

BRIEF COMMUNICATION

https://doi.org/10.1038/s41593-019-0336-0

Spinal stretch reflexes support efficient hand control

Jeffrey Weiler 1,2,3*, Paul L. Gribble 1,2,3 and J. Andrew Pruszynski 1,2,3,4*

Optimal feedback control

Task-specific adaptations to perturbation and uncertainty

Hierarchy of motor control phenomena

Short-latency: muscle-restricted

Long-latency: higher-level

Does this hold further distal?

Experiment

Result: fast reflex is tuned to goal, not muscle

Flexor reflex follows similar rules

Goal modulation at the periphery? Another experiment:

Testing for dependence on spindle sensitivity

Spindle sensitivity seems to dictate reflex tuning

(Putatively)
De-sensitized wrist extensor spindles
(applied extension load)

Normal sensitivity (no applied load)

(Putatively)
Hyper-sensitized wrist extensor spindles
(applied flexion load)

Wait: is this hard-wired to specific muscles?

Reflex re-maps for different arm orientations

Conclusions

- Spinal reflexes seem to act in extrinsic space in the distal upper limb
- This contrasts with what is seen in the proximal limb
- This result may hold for reflexive digit movements?

- Spinal reflexes: more sophisticated than we thought?
- Spinal reflexes: most sophisticated for hands than shoulders?