Projeto de Bases de Dados – Parte 4

Trabalho realizado por:

Nome	Número	Esforço	Contribuição
Afonso Jorge	93680	12h	33%
Bernardo Quinteiro	93692	12h	33%
Diogo Lopes	93700	12h	33%

Grupo 38

Turno

Quarta 16h30 – 18h00

Docente

Carlota Dias

```
create or replace function check_especialidade_analise() returns trigger as $$
begin
  if new.num_doente is not null and new.num_cedula is not null and new.data is not null then
   if (select especialidade from medico where num cedula = new.num cedula) =
new.especialidade then
    return new;
   else
    raise exception 'A especialidade da analise nao e a mesma da do medico';
   end if;
  end if;
  return new;
end;
$$ language plpgsql;
create trigger analise_trigger before insert on analise for each row execute procedure
check_especialidade_analise();
create trigger analise trigger2 before update on analise for each row execute procedure
check_especialidade_analise();
create or replace function check_consulta() returns trigger as $$
begin
  if (select count(*) from consulta where num_cedula = new.num_cedula and
nome_instituicao = new.nome_instituicao and extract(week from data) = extract(week from
new.data)) < 100 then
   return new;
  else
   raise exception 'Medico com mais de 100 consultas numa semana na mesma instituicao';
  end if;
end;
$$ language plpgsql;
create trigger consulta_trigger before insert on consulta for each row execute procedure
check_consulta();
create trigger consulta_trigger2 before update on consulta for each row execute procedure
check_consulta();
```

Star Schema

```
drop table d_tempo cascade;
drop table d_instituicao cascade;
drop table f_presc_venda cascade;
drop table f_analise cascade;
CREATE TABLE d_tempo (
  id_tempo serial unique,
  dia int,
  dia_da_semana int,
  semana int,
  mes int,
  trimestre int,
  ano int
);
CREATE TABLE d_instituicao (
  id_inst serial unique,
  nome varchar,
  tipo varchar,
  num_regiao int,
  num_concelho int,
  FOREIGN KEY(nome) REFERENCES instituicao(nome) on delete cascade on update cascade,
  FOREIGN KEY(num_regiao) REFERENCES regiao(num_regiao) on delete cascade on update
cascade,
  FOREIGN KEY(num_concelho) REFERENCES concelho(num_concelho) on delete cascade on
update cascade
);
CREATE TABLE f_presc_venda (
  id_presc_venda serial unique,
  id_medico int,
  num_doente int,
  id_data_registo int,
  id_inst int,
```

```
quant int,
  PRIMARY KEY(id_presc_venda),
  FOREIGN KEY(id_presc_venda) REFERENCES prescricao_venda(num_venda) on delete
cascade on update cascade,
  FOREIGN KEY(id_medico) REFERENCES medico(num_cedula) on delete cascade on update
cascade,
  FOREIGN KEY(id_data_registo) REFERENCES d_tempo(id_tempo) on delete cascade on
update cascade,
  FOREIGN KEY(id_inst) REFERENCES d_instituicao(id_inst) on delete cascade on update
cascade
);
CREATE TABLE f_analise (
  id analise serial unique,
  id medico int,
  num_doente int,
  id_data_registo int,
  id_inst int,
  nome varchar,
  quant int,
  PRIMARY KEY(id_analise),
  FOREIGN KEY(id_analise) REFERENCES analise(num_analise) on delete cascade on update
cascade,
  FOREIGN KEY(id_medico) REFERENCES medico(num_cedula) on delete cascade on update
cascade,
  FOREIGN KEY(id_data_registo) REFERENCES d_tempo(id_tempo) on delete cascade on
update cascade,
  FOREIGN KEY(id_inst) REFERENCES d_instituicao(id_inst) on delete cascade on update
cascade
);
ETL
insert into d_instituicao(nome, tipo, num_regiao, num_concelho)
select nome, tipo, num_regiao, num_concelho
from instituicao;
```

substancia varchar,

insert into d tempo(dia, dia da semana, semana, mes, trimestre, ano)

select extract(day from data) as dia, extract(DOW from data) as dia_da_semana, extract(week from data) as semana, extract(month from data) as mes, extract(month from data)/4 as trimestre, extract(year from data) as ano

from analise;

insert into d_tempo(dia, dia_da_semana, semana, mes, trimestre, ano)

select extract(day from data) as dia, extract(DOW from data) as dia_da_semana, extract(week from data) as semana, extract(month from data) as mes, extract(month from data)/4 as trimestre, extract(year from data) as ano

from prescricao_venda;

insert into f_presc_venda(id_medico, num_doente, id_data_registo, id_inst, substancia, quant) select num_cedula as id_medico, num_doente, id_tempo as id_data_registo, id_inst, substancia, quant

from prescricao_venda inner join d_tempo on (extract(day from data) = dia and extract(DOW from data) = dia_da_semana and extract(week from data) = semana and extract(month from data) = mes and extract(month from data)/4 = trimestre and extract(year from data) = ano) natural join prescricao natural join consulta natural join instituicao natural join d_instituicao;

insert into f_analise(id_medico, num_doente, id_data_registo, id_inst, nome, quant) select num_cedula as id_medico, num_doente, id_tempo as id_data_registo, id_inst, nome, quant

from analise inner join d_tempo on (extract(day from data) = dia and extract(DOW from data) = dia_da_semana and extract(week from data) = semana and extract(month from data) = mes and extract(month from data)/4 = trimestre and extract(year from data) = ano) natural join consulta natural join instituicao natural join d instituicao;

Indices

/* 1st query */
create index index_num_cedula on consulta using hash(num_cedula);
/* Pode-se criar um índice hash, uma vez que se trata de uma igualdade simples,
em relação ao num_cedula da consulta, de modo a que a comparação "num_doente" =
<um_valor> se torne mais eficiente */

/* 2nd query */

create index index_especialidade on medico using hash(especialidade);

/* Uma vez que se trata de uma igualdade podemos tratar com uma hash, de modo a
tornar mais eficiente a comparação "especialidade" = "Ei" */

/* 3rd query */

create index especialidade_index on medico using btree(especialidade);

/* Como o número de médicos por especialidade é o mesmo iriam-se fazer muitos acessos aos blocos do disco, o que pode ser evitado usando uma btree ordenando os médicos por especialidade */

/* 4th query */

create index index_num_cedula_consulta on consulta using hash(num_cedula); create index index_num_cedula_medico on medico using hash(num_cedula); /* Podem-se criar duas hashs nas tabelas medico e consulta de modo a tornar mais eficiente a comparação "consulta.num_cedula = medico.num_cedula". Relativamente à condição "consulta.data BETWEEN 'data_1' AND 'data_2'" podemos organizar a coluna data na tabela consulta, pelo que usamos uma btree visto que é mais eficiente para ranges (BETWEEN) */