Enunciados

April 29, 2021

1 Ejercicio 1

En la figura se muestra un filtro sintonizado realizado con un inductor y un capacitor que esta sintonizado a $f = 10\,MHz$.

El inductor tiene un $Q_{oL}(10MHz) = 100$ y suponga que el capacitor tiene $ESR \sim 0\Omega$.

La fuente tiene una $P_{disp} = 200 \, pW$ a $f = 10 \, MHz$.

- 1. Calcule L_1 y C_1 para adaptar máxima transferencia de energía a R_L con $Q_c=20$ y el generador a 10MHz (recuerde que para esta condición $R_L=r_g$.
- 2. Calcule la impedancia de entrada del adaptador cargado a 10MHz.
- 3. La potencia sobre la carga.
- 4. La potencia de entrada al adaptador (la potencia entregada por la fuente al adaptador y carga).
- 5. Verificar utilizando simuladores.

2 Ejercicio 2

En la figura se muestra un circuitos de adaptación realizado con un inductor y un capacitor. El inductor tiene un $Q_{oL} = 100$ y el capacitor tiene $ESR = 1\Omega$. La fuente tiene una $P_{disp} = 10nW$ a 100MHz.

- 1. Calcule L_1 , C_1 y Q_c del circuito resultante para adaptar MTEcte la carga y el generador a 100MHz mediante conversiones serie-paralelo. (10ptos)
- 2. Verificar usando la carta de Smith.(10ptos)
- 3. Calcule la potencia entregada por la fuente, la potencia en la carga y verificar usando simuladores. (10ptos)

3 Ejercicio 3

El circuito amplificador transistorizado sintonizado, el cual corresponde a la etapa de salida.

A la frecuencia $f_o=1MHz$, el transistor presenta una impedancia de salida $Z_{out}=2500\Omega-j8000\Omega$ y un tiene una corriente de salida de $i_o=200\mu A$

La resistencia de carga es de $R_L = 100\Omega$.

Suponiendo que el capacitor de C_1 y el inductor L_1 tiene pérdidas despreciables.

Calcular para máxima transferencia de energía hacia la carga:

- 1. L_1
- 2. C_1

3. P_{R_L} .

El inductor L_1 disponible para el valor necesario presenta un factor de merito de $Q_o = 50$ a la frecuencia de trabajo.

- 4. El nuevo valor de L_1 .
- 5. C_1 que sintoniza a L_1 , tenga en cuenta la capacidad de salida del transistor.
- 6. Z_{in} (la que se presenta a la fuente de corriente, incluyendo la capacidad de la salida del transistor, empleando los valores hallados en los puntos anteriores)
- 7. P_{R_L}
- 8. Potencia entregada por la fuente.

3.0.1 Ejercicio 4

Supóngase querer adaptar una antena látigo de cuarto de onda diseñada para operar a 144MHz, cuya impedacia es de 20 - j2.25ohms.

Se desea emplear la misma antena a la frecuencia de $f_{RF} = 110MHz$, donde presenta una impedancia de $Z_{ant} = 10\Omega - j500ohms$.

Se desea que el equipo transmisor, la fuente de corriente, tenga una carga de $Z_{in} = 50\Omega + j0\Omega$ @ 144MHz.

Para que esté adaptada, se recurre así al circuito de adaptación mostrado en la figura compuesto por L y C.

La potencia disponible del transmisor es $P_{disp} = 10W$.

[]: