

Lab 5: Character LCD Control

Chun-Jen Tsai and Lan-Da Van
Department of Computer Science
National Yang Ming Chiao Tung University
Taiwan, R.O.C.

Fall, 2021

Lab 5: Character LCD Control

Lab 5

In this lab, you will compute the first 25 Fibonacci numbers, and use the standard 1602 character LCD to display the numbers.

The lab file submission deadline is on 11/01 by 6:00pm.

1602 Character LCD Display

- The Arty board has only simple I/O devices such as the LEDs, switches, buttons, and UART.
- We have designed an expansion board, Arty_IO, that adds three more peripherals to Arty:
 - a 1602 character LCD device (supports only 4-bit mode)
 - a SD card socket (supports only the SPIF mode)
 - a 12-bit color VGA interface

Memory Map of the LCD

Lab 5

- The LCD device can be treated as a 32-byte memory.
 - Each memory cell corresponds to a character on the display.
 - Writing an ASCII code to a cell will display the character on the corresponding location on the LCD:

Note: the LCD device is slow, you should not update the screen faster than 2 Hz.

Display data memory (DD RAM) addresses:

Character LCD Interface (1/2)

- The LCD interface has 8 data wires (DB0 ~ DB7) and 3 control wires (LCD_E, LCD_RS, LCD_RW):
 - LCD_E enables/disables the inputs to the LCD module.
 - The rest of the wires are defined depending on the functions:

Function	LCD_RS	LCD_RW	Upper Nibble				Lower Nibble			
			DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Clear Display	0	0	0	0	0	0	0	0	0	1
Return Cursor Home	0	0	0	0	0	0	0	0	1	-
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S
Display On/Off	0	0	0	0	0	0	1	D	С	В
Cursor and Display Shift	0	0	0	0	0	1	S/C	R/L	-	-
Function Set	0	0	0	0	1	0	1	0	-	-
Set CG RAM Address	0	0	0	1	A5	A4	A3	A2	A1	A0
Set DD RAM Address	0	0	1	A6	A5	A4	A3	A2	A1	A0
Read Busy Flag and Address	0	1	BF	A6	A5	A4	A3	A2	A1	A0
Write Data to CG RAM or DD RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0
Read Data from CG RAM or DD RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0

Character LCD Interface (2/2)

- However, the Arty_IO board uses the 4-bit operating mode of the LCD device, that is, only DB4~DB7 are connected to the FPGA.
 - Execution of a function will need two transmissions, using only LCD_E, LCD_RS, LCD_RW, and DB4~DB7:

Timing Diagrams for Transmission

- The timing diagram for one transmission in four-bit mode is as follows:
 - Note that execution of a function requires two transmissions.

The Sample Circuit of Lab 5

- Two Verilog program files will be provided to you:
 - LCD_Module.v An LCD controller module
 - Lab5.v a sample top-level module that prints a "Hello, World!" message using the LCD controller module

```
module LCD_module(
   input clk,
   input reset,
   input [127:0] row_A,
   input [127:0] row_B,
   output reg LCD_E,
   output reg LCD_RS, //register select
   output reg LCD_RW, //read / write
   output reg [3:0]LCD_D //data
);
```


The Fibonacci Number C-Model

- The first two Fibonacci numbers are 0 and 1. Each remaining number is the addition of the previous two.
- A short C-model that computes the first 25 Fibonacci numbers is as follows:

```
int fibo[25], idx;

fibo[0] = 0, fibo[1] = 1;
for (idx = 0; idx < 25; idx++)
{
    if (idx >= 2)
    {
       fibo[idx] = fibo[idx-1] + fibo[idx-2];
    }
    printf("Fibo #%02x is %04x.\n", idx+1, fibo[idx]);
}
```


What to Do in Lab 5

- In Lab 5, it is mandatory to do the following things:
 - Design a circuit to compute and store the first 25 Fibonacci numbers in a register array
 - Once they are stored, the LCD will start displaying numbers:
 - Roughly every 0.7 sec, the LCD scrolls up one number cyclically.
 - If BTN3 is pressed, the scrolling direction will be reversed (scroll-up becomes scroll-down, and vice versa).
 - Example display: cyclic scroll-up (numbers are hexadecimal)

