Topics on nonlinear optimization

Contents

Introduction

- Gradient based methods
 - Newton's method
 - Gauss-Newton's method
 - Steepest Decent
 - Levenberg-Marquardt's method

Introduction

$$\mathbf{p} = egin{bmatrix} p_1 \\ p_2 \\ dots \\ p_M \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = \begin{bmatrix} g_1(\mathbf{p}) \\ g_2(\mathbf{p}) \\ \vdots \\ g_N(\mathbf{p}) \end{bmatrix}$$

$$\mathbf{p} = egin{bmatrix} p_1 \ p_2 \ dots \ p_M \end{bmatrix}$$

$$\mathbf{d} = egin{bmatrix} d_1 \ d_2 \ dots \ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = egin{bmatrix} g_1(\mathbf{p}) \ g_2(\mathbf{p}) \ dots \ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = [\mathbf{d} - \mathbf{g}(\mathbf{p})]^{\top} [\mathbf{d} - \mathbf{g}(\mathbf{p})]$$

$$\mathbf{p} = egin{bmatrix} p_1 \ p_2 \ dots \ p_M \end{bmatrix}$$

$$\nabla \Phi(\mathbf{p}^*) = \mathbf{0}_{M \times 1}$$

$$\mathbf{d} = egin{bmatrix} d_1 \ d_2 \ dots \ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = egin{bmatrix} g_1(\mathbf{p}) \ g_2(\mathbf{p}) \ dots \ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = [\mathbf{d} - \mathbf{g}(\mathbf{p})]^{\top} [\mathbf{d} - \mathbf{g}(\mathbf{p})]$$

$$\mathbf{p} = egin{bmatrix} p_1 \ p_2 \ dots \ p_M \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = \begin{bmatrix} g_1(\mathbf{p}) \\ g_2(\mathbf{p}) \\ \vdots \\ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = \left[\mathbf{d} - \mathbf{g}(\mathbf{p})\right]^{\top} \left[\mathbf{d} - \mathbf{g}(\mathbf{p})\right]$$

$$\mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_M \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = \begin{bmatrix} g_1(\mathbf{p}) \\ g_2(\mathbf{p}) \\ \vdots \\ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = \left[\mathbf{d} - \mathbf{g}(\mathbf{p})\right]^{\top} \left[\mathbf{d} - \mathbf{g}(\mathbf{p})\right]$$

$$\mathbf{p} = egin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_M \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = \begin{bmatrix} g_1(\mathbf{p}) \\ g_2(\mathbf{p}) \\ \vdots \\ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = [\mathbf{d} - \mathbf{g}(\mathbf{p})]^{\top} [\mathbf{d} - \mathbf{g}(\mathbf{p})]$$

$$\nabla \Phi(\mathbf{p}^*) = \mathbf{0}_{M \times 1}$$

Linear problem

$$g(p) = Bp + b$$

$$\mathbf{p}^* = \left(\mathbf{B}^{\top}\mathbf{B}\right)^{-1}\mathbf{B}^{\top}\left(\mathbf{d} - \mathbf{b}\right)$$

Nonlinear problem

$$\mathbf{p} = egin{bmatrix} p_1 \ p_2 \ dots \ p_M \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = \begin{bmatrix} g_1(\mathbf{p}) \\ g_2(\mathbf{p}) \\ \vdots \\ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = [\mathbf{d} - \mathbf{g}(\mathbf{p})]^{\top} [\mathbf{d} - \mathbf{g}(\mathbf{p})]$$

$$\nabla \Phi(\mathbf{p}^*) = \mathbf{0}_{M \times 1}$$

Linear problem

$$g(p) = Bp + b$$

$$\mathbf{p}^* = \left(\mathbf{B}^{\top}\mathbf{B}\right)^{-1}\mathbf{B}^{\top}\left(\mathbf{d} - \mathbf{b}\right)$$

Nonlinear problem

$$\mathbf{g}(\mathbf{p}) \neq \mathbf{B}\mathbf{p} + \mathbf{b}$$

$$\mathbf{p}_k = \mathbf{p}_{k-1} + \Delta \mathbf{p}_k$$

$$\mathbf{p}^* pprox \mathbf{p}_0 + \Delta \mathbf{p}_1 + \dots + \Delta \mathbf{p}_L$$

$$\mathbf{p} = egin{bmatrix} p_1 \ p_2 \ dots \ p_M \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = \begin{bmatrix} g_1(\mathbf{p}) \\ g_2(\mathbf{p}) \\ \vdots \\ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = [\mathbf{d} - \mathbf{g}(\mathbf{p})]^{\top} [\mathbf{d} - \mathbf{g}(\mathbf{p})]$$

Nonlinear problem

 $\mathbf{g}(\mathbf{p}) \neq \mathbf{B}\mathbf{p} + \mathbf{b}$

 $\mathbf{p}_k = \mathbf{p}_{k-1} + \Delta \mathbf{p}_k$

Linear problem

The minimum can be computed in a single step

Or iteratively, from a given initial approximation

In this case, the minimum is estimated in a single step from the given initial approximation

On the other hand, in a nonlinear problem, the minimum is estimated after several steps from the initial approximation

Approximate the nonlinear function around the initial approximation

Approximate the nonlinear function around the initial approximation

This approximation also has a minimum

Compute a new approximation around this minimum

And so on ...

Estimated minimum

Given a point, it is needed to define a direction and the step length

The direction and step length may be defined by using the gradient

 $\Phi(\mathbf{p})$

$$\Phi(\mathbf{p})$$

$$\Phi(\mathbf{p}_0 + \Delta \mathbf{p}) \approx \Phi(\mathbf{p}_0) + \nabla \Phi(\mathbf{p}_0)^{\top} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p}^{\top} \mathbf{H}(\mathbf{p}_0) \Delta \mathbf{p}$$

$$\Phi(\mathbf{p})$$

$$\Phi(\mathbf{p}_0 + \Delta \mathbf{p}) \approx \Phi(\mathbf{p}_0) + \nabla \Phi(\mathbf{p}_0)^{\top} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p}^{\top} \mathbf{H}(\mathbf{p}_0) \Delta \mathbf{p}$$

$$\mathbf{H}(\mathbf{p}_0)\Delta\mathbf{p} = -\nabla\Phi(\mathbf{p}_0)$$

$$\Phi(\mathbf{p})$$

$$\Phi(\mathbf{p}_0 + \Delta \mathbf{p}) \approx \Phi(\mathbf{p}_0) + \nabla \Phi(\mathbf{p}_0)^{\top} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p}^{\top} \mathbf{H}(\mathbf{p}_0) \Delta \mathbf{p}$$

$$\mathbf{H}(\mathbf{p}_0)\Delta\mathbf{p} = -\nabla\Phi(\mathbf{p}_0)$$

Difference between the methods

$$\Phi(\mathbf{p})$$

$$\Phi(\mathbf{p}_0 + \Delta \mathbf{p}) \approx \Phi(\mathbf{p}_0) + \nabla \Phi(\mathbf{p}_0)^{\top} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p}^{\top} \mathbf{H}(\mathbf{p}_0) \Delta \mathbf{p}$$

$$\mathbf{H}(\mathbf{p}_0)\Delta\mathbf{p} = -\nabla\Phi(\mathbf{p}_0)$$

Newton

 $\mathbf{H}(\mathbf{p}_0)$

Gauss - Newton

 $ilde{\mathbf{H}}(\mathbf{p}_0)$

Difference between the methods

Steepest decent

 $\lambda \mathbf{I}$

Levenberg -Marquardt

 $\tilde{\mathbf{H}}(\mathbf{p}_0) + \lambda \mathbf{I}$

Method	Convergence
Steepest Decent	0
Levenberg - Marquardt	1
Gauss - Newton	2
Newton	3

0 - slow

3 – fast

Method	Initial approx
Steepest Decent	Can be distant
Levenberg - Marquardt	Can be distant
Gauss - Newton	Must be close
Newton	Must be close

Method	Direction/Step length
Steepest Decent	Defined by the gradient
Levenberg - Marquardt	Defined by the Hessian and gradient
Gauss - Newton	Defined by the Hessian and gradient
Newton	Defined by the Hessian and gradient

Method	Computational cost
Steepest Decent	0
Levenberg - Marquardt	2
Gauss - Newton	1
Newton	3

0 - low

3 – high