## 习题 7.5

1. 在检验了一个车间生产的 20 个轴承外座圈的内径后得到下面数据(单位: mm)

15.04 15.36 14.57 14.53 15.57 14.69 15.37 14.66 14.52 15.41

15.34 14.28 15.01 14.76 14.38 15.87 13.66 14.97 15.29 14.95

- (1) 作正态概率图,并作初步判断;
- (2) 请用 W 检验方法检验这组数据是否来自正态分布( $\alpha$ =0.05)?
- 解: (1) 将数据按从小到大的顺序排列,并计算修正频率  $\frac{i-3/8}{n+1/4}$ ,  $i=1,2,\cdots,n$ ,且 n=20,

|        |        | 14.28  |        |        |        |        |        |        |        |        |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 修正频率   | 0.0309 | 0.0802 | 0.1296 | 0.1790 | 0.2284 | 0.2778 | 0.3272 | 0.3765 | 0.4259 | 0.4753 |
| <br>数据 | 14.97  | 15.01  | 15.04  | 15.29  | 15.34  | 15.36  | 15.37  | 15.41  | 15.57  | 15.87  |
| 修正频率   | 0.5247 | 0.5741 | 0.6235 | 0.6728 | 0.7222 | 0.7716 | 0.8210 | 0.8704 | 0.9198 | 0.9691 |



所描点近似在一条直线上,初步判断这组数据来自正态分布总体;

(2) 假设 H<sub>0</sub>:数据来自正态分布总体,

选取统计量
$$W = \frac{\left[\sum\limits_{i=1}^{n}(a_{i}-\overline{a})(X_{(i)}-\overline{X})\right]^{2}}{\sum\limits_{i=1}^{n}(a_{i}-\overline{a})^{2}\sum\limits_{i=1}^{n}(X_{(i)}-\overline{X})^{2}} = \frac{\left[\sum\limits_{i=1}^{[n/2]}a_{i}(X_{(n+1-i)}-X_{(i)})\right]^{2}}{\sum\limits_{i=1}^{n}(X_{(i)}-\overline{X})^{2}}$$

显著性水平 $\alpha$  = 0.05, $W_{\alpha}$  (n) =  $W_{0.05}$  (20) = 0.905,左侧拒绝域 W = {w ≤ 0.905},将数据按从小到大的顺序排列,并列出 W 检验的系数  $a_i$  (20),

|             | 13.66   |         |         |         |         |         |         |         |         |         |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| $a_{i}(20)$ | 0.4734  | 0.3211  | 0.2565  | 0.2085  | 0.1686  | 0.1334  | 0.1013  | 0.0711  | 0.0422  | 0.0140  |
| 数据          | 14.97   | 15.01   | 15.04   | 15.29   | 15.34   | 15.36   | 15.37   | 15.41   | 15.57   | 15.87   |
| $a_{i}(20)$ | -0.0140 | -0.0422 | -0.0711 | -0.1013 | -0.1334 | -0.1686 | -0.2085 | -0.2565 | -0.3211 | -0.4734 |

有 $\bar{x}$  = 14.9115, 计算可得w = 0.9743  $\notin W$ ,

故接受 H<sub>0</sub>, 拒绝 H<sub>1</sub>, 即可以认为这组数据来自正态分布总体.

2. 抽查克矽平治疗矽肺患者 10 名,得到他们治疗前后的血红蛋白量之差如下:

$$2.7 \quad -1.2 \quad -1.0 \quad 0 \quad 0.7 \quad 2.0 \quad 3.7 \quad -0.6 \quad 0.8 \quad -0.3$$

- (1) 作正态概率图,并作初步判断;
- (2) 请用 W 检验方法检验治疗前后的血红蛋白量之差是否来自正态分布( $\alpha = 0.05$ )?
- 解: (1) 将数据按从小到大的顺序排列,并计算修正频率  $\frac{i-3/8}{n+1/4}$ ,  $i=1,2,\cdots,n$ ,且 n=10,

| 数据   | -1.2   | -1.0   | -0.6   | -0.3   | 0      | 0.7    | 0.8    | 2.0    | 2.7    | 3.7    |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 修正频率 | 0.0610 | 0.1585 | 0.2561 | 0.3537 | 0.4512 | 0.5488 | 0.6463 | 0.7439 | 0.8415 | 0.9390 |



所描点近似在一条直线上,初步判断这组数据来自正态分布总体;

(2) 假设 H<sub>0</sub>:数据来自正态分布总体,

选取统计量
$$W = \frac{\left[\sum_{i=1}^{n} (a_i - \overline{a})(X_{(i)} - \overline{X})\right]^2}{\sum_{i=1}^{n} (a_i - \overline{a})^2 \sum_{i=1}^{n} (X_{(i)} - \overline{X})^2} = \frac{\left[\sum_{i=1}^{[n/2]} a_i(X_{(n+1-i)} - X_{(i)})\right]^2}{\sum_{i=1}^{n} (X_{(i)} - \overline{X})^2},$$

显著性水平 $\alpha = 0.05$ , $W_{\alpha}(n) = W_{0.05}(10) = 0.842$ ,左侧拒绝域  $W = \{w \le 0.842\}$ ,

将数据按从小到大的顺序排列,并列出 W 检验的系数  $a_i(10)$ ,

| 数据        | -1.2   | -1.0   | -0.6   | -0.3   | 0      | 0.7     | 0.8     | 2.0     | 2.7     | 3.7     |
|-----------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| $a_i(10)$ | 0.5739 | 0.3291 | 0.2141 | 0.1224 | 0.0399 | -0.0399 | -0.1224 | -0.2141 | -0.3291 | -0.5739 |

有 $\bar{x} = 0.68$ , 计算可得 $w = 0.9252 \notin W$ ,

故接受 H<sub>0</sub>, 拒绝 H<sub>1</sub>, 即可以认为这组数据来自正态分布总体.

- 3. 某种岩石中的一种元素的含量在25个样本中为
  - $0.32 \quad 0.25 \quad 0.29 \quad 0.25 \quad 0.28 \quad 0.30 \quad 0.23 \quad 0.23 \quad 0.40 \quad 0.32 \quad 0.35 \quad 0.19 \quad 0.34$

 $0.33 \quad 0.33 \quad 0.28 \quad 0.28 \quad 0.22 \quad 0.30 \quad 0.24 \quad 0.35 \quad 0.24 \quad 0.30 \quad 0.23 \quad 0.22$ 

有人认为该样本来自对数正态分布总体,请用W检验方法作检验( $\alpha$ =0.05).

解: 设总体 X 服从对数正态分布  $LN(\mu, \sigma^2)$ ,

则  $Y = \ln X$  服从正态分布  $N(\mu, \sigma^2)$ ,

假设 H<sub>0</sub>:数据来自正态分布总体,

选取统计量
$$W = \frac{\left[\sum\limits_{i=1}^{n}(a_i - \overline{a})(Y_{(i)} - \overline{Y})\right]^2}{\sum\limits_{i=1}^{n}(a_i - \overline{a})^2\sum\limits_{i=1}^{n}(Y_{(i)} - \overline{Y})^2} = \frac{\left[\sum\limits_{i=1}^{[n/2]}a_i(Y_{(n+1-i)} - Y_{(i)})\right]^2}{\sum\limits_{i=1}^{n}(Y_{(i)} - \overline{Y})^2}$$
,

显著性水平 $\alpha = 0.05$ , $W_{\alpha}(n) = W_{0.05}(25) = 0.918$ ,左侧拒绝域  $W = \{w \le 0.918\}$ ,

将数据按从小到大的顺序排列,并列出 W 检验的系数  $a_i$  (25),

| 数据 Y <sub>i</sub> | -1.6607 | -1.5141 | -1.5141 | -1.4697 | -1.4697 | -1.4697 | -1.4271 | -1.4271 | -1.3863 | -1.3863 |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| $a_i(25)$         | 0.4450  | 0.3069  | 0.2543  | 0.2148  | 0.1822  | 0.1539  | 0.1283  | 0.1046  | 0.0823  | 0.0610  |
| 数据 Y <sub>i</sub> | -1.2730 | -1.2730 | -1.2730 | -1.2379 | -1.2040 | -1.2040 | -1.2040 | -1.1394 | -1.1394 | -1.1087 |
| $a_i(25)$         | 0.0403  | 0.0200  | 0       | -0.0200 | -0.0403 | -0.0610 | -0.0823 | -0.1046 | -0.1283 | -0.1539 |
| 数据 Y <sub>i</sub> | -1.1087 | -1.0788 | -1.0498 | -1.0498 | -0.9163 |         |         |         |         |         |
| $a_i(25)$         | -0.1822 | -0.2148 | -0.2543 | -0.3069 | -0.4450 |         |         |         |         |         |

有 $\bar{v} = -1.2794$ , 计算可得 $w = 0.9687 \notin W$ ,

故接受  $H_0$ ,拒绝  $H_1$ ,即可以认为数据  $Y_i$ 来自正态分布总体,即原数据来自对数正态分布总体.

4. 对第 3 题的数据, 试用 EP 检验方法检验这些数据是否来自正态总体 ( $\mathbf{p} \alpha = 0.05$ ).

解: 假设 Ho: 数据来自正态分布总体,

选取统计量 
$$T_{\text{EP}} = 1 + \frac{n}{\sqrt{3}} + \frac{2}{n} \sum_{i=2}^{n} \sum_{j=1}^{i-1} \exp \left\{ -\frac{(x_j - x_i)^2}{2s_*^2} \right\} - \sqrt{2} \sum_{i=1}^{n} \exp \left\{ -\frac{(x_i - \overline{x})^2}{4s_*^2} \right\},$$

显著性水平 $\alpha$  = 0.05, $T_{1-\alpha, EP}(n) = T_{0.95, EP}(25) = 0.370$ ,右侧拒绝域  $W = \{w \ge 0.370\}$ ,计算可得  $T_{EP} = 0.0831 \notin W$ ,

故接受 H<sub>0</sub>, 拒绝 H<sub>1</sub>, 即可以认为这些数据来自正态分布总体.