

In the claims:

1. (previously presented) A high-molecular-weight polymeric material comprising at least one blue-tinged red shade diketopyrrolopyrrole pigment (DPP pigment) having a transmission at 570-580 nm of less than 5% and a transmission at 615 nm of at least 80% of formula

wherein

R₁ is hydrogen, chlorine, methyl, methoxy, CF₃ or CN, R₂ is hydrogen, chlorine, methyl, methoxy, CF₃ or CN, A is hydrogen, chlorine, methyl, methoxy, CF₃, CN, unsubstituted or substituted phenyl or a radical of formula

wherein

R₅ is hydrogen, chlorine, methyl, methoxy, nitro, CF₃ or CN and R₆ is hydrogen, chlorine, methyl, methoxy, nitro, CF₃ or CN, or R₅ and R₆ together with the phenyl ring to which they are bonded form an aryl or a heteroaryl ring and

A₁ is a radical of formula

wherein

R₅ is hydrogen, chlorine, methyl, methoxy, nitro, CF₃ or CN and R₆ is hydrogen, chlorine, methyl, methoxy, nitro, CF₃ or CN, or R₅ and R₆ together with the phenyl ring to which they are bonded form an aryl or a heteroaryl ring.

2. (currently amended) A blue-tinged red shade diketopyrrolopyrrole pigment having a transmission at 570-580 nm of less than 5% and a transmission at 615 nm of at least 80% of formula

wherein

R₁ is hydrogen, chlorine, methyl, methoxy, CF₃ or CN, R₂ is hydrogen, chlorine, methyl, methoxy, CF₃ or CN, A is hydrogen, chlorine, methyl, methoxy, CF₃, CN, unsubstituted or substituted phenyl or a radical of formula

wherein

R_5 is hydrogen, chlorine, methyl, methoxy, nitro, CF_3 or CN and R_6 is hydrogen, chlorine, methyl, methoxy, nitro, CF_3 or CN , or R_5 and R_6 together with the phenyl ring to which they are bonded form an aryl or a heteroaryl ring and

A_1 is a radical of formula

wherein

R_5 is hydrogen, chlorine, methyl, methoxy, nitro, CF_3 or CN and R_6 is hydrogen, chlorine, methyl, methoxy, nitro, CF_3 or CN , or R_5 and R_6 together with the phenyl ring to which they are bonded form an aryl or a heteroaryl ring, with the proviso that, when both of A and A_1 are a radical of formula (2), R_5 cannot be hydrogen and R_6 cannot be methyl bonded in the 4-position.

3. (previously presented) A diketopyrrolopyrrole pigment according to claim 2 of formula

wherein

R₁ is hydrogen, chlorine, methyl, methoxy, CF₃ or CN, R₂ is hydrogen, chlorine, methyl, methoxy, CF₃ or CN, R₃ is hydrogen, chlorine, methyl, methoxy and R₄ is hydrogen, chlorine, methyl, methoxy or R₃ and R₄ together with the phenyl ring to which they are bonded form a heteroaryl ring, and A is hydrogen, chlorine, methyl, methoxy, CF₃, CN, unsubstituted or substituted phenyl or a radical of formula

wherein

R₅ is hydrogen, chlorine, methyl, methoxy, nitro, CF₃ or CN and R₆ is hydrogen, chlorine, methyl, methoxy, nitro, CF₃ or CN, with the proviso that, when A is a radical of formula (2), R₃ and R₅ cannot be hydrogen and R₄ and R₆ cannot be methyl bonded in the 4-position.

4. (previously presented) A process for the preparation of a diketopyrrolopyrrole pigment of formula (1) according to claim 2, which comprises first reacting a nitrile of formula

(50)

wherein R₁ is as defined above and X is a leaving group, with a compound of formula

(51)

or

wherein R₅ and R₆ are as defined above, and then with a succinic acid diester, or oxidising a compound of formula

resulting from the compounds of formulae (50) and (51) to a compound of formula

or to a compound of formula

and then reacting with a succinic acid diester,
or first reacting a mixture of two nitriles of formulae

and

wherein R₁ and R₂ are as defined above and X is a leaving group, with a compound of formula

or

wherein R₅ and R₆ are as defined above, and then reacting with a succinic acid diester, or oxidising a mixture of compounds of formulae

resulting from the compounds of formulae (50), (52) and (51) to a mixture of compounds of formulae

or to a mixture of compounds of formulae

and then reacting with a succinic acid diester.

5. (currently amended) A high-molecular-weight polymeric material according to claim 1 comprising at least one blue-tinged red shade diketopyrrolopyrrole pigment having a transmission at 570-580 nm of less than 5% and a transmission at 615 nm of at least 80% of formula

wherein

R₁ is hydrogen, chlorine, methyl, methoxy, CF₃ or CN, R₂ is hydrogen, chlorine, methyl, methoxy, CF₃ or CN, R₃ is hydrogen, chlorine, methyl, methoxy and R₄ is hydrogen, chlorine, methyl, methoxy or R₃ and R₄ together with the phenyl ring to which they are bonded form a heteroaryl ring, and A is hydrogen, chlorine, methyl, methoxy, CF₃, CN, unsubstituted or substituted phenyl or a radical of formula

wherein

R₅ is hydrogen, chlorine, methyl, methoxy, nitro, CF₃ or CN and R₆ is hydrogen, chlorine, methyl, methoxy, nitro, CF₃ or CN.

6. (original) A high-molecular-weight polymeric material according to claim 5, wherein, in formula (1a), R₁ is hydrogen, chlorine or methyl, R₂ is hydrogen, chlorine or methyl, R₃ is hydrogen, chlorine or methyl, R₄ is hydrogen, chlorine or methyl and A is hydrogen, chlorine, methyl or phenyl.

7. (previously presented) A high-molecular-weight polymeric material according to claim 5, wherein, in formula (1a), A is a radical of formula (2) in which R₅ is hydrogen, methyl or methoxy and R₆ is hydrogen, methyl or methoxy.

8. (original) A high-molecular-weight polymeric material according to claim 1, wherein the high-molecular-weight organic material is based on acrylates or methacrylates.

9. (previously presented) A process for the production of colour filters, which process comprises either applying a coating containing a diketopyrrolopyrrole pigment of formula (1) according to claim 1.

10. (previously presented) A process for the production of colour filters according to claim 9, wherein the coating or transparent substrate comprises a high-molecular-weight polymeric material based on acrylates or methacrylates.

11. (cancelled)

12. (previously presented) A colour filter produced with a diketopyrrolopyrrole pigment of formula (1) according to claim 2.

13. (currently amended) A high-molecular-weight polymeric material according to either claim 6, wherein, in formula (1a), A is a radical of formula (2) in which R₅ is hydrogen, methyl or methoxy and R₆ is hydrogen, methyl or methoxy.

14. (previously presented) A colour filter produced with a high-molecular-weight polymeric material according to claim 1.