Difference between

Comparison (QuickSort) based

and

Non-Comparison (Counting Sort) based

Sorting Algorithms?

Comparison Sorting

- A comparison sort is a type of sorting algorithm that only reads the list elements through a single comparison operation (often a "less than or equal to" operator or a three-way comparison) and determines which of two elements should occur first in the final sorted list.
- What is common to all these algorithms?
 - Make comparisons between input elements like:

$$a_i < a_j$$
, $a_i \le a_j$, $a_i = a_j$, $a_i \ge a_j$, or $a_i > a_j$

	Time Complexity			Space Complexity	
Sorting Algorithms	Best Case	Average Case	Worst Case	Worst Case	
Bubble Sort	Ω(N)	Θ(N^2)	O(N^2)	O(1)	
Selection Sort	Ω(N^2)	Θ(N^2)	O(N^2)	O(1)	
Insertion Sort	Ω(N)	Θ(N^2)	O(N^2)	O(1)	
Quick Sort	Ω(N log N)	Θ(N log N)	O(N^2)	O(N)	
Merge Sort	Ω(N log N)	Θ(N log N)	O(N log N)	O(N)	
Heap Sort	Ω(N log N)	Θ(N log N)	O(N log N)	O(1)	

Non Comparison Sorting

- There are some sorting algorithms that perform sorting without comparing the elements rather by making certain assumptions about the data. They are called the non comparison sorting.
- Non comparison sorting include:
- 1. Counting sort (indexes using key values)
- 2. Radix sort (examines individual bits of keys)
- 3. Bucket sort (examines bits of keys)
- These are Linear sorting algorithms. Linear sorts are NOT "comparison sorts".
- They make certain assumptions about the data. These type of sorting algorithm does not need to go through the comparison decision tree.
- Many times we have restrictions on our keys
 - o Deck of cards: Ace->King and four suites
 - Social Security Numbers
 - o Employee ID's
- We will examine three algorithms which under certain conditions can run in O(n) time.
 - Counting sort
 - o Radix sort
- Bucket sort

Sorting Algorithms	Special Input Condition	Time Complexity			Space Complexity
	Special input condition	Best Case	Average Case	Worst Case	Worst Case
Counting Sort	Each input element is an integer in the range 0- K	Ω(N + K)	Θ(N + K)	O(N + K)	0(K)
Radix Sort	Given n digit number in which each digit can take on up to K possible values	Ω(ΝΚ)	9(NK)	O(NK)	O(N + K)
Bucket Sort	Input is generated by the random process that distributes elements uniformly and independently over the interval [0, 1)	Ω(N + K)	Θ(N + K)	O(N^2)	O(N)