T(n)

$$a) T(n) = 4T(n/2) + n$$

b)
$$T(n) = 4T(n/2) + n^2$$

c)
$$T(n) = 4T(n/2) + n^3$$

d)
$$T(n)=3T(n/4)+nlogn$$

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

$$T(n) = aT(n/b) + f(n)$$

with $T(0) = 0$ and $T(1) = \Theta(1)$, where n/b
means either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$.

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $p \ge 0$ and $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

$$a = 4, b = 2,$$
 $n^{\log_b a} = n^2; \text{ and}$
 $f(n) = n = O(n^1).$
 $Case 1: k < \log_b a,$
 $then T(n) = \Theta(n^2).$

a) T(n) = 4T(n/2) + n

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

T(n) = aT(n/b) + f(n)with T(0) = 0 and $T(1) = \Theta(1)$, where n/bmeans either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $p \ge 0$ and $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

$$a = 4$$
, $b = 2$, $n^{logba} = n^2$; and $f(n) = n^2$.
Case 2: $f(n) = (n^2 log^0 n)$, and $k = 2$, then $T(n) = \Theta(n^2 log n)$.

b) $T(n) = 4T(n/2) + n^2$

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

T(n) = aT(n/b) + f(n)with T(0) = 0 and $T(1) = \Theta(1)$, where n/bmeans either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$.

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $p \ge 0$ and $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

$$a = 4$$
, $b = 2$, $n^{logba} = n^2$; and $f(n) = n^3$.
Case 3: $f(n) = \Omega(n^3)$, and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = \frac{1}{2}$, then $T(n) = \Theta(n^3)$.

c) $T(n) = 4T(n/2) + n^3$

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

T(n) = aT(n/b) + f(n)with T(0) = 0 and $T(1) = \Theta(1)$, where n/bmeans either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$.

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $p \ge 0$ and $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

d)
$$T(n)=3T(n/4)+n\log n$$

$$a = 3$$
, $b = 4$, $n^{\log_b a} = n^{0.793}$; and $f(n) = n\log n$.
Case 3: $f(n) = \Omega(n^1)$, and $3(n/4)\log(n/4) \le cn\log n$ (reg. cond.) for $c = 3/4$, then $T(n) = \Theta(n\log n)$.

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

T(n) = aT(n/b) + f(n)with T(0) = 0 and $T(1) = \Theta(1)$, where n/bmeans either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $p \ge 0$ and $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.