

Apr 04, 2025

Protocol for 6mA labeling and HMW DNA extraction from fresh frozen human brain samples

DOI

dx.doi.org/10.17504/protocols.io.j8nlkw54wl5r/v1

Jonas Demeulemeester¹, Koen Theunis²

¹Laboratory of Integrative Cancer Genomics, VIB-KULeuven;

²Laboratory of Computational Biology, VIB-KULeuven

Lab of Computational Bi...

ASAP Collaborative Res...

1 more workspace

Koen Theunis

Laboratory of Computational Biology, VIB Center for AI & Com...

DOI: dx.doi.org/10.17504/protocols.io.j8nlkw54wl5r/v1

Protocol Citation: Jonas Demeulemeester, Koen Theunis 2025. Protocol for 6mA labeling and HMW DNA extraction from fresh frozen human brain samples. **protocols.io** https://dx.doi.org/10.17504/protocols.io.j8nlkw54wl5r/v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: September 09, 2022

Last Modified: April 04, 2025

Protocol Integer ID: 69773

Keywords: HMW DNA extraction, Nanopore sequencing, PromethION, ASAPCRN

Abstract

This protocol details the procedure of 6mA labeling and HMW DNA extraction of fresh frozen brain tissue. The protocol is inspired by Fiber-seq.

CITATION

Stergachis AB, Debo BM, Haugen E, Churchman LS, Stamatoyannopoulos JA (2020). Single-molecule regulatory architectures captured by chromatin fiber sequencing.. Science (New York, N.Y.). LINK

https://doi.org/10.1126/science.aaz1646

Attachments

irgkbewa7.pdf

192KB

Materials

Prepare buffers (Volumes above are indicated per sample):

10x stocks of Wash buffer base (no spermidine/Tween) and Labeling buffer base (no spermidine/SAM/Hia5).

2 mL Wash buffer \rightarrow take $488 \,\mu$ L and add Digitonin + 50XProtInh to make **Lysis buffer**.

Make [M] 25 millimolar (mM) spermidine stocks fresh monthly and store at \$\mathbb{8} -20 \cdot \mathbb{C}\$.

Add \perp 2 μ L spermidine (liquid, \sim [M] 6.38 Molarity (M)) to \perp 350 μ L [M] 0.1 Molarity (M) HCl and

 \bot 160 μL H2O − check pH with strips!

A	В	С	D			
10X Wash/Lysis base (10X-WLB) (200uL / sample)						
	Stock	Final for 10X	V (uL)			
Tris-HCl pH 7.4	1000 mM	100 mM	100			
NaCl	5000 mM	100 mM	20			
Water			880			
Total			1000			

A	В	С	D				
10)	10X Hia5 labeling base (10X-H5B) (20uL / sample)						
	Stock	Final for 10X	V (uL)				
Tris-HCI pH 8	1000 mM	150 mM	150				
NaCl	5000 mM	150 mM	30				
KCI	1000 mM	600 mM	600				
EDTA pH 8	500 mM	10 mM	20				
EDTA pH 8	250 mM	5 mM	20				
Water			180				
Total			1000				

	A	В	С	D	E		
	1X Wash buffer						

A	В	С	D	E
	Stock	Final	V (uL)	X5
10X WLB	10 X	1 X	230	1150
BSA	10%	0.10%	23	115
Spermidine pH 7.4	25 mM	0.5 mM	46	230
Tween-20	10%	0.10%	23	115
Water			1978	9890
Total			2300	11500

A	В	С	D	E	
1X Lysis buffer					
	Stock	Final	V (uL)	X5	
Wash buffer			488	2440	
Digitonin	5%	0.02%	2	10	
ProteaseInh	50 X	1 X	10	50	
Total			500	2500	

A	В	С	D	E	
1X Hia5 labeling buffer					
	Stock	Final	V (uL)	X5	
10X-H5B	10 X	1 X	20	100	
BSA	10	0.1	2	10	
Spermidine pH 7.4	25	0.5	4	20	
SAM	32	0.8	5	25	
Hia5 enzyme	250	5	4	20	
Water			165	825	
Total			200	1000	

6mA labeling and HMW DNA extraction

- Place the Dounce homogenizer and pestles On ice, chill the centrifuge to 4 °C and preheat the ThermoMixer to 37 °C.
- 2 **Carefully** transfer 3-4 (→ + 2 mm diameter) tissue punch biopsies (~ ∠ 25 mg) to the chilled Dounce homogenizer.

Note

Keep the Dounce homogenizer on ice during the entire disruption process.

- Add \perp 500 μ L of the 1X Lysis buffer and let the tissue thaw for \bigcirc 00:01:00 .
- 4 Gently homogenize the tissue 10X with pestle A and 10X with B.
- 4.1 Push the tissue with the pestle firmly into the bottom of the Dounce chamber with each stroke (Down + Up = 1X).
- 4.2 Keep the tissue between tip of pestle and the bottom of the Dounce chamber for thorough homogenization.
- 4.3 Homogenate may become foamy, but this is not a cause for concern.

Note

In the next step, transfer any foam that forms.

- 5 Incubate S On ice for 5 00:05:00 before adding Δ 1000 μL of 1X Wash buffer.

5m

6 Transfer the lysate to a 2 mL Protein LoBind microcentrifuge tube.

7 Rinse the pestles and homogenizer with the remaining $\Delta 500~\mu L$ 1X Wash buffer and add to the sample.

Pellet homogenate by centrifuging at 9700 x g and 4 4 °C for 00:05:00.

Discard supernatant.

5m

- Resuspend the pellet in Δ 200 μ L of 1X Hia5 labeling buffer use a Δ 1 mL or wide bore tip.
- Incubate on a ThermoMixer at \$ 37 °C and \$ 900 rpm for \$ 00:30:00.

- 11 Continue with Circulomics CBB Tissue protocol from step 8 onwards.
 - Continue with NEB Monarch HMW.

Nanopore sequencing (LSK-110, PromethION)

- According to ONT protocol Genomic DNA by Ligation (SQK-LSK110) with the following modifications:
- 12.1 Start with $\Delta 3 \mu g$ $\Delta 4 \mu g$ of HMW DNA in 150 uL and sheer 25x with a 26G needle or in Megaruptor to 35kb.
- 12.2 Adjust volumes end-prep and FFPE repair step accordingly (i.e. vol x 3), omit control strand (CS).
- 12.3 Extend end-prep and FFPE repair steps from 00:05:00 to 00:30:00 (i.e. 30min at 20 °C and 30 min at 65 °C).
- 35m

12.4 Extend ligation step to 01:00:00 at 8 Room temperature.

1h

12.5 Elute the AMPure cleanups for 00:10:00 and 00:20:00 after the end-prep and ligation steps.

30m

12.6 This should yield a ~3x library, aim to load near the high end of the 5-50fmol range, typically \sim \perp 8 μ L .

Note

Note 1:Library prep yield is typically 30-50%.

Note 2:The amount loaded can be reduced during subsequent flushes to balance seq yield with # flushes.

Citations

Stergachis AB, Debo BM, Haugen E, Churchman LS, Stamatoyannopoulos JA. Single-molecule regulatory architectures captured by chromatin fiber sequencing.

https://doi.org/10.1126/science.aaz1646