Задание 4.

Параллельный алгоритм умножения матрицы на вектор.

Разработка параллельной **MPI** программы и исследование ее эффективности.

Постановка задачи.

Разработать параллельную программу с использованием технологии MPI, реализующую алгоритм умножения плотной матрицы на вектор $A\mathbf{b}=\mathbf{c}$. Тип данных — double. Провести исследование эффективности разработанной программы на системе Blue Gene/P.

Параметры, передаваемые в командной строке:

- имя файла матрица A размером m x n
- имя файла вектор в
- имя файла результат, вектор с

Формат задания матрицы А – как в первом задании.

Требуется.

- 1. Разработать параллельную программу с использованием технологии MPI. Предусмотреть равномерное распределение элементов матрицы блоками строк или столбцов, в зависимости от соотношения m и n. Вектора b и с распределены по процессам равномерно.
- 2. Исследовать эффективность разработанной программы в зависимости от размеров матрицы и количества используемых процессов. Построить графики времени работы, ускорения и эффективности разработанной программы. Время на ввод/вывод данных не включать.
- 3. Исследовать влияние мэппинга параллельной программы на время работы программы.
- 4. Построить таблицы: времени, ускорения, эффективности.

m	n	мэппинг	32	64	128	256	512

Для 512 процессоров рассмотреть два варианта мэппинга — стандартный, принятый по умолчанию и произвольный. Для произвольного мэппинга предусмотреть генерацию строк файла для задания случайного значения XYZT.

Ускорение (*speedup*), получаемое при использовании параллельного алгоритма для p процессоров, определяется величиной:

Speedup(n) = $T_1(n)/T_p(n)$,

где T₁(n)- время выполнения задачи на одном процессоре.

Tp(n)- время параллельного выполнения задачи при использовании p процессоров.

- 5. Построить графики для каждого из заданных значений размеров матрицы (512x512, 1024x1024, 2048x2048, 4096x4096, 4096x1024, 1024x4096).
- 6. Подготовить отчет о выполнении задания, включающий таблицы с временами, графики, текст программы. Сделать выводы по полученным результатам (объяснить убывание или возрастание производительности параллельной программы при увеличении числа используемых процессоров, сравнить поведение параллельной программы в зависимости от размеров матрицы).