

Ouestion 11:

Show that the relation R in the set A of points in a plane given by $R = \{(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all point related to a point <math>P \neq (0, 0)$ is the circle passing through P with origin as centre.

Answer

 $R = \{(P, Q): \text{ distance of point } P \text{ from the origin is the same as the distance of point } Q \text{ from the origin}\}$

Clearly, $(P,P) \in R$ since the distance of point P from the origin is always the same as the distance of the same point P from the origin.

∴R is reflexive.

Now,

Let $(P, Q) \in R$.

 \Rightarrow The distance of point P from the origin is the same as the distance of point Q from the origin.

 \Rightarrow The distance of point Q from the origin is the same as the distance of point P from the origin.

 \Rightarrow (Q, P) \in R

∴R is symmetric.

Now,

Let $(P, Q), (Q, S) \in R$.

 \Rightarrow The distance of points P and Q from the origin is the same and also, the distance of points Q and S from the origin is the same.

 \Rightarrow The distance of points P and S from the origin is the same.

 $\Rightarrow (\mathsf{P},\,\mathsf{S})\in\mathsf{R}$

∴R is transitive.

Therefore, R is an equivalence relation.

The set of all points related to $P \neq (0, 0)$ will be those points whose distance from the origin is the same as the distance of point P from the origin.

In other words, if O (0, 0) is the origin and OP = k, then the set of all points related to P is at a distance of k from the origin.

Hence, this set of points forms a circle with the centre as the origin and this circle passes through point P.

Question 12:

Show that the relation R defined in the set A of all triangles as $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2\}$, is equivalence relation. Consider three right angle triangles T_1 with sides 3, 4, 5, T_2 with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1 , T_2 and T_3 are related?

Answer

 $\mathsf{R} \,=\, \{(T_{\mathbf{1}},\, T_{\mathbf{2}})\colon \, T_{\mathbf{1}} \text{ is similar to } T_{\mathbf{2}}\}$

R is reflexive since every triangle is similar to itself.

Further, if $(T_1, T_2) \in \mathbb{R}$, then T_1 is similar to T_2 .

 $\Rightarrow T_2$ is similar to T_1 .

 $\Rightarrow (T_2,\ T_1) \in \mathbb{R}$

∴R is symmetric.

Now,

Let $(T_1, T_2), (T_2, T_3) \in \mathbb{R}$.

 \Rightarrow T_1 is similar to T_2 and T_2 is similar to T_3 .

 $\Rightarrow T_1$ is similar to T_3 .

 $\Rightarrow (T_1, T_3) \in \mathbb{R}$

 $\stackrel{.}{.} \text{ R is transitive.}$

Thus, R is an equivalence relation.

Now, we can observe that:

$$\frac{3}{6} = \frac{4}{8} = \frac{5}{10} \left(= \frac{1}{2} \right)$$

..The corresponding sides of triangles T_1 and T_3 are in the same ratio.

Then, triangle $T_{\rm 1}$ is similar to triangle $T_{\rm 3}$.

Hence, T_1 is related to T_3 .

```
Question 13:
```

Show that the relation R defined in the set A of all polygons as $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?

Answer

 $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same the number of sides}\}$

R is reflexive since $(P_1, P_1) \in \mathbb{R}$ as the same polygon has the same number of sides with itself

Let $(P_1, P_2) \in \mathbb{R}$.

 \Rightarrow P_1 and P_2 have the same number of sides.

 \Rightarrow P_2 and P_1 have the same number of sides.

 $\Rightarrow (P_2,\,P_1) \in \mathsf{R}$

∴R is symmetric.

Now,

Let $(P_1, P_2), (P_2, P_3) \in \mathbb{R}$.

 \Rightarrow P_1 and P_2 have the same number of sides. Also, P_2 and P_3 have the same number of sides.

 \Rightarrow P_1 and P_3 have the same number of sides.

 $\Rightarrow (P_1, P_3) \in \mathbb{R}$

∴R is transitive.

Hence, R is an equivalence relation.

The elements in A related to the right-angled triangle (T) with sides 3, 4, and 5 are those polygons which have 3 sides (since T is a polygon with 3 sides).

Hence, the set of all elements in A related to triangle T is the set of all triangles.

Ouestion 14:

Let L be the set of all lines in XY plane and R be the relation in L defined as R = { (L_1, L_2) : L_1 is parallel to L_2 }. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

Answer

 $R = \{(L_1, L_2): L_1 \text{ is parallel to } L_2\}$

R is reflexive as any line L_1 is parallel to itself i.e., $(L_1, L_1) \in R$.

Now.

Let $(L_1, L_2) \in \mathbb{R}$.

 \Rightarrow L_1 is parallel to L_2 .

 \Rightarrow L_2 is parallel to L_1 .

 $\Rightarrow (L_2, L_1) \in \mathbb{R}$

 $\mathrel{\raisebox{.3ex}{$\scriptstyle .$}}$ R is symmetric.

Now,

Let (L_1, L_2) , $(L_2, L_3) \in \mathbb{R}$.

 \Rightarrow L_{1} is parallel to $L_{2}.$ Also, L_{2} is parallel to $L_{3.}$

 $\Rightarrow L_1$ is parallel to L_3 .

∴R is transitive.

Hence, R is an equivalence relation.

The set of all lines related to the line y = 2x + 4 is the set of all lines that are parallel to the line y = 2x + 4.

Slope of line y = 2x + 4 is m = 2

It is known that parallel lines have the same slopes.

The line parallel to the given line is of the form y = 2x + c, where $c \in \mathbf{R}$.

Hence, the set of all lines related to the given line is given by y=2x+c, where $c\in\mathbf{R}$.

Question 15

Let R be the relation in the set $\{1, 2, 3, 4\}$ given by R = $\{(1, 2), (2, 2), (1, 1), (4, 4)$

(1, 3), (3, 3), (3, 2). Choose the correct answer.

(A) R is reflexive and symmetric but not transitive.

(B) R is reflexive and transitive but not symmetric.(C) R is symmetric and transitive but not reflexive.

(D) R is an equivalence relation.

Answei

 $\mathsf{R} = \{(1,\,2),\,(2,\,2),\,(1,\,1),\,(4,\,4),\,(1,\,3),\,(3,\,3),\,(3,\,2)\}$

It is seen that $(a, a) \in \mathbf{R}$, for every $a \in \{1, 2, 3, 4\}$.

∴ R is reflexive.

It is seen that $(1, 2) \in R$, but $(2, 1) \notin R$.

∴R is not symmetric.

Also, it is observed that (a, b), $(b, c) \in \mathbb{R} \Rightarrow (a, c) \in \mathbb{R}$ for all $a, b, c \in \{1, 2, 3, 4\}$.

∴ R is transitive

Hence, R is reflexive and transitive but not symmetric.

The correct answer is ${\sf B}.$

Question 16:

Let R be the relation in the set **N** given by $R = \{(a, b): a = b - 2, b > 6\}$. Choose the correct answer.

(A) $(2, 4) \in R$ (B) $(3, 8) \in R$ (C) $(6, 8) \in R$ (D) $(8, 7) \in R$ Answer $\mathsf{R} = \{(a,b) \colon a = b-2, b > 6\}$ Now, since b > 6, $(2, 4) \notin R$ Also, as $3 \neq 8 - 2$, $(3, 8) \notin R$ And, as $8 \neq 7 - 2$... (8, 7) ∉ R Now, consider (6, 8). We have 8 > 6 and also, 6 = 8 - 2.

Exercise 1.2

Question 1:

∴(6, 8) ∈ R

The correct answer is C.

Show that the function $f: \mathbf{R}_* \to \mathbf{R}_*$ defined by $f(x) = \frac{1}{x}$ is one-one and onto, where \mathbf{R}_* is the set of all non-zero real numbers. Is the result true, if the domain $\mathbf{R}_{^{\bullet}}$ is replaced by \mathbf{N} with co-domain being same as \mathbf{R}_* ?

It is given that $f \colon \mathbf{R}_{\bullet} \to \mathbf{R}_{\bullet}$ is defined by $f(x) = \frac{1}{x}$.

$$f(x) = f(y)$$

$$\Rightarrow \frac{1}{x} = \frac{1}{y}$$

$$\Rightarrow x = y$$

 $\therefore f$ is one-one.

Onto:

 $x=\frac{1}{y}\in \mathbf{R}_{*}\;\left(\text{Exists as }y\neq 0\right)$ It is clear that for $y\in\mathbf{R}_{*},$ there exists

$$f(x) = \frac{1}{\left(\frac{1}{y}\right)} = y$$

f is onto.

Thus, the given function (f) is one-one and onto.

Now, consider function $g \colon \mathbf{N} \to \mathbf{R}_*$ defined by

$$g(x) = \frac{1}{x}$$
.

We have,

$$g(x_1) = g(x_2) \Rightarrow \frac{1}{x_1} = \frac{1}{x_2} \Rightarrow x_1 = x_2$$

∴g is one-one.

Further, it is clear that g is not onto as for 1.2 $\in \mathbf{R}_*$ there does not exit any x in \mathbf{N} such

that
$$g(x) = \frac{1}{1.2}$$
.

Hence, function g is one-one but not onto.