) 显然也关于有限交封闭,不再赘述. 综上即证.

Problem 2. (10分)证明:平面上以所有直线为子基的拓扑是离散拓扑.

证明 回忆子基有限交组成基,基任意并组成拓扑,因此注意到任意平面上一点可由两条直线交出,进而该拓扑的基是全体离散点,由此不难得到该拓扑为离散拓扑. □

Problem 3. (10 分) 证明:闭区间 [0,1] 和单位圆周 S^1 不同胚.

证明 反证法,若同胚,则对同胚 f, $[0,1/2) \cup (1/2,1]$ 和 $S^1 \setminus f(1/2)$ 仍同胚,但前者不连通,后者连通,矛盾!(或者由 $\pi_1([0,1]) = 0$, $\pi_1(S^1) = \mathbb{Z}$,基本群不同构,因此不同胚.)

Problem 4. (10 分)F 是 X 的闭子集, $A \subseteq X$,证明: $(F \cup A^{\circ})^{\circ} = (F \cup A)^{\circ}$.

证明 练习 4.1 题目 4.

Problem 5. (10 分) 证明: Sorgenfrey 直线 \mathbb{R}_{ℓ} 是第一可数的,且是可分的,但不是第二可数的.

证明 注意到任意 $x \in \mathbb{R}_{\ell}$, $\{[x, x+1/n)|n \in \mathbb{N}\}$ 是 x 的一个可数邻域基,又注意到 \mathbb{Q} 是 \mathbb{R}_{ℓ} 的可数稠子基,因此 \mathbb{R}_{ℓ} 是第一可数且可分的拓扑空间.

下面反证 \mathbb{R}_{ℓ} 不是第二可数的,若不然,存在可数基 \mathcal{B} ,则任意 $x \in \mathbb{R}_{\ell}$,有 $x \in B_x \subseteq [x, x+1)$,从而 $x \to B_x$ 的最小元,也即 $x \neq y$,则 $B_x \neq B_y$,从而必有 \mathcal{B} 不可数,矛盾! \square

注: 第二可数空间总是第一可数且可分,因此上述例子说明反向不成立.

Problem 6. (10分)证明:第二可数空间的开连续像第二可数.

证明 设 $f: X \to Y$ 为开连续映射,且 Y = f(X),若 X 第二可数,从而有可数基 \mathcal{B} ,我们断言 $f(\mathcal{B})$ 是 Y 的可数基,可数性显然,任取 V 为 Y 的开集,从而有 $f^{-1}(V)$ 为 X 中开集,故存在 $1 \le i \le n$, $U_i \in \mathcal{B}$ 使得 $f^{-1}(V) = U_1 \cup \cdots \cup U_n$,进一步结合 f 满射,故 $V = f(f^{-1}(V)) = f(U_1 \cup \cdots \cup U_n) = f(U_1) \cup \cdots \cup f(U_n)$,从而可知 $f(\mathcal{B})$ 为 Y 可数基.

Problem 7. (10 分) 设 U 是度量空间 X 的开集,证明 U 同胚于 $X \times \mathbb{R}$ 的一个闭子集.

证明 考虑映射 $h: U \to \mathbb{R}$, $h(x) = \frac{1}{d(x, X \setminus U)}$, 从而取 $V = \{(x, h(x)) | x \in U\} \subseteq X \times \mathbb{R}$, 构造 $f: U \to V$, f(x) = (x, h(x)), 以及 $\pi: (x, h(x)) \mapsto x$, 从而不难有 f 和 π 互为逆映射,为证 f 和 π 的连续性,只需对任意收敛序列证明保持序列收敛即可,不难结合 $\frac{1}{d(x, X \setminus U)}$ 的连续性得到. 从而可知 U 和 V 同胚. 为了说明 V 是闭集,只需要利用 h 连续和 \mathbb{R} 是 Hausdorff 空间即可 (练习 6.1 题 5).

Problem 8. (10 分) 证明: Cantor 集 C 同胚于自身的可数次幂 $C^{\mathbb{N}}$.

证明 由 [1] 的命题 6.2.2 可知 C 同胚于 $\{0,1\}^{\mathbb{N}}$,其中 $\{0,1\}$ 赋予离散拓扑,因此我们只需要证 $\{0,1\}^{\mathbb{N}}$ 和 $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ 同胚即可,显然 $X = \{0,1\}^{\mathbb{N}}$ 紧,且 $Y = \{0,1\}^{\mathbb{N}\times\mathbb{N}}$ 为 Hausdorff(因为 T_2 可数可乘),从而只需要构造一个从 X 到 Y 的连续双射即可.

注意到 $\mathbb{N} \times \mathbb{N}$ 可数,从而与 \mathbb{N} 等势,因此可构造一个完全一一映射 $\varphi: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$,使得对 X 中元素 (x^n) ,以及 Y 中元素 $(x^{(s,t)})$,定义双射 $f: X \to Y$, $(x^n) \mapsto (x^{\varphi(n)})$,这 里 $x \in \{0,1\}$,下面证明连续性,只需对 $p_n: Y \to X$,证明 $p_n \circ f$ 连续即可,进一步我们只需对 X 的子基 $\{p_m^{-1}(0), p_m^{-1}(1) | m \in \mathbb{N}\}$,证明其在 $f^{-1} \circ p_n - 1$ 下仍为开集,而注意到 $f^{-1} \circ p_n^{-1} \circ p_m^{-1}(0) = p_{\varphi^{-1}(n,m)}^{-1}(0)$ 为开集,另一个同理,从而可知这是连续的,即证同胚.

Problem 9. (10 分) 设 X 为拓扑空间,Y 为 Hausdorff,且 $f: X \to Y$ 连续,证明:X/E(f) 为 Hausdorff.

证明 设 $\pi: X \to X/E(f)$ 为商映射,从而 f 连续,则诱导出的 $\overline{f}: X/E(f) \to Y$ 也连续,从 而任取 $[x] \neq [y] \in X/E(f)$,则有 $f(x) \neq f(y)$,也即 $\overline{f}([x]) \neq \overline{f}([y])$,从而由 Y 为 Hausdorff 空间,存在不交开集 V_1, V_2 使得 $\overline{f}([x]) \in V_1$, $\overline{f}[y] \in V_2$,则考虑 $U_i = \overline{f}^{-1}(V_i)$,则 U_1, U_2 分 别为 [x], [y] 的开邻域,若存在 $[z] \in U_1 \cap U_2$,则有 $f(z) = \overline{f}([z]) \in V_1 \cap V_2$,矛盾!从而可知 X/E(f) 是 Hausdorff 空间.

Problem 10. (10 分) 证明拓扑空间 X 可数紧当且仅当 X 中任意序列有聚点.

证明 一方面,若 X 可数紧,从而任取无限子集中的一个序列 $A = \{x_n\}$,若序列无凝聚点,即任意 $x \in X \setminus A$,存在 x 开邻域 V 使得 $V \cap A = \emptyset$,进而可知 A 为闭集,进一步任意 $x_n \in A$,有开邻域 U_n 使得 $U_n \cap A = \{x_n\}$,否则 x_n 为 A 的一个凝聚点. 因此考虑 X 的一个可数开覆盖 $\{X \setminus A, U_1, \dots, U_n, \dots\}$,则存在有限开覆盖,进而可知有 $U_{i_1} \cap \dots U_{i_n} = A$,则表明 $A = \{x_{i_1}, \dots, x_{i_n}\}$,这与 A 为可数无穷集矛盾!

19 2020 点集拓扑期末试题

Problem 1. 证明: $\partial(A \cup B) \subseteq \partial A \cup \partial B$.

证明 回忆 $\partial A = \overline{A} \cap \overline{A^c}$,从而 $\partial (A \cup B) = \overline{A \cup B} \cap \overline{A^c \cap B^c} = (\overline{A} \cup \overline{B}) \cap \overline{A^c \cap B^c} = (\overline{A} \cap \overline{A^c}) \cup (\overline{B} \cap \overline{A^c}) \cup (\overline{B} \cap \overline{B^c}) = \partial A \cup \partial B$,即证.

Problem 2. 设 X 为不可数集, \mathcal{T} 为余可数拓扑,证明: (X,\mathcal{T}) 为连通空间.

证明 反证法, 若不然, 则存在非空开集 A, B 使得 $A \cup B = X$, $A \cap B = \emptyset$, 则 $X = X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$, 而 $A^c \in B^c$ 均为可数集, 从而 X 可数, 矛盾!

Problem 3. 设 X 为可数紧致空间, $f: X \to Y$ 为连续映射, 证明 f(X) 也是可数紧致空间.

证明 证明同理于紧空间的连续像紧.

Problem 4. 设 X 为拓扑空间,Y 为 Hausdorff 空间, $f:X\to Y$ 为连续映射,证明 $\{(x,f(x))|x\in X\}$ 是积空间 $X\times Y$ 中的闭子集.

证明 任意 $(x,y) \notin K$,这里 $K = \{(x,f(x))|x \in X\}$,从而 $y \neq f(x)$,因此由 Y 为 Hausdorff 空间,存在不交开集 U,V 使得 $y \in U$, $f(x) \in V$,则有 $(x,y) \in f^{-1}(V) \times U$,且若有 $(z,f(z)) \in f^{-1}(V) \times U$,则 $z \in f^{-1}(V)$, $f(z) \in U$,即 $f(z) \in U \cap V$ 矛盾!即知 K 为闭集. \square

Problem 5. 设 X 为正规空间,A,B 为其中两个无交的闭集,证明存在开集 U,V 使得 $A\subseteq U$, $B\subseteq V$, $\overline{U}\cap \overline{V}=\varnothing$.

证明 由 X 正规,且 A, B 为不交闭集,从而存在不交开集 C, D 区分它们,也即 $A \subseteq C$, $B \subseteq D$, 且 $C \cap D = \emptyset$,又可知每个闭集存在闭邻域,也即存在开集 U, V 使得 $A \subseteq U \subseteq \overline{U} \subseteq C$, $B \subseteq V \subseteq \overline{V} \subseteq D$,因此 U, V 即符合要求.

Problem 6. 证明有限补空间是第一可数空间的充分必要条件是其为可数集.

证明 一方面,若 X 为第一可数空间,反证法,若为不可数集,则任意 $x \in X$,若其有可数邻域基 $\mathcal{N}(x)$,从而任意 $U \in \mathcal{N}(x)$,有 U^c 为有限集,因此有 $\bigcup_{U \in \mathcal{N}(x)} U^c$ 为可数集,进而 $\bigcap_{U \in \mathcal{N}(x)} U$ 为不可数集,从而任取 y 为交中元素,则考虑 x 的邻域 $A = X \setminus \{y\}$,则若存在 $U \in \mathcal{N}(x)$,使得 $U \subseteq A$,则 $y \in U \subseteq A$,矛盾!

另一方面,若 X 为可数集,则任意 $x \in X$,考虑将 $X \setminus \{x\}$ 中元素重排成 $\{x_n\}_{n\geq 1}$,因此取 $\mathcal{N}(x) = \{X \setminus \{x_1, \dots, x_k\} | k \in \mathbb{N}^*\}$,从而易见任意 x 邻域 U, $U = X \setminus \{x_{i_1}, \dots, x_{i_s}\}$,记 $n = \max\{i_1, \dots, i_s\}$,则可知有 $\mathcal{N}(x)$ 中元素 $X \setminus \{x_1, \dots, x_n\}$ 含于这个开集中,因此此为一个邻域基,又显然其可数,从而可知为一可数邻域基,进而 X 第一可数,综上即证. \square

Problem 7. 设 X 为紧致空间,Y 为 T_1 空间, $\{A_i|i=1,2,3\cdots\}$ 为一个非空闭集下降序列,证明: 对连续映射 $f: X \to Y$,有 $f\left(\bigcap_{i=1}^{\infty} A_i\right) = \bigcap_{i=1}^{\infty} f(A_i)$.

证明 一方面,显然 $f(\cap A_n) \subseteq \cap f(A_n)$,另一方面,注意到 X 紧,因此对单调递减闭集列 $\{A_n\}$,其交 $\cap A_n$ 非空,因此 $\cap f(A_n)$ 非空,任取 $y \in \cap f(A_n)$,则任意 n,存在 $x_n \in A_n$ 使 得 $y = f(x_n)$,由 X 紧,因此 $\{x_n\}$ 存在凝聚点 x,从而可知 $x \in \overline{\cap A_n}$,而 A_n 为闭集,从而 $\cap A_n$ 为闭集,因此 $x \in \cap A_n$. 下证 y = f(x),若不然,则由 Y 为 T_1 空间,存在 y 邻域 U,有 $f(x) \notin U$,进而 $x \notin f^{-1}(U)$,而注意到 $x_n \in f^{-1}(U)$,对任意 n,从而这与 $x \notin \{x_n\}$ 聚点矛盾!因此 $y = f(x) \in f(\cap A_n)$,因此 $f(\cap A_n) = \cap f(A_n)$,即证.

Problem 8. 设 X 和 Y 为两个拓扑空间,证明:映射 $f: X \to Y$ 是开映射当且仅当对任意集合 $B \subseteq Y$ 成立: $(f^{-1}(B))^{\circ} \subseteq f^{-1}(B^{\circ})$.

证明 若 f 为开映射,则有 $f((f^{-1}(B))^{\circ})$ 为开集,且包含于 $f(f^{-1}(B)) \subseteq B$ 中,因此 $f((f^{-1}(B))^{\circ}) \subseteq B^{\circ}$, 进而有 $(f^{-1}(B))^{\circ} \subseteq f^{-1}(f((f^{-1}(B))^{\circ})) \subseteq f^{-1}(B^{\circ})$, 即证.

另一方面,任取开集 U,则有 $U=U^\circ\subseteq (f^{-1}(f(U)))^\circ\subseteq f^{-1}((f(U))^\circ)$,由此可知 $f(U)\subseteq f(f^{-1}(f(U)^\circ))\subseteq (f(U))^\circ$,因此可知 f(U) 为开集,即证 f 为开映射.

Problem 9. 证明商空间 \mathbb{R}/\mathbb{Z} 不为第一可数空间.

20 基础知识

1.
$$A \cap \bigcup_{i \in I} B_i = \bigcup_{i \in I} (A \cap B_i), \ A \cup \bigcap_{i \in I} B_i = \bigcap_{i \in I} (A \cup B_i);$$

2.
$$X \setminus \bigcup_{i \in I} B_i = \bigcap_{i \in I} (X \setminus B_i), \ X \setminus \bigcap_{i \in I} B_i = \bigcup_{i \in I} (X \setminus B_i);$$

3.
$$X \times \bigcup_{i \in I} B_i = \bigcup_{i \in I} (X \times B_i), \ X \times \bigcap_{i \in I} B_i = \bigcap_{i \in I} (X \times B_i).$$

设 $f: X \to Y$ 为映射, $A \subseteq X$, $B \subseteq Y$,

- 1. $f(A) \subseteq B$ 当且仅当 $A \subseteq f^{-1}(B)$;
- 2. $A \subseteq f^{-1}(f(A))$, 当且仅当 f 为单射时 $A = f^{-1}(f(A))$ (记忆: 拉回来的会更大);
- 3. $f(f^{-1}(B)) \subseteq B$, 当且仅当 f 为满射时 $f(f^{-1}(B)) \subseteq B$ (记忆: 不一定有原像);

4.
$$f\left(\bigcup_{i\in I}A_i\right)=\bigcup_{i\in I}f(A_i);$$

5.
$$f\left(\bigcap_{i\in I}A_i\right)\subseteq\bigcap_{i\in I}f(A_i)$$
,注意另一方向不一定成立如常值映射;

6.
$$f^{-1}\left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} f^{-1}(B_i), \ f^{-1}\left(\bigcap_{i \in I} B_i\right) = \bigcap_{i \in I} f^{-1}(B_i), \ \mathbb{P}_{\underline{D}} \underline{D} = \underline{D} \underline{D}$$

7.
$$f(X) \setminus f(A) \subseteq f(X \setminus A)$$
, $f^{-1}(Y \setminus B) = f^{-1}(Y) \setminus f^{-1}(B) = X \setminus f^{-1}(B)$.

参考文献

[1] 张德学. 一般拓扑学基础. 北京: 科学出版社, 2022.