Cours Deep Learning

Mme. Khaoula TBARKI

khaoula.tbarki@tek-up.tn

Application:

- ➤ Application Vision
- >Image processing

Les étapes :

- 1) Convolutional Layers
- 2) Pooling layers
- 3)Flatten
- 4) Fully connected layers

Convolutional Layers

Extraction des caractéristiques de l'image d'entrée

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Input Image

Filtre/ Kernel/
Feature detector
(3*3)
1*1+1*0+
1*1+0*0+1*1+1*0+0*1+0*0+1
*1

Input Image

1	0	1
0	1	0
1	0	1

Filtre

Input Image

Filtre

		1		
1	1,	1,0	0,,1	0
0	1,	1,	1,0	0
0	$\mathbf{Q}_{\mathbf{x}_1}$	1,0	1,	1
0	0	1	1	0
0	1	1	0	0

Convoled feature
Activation Map
Feature Map

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q
71 70	- 74
	1_×
0 0 1 1	0
0 1 1 0	

1	1	1	0	0
0,,1	1,0	1,,1	1	0
0,,0	0,,1	1,,0	1	1
0,,1	0,0	1,,1	1	0
0	1	1	0	0

4	3	4
2		

1	1	1	0	0
0	1,	1,0	1,	0
0	0,0	1,,1	1,0	1
0	0,,1	1,0	1,	0
0	1	1	0	0

4	3	4
2	4	

1	1	1	0	0
0	1	1,	1,0	0,
0	0	1,0	1,	1,0
0	0	1,	1,0	0,,1
0	1	1	0	0

4	3	4
2	4	3

1	1	1	0	0
0	1	1	1	0
0,,1	0,0	1,,1	1	1
0,	0,	1,,0	1	0
0,,1	1,0	1,,1	0	0

4	3	4
2	4	3
2		

1	1	1	0	0	
0	1	1	1	0	
0	0,1	1,,0	1,	1	
0	0,	1,	1,0	0	
0	1,	1,0	0,,1	0	

4	3	4
2	4	3
2	3	

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,,	1,
0	0	1,0	1,	õ
0	1	1,	0,,0	0,,1

4	3	4
2	4	3
2	3	4

Pooling Layers

- ➤ Max Pooling
- > Average Pooling
- **>**Sum Pooling

1/ Max Pooling

Pooling Layers

2/ Aveage Pooling

Pooling Layers

3/ Sum Pooling

1	10	1	2	4			1
5	-13	6	7 21	8		13	21
3		2	1	0		•	
1	8	2	8	1	Filtre (2*2)	8	8
				<u> </u>	Filtre (2*2) Stride S=2		

Flatten

Fully connected layers: Classification

Fully connected layers: Classification

Activation function

➤ **Sigmoid :** probabilité entre 0 et 1 Classification binaire

$$f(x) = \frac{1}{1 + \exp(-z)}$$

➤ Tanh : hyperbolic tangent Activation Function Mieux que Sigmoid Probabilité entre -1 et 1 Classification binaire

$$f(x) = \frac{1 - \exp(x)}{1 + \exp(x)}$$

Fully connected layers: Classification

Activation function

> Relu : Rectified Linear Unit

$$f(x) = \max(0, x)$$

≻Softmax : Classification multiclass

$$f(x) = \frac{\exp(x)}{\sum_{i=1}^{k} \exp(x)}$$