Lecture 5 Asymptotic Normality

IEMS 402 Statistical Learning

Bias

Lemma 3 The bias of \widehat{p}_h satisfies:

$$\sup_{p \in \Sigma(\beta, L)} |p_h(x) - p(x)| \le ch^{\beta} \tag{14}$$

for some c.

Proof. We have

$$|p_{h}(x) - p(x)| = \int \frac{1}{h^{d}} K(\|u - x\|/h) p(u) du - p(x)$$

$$= \left| \int K(\|v\|) (p(x + hv) - p(x)) dv \right|$$

$$\leq \left| \int K(\|v\|) (p(x + hv) - p_{x,\beta}(x + hv)) dv \right| + \left| \int K(\|v\|) (p_{x,\beta}(x + hv) - p(x)) dv \right|.$$

The first term is bounded by $Lh^{\beta} \int K(s)|s|^{\beta}$ since $p \in \Sigma(\beta, L)$. The second term is 0 from the properties on K since $p_{x,\beta}(x+hv)-p(x)$ is a polynomial of degree β (with no constant term). \square

Variance

Lemma 4 The variance of \widehat{p}_h satisfies:

$$\sup_{p \in \Sigma(\beta, L)} \operatorname{Var}(\widehat{p}_h(x)) \le \frac{c}{nh^d}$$
 (15)

for some c > 0.

Proof. We can write $\widehat{p}(x) = n^{-1} \sum_{i=1}^n Z_i$ where $Z_i = \frac{1}{h^d} K\left(\frac{\|x - X_i\|}{h}\right)$. Then,

$$\operatorname{Var}(Z_{i}) \leq \mathbb{E}(Z_{i}^{2}) = \frac{1}{h^{2d}} \int K^{2} \left(\frac{\|x - u\|}{h}\right) p(u) du = \frac{h^{d}}{h^{2d}} \int K^{2} (\|v\|) p(x + hv) dv$$

$$\leq \frac{\sup_{x} p(x)}{h^{d}} \int K^{2} (\|v\|) dv \leq \frac{c}{h^{d}}$$

for some c since the densities in $\Sigma(\beta, L)$ are uniformly bounded. The result follows. \square

Why our result is optimal in 1d

http://www.stat.yale.edu/~yw562/teaching/it-stats.pdf

Lecture 2.2

Not Required

Why our result is optimal in 1d

https://web.stanford.edu/class/ee378c/lecture7 annotated.pdf

Not Required

Ok... Interpolation...(1-NN)

Xing Y, Song Q, Cheng G. Benefit of interpolation in nearest neighbor algorithms. SIAM Journal on Mathematics of Data Science, 2022, 4(2): 935-956.

Open Questions

Bias computation on manifold: Section 8.1 in https://arxiv.org/abs/2407.09286

LLM learns "Optimized" Kernel

https://arxiv.org/pdf/2410.05218

Delta Methods

https://web.stanford.edu/class/stats300b/ScribeNotes/2021/lecture-03.pdf https://web.stanford.edu/class/stats300b/ScribeNotes/2021/lecture-04.pdf

Aim of asymptotic theory

Estimator using n data

$$r_n(T_n - \theta) \to T$$

 $r_n \to \infty$ is determinitstic

Asymptotic distribution

Delta Methods

from centeral limit teheorem we know $r_n(T_n - \theta) \rightarrow T$

Question: What is the asymptotic distribution of $\Phi(T_n)$

Idea: Taylor Expansion

Delta method

Thm If
$$r_n(T_n - \theta) \to T$$
, then $r_n(\Phi(T_n) - \Phi(\theta)) \to \phi'(\theta)T$

Jacobian Matrix
$$[\Phi'(\theta)]_{ij} = \frac{\partial \phi_i(\theta)}{\partial \theta_i}$$

Homework 4!

Example

Example (The delta method for quadratics)

Assume $X_i \stackrel{\text{iid}}{\sim} P$ with $\mathbb{E}[X] = \theta \neq 0$, $Cov(X) = \Sigma$, and set $\phi(h) = \frac{1}{2} \|h\|_2^2$. Then

$$\sqrt{n} \left(\frac{1}{2} \left\| \frac{1}{n} \sum_{i=1}^{n} X_{i} \right\|_{2}^{2} - \frac{1}{2} \left\| \theta \right\|_{2}^{2} \right) \stackrel{d}{\to} \mathcal{N} \left(0, \theta^{T} \Sigma \theta \right)$$

Example

Example (Delta method for sample variance)

For X_i i.i.d. with $\operatorname{Var}(X_i) = \sigma^2$ and $\mathbb{E}[X_i^4] < \infty$, let

$$S_n^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}_n^2.$$

Then for $\phi(x,y) = y - x^2$ we have $S_n^2 = \phi(\overline{X}_n, \overline{X}_n^2)$, and

$$\sqrt{n}(S_n^2 - \sigma^2) \stackrel{d}{\to} \mathcal{N}\left(0, \mathbb{E}[X^4] - \mathbb{E}[X^2]^2\right) \stackrel{\text{dist}}{=} \mathcal{N}\left(0, \text{Var}(X^2)\right).$$

Higher-Order Delta Method

What happens if $\phi'(\theta) = 0$?

$$r_n^2(\Phi(T_n) - \Phi(\theta)) \to \frac{1}{2}T^\top \nabla^2 \Phi(\theta)T$$

Example

recall KL-divergence between distributions

$$D_{\mathsf{kl}}\left(P\|Q
ight) := \int dP \log rac{dP}{dQ} = \int p \log rac{p}{q} d\mu$$

Example

Let $X_i \in \{0,1\}$, $X_i \sim P_\theta := \mathsf{Bernoulli}(\theta)$ (i.e. $\mathbb{E}[X_i] = \theta$). For $\widehat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$,

$$nD_{\mathsf{kl}}\left(P_{\widehat{\theta}_n}\|P_{\theta}\right) \stackrel{d}{\to} \frac{1}{2}W^2 \text{ and } nD_{\mathsf{kl}}\left(P_{\theta}\|P_{\widehat{\theta}_n}\right) \stackrel{d}{\to} \frac{1}{2}W^2$$

for $W \sim \mathcal{N}(0,1)$

Asymptotic Normality

Asymptotic Theory for ERM?

what is the asymptotic distribution of $\hat{\theta}_n := \arg\min \mathbb{E}_{P_n} l_{\theta}(x)$

For example: maximum likelihood $l_{\theta}(x) := \log P_{\theta}(x)$

$$\textbf{Today's AIM:} \sqrt{n}(\hat{\theta}_n - \theta^*) \rightarrow N(0, e'(\theta^*)^{-1} e' \mathbb{E}_{P_\theta^*} (\nabla l \, \nabla l^\top) \theta^*)^{-\top}) \text{ where } e(\theta) = \mathbb{E}_{P_\theta^*} \nabla^2 l_\theta = \mathbb{E}_{P_\theta^*} \nabla^2 l_\theta$$

Asymptotic theory

Theorem

Let $X_i \stackrel{\text{iid}}{\sim} P_{\theta_0}$ and assume $\widehat{\theta}_n = \operatorname{argmax}_{\theta} P_n \ell_{\theta}(X)$ is consistent. Define the covariance

$$\Sigma_{ heta} := (P_{ heta}
abla^2 \ell_{ heta}(X))^{-1} \mathsf{Cov}_{ heta}(
abla \ell_{ heta}(X)) (P_{ heta}
abla^2 \ell_{ heta}(X))^{-1}$$

Under the previous assumptions,

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \stackrel{d}{\rightarrow} \mathcal{N}(0, \Sigma_{\theta_0})$$

• "typically" $\Sigma_{ heta} = -(P_{ heta}
abla^2 \ell_{ heta}(X))^{-1} = \mathsf{Cov}_{ heta}(\dot{\ell}_{ heta})$

Bias-variance trade-off in Asymptotic?

Not Required

Duchi J, Ruan F. Asymptotic optimality in stochastic optimization. arXiv preprint arXiv:1612.05612, 2016.

Moment Estimator

if we know $e(\theta) = \mathbb{E}_{X \sim P_{\theta}}[F(X)]$, we define $e(\hat{\theta}_n) = \mathbb{E}_{\mathbb{P}_n}f(X)$

Inverse Function Theorem

$$(F^{-1})'(t) = \frac{\partial}{\partial t}F^{-1}(t) = (F'(F^{-1}(t)))^{-1}.$$

Hints for future research

$$f(\theta) = \arg\min_{f} F_{\theta}(f)$$
, What is $f'(\theta)$?

Not Required

Exponential Family

Definition 3.1. $\{P_{\theta}\}_{{\theta}\in\Theta}$ is a regular exponential family if there is a sufficient statistic $T: \mathcal{X} \to \mathbb{R}^d$ such that P_{θ} has density

$$P_{\theta} = exp(\theta^T T(x) - A(\theta))$$

with respect to μ , where $A(\theta) = \log \int e^{\theta^T T(x)} d\mu(x)$.

Fact: Moment estimator for exp family using moment T equals to ERM estimator