Notes from August 25th, 2021 to September 1st, 2021

Last Modified: 09/01/2021 12:03 PM

Notes from Sankar Meeting

- · Proposal defense document (powerpoint)
 - coregs, predict release, nwm, res opt
 - 10 days ahead give draft
 - * ETD document
- If we are in 1 bin, what is the probability of being in another bin in the next time step
 - Break it down into sub-bins for important leafs
 - Look at last 0.05 percentiles in each group, what is probability of jumping to the next

My Questions

- EDT document
 - Chapter 1
 - * COREGS
 - Chapter 2
 - * Predict Release
 - Chapter 3
 - * Generalized Release Curves for CONUS
 - Chapter 4
 - * Reservoir Optimization Algorithms
 - General Question
 - * Am I condensing the journal articles into these chapters?
 - · e.g., Take the coregs document and condense/synthesize it into a tangible story line for chapter 1
- Bin probabilities
 - I looked at this several different ways
 - * First is simply the probability of being in a different leaf tomorrow given I am in a current leaf today
 - e.g., $P(L5_{t+1}|L4_t)$
 - · Takeaway from this is pretty much what we would expect:
 - · You are most likely to be in the same bin tomorrow than any single bin
 - · Only Leaf 4 has a less than 50 % chance of being a leaf 4 again tomorrow
 - $\cdot\,$ If you do change leafs, you are most likely going to move to an adjacent leaf rather than a large jump
 - * Second I looked at the probability of transitioning if you are in the upper and lower 1/3s of the leaf
 - · Again, takeaways here are expected:
 - · Reasonable chance of moving up or down a leaf if you are in the upper or lower 1/3, respectively
 - $\cdot\,$ No 1/3 has a more than 25% chance of transitioning up or down
 - · One interesting observation is that the probabilty of moving to the next leaf follows a pretty nice pattern with it peaking near the middle leafs and being the lowest on the end (for both the upper and lower 1/3)
 - · The t prob of moving to a lower leaf does not follow a nice pattern

- * Third, I looked at the combination of the two plots above
 - · The t prob of each third within a leaf to every other leaf.
 - · This plot is a bit harder to dig into than the other two, but it shows a lot of information
 - · EXPLANTION:
 - · rows are the next leaf and columns are the start leaf
 - · So when the label is "Next Leaf = 3 | Start Leaf = 2", the plot shows the probability of each third within leaf 2 of transitioning to leaf 3
 - · Immediately noticed is the patterns along each row.
- X metrics for each transition

Transitio	n $S_{t-1} - ar{S}_7$	$S_{t-1} \times I_t$	R_{t-1}	$ar{R}_7$	I_t	$ar{I}_7$	S_{t-1}
Down	-0.030 ± 0.078	-0.026 ± 1.008	0.456 ± 0.860	0.256 ± 0.919	-0.011 ± 1.043	-0.039 ± 0.863	-0.042 ± 1.013
Same	0.005 ± 0.089	-0.031 ± 0.909	-0.060 ± 1.069	-0.080 ± 1.070	-0.034 ± 0.912	-0.009 ± 1.011	0.000 ± 0.992
Up	0.017 ± 0.106	0.122 ± 1.223	-0.283 ± 0.721	-0.013 ± 0.791	0.114 ± 1.188	0.066 ± 1.080	0.043 ± 1.009

- Overall, there are not distinct relationships. When storage is high (either absolutely or relatively) it becomes more likely that we transition to a higher leaf (higher release bracket). This is logical
- There is an interesting relationship between transition and Release
 - * When we transition to a lower node, yesterdays release is higher on average.
 - * The same can be said for rolling release.