Lecture Summary: Continuous Random Variables - Colab Simulation

Source: Lecture 4.9.docx

Key Points

• Purpose:

- Simulate continuous random variables in Python using Google Colab.
- Explore Monte Carlo techniques for estimating probabilities and comparing theoretical and empirical results.

• Packages Used:

- NumPy: For generating numerical data.
- scipy.stats: For generating random samples from continuous distributions.
- matplotlib.pyplot: For plotting histograms and densities.

• Key Steps:

1. Import necessary libraries:

```
import numpy as np
from scipy.stats import uniform, expon, norm
import matplotlib.pyplot as plt
```

- 2. Generate samples from continuous distributions using scipy.stats:
 - Uniform distribution: st.uniform.rvs(loc, scale, size).
 - Exponential distribution: st.expon.rvs(scale, size).
 - Normal distribution: st.norm.rvs(loc, scale, size).
- 3. Plot histograms and overlay theoretical PDFs for comparison.

• Examples and Results:

- Uniform Distribution:

- $\ast\,$ Samples generated in range [0,3] with 10,000 values.
- * Histogram with bins overlaid by theoretical density $f_X(x) = \frac{1}{3}$ for $0 \le x \le 3$.
- * Visual comparison confirms empirical data approximates the theoretical PDF.

- Exponential Distribution:

- * Parameter $\lambda = 2$, 10,000 samples generated.
- * Histogram plotted with theoretical density $f_X(x) = 2e^{-2x}$.
- * Density decays rapidly, matching the histogram.

- Normal Distribution:

- * Mean $\mu = 0$, standard deviation $\sigma = 1$.
- * Histogram of samples overlaid with theoretical PDF.
- * Matches closely, showing the bell-shaped curve.

• Practical Insights:

- Histograms provide a visual representation of data distribution and are useful for verifying the fit
 of a theoretical model.
- Comparing histograms with theoretical PDFs helps identify suitable distributions for data modeling.
- Adjusting bin sizes in histograms can improve visualization and interpretation.

• Monte Carlo Simulations:

- Generate random samples to estimate probabilities and distribution properties.
- Verify theoretical results through empirical data.
- Useful for exploring large datasets where analytical solutions are complex.

Simplified Explanation

Objective: Simulate and analyze continuous random variables using Python.

Examples: 1. Uniform: Constant density across an interval. 2. Exponential: Rapidly decaying density.

3. Normal: Symmetric bell curve.

Tools: - Histograms to visualize data. - PDFs to verify theoretical distributions.

Key Takeaway: Simulation bridges theory and practice, offering insights into real-world data distributions.

Conclusion

In this lecture, we:

- Explored continuous random variable simulation in Colab.
- Visualized data using histograms and theoretical densities.
- Discussed the use of Monte Carlo techniques for empirical validation.

Simulation is a powerful tool for understanding and modeling continuous random variables, providing practical verification of theoretical concepts.