

Algorithmen II Vorlesung am 05.11.2013

Flüsse mit Kosten · Matchings

Flussnetzwerke mit Kosten

Motivation – Transportnetzwerk

⇒ Flussnetzwerk mit mehreren Quellen und mehreren Senken

Motivation – Transportnetzwerk

- O Zwischenstation / Transportweg
- ⇒ Flussnetzwerk mit mehreren Quellen und mehreren Senken

Neu: Kosten für die Nutzung eines Transportwegs

⇒ Flussnetzwerk mit mehreren Quellen/Senken und Kosten auf den Kanten

Formale Definition

Definition: Flussnetzwerk mit Kosten

Gerichteter Graph D = (V, E) mit Kantenkapazitäten $c: E \longrightarrow \mathbb{R}_0^+$, Kantenkosten cost: $E \longrightarrow \mathbb{R}$ sowie Knotenbedarfsfunktion $b: V \longrightarrow \mathbb{R}$ mit $\sum_{v \in V} b(v) = 0$.

Senken haben positiven Bedarf, Quellen negativen.

Es wird genauso viel produziert wie konsumiert.

Formale Definition

Definition: Flussnetzwerk mit Kosten

Gerichteter Graph D = (V, E) mit Kantenkapazitäten $c: E \longrightarrow \mathbb{R}_0^+$, Kantenkosten cost: $E \longrightarrow \mathbb{R}$ sowie Knotenbedarfsfunktion $b: V \longrightarrow \mathbb{R}$ mit $\sum_{v \in V} b(v) = 0$.

Senken haben positiven Bedarf, Quellen negativen.

Es wird genauso viel produziert wie konsumiert.

Definition: Fluss & Flusskosten

Ein *Fluss f* in *D* ist eine Abbildung $f: E \longrightarrow \mathbb{R}_0^+$ mit:

• für alle $(u, v) \in E$: $0 \le f(u, v) \le c(u, v)$

(Kapazitätsbedingung)

für alle $u \in V$: $\sum_{v:(v,u)\in E} f(v,u) - \sum_{v:(u,v)\in E} f(u,v) = b(u)$

(Flusserhaltungsbedingung)

Es kann sein, dass eine solche Abbildung garnicht existiert!

Formale Definition

Definition: Flussnetzwerk mit Kosten

Gerichteter Graph D = (V, E) mit Kantenkapazitäten $c: E \longrightarrow \mathbb{R}_0^+$, Kantenkosten cost: $E \longrightarrow \mathbb{R}$ sowie Knotenbedarfsfunktion $b: V \longrightarrow \mathbb{R}$ mit $\sum_{v \in V} b(v) = 0$.

Senken haben positiven Bedarf, Quellen negativen.

Es wird genauso viel produziert wie konsumiert.

Definition: Fluss & Flusskosten

Ein *Fluss f* in *D* ist eine Abbildung $f: E \longrightarrow \mathbb{R}_0^+$ mit:

• für alle $(u, v) \in E$: $0 \le f(u, v) \le c(u, v)$

(Kapazitätsbedingung)

für alle $u \in V$: $\sum_{v:(v,u)\in E} f(v,u) - \sum_{v:(u,v)\in E} f(u,v) = b(u)$

(Flusserhaltungsbedingung)

Die Kosten eines Flusses f berechnen sich durch $cost(f) = \sum_{e \in E} f(e) \cdot cost(e)$.

Problem: MINCOSTFLOW

Finde einen *kostenminimalen* Fluss *f* in *D*.

(d. h. $cost(f) \le cost(f')$ für alle Flüsse f')

MINCOSTFLOW – Ein Lösungsansatz

Ein Algorithmus in zwei Schritten:

(1) Finde einen gültigen Fluss f im Flussnetzwerk D (falls es einen gibt).

Instanz $(D, c, \cos t, b)$ von MINCOSTFLOW

erstelle "Superquelle" s & "Supersenke" tInstanz (D', c', s, t) von MAXFLOW

gültiger Fluss f in Dbenutze Algorithmus für maximale Flüsse

lösche "Superquelle" & "Supersenke"

maximaler Fluss f' in D'

MINCOSTFLOW - Ein Lösungsansatz

Ein Algorithmus in zwei Schritten:

(1) Finde einen gültigen Fluss f im Flussnetzwerk D (falls es einen gibt).

Instanz (D, c, cost, b) von MINCOSTFLOW

erstelle "Superquelle" s & "Supersenke" t

Instanz (D', c', s, t) von MaxFlow

gültiger Fluss f in D

benutze Algorithmus für maximale Flüsse

lösche "Superquelle" & "Supersenke"

maximaler Fluss f' in D'

(2) Verbessere f schrittweise.

verschiebe Fluss entlang "erhöhendem Kreis"

(1) Finde einen gültigen Fluss f im Flussnetzwerk D (falls es einen gibt).

Instanz $(D, c, \cos t, b)$ von MINCOSTFLOW

erstelle "Superquelle" & "Supersenke"

Instanz (D', c', s, t) von MaxFlow

benutze Algorithmus für maximale Flüsse

maximaler Fluss f' in D'

(1) Finde einen gültigen Fluss f im Flussnetzwerk D (falls es einen gibt).

Instanz (D, c, cost, b) von MINCOSTFLOW

erstelle "Superquelle" & "Supersenke"

Instanz (D', c', s, t) von MaxFlow

benutze Algorithmus für maximale Flüsse

gültiger Fluss f in D

lösche "Superquelle" & "Supersenke"

maximaler Fluss f' in D'

- Erstelle Supersenke t. Erstelle Kante (v, t) mit c(v, t) = b(v) falls b(v) > 0.
- Erstelle Superquelle s. Erstelle Kante (s, v) mit c(s, v) = -b(v) falls b(v) < 0.

(1) Finde einen gültigen Fluss f im Flussnetzwerk D (falls es einen gibt).

Berechne einen maximalen Fluss zwischen s und t in D'.

(1) Finde einen gültigen Fluss f im Flussnetzwerk D (falls es einen gibt).

Instanz (D, c, cost, b) von MINCOSTFLOW

erstelle "Superquelle" & "Supersenke"

Instanz (D', c', s, t) von MaxFlow

benutze Algorithmus für maximale Flüsse

lösche "Superquelle" & "Supersenke"

gültiger Fluss f in D

maximaler Fluss f' in D'

- Lösche s und t (und inzidente Kanten). Setze f(e) = f'(e) für jede Kante $e \in E$.
- **Beh.:** Wenn f'(s, v) = c(s, v) (für alle $v \in V$), dann ist f gültig. Sonst gibt es keinen gültigen Fluss in D.

Definition: Konstruktion von D'

Für eine Instanz $(D = (V, E), c, \cos t, b)$ von MINCOSTFLOW ist die Instanz (D' = (V', E'), c', s, t) von MAXFLOW wie folgt definiert.

- $V' = V \cup \{s, t\}$
- $E_s = \{(s, v) \mid b(v) < 0\}, \text{ mit Kapazitäten } c'(s, v) = -b(v)$
- $E_t = \{(v, t) \mid b(v) > 0\}, \text{ mit Kapazitäten } c'(v, t) = b(v)$
- $E' = E \cup E_s \cup E_t$, mit Kapazitäten c'(e) = c(e) für $e \in E$

Definition: Konstruktion von D'

Für eine Instanz $(D = (V, E), c, \cos t, b)$ von MINCOSTFLOW ist die Instanz (D' = (V', E'), c', s, t) von MAXFLOW wie folgt definiert.

- $V' = V \cup \{s, t\}$
- $E_s = \{(s, v) \mid b(v) < 0\}, \text{ mit Kapazitäten } c'(s, v) = -b(v)$
- $E_t = \{(v, t) \mid b(v) > 0\}, \text{ mit Kapazitäten } c'(v, t) = b(v)$
- $E' = E \cup E_s \cup E_t$, mit Kapazitäten c'(e) = c(e) für $e \in E$

Satz: D und D' sind äquivalent

Sei f' ein maximaler Fluss in D'. Wenn f'(s, v) = c(s, v) für alle $v \in V$ gilt, dann ist die Abbildung f mit f(e) = f'(e) für alle Kanten $e \in E$ ein gültiger Fluss in D. Andernfalls gibt es keinen gültigen Fluss in D.

Satz: D und D' sind äquivalent

Sei f' ein maximaler Fluss in D'. Wenn f'(s, v) = c(s, v) für alle $v \in V$ gilt, dann ist die Abbildung f mit f(e) = f'(e) für alle Kanten $e \in E$ ein gültiger Fluss in D. Andernfalls gibt es keinen gültigen Fluss in D.

Beweis:

• für alle $(u, v) \in E$: $0 \le f(u, v) \le c(u, v)$

(Kapazitätsbedingung)

Definition: Konstruktion von D'

Für eine Instanz ($D = (V, E), c, \cos t, b$) von MINCOSTFLOW ist die Instanz (D' = (V', E'), c', s, t) von MAXFLOW wie folgt definiert.

- $V' = V \cup \{s, t\}$
- $E_s = \{(s, v) \mid b(v) < 0\}$, mit Kapazitäten c'(s, v) = -b(v)
- $E_t = \{(v, t) \mid b(v) > 0\}$, mit Kapazitäten c'(v, t) = b(v)
- lacksquare $E'=E\cup E_s\cup E_t$, mit Kapazitäten c'(e)=c(e) für $e\in E$

Satz: D und D' sind äquivalent

Sei f' ein maximaler Fluss in D'. Wenn f'(s, v) = c(s, v) für alle $v \in V$ gilt, dann ist die Abbildung f mit f(e) = f'(e) für alle Kanten $e \in E$ ein gültiger Fluss in D. Andernfalls gibt es keinen gültigen Fluss in D.

Beweis:

• für alle $(u, v) \in E$: $0 \le f(u, v) \le c(u, v)$

(Kapazitätsbedingung)

für alle $u \in V$: $\sum_{v:(v,u)\in E} f(v,u) - \sum_{v:(u,v)\in E} f(u,v) = b(u)$ (Flusserhaltungsbedingung)

Sei $u \in V$ beliebig.

Fall 1: b(u) = 0

Folgt aus Flusserhaltung in D'.

Definition: Konstruktion von D'

Für eine Instanz ($D = (V, E), c, \cos t, b$) von MINCOSTFLOW ist die Instanz (D' = (V', E'), c', s, t) von MAXFLOW wie folgt definiert.

- $V' = V \cup \{s, t\}$
- $E_s = \{(s, v) \mid b(v) < 0\}$, mit Kapazitäten c'(s, v) = -b(v)
- $E_t = \{(v, t) \mid b(v) > 0\}$, mit Kapazitäten c'(v, t) = b(v)
- $E' = E \cup E_s \cup E_t$, mit Kapazitäten c'(e) = c(e) für $e \in E$

Satz: D und D' sind äquivalent

Sei f' ein maximaler Fluss in D'. Wenn f'(s, v) = c(s, v) für alle $v \in V$ gilt, dann ist die Abbildung f mit f(e) = f'(e) für alle Kanten $e \in E$ ein gültiger Fluss in D. Andernfalls gibt es keinen gültigen Fluss in D.

Beweis:

• für alle $(u, v) \in E$: $0 \le f(u, v) \le c(u, v)$

(Kapazitätsbedingung)

für alle $u \in V$: $\sum_{v:(v,u)\in E} f(v,u) - \sum_{v:(u,v)\in E} f(u,v) = b(u)$ (Flusserhaltungsbedingung)

Sei $u \in V$ beliebig.

Fall 1: b(u) = 0

Folgt aus Flusserhaltung in D'.

Fall 2:
$$b(u) < 0$$
 (*u* ist Quelle)
$$\sum f'(v, u) - \sum f'(u, v) = 0$$

 $v:(v,u)\in E'$ $v:(u,v)\in E'$

Definition: Konstruktion von D'

Für eine Instanz ($D = (V, E), c, \cos t, b$) von MINCOSTFLOW ist die Instanz (D' = (V', E'), c', s, t) von MAXFLOW wie folgt definiert.

- $V' = V \cup \{s, t\}$
- $E_s = \{(s, v) \mid b(v) < 0\}$, mit Kapazitäten c'(s, v) = -b(v)
- $E_t = \{(v, t) \mid b(v) > 0\}$, mit Kapazitäten c'(v, t) = b(v)
- $E' = E \cup E_s \cup E_t$, mit Kapazitäten c'(e) = c(e) für $e \in E$

(eingehender – ausgehender Fluss in D')

Satz: D und D' sind äquivalent

Sei f' ein maximaler Fluss in D'. Wenn f'(s, v) = c(s, v) für alle $v \in V$ gilt, dann ist die Abbildung f mit f(e) = f'(e) für alle Kanten $e \in E$ ein gültiger Fluss in D. Andernfalls gibt es keinen gültigen Fluss in D.

Beweis:

• für alle $(u, v) \in E$: $0 \le f(u, v) \le c(u, v)$

(Kapazitätsbedingung)

für alle $u \in V$: $\sum_{v:(v,u)\in E} f(v,u) - \sum_{v:(u,v)\in E} f(u,v) = b(u)$ (Flusserhaltungsbedingung)

Sei $u \in V$ beliebig.

Fall 1: b(u) = 0

Folgt aus Flusserhaltung in D'.

Fall 2:
$$b(u) < 0$$

(*u* ist Quelle)

$$\sum_{v:(v,u)\in E'} f'(v,u) - \sum_{v:(u,v)\in E'} f'(u,v) = 0$$

Definition: Konstruktion von D'

Für eine Instanz ($D = (V, E), c, \cos t, b$) von MINCOSTFLOW ist die Instanz (D' = (V', E'), c', s, t) von MAXFLOW wie folgt definiert.

- $V' = V \cup \{s, t\}$
- $E_s = \{(s, v) \mid b(v) < 0\}$, mit Kapazitäten c'(s, v) = -b(v)
- $E_t = \{(v, t) \mid b(v) > 0\}$, mit Kapazitäten c'(v, t) = b(v)
- $E' = E \cup E_s \cup E_t$, mit Kapazitäten c'(e) = c(e) für $e \in E$

(eingehender – ausgehender Fluss in D')

$$\Leftrightarrow \sum_{v:(v,u)\in E} f(v,u) + f'(s,u) - \sum_{v:(u,v)\in E} f(u,v) = 0$$

u hat in D die gleichen eingehenden Kanten wie in D', abgesehen von (s, u)

Satz: D und D' sind äquivalent

Sei f' ein maximaler Fluss in D'. Wenn f'(s, v) = c(s, v) für alle $v \in V$ gilt, dann ist die Abbildung f mit f(e) = f'(e) für alle Kanten $e \in E$ ein gültiger Fluss in D. Andernfalls gibt es keinen gültigen Fluss in D.

Beweis:

• für alle $(u, v) \in E$: $0 \le f(u, v) \le c(u, v)$

(Kapazitätsbedingung)

Für eine Instanz ($D = (V, E), c, \cos t, b$) von MINCOSTFLOW ist die Instanz (D' = c

für alle $u \in V$: $\sum_{v:(v,u)\in E} f(v,u) - \sum_{v:(u,v)\in E} f(u,v) = b(u)$ (Flusserhaltungsbedingung)

Sei $u \in V$ beliebig.

Fall 1: b(u) = 0

Folgt aus Flusserhaltung in D'.

Fall 2:
$$b(u) < 0$$
 (*u* ist Quelle)
$$\sum_{i=0}^{\infty} f'(v, u) = \sum_{i=0}^{\infty} f'(u, v) = 0$$

 $v:(u,v)\in E$

$$\sum_{v:(v,u)\in E'} f'(v,u) - \sum_{v:(u,v)\in E'} f'(u,v) = 0$$

 $v:(v,u)\in E$

(eingehender – ausgehender Fluss in D')

■ $E_s = \{(s, v) \mid b(v) < 0\}$, mit Kapazitäten c'(s, v) = -b(v)■ $E_t = \{(v, t) \mid b(v) > 0\}$, mit Kapazitäten c'(v, t) = b(v)

 \blacksquare $E' = E \cup E_s \cup E_t$, mit Kapazitäten c'(e) = c(e) für $e \in E$

$$v:(v,u)\in E'$$

$$v:(u,v)\in E'$$

$$\Leftrightarrow \sum f(v,u) + f'(s,u) - \sum f(u,v) = 0$$

(V', E'), c', s, t) von MaxFLOW wie folgt definiert.

Definition: Konstruktion von D'

 $V' = V \cup \{s, t\}$

u hat in D die gleichen ausgehenden Kanten wie in D'

Satz: D und D' sind äquivalent

Sei f' ein maximaler Fluss in D'. Wenn f'(s, v) = c(s, v) für alle $v \in V$ gilt, dann ist die Abbildung f mit f(e) = f'(e) für alle Kanten $e \in E$ ein gültiger Fluss in D. Andernfalls gibt es keinen gültigen Fluss in D.

Beweis:

• für alle $(u, v) \in E$: $0 \le f(u, v) \le c(u, v)$

(Kapazitätsbedingung)

für alle $u \in V$: $\sum_{v:(v,u)\in E} f(v,u) - \sum_{v:(u,v)\in E} f(u,v) = b(u)$ (Flusserhaltungsbedingung)

Sei $u \in V$ beliebig.

Fall 1: b(u) = 0

Folgt aus Flusserhaltung in D'.

Fall 2:
$$b(u) < 0$$

(*u* ist Quelle)

$$\sum_{v:(v,u)\in E'} f'(v,u) - \sum_{v:(u,v)\in E'} f'(u,v) = 0$$

Definition: Konstruktion von D'

Für eine Instanz ($D = (V, E), c, \cos t, b$) von MINCOSTFLOW ist die Instanz (D' = (V', E'), c', s, t) von MAXFLOW wie folgt definiert.

- $V' = V \cup \{s, t\}$
- $E_s = \{(s, v) \mid b(v) < 0\}$, mit Kapazitäten c'(s, v) = -b(v)
- $E_t = \{(v, t) \mid b(v) > 0\}$, mit Kapazitäten c'(v, t) = b(v)
- lacksquare $E'=E\cup E_s\cup E_t$, mit Kapazitäten c'(e)=c(e) für $e\in E$

(eingehender – ausgehender Fluss in D')

$$\Leftrightarrow \sum_{v:(v,u)\in E} f(v,u) + f'(s,u) - \sum_{v:(u,v)\in E} f(u,v) = 0 \quad \Leftrightarrow \sum_{v:(v,u)\in E} f(v,u) - \sum_{v:(u,v)\in E} f(u,v) = b(u)$$

Satz: D und D' sind äquivalent

Sei f' ein maximaler Fluss in D'. Wenn f'(s, v) = c(s, v) für alle $v \in V$ gilt, dann ist die Abbildung f mit f(e) = f'(e) für alle Kanten $e \in E$ ein gültiger Fluss in D. Andernfalls gibt es keinen gültigen Fluss in D.

Beweis:

für alle $(u, v) \in E$: $0 \le f(u, v) \le c(u, v)$

(Kapazitätsbedingung)

für alle $u \in V$: $\sum f(v, u) - \sum f(u, v) = b(u)$ (Flusserhaltungsbedingung) $v:(v,u)\in E$ $v:(u,v)\in E$

Sei $u \in V$ beliebig.

Fall 1: b(u) = 0

Folgt aus Flusserhaltung in D'.

Fall 2: b(u) < 0

(*u* ist Quelle)

$$\sum_{v:(v,u)\in E'} f'(v,u) - \sum_{v:(u,v)\in E'} f'(u,v) = 0$$

Definition: Konstruktion von D'

Für eine Instanz ($D = (V, E), c, \cos t, b$) von MINCOSTFLOW ist die Instanz (D' = c(V', E'), c', s, t) von MaxFLOW wie folgt definiert.

- $V' = V \cup \{s, t\}$
- $E_s = \{(s, v) \mid b(v) < 0\}, \text{ mit Kapazitäten } c'(s, v) = -b(v)$
- $E_t = \{(v, t) \mid b(v) > 0\}$, mit Kapazitäten c'(v, t) = b(v)
- lacksquare $E' = E \cup E_s \cup E_t$, mit Kapazitäten c'(e) = c(e) für $e \in E$

(eingehender – ausgehender Fluss in D')

$$\Leftrightarrow \sum_{v:(v,u)\in E} f(v,u) + f'(s,u) - \sum_{v:(u,v)\in E} f(u,v) = 0 \quad \Leftrightarrow \sum_{v:(v,u)\in E} f(v,u) - \sum_{v:(u,v)\in E} f(u,v) = b(u)$$

Fall 3: b(u) > 0analog

Satz: D und D' sind äquivalent

Sei f' ein maximaler Fluss in D'. Wenn f'(s, v) = c(s, v) für alle $v \in V$ gilt, dann ist die Abbildung f mit f(e) = f'(e) für alle Kanten $e \in E$ ein gültiger Fluss in D. Andernfalls gibt es keinen gültigen Fluss in D.

Beweis:

Zeige: Gegeben ein gültiger Fluss f in D, dann gibt es einen Fluss f' in D' mit f'(s, v) = c(s, v) für alle $v \in V$.

- f'(e) = f(e) für $e \in E$
- f'(s, v) = -b(v) für alle Quellen v
- f'(v, t) = b(v) für alle Senken v

Definition: Konstruktion von D'

Für eine Instanz ($D = (V, E), c, \cos t, b$) von MINCOSTFLOW ist die Instanz (D' = (V', E'), c', s, t) von MAXFLOW wie folgt definiert.

- $V' = V \cup \{s, t\}$
- $E_s = \{(s, v) \mid b(v) < 0\}$, mit Kapazitäten c'(s, v) = -b(v)
- $E_t = \{(v, t) \mid b(v) > 0\}$, mit Kapazitäten c'(v, t) = b(v)
- $E' = E \cup E_s \cup E_t$, mit Kapazitäten c'(e) = c(e) für $e \in E$

Satz: D und D' sind äquivalent

Sei f' ein maximaler Fluss in D'. Wenn f'(s, v) = c(s, v) für alle $v \in V$ gilt, dann ist die Abbildung f mit f(e) = f'(e) für alle Kanten $e \in E$ ein gültiger Fluss in D. Andernfalls gibt es keinen gültigen Fluss in D.

Beweis:

Zeige: Gegeben ein gültiger Fluss f in D, dann gibt es einen Fluss f' in D' mit f'(s, v) = c(s, v) für alle $v \in V$.

- f'(e) = f(e) für $e \in E$
- f'(s, v) = -b(v) für alle Quellen v
- f'(v, t) = b(v) für alle Senken v

Die Abbildung f' ist ein Fluss in D'.

- Kapazitätsbedingung
- Flusserhaltungsbedingung

Definition: Konstruktion von D'

Für eine Instanz ($D = (V, E), c, \cos t, b$) von MINCOSTFLOW ist die Instanz (D' = (V', E'), c', s, t) von MAXFLOW wie folgt definiert.

- $V' = V \cup \{s, t\}$
- $E_s = \{(s, v) \mid b(v) < 0\}$, mit Kapazitäten c'(s, v) = -b(v)
- $E_t = \{(v, t) \mid b(v) > 0\}$, mit Kapazitäten c'(v, t) = b(v)
- $E' = E \cup E_s \cup E_t$, mit Kapazitäten c'(e) = c(e) für $e \in E$

nachrechnen!!

Außerdem gilt: f'(s, v) = c(s, v) für alle $v \in V$.

Schrittweise Verbesserung eines gültigen Flusses

(1) Finde einen gültigen Fluss f im Flussnetzwerk D (falls es einen gibt).

das kommt jetzt

(2) Verbessere f schrittweise.

verschiebe Fluss entlang "erhöhendem Kreis"

Residualnetzwerk & Zirkulation

Definition: Residualnetzwerk

Sei $(D = (V, E), c, \cos t, b)$ eine Instanz von MINCOSTFLOW und sei f ein Fluss in D. Das $Residualnetzwerk <math>(D_f = (V, E_f), r_f, \cos t_f, b_f)$ ist wie folgt definiert.

- Starte mit $D_f = D$ und setze die Kapazitäten auf $r_f(e) = c(e) f(e)$.
- Für $e = (u, v) \in E$ füge Gegenkante $\bar{e} = (v, u)$ mit Kapazität $r_f(e') = f(e)$ ein.
- Für $e \in E$ setze $cost_f(e) = cost(e)$ und $cost_f(\bar{e}) = -cost(e)$
- Für $v \in V$ setze $b_f(v) = 0$

cost(*e*) | *f*(*e*) | *c*(*e*)

Residualnetzwerk & Zirkulation

Definition: Residualnetzwerk

Sei $(D = (V, E), c, \cos t, b)$ eine Instanz von MINCOSTFLOW und sei f ein Fluss in D. Das $Residualnetzwerk <math>(D_f = (V, E_f), r_f, \cos t_f, b_f)$ ist wie folgt definiert.

- Starte mit $D_f = D$ und setze die Kapazitäten auf $r_f(e) = c(e) f(e)$.
- Für $e = (u, v) \in E$ füge Gegenkante $\bar{e} = (v, u)$ mit Kapazität $r_f(e') = f(e)$ ein.
- Für $e \in E$ setze $cost_f(e) = cost(e)$ und $cost_f(\bar{e}) = -cost(e)$
- Für $v \in V$ setze $b_f(v) = 0$

cost(*e*) | *f*(*e*) | *c*(*e*)

Definition: Zirkulation

Ein Fluss im Residualnetzwerk D_f wird auch Zirkulation genannt.

(Für jeden Knoten v gilt: eingehender Fluss = ausgehender Fluss, da $b_f(v) = 0$)

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D.

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

"Beweis" durch Beispiel:

D mit Fluss f cost(f) = 68

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

"Beweis" durch Beispiel:

D mit Fluss f cost(f) = 68

 D_f erstellen: 1. D Kopieren

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

"Beweis" durch Beispiel:

D mit Fluss f cost(f) = 68

D_f erstellen:

1. D Kopieren

2. Kapazitäten anpassen

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

"Beweis" durch Beispiel:

D mit Fluss f cost(f) = 68

 D_f erstellen:

1. D Kopieren

2. Kapazitäten anpassen

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

"Beweis" durch Beispiel:

D mit Fluss f cost(f) = 68

D_f erstellen:

1. D Kopieren

- 2. Kapazitäten anpassen
- 3. Gegenkanten einfügen

Residualnetzwerk D_f

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

"Beweis" durch Beispiel:

D mit Fluss f cost(f) = 68

D_f erstellen:

- 1. D Kopieren
- 2. Kapazitäten anpassen
- 3. Gegenkanten einfügen

Residualnetzwerk D_f

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

"Beweis" durch Beispiel:

D mit Fluss f cost(f) = 68

Residualnetzwerk D_f mit Zirkulation circ cost(circ) = -7

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

"Beweis" durch Beispiel:

D mit Fluss f + circ. Beachte: cost(f + circ) = cost(f) + cost(circ)

Erhöhende Zirkulation & erhöhende Kreise

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

Satz: erhöhende Zirkulation

Seien f und f^* Flüsse in D. Dann gibt es eine Zirkulation circ in D_f mit $f^* = f + \text{circ}$.

Beweisidee:

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

Satz: erhöhende Zirkulation

Seien f und f^* Flüsse in D. Dann gibt es eine Zirkulation circ in D_f mit $f^* = f + \text{circ}$.

Beweisidee:

Betrachte alle Kanten $e \in E$ und definiere circ wie folgt:

- Falls $f^*(e) f(e) \ge 0$, setzte $circ(e) = f^*(e) f(e)$ und $circ(\bar{e}) = 0$
- Falls $f^*(e) f(e) < 0$, setzte circ(e) = 0 und circ $(\bar{e}) = -(f^*(e) f(e))$

Rechne nach, dass circ Zirkulation ist (Kapazitäts- & Flusserhaltungsbedingung).

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

Satz: erhöhende Zirkulation

Seien f und f^* Flüsse in D. Dann gibt es eine Zirkulation circ in D_f mit $f^* = f + \text{circ}$.

Man kann einen Fluss mit minimalen Kosten in D berechnen indem man einen gültigen Fluss f bestimmt und dann in D_f eine Zirkulation mit minimalen Kosten sucht.

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

Satz: erhöhende Zirkulation

Seien f und f^* Flüsse in D. Dann gibt es eine Zirkulation circ in D_f mit $f^* = f + \text{circ}$.

Definition: erhöhender Kreis

Ein *erhöhender Kreis* bezüglich eines Flusses f in D ist ein gerichteter Kreis C in D_f mit einer Zirkulation circ $_C$, sodass circ $_C(e) > 0$ falls $e \in C$, circ $_C(e) = 0$ sonst.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis: später

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

Satz: erhöhende Zirkulation

Seien f und f^* Flüsse in D. Dann gibt es eine Zirkulation circ in D_f mit $f^* = f + \text{circ}$.

Definition: erhöhender Kreis

Ein *erhöhender Kreis* bezüglich eines Flusses f in D ist ein gerichteter Kreis C in D_f mit einer Zirkulation circ $_C$, sodass circ $_C(e) > 0$ falls $e \in C$, circ $_C(e) = 0$ sonst.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Folgerung: Optimalitätssatz vom erhöhenden Kreis

Ein Fluss f in D hat genau dann minimale Kosten, wenn D_f keinen erhöhenden Kreis mit negativen Kosten enthält.

Lemma: erhöhende Zirkulation

Sei f ein Fluss in D und circ eine Zirkulation in D_f . Dann ist f^* mit $f^*(e) = f(e) + \text{circ}(e) - \text{circ}(\bar{e})$ für alle $e \in E$ ein Fluss in D, mit $\text{cost}(f^*) = \text{cost}(f) + \text{cost}(\text{circ})$.

Satz: erhöhende Zirkulation

Seien f und f^* Flüsse in D. Dann gibt es eine Zirkulation circ in D_f mit $f^* = f + \text{circ}$.

Definition: erhöhender Kreis

Ein erhöhender Kreis bezüglich eines Flusses f in D ist ein gerichteter Kreis C in

Cycle Canceling Algorithmus:

- (1) Bestimme gültigen Fluss f.
- (2) Solange D_f negative Kreise enthält, erhöhe f um negativen Kreis.

Folgerung: Optimalitätssatz vom erhöhenden Kreis

Ein Fluss f in D hat genau dann minimale Kosten, wenn D_f keinen erhöhenden Kreis mit negativen Kosten enthält.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Alle Kanten, die wir mit erhöhenden Kreisen "abdecken" müssen.

fett und schwarz

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Zeige: Wenn $E(\text{circ}) \neq \emptyset$, dann gibt es erh. Kreis C mit Zirkulation circC sodass:

 \bullet circ = circ_c + circ'

(für eine andere Zirkulation circ' in D_f)

 $|E(\operatorname{circ}')| \leq |E(\operatorname{circ})| - 1$

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Zeige: Wenn $E(\text{circ}) \neq \emptyset$, dann gibt es erh. Kreis C mit Zirkulation circC sodass:

 \bullet circ = circ_c + circ'

(für eine andere Zirkulation circ' in D_f)

 $|E(\operatorname{circ}')| \leq |E(\operatorname{circ})| - 1$

Setzt man diese Zerlegung mit circ' fort, so ist nach spätestens m Schritten kein Fluss mehr übrig. Die Summe der zur Zerlegung genutzten erhöhenden Kreise (circ $_C$) ist dann gerade circ.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Zeige: Wenn $E(\text{circ}) \neq \emptyset$, dann gibt es erh. Kreis C mit Zirkulation circC sodass:

 \bullet circ = circ_c + circ'

(für eine andere Zirkulation circ' in D_f)

 $|E(\operatorname{circ}')| \leq |E(\operatorname{circ})| - 1$

Existenz dieses erhöhenden Kreises:

- 1. Finde gerichteten Kreis C der nur aus Kanten in E(circ) besteht.
- 2. Sei e_{min} die Kante in C für die $circ(e_{min})$ minimal ist. Setzte $circ_C(e) = circ(e_{min})$ für alle Kanten e in C.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Zeige: Wenn $E(\text{circ}) \neq \emptyset$, dann gibt es erh. Kreis C mit Zirkulation circC sodass:

 \bullet circ = circ_c + circ'

(für eine andere Zirkulation circ' in D_f)

 $|E(circ')| \leq |E(circ)| - 1$

Existenz dieses erhöhenden Kreises:

1. Finde gerichteten Kreis C der nur aus Kanten in E(circ) besteht.

2. Sei e_{\min} die Kante in C für die $\operatorname{circ}(e_{\min})$ minimal ist. Setzte $\operatorname{circ}_C(e) = \operatorname{circ}(e_{\min})$

für alle Kanten *e* in *C*.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Zeige: Wenn $E(\text{circ}) \neq \emptyset$, dann gibt es erh. Kreis C mit Zirkulation circC sodass:

 \bullet circ = circ_c + circ'

(für eine andere Zirkulation circ' in D_f)

 $|E(\operatorname{circ}')| \leq |E(\operatorname{circ})| - 1$

Existenz dieses erhöhenden Kreises:

.. falls *C* existiert.

1. Finde gerichteten Kreis C der nur aus Kanten in E(circ) besteht.

2. Sei e_{\min} die Kante in C für die $\operatorname{circ}(e_{\min})$ minimal ist. Setzte $\operatorname{circ}_C(e) = \operatorname{circ}(e_{\min})$

für alle Kanten *e* in *C*.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Noch zu zeigen: D_f enthält einen Kreis C der nur Kanten aus E(circ) benutzt.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Noch zu zeigen: D_f enthält einen Kreis C der nur Kanten aus E(circ) benutzt.

Beobachtung: Wenn $v \in V$ eine eingehende Kante in E(circ) hat, dann auch eine ausgehende.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Noch zu zeigen: D_f enthält einen Kreis C der nur Kanten aus E(circ) benutzt.

Beobachtung: Wenn $v \in V$ eine eingehende Kante in E(circ) hat, dann auch eine ausgehende.

- Starte bei einem Knoten mit inzidenten Kanten in E(circ).
- Laufe auf ausgehenden Kanten weiter, bis schon besuchter Knoten erreicht wird. \Rightarrow Kreis C gefunden.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Noch zu zeigen: D_f enthält einen Kreis C der nur Kanten aus E(circ) benutzt.

Beobachtung: Wenn $v \in V$ eine eingehende Kante in E(circ) hat, dann auch eine ausgehende.

- Starte bei einem Knoten mit inzidenten Kanten in E(circ).
- Laufe auf ausgehenden Kanten weiter, bis schon besuchter Knoten erreicht wird. \Rightarrow Kreis C gefunden.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Noch zu zeigen: D_f enthält einen Kreis C der nur Kanten aus E(circ) benutzt.

Beobachtung: Wenn $v \in V$ eine eingehende Kante in E(circ) hat, dann auch eine ausgehende.

- Starte bei einem Knoten mit inzidenten Kanten in E(circ).
- Laufe auf ausgehenden Kanten weiter, bis schon besuchter Knoten erreicht wird. \Rightarrow Kreis C gefunden.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Noch zu zeigen: D_f enthält einen Kreis C der nur Kanten aus E(circ) benutzt.

Beobachtung: Wenn $v \in V$ eine eingehende Kante in E(circ) hat, dann auch eine ausgehende.

- Starte bei einem Knoten mit inzidenten Kanten in E(circ).
- Laufe auf ausgehenden Kanten weiter, bis schon besuchter Knoten erreicht wird. \Rightarrow Kreis C gefunden.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Noch zu zeigen: D_f enthält einen Kreis C der nur Kanten aus E(circ) benutzt.

Beobachtung: Wenn $v \in V$ eine eingehende Kante in E(circ) hat, dann auch eine ausgehende.

- Starte bei einem Knoten mit inzidenten Kanten in E(circ).
- Laufe auf ausgehenden Kanten weiter, bis schon besuchter Knoten erreicht wird. \Rightarrow Kreis C gefunden.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Noch zu zeigen: D_f enthält einen Kreis C der nur Kanten aus E(circ) benutzt.

Beobachtung: Wenn $v \in V$ eine eingehende Kante in E(circ) hat, dann auch eine ausgehende.

- Starte bei einem Knoten mit inzidenten Kanten in E(circ).
- Laufe auf ausgehenden Kanten weiter, bis schon besuchter Knoten erreicht wird. \Rightarrow Kreis C gefunden.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Noch zu zeigen: D_f enthält einen Kreis C der nur Kanten aus E(circ) benutzt.

Beobachtung: Wenn $v \in V$ eine eingehende Kante in E(circ) hat, dann auch eine ausgehende.

- Starte bei einem Knoten mit inzidenten Kanten in E(circ).
- Laufe auf ausgehenden Kanten weiter, bis schon besuchter Knoten erreicht wird. \Rightarrow Kreis C gefunden.

Satz: Zerlegung in erhöhende Kreise

Jede Zirkulation in D_f ist die Summe von maximal $m (= |E_f|)$ erhöhenden Kreisen.

Beweis:

Gegeben eine Zirkulation circ in D_f . Sei $E(\text{circ}) = \{e \mid e \in E_f, \text{circ}(e) > 0\}$.

Noch zu zeigen: D_f enthält einen Kreis C der nur Kanten aus E(circ) benutzt.

Beobachtung: Wenn $v \in V$ eine eingehende Kante in E(circ) hat, dann auch eine ausgehende.

- Starte bei einem Knoten mit inzidenten Kanten in E(circ).
- Laufe auf ausgehenden Kanten weiter, bis schon besuchter Knoten erreicht wird. \Rightarrow Kreis C gefunden.

CYCLECANCELING(D, c, cost, b)

 $f \leftarrow$ gültiger Fluss in D

 $O(nm\log(n^2/m))$

 $D_f \leftarrow \text{Residualnetzwerk von } D \text{ bezüglich } f$

while D_f enthält erhöhenden Kreis mit negativen Kosten **do** $(C, circ_C) \leftarrow$ erhöhender Kreis mit negativen Kosten

 $f \leftarrow f + \operatorname{circ}_C$

 $D_f \leftarrow \text{Residualnetzwerk von } D \text{ bezüglich } f$

Berechnung eines maximalen Flusses z.B. Goldberg & Tarjan

CYCLECANCELING(D, c, cost, b)

 $f \leftarrow \text{g\"{u}ltiger Fluss in } D$ $O(nm \log(n^2/m))$

 $D_f \leftarrow \text{Residualnetzwerk von } D \text{ bezüglich } f$

O(m)

while D_f enthält erhöhenden Kreis mit negativen Kosten do

 $\overline{(C)}$, circ_C) \leftarrow erhöhender Kreis mit negativen Kosten

O(nm)

 $f \leftarrow f + \operatorname{circ}_C$

 $D_f \leftarrow \text{Residualnetzwerk von } D \text{ bezüglich } f$

Benutze kürzeste Wege Algorithmus z.B. Bellman & Ford

Berechnung eines maximalen Flusses z.B. Goldberg & Tarjan

z.B. Goldberg & Tarjan

CYCLECANCELING($D, c, \cos t, b$)	$O(nm \cdot mc_{\text{max}} \operatorname{cost}_{\text{max}})$		
$f \leftarrow$ gültiger Fluss in D	$O(nm\log(n^2/m))$		
$D_f \leftarrow \text{Residualnetzwerk von } D \text{ bezüglich } f$ $O(m)$			
while D_f enthält erhöhenden Kreis mit negativen Kosten C (C , $circ_C$) \leftarrow erhöhender Kreis mit negativen Kosten C (C) C 0 C 1 C 2 C 3 C 4 C 5 C 5 C 6 C 7 C 8 C 9			
$D_f \leftarrow \text{Residualnetzwerk von } D$			
Benutze kürzeste Wege Algorithmus z.B. Bellman & Ford O(nm· mc _{max} cost _{max}) O(mc _{max} cost _{max}) Schleifendurchläufe Grund: In jedem Schritt sinken die Ko			

c_{max} / cost_{max}: maximale Kapazität / betragsmäßig maximale Kosten

zahlig sein!

Kapazitäten und Bedarfe müssen ganz-

C.	CYCLECANCELING(D, c, cost, b)		$O(nm \cdot mc_{max} cost_{max})$
	$f \leftarrow \text{gültiger Fluss in } D$ $O(nm \log(n^2/m^2)$		$O(nm\log(n^2/m))$
	$D_f \leftarrow \text{Residualnetzwerk von } D \text{ bezüglich } f$		
while D_f enthält erhöhenden Kreis mit negativen Kosten $(C, \operatorname{circ}_C) \leftarrow \operatorname{erh\"{o}hender}$ Kreis mit negativen Kosten			
		$f \leftarrow f + \operatorname{circ}_C$ $D_f \leftarrow \operatorname{Residualnetzwerk} \operatorname{von} D \operatorname{bezüglich} f$	O(m)
$O(nm \cdot mc_{max})$		$O(nm \cdot mc_{\text{max}} \cos t_{\text{max}})$	

Satz: Cycle Canceling Algorithmus

Sei $(D, c, \cos t, b)$ ein Flussnetzwerk mit ganzzahligen Kapazitäten und Bedarfen. Der Algorithmus CycleCanceling berechnet Fluss mit minimalen Kosten in $O(nm^2c_{max}\cos t_{max})$ Zeit.

Bemerkung: Es gibt diverse Algorithmen zur Lösung von MINCOSTFLOW, sowohl pseudopolynomielle wie CYCLECANCELING als auch streng-polynomielle.

Beispiel: Der Algorithmus von Orlin hat eine Laufzeit von $O(m \log n(m + n \log n))$

Matchings

/Pilot darf Flugzeug fliegen

/Pilot darf Flugzeug fliegen

Zuordnung der Piloten

/Pilot darf Flugzeug fliegen

Zuordnung der Piloten

/Pilot darf Flugzeug fliegen

Zuordnung der Piloten

Ziel: Finde eine Zuordnung, sodass:

Jeder Pilot maximal ein Flugzeug fliegt, jedes Flugzeug von maximal einem Pilot geflogen wird.

Möglichst viele Flugzeuge besetzt (bzw. Piloten beschäftigt) sind.

maximales

Matching

Formale Definition

Definition: Matching

Sei G = (V, E) ein Graph. Ein *Matching* in G ist eine Teilmenge $M \subseteq E$, sodass jeder Knoten zu maximal einer Kante in M inzident ist.

Problem: MAXIMALES MATCHING

Finde ein möglichst großes Matching M in G. (d. h. $|M| \ge |M'|$ für alle Matchings M')

Bemerkung: Man könnte auch jeder Kante ein Gewicht zuweisen und dann die Summe der Gewichte gewählter Kanten maximieren.

Formale Definition

Definition: Matching

Sei G = (V, E) ein Graph. Ein *Matching* in G ist eine Teilmenge $M \subseteq E$, sodass jeder Knoten zu maximal einer Kante in M inzident ist.

Problem: MAXIMALES MATCHING

Finde ein möglichst großes Matching M in G. (d. h. $|M| \ge |M'|$ für alle Matchings M')

Bemerkung: Man könnte auch jeder Kante ein Gewicht zuweisen und dann die Summe der Gewichte gewählter Kanten maximieren.

Einschränkung: Wir nehmen im Folgenden an, dass G bipartit ist.

Erinnerung: bipartite Graphen

Ein Graph $G = (R \cup B, E)$ ist *bipartit*, wenn jede Kante in E einen Knoten aus R mit einem Knoten aus B verbindet.

Problem: MAXIMALES BIPARTITES MATCHING

Finde ein möglichst großes Matching M in einem bipartiten Graphen G.

Lösungsansatz mittels Flussberechnung

Definition: zugehöriges Flussnetzwerk

Sei $G = (V = R \cup B, E)$ ein bipartiter Graph. Das zugehörige Flussnetzwerk G = (V', E', c, s, t) ist wie folgt definiert.

- $V' = V \cup \{s, t\}$
- $(r,b) \in E'$ für jede Kante $\{r,b\} \in E$ mit $r \in R, b \in B$.
- $(s, r) \in E'$ für alle Knoten $r \in R$ und $(b, t) \in E'$ für alle Knoten $b \in B$.
- c(e) = 1 für alle Kanten $e \in E'$.

Lösungsansatz mittels Flussberechnung

Definition: zugehöriges Flussnetzwerk

Sei $G = (V = R \cup B, E)$ ein bipartiter Graph. Das zugehörige Flussnetzwerk G = (V', E', c, s, t) ist wie folgt definiert.

- $V' = V \cup \{s, t\}$
- $(r,b) \in E'$ für jede Kante $\{r,b\} \in E$ mit $r \in R, b \in B$.
- $(s,r) \in E'$ für alle Knoten $r \in R$ und $(b,t) \in E'$ für alle Knoten $b \in B$.
- c(e) = 1 für alle Kanten $e \in E'$.

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Äquivalenz des Flussnetzwerks – Beweis

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Beweis:

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Beweis:

Definiere f wie folgt:

- Für $\{r, b\} \in M$ setze f(s, r) = f(r, b) = f(b, t) = 1.
- Für alle anderen Kanten $e \in E'$ setzte f(e) = 0.

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Beweis:

Definiere f wie folgt:

- Für $\{r, b\} \in M$ setze f(s, r) = f(r, b) = f(b, t) = 1.
- Für alle anderen Kanten $e \in E'$ setzte f(e) = 0.

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Beweis:

Definiere f wie folgt:

- Für $\{r, b\} \in M$ setze f(s, r) = f(r, b) = f(b, t) = 1.
- Für alle anderen Kanten $e \in E'$ setzte f(e) = 0.

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Beweis:

Definiere f wie folgt:

- Für $\{r, b\} \in M$ setze f(s, r) = f(r, b) = f(b, t) = 1.
- Für alle anderen Kanten $e \in E'$ setzte f(e) = 0.

Die Abbildung f tut das richtige, denn:

- Kapazitäts- und Flusserhaltungsbedingung sind erfüllt
 - \Rightarrow f ist ein Fluss
- f ist ganzzahlig
- $\mathbf{w}(f) = |M|$

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Beweis:

Für alle Kanten $e \in E'$ gilt c(e) = 1. Daher folgt aus der ganzzahligkeit von f dass f(e) = 0 oder f(e) = 1 gilt.

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Beweis:

Für alle Kanten $e \in E'$ gilt c(e) = 1. Daher folgt aus der

ganzzahligkeit von f dass f(e) = 0 oder f(e) = 1 gilt.

Sei (s, r) eine Kante mit f(s, r) = 1.

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Beweis:

Für alle Kanten $e \in E'$ gilt c(e) = 1. Daher folgt aus der

ganzzahligkeit von f dass f(e) = 0 oder f(e) = 1 gilt.

Sei (s, r) eine Kante mit f(s, r) = 1.

 \Rightarrow r hat einen Nachbar b mit f(r, b) = 1, für alle anderen Nachbarn b' gilt f(r, b') = 0

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Beweis:

Für alle Kanten $e \in E'$ gilt c(e) = 1. Daher folgt aus der

ganzzahligkeit von f dass f(e) = 0 oder f(e) = 1 gilt.

Sei (s, r) eine Kante mit f(s, r) = 1.

 \Rightarrow r hat einen Nachbar b mit f(r, b) = 1, für alle anderen Nachbarn b' gilt f(r, b') = 0

 $\Rightarrow f(b, t) = 1$

Flusserhaltung

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Beweis:

Für alle Kanten $e \in E'$ gilt c(e) = 1. Daher folgt aus der

ganzzahligkeit von f dass f(e) = 0 oder f(e) = 1 gilt.

Sei (s, r) eine Kante mit f(s, r) = 1.

 \Rightarrow r hat einen Nachbar b mit f(r, b) = 1, für alle anderen Nachbarn b' gilt f(r, b') = 0

 $\Rightarrow f(b, t) = 1$

Flusserhaltung

Jeder Knoten in R/B hat nur eine ein-/ausgehende Kante \Rightarrow Kanten zwischen R und B mit Fluss 1 in G' bilden Matching M in G mit |M| = w(f).

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Beweis:

Für alle Kanten $e \in E'$ gilt c(e) = 1. Daher folgt aus der

ganzzahligkeit von f dass f(e) = 0 oder f(e) = 1 gilt.

Sei (s, r) eine Kante mit f(s, r) = 1.

 \Rightarrow r hat einen Nachbar b mit f(r, b) = 1, für alle anderen Nachbarn b' gilt f(r, b') = 0

 $\Rightarrow f(b, t) = 1$

Flusserhaltung

Jeder Knoten in R/B hat nur eine ein-/ausgehende Kante \Rightarrow Kanten zwischen R und B mit Fluss 1 in G' bilden Matching M in G mit |M| = w(f).

Lemma: Äquivalenz des zugehörigen Flussnetzwerks

Sei M ein Matching in G. Dann gibt es einen ganzzahligen Fluss f in G' mit Wert w(f) = |M|. Sei f ein ganzzahliger Fluss in G', dann gibt es in G ein Matching M mit |M| = w(f). (Erinnerung: w(f) ist der bei S ausgehende Fluss)

Beweis:

Für alle Kanten $e \in E'$ gilt c(e) = 1. Daher folgt aus der

ganzzahligkeit von f dass f(e) = 0 oder f(e) = 1 gilt.

Sei (s, r) eine Kante mit f(s, r) = 1.

 \Rightarrow r hat einen Nachbar b mit f(r, b) = 1, für alle anderen Nachbarn b' gilt f(r, b') = 0

 $\Rightarrow f(b, t) = 1$

Flusserhaltung

Jeder Knoten in R/B hat nur eine ein-/ausgehende Kante \Rightarrow Kanten zwischen R und B mit Fluss 1 in G' bilden Matching M in G mit |M| = w(f).

Der Algorithmus

Der Ford-Fulkerson-Algorithmus liefert bei ganzzahligen Kapazitäten einen ganzzahligen maximalen Fluss. (siehe Vorlesung 2)

⇒ Er kann benutzt werden um Maximales Bipartites Matching zu lösen.

Der Algorithmus

Der Ford-Fulkerson-Algorithmus liefert bei ganzzahligen Kapazitäten einen ganzzahligen maximalen Fluss. (siehe Vorlesung 2)

⇒ Er kann benutzt werden um Maximales Bipartites Matching zu lösen.

N	Maximales Bipartites Matching $(G = (R \cup B, E))$	O(nm)
	$(G', c, s, t) \leftarrow$ zugehöriges Flussnetzwerk von G	<i>O</i> (<i>m</i>)
	$f \leftarrow 0$ -Fluss	<i>O</i> (<i>m</i>)
	while Residualnetzwerk von f enthält st-Weg do	O(nm)
	$ f \leftarrow f \text{ erh\"oht um } st\text{-Weg}$	<i>O</i> (<i>m</i>)
	$M \leftarrow \text{alle Kanten } \{r, b\} \text{ mit } r \in R, b \in B \text{ und } f(r, b) = 1$	O(m)

Es gilt $w(f) = |M| \le n/2$, da jede Kante in M zwei Knoten in V besetzt.

Der Algorithmus

Der Ford-Fulkerson-Algorithmus liefert bei ganzzahligen Kapazitäten einen ganzzahligen maximalen Fluss. (siehe Vorlesung 2)

⇒ Er kann benutzt werden um Maximales Bipartites Matching zu lösen.

M	AXIMALES BIPARTITES MATCHING $(G = (R \cup B, E))$	O(nm)
	$(G', c, s, t) \leftarrow$ zugehöriges Flussnetzwerk von G	<i>O</i> (<i>m</i>)
	$f \leftarrow 0$ -Fluss	<i>O</i> (<i>m</i>)
	while Residualnetzwerk von f enthält st-Weg do	O(nm)
	$f \leftarrow f$ erhöht um st -Weg	<i>O</i> (<i>m</i>)
	$M \leftarrow \text{alle Kanten } \{r, b\} \text{ mit } r \in R, b \in B \text{ und } f(r, b) = 1$	

Satz: Maximales Bipartites Matching

Sei G ein bipartiter Graph. Der Algorithmus MAXIMALES BIPARTITES MATCHING berechnet ein maximales Matching in G in O(nm) Zeit.

Bemerkung: Es gibt diverse effiziente Algorithmen zur Bestimmung von maximalen Matchings auch auf allgemeinen Graphen.

Beispiel: Gewichtsmaximale Matchings können in $O(m\sqrt{n})$ Zeit berechnet werden.