Software Reliability and Security

Module 8

Winter 2017

Outline

- Security Types
- Computer Attacks and Defenses
- Attack Defense Intrusion detection systems and testing
- Security Engineering
- Software Engineering for Security

Presentation/Lecture Schedule and Report Due Dates

- Presentation 1
 - Related background paper
 - Jan 27, Feb 1, 3
- Presentation 2
 - Project proposal
 - March 1, 3, 8
- Presentation 3
 - Final project report
 - March 24, 29, 31

- Lectures
 Jan 13, 18, 20, 25, 27
 Feb 1, 3, 8, 10, 15, 17
 March 1, 3, 8, 10, 15, 17, 22, 24, 29, 31
- Project Proposal Due Tuesday, February 28
- Final Project Report Due Monday, April 10
- Final Exam
 Wednesday, April 12, 10:00am

Security Types

- Computer security
- Program security
- Software security
- Network security
- Application security
- Cybersecurity
- Information security / Computer security
- Internet security

• • •

- Security (Bosworth et al., 2009)
 - Free from danger or exposure due to attacks
 - Hard Security access control, authentication, etc.
 - Soft Security trust, reputation
- Trust (Josang et al., 2005; McKnight, 1996)
 - A directional relationship between two entities
 - The degree of dependence of one entity (trustor) on another entity (trustee) in a given scenario
- Privacy (Pfleeger, 2006)
 - Controlling somebody who knows something (communications, activities etc.) about others
 - Major aspects: data sensitivity, affected parties, controlled disclosure

- Computer security (Brinkley and Schell, 1995)
 - A field of computer science to maintain confidentiality, integrity, and availability of resources (computers and their affiliated devices)
 - Includes program security, software security, network security, application security, etc.
- Program security (Pfleeger, 2006)
 - Security at program level
 - Protect computing resources against program security flaws
 - Program (security) is a part of software (security)

- Software Security (McGraw, 2006)
 - A field of "computer security" that focusses on software that operate normally under attacks - mainly about building secure software
- Software Security Engineering (McGraw, 2006)
 - Building Secure Software security risk analysis, security requirements specification, secure design, and security testing
 - May include the security aspects of programming languages and O/Ss
- Application Security (McGraw, 2006)
 - Software and system protection after the development is complete
 - May include sandboxing, malicious code protection, run-time detection, enforcing security policies

- Network Security (Bishop, Dowd, et al.)
 - A field of computer security that protects networks and their applications against attacks
 - Maintain CIA with respect to all network elements
 - Includes intrusion detection, traffic analysis, network monitoring, cryptography
- Cybersecurity (Dunn)
 - A set of technical and non-technical controls
 - Protect computers, networks, other related hardware and software along with their software and data
 - Also includes the protection of other aspects of cyberspace, from all threats (including national security)

Computer Attacks and Security Defense

- Attacks Threat, Vulnerability, and Control
- Methods of Defense
- Security Goals, Concepts, and their Relationship
- Attacks Malicious code

Attacks in Computer System

- Attacks a specific formulation or execution of a plan to carry out a threat
 - Threats acts that have the potential to cause harm
 - Interception
 - Interruption
 - Modification
 - Fabrication
 - Vulnerabilities an exploitable weakness in a system to break security
 - Controls Methods and tools to reduce or protect due to a vulnerability

Threat, Control, and Vulnerability

A threat is blocked by control of a vulnerability

Precondition for an Attack - MOM (Method, Opportunity, and Motive)

Security Goals

- Confidentiality computing resources should be accessed only by authorized parties (secrecy)
- Integrity resources can be modified only by authorized parties in authorized ways
- Availability resources are accessible to authorized parties whenever necessary (opposite of denial of service)

Methods of Defense

- Reduce security risks
 - Prevent
 - Deter make the attack harder (not impossible)
 - Deflect make another target more attractive
 - Detect
 - Recover
- Controls: methods of defense
 - Encryption
 - Software Controls
 - Hardware Controls
 - Policies and Procedures
 - Physical Controls

Security Concepts and Relationships

Attacks - Malicious Code

- Malicious code written and distributed to make damage
- Excludes all unintentional errors (most faults found in software testing, inspection, and reviews)
 - Virus Attaches to program and propagates copies to other programs
 - Trojan horse Contains unexpected, additional functionality
 - Logic bomb Triggers action when condition occurs
 - Time bomb Triggers action when specified time occurs
 - Trapdoor Allows unauthorized access to functionality
 - Worm Propagates copies through a network
 - Rabbit Replicates to exhaust resource

Targeted Malicious Code

- Non-Targeted Malicious Code
 - Anonymous code written to affect users and machines indiscriminately
- Targeted Malicious Code
 - Malicious code written for a particular system, for a particular application, and for a particular purpose
 - Trapdoors an undocumented entry point to a module
 - Rootkits a later variation on the virus theme
 - Privilege escalation malicious code to increase the privilege level
 - Keystroke logging
 - Man-in-the-Middle
 - Covert Channels programs that leak information

Attack Classifications (Webster, 1999)

- An attack changes one privilege level to another privilege level using a method
- Attack classification criteria
 - Privilege levels
 - Attack methods
 - Attack actions

Attack Classification Elements

Privilege levels

- Remote network access (R) the attacker has access via a network to the target system
- Local network access (L) the attacker can receive from and send to the same network as the victim system
- User access (U) the attacker can run user commands onto the target system
- Super/root access (S) the attacker can control any software on the target system
- Physical access to host (H) the attacker has complete access to the hardware

Attack Classification Elements

Attack methods

- Masquerading (m) the attacker can access a system by pretending the identity of a victim's trusted person /system
- An abuse of feature (a) the attacker can abuse a system by performing an allowed action
- Implementation bug (b) the attacker exploits bad programming practices (e.g., buffer overflow)
- System misconfiguration (c) exploits unintentional errors in a system's configuration
- Social engineering (S) the attacker intimidates or deceives a legitimate user for getting access

Attack Classification Elements - contd.

Attack actions

- Probe an information discovery attack
- Deny a denial of service for a short or long time
- Intercept an interception of files, keystrokes or some other information
- Alter an alteration or deletion of some stored data
- Use an action for attacker's own personal enjoyment or preparation for other attacks

Examples

- "casesen" attack a U-b-S attack that elevates the user from a "user"
 (U) privilege level to a "super root" (S) privilege level via an implementation bug (b)
- "udpstorm" attack a R-a-Deny attack because a remote user (R) performs an action that denies (D) access via an abuse of feature (a)

Intrusion Detection Systems (IDS)

- Intrusion an intentional unauthorized attempt to
 - Access information
 - Manipulate information
 - Make a system unreliable/unusable
- Importance
 - Completely secure system is impossible a truly secure system may be abused by insiders
 - Detects potential security violations such as unauthorized use or misuse by both external and internal users of a system
- IDSs are usually different from firewall (gatekeeper)
 - Firewalls can also generate alerts in case of some network intrusion

Classification of IDSs

- Two types based on the target system
 - Host-based uses information from a host
 - Network-based use network events
 - Hybrid
- Two Types based on detection criteria
 - Anomaly detection
 - Misuse detection
 - Hybrid utilize both approaches

IDS - Major Objectives

- Both for single host or network (cloud?)
- Reduce false positives and negatives
- Detect new and unknown attacks
- Minimize time between actual intrusion occurrence and its detection
- Reduce data collection overhead for detection
- Remove any effect on normal target system operation

Classification of IDSs - Anomaly and Misuse

- Anomaly Detection Issues
 - Selection of threshold level and features to be monitored
 - Overhead for managing or updating profiles and the thresholds
 - Not all anomalous activities are intrusions
 - Not all intrusions are anomalous
 - As a result, may report false positive or negative
- Some Examples
 - Statistical, Pattern prediction, Neural networks

Classification of IDSs - Anomaly and Misuse

- Misuse Detection Issues
 - Like virus detection systems not useful for unknown intrusions
 - Assume that attacks can be represented in signatures compare
 - Some variations of an attack representations may match some legitimate activities
- Some Examples
 - Expert systems, Model (pattern)-based, Software specification-based,
 Snort

An Open Source IDS - Snort (snort.org)

- Signature-based NIDS employs a combination of rules
 - > The rules allow the creation of signatures to examine packets
 - > Packets not matching any rule are dropped
 - > Others are logged and can also report and alert

Snort Components

- Packet Decoder
 - Sniffs packets from network interfaces and arrange for processing
- Preprocessors
 - Prepares packets for the detection engine to analyze
- Detection Engine
 - Examines one or more fields of each packet using Snort rules
- Logging and Alerting System
 - Generates alerts and log messages based on detection engine analysis
- Output Modules
 - Process alerts and logs and generate final output based on user choice
- Disadvantages
 - May not pick up all packets due to the speed of the network
 - False positives and negative alerts like many other IDSs
 - Has become a target of attackers

Quantitatively Measurable IDS Characteristics

- Coverage
 - Signature-based number of signatures
 - Non-signature-based attacks out of the set of all known attacks
 - Importance and dimension (consequence) of each attack
- Probability of detection
 - Varies with false positive rate
- Resistance to attacks directed at the IDS
- Ability to handle high bandwidth traffic
 - May drop packets in case of too many packets or signatures

Quantitatively Measurable IDS Characteristics

- Probability of false alarms
 - Alerts caused by normal non-malicious traffic
 - False positive rate may vary with the network environment
 - Receiver operating curve (ROC) relationship between false positive and detection capability

Quantitatively Measurable IDS Characteristics - contd.

- Ability to correlate events
 - Collect events from other complementary IDSs, firewalls, routers, application logs, etc.
 - Useful to identify staged penetration attacks
 - Important for distributed intrusion detection
- Ability to detect unknown (never before seen) attacks
 - Only used for anomaly based
 - Difficult to measure/interpret
- Ability to identify an attack
 - How well an IDS can label (categorize) each detected attack with a common name or vulnerability name

Quantitatively Measurable IDS Characteristics - contd.

- Ability to determine attack success
 - Some attacks (or probes) may not harm the attacked system
 - Distinguish the failed from the successful attacks
- Capacity verification for NIDS
 - Ability to capture, process, and maintain accuracy given a network load
- Other measurements
 - Ease of use, maintenance, deployment, resource requirements, quality of support, etc.
- Main challenge in IDS Testing
 - Collecting attack scripts and victim software

Outline

- Security Types
 - Target area
 - Hard and soft security
 - Development process
- Computer Attacks and Defenses
 - Attacks Threat, Vulnerability, and Control
 - Methods of Defense
 - Security Goals, Concepts, and their Relationship
 - Attacks Malicious code
- Attack Defense Intrusion detection systems and testing
 - Types of IDS
 - IDS Characteristics
 - IDS Evaluation

Lecture Sources

- C. Pfleeger and S. Pfleeger, Security in Computing, Chapter 1 & 3 Prentice-Hall, 2003
- ISO/JTC1/IEC, Information technology -- Security techniques -- Evaluation criteria for IT security -- Part 1, Standard ISO/IEC 15408-(1-3):1999
- C. Landwehr et al., "A Taxonomy of Computer Program Security Flaws," ACM Computing Surveys, vol. 26, no. 3, September 1994.
- S. Webster, The development and analysis of intrusion detection algorithms, Master's thesis, MIT, USA, 1998.
- A Sundaram, An introduction to intrusion detection, Crossroads, Volume 2, Issue 4 (April 1996) Special issue on computer security Pages: 3 7, ACM Press, USA.
- R. Rehman, Intrusion Detection with SNORT: Advanced IDS Techniques Using SNORT, Apache, MySQL, PHP, and ACID, Prentice Hall PTR, 2003.
- R. Anderson, Security Engineering A Guide to Building Dependable Distributed Systems, Wiley, January 2001
- Northcutt, et al., Inside Network Perimeter Security: The Definitive Guide to Firewalls, Virtual Private Networks (VPNs), Routers, and Intrusion Detection Systems, Chapter 13, Sams, 2002
- P. Mell, V. Hu, R. Lipmann, J. Haines, and M. Zissman. An overview of issues in testing intrusion detection systems. Technical Report NIST IR 7007, National Institute of Standard and Technology, USA.
- Jay Beale et al., Snort 2.0 Intrusion Detection, Syngress Publishing, 2003.