Supplementary File of Manuscript "Optimal Defense Resource Allocation in Smart Grid: A Network Partition based Approach for Large-Scale Cases"

Algorithm 1 Pseudo-code of the initialization process in SMA-IP

Input:

- Size of the initialization pool Q
- **S1:** Solve the surrogate problem (20) and obtain the first Q optimal solutions to form the initialization pool $\mathcal{IP} = \{\phi_1^*, \dots, \phi_O^*\}$

for i = 1 to Z do

- **S2:** Randomly select one ϕ_k^* from the initialization pool \mathcal{IP} to create the $\phi^{\mathbb{C}}$ component of the individual C_i according to (19).
- S3: Repeatedly initialize the b component of the individual C_i over the feasible region $0 \le b \le b_{max}$ randomly until the entire individual meets the nonlinear constraints (5b).

end for

Output: The initialized population $C = \{C_1, ..., C_Z\}^T$.

Algorithm 2 Pseudo-code of the SMA-IP

Input:

- Initialization pool capacity Q
- Threshold for reinitialization ζ .
- Maximum number of iterations T_{max} .

Initialize:

```
• Execute Algorithm 1 to create the initialized population C = \{C_1, ..., C_Z\}^T.
```

```
for t = 1 to T_{\text{max}} do
```

- **S1:** Assess fitness for every individual via (21).
- **S2:** Calculate the iteration's best $J(C^*(t))$ and poorest $J(C^-(t))$ fitness values, and track the historically top individual $J^*(t)$.

```
S3: Calculate \Omega based on (27).
```

```
S4: Derive \alpha(t) and \beta(t) based on (24) and (25).
```

```
 \begin{aligned} & \textbf{for } i = 1 \text{ to } Z \quad \textbf{do} \\ & \textbf{if } \rho_{i,1} < \zeta \quad \textbf{then} \\ & \text{Reinitialize } C_i \text{ using Algorithm 1.} \\ & \textbf{else} \end{aligned}
```

Calculate $\pi_i(t)$ based on (26).

for
$$j = 1$$
 to L do
Update $C_{i,j}$ based on (23).

end for end if

end for

end for

Output: Best individual $C^*(T_{\text{max}})$ and corresponding fitness $J(C^*(T_{\text{max}}))$.