

VND830PEP-E

Double channel high side driver

Features

Туре	R _{DS(on)}	I _{OUT}	V _{CC}
VND830PEP-E	$60 \mathrm{m}\Omega^{(1)}$	6A ⁽¹⁾	36V

- 1. Per each channel.
- CMOS compatible inputs
- Open drain status outputs
- On-state open load detection
- Off-state open load detection
- Shorted load protection
- Undervoltage and overvoltage shutdown
- Protection against loss of ground
- Very low standby current
- Reverse battery protection (see *Application* schematic on page 16)
- In compliance with the 2002/95/EC european directive

Description

The VND830PEP-E is a monolithic device designed in STMicroelectronics VIPower™ M0-3 Technology, intended for driving any kind of load with one side connected to ground.

Active V_{CC} pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table).

Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects open load condition both in on and off-state. Output shorted to V_{CC} is detected in the off-state. Device automatically turns off in case of ground pin disconnection.

Table 1. Device summary

Package	Order	codes
Fackage	Tube	Tape and reel
PowerSSO-24	VND830PEP-E	VND830PEPTR-E

Contents VND830PEP-E

Contents

1	Bloc	k diagram and pin description5
2	Elec	trical specifications 6
	2.1	Absolute maximum ratings 6
	2.2	Thermal data 6
	2.3	Electrical characteristics
	2.4	Electrical characteristics curves
3	Арр	lication information
	3.1	GND protection network against reverse battery
		3.1.1 Solution 1: a resistor in the ground line (RGND only)16
		3.1.2 Solution 2: a diode (D _{GND}) in the ground line
	3.2	Load dump protection
	3.3	MCU I/O protection
	3.4	Open-load detection in off-state
4	Pack	kage and PC board thermal data
	4.1	PowerSSO-24 thermal data
5	Pack	kage information
	5.1	ECOPACK® packages
	5.2	PowerSSO-24 mechanical data 22
6	Revi	sion history

VND830PEP-E List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Suggested connections for unused and not connected pins	
Table 3.	Absolute maximum ratings	
Table 4.	Thermal data (per island)	6
Table 5.	Power output	7
Table 6.	Switching (V _{CC} = 13V)	8
Table 7.	V _{CC} - output diode	8
Table 8.	Status pin	
Table 9.	Logic inputs	8
Table 10.	Protections	8
Table 11.	Open-load detection	9
Table 12.	Truth table	. 10
Table 13.	Electrical transient requirements on V _{CC} pin (part 1/3)	. 11
Table 14.	Electrical transient requirements on V _{CC} pin (part 2/3)	. 11
Table 15.	Electrical transient requirements on V _{CC} pin (part 3/3)	. 11
Table 16.	Thermal parameters	. 21
Table 17.	PowerSSO-24 mechanical data	. 23
Table 18.	Document revision history	. 24

List of figures VND830PEP-E

List of figures

Figure 1.	Block diagram	5
Figure 2.	Configuration diagram (top view)	5
Figure 3.	Current and voltage conventions	7
Figure 4.	Open-load status timing (with external pull-up)	9
Figure 5.	Over temperature status timing	10
Figure 6.	Switching time waveforms	10
Figure 7.	Waveforms	12
Figure 8.	Off-state output current	13
Figure 9.	High level input current	13
Figure 10.	Input clamp voltage	13
Figure 11.	Status leakage current	13
Figure 12.	Status low output voltage	13
Figure 13.	Status clamp voltage	13
Figure 14.	Turn-on voltage slope	14
Figure 15.	Turn-off voltage slope	14
Figure 16.	On-state resistance vs Tcase	14
Figure 17.	On-state resistance vs VCC	14
Figure 18.	ILIM vs Tcase	14
Figure 19.	Input high level	14
Figure 20.	Open-load on-state detection threshold	15
Figure 21.	Open-load off-state detection threshold	
Figure 22.	Input hysteresis voltage	15
Figure 23.	Input low level	15
Figure 24.	Overvoltage shutdown	15
Figure 25.	Undervoltage shutdown	15
Figure 26.	Application schematic	16
Figure 27.	Open-load detection in off-state	18
Figure 28.	PowerSSO-24 PC board	19
Figure 29.	Rthj-amb vs PCB copper area in open box	19
Figure 30.	PowerSSO-24 thermal impedance junction ambient single pulse	20
Figure 31.	Thermal fitting model of a double channel HSD in PowerSSO-24	20
Figure 32	PowerSSO-24 package dimensions	22

1 Block diagram and pin description

Figure 1. Block diagram

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection / pin	Current sense	N.C.	Output	Input
Floating		Х	Х	Х
To ground	Through 1KΩ resistor	Х		Through 10KΩ resistor

2 Electrical specifications

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality document.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	41	V
- V _{CC}	Reverse DC supply voltage	- 0.3	٧
- I _{GND}	DC reverse ground pin current	- 200	mA
I _{OUT}	DC output current	Internally limited	Α
-l _{OUT}	Reverse DC output current	- 6	Α
I _{IN}	DC input current	+/- 10	mA
I _{stat}	DC status current	+/- 10	mA
	Electrostatic discharge (human body model:R=1.5KΩ; C=100pF)		
	- Input	4000	V
V_{ESD}	- Status	4000	V
	- Output	5000	V
	- V _{CC}	5000	V
P _{tot}	Power dissipation T _C = 25°C	54	W
T _j	Junction operating temperature	Internally limited	°C
T _c	Case operating temperature	- 40 to 150	°C
T _{stg}	Storage temperature	- 55 to 150	°C

2.2 Thermal data

Table 4. Thermal data (per island)

Symbol	Parameter	Value		Unit
R _{thj-case}	Thermal resistance junction-case (max)	2.	.3	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (one chip ON) (max)	57 ⁽¹⁾	57 ⁽¹⁾ 42 ⁽²⁾	

^{1.} When mounted on a standard single-sided FR-4 board with $0.5 cm^2$ of Cu (at least 35 μ m thick) connected to all V_{CC} pins.

^{2.} When mounted on a standard single-sided FR-4 board with $8 cm_2$ of Cu (at least 35 μ m thick) connected to all V_{CC} pins.

2.3 Electrical characteristics

Values specified in this section are for 8V < V_{CC} < 36V; -40°C < T_j < 150°C, unless otherwise stated.

Figure 3. Current and voltage conventions

Note: $V_{Fn} = V_{CCn} - V_{OUTn}$ during reverse battery condition.

Table 5. Power output

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		5.5	13	36	V
V _{USD}	Undervoltage shutdown		3	4	5.5	V
V _{OV}	Overvoltage shutdown		36			٧
R _{ON}	On-state resistance	I _{OUT} = 2A; T _j = 25°C I _{OUT} = 2A; T _j = 125°C			60 120	m Ω m Ω
I _S	Supply current	Off-state; $V_{CC} = 13V$; $V_{IN} = V_{OUT} = 0V$ Off-state; $V_{CC} = 13V$; $V_{IN} = V_{OUT} = 0V$; $T_j = 25^{\circ}C$ On-state; $V_{CC} = 13V$; $V_{IN} = 5V$;		12	40 25	μΑ
		I _{OUT} = 0A		5	7	mA
I _{L(off1)}	Off-state output current	$V_{IN} = V_{OUT} = 0V$	0		50	μΑ
I _{L(off2)}	Off-state output current	$V_{IN} = 0V; V_{OUT} = 3.5V$	-75		0	μΑ
I _{L(off3)}	Off-state output current	$V_{IN} = V_{OUT} = 0V; V_{CC} = 13V;$ $T_j = 125^{\circ}C$			5	μΑ
I _{L(off4)}	Off-state output current	$V_{IN} = V_{OUT} = 0V; V_{CC} = 13V;$ $T_j = 25$ °C			3	μΑ

Table 6. Switching $(V_{CC} = 13V)$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$R_L = 6.5\Omega$ from V_{IN} rising edge to $V_{OUT} = 1.3V$	-	30	-	μs
t _{d(off)}	Turn-off delay time	$R_L = 6.5\Omega$ from V_{IN} falling edge to $V_{OUT} = 11.7V$	-	30	-	μs
dV _{OUT} /dt _(on)	Turn-on voltage slope	$R_L = 6.5\Omega$ from $V_{OUT} = 1.3V$ to $V_{OUT} = 10.4V$	-	See Figure 14	-	V/µs
dV _{OUT} /dt _(off)	Turn-off voltage slope	$R_L = 6.5\Omega$ from $V_{OUT} = 11.7V$ to $V_{OUT} = 1.3V$	-	See Figure 13	-	V/µs

Table 7. V_{CC} - output diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{F}	Forward on voltage	- I _{OUT} = 1.3A; T _j = 150°C	-	-	0.6	V

Table 8. Status pin

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{STAT}	Status low output voltage	I _{STAT} = 1.6 mA			0.5	V
I _{LSTAT}	Status leakage current	Normal operation; V _{STAT} = 5V			10	μΑ
C _{STAT}	Status pin input capacitance	Normal Operation; V _{STAT} = 5V			100	pF
V _{SCL}	Status clamp voltage	I _{STAT} = 1mA I _{STAT} = - 1mA	6	6.8 -0.7	8	V V

Table 9. Logic inputs

	9					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input low level				1.25	V
I _{IL}	Low level input current	V _{IN} = 1.25V	1			μΑ
V _{IH}	Input high level		3.25			٧
I _{IH}	High level input current	V _{IN} = 3.25V			10	μΑ
V _{I(hyst)}	Input hysteresis voltage		0.5			V
V _{ICL}	Input clamp voltage	$I_{IN} = 1 \text{mA}$ $I_{IN} = -1 \text{mA}$	6	6.8 - 0.7	8	V V

Table 10. Protections⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{TSD}	Shutdown temperature		150	175	200	°C
T _R	Reset temperature		135			°C

Table 10. Protections⁽¹⁾ (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{hyst}	Thermal hysteresis		7	15		°C
t _{SDL}	Status delay in overload conditions	$T_j > T_{TSD}$			20	μs
I _{lim}	Current limitation	5.5V < V _{CC} < 36V	6	9	15 15	A A
V _{demag}	Turn-off output clamp voltage	I _{OUT} = 2A; L = 6mH	V _{CC} - 41	V _{CC} - 48	V _{CC} - 55	V

To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.

Table 11. Open-load detection

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{OL}	Open-load on-state detection threshold	V _{IN} = 5V	50	100	200	mA
t _{DOL(on)}	Open-load on-state detection delay	I _{OUT} = 0A			200	μs
V _{OL}	Open-load off-state voltage detection threshold	V _{IN} = 0V	1.5	2.5	3.5	٧
t _{DOL(off)}	Open-load detection delay at turn-off				1000	μs

Figure 4. Open-load status timing (with external pull-up)

Figure 5. Over temperature status timing

Figure 6. Switching time waveforms

Table 12. Truth table

Conditions	Inputn	Outputn	Statusn
Normal Operation	L	L	H
	H	H	H
Current Limitation	L	L	H
	H	X	(Tj < TTSD) H
	H	X	(Tj > TTSD) L
Over temperature	L	L	H
	H	L	L
Undervoltage	L H	L	X X

Table 12. Truth table (continued)

Conditions	Inputn	Outputn	Statusn
Overveltage	L	L	Н
Overvoltage	Н	L	Н
Output voltage > V _{OLn}	L	Н	L
	Н	Н	Н
Output ourrent al	L	L	Н
Output current < I _{OLn}	Н	Н	L

Table 13. Electrical transient requirements on V_{CC} pin (part 1/3)

ISO T/R	Test level					
7637/1 Test pulse	ı	II	III	IV	Delays and impedance	
1	- 25V	- 50V	- 75V	- 100V	2ms, 10Ω	
2	+ 25V	+ 50V	+ 75V	+ 100V	0.2ms, 10Ω	
3a	- 25V	- 50V	- 100V	- 150V	0.1μs, 50Ω	
3b	+ 25V	+ 50V	+ 75V	+ 100V	0.1μs, 50Ω	
4	- 4V	- 5V	- 6V	- 7V	100ms, 0.01Ω	
5	+ 26.5V	+ 46.5V	+ 66.5V	+ 86.5V	400ms, 2Ω	

Table 14. Electrical transient requirements on V_{CC} pin (part 2/3)

ISO T/R		Test level					
7637/1 Test pulse	I	II	III	IV			
1	С	С	С	С			
2	С	С	С	С			
3a	С	С	С	С			
3b	С	С	С	С			
4	С	С	С	С			
5	С	Е	Е	E			

Table 15. Electrical transient requirements on V_{CC} pin (part 3/3)

Class	Contents
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.

Figure 7. Waveforms

12/25 Doc ID 10826 Rev 5

2.4 Electrical characteristics curves

Figure 8. Off-state output current

Figure 9. High level input current

Figure 10. Input clamp voltage

Figure 11. Status leakage current

Figure 12. Status low output voltage

Figure 13. Status clamp voltage

Figure 14. Turn-on voltage slope

Figure 15. Turn-off voltage slope

Figure 16. On-state resistance vs Tcase

75 100

Tc (°C)

Figure 17. On-state resistance vs V_{CC}

Figure 18. I_{LIM} vs T_{case}

Figure 19. Input high level

14/25 Doc ID 10826 Rev 5

90

-50

Figure 20. Open-load on-state detection threshold

lol (mA)
140
135
130
Vcc=13V
Vin=5V
125
120
115
110
105

50

Tc (°C)

100 125

Figure 21. Open-load off-state detection threshold

Figure 22. Input hysteresis voltage

0

Figure 23. Input low level

Figure 24. Overvoltage shutdown

Figure 25. Undervoltage shutdown

477

3 Application information

Figure 26. Application schematic

3.1 GND protection network against reverse battery

This section provides two solutions for implementing a ground protection network against reverse battery.

3.1.1 Solution 1: a resistor in the ground line (R_{GND} only)

This can be used with any type of load.

The following show how to dimension the R_{GND} resistor:

- 1. $R_{GND} \leq 600 \text{mV} / (I_{S(on)max})$
- 2. $R_{GND} \ge (-V_{CC})/(-I_{GND})$

where - I_{GND} is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

Power dissipation in R_{GND} (when V_{CC} < 0 during reverse battery situations) is:

$$P_D = (-V_{CC})^2 / R_{GND}$$

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that, if the microprocessor ground is not shared by the device ground, then the R_{GND} will produce a shift ($I_{S(on)max} * R_{GND}$) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same R_{GND} .

16/25 Doc ID 10826 Rev 5

If the calculated power dissipation leads to a large resistor, or several devices have to share the same resistor, then ST suggests using solution 2 below.

3.1.2 Solution 2: a diode (D_{GND}) in the ground line

A resistor ($R_{GND} = 1 k\Omega$) should be inserted in parallel to D_{GND} if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (\approx 600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the absolute maximum rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.

3.2 Load dump protection

 D_{ld} is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the V_{CC} maximum DC rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than those shown in the ISO T/R 7637/1 table.

3.3 MCU I/O protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the μC I/O pins from latching up.

The value of these resistors is a compromise between the leakage current of μC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of μC I/Os:

Example

For the following conditions:

$$\begin{split} &V_{CCpeak} = \text{-} \ 100V \\ &I_{latchup} \geq 20\text{mA} \\ &V_{OH\mu C} \geq 4.5V \\ &5k\Omega \leq R_{prot} \leq 65k\Omega. \end{split}$$

Recommended values are:

 $R_{prot} = 10k\Omega$

3.4 Open-load detection in off-state

Off-state open-load detection requires an external pull-up resistor (R_{PU}) connected between OUTPUT pin and a positive supply voltage (V_{PU}) like the +5V line used to supply the microprocessor.

The external resistor has to be selected according to the following requirements:

- no false open-load indication when load is connected: in this case we have to avoid V_{OUT} to be higher than V_{Olmin} ; this results in the following condition $V_{OUT} = (V_{PU} / (R_L + R_{PU})) R_L < V_{Olmin}.$
- 2. no misdetection when load is disconnected: in this case the V_{OUT} has to be higher than V_{OLmax} ; this results in the following condition $R_{PU} < (V_{PU} V_{OLmax}) / I_{L(off2)}$.

Because $I_{s(OFF)}$ may significantly increase if V_{out} is pulled high (up to several mA), the pull-up resistor R_{PU} should be connected to a supply that is switched off when the module is in standby. The values of V_{OLmin} , V_{OLmax} and $I_{L(off2)}$ are available in the electrical characteristics section.

Figure 27. Open-load detection in off-state

4 Package and PC board thermal data

4.1 PowerSSO-24 thermal data

Figure 28. PowerSSO-24 PC board

Note:

Layout condition of Rth and Zth measurements (PCB FR4 area= 78mm x 78mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm²).

Figure 29. $R_{thi-amb}$ vs PCB copper area in open box

Figure 30. PowerSSO-24 thermal impedance junction ambient single pulse

Figure 31. Thermal fitting model of a double channel HSD in PowerSSO-24

Equation 1: pulse calculation formula

$$\begin{split} Z_{TH\delta} &= R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ \text{where } \delta &= t_P / T \end{split}$$

Table 16. Thermal parameters

Area/island (cm ²)	Footprint	8
R1 = R7 (°C/W)	0.1	
R2 = R8 (°C/W)	0.9	
R3 (°C/W)	1	
R4 (°C/W)	4	
R5 (°C/W)	13.5	
R6 (°C/W)	37	22
C1 = C7 (W.s/°C)	0.0006	
C2 = C8 (W.s/°C)	0.0025	
C3 (W.s/°C)	0.025	
C4 (W.s/°C)	0.08	
C5 (W.s/°C)	0.7	
C6 (W.s/°C)	3	5

Package information VND830PEP-E

5 Package information

5.1 ECOPACK® packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

5.2 PowerSSO-24 mechanical data

Figure 32. PowerSSO-24 package dimensions

Table 17. PowerSSO-24 mechanical data

Occupation I		Millimeters	
Symbol	Min.	Тур.	Max.
Α			2.45
A2	2.15		2.35
a1	0		0.10
b	0.33		0.51
С	0.23		0.32
D	10.10		10.50
E	7.40		7.60
е		0.8	
e3		8.8	
F		2.3	
G			0.1
G1			0.06
Н	10.1		10.5
h			0.4
k	0°		8°
L	0.55		0.85
N			10º
X	4.1		4.7
Y	6.5		7.1

Revision history VND830PEP-E

6 Revision history

Table 18. Document revision history

Date	Revision	Changes
04-Oct-2004	1	Initial release.
15-Nov-2004	2	Mechanical data updating. PowerSSO-24 thermal characteristics insertion
27-Nov-2004	3	PC board copper area correction.
12-Dec-2005	4	Electrical characteristics insertion. Absolute maximum ratings modification.
01-Jul-2009	5	Updated Figure 17: PowerSSO-24 mechanical data: - Deleted A (min) value - Changed A (max) value from 2.47 to 2.45 - Changed A2 (max) value from 2.40 to 2.35 - Changed a1 (max) value from 0.075 to 0.1 - Inserted F and k rows

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

