

Relazione di laboratorio del corso di Sperimentazione nei Propulsori

AA 2023-2024

Autore	Codice Persona	Matricola	Indirizzo Email
Andrea Bassi	10665754	220534	andrea13.bassi@mail.polimi.it

Professore: Giulio Angelo Guido Solero

Abstract

Questo documento raccoglie i report delle varie attività laboratoriali svolte nell'ambito del corso di Sperimentazione nei Propulsori. Per ciascuna attività è presentata una sintesi di richieste, metodi risolutivi e risultati criticamente valutati.

Indice

\mathbf{A}	bstract	1
\mathbf{E} l	lenco delle tabelle	3
\mathbf{E} l	lenco delle figure	4
Li	sta dei simboli	5
1	Misure di temperatura mediante termocoppia 1.1 Risoluzione	7
2	Stima dell'errore sistematico	8
3	Misura di portata mediante diaframma	9
4	Perdite per irraggiamento	10
5	Misure al banco prova	11

Elenco delle tabelle

Elenco	delle	figure
--------	-------	--------

Lista dei simboli

Variabile	Descrizione	Unità
T	Temperatura	° C

1 Misure di temperatura mediante termocoppia

Dati e richieste Vengono fornite due serie di misure di temperatura allo scarico di una camera di combustione, eseguite mediante termocoppia di tipo B. La prima è costituita da 1599 valori ("Serie corta"), la seconda da 9999 ("Serie lunga"). Entrambe le serie sono campionate con una frequenza di campionamento di 100 Hz e vengono fornite mediante file testuale (.txt). Si chiede di svolgere l'analisi statistica dei dati.

1.1 Risoluzione

Si riportano i risultati emersi dall'elaborazione dei dati sperimentali. I calcoli sono stati svolti mediante il software *Matlab* e le funzioni built-in.

Suddivisione in classi e istogramma Entrambe le serie sono divise in 10 classi, di uguale ampiezza, costruite affinché non ci possa essere ambiguità nell'attribuzione dei valori: poiché le misure hanno 6 cifre decimali, gli estremi di classe sono definiti con 7 cifre decimali. L'estremo della prima classe viene scelto come il minimo valore di a cui viene sottratto 0.5e-7 °C. Analogamente, l'estremo superiore dell'ultima classe viene calcolato sommando la stessa quantità al massimo valore di nella serie. I valori estremi delle due serie sono mostrati in Tab.1.1.

Serie	$\mid T_{\min} \mid [^{o}C]$	T _{max} [°C]
Corta	953.745910	1193.110960
Lunga	931.352290	1449.917970

Tabella 1.1: Valori estremi di temperatura

Gli istogrammi relativi alle due serie sono mostrati in Fig.1.1.

Figura 1.1: Istogrammi delle due serie

2 Stima dell'errore sistematico

3 Misura di portata mediante diaframma

4 Perdite per irraggiamento

5 Misure al banco prova