CS6240 WorthlessWithoutCoffee

- Sree Siva Sandeep Palaparthi
- Nikhila Raya
- Velugoti Sai Bhargavi

PaySim Fraud Detection

- Classification and prediction of fraudulent transactions
- Dataset used PaySim
- Number of records 6 Million
- Number of fraudulent transactions 8647
- Training data 70% Testing data 30% (both including fraudulent and non-fraudulent records)

step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceDest	isFraud	isFlaggedFraud
1	PAYMENT	9839.64	C1231006815	170136	160296.36	M1979787155	0	0	0	0

Classification and prediction in Spark MLlib

Approaches used

- Ensemble of Random Forest Model
- Ensemble of Gradient Boosted Trees
- Decision Trees

Random Forest Parameters

- Depth 5
 Number of trees 2
 Accuracy 94.9547762376862 %
- Depth 10
 Number of trees 5
 Accuracy 99.48214461720489 %
- Depth 15
 Number of trees 5
 Accuracy 99.6143491049264 %

Increasing the depth and the number of trees, does not improve the accuracy significantly. After training with 500 trees, the accuracy did not change much.

Gradient Boosted

Depth - 10
 Number of iterations - 10
 Accuracy - 99.96398497838576 %

Decision Tree

Depth - 10
 Max bins- 10
 Accuracy - 99.95335845311294 %

Increasing the number of trees or the number of bins, does not improve the accuracy.

Results

Random Forest - 99.6143491049264 % Gradient Boosted - 99.96398497838576 % Decision Tree - 99.95335845311294 %

All the models gave good accuracy of 99.6%.

However, we were unable to train models for higher parameters since it was taking too long to run on AWS number of Iterations - 100, number of trees - 100, depth - 30

K-Nearest Neighbor

Approach:

- Partition + Broadcast

Metrics

- Accuracy 88%
- F1 measure = 2*(Precision*Recall)/(Precision+Recall)
- Data shuffle
 - From Mappers to Reducers |TestData|*|TrainData|
 - Reducers to HDFS |TestData|

K-Nearest Neighbor

Approach:

- Partition + Broadcast with Top-K
- Block Partition

Metrics

- Accuracy 88%
- F1 measure = 2*(Precision*Recall)/(Precision+Recall)
- Data Shuffle
 - From Mappers to Reducers |TestData|*k*numberOfMappers
 - From Reducers to HDFS |TestData|

Challenges

- Data transfer from Mapper to Reducer
- Heap Memory
- Larger Number of actual negatives

Thank You