Data Science III with python (Class notes)

STAT 303-3

Arvind Krishna

2023-03-24

Table of contents

Pr	eface	:	4								
1	Intro	oduction to scikit-learn	5								
	1.1	Splitting data into train and test	6								
		1.1.1 Stratified splitting	7								
	1.2										
	1.3	Fitting a model	9								
	1.4	Computing performance metrics	10								
		1.4.1 Accuracy	10								
		1.4.2 ROC-AUC	11								
		1.4.3 Confusion matrix & precision-recall	11								
	1.5	Tuning the model hyperparameters	14								
		1.5.1 Tuning decision threshold probability	16								
		1.5.2 Tuning the regularization parameter	19								
		1.5.3 Tuning the decision threshold probability and the regularization param-									
		eter simultaneously	22								
2	Regression trees										
	2.1	Building a regression tree	27								
	2.2										
		2.2.1 Range of hyperparameter values	29								
		2.2.2 Cross validation: Coarse grid	30								
		2.2.3 Cross validation: Finer grid	31								
	2.3	Cost complexity pruning	33								
		2.3.1 Depth vs alpha; Node counts vs alpha	36								
		2.3.2 Train and test accuracies (R-squared) vs alpha	37								
3	Classification trees 3										
	3.1	B.1 Building a classification tree									
	3.2	Optimizing hyperparameters to optimize performance									
	3.3	Optimizing the decision threshold probability	44								
		3.3.1 Balancing recall with precision	44								
		3.3.2 Balancing recall with false positive rate	49								
	3.4	Cost complexity pruning	53								

Αţ	Appendices					
Α	Stratified splitting (classification problem)					
	A.1	Stratified splitting with respect to response	55			
	A.2	Stratified splitting with respect to response and categorical predictors	56			
	A.3	Example 1	56			
	A.4	Example 2: Simulation results	58			
		Distribution of train and test accuracies	60			
		A.4.1 Stratified splitting only with respect to the response	60			
		A.4.2 Stratified splitting with respect to the response and categorical predictors	61			
В	Data	asets, assignment and project files	63			

Preface

These are class notes for the course STAT303-3. This is not the course text-book. You are required to read the relevant sections of the book as mentioned on the course website.

The course notes are currently being written, and will continue to being developed as the course progresses (just like the class notes last quarter). Please report any typos / mistakes / inconsistencies / issues with the class notes / class presentations in your comments here. Thank you!

1 Introduction to scikit-learn

In this chapter, we'll learn some functions from the library sklearn that will be useful in:

- 1. Splitting the data into train and test
- 2. Scaling data
- 3. Fitting a model
- 4. Computing model performance metrics
- 5. Tuning model hyperparameters* to optimize the desired performance metric

*In machine learning, a model hyperparameter is a parameter that cannot be learned from training data and must be set before training the model. Hyperparameters control aspects of the model's behavior and can greatly impact its performance. For example, the regularization parameter λ , in linear regression is a hyperparameter. You need to specify it before fitting the model. On the other hand, the beta coefficients in linear regression are parameters, as you learn them while training the model, and don't need to specify their values beforehand.

We'll use a classification problem to illustrate the functions. However, similar functions can be used for regression problems, i.e., prediction problems with a continuous response.

```
# Importing necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(font_scale=1.35)
```

Let us import the sklearn modules useful in developing statistical models.

```
# sklearn has 100s of models - grouped in sublibraries, such as linear_model
from sklearn.linear_model import LogisticRegression, LinearRegression

# sklearn has many tools for cleaning/processing data, also grouped in sublibraries
# splitting one dataset into train and test, computing cross validation score, cross validate
from sklearn.model_selection import train_test_split, cross_val_predict, cross_val_score
```

```
#sklearn module for scaling data
from sklearn.preprocessing import StandardScaler

#sklearn modules for computing the performance metrics
from sklearn.metrics import accuracy_score, mean_absolute_error, mean_squared_error, r2_score
roc_curve, auc, precision_score, recall_score, confusion_matrix

#Reading data
```

Scikit-learn doesn't support the formula-like syntax of specifying the response and the predictors as in the statsmodels library. We need to create separate objects for predictors and response, which should be array-like. A Pandas DataFrame / Series or a Numpy array are array-like objects.

Let us reference our predictors as object X, and the response as object y.

```
# Separating the predictors and response - THIS IS HOW ALL SKLEARN OBJECTS ACCEPT DATA (difference X = \text{data.drop}("\text{Outcome}", \text{axis} = 1)
```

1.1 Splitting data into train and test

data = pd.read_csv('./Datasets/diabetes.csv')

Let us create train and test datasets for developing a model to predict if a person has diabetes.

```
# Creating training and test data
    # 80-20 split, which is usual - 70-30 split is also fine, 90-10 is fine if the dataset is
    # random_state to set a random seed for the splitting - reproducible results
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 45
```

Let us find the proportion of classes ('having diabetes' (y = 1) or 'not having diabetes' (y = 0)) in the complete dataset.

```
#Proportion of 0s and 1s in the complete data
y.value_counts()/y.shape
```

```
0    0.651042
1    0.348958
Name: Outcome, dtype: float64
```

Let us find the proportion of classes ('having diabetes' (y = 1) or 'not having diabetes' (y = 0)) in the train dataset.

```
#Proportion of Os and 1s in train data
y_train.value_counts()/y_train.shape

0     0.644951
1     0.355049
Name: Outcome, dtype: float64

#Proportion of Os and 1s in test data
y_test.value_counts()/y_test.shape

0     0.675325
1     0.324675
Name: Outcome, dtype: float64
```

We observe that the proportion of 0s and 1s in the train and test dataset are slightly different from that in the complete data. In order for these datasets to be more representative of the population, they should have a proportion of 0s and 1s similar to that in the complete dataset. This is especially critical in case of imbalanced datasets, where one class is represented by a significantly smaller number of instances than the other(s).

When training a classification model on an imbalanced dataset, the model might not learn enough about the minority class, which can lead to poor generalization performance on new data. This happens because the model is biased towards the majority class, and it might even predict all instances as belonging to the majority class.

1.1.1 Stratified splitting

We will use the argument stratify to obtain a proportion of 0s and 1s in the train and test datasets that is similar to the proportion in the complete 'data.

```
#Stratified train-test split
X_train_stratified, X_test_stratified, y_train_stratified,\
y_test_stratified = train_test_split(X, y, test_size = 0.2, random_state = 45, stratify=y)
#Proportion of 0s and 1s in train data with stratified split
y_train_stratified.value_counts()/y_train.shape
```

0 0.651466 1 0.348534

Name: Outcome, dtype: float64

```
#Proportion of Os and 1s in test data with stratified split
y_test_stratified.value_counts()/y_test.shape
```

0 0.649351 1 0.350649

Name: Outcome, dtype: float64

The proportion of the classes in the stratified split mimics the proportion in the complete dataset more closely.

By using stratified splitting, we ensure that both the train and test data sets have the same proportion of instances from each class, which means that the model will see enough instances from the minority class during training. This, in turn, helps the model learn to distinguish between the classes better, leading to better performance on new data.

Thus, stratified splitting helps to ensure that the model sees enough instances from each class during training, which can improve the model's ability to generalize to new data, particularly in cases where one class is underrepresented in the dataset.

Let us develop a logistic regression model for predicting if a person has diabetes.

1.2 Scaling data

In certain models, it may be important to scale data for various reasons. In a logistic regression model, scaling can help with model convergence. Scikit-learn uses a method known as gradient-descent (not in scope of the syllabus of this course) to obtain a solution. In case the predictors have different orders of magnitude, the algorithm may fail to converge. In such cases, it is useful to standardize the predictors so that all of them are at the same scale.

```
# With linear/logistic regression in scikit-learn, especially when the predictors have differ
# of magn., scaling is necessary. This is to enable the training algo. which we did not cover
scaler = StandardScaler().fit(X_train)

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test) # Do NOT refit the scaler with the test data, just
```

1.3 Fitting a model

Let us fit a logistic regression model for predicting if a person has diabetes. Let us try fitting a model with the un-scaled data.

```
# Create a model object - not trained yet
logreg = LogisticRegression()

# Train the model
logreg.fit(X_train, y_train)
```

C:\Users\akl0407\AppData\Roaming\Python\Python38\site-packages\sklearn\linear_model_logisticsTOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

```
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    n_iter_i = _check_optimize_result(
```

LogisticRegression()

Note that the model with the un-scaled predictors fails to converge. Check out the data X_train to see that this may be probably due to the predictors have different orders of magnitude. For example, the predictor DiabetesPedigreeFunction has values in [0.078, 2.42], while the predictor Insulin has values in [0, 800].

Let us fit the model to the scaled data.

```
# Create a model - not trained yet
logreg = LogisticRegression()

# Train the model
logreg.fit(X_train_scaled, y_train)
```

LogisticRegression()

The model converges to a solution with the scaled data!

The coefficients of the model can be returned with the coef_attribute of the LogisticRegression() object. However, the output is not as well formatted as in the case of the statsmodels library since sklearn is developed primarily for the purpose of prediction, and not inference.

```
# Use coef_ to return the coefficients - only log reg inference you can do with sklearn
print(logreg.coef_)
```

1.4 Computing performance metrics

1.4.1 Accuracy

Let us test the model prediction accuracy on the test data. We'll demonstrate two different functions that can be used to compute model accuracy - accuracy_score(), and score().

The accuracy_score() function from the metrics module of the sklearn library is general, and can be used for any classification model. We'll use it along with the predict() method of the LogisticRegression() object, which returns the predicted class based on a threshold probability of 0.5.

```
# Get the predicted classes first
y_pred = logreg.predict(X_test_scaled)

# Use the predicted and true classes for accuracy
print(accuracy_score(y_pred, y_test)*100)
```

73.37662337662337

The score() method of the LogisticRegression() object can be used to compute the accuracy only for a logistic regression model. Note that for a LinearRegression() object, the score() method will return the model *R*-squared.

```
# Use .score with test predictors and response to get the accuracy
# Implements the same thing under the hood
print(logreg.score(X_test_scaled, y_test)*100)
```

73.37662337662337

1.4.2 ROC-AUC

The roc_curve() and auc() functions from the metrics module of the sklearn library can be used to compute the ROC-AUC, or the area under the ROC curve. Note that for computing ROC-AUC, we need the predicted probability, instead of the predicted class. Thus, we'll use the predict_proba() method of the LogisticRegression() object, which returns the predicted probability for the observation to belong to each of the classes, instead of using the predict() method, which returns the predicted class based on threshold probability of 0.5.

```
#Computing the predicted probability for the observation to belong to the positive class (y=
#The 2nd column in the output of predict_proba() consists of the probability of the observat
#belong to the positive class (y=1)
y_pred_prob = logreg.predict_proba(X_test_scaled)[:,1]

#Using the predicted probability computed above to find ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(y_test, y_pred_prob)
print(auc(fpr, tpr))# AUC of ROC
```

0.7923076923076922

1.4.3 Confusion matrix & precision-recall

The confusion_matrix(), precision_score(), and recall_score() functions from the metrics module of the sklearn library can be used to compute the confusion matrix, precision, and recall respectively.


```
print("Precision: ", precision_score(y_test, y_pred))
print("Recall: ", recall_score(y_test, y_pred))
```

Precision: 0.6046511627906976

Recall: 0.52

Let us compute the performance metrics if we develop the model using stratified splitting.

```
# Developing the model with stratified splitting

#Scaling data
scaler = StandardScaler().fit(X_train_stratified)
X_train_stratified_scaled = scaler.transform(X_train_stratified)
X_test_stratified_scaled = scaler.transform(X_test_stratified)

# Training the model
logreg.fit(X_train_stratified_scaled, y_train_stratified)
```

```
#Computing the accuracy
y_pred_stratified = logreg.predict(X_test_stratified_scaled)
print("Accuracy: ",accuracy_score(y_pred_stratified, y_test_stratified)*100)

#Computing the ROC-AUC
y_pred_stratified_prob = logreg.predict_proba(X_test_stratified_scaled)[:,1]
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC

#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_stratified))
print("Recall: ", recall_score(y_test_stratified, y_pred_stratified))

#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_stratified), columns=['Predicted_index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 78.57142857142857 ROC-AUC: 0.85055555555556 Precision: 0.7692307692307693 Recall: 0.555555555555556

The model with the stratified train-test split has a better performance as compared to the other model on all the performance metrics!

1.5 Tuning the model hyperparameters

A hyperparameter (among others) that can be trained in a logistic regression model is the regularization parameter.

We may also wish to tune the decision threshold probability. Note that the decision threshold probability is not considered a hyperparameter of the model. Hyperparameters are model parameters that are set prior to training and cannot be directly adjusted by the model during training. Examples of hyperparameters in a logistic regression model include the regularization parameter, and the type of shrinkage penalty - lasso / ridge. These hyperparameters are typically optimized through a separate tuning process, such as cross-validation or grid search, before training the final model.

The performance metrics can be computed using a desired value of the threshold probability. Let us compute the performance metrics for a desired threshold probability of 0.3.

```
# Performance metrics computation for a desired threshold probability of 0.3
desired_threshold = 0.3
# Classifying observations in the positive class (y = 1) if the predicted probability is gre-
# than the desired decision threshold probability
y_pred_desired_threshold = y_pred_stratified_prob > desired_threshold
y_pred_desired_threshold = y_pred_desired_threshold.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred_desired_threshold, y_test_stratified)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_desired_threshold))
print("Recall: ", recall_score(y_test_stratified, y_pred_desired_threshold))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_desired_threshold),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```


1.5.1 Tuning decision threshold probability

Suppose we wish to find the optimal decision threshold probability to maximize accuracy. Note that we cannot use the test dataset to optimize model hyperparameters, as that may lead to overfitting on the test data. We'll use K-fold cross validation on train data to find the optimal decision threshold probability.

We'll use the $cross_val_predict()$ function from the model_selection module of sklearn to compute the K-fold cross validated predicted probabilities. Note that this function simplifies the task of manually creating the K-folds, training the model K-times, and computing the predicted probabilities on each of the K-folds. Thereafter, the predicted probabilities will be used to find the optimal threshold probability that maximizes the classification accuracy.

```
for threshold_prob in hyperparam_vals:
    predicted_class = predicted_probability[:,1] > threshold_prob
    predicted_class = predicted_class.astype(int)

#Computing the accuracy
    accuracy = accuracy_score(predicted_class, y_train_stratified)*100
    accuracy_iter.append(accuracy)
```

Let us visualize the accuracy with change in decision threshold probability.

```
# Accuracy vs decision threshold probability
sns.scatterplot(x = hyperparam_vals, y = accuracy_iter)
plt.xlabel('Decision threshold probability')
plt.ylabel('Average 5-fold CV accuracy');
```


The optimal decision threshold probability is the one that maximizes the K-fold cross validation accuracy.

```
# Optimal decision threshold probability
hyperparam_vals[accuracy_iter.index(max(accuracy_iter))]
```

0.46

```
# Performance metrics computation for the optimum decision threshold probability
desired_threshold = 0.46
\# Classifying observations in the positive class (y = 1) if the predicted probability is greater
# than the desired decision threshold probability
y_pred_desired_threshold = y_pred_stratified_prob > desired_threshold
y_pred_desired_threshold = y_pred_desired_threshold.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred_desired_threshold, y_test_stratified)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_desired_threshold))
print("Recall: ", recall_score(y_test_stratified, y_pred_desired_threshold))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_desired_threshold),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 79.87012987012987
ROC-AUC: 0.85055555555556
Precision: 0.7804878048780488
Recall: 0.5925925925925926

Model performance on test data has improved with the optimal decision threshold probability.

1.5.2 Tuning the regularization parameter

The LogisticRegression() method has a default L2 regularization penalty, which means ridge regression. C is $1/\lambda$, where λ is the hyperparameter that is multiplied with the ridge penalty. C is 1 by default.

```
plt.plot(hyperparam_vals, np.mean(np.array(accuracy_iter), axis=1))
plt.xlabel('C')
plt.ylabel('Average 5-fold CV accuracy')
plt.xscale('log')
plt.show()
```



```
# Optimal value of the regularization parameter 'C'
optimal_C = hyperparam_vals[np.argmax(np.array(accuracy_iter).mean(axis=1))]
optimal_C
```

0.11787686347935879

```
# Developing the model with stratified splitting and optimal 'C'
#Scaling data
```

```
scaler = StandardScaler().fit(X_train_stratified)
X_train_stratified_scaled = scaler.transform(X_train_stratified)
X_test_stratified_scaled = scaler.transform(X_test_stratified)
# Training the model
logreg = LogisticRegression(C = optimal_C)
logreg.fit(X_train_stratified_scaled, y_train_stratified)
#Computing the accuracy
y_pred_stratified = logreg.predict(X_test_stratified_scaled)
print("Accuracy: ",accuracy_score(y_pred_stratified, y_test_stratified)*100)
#Computing the ROC-AUC
y pred stratified prob = logreg.predict_proba(X_test_stratified_scaled)[:,1]
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_stratified))
print("Recall: ", recall_score(y_test_stratified, y_pred_stratified))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_stratified), columns=['Predicted
            index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```


1.5.3 Tuning the decision threshold probability and the regularization parameter simultaneously

```
accuracy = accuracy_score(predicted_class, y_train_stratified)*100
        accuracy_iter.loc[iter_number, 'threshold'] = threshold_prob
        accuracy_iter.loc[iter_number, 'C'] = c_val
        accuracy_iter.loc[iter_number, 'accuracy'] = accuracy
        iter_number = iter_number + 1
# Parameters for highest accuracy
optimal_C = accuracy_iter.sort_values(by = 'accuracy', ascending = False).iloc[0,:]['C']
optimal_threshold = accuracy_iter.sort_values(by = 'accuracy', ascending = False).iloc[0, :]
#Optimal decision threshold probability
print("Optimal decision threshold = ", optimal_threshold)
#Optimal C
print("Optimal C = ", optimal_C)
Optimal decision threshold = 0.46
Optimal C = 4.291934260128778
# Developing the model with stratified splitting, optimal decision threshold probability, and
#Scaling data
scaler = StandardScaler().fit(X_train_stratified)
X_train_stratified_scaled = scaler.transform(X_train_stratified)
X_test_stratified_scaled = scaler.transform(X_test_stratified)
# Training the model
logreg = LogisticRegression(C = optimal_C)
logreg.fit(X_train_stratified_scaled, y_train_stratified)
# Performance metrics computation for the optimal threshold probability
y_pred_stratified_prob = logreg.predict_proba(X_test_stratified_scaled)[:,1]
# Classifying observations in the positive class (y = 1) if the predicted probability is gre-
# than the desired decision threshold probability
y_pred_desired_threshold = y_pred_stratified_prob > optimal_threshold
y_pred_desired_threshold = y_pred_desired_threshold.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred_desired_threshold, y_test_stratified)*100)
```

```
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC

#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_desired_threshold))
print("Recall: ", recall_score(y_test_stratified, y_pred_desired_threshold))

#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_desired_threshold), columns=['Pst_index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 79.87012987012987
ROC-AUC: 0.8509259259259259
Precision: 0.7804878048780488
Recall: 0.5925925925925926

Later in the course, we'll see the sklearn function GridSearchCV, which is used to optimize several model hyperparameters simultaneously with K-fold cross validation, while avoiding for loops.

2 Regression trees

Read section 8.1.1 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score,train_test_split
from sklearn.metrics import mean_squared_error,r2_score
from sklearn.model_selection import KFold
from sklearn.tree import DecisionTreeRegressor
from sklearn.model selection import GridSearchCV, ParameterGrid
#Libraries for visualizing trees
from sklearn.tree import export_graphviz
from six import StringIO
from IPython.display import Image
import pydotplus
import time as tm
```

```
#Using the same datasets as used for linear regression in STAT303-2,
#so that we can compare the non-linear models with linear regression
trainf = pd.read_csv('./Datasets/Car_features_train.csv')
trainp = pd.read_csv('./Datasets/Car_prices_train.csv')
testf = pd.read_csv('./Datasets/Car_features_test.csv')
testp = pd.read_csv('./Datasets/Car_prices_test.csv')
train = pd.merge(trainf,trainp)
test = pd.merge(testf,testp)
train.head()
```

	carID	brand	model	year	transmission	$_{ m mileage}$	fuel Type	tax	mpg	engineSize	price
0	18473	bmw	6 Series	2020	Semi-Auto	11	Diesel	145	53.3282	3.0	37980
1	15064	bmw	6 Series	2019	Semi-Auto	10813	Diesel	145	53.0430	3.0	33980
2	18268	bmw	6 Series	2020	Semi-Auto	6	Diesel	145	53.4379	3.0	36850
3	18480	bmw	6 Series	2017	Semi-Auto	18895	Diesel	145	51.5140	3.0	25998
4	18492	bmw	6 Series	2015	Automatic	62953	Diesel	160	51.4903	3.0	18990

2.1 Building a regression tree

Develop a regression tree to predict car price based on mileage

```
X = train['mileage']
y = train['price']

#Defining the object to build a regression tree
model = DecisionTreeRegressor(random_state=1, max_depth=3)

#Fitting the regression tree to the data
model.fit(X.values.reshape(-1,1), y)
```

DecisionTreeRegressor(max_depth=3, random_state=1)


```
#prediction on test data
pred=model.predict(test[['mileage']])
```

```
#RMSE on test data
np.sqrt(mean_squared_error(test.price, pred))
```

13764.798425410803

```
#Visualizing the model fit
Xtest = np.linspace(min(X), max(X), 100)
pred_test = model.predict(Xtest.reshape(-1,1))
sns.scatterplot(x = 'mileage', y = 'price', data = train, color = 'orange')
sns.lineplot(x = Xtest, y = pred_test, color = 'blue')
```


All cars falling within the same terminal node have the same predicted price, which is seen as flat line segments in the above model curve.

Develop a regression tree to predict car price based on mileage, mpg, engineSize and year

2.2 Optimizing parameters to improve the regression tree

Let us find the optimal depth of the tree and the number of terminal nodes (leaves) by cross validation.

2.2.1 Range of hyperparameter values

First, we'll find the minimum and maximum possible values of the depth and leaves, and then find the optimal value in that range.

```
model = DecisionTreeRegressor(random_state=1)
model.fit(X, y)

print("Maximum tree depth =", model.get_depth())

print("Maximum leaves =", model.get_n_leaves())
```

```
Maximum tree depth = 29
Maximum leaves = 4845
```

2.2.2 Cross validation: Coarse grid

We'll use the sklearn function GridSearchCV to find the optimal hyperparameter values over a grid of possible values. By default, GridSearchCV returns the optimal hyperparameter values based on the coefficient of determination \mathbb{R}^2 . However, the scoring argument of the function can be used to find the optimal parameters based on several different criteria as mentioned in the scoring-parameter documentation.

```
#Finding cross-validation error for trees
parameters = {'max_depth':range(2,30, 3),'max_leaf_nodes':range(2,4900, 100)}
cv = KFold(n_splits = 5,shuffle=True,random_state=1)
model = GridSearchCV(DecisionTreeRegressor(random_state=1), parameters, n_jobs=-1,verbose=1,
model.fit(X, y)
print (model.best_score_, model.best_params_)
```

```
Fitting 5 folds for each of 490 candidates, totalling 2450 fits 0.8433100904754441 {'max_depth': 11, 'max_leaf_nodes': 302}
```

Let us find the optimal hyperparameters based on the mean squared error, instead of \mathbb{R}^2 . Let us compute \mathbb{R}^2 as well during cross validation, as we can compute multiple performance metrics using the **scoring** argument. However, when computing multiple performance metrics, we will need to specify the performance metric used to find the optimal hyperparameters with the **refit** argument.

```
Fitting 5 folds for each of 490 candidates, totalling 2450 fits -42064467.15261547 {'max_depth': 11, 'max_leaf_nodes': 302}
```

Note that as the GridSearchCV function maximizes the performance metric to find the optimal hyperparameters, we are maximizing the negative mean squared error (neg_mean_squared_error), and the function returns the optimal negative mean squared error.

Let us visualize the mean squared error based on the hyperparameter values. We'll use the cross validation results stored in the cv_results_ attribute of the GridSearchCV fit() object.

```
#Detailed results of k-fold cross validation
cv_results = pd.DataFrame(model.cv_results_)
cv_results.head()
```

```
fig, axes = plt.subplots(1,2,figsize=(14,5))
plt.subplots_adjust(wspace=0.2)
axes[0].plot(cv_results.param_max_depth, np.sqrt(-cv_results.mean_test_neg_mean_squared_error
axes[0].set_ylim([6200, 7500])
axes[0].set_xlabel('Depth')
axes[0].set_ylabel('K-fold RMSE')
axes[1].plot(cv_results.param_max_leaf_nodes, np.sqrt(-cv_results.mean_test_neg_mean_squared
axes[1].set_ylim([6200, 7500])
axes[1].set_ylabel('Leaves')
axes[1].set_ylabel('K-fold RMSE');
```


We observe that for a depth of around 8-14, and number of leaves within 1000, we get the lowest K-fold RMSE. So, we should do a finer search in that region to obtain more precise hyperparameter values.

2.2.3 Cross validation: Finer grid

```
#Finding cross-validation error for trees
start_time = tm.time()
parameters = {'max_depth':range(8,15),'max_leaf_nodes':range(2,1000)}
cv = KFold(n_splits = 5,shuffle=True,random_state=1)
model = GridSearchCV(DecisionTreeRegressor(random_state=1), parameters, n_jobs=-1,verbose=1,
model.fit(X, y)
print (model.best_score_, model.best_params_)
print("Time taken =", round((tm.time() - start_time)/60), "minutes")
```

Fitting 5 folds for each of 6986 candidates, totalling 34930 fits 0.8465176078797111 {'max_depth': 10, 'max_leaf_nodes': 262} Time taken = 1 minutes

From the above cross-validation, the optimal hyperparameter values are max_depth = 10 and max_leaf_nodes = 262.

```
#Developing the tree based on optimal hyperparameters found by cross-validation model = DecisionTreeRegressor(random_state=1, max_depth=10,max_leaf_nodes=262) model.fit(X, y)
```

DecisionTreeRegressor(max_depth=10, max_leaf_nodes=262, random_state=1)

```
#RMSE on test data
Xtest = test[['mileage','mpg','year','engineSize']]
np.sqrt(mean_squared_error(test.price, model.predict(Xtest)))
```

6921.0404660552895

The RMSE for the decision tree is lower than that of linear regression models and spline regression models (including MARS), with these four predictors. This may be probably due to car price having a highly non-linear association with the predictors.

Predictor importance: The importance of a predictor is computed as the (normalized) total reduction of the criterion (SSE in case of regression trees) brought by that predictor.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique values) Source: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegres

Why?

Because high cardinality predictors will tend to overfit. When the predictors have high cardinality, it means they form little groups (in the leaf nodes) and then the model "learns" the individuals, instead of "learning" the general trend. The higher the cardinality of the predictor, the more prone is the model to overfitting.

```
model.feature_importances_
```

```
array([0.04490344, 0.15882336, 0.29739951, 0.49887369])
```

Engine size is the most important predictor, followed by year, which is followed by mpq, and mileage is the least important predictor.

2.3 Cost complexity pruning

While optimizing parameters above, we optimized them within a range that we thought was reasonable. While doing so, we restricted ourselves to considering only a subset of the unpruned tree. Thus, we could have missed out on finding the optimal tree (or the best model).

With cost complexity pruning, we first develop an unpruned tree without any restrictions. Then, using cross validation, we find the optimal value of the tuning parameter α . All the non-terminal nodes for which α_{eff} is smaller that the optimal α will be pruned. You will need to check out the link below to understand this better.

Check out a detailed explanation of how cost complexity pruning is implemented in sklearn at: https://scikit-learn.org/stable/modules/tree.html#minimal-cost-complexity-pruning

Here are some informative visualizations that will help you understand what is happening in cost complexity pruning: https://scikit-learn.org/stable/auto_examples/tree/plot_cost complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py

```
model = DecisionTreeRegressor(random_state = 1)#model without any restrictions
path= model.cost_complexity_pruning_path(X,y)# Compute the pruning path during Minimal Cost-
```

```
alphas=path['ccp_alphas']
```

len(alphas)

4126

The code took 2 minutes to run on a dataset of about 5000 observations and 4 predictors.

```
model = DecisionTreeRegressor(ccp_alpha=143722.94076639024,random_state=1)
model.fit(X, y)
pred = model.predict(Xtest)
np.sqrt(mean_squared_error(test.price, pred))
```

7306.592294294368

Time taken = 2 minutes

The RMSE for the decision tree with cost complexity pruning is lower than that of linear regression models and spline regression models (including MARS), with these four predictors. However, it is higher than the one obtained with tuning tree parameters using grid search (shown previously). Cost complexity pruning considers a completely unpruned tree unlike the 'grid search' method of searching over a grid of hyperparameters such as max_depth and max_leaf_nodes, and thus may seem to be more comprehensive than the 'grid search' approach. However, both the approaches may consider trees that are not considered by the other approach, and thus either one may provide a more accurate model. Depending on the grid of parameters chosen for cross validation, the grid search method may be more or less comprehensive than cost complexity pruning.

```
gridcv_results = pd.DataFrame(tree.cv_results_)
cv_error = -gridcv_results['mean_test_score']

#Visualizing the 5-fold cross validation error vs alpha
plt.plot(alphas,cv_error)
plt.xscale('log')
plt.xlabel('alpha')
plt.ylabel('K-fold MSE');
```



```
#Zooming in the above visualization to see the alpha where the 5-fold cross validation error
plt.plot(alphas[0:4093],cv_error[0:4093])
plt.xlabel('alpha')
plt.ylabel('K-fold MSE');
```


2.3.1 Depth vs alpha; Node counts vs alpha

```
stime = time.time()
trees=[]
for i in alphas:
    tree = DecisionTreeRegressor(ccp_alpha=i,random_state=1)
    tree.fit(X, train['price'])
    trees.append(tree)
print(time.time()-stime)
```

268.10325384140015

This code takes 4.5 minutes to run

```
node_counts = [clf.tree_.node_count for clf in trees]
depth = [clf.tree_.max_depth for clf in trees]
```

```
fig, ax = plt.subplots(1, 2,figsize=(10,6))
ax[0].plot(alphas[0:4093], node_counts[0:4093], marker="o", drawstyle="steps-post")#Plotting
ax[0].set_xlabel("alpha")
ax[0].set_ylabel("number of nodes")
ax[0].set_title("Number of nodes vs alpha")
ax[1].plot(alphas[0:4093], depth[0:4093], marker="o", drawstyle="steps-post")#Plotting the zax[1].set_xlabel("alpha")
ax[1].set_ylabel("depth of tree")
ax[1].set_title("Depth vs alpha")
#fig.tight_layout()
```

Text(0.5, 1.0, 'Depth vs alpha')

2.3.2 Train and test accuracies (R-squared) vs alpha

```
train_scores = [clf.score(X, y) for clf in trees]
test_scores = [clf.score(Xtest, test.price) for clf in trees]
```

```
fig, ax = plt.subplots()
ax.set_xlabel("alpha")
ax.set_ylabel("accuracy")
ax.set_title("Accuracy vs alpha for training and testing sets")
ax.plot(alphas[0:4093], train_scores[0:4093], marker="o", label="train", drawstyle="steps-postax.plot(alphas[0:4093], test_scores[0:4093], marker="o", label="test", drawstyle="steps-postax.legend()
plt.show()
```


3 Classification trees

Read section 8.1.2 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score,train_test_split, cross_val_predict
from sklearn.metrics import roc_curve, precision_recall_curve, auc, make_scorer, recall_score
from sklearn.model_selection import StratifiedKFold, KFold
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
#Libraries for visualizing trees
from sklearn.tree import export_graphviz
from six import StringIO
from IPython.display import Image
import pydotplus
import time as time
```

```
train = pd.read_csv('./Datasets/diabetes_train.csv')
test = pd.read_csv('./Datasets/diabetes_test.csv')
```

```
test.head()
```

	Pregnancies	Glucose	${\bf BloodPressure}$	SkinThickness	Insulin	BMI	${\bf Diabetes Pedigree Function}$	Age
0	6	148	72	35	0	33.6	0.627	50
1	2	197	70	45	543	30.5	0.158	53

	Pregnancies	Glucose	${\bf BloodPressure}$	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age
2	1	115	70	30	96	34.6	0.529	32
3	8	99	84	0	0	35.4	0.388	50
4	7	147	76	0	0	39.4	0.257	43

3.1 Building a classification tree

Develop a classification tree to predict if a person has diabetes.

```
X = train.drop(columns = 'Outcome')
Xtest = test.drop(columns = 'Outcome')
y = train['Outcome']
ytest = test['Outcome']

#Defining the object to build a classification tree
model = DecisionTreeClassifier(random_state=1, max_depth=3)

#Fitting the regression tree to the data
model.fit(X, y)
```

DecisionTreeClassifier(max_depth=3, random_state=1)

Accuracy: 73.37662337662337
ROC-AUC: 0.8349197955226512
Precision: 0.77777777777778
Recall: 0.45901639344262296

3.2 Optimizing hyperparameters to optimize performance

In case of diabetes, it is important to reduce FNR (False negative rate) or maximize recall. This is because if a person has diabetes, the consequences of predicting that they don't have diabetes can be much worse than the other way round.

Let us find the optimal depth of the tree and the number of terminal nods (leaves) that minimizes the FNR or maximizes recall.

Find the maximum values of depth and number of leaves.

```
#Defining the object to build a regression tree
model = DecisionTreeClassifier(random_state=1)

#Fitting the regression tree to the data
model.fit(X, y)
```

DecisionTreeClassifier(random_state=1)

```
# Maximum number of leaves
model.get_n_leaves()
```

```
# Maximum depth
model.get_depth()
14
#Defining parameters and the range of values over which to optimize
param_grid = {
    'max_depth': range(2,14),
    'max_leaf_nodes': range(2,118),
    'max_features': range(1, 9)
#Grid search to optimize parameter values
start_time = time.time()
skf = StratifiedKFold(n_splits=5)#The folds are made by preserving the percentage of samples
#Minimizing FNR is equivalent to maximizing recall
grid_search = GridSearchCV(DecisionTreeClassifier(random_state=1), param_grid, scoring=['pre-
                           refit="recall", cv=skf, n_jobs=-1, verbose = True)
grid_search.fit(X, y)
# make the predictions
y_pred = grid_search.predict(Xtest)
print('Train accuracy : %.3f'%grid_search.best_estimator_.score(X, y))
print('Test accuracy : %.3f'%grid_search.best_estimator_.score(Xtest, ytest))
print('Best recall Through Grid Search : %.3f'%grid_search.best_score_)
print('Best params for recall')
print(grid_search.best_params_)
print("Time taken =", round((time.time() - start_time)), "seconds")
Fitting 5 folds for each of 11136 candidates, totalling 55680 fits
Train accuracy: 0.785
Test accuracy: 0.675
Best recall Through Grid Search: 0.658
Best params for recall
{'max_depth': 4, 'max_features': 2, 'max_leaf_nodes': 8}
Time taken = 70 seconds
```

3.3 Optimizing the decision threshold probability

Note that decision threshold probability is not tuned with GridSearchCV because GridSearchCV is a technique used for hyperparameter tuning in machine learning models, and the decision threshold probability is not a hyperparameter of the model.

The decision threshold is set to 0.5 by default during hyperparameter tuning with GridSearchCV.

GridSearchCV is used to tune hyperparameters that control the internal settings of a machine learning model, such as learning rate, regularization strength, and maximum tree depth, among others. These hyperparameters affect the model's internal behavior and performance. On the other hand, the decision threshold is an external parameter that is used to interpret the model's output and make predictions based on the predicted probabilities.

To tune the decision threshold, one typically needs to manually adjust it after the model has been trained and evaluated using a specific set of hyperparameter values. This can be done using methods, which involve evaluating the model's performance at different decision threshold values and selecting the one that best meets the desired trade-off between false positives and false negatives based on the specific problem requirements.

As the recall will always be 100% for a decision threshold probability of zero, we'll find a decision threshold probability that balances recall with another performance metric such as precision, false positive rate, accuracy, etc. Below are a couple of examples that show we can balance recall with (1) precision or (2) false positive rate.

3.3.1 Balancing recall with precision

We can find a threshold probability that balances recall with precision.

```
plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
plt.plot(thresholds, precisions[:-1], "o", color = 'blue')
plt.plot(thresholds, recalls[:-1], "o", color = 'green')
plt.ylabel("Score")
plt.xlabel("Decision Threshold")
plt.legend(loc='best')
plt.legend()
plot_precision_recall_vs_threshold(p, r, thresholds)
```

Precision and Recall Scores as a function of the decision threshold


```
# Thresholds with precision and recall np.concatenate([thresholds.reshape(-1,1), p[:-1].reshape(-1,1), r[:-1].reshape(-1,1)], axis
```

```
array([[0.08196721, 0.33713355, 1. ], [0.09045226, 0.34982332, 0.95652174], [0.09248555, 0.36641221, 0.92753623], [0.0964467, 0.39293139, 0.91304348], [0.1 , 0.42105263, 0.88888889],
```

```
[0.10810811, 0.42298851, 0.88888889],
[0.10869565, 0.42857143, 0.88405797],
[0.12820513, 0.48378378, 0.8647343],
[0.14285714, 0.48219178, 0.85024155],
[0.18518519, 0.48618785, 0.85024155],
Γ0.2
          , 0.48611111, 0.84541063],
[0.20512821, 0.48876404, 0.84057971],
[0.20833333, 0.49418605, 0.82125604],
[0.21276596, 0.49411765, 0.8115942],
[0.22916667, 0.50151976, 0.79710145],
[0.23684211, 0.51582278, 0.78743961],
[0.27777778, 0.52786885, 0.77777778],
[0.3015873, 0.54794521, 0.77294686],
           , 0.56554307, 0.7294686 ],
[0.36]
[0.3697479, 0.56692913, 0.69565217],
[0.37931034, 0.58974359, 0.66666667],
[0.54954955, 0.59130435, 0.65700483],
[0.55172414, 0.59798995, 0.57487923],
[0.55882353, 0.59893048, 0.5410628],
[0.58823529, 0.6091954, 0.51207729],
                       , 0.47826087],
[0.61904762, 0.6
[0.62337662, 0.60431655, 0.4057971],
[0.63461538, 0.59130435, 0.32850242],
[0.69354839, 0.59803922, 0.29468599],
[0.69642857, 0.59493671, 0.22705314],
[0.70149254, 0.56338028, 0.19323671],
[0.71153846, 0.61403509, 0.16908213],
[0.75609756, 0.5952381, 0.12077295],
[0.76363636, 0.55555556, 0.09661836],
[0.76470588, 0.59090909, 0.06280193],
          , 0.66666667, 0.03864734],
[0.94117647, 0.66666667, 0.02898551],
           , 0.6
[1.
                       , 0.01449275]])
```

Suppose, we wish to have at least 80% recall, with the highest possible precision. Then, based on the precision-recall curve (or the table above), we should have a decision threshold probability of 0.21.

Let's assess the model's performance on test data with a threshold probability of 0.21.

```
\# Performance metrics computation for the optimum decision threshold probability desired_threshold = 0.21
```

```
y_pred_prob = model.predict_proba(Xtest)[:,1]
\# Classifying observations in the positive class (y = 1) if the predicted probability is greater
# than the desired decision threshold probability
y_pred = y_pred_prob > desired_threshold
y_pred = y_pred.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred, ytest)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(ytest, y_pred_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(ytest, y_pred))
print("Recall: ", recall_score(ytest, y_pred))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(ytest, y_pred),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 72.727272727273 ROC-AUC: 0.7544509078089194 Precision: 0.611764705882353 Recall: 0.8524590163934426

3.3.2 Balancing recall with false positive rate

Suppose we wish to balance recall with false positive rate. We can optimize the model to maximize ROC-AUC, and then choose a point on the ROC-curve that balances recall with the false positive rate.

```
# Defining parameters and the range of values over which to optimize
param_grid = {
    'max_depth': range(2,14),
    'max_leaf_nodes': range(2,118),
    'max_features': range(1, 9)
}
```

```
# make the predictions
y_pred = grid_search.predict(Xtest)
print('Best params for recall')
print(grid_search.best_params_)
print("Time taken =", round((time.time() - start_time)), "seconds")
Fitting 5 folds for each of 11136 candidates, totalling 55680 fits
Best params for recall
{'max_depth': 6, 'max_features': 2, 'max_leaf_nodes': 9}
Time taken = 72 seconds
model = DecisionTreeClassifier(random_state=1, max_depth = 6, max_leaf_nodes=9, max_features=
cross_val_ypred = cross_val_predict(DecisionTreeClassifier(random_state=1, max_depth = 6,
                                                           max_leaf_nodes=9, max_features=2)
                                              y, cv = 5, method = 'predict_proba')
fpr, tpr, auc_thresholds = roc_curve(y, cross_val_ypred[:,1])
print(auc(fpr, tpr))# AUC of ROC
def plot_roc_curve(fpr, tpr, label=None):
   plt.figure(figsize=(8,8))
   plt.title('ROC Curve')
   plt.plot(fpr, tpr, linewidth=2, label=label)
   plt.plot(fpr, tpr, 'o', color = 'blue')
   plt.plot([0, 1], [0, 1], 'k--')
   plt.axis([-0.005, 1, 0, 1.005])
   plt.xticks(np.arange(0,1, 0.05), rotation=90)
   plt.xlabel("False Positive Rate")
   plt.ylabel("True Positive Rate (Recall)")
fpr, tpr, auc_thresholds = roc_curve(y, cross_val_ypred[:,1])
plot_roc_curve(fpr, tpr)
```

0.7605075431162388


```
# Thresholds with TPR and FPR
all_thresholds = np.concatenate([auc_thresholds.reshape(-1,1), tpr.reshape(-1,1), fpr.reshape
recall_more_than_80 = all_thresholds[all_thresholds[:,1]>0.8,:]
# As the values in 'recall_more_than_80' are arranged in increasing order of recall and decre
# the first value will provide the maximum threshold probability for the recall to be more to
# We wish to find the maximum threshold probability to obtain the minimum possible FPR
recall_more_than_80[0]
```

```
array([0.21276596, 0.80676329, 0.39066339])
```

Suppose, we wish to have at least 80% recall, with the lowest possible precision. Then, based on the ROC-AUC curve, we should have a decision threshold probability of 0.21.

Let's assess the model's performance on test data with a threshold probability of 0.21.

```
# Performance metrics computation for the optimum decision threshold probability
desired_threshold = 0.21
y_pred_prob = model.predict_proba(Xtest)[:,1]
\# Classifying observations in the positive class (y = 1) if the predicted probability is greater
# than the desired decision threshold probability
y_pred = y_pred_prob > desired_threshold
y_pred = y_pred.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred, ytest)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(ytest, y_pred_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(ytest, y_pred))
print("Recall: ", recall_score(ytest, y_pred))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(ytest, y_pred),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 71.42857142857143 ROC-AUC: 0.7618543980257358 Precision: 0.6075949367088608 Recall: 0.7868852459016393

3.4 Cost complexity pruning

Just as we did cost complexity pruning in a regression tree, we can do it to optimize the model for a classification tree.

```
model = DecisionTreeClassifier(random_state = 1)#model without any restrictions
path= model.cost_complexity_pruning_path(X,y)# Compute the pruning path during Minimal Cost-
```

```
alphas=path['ccp_alphas']
len(alphas)
```

58

```
# make the predictions
y_pred = grid_search.predict(Xtest)

print('Best params for recall')
print(grid_search.best_params_)

Fitting 5 folds for each of 58 candidates, totalling 290 fits
Best params for recall
{'ccp_alpha': 0.010561291712538737}

# Model with the optimal value of 'ccp_alpha'
model = DecisionTreeClassifier(ccp_alpha=0.01435396,random_state=1)
model.fit(X, y)
```

DecisionTreeClassifier(ccp_alpha=0.01435396, random_state=1)

Now we can tune the decision threshold probability to balance recall with another performance metrics as shown earlier in Section 4.3.

A Stratified splitting (classification problem)

A.1 Stratified splitting with respect to response

Q: When splitting data into train and test for developing and assessing a classification model, it is recommended to stratify the split with respect to the response. Why?

A: The main advantage of stratified splitting is that it can help ensure that the training and testing sets have similar distributions of the target variable, which can lead to more accurate and reliable model performance estimates.

In many real-world datasets, the target variable may be imbalanced, meaning that one class is more prevalent than the other(s). For example, in a medical dataset, the majority of patients may not have a particular disease, while only a small fraction may have the disease. If a random split is used to divide the dataset into training and testing sets, there is a risk that the testing set may not have enough samples from the minority class, which can lead to biased model performance estimates.

Stratified splitting addresses this issue by ensuring that both the training and testing sets have similar proportions of the target variable. This can lead to more accurate model performance estimates, especially for imbalanced datasets, by ensuring that the testing set contains enough samples from each class to make reliable predictions.

Another advantage of stratified splitting is that it can help ensure that the model is not overfitting to a particular class. If a random split is used and one class is overrepresented in the training set, the model may learn to predict that class well but perform poorly on the other class(es). Stratified splitting can help ensure that the model is exposed to a representative sample of all classes during training, which can improve its generalization performance on new, unseen data.

In summary, the advantages of stratified splitting are that it can lead to more accurate and reliable model performance estimates, especially for imbalanced datasets, and can help prevent overfitting to a particular class.

A.2 Stratified splitting with respect to response and categorical predictors

Q: Will it be better to stratify the split with respect to the response as well as categorical predictors, instead of only the response? In that case, the train and test datasets will be even more representative of the complete data.

A: It is not recommended to stratify with respect to both the response and categorical predictors simultaneously, while splitting a dataset into train and test, because doing so may result in the test data being very similar to train data, thereby defeating the purpose of assessing the model on unseen data. This kind of a stratified splitting will tend to make the relationships between the response and predictors in train data also appear in test data, which will result in the performance on test data being very similar to that in train data. Thus, in this case, the ability of the model to generalize to new, unseen data won't be assessed by test data.

Therefore, it is generally recommended to only stratify the response variable when splitting the data for model training, and to use random sampling for the predictor variables. This helps to ensure that the model is able to capture the underlying relationships between the predictor variables and the response variable, while still being able to generalize well to new, unseen data.

In the extreme scenario, when there are no continuous predictors, and there are enough observations for stratification with respect to the response and the categorical predictors, the train and test datasets may turn out to be exactly the same. Example 1 below illustrates this scenario.

A.3 Example 1

The example below shows that the train and test data can be exactly the same if we stratify the split with respect to response and the categorical predictors.

```
# Importing necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_predict, cross_val_score
from sklearn.metrics import accuracy_score
from itertools import product
sns.set(font_scale=1.35)
```

Let us simulate a dataset with 8 observations, two categorical predictors x1 and x2 and the the binary response y.

```
#Setting a seed for reproducible results
np.random.seed(9)
# 8 observations
n = 8
#Simulating the categorical predictors
x1 = pd.Series(np.random.randint(0,2,n), name = 'x1')
x2 = pd.Series(np.random.randint(0,2,n), name = 'x2')
#Simulating the response
pr = (x1==1)*0.7+(x2==0)*0.3# + (x3*0.1>0.1)*0.1
y = pd.Series(1*(np.random.uniform(size = n) < pr), name = 'y')
#Defining the predictor object 'X'
X = pd.concat([x1, x2], axis = 1)
#Stratified splitting with respect to the response and predictors to create 50% train and te
X_train_stratified, X_test_stratified, y_train_stratified,\
y_test_stratified = train_test_split(X, y, test_size = 0.5, random_state = 45, stratify=data
#Train and test data resulting from the above stratified splitting
data_train = pd.concat([X_train_stratified, y_train_stratified], axis = 1)
data_test = pd.concat([X_test_stratified, y_test_stratified], axis = 1)
```

Let us check the train and test datasets created with stratified splitting with respect to both the predictors and the response.

data_train

	x1	x2	У
2	0	0]
7	0	1	(
3	1	0	1
1	0	1	(

	x1	x2	У
4	0	1	0
6	1	0	1
0	0	1	0
5	0	0	1

Note that the train and test datasets are exactly the same! Stratified splitting tends to have the same proportion of observations corresponding to each strata in both the train and test datasets, where each strata is a unique combination of values of x1, x2, and y. This will tend to make the train and test datasets quite similar!

A.4 Example 2: Simulation results

The example below shows that train and test set performance will tend to be quite similar if we stratify the datasets with respect to the predictors and the response.

We'll simulate a dataset consisting of 1000 observations, 2 categorical predictors x1 and x2, a continuous predictor x3, and a binary response y.

```
#Setting a seed for reproducible results
np.random.seed(99)

# 1000 Observations
n = 1000

#Simulating categorical predictors x1 and x2
x1 = pd.Series(np.random.randint(0,2,n), name = 'x1')
x2 = pd.Series(np.random.randint(0,2,n), name = 'x2')

#Simulating continuous predictor x3
x3 = pd.Series(np.random.normal(0,1,n), name = 'x3')

#Simulating the response
pr = (x1==1)*0.7+(x2==0)*0.3 + (x3*0.1>0.1)*0.1
y = pd.Series(1*(np.random.uniform(size = n) < pr), name = 'y')

#Defining the predictor object 'X'
X = pd.concat([x1, x2, x3], axis = 1)</pre>
```

We'll comparing model performance metrics when the data is split into train and test by performing stratified splitting

- 1. Only with respect to the response
- 2. With respect to the response and categorical predictors

We'll perform 1000 simulations, where the data is split using a different seed in each simulation.

#Creating an empty dataframe to store simulation results of 1000 simulations

```
accuracy_iter = pd.DataFrame(columns = {'train_y_stratified','test_y_stratified',
                                                                                         'train_y_CatPredictors_stratified','test_y_CatPredic
# Comparing model performance metrics when the data is split into train and test by performi:
# (1) only with respect to the response
# (2) with respect to the response and categorical predictors
# Stratified splitting is performed 1000 times and the results are compared
for i in np.arange(1,1000):
         #-----#
         # Stratified splitting with respect to response only to create train and test data
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state =
        model = LogisticRegression()
        model.fit(X_train, y_train)
         # Model accuracy on train and test data, with stratification only on response while spli
         # the complete data into train and test
         accuracy_iter.loc[(i-1), 'train_y_stratified'] = model.score(X_train, y_train)
         accuracy_iter.loc[(i-1), 'test_y_stratified'] = model.score(X_test, y_test)
         #-----#
         # Stratified splitting with respect to response and categorical predictors to create tra
         # and test data
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state
                                                                                                                            stratify=pd.concat([x1, x2, y], axis
        model.fit(X_train, y_train)
         # Model accuracy on train and test data, with stratification on response and predictors
         # splitting the complete data into train and test
         accuracy_iter.loc[(i-1), 'train_y_CatPredictors_stratified'] = model.score(X_train, y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_train_y_
         accuracy_iter.loc[(i-1), 'test_y_CatPredictors_stratified'] = model.score(X_test, y_test
```

```
# Converting accuracy to numeric
accuracy_iter = accuracy_iter.apply(lambda x:x.astype(float), axis = 1)
```

Distribution of train and test accuracies

The table below shows the distribution of train and test accuracies when the data is split into train and test by performing stratified splitting:

- 1. Only with respect to the response (see train_y_stratified and test_y_stratified)
- 2. With respect to the response and categorical predictors (see train_y_CatPredictors_stratified and test_y_CatPredictors_stratified)

```
accuracy_iter.describe()
```

	$train_y_stratified$	$test_y_stratified$	$train_y_CatPredictors_stratified$	$test_y_CatPredictors_st$
count	999.000000	999.000000	9.990000e+02	9.990000e+02
mean	0.834962	0.835150	8.350000e-01	8.350000e-01
std	0.005833	0.023333	8.552999e-15	8.552999e-15
min	0.812500	0.755000	8.350000e-01	8.350000e-01
25%	0.831250	0.820000	8.350000e-01	8.350000e-01
50%	0.835000	0.835000	8.350000e-01	8.350000e-01
75%	0.838750	0.850000	8.350000e-01	8.350000e-01
\max	0.855000	0.925000	8.350000e-01	8.350000e-01

Let us visualize the distribution of these accuracies.

A.4.1 Stratified splitting only with respect to the response

```
sns.histplot(data=accuracy_iter, x="train_y_stratified", color="red", label="Train accuracy"
sns.histplot(data=accuracy_iter, x="test_y_stratified", color="skyblue", label="Test accuracy
plt.legend()
plt.xlabel('Accuracy')
```

Text(0.5, 0, 'Accuracy')

Note the variability in train and test accuracies when the data is stratified only with respect to the response. The train accuracy varies between 81.2% and 85.5%, while the test accuracy varies between 75.5% and 92.5%.

A.4.2 Stratified splitting with respect to the response and categorical predictors

```
sns.histplot(data=accuracy_iter, x="train_y_CatPredictors_stratified", color="red", label="Ts
sns.histplot(data=accuracy_iter, x="test_y_CatPredictors_stratified", color="skyblue", label="plt.legend()
plt.xlabel('Accuracy')
```

Text(0.5, 0, 'Accuracy')

The train and test accuracies are between 85% and 85.5% for all the simulations. As a results of stratifying the splitting with respect to both the response and the categorical predictors, the train and test datasets are almost the same because the datasets are engineered to be quite similar, thereby making the test dataset inappropriate for assessing accuracy on unseen data. Thus, it is recommended to stratify the splitting only with respect to the response.

B Datasets, assignment and project files

Datasets used in the book, assignment files, project files, and prediction problems report tempate can be found here