Estructura de datos - Reto 5

Yábir García Benchakhtir

22 de diciembre de 2017

1. Problema

Se nos da una función hash definida como:

$$h(k) = k \% M$$

y un sistema para resolver colisiones siguiendo un esquema de hashing doble mediante la función:

$$h_i(k) = [h(k) + d_i] \% M$$

con i un número natural mayor que 1 y d_i definido como:

$$d_0 = 0$$

 $d_i = (a * d_{i-1} + c) \% M$

A partir de estas condiciones se nos pide que fijado un número $M \in \mathbb{Z}^+$ primo discutamos cuales son los pares < a, c > que provocan que usados en la definición anterior la función ocupe todas las posiciones disponibles antes de repetir posiciones, es decir, nos garanticemos que tenemos acceso a todas las posiciones de la tabla.

2. Encontrar los pares

Por definición de d_i los valores de a y c que tenemos que comprobar abarcan desde 0 a M-1 ya que estamos realizando una operación de módulo. Por ello si definimos $I_N = \{0..N\}$ tenemos que buscar

$$\{ \langle a, c \rangle \in I_{M-1} \times I_{M-1} \}$$

que completan todos los huecos accesibles de nuestra tabla hash.

Para ello vamos a introducir M veces el mismo valor en la tabla de modo que provoquemos el máximo de colisiones posibles y podamos comprobar si todos los huecos de nuestra tabla se rellenan.

Utilizaremos en esta implementación un vector con M posiciones y emplearemos — como simbolo para marcar que una casilla está disponible.

En cada iteración comprobamos si es posible insertarlo en la posición que le asigna h y si no es posible llamamos a h_i hasta que determinemos que tiene que existir un ciclo.

Se adjunta un programa en python que realiza estos calculos usando el criterio anterior.

La implementación tiene complejidad $O(n^3)$ luego hacer calculos para números relativamente pequeños a se vuelve una tarea compleja.

3. Resultados obtenidos

Si ejecutamos el programa para números primos en \mathbb{Z}^+ obtenemos que las parejas que completan todas las posiciones son los pares de la forma < 1, n > con 0 < n < M - 1.

Este resultado se explica si estudiamos como aumenta el valor de d_i en función de su indice.

Obtenesmos una expresión de la forma:

$$\left[\sum_{n=0}^{i-1} a^n c\right] \% M$$

De esta forma cuando encontramos una colisión incrementamos un grado este coeficiente.

4. ¿Por qué funciona este método?

Mediante la función h(k) insertamos en la posición que le correspondería y mediante $h_i(k)$ lo que hacemos es incrementar la posición que le corresponde sumandole un incremento positivo que depende de la expresión expuesta en el apartado anterior.

Cuando usamos los pares de la forma <1,n> realizamos un incremento de una unidad en cada iteración que hacemos, es decir, si h(x)=0

$$h_1(x) = (0+c) \% M$$

 $h_2(x) = (0+2 \cdot c) \% M$

$$h_3(x) = (0+3\cdot c) \% M$$

y esto nos recorre de forma lineal todas las posiciones de la lista con lo que nos garantizamos que accedemos a todas las posiciones disponibles.