INT202 Complexity of Algorithms

- 1. Let us consider Z_{28} the set of integers modulo 28.
 - 1) Give the necessary and sufficient condition required for an element of Z_{28} to have an inverse in Z_{28} .
 - 2) Determine all the elements of Z_{28} that have a multiplicative inverse in Z_{28} .
 - 3) Evaluate $\varphi(28)$ wherein φ is the Euler totient function.
 - 4) Evaluate 4^{-1} and 5^{-1} if they exist.
- 2. In the RSA method, suppose that p = 5, q = 17, and e = 13. First find the private key d corresponding to these parameters. Then decrypt the ciphertext messages, C, below to find the original (plaintext) messages.

a.
$$C = 12$$

$$b. C = 9$$

- 3. Alice and Bob are using the RSA algorithm to communicate. Bob's public key is e = 3 and n = 187.
 - a. What is Bob's secret key?
 - b. Alice wants to send the message M to Bob. Bob receives 9. What was the message M sent by Alice?
- 4. a. Show that 3-SAT belongs to the class NP;
 - b. Reduce the CNF-SAT problem to 3-SAT;
 - c. Deduce that 3-SAT is NP-Complete.