EMO DETECT: Real time Emotion Detection from Faces, Text and Live Webcam

MINIPROJECT REPORT

Submittedby

THIRUVEEDULA SUJITH KUMAR [RA2011047010145]

Undertheguidanceof
Dr. SUMATHY G
(GuideAffiliation)
Assistant Professor

Department of Computational Intelligence

FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF COMPUTING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY Kattankulathur, Kancheepuram MAY 2023

SRMINSTITUTEOF SCIENCEANDTECHNOLOGY

(UnderSection3ofUGCAct,1956)

BONAFIDECERTIFIC ATE

Certifiedthat18AIE324T_Cognitive Science and Analytics titled "EMOTION ANALYSIS WITH STREAMLIT" is the bonafide work of "THIRUVEEDULA SUJITH KUMAR [RA2011047010145]" who carried out theminor projectwork under my supervision. Certified further, that to the best of myknowledge the work reported herein does not form any other project report ordissertation on the basis of which a degree or award was conferred on an earlieroccasiononthisoranyother candidate.

SIGNATURE

Dr.SUMATHY G GUIDE Assistant Professor **SIGNATURE**

Dr. Annie Uthra

HEADOFTHEDEPARTMENT

Professor

Dept. Of Computational Intelligence

ABSTRACT

In this project, we propose to develop an emotion detection system using machine learning algorithms and natural language processing techniques. Our system will leverage existing datasets of sentiment-bearing words and phrases, as well as develop its own models through supervised learning on annotated data. The goal of our system is to accurately identify the emotional tone of a piece of text, whether it is positive, negative, or neutral, and provide valuable insights into people's opinions and attitudes towards a particular topic or product.

INDEX

S.No	PROJECT CONTENT	PAGE NO.
A	Abstract	
В	Table Of Contents	
С	List Of Figures	
D	List of tables	
1	Introduction	
2	Literature Survey	
3	Proposed Work	
4	Design Methodology	
5	Usecase Diagram	
6	Class Diagrams With Description	
7	Sequence Diagrams	
8	Collaboration Diagrams	
9	Package Diagram	
10	Component Diagram	
11	Deployment Diagram	
12	Module And Algorithm Description	
13	Coding	
14	Result And Conclusion	
15	Reference	
16	Appendix Output Screenshot	

LISTOFFIGURES

FigureNo. FigureName PageNo.

3.1 System Architecture	13	
3.2 Accuracy Comparision	16	
3.3 Confusion Matrix	17	

LISTOFTABLES

TableNo. TableName
PageNo.

2.1 Literature Survey 11-12

ABBREVIATIONS

LSTM Long short-term memory

CNN ConvolutionalNeuralNetwork

UI UserInterface

API Application Programming Interface

INTRODUCTION

Sentiment analysis in text, also known as opinion mining, is a natural language processing technique that involves the use of machine learning algorithms and statistical models to identify and extract subjective information from text. The goal of sentiment analysis is to determine the emotional tone or attitude expressed in a piece of text, whether it is positive, negative, or neutral.

LITERATURE SURVEY

Over the past few years, study the human sentiment has been researched upon through various automation techniques. Following the development of Natural Language Processing, textual analysis has been made significantly more accessible with the help of Neural Networks and their types. Studies suggest, that LSTMs and CNNs are the two most popular choices for performing sentiment analysis on behavioral data collected from social media. [3] explores the use of Convolutional Neural Networks for the purpose of Twitter Sentiment Analysis upon the SemiEval Dataset with an aim of feature extraction from user behavior information and handling a huge amount of unstructured data. In [1] we found recommending the places which is near to the user's current location by analyzing the different reviews and consequently computing the score grounded on it. In [4] logistic regression has the highest accuracy among the other machine learning algorithms they used in research for predicting frustration.

Title	Author	Year	Findings	Limitations
Sentiment Analysis	Kaur, J., &	2018	Gives an overview on	Low Accuracy in models
Based on Deep Learning	Sidhu, B. K.		sentiment analysis and what	
Approaches			different methods and levels	
[IEEE]			which are used with it	
Amrita-CEN-	Naveenkumar K	2019	Evaluates the performance	Output is dependent on
SentiDB1:Improved	S; Vinayakumar		of linear and nonlinear text	decision making Vectors
Twitter Dataset for	R; Soman K P		representation methods for	
Sentimental Analysis and			sentimental analysis	
Application of Deep				
learning [IEEE]				
Deep Learning for	Do, H.H.;	2019	Aspect extraction and	Deep Learning Models are
Aspect-Based Sentiment	Prasad, P.;		sentiment classification	computationally expensive.
Analysis: A Comparative	Maag, A.;			
Review [ACM]	Alsadoon, A.J.			

		1		
Sentiment Analysis of Uber & Ola using Deep Learning. 2020 (ICOSEC). [IEEE]	Indulkar, Y., & Patil, A.	2020	The CNN model was moderate concerning the DNN, which was questioning	The accuracy for the Ola tweets was not that good as compared to the Uber though cleaning was done still it couldn't generate the accurac as expected.
Sentimental analysis using fuzzy and naive bayes. [IEEE]	Mehra, R., Bedi, M. K., Singh, G., Arora,	2018	Applied a hybrid of naive Bayes and Fuzzy classifier to this set conduct sentiment analysis	Work only on twitter size which is 140 words.
Semi-supervised dimensional sentiment analysis with variational autoencoder [ELSEVIER]	Wu, C.; Wu, F.; Wu, S.; Yuan, Z.; Liu, J.; Huang, Y	2019	Encoding, sentiment prediction, and decoding	Computationally expensive
Application of deep learning to sentiment analysis for recommender system on cloud [IEEE]	Preethi, G.; Krishna, P.V.; Obaidat, M.S.; Saritha, V.; Yenduri, S	2018	Recommending the places that are near to the user's current location by analyzing the different reviews and consequently computing the score grounded on it	RDSA is not done with variety of datasets and also with more volume of data.
Twitter sentiment analysis using deep learning methods [IEEE]	Ramadhani, A.M.; Goo, H.S.	2018	Handling a huge amount of unstructured data	Computationally Expensive for huge data.
Frustration Detection On Reviews Using Machine Learning [IEEE]	Suri, S., Sharma, K., &Papneja, S	2020	We conclude that Logistic Regression has the highest accuracy among the different machine learning algorithms we used for predicting frustration.	Only considering the negative reviews for frustration detection.
Sentiment analysis using deep learning on Persian texts [IEEE]	Roshanfekr, B.; Khadivi, S.; Rahmati, M.	2018	Evaluating deep learning methods using the Persian language	The use of word vector representations which is done in an unsupervised way.

PROPOSED WORK

We have tried to increase the accuracy as much as possible as many of the transfer learning algorithm which involve pretrained models works well but not that much accurate. So, our main objective is to develop a deep learning model that can detect the emotions of the content with more accuracy and performance. The main idea behind this project is to integrate artificial intelligence with popular Streamlit software. In this project we will do sentimental analysis on the emails which we will get from our outlook account using robotic process automation tool i.e., Streamlit and return the percentage of emotions on the web portal.

Fig 3.1

CHAPTER 4

MODULE DESCRIPTION

- 1. Data Collection
- 2. Pre-processing Module
- 3. Feature Extraction Module
- 4. Classification Module
- 5. Integration Module

Real time Emotion Detection using text, face and live webcam.

VADER Sentiment Analysis. VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and works well on texts from other domains.

A powerful NLP library. Flair allows you to apply our state-of-the-art natural language processing (NLP) models to your text, such as named entity recognition (NER), sentiment analysis, part-of-speech tagging (PoS), special support for biomedical data, sense disambiguation and classification, with support for a rapidly growing number of languages.

A text embedding library. Flair has simple interfaces that allow you to use and combine different word and document embeddings, including our proposed Flair embeddings and various transformers.

RESULT AND CONCLUSION

```
Edit Selection View Go Run Terminal Help
      D ~ III .
0
0
            #from keras.preprocessing.image import img_to_array from streamlit_webrtc import webrtc_streamer, VideoTransformerBase, RTCConfiguration, VideoProcessorBase, WebRtcMode
ရှိ
ရ
            # load model
emotion.dict = {0:'angry', 1 :'happy', 2: 'neutral', 3:'sad', 4: 'surprise'}
# load | son and create model
| son file - open('emotion model1.json', 'r')
| loaded model_json = json_file.read()
| json_file.close()
| classifier = model_from_json(loaded_model_json)
2
8
G
Д
Po
(1)
            RTC_CONFIGURATION = RTCConfiguration({"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]})
*
0
                  8
£55
                                                                                                                          Ln 1, Col 1 Spaces: 4 UTF-8 CRLF () Python 3.8.8 ('base': conda) 🛱 🕻
                                                   🔡 Q Search
                                                                                                                                              ^ ≦ GENG → Ф) → 18:08
N → Ф) → 20:04-2023
```

```
D ~ 🖽 ..
Ð
                     ps: y Zishan > Desktop > SentimentAnalysis Streamlit main.

Import streamlit as st
Import streamlit.components.v1 as components
from textblob import TextBlob
from PII. import Image
import textEquention as te
import pottly.graph_objects as go
Q
مړه
2
                           plotPie(labels, values):
fig = go.Figure(
    go.Pie(
    labels = labels,
    values = values,
howerinfo = "label+percent",
    textinfo = "value"
品
Ğ
Д
                            st.plotly_chart(fig)
getPolarity(userText):
tb = TextBlob(userText):
polarity = round(tb.polarity, 2)
subjectivity = round(tb.subjectivity, 2)
if polarity>0:
    return polarity, subjectivity, "Positive"
elif polarity-0:
    return polarity, subjectivity, "Neutral"
else:
Po
(
*
0
                                 ::
return polarity, subjectivity, "Negative"
                               8
₩
                                 re Ø Discovering Python Interpreters Quokka
                                                                                                                                                                                                                     Ln 1, Col 1 Spaces: 4 UTF-8 LF () Python 3.8.8 (base': conda) & C
      ⊗0 A 0
                                                                                      🚆 Q Search 💴 🗈 🙃 📆 🗳 💆 🐽 🚞
                                                                                                                                                                                                                                                      へ 🔌 🎜 ENG 🖘 🗘 🖆 20-04-2023
  27°C
Partly clos
```


REFERENCES

- Preethi, G.; Krishna, P.V.; Obaidat, M.S.; Saritha, V.; Yenduri, S. Application of deep learning to sentiment analysis for recommender system on cloud. In Proceedings of the 2017 International Conference on Computer, Information and Telecommunication Systems (CITS), Dalian, China, 21–23 July 2017; pp. 93–97. Electronics 2020, 9, 483 27 of 29
- 2. Suri, S., Sharma, K., & Papneja, S. (2020). Frustration Detection On Reviews Using Machine Learning. 2020 International Conference for Emerging Technology (INCET).
- 3. Naveenkumar K S; Vinayakumar R; Soman K P Amrita-CEN-SentiDB1:Improved Twitter Dataset for Sentimental Analysis and Application of Deep learning
- Kaur, J., & Sidhu, B. K. (2018). Sentiment Analysis Based on Deep Learning Approaches. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS).
- 5. Indulkar, Y., & Patil, A. Indulkar, Y., & Patil, A. (2020). Sentiment Analysis of Uber & Ola using Deep Learning. 2020 (ICOSEC).
- Roshanfekr, B.; Khadivi, S.; Rahmati, M. Sentiment analysis using deep learning on Persian texts. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1503–1508.
- 7. Ramadhani, A.M.; Goo, H.S. Twitter sentiment analysis using deep learning methods. In Proceedings of the 2017 7th International Annual Engineering Seminar (InAES), Yogyakarta, Indonesia, 1–2 August 2017; pp. 1–4.
- 8. Yang, C.; Zhang, H.; Jiang, B.; Li, K.J. Aspect-based sentiment analysis

with alternating coattention networks. Inf. Process. Manag. 2019, 56, 463–478.

- 9. Do, H.H.; Prasad, P.; Maag, A.; Alsadoon, A.J. Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review. Expert Syst. Appl. 2019, 118, 272–299.
- 10. Wu, C.; Wu, F.; Wu, S.; Yuan, Z.; Liu, J.; Huang, Y. Semi-supervised dimensional sentiment analysis with variational autoencoder. Knowl. Based Syst. 2019, 165, 30–39

APPENDIX

1.1 OUTPUT SCREENSHOT

Screenshots of Model Training and Output

```
File Edit Selection View Go Run Terminal Help
                                      app.py - Visual Studio Code
                                                                                 ▷ ~ □ ...
0
Q
30
2
8
Д
Po
(
*
0
         8
533
                                                           Ln 1, Col 1 Spaces: 4 UTF-8 CRLF ( ) Python 3.8.8 (base' conda) R C
                        👭 Q Search
27°C
Partly
                                                                     へ 🖎 🔏 ENG 🖘 中) 🗁 18:08
20:04-2023
```