$| \cdot | \cdot | \xrightarrow{C_1 := L} \bigcirc \xrightarrow{L := L + l} \bigcirc \xrightarrow{L := t} \bigcirc$

H holds initially since L = 0 and R_1 , R_2 = false. The only potentially dangerous actions are a_i and b_i for i = 1,2. We prove that actions a_1 and b_1 preserve H. The proof is symmetric for a_2 and b_2 .

 a_1 : Before a_1 is executed, we have that $|R_1|$ = 0, hence L = $|R_2|$. After a_1 , we have that we are $at \ w_1$, so $|R_1|$ = 1. a_1 increments L. Hence we have that L = 1 + $|R_2|$ = $|R_1|$ + $|R_2|$. Hence a_1 preserves H.

 b_1 : Before b_1 is executed, we have that we are $at\ b_1$, hence $|R_1|=1$, and L = 1 + $|R_2|$. After b_1 , we have that we are at d_1 , hence $|R_1|=0$. Hence we have that L = 0 + $|R_2|=|R_1|+|R_2|$.

1.3 a) L = 1, since
$$|R_2| = 1$$
 and $|R_1| = 0$. $C_1 = 0$ $C_2 = 0$

b)
$$R_1 \,^{\uparrow} R_2 \Rightarrow C_1 + C_2 = 1$$

I holds initially since R_1 and R_2 are both false. The statement $R_1 \,^\uparrow R_2$ becomes true when P_1 enters its R-section when R_2 is true, or vice versa. The logic is symmetrical.

Before P_1 enters its R-section, we have that we are in a state where at $a_1 \land R_2$ holds, hence we have L = 1, C_1 = 0, C_2 = 0 (from part a). Hence after executing a_1 , we have that C_1 = 1, C_2 = 0. C_1 and C_2 are not modified again until one of the processes exits their R-section, so I holds.

c) Assume both processes are in their critical sections, ie $in\ cs_1 \land in\ cs_2$. Hence we have that R_1 and R_2 are both true. By invariant I, we must have that $C_1+C_2=1$, in other words, one of C_1,C_2 is equal to 1 (by F). Suppose $C_1=1$ (the proof is symmetric for $C_2=1$). Then by G_1 , we must have that we are $at\ w_1$. This is a contraction to our initial statement $in\ cs_1 \land in\ cs_2$. Hence mutual exclusion is ensured.

1.4

- a) some i in w_i -> some j at cs_i (pretend it is a squiggly arrow)
- b) Suppose we have that we are $in\ w_1$ (the logic is symmetric for w_2). We have that C_1 is either equal to 0 or 1. If C_1 =0, we proceed to the critical section, and we are done. Otherwise, we must have that C_1 =1. By invariant G_1 , we have that we are in R_2 or $at\ d_2$. If R_2 is true, there are 3 cases. If we are $in\ cs_2$, we are done. If we are $at\ w_2$, by invariant I, we have that C_2 =0, so process 2 can proceed to cs_2 and we are done. If we are $at\ b_2$ or $at\ d_2$, process 2 will proceed to execute d_2 , setting C_1 =0, and process 1 can proceed to cs_1 .
- c) Starvation does not occur. We show that in w_i -> at cs_i (pretend it is a squiggly arrow)

We show this for process 1 (process 2 is symmetrical). From the proof in part b, we have shown that if we are $in\ w_1$, we proceed to cs_1 for all cases except if we are $in\ cs_2$ or $at\ w_2$. If this is the case, process 2 will proceed until it executes d_2 . Then we will have C_1 =0. If process 2 continues executing, it will reach a_2 , where it finds that L=1, hence setting C_2 =1 and must await, allowing process 1 to proceed to cs_1 .