denoting differentiation with respect to s) Using the idlations $x^2 = 1$, $\dot{x}x = 0$, we obtain the equations (y - x)x = 0, (y - x)x = 1, (y - x)x = 0 Hence we have $y - x = \frac{[xx]}{[xx]x}$.

5 Of Ex 3 and also Ex 5, p 19

7. From the definitions of ξ_1 , ξ_2 , ξ_3 we have $\xi_1 = x$, $\dot{x}^2 = 1$, $\xi_2 = x/k$, $\xi_3 = [\xi_1 \xi_2]$, $\pm \sqrt{\xi_3} = 1/\tau$ Obviously $\xi_1 = k\xi_2$ To determine ξ_2 , ξ_3 , we calculate their components with respect to a rectangular coordinate system $O\xi_1$, $O\xi_2$, $O\xi_3$ From the relations

$$\xi_2^2 = 1$$
, $\xi_3^2 = 1$, $\xi_1 \xi_2 = \xi_2 \xi_3 = \xi_3 \xi_1 = 0$

we obtain by differentiation

$$\xi_3\xi_1 = -\xi_1\xi_3 = 0, \ \xi_3\xi_3 = 0;$$

hence ξ_3 is perpendicular both to ξ_1 and to ξ_3 , and therefore

$$\xi_8 = \pm \sqrt{(\xi_8^B)} \xi_2 = \pm \xi_8/\tau$$

We define the sign of τ so as to give $\xi = -\xi_2/\tau$ This implies that τ is positive or negative according as the screw defined by the motion of the osculating plane in the direction of increasing s is right-handed or left-handed. To prove the second formula, note that

$$\xi_2 \xi_1 = -\xi_1 \xi_2 = -k$$
, $\xi_2 \xi_3 = 0$, $\xi_2 \xi_3 = -\xi_3 \xi_3 = 1/\tau$.

8. Use Ex. 6 and Ev 3: (a)
$$k\xi_2 - L^2\xi_1 + \frac{k}{\tau}\xi_3$$
, (b) $\frac{k}{L^2\tau}\xi_3 + \frac{\xi_2}{\tau}$

- 9 $1/|\tau| = \sqrt{\xi_5^2} = 0$, hence ξ_5 is a constant vector η , say; $\tau \eta = \xi_1 \eta = \xi_1 \xi_5 = 0$, so that $x\eta = \text{const.}$, where η is a fixed vector. That is, the curve lies in a fixed plane.
- 10 (b) If the curve is given by x = f(t), y = g(t), z = h(t), the surface has the parametric equations

$$x = f(t) + sf'(t)$$

 $y = g(t) + sg'(t)$
 $z = h(t) + sh'(t)$

then express $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y^2}$ in terms of the derivatives with respect to t and s.

Appendix, § I, p. 100

1 (a) As R is closed, there is a point B in R whose distance from A is less than that of any other point in R. Let n be the normal to AB at B. Then no point O in R has on the same side of n as A, for otherwise not only B and O, but the whole segment BO, would belong to R, and on this segment there would be points nearer to A than B is. Hence the parallel to n through A cannot meet B.