

ABOUT FINALSPARK

Fundamental research in strong AI since 2014

Switch to biocomputing approach in 2018

Dr Fred Jordan PhD, signal processing

Dr Martin Kutter PhD, signal processing

Jean-Marc Comby MSc in physics

Dr. Ewelina Kurtys PhD, neuroscience

Flora Brozzi PhD, biology

FROM DIGITAL TO BIO

Digital Processor

Today, AI growth is limited by high energy use required

Bioprocessor

Al growth will be enhanced with no energy restrictions

WHY LIVING NEURONS?

WHY LIVING NEURONS?

Because it works

Because it's 1 million times more energy efficient

WHY LIVING NEURONS?

Because it works

Because it's 1 million times more energy efficient

Because it's scalable

FOR WHAT PURPOSE?

FROM BIOPROCESSOR TO BIOBLADE TO BIOFARM

LIVING COMPUTER: BIOLOGICAL NEURAL NETWORKS

Brain organoids

Human IPSC

~500 um diameter

ONE OF OUR ORGANOIDS UNDER MICROSCOPE

MULTI-ELECTRODE ARRAYS

BRAIN ORGANOIDS AND MEA

HOW DOES IT LOOK LIKE?

SIMPLE ELICITED SPIKES

EFFECT OF NMDA INJECTION

FULL SIGNAL

SIGNAL SHAPE MATTERS FOR RECEIVING ANSWERS

SIMILARITIES BETWEEN ARTIFICIAL AND BIOLOGICAL NEURAL NETWORKS

Output = T(Input, <State>)

Loss = f(Output, Target)

If Loss = 0 then Output = Target

Output = T(Input, <State>)

Loss = f(Output, Target)

If Loss = 0 then Output = Target

DIFFERENCES BETWEEN ARTIFICIAL AND BIOLOGICAL NEURAL NETWORKS

We know T()
We know <State> = $\{W_{jk}^l\}$

We can compute symbolically $\frac{\partial f}{\partial W_{jk}^l}$

Simple gradient descent:

$$\Delta W_{jk}^l = \alpha \frac{df}{dW_{jk}^l}$$

We do not know T()

We do not know <State>

We know that T() and <State> are changing over time

... 😊

How to update state in order to minimize Loss?

TRAINING IN BIOLOGICAL NEURAL NETWORKS

Reward/punish the network

Stochastic optimisation by spatio-temporal stimulations

LONG TERM POTENTIATION

WHAT IS THE STATUS NOW?

First results of neuroplasticity

Over 100 days of organoid lifetime

Operational 24/7 fluidics and monitoring neuroplatform

OPEN INNOVATION: FINALSPARK NEUROPLATFORM

OPEN INNOVATION

50 candidate research groups

8 selected

3 started

OPEN INNOVATION


```
for _ in range(4*60):
   # Stimulation
   for i in range(8):
       trigger.send(readingTriggers[i])
       time.sleep(0.01) # 10ms
   # Read number of spikes
   nb_spikes = read(trigger, intan, listeningTrigger)
   nb_spikes_ns = np.sum(nb_spikes[all_electrodes])
   diff_spikes = nb_spikes_ns-nb_spikes_ns_history[-1]
   nb_spikes_ns_history.append(nb_spikes_ns)
   clear_output(True)
   print(f'# Spikes: {nb_spikes_ns}')
   if diff_spikes > 0: # Increase of spike activity
       triggerUV.send(100) # trigger UV for 100ms
       time.sleep(0.1)
       # Increase speed of the pump to 5 rpm
       peristaltic.rpm(5, PeristalticDirection.CounterClockWise)
   time.sleep(60) # wait 1min
   peristaltic.rpm(1, PeristalticDirection.CounterClockWise) # set speed 1 rpm
```


BIOCOMPUTING IT'S BECOMING HOT

CONTACT

Get in touch with us:

Phone: +41 21 948 6464

Email: fred.jordan@finalspark.com

Rue du clos 12 1800 Vevey Switzerland

Web: www.finalspark.com

Featured on: euronews.next

LE TEMPS

