Stochastic Block Model

Preliminary simulations to assess different data integration techniques and their ability to estimate B

<u>Simulation Setting:</u> Using graph-tool, two graphs G_1 and G_2 , representing two different sources of data on the same gene set, were generated from the same stochastic block model, with 3 true communities (B=3), under two different connectivity matrices, \mathbf{P}_1 and \mathbf{P}_2 given as

$$\mathbf{P}_1 = \begin{bmatrix} 0.500 & 0.100 & 0.100 \\ 0.100 & 0.500 & 0.100 \\ 0.100 & 0.100 & 0.500 \end{bmatrix}, \quad \mathbf{P}_2 = \begin{bmatrix} 0.300 & 0.100 & 0.100 \\ 0.100 & 0.300 & 0.100 \\ 0.100 & 0.100 & 0.300 \end{bmatrix}.$$

The graphs G_1 and G_2 have equal number of nodes $n=n_1=n_2$, and are assigned identical community labeling parameters $\mathbf{b}_1=(b_{11},\dots,b_{1n_1})=\mathbf{b}_2=(b_{21},\dots,b_{2n_2})=\mathbf{b}$, where \mathbf{b} is assigned by taking n random samples with replacement from the set $\{0,1,2\}$. To populate G_1 and G_2 with edges, we cycle through the (n-1)n/2 possible pairs of vertices (v_a,v_b) , and assign an edge according to a Bernoulli drawn with probability parameter P_{b_a,b_b} , where b_a and b_b are the community memberships of v_a and v_b , respectively, and P_{b_a,b_b} is the corresponding element of either \mathbf{P}_1 or \mathbf{P}_2 .

<u>Data Integration Approach:</u> A simple unweighted graph is created by setting $G=G_1$, then adding all the edged from G_2 that are not already present in G. This approach can be thought of as populating G with the set union of all edges between graphs G_1 and G_2 . We then fit a SBM to G and record the estimated number of blocks \hat{B} . We repeat this process I times.

Table 1: Simulation results for SBMs fit to G, G_1 , and G_2 under \mathbf{P}_1 and \mathbf{P}_2 , with n=50. The proportion of correctly specified models and the average number of clusters estimated are shown.

	\mathbf{P}_1		\mathbf{P}_2	
I = 100	$\frac{1}{I} \sum_{i=1}^{I} 1_{\hat{B}=B}$	$\frac{1}{I} \sum_{i=1}^{I} \hat{B}$	$\frac{1}{I} \sum_{i=1}^{I} 1_{\hat{B}=B}$	$\frac{1}{I} \sum_{i=1}^{I} \hat{B}$
G	0.85	2.85	0.00	1.01
G_1	0.47	2.50	0.00	1.00
G_2	0.42	2.38	0.00	1.00

Table 2: Simulation results for SBMs fit to G, G_1 , and G_2 under \mathbf{P}_1 and \mathbf{P}_2 , with n=100. The proportion of correctly specified models and the average number of clusters estimated are shown.

	\mathbf{P}_1		\mathbf{P}_2	
I = 100	$\frac{1}{I} \sum_{i=1}^{I} 1_{\hat{B}=B}$	$\frac{1}{I} \sum_{i=1}^{I} \hat{B}$	$\frac{1}{I} \sum_{i=1}^{I} 1_{\hat{B}=B}$	$\frac{1}{I} \sum_{i=1}^{I} \hat{B}$
G	1.00	3.00	0.97	2.99
G_1	1.00	3.00	0.23	1.70
G_2	0.99	3.01	0.19	1.76