ID:0811562 name:何祁恩

(a)code

```
clc;
    clear;
    close all;
    filename = 'kid';
   f = imread([filename,'.tif']);
    [M, N] = size(f);
   %(b)
    F = fft2(double(f));
    F_shift = fftshift(F);
12
    %pading to avoid wraparound error
    f_pad = zeros(2*M, 2*N);
    f_{pad}(1:M, 1:N) = f;
    f_{pad\_shift} = zeros(2*M, 2*N);
    for i = 1 : 2*M
        for j = 1 : 2*N
            f_{pad_shift(i, j)} = f_{pad(i, j)} * ((-1)^{((i-1)+(j-1))};
        end
    end
    F_pad_shift = fft2(double(f_pad_shift));
   %create Gaussian LPF and HPF (1200 x 1200 FILTER)
   LPF = zeros(2*M, 2*N);
    D0 = 200;
                                                                  %D0 = 200!!!!!!!!!!!!!!!!!!!! not 100
    for u = 1:2*M
        for v = 1:2*N
            D2 = (u-M)^2 + (v-N)^2;
                                                                  %center change to (M, N)
            LPF(u,v) = exp(-1*D2/(2*D0*D0));
        end
    end
   HPF = 1 - LPF;
```

```
%Image pass LPF
   G_LPF_shift = F_pad_shift .* LPF;
40 g_LPF_shift = ifft2(double(G_LPF_shift));
   g_{LPF} = zeros(2*M, 2*N);
    for i = 1 : 2*M
        for j = 1 : 2*N
            g_{LPF(i, j)} = g_{LPF\_shift(i, j)} * ((-1)^{((i-1)+(j-1))};
        end
   end
   Re_g LPF = real(g LPF(1:M,1:N));
   %Image pass HPF
   G_HPF_shift = F_pad_shift .* HPF;
   g_HPF_shift = ifft2(double(G_HPF_shift));
   g_{HPF} = zeros(2*M, 2*N);
    for i = 1 : 2*M
        for j = 1 : 2*N
            g_{HPF}(i, j) = g_{HPF\_shift}(i, j) * ((-1)^{((i-1)+(j-1))};
        end
   end
   Re_g HPF = real(g HPF(1:M,1:N));
```

```
64 %get top25 abs(Fshift)
65 Abs_F_shift = abs(F_shift);
66 Abs_F_shift = Abs_F_shift(1:M,1:N/2);
67 \max_{abs} = zeros(25,1);
68 u = zeros(25,1);
   v = zeros(25,1);
   idx = 1;
   while idx ≤ 25
        sort_abs = sort(Abs_F_shift(:));
        max_value = max(sort_abs);
        [row,col] = find(Abs_F_shift = max_value);
        [length, a] = size(row);
        for j = 0:length - 1
            u(idx+j,1) = row(j+1,1) - 1;
            v(idx+j,1) = col(j+1,1) - 1;
            max_abs(idx+j,1) = max_value;
            Abs_F_shift(row(j+1,1),col(j+1,1)) = -inf;
        end
        idx = idx + length;
84 end
```

```
86 figure(1)
    imshow(mat2gray(log10(1+ abs(F_shift))));
    img1 = getimage(gcf);
    imwrite(img1,['result/',filename,'_(600×600_DFT).tiff'], 'tiff', 'Resolution', 150)
   figure(2)
92 imshow(LPF);
93 img2 = getimage(gcf);
    imwrite(img2,['result/',filename,'_(1200×1200_LPF).tiff'], 'tiff', 'Resolution', 150)
96 figure(3)
    imshow(HPF);
    img3 = getimage(gcf);
    imwrite(img3,['result/',filename,'_(1200×1200_HPF).tiff'], 'tiff', 'Resolution', 150)
    figure(4)
    imshow(uint8(Re_g_LPF));
    img4 = getimage(gcf);
    imwrite(img4,['result/',filename,'_(600×600_LPF_output).tiff'], 'tiff', 'Resolution', 150)
    figure(5)
    imshow(uint8(Re_g_HPF));
    img5 = getimage(gcf);
    imwrite(img5,['result/',filename,'_(600×600_HPF_output).tiff'], 'tiff', 'Resolution', 150)
```

(b) Fourier magnitude spectra (in Log scale) of kid and fruit (600x600 DFT)

(c) Magnitude responses of Gaussian LPF and HPF D0 = 200! Not 100!!!!!!!!!!

D0 = 100 pixels based on the original image size (600 * 600), but we perform a gaussian filter on (1200 * 1200) to avoid wraparound error, so we should choose D0' by calculating:

 $(100^2 * pi) / 600^2 = ((D0')^2 * pi) / 1200^2 -> D0' = 200$ pixels for expanding the image to double size

(d) 4 output images

Kid LPF, HPF

Fruit LPF, HPF

The output image from HPF is so black, but we still can see some edges detected.

(e) start from left top

Kid in descending order:

Fruit	in	des	cending	order
1 1 0110				01001

u	V		
301	299		
300	299		
299	299		
298	299		
297	299		
299	297		
302	298		
298	298		
298	294		
302	299		
302	296		
299	298		
304	298		
316	298		
299	294		
301	296		
317	298		
296	296		
296	298		
316	297		
300	294		
298	292		
297	296		
298	297		
301	297		

u	V	
300	299	
301	297	
300	298	
296	299	
303	297	
300	297	
299	299	
295	299	
302	297	
297	298	
301	294	
298	299	
300	295	
302	299	
304	299	
303	299	
296	294	
299	298	
303	298	
299	296	
296	296	
306	299	
297	296	
299	297	
302	295	

Feedback:

I think I didn't do anything wrong in this project, I follow the PPT process given in class. However, I think the given D0 is not so good to observe the output image after Gaussian LPF and HPF. I do check the definition of 2D DFT taught in class has the same formula as Matlab implementation:

$$F(u,v) = \begin{cases} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) W_M^{ux} W_N^{vy}, & 0 \le u \le M-1 \\ \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) W_M^{ux} W_N^{vy}, & 0 \le v \le N-1 \\ 0, & \text{otherwise} \end{cases}$$

$$W_M = e^{-j\frac{2\pi}{M}} \quad \text{analysis equation}$$

$$W_M = e^{-j\frac{2\pi}{M}}$$
 analysis equation

$$f(x,y) = \begin{cases} \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) W_M^{-ux} W_N^{-vy}, & 0 \le x \le M-1\\ 0, & \text{otherwise} \end{cases}$$

synthesis equation

Matlab implementation of 2D DFT:

This formula defines the discrete Fourier transform Y of an m-by-n matrix X

$$Y_{p+1,q+1} = \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \omega_m^{jp} \omega_n^{kq} X_{j+1,k+1}$$

 ω_m and ω_n are complex roots of unity:

$$\omega_m = e^{-2\pi i l m}$$

i is the imaginary unit. p and j are indices that run from 0 to m-1, and q and k are indices that run from 0 to n-1. This formula shifts the indices for X and Y by 1 to reflect matrix indices in MATLAB®

2-D Inverse Fourier Transform

This formula defines the discrete inverse Fourier transform *X* of an *m*-by-*n* matrix *Y*:

$$X_{p,q} = \frac{1}{m} \sum_{j=1}^{m} \frac{1}{n} \sum_{k=1}^{n} \omega_m^{(j-1)(p-1)} \omega_n^{(k-1)(q-1)} Y_{j,k}$$

 ω_m and ω_n are complex roots of unity:

$$\omega_m = e^{2\pi i/m}$$
$$\omega_n = e^{2\pi i/n}$$

i is the imaginary unit. p runs from 1 to m and q runs from 1 to n.

In python, fft provided by NumPy seems to have a normalized coefficient different from the formula given above. Therefore, I choose Matlab to do this project.

Some other results (without any post-processing):

For Do = 100

Fruit LPF, HPF:

KID LPF, HPF:

The output result of LPF becomes a little blurry, and the output result of HPF becomes clear.

For D0 = 50

Fruit LPF, HPF:

KID LPF, HPF:

When D0 = 50, the output image from LPF becomes very blurry, and the output image from HPF detects more edges clearly. I think the difference between us might be the implementation detail under those package functions.

It is quite fun on this project, and I learn a lot!