Assignment 6: Clustering and Topic Modeling

In this assignment, you'll need to use the following dataset:

- text_train.json: This file contains a list of documents. It's used for training models
- text_test.json: This file contains a list of documents and their ground-truth labels. It's used for testing performance. This file is in the format shown below. Note, each document has a list of labels. You can load these files using json.load()

Text	Labels
paraglider collides with hot air balloon	['Disaster and Accident', 'Travel & Transportation']
faa issues fire warning for lithium	['Travel & Transportation']

Q1: K-Mean Clustering

Define a function **cluster_kmean()** as follows:

- Take two file name strings as inputs: $train_file$ is the file path of text_train.json, and $test_file$ is the file path of text_test.json
- Use **KMeans** to cluster documents in *train_file* into 3 clusters by **cosine similarity**
- Test the clustering model performance using test_file:
 - Predict the cluster ID for each document in test_file.
 - Let's only use the first label in the ground-truth label list of each test document, e.g. for the first document in the table above, you set the ground_truth label to "Disaster and Accident" only.
 - Apply majority vote rule to dynamically map the predicted cluster IDs to the ground-truth labels in test_file. Be sure not to hardcode the mapping (e.g. write code like {0: "Disaster and Accident"}), because a cluster may corrspond to a different topic in each run.
 - Calculate precision/recall/f-score for each label
- This function has no return. Print out confusion matrix, precision/recall/f-score.

Q2: LDA Clustering

Define a function **cluster_lda()** as follows:

- Take two file name strings as inputs: $train_file$ is the file path of text_train.json, and $test_file$ is the file path of text_test.json
- Use **LDA** to train a topic model with documents in *train* file and the number of topics K = 3
- Predict the topic distribution of each document in test_file, and select only the topic with highest probability as the predicted topic
- Evaluates the topic model performance as follows:
 - Similar to Q1, let's use the first label in the label list of test_file as the ground_truth label.
 - Apply majority vote rule to map the topics to the labels.
 - Calculate precision/recall/f-score for each label and print out precision/recall/f-score.
- Return topic distribution and the original ground-truth labels of each document in test_file
- Also, provide a document which contains:
 - performance comparison between Q1 and Q2
 - describe how you tune the model parameters, e.g. min_df, alpha, max_iter etc.

Q3 (Bonus): Overlapping Clustering

In Q2, you predict one label for each document in *test_file*. In this question, try to discover multiple labels if appropriate. Define a function **overlapping_cluster** as follows:

- Take the outputs of Q2 (i.e. topic distribution and the labels of each document in test_file) as inputs
- Set a threshold for each topic (i.e. $TH = [th_0, th_1, th_2]$). A document is predicted to belong to a topic i only if the topic probability $> th_i$ for $i \in [0, 1, 2]$.
- The threshold is determined as follows:
 - Vary the threshold for each topic from 0.05 to 0.95 with an increase of 0.05 in each round to evalute the topic model performance:
 - Apply majority vote rule to map the predicted topics to the ground-truth labels in test_file
 - Calculate f1-score for each label
 - For each label, pick the threshold value which maximizes the f1-score
- Return the threshold and f1-score of each label

In [145]:

add more

```
from sklearn.feature_extraction.text import CountVectorizer
from nltk.cluster import KMeansClusterer, cosine_distance
from sklearn.decomposition import LatentDirichletAllocation
```

```
In [146]:
def cluster kmean(train file, test file):
    # add your code
In [148]:
def cluster_lda(train_file, test_file):
    topic assig = None
    labels = None
    # add your code here
    return topic assign, labels
In [ ]:
def overlapping cluster(topic_assign, labels):
    final thresh, f1 = None, None
    # add your code here
    return final thresh, f1
In [150]:
if __name__ == "__main__":
    # Due to randomness, you won't get the exact result
    # as shown here, but your result should be close
    # if you tune the parameters carefully
    # Q1
    cluster kmean('../../dataset/train text.json', \
                  '../../dataset/test text.json')
    # Q2
    topic assign, labels =cluster lda('../../dataset/train text.json', \
                           '../../dataset/test text.json')
    # 02
    threshold, f1 = overlapping cluster(topic assign, labels)
    print(threshold)
    print(f1)
actual_class Disaster and Accident News and Economy Travel & Tran
sportation
cluster
                                 70
                                                     0
135
                                                     7
1
                                130
```

```
2
                                  10
                                                   199
41
Cluster 0: Topic Travel & Transportation
Cluster 1: Topic Disaster and Accident
Cluster 2: Topic News and Economy
                         precision
                                       recall
                                              f1-score
                                                          support
                                         0.62
                                                   0.73
  Disaster and Accident
                               0.90
                                                               210
       News and Economy
                               0.80
                                         0.97
                                                   0.87
                                                               206
                               0.66
                                         0.73
                                                   0.69
Travel & Transportation
                                                               184
                               0.77
                                         0.77
                                                   0.77
                                                               600
              micro avg
                               0.78
                                         0.77
                                                   0.77
                                                               600
              macro avg
                               0.79
                                         0.77
                                                   0.77
                                                               600
           weighted avg
iteration: 1 of max_iter: 25
iteration: 2 of max iter: 25
iteration: 3 of max iter: 25
iteration: 4 of max iter: 25
iteration: 5 of max iter: 25
iteration: 6 of max iter: 25
iteration: 7 of max iter: 25
iteration: 8 of max iter: 25
iteration: 9 of max iter: 25
iteration: 10 of max iter: 25
iteration: 11 of max iter: 25
iteration: 12 of max iter: 25
iteration: 13 of max iter: 25
iteration: 14 of max iter: 25
iteration: 15 of max iter: 25
iteration: 16 of max iter: 25
iteration: 17 of max iter: 25
iteration: 18 of max iter: 25
iteration: 19 of max iter: 25
iteration: 20 of max iter: 25
iteration: 21 of max iter: 25
iteration: 22 of max iter: 25
iteration: 23 of max iter: 25
iteration: 24 of max iter: 25
iteration: 25 of max iter: 25
actual class Disaster and Accident News and Economy
                                                        Travel & Tran
sportation
cluster
                                  30
0
                                                    18
138
1
                                  12
                                                   182
8
2
                                                     6
                                 168
38
Cluster 0: Topic Travel & Transportation
Cluster 1: Topic News and Economy
```

Cluster 2: Topic Disaster and Accident

8

	precision	recall	f1-score	support
Disaster and Accident	0.79	0.80	0.80	210
News and Economy	0.90	0.88	0.89	206
Travel & Transportation	0.74	0.75	0.75	184
micro avg	0.81	0.81	0.81	600
macro avg	0.81	0.81	0.81	600
weighted avg	0.81	0.81	0.81	600
Disaster and Accident	0.45			
News and Economy	0.55			
Travel & Transportation	0.30			
dtype: float64				
Disaster and Accident	0.798122			
News and Economy	0.888889			
Travel & Transportation	0.773218			

dtype: float64

In []: