CSCI5350 Assignment2 Suggested Solution

1. (30pts)

- (a) $\mathbb{I}_1 = \{\phi\}$ $\mathbb{I}_2 = \{N\}$ $\mathbb{I}_3 = \{\{P, NP\}\}$
- (b) Yes, since $X(P) = X(NP) = \{P, NP\}$
- (c) $\beta_1 = (\phi \mapsto (P(1/2), N(1/2)))$ $\beta_2 = (N \mapsto (P(1/2), N(1/2)))$ $\mu = \{\{P, NP\} \mapsto (P(1/2), NP(1/2))\}$ such strategy does not exist.

Justification: Cathy can play any strategy $\beta_3 = (\{P, NP\} \mapsto (A(p), B(1-p)))$ for her to be rational. However, Amy and Beatrice using β_1 and β_2 will not be both rational for any p.

- (d) No. μ is not derived from β_1, β_2 . $Pr(P|\{P, NP\}) = 2/3, Pr(NP|\{P, NP\}) = 1/3$.
- (e) No. The assessment is not consistent.
- (f) (The answer is not unique) assessment = (β, μ) $\beta_1 = (\phi \mapsto P)$ $\beta_2 = (N \mapsto P)$ $\beta_3 = (\{P, NP\} \mapsto A)$ $\mu = \{\{P, NP\} \mapsto (P(1), NP(0))\}$

2. (20pts)

	Beatrice					Beatrice		
		Р	N			Р	N	
Amy	Р	0,0,0	10,0,10	Amy	Р	0,0,0	0,10,0	
	Ν	10,0,0	1,1,1	Alliy	N	0,10,10	1,1,1	
		Catl	hy: A			Cathy: B		

- (a) Yes, NE = (P, N, A), (N, P, B)
- (b) i. $v_i = \min_{a_j: j \neq i} \max_{a_i} u_i(a_{-i}, a_i)$ $v_1 = v_2 = v_3 = 0$
 - ii. (The answer is not unique) payoff profile: w = (1, 1, 1)
 - iii. (The answer is not unique) trigger strategy: play (N, N, A) repeatedly, $\gamma = 1, w = (1, 1, 1)$. if player 1 deviates, other players will play (P,A); if player 2 deviates, other players will play (P,A); if player 3 deviates, other players will play (P,P).

3. (30pts)

- (a) NE = (Y, F), (F, Y)
- (b) Let the mixed strategies of player 1 and 2 be α_1 and α_2 . We have $\alpha_1 = (2/5, 3/5)$ and $\alpha_1 = (2/7, 5/7)$
- (c) $v_1 = -3$
- (d) $v_2 = -3$
- (e) Yes. Consider playing (Y,Y), (F,Y), (F,F) repeatedly, $\gamma=3, w=(0,-8/3)$
- (f) Yes. Since (0, -8/3) > (-3, -3)
- (g) (The answer is not unique) Nash equilibrium payoff profile: w = (0, -8/3) trigger strategy: play (Y, Y), (F, Y), (F, F) repeatedly, $\gamma = 3$. if player 1 deviates, player 2 will play F forever; if player 2 deviates, player 1 will play F forever.

4. (20pts)

(a)

	worth	of each ou	tcome	sum for			
	A2	A4	A5	A2	A4	A5	tax j
a1	-1	-2	-3	* -6	* -6	-8	0
a2	0	-1	-2	* -7	* -7	-9	0
a3	-3	-4	-5	* -4	* -4	-6	0
a4	-1	0	-1	* -6	-8	-10	0
a5	-2	-1	0	* -5	-7	-11	0
Sum	* -7	-8	-11				

outcome = A2

(b) every players pay zero tax

(c) (The answer is not unique)

Yes. Consider a_4, a_5 collude and report the cost to A2 be 10.

	worth	of each ou	tcome	sum for			
	A2	A4	A5	A2	A4	A5	tax j
a1	-1	-2	-3	-23	* -6	-8	0
a2	0	-1	-2	-24	* -7	-9	0
a3	-3	-4	-5	-21	* -4	-6	0
a4	-10	0	-1	-14	* -8	-10	0
a5	-10	-1	0	-14	* -7	-11	0
Sum	-24	* -8	-11				

new outcome = A4, and payoff for a_4, a_5 increased.