EXPLORE ROBOTICS – CISC 1003

CISC1003 – UNIT C LOCOMOTION

Topics

- Modes of Locomotion
- Algorithm
- Multitasking

Locomotion

Locomotion

- Locomotion = locus (place) + motion
- Locomotion refers to the way a body moves
 - from place to place.
- A fundamental function of humans, animals
 - Acquired through training
 - Requiring significant "brain power"
- It's generally the first challenge for a robot
- Many modes of locomotion exist

Locomotion

Modes of Locomotion

- Legs:
 - Walking, crawling, climbing, jumping, hopping etc.
- Wheels:
 - Rolling
- Arms:
 - Swinging, crawling, climbing, lifting
- Wings:
 - Flying
- Flippers:
 - Swimming

Locomotion

Modes of Locomotion

- Most common, legged vs. Wheeled
- Benefits and challenges:
 - Wheeled:
 - Most efficient use of power, lower number of modes in whichthe robot can move (D.O.F's).
 - Legged:
 - challenge of stability, larger number of modes in which the robot can move (D.O.F's)

Stability

- "the property of a body that causes it when disturbed from a condition of equilibrium or steady motion to develop forces or moments that restore the original condition "
 - Webster dictionary
- Robots need to be stable
 - Not to fall over easily or wobble

- Static stability: robots can stand still without falling over
 - maintain upright without constant active control

•

- Static stability: robots maintain upright without constant active control
 - Maintained when center of gravity (COG) is above a certain horizontal region
 - Region called support polygon
 - horizontal region over which the center of mass must lie to achieve static stability
 - Statically stable walking is slow, energy inefficient

- Dynamic stability: robots must actively balance or move to maintain stability
 - Two legged walking
 - alternates between swing and stance phase

https://www.protokinetics.com/2018/11/28/understanding-phases-of-the-gait-cycle/

- A statically stable robot can use dynamically stable walking to better use energy
 - tradeoff between stability/speed.

Gaits

- The way a robot moves by using a particular pattern of footfall
- Depending on the number of legs and choice of gait

Example of Robot Gaits

- 2 legged:
 - alternating swing and stance phases.
- 4 legged:
 - Diagonal walking: the feet on opposite sides move forward in sequence

Robot Gaits Examples

- 6 legged: alternating tripod gait vs. ripple gait.
 - Tripod gait: three legs move at a time
 - while the other three remain stationary
 - https://www.youtube.com/watch?v=nRtJu4qrqn0
 - Ripple gait: two legs from opposite sides shift each time
 - https://www.youtube.com/watch?v=3 Qk5svpUc0

Gaits

- Consideration for desirable robot gaits
 - Stability, speed, energy
 - Robustness, simplicity

- Wheels are the choice of locomotion in robotics
 - Advantages of wheels:
 - Highly efficient
 - Simple to control

Wheels and Steering

- Motion planning = following a specific trajectory
- Navigation = moving from one place to another
- Which is more complex?
- Motion planning

- Differential drive(steering):
 - Wheels are driven independently by separate motors => easier control.

Go Beyond Locomotion - Dancing Automaton

- One or more robots come together
 - With music, dressed in costume
 - Moving in creative harmony.
- Need to develop an algorithm.
- Robot will be multitasking
 - allowing the program to perform more than one computer task at a time

Algorithm

ComputerHope.com

- A step-by-step sequence of instructions for carrying out some task.
- Examples of algorithms outside of computing:
 - Cooking recipes
 - Dance steps
 - Proofs (mathematical or logical)
 - Solutions to mathematical problems
- Often, there is more than one way to solve a problem.

Algorithms -Solving problems

- In computing, algorithms are synonymous with problem solving.
- How To Solve It [George Polya, 1945]
 - Understand the problem
 - Devise a plan
 - Carry out your plan
 - Examine the solution

Algorithms –Polya[1945]

- Understand the problem:
 - Understand all the words, goal
 - Create a picture or a diagram to help solve
 - Is there enough information to solve the problem?
- Devise a plan
 - Choose a strategy: guess and check, eliminate possibilities, etc.

Algorithms –Polya[1945]

- Carry out your plan
 - Write the program, run the system
- Examine the solution
 - Look back, did you solve the problem?

Algorithms - features

- Speed (number of steps)
- Memory (size of work space)
- Complexity (can others understand it?)
- Parallelism (can you do more than one step at once?)

LAB

Let's start working with virtual robots!