Tugas Materi 5

Zul Fauzi Oktaviansyah

2110181056

3 - D4 IT - B

Dataset

```
In [2]: dataset = pd.read csv('titanic.csv')
          dataset
Out[2]:
                Passengerld Survived Pclass
                                                                                   Name
                                                                                            Sex Age SibSp Parch
                                                                                                                                Ticket
                                                                                                                                          Fare Cabin Embarked
                                                                   Braund, Mr. Owen Harris
                                                                                           male 22.0
                                                                                                                             A/5 21171
                                                                                                                                        7.2500
                                                                                                                                                 NaN
                                                                                                                                                              S
                                           1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
                                                                                                                             PC 17599 71.2833
                                                                                                                                                 C85
                                                                                                                                                              С
                          3
                                                                     Heikkinen, Miss. Laina female 26.0
                                                                                                                  0 STON/O2. 3101282
                                                                                                                                        7.9250
                                                                                                                                                              S
                                                                                                                                                 NaN
                                                   Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
                                                                                                                                                C123
                                                                                                                                                              S
                                                                                                                               113803
                                                                                                                                      53.1000
                          5
                                   0
                                           3
                                                                    Allen, Mr. William Henry
                                                                                           male 35.0
                                                                                                           0
                                                                                                                  0
                                                                                                                               373450
                                                                                                                                        8.0500
                                                                                                                                                 NaN
                                                                                                                                                              S
            •••
                                           2
                                                                      Montvila, Rev. Juozas
           886
                        887
                                   0
                                                                                           male 27.0
                                                                                                                  0
                                                                                                                               211536
                                                                                                                                      13.0000
                                                                                                                                                 NaN
                                                                                                                                                              S
           887
                                                               Graham, Miss. Margaret Edith
                                                                                                                                                              S
                        888
                                                                                                                                      30.0000
                                                                                                                                                 B42
                                                                                                                               112053
           888
                        889
                                   0
                                                      Johnston, Miss. Catherine Helen "Carrie" female NaN
                                                                                                                            W./C. 6607 23.4500
                                                                                                                                                 NaN
                                                                                                                                                              S
           889
                        890
                                                                                                                  0
                                                                      Behr, Mr. Karl Howell
                                                                                           male 26.0
                                                                                                                               111369
                                                                                                                                       30.0000
                                                                                                                                                C148
                                                                        Dooley, Mr. Patrick
                                                                                           male 32.0
           890
                                                                                                                               370376 7.7500
                                                                                                                                                NaN
                                                                                                                                                              Q
```

Pengambilan dataset

891 rows × 12 columns

```
In [3]: from sklearn.model_selection import train_test_split
In [4]: label = dataset['Survived']
In [5]: X_train, X_test, Y_train, Y_test = train_test_split(dataset, label, train_size=0.7, test_size=0.3)
```

Menggunakan train_test_split dipisah antara label dengan dataset antara train = 0.7 Dan test = 0.3

In [6]: X_train

Out[6]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
283	284	1	3	Dorking, Mr. Edward Arthur	male	19.0	0	0	A/5. 10482	8.0500	NaN	S
16	17	0	3	Rice, Master. Eugene	male	2.0	4	1	382652	29.1250	NaN	Q
84	85	1	2	llett, Miss. Bertha	female	17.0	0	0	SO/C 14885	10.5000	NaN	S
749	750	0	3	Connaghton, Mr. Michael	male	31.0	0	0	335097	7.7500	NaN	Q
244	245	0	3	Attalah, Mr. Sleiman	male	30.0	0	0	2694	7.2250	NaN	С
179	180	0	3	Leonard, Mr. Lionel	male	36.0	0	0	LINE	0.0000	NaN	S
82	83	1	3	McDermott, Miss. Brigdet Delia	female	NaN	0	0	330932	7.7875	NaN	Q
603	604	0	3	Torber, Mr. Ernst William	male	44.0	0	0	364511	8.0500	NaN	S
685	686	0	2	Laroche, Mr. Joseph Philippe Lemercier	male	25.0	1	2	SC/Paris 2123	41.5792	NaN	С
259	260	1	2	Parrish, Mrs. (Lutie Davis)	female	50.0	0	1	230433	26.0000	NaN	S

623 rows × 12 columns

In [7]: X_test

Out[7]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
19	20	1	3	Masselmani, Mrs. Fatima	female	NaN	0	0	2649	7.2250	NaN	С
587	588	1	1	Frolicher-Stehli, Mr. Maxmillian	male	60.0	1	1	13567	79.2000	B41	С
552	553	0	3	O'Brien, Mr. Timothy	male	NaN	0	0	330979	7.8292	NaN	Q
497	498	0	3	Shellard, Mr. Frederick William	male	NaN	0	0	C.A. 6212	15.1000	NaN	S
554	555	1	3	Ohman, Miss. Velin	female	22.0	0	0	347085	7.7750	NaN	S
569	570	1	3	Jonsson, Mr. Carl	male	32.0	0	0	350417	7.8542	NaN	S
708	709	1	1	Cleaver, Miss. Alice	female	22.0	0	0	113781	151.5500	NaN	S
58	59	1	2	West, Miss. Constance Mirium	female	5.0	1	2	C.A. 34651	27.7500	NaN	S
503	504	0	3	Laitinen, Miss. Kristina Sofia	female	37.0	0	0	4135	9.5875	NaN	S
215	216	1	1	Newell, Miss. Madeleine	female	31.0	1	0	35273	113.2750	D36	С

268 rows × 12 columns

Hasil x_test

Hasil Y_train

Hasil y_test

```
In [10]: train_data = X_train[['Sex', 'Age', 'Pclass', 'Fare']]
          train data
Out[10]:
                       Age Pclass
                                       Fare
                male 19.00
                                     8.0500
                 male 31.00
                                    37.0042
                                    19.9667
                 male
                      NaN
           141 female 22.00
                                     7.7500
               female 45.00
                                1 164.8667
                                2 24.0000
                 male 30.00
                 male 48.00
                                    52.0000
           712
                 male 59.00
                                     7.2500
                      0.42
                                     8.5167
                 male
                 male
                      9.00
                                3 15.9000
```

623 rows × 4 columns

Mengambil beberapa kolom saja dari x_train

```
In [11]: test_data = X_test[['Sex', 'Age', 'Pclass', 'Fare']]
         test_data
Out[11]:
                 Sex Age Pclass
                                     Fare
           19 female NaN
                                   7.2250
                male 60.0
                                  79.2000
                male NaN
                                  7.8292
                male NaN
                                  15.1000
                                   7.7750
           554 female 22.0
                male 32.0
                                  7.8542
           708 female 22.0
                               1 151.5500
                               2 27.7500
           58 female
                      5.0
           503 female 37.0
                                   9.5875
           215 female 31.0
                               1 113.2750
```

Mengambil beberapa kolom saja dari x_train

268 rows × 4 columns

```
In [13]: mean = train_data["Age"].mean()
mean

Out[13]: 30.080483870967743

In [14]: train_data["Age"]= train_data["Age"].replace(np.nan, mean)
```

Mengisi nilai na dengan rata2 kolom tersebut

In [15]: train_data

Out[15]:

	Sex	Age	Pclass	Fare
283	male	19.000000	3	8.0500
817	male	31.000000	2	37.0042
451	male	30.080484	3	19.9667
141	female	22.000000	3	7.7500
856	female	45.000000	1	164.8667
308	male	30.000000	2	24.0000
712	male	48.000000	1	52.0000
94	male	59.000000	3	7.2500
803	male	0.420000	3	8.5167
489	male	9.000000	3	15.9000

623 rows × 4 columns

```
In [16]: test_data["Age"]= test_data["Age"].replace(np.nan, 0)
```

Mengisi nilai na dengan 0

In [17]: test_data

Out[17]:

	Sex	Age	Pclass	Fare
19	female	0.0	3	7.2250
587	male	60.0	1	79.2000
552	male	0.0	3	7.8292
497	male	0.0	3	15.1000
554	female	22.0	3	7.7750
569	male	32.0	3	7.8542
708	female	22.0	1	151.5500
58	female	5.0	2	27.7500
503	female	37.0	3	9.5875
215	female	31.0	1	113.2750

268 rows × 4 columns

Menormalisasikan train dan test data

```
In [23]: from sklearn.neighbors import KNeighborsClassifier
In [24]: kNN=KNeighborsClassifier(n neighbors=3, weights='distance')
In [25]: kNN.fit(norm train data, Y train)
        class result = kNN.predict(norm test data)
        class result
0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1,
               0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1,
               0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1,
               0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
               0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0,
               1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0,
               1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0,
               1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0,
               0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1,
               1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0,
               1, 1, 0, 1], dtype=int64)
```

Melatih model dengan hasil normalisasi, dan yg bukan, kemudian melakukan prediksi pada Hasil normaliasi dari test data

```
In [26]: precision_ratio=kNN.score(norm_test_data, Y_test)
In [27]: error_ratio=1-precision_ratio
In [28]: error_ratio
Out[28]: 0.4253731343283582
```

Melakukan perbandingan antara prediksi dan sebenarnya, kemudian Dihitung errornya

K Fold

```
In [29]: from sklearn.model_selection import KFold

In [30]: mean3 = dataset["Age"].mean()
    dataset["Age"] = dataset["Age"].replace(np.nan, mean3)
    dataset3 = min_max_scaling(dataset[['Age', 'Fare']])

In [31]: kf=KFold(n_splits=10, shuffle=False)
    print(kf)

    KFold(n_splits=10, random_state=None, shuffle=False)

In [32]: X_train = []
    X_test = []
    Y_train = []
    Y_test = []
    Y_test = []
    X = np.array(dataset[['Age', 'Fare']])
    Y = np.array(label)
```

Mengisi nilai na pada kolom age dengan rata2 kolom, kemudian menginisialisasikan kfold = 10 Menggunakan library sklearn

K Fold

```
In [33]: for train index, test index in kf.split(X):
                                                X train.append(X[train index])
                                                X test.append(X[test index])
                                                Y train.append(Y[train index])
                                                Y test.append(Y[test index])
In [34]: X train = np.array(X train[0])
                                 X test = np.array(X test[0])
                                  Y train = np.array(Y train[0])
                                  Y test = np.array(Y test[0])
In [35]: kNN=KNeighborsClassifier(n neighbors=3, weights='distance')
In [36]: kNN.fit(X train, Y train)
                                  class result = kNN.predict(X test)
                                  class result
Out[36]: array([0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
                                                            1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                                                            0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                                                            0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
                                                           1, 0], dtype=int64)
```

Menampung hasil kfold, dengan Variabel baru kemudian diubah Tipe data tersebut menjadi Numpy array

Kemudian dilakukan KNN Dengan K = 3 dan train data Test data hasil dari kfold

K Fold

```
In [37]: precision_ratio=kNN.score(X_test, Y_test)
In [38]: error_ratio=1-precision_ratio
In [39]: error_ratio
Out[39]: 0.4555555555555556
```

Menghitung nilai error dari kfold

Leave One Out

```
In [40]: from sklearn.model_selection import LeaveOneOut
In [41]: loo = LeaveOneOut()
In [42]: loo.get n splits(X)
Out[42]: 891
In [43]: X_train2 = []
         X test2 = []
         Y test2 = []
         X2 = np.array(dataset[['Age', 'Fare']])
         Y2 = np.array(label)
In [44]: for train_index, test_index in loo.split(X):
             X train2 = X2[train index]
             temp2 = X2[test index]
             X_test2.append(temp2[0])
             Y train2 = Y2[train index]
             temp = Y2[test index]
             Y test2.append(temp[0])
```

Menginisialisasikan leaveoneout Dengan library sklearn Kemudian menampung hasil dari Leaveone out melalui variable penampung

Leave One Out

```
In [45]: X test2 = np.array(X test2)
         Y_test2 = np.array(Y_test2)
In [46]: kNN=KNeighborsClassifier(n neighbors=3, weights='distance')
In [47]: kNN.fit(X train2, Y train2)
         class_result = kNN.predict(X_test2)
         class result
Out[47]: array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
                1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
                1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1,
                0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,
                1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0,
                0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0,
                0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
                0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0,
                0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1,
                0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1,
                1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0,
```

Mengubah tipe data menjadi Numpy array, kemudian Dilakukan proses KNN Dan prediksi

Leave One Out

```
In [48]: precision_ratio=kNN.score(X_test2, Y_test2)
In [49]: error_ratio=1-precision_ratio
In [50]: error_ratio
Out[50]: 0.0505050505050505
```

Menghitung nilai error dari leave one out