Московский физико-технический институт (национальный исследовательский университет) Физтех-школа физики и исследований им.Ландау

Лабораторная работа №2.1.3

(Лабораторный практикум по общей физике)

Определение C_p/C_v по скорости звука в газе

Работу выполнил: Климанов Даниил, группа Б02-115

г. Долгопрудный, 2022

Цель работы: 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

Оборудование: звуковой генератор Γ 3; электронный осциллограф Θ 0; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

1 Теоретическое введение:

Показатель адиабаты можно выразить через скорость звука следующим образом:

$$\gamma = \frac{\mu}{RT}c^2\tag{1}$$

, где R - универсальная газовая постоянная, T - температура газа; μ - его молярная масса. Следовательно, для определения показателя адиабаты γ нужно измерить температуру газа и скорость распространения звука в нём(если полагать, что известны молярная масса газа и универсальная газовая постоянная).

Звуковое колебание в трубе - наложение всех волн, отражающихся от торцов трубки. Если $L=n\cdot\frac{\lambda}{2}$, где L,λ - длина трубы и волны соответственно, $n\in\mathbb{N}$, то поскольку волна, отражённая от торца трубы, по фазе совпадает с падающей, волны в трубе усиливают друг друга и наступает резонанс.

Скорость звука по определению частоты можно представить в следующем виде:

$$c = \lambda f \tag{2}$$

В работе рассматриваются два способа подбора условия резонанса.

1.1 Способ 1:

При неизменной частоте ГЗ длина волны постоянна. Отсюда, для последовательных резонансных длин получаем:

$$L_n = n\frac{\lambda}{2}; L_{n+1} = (n+1)\frac{\lambda}{2}; \dots; L_{n+k} = (n+k)\frac{\lambda}{2}$$
 (3)

Тогда $\frac{\lambda}{2}$ равно угловому коэффициенту наклона графика L(n), где n - номер резонанса. Далее находим скорость звука и вычисляем γ .

1.2 Способ 2:

При постоянной длине трубы можно изменять частоту звуковых колебаний. Длина волны однозначно соответствует частоте (при прочих равных), поэтому при изменении частоты для последовательных резонансов получим:

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k) \Rightarrow f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k$$
 (4)

В таком случае $\frac{c}{2L}$ определяется как коэффициент наклона графика зависимости частоты от номера резонанса.

2 Экспериментальная установка:

Измерения проводились для температуры $T=22,3\,^{\circ}C$, длина трубы L в задвинутом состоянии равна: $L=570\pm5$ мм. Учитывая соотношение $c=\sqrt{\frac{\gamma RT}{\mu}},\,\mu\approx29\,$ г/моль, $R\approx8,31\,$ Дж/моль·К, предполагаемое значение скорости звука в воздухе $\approx344\,$ м/с. В ходе измерений полагаем молярную массу углекислого газа равной 44 г/моль.

3 Выполнение измерений:

3.1 Изменение частоты сигнала при постоянной длине трубы - воздух:

В данном пункте при постоянной длине трубы изменялась частота сигнала, в таблице зафиксировано 7 последовательных резонансных частот.

Номер резонанса	1	2	3	4	5	6	7
Частота, Гц	302,8	623	878	1220	1320	1500	1780

Резонанс под номером 5 похож на паразитный, поэтому в ходе дальнейших измерений он не будет учитываться.

3.2 Изменение длины трубы при постоянной частоте - воздух:

Измерения проводились для 4-х различных значений частот(указаны в таблице). Под h в таблице обозначается длина в см, на которую выдвинута труба при соответствующем резонансы последовательные).

Рис. 1. Установка для измерения скорости звука при помощи раздвижной трубы

Рис. 2. Установка для изучения зависимости скорости звука от температуры

Частота,	3,9	4,3	4,78	5,1
кΓц	-) -	, -	,	-)
h, см	22,6	19,7	19,3	21,4
h, см	18	15,7	15,5	18
h, см	13,7	11,7	12	14,6
h, см	9,3	7,6	8,3	11,2
h, см	5	3,8	4,7	8
h, см	-	-	1,3	4,5

3.3 Изменение частоты сигнала при постоянной длине трубы - CO_2 :

В ходе измерений труба находилась в полностью задвинутом состоянии.

Номер резонанса	1	2	3	4	5	6	7
Частота, кГц	2,1	2,35	2,58	2,83	3,04	3,28	3,52

3.4 Изменение длины трубы при постоянной частоте - CO_2 :

Аналогично воздуху, измерения проводились для 4-х различных значений частот (указаны в таблице). Под h в таблице обозначается длина в см, на которую выдвинута труба при соответствующем резонансе (резонансы последовательные).

Частота, кГц	2,577	3,1	3,546	4,42
h, см	21,5	21,1	19,2	22,9
h, см	16,2	16,9	15,6	19,9
h, см	11,1	12,5	12	17
h, см	5,9	8,2	8,1	13,7
h, см	0,8	4	4,2	10,8
h, см	-	-	-	7,6
h, см	-	-	-	4,7

Figure 1: Изменение последовательных резонансных частот при постоянной длине трубы - воздух

4 Обработка измерений:

4.1 Изменение длины трубы при постоянной частоте - воздух:

Поскольку частоты последовательные, то будем откладывать f_k от первого значения частоты. Тогда получим, что $\triangle f_k = \frac{c}{2L} \cdot k$. Определим коэффициент наклона графика b и его погрешность $\triangle b$ по MHK:

$$b = \frac{c}{2L} = (293, 6 \pm 5, 6) \to c = 2 \cdot 0, 57(293, 6 \pm 5, 6) = (334, 7 \pm 7)$$
 (5)

Оценим $\gamma = \frac{C_p}{C_v}$:

$$\begin{cases} \gamma = c^2 \cdot \frac{\mu}{RT} \approx \frac{29 \cdot 0.001}{8.31 \cdot 295.3} \cdot (334,7)^2 \approx 1,32\\ \triangle(\gamma) \approx \frac{2\mu c}{RT} \sigma c \approx \frac{2 \cdot 44 \cdot 0.001 \cdot 265,7 \cdot 3.2}{8.31 \cdot 295.3} \approx 0,07 \end{cases}$$
(6)

4.2 Изменение длины трубы при постоянной частоте - воздух:

Поскольку "резонансные" длины последовательные, то построим график $\triangle L_k = \frac{\lambda}{2} \cdot k$. Пользуясь тем, что скорость звука в среде может быть представлена как $c = \lambda f$,

Figure 2: Изменение длины трубы при $f_1=3,9$ к Γ ц - воздух

вычислим с по коэффициентам наклона графиков (i-й коэффициенты наклона $= b_i$):

$$\begin{cases}
b_1 = (0,0336 \pm 0,0003) \\
b_2 = (0,0364 \pm 0,0004) \\
b_3 = (0,0403 \pm 0,0004) \\
b_4 = (0,0442 \pm 0,0005)
\end{cases}
\Rightarrow
\begin{cases}
c_1 = (343 \pm 3) \\
c_2 = (348 \pm 3,5) \\
c_3 = (346,6 \pm 3) \\
c_4 = (344,8 \pm 4,3)
\end{cases}$$
(7)

$$\begin{cases} c_{av} = \frac{c_1 + c_2 + c_3 + c_4}{4} \approx 345, 6\\ \sigma c_{av} = \frac{\sigma c_1 + \sigma c_2 + \sigma c_3 + \sigma c_4}{4} \approx 3, 5 \end{cases} \Rightarrow \begin{cases} \gamma = c_{av}^2 \cdot \frac{\mu}{RT} \approx \frac{29 \cdot 0,001}{8,31 \cdot 295,3} \cdot (345,6)^2 \approx 1,41\\ \triangle(\gamma) \approx \frac{2\mu c_{av}}{RT} \sigma c_{av} \approx \frac{2 \cdot 29 \cdot 0,001 \cdot 345,6 \cdot 3,5}{8,31 \cdot 295,3} \approx 0,03 \end{cases}$$
(8)

4.3 Изменение длины трубы при постоянной частоте - CO_2 :

Аналогично измерениям для воздуха, $\triangle f_k = \frac{c}{2L} \cdot k$. Определим коэффициент наклона графика b и его погрешность $\triangle b$ по MHK:

$$b = \frac{c}{2L} = (233, 1 \pm 1, 9) \to c = 2 \cdot 0, 57(233, 1 \pm 1, 9) = (265, 7 \pm 3, 2) \tag{9}$$

Исходя из этих данных, оценим $\gamma = \frac{C_p}{C_v}$:

$$\begin{cases} \gamma = c^2 \cdot \frac{\mu}{RT} \approx \frac{44 \cdot 0,001}{8,31 \cdot 295,3} \cdot (265,7)^2 \approx 1,27\\ \triangle(\gamma) \approx \frac{2\mu c}{RT} \sigma c \approx \frac{2 \cdot 44 \cdot 0,001 \cdot 265,7 \cdot 3,2}{8,31 \cdot 295,3} \approx 0,03 \end{cases}$$
(10)

Figure 3: Изменение длины трубы при $f_2=4,3$ к Γ ц - воздух

Figure 4: Изменение длины трубы при $f_3 = 4,783$ к
Гц - воздух

Figure 5: Изменение длины трубы при $f_4=5,1$ к Γ ц - воздух

Figure 6: Изменение последовательных резонансных частот при постоянной длине трубы - воздух

Figure 7: Изменение длины трубы при $f_1=2,577$ к
Гц - CO_2

4.4 Изменение частоты сигнала при постоянной длине трубы - CO_2 :

Аналогично подобным измерениям для воздуха, строим график $\Delta L_k = \frac{\lambda}{2} \cdot k$. Пользуясь тем, что скорость звука в среде может быть представлена как $c = \lambda f$, вычислим с по коэффициентам наклона графиков(i-й коэффициенты наклона = b_i):

$$\begin{cases}
b_1 = (0,0519 \pm 0,0005) \\
b_2 = (0,0364 \pm 0,0004) \\
b_3 = (0,0403 \pm 0,0004) \\
b_4 = (0,0442 \pm 0,0005)
\end{cases}
\Rightarrow
\begin{cases}
c_1 = (267,5 \pm 2,5) \\
c_2 = (267,2 \pm 2,7) \\
c_3 = (261,7 \pm 4.2) \\
c_4 = (276 \pm 7,3)
\end{cases}$$
(11)

Оценим показатель адиабаты углекислого газа в этом случае:

$$\begin{cases} c_{av} = \frac{c_1 + c_2 + c_3 + c_4}{4} \approx 268, 1 \\ \sigma c_{av} = \frac{\sigma c_1 + \sigma c_2 + \sigma c_3 + \sigma c_4}{4} \approx 4, 2 \end{cases} \Rightarrow \begin{cases} \gamma = c_{av}^2 \cdot \frac{\mu}{RT} \approx \frac{44 \cdot 0.001}{8.31 \cdot 295, 3} \cdot (268, 1)^2 \approx 1, 29 \\ \triangle(\gamma) \approx \frac{2\mu c_{av}}{RT} \sigma c_{av} \approx \frac{2 \cdot 44 \cdot 0.001 \cdot 268, 1 \cdot 4, 2}{8.31 \cdot 295, 3} \approx 0, 04 \end{cases}$$
(12)

5 Итоги

В работе с помощью различных методов были измерены скорости звука и показатели адиабаты в углекислом газе и в воздухе при температуре $T=22,3^{\circ}C$.

Figure 8: Изменение длины трубы при $f_2=3,1$ к Гц -
 CO_2

Figure 9: Изменение длины трубы при $f_3 = 3,546$ к
Гц - CO_2

Figure 10: Изменение длины трубы при $f_4=4,42$ к
Гц - CO_2

References

[1] Под редакцией проф. А.Д. Гладуна - Лабораторный практикум по общей физике. Термодинамика. Том 1