01_Introduction of Hybrid System

1. System and Basic Automata

Definition of System

Classification

Models for Time-Driven Systems

Models For Event-driven Systems

Evolution of Automaton

Deterministic Automaton

Non-Deterministic Automaton

Hybrid System

2. Computation Complexity

Polynomial Time Algorithm

Nondeterministically Polynomial problems

NP-hard Problem

Relations

3. Hybrid Automaton

Definition

Evolution of Hybrid Automaton

4. Zeno Behavior

Introduction

Bouncing Ball Example

Summary

1. System and Basic Automata

Definition of System

$$x(\sigma) = \phi(au, \sigma, x(au), u)$$

- au : initial time
- σ : current time
- u: input function (over [au, σ])
- ϕ : transition map

Classification

- Continuous-state (speed, position)/Discrete-state (#customers in the queue)
- Continuous-time/Discrete-time
- Time-driven/Event-Driven

Combination of them we call "hybrid"

Models for Time-Driven Systems

Continuous-time time-driven systems:

$$\dot{x}(t) = f(x(t), u(t))$$

$$y(t) = g(x(t), u(t))$$

Discrete-time (or sampled) time-driven systems:

$$x(k+1) = f(x(k), u(k))$$

$$y(k) = g(x(k), u(k))$$

Models For Event-driven Systems

Definition: Automaton

<u>Automaton</u> is defined by triple $\Sigma = (\mathcal{Q}, \mathcal{U}, \phi)$ with

- \mathcal{Q} : **finite or countable** set of discrete states
- \mathscr{U} : **finite or countable set** of discrete inputs ("input alphabet")
- $\phi: \mathscr{Q} \times \mathscr{U} \to P(\mathscr{Q})$: partial transition function.
 - \circ where $P(\mathcal{Q})$ is power set of \mathcal{Q} (set of all subsets)

Definition: Finite Automaton

Finite automaton: ${\mathcal Q}$ and ${\mathcal U}$ finite

Definition: Countable

Countable means we can assign **order** on the elements

Evolution of Automaton

Deterministic Automaton

If each set of next states has 0 or 1 element

$$egin{aligned} \phi(q_{\mathsf{busy}}, oldsymbol{eta}) &= \{q_{\mathsf{idle}}\} \ \phi(q_{\mathsf{busy}}, oldsymbol{\gamma}) &= \{q_{\mathsf{down}}\} \end{aligned}$$

$$egin{aligned} \phi(q_{\mathsf{idle}}, \pmb{lpha}) &= \{q_{\mathsf{busy}}\} \ \phi(q_{\mathsf{down}}, \pmb{\delta}) &= \{q_{\mathsf{idle}}\} \end{aligned}$$

Non-Deterministic Automaton

If some set of next states has more than 1 element

$$\phi(q_1, \alpha) = \{q_1, q_2\}$$
 $\phi(q_2, \beta) = \{q_1\}$

Hybrid System

System can be in one of several modes

- In each mode: behavior described by system of difference or differential equations
- Mode switches due to occurrence of "events"
 - external control signal
 - internal control signal
 - o dynamics of system itself

2. Computation Complexity

Undecidable Problems

No algorithm at all can be given for solving the problem in general, i.e., finite termination cannot be guaranteed

Decision Problem

Solution is either "yes" or "no". Like "does there exits?"

e.g., traveling salesman decision problem: Given a network of cities, intercity distances, and a number B, does there exist a tour with length $\leq B$?

Search Problem

e.g., traveling salesman problem:
Given a network of cities, intercity distances, what is the shortest tour?

Time Complexity Function T(n)

Largest amount of time needed to solve problem instance of size n (worst case!)

Polynomial Time Algorithm

Polynomial Time Algorithm

 $T(n) \leq |p(n)|$ for some polynomial p

P Problem

solvable by polynomial time algorithm

Nondeterministically Polynomial problems

NP Class

Time complexity of **checking stage** is polynomial

Note:

NP class means we can check quickly.

- Nondeterministic computer:
 - guessing stage (tour)
 - checking stage (compute length of tour + compare it with B)
- ullet Each problem in NP can be solved in exponential time: $T(n) \leq 2^{n^k}$

NP-complete Decision Problems:

the "most difficult" class in NP

- ullet any NP-complete problem solvable in polynomial time \Rightarrow every problem in NP solvable in polynomial time
- any problem in NP intractable \Rightarrow NP-complete problems also intractable

NP-hard Problem

NP-hard Problems

At least as hard as NP-complete problems. Cannot decide whether solution is correct or not in polynomial time.

Notes:

- Decision problem is NP-complete ⇒ corresponding search problem is NP-hard
 - \circ For TSDP: guess tour \rightarrow check with B
 - For TSP: generate tour → check whether shortest
 - NP-complete (decision problem)
 - \rightarrow solvable in polynomial time if and only if P = NP
 - NP-hard (search problem)
 - \rightarrow cannot be solved in polynomial time unless P = NP

Relations

3. Hybrid Automaton

Definition

Hybrid automaton H is collection $H=(Q,X,f,Init,\mathrm{lnv},E,G,R)$ where

- $Q=\{q_1,\ldots,q_N\}$ is finite set of **discrete states or modes**
- $X=\mathbb{R}^n$ is set of **continuous states**
- $f:Q \times X o X$ is vector field
- ullet $Init\subseteq Q imes X$ is set of **initial states**
- Inv:Q o P(X) describes **invariants**
- $E\subseteq Q imes Q$ is set of edges or transitions
- $G: E \to P(X)$ is guard condition
- R:E o P(X imes X) is reset map

illustration

- Hybrid state: (q,x)
- **Evolution** of continuous state in mode $q:\dot{x}=f(q,x)$
- Invariant Inv: describes conditions that **continuous state has to satisfy in given mode**
- Guard G: specifies subset of state space where certain **transition** is enabled
- Reset map R: specifies how new continuous states are related to previous continuous states

Evolution of Hybrid Automaton

- Initial hybrid state $(q_0,x_0)\in ext{Init}$
- Continuous state x evolves according to

$$\dot{x} = f(q_0, x)$$
 with $x(0) = x_0$

- **discrete state** q remains constant: $q(t) = q_0$
- Continuous evolution **can go on as long as** $x \in \operatorname{lnv}(q_0)$
- If at some point state x reaches guard $G(q_0, q_1)$, then
 - \circ transition $q_0
 ightarrow q_1$ is **enabled**
 - o discrete state **may change** to q_1 , continuous state then **jumps** from current value x^- to new value x^+ with $(x^-,x^+)\in R(q_0,q_1)$
- Next, continuous evolution resumes and whole process is repeated

4. Zeno Behavior

Introduction

infinitely many mode switches in finite time interval

• Live-lock is a case of Zeno Behavior

Bouncing Ball Example

3.4 Three-balls example

- System consisting of three balls
- Inelastic impacts modeled by successions of simple impacts
- Suppose unit masses, touching at time 0, and $v_1(0) = 1$, $v_2(0) = v_3(0) = 0$
- ullet We model all impacts separately o
 - first, inelastic collision between balls 1 and 2, resulting in $v_1(0+)=v_2(0+)=0.5,\ v_3(0+)=0$

1

3.4 Three-balls example (continued)

- $v_1(0) = 1$ $v_2(0) = 0$ $v_3(0) = 0$ ball 1 ball 2 ball 3
- next, ball 2 hits ball 3, resulting in $v_1(0++)=\frac{1}{2},\ v_2(0++)=v_3(0++)=\frac{1}{4}$
- next, ball 1 hits ball 2 again, etc.
 - ightarrow sequence of resets: $v_1: 1 \ \frac{1}{2} \ \frac{1}{2} \ \frac{3}{8} \ \frac{3}{8} \ \frac{11}{32} \dots$ $v_2: 0 \ \frac{1}{2} \ \frac{1}{4} \ \frac{3}{8} \ \frac{5}{16} \ \frac{11}{32} \dots$ $v_3: 0 \ 0 \ \frac{1}{4} \ \frac{1}{4} \ \frac{5}{16} \ \frac{5}{16} \dots$ converges to $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})^{\mathsf{T}}$
- Afterwards, smooth continuation is possible with constant and equal velocity for all balls
- Infinite number of events (resets) at one time instant, sometimes called live-lock → another special case of Zeno behavior

Summary

4. Summary

- Definition and examples of hybrid systems
- Hybrid automaton
- Complexity issues: modeling power vs decision power
- Zeno behavior