A geometric realisation of affine 0-Schur algebras.

Tom Crawley

September 12, 2019

Contents

1	Introduction	2
2	The double flag variety approach to q-Schur algebras	3
3	The cyclic flags approach to affine q-Schur algebras 3.1 Cyclic flags	4 5 7 8
4	Quivers with relations for affine q-Schur algebras4.1 Basic results: TO BE REPLACED WITH A MORE INFORMATIVE NAME.4.2 quivers with relations4.2.1 Exceptional case $n=2$ 4.2.2 Typical case $n>2$	
5	5.1 Introducing the affine generic algebra 5.1.1 Not quite a category 5.2 A partial order 5.3 Preliminary results 5.4 Existence of a maximum 5.5 Associativity	14 15 16 20 21 21 22 23
6	A realisation of affine zero Schur algebras 6.1 Multiplication rules	
7	Further directions 7.1 Further results on affine zero Schur algebras	26 26

Introduction

The double flag variety approach to q-Schur algebras

The cyclic flags approach to affine q-Schur algebras

Fix natural numbers n and r.

Definition 3.0.1 (compositions). A composition of r into n parts is an n-tuple $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ of non-negative integers whose sum equals r. Denote the set of compositions of r into n parts by $\Lambda_0(n,r)$.

Definition 3.0.2 (infinite periodic matrices). Let $\Lambda_1(n,r)$ be the set of matrices $A = (a_{i,j})_{i,j \in \mathbb{Z}}$ with integer entries $a_{i,j}$ satisfying the following conditions:

- $a_{i,j} \geq 0$ for each $i, j \in \mathbb{Z}$;
- each row or column has only finitely many non-zero entries;
- the sum of the entries in any n consecutive rows or columns equals r;
- $a_{i-n,j-n} = a_{i,j}$ for each $i, j \in \mathbb{Z}$.

These matrices are referred to as infinite periodic matrices.

Definition 3.0.3 (source and target). Given $A \in \Lambda_1(n,r)$, let ro A and co A be the compositions of r into n parts given by

ro
$$A = \left(\sum_{j \in \mathbb{Z}} a_{1,j}, \dots, \sum_{j \in \mathbb{Z}} a_{n,j}\right)$$

and

$$\operatorname{co} A = \left(\sum_{i \in \mathbb{Z}} a_{i,1}, \dots, \sum_{i \in \mathbb{Z}} a_{i,n}\right).$$

 $A \in \Lambda_1(n,r)$ is said to go from $\operatorname{co} A$ to $\operatorname{ro} A$.

Definition 3.0.4 (diagonal matrices). Given $\lambda \in \Lambda_0(n,r)$, let $D_{\lambda} \in \Lambda_1(n,r)$ be the matrix given by $(D_{\lambda})_{i,j} = 0$ for $i, j \in \mathbb{Z}$ with $i \neq j$ and $(D_{\lambda})_{i,i} = \lambda_i$ for $i \in \mathbb{Z}$; where the indices are taken modulo n.

3.1 Cyclic flags

Fix $n, r \in \mathbb{N}$ and let \mathbf{k} be a field. Let \mathcal{S} be the \mathbf{k} -algebra $\mathbf{k}[\varepsilon, \varepsilon^{-1}]$ and let \mathcal{R} be the subalgebra generated by ε , so $\mathcal{R} = \mathbf{k}[\varepsilon]$. Let V be a free \mathcal{S} -module of rank r. Let G be the automorphism group of the \mathcal{S} -module V, so G is isomorphic to $\mathrm{GL}_r(\mathcal{S})$. A lattice in V is a \mathcal{R} -submodule L of V with $\mathcal{S} \otimes_{\mathcal{R}} L = V$. In particular, a lattice is an \mathcal{R} -submodule of V which is a free \mathcal{R} -module of rank V. Let $\mathcal{F} = \mathcal{F}_{\mathbf{k}}(n,r)$ be the set of collections $(L_i)_{i\in\mathbb{Z}}$ of lattices in V with $L_i \subset L_{i+1}$ and $\varepsilon L_i = L_{i-n}$ for each $i \in \mathbb{Z}$. These collections of lattices in V are referred to as cyclic flags in V.

G acts on \mathcal{F} by $(g \cdot L)_i = g(L_i)$ for each $i \in \mathbb{Z}$, given $g \in G$ and $L \in \mathcal{F}$. The G-orbits in \mathcal{F} are indexed by the set $\Lambda_0(n,r)$ of compositions of r into n parts: the G-orbit in \mathcal{F} corresponding to $\lambda \in \Lambda_0(n,r)$ is

$$\mathcal{F}_{\lambda} = \left\{ L \in \mathcal{F} : \dim \left(\frac{L_i}{L_{i-1}} \right) = \lambda_i \text{ for each } i \in \mathbb{Z} \right\}$$

Definition 3.1.1. The periodic characteristic matrix of a pair of cyclic flags $(L, L') \in \mathcal{F} \times \mathcal{F}$ is the matrix $A(L, L') = (a_{i,j})_{i,j \in \mathbb{Z}}$ with entries

$$a_{i,j} = \dim \left(\frac{L_i \cap L'_j}{L_i \cap L'_{j-1} + L_{i-1} \cap L'_j} \right)$$

for each $i, j \in \mathbb{Z}$.

The diagonal action of G on $\mathcal{F} \times \mathcal{F}$ has orbits indexed by the set $\Lambda_1(n,r)$ of infinite periodic matrices (see definition 3.0.2). The G-orbit corresponding to $A \in \Lambda_1(n,r)$ is denoted \mathcal{O}_A and consists of those pairs $(L,L') \in \mathcal{F} \times \mathcal{F}$ with periodic characteristic matrix A(L,L') equal to A.

Lemma 3.1.1. (alternative expression for characteristic matrix) Alternatively,

$$a_{i,j} = \dim_{\mathbf{k}} \left(\frac{L_{i-1} + L_i \cap L'_j}{L_{i-1} + L_i \cap L'_{j-1}} \right),$$

for each $i, j \in \mathbb{Z}$.

Proof. Set $U = L_i \cap L'_j$ and $U' = L_{i-1} + L_i \cap L'_{j-1}$. Then $U + U' = L_{i-1} + L_i \cap L'_j$ and $U \cap U' = L_i \cap L'_j \cap L_{i-1} + L_i \cap L'_{j-1}$. Applying the isomorphism theorems, U + U'/U' is naturally isomorphic to $U/U \cap U'$ as a vector space. In particular,

$$\frac{L_{i-1} + L_i \cap L'_j}{L_{i-1} + L_i \cap L'_{i-1}} = \frac{L_i \cap L'_j}{L_{i-1} \cap L'_i + L_i \cap L'_{i-1}}$$

and thus the dimensions of these spaces are both equal to $a_{i,j}$.

Lemma 3.1.2 (transposing characteristic matrix). Given a pair of flags $(L, L') \in \mathcal{F}^2$, the matrices A(L, L') and A(L', L) are related by the transpose. In particular, $A(L, L')_{i,j} = A(L', L)_{j,i}$ for each $i, j \in \mathbb{Z}$.

Proof. By swapping the roles of i and j and swapping L and L' it is clear that $A(L, L')_{i,j}$ and $A(L', L)_{j,i}$ are both given by the dimension of the **k**-vector space

$$\frac{L_i \cap L'_j}{L_{i-1} \cap L'_j + L_i \cap L'_{j-1}},$$

for each $i, j \in \mathbb{Z}$.

Lemma 3.1.3 (nested flags). Given $L, L' \in \mathcal{F}$, $L' \subset L$ if and only if $A(L, L')_{i,j} = 0$ for $i, j \in \mathbb{Z}$ with i > j.

Proof. Suppose $L, L' \in \mathcal{F}$ with $L' \subset L$, meaning $L'_j \subset L_j$ for each $j \in \mathbb{Z}$. Then for i > j, $L_i \cap L'_j = L'_j$, $L_{i-1} \cap L'_j = L'_j$ and $L_i \cap L'_{j-1}$, which shows

$$A(L, L')_{i,j} = \dim_{\mathbf{k}} \left(\frac{L'_j}{L'_{j-1} + L'_j} \right) = 0$$

as required. PROVE THE CONVERSE

Corollary 3.1.4 (diagonal orbits). Given $L, L' \in \mathcal{F}$, L = L' if and only if $A(L, L')_{i,j} = 0$ whenever $i \neq j$. In particular,

$$\mathcal{O}_{D_{\lambda}} = \{ (L, L) \in \mathcal{F}^2 : L \in \mathcal{F}_{\lambda} \},$$

for each $\lambda \in \Lambda_0(n,r)$.

Given $A, B \in \Lambda_1(n, r)$ with $\operatorname{co} A = \operatorname{ro} B$, define

$$Y_{AB} = \{(L, L', L'') \in \mathcal{F}^3 : (L, L') \in \mathcal{O}_A \text{ and } (L', L'') \in \mathcal{O}_B\},\$$

$$X_{A,B} = \{(L, L'') \in \mathcal{F}^2 : \exists L' \in \mathcal{F} \text{ with } (L, L') \in \mathcal{O}_A \text{ and } (L', L'') \in \mathcal{O}_B\}.$$

If also $L \in \mathcal{F}_{\text{ro }A}$, define the L-slices of $Y_{A,B}$ and $X_{A,B}$ respectively as

$$Y_{A,B}^{L} = \{ (L', L'') \in \mathcal{F}^2 : (L, L', L'') \in Y_{A,B} \},$$

$$X_{AB}^{L} = \{ L'' \in \mathcal{F} : (L, L'') \in X_{AB} \}.$$

Observation 1. There are only finitely many G-orbits in $X_{A,B}$.

Lemma 3.1.5. Given $A \in \Lambda_1(n,r)$, $X_{D_{\lambda},A} = \mathcal{O}_A$ if $\lambda = \operatorname{ro} A$ and $X_{A,D_{\lambda}} = \mathcal{O}_A$ if $\lambda = \operatorname{co} A$.

Proof. Let $A \in \Lambda_1(n,r)$ and set $\lambda = \text{ro } A$. $Y_{D_{\lambda},A}$ is the set of triples $(L,L',L'') \in \mathcal{F}^3$ with $(L,L') \in \mathcal{O}_{D_{\lambda}}$, thus L=L' by Corollary 3.1.4, and $(L',L'') \in \mathcal{O}_A$. $X_{D_{\lambda},A}$ is the projection of $Y_{D_{\lambda},A}$, which equals \mathcal{O}_A .

Similarly, if $\lambda = \operatorname{co} A$, $Y_{A,D_{\lambda}}$ is the set of triples $(L,L',L'') \in \mathcal{F}^3$ with $(L,L') \in \mathcal{O}_A$ and L'' = L', so $X_{A,D_{\lambda}}$ is exactly the orbit \mathcal{O}_B .

Given $A, B, C \in \Lambda_1(n, r)$ with co A = ro B and co B = ro C and $L \in \mathcal{F}_{\text{ro } A}$, there are spaces $X_{A,B,C}, Y_{A,B,C}$ and their respective L-slices, defined as follows:

$$\begin{split} Y_{A,B,C} &= \{ (L,L',L'',L''') \in \mathcal{F}^4 : (L,L') \in \mathcal{O}_A, (L',L'') \in \mathcal{O}_B \text{ and } (L'',L''') \in \mathcal{O}_C \}, \\ X_{A,B,C} &= \{ (L,L''') \in \mathcal{F}^2 : \exists (L',L'') \in \mathcal{O}_B \text{ with } (L,L') \in \mathcal{O}_A \text{ and } (L'',L''') \in \mathcal{O}_C \}, \\ Y_{A,B,C}^L &= \{ (L',L'',L''') \in \mathcal{F}^3 : (L,L',L'',L''') \in Y_{A,B,C} \}, \\ X_{A,B,C}^L &= \{ L''' \in \mathcal{F} : (L,L''') \in X_{A,B,C} \}. \end{split}$$

3.2 Convolution algebras

Suppose **k** is a finite field and let q denote the number of elements of **k**. Consider the set S of G-invariant functions $\mathcal{F} \times \mathcal{F} \to \mathbb{Z}$ with constructible support. S is a free \mathbb{Z} -module with a basis consisting of the indicator functions of the G-orbits in $\mathcal{F} \times \mathcal{F}$. Define an operation \star on S as follows: for each $f, g \in S$, $f \star g \in S$ is given by

$$(f \star g)(L, L'') = \sum_{L' \in \mathcal{F}} f(L, L')g(L', L''),$$

for $(L, L'') \in \mathcal{F} \times \mathcal{F}$.

 $f \star g$ is well defined since the supports of f and g consist of finitely many G-orbits, so there are only finitely many $L' \in \mathcal{F}$ such that $f(L, L')g(L', L'') \neq 0$, given $(L, L'') \in \mathcal{F} \times \mathcal{F}$. $f \star g$ is constant on G-orbits and is supported on finitely many G-orbits, so $f \star g \in S$.

Lemma 3.2.1. The set S together with the operation \star is an associative \mathbb{Z} -algebra with identity element ι given by $\iota(L,L)=1$ and $\iota(L,L')=0$ for $L'\neq L$.

Proof. Given $f, g, h \in S$ and $(L, L''') \in \mathcal{F} \times \mathcal{F}$,

$$\begin{split} ((f*g)\star h)(L,L''') &= \sum_{L''} (f\star g)(L,L'')h(L'',L''') \\ &= \sum_{L''} \sum_{L'} f(L,L')g(L',L'')h(L'',L''') \\ &= (f\star (g\star h))(L,L'''), \end{split}$$

thus \star is associative. ι is the multiplicative identity since

$$(\iota\star f)(L,L'')=\sum_{L'}\iota(L,L')f(L',L'')=f(L,L'')$$

and

$$(f \star \iota)(L, L'') = \sum_{L'} f(L, L')\iota(L', L'') = f(L, L''),$$

for each $f \in S$ and $(L, L'') \in \mathcal{F} \times \mathcal{F}$.

Given $A \in \Lambda_1(n,r)$, let $e_A \in S$ denote the indicator function of the orbit \mathcal{O}_A . S is a free \mathbb{Z} -module with basis $\{e_A : A \in \Lambda_1(n,r)\}$. There exist $\gamma_{A,B,C;q} \in \mathbb{Z}$ for $A,B,C \in \Lambda_1(n,r)$ such that

$$e_A \star e_B = \sum_{C \in \Lambda_1(n,r)} \gamma_{A,B,C;q} e_C$$

for each $A, B \in \Lambda_1(n, r)$. Then

$$\gamma_{A,B,C;q} = (e_A \star e_B)(L, L'')
= \sum_{L'} e_A(L, L') e_B(L', L'')
= \#\{L' : (L, L') \in \mathcal{O}_A \text{ and } (L', L'') \in \mathcal{O}_B\},$$

for any $(L, L'') \in \mathcal{O}_C$.

3.3 Affine q-Schur algebras

There exist polynomials $\gamma_{A,B,C} \in \mathbb{Z}[q]$ for $A,B,C \in \Lambda_1(n,r)$ such that $\gamma_{A,B,C}(q) = \gamma_{A,B,C;q}$ for any prime power q, following [1, section 4]. The affine q-Schur algebra $\hat{S}_q(n,r)$ (defined in [ADD A REFERENCE]) is a $\mathbb{Z}[q]$ -algebra which is a free $\mathbb{Z}[q]$ -module with basis $\{e_A : A \in \Lambda_1(n,r)\}$ and with multiplication given by

$$e_A e_B = \sum_C \gamma_{A,B,C} e_C.$$

Given the existence of these 'universal polynomials' $\gamma_{A,B,C} \in \mathbb{Z}[q]$, it follows from Lemma 3.2.1 that $\hat{S}_q(n,r)$ is an associative $\mathbb{Z}[q]$ -algebra with multiplicative identity given by

$$1 = \sum_{\lambda \in \Lambda_0(n,r)} e_{D_\lambda}.$$

Lemma 3.3.1. Transposition gives a homomorphism of $\mathbb{Z}[q]$ -modules $\top : \hat{S}_q(n,r) \to \hat{S}_q(n,r)$ with $\top(e_A) = e_{A^\top}, \ \top \circ \top = 1$ and $\top(e_A e_B) = \top(e_B) \top(e_A)$.

Proof. Let $A, B, C \in \Lambda_1(n, r)$ and let \mathbf{k} be a finite field with $\mathbf{q} = \# \mathbf{k}$ elements. If $(L, L'') \in \mathcal{O}_C$ then $(L'', L) \in \mathcal{O}_{C^{\top}}$ and

$$\begin{split} \gamma_{A,B,C;\mathbf{q}} &= \#\{L': (L,L') \in \mathcal{O}_A \text{ and } (L',L'') \in \mathcal{O}_B\} \\ &= \#\{L': (L'',L') \in \mathcal{O}_{B^\top} \text{ and } (L',L) \in \mathcal{O}_{A^\top}\} \\ &= \gamma_{B^\top,A^\top,C^\top;\mathbf{q}} \end{split}$$

It then follows that $\top(e_A e_B) = \top(e_B) \top(e_A)$.

Quivers with relations for affine q-Schur algebras

4.1 Basic results: TO BE REPLACED WITH A MORE INFOR-MATIVE NAME.

If $i, j \in \mathbb{Z}$, let $\mathcal{E}_{i,j}$ denote the 'elementary matrix' with entries given by $(\mathcal{E}_{i,j})_{s,t} = 1$, for $s, t \in \mathbb{Z}$, whenever $(i,j) \sim (s,t)$ modulo (n,n) and all other entries are zero.

Given $\lambda \in \Lambda_0(n,r)$, let $D_{\lambda} \in \Lambda_1(n,r)$ denote the diagonal matrix with $r(D_{\lambda}) = c(D_{\lambda}) = \lambda$. That is,

$$D_{\lambda} = \lambda_1 \mathcal{E}_{1,1} + \dots + \lambda_n \mathcal{E}_{n,n}$$

For $\lambda \in \Lambda_0(n,r)$, write $1_{\lambda} = e_{D_{\lambda}}$. The 1_{λ} are pairwise orthogonal idempotents in $\hat{S}_q(n,r)$ with $1 = \sum_{\lambda \in \Lambda_0(n,r)} 1_{\lambda}$.

 $1 = \sum_{\lambda \in \Lambda_0(n,r)} 1_{\lambda}$. Given $i, j \in \mathbb{Z}$, write $X_{i,j} = \mathcal{E}_{i,j} - \mathcal{E}_{i+1,j}$. By convention, $e_A = 0$ unless $A \in \Lambda_1(n,r)$. For $i \in [1,n]$ and $\lambda \in \Lambda_0(n,r)$, write

$$E_{i,\lambda} = e_{D_{\lambda} + X_{i,i+1}},$$

$$F_{i,\lambda} = e_{D_{\lambda} - X_{i,i}}$$
.

Define

$$E_i = \sum_{\lambda \in \Lambda_0(n,r)} E_{i,\lambda}$$

$$F_i = \sum_{\lambda \in \Lambda_0(n,r)} F_{i,\lambda}.$$

Observe that $E_{i,\lambda}=0$ unless $\lambda_{i+1}>0$ and $F_{i,\lambda}=0$ unless $\lambda_i>0$. Also, $E_{i,\lambda}=E_i1_{\lambda}$ and $F_{i,\lambda}=F_i1_{\lambda}$.

Lemma 4.1.1. *Let* $i \in [1, n]$ *and* $A \in \Lambda_1(n, r)$.

$$E_i e_A = \sum_{p \in \mathbb{Z}} q^{\sum_{j > p} a_{i,j}} [a_{i,p} + 1] e_{A + X_{i,p}}$$

and

$$F_i e_A = \sum_{p \in \mathbb{Z}} q^{\sum_{j < p} a_{i+1,j}} [a_{i+1,p} + 1] e_{A-X_{i,p}}.$$

Note that these formulas are still valid in the cases $E_i e_A = 0$ and $F_i e_A = 0$. There are similar formulas for right multiplication by E_i and F_i , which can be obtained by applying the transpose involution to the above formulas. The transpose relates the E_i , F_i and 1_{λ} in the following way: $T(E_{i,\lambda}) = F_{i,\lambda}$, $T(F_{i,\lambda}) = E_{i,\lambda-\varepsilon_i+\varepsilon_{i+1}}$ and $T(1_{\lambda}) = 1_{\lambda}$. In particular, $T(E_i) = F_i$ and $T(F_i) = E_i$.

Corollary 4.1.2. Let $j \in [1, n]$ and $A \in \Lambda_1(n, r)$. Then

$$e_A F_j = \sum_{p \in \mathbb{Z}} q^{\sum_{i > p} a_{i,j}} [a_{p,j} + 1] e_{A + X_{j,p}^{\top}}$$

and

$$e_A E_j = \sum_{p \in \mathbb{Z}} q^{\sum_{i < p} a_{i,j+1}} [a_{p,j+1} + 1] e_{A - X_{j,p}^{\top}}$$

Proof.

$$e_{A}F_{j} = \top (E_{j}e_{A^{\top}})$$

$$= \top (\sum_{p} q^{\sum_{i>p} a_{i,j}} [a_{p,j} + 1] e_{A^{\top} + X_{j,p}})$$

$$= \sum_{p} q^{\sum_{i>p} a_{i,j}} [a_{p,j} + 1] e_{A + X_{j,p}^{\top}}$$

$$e_{A}E_{j} = \top (F_{j}e_{A^{\top}})$$

$$= \top (\sum_{p} q^{\sum_{i < p} a_{i,j+1}} [a_{p,j+1} + 1] e_{A^{\top} - X_{j,p}})$$

$$= \sum_{p} q^{\sum_{i < p} a_{i,j+1}} [a_{p,j+1} + 1] e_{A - X_{j,p}^{\top}}$$

Note that $E_i^{r+1} = F_i^{r+1} = 0$ while

$$E_i^r = [r]_! e_{r\mathcal{E}_{i,i+1}}$$

and

$$F_i^r = [r]_! e_{r\mathcal{E}_{i+1,i}}.$$

Lemma 4.1.3 (quantum Serre relations: $n \geq 3$). Suppose $n \geq 3$. The following relations hold in $\hat{S}_q(n,r)$:

$$E_i E_j - E_j E_i = 0$$

$$F_i F_i - F_i F_i = 0$$

unless $j = i \pm 1$;

$$E_i E_{i+1}^2 - (1+q)E_{i+1}E_i E_{i+1} + q E_{i+1}^2 E_i = 0$$

$$E_i^2 E_{i+1} - (1+q)E_i E_{i+1}E_i + q E_{i+1}E_i^2 = 0$$

and

$$F_{i+1}F_i^2 - (1+q)F_iF_{i+1}F_i + qF_i^2F_{i+1} = 0$$

$$F_{i+1}^2F_i - (1+q)F_{i+1}F_iF_{i+1} + qF_iF_{i+1}^2 = 0.$$

Proof. Here we introduce temporary notation for the basis elements: Write $[A] = e_A$. Take $\lambda \in \Lambda_0(n,r)$.

$$E_i E_{i+1}^2 1_{\lambda} = [2][D_{\lambda} + 2X_{i+1,i+2} + X_{i,i+2}] + [2][D_{\lambda} + 2X_{i+1,i+2} + X_{i,i+1}]$$

$$E_{i+1}E_iE_{i+1}1_{\lambda} = [D_{\lambda} + 2X_{i+1,i+2} + X_{i,i+1}] + [2][D_{\lambda} + 2X_{i+1,i+1} + X_{i,i+1}]$$

$$E_{i+1}^2 E_i 1_{\lambda} = [2][D_{\lambda} + 2X_{i+1,i+2} + X_{i,i+1}]$$

Then

$$(E_i E_{i+1}^2 - (1+q)E_{i+1}E_i E_{i+1} + q E_{i+1}^2 E_i)1_{\lambda} = 0,$$

for each $\lambda \in \Lambda_0(n,r)$. The relation $E_i E_{i+1}^2 - (1+q) E_{i+1} E_i E_{i+1} + q E_{i+1}^2 E_i = 0$ then follows.

The relations between F_i and F_{i+1} may be obtained directly, as above, or by applying the transpose operator to the relations already derived: note that the two sets of relations are related by swapping E_i and F_i and reversing the order of multiplication.

Lemma 4.1.4 (quantum Serre relations: n = 2). In the case n = 2, the quantum Serre relations will be of total degree 4. Look at the presentation of quantum groups for candidate relations. If that fails, brute force won't be too hard.

Lemma 4.1.5. $[E_i, F_j] = 0$ unless j = i.

$$E_i F_i - F_i E_i = \sum_{\lambda \in \Lambda_0(n,r)} ([\lambda_i] - [\lambda_{i+1}]) 1_{\lambda}.$$

For $\lambda \in \Lambda_0(n,r)$, let $R_{\lambda} = e_{\lambda_1} \mathcal{E}_{0,1} + \cdots + \lambda_n \mathcal{E}_{n-1,n}$. Write $R = \sum_{\lambda \in \Lambda_0(n,r)} R_{\lambda}$. Note $R_{\lambda} = R1_{\lambda}$. Given $A \in \Lambda_1(n,r)$ and $m \in \mathbb{Z}$, let $A[m] \in \Lambda_1(n,r)$ be given by $A[m]_{i,j} = a_{i,j+m}$ and let $A^{[m]}$ be given by $A^{[m]}_{i,j} = a_{i+m,j}$ for each $i \in \mathbb{Z}$.

Lemma 4.1.6 (Shifting). If $A \in \Lambda_1(n,r)$ then

$$Re_A = e_{A[\pm 1]}$$

and

$$e_A R = e_{A_{\lceil +1 \rceil}}$$
.

Conjugation by R gives an automorphism ρ of $\hat{S}_q(n,r)$ satisfying $\rho^n=1$.

4.2 quivers with relations

Denote by $\Lambda_0(n,r)$ the set of compositions of r into n parts. That is, $\Lambda_0(n,r)$ is the set of $\alpha \in \mathbb{Z}^n$ with non-negative entries which sum to r. Let $\varepsilon_i \in \mathbb{Z}^n$ be the ith elementary vector and write $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$ for each $i \in [1,n]$. Then $\lambda + \alpha_i \in \Lambda_0(n,r)$ if $\lambda_{i+1} > 0$ and $\lambda - \alpha_i \in \Lambda_0(n,r)$ if $\lambda_i > 0$.

Let $\Gamma = \Gamma(n,r)$ be the quiver with set of vertices $\Lambda_0(n,r)$, with the following arrows:

For $\lambda \in \Lambda_0(n,r)$ and $i \in [1,n]$, there is an arrow $e_{i,\lambda} : \lambda \to \lambda + \alpha_i$ if $\lambda_{i+1} > 0$ and there is an arrow $f_{i,\lambda} : \lambda \to \lambda - \alpha_i$ if $\lambda_i > 0$.

Denote by $\mathbb{Z}[q]\Gamma$ the path $\mathbb{Z}[q]$ -algebra of Γ . Thus $\mathbb{Z}[q]\Gamma$ is a free $\mathbb{Z}[q]$ -module with a basis given by the set of paths in Γ , with multiplication given by the concatenation of paths. If p starts

where q ends, the product pq is the path q followed by p. Write $e_{i,\lambda} = 0$ unless $\lambda, \lambda + \alpha_i \in \Lambda_0(n,r)$ and write $f_{i,\lambda} = 0$ unless $\lambda, \lambda - \alpha_i \in \Lambda_0(n,r)$.

By construction, there is a homomorphism of $\mathbb{Z}[q]$ -algebras

$$\phi \colon \mathbb{Z}[q]\Gamma \to \hat{S}_q(n,r)$$

given by

$$\phi(e_{i,\lambda}) = E_{i,\lambda}$$
$$\phi(f_{i,\lambda}) = F_{i,\lambda}$$
$$\phi(k_{\lambda}) = 1_{\lambda},$$

for $i \in [1, n]$ and $\lambda \in \Lambda_0(n, r)$.

The image of ϕ is the subalgebra of $\hat{S}_q(n,r)$ generated by E_i , F_i for $i \in [1,n]$ and 1_{λ} for $\lambda \in \Lambda_0(n,r)$, since $E_{i,\lambda} = E_i 1_{\lambda}$ and $F_{i,\lambda} = F_i 1_{\lambda}$, while $E_i = \sum_{\lambda} E_{i,\lambda}$ and $F_i = \sum_{\lambda} F_{i,\lambda}$. In general ϕ is not surjective, so this does not always lead to a presentation of $\hat{S}_q(n,r)$.

4.2.1 Exceptional case n = 2.

Describe the quiver.

Define an ideal of relations in the path algebra.

Write down the homomorphism from the bound quiver algebra to the q-Schur algebra.

4.2.2 Typical case n > 2.

Suppose $n \geq 3$. Then $\Gamma = \Gamma(n,r)$ has vertex set $\Lambda_0(n,r)$. RESUME HERE... Define $e_i, f_i \in \mathbb{Z}[q]\Gamma(n,r)$ by

$$e_i = \sum_{\lambda \in \Lambda_0(n,r)} e_{i,\lambda}$$

and

$$f_i = \sum_{\lambda \in \Lambda_0(n,r)} f_{i,\lambda},$$

with the convention $e_{i,\lambda} = 0$ unless $\lambda_{i+1} > 0$ and $f_{i,\lambda} = 0$ unless $\lambda_i > 0$. Let k_{λ} denote the constant path at vertex λ . $\{k_{\lambda} : \lambda \in \Lambda_0(n,r)\}$ is a set of pairwise orthogonal idempotents in $\mathbb{Z}[q]\Gamma(n,r)$.

Let $I(n,r) \subset \mathbb{Z}[q]\Gamma(n,r)$ be the ideal generated by the expressions

$$e_{i}e_{i+1}^{2} - (1+q)e_{i+1}e_{i}e_{i+1} + qe_{i+1}^{2}e_{i}$$

$$e_{i}^{2}e_{i+1} - (1+q)e_{i}e_{i+1}e_{i} + qe_{i+1}e_{i}^{2}$$

$$f_{i+1}f_{i}^{2} - (1+q)f_{i}f_{i+1}f_{i} + qf_{i}^{2}f_{i+1}$$

$$f_{i+1}^{2}f_{i} - (1+q)f_{i+1}f_{i}f_{i+1} + qf_{i}f_{i+1}^{2}$$

$$e_{i}f_{j} - f_{j}e_{i} - \delta_{i,j} \sum_{\lambda \in \Lambda_{0}(n,r)} ([\lambda_{i}] - [\lambda_{i+1}])k_{\lambda}$$

Recall that a relation is a $\mathbb{Z}[q]$ -linear combination of paths with common start and end vertices. The relations involving paths $\lambda \to \mu$ are given by $1_{\mu} \exp 1_{\lambda}$, for each of the above expressions.

Lemma 4.2.1. There is a homomorphism of $\mathbb{Z}[q]$ -algebras

$$\phi \colon \mathbb{Z}[q]\Gamma(n,r)/I(n,r) \to \hat{S}_q(n,r)$$

given by

$$\phi(e_{i,\lambda}) = E_{i,\lambda}$$

$$\phi(f_{i,\lambda}) = F_{i,\lambda}$$

$$\phi(k_{\lambda}) = 1_{\lambda}.$$

A generic affine Schur algebra

5.1 Introducing the affine generic algebra

Assume $\mathbf{k} = \mathbb{C}$ and fix $n, r \geq 1$. Let \mathcal{S} be the \mathbf{k} -algebra $\mathbf{k}[\varepsilon, \varepsilon^{-1}]$ and let \mathcal{R} be the subalgebra generated by ε , namely $\mathcal{R} = \mathbf{k}[\varepsilon]$. Let V be a free \mathcal{S} -module of rank r and let $\mathcal{F} = \mathcal{F}_{\mathbf{k}}(n, r)$ be the set of n-periodic cyclic flags in V; so \mathcal{F} consists of collections $L = (L_i)_{i \in \mathbb{Z}}$ of \mathcal{R} -lattices in V with $L_i \subset L_{i+1}$ for $i \in \mathbb{Z}$ and $\varepsilon L_i = L_{i-n}$ for $i \in \mathbb{Z}$.

Let G be the group of S-module automorphisms of V. Thus G is isomorphic to $GL_r(S)$. G acts on F with orbits $\{\mathcal{F}_{\lambda} : \lambda \in \Lambda_0(n,r)\}$, where $\Lambda_0(n,r)$ is the set of compositions of r into n parts.

The diagonal action of G on $\mathcal{F} \times \mathcal{F}$ has orbits $\{\mathcal{O}_A : A \in \Lambda_1(n,r)\}$, where \mathcal{O}_A consists of those pairs of flags with periodic characteristic matrix equal to A. In particular, the periodic characteristic matrix of a pair $(L, L') \in \mathcal{F} \times \mathcal{F}$ is the $\mathbb{Z} \times \mathbb{Z}$ matrix $A = (a_{i,j})_{i,j \in \mathbb{Z}}$, with

$$a_{i,j} = \dim \left(\frac{L_i \cap L'_j}{L_{i-1} \cap L'_j + L_i \cap L'_{j-1}} \right),$$

for each $i, j \in \mathbb{Z}$.

5.1.1 Not quite a category

There are maps ro, co: $\Lambda_1(n,r) \to \Lambda_0(n,r)$ given by

$$\operatorname{ro} A = \left(\sum_{j \in \mathbb{Z}} a_{1,j}, \dots, \sum_{j \in \mathbb{Z}} a_{n,j}\right)$$

and

$$\operatorname{co} A = \left(\sum_{i \in \mathbb{Z}} a_{i,1}, \dots, \sum_{i \in \mathbb{Z}} a_{i,n}\right).$$

Given $A \in \Lambda_1(n,r)$, write co $A \xrightarrow{A}$ ro A. The purpose of this chapter is to define a category with objects $\Lambda_0(n,r)$ and morphisms $\Lambda_1(n,r)$; where $\operatorname{Hom}(\lambda,\mu) = \{A \in \Lambda_1(n,r) : \operatorname{ro} A = \mu, \operatorname{co} A = \lambda\}$. Given $A, B \in \Lambda_1(n,r)$ let $\Lambda_1(n,r)_{A,B}$ be the set of $C \in \Lambda_1(n,r)$ such that there exist $L, L', L'' \in \mathcal{F}$ with $(L,L') \in \mathcal{O}_A$, $(L',L'') \in \mathcal{O}_B$ and $(L'',L''') \in \mathcal{O}_C$. It will be shown that $\Lambda_1(n,r)$ admits a partial order \leq such that $\Lambda_1(n,r)_{A,B}$ has a maximum element A * B, whenever co $A = \operatorname{ro} B$. It

will be shown that * is associative, so defining the composition of morphisms in the category formed by $\Lambda_0(n,r)$ and $\Lambda_1(n,r)$.

The generic affine Schur algebra $\hat{G}(n,r)$ will then be a \mathbb{Z} -algebra defined as a linearisation of this category. It will be shown that $\hat{G}(n,r)$ gives a realisation of the affine 0-Schur algebra $\hat{S}_0(n,r)$ when r < n. It is expected that a more refined presentation of the generic algebra and the 0-Schur algebra will allow the conditions on the parameters to be relaxed slightly: the r = n case is approachable, which may extend to the case r < 2n.

5.2 A partial order

Given $i, j \in \mathbb{Z}$, define a map $d_{i,j}$ on $\Lambda_1(n,r)$ by setting

$$d_{i,j}A = \sum_{s \le i, t > j} a_{s,t}$$

for each $A \in \Lambda_1(n,r)$.

Lemma 5.2.1. Let $A \in \Lambda_1(n,r)$, with $A = (a_{i,j})_{i,j \in \mathbb{Z}}$ and write $d_{i,j} = d_{i,j}A$ for $i,j \in \mathbb{Z}$. Then

$$d_{i,j} - d_{i-1,j} = \sum_{t>j} a_{i,t}$$

and

$$d_{i,j} - d_{i,j-1} = -\sum_{s < i} a_{s,j}.$$

Proof. Let $i, j \in \mathbb{Z}$. Then

$$d_{i,j} - d_{i-1,j} = \sum_{s \le i,t > j} a_{s,t} - \sum_{s \le i-1,t > j} a_{s,t} = \sum_{t > j} a_{i,t}.$$

Similarly,

$$d_{i,j} - d_{i,j-1} = \sum_{s \le i, t > j} a_{s,t} - \sum_{s \le i, t > j-1} a_{s,t} = -\sum_{s \le i} a_{s,j}.$$

Lemma 5.2.2. Let $A \in \Lambda_1(n,r)$, with $A = (a_{i,j})_{i,j \in \mathbb{Z}}$ and write $d_{i,j} = d_{i,j}A$ for each $i, j \in \mathbb{Z}$. Then

$$a_{i,j} = d_{i,j-1} - d_{i-1,j-1} + d_{i-1,j} - d_{i,j}$$

for each $i, j \in \mathbb{Z}$.

Proof. Using Lemma 5.2.1,

$$a_{i,j} = \sum_{t>j-1} a_{i,t} - \sum_{t>j} a_{i,t}$$
$$= (d_{i,j-1} - d_{i-1,j-1}) - (d_{i,j} - d_{i-1,j}).$$

Alternatively,

$$a_{i,j} = \sum_{s \le i} a_{s,j} - \sum_{s \le i-1} a_{s,j}$$

= $-(d_{i,j} - d_{i,j-1}) + (d_{i-1,j} - d_{i-1,j-1}).$

Lemma 5.2.3. The relation \leq on $\Lambda_1(n,r)$, defined by $A \leq B$ if and only if $d_{i,j}A \leq d_{i,j}B$ for all $i, j \in \mathbb{Z}$, is a partial order.

Proof. It is clear that \leq is reflexive and transitive, so it remains to see \leq is antisymmetric. Suppose $A, B \in \Lambda_1(n,r)$ with $A \leq B$ and $B \leq A$. Then $d_{i,j}A = d_{i,j}B$ for each $i, j \in \mathbb{Z}$, which shows A = B as a result of Lemma 5.2.2.

The partial order on $\Lambda_1(n,r)$ induces a partial order on the set of G-orbits in $\mathcal{F} \times \mathcal{F}$, such that $\mathcal{O}_A \leq \mathcal{O}_B$ if and only if $A \leq B$. The next lemma gives some geometric significance to the partial order on $\Lambda_1(n,r)$.

Lemma 5.2.4. Let $A \in \Lambda_1(n,r)$ and take $(L,L') \in \mathcal{O}_A$. Then

$$d_{i,j}A = \dim\left(\frac{L_i}{L_i \cap L_j'}\right)$$

for each $i, j \in \mathbb{Z}$.

It is thought* that the partial order on $\Lambda_1(n,r)$ is compatible with the degeneration order (or closure order) on G-orbits in $\mathcal{F} \times \mathcal{F}$ when $\mathbf{k} = \mathbb{C}$. In particular, it is hoped that $\mathcal{O}_A \leq \mathcal{O}_B$ if and only if $\mathcal{O}_A \subset \overline{\mathcal{O}_B}$.

5.3 Preliminary results

Fix $L \in \mathcal{F}$.

Lemma 5.3.1. $L_0/\varepsilon L_0$ is a torsion $\mathbf{k}[\varepsilon]$ -module, where ε acts as zero, with dimension r as a \mathbf{k} -vector space.

Proof. Let $V = \mathbf{k}[\varepsilon, \varepsilon^{-1}]^r$. L_0 is a free $\mathbf{k}[\varepsilon]$ -module of rank r, with $L_0 \subset V$. So we may take a $\mathbf{k}[\varepsilon]$ -basis $x_1, \ldots, x_r \in V$ for L_0 . The action of ε gives an automorphism of V mapping L_0 to εL_0 , so $\varepsilon x_1, \ldots, \varepsilon x_r$ give a basis for εL_0 over $\mathbf{k}[\varepsilon]$. Therefore, the cosets $x_1 + \varepsilon L_0, \ldots x_r + \varepsilon L_0$ give a basis for $L_0/\varepsilon L_0$ over \mathbf{k} .

Suppose $A, B \in \Lambda_1(n, r)$ with co A = ro B. Recall the notation

$$Y_{A,B} = \{(L, L', L'') \in \mathcal{F}^3 : (L, L') \in \mathcal{O}_A, (L', L'') \in \mathcal{O}_B\}$$

and

$$X_{A,B} = \{(L, L'') \in \mathcal{F}^2 : \exists L' \in \mathcal{F} \text{ with } (L, L', L'') \in Y_{A,B}\}.$$

 $X_{A,B}$ is the image of $Y_{A,B}$ under the projection onto the first and last components.

Lemma 5.3.2. There is $N \in \mathbb{N}$ such that

$$\varepsilon^N L_0 \subset L_0'' \subset \varepsilon^{-N} L_0$$

whenever $(L, L'') \in X_{A,B}$.

Proof. There exist $N_1, N_2 \in \mathbb{N}$ such that

$$\varepsilon^{N_1}L_0 \subset L_0' \subset \varepsilon^{-N_1}L_0$$

and

$$\varepsilon^{N_2}L_0' \subset L_0'' \subset \varepsilon^{-N_2}L_0',$$

whenever $(L, L', L'') \in Y_{A,B}$. Then, for $(L, L', L'') \in Y_{A,B}$,

$$L_0'' \subset \varepsilon^{-N_2} L_0' \subset \varepsilon^{-(N_1+N_2)} L_0$$

and

$$\varepsilon^{N_1+N_2}L_0\subset \varepsilon^{N_2}L_0'\subset L_0''$$
.

In particular, taking $N = N_1 + N_2$, we have

$$\varepsilon^N L_0 \subset L_0'' \subset \varepsilon^{-N} L_0$$

whenever $(L, L'') \in X_{A,B}$.

Lemma 5.3.3. Suppose $N_1, N_2 \in \mathbb{N}$ with $\varepsilon^{N_1} L_0 \subset L_0 \subset \varepsilon^{-N_1} L_0$ and $\varepsilon^{N_2} L_0' \subset L_0'' \subset \varepsilon^{-N_2} L_0'$ whenever $(L, L', L'') \in Y_{A,B}$ and let $N = N_1 + N_2$. Then

$$\dim\left(\frac{\varepsilon^{-N}L_0}{L_0''}\right) = d_{nN_1,0}(A) + d_{nN_2,0}(B)$$

and

$$\dim\left(\frac{L_0''}{\varepsilon^N L_0}\right) = 2Nr - d_{nN_1,0}(A) + d_{nN_2,0}(B),$$

whenever $(L, L'') \in X_{A,B}$.

Proof. Suppose $(L, L'') \in X_{A,B}$ and $L' \in \mathcal{F}$ so that $(L, L', L'') \in Y_{A,B}$. As in lemma 5.3.2, $\varepsilon^N L_0 \subset L_0'' \subset \varepsilon^{-N} L_0$, so

$$\dim\left(\frac{\varepsilon^{-N}L_0}{L_0''}\right)+\dim\left(\frac{L_0''}{\varepsilon^NL_0}\right)=\dim\left(\frac{\varepsilon^{-N}L_0}{\varepsilon^NL_0}\right).$$

As a **k**-vector space, $\varepsilon^{-N}L_0/\varepsilon^N L_0$ is isomorphic to $(L_0/\varepsilon L_0)^{2N}$, which has dimension 2Nr, so

$$\dim\left(\frac{L_0''}{\varepsilon^N L_0}\right) = 2Nr - \dim\left(\frac{\varepsilon^{-N} L_0}{L_0''}\right).$$

It remains to compute the codimension of L_0'' in $\varepsilon^{-N}L_0$. Note $L_0'' \subset \varepsilon^{-N_2}L_0' \subset \varepsilon^{-N}L_0$, so

$$\dim\left(\frac{\varepsilon - NL_0}{L_0''}\right) = \dim\left(\frac{\varepsilon^{-N}L_0}{\varepsilon^{-N_2}L_0'}\right) + \dim\left(\frac{\varepsilon^{-N_2}L_0'}{L_0''}\right).$$

$$\dim \left(\frac{\varepsilon^{-N}L_0}{\varepsilon^{-N_2}L'_0}\right) = \dim \left(\frac{\varepsilon^{-N_1}L_0}{L'_0}\right)$$

$$= \dim \left(\frac{L_{nN_1}}{L_{nN_1} \cap L'_0}\right)$$

$$= \sum_{s \le nN_1, t > 0} A_{s,t}$$

$$= d_{nN_1,0}(A).$$

$$\dim \left(\frac{\varepsilon^{-N_2}L'_0}{L''_0}\right) = \dim \left(\frac{L'_{nN_2}}{L'_{nN_2} \cap L''_0}\right)$$
$$= \sum_{s \le nN_2, t > 0} B_{s,t}$$
$$= d_{nN_2,0}(B).$$

Fix $L \in \mathcal{F}$. Given $N, a \in \mathbb{N}$ and $\lambda \in \Lambda_0(n, r)$, define

$$\Pi_{N\lambda} = \{L'' \in \mathcal{F}_{\lambda} : \varepsilon^{N} L_{0} \subset L''_{0} \subset \varepsilon^{-N} L_{0}\}$$

and

$$\Pi_{N,\lambda}^a = \left\{ L'' \in \mathcal{F}_{\lambda} : \varepsilon^N L_0 \subset L_0'' \subset \varepsilon^N L_0, \dim \left(\frac{\varepsilon^{-N} L_0}{L_0''} \right) = a \right\}.$$

 $\Pi_{N,\lambda}$ is the (disjoint) union of the $\Pi_{N,\lambda}^a$ for $a \in \mathbb{N}$. In fact, we will see $\Pi_{N,\lambda}^a$ is empty whenever a > 2Nr.

Lemma 5.3.4. Let $N, a \in \mathbb{N}$, $\lambda \in \Lambda_0(n,r)$. Then $\Pi^a_{N,\lambda}$ is nonempty exactly when $0 \le a \le 2Nr$.

Proof. Suppose $L'' \in \Pi_{N,\lambda}$. By definition, $\varepsilon^{-N}L_0 \subset L_0'' \subset \varepsilon^{-N}L_0$, which shows

$$\dim\left(\frac{\varepsilon^{-N}L_0}{L_0''}\right) \le \dim\left(\frac{\varepsilon^{-N}L_0}{\varepsilon^N L_0}\right) = 2Nr.$$

Therefore, $\Pi_{N,\lambda}^a$ is empty unless $a \leq 2Nr$.

Now assume $0 \le a \le 2Nr$. We may choose an ε -invariant subspace W' of $W = \varepsilon^{-N} L_0/\varepsilon^N L_0$ of codimension a. W' lifts to give a \mathcal{R} -module, say L_0'' , with $\varepsilon^N L_0 \subset L_0'' \subset \varepsilon^{-N} L_0$ and with $\dim(\varepsilon^{-N} L_0/L_0'') = \dim(W/W') = a$. Similarly, a flag of type λ in $L_0''/\varepsilon L_0''$ lifts to give \mathcal{R} -modules $(L_{-n+1}'', \ldots, L_0'')$ with

$$\varepsilon L_0'' \subset L_{-n+1}'' \subset \cdots \subset L_{-1}'' \subset L_0'' \subset \varepsilon^{-N} L_0$$

and such that the dimensions of successive quotients are given by $\lambda_1, \ldots, \lambda_n, a$, from left to right. Thus, $(L''_{-n+1}, \ldots, L''_0)$ extends by periodicity to give an element of $\Pi^a_{N,\lambda}$, as desired.

Lemma 5.3.5. $\Pi_{N,\lambda}^a$ is a (quasi)projective variety, provided $0 \le a \le 2Nr$.

Proof. Let $W = \varepsilon^{-(1+N)} L_0 / \varepsilon^N L_0$ and let

$$X = \left\{ W_1 \le \dots \le W_n \le W : \dim\left(\frac{W}{W_n}\right) = a, \dim\left(\frac{W_i}{W_{i-1}}\right) = \lambda_i \text{ for } i = 2, \dots, n \right\}.$$

X is known to be a projective variety [CITATION NEEDED]

Let X' be the subset of X consisting of those (W_1, \ldots, W_n) , where each W_i is ε -invariant and $\varepsilon W_n \leq W_1$. X' is a closed subset of X, though is not necessarily irreducible.

The correspondence between the set of \mathcal{R} -submodules of $\varepsilon^{-(1+N)}L_0$ which contain $\varepsilon^N L_0$ and the set of \mathcal{R} -submodules of $\varepsilon^{-(1+N)}L_0/\varepsilon^N L_0$ gives a pair of mutually inverse maps $\Pi^a_{N,\lambda} \leftrightarrow X'$.

– the idea that is relevant to the proof is that inclusion relations $L_i \subset L_{i+1}$ describe a closed set in a product of grassmanians. Unsure here – Is it true that irreducible components of X' are projective varieties. In this case, should the statement be that $\Pi_{N,\lambda}^a$ is a projective algebraic set, rather that a quasi projective variety?

Lemma 5.3.6. Suppose $(L', L'') \in \mathcal{O}_B$ with $(L, L') \in \mathcal{O}_A$. Then $X_{A,B}^L$ is the image of the map

$$G_L \times G_{L'} \to \mathcal{F} : (\alpha, \beta) \mapsto \alpha \beta L''.$$

Proof. Suppose $\alpha \in G_L$ and $\beta \in G_{L'}$. $(L, \alpha L', \alpha \beta L'') \in Y_{A,B}$ since $(L, \alpha L') \sim (L, L') \in \mathcal{O}_A$ and $(\alpha L', \alpha \beta L'') \sim (L', L'') \in \mathcal{O}_B$. This shows $(L, \alpha \beta L'') \in X_{A,B}$ and thus $\alpha \beta L'' \in X_{A,B}^L$.

Conversely, suppose $N'' \in X_{A,B}^L$. $(L,N'') \in X_{A,B}$, so there is N' such that $(L,N') \in \mathcal{O}_A$ and $(N',N'') \in \mathcal{O}_B$. There exist $\gamma,\delta \in G$ such that $\gamma(L,L')=(N,N')$ and $\delta(L',L'')=(N',N'')$. Then $(L,N',N'')=(L,\gamma L',\delta L'')=(L,\gamma L',\gamma(\gamma^{-1}\delta)L'')$, where $\gamma \in G_L$ and $\gamma^{-1}\delta \in G_{L'}$. This shows $N'' \in G_L G_{L'} L''$ as required.

Given $N \in \mathbb{N}$, define

$$H_N = \left\{ h \in G_L : h = 1 \text{ on } \frac{\varepsilon^{-(1+N)} L_0}{\varepsilon^N L_0} \right\}.$$

Explicitly, the condition h=1 on $\varepsilon^{-(1+N)}L_0/\varepsilon^N L_0$ means: $h(x)+\varepsilon^N L_0=x+\varepsilon^N L_0$ for $x\in \varepsilon^{-(1+N)}L_0$. Observe that $H_{N+1}\subset H_N$ for $N\in \mathbb{N}$ since $h(x)+\varepsilon^N L_0=x+\varepsilon^N L_0$ whenever $x\in \varepsilon^{-(1+N)}L_0$.

Lemma 5.3.7. H_N is a normal subgroup in G_L , for any $N \in \mathbb{N}$.

Proof. $H_N \subset G_L$ by definition. Suppose $h, h' \in H_N$ and let $x \in \varepsilon^{-(1+N)}L_0$. $h'(x) \in \varepsilon^{-(1+N)}L_0$ as $h' \in G_L$, so $hh'(x) + \varepsilon^N L_0 = h'(x) + \varepsilon^N L_0 = x + \varepsilon^N L_0$, which shows $hh' \in H_N$. $h(x) - x \in \varepsilon^N L_0$, so $h^{-1}(x) - x = -h^{-1}(h(x) - x) \in \varepsilon^N L_0$. $h^{-1} \in H_N$, so H_N is a subgroup of G_L .

so $h^{-1}(x) - x = -h^{-1}(h(x) - x) \in \varepsilon^N L_0$. $h^{-1} \in H_N$, so H_N is a subgroup of G_L . Let $g \in G_L$. $hg^{-1}(x) + \varepsilon^N L_0 = g^{-1}(x)$ as $g^{-1}(x) \in \varepsilon^{-(1+N)} L_0$, so $ghg^{-1}(x) + \varepsilon^N L_0 = gg^{-1}(x) + \varepsilon^N L_0 = x + \varepsilon^N L_0$. Thus $ghg^{-1} \in H_N$, which proves H_N is a normal subgroup in G_L .

The H_N form a descending chain of normal subgroups in G_L : $\cdots \subset H_1 \subset H_0 \subset G_L \subset G$.

Lemma 5.3.8. G_L/H_N is an irreducible algebraic group for any $N \in \mathbb{N}$.

Proof. See the discussion in [1][section 4]. Should be able to give an explicit presentation of G_L/H_N in terms of the block structure.

Lemma 5.3.9. There is $N \in \mathbb{N}$ such that $H_N \subset G_{L'}$. Consequently, $H_{N'} \subset G_{L'}$ whenever $N' \geq N$.

Proof. Choose $N \in \mathbb{N}$ such that $\varepsilon^N L_0 \subset L_0' \subset \varepsilon^{-N} L_0$. Then

$$\varepsilon^N L_0 \subset L_0' \subset L_1' \subset \cdots \subset L_n' \subset \varepsilon^{-(1+N)} L_0.$$

Let $h \in H_N$. $h(x) + \varepsilon^N L_0 = x + \varepsilon^N L_0$ for $x \in \varepsilon^{-(1+N)} L_0$, so $h(L_i') \subset L_i'$ for i = 0, 1, ..., n. Moreover, h^{-1} stabilises L_i' , so $h(L_i') = L_i'$ for i = 0, 1, ..., n and therefore for $i \in \mathbb{Z}$. This shows $h \in G_{L_i'}$ as required, so $H_N \subset G_{L_i'}$.

Note that H_N is generally not a normal subgroup of $G_{L'}$, though the space of (right) cosets of H_N in $G_{L'}$ will still be irreducible. ADD AN EXAMPLE

Lemma 5.3.10. $G_{L'}/H_N$ is irreducible, provided $H_N \subset G_{L'}$.

Proof. COMPLETE THIS PROOF.

5.4 Existence of a maximum

Proposition 5.4.1. Given $A, B \in \Lambda_1(n,r)$ with $\operatorname{co} A = \operatorname{ro} B$, $\Lambda_1(n,r)_{A,B}$ has a maximum element.

Draft 1. $\Lambda_1(n,r)_{A,B}$ is non-empty since co $A = \operatorname{ro} B$. The partial order on $\Lambda_1(n,r)_{A,B}$ is given by the partial order on $\Lambda_1(n,r)$; where $C' \leq C$ if and only if $d_{i,j}C' \leq d_{i,j}C$ for all $i,j \in \mathbb{Z}$.

To prove existence of a maximum element in $\Lambda_1(n,r)_{A,B}$ we will consider the poset of Gorbits in $\mathcal{F} \times \mathcal{F}$ and prove existence of a maximum orbit in $X_{A,B}$ using an open orbits argument.

Recall $X_{A,B}$ consists of $(L,L'') \in \mathcal{F} \times \mathcal{F}$ such that there exists $L' \in \mathcal{F}$ with $(L,L') \in \mathcal{O}_A$ and $(L',L'') \in \mathcal{O}_B$.

There is $N \in \mathbb{N}$ such that $\varepsilon^N L_0 \subset L_0'' \subset \varepsilon^{-N} L_0$ whenever $(L, L'') \in X_{A,B}$. Fix $L \in \mathcal{F}_{\text{ro }A}$ and write

$$X_{A,B}^{L} = \{L'' \in \mathcal{F} : (L, L'') \in X_{A,B}\}.$$

With the above choice of N, write

$$\Pi = \{ L'' \in \mathcal{F}_{\operatorname{co} B} : \varepsilon^N L_0 \subset L_0'' \subset \varepsilon^{-N} L_0 \}.$$

 Π is a complex projective variety (not generally irreducible), closed under the action of G_L . [ADD A REFERENCE] The closure $\overline{X_{A,B}^L}$ of $X_{A,B}^L$ in Π is an irreducible complex projective variety.

Proposition [ADD A REFERENCE] shows there is a unique G_L -orbit in $X_{A,B}^L$ which is open in $\overline{X_{A,B}^L}$, say \mathcal{O}_C^L for some $C \in \Lambda_1(n,r)_{A,B}$. It will be shown that C is the maximum element of $\Lambda_1(n,r)_{A,B}$. Given $i,j \in \mathbb{Z}$, let $m_{i,j}$ denote the maximum of $\{d_{i,j}C : C \in \Lambda_1(n,r)_{A,B}\}$ and define

$$\mathcal{M}_{i,j} = \{ L'' \in \overline{X_{A,B}^L} : d_{i,j}(L, L'') = m_{i,j} \}.$$

 $\frac{\mathcal{M}_{i,j}}{X_{A,B}^L}$ is non-empty by definition of the $m_{i,j}$ and is closed under the action of G_L . $\mathcal{M}_{i,j}$ is open in

$$d_{i,j}^L \colon \Pi \to \mathbb{Z} : L'' \mapsto \dim \left(\frac{L_i}{L_i \cap L''_j} \right)$$

is lower semi-continuous [ADD A REFERENCE] and

$$\mathcal{M}_{i,j} = \overline{X_{A,B}^L} \setminus \{L'' \in \overline{X_{A,B}^L} : d_{i,j}^L(L'') \le m_{i,j} - 1\}.$$

It follows that \mathcal{O}_C^L and $\mathcal{M}_{i,j}$ intersect non-trivially, since $\overline{X_{A,B}^L}$ is irreducible and therefore $\mathcal{O}_C^L \subset \mathcal{M}_{i,j}$ as both are closed under the action of G_L . This proves C is a maximum element of $\Lambda_1(n,r)_{A,B}$, since

$$d_{i,j}C = d_{i,j}(L,L'') = m_{i,j}$$

for any $L'' \in \mathcal{O}_C^L$.

Draft 2. $\Lambda_1(n,r)_{A,B}$ is non-empty since co A = ro B. For each $i,j \in \mathbb{Z}$, define

$$m_{i,j} = \max_{C \in \Lambda_1(n,r)_{A,B}} d_{i,j}C.$$

It will be shown that there is a unique element $A*B \in \Lambda_1(n,r)_{A,B}$ with $d_{i,j}(A*B) = m_{i,j}$: such an element is necessarily a maximum in $\Lambda_1(n,r)_{A,B}$. Fix $L \in \mathcal{F}_{ro A}$ and assume $N \in \mathbb{N}$ is sufficiently large that $X_{A,B}^L \subset \Pi_N$; where

$$\Pi_N = \{ L'' \in \mathcal{F}_{\operatorname{co} B} : \varepsilon^N L_0 \subset L_0'' \subset \varepsilon^{-N} L_0 \}.$$

Lusztig notes [1] that Π_N is a projective algebraic variety, closed under the action of G_L . Lemma [ADD A REFERENCE]shows that the closure of $X_{A,B}^L$ in Π_N , denoted $\overline{X_{A,B}^L}$, is an irreducible complex projective variety.

For each $i, j \in \mathbb{Z}$, write

$$\mathcal{M}_{i,j} = \{ L'' \in \overline{X_{A,B}^L} : d_{i,j}(L, L'') = m_{i,j} \}.$$

 $\mathcal{M}_{i,j}$ is non-empty since $d_{i,j}(L,-)$ attains a maximum on $X_{A,B}^L$. $\mathcal{M}_{i,j}$ is open in $\overline{[L]A,B}$ since

$$\overline{X_{A,B}^L} \setminus \mathcal{M}_{i,j} = \{ L'' \in \overline{X_{A,B}^L} : d_{i,j}(L,L'') \le m_{i,j} - 1 \}$$

and the function

$$d_{i,j}(L,-):\Pi_N\to\mathbb{Z}:L''\mapsto\dim\left(\frac{L_i}{L_i\cap L''_j}\right)$$

is lower semi-continuous, by lemma [[ADD A REFERENCE]: lower semi-continuity].

Lemma [[ADD A REFERENCE]: open orbit] shows that there is a unique G_L -orbit in $X_{A,B}^L$ which is open in $\overline{X_{A,B}^L}$, say \mathcal{O}_{A*B}^L for some $A*B \in \Lambda_1(n,r)_{A,B}$. $\mathcal{M}_{i,j}$ intersects the open orbit $\underline{\mathcal{O}_{A*B}^L}$ non-trivially, since $\mathcal{M}_{i,j}$ and \mathcal{O}_{A*B}^L are both non-empty and open in the irreducible space $\overline{X_{A,B}^L}$. Moreover, $\mathcal{O}_{A*B}^L \subset \mathcal{M}_{i,j}$, since $\mathcal{M}_{i,j}$ is closed under the action of G_L . In particular, we have $A*B \in \Lambda_1(n,r)_{A,B}$ with $d_{i,j}(A*B) = m_{i,j}$ for each $i,j \in \mathbb{Z}$, which shows A*B is a maximum in $\Lambda_1(n,r)_{A,B}$.

More specifically, we may compute:

$$a_{i,j}(A*B) = m_{i,j-1} - m_{i-1,j-1} + m_{i-1,j} - m_{i,j}$$

for each $i, j \in \mathbb{Z}$.

5.5 Associativity

Proposition 5.5.1. Given $A, B, C \in \Lambda_1(n, r)$ with $\operatorname{co} A = \operatorname{ro} B$ and $\operatorname{co} B = \operatorname{ro} C$, (A * B) * C = A * (B * C).

$$Proof.$$
 INCLUDE PROOF.

5.6 The generic algebra

Lemma 5.6.1. Given $\lambda \in \Lambda_0(n,r)$ and $A \in \Lambda_1(n,r)$, $D_{\lambda} * A = A$ if ro $A = \lambda$ and $A * D_{\lambda} = A$ if ro $A = \lambda$.

$$Proof.$$
 ADD PROOF HERE

Definition 5.6.1. For each $n, r \geq 1$, the generic category $\mathcal{G}(n, r)$ is the category with set of objects $\Lambda_0(n, r)$ and set of morphisms $\Lambda_1(n, r)$ where; the morphisms from λ to μ are those matrices $A \in \Lambda_1(n, r)$ with co $A = \lambda$ and ro $A = \mu$; the composition of morphisms $A: \lambda \to \mu$ and $B: \mu \to \nu$ is $B * A: \lambda \to \nu$, where B * A is the maximum element in $\Lambda_1(n, r)_{A,B}$. For each $\lambda \in \Lambda_0(n, r)$, the identity morphism $D_{\lambda}: \lambda \to \lambda$ is given by $(D_{\lambda})_{i,i} = \lambda_i$ and $(D_{\lambda})_{i,j} = 0$ whenever $i \neq j$.

Example 1. The objects in $\mathcal{G}(n,r)2,2$ are compositions of 2 into 2 parts, namely (0,2), (1,1) and (2,0). The set of morphisms from λ to μ is the set of infinite periodic matrices $A \in \Lambda_1(n,r)2,2$ with $\operatorname{co} A = \lambda$ and $\operatorname{ro} A = \mu$, which is a countably infinite set for any pair of compositions $\lambda, \mu \in \Lambda_0(n,r)2,2$.

Definition 5.6.2 (Generic algebra). The affine generic algebra $\hat{G}(n,r)$ is the category \mathbb{Z} -algebra of $\mathcal{G}(n,r)$. In particular, $\hat{G}(n,r)$ is a free \mathbb{Z} -module with basis $\{e_A : A \in \Lambda_1(n,r)\}$ and with associative multiplication given by

$$e_A * e_B = \begin{cases} e_{A*B} & \text{if } \operatorname{co} A = \operatorname{ro} B \\ 0 & \text{if } \operatorname{co} A \neq \operatorname{ro} B. \end{cases}$$

Given $\lambda \in \Lambda_0(n,r)$, let $1_{\lambda} = e_{D_{\lambda}}$.

Corollary 5.6.2. $\{1_{\lambda} : \lambda \in \Lambda_0(n,r)\}$ is a set of pairwise orthogonal idempotents in $\hat{G}(n,r)$ with $\sum_{\lambda \in \Lambda_0(n,r)} 1_{\lambda} = 1$.

Theorem 5.6.3. $\hat{G}(n,r)$ is an associative \mathbb{Z} -algebra with 1.

Proof. Given $A, B \in \Lambda_1(n, r)$ with co $A = \operatorname{ro} B$, proposition 5.4.1 shows that there is a maximum element in $\{C \in \Lambda_1(n, r) : g_{A,B,C} \neq 0\}$, which is denoted A * B. This shows that the product on $\hat{G}(n, r)$ is well-defined. If $\operatorname{co} A \neq \operatorname{ro} B$ or $\operatorname{co} B \neq \operatorname{ro} C$, then $(e_A * e_B) * e_C = 0 = e_A * (e_B * e_C)$. If $\operatorname{co} A = \operatorname{ro} B$ and $\operatorname{co} B = \operatorname{ro} C$, then proposition 5.5.1 shows that

$$(e_A * e_B) * e_C = e_{(A*B)*C} = e_{A*(B*C)} = e_A * (e_B * e_C).$$

Corollary 5.6.2 shows that the sum of the idempotents 1_{λ} for $\lambda \in \Lambda_0(n,r)$ is a multiplicative identity.

5.7 – Chapter draft bin –

Define

$$\Pi = \left\{ L'' \in \mathcal{F}_{\operatorname{co}B} : \varepsilon^N L_0 \subset L_0'' \subset \cdots \subset L_n'' \subset \varepsilon^{-N} L_0 \text{ and } \dim \left(L_0'' / \varepsilon^N L_0 \right) = -Nr + d_{-Nn,0}^-(A) + d_{-Nn,0}^-(B) \right\}.$$

Lemma 5.7.1. Π is a projective algebraic variety, closed under the action of G_L .

By choice of N, we have $X_{A,B}^L \subset \Pi$.

Lemma 5.7.2. The group G_L/H is an irreducible algebraic group.

Proof. $\sigma \in G_L$ naturally induces an automorphism $\bar{\sigma}$ of $\varepsilon^{-N}L_0/\varepsilon^N L_0$, with inverse induced by σ^{-1} . Moreover, the natural map

$$G_L/H \to GL(\varepsilon^{-N}L_0/\varepsilon^N L_0)$$

is a group homomorphism. In fact, this homomorphism is injective: if $\sigma = \tau$ on $\varepsilon^{-N}L_0/\varepsilon^N L_0$, then $\sigma \tau^{-1} = 1$ on $\varepsilon^{-N}L_0/\varepsilon^N L_0$ and so $\sigma H = \tau H$. Thus G_L/H is isomorphic to its image in $GL(\varepsilon^{-N}L_0/\varepsilon^N L_0)$. this image is an algebraic group, then I need to deduce G_L/H is an algebraic group. First isomorphism theorem?

Lemma 5.7.3. Suppose $(L, L', L''), (N, N', N'') \in \beta^{-1}(\mathcal{O}_A \times \mathcal{O}_B)$. Then there are $\sigma, \tau \in G$, with $\tau \in G_{L'}$, such that $(N, N', N'') = \sigma(L, L', \tau L'')$.

Proof. There exist $g, g' \in G$ such that (N, N') = g(L, L') and (N', N'') = g'(L', L''). Then $(N, N', N'') = g(L, L', g^{-1}g'L'')$. Taking $\sigma = g$ and $\tau = g^{-1}g'$ gives the required result.

Proposition 5.7.4. Suppose $X_{A,B}^L \neq \emptyset$. Then $X_{A,B}^L \subset \mathcal{F}_{\operatorname{co} B}$ is finite dimensional and irreducible. Proof. The map

$$G_L/H \times G_{L'}/H \to \Pi$$

has image $X_{A,B}^L$, so the closure of $X_{A,B}^L$ in Π is irreducible due to some properties of the above groups.

5.7.1 locally closed orbits

Proposition 5.7.5. Suppose $X_{A,B}^L \neq \emptyset$. The G_L -orbits in $X_{A,B}^L$ are locally closed.

Proof. The G_L orbit of $L'' \in X_{A,B}^L$ is the image of the map

$$G_L/H \to \Pi : g \mapsto gL''$$
.

Justify why this image must be locally closed.

Proposition 5.7.6. Let $A, B \in \Lambda_1(n, r), L \in \mathcal{F}$ and suppose $X_{A,B}^L \neq \emptyset$. There is a unique open G_L -orbit in $X_{A,B}^L$.

Proof. Write $X = X_{A,B}^L$. X is irreducible and finite dimensional, using Lemma 5.7.4. We have

$$X = \bigcup_{C} O_{C},$$

where the union is taken over the finite set $\{C \in \Lambda_1(n,r) : \mathcal{O}_C \subset X_{A,B}\}.$

A proper, non-empty, closed subset of X has strictly smaller dimension than X, so there is C such that $\overline{O_C} = X$. O_C is locally closed, by Lemma 5.7.5, so it follows that O_C is open in $\overline{O_C} = X$.

Now suppose O_C is an open G_L orbit and let $D \in \Lambda_1(n,r)$. $O_D \subset X \setminus O_C$ and thus $\overline{O_D} \subset X \setminus O_C$. This shows O_D is not open in X and thus the claim is proven.

5.7.2 Associativity of the generic product

Given $A, B, C \in \Lambda_1(n, r)$ and $L \in \mathcal{F}$ let

$$X_{A,B,C}^{L} = \{L''' \in \mathcal{F} : \exists (L',L'') \in \mathcal{O}_B \text{ with } (L,L') \in \mathcal{O}_A, (L'',L''') \in \mathcal{O}_C\}.$$

Note that $X_{A,B,C}^L$ is contained in $\mathcal{F}_{co\,C}$ and is non-empty only if $L \in \mathcal{F}_{ro\,A}$, $co\,A = ro\,B$ and $co\,B = ro\,C$. $X_{A,B,C}^L$ consists of finitely many G_L -orbits. Using a similar argument to the existence of generic orbits we show that there is a unique generic orbit in $X_{A,B,C}^L$, which will establish associativity of the generic product. We now suppose $X_{A,B,C}^L$ is non-empty and fix $(L,L',L'',L''') \in \mathcal{F}^4$ with $(L,L') \in \mathcal{O}_A$, $(L',L'') \in \mathcal{O}_B$ and $(L'',L''') \in \mathcal{O}_C$.

Lemma 5.7.7. $X_{A,B,C}^L$ is the image of the map

$$\phi: G_L \times G_{L'} \times G_{L''} \to \mathcal{F}: (\alpha, \beta, \gamma) \mapsto \alpha\beta\gamma L'''.$$

Proposition 5.7.8. The closure $\overline{X_{A,B,C}^L}$ of $X_{A,B,C}^L$ in $\mathcal F$ is irreducible.

Proposition 5.7.9. There is a unique generic G_L -orbit in $X_{A,B,C}^L$.

A realisation of affine zero Schur algebras

We aim to prove the isomorphism theorem in the cases r < n and $n \le r < 2n$ separately. Below are crude versions of the statements we want to prove.

Theorem 6.0.1. Assume r < n. The map $\psi : \hat{G}(n,r) \to \hat{S}_0(n,r)$, given by $\psi(E_i) = E_i$, $\psi(F_i) = F_i$ and $\psi(1_{\lambda}) = 1_{\lambda}$, is an isomorphism of \mathbb{Z} -algebras.

Proof. Below are some of the pieces: [1] The elements E_i , F_i , 1_{λ} generate $\hat{G}(n,r)$.

Provided r < n, any $A \in \Lambda_1(n,r)$ may be obtained from the diagonal matrix D_{λ} with $\lambda = \operatorname{ro} A$ by a sequence of transitions $A \mapsto A \pm X_{i,p}$.

[2] Give a complete set of generating relations for
$$\hat{G}(n,r)$$
.

Theorem 6.0.2. Assume $n \leq r < 2n$. There is a unique homomorphism of \mathbb{Z} -algebras $\hat{\psi} \colon \hat{G}(n,r) \to \hat{S}_0(n,r)$ such that $\hat{\psi}(R) = R$ and $\hat{\psi} = \psi$ on the subalgebra of $\hat{G}(n,r)$ generated by the E_i , F_i and 1_{λ} . $\hat{\psi}$ is an isomorphism of \mathbb{Z} -algebras.

6.1 Multiplication rules

Write

$$E_i = \sum_{\lambda \in \Lambda_0(n,r)} E_{i,\lambda}$$

$$F_i = \sum_{\lambda \in \Lambda_0(n,r)} F_{i,\lambda}.$$

Then $E_{i,\lambda} = E_i 1_{\lambda}$ and $F_{i,\lambda} = F_i 1_{\lambda}$.

Lemma 6.1.1. Let $A \in \Lambda_1(n,r)$, $i \in [1,n]$ and let $\lambda = \text{ro } A$. The following multiplication rules hold:

$$E_i e_A = \begin{cases} e_{A+X_{i,p}} & \text{if } \lambda_{i+1} > 0\\ 0 & \text{if } \lambda_{i+1} = 0; \end{cases}$$

where p is such that $A_{i+1,p} > 0$ and $A_{i+1,j} = 0$ for j > p. Also

$$F_i e_A = \begin{cases} e_{A-X_{i,p}} & \text{if } \lambda_i > 0\\ 0 & \text{if } \lambda_i = 0; \end{cases}$$

where p is such that $A_{i,p} > 0$ and $A_{i,j} = 0$ for j < p.

Similar formulas for right multiplication by E_i and F_i are obtained by applying the transpose.

Lemma 6.1.2. The following relations hold in $\hat{G}(n,r)$ $(n \geq 3)$:

$$E_i E_j - E_j E_i = 0$$
$$F_i F_i - F_i F_i = 0$$

unless |j - i| = 1.

$$E_i E_{i+1}^2 - E_{i+1} E_i E_{i+1} = 0$$

$$E_i^2 E_{i+1} - E_i E_{i+1} E_i = 0$$

$$F_{i+1} F_i^2 - F_i F_{i+1} F_i = 0$$

$$F_{i+1}^2 F_i - F_{i+1} F_i F_{i+1} = 0$$

$$E_i F_j - F_j E_i = 0$$

unless j = i.

$$E_i F_i - F_i E_i + \sum_{\lambda: \lambda_i = 0, \lambda_{i+1} > 0} 1_{\lambda} - \sum_{\lambda: \lambda_i > 0, \lambda_{i+1} = 0} 1_{\lambda} = 0.$$

6.2 Presentation of the generic algebra.

Recall that $\Lambda_0(n,r)$ denotes the set of compositions of r into n parts. That is, $\Lambda_0(n,r)$ is the set of tuples $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$ with each λ_i non-negative and $\lambda_1 + \dots + \lambda_n = r$. Given $i \in [1, n]$, let $\varepsilon_i = (0, \dots, 1, \dots, 0) \in \mathbb{Z}^n$ be the i-th elementary vector and let $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$. Then given $\lambda \in \Lambda_0(n,r)$, we have $\lambda + \alpha_i \in \Lambda_0(n,r)$ provided $\lambda_{i+1} > 0$ and $\lambda - \alpha_i \in \Lambda_0(n,r)$ provided $\lambda_i > 0$. Let $\Gamma = \Gamma(n,r)$ be the quiver with set of vertices $\Lambda_0(n,r)$ with arrows $e_{i,\lambda} \colon \lambda \to \lambda + \alpha_i$ (if $\lambda_{i+1} > 0$) and $f_{i,\lambda} \colon \lambda \to \lambda - \alpha_i$ (if $\lambda_i > 0$). Thus there are no arrows between λ and μ unless $\lambda = \mu \pm \alpha_i$ for some $i \in [1,n]$.

If $n \geq 3$ then neighbouring vertices are connected by two arrows, one of each direction. In the case n = 2, neighbouring vertices are joined by four arrows, two of each direction. The $\mathbb{Z}\Gamma$ denote the path \mathbb{Z} algebra of Γ . By construction of Γ , there is a \mathbb{Z} -algebra homomorphism $\mathbb{Z}\Gamma \to \hat{G}(n,r)$ with $e_{i,\lambda} \mapsto E_{i,\lambda}$, $f_{i,\lambda} \mapsto F_{i,\lambda}$ and $k_{\lambda} = 1_{\lambda}$. We aim to describe the image and kernel of the morphism to give a presentation of the generic algebra by a quiver with relations, when possible. In general, we should obtain a presentation of a subalgebra of the generic algebra consisting of the so-called aperiodic elements (c.f. [1]).

 $A \in \Lambda_1(n,r)$ is said to be aperiodic if for each $l \in \mathbb{Z} \setminus \{0\}$ there exists $i \in \mathbb{Z}$ such that $a_{i,i+l} = 0$. Denote the set of aperiodic elements in $\Lambda_1(n,r)$ by $\Lambda_1(n,r)^{ap}$. Note that $\Lambda_1(n,r)^{ap} = \Lambda_1(n,r)$ if r < n.

Proposition 6.2.1. The subalgebra of $\hat{G}(n,r)$ generated by $E_{i,\lambda}$, $F_{i,\lambda}$ and 1_{λ} has \mathbb{Z} -basis $\{e_A : A \in \Lambda_1(n,r)^{ap}\}$, where $\Lambda_1(n,r)^{ap} \subset \Lambda_1(n,r)$ is the set of aperiodic elements.

Further directions

7.1 Further results on affine zero Schur algebras

[1] Investigate link between this generic product and the generic extension of representations. Shifting to the non-negative subalgebra to do computations purely in terms of generic extensions of quiver representations.

7.2 Deformed group algebras of symmetric groups

[2] Degenerate group algebras of symmetric groups: write down a presentation of the degenerate group algebras, with generators given by the transpositions, or 2-cycles. Type up the computations done for degenerate group algebras for S_3 and S_4 . Formulate propositions for the general case: the transpositions generate the degenerate group algebra; lemma: 'these' relations hold; these generators and relations give a presentation of the degenerate group algebras.

Terminology: deformed group algebra.

Bibliography

[1] George Lusztig. "Aperiodicity in quantum affine gln". In: Asian Journal of Mathematics 3.1 (1999), pp. 147–178.