- real solids
 - real solids contain atoms which interact with each other
 - ball and spring model
 - where the ball is the atom and the spring is the interatomic bond
 - ullet and the force between atoms is spring force $(ec{F}_s=-k_sec{s})$
- spring potential energy
 - $ullet U_s = \int -ec F_s \cdot dec s$
 - $U_s = \frac{1}{2}k_s s^2 + C$
- · energy of mass spring system
 - compressed spring expands
 - PE of spring decreases
 - KE of mass increases
 - stretched spring contracts
 - PE of spring decreases
 - KE of mass increases
- · potential energy of real springs
 - in a real spring
 - ullet wire of spring deforms if stretched beyond a point when $U_s o 0$
 - coils touch each other if compressed beyond a point when $U_s \to +\infty$ (spring pushes out with infinite strength)
- at any instantaneous location of a moving atom, the diagram shows:
 - total energy, E = K + U, is the energy value of horizontal line representing atom
 - potential energy, U, is the magnitude of PE, |U|, read off by drawing vertical line through atom position to PE curve
 - kinetic energy, K, is the difference between total energy line and PE curve
- energy diagram interpretation: the total energy is represented by the thick horizontal line (y = -0.2 eV). what is the approximate value of the kinetic energy, K (K = ?), and the potential energy, U (r_1 , -1.3 eV), at location r_1 ?
 - K = 1.1 eV, U = -1.3 eV
- PE for a pair of neutral atoms
 - morse potential: $U_M(r)=E_M[1-e^{-\alpha(r-r_{eq})}]^2$
- energy of a multiparticle system
 - point particle approximation
 - ullet kinetic energy due to translation of center of mass where $K=rac{1}{2}Mv^2$
 - fixed rest energy due to rest mass where $E_{rest} = Mc^2$

- multi-particle system
- total constituent internal energy includes potential energy of system, rotational energy of system, vibrational energy of system, and others where $U \approx \frac{1}{2} k_{spring} s^2$

thermal energy

- temperature is a measure of average random internal K + U energy (thermal energy)
 of a system
- if atoms vibrate more vigorously
 - average kinetic and potential energy are higher
 - temperature are higher
- energy transfer due to temperature difference with surroundings
 - the one way a system's thermal energy can change if thermal energy increases, atoms vibrate with more energy.
 - average interatomic distance increases
 - volume increases: thermal expansion
 - examples of thermal expansion
 - thermometer: mercury expands further into tube
 - thermostats: biz-metallic strip is heated, top metal expands faster than bottom metal, and strip bends downwards

specific heat

- the amount by which the thermal energy, $\Delta E_{Thermal}$, of a substance must increase to raise the temperature of 1 gram of it by 1 $^{\circ}$ C.
- Q is the energy transfer due to the temp difference between the system and surroundings. it causes a change in thermal energy of the system
- $\Delta E_{Thermal}$ increasing the temperature of m grams of substance through temperatures ΔT then, the specific heat is $C=rac{\Delta E_{Thermal}}{m\Delta T}$
- predicting temperature rise: the specific heat of aluminum is about 0.90 J/g/°C. The specific heat of iron is about 0.45 J/g/°C. a certain amount of heat is provided to raise the temp of an aluminum block through 20°C. what is the approximate temperature rise of an iron block of identical mass if the same amount of heat is added to it?
 - 40°C
- energy transfer due to temperature difference
 - when a hot object is placed in contact with a colder object, Q flows from the hotter object to the colder object
 - incorporated into energy principle: $\Delta E_{sys} = Q + W_{ext}$
- problem: a device used to determine specific heat, C, of a liquid is shown. as a block mass, m, drops a height, h, at a steady speed, it turns the blades of a fan in an insulated container causing a liquid of mass, M, in the container to have a temperature change ΔT . Find C in terms of other quantities

- system: liquid, block, string
- surroundings: Earth(neglect air resistance, friction of pulley etc.)
- $\Delta E_{sys} = Q + W_{ext}$
- Q=0 due to insulated container
- $MC\Delta T = \vec{F} \cdot \Delta \vec{r}$
- $MC\Delta T = mgh$
- $C = \frac{mgh}{M\Delta T}$
- adiabatic processes: Q =0
 - if no heat energy is added/removed from a system, work done by surroundings, changes internal energy of the system

$$ullet$$
 $\Delta E_{sys} = Q + W_{ext}
ightarrow \Delta E_{sys} = W_{ext}$

- temperature of system changes accordingly
 - ullet $\Delta T = rac{\Delta E_{sys}}{mC}
 ightarrow \Delta T = rac{W_{ext}}{mC}$
- · example of adiabatic process
 - system: syringe and everything in it (air and flammable material)
 - when you push down quickly on the syringe
 - there is no time for heat to leave and ${\cal Q}=0$
 - ullet $W_{ext}>0
 ightarrow\Delta T=rac{W_{ext}}{mC}>0$
 - as evidence of ΔT the flammable material catches fire (an adiabatic process)
- power
 - power is the rate at which work is done on a system
 - $P = \frac{W_{surr}}{\Delta t}$
 - $ullet \ W_{surr} = ec F \cdot \Delta ec r$
 - $\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$
 - $ullet P = ec F \cdot ec v$
- · open and closed systems
 - open systems exchange energy with surroundings
 - $\Delta E_{sys} = E_{in} E_{out}$
 - ullet if $E_{in}>E_{out}$ then $\Delta E_{sys}>0$
 - if $E_{in} < E_{out}$ then $\Delta E_{sys} < 0$
 - in general $\Delta E_{sys}
 eq 0$
 - closed systems do not exchange energy with surroundings

$$ullet E_{in}=E_{out}=0
ightarrow \Delta E_{sys}=0$$

- problem: a perfectly insulated house has a volume of 500m³ and air temperature 0°C. you bring in a closed bucket of water (10kg) of temperature almost 100°C. what will the temperature be in the house after equilibrium?
 - closed system: water and air

$$\bullet \ \ \Delta E_{sys} = 0 \rightarrow \Delta E_{water} + \Delta E_{air} = 0$$

$$ullet m_w c_w (T_f - T_{wi}) + m_a c_a (T_f - T_{ai}) = 0$$

$$ullet \ T_f = rac{c_w m_w T_{wi} + c_a m_a T_{ai}}{c_w m_w + c_a m_a}$$

given:

•
$$T_{wi} = 100\degree C = 373K$$

•
$$m_w = 10kg$$

•
$$c_w = 4.2J/(kg^{\circ}C)$$

•
$$T_{ai} = 0^{\circ} C = 273 K$$

•
$$V_a = 500m^3$$

$$oldsymbol{
ho}_a=1.23kg/m3$$

$$ullet m_w =
ho_a V_a = 615 kg$$

•
$$c_w = 1.0J/(kg^{\circ}C)$$

•
$$T_f = 279.4K$$

- system and energy accounting: a woman lifts a barbell, mass m, starting from rest through height h by applying a constant upward vertical force F, such that the final speed of the barbell is v.
 - system: barbell and earth
 - surroundings: woman

•
$$\Delta E_{sys} = Q + W_{surr}$$

•
$$\Delta E_{barbell} + \Delta E_{earth} = W_{woman}$$

•
$$(\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2) + mg\Delta y = Fh$$

•
$$\frac{1}{2}mv_f^2 - 0 + mgh - 0 = Fh$$

- system: barbell
- surroundings: earth and woman

•
$$\Delta E_{sys} = Q + W_{surr}$$

•
$$\Delta E_{barbell} = W_{woman} + W_{earth}$$

$$ullet rac{1}{2} m v_f^2 - 0 = F h + ec F \cdot \Delta ec r$$

$$ullet rac{1}{2} m v_f^2 = F h + \langle 0, -mg, 0
angle \cdot \langle 0, h, 0
angle$$

•
$$\frac{1}{2}mv_f^2 = Fh + -mgh$$

- summary
 - from the energy diagram of a pair of neutral atoms one can determine the total energy, potential energy, and kinetic energy of the moving atom
 - energy of a multi-particle system: kinetic energy, rest mass energy, and internal energy
 - ullet energy principle: $\Delta E_{sys} = Q + W_{ext}$
 - Sign of heat energy:
 - Q > 0 Energy flows from the surroundings to the system

- Q < 0 Energy flows from the system to the surroundings
- Q = 0 Adiabatic process where no energy flows between system and surroundings
- change in temperature of a system: $\Delta T = \frac{\Delta E_{sys}}{mC}$
 - c is the specific heat capacity of the system
- ullet energy principle revisited: $\Delta K + \Delta U + \Delta E_{internal} = Q + W_{ext}$
 - ullet where $E_{internal}=E_{rotation}+E_{vibration}+E_{thermal}+Others$

.