OHC-FOI: An algoritm for Computing the Ocean Heat Content.

Authors

H. L. Varona¹, W. Artiles², M. Araujo¹

¹Department of Oceanography. CTG. Federal University of Pernambuco. Recife-PE. Brazil.

Version

1.03

Description

Two Matlab algorithms are presented to compute the Ocean Heat Content by the trapezoidal method, using the variable specific heat and density at the ocean surface. One of the algorithms allows computing the Ocean Heat Content through a fractional order integral.

Algorithm 1: Computes Ocean Heat Content using a fractional order integral.

OHC = FractionalOrderIntegralHeatContent(Alpha, Temperature, Depth, UpperLimit, LowerLimit, Cp, Rho0)

Input parameters:

Alpha is the order of the fractional integral, Alpha must tend to one (Alpha -> 1)

UpperLimit is the upper limit of the integral in meters (depth of the surface layer of the ocean), UpperLimit > 0

LowerLimit is the lower limit of the integral in meters (depth of the layer for which the OHC is to be computed), LowerLimit > 0

 $\mbox{\it Cp}$ is the specific heat in J / (Kg °C) or J / (Kg K) J / (Kg °C) and J / (Kg K) are the same units but with different origins in temperature

Rho0 is the density of the sea surface in kg / m^3

Temperature is the potential temperature in °C or K

Depth is the depth in meters (Depth > 0)

²Department of Mathematics. CCEN. Federal University of Pernambuco. Recife-PE. Brazil.

Output parameters:

OHC is the Oceanic Heat Content in J m^2

Algorithm 2: Computes Ocean Heat Content

OHC = CalculateHeatContent(Temperature, Depth, UpperLimit, LowerLimit, Cp, Rho0)

Input parameters:

UpperLimit is the upper limit of the integral in meters (depth of the
surface layer
of the ocean), UpperLimit > 0

LowerLimit is the lower limit of the integral in meters (depth of the layer for which the OHC is to be computed), LowerLimit > 0

 $\mbox{\it Cp}$ is the specific heat in J / (Kg °C) or J / (Kg K) J / (Kg °C) and J / (Kg K) are the same units but with different origins in temperature

Rho0 is the density of the sea surface in kg / m^3

Temperature is the potential temperature in °C or K

Depth is the depth in meters (Depth > 0)

Output parameters:

OHC is the Oceanic Heat Content in J m^2

Acknowledges

The authors acknowledges to the TRIATLAS project, which has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement no. 817578.