STAT 525 Spring 2019

Chapter 22 Analysis of Covariance

Dr. Qifan Song

Background

- ullet While the factor effects are of interest, variable X is also correlated with response Y
 - Can measure X but can't control it (block)
 - Nuisance variable X called a covariate
- ANCOVA adjusts Y for effect of X
- Combination of regression and ANOVA
- Without adjustment, effects of X may
 - Inflate σ^2
 - Alter treatment comparisons

Data for One-Way ANCOVA

- ullet Y_{ij} is $j^{ ext{th}}$ observation of the response in the $i^{ ext{th}}$ level of the factor
- ullet X_{ij} is $j^{ ext{th}}$ observation of the covariate in the $i^{ ext{th}}$ level of the factor
- i = 1, 2, ..., r
- $j = 1, 2, ..., n_i$

Examples

- Pre-test/Post-test score analysis: The change in score
 Y may be associated with GPA X. Analysis of covariance
 provides a way to "handicap" each student. That way, one
 does not need to find a group of students with similar GPAs
 and randomly assign them to a control and treatment group.
- Weight gain experiments in animals: If wishing to compare different feeds, the weight gain Y may be associated with the dominance of the animal. Analysis of covariance provides a way to use a herd and adjust for the dominance.

One-Way ANCOVA

Statistical model is

$$Y_{ij} = \mu + \tau_i + \beta(X_{ij} - \overline{X}_{..}) + \epsilon_{ij}$$
 $\begin{cases} i = 1, 2, ..., r \\ j = 1, 2, ..., n_i \end{cases}$

- $-\mu$ overall mean
- $-\tau_i$ fixed treatment effects subject to $\sum_{i=1}^r \tau_i = 0$
- $-\beta$ regression coefficient for the relation b/w Y and X
- Additional assumptions
 - $-X_{ij}$ is not affected by treatment
 - -X and Y are linearly related
 - Constant slope (can be relaxed)

Estimation

- General Procedure:
 - Fit one-way model (Y = trt)
 - Fit one-way model (X = trt)
 - Regress residuals (resid $_Y = resid_X$) for

$$\widehat{\beta} = \sum \sum (Y_{ij} - \overline{Y}_{i.})(X_{ij} - \overline{X}_{i.})/\sum \sum (X_{ij} - \overline{X}_{i.})^2$$

- Other model estimates are

$$\hat{\mu} = \overline{Y}_{..}$$

$$\widehat{\tau}_i = \overline{Y}_{i.} - \overline{Y}_{..} - \widehat{\beta}(\overline{X}_{i.} - \overline{X}_{..})$$

Hypotheses

- Test H_0 : $\tau_1 = \tau_2 = \ldots = \tau_r = 0$
 - Compare treatment means after adjusting for differences among treatments due to differences in covariate levels

$$F_0 = \frac{\text{SSM}(\text{Trt}|X)/(r-1)}{\text{SSE}/(n_T - r - 1)}$$

- Test: $\beta = 0$
 - SS regression (SSX): $\hat{\beta}^2 \sum \sum (X_{ij} \overline{X}_{i.})^2$

$$F_0 = \frac{\text{SSX/1}}{SSE/(n_T - r - 1)}$$

Mean Estimates

- Adjusted treatment means
 - Estimate: $\hat{\mu}_i = \hat{\mu} + \hat{\tau}_i = \overline{Y}_{i.} \hat{\beta}(\overline{X}_{i.} \overline{X}_{..})$
 - Expected value of Y when X is equal to the average covariate value
 - Can assume any value of X. Must make sure it is reasonable for all factor levels
 - Variance: $\hat{\sigma}^2 \left(1/n + (\overline{X}_{i.} \overline{X}_{..})^2 / \sum_i \sum_j (X_{ij} \overline{X}_{i.})^2 \right)$
- Pairwise differences
 - Estimate: $\hat{\tau}_k \hat{\tau}_l = \overline{Y}_{k.} \overline{Y}_{l.} \hat{\beta}(\overline{X}_{k.} \overline{X}_{l.})$
 - Variance: $\hat{\sigma}^2 \left(2/n + (\overline{X}_{k.} \overline{X}_{l.})^2 / \sum_i \sum_j (X_{ij} \overline{X}_{i.})^2 \right)$

Example I

```
options nocenter ls=80;
data example1;
    input trt x y 00;
   cards;
              1 1.9 13
                                                 2 5.2 22
    1 1.2 7
                         1 3.4 16
                                   2 4.0 20
   2 5.8 32
              3 7.7 31
                         3 8.3 45
                                    3 8.9 42
proc sort data=example1; by trt;
symbol1 v=circle i= c=black;
symbol2 v=square i= c=black;
symbol3 v=triangle i= c=black;
proc gplot data=example1;
   plot y*x=trt;
run; quit;
```



```
proc glm; class trt;
   model y=trt;
   output out=resid r=resy;
proc glm; class trt;
   model x=trt;
   output out=resid1 r=resx;
/*--- Regress Y Residuals vs X Residuals ---*/
proc glm;
   model resy=resx;
run; quit;
                                     Sum of
Source
                          DF
                                    Squares
                                               Mean Square
                                                            F Value
                                                                      Pr > F
Model
                                138.2699594
                                               138.2699594
                                                               10.18
                                                                       0.0153
                           1
                           7
                                 95.0633739
                                                13.5804820
Error
Corrected Total
                                233.3333333
                           Root MSE resy Mean
R-Square
           Coeff Var
0.592586
                           3.685171
                                       3.5527E-15
           1.03728E17
Source
                          DF
                                  Type I SS
                                               Mean Square
                                                            F Value Pr > F
                                138.2699594
                                               138, 2699594
                                                               10.18
                           1
                                                                       0.0153
resx
                                 Standard
Parameter
                 Estimate
                                    Error
                                             t Value Pr > |t|
Intercept
              0.00000000
                               1.22839018
                                                0.00
                                                          1.0000
              5.297699594
                               1.66027872
                                                3.19
                                                          0.0153
resx
```

```
/* Partial Regression Plot */
symbol1 v=circle i=rl;
proc gplot data=resid1;
    plot resy*resx;
run; quit;
```



```
proc glm data=example1;
    class trt;
    model y=trt x / solution;
run; quit;
                                Sum of
Source
                    DF
                               Squares
                                           Mean Square
                                                         F Value
                                                                    Pr > F
Model
                      3
                           1260.936626
                                            420.312209
                                                            22.11
                                                                    0.0026
                      5
                             95.063374
                                             19.012675
Error
                      8
Corrected Total
                           1356.000000
Source
                     DF
                             Type I SS
                                           Mean Square
                                                         F Value
                                                                    Pr > F
                           1122.666667
                                            561.333333
                                                            29.52
                                                                    0.0017
trt
                      2
                      1
                            138.269959
                                            138.269959
                                                            7.27
                                                                    0.0430
X
Source
                    DF
                           Type III SS
                                           Mean Square
                                                         F Value
                                                                    Pr > F
                      2
                             3.2122606
                                             1.6061303
                                                            0.08
                                                                    0.9203
trt
                           138.2699594
                                                            7.27
                                           138.2699594
                                                                    0.0430
X
                                        Standard
                                                                Pr > |t|
Parameter
                    Estimate
                                                    t Value
                                           Error
                -4.637573297 B
                                     16.49828508
                                                      -0.28
                                                                  0.7899
Intercept
                                    12.56372645
                 5.159224177 B
                                                       0.41
                                                                  0.6983
trt
          1
                 2.815741994 B
                                     7.39601943
                                                       0.38
                                                                  0.7191
trt
                 0.00000000 B
trt
                 5.297699594
                                     1.96446828
                                                       2.70
                                                                  0.0430
X
```

```
/*-- WARNING : DO NOT USE MEANS STATEMENT --*/
proc glm data=example1;
    class trt; model y=trt x;
    means trt /lines tukey;
run; quit;
```

Tukey's Studentized Range (HSD) Test for y

Alpha	0.05
Error Degrees of Freedom	5
Error Mean Square	19.01267
Critical Value of Studentized Range	4.60173
Minimum Significant Difference	11.585

Means with the same letter are not significantly different.

	Mean	N	trt
A	39.333	3	3
В	24.667	3	2
C	12.000	3	1

- MEANS statement reports group means as $\hat{\mu}_i = \bar{Y}_i$, ignoring the effect of covariate X;
- MEANS statement compares $\mu_i = \mu + \tau_i + \beta(X_{i.} \bar{X}_{..});$
- LSMEANS statement reports estimates of $\mu_i = \mu + \tau_i$, and compares them.

```
/*-- LSMEANS PROVIDES THE ADJUSTED MEANS --*/
proc glm data=example1;
    class trt; model y=trt x;
    lsmeans trt / tdiff adjust=tukey;
run; quit;

LSMEAN

trt y LSMEAN Number
1 27.8342355 1
2 25.4907533 2
3 22.6750113 3

Least Squares Means for Effect trt

+ for HO: ISMean(i)=ISMean(i) / Pr > |+|
```

U	101	110.	rouean(1)	/-Lomean(j) /	/ FI /	161
]	Dependent	Variable: y		
L/j			1	2		

i/j	1	2	3
1		0.354685	0.410644
		0.7373	0.6983
2	-0.35468		0.38071
	0.7373		0.7191
3	-0.41064	-0.38071	
	0.6983	0.7191	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

Example II

```
options nocenter ls=80;
data example2;
  input trt x y @@;
 cards;
            1 1.9 13
                                          2 5.2 13
 1 1.2 7
                      1 3.4 16 2 4.0 6
 2 5.8 14 3 7.7 7
                      3 8.3 13
                                 3 8.9 15
proc sort data=example2; by trt;
symbol1 v=circle i= c=black;
symbol2 v=square i= c=black;
symbol3 v=triangle i= c=black;
proc gplot data=example2;
   plot y*x=trt;
run; quit;
```



```
proc glm data=example2;
    class trt;
    model y=trt x / solution;
run; quit;
                                 Sum of
Source
                               Squares
                                           Mean Square
                                                         F Value
                     DF
                                                                   Pr > F
                                                           10.81
Model
                      3
                           100.6915501
                                            33.5638500
                                                                   0.0126
                            15.5306721
                                             3.1061344
Error
Corrected Total
                           116.222222
Source
                     DF
                             Type I SS
                                           Mean Square
                                                         F Value
                                                                   Pr > F
                                            0.7777778
                             1.5555556
                                                            0.25
                                                                   0.7877
trt
                      2
                      1
                           99.13599459
                                           99.13599459
                                                           31.92
                                                                   0.0024
X
Source
                     DF
                           Type III SS
                                           Mean Square
                                                         F Value
                                                                   Pr > F
                                                           15.22
                           94.55407736
                                           47.27703868
                                                                   0.0075
trt
                           99.13599459
                                           99.13599459
                                                           31.92
                                                                   0.0024
X
                                       Standard
                                                   t Value
Parameter
                    Estimate
                                                              Pr > |t|
                                          Error
                -25.56540370 B
                                     6.66848712
                                                     -3.83
                                                                0.0122
Intercept
                 27.84618854 B
                                     5.07816707
                                                      5.48
                                                                0.0028
trt
          1
                 14.13644565 B
                                     2.98941739
                                                      4.73
                                                                0.0052
trt
                  0.0000000 B
trt
                  4.48579161
                                     0.79402382
                                                      5.65
                                                                0.0024
X
```

```
proc glm data=example2;
    class trt;
    model y=trt x;
    lsmeans trt / tdiff;
run; quit;
                         LSMEAN
           y LSMEAN
                         Number
trt
         25.4075327
1
         11.6977898
                               3
         -2.4386558
      Least Squares Means for Effect trt
   t for HO: LSMean(i)=LSMean(j) / Pr > |t|
            Dependent Variable: y
i/j
                 1
                        5.133597
                                       5.483512
   1
                                         0.0028
                          0.0037
```

-4.72883

0.0052

-5.1336

-5.48351

3

0.0037

0.0028

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

4.72883

0.0052

```
proc glm data=example2;
    class trt;
    model y=trt x;
    lsmeans trt / tdiff adjust=tukey;
run; quit;
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer
                         LSMEAN
           y LSMEAN
                         Number
trt
         25.4075327
1
                               1
         11.6977898
                               2
3
                               3
         -2.4386558
      Least Squares Means for Effect trt
   t for HO: LSMean(i)=LSMean(j) / Pr > |t|
            Dependent Variable: y
                                              3
i/j
                 1
                         5.133597
                                       5.483512
   1
                           0.0084
                                         0.0064
   2
           -5.1336
                                        4.72883
            0.0084
                                         0.0119
   3
          -5.48351
                         -4.72883
```

0.0119

0.0064

Summary on the Two Examples

- Both emphasize how covariate can change the treatment comparisons. Usually it just reduces the MSE.
- Example I: No treatment differences
 - Positive linear relationship
 - Covariate larger in each group
 - Thus, appears to be treatment difference
- Example II: Treatment differences exist
 - Positive linear relationship
 - Covariate larger in each group
 - Thus, no apparent treatment difference

Nonconstant Slope

Can allow for different slope by including interaction

$$y_{ij} = \mu + \tau_i + (\beta + (\beta \tau)_i)(x_{ij} - \overline{x}_{..}) + \epsilon_{ij} \begin{cases} i = 1, 2, ..., r \\ j = 1, 2, ..., n_i \end{cases}$$

- In SAS, simply add interaction term
- Provides test for nonconstant slope
- ullet Can also build model for other relationships between X and Y (e.g., quadratic)

Example I

```
proc glm;
    class trt;
    model y=trt x / solution;
    lsmeans trt / tdiff;

proc glm;
    class trt;
    model y=trt x trt*x / solution;
    lsmeans trt / tdiff;

run; quit;
```

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	3	1260.936626	420.312209	22.11	0.0026
Error	5	95.063374	19.012675		
Corrected Total	8	1356.000000			
Courses	DE	T TIT CC	Maan Causana	E Volue	D > E
Source	DF	Type III SS	-		
trt	2	3.2122606			
X	1	138.2699594	138.2699594	7.27	0.0430
		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	5	1278.409474	255.681895		0.0441
Error	3	77.590526	25.863509		
Corrected Total	8	1356.000000			
Source	DF	Type III SS	Mean Square	F Value	Pr > F
trt	2	20.5146998	10.2573499	0.40	0.7034
x	1	149.7599282	149.7599282	5.79	0.0953
77 4 + 70 +	_	45 4500455	0 7004007	0 04	0 7074
x*trt	2	17.4728475	8.7364237	0.34	0.7374

			Standard			
Paramete	er	Estimate	Error	t Value	Pr > t	
Intercep	ot	-4.637573297 B	16.49828508	-0.28	0.7899	
trt	1	5.159224177 B	12.56372645	0.41	0.6983	
trt	2	2.815741994 B	7.39601943	0.38	0.7191	
X		5.297699594	1.96446828	2.70	0.0430	
			Standard			
Paramete	er	Estimate	Error	t Value	Pr > t	
+ .		ED 01ma00		o varac		
Intercep	ot	-36.75000000 B	49.83227932	-0.74	0.5143	
Intercep trt	ot 1				• •	
-		-36.75000000 B	49.83227932	-0.74	0.5143	
trt	1	-36.75000000 B 40.60356201 B	49.83227932 50.39772400	-0.74 0.81	0.5143 0.4794	
trt trt	1	-36.75000000 B 40.60356201 B 31.65476190 B	49.83227932 50.39772400 53.63535098	-0.74 0.81 0.59	0.5143 0.4794 0.5966	

		LSMEAN	
trt	y LSMEAN	Number	
1	27.8342355	1	
2	25.4907533	2	
3	22.6750113	3	
		LSMEAN	
trt	y LSMEAN	Number	
1	23.2379068	1	
2	25.5925926	2	

10.5092593

3

• Again, LSMEANS reports estimates of $\mu_i = \mu + \tau_i$ for the model on Slide 22-19.

```
Least Squares Means for Effect trt
t for HO: LSMean(i)=LSMean(j) / Pr > |t|
```

```
Dependent Variable: y
i/j
                                              3
                 1
                        0.354685
                                      0.410644
   1
                          0.7373
                                        0.6983
          -0.35468
                                       0.38071
            0.7373
                                        0.7191
   3
          -0.41064
                        -0.38071
            0.6983
                          0.7191
```

Least Squares Means for Effect trt
t for HO: LSMean(i)=LSMean(j) / Pr > |t|

	Dependent	Variable: y	
i/j	1	2	3
1		-0.22548	0.591
		0.8361	0.5961
2	0.225476		0.781205
	0.8361		0.4917
3	-0.591	-0.78121	
	0.5961	0.4917	

Multi-Factor ANCOVA

- Can incorporate covariate into any model
- For two-factor model

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \beta(x_{ijk} - \overline{x}_{...}) + \epsilon_{ijk}$$

- Constant slope for each ij combination
- Can include interaction terms to vary slope
- Plot y vs x for each combination

Chapter Review

- One-way analysis of covariance
 - Data
 - Model
 - Inference
- Multi-Factor analysis of covariance
- Diagnostics and remedies