

Departament de Física, Enginyeria de Sistemes i Teoria del Senyal Departamento de Física, Ingeniería de Sistemas y Teoria de la Señal

REDES DE COMPUTADORES EXAMEN DE CONTENIDOS TEÓRICOS

Convocatoria de Enero de 2016

Apellidos: Nombre:	D.N.I.:	Nota:
Grupo de Teoría:		

GRADO EN INGENIERÍA INFORMÁTICA

NORMAS PARA REALIZAR EL EXAMEN DE TEORÍA:

- Duración del examen: 1 hora 40 minutos.
- La nota de este examen se corresponde con el 80% de la nota de la parte de contenidos teóricos.
- La realización de este examen implica la condición de PRESENTADO a la convocatoria de Enero de 2016.
- La solución escogida para cada pregunta del test se debe especificar con BOLÍGRAFO en la tabla de soluciones. Se evaluará sólo lo contestado en esta tabla.
- En la tabla se debe especificar una sola respuesta por pregunta con letra mayúscula (A, B, C o
 D) de forma clara; de lo contrario será considerada como respuesta en blanco.
- Cada respuesta incorrecta penaliza 1/4 de respuesta correcta.
- La nota del test se obtiene de la fórmula: Nota = (RC RI/4)*10/35, donde RC son el número de respuestas correctas y RI el número de respuestas incorrectas.
- Las preguntas no contestadas no penalizan.

TABLA DE SOLUCIONES

Pregunta	Solución	Pregunta	Solución	Pregunta	Solución	Pregunta	Solución
1		11		21		31	
2		12		22		32	
3		13		23		33	
4		14		24		34	
5		15		25		35	
6		16		26			
7		17		27			
8		18		28			
9		19		29			
10		20		30			

1. Una arquitectura de red que define una aplicación para el intercambio de archivos en una red de área local Ethernet, NO precisa disponer de la capa:

- a) Física.
- b) Enlace.
- c) *Red.
- d) Aplicación.

2. La tecnología de difusión se diferencia de la tecnología punto a punto en:

- a) En la tecnología de difusión es necesario el encaminamiento de información entre nodos intermedios.
- b) *En la tecnología de difusión, todas las estaciones pueden transmitir una señal física a cualquier estación de la red.
- c) En la tecnología punto a punto es posible enviar un paquete de información a todas las estaciones de la red con una sola transmisión en un medio físico.
- d) En la tecnología punto a punto la conectividad física entre todas las estaciones de la red precisa de un coste de cableado menor que en la tecnología de difusión.

3. Un circuito virtual en una red de conmutación de paquetes se caracteriza por:

- a) Establecer un camino entre estaciones dentro de un medio físico de difusión.
- b) *Establecer un camino entre estaciones a través de varios medios físicos y nodos intermedios.
- c) Establecer un camino diferente para cada paquete transmitido por una estación a un mismo destino.
- d) No realizar establecimiento ni liberación del circuito en redes con tecnología punto a punto.

4. La multidifusión en una red de comunicaciones permite:

- a) *Identificar un conjunto de equipos dentro de una red de difusión con una dirección única
- b) Agrupar varias direcciones físicas de equipos en una sola dirección física.
- c) Transmitir un paquete de información para cada estación de un grupo de multidifusión.
- d) Transmitir un paquete de información a TODAS las estaciones de la red.

5. La solicitud de un servicio de la capa n a la capa n-1 se denomina:

- a) *Comunicación vertical entre capas.
- b) Comunicación horizontal de la capa n.
- c) Comunicación horizontal de la capa n-1.
- d) Comunicación vertical entre capas pares del nivel n.

6. La solicitud de un servicio de la capa n a la capa n-1 provoca:

- a) La comunicación entre las capas pares del nivel n.
- b) *La comunicación entre las capas pares del nivel n-1.
- c) La comunicación entre las capa n y la capa par n-1.
- d) La comunicación entre las capas adyacentes n+1 y n-1.

- 7. Cuando se produce fragmentación de paquetes en un nivel n,
 - a) En cada fragmento se incorporan las cabeceras de los niveles inferiores.
 - b) Se incorporan las cabeceras de los niveles inferiores sólo en el último fragmento.
 - c) Se incorporan las cabeceras de los niveles inferiores sólo en el primer fragmento.
 - d) *Se incorpora la cabecera del nivel superior sólo en el primer fragmento.
- 8. Indica cuál de las siguientes capas no está presente en la arquitectura TCP/IP:
 - a) Aplicación.
 - b) *Sesión.
 - c) Transporte.
 - d) Red.
- 9. En el intercambio de paquetes TCP entre dos estaciones que se encuentran en redes IP diferentes, la cabecera TCP se interpreta:
 - a) En cada router intermedio existente entre las dos estaciones.
 - b) En cada puente intermedio existente entre las dos estaciones.
 - c) En cada repetidor intermedio existente entre las dos estaciones.
 - d) *En las estaciones que intercambian los paquetes.
- 10. Un servidor Web envía a un cliente un paquete HTTP con datos. El paquete es transmitido en el medio físico empleando el protocolo de nivel de enlace Ethernet y sufre un error de CRC. La capa de la arquitectura que reenviará el paquete HTTP es:
 - a) Capa de aplicación.
 - b) *Capa de transporte.
 - c) Capa de red.
 - d) Capa de enlace.
- 11. ¿ Cuántos armónicos componen una señal periódica de pulsos con periodo 1 ms y transmitida por un medio fisico de 5000 Hz de ancho de banda ?
 - a) 5.
 - b) 6.
 - c) 10000.
 - d) *Infinitos.
- 12. Determina la velocidad máxima de transmisión para una señal de pulsos con 2 niveles de tensión en un medio físico full-duplex con multiplexión por frecuencia (simétrica para transmisión y recepción) y ancho de banda de 1000 Hz.
 - a) *1000 bps.
 - b) 2000 bps.
 - c) 4000 bps.
 - d) 8000 bps.

- 13. Dada una señal de pulsos transmitida a la velocidad máxima permitida de un medio físico de ancho de banda B Hz y con R dB de relación señal ruido, si R aumenta de valor, es cierto que:
 - a) La velocidad máxima de transmisión en el medio permanece invariable.
 - b) La velocidad máxima de transmisión en el medio disminuye.
 - c) *La velocidad máxima de transmisión en el medio aumenta.
 - d) El ancho de banda B del medio aumenta de valor.
- 14. En la transmisión de una señal digital con Codificación Binaria Unipolar SIN Retorno a Cero, cuando se envía una secuencia de varios 0 consecutivos, es cierto que:
 - a) Los bits de datos se identifican en las transiciones de tensión en cada bit.
 - b) Los bits de datos se identifican empleando valores de tensión opuestos en signo.
 - c) *Los bits de datos se identifican empleando el mismo periodo de muestreo en receptor y emisor.
 - d) Los bits de datos no pueden identificarse.
- 15. Se desea realizar la transmisión en un medio físico de dos señales de datos digitales con velocidades de 32 Kbps y 64 Kbps respectivamente. Si se emplea la multiplexión en el tiempo, el medio físico precisa de una velocidad de transmisión de:
 - a) 64 Kbps.
 - b) *96 Kbps.
 - c) 128 Kbps.
 - d) 256 Kbps.
- 16. Dado un cable eléctrico UTP para transmisión de señales de datos, es cierto que:
 - a) A mayor categoría disminuye la velocidad máxima de transmisión.
 - b) *Si aumenta la longitud del cable se reducirá la velocidad máxima de transmisión.
 - c) Si aumenta la relación señal-ruido se reducirá la velocidad máxima de transmisión.
 - d) Si aumenta la longitud del cable aumentará el ancho de banda disponible.
- 17. La fibra óptica que permite la transmisión de un haz de luz con datos a mayor distancia es:
 - a) *Fibra óptica monomodo.
 - b) Fibra óptica de índice gradual.
 - c) Fibra óptica multimodo.
 - d) Todas las fibras ópticas permiten la transmisión a la misma distancia máxima.
- 18. Sobre la transmisión de datos empleando ondas electromagnéticas, es cierto que:
 - a) Si dos señales emplean la misma velocidad de transmisión siempre interfieren entre ellas.
 - b) Todas las ondas electromagnéticas se propagan a la misma distancia.
 - c) Todas las ondas electromagnéticas se emplean para transmisión de datos.
 - d) *Si dos señales emplean frecuencias diferentes no interfieren entre ellas.

19. Indica qué funcionalidad del nivel de enlace NO dispone el protocolo Ethernet:

- a) Delimitación de tramas.
- b) *Control del flujo.
- c) Detección de errores.
- d) Direccionamiento de equipos.

20. En un protocolo de parada y espera donde sólo existe numeración de los paquetes de datos (los ACK son NO numerados) y se aplica sobre un medio físico con una cierta tasa de error, es cierto que:

- a) No se producen nunca errores en los paquetes de datos transmitidos.
- b) *No se producen nunca duplicaciones de datos en el receptor.
- c) El receptor y emisor están siempre sincronizados.
- d) No se producen nunca errores en los paquetes de confirmación (ACK) transmitidos.

21. La integración del modelo IEEE 802.x en la arquitectura TCP/IP se consigue:

- a) Añadiendo las capas del modelo IEEE 802.x encima de la capa de transporte de TCP/IP
- b) Añadiendo las capas del modelo IEEE 802.x encima de la capa de aplicación de TCP/IP.
- c) Añadiendo las capas del modelo IEEE 802.x debajo de la capa de enlace de TCP/IP.
- d) *Añadiendo las capas del modelo IEEE 802.x debajo de la capa de red de TCP/IP.

22. Sobre la transmisión de paquetes Ethernet de difusión es cierto que:

- a) Un conmutador Ethernet NO reenvía los paquetes Ethernet de difusión entre sus puertos.
- b) Un concentrador Ethernet NO reenvía los paquetes Ethernet de difusión entre sus puertos.
- c) *Un router NO reenvía los paquetes Ethernet de difusión entre sus interfaces Ethernet.
- d) Un puente NO reenvía los paquetes Ethernet de difusión entre los segmentos que interconecta.

23. Sobre el proceso de REENVÍO en los puentes Ethernet, es cierto que:

- a) Una dirección MAC puede estar asociada a más de un puerto.
- b) Asocia direcciones MAC origen con puertos.
- c) Asocia direcciones MAC destino con puertos.
- d) *Una dirección MAC puede no estar asociada a ningún puerto.

24. La transmisión de paquetes Ethernet con la tecnología 100BaseX se caracteriza por:

- a) Emplear el mismo tipo de señalización que en Ethernet 10BaseT.
- b) *Emplear el mismo mecanismo de sincronización en fibra óptica que en cable eléctrico.
- c) Emplear un formato de paquete MAC distinto que en Ethernet 10BaseT.
- d) Estar definida para emplear solamente el medio físico de fibra óptica.

25. Sobre el funcionamiento de un conmutador Ethernet VLAN es cierto que,

- a) Los paquetes de difusión de una VLAN son reenviados a todos los puertos troncales del conmutador.
- b) Los paquetes de difusión de una VLAN son reenviados a todos los puertos del conmutador VLAN.
- c) Los paquetes de difusión de una VLAN son reenviados sólo a los puertos de acceso del conmutador asociados a la misma VLAN.
- d) *Los paquetes de difusión de una VLAN pueden ser reenviados a puertos troncales y de acceso asociados a la misma VLAN.

26. ¿ En qué normativa inalámbrica del IEEE no se emplea el mecanismo RTS/CTS en el acceso al medio ?

- a) IEEE 802.11b.
- b) IEEE 802.11g.
- c) IEEE 802.11n.
- d) *Todas las normas IEEE 802.11x soportan el mecanismo RTS/CTS.

27. Sobre las tramas de señalización (Beacon Frame) de la norma IEEE 802.11x, es cierto que:

- a) Permiten la autenticación de clientes en un punto de acceso (AP).
- b) *Son transmitidas por los puntos de acceso (AP) periódicamente.
- c) Son transmitidas por los clientes para conocer la existencia de una red inalámbrica en un entorno.
- d) Permiten conocer el número de estaciones dentro de la cobertura de una red inalámbrica ad-hoc.

28. ¿ Qué mecanismo de cifrado en redes WiFi es actualmente seguro ?

- a) *WPA2/AES.
- b) WPA2/TKIP.
- c) WPA2/PEAP.
- d) WPA2/TLS.

29. En el encaminamiento de paquetes en el nivel de red de la arquitectura TCP/IP es cierto que,

- a) El encaminamiento analiza las direcciones IP origen y destino en los paquetes.
- b) El encaminamiento depende de la cantidad de datos del paquete IP.
- c) El encaminamiento de un paquete depende de cómo se encaminó el paquete anterior.
- d) *El encaminamiento se realiza para todos los paquetes aunque sean enviados al mismo destino.

30. Sobre la estructura de una tabla de encaminamiento de un router IP es cierto que,

- a) Las entradas de una tabla pueden tener direcciones de red de destino repetidas.
- b) *Las entradas de una tabla pueden tener direcciones de puerta de enlace repetidas.
- c) En una tabla puede existir más de una entrada de puerta de enlace por defecto.
- d) Todas las entradas de una tabla tiene que tener la máscara de red con el mismo valor.

31. Indica cuál de los siguientes factores NO afecta a la congestión en una red con arquitectura TCP/IP,

- a) Capacidad de proceso de la CPU de un router.
- b) Fragmentación de paquetes en la red.
- c) *Protocolo de nivel de enlace empleado.
- d) Número de dispositivos que transmiten información simultáneamente.

32. Indica cuál de los siguientes NO es un mensaje del protocolo BGP:

- a) *BGP Hello.
- b) BGP Open.
- c) BGP Notification.
- d) BGP Keepalive.

33. ¿ En qué situación el protocolo de encaminamiento OSPF será más adecuado que emplear RIP ?

- a) *Interconexión de redes LAN con tecnología diferente.
- b) Interconexión de redes LAN sin bucles.
- c) Interconexión de redes LAN con menos de 10 saltos de distancia máxima.
- d) Interconexión de redes LAN donde las distancias entre redes pueden reducirse.

34. Sobre el protocolo de encaminamiento IPv6 es cierto que,

- a) Aumenta el número de direcciones IPv4 empleando la clase reservada E.
- b) Es posible el intercambio de paquetes IP entre estaciones IPv4 e IPv6.
- c) *Es posible el intercambio de paquetes IPv4 a través de una red IPv6.
- d) El protocolo IPv6 aumenta el valor del campo TTL para permitir redes IP más extensas.

35. Sobre los algoritmos de control del flujo del protocolo TCP es cierto que,

- a) La ventana del emisor puede aumentar por encima del valor de la ventana del receptor.
- b) El retardo en la llegada de un ACK provocan el aumento de la ventana de congestión del emisor
- c) *La pérdida de un ACK provoca la reducción de la ventana de congestión del emisor.
- d) El retardo en la llegada de un ACK reduce a la mitad el tiempo de espera del ACK del reenvío.