Software Requirements Specification for ROC: software estimating the radius of convergence of a power series

John M Ernsthausen

December 17, 2020

Contents

1		erence Material	ii
	1.1	Table of Units	ii
	1.2	Table of Symbols	i
	1.3	Abbreviations and Acronyms	i
2	Intr	roduction	
	2.1	Purpose of Document	
	2.2	Scope of Requirements	
	2.3	Characteristics of Intended Reader	
	2.4	Organization of Document	
3	Ger	neral System Description	
	3.1	System Context	
	3.2	User Characteristics	
	3.3	System Constraints	
4	Spe	cific System Description	
•	4.1	Problem Description	
	1.1	4.1.1 Terminology and Definitions	
		4.1.2 Physical System Description	
		4.1.3 Goal Statements	
	4.2	Solution Characteristics Specification	
	4.2		
		4.2.1 Assumptions	
		4.2.4 Data Definitions	
		4.2.5 Instance Models	1
		4.2.6 Input Data Constraints	1
		4.2.7 Properties of a Correct Solution	1
5		quirements	1
	5.1	Functional Requirements	1
	5.2	Nonfunctional Requirements	1
6	Like	ely Changes	1
7	Unl	ikely Changes	1
8	Tra	ceability Matrices and Graphs	1
9	Val	ues of Auxiliary Constants	1

Revision History

Date	Version	Notes
12 October 2020	1.0	First submission

1 Reference Material

This section records information for easy reference.

1.1 Table of Units

A Table of Units is not applicable to ROC.

1.2 Table of Symbols

The table that follows summarizes the mathematical notation used in this document.

symbol	description
$z \in \mathbb{C}$	A member z of the complex numbers $\mathbb C$
$x \in \mathbb{R}$	A member x of the real numbers \mathbb{R}
$\{c_n\}\subset\mathbb{C}$	A sequence of complex numbers whose n^{th} term is $c_n \in \mathbb{C}$
$\left\{c_n\right\}_{n=0}^{N-1} \subset \mathbb{C}$	A finite sequence of N complex numbers whose n^{th} term is $c_n \in \mathbb{C}$
$\sum_{n=0}^{\infty} c_n (z - z_0)^n$	A power series. $c_n \in \mathbb{C}$ is the n^{th} coefficient. z^n is the n^{th} power of $z \in \mathbb{C}$. z_0 is the center point.
$ \liminf_{n\to\infty} $	Lower subsequential limit
$\limsup_{n \to \infty}$	Upper subsequential limit
R_c	Radius of the circle of convergence
\mathbb{R}^d	A d-dimension real vector space
${\cal D}$	An open subset of \mathbb{R}^d
$[a,b] \subset \mathbb{R}$	Interval of real numbers, $t \in [a, b]$ means $a \leq t \leq b$ and $t \in \mathbb{R}$
$(x_n)_n$	n^{th} Taylor coefficient of $t \in \mathbb{R} \mapsto x \in \mathbb{R}^d$ evaluated at $t_n \in \mathbb{R}$

1.3 Abbreviations and Acronyms

symbol	description
A	Assumption
\mathbb{C}	Complex numbers
DD	Data Definition
GD	General Definition
GS	Goal Statement
IM	Instance Model
IVP	Initial Value Problem
LC	Likely Change
\mathbb{N}	The non-negative integers
ODE	Ordinary Differential Equation
\mathbb{R}	Real numbers
R	Requirement
ROC	Radius of Convergence software developed for this project
SRS	Software Requirements Specification
Τ	Theoretical Model
TC	Taylor coefficient
TS	Taylor series

2 Introduction

Given a sequence $\{c_n\}$ of complex numbers, the series

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n \tag{1}$$

is called a *power series*. The number $c_n \in \mathbb{C}$ is the n^{th} coefficient in the power series. The symbol z^n denotes the n^{th} power of the complex number z. This power series is *centered* at $z_0 \in \mathbb{C}$.

In general, a power series will converge or diverge, depending on the magnitude of $z - z_0$. With every power series, there is associated a circle of convergence such that (1) converges if z is in the interior of the circle of convergence or diverges if z is in the exterior of the circle of convergence. The convergence/divergence behavior of (1) on the circle of convergence can not be described so simply. By convention, the entire complex plane is the interior of a circle of infinite radius, and a point is the interior of a circle of zero radius.

This project is concerned with estimating the radius R_c of the circle of convergence.

2.1 Purpose of Document

The purpose of this document is to facilitate communication between the stakeholders and developers during the software development of project ROC by communicating and reflecting its software requirements. The scientific and business problem ROC solves is described in Section 4.1, the "Problem Description".

2.2 Scope of Requirements

In the late 1800's, several authors resolved problems concerning the characterization and analysis of singularities for power series. Chang and Corliss (1982) discuss this history, the topic of the following quote.

Our approach to series analysis was motivated by the observation that series for solutions to ODEs follow a few very definite patterns which are characterized by the location of primary singularities. In general, the coefficients of a power series follow no patterns, so few theorems about truncated series can be proved. However, series which are real-valued on the real axis can have poles, logarithmic branch points, and essential singularities only on the real axis or in conjugate pairs. Further, the effects of all secondary singularities disappear if sufficiently long series are used. (Chang and Corliss, 1982, p. 122)

A primary singularity of (1) is the closest singularity to the series expansion point z_0 in the complex plane. All other singularities are secondary singularities.

Chang and Corliss (1982) proposed a method of four parts to estimate the radius R_c of the circle of convergence as well as the order and location of primary singularities. The

top-hump analysis applies to the power series of entire functions. The 3-term analysis applies to the power series of functions exhibiting a single primary singularity. The 6-term analysis applies to the power series of functions exhibiting a conjugate pair of primary singularities. Whenever these three analysis fail to resolve the R_c , singularity order, and singularity location parameters for the series, the Chang and Corliss (1982) method does a top-line analysis. Each Chang and Corliss (1982) sub-method works by fitting R_c , singularity order, and singularity location parameters of a known model to the given sequence.

Top-line analysis always applies to power series. It resolves situations where secondary singularities are less distinguishable from primary singularities. However it is less accurate, but it does have a convergence analysis (Chang and Corliss, 1982).

The scope of this ROC project is limited to top-line analysis.

2.3 Characteristics of Intended Reader

This document assumes the intended reader has familiarity with basic real analysis and complex analysis. Sequences and power series as well as the ratio and root tests will be discussed in this document. However, our exposition will only cover the concepts needed for our purposes. For proofs and for a complete exposition of all background materials, the interested reader should consult a beginning level graduate text such as Rudin (1976).

2.4 Organization of Document

This document is built on the template recommendations in Smith and Lai (2005); Smith et al. (2007) that seeks to standardize communication tools for software development. The suggested order for reading this SRS document is: Goal Statement (Subsection 4.1.3), Instance Models (Subsection 4.2.5), Requirements (Section 5), Introduction (Section 2), and Specific System Description (Section 4).

3 General System Description

This section provides general information about the system. It identifies the interfaces between the system and its environment, describes the user characteristics, and lists the system constraints.

3.1 System Context

The following equation depicts ROC in symbols:

$$\left\{c_n\right\}_{n=0}^{N-1} \to R_c \tag{2}$$

3.2 User Characteristics

One intended user of ROC is a user of MAPLE or MATLAB. While neither MATLAB nor MAPLE currently implements an estimate for R_c , presumably the companies that develop MATLAB and MAPLE will want to provide such a facility when robust, reliable, and accurate computational tools are available.

After generating a real-valued Taylor series (TS) approximate solution of order p to the ordinary differential equation (ODE) initial-value problem (IVP)

$$y'(t) = f(t, y(t)), \quad y(t_0) = y_0 \in \mathcal{D} \subset \mathbb{R}^d, \quad t \in [t_0, t_{\text{end}}] \subset \mathbb{R},$$
 (3)

the TS methods defined in Jorba and Zou (2005), Bergsma and Mooij (2016), and Chang and Corliss (1982) explicitly require an estimate for the TS radius of convergence.

At each (t_n, x_n) , $n \ge 0$, the TS method for the numerical solution of (3) computes Taylor coefficients (TCs) $(x_n)_i$ at t_n to construct the TS approximate solution

$$T(t) = x_n + \sum_{i=1}^{p} (x_n)_i (t - t_n)^i$$
 on $[t_n, t_{n+1}].$ (4)

Another type of intended user is any developers like Bergsma and Mooij (2016), Jorba and Zou (2005), or Chang and Corliss (1982) of a TS method seeking the accuracy assurance from knowing the domain $[t_n, t_{n+1}]$ is in the circle of convergence.

3.3 System Constraints

The method developed in this project is expected to be independent of system constraints. However most TS methods are developed in C++ or FORTRAN 77, the goto languages of scientific computing. Certainly a scripting language would not be sufficient for large systems.

4 Specific System Description

This section first presents the problem description, which gives a high-level view of the problem to be solved. This is followed by the solution characteristics specification, which presents the assumptions, theories, definitions and finally the instance models.

4.1 Problem Description

ROC is intended to estimate the radius of the circle of convergence of a power series.

4.1.1 Terminology and Definitions

A sequence is a function f whose domain is the non-negative integers \mathbb{N} and range is in E, that is, a sequence is the mapping $n \in \mathbb{N} \mapsto f(n) = c_n \in E$. It is customary to denote the sequence f by the symbol $\{c_n\}$ or by c_0, c_1, c_2, \ldots The values of f, that is, the elements c_n

are called the *terms* of the sequence. If A is a subset of E and if $c_n \in A$ for all $n \in \mathbb{N}$, the $\{c_n\}$ is said to be a *sequence in* A. The terms of a sequence need not be distinct. Typically, E is the complex numbers \mathbb{C} or the real numbers \mathbb{R} .

Given a sequence $\{c_n\}$, we use the notation

$$\sum_{n=p}^{q} c_n \quad \text{with} \quad p \le q \tag{5}$$

to denote the sum $c_p + c_{p+1} + \cdots + c_q$. With the sequence $\{c_n\}$, we associate a sequence $\{s_n\}$, where

$$s_n \stackrel{\text{def}}{=} \sum_{k=0}^n c_k. \tag{6}$$

For the sequence $\{s_n\}$, we may use the symbolic expression $c_0 + c_1 + c_2 + \dots$ or

$$\sum_{n=0}^{\infty} c_n. \tag{7}$$

The symbol (7) is called an *infinite series* or just series. The terms s_n are called partial sums of the series, they are just numbers. If $\{s_n\} \to s$ as $n \to \infty$, then we say $\{s_n\}$ converges to s, the series converges, and write

$$\sum_{n=0}^{\infty} c_n = s. \tag{8}$$

The number s is the limit of a sequence of sums called the sum of the series. If $\{s_n\}$ diverges, then the series is said to diverge.

Given a sequence $\{e_n\}$, consider a sequence $\{n_k\}$ of non-negative integers such that $n_0 < n_1 < n_2 < \cdots$. Then the sequence $\{e_{n_k}\}$ is called a *subsequence* of $\{e_n\}$. If $\{e_{n_k}\}$ converges, its limit is called a *subsequential limit* of $\{e_n\}$.

Let $\{s_n\}$ be a sequence of real numbers. Let E be the set of numbers x in the extended real number system such that $s_{n_k} \to x$ for some subsequence $\{s_{n_k}\}$. This set E contains all subsequential limits plus possibly $+\infty$ and $-\infty$. Define $s^* \stackrel{\text{def}}{=} \sup E$ and $s_* \stackrel{\text{def}}{=} \inf E$. The numbers s^* and s_* are called the *upper limit* and *lower limit* of $\{s_n\}$. We use the notation

$$\liminf_{n \to \infty} s_n = s_* \quad \text{and} \quad \limsup_{n \to \infty} s_n = s^*.$$
(9)

4.1.2 Physical System Description

This subsection doesn't apply to ROC.

4.1.3 Goal Statements

Given the inputs, the goal statements are:

- GS1: Implement Chang and Corliss (1982) top line analysis to estimate R_c .
- GS2: Use top line analysis to estimate R_c for three problems from real analysis where R_c is known. Report on the accuracy of the result.
- GS3: Use top line analysis to estimate the order of a singularity as described in (Chang and Corliss, 1982, pp. 127–128).
- GS4: Use top line analysis to estimate R_c while solving ODEIVP by the TS method.

4.2 Solution Characteristics Specification

This section characterizes the attributes of an acceptable solution. Both analysts and stakeholders should agree on these attributes so that the solution can be accepted when the project is complete.

4.2.1 Assumptions

Given a tolerance TOL, consider the sequence $\{c_n\}$ and its power series $\sum_{n=0}^{\infty} c_n(z-z_0)^n$ under the following assumptions:

- A1: We know an integer N such that, for all $m \ge n \ge N$, $|\sum_{k=n}^{m} c_k| < \text{TOL}$.
- A2: The software ROC will estimate the radius of convergence from a finite number of terms in the power series. It will not compute R_c exactly.
- A3: The sequence $\{c_n\}$ is a subset of \mathbb{R} .

4.2.2 Theoretical Models

Applying the terminology and definitions from Subsection 4.1.1, this section records theorems required to identify a convergent/divergent series.

Consider the sequence $\{c_n\}$ and its power series $\sum_{n=0}^{\infty} c_n$. The following TM is used to show that the coefficients in the terms of a series tend to zero as the index of the term tends to infinity.

Number	T1
Label	Cauchy convergence condition
Theorem	A series $\sum_{n=0}^{\infty} c_n$ converges if an only if, for every $\epsilon > 0$, there is an integer N such that $ \sum_{k=n}^{m} c_k < \epsilon$ whenever $m \ge n \ge N$.
Description	Tools to identify when a series converges.
Source	Theorem 3.22 (Rudin, 1976, p. 59)
Ref. By	IM1

Number	T2
Label	Convergence of sequence
Theorem	If series $\sum_{n=0}^{\infty} c_n$ converges, then $\lim_{n\to\infty} c_n = 0$.
Description	If a series converges, then its terms converge to zero.
Source	Theorem 3.28 (Rudin, 1976, p. 60)
Ref. By	IM1

Number	T3
Label	Root test
Theorem	Given a series $\sum_{n=0}^{\infty} c_n$. Set $\alpha \stackrel{\text{def}}{=} \limsup_{n \to \infty} \sqrt[n]{ c_n }$. Then
	(a) if $\alpha < 1$, then $\sum_{n=0}^{\infty} c_n$ converges;
	(b) if $\alpha > 1$, then $\sum_{n=0}^{\infty} c_n$ diverges;
	(c) if $\alpha = 1$, then this test gives no information.
Description	Tools to identify when a series converges/diverges.
Source	Theorem 3.33 (Rudin, 1976, p. 65)
Ref. By	GD1

Number	T4
Label	Ratio test
Theorem	The series $\sum_{n=0}^{\infty} c_n$
	(a) converges if $\limsup_{n \to \infty} \left \frac{c_{n+1}}{c_n} \right < 1$,
	(b) diverges if $\left \frac{c_{n+1}}{c_n}\right \ge 1$ for $n \ge N$, where N is some fixed integer.
Description	Tools to identify when a series converges/diverges.
Source	Theorem 3.34 (Rudin, 1976, p. 66)
Ref. By	IM1

The ratio test is often easier to apply than the root test. However, the root test resolves more application than the ratio test. Both the ratio test and the root test deduce divergence from the statement in Theoretical Model 2, if a series converges, then its terms converge to zero.

Number	T5
Label	Comparing the Ratio test and the Root test
Theorem	For any sequence $\{c_n\}$ of positive (real) numbers,
	(a) $\liminf_{n \to \infty} \frac{c_{n+1}}{c_n} \le \liminf_{n \to \infty} \sqrt[n]{c_n}$,
	(b) $\limsup_{n \to \infty} \sqrt[n]{c_n} \le \limsup_{n \to \infty} \frac{c_{n+1}}{c_n}$
Description	If the ratio test converges, then the root test converges and if the root test is inconclusive, then the ratio test is inconclusive. Whenever the limit exists and it is unique, then there is equality in (a) and (b) and $\lim_{n\to\infty}\frac{c_{n+1}}{c_n}=\lim_{n\to\infty}\sqrt[n]{c_n}$.
Source	Theorem 3.37 (Rudin, 1976, p. 68)
Ref. By	IM1

4.2.3 General Definitions

The proofs of the theorem in this section apply the terminology and definitions from Subsection 4.1.1 as well as the Theoretical models from Subsection 4.2.2.

The radius of the circle of convergence is defined in the next General Definition, a theorem that enables us to justify and construct the IM so that ROC will estimate R_c .

Number	GD1
Label	Define the radius of the circle of convergence
Theorem	Given any sequence $\{c_n\}$, construct the power series $\sum_{n=0}^{\infty} c_n (z-z_0)^n$. Set $\alpha \stackrel{\text{def}}{=} \limsup_{n \to \infty} \sqrt[\eta]{ c_n }$ and $R_c \stackrel{\text{def}}{=} 1/\alpha$. Then $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ converges whenever $ z-z_0 < R_c$.
Description	This General Definition defines R_c , the radius of convergence of the power series. By our convention stated Subsection 4.1.1, $\alpha = 0$ implies $R_c = +\infty$ and $\alpha = +\infty$ implies $R_c = 0$.
Source	Theorem 3.39 (Rudin, 1976, p. 69)
Ref. By	IM1

We need to relate the root test to the ratio test to obtain our IM. It is instructive to understand the role of the root test in the proof of GD1.

Inside GD1

Given any sequence $\{c_n\}$, construct the power series $\sum_{n=0}^{\infty} c_n(z-z_0)^n$. Set $a_n = c_n(z-z_0)^n$, and apply the root test TM3 to the series $\sum_{n=0}^{\infty} a_n$.

$$\limsup_{n \to \infty} \sqrt[\eta]{|a_n|} = |z - z_0| \limsup_{n \to \infty} \sqrt[\eta]{|c_n|} \stackrel{\text{def}}{=} \frac{|z - z_0|}{R_c}. \tag{10}$$

Obtain from the root test that

- (a) if $|z z_0| < R_c$, then the power series converges;
- (b) if $|z z_0| > R_c$, then the power series diverges;
- (c) if $|z z_0| = R_c$, then this test gives no information.

The next section presents a Data Definition on order of singularity.

4.2.4 Data Definitions

We quoted from Chang and Corliss (1982) in Section 2.2, the scope section, that, in general, the coefficients of a power series follow no patterns, so few theorems about truncated series can be proved. However, series which are real-valued on the real axis can have poles, logarithmic branch points, and essential singularities only on the real axis or in conjugate pairs.

The sequence $\{c_n\}$ is a subset of \mathbb{R} under Assumption 3.

Number	DD1
Label	Order of singularity
Symbol	μ
Conditions	Assume Assumption 3. Further assume the real coefficients $\{c_n\} \subset \mathbb{R}$ of the power series $\sum_{n=0}^{\infty} c_n(z-z_0)^n$ are obtained as a TS solution of an ODE and consider finding the order μ of the singularity from the graph of $\log_{10} c_n $ versus n .
Observations	The order μ is increased or decreased by term-by-term differentiation or integration, respectively. The upper envelope of the graph of $\log_{10} c_n $ versus n will follow the following patterns:
	• If the order of the primary singularity, the closest singularity to z_0 , is $\mu = 1$, then the slope is $\log_{10} z - z_0 /R_c$.
	• If the order of the primary singularity $\mu \neq 1$, then the slope converges to $\log_{10} z - z_0 /R_c$ at a rate proportional to $1/n$.
	• If the order of the primary singularity $\mu \neq 1$, then the upper envelope is not linear. For orders $\mu > 1$, the graph opens downward. The concavity approaches zero as $1/n^2$ as $n \to \infty$. For orders $\mu < 1$, the graph is concave up which means the slope underestimates $\log_{10} z-z_0 /R_c$, and R_c is overestimated.
Description	
Sources	Chang and Corliss Chang and Corliss (1982)
Ref. By	IM2

The next section derives an IM to approximate R_c .

4.2.5 Instance Models

This section transforms the problem defined in Section 4.1 into one which can be translated into software. We will define finite sequences and series to replace the infinite counterparts identified in Sections 4.2.2 and 4.2.3.

A heuristically motivated top-line analysis produces a conservative estimate for the radius of convergence R_c from the slope of a linear upper envelope of a graph of $\log_{10}|c_n|$ versus n Chang and Corliss (1982). While no proof is given in this paper, the following argument justifies their claim that the slope approaches $\log_{10}|z-z_0|/R_c$ as $n \to \infty$.

Given TOL > 0 and any sequence $\{c_n\}$, construct the power series $\sum_{n=0}^{\infty} c_n(z-z_0)^n$. Use

Assumption 1 to obtain an integer N such that, for all $m \ge n \ge N$, $|\sum_{k=n}^m c_k| < \text{TOL}$. It is no loss in generality to assume N > 30, else replace N with 30. TM1 says that $\sum_{n=0}^{\infty} c_n$ converges.

We now invoke Assumption 2 and extract 15 elements $\{c_{N-14}, c_{N-13}, \ldots, c_N\}$ from the sequence. With k = i + N - 14, obtain the best linear fit y(k) = mk + b in the 2-norm to the points

$$\left\{ (N - 14, \log_{10} |c_{N-14}|), (N - 13, \log_{10} |c_{N-13}|), \dots, (N, \log_{10} |c_{N}|) \right\}, \tag{11}$$

that is, find m and b such that $\sum_{i=0}^{14} |\log_{10}|c_{i+N-14}| - y(i+N-14)|^2$ is minimized. Because $\sum_{n=0}^{\infty} c_n$ converges, TM2 says that $c_n \to 0$ as $n \to \infty$. The model parameter m will be negative.

Compute the ratio in the ratio test TM4 with our model. Then

$$\log_{10} \left| \frac{y(k+1)}{y(k)} \right| = \log_{10} |y(k+1)| - \log_{10} |y(k)| = m, \tag{12}$$

which is independent of k. By continuity of \log_{10} and the best linear fit function y as well as $\log_{10}\left|\frac{y(k+1)}{y(k)}\right|$ approximates $\log_{10}\left|\frac{c_{k+1}}{c_k}\right|$, we observe that $\log_{10}\left|\frac{y(k+1)}{y(k)}\right| \to m$ is approximately $\log_{10}\left|\frac{c_{k+1}}{c_k}\right| \to m$. By TM5, the ratio test TM4 converging implies the root test TM3 converges, because they converge to a single limit and the same limit. See description section of TM5. It follows from GD1 that the power series converges whenever m < 0 and diverges whenever m > 0. Moreover GD1 says $R_c = 1/10^m$.

Number	IM1
Label	Approximating the radius of convergence
Inputs	N and approximation points (11)
Output	R_c or confirmation of divergence.
Description	Approximate the radius of the circle of convergence, $R_c \approx 1/10^m$.
Sources	The full details are my own contribution. However the ideas are inspired by conversations with G. Corliss and N. Nedialkov.
Ref. By	IM2

Let the conditions of Data Definition DD1 hold. Then the real coefficients $\{c_n\} \subset \mathbb{R}$ of the power series $\sum_{n=0}^{\infty} c_n(z-z_0)^n$ are obtained as a TS solution of an ODE and consider finding the order μ of the singularity from the graph of $\log_{10} |c_n|$ versus n.

The order μ is increased or decreased by term-by-term differentiation or integration, respectively. The upper envelope of the graph of $\log_{10}|c_n|$ versus n is concave up for orders $\mu < 1$ which means the slope underestimates $\log_{10}|z - z_0|/R_c$, and R_c is overestimated.

To estimate R_c and the order μ form the graph of $\log_{10} |c_n|$ versus n, shift the order of the series by repeated term-wise differentiation or integration. After each shift, a linear

upper envelope is fit with IM1. The singularity may occur with any order. However, it is unusual for a solution to a differential equation to have singularities whose order lies beyond $|\mu - 1| \le 3$ Chang and Corliss (1982).

Number	IM2				
Label	Compute μ the order of singularity and underestimate R_c				
Inputs	Tolerance Tol., N , and approximation points (11)				
Output	R_c and μ				
Description	Start with the series resulting from integration of the given series three times and fit the coefficients with IM1. If that graph is linear, meaning the minimizer has norm less than TOL, then the slope is accepted and the order of the singularity is 3. If the graph opens upward, then the series is differentiated term-wise to reduce the second derivative of the graph, and a new top-line fit is computed. This process is repeated, reducing μ by 1 each time, until the graph opens downward or until seven term-wise differentiations have been tested. If seven term-wise differentiations have been tested and each result in turn proves unsatisfactory, then the final estimate for R_c is reduced by 10 percent for a conservative estimate for R_c and $\mu = -4$ is returned.				
Sources	Chang and Corliss (1982)				
Ref. By	Final product.				

4.2.6 Input Data Constraints

Given tolerance TOL, the number of terms of the sequence should be sufficient so that Assumption 1 holds. We must know an integer N such that, for all $m \ge n \ge N$, $|\sum_{k=n}^m c_k| <$ TOL. Moreover if this N < 30, then set N = 30 for a sufficient number of terms to do analysis.

As a second point, the terms in the sequence should not be near overflow/underflow. If this is the case, then the algorithm will properly scaled the sequence.

4.2.7 Properties of a Correct Solution

ROC does not have properties of a correct solution to state which are in addition to the requirements.

5 Requirements

This section provides the functional requirements, the business tasks that the software is expected to complete, and the nonfunctional requirements, the qualities that the software is expected to exhibit.

5.1 Functional Requirements

ROC is the implementation of IM1 in the complex case or IM2 in the real case for TS solutions of ODE.

- R1: Input acquisition via hardware.
- R2: Input acquisition via software.
- R3: Validate input format.
- R4: Validate input type.
- R5: Inputs should satisfy the assumptions.
- R6: Inputs should be scaled to prevent overflow/underflow.
- R7: Output via hardware.
- R8: Output via software.
- R9: Output format.
- R10: Output type.
- R11: Parameter acquisition.
- R12: Parameter format.
- R13: Parameter type.
- R14: Parameter distribution.
- R15: Parameter constraints.
- R16: Algorithm to find the distance to the nearest real pole.
- R17: Algorithm to find the distance to the nearest complex conjugate pair of poles.
- R18: Algorithm to find the distance to the nearest pole in hard to resolve case.
- R19: Find the distance to the nearest real pole.

- R20: Find the distance to the nearest complex conjugate pair of poles.
- R21: Find the distance to the nearest pole in hard to resolve case.
- R22: Pole identification, distinguish a real pole from a complex conjugate pair of poles from a complicated situation.
- R23: ROC should be developed in C++.
 - ROC should execute as fast as the Chang and Corliss (1982) software DRDCV. The method developed in this project is expected to be independent of system constraints. However most TS methods are developed in C++ or FORTRAN 77, the goto languages of scientific computing. Certainly a scripting language would not be sufficient for large systems.
- R24: Compute the TS for the real valued function $1/(z-z_0)^{\mu}$ at x_c . The radius of convergence R_c and the order of singularity μ computed by ROC should be $R_c = |x_c z_0|$ and order of singularity μ .
- R25: Compute the TS for the real valued function $1/(1+25*(z-z_0)^2)^{\mu}$ at x_c . The radius of convergence R_c and the order of singularity μ computed by ROC should be $R_c = \sqrt{(x_c^2 + (1/5)^2)}$ and order of singularity μ .
- R26: Compute the TS for the real valued function $1/(1+25*(z-z_0)^2)^{\mu}$ at x_0 . The radius of convergence R_c and the order of singularity μ computed by ROC should require top line analysis and top line analysis should compute R_c . Top line analysis doesn't compute an order of singularity.
- R27: We must not overestimate R_c .
 - If R_c is overestimated, then the power-series is a divergence sum on the overestimation. In ODE solving by TS methods, underestimating R_c is acceptable as an underestimation results in a slight increase in computational effort for solving an ODEIVP.

5.2 Nonfunctional Requirements

ROC does not have nonfunctional requirements to state at this time.

6 Likely Changes

Chang and Corliss (1982) discussed two additional estimators for R_c of TS solutions to ODE under Assumption 3. This should be implemented, if there is time.

7 Unlikely Changes

ROC does not have unlikely changes to state at this time.

8 Traceability Matrices and Graphs

The purpose of the traceability matrices is to provide easy references on what has to be additionally modified if a certain component is changed. Every time a component is changed, the items in the column of that component that are marked with an "X" may have to be modified as well. Table 1 shows the dependencies of theoretical models, general definitions, data definitions, and instance models with each other. Table 2 shows the dependencies of instance models, requirements, and data constraints on each other. Table 3 shows the dependencies of theoretical models, general definitions, data definitions, instance models, and likely changes on the assumptions.

	TM1	TM2	TM3	TM4	TM5	GD1	DD1	IM1	IM2
TM1	X							X	
TM2		X						X	
TM3			X			X			
TM4				X				X	
TM5					X			X	
GD1						X		X	
DD1							X		X
IM1								X	X
IM2									X

Table 1: Traceability Matrix Showing the Connections Between Items of Different Sections

9 Values of Auxiliary Constants

ROC does not have symbolic parameters at this time.

	IM1	IM2	R6	R23	R26	R27
IM1	X	X	X	X	X	X
IM2		X	X	X	X	X
R6			X			
R23				X		
R26					X	
R27						X

Table 2: Traceability Matrix Showing the Connections Between Requirements and Instance Models

	A1	A2	A3
TM1			
TM2			
TM3			
TM4			
TM5			
GD1			
DD1			
IM1	X	X	
IM2	X	X	X

Table 3: Traceability Matrix Showing the Connections Between Assumptions and Other Items

References

Michiel Bergsma and Erwin Mooij. Application of taylor series integration to reentry problems. In AIAA Atmospheric Flight Mechanics Conference, page 0024, 2016.

YF Chang and G Corliss. Solving ordinary differential equations using Taylor series. *ACM TOMS*, 8(2):114–144, 1982.

Angel Jorba and Maorong Zou. A software package for the numerical integration of ODEs by means of high-order Taylor methods. *Experimental Mathematics*, 14(1):99–117, 2005.

Walter Rudin. Principles of mathematical analysis. McGraw-Hill, Inc., 1976.

- W. Spencer Smith and Lei Lai. A new requirements template for scientific computing. In J. Ralyté, P. Ágerfalk, and N. Kraiem, editors, *Proceedings of the First International Workshop on Situational Requirements Engineering Processes Methods, Techniques and Tools to Support Situation-Specific Requirements Engineering Processes, SREP'05*, pages 107–121, Paris, France, 2005. In conjunction with 13th IEEE International Requirements Engineering Conference.
- W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analysis for engineering computation: A systematic approach for improving software reliability. *Reliable Computing, Special Issue on Reliable Engineering Computation*, 13(1):83–107, February 2007.