COMS 4772 Fall 2016 Homework 1

Si Kai Lee, sl3950

Problem 1 (25 points). In this problem, "volume" refers to (d-1)-dimensional volume (or "surface area" in d-dimensions).

(a) Prove that there is a constant C > 0 (not depending on d) such that, for any set $T \subset S^{d-1}$ of $|T| = d^{100}$ unit vectors, the set

$$\bigcap_{\boldsymbol{u} \in T} \left\{ \boldsymbol{x} \in S^{d-1} : \left| \langle \boldsymbol{u}, \boldsymbol{x} \rangle \right| \le C \sqrt{\frac{\ln d}{d}} \right\}$$

accounts for 99% of the volume of S^{d-1} . (Assume $d \ge 2$ so $\ln(d) > 0$.)

(b) Prove that there is a constant c > 0 (not depending on d) such that, for any $u \in S^{d-1}$, the set

$$\left\{oldsymbol{x} \in S^{d-1}: \left| \langle oldsymbol{u}, oldsymbol{x}
angle
ight| > rac{c}{\sqrt{d}}
ight\}$$

accounts for 99% of the volume of S^{d-1} .

Solution.

a) Let $Y_{\epsilon} = \left\{ \boldsymbol{x} \in S^{d-1} : \left| \langle \boldsymbol{u}, \boldsymbol{x} \rangle \right| \leq \epsilon \right\}$. By definition, $\bigcap_{\boldsymbol{u} \in T} Y_{\epsilon} = S^{d-1} \setminus \bigcup_{\boldsymbol{u} \in T} (S^{d-1} \setminus Y_{\epsilon})$. By applying the union bound on $\bigcup_{\boldsymbol{u} \in T} (S^{d-1} \setminus Y_{\epsilon})$, we have the following inequality:

$$\operatorname{vol}((\bigcup_{u \in T} (S^{d-1} \setminus Y_{\epsilon})) \le \sum_{u \in T} \operatorname{vol}(S^{d-1} \setminus Y_{\epsilon})$$

Using the technique in the notes, we define $\operatorname{vol}(S^{d-1} \setminus Y_{\epsilon})$ as the points outside the 'tropics' which we define as $\bigcap_{u \in T} Y_{\epsilon}$, hence the volume of the points outside the 'tropics' are bounded by the inequality shown below

$$\sum_{u \in T} \operatorname{vol}(S^{d-1} \setminus Y_{\epsilon}) \leq \sum_{u \in T} 2(1 - \epsilon^{2})^{d/2} \operatorname{vol}(S^{d-1})
\leq \sum_{u \in T} 2e^{-\epsilon(d-1)/2} \operatorname{vol}(S^{d-1})
\leq d^{100} 2e^{-\epsilon^{2}(d-1)/2} \operatorname{vol}(S^{d-1})$$

Substituting the bound into the $\bigcap_{u\in T} Y_{\epsilon}$, we have the following bound:

$$\bigcap_{u \in T} Y_{\epsilon} \ge (1 - d^{100} 2e^{-\epsilon^2(d-1)/2}) \operatorname{vol}(S^{d-1})$$

Since we want $\bigcap_{u \in T} Y_{\epsilon} = 0.99 \operatorname{vol}(S^{d-1})$, we construct the next equality demonstrating that:

$$\begin{split} (1-d^{100}2e^{-\epsilon^2(d-1)/2})\operatorname{vol}(S^{d-1}) &= 0.99\operatorname{vol}(S^{d-1}) \\ 100\log d + \log 2 - \epsilon^2\frac{d-1}{2} &= \log 0.01 \\ 200\log d + 2\log(2/0.01) &= \epsilon^2(d-1) \\ 200\log(d) + 2\log(200) &= \epsilon^2 d \text{ as when } d >>> 1, d-1 \approx d \\ 200\log(d) &= \epsilon^2 d \text{ as when } d >>> 1, 200\log(d) \approx 200\log(d) + 2\log(200) \\ \sqrt{(200)}\sqrt{(\log(d)/d)} &= \epsilon^2 \end{split}$$

Therefore $C = \sqrt{(200)}$.

b) Here, define $Z_{\epsilon} = \left\{ \boldsymbol{x} \in S^{d-1} : \left| \langle \boldsymbol{u}, \boldsymbol{x} \rangle \right| > \epsilon \right\}$ and refer to Z_{ϵ} as the set of points outside the 'tropics'. Using the approximation obtained from the notes, we have the following inequality:

$$\operatorname{vol}(Z_{\epsilon}) \le 2(1 - \epsilon^2)^{d/2} \operatorname{vol}(S^{d-1})$$
$$\le 2e^{-\epsilon^2(d-1)/2} \operatorname{vol}(S^{d-1})$$

We want $\operatorname{vol}(Z_{\epsilon}) = 0.99 \operatorname{vol}(S^{d-1})$ so set the bound obtained previously equal to $0.99 \operatorname{vol}(S^{d-1})$ to obtain:

$$2e^{-\epsilon^2(d-1)/2}\operatorname{vol}(S^{d-1}) = 0.99\operatorname{vol}(S^{d-1})$$

$$\epsilon^2(d-1) = -2\log 0.99$$

$$\epsilon^2 d = -2\log 0.99 \text{ as when } d >>> 1, d-1 \approx d$$

$$\epsilon = \sqrt{\frac{-2\log 0.99}{d}}$$

Hence have $c = \sqrt{-2 \log 0.99}$.

Problem 2 (25 points). Let $B_1^d := \{ x \in \mathbb{R}^d : \sum_{i=1}^d |x_i| \le 1 \}$ denote the *d*-dimensional *cross polytope* (as explained in Ball's lecture notes).

- (a) Prove that $B^d \subseteq \sqrt{d}B_1^d$.
- (b) Use the fact $B^d \subseteq \sqrt{d}B_1^d$ to derive a bound on the volume of B^d of the form

$$\operatorname{vol}(B^d) \le c \cdot \left(\frac{c'}{d}\right)^{d/2}$$

for some positive constants c, c' > 0. Explain each step in your derivation.

Hint: Stirling's approximation implies $\sqrt{2\pi}n^{n+1/2}e^{-n} \le n! \le n^{n+1/2}e^{1-n}$ for all $n \in \mathbb{N}$.

Solution.

- a) According to the notes, $B^d := \{ \boldsymbol{x} \in \mathbb{R}^d : \sum_{i=1}^d ||x_i||_2 \le 1 \}$, so it follows that $(B^d)^2 = \sum_{i=1}^d x_i^2$. We expand $(B_1^d)^2$ to obtain $\sum_{i=1}^d \sum_{j=1}^d |x_i||x_j| = \sum_{i=1}^d x_i^2 + 2\sum_{i\neq j} |x_i||x_j|$. By comparing the above, we see that $\sum_{i=1}^d x_i^2 \le \sum_{i=1}^d x_i^2 + 2\sum_{i\neq j} |x_i||x_j|$ as the second term ≥ 0 which shows $(B^d)^2 \le (B_1^d)^2$ as all terms are ≥ 0 . Multiplying the RHS with a constant d that is ≥ 1 and taking roots on both sides, the inequality remains valid as the squared values are ≥ 1 . Hence $B^d \subseteq \sqrt{d}B_1^d$.
- b) From part a), we know that $B^d \subseteq \sqrt{d}B_1^d$. The result implies that $\operatorname{vol}(B^d) \subseteq \operatorname{vol}B_1^d$. The volume of B_1^d is $\frac{2^d}{d!}$.

$$\operatorname{vol} B^d \leq \frac{2^d}{d!}$$

Applying Stirling's approximation to the denominator and collecting relevant terms

$$\operatorname{vol} B^d \leq \frac{2^d}{\sqrt{2\pi} d^{d+1/2} e^{-d}} = \frac{2^{d/2 + d/2} \cdot e^{d/2 + d/2}}{\sqrt{2\pi} d^{d+1/2}} = \frac{2^{d/2} \cdot e^{d/2}}{\sqrt{2\pi} d^d} \cdot \frac{2e^{d/2}}{d}$$

As d>0, we know all RHS terms are greater than 0. This gives us $c=\frac{2^{d/2} \cdot e^{d/2}}{\sqrt{2\pi} d^d}$ and c'=2e.

Problem 3 (25 points). Let X be an [a, b]-valued random variable (i.e., $\mathbb{P}(X \in [a, b]) = 1$) with $\mathbb{E}(X) = 0$. For simplicity, assume X has a probability density function f. In this problem, you will prove $\psi_X(\lambda) \leq \lambda^2 (b-a)^2/8$ using a technique due to McAllester and Ortiz (2003).

(a) Consider the family of density functions $\{g_{\lambda} : \lambda \in \mathbb{R}\}$, where

$$g_{\lambda}(x) := \frac{e^{\lambda x}}{\mathbb{E}e^{\lambda X}} f(x) \text{ for all } x \in \mathbb{R}.$$

Briefly verify that if $Y_{\lambda} \sim g_{\lambda}$, then

$$\mathbb{E}(Y_{\lambda}) = \psi'_{X}(\lambda),$$

$$\operatorname{var}(Y_{\lambda}) = \psi''_{X}(\lambda),$$

where ψ_X' is the first-derivative of ψ_X , and ψ_X'' is the second-derivative of ψ_X . (You don't need to write much at all for this part.)

- (b) Prove that any [a, b]-valued random variable has variance at most $(b a)^2/4$.
- (c) The fundamental theorem of calculus implies

$$\psi_X(\lambda) = \int_0^{\lambda} \int_0^{\mu} \psi_X''(\gamma) \, \mathrm{d}\gamma \, \mathrm{d}\mu.$$

Use this identity and the results of parts (a) and (b) to prove that $\psi_X(\lambda) \leq \lambda^2 (b-a)^2/8$. Solution.

a) We start by setting out $\mathbb{E}X$ and var X with $X \in [a,b]$:

$$\mathbb{E}Y_{\lambda} = \int_{a}^{b} x \frac{e^{\lambda x}}{\mathbb{E}e^{\lambda X}} f(x) dx$$
$$\operatorname{var} Y_{\lambda} = \mathbb{E}Y_{\lambda}^{2} - (\mathbb{E}Y_{\lambda})^{2}$$

Have $\psi_X \lambda = \log \mathbb{E} e^{\lambda x} = \int_a^b \log e^{\lambda x} f(x) dx$. Differentiate it twice:

$$\psi_X'(\lambda) = \int_a^b \frac{d}{d\lambda} \log e^{\lambda x} f(x) dx$$

$$= \int_a^b \frac{x e^{\lambda x}}{\mathbb{E} e^{\lambda X}} f(x) dx = \mathbb{E}(Y_\lambda)$$

$$\psi_X''(\lambda) = \int_a^b \frac{d}{d\lambda} \frac{x e^{\lambda x}}{\mathbb{E} e^{\lambda X}} f(x) dx$$

$$= \int_a^b \frac{x^2 e^{\lambda x}}{\mathbb{E} e^{\lambda X}} f(x) dx - \int_a^b \frac{x e^{\lambda x}}{(\mathbb{E} e^{\lambda X})^2} f(x) dx * \int_a^b x e^{\lambda x} f(x) dx$$

$$= \mathbb{E} Y_\lambda^2 - (\int_a^b x \frac{e^{\lambda x}}{\mathbb{E} e^{\lambda X}} f(x) dx)^2 \text{ as } \mathbb{E} e^{\lambda X} \text{ is a constant}$$

$$= \mathbb{E} Y_\lambda^2 - (\mathbb{E} Y_\lambda)^2$$

b) Suppose we have a distribution with support $\in [a,b]$ is that with P(Z=a)=P(Z=b)=0.5. The above distribution has $\mathbb{E}(Z)=\frac{a+b}{2}$ and $\mathbb{E}(Z^2)=\frac{a^2+b^2}{2}$. Hence $\mathrm{var}(Z)=\frac{a^2+b^2}{2}-(\frac{a+b}{2})^2=\frac{2a^2+2b^2-a^2-b^2-2ab}{4}=\frac{a^2+b^2-2ab}{4}=\frac{(b-a)^2}{4}$.

To prove that the above distribution has the largest variance, we consider distributions with less concentrated point densities. If we take 0.5ϵ (where ϵ is some small number) away from a and b and place it at the point $\frac{a+b}{2}$, $\operatorname{var}(Z')$ of the new distribution Z' decreases. This is due to $\min(X_i - \mathbb{E}X) < \max(X_i - \mathbb{E}X) = \frac{b-a}{2}$ giving $\operatorname{var}(Z') = p(\max(X_i - \mathbb{E}X))^2 + (1-p)(\frac{b-a}{2})^2 \le \operatorname{var}(Z) = (\frac{b-a}{2})^2$. Hence, as soon as we spread probability mass around to other discrete points, the variance $\frac{1}{n} \sum_{i=1}^{n} (X_i - \mathbb{E}X_i)^2$ decreases and will be $\leq \frac{(b-a)^2}{4}$. By continuing to spread probability mass to all $X \in [a,b]$ we end up with a continuous distribution Z'' with probability mass is even more diffuse than before so $\operatorname{var}(Z'')$ will be even smaller than before.

In the case of having more mass on b than a in distribution Z''', $var(Z''') = p(b - (pb + (1 - p)a))^2 + (1 - p)(a - (pb + (1 - p)a))^2$ where $p > 0.5 + \epsilon$. Expanding var Z''', we get

$$p(b - (pb + (1 - p)a))^{2} + (1 - p)(a - (pb + (1 - p)a))^{2} = p((1 - p)(b - a))^{2} + (1 - p)(p(a - b))^{2}$$

$$= p(1 - p)^{2}(b - a)^{2} + (1 - p)(-p)^{2}(b - a)^{2}$$

$$= (p - 2p^{2} + p^{3} + p^{2} - p^{3})(b - a)^{2}$$

$$= p(1 - p)(b - a)^{2}$$

Since we know that the max for p(1-p) is 1/4 when p=0.5, therefore the variance of any distribution of point masses on a and b is $\leq \frac{(b-a)^2}{4}$.

Therefore, we can see that any [a, b]-valued random variable has variance at most $(b - a)^2/4$.

c) Substituting the results from a) and b) into $\psi_X \lambda = \int_0^\lambda \int_0^\mu \psi_X''(\gamma) \,d\gamma \,d\mu$, we have:

$$\psi_X(\lambda) = \int_0^{\lambda} \int_0^{\lambda} \psi_X''(\gamma) \, d\gamma \, d\mu$$

$$\leq \int_0^{\lambda} \int_0^{\lambda} \frac{(b-a)^2}{4} \, d\gamma \, d\mu$$

$$\leq \int_0^{\lambda} \lambda \frac{(b-a)^2}{4} \, d\gamma$$

$$\leq \lambda^2 \frac{(b-a)^2}{8}$$

Problem 4 (25 points). Let U be a random unit vector with the uniform density on S^{d-1} , and let $X := \langle v, U \rangle$, where v is a fixed unit vector in S^{d-1} .

- (a) Prove that $\psi_{X^2-\mathbb{E}(X^2)}(\lambda) \leq \psi_{Z^2-1}(\lambda/d)$ for all $\lambda \in \mathbb{R}$, where $Z \sim N(0,1)$. Hint: You may use the fact that if $Y_d \sim \chi^2(d)$ and U are independent, then $\sqrt{Y_d}U \sim N(\mathbf{0}, \mathbf{I})$ (standard multivariate Gaussian in \mathbb{R}^d). Jensen's inequality may also be useful.
- (b) Use the result of part (a) to derive a tail bound for $|X^2 \mathbb{E}(X^2)|$. Explain each step in your derivation.

Solution.	
-----------	--

Problem 5 (25 points). Let $\Phi \colon \mathbb{R} \to [0,1]$ denote the cumulative distribution function for N(0,1), i.e., $\Phi(t) = \mathbb{P}(Z \le t)$ where $Z \sim \text{N}(0,1)$. Prove that for any $d \in \mathbb{N}$, if

- 1. X_1, X_2, \ldots, X_d are independent random variables;
- 2. $\mathbb{E}X_i = 0$ and $\mathbb{E}X_i^2 = 1$ for all $i \in [d]$;

then for a 1 - o(1) fraction of unit vectors $\boldsymbol{u} \in S^{d-1}$, the random vector $\boldsymbol{X} = (X_1, X_2, \dots, X_d)$ satisfies

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P} \left(\langle \boldsymbol{u}, \boldsymbol{X} \rangle \le t \right) - \Phi(t) \right| \le O \left(\frac{\rho}{d^{0.49}} \right) ,$$

where $\rho := \max_{i \in [d]} \mathbb{E}|X_i|^3$.

You can use the following theorem (which you do not need to prove):

Theorem 1 (Berry-Esséen theorem). There is an absolute positive constant C > 0 such that the following holds. Let Y_1, Y_2, \ldots, Y_n be independent random variables with $\mathbb{E}Y_i = 0$, $\sigma_i^2 := \mathbb{E}Y_i^2 < \infty$. Define $v_n := \sum_{i=1}^n \sigma_i^2$ and $\rho_n := \sum_{i=1}^n \mathbb{E}|Y_i|^3$. Then

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\frac{Y_1 + Y_2 + \dots + Y_n}{\sqrt{v_n}} \le t \right) - \Phi(t) \right| \le \frac{C\rho_n}{v_n^{3/2}}.$$

Solution.

We compare $\sup_{t\in\mathbb{R}}\left|\mathbb{P}\left(\langle \boldsymbol{u},\boldsymbol{X}\rangle\leq t\right)-\Phi(t)\right|\leq O\left(\frac{\rho}{d^{0.49}}\right)$ and Berry-Esséen and observe that they are the same apart from the inner probability terms and the bounds. We can use Berry-Esséen to prove the above inequality if the theorem's assumptions holds.

Since we know \boldsymbol{X} that are independent random variables and \boldsymbol{u} is a fixed unit vector, hence the inner product of the two are also independent random variables. If we let Y_i be the inner product of \boldsymbol{u} and \boldsymbol{X} , $\mathbb{E}Y_i = \mathbb{E}[u^TX_i] = u^T\mathbb{E}X_i = 0$ and $\mathbb{E}Y_i^2 = \mathbb{E}[u^TX_i^TX_iu^T] = u^2\mathbb{E}[X^2] = 1*1=1$ ($u^Tu = 1$ since u is a unit vector). Armed with the above facts, we know that $\langle \boldsymbol{u}, \boldsymbol{X} \rangle$ is a valid Y_i as it fulfils all the assumptions required for Berry-Esséen to hold.

By definition, we have $v_n = \sum_{i=1}^d 1 = d$ and $\rho_n = \sum_{i=1}^n \mathbb{E}|Y_i|^3 \le d \max_{i \in [d]} \mathbb{E}|X_i|^3$. Therefore $\frac{C\rho_n}{v_n^{3/2}} = \frac{d\rho}{d^{3/2}} = \frac{\rho}{d^{1/2}} = O(\frac{\rho}{d^{0.49}})$ which proves $\sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\langle \boldsymbol{u}, \boldsymbol{X} \rangle \le t \right) - \Phi(t) \right| \le O\left(\frac{\rho}{d^{0.49}}\right)$

References

D. McAllester and L. Ortiz. Concentration inequalities for the missing mass and for histogram rule error. *Journal of Machine Learning Research*, 4(Oct):895–911, 2003.