A - Adjacent Product

Time Limit: 2 sec / Memory Limit: 1024 MB

 $\mathsf{Score} {:}\ 100 \, \mathsf{points}$

Problem Statement

You are given N integers A_1, A_2, \ldots, A_N . Also, define $B_i = A_i \times A_{i+1}$ $(1 \le i \le N-1)$.

Print $B_1, B_2, \ldots, B_{N-1}$ in this order, separated by spaces.

Constraints

- 2 < N < 100
- $1 \le A_i \le 100$
- All input values are integers.

Input

The input is given from Standard Input in the following format:

$$A_1$$
 A_2 ... A_N

Output

Print $B_1, B_2, \ldots, B_{N-1}$ in this order, separated by spaces.

3 3 4 6

Sample Output 1

12 24

We have $B_1 = A_1 \times A_2 = 12, B_2 = A_2 \times A_3 = 24.$

Sample Input 2

5 22 75 26 45 72

Sample Output 2

1650 1950 1170 3240

B - Piano

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 200 points

Problem Statement

There is an infinitely long piano keyboard. Is there a continuous segment within this keyboard that consists of W white keys and B black keys?

Let S be the string formed by infinitely repeating the string wbwbwwbwbwbw.

Is there a substring of S that consists of W occurrences of w and B occurrences of b?

 \blacktriangleright What is a substring of S?

Constraints

- ullet W and B are integers.
- $0 \le W, B \le 100$
- W + B > 1

Input

The input is given from Standard Input in the following format:

W B

Output

If there is a substring of S that consists of W occurrences of w and B occurrences of b, print Yes; otherwise, print No.

3 2

Sample Output 1

Yes

The first 15 characters of S are wbwbwbwbwbwbw. You can take the 11-th through 15-th characters to form the string bwwbw, which is a substring consisting of three occurrences of w and two occurrences of b.

Sample Input 2

3 0

Sample Output 2

No

The only string consisting of three occurrences of w and zero occurrences of b is www, which is not a substring of S.

Sample Input 3

Yes

C - **Σ**

Time Limit: 2 sec / Memory Limit: 1024 MB

 ${\it Score:}\,250\,{\it points}$

Problem Statement

You are given a sequence of positive integers $A=(A_1,A_2,\ldots,A_N)$ of length N and a positive integer K.

Find the sum of the integers between 1 and K, inclusive, that do not appear in the sequence A.

Constraints

- $1 \le N \le 2 \times 10^5$
- $1 \le K \le 2 \times 10^9$
- $1 \le A_i \le 2 \times 10^9$
- All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

Print the answer.

4 5

1 6 3 1

Sample Output 1

11

Among the integers between 1 and 5, three numbers, 2, 4, and 5, do not appear in A.

Thus, print their sum: 2+4+5=11.

Sample Input 2

1 3

346

Sample Output 2

6

Sample Input 3

10 158260522

877914575 24979445 623690081 262703497 24979445 1822804784 1430302156 1161735902 923078537 1189330739

12523196466007058

D - Gomamayo Sequence

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 400 points

Problem Statement

You are given a string S of length N consisting of 0 and 1.

A string T of length N consisting of 0 and 1 is a **good string** if and only if it satisfies the following condition:

• There is exactly one integer i such that $1 \leq i \leq N-1$ and the i-th and (i+1)-th characters of T are the same.

For each $i=1,2,\ldots,N$, you can choose whether or not to perform the following operation once:

• If the i-th character of S is 0, replace it with 1, and vice versa. The cost of this operation, if performed, is C_i .

Find the minimum total cost required to make S a good string.

Constraints

- $2 \le N \le 2 \times 10^5$
- + S is a string of length N consisting of 0 and 1.
- $1 \le C_i \le 10^9$
- ullet N and C_i are integers.

Input

The input is given from Standard Input in the following format:

Output

Print the answer.

Sample Input 1

```
5
00011
3 9 2 6 4
```

7

Performing the operation for i=1,5 and not performing it for i=2,3,4 makes S=10010, which is a good string. The cost incurred in this case is 7, and it is impossible to make S a good string for less than 7, so print 7.

Sample Input 2

4 1001 1 2 3 4

Sample Output 2

0

Sample Input 3

11

11111100111

512298012 821282085 543342199 868532399 690830957 973970164 928915367 954764623 923012648 540375785 9 25723427

Sample Output 3

E - Paint

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 450 points

Problem Statement

There is a grid with H rows and W columns. Initially, all cells are painted with color 0.

You will perform the following operations in the order $i=1,2,\ldots,M$.

- If $T_i=1$, repaint all cells in the A_i -th **row** with color X_i .
- If $T_i=2$, repaint all cells in the A_i -th **column** with color X_i .

After all operations are completed, for each color i that exists on the grid, find the number of cells that are painted with color i.

Constraints

- $1 < H, W, M < 2 \times 10^5$
- $T_i \in \{1, 2\}$
- $1 \leq A_i \leq H$ for each i such that $T_i = 1$,
- $1 \leq A_i \leq W$ for each i such that $T_i = 2$.
- $0 \le X_i \le 2 \times 10^5$
- All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

Let K be the number of distinct integers i such that there are cells painted with color i. Print K+1 lines.

The first line should contain the value of K.

The second and subsequent lines should contain, for each color i that exists on the grid, the color number i and the number of cells painted with that color.

Specifically, the (i+1)-th line $(1 \le i \le K)$ should contain the color number c_i and the number of cells x_i painted with color c_i , in this order, separated by a space.

Here, print the color numbers in ascending order. That is, ensure that $c_1 < c_2 < \ldots < c_K$. Note also that $x_i > 0$ is required.

```
3 4 4
1 2 5
2 4 0
1 3 3
1 3 2
```

Sample Output 1

```
3
0 5
2 4
5 3
```

The operations will change the colors of the cells in the grid as follows:

Eventually, there are five cells painted with color 0, four with color 2, and three with color 5.

Sample Input 2

```
1 1 5
1 1 1
1 1 10
2 1 100
1 1 1000
2 1 10000
```

```
1
10000 1
```

Sample Input 3

```
      5 5 10

      1 1 1

      1 2 2

      1 3 3

      1 4 4

      1 5 5

      2 1 6

      2 2 7

      2 3 8

      2 4 9

      2 5 10
```

Sample Output 3

```
5
6 5
7 5
8 5
9 5
10 5
```

F - SSttrriinngg in StringString

Time Limit: 3 sec / Memory Limit: 1024 MB

Score: 525 points

Problem Statement

For a string X of length n, let f(X,k) denote the string obtained by repeating k times the string X, and g(X,k) denote the string obtained by repeating k times the first character, the second character, . . ., the n -th character of X, in this order. For example, if $X={\tt abc}$, then $f(X,2)={\tt abcabc}$, and $g(X,3)={\tt aaabbbccc}$. Also, for any string X, both f(X,0) and g(X,0) are empty strings.

You are given a positive integer N and strings S and T. Find the largest non-negative integer k such that g(T,k) is a (not necessarily contiguous) subsequence of f(S,N). Note that g(T,0) is always a subsequence of f(S,N) by definition.

▶ What is a subsequence?

Constraints

- ullet N is an integer.
- $1 < N < 10^{12}$
- S and T are strings consisting of lowercase English letters with lengths between 1 and 10^5 , inclusive.

Input

The input is given from Standard Input in the following format:

N

S

T

Output

Print the largest non-negative integer k such that g(T,k) is a (not necessarily contiguous) subsequence of f(S,N).

Sample Input 1

3 abc ab

Sample Output 1

2

We have f(S,3)= abcabcabc. g(T,2)= aabb is a subsequence of f(S,3), but g(T,3)= aaabbb is not, so print 2.

Sample Input 2

3 abc arc

Sample Output 2

10000000000000 kzazkakxkk azakxk

Sample Output 3

344827586207

G-Alone

Time Limit: 3 sec / Memory Limit: 1024 MB

Score: 575 points

Problem Statement

You are given an integer sequence $A=(A_1,A_2,\ldots,A_N)$.

Find the number of pairs of integers $({\cal L},{\cal R})$ that satisfy the following conditions:

- 1 < L < R < N
- There is a number that appears exactly once among A_L,A_{L+1},\ldots,A_R . More precisely, there is an integer x such that exactly one integer i satisfies $A_i=x$ and $1\le i\le R$.

Constraints

- $2 \le N \le 2 \times 10^5$
- $1 \leq A_i \leq N$
- All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

Print the answer.

Sample Input 1

5 2 2 1 2 1

Sample Output 1

12

12 pairs of integers satisfy the conditions: $(L,R)= \displaystyle$

$$(1,1),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(3,5),(4,4),(4,5),(5,5).$$

4 4 4 4 4

Sample Output 2

4

Sample Input 3

10 1 2 1 4 3 3 3 2 2 4

Sample Output 3