

The control of insulin secretion (exocytosis) in pancreatic β cells.

Peter Thorn

Lecture 1 Outline

• Regulation of insulin secretion in healthy and diseased β cells.

27/03/2017 - pancreas responds to increased glucose, releases insulin (circulating hormone) - which promotes glucose uptake and glucose storage, which brings glucose back down.

Fusion: docking and priming SNARE hypothesis - fusion of membrane compartments require proteins on both membrane compartments - in beta cell, insulin containing granules fuse with the cell membrane common proteins on target membrane and membrane of granule (VAMP = Vesicle associated

Two key unknowns:

timing of everything

- Temporal complexity
- everything in their correct place Spatial complexity

yellow = where beta cell touches blood vessel - discrete points of contact with beta cell ==> \sim 11% of area in contact with blood vessel

blue = nucleus of betea cell

Beta cells make spatially discrete contact with the Vasculature.

spontaneous mutation in the leptin receptor

Db/db model of type 2 diabetes

every single step breaks down in diabetes done in mouse islets

4. Decrease in insulin content

Db/db loss of beta cells

immunostaining, a lot mor einsulin in control cell vs. in a diabetic insulin cell.

control

Alteration of Islet Cell Populations in Spontaneously Diabetic Mice

D. Baetens, M.D., Y. Stefan, Ph.D., M. Ravazzola, Ph.D., F. Malaisse-Lagae, M.D., D. L. Coleman, Ph.D., * and L. Orci, M.D., Geneva, Switzerland, and Bar Harbor, Maine*

4. Decrease in insulin content

		Pancreatic weight (g)	Pancreatic insulin content (mg)
control db/db	Control mice 5 wk	0.16 ± 0.01 (5)	14.7 ± 2.1 (5)
	10 wk	0.24 ± 0.01 (5)	24.9 ± 3.4 (5)
	13 wk Unrestricted diabetic mice	0.30 ± 0.01 (5)	$34.6 \pm 4.8 (5)$
	5 wk	0.18 ± 0.01 (5)	$8.9 \pm 0.5 (5) \dagger$
	10 wk 13 wk	0.28 ± 0.01 (5)* 0.27, 0.23†	4.4 ± 1.0 (5)* 1.4, 4.3*

