R for multi-omics analysis uni-variate, multi-variate and integration

Shuang PENG

AgroParisTech

2022-11-21

Multi-omics Data types

Proteomic table

sample name	temperature	AT1G01470	•••	AT1G02700
low r1	Low	22866363	•••	48307337.4
low r2	Low	19209302.9	• • •	48089559
low r3	Low	24780232.3	• • •	70132972.3
medium r1	Medium	46092725	•••	79060256
medium r2	Medium	49154335.8	•••	85218205.4
medium r3	Medium	36031052.7	•••	82237069.8
elevated r1	Elevated	47252917.7	• • •	97170910
elevated r2	Elevated	29018829.6	•••	48648217.4
elevated r3	Elevated	33876783.2		70496404.5

Metabolomic table

sample name	temperature	Fumarate	•••	Sulfite
low r1	Low	45580432	•••	192791869.9
low r2	Low	99058820.5	•••	144595795
low r3	Low	108103566.8	•••	104077985.5
medium r1	Medium	42064517.3	•••	172892634
medium r2	Medium	60077401.4	•••	150221343
medium r3	Medium	68995980.3	•••	207105263.2
elevated r1	Elevated	71228127.9	•••	247807516.5
elevated r2	Elevated	84058902.7	•••	238145287.4
elevated r3	Elevated	88945490.5		241025090.6

multi-omic data table

Analysis workflow

Proteomic table

sample name	temperature	AT1G01470	•••	AT1G02700
low r1	Low	22866363		48307337.4
low r2	Low	19209302.9		48089559
low r3	Low	24780232.3		70132972.3
medium r1	Medium	46092725		79060256
medium r2	Medium	49154335.8		85218205.4
medium r3	Medium	36031052.7		82237069.8
elevated r1	Elevated	47252917.7		97170910
elevated r2	Elevated	29018829.6		48648217.4
elevated r3	Elevated	33876783.2	•••	70496404.5

Metabolomic table

sample name	temperature	Fumarate	 Sulfite
low r1	Low	45580432	 192791869.9
low r2	Low	99058820.5	 144595795
low r3	Low	108103566.8	 104077985.5
medium r1	Medium	42064517.3	 172892634
medium r2	Medium	60077401.4	 150221343
medium r3	Medium	68995980.3	 207105263.2
elevated r1	Elevated	71228127.9	 247807516.5
elevated r2	Elevated	84058902.7	 238145287.4
elevated r3	Elevated	88945490.5	 241025090.6

Uni-variate analysis

BoxPlot

One-Factor ANOVA

Multi-Comparison

boxplot of asparate

```
# remplissage des box selon modalités de temperature
ggplot(table2, aes(fill=temperature)) +
  geom_boxplot(aes_string(x=temperature, y=table2[,i])) +
  # formatage
  labs(
    title=varname.
    x = "temperature conditions",
    v = "metabolites abundance"
  theme(
    plot.title = element_text(colour="red", size=30,hjust=0.5),
    axis.title.x = element_text(colour="black", size=15),
    axis.title.y = element_text(colour="black", size=15),
    axis.text.x = element_text(colour="black", size=15),
    axis.text.y = element_text(colour="black", size=15)
  scale_fill_manual(
    breaks = c("Low", "Medium", "Elevated"),
    values=c("lightblue", "green", "orange"))
```

Uni-variate analysis

BoxPlot

One-Factor ANOVA

Multi-Comparison

```
aov(table2[,i]~temperature, data=table2)
Call:
   aov(formula = table2[, 5] ~ temperature, data = table2)
Terms:
               temperature Residuals
Sum of Squares
                0.05236010 0.00346879
Deg. of Freedom
Residual standard error: 0.02404438
Estimated effects may be unbalanced
summary(aov(table2[,i]~temperature, data=table2))
           Df Sum Sq Mean Sq F value Pr(>F)
temperature 2 0.05236 0.026180
                               45.28 0.00024 ***
Residuals 6 0.00347 0.000578
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
pvalue.anova.adj <- p.adjust(
   pvalue.anova,
   method="fdr"
)

table(pvalue.anova<0.05)
FALSE TRUE
   65   70

table(pvalue.anova.adj<0.05)
FALSE TRUE
   73   62</pre>
```

Uni-variate analysis

BoxPlot

One-Factor ANOVA

Multi-Comparison

Multi-variate analysis

Principal Component Analysis (PCA)

Hierarchial Clustering

R in action (2nd edition). Kabacoff et al. 2015.

PCA projection by PC1 & PC2 (proteomic data)

Multi-variate analysis

Principal Component Analysis (PCA)

Hierarchial Clustering

Heatmap of 70 selected metabolites

Multi-Omics integration

Heatmap of selected metabolites & proteins

Multi-Omics integration

Integrated hierarchial clustering

co-expression analysis (mixOmics)

