1 Uniform Convergence

Definition: Pointwise Convergence

For every $\varepsilon > 0$ and each $x_0 \in [-L, L]$, there exists a positive, finite integer $N_{\varepsilon}(x_0)$ such that if $N \geq N_{\varepsilon}(x_0)$, then

$$|S_N(x_0) - T(x_0)| < \varepsilon.$$

where $S_N(x_0)$ is the Nth partial sum of the Fourier series with $x = x_0$.

Definition: Uniform Convergence

For every $\varepsilon > 0$, there exists a $N_{\varepsilon} \in \mathbb{N}$ such that

$$|S_N(x) - T(x)| < \varepsilon.$$

for all $x \in [-L, L]$.

Note.

- a) Pointwise convergence implies $\lim_{N\to\infty} |S_N(x)-T(x)| < \varepsilon$ for all $x\in [-L,L]$.
- b) Uniform convergence implies $\lim_{N\to\infty} \max_{-L\leq x\leq L} |S_N(x)-T(x)|=0$.

Uniform convergence is stronger and implies pointwise convergence.

Example. Suppose $f_n(x) = \frac{x+2}{4n}$ for $n \in \mathbb{N}$ and $x \in [-2, 2]$. Then $(f_n(x))$ converges uniformly to h(x) = 0. Note that $(f_n(x))$ is a sequence of constants for each fixed $x_0 \in [-2, 2]$.

To show that it is pointwise convergence, given $x_0 \in [-2, 2]$, we have

$$\lim_{n \to \infty} f_n(x_0) = \lim_{n \to \infty} \frac{x_0 + 2}{n} = 0 \Rightarrow \text{ pointwise convergence.}$$

For uniform convergence, we observe that for any $x \in [-2, 2]$ the maximum vertical separation of $f_n(x)$ from h(x) is $\frac{1}{n}$ for each n (because the maximum difference is achieved at x = 2), thus

$$\lim_{n\to\infty} \max_{-2\leq x\leq 2} |f_n(x)-h(x)| = \lim_{n\to\infty} \frac{1}{n} = 0 \Rightarrow \text{ uniform convergence}.$$

Example.

$$g_n(x) \begin{cases} nx & 0 < x \le \frac{1}{n} \\ 2 - nx & \frac{1}{n} < x \le \frac{2}{n} \\ 0 & \text{for all other } x \in [-2, 2] \end{cases}$$

then $g_n(x)$ converges pointwise but not uniformly.

Pointwise: Clearly if $x_0 \in [-2,0]$ then $\lim_{n\to\infty} g_n(x_0) = 0$. If $x_0 \in (0,2]$ then for any $N > \frac{2}{x_0}$, if $n \ge N$, then $x_0 > \frac{2}{n}$ so $x_0 \in (\frac{2}{n},2]$ so $g_n(x_0) = 0$ for all $n \ge N$

$$\lim_{n \to \infty} g_n(x_0) = 0.$$

Note that $N > \frac{2}{x_0}$ is obtained by reverse engineering on the scratch paper.

Uniform: the maximum vertical separation of $g_n(x)$ from h(x) is a fixed distance of 1 (at $x = \frac{1}{n}$) for any choice of $n \ge 1$, thus

$$\lim_{n \to \infty} \max_{x \in [-2,2]} |g_n(x) - h(x)| = \lim_{n \to \infty} 1 \neq 0.$$

Hence it doesn't converge uniformly.

Definition: Absolute Convergence

The F.S.[f](x) is **absolutely convergent** if, for every $\varepsilon > 0$, there exists an integer $0 < M_{\varepsilon} < \infty$ such that

$$0 \le \sum_{n=M_c+1}^{\infty} |a_n| + \sum_{n=M_c+1}^{\infty} |b_n| < \varepsilon$$
 i.e. the tail converges absolutely.

Note.

1) if F.S.[f](x) is absolutely convergent then

$$0 \le |a_0| + \sum_{n=1}^{\infty} \left| a_n \cos\left(\frac{n\pi x}{L}\right) \right| + \sum_{n=1}^{\infty} \left| b_n \sin\left(\frac{n\pi x}{L}\right) \right|$$
$$\le |a_0| + \sum_{n=1}^{\infty} |a_n| + \sum_{n=1}^{\infty} |b_n|$$
$$\le \infty$$

- 2) if F.S.[f](x) is absolutely convergent then it is uniformly convergent.
- 3) if F.S.[f](x) is uniformly convergent then it is pointwise convergent.
- 4) there exist series of functions which are uniformly convergent but not absolutely convergent.

Theorem: Weierstrass M-test

If $(f_n(x))$ is a sequence of functions defined on a set E and (M_n) is a sequence of non-negative numbers such that $|f_n(x)| < M_n$ for all $x \in E$ and $n \ge 0$. Then $\sum_{n=0}^{\infty} f_n(x)$ converges uniformly if $\sum_{n=0}^{\infty} M_n$ converges.

Definition: Gibbs Phenomenon

- a) "Gibbs phenomenon" is a persistent overestimation or underestimation of the value of any piece wise smooth function with a jump discontinuity.
- b) It occurs in truncated Fourier series of functions with jump discontinuities and does NOT go away as the number of terms is increased.
- c) As the number of terms used in increased, the location of the overshoot moves closer and closer to jump discontinuity without ever reaching it.
- d) As the number of terms increases, the size of the overshoot approaches a limiting value, proportional to the magnitude of the jump discontinuity with a constant of proportionality that isi universal.

Example.

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ \pi, & 0 \le x \le \pi \end{cases}$$

F.S. $[f](x) = \frac{\pi}{2} + 2 \sum_{n=0}^{\infty} \frac{\sin[(2n+1)x]}{2n+1}.$

The truncated form of the Fourier series has the form

$$\tilde{f_M}(x) = \frac{\pi}{2} + 2\left(\sin(x) + \frac{\sin(3x)}{3} + \ldots + \frac{\sin[(2(M-2)+1)x]}{2(M-2)+1}\right).$$

Intuition. Gibbs phenomenon is the result of the fact that points in the middle of the interval are converging faster than points at the endpoints/discontinuities, due to pointwise convergence.