Tatsiana_Sokalava}_code

July 29, 2021

1 Tatsiana Sokalava

1.1 Time Series Forecasting

```
[1]: import numpy as np
     import pandas as pd
[2]: import requests
     import matplotlib.pyplot as plt
     import seaborn as sns
     import warnings
     warnings.filterwarnings("ignore")
[3]: url = "http://archive.ics.uci.edu/ml/machine-learning-databases/00352/
      →Online%20Retail.xlsx"
     resp = requests.get(url)
     with open('test.xlsx','wb') as output:
         output.write(resp.content)
[4]: df=pd.read_excel('test.xlsx')
    df.head()
[5]:
       InvoiceNo StockCode
                                                     Description Quantity \
     0
          536365
                    85123A
                             WHITE HANGING HEART T-LIGHT HOLDER
                                                                          6
     1
          536365
                     71053
                                             WHITE METAL LANTERN
                                                                          6
     2
          536365
                    84406B
                                 CREAM CUPID HEARTS COAT HANGER
                                                                         8
     3
                            KNITTED UNION FLAG HOT WATER BOTTLE
          536365
                    84029G
                                                                          6
     4
          536365
                    84029E
                                 RED WOOLLY HOTTIE WHITE HEART.
                                                                          6
               InvoiceDate
                            UnitPrice
                                                           Country
                                       CustomerID
     0 2010-12-01 08:26:00
                                 2.55
                                           17850.0 United Kingdom
     1 2010-12-01 08:26:00
                                 3.39
                                           17850.0 United Kingdom
     2 2010-12-01 08:26:00
                                 2.75
                                           17850.0 United Kingdom
     3 2010-12-01 08:26:00
                                 3.39
                                           17850.0 United Kingdom
     4 2010-12-01 08:26:00
                                 3.39
                                           17850.0 United Kingdom
```

```
[6]: # The dataframe contains 541,909 observations and 8 features. There are missing
      →values for Description and CustomerID.
      df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 541909 entries, 0 to 541908
     Data columns (total 8 columns):
          Column
                       Non-Null Count
      #
                                        Dtype
                       _____
          -----
                      541909 non-null object
          InvoiceNo
      0
          StockCode 541909 non-null object
          Description 540455 non-null object
      3
          Quantity
                      541909 non-null int64
          InvoiceDate 541909 non-null datetime64[ns]
      5
          UnitPrice 541909 non-null float64
          CustomerID 406829 non-null float64
                       541909 non-null object
          Country
     dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
     memory usage: 33.1+ MB
 [7]: #Let's shift InvoiceDate as our index and convert County column to au
      →categorical variable
      df['InvoiceDate'] = pd.to_datetime(df['InvoiceDate']).dt.date
 [8]: df1=df.set_index('InvoiceDate')
 [9]: df1['Country']=df1['Country'].astype('category')
      df1['Country'].value_counts().head(10)
 [9]: United Kingdom
                       495478
                          9495
      Germany
      France
                          8557
                          8196
     EIRE
                          2533
      Spain
     Netherlands
                          2371
     Belgium
                          2069
     Switzerland
                          2002
     Portugal
                          1519
      Australia
                          1259
     Name: Country, dtype: int64
[10]: df1['InvoiceNo']=df1['InvoiceNo'].astype(str)
[11]: # It is evident that there are missing values in CustomerID field.
      # Also, this dataset may need to be adjusted for non-positive observations of
      \hookrightarrow UnitPrice and Quantities.
      df1.describe()
```

[44].		0-		II ÷ + D		C				
[11]:			uantity .000000	UnitPr: 541909.000			merID			
	count					406829.0				
	mean		.552250	4.611		15287.6				
	std		.081158	96.7598		1713.6				
	min			-11062.0600		12346.0				
	25%		.000000	1.250		13953.0				
	50%		.000000	2.080		15152.0				
	75%	10	.000000	4.130		16791.0				
	max	80995	.000000	38970.000	000	18287.0	000000			
[12]:	df1.hea	ad()								
[12]:		Iı	nvoiceNo	StockCode				Descript	ion \	
	Invoice	eDate								
	2010-12	2-01	536365	85123A	WH	IITE HANGI	NG HEAR	r T-LIGHT HOL	DER	
	2010-12	2-01	536365	71053			WHI	ΓΕ METAL LANT	CERN	
	2010-12	2-01	536365	84406B		CREAM C	CUPID HE	ARTS COAT HAN	IGER	
	2010-12	2-01	536365	84029G	KNI	TTED UNIC	ON FLAG I	HOT WATER BOT	TLE	
	2010-12	2-01	536365	84029E		RED WOO	LLY HOT	ΓΙΕ WHITE HΕΑ	ART.	
		(Quantity	UnitPrice	Cu	stomerID		Country		
	Invoice		. ,					J		
	2010-12	2-01	6	2.55		17850.0	United	Kingdom		
	2010-12		6	3.39		17850.0		-		
	2010-12		8	2.75		17850.0		Kingdom		
	2010-12		6	3.39		17850.0		Kingdom		
	2010-12		6	3.39		17850.0		Kingdom		
	2010 12	. 01	Ü	0.00		11000.0	onroca	ningaom		
[13]:	df1.tai	il()								
F + 0.7		_							_	
[13]:			nvoiceNo	StockCode				Description	Quantity	\
	Invoice									
	2011-12		581587	22613				EBOY NAPKINS	12	
	2011-12		581587	22899				DOLLY GIRL	6	
	2011-12	2-09	581587	23254	C	CHILDRENS	CUTLERY	DOLLY GIRL	4	
	2011-12	2-09	581587	23255	CHI	LDRENS CU	JTLERY C	IRCUS PARADE	4	
	2011-12	2-09	581587	22138	В	BAKING SET	9 PIEC	E RETROSPOT	3	
		,	T + D	Co	TD ~	1				
	.		UnitPrice	Customer	тр С	country				
	Invoice		2 2-	1000	•	-				
	2011-12		0.85			France				
	2011-12		2.10			France				
	2011-12		4.15			France				
	2011-12		4.15			France				
	2011-12	2-09	4.95	12680	.0	France				

```
[14]: # Plot UnitPrice and Quantity
fig, ax =plt.subplots(2, figsize=(12,6))
ax[0].plot(df1['UnitPrice'], label = 'Unit Price')
ax[0].legend()
ax[1].plot(df1['Quantity'], label = 'Quantity')
ax[1].legend()
#In the second graph, there are two symmetrical spikes, which needs to be
→further investigated
```

[14]: <matplotlib.legend.Legend at 0x7fa43d380190>


```
[15]: # Check how many records have zero or less unit price
      len(df1[df1.UnitPrice<=0])</pre>
[15]: 2517
[16]: df1[df1.UnitPrice<=0].Description.isna().sum()
[16]: 1454
[17]: df1[df1.UnitPrice<=0].Description.value_counts()
[17]: check
                                               159
                                                47
      damages
                                                45
      damaged
                                                43
      found
                                                25
      HEART OF WICKER LARGE
                                                 1
```

```
CERAMIC HEART FAIRY CAKE MONEY BANK
                                               1
      MINI CAKE STAND HANGING STRAWBERY
                                               1
      WATERING CAN PINK BUNNY
      Name: Description, Length: 377, dtype: int64
[18]: # Remove it from the dataset
      df1=df1[df1.UnitPrice>0]
      df1.head()
「18]:
                  InvoiceNo StockCode
                                                               Description \
      InvoiceDate
      2010-12-01
                     536365
                               85123A
                                        WHITE HANGING HEART T-LIGHT HOLDER
      2010-12-01
                     536365
                                71053
                                                       WHITE METAL LANTERN
      2010-12-01
                               84406B
                                            CREAM CUPID HEARTS COAT HANGER
                     536365
      2010-12-01
                               84029G KNITTED UNION FLAG HOT WATER BOTTLE
                     536365
                                            RED WOOLLY HOTTIE WHITE HEART.
      2010-12-01
                     536365
                               84029E
                   Quantity UnitPrice CustomerID
                                                           Country
      InvoiceDate
                                  2.55
      2010-12-01
                          6
                                           17850.0 United Kingdom
      2010-12-01
                          6
                                  3.39
                                           17850.0 United Kingdom
                                           17850.0 United Kingdom
      2010-12-01
                          8
                                  2.75
      2010-12-01
                          6
                                  3.39
                                           17850.0 United Kingdom
      2010-12-01
                                  3.39
                                           17850.0 United Kingdom
[19]: # Verify what negative quantities are attributed to:
      neg=df1[df1.Quantity<0].sort_values(by='Quantity')</pre>
      neg.head(5)
      #It is evident that two spikes are the cancelled invoices 581484 and 23166.
[19]:
                  InvoiceNo StockCode
                                                                Description \
      InvoiceDate
      2011-12-09
                    C581484
                                23843
                                               PAPER CRAFT , LITTLE BIRDIE
                    C541433
                                23166
                                            MEDIUM CERAMIC TOP STORAGE JAR
      2011-01-18
                                       ROTATING SILVER ANGELS T-LIGHT HLDR
      2010-12-02
                    C536757
                                84347
                                        FAIRY CAKE FLANNEL ASSORTED COLOUR
      2011-04-18
                    C550456
                                21108
      2011-04-18
                    C550456
                                21175
                                               GIN + TONIC DIET METAL SIGN
                   Quantity UnitPrice CustomerID
                                                            Country
      InvoiceDate
      2011-12-09
                     -80995
                                  2.08
                                           16446.0 United Kingdom
      2011-01-18
                     -74215
                                  1.04
                                           12346.0 United Kingdom
      2010-12-02
                      -9360
                                  0.03
                                           15838.0 United Kingdom
                                  2.10
                                           15749.0 United Kingdom
      2011-04-18
                      -3114
                                           15749.0 United Kingdom
      2011-04-18
                      -2000
                                  1.85
```

1

?sold as sets?

[20]: #Since top 5 represent 61% of cancellation quantity, let's look at the top 5_{\sqcup} →records to confirm our assumption of symmetry. neg.head(5).Quantity.sum()/neg.Quantity.sum() [20]: 0.6113108576451685 [21]: # Inspect the records [df1[df1.StockCode==x].sort_values(by='Quantity') for x in neg.head(5). →StockCode.values] [21]: [InvoiceNo StockCode Description Quantity \ InvoiceDate 2011-12-09 23843 PAPER CRAFT , LITTLE BIRDIE C581484 -80995 23843 PAPER CRAFT , LITTLE BIRDIE 2011-12-09 581483 80995 UnitPrice CustomerID Country InvoiceDate 2011-12-09 2.08 16446.0 United Kingdom 2011-12-09 2.08 16446.0 United Kingdom InvoiceNo StockCode Description Quantity \ InvoiceDate 2011-01-18 C541433 23166 MEDIUM CERAMIC TOP STORAGE JAR -74215 23166 MEDIUM CERAMIC TOP STORAGE JAR 2011-06-20 C557508 -240 2011-08-04 C562375 23166 MEDIUM CERAMIC TOP STORAGE JAR -1223166 MEDIUM CERAMIC TOP STORAGE JAR -12 2011-10-12 C570867 2011-05-24 23166 MEDIUM CERAMIC TOP STORAGE JAR -9 C554527 23166 MEDIUM CERAMIC TOP STORAGE JAR 96 2011-05-12 552882 23166 MEDIUM CERAMIC TOP STORAGE JAR 2011-07-24 561051 144 2011-05-18 23166 MEDIUM CERAMIC TOP STORAGE JAR 553607 240 2011-07-31 561901 23166 MEDIUM CERAMIC TOP STORAGE JAR 288 2011-01-18 541431 23166 MEDIUM CERAMIC TOP STORAGE JAR 74215 UnitPrice CustomerID Country InvoiceDate 1.04 United Kingdom 2011-01-18 12346.0 2011-06-20 1.04 16684.0 United Kingdom 1.25 2011-08-04 14911.0 EIRE 2011-10-12 1.25 12607.0 USA 1.04 2011-05-24 15251.0 United Kingdom 1.04 2011-05-12 14646.0 Netherlands 1.04 16684.0 United Kingdom 2011-07-24 2011-05-18 1.04 16684.0 United Kingdom 1.25 14156.0 2011-07-31 E.T.R.E.

12346.0 United Kingdom

2011-01-18

1.04

[260 rows x	7 columns],		Degenintion	
	Involceno s	cockcode	Description \	
InvoiceDate	GE 0.07.57	04047	DOMARTING GILVED ANGELG III LIGHT HIDD	
2010-12-02	C536757	84347		
2010-12-06	C537251	84347		
2011-01-05	C540164	84347		
2011-10-24	C572473	84347	ROTATING SILVER ANGELS T-LIGHT HLDR	
2011-02-28	545217	84347	ROTATING SILVER ANGELS T-LIGHT HLDR	
•••	•••	•••		
2010-12-10	538191	84347	ROTATING SILVER ANGELS T-LIGHT HLDR	
2010-12-02	536784	84347	ROTATING SILVER ANGELS T-LIGHT HLDR	
2010-12-15	538998	84347	ROTATING SILVER ANGELS T-LIGHT HLDR	
2011-10-24	572325	84347	ROTATING SILVER ANGELS T-LIGHT HLDR	
2011-11-22	577822	84347	ROTATING SILVER ANGELS T-LIGHT HLDR	
	Quantity	UnitPrice	CustomerID Country	
InvoiceDate	4			
2010-12-02	-9360	0.03	15838.0 United Kingdom	
2010-12-06	-9	2.55	S	
2010-12-00	-6	2.55	G	
2011-10-24	-1	2.55		
			S .	
2011-02-28	1	4.96	NaN United Kingdom	
2010-12-10	240	1.88	<u> </u>	
2010-12-02	240	1.88	G	
2010-12-15	480	1.88	S	
2011-10-24	600	1.74	G	
2011-11-22	600	1.74	14607.0 United Kingdom	
	_			
[475 rows x				
	InvoiceNo S	StockCode	Description Quantit	у
\				
${\tt InvoiceDate}$				
2011-04-18	C550456	21108	FAIRY CAKE FLANNEL ASSORTED COLOUR -311	4
2011-11-22	C577832	21108	FAIRY CAKE FLANNEL ASSORTED COLOUR -1	8
2011-12-01	C580131	21108	FAIRY CAKE FLANNEL ASSORTED COLOUR -1	8
2011-07-28	561658	21108	FAIRY CAKE FLANNEL ASSORTED COLOUR	1
2011-06-20	557502	21108	FAIRY CAKE FLANNEL ASSORTED COLOUR	1
•••	•••	•••	***	
2011-11-23		21108	FAIRY CAKE FLANNEL ASSORTED COLOUR 9	0
2011-11-14			FAIRY CAKE FLANNEL ASSORTED COLOUR 18	
2011-11-09			FAIRY CAKE FLANNEL ASSORTED COLOUR 54	
2011-01-11			FAIRY CAKE FLANNEL ASSORTED COLOUR 311	
2011-04-18			FAIRY CAKE FLANNEL ASSORTED COLOUR 311	
2011 04 10	200-101	21100	THE CAME I DAMAGE ADDOUGLED COLOUR SIL	T
	UnitPrice	C110+0m0~	ID Country	
InvoiceDate	0111011106	Oub comer.	1D Country	
THAOTCEDUCE				

2011-04-18	2.10	15749.0	United Kingdom
2011-11-22	0.79	18274.0	United Kingdom
2011-12-01	2.10	17576.0	United Kingdom
2011-07-28	2.55	12743.0	Unspecified
2011-06-20	4.96	NaN	United Kingdom
•••	•••		•••
2011-11-23	0.79	17511.0	United Kingdom
2011-11-14	0.79	13694.0	United Kingdom
2011-11-09	0.79	16041.0	United Kingdom
2011-01-11	2.10	15749.0	United Kingdom
2011-04-18	2.10	15749.0	United Kingdom

[270 rows x 7 columns],

LZIO IOWD A	, coramin,			
	InvoiceNo S	tockCode	Description Quantity \setminus	
${\tt InvoiceDate}$				
2011-04-18	C550456	21175 G	IN + TONIC DIET METAL SIGN -2000	
2011-10-10	C570290	21175 G	IN + TONIC DIET METAL SIGN -12	
2011-06-13	C556647	21175 G	IN + TONIC DIET METAL SIGN -12	
2011-05-27	C554870	21175 G	IN + TONIC DIET METAL SIGN -3	
2010-12-10	C538350	21175 G	IN + TONIC DIET METAL SIGN -1	
•••	•••	•••		
2011-07-14	560080	21175 G	IN + TONIC DIET METAL SIGN 192	
2011-09-20	567458	21175 G	IN + TONIC DIET METAL SIGN 192	
2011-11-21	577747	21175 G	IN + TONIC DIET METAL SIGN 240	
2011-01-11	540815	21175 G	IN + TONIC DIET METAL SIGN 2000	
2011-04-18	550461	21175 G	IN + TONIC DIET METAL SIGN 2000	
	${\tt UnitPrice}$	${\tt CustomerID}$	Country	
${\tt InvoiceDate}$				
2011-04-18	1.85	15749.0	United Kingdom	
2011-10-10	2.55	14665.0	United Kingdom	
2011-06-13	2.55	13012.0	United Kingdom	
2011-05-27	2.55	15078.0	United Kingdom	
2010-12-10	1.85	13798.0	United Kingdom	
•••	•••	•••	•••	
2011-07-14	2.08	17450.0	United Kingdom	
2011-09-20	2.66	17450.0	United Kingdom	
2011-11-21	2.67	17450.0	United Kingdom	
2011-01-11	1.85	15749.0	United Kingdom	
2011-04-18	1 69	15749 0	United Kingdom	

[825 rows x 7 columns]]

1.69

2011-04-18

15749.0 United Kingdom

^{[22]:} $\#By\ looking\ at\ top\ 5$, it is reasonable to assume that the majority of cancelled top transactions happened on the same day.

[#] The exception is item 84347, which doesn't have a reasonable explanation \rightarrow without questioning the business users.

```
# For now, we will not be removing cancelled transaction, since many are voided

→out duaring the aggregation process by day.

# However, we will define a function and remove transactions that have a

→negative quantity, since it seems mostly due to the damages and write offs.
```

```
[23]: def remove_writeoffs(df):
    qnegat=[x for x in df.InvoiceNo if x.startswith('C')]
    return df[(df.Quantity>0) | (df.InvoiceNo.isin(qnegat))].
    →sort_values(by='Quantity')
    df1=remove_writeoffs(df1)
```

```
[24]: # View daily sales volume by day
df2=df1.groupby(['InvoiceDate'])['Quantity'].sum()
df2.plot()

# The plot doesn't look stationary. While we take a note of it, we will coninue
→to find our top three items.
```

[24]: <AxesSubplot:xlabel='InvoiceDate'>


```
[25]: # Check how many quantity of products have been sold online from each country
a = df1['Quantity'].groupby(df1['Country']).agg('sum').sort_values(ascending =
□
→False)[0:].head(10)
print(a)
```

```
United Kingdom
                       4399357
     Netherlands
                        199552
     EIRE
                        142363
     Germany
                        117446
     France
                        110479
     Australia
                         83345
     Sweden
                         35637
     Switzerland
                         30324
     Spain
                         26813
     Japan
                         25218
     Name: Quantity, dtype: int64
[26]: # Since the dates range from 12/01/2010-12/09/2011, it looks like there are
      →missing data for some days
      len(df2.index)
[26]: 305
[27]: # Define a function to reinstate dates
      import datetime
      def zero_sales(df):
          idx = pd.date_range(df.index.min(),datetime.date(2011,12,9))
          return df.reindex(idx, fill_value=0)
[28]: df2=zero_sales(df2)
[29]: # Review which days of the week we have no sales reported
      pd.DataFrame(df2.index[df2.values==0])[0].dt.day_name().value_counts()
[29]: Saturday
                   53
     Monday
                    6
     Friday
      Sunday
      Thursday
                    1
     Wednesday
                    1
      Tuesday
                    1
      Name: 0, dtype: int64
[30]: #!pip install holidays
[31]: from datetime import date
      import holidays
[32]: uk_holidays=pd.Series(holidays.UnitedKingdom(years= [2010,2011] ).keys())
[33]: # Plot data with holidays
      from matplotlib import pylab
```

Country

```
def plot_df(data, x, y, title="", xlabel='Date', ylabel='Value', dpi=100):
    plt.figure(figsize=(16,5), dpi=dpi)
    plt.plot(x, y, color='tab:blue')
    plt.gca().set(title=title, xlabel=xlabel, ylabel=ylabel)
    holidays = uk_holidays[uk_holidays.between(data.index.min(), datetime.
    date(2011, 12, 31))]
    [pylab.axvline(_x, linewidth=0.5, color='r', ls='--') for _x in holidays]
    plt.show()

plot_df(df2, x=df2.index, y=df2.values, title='Daily Sales Volume')
```



```
[34]: # Define a week between 2011-11-27 and 2011-12-3 and identify the top 3 perusobjective

week=df1[(df1.index>=datetime.date(2011,11,27)) & (df1.index<=datetime.

date(2011,12,3))]

top3=week[['StockCode','Quantity']].groupby('StockCode').sum().

sort_values(by='Quantity', ascending=False).head(3)

top3
```

[34]: Quantity
StockCode
23084 4588
22197 3195
23582 1851

[35]: # Since the dataset has various descriptions per SKU, let's review the

→Descriptions:

df1[df1['StockCode']==top3.index[0]]['Description'].unique()

[35]: array(['RABBIT NIGHT LIGHT'], dtype=object)

[36]: df1[df1['StockCode']==top3.index[1]]['Description'].unique()

```
[36]: array(['POPCORN HOLDER', 'SMALL POPCORN HOLDER'], dtype=object)
[37]: df1[df1['StockCode']==top3.index[2]]['Description'].unique()
[37]: array(['VINTAGE DOILY JUMBO BAG RED '], dtype=object)
[38]: # Plot the sales quantity timeseries of each item
    rabl=df1[df1.StockCode==top3.index[0]].sort_values(by='InvoiceDate')
    rabl2=zero_sales(rabl.groupby(['InvoiceDate'])['Quantity'].sum())
    plot_df(rabl2, x=rabl2.index, y=rabl2.values, title="RABBIT NIGHT LIGHT", \( \to \text{x}\) \( \text{x}\) \( \text{abel}='Date', ylabel='Value', dpi=100)
```



```
[39]: # By looking at the RABBIT NIGHT LIGHT, we can infer that there is an increasing sales trend towards the end of the year.

#There is a somewhat seasonality in the observed data. Also, the data may not import statsmodels.api as sm decomposition = sm.tsa.seasonal_decompose(rabl2, model='additive') from pylab import rcParams

rcParams['figure.figsize'] = 18, 8

fig = decomposition.plot()

plt.show()
```



```
[40]: # Review autocorrelation function plots
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
fig, ax = plt.subplots(2, figsize=(12,6))
ax[0]=plot_acf(rabl2, ax=ax[0], lags=20)
ax[1]=plot_pacf(rabl2, ax=ax[1], lags=20)
```



```
[41]: # Plot the Popcorn Holder data
poph=df1[df1.StockCode==top3.index[1]].sort_values(by='InvoiceDate')
poph2=zero_sales(poph.groupby(['InvoiceDate'])['Quantity'].sum())
```



```
[42]: # By looking at it, we can also infer that there is an unusual spike around → June and an increasing sales variation towards the end of the year.

import statsmodels.api as sm
from pylab import rcParams
decomposition = sm.tsa.seasonal_decompose(poph2, model='additive')
rcParams['figure.figsize'] = 18, 8
fig = decomposition.plot()
plt.show()
```



```
[43]: fig, ax = plt.subplots(2, figsize=(12,6))
ax[0]=plot_acf(poph2, ax=ax[0], lags=20)
ax[1]=plot_pacf(poph2, ax=ax[1], lags=20)
```



```
[44]: # Plot sales of the VINTAGE DOILY JUMBO BAG RED

vinb=df1[df1.StockCode==top3.index[2]].sort_values(by='InvoiceDate')
vinb2=zero_sales(vinb.groupby(['InvoiceDate'])['Quantity'].sum())
plot_df(vinb2, x=vinb2.index, y=vinb2.values, title="VINTAGE DOILY JUMBO BAG

→RED", xlabel='Date', ylabel='Value', dpi=100)
```



```
[45]: # By looking at the VINTAGE DOILY JUMBO BAG RED, we can also infer that there

is an increasing trend towards the end of the year.

decomposition = sm.tsa.seasonal_decompose(vinb2, model='additive')

rcParams['figure.figsize'] = 18, 8

fig = decomposition.plot()

plt.show()
```


[46]: fig, ax = plt.subplots(2, figsize=(12,6))
ax[0]=plot_acf(vinb2, ax=ax[0], lags=20)
ax[1]=plot_pacf(vinb2, ax=ax[1], lags=20)
#The data is stationary and appears to have daily and weekly seasonality alog
→with the increasing trend.

[47]: #It is evident that three items have a different history of sales: Over a year \rightarrow for POPCORN HOLDER, less then a year #for RABBIT NIGHT LIGHT, and a month and a half for VINTAGE DOILY JUMBO BAG RED.

2 Models

```
[48]: from sklearn.metrics import mean_squared_error
      from matplotlib import pyplot
      # Begin with modeling the POPCORN HOLDER data
      poph2_train=poph2[poph2.index<'2011-11-27']</pre>
      poph2_test=poph2[poph2.index>='2011-11-27']
      #rabl2_train=rabl2[rabl2.index<'2011-11-27']
      \#rabl2\_test=rabl2[rabl2.index>='2011-11-27']
      #vinb2 train=vinb2[vinb2.index<'2011-11-27']
      #vinb2 test=vinb2[vinb2.index>='2011-11-27']
[49]: train dates, test dates = poph2 train.index, poph2 test.index
      train_data, test_data = poph2_train.values, poph2_test.values
      #train_dates, test_dates = rabl2_train.index, rabl2_test.index
      #train_data, test_data = rabl2_train.values, rabl2_test.values
      #train_dates, test_dates = vinb2_train.index, vinb2_test.index
      #train data, test_data = vinb2_train.values, vinb2_test.values
[50]: # Define a dataframe to view the performance of fitted models
      perform=pd.DataFrame()
      perform.index.name='Models Popcorn Holder'
      perform['RMSE']=None
      perform['Parameters']=None
[51]: # Define a function for RMSE
      from sklearn.metrics import mean_squared_error
      def rmse(actual, predicted):
          rmse=np.sqrt(mean_squared_error(actual,predicted))
          return rmse
[52]: # Define a plot function for actual vs predicted:
      import plotly.graph_objects as go
      def plot_actual_predicted(actual, predicted, model_name):
          fig = go.Figure()
          fig.add_trace(go.Scatter(x=test_dates, y=actual, name = "Expected", line = ___

dict(color = '#17BECF'), opacity = 0.8))
          fig.add_trace(go.Scatter(x=test_dates, y=predicted, name = model_name, line_
       \rightarrow= dict(color = '#CF1717'), opacity = 0.8))
          fig.show()
```

2.1 Model 1: Moving Average

```
[53]: # Begin selecting the best window size
      X=poph2.values
      for a in range(1,13):
          window = a
          history = [X[i] for i in range(window)]
          test = [X[i] for i in range(window, (len(X)-14))]
          predictions = list()
          # walk forward over time steps in test
          for t in range(len(test)):
              length = len(history)
              preds = np.mean([history[i] for i in range(length-window,length)])
              obs = test[t]
              predictions.append(preds)
              history.append(obs)
          error = rmse(test, predictions)
          print ('RMSE: %.3f' % round(error), 'Window size: %.3f' % a)
     RMSE: 476.000 Window size: 1.000
     RMSE: 409.000 Window size: 2.000
     RMSE: 389.000 Window size: 3.000
     RMSE: 376.000 Window size: 4.000
     RMSE: 370.000 Window size: 5.000
     RMSE: 364.000 Window size: 6.000
     RMSE: 352.000 Window size: 7.000
     RMSE: 350.000 Window size: 8.000
     RMSE: 349.000 Window size: 9.000
     RMSE: 346.000 Window size: 10.000
     RMSE: 346.000 Window size: 11.000
     RMSE: 346.000 Window size: 12.000
[54]: # Apply a window size of 10 and predict
      window = 10
      predict=pd.DataFrame(X)[0].rolling(window).mean()[-13:]
      observ=pd.DataFrame(X)[0][-13:]
      error_ma = rmse(observ, predict)
      print('RMSE error: %.3f' % error_ma, 'Window size: %.3f' % window)
     RMSE error: 745.817 Window size: 10.000
[55]: plot_actual_predicted(observ, predict, "Moving Average Predictions")
[56]: perform.loc['Moving Average', ('RMSE', 'Parameters')] = round(error_ma, 0),
      →'Window size: 10'
      perform
```

```
[56]:
                            RMSE
                                      Parameters
     Models Popcorn Holder
     Moving Average
                            746 Window size: 10
         Model 2: Exponential Smoothing
[57]: from statsmodels.tsa.holtwinters import ExponentialSmoothing
      from sklearn.metrics import mean_squared_error
[58]: #!pip install pmdarima
[59]: #from statsmodels.tsa.statespace.sarimax import SARIMAX
      #from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
      from statsmodels.tsa.seasonal import seasonal_decompose
[60]: mod_ex=ExponentialSmoothing(np.array(train_data), seasonal_periods=52,__
       →trend='add', seasonal='add')
[61]: fit=mod ex.fit()
      pred_es=fit.forecast(13)
[62]: error_es = rmse(test_data, pred_es)
      print('RMSE: %.3f' % error_es)
     RMSE: 781.167
[63]: perform.loc['Exponential Smoothing', ('RMSE', 'Parameters')] = round(error_es),
      perform
[63]:
                            RMSE
                                           Parameters
      Models Popcorn Holder
      Moving Average
                                      Window size: 10
                            746
      Exponential Smoothing 781 Seasonal_periods =52
[64]: plot_actual_predicted(test_data, pred_es, "Exponential Smoothing Prediction")
     2.3 Model 3: Arima
[65]: #!pip install pmdarima
      from pmdarima.arima import auto_arima
      from statsmodels.tsa.stattools import adfuller
[66]: # Let's use auto_arima. We know our data shows seasonality and needs_
      \hookrightarrow differencing.
      stepwise_model = auto_arima(train_data, start_p=1, start_q=1, max_p=3, max_q=3,__
      →m=12, start_P=0, d=1, D=1, seasonal=True,
```

```
Performing stepwise search to minimize aic
      ARIMA(1,1,1)(0,1,1)[12]
                                           : AIC=inf, Time=0.54 sec
      ARIMA(0,1,0)(0,1,0)[12]
                                           : AIC=5531.538, Time=0.02 sec
      ARIMA(1,1,0)(1,1,0)[12]
                                           : AIC=5334.731, Time=0.15 sec
                                           : AIC=inf, Time=0.28 sec
      ARIMA(0,1,1)(0,1,1)[12]
                                           : AIC=5445.079, Time=0.03 sec
      ARIMA(1,1,0)(0,1,0)[12]
                                           : AIC=5291.955, Time=0.32 sec
      ARIMA(1,1,0)(2,1,0)[12]
      ARIMA(1,1,0)(2,1,1)[12]
                                           : AIC=inf, Time=0.94 sec
                                           : AIC=inf, Time=0.36 sec
      ARIMA(1,1,0)(1,1,1)[12]
      ARIMA(0,1,0)(2,1,0)[12]
                                           : AIC=5387.740, Time=0.28 sec
      ARIMA(2,1,0)(2,1,0)[12]
                                           : AIC=5256.161, Time=0.44 sec
                                           : AIC=5300.342, Time=0.21 sec
      ARIMA(2,1,0)(1,1,0)[12]
                                           : AIC=inf, Time=1.17 sec
      ARIMA(2,1,0)(2,1,1)[12]
                                           : AIC=inf, Time=0.53 sec
      ARIMA(2,1,0)(1,1,1)[12]
                                           : AIC=5235.364, Time=0.48 sec
      ARIMA(3,1,0)(2,1,0)[12]
                                           : AIC=5282.255, Time=0.27 sec
      ARIMA(3,1,0)(1,1,0)[12]
      ARIMA(3,1,0)(2,1,1)[12]
                                           : AIC=inf, Time=1.38 sec
                                           : AIC=inf, Time=0.63 sec
      ARIMA(3,1,0)(1,1,1)[12]
      ARIMA(3,1,1)(2,1,0)[12]
                                           : AIC=inf, Time=1.28 sec
                                           : AIC=inf, Time=1.25 sec
      ARIMA(2,1,1)(2,1,0)[12]
      ARIMA(3,1,0)(2,1,0)[12] intercept
                                           : AIC=5237.368, Time=0.97 sec
     Best model: ARIMA(3,1,0)(2,1,0)[12]
     Total fit time: 11.532 seconds
[67]: stepwise_model.fit(train_data)
      preds = stepwise_model.predict(n_periods=13)
      preds
[67]: array([ 88.78128757, 118.38078031,
                                             25.54930964,
                                                            140.30679137,
                              41.36413624, 1147.21044358,
              585.01505017,
                                                            323.36986013,
                              79.41973066,
              156.51130324,
                                            139.3972984 , 543.33842197,
                3.84710817])
[68]: error_ar=rmse(test_data, preds)
      print('RMSE: %.3f' % error_ar)
     RMSE: 909.169
[69]: stepwise_model.plot_diagnostics(figsize=(16, 8))
      plt.show()
```

trace=True, error_action='ignore', __

→suppress_warnings=True, stepwise=True)


```
[70]: plot_actual_predicted(test_data, preds, 'Arima Predictions')
[71]: perform.loc['Arima', ('RMSE', 'Parameters')]=round(error_ar), stepwise_model
      perform
[71]:
                            RMSE
                                                          Parameters
     Models Popcorn Holder
      Moving Average
                             746
                                                     Window size: 10
      Exponential Smoothing
                             781
                                                Seasonal_periods =52
      Arima
                             909
                                   ARIMA(3,1,0)(2,1,0)[12]
     2.4 Model 4: XGBoost
[72]: #!pip install xgboost
[73]: import xgboost as xgb
      from xgboost import DMatrix
      from pandas import concat
      from numpy import asarray
```

```
[74]: # Define functions to apply XGBoost model:
data=poph2.values

# Transform a time series dataset into a supervised learning dataset
def series_to_supervised(data, n_in, n_out=1, dropnan=True):
    df = pd.DataFrame(data)
    cols = list()
```

from xgboost import XGBRegressor

```
# input sequence (t-n, \ldots t-1)
    for i in range(n_in, 0, -1):
        cols.append(df.shift(i))
    # forecast out
    for i in range(0, n_out):
        cols.append(df.shift(-i))
    # aggregate
    agg = concat(cols, axis=1)
    # drop rows with NaN values
    if dropnan:
        agg.dropna(inplace=True)
    return agg.values
# Split a dataset into train/test sets
def train_test_split(data, n_test):
    return data[:-n_test, :], data[-n_test:, :]
# Fit an xqboost model and make a one step prediction
def xgboost_forecast(train, testX):
    train = asarray(train)
    # split into input and output columns
    trainX, trainY = train[:, :-1], train[:, -1]
    # fit model
    model = XGBRegressor(objective='reg:squarederror', n estimators=1000,...
\rightarrowmax_depth=5,
min_child_weight=1)
    model.fit(trainX, trainY)
    preds = model.predict(asarray([testX]))
    return preds[0]
# Validation
def walk_forward_test(data, n_test):
    predictions = list()
    train, test = train_test_split(data, n_test)
    # add history with training dataset
    history = [x for x in train]
    # step over each time-step in the test set
    for i in range(len(test)):
        # split test row into input and output columns
        testX, testY = test[i, :-1], test[i, -1]
        # make a prediction
        preds = xgboost_forecast(history, testX)
        predictions.append(preds)
        # add actual observation for the next loop to history
        history.append(test[i])
    # estimate error
    error_xgboost = np.sqrt(mean_squared_error(test[:,-1], predictions))
```

```
return error_xgboost, test[:, -1], predictions
[75]: # Transform the time series data into supervised learning
     data = series_to_supervised(data, n_in=17)
      # Evaluate
     error_xgboost, y, preds = walk_forward_test(data, n_test=13)
     print('RMSE: %.3f' % error_xgboost)
     # Plot expected vs preducted
     plot_actual_predicted(y, preds, "XGBoost Predictions")
     RMSE: 714.233
[76]: |perform.loc['XGBoost', ('RMSE', 'Parameters')]=round(error_xgboost),__
      perform
[76]:
                           RMSE
                                                                       Parameters
     Models Popcorn Holder
     Moving Average
                            746
                                                                  Window size: 10
     Exponential Smoothing 781
                                                             Seasonal_periods =52
                                                ARIMA(3,1,0)(2,1,0)[12]
     Arima
                            909
     XGBoost
                            714 n_estimators=1000, max_depth=5,min_child_weight=1
     2.5 Model 5: FB Prophet
[77]: #!pip install fbprophet
[78]: from fbprophet import Prophet
[79]: # Prepare data
     df_train, df_test =poph2_train.reset_index(), poph2_test.reset_index()
      #df_train, df_test =rabl2_train.reset_index(), rabl2_test.reset_index()
      #df_train, df_test =vinb2_train.reset_index(), rabl2_test.reset_index()
     df_train.columns, df_test.columns = ['ds','y'], ['ds','y']
[80]: # Add holidays
     holi = pd.DataFrame(list(holidays.UnitedKingdom(years= [2010,2011]).items()))
     holi.columns=['ds','holiday']
[81]: # Define a model
     m=Prophet(holidays=holi, holidays_prior_scale=0.05) #weekly_seasonality=True,_
      → daily_seasonality=True, yearly_seasonality=False)
     m.add_seasonality(name='weekly', period=7, fourier_order=3, prior_scale=5)
     m.add_seasonality(name='daily', period=8, fourier_order=3, prior_scale=0.1)
     m.add_seasonality(name='yearly', period=6, fourier_order=3, prior_scale=0.1)
```

```
[82]: m.fit(df_train)
     INFO:fbprophet:Found custom seasonality named 'yearly', disabling built-in
     'yearly' seasonality.
     INFO:fbprophet:Found custom seasonality named 'weekly', disabling built-in
     'weekly' seasonality.
     INFO:fbprophet:Found custom seasonality named 'daily', disabling built-in
     'daily' seasonality.
[82]: <fbprophet.forecaster.Prophet at 0x7fa441cde5e0>
[83]: future=m.make_future_dataframe(periods=13, freq='D')
[84]: prophet_pred=m.predict(future)
      prophet_pred.tail()
[84]:
                                                          trend_lower
                           trend
                                  yhat_lower
                                              yhat_upper
                                                                       trend_upper \
                                                           318.383531
      369 2011-12-05
                     318.564071
                                   -7.675460 785.822680
                                                                         318.741389
      370 2011-12-06
                     320.122080 -150.624089
                                              672.610332
                                                           319.889838
                                                                         320.344679
      371 2011-12-07 321.680090 -106.786993 730.466544
                                                           321.391054
                                                                         321.955181
      372 2011-12-08 323.238099
                                   56.800815
                                              855.213451
                                                           322.874798
                                                                         323.591524
      373 2011-12-09 324.796109
                                   91.167244 888.424066
                                                           324.362337
                                                                         325.205168
           Battle of the Boyne [Northern Ireland]
      369
                                              0.0
      370
                                              0.0
      371
                                              0.0
                                              0.0
      372
      373
                                              0.0
           Battle of the Boyne [Northern Ireland]_lower \
      369
                                                    0.0
      370
                                                    0.0
      371
                                                    0.0
      372
                                                    0.0
      373
                                                    0.0
           Battle of the Boyne [Northern Ireland] upper Boxing Day
      369
                                                    0.0
                                                                0.0
      370
                                                    0.0
                                                                0.0
      371
                                                    0.0
                                                                0.0 ...
      372
                                                    0.0
                                                                0.0
                                                                0.0 ...
      373
                                                    0.0
                                                      yearly yearly_lower
               weekly weekly_lower weekly_upper
            26.054554
                          26.054554
                                        26.054554
                                                   27.467111
                                                                  27.467111
      369
```

[81]: <fbprophet.forecaster.Prophet at 0x7fa441cde5e0>

```
370
     -0.161679
                    -0.161679
                                  -0.161679 -9.837723
                                                            -9.837723
371
      12.286547
                    12.286547
                                  12.286547 -30.887382
                                                           -30.887382
372
      34.192456
                    34.192456
                                  34.192456 28.023700
                                                            28.023700
373 149.040787
                   149.040787
                                 149.040787
                                              8.596196
                                                             8.596196
     yearly_upper multiplicative_terms
                                         multiplicative_terms_lower \
        27.467111
369
                                    0.0
                                                                 0.0
370
        -9.837723
                                    0.0
                                                                 0.0
371
       -30.887382
                                    0.0
                                                                 0.0
372
        28.023700
                                    0.0
                                                                 0.0
373
         8.596196
                                    0.0
                                                                 0.0
     multiplicative_terms_upper
                                       yhat
369
                                 389.003404
                            0.0
370
                            0.0
                                 250.120927
371
                            0.0 299.609560
372
                            0.0 457.182332
373
                            0.0 485.263119
```

[5 rows x 79 columns]

[85]: import matplotlib.pyplot as plt
m.plot(prophet_pred)
plt.show()


```
[90]: perform.loc['Prophet', ('RMSE', 'Parameters')]=round(error_prophet), "Holidays, "
       ⇔Seasonality: W, D, Y"
      perform
[90]:
                            RMSE
                                                                          Parameters
     Models Popcorn Holder
      Moving Average
                             746
                                                                     Window size: 10
      Exponential Smoothing 781
                                                                Seasonal_periods =52
      Arima
                             909
                                                   ARIMA(3,1,0)(2,1,0)[12]
      XGBoost
                             714 n_estimators=1000, max_depth=5,min_child_weight=1
                                                      Holidays, Seasonality: W, D, Y
      Prophet
                             790
     2.6 Model 6: LSTM
[91]: # Now, let's fit LSTM. Please note, no parameter tuning was performed and it is
      \rightarrow fit in its simplified form.
      # A model is required to learn from the series of past observations to predict \Box
       → the next value in the sequence.
[92]: #!pip install tensorflow
      #!pip install keras
      from keras.models import Sequential
      from keras.layers import Dense
      from keras.layers import LSTM
      from keras.preprocessing.sequence import TimeseriesGenerator
      from sklearn.preprocessing import MinMaxScaler
      scaler=MinMaxScaler()
[93]: # Prepare data
      train_data, test_data = pd.DataFrame(train_data), pd.DataFrame(test_data)
[94]: # Normalize the dataset
      scaler.fit(train_data)
      scaled_train_data=scaler.transform(train_data)
      scaled_test_data=scaler.transform(test_data)
[95]: # Build a model
      n_{input} = 16
      n features = 1
      generator = TimeseriesGenerator(scaled_train_data, scaled_train_data, length = __
      →n_input, batch_size=1)
      lstm_model = Sequential()
      lstm_model.add(LSTM(100, activation='relu', input_shape=(n_input, n_features)))
```

lstm_model.add(Dense(1))

```
lstm_model.compile(optimizer='adam', loss='mse')
lstm_model.summary()
```

Model: "sequential"

Total params: 40,901 Trainable params: 40,901 Non-trainable params: 0

```
[96]: # Fit a model
lstm_model.fit(generator, epochs=20, verbose=0)

losses_lstm=lstm_model.history.history['loss']
plt.figure(figsize=(12,4))
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.ylabel('Loss')
plt.xticks(np.arange(0,21,1))
plt.plot(range(len(losses_lstm)), losses_lstm)
```

[96]: [<matplotlib.lines.Line2D at 0x7fa456c9e850>]


```
[97]: # Predict and inverse scaling
    lstm_predictions_scaled=list()
    batch = scaled_train_data[-n_input:]
    current_batch = batch.reshape((1, n_input, n_features))
```

```
for i in range(len(test_data)):
    lstm_pred = lstm_model.predict(current_batch)[0]
    lstm_predictions_scaled.append(lstm_pred)
    current_batch = np.append(current_batch[:, 1:, :], [[lstm_pred]], axis=1)

lstm_predictions=scaler.inverse_transform(lstm_predictions_scaled)

8]: # Calculate error
```

```
[98]: # Calculate error
error_lstm=np.sqrt(mean_squared_error(test_data.values, lstm_predictions))
error_lstm
```

[98]: 904.9477093089544

```
[99]: plot_actual_predicted(test_data[0], pd.DataFrame(lstm_predictions)[0], "LSTM<sub>□</sub> 

→Predicted")
```

```
[100]:
                             RMSE
                                                                           Parameters
       Models Popcorn Holder
      Moving Average
                              746
                                                                      Window size: 10
      Exponential Smoothing 781
                                                                 Seasonal_periods =52
                              909
                                                    ARIMA(3,1,0)(2,1,0)[12]
      Arima
      XGBoost
                              714 n_estimators=1000, max_depth=5,min_child_weight=1
                              790
                                                       Holidays, Seasonality: W, D, Y
      Prophet
      LSTM
                              905
                                          LSTM: 100, act = 'relu', input_shape: 16x1
```

```
[101]: #By looking at the results so far, it is evident that seasonality doesn't have strong predicive capacity. The models we applied so far do not fit well.

#My assumption is that lagged, differenciated values and rolling mean will positevly affect model's performance.

#Let's test it out with Random Forrest by adding these features in the model's pinput.
```

2.7 Model 7: Random Forest

```
df_forecasting= df_forecasting.dropna()
       df_forecasting
[102]:
                   Values
                              t-4
                                      t-3
                                                      t-1 Values_Rolling
                                              t-2
                    -92.0
       2010-12-21
                            253.0 -272.0
                                              8.0
                                                    159.0
                                                                  -0.3750
       2010-12-22
                   -75.0 -272.0
                                            159.0
                                                    -92.0
                                                                 -16.5000
                                      8.0
       2010-12-23
                    8.0
                              8.0
                                    159.0
                                            -92.0
                                                    -75.0
                                                                  -7.5625
                    -8.0
       2010-12-24
                            159.0
                                    -92.0
                                            -75.0
                                                      8.0
                                                                 -13.2500
       2010-12-25
                    0.0
                            -92.0
                                    -75.0
                                              8.0
                                                    -8.0
                                                                 -16.2500
       2011-12-05
                    296.0 -203.0 1103.0 -1369.0
                                                    113.0
                                                                  25.5625
       2011-12-06
                   -72.0 1103.0 -1369.0
                                                                   7.4375
                                            113.0
                                                    296.0
                                                    -72.0
       2011-12-07
                     31.0 -1369.0
                                    113.0
                                            296.0
                                                                   1.1875
       2011-12-08 2738.0
                                            -72.0
                                                     31.0
                                                                 121.5000
                            113.0
                                    296.0
       2011-12-09 -2876.0
                            296.0
                                    -72.0
                                             31.0 2738.0
                                                                 -16.6250
       [354 rows x 6 columns]
[103]: from sklearn.ensemble import RandomForestRegressor
       from random import seed
       x=df_forecasting.iloc[:,1:]
       y=df_forecasting.iloc[:,0]
       x_{train}, x_{valid} = x.loc[x.index < '2011-11-27'], x.loc[x.index >= '2011-11-27']
       y_{train}, y_{valid} = y.loc[y.index < '2011-11-27'], y.loc[y.index >= '2011-11-27']
       mdl = RandomForestRegressor(n estimators=100)
       np.random.seed(55)
       mdl.fit(x_train, y_train)
       pred=mdl.predict(x_valid)
       pred=pd.Series(pred, index=y_valid.index)
[104]: error_rf_dif=np.sqrt(mean_squared_error(y_valid, pred))
       print('RMSE_dif: %.3f' % error_rf_dif)
      RMSE_dif: 359.950
[105]: plot_actual_predicted(y_valid, pred, "Random Forest Fit")
[106]: # Inverse differencing and plot predicted values
       converted=pd.DataFrame()
       last_obs=train_data.iloc[-1][0]
       converted['Conv']=np.r [last obs, pred[0:]].cumsum()[1:]
[107]: error_rf=np.sqrt(mean_squared_error(test_data, converted))
       print('RMSE: %.3f' % error_rf)
```

RMSE: 261.448

```
[108]: plot_actual_predicted(test_data[0], converted['Conv'], "Random Forest_
        →Predictions")
[109]: perform.loc['RF', ('RMSE', 'Parameters')]=round(error_rf), "Differenced: 1, Lags:
       \hookrightarrow 4 , RM Window: 16"
       perform
[109]:
                             RMSE
                                                                           Parameters
      Models Popcorn Holder
      Moving Average
                              746
                                                                      Window size: 10
      Exponential Smoothing 781
                                                                 Seasonal_periods =52
      Arima
                              909
                                                   ARIMA(3,1,0)(2,1,0)[12]
      XGBoost
                              714 n_estimators=1000, max_depth=5,min_child_weight=1
                              790
                                                      Holidays, Seasonality: W, D, Y
      Prophet
                                          LSTM: 100, act = 'relu', input_shape: 16x1
      LSTM
                              905
      RF
                                             Differenced: 1, Lags: 4, RM Window: 16
                              261
[110]: #Random forrest seems to have the best fit by far. We will apply that model tou
        → the remaining two SKU's as our first choice.
[111]: # Therefore, the predicted order quantity for the 7 days from 11/27/2011 - 12/3/
       →2011 Sun - Sat
       PO_poph2=converted[0:7].sum()[0]
       print('Predicted Sales Quantity Total 11/27-12/3: %.3f' % PO_poph2)
      Predicted Sales Quantity Total 11/27-12/3: 3001.460
[112]: print('Actual Sales Quantity Total 11/27-12/3: %.3f' % test_data[0:7].sum()[0])
      Actual Sales Quantity Total 11/27-12/3: 3195.000
[113]: # Define a function to fit RF
       def RF_fit(data,lags, window):
           df_forecasting=pd.DataFrame(data)
           df_forecasting = df_forecasting.diff()
           df forecasting.columns=['Values']
           for i in range(lags, 0, -1):
               df_forecasting['t-'+str(i)] = df_forecasting['Values'].shift(i)
           df_forecasting=df_forecasting.dropna()
           df_forecasting['Values_Rolling'] = df_forecasting['Values'].rolling(window).
        →mean()
           df forecasting= df forecasting.dropna()
           x=df_forecasting.iloc[:,1:]
           y=df_forecasting.iloc[:,0]
           x_{train}, x_{valid} = x.loc[x.index < '2011-11-27'], x.loc[x.index >= 0]
```

```
y_{train}, y_{valid} = y.loc[y.index < '2011-11-27'], y.loc[y.index >=_{\sqcup}
mdl = rf=RandomForestRegressor(n_estimators=100)
   np.random.seed(55)
   mdl.fit(x_train, y_train)
   pred=mdl.predict(x valid)
   pred=pd.Series(pred, index=y_valid.index)
   error_rf_dif=np.sqrt(mean_squared_error(y_valid, pred))
   print('RMSE_dif: %.3f' % error_rf_dif)
   test_data=pd.DataFrame(data[data.index>='2011-11-27'].values)
   train_data=pd.DataFrame(data[data.index<'2011-11-27'].values)</pre>
   last_obs=train_data.iloc[-1][0]
   #Let's inverse differencing and plot predicted values
   converted=pd.DataFrame()
   converted['Conv']=np.r_[last_obs, pred[0:]].cumsum()[1:]
   error_rf=np.sqrt(mean_squared_error(test_data, converted))
   print('RMSE: %.3f' % error_rf)
   plot_actual_predicted(test_data[0], converted['Conv'], "Random Forest_
→Predictions")
   #Therefore, the predicted order quantity for the 7 days from 11/27/2011 -
→12/3/2011 Sun - Sat
   purchase_order=converted[0:7].sum()[0]
   print('Predicted Sales Quantity Total 11/27-12/3: %.3f' % purchase order)
   print('Actual Sales Quantity Total 11/27-12/3: %.3f' % test_data[0:7].
\rightarrowsum()[0])
   return purchase_order
```

2.8 Predicting Quantities: Popcorn Holder

[117]: predict_orders (poph, PO_poph2).head()

[117]:		Historical	Actual	Ratio	Predictions
	Country				
	United Kingdom	12783	3083	0.98	2941.0
	Italy	100	0	0.01	30.0
	EIRE	92	12	0.01	30.0
	France	54	0	0.00	0.0
	Belgium	36	0	0.00	0.0

2.9 Predicting quantities: Vintage Doily Jumbo Bag Red

RMSE_dif: 521.429 RMSE: 362.303

Predicted Sales Quantity Total 11/27-12/3: 602.360 Actual Sales Quantity Total 11/27-12/3: 1851.000

[119]: predict_orders(vinb, PO_vinb2).head()

[119]:		Historical	Actual	Ratio	Predictions	
	Country					
	United Kingdom	2125	1830	0.94	566.0	
	Portugal	40	0	0.02	12.0	
	France	35	10	0.02	12.0	
	Germany	20	10	0.01	6.0	
	Finland	20	0	0.01	6.0	

2.10 Predicting Quantities: Rabbit Night Light

```
[120]: # Fit the Random Forest to Rabbit Night Light data
[121]: PO_rabl2=RF_fit(rabl2, 4, 1)
      RMSE_dif: 485.418
      RMSE: 337.100
      Predicted Sales Quantity Total 11/27-12/3: 3906.450
      Actual Sales Quantity Total 11/27-12/3: 4588.000
[122]: predict_orders(rabl, PO_rabl2).head()
[122]:
                       Historical Actual Ratio Predictions
       Country
       United Kingdom
                             8784
                                      1985
                                             0.51
                                                        1992.0
       Netherlands
                                             0.15
                             2616
                                         0
                                                         586.0
       France
                                             0.14
                             2326
                                      383
                                                         547.0
                                             0.10
       Australia
                             1632
                                                         391.0
                             1080
                                             0.06
                                                         234.0
       Japan
                                      2040
[123]: # Japan's order is obviously underpredicted
[124]: rabl[rabl.Country=="Japan"] #It was unusual order for that country
[124]:
                   InvoiceNo StockCode
                                                Description Quantity UnitPrice \
       InvoiceDate
       2011-06-22
                      557670
                                 23084
                                        RABBIT NIGHT LIGHT
                                                                  288
                                                                             1.79
       2011-10-26
                      572869
                                 23084
                                        RABBIT NIGHT LIGHT
                                                                  960
                                                                             1.79
                                 23084 RABBIT NIGHT LIGHT
                                                                             1.79
       2011-11-17
                      576923
                                                                  120
       2011-11-29
                      579498
                                 23084
                                        RABBIT NIGHT LIGHT
                                                                 2040
                                                                             1.79
       2011-12-06
                     C580832
                                 23084 RABBIT NIGHT LIGHT
                                                                   -7
                                                                             1.79
                    CustomerID Country
       InvoiceDate
       2011-06-22
                       12798.0
                                 Japan
       2011-10-26
                       12798.0
                                 Japan
       2011-11-17
                       12753.0
                                 Japan
       2011-11-29
                       12798.0
                                 Japan
       2011-12-06
                       12753.0
                                 Japan
[125]: # Add predicted orders to top3 dataframe
       orders={'Rabbit_Night_Light': round(PO_rabl2), 'Popcorn_Holder':u
        →round(PO_poph2), 'Vintage_Doily_Jumbo_Bag': round(PO_vinb2)}
      top3['Description']=[x for x in pd.DataFrame(orders.items())[0]]
[126]:
       top3['Predicted_Order_ML']=[x for x in pd.DataFrame(orders.items())[1]]
[127]:
```

```
[128]: top3
[128]:
                  Quantity
                                        Description Predicted_Order_ML
      StockCode
       23084
                      4588
                                 Rabbit Night Light
                                                                    3906
       22197
                                     Popcorn_Holder
                                                                    3001
                      3195
       23582
                      1851
                            Vintage_Doily_Jumbo_Bag
                                                                     602
[129]: | # A workable solution to address understock is to add a safety stock:
       # Safety stock ss = std(delivery_lead_time) * importance_factor
       # Since we don't have that data, we can substitute:
       # ss = std(daily_quantity) * (days_of_prediction) * (model_confidence_factor)
       # Therefore, our prediction could be the following:
       # Predicted_Order = Predicted_Order_ML + ss
[130]: model_confidence_factor=[0.3, 0.1, 0.9]
       stdevs=[np.std(rabl2.values)*6,np.std(poph2)*6,np.std(vinb2)*6]
[131]: ss = [round(a * b) for a, b in zip(model_confidence factor, stdevs)]
       print(ss)
      [645, 224, 1201]
[132]: top3.insert(2, "Safety_Stock", ss)
[133]: top3['Final_Order']=top3.Safety_Stock+top3.Predicted_Order_ML
[134]: top3
[134]:
                                        Description Safety_Stock \
                  Quantity
       StockCode
       23084
                      4588
                                 Rabbit Night Light
                                                               645
       22197
                      3195
                                     Popcorn_Holder
                                                               224
       23582
                      1851
                           Vintage_Doily_Jumbo_Bag
                                                              1201
                  Predicted Order ML Final Order
       StockCode
       23084
                                3906
                                             4551
       22197
                                3001
                                              3225
       23582
                                 602
                                             1803
[135]: # Aggregate the results
       rabbit_light=predict_orders(rabl, top3.Final_Order.values[0])
       rabbit_light.head()
[135]:
                       Historical Actual Ratio Predictions
       Country
```

0.51

United Kingdom

8784

1985

2321.0

```
0.15
       Netherlands
                            2616
                                       0
                                                       683.0
       France
                            2326
                                           0.14
                                                       637.0
                                     383
                                           0.10
       Australia
                            1632
                                       0
                                                       455.0
                                           0.06
                            1080
                                                       273.0
       Japan
                                     2040
[136]: popcorn_holder=predict_orders(poph, top3.Final_Order.values[1])
       popcorn holder.head()
[136]:
                      Historical Actual Ratio Predictions
       Country
      United Kingdom
                            12783
                                    3083
                                           0.98
                                                      3160.0
       Italy
                              100
                                       0
                                           0.01
                                                        32.0
      EIRE
                              92
                                      12
                                           0.01
                                                        32.0
      France
                              54
                                       0
                                           0.00
                                                         0.0
       Belgium
                              36
                                       0
                                           0.00
                                                         0.0
[137]: vintage_bag=predict_orders(vinb, top3.Final_Order.values[2])
       vintage_bag.head()
[137]:
                      Historical Actual Ratio Predictions
       Country
                            2125
                                    1830
                                           0.94
                                                      1695.0
       United Kingdom
                                           0.02
                              40
                                                        36.0
       Portugal
                                       0
                              35
                                           0.02
                                                        36.0
       France
                                      10
       Germany
                              20
                                      10
                                           0.01
                                                        18.0
                                           0.01
       Finland
                              20
                                       0
                                                        18.0
[138]: step1=pd.merge(rabbit_light, popcorn_holder, on = 'Country', how='outer')
[139]: final_data=pd.merge(step1, vintage_bag, on = 'Country', how='outer')
[140]: |final_data.columns=['Hist_rabbbit_light', 'Act_rabbit_light', 'R_rabbit_light', u
        →'Preds_rabbit_light', 'Hist_popcorn_holder', 'Act_popcorn_holder',

¬'R_popcorn_holder', \
                           'Preds_popcorn_holder', 'Hist_vintage_bag', __
        [141]: final data
[141]:
                            Hist_rabbit_light Act_rabbit_light R_rabbit_light \
       Country
      United Kingdom
                                          8784
                                                            1985
                                                                            0.51
       Netherlands
                                                                            0.15
                                          2616
                                                               0
      France
                                          2326
                                                             383
                                                                            0.14
      Australia
                                                                            0.10
                                          1632
                                                               0
                                                                            0.06
       Japan
                                          1080
                                                            2040
       Germany
                                           192
                                                              72
                                                                            0.01
       Belgium
                                           108
                                                               0
                                                                            0.01
```

Finland	96	48	0.01
Sweden	84	0	0.00
EIRE	48	0	0.00
Iceland	48	0	0.00
Italy	48	0	0.00
Denmark	24	12	0.00
Portugal	18	48	0.00
Unspecified	12	0	0.00
Norway	12	0	0.00
Switzerland	12	0	0.00
Spain	6	0	0.00
Lithuania	0	0	0.00
USA	0	0	0.00
Austria	0	0	0.00
Bahrain	0	0	0.00
United Arab Emirates	0	0	0.00
Brazil	0	0	0.00
Canada	0	0	0.00
Channel Islands	0	0	0.00
Cyprus	0	0	0.00
Czech Republic	0	0	0.00
European Community	0	0	0.00
Lebanon	0	0	0.00
Singapore	0	0	0.00
Saudi Arabia	0	0	0.00
Greece	0	0	0.00
Hong Kong	0	0	0.00
RSA	0	0	0.00
Poland	0	0	0.00
Malta	0	0	0.00
Israel	0	0	0.00
	Preds_rabbit_light	Hist_popcorn_holder	\

Preds_rabbit_light Hist_popcorn_holder \

Country	_	
United Kingdom	2321.0	12783
Netherlands	683.0	0
France	637.0	54
Australia	455.0	0
Japan	273.0	0
Germany	46.0	0
Belgium	46.0	36
Finland	46.0	0
Sweden	0.0	0
EIRE	0.0	92
Iceland	0.0	0
Italy	0.0	100
Denmark	0.0	0

Portugal	0.0		0
Unspecified	0.0		0
Norway	0.0		0
Switzerland	0.0		0
Spain	0.0		36
Lithuania	0.0		0
USA	0.0		0
Austria	0.0		0
Bahrain	0.0		0
United Arab Emirates	0.0		0
Brazil	0.0		0
Canada	0.0		0
Channel Islands	0.0		0
Cyprus	0.0		0
Czech Republic	0.0		0
European Community	0.0		0
Lebanon	0.0		0
Singapore	0.0		0
Saudi Arabia	0.0		0
Greece	0.0		0
Hong Kong	0.0		0
RSA	0.0		0
Poland	0.0		0
Malta	0.0		^
raita	0.0		U
Israel	0.0		0
Israel		R_popcorn_holder	
Israel Country	0.0 Act_popcorn_holder		0
Israel Country United Kingdom	0.0 Act_popcorn_holder	0.98	0
Israel Country	0.0 Act_popcorn_holder 3083 0	0.98	0
Israel Country United Kingdom Netherlands France	0.0 Act_popcorn_holder 3083 0 0	0.98 0.00 0.00	0
Israel Country United Kingdom Netherlands France Australia	0.0 Act_popcorn_holder 3083 0 0 0	0.98 0.00 0.00 0.00	0
Country United Kingdom Netherlands France Australia Japan	0.0 Act_popcorn_holder 3083 0 0 0 0	0.98 0.00 0.00 0.00	0
Country United Kingdom Netherlands France Australia Japan Germany	0.0 Act_popcorn_holder 3083 0 0 0 0 0	0.98 0.00 0.00 0.00 0.00	0
Country United Kingdom Netherlands France Australia Japan Germany Belgium	0.0 Act_popcorn_holder 3083 0 0 0 0 0 0 0	0.98 0.00 0.00 0.00 0.00 0.00	0
Country United Kingdom Netherlands France Australia Japan Germany Belgium Finland	0.0 Act_popcorn_holder 3083 0 0 0 0 0 0 0 0 0	0.98 0.00 0.00 0.00 0.00 0.00 0.00	0
Country United Kingdom Netherlands France Australia Japan Germany Belgium Finland Sweden	0.0 Act_popcorn_holder 3083 0 0 0 0 0 0 0 0 0 0 0	0.98 0.00 0.00 0.00 0.00 0.00 0.00	0
Country United Kingdom Netherlands France Australia Japan Germany Belgium Finland Sweden EIRE	0.0 Act_popcorn_holder 3083 0 0 0 0 0 0 0 0 12	0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0
Country United Kingdom Netherlands France Australia Japan Germany Belgium Finland Sweden EIRE Iceland	0.0 Act_popcorn_holder 3083 0 0 0 0 0 0 0 12 0	0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0
Country United Kingdom Netherlands France Australia Japan Germany Belgium Finland Sweden EIRE Iceland Italy	0.0 Act_popcorn_holder 3083 0 0 0 0 0 0 0 12 0 0	0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01	0
Country United Kingdom Netherlands France Australia Japan Germany Belgium Finland Sweden EIRE Iceland Italy Denmark	0.0 Act_popcorn_holder 3083 0 0 0 0 0 0 0 12 0	0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01	0
Country United Kingdom Netherlands France Australia Japan Germany Belgium Finland Sweden EIRE Iceland Italy Denmark Portugal	0.0 Act_popcorn_holder 3083 0 0 0 0 0 0 0 12 0 0	0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01	0
Country United Kingdom Netherlands France Australia Japan Germany Belgium Finland Sweden EIRE Iceland Italy Denmark Portugal Unspecified	0.0 Act_popcorn_holder 3083 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0	0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00	0
Country United Kingdom Netherlands France Australia Japan Germany Belgium Finland Sweden EIRE Iceland Italy Denmark Portugal Unspecified Norway	0.0 Act_popcorn_holder 3083 0 0 0 0 0 0 0 12 0 0 0 0 0 12 0 0 17 0 0 0 0 100	0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00	0
Country United Kingdom Netherlands France Australia Japan Germany Belgium Finland Sweden EIRE Iceland Italy Denmark Portugal Unspecified Norway Switzerland	0.0 Act_popcorn_holder 3083 0 0 0 0 0 0 0 12 0 0 0 0 12 0 0 100 0	0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00	0
Country United Kingdom Netherlands France Australia Japan Germany Belgium Finland Sweden EIRE Iceland Italy Denmark Portugal Unspecified Norway	0.0 Act_popcorn_holder 3083 0 0 0 0 0 0 0 12 0 0 0 0 0 12 0 0 17 0 0 0 0 100	0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00	0

USA Austria Bahrain United Arab Emirates Brazil Canada Channel Islands Cyprus Czech Republic European Community Lebanon Singapore Saudi Arabia Greece Hong Kong RSA Poland Malta Israel		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
	Preds_popcorn_holder	Hist_vintage_bag	Act_vintage_bag \
Country United Kingdom Netherlands France Australia Japan Germany Belgium Finland Sweden EIRE Iceland Italy Denmark Portugal Unspecified Norway Switzerland Spain Lithuania	3160.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2125 1 35 0 0 20 0 20 0 0 0 10 0 40 0 0 0	1830 0 10 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
USA Austria Bahrain United Arab Emirates Brazil Canada	0.0 0.0 0.0 0.0 0.0	0 0 0 0 0	0 0 0 0 0

Channel Islands	0.0	10	0
Cyprus	0.0	0	0
Czech Republic	0.0	0	0
European Community	0.0	0	0
Lebanon	0.0	0	0
Singapore	0.0	0	0
Saudi Arabia	0.0	0	0
Greece	0.0	0	0
Hong Kong	0.0	0	0
RSA	0.0	0	0
Poland	0.0	0	0
Malta	0.0	0	0
Israel	0.0	0	0

	- 100-10	
Country		
United Kingdom	0.94	1695.0
Netherlands	0.00	0.0
France	0.02	36.0
Australia	0.00	0.0
Japan	0.00	0.0
Germany	0.01	18.0
Belgium	0.00	0.0
Finland	0.01	18.0
Sweden	0.00	0.0
EIRE	0.00	0.0
Iceland	0.00	0.0
Italy	0.00	0.0
Denmark	0.00	0.0
Portugal	0.02	36.0
Unspecified	0.00	0.0
Norway	0.00	0.0
Switzerland	0.00	0.0
Spain	0.00	0.0
Lithuania	0.00	0.0
USA	0.00	0.0
Austria	0.00	0.0
Bahrain	0.00	0.0
United Arab Emirates	0.00	0.0
Brazil	0.00	0.0
Canada	0.00	0.0
Channel Islands	0.00	0.0
Cyprus	0.00	0.0
Czech Republic	0.00	0.0
European Community	0.00	0.0
Lebanon	0.00	0.0
Singapore	0.00	0.0

```
Saudi Arabia
                                0.00
                                                     0.0
                                0.00
                                                     0.0
Greece
                                0.00
Hong Kong
                                                     0.0
RSA
                                0.00
                                                     0.0
Poland
                                0.00
                                                     0.0
Malta
                                0.00
                                                     0.0
Israel
                                0.00
                                                     0.0
```

[142]: final_data.to_csv(r'Tatsiana_Sokalava}_result.csv', index = True, header=True)

3 Thank you!