CS 344

LECTURE 7: GRAPHS

This is a graph:

A graph is a pair < V, E>:

- V: vertices
- ullet E: edges, where $E\subseteq V imes V$

This is a graph:

GRAPH REPRESENTION

- adjacency matrix
- adjacency list

ADJACENCY MATRIX

If we have |V|=n vertices, the adjacency matrix is an n imes n matrix:

$$a_{ij} = \begin{cases} 1 & \text{if there is an edge from } v_i \text{ to } v_j \\ 0 & \text{otherwise} \end{cases}$$

ADJACENCY MATRIX

$\int 0$	1	1	$0 \setminus$
1	0	1	0
1	1	0	1
$\int 0$	0	1	0/

ADJACENCY MATRIX

- ullet Can check for an edge in O(1) time
- Takes $O(n^2)$ space!

ADJACENCY LIST

Each vertex has a linked list of its (outgoing) neighbors

That is, for each vertex u, it has a list of every v for which $(u,v)\in E$

ADJACENCY LIST

Vertex	List
1	2, 3
2	1, 3
3	1, 2, 4
4	3

ADJACENCY LIST

- Have to walk a list to check for an edge
- ullet Takes O(|E|) space

SPARSITY

For a (connected) graph, we have that (roughly)

$$|V| \le |E| \le |V|^2$$

SPARSITY

- ullet Sparse: |E| closer to |V|
- ullet Dense: |E| closer to $|V|^2$

SPARSITY

Which representation is better depends on the sparsity of the graph.

- For example, take the world-wide web
- Vertices are pages, edges are links
- ullet |V| is in the billions
- But most pages only link to a few other pages!

Suppose we have this graph:

Consider this as a maze:

To explore a maze we need two things:

- Chalk: to mark junctions you've visited
- String: to find your way back

To explore a graph we need two things:

- A variable to mark nodes you've visited
- A stack to find your way back

Let's find all nodes reachable from a particular node:

```
procedure explore (G,v)
Input: G=(V,E) is a graph; v\in V
Output: visited (u) is set to true for all nodes u reachable from v
visited (v) = true previsit (v)
for each edge (v,u)\in E:
  if not visited (u): explore (u)
postvisit (v)
```

Let's run explore(A) on the graph on the left:

Then we have two kinds of edges:

- tree edges: black lines
- back edges: dotted lines

Is the explore function correct?

Does it find all vertices reachable from v?

Suppose not, that it misses vertex u:

More generally, correctness here means for any $k \geq 0$, all nodes within k hops of v will be visited.

- Base case: k=0
- ullet Inductive step: If all nodes k hops away are visited, then all nodes k+1 hops away are too

DEPTH-FIRST SEARCH

The explore function only visits nodes reachable from the starting point

To examine the rest of the graph, we can repeatedly call explore

```
\begin{array}{l} {\tt procedure\ dfs}\,(G) \\ \\ {\tt for\ all\ } v \in V \colon \\ \\ {\tt visited}\,(v) \ = \ {\tt false} \\ \\ \\ {\tt for\ all\ } v \in V \colon \\ \\ {\tt if\ not\ visited}\,(v) \colon \ {\tt explore}\,(v) \end{array}
```

TIME TO RUN DFS

- O(1) to mark node visited, call pre/postvisit
- Then loop through and scan adjacent edges

TIME TO RUN DFS

For all vertices together,

- ullet O(|V|) to mark nodes visited, call pre/postvisit
- Each edge (u, v) will be visited twice
 - once in explore(u)
 - once in explore(v)
- ullet Therefore O(|E|) work to scan edges

Total: O(|V| + |E|)

Running DFS on this graph (left) generates this forest (right):

An undirected graph is **connected** if there is a path from any vertex to any other.

In a disconnected graph, each connected subgraph is called a **connected component**.

• $\{A, B, E, I, J\}$

- $\{A,B,E,I,J\}$
- $\{C, D, G, H, K, L\}$

- $\{A,B,E,I,J\}$
- $\{C, D, G, H, K, L\}$
- ullet $\{F\}$

```
\frac{\text{procedure previsit}}{\text{ccnum}[v]} = \text{cc}
```

- Initialize to 0
- Increment each time DFS calls explore

Let's add a counter to see when we enter/leave nodes:

```
procedure previsit(v)
pre[v] = clock
clock = clock + 1

procedure postvisit(v)
post[v] = clock
clock = clock + 1
```

Then our forest now looks like this:

DIRECTED GRAPHS

DFS ON DIRECTED GRAPHS

Terminology:

- A is the root
- ullet E has **descendants** F,G, and H
- ullet ullet E is an **ancestor** of F,G, and H
 - ullet C is the parent of D
 - D is the child of C

We can also have finer-grained distinctions on edges in the generated tree:

- tree edges
- forward edges
- back edges
- cross edges

- tree edges: part of the DFS forest
- forward edges: node to nonchild descendent
- back edges: node to ancestor
- cross edges: lead to neither descendent nor ancestor

How many

- Forward edges?
- Back edges?
- Cross edges?

These relationships can be inferred from the pre and post numbers!

Vertex u is an ancestor of vertex v:

Edge categories:

u

v

v

CYCLES

A cycle is a circular path $v_0 o v_1 o \ldots o v_k o v_0$. A graph without cycles is acyclic.

DFS AND CYCLES

• (\Leftarrow) If (u, v) is a back edge,

- (\Leftarrow) If (u, v) is a back edge,
 - lacksquare There is a path from v to u

- (\Leftarrow) If (u,v) is a back edge,
 - lacksquare There is a path from v to u
 - That path plus the back edge is a cycle

- (\Leftarrow) If (u,v) is a back edge,
 - lacksquare There is a path from v to u
 - That path plus the back edge is a cycle
- (\Rightarrow) If $v_0 \to \ldots \to v_k \to v_0$ is a cycle:

- (\Leftarrow) If (u, v) is a back edge,
 - lacksquare There is a path from v to u
 - That path plus the back edge is a cycle
- (\Rightarrow) If $v_0 \to \ldots \to v_k \to v_0$ is a cycle:
 - lacktriangle Consider the first node v_i to be discovered

- (\Leftarrow) If (u, v) is a back edge,
 - lacksquare There is a path from v to u
 - That path plus the back edge is a cycle
- (\Rightarrow) If $v_0 \to \ldots \to v_k \to v_0$ is a cycle:
 - lacktriangle Consider the first node v_i to be discovered
 - It will reach all other nodes on the cycle

- (\Leftarrow) If (u, v) is a back edge,
 - lacksquare There is a path from v to u
 - That path plus the back edge is a cycle
- (\Rightarrow) If $v_0 \to \ldots \to v_k \to v_0$ is a cycle:
 - lacksquare Consider the first node v_i to be discovered
 - It will reach all other nodes on the cycle
 - lacksquare The edge $v_{i-1}
 ightarrow v_i$ will be a back edge

DIRECTED ACYCLIC GRAPH (DAG)

Dags are good for modeling hierarchies or dependencies (e.g., course prerequisites).

Given a dag, we may want to linearize (topologically sort) the nodes.

Given a dag, we may want to linearize (topologically sort) the nodes.

One possibility: B,A,D,C,E,F

How can we linearize a dag algorithmically?

How can we linearize a dag algorithmically?
List nodes in decreasing order of post numbers

List nodes in decreasing order of post numbers

List nodes in decreasing order of post numbers

B, D, A, C, F, E

Given a dag, we can define two kinds of special nodes:

- source: a node with no incoming edges
- sink: a node with no outgoing edges

Given a dag, we can define two kinds of special nodes:

- source: a node with no incoming edges
- sink: a node with no outgoing edges

Then a linearization must start with a source and end with a sink.

• find a source

- find a source
- output it

- find a source
- output it
- delete it

- find a source
- output it
- delete it
- repeat until graph is empty

STRONGLY-CONNECTED COMPONENTS

Two nodes u and v are connected if there is a u-v path as well as a v-u path.

We can partition a directed graph into a set **strongly-connected components** (SCCs), where all vertices are connected.

Dotted lines indicate the SCCs:

Then we can shrink each component to a single metavertex:

A directed graph is a dag of its strongly-connected components.

How can we decompose a graph to SCCs?

- If we found a node in a sink SCC
 - explore would find all nodes in its SCC
- Then we could remove it and repeat

How can we decompose a graph to SCCs?

But it's easier to find a node in a source SCC:

How can we decompose a graph to SCCs?

But it's easier to find a node in a source SCC:

node with the highest post number in DFS

More generally,

- if C and C' are SCCs,
- ullet and there's a C o C' edge,
- ullet then the highest post number in C> highest in C'

This means SCCs can be linearized by descreasing highest post numbers.

(a generalization of linearization of dags)

How can we decompose a graph to SCCs?
We can find a source SCC, but we need a sink SCC

How can we decompose a graph to SCCs? We can find a source SCC, but we need a sink SCC Transform the graph G into the reverse graph G^R !

How can we decompose a graph to SCCs?

- Compute G^R
- ullet Run DFS on G^R
- Find the connected components using explore, in decreasing order of post numbers

Suppose we have this graph:

Then G^R is:

And a DFS gives these post numbers:

Then we can separate this into SCCs $\{C,D\}$ and $\{A,B\}$:

