Rank-65609 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

 $(\ 0,\ 1,\ 1,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0)$

The point rank of the equation over GF(8) is 1227395733

General information

Number of lines	2
Number of points	73
Number of singular points	1
Number of Eckardt points	0
Number of double points	1
Number of single points	16
Number of points off lines	56
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{2}
Type of lines on points	$2, 1^{16}, 0^{56}$

Singular Points

The surface has 1 singular points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4689} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4689} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{25}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{658} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{658} = \mathbf{Pl}(1, 1, 1, 1, 0, 1)_{874}$$

Rank of lines: (4689, 658)

Rank of points on Klein quadric: (25, 874)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 1 Double points: The double points on the surface are:

$$P_{19} = (0, 1, 1, 0) = \ell_0 \cap \ell_1$$

Single Points

The surface has 16 single points: The single points on the surface are:

 $0: P_3 = (0,0,0,1)$ lies on line ℓ_0 9: $P_{370} = (1, 5, 4, 1)$ lies on line ℓ_1 1: $P_{83} = (1, 1, 0, 1)$ lies on line ℓ_1 10: $P_{426} = (1, 4, 5, 1)$ lies on line ℓ_1 2: $P_{139} = (1,0,1,1)$ lies on line ℓ_1 11: $P_{433} = (0, 5, 5, 1)$ lies on line ℓ_0 $3: P_{146} = (0, 1, 1, 1)$ lies on line ℓ_0 12: $P_{505} = (0, 6, 6, 1)$ lies on line ℓ_0 4: $P_{217} = (0, 2, 2, 1)$ lies on line ℓ_0 13: $P_{514} = (1,7,6,1)$ lies on line ℓ_1 5: $P_{226} = (1, 3, 2, 1)$ lies on line ℓ_1 14: $P_{570} = (1, 6, 7, 1)$ lies on line ℓ_1 6: $P_{282} = (1, 2, 3, 1)$ lies on line ℓ_1 15: $P_{577} = (0, 7, 7, 1)$ lies on line ℓ_0 7: $P_{289} = (0, 3, 3, 1)$ lies on line ℓ_0 8: $P_{361} = (0, 4, 4, 1)$ lies on line ℓ_0

The single points on the surface are:

Points on surface but on no line

The surface has 56 points not on any line: The points on the surface but not on lines are:

 $0: P_0 = (1,0,0,0)$ 13: $P_{136} = (6,7,0,1)$ $1: P_4 = (1, 1, 1, 1)$ $14: P_{204} = (3, 0, 2, 1)$ $2: P_{29} = (2, 2, 1, 0)$ 15: $P_{221} = (4, 2, 2, 1)$ $16: P_{232} = (7, 3, 2, 1)$ $3: P_{36} = (1, 3, 1, 0)$ $4: P_{47} = (4, 4, 1, 0)$ 17: $P_{235} = (2, 4, 2, 1)$ $5: P_{52} = (1, 5, 1, 0)$ 18: $P_{240} = (7, 4, 2, 1)$ $6: P_{60} = (1, 6, 1, 0)$ 19: $P_{244} = (3, 5, 2, 1)$ 7: $P_{74} = (7,7,1,0)$ $20: P_{245} = (4,5,2,1)$ $8: P_{93} = (3, 2, 0, 1)$ $21: P_{261} = (4,7,2,1)$ 9: $P_{105} = (7, 3, 0, 1)$ $22: P_{264} = (7,7,2,1)$ 10: $P_{111} = (5, 4, 0, 1)$ 23: $P_{272} = (7,0,3,1)$ 11: $P_{116} = (2, 5, 0, 1)$ $24: P_{288} = (7, 2, 3, 1)$ $12: P_{126} = (4, 6, 0, 1)$ $25: P_{294} = (5, 3, 3, 1)$

```
26: P_{323} = (2,7,3,1)
                                                                 42: P_{461} = (4,0,6,1)
27: P_{327} = (6,7,3,1)
                                                                 43: P_{494} = (5, 4, 6, 1)
28: P_{334} = (5, 0, 4, 1)
                                                                 44: P_{496} = (7, 4, 6, 1)
29: P_{347} = (2, 2, 4, 1)
                                                                 45: P_{508} = (3, 6, 6, 1)
30: P_{352} = (7, 2, 4, 1)
                                                                 46: P_{517} = (4, 7, 6, 1)
                                                                 47: P_{527} = (6, 0, 7, 1)
31: P_{368} = (7,4,4,1)
32: P_{371} = (2, 5, 4, 1)
                                                                 48: P_{541} = (4, 2, 7, 1)
33: P_{382} = (5, 6, 4, 1)
                                                                 49 : P_{544} = (7, 2, 7, 1)
34: P_{384} = (7, 6, 4, 1)
                                                                 50: P_{547} = (2, 3, 7, 1)
35: P_{387} = (2,7,4,1)
                                                                 51: P_{551} = (6, 3, 7, 1)
36: P_{389} = (4,7,4,1)
                                                                 52: P_{555} = (2, 4, 7, 1)
37: P_{395} = (2, 0, 5, 1)
                                                                 53: P_{557} = (4, 4, 7, 1)
38: P_{412} = (3, 2, 5, 1)
                                                                 54: P_{573} = (4, 6, 7, 1)
39: P_{413} = (4, 2, 5, 1)
                                                                 55: P_{579} = (2,7,7,1)
40: P_{427} = (2, 4, 5, 1)
41: P_{439} = (6, 5, 5, 1)
```

Line Intersection Graph

 $\begin{array}{c|c} 0 \ 1 \\ \hline 0 \ 0 \ 1 \\ 1 \ 1 \ 0 \\ \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_{19}

Line 1 intersects

Line	ℓ_0
in point	P_{19}

The surface has 73 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$20: P_{217} = (0, 2, 2, 1)$	$40: P_{361} = (0, 4, 4, 1)$
$1: P_3 = (0,0,0,1)$	$21: P_{221} = (4, 2, 2, 1)$	$41: P_{368} = (7, 4, 4, 1)$
$2: P_4 = (1, 1, 1, 1)$	$22: P_{226} = (1, 3, 2, 1)$	$42: P_{370} = (1, 5, 4, 1)$
$3: P_{19} = (0, 1, 1, 0)$	$23: P_{232} = (7, 3, 2, 1)$	$43: P_{371} = (2, 5, 4, 1)$
$4: P_{29} = (2, 2, 1, 0)$	$24: P_{235} = (2,4,2,1)$	$44: P_{382} = (5, 6, 4, 1)$
$5: P_{36} = (1, 3, 1, 0)$	$25: P_{240} = (7, 4, 2, 1)$	$45: P_{384} = (7,6,4,1)$
$6: P_{47} = (4, 4, 1, 0)$	$26: P_{244} = (3, 5, 2, 1)$	$46: P_{387} = (2,7,4,1)$
$7: P_{52} = (1, 5, 1, 0)$	$27: P_{245} = (4, 5, 2, 1)$	$47: P_{389} = (4,7,4,1)$
$8: P_{60} = (1, 6, 1, 0)$	$28: P_{261} = (4,7,2,1)$	$48: P_{395} = (2, 0, 5, 1)$
$9: P_{74} = (7,7,1,0)$	$29: P_{264} = (7, 7, 2, 1)$	$49: P_{412} = (3, 2, 5, 1)$
$10: P_{83} = (1, 1, 0, 1)$	$30: P_{272} = (7, 0, 3, 1)$	$50: P_{413} = (4, 2, 5, 1)$
$11: P_{93} = (3, 2, 0, 1)$	$31: P_{282} = (1, 2, 3, 1)$	$51: P_{426} = (1,4,5,1)$
$12: P_{105} = (7, 3, 0, 1)$	$32: P_{288} = (7, 2, 3, 1)$	$52: P_{427} = (2, 4, 5, 1)$
13: $P_{111} = (5, 4, 0, 1)$	$33: P_{289} = (0, 3, 3, 1)$	$53: P_{433} = (0, 5, 5, 1)$
$14: P_{116} = (2, 5, 0, 1)$	$34: P_{294} = (5, 3, 3, 1)$	$54 : P_{439} = (6, 5, 5, 1)$
15: $P_{126} = (4, 6, 0, 1)$	$35: P_{323} = (2,7,3,1)$	$55: P_{461} = (4, 0, 6, 1)$
16: $P_{136} = (6,7,0,1)$	$36: P_{327} = (6,7,3,1)$	$56: P_{494} = (5, 4, 6, 1)$
17: $P_{139} = (1, 0, 1, 1)$	$37: P_{334} = (5, 0, 4, 1)$	$57: P_{496} = (7, 4, 6, 1)$
$18: P_{146} = (0, 1, 1, 1)$	$38: P_{347} = (2, 2, 4, 1)$	$58: P_{505} = (0, 6, 6, 1)$
$19: P_{204} = (3, 0, 2, 1)$	$39: P_{352} = (7, 2, 4, 1)$	$59: P_{508} = (3, 6, 6, 1)$

$60: P_{514} = (1, 7, 6, 1)$	$65: P_{547} = (2, 3, 7, 1)$	$70: P_{573} = (4, 6, 7, 1)$
$61: P_{517} = (4,7,6,1)$	$66: P_{551} = (6, 3, 7, 1)$	71: $P_{577} = (0, 7, 7, 1)$
$62: P_{527} = (6, 0, 7, 1)$	$67: P_{555} = (2, 4, 7, 1)$	$72: P_{579} = (2,7,7,1)$
$63: P_{541} = (4, 2, 7, 1)$	$68: P_{557} = (4, 4, 7, 1)$	
$64: P_{544} = (7, 2, 7, 1)$	$69: P_{570} = (1, 6, 7, 1)$	