Aula 02 – Conceitos básicos

Prof. Dr. Clodoaldo Aparecido de Moraes Lima

Material baseado no livro "Patterson, David A., Hennessy, J. L. - Computer Organization And Design: The Hardware/Software Interface"

Arquitetura versus Organização

Arquitetura

- Refere-se a atributos que tem impactos diretos sobre a execução lógica de um programa. Esses atributos são:
 - o conjunto de instruções,
 - numero de bits que representa um determinando dado,
 - mecanismos de entrada e saída, entre outros.
- Lida com o funcionamento do Sistema Computacional.
- Corresponde aos aspectos visíveis a um programador em linguagem de máquina, tais como
 - repertório de instruções,
 - número de bits utilizado para representar vários tipos de dados,
 - mecanismo de E/S e modos de endereçaamento.

Arquitetura versus Organização

Organização

- Refere-se as unidades operacionais e suas interconexões. Os atributos que representa a organização de um computador são:
 - detalhes de hardware tais como sinais de controle,
 - interfaces entre computadores e periféricos,
 - tecnologias de memórias utilizadas.
- Diz respeito ás unidades operacionais (CPU, unidade de memória, barramentos, sinais de controle, etc) necessárias para implementar as especificações de uma arquitetura.
- A organização é em geral transparente ao programador.

Desempenho histórico do microprocessador

Pontos a serem observados

- O crescimento de 52% ao ano é por causa da velocidade de clock cada vez mais rápido e inovações arquitetônicas (levou a uma velocidade 25x mais alta)
- O aumento da velocidade de clock caiu para 2% ao ano nos últimos anos
- O crescimento de 23% inclui a paralelização de múltiplos núcleos
- Lei de Moore: O número de transistores em um chip dobra a cada 18-24 meses

Aumento da velocidade de clock

Aumento da velocidade de clock

Tendências de Tecnologia do processador

- Densidade dos transistores aumenta em 35% por ano e tamanho do núcleo aumenta em 10-20% por ano ... mais funcionalidades
- Velocidade do transistor melhora linearmente com o tamanho (equação complexa que envolve tensões, resistências, capacitâncias)....pode levar a melhorias de velocidade de clock!
- Atrasos no fio não diminui no mesmo ritmo que atrasos na lógica
- Barreira da energia: não é possével executar de forma consistente em frequências mais altas sem atingir limites potência /térmicos (Modo Turbo pode causar aumentos de frequência ocasionais)

O que ajuda na performance?

- Sem aumentar a velocidade de clock
- Em um ciclo de clock, pode haver mais trabalho uma vez que os transistores são mais rápido, e mais eficientes em termos de energia, e pode haver vários deles
- Melhora na arquitetura: encontrar mais paralelismo em uma thread, melhor previsão de desvios, melhores políticas de cache, melhor organizações de memória, mais paralelismo no nível de thread, etc

Para onde vamos

As tendências modernas:

- Melhorias na velocidade do clock estão diminuindo
 - restrições de energia
- Difícil otimizar ainda mais um único core para melhorar o desempenho
- Multi-núcleos: cada nova geração de processadores vai acomodar mais núcleos
- Precisa de melhores modelos de programação para execução de aplicações multi-thread
- Precisa de melhor hierarquias de memória
- Precisa de uma maior eficiência energética
- Em alguns domínios, núcleos menos potente são mais atraentes

Processador atual

Intel Core i9

- Frequência do relógio (turbo): 4.4 5.3 GHz
- Produto: 14nm
- Núcleos: 6 10
- Potência: 140 165 W
- Dois threads por núcleo
- 3 nível de cache, 16 MB de cache L3
- Preço: ??

Processador atual

UNLOCKED INTEL® CORE™ X-SERIES PROCESSOR FAMILY

Processor number ¹	Base clock speed (GHz)	Intel® Turbo Boost Technology 2.0 frequency² (GHz)	Intel® Turbo Boost Max Technology 3.0 Freqency³ (GHz)	Cores/ threads	L3 cache	PCI express 3.0 lanes	Memory support	TDP	Socket (LGA)	RCP Pricing (1K USD)
19-7980XE NEW	2.6	4.2	4.4	18/36	24.75 MB	44	Four channels DDR4-2666	165W	2066	\$1,999
19-7960X NEW	2.8	4.2	4.4	16/32	22 MB	44	Four channels DDR4-2666	165W	2066	\$1,699
19-7940X NEW	3.1	4.3	4.4	14/28	19.25 MB	44	Four channels DDR4-2666	165W	2066	\$1,399
i9-7920X NEW	2.9	4.3	4.4	12/24	16.5 MB	44	Four channels DDR4-2666	140W	2066	\$1,199
i9-7900X NEW	3.3	4.3	4.5	10/20	13.75 MB	44	Four channels DDR4-2666	140W	2066	\$999
i7-7820X NEW	3.6	4.3	4.5	8/16	11 MB	28	Four channels DDR4-2666	140W	2066	\$599
17-7800X	3.5	4.0	NA	6/12	8.25 MB	28	Four channels DDR4-2400	140W	2066	\$389
i7-7740X	4.3	4.5	NA	4/8	8 MB	16	Two channels DDR4-2666	112W	2066	\$339
i5-7640X NEW	4.0	4.2	NA	4/4	6 MB	16	Two channels DDR4-2666	112W	2066	\$242

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor family.
 See intel.com/products/processor_number for details.

Refers to the maximum dual-core frequency that can be achieved with Intel® Turbo Boost Max Technology 2.0.
 Refers to the maximum dual-core frequency that can be achieved with Intel® Turbo Boost Max Technology 3.

Tendência no consumo de energia

- \bullet Potência Dyn (dynpower) \propto atividade \times capacitância \times voltage \times frequência
- Capacitância por transistor e a tensão esão diminuindo, mas o número de transistores está aumentando a um ritmo mais rápido; portanto, frequência de clock deve ser mantida constante
- Fuga de energia (Leakage power) também está aumentando; é uma função do número de transistor, corrente de fuga e tensão de alimentação
- Consumo de energia já está entre 100-160W em processadores de alto desempenho atuais
- Energia = Potência \times tempo = (dynpower + lkgpower) \times tempo

Potência x Energia

- Energia é uma métrica final: ela nos diz o verdadeiro "custo" na execução de uma tarefa fixa.
- Potência (energia/tempo) implica em restrições, só pode ser bastante rápido até a potência máxima fornecida ou aplicar algum tipo de resfriamento
- Se um processador A comsone 1,2x a potência do processador B, mas termina a tarefa em 30% menos tempo, a sua energia relativa é de $1.2\times0.7=0.84$;
- Processador A é melhor, assumindo que 1.2x de energia pode ser fornecida pelo sistema

Reduzindo a Potência e a Energia

- Desligar os transistores que estão inativos (reduz o vazamento)
- Projetar o caso típico e desacelerar quando a atividade exceder um limiar
- DFS: escalonamento dinâmico da frequência reduz frequência e potência dinâmica, mas prejudica a energia
- DVFS: escalonamento dinâmico da tensão e frequência reduzir a tensão e frequência por (digamos) 10%; pode deixar um programa mais lento (digamos) em 8%, reduz a potência dinâmica em 27%, reduz a potência total (digamos) por 23%, reduzindo a energia total em 17%
- ullet Nota: a queda de tensão o transistor mais lento o queda na frequência

Outras Tendências Tecnológica

- DRAM aumenta densidade em 40-60% por ano, a latência tem sido reduzida em 33% em 10 anos, largura de banda melhora duas vezes mais rápido que a latência diminui
- Densidade do disco melhora em 100% a cada ano, a latência melhora de forma similar à DRAM
- Surgimento de tecnologias NVRAM podem fornecer uma ponte entre DRAM e unidades de disco rígido
- Além disso, crescente preocupação com a confiabilidade (transistores menores, operando a baixas voltagens, e muitos deles)

Definindo Confiabilidade e Disponibilidade

Um sistema alterna entre

- Realização de serviços: serviço corresponda às especificações
- Interrupção do serviço: serviços desvia das especificações
- A alternância é causada por falhas e restaurações
- Confiabilidade mede a realização de um serviço de forma contínua e é normalmente expressa como tempo médio até a falha (MTTF)
- Disponibilidade mede a fração de tempo que os serviços corresponde as especificações, expressa como MTTF / (MTTF + TMPR)

Custo de um Chip

- O custo é determinado por vários fatores: volume, rendimento, maturidade fabricação, etapas de processamento, etc
- Importante: área do chip
- ullet Pequena área o mais chips por wafer
- Pequena área → um defeito nos leva a descartar uma pequena área dos chips, ou seja, o rendimento sobe
- ullet De um modo geral, a metade da área o um terço do custo

Tecnologia para construção de Processadores e Memória

Year	Technology used in computers	Relative performance/unit cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit	900
1995	Very large-scale integrated circuit	2,400,000
2013	Ultra large-scale integrated circuit	250,000,000,000

- Transistor é simplesmente uma chave liga/desliga controlada por eletricidade.
- Circuito integrado é a combinação de dezenas a centenas de transitores em um único chip
- VLSI (Escala Muito grande) usado para descrever o aumento no número de transitores de centenas para milhões
- Semicondutor é o material ou substância que não é bom condutor de eletricidade

Tecnologia para construção de Processadores e Memória

Com um processo químico especial, é possível acrescentar ao silicio materiais que permitem minúsculas áreas se transformem em uma dos três dispositivos a seguir

- Excelentes condutores de eletricidade
- Excelentes isolantes de eletricidade
- Áreas que podem conduzir ou isolar sob condições especiais

Tecnologia para construção de Processadores e Memória

- Após o lingote de silício serem fatiados, os wafers virgens passam por 20 a 40 passos para criar wafers com padrões
- Esses wafers com padrões são testados com um testador de wafers e é criado um mapa das partes boas
- Os wafer são divididos em dies (moldes)
- Esses dies bons s\u00e3o soldados e encapsulados
- Novamente são testados antes de serem enviados para os clientes

Evolução dos computadores

Primeira Geração (1951-1959)

 Os computadores de primeira geração funcionavam por meio de circuitos e válvulas eletrônicas. Possuíam o uso restrito, além de serem imensos e consumirem muita energia.

Segunda Geração (1959-1965)

 Ainda com dimensões muito grandes, os computadores da segunda geração funcionavam por meio de transistores, os quais substituíram as válvulas que eram maiores e mais lentas.

Evolução dos computadores

Terceira Geração (1965-1975)

 Os computadores da terceira geração funcionavam por circuitos integrados. Esses substituíram os transistores e já apresentavam uma dimensão menor e maior capacidade de processamento.

Quarta Geração (1975-até os dias atuais)

 Com o desenvolvimento da tecnologia da informação, os computadores diminuem de tamanho, aumentaram a velocidade e capacidade de processamento de dados. São incluídos os microprocessadores com gasto cada vez menores de energia.

Evolução dos computadores

Computadores Eletrônicos

- Grande avanço em relação aos seus similares eletromecânicos
- Duas limitações
 - Baixa capacidade de memória
 - Longo tempo de programação
- ENIAC exigia dias de trabalho, uma vez que várias modi cações eram necessárias no painel de controle
- Mark I fácil de reprogramar (troca de fita) porém velocidade de leitura de instruções de unidades mecânicas não era adequada à velocidade de processamento dos computadores eletrônicos
- Marco importante concepção do conceito de programa armazenado associado ao projeto EDVAC

EDVAC

- Sucessor do ENIAC
- 1K de palavras de 44 bits na memória principal
- 20 K de palavras na memória secundária
- Possuía 4000 válvulas, 1000 diodos
- Velocidade do relógio era de 1MHz
- Projeto concluído em 1952

Programa armazenado

- Atribuído exclusivamente a Von Neuman ightarrow 101 páginas sobre o projeto EDVAC
 - First Draft of a Report on the EDVAC em junho de 1945, onde o conceito foi descrito pela primeira vez
- Justo seria atribuir a toda equipe do projeto EDVAC, incluindo Mauchly e Eckert (Moore School), von Neumann (Institute for Advanced Study, Princeton), Herman H. Goldstine (inicialmente estava ligado a Marinha) e Arthur W. Burks (filósofo com inclinações matemáticas da University of Michingan)

Programa Armazenado

- Von Neuman, Herman e Arthur tinham uma visão matemática e abstrata, visavam primordialmente á divulgação de resultados
- Mauchly e Eckert gostariam de obter frutos transformando o EDVAC em produto comercial

Algumas sugestões sobre o conceito de programa armazenado foram apresentadas durante a escola de verão do ENIAC

- Manchester Baby Machine, da Universidade de Manchester (Inglaterra), de junho de 1948, por M. Newman e F. C. Williams
- EDSAC (Electronic Delay Storage Automatic Calculator), da Universidade de Cambridge (Inglaterra), de maio de 1949, por Maurice Wilkes
- BINAC (Binary Automatic Computer), da Eckert-Mauchly Computer Corporation (EMCC) construído sob encomenda da Northrop Aircraft Corporation, operacional em Setembro de 1949;

Programa Armazenado

- UNIVAC (Universal Automatic Computer), da Remington Rand Co. (que incorporou a EMCC), com a primeira unidade operacional em março de 1951;
- Whirlwind, do MIT por Jay Forrester, projetado como o primeiro computador para aplicações tempo-real. O Whirlwind tornou-se a base para projetos de minicomputadores;
- IBM 701, voltado para aplicações científi cas (ex-Defense Calculator), foi o primeiro computador eletrônico da IBM (dezembro 1952);
- IBM 650 Magnetic Drum Computer, apresentado como o modelo barato da IBM (US\$200K), anunciado em 1953. Essa máquina foi á base para o modelo IBM 1401 (transistorizado, anúncio em outubro de 1959, entrega no início de 1960 a um custo de US\$150K).

Manchester Baby Machine

- Primeiro computador de programa armazenado
- Utilizava vários tubos de raios catódicos (CRT) como memória, memória principal de 32 palavras de 32 bits.
- A programação era realizada bit-a-bit por um teclado, com a leitura de resultados também bit-a-bit (de um CRT).
- Tornou-se a base para um computador comercial inglês, o Ferranti Mark I (fevereiro de 1951).
- Posteriormente, Turing juntou-se a essa equipe e desenvolveu uma forma primitiva de linguagem Assembly para essa máquina.

EDSAC

- Utilizava tecnologia de memória por linha de atraso em mercúrio, desenvolvida por William Shockley (Bell Labs) - com 16 tanques de mercúrio, a capacidade era de 256 palavras de 35 bits, ou 512 palavras de 17 bits.
- Foi o primeiro computador de memória armazenado de uso prático.
 Operava com uma taxa de relógio de 500 KHz.
- A entrada e saída de dados ocorria através de fita de papel. O primeiro programa armazenado foi imprimir quadrados dos primeiros números inteiros.

BINAC

- O BINAC foi projetado como um primeiro passo em direção aos computadores de bordo.
- Era um sistema com processadores duais (redundantes), com 700 válvulas cada e memória de 512 palavras de 31 bits.

UNIVAC

- tinha uma memória de 1000 palavras de 12 dígitos, com uma memória secundária de fi tas magnéticas com capacidade de 128 caracteres por polegada.
- A primeira unidade foi desenvolvida sob encomenda do Census Bureau norte-americano.
- Dominou o mercado de computadores na primeira metade dos anos 1950.

Whirlwind

- Foi desenvolvido por Forrester e equipe para o US Navy's Office of Research and Inventions.
- A origem do projeto estava baseada em um simulador de voo universal, com velocidade de operação adequada a aplicaçõoes de tempo real (500K adições ou 50K multiplicações por segundo).
- O projeto foi iniciado em setembro de 1943, tornando-se o computador operacional em 1951.
- Introduziu a tecnologia de memória a núcleos de ferrite (tempo de acesso de 9μ s), em 1953, em substitução da memória CRT original de 2048 palavras de 16 bits.
- O custo total do projeto superou vários milhões de dólares.

IBM 701

- O IBM 701 estava disponível com memórias CRT de 2048 ou 4096 palavras de 36 bits.
- O IBM 702 Electronic Data Processing Machine estava voltado para aplicações comerciais, tendo sido anunciado em setembro de 1953 e entregue no início de 1955.

IAS

- Von Neumann iniciou gestões para a construção de outro computador que seria utilizado para aplicações científi cas em geral
- Von Neuman convenceu a direção do Instituto de Estudos Avançados de Princeton (IAS) abrigar o projeto
- A RCA acabava de estabelecer um laboratório de pesquisa na Universidade de Princeton
- RCA iniciou a construção de tubos iconoscópicos semelhante aos tubos de televisão
- IAS recebeu apoio do Exercito e da Marinha americana

IAS

- O projeto lógico é apresentado na primeira parte escrita por Burks, Goldstine e von Neumann, intitulada "Preliminary of the Logical Design of an Electronic Computing Instrument".
- As operações aritméticas são discutidas em grande detalhe, incluindo problemas de arredondamento.
- Tendo em vista as características da memória, as operaçõoes sobre os 40 bits seriam executadas em paralelo
- Há uma demonstração de que a operação de soma de dois números de 40 bits produziria, em média, cinco "vai um".
- Discussão completa de mecanismos de entrada e saída

IAS

- Observa a necessidade de realoção de instruções para que possam ocupar quaisquer parte da memória
- Problema de dar inicio no sistema a partir de um dispositivo de entrada.
- Discutida a utilização de redundância para a detecção de falhas nas unidade lógicas e outros dispositivos

Tipos de Arquitetura

Arquitetura de Von Neumann

- Conceito de programa armazenado;
 - Dados e instruções armazenados em uma única memória de leitura e escrita.
- Endereçamento da memória por posição e não pelo tipo;
- Execução sequencial de instruções; e
- Unico caminho entre memória e CPU.

Arquitetura de Harvard

- Variação da arquitetura de Von Neumann.
- Barramentos separados para instruções e dados.
- Termo originado dos computadores Mark I a Mark IV
- Memórias separadas para dados e instruções

Máquinas Paralelas

- Várias unidades de processamento executando programas de forma cooperativa.
- Podem ser controladas de forma centralizada ou não

Exemplos de arquiteturas não Von Neumann

- Máquinas de Fluxo de Dados
 - Realizam operações de acordo com a disponibilidade dos dados envolvidos
 - A Memória armazena um conjunto de instruções no formato conhecido como "tokens":operação, operandos, destino
 - Não existe controle da memória a ser lida
 - A execução das instruções (tokens) ocorre quando os operandos estiverem disponíveis

Figura: Grafo de fluxo de dados calculando N = (A + B) * (B - 4)

Máquinas de Fluxo de Dados

- A figura acima é um exemplo de uma arquitetura de fuxo de dados estática na qual as unidades fuem através do grafo de forma semelhante aos estagios de pipeline.
- Na arquitetura de fluxo de dados dinâmica, as unidades são etiquedas com informação de contexto e são armazenadas em uma memória.
- Durante cada ciclo de relógio,a memória é pesquisada em busca de um conjunto completo de unidades de entrada para acender um nó.
- Os nó acendem somente quando encontram um conjunto completo de unidades de entrada dentro do mesmo contexto.
- Programa para máquinas de fluxo de dados devem ser escritos em linguagens que são especifi camente projetadas para este tipo de arquitetura; esta incluem VAL, Id, SISAL e LUCID.
- A compilação de um programa de fuxo de dados resulta em um grafo

Computadores de array sistólicos

- Derivam seu nome de uma analogia sobre como o sangue flui de forma ritmada através do coração biológico
- Eles são uma rede de elementos de processamento que processam dados de forma ritmada por meio de sua circulação pelo sistema
- Incorporam grandes arrays de processadores simples que usam pipelines de vetor para fuxo de dados (veja figura)
- Desde a sua introdução na década de 1970, eles tem tido um impacto signi cativo na computação de próposito especial.
- Um processador de array sistólico bem conhecido é o CMUiWrap, que foi fabricado pela Intel em 1990.
- Este sistema consiste de um array linear de processadores conectados por um barramento de dados bidimensional

Computadores de array sistólicos

- Arrays sistólicos adotam um alto grau de paralelismo (por meio do pipeline) e podem sustentar uma vazão muito alta.
- As conexões são geralmente curtas e o projeto é simples e, portanto, altamente escalável
- Tendem a ser robustos, altamente compactos, e ficientes e baratos para produzir
- Por outro lado, eles s\u00e3o altamente especializados e, portanto, inflex\u00edveis quanto aos tipos e aos tamanhos dos problemas que podem resolver.
- Um exemplo de uso de arrays sistólicos pode ser encontrado na avaliação polinomial. Para avaliar o polinômio $y = a_0 + a_1x + a_2x^2 + \cdots + a_kx^k$, podemos usar a regra de Horner: $y = (((a_kx + a_{k-1}) * x + a_{k-2}) * x + a_{k-3}) * x + \cdots * a_1) * x + a_0$

Computadores de array sistólicos

- Um array sistólico linear, no qual os processadores são dispostos em pares, pode ser usado para avaliar um polinômio usando a Regra de Horner, como mostrado figura abaixo
- Arrays sistólicos são geralmente usados para tarefas repetitivas, incluindo transformadas de Fourier, processamento de imagens, compressão de dados, problemas de menor caminho, ordenação, processamento de sinais, etc.
- São adequados para problemas computacionais que permitem uma solução paralela usando um grande número de elementos simples de processamento.

Computação Fotônica

 Todas as arquiteturas clássicas de computadores apresentadas até aqui têm um aspecto em comum: todas usam lógica booleana.

As leis da física sugerem que eventualmente os transitores vão se

- A lei de Moore, que declara que o número de transitores em um único chip dobra a cada 18 meses, não pode se aplicar para sempre
- tornar tão fi nos que a distâncias entre eles vão permitir que elétrons saltem de um para outro, causando curtos circuitos fatais.
- Uma possível resposta é a computação ótica ou fotônica. Em vez de usar elétrons para realizar a lógica em um computador, computadores óticos usam fotons de luz de laser.

Computação Fotônica

- A velocidade da luz em circuitos fotônicos pode se aproximar da velocidade da luz no vácuo, com a vantagem adicional de não ter dissipação de calor
- O fato de que fachos de luz podem trafegar em paralelo pode sugerir um aumento adicional na velocidade e na performance
- Muitas pessoas acreditam que a computação ótica será reservada apenas para aplicações de próposito especial.

Computação Quântica

- Enquanto computadores clássicos usam bits que são ligados ou desligados, computadores quânticos usam quantum bits (qubits) que podem estar em diversos estados simultaneamente.
- Da física, sabemos que um campo magnético, um elétron pode estar em dois estados possíveis: o giro pode estar alinhado com o campo ou oposto ao campo.
- Quando medimos este giro, vemos que o elétron está em um desse dois estados.
- Entretanto, é possível que a partícula esteja em uma superposição de dois estados, com ambos existingo simultaneamente.
- Se temos um registrados de três bits formando por qubits, este registrado pode conter qualquer um dos números de 0 a 7 simultaneamente, por que cada qubit pode estar em uma superposição de estados.

Computação Quântica

- Para obter um único valor de saída, temos que medir o qubit
- Portanto, o processamento com registradores de 3 qubits pode realizar cálculos usando simultaneamente todos os o valores possíveis, trabalhando com oito cálculos ao mesmo tempo, resultado e paralelismo quanticos.
- Em teória, um computador quântico poderia realizar inúmeras operações em paralelo usando uma única CPU.
- Além de serem cerca de um bilhão de vezes mais rápido do que os seus parentes de silício, computadores quânticos podem, teoricamente, operar sem energia.
- Computadores quânticos podem realizar as tarefas cotidianas feitas por máquinas clássicas, mas eles mostram a sua superioridade somente em aplicações que exploram o paralelismo quântico.

Computação Biológica

- Usa componentes de organismos vivos em vez daqueles de silício ionorgânico.
- Um projeto assim é o leech-ulator, um computador criado por cientistas americanos que é feito de sanguessugas (leeches).
- Um outro exemplo é a computação DNA, que usa DNA como software e enzimas como Hardware.
- O DNA pode ser replicado e programado para realizar tarefas maciçamente paralelas, das quais uma das primeiras primeiras foi o problema do caixeiro-viajante, sendo o paralelismo limitado somente pelo número de espirais de DNA.

Computação Biológica

- Computadores DNA (também chamados de computadores moleculares) são basicamente coleções de espirais de DNA especialmente selecionadas para testar todas as soluções de uma só vez e dar como saída a resposta correta.
- Os cientistas também estão experimentando certas bactérias que podem ligar e desligar genes de maneiras previsíveis.
- Pesquisadores já programaram com sucesso a bactéria E. Coli para emitir luz fluorescente vermelha ou verde (ou seja, 0 ou 1).

Exemplos de arquiteturas não Von Neumann

- Redes Neurais Artificiais
 - Não executam instruções de um programa
 - Resultados são gerados a partir de respostas a estímulos de entrada

Componentes estruturais (computadores atuais)

- CPU
 - "Cérebro" do computador
 - Busca, interpreta e executa as instruções
 - Controla os demais componentes
- Memória
 - Armazenamento de dados e instruções
- Sistema de E/S
 - Comunicação externa (ambiente operacional)
- Sistema de interconexão
 - Comunicação interna (entre os componentes)

Componentes do Computador

Processadores

- CPU, Controladores e coprocessadores
- Possuem conjunto de instruções operando sobre instruções e dados organizados em palavras
 - CPU: instruções de propósito geral
 - Coprocessadores: instruções especializadas

Memórias

• 2 subsistemas: memória interna e memória externa

Memória

- Armazena instruções
- Armazena dados iniciais e intermediários
- Armazena dados finais
- Byte (Binary Term) Unidade básica de tratamento de informação
- Cada byte possui 8 bits
- Uma "palavra" (word) é constituída de grupos de 2, 4,6 ou 8 bits.
- Atualmente há palavras de 64, 128 bits (superior)

Memória

BIT

- Binary DigIT
- Sistema biestável:
 - Lâmpada
 - Válvula
 - Armazena dados iniciais e intermediários
- No computador são representados por 0 e 1 (sistema de numeração de base 2)
- Um caracter é representado por 8 bits (byte)
 - 00010110 = A
 - 00010111 = B

Tipos de Memória

Existem basicamente 2 tipos de memórias

ROM (Read Only Memory): É uma memória não volátil utilizada para armazenar Firmwares de placas mãe, DVD player, CD-RW, Placas de Rede, Modens ADSL, etc.

- ROM: Programável por "mascaras" na fábrica do chip.
- PROM: Programável pelo usuário, uma única vez.
- EPROM: "Erasable PROM- Programação pode ser desfeita por UV e refeita pelo usuário.
- EEPROM ou E2PROM: "Eletrically Erasable PROM- Substitui o método UV por outro um processo elétrico que "zera" a memória.
- FLASH: Programação depois de inserida no produto (equipamento).

Tipos de Memória

RAM(Random Access Memory)

- Memória de Acesso Randômico.
- É uma memória volátil ou seja ao desligar o computador o seu conteúdo é perdido.
- Existem vários tipos de memória RAM:
 - SDRAM
 - DDR2 (Double Data Rate), DDR3, DDR4

Tipos de Memória

Memória Cache

• São memórias ultra-rápidas que são usadas em quantidades pequenas, existem 3 níveis L1, L2 e L3.

Gargalo de von Neumann

- Tráfego intenso no barramento do sistema
 - Principal rota de informação: CPU e memória (ponto crítico)
 - Constante fluxo de dados e instruções
- Gera desperdício de tempo (CPU em espera)
- Agrava-se gradativamente pelo aumento do gap de velocidade entre a memória e a CPU

