MAS472/6004: Computational Inference

Chapter IV Bayesian inference

Bayesian inference

Unnormalised densities frequently occur when we are doing Bayesian inference.

Suppose we are interested in some posterior expectation, for example, the posterior mean:

$$I = \mathbb{E}(\theta|x) = \int \theta f(\theta|x) d\theta$$

where

$$f(\theta|x) = \frac{f(\theta)f(x|\theta)}{f(x)}$$
 by Bayes theorem.

The denominator $f(x) = \int f(\theta) f(x|\theta) dx$ is often intractable and unknown, and so we instead work with the unnormalised density

$$f_1(\theta|x) = f(\theta)f(x|\theta) = \text{prior} \times \text{likelihood}$$

Choice of g and the normal approximation

If wish to sample from $f(\boldsymbol{\theta}|\mathbf{x})$, could choose $g(\boldsymbol{\theta}) = f(\boldsymbol{\theta})$. If we do not know $f(\mathbf{x})$ then have

$$\tilde{w}_i = f(\mathbf{x}|\boldsymbol{\theta}_i)$$
 and $w(\boldsymbol{\theta}_i) = \frac{f(\mathbf{x}|\boldsymbol{\theta}_i)}{\sum_{i=1}^n f(\mathbf{x}|\boldsymbol{\theta}_i)}$.

- ▶ Simulate $\theta_1, \ldots, \theta_n$ from the prior $f(\theta)$
- ▶ Set $\tilde{w}_i = f(\mathbf{x}|\boldsymbol{\theta})$
- ▶ Set $w_i = \tilde{w}_i / \sum \tilde{w}_i$ and estimate $\mathbb{E}(\boldsymbol{\theta}|\mathbf{x})$ by

$$\sum_{i=1}^n w_i \boldsymbol{\theta}_i$$

This is inefficient if the prior is very different to the posterior as we will spend too much time sampling θ_i where the likelihood is very small, and so the weights $w(\theta_i)$ will also be very small.

If this is the case, then the effective sample size will be small, and our estimates of $E(\boldsymbol{\theta}|\mathbf{x})$ will be dominated by just a few of the $\boldsymbol{\theta}$ samples.

A more efficient alternative to using the prior distribution for g, is to build a normal approximation to the posterior and use this as g

Let $h(\boldsymbol{\theta}) = \log f(\boldsymbol{\theta}|\mathbf{x})$. Now define **m** to be posterior mode of $\boldsymbol{\theta}$, so **m** maximises both $f(\boldsymbol{\theta}|\mathbf{x})$ and $h(\boldsymbol{\theta})$.

We may need to use numerical optimisation (such as the optim command in R) to find \mathbf{m} , but note that we don't need to know $f(\mathbf{x})$ to do this.

We can then use a Taylor expansion of $h(\boldsymbol{\theta})$ around **m**

$$h(\boldsymbol{\theta}) = h(\mathbf{m}) + (\boldsymbol{\theta} - \mathbf{m})^T \mathbf{h}'(\mathbf{m}) + \frac{1}{2} (\boldsymbol{\theta} - \mathbf{m})^T M(\boldsymbol{\theta} - \mathbf{m}) + \dots$$

to build a Gaussian approximation to the posterior (known as the Laplace approximation).

Here, $h'(\mathbf{m})$ the vector of first derivatives of $h(\boldsymbol{\theta})$, and M the matrix of second derivatives of $h(\boldsymbol{\theta})$, both evaluated at $\boldsymbol{\theta} = \mathbf{m}$.

Since **m** maxmises $h(\mathbf{m})$ we have $h'(\mathbf{m}) = \mathbf{0}$. Hence

$$f(\boldsymbol{\theta}|\mathbf{x}) = \exp\{h(\boldsymbol{\theta})\} \simeq \exp\{h(\mathbf{m})\} \exp\left\{-\frac{1}{2}(\boldsymbol{\theta} - \mathbf{m})^T V^{-1}(\boldsymbol{\theta} - \mathbf{m})\right\},$$
(1)

where $-V^{-1} = M$.

Thus, our approximation of $f(\boldsymbol{\theta}|\mathbf{x})$ is a multivariate normal distribution, mean vector \mathbf{m} , variance matrix $-M^{-1}$. This will be a good approximation if posterior mass concentrated around \mathbf{m} .

NB: We do not need $f(\mathbf{x})$ to obtain M, since

$$h(\boldsymbol{\theta}) = \log f(\boldsymbol{\theta}|\mathbf{x}) = \log f(\boldsymbol{\theta}) + \log f(\mathbf{x}|\boldsymbol{\theta}) - \log f(\mathbf{x}),$$

so $\log f(\mathbf{x})$ will disappear when we differentiate $h(\boldsymbol{\theta})$.

Assessing convergence

Suppose we wish to estimate $\mathbb{E}\{r(\boldsymbol{\theta})|\mathbf{x}\}$ for some $r(\boldsymbol{\theta})$. If $f(\mathbf{x})$ known, then

$$\hat{\mathbb{E}}\{r(\boldsymbol{\theta})|\mathbf{x}\} = \frac{1}{n} \sum_{i=1}^{n} r(\boldsymbol{\theta}_i) w(\boldsymbol{\theta}_i),$$

and can use central limit theorem to obtain a confidence interval for $\mathbb{E}\{r(\boldsymbol{\theta})|\mathbf{x}\}$, as in MC integration.

We can check our estimate by

- 1) Increasing the sample size n to check the stability of any estimate.
- 2) Increasing the standard deviation in the $g(\theta)$ density, to check stability to the choice of g, e.g., if we're using a normal approximation, we could multiply V by 4 etc.

Example: leukaemia data

Patients suffering from leukaemia are given a drug, 6-mercaptopurine (6-MP), and the number of days x_i until freedom from symptoms is recorded of patient i:

A * denotes censored observation.

Will suppose that time x to the event of interest follows a Weibull distribution:

$$f(x|\alpha,\beta) = \alpha\beta(\beta x)^{\alpha-1} \exp\{-(\beta x)^{\alpha}\}\$$

for x > 0.

For censored observations, we have

$$P(x > t | \alpha, \beta) = \exp\{-(\beta t)^{\alpha}\}.$$

Example: leukaemia data

Likelihood

Define

- ▶ d: number of uncensored observations,
- $\triangleright \sum_{u} \log x_i$: sum of logs of all uncensored observations.

Writing $\boldsymbol{\theta} = (\alpha, \beta)^T$, the log likelihood is then given by

$$\log f(\mathbf{x}|\boldsymbol{\theta}) = d\log \alpha + \alpha d\log \beta + (\alpha - 1) \sum_{i} \log x_i - \beta^{\alpha} \sum_{i=1}^{n} x_i^{\alpha}.$$

Suppose our prior distributions for α and β are both exponential with

$$f(\alpha) = 0.001 \exp(-0.001\alpha),$$

 $f(\beta) = 0.001 \exp(-0.001\beta).$

Example: leukaemia data

Building an approximation to the posterior

1) Obtain the posterior mode of θ . Maximise log posteior, i.e.

$$h(\boldsymbol{\theta}) = d\log\alpha + \alpha d\log\beta + (\alpha - 1)\sum_{i} \log x_i - \beta^{\alpha}\sum_{i=1}^{n} x_i^{\alpha} - 0.001\alpha - 0.001\beta + \alpha d\log\beta + \alpha d\beta +$$

for some constant K.

In R, we can find the mode to be $\mathbf{m} = (1.354, 0.030)$ using the optim command.

2) Derive the matrix of second derivatives of $h(\theta)$.

evaluated at $\theta = \mathbf{m}$.

 $\frac{\partial^2}{\partial \alpha^2} h(\boldsymbol{\theta}) = -\frac{d}{\alpha^2} - \sum_{i} (\beta x_i)^{\alpha} (\log(\beta x_i))^2$

 $\frac{\partial^2}{\partial \beta^2} h(\boldsymbol{\theta}) = \frac{1}{\beta^2} \left\{ \beta^{\alpha} \alpha (1 - \alpha) \sum_{i=1}^n x_i^{\alpha} - d\alpha \right\},\,$

 $M = \begin{pmatrix} \frac{\partial^2}{\partial \alpha^2} h(\boldsymbol{\theta}) & \frac{\partial^2}{\partial \alpha \partial \beta} h(\boldsymbol{\theta}) \\ \frac{\partial^2}{\partial \alpha^2 \partial \beta} h(\boldsymbol{\theta}) & \frac{\partial^2}{\partial \beta^2} h(\boldsymbol{\theta}) \end{pmatrix},$

 $\frac{\partial^2}{\partial \alpha \partial \beta} h(\boldsymbol{\theta}) = \frac{1}{\beta} \left[d - \beta^{\alpha} \left\{ \alpha \log \beta \sum_{i=1}^{n} x_i^{\alpha} + \sum_{i=1}^{n} x_i^{\alpha} + \alpha \sum_{i=1}^{n} x_i^{\alpha} \log x_i \right\} \right]$

 $M = \begin{pmatrix} -31.618 & 175.442 \\ 175.442 & -18806.085 \end{pmatrix}.$

3) Obtain the normal approximation to use as $g(\boldsymbol{\theta})$. $g(\boldsymbol{\theta})$: bivariate normal, mean \mathbf{m} , variance matrix $V = -M^{-1}$:

$$\boldsymbol{\theta} \sim N \left\{ \left(\begin{array}{c} 1.354 \\ 0.030 \end{array} \right), \left(\begin{array}{cc} 0.0334 & 0.0003 \\ 0.0003 & 0.00006 \end{array} \right) \right\}$$

4) Sample $\theta_1, \ldots, \theta_n$ from $g(\theta)$ and compute the importance weights $w(\theta_1), \ldots, w(\theta_n)$. The weights are given by

$$w(\boldsymbol{\theta}_i) = \frac{\tilde{w}(\boldsymbol{\theta}_i)}{\sum_{i=1}^n \tilde{w}(\boldsymbol{\theta}_i)}, \quad \text{with} \quad \tilde{w}(\boldsymbol{\theta}_i) = \frac{f(\boldsymbol{\theta}_i)f(\mathbf{x}|\boldsymbol{\theta}_i)}{g(\boldsymbol{\theta}_i)}$$

NB the Gaussian approximation may give us negative samples. Since $\alpha > 0$ and $\beta > 0$, we should simply discard negative $\boldsymbol{\theta}$ values, i.e., use a truncated normal density for $g(\theta)$.

Note that when we compute $w(\boldsymbol{\theta}_i)$, it is not necessary to rescale $g(\theta)$ so that it integrates to 1, as any normalising constant in $g(\theta)$ will cancel.

5) Estimate the posterior mean of θ We compute the estimate

$$\hat{E}(\boldsymbol{\theta}|\mathbf{x}) = \sum_{i=1}^{n} \boldsymbol{\theta}_{i} w(\boldsymbol{\theta}_{i}).$$

In R, with n = 100000, this gives $\hat{E}(\boldsymbol{\theta}|\mathbf{x}) = (1.346, 0.031)^T$.

6) Check for convergence

We repeat steps 4 and 5 with more dispersion in $g(\theta)$:

$g(m{ heta})$	$\hat{E}(oldsymbol{ heta} \mathbf{x})$
$N(\mathbf{m}, V)$	$(1.346, 0.031)^T$
$N(\mathbf{m}, 4V)$	$(1.384, 0.031)^T$
$N(\mathbf{m}, 16V)$	$(1.380, 0.031)^T$

Finally, double the sample size (no effect observed). For percentiles, we can do resampling in R.

See computer class 5 for more details and code to implement this approach.