

# **ALGORITHMEN UND DATENSTRUKTUREN**

ÜBUNG 11: KÜRZESTE WEGE

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 5. Januar 2022

Dijkstra-Algorithmus

## **SUCHVERFAHREN**

## Tiefensuche:

- gehe in die Tiefe: "entdecke erst Kinder, dann Geschwister"
- Nachfolger werden oben auf den Keller gelegt
- nächster Knoten wird oben vom Keller genommen

#### **Breitensuche:**

- gehe in die Breite: "entdecke erst Geschwister, dann Kinder"
- Nachfolger stellen sich hinten an
- nächster Knoten wird von vorn genommen

### **Keller:**



## Warteschlange:



### **VERALLGEMEINERTE GRAPHENSUCHE**

Beobachtung: Suche läuft ähnlich ab

► Operation 1: Lesen des nächsten Knotens READ

► Operation 2: Löschen des gewählten Knotens (und seiner Duplikate)

► Operation 3: Hinzufügen der Nachfolgerknoten INSERT

► Operation 4: Leerheit der Datenstruktur prüfen EMPTY

|              | STORAGE | READ | REMOVE  | INSERT  | EMPTY |
|--------------|---------|------|---------|---------|-------|
| Tiefensuche  |         | top  | pop     | 1       | empty |
| Breitensuche | Queue   | head | dequeue | enqueue | nil   |

# GRAPHENSUCHE MIT PRIORITÄTSWARTESCHLANGE

## weitere Möglichkeit für STORAGE: Prioritätswarteschlange

- READ Auswahl des nächsten Knotens mit minimaler Priorität
- ► REMOVE as usual
- INSERT Nachfolger stellt sich entsprechend seiner Priorität in die Warteschlange (oder Prioritätswert erhält ein Update, wenn er bereits in der Warteschlange steht)

Vorstellung: "geordnete" Warteschlange

# **DIJKSTRA-ALGORITHMUS**

Graphensuche mit Prioritätswarteschlange:

Priorität = Priorität des Vorgängers + Kantengewicht

## Beispiel:



Wir notieren Knoten in der Form (Knoten, Priorität, Vorgänger).

| gewählter Knoten           | Warteschlange                                                  |  |
|----------------------------|----------------------------------------------------------------|--|
| (Dresden, 0 km, –)         | (Leipzig, 0 + 100 km, Dresden), (Potsdam, 0 + 160 km, Dresden) |  |
| (Leipzig, 100 km, Dresden) | (Potsdam, 160 km, Dresden), (Berlin, 100 + 150 km, Leipzig)    |  |
| (Potsdam, 160 km, Dresden) | (Berlin, 160 + 30 km, Potsdam)                                 |  |
| (Berlin, 190 km, Potsdam)  | _                                                              |  |

## **AUFGABE 1**



| gewählter Knoten | Randknotenmenge             |  |
|------------------|-----------------------------|--|
| (1,0,)           | (3,3,1), (4,10,1), (5,15,1) |  |
| (3, 3, 1)        | (2,9,3), (4,8,3), (5,15,1)  |  |
| (4,8,3)          | (2,9,3), (5,15,1), (6,14,4) |  |
| (2,9,3)          | (5, 13, 2), (6, 14, 4)      |  |
| (5, 13, 2)       | (6, 14, 4)                  |  |
| (6, 14, 4)       | _                           |  |

# Pfadtabelle:

| Zielknoten | Pfadlänge | kürzester Pfad |
|------------|-----------|----------------|
| 1          | 0         | 1              |
| 2          | 9         | 1,3,2          |
| 3          | 3         | 1,3            |
| 4          | 8         | 1, 3, 4        |
| 5          | 13        | 1, 3, 2, 5     |
| 6          | 13        | 1, 3, 4, 6     |
|            |           |                |

Floyd-Warshall-Algorithmus

## FLOYD-WARSHALL-ALGORITHMUS

- gewichteter Graph G = (V, E, c) mit Weglängen c und ohne Schlingen
- Ziel: kürzeste Wege von beliebigem Startknoten zu beliebigem Zielknoten
- oBdA:  $V = \{1, ..., n\}$
- ►  $P_{u,v}$  = Menge aller Wege von u nach v
- $D_G(u, v) = \begin{cases} \min \{c_p : p \in P_{u, v}\} & \text{wenn } P_{u, v} \neq \emptyset \\ \infty & \text{sonst} \end{cases}$
- ►  $P_{u,v}^{(k)}$  = Menge aller Wege von u nach v, deren innere Knoten in  $\{1, ..., k\}$  liegen
- Es gilt  $P_{u,v}^{(n)} = P_{u,v}$  und somit  $D_G^{(n)} = D_G$ .

## FLOYD-WARSHALL-ALGORITHMUS

modifizierte Adjazenzmatrix

$$mA_G = \min \{A_G, \mathbf{0}_n\} = \begin{cases} c(u, v) & \text{wenn } u \neq v, (u, v) \in E \\ 0 & \text{wenn } u = v \\ \infty & \text{sonst} \end{cases}$$

- ► Initialisierung:  $D_G^{(0)} = mA_G$
- Rekursion:

$$D_G^{(k+1)}(u,v) = \min \left\{ D_G^{(k)}(u,v), D_G^{(k)}(u,k+1) + D_G^{(k)}(k+1,v) \right\}$$

# **AUFGABE 2 — TEIL (A)**



# **AUFGABE 2 — TEIL (B)**

$$D_G^{(2)} = \begin{pmatrix} 0 & \infty & 3 & \infty & \infty & \infty & \infty \\ 8 & 0 & 11 & 2 & \infty & \infty & \infty \\ \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ 4 & \infty & 7 & 0 & \infty & 3 & 6 \\ 12 & 4 & 15 & 6 & 0 & \infty & 15 \\ \infty & \infty & 3 & \infty & \infty & 0 & 2 \\ \infty & \infty & \infty & \infty & \infty & \infty & 0 \end{pmatrix}$$

d.h. es ändern sich folgende Einträge:

$$\underbrace{(4,3,7),(2,3,11)}_{\text{aus }D^{(1)}_{G}},\underbrace{(5,3,15),(5,1,12),(5,4,6)}_{\text{aus }D^{(2)}_{G}}$$

# **AUFGABE 2 — TEIL (C)**

Für  $k \in \{4,6\}$ , d.h. durch Zulassen der Knoten 4 und 6 als innere Knoten eines Weges, erreichen wir eine Verbesserung. Dagegen sind die Knoten 3 und 7 *Senken*, d.h. es bringt nichts, diese zu besuchen, weil wir nicht wieder weg kommen. Ebenso bringt uns der Knoten 5 als *Quelle* keine Verbesserung, weil wir diesen gar nicht erreichen können. Somit gilt also

$$D_G^{(2)} = D_G^{(3)}$$
  $D_G^{(4)} = D_G^{(5)}$   $D_G^{(6)} = D_G^{(7)}$ 

und wir müssen lediglich  $D_G^{(4)}$  sowie  $D_G^{(6)}$  explizit berechnen.

# **AUFGABE 2 — TEIL (D)**

$$D_{G}^{(4)} = \begin{pmatrix} 0 & \infty & 3 & \infty & \infty & \infty & \infty & \infty \\ 6 & 0 & 9 & 2 & \infty & 5 & 8 \\ \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ 4 & \infty & 11 & 0 & \infty & 3 & 6 \\ 10 & 4 & 13 & 6 & 0 & 9 & 12 \\ \infty & \infty & 3 & \infty & \infty & 0 & 2 \\ \infty & \infty & \infty & \infty & \infty & \infty & 0 \end{pmatrix} = D_{G}^{(5)}$$

$$D_{G}^{(6)} = \begin{pmatrix} 0 & \infty & 3 & \infty & \infty & \infty & \infty \\ 6 & 0 & 8 & 2 & \infty & 5 & 7 \\ \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ 4 & \infty & 6 & 0 & \infty & 3 & 5 \\ 10 & 4 & 12 & 6 & 0 & 9 & 11 \\ \infty & \infty & 3 & \infty & \infty & 0 & 2 \\ \infty & \infty & \infty & \infty & \infty & \infty & 0 \end{pmatrix} = D_{G}^{(7)} = D_{G}$$