Math 324: Linear Algebra Section 7.1: Eigenvalues and Eigenvectors

Mckenzie West

Last Updated: December 29, 2023

Last Time.

- The matrix of a transformation.
- Compositions

Today.

- Eigenvalues and Eigenvectors

Remark.

We can think of a 2×2 matrix A as a transformation of 2d space. We might be curious about what vectors are fixed by A:

$$A\vec{x} = \vec{x}$$
.

More generally, we ask what lines are fixed by A:

$$A\vec{x} = \lambda \vec{x}$$
,

where λ , the Greek letter "lambda", is a fixed scalar.

Definition.

Let A be an $n \times n$ matrix. The scalar λ is called an eigenvalue of A if there is a nonzero vector \vec{x} such that $A\vec{x} = \lambda \vec{x}$.

In this case, we call \vec{x} an eigenvector of A corresponding to λ .

Exercise 1.

Verify that $\vec{x}_1 = (1, 0, 1)$, $\vec{x}_2 = (3, 0, -2)$, and $\vec{x}_3 = (0, 3, 1)$ are all eigenvectors of

$$A = \begin{bmatrix} 0 & -1 & 3 \\ 0 & -2 & 0 \\ 2 & -1 & 1 \end{bmatrix}$$

What are the corresponding eigenvalues?

Exercise 2.

- (a) Is $-2\vec{x}_1 = (-2, 0, -2)$ an eigenvector of A?
- (b) Is $\vec{x}_1 + \vec{x}_2$ an eigenvector of A?
- (c) Is $\vec{x}_2 + \vec{x}_3$ an eigenvector of A?

Exercise 3.

Let $\vec{x_1}$ and $\vec{x_2}$ be eigenvectors of A corresponding to some fixed eigenvalue λ .

Verify that $\vec{x}_1 + \vec{x}_2$ is also an eigenvector of A corresponding to λ .

Exercise 4.

Let \vec{x} be an eigenvector of A corresponding to some fixed eigenvalue λ .

Verify that $c\vec{x}$ is also an eigenvector of A corresponding to λ for all scalars $c \neq 0$.

Theorem 7.1.

If A is an $n \times n$ matrix with an eigenvalue λ , then the set of all eigenvectors of λ , together with the zero vector:

$$V = \{\vec{x} : A\vec{x} = \lambda \vec{x}\}$$

is a subspace of \mathbb{R}^n called the eigenspace of A corresponding to λ .

Note.

Certainly $A\vec{0} = \vec{0} = \lambda \vec{0}$ is always true, so $\vec{0}$ is included in the set V as in Theorem 7.1. But it would be silly to call $\vec{0}$ an eigenvector because it is always fixed.

Exercise 5.

Consider the matrix
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.

Find the eigenspace of A corresponding to $\lambda = 3$.

- (a) Let \vec{x} be a generic vector in \mathbb{R}^3 such that $A\vec{x} = 3\vec{x}$.
- (b) Subtract $A\vec{x}$ so that all variables are on the same side, $3\vec{x} A\vec{x} = \vec{0}$.
- (c) Factor the \vec{x} out to the right. Be careful when you do this, what is the constant 3 in the land of matrices?
- (d) Did you get $(3I A)\vec{x} = \vec{0}$? Look, a homogeneous system! Compute 3I A and solve the system.

Brain Break.

Where are you from?

Question 6 (Finding Eigenvalues).

Let A be an $n \times n$ matrix with eigenvalue λ .

This means there is some nonzero \vec{x} such that $A\vec{x} = \lambda \vec{x}$.

- (a) Proceed as in the last exercise, subtract that $A\vec{x}$ over and factor out the \vec{x} .
- (b) What does it mean for the matrix $\lambda I A$ to have a non-zero solution to the homogeneous system $(\lambda I A)\vec{x} = \vec{0}$?
- (c) It means that $\lambda I A$ is singular (non-invertible). What is a quick way to determine whether a matrix is singular?
- (d) A matrix is singular exactly when its determinant is zero! Compute $det(\lambda I A)$, set it equal to zero and solve for λ .

Theorem 7.2.

Let A be an $n \times n$ matrix.

- **1.** An eigenvalue of A is a scalar λ such that $\det(\lambda I A) = 0$.
- 2. The eigenvectors of A corresponding to λ are the nonzero solutions of $(\lambda I A)\vec{x} = \vec{0}$.
- **3.** The eigenspace of A corresponding to λ is the nullspace of the matrix $\lambda I A$.

Definition.

The equation $det(\lambda I - A) = 0$ is called the characteristic equation of A.

The polynomial $det(\lambda I - A)$ is called the characteristic polynomial of A.

Exercise 7.

Find the eigenvalues and corresponding eigenspaces of

$$A = \begin{bmatrix} -3 & 4 \\ -3 & 5 \end{bmatrix}.$$

- (a) Compute $\lambda I A$.
- (b) Compute the characteristic polynomial, $det(\lambda I A)$.
- (c) Solve the characteristic equation, $det(\lambda I A) = 0$.
- (d) For each eigenvalue, λ , explicitly compute the nullspace of the matrix $\lambda I A$.