Trading vs Weather Analysis

Author: Atakan Vardar Date: January 2025

Introduction

This report explores whether personal trading performance correlates with local Istanbul weather conditions (temperature, precipitation, humidity) and time-based factors (weekday, hour of day, monthly patterns). The aim is to see if external factors can help explain or predict daily trading profit/loss (P/L).

Data Sources & Preprocessing

Data Overview

Trading Data

Files: trading_results_summary.csv

Columns:

- Open_Time, Close_Time (DateTime)
- Profit (daily net P/L)
- Result (Win/Lose/BreakEven)
- Risk and other columns (Stop_Loss, Take_Profit, etc.)

Weather Data

File: Istanbul, Turkey 2023-08-18 to 2024-12-18.csv

Columns:

- Date
- temp, tempmax, tempmin, precip, humidity
- Other daily weather indicators (e.g., conditions like "Rainy", "Cloudy").

Both sets are merged on a daily Date to align trading outcomes with weather data.

Preprocessing Steps

Date Conversion:

- Extracted daily Date from Open_Time (trading).
- Renamed datetime → Date in weather and normalized times to 00:00.

Feature Engineering:

- rain_indicator = 1 if precip > 0, else 0
- temp_range = tempmax tempmin
- day_of_week (0=Monday, ..., 6=Sunday)
- hour_of_day (0-23, from Open_Time)
- trade_duration_min = (Close_Time Open_Time) in minutes

Merged Dataset

After merging on Date with an **inner join**, the final dataset has **290 rows** of daily records, each containing:

- **Trading**: Profit, Result, Open_Time, Close_Time, etc.
- Weather: Temperature, precipitation, humidity, etc.

Exploratory Data Analysis (EDA)

Profit Distribution

- Figure: *Distribution of Daily Profit* (Histogram)
- Shows strong peaks at approximately -100 and +200, suggesting frequently used stop-loss and take-profit levels.
- A smaller cluster near 0 indicates break-even trades. Weather Variables

Temperature Distribution

- Figure: Distribution of Temperature
- Ranges ~5°C to 30°C, with a typical peak around ~15–16°C

Profit on Rainy vs. Non-Rainy Days

Figure: Profit on Rainy vs. Non-Rainy Days (Boxplot)

 Shows no obvious difference in average profit when comparing rainy vs. non-rainy days.

Correlation Matrix

Figure: Correlation Matrix (Profit, temp, humidity, rain_indicator, etc.)

Weak correlations between Profit and weather features.

Time-Based Analysis (Daily)

By Day of Week

• **Figure**: Avg Profit by Day of Week

- Figure: Win Rate by Day of Week
- Observations: Friday (day=4) has the highest average profit (\sim 100+). Monday (day=0) is lower (\sim 40–50). Friday's win rate is \sim 70%.

By Hour of Day

• **Figure**: Average Profit by Hour of Day (line chart)

- Figure: Profit Distribution by Hour of Day (boxplot)
- Observations: Late evening trades (18–20) show a significant jump in average profit. Midday hours around noon can fluctuate or dip.

Monthly Analysis (Temperature vs. Win Rate)

- Figure: Monthly Avg Temperature vs. Monthly Win Rate
 - Lines show monthly average temperature (°C) vs. monthly win percentage.
 - No clear strong parallel or inverse pattern is evident.

Statistical Tests

Rain vs. Non-Rain

- H_0 : No difference in average Profit on rainy vs. non-rainy days.
- H₁: There **is** a difference in average Profit on rainy vs. non-rainy days.

Day of Week

- H_0 : Mean Profit is the same across weekdays (Mon–Sun).
- H₁: Mean Profit **is not** the same across all weekdays; at least one weekday differs significantly.

Monthly Temp vs. Win Rate

- H_0 : No linear or monotonic correlation between monthly temperature and win rate.
- H₁: There is a linear or monotonic correlation between monthly temperature and win rate.

Rain vs. Non-Rain (t-test)

- *t-statistic* \approx -0.475, $p \approx$ 0.6355
- $p > 0.05 \rightarrow fail$ to reject H_0 . No significant difference found.

ANOVA & Kruskal-Wallis (Day of Week)

- *ANOVA*: F-stat ≈ 1.3971, p ≈ 0.2350
- *Kruskal–Wallis*: H-stat ≈ 5.4153, p ≈ 0.2473
- Both p > 0.05 \rightarrow **fail to reject** H₀. No statistically significant weekday effect.

Monthly Temperature vs. Win Rate (Pearson & Spearman)

- Pearson Corr ≈ 0.2641, p ≈ 0.3057
- *Spearman Corr* ≈ 0.3824, p ≈ 0.1299
- Both p > $0.05 \rightarrow \text{No significant correlation}$.

Simple Regression

A **Linear Regression** model predicted Profit from [temp, humidity, temp_range, rain_indicator, day_of_week, hour_of_day].

- **R**² ~ 0.033 (3.3% variance explained)
- **RMSE** ~ 141.17

Interpretation: Weather/time features alone do **not** strongly predict daily profit.

Key Findings & Interpretations

Rain vs. Non-Rain

• Statistical tests show no significant difference in average daily profit.

Day of Week

• Visual patterns (e.g., Friday looks higher) are **not** statistically confirmed.

Monthly Temp vs. Win Rate

• Pearson/Spearman correlations are > 0.05, so no strong evidence of a relationship.

Regression

• Weather/time features alone yield low predictive power for daily P/L.

Conclusions & Future Work

Weak Weather Impact

• Temperature, rain, humidity do not appear to systematically affect daily profit in this dataset.

Time Factors

• While certain days/hours (like Friday or 8 PM) look better on average, significance tests do not support a robust effect.

Future Directions

- Longer Data Window: Increase sample size across different seasons/years.
- Market Indicators: Add volatility indices, news events, or macro data to see if they overshadow weather/time influences.
- Intraday Analysis: Investigate more granular intervals (e.g., 15–30 minute windows) for micro-trends.
- Advanced Models: Consider time-series forecasting (ARIMA, LSTM) or ensemble methods with more features.