## Module-Test-6 (Physics-NEET)

December 17, 2022

33. In the arrangement shown in figure, the ratio of tensions in the strings attached with 4kg block and that with 1kg block is



a) 2:1

b) 4:1 *Ans*.

c) 1:2

- d) 1:4
- 34. Problems of non-intertial frames can be solved only with the concept of pseudo force.
  - a) Above statement is wrong Ans.
  - b) Above statement is right
  - c) Can't say anything
  - d) Above statement is right for some cases and wrong for some cases
- 35. A particle is dropped from a height *h*. Another particle which is initially at a horizontal distance *d* from the first is simultaneously projected with a horizontal velocity u and the two particles just collide on the ground. Then
  - a)  $d^2 = \frac{u^2h}{2h}$

b)  $d^2 = \frac{2u^2h}{g}$  Ans.

c) d = h

d)  $g d^2 = u^2 h$ 

**Section-B** 

1. The acceleration of the  $2\,kg$  block, if the free end of string is pulled with a force of  $20\,N$  as shown, is



a) zero

b)  $10 \,\mathrm{m\,s^{-2}}$  upward Ans.

c) 5 m s<sup>-2</sup> upward

- d) 5 m s<sup>-2</sup> downward
- 2. Two bodies of masses  $m_1$  and  $m_2$  are connected by a light string which passes over a frictionless massless pulley. If the pulley is moving upward with uniform acceleration g/2 then tension in the string will be

- a)  $\frac{3m_1m_2}{m_1+m_2}g \quad Ans.$

- b)  $\frac{m_1 + m_2}{4m_1m_2}g$
- d)  $\frac{m_1 m_2}{m_1 + m_2} g$
- 3. Consider the situation shown in figure. Both the pulleys 2 kg and the string are light and all the surfaces are smooth. The acceleration of 1 kg block is



- a)  $\frac{g}{3} \,\text{m}\,\text{s}^{-2}$
- c)  $\frac{4g}{3}$  m s<sup>-2</sup>

- b)  $\frac{2g}{3} \text{ m s}^{-2}$  Ans. d)  $\frac{6g}{3} \text{ m s}^{-2}$
- 4. Find the relation between  $a_1$ ,  $a_2$  and  $a_3$  where  $a_1$ ,  $a_2$  and  $a_3$  are accelerations of the blocks 1, 2 and 3.



- a)  $2a_1 + a_2 + a_3 = 0$  Ans.
- c)  $a_1 + a_2 + 2a_3 = 0$

- b)  $a_1 + 2a_2 + a_3 = 0$
- d)  $a_1 + a_2 + a_3 = 0$
- 5. In the figure shown,  $a_3 = 6 \,\mathrm{m\,s^{-2}}$  (downwards) and  $a_2 = 4 \,\mathrm{m\,s^{-2}}$  (upwards). The acceleration of 1 is



- a)  $1 \,\mathrm{m}\,\mathrm{s}^{-2}$  downward
- c)  $1 \,\mathrm{m}\,\mathrm{s}^{-2}$  upward Ans.

- b) 2 m s<sup>-2</sup> upward
- d) 2 m s<sup>-2</sup> downward
- 6. Three blocks of masses 3kg, 2kg and 1kg are placed side by side on a smooth surface as shown in figure. A horizontal force of 12N is applied on 3kg block. The net force on 2kg block is



a) 2N

b) 3N

c) 4N Ans.

- d) 5N
- 7. The surface is frictionless, the ratio between  $T_1$  and  $T_2$  is



a)  $\sqrt{3}:1$ 

b)  $1:\sqrt{3}$ 

c) 1:5 *Ans*.

- d) 5:1
- 8. Find the relation between  $a_1$  and  $a_2$  .



a)  $a_1 + 7a_2 = 0$ 

b)  $7a_1 + a_2 = 0$  Ans.

c)  $3a_1 + a_2 = 0$ 

- d)  $a_1 + 3a_2 = 0$
- 9. Find the force exerted by 5 kg block on floor of lift, as shown in figure. (Take,  $g=10\,\mathrm{m\,s^{-2}}$ )



10. In the pulley-block arrangement shown in figure, find relation between  $a_A$ ,  $a_B$  and  $a_C$ .



a) 
$$2a_A + a_B + a_C = 0$$
 *Ans.*

c) 
$$a_A + 2a_B + a_C = 0$$

b) 
$$a_A + a_B + a_C = 0$$

d) 
$$a_A + a_B + 2a_C = 0$$

11. The acceleration of particle varies with time as shown. Then the expression of v as a function of time t is



a) 
$$v = t^2 - 2t$$
 Ans.

c) 
$$v = -t^2 + 2t$$

b) 
$$v = t^2 + 2t$$

d) 
$$v = -t^2 - 2t$$

12. A projectile is projected with speed u at an angle of 60° with horizontal from the foot of an inclined plane. If the projectile hits the inclined plane horizontally, the range on inclined plane will be

a) 
$$\frac{u^2\sqrt{21}}{2g}$$

$$\frac{u^2}{u^2}$$

c) 
$$\frac{u^2}{2g}$$

b) 
$$\frac{3u^2}{4g}$$

b) 
$$\frac{3u^2}{4g}$$
  
d)  $\frac{u^2\sqrt{21}}{8g}$  Ans.

13. A particle starts from the origin of coordinates at time t = 0 and moves in the xy plane with a constant acceleration  $\alpha$  in the y-direction. Its equation of motion is  $y = \beta x^2$ . Its velocity component in the x-direction

a) variable

b) 
$$\sqrt{\frac{2a}{\beta}}$$

c) 
$$\frac{\alpha}{2\beta}$$

d) 
$$\sqrt{\frac{\alpha}{2\beta}}$$
 Ans.

14. At a height of 15 m from ground velocity of a projectile is  $\vec{v} = (10\hat{i} + 10\hat{j})$ . Here,  $\hat{j}$  is vertically upwards and  $\hat{i}$  is along horizontal direction then  $(g = 10 \,\mathrm{m \, s^{-2}})$ 

- a) particle was projected at an angle of 45° with horizontal
- b) time of flight of projectile is 4s Ans.
- c) horizontal range of projectile is 100 m
- d) maximum height of projectile from ground is 20 m Ans.
- 15. The velocity of a particle depends on time t as v = t 1, finds the displacement covered by the particle during t = 1 to t = 3 seconds.



- a) 0
- c) -2m

- b) 2*m* Ans.
- d) None of these