Linear and non-linear

Another way in which we can classify differential equations is whether they are linear or non-linear.

Definition:

- A linear DE is a DE that is a degree 1 polynomial in terms of its unknown functions and derivatives.
- A **nonlinear** DE is a DE that is not a linear DE.

Let's examine the definition of a linear DE a bit more. In other words, a linear DE is a DE of the form

$$a_n(x)y^{(n)}+a_{n-1}(x)y^{(n-1)}+\cdots+a_1(x)y'+a_0(x)=b(x),$$

where

- the functions $a_0(x), \ldots, a_n(x)$, and b(x) are differentiable functions that are non necessarily linear functions, and
- $y', y^{(2)}, \ldots, y^{(n)}$ are the first, second, ..., and nth derivative of the function y, respectively.

Note: What is important is that we don't have a term of something like $(y')^2$ or \sqrt{y} .

Discussion, comments, and examples:

WeBWorK module 01 exercises:

• Problem 6

Relevant Wikipedia articles:

- linear differential equations (https://en.wikipedia.org/wiki/Linear differential equation)
- nonlinear differential equation (https://en.wikipedia.org/wiki/Nonlinear_partial_differential_equation)