

计算机网络与通信技术

第三章 数据链路层

北京交通大学 刘彪

计算机网络与通信技术

知识点: 三个基本问题

北京交通大学 刘彪

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

三个基本问题

- 数据链路层协议有许多种,但有三个基本问题则是共同的。这三个基本问题是:
 - 1. 封装成帧
 - 2. 透明传输
 - 3. 差错检测

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

<u>1. 封装成帧</u>

- 封装成帧 (framing) 就是在一段数据的前后 分别添加首部和尾部,然后就构成了一个帧。 确定帧的界限。
- 首部和尾部的一个重要作用就是进行帧定界。

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

帧定界举例

- 当数据是由可打印的 ASCII 码组成的文本文件时 , 帧定界可以使用特殊的<mark>帧定界符。</mark>
 - SOH (Start Of Header): 十六进制编码为01
 - EOT (End Of Transmission): 十六进制编码为04
- 控制字符 SOH 放在一帧的最前面,表示帧的首部 开始。另一个控制字符 EOT 表示帧的结束。

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

ASCII编码

Doc Hy Oct Char

美信互标代国息换准码

Dec	H)	Oct	Chai	r	Dec	HX	Oct	Chr	Dec	Нх	Oct	Chr	Dec	HX	Oct	Chr
0	0	000	NUL	(null)	32	20	040	Space	64	40	100	0	96	60	140	
1	1	001	SOH	(start of heading)	33	21	041	!	65	41	101	A	97	61	141	a
2	2	002	STX	(start of text)	34	22	042	rr	66	42	102	В	98	62	142	b
3_	3	003	ETX	(end of text)	35	23	043	#	67	43	103	C	99	63	143	C
4	4	004	EOT	(end of transmission)	36	24	044	\$	68	44	104	D	100	64	144	d
5				(enquiry)	37	25	045	*	69	45	105		101	65	145	e
6	6	006	ACK	(acknowledge)	38	26	046	6:	70	46	106	F	102	66	146	f
7	7	007	BEL	(bell)	39	27	047	1	71	47	107	G	103	67	147	g
8	8	010	BS	(backspace)	40	28	050	(72		110				150	
9	9	011	TAB	(horizontal tab)	41		051)	73		111	1000		1000	151	
10		012		(NL line feed, new line)	42	2A	052	*	74		112		106	6A	152	j
11	В	013	VT	(vertical tab)	43	2B	053	+	75	4B	113	K	107	6B	153	k
12	С	014	FF	(NP form feed, new page)	44	2C	054	,	76	4C	114	L	108	6C	154	1
13	D	015	CR	(carriage return)	45	2D	055	-	77	4D	115	M			155	1000
14	E	016	S0	(shift out)	46	2E	056	•	78	4E	116	N	110	6E	156	n
15	F	017	SI	(shift in)	47	2F	057	/	79	4F	117	0	111	6F	157	0
16	10	020	DLE	(data link escape)	7.7		700	0	0.70		120	P			160	-
17	11	021	DC1	(device control 1)	49	31	061	1	81	51	121	Q	113	71	161	q
18	12	022	DC2	(device control 2)	50	32	062	2	82	52	122	R	114	72	162	r
19	13	023	DC3	(device control 3)	51	33	063	3	83	53	123	S	115	73	163	3
20	14	024	DC4	(device control 4)	52	34	064	4	84	54	124	T	116	74	164	t
21	15	025	NAK	(negative acknowledge)	53	35	065	5	85	55	125	U	117	75	165	u
22	16	026	SYN	(synchronous idle)	54	36	066	6	86	56	126	V	118	76	166	V
23	17	027	ETB	(end of trans. block)	55	37	067	7	87	57	127	M	119	77	167	W
24	18	030	CAN	(cancel)	56	38	070	8			130				170	
		031		(end of medium)	57	39	071	9	89	59	131	Y	121	79	171	Y
26	1A	032	SUB	(substitute)	58	ЗA	072	:	90	5A	132	Z	122	7A	172	Z
27	1B	033	ESC	(escape)	59	ЗВ	073	;	91		133	(123	7B	173	{
28	10	034	FS	(file separator)	60	30	074	<	92	5C	134	1	124	7C	174	1
29	1D	035	GS	(group separator)			075	=			135]			175	
		036		(record separator)	1200		076	>	550000		136	٨			176	
31	1F	037	US	(unit separator)	63	3F	077	?	95	5F	137	_	127	7F	177	DEL

I Doe Hy Oct Chr | Doe Hy Oct Chr | Doe Hy Oct Chr

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

2. 透明传输

- 当传输的数据均为ACSII码的文本文件时, 没有问题;
- 当传输的数据为非ACSII码的文本文件时, 用做帧定界的控制字符时,会怎么样?

数据部分恰好出现与 EOT 一样的代码

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

解决透明传输问题

- 解决方法:字节填充 (byte stuffing) 或字符填充 (character stuffing)。
- 发送端的数据链路层在数据中出现控制字符 "SOH"或 "EOT"的前面插入一个转义字符 "ESC"(其十六进制编码是1B)。
- 接收端的数据链路层在将数据送往网络层之前删除插入的转义字符。
- 如果转义字符也出现在数据当中,那么应在 转义字符前面插入一个转义字符 ESC。当接 收端收到连续的两个转义字符时,就删除其 中前面的一个。

字节填充法

- 3.1 链路层概述
- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

3. 差错检测

- 在传输过程中可能会产生比特差错:1可能 会变成0而0也可能变成1。
- 在一段时间内,传输错误的比特占所传输 比特总数的比率称为误码率 BER (Bit Error Rate)。
- 误码率与信噪比有很大的关系。
- 为了保证数据传输的可靠性,在计算机网络传输数据时,必须采用各种差错检测措施。
- 处理差错的常用措施: 纠错和检错
- 注意! 任何校验方式都是事先规定好的!

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

纠错与检错

- 纠错码举例——海明码
- 检错码举例:
 - 校验和
 - ✓ 0x21 0x23 0x5d 0x1a 0x47 0x8b 0x05 0x1c 0x1ae
 - ✓ 0x21 0x23 0x5d 0x1a 0x47 0x8b 0x05 0x1c 0xae
 - 奇偶校验
 - 循环冗余码(CRC)
 - ✓ 课上专注于算法实现过程;
 - ✓ 请同学们课下通过自行分析: 为什么CRC具有 很强的检错能力? 它的漏检概率如何评判?

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

循环冗余检验的原理

- 在数据链路层传送的帧中,广泛使用了循环 冗余检验 CRC (Cyclical Redundancy Check) 的检错技术。
- CRC 检错思想:

收发双方约定一个生成多项式P(x)(其最高阶和最低阶系数必须为1),发送方在信息帧的末尾加上校验码R(x),使带校验码的帧的多项式能被P(x)整除;接收方收到后,用P(x)除多项式,若有余数,则传输过程有错(无法确定错误位置和数量)。若余数为零,有错的可能性很小。

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

CRC检错能力

- CRC检错能力极强,开销小,易于用编码器 及检测电路实现。
- 从其检错能力来看,它所不能发现的错误的 几率非常低。
- 从性能上和开销上考虑,均远远优于奇偶校验及校验和等方式

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

冗余码的计算

- 在发送端, 先把数据划分为组。假定每组 k 个比特。
- 假设待传送的一组数据M=101001(现在k=6)。我们在M的后面再添加供差错检测用的n位冗余码一起发送。
- 用二进制的模 2 运算进行 2^n 乘 M 的运算,这相当于在 M 后面添加 n 个 0。
- 得到的 (k+n) 位的数除以事先选定好的长度为 (n+1) 位的除数 P,得出商是 Q 而余数是 R,余数 R 比除数 P 少 1 位,即 R 是 n 位。
- 将余数 R 作为冗余码拼接在数据 M 后面发送出去。
- ✓ 注意1: 除数P即为生成多项式, 位数为n+1!
- ✓ 注意2: 余数 R即为冗余码, 称为帧检验序列 FCS (Frame Check Sequence), 位数为n!

模2运算

- 3.1 链路层概述
- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

补充: 什么是模2运算? 加法无进位, 减法无借位

等同于异或的概念

3.2 三个基本问题

- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

冗余码的计算举例

- 现在 k = 6, M = 101001.
- 被除数是 2ⁿM = 101001000。
- 模 2 运算的结果是: 商 Q = 110101, 余数 R = 001。
- 把余数 R 作为冗余码添加在数据 M 的后面 发送出去。发送的数据是: 2ⁿM+R

即: 101001001, 共(k+n)位。

冗余码的计算举例

- 3.1 链路层概述
- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

冗余码计算关键问题

- 注意需添加的位数为多项式位数减一;
- 每次运算只向后移1位,也即每次被除数与 多项式位数相同,此时最高位为1则商1,为 0则商0:
- · 最后余数不足n(添加的位数)位的前面需要补充0
- 注意模二运算

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

接收端CRC检验

- (1) 若得出的余数 R = 0, 则判定这个帧没有差错, 就接受 (accept)。
- (2) 若余数 R ≠ 0, 则判定这个帧有差错, 就丢弃。
- 但这种检测方法并不能确定究竟是哪一个 或哪几个比特出现了差错。
- 只要经过严格的挑选,并使用位数足够多的除数 P,那么出现检测不到的差错的概率就很小很小。

- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

应当注意

- 仅用循环冗余检验 CRC 差错检测技术只能做到无差错接受 (accept)。
- "无差错接受"是指: "凡是接受的帧(即不包括丢弃的帧),我们都能以非常接近于 1 的概率认为这些帧在传输过程中没有产生差错"。
- 也就是说: "凡是接收端数据链路层接受的帧都没有传输差错" (有差错的帧就丢弃而不接受)。

例题

- 3.1 链路层概述
- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

- 生成多项式 X¹⁶+X¹⁵+X¹³+X¹²+X¹⁰+X⁹+X⁸+X⁷+X² +1
 用16进制表示为: __1B785 H ?
- CRC的生成多项式为G(x)=X⁴+X³+X²+1,接收端 收到的码字为110110011001。试问该码字是否 出错?
- 解题方法:
- 生成多项式11101,用110110011001/11101,如果整除则没有出错,否则出错。结果表明不能整除,出错。

思考

- 3.1 链路层概述
- 3.2 三个基本问题
- 3.3 点对点PPP协议
- 3.4 局域网的数据链路层

- 差错检测是否能够保证可靠传输?
 - 差错检测只能实现比特传输错误检测
 - 应当明确, "无比特差错"与"无传输差错"是不同的概念。
 - 传输错误还可能出现: 帧丢失、帧重复、 帧失序
- 在数据链路层使用 CRC 检验, 能够实现无比特差错的传输, 但这还不是可靠传输。
- 要做到"可靠传输"(即发送什么就收到什么)就必须再加上确认和重传机制。
- 本章介绍的数据链路层协议都不是可靠传输的协议。