EXERCÍCIOS DE MATEMÁTICA FINITA - 2016/2017

II- Teoria Elementar de Números

1. Divisão com resto

1. Recorde o Exercicio 2-2) Soma dos n primeiros termos de uma progressão geométrica de razão r: Considere $r \in \mathbb{R}, r \neq 1$. Mostre que:

$$\sum_{k=0}^{n} r^k = \frac{r^{n+1} - 1}{r - 1}$$

- 2. Determine o resto e o quociente das divisões de 340 e de -625 por 13.
- 3. Sejam $a,b\in\mathbb{N},\ a\neq 0.$ Se r é o resto da divisão de b por a , quanto é o resto da divisão de -b por a?
- 4. Prove que sendo $a, b, c \in \mathbb{Z}$:
 - (a) Se a|b e b|c então a|c.
 - (b) Se $a|b \in a|c$ então $a|b+c \in a|b-c$.
 - (c) Se a, b > 0 e a|b então $a \le b$.
 - (d) Se $a|b \in b|a$ então a = b ou a = -b.
- 5. Escreva 37 na base 5 e na base 2.
- 6. Considere os números a e b , definidos em notação binária por: a=10101 e b=1111 determine a+b em notação binária e na base 10.
- 7. Porque é que qualquer número racional $\frac{p}{q} \in \mathbb{Q}$ é representado por uma dízima finita ou infinita periódica?
- 8. Escreva em notação decimal as fracções: $\frac{1}{7}$, $\frac{53}{16}$.
- 9. Escreva na forma de fracção: 0, 36, 3, 235, 0, (23), 0, 35(63) e 0, (9)
- 10. Sabendo que $n \in \mathbb{N}$ é um número de 7 algarismos na base 10. O que pode dizer sobre:
 - (a) $log_{10}(n)$
 - (b) O número de algarismos de n em notação binária?

- 11. Utilize o Teorema de Stirling ($n! \simeq (\frac{n}{e})^n \sqrt{2\pi n}$) para responder às seguintes perguntas:
 - (a) Estime o número de algarismos de 300! e de 100³00.
 - (b) Qual dos números é maior: 300! ou 100^{300} ?

2. Divisibilidade. Algoritmo de Euclides.

- 12. Mostre que:
 - (a) Qualquer que seja o inteiro a, $a 1|a^2 1$.
 - (b) Mais geralmente, qualquer que seja o inteiro $a, a 1|a^n 1$.
- 13. Prove a seguinte proposição: $Seja p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ é um polinómio de grau n na variável x, com coeficientes inteiros (i.e. $a_i \in \mathbb{Z}$, $a_n \neq 0$). Se $r \in \mathbb{Z}$ é uma raiz inteira de p(x) então $r|a_0$ ".
- 14. Verifique se algum dos seguintes polinómios tem raízes inteiras:
 - (a) $p(x) = 6x^3 5x^2 29x + 10$
 - (b) $p(x) = 3x^4 2x^2 + 6$
- 15. Mostre que se $n \in \mathbb{N}$ não é um número primo então tem um divisor $d \leq \sqrt{n}$.
- 16. Os números de Mersenne são os números da forma 2^p-1 em que p é um número primo.
 - (a) Mostre que a notação binária para um número da forma 2^n-1 é $\underbrace{11\dots 1}_p$
 - (b) Verifique que os 4 primeiros números de Mersenne são números primos, mas que $2^{11} 1$ não é primo.
 - (c) Mostre que se $n \in \mathbb{N}$ não for um número primo então 2^n-1 não é um número primo.
- 17. Um número $n \in \mathbb{N}$ é um *números perfeito* (Euclides) se n é igual à soma de todos os seus divisores (positivos) próprios.

- (a) Mostre que 6 é um número perfeito.
- (b) Mostre que se um número de Mersenne $2^p 1$ é primo então $2^{p-1}(2^p 1)$ é um número perfeito.
- (c) Dê exemplo de um número perfeito diferente de 6.
- (d) Qual a representação binária de um número da forma $2^{p-1}(2^p-1)$?
- 18. Mostre que se a é um número par e b é um número impar então $mdc(a,b)=mdc(\frac{a}{2},b).$
- 19. Calcule mdc(a, b) e exprima-o como combinação linear inteira de a e b nos seguintes casos:
 - (a) a = 35, b = 8.
 - (b) a = 114, b = 39.
 - (c) a = 3256, b = 123.
- 20. Sejam $a, b \in \mathbb{Z}$. Mostre que qualquer divisor comum de a e b divide mdc(a, b).
- 21. Suponha que dispõe de dois recipientes com as seguintes capacidades:

Caso 1 - 5 litros e 22 litros

Caso 2 - 6 litros e 22 litros

- (a) Nalgum dos casos poderia obter 1 litro de água? Se sim, como procederia?
- (b) Nalgum dos casos poderia obter 8 litros de água? Se sim como procederia?
- 22. Considere a sucessão de Fibonacci $F_n, n \in \mathbb{N}$ definida por $F_n = F_{n-1} + F_{n-2}, F_1 = 1, F_2 = 1.$
 - (a) Mostre que $mdc(F_n, F_{n-1}) = 1$.
 - (b) Quantos passos tem de executar no algoritmo de Euclides para calcular $mdc(F_n, F_{n-1})$?
 - (c) Prove que se 4|n então $3|F_n$.

23. Prove a seguinte proposição:

Proposição. Sejam $a, b \in \mathbb{N}$ e d := mdac(a, b). Se $(x_0, y_0) \in \mathbb{Z}^2$ satisfaz a igualdade

$$(*) \quad ax_0 + by_0 = d$$

então (todos) os pares $(x,y) \in \mathbb{Z}^2$ que satisfazem a igualdade (*) são os pares da forma

$$(x,y) = (x_0 + \frac{b}{d}t, y_0 - \frac{a}{d}t), \quad t \in \mathbb{Z}.$$

Interprete geométricamente o resultado.

- 24. Diga se as iguladades das duas primeiras alíneas aão verdadeiras ou falsas (justifique):
 - (a) $\mathbb{Z} = \{4m + 7n : m, n \in \mathbb{Z}\}\$
 - (b) $2\mathbb{Z} = \{8m + 12n : m, n \in \mathbb{Z}\}\$
 - (c) Estude o conjunto $A=\{4m+7n:m,n\in\mathbb{N}\}$. Mostre, em particular, que qualquer número natural $a\geq 29$ é um elemento de A.
- 25. Diga, justificando, se s
 ao verdadeiras ou falsas as seguintes afirmações em que
 $a,b\in\mathbb{N}$:
 - (a) Se 17|ab então 17|a ou 17|b.
 - (b) Se 16|ab então 16|a ou 16|b.
 - (c) Se a,b são primos entre si e $d\in\mathbb{N}$ divide ab então d|a ou d|b.
 - (d) Se $a = 2^3 \times 5^7 \times 13^{12}$ e $b = 2^5 \times 3^2 \times 13^7$ então $mdc(a, b) = \frac{b}{2^2 \times 3^2}$.
 - (e) Se $a=2^3\times 5^7\times 13^{12}$ e $b=2^5\times 3^2\times 13^7$ então $mmc(a,b)=2^5\times 3^2\times 5^7\times 13^{12}$.
 - (f) Se $a=m^2n^4$ e $b=m^4n^2$ onde $m,n\in\mathbb{N},$ então $mdc(a,b)=m^2n^2$
 - (g) ab = mdc(a, b).mmc(a, b).
- 26. Utilize o método do "crivo de Eratóstenes" para listar todos os números primos até 200.
- 27. Mostre que os números n_k da forma $n_k = k^2 + k + 41$, $k \in \mathbb{N}$ são primos para $k \leq 20$. Dê exemplo de um valor $k \in \mathbb{N}$ para o qual n_k não é primo.

- 28. Considere o número natural $n=2^3\times 3\times 5^2$. Quantos divisores naturais tem n?
- 29. Seja n um número natural cuja representação em factores primos é: $n=p_1^{\alpha_1}...p_k^{\alpha_k}$, $\alpha_1,\ldots,\alpha_k\in\mathbb{N}$. Quantos divisores naturais tem n? E quantos divisores inteiros tem n?
- 30. Recorde o Teorema dos números primos: Sendo $\pi(n):=n^0de$ números primos $\leq n,\,\pi(n)\simeq \frac{n}{\ln n}$.
 - Utilize-o para estimar quantos números primos têm 100 algarismos.

3. Aritmética modular - Congruências

- 31. Diga, justificando, se as seguintes afirmações são verdadeiras ou falsas:
 - (a) $23 \equiv 3 \pmod{5}$
 - (b) $3 \equiv -56 \pmod{12}$
 - (c) $3^{54} 1 \equiv 7 \pmod{8}$
 - (d) $300 \times 15 5^7 12 \equiv 3 \pmod{5}$
- 32. Calcule o resto da divisões de: (i) 12^{23} por 53, (ii) 2^{100} por 13.
- 33. Critérios de divisibilidade
 - (a) **por 9:** Mostre que um número é divisível por 9 se e s 'o se a soma dos seus algarismos o é.
 - (b) por 11: Mostre que um número é divisível por 11 se e s
 'o se a "soma alternada" dos seus algarismos o é.
 ("soma alternada dos algarismos" = soma dos algarismos que ocupam um lugar par soma dos algarismos queocupam um lugar impar).
- 34. Calcule os valores das seguintes expressões algébricas em \mathbb{Z}_{13} :
 - (a) $\overline{4} \times (\overline{11}^2 + \overline{12} \overline{7})$.
 - (b) $\overline{10}^{34}$.
 - (c) $\overline{4}^{-1} \times (\overline{2}^5 \overline{12})$.

Resultados sobre Equações lineares $(mod \ n)$

- 35. Determine todas as soluções (eventualmente nenhuma) das equações:
 - (a) $3x \equiv 9 \pmod{12}$.
 - (b) $3x \equiv 9 \pmod{13}$.
 - (c) $30x \equiv 45 \pmod{60}$

- (d) $25x \equiv 45 \pmod{60}$
- 36. Prove o seguinte Teorema:

Teorema Sejam $a, b \in \mathbb{Z}$ e $n \in \mathbb{N}$. Considere-se a equação:

$$(E) ax \equiv b \pmod{n}$$

Seja d = mdc(a, n). Então:

- 1) Se d /b a equação (E) não tem solução.
- 2) Se d|b a equação (E) tem exactamente d soluções (mod n)
- 37. Deduza do teorema anterior:
 - (a) Um resultado sobre o número de soluções distintas da equação $\overline{a}.\overline{x}=\overline{b}$ em ${\bf Z_n}.$
 - (b) Um resultado sobre o número de inversos de um elemento invertível $\overline{a} \in \mathbf{Z_n}$.
- 38. Para cada uma das seguintes equações lineares na variável \overline{x} , determine todas as soluções em
 - (i) $\mathbf{Z_7}$ (ii) $\mathbf{Z_{12}}$
 - (a) $\overline{3} + \overline{x} = \overline{0}$.
 - (b) $\overline{3}\overline{x} = \overline{1}$.
 - (c) $\overline{3}\overline{x} = \overline{0}$.
 - (d) $\overline{3}\overline{x} + \overline{4} = \overline{2}$
 - (e) $\overline{5}\overline{x} + \overline{2} = \overline{1}$
- 39. Seja $n \in N$ e $a \in \mathbb{Z}$, $a \not\equiv 0 \pmod{n}$ Mostre que:
 - (a) Se n=p é um número primo então a equação $\overline{a}x=\overline{0}$ tem como única solução $x=\overline{0}$.
 - (b) Se n não é primo mostre que a proposição da alínea anterior é falsa.
 - (c) Se n não é primo que condição necessária e suficiente deve satisfazer a para que a equação $\overline{a}x=\overline{0}$ tenha como única solução $x=\overline{0}$?

- 40. Seja p um número primo.
 - (a) Quais os elementos de \mathbb{Z}_p que têm inverso?
 - (b) Quais os elementos $\overline{a} \in \mathbb{Z}_p$ que são inversos de si próprios.
- 41. (a) Diga , justificando se algum dos seguintes elementos tem inverso em \mathbb{Z}_{60} e caso o tenha calcule-o:
 - $\overline{7}$, $\overline{22}$, $\overline{3}$, $\overline{49}$
 - (b) Quantos elementos de \mathbb{Z}_{60} têm inversos?
- 42. a) Prove que qualquer que seja $a \in \mathbb{Z}$ se verifica $a^2 \equiv 0, 1 \text{ ou } 4 \pmod{8}$.
 - b) Mostre que nenhum número natural da forma 8k+7 pode ser escrito como soma de três quadrados.
- 43. (exame 2018) Houve um acidente numa fábrica e a polícia está a entrevistar quem estava presente.

Num dos hangares há uma máquina com dois contadores cujos ponteiros rodam, no sentido dos ponteiros do relógio, com velocidade angular constante, o maior demora 52 minutos a dar uma volta completa e o menor 8 minutos.

Às 14h 15m, os ponteiros estão na posição da Figura A e o encarregado diz à polícia que ligou a máquina pouco depois das 8h, tendo a máquina começado a funcionar, como é obrigatório, com os dois ponteiros no zero, depoimento corroborado por outros funcionários presentes.

Um indivíduo, estranho à fábrica, que ali se encontrava disse que passou por ali ao ir à Direção, não se lembra exatamente da hora, mas tem a certeza de que os ponteiros estavam na posição da Figura B.

- a) Se são 14h e 15m a que horas foi ligada a máquina?
- **b)** Porque é que a polícia sabe que o indivíduo estranho à fábrica está a mentir?
- 44. Camaleões e Congruências (Terence Tao) :Numa ilha há 13 camaleões verdes, 15 camaleões castanhos e 17 camaleões encarnados. Se dois camaleões de cores diferentes se encontram mudam ambos para a terceira cor, mas não mudam decor em nenhuma outra situação.

Será possível que a certa altura os camaleões fiquem todos da mesma cor?

Sugestão: analise o resultado de uma mudança de cor de dois camaleões nas populações de cada cor m'odulo 3.

45. (Exame 2017) Determine todos os quádruplos (a,b,c,d) de números naturais, com $a \le b \le c \le d$, que satisfazem a igualdade:

$$2^a + 2^b + 2^c + 2^d = 2^{41}$$
.

- 46. (Exame 2017) Mostre que qualquer que seja o número natural $n \in \mathbb{N}$ existe um múltiplo de n cujos algarismos (na base 10) são 0's e 1's. Sugestão: considere os restos da divisão por n dos (n+1) números: 1, 11, 111, ... 1 ... 1.
- 47. (Exame 2016-2017) Mostre que existe um único número natural N menor do que 100 que dividido por 8 dá resto 3 e por 13 dá resto 6.
- 48. Determine a forma geral das soluções dos seguintes sistemas de equações.

(a)
$$\begin{cases} x \equiv 1 \pmod{8} \\ x \equiv 4 \pmod{15} \end{cases}$$
 (Resposta: $x \equiv 49 \pmod{8.15}$)
(b)
$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 5 \pmod{8} \\ x \equiv 11 \pmod{17} \end{cases}$$
 (Resposta: $x \equiv 181 \pmod{3.8.17}$.)

49. Quantas soluções positivas com 3 dígitos têm os sistema de congruências anteriores? E com 6 dgitos?

50. Prove: **Teorema Chinês dos Restos (I)** Sejam $n_1, n_2 \in \mathbb{N}$ dois números primos entre si. Então quaisquer que sejam $r_1, r_2 \in \mathbb{Z}$ o sistema de equações:

$$\begin{cases} x \equiv r_1 \pmod{n_1} \\ x \equiv r_2 \pmod{n_2} \end{cases}$$

tem uma única solução módulo o produto n_1n_2 .

51. Deduza da alínea anterior que **Teorema Chinês dos Restos (II)** Sejam $n_1, \ldots, n_k \in \mathbb{N}$ números primos entre si dois a dois $(mdc(n_i, n_j) = 1, i \neq j)$. Então quaisquer que sejam $r_1, \ldots, r_k \in \mathbb{Z}$ o sistema de equações:

$$\begin{cases} x \equiv r_1 \pmod{n_1} \\ \vdots \\ x \equiv r_k \pmod{n_k} \end{cases}$$

tem uma única solução módulo o produto $n_1 \dots n_k$.

- 52. (Exame 2018) Se $f(x) = a_k x^k + \dots a_1 x + a_0$ é um polinómio com coeficientes inteiros <u>as raízes</u> de f em \mathbb{Z}_n são os elementos $\overline{r} \in \mathbb{Z}_n$ que satisfazem a congruência $f(r) \equiv 0 \pmod{n}$.
 - a) Determine todas as raízes do polinómio $x^2 1$ em \mathbb{Z}_5 e em \mathbb{Z}_8 . (Indique os cálculos que fizer).
 - b) Mostre que se p é um número primo e $f(x) = ax^2 + bx + c$ é um polinómio de grau 2 com coeficientes em \mathbb{Z}_p , tal que $a \not\equiv 0 \pmod{p}$ então f(x) tem no máximo duas raízes em \mathbb{Z}_p .

Sugestão. No caso de f(x) ter uma raiz \overline{r} em \mathbb{Z}_p estude a equação $f(x) - f(r) \equiv 0 \pmod{p}$.

Comportamento de potências $(mod \ n)$ e função de Euler

- 53. Prove que $\forall x \in \mathbb{Z}$ se verifica a equação $x^3 \equiv x \pmod{3}$.
- 54. Prove que existem $x \in \mathbb{Z}$ para os quais $x^4 \not\equiv x \pmod{4}$.
- 55. (a) Determine a factorização em números primos de 1200.
 - (b) Seja $P(1200) := \{ a \in \mathbb{N} : a \le 1200 \ e \ mdc(a, 1200) = 1 \}.$

Utilize a alímea (a) e o princípio de inclusão-exclusão para determinar |P(1200)|.

(c) Quantos elementos de \mathbb{Z}_{1200} são invertíveis?

56. Função de Euler - $\Phi(n)$

Dado um número natural $n \in \mathbb{N}$ a função de Euler - $\Phi(n)$ - de n é o número de números naturais menores do que n e primos com n, i.e.:

$$\Phi(n) := |\{a \in \mathbb{N} : \ mdc(a, n) = 1 \ e \ a \le n\}|.$$

Mostre que:

- (a) Se p é um número primo então $\Phi(p) = p 1$.
- (b) Se $n = p_1p_2$ onde p_1, p_2 são dois números primos distintos, então $\Phi(n) = (p_1 1)(p_2 1)$.
- (c) Utilize o princípio de inclusão- exclusão para mostrar a seguinte proposição:

Se n é um número natural, cuja decomposição em factores primos é da forma:

 $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}, \ \alpha_i \in \mathbb{N} \ ent \tilde{ao}$:

$$\Phi(n) = n\left(1 - \frac{1}{p_1}\right)\dots\left(1 - \frac{1}{p_k}\right).$$

57. Mostre que se p é um número primo então :

- (a) $\forall a \in \mathbb{Z}, a \not\equiv 0 \pmod{p}$ as classes de congruência módulo p dos números $\overline{a}, \overline{2a}, \ldots, \overline{(p-1)a}$ são todas diferentes.
- (b) Mostre que a proposição da alínea anterior é falsa se n não é um número primo.

58. Mostre que:

- (a) Se p é um número primo então $p \mid \binom{p}{k}, \forall k, \ 1 \leq k \leq p-1.$
- (b) Se n não é um número primo a proposição da alínea anterior é falsa.

- 59. Prove por indução e usando o exercício 51 a seguinte versão do **Pequeno Teorema de Fermat** Se p é um número primo então $\forall a \in \mathbb{Z}, a \not\equiv 0 \pmod{p}$ então $a^p \equiv a \pmod{p}$.
- 60. Utilize o Pequeno Teorema de Fermat para calcular o inverso de $\overline{5}$ em \mathbb{Z}_7 .
- 61. Determine o resto da divisão de 5³⁰⁵⁶ por 328.

4. Sistema de criptografia RSA

- 62. Considere os números primos $p_1 = 7$, $p_2 = 13$.
 - (a) Sendo $n = p_1 p_2$ determine $\Phi(n)$.
 - (b) Mostre que e = 11 é um expoente de encriptação válido.
 - (c) Utlizando o sistema RSA, com $n = p_1p_2$ e expoente de encriptação e = 11, como encripta a mensagem m = 20? Indique a mensagem encriptada E(20).
 - (d) Determine o coeficiente de desencritação d := o inverso de e em $\mathbb{Z}_{\Phi(n)}$.
 - (e) Justifique a igualdade $E(20)^d = 20$.
 - (f) Suponha que recebe a mensagem encriptada E(m) = 3. Determine a mensagem m.
- 63. Considere os números primos $p_1 = 17$, $p_2 = 23$, $n = p_1 p_2$.
 - (a) Determine $\Phi(n)$.
 - (b) Quantos expoentes de encriptação pode escolher?
 - (c) Se o coeficiente de encriptação é e=7 qual é o expoente de desencriptação d?
 - (d) Se receber a mensagem encriptada (pelo sistema RSA) E(m) = 2 qual é a mensagem m?

- 64. (Exame 2018) Considere os números $a=2^5\times 3^2\times 5\times 11^2$ e $b=2^3\times 5^7\times 7.$
 - a) Escreva a decomposição em factores primos de mdc(a,b) e de mmc(a,b).
 - b) Quantos divisores positivos de a não dividem b?
 - c) Considere d = mdc(a, b) e m = mmc(a, b). Verifique se a igualdade seguinte é verdadeira ou falsa:

$$\Phi(a)\Phi(b) = \Phi(m)\Phi(d).$$

- d) a alínea anterior é válida para quaisquer $a, b \in \mathbb{N}$?
- 65. (Exame 2017) Determine a forma geral dos números $a \in \mathbb{N}$, a > 1 tais que $\Phi(a)$ divide a. São em número finito ou infinito? (justifique)

Geometrias Finitas: afins, projectivas, sistemas ternários de Steiner

- 66. Estude o conjunto de soluções das seguintes equações lineares em duas variáveis:
 - (a) $6x + 2y \equiv 0 \pmod{11}$
 - (b) $6x + 2y \equiv 5 \pmod{11}$
 - (c) $6x + 2y \equiv 0 \pmod{12}$
 - $(d) 6x + 2y \equiv 5 \pmod{12}$
- 67. Considere o plano afim \mathbb{Z}_{13}^2 . Determine equações vectorial e cartesiana para a reta r definida pelos pontos: $\mathbf{p} = (\overline{5}, \overline{1}), \ \mathbf{q} = (\overline{3}, \overline{10})$
- 68. Estude o conjunto de soluções em \mathbb{Z}^2_{13} dos seguintes equações lineares e interprete geométricamente o resultado:

(a)
$$\begin{cases} \overline{2}x + \overline{3}y = \overline{3} \\ \overline{3}x + \overline{4}y = \overline{1} \end{cases}$$

(b)
$$\begin{cases} \overline{2}x + \overline{3}y = \overline{3} \\ \overline{3}x - \overline{2}y = \overline{10} \end{cases}$$

(c)
$$\begin{cases} \overline{2}x + \overline{3}y = \overline{4} \\ \overline{3}x - \overline{2}y = \overline{6} \end{cases}$$

69. Plano afim \mathbb{Z}_3^2

- (a) Represente todos os pares $(\overline{x}, \overline{y}) \in \mathbb{Z}_3^2$ como pontos do reticulado de \mathbb{R}^2 com coordenadas (x, y).
- (b) Quantos pontos tem \mathbb{Z}_3^2 ? Quantos pontos tem cada reta?
- (c) \mathbb{Z}_3^2 é um plano afim de que ordem ?
- (d) E quantas retas?
- (e) Cada ponto pertence a quantas retas?
- (f) Quantas classes de retas paralelas tem \mathbb{Z}_3^2 ?
- (g) Descreva o plano projectivo $P\mathbb{Z}_3^2$ e responda s alíneas anteriores b) a e) para este plano.
- 70. Descreva e represente o espaço afim (de dimensão 3), \mathbb{Z}_2^3 , indicando : n^o de pontos, n^o de retas, n^o de planos. Especifique o n 'umero de pontos de cada reta e de cada plano.
- 71. (Sistemas ternários de Steiner)

Um sistema (ternário) de Steiner é um triplo (C, \mathcal{B}, r) em que C é um conjunto, \mathcal{B} uma família de 3-subsconjuntos de conjunto C, os blocos do sistema, e $r \in N$, $r \in \mathbb{N}$ que satisfaz as segintes condições:

- (S1) Qualquer elemento $c \in C$, c pertence a exatamente r blocos.
- (S2) Qualquer par de elementos de C está contido num único bloco.

Considere os números naturais $v := |C|, b = |\mathcal{B}|$ e r.

- (a) Mostre o plano de Fano ($P\mathbb{Z}_2$ e que o plano afim \mathbb{Z}_3^2 são sistemas de Steiner.
- (b) O qe pode dizer sobre os sistemas de Steiner que têm r=1 e r=2 ?

(c) Mostre quaisquer que sejam os números v, b e r de um sistema ternário de Steiner satisfazem as relações seguintes:

$$(i)3b = vr (ii) v - 1 = 2r.$$

- (d) Deduza da alínea anterior que $v \equiv 1 \pmod{6}$ ou que $v \equiv 3 \pmod{6}$.
- (e) Para todos os triplos (v, b, r) satisfazendo as relações da alínea c) existe um sistema de Steiner? (Problema para pensar)