复分析第十二周作业

涂嘉乐 PB23151786

2025年5月25日

习题 5.1

T2

解 (1). 设 s = z - 1, 则 $s \in B(0,1) \setminus \{0\}$

$$\frac{1}{z^2(z-1)} = \frac{1}{s(s+1)^2} = \frac{1}{s} \left(-\frac{1}{s+1} \right)'$$

$$= -\frac{1}{s} \left(\sum_{n=0}^{\infty} (-1)^n s^n \right)' = -\frac{1}{s} \sum_{n=0}^{\infty} (-1)^{n+1} (n+1) s^n$$

$$= \sum_{n=0}^{\infty} (-1)^n (n+1) s^{n-1} = \sum_{n=0}^{\infty} (-1)^n (n+1) (z-1)^{n-1}$$

(3). 对 $\forall \gamma \in B(2,\infty)$,因为 $\Delta_{\gamma} \operatorname{Log}\left(\frac{z-1}{z-2}\right) = 0$,所以 $\operatorname{Log}\left(\frac{z-1}{z-2}\right)$ 在 $B(2,\infty)$ 中可以选出全纯的单值分支,考虑主支

$$\log\left(\frac{z-1}{z-2}\right) = \log\left(\frac{1-\frac{1}{z}}{1-\frac{2}{z}}\right) = \log(1-\frac{1}{z}) - \log(1-\frac{2}{z})$$

$$= -\sum_{n=1}^{\infty} \frac{1}{nz^n} + \sum_{n=1}^{\infty} \frac{2^n}{nz^n}$$

$$= \sum_{n=1}^{\infty} \frac{2^n - 1}{n} z^{-n}$$

(5). 因为 $\left|\frac{5}{z}\right| < 1$,所以

$$\frac{1}{(z-5)^n} = \frac{1}{z^n (1-\frac{5}{z})^n} = \frac{1}{z^n} \sum_{k=0}^{\infty} {\binom{-n}{k}} \left(-\frac{5}{z}\right)^k$$

$$= \sum_{k=0}^{\infty} \frac{5^k (-n)(-n-1)\cdots(-n-k+1)}{k!} \cdot (-1)^k z^{-(n+k)}$$

$$= \sum_{k=0}^{\infty} \frac{5^k n(n+1)\cdots(n+k-1)}{k!} z^{-(n+k)}$$

$$= \sum_{k=0}^{\infty} 5^k {\binom{n+k-1}{k}} z^{-(n+k)}$$

T4

证明 设 f = u + iv, 则

$$|G| = \iint_G 1 du dv = \iint_D \left| \frac{\partial(u, v)}{\partial(x, y)} \right| dx dy$$

又因为

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = u_x v_y - u_y v_x = u_x^2 + v_x^2 \frac{f' = u_x + i v_x}{2} |f'|^2$$

又因为 $f'(z) = \sum_{n=-\infty}^{+\infty} na_n z^{n-1}$,所以

$$|G| = \iint_D |f'|^2 \mathrm{d}x \mathrm{d}y = \iint_D \left(\sum_{n=-\infty}^{+\infty} n a_n z^{n-1} \right) \left(\sum_{m=-\infty}^{+\infty} m \overline{a}_m \overline{z}^{n-1} \right) \mathrm{d}x \mathrm{d}y$$

$$= \sum_{n,m \in \mathbb{Z}} n m a_n \overline{a}_m \iint_D z^{n-1} \overline{z}^{m-1} \mathrm{d}x \mathrm{d}y \xrightarrow{\underline{z=\rho e^{i\theta}}} \sum_{n,m \in \mathbb{Z}} n m a_n \overline{a}_m \int_0^{2\pi} e^{i(n-m)\theta} \mathrm{d}\theta \int_r^R \rho^{n+m-1} \mathrm{d}\rho$$

$$= \sum_{n=-\infty}^{+\infty} 2\pi n^2 |a_n|^2 \int_r^R \rho^{2n-1} \mathrm{d}\rho = \pi \sum_{n=-\infty}^{+\infty} n|a_n|^2 (R^2 - r^2)$$

习题 5.2

T1

证明 假设存在,由习题 4.3.1 知, f 在 $\overline{B(0,1)}$ 上全纯,故 f 一定有界,矛盾!

T2

解 (1). 设 $g(z) = \sin z - \cos z$, 令 g(z) = 0, 即 $\sin(z - \frac{\pi}{4}) = 0$, 因此 $z = \frac{\pi}{4} + k\pi$ 为 f(x) 的极点,且

$$g'(\frac{\pi}{4} + k\pi) = (-1)^k \sqrt{2} \neq 0$$

所以 $\frac{\pi}{4}+k\pi$ 是 g(z) 的 1 阶零点,即为 $f(z)=\frac{1}{g(z)}$ 的 1 阶极点;对于 ∞ ,因为对 $\forall R\geq 0$,f(z) 均不在 $B(R,\infty)$ 中全纯,因此 ∞ 是 f(z) 的非孤立奇点

(3). 取 $z_n = 1 - \frac{1}{n\pi}$, $\xi_n = 1 - \frac{1}{n\pi + \frac{\pi}{2}}$, 易知 $\lim_{z \to 1} \sin \frac{1}{1-z}$ 不存在,则 1 为 $\sin \frac{1}{z-1}$ 的本性奇点;对于 ∞ ,因为 $\lim_{z \to \infty} \sin \frac{1}{1-z} = 0$,所以 ∞ 为 f 的可去奇点

(5). 考虑 $g(z) = \frac{1}{f(z)} = z(e^{-z} - 1) = (-1)^n \sum_{n=2}^{\infty} \frac{z^n}{(n-1)!} = z^2 \varphi(z)$,其中 $\varphi(z)$ 全纯且 $\varphi(0) \neq 0$,则 0 为 g(z) 的二阶零点,故为 f(z) 的二阶极点;对于 ∞ ,因为 $f(\frac{1}{z}) = \frac{z}{e^{-\frac{1}{z}} - 1}$,因为 $\lim_{z \to 0} e^{-\frac{1}{z}}$ 不存在,所以 ∞ 为 f(z) 的本性奇点

(7). 可能的奇点为 $z=0,\infty$,以及 $\cos\frac{1}{z}=0\Longrightarrow z=\frac{1}{\frac{\pi}{2}+k\pi}$,因为 $\lim_{z\to\frac{1}{\frac{\pi}{2}+k\pi}}f(z)$ 不存在,所以

 $\frac{1}{\frac{\pi}{2}+k\pi}$ 是本性奇点,而 $\frac{1}{\frac{\pi}{2}+k\pi}\to 0$,故 0 为非孤立奇点;对于 ∞ ,因为 $f(\frac{1}{z})=\sin\frac{1}{\cos z}\xrightarrow{z\to 0}\sin 1$,所以 ∞ 是可去奇点

习题 5.3

T1

证明 首先由 f 是亚纯函数知, f 在 B(0,1) 中只有有限多个奇点, 且均为极点, 因此可设 f 在 B(0,1) 内的极点为 z_1, \cdots, z_n , 阶数为 m_1, \cdots, m_n , 则

$$g(z) = f(z) \prod_{i=1}^{n} \left(\frac{z - z_i}{1 - \overline{z}_i z} \right)^{m_i}$$

在 $\overline{B(0,1)}$ 内全纯,由 $|f(z)|=1, \forall z\in\partial B(0,1)$ 知, $|g(z)|=1, \forall z\in\partial B(0,1)$,接下来求 g(z) Case 1. 若 $g(z)\neq 0, \forall |z|<1$,则 $h(z)=\frac{1}{g(z)}$ 在 B(0,1) 中全纯,由最大模原理,|z|<1 时

$$|h(z)| \le \max_{|z|=1} |h(z)| = 1$$

即 $\frac{1}{|g(z)|} \geq 1, \forall |z| \leq 1$,但由最大模原理, $|g(z)| \leq \max_{|z|=1} |g(z)| = 1$,则 $|g(z)| \equiv 1$,因此 $g(z) = e^{i\theta}$

Case 2. 若 g(z) 在 |z|<1 中有零点,由零点的孤立性知至多有有限多个,设为 a_1,\cdots,a_s ,重数为 k_1,\cdots,k_s ,令

$$h(z) = \frac{g(z)}{\prod_{j=1}^{s} \left(\frac{z - a_j}{1 - \overline{a}_j z}\right)^{k_j}}$$

则此时 h(z) 全纯, 且 $h(z) \neq 0, \forall |z| < 1$, 由 Case 1 知 $h(z) = e^{i\theta}$, 综上我们有

$$g(z) = e^{i\theta} \prod_{j=1}^{s} \left(\frac{z - a_j}{1 - \overline{a}_j z} \right)^{k_j}$$

其中 a_1, \dots, a_s 为 g(z) 的根, 重数为 k_1, \dots, k_s , 故

$$f(z) = e^{i\theta} \prod_{i=1}^{n} \left(\frac{1 - \overline{z}_i z}{z - z_i} \right)^{m_i} \prod_{j=1}^{s} \left(\frac{z - a_j}{1 - \overline{a}_j z} \right)^{k_j}, \quad |z| \le 1$$

将 f 的定义域扩充到 \mathbb{C} 上,因为 z_i 为 f 的 m_i 阶极点, \overline{a}_j^{-1} 为 f 的 k_j 阶极点,且 f 只有这些奇点,因此 f 为 \mathbb{C} 上的亚纯函数,综上我们找出了所有满足题意的 f

T2

证明 (←): 全纯函数的复合仍是全纯函数

(⇒): 由 f 在 \mathbb{C} 上全纯且无零点知 $\frac{f'(z)}{f(z)}$ 在 \mathbb{C} 上全纯,考虑 $g(z) = \int_{z_0}^z \frac{f'(z)}{f(z)} \mathrm{d}z + c_0$,其中 z_0 为 \mathbb{C} 上任意一点, $e^{c_0} = f(z_0)$,所以 $g'(z) = \frac{f'(z)}{f(z)}$,且

$$\frac{\mathrm{d}}{\mathrm{d}z} \left(f(z)e^{-g(z)} \right) = f'(z)e^{-g(z)} + f(z)e^{-g(z)} \cdot g'(z) = e^{-g(z)} \left[-g'f(z) + f'(z) \right] = 0$$

因此
$$f(z)e^{-g(z)} \equiv f(z_0)e^{-g(z_0)} = 1$$
, 故 $f(z) = e^{g(z)}, \forall z \in \mathbb{C}$

T5

证明 (1). 考虑 $f_1(z) = f(z), f_2(z) = \overline{f(\overline{z})}$, 先证 $f_2 \in H(\mathbb{C})$, 设 $f_1(x,y) = u(x,y) + iv(x,y)$, 则 $f_2(x,y) = u(x,-y) - iv(x,-y)$, 则对于 f_2 而言, $u_1 = u(x,-y), v_1 = -v(x,-y)$

$$\frac{\partial f_2}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial u_1}{\partial x} - \frac{\partial v_1}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial u_1}{\partial y} + \frac{\partial v_1}{\partial x} \right) = 0$$

且 u_1, v_1 实可微, 故 $f_2 \in H(\mathbb{C})$. 由 $f(\mathbb{R}) \subset \mathbb{R}$ 知, $\forall z \in \mathbb{R}, f_1(z) = f_2(z)$, 由唯一性定理知 $f_1 \equiv f_2$, 因此 $\forall y \in \mathbb{R}, f(iy) = \overline{f(-iy)}$, 又因为 $f(i\mathbb{R}) \subset i\mathbb{R}$, 则对 $\forall y \in \mathbb{R}, \exists a \in \mathbb{R}, \text{s.t.}$

$$f(iy) = ia \Longrightarrow \begin{cases} \overline{f(iy)} = -ia \\ -f(iy) = -ia \end{cases}$$

因此对 $\forall z \in i\mathbb{R}$, 有 $\overline{f(z)} = -f(z) \Longrightarrow f(z) = \overline{f(\overline{z})} = -f(\overline{z})$, 而在虚轴上, $\overline{z} = -z$, 所以 $f(z) = -f(-z), \forall z \in i\mathbb{R}$, 由唯一性定理知 $f(z) = -f(-z), \forall z \in \mathbb{C}$, 因此 f 是奇函数 (2). 由 (1) 知 $f(z) = \overline{f(\overline{z})}$, 又因为 $f(i\mathbb{R}) \subset \mathbb{R}$, 所以对 $\forall y \in \mathbb{R}, \exists a \in \mathbb{R}, \text{s.t.}$

$$f(iy) = a \Longrightarrow \begin{cases} \overline{f(iy)} = a \\ \overline{f(-iy)} = a \end{cases}$$

即对 $\forall z \in i\mathbb{R}, f(z) = f(-z)$, 由唯一性定理知 $f(z) = f(-z), \forall z \in \mathbb{C}$, 因此 f 是偶函数

T6

解 设 $g(z)=f(z)-\frac{1}{z-1}-\frac{1}{z-2}-\frac{1}{(z-2)^2}-(z+z^2)$,则 g(z) 在 $\mathbb C$ 上全纯,且

$$\lim_{|z| \to \infty} g(z) = 0$$

则 g(z) 为常数, 故 $g(z)\equiv g(0)=f(0)+1+\frac{1}{2}-\frac{1}{4}=\frac{5}{4}$, 即

$$f(z) = \frac{5}{4} + \frac{1}{z-1} + \frac{1}{z-2} + \frac{1}{(z-2)^2} + z + z^2$$