

planetmath.org

Math for the people, by the people.

examples of countable sets

 ${\bf Canonical\ name} \quad {\bf Examples Of Countable Sets}$

Date of creation 2013-03-22 19:02:59 Last modified on 2013-03-22 19:02:59

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 10

Author CWoo (3771) Entry type Example Classification msc 03E10

 ${\it Related topic} \qquad {\it Algebraic Numbers Are Countable}$

This entry lists some common examples of countable sets.

Derived Examples

- 1. any finite set, including the empty set \varnothing (http://planetmath.org/AlternativeDefinition
- 2. any subset of a countable set (http://planetmath.org/SubsetsOfCountableSetsproof).
- 3. any finite product of countable sets (http://planetmath.org/UnionOfCountableSetsproof)
- 4. any countable union of countable sets (http://planetmath.org/ProductOfCountableSetsp
- 5. the set of all finite subsets of a countable set.

Proof. Let A be a countable set, and F(A) the set of all finite subsets of A. Let A_n be the set of all subsets of A of cardinality at most n. Then A_1 is countable, since A is. Suppose now that A_n is countable. The function $f: A_n \times A_1 \to A_{n+1}$ where $f(X,Y) = X \cup Y$ is easily seen to be onto. Since $A_n \times A_1$ is countable, so is A_{n+1} . Now, F(A) is just the union of all the countable sets A_i , and this union is a countable union, we see that F(A) is countable too.

- 6. the set of all cofinite subsets of a countable set. This is true, because there is a one-to-one correspondence between the set F(A) of finite sets and the set co-F(A) of cofinite sets: $X \mapsto A X$.
- 7. the set of all finite sequences over a countable set.

Proof. Let A be a countable set, and A_F the set of all finite sequences over A. An element of A_F can be identified with an element of A^n , and vice versa (the bijection is clear). Therefore, A_F can be identified with the union of A^i , for $i = 0, 1, 2, \ldots$ Since each A^i is countable (because A is), and we are taking a countable union, A_F is countable as a result.

8. fix countable sets A, B. The set X of all functions from finite subsets of B into A is countable.

Proof. For each finite subset C of B, the set of all functions from C to A is just A^C , which has cardinality $|A|^{|C|}$, and thus is countable since A is. Since X is just the union of all A^C , where C ranges over the finite subsets of B, and there are countably many of them (as B is countable), X is also countable.

9. fix countable sets A, B and an element $a \in A$. The set Y of all functions from B to A such that f(b) = a for all but a finite number of $b \in B$ is countable.

Proof. For any $f: B \to A$, call the support of f the set $\{b \in B \mid f(b) \neq a\}$, and denote it by $\operatorname{supp}(f)$. Then every $f \in Y$ has finite support. The map $G: Y \to X$ (where X is defined in the last example) given by $G(f) = f|\operatorname{supp}(f)$ is an injection: if G(f) = G(h), then f(b) = h(b) for any $b \in \operatorname{supp}(f) = \operatorname{supp}(h)$, and f(b) = a = h(b) otherwise, whence f = g. But since X is countable, so is Y.

Concrete Examples

- 1. the sets \mathbb{N} (natural numbers), \mathbb{Z} (integers), and \mathbb{Q} (rational numbers)
- 2. the set of all algebraic numbers

Proof. Let \mathbb{A} be the set of all algebraic numbers over \mathbb{Q} . For each polynomial p (in one variable X) over \mathbb{Q} , let R_p be the set of roots of p over \mathbb{Q} . By definition, \mathbb{A} is the union of all R_p , where p ranges over the set P of all polynomials over \mathbb{Q} . For any $p \in P$ of degree n, we may associate a vector $v_p \in \mathbb{Q}^{n+1}$:

$$p = a_0 + a_1 X + \dots + a_n X^n \qquad \Longleftrightarrow \qquad v_p = (a_0, a_1, \dots, a_n).$$

The association can be reversed. So the set $P_n \subset P$ of all polynomials of degree n is equinumerous to \mathbb{Q}^{n+1} , and therefore countable. As P is just the countable union of all P_n , P is countable, which means $\mathbb{A} = \bigcup \{R_p \mid p \in P\}$ is countable also.

- 3. the set of all algebraic integers, because every algebraic integer is an algebraic number.
- 4. the set of all words over an alphabet, because ever word can be thought of as a finite sequence over the alphabet, which is finite.