Exercice 3

Exercice 3.1

Posons $u_n(x) = \sin(\frac{1}{\sqrt{n}})x^n$ et calculons

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{\sin(\frac{1}{\sqrt{n+1}})x^{n+1}}{\sin(\frac{1}{\sqrt{n}})x^n} \right| = \lim_{n \to \infty} |x|$$

On en déduit que la série est convergente pour |x| < 1, donc son rayon de convergence vaut 1.

Exercice 3.2

Le rayon de convergence est égale à 1, donc la série entière convergence sur le domaine] -1,1[. Il faut maintenant vérifier que la série entière converge pour x=-1. La série entière sécrit donc $S(-1)=\sum_{n\geq 0}\sin(\frac{1}{\sqrt{n}})(-1)^n$.

C'est une série alternée qui vérifie le critère TSSA car quand n tend vers l'infini, la fonction $sin(\frac{1}{\sqrt{n}})$ est positive et décroissante. Donc la série entière S(-1) converge. Par conséquent, la série entière S(x) converge sur $[-1]\cup]-1,1[=[-1,1[$.

Exercice 3.3

Une série entière S(x) convergence normalement sur [-1,1[, ssi il existe une suite de réels positifs $(a_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N}, \forall x\in[-1,1[$, $ona|u_n(x)|\leq a_n$ et que la série numérique $\sum_{nge0}a_n$ converge. Sur le domaine [-1,1[, on a $\sin(\frac{1}{\sqrt{n}})x^n<\sin(\frac{1}{\sqrt{n}})$. Il faut maintenant vérifier que la suite numérique $\sum_{n\geq0}\sin(\frac{1}{\sqrt{n}})$ converge. En prenant le développement limié de $\sin(x)$ en 0 on a, $\sin(\frac{1}{\sqrt{n}})=\frac{1}{\sqrt{n}}+O_2(x)$. Mais $\frac{1}{\sqrt{n}}>\frac{1}{n}$ et la série $\frac{1}{n}$ diverge. Donc la série entière S(x) ne converge pas normalement sur [-1,1[.

Exercice 3.4

La série S(x) converge uniformément sur [-1, a] avec $a \in [0, 1[$ vers une fonction s(x) ssi $\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, (n > n_{\epsilon} \implies \forall x \in [-1, a], |u_n(x) - s(x)| \le \epsilon).$

D'après le théorème du reste , la série S(x) converge uniformément sur [-1,a] avec $a \in [0,1]$ si

$$\lim_{n \to \infty} \sup_{x \in [-1, a]} \left| \sum_{k=n+1}^{\infty} u_n(x) \right| = 0$$

On divise en 2 parties:

- convergence uniforme de S(x) sur le domaine [-1,0]. Prenons $s(x)=0, \forall \epsilon>0, \exists n_{\epsilon}\in\mathbb{N}, \forall n\in\mathbb{N}, (n>n_{\epsilon}\Longrightarrow\forall x\in[-1,0], |u_n(x)-0|\leq\epsilon)$. On a $|u_n(x)|\leq |\sin(\frac{1}{\sqrt{n}})|$, donc cherchons n_{ϵ} tel que $\forall \epsilon>0, \forall n\in\mathbb{N}, (n>n_{\epsilon}\Longrightarrow\forall x\in[-1,0], |\sin(\frac{1}{\sqrt{n}})|\leq\epsilon)$, en prenant $n_{\epsilon}>\frac{1}{\arcsin^2(\epsilon)}$, la propriété est vérifiée.
- convergence uniforme de S(x) sur le domaine [0,a] pour $a \in [0,1[$. On a sur [0,a], $|u_x(x)| \le x^n \le a^n$, donc $\sup_{x \in [0,a]} \left| \sum_{k=n+1}^{\infty} u_n(x) \right| \le \frac{a^{n+1}}{1-a}$ et $\lim n \to \infty \frac{a^{n+1}}{1-a} = 0$ pour $a \in [0.1[$.

QED