Dpto. de Electrónica 2º GM - EMTT

Tema 5
El Microprocesador
CPU

El Microprocesador

- Definición: Es un conjunto de transistores conectados entre si por conductores y ordenados de manera que forman puertas lógicas para realizar operaciones de todo tipo.
- Funciona sincronizado por un reloj.
- La velocidad del procesador depende del número de pulsaciones de ese reloj y de otros factores de diseño.
- Esta velocidad del micro se mide en Mhz o Ghz.
- Se encarga del control y procesamiento de datos en todo el PC.

El Microprocesador

- Los microprocesadores actuales tienen dos velocidades:
 - Velocidad interna. Es la velocidad de funcionamiento y procesamiento interno.
 - Velocidad externa. También llamada Velocidad del Bus o FSB y es la velocidad a la que se comunica el micro y la placa base. En realidad es la velocidad de funcionamiento de la placa base.
 - La relación entre estas dos velocidades es el **Factor Multiplicador** y es la cifra por la que se multiplica la velocidad externa o de la placa base (FSB) para dar la interna o del micro. Este se puede ajustar en la placa por puentes o mediante el setup de la bios.
 - Overcloking. Método para subir la velocidad del micro por encima de la nominal de fabricación.

El Microprocesador. FSB

- La velocidad del "Front Side Bus" o FSB es la velocidad a la cual la CPU se comunica con la memoria RAM y el Chipset Norte de la placa base.
- El FSB está asociado al ChipSet y a la memoria RAM del sistema.
- Las velocidades más habituales han sido y son las de 100, 266, 333, 400, 533, 800 y 1066 Mhz.

El Microprocesador. FSB

El bus de sistema del procesador se llama también Front Side Bus (FSB)

Usado por el procesador para pasar información a y desde la caché, memoria principal y el Chipset Norte

Es el bus de velocidad más elevada

El Microprocesador Tareas de la CPU

- 1. Captar instrucción: la CPU lee una instrucción de la memoria.
- 2. Interpretar instrucción: la instrucción se decodifica determinar que acción es necesaria.
- 3. Captar datos: la ejecución de una instrucción puede exigir leer datos de la memoria o de un módulo de entrada y salida.
- 4. Procesar datos: en la ejecución se puede exigir llevar a cabo alguna operación aritmética o lógica con los datos.
- 5. Escribir datos: los resultados de la ejecución pueden exigir escribir datos en la memoria o en un módulo de entrada o salida.

Partes del microprocesador

- Unidad de Control (UC). Gobierna todas las actividades de un ordenador. Es el núcleo del PC, coordina y controla todo el sistema.
- Coprocesador matemático (FPU). Realiza cálculos matemáticos y operaciones lógicas.
- o Área de almacenamiento primario. Es la caché.
- El resto del micro. Contiene partes dedicadas a tareas de registro, comunicación, decodificación, etc.
- El encapsulado. Es el envoltorio de todo y permite el enlace del interior, mediante conectores externos (patillas), al zócalo de la placa base.

Intel 8086

Fue el primer microprocesador en llegar al gran público, el corazón del IBM PC. Microprocesador de 16 bits, con hasta 1 Mb de memoria.

8086-8088 (1978-1979)

	8086	8088
Fecha Inicio	6/8/78	6/1/79
Vel. Reloj	5MHz, 8MHz, 10MHz	5MHz, 8MHz
Ancho Bus	16 bits	8 bits
Número de Transistores	29,000	29,000
Memoria Direccionable	1 MB	1 MB

Intel80286

Microprocesador utilizado por el IBM AT. Conseguía doblar el rendimiento del 8086 a la misma velocidad, gestionaba hasta 16 Mb de memoria y funcionaba a un máximo de 20 Mhz de velocidad. Se conoce como "286".

80286 (1982)

Fecha Inicio	2/1/82
Vel. Reloj	6MHz, 8MHz, 10MHz, 12.5MHz
Ancho Bus	16 bits
Número Transistores	134,000
Memoria Direccionable	16 megabytes

Intel80386

Microprocesador que sustituyó al 286 y el primero de 32 bits, llegó a alcanzar una velocidad de 40 Mhz. Este procesador permitió que los PCs de aquella época pudieran utilizar sistemas operativos multitarea y memoria virtual. El 386 original fue el Intel 386 DX. Fue el primer micro de Intel del que **AMD** y **Cyrix** produjeron clónicos compatibles.

80386 (1985)

	Intel386TM DX Microprocessor	Intel386TM SX Microprocessor	
Fecha Inicio	10/17/85	6/16/88	
Vel. Reloj	16MHz, 20MHz, 25MHz, 33MHz	16MHz, 20MHz, 25MHz, 33MHz	
Bus Width	32 bits	16 bits	
Número de Transistores	275,000	275,000	
Memoria Direccionable	4 gigabytes	16 megabytes	

Intel80486

Tiene un juego de instrucciones optimizado y el coprocesador matemático integrado en el chip. Existían versiones que doblaban o cuadruplicaban la velocidad de la CPU (100 Mhz).

80486 (1989)

	Intel486TM DX	Intel486TM SX
Fecha Inicio	4/10/89	4/22/91
Vel. Reloj	25MHz, 33MHz, 50MHz	16MHz, 20MHz, 25MHz, 33MHz
Ancho Bus	32 bits	32 bits
Número Transistores	1.2 millones (1 micra)	1.185 millones (1 micron)
Memoria Direccionable	4 gigabytes	4 gigabytes

IntelPentium80586

Microprocesador de 5ª generación que sucedió al Intel 80486 en 1993, y desde entonces se le han introducido numerosas modificaciones.

Aparece también el Pentium MMX con manejo de instrucciones multimedia...

Pentium (1993)

Fecha Inicio 3/22/93

Vel Reloj 60MHz,66MHz

Ancho Bus 32 bits

Número de Transistores 3.1 millones (.8 micron)

Memoria Direccionable 4 gigabytes

IntelPentium

Fue usado en estaciones de trabajo con sistemas operativos de 32 bits como Windows 95/98/Me.

Pentium (1995)

	Pentium® Pro Processor
Fecha Inicio	11/01/95
Vel. Reloj	150MHz, 166MHz, 180MHz, 200MHz
Ancho Bus	32 bits
Número de Transistores	5.5 millones
Memoria Direccionable	64 gigabytes

IntelPentiumII

Desarrollo del Pentium con instrucciones MMX (multimedia) aparecido en 1997, con bus de sistema de 66 Mhz. También incorporó un nuevo tipo de encapsulado y el zócalo Slot 1.

Pentium II (1997)

Fecha Inicio	5/07/97
Vel. Reloj	200MHz, 233MHz, 266MHz, 300MHz
Ancho Bus	32 bits
Número de Transistores	7.5 millones (0.35 micras)
Memoria Direccionable	64 gigabytes

IntelXeon

Versión de los microprocesadores Intel Pentium II y III enfocada a servidores y estaciones de trabajo. Se diferencia de éstos en que emplea el encapsulado Slot 2, en que tiene una mayor velocidad de conexión con la caché L2, y en que pueden manejar hasta 64 Gbytes de memoria.

Xeon (1999)

Fecha Inicio 26/3/99

Vel. Reloj 400 MHz

Ancho Bus 32 bits

Número de Transistores 7.5 millones (0.35 micras)

Memoria Direccionable 64 gigabytes

IntelPentiumCeleron

Es una versión de bajo coste del Intel Pentium II, hoy en día del Intel Pentium IV. Los primeros modelos no incluían caché L2.

Celeron (1999)

Fecha Inicio	26/4/98
Vel. Reloj	233, 300 MHz, 450 MHz.
Ancho Bus	32 bits
Número de Transistores	7.5 millones (0.25 micras)
Memoria Direccionable	64 gigabytes

IntelPentiumIII

Fue el sucesor de el Pentium II en 1999, sólo los diferenciaba el juego de instrucciones mejoradas SSE y la memoria SDRAM. Posteriormente fue incorporando nuevas características y abandona el zócalo slot 1 para pasar al 370.

Pentium III (1999)

Fecha Inicio 26/02/99

Vel. Reloj 1 GHz, 1.4 GHz

Ancho Bus 32 bits

Número de 24 millones (0.13

Transistores micras)

Memoria 64 gigabytes

Direccionable

IntelPentiumIV

Microprocesador sucesor del Pentium III aparecido en noviembre de 2000. Es un procesador de 32 bits, con un bus de sistema de 400 Mhz y un nuevo tipo de conexión a la placa base llamado Socket 423.

Pentium IV (2000)

Fecha Inicio	20/11/2000
Vel. Reloj	2.53 GHz, 3.8 GHz
Ancho Bus	32 bits
Número de Transistores	43 millones (0.13 micras)
Memoria Direccionable	64 gigabytes

- Procesadores de 32 bits orientados a consumo y bajo costo.
 - AMD Sempron
 - Intel Celeron
 - Intel Pentium
- Procesadores de 64 bits, dual core o core 2 duo para sobremesa de altas prestaciones.
 - AMD Athlon 64
 - AMD Opteron para estaciones de trabajo
 - Intel Pentium D
 - Intel Pentium Extreme Edition
 - Intel Core Duo
- Equipos portátiles y tecnología de bajo consumo.
 - AMD Turion
 - Intel Centrino
 - Intel Centrino Core Duo

Encapsulados e identificación

- El formato más común para los microprocesadores actuales es el Staggered Pin Grid Array (SPGA).
- Los pines se agrupan en filas y columnas para mantener el conjunto encapsulado lo más compacto y pequeño posible.
- En el exterior pueden leerse los datos que permiten identificar la CPU.

O Identificación

- La utilidad CPU-Z es un programa gratuito que identifica CPUs.
- La utilidad de Intel se puede descargar de su Web

Veamos los del tipo AMD.

- Arquitectura. Indica la integración del núcleo.
 - Modelo. La frecuencia del reloj interno.
- Embalaje. La cápsula del conjunto.
 - Voltaje operacional. La tensión nominal de trabajo.
- Temperatura. Temperatura máxima de disipación.
 - Tamaño caché L2. Indica la capacidad de L2 con L1 de 128 K.
- FSB. La frecuencia máxima del bus frontal.

AXDA 3200 D K V 4 E

AXDA Arquitectura del núcleo Procesador AMD Athlon XP con del procesador: tecnología Quantispeed
3200 Número de modelo: 3200+ operando a 2.200 GHz
D Tipo de embalaje: Organic Pin Grid Array (OPGA)
K Voltaje operativo: 1.65 V

Voltaje operativo: 1.65 V
 Temperatura Die máxima: 85°C

4 Tamaño de memoria

cache de nivel 2: 512 Kbytes

E Sistema de Bus: 400 MHz

A 1400 A M S 3 C

A Arquitectura del núcleo del procesador: Procesador AMD Athlon

1400 Número de modelo: 1400MHz,

A Tipo de embalaje: Ceramic Pin Grid Array (CPGA)

M Voltaje operativo: 1.75 V S Temperatura Die máxima: 95°C

3 Tamaño de memoria

cache de nivel 2: 256 Kbytes Sistema de Bus: 266 MHz

C

 Veamos los del tipo INTEL (Pentium) en su numeración antigua.

Número de procesador

Arquitectura Caché Velocidad del reloj Bus frontal Otras tecnologías Intel*

El significado es el mismo visto anteriormente para los AMD.

Veamos, ahora, en su numeración nueva.

Leyendo estos datos, se accede a la página oficial INTEL y se busca en las tablas de familia las correspondientes características.

<u>Número de</u> procesador	560, 550, 540, 530, 520	NA	NA
Arquitectura	Tecnología de proceso de 90 nm ■	Tecnología de proceso de 90 nm ■ ,130 nm	Tecnología de proceso de 90 nm ■ ,130 nm, 180 nm
Caché L2	1MB	512KB,1MB	256KB, 512KB, 1MB
Velocidad del reloj	2,80 a 3,60 GHz	2,40 a 3,40 GHz	1,30 a 2,80 GHz
Bus frontal	800 MHz	800 MHz	400, 533 MHz
Chipset – bus de sistema de 800 MHz	Chipsets Intel® 925X, 915G y 915P Express ■	Chipsets Intel® 875P, 865PE, 865G, 865GV ■ y 848P ■	NA
Chipset – bus de sistema de 533 MHz	NA	Chipsets Intel® 865P, familia de chipsets 850 850E, 845PE 845GE	Chipset Intel® 865P, familia de chipsets 850 850E 845PE 845GE 845GV 845E

<u>Instalación</u>

- Usar dispositivos antiestáticos para trabajar y manipular el material.
- Liberar el cierre del zócalo de la CPU para abrir los pines.
- No tocar los pines de la CPU y coger el chip por los cantos.
- Hacer coincidir las marcas de la CPU y del zócalo (punto o esquina).
- Asegurarse de que los pines han entrado completamente.
- Cerrar la palanca del zócalo ZIF.

Instalación

- Todas las CPUs precisan de un radiador y ventilador.
- Se fija el ventilador al radiador y el conjunto sobre la CPU.
- La CPU y el radiador deben de tener contacto físico y térmico total.
- Para facilitar el contacto térmico se suele usar silicona térmica.
- Fijar el conjunto radiador ventilador con los anclajes oportunos.

<u>Instalación</u>

- Conectar el conector de alimentación del ventilador al conector de la placa base marcado como CPU_FAN.
- Comprobar que el ventilador funciona de forma correcta.
- En caso de instalar sistemas de refrigeración especiales, seguir de forma estricta las instrucciones del fabricante.

Tema 5 - El Microprocesador