משפט החתונה

גרף דו"צ. G = (A, B, E) גרף גרף

אוסף צלעות זרות בזוגות נקרא זיווג.

. גודל מקס' של זיווג בגרף. u

 $|S| \leq |N(S)|$ מתקיים $S \subseteq A$ אמ"מ לכל A אמ"מ דו"צ, אז קיים דו"צ, אז קיים גרף אז משפט החתונה: G = (A,B,E)

דוגמא: בגרף הבא יש זיווג.

דוגמא:

כאן אין זיווג כי תנאי משפט החתונה לא מתקיים.

i
eq j כך שלכל $a_i \in A_i$ היא בחירה היא המשפחה שונים שונים שונות. מערכת שונות. מערכת לבי תונה משפחה היא כך שלכל הגדרה: נתונה משפחה של קב' :מתקיים $a_i \neq a_j$ מתקיים

$$A_1 = \{1,2,3\} \to 1$$

 $A_2 = \{1,2,4\} \to 2$
 $A_3 = \{2,4,3\} \to 3$

$$A_2 = \{1,2,4\} \to 2$$

$$A_3 = \{2,4,3\} \rightarrow 3$$

תרגיל: נתונה משפחה של קב' $A_1,A_2,...,A_m$ שונות כך ש- $UA_i\subseteq [n]$. הוכיחו שניתן לבחור מערכת נציגים שונים אמ"מ לכל $|U_{i\in S}A_i|\geq |S|$ מתקיים $|S\subseteq [m]$.

תרגיל: יהי d את הערכיות המקסימלית ב- δ את הערכיות המקסימלית ב-d את הערכיות המקסימלית ב-d את הערכיות המקסימלית של הקדקודים ב-d. אז יש זיווג עבור d אז יש זיווג עבור d

-ם את כל הצלעות שיוצאות מ-S, וב-S את כל הצלעות שיוצאות מ-S. צ"ל $|S| \leq |N(S)|$ נסמן ב-S את כל הצלעות שיוצאות מ-S וב-S את כל הצלעות שיוצאות מ-S את כל הצלעות שיוצאות מ-S את כל הצלעות שיוצאות מ-S וב-S את כל הצלעות שיוצאות מ-S את כל הצלעות מ-S את כל הצלעות שיוצאות מ-S את כל הצלעות שיוצאות מ-S את כל הצלעות מ-S את כל הצלעות

$$|E_0| \ge |S| \cdot \delta, \qquad |E_0| \le |E_1| \le |N(S)| \cdot d$$

$$\therefore \quad \delta|S| \le d|N(S)|$$

$$|S| \le \frac{\delta}{d} |S| \le |N(S)|$$

$$\underset{1 \le 1}{|S|} \le |N(S)|$$

ולכן יש זיווג עבור A.

 $\deg(v)=d$, $v\in V$ נקרא לכל d- כלומר, לכל הערכיויות שוות ל-הגדרה: גרף d- נקרא נקרא נקרא אם כל הערכיויות

מסקנה: בכל גרף G=(A,B,E) דו צדדי G=(A,B,E) מסקנה:

$$d|A| = d|B| \Rightarrow |A| = |B|$$

תרגיל: יהי |S|-d<|N(S)| מתקיים לכל $S\subseteq A$ אז יש זיווג שמכיל לפחות גרף זהי יהי גרף זיווג שמכיל לפחות אם לכל $S\subseteq A$ גרף דו"צ. הוכיחו שאם לכל A אז יש זיווג שמכיל לפחות מ-A

פתרון:

A מוסיפים עם אותם אותם B-ל קדקודים d מוסיפים

נקבל גרף חדש $S \subseteq A$, תהי מתקיים:

$$|N_{G'}(S)| = |N_G(S)| + d \ge |S| - d + d = |S|$$

מתקיים התנאי של משפט החתונה ולכן קיים זיווג עבור A ב-G'. לכל היותר d קדקודים מ-A מחוברים לקדקודים חדשים שהוספנו, ולכן אם נוריד אותם עדין |A|-d ישארו בזיווג.

משפט: גרף הוא דו"צ אמ"מ כל המעגלים שלו הם באורך זוגי.

הוכחה:

- נניח ש-G הוא גרף דו"צ. אם אין מעגלים, אז הטעה נכונה באופן ריק. אם יש מעגל, אז בגל צלע אנחנו עוברים מצד אחד \sqsubseteq לצד שני ולכן כדי לחזור לקדקוד הראשון צריך לעשות מס' זוגי של צעדים \Rightarrow המעגל זוגי.
- נניח שכל המעגלים בגרף הם זוגיים. נוכיח על גרף קשיר ואם הגרף לא קשיר, נוכיח עבור כל רכיב קשירות. יהיה קדקוד u. נכסמן ב-A את כל הקדקודים שקיים מסלול אי זוגי מu אליהם, ובu את כל הקדקודים שקיים מסלול באורך זוגי מu אליה. u בראה שu u לא, אז קיים u u לוגי מu כך שקיים מסלול באורך זוגי ומסלול באורך אי זוגי מu ל-u. לכן, האיחוד של המסלולים יוצר מסלול סגור באורך אי זוגי. כל מסלול סגור ניתן לפירוק למעגלים זרים פשוטים ולפחות אחד מהם יהיה באורך אי זוגי בסתירה לנתון.
- אם אם אדע אז יחד עם אז ל-w, אז ל-w, און למשל, u, אז מ-v, אז מ-v, אז מ-v, אז מ-v, אם אם כאשר, למשל, למשל, u, אנו מקבלים מסלול סגור באורך אי זוגי בסתירה לנתון. $\{u,w\}$