

Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi

> Corso di Laurea Triennale in Informatica Anno Accademico 2021/2022

Analisi di serie temporali Aspetti Applicativi

Candidato Alex Valle $\label{eq:Relatore} Relatore$ Prof. Francesca Odone

Indice

1	\mathbf{Intr}	oduzione	2
	1.1	Premessa	2
	1.2	Obbiettivi	2
	1.3	Tecnologie utilizzate	2
	1.4	Suddivisione del lavoro	3
2	Stu	io dei metodi e delle applicazioni	4
	2.1	Cos'è una serie temporale	4
	2.2	Metodi per la gestione dei dati	5
		2.2.1 Pacchetti utilizzati	5
		2.2.2 Caricamento di un dataset	6
		2.2.3 Rinomina delle colonne relative alle serie	6
		2.2.4 Scelta dell'indice	7
		2.2.5 Individuazione dei valori nulli e possibili soluzioni	9
3	Bib	lografia 1	10

1 Introduzione

In tale capitolo introduttivo verranno spiegati gli obbiettivi e la suddivisione del tirocinio in merito al tempo disponibile, cercando di spiegare, in maniera sintetica, come è stato svolto ed organizzato.

1.1 Premessa

Lo scopo di questo elaborato è quello di descrivere l'esperienza di tirocinio svoltasi presso l'Università Degli Studi di Genova con durata complessiva di 300 ore con inizio 25 novembre 2022 e fine 27 febbraio 2023. Il tirocinio è stato svolto per la maggior parte del tempo da remoto con incontri, volti all'andamento di esso, mediante l'utilizzo di Teams (piattaforma sviluppata da Microsoft) che in presenza presso il dipartimento.

1.2 Obbiettivi

L'obbiettivo di questo tirocinio è stato quello di provare a individuare, se esistenti, uno o più metodi, relativi all'analisi di serie temporali, che permettano l'analisi di una serie di dati relative a soggeti sani e petologici con lo scopo di analizzare il cammino.

I dati utilizzati sono stati analizzati precedentemente da un gruppo di ricerca del dipartimento con tecniche differenti da quelle utilizzate durante il tirocinio quindi in caso di un metodo sicuro e soddisfacente all'analisi, i risultati ottenuti sarebbero serviti al gruppo di ricerca come un'ulteriore conferma delle analisi da loro eseguite.

1.3 Tecnologie utilizzate

Come scelta tecnologica principale per lo sviluppo, l'intero svolgimento del tirocinio, si è basato sul linguaggio di programmazione python per la sua semplicità, velocità nella scrittura di codice e ampia community che fornisce molti dei pacchetti utilizzati per eseguire analisi di ogni genere.

Per tenere traccia del lavoro e per esplorare velocemente le modifiche eseguite è stato utilizzato Git come VCS (version control system) e Github come servizio di hosting per i repository.

1.4 Suddivisione del lavoro

Per poter garantire la conoscienza necessaria allo sviluppo di un metodo relativo allo scopo del tirocinio, il lavoro è stato principalmente suddiviso in due fasi: studio dei metodi relativi all'analisi di serie temporali ed effettivo sviluppo, e ricerca, di un metodo per l'analisi del problema posto.

Nella prima fase sono stati studiati i metodi ed applicazioni di tecniche volte allo studio di serie temporali, sia da un lato pratico che da un lato teorico. Per quanto riguarda il lato pratico, queste tecniche sono state studiante mediante la ricerca di articoli e videotutorial online sull'applicazione di esse e poi, in una fase successiva, messe in pratica con piccoli esempi mediante l'utilizzo di dataset di vario genere, forniti in maniera gratuita da siti web trovati su internet, per poterne capire meglio il funzionamento.

Per quanto riguarda il lato teorico di esse è stato necessario studiare una piccola base di statistica inferenziale ed altre nozioni generali per interpretare al meglio i risultati e le tecniche utilizzate in ambito applicativo.

Nella seconda fase si è passati alla ricerca di un metodo, che utilizzi tecniche dell'analisi di serie temporali, per risolvere il problema richiesto. Prima di essere passare allo sviluppo vero e proprio, essendo che i dati forniti erano in uno stato "grezzo", è stato necessario applicare tutte le tecniche di manipolazione dei dati come filtraggio, rinomina delle colonne, tecniche per la sostituzione di valori nulli etc ... per poter ottenere un dataset pulito e lavorabile dal punto di vista applicativo.

2 Studio dei metodi e delle applicazioni

In tale capitolo verranno spiegati i metodi, le applicazioni ed i concetti generali studiati durante la prima fase del tirocinio, accostando ad ogni di essi una relativa implementazione e/o utilizzo.

In primo luogo si troverà una definizione di serie temporale, seguita da una spiegazione dei metodi per manipolare i dati inerenti a serie temporali su python, le componenti principali di una serie temporale e la loro visualizzazione ed infine metodi per l'analisi di essi.

Molti degli esempi forniti in questa sezione fanno riferimento a dataset disponibili al sito "UCI Machine Learning Repository" [1] più precisamente, come esempio, è stato utilizzato un dataset relativo alla qualità dell'aria della città di Beijing [2] (Pechino).

2.1 Cos'è una serie temporale

In statistica descrittiva, una serie storica (o temporale) si definisce come un insieme di variabili casuali ordinate rispetto al tempo, ed esprime la dinamica di un certo fenomeno nel tempo. Le serie storiche vengono studiate sia per interpretare un fenomeno, individuando componenti di trend, di ciclicità, di stagionalità e/o di accidentalità, sia per prevedere il suo andamento futuro [3]. In altre parole una serie storica (o temporale) è un'insieme/serie di dati capionati ed indicizzati nel tempo ad intervalli regolari come ore, giorni o anni.

Esempio (*Prezzo della benzina*). Se consideriamo come fenomeno Y il prezzo della benzina dal 1970 al 2010 avremmo come numero totale di osservazioni (o numero totale di periodi) T = 40 dove:

- Y_1 : prezzo della benzina all'anno 1970
- Y_2 : prezzo della benzina all'anno 1971
- $Y_T = Y_{40}$: prezzo della benzina all'anno 2010

2.2 Metodi per la gestione dei dati

In questo sottocapitolo verranno spiegati i metodi studiati ed utilizzati per la gestione dei dati in python, più nello specifico come caricare un dataset, una possibile rinomina delle colonne ralative alle serie per una maggiore comprensione, individuazione dei valori nulli ed infine una sezione relativa al filtraggio.

Cosa viene inteso per dataset Per dataset si intende un insieme di serie (nella nostra applicazione temporali) relative ad un'unica applicazione.

Esempio (Qualità dell'aria). Consideriamo, per esempio, come applicazione le misurazioni di diversi parametri relativi alla qualità dell'aria di Genova: livello di CO_2 , livello di SO_2 , livello di NO_2 e temperatura in °C. In un dataset possiamo considerare ogni parametro come una serie temporale diversa ma indicizzata nel tempo in ugual maniera, quindi se queste misurazioni avvengono ogni ora avemo per ogni istante di tempo t le misurazioni per ogni parametro in quell'istante.

- Y_1 : livello di CO_2 , SO_2 , NO_2 e temperatura in °C all'istante 1.
- Y_2 : livello di CO_2 , SO_2 , NO_2 e temperatura in °C all'istante 2.
- . .
- Y_T : livello di CO_2 , SO_2 , NO_2 e temperatura in °C all'istante T.

Ogni parametro in un dataset viene rappresentato come una colonna.

2.2.1 Pacchetti utilizzati

Per effettuare tutte le manovre relative all'elaborazione e manipolazione dei dati sono state utilizzate funzionalità fornite da pacchetti python come pandas e numpy, essi semplificano la scrittura di codice e velocizzano il tempo di sviluppo organizzando in maniera ottimale i dati. Per essere utilizzati essi necessitano prima di essere installati tramite il gestore di pacchetti di python pip.

Snippet per l'installazione dei pacchetti

```
pip install pandas
pip install numpy
```

Snippet per il caricamento in python

```
import pandas as pd
import numpy as np
```

2.2.2 Caricamento di un dataset

Per poter utilizzare i dati all'interno di python è stata utilizzata la funzionalità di pandas read_csv dove, ogni colonna fa riferimento ad una serie.

Snippet

```
dataset = pd.read_csv('data.csv')
```

2.2.3 Rinomina delle colonne relative alle serie

In qualche case, il primo passo da eseguire, è quello di rinominare le colonne relative ad ogni serie così da poter avere una rappresentazione più accurata del dataset. Tramite l'utilizzo della funzione display e del metodo head del dataset possiamo controllare i primi 5 valori di un dataset controllando anche così il nome di ogni colonna.

Snippet

```
display(dataset.head())
```

	NaN	NaN.1	NaN.2	NaN.3	NaN.4	NaN.5	NaN.6	NaN.7	NaN.8	NaN.9	NaN.10	NaN.11	NaN.12	NaN.13	NaN.14	NaN.15	NaN.16	NaN.17
0	1	2013	3	1	0	6.0	6.0	4.0	8.0	300.0	81.0	-0.5	1024.5	-21.4	0.0	NNW	5.7	Tiantan
1	2	2013	3	1	1	6.0	29.0	5.0	9.0	300.0	80.0	-0.7	1025.1	-22.1	0.0	NW	3.9	Tiantan
2	3	2013	3	1	2	6.0	6.0	4.0	12.0	300.0	75.0	-1.2	1025.3	-24.6	0.0	NNW	5.3	Tiantan
3	4	2013	3	1	3	6.0	6.0	4.0	12.0	300.0	74.0	-1.4	1026.2	-25.5	0.0	N	4.9	Tiantan
4	5	2013	3	1	4	5.0	5.0	7.0	15.0	400.0	70.0	-1.9	1027.1	-24.5	0.0	NNW	3.2	Tiantan

Figure 1: output del metodo head prima della rinomina delle colonne

Come si può notare nell'immagine 1 i nomi delle colonne non hanno nessun nome significativo, con il seguente esempio potremmo cambiare il nome delle colonne.

Snippet

	no	year	month	day	hour	pm2_5	pm10	so2	no2	co	03	temp	pres	dewp	rain	wd	wspm	station
0	1	2013	3	1	0	6.0	6.0	4.0	8.0	300.0	81.0	-0.5	1024.5	-21.4	0.0	NNW	5.7	Tiantan
1	2	2013	3	1	1	6.0	29.0	5.0	9.0	300.0	80.0	-0.7	1025.1	-22.1	0.0	NW	3.9	Tiantan
2	3	2013	3	1	2	6.0	6.0	4.0	12.0	300.0	75.0	-1.2	1025.3	-24.6	0.0	NNW	5.3	Tiantan
3	4	2013	3	1	3	6.0	6.0	4.0	12.0	300.0	74.0	-1.4	1026.2	-25.5	0.0	N	4.9	Tiantan
4	5	2013	3	1	4	5.0	5.0	7.0	15.0	400.0	70.0	-1.9	1027.1	-24.5	0.0	NNW	3.2	Tiantan

Figure 2: output del metodo head dopo la rinomina delle colonne

Come si può notare nell'immagine 2 assegnando la lista delle colonne come attuali nomi per le serie del dataset riusciamo ad ottenere un'interpretazione più accurata.

2.2.4 Scelta dell'indice

Molte delle funzionalità fornite da pandas ed altri pacchetti python richiedono che il dataset sia indicizzato nel tempo nel corretto modo. In figura 2 si può notare che la prima colonna senza nome e la seconda colonna con nome no, indichino il numero di riga per ogni misurazione, la differenza è che la prima colonna è generata automaticamente dal pacchetto pandas, ed impostata di default come indice, mentre la seconda con nome no è fornita direttamente dal file csv precedentemente caricato. Per l'analisi della maggior parte delle serie temporali un'idicizzazione per numero di riga non è significativa, sarebbe molto più conveniente lavorare avendo come indice di tabella la data ed ora di ogni effettiva misurazione. A questo proposito il dataset caricato ci fornisce delle colonne (year , month, day e hour) indicizzate per tempo e relative ad ogni misurazione, che possono essere riformattate insieme ed usate come indice per il dataset.

Snippet

```
# unificazione delle colonne relative al tempo per ogni
# istante di tempo t in una nuova colonna
new_index_column = []
for i in range(len(dataset.year)):
new_index_column.append("%s/%s/%s %s:0:0"
    % (dataset.day[i], dataset.month[i],
       dataset.year[i], dataset.hour[i]) )
# elimina le colonne relative al tempo
del dataset["year"], dataset["month"],
    dataset["day"], dataset["hour"],
    dataset["no"]
# imposta/crea la nuova colonna date e converti in datetime
dataset['date'] = new_index_column
dataset['date'] = pd.to_datetime(dataset.date, dayfirst=True)
# imposta come index la nuova colonna date
dataset.set_index("date", inplace=True)
display(dataset.head())
```

	pm2_5	pm10	so2	no2	co	о3	temp	pres	dewp	rain	wd	wspm	station
date													
2013-03-01 00:00:00	6.0	6.0	4.0	8.0	300.0	81.0	-0.5	1024.5	-21.4	0.0	NNW	5.7	Tiantan
2013-03-01 01:00:00	6.0	29.0	5.0	9.0	300.0	80.0	-0.7	1025.1	-22.1	0.0	NW	3.9	Tiantan
2013-03-01 02:00:00	6.0	6.0	4.0	12.0	300.0	75.0	-1.2	1025.3	-24.6	0.0	NNW	5.3	Tiantan
2013-03-01 03:00:00	6.0	6.0	4.0	12.0	300.0	74.0	-1.4	1026.2	-25.5	0.0	N	4.9	Tiantan
2013-03-01 04:00:00	5.0	5.0	7.0	15.0	400.0	70.0	-1.9	1027.1	-24.5	0.0	NNW	3.2	Tiantan

Figure 3: output del metodo head dopo aver impostato l'indice

Come si può notare dall'output del metodo head nell'immagine 3 date è stato impostato come indice di tabella e quindi da questo momento in poi possiamo accedere al dataset, scegliendo le misurazioni interessate, utilizzando la data.

Periodo di campionamento Un'altra importante modifica è impostare il periodo di campionamento del dataset, in poche parole impostare un corretto indice non basta a massimizzare il corretto funzionamento delle funzionalità

di analisi delle serie temporali, bisogna anche specificare l'istante di tempo che occorre tra una misurazione e l'altra. Per fare ciò pandas fornise un metodo che imposta il periodo di campionamento a quello deiderato, nel nostro caso sappiamo che le misurazioni sono state campionate ogni ora.

Snippet

```
# imposta il periodo di capionamento
# di ogni osservazione ad ogni ora
dataset = dataset.asfreq("h")
```

2.2.5 Individuazione dei valori nulli e possibili soluzioni

La presenza di valori nulli in un dataset relativo a serie temporali

3 Bibliografia

Bibliografia

- [1] Dheeru Dua and Casey Graff. *UCI Machine Learning Repository*. 2017. URL: http://archive.ics.uci.edu/ml.
- [2] Zhang S. Guo B. Dong A. He J. Xu Z. Chen S.X. Cautionary Tales on Air-Quality Improvement in Beijing. 2017. URL: https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data.
- [3] Wikipedia. Serie Storica Wikipedia, L'enciclopedia libera. [Online; controllata il 30-gennaio-2022]. 2022. URL: https://it.wikipedia.org/wiki/Serie_storica.