

Health AI Suite-Intelligent Analytics For Patient care

INTRODUCTION

This project, Health AI system demonstrates how multiple AI techniques can improve clinical decision support, patient engagement, and hospital efficiency.

We explored 10 use cases across healthcare:

- 1. Classification : Early disease detection
- 2. Regression: Hospital stay prediction
- 3. Clustering: Patient segmentation
- 4. Association Rules :Risk pattern discovery
- 5. CNN: Imaging diagnostics
- 6. RNN\LSTM: patient vitals forecasting
- 7. Pretrained Models : Clinical text analysis
- 8. Chatbot: Patient vitals forecasting
- 9. Translator : Multilingual doctor patient support
- 10. Sentiment Analysis : patient feedback insights

All use cases are integrated into a streamlined Al platform with a chatbot interface for seamless interaction.

Risk stratification [Classification]

Applied supervised machine learning classification models (Logistic Regression, Random Forest, XGBoost, K Neighbours, SVM)

OUTCOME:-

Best model achieved in = 98.7 % accuracy

Strong predictive power for easily risk detection.

IMPACT ✓ :-

Helps clinicians identify high-risk patients earlier, enabling faster treatment, optimied resource allocation, and improved patient outcomes.

Length of stay prediction [Regression]

APPROACH:-

Trained multiple regression model (Linear regression, Ridge regression, Random forest, Gradient boosting, Lasso regression, kNN Regressor, SVM)

OUTCOME:

Bestmodel 🤖 : Random Forest 📊

R2 score :- ~0.97

RMSE: ~0.58

MAE: ~0.17

Improved hospital efficiency

Reduced operational costs while maintaining patient care.

Patient segmentation [Clustering]

APPROACH: -

K-means clustering on patient s into meaningful cohorts (demographics, vitals, comorbidities).

OUTCOME:-

Identified 3-5 distinct patient clusters

Each cluster shows unique risk \ behaviour patterns

IMPACT ✓:-

Enables personalized treatment, targeted resource allocation, and improved patient outcomes .

Medical Association (Association Rules)

APPROACH:-

Apriori algorithm + Association Rule Mining (support , confidence , lift).

OUTCOME: -

- Found frequent links like medication (infusion), Allergy (medication)
- Confidence upto 92% lift >1

IMPACT ✓ :-

Helps clinicians anticipate co-occuring conditions, improve, treatment planning, and support preventive care.

IMAGING DIAGNOSTICS (CNN)

APPROACH:-

Applied Convolutional Neural Network (CNN) with VCG16 Transfer Learning and fine-tuning .

OUTCOME:-

Achieved ~95% validation accuracy in distinguishing Normal vs Pneumonia cases.

IMPACT ✓ : -

Supports radiologists by providing faster, reliable screening, improving early detection And patient care.

Sequence Modelling (RNN \ LSTM)

APPROACH: -

Applied RNN \ LSTM on time - series data (heart rate , BP , spo2 , labs)

OUTCOME: -

Model achieved AUC = 0.765 showing good ability to distinguish high-risk vs stable patients.

IMPACT✓:-

Enables early warning systems - doctors can intervene sooner, reduce complications, and improve patient survival.

PRETRAINED MODEL USING CLINICAL BERT / BIOBERT

APPROACH:-

USE biobert \ clinical bert , pretrained on biomedical & clinical corpora, then fine - tuned for tasks like classification , entity recognition , and relation extraction .

OUTCOME: -

15-20 % higher accuracy in clinical NLP tasks compared to general BERT.

Improved detection of diagnoses, medications and adverse events.

IMPACT ✓:-

Enables faster understanding of patient records , supports clinical decision- making , and improves patient safety.

Health Care chatbot

APPROACH:-

RAG- based chatbot using pretrained models (BioBERT / Clinical BERT for medical text)+ FAQ & guideline corpus.

OUTCOME:

Provides relevant answers with <5 % error, latency ~27s, evaluated by relevance & faithfulness scores.

IMPACT //:-

Improves patient triage, reduces staff workload, and enhances access to healthcare information.

Translator

APPROACH:-

Pretrained NLP Models (Helsinki - NLP Marian MT for English to regional languages)

OUTCOMES: - High - quality translations (BLEU~35-40 for many indian languages).

IMPACT ✓ :-

Improves doctor - patient communication, ensures better treatment adherence, and reduces medical misunderstandings.

Sentiment analysis

APPROACH :- NLP- based sentiment analysis using VADER (unsupervised sentiment analyzer) on patient notes .

Text preprocessing: cleaning, normalization, and tokenization.

Classified notes as positive, negative, or neutral.

OUTCOMES:-

Each note labeled with sentiment.

Distribution summary: eg: 45% positive, 35% neutral, 20% negative.

IMPACT:-

Provides actionable insights from patient feedback.

Helps hospitals identify strengths and areas needing improvement.

Improves patient experience and overall healthcare quality.

Healthcare platform - Streamlit dashboard

PURPOSES -

- Provides a single platform for all 10 Al- driven healthcare use cases.
- Enables interactive exploration of models and realtime healthcare insights.

KEY FEATURES:

- Navigation sidebar: Easy access to all modules.
- Interactive inputs: Sliders, text boxes, file uploads for predictions.
- Dynamic outputs: Charts, tables, metrics, and embeddings.

DEMO EXAMPLES:

- Chatbot for patient queries
- Length of Stay prediction using clinical data
- Patient segmentation (PCA / Clustering)
- Medical association rules discovery
- Imaging diagnostics (X-ray / CT)
- NLP embeddings & similarity demo (BioBERT/ClinicalBERT)

CONCLUSION

Unified Platform: All 10 Al use cases are integrated in one Streamlit dashboard.

Scalable: Can expand to new use cases or datasets.

Practical Impact: Helps doctors, hospitals, and patients with decision support.

Future Scope: Improve accuracy with larger datasets and deploy for real-time use.

IMPACT

- Demonstrates end to end integration of AI models.
- Supports clinical decision-making.
- Simplifies healthcare analytics for patients and providers