Experimentele basistechnieken in de natuurkunde (G0P32A)

Bachelor fysica

Prof. Riccardo Raabe raabe@kuleuven.be

Dmitry Kouznetsov

Guillaume Libeert

Lens Dedroog

Bram van den Borne

Patrick Baumans

Wout Keijers

Correcte data analyse, fitten is uitermate belangrijk!

Grootste verschil met 200C: Bvb Sample Fabricatie

Vb van een onderzoekstechniek: STM

Situering van het OPO in de opleiding

Bachelor in de fysica

Je krijgt inzicht en ervaring in de **proefondervindelijke** aspecten van de fysica via demonstratie-experimenten, aangepaste practica en projectwerk

Experimentele basistechnieken: leren meten

When you can measure what you are speaking about, and express it in numbers, you know something about it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind

Lord Kelvin

There are two possible outcomes:

If the result confirms the hypothesis, then you've made a measurement.

Enrico Fermi

If the result is contrary to the hypothesis, then you've made a discovery.

04/10/2021 - Info

Experimentele basistechnieken: leren meten

Leren meten

- Technieken, methodes
 Data verwerken en analyseren
 Verslag maken, data presenteren
 → in practica en projectwerk
- Meetfouten, schatten, fitten, model bespreken
 → in les "schattingstheorie"
- Schema van een experiment, meetsysteem, signaal en ruis
 → in lessen "meetsystemen"

Maatschappelijke relevantie

Flow

Oil and gas flow meters and measurement systems all rely on accurate measurement results.

Read more →

Utility

Smart meters are the future.
Smart watt-hour meters, gas
meters and water meters all
rely on them.

Read more →

Weighing

Weighing instruments, volume meters and load cells need to be accurate for fair trade and consumer goods.

Read more →

Mobility

Speed needs to be measured precisely and taxi meters need to calculate the exact amount of kilometers.

Read more →

E-mark

By reviewing your filling system from a metrological perspective, you get the finest and best returns.

Read more ->

Force

The strength of cables in industrial constructions and the hardness of tarmac need to be measured.

Read more →

Verification

The obligatory test of a measuring instrument which checks whether it meets the statutory requirements.

Read more ->

Cyber Security and Safety

IEC 62443, in each of its specialized parts, covers all aspects playing a role in Cyber Security.

Read more →

Vaardigheden en leerdoelen

Leerresultaten Opleiding

- 1. Inzicht basismodellen fysica
- 2. Diepgaande kennis hedendaagse fysica
- 3. Vorming in de chemie
- 4. Kennismaken actief onderzoek op het Departement
- 5. Inzichten wetenschapsfilosofie en levensbeschouwing
- 6. Beheren en toepassen wiskundige technieken
- 7. Fysische procedure begrijpen en aanpassen
- 8. Informaticatechnologie gebruiken voor het verwerken van gegevens
- 9. Inzicht methodologie en deontologie van onderzoek
- 10. Vaardigheden om eigen onderzoek uit te voeren
- 11. Vakliteratuur opzoeken en...
- 12. ...verwerken
- 13. Belang van fysica in wetenschap en maatschappij plaatsen
- 14. Logisch, kritisch en deductief redeneren
- 15. Kritisch reflecteren over rol onderzoek in maatschappij
- 16. Ervaring werken in teamverband
- 17. Standpunt verdedigen tegenover medestudenten
- 18. In het Nederlands communiceren en presenteren
- 19. Voldoende kennis van het Engels
- 20. Zelfstandig leeractiviteiten te plannen

21. ...

Komt in aanmerking

Wordt geëvalueerd

Dit OPO:

- Brede spectrum LR
- Geëvalueerde LR zijn specifiek

Vaardigheden en leerdoelen

Doelstellingen OPO (= aspecten die worden geëvalueerd)

1. Studenten verwerven een grondige kennis van de beginselen en methoden in de experimentele natuurkunde en krijgen de nodige vaardigheden betreffende basis instrumentatie.

Algemeen doel

2. Ze zijn in staat om een steekproef van gegevens te analyseren, de juiste resultaten en de bijbehorende onzekerheden af te leiden. Ze zijn in staat om te beslissen over de geldigheid of de afwijzing van een natuurkundig model op basis van kwantitatieve criteria.

Les: schattingstheorie

Studenten zijn vertrouwd met de instrumenten en methoden van signaal opmeting en verwerking. Op basis van deze kennis zijn ze in staat om een experiment te ontwerpen en optimaliseren.

Lessen: meetsystemen

3. Door daadwerkelijk een aantal experimenten uit te voeren, ontwikkelen studenten de nodige vaardigheden om gegevens en relevante informatie op te meten voor de verdere verwerking. Ze leren de resultaten te presenteren op een wetenschappelijk verantwoorde manier, in schriftelijke verslagen en mondelinge presentaties.

Practicum + project

Twee evaluatiemomenten: verslagen – presentatie

KU LEUVEN

Evaluatie: permanente evaluatie

Geen eindexamen Twee evaluatiemomenten

- Verslagen (en voorbereidende opgaven) + Taken vanaf het tweede verslag (toenemende gewicht) gewicht: 16/20
- Presentatie van wetenschappelijk project gewicht: 4/20 (moet slagen!)

Geen herexamen mogelijk!

Afspraken

Tijdstippen

Gedrag

actief deelnemen

Xu – Xu10: beschikbaar voor vragen, inlichtingen... les begint om Xu10 en eindigt om ≤ X+3u Twee pauzen, telkens 10 min

VGM video's kijken op Toledo (verplicht)

Kalender (voorlopige versie)

Eerste semester:

Datum	Inhoud
Maandag 4	
oktober	Info, Theorie les
Maandag 11	Practicum 1: Metingen met de
oktober	oscilloscoop
Maandag 18	Practicum 2: Netwerken en de wetten
oktober	van Kirchhoff
Maandag	
25oktober	Python sessie
Maandag 8	
November	Practicum 3: Wheatstonebruggen
Maandag 15	
November	Practicum 4: zonnepanelen.
Maandag 22	Sessie rond veiligheid en bezoek aan
November	labo'z
Maandag 29	
November	Practicum 5: kern fysica (stuur proef)
Maandag 6	Practicum 6: Gedwongen oscillatie en
December	resonantie
Maandag 13	
December	Sessie rond informatievaardigheden
Maandag 20	
December	Afwerken verslagen

(ongeveer)

- 6 colleges
- (Virtuele) bezoek CBA
- 11 practicumsessies(9 verplichte + 2 keuze)
- 1 twee-week project
- Mini-colloquium

Elke maandag voormiddag of namiddag

Hoe werken we?

Leerstof (colleges)

Deel I: fouten en schattingstheorie

- Fouten bij aflezing, foutenpropagatie
- Kansverdelingen, basisstatistiek
- Schatten van parameters en hun fouten
- Fitten van modellen

Deel II - Natuurkunde experimenten

- Algemeen schema van een experiment
- Basis van elektrische schakelingen
- Eigenschappen van het meetsysteem
- Signaal theorie en ruis
- Sensoren: mechanische, elektromagnetische
- Signaal conditionering en verwerking

1 college

3-4 colleges

Practica

- Twee reeksen, groepen van twee studenten Verdeling deze week op Toledo
- Stijlgids en handleidingen 1^{ste} practicum deze week op Toledo
- Voorbereidende opgave: één per groep (nietjes gebruiken a.u.b.)
- 1^{ste} verslag niet op punten
 Daarna alles (ook voorbereidende opgave) wel op punten
 Gewicht neemt toe doorheen het jaar
- ledere groep voorziet één laboschrift (voor nota's, resultaten metingen)

Samenvatting

1/ Wat wordt er verwacht van mij?

- Actieve deelnemen vragen beantwoorden, vragen stellen...
- Leerstof verwerken / de practica voorbereiden
- Maateregels voor netheid en veiligheid naleven

Samenvatting

2/ Wat moet ik doen om te slagen

- Hoeveel tijd besteden?
 6 stp → ≈150 tot 180 uren, dwz ≈6-7 u/week x 26 weken
- Volg de lessen!
 Maak oefeningen, wees actief
- Werk met collega's mee
 Aan de verslagen
 Concepten aan elkaar uitleggen, vragen stellen
- Gebruik de feedback
 Werk aan je zwakke punten

Studiemateriaal

Op Toledo (G0P32a):

- Slides van de lessen
- Kopies: W.R. Leo, "Techniques for Nuclear and Particle Physics Experiments" (Hoofdstuk 4: Statistics and the Treatment of Experimental data)
- Handleidingen practica (beschrijving proef, opdrachten...)
- Richtlijnen verslagen met voorbeelden (stijlgids)

Bijkomende literatuur

- <u>Foutberekening:</u>
 J.R. Taylor, "An Introduction to Error Analysis",
 University Science Books, ISBN 0-935702-42-3
- Algemeen:
 G.L. Squires, "Practical Physics",
 Cambridge University Press, ISBN 0-521-77045-9

