# Text Classification: Naïve Bayes Algorithm

**SEEM5680** 

### **Document Classification**



## Categorization/Classification

#### Given:

- A description of an instance, d ∈ X
  - X is the instance language or instance space.
    - Issue: how to represent text documents.
    - Usually some type of high-dimensional space
- A fixed set of classes:

$$C = \{c_1, c_2, ..., c_J\}$$

- Determine:
  - The category of d:  $\gamma(d) \in C$ , where  $\gamma(d)$  is a classification function whose domain is X and whose range is C.
    - We want to know how to build classification functions ("classifiers").

## **Supervised Classification**

#### Given:

- A description of an instance, d ∈ X
  - X is the instance language or instance space.
- A fixed set of classes:

$$C = \{c_1, c_2, ..., c_J\}$$

A training set D of labeled documents with each labeled document ⟨d,c⟩∈X×C

#### Determine:

- A learning method or algorithm which will enable us to learn a classifier γ:X→C
- For a test document d, we assign it the class  $\gamma(d) \in C$

# More Text Classification Examples Many search engine functionalities use classification

#### Assigning labels to documents or web-pages:

- Labels are most often topics such as Yahoo-categories
  - "finance," "sports," "news>world>asia>business"
- Labels may be genres
  - "editorials" "movie-reviews" "news"
- Labels may be opinion on a person/product
  - "like", "hate", "neutral"
- Labels may be domain-specific
  - "interesting-to-me": "not-interesting-to-me"
  - "contains adult language": "doesn't"
  - language identification: English, French, Chinese, ...
  - search vertical: about Linux versus not
  - "link spam": "not link spam"

## Classification Methods (1)

- Manual classification
  - Used by the original Yahoo! Directory
  - Looksmart, about.com, ODP, PubMed
  - Very accurate when job is done by experts
  - Consistent when the problem size and team is small
  - Difficult and expensive to scale
    - Means we need automatic classification methods for big problems

## Classification Methods (2)

- Automatic document classification
  - Hand-coded rule-based systems
    - One technique used by CS dept's spam filter, Reuters, CIA, etc.
    - It's what Google Alerts is doing
      - Widely deployed in government and enterprise
    - Companies provide "IDE" for writing such rules
    - E.g., assign category if document contains a given Boolean combination of words
    - Standing queries: Commercial systems have complex query languages (everything in IR query languages +score accumulators)
    - Accuracy is often very high if a rule has been carefully refined over time by a subject expert
    - Building and maintaining these rules is expensive

# A Verity topic A complex classification rule

```
comment line
                  # Beginning of art topic definition
top-level topic
                  art ACCRUE
                       /author = "fsmith"
topic de finition modifiers
                       /date = "30-Dec-01"
                       /annotation = "Topic created
                                         by fsmith'
subtopictopic
                  * 0.70 performing-arts ACCRUE
  eviden cetopi c
                  ** 0.50 WORD
                       /wordtext = ballet
  topic definition modifier
                  ** 0.50 STEM
  eviden cetopi c
                       /wordtext = dance
  topic definition modifier
  eviden cetopi c
                  ** 0.50 WORD
                       /wordtext = opera
  topic definition modifier
  eviden cetopi c
                  ** 0.30 WORD
                       /wordtext = symphony
  topic definition modifier
subtopic
                  * 0.70 visual-arts ACCRUE
                  ** 0.50 WORD
                       /wordtext = painting
                  ** 0.50 WORD
                       /wordtext = sculpture
sub to pic
                  * 0.70 film ACCRUE
                  ** 0.50 STEM
                       /wordtext = film
subtopic
                  ** 0.50 motion-picture PHRASE
                  *** 1.00 WORD
                       /wordtext = motion
                  *** 1.00 WORD
                       /wordtext = picture
                  ** 0.50 STEM
                       /wordtext = movie
sub to pic
                  * 0.50 video ACCRUE
                  ** 0.50 STEM
                       /wordtext = video
                  ** 0.50 STEM
                       /wordtext = vcr
                  # End of art topic
```

#### Note:

- maintenance issues (author, etc.)
- Hand-weighting of terms

[Verity was bought by Autonomy.]

## Classification Methods (3)

- Supervised learning of a document-label assignment function
  - Many systems partly rely on machine learning (Autonomy, Microsoft, Enkata, Yahoo!, Google News, ...)
    - k-Nearest Neighbors (simple, powerful)
    - Naive Bayes (simple, common method)
    - Support-vector machines (new, more powerful)
    - ... plus many other methods
    - No free lunch: requires hand-classified training data
    - But data can be built up (and refined) by amateurs
- Many commercial systems use a mixture of methods

## Recall a few probability basics

- For events a and b:
- Bayes' Rule

$$p(a,b) = p(a \cap b) = p(a \mid b) p(b) = p(b \mid a) p(a)$$
$$p(\overline{a} \mid b) p(b) = p(b \mid \overline{a}) p(\overline{a})$$

$$p(a \mid b) = \frac{p(b \mid a)p(a)}{p(b)} = \frac{p(b \mid a)p(a)}{\sum_{x=a,\overline{a}} p(b \mid x)p(x)}$$
Personal Posterior

#### **Posterior**

Odds:

$$O(a) = \frac{p(a)}{p(\overline{a})} = \frac{p(a)}{1 - p(a)}$$

#### **Probabilistic Methods**

- Learning and classification methods based on probability theory.
- Bayes theorem plays a critical role in probabilistic learning and classification.
- Builds a generative model that approximates how data is produced
- Uses prior probability of each category given no information about an item.
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

## Bayes' Rule for text classification

For a document d and a class c

$$P(c,d) = P(c | d)P(d) = P(d | c)P(c)$$

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

## Naive Bayes Classifiers

Task: Classify a new instance d based on a tuple of attribute values  $d = \langle x_1, x_2, ..., x_n \rangle$  into one of the classes  $c_j \in C$ 

$$c_{MAP} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid x_1, x_2, \dots, x_n)$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, \dots, x_{n} \mid c_{j}) P(c_{j})}{P(x_{1}, x_{2}, \dots, x_{n})}$$

$$= \underset{c_j \in C}{\operatorname{argmax}} P(x_1, x_2, ..., x_n \mid c_j) P(c_j)$$

MAP is "maximum a posteriori" = most likely class

# Naive Bayes Classifier: Naive Bayes Assumption

- $\blacksquare P(c_i)$ 
  - Can be estimated from the frequency of classes in the training examples.
- $P(x_1, x_2, \dots, x_n/c_i)$ 
  - $\bullet$  O( $|X|^{n_{\bullet}}|C|$ ) parameters
  - Could only be estimated if a very, very large number of training examples was available.

#### Naive Bayes Conditional Independence Assumption:

Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities  $P(x_i|c_i)$ .

## The Naive Bayes Classifier



Conditional Independence Assumption: features detect term presence and are independent of each other given the class:

$$P(X_1, \dots, X_5 \mid C) = P(X_1 \mid C) \bullet P(X_2 \mid C) \bullet \dots \bullet P(X_5 \mid C)$$

## First Naive Bayes Model

- Model 1: Multivariate Bernoulli
  - One feature  $X_{w}$  for each word in dictionary
  - $X_w$  = true in document d if w appears in d
  - Naive Bayes assumption:
    - Given the document's topic, appearance of one word in the document tells us nothing about chances that another word appears
- Model Learning

$$\widehat{P}(X_w = true | c_j) =$$
fraction of documents of topic  $c_j$  in which word  $w$  appears

### Multivariate Bernoulli Model Learning the Model



- First attempt: maximum likelihood estimates
  - simply use the frequencies in the data

simply use the frequencies in the data 
$$\hat{P}(c_j) = \frac{N(C=c_j)}{N}$$
 
$$\hat{P}(X_i=t \mid c_j) = \frac{N(X_i=t,C=c_j)}{N(C=c_j)}$$

### Problem with Maximum Likelihood



$$P(X_1, \dots, X_5 \mid C) = P(X_1 \mid C) \bullet P(X_2 \mid C) \bullet \dots \bullet P(X_5 \mid C)$$

What if we have seen no training documents with the word muscle-ache and classified in the topic Flu?

$$\hat{P}(X_5 = t \mid C = Flu) = \frac{N(X_5 = t, C = Flu)}{N(C = Flu)} = 0$$

Zero probabilities cannot be conditioned away, no matter the other evidence!

$$\ell = \arg\max_{c} \hat{P}(c) \prod_{i} \hat{P}(X_{i} = t \mid c)$$

## Smoothing to Avoid Overfitting

$$\hat{P}(X_i = t \mid c_j) = \frac{N(X_i = t, C = c_j) + 1}{N(C = c_j) + k}$$
# of values of  $X_i$ 

### Second Model

- Model 2: Multinomial = Class conditional unigram
  - One feature  $X_i$  for each word position in document
    - feature's values are all words in dictionary
  - Value of X<sub>i</sub> is the word in position i
  - Naive Bayes assumption:
    - Given the document's topic, word in one position in the document tells us nothing about words in other positions
  - Second assumption:
    - Word appearance does not depend on position

$$P(X_i = w \mid c) = P(X_j = w \mid c)$$

for all positions i,j, word w, and class c

Just have one multinomial feature predicting all words

## Multinomial Naïve Bayes Model

$$\hat{P}(X_i = w \mid c_j) =$$
 fraction of times in which word  $w$  appears among all words in documents of topic  $c_j$ 

- Can create a mega-document for topic j by concatenating all documents in this topic
- Use frequency of w in mega-document

# Using Multinomial Naive Bayes Classifiers to Classify Text: Basic method

Attributes are text positions, values are words.

$$\begin{aligned} c_{NB} &= \operatorname*{argmax}_{c_j \in C} P(c_j) \prod_i P(x_i \mid c_j) \\ &= \operatorname*{argmax}_{c_j \in C} P(c_j) P(x_1 = \text{"our"} \mid c_j) \cdots P(x_n = \text{"text"} \mid c_j) \end{aligned}$$

- Still too many possibilities
- Assume that classification is independent of the positions of the words
  - Use same parameters for each position
  - Result is bag of words model

## Multinomial Naive Bayes: Learning

- From training corpus, extract Vocabulary
- Calculate required  $P(c_i)$  and  $P(x_k / c_i)$  terms
  - For each  $c_i$  in C do
    - $docs_j \leftarrow$  subset of documents for which the target class is  $c_i$

• 
$$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$

- Text<sub>i</sub> ← single document containing all docs<sub>i</sub>
- For each word  $x_k$  in *Vocabulary* 
  - $n_k \leftarrow$  number of occurrences of  $x_k$  in  $Text_i$

$$P(x_k \mid c_j) \leftarrow \frac{n_k + 1}{n + |Vocabulary|}$$

## Multnomial Naive Bayes: Classifying

- positions ← all word positions in current document which contain tokens found in Vocabulary
- Return  $c_{NB}$ , where

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$

## Multnomial Naive Bayes: Example

|              | docID | words in document           | in c = China? |
|--------------|-------|-----------------------------|---------------|
| Training set | 1     | Chinese Beijing Chinese     | yes           |
|              | 2     | Chinese Chinese Shanghai    | yes           |
|              | 3     | Chinese Macao               | yes           |
|              | 4     | Tokyo Japan Chinese         | no            |
| Test set     | 5     | Chinese Chinese Tokyo Japan | ?             |

$$P(c) = \frac{3}{4} \qquad P(\bar{c}) = \frac{1}{4}$$

$$P(\text{Chinese}|c) = \frac{(5+1)}{(8+6)} = \frac{6}{14} = \frac{3}{7} \qquad P(\text{Toyko}|c) = P(\text{Japan}|c) = \frac{(0+1)}{(8+6)} = \frac{1}{14}$$

$$P(\text{Chinese}|\bar{c}) = \frac{(1+1)}{(3+6)} = \frac{2}{9} \qquad P(\text{Toyko}|\bar{c}) = P(\text{Japan}|\bar{c}) = \frac{(1+1)}{(3+6)} = \frac{2}{9}$$

## Multnomial Naive Bayes: Example

$$P(c) = \frac{3}{4} \qquad \qquad P(\bar{c}) = \frac{1}{4}$$

$$P(\text{Chinese}|c) = \frac{(5+1)}{(8+6)} = \frac{6}{14} = \frac{3}{7}$$
  $P(\text{Toyk}o|c) = P(\text{Japan}|c) = \frac{(0+1)}{(8+6)} = \frac{1}{14}$ 

$$P(\text{Chinese}|\bar{c}) = \frac{(1+1)}{(3+6)} = \frac{2}{9}$$
  $P(\text{Toyk}o|\bar{c}) = P(\text{Japan}|\bar{c}) = \frac{(1+1)}{(3+6)} = \frac{2}{9}$ 

$$P(c|d_5) \propto \frac{3}{4} \cdot \left(\frac{3}{7}\right)^3 \cdot \frac{1}{14} \cdot \frac{1}{14} \approx 0.0003$$

$$P(\bar{c}|d_5) \propto \frac{1}{4} \cdot \left(\frac{2}{9}\right)^3 \cdot \frac{2}{9} \cdot \frac{2}{9} \approx 0.0001$$

The classifier assigns the test document to c = China

## Naive Bayes: Time Complexity

- Training Time:  $O(|D|L_{ave} + |C||V|)$  where  $L_{ave}$  is the average length of a document in D.
  - Assumes all counts are pre-computed in  $O(|D|L_{ave})$  time during one pass through all of the data.
  - Generally just  $O(|D|L_{ave})$  since usually  $|C||M| < |D|L_{ave}$
- Test Time:  $O(|C| L_t)$  where  $L_t$  is the average length of a test document.
- Very efficient overall, linearly proportional to the time needed to just read in all the data.

## Underflow Prevention: using logs

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} [\log P(c_j) + \sum_{i \in positions} \log P(x_i \mid c_j)]$$

Note that model is now just max of sum of weights...

## Naive Bayes Classifier

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} [\log P(c_j) + \sum_{i \in positions} \log P(x_i | c_j)]$$

- Simple interpretation: Each conditional parameter log P(x<sub>i</sub>|c<sub>j</sub>) is a weight that indicates how good an indicator x<sub>i</sub> is for c<sub>j</sub>.
- The prior  $\log P(c_j)$  is a weight that indicates the relative frequency of  $c_j$ .
- The sum is then a measure of how much evidence there is for the document being in the class.
- We select the class with the most evidence for it

## Feature Selection: Why?

- Text collections have a large number of features
  - 10,000 1,000,000 unique words ... and more
- May allow using a particular classifier feasible
  - Some classifiers can't deal with 100,000 of features
- Reduces training time
  - Training time for some methods is quadratic or worse in the number of features
- Can improve generalization (performance)
  - Eliminates noise features
  - Avoids overfitting

### Feature selection: how?

#### Two ideas:

- Hypothesis testing statistics:
  - Are we confident that the value of one categorical variable is associated with the value of another
  - Chi-square test (χ²)
- Information theory:
  - How much information does the value of one categorical variable give you about the value of another
  - Mutual information
- They're similar, but χ² measures confidence in association, (based on available statistics), while MI measures extent of association (assuming perfect knowledge of probabilities)

# $\chi^2$ statistic (CHI)

•  $\chi 2$  is interested in  $(f_o - f_e)^2/f_e$  summed over all table entries: is the observed number what you'd expect given the marginals?

$$\chi^{2}(j,a) = \sum (O-E)^{2} / E = (2-.25)^{2} / .25 + (3-4.75)^{2} / 4.75$$
$$+ (500-502)^{2} / 502 + (9500-9498)^{2} / 9498 = 12.9 \ (p < .001)$$

- The null hypothesis is rejected with confidence .999,
- since 12.9 > 10.83 (the value for .999 confidence).

|              | Term =<br>jaguar | Term ≠<br>jaguar | ·····expected: $f_e$ |
|--------------|------------------|------------------|----------------------|
| Class = auto | 2 (0.25)         | 500 (502)        | 502                  |
| Class ≠ auto | 3 (4.75)         | 9500 (9498)      | 9503 observed: $f_o$ |
|              | 5                | 10000            | 32                   |

# $\chi^2$ statistic (CHI)

There is a simpler formula for  $2x2 \chi^2$ :

$$\chi^{2}(t,c) = \frac{N \times (AD - CB)^{2}}{(A+C) \times (B+D) \times (A+B) \times (C+D)}$$

| A = #(t,c)          | $C = \#(\neg t, c)$        |
|---------------------|----------------------------|
| $B = \#(t, \neg c)$ | $D = \#(\neg t, \ \neg c)$ |

$$N = A + B + C + D$$

Value for complete independence of term and category?

# Feature selection via Mutual Information

- In training set, choose k words which best discriminate (give most info on) the categories.
- The Mutual Information between a word w and a class c is:

$$I(w,c) = \sum_{e_w \in \{0,1\}} \sum_{e_c \in \{0,1\}} p(e_w, e_c) \log \frac{p(e_w, e_c)}{p(e_w)p(e_c)}$$

where  $e_w = 1$  when the document contains the word w (0 otherwise);  $e_c = 1$  when the document is in class c (0 otherwise)

## Feature selection via MI (contd.)

- For each category we build a list of k most discriminating terms.
- For example (on 20 Newsgroups):
  - sci.electronics: circuit, voltage, amp, ground, copy, battery, electronics, cooling, ...
  - rec.autos: car, cars, engine, ford, dealer, mustang, oil, collision, autos, tires, toyota, ...
- Greedy: does not account for correlations between terms

#### Feature Selection

- Mutual Information
  - Clear information-theoretic interpretation
  - May select very slightly informative frequent terms that are not very useful for classification
- Chi-square
  - Statistical foundation
  - May select rare uninformative terms
- Just use the commonest terms?
  - No particular foundation
  - In practice, this is often 90% as good

## Feature selection for NB

- In general feature selection is necessary for multivariate Bernoulli NB.
- Otherwise you suffer from noise, multi-counting
- "Feature selection" really means something different for multinomial NB. It means dictionary truncation
  - The multinomial NB model only has 1 feature
- This "feature selection" normally isn't needed for multinomial NB, but may help a fraction with quantities that are badly estimated

## **Evaluating Categorization**

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
  - Sometimes use cross-validation (averaging results over multiple training and test splits of the overall data)
- It's easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set).
- Measures: precision, recall, F1, classification accuracy
- Classification accuracy: c/n where n is the total number of test instances and c is the number of test instances correctly classified by the system.
  - Adequate if one class per document
  - Otherwise F measure for each class

## Naive Bayes vs. other methods

| (a)                     |                           | NB | Rocchio | kNN |       | SVM |
|-------------------------|---------------------------|----|---------|-----|-------|-----|
|                         | micro-avg-L (90 classes)  | 80 | 85      | 86  |       | 89  |
|                         | macro-avg (90 classes)    | 47 | 59      | 60  |       | 60  |
|                         |                           |    |         |     |       |     |
| (b)                     |                           | NB | Rocchio | kNN | trees | SVM |
|                         | earn                      | 96 | 93      | 97  | 98    | 98  |
|                         | acq                       | 88 | 65      | 92  | 90    | 94  |
|                         | money-fx                  | 57 | 47      | 78  | 66    | 75  |
|                         | grain                     | 79 | 68      | 82  | 85    | 95  |
|                         | crude                     | 80 | 70      | 86  | 85    | 89  |
|                         | trade                     | 64 | 65      | 77  | 73    | 76  |
|                         | interest                  | 65 | 63      | 74  | 67    | 78  |
|                         | ship                      | 85 | 49      | 79  | 74    | 86  |
|                         | wheat                     | 70 | 69      | 77  | 93    | 92  |
|                         | corn                      | 65 | 48      | 78  | 92    | 90  |
|                         | micro-avg (top 10)        | 82 | 65      | 82  | 88    | 92  |
|                         | micro-avg-D (118 classes) | 75 | 62      | n/a | n/a   | 87  |
| Evaluation management E |                           |    |         |     |       |     |

Evaluation measure:  $F_1$ 

Naive Bayes does pretty well, but some methods beat it consistently (e.g., SVM).

## WebKB Experiment (1998)

- Classify webpages from CS departments into:
  - student, faculty, course, project
- Train on ~5,000 hand-labeled web pages
  - Cornell, Washington, U.Texas, Wisconsin
- Crawl and classify a new site (CMU)



#### Results:

|           | Student | Faculty | Person | Project | Course | Departmt |
|-----------|---------|---------|--------|---------|--------|----------|
| Extracted | 180     | 66      | 246    | 99      | 28     | 1        |
| Correct   | 130     | 28      | 194    | 72      | 25     | 1        |
| Accuracy: | 72%     | 42%     | 79%    | 73%     | 89%    | 100%     |

# NB Model Comparison: WebKB



#### Faculty

| associate | 0.00417 |  |  |
|-----------|---------|--|--|
| chair     | 0.00303 |  |  |
| member    | 0.00288 |  |  |
| рħ        | 0.00287 |  |  |
| director  | 0.00282 |  |  |
| fax       | 0.00279 |  |  |
| journal   | 0.00271 |  |  |
| recent    | 0.00260 |  |  |
| received  | 0.00258 |  |  |
| award     | 0.00250 |  |  |

#### Students

| resume    | 0.00516 |  |  |  |
|-----------|---------|--|--|--|
| advisor   | 0.00456 |  |  |  |
| student   | 0.00387 |  |  |  |
| working   | 0.00361 |  |  |  |
| stuff     | 0.00359 |  |  |  |
| links     | 0.00355 |  |  |  |
| homepage  | 0.00345 |  |  |  |
| interests | 0.00332 |  |  |  |
| personal  | 0.00332 |  |  |  |
| favorite  | 0.00310 |  |  |  |

#### Courses

|   | Courses     |         |  |  |  |
|---|-------------|---------|--|--|--|
| ſ | homework    | 0.00413 |  |  |  |
|   | syllabus    | 0.00399 |  |  |  |
|   | assignments | 0.00388 |  |  |  |
|   | exam        | 0.00385 |  |  |  |
|   | grading     | 0.00381 |  |  |  |
|   | midterm     | 0.00374 |  |  |  |
|   | рm          | 0.00371 |  |  |  |
| ĺ | instructor  | 0.00370 |  |  |  |
|   | due         | 0.00364 |  |  |  |
|   | final       | 0.00355 |  |  |  |

#### Departments

| departmental | 0.01246 |
|--------------|---------|
| colloquia    | 0.01076 |
| epartment    | 0.01045 |
| seminars     | 0.00997 |
| schedules    | 0.00879 |
| webmaster    | 0.00879 |
| events       | 0.00826 |
| facilities   | 0.00807 |
| eople        | 0.00772 |
| postgraduate | 0.00764 |

#### Research Projects

| investigators | 0.00256 |  |  |
|---------------|---------|--|--|
| group         | 0.00250 |  |  |
| members       | 0.00242 |  |  |
| researchers   | 0.00241 |  |  |
| laboratory    | 0.00238 |  |  |
| develop       | 0.00201 |  |  |
| related       | 0.00200 |  |  |
| arpa          | 0.00187 |  |  |
| affiliated    | 0.00184 |  |  |
| project       | 0.00183 |  |  |

#### Others

| Omera . |         |  |  |
|---------|---------|--|--|
| type    | 0.00164 |  |  |
| jan     | 0.00148 |  |  |
| enter   | 0.00145 |  |  |
| random  | 0.00142 |  |  |
| program | 0.00136 |  |  |
| net     | 0.00128 |  |  |
| time    | 0.00128 |  |  |
| format  | 0.00124 |  |  |
| access  | 0.00117 |  |  |
| begin   | 0.00116 |  |  |

# Naive Bayes on spam email



## SpamAssassin

- Naive Bayes has found a home in spam filtering
  - Paul Graham's A Plan for Spam
    - A mutant with more mutant offspring...
  - Naive Bayes-like classifier with weird parameter estimation
  - Widely used in spam filters
    - Classic Naive Bayes superior when appropriately used
      - According to David D. Lewis
  - But also many other things: black hole lists, etc.
- Many email topic filters also use NB classifiers

## Violation of NB Assumptions

- The independence assumptions do not really hold of documents written in natural language.
  - Conditional independence
  - Positional independence

# Naive Bayes Posterior Probabilities

- Classification results of naive Bayes (the class with maximum posterior probability) are usually fairly accurate.
- However, due to the inadequacy of the conditional independence assumption, the actual posteriorprobability numerical estimates are not.
  - Output probabilities are commonly very close to 0 or 1.
- Correct estimation ⇒ accurate prediction, but correct probability estimation is NOT necessary for accurate prediction (just need right ordering of probabilities)

## Naive Bayes is Not So Naive

 Naive Bayes won 1<sup>st</sup> and 2<sup>nd</sup> place in KDD-CUP 97 competition out of 16 systems

Goal: Financial services industry direct mail response prediction model: Predict if the recipient of mail will actually respond to the advertisement – 750,000 records.

- More robust to irrelevant features than many learning methods Irrelevant Features cancel each other without affecting results Decision Trees can suffer heavily from this.
- More robust to concept drift (changing class definition over time)
- Very good in domains with many <u>equally important</u> features
   Decision Trees suffer from *fragmentation* in such cases especially if little data
- A good dependable baseline for text classification (but not the best)!
- Optimal if the Independence Assumptions hold: Bayes Optimal Classifier
   Never true for text, but possible in some domains
- Very Fast Learning and Testing (basically just count the data)
- Low Storage requirements

### Resources

- Fabrizio Sebastiani. Machine Learning in Automated Text Categorization. ACM Computing Surveys, 34(1):1-47, 2002.
- Yiming Yang & Xin Liu, A re-examination of text categorization methods. *Proceedings of SIGIR*, 1999.
- Andrew McCallum and Kamal Nigam. A Comparison of Event Models for Naive Bayes Text Classification. In AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.
- Tom Mitchell, Machine Learning. McGraw-Hill, 1997.
  - Clear simple explanation of Naive Bayes
- Open Calais: Automatic Semantic Tagging
  - Free (but they can keep your data), provided by Thompson/Reuters (ex-ClearForest)
- Weka: A data mining software package that includes an implementation of Naive Bayes
- Reuters-21578 the most famous text classification evaluation set
  - Still widely used by lazy people (but now it's too small for realistic experiments – you should use Reuters RCV1)