Multiple Linear Regression

- Simple Linear Regression predict Response for a single predictor X, for example TV
- Multiple Linear Regression deals with multiple predictors, even fitting separate Simple regression to each predictor *X* this will make us miss some key correlations and associations between predictors and Response

$$Y = eta_0 + eta_1 X_1 + eta_2 X_2 + \dots + eta_p X_p + arepsilon$$

For example:

$$sales = \beta_0 + \beta_1 TV + \beta_2 Radio + \beta_3 New spaper$$

Geometric Interpretation (Regression Plane)

Regression Plane

а

• Unlike Simple Linear Regression Multiple Linear regression have multiple predictors which is draw as a hyperplane

Estimating The Regression Coefficients:

- The Coefficients in the multiple regression are unknown $\beta_0,\beta_1\ldots,\beta_p$
- So we estimate them as as in the Simple Linear Regression

$$\hat{y}=\hat{eta_0}+\hat{eta_1}x_1+\hat{eta_2}x_2+\cdots+\hat{eta_p}x_p$$

Multiple Linear Regression Matrix Form:

• The multiple Regression formula can be written in a matrix form making it better to work with and derive the Coefficients

$$Y = X\beta + \varepsilon$$

With:

- $Y \rightarrow$ Vector of dependent variables Response
- $X o \mathsf{Matrix}$ of n * p dimensions + **intercept** β_0
- $\beta \rightarrow$ Vector of Coefficients (to be estimated)
- arepsilon o Vector of Error terms

$$Y = egin{bmatrix} Y_1 \ Y_2 \ dots \ Y_n \end{bmatrix} = egin{bmatrix} 1 & X_{11} & X_{21} & \dots & X_{p1} \ 1 & X_{12} & X_{22} & \dots & X_{p2} \ dots & dots & dots & \ddots & dots \ 1 & X_{1n} & X_{2n} & \dots & X_{pn} \end{bmatrix} egin{bmatrix} eta_0 \ eta_1 \ eta_2 \ dots \ eta_n \end{bmatrix} + egin{bmatrix} arepsilon_1 \ eta_2 \ dots \ eta_n \end{bmatrix}$$

- $E(\varepsilon)=0$
- $ullet var(arepsilon) = \sigma^2 I_{n*n}$
- $\beta's$ are called partial regression coefficients cause β_1 is the expected change in Y per Unite change in X_1 , While holding other X's constant

Least Squares Estimator:

Multiple Regression often reveal how much a predictor X_i effect the prediction Response Y, that the Simple regression don't address

- Due to the slop in the Simple Linear Regression represent the average increase in Y without association with the other predictors
- In Multiple Regression the average increase in Y associated with increasing X_1 while holding the others X fixed
- Multiple Regression can suggest a no relationship between Y and a Predictor X

Deriving The coefficients estimates Using OLS method Ordinary Least Squares

Assessing the Accuracy of the Coefficients \hat{eta}_p

Same as in the Simple Linear Regression we use :

- 1. Standard Error / Variance
- 2. Confidence intervals
- 3. Hypothesis testing (F-test)

Standard Error of $\hat{\beta}_p$

The Standard Error is the square root of its variance of $\hat{\beta}_j$ is how much $\hat{\beta}_j$ will vary from the mean or the expected value of $\hat{\beta}_j$ we found that its unbiased in <u>Standard Error Derivation</u>

$$E[\hat{eta}]=eta$$

We also Derived the Standard Error of $\hat{\beta}$ in <u>Standard Error Derivation</u> and got:

$$\mathrm{Var}(\hat{\beta}) = \sigma^2(X^TX)^{-1}$$

$$SE(\hat{eta}) = \sigma \sqrt{(X^TX)^{-1}}$$

- σ^2 is almost unknown in all practical situations
- ullet We use the Sample standard deviation S^2

$$ullet S^2 = rac{\sum e_i^2}{n-p} = rac{e^T e}{n-p} = MSE$$

Confidence Interval

• Constructing a how Confident we are on the estimated coefficients $\hat{\beta}_j$ From Ordinary Least Squares and Standard Error Derivation we know

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

$$ext{Var}(\hat{eta}) = \sigma^2(X^TX)^{-1} \ o ext{SE}(\hat{eta}) = \sigma \sqrt{(X^TX)^{-1}}$$

Since σ^2 is most of the time :

$$\mathrm{SE}(\hat{eta}) = S\sqrt{(X^TX)^{-1}}$$

We construct the following confidence interval:

$$t_{n-p} = rac{\hat{eta}_j - eta_j}{SE(\hat{eta})}$$

- n-p Degrees of Freedom
- $\hat{\beta}_i \beta_i$ How far our estimate to the real coefficient

$$P(\hat{eta}_j - t \cdot \operatorname{SE}(\hat{eta}_j) < eta_j < \hat{eta}_j + t \cdot \operatorname{SE}(\hat{eta}_j)) = 1 - lpha$$

and get:

$$\hat{eta}_j \pm t_{rac{lpha}{2},n-p}$$
 . $ext{SE}(\hat{eta}_j)$

Hypothesis Testing (F-Statistics)

- The question asked is : Is there a relationship between the Response and the Predictors X
- We check this using the hypothesis Testing

 $H_0: \beta_1 = \beta_2 = \dots \beta_p = 0$ There is no realtionship between the predictors and the reponse

$$H_a$$
: alteast one $\beta_j \neq 0$

• To test this Hypothesis we use F-statistics test

$$F = \frac{\frac{TSS - RSS}{p}}{\frac{RSS}{(n-p-1)}}$$

- ullet $TSS = \sum (y_i ar{y})^2
 ightarrow ext{total sum squared}$
- $RSS = \sum (y_i \hat{y}_i)^2
 ightarrow \mathsf{Residual}$ sum squared
- We divide by RSS to have a proportion of difference
- P number of predictors to explain Y
- -1 is the intercept β_0
- TSS RSS is the explained variance by the regression

If the linear model assumptions are correct:

$$E\left\{rac{RSS}{(n-p-1)}
ight\}=\sigma^2$$

• That the Expected value of the **unexplained variance** is due to irreducible error ε

if H_0 is true

$$E\left\{rac{TSS-RSS}{p}
ight\}=\sigma^2$$

- ullet Which means that the predictors X didn't effect the outcome response and have no relationship between each other
- Cause if there was a relationship between the predictors and response its gonna be :

$$E\left\{rac{TSS-RSS}{p}
ight\}>\sigma^2$$

The F-test give us evidence to either reject or accept the **null hypothesis**, How big the F-statistic should be to reject H_0

- Depends on the n and p
- if n number of Observation is large little larger than 1 is enough
- if n number is small o need larger F-Statistic

Sometimes we want to test a particular subset of predictors coefficients are zero

$$H_0:eta_{p-q+1}=eta_{p-q+2}=\ldotseta_p=0$$

$$F = rac{(RSS_0 - RSS)}{a} imes rac{n-p-1}{RSS}$$

- $RSS_0 o$ Residual sum of squares for the new model that only conclude q coefficients we want to test **WHY F-TEST**:
- when number of the variables is large p=100 in the H_0 there is a 5% chance of p-value being below 0.05 by chance
- ullet That's why individual t-test each predictor X can lead to wrong assumptions
- F-Test avoids that by deciding and adjusting for the number of predictors $\frac{1}{n}$
- Nothing I learned till now will help if number of variables p>n

Deciding On Important Variables:

Most of the time the Response is only associated with a subset of the predictors X, It would be better if we knew these predictors X and fit them in a single model this can be done using **Variable Selection** which i will study later.

Here are some classical approaches:

- ullet if p is small we can text all four models and select the best
 - Model with no variables
 - Model containing only one predictor X_1

- Model containing only the second predictor X_2
- Model containing both of the predictors X_1X_2
- For large numbers of p
 - **Forward Selection**: Its a greedy approach starting with a **Null model** (No variables), Adding variables with the lowest <u>Residual Sum of Squares</u> util we hit a threshold
 - Disadvantages:
 - May miss important predictors that are only significant when combined with others
 - Backward Selection: Start with all the variables and removing the ones with the highest p-value (Least statically Significant to the response Y), Stopping until all variables p-value are below a certain value
 - Disadvantage
 - Expensive to compute if starting with all variables
 - Mixed Selection: Starting with no variables, Adding with Forward Selection and deleting with Backward Selection till we reach the
 desired outcome, Its still prone to Overfitting

Assessing The Accuracy Of The Model

Assessing the accuracy of how well our model fits the given data using :

- 1. RSE
- 2. R^2
- 3. Confidence Interval for the mean Response
- 4. Prediction Interval
- 5. F-test

${ m RSE}$ and R^2

The two most common ways to fit a model:

- **Residual Standard Error** \to Its the sample standard deviation S^2 , an estimate for the population standard deviation σ^2
 - The average amount the response Y will deviate from the true regression hyperplane
 - Its measures how well the regression hyperplane fits the data

$$ext{RSE} = \sqrt{rac{RSS}{n-p-1}}$$

- n-p-1 o p variables numbers, 1 the intercept eta_0 Degrees of Freedom
- Adding any more predictors *X* will in an increase in RSE even if they have little association with the response, On the other hand it can result in a boost in the Response
- · Which can effect how well our multiple regression model fit

Interpretation of RSE:

- Lower values indicate a tighter fit and less unexplained variability, which means our regression hyperplane explained a lot of the variance in the original data TSS
- Higher values indicate a poor fit of the model
- $R^2
 ightarrow$ Its same mathematical concept in Simple Linear Regression

$$R^2 = 1 - rac{RSS}{TSS}$$

- ullet It doesn't matter the amount of the predictors X
- ullet With only risk of overfitting if the amount of variables p is high

Confidence Interval For The mean Response Y_0

Constructing a Confidence Interval for the expected value of Y without taking into account:

- The irreducible error ε
- The Spread of the actual future outcome

Derived in <u>Confidence And Prediction Intervals Derivations</u>:

$$\hat{Y}_0 \pm t_{rac{lpha}{2},n-p} ext{SE}(\hat{Y}_0)$$

- ullet $Y_0 o$ Predicted mean at x_0
- $ullet t_{rac{lpha}{2},n-p}
 ightarrow \mathsf{T}{-}value$
- ullet $\hat{\mathrm{SE}(\hat{Y}_0)} = S\sqrt{X_0^T(X^TX)^{-1}X_0} \, o \mathsf{Standard} \; \mathsf{Error}$
- This is the range where we believe the true mean response Y_0 falls in

The Confidence Interval is Narrower than prediction interval cause it doesn't take into account the irreducible error arepsilon

Prediction Interval For a New Response Y_0

Its the range where we expect an actual new future Response will fall into, given input X_0

• Here Consider the noise **irreducible error** ε

Derived in Confidence And Prediction Intervals Derivations

$$\hat{Y}_0 \pm t_{rac{lpha}{2},n-p} \hat{\mathrm{SE}}(Y_0 - \hat{Y}_0)$$

$${
m f SE}(Y_0-\hat{Y}_0) = S\sqrt{1+X_0^T(X^TX)^{-1}X_0}$$

• We use the t-test cause of The sample standard deviation which is the estimate for the σ^2 the standard deviation of the population

Confidence Interval vs Prediction Interval

Key Points	Confidence Interval	Prediction Interval
includes irreducible Error $arepsilon$?	No	Yes
Target	Mean response at a given Predictor value \boldsymbol{x}_0	Actual outcome Y_0 for a new observation m X_0
Tells you	Where the mean is likely to fall	Where a single new data point is likely to fall
Interested in	The mean	The individual outcome value
Used for	Estimating trends, Model uncertainty	Capturing total uncertainty (model+ noise)