Análisis formal de complejidad para obtener_max_volumen_entero

Sea n el número de elementos en el arreglo \mathtt{arr} .

1. Planteamiento y desarrollo de T(n)

La función realiza: - Una asignación inicial (t_0) - Un ciclo desde i=1 hasta i=n-1: - Por cada iteración, realiza un cast, una comparación y una posible asignación, todas de costo constante $(t_1$ por iteración)

$$T(n) = t_0 + \sum_{i=1}^{n-1} t_1$$

$$T(n) = t_0 + (n-1)t_1$$

Redefiniendo $c_1 = t_1$, $c_2 = t_0 - t_1$ (para expresar todo en función de n):

$$T(n) = c_1 n + c_2$$

2. Calculando los casos

Mejor caso: Incluso si todos los valores del arreglo son iguales (o n = 1), el ciclo se recorre desde i = 1 a n - 1 (0 veces si n = 1):

$$T_m(n) = c_1 n + c_2$$

Por lo tanto, $T_m(n) \in \Theta(n)$.

Peor caso: El ciclo siempre se recorre exactamente n-1 veces, sin importar los datos:

$$T_p(n) = c_1 n + c_2$$

Por lo tanto, $T_p(n) \in \Theta(n)$.

Caso promedio: El ciclo también recorre siempre n-1 veces, así que el análisis es idéntico:

$$T_{pr}(n) = c_1 n + c_2$$

Por lo tanto, $T_{pr}(n) \in \Theta(n)$.

3. Comprobación de cotas por límites

$$\lim_{n \to \infty} \frac{T(n)}{n} = c_1$$

Por lo tanto:

$$T(n) \in \mathcal{O}(n)$$

$$T(n) \in \Omega(n)$$

$$T(n) \in \Theta(n)$$

4. Resumen Final:

• Mejor caso: $\Theta(n)$

• Peor caso: $\Theta(n)$

 \bullet Caso promedio: $\Theta(n)$

Las cotas están verificadas con límites y usando los nombres de las variables reales del código.