Introduction to Audio Content Analysis

Module 7.3.4: Fundamental Frequency Detection in Polyphonic Signals

alexander lerch

introduction overview

corresponding textbook section

Section 7.3.4

■ lecture content

- overview of "historic" methods for polyphonic pitch detection
- introduction to Non-negative Matrix Factorization (NMF)

learning objectives

- describe the task and challenges of polyphonic pitch detection
- list the processing steps of iterative subtraction and relate them to the introduced approaches
- describe the process of NMF and discuss advantages and disadvantages of usin NMF for pitch detection

introduction overview

corresponding textbook section

Section 7.3.4

lecture content

- overview of "historic" methods for polyphonic pitch detection
- introduction to Non-negative Matrix Factorization (NMF)

■ learning objectives

- describe the task and challenges of polyphonic pitch detection
- list the processing steps of iterative subtraction and relate them to the introduced approaches
- describe the process of NMF and discuss advantages and disadvantages of using NMF for pitch detection

polyphonic pitch tracking problem statement

Georgia Center for Music Tech Technology

- monophonic fundamental frequency detection:
 - exactly one fundamental frequency with sinusoidals at multiples of f_0 (harmonics)
- **polyphonic** fundamental frequency detection:
 - multiple/unknown number of fundamental frequencies with harmonics
 - number of voices might change over time
 - complex mixture with overlapping frequency content

polyphonic pitch tracking iterative subtraction: introduction

Georgia Center for Music Tech Tech Technology

principle

- 1 find most salient fundamental frequency
 - e.g., with monophonic pitch tracking
- 2 remove this frequency and related frequency components
 - e.g., mask or subtraction
- 3 repeat until termination criterion
 - e.g., number of voices

challenges

- reliably identify fundamental frequency in a mixture
- identify/group components and amount to subtract
 - overlapping components
 - spectral leakage
- define termination criterion
 - e.g., unknown number of voices or overall energy

verview intro iterative subtraction other intro objective function example summary

polyphonic pitch tracking literative subtraction: introduction

Georgia Center for Music Tech Technology

principle

- 1 find most salient fundamental frequency
 - e.g., with monophonic pitch tracking
- 2 remove this frequency and related frequency components
 - ► e.g., mask or subtraction
- 3 repeat until termination criterion
 - e.g., number of voices

challenges

- reliably identify fundamental frequency in a mixture
- identify/group components and amount to subtract
 - overlapping components
 - spectral leakage
- define termination criterion
 - e.g., unknown number of voices or overall energy

Georgia Center for Music Tech Technology

1 compute squared AMDF

$$ASMDF_{xx}(\eta, n) = \frac{1}{i_{e}(n) - i_{s}(n) + 1} \sum_{i=i_{s}(n)}^{i_{e}(n)} (x(i) - x(i+\eta))^{2}$$

g find fundamental frequency

$$\eta_{\min} = \operatorname{argmin} \left(\operatorname{ASMDF}_{\mathsf{xx}}(\eta, n) \right)$$

3 apply comb cancellation filter, IR:

$$h(i) = \delta(i) - \delta(i - \eta_{\min})$$

Georgia Center for Music Tech Technology

1 compute squared AMDF

$$\mathrm{ASMDF}_{\mathsf{xx}}(\eta, n) = \frac{1}{i_{\mathrm{e}}(n) - i_{\mathrm{s}}(n) + 1} \sum_{i = i_{\mathrm{s}}(n)}^{i_{\mathrm{e}}(n)} \big(x(i) - x(i + \eta) \big)^2$$

2 find fundamental frequency

$$\eta_{\min} = \operatorname{argmin} \left(\operatorname{ASMDF}_{\mathsf{xx}}(\eta, \mathsf{n}) \right)$$

3 apply comb cancellation filter, IR:

$$h(i) = \delta(i) - \delta(i - \eta_{\min})$$

Georgia Center for Music Tech Technology

1 compute squared AMDF

$$\mathrm{ASMDF}_{\mathsf{xx}}(\eta, \mathsf{n}) = \frac{1}{i_{\mathrm{e}}(\mathsf{n}) - i_{\mathrm{s}}(\mathsf{n}) + 1} \sum_{i = i_{\mathrm{s}}(\mathsf{n})}^{i_{\mathrm{e}}(\mathsf{n})} \big(\mathsf{x}(i) - \mathsf{x}(i + \eta) \big)^2$$

2 find fundamental frequency

$$\eta_{\min} = \operatorname{argmin} \left(\operatorname{ASMDF}_{\mathsf{xx}}(\eta, n) \right)$$

3 apply comb cancellation filter, IR:

$$h(i) = \delta(i) - \delta(i - \eta_{\min})$$

Georgia Center for Music Tech Technology

1 compute squared AMDF

$$\mathrm{ASMDF}_{\mathsf{xx}}(\eta, n) = \frac{1}{i_{\mathrm{e}}(n) - i_{\mathrm{s}}(n) + 1} \sum_{i = i_{\mathrm{s}}(n)}^{i_{\mathrm{e}}(n)} \big(x(i) - x(i + \eta) \big)^2$$

2 find fundamental frequency

$$\eta_{\min} = \operatorname{argmin} \left(\operatorname{ASMDF}_{\mathsf{xx}}(\eta, n) \right)$$

3 apply comb cancellation filter, IR:

$$h(i) = \delta(i) - \delta(i - \eta_{\min})$$

Georgia Center for Music Tech Technology

$$r_{zz}(c,n,\eta) = \sum_{i=0}^{K-1} z_c(i) \cdot z_c(i+\eta)$$

- 2 detect most likely frequency for all bands
- 3 remove all bands with a max at detected frequency
- 4 reiterate until most bands have eliminated

Georgia Center for Music Tech Technology

$$r_{zz}(c,n,\eta) = \sum_{i=0}^{\mathcal{K}-1} z_c(i) \cdot z_c(i+\eta)$$

- 2 detect most likely frequency for all bands
- remove all bands with a max at detected frequency
- 4 reiterate until most bands have eliminated

Georgia Center for Music Tech Technology

$$r_{zz}(c,n,\eta) = \sum_{i=0}^{\mathcal{K}-1} z_c(i) \cdot z_c(i+\eta)$$

- 2 detect most likely frequency for all bands
- 3 remove all bands with a max at detected frequency
- 4 reiterate until most bands have eliminated

Georgia Center for Music Tech Technology

$$r_{zz}(c,n,\eta) = \sum_{i=0}^{\mathcal{K}-1} z_c(i) \cdot z_c(i+\eta)$$

- 2 detect most likely frequency for all bands
- 3 remove all bands with a max at detected frequency
- 4 reiterate until most bands have eliminated

Georgia Center for Music Tech Technology

- 1 find salient fundamental frequency (e.g. auditory approach, HPS)
- 2 estimate current model for harmonic magnitudes
- 3 subtract the model spectrum
- 4 repeat process

Georgia Center for Music Tech Tech College of Design

- find salient fundamental frequency (e.g. auditory approach, HPS)
- 2 estimate current model for harmonic magnitudes
- 3 subtract the model spectrum
- 4 repeat process

Georgia Center for Music Tech Tech College of Design

- find salient fundamental frequency (e.g. auditory approach, HPS)
- 2 estimate current model for harmonic magnitudes
- 3 subtract the model spectrum
- 4 repeat process

Georgia Center for Music Tech Tech College of Design

- find salient fundamental frequency (e.g. auditory approach, HPS)
- 2 estimate current model for harmonic magnitudes
- 3 subtract the model spectrum
- 4 repeat process

Georgia Center for Music Tech Technology

- 1 define set of all possible fundamental frequencies
- 2 compute all possible pairs of fundamental frequency
- 3 repeatedly filter the signal with two comb cancellation filters (all combinations)
- 4 find combination with minimal output energy

Georgia Center for Music Tech Tech College of Pesign

- 1 define set of all possible fundamental frequencies
- 2 compute all possible pairs of fundamental frequency
- repeatedly filter the signal with two comb cancellation filters (all combinations)
- 4 find combination with minimal output energy

Georgia Center for Music Tech Tech Technology

- 1 define set of all possible fundamental frequencies
- 2 compute all possible pairs of fundamental frequency
- 3 repeatedly filter the signal with two comb cancellation filters (all combinations)
- 4 find combination with minimal output energy

Georgia Center for Music Tech Technology

- 1 define set of all possible fundamental frequencies
- compute all possible pairs of fundamental frequency
- 3 repeatedly filter the signal with two comb cancellation filters (all combinations)
- 4 find combination with minimal output energy

Georgia Center for Music Tech Technology

- 1 gammatone filterbank (100 bands)
- 2 normalization, HWR, smoothing, . . .
- **STFT** per filter channel (magnitude)
- 4 use delta pulse templates to detect frequency patterns
- **5** pick most salient frequencies, remove them

¹A. P. Klapuri, "A Perceptually Motivated Multiple-F0 Estimation Method," in *Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*, New Paltz, 2005.

- 1 gammatone filterbank (100 bands)
- **2 normalization**, HWR, smoothing, ...
- **STFT** per filter channel (magnitude)
- 4 use **delta pulse templates** to detect frequency patterns
- **5 pick most salient frequencies**, remove them

¹A. P. Klapuri, "A Perceptually Motivated Multiple-F0 Estimation Method," in *Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*, New Paltz, 2005.

- **1** gammatone **filterbank** (100 bands)
- 2 normalization, HWR, smoothing, ...
- **3 STFT** per filter channel (magnitude)
- 4 use delta pulse templates to detect frequency patterns
- **pick most salient frequencies**, remove them

¹A. P. Klapuri, "A Perceptually Motivated Multiple-F0 Estimation Method," in *Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*, New Paltz, 2005.

- 1 gammatone filterbank (100 bands)
- 2 normalization, HWR, smoothing, ...
- **3 STFT** per filter channel (magnitude)
- 4 use **delta pulse templates** to detect frequency patterns
- **5** pick most salient frequencies, remove them

¹A. P. Klapuri, "A Perceptually Motivated Multiple-F0 Estimation Method," in *Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*, New Paltz, 2005.

Georgia Center for Music Tech Technology

- 1 gammatone filterbank (100 bands)
- 2 normalization, HWR, smoothing, ...
- **3 STFT** per filter channel (magnitude)
- 4 use **delta pulse templates** to detect frequency patterns
- pick most salient frequencies, remove them

 ${\sf graph}\ {\sf from}^1$

¹A. P. Klapuri, "A Perceptually Motivated Multiple-F0 Estimation Method," in *Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*, New Paltz, 2005.

non-negative matrix factorization introduction

Georgia Center for Music Tech Technology

■ Non-negative Matrix Factorization (NMF)

Given a $m \times n$ matrix V, find a $m \times r$ matrix W and a $r \times n$ matrix H such that

$$V \approx WH$$

- all matrices must be non-negative
- rank r is usually smaller than m and n
- advantage of non-negativity?
 - additive model
 - relates to probability distributions
 - efficiency?

non-negative matrix factorization

Georgia Center for Music Tech Technology

■ Non-negative Matrix Factorization (NMF)

Given a $m \times n$ matrix V, find a $m \times r$ matrix W and a $r \times n$ matrix H such that

$$V \approx WH$$

- all matrices must be non-negative
- rank r is usually smaller than m and n

advantage of non-negativity?

- additive model
- relates to probability distributions
- efficiency?

non-negative matrix factorization

Georgia Center for Music Tech Technology

■ Non-negative Matrix Factorization (NMF)

Given a $m \times n$ matrix V, find a $m \times r$ matrix W and a $r \times n$ matrix H such that

$$V \approx WH$$

- all matrices must be non-negative
- rank r is usually smaller than m and n

advantage of non-negativity?

- additive model
- relates to probability distributions
- efficiency?

non-negative matrix factorization

Georgia Center for Music Tech Technology

■ Non-negative Matrix Factorization (NMF)

Given a $m \times n$ matrix V, find a $m \times r$ matrix W and a $r \times n$ matrix H such that

$$V \approx WH$$

- all matrices must be non-negative
- rank r is usually smaller than m and n

advantage of non-negativity?

- additive model
- relates to probability distributions
- efficiency?

non-negative matrix factorization overview

Georgia Center for Music Tech Technology

alternative formulation² to $V \approx WH$

$$V = \sum_{i=1}^{r} w_i \cdot h_i + E$$

$$V \in \mathbb{R}^{m \times n}$$

$$W = [w_1, w_2, ..., w_r] \in \mathbb{R}^{m \times r}$$

$$\blacksquare H = [h_1, h_2, ..., h_r]^T \in \mathbb{R}^{r \times n}$$

■ *E* is the error matrix

$$V = \begin{bmatrix} h_0 \\ w_0 \end{bmatrix}$$

²A Cichocki, R Zdunek, A. Phan, et al., Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. John Wiley & Sons, 2009.

objective function distance and divergence

- \blacksquare task: iteratively minimize objective function D(V||WH)
- \blacksquare typical distance measures (B = WH):
 - squared Euclidean distance:

$$D_{\mathrm{EU}}(V \parallel B) = \parallel V - B \parallel^2 = \sum_{ij} (V_{ij} - B_{ij})^2$$

generalized K-L divergence:

$$D_{\mathrm{KL}}(V \parallel B) = \sum_{ij} (V_{ij} \log \left(\frac{V_{ij}}{B_{ij}}\right) - V_{ij} + B_{ij})$$

• others³: Bregman Divergence, Alpha-Divergence, Beta-Divergence, . . .

³A Cichocki, R Zdunek, A. Phan, et al., Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and source separation. John Wiley & Sons. 2009.

objective function distance and divergence

- \blacksquare task: iteratively minimize objective function D(V||WH)
- \blacksquare typical distance measures (B = WH):
 - squared Euclidean distance:

$$D_{\mathrm{EU}}(V\parallel B) = \parallel V - B\parallel^2 = \sum_{ij} (V_{ij} - B_{ij})^2$$

generalized K-L divergence:

$$D_{\mathrm{KL}}(V \parallel B) = \sum_{ij} (V_{ij} \log \left(\frac{V_{ij}}{B_{ij}}\right) - V_{ij} + B_{ij})$$

• others³: Bregman Divergence, Alpha-Divergence, Beta-Divergence, . . .

³A Cichocki, R Zdunek, A. Phan, et al., Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. John Wilev & Sons. 2009.

objective function gradient descent

Georgia Center for Music Tech Technology

minimization of objective function

- gradient descent: minimum can be found as zero of derivative
 - 2D example: given a function $f(x_1, x_2)$, find the minimum $x_1 = a$ and $x_2 = b$
 - 1 initialize $x_i(0)$ with random numbers
 - 2 update points iteratively:

$$x_i(n+1) = x_i(n) - \alpha \cdot \frac{\partial t}{\partial x_i}, \quad i = [1, 2]$$

 \Rightarrow as iteration number *n* increases, x_1 , x_2 will be closer to *a*, *b*.

objective function gradient descent

Georgia Center for Music Tech Technology

- minimization of objective function
- **gradient descent**: minimum can be found as zero of derivative
 - 2D example: given a function $f(x_1, x_2)$, find the minimum $x_1 = a$ and $x_2 = b$
 - 1 initialize $x_i(0)$ with random numbers
 - 2 update points iteratively:

$$x_i(n+1) = x_i(n) - \alpha \cdot \frac{\partial f}{\partial x_i}, \quad i = [1,2]$$

 \Rightarrow as iteration number *n* increases, x_1 , x_2 will be closer to *a*, *b*.

objective function

Georgia Center for Music Tech Technology

additive vs. multiplicative update rules

optimization of objective function 4 $D_{\mathrm{EU}}(V \parallel WH) = \parallel V - WH \parallel^2$

additive update rules:

$$H \leftarrow H + \alpha \frac{\partial J}{\partial H} = H + \alpha [(W^T V) - (W^T W H)]$$
$$W \leftarrow W + \alpha \frac{\partial J}{\partial W} = W + \alpha [(V H^T) - (W H H^T)]$$

■ multiplicative update rules:

$$H \leftarrow H \frac{(W^T V)}{(W^T W H)}$$
$$W \leftarrow W \frac{(V H^T)}{(W H H^T)}$$

pp. 556-562. [Online]. Available: http://www.public.asu.edu/~jye02/CLASSES/Fall-2007/NOTES/lee01algorithms.pdf.

⁴D Seung and L Lee, "Algorithms for non-negative matrix factorization," in *Advances in neural information processing systems*, 2001,

objective function

Georgia Center for Music Tech Technology

additive vs. multiplicative update rules

optimization of objective function 4 $D_{\mathrm{EU}}(V \parallel WH) = \parallel V - WH \parallel^2$

■ additive update rules:

$$H \leftarrow H + \alpha \frac{\partial J}{\partial H} = H + \alpha [(W^T V) - (W^T W H)]$$
$$W \leftarrow W + \alpha \frac{\partial J}{\partial W} = W + \alpha [(V H^T) - (W H H^T)]$$

multiplicative update rules:

$$H \leftarrow H \frac{(W^T V)}{(W^T W H)}$$
$$W \leftarrow W \frac{(V H^T)}{(W H H^T)}$$

pp. 556-562. [Online]. Available: http://www.public.asu.edu/~jye02/CLASSES/Fall-2007/NOTES/lee01algorithms.pdf.

⁴D Seung and L Lee, "Algorithms for non-negative matrix factorization," in *Advances in neural information processing systems*, 2001,

objective function additional cost function constraints

Georgia Center for Music Tech Technology

- additional penalty terms (regularization terms) may be added to objective function
- \blacksquare example: sparsity in W or H

$$D = \parallel V - WH \parallel^2 + \alpha J_{W}(W) + \beta J_{H}(H)$$

- α, β : coefficients for controlling degree of sparsity
- $J_{\rm W}$ and $J_{\rm H}$: typically L_1, L_2 norm

nmf example template extraction

Georgia Center for Music Tech Technology

- unsupervised extraction of templates and activations
- input audio:
 - **4**) horn
 - **◄**)) _{oboe}
 - **◄** wiolin
 - 📢)) mix

nmf use cases piano transcription

- separate template adaptation from activation matrix adaptation:
 - 1 train/set template matrix
 - 2 order template matrix to have fixed pitch mapping
 - 3 keep template matrix fixed and only update activation matrix
 - 4 pick activation magnitude to determine active pitches
- potential problems
 - detuned piano
 - template differs significantly from sound analyzed

polyphonic pitch detection

- highly challenging task with
 - unknown number of sources
 - unknown harmonic structure
 - spectral overlap of sources
 - ▶ time-varying mixture

traditional approaches

- iterative subtraction (detect one pitch, remove it, repeat analysis)
- multi-band processing

■ non-negative matrix factorization

- iterative process minimizing an objective function
- split a matrix into a template matrix and an activation matrix

