```
In [1]: import numpy as np
    import pandas as pd

from ipywidgets import interact, interactive, IntSlider, Layout, interact_manual
    import ipywidgets as widgets
    from IPython.display import display
    from numpy.random import randint
    import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression
    from sklearn.linear_model import LogisticRegression
    from sklearn import datasets
```

## **Linear Regressions**

```
In [2]: N_samples = 25
    x_scale = 1
    y_scale = 1

In [3]: x = np.random.randint(0, 50, N_samples)
    y = np.random.randint(0, 50, N_samples)
```

```
In [4]: def my_reg_func(N_samples, x_scale, y_scale):
    x = np.random.randint(0, 50, N_samples)
    y = np.random.randint(0, 50, N_samples)

x = x * x_scale
    y = y * y_scale

model = LinearRegression().fit(x.reshape(-1, 1), y)
    slope = model.coef_[0] # Takes the first element of the array
    intercept = model.intercept_

line_val = [slope * i + intercept for i in x]

plt.figure(figsize=(8,5))
    plt.scatter(x,y,edgecolors='k',c='yellow',s=60)
    plt.plot(x, line_val, 'b')
    plt.title("Slope: " + str(slope))
    plt.show()
```



Slope: -0.16029463346194317



## Out[7]:

|   | sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | target | label  |
|---|-------------------|------------------|-------------------|------------------|--------|--------|
| 0 | 5.1               | 3.5              | 1.4               | 0.2              | 0      | setosa |
| 1 | 4.9               | 3.0              | 1.4               | 0.2              | 0      | setosa |
| 2 | 4.7               | 3.2              | 1.3               | 0.2              | 0      | setosa |
| 3 | 4.6               | 3.1              | 1.5               | 0.2              | 0      | setosa |
| 4 | 5.0               | 3.6              | 1.4               | 0.2              | 0      | setosa |

## **Correlation**

```
In [8]: df[["sepal length (cm)", "petal width (cm)"]].corr()
df[["sepal length (cm)", "target"]].corr()
```

## Out[8]:

|                   | sepai iength (cm) | target   |
|-------------------|-------------------|----------|
| sepal length (cm) | 1.000000          | 0.782561 |
| target            | 0.782561          | 1.000000 |

```
In [ ]:
```