

SEQUENCE LISTING

<110> TYRRELL, JOHN V.
BERGQUIST, PATRICIA R.
BERGQUIST, PETER L.
SCHOLIN, CHRISTOPHER A.

<120> COMPOSITIONS AND METHODS FOR DETECTING RAPHIDOPHYTES

<130> 50681200121

<140> To be assigned
<141> Herewith

<150> 09/596,136

60/141,362

<151> 2000-06-16

1999-06-28

<160> 30

<170> PatentIn Ver. 2.1

<210> 1

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Artificial

<220>

<223> oligonucleotide probe

<220>

<223> W is A or T/U; K is G or T/U.

<400> 1

GWATTACCGC GGCKGCTG

18

<210> 2

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Artificial

<220>

<223> oligonucleotide probe

<220>

<223> M is A or C; W is A or T/U.

<400> 2

CAGCMGCCGC GGTAATWC

18

<210> 3
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 3
CGACTGAGCA CGCACCTTT 19

<210> 4
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 4
GCGACGGCAA AAAGACCAGG A 21

<210> 5
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 5
GCATGTTGAA ACGCTCCAG 19

<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 6
AGCAAAGGTC CTCCGTCCATA

20

<210> 7
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 7
TACTCTCTTT TCAAAAGTCT TTTCATC

27

<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 8
CCGCCTTCACT CGCCGTTACT AG

22

<210> 9
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 9
TCATCTTCC CTCACGGTAC TTGTT

25

<210> 10
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 10
CGGCTGGACA CGCTTCTGT

19

<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 11
CAGCACGAAA TATGACCCCC G

21

<210> 12
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 12
CCATGGGACA CAGCGCGCAC TAC

23

<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 13
TACAAACCAA GGTGCACTAA TG

22

<210> 14
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 14
AACTCTCTTT CCAAAGTTCT TTTCATC

27

<210> 15
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 15
ACACACACTG AGCACGCACC TTT

23

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 16
AGCCCGGGAC CACGACTGAG

20

<210> 17
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 17
GAGCAAAGGT CCTCCGTCTT AAC

23

<210> 18

<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 18
TACTCTCTTT TCAAAAGTCT TTTCATC

27

<210> 19
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 19
CCGCTTCACT CGCCGTTACT AG

22

<210> 20
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 25
TCATCTTCCC CTCACGGTAC TTGTT

25

<210> 21
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 21
CGGCTGGACA CGCTTCTGTA G

21

<210> 22
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

<220>
<223> oligonucleotide probe

<400> 22
AACTCTCTT CCAAAGTTCT TTTCATC 27

<210> 23
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of -Artificial Sequence: Artificial

<400> 23
AGAGTAGCTG AGCACGCATC TCT 23

<210> 24
<211> 687
<212> DNA
<213> Chattonella antiqua

<400> 24
TCTTGAAGC GGAGGAAAAG AACCAACTCG GATTCCTAG TAACGGCGAG TGAAGCGGGA 60
AGAGCTCATG TTGTAATCT GGATGAGGAT TCCCTCGTCC GAATTGTAGT CTAGAGATGC 120
TGCTCAGCT ACTCTCCAGG GCTAAGTCTG TTGTTGAAG ACAGCATCAT GGACGGTGTAT 180
AATCCGGTTTC TTGCTTGGG TGTTGTAGCG TCTTGAGCCG TCCTCAACGA GTGAGTTGC 240
TTGGGATTGC AGCTCTAACG GGGTGGTAAA TTCCATCTAA AGCTAAATAT TGGTGGGAGA 300
CCGGATAGCGA ACAAGTACCG TGAGGGAAAG ATGAAAAGAG CCTTGAAAAG AGAGTTAAAT 360
AGTACCTGAA ACTGCTGAAA GGAAGCGGA TGAAGTCAGT GTTGTCTT TTCTCTGC 420
TCTCTCTTCG GGGGATTGTG TATCGAGGAC TTGAGCTTG TCAGGATGAG TTCTCTGCCG 480
CGGGATATTGG TTGTTGAGCT GGATGCTTCT GCTGAACCTCA CTCTCTCTGT CGTGGCTTGG 540
ACTGAGGTTTC CATCTTGGCG TGCGCTGTT GTTACTCTCC TGTTGCTGTT TCTGTCTTAC 600
TGCTTGCAGT GTTCGGTTGC AGTATTGGA CTGTCAGT TATGCACTGCA AGGTCAGGAT 660
CCTGACGAAT GGCTTTATTA ACCCGAA 687

<210> 25
<211> 681
<212> DNA
<213> Chattonella subsalsa

<400> 25
GCGGAGGAAA AGAACCAACT CGGATTCCT AGTAACGGCG AGTGAAGCGG GAAGAGCTCA 60
TGTTGTAAT CTGGATGAGG GTTCTCGTC CCAGATTGTA GTCTAGAGAT GCGTGCTCAG 120

CTACTCTCCA GGGCTAAGTC TGTGTTGTGAA AGACAGTGTGTC ATGGACGGTG ATAACCCGGT 180
 TCTTGCCTTG GATGTTGTAG CGTTTTGAGC CGTCTCAAC GAGTCGAGTT GCTTGGGATT 240
 GCAGCTCTAA CTGGGGTGTAA AATCCCATCT AAAGCTAAAT ATTGTTGGGA GACCGATAGC 300
 GAACAAAGTAC CGTAGGGAA AGATGAAAAG AACATTGAAA AGAGAGTAA ATAGTACCTG 360
 AAACCTGCTGA AAGGGAAAGG AATGAAGTCA GTGTTGCTCT TTGTTGCTG CATCCTCCCT 420
 CGGGGGATTG TGATATCGAGG ACTTTGAGCT TGTCAAGGATG AGTTCTCTGC CGCGGGATAT 480
 GTTTTGTATG CTGGATGCTT TTTGGAAAC ATACATTCTC TGTCGTTGCT TGGACTGAGG 540
 TTCCATCTTG CCGGTTGCCGT TGCGTTCCCT TCCCGTTGCT GTCTCTCTC TACTGCTTGC 600
 AGTCACTGAGT TGCACTGAGTT GGACTGTGCG TATTATGCAT GCAAGGTCAAG GATCCTGACG 660
 ATATGGCTTTA TTCACCGCA A 681

<210> 26
 <211> 703
 <212> DNA
 <213> Fibrocapsa japonica

<400> 26
 CAGAGGAAAAA GAAACAACCTC GGATTCCTTA GTAACGGCA GTGAAGCGGG AACAGCTCAT 60
 GATGTAATTC TGGGTGACGT TTCTTGTACCC CGAATTGTAG TCTACAGAAG CGTGTCCAGC 120
 CGCGCCCCCT GGCAAAGTCC CCTGGAAACGG GGCACTGTGG ACCTGACAA TCCGGITCAT 180
 GCCTGGGGTGC TCGCGGTGTG ACAGGGCGTT TTCAACAGGT CGAGTTGCCTT GGAGATTGCG 240
 CTCTAAGCGG GTGGTAAATT CCATCTAAAG CTAAATATTG GTGGGAGACC GATAGCGAAC 300
 AAGTACCGTG AGGGAAAGAT GAAAAGAAGT TTGAAAGAG AGTAAACAG TACCTGAAAT 360
 TGCTGAAAGG GAAGCGGAAGG AAGTCAGTGTG ATGGCGGGGG TCATATTTCG TGCTGCTTGC 420
 AGGGTACTGT CGGCCCTGTG CCCATGGGCT GGTCAAGGATG GTTTGTTCC CGCGGGAGATT 480
 CCCAGGGTTG AGGTAGGTCC TTGGGATTG TGCAACCAACCC TGTTGCAATG TGTTGTTCCG 540
 ACCGAGGCAT TAGTGCACCT TGTTTGTAC GGTTTATAT GCGTGATCAT GTCGTGACAC 600
 GCATGCTGTG CGCGGGTGT TATCGTTAT TTGCGTTGCA TTCCCGTGC GCTCTAGATC 660
 CTGTCAAATG GCTTCTTCC ACCTCTTGA AGACGGACCA AGG 703

<210> 27
 <211> 715
 <212> DNA
 <213> Heterosigma akashiwo

<400> 27
 ACCCGCTGAA TTAAAGCATA TAATTAAGGG GAGGAAAAGA AACCAACTCG GATTCCTTA 60
 GTAACGGCGA GTGAAGCGGG AAGAGCTCAT GTTGTAAATC TCCAGCTTGC TGGCAATTG 120
 TAGTCTAAAG GTGTCGTCGTC AGTCAGTGTG CCGGGCTAAG TC'TGTTGGAA AACAGCATCA 180
 TGGACGGTGA CAATCCGTT CTGGCTGGG GTCCCCGGC GTACGAGCCG TTCCGACGA 240
 GTCTGTTGC TTGGGATTGC AGCACTAAGT GGGTGGTAA TTCCATCTAA AGCTAAATAT 300
 TGGTGGGAGA CGCATAGCGA ACAAAGTACCG TGAGGGAAAG ATGAAAAGAC TTTGAAAAG 360
 AGAGTAAAT AGTACCTGAA ACTGCTGAAA GGGAAAGCGAT TGAAAGTCAAG TTGCTCTG 420
 GTCTTTTGC CGTGGCCCCC GTGGGGGTTC CGGGCTGGG CCTGGAGCGGT TTCAACATGC 480
 GTTCTGTTTC CGGGGAAATG TTCAAGTGTG TGAAACCTCG GGGAAACGCA CTTGTTCTGT 540
 CGTGGTTAGG ACGGAGGACC TTGCTCCCT TGACTGCGCG TTCCCTCTC GGGTATGCTG 600
 GTGTCCTACTG CTTGCAGTT TCATTTTCAT GCTTGCAGCT GTGCGTGTAA TTGATGAGCG 660
 AACATGATGT TGAAGGAAATG GCTTTAATTA CCCCCGTTG AAAACACCGAC CAAGG 715

<210> 28
 <211> 681
 <212> DNA
 <213> Vacuolaria virescens

<400> 28
AACGGAGGAA AAGAATCCAA CTCGGATTCC CTAGTAACGG CGAGTGAAGC GGGAAAGAGCT 60
CAAGTTGAAA ATCTGGGTGG GGCTCTCCCCA TCCCGAATTG TAGTCTAGAG ACGCGTGCTC 120
AGCCGTGCTC CAGGGCTAACG TCTGTTGGAA AACAGCATCA TGACCGGTGA TAATCCGGTT 180
CTTGCCTCTGG GTGTTGCGGT TGACCGAGCG TGATCCACGA TGCGAGTTGC TTGGGATTGC 240
AGCTCTAACGC GGTTGGTAAATTCCTCATCTAA AGCTAAATATAGAGTTAAAAA AGTACCTGAA 300
ACAAGTACCG TGAGGGAAAG ATGAAAAGAA CTTTGAAAAG AGAGTTAAAAA AGTACCTGAA 360
ATTGCTGAAA GGGAAAGCGAA TGAAGTCAGT GTCTGCTCCT GGTTGTATTTC TCGGAGTCCC 420
TGCGGGGATT CGGGCACTGT GGCTCTGGAGC ATGTCAGGAT GAGTTCTCTG CCGTGGGATA 480
TGTGTTGGTGG GATTGGTACCTTC CGGGGGAAA CCCGCCACTC TTGTCATGGC TTGGACTGAG 540
GTTCCATCTC GCCGTTGCC TGCCCGTGCCTCTCTGCCGG TTGTTGCTGT CCTACTGCTT 600
GCAGTGCCTC GCTGCAGCTG ACTGACTGTG CGGGTCATGCA ATGCGAGGTC AGGATCCTGA 660
GGACTGGCCG TAATAACCCA A 681

<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

PCR Primer

<400> 29
ACCCGCTGAA TTTAACGATA 20

<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificial

PCR Primer

<400> 30
CCTTGGTCCG TGTTTCAAGA 20