Tight Muon Reconstruction Efficiency

Xiaoning Wang (UIUC) Nov 6, 2019

Overview

- Two methods can be used to compute reconstruction efficiency of muons of a specific quality (tight, medium, or loose, etc.).
 - Tag and probe method (see detail in slide 4-5) that approximates muon reconstruction efficiency $\varepsilon(\mu)$ using muon reconstruction efficiency with respect to inner detector $\varepsilon(\mu|\text{ID})$, corrected by inner detector efficiency with respect to muon spectrometer $\varepsilon(\text{ID}|\text{MS})$.
 - $\varepsilon(\mu) = \varepsilon(\mu|ID) \times \varepsilon(ID) \cong \varepsilon(\mu|ID) \times \varepsilon(ID|MS)$
 - Truth match method that finds how many out of all truth muons have a reconstructed muon (of a specific quality, for example, tight or medium) located close to it in the same event.
 - Distance between truth muon and reco muon (dR) smaller than 0.2
 - This method is only applicable to MC.
- The results from the two methods do not agree for tight muon in PbPb MC (pp overlay), with the efficiency by truth match method being ~30% lower than T&P.
 - The efficiency is dependent on centrality, pT and eta, but the difference cannot be accounted by these factors.
 - The efficiency for loose and medium muons using truth match method is also low in PbPb MC.
- The results from the two methods agree within ~2% for tight muon in pp MC.
- Is there a problem with the tracks in overlay? Is there a work-around?

Plan and Progresses

- Verify that the methods work fine in pp MC
 - Tight muon efficiencies agree within ~2%. (see slide 6)
 - Will verify medium muon. (job running on the grid)
 - If both qualities of muons agree, will calculate for muon reco efficiency at data to use as a systematics. (job running the grid)
- Currently the two methods for $\varepsilon(\mu)$ do not agree in overlay, what can we do?
 - Try figure out which method gives correct answer (Either? Neither?)
 - Separate the two parts in T&P method: $(\varepsilon(ID|MS)_{MC})$ and $\varepsilon(\mu|ID)$)
 - A suspicion: there is a problem with $(\varepsilon(ID|MS)_{MC})$
 - Check whether the $\varepsilon(ID|MS)_{MC}$ agrees with efficiency of ID by directly matching available ID track to truth muon. (slide 7)
 - Assuming $\varepsilon(ID|MS)_{MC}$ is the problem, a potential workaround to get $\varepsilon(\mu)$ in data (given that data has low statistics in MS):
 - Get $\varepsilon(\mu|ID)_{data}$ (assumed to be fine)
 - Get $\varepsilon(\mu|\text{ID})$ in data and $\varepsilon(\mu|\text{ID})$ in MC, these are the un-corrected muon efficiency, both assumed to be fine with respect to ID, and calculate scale factor (SF)

Tag & Probe Method

- Used Tag & Probe method to calculate the reconstruction efficiency of tight muon. $\varepsilon(\mu) = \varepsilon(\mu|\text{ID}) \times \varepsilon(\text{ID}) \cong \varepsilon(\mu|\text{ID}) \times \varepsilon(\text{ID}|\text{MS})$
- $\varepsilon(\mu|\text{ID})$ Muon Reconstruction efficiency with respect to inner detector.
- $\varepsilon(ID|MS)$ Inner Detector efficiency with respect to muon chamber.
- Event Selection:
 - Trigger mu3 || mu8 || mu10
 - GRL
 - At least 1 primary vertex
- $\varepsilon(ID|MS)$ match: MS track with an ID track dR < 0.2

- Probe tracks Selection:
 - Opposite charge with tag
 - ID tracks: Muon ID Selections (No TRT)
 - MS tracks: No Selections
- Invariant mass window
- $\varepsilon(\mu|\text{ID})$ match: ID track with a reconstructed muon dR < 0.01 for data: J/ ψ 2.6 -3.6 GeV
 - for mc: J/ψ 2.6 -3.6 GeV

- Data: 2018 Pb-Pb Hard Probe Stream Data at 5.02 TeV
- Monte Carlo:Pythia8B with Prompt J/psi to Muons with Heavy Ion Overlay.
 mc16_5TeV:mc16_5TeV.300000.Pythia8BPhotospp_A14_CTEQ6L1_pp_Jpsimu2p5mu2p5.merge.AOD.e4973_d1521_r1147
 r11217

Tag & Probe Fitting

- Efficiency centroid values extraction
 - Invariant mass of matched and unmatched samples are fitted simultaneously (signal has same mean and sigma for matched and unmatched).
 - $N_{\text{match}} = N_{\text{tot}} * \varepsilon * \text{Sig(mass)} + N_{\text{bkg1}} * \text{Bkg1(mass)}$
 - $N_{unmatch} = N_{tot} * (1-\varepsilon) * Sig(mass) + N_{bkg2} * Bkg2(mass)$
 - The fitting outputs N_{tot} and ε .

Bkg(mass): Exponential

Results of Tight Muon in PbPb and pp MC

Results of ID Track in PbPb and pp MC

PbPb results are all centrality, unreweighted. Reweighting needs debugging.

Back-up

$\varepsilon(ID|MS)$ in PbPb MC Tight Muon Using T&P (unreweighted)

$\varepsilon(\mu|\text{ID})$ in PbPb MC Tight Muon Using T&P (unreweighted)

PbPb MC Tight Muon using Truth match

- Peripheral efficiency slightly better than central.
- All much lower than T&P.