WHAT IS CLAIMED IS:

SulpAi

1. A high weather and chemical resistant, addition-crosslinkable, epoxy-functional organopolysiloxane resin which contains at least one or more of the repeating units having the formulae:

$$E_a R_b^1 R_c^2 SiO_{\frac{1}{2}} \qquad \text{(M units)}$$

$$E_a R_b^1 R_c^2 SiO_{\frac{2}{2}}$$
 (D units)

$$E_a R_b^1 R_c^2 SiO_{\frac{3}{2}} \qquad \text{(T units)}$$

$$SiO_4$$
 (Q units)

4 wherein

5

6

7

8

9

10

11

12

13

E is an epoxy-functional C_{1-18} hydrocarbon group containing one or more oxygen atoms, provided that no oxygen atom is directly bonded to a Si- atom; and

 R^1 and R^2 are independently a C_{1-20} hydrocarbon, optionally interspersed with a heteroatom linking group;

a is an integer of 0, 1, or \mathfrak{P} ;

b is an integer of 0, 1, 2 or 3;

c is an integer of 0, 1, 2 or 3, and

in M units, a+b+c=3,

in D units, a+b+c=2,

in T units, a+b+c=1,

7 15 16 16 17 18

wherein

and.

1

2

1

2

3

1

1

2

the M units are present in less than about 40 mole percent; the D units are present in an amount of up to about 40 mole percent;

the molecule, on average, contains at least two E components.

- 2. The resin of claim 1 wherein the hydrocarbon group of E comprises a C_{3-12} hydrocarbon group.
- The resin of claim 1 wherein the epoxy-functional organopolysiloxane resin has an alkoxy content of less than about 20 weight percent, based on the weight of the epoxy-functional organopolysiloxane resin.
 - 4. The resin of claim 1 wherein the epoxy-functional organopolysiloxane resin has an epoxy equivalent weight in the range of about 150-1000.
- 5. The resin of claim 2 wherein the epoxy-functional organopolysiloxane resin has an epoxy equivalent weight in the range of about 200-3 600.
- 1 6. The resin of claim 5 wherein the epoxy-functional organopolysiloxane resin has a viscosity in the range of about 200-70,000 cps at 25°C.
 - 7. The resin of claim 6 wherein the E is glycidoxypropyl

8. The resin of claim 6 wherein the epoxy-functional organopolysiloxane resin comprises T units and the T units include structures

- selected from the group consisting of silsequioxane and polysilsesquioxane structures.
- 1 9. The resin of claim 1 wherein the resin has a molecular weight between about 750 and 25,000.
- 1 10. The resin of claim 1 wherein the epoxy-functional organopolysiloxane resin is prepared by reacting a silicone resin with a silane having at least one epoxy group per molecule.
- 1 The resin of claim 10 wherein the silane is represented by the formula:

$$R^{5}$$
 R^{5}
 R^{5}
 R^{5}
 R^{5}

- wherein each R^5 is individually selected from the group consisting of alkyl (C_{1-12}) , aryl (C_{6-9}) , vinyl, glycol, alkoxy (C_{1-12}) , and an epoxy functional C_{1-18} hydrocarbon group of the formula R^6 E^1 wherein E^1 comprises an epoxy group and R^6 comprises a C_{1-18} hydrocarbon group optionally interspersed with at least one heteroatom linking group, with the proviso that at least one R^5 comprises R^6 E^1 .
- 1 12. The resin of claim 1) wherein the heteroatom linking group, 2 if present, is not adjacent to the E¹ group.
- 1 13. The resin of claim 11 wherein the hydrocarbon group of the R⁶ comprises a C₃₋₁₂ hydrocarbon group.
- 1 14. The resin of claim 11 wherein the silane has a molecular weight in the range of about 100 to about 750.

1

- 15. The resin of claim 14 wherein the silane has an epoxyfunctionality in the range of about 1 to about 4.
- 1 16. The resin of claim 15 wherein the silane has an alkoxy 2 functionality in the range of about 1 to about 4.
 - 17. The resin of claim 13 wherein R^6 - E^1 is glycidoxypropyl

 $(CH_2 \leftarrow CHCH_2OCH_2CH_2CH_2 -).$

- 1 18. The resin of claim 11 wherein the silane a γ-2 glycidoxypropylsilane having C₁₂ alkoxygroups.
- 1 19. The resin of claim 10 wherein the silicone has a molecular weight in the range of about 300 to about 15000.
- 1 20. The resin of claim 7 wherein the resin comprises about 70 mole percent T units and about 30 mole percent D Units.
- 1 21. The resin of claim 1 wherein the resin is a liquid and has a molecular weight of about 500-5,000.
- The resin of claim 21 wherein the resin has a molecular weight of about 1,200.
- The resin of claim 22 wherein the molecule contains at least three E components.

10

11

12

l		24. A	n epoxy-functional organopolysiloxane coating composition
2	comprising:		
,		a harden	ar\

an epoxy-functional organopolysiloxane resin which contains at least one or more of the repeating units having the formulae:

$$E_a R_b^1 R_c^2 SiO_{\frac{1}{2}} \qquad \text{(M units)}$$

$$E_a R_b^1 R_c^2 SiO_{\frac{2}{2}} \qquad \text{(D units)}$$

$$E_a R_b^1 R_c^2 SiO_{\frac{3}{2}} \qquad \text{(T units)}$$

wherein E is an epoxy-functional C_{1-18} hydrocarbon group containing one or more oxygen atoms, provided that no oxygen atom is directly bonded to a Si- atom; and R^1 and R^2 are independently a C_{1-20} hydrocarbon, optionally

interspersed with a heteroatom linking group;

units)

a is an integer of 0, 1, or 2;

b is an integer of 0, 1, 2 or 3;

c is an integer of 0, 1, 2 or 3; and

in M units, a+b+c=3,

in D units, a+b+c=2,

in T units, a+b+c=1,

17 wherein the M units are present in less than about 40 mole percent; 18 the D units are present in an amount of up to about 40 mole percent; 23

$$\begin{cases}
R^{5} \\
R^{5} \\
Si \\
R^{5}
\end{cases}$$

- wherein R⁵ are one of, or a combination of, the following groups alkyl (C₁₋₁₂), aryl 24 (C_{6-9}) , vinyl, glycol, alkoxy (C_{1-12}) , and an epoxy functional C_{1-18} hydrocarbon group 25 of the formula R⁶ - E¹ wherein R⁶ - E¹ comprises glycidoxypropyl 26
 - -CHCH₂Q(H₂CH₂CH₂H₂C--),
- with the proviso that at least one R^5 compaires R^6 E^1 . 27
- An epoxy-functional organopolysiloxane coating composition 25. 1 2 comprising:
- a hardener; 3
- an epoxy-functional organopoly iloxane resin which contains at least 4 one or more of the repeating units having the formulae: 5

$$E_a R_b^1 R_c^2 SiO_{\frac{1}{2}} \qquad \text{(M units)}$$

$$E_a R_b^1 R_c^2 SiO_{\frac{1}{2}} \qquad \text{(D units)}$$

$$E_a R_b^1 R_c^2 SiO_{\frac{3}{2}} \qquad \text{(T units)}$$

$SiO_{\frac{4}{2}}$	(Q units)
2	

		·		
6	wherein	E is an epoxy-functional C_{1-18} hydrocarbon group containing one or		
7		more oxygen atoms, provided that no oxygen atom is directly bonded		
8		to a Si- atom; and		
9		R^1 and R^2 are independently a C_{1-20} hydrocarbon, optionally		
10		interspersed with a heteroatom linking group;		
11		a is an integer of 0 , 1, or 2;		
12		b is an integer of \emptyset , 1, 2 or 3;		
13		c is an integer of 0 1, 2 or 3, preferably 0, 1, or 2; and		
14		in M units, $a+b+c=3$,		
15		in D units, $a + b + c \neq 2$,		
16		in T units, $a+b+c=1$		
17	wherein	the M units are present in less than about 40 mole percent;		
18		the D units are present in an amount up to about 40 mole percent; and		
19		with the proviso that the molecule, on average, contains at least two		
20	•	E components; and		
21		a flow additive;		
22		wherein the epoxy-functional organopolysiloxane resin is prepared by		
23	reacting a s	silicone resin with a silane represented by the formula:		

25 (C₆₋₉), vinyl, glycol, alkoxy (C \setminus_{-12}), and an epoxy functional C₁₋₁₈ hydrocarbon group

of the formula R⁶ - E¹ wherein R⁶ - E¹ comprises glycidoxypropyl

(CH₂+CHCH₂OCH₂CH₂CH₂---),

with the proviso that at least one R⁵ comprises R⁶ - E¹.