Predicting a User's Next Instacart Order

П

Objective and Problem Setup

46

Objective: To predict all of the reorders in a user's next cart

But first... why?

USE CASES

Use Cases:

1) Buy-it-again recommendations -

2) Frequently bought with...

The Dataset

33,819,106

Total rows (1 per product per order)

3,346,08Total **3**rders

337,418Total users

THE DATASET

Contains prior order details for all users

Contains order details for each user's 'next' order

THE DATASET

Contains prior order details for all users in next_orders

Contains order details for each user's 'next' order

df_features

- Contains user & product statistics from prior_orders
- Contains next_order details
- Modeling done on these inputs

Model Selection & Results

9

Model Selection

Class imbalance apparent

• 10% of target are reorders

XGBoost slightly outperformed RandomForest

Used grid search to define the optimal XGBoost parameters:

Took over 28 hours using 16 vCPUs and just 25% of the dataset!

learning_rate	0.009
n_estimators	400
max_depth	7
colsample_bytree	0.8
min_child_weight	9

Scoring

2018 Kaggle competition crowned winner based on resulting F-1 scores

Do you remember our use case?

USE CASES

Use Cases:

- 1) Buy-it-again recommendations
- 2) Frequently bought with... -

INCREASING CONVERSION RATE

Use Cases:

- 1) Buy-it-again recommendations
- 2) Frequently bought with...

But how do these features help Instacart?

- User ease of use
- 1. Increase product conversion rates

What's Instacart's risk of incorrectly classifying an input as positive (reorder)?

Not Much.

In fact, we may be better off including items that the user is *less likely to buy* based on their prior orders. This will help Instacart to <u>increase conversion</u>!

Therefore, we ought to prioritize **recall**!

Recall = True Positives / Actual Positives

EMPHASIZING RECALL

Choosing a threshold with an ideal recall/precision balance using F-2 Scores

MODEL RESULTS

Adjusted F-2 Score

0.53

Probability Threshold

0.12

Previous threshold (0.22)

THANK YOU!

Any questions?

You can find me...

 $On\ Linked In: www.linked in.com/in/elliotwilens/$

On GitHub: www.github.com/edubu2

wilensel@gmail.com

THANK YOU!

APPENDIX

TECH STACK

Algorithms

- XGBoost

Techniques

Python Libraries

- Scikit-learn, StatsModels
- multiprocessing
- pickle
- pandas/numpy

Tools

- PostgreSQL
- Tableau
- Jupyter Notebook

FEATURE ENGINEERING

Some key features (32 total):

User Features	Product Features	User/Product Features
avg_cart_size	percent_reorders	order_streak
days_since_prior_order	qty_sold	last_five_buys
avg_time_between_orders	qty_reordered	In_last_cart (0/1)