Galois Cohomology of Algebraic Groups

Ayushi Tsydendorzhiev

October 11, 2024

Contents

	T , 1 , 1	
7	Introduction	1
	THEOMINGLION	

- 1.1 Galois group actions 2
- 1.2 The fixed point functor and exact sequences

3

Introduction

Galois group actions

Let L/K be a Galois extension and G = Gal(L/K) its Galois group. The Galois group *G* acts on *L* via field automorphisms:

- Action on the field extension L: For $\mathbb{Q}(\sqrt{2})$ its Galois group $\operatorname{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$ acts either by identity or by sending $\sqrt{2}$ to $-\sqrt{2}$.
- Action on the dual of the field extension L^* : For $\mathbb{Q}(\sqrt{2})^*$ its Galois group acts on $f(x_1, x_2) = x_1 \cdot 1 + x_2 \cdot \sqrt{2}$ either by identity or by sending f to $f'=x_1\cdot 1-x_2\cdot \sqrt{2}.$
- Action on the group of *n*th roots of unity $\mu_n(L)$:
 - In $\mathbb{Q}(\sqrt{2})$, the *n*th roots of unity consist of $\{-1,1\}$ if *n* is even and $\{1\}$ if *n* is odd. Both automorphisms in $Gal(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$ leave $\mu_n(\mathbb{Q})$ fixed, so this tells us that they all belong to the base field (are rational, in this case).
 - A more interesting example is the *n*th cyclotomic field $\mathbb{Q}(\zeta_n)$. In this field $\mu_n(Q(\zeta_n)) = \langle \zeta_n \rangle$, the cyclic group generated by ζ_n . The Galois group $Gal(Q(\zeta_n)/Q)$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^*$. For n=5 (prime), the Galois group is cyclic and consists of $\{1, \zeta_5, \zeta_5^2, \zeta_5^3, \zeta_5^4\}$. The action of the Galois group then permutes the 5th roots of unity. For n = 8, the Galois group $Gal(\mathbb{Q}(\zeta_8)/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/8\mathbb{Z})^* = \{1,3,5,7\}$ and is cyclic of order 4. The basis of $\mathbb{Q}(\zeta_8)$ over \mathbb{Q} is given by $\{1, \zeta_8, \zeta_8^2, \zeta_8^3\}$. The actions is given as: σ_1 acts trivially, σ_3 maps ζ_8 to ζ_8^3 , σ_5 acts by multiplication by -1and σ_7 maps ζ_8 to ζ_8^7
- Action on the cyclic group $(\mathbb{Z}/n\mathbb{Z})^*$: same as above.
- Action on a finite abelian group *M*: trivial action.
- Action on the general linear group $GL_n(L)$ over a field L of characteristic 0: $GL_n(L)$ consists of $n \times n$ invertible matrices over L. We have a Galois extension L/K. The Galois group acts by applying the field automorphisms to the entries of the matrices, so $\sigma(A) = \sigma(a_{ij}) \forall 1 \leq ij \leq n$. The fixed points contain $GL_n(K)$.
 - Backstory: The determinant of a $n \times n$ matrix A is defined as

$$\det(A) = \sum_{\pi \in S_n} \left(\operatorname{sgn}(\pi) \prod_{i=1}^n a_{i,\pi(i)} \right)$$

Consider $\sigma(\det(A))$, where $\sigma \in \operatorname{Gal}(L/K)$ is a field automorphism. It distributes over addition and multiplication:

$$\sigma(\det(A)) = \sum_{\pi \in S_n} \left(\operatorname{sgn}(\pi) \prod_{i=1}^n \sigma(a_{i,\pi(i)}) \right)$$

Lecture 1, 10.10.2024

 $sgn(\pi)$ is either even or odd. +1 if even and -1 if odd.

The signum is either +1 or -1, so it is always in the base field K and is fixed by σ . Thus $\sigma(\det(A)) = \det(\sigma(A))$. So the action of the Galois group preserves determinants.

The fixed point functor and exact sequences

All of these examples are special cases of a more general concept: a group G acting on an algebraic group $\mathbb{G} \subseteq GL_n$.

When studying group actions, we're often interested in fixed points

$$A^G = \{ a \in A \mid \forall \sigma \in G : \sigma a = a \}$$

Here, A^G represents the set of all elements in A that are fixed by every element of G. To study fixed points more systematically, we introduce the fixed point functor $-^{G}$. This functor takes a $\mathbb{Z}G$ -module and returns its fixed points. We're particularly interested in how this functor behaves with respect to exact sequences.

Note 1.1.

Group action perspective: A $\mathbb{Z}G$ -module is an abelian group A endowed with a (left) action $(\sigma, a) \mapsto \sigma a$ of G on A such that for all $\sigma \in G$ the map $\varphi_{\sigma} : a \mapsto \sigma a$ from A to A is a morphism of abelian groups. This implies that the action of G is distributive, $\varphi_{\sigma}(ab) = \varphi_{\sigma}(a) + \varphi_{\sigma}(b)$.

Ring module perspective: Equivalently, a $\mathbb{Z}G$ -module is a module over the group ring $\mathbb{Z}[G]$, where elements consist of formal linear combinations of elements from group G with integer coefficients, so something like $3g_1 + 4g_2 + 10g_3 \in \mathbb{Z}[G]$. It contains both \mathbb{Z} and G as subrings.

The $\mathbb{Z}[G]$ -module structure encapsulates both the abelian group structure of Aand the *G*-action on *A*, which leads to the key insight:

 $\{\text{module over } \mathbb{Z}[G]\} \leftrightarrow \{\text{abelian group } A \text{ with } G\text{-action}\}$

Lemma 1.2. Consider an exact sequence of $\mathbb{Z}G$ -modules:

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \stackrel{h}{\longrightarrow} 0$$

Applying the fixed point functor $-^{G}$ to this sequence yields:

$$0 \longrightarrow A^G \xrightarrow{f^G} B^G \xrightarrow{g^G} C^G$$

This new sequence is exact in Ab (the category of abelian groups). Thus the functor $-^G$ is left-exact, meaning it preserves exactness at the left end of the sequence.

• A natural question arises: Is the fixed point functor also right-exact? If such a lifting always exists, then the fixed point functor preserves exactness at C,

An algebraic group is a matrix group defined by polynomial conditions, at least this is what "The theory of group schemes of finite type over a field." by Milne says. I guess this is the consequence of Chevalley theorem?

making it right-exact. If not, we've discovered an obstruction that tells us something about the Galois action and the structure of our groups.

- To investigate this, we need to check if $\ker h^G = \operatorname{im} g^G$, or equivalently, if im $g^G = C^G$. Breaking this down:
 - Take any c ∈ C^G.
 - Since C^G ⊆ C, there exists a $b \in B$ such that g(b) = c.
 - If *b* were fixed by *G*, we'd be done. But it might not be.
 - * Consider $\sigma b b$ for any $\sigma \in G$. We have $g(\sigma b b) = g(\sigma b) g(b) =$ $\sigma g(b) - g(b) = \sigma c - c.$
 - * Since $c \in C^G$, $\sigma c c = 0$ and $(\sigma b b) \in \ker g$.
 - * By exactness, $\ker g = \operatorname{im} f$, so $\sigma b b \in \operatorname{im} f$.
 - * We can view this as an element of A (considering f as an inclusion $A \subseteq B$).

So the question of right-exactness boils down to whether or not every Ginvariant element of C can be lifted to a G-invariant element of B and the obstruction to it lives inside A.

• This analysis leads us to define a map (for a given $c \in C^G$):

$$\varphi: G \to A$$
, $\sigma \mapsto \sigma b - b =: a_{\sigma}$

This map is called a crossed homomorphism (also known as a derivation or 1-cocycle). It measures how far b is from being G-invariant. If b were Ginvariant, this map would be identically 0.

Proposition 1.3. The map $\sigma \mapsto a_{\sigma}$ satisfies:

$$a_{\sigma\tau} = a_{\sigma} + \sigma a_{\tau}$$

This property is what defines a crossed homomorphism.

- In the abelian case, we define
 - $Z^1(G,A) = \{a': G \rightarrow A \mid a'_{\sigma\tau} = a'_{\sigma} + \sigma a'_{\tau}\}$, the set of all crossed homomorphisms from *G* to *A*.
 - $B¹(G, A) = {a : σ ∈ Z¹(G, A) | ∃a' ∈ A : a_σ = σa' − a'}.$
 - The quotient $H^1(G,A) = Z^1(G,A)/B^1(G,A)$ is called the **first cohomology group** of G with coefficients in A. It measures the obstruction to the right-exactness of the fixed point functor.

The obstructions for right-exactness: find $\sigma b - b \in A$ such that it is 0 under projection in $Z^1(G,A)/B^1(G,A)$. It is given by $\delta(c)=[a_\sigma]\in H^1(G,A)=$

Why $\sigma b = b$?

The functor $A \mapsto H^1(G, A)$ is a derived functor of the $A \mapsto A^G$ functor.

 $Z^{1}(G,A)/B^{1}(G,A)$. We can extend our original sequence to a longer exact sequence:

$$0 \to A^G \to B^G \to C^G \xrightarrow{\delta} H^1(G,A) \to H^1(G,B) \to H^1(G,C) \to 0$$

This sequence is exact in Ab, and the map δ (called the connecting homomorphism) measures the failure of right-exactness of the fixed point functor.

Exercise 1.4. Show that $H^1(G, -)$ is functorial and

$$0 \to A^G \to B^G \to C^G \to H^1(G,A) \to H^1(G,B) \to H^1(G,C) \to 0$$

is exact. Find example with $\delta \neq 0$.

- In the non-abelian case, we define
 - $H^0(G, A) = A^G$, the fixed points as before.
 - $H^1(G, A) = Z^1(F, A) / \sim$, where \sim is an equivalence relation defined by: $a_{\sigma} \sim b_{\sigma} \iff \exists a' \in A : b_{\sigma} = (a')^{-1} \cdot a_{\sigma} \cdot {}^{\sigma}a'.$

In this case, $H^1(G, A)$ doesn't have a group structure, but it's a pointed set (a set with a distinguished element). We can still define a notion of exactness for sequences of pointed sets.

Proposition 1.5. For $A \leq_G B$, we obtain $G \curvearrowright B/A$ and

$$1 \to H^0(G,A) \to H^0(G,B) \to H^0(G,C) \to H^1(G,A) \to H^1(G,B)$$

is exact.

This is the Galois cohomology. Why do we care? In the non-commutative case $H^1(G, A)$ classifies "K-objects". In our lecture we will use this to classify simple and simply connected linear algebraic *k*-groups G.

We cannot expect $B^1(G, A)$ to be a subgroup. Why?

 $^{\sigma}a$ denotes the action of σ on a.

Exactness in pointed sets (A, *) is defined as im $f = \ker g = g^{-1}(*)$ $A <_G B$ is *G*-equivariant inclusion.

Lecture 2, 17.10.24