- 1. 设三阶矩阵 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & t & t^2 \end{pmatrix}$,则当 A 可逆时,t 应当满足_______.
- 2. 对 n 阶矩阵 A, B, C, 对任意矩阵 A, C, 如果从 AB=CB 可得到 A=C, 则矩阵 B应满足
- 3. 令 $A = \begin{pmatrix} 1 & 3 \\ -2 & -8 \end{pmatrix}$, E是二阶单位矩阵, 如果有实数 p, q, 使得 $A^2 = pA + qE$,

- 5. 若 T 为 n 阶正交矩阵, 且 n 维列向量 x 的长度为 4,则 Tx 的长度为
- 6. 若 $a_{32}a_{13}a_{4k}a_{21}$ 是四阶行列式 $|a_{ij}|$ 中的一项,则该项的符号为______.
- 7. 设 2 是可逆矩阵 A 的一个特征值,则矩阵 $(\frac{1}{4}A^3)^{-1}$ 必有一个特征值为_____.
- 8. 设三元二次型 $f = x_1^2 + 2x_2^2 + 3x_3^2 + 4x_2x_3$,则此二次型矩阵的行列式为

- 9. 设有 n 阶方阵 A,其伴随矩阵 A^* 的秩为 0,则 A 的最大秩为 .

1. 若有矩阵 $A_{4\times 3}, B_{3\times 4}, C_{3\times 3}$,则下列矩阵运算可行的是()
(A) BC (B) CBA (C) ABC (D) AB-CB 2. 以下矩阵中不是正交矩阵的是()
$(A)\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} (B)\begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} (C)\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} (D)\begin{pmatrix} -\cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$
3. 与矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ 相似的矩阵是()
(A) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ (B) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ (C) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 4. 设 A 是 5 阶实对称矩阵,则() (A) A 有特征向量 0. (B) A 的特征向量组单位正交. (C) A 有 3 重特征根α,则 r(αE-A)=3. (D) A 与一个 5 阶对角矩阵相似.
5. 设向量组 $\alpha_1,\alpha_2,,\alpha_s$ 线性无关,则下列结论不正确的是()
(A) $\alpha_1, \alpha_2,, \alpha_s$ 中任意两个向量都不成比例.
(B) $\alpha_1,\alpha_2,,\alpha_s$ 中任一部分组线性无关.
$(C)\alpha_1,\alpha_2,,\alpha_s$ 均不是零向量.
(D) $\alpha_1,\alpha_2,,\alpha_s$ 中有一个向量可由其余向量线性表示.
6. 设矩阵 $A = (a_{ij})_{m \times n}$,若 $Ax = 0$ 只有零解,则非齐次线性方程组 $Ax = b$ 必有()
(A) 唯一解 (B) 无穷解 (C) 无解 (D) 无唯一解 7. 设 A 是 m×n 矩阵, B 是 n×m 矩阵, 则 m 和 n 满足关系
式 $ AB =0$.

(A)
$$m > n$$
 (B) $n > m$ (C) $m = n$ (D) $m \neq n$

8. 已知向量组 a=(2, 4, -2, 2), b=(4, 0, t, 0), c=(0, -8, 10, -4)的秩为 2,则 t=___.
(A) 6 (B) -6 (C) 4 (D) -4

9. 已知
$$A$$
 $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} - 2a_{21} & a_{12} - 2a_{22} & a_{13} - 2a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$,则 $A =$ ______.

(A)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -2 & 0 & 1 \end{pmatrix}$$
 (B) $\begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (C) $\begin{pmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix}$

10. 行列式
$$\begin{vmatrix} 0 & x & 0 & y \\ a & 0 & b & 0 \\ c & 0 & d & 0 \\ 0 & u & 0 & v \end{vmatrix} = \underline{\qquad}.$$

(A) xyuv-abcd (B) bcyu-adxv (C) (ad-bc)(yu-xv) (D) (ab-cd)(uv-xy)

1. (8 分) 计算 n 阶行列式
$$D_n = \begin{vmatrix} 3 & 1 & 1 & \dots & 1 \\ 1 & 3 & 1 & \dots & 1 \\ 1 & 1 & 3 & \dots & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & 3 \end{vmatrix}$$
.

2.
$$(7 分)$$
 求矩阵 A 的逆矩阵 $A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \\ 3 & 1 & 2 \end{pmatrix}$.

3. (10 分) 设矩阵
$$A = \begin{pmatrix} -1 & 0 & 0 \\ a & 1 & 4 \\ 0 & 2 & 3 \end{pmatrix}$$
 相似于对角矩阵 Λ ,试确定 a 的值,并求可逆

矩阵 P, 使得 $P^{-1}AP = \Lambda$.

4. (10 分) 请写出右边非齐次线性方程组的全部解
$$\begin{cases} x_1 + 2x_2 - 3x_3 + 4x_4 = -4 \\ 2x_1 - 3x_2 + 4x_3 - x_4 = 8 \\ 3x_1 + 4x_2 - x_3 + 2x_4 = 8 \end{cases}$$

- 5. (10 分) 给定二次型 $f = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 2x_1x_3 + 2x_2x_3$, 试判断 f 的有定性,并求一正交矩阵 P,将 f 化为标准二次型.
- 1. (10 分)已知向量组 $\alpha_1 = (2, k, 1), \alpha_2 = (k, 0, 2), \alpha_3 = (1, 1, -1),$,则k取何值时,向量组 $\alpha_1, \alpha_2, \alpha_3$ 是线性相关的,并用 α_2, α_3 线性表示 α_1 .
- 2. (5分)已知结论: 若 λ 是 n 阶非奇异矩阵 A 的特征值,则 λ^{-1} 是 A^{-1} 的特征值。请用特征多项式证明此结论(不要利用 λ 对应的特征向量).