

Proof Techniques

13 October 2025

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 1: Proof Techniques

- **1.** Know logical *proof strategies* for proving implications, set inclusions, set equalities, and quantified statements.
- **2.** Be able to use *mathematical induction* in simple proofs.
- **3.** Know techniques for *proving termination* and *correctness* of procedures.

Outline

Proof Techniques

- 1.1 Digression: Random Shuffle
- 1.2 Proof Templates
- 1.3 Mathematical Induction
- 1.4 Correctness Proofs

1.1 Digression: Random Shuffle

```
Random shuffle Nofahou, Eo.in) = {0,1,...,n-2,n-1}
```

- ▶ **Goal:** Put an array A[0..n] of n numbers into random order. More precisely: Any ordering of the elements $A[0], \ldots, A[n-1]$ should be equally likely.
- ► A natural approach yields the following code

```
1 procedure myShuffle(A[0..n))
      for i := 0, ..., n-1
           r := \text{randomInt}([0..n)) // A \text{ uniformly random number } r \text{ with } 0 \le r < n.
3
           Swap A[i] and A[r] // Swap A[i] to random position.
      end for
```

▶ Intuitively: All elements are moved to a random index, so the order is random . . . right?

Select all statements that apply to myShuffle (for you).

- A I have seen this shuffling algorithm (or a very similar method) before.
- **B** I can understand the pseudocode for myShuffle (so I would be able to do an example by hand).
 - **C** It can generate all possible orderings of *A* (depending on the random numbers).
- myShuffle produces all possible orderings with the same probability.
- Assuming randomInt gives (perfect) uniform random numbers in the given range, myShuffle generates any ordering with equal probability.

→ sli.do/cs566

- ▶ **Goal:** Put an array A[0..n) of n numbers into random order. More precisely: Any ordering of the elements $A[0], \ldots, A[n-1]$ should be equally likely.
- ► A natural approach yields the following code

```
1 procedure myShuffle(A[0..n))
2 for i := 0, \ldots, n-1
3 r := \text{randomInt}([0..n)) // A \text{ uniformly random number } r \text{ with } 0 \le r < n.
4 Swap A[i] and A[r] // Swap A[i] to random position.
5 end for
```

▶ Intuitively: All elements are moved to a random index, so the order is random . . . right?

- ▶ **Goal:** Put an array A[0..n) of n numbers into random order. More precisely: Any ordering of the elements $A[0], \ldots, A[n-1]$ should be equally likely.
- ► A natural approach yields the following code

```
procedure myShuffle(A[0..n))
for i := 0, ..., n-1

r := \text{randomInt}([0..n)) // A \text{ uniformly random number } r \text{ with } 0 \le r < n.

Swap A[i] and A[r] // Swap A[i] to random position.

end for
```

▶ Intuitively: All elements are moved to a random index, so the order is random . . . right??

n = 3

- ▶ **Goal:** Put an array A[0..n) of n numbers into random order. More precisely: Any ordering of the elements $A[0], \ldots, A[n-1]$ should be equally likely.
- ► A natural approach yields the following code

```
procedure myShuffle(A[0..n))

for i := 0, ..., n-1

r := \text{randomInt}([0..n)) // A \text{ uniformly random number } r \text{ with } 0 \le r < n.

Swap A[i] and A[r] // Swap A[i] to random position.

end for
```

▶ Intuitively: All elements are moved to a random index, so the order is random . . . right???

- ▶ **Goal:** Put an array A[0..n) of n numbers into random order. More precisely: Any ordering of the elements $A[0], \ldots, A[n-1]$ should be equally likely.
- ► A natural approach yields the following code

```
procedure myShuffle(A[0..n))

for i := 0, ..., n-1

r := \text{randomInt}([0..n)) // A \text{ uniformly random number } r \text{ with } 0 \le r < n.

Swap A[i] and A[r] // Swap A[i] to random position.

end for
```

▶ Intuitively: All elements are moved to a random index, so the order is random . . . right????

n = 5

- ▶ **Goal:** Put an array A[0..n) of n numbers into random order. More precisely: Any ordering of the elements $A[0], \ldots, A[n-1]$ should be equally likely.
- ► A natural approach yields the following code

```
procedure myShuffle(A[0..n))

for i := 0, ..., n-1

r := randomInt([0..n)) \text{ // A uniformly random number } r \text{ with } 0 \le r < n.}

Swap \overline{A[i]} and \overline{A[r]} // Swap A[i] to random position.

The procedure myShuffle(A[0..n)) is A[0] and A[n] and A[n] and A[n] and A[n] and A[n] and A[n] are sufficient to random position.
```

▶ Intuitively: All elements are moved to a random index, so the order is random . . . right????

n = 5

Select all statements that apply to myShuffle (for you).

- B I can understand the pseudocode for myShuffle (so I would be do an example by hand). ✓
- f C It can generate all possible orderings of A (depending on the random numbers). \checkmark
- myShuffle produces all possible orderings with the same probability.
- Assuming randomInt gives (perfect) uniform random numbers in the given range, myShuffle generates any ordering with equal probability.

→ sli.do/cs566

Correct shuffle

interestingly, a very small change corrects the issue

```
procedure shuffleKnuthFisherYates(A[0..n))

for i := 0, ..., n-1

r := \text{randomInt}([i..n))

Swap A[i] and A[r]

end for
```


$$n = 5$$

- ▶ looks good ...
- ▶ ... but how can we convince ourselves that it is correct, *beyond any doubt?*

1.2 Proof Templates

What is a formal proof?

A formal proof (in a logical system) is a **sequence of statements** such that each statement

- 1. is an axiom (of the logical system), or
- **2.** follows from previous statements using the *inference rules* (of the logical system).

Among experts: Suffices to *convince a human* that a formal proof *exists*.

But: Use formal logic as guidance against faulty reasoning. \leadsto bulletproof

What is a formal proof?

A formal proof (in a logical system) is a $\boldsymbol{sequence}$ of $\boldsymbol{statements}$ such that each statement

- 1. is an axiom (of the logical system), or
- 2. follows from previous statements using the *inference rules* (of the logical system).

Among experts: Suffices to *convince a human* that a formal proof *exists*.

But: Use formal logic as guidance against faulty reasoning. \leadsto bulletproof

Notation:

- ► Statements: $A \equiv$ "it rains", $B \equiv$ "the street is wet".
- ▶ Negation: $\neg A$ "Not A"
- ▶ And/Or: $A \land B$ "A and B"; $A \lor B$ "A or B or both"
- ▶ Implication: $A \Rightarrow B$ "If A, then B"; $\neg A \lor B$
- ► Equivalence: $A \Leftrightarrow B$ "A holds true if and only if ('iff') B holds true."; $(A \Rightarrow B) \land (B \Rightarrow A)$

Is the following statement true?

"If the Earth is flat, then ships can fall over its rim."

A

Yes

B) No

C Neither

→ sli.do/cs566

Implications

$$77A \equiv A$$

To prove $A \Rightarrow B$, we can

$$A \Rightarrow B = 7AVB$$

$$= 7(7B) \lor (7A)$$

$$= 7B \Rightarrow 7A$$

- ightharpoonup directly derive B from A direct proof
- ▶ prove $(\neg B) \Rightarrow (\neg A)$ indirect proof, proof by contraposition
- ▶ assume $A \land \neg B$ and derive a contradiction proof by contradiction, reductio ad absurdum
- ▶ distinguish cases, i. e., separately prove $(A \land C) \Rightarrow B$ and $(A \land \neg C) \Rightarrow B$. proof by exhaustive case distinction

Suppose we want to prove:

$$=> n^2 = (24+1)^2$$

"If $n^2 \in \mathbb{N}_0$ is an even number, then n is also even." = $4k^2 + 4k + 1$ For that we show that when n is odd, also n^2 is odd. Which proof template do we follow?

A direct proof: $A \Rightarrow B$

- **B** indirect proof: $(\neg B) \Rightarrow (\neg A) \checkmark$
- \bigcirc proof by contradiction: $A \land \neg B \Rightarrow \mbox{\em } \mbox{\em 4}$
- **p**roof by case distinction: $(A \land C) \Rightarrow B$ and $(A \land \neg C) \Rightarrow B$

→ sli.do/cs566

Suppose we want to prove:

"If $n^2 \in \mathbb{N}_0$ is an even number, then n is also even." For that we show that when n is odd, also n^2 is odd.

Which proof template do we follow?

B indirect proof: $(\neg B) \Rightarrow (\neg A) \checkmark$

 $\begin{array}{c}
\mathbf{C}
\end{array}$ proof by contradiction: $A \land \neg B \Rightarrow \downarrow$

 \triangleright proof by case distinction: $(A \land C) \Rightarrow B$ and $(A \land \neg C) \Rightarrow B$

→ sli.do/cs566

Equivalences

To prove $A \Leftrightarrow B$, we prove both implications $A \Rightarrow B$ and $B \Rightarrow A$ separately.

(Often, one direction is much easier than the other.)

Set Inclusion and Equality

To prove that a set *S* contains a set *R*, i. e., $R \subseteq S$, we prove the implication $x \in R \Rightarrow x \in S$.

To prove that two sets S and R are equal, S = R, we prove both inclusions, $S \subseteq R$ and $R \subseteq S$ separately.

1.3 Mathematical Induction

Quantified Statements

Notation

- ► Statements with parameters: $A(x) \equiv$ "x is an even number."
- **E**xistential quantifiers: $\exists x : A(x)$ "There exists some x, so that A(x)."
- ► Universal quantifiers: $\forall x : A(x)$ "For all x it holds that A(x)." Note: $\forall x : A(x)$ is equivalent to $\neg \exists x : \neg A(x)$

Quantifiers can be nested, e.g., ε - δ -criterion for limits:

$$\lim_{x \to \xi} f(x) = a \qquad :\Leftrightarrow \qquad \underbrace{\forall \varepsilon > 0 \; \exists \delta > 0 \; : \; \left(|x - \xi| < \delta \right) \Rightarrow \left| f(x) - a \right| < \varepsilon.}$$

To prove $\exists x : A(x)$, we simply list an example ξ such that $A(\xi)$ is true.

Have you seen **proofs by** *mathematical induction* before?

- A Yes, could do it
- **B** Yes, but only vaguely remember
- **C** I've heard this term before, but ...
- D I have not heard "mathematical induction" before

For-all statements

To prove $\forall x : A(x)$, we can

- derive A(x) for an "arbitrary but fixed value of x", or,
- ▶ for $x \in \mathbb{N}_0$, use *induction*, i. e.,
 - ightharpoonup prove A(0), induction basis, and
 - ▶ prove $\forall n \in \mathbb{N}_0 : A(n) \Rightarrow A(n+1)$ inductive step

For-all statements

To prove $\forall x : A(x)$, we can

- derive A(x) for an "arbitrary but fixed value of x", or,
- ▶ for $x \in \mathbb{N}_0$, use *induction*, i. e.,
 - ightharpoonup prove A(0), induction basis, and
 - ▶ prove $\forall n \in \mathbb{N}_0 : \underline{A(n)} \Rightarrow A(n+1)$ inductive step

More general variants of induction:

- ► complete/strong induction inductive step shows $(A(0) \land \cdots \land A(n)) \Rightarrow A(n+1)$
- structural/transfinite induction works on any well-ordered set, e. g., binary trees, graphs, Boolean formulas, strings, . . .

no infinite strictly decreasing chains

wohl-fundiente Ordung / Noethersche Ordung