MR - Trabajo

11/12/2024

Regresión Lineal Múltiple

- 1. Análisis descriptivo
- 2. Modelo matemático

$$\mathbb{E}(\vec{Y}|\boldsymbol{X}) = \beta_0 + \sum_{i=1}^n \beta_i X_{ij}$$
(1)

Regresión Logística

• Antes de empezar, cargamos los datos Oro.rda

```
load("Datos/Oro.rda")
attach(Oro)
explicativas.oro <- Oro[,1:3]  # Almacenamos las explicativas
respuesta.oro <- Proximidad  # Almacenamos la variable de respuesta</pre>
```

1. Análisis descriptivo

Para el análisis descriptivo de las variables podemos comenzar con una visión general de las variables mediante las funciones str() y summary().

```
str(Oro)
```

```
## 'data.frame': 64 obs. of 4 variables:
## $ As : num 6.77 15.03 6.43 0.1 0.1 ...
## $ Sb : num 3.08 6.15 2.35 0.3 0.3 9.62 0.51 3.71 4.32 0.8 ...
## $ Corredor : int 1 1 1 0 0 1 0 1 0 0 ...
## $ Proximidad: int 1 1 1 0 0 1 0 1 0 0 ...
```

La salida de str() nos dice que los datos constan de 64 observaciones de 4 variables:

- As: Nivel de concentración de arsénico en la muestra de agua. (numérica)
- Sb: Nivel de concentración de antimonio en la muestra de agua. (numérica)
- Corredor: Variable binaria indicando si la zona muestreada está (1) o no está (0) en alguno de los corredores delimitados por las lineas sobre el mapa. (categórica)

Más la variable de respuesta Proximidad, que toma los valores 1 o 0 según que el depósito esté próximo o esté muy lejano al lugar.

summary(Oro)

```
##
                            Sb
                                          Corredor
                                                        Proximidad
          As
                                                             :0.0000
##
    Min.
           : 0.100
                     Min.
                             : 0.100
                                       Min.
                                               :0.0
                                                      Min.
##
    1st Qu.: 0.400
                     1st Qu.: 0.300
                                       1st Qu.:0.0
                                                      1st Qu.:0.0000
   Median : 1.235
                     Median : 0.650
                                       Median:0.5
                                                      Median :0.0000
##
##
   Mean
           : 4.645
                     Mean
                             : 2.039
                                       Mean
                                              :0.5
                                                      Mean
                                                             :0.4375
    3rd Qu.: 5.905
                     3rd Qu.: 2.487
                                                      3rd Qu.:1.0000
##
                                       3rd Qu.:1.0
##
    Max.
           :41.480
                     Max.
                             :18.200
                                       Max.
                                               :1.0
                                                      Max.
                                                             :1.0000
plot(explicativas.oro, pch=18,
     main="Representación por parejas de las explicativas")
```

Representación por parejas de las explicativas

main="Diagrama de cajas de las explicativas")

Diagrama de cajas de las explicativas

Concentración de Arsénico

Concentración de Antimonio

Histograma de la variable Corredor

2. Modelo matemático

Dado que la variable de respuesta, Proximidad, es binaria (0 o 1), deberemos de elegir un modelo que tenga esto en cuenta. En nuestro caso hemos elegido una transformación del modelo lineal, definida por la distribución logística de la ecuación 2

$$F(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}} \tag{2}$$

Por tanto, nuestro modelo logístico quedaría de la forma

$$\mathbb{E}(Y|\vec{X}_i) = p_i = \mathbb{P}(Y = 1|\vec{X}_i) = \frac{1}{1 + e^{-\eta}}$$
(3)

tal que $\eta = \vec{\beta}^t \vec{X_i}$. Además,

$$1 - p_i = \mathbb{P}(Y = 0 | \vec{X}_i) = 1 - \frac{1}{1 + e^{-\eta}} = \frac{e^{-\eta}}{1 + e^{-\eta}}$$
(4)

3. Interpretación del modelo

Para una mejor interpretación del modelo, podemos definir el \mathbf{odds}_i de manera que

$$odds_{i} = odds(Y|\vec{X}_{i}) = \frac{p_{i}}{1 - p_{i}} = e^{\eta} = e^{\vec{\beta}^{t}\vec{X}_{i}} = e^{\beta_{0}}e^{\beta_{1}X_{i1}} \cdots e^{\beta_{k}X_{ik}} = e^{\beta_{0}}\prod_{j=1}^{k}e^{\beta_{j}X_{ij}}, \quad 1 \leq i \leq n$$
 (5)

Este es un modelo multiplicativo, en el cual e^{β_0} es la respuesta cuando $\vec{X}_i = \vec{0}$, mientras que e^{β_j} , para $1 \le j \le k$, es el incremento multiplicativo $(e^{\beta_j})^l$ en el odds para algún incremento l en X_j

También podemos expresar el modelo aplicando logaritmos a la ecuación 5, de manera que

$$\ln(\frac{p_i}{1-p_i}) = \eta = \vec{\beta}^t \vec{X}_i \tag{6}$$

Los cuales denominaremos como $logit_i$. Estos logits son interpretables mucho más fácilmente, aunque debido a que

4. Inferencia

5. Bondad del ajuste