ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики им. А.Н.Тихонова Департамент компьютерной инженерии

OTЧЕТ ПО РЕЗУЛЬТАТАМ BACKGROUND-SUBTRACTION USING CONTOUR-BASED FUSION
OF THERMAL AND VISIBLE IMAGERY BY

JAMES W. DAVIS AND VINAY SHARMA

Подготовил:

Абрамов Иван Алексеевич, БИВ195

O_{I}	лав	влеі	ние
\mathbf{O}	JIUL		

Обзор

Статья написана в 2005 году, одобрена в 2006 и выложена в сеть в 2007.

Департамент компьютерных наук и инженерии, Государственный университет Огайо.

Статья рассказывает про применение новой техники вычитания фона, объединяющую контуры тепловых и видимых изображений для постоянного обнаружения объектов.

в городских условиях. Статистическое вычитание фона в тепловой области используется для определения начальных областей интереса. Цвет и

Информация об интенсивности используется в этих областях для получения соответствующих интересующих областей в видимой области. Внутри каждого информация о регионе, входных данных и фоновом градиенте объединяется для формирования контурной карты яркости. Фрагменты бинарного контура, полученные из соответствующих контурных карт яркости, затем объединяются в единое изображение. Поиск с ограничением по пути А * вдоль водораздела границы областей интереса используются для завершения и закрытия любых сломанных сегментов на объединенном контурном изображении. Наконец, контур изображение заполнено заливкой для создания силуэтов. Результаты нашего подхода

Данный метод хоть и показывал неплохие результаты на датасетах, что используется нашей командой(см. Рис. 1. Рис. 2), но оказался слишком сложным для нашего проекта. Было решено не вносить в проект в виду его сложности, отсутствия референсного кода и, основываясь на прошлом опыте, данный метод не очень нам поможет в решении поставленной задачи, не учитывая того, что в статье используется 2 камеры, тепловая и видимая.

оцениваются количественно и сравниваются с другими низко- и высокоуровневыми

методами слияния с использованием вручную сегментированных данных.

Comparison of Precision values						
Sequence	T and V	T	V	% over T	% over V	
Seq-4	0.955	0.958	0.983	-0.31	-2.85	
Seq-5	0.957	0.966	0.954	-0.93	0.31	
Seq-6	0.937	0.941	0.952	-0.43	-1.57	

Рис. 1

Comparison of Recall values

Sequence	T and V	T	V	% over T	% over V
Seq-4	0.734	0.718	0.122	2.23	501.63
Seq-5	0.809	0.777	0.148	4.12	446.62
Seq-6	0.78	0.663	0.439	17.65	77.67

Рис. 2