Page 1 of 2 Searching PAJ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-314655

(43) Date of publication of application: 29.11.1996

(51)Int.CI.

G06F 3/12 B41J 2/485 B41J G06F G06F 17/21 G09G 5/32

(21) Application number: 07-115643

(71)Applicant: BROTHER IND LTD

(22) Date of filing:

15.05.1995

(72)Inventor: AOKI KAZUMA

(54) DOCUMENT OUTPUT DEVICE

(57) Abstract:

PURPOSE: To obtain an output result where characters are arrayed beautifully by arranging a coordinate position as the longitudinal arrangement reference of character image data at the longitudinal reference position on output image data. CONSTITUTION: A CPU 10 generates and stores a character image in a character image memory 12a in a working memory 12. Then standard position coordinate data 14b are read out of an arrangement position memory 14 to a position coordinate memory 12d in the working memory 12; when it is judged that this character is KANA(Japanese syllbary) or KANJI(Chinese character), base line data 19c stored as character data 19 are not used and the base line of this character is recalculated to rewrite the contents of the position coordinate memory 12d in the working memory 12 into KANA/KANJI position coordinate data 14c in the arrangement position memory 14. Further, the CPU 10 performs a process for arranging the character image stored in the character image memory 12a in the working memory 12 on the output image in an output image memory 16.

LEGAL STATUS

[Date of request for examination]

07.09.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3339760

Searching PAJ Page 2 of 2

[Date of registration]

16.08.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-314655

(43)公開日 平成8年(1996)11月29日

(21)出願番号		特願平7-115643		(71)出願人 000005267				
			審査請求	未請求 請才	₹項の数7	OL	(全 12 頁)	最終頁に続く
	17/21			B 4 1 J	3/12		L	
G06F	3/14	3 1 0	9377 - 5H	G 0 9 G	5/32		6 1 0 Z	
	5/44			G06F	3/14		310D	
B41J	2/485			B 4 1 J	5/44			
G06F	3/12			G06F	3/12		G	
(51) Int.Cl. ⁶		識別記号	庁内整理番号 ´	FΙ				技術表示箇所

(22)出願日

平成7年(1995)5月15日

ブラザー工業株式会社

愛知県名古屋市瑞穂区苗代町15番1号

(72)発明者 青木 一磨

名古屋市瑞穂区苗代町15番1号プラザーエ

業株式会社内

(54) 【発明の名称】 文書出力装置

(57)【要約】

【目的】 ベースラインに対するキャラクタ形状の位置が同一でないキャラクタを混在させた文書を、美しく整列して印刷/表示すること。

【構成】 キャラクタデータと出力イメージ上の位置座標を読み出し(S31、32)、キャラクタが仮名・漢字である場合(S33)、ベースラインをキャラクタ形状の中心とし(S34)、位置座標データを仮名・漢字用のものに変更し(S35)、キャラクタ形状のベースラインの位置を出力イメージ上の位置座標データの位置に一致させるように配置する(S36)。

【特許請求の範囲】

Marie Comment

【請求項1】 形状に関する形状データと配置位置に関する配置データとを含むキャラクタデータ中の形状データからキャラクタイメージデータを発生し、配置データ中のベースラインデータを基に指定された座標位置に横方向に配置することで、横書き文書の出力装置における画素のオン/オフの情報である出力イメージデータを生成する文書出力装置において、

キャラクタイメージデータが配置される出力イメージデータ上の縦方向の基準位置に関するデータを記憶する記 10 億手段と、

キャラクタイメージデータの縦方向における配置基準と なる座標位置を前記キャラクタデータ中の形状データに 基づいて算出する算出手段と、

前記算出手段で得られた座標位置が、前記記憶手段に記憶されたデータで示される基準位置に一致するようにキャラクタイメージデータを出力イメージデータ上に配置する配置手段とを備えることを特徴とする文書出力装置。

【請求項2】 形状に関する形状データと配置位置に関する配置データとを含むキャラクタデータ中の形状データからキャラクタイメージデータを発生し、配置データ中のベースラインデータを基に指定された座標位置に横方向に配置することで、横書き文書の出力装置における画素のオン/オフの情報である出力イメージデータを生成する文書出力装置において、

キャラクタが予め定めた特定キャラクタ群に含まれる特 定キャラクタであるか否かを判定する判定手段と、

特定キャラクタのキャラクタイメージデータが配置される出力イメージデータ上の縦方向の基準位置に関するデ 30 ータを記憶する記憶手段と、

キャラクタイメージデータの縦方向における配置基準と なる座標位置を前記キャラクタデータ中の形状データに 基づいて算出する算出手段と、

キャラクタが前記判定手段で特定キャラクタであると判定された場合に、前記算出手段で得られた座標位置が前記記憶手段に記憶されたデータで示される基準位置に一致するようにキャラクタイメージデータを出力イメージデータ上に配置する配置手段とを備えることを特徴とする文書出力装置。

【請求項3】 形状に関する形状データと配置位置に関する配置データとを含むキャラクタデータ中の形状データからキャラクタイメージデータを発生し、配置データ中のベースラインデータを基に指定された座標位置に横方向に配置することで、横書き文書の出力装置における画素のオン/オフの情報である出力イメージデータを生成する文書出力装置において、

キャラクタが予め定めた特定キャラクタ群に含まれる特定キャラクタであるか否かを判定する判定手段と、

前記特定キャラクタのキャラクタイメージデータが配置 50 データである出カイメージ上に配置することで、出力装

2 される出力イメージデータ上の縦方向の基準位置に関するデータを複数配憶する記憶手段と、

前記記憶手段に記憶される複数の基準位置に関するデータの中から使用する書体、キャラクタサイズ、書体とキャラクタサイズの組合せ或いは行送り幅に基づいて1つを選択する選択手段と、

キャラクタイメージデータの縦方向における配置基準と なる座標位置を前記キャラクタデータ中の形状データに 基づいて算出する算出手段と、

キャラクタが前記判定手段で特定キャラクタであると判定された場合に、前記算出手段で得られた座標位置を、前記選択手段で選択された前記記憶手段に記憶されたデータで示される基準位置に一致するようにキャラクタイメージデータを出力イメージデータ上に配置する配置手段とを備えることを特徴とする文書出力装置。

【請求項4】 前記キャラクタを特定する複数の特定キャラクタ群を記憶する第2の記憶手段と、

する配置手段とを備えることを特徴とする文書出力装 前記第2の記憶手段の中から書体或いは書体とキャラク タサイズの組合せに基づいて1つの特定キャラクタ群を 【請求項2】 形状に関する形状データと配置位置に関 20 選択する第2の選択手段とを備えることを特徴とする請する配置データとを含むキャラクタデータ中の形状デー 求項2及び請求項3に記載の文書出力装置。

> 【請求項5】 前記特定キャラクタを複数記憶する第3 の記憶手段と、

> 前記第3の記憶手段に対して特定キャラクタを登録或い は削除する設定手段とを備え、

> 前記判定手段は、キャラクタが前記第3の記憶手段に記録されている特定キャラクタであるか否かを判定することを特徴とする請求項2及び請求項3に記載の文書出力装置。

30 【請求項6】 前記算出手段が、前記形状データから得られるキャラクタイメージデータの最大値及び最小値の所定割合の位置を求めることを特徴とする請求項1、請求項2或いは請求項3に記載の文書出力装置。

【請求項7】 前記特定キャラクタを仮名と漢字とする ことを特徴とする請求項2或いは請求項3に記載の文書 出力装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、キャラクタの形状を可 別 視化して印字、或いは、表示を行うプリンタ装置やディ スプレイ装置の画素のオン/オフの情報である出力イメ ージデータを生成する文書出力装置に関するものであ り、特に、横書き文書におけるキャラクタのイメージを 好適に整列する処理に関するものである。

[0002]

【従来の技術】従来、この種の出力装置は、キャラクタの形状を定義する形状データからキャラクタのイメージデータであるキャラクタイメージを生成し、そのキャラクタイメージを出力メディアの画案を想定したイメージデータである出力イメージ上に配置することで、出力装

置が参照する出力イメージを生成している。ここで、イ メージデータとは、画素のオン/オフを定義したデータ のことを表している。

【0003】キャラクタに関する情報(以後、キャラク タデータと称する)には、上記の形状データの他に、そ れぞれのキャラクタを配列してキャラクタ列を作る際に 必要な情報として、配置データがあり、配置データに は、文字送りデータとベースラインデータとが含まれて いる。

【0004】文字送りデータは、各キャラクタの文字送 10 り方向の存在領域すなわちキャラクタ幅を定義するもの であって、存在領域の始点と終点の座標情報を持つもの である。通常、文字送りの方向は、横書きと縦書きがあ るため、この文字送りデータも横書き用のものと縦書き 用のものとがあり、その両方を持つものもある。例え ば、図2に示すように、横書き用の文字送りデータは、 文字送り方向であるx方向の座標情報を持ち、キャラク 夕の存在領域の開始位置である始点(一般に0)の座標 情報と、その終了位置であり且つ次のキャラクタの始点 と一致させるべき位置である終点の座標情報とからなっ 20 ている。

【0005】また、ペースラインデータは、文字送り方 向と直交する方向のキャラクタの位置合わせの基準とな る位置(以後、ペースラインと呼ぶ。)を定義するもの であり、その方向の座標情報を持つものである。そし て、文字送りデータと同様に、横書き用のものと、縦書 き用のものと、その両方を持つものとがある。例えば、 図2において、横書き用のペースラインデータはy座標 であり、キャラクタ形状の整列の基準となる位置(一般 に0)の座標情報を持っている。

【0006】従来、各キャラクタイメージを出力イメー ジ上に配置する際、各キャラクタの文字送りデータの始 点を指示された文字送り方向の座標位置に一致させ、且 つそのキャラクタのペースラインデータで示されるペー スラインを指示された文字送り方向に直交する方向の座 標位置に一致させることでキャラクタの配置を行ってい た。例えば、横書きでキャラクタを配置する場合は、横 書き用文字送りデータの始点の座標を指定されたx座標 に一致させ、横書き用ベースラインの座標を指定された y 座標に一致させる様にキャラクタイメージを出力イメ 40 ージ上に配置していた。

【0007】ペースライン位置に関しては、一般的に、 縦書き用には、キャラクタの種類に関わらず、キャラク タのデザイン上の中心を通る位置に設定され、また、横 書き用には、英文字のみの書体 (フォント) では大文字 の最下部辺りに、英文字や仮名や漢字を含む日本語の書 体ではキャラクタのデザイン上の中心を通る位置に設定 されるものが多い。

【0008】また、一般に日本語書体のキャラクタセッ トには、仮名や漢字の他に英文字も含まれ、この英文字 50 ラクタを用いた文書を上述のような従来のペースライン

は、この書体の仮名や漢字との上下方向の位置のパラン スも考慮にいれてデザインされている。すなわち、横書 きの場合、上述のようなペースライン位置の設定に従っ たペースラインデータを用いて配列を行うと、明らかに 仮名や漢字が英文字に対して下がりすぎてバランスが悪 くなる。そのため、フォントデータを作成する時、英文 字の位置をベースラインより下げるか、仮名や漢字の位 置をベースラインより上げるかしてデザイン上のパラン スをとる必要がある。一般的に、横書き用のペースライ ンデータは、横に並べた時のバランスの良さが求められ る英文字を基準に考慮され、仮名や漢字の形状データの 位置をベースラインより上げる、すなわち、図4に示す ように、ベースラインがキャラクタの中心よりも若干下 方に位置するように各キャラクタのベースラインデータ

【0009】図4は、横書き用のペースラインとキャラ クタの中心とのギャップが相異なる書体Aと書体Bとが 使用可能な文書出力装置にて、この2つの書体が混在し た横書き文書を出力した場合の、書体A、及び、書体B の横書き用のベースラインとキャラクタの形状データの 位置関係を示す図である。ここで、直線41はペースラ インの位置を表し、キャラクタ42は書体Aの1つのキ ャラクタであり、キャラクタ43は書体Bの1つのキャ ラクタである。また、点44及び点45はそれぞれキャ ラクタ42及びキャラクタ43のキャラクタの中心点を 示し、距離46及び距離47はそれぞれキャラクタ42 及びキャラクタ43のペースラインとキャラクタの中心 点との距離、すなわち、ギャップを示している。距離4 6は距離47よりも小さくデザインされている。

を調整して、フォントデータが作成される。

30 [0010]

> 【発明が解決しようとする課題】しかしながら、前述の ようなデザイン上のバランスは、書体を超えてまで考慮 されている場合は少なく、一般的には、ペースライン位 置とキャラクタのデザイン上の中心との差は書体毎に異 なったものになっている。

【0011】そのため、近年、この種の文書出力装置で は、書体毎にキャラクタデータを記憶した書体データを 比較的手軽に外部から追加することができるようにな り、複数の書体を用いた文書を出力するようになってき たが、その場合、複数の書体のキャラクタを組み合わせ ると美しく配置することができない問題が起こってき た。

【0012】例えば、書体Aの漢字と、書体Bの仮名、 英文字を用いた文書を、従来の文書出力装置にて出力し たとすると、図5(a)に示すように、書体Aの漢字に 対して書体Bの仮名が不自然に上がったような配置状態 になってしまう。尚、直線51は、この行の位置合わせ の座標を示す補助線を示している。

【0013】このように、複数書体、複数サイズのキャ

を一致させる方式で配置した場合、キャラクタが整列せずに見栄えの悪い出力結果となる問題がある。

【0014】本発明は、上述した問題点を解決するためになされたものであり、キャラクタデータ中のベースラインデータで示されるベースラインと、キャラクタイメージのデザイン上の中心との差が異なる複数の書体のキャラクタを混在させた文書であっても、従来のキャラクタデータの形態を変えることなく、キャラクタを美しく整列させた出力結果を得ることができる文書出力装置を提供することを目的としている。

[0015]

【課題を解決するための手段】この目的を達成するため に請求項1の発明の文書出力装置は、形状に関する形状 データと配置位置に関する配置データとを含むキャラク タデータ中の形状データからキャラクタイメージデータ を発生し、配置データ中のベースラインデータを基に指 定された座標位置に横方向に配置することで、横書き文 書の出力装置における画素のオン/オフの情報である出 カイメージデータを生成する文書出力装置であって、キ ャラクタイメージデータが配置される出力イメージデー 20 夕上の縦方向の基準位置に関するデータを記憶する記憶 手段と、キャラクタイメージデータの縦方向における配 置基準となる座標位置をキャラクタデータ中の形状デー 夕に基づいて算出する算出手段と、算出手段で得られた 座標位置が、記憶手段に記憶されたデータで示される基 準位置に一致するようにキャラクタイメージデータを出 カイメージデータ上に配置する配置手段とを備えてい る。

【0016】また、請求項2の発明の文書出力装置は、 形状に関する形状データと配置位置に関する配置データ 30 とを含むキャラクタデータ中の形状データからキャラク タイメージデータを発生し、配置データ中のペースライ ンデータを基に指定された座標位置に横方向に配置する ことで、横書き文書の出力装置における画素のオン/オ フの情報である出力イメージデータを生成する文書出力 装置であって、キャラクタが予め定めた特定キャラクタ 群に含まれる特定キャラクタであるか否かを判定する判 定手段と、特定キャラクタのキャラクタイメージデータ が配置される出力イメージデータ上の縦方向の基準位置 に関するデータを記憶する記憶手段と、キャラクタイメ 40 ージデータの縦方向における配置基準となる座標位置を キャラクタデータ中の形状データに基づいて算出する算 出手段と、キャラクタが判定手段で特定キャラクタであ ると判定された場合に、算出手段で得られた座標位置が 記憶手段に記憶された基準位置に関するデータで示され る基準位置に一致するようにキャラクタイメージデータ を出力イメージデータ上に配置する配置手段とを備えて いる。

【0017】更に、請求項3の発明の文書出力装置は、 して、配置手段は算出手段で得られた座標位置が、配憶形状に関する形状データと配置位置に関する配置データ 50 手段に配憶されたデータで示される基準位置に一致する

とを含むキャラクタデータ中の形状データからキャラク タイメージデータを発生し、配置データ中のペースライ ンデータを基に指定された座標位置に横方向に配置する ことで、横書き文書の出力装置における画素のオン/オ フの情報である出力イメージデータを生成する文書出力 装置であって、キャラクタが予め定めた特定キャラクタ 群に含まれる特定キャラクタであるか否かを判定する判 定手段と、特定キャラクタのキャラクタイメージデータ が配置される出力イメージデータ上の縦方向の基準位置 10 に関するデータを複数記憶する記憶手段と、記憶手段に 記憶される複数の基準位置に関するデータの中から使用 する書体、キャラクタサイズ、書体とキャラクタサイズ の組合せ或いは行送り幅に基づいて1つを選択する選択 手段と、キャラクタイメージデータの縦方向における配 置基準となる座標位置をキャラクタデータ中の形状デー 夕に基づいて算出する算出手段と、キャラクタが判定手 段で特定キャラクタであると判定された場合に、算出手 段で得られた座標位置を、選択手段で選択された記憶手 段に記憶されたデータで示される基準位置に一致するよ うにキャラクタイメージデータを出力イメージデータ上 に配置する配置手段とを備えている。

【0018】また、請求項4の発明の文書出力装置は、 請求項2或いは請求項3の文書出力装置の構成に加え、 キャラクタを特定する複数の特定キャラクタ群を記憶す る第2の記憶手段と、第2の記憶手段の中から使用する 書体或いは書体とキャラクタサイズの組合せに基づいて 1つの特定キャラクタ群を選択する第2の選択手段とを 備えている。

【0019】また、請求項5の発明の文書出力装置は、 請求項2或いは請求項3の文書出力装置の構成に加え、 特定キャラクタを複数記憶する第3の記憶手段と、第3 の記憶手段に対して特定キャラクタを登録或いは削除す る設定手段とを備えている。

【0020】また、請求項6の発明の文書出力装置は、 請求項1、請求項2或いは請求項3の文書出力装置において、形状データから得られるキャラクタイメージデー タの最大値及び最小値の所定割合の座標位置を求める算 出手段を備えている。

【0021】また、請求項7の発明の文書出力装置は、 請求項2或いは請求項3の文書出力装置の構成に加え、 特定キャラクタを仮名と漢字とするものである。

[0022]

【作用】上記の構成を有する請求項1の発明の文書出力 装置においては、記憶手段はキャラクタイメージデータ が配置される出力イメージデータ上の縦方向の基準位置 に関するデータを記憶し、算出手段はキャラクタイメー ジデータの縦方向における配置基準となる座標位置をキャラクタデータ中の形状データに基づいて算出する。そ して、配置手段は算出手段で得られた座標位置が、記憶 手段に記憶されたデータで示される基準位置に一般する。

ようにキャラクタイメージデータを出力イメージデータ 上に配置する。複数の書体のキャラクタを混在させた文 **書であっても、キャラクタを美しく整列させた出力結果** を得ることが可能になる。

【0023】また、請求項2の発明の文書出力装置にお いては、判定手段はキャラクタが予め定めた特定キャラ クタ群に含まれる特定キャラクタであるか否かを判定 し、記憶手段は特定キャラクタのキャラクタイメージデ ータが配置される出力イメージデータ上の縦方向の基準 ラクタイメージデータの縦方向における配置基準となる 座標位置をキャラクタデータ中の形状データに基づいて 算出する。そして、配置手段はキャラクタが判定手段で 特定キャラクタであると判定された場合に、算出手段で 得られた座標位置が記憶手段に記憶されたデータで示さ れる基準位置に一致するようにキャラクタイメージデー **夕を出力イメージデータ上に配置する。これにより、特** 定キャラクタに対してだけ特別の配置処理を行うことが 可能になる。

【0024】更に、請求項3の発明の文書出力装置にお 20 る。 いては、判定手段はキャラクタが予め定めた特定キャラ クタ群に含まれる特定キャラクタであるか否かを判定 し、記憶手段は特定キャラクタのキャラクタイメージデ ータが配置される出力イメージデータ上の縦方向の基準 位置に関するデータを複数記憶する。また、選択手段は 記憶手段に記憶される複数の基準位置に関するデータの 中から使用する書体、キャラクタサイズ、書体とキャラ クタサイズの組合せ或いは行送り幅に基づいて1つを選 択し、算出手段はキャラクタイメージデータの縦方向に おける配置基準となる座標位置をキャラクタデータ中の 30 形状データに基づいて算出する。そして、配置手段はキ ャラクタが判定手段で特定キャラクタであると判定され た場合に、算出手段で得られた座標位置を、選択手段で 選択された記憶手段に記憶されたデータで示される基準 位置に一致するようにキャラクタイメージデータを出力 イメージデータ上に配置する。これにより、書体、キャ ラクタサイズ、書体とキャラクタサイズの組合せ或いは 行送り幅に応じたより細やかなキャラクタの配置が可能 になる。

においては、請求項2或いは請求項3の文書出力装置の 作用の他に、第2の記憶手段はキャラクタを特定する複 数の特定キャラクタ群を記憶し、第2の選択手段は第2 の記憶手段の中から使用する書体或いは書体とキャラク タサイズの組合せに基づいて1つの特定キャラクタ群を 選択する。これにより、複数書体の組合せやそのキャラ クタサイズに応じて、より細かに特定された特定キャラ クタ毎に配置手段による配置処理を行え、より細やかな キャラクタの配置を行うことができる。

いては、請求項2或いは請求項3の文書出力装置の作用 の他に、第3の記憶手段は特定キャラクタを複数記憶 し、設定手段は第3の記憶手段に対して特定キャラクタ を登録或いは削除し、判定手段は、キャラクタが第3の

記憶手段に記録されている特定キャラクタであるか否か を判定する。これにより、所望のキャラクタを特定キャ ラクタに付加或いは削除でき、装置の使用者の好みをキ ャラクタの配置に反映することが可能になる。

【0027】さらに、請求項6の発明の文書出力装置に 位置に関するデータを記憶する。また、算出手段はキャ 10 おいては、請求項1、請求項2或いは請求項3の文書出 力装置の作用の他に、算出手段は形状データから得られ るキャラクタイメージデータの最大値及び最小値の所定 割合の座標位置を求める。これにより、キャラクタデー 夕に特別な情報を付加することなく、適切なキャラクタ の基準位置を算出することが可能になる。

> 【0028】また、請求項7の発明の文書出力装置にお いては、特定キャラクタを仮名と漢字としている。これ により、和文欧文が混在する文書であっても、キャラク タを美しく整列させた出力結果を得ることが可能にな

[0029]

【実施例】以下、本発明を具体化した一実施例を図面を 参照して説明する。

【0030】本実施例は、日本語ワードプロセッサの印 字/表示装置にて出力される画像情報を生成する装置に おける、キャラクタイメージを出力イメージ上へ配置す る装置に本発明を適用した例で説明する。尚、キャラク タイメージとは、キャラクタの形状を表すデータを、ま た、出力イメージとは、印刷/表示装置で出力される画 像を表すデータを、それぞれ、出力メディア上の仮想的 な画素のオン/オフの情報であるイメージ情報で表した データである。

【0031】図1に示すように、本実施例の文書出力装 置は、CPU10、プログラムメモリ11、ワーキング メモリ12、フォントメモリ13、配置位置メモリ1 4、入力部15及び出力イメージメモリ16、特定キャ ラクタコードリスト18等から構成され、それらはパス 17によって接続されている。

【0032】CPU10は、本文書出力装置の機能を実 【0025】また更に、請求項4の発明の文書出力装置 40 現するための制御を行うものであり、プログラムメモリ 11は、このCPU10で行う制御の手続きを定義した プログラムを記憶するものである。また、ワーキングメ モリ12は、プログラムメモリ11に記憶されたプログ ラムの処理をCPU10で実行する際の一時的なデータ を格納するものであり、後述する本実施例における処理 で使用するキャラクタイメージメモリ12a、文字送り メモリ12b、ペースラインメモリ12c、及び、位置 座標メモリ12dをも含んでいる。

【0033】 フォントメモリ13は、キャラクタのイメ 【0026】また、請求項5の発明の文書出力装置にお 50 ージデータであるキャラクタイメージを生成するための

情報であるキャラクタデータ19を記憶したデータベースである。キャラクタデータ19は、形状データ19 a、文字送りデータ19b及びベースラインデータ19 cから構成される。尚、フォントメモリ13のキャラクタデータ19は、曹体及びキャラクタを特定することで読み出すことができる。本実施例では、曹体を書体コードと称する書体を一意に表す数値で表現し、キャラクタをキャラクタコードと称するキャラクタを一意に表す数値で表現する。

【0034】キャラクタデータ19の形状データ19a 10 は、キャラクタの形状を定義する情報であり、本実施例ではピットマップ形式で記憶している。文字送りデータ19bは、従来技術の項で述べた通り、そのキャラクタの文字送り方向の存在領域を定義する情報であり、本実施例では、横書き用の始点のx座標値、終点のx座標値、総書き用の始点のy座標値を記憶している。また、ベースラインデータ19cは、従来技術の項で述べたとおり、そのキャラクタの文字送り方向に直交する方向の位置合わせの情報であり、本実施例では、横書き用のy座標値と縦書き用のx座標値を記憶し20ている。

【0035】図2にフォントメモリ13内のキャラクタ データ19の例を概念的に示す。図2に示すように、フ ォントメモリ13は、1つのキャラクタデータ19毎 に、形状データ19aとしてビットマップ21を記憶 し、また、文字送りデータ19bの横書き用の始点とし て点22のx座標値を記憶し、終点として点23のx座 標値を記憶すると共に、縦書き用の始点として点24の y座標値を記憶し、終点として点25のy座標値を記憶 し、さらに、ベースラインデータ19cの横書き用とし 30 て、直線26のy座標値を記憶し、かつ縦書き用として 直線27のx座標値を記憶している。ビットマップ21 は、幅がWビットで、かつ高さがHビットのビットマッ ブデータであり、幅方向は、CPU10がパイト単位で 扱えるようにパイトアライメントされており、このとき の幅がWBパイトとすると、画素のオン/オフを1/0 で表すWBxHパイトの配列データで構成される。この とき、画素は、左上から開始し、左から右、上から下の 順で記憶されている。

【0036】尚、本実施例の横書きとは、キャラクタに 40 対して、左から右への水平方向にキャラクタを配置した 書式のことをいい、また、縦書きとは、キャラクタに対 して、上から下への水平方向にキャラクタを配置した書 式のことをいう。

【0037】配置位置メモリ14は、キャラクタイメージの配置位置に関する情報を記憶するものであり、方向データ14a、標準位置座標データ14b、仮名漢字位置座標データ14c、及び、改行幅データ14dを記憶している。

【0038】方向データ14aは、文字送りの方向を表 50 め、特別な変換をかけることなくキャラクタイメージを

す情報であり、横書き/縦書きを表すフラグ情報である。標準位置座標データ14b及び仮名漢字位置座標データ14cは、共に配置されるキャラクタの位置を出力イメージ上の座標値で表すデータであり、標準位置座標データ14bは仮名及び漢字以外のキャラクタを処理する場合に、仮名漢字位置座標データ14cは仮名及び漢字のキャラクタを処理する場合にそれぞれ参照する情報である。改行幅データ14dは、現在の改行幅を出力イメージの座標単位の量で表すデータである。

0 【0039】入力部15は、書体コード及びキャラクタコードを伴ったキャラクタ出力の指令、改行幅の設定等の様々な指令を入力するものであり、出力イメージメモリ16は、表示/印刷装置により参照され、かつ、本文書出力装置の出力データとなる出力イメージを記憶するものである。

【0040】特定キャラクタコードリスト18は、特定のキャラクタコードが昇順(コードが次第に大きくなるような順)に2パイトの配列として記憶されている。ここに記憶されているキャラクタコードは、後述するような特別な処理を行った方が美しく配置する事ができることが、予め統計的な処理等により調べられているものである。

【0041】次に、このように構成された文書出力装置において、横書き文書を処理する場合のキャラクタイメージ配置処理を、図3のフローチャートを用いて説明する。尚、この処理は、複数の書体が混在した文書の出力を行う場合に起動される。それ以外の場合は、従来技術の項に示した従来方式で出力処理を行う。

【0042】本実施例では、この処理を行うまでに、既に、次のように配置位置メモリ14内のすべてのデータの初期化は終了している。方向データ14aは、文字送りの方向として「横書き」を設定し、標準位置座標データ14bは、キャラクタを配置する位置の出力イメージ上での座標値をセットし、また、仮名漢字位置座標データ14cは、標準位置座標データ14bに対して、改行幅データ14dの20%だけy座標に加えた値をセットしておく。改行幅データ14dは、入力部15から入力される指令に基づいて設定する。

【0043】CPU10は、先ず、入力部15より入力されたキャラクタコード及び書体コードで特定されるキャラクタのキャラクタデータをフォントメモリ13より読み出し、キャラクタイメージを生成し、ワーキングメモリ12内のキャラクタイメージメモリ12aにそのデータを格納する(S31)。この際、フォントメモリ13からは、横書き用の文字送りデータ、ベースラインデータも同時にワーキングメモリ12内の文字送りメモリ12b、ベースラインメモリ12cにそれぞれ格納する。尚、本実施例のフォントメモリ13に記憶しているキャラクタデータの形状データはビットマップであるたまれています。

得ることができる。

【0044】次に、配置位置メモリ14より、標準位置 座標データ14bをワーキングメモリ12内の位置座標 メモリ12 dに読み込み (S32)、このキャラクタが 特定キャラクタである仮名あるいは漢字であるか否かを 判定する(S33)。判定は、入力部15より入力した キャラクタコードが、特定キャラクタコードリスト18 に登録されているものか否かで判定する。

【0045】ここで仮名あるいは漢字であると判定され た場合は (S33でYES)、キャラクタデータ19と 10 して記憶されていたベースラインデータ19cを用いず に、このキャラクタのペースラインを算出し直し(S3 4)、ワーキングメモリ12内の位置座標メモリ12d の内容を、配置位置メモリ14の仮名漢字位置座標デー タ14cに書き換える(S35)。この時のキャラクタ のペースラインを算出方法は、キャラクタイメージのソ 座標の最大値と最小値を求め、その中点の座標値を、こ のキャラクタのペースライン位置としてワーキングメモ リ12内のペースラインデータメモリ12cとして書き 換えるものである。

【0046】ここで、キャラクタイメージのy座標の最 大値と最小値を求めるには次のようにする。先ず、キャ ラクタのビットマップデータの原点にあたる配列データ の最初から順に配列データを調べ、最初に1 (画素がオ ン) が見つかったメモリが何パイト目であるかを求め、 ビットマップデータの幅WBパイトを基に、原点からの オフセットを算出する。これがy方向の最大値となる。 次いで、同様にして、配列データの最後から逆方向に配 列データを調べ、最初に1が見つかったメモリが何パイ し、y方向の最小値を求める。

【0047】次に、CPU10は、ワーキングメモリ1 2内のキャラクタイメージメモリ12aに記憶したキャ ラクタイメージを出力イメージメモリ16の出力イメー ジに配置する処理を行う(S36)。すなわち、キャラ クタイメージ上のx座標を文字送りメモリ12bに記憶 した文字送りデータの始点のx座標値で、y座標をペー スラインメモリ12cに記憶したペースラインデータで 表される点を、位置座標メモリ12dに記憶している位 置座標データに、一致させるように出力イメージメモリ 40 16の出力イメージに配置して、出力イメージに書き込

【0048】引き続き、配置位置メモリ14内の、標準 位置座標データ14b、仮名漢字位置座標データ14c を更新する処理を行う(S37)。ここでは、ワーキン グメモリ12内の文字送りメモリ12bに記憶された文 字送りデータの終点から始点を引いた値、すなわち、文 字送り量を、標準位置座標データ14bと仮名漢字位置 座標データ14cのx座標値に加えた値に変更する。

【0049】以上により、1つのキャラクタのキャラク 50 bのy座標を示した線である。

タイメージ配置処理を終える。

【0050】次に、従来技術の項で示した図5(a)と 同じ文書を本文書出力装置により出力する場合について 説明する。

12

【0051】まず、「私」というキャラクタを示すキャ ラクタコードが入力部15より入力されると、上述した ように、「私」のキャラクタコードと書体コードによ り、フォントメモリ13から該当するキャラクタデータ を読み出し、キャラクタイメージを生成し、ワーキング メモリ12内のキャラクタイメージメモリ12aにその データを格納する(S31)。そして、配置位置メモリ 14より、標準位置座標データ14bをワーキングメモ リ12内の位置座標メモリ12dに読み込む(S3

【0052】次いで、S33において、「私」は漢字で あるのでYESと判断し、S34の処理を行うように分 岐する。そして、「私」のキャラクタイメージよりベー スラインを算出し直し(S34), ワーキングメモリ1 2内の位置座標メモリ12dの内容を、配置位置メモリ 14の仮名漢字位置座標データ14cに書き換える(S 20 35)。そのあと、ワーキングメモリ12内のキャラク タイメージメモリ12aに記憶した「私」のキャラクタ イメージを出力イメージメモリ16の出力イメージに配 置する処理を行う(S36)。引き続き、配置位置メモ リ14内の、標準位置座標データ14b、仮名漢字位置 座標データ14cを更新する(S37)。以上で、 「私」のキャラクタイメージ配置処理を終える。

【0053】次に、「は」が入力され、同様にS31及 びS32の処理が行われ、S33において、「は」は仮 ト目であるかより、最後の点からのオフセットを算出 30 名であるのでYESと判断され、S34に分岐し、ペー スライン修正処理 (S34) と位置座標データ修正処理 (S35) を行い、次いで、S36及びS37の処理を 行い、「は」の処理を終える。更に、引き続き、 「人」、「間」、「で」と順次入力され、これらは、仮 名あるいは漢字であるのでS33においてYESと判断 し、ベースライン修正処理(S34)及び位置座標デー 夕修正処理(S35)を行い、S36及びS37の処理 を行って、処理を終える。

> 【0054】最後に、「y] が入力されると、「y] は 仮名あるいは漢字でないので、S33においてNOと判 断し、ペースライン修正処理と位置座標データ修正処理 は行わずに、S36の出力イメージにキャラクタイメー ジを配置する処理を行い、S37の位置座標データ更新 処理を行って、「y」のキャラクタイメージ配置処理を 終える。

> 【0055】以上の一連の処理の結果、図5(b)の出 力結果が得られる。尚、直線52は、配置位置メモリ1 4に記憶した仮名漢字位置座標データ14cのy座標を 示した線、また、直線53は、標準位置座標データ14

【0056】この様に、本文書出力装置のキャラクタイ メージ配置処理によれば、仮名漢字は中心で整列され、 また、英文字は標準位置合わせの線上に整列されている 出力結果が得られる。

【0057】尚、本発明の記憶手段は、配置位置メモリ 14の仮名漢字位置座標データ14cを記憶する領域に 相当し、算出手段の処理は、図3のフローチャートのS 34の処理に相当し、また、配置手段の処理は、S35 ~ S 3 6 の処理に相当する。判定手段の処理は、図3の フローチャートのS33の処理に相当する。

【0058】ここで、上述したS34のペースラインの 修正の処理は、形状の中点ではなく、6:4に分ける点 とするなど、キャラクタイメージを縦方向に所定割合に 分ける点であれば、どのような位置でも良い。また、S 34の処理は、縦書き用の文字送りデータの始点と終点 の中点をペースラインの修正値として用いることもでき る。つまり、フォントメモリ13からこのキャラクタの 縦書き用文字送りデータを読み出し、その始点と終点の 中点を算出することで行うことができる。また、これも 形状の座標値をパラメータとして処理した場合と同様 20 なものを選択使用することも可能である。 に、始点と終点の中点のみならず、6:4に分ける点と するなど、始点と終点を所定割合に分ける点であれば、 どのような位置でも良い。

【0059】また、処理する文書に英文字が含まれない 場合には、図3のフローチャートのS33における、仮 名・漢字の判定処理を無くし、常にS34~S35の処 理を実行する様に変更することもできる。

【0060】更に、本実施例においては、キャラクタ毎 にベースライン位置の算出を行ったが、日本語の書体の ように、キャラクタイメージの最大値と最小値がキャラ 30 クタ毎にほとんど変わらないものもあるので、書体が変 わる毎に一度だけ、予め定められたキャラクタを基にし てベースライン位置を算出し、その算出値を記憶してお き、その書体の特定キャラクタの出力を行う時にその記 憶された値を使用するようにしてもよい。

【0061】また、本実施例の、形状データ19aは、 ビットマップの形式で記憶し、変形等の処理を施さずに 直接用いたが、形状データをアウトライン形式等のスケ ーラブルフォントの形式で記憶し、キャラクタジェネレ ータによりこれらのデータを所望の形状に変換したキャ 40 ラクタイメージを生成し、また、キャラクタジェネレー 夕で施された処理に応じた文字送りデータ、ペースライ ンデータを用いて上述した処理を行うこともできる。 尚、キャラクタジェネレータによる形状プータのキャラ クタイメージへの変換処理は、本発明の主たる部分では なく、また、既に実用化されている公知の技術であるた め、説明は省略する。

【0062】本実施例では、仮名漢字位置座標データ1 4 c は、x、y座標値で記憶したが、文字送り方向の座 標値は標準位置座標データと同一であるため、文字送り 50 処理を行う。 書体 a のキャラクタや書体 b 、 書体 c で特

方向と直交する方向の座標値のみで記憶することも可能 である。また、記憶する座標値は、標準位置座標データ からの相対量で記憶しても良い。相対量で記憶した場 合、S35の処理はワーキングメモリ12内の位置座標 メモリ12dの内容を、配置位置メモリ14の標準位置 座標データ14bに仮名漢字位置座標データ14cを加

14

【0063】また、位置座標データは、標準位置座標デ ータ14bと仮名漢字位置座標データ14cの2つにと 10 したが、2つに限らず、さらに多くの数の位置座標デー 夕を持つ構成にも容易に変更できる。このように複数の 位置座標データを持つことで、異なった書体の組合せ や、より細分化された特定キャラクタ群に対応させて適 宜選択することにより、さらにきめ細かい補正を行うこ とも可能である。

算したものに書き換える処理になる。

【0064】更に、使用する書体の組合せや、キャラク 夕のサイズ等により複数の特定キャラクタコードリスト をメモリに格納しておき、文書を作成する時、どの書体 が使用されているか等の状況に応じて、その中から適当

【0065】例えば、書体aと書体bと書体cが使用さ れる文書を作成する際、キャラクタサイズが所定値より 大きくなると、書体cの特定のキャラクタのキャラクタ 配置のパランスの悪さが目立つようになることと、書体 bの特定のキャラクタも書体aの中ではパランスが悪く なることが知られている場合、これらのパランスを補正 できるように、複数の位置座標データa,b,cと複数 の特定キャラクタコードリストb,cを予めメモリに格 納しておく。そして、実際に文書を作成するためにキャ ラクタが入力されると次のようにキャラクタを配置す る。

【0066】まず、出力するキャラクタがどの書体のも のかを書体コードを基に判別し、書体りであった場合 は、メモリに格納されている複数の特定キャラクタコー ドリストの中から、この書体りに対応した特定キャラク タコードリストbを選択する。出力するキャラクタがこ の特定キャラクタコードリストトに含まれているか否か を判定し、含まれている場合には、複数の位置座標デー タから対応する位置座標データbを選択し、前述のペー スラインの修正の処理等を行って、前述した処理と同様 な配置処理を行う。

【0067】また、出力するキャラクタが書体 c であっ た場合は、さらにそのキャラクタサイズを確認し、所定 値よりも大きい場合は、複数の特定キャラクタコードリ ストの中から特定キャラクタコードリストcを選択し、 出力するキャラクタがこの特定キャラクタコードリスト c に含まれているか否かを判定し、含まれている場合に は、複数の位置座標データから対応する位置座標データ c を選択し、ペースラインの修正の処理等を行って配置 定キャラクタコードリストb, c に含まれていないキャ ラクタであった場合は、複数の位置座標データの中の位 置座標データ a に基づいて配置処理を行う。

【0068】これにより、より細やかなキャラクタの特 定が可能となり、より美しい配置が可能となる。

【0069】更に、本実施例では、改行幅データの20 %を標準位置座標データ14bに加えたものを仮名漢字 位置座標データ14cとしていたが、改行幅によってそ のパーセントを変えたり、キャラクタサイズによって変 化させることも可能である。例えば、改行幅がキャラク 10 タサイズの2倍以上の時は、改行幅データの10%を、 2倍未満の時は、20%を標準位置座標データ14bに 加えたものを仮名漢字位置座標データ14cとするとい うような処理を行ってもよい。これにより、キャラクタ の配置位置が指定された位置より不自然に上下すること を防ぐことができる。

【0070】また、本実施例では、標準位置座標データ 14 bと仮名漢字位置座標データ14 cの相対的な位置 関係を固定値で処理する方式を用いたが、これに限ら ず、入力部15より、標準位置座標データ14bと仮名 20 漢字位置座標データ14cの値を得、配置位置メモリ1 4内のデータを書き換えることでどのような値にでも設 定可能である。このように、書き換えができると、一度 表示あるいは印字された文書をチェックして容易に修正 を加えたり、使用者毎に自由な設定ができるようにな る。その他、どのような方法でも、キャラクタを配置す る位置が特定できる情報であればどのような形態でも良 11

【0071】更に、本実施例では、日本語の仮名および 漢字に本発明を適用した例を示したが、これに限らず、 仮名漢字の他、「*」や「#」などの記号や、その他の キャラクタを含む集合を特定キャラクタとしても良い。 また、特定キャラクタと特定キャラクタ以外のキャラク タの割合によっては、特定キャラクタコードリスト18 に特定キャラクタ以外のキャラクタコードを記録した方 が、S33における判断が速やかに行われる場合も考え られる。その場合、S33の判定は特定キャラクタコー ドリスト18に登録されていない時、534の処理に移 るように変更することで対応できる。

【0072】更にまた、特定キャラクタコードリストを 40 読み書きができるメモリ上に持ち、必要に応じて、入力 部15から付加或いは削除を示す制御コードと付加或い は削除したいキャラクタコードを入力したりすることに より、特定キャラクタコードを付加したり、削除できる ようにしてもよい。その場合、使用している書体の中の 一部のキャラクタを使用者が自分のデザインしたキャラ クタに置き換えて使用するような場合でも、そのキャラ クタを特定キャラクタにしたり、特定キャラクタでなく したりする事ができ、美しい配置が可能となる。

16

は漢字を表すキャラクタコードのリストを照合する方式 をとったが、これに限らず、キャラクタデータ毎に対応 する識別子を予め記憶しておき(例えば、キャラクタコ ードと識別子の組のテーブル用意しておく)、S33に おいて、キャラクタコードに対応する識別子を読み出 し、その識別子が漢字等の特定のキャラクタであること を示す場合は、S34、S35の処理を行っても良い。 あるいは、キャラクタコードの範囲によって特定キャラ クタを指定することもできる。例えば、キャラクタコー ドがシフトJISコードの場合、仮名あるいは漢字のコ ード範囲は0x829Fから0xEAA4であるため、 その範囲内のコードのものは、S33においてYESと 判定する。その他、どのような方法でも、本発明を適用 すべきキャラクタが特定できるものであれば良い。

【0074】本実施例の装置は、縦書きにも対応してい るが、横書きのみが可能な装置でも良く、また、その際 には、フォントメモリ13中のキャラクタデータの縦書 きに関する情報は、配置一メモリ14内の方向データ1 4 a は無くても良い。但し、縦書きに関する情報が無い キャラクタデータを用いてS34の処理を実行する場合 は、後で変更例を示した縦書き用の文字送りデータを用 いた修正点の算出処理はできないため、形状の中点の算 出処理により行う。

【0075】その他にも本実施例は、本発明の趣旨を逸 脱しない範囲で種々の変更が可能である。

[0076]

【発明の効果】以上説明したことから明かなように、請 求項1の発明の文書出力装置によれば、キャラクタイメ ージデータの縦方向における配置基準となる座標位置を キャラクタデータ中の形状データに基づいて同一の算出 方法で算出し、その座標位置を出力イメージデータ上の 縦方向の基準位置に配置するので、キャラクタデータ中 の配置データのペースラインデータで示されるペースラ インと、キャラクタイメージのデザイン上の中心との差 が異なる複数の書体のキャラクタを混在させた文書であ っても、キャラクタを美しく整列させた出力結果を得る ことができる。

【0077】また、請求項2の発明の文書出力装置によ れば、キャラクタが予め定めた特定キャラクタである場 合だけ配置基準となる座標位置を算出し、特定キャラク タのキャラクタイメージデータが配置される出力イメー ジデータ上の縦方向の基準位置に配置するので、特定キ ャラクタに対してのみ特別な配置処理を行うように限定 でき、ベースラインに対する相対的な位置が統一されて いるキャラクタと統一されていないキャラクタを混在さ せた文書であっても、キャラクタを美しく整列させた出 力結果を得ることができる。

【0078】さらに、請求項3の発明の文書出力装置に よれば、第2の記憶手段に複数の基準位置が記憶されて 【0073】また、判定には、予め記憶した仮名あるい 50 おり、使用する書体、キャラクタサイズ、書体とキャラ

クタサイズの組合せ或いは行送り幅に基づいてその複数 の基準位置から1つを選択して適宜処理を行うので、替 体、キャラクタサイズ、書体とキャラクタサイズの組合 せ或いは行送り幅に応じたより細やかなキャラクタの配 置を行うことができる。

【0079】さらにまた、請求項4の発明の文書出力装置によれば、キャラクタを特定する複数の特定キャラクタ群を記憶し、その複数の特定キャラクタ群の中から使用する書体或いは書体とキャラクタサイズの組合せに基づいて1つの特定キャラクタ群を選択するので、複数書 10 体の組合せやそのキャラクタサイズに応じて、より細かに特定された特定キャラクタ毎に上述したような配置処理を行うことができ、より細やかなキャラクタの配置を行うことができる。

【0080】また、請求項5の発明の文書出力装置によれば、第3の記憶手段に特定キャラクタを複数記憶し、設定手段により第3の記憶手段に対して特定キャラクタを登録或いは削除を行うので、所望のキャラクタを特定キャラクタに付加或いは削除でき、装置の使用者の好みをキャラクタの配置に反映することができる。

【0081】さらに、請求項6の発明の文書出力装置によれば、算出手段はキャラクタイメージデータの最大値及び最小値の所定割合の座標位置を求めので、キャラクタデータに特別な情報を付加することなく、適切なキャ

18

ラクタの基準位置を算出することができる。

【0082】また、請求項7の発明の文書出力装置によれば、特定キャラクタを仮名と漢字とすることで、和文 欧文が混在する文書であっても、キャラクタを美しく整 列させた出力結果を得ることができる。

【図面の簡単な説明】

【図1】本発明を具体化した実施例のブロック図である。

【図2】上記実施例のキャラクタデータの概念図である。

【図3】上記実施例のキャラクタイメージ配置処理のフローチャートである。

【図4】実施例中で例示する書体A及びBのベースラインの位置を示す図である。

【図5】 (a) は従来技術、(b) は実施例による出力 結果を示す図である。

【符号の説明】

- 10 CPU
- 11 プログラムメモリ
- 20 12 ワーキングメモリ
 - 13 フォントメモリ
 - 14 配置位置メモリ
 - 18 特定キャラクタコードリスト

【図1】

【図4】

【図5】

フロントページの続き

(51) Int. Cl. 6

識別記号

庁内整理番号 9288-5L

FΙ

技術表示箇所

G 0 9 G 5/32

610

G 0 6 F 15/20

563Z