LECTURE 9:

ENZYME INHIBITION AND APPLICATIONS

ENZYME INHIBITION AND APPLICATIONS

$$\mathbf{E} + \mathbf{K}_{I}$$

$$K_{I} = \frac{[E][I]}{[E:I]}$$

Units of $\mathbf{K_I}$ and $\mathbf{IC_{50}} = \mathbf{M}$

Why inhibit enzymes?

- Certain disease states may be caused by the product of an enzyme catalysis
- Drugs can target enzymes which are present in pathogens but not in the host
- Understanding the nature of enzyme catalysis AND the mechanism of a biochemical reaction can lead to the design of effective drugs

Enzymes as Drug Targets - a Closer Look

Transition state analogs and "suicide substrates"

Table 1	: Database of Enzyme Targets for Marketed Drugs						
entry	enzyme common name	EC no.a	example drug	indication	no. of drugs	organism ^b	ref^{o}
1	1,3-β-glucan synthase	2.4.1.34	caspofungin	antifungal	1	F	87
2	3(or 17)-β-hydroxysteroid dehydrogenase	1.1.1.51	trilostane	breast cancer	1	H	88
3	3',5'-cyclic-GMP phosphodiesterase	3.1.4.35	sildenafil	ED^d	3	H	89
4	3',5'-cyclic-nucleotide phosphodiesterase	3.1.4.17	theophylline	asthma	11	H	90
5	4-hydroxyphenylpyruvate dioxygenase	1.13.11.27	nitisinone	tyrosinemia	1	H	91
6	3-oxo-5-α,-steroid 4-dehydrogenase	1.3.99.5	finasteride	ĎPH⁴	2	H	92
7	acetylcholinesterase	3.1.1.7	pyridostigmine	MG^f	11	H	93
8	adenosine deaminase	3.5.4.4	pentostatin	HCL ²	2	H	94
9	alanine racemase	5.1.1.1	cycloserine	tuberculosis	1	В	95
10	alcohol dehydrogenase	1.1.1.1	fomepizole	alcoholism	1	H	96
11	aldehyde dehydrogenase (NAD)	1.2.1.3	disulfiram	alcoholism	1	H	97
12	α,-amylase	3.2.1.1	acarbose	diabetes	1	H	98
13	α-glucosidase	3.2.1.20	miglitol	diabetes	1	H	99
14	amine oxidase (flavin-containing)	1.4.3.4	tranylcypromine	depression	5	H	100
15	arabinosyltransferase	2.4.2.34	ethambutol	antibacterial	1	В	101
16	arachidonate 5-lipoxygenase	1.13.11.34	zileuton	inflammation	4	H	102
17	aromatic L-amino acid decarboxylase	4.1.1.28	carbidopa	Parkinson's	1	H	103
18	β -lactamase	3.5.2.6	tazobactam	antibacterial	3	В	104
19	carbonate dehydratase"	4.2.1.1	acetazolamide	glaucoma	6	H	105
20	catechol O-methyltransferase	2.1.1.6	entacapone	Parkinson's	2	H	106
21	ceramide glucosyltransferase	2.4.1.80	miglustat	Gaucher's	1	H	107
22	D-alanine-D-alanine ligase	6.3.2.4	cycloserine	tuberculosis	1	В	108
23	dihydrofolate reductase	1.5.1.3	methotrexate	leukemia	7	H	109
24	dihydroorotate dehydrogenase	1.3.99.11	leflunomide	inflammation	1	H	110
25	dihydropteroate synthase	2.5.1.15	dapsone	antifungal	17	F	111
26	DNA topoisomerase	5.99.1.2	topotecan	ovarian cancer	2	H	112
27	DNA topoisomerase (ATP-hydrolyzing)	5.99.1.3	ciprofloxacin	antibacterial	18	В	113
28	DNA-directed DNA polymerase	2.7.7.7	acyclovir	herpes	11	V	114
29	DNA-directed RNA polymerase	2.7.7.6	rifapentine	antibacterial	3	В	115
30	dolichyl phosphatase	3.1.3.51	bacitracin	antibacterial	1	В	116
31	enoyl-[acyl carrier protein] reductase	1.3.1.9	isoniazid	tuberculosis	1	В	117
32	exo-α-sialidase	3.2.1.18	oseltamivir	influenza	2	V	118
33	factor Xa	3.4.21.6	fondaparinux	thrombosis	2	H	119
34	farnesyl-diphosphate farnesyltransferase	2.5.1.21	alendronate	osteoporosis	6	H	120
35	fatty acid synthase	2.3.1.85	pyrazinamide	tuberculosis	1	В	121

Enzymes as Drug Targets - a Closer Look

Transition state analogs and "suicide substrates"

36	glucan 1,4-α-glucosidase	3.2.1.3	miglitol	diabetes	1	H	122
37	histone acetyltransferase	2.3.1.48	valproic	seizures	1	H	123
38	HIV-1 retropepsin	3.4.23.16	nelfinavir	$AIDS^h$	8	V	124
39	hydrogen/potassium-exchanging ATPase	3.6.3.10	esomeprazole	GERD ⁱ	5	H	125
40	HMG-CoA reductase (NADPH2)	1.1.1.34	atorvastatin	hyperlipodemia	6	H	126
41	IMP dehydrogenase	1.1.1.205	mycophenolate	IŠ ^j	2	H	127
42	iodide peroxidase	1.11.1.8	propylthiouracil	hyperthyroid	2	H	128
43	isoleucine tRNA ligase	6.1.1.5	mupirocin	antibacterial	1	В	129
44	membrane dipeptidase	3.4.13.19	cilastatin	resistance	1	H	130
45	ornithine decarboxylase	4.1.1.17	eflornithine	trypanosomes	1	P	131
46	orotidine-5'-phosphate decarboxylase	4.1.1.23	allopurinol	gout	1	H	132
47	peptidyl-dipeptidase A	3.4.15.1	captopril	hypertension	12	H	133
48	phosphoribosylglycinamide formyltransferase	2.1.2.2	pemetrexed	cancer	1	H	134
49	plasma kallikrein	3.4.21.34	aprotinin	thrombosis	1	H	135
50	plasmin	3.4.21.7	aminocaproic	thrombosis	3	H	136
51	prostaglandin-endoperoxide synthase	1.14.99.1	etodolac	inflammation	30	H	137
52	proteasome endopeptidase complex	3.4.25.1	bortezomib	myeloma	1	H	138
53	protein-tyrosine kinase	2.7.1.112	imatinib	leukemia	3	H	139
54	ribonucleoside-diphosphate reductase	1.17.4.1	gemcitabine	cancer	4	H	140
55	RNA-directed RNA polymerase	2.7.7.48	ribavirin	pneumonia	1	V	141
56	RNA-directed DNA polymerase	2.7.7.49	abacavir	AIDS	13	V	142
57	serine-type D-Ala-D-Ala carboxypeptidase	3.4.16.4	cefonicid	antibacterial	52	В	143
58	sodium/potassium-exchanging ATPase	3.6.3.9	digitoxin	CHF ^k	3	H	144
59	squalene monooxygenase	1.14.99.7	butenafine	antifungal	3	F	145
60	sterol 14-demethylase	1.14.13.70	itraconazole	antifungal	11	F	146
61	sucrose α-glucosidase	3.2.1.48	miglitol	diabetes	1	H	147
62	thrombin	3.4.21.5	lepirudin	thrombosis	10	H	148
63	thymidylate synthase	2.1.1.45	floxuridine	cancer	6	H	149
64	thyroxine 5'-deiodinase	1.97.1.10	propylthiouracil	hyperthyroid	1	H	150
65	triacylglycerol lipase	3.1.1.3	orlistat	obesity	1	H	151
66	tyrosine 3-monooxygenase	1.14.16.2	metyrosine	PC^{I}	1	H	152
67	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	2.5.1.7	fosfomycin	antibacterial	1	В	153
68	unspecific monooxygenase	1.14.14.1	aminoglutethimide	breast cancer	5	H	154
69	urease	3.5.1.5	acetohydroxamic	gastritis	1	В	155
70	vitamin-K-epoxide reductase (warfarin-sens.)	1.1.4.1	dicumarol	thrombosis	5	H	156
71	xanthine oxidase	1.17.3.2	allopurinol	gout	1	H	157

a EC numbers are from IUBMB Enzyme Nomenclature (www.chem.qmw.ac.uk/iubmb/enzyme). b Organism is the target organism: H, human; B, bacterial; V, viral; F, fungal; P, protozoal. a The reference is a general reference for the target. a Erectile dysfunction. Benign prostatic hyperplasia. Myasthenia gravis. Hairy cell leukemia. Acquired immunodeficiency syndrome. Gastroesophageal reflux disease. Immunosuppression. Congestive heart failure. Pheochromocytoma. Several enzymes are better known by their more popular names: 3-oxo-5-α-steroid 4-dehydrogenase as 5-α-reductase, carbonate dehydratase as carbonic anhydrase, DNA topoisomerase as DNA gyrase, DNA-directed DNA polymerase as DNA polymerase, DNA-directed DNA polymerase as RNA polymerase, HIV-1 retropepsin as HIV protease, peptidyl-dipeptidase A as angiotensin-converting enzyme, RNA-directed DNA polymerase as reverse transcriptase, ribonucleoside-diphosphate reductase as ribonucleotide reductase, serine-type D-Ala-D-Ala carboxypeptidase as DD transpeptidase, and unspecific monooxygenase as microsomal P450 or aromatase.

Drugs that act as enzyme inhibitors:

A. Reversible inhibitors

- Competitive
- Non-competitive

B. Irreversible inhibitors

Poisonous snake bite, plant alkaloids, Nerve gas, Malathion, Parathion, etc...

Reversible Inhibitors

To design a reversible competitive inhibitor as a drug, design a mimic of the substrate or the transition state

- 1. Transition state mimic for adenosine deaminase (enzyme which degrades anticancer drugs)
- 2. Substrate mimic for dihydropteroate synthase (dihydrofolate synthesis)
- 3. Transition state mimic for HMG-CoA reductase (cholesterol synthesis)

Substrate versus Transition-state analogs: Which approach should result in the highest affinity drug? Why?

a) Competitive Inhibition

☐ Competitive Inhibition Example

Design of Statins

HO
$$\longrightarrow$$
 COOH SCOA \bigcirc CH₂CH₂ CH₃

Substrate

Inhibitor

☐ Competitive Inhibition Example

AZT → potent inhibitor of HIV-RT, the retroviral polymerase which catalyzes the formation of proviral DNA from viral RNA

The transition state is stabilized *more than* the substrate

Carbocationic Intermediate Resembles transition state

Transition-state analog inhibitor

Example 1: Isopentyl Diphosphate isomerase, a key enzyme in isoprenoids synthesis

Example 2: Purine nucleoside phosphorylase. Lower activity causes T-cell immunodeficiency. Potential therapy for T-cell cancer and T-cell autoimmune disorders

Transition state structure was determined with analogs of substrates:

Fig. 2. Crystal structure distances of complexes representing the reaction catalyzed by PNP. The transition state parameters are for arsenolysis of inosine by bovine PNP. Distances in substrate and product complexes are from crystallography studies with the complexes shown in the figure [25,59].

Fig. 3. Molecular electrostatic potential surfaces of inosine, transition state and Immucillin-H as the cation. The transition state is for bovine PNP. The figure is from [34] with permission of the publisher.

Example 3: Transition state analogues......

both of which bind to the enzyme with 160-fold greater affinity than does proline. These compounds are therefore thought to be analogs of the transition state in the proline racemase reaction. In contrast, **tetrahydrofuran-2-carboxylate**,

Tetrahydrofuran-2-carboxylate

b) Non-Competitive Inhibition

■ Non-Competitive Inhibition ... Example

Argatroban

Bivalirudin

☐ Competitive Inhibition Example

AZT → potent inhibitor of HIV-RT, the retroviral polymerase which catalyzes the formation of proviral DNA from viral RNA

Recap:

- Reversible enzyme inhibitors bind reversibly!
- Competitive inhibitors' structure should be more similar to that of the transition state for stronger binding
- Non-competitive and uncompetitive inhibitors can't be "designed", because they don't resemble the substrate or transition state

Irreversible Inhibition

Can be grouped as:

- (a) coenzyme inhibitors
- (b) inhibitors of specific ion cofactor
- (c) prosthetic group inhibitors
- (d) apoenzyme inhibitors
- (e) Physiological modulators of the reaction, such as the pH and temperature that denature the enzyme catalytic site

- Most irreversible inhibitors interact with functional groups on the enzyme and destroy enzyme activity
- These interactions are covalent in nature
- These inhibitors are highly useful in studying enzyme reaction mechanisms

Irreversible Inhibition

$$E + S \rightleftharpoons E:S \longrightarrow E-S \longrightarrow No further rxn.$$

Substrate behaves as an inhibitor! aka Suicide substrate inhibitors or Mouse trap inhibitors or Trojan horse inhibitors

Irreversible Inhibitors

Diisopropyl fluorophosphate (nerve gas)

- Organophosphates
- Inhibit serine hydrolases
- Acetylcholinesterase inhibitors

The organophosphofluoride DIFP inactivates the enzyme by forming a permanent **P-O** covalent bond (suicide inhibitor)

More examples...

- Poisonous snake bite
- Plant alkaloids milkweed, more examples?

- Nerve gas

Allopurinol is an suicide inhibitor of xanthine oxidase; prevents the formation of uric acid from precursorial

The molecule below inhibits the enzyme PDE-5

Identify the drug and describe its mechanism of inhibition

Case Study 1

SHARE RESEARCH ARTICLE

An AMPK–caspase-6 axis controls liver damage in nonalcoholic steatohepatitis

¹Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.

²Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.

³NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.

- e*Corresponding author. Email: asaltiel@ucsd.edu (A.R.S.); pez021@ucsd.edu (P.Z.)
- 4† These authors contributed equally to this work.
- Hide authors and affiliations

Science 07 Feb 2020: Vol. 367, Issue 6478, pp. 652-660 DOI: 10.1126/science.aav0542

NASH- is liver inflammation and damage caused by a buildup of fat in the liver. It is part of a group of conditions called nonalcoholic fatty liver disease.

Abstract

Liver cell death has an essential role in nonalcoholic steatohepatitis (NASH). The activity of the energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) is repressed in NASH. Liver-specific AMPK knockout aggravated liver damage in mouse NASH models. AMPK phosphorylated proapoptotic caspase-6 protein to inhibit its activation, keeping hepatocyte apoptosis in check. Suppression of AMPK activity relieved this inhibition, rendering caspase-6 activated in human and mouse NASH. AMPK activation or caspase-6 inhibition, even after the onset of NASH, improved liver damage and fibrosis. Once phosphorylation was decreased, caspase-6 was activated by caspase-3 or -7. Active caspase-6 cleaved Bid to induce cytochrome c release, generating a feedforward loop that leads to hepatocyte death. Thus, the AMPK-caspase-6 axis regulates liver damage in NASH, implicating AMPK and caspase-6 as therapeutic targets.

5. Self-directed study

Next lecture

Clinical applications of enzymes