Controle de Sala de Reuniões

Versão 2021

INTRODUÇÃO

Esta experiência tem como principal objetivo desenvolver um circuito de um controle de sala de reuniões.

OBJETIVO

Ao fim desta experiência, os seguintes tópicos devem ser conhecidos pelos alunos:

Conceito e funcionamento de um processo de automação de salas de trabalho em geral.

1. PARTE EXPERIMENTAL

Os circuitos digitais podem realizar uma série de controles das atividades do dia-a-dia, seja no lar ou no trabalho. Uma das atividades do trabalho é realizar reuniões em salas adequadas com mesa, cadeira, boa iluminação, aparelho de ar-condicionado, dispositivos de apresentação, computadores, aparelhos de viva voz, etc. Uma sala de reuniões tem uma capacidade máxima de participantes. Quando chega um participante, a luz deve ser ligada e quando o número de pessoas atinge um valor pré-definido, o aparelho de ar-condicionado deve ser ligado. O aparelho de ar-condicionado deve ser desligado quando o número de participantes fica abaixo de outro valor pré-definido. A luz deve ser desligada quando o número de participantes atinge zero.

1.1. Projeto do Circuito Digital

Um diagrama de blocos de alto nível do circuito de Controle de Sala de Reuniões é ilustrado na Figura 1, com entradas e saídas do circuito.

O sinal do tipo pulso **Reset** gera o estado inicial do circuito e os sinais de saída (**Cheio**, **Vazio**, **Liga/Desliga Luz** e **Liga/Desliga Ar-Condicionado**) estão apagados. Os sinais de tipo pulso **Entrou** e **Saiu** correspondem a uma entrada e uma saída de um participante da sala, respectivamente. Os sinais de tipo chave **Cheio** ("1") indica que a sala atingiu sua capacidade máxima e **Vazio** ("1") indica que todos os participantes saíram da sala. Os sinais de tipo chave **Liga** ("1")/**Desliga** ("0") **Luz** e **Liga** ("1")/**Desliga** ("0") **Ar-Condicionado** atuam nos dispositivos de iluminação e ar-condicionado da sala, respectivamente.

Para este circuito, considera-se que a capacidade máxima da sala é de **15 participantes** e, que o aparelho de ar-condicionado deve ser ligado quando houver pelo menos **10 participantes** e deve ser desligado quando houver menos do que **10 participantes**. Para a luz ser ligada, pelo menos **1 participante** precisa entrar na sala e a luz deve ser desligada quando **todos os participantes** saírem da sala.

Figura 1 – Diagrama de blocos geral do circuito de controle de sala de reuniões.

- a) Elabore um Diagrama de Blocos do circuito com Fluxo de Dados (FD) e Unidade de Controle (UC).
- b) Elabore um Diagrama Lógico do FD e simule seu funcionamento no Digital.

- c) Elabore um Diagrama de Estados da **UC** (Máquina de Moore), projete-a em VHDL e simule seu funcionamento no Quartus.
- d) Integre **FD** com **UC** no Quartus e simule seu funcionamento.
- e) Elabore um conjunto de Testes e Depuração do circuito completo.
- f) Faça uma tabela de designação de pinos do circuito completo para a placa FPGA DE0-CV com Cyclone V 5CEBA4F23C7N.

OBS: Não usem chaves e botões da placa FPGA. Coloquem as entradas em pinos da interface GPIO disponíveis. Usaremos aplicativo Waveforms do dispositivo Analog Discovery para acionar as entradas da placa FPGA.

g) Entregue o Planejamento junto com os arquivos .dig (**FD**) do Digital e .qar (**FD+UC**) do Quartus no Moodle.

1.2. Implementação do Sistema Digital

- a) Programe o circuito na placa FPGA DE0-CV.
- b) Realize os testes conforme definidos no Planejamento e anote os resultados.

1.3. Desafio

O professor irá propor um desafio sobre esta experiência usando FPGA.

2. BIBLIOGRAFIA

- Apostilas do Laboratório de Sistemas Digitais A, 2021.
- Texas Instruments. TTL Logic Data Book, 1994.
- WAKERLY, John F. Digital Design Principles & Practices. 4th edition, Prentice Hall, 2006.
- MEALY, B.; TAPPERO F. Free Range VHDL. freerangefactory.org. 2016.
- NEEMANN, H. DIGITAL: https://github.com/hneemann/Digital consultado em Abril, 2021.

3. MATERIAL DISPONÍVEL

• 74160, 74161, 74162, 74163, 74191, outros circuitos integrados e portas básicas usadas nas experiências anteriores.

4. APLICATIVOS NECESSÁRIOS (*)

- Intel Quartus Prime 16.1
- AnyDesk
- Waveforms do Analog Discovery
 - (*) Disponíveis no computador da bancada remota do Laboratório Digital

5. EQUIPAMENTOS NECESSÁRIOS (*)

- 1 computador com software Intel Quartus Prime
- 1 placa de desenvolvimento FPGA DE0-CV com o dispositivo Cyclone V 5CEBA4F23C7N
- 1 dispositivo Analog Discovery
 - (*) Disponíveis na bancada remota do Laboratório Digital

Histórico de Revisões

Profs. Kechi Hirama, Jorge Kinoshita, Glauber de Bona - versão 2021