6.856 — Randomized Algorithms

David Karger

Handout #15, Apr. 4th, 2011 — Homework 8, Due 4/18

- 1. Submit (by email to me) a 1 or 2 paragraph project proposal outlining your planned project and who you intend to do it with.
- 2. (Based on MR9.9) Consider any linear programming problem. Prove that if the constraints are given positive weights, and r constraints are sampled at random with probability proportional to the weights, then the expected weight of constraints that violate the optimum of the sample is only a d/(r-d) fraction of the total weight. **Hint:** For every constraint of weight w_h , replace it by w_h "virtual copies" of h, and consider sampling uniformly.
- 3. Consider the problem of finding the smallest (minimum diameter) circle containing some set H of n points in the plane. We will assume that the points are in "general position"—no 3 points are colinear, and no 4 points are on the boundary of a common circle. This assumption can be achieved by small perturbations in the input. For any set of points S in the plane, let O(S) denote the smallest circle containing S.
 - (a) Show that for any 3 non-colinear points, there is a unique circle having all 3 of those points on the circle boundary. This circle (center and radius) can be computed in constant time from the points.
 - (b) Show that O(H) contains either 2 or 3 of the input points on its boundary. We will call these points the "basis" of the circle (hint, hint) and refer to them as B(H). Deduce a simple $O(n^4)$ -time algorithm for solving the problem.
 - (c) Show that if a circle C excludes a point of H, then C cannot be the smallest circle containing B(H).
 - (d) Show that if p is not contained in O(S) for some S then p is on the boundary of $O(S \cup \{p\})$.
 - (e) Consider a set R of r points chosen at random from H. Bound the expected number of points of H outside O(R).
 - (f) Generalize the previous part to where you have an "active" subset $S \subseteq H$ and compute the number of points outside $O(R \cup S)$.
 - (g) Give an $\tilde{O}(n)$ time algorithm for finding O(H).

- 4. MIT needs to install new routers in their dorms, then wire every student room to a router. Installing a router at a particular site costs f_i , while connecting student room j to site f_i (if a router is built there) costs c_{ij} . We wish to minimize the total construction cost. This is NP-hard.
 - (a) Devise an integer linear program for this problem, using indicator variables y_i for building a route at site i and x_{ij} for wiring room j to site i. Make sure to enforce the constraint that you can only wire to where you built a router.
 - (b) Consider the fractional relaxation of the ILP. Devise a randomized rounding scheme that will select some sites to install routers and a *constant fraction* of the rooms to wire to those routers (the ones that have a router built within some "reasonable" distance) at a cost proportional to the optimum.
 - (c) Apply the above approach to get wire up all the rooms at cost $O(\log n)$ times optimum.
 - (d) (Optional). It's very hard but possible to achieve a constant factor approximation by introducing several other new ideas.
- 5. MR 5.11. In this problem, we will finish establishing the properties of the pessimistic estimator $\hat{P}(a)$ used in the set balancing derandomization by conditional probabilities.
 - (a) Show that for a node a at the i-th level of the computation tree, $\hat{P}(a)$ is of the form $N(a)/2^{n-i}$, where N(a) is a sum of binomial coefficients times powers of two.
 - (b) Prove that for any node a, we can compute $\hat{P}(a)$ in polynomial time
 - (c) Prove that $\min\{\hat{P}(b), \hat{P}(c)\} \leq \hat{P}(a)$ if a has children b and c.
 - (d) Give an upper bound on the running time of the deterministic algorithm for either the unit cost or the log-cost RAM.
- 6. This problem should be solved without collaboration. MR 5.12. Show how the method of conditional expectations can be used to deterministically build a 2-dimensional binary space partition of size $O(n \log n)$.