THIS IS CS4084!

GCR:wzj3vua

IF YOU DON'T TALK TO YOUR KIDS ABOUT QUANTUM COMPUTING...

SOMEONE ELSE WILL.

Quantum computing and weird consciousness are both weird consciousness are equivalent.

scottaaronson.com/blog

smbc-comics.com

SINGLE QUBIT SYSTEM

SUPERPOSITION

Superposition is the ability of a quantum system to be in multiple states at the same time until it is measured.

$$P(Happy) = 1$$

 $P(Sad) = 0$

$$P(Happy) = 0.5$$

$$P(Sad) = 0.5$$

$$P(Happy) = 0$$

 $P(Sad) = 1$

QUANTUM SYSTEM

Any system that obeys the laws of quantum mechanics.

- Superposition
- Entanglement (We will study later)
- Quantization

BIT VS QUBIT

Quantum bits or qubits are similar to bits in that there are two measurable states called the 0 & 1.

However, qubits can also be in a superposition state of these 0 and 1 states.

BIT VS QUBIT

A classical bit can take two different values (0 or 1). It is discrete.

A qubit can "take" infinitely many different values.

DIRAC BRA-KET NOTATION

Bra-ket notation is named after the symbols it uses:

"bra" (and "ket")

A quantum state is represented by a ket vector = $|\psi\rangle$

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$|cat\rangle = \alpha |0\rangle + \beta |1\rangle$$

DIRAC BRA-KET NOTATION

The symbol "|>" denotes a column vector, and is known as a "ket".

The "bra" (<|) form of a vector is just the conjugate transpose of the original.

$$|0
angle = egin{pmatrix} 1 \ 0 \end{pmatrix}$$
 $|\psi
angle = lpha |0
angle + eta |1
angle = egin{pmatrix} lpha \ eta \end{pmatrix}$ $|\psi
angle = lpha |0
angle + eta |1
angle = egin{pmatrix} lpha \ eta \end{pmatrix}$ $|\psi
angle = lpha |0
angle + eta |1
angle = egin{pmatrix} lpha \ eta \end{pmatrix}$ $|\psi
angle = lpha |0
angle + eta |1
angle = egin{pmatrix} lpha \ eta \end{pmatrix}$ $|1
angle = egin{pmatrix} lpha \ eta \end{vmatrix}$

A generic qubit is in a superposition

$$|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$$

where α and β are **complex numbers** such that

$$|\alpha|^2 + |\beta|^2 = 1$$

Classical Bit

0

Qubit

A single qubit can be visualized using the Bloch sphere. It is a unit sphere which means radius=1

$$\frac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle\right).$$

$$\begin{aligned} |+\rangle &= \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right), \\ |-\rangle &= \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right), \\ |i\rangle &= \frac{1}{\sqrt{2}} \left(|0\rangle + i|1\rangle \right), \\ |-i\rangle &= \frac{1}{\sqrt{2}} \left(|0\rangle - i|1\rangle \right). \end{aligned}$$

REVIEW OF COMPLEX NUMBERS

```
z = x+iy // Cartesian form of a complex number 
In quantum computing, it is often useful to write a complex number as its length r times its complex phase e^{i\theta}
```

 $z = re^{i\theta}$ // Polar form of a complex number

Note: We are covering chapter 2 from Introduction to classical and quantum computing by Thomas G wong

REVIEW OF COMPLEX NUMBERS

How to convert cartesian to polar?

$$r = \sqrt{x^2 + y^2},$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right).$$

How to convert polar to cartesian?

$$x = r\cos\theta$$
$$y = r\sin\theta.$$

$$|z| = \sqrt{zz^*} = \sqrt{(x+iy)(x-iy)}$$
$$= \sqrt{x^2 + y^2}$$

EULER'S FORMULA

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$z = re^{i\theta} = r(\cos\theta + i\sin\theta) = \underbrace{r\cos\theta}_{x} + i\underbrace{r\sin\theta}_{y}.$$

Euler formula is a bridge between trigonometric functions and exponential functions.

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle,$$

$$\alpha = \cos\left(\frac{\theta}{2}\right), \quad \beta = e^{i\phi}\sin\left(\frac{\theta}{2}\right)$$

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

 $0 \le \theta \le \pi$, θ is the angle wrt z axis

 $0 \le \phi < 2\pi$, ϕ is wrt x axis

 α is real and positive, β is complex, and the state is normalized.

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

$$(1,0,0) \theta = pi/2, \phi = 0$$

$$\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle).$$

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

$$(-1,0,0)$$
 $\theta = pi/2, \phi = pi$

$$\frac{1}{\sqrt{2}}\left(\left|0\right\rangle - \left|1\right\rangle\right)$$

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

$$(0,1,0)$$
 $\theta=pi/2$, $\phi=pi/2$

$$\frac{1}{\sqrt{2}}\left(|0\rangle + i|1\rangle\right)$$

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

$$(0,1,0)$$
 $\theta = pi/2, \phi = 3pi/2$

$$\frac{1}{\sqrt{2}}\left(|0\rangle - i|1\rangle\right)$$

FOR CALCULATING ANYWHERE ON BLOCH SPHERE

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

$$\theta=?$$
, $\phi=?$

FOR CALCULATING ANYWHERE ON BLOCH SPHERE

Calculations done in class

EXAMPLE 1

1. The quantum state of a spinning coin can be written as a superposition of heads and tails. Using heads as |1| and tails as |0|, the quantum state of the coin is

$$|\text{coin}\rangle = \frac{1}{\sqrt{2}} (|1\rangle + |0\rangle).$$
 (2.3)

What is the probability of getting heads?

The amplitude of $|1\rangle$ is $\beta = 1/\sqrt{2}$, so $|\beta|^2 = \left(1/\sqrt{2}\right)^2 = 1/2$. So the probability is 0.5, or 50%.

EXAMPLE 2

A weighted coin has twice the probability of landing on heads vs. tails. What is the state of the coin in "ket" notation?

EXAMPLE 2

A weighted coin has twice the probability of landing on heads vs. tails. What is the state of the coin in "ket" notation?

$$P_{\text{heads}} + P_{\text{tails}} = 1$$
 (Normalization Condition)
 $P_{\text{heads}} = 2P_{\text{tails}}$ (Statement in Example)
 $\rightarrow P_{\text{tails}} = \frac{1}{3} = \alpha^2$

$$\rightarrow P_{\text{heads}} = \frac{2}{3} = \beta^2$$

$$\rightarrow \alpha = \sqrt{\frac{1}{3}}, \ \beta = \sqrt{\frac{2}{3}}$$

$$\rightarrow |\text{coin}\rangle = \sqrt{\frac{1}{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle.$$

FOR CALCULATING ANYWHERE ON BLOCH SPHERE

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

$$\theta=?$$
, $\phi=?$

 θ is the polar angle (latitude) on the Bloch sphere, ranging from 0 to π

 φ is the azimuthal angle (longitude), ranging from 0 to 2π

RELATIVE PHASE

On the Bloch sphere, the relative phase ϕ \phi determines the qubit's longitude.

Changing the relative phase ϕ rotates the qubit state around the Z-axis.

The relative phase of a quantum state is a measure of the angle in the complex plane.

RELATIVE PHASE

Two superpositions states whose amplitudes have the same magnitudes but that differ in a relative phase represent different states.

Relative phase is a physically important quantity.

GLOBAL PHASE

Applying a global phase is like rotating the entire carousel by a certain angle. It doesn't change the relative positions of where you are on the carousel; it just shifts everything uniformly.

GLOBAL PHASE

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle.$$

$$|\psi'
angle = e^{i\phi_{
m global}}|\psi
angle$$

$$|\psi'
angle = e^{i\phi_{
m global}} \left[\cos\left(rac{ heta}{2}
ight)|0
angle + \sin\left(rac{ heta}{2}
ight)e^{i\phi}|1
angle
ight]$$

GLOBAL PHASE

$$|\psi'
angle = e^{i\phi_{
m global}} \left[\cos\left(rac{ heta}{2}
ight)|0
angle + \sin\left(rac{ heta}{2}
ight)e^{i\phi}|1
angle
ight]$$

$$|\psi'
angle = \cos\left(rac{ heta}{2}
ight)e^{i\phi_{
m global}}|0
angle + \sin\left(rac{ heta}{2}
ight)e^{i(\phi+\phi_{
m global})}|1
angle$$

$$lpha' = \cos\left(rac{ heta}{2}
ight)e^{i\phi_{
m global}}$$

$$eta' = \sin\left(rac{ heta}{2}
ight) e^{i(\phi + \phi_{
m global})}$$

GLOBAL PHASE

Global phases are physically irrelevant.

Just like Upgrading

GLOBAL PHASE

$$e^{i\phi} = \cos(\phi) + i\sin(\phi)$$

$$|e^{i\phi}| = \sqrt{\cos^2(\phi) + \sin^2(\phi)}$$

$$|e^{i\phi}| = \sqrt{1} = 1$$

GLOBAL PHASE

$$e^{i\theta}\left(\frac{\sqrt{3}}{2}|0\rangle+\frac{1}{2}|1\rangle\right),$$

Calculate probabilities

Global phases can be dropped/ignored.

States that differ by a global phase are actually the same state; they correspond to the same point on the Bloch sphere.

$$\frac{1+i\sqrt{3}}{3}|0\rangle+\frac{2-i}{3}|1\rangle.$$

If you measure the qubit, what is the probability of getting (a) $|0\rangle$?

(b) $|1\rangle$?

$$\frac{2}{3}|0\rangle + \frac{1+2i}{3}|1\rangle.$$

Say you measure the qubit and get $|0\rangle$. If you measure the qubit a second time, what is the probability of getting

- (a) $|0\rangle$?
- (b) $|1\rangle$?

NORMALIZATION

$$A\left(\sqrt{2}|0\rangle+i|1\rangle\right).$$

$$1 = (A\sqrt{2})(A\sqrt{2})^{*} + (Ai)(Ai)^{*}$$

$$= 2|A|^{2} + |A|^{2}$$

$$= 3|A|^{2}$$

$$|A|^{2} = \frac{1}{3}.$$

$$A = \frac{1}{\sqrt{3}},$$

$$\frac{1}{\sqrt{3}}\left(\sqrt{2}|0\rangle+i|1\rangle\right).$$

$$\frac{e^{i\pi/8}}{\sqrt{5}}|0\rangle + \beta|1\rangle.$$

What is a possible value of β ?

$$A\left(2e^{i\pi/6}|0\rangle-3|1\rangle\right).$$

- (a) Normalize the state (i.e., find A).
- (b) If you measure the qubit, what is the probability that you get $|0\rangle$?
- (c) If you measure the qubit, what is the probability that you get $|1\rangle$?

ELECTRON AS A QUANTUM SYSTEM

ELECTRON AS QUBIT

An electron is a prototype for a qubit.

An electron has many measurable properties such as energy, mass, momentum.

But, for the purposes of creating a qubit, we want to focus on a property with only two measurable values. An electron has a two-state property which is called **spin**.

ELECTRON AS QUBIT

The property was called spin because it can be described mathematically just like orbital momentum (angular momentum), but spin does not actually correspond to the electron physically rotating.

Just like a lot of quantum phenomena, spin can be confusing at first.

ELECTRON SPIN

```
| \uparrow \rangle = spin up \rightarrow clockwise | \downarrow \rangle = spin down \rightarrow anticlockwise
```

If our electron — our quantum system — is just left alone then it is said to be in a superposition of both these states, In other words, the electron isn't $|\uparrow\rangle$ or $|\downarrow\rangle$, it's $|\uparrow\rangle$ and $|\downarrow\rangle$.

STERN-GERLACH EXPERIMENT

Otto Stern and Walther Gerlach in 1921

Atoms behave like mini-magnets

STERN-GERLACH EXPERIMENT

Atoms behave like mini-magnets

QUBIT ROTATIONS

COMPLEX CONJUGATE

The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

$$Z = x + iy$$

 $Z' = x - iy$

"Your homework isn't that complex"
Homework:

HERMITIAN MATRIX

A matrix H is called Hermitian if it is equal to its own conjugate transpose (or Hermitian adjoint)

$$H = egin{pmatrix} 2 & i \ -i & 3 \end{pmatrix}$$

$$H = egin{pmatrix} 4 & 1+2i & 3-i \ 1-2i & 5 & 2+4i \ 3+i & 2-4i & 6 \end{pmatrix}$$

UNITARY MATRIX

Changing a qubit's state through a physical action mathematically corresponds to multiplying the qubit vector by some unitary matrix U so that after the operation the state is now

$$|\psi'\rangle = U|\psi\rangle$$

Unitary is a mathematical term which expresses that U can only act on the qubit in such a way that the total probability remains same

UNITARY MATRIX

A matrix U is unitary if the matrix product of U and its conjugate transpose U† (called U-dagger) multiply to give the identity matrix:

$$U^{\dagger}U = UU^{\dagger} = I$$

One fundamental assumption is that each (matrix) operator must be unitary in all mathematical constructions of quantum mechanics

SINGLE QUBIT GATES

Analogous to logical gates in classical computing, single-qubit gates act on individual qubits, modifying their quantum states.

PAULI GATES

PHYSICIST WOLFGANG PAULI

When a Pauli gate is applied to a qubit, the state of the qubit is rotated around the corresponding axis of the Bloch sphere

These gates are important for manipulating the phase of a qubit

$$\sigma_x = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}, \quad \sigma_y = egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix}, \quad \sigma_z = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}.$$

PAULI X-GATE

Pauli X-gate perform a rotation of 180 degrees around the X axis

The gate is called NOT gate as it flips the qubit from |1> to |0> and vice versa

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$X|0
angle = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} egin{pmatrix} 1 \ 0 \end{pmatrix} = egin{pmatrix} 0 \ 1 \end{pmatrix} = |1
angle$$

$$X|1
angle = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} egin{pmatrix} 0 \ 1 \end{pmatrix} = egin{pmatrix} 1 \ 0 \end{pmatrix} = |0
angle$$

PAULI Y-GATE

Pauli y-gate perform a rotation of 180 degrees around the y axis

The gate is a combination of bit flip and phase flip

$$egin{aligned} Y = egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix} & Y|0
angle = egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix} egin{pmatrix} 1 \ 0 \end{pmatrix} = egin{pmatrix} 0 \ i \end{pmatrix} = i|1
angle & Y|1
angle = egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix} egin{pmatrix} 0 \ 1 \end{pmatrix} = egin{pmatrix} -i \ 0 \end{pmatrix} = -i|0
angle & -i|0
angl$$

PAULI Z-GATE

Pauli z-gate perform a rotation of 180 degrees around the z axis

The gate leaves state |0> as such but flips the state |1> to
-|1>

The gate is called phase flip

$$Z=egin{pmatrix}1&0\0&-1\end{pmatrix}$$

$$Z|0
angle = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} egin{pmatrix} 1 \ 0 \end{pmatrix} = egin{pmatrix} 1 \ 0 \end{pmatrix} = |0
angle$$

$$Z|1
angle = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} egin{pmatrix} 0 \ 1 \end{pmatrix} = egin{pmatrix} 0 \ -1 \end{pmatrix} = -|1
angle$$

EXERCISE

Prove each of the pauli matrices satisfies the unitary condition

$$X^{\dagger}X = I, \quad Y^{\dagger}Y = I, \quad Z^{\dagger}Z = I$$

Prove that Pauli matrices are Hermitian

Learn

$$\frac{2}{3}|0\rangle + \frac{1+2i}{3}|1\rangle.$$

Apply the X gate to this qubit state.

$$\frac{2}{3}|0\rangle + \frac{1+2i}{3}|1\rangle.$$

Apply the Y gate to this qubit state.

$$\frac{1+i\sqrt{3}}{3}|0\rangle+\frac{2-i}{3}|1\rangle.$$

Apply the X gate to this qubit state.

$$\frac{1+i\sqrt{3}}{3}|0\rangle+\frac{2-i}{3}|1\rangle.$$

Apply the Y gate to this qubit state.

$$\frac{1+i\sqrt{3}}{3}|0\rangle+\frac{2-i}{3}|1\rangle.$$

Apply the Z gate to this qubit state.

HADAMARD GATE

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$|0\rangle - H - \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$|1\rangle - H - \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

Use matrix multiplication to show how applying the Hadamard gate twice to a $|0\rangle$ state qubit recovers its original state.

Use matrix multiplication to show how applying the Hadamard gate twice to a $|0\rangle$ state qubit recovers its original state.

$$H|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$HH|0\rangle = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

6.4.1 Examples

1. A spin right $1/\sqrt{2}(|0\rangle + |1\rangle)$ is sent through a Hadamard gate, creating a superposition of $|+\rangle$ and $|-\rangle$ given by $1/\sqrt{2}(|+\rangle + |-\rangle)$. By performing a basis change, show that this is equivalent to producing a $|0\rangle$ state.

Examples 6.4.1

1. A spin right $1/\sqrt{2}(|0\rangle + |1\rangle)$ is sent through a Hadamard gate, creating a superposition of $|+\rangle$ and $|-\rangle$ given by $1/\sqrt{2}(|+\rangle + |-\rangle)$. By performing a basis change, show that this is equivalent to producing a $|0\rangle$ state.

change, show that this is equivalent to producing a
$$|0\rangle$$
 state.
$$\frac{1}{\sqrt{2}} \left(|+\rangle + |-\rangle \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \right),$$

$$= \frac{1}{2}|0\rangle + \frac{1}{2}|1\rangle + \frac{1}{2}|0\rangle - \frac{1}{2}|1\rangle, \tag{6.6}$$

$$2^{107} \cdot 2^{107} \cdot 2^{107}$$

$$= |0\rangle.$$

$$(6.8)$$

TASKS

- 7. Use matrix multiplication to demonstrate
 - (a) The Hadamard gate applied to a $|1\rangle$ state qubit turns it into a $|-\rangle$.
 - (b) A second Hadamard gate turns it back into the |1| state.
 - (c) The output after applying the Hadamard gate twice to a general state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$.

https://quantum.ibm.com/composer/files/new

Fig. 6.7 Five quantum circuits for Problem 8

ROTATION OPERATOR

Rotation around the x-axis

$$R_x(heta) = \cos\left(rac{ heta}{2}
ight)I - i\sin\left(rac{ heta}{2}
ight)\sigma_x$$

$$R_x(heta) = \cos\left(rac{ heta}{2}
ight)egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} - i\sin\left(rac{ heta}{2}
ight)egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$$

$$R_x(heta) = egin{pmatrix} \cos\left(rac{ heta}{2}
ight) & -i\sin\left(rac{ heta}{2}
ight) \ -i\sin\left(rac{ heta}{2}
ight) & \cos\left(rac{ heta}{2}
ight) \end{pmatrix}$$

TASK

Prove this

$$\sigma_x = iR_x(180^\circ) = -iR_x(-180^\circ)$$

Do the same exercise for Ry and Rz.

ROTATION OPERATOR

Rotation around the y-axis

$$R_y(heta) = \cos\left(rac{ heta}{2}
ight)I - i\sin\left(rac{ heta}{2}
ight)\sigma_y$$

$$R_y(heta) = \cos\left(rac{ heta}{2}
ight)egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} - i\sin\left(rac{ heta}{2}
ight)egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix}$$

$$R_y(heta) = egin{pmatrix} \cos\left(rac{ heta}{2}
ight) & -\sin\left(rac{ heta}{2}
ight) \ \sin\left(rac{ heta}{2}
ight) & \cos\left(rac{ heta}{2}
ight) \end{pmatrix}$$

Life was easier back then when you only knew these:

ROTATION OPERATOR

$$R_z(\theta)|0\rangle = |0\rangle,$$

$$R_z(\theta)|1\rangle = e^{i\theta}|1\rangle.$$

Rotation around the z-axis

$$R_z(\theta) = \cos\left(rac{ heta}{2}
ight)I - i\sin\left(rac{ heta}{2}
ight)\sigma_z$$
 $R_z(heta) = \cos\left(rac{ heta}{2}
ight)egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} - i\sin\left(rac{ heta}{2}
ight)egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$

$$R_z(heta) = egin{pmatrix} e^{-irac{ heta}{2}} & 0 \ 0 & e^{irac{ heta}{2}} \end{pmatrix}$$

$$\frac{2}{3}|0\rangle + \frac{1+2i}{3}|1\rangle.$$

Apply the RX gate to this qubit state with θ =90.

$$\frac{2}{3}|0\rangle + \frac{1+2i}{3}|1\rangle.$$

Apply the RX gate to this qubit state with θ =90. And then

apply X gate.

$$\frac{2}{3}|0\rangle + \frac{1+2i}{3}|1\rangle.$$

Apply the RX gate to this qubit state with θ =90. And then apply X gate. And then apply H gate. What will be the final state?

$$\frac{2}{3}|0\rangle + \frac{1+2i}{3}|1\rangle.$$

Apply the RX gate to this qubit state with θ =90. And then apply X , H and Y gate. What will be the final state?

S GATE OR PHASE GATE

This gate is a 90-degree phase shift gate around the z axis that introduces a phase shift of $\pi/2$ radians to the $|1\rangle$ state. Phase gate is the square root of the Z gate

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$
 $S|0\rangle = |0\rangle,$ $S|1\rangle = i|1\rangle.$

TGATE

This gate is a 45-degree phase shift gate that introduces a phase shift of $\pi/4$ radians to the $|1\rangle$ state. While leaving the state $|0\rangle$ unchanged.

$$T=egin{pmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{pmatrix} \qquad \qquad T|0
angle=|0
angle, \ T|1
angle=e^{i\pi/4}|1
angle.$$

$X^{1001} = X^{1000}X = (X^2)^{500}X = I^{500}X = X.$

Life was easier back then when you only knew these:

Exercise 2.26. Calculate $Z^{217}X^{101}Y^{50}(\alpha|0\rangle + \beta|1\rangle)$.

Exercise 2.27. Prove that

(a)
$$XZXZ(\alpha|0\rangle + \beta|1\rangle) = -(\alpha|0\rangle + \beta|1\rangle).$$

(b) $ZXZX(\alpha|0\rangle + \beta|1\rangle) = -(\alpha|0\rangle + \beta|1\rangle).$

$HSTH|0\rangle = HST\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

$$H$$
 T S H

$$= HS \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\pi/4} |1\rangle \right)$$
$$= H \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i3\pi/4} |1\rangle \right)$$

 $HSTH|0\rangle = HST\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

where in the third line, we used $ie^{i\pi/4} = e^{i\pi/2}e^{i\pi/4} = e^{i3\pi/4}$. On the Bloch sphere,

(2.9)

 $=\frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle\right)+e^{i3\pi/4}\frac{1}{\sqrt{2}}\left(|0\rangle-|1\rangle\right)\right]$

this state is in the southern hemisphere:

 $= \frac{1}{2} \left[\left(1 + e^{i3\pi/4} \right) |0\rangle + \left(1 - e^{i3\pi/4} \right) |1\rangle \right],$

END OF SINGLE QUBIT SYSTEM

Types of Qubits

There are many kinds of qubits, some occurring naturally and others that are engineered. Some of the most common types include:

(a) Intrinsic two-level system (b) Two-level subset system (c) Engineered two-level system (c) Engineered two-level system (d) Engineered two-level system (e) Engineered En

- Spin
- Trapped Atoms and Ions
- Photons
- Superconducting Circuits

WHAT TECHNOLOGIES ARE USED TO BUILD QUANTUM COMPUTERS?

Superconducting loops	Trapped ions	Silicon quantum dots	Topological qubits	Diamond vacancies
Company support Google, IBM, Quantum Circuits	ionQ	Intel	Microsoft, Bell Labs	Quantum Diamond Technologies
Pros Fast working. Build on existing semiconductor industry.	Very stable. Highest achieved gate fidelities.	Stable. Build on existing semiconductor industry.	Greatly reduce errors.	Can operate at room temperature.
Cons Collapse easily and must be kept cold.	Slow operation. Many lasers are needed.	Only a few entangled. Must be kept cold.	Existence not yet confirmed.	Difficult to entangle.

quantum_made_simple

Following V

Message +≥ •••

17 posts

67 followers

2 following

Quantum Made Simple Quantum for everyone!

Followed by javeria.ilyas.21, _saffia_baloch_ + 40 more

■ POSTS

☑ TAGGED

CONNA QUANTUM TUNNEL RIGHT THROUGH IT!

@quantum_made_simple

Deep down I know, it's giving better results on UCI/toy datasets only.

- Quantum circuits are made of quantum gates just like digital circuits in classical world.

Networks

Fun part : Quantum circuits are the superheroes of quantum neural networks. They can tackle all sorts of problems in classical ML with just some right combination of gates.

Unlocking Infinite Possibilities

Cracking the path is the real challenge!

@quantum_made_simple

IN A PARALLEL HORLD

SUPERPOSITION STATE

OF ALL CHANDLER'S CLOTHS

REFERENCES

```
https://www.youtube.com/watch?v=UjaAxU06-Uw
https://physicus-minimus.com/en/the-stern-gerlach-experiment

/
https://medium.com/@satoshihgsn/e-i%CF%80-1-0-the-most-beaut
```

https://javafxpert.github.io/grok-bloch/

iful-theorem-in-mathematics-493a7f4e7332