For the purposes of this challenge, we define a <u>binary tree</u> to be a <u>binary search tree</u> with the following ordering requirements:

- The *data* value of every node in a node's left subtree is *less than* the data value of that node.
- The *data* value of every node in a node's right subtree is *greater than* the data value of that node.

Given the root node of a binary tree, can you determine if it's also a binary search tree?

Complete the function in your editor below, which has **1** parameter: a pointer to the root of a binary tree. It must return a *boolean* denoting whether or not the binary tree is a binary search tree. You may have to write one or more helper functions to complete this challenge.

Input Format

You are not responsible for reading any input from stdin. Hidden code stubs will assemble a binary tree and pass its root node to your function as an argument.

Constraints

• $0 \le data \le 10^4$

Output Format

You are not responsible for printing any output to stdout. Your function must return *true* if the tree is a binary search tree; otherwise, it must return *false*. Hidden code stubs will print this result as a *Yes* or *No* answer on a new line.

Sample Input

Sample Output

No