

planetmath.org

Math for the people, by the people.

Lindenmayer system

Canonical name LindenmayerSystem
Date of creation 2013-03-22 18:57:31
Last modified on 2013-03-22 18:57:31

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 11

CWoo (3771) Author Entry type Definition Classification msc 92C80Classification msc 68Q45Synonym L system Synonym DL-system Synonym PL-system Defines L-system Defines start word

Defines deterministic L-system
Defines propagating L-system

Defines L-language
Defines EL-system
Defines 2L-system
Defines 1L-system

Definition

Lindenmayer systems, or L-systems for short, are a variant of general rewriting systems. Like a rewriting system, an L-system is also a language generator, where words are generated by applications of finite numbers of rewriting steps to some initial word given in advance. However, unlike a rewriting system, rewriting occurs in *parallel* in an L-system. The notion of L-system was introduced by plant biologist Aristid Lindenmayer when he was studying the growth development of red algae.

Formally, an L-system is a triple $G = (\Sigma, P, w)$, where

- 1. Σ is an alphabet,
- 2. w is a word over Σ , and
- 3. P is a finite subset of $\Sigma \times \Sigma^*$ such that for every $a \in \Sigma$, there is at least one $u \in \Sigma^*$ such that $(a, u) \in P$.

w is called the *start word*, or the *axiom* of G, and elements of P are called productions of the L-system G, and are written $a \to u$ instead of (a, u).

As stated above, an L-system is a language generator, where words are generated from the axiom w by repeated applications of productions of P. Let us see how this is done. Define a binary relation \Rightarrow on Σ^* as follows: for words $u, v \in \Sigma^*$,

$$u \Rightarrow v$$
 iff either $u = a_1 \cdots a_n$ and $v = v_1 \cdots v_n$, where $a_i \rightarrow v_i \in P$, or $u = v$.

Now, take the transitive closure \Rightarrow^* of \Rightarrow and set

$$L(G) := \{ u \mid w \Rightarrow^* u \}.$$

Then L(G) is called the *language generated* by the L-system G. An L-language is L(G) for some L-system G.

Examples

1. Let $G = (\{a\}, \{a \to a^2\}, a)$. In two derivations, we get $a \Rightarrow a^2 \Rightarrow a^2a^2 = a^4$. It is easy to see that after n derivations, we get $a \Rightarrow^* a^{2^n}$, and that $L(G) = \{a^{2^n} \mid n \geq 1\}$. Note that if parallel rewriting is not required then a^3 may be derived in three steps: $a \Rightarrow a^2 \Rightarrow (a^2)a = a^3$.

- 2. Let $G = (\{a\}, \{a \to a, a \to a^2\}, a)$. Then $L(G) = \{a\}^+$.
- 3. Let $G = (\{a\}, \{a \to \lambda, a \to a^2\}, a)$. Then $L(G) = \{a^{2n} \mid n \ge 0\} \cup \{a\}$.
- 4. Let $G = (\{a, b\}, \{a \to ab, b \to ba\}, a)$. Then we get a sequence of words $a \Rightarrow ab \Rightarrow abba \Rightarrow abbabaab \Rightarrow \cdots$, and L(G) is the set containing words in the sequence. Note the recursive nature of the sequence: if u_n is the nth word in the sequence, then $u_1 = a$ and $u_{n+1} = u_n h(u_n)$, where h is the homomorphism given by h(a) = b and h(b) = a.
- 5. L-systems can be used to generate graphs. Usually, symbols in Σ represent instructions on how to construct the graph. For example,

$$G = (\{a, b, c\}, \{a \rightarrow a, b \rightarrow b, c \rightarrow cacbbcac\}, c)$$

generates the famous Koch curve. If $u \in L(G)$ is derived from c in n steps, then u represents the n-th iteration of the Koch curve. To draw the n-th iteration based on u, we do the following:

- (a) write $u = d_1 \cdots d_m$, where $d_i \in \Sigma$ (it is easy to see that $m = 2^{n-1}$).
- (b) at each d_i , a current position z_i , and current direction θ_i , are given.
- (c) start at the origin on the Euclidean plane in the positive x direction, so that $z_0 = (0,0)$ and $\theta_0 = 0$.
- (d) upon reading d_i , where i > 0:
 - if $d_i = a$, set $z_i = z_{i-1}$ and $\theta_i = \theta_{i-1} + 60$,
 - if $d_i = b$, set $z_i = z_{i-1}$ and $\theta_i = \theta_{i-1} 60$,
 - if $d_i = c$, draw a line segment of unit length from z_{i-1} to a point P based on θ_{i-1} , and set $z_i = P$ and $\theta_i = \theta_{i-1}$.

A production $b \to u$ is said to correspond to $a \in \Sigma$ if b = a. Both productions in Example 2 correspond to a. A production is said to be a constant production if it has the form $a \to a$. A symbol in Σ is called a constant if the only corresponding production is the constant production. In the last example above, a, b are both constants. a is not a constant in Example 2, even though it has a corresponding constant production.

Properties

Given an L-system $G = (\Sigma, P, w)$, we can associate a function $f_G : \Sigma \to 2^{\Sigma^*}$ as follows: for each $a \in \Sigma$, set

$$f_G(a) := \{ u \mid a \to u \in P \}.$$

Then f_G extends to a substitution $s_G : \Sigma^* \to 2^{\Sigma^*}$. It is easy to see that $s_G(w)$ is just the set of words derivable from w in one step: $s_G(w) = \{u \mid w \Rightarrow u\}$. In fact,

$$L(G) = \bigcup \{ s_G^n(w) \mid n \ge 0 \},$$

where $s_G^0(w) = \{w\}$, and $s_G^{n+1}(w) = s_G(s_G^n(w))$.

In relation to languages described by the Chomsky hierarchy, we have the following results:

- 1. Every L-language is context-free.
- 2. If an L-system $G = (\Sigma, P, w)$ contains a constant production for each symbol in Σ , then L(G) is context-free.
- 3. Denote the families of regular, context-free, context-sensitive, and L-languages by $\mathscr{R}, \mathscr{F}, \mathscr{S}, \mathscr{L}$, and set $\mathscr{X}_1 = \mathscr{R}, \mathscr{X}_2 = \mathscr{F} \mathscr{R}$, and $\mathscr{X}_2 = \mathscr{S} \mathscr{F}$. Then $\mathscr{L} \cap \mathscr{X}_i$ and $\overline{\mathscr{L}} \cap \mathscr{X}_i$ are non-empty for i = 1, 2, 3. Here, $\overline{\mathscr{L}}$ is the complement of \mathscr{L} in 2^{Σ^*} , the family of all languages over Σ .

Subsystems

An L-system is said to be deterministic if every symbol in Σ has at most one (hence exactly one) production corresponding to it. A deterministic L-system is also called a DL-system. Examples 1,4,5 above are DL-systems. For a DL-system, the associated substitution is a homomorphism, which means that for each $n \geq 0$, the set $s_G^n(w)$ is a singleton, so we get a unique sequence of words w_0, w_1, \ldots , such that $w_n \Rightarrow w_{n+1}$. If $|w_n| < |w_{n+1}|$ for some n, then the word sequence is infinite. In particular, if w_n is a prefix of w_{n+1} for all large enough n, and the lengths of the words have the property that $|w_n| = |w_{n+1}|$ implies $|w_m| < |w_{m+1}|$ for some m > n, then the DL-system defines a unique infinite word (by taking the union of all finite words). In Example 4 above, the infinite word we obtain is the famous Thue-Morse sequence (an infinite word is an infinite sequence).

An L-system is said to be *propagating* if no productions are of the form $a \to \lambda$. A propagating L-system is also called a PL-system. All examples above, except 3, are propagating. A DPL-system is a deterministic propagating L-system. In a DPL-system, the lengths of the words in the corresponding sequence are non-decreasing, and one may classify DPL-systems by how fast these lengths grow.

Variations

There are also ways one can extend the generative capacity of an L-system by generalizing some or all of the criteria defining an L-system. Below are some:

1. Create a partition of $\Sigma = N \cup T$, the set N of non-terminals and the set T of terminals, so that only terminal words are allowed in L(G). Such a system is called an EL-system. Formally, an EL-system is a 4-tuple

$$H = (N, T, P, w)$$

such that $G_H = (N \cup T, P, w)$ is an L-system, and $L(H) = L(G_H) \cap T^*$.

2. Notice that the productions in an L-system are context-free in the sense that during a rewriting step, the rewriting of a symbol does not depend on the "context" of the symbol (its neighboring symbols). This is the reason why an L-system is also known as a 0L-system. We can generalize an 0L-system by permitting context-sensitivity in the productions. If the rewriting of a symbol depends both on its left and right neighboring symbols, the resulting system is called a 2L-system. On the other hand, a 1L-system is a system such that dependency is one-sided.

Formally, a 2L-system is a quadruple

$$(\Sigma, P, w, \sqcup).$$

Both Σ and w are defined as in an L-system. \square is a symbol not in Σ , denoting a blank space. P is a subset of $\Sigma_1 \times \Sigma \times \Sigma_1 \times \Sigma^*$, where $\Sigma_1 = \Sigma \cup \{ \sqcup \}$, such that for every $(a,b,c) \in \Sigma_1 \times \Sigma \times \Sigma_1$, there is a $u \in \Sigma^*$ such that $(a,b,c,u) \in P$. Elements of P are called productions, and are written $abc \to u$ instead of (a,b,c,u). Rewriting works as follows: the binary relation \Rightarrow on Σ^* called a rewriting step, is given by $u \Rightarrow v$ iff either u = v, or $u = a_1 \cdots a_n$ and $v = v_1 \cdots v_n$, such that

- (a) $\sqcup a_1 a_2 \rightarrow v_1$,
- (b) $a_{i-1}a_ia_{i+1} \to v_i$ where $i = 2, \dots, n-1$, and
- (c) $a_{n-1}a_n \sqcup \to v_n$.

If n=2, then productions of the second form above do not apply. If n=1, then $\sqcup a_1 \sqcup \cdots \vee v_1$ are the only productions.

A 1L-system is then a 2L-system such that either, $abc \to u$ for some $c \in \Sigma_1$ implies $abd \to u$ for all $d \in \Sigma_1$, or $cab \to u$ for some $c \in \Sigma_1$ implies $dab \to u$ for all $d \in \Sigma_1$.

It is easy to see that an L-system is a 2L-system such that if $abc \to u$ for some $a, c \in \Sigma_1$, then $dbe \to u$ for all $d, e \in \Sigma_1$.

- 3. Allow the possibility that not all of the symbols may be rewritten. This means that $u \Rightarrow v$ iff either u = v, or $u = a_1 \cdots a_n$ and $v = v_1 \cdots v_n$, and either $a_i = v_i$ or $a_i \rightarrow v_i \in P$.
- 4. Allow more than one axiom. In other words, the single axiom word w is replaced by a set W of axioms.

References

[1] A. Salomaa, Formal Languages, Academic Press, New York (1973).