ЗАДАЧИ АППРОКСИМАЦИИ

Параграф состоит из двух разнородных частей. В первой рассматриваются вопросы аппроксимации в пространстве непрерывных функций, а во второй – в произвольном гильбертовом пространстве.

Такое деление вполне оправдано, поскольку в гильбертовых пространствах решать подобные задачи много проще.

Для банаховых пространств задачи аппроксимации приходится решать отдельно для каждого пространства и шансов справиться с проблемой значительно меньше. Множество непрерывных функций — самое популярное банахово пространство, и те утверждения о непрерывных функциях, которые здесь будут рассмотрены, были получены задолго до возникновения самого термина «функциональный анализ».

Теорема Вейерштрасса

Если функция f непрерывна на отрезке [a,b], то для любого положительного ϵ найдется многочлен такой, что

$$\max\{|f(x) - p(x)| : a \le x \le b\} < \epsilon.$$

Замечание

Теорема имеет множество доказательств, приводимое здесь принадлежит С. Н. Бернштейну и привлекательно тем, что показывает глубокие связи, существующие между различными разделами математики. Оказывается, утверждение теоремы можно рассматривать как следствие центральной предельной теоремы для случайной величины, распределенной по закону Бернулли.

Доказательство

Будем считать, что a=0 и b=1. Возьмем произвольное число $x\in [0,1]$ и рассмотрим независимые случайные величины $\mathcal{X}_k,\ k=1,\ldots,n,$ имеющие одинаковое распределение:

$$P(\mathcal{X}_k = 1) = x, \quad P(\mathcal{X}_k = 0) = 1 - x.$$

Вычислим для них математическое ожидание

$$E(\mathcal{X}_k) = x$$

и дисперсию $D(\mathcal{X}_k) = E((\mathcal{X}_k - x)^2) = x(1 - x).$

Обозначим
$$\bar{\mathcal{X}} = \frac{1}{n} \sum_{k=1}^{n} \mathcal{X}_k$$
.

Тогда

$$P\left(\bar{\mathcal{X}} = \frac{k}{n}\right) = C_n^k x^k (1-x)^{n-k},$$

$$E(\mathcal{X}) = x \sum_{k=1}^{n} C_{n-1}^{k-1} x^{k-1} (1-x)^{n-k} = x,$$

$$D(\mathcal{X}) = \frac{1}{n^2} \sum_{k=1}^{n} D(\mathcal{X}_k) = \frac{x(1-x)}{n}.$$

Покажем, что требуемое приближение функции дает многочлен

$$p(x,f) = \sum_{k=0}^{n} f(\frac{k}{n}) C_n^k x^k (1-x)^{n-k}.$$

Введем еще одну случайную величину

$$\mathcal{Z} = f(\bar{\mathcal{X}}), \ P\left(\mathcal{Z} = f\left(\frac{k}{n}\right)\right) = P\left(\bar{\mathcal{X}} = \frac{k}{n}\right) = C_n^k x^k (1-x)^{n-k}.$$

Следовательно $E(\mathcal{Z}) = p(x,f)$. Центральная предельная теорема гарантирует, что усредняемая случайная величина концентрируется около среднего значения усредняемых величин. Это и составляет основную идею доказательства. Количественные оценки можно получить из неравенства Чебышева

$$P(|\mathcal{Z} - E(\mathcal{Z})| > \delta) \le \frac{D(\mathcal{Z})}{\delta^2}.$$

Заметим, что с одной стороны

$$P(|\mathcal{Z} - E(\mathcal{Z})| > \delta) = \sum_{|k/n - x| > \delta} C_n^k x^k (1 - x)^{n - k},$$

а с другой

$$P(|\mathcal{Z} - E(\mathcal{Z})| > \delta) = P(|\mathcal{X} - E(\mathcal{X})| > \delta) \le \frac{x(1-x)}{n\delta^2}$$

Эти соотношения означают, что слагаемые, имеющие номера, для которых $|k/n-x| \ge \delta$, вносят незначительный вклад в формирование многочлена p(x,f).

Поэтому для проведения оценки удобно разбить всю сумму на две части

$$p(x,f) = \sum_{|k/n-x| \ge \delta} f(\frac{k}{n}) C_n^k x^k (1-x)^{n-k} + \sum_{|k/n-x| < \delta} f(\frac{k}{n}) C_n^k x^k (1-x)^{n-k}.$$

Покажем, что разность f(x) - p(x, f) мала, оценивая ее для каждой из сумм по отдельности. Для оценки первой суммы воспользуемся очевидным неравенством

$$|f(x) - f(\frac{k}{n})| \le 2 \max\{|f(t)| : 0 \le t \le 1\} = 2||f||$$

и получим

$$\left| \sum_{|k/n-x| > \delta} (f(x) - f(\frac{k}{n})) C_n^k x^k (1-x)^{n-k} \right| \le$$

$$\leq 2||f||\sum_{|k/n-x|>\delta} C_n^k x^k (1-x)^{n-k} \leq 2||f|| \cdot \frac{x(1-x)}{n\delta^2}.$$

При оценке второй суммы учтем, что функция f равномерно непрерывна и, следовательно, для любого ϵ найдется δ такое, что из $|x_1-x_2|<\delta$ следует $|f(x_1)-f(x_2)|<\epsilon$. Тогда

$$\left| \sum_{|k/n-x|<\delta} (f(x) - f(\frac{k}{n})) C_n^k x^k (1-x)^{n-k} \right| \le \epsilon \sum_{k=0}^n C_n^k x^k (1-x)^{n-k} = \epsilon.$$

Объединяя полученные оценки, получим

$$|f(x) - p(x, f)| \le 2||f|| \cdot \frac{x(1-x)}{n\delta^2} + \epsilon \le \frac{1}{n} \cdot \frac{||f||}{2\delta^2} + \epsilon.$$

Выберем теперь n настолько большим, чтобы выполнялась оценка $\frac{||f||}{2n\delta^2} < \epsilon$ и получим

$$|f(x) - p(x, f)| \le 2\epsilon$$

Теорема Вейерштрасса имеет огромное количество обобщений.

Теорема Мюнца

Для того, чтобы линейная оболочка функций x^{λ_n} , $n=0,1,2,\ldots$ и $\lambda_n<\lambda_{n+1}$, была плотна в пространстве C[a,b] необходимо и достаточно, чтобы $\lambda_0=0$ и $\sum_{n=1}^{\infty}\frac{1}{\lambda_n}=\infty$.

Не менее важным оказался вопрос о существовании многочлена наилучшего приближения. Ответ на него получил Чебышев примерно в то же время, когда доказал свою теорему Вейерштрасс.

Теорема Чебышева об альтернансе

Пусть $f \in C[a,b]$ и p – многочлен степени n такой, что для любого многочлена q той же степени выполнено неравенство

$$||f - p|| \le ||f - q||.$$

Тогда разность f(x) - p(x) принимает с чередующимися знаками значение ||f - p|| не менее, чем в n+2 точках. При этом, если многочлен p имеет на промежутке (a,b) ровно n корней, то такой многочлен единственен.

О нетривиальности этого результата свидетельствует вид этих многочленов в самом простом случае $f(x) \equiv 0$, a = -1, b = 1 (многочлены Чебышева):

$$p(x) = \cos(n\arccos x) = \frac{1}{2} \left(\left(x + \sqrt{x^2 - 1} \right)^n + \left(x - \sqrt{x^2 - 1} \right)^n \right).$$

Исчерпывающая подборка материалов на эту тему имеется в книге [8].

Приведенные здесь результаты об аппроксимации в пространстве непрерывных функций невозможно перенести на другие банаховы пространства. В этом смысле результаты индивидуальны. Совсем другая ситуация в гильбертовых пространствах.

Теорема

Пусть G – выпуклое подмножество гильбертова пространства H, f – элемент H, не принадлежащий G. Тогда существует единственный элемент наилучшего приложения $g_* \in G$ такой, что

$$||f - g_*|| = \min\{||f - g|| : g \in G\}.$$

Доказательство

Обозначим $d=\inf\{||f-g||:g\in G\}$ и для $\epsilon>0$

$$B_{\epsilon} = \{x : ||f - x|| \le d + \epsilon\},\$$

$$P_{\epsilon} = G \cap B_{\epsilon}.$$

Поскольку множества P_{ϵ} выпуклы и замкнуты, а гильбертово пространство по определению является полным, то в нем справедлива **аксиома вложенных промежутков**:

$$\bigcap P_{\epsilon} \neq \varnothing.$$

Любой элемент из этого пересечения является элементом наилучшего приближения.

Покажем, что такой элемент единственен.

Предположим, это не так и существуют элементы $a,b\in\bigcap_{\epsilon}P_{\epsilon}.$

Воспользуемся равенством параллелограмма для элементов f-a и f-b.

Заметим, что диагоналями такого параллелограмма являются элементы b-a и 2(m-f), где $m=\frac{1}{2}(a+b)$.

В таком случае

$$2(||f - a||^2 + ||f - b||^2) = ||2(m - f)||^2 + ||b - a||^2.$$

Оценим норму b-a, используя соотношения ||f-a||=||f-b||=d и $||m-f||\geq d$:

$$||b-a||^2 = (||f-a||^2 + ||f-b||^2 - 2||m-f||^2) \le 0.$$

Следовательно, a = b, то есть элемент наилучшего приближения единственен.

Следствие 1

Элемент $g_* \in G$ является наилучшим приближением элемента f тогда и только тогда, когда для любого $g \in G$ выполнено равенство $(g_* - f, g - g_*) = 0$.

Доказанная теорема является чистой теоремой существования, нет никаких надежд получить эффективный вычислительный алгоритм для ее решения. Однако, если выпуклое множество представляет собой подпространство, то задача сильно упрощается и решение сводится к описанию проекции элемента на подпространство.

Следствие 2

Пусть G – линейное пространство, содержащееся в H.

Элемент $q_* \in G$ является наилучшим приближением элемента f тогда и только тогда,

когда для любого $g \in G$ выполнено равенство $(g_* - f, g) = 0$.

В случае, когда это подпространство конечномерно, задача решается средствами линейной алгебры. Следующие две теоремы одержат описание решения такой задачи.

Определение

Пусть f_1, f_2, \ldots, f_n – элементы гильбертова пространства H. Определителем Грама этих элементов называют

$$\Delta(f_1, f_2, \dots, f_n) = \det((f_k, f_j))_{k,j=1}^n.$$

Теорема

Элементы $f_1, f_2, \ldots, f_n \in H$ являются линейно независимыми тогда и только тогда, когда

$$\Delta(f_1, f_2, \dots, f_n) \neq 0.$$

Доказательство

Достаточность. Предположим, что это не так, то есть определитель

$$\Delta(f_1, f_2, \dots, f_n) \neq 0$$

но элементы линейно зависим

(существуют числа α_k , не все равные нулю и такие, что $\sum\limits_k \alpha_k f_k = 0$)

Домножая скалярно это равенство на элементы f_1, f_2, \ldots, f_n , получим систему уравнений

$$\sum_{k} \alpha_k(f_k, f_j) = 0, \ j = 1, 2, \dots, n.$$

По предположению система имеет нетривиальное решение. Это возможно, только если $\Delta(f_1, f_2, \dots, f_n) = 0$. Следовательно, сделанное предположение неверно.

Необходимость.

Достаточно доказать, что из линейной независимости элементов f_k следует, что система $\sum_k \alpha_k(f_k,f_j)=0,\ j=1,2,\ldots,n$

имеет только тривиальное решение.

Предположим, что существует нетривиальное решение. Это можно интерпретировать так, что некоторый элемент $\sum_k \alpha_k f_k$ ортогонален всем элементам f_j

Вычислим норму этого элемента:

$$||\sum_{k} \alpha_k f_k||^2 = (\sum_{k} \alpha_k f_k, \sum_{j} \alpha_j f_j) = \sum_{k} \alpha_k (\sum_{j} \alpha_j (f_k, f_j)) = 0.$$

Следовательно, по свойствам нормы $\sum_k \alpha_k f_k = 0$. Противоречие.

Следующая теорема дает описание элемента наилучшего приближения.

Теорема

Пусть f_1, f_2, \ldots, f_n – элементы гильбертова пространства H, Y – линейная оболочка этих элементов.

Тогда для любого элемента $f \in H$ элемент наилучшего приближения из пространства Y единственным образом представляется в виде

$$g_* = \sum_k d_k f_k$$
, где d_k – решение системы

$$\sum_{k} d_k(f_k, f_j) = (f, f_j), \ j = 1, 2, \dots, n,$$
 при этом

$$||f - g_*||^2 = \frac{\Delta(f_1, f_2, \dots, f_n, f)}{\Delta(f_1, f_2, \dots, f_n)}.$$

Доказательство

Если g_* – элемент наилучшего приближения, то $f-g_*$ ортогонально всему пространству Y

в частности, из ортогональности этого элемента всем f_k следует, что справедливо равенство

$$\sum_{k} d_k(f_k, f_j) = (g_*, f_j) = (f, f_j), \quad j = 1, 2, \dots, n.$$

Вычислим расстояние d от элемента f до пространства Y:

$$d^{2} = ||f - g_{*}||^{2} = (f - g_{*}, f - g_{*}).$$

Еще раз воспользуемся ортогональностью $f-g_*$ и Y.

Элемент g_* входит в Y и, следовательно, он ортогонален $f-g_*$, тогда

$$d^{2} = (f, f - g_{*}) = ||f||^{2} - (f, g_{*}) = ||f||^{2} - \sum_{k} d_{k}(f_{k}, f).$$

Это равенство можно переписать в виде $\sum_k d_k(f_k, f) = ||f||^2 - d^2$.

Чтобы получить выражение для расстояния через определители Грама, рассмотрим однородную систему уравнений

$$\sum_{k=1}^{n} x_k(f_k, f_j) - x_{n+1}(f_k, f) = 0, \ j = 1, 2, \dots, n,$$

$$\sum_{k=1}^{n} x_k(f_k, f) - x_{n+1} \left((f, f) - d^2 \right) = 0.$$

Из предыдущих рассмотрений следует, что система имеет нетривиальное решение

$$(x_1,\ldots,x_{n+1})=(d_1,d_2,\ldots,d_n,1).$$

Следовательно, определитель матрицы коэффициентов равен нулю

$$\begin{vmatrix} (f_1, f_1) & \dots & (f_1, f_n) & -(f, f_1) \\ (f_2, f_1) & \dots & (f_2, f_n) & -(f, f_2) \\ \vdots & \vdots & \vdots & \vdots \\ (f, f_1) & \dots & (f, f_n) & -(f, f) + d^2 \end{vmatrix} = 0.$$

Разложим определитель в сумму по последнему столбцу

$$\begin{vmatrix} (f_1, f_1) & \dots & (f_1, f_n) & -(f, f_1) \\ (f_2, f_1) & \dots & (f_2, f_n) & -(f, f_2) \\ \vdots & \vdots & \vdots & \vdots \\ (f, f_1) & \dots & (f, f_n) & -(f, f) \end{vmatrix} + \begin{vmatrix} (f_1, f_1) & \dots & (f_1, f_n) & 0 \\ (f_2, f_1) & \dots & (f_2, f_n) & 0 \\ \vdots & \vdots & \vdots & \vdots \\ (f, f_1) & \dots & (f, f_n) & 0 + d^2 \end{vmatrix} = 0.$$

Отсюда вытекает, что $\Delta(f_1, f_2, \dots, f_n, f) = d^2 \Delta(f_1, f_2, \dots, f_n).$

Последняя теорема сильно упрощается, если элементы f_k ортогональны.

Следствие

Если к условиям предыдущей теоремы добавить попарную ортогональность элементов f_k , то элемент наилучшего приближения запишется в виде

$$g_* = \sum_{k=1}^n d_k f_k$$
, где $d_k = (f, f_k)$.

Отметим, что условие ортогональности элементов f_k чисто техническое, поскольку стандартный прием (алгоритм Грама-Шмидта) позволяет переделать любую линейно независимую систему f_1, f_2, \dots, f_n в ортонормированную $\phi_1, \phi_2, \dots, \phi_n$: 1) $\tilde{\phi}_1 = f_1, \ \phi_1 = \frac{\tilde{\phi}_1}{||\tilde{\phi}_1||}$;

1)
$$\tilde{\phi}_1 = f_1$$
, $\phi_1 = \frac{\phi_1}{\|\tilde{\phi}_1\|}$;

2)
$$\tilde{\phi}_2 = f_2 - \alpha_{21}\phi_1$$
, $\alpha_{21} = (\tilde{\phi}_2, \phi_1)$, $\phi_2 = \frac{\tilde{\phi}_2}{||\tilde{\phi}_2||}$;

n)
$$\tilde{\phi}_n = f_n - \sum_{j=1}^{n-1} \alpha_{nj} \phi_j$$
, $\alpha_{nj} = (\tilde{\phi}_n, \phi_j)$, $\phi_n = \frac{\tilde{\phi}_n}{||\tilde{\phi}_n||}$.