Semana 15

- Se sugiere antes de resolver los ejercicios ver los videos de YouTube de los temas correspondientes así como también leer la bibliografía recomendada y el material teórico subido en el campus del curso.
- A continuación se presentan algunos ejercicios resueltos y algunas observaciones para resolver los ejercicios 10 a 18 de la Guía 4. Los ejercicios propuestos que no están en la guía (pero que se relacionan con los mismos) no tienen numeración.

Esta semana resolveremos sistema de ecuaciones diferenciales a coeficientes constantes.

Sistema de ecuaciones diferenciales

Ejercicio 10 c) Resolver el siguiente sistema de ecuaciones diferenciales a coeficientes constantes:

$$\begin{cases} y_1' = -4y_1 - 6y_2 + 3y_3 \\ y_2' = 2y_1 + 4y_2 - 2y_3 \\ y_3' = -2y_1 - 2y_2 + y_3 \end{cases}.$$

Dem. Primero escribimos el sistema de ecuaciones en forma matricial. Sea $A := \begin{bmatrix} -4 & -6 & 3 \\ 2 & 4 & -2 \\ -2 & -2 & 1 \end{bmatrix}$

e
$$Y(t) := \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix}$$
, entonces $Y'(t) = \begin{bmatrix} y_1'(t) \\ y_2'(t) \\ y_3'(t) \end{bmatrix}$ y resolver el sistema de arriba, es equivalente a

resolver

$$Y' = AY$$
.

A continuación, buscamos diagonalizar la matriz A (si es posible). En caso de que A no sea diagonalizable buscamos la forma de Jordan de A tal como hicimos en el **Ejercicio 8**.

Calculamos el polinomio característico de A:

$$p_A(\lambda) = \det(A - \lambda I) = \det(\begin{bmatrix} -4 - \lambda & -6 & 3\\ 2 & 4 - \lambda & -2\\ -2 & -2 & 1 - \lambda \end{bmatrix}) = -\lambda^3 + \lambda^2 + 2\lambda.$$

Las raíces de p_A son $\lambda_1=2,\ \lambda_2=-1,\ \lambda_3=0$ todas raíces distintas, por lo tanto A es diagonalizable.

Calculamos los autoespacios asociados a cada autovalor.

$$S_{\lambda=2} = nul(A-2I) = nul(\begin{bmatrix} -6 & -6 & 3 \\ 2 & 2 & -2 \\ -2 & -2 & -1 \end{bmatrix}) = nul(\begin{bmatrix} -6 & -6 & 3 \\ 0 & 0 & -3 \\ 0 & 0 & -3 \end{bmatrix}) = gen\{\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}\}.$$

$$S_{\lambda=-1} = nul(A+I) = nul(\begin{bmatrix} -3 & -6 & 3 \\ 2 & 5 & -2 \\ -2 & -2 & 2 \end{bmatrix}) = nul(\begin{bmatrix} -3 & -6 & 3 \\ 0 & 3 & 0 \\ 0 & 6 & 0 \end{bmatrix}) = gen\{\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}\}.$$

$$S_{\lambda=0} = nul(A) = nul(\begin{bmatrix} -4 & -6 & 3 \\ 2 & 4 & -2 \\ -2 & -2 & 1 \end{bmatrix}) = nul(\begin{bmatrix} -4 & -6 & 3 \\ 0 & 2 & -1 \\ 0 & 2 & -1 \end{bmatrix}) = gen\{\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}\}.$$

Construimos la matriz P colocando en sus columnas tres autovectores linealmente independientes, por ejemplo:

$$P := \left[\begin{array}{rrr} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{array} \right].$$

Si
$$D := \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, entonces

$$A = PDP^{-1}.$$

Para resolver el sistema de ecuaciones diferenciales, proponemos el siguiente cambio de variables:

$$Y(t) := PZ(t).$$

Entonces, intuitivamente podemos ver que Y'(t) = PZ'(t) y el sistema a resolver nos queda:

$$Y'(t) = PZ'(t) = AY(t) = APZ(t).$$

Multiplicando a izquierda por P^{-1} la ecuación anterior, nos queda:

$$Z'(t) = P^{-1}PZ'(t) = P^{-1}APZ(t) = DZ(t).$$

Entonces, $\begin{bmatrix} z_1'(t) \\ z_2'(t) \\ z_3'(t) \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} z_1(t) \\ z_2(t) \\ z_3(t) \end{bmatrix}$ y nos queda el siguiente sistema desacoplado a

resolver:

$$\begin{cases} z_1' = 2z_1 \\ z_2' = -z_2 \\ z_2' = 0 \end{cases}.$$

Recordando la Guía 2, tenemos que la solución de cada ecuación diferencial es:

$$z_1(t) = c_1 e^{2t}, \ z_2(t) = c_2 e^{-t}, \ z_3(t) = c_3,$$

con $c_1, c_2, c_3 \in \mathbb{R}$. Volviendo a la variable original, nos queda que:

$$Y(t) = PZ(t) = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} c_1 e^{2t} \\ c_2 e^{-t} \\ c_3 \end{bmatrix} = c_1 e^{2t} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} c_1 e^{2t} + c_2 e^{-t} \\ -c_1 e^{2t} + c_3 \\ c_2 e^{-t} + 2c_3 \end{bmatrix},$$

$$c_1, c_2, c_3 \in \mathbb{R}$$
.

En general, supongamos que $A \in \mathbb{C}^{n \times n}$ y queremos resolver el sistema de ecuaciones diferenciales

$$Y' = AY. (1)$$

Si A es diagonalizable, entonces $A = PDP^{-1}$ con $D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$ una matriz diagonal que

en su diagonal tiene a los autovalores de A (no necesariamente distintos) y $P = [v_1 \ v_2 \ \cdots \ v_n] \in \mathbb{C}^{n \times n}$ una matriz inversible cuyas columnas v_1, v_2, \cdots, v_n forman una base de autovectores de A y cada v_i es un autovector asociado al autovalor λ_i .

A partir del cambio de variable Y(t) = PZ(t), operando de la misma manera que hicimos en el ejercicio anterior, podemos ver que una base de soluciones (o un conjunto fundamental de soluciones) de (1) es

$$\{e^{\lambda_1 t}v_1, e^{\lambda_2 t}v_2, \cdots, e^{\lambda_n t}v_n\}$$

y todas las soluciones del sistema de ecuaciones diferenciales (1) son:

$$Y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \dots + c_n e^{\lambda_n t} v_n,$$

 $con c_1, c_2, \cdots, c_n \in \mathbb{C}.$

Ejercicio 11 Hallar la solución del problema a valores inciales y analizar el comportamiento asintótico de:

$$Y' = AY, \ Y(0) = Y_0, \tag{2}$$

$$con A = \left[\begin{array}{cc} -1 & -2 \\ 0 & -3 \end{array} \right].$$

Dem. Tal como hicimos en el ejercicio anterior, veamos si A es diagonalizable. Calculamos el polinomio característico de A:

$$p_A(\lambda) = \det(A - \lambda I) = \det\begin{pmatrix} -1 - \lambda & -2 \\ 0 & -3 - \lambda \end{pmatrix} = (-1 - \lambda)(-3 - \lambda).$$

Observar como p_A nos quedó factorizado. Por lo tanto, las raíces del p_A son $\lambda_1 = -1$ y $\lambda_2 = -3$ todas raíces distintas, por lo tanto A es diagonalizable.

Fácilmente vemos que los autoespacios asociados son:

$$\mathcal{S}_{\lambda=-1}=nul(A+I)=nul(\left[\begin{array}{cc} 0 & -2 \\ 0 & -2 \end{array}\right])=gen\{\left[\begin{array}{cc} 1 \\ 0 \end{array}\right]\}.$$

$$\mathcal{S}_{\lambda=-3}=nul(A+3I)=nul(\left[\begin{array}{cc}2&-2\\0&0\end{array}\right])=gen\{\left[\begin{array}{cc}1\\1\end{array}\right]\}.$$

Por lo tanto, como vimos arriba, todas las soluciones del sistema de ecuaciones diferenciales son:

$$Y(t) = c_1 e^{-t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^{-3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

con $c_1, c_2 \in \mathbb{R}$.

Usando la condición inicial podemos hallar los valores de c_1 y c_2 . De hecho,

$$Y(0) = c_1 e^0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^0 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 \\ c_2 \end{bmatrix} = \begin{bmatrix} Y_{01} \\ Y_{02} \end{bmatrix},$$

donde Y_{01} e Y_{02} son la primera y segunda coordenada del vector Y_0 respectivamente. Despejando, tenemos que $c_2 = Y_{02}$ y $c_1 = Y_{01} - c_2 = Y_{01} - Y_{02}$. Por lo tanto, la solución del sistema de ecuaciones diferenciales a valores iniciales es:

$$Y(t) = (Y_{01} - Y_{02})e^{-t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + Y_{02}e^{-3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} (Y_{01} - Y_{02})e^{-t} + Y_{02}e^{-3t} \\ Y_{02}e^{-3t} \end{bmatrix}.$$

Por lo tanto,

$$\lim_{t \to \infty} Y(t) = \lim_{t \to \infty} \left[\begin{array}{c} (Y_{01} - Y_{02})e^{-t} + Y_{02}e^{-3t} \\ Y_{02}e^{-3t} \end{array} \right] := \left[\begin{array}{c} \lim_{t \to \infty} \left[(Y_{01} - Y_{02})e^{-t} + Y_{02}e^{-3t} \right] \\ \lim_{t \to \infty} Y_{02}e^{-3t} \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right].$$

Recordar que en el **Ejercicio 2**, vimos que para matrices $A \in \mathbb{C}^{2\times 2}$ (con coeficientes reales) vale que el polinomio característico de A es

$$p_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A),$$

y en consecuencia las raíces de p_A son

$$\lambda_{\pm} = \frac{1}{2} [\operatorname{tr}(A) \pm \sqrt{\operatorname{tr}(A)^2 - 4 \operatorname{det}(A)}].$$

Si A es diagonalizable, vimos que las soluciones del sistema de ecuaciones (2) son

$$Y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2,$$

donde $c_1, c_2 \in \mathbb{C}$, $\lambda_1, \lambda_2 \in \mathbb{C}$ son los autovalores de A y $v_1, v_2 \in \mathbb{C}^2$ los autovectores asociados a dichos autovalores.

Por lo tanto, $\lim_{t\to\infty} Y(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (para cualquier valor inicial) si y sólo si $\lambda_1 < 0$ y $\lambda_2 < 0$.

Si $4 \det(A) \le \operatorname{tr}(A)^2$ entonces, por la fórmula de los autovalores de A que escribimos arriba, $\lambda_1 \in \mathbb{R}$ y $\lambda_2 \in \mathbb{R}$. En ese caso, si $\operatorname{tr}(A) < 0$ y $\det(A) > 0$, tendremos que

$$\operatorname{tr}(A) = \lambda_1 + \lambda_2 < 0 \text{ y } \operatorname{det}(A) = \lambda_1 \lambda_2 > 0.$$

Por lo tanto, no queda otra que $\lambda_1 < 0$ y $\lambda_2 < 0$ (por qué?) y en ese caso, siempre tendremos que $\lim_{t \to \infty} Y(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Ejercicio 12 Sea $A=\begin{bmatrix}1&2\\2&1\end{bmatrix}$. Hallar todos los $Y_0\in\mathbb{R}^2$ tales que la solución del problema a valores inciales

$$Y' = AY, Y(0) = Y_0,$$

tiene norma acotada. Es decir, existe C > 0 tal que

$$||Y(t)|| \leq C$$

para todo $t \geq 0$.

Dem. Operando de manera similar al ejercicio anterior, tenemos que $\lambda = 3$ y $\lambda_2 = -1$ son los autovalores de A con autoespacios asociados $S_{\lambda=3} = gen\{\begin{bmatrix} 1 \\ 1 \end{bmatrix}\}$ y $S_{\lambda=-1} = gen\{\begin{bmatrix} -1 \\ 1 \end{bmatrix}\}$. Por lo tanto A es diagonalizable y todas las soluciones del sistema de ecuaciones diferenciales son:

$$Y(t) = c_1 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} -1 \\ 1 \end{bmatrix},$$

con $c_1, c_2 \in \mathbb{R}$.

Usando la condición inicial podemos hallar los valores de c_1 y c_2 . De hecho,

$$Y(0) = c_1 e^0 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^0 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} c_1 - c_2 \\ c_1 + c_2 \end{bmatrix} = \begin{bmatrix} Y_{01} \\ Y_{02} \end{bmatrix},$$

donde Y_{01} e Y_{02} son la primera y segunda coordenada del vector Y_0 respectivamente. Despejando, tenemos que $c_1 = \frac{Y_{01} + Y_{02}}{2}$ y $c_2 = \frac{Y_{02} - Y_{01}}{2}$. Por lo tanto, la solución del sistema de ecuaciones diferenciales a valores iniciales es:

$$Y(t) = \left(\frac{Y_{01} + Y_{02}}{2}\right)e^{3t} \begin{bmatrix} 1\\1 \end{bmatrix} + \left(\frac{Y_{02} - Y_{01}}{2}\right)e^{-t} \begin{bmatrix} -1\\1 \end{bmatrix}.$$

Considerando el producto interno canónico de \mathbb{R}^2 y usando Pitágoras (o haciendo la cuenta) tenemos que

$$||Y(t)||^2 = (\frac{Y_{01} + Y_{02}}{2})^2 e^{6t} 2 + (\frac{Y_{02} - Y_{01}}{2})^2 e^{-2t} 2.$$

Buscamos los valores de Y_0 para que $||Y(t)||^2$ sea acotada. Es decir, buscamos para qué valores de Y_0 existe C>0 tal que

$$||Y(t)|| \le C$$

para todo $t \geq 0$.

Observar que si $Y_{01} + Y_{02} \neq 0$ entonces $||Y(t)||^2$ nunca es acotada pues como $\lim_{t\to\infty} e^{6t} = \infty$ y $\lim_{t\to\infty} (\frac{Y_{02}-Y_{01}}{2})^2 e^{-2t} = 0$, tendríamos que $\lim_{t\to\infty} ||Y(t)||^2 = \infty$, eso significa que dado cualquier M>0 siempre existe $t_0>0$ tal que si $t\geq t_0$ entonces $||Y(t)||^2>M$, entonces $||Y(t)||^2$ no es acotada y por lo tanto ||Y(t)|| tampoco.

Afirmamos que ||Y(t)|| es acotada si y sólo si $Y_{01} = -Y_{02}$. De hecho, en ese caso,

$$||Y(t)||^2 = (\frac{Y_{02} - Y_{01}}{2})^2 e^{-2t} 2 = 2Y_{02}^2 e^{-2t} \le 2Y_{02}^2,$$

para todo $t \ge 0$. Por lo tanto $||Y(t)|| \le \sqrt{2} |Y_{02}|$, para todo $t \ge 0$ e Y(t) resulta acotada. Conclusión, si $Y_0 \in gen\{\begin{bmatrix} -1 \\ 1 \end{bmatrix}\}$, la norma de Y(t) resulta acotada.

Caso no diagonalizable

A continuación veremos un ejemplo de cómo resolver un sistema de ecuaciones diferenciales a coficientes constantes cuando la matriz A no es diagonalizable, recordar lo que hicimos en los **Ejercicios 8 y 9**.

Ejercicio 15 b) Sea $A = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}$. Hallar la solución del problema a valores inciales y analizar el comportamiento asintótico de:

$$Y' = AY, \ Y(0) = Y_0,$$

Dem. Tal como vimos la semana pasada en el **Ejercicio 9**, A no es diagonalizable. Veamos cómo procedemos en este caso para resolver el sistema de ecuaciones diferenciales.

En este caso, calculamos la forma de Jordan de A. Recordar que en la resolución del **Ejercicio** 9, probamos que si

$$J = \left[\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right]$$
y

$$P = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{array} \right]$$

entonces la forma de Jordan de A es

$$A = PJP^{-1}.$$

En este caso, también haremos el cambio de variables Y(t) := PZ(t). Entonces, Y'(t) = PZ'(t) y el sistema a resolver nos queda:

$$Y'(t) = PZ'(t) = AY(t) = APZ(t).$$

Multiplicando a izquierda por P^{-1} la ecuación anterior, nos queda:

$$Z'(t) = P^{-1}PZ'(t) = P^{-1}APZ(t) = JZ(t).$$

Entonces,

$$\begin{bmatrix} z_1'(t) \\ z_2'(t) \\ z_3'(t) \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} z_1(t) \\ z_2(t) \\ z_3(t) \end{bmatrix}$$

y nos queda el siguiente sistema a resolver,

$$\begin{cases} z_1' = 2z_1 + z_2 \\ z_2' = 2z_2 \\ z_3' = 2z_3 \end{cases}.$$

Recordando la **Guía 2**, tenemos que la solución de las ecuaciones diferenciales homogéneas $z_2'=2z_2,\ z_3'=2z_3,$ es

$$z_2 = c_2 e^{2t}, \ z_3(t) = c_3 e^{2t},$$

con $c_2, c_3 \in \mathbb{R}$. Nos queda a resolver, la siguiente ecuación diferencial no homogénea

$$z_1'(t) = 2z_1(t) + z_2(t) = 2z_1(t) + c_2e^{2t}.$$
(3)

Recordando (por ejemplo) el Ejercicio 2.29, tenemos que todas las soluciones de (3) son

$$z_1(t) = z_1^h(t) + z_1^p(t),$$

donde z_1^h son las soluciones del sistema homogéneo asociado y z_1^p es una solución particular. En este caso $z_1^h \in gen\{e^{2t}\}$ y $z_1^p(t) = f(t)e^{2t}$, donde $f'(t) = (c_2e^{2t})e^{-2t} = c_2$. Entonces, $f(t) = c_2t$ y tenemos que $z_1^p(t) = c_2te^{2t}$. Por lo tanto,

$$z_1(t) = c_1 e^{2t} + c_2 t e^{2t},$$

con $c_1 \in \mathbb{R}$.

Volviendo a la variable original, nos queda que:

$$Y(t) = PZ(t) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1e^{2t} + c_2te^{2t} \\ c_2e^{2t} \\ c_3e^{2t} \end{bmatrix}$$

$$= c_1e^{2t} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + c_2e^{2t}(t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}) + c_3e^{2t} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} c_1e^{2t} + c_2e^{2t}(t+1) + c_3e^{2t} \\ -c_3e^{2t} \\ c_1e^{2t} + c_2e^{2t}t \end{bmatrix}.$$

Usando la condición inicial podemos hallar los valores de c_1, c_2 y c_3 . De hecho,

$$Y(0) = \begin{bmatrix} c_1 e^0 + c_2 e^0 (0+1) + c_3 e^0 \\ -c_3 e^0 \\ c_1 e^0 + c_2 e^0 0 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 + c_3 \\ -c_3 \\ c_1 \end{bmatrix} = \begin{bmatrix} Y_{01} \\ Y_{02} \\ Y_{03} \end{bmatrix},$$

donde Y_{01}, Y_{02} e Y_{03} son la primera, segunda y tercera coordenada del vector Y_0 respectivamente. Despejando, tenemos que $c_1 = Y_{03}$, $c_3 = -Y_{02}$ y $c_2 = Y_{01} - c_3 - c_1 = Y_{01} + Y_{02} - Y_{03}$. Por lo tanto, la solución del sistema de ecuaciones diferenciales a valores iniciales es:

$$Y(t) = Y_{03}e^{2t} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + (Y_{01} + Y_{02} - Y_{03})e^{2t}(t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}) - Y_{02}e^{2t} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}.$$

En general, supongamos que $A \in \mathbb{C}^{3\times 3}$ y queremos resolver el sistema de ecuaciones diferenciales

$$Y' = AY. (4)$$

Supongamos que A no es diagonalizable y que la forma de Jordan de A es $A = PJP^{-1}$ con $P = [v_1 \ v_2 \ v_3] \in \mathbb{C}^{3\times 3}$ una matriz inversible (repasar los **Ejercicios 8 y 9** para ver cómo obtener la matriz P). Teníamos 3 casos posibles y según en qué caso estabamos la matriz J variaba:

Caso 1: λ es un autovalor triple de A con multiplicidad geométrica 1. En ese caso J =

$$\left[\begin{array}{ccc} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{array}\right].$$

 $\tilde{\mathbf{C}}$ aso 2: λ es un autovalor triple de A con multiplicidad geométrica 2. En ese caso J =

$$\left[\begin{array}{ccc} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{array}\right].$$

Ĉaso 3: λ es un autovalor doble de A con multiplicidad geométrica 1 y μ es un autovalor

simple de
$$A$$
. En ese caso $J=\left[\begin{array}{ccc} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{array}\right].$

A partir del cambio de variable Y(t) = PZ(t) y operando de la misma manera que hicimos en el ejercicio anterior, podemos obtener todas las soluciones del sistema de ecuaciones diferenciales (4) según el caso en el que estemos:

Caso 1: λ es un autovalor triple con multiplicidad geométrica 1. En ese caso, todas las soluciones del sistema de ecuaciones diferenciales (4) son:

$$Y(t) = c_1 e^{\lambda t} v_1 + c_2 e^{\lambda t} (tv_1 + v_2) + c_3 e^{\lambda t} (\frac{t^2}{2} v_1 + tv_2 + v_3),$$

con $c_1, c_2, c_3 \in \mathbb{C}$.

Caso 2: λ es un autovalor triple de A con multiplicidad geométrica 2. En ese caso, todas las soluciones del sistema de ecuaciones diferenciales (4) son:

$$Y(t) = c_1 e^{\lambda t} v_1 + c_2 e^{\lambda t} (t v_1 + v_2) + c_3 e^{\lambda t} v_3,$$

con $c_1, c_2, c_3 \in \mathbb{C}$.

Caso 3: λ es un autovalor doble de A con multiplicidad geométrica 1 y μ es un autovalor simple de A. En ese caso, todas las soluciones del sistema de ecuaciones diferenciales (4) son:

$$Y(t) = c_1 e^{\lambda t} v_1 + c_2 e^{\lambda t} (t v_1 + v_2) + c_3 e^{\mu t} v_3,$$

con $c_1, c_2, c_3 \in \mathbb{C}$.

Pensando de manera similar, podemos deducir cómo sería la forma de Jordan para $A \in \mathbb{C}^{2\times 2}$ y todas las soluciones del sistema de ecuaciones diferenciales (4).

Sistema de ecuaciones diferenciales no homogéneo

Finalmente, veamos un ejemplo de resolución de un sistema de ecuaciones diferenciales no homogéneo.

Ejercicio 16 a) Resolver el problema no homogéneo

$$Y'(t) = AY(t) + F(t),$$

con
$$A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$$
 y $F(t) = \begin{bmatrix} e^{3t} \\ e^{3t} \end{bmatrix}$.

Dem. Para resolver el sistema de ecuaciones diferenciales no homogéneo, primero veamos si A es diagonalizable. En caso de que A no sea diagonalizable, calcularemos la forma de Jordan de A y prodeceremos de manera similar.

Calculamos el polinomio característico de A:

$$p_A(\lambda) = \det(A - \lambda I) = \det\left(\begin{bmatrix} 2 - \lambda & -1 \\ 3 & -2 - \lambda \end{bmatrix}\right) = \lambda^2 - 1.$$

Las raíces del p_A son $\lambda_1 = -1$ y $\lambda_2 = 1$ todas raíces distintas, por lo tanto A es diagonalizable. Fácilmente vemos que los autoespacios asociados son:

$$S_{\lambda=-1} = nul(A+I) = nul(\begin{bmatrix} 3 & -1 \\ 3 & -1 \end{bmatrix}) = gen\{\begin{bmatrix} 1 \\ 3 \end{bmatrix}\}.$$

$$S_{\lambda=1} = nul(A-I) = nul(\begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix}) = gen\{\begin{bmatrix} 1 \\ 1 \end{bmatrix}\}.$$

Construimos la matriz P colocando en sus columnas dos autovectores linealmente independientes, por ejemplo: $P := \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$ y, si $D := \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, entonces

$$A = PDP^{-1}$$
,

con
$$P^{-1} = \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 3 & -1 \end{bmatrix}$$
.

Tal como hicimos en los ejercicios anteriores, proponemos el siguiente cambio de variables, Y(t) := PZ(t). Entonces, Y'(t) = PZ'(t) y el sistema a resolver nos queda:

$$Y'(t) = PZ'(T) = AY(T) + F(t) = APZ(t) + F(t).$$

Multiplicando a izquierda por P^{-1} la ecuación anterior, nos queda:

$$Z'(t) = P^{-1}APZ(t) + P^{-1}F(t) = DZ(t) + P^{-1}F(t)$$

$$= \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} e^{3t} \\ e^{3t} \end{bmatrix}$$

$$= \begin{bmatrix} -z_1(t) \\ z_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ e^{3t} \end{bmatrix} = \begin{bmatrix} -z_1(t) \\ z_2(t) + e^{3t} \end{bmatrix}.$$

Entonces, nos queda el siguiente sistema desacoplado no homogéneo a resolver,

$$\begin{cases} z_1' = -z_1 \\ z_2' = z_2 + e^{3t} \end{cases}.$$

Recordando la Guía 2, tenemos que todas las soluciones de la ecuación diferencial homogénea $z_1' + z_1 = 0 \text{ son}$

$$z_1(t) = c_1 e^{-t},$$

con $c_1 \in \mathbb{R}$.

Por otro lado, recordando (por ejemplo) el **Ejercicio 2.29**, tenemos que todas las soluciones de de la ecuación diferencial no homogénea $z'_2 - z_2 = g(t)$ con $g(t) = e^{3t}$, son

$$z_2(t) = z_2^h(t) + z_2^p(t),$$

donde z_2^h son las soluciones del sistema homogéneo asociado y z_2^p es una solución particular. En este caso, $z_2^h \in gen\{e^t\}$ y $z_2^p(t) = f(t)e^t$, donde $f'(t) = g(t)e^{-t} = e^{3t}e^{-t} = e^{2t}$. Entonces, $f(t) = \frac{e^{2t}}{2}$ y tenemos que $z_2^p(t) = \frac{e^{2t}}{2}e^t = \frac{e^{3t}}{2}$. Por lo tanto,

$$z_2(t) = c_2 e^t + \frac{e^{3t}}{2},$$

con $c_2 \in \mathbb{R}$.

Volviendo a la variable original, nos queda que todas las soluciones del sistema de ecuaciones diferenciales no homogéneo son:

$$Y(t) = PZ(t) = \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} c_1 e^{-t} \\ c_2 e^t + \frac{e^{3t}}{2} \end{bmatrix} = c_1 e^{-t} \begin{bmatrix} 1 \\ 3 \end{bmatrix} + c_2 e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{e^{3t}}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

 $con c_1, c_2 \in \mathbb{R}.$

Observar que si llamamos $Y_h(t) := c_1 e^{-t} \begin{bmatrix} 1 \\ 3 \end{bmatrix} + c_2 e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, con $c_1, c_2 \in \mathbb{R}$ e $Y_p(t) := \frac{e^{3t}}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, entonces.

$$Y(t) = Y_h(t) + Y_p(t),$$

donde Y_h son las soluciones del sistema homogéneo asociado Y' = AY e Y_p es una solución particular, es decir $Y_p'(t) = AY_p(t) + F(t)$.

Concluimos la semana resolviendo un ejercicio de examen.

Ejercicio de examen: Sea $S = gen \{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \}$. Sean $[P_S]_{\mathcal{E}}^{\mathcal{E}}$ y $[P_{S^{\perp}}]_{\mathcal{E}}^{\mathcal{E}}$ las matrices en la

base canónica de \mathbb{R}^3 de las proyecciones sobre \mathcal{S} y \mathcal{S}^\perp respectivamente considerando el producto interno canónico de \mathbb{R}^3 . Si $A := 2[P_S]_{\mathcal{E}}^{\mathcal{E}} + 3[P_{S^{\perp}}]_{\mathcal{E}}^{\mathcal{E}}$, encontrar todas las soluciones del problema a valores iniciales:

$$Y' = A^{21}Y, \quad Y(0) = \begin{bmatrix} 1\\1\\0 \end{bmatrix}.$$

Dem. En primer lugar, recordar que como $P_{\mathcal{S}}$ es la proyección ortogonal sobre \mathcal{S} , tenemos que $P_{\mathcal{S}^{\perp}} = I - P_{\mathcal{S}}$ y por lo tanto, $[P_{\mathcal{S}^{\perp}}]_{\mathcal{E}}^{\mathcal{E}} = [I - P_{\mathcal{S}}]_{\mathcal{E}}^{\mathcal{E}} = I_3 - [P_{\mathcal{S}}]_{\mathcal{E}}^{\mathcal{E}}$, donde I_3 es la matriz identidad de 3×3 . Entonces,

$$A = 2[P_{\mathcal{S}}]_{\mathcal{E}}^{\mathcal{E}} + 3[P_{\mathcal{S}^{\perp}}]_{\mathcal{E}}^{\mathcal{E}} = 2[P_{\mathcal{S}}]_{\mathcal{E}}^{\mathcal{E}} + 3(I_3 - [P_{\mathcal{S}}]_{\mathcal{E}}^{\mathcal{E}}) = 3I_3 - [P_{\mathcal{S}}]_{\mathcal{E}}^{\mathcal{E}}.$$

En el **Ejercicio 5** probamos que la transformación lineal $P_{\mathcal{S}}$ siempre es diagonalizable. De hecho, repasando lo que hicimos en dicho ejercicio, tenemos que $P_{\mathcal{S}}(v) = v$ para todo $v \in Im(P_{\mathcal{S}}) = \mathcal{S}$ y $P_{\mathcal{S}}(v) = 0$ para todo $v \in Nu(P_{\mathcal{S}}) = \mathcal{S}^{\perp}$. Por lo tanto, los autovectores de la transformación lineal $P_{\mathcal{S}}$ son $\lambda_{1,2} = 1$ y $\lambda_3 = 0$ con autoespacios asociados $\mathcal{S}_{\lambda=1} = Im(P_{\mathcal{S}}) = \mathcal{S}$ y $\mathcal{S}_{\lambda=0} = Nu(P_{\mathcal{S}}) = \mathcal{S}^{\perp}$.

Calculemos S^{\perp} , recordemos que $S^{\perp} = \{x \in \mathbb{R}^3 : \left\langle x, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\rangle = 0, \left\langle x, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\rangle = 0\}$. Enton-

ces, $x \in \mathcal{S}^{\perp}$ si y sólo si $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ es solución del sistema

$$0 = \left\langle x, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\rangle = x_1 + x_2, \quad 0 = \left\langle x, \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\rangle = 2x_1 + x_2 + x_3.$$

Resolviendo el sistema, nos queda que $x_1 = -x_2$ y $x_3 = -2x_1 - x_2 = 2x_2 - x_2 = x_2$. Entonces $x = \begin{bmatrix} -x_2 \\ x_2 \\ x_2 \end{bmatrix}$, con $x_2 \in \mathbb{R}$ y por lo tanto $\mathcal{S}^{\perp} = gen\{\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}\}$.

Entonces, si tomamos $\mathcal{B} := \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix} \right\}$, tenemos que \mathcal{B} es una base (de auto-

vectores) de \mathbb{R}^3 y llamando $P := M_{\mathcal{B}}^{\mathcal{E}} = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ y $D := [P_{\mathcal{S}}]_{\mathcal{B}}^{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, tenemos que

$$[P_{\mathcal{S}}]_{\mathcal{E}}^{\mathcal{E}} = PDP^{-1}$$

Por lo tanto,

$$A = 3I_3 - [P_{\mathcal{S}}]_{\mathcal{E}}^{\mathcal{E}} = 3PP^{-1} - PDP^{-1} = P(3I_3 - D)P^{-1}$$
$$= P \begin{bmatrix} 3-1 & 0 & 0 \\ 0 & 3-1 & 0 \\ 0 & 0 & 3-0 \end{bmatrix} P^{-1} = P \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} P^{-1}.$$

Entonces A es diagonalizable y por inducción, es fácil ver que (lo vimos la semana pasada)

$$A^{21} = P\left(\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \right)^{21} P^{-1} = P \begin{bmatrix} 2^{21} & 0 & 0 \\ 0 & 2^{21} & 0 \\ 0 & 0 & 3^{21} \end{bmatrix} P^{-1}.$$

Como vimos arriba, todas las soluciones del sistema de ecuaciones diferenciales $Y'=A^{21}Y$, son

$$Y(t) = c_1 e^{2^{21}t} \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 e^{2^{21}t} \begin{bmatrix} 2\\1\\1 \end{bmatrix} + c_3 e^{3^{21}t} \begin{bmatrix} -1\\1\\1 \end{bmatrix},$$

 $con c_1, c_2, c_3 \in \mathbb{R}.$

Usando la condición inicial podemos hallar los valores de c_1, c_2 y c_3 . De hecho,

$$Y(0) = c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

Resolviendo el sistema, tenemos que $c_1 = 1$, $c_2 = 0$ y $c_3 = 0$. Por lo tanto, la solución del sistema de ecuaciones diferenciales a valores iniciales es:

$$Y(t) = e^{2^{21}t} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$