AMENDMENTS TO THE CLAIMS:

Please cancel claim 18 without prejudice or disclaimer and amend claims 17 and 18, as follows:

Claim 1 (Previously presented) A compound represented by general formula (I):

$$R + \left(A - L\right)_{m} + \left(M - \left(B\right)_{n}^{2} Z \right)$$

(wherein, R and Z may be substituted with a halogen and represent alkyl groups or alkoxy groups having 1-16 carbon atoms, alkenyl groups having 2-16 carbon atoms, alkenyloxy groups having 3-16 carbon atoms, alkyl groups having 1-12 carbon atoms substituted with an alkoxy group having 1-10 carbon atoms, hydrogen atoms, fluorine atoms, chlorine atoms, trifluoromethoxy groups, difluoromethoxy groups, trifluoromethyl groups, 2,2, 2 - trifluoroethoxy groups, cyano groups, cyanoto groups, hydroxy groups or carboxy groups, m and n may be the same or different and respectively and independently represent an integer of 0-2, $1 \le m+n \le 3$, L and M may be the same or different and respectively and independently represent -CH₂CH₂-, -CH(CH₃)CH₂-, -CH₂CH(CH₃) -, -CH₂O-, -OCH₂-, -CF₂O-, -OCF₂-, -COO-, -OCO-, -CH=CH-, -CF=CF-, -C=C-, -O(CH₂)₃-, -(CH₂)₃O-, -(CH₂)₄- or a single bond, rings A and B when present may be the same or different and respectively and independently represent a trans-1,4-cyclohexylene group in which one CH₂ group or more than one non-adjacent CH₂ groups in the group may be replaced by -O- or -S-, a 1,4-

phenylene group in which one CH₂ group or more than one non-adjacent CH₂ groups in the group

may be replaced by -N=, a 1,4-cyclohexenylene group, 1,4-bicyclo(2,2,2)octylene group, piperidine-

1,4-diyl group, naphthalene-2,6-diyl group, trans-decahydronaphthalene-trans-2,6-diyl group or

1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and although these may be substituted with a cyano

group or halogen, in the case m or n represents 2, at least one of the two L or M present represents

a single bond; provided that the following cases are excluded:

i. case in which either m or n represents 1, the other of m or n represents 0, ring A or ring B when

present represents a 1,4-cyclohexylene group, L or M when present represents a single bond, R or

Z bonded to a decahydronaphthalene ring represents a non-substituted alkyl group, and R or Z

bonded to a 1,4-cyclohexylene group represents a non-substituted alkyl group, alkoxy group or

alkenyloxy group;

ii. case in which either m or n represents 1, the other m or n represents 0, ring A or ring B when

present represents a 1,4-cyclohexylene group, L when present represents -OCO- or M when present

represents -COO-, and R or Z bonded to a 1,4-cyclohexylene group represents a non-substituted

alkyl group or cyano group;

iii. case in which either m or n represents 1, the other m or n represents 0, ring A or ring B when

present represents a non-substituted 1,4-phenylene group, L when present represents -OCO- or M

when present represents -COO-, L or M when present represents a single bond, and R or Z bonded

to a 1,4-phenylene group represents a non-substituted alkyl group, alkoxy group, hydroxyl group,

hydrogen atom, carboxyl group or cyano group;

-3-

iv. case in which either m or n represents 1, the other m or n represents 0, ring A or ring B when present

represent a non-substituted 1,4-phenylene group, L or M when present represents a single bond, R or Z bonded

to a decahydronaphthalene ring represents a non-substituted alkoxy group, and R or Z bonded to a 1,4-

phenylene group represents a non-substituted alkyl group;

v. case in which either m or n represents 1, the other m or n represents 0, ring A or ring B when present

represents a trans-decahydronaphthalene-trans-2,6-diyl group, L when present represents -OCO-, M when

present represents -COO- or L or M when present represent a single bond, and R and Z represent non-

substituted alkoxy groups;

vi. case in which either m or n represents 1, the other m or n represents 0, ring A or ring B when present

represents a non-substituted naphthalene-2,6-diyl group, L when present represents -OCO- or M when present

represents -COO-, R or Z bonded to a decahydronaphthalene ring represents a non-substituted alkyl group, and

R or Z bonded to a naphthalene-2,6-diyl group represents a non-substituted alkyl group, bromine atom or cyano

group, or the case in which R or Z bonded to a decahydronaphthalene ring represents a non-substituted alkoxy

group, and R or Z bonded to a naphthalene-2,6-diyl group represents a non-substituted alkyl group or cyano

group;

vii. case in which n represents 2, m represents 0, R represents a non-substituted alkyl group, M when present

adjacent to a decahydronaphthalene ring represents -COO-, at least one of rings B present represents a non-

substituted 1,4-phenylene group, and Z represents a non-substituted alkyl group or bromine atom, or the case

in which at least one of rings B present represents a pyrimidine-2,5-diyl group, and Z represents a non-

substituted alkyl group, alkoxy group or cyano group; and

-4-

viii. case in which m and n represent 1, ring A represents a trans-decahydronaphthalene-trans-2,6-diyl group

or a 1,4-cyclohexylene group, ring B represents a non-substituted 1,4-phenylene group or 1,4-cyclohexylene

group, L represents a single bond, M represents -COO-, -OCO-, -CH₂O- or -OCH₂-, and R and Z represent

non-substituted alkyl groups.

Claim 2 (Original): A compound according to claim 1 wherein, ring A and ring B when present

respectively and independently represent a 1,4-phenylene group, naphthalene-2,6-diyl group, 1,2,3,4-

tetrahydronaphthalene-2,6-diyl group, trans-1,4-cyclohexylene group or decahydronaphthalene-2,6-diyl group

that may be substituted with fluorine atom(s).

Claim 3 (Original): A compound according to claim 1 wherein, ring A or ring B when present

respectively and independently represent a 1,4-phenylene group or trans-1,4-cyclohexylene group that may be

substituted with fluorine atom(s).

Claim 4 (Original): A compound according to claim 1 wherein, L and M when present represent -

CH₂CH₂-, -CH₂O-, -OCH₂-, -CF₂O-, -OCF₂-, -COO-, -OCO-, -CF=CF- or a single bond.

Claim 5 (Original): A compound according to claim 1 wherein, L or M represents a single bond.

Claim 6 (Original): A compound according to claim 1 wherein, L and M represent single bonds.

-5-

U.S. Patent Application Serial No. 09/763,531 Amendment filed October 8, 2004

Reply to OA dated July 13, 2004

Claim 7 (Original): A compound according to claim 1 wherein, $1 \le m + n \le 2$.

Clam 8 (Original): A compound according to claim 1 wherein, R represents an alkyl group, alkoxy

group, alkenyl group or alkenyloxy group having 1-12 carbon atoms.

Claim 9 (Original): A compound according to claim 1 wherein, Z represents a halogen atom or an

alkyl group, alkoxy group, alkenyl group, alkenyloxy group or cyano group having 1-12 carbon atoms.

Claim 10 (Previously presented): A compound according to claim 1 wherein, R represents an alkyl

group or alkenyl group having 1-12 carbon atoms, m represents 1, n represents 1, ring A represents a trans-1,4-

cyclohexylene group, ring B represents a 3-fluoro-1,4-phenylene group or 3,5-difluoro-1,4-phenylene group,

L and M represent single bonds, and Z represents a fluorine atom, chlorine atom, trifuoromethoxy group,

difluoromethoxy group, trifluoromethyl group, 2,2,2-trifluoroethoxy group or cyano group.

Claim 11 (Previously presented): A compound according to claim 1 wherein, R represents an alkyl

group or alkenyl group having 1-12 carbon atoms, m represents 0, n represents 1, ring B represents a 3-fluoro-

1,4-phenylene group or 3,5-difluoro-1,4-phenylene group, M represents a single bond and Z represents a

fluorine atom, chlorine atom, trifluoromethoxy group, difluoromethoxy group, trifluoromethyl group, 2,2,2-

trifluoroethyoxy group or cyano group.

-6-

Claim 12 (Original): A compound according to claim 1 wherein, R and Z represent alkyl groups or alkenyl groups having 1-12 carbon atoms, m and n represent 1, rings A and B represent 1,4-phenylene groups or trans-1,4-cyclohexylene groups, and L and M represent single bonds.

Claim 13 (Original): A compound according to claim 1 wherein, R and Z represent alkyl groups or alkenyl groups having 1-12 carbon atoms, at least one of R or Z represents an alkenyl group, m represents 1, n represents 0, rings A and B represent 1,4-phenylene groups or trans-1,4-cyclohexylene groups, and L represents a single bond.

Claim 14 (Previously presented): A compound represented by general formula (II):

$$R^4$$
 $(A - L^1)_m$ O (II)

(wherein, R^4 represents an alkyl group, alkyoxy group, alkenyl group, alkenyloxy group or alkoxyalkyl group, L^1 represents $-CH_2CH_2$ -, $-CH_2CH_2$ -, $-CH_2CH_2$ -, $-CH_2CH_2$ -, $-CCH_2$ -, or a single bond, $-CCH_2$ -, a likenyloxy group or alkyoxyalkyl group when $-CCH_2$ - represents a single bond, ring A represents a trans-1,4-cyclohexylene group in which one $-CCH_2$ - group or more than one non-adjacent $-CCH_2$ - groups in the group may be replaced by $-CCH_2$ - or $-CCH_2$ -, a 1,4-phenylene group in which one $-CCH_2$ - group or more than one non-adjacent $-CCH_2$ - groups in the group may be replaced by $-CCH_2$ -, a 1,4-cyclohexenylene group, 1,4-bicyclo(2,2,2)octylene group,

piperidine-1,4-diyl group, naphthalene-2, 6-diyl group, trans-decahydronaphthalene-trans-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2, 6-diyl group, m represents an integer of 1 or 2, and the decahydronaphthalene ring has a trans form).

Claim 15 (Previously presented): A production method of general formula (II) according to claim 14 including: reducing a compound represented by general formula (II-A):

(wherein, R⁴ is the same as previously defined in general formula (II), ring E represents a 1,4-phenyl group or trans-1,4-cyclohexylene group, L is the same as L¹ defined in general formula (II), and m is the same as previously defined in general formula (II), and the decahydronaphthalene ring has a trans form), and oxidizing the hydroxyl group as necessary.

Claim 16 (Previously Presented): A compound represented by general formula (V-2):

$$U^{1} = \bigcup_{u \in U^{2}} (V-2)$$

(wherein, U^{I} and U^{2} respectively and independently represent an oxygen atom or the following structure:

(wherein, k represents an integer from 1 to 7), L represents $-CH_2CH_2$ -, $-CH(CH_3)CH_2$ -, $-CH_2CH(CH_3)$ -, $-CH_2CH_2$ -, $-CCH_2$ -, $-CCH_$

Claim 17 (Currently amended): A production method of general formula (V-2) or general formula (V-1) according to claim 16,

including: converting a compound represented by general formula (V-1A) or general formula (V-2A):

$$-\frac{(CH_2)_{1}^{0}}{0}$$
 $-\frac{(V-1A)}{0}$ $-\frac{(CH_2)_{1}^{0}}{0}$ $-\frac{(V-2A)}{0}$

(wherein, k and L are the same as previously defined in claim 16) into an enamine using a secondary amine, and reacting it with methyl vinyl ketone to obtain a compound represented by general formula (V-1B) or general formula (V-2B)

$$(CH_2)_{0}^{0}$$

$$(CH_2)_{0}^{1}$$

$$(CH_2)_{0}^{1}$$

$$(CH_2)_{0}^{1}$$

$$(V-2B)$$

(wherein, k and L are the same as previously defined in claim 16) followed by reductive hydrogenation.

Claim 18 (Canceled).

Claim 19 (Currently amended): A production method of general formula (V-2) according to claim 16 including: reducing a compound represented by general formula (V-2C):

(wherein, although ring G represents a cyclohexane ring or benzene ring, a single bond(s) of the cyclohexane ring may be replaced by double bond(s), and although rings F and H respectively and independently represent the following structures:

(wherein, U[†] is the same as previously defined in general formula (V-1) or general formula (V-2)), a single bond(s) of the cyclohexane ring may be replaced by double bond(s)), oxidizing the hydroxyl group as necessary, and further protecting the carbonyl group as necessary.

Claim 20 (Previously presented): A production method of general formula (V-1a):

$$(CH_2)_k$$
 O
 $= O$ (V-1a)

(wherein k represents an integer from 1 to 7) including monoacetalation of a compound represented by general formula (V-1D):

Claim 21 (Previously presented): A liquid crystal composition containing a compound according to claim 1.

Claim 22 (Previously presented): A liquid crystal device having for its constituent feature the liquid crystal composition according to claim 21.

Claim 23 (Previously presented): An active matrix drive, liquid crystal device that uses the liquid crystal composition according to claim 21.

Claim 24 (Previously presented): A super twisted nematic liquid crystal device that uses the liquid crystal composition according to claim 21.