

Artificial Intelligence

Hai Thi Tuyet Nguyen

Outline

CHAPTER 1: INTRODUCTION (CHAPTER 1)

CHAPTER 2: INTELLIGENT AGENTS (CHAPTER 2)

CHAPTER 3: SOLVING PROBLEMS BY SEARCHING (CHAPTER 3)

CHAPTER 4: INFORMED SEARCH (CHAPTER 3)

CHAPTER 5: LOGICAL AGENT (CHAPTER 7)

CHAPTER 6: FIRST-ORDER LOGIC (CHAPTER 8, 9)

CHAPTER 7: QUANTIFYING UNCERTAINTY(CHAPTER 13)

CHAPTER 8: PROBABILISTIC REASONING (CHAPTER 14)

CHAPTER 9: LEARNING FROM EXAMPLES (CHAPTER 18)

CHAPTER 5: LOGICAL AGENT

- 5.1 Knowledge-Based Agents
- 5.2 The Wumpus World
- 5.3 Logic
- 5.4 Propositional Logic
- 5.5 Propositional Theorem Proving
- 5.6 Inference Rules, Theorem Proving

5.1 Knowledge-Based Agents

- *Knowledge base (KB)* = a set of sentences in a *formal* language (i.e., knowledge representation language)
- *Declarative* approach to build an agent:
 - *TELL* it what it needs to know
 - ASK itself what to do answer should follow from the KB

5.1 A simple knowledge-based agent.

- The agent takes a percept as input and returns an action.
 It maintains a knowledge base
- How it works:
 - TELLs the knowledge base what it perceives.
 - ASKs the knowledge base what action it should perform.
 - TELLs the knowledge base which action was chosen, and executes the action.

```
function KB-AGENT( percept) returns an action static: KB, a knowledge base t, a counter, initially 0, indicating time Tell(KB, Make-Percept-Sentence( percept, t)) action \leftarrow Ask(KB, Make-Action-Query(t)) Tell(KB, Make-Action-Sentence( action, t)) t \leftarrow t+1 return action
```

• Performance measure:

- +1000: climb out of the cave with the gold,
- \circ -1000: fall into a pit or being eaten by the wumpus
- \circ -1: each action
- \circ -10: use up the arrow.
- The game ends: the agent dies or it climbs out of the cave
- **Environment:** A 4×4 grid of rooms.
 - Start location of the agent: the square labeled [1,1]
 - Locations of the gold and the wumpus: random
- Actuators: Move Forward, Turn Left, Turn Right, Grab, Climb, Shoot
- Sensors: the agent will perceive
 - Stench: in the square containing the monster (called wumpus) and in the directly adjacent squares
 - Breeze: in the squares directly adjacent to a pit
 - Glitter: in the square where the gold is
 - O Bump: into a wall
 - Scream: anywhere in the cave when the wumpus is killed

• The first percept is [None,None,None,None,None] => the agent can conclude that its neighboring squares, [1,2] and [2,1], are OK.

The agent decides to move forward to [2,1].

- The agent perceives a breeze (denoted by "B") in [2,1] => there must be a pit in a neighboring square.
- The pit cannot be in [1,1] => so there must be a pit in [2,2] or [3,1] or both.

The agent will turn around, go back to [1,1], and then proceed to [1,2].

- The agent perceives a stench in [1,2] => there must be a wumpus nearby ([2,2] or [1,3])
- The lack of stench when the agent was in $[2,1] \Rightarrow$ wumpus cannot be in $[2,2] \Rightarrow$ it is in [1,3]
- the lack of a breeze in [1,2] => there is no pit in [2,2]

=> [2,2]: safe, OK

The agent draws a conclusion from the available information, that conclusion is guaranteed to be correct if the available information is correct.

5.3 Logic

- Logics are formal languages for representing information
- Syntax defines the sentences in the language E.g., "x + y = 4" is a well-formed sentence, whereas "x4y+=" is not
- **Semantics** defines the "meaning" of sentences
 - The semantics defines the *truth* of each sentence with respect to each *possible world* (i.e., *model*).
 - E.g., the sentence "x + y = 4" is true in a world where x is 2 and y is 2, but false in a world where x is 1 and y is 1

5.3 Entailment

- Entailment means that *one thing follows from another*:
- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

$$KB \mid = \alpha$$

• E.g., KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"

5.3 Models

- Models are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α
- Then KB $\models \alpha$ if and only if M(KB) \subseteq M(α)

E.g. KB = Giants won and Reds won $\alpha = Giants$ won

5.3 Inference and Entailment

- An inference algorithm is a procedure for deriving a sentence from the KB
- If an inference algorithm i can derive α from KB, we write

$$KB \vdash_i \alpha$$

which is pronounced " α is derived from KB by i" or "i derives α from KB" OR: the sentence α is inferred from KB using algorithm i.

5.4 Propositional logic: Syntax

- Propositional logic is the simplest logic illustrates basic ideas
- The proposition symbols P_1, P_2, \dots are sentences
- If S is a sentence, \neg S is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
- If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

5.4 Propositional logic: Semantics

Each model specifies true/false for each proposition symbol
 E.g. P_{1,2} P_{2,2} P_{3,1}
 true true false

• Rules for evaluating truth with respect to a model m:

$\neg S$	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S_1	is true and	S_2	is true
$S_1 \vee S_2$	is true iff	S_1	is true or	S_2	is true
$S_1 \Rightarrow S_2$	is true iff	S_1	is false or	S_2	is true
i.e.,	is false iff	S_1	is true and	S_2	is false
$S_1 \Leftrightarrow S_2$	is true iff	$S_1 \Rightarrow S_2$	is true and	$S_2 \Rightarrow S_1$	is true

5.4 Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

5.4 A simple knowledge base - Wumpus world sentences

 $P_{x,y}$ is true if there is a pit in [x, y].

 $B_{x,y}$ is true if the agent perceives a breeze in [x, y].

There is no pit in [1,1]: $R_1 : \neg P_{1,1}$.

A square is breezy if and only if there is a pit in a neighboring square.

R2:
$$B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$$
.
R3: $B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$.

The breeze percepts on the first two squares of the agent

R4:
$$\neg B_{1,1}$$
.
R5: $B_{2,1}$.

5.4 A simple knowledge base - Wumpus world sentences

• Goal: to decide whether KB $\mid = \alpha$ for some sentence α KB, α as $\neg P_{1,2}$ prove: KB $\mid = \neg P_{1,2}$

- A model-checking approach:
 - o enumerate the models
 - \circ check that α is true in every model in which KB is true

5.4 A simple knowledge base - Wumpus world sentences

With 7 symbols, there are 27 = 128 possible models; in 3 of these, KB is true. In those 3 models, $\neg P_{1,2}$ is true or there is no pit in [1,2].

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	i	:	:	1	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	false	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	true	true	true	true	true	true	<u>true</u>
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

5.5 Propositional Theorem Proving

- Determine entailment by **theorem proving**: applying rules of inference directly to the sentences in our knowledge base.
- Some additional concepts related to entailment:
 - Logical equivalence
 - Validity
 - Satisfiability

5.5 Logical equivalence

Two sentences are logically equivalent iff true in same models:

 $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition}$$

 $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination

$$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) \text{ De Morgan}$$
$$(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \text{ distributivity of } \land \text{ over } \lor$$
$$(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \text{ distributivity of } \lor \text{ over } \land$$

 $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination

 $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan

Figure 7.11 Standard logical equivalences. The symbols α , β , and γ stand for arbitrary sentences of propositional logic.

5.5 Validity and satisfiability

- A sentence is valid if it is true in all models, e.g., True, $A \lor \neg A$, $A \Rightarrow A$
 - Valid sentences are also known as tautologies
 - Validity is connected to inference: $KB = \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid
- A sentence is satisfiable if it is true in some models, e.g., $A \lor B$, C
 - A sentence is **unsatisfiable** if it is true in no models E.g., $A \land \neg A$
 - Satisfiability is connected to inference: $KB \models \alpha \text{ if and only if } (KB \land \neg \alpha) \text{ is unsatisfiable}$

5.5 Inference and proofs

Modus Ponens

$$\frac{\alpha \Rightarrow \beta, \qquad \alpha}{\beta}$$

And-Elimination

$$\frac{\alpha \wedge \beta}{\alpha}$$

E.g. Wumpus world

$$R1: \neg P_{1,1}$$

$$R2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$R3: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1)}$$

$$R4 : \neg B_{1,1}$$

$$R5 : B_{2,1}$$

prove
$$\neg P_{1,2}$$

Apply biconditional elimination to R2 to obtain

R6:
$$(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$$

Apply And-Elimination to R6 to obtain

R7:
$$((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$$
.

Logical equivalence for contrapositives gives

$$R8: (\neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1})).$$

Apply Modus Ponens with R8 and the percept R4 to obtain

R9:
$$\neg (P_{1,2} \lor P_{2,1})$$
.

Apply De Morgan's rule, giving the conclusion

$$R10: \neg P_{1,2} \wedge \neg P_{2,1}.$$

• Conjunctive Normal Form (CNF—universal)

conjunction of clauses (i.e., disjunctions of literals) E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$

Convert R2 : $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$ into CNF

1. Eliminate⇔

$$(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}).$$

2. Eliminate \Rightarrow

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1}).$$

3. Apply logical equivalences

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$
.

4. Apply the distributivity law

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$
.

• **Resolution inference rule (**for CNF)

$$\frac{\ell_1 \vee \dots \vee \ell_k, \quad m_1 \vee \dots \vee m_n}{\ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k \vee m_1 \vee \dots \vee m_{j-1} \vee m_{j+1} \vee \dots \vee m_n}$$

where l_i and m_i are complementary literals (i.e., one is the negation of the other).

• Inference procedures based on a resolution algorithm uses the principle of proof by contradiction

 $KB \models \alpha \text{ if and only if } (KB \land \neg \alpha) \text{ is unsatisfiable}$

- Steps:
 - 1. (KB $\wedge \neg \alpha$) is converted into CNF
 - 2. The resolution rule is applied to the resulting clauses, a new clause is added to the set if it is not already present
 - 3. The process continues until one of two things happens:
 - i. no new clauses that can be added, in which case KB does not entail α ;
 - ii. two clauses resolve to yield the empty clause (\sim False), in which case KB entails α .

E.g. Wumpus world

```
R1: \neg P_{1,1}.

R2: B1,1 \Leftrightarrow (P1,2 \vee P2,1).

R3: B2,1 \Leftrightarrow (P1,1 \vee P2,2 \vee P3,1).

R4: \negB1,1.

R5: B2,1.
```

Prove $\neg P_{1,2}$ by resolution

$$KB = R2 \land R4 = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$$

α as $\neg P_{1,2}$

1. convert (KB $\wedge \neg \alpha$) to CNF

$$(\neg P1,2 \lor B1,1) \land (\neg B1,1 \lor P1,2 \lor P2,1)$$

 $\land (\neg P2,1 \lor B1,1) \land \neg B1,1 \land \neg P1,2.$

2. resolve pairs

$$(\neg P1,2 \lor B1,1), (\neg B1,1 \lor P1,2 \lor P2,1): P2,1$$

 $(\neg P1,2 \lor B1,1), \neg B1,1: \neg P1,2$
 $(\neg P2,1 \lor B1,1), (\neg B1,1 \lor P1,2 \lor P2,1): P1,2$
 $(\neg P2,1 \lor B1,1), \neg B1,1: P2,1$

3. resolve pairs

¬P1,2, P1,2: empty

Result: KB $\mid = \neg P_{1,2}$

Proof by contradiction, i.e., show KB $\wedge \neg \alpha$ unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false
   inputs: KB, the knowledge base, a sentence in propositional logic
              \alpha, the query, a sentence in propositional logic
   clauses \leftarrow the set of clauses in the CNF representation of KB \wedge \neg \alpha
   new \leftarrow \{ \}
   loop do
        for each C_i, C_i in clauses do
              resolvents \leftarrow PL-Resolve(C_i, C_i)
              if resolvents contains the empty clause then return true
              new \leftarrow new \cup resolvents
        if new \subseteq clauses then return false
         clauses \leftarrow clauses \cup new
```

$$KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$$

$$\alpha = \neg P_{1,2}$$

5.5 Horn clauses and definite clauses

- **Definite clause**: a disjunction of literals of which **exactly one** is positive. E.g., $(\neg L_{1,1} \lor \neg Breeze \lor B_{1,1})$ is a definite clause
- Horn clause: a disjunction of literals of which at most one is positive
- Goal clauses: clauses with no positive literals

```
CNFSentence 
ightarrow Clause_1 \wedge \cdots \wedge Clause_n
Clause 
ightarrow Literal_1 \vee \cdots \vee Literal_m
Literal 
ightarrow Symbol \mid \neg Symbol
Symbol 
ightarrow P \mid Q \mid R \mid \ldots
HornClauseForm 
ightarrow DefiniteClauseForm \mid GoalClauseForm
DefiniteClauseForm 
ightarrow (Symbol_1 \wedge \cdots \wedge Symbol_l) \Rightarrow Symbol
GoalClauseForm 
ightarrow (Symbol_1 \wedge \cdots \wedge Symbol_l) \Rightarrow False
```

Figure 7.14 A grammar for conjunctive normal form, Horn clauses, and definite clauses.

return false

Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found or no further inferences can be made.

```
function PL-FC-ENTAILS?(KB, q) returns true or false
   inputs: KB, the knowledge base, a set of propositional Horn clauses
            q, the query, a proposition symbol
  local variables: count, a table, indexed by clause, initially the number of premises
                      inferred, a table, indexed by symbol, each entry initially false
                      agenda, a list of symbols, initially the symbols known in KB
   while agenda is not empty do
       p \leftarrow Pop(agenda)
       unless inferred[p] do
            inferred[p] \leftarrow true
            for each Horn clause c in whose premise p appears do
                decrement count[c]
                if count[c] = 0 then do
                     if HEAD[c] = q then return true
                     PUSH(HEAD[c], agenda)
```

- In AND–OR graphs,
 - o multiple links joined by an arc indicate a conjunction
 - o multiple links without an arc indicate a disjunction
- How the graphs work:
 - The known leaves are set, inference propagates up the graph as far as possible.
 - Where a conjunction appears, the propagation waits until all the conjuncts are known before proceeding.

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

- Idea: work backwards from the query q to prove q by BC,
 - o check if q is known already, or
 - o prove by BC all premises of some rule concluding q
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
 - o 1) has already been proved true, or
 - o 2) has already failed

5.5 Forward vs. backward chaining

- FC is data-driven, cf. automatic, unconscious processing,
 - o e.g., object recognition, routine decisions
 - May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
 - o e.g., Where are my keys? How do I get into a PhD program?