SHAHEED BHAGAT SINGH STATE TECHNICAL CAMPUS, FEROZEPUR

ROLL	No: Total number	of pages:
	Total number of que	dions: 66
	B.Tech. EE 6 th Sem	
	Non-Linear & Digital Control System	RP.
	Subject Code: BTEE-603	0 64
	Subject Code: BTEE-603 Paper ID: 2514	U WID
Time	allowed: 3 Hrs Max	Marks: 60
Impor	tant Instructions:	
	All questions are compulsory	
	PART A (2×10)	
Q. 1.	Short-Answer Questions:	All COs
	(a) Define State and State Space.	
	(b) What is aliasing?	
	(c) What do you mean by limit cycles?	
	(d) Write advantages and disadvantages of digital control system.	
	(e) Draw the block diagram of sampled data control system.	
	(f) What is sampling theorem?	
	[-2 1 0]	
	(g) Solve for STM $\dot{x} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{bmatrix} x$	
	(h) What is pulse transfer function?	
	(i) What is initial value theorem in Z transform?	
	(j) Give transfer function of ZOH.	
	(j) Give transfer function of 2011.	
1	PART B (8×5)	
Q. 2.	a) Discuss reconstruction of sampled signal in detail.	CO1 -
Q. 2.	b) The state space model of a SISO system is given below	COL
	x(t) = Ax(t) + Bu(t), y(t) = cx(t)	
	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & -10 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix} and C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	
	10 1 103 1103	
	Determine the transfer function of the system.	
	OR	
	a) Obtain describing function of a practical relay?	COI
	b) Discuss controllability and observability.	
0.3	a) Derive the z transform of unit step function.	CO4
Q. 3.	b) Find Pulse transfer function of the given system	
	b) . ma . mas	

a) Given $y(k+2)+0.4 y(k+1)+0.1 y(k)=-(0.5)^{(k+1)}$. find Y(z)

CO4

- b) Explain sampled data control system in detail.
- Q. 4. a) State and prove properties of Z transform.

COL&CO4

 b) Develop a state space model for a system whose dynamics is represented by the following equation

$$\frac{d^3y}{dt^3} + \frac{3d^2y}{dt^2} + 5\frac{dy}{dt} + 7y = 11x(t)$$

OR

- a) Explain Pulse transfer function of a general simple sampled data CO1&CO4 control system
- b) Derive the transfer function from the states space model

$$x(t) = Ax(t) + Bu(t), y(t) = cx(t)$$

Q. 5. a) Consider a non-linear system described by the equation

CO3

$$\begin{aligned}
 \dot{x}_1 &= -3x_1 + x_2 \\
 \dot{x}_2 &= -x_1 - x_2 - x_2^3
 \end{aligned}$$

and Investigate the stability.

b) Discuss how Routh's Hurwitz criterion is applied to discrete system

OR

April 1

Discuss Jury's stability test in stability analysis.
Using the same check the stability of given system

$$F(z) = 2z^4 + 7z^3 + 10z^2 + 4z + 1$$

a) Discuss Lyapunov;s function in detail.

CO2&C03

CO3

Q. 6. b) Explain Phase plane technique in detail.

OR

Short note on i) Singular points

ii) Krasovskii's Method

CO2&CO3