



#### Accelerating MCRT Simulations with Bayesian Inference

João Rino-Silvestre

PhD student advised by:

Santiago González-Gaitán Ana Mourão Alberto Krone-Martins







### PhD Brief

#### Objectives:

- Explore influence of magnetic fields, scattering and dust in the linear polarization of galaxies;
- Extract and understand dust properties and distributions to correct systematics in extinction laws

#### Methods

- 1. Data reduction and analysis
- 2. Apply Bayesian inference and other statistical learning methods
- 3. Model the observed galaxies using MCRT models
- 4. Compare with models with observations

# Modeling with MCRT - Monte Carlo Radiative Transfer

Mattila, 1970

- Define an emitting body and a dust structure
- Simulate the emission of N photons by the body and their interaction with the dust
- Check the photon maps for different wavelengths

### SKIRT

Baes et al., 2011

- MCRT suite that has tunable body and dust distribution templates
- Easier to simulate distinct scenes from different perspectives
- Simulates K photons per wavelength bin

### **SKIRT**

#### Simulations of face-on AGN, at 9.72 $\mu m$ (by Marko Stalevski)



10<sup>4</sup> photons per bin ~5min



10<sup>5</sup> photons per bin ~6h



10<sup>6</sup> photons per bin ~2d

### **SKIRT**

#### Simulations of edge-on AGN, at 9.82 $\mu m$ (by Marko Stalevski)



10<sup>4</sup> photons per bin ~5min



10<sup>5</sup> photons per bin ~6h



10<sup>6</sup> photons per bin ~2d

#### Upscaling face-on AGN, at 9.72 $\mu m$ , with INLA



1.92e-11 1.34e-10 5.95e-10 2.42e-09 9.70e-09



Regular input ~2min

Log<sub>10</sub> of input ~2min

Normalized input ~2min

#### Upscaling edge-on AGN, at 9.82 $\mu\text{m}$ , with INLA



5.88e-13 4.12e-12 1.82e-11 7.40e-11 2.97e-10



Regular input ~2min

Log<sub>10</sub> of input ~2min

Normalized input ~2min

|     |          | Mean       | SD        | Median     | MAD       |
|-----|----------|------------|-----------|------------|-----------|
| T=0 | INLA_SD  | 1,833E-05  | 1,124E-05 | 1,788E-05  | 1,517E-05 |
|     | Res      | 1,301E-10  | 1,126E-10 | 1,358E-10  | 1,178E-10 |
|     | Res/1e6  | 1,124E+06  | 2,663E+07 | 7,135E+03  | 1,073E+04 |
|     | Diff     | -2,877E-05 | 5,723E-06 | -2,814E-05 | 5,598E-06 |
|     | Diff/Res | 3,391E+05  | 1,257E+08 | -1,477E+05 | 1,256E+05 |
|     |          | 381        |           |            |           |
| T=1 | INLA_SD  | 2,399E+04  | 1,004E+05 | 6,141E+01  | 8,903E+01 |
|     | Res      | -3,146E-13 | 2,625E-12 | 1,726E-15  | 3,621E-14 |
|     | Res/1e6  | -2,296E+02 | 1,348E+04 | 8,196E-01  | 2,674E-01 |
|     | Diff     | -3,976E+04 | 1,274E+05 | -7,819E+01 | 1,139E+02 |
|     | Diff/Res | -1,442E+20 | 1,342E+22 | -2,432E+14 | 6,971E+15 |
|     |          |            |           |            |           |
| T=2 | INLA_SD  | 1,166E-12  | 9,992E-13 | 8,140E-13  | 6,771E-13 |
|     | Res      | -1,562E-12 | 2,062E-12 | -1,089E-12 | 8,691E-13 |
|     | Res/1e6  | -5,944E+03 | 1,715E+05 | -5,746E+01 | 8,205E+01 |
|     | Diff     | -3,273E-12 | 2,385E-12 | -2,879E-12 | 2,178E-12 |
|     | Diff/Res | 1,128E+01  | 2,652E+03 | 2,743E+00  | 1,303E+00 |

Possible statistical metrics to evaluate INLA's performance on SKIRT data

Upscaling face-on AGN, at 9.72 μm, with imputation of 0's on regular input before INLA







Imputation freq: 1/900

Imputation freq: 1/144

Imputation freq: 1/36

Upscaling face-on AGN, at 9.72  $\mu$ m, with imputation of -15's on log<sub>10</sub> input before INLA







Imputation freq: 1/900

Imputation freq: 1/144

Imputation freq: 1/36

Upscaling edge-on AGN, at 9.82  $\mu$ m, with imputation of 0's on regular input before INLA



1.72e-13 1.20e-12 5.30e-12 2.15e-11 8.64e-11



Imputation freq: 1/900

Imputation freq: 1/144

Imputation freq: 1/36

Upscaling edge-on AGN, at 9.82  $\mu m$ , with imputation of -15's on  $log_{10}$  input before INLA







Imputation freq: 1/900

Imputation freq: 1/144

Imputation freq: 1/36