

Modellbildung und Simulation Kapitel 7: Systeme mit verteilten Parametern

Balázs Pritz pritz@kit.edu

Institut für Thermische Strömungsmaschinen Prof. Dr.-Ing. Hans-Jörg Bauer

Saalübung: gew. Residuen und FDM

Aufgabe 1: Methode der gewichteten Residuen

	$x = \frac{1}{4} = 0,25$	$x = \frac{1}{2} = 0,5$	$x = \frac{3}{4} = 0,75$	x = 1
Exakt e^x	1,2840	1,6487	2,1170	2,7183
ΚI	$\frac{19}{16} = 1,1875$	$\frac{3}{2} = 1,5$	$\frac{31}{16} = 1,9375$	$\frac{5}{2} = 2, 5$
ε	0,0965	0,1487	0,1795	0,2183
KII	$\frac{24}{19} = 1,2632$	$\frac{31}{19} = 1,6316$	$\frac{40}{19} = 2,1053$	$\frac{51}{19} = 2,6842$
ε	0,0208	0,0171	0,0177	0,0341
SD	$\frac{71}{56} = 1,2679$	$\frac{23}{14} = 1,6429$	$\frac{119}{56} = 2,125$	$\frac{19}{7} = 2,7143$
ε	0,0161	0,0058	0,008	0,004

Relativer Fehler

Aufgabe 2: FDM

$$\frac{\partial(\rho\phi)}{\partial t} + \frac{\partial(\rho v_j\phi)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial\phi}{\partial x_j} \right) + q_{\phi}$$

$$\phi(x) = \phi(x_i) + (x - x_i) \left(\frac{\partial \phi}{\partial x} \right)_i + \frac{(x - x_i)^2}{2!} \left(\frac{\partial^2 \phi}{\partial x^2} \right)_i + \frac{(x - x_i)^3}{3!} \left(\frac{\partial^3 \phi}{\partial x^3} \right)_i + \dots + \frac{(x - x_i)^n}{n!} \left(\frac{\partial^n \phi}{\partial x^n} \right)_i + H$$

FDM - Beispielformeln

Beispiel für einfache Differenzenformeln:

$$\left(\frac{\partial \phi}{\partial x}\right)_i = \frac{\phi_i - \phi_{i-1}}{x_i - x_{i-1}} + \mathcal{E}$$
 Rückwärtsdifferenz

$$\left(\frac{\partial \phi}{\partial x} \right)_i = \frac{\phi_{i+1} - \phi_i}{x_{i+1} - x_i} + \mathcal{E}$$
 Vorwärtsdifferenz

$$\left(\frac{\partial \phi}{\partial x} \right)_i = \frac{\phi_{i+1} - \phi_{i-1}}{x_{i+1} - x_{i-1}} + \mathcal{E}$$
 Zentraldifferenz

E stellt den Abbruchfehler dar

