Name: Richard

R. Hammack

Score 100

Directions No calculators. Please put all phones, etc., away.

1. Short Answer:

(a) Give at least one statement that is logically equivalent to $P \Rightarrow Q$.

$$P \land \neg Q \Rightarrow \neg P$$
 $P \land \neg Q \Rightarrow (C \land \neg C)$ any of these is sufficient $\neg P \lor Q$

(b) State DeMorgan's Laws.

$$\sim (P \land Q) = \sim P \lor \sim Q$$

 $\sim (P \lor Q) = \sim P \land \sim Q$

2. Write a truth table to decide if $P \Rightarrow \sim Q$ and $(\sim P) \lor (\sim Q)$ are logically equivalent.

P	9	~P	~ Q	$P \Rightarrow \sim Q$	(~P)V(~Q)
T	T	F	F	(F)	F
T	F	F	T	T	一
-	T	T	F	T	T
F	F	Te	T		T

Because the columns agree, the two statements $P \Rightarrow \sim Q$ and $(\sim P) \vee (\sim Q)$ are logically equivalent.

3. Suppose the statement $((R \wedge S) \Rightarrow P) \Leftrightarrow (Q \wedge \sim Q)$ is **true**. Find the truth values of R, S and P. (This can be done without a truth table.)

Because QA~Q is FALSE, then (RAS) => P is fulse also This means RAS is TRUE and P is FALSE. Therefore:

$$R = T$$

 $S = T$
 $P = F$

4. This problem concerns the following statement.

P: Given any $x \in \mathbb{R}$, there exists an element $y \in \mathbb{R}$ for which xy = 1.

(a) Is the statement P true or false? Explain.

This is false because $x=0\in\mathbb{R}$, but there is no element $y\in\mathbb{R}$ for which xy=0:y=1.

(b) Write the statement P in symbolic form.

 $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, xy = 1$

(c) Form the negation $\sim P$ of your answer from (b), and simplify.

 $\sim (\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, xy = 1)$ $= \exists x \in \mathbb{R}, \sim (\exists y \in \mathbb{R}, xy = 1)$ $= \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \sim (xy = 1)$ $= \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, xy \neq 1$

(d) Write the negation $\sim P$ as an English sentence. (The sentence may use mathematical symbols.)

There is a real number x with the property that xy \$\pm\$ 1 for every real number y.

Note: This is true because the number $x=o \in \mathbb{R}$ has The property $xy \neq 1$ for every $y \in \mathbb{R}$.

5. A geometric sequence with ratio r is a sequence of numbers for which any term is r times the previous term. If the first term of the sequence is a, then the sequence is a, ar, ar^2 , ar^3 , ar^4 , ar^5 Write an algorithm whose input is three numbers $a, r \in \mathbb{R}$, and $n \in \mathbb{N}$, and whose output is the first n terms of the geometric sequence with first term a and ratio r.

Algorithm

Input: a, r \in IR, n \in IN

output: a, ar, ar, ar, ar, ar, ar

begin

for i:=1 to in do

| output a

| a:=a.r

end

6. Prove: If a is an even integer, then a^2 is even.

[Direct proof may be easiest.]

Proof (direct) Suppose a is even. This means a = 2b for some $b \in \mathbb{Z}$. Then $a^2 = (2b)^2 = 4b^2 = 2(2b^2)$. So $a^2 = 2k$, where $k = 2b^2 \in \mathbb{Z}$. Therefore a^2 is even. 7. Prove: If a is an odd integer, then $a^2 + 3a + 5$ is odd.

[Direct proof may be easiest.]

Proof (direct)

Suppose a is odd.

Thus a = 2k+1 for some k ∈ Z.

Then $a^2 + 3a + 5 = (2k+1)^2 + 3(2k+1) + 5$

$$=4k^2+4k+1+6k+3+5$$

$$=4k^2+4k+6k+9$$

$$=2(2k^2+5k+4)+1.1$$

The above shows $a^2 + 3a + 5 = 2b + 1$, where $b = 2k^2 + 5k + 4$.

Therefore az+3a+5 is odd.

8. Suppose $n \in \mathbb{Z}$. Prove: If $3 \nmid n^2$, then $3 \nmid n$.

[Contrapositive may be easiest.]

Proof (contrapositive)

Suppose 3/n.

This means n=3a, where $a \in \mathbb{Z}$.

Then
$$n^2 = (3a)^2 = 9a^2 = 3.(3a^2)$$

Thus $n^2 = 3b$ where $b = 3a^2 \in \mathbb{Z}$

This means 3/n2.

9. Prove: If $n \in \mathbb{Z}$, then $4 \nmid (n^2 + 2)$.

[Contradiction may be easiest.]

For the sake of contradiction, suppose $n \in \mathbb{Z}$ and $4/(n^2+2)$. This means $n^2+2=4b$ for some $b \in \mathbb{Z}$. Let's consider two cases.

CASEI Suppose n is even. Then n=2k for some $k\in\mathbb{Z}$. Then $n^2+z=4b$ becomes $(2k)^2+z=4b$, which is $4k^2+z=4b$. Then $2=4b-4k^2$, Factoring, $2=4(b-k^2)$. Dividing by 2 we get $1=2(b-k^2)$ which means that 1 is even, a contradiction

CASE II Suppose n is odd. Then n=2k+1 for some $k \in \mathbb{Z}$. Then: $n^2+2=4b$ $(2k+1)^2+2=4b$

$$(2k+1)^{2}+2=4b$$

 $4k^{2}+4k+1+2=4b-2-4k-4k^{2}$
 $1=2(2b-2-2k-2k^{2})$

Therefore I is even, which is a contradiction

10. Suppose $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. Prove: If $a \equiv b \pmod{n}$ and $a \equiv c \pmod{n}$, then $c \equiv b \pmod{n}$.

Proof (Direct) Suppose a = b (mod n) and a = c (mod n)

This means n (a-b) and n (a-c).

In turn, we get a-b=nkl and a-c=nl for k, l∈ II.

Subtracting one equation from the other,

$$a-b = nK$$

$$-a+c = -nL$$

$$C-b = nK-nL$$

Therefore c-b = n(k-l). This means n(c-b), and

consequently c = b (mod n)