My Viewpoints on Subspace Theory

Huiping Huang (Homepage: https://huipinghuang.work)

November 2018

Consider a data model as $\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t) + \mathbf{n}(t)$, where t denotes the time index, \mathbf{A} is the steering matrix, and $\mathbf{s}(t)$ and $\mathbf{n}(t)$ stand for signal and noise components, respectively. $\mathbf{x}(t) \in \mathbb{C}^{M \times 1}$, $\mathbf{s}(t) \in \mathbb{C}^{K \times 1}$, $\mathbf{n}(t) \in \mathbb{C}^{M \times 1}$, $\mathbf{A} \in \mathbb{C}^{M \times K}$, and M > K. The covariance matrices are defined as follows

$$\mathbf{R}_{x} \triangleq E\{\mathbf{x}(t)\mathbf{x}^{H}(t)\}$$

$$\mathbf{R}_{s} \triangleq E\{\mathbf{s}(t)\mathbf{s}^{H}(t)\}$$

$$\mathbf{R}_{n} \triangleq E\{\mathbf{n}(t)\mathbf{n}^{H}(t)\}$$
(1)

where $E\{\cdot\}$ and $(\cdot)^H$ are mathematical expectation and Hermitian transport operators, respectively. It is easy to find that

$$\mathbf{R}_x = \mathbf{A}\mathbf{R}_s\mathbf{A}^H + \mathbf{R}_n. \tag{2}$$

Defining $\bar{\mathbf{R}}_s \triangleq \mathbf{A}\mathbf{R}_s\mathbf{A}^H$, (2) can be rewritten as

$$\mathbf{R}_x = \bar{\mathbf{R}}_s + \mathbf{R}_n. \tag{3}$$

According to the definition of $\bar{\mathbf{R}}_s$ and M>K, it can be found that $\bar{\mathbf{R}}_s$ is a rank-reduction matrix with rank $Rank(\bar{\mathbf{R}}_s)=K$, where $Rank(\cdot)$ is the rank of a matrix. Therefore, the eigenvalue decomposition of $\bar{\mathbf{R}}_s$ can be depicted as follows

$$\bar{\mathbf{R}}_s = \mathbf{U}\mathbf{\Sigma}\mathbf{U}^H \tag{4}$$

where \mathbf{U} and $\mathbf{\Sigma}$ contain all the eigenvectors and eigenvalues of $\mathbf{\bar{R}}_s$, respectively, and $\mathbf{\Sigma}$ is a diagonal matrix which can be formulated as $\mathbf{\Sigma} = diag\{\sigma_1, \sigma_2, \cdots, \sigma_K, 0, \cdots, 0\}$, where $diag\{\cdot\}$ denotes a diagonal matrix.

As for \mathbf{R}_n , if the noise component is independent and identically distributed Gaussian process, it satisfies $\mathbf{R}_n = \sigma_0 \mathbf{I}$, where σ_0 is the noise power and \mathbf{I} stands for the identity matrix. Because the matrix \mathbf{U} in (4) is a unitary matrix, \mathbf{R}_n can be further reformulated as follows

$$\mathbf{R}_n = \mathbf{U} \mathbf{\Sigma}_0 \mathbf{U}^H \tag{5}$$

where $\Sigma_0 = diag\{\sigma_0, \sigma_0, \cdots, \sigma_0\}.$

Substituting both (4) and (5) back into (3), one can obtain

$$\mathbf{R}_{r} = \mathbf{U} \mathbf{\Sigma}_{r} \mathbf{U}^{H} \tag{6}$$

where $\Sigma_x = \Sigma + \Sigma_0 = diag\{\sigma_1 + \sigma_0, \sigma_2 + \sigma_0, \dots, \sigma_K + \sigma_0, \sigma_0, \dots, \sigma_0\}$. The equation (6) can be viewed as the eigenvalue decomposition of \mathbf{R}_x .

Comparing (4) and (6), it can be seen that $\bar{\mathbf{R}}_s$ and \mathbf{R}_x share the same eigenvectors (i.e., U). (Conclusion 1)

The signal subspace, I think, should be defined as $Span\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_K\}$, where \mathbf{a}_k is the k-th column of \mathbf{A} , i.e., $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_K]$. Because of $\mathbf{\bar{R}}_s = \mathbf{A}\mathbf{R}_s\mathbf{A}^H$, it can be obtained that

$$Col(\bar{\mathbf{R}}_s) = Span\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_K\}$$
 (7)

where $Col(\cdot)$ stands for the column subspace. Denoting $\mathbf{U} = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_M]$, and based on (4), we have

$$Col(\bar{\mathbf{R}}_s) = Span\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_K\}.$$
 (8)

Comparing (7) and (8), we can have $Span\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_K\} = Span\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_K\}$, i.e., the signal subspace is exactly equal to the subspace spanned by the K eigenvectors corresponding to K biggest eigenvalues of \mathbf{R}_x . (Conclusion 2)

The noise subspace should be defined as the subspace which is orthogonal with the signal subspace. Because of the orthogonality between every two eigenvectors of \mathbf{R}_x , we have $Span\{\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_K\}$ is orthogonal with $Span\{\mathbf{u}_{K+1},\cdots,\mathbf{u}_M\}$. Therefore, $Span\{\mathbf{u}_{K+1},\cdots,\mathbf{u}_M\}$ can be viewed as the noise subspace, i.e., the noise subspace is equal to the subspace spanned by the M-K eigenvectors corresponding to M-K smallest eigenvalues of \mathbf{R}_x . (Conclusion 3)