TheNumbersBook.com 2010

Stewart: # 4.4, 4.6, 4.8, 4.11, 4.13, 4.16

4.4 Show that a homomorphic image of a noetherian ring is noetherian.

Let ϕ : $R \to S$ be a ring homomorphism, where R is noetherian. By First Isomorphism Theorem,

$$R/\ker(\phi) \cong \phi(R)$$

so it's sufficient to show $R/\ker(\phi)$ is noetherian.

Consider the natural projection, $\pi: R \to R/\ker(\phi)$ (which is surjective by 1st Isomorphism Theorem). We appeal to Problem 7.3.24 and use the following two facts:

- (1) If *J* is an ideal of $R / \ker(\phi)$, then $\phi^{-1}(J)$ is an ideal of *R*.
- (2) If *I* is an ideal of *R* then $\phi(I)$ is an ideal of $R/\ker(\phi)$.

Let $J \subseteq R / \ker(\phi)$ be an ideal. By Problem 7.3.24, $\pi^{-1}(J)$ is an ideal in R and since R is noetherian, it is finitely generated, say

$$\pi^{-1}(J) = \langle x_1, \cdots, x_n \rangle$$

for a finite number of elements $x_1, \dots, x_n \in R$. The natural projection sends x_i to $x_i + \ker(\phi)$, so we get

$$J = \pi(\pi^{-1}(J))$$

$$= \pi(\langle x_1, \dots, x_n \rangle)$$

$$= \langle \pi(x_1), \dots, \pi(x_n) \rangle$$

$$= \langle x_1 + \ker(\phi), \dots, x_n + \ker(\phi) \rangle$$

$$= \langle x_1 + \ker(\phi), \dots, x_r + \ker(\phi) \rangle$$
 (1)

[note on (1): since x_i and x_j may both be in the same coset, the number of generators for J will be less than or equal to number of generators for $\pi^{-1}(J)$; hence, the notation $x_r + \ker(\phi)$ rather than $x_n + \ker(\phi)$]. So $x_1 + \ker(\phi)$, \cdots , $x_r + \ker(\phi)$ are the generators of J, thus J is finitely generated. Since this is true for any ideal, $R/\ker(\phi)$ is noetherian. It follows that the image of R is noetherian.

4.6 Find a ring that is not noetherian.

Let $R[x_1, x_2, x_3, \cdots]$ be a polynomial ring in infinitely many variables x_1, x_2, x_3, \cdots . Note that $\langle x_1 \rangle$ is a proper subring of $\langle x_1, x_2 \rangle$, both of which are ideals in $R[x_1, x_2, x_3, \cdots]$. In general,

$$\langle x_1 \rangle \subset \langle x_1, x_2 \rangle \subset \langle x_1, x_2, x_3 \rangle \subset \cdots$$

is an ascending chain of ideals that does not terminate because there are infinitely many variables. By Proposition 4.5, $R[x_1, x_2, x_3, \cdots]$ is not noetherian.

4.8 Is $10 = (3+i)(3-i) = 2 \cdot 5$ an example of non-unique factorization in $\mathbb{Z}[i]$? Give reasons for your answer.

No. In order to have an example of non-unique factorization, we require that

$$10 = p_1 \cdots p_r = q_1 \cdots q_s$$

and there exists no permutation of $\{1, \dots, r\}$ such that p_i and $q_{\pi(i)}$ are associates for some $i = 1, \dots, r$. However, 3 + i, 3 - i, 2 and 5 factorize as follows:

$$3+i = (1-i)(1+2i)$$

$$3-i = (1+i)(1-2i)$$

$$2 = (1+i)(1-i)$$

$$5 = (1+2i)(1-2i)$$

Indeed, up to reordering, (3+i)(3-i) and $2 \cdot 5$ is the factorization (1+i)(1-i)(1+2i)(1-2i) and so we have

$$10 = (1+i)(1-i)(1+2i)(1-2i) = (1+i)(1-i)(1+2i)(1-2i)$$

Clearly, each of the factors is an associate with itself, so this is not an example of non-unique factorization.

4.11 Show in $\mathbb{Z}[\sqrt{-5}]$ that $\sqrt{-5}|(a+b\sqrt{-5})$ iff 5|a. Deduce that $\sqrt{-5}$ is prime in $\mathbb{Z}[\sqrt{-5}]$. Hence conclude that the element 5 factorizes uniquely into irreducibles in $\mathbb{Z}[\sqrt{-5}]$ although $\mathbb{Z}[\sqrt{-5}]$ does not have unique factorization.

(⇒) Given that $\sqrt{-5}|(a+b\sqrt{-5})$, then $\sqrt{-5}|a$ because $b\sqrt{-5}$ is a multiple of $\sqrt{-5}$. So $\exists c \in \mathbb{Z}[\sqrt{-5}]$ such that

$$\sqrt{-5}c = a$$

Squaring both sides and simplifying, we get

$$-5c^2 = a^2$$
,
 $5c' = a^2$ (for some $c' \in \mathbb{Z}[\sqrt{-5}]$)

So $5|a^2$. Since 5, $a \in \mathbb{Z}$ and 5 is prime in \mathbb{Z} , then a must have a factor of 5. Thus, 5|a.

 (\Leftarrow) Conversely, if 5|a then $\exists c \in \mathbb{Z}[\sqrt{-5}]$ such that 5c = a. Furthermore,

$$5c = a$$

$$5(5c^2) = a^2,$$

$$(-5)(-5c^2) = a^2,$$

$$\sqrt{-5}(\pm c\sqrt{-5}) = a,$$

$$\sqrt{-5}c' = a \text{ (for some } c' \in \mathbb{Z}[\sqrt{-5}])$$

so $\sqrt{-5}|a|$. It is also true that $\sqrt{-5}$ must divide any multiple of itself, so $\sqrt{-5}|b\sqrt{-5}|$. It follows that

$$\sqrt{-5}|(a+b\sqrt{-5})$$

This completes the first part of the problem.

We now show that $\sqrt{-5}$ is a prime in $\mathbb{Z}[\sqrt{-5}]$. Let $\alpha = a + b\sqrt{-5}$, $\beta = c + d\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$. Then $\alpha\beta = (ac - 5bd) + (ad + bc)\sqrt{-5}$. Now if $\sqrt{-5}|\alpha\beta$, then by the statement of the problem, 5|(ac - 5bd). Since 5bd is divisible by 5, so is ac, for $a, c \in \mathbb{Z}$. By definition of prime, 5|a or 5|c. By the statement of the problem, we have that $\sqrt{-5}|(a + b\sqrt{-5})$ or $\sqrt{-5}|(c + d\sqrt{-5})$. We have thus shown that if $\sqrt{-5}|\alpha\beta$ then $\sqrt{-5}|\alpha$ or $\sqrt{-5}|\beta$, the precise definition of a prime.

Finally we show that 5 has unique factorization. By Proposition 4.12, $\sqrt{-5}$ is an irreducible. Note that $5=-\sqrt{-5}\sqrt{-5}$. We show that this is a unique factorization. Let $5=\alpha\beta$ for α and β as defined above. Since $\sqrt{-5}$ is prime, $\sqrt{-5}|\alpha$ or $\sqrt{-5}|\beta$. Without loss of generality, say $\sqrt{-5}|\alpha$. Then we have

$$-\sqrt{-5}\sqrt{-5} = 5 = \sqrt{-5}c'\beta$$
 (1)

for some $c' \in \mathbb{Z}[\sqrt{-5}]$. We rewrite (1), and use the fact that $\mathbb{Z}[\sqrt{-5}]$ is an integral domain, to get that:

$$-\sqrt{-5}\sqrt{-5} = \sqrt{-5}c'\beta$$

$$\downarrow \qquad \qquad 0 = \sqrt{-5}\sqrt{-5} + \sqrt{-5}c'\beta$$

$$= \sqrt{-5}(\sqrt{-5} + c'\beta)$$

$$\downarrow \qquad \qquad 0 = \sqrt{-5} + c'\beta \text{ (since } \mathbb{Z}[\sqrt{-5}] \text{ is an ID)}$$

$$-\sqrt{-5} = c'\beta$$

If we now write out β , we see that $c'(c+d\sqrt{-5})=c'c+c'd\sqrt{-5}$ is divisible by $\sqrt{-5}$. Specifically, this means that $\sqrt{-5}|c'c$. In other words, $\exists k \in \mathbb{Z}[\sqrt{-5}]$ such that $k\sqrt{-5}=c'c$.

Plugging this into (1), we have

$$-\sqrt{-5}\sqrt{-5} = \alpha\beta$$

$$= \sqrt{-5}c'\beta$$

$$= \sqrt{-5}c'(c+d\sqrt{-5})$$

$$= \sqrt{-5}(c'c+c'd\sqrt{-5})$$

$$= \sqrt{-5}(\sqrt{-5}k+c'y\sqrt{-5}) \text{ (we just derived this)}$$

$$= \sqrt{-5}(\sqrt{-5})(k+c'y) \quad (2)$$

Adding $\sqrt{-5}\sqrt{-5}$ to both sides yields

$$-\sqrt{-5}\sqrt{-5} = \sqrt{-5}(\sqrt{-5})(k+c'y)$$

$$\downarrow \downarrow$$

$$0 = \sqrt{-5}\sqrt{-5}(1+k+c'y)$$

Since $\sqrt{-5}\sqrt{-5}$ is nonzero, it must be that 1+k+c'y=0, or equivalently, that k+c'y is a unit. How does this help us? Observing (2), we see that

$$\alpha\beta = \sqrt{-5}(\sqrt{-5})(k+c'y)$$
$$= u\sqrt{-5}\sqrt{-5}$$

for some unit $u \in \mathbb{Z}[\sqrt{-5}]$. In other words, 5 factorizes uniquely in $\mathbb{Z}[\sqrt{-5}]$. It is easy to see that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD, however, as 2 is an irreducible in $\mathbb{Z}[\sqrt{-5}]$ but not prime (Theorem 4.13).

4.13 Let p be an odd rational prime and $\zeta = e^{\frac{2\pi i}{p}}$. If α is a prime element in $\mathbb{Z}[\zeta]$, prove that the rational integers which are divisible by α are precisely the rational integer multiples of some prime rational integer q. (Hint: $\alpha | N(\alpha)$, so α divides some rational prime factor q of $N(\alpha)$. Now show α is not a factor of any $m \in \mathbb{Z}$ prime to q).

We begin by making some important observations:

- (1) \mathbb{Z} is a ED and the only units are ± 1 .
- (2) Bezout's identity: If $m, q \in \mathbb{Z}$ and gcd(m, q) = 1, then there exist $x, y \in \mathbb{Z}$ such that mx + qy = gcd(m, q) = 1.

Now $\alpha | N(\alpha)$ and since $\alpha \in \mathbb{Z}[\zeta]$, $N(\alpha) \in \mathbb{Z}$. This allows us to factorize $N(\alpha)$ into prime factors as follows:

$$N(\alpha) = q p_1 \cdots p_n$$

for rational prime integers $q, p_1, \dots, p_n \in \mathbb{Z}$. Since α is prime in $\mathbb{Z}[\zeta]$, α must divide some prime factor of \mathbb{Z} , say q. In other words, $\exists c \in \mathbb{Z}$ such that

$$\alpha c = q$$
 (*)

We now show that $\alpha \not| m$ for any gcd(m,q) = 1. Suppose not. That is, let $m \in \mathbb{Z}$ be prime to q and suppose that $\alpha | m$. Then there exists an integer c' such that

$$\alpha c' = m \qquad (**)$$

Now, using (2), we have that

$$1 = mx + qy,$$

= $(\alpha c')x + (\alpha c)y,$
= $\alpha(c'x + cy),$

which immediately implies that α and c'x + cy are units in $\mathbb{Z}[\zeta]$. By definition of prime (page 87), this contradicts our assumption that α is prime. We conclude that $\alpha \nmid m$ for any m prime to q.

We now prove the statement of the problem. If $\alpha | n$, a rational integer, then α divides some prime factor of n. Since we've shown that α is not a factor of any $m \in \mathbb{Z}$ prime to q, it follows that that factor must be precisely q. Thus, n is a multiple of q, as desired.

4.16 Let \mathbb{Q}_2 be the set of all rational numbers $\frac{a}{b}$, where $a, b \in \mathbb{Z}$ and b is odd. Prove that \mathbb{Q}_2 is a domain, and that the only irreducibles in \mathbb{Q}_2 are 2 and its associates.

We begin by showing that Q_2 is a domain. Let $\frac{a}{b}$, $\frac{x}{y}$ be two non-zero elements in Q_2 and suppose, by way of contradiction, that

$$\left(\frac{a}{b}\right)\left(\frac{x}{y}\right) = 0$$

Multiplying both sides by xy, we have

$$0 = \frac{a}{b} \frac{x}{y}$$
$$= \frac{ax}{by}$$
$$0(by) = ax$$
$$0 = ax$$

Since $a, x \in \mathbb{Z}$, which *is* an integral domain, we have that either a = 0 or x = 0. This, however, implies that either $\frac{a}{b} = 0$ or $\frac{x}{y} = 0$, contradicting our initial assumption. It follows that \mathbb{Q}_2 is a domain.

We begin by identifying all units of \mathbb{Q}_2 . Since $\frac{1}{b} \in \mathbb{Z}$ for b odd, **all odd integers are units**. We also know that if $b \in \mathbb{Q}_2$ for b odd, then $\frac{1}{b} \in \mathbb{Q}_2$. We therefore have the stronger

statement: if a and b are odd, then $\frac{a}{b}$ is a unit. We also prove the converse, if $\frac{a}{b}$ is a unit, then a and b are odd: Suppose $\frac{a}{b} \in \mathbb{Q}_2$ is a unit. Then $\exists \frac{x}{u} \in \mathbb{Q}_2$ such that

$$\frac{a}{b}\frac{x}{y} = 1$$

$$ax = by \text{ (multiply by } by\text{)}$$

Since both b and y are odd (because $\frac{1}{b}$, $\frac{1}{y} \in \mathbb{Q}_2$), we have that both a and x are odd. Specifically, a and b are odd, as required. We now have a complete characterization of units: $\frac{a}{b}$ is a unit iff both a and b are odd.

Now suppose that $\alpha \in \mathbb{Q}_2$ is irreducible and a non-unit. Then $\alpha = \frac{a}{b} \frac{c}{d}$ and either $\frac{a}{b}$ or $\frac{c}{d}$ is a unit (but not both). Suppose, without loss of generality, that $\frac{a}{b}$ is a unit. Then, by above property, both a and b are odd. Rewriting the expression yields $bd\alpha = ac$. Now if c is odd, then the righthand side is odd so the expression $bd\alpha$ must also be odd. This forces α to be a unit, contradicting the non-unit property of α . Thus, c = 2k for some $k \in \mathbb{Z}$. We now have the following equality

$$\alpha = \frac{2ak}{bd}$$

If 2|k then $\alpha = \frac{2}{1} \frac{ak}{bd}$ and both $\frac{2}{1}$ and $\frac{ak}{bd}$ have a factor of 2, and therefore not units. This contradicts the irreducibility of α because we've written α in terms of two non-units. Thus k is odd. We now have the following form: $\alpha = 2\frac{ak}{bd}$ where a, k, b, d are odd. Thus, the only irreducible elements are 2 and anything of the form 2u where u is a unit (associates of 2).

6