Silvio Ravaioli (Columbia University) Vladimir Novak (CERGE-EI)

Columbia University - Experimental Lunch

October 4, 2019

Puzzle

- Society today is more polarized (McCarty et al. 2006)
- ► Information is more easily accessible (lower cost)
- ► If a "true state" exists, beliefs should converge, right?
- Not necessarily true if information collection is endogenous

- ➤ **Setup**: the action space is smaller than the state space (e.g. 2 actions safe/risky and 3 states), the agents collect evidence before choosing an action
- ► **State pooling**: agents avoid redundant information and "pool together" states associated with the same action
- ► **Belief polarization**: posterior beliefs are more distant (extreme) than prior beliefs

Puzzle

- Society today is more polarized (McCarty et al. 2006)
- ► Information is more easily accessible (lower cost)
- ► If a "true state" exists, beliefs should converge, right?
- Not necessarily true if information collection is endogenous

- ➤ **Setup**: the action space is smaller than the state space (e.g. 2 actions safe/risky and 3 states), the agents collect evidence before choosing an action
- ► **State pooling**: agents avoid redundant information and "pool together" states associated with the same action
- ► **Belief polarization**: posterior beliefs are more distant (extreme) than prior beliefs

Puzzle

- Society today is more polarized (McCarty et al. 2006)
- ► Information is more easily accessible (lower cost)
- ▶ If a "true state" exists, beliefs should converge, right?
- ▶ Not necessarily true if information collection is endogenous

- **Setup**: the action space is smaller than the state space (e.g. 2 actions safe/risky and 3 states), the agents collect evidence before choosing an action
- ► **State pooling**: agents avoid redundant information and "pool together" states associated with the same action
- ▶ **Belief polarization**: posterior beliefs are more distant (extreme) than prior beliefs

Puzzle

- Society today is more polarized (McCarty et al. 2006)
- ► Information is more easily accessible (lower cost)
- If a "true state" exists, beliefs should converge, right?
- Not necessarily true if information collection is endogenous

- Setup: the action space is smaller than the state space (e.g. 2 actions safe/risky and 3 states), the agents collect evidence before choosing an action
- ► **State pooling**: agents avoid redundant information and "pool together" states associated with the same action
- ► **Belief polarization**: posterior beliefs are more distant (extreme) than prior beliefs

Today's Presentation

- Motivating Example
- Research Question
- Laboratory Experiment
 - Design
 - Preliminary results
- Appendix A: Related Literature
- Appendix B: More about the State Pooling Model
- ► Appendix C: Alternative Hypothesis

MOTIVATING EXAMPLE

Setting

- Alice and Bob face a choice: go to the Theater or stay Home
 - ► Theater: uncertainty about the quality of the movie [state *s*]
 - ► Home: "safe" choice [status quo]

	Theater	Home	
S	$v_i^T(s)$	$v_A^H(s)$	$v_B^H(s)$
bad	0	0.45	0.55
medium	0.5	0.45	0.55
good	1	0.45	0.55

Assume uniform prior $p_s = \frac{1}{3}$ and risk neutrality

- ► Alice and Bob have the same beliefs over *s* and *EV*(Theater)
 - \triangleright *EV*(Theater) = 0.5
- Alice and Bob make different choices
 - A chooses Theater as 0.5 = EV(Theater) > EV(Home) = 0.45
 - ▶ B chooses Home as 0.5 = EV(Theater) < EV(Home) = 0.55

	Theater	Home	
S	$v_i^T(s)$	$v_A^H(s)$	$v_B^H(s)$
bad	0	0.45	0.55
medium	0.5	0.45	0.55
good	1	0.45	0.55

- Same problem as before, but now A and B can collect "some" information about the movie quality
- ▶ Note that we have 2 actions (T/H) and 3 states (b/m/g)
 - For Alice it is *sufficient* to know if the movie is b or (m/g)

	Theater	Home	
S	$v_i^T(s)$	$v_A^H(s)$	$v_B^H(s)$
bad	0	0.45	0.55
medium	0.5	0.45	0.55
good	1	0.45	0.55

- Same problem as before, but now A and B can collect "some" information about the movie quality
- ▶ Note that we have 2 actions (T/H) and 3 states (b/m/g)
 - ► For Bob it is *sufficient* to know if the movie is (b/m) or g

	Theater	Home	
S	$v_i^T(s)$	$v_A^H(s)$	$v_B^H(s)$
bad	0	0.45	0.55
medium	0.5	0.45	0.55
good	1	0.45	0.55

- ► If the movie is good (bad) they agree about the action Theater (Home)
- But they do not agree about the expected quality of the movie
 - Good movie: $EV_A(T|g) = 0.75 < EV_B(T|g) = 1$
 - ► Bad movie: $EV_A(T|b) = 0 < EV_B(T|b) = 0.25$
- ▶ If the movie is medium they still disagree about the action
- ▶ But they also disagree about the expected quality of the movie
 - Alice chooses Theater: $EV_A(T|m) = 0.75$
 - ▶ Bob chooses Home: $EV_B(T|m) = 0.25$

- ▶ If the movie is good (bad) they agree about the action Theater (Home)
- But they do not agree about the expected quality of the movie
 - Good movie: $EV_A(T|g) = 0.75 < EV_B(T|g) = 1$
 - ► Bad movie: $EV_A(T|b) = 0 < EV_B(T|b) = 0.25$
- ▶ If the movie is medium they still disagree about the action
- But they also disagree about the expected quality of the movie
 - Alice chooses Theater: $EV_A(T|m) = 0.75$
 - ▶ Bob chooses Home: $EV_B(T|m) = 0.25$

Summary

- ► Alice and Bob have the same prior beliefs
- But they have different preferences (outside option)
- ► The introduction of **endogenous information collection** created disagreement about movie quality
- Stock/bond investment, Referendum vote (e.g. Brexit), etc.

Definitions (again)

- State pooling: agents avoid redundant information and "pool together" states associated with the same action
- ► **Belief polarization**: posterior beliefs are more distant (extreme) than prior beliefs

Summary

- ► Alice and Bob have the same prior beliefs
- But they have different preferences (outside option)
- ► The introduction of **endogenous information collection** created disagreement about movie quality
- Stock/bond investment, Referendum vote (e.g. Brexit), etc.

Definitions (again)

- State pooling: agents avoid redundant information and "pool together" states associated with the same action
- ► **Belief polarization**: posterior beliefs are more distant (extreme) than prior beliefs

Summary

- Alice and Bob have the same prior beliefs
- But they have different preferences (outside option)
- ► The introduction of **endogenous information collection** created disagreement about movie quality
- Stock/bond investment, Referendum vote (e.g. Brexit), etc.

Definitions (again)

- State pooling: agents avoid redundant information and "pool together" states associated with the same action
- ► Belief polarization: posterior beliefs are more distant (extreme) than prior beliefs

Research Question

Research Question

Can we observe belief polarization and identify its drivers in a lab experiment?

This question can be divided into three smaller ones:

- How do agents evaluate and choose information sources?
 We replicate well-known results (compression of WTP wrt optimal value, preference for certainty)
- 2. **Do we observe (preference for) state pooling?**Yes, we report new evidence of preference for "state pooling" and "extreme" information
- 3. **Do we observe belief polarization (by changing Safe)?**Yes, a change in the safe option generates "information switch" as predicted, and creates belief polarization

Research Question

Can we observe belief polarization and identify its drivers in a lab experiment?

This question can be divided into three smaller ones:

- How do agents evaluate and choose information sources?
 We replicate well-known results (compression of WTP wrt optimal value, preference for certainty)
- Do we observe (preference for) state pooling?
 Yes, we report new evidence of preference for "state pooling" and "extreme" information
- 3. **Do we observe belief polarization (by changing Safe)?**Yes, a change in the safe option generates "information switch" as predicted, and creates belief polarization

LABORATORY EXPERIMENT

Laboratory Experiment

- How do agents evaluate and choose information sources?
- Do we observe (preference for) state pooling?
- **▶** Do we observe belief polarization (by changing Safe)?
- Stage 1: choose or "hire" an advisor (experiment)
- Observe signal realization
- ► Stage 2: select an action [risky/safe]
- We collect separately
 - Choices over sources of information (advisors)
 - Action (conditional on realized signals)
 - ► Elicited beliefs (signal probability and posterior)
 - Willingness to pay for signal structures

Laboratory Experiment

- How do agents evaluate and choose information sources?
- Do we observe (preference for) state pooling?
- Do we observe belief polarization (by changing Safe)?
- Stage 1: choose or "hire" an advisor (experiment)
- Observe signal realization
- Stage 2: select an action [risky/safe]
- We collect separately
 - Choices over sources of information (advisors)
 - Action (conditional on realized signals)
 - Elicited beliefs (signal probability and posterior)
 - Willingness to pay for signal structures

Laboratory Experiment

- Experiment conducted at Columbia in August-September 2019
- 85 participants (undergraduate and graduate students)
- Nerage time 80 minutes, Average payment \sim \$25
 - ► Show-up fee (\$10)
 - ► Main experiment, 4 parts (probability points, \$15 prize)
 - Risk attitude (Holt-Laury, \$0.10-\$4.00)
 - ► Intelligence (Raven's Progressive Matrices, 5 x \$0.50)
 - Unrewarded questionnaire (strategy, LOT-R, demographics)

Task 1

Task 1 - Choice screen

Task 1 - Hiring screen

Task 2

Task 2 - Hiring screen

Task 2 - Choice screen

Task 3

Task 3 - Belief elicitation

Task 4

Task 4 - Belief elicitation

PRELIMINARY RESULTS

Task 2 - How did we design the pairs of advisor?

Most of participants "switch" advisor optimally

Accuracy depends on the stakes

Simple Advisors: Certainty vs Certainty

- Each advisor "pools" two states out of three
- These trials are easy to interpret
- Participants switch in the red/blue choice...
- ...but they switch only when it is valuable to do so

Certainty vs Uncertainty

	(1)	
v _I Bayes	0.210***	
	(0.0346)	
Best Advisor	0.106	
	(0.143)	
Certainty		
State Pooling		
C + : + CD		
Certainty \times SP		
Trials	All	
Observations	3,400	

The significance levels concern the hypothesis that the coefficient is 0.

Notation: *** p<0.01, ** p<0.05, * p<0.1

	(1)	(2)
v_I^{Bayes}	0.210***	0.236***
	(0.0346)	(0.0110)
Best Advisor	0.106	
	(0.143)	
Certainty		0.1876***
		(0.0708)
State Pooling		

Trials	All	All
Observations	3,400	3,400

The significance levels concern the hypothesis that the coefficient is 0.

Notation: *** p<0.01, ** p<0.05, * p<0.1

Certainty \times SP

	(1)	(2)	(3)	
Bayes V _I	0.210***	0.236***	0.2108***	
	(0.0346)	(0.0110)	(0.0113)	
Best Advisor	0.106			
	(0.143)			
Certainty		0.1876***		
		(0.0708)		
State Pooling			0.742***	
			(0.0757)	
$Certainty \times SP$			0.488***	
			(0.0825)	
Trials	All	All	All	
Observations	3,400	3,400	3,400	

The significance levels concern the hypothesis that the coefficient is 0. Notation: *** p<0.01, ** p<0.05, * p<0.1

	(1)	(2)	(3)	(4)
v _I Bayes	0.210***	0.236***	0.2108***	0.253***
	(0.0346)	(0.0110)	(0.0113)	(0.0358)
Best Advisor	0.106			-0.186
	(0.143)			(0.149)
Certainty		0.1876***		0.596***
		(0.0708)		(0.154)
State Pooling			0.742***	1.041***
			(0.0757)	(0.111)
$Certainty \times SP$			0.488***	-0.0601
			(0.0825)	(0.164)
Trials	All	All	All	All
Observations	3,400	3,400	3,400	3,400

The significance levels concern the hypothesis that the coefficient is 0. Notation: *** p<0.01, ** p<0.05, * p<0.1

Elicited Beliefs - Card color

Elicited Beliefs - Ball color

Trials with Predicted Belief Polarization

Trials with Predicted Belief Polarization

Trials with Predicted Belief Polarization

Trials with Predicted Belief Polarization

Beliefs Polarization - Data

Trials with Predicted Belief Polarization

Beliefs Polarization - Counterfactual

Trials with Predicted Belief Polarization

Trials with Predicted Belief Polarization

Compression in the WTP for Advisors in Task 1

Questionnaire - Strategies

State Pooling

- ► If low ball in transparent box, pick advisor most likely to reveal blue or yellow, vice versa
- I chose based on whichever advisor's information could tell me more about the single ball I either really did or did not want to pick

Other strategies

- CERTAINTY I would choose the advisor which had the same color of cards for each color ball
- BLUE To make sure if it is blue
- ► RED I chose the advisor of the ball I didn't want to get on the opaque box, and if that was the color that was on the box, I went with the transparent box
- ► TALKATIVE Probability

Summary

- ► **Motivation**: Empirical evidence of belief polarization (BP)
- Setup: 3 states and 2 actions (safe/risky)
- Endogenous information acquisition generates BP
- Lab experiment:
 - A change in the safe option generates "advisor switches" as predicted...
 - ... and creates (mitigated) belief polarization.
 - We replicate well-known results (compression, preference for certainty) in a new setup with 3 states...
 - ... and we report novel evidence: preference for "state pooling" and "extreme states" advisors.

State Pooling and Belief Polarization

Silvio Ravaioli (Columbia University) Vladimir Novak (CERGE-EI)

Columbia University - Experimental Lunch

October 4, 2019

Appendix Slides

Appendix A - The Model

► Appendix A

Appendix B - Related Literature

► Appendix B

Appendix C - Confounding Factors

► Appendix C

APPENDIX A - THE MODEL

Full Model (Matveenko and Novak)

- ▶ DM is rationally inattentive (Sims, 2003, 2006)
 - Information costly Shannon cost
 - $ightharpoonup \lambda$ marginal cost of information
 - \triangleright $\kappa(P,G)$ expected reduction in entropy
 - ightharpoonup G(v) prior distribution
 - P(i|v) probability of choosing action *i* conditional on *v*

Main result: possible "wrong direction" updating of beliefs dependent on respective position of prior beliefs and safe option. It leads to polarization (more extreme posterior beliefs).

Agent's problem

Denote: $\mathbf{v} = (v_1, \dots, v_n), G(\mathbf{v})$ - prior joint distribution Find an information strategy maximizing:

$$\max_{P(i|v)} \left\{ \sum_{i=1}^{2} \int_{\mathbf{v}} v_{i} P(i|\mathbf{v}) G(d\mathbf{v}) - \lambda \kappa(P, G) \right\},\,$$

where

$$\kappa(P,G) = -\sum_{i=1}^{2} P_i^0 \ln P_i^0 + \int_{\mathbf{v}} \left(\sum_{i=1}^{2} P(i|\mathbf{v}) \ln P(i|\mathbf{v}) \right) G(d\mathbf{v}).$$

P(i|v) is the conditional on the realized value of v, the probability of choosing option i and

$$P_i^0 = \int_{\mathbf{v}} P(i|\mathbf{v})G(d\mathbf{v}), i = 1, 2$$

where P_i^0 is the unconditional probability of option i to be chosen.

Lemma 1 (Matějka, McKay, 2015)

Conditional on the realized state of the world s^* probability of choosing risky option is

$$P(\text{picking risky}|\text{state is }s^*) = \frac{P_1^0 e^{\frac{v_s^*}{\lambda}}}{P_1^0 e^{\frac{v_s^*}{\lambda}} + (1 - P_1^0)e^{\frac{R}{\lambda}}}$$

of choosing safe option is:

$$P(\text{picking safe}|\text{state is }s^*) = \frac{(1 - P_1^0)e^{\frac{R}{\lambda}}}{P_1^0 e^{\frac{v_s^*}{\lambda}} + (1 - P_1^0)e^{\frac{R}{\lambda}}}$$

here P_1^0 is unconditional probability of choosing risky option.

Beliefs

Agent's prior expected value of the risky option is:

$$\mathbb{E}v = \sum_{s=1}^{n} v_s g_s$$

we **fix the state** of the nature: it is s^*

Observer sees agent's updated belief about the average of v:

$$\mathbb{E}_{i}[\mathbb{E}(v|i)|s^{*}] = P(i = 1|s^{*})\mathbb{E}(v|\text{picking option 1}) +$$

$$+ (1 - P(i = 1|s^{*}))\mathbb{E}(v|\text{picking option 2})$$

where for option $i \in \{1, 2\}$

$$\mathbb{E}(v|\text{picking option i}) = \sum_{j=1}^{n} v_{i} P(\text{state is j}|\text{picking option i})$$

Beliefs

Theorem

Expected posterior value of the risky option for a rationally inattentive decision maker is

$$\mathbb{E}_{i}[\mathbb{E}(v|i)|s^{*}] = \sum_{i=1}^{n} v_{i}g_{i}\frac{\alpha_{s^{*}}e^{\frac{v_{i}}{\lambda}} + (1-\alpha_{s^{*}})e^{\frac{R}{\lambda}}}{P_{1}^{0}e^{\frac{v_{i}}{\lambda}} + (1-P_{1}^{0})e^{\frac{R}{\lambda}}}$$
(1)

where

$$\alpha_{s^*} = \frac{P_1^0 e^{\frac{V_{s^*}}{\lambda}}}{P_1^0 e^{\frac{V_{s^*}}{\lambda}} + (1 - P_1^0) e^{\frac{R}{\lambda}}}$$

Updating of beliefs

We are interested in

$$\Delta = \mathbb{E}_i[\mathbb{E}(v|i)|s^*] - \mathbb{E}v$$

Theorem

The sign of Δ is the same as the sign of $(v_{s^*} - R)$.

Proof.

Straightforward and we use:

Lemma 2

Relations $\alpha_{s^*} \geq P_1^0$ under $P_1^0 > 0$ are equivalent to $v_{s^*} \geq R$

Example 3 states, 2 actions

- 3 possible states of the world indexed by s
- 2 options/actions indexed by a
 - ▶ Option 1 Risky with values: $v_1 < v_2 < v_3$
 - ▶ Option 2 Safe option with value *R* in all states
- ▶ Prior belief about the states: g_1, g_2, g_3
- ightharpoonup Marginal cost of information: λ

Assumption 1: to rule out uninteresting cases

$$v_1 < R < v_3$$

Updating in "wrong" direction

We are interested when the conditional expectation moves in the "wrong" direction

Example for $s^* = 1$ the expectation "should" go down, so the agent is biased when

$$\mathbb{E}_a[\mathbb{E}(v|a)|s^*] > \mathbb{E}v > 0$$

Updating in "wrong" direction

Let's denote $\Delta = \mathbb{E}_a[\mathbb{E}(v|a)|s^*] - \mathbb{E}v$.

lf

$$(\mathbb{E}v - v_{s^*}) \cdot \Delta > 0$$

then the agent is updating belief in the wrong direction

Result

APPENDIX B - LITERATURE

Information and Belief Polarization

- Polarization is an ubiquitous phenomenon
- Mixed evidence of how information contributes to polarization
 - Politicians and voters more polarized despite increased availability of information McCarty, Poole and Rosenthal (2006)
 - Greater Internet use is not associated with faster growth in political polarization among US demographic groups Boxell, Gentzkow and Shapiro (2017)

► Back to Literature slides

Multiple Explanations for Polarization

1. Confirmation bias

- Misreading ambiguous signals: Rabin, Schrag (1999); Fryer, Harms, Jackson (2017)
- Limited memory: Wilson (2014)
- Experiments: Lord, Ross, Lepper (1979)

2. Overconfidence and correlation neglect

Ortoleva and Snowberg (2015)

3. Positive test strategy

Klayman and Ha (1987), Nickerson (1998)

Results mostly based on exogeneous information and/or exogeneously imposed biases.

➤ Back to Literature slides

Confirmation Bias and Rational Inattention

1. Su (2014)

- Gaussian signal + quadratic loss function
- Attention proportional to observation window
- Results: conformism in learning

2. Nimark and Sundaresan (2018)

- Mainly focus on polarization persistence
- Agent pays more attention to the states which are more likely

3. Dixit and Weibull (2007) - not RI

- Learning about policy in place (signal bimodal)
- Agents agree on loss function, disagree on probabilities of states
- Status quo vs. new reform Divergence of opinions

Experimental Literature

1. Ambuehl and Li (2018)

- Systematic analysis of belief updating and demand for information
- Compression effect: subjective valuation of useful information underreacts to increased informativeness
- Biases mainly due to non-standard belief updating rather than risk preferences

2. Charness, Oprea, and Yuksel (2018)

- Study how people choose between biased information sources
- Evidence of confirmation-seeking rule
- Mistakes are driven by errors in reasoning about informativeness

→ Back to Literature slides

Ambuehl and Li (2018)

- Prediction game
- ► Information valuation task
- Belief updating task
- Eliciting signal probabilities
- Gradual information task

Charness, Oprea, and Yuksel (2018)

➤ Back to Literature slides

APPENDIX C CONFOUNDING FACTORS

Who killed BP in the lab? A list of usual suspects

- Risk attitude
- Noise/randomness
- ► Inertia
- Status quo effect
- Wrong updating (base-rate neglect, conservatism)
- Updating strength affected by irrelevant variables
- Confirmatory strategy (positive test)
- Preference over non-instrumental information
- Signal avoidance (ostrich effect)
- Biased information cost/value function (compression)

► Back to Experiment slides

