Lay 1.9

Question 1 Suppose T is a linear transformation defined by $T(\vec{x}) = A\vec{x}$ and $T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = A\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}4x+7y\\8y\\2x-y\end{bmatrix}$. Then the standard matrix A for this linear transformation is:

$$A = \begin{bmatrix} 4 & 7 \\ 0 & 8 \\ 2 & -1 \end{bmatrix}$$

Question 2 A mapping $T: \mathbf{R^n} \to \mathbf{R^m}$ is said to be onto $\mathbf{R^m}$ if each \vec{b} in $\mathbf{R^m}$ is the image of at least one \vec{x} in $\mathbf{R^n}$. Decide which of the following transformations is onto.

$$T(\vec{x}) = A\vec{x}$$
 where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Multiple Choice:

- (a) onto ✓
- (b) not onto

$$T(\vec{x}) = A\vec{x} \text{ where } A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}$$

Multiple Choice:

- (a) onto ✓
- (b) not onto

$$T(\vec{x}) = A\vec{x} \text{ where } A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$$

Multiple Choice:

- (a) onto
- (b) not onto ✓

Lay 1.9 Math 2210Q

Question 3 True/False: Let $T: \mathbf{R^n} \to \mathbf{R^m}$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\vec{x}) = \vec{0}$ has only the trivial solution.

$\label{eq:Multiple Choice: Multiple Choice:} Multiple \ Choice:$

- (a) True ✓
- (b) False

Question 4 Decide which of the following transformations is one-to-one. (Hint: Use the true/false statement above.)

$$T(\vec{x}) = A\vec{x} \text{ where } A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Multiple Choice:

- (a) one-to-one ✓
- (b) not one-to-one

$$T(\vec{x}) = A\vec{x} \text{ where } A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}$$

Multiple Choice:

- (a) one-to-one
- (b) not one-to-one ✓

$$T(\vec{x}) = A\vec{x}$$
 where $A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$

Multiple Choice:

- (a) one-to-one ✓
- (b) not one-to-one