MEĐUISPIT IZ ELEKTRONIKE 1

ZADACI

ZADATAK 1. Za sklop na slici a) priključen je ulazni napon $u_{UL}(t)$ prema slici b). U t=0 napon na kondenzatoru iznosi $U_{C0}=4$ V, a $u_{UL}(0)=-4$ V.

- a) Odrediti vremensku konstantu (1 bod).
- b) Napisati izraze za izlazni napon u_{IZ} u intervalima 0 < t < 5 ms, 5 ms < t < 10 ms i t > 10 ms, te izračunati vrijednosti izlaznog napona u t = 1 ms, t = 9 ms i t = 12 ms (4 boda).
- c) Na istom grafu nacrtati ulazni i izlazni napon (1 bod).

ZADATAK 2. Silicij *n*-tipa homogeno je dopiran s primjesom koncentracije $2 \cdot 10^{16}$ cm⁻³. Nakon dodavanja druge primjese u silicijsku pločicu, Fermijeva energija će se pomaknuti za 0,1 eV, a specifična vodljivost će se smanjiti. T = 300 K.

- a) Odrediti hoće li se Fermijeva energija pomaknuti prema dnu vodljivog pojasa ili prema vrhu valentnog pojasa? Obrazložiti (1 bod).
- b) Odrediti tip i koncentraciju druge primjese (4 boda).
- c) Odrediti koncentracije slobodnih nosilaca nakon prvog i drugog dopiranja (1 bod).

ZADATAK 3. Silicijska pn dioda na n strani ima koncentraciju primjesa $5\cdot10^{16}$ cm⁻³. Pokretljivost šupljina iznosi 380 cm²/Vs. Efektivna širina n-strane je puno šira od difuzijske duljine šupljina. Vrijeme života šupljina je 1 μ s. Pokretljivost elektrona na p-strani iznosi 350 cm²/Vs, a efektivna širina p-strane je 1 μ m i puno je manja od difuzijske duljine elektrona. Površina poprečnog presjeka pn-diode je 5 mm², T = 300 K. Dioda je priključena na napon U = 0,65 V. Elektronska i šupljnska komponenta struje su jednake.

- a) Izračunati koncetraciju akceptora na p-strani (3 boda).
- b) Izračunati struju kroz diodu (2 boda).
- c) Izračunati širinu osiromašenog područja (2 boda).
- d) Skicirati raspodjelu manjinskih nosilaca na *p* i *n* strani diode. Potrebno je izračunati i označiti sve rubne i ravnotežne koncentracije, te označiti širine strana i difuzijske duljine **(3 boda)**.

ZADATAK 4. U radnoj točki B strmina MOSFET-a iznosi 2 mA/V. Pretpostaviti da je tranzistor idealan, tj. da se može zanemariti porast struje odvoda u području zasićenja ($\lambda = 0$).

- a) Izračunati strujni koeficijent K (2 boda).
- b) Izračunati napon praga U_{GS0} (2 boda).
- c) Izračunati napon U_{DS} u točki A uz koji će faktor pojačanja μ iznositi 3 (3 boda).
- d) Odrediti tip MOSFET-a (*n* ili *p* kanalni, obogaćeni ili osiromašeni) uz kratko obrazloženje (**1 bod**).

PITANJA

1. Naponsko pojačanje pojačala na slici uz odspojen izlaz je $A_v = u_{iz}/u_{ul} = 150$. Kada se na pojačalo spoji trošilo otpora $R_T = 2 \text{ k}\Omega$ naponsko pojačanje pojačala je $A_V = u_{iz}/u_{ul} = 100$, a strujno pojačanje je $A_I = i_{iz}/i_{ul} = 50$. Koliki su ulazni i izlazni otpori R_{ul} i R_{iz} pojačala (2 boda)?

a)
$$R_{ul} = 9 \text{ k}\Omega$$
, $R_{iz} = 1 \text{ k}\Omega$.

b)
$$R_{ul} = 1 \text{ k}\Omega$$
, $R_{iz} = 4 \text{ k}\Omega$.

c)
$$R_{ul} = 1 \text{ k}\Omega$$
, $R_{iz} = 1 \text{ k}\Omega$.

d)
$$R_{ul} = 3 \text{ k}\Omega$$
, $R_{iz} = 4 \text{ k}\Omega$.

e)
$$R_{ul} = 9 \text{ k}\Omega$$
, $R_{iz} = 4 \text{ k}\Omega$.

- **2.** Silicij je dopiran samo s donorima koncentracije N_D . Ako temperatura poraste za 50°C, za Fermijevu energiju (E_F) i koncentracije manjinskih nosilaca $(p_{\partial n})$ vrijedi **(2 boda)**:
 - a) E_F se pomiče prema vrhu valentnog pojasa, p_{0n} raste,
 - b) E_F se pomiče prema dnu vodljivog pojasa, p_{0n} opada,
 - c) E_F se ne mijenja, p_{0n} se ne mijenja,
 - d) E_F se pomiče prema vrhu valentnog pojasa, p_{0n} opada,
 - e) E_F se pomiče prema dnu vodljivog pojasa, p_{0n} raste.
- 3. Za silicijsku pn-diodu s obje široke strane vrijedi da je $N_{A1} = 100 \cdot N_D$. Nakon toga, koncentracija primjesa na p-strani poveća se 10 puta, a na n-strani ostane nepromijenjena tako da je $N_{A2} = 1000 \cdot N_D$. Nakon promjene, za komponente struje zasićenja i širina osiromašenog područja vrijedi sljedeća tvrdnja (2 boda): $(d_{B1}$ je širina osiromašenog područja prije, a d_{B2} nakon povećanja koncentracije na p-strani)
 - a) $I_{Sn} << I_{Sp}, d_{B2} \approx d_{B1},$
 - b) $I_{Sn} >> I_{Sp}, d_{B2} >> d_{B1},$
 - c) $I_{Sn} \ll I_{Sp}, d_{B2} \ll d_{B1}$
 - d) $I_{Sn} >> I_{Sp}, d_{B2} \approx d_{B1},$
 - e) $I_{Sn} \ll I_{Sp}$, $d_{B2} >> d_{B1}$.

- **4.** Silicijska pn-dioda spojena je na napon $U_D = 0,65 \text{ V}$ i u toj radnoj točki vodi struju od 2,7 mA. Što se događa s naponom na diodi ako vanjski krug osigurava konstantnu struju od 2,7 mA, a temperatura poraste s 300 K na 340 K? Što se događa s difuzijskim kapacitetom pri porastu temperature ako se pretpostavi da vrijeme života manjinskih nosilaca ne ovisi o temperaturi (**2 boda**):
 - a) Napon na diodi raste; difuzijski kapacitet raste.
 - b) Napon na diodi raste; difuzijski kapacitet pada.
 - c) Napon na diodi pada; difuzijski kapacitet raste.
 - d) Napon na diodi pada; difuzijski kapacitet pada.
 - e) Napon na diodi je konstantan; difuzijski kapacitet pada.
- **5.** Na slici je prikazana strujno-naponska karakteristika fotoelementa s radnom točkom Q. Koji je to fotoelment i kako radi (**2 boda**)?
 - a) Osvijetljena sunčana ćelija uz kratkospojen izlaz.
 - b) Osvijetljena fotoćelija.
 - c) Osvijetljena sunčana ćelija uz odspojen izlaz.
 - d) Propusno polarizirana svijetleća dioda.
 - e) Osvijetljena sunčana ćelija sa spojenim trošilom konačnog otpora.

6. Za sklop ispravljača na slici odrediti valni oblik izlaznog napona (2 boda).

- 7. Na slici su prikazane izlazne karakteristike nekog MOSFET-a. Za tip tranzistora i faktor naponskog pojačanja u radnim točkama A i B vrijedi (2 boda):
 - a) *n*-kanalni tranzistor obogaćenog tipa i $\mu_A > \mu_B$,
 - b) p-kanalni tranzistor obogaćenog tipa i $\mu_A < \mu_B$,
 - c) *n*-kanalni tranzistor osiromašenog tipa i $\mu_A < \mu_B$,
 - d) p-kanalni tranzistor osiromašenog tipa i $\mu_A < \mu_B$,
 - e) *n*-kanalni tranzistor osiromašenog tipa i $\mu_A > \mu_B$.

1.

a)
$$\tau = R \cdot C = 5.6 \text{ ms}$$

b)
$$0 < t < 5 \text{ ms}$$

$$u_{IZ} = u_{UL} + U_{C0} = 0 \text{ V}$$

$$5 \text{ ms} < t < 10 \text{ ms}$$

$$u_{IZ}(5 \text{ ms} < t < 10 \text{ ms}) = 9 \cdot e^{\frac{t-5 \text{ ms}}{\tau}} [V]$$

$$t > 10 \text{ ms}$$

$$u_{IZ}(t > 10 \text{ ms}) = -1.315 \cdot e^{-\frac{t-10 \text{ ms}}{\tau}} [V]$$

$$u_{IZ}$$
 (1 ms) = 0 V

$$u_{IZ}$$
 (9 ms) = 4,406 V

$$u_{IZ}$$
 (12 ms) = -0,92 V

c)

2.

- a) Fermijev nivo će se pomaknuti prema vrhu valentnog pojasa.
- b) Akceptori; $N_A = 1.96 \cdot 10^{16} \text{ cm}^{-3}$

c)
$$n_1 = 2 \cdot 10^{16} \text{ cm}^{-3}$$

 $p_1 = \frac{n_i^2}{n_1} = 1,05 \cdot 10^4 \text{ cm}^{-3}$
 $n_2 = 4,25 \cdot 10^{14} \text{ cm}^{-3}$
 $p_2 = \frac{n_i^2}{n_2} = 4,95 \cdot 10^5 \text{ cm}^{-3}$

3.

a)
$$N_A = 1,444 \cdot 10^{18} \text{ cm}^{-3}$$

b)
$$I = 17,35 \text{ mA}$$

c)
$$d_B = 7.6 \, \mu \text{m}$$

d) SKICA (
$$p_{0n} = 4205 \text{ cm}^{-3}$$
; $n_{0p} = 147 \text{ cm}^{-3}$; $p_{n0} = 3,45 \cdot 10^{14} \text{ cm}^{-3}$; $n_{p0} = 1,2 \cdot 10^{13} \text{ cm}^{-3}$)

4.

a)
$$K = 0.5 \text{ mA/V}^2$$

b)
$$U_{GS0} = -2 \text{ V}$$

c)
$$U_{DSA} = 3 \text{ V}$$

d) n-kanalni; osiromašeni

PITANJA

	A	В	C	D
1.	C	E	D	E
2.	A	В	C	A
3.	A	C	E	E
4.	D	E	D	C
5.	E	В	В	A
6.	В	D	C	A
7.	В	D	A	C