

Advanced PWM Power Controller

Features

- Simple Single-Loop Control Design
 - —Voltage-Mode PWM Control
- Excell Output Voltage Regulation
 - -PWM Output: ±1% Over Temperautre
- Fast Transient Response
 - -High-Bandwidth Error Amplifier
 - -Full 0% to 100% Duty Ratio
- 3-Bit Digital-to-Analog Output Voltage Selection
- Over-Voltage and Over-Current Fault Monitors
- Small Converter Size
 - -200kHz Free-Running Oscillator
 - -Programmable from 50KHz to 800KHz

Applications

- High-Power 5V to 3.xV (or below) DC-DC Regulators
- Low-Voltage Distributed Power Supplies
- VGA Card Power Regulation

General Description

The APW7016 provides a complete control and protection for a DC-DC converter optimized for high performance microprocessor applications. It is designed to drive two N-Channel MOSFETs in a synchronous-rectified buck topology. The APW7016 integrates output voltage control, monitoring and protection functions into a single Package.

The APW7016 includes a 3-bit digital-to-analog converter (DAC) that provides a easily adjustable and precisely output voltage from $1.3V_{\rm DC}$ to $1.65V_{\rm DC}$ in 0.05V steps. Any selected output voltage can be maintained within $\pm 1\%$ accuracy over temperature and line voltage variations.

With a 200kHz free-running triangle-wave oscillator and a error amplifier featuring a 15MHz unity-gain bandwidth and 6V/us slew rate inside the chip , APW7016 can implement a simple , single feedback loop , voltage-mode control topology with high transient performance.

The APW7016 also features with multiple protections against over-current and over-voltage conditions by inhibiting PWM operation. The APW7016 uses the $R_{\rm DS(ON)}$ of the upper MOSFET as the current sensing element which eliminates the demend for an extra component. The APW7016 also monitors the output voltage using a comparator with hysteresis that tracks the DAC output.

Pin Description

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

Ordering and Marking Information

Block Diagram

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
Vcc	Supply Voltage	15	V
V _{BOOT} -V _{PHASE}	Boot Voltage	15	V
V_{I}, V_{O}	Input, Output or I/O Voltage	GND - 0.3 V to V_{cc} + 0.3	V
T _A	Operating Ambient Temperature Range	0 to 70	°C
T _J	Junction Temperature Range	0 to 150	°C
T _{STG}	Storage Temperature Range	-65 to +150	°C
Ts	Soldering Temperature	300,10 seconds	°C

Thermal Characteristics

Symbol	Parameter	Value	Unit
R $_{\scriptscriptstyle \theta JA}$	Thermal Resistance in Free Air		
	SOP, SSOP	110	°C/W
	SOP (with 3in ² of Copper)	86	

Electrical Characteristics

Recommended operating conditions , unless otherwise noted

Cymhal	Parameter	Test Conditions	A	Unit		
Symbol			Min.	Тур.	Max.	Unit
V _{cc} Supply	Current				_	
I _{cc}	Nominal Supply	UGATE and LGATE open		3		mA
Power-on				_		
	Rising V _{cc} Threshold	Vocset=4.5V			10.7	V
	Falling V _{cc} Threshold	Vocset=4.5V	8.2			V
Oscillator						
	Free Running Frequency	RT= Open	185	200	215	kHz
ΔV_{osc}	Ramp Amplitude	RT= Open		2		V_{P-P}
Reference						
	DAC(VID0-VID2) Input Low Voltage				8.0	V
	DAC(VID0-VID2) Input High Voltage			3.0		V
	DACOUT Voltage accuracy		-1.0		+1.0	%
Error Amp	olifier					
	DC Gain			88		dB
GBW	Gain-Bandwidth Product			15		MHz
SR	Slew Rate	COMP=20pF		6		V/μs
PWM Con	troller Gate Driver					
R _{UGATE}	UGATE Source	V _{CC} =12V , V _{UGATE} =6V	350	500		mA
R _{UGATE}	UGATE Sink	V _{UGATE-PHASE} =1V		5.5	10	Ω
R _{LGATE}	LGATE Source	V_{CC} =12V , V_{LGATE} =1V	350	450		mA
R _{LGATE}	LGATE Sink	V _{LGATE} =1V		3.5	6.5	Ω
Protection	1					
	Over-Voltage Trip (V _{SEN} /DACOUT)			115	120	%
I _{OCSET}	OCSET Current Source	V _{OCSET} =4.5V _{DC}	170	200	230	μΑ
I _{SS}	Soft Start Current			10		μΑ

Pin Function Description

VSEN (pin 1)

Connect this pin to the converter's voltage output. The OVP comparator circuits monitor output voltage status and act over voltage protection by using this signal.

OCSET(pin 2)

Connect a resistor(R_{OCSET}) from this pin to the drain of the upper MOSFET. An internal 200 μ A current source (I_{OCS}), R_{OCSET} , and the upper MOSFET's onresistance ($R_{\text{DS(ON)}}$) set the converter over-current (OC) trip point according to the following equation :

$$I_{PEAK} = \frac{I_{OCSET} * R_{OCSET}}{r_{DS(ON)}}$$

An over-current trip resets the soft-start function.

SS (Pin 3)

Connect a capacitor from this pin to ground. This capacitor, along with an internal $10\mu A$ current source, sets the soft-start interval of the converter.

VID0-2 (Pins 4-6)

VID0-2 are the input pins to the 3-bit DAC. The states of these three pins decide the internal voltage reference (DACOUT). The level of DACOUT sets the converter output voltage and also sets the OVP thresholds. Table 1 specifies DACOUT for the 8 combinations of DAC inputs.

COMP (pin 7) and FB (pin 8)

COMP and FB are the accessiable pins of the error amplifier. FB pin is the inverting input of the error amplifier and COMP pin is output of the error amplifier. These pins provide the compensation for the voltage-control feedback loop of the converter.

GND (Pin 9)

GND is signal ground of the IC. All voltage levels are measured with respect to this pin.

PHASE (pin 10)

Connect the PHASE pin to the source of the upper MOSFET. This pin is used to monitor the voltage drop across the upper MOSFET for over-current protection.

UGATE (pin 11)

Connect UGATE to the upper MOSFET gate. This pin enables the gate drive signal to drive the upper MOSFET.

BOOT (pin 12)

BOOT pin provides bias voltage to the upper MOSFET gate driver. A bootstrap circuit could be used to pump a BOOT voltage for enforcing the driving capability of the gate driver and improving the performance of the upper MOSFET.

PGND(pin 13)

PGND pin provides the power ground connection. Connect this pin to the source of the lower MOSFET.

LGATE (pin 14)

Connect LGATE to the lower MOSFET gate. This pin enables the gate drive signal to drive the lower MOSFET.

VCC (pin 15)

Connect VCC to 12V voltage supply. This pin supplies the bias for the chip.

RT (pin 16)

RT pin provides oscillator switching frequency adujstment. By connecting a resistor (R $_{\rm T}$) from this pin to GND, the nominal 200kHz switching frequency is increased. Conversely, connecting a pull-up resistor (R $_{\rm T}$) from this pin to V $_{\rm cc}$ reduces the switching frequency.

Table 1 Output Voltage Program

	Pin Name	Nominal Output	
VID2	VID1	VID0	Voltage Dacout
1	1	1	1.3
1	1	0	1.35
1	0	1	1.4
1	0	0	1.45
0	1	1	1.5
0	1	0	1.55
0	0	1	1.6
0	0	0	1.65

Typical Performance Curve

 $\mathsf{RT}(\mathsf{K}\Omega)$ vs. Switching frequency

Application Schematic

Package Information

SO – 300mil (Reference JEDEC Registration MS-013)

	Millin	neters	Vari	ations- D			Inc	hes	Vari	ations- D	
Dim	Min.	Max.	Variations	Min.	Max.	Dim	Min.	Max.	Variations	Min.	Max.
Α	2.35	2.65	SO-16	10.10	10.50	Α	0.093	0.1043	SO-16	0.398	0.413
A1	0.10	0.30	SO-18	11.35	11.76	A1	0.004	0.0120	SO-18	0.447	0.463
В	0.33	0.51	SO-20	12.60	13	В	0.013	0.020	SO-20	0.496	0.512
D	See va	riations	SO-24	15.20	15.60	D	See va	riations	SO-24	0.599	0.614
Е	7.40	7.60	SO-28	17.70	18.11	Е	0.2914	0.2992	SO-28	0.697	0.713
е	1.27	BSC	SO-14	8.80	9.20	е	0.050	DBSC	SO-14	0.347	0.362
Н	10	10.65				Н	0.394	0.419			
L	0.40	1.27				L	0.016	0.050			
N	See va	riations				N	See va	riations			
φ1	0°	8°				φ1	0°	8°			

Package Information

SSOP-16

	Millim	neters	Varia	ations- [)		Incl	nes	Varia	ations- [)
Dim	Min.	Max.	Variations	Min.	Max.	Dim	Min.	Max.	Variations	Min.	Max.
Α	1.350	1.75	SSOP-16	4.75	5.05	Α	0.053	0.069	SSOP-16	0.187	0.199
A1	0.10	0.25				A1	0.004	0.010			
В	0.20	0.30				В	0.008	0.012			
D	See va	riations				D	See va	iations			
Е	3.75	4.05				Е	0.147	0.160			
е	0.625	TYP.				е	0.025	TYP.			
Н	5.75	6.25				Н	0.226	0.246			
L	0.4	1.27				L	0.016	0.050			
N	See va	riations				N	See va	iations			
φ 1	0°	8°				φ1	0°	8 °			-

Physical Specifications

Terminal Material	Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb)
Lead Solderability	Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.

Reflow Condition (IR/Convection or VPR Reflow)

Reference JEDEC Standard J-STD-020A APRIL 1999

Classification Reflow Profiles

	Convection or IR/ Convection	VPR
Average ramp-up rate(183°C to Peak)	3°C/second max.	10 °C /second max.
Preheat temperature 125 ± 25°C)	120 seconds max	
Temperature maintained above 183°C	60 – 150 seconds	
Time within 5°C of actual peak temperature	10 –20 seconds	60 seconds
Peak temperature range	220 +5/-0°C or 235 +5/-0°C	215-219°C or 235 +5/-0°C
Ramp-down rate	6 °C /second max.	10 °C /second max.
Time 25°C to peak temperature	6 minutes max.	

Package Reflow Conditions

pkg. thickness ≥ 2.5mm and all bgas	. —	pkg. thickness < 2.5mm and pkg. volume < 350mm ³
Convection 220 +5/-0 °C		Convection 235 +5/-0 °C
VPR 215-219 °C		VPR 235 +5/-0 °C
IR/Convection 220 +5/-0 °C		IR/Convection 235 +5/-0 °C

Reliability test program

Test item	Method	Description
SOLDERABILITY	MIL-STD-883D-2003	245°C , 5 SEC
HOLT	MIL-STD-883D-1005.7	1000 Hrs Bias @ 125 °C
	JESD-22-B, A102	168 Hrs, 100 % RH , 121°C
TST	MIL-STD-883D-1011.9	-65°C ~ 150°C, 200 Cycles
ESD	MIL-STD-883D-3015.7	VHBM > 2KV, VMM > 200V
Latch-Up	JESD 78	10ms , I _{tr} > 100mA

Carrier Tape & Reel Dimensions

Application	Α	В	С	J	T1	T2	W	Р	E
	330 ± 1	100 +2	13+ 0.5	2 ± 0.5	16.4 +0.3 -0.2	2.5 ± 0.5	16± 0.2	12 <u>±</u> 0.1	1.75 <u>±</u> 0.1
SOP- 16	F	D	D1	Ро	P1	Ao	Во	Ко	t
	7.5± 0.1	1.5 +0.1	1.5+ 0.25	4.0 ± 0.1	2.0 ± 0.1	10.9 ± 0.1	10.8± 0. 1	3.0± 0.1	0.3 <u>±</u> 0.013
Application	Α	В	D0	D1	Е	F	P0	P1	P2
	6.95	5.4	1.55±0.05	1.55±0.1	1.75±0.1	5.5±0.05	4.0±0.1	8.0±0.1	2.0±0.05
SSOP-16	6.95 T	5.4 T2	1.55±0.05 W	1.55±0.1 W1	1.75±0.1 C1	5.5±0.05 C2	4.0±0.1 T1	8.0±0.1	2.0±0.05 C

Cover Tape Dimensions

Application	Carrier Width	Cover Tape Width	Devices Per Reel
SOP- 16	24	21.3	1000

Customer Service

Anpec Electronics Corp.

Head Office:

5F, No. 2 Li-Hsin Road, SBIP, Hsin-Chu, Taiwan, R.O.C. Tel: 886-3-5642000

Fax: 886-3-5642050

Taipei Branch:

7F, No. 137, Lane 235, Pac Chiao Rd.,

Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.

Tel: 886-2-89191368 Fax: 886-2-89191369