EE101

Solution Tutorial 4 (30-AUG-2013)

1. (a)

(i) Assuming the transistor to be in the active region –

$$\begin{split} V_{CC} &= R_C (I_C + I_B) + I_B R_B + 0.7 + I_E R_E \\ I_B &= \frac{10 - 0.7}{R_C (\beta + 1) + R_B + (\beta + 1) R_E} \\ &= \frac{9.3}{101*4.7 + 250 + 101*1.2} = 0.011 \, \text{mA} \\ I_C &= 1.1 \, \text{mA} \\ V_C &= 10 - 4.7*(1.1 + 0.011) = 4.78 \, \text{V} \\ V_E &= 1.2*101*(0.011) = 1.33 \, \text{V} \\ \text{Therefore } V_{CE} = V_C - V_E = 3.45 \, \text{V} \end{split}$$

Note that $V_B = 2.03~V$ implying that the C-B junction is reverse biased as it should be for the transistor to operate in the active region.

(ii) Assuming the transistor to be in the active region –

Thevenin's Equivalent of the Base Voltage supply gives

$$V_{BB} = \frac{10}{3} \text{ V} \qquad R_B = R_1 \parallel R_2 = 13.333 \text{ K}\Omega$$

$$V_{BB} = I_B R_B + 0.7 + I_E R_E$$

$$I_B = \frac{3.333 - 0.7}{13.333 + (101)1.2} = 0.0196 \text{ mA}$$

$$I_C = 1.96 \text{ mA}$$

$$V_C = 10 - 2.8 * 1.96 = 4.51 \text{ V}$$

$$V_E = 1.2 * (101) * 0.0196 = 2.38 \text{ V}$$

$$V_B = V_E + 0.7 = 3.08 \text{V}$$
Therefore $V_{CE} = V_C - V_E = 2.13 \text{ V}$

Note that B-C junction will be reverse biased so transistor is indeed in the active region

(a) In this case, $V_{BB}=5V$ and $R_{B}=10 \text{ K}\Omega$.

If transistor is assumed to be in the active region, then –

$$I_B = \frac{5 - 0.7}{10 + 101 * 1.2} = 0.0328 \text{ mA}$$
 $I_C = 3.28 \text{ mA}$ $I_E = 3.313 \text{ mA}$

and $V_E = 3.976 \text{ V } V_B = 4.676 \text{ V } V_C = 0.816 \text{ V}$

But this would make B-C forward biased which is clearly impossible. Therefore, **transistor cannot be** in the active region.

If transistor is assumed to be in the saturation region, then –

$$5 - 0.7 = 10I_B + 1.2(I_B + I_C)$$
 $11.2I_B + 1.2I_C = 4.3$ $10 - 0.1 = 2.8I_C + 1.2(I_B + I_C)$ $1.2I_B + 4I_C = 9.9$

Solving, we get I_B =0.122 mA I_C =2.44 mA I_E =2.562 mA

Note that $I_C < \beta I_B$, therefore the transistor is indeed in saturation

2. (a) Time constant
$$\tau = RC = (56k\Omega)(0.1\mu\text{F}) = 5.6\text{ms}$$

(b)
$$\frac{T}{2} = \frac{1 \text{ms}}{2} = 0.5 \text{ms} \ll 5\tau = 28 \text{ms}$$
 and the ratio is 1:56

The diode is "ON" and $v_0 = -2V + 0.7V = -1.3V$

The capacitor charges to 10V + 2V - 0.7V = 11.3V

For negative pulse of v_i :

The diode is "OFF" and $v_0 = -10V - 11.3V = -21.3V$

3. (a)
$$I_E = \frac{V_E}{R_E} = \frac{2.1V}{0.68k\Omega} = 3.09 \text{mA}$$
, assuming $I_C \blacktriangleleft I_E$ $\beta = \frac{I_C}{I_D} = \frac{3.09 \text{mA}}{20 \text{uA}} = 154.5$

(b)
$$V_{CC} = V_{R_C} + V_{CE} + V_E = (2.7k\Omega)(3.09mA) + 7.3V + 2.1V = 17.74V$$

$$(c) \ R_{_{B}} = \frac{V_{_{R_{_{B}}}}}{I_{_{B}}} = \frac{V_{_{CC}} - V_{_{BE}} - V_{_{E}}}{I_{_{B}}} = \frac{17.74V - 0.7V - 2.1V}{20\mu A} = \frac{14.94V}{20\mu A} = 747\Omega$$

4. (a)
$$P_1 = \frac{v_m i_{1m}}{2} \cos \theta_1 = \frac{141 \times 7.07}{2} \cos 60^\circ = 250 \text{ W},$$

$$P_2 = \frac{v_m i_{2m}}{2} \cos \theta_2 = \frac{141 \times 10}{2} \cos 30^\circ = 610.5 \text{ W}$$

Total Power = 250+610.5 = 860.5 W

(b)
$$V = (141/\sqrt{2}) \angle 0^\circ = 100) \angle 0^\circ V$$
,
 $I_2 = (10/\sqrt{2}) \angle 30^\circ = 7.07 \angle 30^\circ A$;

$$I_2 = (10/\sqrt{2}) \angle 30^\circ = 7.07 \angle 30^\circ \text{ A};$$

Apparent power, $S = 100 \times 8.66 = 866 \text{ VA}$

Power factor = $\cos(-5.2^\circ) = 0.996$ (lag)

$$I_1 = (7.07/\sqrt{2})\angle -60^\circ = 5\angle -60^\circ A,$$

 $I_{T} = 5\angle -60^\circ + 7.07\angle 30^\circ = 8.66\angle -5.2^\circ A$

$$I_1 = (7.07/\sqrt{2})\angle -60^\circ = 5\angle -60^\circ A,$$

 $I_{T=5}\angle -60^\circ + 7.07\angle 30^\circ = 8.66\angle -5.2^\circ A$

30°

-60°

- (c) Expression for total current is: $i_T = 8.66 \times \sqrt{2} \sin(\omega t 5.2^\circ) A$
- (d) The vector diagram is as shown.

5.
$$Z = R + j\omega L + \frac{1}{i\omega C}$$
. Therefore, $|Z| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$

The current maximum occurs at $\omega = \omega_0$, when $\left(\omega_0 L - \frac{1}{\omega_0 C}\right) = 0$ or $\omega_0 = \frac{1}{\sqrt{LC}}$

$$\cos\theta = \frac{R}{|Z|} = \frac{R}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} = \frac{R}{\sqrt{R^2 + \omega L \left(1 - \frac{\omega_0^2}{\omega^2}\right)^2}}$$

Given that at
$$\omega = 2\omega_0$$
, $\cos \theta = \frac{1}{\sqrt{2}}$. Therefore, $R^2 + 2\omega_0 L \left(1 - \frac{1}{4}\right)^2 = 2R^2$

$$R^{2} = 2\frac{L}{\sqrt{LC}} \left(\frac{3}{4}\right)^{2} = 2\sqrt{\frac{L}{C}} \left(\frac{3}{4}\right)^{2} = 4\left(\frac{3}{4}\right)^{2} \Rightarrow R = \frac{3}{2}\Omega$$

