实验3:圆绘制算法 Circle Drawing Algorithm

华东师范大学计算机科学与技术学院李晨 副研究员 cli@cs.ecnu.edu.cn

Contents

- In today's lecture we'll have a look at:
 - Midpoint circle drawing algorithm
 - Bresenham's circle drawing algorithm
 - Exercise using Bresenham algorithm

A Simple Circle Drawing Algorithm

• The equation for a circle is:

$$x^2 + y^2 = r^2$$

- where r is the radius of the circle
- So, we can write a simple circle drawing algorithm by solving the equation for y at unit x intervals using:

$$y = \pm \sqrt{r^2 - x^2}$$

A Simple Circle Drawing Algorithm

$$y_0 = \sqrt{20^2 - 0^2} \approx 20$$

$$y_1 = \sqrt{20^2 - 1^2} \approx 20$$

$$y_2 = \sqrt{20^2 - 2^2} \approx 20$$

$$y_{19} = \sqrt{20^2 - 19^2} \approx 6$$

$$y_{20} = \sqrt{20^2 - 20^2} \approx 0$$

A Simple Circle Drawing Algorithm

- However, unsurprisingly this is not a brilliant solution
- Firstly, the resulting circle has **large gaps** where the slope approaches the vertical
- Secondly, the calculations are **not very efficient**
 - The square (multiply) operations
 - The square root operation try really hard to avoid these
- We need a more efficient, more accurate solution

Midpoint Circle Drawing Algorithm

- Similarly to the case with lines, there is an incremental algorithm for drawing circles
 the midpoint circle algorithm
- In the midpoint circle algorithm we use eight-way symmetry so only ever calculate the points for the top right eighth of a circle, and then use symmetry to get the rest of the points

Midpoint Circle Drawing Algorithm

- Assume that we have just plotted point (x_k, y_k)
- The next point is a choice between (x_k+1, y_k) and (x_k+1, y_k-1)
- We would like to choose the point that is nearest to the actual circle
- So how do we make this choice?

Midpoint Circle Drawing Algorithm

• Let's re-jig the equation of the circle slightly to give us:

$$f_{circ}(x, y) = x^2 + y^2 - r^2$$

• Our decision variable can be defined as:

$$p_k = f_{circ}(x_k + 1, y_k - \frac{1}{2})$$
$$= (x_k + 1)^2 + (y_k - \frac{1}{2})^2 - r^2$$

- If $p_k < 0$ the midpoint is inside the circle and the pixel at y_k is closer to the circle
- Otherwise the midpoint is outside and y_k -1 is closer

• To ensure things are as efficient as possible we can do all of our calculations incrementally

$$p_{k+1} = f_{circ} \left(x_{k+1} + 1, y_{k+1} - \frac{1}{2} \right)$$

$$= \left[(x_k + 1) + 1 \right]^2 + \left(y_{k+1} - \frac{1}{2} \right)^2 - r^2$$

$$p_{k+1} = p_k + 2(x_k + 1) + (y_{k+1}^2 - y_k^2) - (y_{k+1} - y_k) + 1$$

• where y_{k+1} is either y_k or y_k -1 depending on the sign of p_k

• The first decision variable is given as:

$$p_0 = f_{circ} (1, r - \frac{1}{2})$$

$$= 1 + (r - \frac{1}{2})^2 - r^2$$

$$= \frac{5}{4} - r$$

- Then if $p_k < 0$ then the next decision variable is given as: $p_{k+1} = p_k + 2x_{k+1} + 1$
- If $p_k > 0$ then the decision variable is: $p_{k+1} = p_k + 2x_{k+1} + 1 2y_{k+1}$

• Input radius r and circle centre (x_c, y_c) , then set the coordinates for the first point on the circumference of a circle centred on the origin as:

$$(x_0, y_0) = (0, r)$$

• Calculate the initial value of the decision parameter as:

$$p_0 = \frac{5}{4} - r$$

- if r is an integer, then p_0 can be rounded to 1 r.
- Perform the test, starting with k = 0 at each position x_k , perform the following test.
 - (i) If $p_k < 0$, the next point along the circle centred on (0, 0) is (x_k+1, y_k) and:

$$p_{k+1} = p_k + 2x_{k+1} + 1$$

• (ii) If $p_k > 0$ then the next point along the circle is $(x_k + 1, y_k - 1)$ and:

$$p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}$$

where
$$2x_{k+1} = 2x_k + 2$$
 and $2y_{k+1} = 2y_k - 2$

- Identify the symmetry points in the other seven octants
- Move (x, y) according to:

$$x = x + x_c$$
 $y = y + y_c$

• Repeat steps 3 to 5 until x >= y

Circle Drawing Algorithm

- The key insights in the circle algorithm are:
 - Eight-way symmetry can hugely reduce the work in drawing a circle
 - Moving in unit steps along the *x* axis at each point along the circle's edge we need to choose between two possible *y* coordinates

Assignment: Circle Drawing Algorithm

• 实验编号: 3

•实验名称: 圆绘制算法

• 实验内容

• Bresenham圆绘制算法

Extra Credit

• Could you draw ellipse using Midpoint/Bresenham algorithm?

Reference

- https://en.wikipedia.org/wiki/Midpoint_circle_algorithm
- https://www.geeksforgeeks.org/midpoint-ellipse-drawing-algorithm/
- http://members.chello.at/~easyfilter/bresenham.html

