ML hw1 b02901014 王崇勳

1. 實作 linear regression

Code:

```
lr = 0.000000003
for i in range(iteration):
    y = np.dot(xArray,weight)
    grd = 2*np.dot(np.transpose(xArray),(y-yHat)) + 2*lamda*weight
    loss = (np.dot(np.transpose(y-yHat),(y-yHat)) +
        lamda*np.dot(np.transpose(weight), weight)
    weight = weight - grd*lr
```

其中:

xArray 及取出來的 feature、grd 為計算出來的 gradient、Ir 為 learning rate。詳細的作法會在後面的部分說明。

2. 方法簡介

feature 的部份我將每一個小時的 18 個因素都考慮進去。先將 training data 排成一個 18*5760 的陣列,用一個 18*9 的 window 掃過整個陣列,再將 window 掃到的資料轉成一個 1*162 的 row 方便進行運算。因爲每一個月的資料都只有 20 天,爲了解決 1/20 到 2/1 的斷層,因此當 window 掃到每一個月的 20 號的最後十個小時(要留最後一小時當做 Y),就會直接跨越到下一個月的 1 號,也就是說每一個月總共可以得到 471 個 row。按照這個步驟做,可以得到一個 5652*162 的陣列。另外,爲了運算方便,我將 b 合併到第 163 個 column,b 的初始值預設是 w。最後可以得到 X 是一個 5652*163 的陣列。

另一方面要處理的是矩陣運算的問題。根據上課的投影片可以知道 loss 與 gradient 的算法:

$$\sum_{n=1}^{10} \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n \right) \right)^2$$

$$\frac{\partial L}{\partial w} = ? \sum_{n=1}^{10} 2 \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n \right) \right) \left(-x_{cp}^n \right)$$

$$\frac{\partial L}{\partial b} = ? \sum_{n=1}^{10} 2 \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n \right) \right)$$
loss
gradient

為了方便計算,我將 $X \times w \times Y$ 直接帶入方程式中。其中遇到需要平方的部分,就將其中一個矩陣就由轉至矩陣取代,例如 X^2 就變成 X^TX 。另外一方面因為已經將 b 合併到 w 裡面,因此最後可以得到:

Loss =
$$(Y - X^*w)^T(Y - X^*w)$$

Gradient = $2^*X^T(Y - X^*w)$

3. Regularization

從改變不同 λ 可以發現加上 regularization 以後影響不大,當 λ 大於 1 以後,甚至比沒有加上 regularization 時的結果差。(迭代 20 萬次,learning rate = 3*10^-3)

λ	0.01	0.1	0	1
Error (upload to kaggle)	5.66587	5.66588	5.66587	5.66589
λ	10	100	1000	10000
Error (upload to kaggle)	5.66598	5.66697	5.67692	5.78115

4. Learning rate

Learning rate 代表了 gradient descent 每次往 global minima 或 local minima 一次可以走的 step。從不同 learning rate 的比較結果可以發現大於 10^-9 數量級,loss 很容易跑到無限 大的地方。當 learning rate 越來越小以後,會發現最終的 loss 會比較高,而且在 kaggo 上面測出的 error 也會比較高。不過從 Figure.1 和 Figure.2 可以看出來雖然 learning rate 不同,但是兩者一開始 loss 的下降速度是差不多的。(迭代 20 萬次, λ =0)

Learning rate	10^-8	10^-9	10^-10	10^-11	10^-12	
loss	nan	nan	33.24859887	41.36314205	71.26669305	
Error (upload to kaggle)	nan	nan	5.66587	6.81598	9.96737	
800						

Figure.1 Figure.2

5. 本次作業最好的結果是迭代 50 萬次,learning rate = $3*10^3$,lamda = 0,在 kaggle 上面得到的分數是 5.66461。