Central Bank Swap Lines as Bilateral Sovereign Debt

Francisco Roldán IMF César Sosa-Padilla Notre Dame

11th Annual UTDT Economics Conference
December 2023

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

What is a Central Bank swap?

Swaps are symmetric currency exchanges

- A swap line is a contract between two Central Banks
- When activated, each institution provides an amount of its currency to the counterparty
- · At maturity, positions are unwound

Symmetric swaps (AE-AE) potentially very different from asymmetric ones (AE-EM)
 Symmetric swaps better understood, growing number of asymmetric ones

What is a Central Bank swap?

which can be asymmetric in practice

- The Fed doesn't really want Mexico's pesos
 - ... treats them more like collateral
- Mexican authorities may need dollars for their BoP
 - ... more similar to borrowed reserves
- Symmetric swaps (AE-AE) potentially very different from asymmetric ones (AE-EM)
 ... Symmetric swaps better understood, growing number of asymmetric ones

What is a Central Bank swap?

Swaps are symmetric currency exchanges

- A swap line is a contract between two Central Banks
- When activated, each institution provides an amount of its currency to the counterparty
- · At maturity, positions are unwound

which can be asymmetric in practice

- The Fed doesn't really want Mexico's pesos
 - ... treats them more like collateral
- Mexican authorities may need dollars for their BoP
 - ... more similar to borrowed reserves
- · Symmetric swaps (AE-AE) potentially very different from asymmetric ones (AE-EM)
 - ... Symmetric swaps better understood, growing number of asymmetric ones

How are Central Bank Swap Lines different from Sovereign Debt?

· We abstract from currencies, collateral, and focus on the borrowing

For an EM using the swap line to borrow from an AE

Regular debt (bond markets)

- Defaultable
- Many different lenders
- Interest rate (spreads) mainly reflects default risk

Bilateral Ioan (swap line)

- Non-defaulteable (Central Bank)
- No coordination issues
- Can be used to curb default risk
- Interest rate?

How are Central Bank Swap Lines different from Sovereign Debt?

· We abstract from currencies, collateral, and focus on the borrowing

For an EM using the swap line to borrow from an AE

Regular debt (bond markets)

- · Defaultable
- Many different lenders
- Interest rate (spreads) mainly reflects default risk

Bilateral loan (swap line)

- · Non-defaulteable (Central Bank)
- No coordination issues
- · Can be used to curb default risk
- Interest rate?

How do Central Bank Swap Lines interact with Sovereign Debt?

Main findings

- · One type of debt affects borrowing conditions for the other
 - · Borrowing from the market serves as threat in swap negotiations
 - · Swap can be used when spreads on the market are high
- · Lending around or in default maximizes surplus for bilateral loans
 - Availability of swaps in default:
 - ... raises the value of default
 - ... which increases the default frequency
 - ... and worsens borrowing terms in bond markets
 - · Without restricting swaps in default, welfare losses for the government
- · Swap lines create incentives similar to the debt dilution problem
 - Surplus requires spreads spreads require risk

Literature

- · Central Bank swaps among advanced economies
 - ... Bahaj and Reis (2021); Cesa-Bianchi, Eguren-Martin, and Ferrero (2022)
- · Data on Central Bank swaps for EMs
 - ... Perks, Rao, Shin, and Tokuoka (2021); Horn, Parks, Reinhart, and Trebesch (2023)
- Sovereign debt/default with interactions from 'official' debt
 - ... Boz (2011), Hatchondo, Martinez, and Onder (2014), Arellano and Barreto (2023)

Model with Swaps only

Environment

The government of a small open economy borrows from a monopolist

- · Income $y(z_t)$ follows an AR(1) process in logs
 - ... Only one good, representative risk-averse household, expected utility
- · Renegotiate the swap *m* each period
 - ... Involves a transfer x and a new loan size m'
 - ... Swap is non-defaultable \implies Repaying m is the natural threat point
- Should expect

 $x = \frac{1}{1+r}m' - n$

- ... Implicit interest rate r to vary over time
- ... Interest rate to reflect market power
- ... Interest rate to reflect outside options

Environment

The government of a small open economy borrows from a monopolist

- Income $y(z_t)$ follows an AR(1) process in logs
 - ... Only one good, representative risk-averse household, expected utility
- · Renegotiate the swap *m* each period
 - ... Involves a transfer x and a new loan size m'
 - ... Swap is non-defaultable \implies Repaying m is the natural threat point
- · Should expect

- $x = \frac{1}{1+r}m' m$
- ... Implicit interest rate *r* to vary over time
- ... Interest rate to reflect market power
- ... Interest rate to reflect outside options

• At income state z and loan m, solve $\max_{\substack{x,m'}} \mathcal{L}(x,m,m',z)^{\theta} \times \mathcal{B}(x,m,m',z)^{1-\theta}$ Lender surplus

Government (borrower) surplus

$$\mathcal{B}(x,m,m',z) = \underbrace{u(y(z)+x) + \beta \mathbb{E}\left[v(m',z')\mid z\right]}_{\text{agreement: receive } x, \text{ owe } m'} - \underbrace{\left(u(y(z)-m) + \beta \mathbb{E}\left[v(0,z')\mid z\right]\right)}_{\text{threat point: repay } m, \text{ clean slate}}$$

Lender surplus

$$\mathcal{L}(x, m, m', z) = \underbrace{a - x + \beta_L \mathbb{E}\left[h(m', z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(a + m + \beta_L \mathbb{E}\left[h(0, z') \mid z\right]\right)}_{\text{threat point}}$$

· Value functions v(m,z) and h(m,z) encode expected outcomes of future rounds

· At income state z and loan m, solve

$$\max_{x,m'} \mathcal{L}(x,m,m',z)^{\theta} \times \mathcal{B}(x,m,m',z)^{1-\theta}$$

Government (borrower) surplus

$$\mathcal{B}(x,m,m',z) = \underbrace{u(y(z)+x) + \beta \mathbb{E}\left[v(\underline{m'},z')\mid z\right]}_{\text{agreement: receive } x, \text{ owe } m'} - \underbrace{\left(u(y(z)-m) + \beta \mathbb{E}\left[v(\underline{0},z')\mid z\right]\right)}_{\text{threat point: repay } m, \text{ clean slate}}$$

Lender surplus

$$\mathcal{L}(x, m, m', z) = \underbrace{a - x + \beta_L \mathbb{E}\left[h(m', z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(a + m + \beta_L \mathbb{E}\left[h(0, z') \mid z\right]\right)}_{\text{threat point}}$$

· Value functions v(m,z) and h(m,z) encode expected outcomes of future rounds

· At income state z and loan m, solve

$$\max_{x,m'} \mathcal{L}(x,m,m',z)^{\theta} \times \mathcal{B}(x,m,m',z)^{1-\theta}$$

Government (borrower) surplus

$$\mathcal{B}(x,m,m',z) = \underbrace{u(y(z)+x) + \beta \mathbb{E}\left[v(m',z')\mid z\right]}_{\text{agreement: receive } x, \text{ owe } m'} - \underbrace{\left(u(y(z)-m) + \beta \mathbb{E}\left[v(0,z')\mid z\right]\right)}_{\text{threat point: repay } m, \text{ clean slate}}$$

Lender surplus

$$\mathcal{L}(\mathbf{x}, m, m', \mathbf{z}) = \underbrace{a - \mathbf{x} + \beta_L \mathbb{E}\left[h(m', \mathbf{z}') \mid \mathbf{z}\right]}_{\text{agreement}} - \underbrace{\left(a + m + \beta_L \mathbb{E}\left[h(\mathbf{0}, \mathbf{z}') \mid \mathbf{z}\right]\right)}_{\text{threat point}}$$

· Value functions v(m,z) and h(m,z) encode expected outcomes of future rounds

· At income state z and loan m, solve

$$\max_{x,m'} \mathcal{L}(x,m,m',z)^{\theta} \times \mathcal{B}(x,m,m',z)^{1-\theta}$$

Government (borrower) surplus

$$\mathcal{B}(x,m,m',z) = \underbrace{u(y(z)+x) + \beta \mathbb{E}\left[v(m',z')\mid z\right]}_{\text{agreement: receive } x, \text{ owe } m'} - \underbrace{\left(u(y(z)-m) + \beta \mathbb{E}\left[v(0,z')\mid z\right]\right)}_{\text{threat point: repay } m, \text{ clean slate}}$$

Lender surplus

$$\mathcal{L}(x, m, m', z) = \underbrace{a - x + \beta_L \mathbb{E}\left[h(m', z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(a + m + \beta_L \mathbb{E}\left[h(0, z') \mid z\right]\right)}_{\text{threat point}}$$

· Value functions v(m, z) and h(m, z) encode expected outcomes of future rounds

Swap Line Terms: Loan Dynamics

Swap Line Terms: Implicit interest rate

Swap Line Terms: Borrower's value function

Swap Line Terms: Lender's value function

Swap Line Terms: Takeaways

- This creates convexity in the lender's value function
 - ... making the lender act 'as if' risk-loving
- · The lender initially subsidizes the loan to induce indebtedness and high profits
 - Gamble for debt overhang
- · Initial subsidy and high rates consistent with B's risk aversion 'Participation constraint'

Model with Swaps and Debt

Timeline of events

Borrowing from markets

Debt is a geometrically-decaying coupon

... get 1, pay
$$\kappa$$
, $(1-\rho)\kappa$, ... $(1-\rho)^{s-1}\kappa$

· Government enters first stage owing b in debt, m in swaps, income state z

$$v(b, m, z) = \max \{v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D\}$$
$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

Lenders in competitive markets need to anticipate interactions with the monopolist

$$egin{aligned} q(b',b,m,z) &= eta_{\mathsf{L}} \mathbb{E} \left[(\mathbf{1} - \mathbf{1}_{\mathcal{D}}(b',\mathbf{m}',z')) \left(\kappa + (\mathbf{1} -
ho) q(b'',b',\mathbf{m}',z') \right) \mid z
ight] \ m' &= m'(b',b,m,z) \ b'' &= b'(b',m',z') \end{aligned}$$

Borrowing from markets

Debt is a geometrically-decaying coupon

... get 1, pay
$$\kappa$$
, $(1-\rho)\kappa$, ... $(1-\rho)^{s-1}\kappa$

· Government enters first stage owing b in debt, m in swaps, income state z

$$v(b, m, z) = \max \{v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D\}$$
$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

· Lenders in competitive markets need to anticipate interactions with the monopolist

$$\begin{aligned} q(b',b,m,z) &= \beta_{L} \mathbb{E} \left[(1 - 1_{\mathcal{D}}(b',m',z')) \left(\kappa + (1 - \rho)q(b'',b',m',z') \right) \mid z \right] \\ m' &= m'(b',b,m,z) \\ b'' &= b'(b',m',z') \end{aligned}$$

Borrowing from markets

Debt is a geometrically-decaying coupon

... get 1, pay
$$\kappa$$
, $(1 - \rho)\kappa$, ... $(1 - \rho)^{s-1}\kappa$

· Government enters first stage owing b in debt, m in swaps, income state z

$$v(b, m, z) = \max \{v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D\}$$
$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

· Lenders in competitive markets need to anticipate interactions with the monopolist

Bargaining stage

• Same as before with extra state variables (b, b')

$$\mathcal{L}_{R}(b', x, m, m', z) = (a - x + \beta_{L}\mathbb{E} [h(b', m', z') \mid z]) - (a + m + \beta_{L}\mathbb{E} [h(b', 0, z') \mid z])$$

$$\mathcal{B}_{R}(b', b, x, m, m', z) = u(y(z) + B(b', b, m, z) + x) + \beta\mathbb{E} [v(b', m', z') \mid z] - (u(y(z) + B(b', b, m, z) - m) + \beta\mathbb{E} [v(b', 0, z') \mid z])$$

$$B(b', b, m, z) = q(b', b, m, z)(b' - (1 - \rho)b) - \kappa b$$

Default state

· In default,

$$v_D(m,z) = u \left(y(z) - \underbrace{\phi(y(z))}_{\text{default cost}} + \underbrace{x_D(m,z)}_{\text{swap transfer}} \right) + \beta \mathbb{E} \left[\psi v(0,m_D',z') + (1-\psi)v_D(m_D',z') \mid z \right]$$

- · Negotiate $x_D(m, z)$ and $m'_D(m, z)$ with common knowledge of default status
- · Bargaining in default not disciplined by market
 - ... similar to model with monopolist only
 - ... extra dimension of gambling for delayed reentry

Default state

· In default,

$$v_D(m,z) = u \left(y(z) - \underbrace{\phi(y(z))}_{\text{default cost}} + \underbrace{x_D(m,z)}_{\text{swap transfer}} \right) + \beta \mathbb{E} \left[\psi v(0,m_D',z') + (1-\psi)v_D(m_D',z') \mid z \right]$$

- · Negotiate $x_D(m, z)$ and $m_D'(m, z)$ with common knowledge of default status
- · Bargaining in default not disciplined by market
 - ... similar to model with monopolist only
 - ... extra dimension of gambling for delayed reentry

Quantitative Effects of Swap Lines

Calibration

· Calibrate to Argentina without swaps (as in Roch & Roldán, 2023)

	Parameter	Value
Sovereign's discount factor	β	0.9852
Sovereign's risk aversion	γ	2
Preference shock scale parameter	χ	0.02
Lender's bargaining power	θ	0.5
Risk-free interest rate	r	0.01
Duration of debt	ho	0.05
Income autocorrelation coefficient	$ ho_{z}$	0.9484
Standard deviation of y_t	σ_{z}	0.02
Reentry probability	ψ	0.0385
Default cost: linear	d_0	-0.24
Default cost: quadratic	d_1	0.3

Calibration

· Calibrate to Argentina without swaps (as in Roch & Roldán, 2023)

	Parameter	Value
Sovereign's discount factor	β	0.9852
Sovereign's risk aversion	γ	2
Preference shock scale parameter	χ	0.02
Lender's bargaining power	θ	0.5
Risk-free interest rate	r	0.01
Duration of debt	ρ	0.05
Income autocorrelation coefficient	$ ho_{z}$	0.9484
Standard deviation of y_t	σ_{z}	0.02
Reentry probability	ψ	0.0385
Default cost: linear	d_0	-0.24
Default cost: quadratic	d_1	0.3

Calibration

· Calibrate to Argentina without swaps (as in Roch & Roldán, 2023)

	Parameter	Value
Sovereign's discount factor	β	0.9852
Sovereign's risk aversion	γ	2
Preference shock scale parameter	χ	0.02
Lender's bargaining power	θ	0.5
Risk-free interest rate	r	0.01
Duration of debt	ρ	0.05
Income autocorrelation coefficient	$ ho_{z}$	0.9484
Standard deviation of y_t	σ_{z}	0.02
Reentry probability	ψ	0.0385
Default cost: linear	d_0	-0.24
Default cost: quadratic	d_1	0.3

How do swaps affect equilibrium?

	No swap	Unrestricted, $\theta = 0.25$	Unrestricted, $\theta = 0.5$
Avg spread (bps)	901	1899	2447
Std spread (bps)	532	1137	1578
$\sigma(c)/\sigma(y)$ (%)	110	110	110
Debt to GDP (%)	20.5	20.2	19.6
Swap to GDP (%)	0	3.68	3.25
Corr. swap & spreads (%)	-	55.4	62.6
Default frequency (%)	7.07	13.2	15.2
Welfare gains (rep)	-	-0.059%	-0.36%

· Swaps shoot up before and during defaults

· Also consider Limited versions: $m' \leq \Gamma(m)$ while in default

· Swaps shoot up before and during defaults

· Also consider Limited versions: $m' \leq \Gamma(m)$ while in default

· Swaps shoot up before and during defaults

· Also consider Limited versions: $m' \leq \Gamma(m)$ while in default

Limiting swaps in default

· Unavailable: entire swap must be repaid while in default $\Gamma(m) = 0$

	No swap	Unrestricted, $\theta = 0.5$	Unavailable, $\theta = 0.5$
Avg spread (bps)	901	2447	1406
Std spread (bps)	532	1578	960
$\sigma(c)/\sigma(y)$ (%)	110	110	114
Debt to GDP (%)	20.5	19.6	20.5
Swap to GDP (%)	0	3.25	1.27
Corr. swap & spreads (%)	-	62.6	70.1
Default frequency (%)	7.07	15.2	10.7
Welfare gains (rep)	-	-0.36%	-0.22%

Default Barriers with Swaps

· Unrestricted: default barrier moves inward, Limited: marginal impact

Debt levels at which P(b,m,z) crosses 50%

Default Barriers with Swaps

· Unrestricted: default barrier moves inward, Limited: marginal impact

Debt levels at which $\mathcal{P}(b,m,z)$ crosses 50%

Debt Levels with Swaps

Debt Levels with Swaps

Debt Levels with Swaps

Debt Tolerance with Swaps

Repay less often with swaps. More often with Limited

Debt Tolerance with Swaps

Repay less often with swaps. More often with Limited

Debt Prices with Swaps

Limited: more likely to repay but lower prices → Tell-tale sign of debt dilution?

Monopolist's profits

 $Monopolist's \ profits \ increasing \ in \ debt \ (cond. \ on \ repayment) - surplus \ requires \ spreads > 0$

Risk-taking incentives

Surplus on swap requires spreads > 0: monopolist provides incentives for risk taking

Risk-taking incentives

Surplus on swap requires spreads > 0: monopolist provides incentives for risk taking

Welfare effects of swap lines

 $Limited \succcurlyeq Unrestricted, but...$

Welfare effects of swap lines — Short-term debt

Solving model with short-term debt: gains of swaps

Welfare effects of swap lines — Short-term debt (cont'd)

	No swap, ST	Unrestricted, $\theta = 0.5$, ST	Unavailable, $\theta = 0.5$, ST
Avg spread (bps)	80.7	377	247
Std spread (bps)	110	373	197
$\sigma(c)/\sigma(y)$ (%)	129	130	138
Debt to GDP (%)	19.0	18.7	23.5
Swap to GDP (%)	0	3.13	3.65
Corr. swap & spreads (%)	-	54.9	50.3
Default frequency (%)	0.574	3.14	1.97
Welfare gains (rep)	-	-0.074%	0.8%

Concluding remarks

- Simple model with monopolist/fringe structure
- Strong interaction between two markets for sovereign debt
 - ... even if swaps are **not** used intensely on the equilibrium path
- · Market power crucial in model
 - ... how to discipline in model?
 - ... how to affect in reality?
- · Large welfare effects, policy challenges
 - · How to limit their use during defaults?
 - Strengthened debt dilution more gains from fiscal rules, state-contingent debt?

· Further conditioning on default events lasting exactly two years

· With Limited

