Janusz Godziek, 2023-11-29 janusz.godziek@us.edu.pl pok. 608, VI p.

Programowanie w GIS

wykorzystanie języka R do analiz przestrzennych

ZADANIA

- 1. Oblicz obwód działek z warstwy Murcki_dzialki.shp .
- 2. Ile wynosi średni obwód działki w warstwie *Murcki_dzialki.shp*?
- 3. Wyeksportuj jako jeden plik shapefile wszystkie działki z pliku *Murcki_dzialki.shp* o obwodzie mniejszym niż średni obwód działki (warstwa *Murcki_dzialki_exp.shp*).
- 4. Dla każdej działki z warstwy *Murcki_dzialki_exp.shp* utworzonej w zadaniu 2:
- a) wyznacz maksymalną i minimalną wysokość numerycznego modelu terenu w obrębie tej działki,
- b) oblicz różnicę między maksymalną a minimalną wysokością,
- c) utwórz nową kolumnę opisującą różnice wysokości w obrębie działek (nazwa kolumny: "kat_rozn"). Przypisz następujące oznaczenia tekstowe do różnic wysokości znajdujących się w określonych przedziałach: $< 10 \rightarrow$ 'mala', $>= 10 \rightarrow$ 'duza'. Wyeksportuj wyniki jako nowy plik shp.
- 5. Przeprowadź reklasyfikację warstwy rastrowej z nachyleniami terenu według tabeli. Zapisz zreklasyfikowany raster jako plik w formacie tif.

Przedział nachylenia tereniu (w stopniach)	
0 - 2	1
2 - 5	2
5 - 10	3
10 - 20	4
20 - 90	5

- 6. Dla numerycznego modelu terenu z obszaru Murcek (warstwa *Murcki_nmt.tif*) wyznacz poziomice co 2 m. Wynik wyeksportuj jako plik shp.
- 7. Dla warstwy *gzm_gminy.shp* wyeksportuj jako osobne pliki shapefile tylko te gminy, które mają powierzchnię powyżej 70 km².
- *8. Dla dowolnego numerycznego modelu terenu oblicz wszystkie możliwe pochodne modelu terenu dostępne w funkcji *terrain()* z pakietu terra. <u>Zastosuj pętlę for.</u>