It's all about parallelograms Comparative statics in quasilinear settings

Paweł Dziewulski¹ John K.-H. Quah²

¹University of Sussex

²Johns Hopkins University and National University of Singapore

Paris, June 2023

Basic notation

- ullet \geq is the product order on \mathbb{R}^{ℓ} ;
- $\mathbf{x}_K = (\mathbf{x}_i)_{i \in K}$, for any $\mathbf{x} \in \mathbb{R}^{\ell}$ and $K \subseteq \{1, \dots, \ell\}$;
- ullet $X\subseteq \mathbb{R}^\ell$ is the space of inputs; e.g., $X=\{0,1\}^\ell$, $X=\mathbb{Z}_+^\ell$, $X=\mathbb{R}_+^\ell$
- $f: X \to \mathbb{R}$ is a production function;
- ullet demand correspondence $D:\mathbb{R}^\ell o X$ is given by

$$D(p) := \operatorname{argmax} \{f(x) - p \cdot x : x \in X\};$$

ullet profit function $\pi:\mathbb{R}^\ell \to \mathbb{R}$ is given by

$$\pi(p) := \max \{f(x) - p \cdot x : x \in X\}.$$

Section 1

Introduction

Comparative statics in quasilinear settings

Let $i = 1, \dots, \ell$ and $K \subseteq \{1, \dots, \ell\}$.

When are goods in K gross complements of good i?

That is, the demand for inputs in K increases as the price of good i falls.

Formally, for any $p_i' \leq p_i$, p_{-i} and $x \in D(p_i, p_{-i})$, $x' \in D(p_i', p_{-i})$, there is $y \in D(p_i, p_{-i})$, $y' \in D(p_i', p_{-i})$ such that $y_K' \geq x_K$ and $x_K' \geq y_K$.

Equivalently, $D(p'_i, p_{-i})$ dominates $D(p_i, p_{-i})$ in K by the weak set order.

Section 2

Parallelogram order

Comparative statics with linear objectives

Dziewulski & Quah (2022) consider the following problem:

```
minimise p \cdot x, subject to x \in \Gamma(t).
```

Under what conditions on Γ the optimal solution increases in t?

Parallelogram order

Let $K \subseteq \{1, \ldots, \ell\}$.

Definition (Parallelogram order)

For any $A, A' \subseteq \mathbb{R}^{\ell}$, the set A' dominates A in K by the parallelogram order if, for any $x \in A$, $x' \in A'$, there is $y \in A$, $y' \in A'$ satisfying

$$\mathbf{x}_{\mathsf{K}}' \geq \mathbf{y}_{\mathsf{K}}, \ \mathbf{y}_{\mathsf{K}}' \geq \mathbf{x}_{\mathsf{K}}, \ \text{and} \ \mathbf{x} + \mathbf{x}' = \mathbf{y} + \mathbf{y}'.$$

A correspondence $\Gamma: T \to X$ increases in K by the parallelogram order if $\Gamma(t')$ dominates $\Gamma(t)$ in K by the parallelogram order, for any $t' \geq_T t$.

Parallelogram property

A' dominates A in $K = \{1, 2\}$ by parallelogram order.

Comparative statics with linear objectives

Let $K \subseteq \{1, \dots, \ell\}$ and $\Gamma : T \to X$ be a compact-valued correspondence.

Theorem (Dziewulski & Quah, 2022)

If Γ increases in K by the parallelogram order, then:

- (i) For any $p \in \mathbb{R}^{\ell}$, correspondence $\Phi(t) := \operatorname{argmin} \{p \cdot x : x \in \Gamma(t)\}$ increases in K by the parallelogram order.
- (ii) For any $p \in \mathbb{R}^{\ell}$, Φ increases in K by the weak set order.
- (iii) The value function $f(p, t) := \min \{ p \cdot x : x \in \Gamma(t) \}$ has increasing differences in (p_K, t) , i.e., for any $p_K' \ge p_K$ and $t' \ge_T t$,

$$f\left((p_K',p_{-K}),t'\right)-f\left((p_K,p_{-K}),t'\right) \geq f\left((p_K',p_{-K}),t\right)-f\left((p_K,p_{-K}),t\right).$$

If Γ is convex-valued, then statements (i)–(iii) are equivalent to each other, and equivalent Γ being increasing in K by parallelogram order.

Section 3

Gross complements

Comparative statics in quasilinear settings

Let $i = 1, \dots, \ell$ and $K \subseteq \{1, \dots, \ell\}$.

When are goods in K gross complements of good i?

That is, the demand for inputs in K increases as the price of good i falls.

Formally, for any $p_i' \leq p_i$, p_{-i} and $x \in D(p_i, p_{-i})$, $x' \in D(p_i', p_{-i})$, there is $y \in D(p_i, p_{-i})$, $y' \in D(p_i', p_{-i})$ such that $y_K' \geq x_K$ and $x_K' \geq y_K$.

Equivalently, $D(p'_i, p_{-i})$ dominates $D(p_i, p_{-i})$ in K by the weak set order.

Complements in a quasilinear setting

Define correspondence $\Gamma^i: T \to X \times \mathbb{R}$,

$$\Gamma^i(t) := \{(y,w): w \geq -f(y)-ty_i, \text{ for } y \in X\},$$

and notice that $x \in D(p_i - t, p_{-i})$ if, and only if,

$$(\mathbf{x}, \mathbf{v}) \in \operatorname{argmin} \left\{ (p, 1) \cdot (y, w) : (y, w) \in \Gamma^{i}(t) \right\}.$$

It suffices to show that Γ^i increases in K by parallelogram order.

Parallelogram property

Under what conditions Γ^i increases in K by parallelogram order?

Let $i = 1, \ldots, \ell$ and $K \subseteq \{1, \ldots, \ell\}$.

Definition (Parallelogram property)

Function $f: X \to \mathbb{R}$ obeys parallelogram property for (i, K) if, for any $x, x' \in X$ such that $x'_i > x_i$, there is $y, y' \in X$ satisfying $x_i \ge y_i$, $x'_K \ge y_K$, x + x' = y + y', and $f(x) + f(x') \le f(y) + f(y')$.

Parallelogram property

For i = 1, $K = \{2\}$: $x_1 \ge y_1$, $x_2' \ge y_2$, and x + x' = y + y'.

Complements in a quasilinear setting

Proposition

If function $f: X \to \mathbb{R}$ satisfies parallelogram property for (i, K) then inputs in K are complements of input i. Whenever X is convex and f is concave, the converse is also true and the parallelogram property is equivalent to the profit function π having increasing differences in (p_i, p_K) .

Parallelogram property is sufficient (and necessary) for gross complements.

Direct proof that PP implies gross complements

Take any $p'_i \leq p_i$, p_{-i} and $x \in D(p_i, p_{-i})$, $x' \in D(p'_i, p_{-i})$.

Claim 1: There is $y, y' \in X$ such that $x_i \ge y_i$, $x'_K \ge y_K$, y + y' = x + x', and $f(y) + f(y') \ge f(x) + f(x')$. If $x_i \ge x'_i$, let y = x', y' = x. If $x'_i > x_i$, this holds by parallelogram property.

Claim 2: $y \in D(p_i, p_{-i})$ and $y' \in D(p'_i, p_{-i})$. Take any such y, y'. The conditions above imply $p_i(x_i - y_i) \ge p'_i(x_i - y_i) = p'_i(y'_i - x'_i)$, thus

$$p_i x_i + p_i' x_i' \geq p_i y_i + p_i' y_i'$$

Moreover, we have $x_{-i} + x'_{-i} = y_{-i} + y'_{-i}$.

Direct proof that PP implies gross complements

Since $\mathbf{x} \in D(\mathbf{p}_i, \mathbf{p}_{-i}), \mathbf{x}' \in D(\mathbf{p}'_i, \mathbf{p}_{-i}),$

$$\begin{aligned} & [f(y) - p_{i}y_{i} - p_{-i} \cdot y_{-i}] + [f(y') - p'_{i} \cdot y'_{i} - p_{-i} \cdot y'_{-i}] \\ & \leq [f(x) - p_{i}x_{i} - p_{-i} \cdot x_{-i}] + [f(x') - p'_{i} \cdot x'_{i} - p_{-i} \cdot x'_{-i}] \\ & = [f(x) + f(x')] - [p_{i}x_{i} + p'_{i} \cdot x'_{i}] - p_{-i} \cdot [x_{-i} + x'_{-i}] \\ & \leq [f(y) + f(y')] - [p_{i}y_{i} + p'_{i} \cdot y'_{i}] - p_{-i} \cdot [y_{-i} + y'_{-i}] \\ & \leq [f(y) - p_{i}y_{i} - p_{-i} \cdot y_{-i}] + [f(y') - p'_{i} \cdot y'_{i} - p_{-i} \cdot y'_{-i}], \end{aligned}$$

which can be satisfied only if $y \in D(p_i, p_{-i})$ and $y' \in D(p'_i, p_{-i})$.

Therefore, we have shown that $D(p'_i, p_{-i})$ dominates $D(p_i, p_{-i})$ in K by parallelogram order. Thus, goods in K are gross complements to i.

Super*modularity

When are <u>all</u> goods mutual complements, i.e., the demand for all goods increase if p_i decreases, for any i?

Definition (Super*modularity)

Function f is super*modular if, for any $x, x' \in X$, there is $y, y' \in X$:

$$(x \wedge x') \ge y$$
, $x + x' = y + y'$, and $f(x) + f(x') \le f(y) + f(y')$.

Proposition (Dziewulski & Quah, 2022)

If function $f:X\to\mathbb{R}$ is super*modular then all goods are complements. Whenever X is convex and f is concave, the converse is also true and super*modularity is equivalent to supermodularity of the profit function π .

Super*modularity

Super*modularity in $K = \{1, 2\}$.

Representative agent

Based on Dziewulski & Quah (2022).

Consider a representative firm with production function

$$f(\mathbf{x}) := \max \Big\{ \sum_{j} f_j(\mathbf{y}^j) : \sum_{j} \mathbf{y}^j = \mathbf{x} \Big\}.$$

For example, f is the optimal production of a firm that operates in multiple production plants j, endowed with production functions f_j .

- Such aggregation preserves complements, i.e., if all production functions f_i induce gross complementarities, then so does f.
- However, supermodularity is *n*ot preserved, i.e., f may not be supermodular, even if all functions f_i are.
- Super*modularity is preserved, i.e., if all functions f_j are super*modular (e.g., supermodular), then f is super*modular (although it need not be supermodular).

Section 4

Gross substitutes

Gross substitutes

Our approach to gross complements can be applied to study substitutes.

Let
$$i = 1, ..., \ell$$
 and $K \subseteq \{1, ..., \ell\} \setminus \{i\}$.

When are goods in K gross <u>substitutes</u> of good i?

That is, the demand for goods in K increases with the price of good i.

Formally, for any $p_i' \ge p_i$, p_{-i} and $x \in D(p_i, p_{-i})$, $x' \in D(p_i', p_{-i})$, there is $y \in D(p_i, p_{-i})$, $y' \in D(p_i', p_{-i})$ such that $y_K' \ge x_K$ and $x_K' \ge y_K$.

Equivalently, $D(p'_i, p_{-i})$ dominates $D(p_i, p_{-i})$ in K by the weak set order.

Gross substitutes

When are goods in K gross substitutes of good i?

Similarly to the previous case, $\mathbf{x} \in D(p_i + t, p_{-i})$ if, and only if,

$$({\color{red} \mathbf{x}}, {\color{black} \mathbf{v}}) \; \in \; \operatorname{argmin} \, \Big\{ ({\color{black} p}, 1) \cdot ({\color{black} y}, {\color{black} w}) : ({\color{black} y}, {\color{black} w}) \in \tilde{\Gamma}^i({\color{black} t}) \Big\},$$

where

$$\tilde{\Gamma}^i(t) := \left\{ (\mathbf{x}, \mathbf{v}) : \mathbf{v} \ge -f(\mathbf{x}) - t(-\mathbf{x}_i), \text{ for } \mathbf{x} \in X \right\}.$$

Hence, it suffices for $\tilde{\Gamma}^i$ to be increasing in K by parallelogram order (by the theorem in Dziewulski & Quah, 2022). Therefore, $\tilde{f}(\mathbf{x}) := f(-\mathbf{x}_i, \mathbf{x}_{-i})$ must obey parallelogram property for (i, K) (by modifying the argument from gross complements).

Graphical example

For i = 1 and $K = \{2\}$: $-x_1 \ge -y_1$, $x_2' \ge y_2$, and x + x' = y + y'.

Complements in a quasilinear setting

Proposition

If function $\tilde{f}: X \to \mathbb{R}$, given by $\tilde{f}(x) := f(-x_i, x_{-i})$, satisfies parallelogram property for (i, K) then goods in K are gross substitutes to good i. Whenever X is convex and f is concave, the converse is also true and the condition above is equivalent to the profit function π having decreasing differences in (p_i, p_K) .

The modified parallelogram property is sufficient (and necessary) for gross complements. If the property holds for all (i,K), where $K=\{1,\ldots,\ell\}\setminus\{i\}$, then all goods are (mutual) gross substitutes and the profit function π is submodular.

Examples

- Whenever $X \subseteq \mathbb{R}^2$ is a lattice, any submodular function $f: X \to \mathbb{R}$ safisfies this condition for $(1, \{2\})$ and $(2, \{1\})$.
- Whenever h, g^i are concave, for all i, function

$$f(\mathbf{x}) := h\left(\sum_{i=1}^{\ell} g^i(\mathbf{x}_i)\right)$$

obeys our substitutes condition for any (i, K).

Whenever h is submodular, function

$$f(\mathbf{x}) := h\left(\sum_{i \in I} \mathbf{x}_i, \sum_{i \notin I} \mathbf{x}_i\right)$$

obeys our substitutes condition for any (i, K). In particular, the domain of f may be discrete.

Section 5

Relation to the existing results

Exchange property (Murota, 1996)

Let
$$X = \{0,1\}^{\ell}$$
 or $X = \mathbb{Z}^{\ell}$.

Definition (Exchange property)

 $f: X \to \mathbb{R}$ obeys the exchange property if, for any $x, x' \in X$, either

- (i) there is some $i = 1, ..., \ell$ such that $\mathbf{x}'_i > \mathbf{x}_i$ and $f(\mathbf{x}) + f(\mathbf{x}') \le f(\mathbf{x} + \epsilon_i) + f(\mathbf{x}' \epsilon_i)$, or
- (ii) there is some $j \neq i$ such that $\mathbf{x}'_i > \mathbf{x}_i$, $\mathbf{x}'_j < \mathbf{x}_j$ and $f(\mathbf{x}) + f(\mathbf{x}') \leq f(\mathbf{x} + \epsilon_i \epsilon_j) + (\mathbf{x}' \epsilon_i + \epsilon_j)$;

where ϵ_k is the vector with the k'th entry equal to 1 and zeros elsewhere.

Since $\mathbf{x} + \mathbf{x}' = (\mathbf{x} + \epsilon_i - \epsilon_j) + (\mathbf{x}' - \epsilon_i + \epsilon_j)$, exchange property is a parallelogram-like condition.

Exchange property (Murota, 1996)

- For $X=\{0,1\}^\ell$, exchange property is necessary and sufficient for all goods to be gross substitutes.
- For $X = \mathbb{Z}^{\ell}$, it is sufficient but not necessary.
- We can show directly that exchange property is equivalent to our substitute property for $X = \{0, 1\}^{\ell} \dots$
- ... but strictly stronger for $X=\mathbb{Z}^\ell$, e.g., $f(\mathbf{x}):=\min\{2,\mathbf{x}_1+2\mathbf{x}_2\}$ fails the exchange property. Indeed, take $\mathbf{x}=(2,0),\mathbf{x}'=(0,1)$. Then, $f(\mathbf{x})+f(\mathbf{x}')=4$, but f(2,1)+f(0,0)=2 and f(1,1)+f(1,0)=3. At the same time $f(-x_i,x_j)$ satisfies parallelogram property for $(i,\{j\})$, for any i,j=1,2 where $i\neq j$ (since f is submodular).

Unified substitutes (Galichon, Samuelson, & Vernet, 2022)

Definition (Unified gross substitutes)

For any $p, p' \in \mathbb{R}^{\ell}$ and $x \in D(p)$, $x' \in D(p')$, there is some $y \in D(p \land p')$, $y' \in D(p \lor p')$ such that

- $p_i \le p_i'$ implies $x_i \ge y_i$ and $y_i' \ge x_i$;
- $p_i > p'_i$ implies $x'_i \ge y_i$ and $y_i \ge x_i$.

Galichon, Samuelson, & Vernet, (2022) show that, for convex X and concave f, this condition is equivalent to supermodularity of the profit function π . Thus, it must be equivalent to the demand satisfying our definition of (weak) substitutes, which is equivalent to production function satisfying the modified parallelogram property for all (i, K), where $K = \{1, \ldots, \ell\} \setminus \{i\}$.

Section 6

Summary

Summary

It's all about parallelograms.