LEYES PONDERALES

1 -LEY DE LA CONSERVACIÓN DE LA MASA (LAVOISIER ,1787)

La suma de las masas de las substancias reaccionantes es igual a la suma de las masas de las substancias resultantes.

(En toda reacción hay una variación de energía y por tanto de la masa , $E = mc^2$, pero puede considerarse despreciable en el entorno práctico). Eiem

$$N_2$$
 + $3 H_2 \Leftrightarrow 2NH_3$
28 gr. 6 gr. 34 gr

2 - LEY DE LAS PROPORCIONES DEFINIDAS (PROUST, 1801)

Cuando varios elementos se unen para formar una substancia determinada, lo hacen siempre en proporciones definidas y fijas. Ejem. 1.-

$$2Na + S \Leftrightarrow Na_2S \qquad \frac{masa.del.Na}{masa.del.S} = \frac{46}{32} = \frac{23}{16}$$

Ejem. 2.-

2 gr. De Hidrógeno + 16 gr. De Oxígeno
$$\Rightarrow \frac{2gr.H.}{16gr.Ox.}$$

10 gr. " + 80 Gr. "
$$\Rightarrow \frac{10 gr.H.}{80 gr.Ox.}$$

0,5 gr. " + 4 gr. "
$$\Rightarrow \frac{0.5gr.H.}{4gr.Ox.}$$

En todos los casos se cumple que : $\frac{1gr.Hidr\'{o}geno}{8gr.Ox\'{i}geno}$

3 - LEY DE LAS PROPORCIONES MULTIPLES (DALTON, 1803)

Cuando dos elementos se unen para formar varias substancias , a una cantidad fija de uno de ellos, le corresponden cantidades del otro que forman entre si una relación de números sencillos.

Ejemplos:

La relación entre las masas
$$\Longrightarrow \frac{16}{12}$$
; $\frac{32}{12} \Rightarrow \frac{32}{16} = \frac{2}{1}$

Relación :
$$\frac{Masa - Nitrógeno}{Masa - Oxígeno}$$
 : $\frac{7gr}{4gr}$: $\frac{7gr}{8gr}$: $\frac{7gr}{12gr}$

Relación entre las masa de Oxígeno que hay entre los diferentes compuestos:

$$\frac{4gr.}{8gr.} = \frac{1gr.}{2gr.}; \quad \frac{4gr.}{12gr.} = \frac{1gr.}{3gr.}; \quad \frac{8gr.}{12gr.} = \frac{2gr.}{3gr.}$$

La Ley de Dalton se cumple ya que, hemos obtenido una relación de Números sencillos.

El Oxígeno, O, y el Níquel, Ni, forman dos compuestos diferentes. uno tiene 21,4 % de Oxígeno y 78,6 % de Ni y el otro, 29,0 de Ox. Y 71,0 % de Ni. ¿ Cumple la Ley de as proporciones múltiples?

1° 21,4 % O , 78,6 % de Ni
$$\Rightarrow$$
 En 100 gr. \Rightarrow 21,4 gr. de O. y 78,6 gr. de Ni 2° 29,0 % O , 71,0 % de Ni \Rightarrow " \Rightarrow 29,0 gr. de O. y 71,0 gr. de Ni

La masa de Ni por 1 Gr. de O. en todos los compuestos :

1 gr. de O.
$$\frac{78,6gr.Ni}{21,4gr.O} = 3,67gr. \text{ Ni / gr. Ox.}$$

1 gr. de O. $\frac{71,0gr.Ni}{29,0gr.O} = 2,45 \text{ gr. Ni / gr. Ox.}$
 $\frac{3,67gr.Ni}{2,45gr.O} = 1,5 = 3/2 \implies \text{Se cumple.}$

Se hacen reaccionar diversas masas de C y O con los siguientes resultados :

Masas iniciales (gr.)		Masa finales (gr.)		Compuesto
C	0	C	O	
6	10	0	2	14
10	24	1	0	33
21	57	0	1	77
2	2	0,5	0	3,5

Masa que han reaccionado (gr.)

C O

$$6-0 = 6$$
 $10-2=8$ $\frac{6}{8} = \frac{3}{4}$ (a)
 $10-1 = 9$ $24-0=24$ $\frac{9}{24} = \frac{3}{8}$ (b)
 $21-0 = 21$ $57-1=56$ $\frac{21}{56} = \frac{3}{8}$ (b)
 $2-0,5 = 1,5$ $2-0=2$ $\frac{1,5}{2} = \frac{3}{4}$ (a)

Compuestos diferentes a y b.

4 - LEY DE LAS PROPORCIONES RECÍPROCAS (RICHTER)

(PESO EQUIVALENTE)

Los pesos de elementos diferentes que se combinan con un mismo peso de un elemento dado, son los pesos relativos de aquellos elementos cuando se combinan entre sí o bien múltiplos o submúltiplos de estos pesos.

H 0,126 gr. + 1gr. de O para dar H₂O 0,126gr.H + 4,413gr.Cl
$$\Rightarrow$$
 HCl Cl 4,4321gr. + 1 " " O " " Cl₂O 0,126gr.H + 0,3753gr.C \Rightarrow CH₄ C 0,3753gr. + 1 " " O " " CO₂ 4,4321gr.Cl + 0,3753gr.C \Rightarrow CCl₄ El peso de un elemento que se combina con 8 partes (gr.) de Oxigeno o con 1,008gr. de Hidrógeno se le denomina **Peso Equivalente.**

OTROS EJEMPLOS DE APLICACIÓN DE LAS LEYES PONDERALES

1-
$$A + B + C \Rightarrow D + E$$

30 gr. 15 gr. 40 gr. 80 gr. 5 gr. (1^a Ley 30+15+40 = 85, 85 = 85)

55 gr. A
$$\frac{40 gr.C}{30 gr.A}$$
 = 73,33 gr. C ,, 27,5 gr. B $\frac{40 gr.C}{15 gr.B}$ = 73,33 gr. C (2^a Ley)

Cálculo de los gr. de E: 55 gr. A
$$\frac{5gr.E}{30 gr.A}$$
 = 9,16 gr. E

Cálculo de los gr. de D : 55 gr. A
$$\frac{80 gr. D}{30 gr. A}$$
 = 146,66 gr. D

2 -
$$28 \text{ gr.}$$
 6 gr. 34 gr.
 $N_2 + 3H_2 \iff 2NH_3$
 25 gr. ?

25 gr. N₂
$$\frac{6gr.H_2}{28gr.N_2}$$
 = 5,36 gr.

50 gr. Na
$$\frac{32gr.S}{42gr.Na}$$
 = 34,5 gr. S ,,, 50 gr. Na $\frac{78gr.Na_2S}{46gr.Na}$ = 84,78 gr.Na₂S

- **4 -** El Oxígeno y el Cobre se unen en dos proporciones y forman dos óxidos de cobre que contienen 79,9 % y 88,8 % de Cobre respectivamente. Calcular la cantidad de Cobre que reacciona con 1 gr. de Oxígeno. (3ª LEY)
- I En 100 gr. de Oxido : 79,9 gr. de Cu \Rightarrow 20,1 gr. de Oxígeno.
- II En 100 gr. de Oxido : 88,83 gr. de Cu \Rightarrow 11,17 gr. de Oxígeno

Con 1 gr. de Oxígeno :

I 79,9 gr. Cu
$$\rightarrow$$
 20,1 gr. de Ox.

X gr. Cu
$$\to$$
 1 gr. de Ox. $X = \frac{97.9}{20.21} = 3.975 \frac{gr.de.Cu}{gr.de.Ox}$

II 88,83 gr. Cu
$$\rightarrow$$
 11,17 gr. Ox.

X gr. Cu
$$\rightarrow$$
 1 gr. Ox. $X = \frac{88,83gr.Cu}{11,17gr.Ox.} = 7,953 \frac{gr.Cu}{gr.Ox.}$

Es decir con 1 gr. de Oxígeno 3,975 y 7,953
$$\Rightarrow \frac{7,953}{3,975} = 2,0008 \Rightarrow \text{CuO y Cu}_2\text{O}$$

- **5** El Nitrógeno reacciona con el Oxígeno para dar un Óxido de Nitrógeno, de forma que a partir de 40 grs. de Nitrógeno reaccionan 75 grs. de Oxígeno para producir el Óxido correspondiente. Calcular :
- a) Masa de Nitrógeno que se necesita para reaccionar con 65 grs. de Oxígeno. b) Masa del Óxido.
- a) N₂ + O₂ \rightarrow Oxido de Nitrógeno

75 grs. Ox.
$$\rightarrow$$
 40 grs. N. $X = \frac{40 \cdot 65}{75} = 34.6$ grs. de N
65 grs. Ox. \rightarrow X grs. N.

b)
$$65 \text{ grs.Ox.} \cdot \frac{40 grs. N}{75 grs. Ox.} = 34,6 \text{ grs. de N}$$

$$\begin{array}{cccc}
\mathbf{N} & + & \mathbf{O} & \Leftrightarrow & \mathbf{NO} \\
34,6 & + & 65 & \text{grs.} & \Rightarrow & 99,6 & \text{grs.}
\end{array}$$