CALIBRACIÓN DE CÁMARA

Trabajo Nro 1
Alejandra C. Callo Aguilar
Jose H. Jaita Aguilar

Resumen

- Detección del padrón
- Binarizar y findContours con Otsu
- Transformación de espacio
- Detección del centro del anillo
- Resultados y Mejoras

Binarizar y findcontours con Otzu

- El metodo otzu encuentra la varianza entre valores disperson (blanco 255 y negro 0)
- En nuestro caso vario desde 32 hasta 178.

ROI

 La region de interes se actualiza en cada frame, dependiendo de la ultima detección del padron.

Transformación de espacio

 Cambiamos de espacio, de modo que al detectar el orden sea mucho mas fácil.

La transformacion es llamada dos veces.

Tracking

Detección del centro del anillo

- Regresar a la imagen original, y extraer solo la región en donde está en anillo.
- Calcular el centro de masa de los dos contorno y usar el promedio


```
[1206.02, 656.321] [1205.97, 655.897]
2
[1084.8, 621.017] [1084.88, 620.831]
2
[967.232, 587.129] [967.041, 586.782]
2
[852.644, 553.738] [852.473, 553.547]
2
[1232.72, 541.848] [1232.76, 541.443]
2
[741.03, 520.803] [741.055, 520.456]
```

- Se uso dos camaras : PS3 y lifecam
- 20 imágenes por frame.
- 3 padrones: chessboard, circle, rings

RMS

Camera	Chessboard	Circle	Ring
LifeCam	0.254622	0.233688	0.227625
PS3	0.345601	0.261889	0.185876

- Se calcula la matriz de la camara, la cual contiene las distancias focal y los centros opticos, ademas se calcula los 5 coeficientes de distorción.
- El padron de anillo da el mejor resultado de rms para la calibración.

```
rms: 0.254622
Camera Matrix:
[652.1405354042361, 0, 320;
0, 652.1405354042361, 240;
0, 0, 1]
Dist Coeffs:
[-0.02091168150659021;
0.9379747057378891;
0;
0;
```


Antes y despues usando la camara PS3

Imagen a la derecha con calibración, imagen original a la izquierda. PS3 - rings

LIFECAM RINGS

RMS

Camera	Chessboard	Circle	Rings
LifeCam	0.370638	0.2177	0.148326
PS3	0.349146	0.125189	0.204986

Distancia focal (fx fy)

Camera	Chessboard	Circle	Rings
LifeCam	570.6 573.1	616.9 618.4	592,2 594.7
PS3	869.9 867.0	924.7 929.4	831.5 833.1

Centros

S	(CX	cy)	
ti o	<u> </u>	Coo	.ff	

	Р	S3				
. (1	. 4	ĿΟ	4	0	I-O\	

Camera

LifeCam

Distortion Coeffs = (k1 k2 p1 p2 k3)

Camera	Chessboard	Circle	Rings
LifeCam	0.02086369081658167	0.03516728064650094	-0.0710979402240891
	-0.1299971885829539	0.1295410459855558	0.729340703690755
	0.00115638259079395	-0.0051737688957505	0.0051595262349940
	0.00254437777731369	0.01455189376527968	-0.0019585090599969
	0.09641381183127756	-0.3164481357139774	-2.273025218326369
PS3	-0.3263188639086633	-0.37010307138634450	-0.3871039388318425
	-0.2708403386810941	.5230441519666785	0.639585047530688
	-0.0091328598249548	0.00062073862838877	-0.0008722373515382
	0.00146528943549403	-0.0037219406150214	-0.0028879110164752
	1.836965640003434	-1.62500540148747	-2.143526199720469

Chessboard

332.4 229.3

306.4 275.1

Circle

349.9 211.9

323.2 325.3

Rings

339.5

359.1

232.6

259.9

Camera	RMS	Fx	Fy	Сх	Су	
LifeCam (chessboard)	0.370638	570.6	573.1	332.4	229.3	
LifeCam (circle)	0.2177	616.9	618.4	349.9	211.9	
LifeCam (Ring)	0.148326	592,2	594.7	339.5	232.6	
PS3 (chessboard)	0.349146	869.9	867.0	306.4	275.1	
PS3 (circle)	0.125189	924.7	929.4	323.2	325.3	
PS3 (Ring)	0.204986	831.5	833.1	359.1	259.9	

Conclusiones y mejoras

- El padron del anillo da los mejores resultados, debido a que si hay una rotacion o cambio de proyeccion tanto la elipse como el circulo aun mantienen el mismo centro.
- El metodo de otsu para la segmentación da buenos resultados
- Mientras mas preciso sean los puntos de control, mejor sera la calibración.

- Mejorar el calculo de los puntos de control mediante un refinamiento, propuesto en A. Datta.
- → Mejorar la deteccion de anillos lanzando varios hilos con diferentes threshold.