 1. Which of the following methods do we use to find the best fit line for data in Linear Regression? A) Least Square Error ✓ B) Maximum Likelihood C) Logarithmic Loss D) Both A and B 	ta
 2. Which of the following statement is true about outliers in linear regression? A) Linear regression is sensitive to outliers ✓ B) linear regression is not sensitive to outliers C) Can't say D) none of these 	
 3. A line falls from left to right if a slope is? A) Positive B) Negative ✓ C) Zero D) Undefined 	
 4. Which of the following will have symmetric relation between dependent variable and independent variable? A) Regression B) Correlation ✓ C) Both of them D) None of these 	
 5. Which of the following is the reason for over fitting condition? A) High bias and high variance B) Low bias and low variance C) Low bias and high variance ✓ D) none of these 	
 6. If output involves label then that model is called as: A) Descriptive model B) Predictive model ✓ C) Reinforcement learning D) All of the above 	

7. Lasso and Ridge regression techniques belong to? A) Cross validation B) Removing outliers C) SMOTE D) Regularization ✓
 8. To overcome with imbalance dataset which technique can be used? A) Cross validation B) Regularization C) Kernel D) SMOTE ✓
 9. The AUC Receiver Operator Characteristic (AUCROC) curve is an evaluation metric for binary classification problems. It uses to make graph? A) TPR and FPR ✓ B) Sensitivity and precision C) Sensitivity and Specificity D) Recall and precision
 10. In AUC Receiver Operator Characteristic (AUCROC) curve for the better model area under the curve should be less. A) True B) False ✓
 11. Pick the feature extraction from below: A) Construction bag of words from a email B) Apply PCA to project high dimensional data ✓ C) Removing stop words D) Forward selection
 12. Which of the following is true about Normal Equation used to compute the coefficient of the Linear Regression? A) We don't have to choose the learning rate. ✓ B) It becomes slow when number of features is very large. ✓ C) We need to iterate. D) It does not make use of dependent variable.

Explain the term regularization?

- ➤ **Regularization** is a technique used to reduce the errors by fitting the function appropriately on the given training set and avoid overfitting makes the model more robust, and decreases the complexity of a model.
- In summary, regularization chooses a with smaller weights of the features (or shrunken beta coefficients) that have less generalization error. In addition, it penalizes the model having higher variance by adding a penalty term to the loss function to prevent the larger values from being weighed too heavily.

Which particular algorithms are used for regularization?

There are three main regularization techniques, namely **Ridge Regression**, **Lasso Regression and Elastic-Net Regression**

- ➤ **Ridge regression** is one of the types of linear regression in which we introduce a small amount of bias, known as Ridge regression penalty so that we can get better long-term predictions.
- Lasso regression is another variant of the regularization technique used to reduce the complexity of the model. It stands for Least Absolute and Selection Operator.
- ➤ **Elastic-Net regression** is a regularized regression method that linearly combines the L1 and L2 penalties of the LASSO and Ridge methods respectively.

Explain the term error present in linear regression equation?

- An error term represents the margin of error within a statistical model; it refers to the sum of the deviations within the regression line, which provides an explanation for the difference between the theoretical
- An error term essentially means that the model is not completely accurate and results in differing results during real-world applications. Value of the model and the actual observed results. The regression line is used as a point of analysis when attempting to determine the correlation between one independent variable and one dependent variable.