SOEN 6011: SOFTWARE ENGINEERING PROCESSES

(Function F1: ArcCos(x))

Overview

- ► Java application to obtain an angle(in degrees & radians) for the inverse of cosine.

Domain & Range of ArcCos(x)

► The domain of y = arccos(x) is the range of f(x) = cos(x) for $0 \le x \le \pi$ and given by the interval [-1,1]. The range of arccos(x) is the domain of f which is given by the interval $[0,\pi]$.

Critical Decisions

converges for $-1 \le x \le 1$.

To ensure accuracy of output, the following decisions were critical:

- Use of **Taylor series expansion formula** instead of the Chebyshev-Pade quotient approximation: $arccos(x) = \frac{\pi}{2} \sum_{n=0}^{\infty} \frac{2n!}{2^{2n}(n!)^2} \frac{x^{2n+1}}{2n+1}$ which
 - This decision was taken to avoid any static constants and to use a combination of iterative and recursive loops.
 - Avoid declaration of multiple static constants(Chebyshev-Pade quotient approximation) thereby increasing complexity.
 - Distribution of various critical functions into separate methods to adhere to Object Oriented Principles of Java.

Arccos Table - Some of the commonly known values

X	arccos(x)	arccos(x)
	(Rad)	(°)
-1	3.1413926536	180°
$-\sqrt{3}/2$	2.6178432893	150°
$-\sqrt{2}/2$	2.3560849003	135°
-1/2	2.0942951024	120°
0	1.5706963268	90°
1/2	1.0471977682	60°
$\sqrt{2}/2$	0.7854077535	45°
$\sqrt{3}/2$	0.5236495809	30°
1	0.0	0°

Application User Interface

Application User Interface - Error Handling

Conclusion

- ► The Java program/application contains all the key quality attributes such as: *Correctness, Efficiency, Maintainability, Robustness and Usability.*
- ▶ Due to the selection of the *Taylor series expansion* formula for implementation of the arccos(x) function, the accuracy of output is better with error coefficient \approx 0.001 to 0.003 off the actual value.

References

- https://www.mathportal.org/formulas/pdf/taylor-seriesformulas.pdf
- https://en.wikipedia.org/wiki/Inverse trigonometric functions

