NASA/TP-20220000355/Vol 3

NDARC NASA Design and Analysis of Rotorcraft

Input

Wayne Johnson Ames Research Center Moffett Field, California

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM.
 Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation.

 Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question to <u>help@sti.nasa.gov</u>
- Write to: NASA STI Information Desk Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199

NASA/TP-20220000355/Vol 3

NDARC NASA Design and Analysis of Rotorcraft

Input

Wayne Johnson Ames Research Center Moffett Field, California

National Aeronautics and Space Administration

Ames Research Center Moffett Field, CA 94035-1000

NDARC NASA Design and Analysis of Rotorcraft

Input

Release 1.16 January 2022

Wayne Johnson NASA Ames Research Center, Moffett Field, CA

Contents

2.	Data Structures and Input Input Based on Configuration Parameters	
	Job	
6.	Size	28
8.	OffDesign	33
10	MapEngine MapAero FltCond	37
12.	Mission MissSeg	45
14.	FltState	55
	Cost	70
	Emissions	
	Systems	88 96

Contents

40	Location	212
39.	BatteryModel	209
38.	SolarCellModel	207
37.	FuelCellModel	205
	JetModel	
	MotorModel	
34.	CompressorModel	197
33.	RecipModel	193
32.	EngineTable	190
31.	EngineParamN	188
30.	EngineModel	182
29. ——	ChargeGroup	177
	JetGroup	
	EngineGroup	
	Propulsion	
	FuelTank	
24.	Tail	146
	Wing	
	Rotor	
	LandingGear	
21	LandingCook	102

1-1 Overview

The NDARC code performs design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance analysis, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. Figure 1-1 illustrates the tasks. The principal tasks (sizing, mission analysis, flight performance analysis) are shown in the figure as boxes with heavy borders. Heavy arrows show control of subordinate tasks.

The aircraft description (figure 1-1) consists of all the information, input and derived, that defines the aircraft. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. This information can be the result of the sizing task; can come entirely from input, for a fixed model; or can come from the sizing task in a previous case or previous job. The aircraft description information is available to all tasks and all solutions (indicated by light arrows).

The sizing task determines the dimensions, power, and weight of a rotorcraft that can perform a specified set of design conditions and missions. The aircraft size is characterized by parameters such as design gross weight, weight empty, rotor radius, and engine power available. The relations between dimensions, power, and weight generally require an iterative solution. From the design flight conditions and missions, the task can determine the total engine power or the rotor radius (or both power and radius can be fixed), as well as the design gross weight, maximum takeoff weight, drive system torque limit, and fuel tank capacity. For each propulsion group, the engine power or the rotor radius can be sized.

Missions are defined for the sizing task, and for the mission performance analysis. A mission consists of a number of mission segments, for which time, distance, and fuel burn are evaluated. For the sizing task, certain missions are designated to be used for design gross weight calculations; for transmission sizing; and for fuel tank sizing. The mission parameters include mission takeoff gross weight and useful load. For specified takeoff fuel weight with adjustable segments, the mission time or distance is adjusted so the fuel required for the mission (burned plus reserve) equals the takeoff fuel weight. The mission iteration is on fuel weight or energy.

Flight conditions are specified for the sizing task, and for the flight performance analysis. For the sizing task, certain flight conditions are designated to be used for design gross weight calculations; for transmission sizing; for maximum takeoff weight calculations; and for antitorque or auxiliary thrust rotor sizing. The flight condition parameters include gross weight and useful load.

For flight conditions and mission takeoff, the gross weight can be maximized, such that the power required equals the power available.

A flight state is defined for each mission segment and each flight condition. The aircraft performance can be analyzed for the specified state, or a maximum effort performance can be identified. The maximum effort is specified in terms of a quantity such as best endurance or best range, and a variable such as speed, rate of climb, or altitude. The aircraft must be trimmed, by solving for the controls and motion that produce equilibrium in the specified flight state. Different trim solution definitions are required for various flight states. Evaluating the rotor hub forces may require solution of the blade flap equations of motion.

Figure 1-1 Outline of NDARC tasks.

Figure 1-2 NDARC Interfaces.

```
&JOB INIT input=0, INIT data=0, &END
&DEFN action='ident',created='time-date',title='standard input',&END
&DEFN action='open file',file='engine.list',&END
&DEFN action='open file', file='helicopter.list', &END
1-----
&DEFN quant='Cases',&END
&VALUE title='Helicopter', TASK size=0, TASK mission=1, TASK perf=1, &END
&DEFN quant='Size',&END
&VALUE nFltCond=0,nMission=0,&END
&DEFN quant='OffDesign', &END
&VALUE title='mission analysis',nMission=1,&END
&DEFN quant='OffMission', &END
&VALUE
     (one mission, mission segment parameters as arrays)
& END
&DEFN quant='Performance', &END
&VALUE title='performance analysis',nFltCond=2,&END
&DEFN quant='PerfCondition', &END
&VALUE
     (one condition)
&END
&DEFN quant='PerfCondition', &END
&VALUE
     (one condition)
&END
&DEFN action='endofcase', &END
&DEFN action='endofjob', &END
```

Figure 1-3a Illustration of NDARC input (primary input).

```
&DEFN action='ident',created='time-date',title='Helicopter',&END
! default helicopter
&DEFN action='configuration', &END
&VALUE config='helicopter',rotate=1,&END
!-----
&DEFN quant='Cases',&END
&VALUE title='Helicopter', FILE design='helicopter.design', &END
&DEFN quant='Size',&END
&VALUE
  title='Helicopter',
  SIZE perf='none', SET rotor='radius+Vtip+sigma', 'radius+Vtip+sigma',
  FIX_DGW=1,SET_tank='input',SET_SDGW='input',SET_WMTO='input',
&END
&DEFN quant='Solution', &END
&VALUE &END
&DEFN quant='Aircraft', &END
&VALUE (Aircraft parameters) &END
&DEFN quant='Geometry', &END
&VALUE (geometry) &END
&DEFN quant='Rotor 1', &END
&VALUE (Rotor 1 parameters) &END
!-----
     (other parameters in other structures)
!-----
&DEFN quant='TechFactors', &END
&VALUE (technology factors) & END
&DEFN action='endoffile',&END
```

Figure 1-3b Illustration of NDARC input (secondary input file).

1-2 NDARC Input and Output

Figure 1-2 illustrates the input and output environment of NDARC. Table 1-1 lists the possible input and output files. A job reads input from one or more files. The primary input is obtained from standard input (perhaps redirected to a file). The primary input can direct the code to read other files, identified by file name or logical name. The input data are read in namelist format. Unit numbers are part of the job input. Output file names are part of the case input. Input files names are defined in the input itself.

Table 1-1. Input and output files.

	file logical name	unit number (and default)
INPUT		
Primary Input	standard input	nuin = 5
Secondary Input File	FILE	nufile = 40
Aircraft Description	FILE	nufile = 40
Solution	FILE	nufile = 40
OUTPUT		
Output	standard output	nuout = 6
Design	DESIGNn	nudesign = 41
Performance	PERFn	nuperf = 42
Airframe Aerodynamics	AEROn	nuaero = 43
Engine Performance	ENGINEn	nuengine = 44
Geometry	GEOMETRYn	nugeom = 45
Aircraft Description	AIRCRAFTn	nuacd = 46
Solution	SOLUTIONn	nusoln = 47
Sketch	SKETCHn	nusketch = 48
Errors	ERRORn	nuerror = 49

1-2.1 Input

Figure 1-3 illustrates NDARC input. The primary input starts with a JOB namelist, then DEFN namelists are read to define the action and contents of the subsequent information. The job parameters include initialization control, error action, and input/output unit numbers. Job parameters can be read during case input using QUANT='Job'. The initialization takes place before case input, so changed initialization parameters in QUANT='Job' input take effect for the next case. The DEFN namelist has the following parameters.

- a) ACTION: character string (length = 32; case independent).
- b) QUANT: character string (length = 32, case independent); corresponds to data structure in input; string includes structure number (1 or next condition/mission if absent).
- c) SOURCE: integer; for copy action.
- d) FILE: file name or logical name (length = 256).
- e) CREATED: character string of creation time and date (length = 20).
- f) TITLE: character string of title identifying input file (length = 80).
- g) VERSION: code version number as character string (length = 6).
- h) MODIFICATION: character string of code modification (length = 32).

Table 1-2 describes the options for the ACTION variable in the DEFN namelist. The code searches for the keyword in the ACTION character string. A solution file (text or binary) can be written by an NDARC job and then read by a subsequent job, restoring the solution to the state that existed when the file was created. Then additional output and additional cases can be obtained. An aircraft description file can be written by an NDARC job and then read by a subsequent job, restoring the aircraft model (but not the solution). A secondary input file has DEFN namelists to define action and contents. When ACTION='end' (or EOF) is encountered in a secondary input file, the file is closed and the code returns to primary input.

A DEFN namelist with ACTION='ident' identifies the file; probably there is only one identification per file, and only the last occurrence is stored. The identification consists of the CREATED, TITLE, VERSION, MODIFICATION variables. CREATED and TITLE are written when a file is created by NDARC, and read and stored for each input file. If present, VERSION and MODIFICATION are compared with the version and modification of the code, and input continues only if they match.

The parameter QUANT identifies the data structure to be read (namelist format), initialized, or copied. Table 1-3 describes the options. The input corresponds to the data structures of the analysis. The QUANT string includes the structure number; if absent, the number is 1, or the next condition or mission. Note that each mission, with the mission segment parameters as arrays, is input with QUANT='SizeMission' or QUANT='OffMission'; and each condition is input with QUANT='SizeCondition' or QUANT='PerfCondition'.

A case inherits input for flight conditions and missions from the previous case if INIT_input = last-case-input (default). A DEFN namelist with ACTION='delete' deletes this input as specified by QUANT='SizeCondition n', QUANT='SizeMission n', QUANT='OffMission n', or QUANT='PerfCondition n'. ACTION='delete all' deletes all (ignore structure number); ACTION='delete one' deletes structure n (all if number absent); ACTION='delete structure n and subsequent structures (all if number absent).

For ACTION='nosize', input variables in the Size structure are set for no size iteration: SIZE_perf='none', SIZE_engine='none', SIZE_jet='none', SIZE_charge='none', SET_rotor='radius+Vtip+sigma', SET_wing='area+span', FIX_DGW=1, SET_tank='input', SET_limit_ds='input', SET_SDGW='input', SET_WMTO='input'.

Table 1-2. ACTION options.

ACTION	keyword	QUANT	function
Primary Input Only			
blank	_	blank	open and read secondary input file, name = FILE
'open file'	file,open		open and read secondary input file, name = FILE
'load aircraft'	aircraft,desc		load aircraft description file, name = FILE
'read solution'	solution	'text'	read complete solution file, name = FILE (text)
'read solution'	solution	not 'text'	read complete solution file, name = FILE (binary)
'end of case'	end+case		stop case input, execute case
'end of job'	end+job,quit		stop job input, execute case, exit code
Primary or Secondary Input			
blank	_	'structure'	read VALUE namelist
'read namelist'	list	'structure'	read VALUE namelist
'copy input'	сору	'structure'	copy input from source (same structure), SOURCE=SRCnumber
'initialize'	init	'structure'	set structure variables to default values
'delete all'	del+all	'structure'	delete all conditions or missions
'delete one'	del+one	'structure'	delete one condition or mission
'delete last'	del+last	'structure'	delete last conditions or missions
'configuration'	config		set input based on aircraft configuration
'nosize'	nosize		set input for no size iteration
'identification'	ident		identify file
'end'	end (or EOF)		Secondary: close file, return to primary input
'end'	end (or EOF)		Primary: same as ACTION='endofjob'

Table 1-3. QUANT options. QUANT	data structures read	maximum n
'Job' 'Cases'	Job Cases	
'Size' 'SizeCondition n' 'SizeMission n' 'OffDesign' 'OffMission n' 'Performance' 'PerfCondition n' 'MapEngine' 'MapAero'	SizeParam one FltCond+FltState one MissParam, MissSeg+FltState as array OffParam one MissParam, MissSeg+FltState as array PerfParam one FltCond+FltState MapEngine MapAero	nFltCond nMission nMission nFltCond
'Solution'	Solution	
'Cost' 'Emissions' 'Aircraft' 'Systems' 'Fuselage' 'LandingGear' 'Rotor n' 'Wing n' 'Tail n' 'FuelTank n' 'Propulsion n' 'EngineGroup n' 'JetGroup n'	Cost Emissions Aircraft Systems, WFltCont, WDelce Fuselage, AFuse, WFuse LandingGear, AGear, WGear Rotor, PRotorInd, PRotorPro, PRotorTab, IRotor, DRotor, WRotor Wing, AWing, WWing, WWingTR Tail, ATail, WTail FuelTank, WTank Propulsion, WDrive EngineGroup, DEngSys, WEngSys JetGroup, DJetSys, WJetSys ChargeGroup, DChrgSys, WChrgSys	nRotor nWing nTail nTank nPropulsion nEngineGroup nJetGroup nChargeGroup
'EngineModel n' 'EngineParamN n' 'EngineTable n' 'RecipModel n' 'CompressorModel n' 'MotorModel n' 'JetModel n' 'FuelCellModel n' 'SolarCellModel n' 'BatteryModel n'	EngineModel EngineParamN EngineTable RecipModel CompressorModel MotorModel JetModel FuelCellModel SolarCellModel BatteryModel	nEngineModel nEngineParamN nEngineTable nRecipModel nCompressorModel nMotorModel nJetModel nFuelCellModel nSolarCellModel
'TechFactors' 'Geometry'	all TECH_xxx all Location	

1-2.2 Formats

```
Namelist input has the following format (see also figure 1-3).
 &DEFN action='IDENT',created='time-date',title='xxx',version='n.n',modification='xxx',&END
 &DEFN quant='STRUCTURE n', &END
 &VALUE param=value, &END
 &DEFN action='NAMELIST', quant='STRUCTURE n', &END
 &VALUE param=value, &END
 &DEFN action='COPY', quant='STRUCTURE n', source=#, &END
An aircraft description file is written in a separate file by NDARC, from theDesign(kcase):
 &DEFN action='IDENT', created='time-date', title='xxx', version='n.n', modification='xxx', &END
 &VALUE ADIMEN nrotor=m, nwing=m, ntail=m, ntank=m, npropulsion=m, nenginegroup=m, njetgroup=m, nchargegroup=m,
      nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m,nmotormodel=m,njetmodel=m,
      nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m,&END
 &VALUE theStructure%xxx,&END
 &VALUE theStructure%xxx,&END
 &VALUE theStructure%xxx,&END
This aircraft description file is read by identifying it in the primary input:
 &DEFN action='AIRCRAFT', file='aircraft.acd', &END
A solution file is written in a separate file by NDARC, from the Design (kcase), in binary or text format:
 &DEFN action='IDENT',created='time-date',title='xxx',version='n.n',modification='xxx',&END
 &VALUE ADIMEN nrotor=m, nwing=m, ntail=m, ntank=m, npropulsion=m, nenginegroup=m, njetgroup=m, nchargegroup=m,
      nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m,nmotormodel=m,njetmodel=m,
      nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m,&END
 &VALUE SDIMEN nsizecond=m,nsizemiss=m,nperfcond=m,noffmiss=m,&END
 &VALUE theStructure%xxx,&END
 &VALUE theStructure%xxx,&END
 &VALUE theStructure%xxx,&END
This solution file is read by identifying it in the primary input, with QUANT identifying the file as text or binary:
 &DEFN action='SOLUTION, quant='TEXT', file='aircraft.soln'&END
```

1-2.3 Conventions

Each flight condition (FltCond and FltState variables) is input in a separate SizeCondition or PerfCondition namelist.

Each mission (MissParam, MissSeq, and FltState variables) is input in a separate SizeMission or OffMission namelist. All mission segments are defined in this namelist, so MissSeq and FltState variables are arrays. Each variable gets one more dimension, with the first array index always segment number.

Geometry input includes Location variables, which are read as elements of the data structure (for example, loc rotor%SL).

Variables can appear in more than one namelist. Specifically there are separate namelists for all technology factors (all TECH_xxx variables), and all geometry (all Location variables), with corresponding options for output. A variable that is a scalar in the Rotor, Wing, Tail, Propulsion, EngineGroup, JetGroup, or ChargeGroup input becomes an array in the TechFactors or Geometry input. Note that it is the Location variable that is the array (for example, loc_rotor(1)%SL).

Case is not important in character string input. Character string input consists of keywords; the code searches for the keywords in the string.

Default values are specified in the dictionary (blank implies a default of zero); all elements of arrays have the same default value.

Tasks, aircraft, and components have title variables. There are also notes variables (long character string) to record information about the input.

1-3 Software Tool

All information about data structures is contained in a dictionary file. This information includes the parameter name, dimension, type, default value, description, identification as input, and formats for write of the parameter. A software tool was created to manage the data, including construction of the module of data structures. The software tool reads this dictionary file and creates subroutines for the input process: namelist read, copy, print of input, initialization, set to default. This software tool is a program that manipulates character strings, to produce compilable module and subroutines for NDARC.

1–4 Data Structures

Table 1-4 outlines the data structures used for NDARC. The following chapters describe the contents of each structure. Note that a "+" sign in the column between the type and description identifies input variables. Input variables can be changed by the analysis, so may not be the same at the end of a case as at the beginning. All variables, input and other, are initialized to zero or blank. If default values exist (only for input variables), they supersede that initialization.

Table 1-4. NDARC data structures.

Design	Fuselage	FuelTank(ntankmax)	FltState(nfltmax)
Cases	[Location]loc_fuselage	[Location]loc_auxtank(nauxtankmax)	FltAircraft
Size	AFuse	Weight	FltFuse
SizeParam	Weight	WTank	FltGear
FltCond(nfltmax)	WFuse	Propulsion(npropmax)	FltRotor(nrotormax)
FltState(nfltmax)	LandingGear	Weight	FltWing(nwingmax)
Mission(nmissmax)	[Location]loc_gear	WDrive	FltTail(ntailmax)
MissParam	AGear	EngineGroup(nengmax)	FltTank(ntankmax)
MissSeg(nsegmax)	Weight	[Location]loc_engine	FltProp(npropmax)
FltState(nsegmax)	WGear	DEngSys	FltEngn(nengmax)
OffDesign	Rotor(nrotormax)	Weight	FltJet(njetmax)
OffParam	$[Location]loc_rotor$	WEngSys	FltChrg(nchrgmax)
Mission(nmissmax)	[Location]loc_pylon	JetGroup(njetmax)	
MissParam	[Location]loc_pivot	[Location]loc_jet	
MissSeg(nsegmax)	[Location]loc_nac	DJetSys	
FltState(nsegmax)	PRotorInd	Weight	
Performance	PRotorPro	WJetSys	
PerfParam	${\sf PRotorTab}$	${\sf ChargeGroup(nchrgmax)}$	
FltCond(nfltmax)	IRotor	[Location]loc_charger	
FltState(nfltmax)	DRotor	DChrgSys	
MapEngine	Weight	Weight	
MapAero	WRotor	WChrgSys	
Solution	Wing(nwingmax)	EngineModel(nengmax)	
Cost	[Location]loc_wing	EngineParamN(nengpmax)	
Emissions	AWing	EngineTable(nengmax)	
Aircraft	Weight	RecipModel(nengmax)	
[Location]loc_cg	WWing	${\sf CompressorModel(nengmax)}$	
Weight	WWingTR	MotorModel(nengmax)	
XAircraft	Tail(ntailmax)	JetModel(njetmax)	
Systems	[Location]loc_tail	FuelCellModel(nchrgmax)	
Weight	ATail	SolarCellModel(nchrgmax)	
WFltCont	Weight	BatteryModel(ntankmax)	
WDelce	WTail	·	

The rotorcraft configuration is identified by the variable config in the QUANT='Aircraft' input. With ACTION='configuration', the analysis defines a number of input parameters in order to facilitate modelling of conventional configurations. The input required to execute ACTION='configuration' is:

```
&DEFN action='configuration',&END  
&VALUE config='aaaa',nRotor=#,rotate=#,#,overlap_tandem=#,#,ang_multicopter=#,#,&END
```

The VALUE namelist contains only the parameters Aircraft%config (rotorcraft configuration), Aircraft%nRotor (number of rotors, only for multicopter), Rotor%rotate (direction of rotation, each rotor), Rotor%overlap_tandem (each rotor, only for tandem helicopter), and Rotor%ang_multicopter (each rotor, only for multicopter). The convention is that the first rotor is the main rotor for the helicopter or compound configuration; the front rotor for the tandem configuration; the right rotor for the tiltrotor configuration. This capability has been implemented for rotorcraft, helicopter, tandem, coaxial, tiltrotor, compound, multicopter, and airplane configurations. There is common input for all configurations, and special input for each except the rotorcraft. The analysis creates the following input, through information at the end of the NDARC structures file. Note that default values are defined for all input quantities.

2–1 All Configurations

 $a)\ Components:\ n\mathsf{Rotor} = 2\ (except\ multicopter), n\mathsf{Wing} = 0, n\mathsf{Tail} = 2;\ n\mathsf{Propulsion} = 1, n\mathsf{Engine} \\ \mathsf{Group} = 1, n\mathsf{Engine} \\ \mathsf{Model} = 1, n\mathsf{Jet} \\ \mathsf{Group} = 0, n\mathsf{Charge} \\ \mathsf{Group} = 0,$

b) Aircraft

Aircraft controls: ncontrol=7, IDENT_control='coll','latcyc','lngcyc','pedal','tailinc','elevator','rudder'

Control states: nstate control=1

Trim states: nstate trim=10, selected by FltAircraft%STATE trim=IDENT trim; compound state not active

	IDENT_trim	mtrim	trim_quant	trim_var
6-variable	'free'	6	'force x','force y','force z','moment x','moment y','moment z'	'coll','latcyc','lngcyc','pedal','pitch','roll'
longitudinal	'long'	4	'force x','force z','moment y','moment z'	'coll','Ingcyc','pitch','pedal'
symmetric 3-variable	'symm'	3	'force x','force z','moment y'	'coll','Ingcyc','pitch'
weight and drag	'force'	2	'force x','force z'	'coll','pitch'
hover thrust and torque	'hover'	2	'force z','moment z'	'coll','pedal'
hover thrust	'thrust'	1	'force z'	'coll'
hover rotor C_T/σ	'rotor'	1	'CTs rotor 1'	'coll'
wind tunnel	'windtunnel'	3	'CTs rotor 1','betac 1','betas 1'	'coll','latcyc','lngcyc'
full power	'power'	1	'P margin 1'	'coll'
ground run	'ground'	1	'force x'	'coll'
compound	'comp'	6	'force x','force y','force z','moment x','moment y','moment z'	'coll','latcyc','lngcyc','pedal','prop','roll'

```
c) Systems: MODEL FWfc=0, MODEL CVfc=0 (no fixed wing flight controls, no conversion controls)
d) Landing Gear: KIND LG=0 (fixed gear), Wgear%nLG=3
e) Fuel Tank: place=1 (internal tank), Mauxtanksize=1, WTank%ntank int=1, WTank%nplumb=2
f) Rotor
First rotor is primary: kPropulsion=1, KIND xmsn=1
Second and other rotors are dependent: kPropulsion=1, KIND xmsn=0, INPUT gear=1 (input quantity is tip speed)
Configuration: direction='main'
Drag: SET aeroaxes=1 (helicopter), Idrag=0. (not tilt); DRotor%SET Dspin=1, DRotor%DoQ spin=0. (no spinner drag)
Weight: WRotor%MODEL config=1 (rotor), WRotor%KIND rotor=2 (not tilting)
Control:
   INPUT coll=0, INPUT cyclic=0, INPUT incid=0, INPUT cant=0, INPUT diam=0 (no connection to aircraft controls)
   T coll=0., T latcyc=0., T lngcyc=0., T incid=0., T cant=0., T diam=0. (all controls, all states)
   KIND control=1 (1 for thrust and TPP command)
   KIND coll=2 (1 for thrust, 2 for C_T/\sigma)
   KIND cyclic=1 (1 for TPP tilt, 2 for hub moment, 3 for lift offset)
   KIND tilt=0 (fixed shaft)
g) Wing
Control:
   INPUT flap=0, INPUT flaperon=0, INPUT aileron=0, INPUT incid=0 (no connection to aircraft controls)
   T flap=0., T flaperon=0., T aileron=0., T incid=0. (all controls, all states, all panels)
Drag: Idrag=0. (not tilt)
h) Tail
First tail is horizontal tail: KIND tail=1, WTail%MODEL Htail=1 (helicopter)
Second tail is vertical tail: KIND tail=2, WTail%MODEL Vtail=1 (helicopter)
Configuration: KIND TailVol=2, TailVolRef=1 (rotor reference)
Control:
   INPUT cont=1 (tail control connection to aircraft controls), INPUT incid=0 (no connection of tail incidence to aircraft controls)
   T cont=0., T incid=0. (all controls, all states)
i) Propulsion: nGear=1, STATE gear wt=1, INPUT DN=0
```

```
i) Engine Group
Configuration: kPropulsion=1, INPUT gear=1 (gear ratio from N spec), SET power=0 (sized), fPsize=1., direction='x', SET geom=0 (standard position)
Drag: MODEL drag=1, ldrag=0. (not tilt)
k) Engine Group, Jet Group, Charge Group
Control:
   INPUT amp=0, INPUT mode=0, INPUT incid=0, INPUT yaw=0 (no connection to aircraft controls)
   T amp=0., T incid=0., T yaw=0. (all controls, all states)
2–2 Helicopter
a) Rotor
First rotor is main rotor: config='main', fDGW=1., fArea=1., SET geom='standard'
   rotation: r = 1; if (Rotor(1)%rotate < 0) r = -1
   control: INPUT coll=1, INPUT latcyc=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T latcyc(2,1)=-r, T lngcyc(3,1)=-1.
Second rotor is tail rotor: config='tail+antiQ', fThrust=1., fArea=0., SET geom='tailrotor', mainRotor=1
   direction='tail', WRotor%MODEL config=2 (tail rotor)
   rotation: r = 1; if (Rotor(1)%rotate < 0) r = -1
   control: KIND control=2 (thrust and NFP command); INPUT coll=1, T coll(4,1)=-r (rotor collective connection to aircraft control 'pedal')
Performance: PRotorInd%MODEL twin='none'
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
b) Tail
Control: INPUT incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T incid(5,1)=1. (incidence connection to aircraft control 'tailine'), T cont(6,1)=1. (elevator direct control)
Vertical tail: T cont(7,1)=1. (rudder direct control)
c) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15
2–3 Tandem
a) Components: nTail=0 (no tail)
b) Fuel Tank: place=2 (sponson)
```

```
c) Rotor
Configuration: config='main+tandem', fDGW=.5, SET geom='tandem', fRadius=1.
   fArea = 1 - m/2, from m = (2/\pi)(\cos^{-1} h - h\sqrt{1 - h^2}), h = 1 – overlap tandem
First rotor is front rotor: otherRotor=2
   rotation: r = 1, if (Rotor(1)%rotate < 0) r = -1
   control: INPUT coll=1, INPUT latcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T coll(3,1)=-1., T latcyc(2,1)=-r, T latcyc(4,1)=-r
Second rotor is aft rotor: otherRotor=1, rotate=-Rotor(1)%rotate
   rotation: r = 1, if (Rotor(1)%rotate < 0) r = -1; r = -r
   control: INPUT coll=1, INPUT latcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T coll(3,1)=1., T latcyc(2,1)=-r, T latcyc(4,1)=r
Performance: PRotorInd%MODEL twin='tandem', PRotorInd%Kh twin=1., PRotorInd%Kf twin=0.85, IRotor%MODEL int twin=2
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
d) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6
2-4 Coaxial
a) Rotor
Configuration: config='main+coaxial', fDGW=.5, fArea=.5, SET geom='coaxial', fRadius=1.
First rotor is lower rotor: otherRotor=2
   rotation: r = 1, if (Rotor(1)\%rotate < 0) r = -1
   control: INPUT coll=1, INPUT latcyc=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T coll(4,1)=r, T latcyc(2,1)=-r, T lngcyc(3,1)=-1.
Second rotor is upper rotor: otherRotor=1, rotate=-Rotor(1)%rotate
   rotation: r = 1, if (Rotor(1)%rotate < 0) r = -1; r = -r
   control: INPUT coll=1, INPUT lateyc=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T coll(4,1)=r, T latcyc(2,1)=-r, T lngcyc(3,1)=-1.
Performance: PRotorInd%MODEL_twin='coaxial', PRotorInd%Kh twin=1., PRotorInd%Kf twin=0.85, IRotor%MODEL int twin=2
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
b) Tail
Horizontal tail: T cont(6,1)=1. (elevator direct control)
Vertical tail: T cont(7,1)=1. (rudder direct control)
c) Propulsion: WDrive%ngearbox=1. WDrive%ndriveshaft=0. WDrive%fShaft=0.1: WDrive%fTorque=0.6. WDrive%fPower=0.6
```

2-5 Tiltrotor

```
a) Components: nWing=1, nEngineGroup=2 (engine at each nacelle)
b) Aircraft
Aircraft controls: ncontrol=10, IDENT control='coll', 'latcyc', 'lngcyc', 'pedal', 'tilt', 'flap', 'flaperon', 'elevator', 'aileron', 'rudder'
Control states: nstate control=2 (state 1 for helicopter mode, state 2 for airplane mode)
Control state in conversion: kcont hover=1, kcont conv=1, kcont cruise=2
Drive state in conversion: kgear hover(1)=1, kgear conv(1)=1, kgear cruise(1)=1
c) Systems: MODEL FWfc=1, MODEL CVfc=1 (fixed wing flight controls, conversion control)
d) Landing Gear: KIND LG=1 (retractable)
e) Fuel Tank: place=3 (wing), fFuelWing(1)=1.
f) Rotor
Configuration: config='main+tiltrotor', fDGW=.5, fArea=1.; SET geom='tiltrotor', KIND TRgeom=1 (from clearance), fRadius=1., WingForRotor=1
First rotor is right rotor: otherRotor=2
   helicopter mode control: INPUT coll=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   helicopter mode control: T coll(1,1)=1., T coll(2,1)=-1., T lngcyc(3,1)=-1., T lngcyc(4,1)=1.
Second rotor is left rotor: otherRotor=1, rotate=-Rotor(1)%rotate; INPUT gear=2 (input quantity is gear ratio)
   helicopter mode control: INPUT coll=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   helicopter mode control: T coll(1,1)=1, T coll(2,1)=1, T lngcyc(3,1)=-1, T lngcyc(4,1)=-1.
Airplane mode control state: T coll(1,2)=1. (collective connection to aircraft control 'coll')
Tilt: KIND tilt=1 (shaft control = incidence), incid ref=90. (helicopter mode reference), SET Wmove=1, fWmove=1. (wing tip weight move)
   control: INPUT incid=1, T incid(5,1)=1., T incid(5,2)=1. (incidence connection to aircraft control 'tilt')
Performance: PRotorInd%MODEL twin='tiltrotor', PRotorInd%Kh twin=1., PRotorInd%Kf twin=1., IRotor%MODEL int twin=2
Weight: WRotor%KIND rotor=1 (tilting)
Drag: SET aeroaxes=2 (tiltrotor), ldrag=90. (tiltrotor)
   DRotor%SET Dhub=1, DRotor%DoQ hub=0., DRotor%CD hub=0., DRotor%SET Vhub=1, DRotor%DoQV hub=0., DRotor%CDV hub=0. (no hub drag)
g) Wing
Configuration: fDGW=1., nRotorOnWing=2, RotorOnWing(1)=1, RotorOnWing(2)=2, SET ext=0
Control: KIND flaperon=3 (independent), nVincid=1
   INPUT flap=1, INPUT flaperon=1, INPUT aileron=1 (wing control connection to aircraft controls)
   T aileron(2,2)=-1. (airplane mode aileron connection to aircraft control 'latcyc')
```

```
T flap(6,1)=1., T flap(6,2)=1. (flap direct control)
   T flaperon(7,1)=1., T flaperon(7,2)=1. (flaperon direct control)
   T aileron(9,1)=1., T aileron(9,2)=1. (aileron direct control)
Weight: WWing%MODEL wing=3 (tiltrotor)
h) Tail
Configuration: KIND TailVol=1, TailVolRef=1 (wing reference); Wtail%MODEL Htail=2, Wtail%MODEL Vtail=2 (tiltrotor)
Horizontal tail control: nVincid=1
   T \cot(3,2)=1. (airplane mode elevator connection to aircraft control 'lngcyc')
   T cont(8,1)=1., T cont(8,2)=1. (elevator direct control)
Vertical tail control: nVincid=1
   T cont(4,2)=1. (airplane mode rudder connection to aircraft control 'pedal')
   T cont(10,1)=1., T cont(10,2)=1. (rudder direct control)
i) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6
j) Engine Group
Configuration: fPsize=0.5, SET geom=1 (tiltrotor)
First engine group: RotorForEngine=1
Second engine group: RotorForEngine=2
Control: INPUT incid=1; T incid(5,1)=1., T incid(5,2)=1. (nacelle incidence connection to aircraft control 'tilt')
Drag: SET Swet=1, Swet=0., MODEL drag=0, Idrag=90. (no engine nacelle drag)
   DEngSys%SET_drag=1, DEngSys%DoQ=0., DEngSys%CD=0.; DEngSys%SET_Vdrag=1, DEngSys%DoQV=0., DEngSys%CDV=0.
2-6 Compound
a) Components: nRotor=3, nWing=1
b) Aircraft
Aircraft controls: ncontrol=10, IDENT control='coll', 'latcyc', 'lngcyc', 'pedal', 'tailinc', 'elevator', 'rudder', 'prop', 'aileron', 'flap'
Trim states: nstate trim=11; compound state active
c) Rotor
First rotor is main rotor: config='main', fDGW=1., fArea=1., SET geom='standard'
   rotation: r = 1; if (Rotor(1)\%rotate < 0) r = -1
   control: INPUT coll=1, INPUT lateyc=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
```

```
control: T coll(1,1)=1., T latcyc(2,1)=-r, T lngcyc(3,1)=-1.
Second rotor is tail rotor: config='tail+antiQ', fThrust=1., fArea=0., SET geom='tailrotor', mainRotor=1
   direction='tail', WRotor%MODEL config=2 (tail rotor)
   rotation: r = 1; if (Rotor(1)%rotate < 0) r = -1
   control: KIND control=2 (thrust and NFP command); INPUT_coll=1, T_coll(4,1) = -r (rotor collective connection to aircraft control 'pedal')
Third rotor is propeller: config='prop+auxT', fThrust=1., fArea=0., SET geom='standard'
   direction='prop', WRotor%MODEL config=3 (auxiliary thrust)
   control: KIND control=2 (thrust and NFP command); INPUT coll=1, T coll(8,1)=1. (rotor collective connection to aircraft control 'prop')
Performance: PRotorInd%MODEL twin='none'
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
d) Wing
Configuration: fDGW=1.
Control: nVincid=1
   INPUT flap=1, INPUT flaperon=1, INPUT aileron=1 (wing control connection to aircraft controls)
   T aileron(9,1)=1. (aileron direct control)
   T flap(10,1)=1. (flap direct control)
Weight: WWing%MODEL wing=2 (parametric)
e) Tail
Control: INPUT incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T incid(5,1)=1. (incidence connection to aircraft control 'tailine'), T cont(6,1)=1. (elevator direct control)
Vertical tail: T cont(7.1)=1. (rudder direct control)
f) Propulsion: WDrive%ngearbox=3, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15
2–7 Multicopter
a) Components: nTail=0 (no tail)
b) Rotor
Configuration: config='main+multirotor', fDGW=1/nRotor, fArea=1., SET geom='multicopter'
Control: KIND control=2 (thrust and NFP command); INPUT coll=1
   rotation: r = 1; if (rotate < 0) r = -1; a = ang multicopter
   T coll(1,1)=1, T coll(2,1)=-\sin(a), T coll(3,1)=\cos(a), T coll(4,1)=r (rotor collective connection to aircraft controls)
```

```
Performance: PRotorInd%MODEL twin='multirotor'; xh multi=0., xp multi=0., xf multi=0., except 1.0 for this rotor
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
c) Propulsion: WDrive%ngearbox=nRotor, WDrive%ndriveshaft=nRotor-1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6
2–8 Airplane
a) Components: nRotor=1, nWing=1
b) Solution: KIND Lscale=2 (wing span reference)
c) Aircraft
Geometry: INPUT geom=2, KIND scale=2, kScale=1 (geometry scaled with wing span); KIND Ref=2, kRef=1 (wing reference)
Aircraft controls: ncontrol=9, IDENT control='coll','latcyc','lngcyc','pedal','tailinc','elevator','rudder','aileron','flap'
    coll = propeller, lateyc = lateral stick, lngcyc = longitudinal stick
d) Systems: MODEL FWfc=1 (fixed wing flight controls)
e) Rotor
Propeller: config='prop+auxT', fThrust=1., fDGW=0., SET_geom='standard'
   direction='prop', WRotor%MODEL config=3 (auxiliary thrust)
Control: KIND control=2 (thrust and NFP command); INPUT_coll=1, T_coll(1,1)=1. (rotor collective connection to aircraft control 'coll')
f) Wing
Configuration: fDGW=1.
Control: nVincid=1
   INPUT flap=1, INPUT aileron=1 (wing control connection to aircraft controls)
   T aileron(2,1)=1. (lateral stick), T aileron(8,1)=1. (aileron direct control)
   T flap(9,1)=1. (flap direct control)
Weight: WWing%MODEL wing=2 (parametric)
g) Tail: KIND_TailVol=1, TailVolRef=1 (wing reference)
Control: INPUT incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T incid(5,1)=1. (incidence connection to aircraft control 'tailine'), T cont(3,1)=1. (longitudinal stick), T cont(6,1)=1. (elevator direct control)
Vertical tail: T cont(4,1)=1. (pedal), T cont(7,1)=1. (rudder direct control)
h) Propulsion: WDrive%ngearbox=1, WDrive%ndriveshaft=1, WDrive%fShaft=0.1
```

Chapter 3

Parameters

Parameters	Value				
ncasemax	10	ndesignmax	41	ngetab2max	20
nfilemax	40	ncontmax	20	npanelmax	5
nrotormax	16	nsweepmax	200	nauxtankmax	4
npropmax	16	qsweepmax	4	ngearmax	8
nengmax	16	ntrimstatemax	20	nratemax	20
njetmax	4	mtrimmax	16	nengtmax	20
nchrgmax	4	nvnemax	32	nengxmax	100
nstatemax	10	niasmax	40	nengkmax	6
nwingmax	8	nvelmax	20	nengrmax	40
ntailmax	6	ntablemax	32	nengpmax	20
ntankmax	4	nrmax	51	nengcmax	80
nmissmax	20	mrmax	40	nspeedmax	8
nsegmax	40	mpsimax	36	nrowmax	4000
nfltmax	21	ngetabmax	40	naeromax	100

Chapter 4

Common: Job

Variable	Type		Description	Default
		+	Initialization	
INIT_input	int	+	input parameters (0 default, 1 last case input, 2 last case solution)	1
INIT_data	int	+	other parameters (0 default, 1 start of last case, 2 end of last case)	0
			INIT_input:	
			if default, all input variables set to default values	
			if last-case-input, then case inherits input at beginning of previous case	
			if last-case-solution, then case inherits input at end of previous case	
			use INIT_input=2 to analyze case #1 design in subsequent cases	
			INIT_data: if always start-last-case, then case starts from default	
			if default, all other variables set to default values	
		+	Errors	
ACT_error	int	+	action on error (0 none, 1 exit)	1
ACT_version	int	+	action on version mismatch in input (0 none, 1 exit)	0
0.0511		+	File open	
OPEN_status	int	+	status keyword for write (0 unknown, 1 replace, 2 new, 3 old)	2
		+	Input/output unit numbers	
		+	input	
nuin	int	+	standard input	5
nufile	int	+	secondary file input	40
		+	output	
nuout	int	+	standard output	6
nudesign	int	+	design (DESIGNn)	41

Common: Job	23

nuperf	int	+	performance (PERFn)	42
nuaero	int	+	airframe aerodynamics (AEROn)	43
nuengine	int	+	engine performance (ENGINEn)	44
nugeom	int	+	geometry output (GEOMETRYn)	45
nuacd	int	+	aircraft description (AIRCRAFTn)	46
nusoln	int	+	solution (SOLUTIONn)	47
nusketch	int	+	sketch output (SKETCHn)	48
nuerror	int	+	errors (ERRORn)	49

default input/output unit numbers usually acceptable default OPEN_status can be changed as appropriate for computer OS

Variable	Type		Description	Default
		+	Case Description	
title	c*100	+	title	
subtitle1	c*100	+	subtitle	
subtitle2	c*100	+	subtitle	
subtitle3	c*100	+	subtitle	
notes	c*1000	+	notes	
ident	c*32	+	identification	
		+	Case Tasks (0 for none)	
TASK_Size	int	+	size aircraft for design conditions	1
TASK_Mission	int	+	mission analysis	1
TASK_Perf	int	+	flight performance analysis	1
TASK_Map_engine	int	+	map of engine performance	0
TASK_Map_aero	int	+	map of airframe aerodynamics	0
			Turn off all tasks to just initialize and check the model, including geometry and weights	
		+	Write Input Parameters	
WRITE_input	int	+	selection (0 none, 1 all, 2 first case)	2
WRITE_input_TechFactors	int	+	TechFactors (0 for none)	1
WRITE_input_Geometry	int	+	Geometry (0 for none)	1
		+	Output	
		+	selection (0 for none)	
OUT_design	int	+	design file	0

OUT_perf	int	+	performance file	0
OUT_geometry	int	+	geometry file	0
OUT_aircraft	int	+	aircraft description file	0
OUT_solution	int	+	solution file (1 text, 2 binary)	0
OUT_sketch	int	+	sketch file	0
OUT_error	int	+	errors file	0
		+	file name or logical name (blank for default logical name)	
FILE_design	c*256	+	design file (DESIGNn)	, ,
FILE_perf	c*256	+	performance file (PERFn)	, ,
FILE_geometry	c*256	+	geometry file (GEOMETRYn)	, ,
FILE_aircraft	c*256	+	aircraft description file (AIRCRAFTn)	, ,
FILE_solution	c*256	+	solution file (SOLUTIONn)	, ,
FILE_sketch	c*256	+	sketch file (SKETCHn)	, ,
FILE_engine	c*256	+	engine performance file (ENGINEn)	, ,
FILE_aero	c*256	+	airframe aerodynamics file (AEROn)	, ,
FILE_error	c*256	+	errors file (ERRORn)	, ,
		+	formats	
WRITE_page	int	+	page control (0 none, 1 form feed, 2 extended Fortran)	1
WRITE_design	int	+	design (1 first case only, 2 all cases)	2
WRITE_wt_level	int	+	weight statement, max level (1 to 5)	5
$WRITE_wt_long$	int	+	weight statement, style (0 omit zero lines, 1 all lines)	0
WRITE_energy	int	+	fuel energy for burn weight (0 for none)	1
WRITE_flight	int	+	flight state, component loads (0 for none)	0
WRITE_files	int	+	design, performance, or geometry (1 single file of all cases)	0
${\sf WRITE_sketch_load}$	int	+	sketch component forces (0 none)	1
WRITE_sketch_cond	int	+	sketch flight condition (0 none, 1 design, 2 performance)	0
ksketch	int	+	flight condition number	0

selected files are generated for each case (n = case number in default name)
option single file of all cases for design, performance, or geometry (form feed between cases)
size and analysis tasks can produce design and performance files
same information as in standard output, in tab-delimited form

aircraft or solution file can be read by subsequent case or job geometry file has information for graphics and other analyses

sketch file has information to check geometry and solution (DXF format)

flight condition required to use Euler angles, control and incidence, component forces engine map task (TASK_Map_engine) produces engine performance file airframe aerodynamics map task (TASK_Map_aero) produces airframe aerodynamics file error messages to standard output (OUT_error=0) or separate file (OUT_error=1)

		+	Gravity	
SET_grav	int	+	specification (0 standard, 1 input)	0
grav	real	+	input gravitational acceleration g	
		+	Environment	
density_ref	real	+	reference density (0. for air at SLS)	0.
csound_ref	real	+	reference speed of sound (0. for air at SLS)	0.
		+	Units	
Units	int	+	analysis units (1 English, 2 SI)	1
		+	units for input of missions and flight conditions	
Units_miss	int	+	override default units (0 no, 1 yes)	0
Units_vel	int	+	velocity units (0 knots; 1 mile/hr, 2 km/hr, 3 ft/sec, 4 m/sec)	0
Units_alt	int	+	altitude units (0 ft or m; 1 ft, 2 m)	0
Units_pay	int	+	payload units (0 lb or kg; 1 lb, 2 kg)	0
Units_time	int	+	time units (0 minutes; 1 hours)	0
Units_dist	int	+	distance units (0 nm; 1 miles; 2 km)	0
Units_temp	int	+	temperature (0 F or C; 1 F, 2 C)	0
Units_drag	int	+	drag units (0 ft 2 or m 2 ; 1 ft 2 , 2 m 2)	0
Units_ROC	int	+	rate of climb units (0 ft/min; 1 ft/sec, 2 m/sec)	0
		+	units for parameters	
Units_Dscale	int	+	input D/q scaled with gross weight (0 analysis default, 1 English, 2 SI)	0
Units_energy	int	+	units for energy input and output (1 MJ, 2 kWh)	1

Analysis units: must be same for all cases in job

English: ft-slug-sec-F; weights in lb, power in hp (internal units)

SI: m-kg-sec-C; weights in kg, power in kW (internal units)

Weight in the design description is actually mass
pounds converted to slugs using reference gravitational acceleration
Default units for flight condition and mission: override with Units_xxx
speed in knots, time in minutes, distance in nm, ROC in ft/min
Input Efuel_cap, Eaux_cap always MJ; internal energy units MJ

Chapter 6

Structure: Size

Variable	Type	Description	Default
	-	- Size Aircraft for Design Conditions and Missions	
title	c*100 -	- title	
notes	c*1000 -	- notes	
	-	- Sizing Method	
SIZE_perf(npropmax)	c*16 -	- quantity sized from performance	'engine'
SIZE_engine(nengmax)	c*16 -	engine group sized from performance	'none'
$SIZE_{jet}(njetmax)$	c*16 -	jet group sized from performance	'jet'
$SIZE_charge(nchrgmax)$	c*16 -	- charge group sized from performance	'none'
SIZE_param	int -	parameter iteration (0 not required)	0
$SET_{rotor}(nrotormax)$	c*32 -	rotor parameters	'DL+Vtip+CWs'
SET_wing(nwingmax)	c*16 -	- wing parameters	${}'WL+aspect'$
FIX_DGW	int -	design gross weight (0 calculated, 1 fixed)	0
FIX_WE	int -	weight empty (0 calculated, 1 fixed, 2 scaled)	0
SET_tank(ntankmax)	c*16 -	fuel tank capacity	'miss'
SET_SDGW	c*16 -	- structural design gross weight	'f(DGW)'
SET_WMTO	c*16 -	- maximum takeoff weight	'f(DGW)'
$SET_limit_ds(npropmax)$	c*16 -	drive system torque limit	'ratio'

size task (Cases%TASK_Size=1): at least one nFltCond or nMission no size task (Cases%TASK_Size=0): size input specifies how fixed aircraft determined

SIZE_perf: size power-producing engines of propulsion group

'engine' = power from maximum of power required for all designated conditions and missions

'rotor' = radius from maximum of power required for all designated conditions and missions

'none' = power required not used to size engine/rotor

flight conditions and missions (max GW, max effort, or trim)

that have zero power margin are not used to size engine or rotor that have zero torque margin are not used to size transmission Structure: Size 29

```
SIZE engine: size power-consuming engines of engine group
      'engine' = power from maximum of power required for all designated conditions and missions
          flight conditions and missions (max GW, max effort, or trim)
                that have zero power margin are not used to size engine group
          designated only for engine groups that consume power
          engine groups that produce power sized with propulsion group (SIZE perf)
      'none' = power required not used to size engine group
SIZE jet:
      'jet' = thrust from maximum of thrust required for all designated conditions and missions
      'none' = thrust required not used to size jet group
          flight conditions and missions (max GW, max effort, or trim)
                that have zero thrust margin are not used to size jet group
SIZE charge:
      'charge' = power from maximum of power required for all designated conditions and missions
      'none' = power required not used to size charge group
'SIZE param': use to force parameter iteration
SET rotor, rotor parameters: required for each rotor
rotor parameters: input three or two quantities, others derived
    SET rotor = input three of ('radius' or disk loading 'DL' or 'ratio'), 'CWs', 'Vtip', 'sigma'
    except if SIZE perf='rotor': SET rotor = input two of 'CWs', 'Vtip', 'sigma' for one or more main rotors
    SET rotor = 'ratio+XX+XX' to calculate radius from radius of another rotor
    tip speed is Vtip ref for drive state #1
rotor parameters for an antitorque or aux thrust rotor:
    SET_rotor = input three of ('radius' or 'DL' or 'ratio' or 'scale'), 'CWs', 'Vtip', 'sigma'
    SET rotor = 'scale+XX+XX' to calculate tail rotor radius from parametric equation,
         using main rotor radius and disk loading
    thrust from designated sizing conditions and missions (DESIGN thrust)
SET wing, wing parameters: for each wing; input two quantities, other two derived
    SET wing = input two of ('area' or wing loading 'WL'), ('span' or 'ratio' or 'radius' or 'width' or 'hub' or 'panel'),
                    'chord', aspect ratio 'aspect'
    SET wing = 'ratio+XX' to calculate span from span of another wing
    SET wing = 'radius+XX' to calculate span from rotor radius
    SET wing = 'width+XX' to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
```

Structure: Size 30

```
SET wing = 'hub+XX' to calculate span from rotor hub position (tiltrotor)
    SET wing = 'panel+XX' to calculate span from wing panel widths
FIX DGW: input DGW restricts SIZE perf, SET GW parameters
FIX_WE: fixed or scaled weight empty obtained by adjusting contingency weight
    scaled with design gross weight: W_E=dWE+fWE*W_D
SET tank, fuel tank sizing: usable fuel capacity Wfuel cap (weight) or Efuel cap (energy)
     'input' = input Wfuel cap or Efuel cap
     'miss' = calculate from mission fuel used
          Wfuel cap or Efuel cap = max(fFuel cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))
     'f(miss)' = function of mission fuel used
          Wfuel cap or Efuel cap = dFuel cap + fFuel cap*((maximum mission fuel)+(reserve fuel))
     'used' = calculate from maximum fuel quantity in tank during mission
           Wfuel cap or Efuel cap = dFuel cap + fFuel cap*(maximum fuel in tank)
     'XX+power' = and calculate from mission battery discharge power
SET SDGW, structural design gross weight:
    'input' = input
    'f(DGW)' = based on DGW; W_{SD}=dSDGW+fSDGW*W_{D}
    'f(WMTO)' = based on WMTO; W_{SD}=dSDGW+fSDGW*W_{MTO}
    'maxfuel' = based on fuel state; W_{SD}=dSDGW+fSDGW*W_G, W_G = W_D-Wfuel_DGW+fFuelSDGW*W_{\mathrm{fuel-cap}}
    'perf' = calculated from maximum gross weight at SDGW sizing conditions (DESIGN sdgw)
    Aircraft input parameters: dSDGW, fSDGW, fFuelSDGW
SET WMTO, maximum takeoff weight:
    'input' = input
    'f(DGW)' = based on DGW; W_{MTO}=dWMTO+fWMTO*W_D
    'f(SDGW)' = based on SDGW; W_{MTO}=dWMTO+fWMTO*W_{SD}
    'maxfuel' = based on maximum fuel; W_{MTO}=dWMTO+fWMTO*W_G, W_G = W_D-Wfuel DGW+W_{\text{fuel-cap}}
    'perf' = calculated from maximum gross weight at WMTO sizing conditions (DESIGN wmto)
    Aircraft input parameters: dWMTO, fWMTO
```

Structure: Size 31

```
SET limit ds, drive system torque limit: input (use Plimit xx) or calculate (from fPlimit xx)
     'input' = Plimit ds input
     'ratio' = from takeoff power, fPlimit_ds\sum (N_{\rm eng} P_{\rm eng})
    'Pav' = from engine power available at transmission sizing conditions and missions (DESIGN xmsn)
          fPlimit_ds(\Omega_{ref}/\Omega_{prim}) \sum (N_{eng}P_{av})
    'Preq' = from engine power required at transmission sizing conditions and missions (DESIGN xmsn)
          \text{fPlimit\_ds}(\Omega_{\text{ref}}/\Omega_{\text{prim}}) \sum (N_{\text{eng}}P_{reg})
engine shaft limit also uses EngineGroup%SET limit es
rotor shaft limit also uses Rotor%SET limit rs, rotor limits only use power required (or input)
input required to transmit sized rotorcraft to another job (through aircraft description file) or to following case:
    turn off sizing: Cases%TASK size=0, Cases%TASK mission=1, Cases%TASK perf=1
    fix aircraft: use ACTION='nosize', or
         SIZE perf='none', SIZE engine='none', SIZE jet='none', SIZE charge='none'
         SET rotor='radius+Vtip+sigma', SET wing='area+span', FIX DGW=1
         SET tank='input', SET limit ds='input', SET SDGW='input', SET WMTO='input'
     with wing panels: SET wing='WL+panel', Wing%SET panel='width+taper', 'span+taper'
```

0

+ Sizing Flight Conditions

nFltCond int + number of conditions (maximum nfltmax) 0 + Design Missions

nMission int + number of missions (maximum nmissmax)

input one condition (FltCond and FltState variables) in SizeCondition namelist

input one mission (MissParam, MissSeg, and FltState variables) in SizeMission namelist all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays each variable gets one more dimension, first array index is always segment number

Chapter 7

Structure: OffDesign

Variable	Type	Description	Default
	+	-:	
title	c*100 +		
notes	c*1000 +	- notes	
	+	- Missions	
nMission	int +	number of missions (maximum nmissmax)	0

mission analysis input required if Cases%TASK_Mission=1

input one mission (MissParam, MissSeg, and FltState variables) in OffMission namelist all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays each variable gets one more dimension, first array index is always segment number

Structure: Performance

Variable	Type		Description	Default
		+	Flight Performance Analysis	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Performance Flight Conditions	
nFltCond	int	+	number of conditions (maximum nfltmax)	0
			flight performance analysis input required if Cases%TASK_Perf=1	
			input one condition (FltCond and FltState variables) in PerfCondition namelist	

Structure: MapEngine

Variable	Type		Description	Default
		+	Map of Engine Performance	
title	c*100	+	title	
notes	c*1000) +	notes	
		+	Identification	
kEngineGroup	int	+	engine group	1
KIND_map	int	+	Kind (1 performance, 2 model)	1
			engine map only available for RPTEM model and reciprocating engine model (performance only)	
			engine map input required if Cases%TASK_Map_engine=1	
			only performance parameters or only model parameters used	
		+	Performance	
		+	independent variables (0 none, 1 altitude, 2 temperature, 3 flight speed, 4 engine speed, 5 power)	
SET_var(5)				
()	int	+	first set	0
SET_var2(5)	int int	+	first set second set	0 0
SET_var2(5)	int	+	second set	0
SET_var2(5) WRITE_header	int int	+	second set output format (1 single header, 2 header for inner variable)	0 2
SET_var2(5) WRITE_header	int int	+ + +	second set output format (1 single header, 2 header for inner variable) atmosphere specification	0 2
SET_var2(5) WRITE_header SET_atmos	int int c*12	+ + + +	second set output format (1 single header, 2 header for inner variable) atmosphere specification altitude h (Units_alt)	0 2 'std'
SET_var2(5) WRITE_header SET_atmos altitude_min	int int c*12	+ + + + +	second set output format (1 single header, 2 header for inner variable) atmosphere specification altitude h (Units_alt) minimum	0 2 'std'

Structure: MapEngine 35

		+	temperature τ or temperature increment ΔT (Units_temp)	
temp_min	real	+	minimum	0.
temp_max	real	+	maximum	100.
temp_inc	real	+	increment	10.
temp_base	real	+	baseline	0.
		+	flight speed V (TAS, Units_vel)	
Vkts_min	real	+	minimum	0.
Vkts_max	real	+	maximum	200.
Vkts_inc	real	+	increment	50.
Vkts_base	real	+	baseline	0.
SET_rpm	int	+	engine speed N (1 rpm, 2 percent)	2
Nturbine_min	real	+	minimum	90.
Nturbine_max	real	+	maximum	110.
Nturbine_inc	real	+	increment	5.
Nturbine_base	real	+	baseline	100.
SET_power	int	+	power required (1 power, 2 fraction of power available (0. to 1.+)	2
power_min	real	+	minimum	.1
power_max	real	+	maximum	1.
power_inc	real	+	increment	.1
power_base	real	+	baseline	1.
STATE_IRS	int	+	IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)	0
KIND_loss	int	+	installation losses (0 for none)	0

independent variables: 1 to 5 variables, last is innermost loop; outer loop is always rating quantities not identified as independent variables fixed at baseline values

SET_atmos, atmosphere specification:

determines whether temp_xxx is temperature or temperature increment

'std' = standard day at specified altitude (use altitude_xxx)

'temp' = standard day at specified altitude, and specified temperature (use altitude_xxx, temp_xxx)

'dtemp' = standard day at specified altitude, plus temperature increment (use altitude_xxx, temp_xxx) see FltState%SET_atmos for other options (polar, tropical, and hot days)

Structure: MapEngine 36

		+	Model	
		+	flight speeds $V(TAS, Units_vel)$	
nV_model	int	+	number (maximum 10)	1
$V_{model}(10)$	real	+	values	0.
V_min	real	+	minimum	0.
V_max	real	+	maximum	400.
V_inc	real	+	increment	50.
		+	temperature ratio T/T_0	
ntheta_model	int	+	number (maximum 10)	1
$theta_model(10)$	real	+	values	1.
theta_min	real	+	minimum	.8
theta_max	real	+	maximum	1.1
theta_inc	real	+	increment	.02
		+	engine speed, $N/N_{\rm spec}$ (percent)	
fN_min	real	+	minimum	90.
fN_max	real	+	maximum	110.
fN_inc	real	+	increment	5.
		+	fraction static MCP power, P/P_{0C}	
fP_min	real	+	minimum	.1
fP_max	real	+	maximum	2.
fP_inc	real	+	increment	.1

RPTEM model

performance: fuel flow, mass flow, net jet thrust, optimum turbine speed vs power fraction and airspeed (use fP and V_model) turbine speed: power ratio vs turbine speed and airspeed (use fN and V_model) power available: specific power, mass flow, power, fuel flow vs temperature ratio (use theta and V_model) vs airspeed (use V and theta_model)

Structure: MapAero

Variable	Type		Description	Default
		+	Map of Airframe Aerodynamics	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Tables	
KIND_table	int	+	kind (1 one-dimensional, 2 multi-dimensional)	1
		+	aerodynamic loads (0 for components off)	
SET_fuselage	int	+	fuselage and landing gear	1
SET_tail	int	+	tails	1
SET_wing	int	+	wings	1
SET_rotor	int	+	rotors	1
SET_engine	int	+	engines and fuel tank	1
			airframe aerodynamics map input required if Cases%TASK_Map_aero=1 multi-dimensional: generate 6 files of three-dimensional tables one file for each load=DRAG, SIDE, LIFT, ROLL, PITCH, YAW filename=FILE_aero//load or AEROn//load one-dimensional: generate 1 file of all six loads function of single independent variable = var_lift(1)	
		+	Operating Condition	
STATE control	int	+	aircraft control state	1
STATE LG	c*12	+	landing gear state	'retract'
Nauxtank(nauxtankmax,ı	ntankmax)			
•	int	+	number of auxiliary fuel tanks $N_{\rm auxtank}$ (each aux tank size)	0
SET_extkit	int	+	wing extension kit on aircraft (0 none, 1 present)	1
KIND_alpha	int	+	angle of attack and sideslip angle representation (1 conventional, 2 reversed)	1

Structure: MapAero

SET_comp_control	int	+	use component control (0 for $c = Tc_{AC}$; 1 for $c = Tc_{AC} + c_0$)	0
control(ncontmax)	real	+	aircraft controls	0.
tilt	real	+	tilt	0.
alpha	real	+	angle of attack α	0.
beta	real	+	sideslip angle eta	0.

landing gear state: STATE_LG='extend', 'retract' (keyword = ext, ret)

		+	Independent variables	
var_lift(3)	c*16	+	lift	
var_drag(3)	c*16	+	drag	
var_side(3)	c*16	+	side force	
var_pitch(3)	c*16	+	pitch moment	
var_roll(3)	c*16	+	roll moment	
var_yaw(3)	c*16	+	yaw moment	
_, ,		+	Variable range	
		+	angle of attack and sideslip variation	
angle_lowinc	real	+	low range increment (deg)	2.
angle_highinc	real	+	high range increment (deg)	5.
angle_low	real	+	low range value (deg)	40.
angle_max	real	+	maximum value (deg)	180.
		+	control variation	
control_lowinc	real	+	low range increment (deg)	2.
control_highinc	real	+	high range increment (deg)	2.
control_low	real	+	low range value (deg)	45.
control_max	real	+	maximum value (deg)	90.
		+	third independent variable	
gamma_lowinc	real	+	low range increment (deg)	20.
gamma_highinc	real	+	high range increment (deg)	20.
gamma_low	real	+	low range value (deg)	60.
gamma_max	real	+	maximum value (deg)	60.

Structure: MapAero 39

maximum total values = naeromax

```
var_load identify independent variables
    only var_lift(1) used for KIND_table=one-dimensional
    values: 'alpha', 'beta', IDENT_control(ncontrol)
    var_load(2) blank for 1D table, var_load(3) blank for 2D table
alpha/beta/controls/tilt fixed if not independent variable (tilt replace control(ktilt))
assume control system defined so aircraft controls connected to flaperon, elevator, aileron, rudder
angle, control, gamma variation: by lowinc for -low to +low; by highinc to -max and +max
```

Chapter 11

Variable	Type		Description	Default
		+	Sizing or Performance Flight Condition	
title	c*100	+	title	
label	c*8	+	label	
		+	Specification	
SET_GW	c*12	+	gross weight	'DGW'
GW	real	+	input gross weight W_G	0.
dGW	real	+	gross weight increment	0.
fGW	real	+	gross weight factor	1.
dPav(npropmax)	real	+	power increment, each propulsion group	0.
fPav(npropmax)	real	+	power factor, each propulsion group	1.
dTav(njetmax)	real	+	thrust increment, each jet group	0.
fTav(njetmax)	real	+	thrust factor, each jet group	1.
SET_Wlimit	c*12	+	gross weight limit	'none'
Wlimit	real	+	input gross weight limit	0.
SET_alt	int	+	altitude (0 input, 1 from KIND_source)	0
		+	source for gross weight and altitude	
KIND_source	int	+	kind (1 size mission, 2 size condition, 3 off design mission, 4 performance condition)	1
kSource	int	+	mission or condition number	0
kSegment	int	+	segment number	0
seg_source	int	+	segment (1 start, 2 midpoint)	1
SET_UL	c*12	+	useful load	'pay'
Wpay	real	+	input payload weight W_{pay} (Units_pay)	0.
Npass	int	+	number of passengers N_{pass}	0
Wpay_cargo	real	+	cargo $W_{ m cargo}$ (Units_pay)	0.
Wpay_extload	real	+	external load $W_{ m ext-load}$ (Units_pay)	0.
Wpay_ammo	real	+	ammunition $W_{\rm ammo}$ (Units_pay)	0.
Wpay weapons	real	+	weapons $W_{ m weapons}$ (Units_pay)	0.

		+	fuel tank system	
dFuel(ntankmax)	real	+	fuel weight or energy increment	0.
fFuel(ntankmax)	real	+	fuel capacity factor	1.
$SET_{\mathtt{auxtank}}(ntankmax)$	int	+	auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 0 no change)	1
mauxtank(ntankmax)	int	+	tank size changed (-1 first, -2 first size already used, m for m -th size)	-1
dNauxtank(ntankmax)	int	+	number tanks added or dropped	1
Nauxtank(nauxtankmax,nta	nkmax)			
	int	+	number of auxiliary fuel tanks $N_{\rm auxtank}$ (each aux tank size)	
		+	fixed useful load	
dWcrew	real	+	crew weight increment	0.
dNcrew	int	+	number of crew increment $\delta N_{ m crew}$	0
dWoful(10)	real	+	other fixed useful load increment (nWoful categories)	0.
dWequip	real	+	equipment weight increment	0.
dNcrew_seat	int	+	crew seat increment $\delta N_{\rm crew-seat}$	0
$dNpass_seat$	int	+	passenger seat increment $\delta N_{\mathrm{pass-seat}}$	0
		+	kits on aircraft (0 none, 1 present)	
SET_foldkit	int	+	folding kit	1
$SET_{extkit}(nwingmax)$	int	+	wing extension kit	1
$SET_{wingkit}(nwingmax)$	int	+	wing kit on aircraft	1
SET_otherkit	int	+	other kit on aircraft	0
DESIGN_engine	int	+	design condition for power (1 to use for engine sizing)	1
DESIGN_jet	int	+	design condition for jet thrust (1 to use for jet group sizing)	1
DESIGN_charge	int	+	design condition for charge power (1 to use for charge group sizing)	1
DESIGN_GW	int	+	design condition for DGW (1 to use for DGW calculation)	1
DESIGN_xmsn	int	+	design condition for transmission (1 to use for transmission sizing)	1
DESIGN_sdgw	int	+	design condition for SDGW (1 to use for SDGW calculation)	1
DESIGN_wmto	int	+	design condition for WMTO (1 to use for WMTO calculation)	1
DESIGN_thrust	int	+	design condition for antitorque or aux thrust (1 to use for rotor sizing)	1

```
label is short description for output sizing flight condition: use all parameters except sweep fixed gross weight conditions not used to determine DGW, SDGW, WMTO (set DESIGN_GW=0, DESIGN_sdgw=0, DESIGN_wmto=0) condition not used to size engine or rotor if power margin fixed (max GW, max effort, or trim) condition not used to size transmission if zero torque margin (max GW, max effort, or trim)
```

```
performance flight condition: not use DESIGN xx
SET GW, SET UL values determine which input parameters used
SET GW, set gross weight W_G:
      'DGW' = design gross weight W_D; input (FIX_DGW) or calculated
      'SDGW' = structural design gross weight W_{SD} (may depend on DGW)
      'WMTO' = maximum takeoff gross weight W_{MTO} (may depend on DGW)
      'f(DGW)' = function DGW: fGW*W_D+dGW
      'f(SDGW)' = function SDGW: fGW*W_{SD}+dGW
      'f(WMTO)' = function WMTO: fGW*W_{MTO}+dGW
      'input' = input (use GW)
      'source' = gross weight from specified mission segment or flight condition (KIND source)
      'f(source)' = function of source: fGW*W_{source}+dGW
     'maxP', 'max' = maximum GW for power required equal specified power: P_{req} = \text{fPav}P_{av} + \text{dPav}
              \min((fP_{avPG} + d) - P_{reaPG}) = 0, over all propulsion groups
      'maxQ' = maximum GW for transmission torque equal limit: zero torque margin
              \min(P_{\text{limit}} - P_{reg}) = 0, over all propulsion groups, engine groups, and rotors
      'maxPQ', 'maxQP' = maximum GW for power required equal specified power and transmission torque equal limit
              most restrictive of power and torque margins
      'maxJ' = maximum GW for jet thrust required equal specified thrust: T_{rea} = f Tav T_{av} + d Tav
              \min((fT_{avJG}+d)-T_{reaJG})=0, over all jet groups
      'maxPJ', 'maxQJ', 'maxPQJ' = maximum GW for most restrictive of power, torque, and thrust margins
      'pay+fuel' = input payload and fuel weights; gross weight fallout
SET Wlimit: weight limit for SET GW='max'
      'none' = no limit
      'f(DGW)' = function DGW: fGW*W_D+dGW
      'f(SDGW)' = function SDGW: fGW*W_{SD}+dGW
      'f(WMTO)' = function WMTO: fGW*W_{MTO}+dGW
      'input' = input (use Wlimit)
SET UL, set useful load: with fixed useful load adjustments in fallout weight
      'pay' = input payload weight (Wpay); fuel weight fallout
      'fuel' = input fuel weight (dFuel, fFuel, Nauxtank); payload weight fallout
      'pay+fuel' = input payload and fuel weights; gross weight fallout
if SET GW='pay+fuel', assume SET UL same (actual SET UL ignored)
```

```
KIND_source, source for gross weight or altitude: source must be solved before this condition calculation order: size missions, size conditions, off design missions, performance conditions input fuel weight: W_{\rm fuel} = \min({\rm dFuel+fFuel*}W_{\rm fuel-cap}, W_{\rm fuel-cap}) + \sum {\rm Nauxtank*}W_{\rm aux-cap} auxiliary fuel tanks: SET_auxtank used for fallout fuel weight (SET_UL='pay') adjust Nauxtank for first fuel tank system with SET_auxtank > 0 otherwise number of auxiliary fuel tanks fixed at input value payload: only Wpay used if SET_Wpayload = no details crew: only dWcrew used if SET_Wcrew = no details equipment: dNcrew seat and dNpass seat require non-zero weight per seat
```

		+	Parameter sweep	
SET_sweep	int	+	sweep (0 for none, 1 from list, 2 from range)	0
KIND_sweep	int	+	kind (1 single sweep sequence, 2 nested sweeps)	1
INIT_sweep	int	+	initialize trim (0 for not)	0
nquant_sweep	int	+	number of swept quantities (1 to qsweepmax)	1
$quant_sweep(qsweepmax)$	c*12	+	quantity (parameter name)	
		+	range	
<pre>sweep_first(qsweepmax)</pre>	real	+	first parameter value	
$sweep_last(qsweepmax)$	real	+	last parameter value	
<pre>sweep_inc(qsweepmax)</pre>	real	+	parameter increment	
		+	list	
nsweep(qsweepmax)	int	+	number of values (maximum nsweepmax)	
sweep(nsweepmax,qsweepma	x) real	+	parameter values	

Parameter sweep: only for performance flight conditions, not sizing flight conditions

maximum total number of values for all conditions is nsweepmax

KIND_sweep: single sweep, simultaneously varying nquant_sweep quantities; or nquant_sweep nested sweeps Sweeps executed from sweep last to sweep first

sweep analyzed using single data structure, only solution for sweep_first saved (last value executed) sweep_last (first value executed) should be condition that will converge sign of parameter step determined by sign of (sweep_last-sweep_first); sign of sweep_inc ignored

Single sweep sequence: only use nsweep(1)

sweep_inc of first quantity determines number of values, sweep_inc of other quantities not used INIT_sweep: control/pitch/roll values of trim iteration initialized from previous condition of sweep Available parameters: quant_sweep = parameter name

GW, dGW, fGW, dPavn, fPavn, dTavn, FTavn, Wpay, dFueln, fFueln, dWcrew, dWequip

Vkts, Mach, ROC, climb, side, pitch, roll, rate turn, nz turn, bank turn, rate pullup, nz pullup

 $ax_linear, ay_linear, az_linear, nx_linear, ny_linear, nz_linear\\$

altitude, dtemp, temp, density, csound, viscosity, HAGL

controln, coll, latcyc, lngcyc, pedal, tilt, Vtipn, Npecn, fPower, fThrust, fCharge, fTorque

 $DoQ_pay, fDoQ_pay, DoQV_pay, dSLcg, dBLcg, dWLcg, trim_targetn$

n = propulsion group (Vtip, Nspec, dPav, fPav), jet group (dTav, fTav), fuel tank system, control number, or trim quantity n = 1 if absent from quant sweep

for fPower, value is factor on input fPower for all engine groups, all propulsion groups

for fThrust, value is factor on input fThrust for all jet groups

for fCharge, value is factor on input fCharge for all charge groups

for fTorque, value is factor on input fTorque for for all propulsion groups

Chapter 12

Variable	Type		Description	Default
		+	Mission Profile	
title	c*100	+	title	
label	c*8	+	label	
		+	Specification	
SET_GW	c*16	+	mission takeoff gross weight W_G	'pay+miss'
GW	real	+	input gross weight	0.
dGW	real	+	gross weight increment	0.
fGW	real	+	gross weight factor	1.
SET_Wlimit	c*16	+	gross weight limit	'none'
Wlimit	real	+	input gross weight limit	0.
SET_UL	c*16	+	useful load	'pay $+$ miss $'$
Wpay	real	+	input takeoff payload weight W_{pay} (Units_pay)	0.
Npass	int	+	number of passengers N_{pass}	0
Wpay_cargo	real	+	cargo $W_{ m cargo}$ (Units_pay)	0.
Wpay_extload	real	+	external load $W_{ m ext-load}$ (Units_pay)	0.
Wpay_ammo	real	+	ammunition $W_{ m ammo}$ (Units_pay)	0.
Wpay_weapons	real	+	weapons $W_{ m weapons}$ (Units_pay)	0.
SET_pay	c*16	+	payload changes	'delta'
		+	fuel tank systems	
$FIX_{missfuel}(ntankmax)$	int	+	mission fuel weight (0 calculated, 1 fixed)	0
dFuel(ntankmax)	real	+	fuel weight or energy increment	0.
fFuel(ntankmax)	real	+	fuel capacity factor	1.
SET_auxtank(ntankmax)	int	+	auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 3 increase at start and drop, 0 no change)	1
mauxtank(ntankmax)	int	+	tank size changed (-1 first, -2 first size already used, m for m -th size)	-1
dNauxtank(ntankmax)	int	+	number tanks added or dropped	1
Nauxtank(nauxtankmax,ntar	nkmax)			
	int	+	number of auxiliary fuel tanks $N_{\rm auxtank}$ (each aux tank size)	

		+	fixed useful load	
$SET_{foldkit}$	int	+	folding kit on aircraft (0 none, 1 present)	1
SET_reserve	int	+	fuel reserve (1 fraction mission fuel, 2 fraction fuel capacity, 3 only mission segments)	1
fReserve	real	+	fuel reserve fraction $f_{\rm res}$	0.
		+	split segments	
dist_inc	real	+	distance increment (Units_dist)	100.
time_inc	real	+	time increment (Units_time)	30.
alt_inc	real	+	altitude increment (Units_alt)	2000.
VTO_inc	real	+	takeoff velocity increment	10.
hTO_inc	real	+	takeoff height increment	10.
DESIGN_engine	int	+	design mission for power (1 to use for engine sizing)	1
DESIGN_jet	int	+	design mission for jet thrust (1 to use for jet group sizing)	1
DESIGN_charge	int	+	design mission for charge power (1 to use for charge group sizing)	1
DESIGN_GW	int	+	design mission for DGW (1 to use for DGW calculation)	1
DESIGN_xmsn	int	+	design mission for transmission (1 to use for transmission sizing)	1
DESIGN_tank	int	+	design mission for fuel tank (1 to use for fuel tank capacity)	1
DESIGN_thrust	int	+	design mission for antitorque or aux thrust (1 to use for rotor sizing)	1

```
'input' = input (use GW)
      'maxP', 'max' = maximum GW for power required equal specified power: P_{req} = \text{fPav}P_{av} + \text{dPav}
              at mission segment MaxGW, minimum gross weight of designated segments
              \min((fP_{avPG} + d) - P_{reaPG}) = 0, over all propulsion groups
      'maxQ' = maximum GW for transmission torque equal limit: zero torque margin
              at mission segment MaxGW, minimum gross weight of designated segments
              \min(P_{\text{limit}} - P_{reg}) = 0, over all propulsion groups, engine groups, and rotors
      'maxPQ', 'maxQP' = maximum GW for power required equal specified power and transmission torque equal limit
              at mission segment MaxGW, minimum gross weight of designated segments
              most restrictive of power and torque margins
      'maxJ' = maximum GW for jet thrust required equal specified thrust: T_{req} = fTavT_{av} + dTav
              at mission segment MaxGW, minimum gross weight of designated segments
              \min((fT_{avJG}+d)-T_{reqJG})=0, over all jet groups
      'maxPJ', 'maxQJ', 'maxPQJ' = maximum GW for most restrictive of power, torque, and thrust margins
      'pay+fuel' = input payload and fuel weights; gross weight fallout
      'pay+miss' = input payload, fuel weight from mission; gross weight fallout
SET Wlimit: weight limit for SET GW='max'
      'none' = no limit
      'f(DGW)' = function DGW: fGW*W_D+dGW
      'f(SDGW)' = function SDGW: fGW*W_{SD}+dGW
      'f(WMTO)' = function WMTO: fGW*W_{MTO}+dGW
      'input' = input (use Wlimit)
SET UL, set useful load:
      'pay' = input payload weight (Wpay); fuel weight fallout
      'fuel' = input fuel weight (dFuel, fFuel, Nauxtank); initial payload weight fallout
      'miss' = fuel weight from mission; initial payload weight fallout
      'pay+fuel' = input payload and fuel weights; gross weight fallout
      'pay+miss' = input payload, fuel weight from mission; gross weight fallout
if SET GW='pay+fuel' or 'pay+miss', assume SET UL same (actual SET UL ignored)
FIX missfuel only used for SET UL='miss' or 'pay+miss', with more than one fuel tank system
```

```
SET pay, set payload changes: mission segment payload (use of MissSeg%xWpay)
       'none' = no changes
       'input' = value; payload = xWpay (not use Wpay)
       'delta' = increment; payload = (initial payload weight)+(xWPay-xWpay(seg1))
       'scale' = factor; payload = (initial payload weight)*(xWPay/xWpay(seg1))
when SET GW='max' and SET UL='fuel' or 'miss' (so payload is fallout), payload (from SET pay and xWpay) must
not be zero at the maximum GW segments
payload: only Wpay and xWpay used if SET_Wpayload = no details
input fuel weight: W_{\text{fuel}} = \min(\text{dFuel+fFuel}*W_{\text{fuel-cap}}, W_{\text{fuel-cap}}) + \sum \text{Nauxtank}*W_{\text{aux-cap}}
     for fallout fuel weight, this is the initial value for the mission iteration
auxiliary fuel tanks:
     SET auxtank options: fixed; or adjust Nauxtank for each segment; or
          increase at mission start, then constant; or increase at start, then drop
     for input fuel (SET UL = 'fuel' or 'pay+fuel'), start with input Nauxtank, then drop
     for mission fuel (SET_UL = 'miss' or 'pay+miss'), fixed W_{\text{fuel}} or E_{\text{fuel}} at start
     for fallout (SET_UL = 'pay'), adjust W_{\text{fuel}} with change in Nauxtank (fixed W_G - W_{\text{pay}} = W_O + W_{\text{fuel}})
     for all SET UL, adjust W_O with change in Nauxtank
     fuel tank design mission: Nauxtank=0, allow W_{\text{fuel}} or E_{\text{fuel}} to exceed tank capacity
SET reserve: maximum of fuel for designated reserve mission segments
     and fraction of fuel (f_{\text{res}}W_{\text{burn}}) or f_{\text{res}}E_{\text{burn}}) or fraction of fuel capacity (f_{\text{res}}W_{\text{fuel-cap}}) or f_{\text{res}}E_{\text{fuel-cap}})
```

KIND_SegInt	int	+ + +	Segment integration method (0 segment start, 1 segment midpoint, 2 trapezoidal) Mission iteration (supersede Solution input if nonzero)	1
relax_miss	real	+	relaxation factor (mission fuel)	0.
relax_range	real	+	relaxation factor (range credit)	0.
relax_gw	real	+	relaxation factor (max takeoff GW)	0.
toler_miss	real	+	tolerance (fraction reference)	0.
trace_miss	int	+	trace iteration (0 for none)	0

Structure: Mission

+ Mission Segments
nSeg int + number of mission segments (maximum nsegmax)

input all mission segments as arrays in single mission namelist

Chapter 13

Variable	Type		Description	Default
		+	Segment definition	
label_seg	c*8	+	label	, ,
kind	c*12	+	kind	'dist'
dist	real	+	distance D (Units_dist)	0.
time	real	+	time T (Units_time)	0.
		+	segment	
reserve	int	+	reserve (0 for not)	0
adjust	int	+	adjustable for flexible mission (0 for not)	0
range_credit	int	+	segment number for range credit (0 for no reassignment)	0
ignore	int	+	ignore segment (0 for not)	0
сору	int	+	copy segment (source segment number)	0
split	int	+	split segment (number segments; -1 calculated; 0 for not split)	0
SET_tank(ntankmax)	int	+	segment fuel use or replace	0
dTank(ntankmax)	real	+	fuel increment	0.
fTank(ntankmax)	real	+	fuel factor	1.
SET_refuel(ntankmax)	int	+	refuel (0 not, 1 fill all tanks, 2/8 add fuel, 3/9 drop fuel, 4-5 fill/add below rWfuel, 6-7 fill/add below mWfuel)	0
xWfuel(ntankmax)	real	+	fuel weight or energy change	0.
rWfuel(ntankmax)	real	+	threshold fraction	0.
mWfuel(ntankmax)	real	+	threshold weight or energy	0.
		+	gross weight	
MaxGW	int	+	maximize gross weight (0 not)	0
dPav(npropmax)	real	+	power increment, each propulsion group	0.
fPav(npropmax)	real	+	power factor, each propulsion group	1.
dTav(njetmax)	real	+	thrust increment, each jet group	0.
fTav(njetmax)	real	+	thrust factor, each jet group	1.
		+	useful load	
xWpay	real	+	payload weight change (Units_pay)	0.
×Npass	int	+	number of passengers increment δN_{pass}	0

		+	fixed useful load	
dWcrew	real	+	crew weight increment	0.
dNcrew	int	+	number of crew increment δN_{crew}	0
dWoful(10)	real	+	other fixed useful load increment (nWoful categories)	0.
dWequip	real	+	equipment weight increment	0.
dNcrew_seat	int	+	crew seat increment $\delta N_{\rm crew-seat}$	0
dNpass_seat	int	+	passenger seat increment $\delta N_{\mathrm{pass-seat}}$	0
		+	kits on aircraft (0 none, 1 present)	
SET_extkit(nwingmax)	int	+	wing extension kit	1
SET_wingkit(nwingmax)	int	+	wing kit	1
SET_otherkit	int	+	other kit	0
SET_alt	int	+	altitude at start of segment (0 input, 1 from previous segment, 2 from kSeg_alt)	0
kSeg_alt	int	+	source of altitude	0
		+	design mission (0 to not use segment for sizing)	
SizeEngine	int	+	power	1
SizeJet	int	+	jet thrust	1
SizeCharge	int	+	charger power	1
SizeGW	int	+	DGW	1
SizeXmsn	int	+	transmission	1
SizeThrust	int	+	antitorque or aux thrust	1

segment kind

kind='taxi', 'idle': taxi/warm-up mission segment (use time)

kind='dist': fly segment for specified distance (use dist)

kind='time': fly segment for specified time (use time)

kind='hold', 'loiter': fly segment for specified time (use time), fuel burned but no distance added to range

kind='climb': climb/descend from present altitude to next segment altitude

kind='spiral': climb/descend from present altitude to next segment altitude, fuel burned but no dist added to range

kind='fuel': use or replace specified fuel amount, calculate time and distance

kind='burn', 'charge': use or replace specified fuel amount, calculate time but no distance added to range

kind='takeoff', 'TO': takeoff distance calculation

only one of reserve, adjust, range_credit designations for each segment reserve: time and distance not included in block time and range

```
range credit: to facilitate specification of range
     range calculated for this segment credited to segment = range credit
     range credit segment must be kind='dist', specified distance is for group of segments
         actual distance flown in range credit segment is specified dist less distances from other segments
     if credit to earlier segment, iteration required
adjustable: for SET UL not 'miss', can adjust one or more segments
    if more than one segment adjusted, must be all kind='dist' or all kind='time'/'hold'
    adjust time or distance based on fuel burn (proportional to initial values)
split segment: number specified, or calculated from MissParam%dest inc, time inc, alt inc
ignore segment: removed from input; segments using MaxGW, range credit, FltCond%KIND source can not be ignored
SET tank: segment fuel use or replace for kind='fuel' or 'burn'; distance and time calculated
     SET tank = 0: no requirement
    SET_tank = 1: target dTank+fTank*W_{\rm fuel-cap} or dTank+fTank*E_{\rm fuel-cap}
    SET tank = 2: target dTank+fTank*W_{\rm fuel} or dTank+fTank*E_{\rm fuel}
    SET tank = 3: increment dTank+fTank*W_{\text{fuel-cap}} or dTank+fTank*E_{\text{fuel-cap}}
    SET tank = 4: increment dTank+fTank*W_{\text{fuel}} or dTank+fTank*E_{\text{fuel}}
    charge if \dot{E} < 0 (not based on keyword, increment always positive)
     target limited by capacity, if target already achieved then no requirement
     increment limited by current fuel (use) or capacity minus current fuel (replace)
SET_refuel, refuel: change at start of segment; weight or energy; no contribution to distance or time
     SET refuel = 1: fill all tanks (including any auxiliary tanks installed)
     SET refuel = 2: add fuel xWfuel
     SET refuel = 3: drop fuel xWfuel
     SET_refuel = 4: if below fraction rWfuel of fuel capacity (including auxiliary tanks), fill all tanks
     SET refuel = 5: if below fraction rWfuel of fuel capacity (including auxiliary tanks), add xWfuel
     SET refuel = 6: if below mWfuel, fill all tanks
     SET refuel = 7: if below mWfuel, add xWfuel
     SET refuel = 8: add fraction rWfuel of fuel capacity (including auxiliary tanks)
     SET refuel = 9: drop fraction rWfuel of fuel capacity (including auxiliary tanks)
    added fuel limited by capacity (unless sizing fuel tank); not used for first segment
    xWfuel positive (add or drop determined by SET refuel)
```

maximize gross weight: MaxGW designate segments if SET_GW='maxP' or 'maxQ' or 'maxPQ'

climb/descend or spiral segment: end altitude is that of next segment; last segment kind can not be climb or spiral begin altitude is that input for this segment (SET alt=0), or altitude of previous segment (SET alt=1),

payload: only Wpay and xWpay used if SET Wpayload = no details

xNpass is change from MissParam%Npass

crew: only dWcrew used if SET_Wcrew = no details

equipment: $dNcrew_seat$ and $dNpass_seat$ require non-zero weight per seat

Takeoff distance calculation SET takeoff c*12 takeoff segment kind 'none' Vkts takeoff real ground speed or climb speed (knots, CAS) + 0. climb angle relative ground γ (deg) climb takeoff real + 0. height takeoff height during climb h (ft or m) 0. real + slope of ground γ_G (+ for uphill; deg) slope_ground real 0. friction friction coefficient μ 0.04 real decision delay after engine failure t_1 (sec) t decision + 1.5 real t rotation + rotation time t_R (sec) 2.0 real transition load factor n_{TR} nz transition 1.2 real +

```
takeoff distance calculation: set of consecutive kind='takeoff' segments first segment identified by SET_takeoff='start' (V=0) last segment if next segment is not kind='takeoff', or is SET_takeoff='start' takeoff segment kind SET_takeoff='start', 'ground run' (keyword = ground or run), 'engine fail' (keyword = eng or fail) SET_takeoff='liftoff', 'rotation', 'transition', 'climb', 'brake' each segment requires appropriate configuration, trim option, max effort specification not use dist, time, reserve, adjust, range_credit, SET_refuel, MaxGW, SET_alt max_var='alt' not allowed in maximum effort velocity specification (SET_vel) and HAGL superseded; SET_turn=SET_pullup=0 can split segment (except start, rotation, transition): split height for climb, velocity for others splitting liftoff or engine failure segment produces additional ground run segments separate definition of multiple ground run, climb, brake segments allows configuration variations
```

define takeoff profile in terms of velocities
integrate acceleration vs velocity to obtain time and distance
segments correspond to ends of integration intervals
analysis checks for consistency of input velocity and calculated acceleration
analysis checks for consistency of input height and input/calculated climb angle

takeoff distance definition: includes SET_takeoff='liftoff' segment order: start, ground run, engine failure, ground run, liftoff, rotation, transition, climb only one liftoff; only one engine failure, rotation, transition (or none) engine failure before liftoff; all ground run before liftoff, all climb after liftoff accelerate-stop distance definition: does not have SET_takeoff='liftoff' segment order: start, ground run, engine failure, brake only one engine failure (or none)

engine failure segment (if present) identifies point for decision delay
until t_decision after engine failure segment, use engine rating, fPower, fraction of engine failure segment
so engine failure segment corresponds to conditions before failure
number of inoperative engines specified by nEnglnop for each segment
if engine failure segment present, nEnglnop specification must be consistent

Chapter 14

Variable	Type		Description	Default
		+	Flight State	
		+	Specification	
SET_max	int	+	maximum effort performance (maximum 2, 0 to analyze specified condition)	0
max_quant(2)	c*12	+	quantity	1.1
max_var(2)	c*12	+	variable	1.1
max_limit(2)	int	+	switch quantity if exceed limit (0 not, 1 power margin, 2 torque margin, 3 both)	0
$max_Vlimit(2)$	int	+	velocity limited by V_{NE} (0 not)	0
fVel(2)	real	+	flight speed factor	1.
SET_vel	c*12	+	flight speed	'general'
Vkts	real	+	horizontal velocity V_h (TAS or CAS or IAS, Units_vel)	0.
Mach	real	+	horizontal velocity M (Mach number)	0.
ROC	real	+	vertical rate of climb V_c (Units_ROC)	0.
climb	real	+	climb angle θ_V (deg)	0.
side	real	+	sideslip angle ψ_V (deg)	0.
		+	aircraft motion	
SET_pitch	int	+	pitch motion specification (0 Aircraft value, 1 FltState input)	1
SET_roll	int	+	roll motion specification (0 Aircraft value, 1 FltState input)	1
pitch	real	+	pitch $ heta_F$	0.
roll	real	+	$\operatorname{roll} \phi_F$	0.
SET_turn	int	+	turn specification (0 zero, 1 turn rate, 2 load factor, 3 bank angle)	0
rate_turn	real	+	turn rate $\dot{\psi}_F$ (deg/sec)	0.
nz_turn	real	+	load factor n (g)	1.
bank_turn	real	+	bank angle ϕ_F (deg)	0.
SET_pullup	int	+	pullup specification (0 zero, 1 pitch rate, 2 load factor)	0
rate_pullup	real	+	pitch rate $\dot{ heta}_F$ (deg/sec)	0.
nz_pullup	real	+	load factor n (g)	1.
SET_acc	int	+	linear acceleration specification (0 zero, 1 acceleration, 2 load factor)	0
ax_linear	real	+	x-acceleration a_{ACx} (ft/sec ² or m/sec ²)	0.

ay_linear	real	+	y-acceleration a_{ACy} (ft/sec ² or m/sec ²)	0.
az_linear	real	+	z-acceleration a_{ACz} (ft/sec ² or m/sec ²)	0.
nx_linear	real	+	x-load factor increment n_{Lx} (g)	0.
ny_linear	real	+	y-load factor increment n_{Ly} (g)	0.
nz_linear	real	+	z-load factor increment n_{Lz} (g)	0.
altitude	real	+	altitude h (Units_alt)	0.
SET_atmos	c*12	+	atmosphere specification	'std'
temp	real	+	temperature $ au$ (Units_temp)	
dtemp	real	+	temperature increment ΔT (Units_temp)	0.
density	real	+	density ρ	
csound	real	+	speed of sound c_s	
viscosity	real	+	viscosity μ	
SET_wind	int	+	wind specification (0 none, 1 headwind, 2 tailwind)	0
dWind	real	+	wind increment, knots (dWind+fWind*altitude)	0.
fWind	real	+	wind gradient, knots (dWind+fWind*altitude)	0.
SET_GE	int	+	ground effect (0 OGE, 1 IGE)	0
HAGL	real	+	height of landing gear above ground level h_{LG}	999.
STATE_LG	c*12	+	landing gear state	'default'
STATE_control	int	+	aircraft control state	1
SET_control(ncontmax)	int	+	control specification (0 Aircraft value, 1 FltState input)	1
SET_coll	int	+	collective stick	1
SET_latcyc	int	+	lateral cyclic stick	1
SET_Ingcyc	int	+	longitudinal cyclic stick	1
SET_pedal	int	+	pedal	1
SET_tilt	int	+	tilt (0 Aircraft value, 1 FltState input, 2 Aircraft conversion schedule)	1
control(ncontmax)	real	+	aircraft controls	
coll	real	+	collective stick c_{AC0}	0.
latcyc	real	+	lateral cyclic stick c_{ACc}	0.
Ingcyc	real	+	longitudinal cyclic stick c_{ACs}	0.
pedal	real	+	pedal c_{ACp}	0.
tilt	real	+	tilt $lpha_{ m tilt}$	0.
$SET_comp_control$	int	+	use component control (0 for $c = Tc_{AC}$; 1 for $c = Tc_{AC} + c_0$)	1
SET_cg	int	+	center of gravity specification (0 baseline plus increment, 1 input)	0
dSLcg	real	+	stationline	0.

dBLcg	real	+	buttline	0.
dWLcg	real	+	waterline	0.
		+	Specification, each propulsion group	
$SET_Vtip(npropmax)$	c*12	+	rotor tip speed specification	'hover'
Vtip(npropmax)	real	+	tip speed	
Mtip(npropmax)	real	+	tip Mach number $M_{ m tip}$	
$mu_Vtip(npropmax)$	real	+	tip speed from μ	
$Mat_{V}tip(npropmax)$	real	+	tip speed from M_{at}	
Nrotor(npropmax)	real	+	rotor speed (rpm)	
Nspec(npropmax)	real	+	engine speed (rpm)	
$STATE_{gear}(npropmax)$	int	+	drive system state	1
rating_ds(npropmax)	c*12	+	drive system rating	, ,
fTorque(npropmax)	real	+	fraction of rated drive system torque limit f_Q (0. to 1.+)	1.
$SET_{Plimit}(npropmax)$	int	+	drive system limit (0 not applied to power available)	1
$SET_Qlimit_rs(npropmax)$	int	+	rotor shaft limit (0 not used for torque margin)	1
$SET_{-}Pmargin(npropmax)$	int	+	power and torque margin (0 not used for maximum effort)	1
dPacc(npropmax)	real	+	accessory power increment $dP_{\rm acc}$	0.
		+	Specification, each engine group	
rating(nengmax)	c*12	+	engine rating	'MCP'
fPower(nengmax)	real	+	fraction of rated engine power available f_P (0. to 1.+)	1.
nEngInop(nengmax)	int	+	number of inoperative engines $N_{\rm inop}$	0
$SET_Preq(nengmax)$	int	+	power required (1 distributed, 2 fixed A , 3 fixed AP_{av} , 4 fixed $AP_{\rm eng}$)	1
$STATE_IRS(nengmax)$	int	+	IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)	0
		+	Specification, each jet group	
rating_jet(njetmax)	c*12	+	jet rating	'MCT'
fThrust(njetmax)	real	+	fraction of rated jet thrust available f_T (0. to 1.+)	1.
nJetInop(njetmax)	int	+	number of inoperative jets $N_{\rm inop}$	0
$SET_Jreq(njetmax)$	int	+	thrust required (1 from component, 2 fixed A, 3 fixed AT_{av} , 4 fixed AT_{jet})	2
$STATE_IRS_jet(njetmax)$	int	+	IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)	0
		+	Specification, each charge group	
$rating_charge(nchrgmax)$	c*12	+	charger rating	'MCP'
fCharge(nchrgmax)	real	+	fraction of rated charger power available f_C (0. to 1.+)	1.
nChrgInop(nchrgmax)	int	+	number of inoperative chargers N_{inop}	0
$SET_Creq(nchrgmax)$	int	+	power required (2 fixed A , 4 fixed AP_{chrg})	2

dPeq(ntankmax)	real	+	Equipment power increment $dP_{ m eq}$, each fuel tank	0.
		+	Specification, each fuel tank (battery)	
ffade(ntankmax)	real	+	battery capacity fade factor	1.
Tcell(ntankmax)	real	+	cell temperature (deg C)	20.
fcurrent(ntankmax)	real	+	maximum current (fraction x_{mbd} or $x_{CC_{max}}$)	1.
		+	Specification, each rotor	
$STOP_{rotor}(nrotormax)$	int	+	rotor stop/stow (0 not, 1 stop, 2 stop and stow, 3 stop as wing)	0
STATE_deice	int	+	Deice system state (0 off)	0
		+	Performance	
DoQ_pay	real	+	payload forward flight drag increment D/q (Units_drag)	0.
$fDoQ_pay$	real	+	payload drag increment scaling with weight $\Delta(D/q)/W_{\rm pay}$ (Units_drag, Units_pay)	0.
DoQV_pay	real	+	payload vertical drag increment D/q (Units_drag)	0.
		+	Rotor (nonzero to supersede rotor model)	
Ki(nrotormax)	real	+	induced power factor κ	0.
cdo(nrotormax)	real	+	profile power mean c_d	0.
MODEL_Ftpp(nrotormax)	int	+	inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory)	0
MODEL_Fpro(nrotormax)	int	+	inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect)	0
KIND_control(nrotormax)	int	+	control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP)	0
_		+	Trim solution	
STATE_trim	c*12	+	aircraft trim state (match IDENT_trim, 'none' for no trim)	'none'
trim_target(mtrimmax)	real	+	trim quantity targets	
,		+	Iterations (supersede Solution input if nonzero)	
		+	relaxation factor	
relax_rotor	real	+	all rotors	0.
relax_trim	real	+	trim	0.
relax_fly(2)	real	+	maximum effort	0.
relax maxgw	real	+	maximum gross weight	0.
		+	tolerance (fraction reference)	
toler rotor	real	+	all rotors	0.
toler_trim	real	+	trim	0.
toler_fly(2)	real	+	maximum effort	0.
toler maxgw	real	+	maximum gross weight	0.
		+	reinitialize aircraft controls (0 no, 1 force retrim)	
init_trim	int	+	trim	0
_				

int	+	maximum effort	0
	+	variable perturbation amplitude (fraction reference, 0. for no limit)	
real	+	trim	0.
real	+	maximum effort	0.
real	+	maximum gross weight	0.
	+	maximum derivative amplitude (0. for no limit)	
real	+	maximum effort	0.
real	+	maximum gross weight	0.
	+	maximum increment fraction (0. for no limit)	
real	+	maximum effort	0.
real	+	maximum gross weight	0.
	+	solution method	
int	+	maximum effort	0
	+	trace iteration (0 for none)	
int	+	all rotors	0
int	+	trim (2 for component controls)	0
int	+	maximum effort	0
int	+	maximum gross weight	0
	real real real real real real int int int	real + rint + int + int +	+ variable perturbation amplitude (fraction reference, 0. for no limit) real + trim real + maximum effort real + maximum derivative amplitude (0. for no limit) real + maximum effort real + maximum gross weight + maximum increment fraction (0. for no limit) real + maximum effort real + maximum gross weight + solution method int + maximum effort + trace iteration (0 for none) int + all rotors int + trim (2 for component controls) int + maximum effort

maximum effort performance: one or two quantity/variable identified; first is inner loop

two variables must be unique

two variables can be identified for same maximized quantity (endurance, range, climb) quantity identified by max_quant maximized for endurance, range, climb, or ceiling; otherwise driven to zero

ROC or altitude can be outer loop quantity only if it is also inner loop variable

fVel is only used for max var='speed' or 'ROC'

ceiling calculation should use 'Pmargin'/'alt' as inner loop, 'power'/'speed' as outer loop

best range calculation often requires maxinc fly=0.1 for convergence

ROC for zero power margin initialized based on level flight power margin if input ROC=0

max quant='rotor(s) n' uses Rotor%CTs steady, max quant='rotor(t) n' uses Rotor%CTs tran

max quant='rotor(e) n' uses equation for rotor thrust capability (Rotor%K0 limit and Rotor%K1 limit)

if energy burned (not weight) or multiple fuels, use equivalent fuel flow obtained from weighted energy flow max var='Vtip' or 'Nspec' requires FltAircraft%SET Vtip='input'

if trailing "n" is absent, use first component (n=1)

max_limit: switch quantity to power and/or torque margin if margin negative; useful for best range

description	max_quant	
endurance	'end'	maximum (1/fuelflow)
range (high side)	'range'	0.99 maximum (V/fuelflow)
range	'range(100)'	maximum (V /fuelflow)
range (low side)	'range(low)'	0.99 maximum (V/fuelflow), low side
range (high side), ground speed	'range Vg'	0.99 maximum (V_g /fuelflow)
range, ground speed	'range (100) Vg $'$	maximum (V_g /fuelflow)
range (low side), ground speed	'range(low)Vg'	0.99 maximum (V_g /fuelflow), low side
climb or descent rate	'climb', 'ROC'	maximum (ROC)
climb rate (power)	'power'	maximum (1/Power)
climb or descent angle	'angle'	maximum (ROC/V)
climb angle (power)	'power/V'	maximum (V /Power)
ceiling	'alt'	maximum (altitude)
power margin	'P margin'	$\min(P_{av} - P_{req}) = 0$ (all propulsion groups)
torque margin	'Q margin',	$\min(Q_{\text{limit}} - Q_{req}) = 0$ (all limits)
jet thrust margin	'J margin',	$\min(T_{av} - T_{req}) = 0$ (all jet groups)
power and torque margin	'PQ margin',	most restrictive
power and thrust margin	'PJ margin',	most restrictive
torque and thrust margin	'QJ margin',	most restrictive
power, torque, thrust margin	'PQJ margin',	most restrictive
battery power margin	'B margin'	$\min(P_{\max} - \dot{E}_{\mathrm{batt}}) = 0$ (all fuel tanks)
rotor thrust margin	'rotor(t) n'	$(C_T/\sigma)_{\rm max} - C_T/\sigma = 0$ (transient)
rotor thrust margin	'rotor(s) n'	$(C_T/\sigma)_{\rm max} - C_T/\sigma = 0$ (sustained)
rotor thrust margin	'rotor(e) n'	$(C_T/\sigma)_{\rm max} - C_T/\sigma = 0$ (equation)
wing lift margin	'stall n'	$C_{L\max} - C_L = 0$

description	max_var	
horizontal velocity	'speed'	times fVel
vertical rate of climb	'ROC'	times fVel
aircraft velocity	'side'	sideslip angle
altitude	'alt'	
aircraft angular rate	'pullup', 'turn'	Euler angle rates
aircraft acceleration	'xacc', 'yacc', 'zacc'	linear, airframe axes
aircraft acceleration	'xaccl', 'yaccl', 'zaccl'	linear, inertial axes
aircraft acceleration	'xaccG', 'yaccG', 'zaccG'	linear, ground axes
aircraft control	match IDENT_control	
aircraft orientation	'pitch', 'roll'	body axes relative inertial axes
propulsion group tip speed	'Vtip n'	
propulsion group engine speed	'Nspec n'	

```
SET_vel, velocity specification:
```

'general' = general (use Vkts=horizontal, ROC, side)

'hover' = hover (zero velocity)

'vert' = hover or VROC (use ROC; Vkts=0, climb=0/+90/-90)

'right' = right sideward (use Vkts, ROC; side=90)

'left' = left sideward (use Vkts, ROC; side=-90)

'rear' = rearward (use Vkts, ROC, side=180)

'Vfwd' = general (use Vkts=forward velocity, ROC, side)

'Vmag' = general (use Vkts=velocity magnitude, ROC, side)

'climb' = general (use Vkts=velocity magnitude, climb, side)

'VNE' = never-exceed speed

'+Mach' = use Mach not Vkts

'+CAS' = Vkts is CAS not TAS

'+IAS' = Vkts is IAS not TAS

velocities: forward $V_f = V_h \cos(\text{side})$, side $V_s = V_h \sin(\text{side})$, climb $V_c = V_h \tan(\text{climb})$

```
aircraft motion:
     orientation velocity relative inertial axes defined by climb and sideslip angles (\theta_V, \psi_V)
         sideslip positive aircraft moving to right, climb positive aircraft moving up
         specify horizontal velocity, vertical rate of climb, and sideslip angle
     orientation body relative inertial axes defined by Euler angles, yaw/pitch/roll (\psi_F, \theta_F, \phi_F)
         yaw positive to right, pitch positive nose up, roll positive to right
     SET PITCH and SET roll, pitch and roll motion specification:
         Aircraft values (perhaps function speed) or flight state input
         initial values specified if motion is trim variable; otherwise fixed for flight state
     SET turn, bank angle and load factor in turn: use turn rate, load factor, or bank angle
         \tan(\text{roll}) = \sqrt{n^2 - 1} = (\text{turn})V/g; calculated using input Vkts for flight speed
     SET pullup, load factor in pullup: use pullup rate or load factor
         n = 1 + (pullup)V/g; calculated using input Vkts for flight speed
    SET acc, linear acceleration: use acceleration or load factor
SET atmos, atmosphere specification:
     'std' = standard day at specified altitude (use altitude)
     'polar' = polar day at specified altitude (use altitude)
     'trop' = tropical day at specified altitude (use altitude)
     'hot' = hot day at specified altitude (use altitude)
     'xxx+dtemp' = specified altitude, plus temperature increment (use altitude, dtemp)
     'xxx+temp' = specified altitude, and specified temperature (use altitude, temp)
     'hot+table' = hot day table at specified altitude (use altitude)
     'dens' = input density and temperature (use density, temp)
     'input' = input density, speed of sound, and viscosity (use density, csound, viscosity)
     'notair' = input, not air on earth (use density, csound, viscosity)
SET GE: use HAGL; out-of-ground-effect (OGE) if rotor more than 1.5Diameter above ground
     height rotor = landing gear above ground + hub above landing gear = HAGL + (WL hub-WL gear+d gear)
STATE LG: 'default' (based on retraction speed), 'extend', 'retract' (keyword = def, ext, ret)
```

STATE control, aircraft control state: identifies control matrix STATE control=0 to use conversion schedule, STATE control=n (1 to nstate control) to use state#n SET control, control specification: Aircraft values (perhaps function speed) or flight state input coll/latcyc/lngcyc/pedal/tilt specification and values put in SET control and control, based on IDENT control initial values specified if control is trim variable; otherwise fixed for flight state SET control=0 to use Aircraft%cont and Aircraft%Vcont; 1 to use FltState%control SET tilt: 0 to use Aircraft%tilt and Aircraft%Vtilt: 1 to use FltState%tilt 2 to use conversion speeds Aircraft%Vconv hover and Aircraft%Vconv cruise SET cg, center of gravity position: input for this flight state; or baseline cg position plus shift due to nacelle tilt, plus input cg increment tip speed, engine, transmission: for each propulsion group SET Vtip, primary rotor tip speed: for primary rotor of propulsion group 'input' = use input Vtip for this flight state 'Mtip' = use input Mtip for this flight state 'Nrotor' = use input Nrotor (rpm) for this flight state 'ref' = use Vtip ref (for drive state STATE gear) 'speed' = use default Vtip(speed) 'conv' = use conversion schedule (Vtip hover or Vtip cruise) 'hover' = use default Vtip_hover = Vtip_ref(1) 'cruise', 'man', 'OEI', 'xmsn' = use default Vtip cruise, Vtip man, Vtip oei, Vtip xmsn 'mu' = use tip speed from μ (mu Vtip) 'Mat' = use tip speed from M_{at} (Mat Vtip) 'xxx+Mat' = for tip speed limited by M_{at} (Mat Vtip) 'xxx+diam' = for variable diameter rotor, scale $V_{\rm tip}$ with radius ratio without rotors, specify engine group speed by SET Vtip='input' (use input Nspec) or 'ref' STATE gear, drive system state: identifies gear ratio set for multiple speed transmissions state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n drive system rating: match rating designation in propulsion group; blank for same as rating of first engine group rating ds='speed' to use schedule with speed if Propulsion%nrate ds≤ 1, drive system rating not used fTorque reduces drive system torque limit (fTorque = 0. to 1.; > 1 is an acceptable input) SET Plimit: usually should not be applied for flight conditions and mission segments that size transmission

engine rating: match rating designation in engine model; e.g. 'ERP','MRP','IRP','MCP'

```
or rating='idle' or rating='takeoff'
fPower reduces engine group power available (fPower = 0. to 1 : > 1 is an acceptable input)
    the engine model gives the power available, accounting for installation losses and mechanical limits
         then the power available is reduced by the factor fPower
             next torque limits are applied (unless SET Plimit=off), first engine shaft limit and then drive system limit
    for SET GW='maxP' or 'maxPQ' (flight condition or mission), the gross weight is determined
    such that P_{reaPG} = fP_{avPG} + d
         either fPower or fPav can be used to reduce the available power
             with identical results, unless the engine group is operating at a torque limit
nEnglnop, number inoperative engines: 1 for one engine inoperative (OEI), maximum nEngine
SET Preq: distribution of propulsion group power required among engine groups
    distributed (SET_Preq=1): P_{reqEG} from P_{reqPG}, proportional P_{eng}
        except for rotor reaction drive, P_{regEG} from power needed to supply reaction force
        and for fuselage or wing flow control, P_{reqEG} from power needed to supply momentum flux
    fixed options use engine group amplitude control variable A, for each operable engine
         engine group that consumes shaft power (generator or compressor) only uses fixed option
         engine group that produces no shaft power (converted to turbo jet or reaction drive) only uses fixed option
    EngineGroup%SET_Power, fPsize defines power distribution for sizing
jet rating: match rating designation in jet model; or rating jet='idle' or rating jet='takeoff'
fThrust reduces jet group thrust available (fThrust = 0 to 1; > 1 is an acceptable input)
nJetlnop, number inoperative jets: 1 for one jet inoperative (OEI), maximum nJet
SET Jreq: fixed options use jet group amplitude control variable A, for each operable jet
    from component (SET_Jreq=1): only for reaction drive or flow control, T_{reaJG} from required F_{Grea}
charger rating: match rating designation in charger model; or rating charge='idle' or rating charge='takeoff'
fCharge reduces charger group power available (fCharge = 0 to 1; > 1 is an acceptable input)
nChrglnop, number inoperative chargers: 1 for one charger inoperative (OEI), maximum nCharge
SET Creq: use charge group amplitude control variable A, for each operable charger
STOP_rotor: only for stoppable rotor; if stopped, model sets KIND_control=1, MODEL Ftpp=1, MODEL Fpro=3
```

Structure: FltState 65

STATE_trim, aircraft trim state: match IDENT_trim, 'none' for no trim identifies trim variables and quantities

ACTION='configuration' defines trim states with following identification:

IDENT_trim='free', 'symm', 'hover', 'thrust', 'rotor', 'windtunnel', 'power', 'ground', 'comp' requirement for trim_target depends on designation of Aircraft%trim_quant

Chapter 15

Variable	Type		Description	Default
		+	Solution Procedures	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Rotor	
		+	convergence control	
$niter_rotor(nrotormax)$	int	+	maximum number of iterations	40
$toler_rotor(nrotormax)$	real	+	tolerance (deg)	.01
$relax_rotor(nrotormax)$	real	+	relaxation factor	.5
$deriv_rotor(nrotormax)$	int	+	derivative (1 first order, 2 second order)	1
$maxinc_rotor(nrotormax)$	real	+	maximum increment amplitude (0. for no limit)	4.
$trace_rotor(nrotormax)$	int	+	trace iteration (0 for none)	0
		+	Trim	
		+	convergence control	
niter_trim	int	+	maximum number of iterations	40
toler_trim	real	+	tolerance (fraction reference)	.001
relax_trim	real	+	relaxation factor	.5
		+	perturbation identification of derivative matrix	
deriv_trim	int	+	perturbation (1 first order, 2 second order)	1
mpid_trim	int	+	number of iterations between identification (0 for never recalculated)	0
perturb_trim	real	+	variable perturbation amplitude (fraction reference)	.002
init_trim	int	+	reinitialize aircraft controls in maximum effort iteration (0 no, 1 force retrim)	0
start_trim	int	+	initialize controls from solution of previous case (0 no)	0
trace_trim	int	+	trace iteration (0 for none, 2 for component controls)	0

start_trim=1: initialize FltAircraft%control from FltAircraft%control_trim of previous case require INIT_input=INIT_data=2 or read solution file; and same missions and conditions as previous case requirements not checked

		+	Maximum effort	
method_fly	int	+	method (1 secant, 2 false position)	1
method_flymax	int	+	maximization method (1 secant, 2 false position, 3 golden section search, 4 curve fit)	3
		+	convergence control	
niter_fly	int	+	maximum number of iterations	80
toler_fly	real	+	tolerance (fraction reference)	.002
relax_fly	real	+	relaxation factor	.5
perturb_fly	real	+	variable perturbation amplitude (fraction reference)	.05
maxderiv_fly	real	+	maximum derivative amplitude (0. for no limit)	0.
maxinc_fly	real	+	maximum increment fraction (0. for no limit)	0.
rfit_fly	real	+	extent of curve fit (fraction maximum)	.98
nfit_fly	int	+	order of curve fit (2 quadradic, 3 cubic)	3
init_fly	int	+	reinitialize aircraft controls (0 no, 1 force retrim)	0
trace_fly	int	+	trace iteration (0 for none)	0
		+	Maximum gross weight (flight condition or mission takeoff)	
method_maxgw	int	+	method (1 secant, 2 false position)	1
		+	convergence control	
niter_maxgw	int	+	maximum number of iterations	40
toler_maxgw	real	+	tolerance (fraction reference)	.002
relax_maxgw	real	+	relaxation factor	.5
perturb_maxgw	real	+	variable perturbation amplitude (fraction reference)	.02
maxderiv_maxgw	real	+	maximum derivative amplitude (0. for no limit)	0.
maxinc_maxgw	real	+	maximum increment fraction (0. for no limit)	0.
trace_maxgw	int	+	trace iteration (0 for none)	0
		+	Mission	
		+	convergence control	
niter_miss	int	+	maximum number of iterations	40
toler_miss	real	+	tolerance (fraction reference)	.01
relax_miss	real	+	relaxation factor (mission fuel)	1.
relax_range	real	+	relaxation factor (range credit)	1.
relax_gw	real	+	relaxation factor (max takeoff GW)	1.
trace_miss	int	+	trace iteration (0 for none)	0

		+	Size aircraft	
		+	convergence control	
niter_size	int	+	maximum number of iterations (performance loop)	40
niter_param	int	+	maximum number of iterations (parameter loop)	40
toler_size	real	+	tolerance (fraction reference)	.01
		+	relaxation factors	
relax_size	real	+	power or radius	1.
$relax_DGW$	real	+	gross weight	1.
relax_xmsn	real	+	drive system limit	1.
relax_wmto	real	+	WMTO and SDGW	1.
relax_tank	real	+	fuel tank capacity	1.
relax_thrust	real	+	rotor thrust	1.
		+	maximum increment fraction (0. for no limit)	
maxinc_size	real	+	power or radius	0.
maxinc_DGW	real	+	gross weight	0.
maxinc_xmsn	real	+	drive system limit	0.
maxinc_wmto	real	+	WMTO and SDGW	0.
maxinc_tank	real	+	fuel tank capacity	0.
maxinc_thrust	real	+	rotor thrust	0.
trace_size	int	+	trace iteration (0 for none, 2 for power)	0

with niter_param=1, parameter iteration is part of performance loop (can be faster than niter_param > 1)

+ Case

trace_case	int	+	trace operation (0 for none, 1 trace, 2 for all iterations)	1
trace_start	int	+	counter at start trace of iterations	0

use trace_case=2 to identify point at which analysis diverges

 $counter\ written\ if\ trace_case{=}1\ or\ 2;\ trace\ of\ iterations\ suppressed\ until\ counter>trace_start$ then turn on trace selectively for mission/segment/condition

		+	Flight condition and mission segment	
toler_check	real	+	check Preq, Qlimit, Wfuel (fraction reference)	.005
		+	Tolerance and perturbation scales	
KIND_Wscale	int	+	weight scale (1 design gross weight, 2 nominal C_T/σ)	1
KIND_Pscale	int	+	power scale (1 aircraft power, 2 derived from weight scale)	1
KIND_Lscale	int	+	length scale (1 rotor radius, 2 wing span, 3 fuselage length)	1
scaleRotor	int	+	rotor number	1
scaleWing	int	+	wing number	1
		+	External solution procedure (0 for internal)	
SETextsol_size	int	+	size iteration	0
SETextsol_miss	int	+	mission iteration	0
SETextsol_trim	int	+	trim iteration	0
SETextsol_rotor	int	+	rotor iteration	0

for external solution procedure (SETextsol = 1), suppress iteration and calculate residual the solution problem (such as size parameters, trim variables) must still be defined residuals (and error ratios) are in structures SizeParam, MissParam, FltAircraft, FltRotor with external solution for maximum gross weight or maximum effort, there is no residual; do not specify internal iteration

Chapter 16

Structure: Cost

Variable	Type		Description	Default
		+	Cost	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Inflation	
MODEL_inf	int	+	model (1 only input factor, 2 CPI, 3 DoD)	3
year_inf	int	+	year for internal inflation factor	2018
inflation	real	+	inflation factor (per cent, relative 1994 or year_inf)	100.00
EXTRAP_inf	int	+	year beyond CPI/DoD table data (0 error, 1 extrapolate factor)	1
			inflation: F_i multiplies airframe purchase price and maintenance cost factor inflation always used, even with internal table CPI or DoD table: $F_i = \text{inflation} \left(F_{\text{table}}(\text{year_inf}) / F_{\text{table}}(1994) \right)$ input factor: $F_i = \text{inflation} \left(\text{relative 1994} \right)$ cost factors and rates include technology and inflation, correspond to year_inf	
		+	Cost	
MODEL_cost	int	+	model (0 none)	1
FuelPrice(ntankmax)	real	+	fuel price G_{fuel} (\$/gallon or \$/liter)	5.0
EnergyPrice(ntankmax)	real	+	energy price G_{energy} (\$/MJ or \$/kWh, Units_energy)	0.04
EnergyCredit(ntankmax)	real	+	credit for generated energy (\$/MJ or \$/kWh, Units_energy)	0.
Npass	int	+	number of passengers $N_{ m pass}$	100

equivalent energy price for fuel burned: $MJ\cong(\gain 126.2 \text{ (based on } 42.8 \text{ MJ/kg and } 6.5 \text{ lb/gal of JP-4/JP-8)}$ EnergyCredit=0. if no credit for generated energy Structure: Cost

		+	Direct Operating Cost	
BlockHours	real	+	available block hours per year B	3751.
NonFlightTime	real	+	non-flight time per trip T_{NF} (min)	12.
DepPeriod	real	+	depreciation period D (years)	15.
LoanPeriod	real	+	loan period L (years)	15.
IntRate	real	+	interest rate i (%)	8.
ResidValue	real	+	residual value $V(\%)$	10.
Spares	real	+	spares per aircraft S (% purchase price)	25.
LoadFactor	real	+	passenger load factor (%)	75.
		+	Technology Factors	
$TECH_{cost}$	real	+	airframe χ_{AF}	0.87
$TECH_cost_maint$	real	+	maintenance $\chi_{ m maint}$	1.0
TECH_cost_comp	real	+	components $\chi_{ m comp}$	1.0
		+	CTM rotorcraft cost model	
		+	Purchase Price	
MODEL_aircraft	int	+	aircraft (1 rotorcraft, 2 turboprop airliner)	1
KIND_engine	int	+	engine (1 turbine, 2 piston)	1
fmotor	real	+	weighting factor for electric motor or generator	0.5
		+	airframe	
rComp	real	+	additional cost rate $r_{\rm comp}$ for composite construction (\$/lb or \$/kg)	0.
fWcomp_body	real	+	composite weight in body (fraction body weight)	0.
fWcomp_tail	real	+	composite weight in tail (fraction tail weight)	0.
fWcomp_pylon	real	+	composite weight in pylon (fraction pylon weight)	0.
fWcomp_wing	real	+	composite weight in wing (fraction wing weight)	0.
		+	systems (fixed useful load)	
rFCE	real	+	cost factor $r_{\rm FCE}$, flight control electronics (\$/lb or \$/kg)	10000.
rMEP	real	+	cost factor r_{MEP} , mission equipment package (\$/lb or \$/kg)	10000.
rBatt	real	+	cost factor r_{batt} , battery (\$/MJ or \$/kWh, Units_energy)	50.

cost factors and rates include technology and inflation, correspond to year_inf rComp negative for cost reduction

Structure: Cost

		+	Maintenance	
MODEL_maint	int	+	maintenance cost estimate (1 total only, 2 separate components)	2
rLabor	real	+	labor rate (\$ per hour)	160.
MMHperFH	real	+	maintenance man hours per flight hour	0.
Mlabor	real	+	MMH/FH factor $M_{ m labor}$	0.0017
Mparts	real	+	parts factor $M_{ m parts}$	34.
Mengine	real	+	engine overhaul factor $M_{ m engine}$	1.45
Mmajor	real	+	major periodic maintenance factor $M_{ m major}$	18.
Mbatt	real	+	battery maintenance factor $M_{\rm batt}$ (\$/MJ or \$/kWh per hour, Units_energy)	.10
			labor rate includes inflation, corresponds to year_inf	
			current best practice: Mlabor=0.0017, Mparts=34, Mengine=1.45, Mmajor=18	
			current average practice: Mlabor=0.0027, Mparts=56, Mengine=1.74, Mmajor=28	
			maintenance man hours per flight hour calculated from sum of fixed term (MMHperFH) and term so empty (Mlabor)	ealing with weight
		+	Direct Operating Cost	
MODEL_doc	int	+	crew+depreciation+insurance estimate (1 total only, 2 separate components)	2
Kcdi	real	+	crew+depreciation+insurance factor $K_{\rm cdi}$	1.0
Kcrew	real	+	crew cost factor K_{crew}	1.0
Kins	real	+	insurance cost K_{ins} (fraction aircraft cost)	.0056
KETS	real	+	emissions trading scheme cost $K_{\rm ETS}$ (\$/kg CO ₂)	.02
		+	Scott rotorcraft component cost model	
		+	production	
year_proc	int	+	year of procurement (0 same as year_inf, not used if <1955)	0
Nprod	int	+	aircraft production number (0 not used)	0
Nlot	int	+	number aircraft in this production lot (0 not used)	0
Nprod_eng	int	+	engine production number (0 not used)	0
		+	systems	
drFCE	real	+	cost factor $\Delta r_{\rm FCE}$, additional flight control electronics (\$/lb or \$/kg)	0.
drMEP	real	+	cost factor $\Delta r_{ m MEP}$, additional mission equipment package (\$/lb or \$/kg)	0.

Structure: Cost

		+	component cost models	
f_sec	real	+	fuselage, fraction of secondary fuselage weight	0.35
KIND_fuse_boom	int	+	fuselage, includes tail boom (0 not)	0
$KIND_fuse_dev$	int	+	fuselage, early LRIP of new design (0 not)	0
MODEL_eng	int	+	engine, turboshaft (0 not)	1
Kmotor	real	+	electric motor/generator cost $c = KP^X$, factor	0.2
Xmotor	real	+	electric motor/generator cost $c = KP^X$, exponent	1.0
Pr_avg	real	+	engine, stage-averaged compressor pressure ratio	1.6
TBO_eng	real	+	engine, time between overhaul (hours)	2000.
KIND_eng_mar	int	+	engine, marinized (0 not)	0
KIND_eng_FADEC	int	+	engine, FADEC equipped (0 not)	1
$KIND_xmsn_rg$	int	+	transmission, engine group includes reduction gearbox (0 direct drive)	0
$KIND_xmsn_mar$	int	+	transmission, marinized (0 not)	0
KIND_av_dev	int	+	avionics, early LRIP of new package (0 not)	0
KIND_av_UAV	int	+	avionics, unmanned medium to long endurance aircraft (0 not)	0
f_env	real	+	environmental group, fraction prime equipment cost	0.03
f_arm_furn_LH	real	+	armament provisions, furnishings, and load and handling groups, fraction fuselage cost	0.12
$KIND_int_SE_prof$	int	+	integration and assembly, systems engineering, and profit (1 government, 2 commercial)	1
$f_{int}SE_{prof}$	real	+	integration and assembly, systems engineering, and profit (commercial), fraction prime equipment cost	0.25

Structure: Emissions

Variable	Type		Description	Default
		+	Emissions	
title	c*100	+	title	
notes	c*1000	+	notes	
MODEL_emissions	int	+	Emissions model (0 none)	1
		+	Emissions Trading Scheme (ETS)	
Kfuel(ntankmax)	real	+	CO_2 emissions from fuel used, K_{fuel} (kg/kg)	3.75
Kenergy(ntankmax)	real	+	CO_2 emissions from energy used, K_{energy} (kg/MJ or kg/kWh, Units_energy)	0.14
		+	Average Temperature Response (ATR)	
Н	real	+	aircraft operating lifetime H (yr)	30.
U	real	+	aircraft utilization rate U (missions/yr)	350.
r	real	+	ATR discount rate r	0.03
tmax	real	+	ATR integration period t_{max} (yr)	500.
		+	emission index (kg/kg)	
EI_CO2(ntankmax)	real	+	carbon dioxide, EI_{CO_2}	3.16
EI_H2O(ntankmax)	real	+	water vapor, $EI_{ m H_2O}$	1.26
EI_SO4(ntankmax)	real	+	sulphates, $EI_{\mathrm{SO_4}}$	0.0002
$EI_{soot}(ntankmax)$	real	+	soot, $EI_{ m soot}$	0.00004
$EI_NOx(ntankmax)$	real	+	nitrogen oxides, EI_{NO_x}	0.01
$MODEL_NOx(ntankmax)$	int	+	turboshaft engine NOx emission model (0 input EI_{NO_x} , 1 DLR, 2 Swiss)	1
$KIND_{NOx}(ntankmax)$	int	+	model parameters (0 input, 1 low emissions, 2 high emissions)	1
KEI0(ntankmax)	real	+	DLR model, K_{EI0}	0.0036739
KEI1(ntankmax)	real	+	DLR model, K_{EI1}	0.00748
KEIs(ntankmax)	real	+	Swiss model, K_{EIs}	0.004
fAIC	real	+	aviation induced cloudiness factor, $f_{\rm AIC}$	1.0
		+	energy emission factor (kg/MJ or kg/kWh, Units_energy)	
K_CO2(ntankmax)	real	+	carbon dioxide, K_{CO_2}	0.14
K_H2O(ntankmax)	real	+	water vapor, $K_{\rm H_2O}$	0.

Structure: Emissions 75

K_SO4(ntankmax)	real	+	sulphates, $K_{ m SO_4}$	0.
$K_{soot}(ntankmax)$	real	+	$\mathrm{soot}, K_{\mathrm{soot}}$	0.
$K_NOx(ntankmax)$	real	+	nitrogen oxides, K_{NO_x}	0.
SET credit	int	+	Emissions credit for energy generated (0 for none)	1

EI default values are for turboshaft engine

emission index (EI and $K_{\rm fuel}$) only used for tanks that store and use fuel as weight (SET_burn=1) energy emission factor (K and $K_{\rm energy}$) only used for tanks that store and use fuel as energy (SET_burn=2)

ATR discount rate: $r \ge 100000$ evaluated as $r = \infty$

Chapter 18

Variable	Type		Description	Default
		+	Aircraft	
title	c*100	+	title	
notes	c*1000	+	notes	
config	c*16	+	Configuration	'helicopter'
			config: identifies rotorcraft configuration	
			config = 'rotorcraft', 'helicopter', 'tandem', 'coaxial', 'tiltrotor', 'compound', 'multicopter', 'airplane'	
		+	Aircraft Controls	
ncontrol	int	+	number of aircraft controls (maximum ncontmax)	4
IDENT_control(ncontmax)	c*16	+	labels of aircraft controls	·
nstate_control	int	+	number of control states (maximum nstatemax)	1
			pilot's controls (control number)	
		+	control values (function speed)	
nVcont(ncontmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	
nVcoll	int	+	collective stick	0
nVlatcyc	int	+	lateral cyclic stick	0
nVIngcyc	int	+	longitudinal stick	0
nVpedal	int	+	pedal	0
nVtilt	int	+	tilt	0
cont(nvelmax,ncontmax)	real	+	values	
coll(nvelmax)	real	+	collective stick c_{AC0}	
latcyc(nvelmax)	real	+	lateral cyclic stick c_{ACc}	
Ingcyc(nvelmax)	real	+	longitudinal cyclic stick c_{ACs}	
pedal(nvelmax)	real	+	pedal c_{ACp}	
tilt(nvelmax)	real	+	tilt $lpha_{ m tilt}$	

Vcont(nvelmax,ncontmax)	real	+	speeds (CAS or TAS)
Vcoll(nvelmax)	real	+	collective stick
Vlatcyc(nvelmax)	real	+	lateral cyclic stick
VIngcyc(nvelmax)	real	+	longitudinal cyclic stick
Vpedal(nvelmax)	real	+	pedal
Vtilt(nvelmax)	real	+	tilt

```
control system: set of aircraft controls c_{AC} defined
```

aircraft controls connected to individual controls of each component, $c=Tc_{AC}+c_0$

for each component control, define matrix T (for each control state) and value c_0

flight state specifies control state, or that control state obtained from conversion schedule

 $\it c_0$ can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)

use of component control c_0 can be suppressed for flight state using SET_comp_control aircraft controls: identified by IDENT control

typical aircraft controls are pilot's controls; default IDENT_control='coll','latcyc','lngcyc','pedal','tilt' available for trim (flight state specifies trim option)

initial values specified if control is trim variable; otherwise fixed for flight state each aircraft control can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) coll/latcyc/lngcyc/pedal/tilt input put in appropriate nVcont-cont-Vcont, based on IDENT_control flight state input can override

by connecting aircraft control to component control, flight state can specify component control value sign conventions for pilot's controls: collective + up, lat cyclic + right, long cyclic + forward, pedal + nose right rotor controls are positive Fourier series, with azimuth measured in direction of rotation

```
Aircraft Motion
                                                 aircraft pitch angle \theta_F
                                                     number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)
nVpitch
                               int
pitch(nvelmax)
                               real
                                                     values
                                                     speeds (CAS or TAS)
Vpitch(nvelmax)
                               real
                                                 aircraft roll angle \phi_F
                                                     number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)
nVroll
                               int
                                        +
roll(nvelmax)
                               real
                                                     speeds (CAS or TAS)
Vroll(nvelmax)
                               real
                                        +
```

aircraft motion

available for trim (depending on flight state) each motion can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) flight state input can override; initial value if trim variable

```
Conversion
Vconv_hover
                                                   maximum speed for hover and helicopter mode (CAS or TAS)
                                 real
                                          +
                                                   minimum speed for cruise (CAS or TAS)
Vconv cruise
                                 real
                                                   control state
                                          +
                                                       hover and helicopter mode (V \leq V_{\text{conv-hover}})
kcont hover
                                                                                                                                                                                     1
                                 int
                                                       conversion mode (V_{\text{conv-hover}} < V < V_{\text{conv-cruise}})
kcont conv
                                 int
                                                                                                                                                                                     1
                                                       cruise mode (V \ge V_{\text{conv-cruise}})
kcont cruise
                                 int
                                          +
                                                                                                                                                                                     1
                                                   drive system state (each propulsion group)
                                          +
                                                       hover and helicopter mode (V \leq V_{\text{conv-hover}})
kgear hover(npropmax)
                                 int
                                          +
                                                                                                                                                                                     1
                                                       conversion mode (V_{\text{conv-hover}} < V < V_{\text{conv-cruise}})
kgear conv(npropmax)
                                 int
                                          +
                                                                                                                                                                                     1
                                                       cruise mode (V \ge V_{conv-cruise})
kgear cruise(npropmax)
                                 int
                                          +
                                                                                                                                                                                     1
```

```
conversion control: use depends on STATE_control, SET_tilt, SET_Vtip of FltState hover and helicopter mode (V \leq V_{\rm conv-hover}): use tilt=90, Vtip_hover, kgear_hover, kcont_hover cruise mode (V \geq V_{\rm conv-cruise}): use tilt=0, Vtip_cruise, kgear_cruise, kcont_cruise conversion mode: tilt linear with V, use Vtip_hover, kgear_conv, kcont_conv nacelle tilt angle: 0 for cruise, 90 deg for helicopter mode flight
```

		+	Never-exceed speed	
SET_VNE	c*32	+	model	'none'
		+	table	
$KIND_VNE_table$	int	+	velocity (0 TAS, 1 CAS, 2 IAS)	0
nwt_VNE	int	+	number of weights (maximum nvnemax)	
nalt_VNE	int	+	number of altitudes (maximum nvnemax)	
$ntemp_VNE$	int	+	number of temperatures (maximum nvnemax)	
$rwt_VNE(nvnemax)$	real	+	weight ratio $r_W = W_G/W_D$ (fraction DGW)	
$alt_VNE(nvnemax,nvnemax)$	real	+	density altitude $h_d(nalt,nwt)$	
$temp_VNE(nvnemax)$	real	+	temperature τ (deg C)	
VNE(nvnemax,nvnemax)	real	+	never-exceed speed $V_{NEt}(nalt,nwt)$ (knots)	
VNE3(nvnemax,nvnemax,nvnemax)				
	real	+	never-exceed speed $V_{NEt}(nalt,nwt,ntemp)$ (knots)	
$KIND_VNE_stall(nrotormax)$	int	+	stall model, each rotor (0 for no limit, 1 steady, 2 transient, 3 equation)	3
C_VNE(5)	real	+	compressibility limit constants C_n	
$Mat_VNE(nrotormax)$	real	+	advancing tip Mach number M_{at} , each rotor (0. for no limit)	1.
		+	limits (0. not used)	
VNEmaxTAS	real	+	TAS maximum (knots)	0.
VNEmaxIAS	real	+	IAS maximum (knots)	0.
VNEminTAS	real	+	TAS minimum (knots)	0.
VNEminIAS	real	+	IAS minimum (knots)	0.

```
never-exceed speed: calculate V_{\rm NE} in knots TAS; depends on density altitude h_d, gross weight W_G (in terms of weight
ratio r_W = W_G/W_D, fraction DGW), and temperature \tau
     SET_VNE = 'none', or one to four of ('table' or 'table3', 'stall', 'comp', 'Mat')
```

table limit (2D): $V_{\text{NE}t}(h_d)$ for set of weights r_W (alt_VNE(nalt,nwt))

table limit (3D): $V_{\mathrm{NE}t}(h_d, r_W, \tau)$ (alt_VNE not depend on weight)

stall limit: $V_{\text{NE}s}$ from rotor thrust capability $(C_T/\sigma \text{ vs } \mu)$

compressibility limit: $V_{\text{NE}c} = C_1 - C_2 h_d + C_3 \tau - C_4 V_{\text{tip}} - C_5 r_W$ (knots IAS; temperature in deg C)

Mach number limit: $V_{\text{NE}m}$ from advancing tip Mach number M_{at}

nIAS IAS(niasmax) CAS(niasmax) SET_Vschedule	int real real int	+ + + +	Indicated airspeed correction number of values (maximum niasmax, 0 no correction) indicated airspeed (knots) calibrated airspeed (knots) Velocity schedules (1 CAS, 2 TAS, 3 IAS)	0
			indicated airspeed correction: IAS(1)=CAS(1)=0., both IAS and CAS unique and sequential velocity schedules: all described as function CAS or TAS or IAS conversion, controls and motion, rotor tip speed, landing gear retraction, trim targets, drive system ratings	_
		+	Trim states	
nstate_trim	int	+	number of trim states (maximum ntrimstatemax)	1
IDENT_trim(ntrimstatemax)	c*12	+	label of trim state	
mtrim(ntrimstatemax)	int	+	number of trim variables (maximum mtrimmax)	0
$trim_quant(mtrimmax,ntrimst$	atemax)			
	c*16	+	trim quantity name	
trim_var(mtrimmax,ntrimstate	emax)			
	c*16	+	trim variable name	
$trim_target(mtrimmax,ntrimst$	atemax)			
	int	+	target source (1 FltState, 2 component)	1

trim state: one or more set of quantities and variables for trim iteration FltState identifies trim state (STATE_trim match IDENT_trim), trim variable:

description		
aircraft orientation aircraft velocity aircraft velocity aircraft angular rate	match IDENT_control 'pitch', 'roll' 'speed', 'ROC' 'side' 'pullup', 'turn' 'Vtip n' 'Nspec n'	body axes relative inertial axes horizontal, vertical flight speed sideslip angle Euler angle rates

trim quantity:

description	trim_quant	target
aircraft total force	'force x', 'force y', 'force z'	zero
aircraft total moment	'moment x', 'moment y', 'moment z'	zero
aircraft load factor	'nx', 'ny', 'nz'	FltState%trim_target
propulsion group power	'power n'	FltState%trim_target
power margin	'P margin n'	FltState%trim_target
torque margin	'Q margin n'	FltState%trim_target
engine group power	'power EG n'	FltState%trim_target
power margin	'E margin n'	FltState%trim_target
momentum margin	'FE margin n'	FltState%trim_target
jet group thrust	'jet n'	FltState%trim_target
jet thrust margin	'J margin n'	FltState%trim_target
momentum margin	'FJ margin n'	FltState%trim_target
charge group power	'charge n'	FltState%trim_target
charge power margin	'C margin n'	FltState%trim_target
fuel tank energy flow	'tank n'	FltState%trim_target
battery power margin	'B margin n'	FltState%trim_target
rotor lift	'lift rotor n', 'flift rotor n'	FltState%trim_target, Rotor%Klift
rotor lift	'CLs rotor n', 'vert rotor n'	FltState%trim_target, Rotor%Klift
rotor propulsive force	'prop rotor n', 'fprop rotor n'	FltState%trim_target, Rotor%Kprop
rotor propulsive force	'CXs rotor n' , 'X/q rotor n'	FltState%trim_target, Rotor%Kprop
rotor thrust	'CTs rotor n'	FltState%trim_target, Rotor%Klift
rotor thrust margin	'T margin n'	FltState%trim_target
rotor thrust margin	'T margin tran n', 'T margin eqn n'	FltState%trim_target
rotor shaft power	'power rotor n'	FltState%trim_target
rotor flapping	'betac n', 'Ingflap n'	FltState%trim_target
rotor flapping	'betas n', 'latflap n'	FltState%trim_target
rotor hub moment	'hub Mx n', 'roll n'	FltState%trim_target
rotor hub moment	'hub My n', 'pitch n'	FltState%trim_target
rotor torque	'hub Mz n', 'torque n'	FltState%trim_target
wing lift	'lift wing n', 'flift wing n'	$FltState\%trim_target, Wing\%Klift$
wing lift coefficient	'CL wing n'	$FltState\%trim_target, Wing\%Klift$
wing lift margin	'L margin n'	FltState%trim_target
tail lift	'lift tail n'	FltState%trim_target

if trim_target=1, trim quantity target value is FltState%trim_target; otherwise component Klift or Kprop used if trailing "n" is absent, use first component (n=1)

trim_quant='flift rotor n' or trim_quant='flift wing n': target is fraction total aircraft lift (GW*nAC(3))
trim_quant='fprop rotor n': target is fraction total aircraft drag (qAC*DoQ)

trim_quant='T margin n' uses Rotor%CTs_steady, trim_quant='T margin tran n' uses Rotor%CTs_tran trim_quant='T margin eqn n' uses equation for rotor thrust capability (Rotor%K0_limit and Rotor%K1_limit)

2

1

1

0

1

trim_var='Vtip' or 'Nspec': requires FltAircraft%SET_Vtip='input'

```
Geometry
                                               input (1 fixed, SL/BL/WL; 2 scaled, from XoL/YoL/ZoL)
INPUT geom
                              int
                                               scaled geometry
                                                   reference length
KIND scale
                                                       kind (1 rotor radius, 2 wing span, 3 fuselage length)
                              int
kScale
                                                       identification (component number)
                              int
                                               reference point
                                                   kind (0 input, 1 rotor, 2 wing, 3 fuselage, 4 center of gravity)
KIND Ref
                              int
                                                   identification (component number)
kRef
                              int
                                       +
SL Ref
                              real
                                                   stationline
BL Ref
                                                   buttline
                              real
                                       +
WL Ref
                                                   waterline
                              real
                                               calculated reference point (input or component)
                                               baseline center of gravity location
loc_cg
                              Location +
```

```
Geometry: Location for each component
fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL
stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m
scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale)
XoL + aft, YoL + right, ZoL + up; from reference point
option to fix some geometry (FIX_geom in Location override INPUT_geom)
option to specify reference length (KIND scale in Location override this global KIND scale)
```

```
reference point: KIND_Ref, kRef; input dimensional XX_Ref, or position of identified component component reference must be fixed certain Locations can be calculated from other parameters (configuration specific) center of gravity: baseline is for nacelle angle = 90 flight state has calculated or input actual cg location
```

			+	Takeoff flight condition	
	SET_atmos	c*12	+	atmosphere specification	'std'
1	temp	real	+	temperature $ au$	
(dtemp	real	+	temperature increment ΔT	0.
(density	real	+	density ρ	
(csound	real	+	speed of sound c_s	
,	viscosity	real	+	viscosity μ	
;	altitude	real	+	altitude	

```
takeoff condition (density) used for C_T/\sigma in rotor sizing SET_atmos, atmosphere specification: 
 'std' = standard day at specified altitude (use altitude) 
 'dtemp' = standard day at specified altitude, plus temperature increment (use altitude, dtemp) 
 'temp' = standard day at specified altitude, and specified temperature (use altitude, temp) 
 'dens' = input density and temperature (use density, temp) 
 'input' = input density, speed of sound, and viscosity (use density, csound, viscosity) 
 'notair' = input, not air on earth (use density, csound, viscosity)
```

see FltState%SET_atmos for other options (polar, tropical, and hot days)

		+	Weight	
DGW	real	+	design gross weight W_D	
$Wfuel_DGW$	real	+	mission fuel W_{fuel} corresponding to DGW	
$Wpay_DGW$	real	+	payload W_{pay} corresponding to DGW	
WE	real	+	weight empty W_E	
dWE	real	+	weight increment	
fWE	real	+	weight factor	
		+	structural design gross weight	
SDGW	real	+	structural design gross weight W_{SD}	
dSDGW	real	+	weight increment	0.
fSDGW	real	+	weight factor	1.
fFuelSDGW	real	+	fraction main fuel tanks filled at SDGW	1.
		+	maximum takeoff weight	
WMTO	real	+	maximum takeoff weight W_{MTO}	
dWMTO	real	+	weight increment	0.
fWMTO	real	+	weight factor	1.
nz_ult	real	+	design ultimate flight load factor n_{zult} at SDGW	6.0

input or calculated: design gross weight W_D (FIX_DGW), structural design gross weight W_{SD} (SET_SDGW), maximum takeoff weight W_{MTO} (SET_WMTO), weight empty W_E (FIX_WE)

if calculated, then input parameter is initial value

DGW, design gross weight: used for rotor disk loading and blade loading, wing loading, power loading, thrust loading to obtain aircraft moments of inertia from radii of gyration

for tolerance and perturbation scales of the solution procedures

optionally to define structural design gross weight and maximum takeoff weight

optionally to specify the gross weight for missions and flight conditions

Wfuel DGW and Wpay DGW usually calculated (identified as input so inherited by next case)

FIX_WE: fixed or scaled weight empty obtained by adjusting contingency weight scaled with design gross weight: $W_E={\rm dWE+fWE}*W_D$

SET_SDGW, structural design gross weight:

```
'input' = input
```

'f(DGW)' = based on DGW; W_{SD} =dSDGW+fSDGW* W_D

```
'f(WMTO)' = based on WMTO; W_{SD}=dSDGW+fSDGW*W_{MTO} 'maxfuel' = based on fuel state; W_{SD}=dSDGW+fSDGW*W_G, W_G = W_D-Wfuel_DGW+fFuelSDGW*W_{fuel-cap} 'perf' = calculated from maximum gross weight at SDGW sizing conditions (DESIGN_sdgw) SET_WMTO, maximum takeoff weight: 'input' = input 'f(DGW)' = based on DGW; W_{MTO}=dWMTO+fWMTO*W_D 'f(SDGW)' = based on SDGW; W_{MTO}=dWMTO+fWMTO*W_SD 'maxfuel' = based on maximum fuel; W_{MTO}=dWMTO+fWMTO*W_G, W_G = W_D-Wfuel_DGW+W_{fuel-cap} 'perf' = calculated from maximum gross weight at WMTO sizing conditions (DESIGN_wmto) SDGW used for weights (fuselage, rotor, wing) WMTO used for cost, drag (scaled aircraft and hub drag), and weights (system, fuselage, landing gear, engine group) nz_ult, design ultimate flight load factor at SDGW: used for weights (fuselage, rotor, wing)
```

```
+ Weight
```

moments of inertia (based on design gross weight, scaled with reference length)

```
kx real + roll radius of gyration k_x/L
ky real + pitch radius of gyration k_y/L
kz real + yaw radius of gyration k_z/L
```

```
weight empty = structure + propulsion + systems and equipment + vibration + contingency operating weight = weight empty + fixed useful load
```

weight statement defines fixed useful load and operating weight for design configuration so for flight state, additional fixed useful load = auxiliary fuel tank and kits and increments flight state can also increment crew weight or equipment weight

flight state: gross weight, useful load (payload, usable fuel, fixed useful load), operating weight gross weight = weight empty + useful load = operating weight + payload + usable fuel useful load = fixed useful load + payload + usable fuel

	+	Drag	
int	+	· ·	0
	+		0.
		, -	0.008
_			2.5
			0
_		· · · · · · · · · · · · · · · · · · ·	0.
real	+	$k_{DL} = (D/q)_V/A_{ m ref}$	0.05
		fixed drag or download: obtained by adjusting contingency D/q or $(D/q)_V$ FIX_drag: minimum drag, excludes drag due to lift and angle of attack use only one of input DoQ, CD, kDrag (others calculated) $A_{\rm ref} = {\rm reference\ rotor\ area;\ units\ of\ kDrag\ are\ ft^2/klb^2/^3\ or\ m^2/Mg^2/^3} $ CD = 0.02 for old helicopter, 0.008 for current low drag helicopters kDrag = 9 for old helicopter, 2.5 for current low drag helicopters, 1.6 for current tiltrotors, 1.4 for turboprop aircraft (English units) FIX_DL, download: $A_{\rm ref} = {\rm reference\ rotor\ area,\ kDL} \sim DL/T$ use only one of DoQV, kDL (other calculated)	
int	+	Aerodynamics angle of attack and sideslip angle representation (1 conventional, 2 reversed for sideward flight)	2
		angle of attack and sideslip angle: reversed definition best for sideward flight	
int int int int	+ + + +	Number of Components rotors (maximum nrotormax) wings (maximum nwingmax) tails (maximum ntailmax) fuel tank systems (maximum ntankmax)	2 0 1 1
	int int int int	real + real + real + int + real + real + real + real + real +	int + total aircraft D/q (0 calculated; 1 fixed, input D/q ; 2 scaled, input C_D ; 3 scaled, from k) real + area D/q real + coefficient C_D (based on rotor area, $D/q = A_{\rm ref}C_D$) $k = (D/q)/(W_{MTO}/1000)^{2/3}$ (Units_Dscale) int + total aircraft download (0 calculated; 1 fixed, input D/q_V ; 2 scaled, from k_{DL}) real + area $(D/q)_V$ real + $k_{DL} = (D/q)_V/A_{\rm ref}$ fixed drag or download: obtained by adjusting contingency D/q or $(D/q)_V$ FIX_drag: minimum drag, excludes drag due to lift and angle of attack use only one of input DoQ, CD, kDrag (others calculated) $A_{\rm ref}$ = reference rotor area; units of kDrag are $f^2/k lb^{2/3}$ or $m^2/Mg^{2/3}$ $CD = 0.02$ for old helicopter, 0.008 for current low drag helicopters kDrag = 9 for old helicopter, 2.5 for current low drag helicopters, 1.6 for current tiltrotors, 1.4 for turboprop aircraft (English units) FIX_DL, download: $A_{\rm ref}$ = reference rotor area, kDL $\sim DL/T$ use only one of DoQV, kDL (other calculated) + Aerodynamics int + Aerodynamics int + rotors (maximum nrotormax) int + wings (maximum nrotormax) int + wings (maximum nrotormax) int + wings (maximum nrotormax) int + tails (maximum nrotormax)

nPropulsion	int	+	propulsion groups (maximum npropmax)	1
nEngineGroup	int	+	engine groups (maximum nengmax)	1
nJetGroup	int	+	jet groups (maximum njetmax)	0
nChargeGroup	int	+	charge groups (maximum nchrgmax)	0
nEngineModel	int	+	engine models (maximum nengmax)	1
nEngineParamN	int	+	engine model parameters (maximum nengpmax)	0
nEngineTable	int	+	engine tables (maximum nengmax)	0
nRecipModel	int	+	reciprocating engine models (maximum nengmax)	0
nCompressor M ode I	int	+	compressor models (maximum nengmax)	0
nMotorModel	int	+	motor models (maximum nengmax)	0
nJetModel	int	+	jet models (maximum njetmax)	0
nFuelCellModel	int	+	fuel cell models (maximum nchrgmax)	0
nSolarCellModel	int	+	solar cell models (maximum nchrgmax)	0
nBatteryModel	int	+	battery models (maximum ntankmax)	0

propulsion group is set of components and engine groups, connected by drive system engine model or engine table or reciprocating engine or motor model describes particular engine, used in one or more engine groups jet model describes particular jet, used in one or more jet groups fuel cell model or solar cell model describes particular charger, used in one or more charge groups battery model describes particular battery, used in one or more fuel tanks

Chapter 19

Variable	Type		Description	Default
		+	Systems	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Weight	
SET_Wpayload	int	+	payload (1 no details; 2 all terms)	1
Upass	real	+	weight per passenger	
		+	fixed useful load	
SET_Wcrew	int	+	crew weight (1 no details; 2 all terms)	1
Wcrew	real	+	weight or adjustment	
Ucrew	real	+	weight per crew	
Ncrew	int	+	number of crew	
Wtrap	real	+	trapped fluids and engine oil weight	0.
		+	other fixed useful load	
nWoful	int	+	number of categories (0 for one value without name; maximum 10)	0
Woful_name(10)	c*24	+	category name	, ,
Woful(10)	real	+	baseline weight	0.
Wotherkit	real	+	other kit	0.

SET_Wpayload: payload specified by flight condition or mission

SET_Wcrew: no details (only Wcrew) or all terms (Ucrew*Ncrew+Wcrew)

other fixed useful load: can include baggage, gun installations, weapons provisions, aircraft survivability equipment, survival kits, life rafts, oxygen

SET_fold	int	+	folding (0 none, 1 fold weights, 2 with kit)	0
		+	folding weight in kit f_{foldkit} (fraction wing/rotor/tail/body fold weight)	
fWfoldkitW(nwingmax)	real	+	wing	0.5
fWfoldkitR(nrotormax)	real	+	rotor	0.5
fWfoldkitT(ntailmax)	real	+	tail	0.5
fWfoldkitFw	real	+	body (wing and rotor fold)	0.5
fWfoldkitFt	real	+	body (tail fold)	0.5
SET_Wvib	int	+	vibration treatment weight (1 fraction weight empty, 2 input)	1
Wvib	real	+	weight $W_{ m vib}$	
fWvib	real	+	fraction weight empty $f_{\rm vib}$	
SET_Wcont	int	+	contingency weight (1 fraction weight empty, 2 input)	1
Wcont	real	+	weight $W_{ m cont}$	
fWcont	real	+	fraction weight empty $f_{ m cont}$	
			W = (structure + manulaion aroun + systems and againment) + W + W	
			W_E = (structure + propulsion group + systems and equipment) + $W_{\rm vib}$ + $W_{\rm cont}$ SET_Wvib: $W_{\rm vib}$ input or $W_{\rm vib} = f_{\rm vib}W_E$	
			SET_VVIII. w_{vib} input of $w_{\text{vib}} - f_{\text{vib}} w_E$	

SET_Wcont: $W_{\rm cont}$ input or $W_{\rm cont} = f_{\rm cont} W_E$; or adjust $W_{\rm cont}$ for input or scaled W_E (FIX_WE=1 or 2)

SET_fold, folding:

set component dWxxfold=0 and fWxxfold=0 for no rotor/wing/tail/body fold weight fraction fWfoldkit of fold weight in fixed useful load as kit, remainder kept in component weight kit weight removable, absent for specified flight conditions and missions

		+	systems and equipment	
Wauxpower	real	+	auxiliary power group (APU)	0.
Winstrument	real	+	instruments group	0.
Wpneumatic	real	+	pneumatic group	0.
Wenviron	real	+	environmental control group	0.
SET_Welectrical	int	+	electrical group (1 no details; 2 all terms)	1
Welectrical	real	+	aircraft	0.
Welect_supply	real	+	power supply	0.
Welect_conv	real	+	power conversion	0.
Welect_distrib	real	+	power distribution and controls	0.
Welect_lights	real	+	lights and signal devices	0.

Welect_support	real	+	equipment supports	0.
SET_WMEQ	int	+	avionics group (1 no details; 2 all terms)	1
WMEQ	real	+	avionics	0.
Wavionics_com	real	+	communications	0.
Wavionics_nav	real	+	navigation	0.
Wavionics_ident	real	+	identification	0.
Wavionics_disp	real	+	control and display	0.
Wavionics_survive	real	+	aircraft survivability	0.
Wavionics_mission	real	+	mission system equipment	0.
		+	armament group	
SET_Warmor	int	+	armor (1 no details; 2 all terms)	1
Warmor	real	+	armor	0.
Uarmor_floor	real	+	cabin floor armor weight per area	
Uarmor_wall	real	+	cabin wall armor weight per area	
Uarmor_crew	real	+	armor weight per crew	
SET_Warmprov	int	+	armament provisions (1 no details; 2 all terms)	1
Warmprov	real	+	armament provisions	0.
Warmprov_gun	real	+	gun provisions	0.
Warmprov_turret	real	+	turret systems	0.
Warmprov_expend	real	+	expendable weapons provisions	0.
Warm_elect	real	+	armament electronics (avionics group)	0.
$SET_{W}furnish$	int	+	furnishings and equipment group (1 no details; 2 all terms)	1
Wfurnish	real	+	furnishings and equipment	0.
		+	accommodations for personnel	
Useat_crew	real	+	each crew seat	
Useat_pass	real	+	each passenger seat	
Uaccom_crew	real	+	miscellaneous accommodation per crew seat	
Uaccom_pass	real	+	miscellaneous accommodation per passenger seat	
Uox_crew	real	+	oxygen system per crew seat	
Uox_pass	real	+	oxygen system per passenger seat	
Wfurnish_misc	real	+	miscellaneous equipment	0.
		+	furnishings	
Wfurnish_trim	real	+	trim	0.
Uinsulation	real	+	acoustic and thermal insulation weight per cabin area	

	+	emergency equipment	
real	+	fire detection and extinguishing	0.
real	+	other emergency equipment	0.
int	+	load and handling group (1 no details; 2 all terms)	1
real	+	load and handling	0.
real	+	aircraft handling	0.
	+	load handling	
real	+	cargo handling weight per cabin floor area	
real	+	hoist	0.
real	+	external load provisions	0.
	+	systems and equipment	
int	+	number of crew seats	0
int	+	number of passenger seats	0
real	+	equipment weight increment per crew seat (0. for default)	0.
raal	_	aguinment weight increment per passenger seat (0) for default)	0.
	real real real real real real real real	real + int + real +	real + fire detection and extinguishing real + other emergency equipment int + load and handling group (1 no details; 2 all terms) real + load and handling real + aircraft handling + load handling real + cargo handling weight per cabin floor area real + hoist real + external load provisions + systems and equipment int + number of crew seats int + number of passenger seats

```
SET_Welectrical=1: only Welectrical+WDlelect
SET_WMEQ=1: only WMEQ; equipment weights include installation
SET_Warmor=1: only Warmor
SET_Warmprov=1: only Warmprov
SET_Wfurnish=1: only Wfurnish
    miscellaneous accommodation includes galleys and toilets
    miscellaneous equipment includes cockpit displays
    trim includes floor covering, partitions, crash padding, acoustic and thermal insulation
    excluding vibration absorbers
    other emergency equipment includes first aid, survival kit, life raft
SET_Wload=1: only Wload
equipment weight increment is for flight condition and mission; default (if SET_furnish=2 and SET_armor=2):
```

 ${\sf Ucrew_seat_inc=} {\sf Useat_crew} + {\sf Uaccom_crew} + {\sf Uox_crew} + {\sf Uarmor_crew}$

Upass_seat_inc=Useat_pass+Uaccom_pass+Uox_pass

		+	Weight	
		+	systems and equipment	
		+	flight control group and hydraulic group	
MODEL_fc	int	+	model (0 input, 1 NDARC, 2 custom)	1
MODEL_RWfc	int	+	rotary wing flight controls (0 not present, 1 global, 2 for each rotor)	1
refRotor	int	+	reference rotor number for global	1
MODEL_FWfc	int	+	fixed wing flight controls (0 for not present)	1
MODEL_CVfc	int	+	conversion controls (0 for not present)	1
		+	flight control weight increment	
dWRWfc_b	real	+	rotary wing, boosted	0.
$dWRWfc_mb$	real	+	rotary wing, control boost mechanisms	0.
dWRWfc_nb	real	+	rotary wing, non-boosted	0.
dWFWfc_mb	real	+	fixed wing, control boost mechanisms	0.
dWFWfc_nb	real	+	fixed wing, non-boosted	0.
$dWCVfc_mb$	real	+	conversion, boosted	0.
$dWCVfc_nb$	real	+	conversion, control boost mechanisms	0.
		+	fixed flight controls	
Wfc_cc	real	+	cockpit controls	0.
Wfc_afcs	real	+	automatic flight control system	0.
		+	hydraulic weight increment	
dWRWhyd	real	+	rotary wing	0.
dWFWhyd	real	+	fixed wing	0.
dWCVhyd	real	+	conversion	0.
WEQhyd	real	+	equipment hydraulics	0.
		+	anti-icing group	
MODEL_DI	int	+	model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWDIelect	real	+	electrical system	0.
dWDIsys	real	+	anti-ice system	0.

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

MODEL_RWfc: global option is based on just main rotors

"for each rotor" option sums separate contributions from all rotors

tiltrotor wing weight model requires weight on wing tip: distributed to designated rotor; sum rotary wing and conversion flight controls, hydraulic group, trapped fluids

		+	Technology Factors	
		+	rotary wing flight control weight	
TECH RWfc b	real	+	boosted χ_{RWb}	1.0
TECH_RWfc_mb	real	+	control boost mechanisms χ_{RWmb}	1.0
TECH RWfc nb	real	+	non-boosted χ_{RWnb}	1.0
		+	fixed wing flight control weight	
TECH FWfc mb	real	+	control boost mechanisms χ_{FWmb}	1.0
TECH_FWfc_nb	real	+	non-boosted χ_{FWnb}	1.0
		+	conversion flight control weight	
TECH CVfc mb	real	+	control boost mechanisms χ_{CVmb}	1.0
TECH_CVfc_nb	real	+	non-boosted χ_{CVnb}	1.0
		+	flight control hydraulics	
TECH RWhyd	real	+	rotary wing $\chi_{RW\mathrm{hyd}}$	1.0
TECH_FWhyd	real	+	fixed wing $\chi_{FW\mathrm{hyd}}$	1.0
TECH_CVhyd	real	+	conversion $\chi_{CV\mathrm{hyd}}$	1.0
		+	anti-icing	
TECH_Dlelect	real	+	electrical system $\chi_{DI{ m elect}}$	1.0
TECH_DIsys	real	+	anti-ice system χ_{DIsys}	1.0
		+	Flight Control Group, NDARC Weight Model	
		+	rotary wing flight controls	
MODEL_WRWfc	int	+	model (1 fraction, 2 parametric, 3 Boeing, 4 GARTEUR, 5 Tishchenko, 6 generic)	1
fRWfc_nb	real	+	AFDD: non-boosted control weight f_{RWnb} (fraction boost mechanisms weight)	0.6
$xRWfc_red$	real	+	AFDD: hydraulic system redundancy/complexity factor f_{RW} red	3.0
KIND_WRWfc	int	+	AFDD: survivability (1 baseline, 2 UTTAS/AAH level of survivability)	2
$fRWfc_b$	real	+	Boeing, GARTEUR, Tishchenko, or generic: boosted weight f_{RWb} (fraction boosted + boost mech, or total)	0.2
fRWfc_mb	real	+	GARTEUR, Tishchenko, or generic: boost mechanisms weight f_{RWmb} (fraction total weight)	0.2
KRW	real	+	generic: factor K_{RW}	0.

XRWN	real	+	exponent X_{RWN}	0.
XRWR	real	+	exponent X_{RWR}	0.
XRWc	real	+	exponent X_{RWc}	0.
XRWW	real	+	exponent X_{RWW}	0.
XRWb	real	+	exponent X_{RWb}	0.
		+	fixed wing flight controls	
MODEL_WFWfc	int	+	model (1 full controls, 2 only on hor tail, 3 GARTEUR, Raymer (4 transport, 5 general aviation), 6 generic)	1
fFWfc_nb	real	+	non-boosted weight f_{FWnb} (fraction total fixed wing flight control weight)	0.10
nfunction	int	+	Raymer: number of control functions	6
fmech	real	+	Raymer: number of mechanical functions (fraction total)	0.2
KFW	real	+	generic, factor K_{FW}	0.
XFW	real	+	exponent X_{FW}	0.
		+	conversion controls	
$fCVfc_mb$	real	+	boost mechanisms weight f_{CVmb} (fraction maximum takeoff weight)	0.02
fCVfc_nb	real	+	non-boosted weight f_{CVnb} (fraction boost mechanisms weight)	0.10
		+	cockpit controls	
MODEL_cc	int	+	model (1 fixed Wfc_cc, 2 scaled with DGW)	1
Kcc	real	+	factor K_{cc}	1.7
Xcc	real	+	exponent X_{cc}	0.41
		+	Hydraulic Group, NDARC Model	
		+	flight control hydraulics	
fRWhyd	real	+	rotary wing f_{RWhyd} (fraction rotary wing boost mechanisms + hydraulic weight)	0.40
fFWhyd	real	+	fixed wing $f_{FW ext{hyd}}$ (fraction fixed wing boost mechanisms weight)	0.10
fCVhyd	real	+	conversion $f_{CV \text{hyd}}$ (fraction conversion boost mechanisms weight)	0.10

flight controls = non-boosted (do not see aero surface or rotor loads) + boost mechanisms (actuators) + boosted

MODEL_WRWfc = fraction: parametric except for non-boosted controls (from fRWfc_nb)

typically fRWfc_nb = 0.6 (data range 0.3 to 1.8), fRWhyd = 0.4 xRWfc_red = 1.0 to 3.0

Structure: Systems				95
WtParam_fc(8)	real	+	Custom Weight Model parameters	0.
kDelce_elec(nrotormax)	real	+	Anti-Icing Group, NDARC Weight Model weight factor for electrical system K_{elec} (lb/ft ² or kg/m ²)	0.25
kDelce_rotor(nrotormax) kDelce_wing(nwingmax)	real real	+	weight factor for main rotor K_{rotor} (lb/ft ² or kg/m ²) weight factor for wing K_{wing} (lb/ft or kg/m)	0.25 0.
kDelce_wing(nwingmax)	real	+	weight factor for engine air intake K_{air} (lb/lb or kg/kg)	0.006
kDelce_jet(njetmax)	real	+	weight factor for jet air intake K_{jet} (lb/lb or kg/kg)	0.006
		+	Custom Weight Model	
$WtParam_DI(8)$	real	+	parameters	0.

Variable	Type		Description	Default
		+	Fuselage	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Geometry	
loc_fuselage	Location	+	fuselage location	
SET_length	int	+	fuselage length (1 input, 2 calculated, 3 from rotor and tail only, 4 from rotor only)	1
Length_fus	real	+	length $\ell_{ m fus}$	
SET_nose	int	+	nose length (distance forward of hub; 1 input, 2 calculated)	1
Length_nose	real	+	nose length $\ell_{ m nose}$	
fLength_nose	real	+	nose length (fraction reference length)	
SET_aft	int	+	aft length (distance aft of hub; 1 input, 2 calculated)	1
Length_aft	real	+	aft length $\ell_{ m aft}$	
fLength_aft	real	+	aft length (fraction reference length)	
fRef_fus	real	+	fuselage SL location relative nose $f_{\rm ref}$ (fraction fuselage length)	
Width_fus	real	+	fuselage width w_{fus}	
SET_Swet	int	+	fuselage wetted area (1 input, 2 input plus boom, 3 from nose length, 4 from fuselage length, 5 from weight)	2
Swet	real	+	wetted area $S_{ m wet}$	
Sproj	real	+	projected area $S_{ m proj}$	
fSwet	real	+	factor for wetted area f_{wet} or k_{wet}	1.
fSproj	real	+	factor for projected area f_{proj} or k_{proj}	1.
Height_fus	real	+	fuselage height $h_{ m fus}$	
Circum_boom	real	+	tail boom effective circumference $C_{ m boom}$	
Width_boom	real	+	tail boom effective width $w_{\rm boom}$	
SET_Scabin	int	+	cabin area (1 input, 2 calculated)	2
Scabin	real	+	total cabin surface area $S_{ m cabin}$	
Scabin_floor	real	+	cabin floor area $S_{ m cabin-floor}$	
Scabin_wall	real	+	cabin wall area $S_{ m cabin-wall}$	

Structure: Fuselage				97
fScabin	real	+	factor for total cabin surface area $f_{ m cabin}$	0.6
fScabin_floor	real	+	factor for cabin floor area $f_{ m cabin-floor}$	0.6
fScabin_wall	real	+	factor for cabin wall area $f_{ m cabin-wall}$	0.6
KIND_scale	int	+	reference length (1 rotor radius, 2 wing span, 3 fuselage length)	1
refRotor	int	+	rotor number (for rotor radius)	1
refWing	int	+	wing number (for wing span)	1
			SET_length: input (use Length_fus) or calculated (from nose and aft lengths) calculated uses rotor, tail, wing locations; or just rotor and tail, or just rotor which can not then be scaled with fuselage length SET_nose: input (use Length_nose) or calculated (from fLength_nose); used for Length_fus and Swet SET_aft: input (use Length_aft) or calculated (from fLength_aft); used for Length_fus fRef_fus=(SL_fuselage–SL_nose)/Length_fus; used for operating length and sketch input required if SET_length = input, otherwise calculated	

		+	Geometry (for graphics)	
Height_ramp	real	+	height of cargo ramp	
fLength_cargo	real	+	fraction of fuselage length used for cargo	0.60
		+	Controls	
		+	flow control momentum coefficient C_{μ}	
INPUT_flow	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_flow(ncontmax,nstatemax)$	real	+	control matrix	
nVflow	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
flow(nvelmax)	real	+	values	
Vflow(nvelmax)	real	+	speeds (CAS or TAS)	

aircraft controls connected to individual controls of component, $c=Tc_{AC}+c_0$ for each component control, define matrix T (for each control state) and value c_0

flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state

1.0

MODEL_aero DoQ_cont DoQV_cont	int real real	+ + + +	Aerodynamics $ \begin{array}{c} \text{model (0 none, 1 standard)} \\ \text{contingency drag, area } (D/q)_{\text{cont}} \\ \text{contingency vertical drag, area } (D/q)_{V \text{cont}} \\ \\ \hline \text{DoQ_cont calculated if total drag fixed (Aircraft FIX_drag); otherwise input } \\ \text{DoQV_cont calculated if total download fixed (Aircraft FIX_DL); otherwise input} \\ \end{array} $	1 0. 0.
		++	Weight fuselage group	
MODEL_weight	int	+	fuselage group model (0 input, 1 NDARC, 2 custom)	1
15.471	1	+	weight increment	2
dWbody	real	+	basic body	0.
dWmar	real	+	body marinization	0.
dWpress	real	+	pressurization	0.
dWcrash	real	+	body crashworthiness	0.
dWftfold	real	+	tail fold	0.
dWfwfold	real	+	wing fold	0.
TECHLI	1	+	Technology Factors	1.0
TECH_body	real	+	basic body $\chi_{ m basic}$	1.0
TECH_mar	real	+	body marinization χ_{mar}	1.0
TECH_press	real	+	pressurization $\chi_{ m press}$	1.0
TECH_crash	real	+	body crashworthiness χ_{cw}	1.0
$TECH_ftfold$	real	+	tail fold $\chi_{ m tfold}$	1.0

wing fold $\chi_{\rm wfold}$

real

TECH_fwfold

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

```
Aerodynamics, Standard Model
AoA zl
                                real
                                                  zero lift angle of attack \alpha_{zl} (deg)
                                                                                                                                                                                 0.
                                                  angle of attack for maximum lift \alpha_{\rm max} (deg)
AoA max
                                real
                                         +
                                                                                                                                                                               10.
                                                  lift
                                         +
SET lift
                                int
                                         +
                                                      specification (1 fixed, L/q; 2 scaled, C_L)
                                                                                                                                                                                 2
                                                      lift slope, d(L/q)/d\alpha (per rad)
                                                                                                                                                                                 0.
dLoQda
                                real
                                         +
                                                      lift slope, C_{L\alpha} = dC_L/d\alpha (per rad; based on wetted area, L/q = SC_L)
dCLda
                                real
                                         +
                                                                                                                                                                                 0.
                                                  pitch moment
                                         +
                                                      specification (1 fixed, M/q; 2 scaled, C_M)
SET moment
                                                                                                                                                                                 2
                                int
MoQ0
                                                      moment at zero lift, (M/q)_0
                                                                                                                                                                                 0.
                                real
                                                      moment at zero lift, C_{M0} (based on wetted area and fuselage length, M/q = S\ell C_M)
CM0
                                real
                                         +
                                                                                                                                                                                 0.
                                                      moment slope, d(M/q)/d\alpha (per rad)
dMoQda
                                real
                                         +
                                                                                                                                                                                 0.
                                                      moment slope, C_{M\alpha} = dC_M/d\alpha (per rad; based on wetted area and fuselage length, M/q = S\ell C_M)
dCMda
                                real
                                         +
                                                                                                                                                                                 0.
                                                  sideslip angle for zero side force \beta_{zy} (deg)
SS zy
                                         +
                                                                                                                                                                                 0.
                                real
                                                  sideslip angle for maximum side force \beta_{\text{max}} (deg)
SS max
                                real
                                         +
                                                                                                                                                                               10.
                                                  side force
                                         +
                                                      specification (1 fixed, Y/q; 2 scaled, C_Y)
                                                                                                                                                                                 2
SET side
                                int
                                         +
dYoQdb
                                         +
                                                      side force slope, d(Y/q)/d\beta (per rad)
                                                                                                                                                                                 0.
                                real
                                                      side force slope, C_{Y\beta} = dC_Y/d\beta (per rad; based on wetted area, Y/q = SC_Y)
dCYdb
                                                                                                                                                                                 0.
                                real
                                         +
                                                  vaw moment
                                                      specification (1 fixed, N/q; 2 scaled, C_N)
                                                                                                                                                                                 2
SET yaw
                                int
NoQ0
                                real
                                         +
                                                      moment at zero lift, (N/q)_0
                                                                                                                                                                                 0.
                                                      moment at zero lift, C_{N0} (based on wetted area and fuselage length, N/q = S\ell C_N)
CN0
                                         +
                                                                                                                                                                                 0.
                                real
dNoQdb
                                         +
                                                      moment slope, d(N/q)/d\beta (per rad)
                                                                                                                                                                                 0.
                                real
                                                      moment slope, C_{N\beta} = dC_N/d\beta (per rad; based on wetted area and fuselage length, N/q = S\ell C_N)
dCNdb
                                         +
                                                                                                                                                                                 0.
                                real
```

SET_xxx: fixed (use XoQ) or scaled (use CX); other parameter calculated

		+	Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on wetted area, $D/q = SC_D$)	0.005
		+	fixtures and fittings	
SET_Dfit	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ_fit	real	+	area $(D/q)_{\mathrm{fit}}$	
CD_fit	real	+	coefficient $C_{D ext{fit}}$ (based on wetted area, $D/q = SC_D$)	0.
		+	rotor-body interference	
SET_Drb	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
$DoQ_rb(nrotormax)$	real	+	area $(D/q)_{rb}$	
$CD_{rb}(nrotormax)$	real	+	coefficient C_{Drb} (based on wetted area, $D/q = SC_D$)	0.
		+	vertical drag	
SET_Vdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV	real	+	area $(D/q)_V$	
CDV	real	+	coefficient C_{DV} (based on projected area, $D/q = S_{\text{proj}}C_D$)	0.
		+	sideward drag	
SET_Sdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQS	real	+	area $(D/q)_S$	
CDS	real	+	coefficient C_{DS} (based on wetted area, $D/q = SC_D$)	0.
		+	drag variation with angle of attack	
$MODEL_drag$	int	+	model (0 none, 1 general, 2 quadratic)	2
AoA_Dmin	real	+	angle of attack for fuselage minimum drag $C_{D \min}$ (deg)	0.
Kdrag	real	+	drag increment K_d , $\Delta C_D = C_{D0} K_d \alpha_e ^{X_d}$	0.
Xdrag	real	+	drag increment $X_d, \Delta C_D = C_{D0} K_d \alpha_e ^{X_d}$	2.
		+	transition from forward flight drag to vertical drag	
MODEL_trans	int	+	model (1 input transition angle of attack, 2 calculate for quadratic)	1
AoA_tran	real	+	angle of attack for transition α_t (deg)	25.
		+	Flow Control; $\Delta C_L = C_{L\alpha}(L_{\mu s}\sqrt{C_{\mu}} + L_{\mu 1}C_{\mu} + L_{\mu 2}C_{\mu}^2), \Delta C_{L \max} = X_{\mu}C_{\mu}, \Delta C_M = M_{\mu}C_{\mu}, \Delta C_D = D_{\mu}C_{\mu}$	
MODEL_flow	int	+	model (0 none)	0
Lmus	real	+	lift $L_{\mu s}$	0.0
Lmu1	real	+	lift $L_{\mu 1}$	0.0

Structure: Fuselage 101 lift $L_{\mu 2}$ Lmu2 real 0.0 Xmu real maximum lift X_{μ} 1.0 Mmu moment M_{μ} real + 0.0 Dmu real + drag D_{μ} 0.0 Cmu limit flow limit $C_{\mu \text{limit}}$ 1.0 real + Fuselage Group, NDARC Weight Model MODEL body int + model (1 AFDD84, 2 AFDD82, 3 other) 1 MODEL other + model (1 Boeing, GARTEUR (2 air, 3 hel), 4 Tishchenko, 5 Torenbeek, Raymer (6 transport, 7 gen av), 8 generic) int AFDD: rear cargo ramp (0 none) KIND ramp int + 0 fLength crg + Boeing: cabin length + ramp length + cg range (fraction fuselage length) 0.6 real Boeing or Torenbeek or Raymer: design dive speed $V_{\rm dive}$ (knots) 200. Vdive real + Raymer: number of cargo doors 0 ndoor int + Pdelta real + Raymer: cabin pressure differential (psi) 8. generic: factor K_{fus} 0. Kfus real + XfusW exponent $X_{\text{fus}W}$ real + 0. exponent $X_{\text{fus}n}$ Xfusn 0. real + XfusS real + exponent $X_{\text{fus}S}$ 0. Xfusl real + exponent $X_{\text{fus}\ell}$ 0. body weight for marinization f_{mar} (fraction basic body weight) fWbody mar real + 0. body weight for pressurization f_{press} (fraction basic body weight) fWbody press 0. real + body weight for crashworthiness f_{cw} (fraction body weight) fWbody crash + real 0. fWbody tfold + tail fold weight f_{tfold} (fraction tail (AFDD84 or other) or body (AFDD82) weight) 0. real wing fold weight f_{wfold} (fraction wing+tip (AFDD84 or other) or body+tailfold (AFDD82) weight) fWbody wfold real + 0. AFDD84 (UNIV) is universal body weight model, for tiltrotor and tiltwing as well as for helicopters AFDD82 (HELO) is helicopter body weight model, should not be used for tiltrotor or tiltwing dive speed: V_{max} = SLS max speed, Vdive = $1.25V_{\text{max}}$ fLength_crg = $(\ell_c + \ell_r + \Delta CG)/\ell_{\text{body}} \cong 1.0$ for tandem, 0.3-0.6 for single main rotor (0.7-0.8 with ramp) typically fWbody crash = 0.06typically fWbody tfold = 0.30 (AFDD84 or other) or 0.05 (AFDD82) for folding tail Custom Weight Model

0.

WtParam fuse(8)

real

parameters

Structure: LandingGear

Variable	Type		Description	Default
		+	Landing Gear	
title	c*100	+	title	
notes	c*1000) +	notes	
		+	Geometry	
loc_gear	Locatio	n +	landing gear location	
d_gear	real	+	distance from bottom of landing gear to WL_gear d_{LG}	0.
place	int	+	placement (1 located on body, 2 located on wing)	1
KIND_LG	int	+	retraction (0 fixed, 1 retracts)	1
speed	real	+	retraction speed (CAS or TAS, knots)	
			landing gear location: with HAGL (FltState) determines rotor height above ground level height rotor = landing gear above ground + hub above landing gear = HAGL + (WL_hub-WL_gear+d_gear) place: used for weight (fuselage and wing)	
		+	Aerodynamics	
MODEL_aero	int	+	model (0 none, 1 standard)	1
		+	Weight	
		+	alighting gear group	
MODEL_weight	int	+	alighting gear group model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWLG	real	+	basic landing gear	0.
dWLGret	real	+	retraction	0.
		-		

Structure: LandingGear				103
TECH_LG TECH_LGret TECH_LGcrash	real real real	+ + +	Technology Factors basic landing gear χ_{LG} retraction $\chi_{LG\text{ret}}$ crashworthiness $\chi_{LG\text{cw}}$	1.0 1.0 1.0
			weight model result multiplied by technology factor and increment added: Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.	
DoQ	real	+	Drag, Standard Model drag area extended, D/q	
		+	Landing Gear Group, NDARC Weight Model	
MODEL_LG	int	+	model (1 fraction, 2 parametric rotary wing, 3 parametric fixed wing)	2
nLG	int	+	number of landing gear assemblies N_{LG}	3
fWLG_basic	real	+	basic landing gear weight f_{LG} (fraction maximum takeoff weight)	0.0325
fWLG_ret	real	+	landing gear weight for retraction f_{LGret} (fraction basic weight)	0.08
fWLG_crash	real	+	landing gear weight for crashworthiness $f_{LG\mathrm{cw}}$ (fraction basic+retraction weight) only MODEL_LG=fraction uses fWLG_basic typically fWLG_basic = 0.0325 (fraction method) typically fWLG_ret = 0.08, fWLG_crash = 0.14	0.14
		+	Custom Weight Model	_

0.

WtParam_gear(8)

real

parameters

Variable	Type		Description	Default
		+	Rotor	
title	c*100	+	title	
notes	c*1000	+	notes	
config	c*32	+	Configuration	'main'
			configuration designation: principal designation required, rest identify special characteristics	
			principal designation = 'main', 'tail', 'prop'	
			antitorque = 'antiQ', 'auxT'	
			twin rotor = 'coaxial', 'tandem', 'tiltrotor' (keyword = tan, coax, tilt)	
			others = 'variable diameter', 'stop', 'ducted fan', 'reaction drive', 'multirotor' (keyword = var, stop, duct, react, m	ıulti)
			principal designation determines where weight put in weight statement, and designates main rotors (isMainRotor)	
			separately specify appropriate performance and weight models	
			multiple rotor configurations have special options for geometry and performance	
			options defined by variables SET_geom, MODEL_twin, MODEL_int_twin	
			antitorque or aux thrust rotor has special options for sizing	
			options defined by variables SET_rotor, fThrust, Tdesign	
			reaction drive still requires propulsion group	
		+	Propulsion group	
kPropulsion	int	+	group number	1
KIND_xmsn	int	+	drive system branch (1 primary, 0 dependent)	1
Vtip_ref(ngearmax)	real	+	reference tip speed	
INPUT gear	int	+	gear ratio input for dependent branch (1 Vtip_ref, 2 gear)	1
gear(ngearmax)	real	+	gear ratio $r = \Omega_{\rm dep}/\Omega_{\rm prim}$ (ratio rpm to rpm of primary rotor)	1.0
,		+	Reaction drive	
r_react	real	+	effective radial station of force (fraction Radius)	1.0

```
drive system branch: only one primary rotor per propulsion group tip speed and gear ratio required for each drive system state primary: specify Vtip_ref and default tip speeds; V_{\rm tip-hover} = {\rm Vtip\_ref}(1) dependent: specify gear ratio, or specify Vtip_ref and calculate gear (depend on rotor radius) can not specify gear ratio if sizing changes dependent rotor V_{\rm tip} (SET_rotor) if size task changes Vtip_ref(1), then rVtip_ref used to change Vtip_ref(n) for n>1 variable speed transmission: for drive system state STATE_gear_var, gear ratio factor f_{\rm gear} (control) included when evaluate rotational speed of dependent rotor
```

reaction drive requires one and only one propulsion system (engine group or jet group)

		+	Default rotor tip speeds (primary rotor)	
INPUT_Vtip	int	+	input form (1 tip speed, 2 hover $V_{ m tip}$ and rpm ratio)	1
		+	function of flight speed	
nVrpm	int	+	number of speeds (1 constant; \geq 2 piecewise linear, maximum nvelmax)	1
Vrpm(nvelmax)	real	+	speeds (CAS or TAS)	
		+	tip speed	
Vtip_cruise	real	+	cruise	
Vtip_man	real	+	maneuvering flight	
Vtip_oei	real	+	OEI	
Vtip_xmsn	real	+	transmission sizing	
Vtip(nvelmax)	real	+	function of flight speed	
		+	rpm ratio $(V_{ m tip}/V_{ m tip-hover})$	
fRPM_cruise	real	+	cruise	1.
fRPM_man	real	+	maneuvering flight	1.
fRPM_oei	real	+	OEI	1.
$fRPM_xmsn$	real	+	transmission sizing	1.
fRPM(nvelmax)	real	+	function of flight speed	1.

default rotor tip speeds (including conversion): selectable by SET_Vtip of FltState only for primary rotor; $V_{\rm tip}$ calculated from gear(state) for dependent branch

```
Drive system torque limit
SET limit rs
                                                 rotor shaft (0 input, 1 fraction power, 2 fraction drive system limit)
                                                                                                                                                                               1
                               int
Plimit rs
                                                 rotor shaft power limit P_{RSlimit}
                                real
                                         +
fPlimit rs
                                                 rotor shaft power limit factor
                                real
                                                                                                                                                                               1.
                                                   drive system torque limit: Size%SET limit ds = input (use Plimit rs) or calculated (from fPlimit rs)
                                                        SET_limit_ds='input': Plimit rs input
                                                        SET limit ds='input': from rotor power required at transmission sizing flight conditions (DESIGN xmsn)
                                                   rotor shaft: options for SET limit ds≠'input'
                                                        SET limit rs=0: Plimit rs
                                                        SET limit rs=1: fPlimit rs \times (rotor P_{rea})
                                                        SET limit rs=2: fPlimit rs \times P_{DSlimit}
                                                   rotor shaft power limit: corresponds to one rotor
                                                        can be used for max effort in flight state (max quant='Q margin')
                                                        can be used for max gross weight in flight condition or mission (SET GW='maxQ' or 'maxPQ')
                                                        always check and print whether exceed torque limit
                                             Parameters
                                                 disk loading (lb/ft<sup>2</sup> or N/m<sup>2</sup>)
diskload
                                real
                                                      fraction rotor area for reference disk area f_A
fArea
                                real
fDGW
                                                      fraction DGW f_W (for disk loading and blade loading)
                                real
                                         +
fThrust
                                         +
                                                      thrust factor (antitorque or aux thrust rotor)
                                                                                                                                                                             1.0
                                real
Radius
                                                 radius R
                                real
                                         +
                                                 blade loading C_W/\sigma (thrust-weighted)
CWs
                                real
                                         +
                                                 solidity \sigma = Nc/\pi R (thrust-weighted)
sigma
                                real
                                                 thrust for antitorque or aux thrust rotor
Tdesign
                                real
Pdesign
                                         +
                                                 power for antitorque or aux thrust rotor
                                real
                                                 rotor speed (rpm) at Pdesign
Ndesign
                                real
                                         +
                                                 rotor thrust for disk loading and blade loading (0 default; 1 fDGW*DGW, 2 fThrust*Tdesign)
SET thrust
                                int
                                         +
                                                                                                                                                                               0
```

rotor disk loading = T/A; aircraft disk loading = W_D/A_{ref} , $A_{ref} = \sum (f_A A)$

 $W=f_WW_D$ (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor); can specify using SET_thrust Tdesign and Pdesign obtained from thrust design conditions and missions (DESIGN_thrust)

if rotor sized from disk loading (SET_rotor='DL+xx+xx'), area = T/diskload if SET_rotor specify 'Vtip', use Vtip_ref(1) if SET_rotor not specify 'Vtip', calculate Vtip_ref(1), and then Vtip_ref for dependent rotors if SET_rotor='CWs+xx+xx', then C_W/σ from fDGW*DGW, takeoff condition, Vtip_ref, and thrust-weighted solidity

for antitorque or aux thrust rotor, need design conditions and missions (DESIGN_thrust) to identify Tdesign otherwise use fDGW and design gross weight

Tdesign and Pdesign generally calculated (identified as input so inherited by next case)

		+	Geometry	
SET_geom	c*12	+	position (standard, tiltrotor, coaxial, tandem, tailrotor, multicopter)	'std'
KIND_TRgeom	int	+	tiltrotor (1 from clearance, 2 at wing tip, 3 at wing panel edge)	0
		+	twin rotors	
fRadius	real	+	ratio rotor radius to that of other rotor	1.0
otherRotor	int	+	other rotor number	
positionOfRotor	int	+	rotor position (+1/–1 for right/left, lower/upper, front/aft)	0
WingForRotor	int	+	wing number	1
PanelForRotor	int	+	wing panel number	1
clearance_fus	real	+	tiltrotor clearance between rotor and fuselage d_{fus}	0.6
fclearance_fus	real	+	tiltrotor clearance factor	1.0
sep_coaxial	real	+	coaxial rotor separation s (fraction Diameter)	0.08
overlap_tandem	real	+	tandem rotor overlap o (fraction Diameter)	0.25
		+	tail rotor	
mainRotor	int	+	main rotor number	1
fRadius_tr	real	+	radius scale factor	1.0
clearance_tr	real	+	clearance between tail rotor and main rotor d_{tr}	0.5
		+	multicopter	
ang_multicopter	real	+	angle ψ (clockwise from forward, deg)	0.
len_multicopter	real	+	arm length ℓ (fraction Radius)	1.5
		+	variable diameter rotor	
$SET_{Var}Diam$	int	+	set diameter (1 conversion schedule, 2 function speed)	
fRcruise	real	+	ratio cruise radius to hover radius (variable diameter only)	
		+	rotor stopped as wing	
StopAsWing	int	+	wing number (0 not)	0

```
SET geom: calculation override part of location input
    SET geom='tiltrotor': calculate lateral position (BL)
         KIND TRgeom=clearance: from WingForRotor, Width fus, clearance fus, fclearance fus
         KIND TRgeom=wing tip: from WingForRotor, wing span
         KIND TRgeom=wing panel edge: from WingForRotor, PanelForRotor, panel edge and wing span
         positionOnRotor specifies right or left position
         BL or YoL in loc pylon, loc pivot, loc naccg is relative calculated loc rotor BL
    SET geom='coaxial': calculate position from sep coaxial
         same sep coaxial for otherRotor, positionOnRotor specifies lower or upper position
         loc rotor (SL,BL,WL or XoL,YoL,ZoL) is midpoint between hubs
        loc pylon (SL,BL,WL or XoL,YoL,ZoL) is relative calculated loc rotor
    SET geom='tandem': calculate longitudinal position (SL) from overlap tandem
         same overlap tandem for otherRotor, positionOnRotor specifies front or aft position
        loc rotor (SL or XoL only) is midpoint between hubs
        loc pylon SL or XoL is relative calculated loc rotor
    SET geom='tailrotor': calculate longitudinal position (SL) from clearance tr, mainRotor
         loc pylon SL or XoL is relative calculated loc rotor
    SET geom='multicopter': calculate longitudinal and lateral position from ang multicopter, len multicopter
        loc rotor (SL,BL or XoL,YoL) is center of rotors
        loc pylon (SL,BL,WL or XoL,YoL,ZoL) is relative calculated loc rotor
        ang multicopter also used for Aircraft%config='multicopter' to define control
    if rotor number < 2 and positionOnRotor=0: first rotor is right/lower/front, second rotor is left/upper/aft
sizing:
    if SET rotor='ratio', Radius=fRadius*Radius(otherRotor); otherRotor not SET rotor='ratio'
twin rotors: config identify as twin rotor
antitorque: config identify as antitorque rotor
    if SET rotor='scale', Radius=fRadius tr*(main rotor Radius)*function(DiskLoad)
variable diameter: Radius is hover or reference radius; can be commanded by aircraft controls
    conversion schedule: R = \text{Radius in hover and helicopter mode} (V \leq V_{\text{conv-hover}})
         R = \text{Radius*fRcruise} in cruise mode (V \geq V_{\text{conv-cruise}}); linear with V in conversion mode
    function of speed: use nVdiam, fdiam, Vdiam to calculate R
```

stoppable rotor: zero rotor flapping, forces, and power when stopped stopped (FltAircraft%STOP_rotor=1) uses stopped rotor hub and blade drag stopped and stowed (FltAircraft%STOP_rotor=2) uses stowed rotor hub drag stopped as wing (FltAircraft%STOP_rotor=3) uses wing aero (wing number StopAsWing) with zero hub drag

		+	Geometry	
rotate	int	+	direction of rotation (1 counter-clockwise, –1 clockwise)	1
nBlade	int	+	number of blades N	
		+	planform and twist	
SET_chord	int	+	chord distribution (1 linear from fTWsigma, 2 linear from taper, 3 nonlinear from fchord)	1
fTWsigma	real	+	ratio thrust-weighted solidity to geometric solidity $f = \sigma_t/\sigma_g$	1.
taper	real	+	taper ratio t (tip chord/root chord)	1.
SET_twist	int	+	twist distribution (1 linear from twistL, 2 nonlinear from twist)	1
twistL	real	+	linear twist θ_L (deg, root to tip)	-10.
nprop	int	+	number of radial stations (maximum nrmax)	2
rprop(nrmax)	real	+	radial stations (r_{root}/R)	
fchord(nrmax)	real	+	chord distribution $c(r)/c_{ m ref}$	1.
twist(nrmax)	real	+	twist $\theta_{tw}(r)$ (deg)	
		+	flap dynamics	
KIND_hub	int	+	hub type (1 articulated, 2 hingeless)	1
flapfreq	real	+	first flapwise natural frequency ν (per-rev at hover tip speed)	1.04
conefreq	real	+	coning natural frequency ν (0. to use flapfreq)	0.
gamma	real	+	blade Lock number γ	8.
precone	real	+	precone β_p (deg)	0.
delta3	real	+	pitch-flap coupling δ_3 (deg)	0.
		+	aerodynamics	
dclda	real	+	blade section 2D lift-curve slope $a=c_{\ell\alpha}$ (per-rad)	5.7
tiploss	real	+	tip loss factor B (lift zero from BR to tip)	0.97
xroot	real	+	root cutout (r_{root}/R)	0.1

SET_chord: use one of fTWsigma, taper, or fchord(r); others calculated (including root cutout) fTWsigma = sigma_tw/sigma_geom

from fTWsigma: calculate equivalent linear taper, and $f_c = c/c_{
m ref}$

from taper (linear): calculate fTWsigma, and $f_c = c/c_{\rm ref}$ from fchord(r): integrate for c_g and c_t , fTWsigma= c_t/c_g , calculate taper, f_c = scaled fchord SET_twist: use one of twistL or twist(r); other calculated for nonlinear distribution, twist relative 0.75R obtained from input

flap frequency and Lock number are used for flap dynamics and hub moments due to flap specified for hover radius and rotational speed ${\it KIND_hub} \ {\it determines} \ {\it how} \ {\it flap} \ {\it frequency} \ {\it and} \ {\it hub} \ {\it moment} \ {\it spring} \ {\it vary} \ {\it with} \ {\it rotor} \ {\it speed} \ {\it and} \ {\it R}$ weight models can have separate blade and hub values for flap frequency

blade Lock number gamma: for SLS density, a=5.7, thrust-weighted chord SET_lblade determines whether Lock number input or calculated

		+	Geometry (for graphics)	
thick	real	+	blade thickness-to-chord ratio	0.12
		+	Blade element theory solution	
		+	integration	
mr	int	+	number of radial stations (xroot to 1; maximum mrmax)	4
mpsi	int	+	number of azimuth angles (maximum mpsimax)	8
		+	Geometry	
loc_rotor	Locatio	n +	hub location	
loc_pylon	Locatio	n +	pylon location	
loc_pivot	Locatio	n +	pivot location	
loc_naccg	Locatio	n +	nacelle cg location	
direction	c*16	+	nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z'; 'main' (-z), 'tail' (ry), 'prop' (x))	'main'
KIND_tilt	int	+	shaft control (0 fixed shaft, 1 incidence, 2 cant, 3 both controls)	0
		+	orientation of rotor shaft	
incid_hub	real	+	incidence θ_h (deg)	0.
cant_hub	real	+	cant angle ϕ_h (deg)	0.
		+	orientation of pivot axes	
dihedral_pivot	real	+	pivot dihedral angle ϕ_p (deg)	
pitch_pivot	real	+	pivot pitch angle θ_p (deg)	
sweep_pivot	real	+	pivot sweep angle ψ_p (deg)	

		+	reference shaft control	
incid_ref	real	+	incidence i_{ref} (deg)	0.
cant_ref	real	+	cant angle $c_{\rm ref}$ (deg)	0.
		+	moving weight for cg shift	
SET_Wmove	int	+	weight (1 wing tip weight, 2 W_{gbrs} , 3 W_{gbrs} and W_{ES})	1
fWmove	real	+	fraction moving weight	1.
$dz_hub(3)$	real	+	hub position increment due to tilt $\Delta z_{ m hub}^F$ (SL/BL/WL)	0.

loc_naccg, loc_pivot, orientation of pivot axes, and reference shaft control angles not used for KIND_tilt=fixed shaft for tiltrotor, locations and orientation specified in helicopter mode, so incid_ref = 90 SET_Wmove: cg shift calculated using incidence and cant rotation of loc_naccg relative loc_pivot moving weight fWmove*Wmove, Wmove = Wtip_total/nRotorOnWing or $w/N_{\rm rotor}$ $w = W_{gbrs} \mbox{ (drive system) or } W_{gbrs} + \sum (W_{ES}) \mbox{ (drive system and engine system)}$

		+	Controls	
KIND_control	int	+	rotor control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP)	1
KIND_cyclic	int	+	cyclic input (1 tip-path-plane tilt, 2 hub moment, 3 lift offset)	1
KIND_coll	int	+	collective input (1 thrust, 2 C_T/σ)	2
SCALE_coll	int	+	scale collective T matrix (0 for none)	1
		+	collective (magnitude of thrust vector)	
INPUT_coll	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{coll}(ncontmax, nstatemax)$	real	+	control matrix	
nVcoll	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
coll(nvelmax)	real	+	values	
Vcoll(nvelmax)	real	+	speeds (CAS or TAS)	
		+	longitudinal cyclic (tip-path plane tilt or no-feathering plane tilt)	
INPUT_Ingcyc	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{I}Ingcyc(ncontmax,nstatemax)$	x)			
	real	+	control matrix	
nVIngcyc	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
Ingcyc(nvelmax)	real	+	values	
VIngcyc(nvelmax)	real	+	speeds (CAS or TAS)	

		+	lateral cyclic (tip-path plane tilt or no-feathering plane tilt)	
INPUT_latcyc	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_latcyc(ncontmax,nstatemax))			
	real	+	control matrix	
nVlatcyc	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
latcyc(nvelmax)	real	+	values	
Vlatcyc(nvelmax)	real	+	speeds (CAS or TAS)	
		+	incidence i (nacelle tilt)	
INPUT_incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$				
	real	+	control matrix	
nVincid	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)	real	+	values	
Vincid(nvelmax)	real	+	speeds (CAS or TAS)	
		+	cant c	
INPUT_cant	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{cant(ncontmax,nstatemax)}$	real	+	control matrix	
nVcant	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
cant(nvelmax)	real	+	values	
Vcant(nvelmax)	real	+	speeds (CAS or TAS)	
		+	diameter $f_{ m diam}$ (variable diameter only)	
INPUT_diam	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_diam(ncontmax,nstatemax)$	real	+	control matrix	
nVdiam	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
fdiam(nvelmax)	real	+	values	
Vdiam(nvelmax)	real	+	speeds (CAS or TAS)	
		+	gear ratio factor $f_{ m gear}$ (variable speed transmission only)	
INPUT_fgear	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_fgear(ncontmax,nstatemax)$				
	real	+	control matrix	
nVfgear	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
fgear(nvelmax)	real	+	values	
Vfgear(nvelmax)	real	+	speeds (CAS or TAS)	

		+	reaction drive net force $F_{ m react}$	
INPUT Freact	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T Freact(ncontmax,nstate	max)			
_ (real	+	control matrix	
nVFreact	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
Freact(nvelmax)	real	+	values	
VFreact(nvelmax)	real	+	speeds (CAS or TAS)	
			aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$ for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to component control, flight state can specify component control value initial values if control is connected to trim variable; otherwise fixed for flight state pylon moves with rotor; nontilting part is engine nacelle	_

```
Trim Targets
                                              rotor lift
nVlift
                                                  number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)
                             int
Klift(nvelmax)
                                                  target
                             real
                                      +
                                                  speeds (CAS or TAS)
Vlift(nvelmax)
                             real
                                              rotor propulsive force
nVprop
                                                  number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
                              int
Kprop(nvelmax)
                              real
                                      +
                                                  target
                                                  speeds (CAS or TAS)
Vprop(nvelmax)
                             real
                                      +
```

target definition determined by Aircraft%trim_quant Klift can be fraction total aircraft lift, lift, C_L/σ , or C_T/σ Kprop can be fraction total aircraft drag, propulsive force -X, $-C_X/\sigma$, or -X/q)

+ Rotor Thrust Capability $(C_T/\sigma \text{ vs } \mu)$	
+ sustained	
nsteady int + number of points (maximum 20)	16
mu_steady(20) real + advance ratio	-
CTs_steady(20) real + C_T/σ	
+ transient	
ntran int + number of points (maximum 20)	16
mu_tran(20) real + advance ratio	
$CTs_tran(20)$ real + C_T/σ	
+ equation, $C_T/\sigma = K_0 - K_1 \mu^2$	
K0 limit real + constant K_0	0.17
$K1_{\text{limit}}$ real + constant K_1	0.25
CTs steady, CTS tran used to calculate rotor thrust margin, which available for max effort or trim	
defaults used if $CTs(1)=0$.	
default CTs steady = .170,.168,.161,.149,.131,.109,.084,.050,.049,.048,.047,.046,.045,.044,.043,.042	2
default CTs_tran = .200,.197,.190,.177,.156,.135,.110,.080,.075,.070,.065,.060,.055,.050,.045,.040	
default mu steady = $010,.20,.30,.40,.50,.60,.70,.71,.72,.73,.74,.75,.76,.77,.78$	
default mu tran = $0.10,20,30,40,50,60,70,72,74,76,78,80,82,84,86$	
<u></u>	
+ Performance	
	1
	1 2
	2
MODEL_Fpro int + inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect)	2
if thrust and TPP command, and neglect inplane forces relative TPP, then pitch control angles not required.	quired
+ Interference	
MODEL_int int + model (0 none, 1 standard, 2 with transition)	1
+ transition	
Vint_low real + low velocity (knots)	0.

> Kint=0 to suppress interference at component; MODEL int=0 for no interference at all with transition: interference factors linearly vary from Kint at V < Vint low to 0 at V > Vint high

> > 1

0.

2

0.

2

0.

2

0.

0.

```
Geometry
                                                     hub/pylon aerodynamic axes (0 input pitch, 1 helicopter, 2 propeller or tiltrotor)
SET aeroaxes
                                  int
                                                          pitch relative shaft axes \theta_{\rm ref}, C^{BS} = Y_{-\theta_{\rm ref}}
pitch aero
                                  real
                                                     pylon wetted area (1 fixed, input Swet; 2 scaled, W_{abrs}; 3 scaled, W_{abrs} and W_{ES})
SET Spylon
                                  int
Swet_pylon
                                  real
                                            +
                                                          area S_{\text{pylon}}
                                                          factor, k = S_{\text{pylon}}/(w/N_{\text{rotor}})^{2/3} (Units_Dscale)
kSwet pylon
                                            +
                                                                                                                                                                                           1.0
                                  real
                                                     duct area (1 fixed, input S duct; 2 scaled, from fLength duct)
SET Sduct
                                  int
                                            +
S duct
                                            +
                                                          area S_{\rm duct}
                                  real
                                                          duct length (fraction rotor radius)
                                                                                                                                                                                           1.2
fLength duct
                                  real
                                            +
SET Sspin
                                                     spinner wetted area (1 fixed, input Swet; 2 scaled, from fSwet)
                                  int
Swet spin
                                                          area S_{\rm spin}
                                  real
                                                          factor, \hat{k} = S_{\rm spin}/A_{\rm spin}
fSwet spin
                                  real
                                            +
                                                                                                                                                                                           1.0
                                                      spinner radius (fraction rotor radius)
fRadius spin
                                  real
                                            +
                                                       only SET aeroaxes=input uses pitch aero; pitch aero=180 for helicopter, 90 for propeller
                                                       SET Spylon, pylon wetted area: input (use Swet pylon) or calculated (from kSwet pylon)
                                                            units of kSwet are ft^2/lb^{2/3} or m^2/kg^{2/3}
                                                            w = W_{abrs} (drive system) or W_{abrs} + \sum W_{ES} (drive system and engine system)
                                                            pylon wetted area used for pylon drag
                                                            rotor pylon must be consistent with engine group nacelle
                                                       SET Sduct, duct area: input (use S duct) or calculated (from fLength duct)
                                                            S_{\rm duct} = (2\pi R)\ell_{\rm duct}, \ell_{\rm duct} = {\sf fLength\_duct}*R; used for drag (wetted area 2S_{\rm duct}) and weight
                                                       SET_Sspin, spinner wetted area: (use Swet_spin) or calculated (from fSwet_spin)
                                                            A_{\rm spin}=\pi R_{\rm spin}^2 = spinner frontal area (from fRadius_spin*R); spinner radius used for drag and weight
```

		+	Drag	
MODEL_drag	int	+	model (0 none, 1 standard)	1
ldrag	real	+	incidence angle for helicopter nominal drag (deg; 0 for not tilt)	0.
		+	Download and blockage	
$MODEL_download$	int	+	model (0 none, 1 blockage, 2 download, 3 both)	0
download	real	+	download $DL = \Delta T/T$	0.
blockage	real	+	blockage $B = \Delta T/T$	0.
muDL	real	+	advance ratio μ_{DL} (0. for no correction)	0.16
zDL	real	+	height above ground $(z_q/D)_{DL}$ (fraction diameter, 0. for no correction)	0.41
aDL	real	+	forward flight constant a_{DL}	1.04
bDL	real	+	ground effect constant b_{DL}	0.23

download: rotor induced and profile power evaluated at thrust increased by $f_{DL}=1/(1-\Delta T/T)$ blockage: force acting on aircraft includes $f_B=(\Delta T/T)T$ opposing thrust download DL and blockage B are for hover, out of ground effect download and blockage zero for $\mu>\mu_{DL}$ or $z_g/D<(z_g/D)_{DL}$

Weight rotor group (or empennage or propulsion group) model (0 input, 1 NDARC, 2 custom) MODEL_weight int 1 weight increment blade dWblade 0. real dWhubhub and hinge 0. real inter-rotor shaft dWshaft real 0. fairing/spinner dWspin 0. real dWrfold blade fold real 0. dWtrtail rotor 0. real dWaux auxiliary thrust 0. real + dWrsupt rotor support structure 0. real + dWduct real + duct 0.

SET_Iblade	int	+	blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from AI)	1
Al	real	+	autorotation index $KE/P = \frac{1}{2}N_{\rm blade}I_{\rm blade}\Omega^2/P$ (sec)	3.0
Wblade_tip	real	+	tip weight (per blade)	0.
$rWblade_tip$	real	+	location tip weight (fraction blade radius)	0.9
$fWblade_tip$	real	+	distributed weight for centrifugal force (fraction Wblade_tip)	1.0
rblade	real	+	radius of gyration for distributed mass (fraction blade radius)	0.6
xWblade	real	+	blade weight (fraction total tail rotor or auxiliary thrust rotor weight)	0.55
		+	Technology Factors	
TECH_blade	real	+	blade weight $\chi_{ m blade}$	1.0
TECH_hub	real	+	hub and hinge weight $\chi_{ m hub}$	1.0
$TECH_shaft$	real	+	inter-rotor shaft $\chi_{ m shaft}$	1.0
TECH_spin	real	+	fairing/spinner weight $\chi_{ m spin}$	1.0
$TECH_{rfold}$	real	+	blade fold weight $\chi_{ m fold}$	1.0
TECH_tr	real	+	tail rotor weight χ_{tr}	1.0
TECH_aux	real	+	auxiliary thrust weight χ_{at}	1.0
$TECH_{rsupt}$	real	+	rotor support structure weight $\chi_{ m supt}$	1.0
TECH_duct	real	+	duct weight χ_{duct}	1.0

```
weight model result multiplied by technology factor and increment added:
```

```
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.
```

```
blade weight: W_{\text{blade}} = \chi_{\text{blade}} w_{\text{blade}} + dW_{\text{blade}} + (1+f)W_{\text{tip}}N_{\text{blade}}
```

SET_lblade: calculate blade moment of inertia lblade

0 from Lock number gamma, independent of blade weight

1 from blade weight

2 from Lock number gamma, tip weight Wblade_tip calculated from lblade

3 from autorotation index AI, tip weight Wblade_tip calculated from Iblade

for tail rotor or aux thrust weight model (MODEL_config = 2 or 3), blade weight $W_{\text{blade}} = xWblade*W_{tr}$ or $xWblade*W_{at}$

```
rotor weight = blade + hub + spinner + fold + shaft + support + duct
```

rotor config determines where weight put in weight statement

main rotor: rotor group

tail rotor: empennage group (tail rotor)

propeller: propulsion group (propeller/fan installation)

		+	Rotor Induced Power, Standard Energy Performance Method	
MODEL_ind	int	+	model (0 none, 1 constant, 2 standard)	2
		+	induced velocity factors (ratio to momentum theory induced velocity)	
Ki_hover	real	+	hover $\kappa_{ m hover}$	1.12
Ki_climb	real	+	axial climb $\kappa_{ m climb}$	1.08
Ki_prop	real	+	axial cruise (propeller) κ_{prop}	2.0
Ki_edge	real	+	edgewise flight (helicopter) κ_{edge}	2.0
		+	variation with thrust	
$CTs_{-}Hind$	real	+	$(C_T/\sigma)_{\mathrm{ind}}$ for hover κ_h variation	0.08
kh1	real	+	coefficient k_{h1} for κ_h	0.
kh2	real	+	coefficient k_{h2} for κ_h	0.
Xh2	real	+	exponent X_{h2} for κ_h	2.
$CTs_{-}Pind$	real	+	$(C_T/\sigma)_{\mathrm{ind}}$ for axial κ_p variation	0.08
kp1	real	+	coefficient k_{p1} for κ_p	0.
kp2	real	+	coefficient k_{p2} for κ_p	0.
Xp2	real	+	exponent X_{p2} for κ_p	2.
CTs_{Tind}	real	+	$(C_T/\sigma)_{\mathrm{ind}}$ for edgewise κ_e variation	0.08
kt1	real	+	coefficient k_{t1} for κ_e	0.
kt2	real	+	coefficient k_{t2} for κ_e	0.
Xt2	real	+	exponent X_{t2} for κ_e	2.
		+	variation with shaft angle	
kpa	real	+	coefficient $k_{p\alpha}$ for κ_p	0.
Xpa	real	+	exponent $X_{p\alpha}$ for κ_p	2.
		+	variation with propulsive force	
kpx	real	+	coefficient k_{px} for κ_p	0.
Xpx	real	+	exponent X_{px} for κ_p	1.
		+	axial flight transition	
Maxial	real	+	constant $M_{\rm axial}$ from hover to climb	1.176
Xaxial	real	+	exponent X_{axial} from hover to climb	0.65
mu_axtran	real	+	advance ratio $\mu_{z{\rm tran}}$ from hover to axial	0.
		+	variation with axial velocity	
mu_prop	real	+	advance ratio $\mu_{z \text{prop}}$ for Ki_prop	1.0
ka1	real	+	coefficient k_{a1} for $\kappa(\mu_z)$ (linear)	0.
ka2	real	+	coefficient k_{a2} for $\kappa(\mu_z)$ (quadratic)	0.

ka3	real	+	coefficient k_{a3} for $\kappa(\mu_z)$	0.
Xa	real	+	exponent X_a for $\kappa(\mu_z)$	4.5
		+	variation with edgewise velocity	
$MODEL_edge$	int	+	model for edgewise κ relative axial κ (0 replace, 1 sum)	0
mu_edge	real	+	advance ratio $\mu_{ m edge}$ for Ki_edge	0.35
ke1	real	+	coefficient k_{e1} for $\kappa(\mu)$ (linear)	0.8
ke2	real	+	coefficient k_{e2} for $\kappa(\mu)$ (quadratic)	0.
ke3	real	+	coefficient k_{e3} for $\kappa(\mu)$	1.
Xe	real	+	exponent X_e for $\kappa(\mu)$	4.5
kea	real	+	variation with rotor drag k_{elpha}	0.
		+	variation with lift offset	
ko1	real	+	coefficient k_{o1} for f_{off}	0.
ko2	real	+	factor k_{o2} for $f_{\rm off}$	8.
Ki_min	real	+	minimum $\kappa_{ m min}$	1.
Ki_max	real	+	maximum $\kappa_{ m max}$	10.
			nonzero values of Ki in FltState supersede calculated value	
		+	Climb power	
$MODEL_climb$	int	+	model (0 for no climb power increment, 1 vertical, 2 edgewise, 3 both)	0
		+	vertical flight	
nclimb_vert	int	+	number of climb values (maximum 20)	
$Vclimb_vert(20)$	real	+	climb speed V_c/v_h	
fclimb_vert(20)	real	+	climb power factor f	
		+	edgewise forward flight	
nclimb_edge	int	+	number of climb values (maximum 20)	
Vclimb_edge(20)	real	+	climb speed V_c/v_h	
fclimb_edge(20)	real	+	climb power factor f	
			climb power factor $f(V_c/v_h)$ gives $P_{\rm climb} - P_{\rm level} = TV_c f$ including TV_c and effect of climb on induced and profile power intended for use with table model for level flight power	

		+	Momentum theory	
MODEL_grad	int	+	inflow gradient in forward flight (0 none, 1 White and Blake, 2 Coleman and Feingold)	1
fGradx	real	+	longitudinal gradient factor f_x	1.
fGrady	real	+	lateral gradient factor f_y	1.
fGradm	real	+	hub moment inflow gradient factor f_m	1.
		+	Ground effect	
MODEL_GE	int	+	model (0 none, 1 Cheeseman, 2 BE Cheeseman, 3 Law, 4 Hayden, 5 Zbrozek, 6 Maryland, 7 T table, 8 P table)	3
Cge	real	+	effective height correction C_q	1.
		+	table	
KIND_GEtable	int	+	table kind (2 2D, 3 3D)	2
nCTsGE	int	+	number of C_T/σ values (maximum ngetabmax)	0
nhGE	int	+	number of h/D values (maximum ngetab2max)	0
nMtipGE	int	+	number of $M_{ m tip}$ values (maximum ngetab2max)	0
CTsGE(ngetabmax)	real	+	blade loading C_T/σ	
hGE(ngetab2max)	real	+	rotor height above ground h/D	
MtipGE(ngetab2max)	real	+	rotor tip Mach number $M_{ m tip}$	
\times GE(ngetabmax,ngetab2max)	real	+	ground effect factor $\kappa_g = x(C_T/\sigma, h/D)$ or $f_g = x(C_T/\sigma, h/D)$	
xGE3(ngetabmax,ngetab2max,	ngetab2	max)		
	real	+	ground effect factor $\kappa_g = x(C_T/\sigma, h/D, M_{\rm tip})$ or $f_g = x(C_T/\sigma, h/D, M_{\rm tip})$	

MODEL_GE: table options for $\kappa_g=T/T_\infty$ or $f_g=P/P_\infty$ as function of blade loading C_T/σ and rotor height above ground h/D (fraction rotor diameter), and perhaps tip Mach number $M_{\rm tip}$

Cge: for tiltrotors, typically $C_g=0.5$; smaller effective height accounting for increased influence of ground compared to isolated rotor

+]	Ducted	fan

MODEL_duct	int	+	model (1 specify area ratio, 2 specify thrust ratio)	1
fDuctA	real	+	area ratio f_A (fan area/far wake area)	1.
fDuctT	real	+	thrust ratio f_T (rotor thrust/total thrust)	0.5

121
121

fDuctVx	real	+	velocity ratio f_{Vx} (fan edgewise velocity/free stream velocity)	1.
fDuctVz	real	+	velocity ratio f_{Vz} (fan axial velocity/free stream velocity)	1.
eta_duct	real	+	duct efficiency η_D (total pressure loss through duct)	1.

ducted fan model used only if config='duct'

+ Twin rotors

MODEL_twin	c*12	+	model (based on config, none, side-by-side, coaxial, tandem, multirotor)	'config'
Kh_twin	real	+	ideal induced velocity correction for hover $\kappa_{h ext{twin}}$	1.00
Kp_twin	real	+	ideal induced velocity correction for propeller $\kappa_{p ext{twin}}$	1.00
Kf_twin	real	+	ideal induced velocity correction for forward flight $\kappa_{f ext{twin}}$	0.85
Cind_twin	real	+	constant C in axial to forward flight transition	1.0
Caxial_twin	real	+	constant C_a in hover to propeller transition	1.0
A_coaxial	real	+	coaxial rotor nonuniform disk loading factor $\bar{\alpha}$	1.05
xh_multi(nrotormax)	real	+	multirotor thrust factor x_h for hover	1.0
$xp_multi(nrotormax)$	real	+	multirotor thrust factor x_p for propeller	1.0
$xf_{multi}(nrotormax)$	real	+	multirotor thrust factor x_f for forward flgiht	1.0

MODEL_twin: 'config', 'none', 'side-by-side' or 'tiltrotor', 'coaxial', 'tandem', or 'multirotor' 'config' must identify rotor as twin or multiple rotors

 $coaxial: \ \mathsf{MODEL_twin='coaxial'} \ (use \ \mathsf{A_coaxial}; \ \mathsf{Kh_twin} \ not \ used)$

or $\mathsf{MODEL_twin} = \mathsf{'tandem'}$ with zero horizontal separation (typically $\mathsf{Kh_twin} = 0.90$)

coaxial and tandem: $Kf_{-}twin = 0.88$ to 0.81 for rotor separation 0.06D to 0.12D

thrust factors \boldsymbol{x} calculated for twin rotors, input for multiple rotors

correction factors and transition constants (κ_{twin}, C, C_a) used for twin or multiple rotors

		+	Rotor Profile Power, Standard Energy Performance Method	
		+	Technology factor	
$TECH_drag$	real	+	profile power χ	1.0
Re_ref	real	+	Reference Reynolds number Re_{ref} (0. for no correction)	0.
X_Re	real	+	exponent for Reynolds number correction X_{Re}	0.2
MODEL_basic	int	+	Basic model $c_{d \text{basic}}$ (0 none, 1 array, 2 equation)	2
		+	array (c_d vs thrust-weighted C_T/σ)	
ncd	int	+	number of points (maximum 24)	24
CTs_cd(24)	real	+	blade loading	
cd(24)	real	+	drag coefficient	
		+	equation	
CTs_Dmin	real	+	$(C_T/\sigma)_{D{ m min}}$ for minimum profile drag ($\Delta= C_T/\sigma-(C_T/\sigma)_{D{ m min}})$	0.07
d0_hel	real	+	coefficient $d_{0\text{hel}}$ in drag, $c_{dh} = d_{0\text{hel}} + d_{1\text{hel}}\Delta + d_{2\text{hel}}\Delta^2 + \Delta c_{d\text{sep}}$ (hover/edgewise)	0.009
d1_hel	real	+	coefficient $d_{1\text{hel}}$ in drag (hover/edgewise)	0.
d2_hel	real	+	coefficient $d_{2\text{hel}}$ in drag (hover/edgewise)	0.5
d0_prop	real	+	coefficient $d_{0\text{prop}}$ in drag, $c_{dp} = d_{0\text{prop}} + d_{1\text{prop}}\Delta + d_{2\text{prop}}\Delta^2 + \Delta c_{d\text{sep}}$ (axial)	0.009
d1_prop	real	+	coefficient $d_{1\text{prop}}$ in drag (axial)	0.
d2_prop	real	+	coefficient $d_{2\text{prop}}$ in drag (axial)	0.5
dprop	real	+	variation with shaft angle, coefficient $d_{p\alpha}$ for c_{dp}	0.
Xprop	real	+	variation with shaft angle, exponent $X_{p\alpha}$ for c_{dp}	2.
CTs_sep	real	+	$(C_T/\sigma)_{\rm sep}$ for separation $(\Delta c_{\rm dsep} = d_{\rm sep}(C_T/\sigma - (C_T/\sigma)_{\rm sep})^{X_{\rm sep}})$	0.07
dsep	real	+	factor $d_{ m sep}$ in drag increment	4.0
Xsep	real	+	exponent X_{sep} in drag increment	3.0
df1	real	+	variation with edgewise velocity, coefficient d_{f1}	0.
df2	real	+	variation with edgewise velocity, coefficient d_{f2}	0.
Xf	real	+	variation with edgewise velocity, exponent X_f	2.
dz1	real	+	variation with axial velocity, coefficient d_{z1}	0.
dz2	real	+	variation with axial velocity, coefficient d_{z2}	0.
Xz	real	+	variation with axial velocity, exponent X_z	2.

```
default array (cd(1)=0.): C_T/\sigma = 0. to 0.23 (uniform increments) cd = .01100,.01075,.01025,.01000,.01010,.01070,.01050,.00975,.00925,.00926,.00938,.00977, .01048,.01152,.01336,.01593,.01920,.02381,.03014,.04000,.08000,.16000,.32000,1.0000
```

nonzero values of cdo in FltState supersede calculated cdmean

MODEL_stall	int	+	Stall model c_{dstall} (0 none)	1
		+	C_T/σ at stall $(\Delta_s= C_T/\sigma -(f_s/f_{lpha}f_{ m off})(C_T/\sigma)_s, \Delta c_d=d_{s1}\Delta_s^{X_{s1}}+d_{s2}\Delta_s^{X_{s2}})$	
nstall	int	+	number of points (maximum 20)	10
mu_stall(20)	real	+	advance ratio $V/V_{ m tip}$	
CTs_stall(20)	real	+	$(C_T/\sigma)_s$	
fstall	real	+	constant f_s in stall drag increment	1.0
dstall1	real	+	factor d_{s1} in stall drag increment	2.
dstall2	real	+	factor d_{s2} in stall drag increment	40.
Xstall1	real	+	exponent X_{s1} in stall drag increment	2.0
Xstall2	real	+	exponent X_{s2} in stall drag increment	3.0
		+	variation with lift offset	
do1	real	+	coefficient d_{o1} for f_{off}	0.
do2	real	+	factor d_{o2} for $f_{ m off}$	8.
dsa	real	+	variation with rotor drag $d_{s\alpha}$	0.

```
\begin{array}{l} \mbox{default used if CTs\_stall(1)=0.} \\ \mbox{default CTs\_stall} = 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11, 0.10, 0.10, 0.10 \\ \mbox{default mu\_stall} = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.80 \\ \end{array}
```

MODEL_comp	int	+	Compressibility model $c_{d\text{comp}}$ (0 none, 1 drag divergence, 2 similarity, 3 tip Mach number)	1
MODEL_comp_ff	int	+	compressibility increment (0 only used for hover or axial flight)	1
		+	similarity model	
fSim	real	+	factor f	1.0
thick_tip	real	+	blade tip thickness-to-chord ratio $ au$	0.08
		+	drag divergence model ($\Delta_m=M_{at}-M_{dd}, \Delta c_d=d_{m1}\Delta_m+d_{m2}\Delta_m^{X_m}$)	
dm1	real	+	coefficient d_{m1} in drag increment	0.056
dm2	real	+	coefficient d_{m2} in drag increment	0.416
Xm	real	+	exponent X_m in drag increment	2.0
		+	drag divergence Mach number ($M_{dd}={\sf Mdd0}-{\sf Mddcl}\ c_\ell$)	
Mdd0	real	+	M_{dd0} at zero lift	0.88
Mddcl	real	+	derivative with lift $\kappa = \partial M_{dd}/\partial c_\ell$	0.16
		+	tip Mach number model	
dmt	real	+	coefficient d_{mt}	
Mtip_limit	real	+	tip Mach number limit $M_{ m tiplimit}$	
CT_{limit}	real	+	thrust coefficient limit $C_{T ext{limit}}$	
Mtip_ref	real	+	reference tip Mach number $M_{ m tipref}$	
MODEL_propeff	int	+	Propulsive force efficiency (0 none)	0
DoQ_ref	real	+	reference propulsive force $(D/q)_{\rm ref}$	
nCTs_eff	int	+	number of blade loading values (maximum 20)	
nV_eff	int	+	number of rotor velocity values (maximum 20)	
CTs_eff(20)	real	+	blade loading C_T/σ	
V_eff(20)	real	+	rotor velocity $V/V_{ m tip}$	
propeff(20,20)	real	+	efficiency for propulsive force increment $\eta(C_T/\sigma, V/V_{\rm tip})$	

propeff: efficiency η gives $\Delta P_o = V \Delta D(1/\eta - 1)$

DoQ_ref corresponds to baseline profile and induced power models intended for use with table model for power at baseline propulsive force

		+	Performance, Table Method	
$MODEL_indTab$	int	+	induced power model (0 standard, 1 table, 2 table with equations)	1
nvar_ind	int	+	number independent variables (1 to 3)	0
$var_ind(3)$	c*12	+	variables	1 1
$nv_ind(3)$	int	+	number of variable values (maximum ntablemax)	0
$v_{ind}(ntablemax,3)$	real	+	independent variable	
$MODEL_proTab$	int	+	profile power model (0 standard, 1 table, 2 table with equations)	1
$KIND_{proTab}$	int	+	profile power model (0 standard, 1 table c_{dmean} , 2 table $c_{dmean}F = 8C_{Po}/\sigma$)	1
nvar_pro	int	+	number independent variables (1 to 3)	0
$var_pro(3)$	c*12	+	variables	1 1
nv_pro(3)	int	+	number of variable values (maximum ntablemax)	0
$v_pro(ntablemax,3)$	real	+	independent variable	
$MODEL_geTab$	int	+	ground effect model (0 inflow, 1 table thrust, 2 table power)	0
		+	table	
Ki(ntablemax,ntablemax,r	ntablemax)			
	real	+	induced power factor κ	
cdo(ntablemax,ntablemax	,ntablemax)			
	real	+	profile power mean c_d	
			independent variables: var_ind and var_pro	
			'V': flight speed $V/V_{ m tip}$	
			'Vh': horizontal speed $V_h/V_{ m tip}$	
			'mu', 'muHP': edgewise advance ratio μ (hub plane)	
			'muz', 'muzHP': axial velocity ratio μ_z (hub plane)	
			'alpha', 'alphaHP': shaft angle-of-attack $\alpha = \tan^{-1}(\mu_z/\mu)$ (hub plane)	
			'muTPP': edgewise advance ratio μ (tip-path plane)	
			'muzTPP': axial velocity ratio μ_z (tip-path plane)	
			'alphaTPP': shaft angle-of-attack $\alpha = \tan^{-1}(\mu_z/\mu)$ (tip-path plane)	
			'CTs', 'CT/s': blade loading C_T/σ	
			'Mx', 'offset': lift offset M_x/TR	
			'Mtip': tip Mach number $M_{ m tip}$	
			'Mat': advancing tip Mach number M_{at}	
			<i>U</i> 1	

MODEL_geTab: ground effect included in inflow, or table power evaluated at thrust decreased by κ_g , or table power decreased by f_g

MODEL_download ≥ 2 : table induced and profile power evaluated at thrust increased by $f_{DL} = 1/(1 - \Delta T/T)$

nonzero values of Ki and/or cdo in FltState supersede table (or table with equations) values

```
Rotor Drag, Standard Model
                                                  forward flight drag
SET Dhub
                                int
                                                      hub drag specification (1 fixed, D/q; 2 scaled, C_D; 3 scaled, squared-cubed; 4 scaled, square-root)
                                                                                                                                                                                 2
DoQ hub
                                                          area (D/q)_{\text{hub}}
                                real
                                         +
                                                          coefficient C_{Dhub} (based on rotor area, D/q = SC_D)
CD hub
                                                                                                                                                                            0.0024
                                real
                                         +
                                                          k = (D/q)/(W/1000)^{2/3} or (D/q)/W^{1/2} (Units Dscale)
kDrag hub
                                real
                                         +
                                                                                                                                                                               8.0
                                                      pylon drag specification (1 fixed, D/q; 2 scaled, C_D)
SET Dpylon
                                int
                                                                                                                                                                                 2
DoQ pylon
                                                          area (D/q)_{\text{pylon}}
                                real
                                                          coefficient C_{Dyvlon} (based on pylon wetted area, D/q = SC_D)
CD pylon
                                                                                                                                                                                 0.
                                real
                                                      duct drag specification (1 fixed, D/q; 2 scaled, C_D)
SET Dduct
                                                                                                                                                                                 2
                                int
DoQ duct
                                real
                                                          area (D/q)_{\rm duct}
                                                          coefficient C_{D \text{duct}} (based on duct wetted area, D/q = SC_D)
CD duct
                                real
                                         +
                                                                                                                                                                                 0.
SET Dspin
                                int
                                                      spinner drag specification (1 fixed, D/q; 2 scaled, C_D)
                                                                                                                                                                                 1
DoQ spin
                                                                                                                                                                                 0.
                                real
                                         +
                                                          area (D/q)_{\rm spin}
                                                          coefficient \hat{C}_{D\text{spin}} (based on spinner wetted area, D/q = SC_D)
CD spin
                                         +
                                                                                                                                                                                 0.
                                real
                                                  vertical drag
                                         +
SET Vhub
                                                      hub drag specification (1 fixed, D/q; 2 scaled, C_D)
                                                                                                                                                                                 2
                                int
                                         +
DoQV hub
                                real
                                         +
                                                          area (D/q)_{V \text{hub}}
                                                          coefficient C_{DV\text{hub}} (based on rotor area, D/q = SC_D)
CDV hub
                                real
                                         +
                                                                                                                                                                                 0.
                                                      pylon drag specification (1 fixed, D/q; 2 scaled, C_D)
                                                                                                                                                                                 2
SET Vpylon
                                int
                                         +
DoQV pylon
                                                          area (D/q)_{V \text{ pylon}}
                                real
                                                          coefficient C_{DV_{\text{pylon}}} (based on pylon wetted area, D/q = SC_D)
CDV pylon
                                real
                                                                                                                                                                                 0.
                                                      duct drag specification (1 fixed, D/q; 2 scaled, C_D)
SET Vduct
                                int
                                         +
                                                                                                                                                                                 2
DoQV duct
                                                          area (D/q)_{V \text{duct}}
                                real
                                         +
                                                          coefficient C_{DV \text{duct}} (based on duct wetted area, D/q = SC_D)
CDV duct
                                         +
                                                                                                                                                                                 0.
                                real
```

		+	stopped/stowed rotor	
		+	forward flight hub drag	
DoQ_hubstop	real	+	area $(D/q)_{ m hub-stop}$	0.
CD_hubstop	real	+	coefficient $C_{D \text{hub-stop}}$ (based on rotor area, $D/q = SC_D$)	0.
DoQ_hubstow	real	+	area $(D/q)_{ m hub-stow}$	0.
CD_hubstow	real	+	coefficient $C_{D \text{hub-stow}}$ (based on rotor area, $D/q = SC_D$)	0.
		+	vertical hub drag	
$DoQV_hubstop$	real	+	area $(D/q)_{V m hub-stop}$	0.
CDV_hubstop	real	+	coefficient $C_{DV \text{hub-stop}}$ (based on rotor area, $D/q = SC_D$)	0.
$DoQV_hubstow$	real	+	area $(D/q)_{V m hub-stow}$	0.
$CDV_{\mathtt{hubstow}}$	real	+	coefficient $C_{DV \text{hub-stow}}$ (based on rotor area, $D/q = SC_D$)	0.
		+	stopped blade drag	
CD_bladestop	real	+	coefficient $C_{D\rm blade}$ (based on blade area, $D/q = SC_D$)	0.
		+	transition from forward flight drag to vertical drag	
MODEL_Dhub	int	+	hub drag model (0 none, 1 general, 2 quadratic)	2
MODEL_Dpylon	int	+	pylon drag model (0 none, 1 general, 2 quadratic)	2
MODEL_Dduct	int	+	duct drag model (0 none, 1 general, 2 quadratic)	2
X_hub	real	+	hub drag, transition exponent X_d	2.
X_pylon	real	+	pylon drag, transition exponent X_d	2.
X_{duct}	real	+	duct drag, transition exponent X_d	2.

		+	Rotor Interference, Standard Model	
		+	model	
$MODEL_develop$	int	+	development along wake axis (1 step function, 2 nominal, 3 input Xdevelop)	3
Xdevelop	real	+	rate parameter t	0.2
$MODEL_boundary$	int	+	immersion in wake (1 step function, 2 always immersed, 3 input Xboundary)	3
MODEL_contract	int	+	far wake contraction (0 no, 1 yes)	1
Xboundary	real	+	boundary transition s (fraction contracted radius)	0.2
MODEL_int_twin	int	+	twin rotor interference (1 no correction, 2 nominal, 3 input Ktwin)	1
Ktwin	real	+	velocity factor in overlap region K_T	1.4142
$Nint_wing(nwingmax)$	int	+	number wing span stations	6
$Nint_tail(ntailmax)$	int	+	number tail span stations	2
		+	interference factors $K_{\rm int}$ (0. for no interference)	
Kint_fus	real	+	at fuselage	1.0
$Kint_wing(nwingmax)$	real	+	at wing	1.0
Kint_tail(ntailmax)	real	+	at tail	1.0

Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all interference factor linearly transition from Kint at $V \leq \text{Vint_low}$ to 0 at $V \geq \text{Vint_high}$

to account for wing or tail area in wake, interference averaged at Nint points along span

MODEL_develop: step function same as Xdevelop=0; nominal same as Xdevelop=1. MODEL_boundary: step function same as Xboundary=0; always immersed same as Xboundary= ∞ MODEL_twin: only for coaxial or tandem or side-by-side; nominal same as Ktwin= $\sqrt{2}$

1

0.

+ Induced power interference at wing

KIND_int_wing int + kind (1 wing-like, 2 propeller-like)

Cint_wing(nwingmax) real + factor C_{int} (0. for no interference)

For tiltrotors, typically the interference is wing-like, with $C_{\rm int} \cong -0.06$

	+	Rotor Group, NDARC Weight Model	
int	+	model (1 rotor, 2 tail rotor, 3 auxiliary thrust)	1
int	+	blade weight model (1 AFDD82, 2 AFDD00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic)	1
int	+	hub and hinge weight model (1 AFDD82, 2 AFDD00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic)) 1
int	+	inter-rotor shaft weight (0 none, 1 from lift offset, 2 from shaft length)	0
	+	AFDD00 weight models	
int	+	hub weight equation depend on blade weight (for hub weight; 0 no, 1 yes)	1
int	+	rotor kind (for blade weight; 1 tilting, 2 not)	2
	+	AFDD00 and AFDD82: first flapwise natural frequency ν (per-rev at hover tip speed)	
real	+	blade (0. to use flapfreq)	0.
real	+	hub (0. to use flapfreq_blade)	0.
	+	lift offset rotor	
int	+	rotor tip clearance (for blade weight; 1 scaled, 2 fixed)	1
real	+	design lift offset L (roll moment/ TR)	0.3
real	+	blade airfoil thickness-to-chord ratio $\tau_{.2R}$ (at 20%R)	0.21
real	+	tip clearance, scaled s/R or fixed s (ft or m)	0.05
real	+	Boeing: blade airfoil thickness-to-chord ratio $\tau_{.25R}$ (at 25%R)	0.15
real	+	Boeing (blade, hub, tail rotor, aux thrust): blade attachment (fraction rotor radius)	0.09
	+	generic blade	
real	+	factor $K_{ m blade}$	0.
real	+	exponent $X_{\mathrm{bld}N}$	0.
real	+	exponent $X_{\mathrm{bld}R}$	0.
real	+	exponent $X_{\mathrm{bld}c}$	0.
real	+	exponent $X_{\mathrm{bld}V}$	0.
real	+	exponent $X_{\mathrm{bld} u}$	0.
real	+		0.
	+	· ·	
real	+		0.
real	+		0.
real	+		0.
real	+	•	0.
real	+	exponent $X_{\mathrm{hub}V}$	0.
real	+		0.
real	+	exponent $X_{\mathrm{hub}W}$	0.
	int int int int int real real real real real real real real	int + real +	int + model (I rotor, 2 tail rotor, 3 auxiliary thrust) int + blade weight model (1 AFDD82, 2 AFDD00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic) int + hub and hinge weight model (1 AFDD82, 2 AFDD00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic) int + inter-rotor shaft weight (0 none, 1 from lift offset, 2 from shaft length) + AFDD00 weight models int + hub weight equation depend on blade weight (for hub weight; 0 no, 1 yes) rotor kind (for blade weight; 1 tilting, 2 not) + AFDD00 and AFDD82: first flapwise natural frequency ν (per-rev at hover tip speed) real + bub (0. to use flapfreq_blade) + lift offset rotor rotor tip clearance (for blade weight; 1 scaled, 2 fixed) design lift offset L (roll moment/TR) real + design lift offset L (roll moment/TR) blade airfoil thickness-to-chord ratio τ.2R (at 20%R) real + Boeing: blade airfoil thickness-to-chord ratio τ.2SR (at 25%R) real + Boeing: blade airfoil thickness-to-chord ratio τ.2SR (at 25%R) real + Boeing: blade airfoil thickness-to-chord ratio (fraction rotor radius) generic blade real + exponent X _{blade} real + expon

MODEL_tr	int	+	tail rotor weight model (1 AFDD, 2 Boeing, 3 GARTEUR)	1
thick70	real	+	GARTEUR: blade airfoil thickness-to-chord ratio $\tau_{.7R}$ (at 70%R)	0.11
MODEL_aux	int	+	auxiliary thrust weight model (1 AFDD10, 2 AFDD82, 3 Boeing, 4 GARTEUR, 5 Torenbeek, 6 generic)	1
thrust_aux	real	+	AFDD82: design maximum thrust T_{at}	0.
power_aux	real	+	AFDD10: design maximum power P_{at}	0.
material_aux	real	+	AFDD10: material factor f_m	1.
		+	generic propeller	
Kat	real	+	factor $K_{ m at}$	0.
XatN	real	+	exponent $X_{\mathrm{at}N}$	0.
XatR	real	+	exponent $X_{\mathrm{at}R}$	0.
Xatc	real	+	exponent $X_{\mathrm{at}c}$	0.
XatV	real	+	exponent $X_{\mathrm{at}V}$	0.
XatP	real	+	exponent $X_{\mathrm{at}P}$	0.
fWfold	real	+	blade fold weight f_{fold} (fraction total blade weight)	0.
fWsupt	real	+	rotor support structure weight (fraction maximum takeoff weight)	0.
Usupt	real	+	rotor support weight per length U_{supt} (lb/ft or kg/m)	0.
fshaft	real	+	rotor shaft length (fraction rotor radius) $f_{ m shaft}$	0.
Ushaft	real	+	rotor shaft weight per length $U_{ m shaft}$ (lb/ft or kg/m)	0.
Uduct	real	+	duct weight per area $U_{\rm duct}$ (lb/ft ² or kg/m ²)	1.5

MODEL_config: tail rotor and auxiliary thrust models use only rotor, support, and duct weights (not shaft, fold, or separate blade and hub weights)

duct weight only used for ducted fan configuration

for teetering and gimballed rotors, the flap frequency flapfreq_blade should be the coning frequency

The AFDD00 hub weight equation using the calculated blade weight (MODEL_type = 0) results in a lower average error, and best represents legacy rotor systems.

Using the actual actual blade weight (MODEL_type = 1) is best for advanced technology rotors with blades lighter than trend.

if thrust_aux $\neq 0$, supersedes design maximum thrust of rotor from sizing task

if power_aux \neq 0, supersedes design maximum power of rotor from sizing task

material_aux=1 for composite construction, 1.20 for wood, 1.31 for aluminum spar, 1.44 for aluminum construction default Ω_{DTOD} is the reference rotor speed

typically fWfold = 0.04 for manual fold, 0.28 for automatic fold rotor support structure weight must be consistent with engine support and pylon support weights of engine section

+ Custom Weight Model

WtParam_rotor(8) real + parameters 0.

Variable	Type		Description	Default
		+	Wing	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Geometry	
wingload	real	+	wing loading $W/S = f_W W_D/S$	
fDGW	real	+	fraction DGW f_W (for wing loading)	1.0
area	real	+	area S	
span	real	+	$\operatorname{span} b$	
chord	real	+	$\operatorname{chord} c$	
AspectRatio	real	+	aspect ratio AR	

		+	Geometry	
		+	rotors	
${\sf nRotorOnWing}$	int	+	number of rotors mounted on wing	0
RotorOnWing(nrotormax)	int	+	rotor numbers	
		+	span calculation	
fSpan	real	+	ratio wing span to span of other wing, or to rotor radius	1.0
otherWing	int	+	other wing number	0
RotorForSpan	int	+	rotor number for span (if nRotorOnWing=0)	0
${\sf RotorOnPanel(npanelmax)}$	int	+	rotor at wing panel edge	
thick	real	+	thickness ratio $ au_w$.23
$fWidth_box$	real	+	wing torque box chord w_{tb} (fraction wing chord)	0.45
SET_ac	int	+	aerodynamic center offset from pivot, at zero incidence (0 none, 1 fixed, 2 scale with chord)	0
dSLac	real	+	stationline	0.
dBLac	real	+	buttline	0.
dWLac	real	+	waterline	0.
SET_cg	int	+	center of gravity offset from pivot, at zero incidence (0 none, 1 fixed, 2 scale with chord)	0
dSLcg	real	+	stationline	0.
dWLcg	real	+	waterline	0.

RotorOnWing required for SET_wing = 'radius' or 'width' or 'hub'; MODEL_wing = tiltrotor; SET_Vdrag = airfoil c_{d90} RotorOnPanel required for SET_panel = 'radius' or 'width' or 'hub' SET_wing = 'radius' gets radius from RotorOnWing or RotorForSpan

taper, sweep, thickness used by weight equations

taper and sweep calculated for entire wing from wing panel geometry

fWidth_box used by tiltrotor weight equations thick and fWidth_box used for fuel in wing

+ Geometry (for graphics)

twist real + twist 0.

		+	Geometry	
loc_wing	Location ·	+	aerodynamic center location	
nPanel	int	+	number of wing panels (maximum npanelmax)	1
KIND_ACoffset	int	+	aero center offset (1 fixed, 2 fraction root chord, 3 fraction inboard chord)	1
		+	Wing Panels	
$SET_{panel}(npanelmax)$	c*24	+	panel parameters	'span+taper'
$span_panel(npanelmax)$	real	+	span (one side), b_p	
$area_panel(npanelmax)$	real	+	area (both sides), S_p	
$chord_panel(npanelmax)$	real	+	mean chord, c_p	
fspan_panel(npanelmax)	real	+	ratio span to wing span (one side), $b_p/(b/2)$	1.
$farea_panel(npanelmax)$	real	+	ratio area to wing area (both sides), S_p/S	1.
$fchord_panel(npanelmax)$	real	+	ratio mean chord to wing chord, c_p/c	1.
		+	panel edges	
$edge_panel(npanelmax)$	real	+	outboard edge, y_E	
fedge_panel(npanelmax)	real	+	outboard edge, $\eta_E = y/(b/2)$	1.
lambdal(npanelmax)	real	+	inboard chord ratio, $c_I/c_{ m ref}$	1.
lambdaO(npanelmax)	real	+	outboard chord ratio, $c_O/c_{ m ref}$	1.
		+	aerodynamic center locus	
<pre>sweep_panel(npanelmax)</pre>	real	+	sweep Λ_p (deg, + aft)	0.
dihedral_panel(npanelmax)	real	+	dihedral δ_p (deg, + up)	0.
$dxAC_panel(npanelmax)$	real	+	chordwise offset at panel inboard edge x_{Ip} (+ aft)	0.
$dzAC_panel(npanelmax)$	real	+	vertical offset at panel inboard edge z_{Ip} (+ up)	0.
		+	control surfaces	
$fchord_flap(npanelmax)$	real	+	flap chord $\ell_F = c_F/c_p$ (fraction panel chord)	0.25
$fchord_flaperon(npanelmax)$	real	+	flaperon/aileron chord $\ell_f = c_f/c_p$ (fraction panel chord)	0.25
fspan_flap(npanelmax)	real	+	flap span $f_b = b_F/b_p$ (fraction panel span)	0.5
$fspan_flaperon(npanelmax)$	real	+	flaperon/aileron span $f_b = b_f/b_p$ (fraction panel span)	0.5
$fAC_aileron(npanelmax)$	real	+	aileron aerodynamic center lateral position y	0.7

SET_wing, wing parameters: for each wing; input two quantities, other two derived

SET_wing = input two of ('area' or wing loading 'WL'), ('span' or 'ratio' or 'radius' or 'width' or 'hub' or 'panel')

SET_wing = 'chord', aspect ratio 'aspect'

SET_wing = 'ratio+XX' to calculate span from span of another wing

SET_wing = 'radius+XX' to calculate span from rotor radius

```
SET wing = 'width+XX' to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
     SET wing = 'hub+XX' to calculate span from rotor hub position (tiltrotor)
    SET wing = 'panel+XX' to calculate span from wing panel widths
wing panels: SET_panel not required with only one panel
SET panel: specify consistent definition of panels (span, edge, area, chord)
     panel span: 'span' or 'bratio', else free
         'span' = input span panel, b_n
         'bratio' = input ratio to wing span, fspan_panel, b_p/(b/2)
    panel outboard edge: 'edge', 'station', 'width', 'hub', or 'adjust' (not used for tip panel)
         'edge' = input edge_panel, y_E
         'station' = input fraction wing semispan fedge panel, \eta_E = y/(b/2)
         'radius' = from rotor radius
         'width' = from rotor radius, fuselage width, and clearance (tiltrotor)
         'hub' = from rotor hub position (tiltrotor)
         'adjust' = from adjacent input panel span or span ratio
     panel area or chord: 'area', 'Sratio', 'chord', 'cratio', 'taper', else free
         'area' = input area_panel, S_p
         'Sratio' = input ratio to wing area, farea_panel, S_p/S
         'chord' = input chord_panel, c_p
         'cratio' = input ratio to wing chord, fchord_panel, c_p/c
         'taper' = from chord ratios lambdal and lambdaO
     require consistent definition of panel spans and outboard edges, and consistent with SET_wing
         all edges known (from input edge or station, or from adjacent panel span or span ratio)
         resulting edges unique and sequential
         if wing span calculated from panel widths:
              one and only one input panel span or span ratio that not used to define edge
         if known span: no input panel span or span ratio that not used to define edge
         usually best that any free span defined for inboard panel, not outboard panel
     panel area or chord:
         if one or more taper (and no free), calculate c_{ref} from wing area
         if one (and only one) free, calculate S_n from wing area
fAC aileron: from panel inboard edge, fraction panel span
     for nPanel=1, from centerline and fraction wing semispan
```

```
Example input for typical wing geometry
Tiltrotor, one panel:
    Size: SET_wing='WL+width', ! span from radius, fuselage width, and clearance; and wing loading
    Rotor: SET geom='tiltrotor', KIND TRgeom=1, ! rotor lateral position (BL) from clearance
        WingForRotor=1,otherRotor=1/2,
        clearance fus=x.,
        fclearance fus=1.,
    Fuselage: Width fus=x.,
    Wing: wingload=x.,
        nRotorOnWing=2,RotorOnWing=1,2,
        nPanel=1
        SET panel='span+taper',lambdal=1,,lambdaO=1,,! not required with only one panel
Tiltrotor with wing extension, two panels
    Size: SET wing='WL+panel', ! span from wing panel widths; and wing loading
    Rotor: SET geom='tiltrotor',KIND TRgeom=1, ! rotor lateral position (BL) from clearance
        WingForRotor=1,otherRotor=1/2,PanelForRotor=1,
        clearance fus=x.,
        fclearance fus=1.,
    Fuselage: Width_fus=x.,
    Wing: wingload=x.,
        nRotorOnWing=2,RotorOnWing=1,2,
        nPanel=2,
        SET panel='width+taper', 'span+taper', ! outboard edge from R, Width fus, and clearance; from span panel
        RotorOnPanel=1, 0,
        span panel=0., x.,
        lambdal=1., 1.,
        lambdaO=1., x.,
        sweep panel=x., x.,
        dihedral panel=x., x.,
        SET_ext=1,kPanel_ext=2,KIT_ext=0,! wing extension
```

General wing, two panels, define chord and span of both

```
Size: SET wing='panel+area', ! span from wing panel widths; and wing area
                                                     Rotor: SET geom='standard',
                                                    Wing: area=x.,
                                                         nPanel=2.
                                                         SET panel='span+chord', 'span+free', ! span from span panel; chord from inboard chord panel and area
                                                         span panel=x., x.,
                                                         chord panel=x., x.,
                                                Tiltwing, three panels, four rotors
                                                    inboard hub at 1.75R (R + .25R clearance + .50R fuselage)
                                                    outboard hub at 3.6R (1.85R between hubs, overlap = .075)
                                                     wing tip at 4.2R (0.6R from outboard hub)
                                                    Size: SET wing='WL+radius', ! calculate span from rotor radius; and wing loading
                                                     Rotor: right/right-inboard/left-inboard/left
                                                         SET geom='tiltrotor', KIND TRgeom=3, ! rotor lateral position (BL) from wing panel edge
                                                         WingForRotor=1,
                                                         positionOfRotor=1/1/-1/-1, ! right/left
                                                         PanelForRotor=2/1/1/2,
                                                     Wing: wingload=x.,
                                                         nRotorOnWing=4,RotorOnWing=1,2,3,4,
                                                         fSpan=4.2, ! fSpan = b/D
                                                         nPanel=3.
                                                         SET panel='station+cratio','station+cratio','station+free',
                                                         fedge_panel=0.4167, 0.8571, 1., ! inboard-rotor/semispan, outboard-rotor/semispan, 1
                                                         fchord panel=1., 1., 1.,
                                          Wing Extensions
SET ext
                                              extension (0 for none)
                             int
                                                                                                                                                                     0
kPanel ext
                                              wing panel number
                                                                                                                                                                     2
                              int
                                      +
KIT ext
                             int
                                      +
                                              wing extension as kit (0 not kit)
                                                                                                                                                                     0
                                          Wing Kit
                                              wing as kit (0 not, 1 kit, 2 kit as fixed useful load)
KIT wing
                                      +
                                                                                                                                                                     0
                              int
                                              kit weight (fraction total wing weight)
fWkit
                                                                                                                                                                    0.
                              real
                                      +
```

		+	Controls (each panel)	
		+	kind deflection	
$KIND_flap(npanelmax)$	int	+	flap (1 fraction root flap; 2 increment relative root flap; 3 independent)	3
KIND_aileron(npanelmax)	int	+	aileron (1 fraction root aileron; 2 increment relative root aileron; 3 independent)	3
KIND_incid(npanelmax)	int	+	incidence (1 fraction root incidence; 2 increment relative root incidence; 3 independent)	3
$KIND_flaperon(npanelmax)$	int	+	kind flaperon deflection (1 fraction flap; 2 increment relative flap; 3 independent)	1
		+	flap δ_{Fp}	
INPUT_flap(npanelmax)	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_flap(ncontmax,nstatemax,n)$	panelmax	<)		
	real	+	control matrix	
nVflap(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
flap(nvelmax,npanelmax)	real	+	values	
Vflap(nvelmax,npanelmax)	real	+	speeds (CAS or TAS)	
		+	flaperon δ_{fp}	
$INPUT_flaperon(npanelmax)$	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{flaperon}(ncontmax, nstatem)$	ax,npane	elmax)		
	real	+	control matrix	
nVflaperon(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
flaperon(nvelmax,npanelmax)				
	real	+	values	
Vflaperon(nvelmax,npanelmax))			
	real	+	speeds (CAS or TAS)	
		+	aileron δ_{ap}	
$INPUT_{aileron}(npanelmax)$	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{a}ileron(ncontmax,nstatemax)$	k, npanelr	max)		
	real	+	control matrix	
nVaileron(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
aileron(nvelmax,npanelmax)	real	+	values	
${\sf Vaileron(nvelmax,npanelmax)}$				
	real	+	speeds (CAS or TAS)	

		+	incidence i_p	
INPUT_incid(npanelmax)	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$,npanelm	ax)		
	real	+	control matrix	
nVincid(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax,npanelmax)	real	+	values	
Vincid(nvelmax,npanelmax)	real	+	speeds (CAS or TAS)	
		+	flow control momentum coefficient C_{μ}	
INPUT_flow(npanelmax)	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_flow(ncontmax,nstatemax,	npanelma	ax)		
_ ,	real	+	control matrix	
nVflow(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
flow(nvelmax,npanelmax)	real	+	values	
Vflow(nvelmax,npanelmax)	real	+	speeds (CAS or TAS)	
			aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$ for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state	
		+	Trim Target	
		+	wing lift	
nVlift	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	
Klift(nvelmax)	real	+	target	
Vlift(nvelmax)	real	+	speeds (CAS or TAS)	
			target definition determined by Aircraft%trim_quant Klift can be fraction total aircraft lift, lift, or ${\cal C}_L$	
		_	Aerodynamics	
MODEL_aero	int	+	model (0 none, 1 standard)	1
Idrag	real	+	incidence angle i for helicopter nominal drag (deg; 0 for not tilt)	0.
idiag	icai	-	metablice angle i for hencopter nominal drag (deg. o for not the)	υ.

		+	Weight	
		+	wing group	
MODEL_weight	int	+	model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWprim	real	+	wing primary structure	0.
dWext	real	+	wing extension	0.
dWfair	real	+	fairing	0.
dWfit	real	+	fittings	0.
dWflap	real	+	flaps and control surfaces	0.
dWwfold	real	+	wing fold	0.
dWefold	real	+	wing extension fold	0.
		+	tiltrotor model	
fWtip	real	+	factor for weight on wing tips	1.
×Wtip	real	+	increment for weight on wing tips	0.
		+	Technology Factors	
$TECH_prim$	real	+	wing primary structure (torque box) weight χ_{prim}	1.0
TECH_ext	real	+	wing extension weight $\chi_{ m ext}$	1.0
TECH_fair	real	+	fairing weight χ_{fair}	1.0
TECH_fit	real	+	fittings weight $\chi_{ m fit}$	1.0
$TECH_flap$	real	+	flaps and control surfaces weight χ_{flap}	1.0
TECH_wfold	real	+	wing fold weight $\chi_{ m fold}$	1.0
TECH_efold	real	+	wing extension fold weight $\chi_{ m efold}$	1.0

```
weight model result multiplied by technology factor and increment added:
```

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

tiltrotor model requires weight on wing tips: both sides; calculated as sum of

rotor group, engine section or nacelle group, air induction group,

engine system, drive system (less drive shaft), rotary wing and conversion flight controls,

hydraulic group, trapped fluids, wing tip extensions

fWtip and xWtip adjust Wtip_total, without changing weight statements

negative increment required when engine and transmission not at tip location with rotor

		+	Wing Aerodynamics, Standard Model	
AoA_zl	real	+	zero lift angle of attack α_{zl} (deg)	0.
CLmax	real	+	maximum lift coefficient $C_{L{ m max}}$	1.5
SET_compress	int	+	compressibility correction (0 none, 1 lift, 2 drag, 3 both)	0
		+	lift	
SET_lift	int	+	specification (2 2D $dC_L/d\alpha$; 3 3D $dC_L/d\alpha$)	2
dCLda	real	+	lift curve slope $C_{L\alpha} = dC_L/d\alpha$ (per rad)	5.73
Tind	real	+	lift curve slope non-elliptical loading correction $ au$	0.25
Eind	real	+	Oswald or span efficiency $e\left(C_{Di}=(C_L-C_{L0})^2/(\pi eAR)\right)$	0.8
CL_Dmin	real	+	lift coefficient for minimum induced drag C_{L0}	0.
Mdiv	real	+	lift-divergence Mach number $M_{ m div}$	0.75
		+	control (each wing panel)	
eta0(npanelmax)	real	+	lift effectiveness factor $\eta_0, \eta_0 - \eta_1 \delta $	0.85
eta1(npanelmax)	real	+	lift effectiveness factor $\eta_1, \eta_0 - \eta_1 \delta $	0.43
Kconl(npanelmax)	real	+	calibration or correction factor for lift K_ℓ	1.
Kconm(npanelmax)	real	+	calibration or correction factor for moment K_m	1.
Kcond(npanelmax)	real	+	calibration or correction factor for drag K_d	1.
Kconx(npanelmax)	real	+	calibration or correction factor for maximum lift K_x	1.
		+	pitch moment	
CMac	real	+	pitch moment coefficient about aerodynamic center C_{Mac}	0.
			Wing Drog Standard Model	
		+	Wing Drag, Standard Model forward flight drag	
CET due o	int	+		2
SET_drag DoQ		+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
CD	real real	+	area $(D/q)_0$ coefficient C_{D0} (based on wing area, $D/q = SC_D$)	0.012
CD	ieai	+	vertical drag	0.012
SET_Vdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D ; 3 airfoil c_{d90})	2
DoQV	int real	+	±	2
CDV		+	area $(D/q)_V$	2
	real	+	coefficient, C_{DV} (based on wing area, $D/q = SC_D$)	2.
cd90	real	+	airfoil drag coefficient c_{d90} (-90 deg)	1.4
fd90	real	+	airfoil drag coefficient flap effectiveness factor f_{d90}	2.5
CDcc	real	+	compressibility drag increment C_{Dcc} at M_{cc}	0.0011
Mcc0	real	+	critical Mach number constant M_{cc0}	0.74
Mcc1	real	+	critical Mach number constant M_{cc1}	0.31

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

		+	drag variation with angle of attack	
$MODEL_drag$	int	+	model (0 none, 1 general, 2 quadratic) $\Delta C_D = C_{D0} K_d \alpha_e ^{X_d}$	2
AoA_Dmin	real	+	angle of attack for wing minimum drag $\alpha_{D \min}$ (deg)	0.
Kdrag	real	+	drag increment K_d	0.
Xdrag	real	+	drag increment X_d	2.
MODEL_sep	int	+	separated flow model (0 none, 1 general, 2 quadratic, 3 cubic) $\Delta C_D = C_{D0}K_s(\alpha_e - \alpha_s)^{X_s}$	3
AoA_sep	real	+	angle of attack for separation α_s (deg)	10.
Ksep	real	+	drag increment K_s	0.
Xsep	real	+	drag increment X_s	2.
		+	transition from forward flight drag to vertical drag	
AoA_tran	real	+	angle of attack for transition α_t (deg)	25.

Conventionally the Oswald efficiency e represents the wing parasite drag variation with lift, as well as the induced drag. If C_{Dp} varies with angle-of-attack, then e is just the span efficiency factor for the induced power (and C_{L0} should be zero).

		+	wing-body interference drag	
SET_wb	int	+	specification (1 fixed, D/q 2 scaled, C_D)	1
DoQ_wb	real	+	area $(D/q)_{wb}$	0.
CD_wb	real	+	coefficient C_{Dwb} (based on wing area, $D/q = SC_D$)	0.
		+	Interference velocity	
Etail(ntailmax)	real	+	angle of attack change at tail, $E=d\epsilon/d\alpha$ (rad/rad)	0.
Kint_wing(nwingmax)	real	+	interference factor K_{int} at other wings (0. for no interference)	0.
		+	interference power factor K_{int} at rotors (0. for no interference)	
Kintn_rotor(nrotormax)	real	+	normal (helicopter)	0.
$Kintp_rotor(nrotormax)$	real	+	inplane (propeller)	0.

for tandem wings, typically

Kint_wing(aftwing)=2. for front-on-aft interference

Kint_wing(frontwing)=0. for aft-on-front interference

for biplane wings, typically Kint_wing(otherwing)=0.7

with mutual interference (as for biplane), require trim or other iteration for convergence

interference power: inplane (propeller) factor Kintp_rotor negative for favorable

		+	Flow Control; $\Delta C_L = C_{L\alpha}(L_{\mu s}\sqrt{C_{\mu}} + L_{\mu 1}C_{\mu} + L_{\mu 2}C_{\mu}^2), \Delta C_{L \max} = X_{\mu}C_{\mu}, \Delta C_M = M_{\mu}C_{\mu}, \Delta C_D = D_{\mu}C_{\mu}$	
MODEL_flow	int	+	model (0 none)	0
Lmus(npanelmax)	real	+	lift $L_{\mu s}$	1.4
Lmu1(npanelmax)	real	+	lift $L_{\mu 1}^{'}$	0.0
Lmu2(npanelmax)	real	+	lift $L_{\mu 2}^{'}$	0.0
Xmu(npanelmax)	real	+	maximum lift X_μ	1.0
Mmu(npanelmax)	real	+	moment M_{μ}	0.0
Dmu(npanelmax)	real	+	drag D_{μ}	0.0
$Cmu_limit(npanelmax)$	real	+	flow limit $C_{\mu m limit}$	1.0
		+	Wing Group, NDARC Weight Model	
MODEL_wing	int	+	model (1 area, 2 parametric, 3 tiltrotor, 4 other)	2
MODEL_other	int	+	model (1 Boeing, 2 GARTEUR, Torenbeek (3 light, 4 transport), Raymer (5 transport, 6 general aviation))	
fLift	real	+	lift factor	1.0
bFold	real	+	parametric method: fraction wing span that folds $b_{\rm fold}$ (0 to 1)	0.
wfus	real	+	Boeing: maximum fuselage width (fraction wing span)	
Vdive	real	+	Boeing or Raymer: design dive speed $V_{\rm dive}$ (knots)	200.
rflaplift	real	+	GARTEUR: ratio maximum lift with and without flaps	
		+	area method	
Uprim	real	+	weight per area $U_{\rm prim}$, wing primary structure (lb/ft ² or kg/m ²)	5.
Uext	real	+	weight per area $U_{\rm ext}$, wing extension (lb/ft ² or kg/m ²)	3.

		+	weight factors (fraction total wing weight)	
fWfair	real	+	fairing $f_{ m fair}$	0.10
fWfit	real	+	fittings $f_{ m fit}$	0.12
fWflap	real	+	flaps and control surfaces $f_{ m flap}$	0.10
fWfold	real	+	wing fold $f_{ m fold}$	0.
fWefold	real	+	wing extension fold $f_{ m efold}$ (fraction wing extension weight)	0.
		+	Custom Weight Model	
WtParam_wing(8)	real	+	parameters	0.
		+	Wing Group, NDARC Tiltrotor Weight Model	
		+	jump takeoff condition	
CTs_jump	real	+	rotor maximum blade loading C_T/σ	0.20
n_jump	real	+	load factor n_{jump} at SDGW	2.0
Vtip_jump	real	+	rotor tip speed (0. to use hover $V_{\rm tip}$)	750.0
thickTR	real	+	wing airfoil thickness-to-chord ratio $ au_w$	0.23
		+	width of wing structural attachments to body	
SET_Attach	int	+	definition (0 input wAttach, 1 fraction fuselage width, 2 fraction wing span)	1
fAttach	real	+	fraction width $w_{ m attach}/w_{ m fus}$	1.
wAttach	real	+	width $w_{\rm attach}$ (ft or m)	0.
fRG_pylon	real	+	pylon radius of gyration r_{pylon}/R (fraction rotor radius)	0.30
		+	wing mode frequencies (per rev, fraction rotor speed)	
freq_beam	real	+	beam bending frequency ω_B	0.5
freq_chord	real	+	chord bending frequency ω_C	0.8
freq_tors	real	+	torsion frequency ω_T	0.9
SET_refrpm	int	+	reference rotor speed (0 from input Vtip_freq, 1 hover $V_{\rm tip}$, 2 cruise $V_{\rm tip}$)	0
Vtip_freq	real	+	rotor tip speed	600.
MODEL_form	int	+	form factors (1 calculate, 2 input)	1
form_beam	real	+	torque box beam bending F_B	0.6048
form_chord	real	+	torque box chord bending F_C	0.4874
form_tors	real	+	torque box torsion F_T	1.6384
form_spar	real	+	spar caps vertical/horizontal bending F_{VH}	0.5018
eff_spar	real	+	spar structural efficiency e_{sp}	0.8
eff_box	real	+	torque box structural efficiency e_{tb}	0.8

		+	tapered spar cap correction factors	
C_t	real	+	weight correction C_t (equivalent stiffness)	0.75
C_j	real	+	weight correction C_j (equivalent strength)	0.50
C_m	real	+	strength correction C_m (equivalent stiffness)	1.5
		+	material (lb/in ² , in/in, lb/in ³ ; or N/m ² , m/m, kg/m ³)	
E_spar	real	+	spar modulus E_{sp}	10.E6
E_box	real	+	torque box modulus E_{tb}	10.E6
G_{box}	real	+	torque box shear modulus G_{tb}	4.0E6
$StrainU_spar$	real	+	spar ultimate strain allowable ϵ_U	0.01
$StrainU_box$	real	+	torque box ultimate strain allowable ϵ_U	0.01
density_spar	real	+	density spar cap $ ho_{sp}$	0.06
density_box	real	+	density torque box ρ_{tb}	0.06
		+	weight per area (lb/ft ² or kg/m ²)	
Ufair	real	+	fairing $U_{ m fair}$	2.
Uflap	real	+	flaps and control surfaces U_{flap}	3.
UextTR	real	+	wing extension $U_{ m ext}$	3.
		+	weight factor	
fWfitTR	real	+	fittings f_{fit} (fraction maximum thrust of one rotor)	0.01
fWfoldTR	real	+	wing fold f_{fold} (fraction total wing weight excluding fold)	0.
fWefoldTR	real	+	wing extension fold $f_{ m efold}$ (fraction wing extension weight)	0.
			jump takeoff: hover $V_{ m tip}$ obtained from RotorOnWing(1) rotor	
			wing frequencies: reference rotor rotation speed from rotor $V_{\rm tip}$ and radius from RotorOnWing(1) rotor; hover tip speed Vtip_ref(1), cruise Vtip_cruise	
			thickTR only used for tiltrotor wing weight	

+ Custom Weight Model

WtParam_wingtr(8) real + parameters 0.

SET_Attach: attachment width used for both torsion stiffness and fairing area

Chapter 24

Structure: Tail

Variable	Type		Description	Default
		+	Empennage	
title	c*100	+	title	
notes	c*1000	+	notes	
KIND_tail	int	+	kind (1 horizontal tail, 2 vertical tail, 3 V-tail horizontal, 4 V-tail vertical)	1
		+	Geometry	
SET_tail	c*16	+	specification	'vol $+$ aspect $'$
area	real	+	area S	
span	real	+	span b	
chord	real	+	$chord\; c$	
AspectRatio	real	+	aspect ratio AR	
TailVol	real	+	tail volume V	
KIND_TailVol	int	+	tail volume reference (1 wing, 2 rotor)	2
TailVolRef	int	+	wing or rotor number for tail volume	1
otherVtail	int	+	other V-tail number	

```
KIND_tail used for geometry, baseline orientation, tail volume, tail weight model tail parameters: input two quantities, others calculated  \begin{array}{c} {\sf SET\_tail} = {\sf input} \ {\sf two} \ {\sf of} \ ({\sf 'area'} \ {\sf or} \ {\sf tail} \ {\sf volume' vol'}), ({\sf 'span'} \ {\sf or} \ {\sf aspect'} \ {\sf or' chord'}) \\ {\sf tail} \ {\sf volume} \ {\sf reference} : \ {\sf tail} \ {\sf volume} \ {\sf V} = S\ell/RA \ ({\sf tailarea* taillength / (diskarea* radius)}) \\ {\sf or horizontal} \ {\sf tail} \ {\sf volume} \ {\sf V} = S\ell/S_w c_w \ ({\sf tailarea* taillength / (wingarea* wingspan)}) \\ {\sf volume} \ {\sf V} = S\ell/S_w b_w \ ({\sf tailarea* taillength / (wingarea* wingspan)}) \\ {\sf V-tail} : \ {\sf modeled} \ {\sf aspair} \ {\sf of horizontal} \ {\sf and vertical} \ {\sf tails} \ ({\sf identified} \ {\sf by otherVtail}) \\ {\sf separately} \ {\sf sized}, \ {\sf aerodynamic} \ {\sf loads} \ {\sf for each}; \ {\sf dihedral} \ {\sf calculated}, \ {\sf cant set} \ {\sf to zeroweight} \ {\sf only} \ {\sf for second} \ {\sf tail}, \ {\sf based} \ {\sf on V-tail} \ {\sf area} \ {\sf and} \ {\sf aspect} \ {\sf ratio} \\ \\ {\sf volume} \ {\sf v
```

Structure: Tail

		+	Geometry (for graphics and weights)	
taper	real	+	taper ratio	1.0
sweep	real	+	sweep (+ aft, deg)	0.
dihedral	real	+	dihedral (deg)	0.
thick	real	+	thickness ratio	.12
		+	Geometry	
loc_tail	Locatio	n +	aerodynamic center location	
cant	real	+	cant angle ϕ (deg)	0.
fchord_cont	real	+	control surface chord c_f/c (fraction tail chord)	0.25
fspan_cont	real	+	control surface span b_f/b (fraction tail span)	1.0
		+	Controls	
		+	elevator δ_e or rudder δ_r	
INPUT_cont	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{cont}(ncontmax,nstatemax)$	real	+	control matrix	
nVcont	int	+	number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)	0
cont(nvelmax)	real	+	values	
Vcont(nvelmax)	real	+	speeds (CAS or TAS)	
		+	incidence i	
INPUT_incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$				
	real	+	control matrix	
nVincid	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)	real	+	values	
Vincid(nvelmax)	real	+	speeds (CAS or TAS)	
•				

horizontal tail cant angle: + to left (vertical tail for cant = 90) vertical tail cant angle: + to right (horizontal tail for cant = 90)

aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$

for each component control, define matrix T (for each control state) and value c_{0}

flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state

MODEL_aero	int	+	Aerodynamics model (0 none, 1 standard)	1
		+	Weight	
		+	tail (empennage group)	
MODEL_weight	int	+	model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWtail	real	+	basic	0.
dWfold	real	+	fold	0.
		+	Technology Factors	
TECH_tail	real	+	tail weight χ_{ht} or χ_{vt}	1.0
TECH_tfold	real	+	fold weight $\chi_{ m fold}$	1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

Tail Aerodynamics, Standard Model zero lift angle of attack α_{zl} (deg) AoA_zI real 0. CLmax maximum lift coefficient $C_{L\max}$ real 1. compressibility correction (0 none, 1 lift, 2 drag, 3 both) SET compress 0 int lift specification (2 2D $dC_L/d\alpha$; 3 3D $dC_L/d\alpha$) SET lift 2 int lift curve slope $C_{L\alpha} = dC_L/d\alpha$ (per rad) dCLdareal 5.73 lift curve slope non-elliptical loading correction auTind 0.25 real Oswald efficiency $e\left(C_{Di} = (C_L - C_{L0})^2 / (\pi eAR)\right)$ Eind real 8.0 lift coefficient for minimum induced drag C_{L0} CL Dmin 0. real lift-divergence Mach number $M_{\rm div}$ Mdiv real 0.75 + control lift effectiveness factor η_0 , $\eta_0 - \eta_1 |\delta|$ + 0.85 eta0 real lift effectiveness factor $\eta_1, \eta_0 - \eta_1 |\delta|$ real + 0.43 eta1

Structure: Tail 149

Kconl	real	+	calibration or correction factor for lift K_ℓ	1.
Kconm	real	+	calibration or correction factor for moment K_m	1.
Kcond	real	+	calibration or correction factor for drag K_d	1.
Kconx	real	+	calibration or correction factor for maximum lift K_x	1.
		+	Tail Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on tail area, $D/q = SC_D$)	0.011
		+	vertical drag	
SET_Vdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV	real	+	area $(D/q)_V$	
CDV	real	+	coefficient C_{DV} (based on tail area, $D/q = SC_D$)	1.
CDcc	real	+	compressibility drag increment C_{Dcc} at M_{cc}	0.0011
Mcc0	real	+	critical Mach number constant M_{cc0}	0.74
Mcc1	real	+	critical Mach number constant M_{cc1}	0.31
			SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated	_
			due a registion with smale of ottools	
MODEL	:4	+	drag variation with angle of attack	2
MODEL_drag	int	+	model (0 none, 1 general, 2 quadratic) $\Delta C_D = C_{D0} K_d \alpha_e ^{X_d}$	2
AoA_Dmin	real	+	angle of attack for tail minimum drag $\alpha_{D \min}$ (deg)	0.
Kdrag	real	+	drag increment K_d	0.
Xdrag	real	+	drag increment X_d	2.
		+	transition from forward flight drag to vertical drag	
AoA_tran	real	+	angle of attack for transition α_t (deg)	25.

Structure: Tail

		+	Tail, NDARC Weight Model	
MODEL_tail	int	+	model (1 horizontal tail, 2 vertical tail, 3 based on KIND_tail)	3
		+	horizontal tail	
MODEL_Htail	int	+	model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other)	1
$MODEL_{Hother}$	int	+	model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))	
KIND_Htail	int	+	Torenbeek or Raymer: kind (1 fixed, 2 variable incidence)	1
wfus	real	+	Raymer: fuselage width at horizontal tail w_f/b_{ht} (fraction span)	0.2
		+	vertical tail	
$MODEL_Vtail$	int	+	model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other)	1
MODEL_Vother	int	+	model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))	
place_AntiQ	int	+	AFDD: antitorque placement (0 none, 1 on tail boom, 2 on vertical tail)	1
KIND_Vtail	int	+	Torenbeek or Raymer: kind (1 conventional, 2 T-tail)	1
fTtail	real	+	Torenbeek: T-tail factor $(S_{ht}h_{ht})/(S_{vt}b_{vt})$	0.8
Vdive	real	+	design dive speed $V_{ m dive}$ (knots)	200.
		+	area method	
Utail	real	+	weight per area $U_{\rm tail}$ (lb/ft ² or kg/m ²)	3.
fTfold	real	+	fold weight factor $f_{\rm fold}$ (fraction total tail weight excluding fold)	0.
			weight models can use taper ratio, sweep, and thickness ratio	
			dive speed: V_{max} = SLS max speed, Vdive = 1.25 V_{max}	
			dive speed. $v_{\text{max}} = 0.00$ max speed, valve = 1.20 v_{max}	

+ Custom Weight Model

WtParam_tail(8) real + parameters 0.

Chapter 25

Structure: FuelTank

Variable	Type		Description	Default
		+	Fuel Tank System	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Configuration	
SET_burn	int	+	fuel quantity stored and used (1 weight, 2 energy)	1
		+	fuel weight properties	
fuel_density	real	+	fuel weight per volume $ ho_{ m fuel}$ (lb/gallon or kg/liter)	6.5
specific_energy	real	+	fuel energy per weight e_{fuel} (MJ/kg)	42.8
fFuelWing(nwingmax)	real	+	fraction wing torque box filled by fuel tanks	1.0
		+	fuel tank sizing	
Wfuel_cap	real	+	fuel capacity $W_{\rm fuel-cap}$ (weight, lb or kg)	
Efuel_cap	real	+	fuel capacity $E_{\text{fuel-cap}}$ (energy, MJ)	
fFuel_cap	real	+	ratio capacity to mission fuel $f_{\text{fuel-cap}}$	1.0
dFuel_cap	real	+	capacity increment $d_{\mathrm{fuel-cap}}$	0.
IDENT_battery	c*16	+	battery identification	1 1

store and use weight: energy calculated from weight; capacity is usable fuel weight use $Wfuel_cap$, $Waux_cap$, fuel_density, specific_energy, fFuelWing; fWtank, fWauxtank, other weight parameters units of specific_energy = MJ/kg, regardless of Units_energy

store and use energy: fuel weight zero; capacity is usable fuel energy use Efuel_cap, Eaux_cap, IDENT_battery; eWtank, eWauxtank, energy_density, other weight parameters units of Efuel_cap, Eaux_cap = MJ, regardless of Units_energy

Structure: FuelTank

fuel tank sizing: usable fuel capacity Wfuel_cap (weight) or Efuel_cap (energy)

SET_tank='input': input Wfuel_cap or Efuel_cap

SET_tank='miss': calculate from mission fuel used

Wfuel_cap or Efuel_cap = max(fFuel_cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))

SET_tank='miss+power' = calculate from mission fuel used and mission battery discharge power

SET_tank='f(miss)' = function of mission fuel used

Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*((maximum mission fuel)+(reserve fuel))

battery identification: energy storage only, match ident of BatteryModel

		+	Geometry	
loc_tank	Locatio	n +	location	
place	int	+	placement (for graphics; 1 internal, 2 sponson, 3 wing, 4 combination)	1
SET_length_wire	int	+	wiring length (1 input, 2 from component positions)	1
Length_wire	real	+	length $\ell_{ m wire}$	
fLength_wire	real	+	factor	1.0
		+	Auxiliary Fuel Tank	
Mauxtanksize	int	+	number of auxiliary tank sizes (minimum 1, maximum nauxtankmax)	1
Waux_cap(nauxtankmax)	real	+	fuel capacity $W_{ m aux-cap}$ (weight)	1000.
Eaux_cap(nauxtankmax)	real	+	fuel capacity $E_{\rm aux-cap}$ (energy)	20000.
fWauxtank(nauxtankmax)	real	+	tank weight f_{auxtank} (fraction auxiliary fuel weight)	0.
eWauxtank(nauxtankmax)	real	+	tank weight $e_{ m auxtank}$ (MJ/kg or kWh/kg, Units_energy)	0.
$DoQ_{auxtank}(nauxtankmax)$	real	+	$\operatorname{drag}\left(D/q\right)_{\mathrm{auxtank}}$ (each tank)	
loc_auxtank(nauxtankmax)	Locatio	n +	location	
		+	Equipment power	
MODEL_Peq	int	+	model (0 for none)	0
sfc	real	+	specific fuel consumption	0.
Peq_0	real	+	power loss $P_{\rm eq0}$, constant	0.
Peq_d	real	+	power loss $P_{\mathrm{eq}d}$, scale with density	0.
Peq_t	real	+	power loss $P_{\mathrm{eq}t}$, scale with temperature	0.
KPeq_w	real	+	power loss $P_{\mathrm{eq}w}$, weight factor	0.

Structure: FuelTank				153
XPeq_w	real	+	power loss $P_{\mathrm{eq}w}$, weight exponent	0.
Peq_deice	real	+	deice power loss $P_{\mathrm{eq}i}$	0.
			specific fuel consumption: weight (lb/hp-hr or kg/kWh) or energy (hp/hp or kW/kW)	
CET TMC	:4	+	Thermal management system	0
SET_TMS	int	+	design rejected power $P_{\text{rej-design}}$ (0 none, 1 input, 2 fraction P_{cap})	0
Prej_design	real	+	power (hp or kW)	0.
fPrej_design	real	+	fraction	0.02
SET_FN	int	+	net jet force (0 for no force)	1
		+	Power distribution losses	
eta_dist	real	+	efficiency at $P_{ m cap}$	1.

Weight

Cooling drag

area $(D/q)_{cool}$

real

DoQ_cool

fuel system (propulsion group) model (0 input, 1 NDARC, 2 custom) MODEL_weight int 1 weight increment

tanks and support; battery management system dWtank0. real plumbing; power distribution (wiring) dWplumb real 0.

Technology Factors

TECH_tank fuel tank weight χ_{tank} + 1.0 real plumbing weight $\chi_{\rm plumb}$ TECH_plumb 1.0 + real

weight model result multiplied by technology factor and increment added:

Wxx = TECH xx*Wxx model + dWxx; for fixed (input) weight use MODEL xx=0 or TECH xx=0.

0.

Structure: FuelTank

	+	Fuel System, NDARC Weight Model	
	+	weight storage	
	+	fuel tank	
MODEL_tank int	+	model (1 fraction, 2 parametric, Torenbeek (3 integral, 4 generic), Raymer (5 transport, 6 general aviation))	2
ntank_int int	+	number of internal tanks $N_{\rm int}$	4
fWtank real	+	tank weight f_{tank} (fraction fuel capacity weight)	0.09
Ktoler real	+	parametric: ballistic tolerance factor f_{bt} (1.0 to 2.5)	2.5
KIND_crash int	+	parametric: survivability (1 baseline, 2 UTTAS/AAH level of survivability)	2
Ktank real	+	Torenbeek (generic): factor $K_{\rm tank}$	3.2
Xtank real	+	Torenbeek (generic): exponent X_{tank}	0.727
fint real	+	Raymer: integral tank capacity (fraction total)	1.0
fprot real	+	Raymer: protected tank capacity (fraction total)	1.0
	+	plumbing	
MODEL_plumb int	+	model (1 fraction, 2 parametric)	2
nplumb int	+	total number of fuel tanks (internal and auxiliary) for plumbing $N_{ m plumb}$	4
K0_plumb real	+	weight increment $K_{0\text{plumb}}$ (lb)	150.
K1_plumb real	+	weight factor $K_{1 \text{plumb}}$ (lb)	2.0
fWplumb real	+	plumbing weight $f_{ m plumb}$ (fraction total fuel system weight)	0.4

MODEL_tank: fraction method uses fWtank; parametric method uses ntank_int, Ktoler, KIND_crash

K1_plumb is a crashworthiness and survivability factor; typically K1_plumb = 2.

 $K0_{plumb}$ is the sum of weights for auxiliary fuel, in-flight refueling, pressure refueling, inerting system, etc.; typically $K0_{plumb} = 50$ to 250 lb

		+	energy storage	
eWtank	real	+	tank weight $e_{\rm tank}$ (MJ/kg or kWh/kg, Units_energy)	
energy_density	real	+	tank volume density $\rho_{\rm tank}$ (MJ/liter or kWh/liter, Units_energy)	
fBMS	real	+	battery management system (fraction basic tank weight)	0.2
		+	power distribution (wiring) weight	
Uwire	real	+	weight per length	0.62
fwire	real	+	fraction basic tank weight	0.2

Structure: FuelTank

specific energy $e_{\rm tank}$ and energy density $\rho_{\rm tank}$ based on usable fuel capacity (consistent with $d_{\rm max}-d_{\rm min}$)

+ Custom Weight Model

WtParam_tank(8) real + parameters 0.

Variable	Type		Description D	Default
		+	Propulsion Group	
title	c*100	+	title	
notes	c*1000	+	notes	
			propulsion group is set of components and engine groups, connected by drive system	
			components (rotors) define power required, engine groups define power available	
			drive system defines ratio of rotational speeds of components (relative primary rotor speed)	_
		+	Drive system	
nGear	int	+	number of states (maximum ngearmax)	1
STATE_gear_var	int	+	drive system state for variable speed transmisson (0 for none)	0
			drive system branches: one primary rotor per propulsion group (specify $V_{\rm tip}$), others dependent (specify gear ratio) specify primary engine group only if no rotors in propulsion group	
			drive system state: identifies gear ratio set for multiple speed transmissions	
			state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n	
			variable speed transmission: for drive system state STATE_gear_var, gear ratio factor $f_{\rm gear}$ (control) included when evaluate rotational speed of dependent rotors and engines	
		+	Transmission losses	<u> </u>
MODEL Xloss	int	+	model (1 fraction component power required; 2 with function drive shaft limit)	2
fPloss xmsn	real	+	gear box loss $\ell_{\rm xmsn}$ (fraction total component power required)	0.04
Ploss_windage	real	+	power loss due to windage $P_{ m windage}$	0.

		+	Accessory losses	
Pacc_0	real	+	power loss $P_{\rm acc0}$, constant	0.
Pacc_d	real	+	power loss $P_{\mathrm{acc}d}$, scale with density	0.
Pacc_n	real	+	power loss $P_{\mathrm{acc}n}$, scale with density and rpm	0.
Pacc_deice	real	+	deice power loss $P_{ m acc}i$	0.
fPacc_ECU	real	+	ECU (etc.) power loss $\ell_{\rm acc}$ (fraction component+transmission power)	0.
fPacc_IRfan	real	+	IRS fan loss ℓ_{IRfan} (fraction total engine power)	0.
		+	Geometry	
SET_length	int	+	drive shaft length (1 input, 2 from hub positions, 3 scale with radius)	2
Length_ds	real	+	length ℓ_{DS}	
fLength_ds	real	+	factor	0.9
			SET_length: input (use Length_ds) or calculated (from fLength_ds)	
		+	Drive system torque limit	
Plimit_ds	real	+	drive system power limit $P_{DS m limit}$	
fPlimit_ds	real		drive system power limit $P_{DS m limit}$ drive system power limit factor	1.0
_		+	drive system power limit $P_{DS limit}$ drive system power limit factor drive system limit when sizing transmission (0 not applied to power available)	1.0 0
fPlimit_ds	real int	++	drive system power limit $P_{DS limit}$ drive system power limit factor drive system limit when sizing transmission (0 not applied to power available) Drive system ratings	
fPlimit_ds SET_Plimit_size nrate_ds	real int int	+ + +	drive system power limit $P_{DS limit}$ drive system power limit factor drive system limit when sizing transmission (0 not applied to power available) Drive system ratings number of ratings (maximum nratemax)	0
fPlimit_ds SET_Plimit_size nrate_ds rating_ds(nratemax)	real int	+ + + +	drive system power limit $P_{DS limit}$ drive system power limit factor drive system limit when sizing transmission (0 not applied to power available) Drive system ratings number of ratings (maximum nratemax) drive system rating designation	0
fPlimit_ds SET_Plimit_size nrate_ds	real int int	+ + + + +	drive system power limit $P_{DS limit}$ drive system power limit factor drive system limit when sizing transmission (0 not applied to power available) Drive system ratings number of ratings (maximum nratemax) drive system rating designation torque limit factor	0
fPlimit_ds SET_Plimit_size nrate_ds rating_ds(nratemax)	real int int c*12	+ + + + + +	drive system power limit $P_{DS limit}$ drive system power limit factor drive system limit when sizing transmission (0 not applied to power available) Drive system ratings number of ratings (maximum nratemax) drive system rating designation torque limit factor schedule	0
fPlimit_ds SET_Plimit_size nrate_ds rating_ds(nratemax) frating_ds(nratemax) Vdrive_hover	real int int c*12	+ + + + + +	drive system power limit $P_{DS limit}$ drive system power limit factor drive system limit when sizing transmission (0 not applied to power available) Drive system ratings number of ratings (maximum nratemax) drive system rating designation torque limit factor schedule maximum speed for hover and helicopter mode (CAS or TAS)	0
fPlimit_ds SET_Plimit_size nrate_ds rating_ds(nratemax) frating_ds(nratemax) Vdrive_hover Vdrive_cruise	real int int c*12 real real	+ + + + + + +	drive system power limit $P_{DS limit}$ drive system power limit factor drive system limit when sizing transmission (0 not applied to power available) Drive system ratings number of ratings (maximum nratemax) drive system rating designation torque limit factor schedule maximum speed for hover and helicopter mode (CAS or TAS) minimum speed for cruise (CAS or TAS)	0 ,1 ,,,
fPlimit_ds SET_Plimit_size nrate_ds rating_ds(nratemax) frating_ds(nratemax) Vdrive_hover	real int int c*12 real real	+ + + + + + +	drive system power limit $P_{DS limit}$ drive system power limit factor drive system limit when sizing transmission (0 not applied to power available) Drive system ratings number of ratings (maximum nratemax) drive system rating designation torque limit factor schedule maximum speed for hover and helicopter mode (CAS or TAS) minimum speed for cruise (CAS or TAS) rating for hover and helicopter mode ($V \leq V_{\rm drive-hover}$)	0
fPlimit_ds SET_Plimit_size nrate_ds rating_ds(nratemax) frating_ds(nratemax) Vdrive_hover Vdrive_cruise	real int int c*12 real real	+ + + + + + +	drive system power limit $P_{DS limit}$ drive system power limit factor drive system limit when sizing transmission (0 not applied to power available) Drive system ratings number of ratings (maximum nratemax) drive system rating designation torque limit factor schedule maximum speed for hover and helicopter mode (CAS or TAS) minimum speed for cruise (CAS or TAS)	0 ,1 ,,,

drive system torque limits: SET_limit_ds = input (use Plimit_xx) or calculate (from fPlimit_xx)

SET_limit_ds='input': Plimit_ds input

SET_limit_ds='ratio': from takeoff power, fPlimit_ds $\sum (N_{\rm eng}P_{\rm eng})$

```
SET limit ds='Pav': from engine power available at transmission sizing conditions and missions (DESIGN xmsn)
          fPlimit_ds(\Omega_{ref}/\Omega_{prim})\sum(N_{eng}P_{av})
    SET limit ds='Preq': from engine power required at transmission sizing conditions and missions (DESIGN xmsn)
          fPlimit_ds(\Omega_{ref}/\Omega_{prim})\sum(N_{eng}P_{reg})
engine shaft: options for SET limit ds≠'input'
     SET limit es=0: Plimit es
    SET_limit_es=1: fPlimit_es \times (engine group P_{\rm eng} or P_{av} or P_{rea}, depending on SET_limit_ds)
     SET limit es=2: fPlimit es \times P_{DSlimit}(P_{engEG}/P_{engPG})
drive system power limit: corresponds to power of all engines of propulsion group (all engine groups)
     can be used for trim (trim quant='Q margin')
     used for drive system weight, tail rotor weight, transmission losses
    limits propulsion group P_{av} (if FltState%SET Plimit=on)
engine shaft power limit: corresponds to all engines of engine group (nEngine × Peng)
    limits engine group P_{av} (if FltState%SET Plimit=on)
rotor shaft power limit: corresponds to one rotor
all limits
    can be used for max effort in flight state (max quant='Q margin')
    can be used for max gross weight in flight condition or mission (SET GW='maxQ' or 'maxPQ')
    always check and print whether exceed torque limit
the engine model gives the power available, accounting for installation losses and mechanical limits
then the power available is reduced by the factor FltState%fPower
next torque limits are applied (unless FltState%SET Plimit=off), first engine shaft limit and then drive system limit
SET Plimit size=0: drive system limits are not applied for transmission sizing conditions and mission segments
(DESIGN xmsn); otherwise use FltState%SET Plimit
drive system ratings: blank to use engine ratings of first engine group
    limit at flight state is rxf_QP_{\text{limit}}, where r is the rotor speed ratio and x is the rating factor frating_ds
    if nrate ds \le 1, drive system rating not used
     schedule used if FltAircraft%rating ds='speed'
```

		+	Control	
		+	rotational speed increment ΔN , primary rotor or primary engine (rpm)	
INPUT_DN	int	+	connection to aircraft controls (0 none, 1 input T matrix)	0
$T_DN(ncontmax,nstatemax)$	real	+	control matrix	
nVDN	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
DN(nvelmax)	real	+	values	
VDN(nvelmax)	real	+	speeds (CAS or TAS)	
,				

aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$ for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state

		+	Weight	
		+	drive system (propulsion group)	
MODEL_DS	int	+	model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWgb	real	+	gear box	0.
dWrs	real	+	rotor shaft	0.
dWds	real	+	drive shaft	0.
dWrb	real	+	rotor brake	0.
dWcl	real	+	clutch	0.
dWgd	real	+	gas drive	0.
STATE_gear_wt	int	+	drive system state for weight	1
$kEngineGroup_wt(2)$	int	+	EngineGroup for weight (input, output)	1
		+	Technology Factors	
TECH_gb	real	+	gear box weight χ_{gb}	1.0
TECH_rs	real	+	rotor shaft weight χ_{rs}	1.0
TECH_ds	real	+	drive shaft weight χ_{ds}	1.0
TECH_rb	real	+	rotor brake weight χ_{rb}	1.0

TECH_cl	real	+	clutch weight χ_{cl}	1.0
TECH_gd	real	+	gas drive weight χ_{gd}	1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

kEngineGroup_wt: always identify engine group for drive system input

if propulsion group has rotors, primary rotor speed used for drive system output

if propulsion group does not have rotors, must identify engine group for drive system output

drive system weight = gear box (including rotor shaft) + drive shaft + rotor brake + clutch + gas drive tiltrotor wing weight model requires weight on wing tip (drive system, without rotor shaft)

		+	Drive System, NDARC Weight Model	
		+	gear box (including rotor shafts)	
MODEL_gbrs	int	+	model (1 AFDD83, 2 AFDD00, 3 other)	1
MODEL_other	int	+	model (1 Boeing, 2 Boeing (alternate), GARTEUR (3 helicopter, 4 tiltrotor), 5 Tishchenko, 6 generic)	
fShaft	real	+	rotor shaft weight f_{rs} (fraction gear box and rotor shaft weight)	0.13
ngearbox	int	+	AFDD83: number of gear boxes N_{qb}	7
fTorque	real	+	AFDD83: second (main or tail) rotor rated torque f_Q (fraction total drive system rated torque)	0.03
nstage	int	+	Boeing: number of stages in main-rotor drive	4
		+	generic gearbox	
Kgbrs	real	+	factor K_{qbrs}	0.
XgbP	real	+	exponent X_{gbP}	0.
Xgbe	real	+	exponent X_{gbe}	0.
Xgbr	real	+	exponent X_{gbr}	0.
KIND_other	int	+	other: separate tail rotor drive weight increment (0 none)	0
Ktrgb	real	+	tail rotor drive weight increment factor K_{trgb}	1.0
fPower_tr	real	+	tail rotor power (fraction total drive system rated power)	0.15
gear_tr	real	+	tail rotor gear ratio	5.0

Structure: Propulsion 161 drive shaft and rotor brake MODEL dsrb model (0 none, 1 AFDD82) int 1 ndriveshaft AFDD82: number of intermediate drive shafts N_{ds} (excluding rotor shafts) int + 6 AFDD82: second (main or tail) rotor rated power f_P (fraction total drive system rated power) **fPower** real 0.15 fPower = fTorque*(otherrotor RPM)/(mainrotor RPM) typically fTorque=fPower=0.6 for twin main rotors (tandem, coaxial, tiltrotor) for single main rotor and tail rotor, fTorque = 0.03, fPower = 0.15 (0.18 for 2-bladed teeter) typically fShaft = 0.13 (data range 0.06 to 0.20) Custom Weight Model

parameters

real

0.

WtParam_drive(8)

Chapter 27

Variable	Type		Description	Default
		+	Engine Group	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Description	
MODEL_engine	c*32	+	engine model	'RPTEM'
IDENT_engine	c*16	+	engine identification	'Engine'
IDENT_system2	c*16	+	second system identification	, ,
nEngine	int	+	number of engines N_{eng}	1
nEngine_main	int	+	number of main engines	1
Peng	real	+	engine power $P_{\rm eng}$ (SLS static at takeoff rating, 0. for P0_ref(rating_to))	0.
rating_to	c*12	+	takeoff power rating	'MCP'
rating_idle	c*12	+	idle power rating	'MCP'
kFuelTank	int	+	fuel tank system number	1
kRotor_react	int	+	rotor number for reaction drive	
fuselage_flow	int	+	fuselage flow control (0 not)	1
wing_flow(nwingmax)	int	+	wing flow control (0 not)	1
		+	Propulsion Group	
kPropulsion	int	+	group number	1
$KIND_xmsn$	int	+	drive system branch (1 primary, 0 dependent)	0
INPUT_gear	int	+	gear ratio input (1 from Nspec, 2 gear)	1
gear(ngearmax)	real	+	engine gear ratio $r=\Omega_{\mathrm{spec}}/\Omega_{\mathrm{prim}}$ (ratio rpm to rpm of primary rotor in propulsion group)	1.0

MODEL_engine: engine model

^{&#}x27;RPTEM', 'shaft' = turboshaft engine (RPTEM); IDENT_engine \rightarrow EngineModel; fuel is weight

^{&#}x27;table' = turboshaft engine (table); IDENT_engine → EngineTable; fuel is weight

 $[\]hbox{'recip'} = \hbox{reciprocating engine; IDENT_engine} \rightarrow \hbox{RecipModel; fuel is weight}$

 $^{{\}sf 'comp' = compressor; IDENT_engine \rightarrow CompressorModel; not use \ fuel}$

```
'comp+react' = compressor for reaction drive; IDENT engine → CompressorModel; not use fuel
     'comp+flow' = compressor for flow control; IDENT engine → CompressorModel; not use fuel
     'motor' = electric motor; IDENT_engine → MotorModel; fuel is energy
     'gen' = electric generator; IDENT engine → MotorModel; fuel is energy (generated, not burned)
     'motor+gen' = motor + generator (mode B \ge 0 for motor); IDENT_engine \to MotorModel; fuel is energy
MODEL engine: convertible engine; only with turboshaft
     '+react' = reaction drive (mode B=1); IDENT system2 \rightarrow EngineModel
     '+jet', '+fan' = turbojet/turbofan (mode B=1); IDENT system2 \rightarrow EngineModel
engine identification: match ident of EngineModel or EngineTable or RecipModel or CompressorModel or MotorModel
second system identification: match ident of EngineModel; not use weight
number of main engines: for fuel tank weight
for fixed engine: use P_{\rm eng}=0. and no size task (or engine power not sized)
takeoff power rating: for engine scaling, aircraft power loading, fuel tank weight
FltState%rating can be set to 'idle' (rating_idle) or 'takeoff' (rating_to)
fuel tank system identified for burn must store and use weight (turboshaft, reciprocating)
     or energy (motor, may have BatteryModel)
fuel tank system identified for generation must store and use energy (may have BatteryModel)
drive system branch: primary engine group only designated if no rotors for propulsion group
INPUT gear: calculate gear from Nspec and Vtip ref of primary rotor of propulsion group, or specify gear ratio
variable speed transmission: for drive system state STATE_gear_var, gear ratio factor f_{\rm gear} (control) included
     when evaluate rotational speed of engine
```

```
Sizing
SET power
                                                specification (0 sized, 1 fixed)
                                                                                                                                                                        0
                              int
fPsize
                                               sized power ratio f_n
                              real
                                                                                                                                                                      1.0
                                       +
                                               sized power from other engine group (0 not)
SET Pother
                              int
                                                                                                                                                                        0
fEsize(nengmax)
                                               fraction other engine group power f_E
                                                                                                                                                                       0.
                              real
                                       +
```

SET_power: if SIZE_perf='engine', used to distribute propulsion group power required among engine groups $P_{\rm eng} = f_n P_{\rm sized}/N_{\rm eng} \ {\rm for} \ n\text{-th engine group}, P_{\rm sized} = P_{PG} - \sum_{\rm fixed} N_{\rm eng} P_{\rm eng}$ must size at least first engine group, so SET_power and fPsize values not used for first group fPsize calculated for first engine group, must be > 0. not used (SET_power=1) if group consumes power (compressor or generator, which sized if SIZE_engine='engine')

not used (SET_power=1) if group consumes power (compressor or generator, which sized if SIZE_engine='engine') FltState%SET_Preq specifies distribution of power required for flight state

SET_Pother: size power from engine group of other propulsion groups, $\max(P_{\rm eng}, f_E P_{\rm eng-other})$

+ Drive system torque limit

```
SET_limit_es int + engine shaft (0 input, 1 fraction power, 2 fraction drive system limit) 1

Plimit_es real + engine shaft power limit P_{ESlimit}

fPlimit es real + engine shaft power limit factor 1.0
```

```
drive system torque limits: SET limit ds = input (use Plimit es) or calculated (from fPlimit es)
```

SET limit ds='input': Plimit ds input

SET_limit_ds='ratio': from takeoff power, fPlimit_ds $\sum (N_{\rm eng} P_{\rm eng})$

SET_limit_ds='Pav': from engine power available at transmission sizing conditions and missions (DESIGN_xmsn) fPlimit_ds $(\Omega_{\rm ref}/\Omega_{\rm prim})\sum(N_{\rm eng}P_{av})$

SET_limit_ds='Preq': from engine power required at transmission sizing conditions and missions (DESIGN_xmsn) fPlimit_ds($\Omega_{\rm ref}/\Omega_{\rm prim}$) $\sum (N_{\rm eng}P_{reg})$

engine shaft: options for SET_limit_ds='input'

SET limit es=0: Plimit es

SET_limit_es=1: fPlimit_es \times (engine group P_{eng} or P_{av} or P_{req} , depending on SET_limit_ds)

SET_limit_es=2: fPlimit_es $\times P_{DS limit}(P_{eng}EG/P_{eng}PG)$

```
engine shaft power limit: corresponds to all engines of engine group (nEngine \times Peng) limits engine group P_{av} (if FltState%SET_Plimit=on) can be used for max effort in flight state (max_quant='Q margin') can be used for max gross weight in flight condition or mission (SET_GW='maxQ' or 'maxPQ') always check and print whether exceed torque limit
```

		+	Installation	
Kffd	real	+	deterioration factor on engine fuel flow or performance K_{ffd}	1.05
eta_d	real	+	engine inlet efficiency η_d (fraction, for δ_M)	0.98
		+	power losses (fraction power available, P_{loss}/P_a)	
fPloss_inlet	real	+	engine inlet loss ℓ_{in}	0.
fPloss_ps	real	+	inlet particle separator loss ℓ_{in}	0.
fPloss_exh	real	+	engine exhaust loss ℓ_{ex} (IRS off)	0.015
		+	auxiliary air momentum drag (IRS off)	
fMF_auxair	real	+	mass flow $f_{\rm aux}$ (fraction engine mass flow)	0.007
eta_auxair	real	+	ram recovery efficiency $\eta_{ m aux}$	0.75
		+	IR suppressor	
		+	power losses (IRS on)	
fPloss_exh_IRon	real	+	engine exhaust loss ℓ_{ex}	0.030
		+	auxiliary air momentum drag (IRS on)	
fMF_auxair_IRon	real	+	mass flow $f_{\rm aux}$ (fraction engine mass flow)	0.01
eta_auxair_IRon	real	+	ram recovery efficiency $\eta_{ m aux}$	0.75
		+	Convertible	
Kffd_conv	real	+	deterioration factor on engine fuel flow or performance K_{ffd}	1.05
		+	power losses (fraction power available, P_{loss}/P_a)	
fPloss_exh_conv	real	+	engine exhaust loss ℓ_{ex}	0.015
		+	Thermal management system	
SET_TMS	int	+	design rejected power $P_{\text{rej-design}}$ for one engine (0 none, 1 input, 2 fraction P_{eng})	0
Prej_design	real	+	power (hp or kW)	0.
fPrej_design	real	+	fraction	0.02
		+	Model	
SET_FN	int	+	net jet force (0 for no force)	1
SET_Daux	int	+	auxiliary air momentum drag (0 for no drag)	1

installation power losses = inlet + particle separator + exhaust (including IRS) IR suppressor state specified by STATE_IRS in operating condition motor or generator: only use Kffd, thermal management system

```
Geometry
loc engine
                                 Location +
                                                    location
                                                    nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z')
                                                                                                                                                                                        'x'
direction
                                 c*16
                                                    position (0 standard, 1 tiltrotor, 2 rotor)
SET geom
                                 int
                                           +
                                                                                                                                                                                         0
RotorForEngine
                                 int
                                           +
                                                         rotor number
                                                                                                                                                                                         1
                                                    nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, W_{ES}; 3 scaled, W_{ES} and W_{qbrs})
SET Swet
                                                                                                                                                                                         2
                                 int
Swet
                                           +
                                                         area S_{\text{wet}} (per engine)
                                                                                                                                                                                         0.
                                  real
                                                         factor, k = S_{\text{wet}}/(w/N_{\text{eng}})^{2/3} (Units_Dscale)
kSwet
                                  real
                                           +
                                                                                                                                                                                       0.8
```

SET_geom: calculation override part of location input SET_geom=tiltrotor: calculate lateral position (BL) from RotorForEngine SET_geom=rotor: (SL,BL,WL or XoL,YoL,ZoL) is relative loc_rotor(RotorForEngine) SET_Swet, wetted area: input (use Swet) or calculated (from kSwet) units of kSwet are $\mathrm{ft}^2/\mathrm{lb}^{2/3}$ or $\mathrm{m}^2/\mathrm{kg}^{2/3}$ $w=W_{ES} \text{ (engine system) or } W_{ES}+W_{gbrs}/N_{EG} \text{ (engine system and drive system)}$ nacelle wetted area used for nacelle drag, and for cowling weight engine group nacelle must be consistent with rotor pylon

```
Controls
                                              amplitude A (fixed engine group power)
                                                 connection to aircraft controls (0 none, 1 input T matrix)
INPUT amp
                             int
                                                                                                                                                                 1
T_amp(ncontmax,nstatemax)
                                                 control matrix
                             real
                                     +
                                                 number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
nVamp
                             int
                                                                                                                                                                 0
amp(nvelmax)
                                     +
                                                 values
                             real
                                                 speeds (CAS or TAS)
Vamp(nvelmax)
                             real
                                     +
```

		+	$\operatorname{mode} B$	
INPUT_mode	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_mode(ncontmax,nstatemax)	real	+	control matrix	
nVmode	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
mode(nvelmax)	real	+	values	
Vmode(nvelmax)	real	+	speeds (CAS or TAS)	
		+	incidence i (tilt)	
INPUT_incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$				
	real	+	control matrix	
nVincid	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)	real	+	values	
Vincid(nvelmax)	real	+	speeds (CAS or TAS)	
		+	yaw ψ	
INPUT_yaw	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_yaw(ncontmax,nstatemax)$	real	+	control matrix	
nVyaw	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
yaw(nvelmax)	real	+	values	
Vyaw(nvelmax)	real	+	speeds (CAS or TAS)	
		+	gear ratio factor $f_{\rm gear}$ (variable speed transmission only)	
INPUT_fgear	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_fgear(ncontmax,nstatemax)$				
	real	+	control matrix	
nVfgear	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
fgear(nvelmax)	real	+	values	
Vfgear(nvelmax)	real	+	speeds (CAS or TAS)	

aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$ for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state

MODEL_drag Idrag	int real	+ + +	Nacelle Drag model (0 none, 1 standard) incidence angle i for helicopter nominal drag (deg; 0 for not tilt)	1 0.
			component drag contributions must be consistent pylon is rotor support, and nacelle is engine support tiltrotor with tilting engines use pylon drag (and no nacelle drag), since pylon connected to rotor shaft axes tiltrotor with nontilting engines, use nacelle drag as well	
		+	Weight	

			Wight	
		+	engine weight	
MODEL_weight	int	+	model (0 input, 1 RPTEM or NASA, 2 custom)	1
dWEng	real	+	weight increment (all engines)	0.
		+	engine system (except engine), engine section or nacelle group, air induction group	
		+	model (0 input, 1 NDARC, 2 custom)	
MODEL_sys	int	+	engine system	1
MODEL_nac	int	+	engine section or nacelle	1
MODEL_air	int	+	air induction	1
		+	weight increment	
dWexh	real	+	exhaust	0.
dWacc	real	+	accessories	0.
dWsupt	real	+	engine support	0.
dWcowl	real	+	engine cowling	0.
dWpylon	real	+	pylon support	0.
dWair	real	+	air induction	0.
		+	Technology Factors	
TECH_eng	real	+	engine weight $\chi_{ m eng}$	1.0
TECH_cowl	real	+	engine cowling weight $\chi_{ m cowl}$	1.0
TECH_pylon	real	+	pylon structure weight $\chi_{ m pylon}$	1.0
TECH_supt	real	+	engine support structure weight $\chi_{ m supt}$	1.0
TECH_air	real	+	air induction system weight $\chi_{ m airind}$	1.0

TECH_exh real + exhaust system weight $\chi_{\rm exh}$ 1.0 TECH_acc real + engine accessories weight $\chi_{\rm acc}$ 1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH xx*Wxx model + dWxx; for fixed (input) weight use MODEL xx=0 or TECH xx=0.

engine system weight = engine + exhaust + accessory (WES used for rotor pylon wetted area, engine nacelle wetted area, rotor moving weight)

nacelle weight = support + cowl + pylon engine weight parameters in EngineModel

tiltrotor wing weight model requires weight on wing tip: engine section or nacelle group, air induction group, engine system

```
Nacelle Drag, Standard Model
                                              forward flight drag
                                                  specification (1 fixed, D/q; 2 scaled, C_D)
                                                                                                                                                                    2
SET drag
                              int
                                                  area (D/q)_0
DoQ
                              real
                                                  coefficient C_{D0} (based on wetted area, D/q = SC_D)
CD
                                      +
                             real
                                              vertical drag
                                                  specification (1 fixed, D/q; 2 scaled, C_D)
SET Vdrag
                                                                                                                                                                    2
                             int
DoQV
                                      +
                                                  area (D/q)_V
                             real
                                                  coefficient C_{DV} (based on wetted area, D/q = SC_D)
CDV
                             real
                                              transition from forward flight drag to vertical drag
MODEL Deng
                                                  model (0 none)
                                      +
                                                                                                                                                                    1
                             int
                                      +
                                                  exponent X_d
                                                                                                                                                                  2.0
Xdrag
                              real
```

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

Structure: EngineGroup				170
DoQ_cool	real	+	Cooling Drag area $(D/q)_{ m cool}$	0.
		+	Engine Section or Nacelle Group, NDARC Weight Model	
$MODEL_{nacelle}$	int	+	model (1 parametric, 2 scale with power, 3 Boeing, 4 Raymer (transport))	1
fWpylon	real	+	pylon support structure weight $f_{ m pylon}$ (fraction maximum takeoff weight)	0.
		+	nacelle group weight, W vs P_{0C}	
Knac	real	+	factor $K_{ m nac}$	
Xnac	real	+	exponent X_{nac}	
n_clf	real	+	Boeing: crash load factor	20.
$fWidth_nac$	real	+	Raymer: nacelle width (fraction nacelle length)	0.2
		+	Air Induction Group, NDARC Weight Model	
MODEL_airind	int	+	model (1 parametric, 2 area)	1
fWair	real	+	air induction weight $f_{\rm airind}$ (fraction engine support plus air induction weight)	0.3
Uair	real	+	weight per nacelle area $U_{\rm airind}$ (lb/ft ² or kg/m ²)	
		+	Engine System, NDARC Model	
		+	exhaust system weight, per engine, including IR suppressor; $W_{\rm exh}$ vs P_{0C}	
Kwt0_exh	real	+	$K_{0 m exh}$	0.
Kwt1_exh	real	+	$K_{ m 1exh}$	0.002
		+	engine accessories	
MODEL_lub	int	+	lubrication system weight (1 in engine weight, 2 in accessory weight)	1
			typically fWair = 0.3 (data range 0.1 to 0.6)	
			engine support and pylon support weights must be consistent with rotor support structure weight	
		,	Custom Weight Model	
MAD(0)	ma o 1	+	Custom Weight Model	•
$WtParam_engsys(8)$	real	+	parameters	0.

Structure: JetGroup

Variable	Type		Description	Default
		+	Jet Group	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Description	
MODEL_jet	c*32	+	jet model	'RPJEM'
IDENT_jet	c*16	+	jet identification	'Jet'
IDENT_system2	c*16	+	second system identification	1 1
nJet	int	+	number of jets $N_{\rm jet}$	1
Tjet	real	+	jet thrust T_{jet} (SLS static at takeoff rating, 0. for T0_ref(rating_to))	0.
rating_to	c*12	+	takeoff thrust rating	'MCT'
rating_idle	c*12	+	idle thrust rating	'MCT'
kFuelTank	int	+	fuel tank system number	1
kRotor_react	int	+	rotor number for reaction drive	
fuselage_flow	int	+	fuselage flow control (0 not)	1
wing_flow(nwingmax)	int	+	wing flow control (0 not)	1

```
MODEL_jet: jet model 

'RPJEM', 'jet', 'fan' = turbojet/turbofan engine (RPJEM); IDENT_jet \rightarrow JetModel; fuel is weight 

'react' = reaction drive (RPJEM)); IDENT_jet \rightarrow JetModel; fuel is weight 

'flow' = flow control (RPJEM)); IDENT_jet \rightarrow JetModel; fuel is weight 

'simple' = simple force generator; no model identified; fuel is weight or energy 

MODEL_jet: convertible engine; only with turbojet/turbofan 

'+react' = reaction drive (mode B=1); IDENT_system2 \rightarrow JetModel 

jet identification: match ident of JetModel 

second system identification: match ident of JetModel; not use weight
```

Structure: JetGroup

for fixed jet: use $T_{\rm jet}=0.$ and no size task (or jet thrust not sized)

		+	Installation	
Kffd	real	+	deterioration factor on jet fuel flow K_{ffd}	1.05
eta_d	real	+	jet inlet efficiency η_d (fraction, for δ_M)	0.98
_		+	power losses (fraction thrust available, $T_{\rm loss}/T_a$)	
fTloss inlet	real	+	engine inlet loss ℓ_{in}	0.
fTloss_exh	real	+	engine exhaust loss ℓ_{ex} (IRS off)	0.01
		+	auxiliary air momentum drag (IRS off)	
fMF_auxair	real	+	mass flow $f_{\rm aux}$ (fraction engine mass flow)	0.007
eta_auxair	real	+	ram recovery efficiency $\eta_{ m aux}$	0.75
		+	IR suppressor	
		+	power losses (IRS on)	
$fTloss_exh_IRon$	real	+	engine exhaust loss ℓ_{ex}	0.03
		+	auxiliary air momentum drag (IRS on)	
fMF_auxair_IRon	real	+	mass flow $f_{\rm aux}$ (fraction engine mass flow)	0.01
eta_auxair_IRon	real	+	ram recovery efficiency $\eta_{ m aux}$	0.75
		+	Convertible	
Kffd_conv	real	+	deterioration factor on jet fuel flow K_{ffd}	1.05
		+	power losses (fraction thrust available, $T_{\rm loss}/T_a$)	
fTloss_exh_conv	real	+	engine exhaust loss ℓ_{ex}	0.01
			installation power losses = inlet + exhaust (including IRS)	
			IR suppressor state specified by STATE_IRS_jet in operating condition	
		+	Simple force generator	
Tmax	real	+	design maximum thrust $T_{ m max}$	0.
SET_burn	int	+	fuel quantity used (1 weight, 2 energy)	1
sfc	real	+	thrust specific fuel consumption (weight or energy)	1.0
SW	real	+	specific weight S (per jet)	
KIND_simple	int	+	weight group (1 engine system, 2 propeller/fan installation, 3 tail rotor)	1

Structure: JetGroup 173

fuel tank system identified must be consistent with SET_burn

```
Geometry
loc jet
                                  Location +
                                                      location
                                                     nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z')
direction
                                  c*16
                                                                                                                                                                                             'x'
                                                     nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled)
SET Swet
                                  int
                                                                                                                                                                                              2
                                                          area S_{\text{wet}} (per jet)
Swet
                                  real
                                            +
                                                                                                                                                                                             0.
                                                          factor, k = S_{\text{wet}}/(W_{ES}/N_{\text{jet}})^{2/3} (Units_Dscale)
kSwet
                                  real
                                            +
                                                                                                                                                                                            8.0
```

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet) units of kSwet are $\rm ft^2/lb^{2/3}$ or $\rm m^2/kg^{2/3}$ nacelle wetted area used for nacelle drag, and for cowling weight

```
Controls
                                              amplitude A
INPUT amp
                                                  connection to aircraft controls (0 none, 1 input T matrix)
                             int
                                                                                                                                                                   1
T amp(ncontmax,nstatemax)
                                                  control matrix
                             real
                                                  number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
nVamp
                             int
                                                                                                                                                                   0
amp(nvelmax)
                             real
                                      +
                                                  values
Vamp(nvelmax)
                                                  speeds (CAS or TAS)
                             real
                                              \mathsf{mode}\ B
                                      +
                                                  connection to aircraft controls (0 none, 1 input T matrix)
INPUT mode
                             int
                                                                                                                                                                   1
T mode(ncontmax,nstatemax)
                                                  control matrix
                             real
nVmode
                                                  number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)
                             int
                                      +
                                                                                                                                                                   0
mode(nvelmax)
                             real
                                      +
                                                  values
Vmode(nvelmax)
                                                  speeds (CAS or TAS)
                             real
                                      +
```

Structure: JetGroup	174	
---------------------	-----	--

1				
		+	incidence i (tilt)	_
INPUT_incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$				
	real	+	control matrix	
nVincid	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)	real	+	values	
Vincid(nvelmax)	real	+	speeds (CAS or TAS)	
		+	yaw ψ	
INPUT_yaw	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{yaw}(ncontmax,nstatemax)$	real	+	control matrix	
nVyaw	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
yaw(nvelmax)	real	+	values	
Vyaw(nvelmax)	real	+	speeds (CAS or TAS)	
			aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$	
			for each component control, define matrix T (for each control state) and value c_0	
			flight state specifies control state, or that control state obtained from conversion schedule	
			c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)	
			by connecting aircraft control to comp control, flight state can specify comp control value	
			initial values if control is connected to trim variable; otherwise fixed for flight state	
		+	Nacelle Drag	
$MODEL_drag$	int	+	model (0 none, 1 standard)	1

$MODEL_drag$	int	+	model (0 none, 1 standard)	1
Idrag	real	+	incidence angle i for helicopter nominal drag (deg; 0 for not tilt)	0.
		+	Weight	
		+	jet weight	
MODEL_weight	int	+	model (0 input, 1 RPJEM, 2 custom)	1
dWJet	real	+	weight increment (all jets)	0.
		+	engine system (except jet), engine section or nacelle group, air induction group	
		+	model (0 input, 1 NDARC, 2 custom)	
MODEL_sys	int	+	engine system	1

Structure: JetGroup				175
MODEL nac	int	+	engine section or nacelle	1
MODEL_air	int	+	air induction	1
_		+	weight increment	
dWexh	real	+	exhaust	0.
dWacc	real	+	accessories	0.
dWsupt	real	+	engine support	0.
dWcowl	real	+	engine cowling	0.
dWpylon	real	+	pylon support	0.
dWair	real	+	air induction	0.
		+	Technology Factors	
TECH_jet	real	+	jet weight $\chi_{ m jet}$	1.0
TECH_jetcowl	real	+	engine cowling weight $\chi_{ m cowl}$	1.0
$TECH_jetpylon$	real	+	pylon structure weight $\chi_{ m pylon}$	1.0
TECH_jetsupt	real	+	engine support structure weight $\chi_{ ext{supt}}$	1.0
TECH_jetair	real	+	air induction system weight $\chi_{ m airind}$	1.0
$TECH_jetexh$	real	+	exhaust system weight $\chi_{ m exh}$	1.0
TECH_jetacc	real	+	engine accessories weight $\chi_{ m acc}$	1.0
			weight model result multiplied by technology factor and increment added: Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0. engine system weight = engine + exhaust + accessory (WES used for nacelle wetted area) nacelle weight = support + cowl + pylon jet weight parameters in JetModel	
		+	Nacelle Drag, Standard Model forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on wetted area, $D/q = SC_D$)	
		+	vertical drag	
SET_{Vdrag}	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV	real	+	area $(D/q)_V$	
CDV	real	+	coefficient C_{DV} (based on wetted area, $D/q = SC_D$)	

Structure: JetGroup				176
MODEL_Djet Xdrag	int real	+ + +	transition from forward flight drag to vertical drag model (0 none) exponent X_d	1 2.0
			SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated	
			Cooling Drag	
DoQ_cool	real	+	area $(D/q)_{ m cool}$	0.
		+	Engine Section or Nacelle Group, NDARC Weight Model	
$MODEL_{nacelle}$	int	+	model (1 parametric, 2 scale with thrust, 3 Boeing, 4 Raymer (transport))	1
fWpylon	real	+	pylon support structure weight $f_{ m pylon}$ (fraction maximum takeoff weight)	0.
		+	nacelle group weight, W vs T_{0C}	
Knac	real	+	factor $K_{ m nac}$	
Xnac	real	+	exponent $X_{\rm nac}$	
n_clf	real	+	Boeing: crash load factor	20.
fWidth_nac	real	+	Raymer: nacelle width (fraction nacelle length)	0.2
		+	Air Induction Group, NDARC Weight Model	
$MODEL_{airind}$	int	+	model (1 parametric, 2 area)	1
fWair	real	+	air induction weight f_{airind} (fraction engine support plus air induction weight)	0.3
Uair	real	+	weight per nacelle area $U_{\rm airind}$ (lb/ft ² or kg/m ²)	
		+	Engine System, NDARC Model	
	1	+	exhaust system weight, per jet; W_{exh} vs T_{0C}	_
Kwt0_exh	real	+	$K_{0 m exh}$	0.
Kwt1_exh	real	+	$K_{ m 1exh}$	0.002
MODEL III	int	+	engine accessories	1
MODEL_lub	int	+	lubrication system weight (1 in jet weight, 2 in accessory weight)	1
		+	Custom Weight Model	
$WtParam_jetsys(8)$	real	+	parameters	0.

Variable	Type		Description	Default
		+	Charge Group	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Description	
MODEL_charge	c*32	+	charger model	1 1
IDENT_charge	c*16	+	charger identification	'Charge'
nCharge	int	+	number of chargers $N_{ m chrg}$	1
Pchrg	real	+	charger power P_{chrg} (SLS static at takeoff rating, 0. for P0_ref(rating_to))	0.
rating_to	c*12	+	4 00	'MCP'
rating_idle	c*12	+	idle power rating	'MCP'
kFuelTank	int	+	fuel tank system number (generated)	1
kFuelTank_burn	int	+	fuel tank system number (burned)	

MODEL_charge: charger model

'fuel' = fuel cell; IDENT_charge \rightarrow FuelCellModel; fuel generated is energy; fuel burned is weight (kFuelTank_burn)

'solar' = solar cell; IDENT_charge → SolarCellModel; fuel generated is energy

'simple' = simple charger; no model identified; fuel generated is energy

charger identification: match ident of FuelCellModel or SolarCellModel

for fixed charger: use $P_{\rm chrg}=0$. and no size task (or charger power not sized)

fuel tank system identified for generation must store and use energy (may have BatteryModel)

fuel tank system identified for burn must store and use weight

		+	Installation	
Kffd	real	+	deterioration factor on charger fuel flow or performance K_{ffd}	1.05
eta_d	real	+	charger inlet efficiency η_d (fraction, for δ_M)	0.98
		+	auxiliary air momentum drag	
fMF_auxair	real	+	mass flow f_{aux} (fraction charger mass flow)	0.007
eta_auxair	real	+	ram recovery efficiency $\eta_{ m aux}$	0.75
		+	Simple charger	
Pmax	real	+	design maximum power $P_{ m max}$	0.
eta_chrg	real	+	efficiency $\eta_{ m chrg}$	1.0
SW	real	+	specific weight S (per charger)	
		+	Geometry	
loc_charger	Location	n +	location	
direction	c*16	+	nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z')	'x'
SET_Swet	int	+	nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled)	2
Swet	real	+	area S_{wet} (per charger)	0.
kSwet	real	+	factor, $k = S_{ m wet}/(W/N_{ m chrg})^{2/3}$ (Units_Dscale)	0.8
			SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)	

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet) units of kSwet are ft²/lb²/3 or m²/kg²/3 nacelle wetted area used for nacelle drag

Controls amplitude Aconnection to aircraft controls (0 none, 1 input T matrix) INPUT_amp 1 int control matrix T_amp(ncontmax,nstatemax) real number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax) nVamp 0 int values amp(nvelmax) real speeds (CAS or TAS) Vamp(nvelmax) real

		+	$\operatorname{mode} B$	
INPUT_mode	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_mode(ncontmax,nstatemax) real	+	control matrix	
nVmode	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
mode(nvelmax)	real	+	values	
Vmode(nvelmax)	real	+	speeds (CAS or TAS)	
		+	incidence i (tilt)	
INPUT_incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$				
	real	+	control matrix	
nVincid	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)	real	+	values	
Vincid(nvelmax)	real	+	speeds (CAS or TAS)	
		+	yaw ψ	
INPUT_yaw	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_yaw(ncontmax,nstatemax)	real	+	control matrix	
nVyaw	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
yaw(nvelmax)	real	+	values	
Vyaw(nvelmax)	real	+	speeds (CAS or TAS)	
			aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$	=
			for each component control, define matrix T (for each control state) and value c	

for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state

Nacelle Drag

Weight charger weight model (0 input, 1 NDARC, 2 custom) MODEL weight int + 1 weight increment (all chargers) dWChrg 0. real **Technology Factors** charger weight $\chi_{\rm chrg}$ TECH chrg real + 1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH xx*Wxx model + dWxx; for fixed (input) weight use MODEL xx=0 or TECH xx=0.

engine system weight = engine + exhaust + accessory = charge group weight (WES used for nacelle wetted area) charger weight parameters in FuelCellModel or SolarCellModel

Nacelle Drag, Standard Model forward flight drag specification (1 fixed, D/q; 2 scaled, C_D) SET drag 2 int + area $(D/q)_0$ DoQ real + coefficient C_{D0} (based on wetted area, $D/q = SC_D$) CD real + vertical drag + specification (1 fixed, D/q; 2 scaled, C_D) SET Vdrag 2 int DoQVarea $(D/q)_V$ real + coefficient C_{DV} (based on wetted area, $D/q = SC_D$) CDV + real transition from forward flight drag to vertical drag + model (0 none) MODEL Dchrg + 1 int + exponent X_d 2.0 Xdrag real

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

0.

+ Custom Weight Model

WtParam_chrgsys(8) real + parameters 0.

Variable	Type		Description	Default
		+	Engine Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Engine'
			engine identification: used by IDENT_engine of EngineGroup input (eg 'T800')	
			installed: power available P_{av} , power required P_{req} , gross jet thrust F_G , net jet thrust F_N uninstalled: power available P_a , power required P_q , gross jet thrust F_g , net jet thrust F_n "0" = SLS static; " C " = MCP mass flow = power / specific power ($SP = P/\dot{m}$); fuel flow = specific fuel consumption * power ($sfc = \dot{w}/P$)	
			engine model can be used by more than one engine group, so all parameters fixed	
			as model for turbojet or reaction drive of convertible engine: only use sfc0C_ref, sfc0C_ref, and parameters for optimum speed, thrust available, and performance P0_ref and SP0_ref required, but not used; weight, ratings, technology, and scaling variables not used	
		+	Weight	
MODEL weight	int	+	RPTEM model (0 fixed, 1 $W(P)$, 2 $SW(\dot{m})$)	1
Weng	real	+	engine weight (fixed)	0.
· ·		+	engine weight, $W_{\rm eng}$ vs $P_{\rm eng}$ model ($W = K_{\rm 0eng} + K_{\rm 1eng}P + K_{\rm 2eng}P^{X_{\rm eng}}$)	
Kwt0_eng	real	+	constant $K_{0 \mathrm{eng}}$	0.
Kwt1 eng	real	+	constant $K_{1\rm eng}$	0.25
Kwt2 eng	real	+	constant $K_{2\mathrm{eng}}$	0.
Xwt_eng	real	+	exponent $X_{\rm eng}$	0.
_ 0		+	engine weight, $SW = P_{\rm eng}/W_{\rm eng}$ vs \dot{m}_{0C} model	
SW_ref	real	+	specific weight reference $SW_{\rm ref}$ ($\dot{m}=\dot{m}_{\rm tech}$)	4.
SW_limit	real	+	specific weight limit SW_{lim} ($\dot{m}=\dot{m}_{\mathrm{lim}}$)	5.

WtParam_engine(8)	real	+	Custom Weight Model parameters	0.
vvii dram_engme(o)	Tour	•	parameters	0.
		+	Parameters	
		+	Engine Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
		+	Reference	
$P0_{ref(nratemax)}$	real	+	power (P_0)	2000.
SP0_ref(nratemax)	real	+	specific power (SP_0)	150.
Pmech_ref(nratemax)	real	+	mechanical limit of power (P_{mech})	2500.
sfc0C_ref	real	+	specific fuel consumption at MCP (sfc_{0C})	0.45
SF0C_ref	real	+	specific jet thrust $(F_{q0C} = SF_{0C}\dot{m}_{0C})$	10.
Nspec_ref	real	+	specification turbine speed $(N_{\rm spec})$	20000.
$Nopt0C_ref$	real	+	optimum turbine speed at MCP $(N_{\mathrm{opt}0C})$	20000.
			Reference Engine Rating: SLS, static	
			if MCP scaled, ratios to MCP values kept constant	
			engine rating: match rating designation in FltState; typically designated as	
			'ERP' = Emergency Rated Power (OEI power)	
			'CRP' = Contigency Rated Power (2.5 min)	
			'MRP' = Maximum Rated Power (5 or 10 min)	
			'IRP' = Intermediate Rated Power (30 min)	
			'MCP' = Maximum Continuous Power (normal operations)	

+	Technology
---	------------

SP0C_tech	real	+	specific power at MCP SP_{tech} (0. for SP0_ref(MCP))	0.
$sfc0C_tech$	real	+	specific fuel consumption at MCP sfc_{tech} (0. for $sfc0C_ref$)	0.
Nspec tech	real	+	specification turbine speed N_{tech} (0. for Nspec ref)	0.

engine model being used may not contain data for all ratings

		+	Scaling	
FIX_size	int	+	engine size (0 scaled, 1 fixed)	0
MF_{limit}	real	+	mass flow at limit SP and sfc (\dot{m}_{lim})	30.
SP0C_limit	real	+	specific power limit $SP_{ m lim}$	200.
sfc0C_limit	real	+	specific fuel consumption limit $\mathrm{sfc_{lim}}$	0.34
KNspec	real	+	specification turbine speed variation (K_{Ns2})	0.
			SP and sfc functions are defined by values SPOC tech, sfcOC tech, \dot{m}_{tech} =POC, ref/SPOC tech	

SP and sfc functions are defined by values SP0C_tech, sfc0C_tech, $\dot{m}_{\rm tech}$ =P0C_ref/SP0C_tech and limits SP0C_limit, sfc0C_limit, MF_limit defaults SP0C_tech=SP0_ref(MCP), sfc0C_tech=sfc0C_ref, Nspec_tech=Nspec_ref require $\dot{m}_{\rm tech} < \dot{m}_{\rm lim}$ (otherwise get SP_{0C} = SP0C_tech and sfc $_{0C}$ = sfc0C_tech)

for no variation of SP, sfc , and SW with scale, use FIX_size=1 or MF_limit=0. engine weight scaling determined by MODEL_weight

	+	Optimum Power Turbine Speed	
int	+	model (0 none, 1 linear, 2 cubic)	1
	+	linear, $N_{\rm opt}/N_{\rm spec}$ vs P_q/P_0	
real	+	constant $K_{N{ m opt}A}$	1.
real	+	constant $K_{N ext{opt} B}$	0.
	+	cubic, $N_{ m opt}/N_{ m opt0C}$ vs P_q/P_{0C}	
real	+	constant $K_{N ext{opt} 0}$	1.
real	+	constant $K_{N ext{opt} 1}$	0.
real	+	constant $K_{N ext{opt} 2}$	0.
real	+	constant $K_{N ext{opt}3}$	0.
real	+	exponent X_{Nopt}	0.
	+	power turbine efficiency function, $\eta_t(N)/\eta_t(N_{\rm spec})$	
real	+	exponent $X_{N\eta}$	2.0
	real real real real real real real	int + real +	$\begin{array}{lll} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

engine power and performance variation with power turbine speed determined by $N_{\rm opt}$ and $X_{N\eta}$ used only for INPUT_param = single set; no variation if MODEL_OptN=0

	+	Power Available and Power Required Parameters	
MODEL_Pav int	+	power available (0 constant, 1 referred, 2 general)	2
MODEL_perf int	+	performance at power required (1 referred, 2 general)	2
INPUT_param int	+	parameter input form (1 single set; 2 function of engine speed)	1
	+	function of engine speed	
nspeed int	+	number of engine speeds (maximum nspeedmax)	1
rNeng(nspeedmax) real	+	engine speed ratio, $N/N_{\rm spec}$	1.
kEngineParamN(nspeedmax) int	+	identification of parameter sets	1

constant or referred model does not use parameters, does not include effect of turbine speed general model uses parameters for effects of temperature and ram, can include effect of turbine speed

function of engine speed (INPUT_param=2): parameters interpolated, rNeng unique and sequential

simple model: constant (MODEL_Pav=0) or constant referred (MODEL_Pav=1) power available constant specific fuel consumption (MODEL_perf=1, sfc0C_tech=0., MF_limit=0.) no jet force (EngineGroup%SET_FN=0), no auxiliary air momentum drag (EngineGroup%SET_Daux=0)

Power Available INPUT lin input form (1 coefficients K_0, K_1 ; 2 values θ_b, K_b) int 1 referred specific power available, SP_a/SP_0 vs temperature Nspa(nratemax) int number of regions (maximum nengkmax-1) 0 Kspa0(nengkmax,nratemax) K_{spa0} (piecewise linear $K_{spa} = K_0 + K_1\theta$) 3.5 real K_{spa1} (piecewise linear $K_{spa} = K_0 + K_1\theta$) Kspa1(nengkmax,nratemax) real + -2.5 Tspak(nengkmax,nratemax) real + Kspab(nengkmax,nratemax) real + K_{spa-b} X_{spa0} (piecewise linear $X_{spa} = X_0 + X_1\theta$) Xspa0(nengkmax,nratemax) real + -.2 X_{spa1} (piecewise linear $X_{spa} = X_0 + X_1\theta$) Xspa1(nengkmax,nratemax) real 0. + Tspax(nengkmax,nratemax) θ_b + real X_{spa-b} Xspab(nengkmax,nratemax) real referred mass flow at power available, \dot{m}_a/\dot{m}_0 vs temperature + number of regions (maximum nengkmax-1) Nmfa(nratemax) int + 0

Kmfa0(nengkmax,nratemax)	real	+	K_{mfa0} (piecewise linear $K_{mfa} = K_0 + K_1\theta$)	.3
Kmfa1(nengkmax,nratemax)	real	+	K_{mfa1} (piecewise linear $K_{mfa} = K_0 + K_1\theta$)	3
Tmfak(nengkmax,nratemax)	real	+	$ heta_b$	
Kmfab(nengkmax,nratemax)	real	+	K_{mfa-b}	
Xmfa0(nengkmax,nratemax)	real	+	X_{mfa0} (piecewise linear $X_{mfa} = X_0 + X_1\theta$)	1.
Xmfa1(nengkmax,nratemax)	real	+	X_{mfa1} (piecewise linear $X_{mfa} = X_0 + X_1\theta$)	0.
Tmfax(nengkmax,nratemax)	real	+	$ heta_b$	
Xmfab(nengkmax,nratemax)	real	+	X_{mfa-b}	

piecewise linear function:

input form = coefficients K_0 , K_1 (N sets) or values θ_b , K_b (N+1 values) form not input is calculated (N-1 θ_b , K_b or N K_0 , K_1)

input K_0 , K_1 : adjacent K_1 different, resulting θ_b unique and sequential input θ_b , K_b : θ_b unique and sequential

 $N_{\rm spec}$ = specification power turbine speed

 SP_a , \dot{m}_a = referred specific power and mass flow available, at $N_{\rm spec}$

 SP_0 , \dot{m}_0 = referred specific power and mass flow available, at $N_{\rm spec}$, SLS static

N = power turbine speed, $N_{\rm opt}$ = optimum power turbine speed

 η_t = power turbine efficiency; assume gas power available $P_G = P_a/\eta_t$ insensitive to N, so $\eta_t(N)$ give $P_a(N)$

+ Performance at Power Required + referred fuel flow at power required, $\dot{w}_{reg}/\dot{w}_{0C}$ vs P_a/P_{0C}

		•	referred rues now at power required; wreq/ with visit q/1 of	
Kffq0	real	+	constant K_{ffq0}	.2
Kffq1	real	+	constant K_{ffq1}	.8
Kffq2	real	+	constant K_{ffq2}	0.
Kffq3	real	+	constant K_{ffq3}	0.
Xffq	real	+	exponent X_{ffq}	1.3
		+	referred mass flow at power required, $\dot{m}_{req}/\dot{m}_{0C}$ vs P_q/P_{0C}	
Kmfq0	real	+	constant K_{mfq0}	.6
Kmfq1	real	+	constant K_{mfq1}	.78
Kmfq2	real	+	constant K_{mfq2}	48

Structure: EngineModel				187
Kmfq3	real	+	constant K_{mfq3}	.1
Xmfq	real	+	exponent X_{mfq}	3.5
		+	gross jet thrust at power required, F_q/F_{g0C} vs P_q/P_{0C}	
Kfgq0	real	+	constant K_{fgq0}	.2
Kfgq1	real	+	constant K_{fqq1}	.8
Kfgq2	real	+	constant K_{fgq2}	0.
Kfgq3	real	+	constant K_{fgq3}	0.
Xfgq	real	+	exponent X_{fqq}	2.0
		+	installed net jet thrust at power required, F_G/F_g (installed thrust loss) vs ℓ_{ex}	
Kfgr0	real	+	constant K_{fqr0}	.8
Kfgr1	real	+	constant K_{fgr1}	.6
Kfgr2	real	+	constant K_{fgr2}	0.
Kfgr3	real	+	constant K_{fgr3}	0.

Chapter 31

Structure: EngineParamN

Variable	Type		Description	Default
		+	Engine Model Parameters	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
		+	Power Available	
nrate	int	+	number of ratings	1
INPUT_lin	int	+	input form (1 coefficients K_0, K_1 ; 2 values θ_b, K_b)	1
		+	referred specific power available, SP_a/SP_0 vs temperature	
Nspa(nratemax)	int	+	number of regions (maximum nengkmax-1)	0
Kspa0(nengkmax,nratemax)	real	+	K_{spa0} (piecewise linear $K_{spa} = K_0 + K_1\theta$)	3.5
Kspa1(nengkmax,nratemax)	real	+	K_{spa1} (piecewise linear $K_{spa} = K_0 + K_1\theta$)	-2.5
Tspak(nengkmax,nratemax)	real	+	$ heta_b$	
Kspab(nengkmax,nratemax)	real	+	K_{spa-b}	
Xspa0(nengkmax,nratemax)	real	+	X_{spa0} (piecewise linear $X_{spa} = X_0 + X_1\theta$)	2
Xspa1(nengkmax,nratemax)	real	+	X_{spa1} (piecewise linear $X_{spa} = X_0 + X_1\theta$)	0.
Tspax(nengkmax,nratemax)	real	+	$ heta_b$	
Xspab(nengkmax,nratemax)	real	+	X_{spa-b}	
		+	referred mass flow at power available, \dot{m}_a/\dot{m}_0 vs temperature	
Nmfa(nratemax)	int	+	number of regions (maximum nengkmax-1)	0
Kmfa0(nengkmax,nratemax)	real	+	K_{mfa0} (piecewise linear $K_{mfa} = K_0 + K_1\theta$)	.3
Kmfa1(nengkmax,nratemax)	real	+	K_{mfa1} (piecewise linear $K_{mfa} = K_0 + K_1\theta$)	3
Tmfak(nengkmax,nratemax)	real	+	$ heta_b$	
Kmfab(nengkmax,nratemax)	real	+	K_{mfa-b}	
Xmfa0(nengkmax,nratemax)	real	+	X_{mfa0} (piecewise linear $X_{mfa} = X_0 + X_1\theta$)	1.
Xmfa1(nengkmax,nratemax)	real	+	X_{mfa1} (piecewise linear $X_{mfa} = X_0 + X_1\theta$)	0.
Tmfax(nengkmax,nratemax)	real	+	$ heta_b$	
Xmfab(nengkmax,nratemax)	real	+	X_{mfa-b}	

Structure: EngineParamN

number of ratings consistent with EngineModel

		+	Performance at Power Required	
		+	referred fuel flow at power required, $\dot{w}_{req}/\dot{w}_{0C}$ vs P_q/P_{0C}	
Kffq0	real	+	constant K_{ffq0}	.2
Kffq1	real	+	constant K_{ffq1}	.8
Kffq2	real	+	constant K_{ffq2}	0.
Kffq3	real	+	constant K_{ffq3}	0.
Xffq	real	+	exponent X_{ffq}	1.3
		+	referred mass flow at power required, $\dot{m}_{req}/\dot{m}_{0C}$ vs P_q/P_{0C}	
Kmfq0	real	+	constant K_{mfq0}	.6
Kmfq1	real	+	constant K_{mfq1}	.78
Kmfq2	real	+	constant K_{mfq2}	48
Kmfq3	real	+	constant K_{mfq3}	.1
Xmfq	real	+	exponent X_{mfq}	3.5
		+	gross jet thrust at power required, F_g/F_{g0C} vs P_q/P_{0C}	
Kfgq0	real	+	constant K_{fgq0}	.2
Kfgq1	real	+	constant K_{fgq1}	.8
Kfgq2	real	+	constant K_{fgq2}	0.
Kfgq3	real	+	constant K_{fgq3}	0.
Xfgq	real	+	exponent X_{fgq}	2.0
		+	installed net jet thrust at power required, F_G/F_g (installed thrust loss) vs ℓ_{ex}	
Kfgr0	real	+	constant K_{fgr0}	.8
Kfgr1	real	+	constant K_{fgr1}	.6
Kfgr2	real	+	constant K_{fgr2}	0.
Kfgr3	real	+	constant K_{fgr3}	0.

Structure: EngineTable

Variable	Type	Description	Default
title notes ident	c*100 c*1000 c*16	notes .	'Default' 'Engine'
nrate rating(nratemax) Nspec	c*12	Engine ratings $\begin{array}{cccc} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	1 'MCP'

Structure: EngineTable

+ Table

KIND_table	int	+	format (1 E, 2 H)	1
nalt	int	+	number of altitudes (maximum nengtmax)	
ntemp	int	+	number of temperatures (maximum nengxmax)	
nspeed	int	+	number of speeds (maximum nengtmax)	
nalt_ram	int	+	number of altitudes for $f_{\rm RAM}$ (maximum nengtmax)	
ntemp_ram	int	+	number of temperatures for $f_{\rm RAM}$ (maximum nengxmax)	
alt(nengtmax)	real	+	altitude h	
temp(nengxmax)	real	+	temperature $ au$	
speed(nengtmax)	real	+	speed V (TAS)	
alt_ram(nengtmax)	real	+	altitude h for $f_{\rm RAM}$	
temp_ram(nengxmax)	real	+	temperature $ au$ for $f_{ m RAM}$	
, ,				
			(11) Compared France In The Compared France I	
			table format E: use alt, speed	
			table format H: use alt, temp; and for $f_{ m RAM}$ use speed, alt_ram, temp_ram; no jet thrust	
		+	Technology factors	
Кр	real	+++	Technology factors power available	1.0
Kp Kw	real real		•••	1.0 1.0
		+	power available	
Kw	real	+ + +	power available fuel flow net thrust	1.0
Kw Kf	real real	+ +	power available fuel flow	1.0
Kw	real real	+ + +	power available fuel flow net thrust Table format E	1.0
Kw Kf Tp(nengtmax,nengtmax,n	real real ratemax) real	+ + +	power available fuel flow net thrust	1.0
Kw Kf	real real ratemax) real	+ + + +	power available fuel flow net thrust	1.0
Kw Kf Tp(nengtmax,nengtmax,n Tw(nengtmax,nengtmax,n	real real ratemax) real ratemax) real	+ + + +	power available fuel flow net thrust Table format E	1.0
Kw Kf Tp(nengtmax,nengtmax,n	real real ratemax) real ratemax) real	+ + + + +	power available fuel flow net thrust $ \label{eq:continuous} $ Table format E $ \label{eq:continuous} $	1.0
Kw Kf Tp(nengtmax,nengtmax,n Tw(nengtmax,nengtmax,n	real real ratemax) real ratemax) real	+ + + + +	power available fuel flow net thrust	1.0
Kw Kf Tp(nengtmax,nengtmax,n Tw(nengtmax,nengtmax,n	real real real ratemax) real ratemax) real atemax)	+ + + + + + +	power available fuel flow net thrust	1.0
Kw Kf Tp(nengtmax,nengtmax,n Tw(nengtmax,nengtmax,n Tf(nengtmax,nengtmax,nr	real real ratemax) real ratemax) real atemax) real	+ + + + + + +	power available fuel flow net thrust	1.0 1.0
Kw Kf Tp(nengtmax,nengtmax,n Tw(nengtmax,nengtmax,n	real real real ratemax) real ratemax) real atemax)	+ + + + + + +	power available fuel flow net thrust	1.0

Structure: EngineTable

P0(nengtmax,nengxmax,n	ratemax)			
	real	+	static power $P_0(h, \tau, R)$	
KIND_ram	int	+	ram factor (1 table, 2 referred)	1
fRAM(nengtmax,nengxma	\times ,nengtma \times)			
	real	+	table ram factor $f_{\mathrm{RAM}}(V, \tau, h)$	
Xpa(nratemax)	real	+	referred ram factor $f_{\mathrm{RAM}} = (\delta_M \sqrt{\theta_M})^{X_{pa}}$, exponent X_{pa}	1.
		+	fuel flow	
KIND_fuelflow	int	+	kind (1 reference $\dot{w}_{\rm ref}(P_{\rm qref})$, 2 table $\dot{w}(P_q,h, au)$)	1
		+	reference	
nfuelflow	int	+	number of fuel flow values (maximum nengxmax)	
$Pq_ref(nengxmax)$	real	+	reference power required $P_q/\delta^{X_{dp}}\theta^{X_{rp}}$	
$ff_ref(neng \times max)$	real	+	reference fuel flow $\dot{w}/\delta^{X_{df}} \dot{\theta}^{X_{rf}}$	
Xdp	real	+	reference power, pressure exponent X_{dp}	1.0
Xrp	real	+	reference power, temperature exponent X_{rp}	0.5
Xdf	real	+	reference fuel flow, pressure exponent X_{df}	1.0
Xrf	real	+	reference fuel flow, temperature exponent X_{rf}	0.5
		+	table	
npower_ff	int	+	number of power required values (maximum nengtmax)	
nalt_ff	int	+	number of altitudes (maximum nengtmax)	
ntemp_ff	int	+	number of temperatures (maximum nengtmax)	
$power_ff(nengtmax)$	real	+	power required P_q	
$alt_ff(nengtmax)$	real	+	altitude h	
$temp_ff(nengtmax)$	real	+	temperature $ au$	
ff(nengtmax,nengtmax,ner	ngtmax)			
	real	+	fuel flow $\dot{w}(P_q, h, \tau)$	

Variable	Type		Description	Default
		+	Reciprocating Engine Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Engine'
			engine identification: used by IDENT_engine of EngineGroup input installed: power available P_{av} , power required P_{req} , gross jet thrust F_G , net jet thrust F_N uninstalled: power available P_a , power required P_q , gross jet thrust F_g , net jet thrust F_n fuel flow = specific fuel consumption * power (sfc = \dot{w}/P); mass flow = fuel flow / fuel-air ratio reciprocating engine model can be used by more than one engine group, so all parameters fixed	

		+	Weight	
MODEL_weight	int	+	model (0 fixed, 1 $W(P)$)	1
Weng	real	+	engine weight (fixed)	0.
		+	engine weight, $W_{\rm eng}$ vs $P_{\rm eng}$ model ($W = K_{\rm 0eng} + K_{\rm 1eng} P + K_{\rm 2eng} P^{X_{\rm eng}}$)	
Kwt0_eng	real	+	constant $K_{0\mathrm{eng}}$	0.
Kwt1_eng	real	+	constant K_{1eng}	0.25
Kwt2_eng	real	+	constant $K_{ m 2eng}$	0.
Xwt_eng	real	+	exponent X_{eng}	0.
		+	Custom Weight Model	
WtParam_recip(8)	real	+	parameters	0.

		+	Parameters	
		+	Engine Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
		+	Reference	
P0_ref(nratemax)	real	+	power (P_0)	1000.
$sfc0_ref(nratemax)$	real	+	specific fuel consumption (sfc $_0$)	0.60
$F0_{ref(nratemax)}$	real	+	fuel-air ratio (F_0)	0.08
$SF0_{ref(nratemax)}$	real	+	specific jet thrust $(F_q = SF_0\dot{m})$	0.
$Pmep_ref(nratemax)$	real	+	mean effective pressure limit $(P_{\rm mep})$	1000.
Pcrit_ref(nratemax)	real	+	critical (throttle) limit (P_{crit})	1000.
$N0_{ref(nratemax)}$	real	+	reference engine speed (N_0)	2000.
Nspec_ref	real	+	specification engine speed $(N_{\rm spec})$	2000.

Reference Engine Rating: SLS, static

if MCP scaled, ratios to MCP values kept constant

engine rating: match rating designation in FltState; typically designated as

'MRP' = Maximum Rated Power (5 or 10 min)

'MCP' = Maximum Continuous Power (normal operations)

ratings encompass mixture settings and supercharger speeds

Pmep_ref: zero for no mechanical (mep) limit

Pcrit_ref: zero for no critical (throttle) limit; Xcrit = 0. for limit independent of engine speed

		+	Scaling	
FIX_size	int	+	engine size (0 scaled, 1 fixed)	0
Xo	real	+	specific output exponent X_o	0.2
Xs	real	+	mean piston speed exponent X_s	0.3
Xf	real	+	specific fuel consumption exponent X_f	0.1
Ksfc1	real	+	specific fuel consumption constant $K_{ m sfc1}$	1.
Ksfc2	real	+	specific fuel consumption constant $K_{ m sfc2}$	0.
KN1	real	+	engine speed constant $K_{N ext{spec}1}$	1.
KN2	real	+	engine speed constant $K_{N_{\rm Spec}2}$	0.

		+	Power Available	
MODEL Pav	int	+	model (0 constant P_a)	1
Kp(nratemax)	real	+	factor K_p	1
Kram(nratemax)	real	+	constant K_{ram}	1
XpN(nratemax)	real	+	exponent X_{pN}	1
Xpt(nratemax)	real	+	exponent $X_{p\theta}$	0.5
Xcrit(nratemax)	real	+	exponent $X_{\rm crit}$	3.0
,		+	Performance at Power Required	
		+	fuel flow, \dot{w}_{req}/\dot{w}_0 vs P_q/P_0	
MODEL_Kffq	int	+	model (1 polynomial, 2 piecewise linear)	1
		+	polynomial	
Kffq0(nratemax)	real	+	constant K_{ffq0}	0
Kffq1(nratemax)	real	+	constant K_{ffq1}	1
Kffq2(nratemax)	real	+	constant K_{ffq2}	0
Kffq3(nratemax)	real	+	constant K_{ffq3}	0
		+	piecewise linear	
Nffq(nratemax)	int	+	number of values (maximum nengrmax)	(
Pffq(nengrmax,nratemax)	real	+	power ratio P_q/P_0	
Kffq(nengrmax,nratemax)	real	+	factor K_{ffq}	
Xffq(nratemax)	real	+	exponent X_{ffq}	0
Xffs(nratemax)	real	+	exponent $X_{ff\sigma}$	0
		+	fuel-air ratio, F_{req}/F_0 vs P_q/P_0	
MODEL_KFq	int	+	model (1 polynomial, 2 piecewise linear)	1
		+	polynomial	
KFq0(nratemax)	real	+	constant K_{Fq0}	1
KFq1(nratemax)	real	+	constant K_{Fq1}	0
KFq2(nratemax)	real	+	constant K_{Fq2}	0
KFq3(nratemax)	real	+	constant K_{Fq3}	0
		+	piecewise linear	
NFq(nratemax)	int	+	number of values (maximum nengrmax)	(
PFq(nengrmax,nratemax)	real	+	power ratio P_q/P_0	
KFq(nengrmax,nratemax)	real	+	factor K_{Fq}	
XFn(nratemax)	real	+	exponent $X_{E_{\pi}}$	0

 $+ \qquad \text{installed net jet thrust, } K_{fgr} = F_G/F_g \text{ (installed thrust loss)}$ $\text{Kfgr(nratemax)} \qquad \text{real} \qquad + \qquad \text{constant } K_{fgr}$

Simple model: constant power available (MODEL_Pav=0)
constant specific fuel consumption (defaults Kffq1=1. and Xffq=0., and Xf=0.)
constant fuel-air ratio (defaults KFq0=1. and XFq=0.)
no jet force (EngineGroup%SET_FN=0), no auxiliary air momentum drag (EngineGroup%SET_Daux=0)

1.

Chapter 34

Structure: CompressorModel

Variable	Type		Description	Default
_		+	Compressor Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Comp'
			compressor identification: used by IDENT_engine of EngineGroup input	
			"0" = SLS static; "C" = MCP	
			mass flow = power / specific power ($SP = P/\dot{m}$); gross thrust = specific thrust * mass flow ($ST = T/\dot{m}$)	
			compressor model can be used by more than one engine group, so all parameters fixed	
		+	Weight	
MODEL_weight	int	+	model (0 fixed, 1 W(P))	1
Wcomp	real	+	compressor weight (fixed)	0.
		+	compressor weight, W_{comp} vs P_{eng} model ($W = K_{0\text{comp}} + K_{1\text{comp}}P + K_{2\text{comp}}P^{X_{\text{comp}}}$)	
Kwt0_comp	real	+	constant $K_{0\mathrm{comp}}$	0.
Kwt1_comp	real	+	constant $K_{1\text{comp}}$	0.2
Kwt2_comp	real	+	constant $K_{2\text{comp}}$	0.
Xwt_comp	real	+	exponent X_{comp}	0.
		+	Custom Weight Model	
$WtParam_comp(8)$	real	+	parameters	0.

Structure: CompressorModel

		+	Parameters	
		+	Compressor Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
		+	Reference	
$P0_{ref(nratemax)}$	real	+	power (P_0)	
SP0_ref(nratemax)	real	+	specific power (SP_0)	
$Pmech_ref(nratemax)$	real	+	mechanical limit of power (P_{mech})	
SF0C_ref	real	+	specific jet thrust $(F_{g0C} = SF_{0C}\dot{m}_{0C})$	
Nspec_ref	real	+		
			Reference Compressor Rating: SLS, static	
			if MCP scaled, ratios to MCP values kept constant	
			compressor rating: match rating designation in FltState	
		+	Power Available	
		+	referred specific power available, SP_a/SP_0	
Xspa	real	+	exponent X_{spa}	1.
		+	referred mass flow at power available, \dot{m}_a/\dot{m}_0	
Xmfa	real	+	exponent X_{mfa}	1.
		+	Performance at Power Required	
		+	referred mass flow at power required, $\dot{m}_{req}/\dot{m}_{0C}$ vs P_q/P_{0C}	
Kmfq0	real	+	constant K_{mfq0}	
Kmfq1	real	+	, q ±	
Kmfq2	real	+	constant K_{mfq2}	
Kmfq3	real	+	$m_{J}q_{O}$	
Xmfq	real	+	exponent X_{mfq}	1.
		+	gross jet thrust at power required, F_g/F_{g0C} vs P_q/P_{0C}	
Kfgq0	real	+	constant K_{fgq0}	1.
Kfgq1	real	+	J 9 4 ±	0.
Kfgq2	real	+	constant K_{fgq2}	0.
Kfgq3	real	+	constant K_{fgq3}	0.
Xfgq	real	+	exponent X_{fgq}	2.0

Structure: MotorModel

Variable	Type		Description	Default
		+	Motor Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Motor'
			motor identification: used by IDENT_engine of EngineGroup input	
			"0" = SLS static; "C" = MCP	
			motor model can be used by more than one engine group, so all parameters fixed	
		+	Weight	
MODEL_weight	int	+	NASA model (0 fixed, 1 $W(P)$, 2 $W(Q)$)	2
Wmotor	real	+	motor weight (fixed)	0.
		+	motor weight, W_{motor} vs P_{eng} model ($W = K_{0\text{motor}} + K_{1\text{motor}} P + K_{2\text{motor}} P^{X_{\text{motor}}} Q^{X_{q\text{motor}}} S^{X_{s\text{motor}}}$)	
Kwt0_motor	real	+	constant $K_{0 m motor}$	0.
Kwt1_motor	real	+	constant $K_{1 motor}$	0.
Kwt2_motor	real	+	constant $K_{2\text{motor}}$	0.
Xwt_motor	real	+	exponent $X_{ m motor}$	0.
Xwtq_motor	real	+	exponent $X_{q ext{motor}}$	0.
$Xwts_motor$	real	+	exponent $X_{ m smotor}$	0.
		+	motor weight, $W_{ m motor}$ vs $Q_{ m peak}$ model	
KIND_design	int	+	torque-to-weight design (0 only high Q/W ; 1 high Q/W , 2 low Q/W factor)	0
		+	controller weight ($\Delta W = K_{\rm ESC} P^{X_{\rm ESC}}$)	
Kwt_ESC	real	+	constant $K_{ m ESC}$	0.
Xwt_ESC	real	+	exponent $X_{ m ESC}$	0.
		+	Custom Weight Model	
WtParam_motor(8)	real	+	parameters	0.

Structure: MotorModel 200

		+	Parameters	
		+	Motor Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
		+	Reference	
P0_ref(nratemax)	real	+	power (P_0)	0.
Ppeak_ref(nratemax)	real	+	mechanical limit of power (P_{peak})	
Nspec_ref	real	+	specification motor speed $(N_{\rm spec})$	
			Reference Motor Rating: SLS, static if MCP scaled, ratios to MCP values kept constant	
			motor rating: match rating designation in FltState	
			——————————————————————————————————————	
		+	Performance	
		+	Motor/Generator Efficiency	
KIND_eff	int	+	kind (1 fixed, 2 function power, 3 map)	2
		+	fixed or function power	
eta_motor	real	+	reference efficiency (at $P_{\rm eng}$)	1.00
loss_motor	real	+	power loss (fraction $P_{\rm eng}$)	0.00
		+	efficiency map $(P_{\text{loss}} = P_{\text{eng}} f_{\text{loss}} \sum_{i=0}^{3} \sum_{j=0}^{3} C_{ij} t^{i} n^{j})$	
Closs(4,4)	real	+	loss coefficients Closs $(i+1,j+1) = C_{ij}$	0.00
floss	real	+	factor $f_{\rm loss}$	1.00
eta_cont	real	+	controller efficiency	1.00
		+	Scaling	
KNspec	real	+	specification motor speed variation (K_{Ns})	0.
KNbase	real	+	base motor speed variation (K_{Nb})	0.
			$N_{\rm spec}$ used by efficiency map; $N_{\rm base}$ affects $P_{\rm peak}$ scaling	
			for no variation of motor speeds with scale, use KNspec = KNbase = 0.	

Structure: MotorModel 201

		+	Thermal Management System	
		+	mass flow (lb/sec or kg/sec) from rejected heat (hp or kW)	
KTMSm0	real	+	constant $K_{\mathrm{TMS}m0}$	0.
KTMSm1	real	+	constant $K_{\mathrm{TMS}m1}$	0.07
XTMSm	real	+	exponent $X_{\mathrm{TMS}m}$	1.
		+	power (hp or kW) from mass flow (lb/sec or kg/sec)	
KTMSp0	real	+	constant $K_{\mathrm{TMS}p0}$	0.
KTMSp1	real	+	constant $K_{\mathrm{TMS}p1}$	0.6
XTMSp	real	+	exponent $X_{\mathrm{TMS}p}$	1.
		+	gross jet force (lb or N) from mass flow (lb/sec or kg/sec)	
KTMSf0	real	+	constant $K_{\mathrm{TMS}f0}$	0.
KTMSf1	real	+	constant $K_{\mathrm{TMS}f1}$	6.0
XTMSf	real	+	exponent $X_{\mathrm{TMS}f}$	1.
		+	weight (lb or kg)	
KTMSw0	real	+	constant $K_{\mathrm{TMS}w0}$	4.0
KTMSw1	real	+	constant $K_{\mathrm{TMS}w1}$	0.3
XTMSwp	real	+	exponent $X_{\mathrm{TMS}wp}$	1.
XTMSwm	real	+	exponent $X_{\mathrm{TMS}wm}$	0.

Structure: JetModel

Variable	Type		Description	Default
		+	Jet Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Jet'
			jet identification: used by IDENT_jet of JetGroup input	
			installed: thrust available T_{av} , thrust required T_{req}	
			uninstalled: thrust available T_a , thrust required T_q	
			"0" = SLS static; " C " = MCT	
			mass flow = thrust / specific thrust ($ST = T/\dot{m}$); fuel flow = specific fuel consumption * thrust (sfc = \dot{w}/T)	
			jet model can be used by more than one jet group, so all parameters fixed	
			as model for reaction drive of convertible engine: only use sfc0C_ref and parameters for thrust available and performance at thrust required T0_ref and ST0_ref required, but not used; weight, ratings, technology, and scaling variables not used	
		+	Weight	
MODEL weight	int	+	RPJEM model (0 fixed, 1 $W(T)$)	1
Wjet	real	+	jet weight (fixed)	0.
,		+	jet weight, W_{jet} vs T_{jet} model ($W = K_{0 \text{jet}} + K_{1 \text{jet}}T + K_{2 \text{jet}}T^{X_{\text{jet}}}$)	
Kwt0_jet	real	+	$K_{0 m jet}$ constant $K_{0 m jet}$	0.
Kwt1_jet	real	+	constant $K_{1\mathrm{jet}}$	0.2
Kwt2_jet	real	+	constant K_{2jet}	0.
Xwt_jet	real	+	exponent $X_{ m jet}$	0.
		+	Custom Weight Model	
$WtParam_jet(8)$	real	+	parameters	0.

Structure: JetModel 203

		+	Parameters	
		+	Jet Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCT'
		+	Reference	
$T0_{ref(nratemax)}$	real	+	thrust (T_0)	0.
ST0_ref(nratemax)	real	+	specific thrust (ST_0)	
$Tmech_ref(nratemax)$	real	+	mechanical limit of thrust $(T_{\rm mech})$	
sfc0C_ref	real	+	specific fuel consumption at MCT (sfc_{0C})	
			Reference Jet Rating: SLS, static	
			if MCT scaled, ratios to MCT values kept constant	
			jet rating: match rating designation in FltState	
ST0C_tech sfc0C_tech	real real	+ + +	Technology specific thrust at MCT $ST_{\rm tech}$ (0. for ST0_ref(MCT)) specific fuel consumption at MCT $\rm sfc_{\rm tech}$ (0. for sfc0C_ref) Scaling	0. 0.
FIX_size	int	+	engine size (0 scaled, 1 fixed)	0
MF_limit	real	+	mass flow at limit ST and $\mathrm{sfc}\ (\dot{m}_{\mathrm{lim}})$	0.
ST0C_limit	real	+	specific thrust limit $ST_{ m lim}$	0.
sfc0C_limit	real	+	specific fuel consumption limit ${ m sfc_{lim}}$	
			ST and sfc functions are defined by values ST0C_tech, sfc0C_tech, $\dot{m}_{\rm tech}$ =T0C_ref/ST0C_tech and limits ST0C_limit, sfc0C_limit, MF_limit defaults ST0C_tech=ST0_ref(MCT), sfc0C_tech=sfc0C_ref require $\dot{m}_{\rm tech} < \dot{m}_{\rm lim}$ (otherwise get ST_{0C} = ST0C_tech and sfc $_{0C}$ = sfc0C_tech)	
			for no variation of ST and sfc with scale, use FIX_size=1 or MF_limit=0.	

Structure: JetModel 204

bypass	real	+	Turbofan bypass ratio (0. for turbojet)	0.
		+	Thrust Available	
		+	referred specific thrust available, ST_a/ST_0	
Xsta	real	+	exponent X_{sta}	1.
		+	referred mass flow at thrust available, \dot{m}_a/\dot{m}_0	
Xmfa	real	+	exponent X_{mfa}	1.
		+	Performance at Thrust Required	
		+	referred fuel flow at thrust required, $\dot{w}_{req}/\dot{w}_{0C}$ vs T_q/T_{0C}	
Kffq0	real	+	constant K_{ffq0}	0.
Kffq1	real	+	constant K_{ffq1}	1.
Kffq2	real	+	constant K_{ffq2}	0.
Kffq3	real	+	constant K_{ffq3}	0.
Xffq	real	+	exponent X_{ffq}	1.
		+	referred mass flow at thrust required, $\dot{m}_{req}/\dot{m}_{0C}$ vs T_q/T_{0C}	
Kmfq0	real	+	constant K_{mfq0}	0.
Kmfq1	real	+	constant K_{mfq1}	1.
Kmfq2	real	+	constant K_{mfq2}	0.
Kmfq3	real	+	constant K_{mfq3}	0.
Xmfq	real	+	exponent X_{mfq}	1.

Structure: FuelCellModel

Variable	Type		Description	Default
		+	Fuel Cell Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Cell'
			fuel cell identification: used by IDENT_charge of ChargerGroup input	
			"0" = SLS static; "C" = MCP	
			fuel cell model can be used by more than one charger group, so all parameters fixed	
		+	Weight	
MODEL_weight	int	+	model (0 fixed, 1 $W(P)$)	1
Wcell	real	+	fuel cell weight (fixed)	0.
	1000	+	fuel cell weight, W_{cell} vs P_{chrg} model ($W = K_{0\text{cell}} + K_{1\text{cell}}P + K_{2\text{cell}}P^{X_{\text{cell}}}$)	•
Kwt0_cell	real	+	constant $K_{0 m cell}$	0.
Kwt1_cell	real	+	constant $K_{1 m cell}$	0.
Kwt2_cell	real	+	constant $K_{2\mathrm{cell}}$	0.
Xwt_cell	real	+	exponent X_{cell}	0.
		+	Custom Weight Model	
$WtParam_fuelcell(8)$	real	+	parameters	0.

Structure: FuelCellModel 206

		+	Parameters	
		+	Fuel Cell Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
		+	Reference	
P0_ref(nratemax)	real	+	power (P_0)	0.
sfc0C_ref	real	+	specific fuel consumption at MCP (sfc_{0C})	0.
			Reference Fuel Cell Rating: SLS, static	
			if MCP scaled, ratios to MCP values kept constant	
			fuel cell rating: match rating designation in FltState	
			_	_
		+	Performance	
idesign	real	+	design current density i_d	
pi_comp	real	+	compressor pressure ratio π_C	
		+	cell characteristics (at cell pressure $\delta_c = 1$)	
ncell	int	+	number of values (maximum nengcmax)	1
icell(nengcmax)	real	+	current density i_c	1.
vcell(nengcmax)	real	+	voltage v_c	1.
Xfc	real	+	pressure scaling exponent X_{fc}	0.38
Kmf	real	+	mass flow ratio (\dot{m}/\dot{w})	86.

reference sfc corresponds to fuel specific energy and design cell current, including technology impact units of idesign and icell must be consistent

icell values unique and sequential; icell(1)=0.

vcell monotonically decreasing (reversed vcell unique and sequential)

simple model: define power P0_ref and specific fuel consumption sfc0C_ref, mass flow from Kmf ncell=1 for constant v_c , hence constant efficiency, constant power and sfc (idesign, pi_comp, Xfc not used)

Structure: SolarCellModel

Variable	Type	D	Description	Default
title notes	c*100 c*1000	+	Solar Cell Model title notes	'Default'
ident	c*16	+	identification	'Cell'
			solar cell identification: used by IDENT_charge of ChargerGroup input	
			"0" = SLS static; "C" = MCP	
			solar cell model can be used by more than one charge group, so all parameters fixed	
MODEL_weight Wsolar ssolar WtParam_solarcell(8)	int real real real	+ + +	Weight model (0 fixed, 1 $W(A)$) solar cell weight (fixed) weight density (kg/m²) Custom Weight Model parameters	1 0. 0.
_			Parameters Solar Cell Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1 'MCD'
rating(nratemax)	c*12	+ + I	rating designations Reference	'MCP'
$P0_ref(nratemax)$	real	+	power (P_0)	0.

Structure: SolarCellModel 208

Reference Solar Cell Rating: SLS, static

if MCP scaled, ratios to MCP values kept constant solar cell rating: match rating designation in FltState

+ Performance

esolar real + power density (W/m^2)

+ Efficiency

KIND_eff int + kind (1 fixed, 2 function power) 2 eta_cell real + reference efficiency (at $P_{\rm chrg}$) 1.00 loss_cell real + power loss (fraction $P_{\rm chrg}$) 0.00

simple model: power density esolar and weight density ssolar; with efficiency in esolar (KIND_eff=1 and eta_cell=1.)

Structure: BatteryModel

Variable	Type		Description	Default
		+	Battery Model	
title	c*100	+	title	'Default'
notes	c*100	+ 0	notes	
ident	c*16	+	identification	'Battery'
			battery identification: used by IDENT_battery of FuelTank input	
			battery model can be used by more than one fuel tank system, so all parameters fixed	
		+	Performance	
MODEL battery	int	+	model (1 equivalent circuit, 2 lithium-ion)	1
Vref	real	+	reference voltage V_{ref}	4.2
xmbd	real	+	maximum burst discharge current x_{mbd} (1/hr)	20.
xCCmax	real	+	maximum charge current $x_{CC_{\text{max}}}$ (1/hr)	4.
		+	actual cell depth-of-discharge $(d_{ m act} = d_{ m min} + (d_{ m max} - d_{ m min})d_{ m use})$	
DoDmin	real	+	minimum $d_{ m min}$	0.0
DoDmax	real	+	maximum $d_{ m max}$	0.8
		+	Thermal Management System	
		+	mass flow (lb/sec or kg/sec) from rejected heat (hp or kW)	
KTMSm0	real	+	constant $K_{\mathrm{TMS}m0}$	0.
KTMSm1	real	+	constant $K_{\mathrm{TMS}m1}$	0.07
XTMSm	real	+	exponent $X_{\mathrm{TMS}m}$	1.
		+	power (hp or kW) from mass flow (lb/sec or kg/sec)	
KTMSp0	real	+	constant $K_{\mathrm{TMS}p0}$	0.
KTMSp1	real	+	constant $K_{\mathrm{TMS}p1}$	0.6
XTMSp	real	+	exponent $X_{\mathrm{TMS}p}$	1.

Structure: BatteryModel 210

		+	gross jet force (lb or N) from mass flow (lb/sec or kg/sec)	
KTMSf0	real	+	constant $K_{\mathrm{TMS}f0}$	0.
KTMSf1	real	+	constant $K_{\mathrm{TMS}f1}$	6.0
XTMSf	real	+	exponent $X_{\mathrm{TMS}f}$	1.
		+	weight (lb or kg)	
KTMSw0	real	+	constant $K_{\mathrm{TMS}w0}$	4.0
KTMSw1	real	+	constant $K_{\mathrm{TMS}w1}$	0.3
XTMSwp	real	+	exponent $X_{\mathrm{TMS}wp}$	1.
XTMSwm	real	+	exponent $X_{\mathrm{TMS}wm}$	0.
		+	Equivalent Circuit Model	
KIND_eff	int	+	kind (1 fixed, 2 function power)	2
		+	discharge	
eta_dischrg	real	+	reference efficiency (at $P_{\rm ref}$)	1.00
loss_dischrg	real	+	power loss (fraction P_{ref})	0.00
		+	charge	
eta_chrg	real	+	reference efficiency (at $P_{\rm ref}$)	1.00
loss_chrg	real	+	power loss (fraction P_{ref})	0.00

simple model: constant efficiencies eta_dischrg and eta_chrg (KIND_eff=1)

		+	Lithium-Ion Model	
		+	discharge	
fcrit	real	+	critical voltage factor ($F_V = f_{crit}$ is capacity)	0.6
fd	real	+	nominal discharge voltage ($V_d = f_d V_{ref}$)	1.0
		+	open circuit voltage ratio ($V_o = V_d F_V(d)$)	
nFV	int	+	number of points (maximum 40)	0
DoD(40)	real	+	depth-of-discharge d (fraction)	0.
FV(40)	real	+	F_{V}	0.
Tref	real	+	reference temperature T_{ref} (deg C)	20.
fTC	real	+	temperature control power loss f_{TC} (fraction component power)	0.01

Structure: BatteryModel 211

		+	current influence on discharge voltage	
R	real	+	internal resistance $x_{mbd}CR/V_{ref}$	0.1
kdl	real	+	depth-of-discharge $k_{dI}x_{mbd}C$	0.05
		+	temperature influence on discharge voltage	
kVT	real	+	voltage increment k_{VT}	0.005
kdT	real	+	depth-of-discharge k_{dT}	0.000005
		+	charge	
fc	real	+	nominal charge voltage ($V_c = f_c V_{\rm ref}$)	1.0
kcV	real	+	CC phase starting voltage decrement k_{cV}	0.1
ks	real	+	CV phase parameter k_{σ}	0.2

open circuit voltage ratio: monotonically decreasing; default used if nFV=0 default DoD = 0.,1,2,3,4,.5,6,.7,8,9,91,92,93,94,.95,.96,.97,.98,.99,1.,1.01,1.02 default FV = 1.,97,95,93,915,90,89,88,87,85,847,842,835,826,815,8,78,75,7,.6,4,0.

Structure: Location

Variable	Type		Description	Default
		+	Location	
		+	input	
		+	fixed (dimensional, arbitrary origin)	
FIX_geom	c*8	+	input	, ,
SL	real	+	stationline	
BL	real	+	buttline	
WL	real	+	waterline	
		+	scaled (based on reference length, from reference point)	
XoL	real	+	x/L	
YoL	real	+	y/L	
ZoL	real	+	z/L	
		+	reference length	
KIND_scale	int	+	kind (0 global, 1 rotor radius, 2 wing span, 3 fuselage length)	0
kScale	int	+	identification (component number)	1

```
Fixed input: FIX_geom = 'x', 'y', 'z' (or combination) to override INPUT_geom=2

Geometry: Location for each component

fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL

stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m

scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale)

XoL + aft, YoL + right, ZoL + up; from reference point

option to fix some geometry (FIX_geom in Location override INPUT_geom)

option to specify reference length (KIND_scale in Location override global KIND_scale)

Reference point: KIND_Ref, kRef; input dimensional XX_Ref, or position of identified component component reference must be fixed

Locations can be calculated from other parameters (configuration specific)
```