Algorithme de Dijkstra

Graphes valués aux arêtes

Un graphe simple G=(X,E) est dit valué aux arêtes

ssi

il existe une application \mathbf{v} de E dans IR

- Soit G un graphe valué aux arêtes par v:
 - La valuation d'une chaîne P, notée v(P), est la somme des valuations de toutes ses arêtes.
 - La distance entre 2 sommets est la valuation minimum d'une chaîne du graphe ayant ces deux sommets pour extrémités. On note d_{G,v} (x,y)

Attention avec les valuations négatives.

Quelle est la distance de a à e ? de b à d ?

Dans la suite de ce cours on considérera des valuations strictement positives

Algorithme de Dijkstra

Algorithme: DistanceDeDijkstra

Données : un graphe G=(X,E), une valuation positive v

et un sommet a de G.

Résultat : une fonction d donnant la distance d'un sommet quelconque

au sommet a

Pour tout sommet x de G faire

$$d(x) \leftarrow \infty$$

Fin Pour

$$d(a) \leftarrow 0$$

Pour tout voisin x de a **faire**

$$d(x) \leftarrow v(ax)$$

Fin Pour

marquer le sommet a en rouge

TantQue il reste des sommets t non rouges et tels que $d(t)\neq\infty$ **faire**

choisir un sommet x non rouge qui minimise la fonction d

Pour tout voisin y non rouge du sommet x **faire**

$$d(y) \leftarrow \min(d(y); d(x)+v(xy))$$

FinPour

marquer x en rouge

FinTantQue

Retourner la fonction d

rouge	Е	А	В	С	D	S
E(0)	X	3 (E)	1(E)	∞	∞	∞
B(1)	X	2(B)	X	4(B)	6(B)	∞
A(2)	X	X	X	4(B)	6(B)	∞
C(4)	X	X	X	X	5(C)	7(C)
D(5)	X	X	X	X	X	6(D)
S(6)	X	X	X	X	X	X

d(E,S)=6 P=(E,B,C,D,S)