Program

Dostępna pamięć: 128 MB.

OI, etap III, dzień próbny, 12.04.2016

Równoważne programy

Bajtazar dostal nowy komputer i uczy się go programować. Program składa się z ciągu instrukcji. Jest k różnych rodzajów instrukcji, które dla uproszczenia oznaczamy liczbami od 1 do k. Niektóre pary instrukcji mają tę własność, że jeśli występują w programie bezpośrednio obok siebie (w dowolnej kolejności), to zamieniając je miejscami, nie zmienia się działania programu (czyli uzyskuje się program równoważny). Pozostałe pary instrukcji nie mają tej własności i nazywamy je parami nieprzemiennymi. Bajtazar napisał dwa programy o długości n instrukcji każdy i zastanawia się, czy są one równoważne. Pomóż mu!

Wejście

W pierwszym wierszu standardowego wejścia znajdują się trzy liczby całkowite n, k oraz m pooddzielane pojedynczymi odstępami, oznaczające odpowiednio długość programów, liczbę różnych instrukcji komputera oraz liczbę par instrukcji nieprzemiennych.

Kolejne m wierszy zawiera opis tych par: każdy z tych wierszy zawiera dwie liczby całkowite a i b $(1 \le a < b \le k)$ oddzielone pojedynczym odstępem, oznaczające, że para instrukcji o numerach a i b jest nieprzemienna. Możesz założyć, że każda para wystąpi w tym opisie co najwyżej raz.

Kolejne dwa wiersze przedstawiają opisy dwóch programów. Każdy z tych wierszy zawiera ciąg n liczb całkowitych c_1, c_2, \ldots, c_n $(1 \le c_i \le k)$ pooddzielanych pojedynczymi odstępami, oznaczających numery kolejnych instrukcji programu.

Wyjście

W jedynym wierszu standardowego wyjścia należy wypisać jedno słowo TAK lub NIE w zależności od tego, czy podane na wejściu programy są równoważne.

Przykład

Dla danych wejściowych: poprawnym wynikiem jest:

5 3 1 TAK

2 3

1 1 2 1 3

1 2 3 1 1

natomiast dla danych wejściowych: poprawnym wynikiem jest:

3 3 1 NIE

2 3

1 2 3

3 2 1

156 Równoważne programy

Wyjaśnienie do pierwszego przykładu: W pierwszym programie można zamienić instrukcje na pozycjach 2 i 3, a następnie instrukcję na pozycji 5 z instrukcjami na pozycjach 4 i 3. W ten sposób uzyska się drugi program.

Testy "ocen":

```
locen: n=50, k=50, m=1; programy to (1,2,\ldots,49,50) oraz (50,49,\ldots,2,1); odpowiedź NIE.
```

```
2ocen: n = 99\ 999, k = 3, m = 1; instrukcje nieprzemienne to 1 i 2, a programy to (1,2,3,1,2,3,\ldots,1,2,3) oraz (3,1,2,3,1,2,\ldots,3,1,2); odpowiedź TAK.
```

3ocen: $n = 100\ 000$, k = 1000, $m = 50\ 000$; programy to (13, 13, 13, ..., 13) oraz (37, 37, 37, ..., 37); odpowiedź to oczywiście NIE.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów. We wszystkich testach zachodzą warunki $1 \le n \le 100\ 000$, $1 \le k \le 1000$, $0 \le m \le 50\ 000$.

Podzadanie	Warunki	Liczba punktów
1	$n \leqslant 5$	5
2	$k \leqslant 2$	5
3	$n \leqslant 1000$	25
4	brak dodatkowych warunków	65

Rozwiązanie

Zadanie polega na rozstrzygnięciu, czy z jednego z danych programów da się otrzymać drugi za pomocą ciągu zamian sąsiednich instrukcji. Przeszkodą jest lista par instrukcji, których nie wolno ze sobą zamieniać. Jeśli istnieje ciąg zamian przekształcający jeden program w drugi, to programy nazywamy równoważnymi. Taka nazwa została wybrana nieprzypadkowo. Pojęcie relacji równoważności występuje powszechnie w matematyce i jest uogólnieniem relacji opisanej w zadaniu. Wprawdzie znajomość definicji relacji równoważności nie pomaga w żaden szczególny sposób w wymyśleniu efektywnego algorytmu, ale dostarcza języka pomocnego przy opisie rozwiązań.

Definicja 1. Relację \approx nazywamy relacją równoważności, jeżeli jest ona:

- 1. **zwrotna**, czyli $x \approx x$ dla każdego x,
- 2. symetryczna, czyli $x \approx y$ zachodzi wtedy i tylko wtedy, gdy $y \approx x$,
- 3. **przechodnia**, czyli $x \approx y$ w połączeniu z $y \approx z$ implikuje $x \approx z$.

Przykładami relacji równoważności są: równość (znak \approx zastępujemy wtedy znakiem =), posiadanie takiej samej reszty z dzielenia przez ustalony dzielnik (relacja równoważności określona na liczbach naturalnych) albo podobieństwo figur na płaszczyźnie. Zauważmy też, że opisana w treści zadania równoważność jest relacją równoważności na zbiorze programów. Jeśli oznaczymy ją przez \approx , a pod x,y,z podstawimy dowolne programy, to wszystkie trzy warunki powyższej definicji będą spełnione.

Przykładem relacji zwrotnej i symetrycznej, lecz niekoniecznie przechodniej, jest relacja przemienności instrukcji z zadania. Istotnie, może się okazać, że instrukcja p jest w relacji z instrukcjami q i r i może być zamieniona miejscami z każdą z nich, ale kolejność instrukcji q i r ma znaczenie. Za przykład relacji, która nie jest zwrotna ani symetryczna, lecz jest przechodnia, może posłużyć relacja mniejszości liczb (<).

Sortowanie z przeszkodami

W rozwiązaniu skorzystamy z przechodniości relacji równoważności i przekształcimy oba programy do prostszych równoważnych postaci, które będziemy umieli łatwo porównać. Gdyby wszystkie pary instrukcji były przemienne, wystarczyłoby posortować numery instrukcji w każdym programie¹ i sprawdzić, czy otrzymaliśmy takie same ciągi. Okazuje się, że podobny pomysł może zadziałać w ogólniejszym przypadku. Niech x' oznacza najmniejszy w porządku leksykograficznym program równoważny z x. Analogicznie dla programu y definiujemy y'. Jeśli $x \approx y$ (programy x i y są równoważne), to z przechodniości relacji równoważności mamy $x' \approx y'$, co z definicji daje x' = y'. Z drugiej strony, jeżeli x' = y', to z przechodniości relacji wnioskujemy, że $x \approx y$.

Przykład 1. Zakładając, że nieprzemienne są pary instrukcji 1, 2 oraz 1, 3, następujące programy są równoważne:

$$x = 1, 4, 2, 3, 2, 1, 4, 2, 1, 4$$
 oraz $y = 4, 1, 4, 3, 2, 2, 1, 2, 1, 4$.

Najmniejszy leksykograficznie program równoważny x oraz y to:

$$x' = y' = 1, 2, 2, 3, 1, 2, 1, 4, 4, 4.$$

Zanim zaczniemy konstruować algorytm, zauważmy, że mając dane dwa numery instrukcji, umiemy w czasie stałym rozstrzygnąć, czy odpowiadające im instrukcje są przemienne. Możemy chociażby trzymać wszystkie nieprzemienne pary w tablicy haszującej. Nie musimy jednak posuwać się do takich optymalizacji – jako że numery instrukcji należą do przedziału [1,k] gdzie $k \leq 1000$, bez problemu zmieścimy w pamięci zwykłą tablicę dwuwymiarową indeksowaną numerami instrukcji.

Jak znaleźć najmniejszy leksykograficznie program równoważny z x? Najprościej zacząć od sprawdzenia, czy na pierwszą pozycję można wstawić instrukcję o numerze 1. Aby było to możliwe, taka instrukcja musi występować w programie i wszystkie instrukcje przed nią muszą być z nią przemienne. Jeśli nie jest to możliwe, sprawdzamy instrukcje o numerze 2 i tak dalej. Gdy znajdziemy pierwszą pasująca instrukcje,

 $^{^{1}}$ Wykorzystując algorytm sortowania przez zliczanie, można to wykonać w czasie O(n+k).

usuwamy ją z programu i powtarzamy proces dla pozycji 2. Dla każdej z n pozycji musimy sprawdzić potencjalnie k kandydatów. Sprawdzenie jednego kandydata wymaga czasu O(n). Prowadzi to do złożoności obliczeniowej algorytmu $O(n^2k)$, co jest dalece niesatysfakcjonujące.

Aby usprawnić algorytm, zawęźmy zbiór kandydatów na pierwszą instrukcję programu. Mogą to być jedynie te instrukcje, których nie poprzedzają żadne nieprzemienne z nimi. Możemy wyznaczyć taki zbiór w czasie $O(n^2)$. Po wyborze najmniejszej wartości na pierwszą pozycję, chcielibyśmy szybko uaktualnić zbiór kandydatów w celu wyłonienia najlepszej instrukcji na pozycję 2 i kontynuować ten proces, aż skonstruujemy x'.

Niech $S^x[i]$ oznacza liczbę instrukcji leżących przed pozycją i w programie x nieprzemiennych z instrukcją x[i]. Początkowo kandydaci znajdują się na pozycjach spełniających $S^x[i] = 0$. Kiedy wybierzemy instrukcję na początek programu (niech pochodzi ona z pozycji i_0), przestaje ona blokować dokładnie te instrukcje na pozycjach $i > i_0$, które nie są z nią przemienne, więc możemy uaktualnić dla nich wartości $S^x[i]$. Tym razem pozycje o $S^x[i]$ równym 0 będą zawierać kandydatów do przesunięcia na pozycję 2 i tak dalej.

Algorytm można najszybciej zrozumieć przez analizę poniższego pseudokodu. Gotowy kod znajduje się w pliku rows3.cpp.

```
1: begin
      for i := 1 to n do begin
 2:
        for j := 1 to i - 1 do
 3:
           if not commute(x[i], x[j]) then
 4:
             S^x[i] := S^x[i] + 1;
 5:
        if S^x[i] = 0 then
 6:
           candidates_x.insert(i);
 7:
 8:
      end
      for pos := 1 to n do begin
 9:
        i_0 := candidates_x.qetMin();
10:
        candidates_x.popMin();
11:
        x'[pos] := x[i_0];
12:
        for i := i_0 + 1 to n do
13:
           if not commute(x[i_0], x[i]) then begin
14:
             S^x[i] := S^x[i] - 1;
15:
             if S^x[i] = 0 then
16:
                candidates_x.insert(i);
17:
           end
18:
      end
19:
20: end
```

W pseudokodzie zakładamy, że tablica S^x jest początkowo wyzerowana oraz że dysponujemy funkcją commute rozstrzygającą, czy dane instrukcje są przemienne. Ponadto korzystamy ze struktury danych $candidates_x$ obsługującej następujące operacje:

- insert(i): dodaje element i do struktury,
- qetMin(): zwraca element i o najmniejszej wartości x[i],

• popMin(): usuwa element zwracany przez getMin().

Najprostszą strukturą danych implementującą powyższe operacje jest lista. Możemy dodać do niej nowy element w czasie stałym, a wyszukiwanie najlepszego kandydata zajmuje czas liniowy. Zazwyczaj na zawodach algorytmicznych lepiej sprawdza się kolejka priorytetowa, pozwalająca wykonać wszystkie operacje w czasie co najwyżej logarytmicznym. Zauważmy jednak, że liczba wywołań funkcji commute jest rzędu $\Theta(n^2)$, a operacje na strukturze danych wywoływane są jedynie O(n) razy (każdy element zostaje dodany co najwyżej raz). Zatem niezależnie od wyboru struktury danych otrzymujemy rozwiązanie działające w złożoności obliczeniowej $\Theta(n^2)$.

Przedstawiony algorytm można zoptymalizować tak, aby wykonywał jedynie O(nk) operacji, przy wykorzystaniu faktu, że dla każdego rodzaju instrukcji warto rozważać jedynie jej najwcześniejsze wystąpienie w programie. Takie rozwiązanie wymaga jednak większej staranności w doborze struktur danych; jego opis pomijamy. Zamiast tego w następnej sekcji przedstawiamy odmienne rozwiązanie o takiej samej złożoności obliczeniowej, które posiada elegancki dowód poprawności i jest proste w implementacji. Niemniej jednak zachęcamy Czytelnika do próby wymyślenia szybszego sposobu obliczania x'.

Potęga niezmienników

Rozwiązanie wzorcowe wykorzystuje ciekawą własność relacji równoważności, jaką jest występowanie niezmienników.

Definicja 2. Dla relacji \approx określonej na zbiorze X niezmiennikiem nazywamy funkcję $f: X \to Y$, spełniającą warunek $x \approx y \Rightarrow f(x) = f(y)$. Jeśli implikacja zachodzi w obie strony, to niezmiennik nazwiemy silnym.

Przykładami niezmienników są liczba kątów dla relacji podobieństwa wielokątów albo naiwnie posortowany ciąg instrukcji dla relacji z zadania. Łatwo znaleźć przykłady na to, że żaden z nich nie jest silny. Silnymi niezmiennikami są za to reszta z dzielenia przez p dla relacji przystawania modulo p tudzież uporządkowany ciąg kątów wewnętrznych dla relacji podobieństwa wielokątów. Analizowane w poprzedniej sekcji przyporządkowanie najmniejszego leksykograficznie równoważnego programu z definicji stanowi silny niezmiennik. Niezmiennik, którego chcemy użyć w rozwiązaniu wzorcowym, wymaga bardziej zaawansowanej konstrukcji.

Definicja 3. Dla programu x oraz numeru instrukcji p konstruujemy ciąg x_p następująco:

- (1) zastępujemy każde wystąpienie p literą X,
- (2) dopisujemy X na poczatku i na końcu programu x,
- (3) pomiędzy każdy parą kolejnych liter X liczymy instrukcje nieprzemienne z p,
- (4) tworzymy ciąg x_p , zapisując kolejno wartości obliczone w punkcie (3).

Twierdzenie 1. Rodzina ciągów $(x_p)_{p=1}^k$ stanowi silny niezmiennik równoważności programów. Innymi słowy, programy x, y są równoważne wtedy i tylko wtedy, gdy dla każdego p zachodzi $x_p = y_p$.

W powyższym twierdzeniu dwa ciągi uznajemy za równe, jeśli mają tyle samo elementów i elementy o tych samych indeksach są równe.

Dowód: Implikacja \Rightarrow (wykazanie, że przyporządkowanie jest niezmiennikiem). Jeżeli x i y są równoważne, to istnieje sekwencja zamian sąsiednich instrukcji, które są przemienne, przeprowadzająca pierwszy program na drugi. Wystarczy wobec tego zauważyć, że zamiana przemiennych instrukcji nie może zmodyfikować żadnej wartości w żadnym ciągu x_p .

Implikacja \Leftarrow . Indukcja po liczbie instrukcji w programie. Programy x,y o długości 1 są równoważne wtedy i tylko wtedy, gdy składają się z tej samej instrukcji q. Dla tejże instrukcji zachodzi $x_q = y_q = (0,0)$, dla pozostałych mamy zaś $x_p = y_p = (0)$.

Przypuśćmy teraz, że n>1 oraz dla każdego p zachodzi $x_p=y_p$. Niech q będzie pierwszą instrukcją w programie x. Oznacza to, że pierwsza wartość w ciągu x_q (a zarazem y_q) to 0. W takim razie w programie y wszystkie instrukcje znajdujące się przed pierwszym wystąpieniem instrukcji q są z nią przemienne. Niech y' oznacza program otrzymany z y przez przesunięcie pierwszej instrukcji q na początek programu. Oczywiście $y\approx y'$.

Niech x'', y'' oznaczają programy otrzymane z x, y' przez usunięcie początkowej instrukcji q. Zauważmy, że ciąg x_q'' różni się od x_q jedynie brakiem początkowego 0 i jest tożsamy z y_q'' . Jeśli $p \neq q$ i p jest nieprzemienne z q, to ciągi x_p'', y_p'' można otrzymać przez odjęcie 1 od pierwszego wyrazu w ciągach x_p, y_p' . Jeśli zaś p jest przemienne z q, $x_p'' = x_p$ i $y_p'' = y_p'$. Wobec tego dla każdego p zachodzi $x_p'' = y_p''$ i z założenia indukcyjnego wnioskujemy, że $x'' \approx y''$. Dopisanie tej samej instrukcji na początku programu zachowuje równoważność ciągów, zatem $x \approx y'$. Ostatecznie korzystamy z przechodniości, aby otrzymać $x \approx y$.

Przykład 2. Dla programu $x=1,\ 4,\ 2,\ 3,\ 2,\ 1,\ 4,\ 2,\ 1,\ 4$ z przykładu 2 (nieprzemienne są pary instrukcji 1, 2 oraz 1, 3) niezmiennikiem jest:

$$x_1 = (0, 3, 1, 0), \quad x_2 = (1, 0, 1, 1), \quad x_3 = (1, 2), \quad x_4 = (0, 0, 0, 0).$$

Przykładowo, wyznaczając x_1 , zapisujemy następujący ciąg:

$$x = X, X, \cdot, N, N, N, X, \cdot, N, X, \cdot, X,$$

gdzie \cdot oznacza instrukcję przemienną z 1, a N instrukcję nieprzemienną z 1. Taki sam niezmiennik ma oczywiście program y z przykładu 2.

Rozwiązanie wzorcowe zaimplementowane w pliku row.cpp konstruuje wszystkie ciągi x_p, y_p , po czym je porównuje. Wymaga to przeiterowania po obu programach dla każdej wartości $1 \le p \le k$. Jako że umiemy sprawdzić w czasie stałym, czy dwie instrukcje są nieprzemienne, złożoność obliczeniowa algorytmu wynosi O(nk).