The Monotonicity Formula for Energy Minimizing Maps and Monotone Quantities

Owen Drummond Department of Mathematics, Rutgers University owen.drummond@rutgers.edu

For this entire paper, let $\Omega \subset \mathbb{R}^n$ be an open region, and let N be a smooth, compact target manifold embedded in \mathbb{R}^p .

Main Theorems 1

Theorem 1.1 (Monotonicity Formula for Energy Minimizing Maps). Let $u \in W^{1,2}(B_{\rho}(y); N)$ be an energy minimizing map. If $y \in \Omega$ and $\bar{B}_{\rho}(y) \subset \Omega$, then for all $0 < \sigma < \rho < \rho_0$ we have that

$$\rho^{2-n} \int_{B_{\rho}(y)} |Du|^2 - \sigma^{2-n} \int_{B_{\sigma}(y)} |Du|^2 = 2 \int_{B_{\rho}(y) \setminus B_{\sigma}(y)} R^{2-n} \left| \frac{\partial u}{\partial R} \right|^2$$

where $\frac{\partial u}{\partial R}$ denotes the radial derivative in the direction $\frac{x-y}{|x-y|}$.

Proof. Claim: If $a = (a^1, ... a^n)$ are integrable functions on $B_{\rho_0}(y)$ and

$$\int_{B_{\rho_0}} \sum_{j=1}^{\infty} a^j D_j \zeta = 0$$

for all $\zeta \in C_c^{\infty}(B_{\rho_0}(y))$, then for almost every $\rho \in (0, \rho_0)$, we have that

$$\int_{B_{\rho}(y)} \sum_{j=1}^{n} a^{j} D_{j} \zeta = \int_{\partial B_{\rho}(y)} \eta \cdot a \zeta$$

for any $\zeta \in C^{\infty}(\bar{B}_{\rho_0}(y))$, where $\eta \equiv \frac{x-y}{\rho}$ is outward unit normal of $\partial B_{\rho}(y)$ **Proof**: We define a cutoff function $\phi \in C_c^{\infty}(\mathbb{R}^n)$ such that $\phi \equiv 1$ on $B_{\rho}(y)$, $0 < \phi < 1$ on $B_{\rho_0}(y) \setminus B_{\rho}(y)$, and $\phi \equiv 0$ outside $B_{\rho}(y)$. Keep ζ as before and using that $a \in L^1(B_{\rho}(y))$, we can convolve a with ϕ to obtain

$$\int_{B_{\rho}(y)} \sum_{j=1}^{n} (a^{j}(x) * \phi(x)) D_{j}\zeta(x) = \int_{B_{\rho}(y)} \sum_{j=1}^{\infty} D_{j}(a^{j}(x) * \phi(x))\zeta$$

and now we can apply divergence theorem to obtain

$$\int_{B_{\rho}(y)} \sum_{j=1}^{n} D_{j}(a^{j}(x) * \phi(x)) \zeta = \int_{B_{\rho}(y)} \sum_{j=1}^{n} \eta^{j}(x) \cdot a^{j}(x) \zeta(x) = \int_{B_{\rho}(y)} \eta(x) \cdot a(x) \eta(x)$$

where $\eta = (\eta^1, ..., \eta^n)$ is the outward pointing unit normal as before. \square Now since we assume u is an energy minimizer, u satisfies the variational equation given by

$$\int_{B_{\rho}(y)} \sum_{i,j=1}^{n} \left(|Du|^2 \delta_{ij} - 2D_i u(x) D_j u(x) \right) D_i \zeta^j(x)$$

and using the above claim, we have that this expression is equivalent to

$$\int_{\partial B_{\rho}(y)} \sum_{i,j=1}^{n} (|Du(x)|^{2} \delta_{ij} - 2D_{i}u(x)D_{j}u(x)) \rho^{-1}(x_{i} - y_{i})\zeta^{j}(x)$$

Notice that if $\zeta(x) = |x^j - y^j|$, where x^j picks out the j-th coordinate of x, then $D_i \zeta^j(x) = \delta_{ij}$, and δ_{ij} picks out n terms after summing i, j from 1 to n, and hence the first expression can be simplified to

$$\int_{B_{\rho}(y)} \sum_{i,j=1}^{n} \left(|Du|^{2} \delta_{ij} - 2D_{i}u(x)D_{j}u(x) \right) D_{i}\zeta^{j}(x) = \int_{B_{\rho}(y)} n|Du|^{2} - 2|Du|^{2} = (n-2) \int_{B_{\rho}(y)} |Du|^{2}$$

Moreover, in the second expression, we have that this simplifies to

$$\int_{\partial B_{\rho}(y)} \sum_{i,j=1}^{n} \left(|Du(x)|^2 \delta_{ij} - 2D_i u(x) D_j u(x) \right) \rho^{-1}(x_i - y_i) \zeta^j(x) = \int_{\partial B_{\rho}(y)} \rho \left(|Du(x)|^2 - 2 \left| \frac{\partial u}{\partial R} \right|^2 \right)$$

since $\left|\frac{\partial u}{\partial R}\right|^2 = \sum_{i,j=1}^n D_i u(x) D_j u(x) \frac{|x^i - y^i||x^j - y^j|}{\rho^2}$ Therefore, we have

$$(n-2)\int_{B_{\rho}(y)}|Du|^2 = \rho \int_{\partial B_{\rho}(y)} \left(|Du(x)|^2 - 2\left|\frac{\partial u}{\partial R}\right|^2\right)$$

and now, seeing that $\int_{\partial B_{\rho}(y)} f = \frac{\partial}{\partial \rho} \int_{B_{\rho}(y)} f$ by coarea formula, we have that after multiplying both sides by ρ^{1-n} and computing derivatives, we find that

$$\frac{d}{d\rho}(\rho^{2-n} \int_{B_{\rho}(y)} |Du|^2) = (2-n)\rho^{1-n} \int_{B_{\rho}(y)} |Du|^2 + \rho^{2-n} \int_{\partial B_{\rho}(y)} |Du|^2$$

combined with the fact that

$$(2-n)\rho^{1-n} \int_{B_{\rho}(y)} |Du|^2 = -\rho^{2-n} \int_{\partial B_{\rho}(y)} \left(|Du|^2 - 2 \left| \frac{\partial u}{\partial R} \right|^2 \right)$$

from the first equation, substituting this quantity in cancels out the $\rho^{2-n} \int_{B_{\rho}(y)} 2 \left| \frac{\partial u}{\partial R} \right|^2$ terms, and we left with

$$\frac{d}{d\rho} \left(\rho^{2-n} \int_{B_{\rho}(y)} |Du|^2 \right) = \rho^{2-n} \frac{d}{d\rho} \int_{B_{\rho}(y)} 2 \left| \frac{\partial u}{\partial R} \right|^2 = 2 \frac{d}{d\rho} \left(\int_{B_{\rho}(y) \setminus B_{\tau}(y)} R^{2-n} \left| \frac{\partial u}{\partial R} \right|^2 \right)$$

for a fixed choice of $\tau \in (0, \rho)$. Then, by integrating on both sides from σ to ρ and using the fundamental theorem of calculus, we have that

$$\int_{\sigma}^{\rho} \frac{d}{d\rho} \left(\rho^{2-n} \int_{B_{\rho}(y)} |Du|^{2} \right) = \int_{\sigma}^{\rho} 2 \frac{d}{d\rho} \left(\int_{B_{\rho}(y) \setminus B_{\tau}(y)} R^{2-n} \left| \frac{\partial u}{\partial R} \right|^{2} \right)$$

$$\implies \sigma^{2-n} \int_{B_{\sigma}(y)} |Du|^{2} - \tau^{2-n} \int_{B_{\tau}(y)} |Du|^{2} = 2 \int_{B_{\sigma}(y) \setminus B_{\tau}(y)} R^{2-n} \left| \frac{\partial u}{\partial R} \right|^{2}$$

Definition 1.1 (Density). Given any map $u \in W^{1,2}(\Omega; N)$, we define the density function $\Theta: \Omega \to \mathbb{R}$ to be

$$\Theta_u(y) = \lim_{\rho \downarrow 0} \rho^{2-n} \int_{B_{\rho}(y)} |Du|^2$$

Note that from the monotonicity formula, we have that since $R^{2-n} \left| \frac{\partial u}{\partial R} \right|^2$ is clearly strictly nonnegative,

$$\sigma^{2-n} \int_{B_{\sigma}(y)} |Du|^2 \ge \tau^{2-n} \int_{B_{\tau}(y)} |Du|^2$$

for all $0 < \tau < \sigma$, and thus

$$\sigma^{2-n} \int_{B_{\sigma}(y)} |Du|^2$$

is an increasing function of σ for $\sigma \in (0, \sigma_0)$. Therefore, the density function exists, and we obtain the immediate fact:

Corollary 1.1. Θ_u is an upper semi-continuous function on Ω , that is, if $y_j \to y \in \Omega$, then

$$\Theta_u(y) \ge \limsup_{j \to \infty} \Theta_u(y_i)$$

Proof. Let $\epsilon > 0$ and $\rho > 0$ with $\rho + \epsilon < \operatorname{dist}(y, \partial\Omega)$. By the monoticity formula, we have that

$$\Theta_u(y_j) \le \rho^{2-n} \int_{B_\rho(y_j)} |Du|^2$$

for j sufficiently large to ensure $\rho < \operatorname{dist}(y_j, \partial\Omega)$. Now since $B_{\rho}(y_j) \subset B_{\rho+\epsilon}(y)$ for all j large enough, we have that

$$\Theta_u(y_j) \le \rho^{2-n} \int_{B_{\rho+\epsilon}(y)} |Du|^2$$

for sufficiently large j, so we obtain that $\limsup_{j\to\infty} \Theta_u(y_j) \leq \rho^{2-n} \int_{B_{\rho+\epsilon}(y)} |Du|^2$. By letting $\epsilon \downarrow 0$, we conclude that

$$\limsup_{j \to \infty} \Theta_u(y_j) \le \rho^{2-n} \int_{B_\rho(y)} |Du|^2 \implies \limsup_{j \to \infty} \Theta_u(y_j) \le \Theta_u(y)$$

after taking the limit $\rho \downarrow 0$.

2 Tangent Maps, Monotone Quantities

In order for the density function to be meaningful, we would hope to see invariance upon rescaling u. By rescaling, we mean blowing up the function u around certain points to examine local behavior. This gives rise to the follow rigorous construction: Given $u: \Omega \to \mathbb{R}^p$ and $B_{\rho_0}(y)$ such that $\bar{B}_{\rho_0}(y) \subset \Omega$, and for any $\rho > 0$, consider the scaling function $u_{y,\rho}$ given by

$$u_{y,\rho}(x) = u(y + \rho x)$$

Note that on $B_{\rho_0}(0)$, $u_{y,\rho}$ is well defined. For $\sigma > 0$ and $\rho < \frac{\rho_0}{\sigma}$, after making a change of variables with $\tilde{x} = y + \rho x$ in the energy integral for $u_{y,\rho}$ and noting that $Du_{y,\rho}(x) = \rho D(u(y+\rho x))$, we have the domain changes from $B_{\sigma}(0) \to B_{\sigma\rho}(y)$, and has a Jacobian factor given by $dx = \rho^{-n}d\tilde{x}$

$$\sigma^{2-n} \int_{B_{\sigma}(0)} |Du_{y,\rho}(x)|^2 = (\sigma\rho)^{2-n} \int_{B_{\sigma\rho}(y)} |Du(\tilde{x})|^2 \le \rho_0^{2-n} \int_{B_{\rho_0}(y)} |Du|^2$$
 (2.1)

by the Monotonicity Formula (1.3). Therefore, if $\rho_j \downarrow 0$, then $\limsup_{j\to\infty} \int_{B_{\sigma}(0)} |Du_{y,\rho_j}|^2 < \infty$ for all $\sigma > 0$, and so by the Compactness Theorem for energy minimizers, there is a subsequence $\rho_{j'}$ such that $u_{y,\rho_{j'}} \to \varphi$ locally in \mathbb{R}^n w.r.t. the $W^{1,2}$ -norm.

Definition 2.1 (Tangent Map). Any φ obtained this way is called a tangent map of u at y. Moreover, $\varphi : \mathbb{R}^n \to N$ is an energy minimizing map with $\Omega = \mathbb{R}^n$.

As a consequence:

Corollary 2.1. Given an energy minimizer $u \in W^{1,2}(\Omega; N)$, the density function is invariant under rescaling of u, and furthermore, the tangent map of u at any point $y \in \Omega$ is constant along rays.

Proof. We saw above that if $u_{y,\rho}(x) = u(y + \rho x)$, then given $B_{\sigma}(0)$, we have that

$$\Theta_{u_{y,\rho}}(0) = \lim_{\sigma \downarrow 0} \sigma^{2-n} \int_{B_{\sigma}(0)} |Du_{y,\rho}(x)|^2 dx = \lim_{\sigma \downarrow 0} (\sigma \rho)^{2-n} \int_{B_{\sigma,\rho}(y)} |Du(\tilde{x})|^2$$

and setting $s = \sigma \rho$, we have

$$\lim_{\sigma \downarrow 0} \int_{B_{\sigma\rho}(y)} |Du(\tilde{x})|^2 d\tilde{x} = \lim_{s \downarrow 0} s^{2-n} \int_{B_s(y)} |Du|^2 = \Theta_u(y)$$

and thus $\Theta_{u_{y,\rho}}(0) = \Theta_u(y)$, so Θ_u is invariant under rescaling of u. Moreover, choosing a sequence $\rho_j \to 0$ such that u_{y,ρ_j} converges to a tangent map φ and taking $j \to \infty$ in the previous equation also yields

$$\sigma^{2-n} \int_{B_{\sigma}(0)} |D\varphi|^2 = \Theta_u(y)$$

since $\mathcal{E}(u_{y,\rho_j}) \to \mathcal{E}(\varphi)$. In particular, $\sigma^{2-n} \int_{B_{\sigma}(0)} |D\varphi|^2$ is a constant function of σ and since $\Theta_{\varphi}(0) = \lim_{\sigma \to 0} \sigma^{2-n} \int_{B_{\sigma}(0)} |D\varphi|^2$, we have that

$$\Theta_u(y) = \Theta_{\varphi}(0) \equiv \sigma^{2-n} \int_{B_{\sigma}(0)} |D\varphi|^2$$

Further, by the monotonicity formula,

$$0 = \sigma^{2-n} \int_{B_{\sigma}(0)} |D\varphi|^2 - \tau^{2-n} \int_{B_{\tau}(0)} |D\varphi|^2 = \int_{B_{\sigma}(0) \setminus B_{\tau}(0)} R^{2-n} \left| \frac{\partial \varphi}{\partial R} \right|$$

$$\implies \frac{\partial \varphi}{\partial R} = 0$$

and as $\varphi \in W^{1,2}_{loc}(\mathbb{R}^n;\mathbb{R}^p)$, then by integration along rays, we have that

$$\varphi(\lambda x) \equiv \varphi(x) \quad \forall \lambda > 0, x \in \mathbb{R}^n$$

Namely, the tangent map φ is constant along rays.