History of Convolutional Neural Networks

ImageNet dataset

Dataset size: 14,000,000 + images 30,000+ classes

Image size 224x224

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Dataset size: 20,000 images 1000 classes

Task:

Predict which class picture belongs to.

Evaluation types:

1. Top 5 error.

The percentage of the images that the classifier did not include the correct class among its top 5 guesses.

2. Top 1 error.

The percentage of the images that the classifier did not give the correct class the highest score.

LeNet-5 (1998)

LeNet-5 (1998)

- Small 7 layers network developed by Yann Lecun.
- Used for recognizing 32x32 hand-written numbers.
- It required a lot of resources for training that were not available in 1998.

Alexnet (2012)

Alexnet (2012)

- Winner of ILSVRC 2012 with 15.3% of top 5 error.
- Deeper architecture with huge convolutions 11x11.
- Was trained on 2 GPU for 6 days.
- 60 million parameters.

Alexnet (2012)

- Winner of ILSVRC 2012 with 15.3% of top 5 error.
- Deeper architecture with huge convolutions 11x11.
- Was trained on 2 GPU for 6 days.
- 60 million parameters.

Drawbacks:

Huge convolutions with a lots of weights.

GoogLeNet or Inception v1 (2014)

GoogLeNet or Inception v1 (2014)

- Winner of ILSVRC 2014 with 6.67% of top 5 error.
 (Right now it is better than human)
- Huge block structure with 22 layers.
- Small number of parameters. (4 million)

Drawbacks:

Need a lot of time to reach a good quality.

VGG (2014)

ConvNet Configuration					
Α	A-LRN	В	C	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2	24 RGB imag	ge)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
	200		xpool	Dec .	25 par
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
	ac ac		kpool	V	**
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
			xpool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
	/-				conv3-512
		max	xpool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
			<u> </u>		conv3-512
			kpool		
			4096		
			4096		
		0.00011004	1000		
		soft	-max		
				in millions).	
Net	work	A,A-	LRN B	C D	E
		10	0 100	404 400	4 4 4 4

Number of parameters

VGG (2014)

- 2d place on ILSVRC 2014 with 7.32% of top 5 error.
- Only 3x3 convolutions and poolings!
- There are a lot of different versions from small VGG7 to huge VGG19. (133 - 144 million parameters)

Drawbacks:

- All parameters in fully connected layers in the end of the network.
- Vanishing gradients.

$$w_{new} = w_{old} - \alpha \frac{\partial L(w, x)}{\partial w}$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{f_{out}} * \frac{\partial f_{out}}{W_N} * \dots * \left(\frac{\partial f_1}{W_1} X\right)^{2^{\Lambda}}$$

$$w_{new} = w_{old} - \alpha \frac{\partial L(w, x)}{\partial w}$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{f_{out}} * \underbrace{\frac{\partial f_{out}}{W_N}}^{2} * \dots * \underbrace{\frac{\partial f_1}{W_1} X}^{2}$$

$$w_{new} = w_{old} - \alpha \frac{\partial L(w,x)}{\partial w}$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{f_{out}} * \frac{\partial f_{out}}{W_N} * \dots * \frac{\partial f_1}{W_1} X^{2}$$
A lot of parameters!

$$w_{new} = w_{old} - \alpha \frac{\partial L(w,x)}{\partial w}$$

$$\frac{\partial L}{\partial w} \neq \frac{\partial L}{f_{out}} * \frac{\partial f_{out}}{W_N} * \dots * \frac{\partial f_1}{W_1} X$$
A lot of parameters!

Thus,
$$w_{new} = w_{old} - \alpha \frac{\partial L(w,x)}{\partial w}$$

$$w_{new} = w_{old} \quad \text{Almost no updates!}$$

Reminder about weights update process

$$w_{new} = w_{old} - \alpha \frac{\partial L(w, x)}{\partial w}$$

$$\underbrace{\frac{\partial L}{\partial w}}_{N} \neq \underbrace{\frac{\partial L}{f_{out}}}_{N} * \underbrace{\frac{\partial f_{out}}{W_{N}}}_{N} * \dots * \underbrace{\frac{\partial f_{1}}{W_{1}}}_{N} X^{2}$$

A lot of parameters!

Thus,
$$w_{new} = w_{old} - \alpha \frac{\partial L(w,x)}{\partial w}$$

 $w_{new} = w_{old}$ Almost no updates!

It means that networks with huge number of layers will be train very slowly.

ResNet (2015)

ResNet (2015)

- Winner of ILSVRC 2015 with top 5 error 3.5%
- No vanishing gradients
- Really huge networks, started from ResNet18 to ResNet152.

A lots of other architectures here...

Attention models

Binary segmentation

2015? To old!

What should we do then?

2015? To old!

What should we do then?

What tasks we can solve by CNN?

- regression
- classification
- segmentation
- detection

What tasks we can solve by CNN?

- regression
- classification
- segmentation
- detection

What is the output of the network?

CNN with regression

CNN with classification

$$f: \qquad \sigma(z)_i = rac{e^{z_i}}{\displaystyle\sum_{k=1}^K e^{z_k}} \qquad \mathsf{Softmax}$$

$$\sigma(x) = \frac{1}{1+e^{-x}}$$
 Sigmoid

CNN with classification

Свёрточная Нейросеть (CNN)

CNN with segmentation

CNN with detection one object

CNN with detection for several objects

Number of neurons in output layer is 5xWxH.

CNN with detection for several objects

Number of neurons in output layer is WxHx(5+NumClass). •

- confidence in this bb
- length of bb
- width of bb
- X
- \
- probability for each class