

Mosaico

Salma planeja colorir um mosaico de argila em uma parede. O mosaico é um reticulado $N \times N$, feito de N^2 ladrilhos quadrados 1×1 inicialmente incolores. As linhas do mosaico são numeradas de 0 a N-1 de cima para baixo, e as colunas são numeradas de 0 a N-1 da esquerda para a direita. O ladrilho na linha i e na coluna j ($0 \le i < N$, $0 \le j < N$) é denotado por (i,j). Cada ladrilho deve ser colorido de branco (denotado por 0) ou de preto (denotado por 1).

Para colorir o mosaico, Salma primeiro escolhe dois vetores X e Y de tamanho N, cada um consistindo de valores 0 e 1, tais que X[0] = Y[0]. Ela colore os ladrilhos da linha superior (linha 0) de acordo com o vetor X, de modo que a cor do ladrilho (0,j) seja X[j] ($0 \le j < N$). Ela também colore os ladrilhos da coluna mais à esquerda (coluna 0) de acordo com o vetor Y, de modo que a cor do ladrilho (i,0) seja Y[i] ($0 \le i < N$).

Em seguida, ela repete os seguintes passos até que todas os ladrilhos estejam coloridos:

- Ela encontra qualquer ladrilho incolor (i,j) tal que seu vizinho superior (ladrilho (i-1,j)) e vizinho esquerdo (ladrilho (i,j-1)) ambos $j\acute{a}$ estejam coloridos.
- Então, ela colore o ladrilho (i,j) de preto se ambos os vizinhos forem brancos; caso contrário, ela pinta o ladrilho (i,j) de branco.

Pode-se demonstrar que as cores finais dos ladrilhos não dependem da ordem em que Salma os colore.

Yasmin está muito curiosa sobre as cores dos azulejos do mosaico. Ela faz Q perguntas a Salma, numeradas de 0 a Q-1. Na questão k ($0 \le k < Q$), Yasmin especifica um sub-retângulo do mosaico por:

- Linha superior T[k] e linha inferior B[k] ($0 \le T[k] \le B[k] < N$),
- Coluna mais à esquerda L[k] e coluna mais à direita R[k] ($0 \leq L[k] \leq R[k] < N$).

A resposta para a pergunta é o número de ladrilhos pretos nesse sub-retângulo. Especificamente, Salma deve descobrir quantos ladrilhos (i,j) existem tal que $T[k] \le i \le B[k]$, $L[k] \le j \le R[k]$, e a cor do ladrilho (i,j) é preto.

Escreva um programa que responda às perguntas de Yasmin.

Detalhes de implementação

Você deve implementar o seguinte procedimento.

```
std::vector<long long> mosaic(
  std::vector<int> X, std::vector<int> Y,
  std::vector<int> T, std::vector<int> B,
  std::vector<int> L, std::vector<int> R)
```

- X, Y: vetores de tamanho N descrevendo as cores dos ladrilhos na linha mais acima e na coluna mais à esquerda, respectivamente.
- T, B, L, R: vetores de tamanho Q descrevendo as perguntas feitas por Yasmin.
- O procedimento deve retornar um vetor C de tamanho Q, de modo que C[k] fornece a resposta à pergunta k ($0 \le k < Q$).
- Este procedimento é chamado exatamente uma vez para cada caso de teste.

Restrições

- $1 \le N \le 200\,000$
- 1 < Q < 200000
- $X[i] \in \{0,1\}$ e $Y[i] \in \{0,1\}$ para cada i tal que $0 \leq i < N$
- X[0] = Y[0]
- $0 \leq T[k] \leq B[k] < N$ e $0 \leq L[k] \leq R[k] < N$ para cada k tal que $0 \leq k < Q$

Subtarefas

Subtarefa	Pontuação	Restrições adicionais	
1	5	$N \leq 2; Q \leq 10$	
2	7	$N \leq 200; Q \leq 200$	
3	7	$T[k] = B[k] = 0$ (para cada k tal que $0 \leq k < Q$)	
4	10	$N \leq 5000$	
5	8	$X[i] = Y[i] = 0$ (para cada i tal que $0 \leq i < N$)	
6	22	$T[k] = B[k]$ e $L[k] = R[k]$ (para cada k tal que $0 \leq k < Q$)	
7	19	$T[k] = B[k]$ (para cada k tal que $0 \leq k < Q$)	
8	22	Sem restrições adicionais.	

Exemplo

Considere a seguinte chamada.

```
mosaic([1, 0, 1, 0], [1, 1, 0, 1], [0, 2], [3, 3], [0, 0], [3, 2])
```

Este exemplo é ilustrado nas imagens abaixo. A imagem da esquerda mostra as cores dos azulejos do mosaico. As imagens do meio e da direita mostram os sub-retângulos sobre os quais Yasmin perguntou na primeira e segunda perguntas, respectivamente.

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

As respostas para as perguntas (isto é, o número de 1's nos retângulos sombreados) são 7 e 3, respectivamente. Portanto, o procedimento deve retornar [7,3].

Corretor Exemplo

Formato de entrada:

```
N
X[0] X[1] ... X[N-1]
Y[0] Y[1] ... Y[N-1]
Q
T[0] B[0] L[0] R[0]
T[1] B[1] L[1] R[1]
...
T[Q-1] B[Q-1] L[Q-1] R[Q-1]
```

Formato de saída:

```
C[0]
C[1]
...
C[S-1]
```

Aqui, S é o tamanho do vetor C retornado por mosaic.