HYBRID TRANSFORMERS FOR MUSIC SOURCE SEPARATION

Simon Rouard, Francisco Massa, Alexandre D´efossez

Meta Al

Presentation by: Pamudu Ranasinghe

PRESENTATION OUTLINE

- Introduction
- Related Work
- Architecture
- Demo
- Dataset Preparation
- Experimental Setup
- Results
- Conclusion

INTRODUCTION - MSS

What is Music source separation (MSS)?

• Music Source Separation (MSS) is the process of isolating individual sound sources from a mixed audio signal.

Mathematically

$$y(t) = \sum_{n=1}^{N} x_n(t)$$

- y(t) represents the observed mixture signal
- $x_n(t)$ represents the n-th source signal
- N is the total number of source signals

 In this research, researchers separated mixed signals into drums, bass, vocals, and other components.

INTRODUCTION - MSS

Why is MSS important?

- Allows musicians to isolate instruments for practice.
- Helps **DJs and producers** remix music more easily.
- Enables karaoke by removing vocals.
- Improves speech recognition in noisy environments.
- Customizes the music experience by adjusting the balance of instruments and vocals.

INTRODUCTION - MSS

Why is it difficult?

- In a song, multiple instruments overlap in time and frequency.
- Some sounds, like background guitars and synths, are **blended together**.
- Unlike images, where objects are clearly separate, audio sources are mixed into one waveform.

INTRODUCTION - OVERVIEW

Methods of Music Source Separation

- Spectrogram-based
- Waveform-based
- Hybrid method

- Work with frequency information like an image.
- Process the raw sound directly.
- Combine both Spectrograms and waveforms

Impact of Input Length in Music Source Separation

Short Context	Long Context		
Captures local features & fast-changing sounds.	Captures broader structure & dependencies.		
More computationally efficient.	Requires more memory & resources.		
Example: Conv-Tasnet (1 sec).	Example: Demucs (up to 10 sec).		

INTRODUCTION - OVERVIEW

MUSDB18 Dataset

- MUSDB18 is a reference dataset for benchmarking Music Source Separation (MSS).
- 150 songs (87 for training)
- This dataset is relatively small compared to datasets used in other deep learning tasks.

Evaluation in MSS Signal-to-Distortion Ratio (SDR)

- It measures how much-desired sound remains compared to noise or distortion.
- A higher number means the separated sound is closer to the original, with fewer distracting artifacts.

RELATED WORK – MODEL ROADMAP

Performance Metrics

SDR = Signal-to-Distortion Ratio (Higher is better)
MUSDB: Standard dataset for MSS evaluation

RELATED WORK – REVIEW OF EXISTING MODELS

ARCHITECTURE - DEMUCS

Deep Extractor for Music Sources

ARCHITECTURE – HYBRID DEMUCS

- Hybrid Demucs extend the original Demucs by adding a spectrogramdomain branch alongside the timedomain branch
- By using a 2D U-Net in the frequency domain and merging its output with the time-domain branch

ARCHITECTURE – DEMUCS VS HYBRID DEMUCS

Feature	Original Demucs	Hybrid Demucs			
Domain of Operation	Operates entirely in the time domain	Uses a dual-domain approach: time domain and frequency domain			
Architecture	Single U-Net encoder-decoder with BiLSTM bottleneck	Two parallel U-Nets: one for waveform, one for spectrogram			
Bottleneck Processing	BiLSTM for long-range temporal features	Separate processing in each branch for complementary information			
Skip Connections	Standard U-Net skip connections	Skip connections in both branches, outputs later merged			
Strengths	Excellent at preserving phase details and handling transient-rich signals	Combines strengths of both domains for improved overall separation quality			
Complexity and Efficiency Simpler, less computationally demanding due to dual-branch design					
Output Formation	Directly synthesizes time-domain waveform per source	Produces two separate outputs that are then fused			
Performance	Competitive separation quality; may struggle with harmonic context	Higher SDR, reduced artifacts, benefits from extra training data			

ARCHITECTURE – HYBRID TRANSFORMER DEMUCS

- **Dual Branches:** Processes waveforms and spectrograms in parallel.
- Cross-Domain Transformer: Uses interleaved self- and cross-attention to fuse representations.
- Output Fusion: Sums the time-domain output with iSTFT-converted spectrogram output for separation.

ARCHITECTURE – HYBRID TRANSFORMER DEMUCS

Attention Blocks:

- Self-Attention: Operates within each domain independently.
- Cross-Attention: Allows features from one domain to attend to features from the other.

Positional Encodings:

- 1D sinusoidal encodings for waveform features.
- 2D sinusoidal encodings (flattened) for spectrogram features.

Model Dimensions:

- Transformer dimension
- Feedforward network

Normalization & Stability:

- Layer normalization is applied.
- LayerScale is used

DEMO

 The code repository is publicly available with the trained weights. [CODE]

 I was able to reproduce the results on Google Colab.

DATASET PREPARATION

DATASET PREPARATION

Quality Matrix Definition

 $P_{(ij)}$: Proportion of segments where $V(y_{(ij)}) - V(x_{(i)}) > 10 \text{ dB}$ where $y_{(ij)} = f(x_{(i)})_j$ $V(z) = 10log_{10}(AveragePool(z^2))$

Ideal Matrix (Perfect Separation)

EXPERIMENTAL SETUP

Additionally

- 8 songs were used for validation.
- Researchers claim that using one model per source can be beneficial, although it adds overhead during both training and evaluation.

EXPERIMENTAL SETUP

Stage 1: Fixed-length Chunks

The audio is divided into equal-length.

Stage 2: Overlap Applied

Each overlap region represents 25% of the chunk duration.

Stage 3: Linear Transition

In the overlap regions, a linear crossfade is applied.

This means that as we progress through the overlap region:

- The first chunk's contribution gradually decreases from 100% to 0%
- The second chunk's contribution gradually increases from 0% to 100%
- This creates a smooth transition between chunks

19

RESULTS - COMPARISON WITH THE BASELINES

Color Legend:		
	Baseline (Original Hybrid Demucs)	
	Band-Split RNN (Best for Other/Vocals)	-
	Sparse HT Demucs (Best Overall)	
	Sparse HT Demucs (Best Overall)	

Model	Extra Data	SDR (Overal	l) Drums	Bass	Other	Vocals
Hybrid Demucs (Original)	No	7.64	8.12	8.43	5.65	8.35
Hybrid Demucs (Retrained)	800 songs	8.34	9.31	9.13	6.18	8.75
Band-Split RNN (Latest Version)	1,750 extra songs	8.97	10.15	8.16	7.08	10.47
HT Demucs (Ours)	800 songs	8.80	10.05	9.78	6.42	8.93 –
Sparse HT Demucs (Fine-Tuned + Sparse Attention)	800 songs	9.20	10.83	10.47	6.41	9.37

- Sparse HT Demucs model achieves the best overall SDR (9.20 dB).
- The **Band-Split RNN remains highly competitive** in Other (7.08 dB) and Vocals (10.47 dB) categories, despite using a different architectural approach.

RESULTS - IMPACT OF HYPER-PARAMETERS

RESULTS - IMPACT OF DATA AUGMENTATION

dur. (sec)	dept	h remixi	ng repitch	ning SDR (All)	
7.8	5	✓	✓	8.70	
7.8	5	✓	X	8.65	
7.8	5	X	√	8.00	

Configuration Performance:

Remixing

- Recombining stems (vocals, drums, bass) from different songs during training.
- Adjusting relative volumes of stems to create diverse audio mixes.

Repitching

- Altering pitch and tempo of audio stems.
- Speeding up or slowing down songs during training.

RESULTS - IMPACT SPARSE KERNELS AND FINE-TUNING

Model Parameters			
Parameter	Value		
Depth	7 (increased from 5)		
Train Segment Duration	12.2 seconds		
Dimension	512		

CONCLUSION

Potential Improvements

- Knowledge Distillation to create smaller, faster models for near real-time applications
- Unsupervised or Weakly Supervised learning techniques to improve generalization capability (Ex: wav2vec)

Key Insights from HT Demucs Model

- Similar architectures in generative AI are used to fuse multiple modalities
- Vision Transformer (ViT) and Swin Transformer models in computer vision are inspired by cross-domain architectures used in audio processing.

