Übersicht

- 2 Grundlagen
 - 2.1 Probleme und Funktionen
 - 2.2 Rechnermodelle
 - 2.2.1 Turingmaschinen
 - 2.2.2 Registermaschinen
 - 2.2.3 Church-Turing These

Turingmaschine (TM) pprox endlicher Automat mit Band mit unendlich vielen Speicherzellen

- Es gibt Lese-/Schreibkopf, der zu jedem Zeitpunkt auf einer Zelle steht.
- In jeder Zelle steht ein Zeichen aus endlichem Bandalphabet Γ.
- Zu jedem Zeitpunkt ist die TM in einem Zustand aus endlicher Zustandsmenge Q.
- Abhängig vom Zustand und dem gelesenen Zeichen
 - (1) ändert die TM ihren Zustand,
 - (2) schreibt ein Zeichen
 - (3) und bewegt den Kopf.

Definition 2.1

- Q, die Zustandsmenge, ist eine endliche Menge von Zuständen.
- $\Sigma \supseteq \{0,1\}$, das Eingabealphabet, ist eine endliche Menge von Zeichen.
- $\Gamma \supseteq \Sigma$, das Bandalphabet, ist eine endliche Menge von Zeichen.
- $\square \in \Gamma \setminus \Sigma$ ist das Leerzeichen.
- $q_0 \in Q$ ist der Startzustand.
- \bar{q} ist der Endzustand.
- $\delta: (Q \setminus \{\bar{q}\}) \times \Gamma \to Q \times \Gamma \times \{L, N, R\}$ ist die **Zustandsüberführungsfunktion**.

Definition 2.1

- *Q*, die **Zustandsmenge**, ist eine endliche Menge von **Zuständen**.
- $\Sigma \supseteq \{0,1\}$, das **Eingabealphabet**, ist eine endliche Menge von Zeichen.
- $\Gamma \supseteq \Sigma$, das Bandalphabet, ist eine endliche Menge von Zeichen.
- $\square \in \Gamma \setminus \Sigma$ ist das Leerzeichen.
- $q_0 \in Q$ ist der Startzustand.
- \bar{q} ist der Endzustand.
- $\delta: (Q \setminus \{\bar{q}\}) \times \Gamma \to Q \times \Gamma \times \{L, N, R\}$ ist die **Zustandsüberführungsfunktion**.

Definition 2.1

- Q, die Zustandsmenge, ist eine endliche Menge von Zuständen.
- $\Sigma \supseteq \{0,1\}$, das Eingabealphabet, ist eine endliche Menge von Zeichen.
- $\Gamma \supseteq \Sigma$, das Bandalphabet, ist eine endliche Menge von Zeichen.
- $\square \in \Gamma \setminus \Sigma$ ist das Leerzeichen.
- $q_0 \in Q$ ist der Startzustand.
- \bar{q} ist der Endzustand.
- $\delta: (Q \setminus \{\bar{q}\}) \times \Gamma \to Q \times \Gamma \times \{L, N, R\}$ ist die Zustandsüberführungsfunktion.

Definition 2.1

- *Q*, die **Zustandsmenge**, ist eine endliche Menge von **Zuständen**.
- $\Sigma \supseteq \{0,1\}$, das **Eingabealphabet**, ist eine endliche Menge von Zeichen.
- $\Gamma \supseteq \Sigma$, das Bandalphabet, ist eine endliche Menge von Zeichen.
- $\square \in \Gamma \setminus \Sigma$ ist das Leerzeichen.
- $q_0 \in Q$ ist der Startzustand.
- \bar{q} ist der Endzustand.
- $\delta: (Q \setminus \{\bar{q}\}) \times \Gamma \to Q \times \Gamma \times \{L, N, R\}$ ist die **Zustandsüberführungsfunktion**.

Initialisierung:

- Eingabe $w = w_1 \dots w_n \in \Sigma^*$ steht auf dem Band
- links und rechts von der Eingabe nur Leerzeichen
- Kopf steht auf erstem Zeichen der Eingabe
- Zustand q_0

Beispiel

Eingabe: 1001

Ausgabe:

- ullet Wenn Zustand $ar{q}$ erreicht wird, produziert TM eine Ausgabe.
- Ausgabe beginnt an Kopfposition.
- $\bullet\,$ Ausgabe endet direkt vor dem ersten Zeichen aus $\Gamma\setminus\Sigma$

Beispiel

Ausgabe: 01

Definition (partielle Funktion)

Eine Relation $R \subseteq A \times B$ zwischen den Mengen A und B ist eine Funktion $f: A \to B$, wenn folgende Eigenschaften gelten:

(i)
$$\forall a \in A \exists b \in B : (a, b) \in R$$

(linksvollständig oder linkstotal)

(ii)
$$\forall a \in A \, \forall b, c \in B : (a, b) \in R \land (a, c) \in R \rightarrow b = c$$
 (rechtseindeutig)

Definition (partielle Funktion)

Eine Relation $R \subseteq A \times B$ zwischen den Mengen A und B ist eine Funktion $f \colon A \to B$, wenn folgende Eigenschaften gelten:

(i)
$$\forall a \in A \exists b \in B : (a, b) \in R$$
 (linksvollständig oder linkstotal)

(ii)
$$\forall a \in A \, \forall b, c \in B : (a, b) \in R \land (a, c) \in R \rightarrow b = c$$
 (rechtseindeutig)

Eine Relation für die nur (ii) aber nicht (i) gilt, wird auch als partielle Funktion bezeichnet. Eine partielle Funktion kann als Funktion \bar{f} modelliert werden, mit

$$ar{f}\colon A o B\cup\{ot\},\quad a\mapsto egin{cases} f(a) & ext{falls }a\in \mathsf{Def}(f)\ ot & ext{sonst} \end{cases}$$

wobei wir annehmen, dass $\bot \notin B$.

Definition (Funktion einer Turingmaschine)

Mit jeder TM M kann man eine Funktion $f_M \colon \Sigma^* \to \Sigma^* \cup \{\bot\}$ assoziieren, die für jede Eingabe $w \in \Sigma^*$ angibt, welche Ausgabe $f_M(w)$ die TM bei dieser Eingabe produziert.

Definition (Funktion einer Turingmaschine)

Mit jeder TM M kann man eine Funktion $f_M \colon \Sigma^* \to \Sigma^* \cup \{\bot\}$ assoziieren, die für jede Eingabe $w \in \Sigma^*$ angibt, welche Ausgabe $f_M(w)$ die TM bei dieser Eingabe produziert.

Erreicht die Turingmaschine M bei einer Eingabe w den Endzustand \bar{q} nicht nach endlich vielen Schritten, so sagen wir, dass sie bei Eingabe w nicht hält (oder nicht terminiert), und wir definieren $f_M(w) = \bot$.

Definition (Funktion einer Turingmaschine)

Mit jeder TM M kann man eine Funktion $f_M \colon \Sigma^* \to \Sigma^* \cup \{\bot\}$ assoziieren, die für jede Eingabe $w \in \Sigma^*$ angibt, welche Ausgabe $f_M(w)$ die TM bei dieser Eingabe produziert.

Erreicht die Turingmaschine M bei einer Eingabe w den Endzustand \bar{q} nicht nach endlich vielen Schritten, so sagen wir, dass sie bei Eingabe w nicht hält (oder nicht terminiert), und wir definieren $f_M(w) = \bot$.

Wir sagen, dass die Turingmaschine M die Funktion f_M berechnet.

Definition (Funktion einer Turingmaschine)

Mit jeder TM M kann man eine Funktion $f_M \colon \Sigma^* \to \Sigma^* \cup \{\bot\}$ assoziieren, die für jede Eingabe $w \in \Sigma^*$ angibt, welche Ausgabe $f_M(w)$ die TM bei dieser Eingabe produziert.

Erreicht die Turingmaschine M bei einer Eingabe w den Endzustand \bar{q} nicht nach endlich vielen Schritten, so sagen wir, dass sie bei Eingabe w nicht hält (oder nicht terminiert), und wir definieren $f_M(w) = \bot$.

Wir sagen, dass die Turingmaschine M die Funktion f_M berechnet.

Definition 2.2

Eine (partielle) Funktion $f \colon \Sigma^* \to \Sigma^*$ heißt berechenbar (oder rekursiv), wenn es eine Turingmaschine M mit $f_M = f$ gibt. Für eine berechenbare Funktion f_M , die linkstotal ist, terminiert eine Turingmaschine M auf jeder Eingabe.

Definition 2.3

Eine Turingmaschine M akzeptiert eine Eingabe $w \in \Sigma^*$, wenn sie bei Eingabe w terminiert und ein Wort ausgibt, das mit 1 beginnt. Sie verwirft eine Eingabe $w \in \Sigma^*$, wenn sie bei Eingabe w terminiert und ein Wort ausgibt, das nicht mit 1 beginnt.

Definition 2.3

Eine Turingmaschine M akzeptiert eine Eingabe $w \in \Sigma^*$, wenn sie bei Eingabe w terminiert und ein Wort ausgibt, das mit 1 beginnt. Sie verwirft eine Eingabe $w \in \Sigma^*$, wenn sie bei Eingabe w terminiert und ein Wort ausgibt, das nicht mit 1 beginnt.

Eine Turingmaschine M entscheidet eine Sprache $L \subseteq \Sigma^*$, wenn sie jedes Wort $w \in L$ akzeptiert und jedes Wort $w \in \Sigma^* \setminus L$ verwirft.

Definition 2.3

Eine Turingmaschine M akzeptiert eine Eingabe $w \in \Sigma^*$, wenn sie bei Eingabe w terminiert und ein Wort ausgibt, das mit 1 beginnt. Sie verwirft eine Eingabe $w \in \Sigma^*$, wenn sie bei Eingabe w terminiert und ein Wort ausgibt, das nicht mit 1 beginnt.

Eine Turingmaschine M entscheidet eine Sprache $L \subseteq \Sigma^*$, wenn sie jedes Wort $w \in L$ akzeptiert und jedes Wort $w \in \Sigma^* \setminus L$ verwirft.

Eine Sprache $L \subseteq \{0,1\}^*$ heißt **entscheidbar** oder **rekursiv**, wenn es eine Turingmaschine M gibt, die L entscheidet. Wir sagen dann, dass M eine Turingmaschine für die Sprache L ist. Eine solche Turingmaschine terminiert insbesondere auf jeder Eingabe.

Beispiel:

Betrachte TM $M=(Q,\Sigma,\Gamma,\Box,q_0,\bar{q},\delta)$ mit $Q=\{q_0,q_1,q_2,\bar{q}\}, \Sigma=\{0,1\}$ und $\Gamma=\{0,1,\Box\}$. Die Zustandsüberführungsfunktion δ sei wie folgt:

	q_0		
0	$(q_1, 0, R)$	$(q_1,0,R)$	$(q_1, 0, R)$
1	$(q_0, 1, R)$	$(q_2, 1, R)$	$(q_0, 1, R)$
	$(q_1, 0, R)$ $(q_0, 1, R)$ $(\bar{q}, 0, N)$	$(\bar{q},0,N)$	$(\bar{q},1,N)$

Beispiel:

Betrachte TM
$$M=(Q,\Sigma,\Gamma,\Box,q_0,\bar{q},\delta)$$
 mit $Q=\{q_0,q_1,q_2,\bar{q}\}, \Sigma=\{0,1\}$ und $\Gamma=\{0,1,\Box\}$. Die Zustandsüberführungsfunktion δ sei wie folgt:

	q_0		
0	$(q_1, 0, R)$	$(q_1,0,R)$	$(q_1, 0, R)$
1	$(q_1, 0, R)$ $(q_0, 1, R)$ $(\bar{q}, 0, N)$	$(q_2, 1, R)$	$(q_0, 1, R)$
	$(\bar{q},0,N)$	$(\bar{q},0,N)$	$(\bar{q},1,N)$

Diese TM verhält sich wie ein endlicher Automat, der die Eingabe Zeichen für Zeichen von links nach rechts liest und dabei Zustandsübergänge durchführt. Sie akzeptiert die Eingabe genau dann, wenn sie das erste Leerzeichen im Zustand q_2 erreicht.

Beispiel:

Betrachte TM
$$M=(Q,\Sigma,\Gamma,\Box,q_0,\bar{q},\delta)$$
 mit $Q=\{q_0,q_1,q_2,\bar{q}\}, \Sigma=\{0,1\}$ und $\Gamma=\{0,1,\Box\}$. Die Zustandsüberführungsfunktion δ sei wie folgt:

$$\begin{array}{c|ccccc} q_0 & q_1 & q_2 \\ \hline 0 & (q_1,0,R) & (q_1,0,R) & (q_1,0,R) \\ 1 & (q_0,1,R) & (q_2,1,R) & (q_0,1,R) \\ \hline \Box & (\bar{q},0,N) & (\bar{q},0,N) & (\bar{q},1,N) \\ \hline \end{array}$$

Diese TM verhält sich wie ein endlicher Automat, der die Eingabe Zeichen für Zeichen von links nach rechts liest und dabei Zustandsübergänge durchführt. Sie akzeptiert die Eingabe genau dann, wenn sie das erste Leerzeichen im Zustand q_2 erreicht.

Zustand q_2 wird genau dann erreicht, wenn der bisher gelesene Teil der Eingabe mit 01 endet.

Techniken zum Entwurf von Turingmaschinen:

1. Variablen mit endlichen Wertebereichen

Möchte man beispielsweise eine Variable realisieren, die für ein festes $k \in \mathbb{N}$ Werte aus der Menge $\{0,\ldots,k\}$ annehmen kann, so kann man die Zustandsmenge Q zu der Menge $Q'=Q\times\{0,\ldots,k\}$ erweitern.

Techniken zum Entwurf von Turingmaschinen:

1. Variablen mit endlichen Wertebereichen

Möchte man beispielsweise eine Variable realisieren, die für ein festes $k \in \mathbb{N}$ Werte aus der Menge $\{0,\ldots,k\}$ annehmen kann, so kann man die Zustandsmenge Q zu der Menge $Q'=Q\times\{0,\ldots,k\}$ erweitern.

2. Bänder mit mehreren Spuren

In jeder Zelle stehen k Zeichen aus Γ , die alle gleichzeitig in einem Schritt gelesen und geschrieben werden. Ist $k \in \mathbb{N}$ eine Konstante, so kann dies dadurch realisiert werden, dass das Bandalphabet Γ zu $\Gamma' = \Sigma \cup \Gamma^k$ erweitert wird.

Techniken zum Entwurf von Turingmaschinen:

1. Variablen mit endlichen Wertebereichen

Möchte man beispielsweise eine Variable realisieren, die für ein festes $k \in \mathbb{N}$ Werte aus der Menge $\{0,\ldots,k\}$ annehmen kann, so kann man die Zustandsmenge Q zu der Menge $Q'=Q\times\{0,\ldots,k\}$ erweitern.

2. Bänder mit mehreren Spuren

In jeder Zelle stehen k Zeichen aus Γ , die alle gleichzeitig in einem Schritt gelesen und geschrieben werden. Ist $k \in \mathbb{N}$ eine Konstante, so kann dies dadurch realisiert werden, dass das Bandalphabet Γ zu $\Gamma' = \Sigma \cup \Gamma^k$ erweitert wird.

Variablen mit unendlichen Wertebereichen
 Für jede Variable eine Spur, auf der ihr Wert gespeichert ist.

Techniken zum Entwurf von Turingmaschinen:

1. Variablen mit endlichen Wertebereichen

Möchte man beispielsweise eine Variable realisieren, die für ein festes $k \in \mathbb{N}$ Werte aus der Menge $\{0,\ldots,k\}$ annehmen kann, so kann man die Zustandsmenge Q zu der Menge $Q'=Q\times\{0,\ldots,k\}$ erweitern.

2. Bänder mit mehreren Spuren

In jeder Zelle stehen k Zeichen aus Γ , die alle gleichzeitig in einem Schritt gelesen und geschrieben werden. Ist $k \in \mathbb{N}$ eine Konstante, so kann dies dadurch realisiert werden, dass das Bandalphabet Γ zu $\Gamma' = \Sigma \cup \Gamma^k$ erweitert wird.

- Variablen mit unendlichen Wertebereichen
 Für jede Variable eine Spur, auf der ihr Wert gespeichert ist.
- 4. Unterprogramme

Techniken zum Entwurf von Turingmaschinen:

1. Variablen mit endlichen Wertebereichen

Möchte man beispielsweise eine Variable realisieren, die für ein festes $k \in \mathbb{N}$ Werte aus der Menge $\{0,\ldots,k\}$ annehmen kann, so kann man die Zustandsmenge Q zu der Menge $Q'=Q\times\{0,\ldots,k\}$ erweitern.

2. Bänder mit mehreren Spuren

In jeder Zelle stehen k Zeichen aus Γ , die alle gleichzeitig in einem Schritt gelesen und geschrieben werden. Ist $k \in \mathbb{N}$ eine Konstante, so kann dies dadurch realisiert werden, dass das Bandalphabet Γ zu $\Gamma' = \Sigma \cup \Gamma^k$ erweitert wird.

- Variablen mit unendlichen Wertebereichen
 Für jede Variable eine Spur, auf der ihr Wert gespeichert ist.
- 4. Unterprogramme
- 5. for- und while-Schleifen

Turingmaschinen mit mehreren Bändern:

Turingmaschine mit k Bändern und k separaten Lese-/Schreibköpfen

Turingmaschinen mit mehreren Bändern:

Turingmaschine mit *k* Bändern und *k* separaten Lese-/Schreibköpfen

$$\delta \colon (Q \setminus \{\bar{q}\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, N, R\}^k$$

Definition 2.4

Es sei *M* eine *k*-Band-Turingmaschine.

Die Rechenzeit $t_M(w)$ von M auf Eingabe w ist die Anzahl an Rechenschritten, die M bei Eingabe w bis zur Terminierung durchführt. Terminiert M auf w nicht, so ist die Rechenzeit unendlich.

Definition 2.4

Es sei M eine k-Band-Turingmaschine.

Die Rechenzeit $t_M(w)$ von M auf Eingabe w ist die Anzahl an Rechenschritten, die M bei Eingabe w bis zur Terminierung durchführt. Terminiert M auf w nicht, so ist die Rechenzeit unendlich.

Der Platzbedarf $s_M(w)$ von M auf Eingabe w ist die Anzahl (summiert über alle Bänder) an verschiedenen Zellen, auf denen sich im Laufe der Rechnung mindestens einmal ein Lese-/Schreibkopf befunden hat.

Definition 2.4

Es sei M eine k-Band-Turingmaschine.

Die Rechenzeit $t_M(w)$ von M auf Eingabe w ist die Anzahl an Rechenschritten, die M bei Eingabe w bis zur Terminierung durchführt. Terminiert M auf w nicht, so ist die Rechenzeit unendlich.

Der Platzbedarf $s_M(w)$ von M auf Eingabe w ist die Anzahl (summiert über alle Bänder) an verschiedenen Zellen, auf denen sich im Laufe der Rechnung mindestens einmal ein Lese-/Schreibkopf befunden hat.

Die Rechenzeit $t_M(n)$ von M auf Eingaben der Länge n ist definiert als $t_M(n) = \max_{w \in \Sigma^n} t_M(w)$.

Definition 2.4

Es sei *M* eine *k*-Band-Turingmaschine.

Die Rechenzeit $t_M(w)$ von M auf Eingabe w ist die Anzahl an Rechenschritten, die M bei Eingabe w bis zur Terminierung durchführt. Terminiert M auf w nicht, so ist die Rechenzeit unendlich.

Der Platzbedarf $s_M(w)$ von M auf Eingabe w ist die Anzahl (summiert über alle Bänder) an verschiedenen Zellen, auf denen sich im Laufe der Rechnung mindestens einmal ein Lese-/Schreibkopf befunden hat.

Die Rechenzeit $t_M(n)$ von M auf Eingaben der Länge n ist definiert als $t_M(n) = \max_{w \in \Sigma^n} t_M(w)$.

Analog ist der Platzbedarf $s_M(n)$ von M auf Eingaben der Länge n als $s_M(n) = \max_{w \in \Sigma^n} s_M(w)$ definiert.

Theorem 2.5

Eine k-Band Turingmaschine M mit Rechenzeit t(n) und Platzbedarf s(n) kann durch eine 1-Band-Turingmaschine M' mit Rechenzeit $O(t(n)^2)$ und Platzbedarf O(s(n)) simuliert werden.

Theorem 2.5

Eine k-Band Turingmaschine M mit Rechenzeit t(n) und Platzbedarf s(n) kann durch eine 1-Band-Turingmaschine M' mit Rechenzeit $O(t(n)^2)$ und Platzbedarf O(s(n)) simuliert werden.

Beweis: M' simuliert M Schritt für Schritt und verwendet 2k Spuren.

Theorem 2.5

Eine k-Band Turingmaschine M mit Rechenzeit t(n) und Platzbedarf s(n) kann durch eine 1-Band-Turingmaschine M' mit Rechenzeit $O(t(n)^2)$ und Platzbedarf O(s(n)) simuliert werden.

Beweis: *M'* simuliert *M* Schritt für Schritt und verwendet 2*k* Spuren.

Nach der Simulation des *t*-ten Rechenschrittes von *M* gilt folgende Invariante:

1. Die ungeraden Spuren $1, 3, \dots, 2k - 1$ enthalten den Inhalt der k Bänder von M.

Theorem 2.5

Eine k-Band Turingmaschine M mit Rechenzeit t(n) und Platzbedarf s(n) kann durch eine 1-Band-Turingmaschine M' mit Rechenzeit $O(t(n)^2)$ und Platzbedarf O(s(n)) simuliert werden.

Beweis: M' simuliert M Schritt für Schritt und verwendet 2k Spuren.

Nach der Simulation des *t*-ten Rechenschrittes von *M* gilt folgende Invariante:

- 1. Die ungeraden Spuren $1, 3, \dots, 2k 1$ enthalten den Inhalt der k Bänder von M.
- 2. Auf den geraden Spuren $2, 4, \dots, 2k$ sind die Kopfpositionen von M mit dem Zeichen # markiert.

Theorem 2.5

Eine k-Band Turingmaschine M mit Rechenzeit t(n) und Platzbedarf s(n) kann durch eine 1-Band-Turingmaschine M' mit Rechenzeit $O(t(n)^2)$ und Platzbedarf O(s(n)) simuliert werden.

Beweis: *M'* simuliert *M* Schritt für Schritt und verwendet 2*k* Spuren.

Nach der Simulation des *t*-ten Rechenschrittes von *M* gilt folgende Invariante:

- 1. Die ungeraden Spuren $1, 3, \dots, 2k-1$ enthalten den Inhalt der k Bänder von M.
- 2. Auf den geraden Spuren $2, 4, \dots, 2k$ sind die Kopfpositionen von M mit dem Zeichen # markiert.
- 3. Der Kopf von M' steht an der Position am weitesten links, die auf einem der geraden Bänder mit # markiert ist.

Simulation eines Schrittes von M

- 1. M' läuft von linkem # zu rechtem # und liest dabei die Zeichen an den Kopfpositionen von M.
- 2. M' läuft von rechtem # zu linkem # und ändert dabei den Bandinhalt sowie die Kopfpositionen.

Simulation eines Schrittes von M

- M' läuft von linkem # zu rechtem # und liest dabei die Zeichen an den Kopfpositionen von M.
- 2. M' läuft von rechtem # zu linkem # und ändert dabei den Bandinhalt sowie die Kopfpositionen.

Laufzeit pro Schritt von M: O(D), wobei D Abstand von rechtem zu linkem # bezeichnet.

Simulation eines Schrittes von M

- 1. M' läuft von linkem # zu rechtem # und liest dabei die Zeichen an den Kopfpositionen von M.
- 2. M' läuft von rechtem # zu linkem # und ändert dabei den Bandinhalt sowie die Kopfpositionen.

Laufzeit pro Schritt von M: O(D), wobei D Abstand von rechtem zu linkem # bezeichnet. Es gilt $D \le 2t(n)$.

Simulation eines Schrittes von M

- 1. M' läuft von linkem # zu rechtem # und liest dabei die Zeichen an den Kopfpositionen von M.
- 2. M' läuft von rechtem # zu linkem # und ändert dabei den Bandinhalt sowie die Kopfpositionen.

Laufzeit pro Schritt von M: O(D), wobei D Abstand von rechtem zu linkem # bezeichnet. Es gilt $D \le 2t(n)$.

 \Rightarrow Gesamtlaufzeit der Simulation $O(t(n)^2)$

2 Grundlagen

2 Grundlagen

- 2.1 Probleme und Funktionen
- 2.2 Rechnermodelle
 - 2.2.1 Turingmaschinen
 - 2.2.2 Registermaschinen
 - 2.2.3 Die Church-Turing-These

Registermaschine (RAM) ≈ rudimentäre Assemblersprache

Syntax	Zustandsänderung	Änderung von b
LOAD i	c(0) := c(i)	b := b + 1
CLOAD i	c(0) := i	b := b + 1
INDLOAD i	c(0) := c(c(i))	b := b + 1
STORE i	c(i):=c(0)	b := b + 1
INDSTORE i	c(c(i)) := c(0)	b := b + 1
ADD i	c(0) := c(0) + c(i)	b := b + 1
CADD i	c(0):=c(0)+i	b := b + 1
INDADD i	c(0) := c(0) + c(c(i))	b := b + 1
SUB i	c(0) := c(0) - c(i)	b := b + 1
CSUB i	c(0):=c(0)-i	b := b + 1
INDSUB i	c(0) := c(0) - c(c(i))	b := b + 1
MULT i	$c(0) := c(0) \cdot c(i)$	b := b + 1
CMULT i	$c(0) := c(0) \cdot i$	b := b + 1
INDMULT i	$c(0) := c(0) \cdot c(c(i))$	b := b + 1
DIV i	$c(0) := \lfloor c(0)/c(i) \rfloor$	b := b + 1
CDIV i	$c(0) := \lfloor c(0)/i \rfloor$	b := b + 1
INDDIV i	$c(0) := \lfloor c(0)/c(c(i)) \rfloor$	b := b + 1

Syntax	Zustandsänderung	Änderung von b
GOTO j	-	b := j
$IF\ c(0) = x\ GOTO\ j$	-	$b := \begin{cases} j \text{ falls } c(0) = x \\ b + 1 \text{ sonst} \end{cases}$
IF $c(0) < x$ GOTO j	-	$b := \begin{cases} j \text{ falls } c(0) < x \\ b+1 \text{ sonst} \end{cases}$
IF $c(0) \le x$ GOTO j	-	$b := \begin{cases} f \text{ falls } c(0) \le x \\ b+1 \text{ sonst} \end{cases}$
END	Ende der Rechnung	-

Laufzeit einer Registermaschine

uniformes Kostenmaß: Ausführung jedes Befehls benötigt eine Zeiteinheit

Vorteil: einfach

Nachteil: nicht realistisch bei Algorithmen, die mit sehr großen Zahlen arbeiten

Laufzeit einer Registermaschine

uniformes Kostenmaß: Ausführung jedes Befehls benötigt eine Zeiteinheit

Vorteil: einfach

Nachteil: nicht realistisch bei Algorithmen, die mit sehr großen Zahlen arbeiten

logarithmisches Kostenmaß: Laufzeit eines Befehls proportional zu der Länge der Zahlen in den angesprochenen Registern in Binärdarstellung (also zum Logarithmus der Zahlen).

Beispiel: Registermaschine zur Berechnung von $\sum_{i=0}^{n} i$

Eingabe $n \in \mathbb{N}$ zu Beginn in Register c(1).

Beispiel: Registermaschine zur Berechnung von $\sum_{i=0}^{n} i$ Eingabe $n \in \mathbb{N}$ zu Beginn in Register c(1).

Höhere Programmiersprache

```
s = n
i = n
while(i != 0)
i = i - 1
s = s + i
return s
```

Beispiel: Registermaschine zur Berechnung von $\sum_{i=0}^{n} i$ Eingabe $n \in \mathbb{N}$ zu Beginn in Register c(1).

Höhere Programmiersprache

```
s = n
i = n
while(i != 0)
i = i - 1
s = s + i
return s
```

Registermaschine

$$// c(1) = i c(2) = s$$

1. LOAD(1)

2. STORE(2)

3. CSUB(1)

4. STORE(1)

5. ADD(2)

6. STORE(2)

7. LOAD(1)

8. IF $c(0) = 0$ GOTO 10

9. GOTO 3

10. LOAD(2)

11. END

Beispiel: Registermaschine zur Berechnung von $\sum_{i=0}^{n} i$ Eingabe $n \in \mathbb{N}$ zu Beginn in Register c(1).

Höhere Programmiersprache

```
s = n
i = n
while(i != 0)
i = i - 1
s = s + i
return s
```

Laufzeit der Registermaschine

Anzahl Operationen O(n)Laufzeit im logarithmischen Kostenmaß: $\Theta(n \log n)$

Registermaschine

$$// c(1) = i \quad c(2) = s$$
1. LOAD (1)

- 2. STORE (2)
- Z. DIONE (Z
- CSUB(1)
 STORE(1)
- 4. STORE (1,
- 5. ADD (2)6. STORE (2)
- 7. LOAD(1)
- 8. IF c(0) = 0 GOTO 10
- 9. GOTO 3 10. LOAD(2)
- 11. END

Theorem 2.6

Jede im logarithmischen Kostenmaß t(n)-zeitbeschränkte Registermaschine kann durch eine Turingmaschine simuliert werden, deren Rechenzeit O(q(n+t(n))) für ein Polynom q beträgt.

Theorem 2.6

Jede im logarithmischen Kostenmaß t(n)-zeitbeschränkte Registermaschine kann durch eine Turingmaschine simuliert werden, deren Rechenzeit O(q(n+t(n))) für ein Polynom q beträgt.

Ist die Laufzeit der Registermaschine polynomiell, so auch die der TM:

Theorem 2.6

Jede im logarithmischen Kostenmaß t(n)-zeitbeschränkte Registermaschine kann durch eine Turingmaschine simuliert werden, deren Rechenzeit O(q(n+t(n))) für ein Polynom q beträgt.

Ist die Laufzeit der Registermaschine polynomiell, so auch die der TM:

Laufzeit der Registermaschine sei $t(n) = O(n^d)$ für $d \ge 1$.

Theorem 2.6

Jede im logarithmischen Kostenmaß t(n)-zeitbeschränkte Registermaschine kann durch eine Turingmaschine simuliert werden, deren Rechenzeit O(q(n+t(n))) für ein Polynom q beträgt.

Ist die Laufzeit der Registermaschine polynomiell, so auch die der TM:

Laufzeit der Registermaschine sei $t(n) = O(n^d)$ für $d \ge 1$.

Gemäß Theorem 2.6 existiert ein Polynom q mit Grad d^* , für das die Rechenzeit der TM wie folgt beschränkt ist:

$$O(q(n+t(n))) = O(q(t(n))) = O(q(n^d)) = O(n^{dd^*}).$$

Theorem 2.6

Jede im logarithmischen Kostenmaß t(n)-zeitbeschränkte Registermaschine kann durch eine Turingmaschine simuliert werden, deren Rechenzeit O(q(n+t(n))) für ein Polynom q beträgt.

Ist die Laufzeit der Registermaschine polynomiell, so auch die der TM:

Laufzeit der Registermaschine sei $t(n) = O(n^d)$ für $d \ge 1$.

Gemäß Theorem 2.6 existiert ein Polynom q mit Grad d^* , für das die Rechenzeit der TM wie folgt beschränkt ist:

$$O(q(n+t(n))) = O(q(t(n))) = O(q(n^d)) = O(n^{dd^*}).$$

Damit ist auch die Laufzeit der TM durch ein Polynom beschränkt.

Theorem 2.7

Jede Turingmaschine, deren Rechenzeit durch t(n) beschränkt ist, kann durch eine im logarithmischen Kostenmaß $O((t(n)+n)\log(t(n)+n))$ -zeitbeschränkte Registermaschine simuliert werden.

Theorem 2.7

Jede Turingmaschine, deren Rechenzeit durch t(n) beschränkt ist, kann durch eine im logarithmischen Kostenmaß $O((t(n)+n)\log(t(n)+n))$ -zeitbeschränkte Registermaschine simuliert werden.

Theorem 2.6 und 2.7 implizieren Folgendes:

Klasse der von Turingmaschinen in polynomieller Zeit berechenbaren Funktionen

= Klasse der von Registermaschinen in polynomieller Zeit berechenbaren Funktionen

2 Grundlagen

2 Grundlagen

- 2.1 Probleme und Funktionen
- 2.2 Rechnermodelle
 - 2.2.1 Turingmaschinen
 - 2.2.2 Registermaschinen
 - 2.2.3 Die Church-Turing-These

2.2.3 Die Church-Turing-These

These 2.8 (Church-Turing-These)

Alle "intuitiv berechenbaren" Funktionen können von Turingmaschinen berechnet werden.

2.2.3 Die Church-Turing-These

These 2.8 (Church-Turing-These)

Alle "intuitiv berechenbaren" Funktionen können von Turingmaschinen berechnet werden.

These 2.9 (Physikalische Church-Turing-These)

Die Gesetze der Physik erlauben es nicht, eine Maschine zu konstruieren, die eine Funktion berechnet, die nicht auch von einer Turingmaschine berechnet werden kann.

2.2.3 Die Church-Turing-These

These 2.8 (Church-Turing-These)

Alle "intuitiv berechenbaren" Funktionen können von Turingmaschinen berechnet werden.

These 2.9 (Physikalische Church-Turing-These)

Die Gesetze der Physik erlauben es nicht, eine Maschine zu konstruieren, die eine Funktion berechnet, die nicht auch von einer Turingmaschine berechnet werden kann.

These (Erweiterte Church-Turing-These)

Die Klasse der in polynomieller Zeit berechenbaren Funktionen ist für jedes realistische Maschinenmodell dieselbe.