Mode for Grouped Data

Mode

- the measure or value which occurs most frequently in a set of data
- the value with the greatest frequency

To find the mode of grouped data, use:

$$\mathsf{Mode}\;(\hat{x}) = \mathit{Ib}_{mo} + \left[\frac{d_1}{d_1 + d_2}\right]i$$

where: lower boundary of the modal class

> d_1 difference between the frequencies of the modal class and the class preceding the modal class

difference between the frequencies of the modal d_2 class and the class succeeding the modal class

class interval

Practice Exercises

Calculate the mode for each frequency distribution table.

Mid-year Test Scores of Students in Math

Score	Frequency
41 – 45	1
36 – 40	8
31 – 35	8
26 – 30	14
21 – 25	7
16 – 20	2
Weights of 8–T	Toolo Studente

Compute the following.

- 1. *d*₁
- 2. d₂
- 3. Mode

Weight in kg	Frequency
40 – 44	1
45 – 49	14
50 – 54	15
55 – 59	21
60 - 64	14
65 – 69	10
70 – 74	4
75 – 79	1

Compute the following.

- 4. d₁
- 5. d_2
- Mode

Mode for Grouped Data

Mode

- the measure or value which occurs most frequently in a set of
- the value with the greatest frequency

To find the mode of grouped data, use:

$$\mathsf{Mode}\;(\hat{x}) = \mathit{Ib}_{mo} + \left[\frac{d_1}{d_1 + d_2}\right]i$$

 lb_{mo} where. lower boundary of the modal class

> difference between the frequencies of the d_1 modal class and the class preceding the modal class

 d_2 difference between the frequencies of the modal class and the class succeeding the modal class

class interval

Practice Exercises

Calculate the mode for each frequency distribution table.

Mid-year Test Scores of Students in

Score	Frequency
41 – 45	1
36 – 40	8
31 – 35	8
26 – 30	14
21 – 25	7
16 – 20	2

Compute the following.

- 1. d_1
- 2. d_2
- Mode

Weights of 8-Tesla Students

Weight in kg	Frequency
40 – 44	1
45 – 49	14
50 – 54	15
55 – 59	21
60 – 64	14
65 – 69	10
70 – 74	4
75 – 79	1

Compute the following.

- 4. *d*₁
- 5. d_2
- 6. Mode

Problem Set

Calculate the mode for each frequency distribution table.

Scores of 10-Tesla Students in the 4th Periodic Test in Mathematics

Score	Frequency
46 – 50	2
41 – 45	9
36 – 40	13
31 – 35	11
26 – 30	10
21 – 25	5

Number of Mistakes Made by 50 Students in Factoring Quadratic **Equations**

Number of Mistakes	Frequency
0 – 2	4
3 – 5	8
6 – 8	15
9 – 11	10
12 – 14	6
15 – 17	5
18 – 20	2
	-

Compute the following. 1. d₁

- 2. d_2
- Mode 3

Compute the following.

- 4. *d*₁
- 5. d_2
- 6. Mode

Problem Set

Calculate the mode for each frequency distribution table.

Scores of 10-Tesla Students in the 4th Periodic Test in Mathematics

Score	Frequency
46 – 50	2
41 – 45	9
36 – 40	13
31 – 35	11
26 – 30	10
21 – 25	5

Compute the following.

- 1. d_1
- 2. d_2
- 3. Mode

Number of Mistakes Made by 50 Students in Factoring Quadratic Equations

Number of Mistakes	Frequency
0 – 2	4
3 – 5	8
6 – 8	15
9 – 11	10
12 – 14	6
15 – 17	5
18 – 20	2

Compute the following.

- 4. d_1
- 5. d_2
- Mode