Discrete Mathematics

Lecture 2. 논리와 명제 2

Lecturer: Suhyung Park, PhD

• Office: 공과대학 7호관 431호

• Contact: 062-530-1797

• E-mail: suhyung@jnu.ac.kr

^{*} 본 강의 자료는 생능출판사와 한빛아카데미 "PPT 강의자료"를 기반으로 제작되었습니다.

강의 내용

- 1) 논리와 명제
- 2) 논리 연산
- 3) 항진 명제와 모순 명제
- 4) 논리적 동치 관계
- 5) 추론
- 6) 술어 논리

- 두 명제가 논리적 동치일 경우는 두 명제의 논리값이 서로 같으므로 하나의 명제가 다른 명제를 대신할 수 있음
- 어떤 복잡한 명제를 좀 더 간단한 명제로 만들기 위해 논리적 동치 관계인 다른 명제를 사용하여 간소화함

명제 $\sim (p \lor q)$ 와 $(\sim p) \land (\sim q)$ 이 논리적 동치임을 확인해보자.

물이 두 명제 $\sim (p \lor q)$ 와 $(\sim p) \land (\sim q)$ 에 대한 진리값을 구하고, 서로의 진리 값이 같음을 보이면 된다. 두 명제에 대한 진리표를 구하면 다음과 같다.

p	q	$p \lor q$	$\sim (p \lor q)$	~p	~q	$(\sim p) \wedge (\sim q)$
Т	Т	Т	F	F	F	F
T	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т
				フ	トウ フト	

위의 진리표에서 명제 $\sim (p \lor q)$ 의 진리값과 명제 $(\sim p) \land (\sim q)$ 의 진리값이 같으므로 $\sim (p \lor q) \Leftrightarrow (\sim p) \land (\sim q)$ 이다.

(표 2.9) 논리적 동치 관계의 기본 법칙

논리적 동치 관계	법칙 이름
$p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$	멱등 법칙 (idempotent law)
$p \lor T \Leftrightarrow T$ $p \lor F \Leftrightarrow p$ $p \land T \Leftrightarrow p$ $p \land F \Leftrightarrow F$	항등 법칙 (identity law)
$ \sim T \Leftrightarrow F \sim F \Leftrightarrow T p \lor (\sim p) \Leftrightarrow T p \land (\sim p) \Leftrightarrow F $	부정 법칙 (negation law)
$\sim (\sim p) \Leftrightarrow p$	이중 부정 법칙 (double negation law)

논리적 동치 관계	법칙 이름
$p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$ $p \leftrightarrow q \Leftrightarrow q \leftrightarrow p$	교환 법칙 (commutative law)
$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$	결합 법칙 (associative law)
$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	분배 법칙 (distributive law)
$p \lor (p \land q) \Leftrightarrow p$ $p \land (p \lor q) \Leftrightarrow p$	흡수 법칙 (absorption law)
$\sim (p \lor q) \Leftrightarrow (\sim p) \land (\sim q)$ $\sim (p \land q) \Leftrightarrow (\sim p) \lor (\sim q)$	드 모르간 법칙 (De Morgan's law)
$p \to q \Leftrightarrow \sim p \lor q$	조건 법칙
$p \to q \Leftrightarrow \sim q \to \sim p$	대우 법칙

(표 2.9) 논리적 동치 관계의 기본 법칙

논리적 동치 관계	법칙 이름
$p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$	멱등 법칙 (idempotent law)
$p \lor T \Leftrightarrow T$ $p \lor F \Leftrightarrow p$ $p \land T \Leftrightarrow p$ $p \land F \Leftrightarrow F$	항등 법칙 (identity law)
$\sim T \Leftrightarrow F$ $\sim F \Leftrightarrow T$ $p \lor (\sim p) \Leftrightarrow T$ $p \land (\sim p) \Leftrightarrow F$	부정 법칙 (negation law)
$\sim (\sim p) \Leftrightarrow p$	이중 부정 법칙 (double negation law)

논리적 동치 관계	법칙 이름
$p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$ $p \leftrightarrow q \Leftrightarrow q \leftrightarrow p$	교환 법칙 (commutative law)
$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$	결합 법칙 (associative law)
$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	분배 법칙 (distributive law)
$p \lor (p \land q) \Leftrightarrow p$ $p \land (p \lor q) \Leftrightarrow p$	흡수 법칙 (absorption law)
$\sim (p \lor q) \Leftrightarrow (\sim p) \land (\sim q)$ $\sim (p \land q) \Leftrightarrow (\sim p) \lor (\sim q)$	드 모르간 법칙 (De Morgan's law)
$p \to q \Leftrightarrow \sim p \lor q$	조건 법칙
$p \to q \Leftrightarrow \sim q \to \sim p$	대우 법칙

흡수법칙

P	Q	P∧Q	P∨Q	P ∨(P ∧ Q)	P∧(P∨Q)
Т	T	T	Т	T	T
Т	F	F	Т	Т	T
F	Т	F	Т	F	F
F	F	F	F	F	F

(표 2.9) 논리적 동치 관계의 기본 법칙

논리적 동치 관계	법칙 이름
$p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$	멱등 법칙 (idempotent law)
$p \lor T \Leftrightarrow T$ $p \lor F \Leftrightarrow p$ $p \land T \Leftrightarrow p$ $p \land F \Leftrightarrow F$	항등 법칙 (identity law)
$ \sim T \Leftrightarrow F \sim F \Leftrightarrow T p \lor (\sim p) \Leftrightarrow T p \land (\sim p) \Leftrightarrow F $	부정 법칙 (negation law)
$\sim (\sim p) \Leftrightarrow p$	이중 부정 법칙 (double negation law)

조건법칙

P	Q	P->Q	~P	~P∨Q
T	Т	Т	F	Т
T	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

논리적 동치 관계	법칙 이름
$p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$ $p \leftrightarrow q \Leftrightarrow q \leftrightarrow p$	교환 법칙 (commutative law)
$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$	결합 법칙 (associative law)
$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	분배 법칙 (distributive law)
$p \lor (p \land q) \Leftrightarrow p$ $p \land (p \lor q) \Leftrightarrow p$	흡수 법칙 (absorption law)
$\sim (p \lor q) \Leftrightarrow (\sim p) \land (\sim q)$ $\sim (p \land q) \Leftrightarrow (\sim p) \lor (\sim q)$	드 모르간 법칙 (De Morgan's law)
$p \to q \Leftrightarrow \sim p \vee q$	조건 법칙
$p \to q \Leftrightarrow \sim q \to \sim p$	대우 법칙

두 명제가 논리적 동치 관계임을 입증하는 방법

- 두 명제에 대한 진리표를 구하고 두 명제의 진리 값이 같음을 증명함
- 하나의 명제로부터 논리적 동치 관계의 기본 법칙을 이용하여 다른 명제로 유도해 냄

쌍방 조건 $p \leftrightarrow q$ 는 'p이면 q이고, q이면 p이다' 이므로, 이것을 p, q 명제와 연산자로 표시하면 $(p \to q) \land (q \to p)$ 와 같다. 따라서 $p \leftrightarrow q$ 의 진리값과 $(p \to q) \land (q \to p)$ 의 진리값이 같음을 살펴보자.

물 ○ 이것을 진리표로 만들면 서로 같음을 알 수 있다.

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \land (q \to p)$
Т	Т	Т	Т	Т	Т
T	F	F	F	Т	F
F	T	F	Т	F	F
F	F	Т	Т	Т	Т

_ 같은 값 -

두 명제가 논리적 동치 관계임을 입증하는 방법

- 두 명제에 대한 진리표를 구하고 두 명제의 진리 값이 같음을 증명함
- 하나의 명제로부터 논리적 동치 관계의 기본 법칙을 이용하여 다른 명제로 유도해 냄

논리적 동치 관계의 기본 법칙들을 이용하여 $\sim (\sim p \land q) \land (p \lor q) \equiv p$ 임을 보이자.

 ${\bf \Xi}$ 이 ${\sim}({\sim}p \land q) \land (p \lor q) \equiv ({\sim}({\sim}p) \lor {\sim}q) \land (p \lor q)$: 드 모르간의 법칙

 $\equiv (p \lor \sim q) \land (p \lor q)$: 이중 부정 법칙

 $\equiv p \lor (\sim q \land q)$: 분배 법칙

 $\equiv p \lor F$: $\forall F$

= *p* : 항등 법칙

두 명제가 논리적 동치 관계임을 입증하는 방법

- 두 명제에 대한 진리표를 구하고 두 명제의 진리 값이 같음을 증명함
- 하나의 명제로부터 논리적 동치 관계의 기본 법칙을 이용하여 다른 명제로 유도해 냄

예제 3-20

논리적 동치법칙을 이용해 $\neg(p\lor(\neg p\land q))$ 와 $\neg p\land \neg q$ 가 논리적 동치임을 증명하고, 진리표를 이용하여 확인하라.

풀이

 $\equiv (\neg p \land \neg q)$

항등법칙

p	q	$\neg p$	$\neg q$	$\neg p \wedge q$	$p \vee (\neg p \wedge q)$	$\neg(p \vee (\neg p \wedge q))$	$\neg p \wedge \neg q$
Т	Т	F	F	F	Т	F	F
Т	F	F	Т	F	Т	F	F
F	Т	Т	F	Т	Т	F	F
F	F	Т	Т	F	F	Т	Т

$$\therefore \neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$$

예제 3-21

논리적 동치법칙을 이용하여 명제 $(p
ightarrow q) \wedge (p
ightarrow \neg q)$ 를 간략히 하라.

풀이

$$(p \rightarrow q) \land (p \rightarrow \neg q) \equiv (\neg p \lor q) \land (\neg p \lor \neg q)$$
 함축법칙
$$\equiv \neg p \lor (q \land \neg q)$$
 분배법칙
$$\equiv \neg p \lor F$$
 부정법칙 항등법칙

예제 3-22

논리적 동치법칙을 이용하여 명제 $\neg p \lor [(p \land q) \rightarrow q]$ 가 항진명제임을 증명하라.

풀이

$$\neg p \lor [(p \land q) \rightarrow q] \equiv \neg p \lor [\neg (p \land q) \lor q]$$
 함축법칙
$$\equiv \neg p \lor [(\neg p \lor \neg q) \lor q]$$
 드모르간의 법칙
$$\equiv (\neg p \lor \neg p) \lor (\neg q \lor q)$$
 결합법칙
$$\equiv \neg p \lor (\neg q \lor q)$$
 멱등법칙
$$\equiv \neg p \lor T$$
 부정법칙
$$\equiv T$$
 지배법칙

- 주어진 명제가 참인 것을 바탕으로 새로운 명제가 참이 되는 것을 유도해내는 방법임
- 주어진 명제들인 $p_1, p_2, ..., p_n$ 을 전제(premise)라고 함
- 새로이 유도된 명제 q를 결론(conclusion)이라고 함
- 유효 추론(valid argument)
 - 주어진 전제가 참이고 결론도 참인 추론
- 허위 추론(fallacious argument)
 - 추론의 결론이 거짓

다음 $p \rightarrow q$, $p \vdash q$ 추론식에 나타난 명제들을 예를 들어 설명해보자.

 $(\equiv 0)$ 위의 식에서 사용된 명제는 p, q 두 개이므로 p, q에 대한 예를

p: '오늘은 비가 온다'

q : '나는 공부를 한다'

라고 가정하면 추론식을 다음과 같이 표현한다.

'오늘 비가 오면 나는 공부를 한다'

'오늘은 비가 온다'

'그러므로 나는 공부를 한다'

예제 2-22

[긍정 법칙] $p, p \rightarrow q \vdash q$ 가 유효 추론임을 진리표를 이용하여 보이자.

예제 ②-21

다음 추론이 유효 추론인지 허위 추론인지를 결정해보자.

$$p \rightarrow q, q \vdash p$$

 $\exists 0$ 추론 $p \rightarrow q$, $q \mid p$ 에 대한 진리표를 만들면 다음과 같다.

	р	q	$p \rightarrow q$
\Rightarrow	Т	T	Т
	T	F	F
\Rightarrow	F	T	Т
	F	F	Т

진리표에서 전제 $p \rightarrow q$ 와 q가 모두 참인 경우는 ⇒로 표시된 첫 번째와 세 번째 행이다. 두 경우 모두 추론의 결론인 p의 진리값을 살펴보면 첫 번째 행은 참이고 세 번째 행은 거짓의 진리값을 가진다. 그러므로 이 추론은 허위 추론이다.

부분)를 살펴보면, 결론인 q도 참(T)이므로 유효 추론이다.

[삼단 법칙] $p \to q, q \to r \mid p \to r$ 이 유효 추론임을 진리표를 이용하여 보이자.

을이 만들어진 진리표의 1, 5, 7, 8 행에서(\Rightarrow 마크한 부분) $p \to q$ 와 $q \to r$ 모두 참(T)인 경우에, 결론인 $p \to r$ 도 모두 참이므로 삼단 법칙에 대한 추론은 유효 추론이다.

	р	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$
\Rightarrow	Т	T	T T T		Т	Т
	T	T	F	T	F	F
	T	F	T	F	T	T
	T	F	F	F	T	F
\Rightarrow	F	T	T	T	T	Т
	F	T	F	T	F	T
\Rightarrow	F	F	T	T	T	T
\Rightarrow	F	F	F	T	T	T

예제 3-30

다음 논증식이 정당한지 판별하라.

$$(1) \ p \vee (q \vee r)$$

 $\neg r$

$$\therefore p \vee q$$

(2)
$$p \rightarrow q \vee \neg r$$

 $q \rightarrow p \wedge r$

$$\therefore p \rightarrow r$$

풀이 (1)

		r	$q\!\vee\! r$	전	결론	
p	q			$p \vee (q \vee r)$	$\neg r$	$p \lor q$
Т	Т	Т	Т	Т	F	Т
Т	Τ	F	Т	Т	Т	Т
Т	F	Т	Т	Т	F	Т
Т	F	F	F	Т	T	T
F	Т	Т	Т	Т	F	Т
F	Τ	F	Т	Т	Т	Т
F	F	Т	Т	Т	F	F
F	F	F	F	F	Т	F

전제에 해당되는 명제가 모두 참(T)일 때 결론에 해당되는 명제 역시 모두 참(T)이므로, 이 추론은 정당하다.

: 유효추론

예제 3-30

다음 논증식이 정당한지 판별하라.

$$(1) \ p \vee (q \vee r)$$

 $\neg r$

$$\therefore \ p \lor q$$

(2)
$$p \rightarrow q \lor \neg r$$

 $q \rightarrow p \wedge r$

$$\therefore p \rightarrow r$$

풀이 (2)

p	q	r	$\neg r$	$q \vee \neg r$	$p \wedge r$	전제		결론
						$p { ightarrow} q { vert} { ightarrow} r$	$q{ ightarrow}p\wedge r$	$p{ ightarrow} r$
Т	Т	Т	F	Т	Т	Т	Т	Т
Т	Τ	F	Т	T	F	Т	F	F
Т	F	Т	F	F	Т	F	Т	Т
Т	F	F	Т	T	F	Т	Т	F
F	Т	T	F	T	F	Т	F	Т
F	Т	F	Т	Т	F	T	F	Т
F	F	T	F	F	F	Т	T	Т
F	F	F	Т	Т	F	Т	Т	Т

전제에 해당되는 명제가 모두 참(T)일 때 결론에 해당되는 명제의 진릿값이 거짓(F)인 경우가 있으므로 이 추론은 정당하지 않다.

: 허위추론

- 명제 중에는 값이 정해지지 않는 변수나 객체(object)가 있어서 참과 거짓을 판별하기 힘든 경우가 있음
- 변수의 값에 따라 그 명제가 참이 되고 거짓이 될 수 있음
 - " $x^2 + 5x + 6 = 0$ 이라는 명제는 x의 값이 -2 또는 -3일 경우에는 참의 값을 가지고 그 외에는 거짓의 값을 가진다. 이런 경우 우리는 $x^2 + 5x + 6 = 0$ 을 만족시키는 변수가 있다'고 표현한다.

- 이와 같은 형태의 명제를 p(x)로 표시하고, p(x)를 변수 x에 대한 명제 술어(propositional predicate)라고 함
- 명제 논리와 구분하여 명제 술어에 대한 논리를 술어 논리(predicate logic)라고 함

'x는 3보다 크다' 는 술어임을 보이자.

- 술어 한정자(Predicate Quantifier)
 - 술어를 나타내는 방법 중에서 변수의 범위를 한정시키는 것임
 - 한정자에는 '모든 것에 대하여(for all, universal quantifier)'와 '존재한다(there exist, existential quantifier)'의 두 가지가 있음
 - '모든 것에 대하여'는 기호 ∀를사용
 - '존재한다'는 기호 3로 나타냄

존재 한정자에서 'p(x)가 성립하는 x가 존재한다'라고 하면, 그의 부정은 '모든 x는 p(x)가 성립하지 않는다'가 된다. 이것을 논리 기호를 사용하여 나타내면 다음과 같다.

 $\sim (\exists x \ p(x)) \Leftrightarrow \forall x (\sim p(x))$

예제 2-27

x가 정수이고 p(x)가 ' $x = x^2$ '이라고 할 때 다음 명제의 진리값을 구해보자

- (1) $\forall x \ p(x)$
- (2) $\exists x \ p(x)$

물이 (1) 이 명제는 '모든 x에 대하여 $x = x^2$ 이다'. 그러나 x = 2일 때는 $x = x^2$ 이 성립하지 않으므로 이 명제는 거짓이다.

(2) 이 명제는 $x = x^2$ 인 정수 x가 존재한다'이다. x = 0일 때 $x = x^2$ 이 성립하므로 이 명제는 참이다.

예제 2-29

x는 '학생은' 이고, p(x)는 'x는 공부한다' 일 때 다음 문장의 부정을 서술하고, 그 부정을 논리적 기호로 표시해보자.

- (1) 모든 학생은 공부한다.
- (2) 공부를 하는 학생이 존재한다.
- **물 0** (1) 이 명제의 부정은 '공부하지 않는 학생도 있다' 이다. 이것을 논리적 기호로 표시하면, \sim ($\forall x \ p(x)$) $\Leftrightarrow \exists x (\sim p(x))$ 이 된다.
- (2) 이 명제의 부정은 '모든 학생은 공부를 하지 않는다'가 된다. 논리적 기호로 표시하면, $\sim (\exists x \ p(x)) \Leftrightarrow \forall x (\sim p(x))$ 이 된다.

• 정의와 특성:

정의 3-15 명제함수(Propositional Function): P(x)

논의영역이 주어진 변수 x를 포함하여 진릿값을 판별할 수 있는 문장이나 수식

정의 3-16 논의영역(Domain of Discourse): D

명제함수에 포함된 변수 x의 범위나 값

정의 3-17 전체한정자 또는 전칭한정자(Universal Quantifier): ∀

논의영역의 모든 값

- 논의영역 D에 속하는 모든 x에 대한 명제 P(x): $\forall x P(x)$

정의 3-18 존재한정자(Existential Quantifier): ∃

논의영역 중 어떤 값

- 논의영역 D에 속하는 원소 중 어떤 x에 대한 명제 P(x): $\exists x P(x)$

[표 3-12] 한정자와 논리곱(AND), 논리합(OR)에 대한 정리

[표 3-13] 한정자와 부정(NOT)에 대한 정리

$$\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$

$$\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$$

•
$$\neg(\forall x P(x)) \equiv \exists x (\neg P(x))$$

•
$$\neg (\exists x P(x)) \equiv \forall x (\neg P(x))$$

술어논리

예제 3-27

논의영역 D가 $D = \{x | 0 < x \le 4, x$ 는 양의 정수 $\}$ 이고 명제 P(x)가 $x^2 < 10$ 일 때, 다음 진 릿값을 구하라.

(1) $\forall x P(x)$

 $(2) \exists x P(x)$

풀이

논의영역을 원소나열법으로 표기하면 $D = \{1, 2, 3, 4\}$ 이다.

- (1) $\forall x P(x)$ 가 참이 되려면 논의영역 D에 포함되는 모든 원소에 대해 P(x)가 참이어야 한다. 즉 P(1), P(2), P(3), P(4)가 모두 참이어야 명제 $\forall x P(x)$ 가 참이 된다. P(1) = 1 < 10, $P(2) = 2^2 = 4 < 10$, $P(3) = 3^2 = 9 < 10$ 으로 참이지만, $P(4) = 4^2 = 16 > 10$ 으로 거짓이다.
 - ∴ ∀ *xP*(*x*)는 거짓(F)이다.
- (2) $\exists x P(x)$ 가 참이 되려면 논의영역 D에 포함되는 원소들 중 하나라도 참이 되면 된다. $P(4) = 4^2 = 16 > 10 으로 거짓이지만 \ P(1) = 1 < 10, \ P(2) = 2^2 = 4 < 10, \ P(3) = 3^2 = 9 < 10 으로 세 개의 원소가 참이다.$
 - ∴ ∃ xP(x)는 참(T)이다.

• 예제

예제 3-28

논의영역이 $D = \{a \mid -3 \le a \le 3, a \in Z\}$ 인 변수 x, y에 대하여 명제함수가 P(x,y): x-y=3일 때 다음 명제들을 문장으로 작성하고 진릿값을 구하라.

(1) $\forall x \forall y P(x, y)$

(2) $\exists x \forall y P(x,y)$

 $(3) \exists y \forall x P(x,y)$

(4) $\exists y \exists x P(x,y)$

예제 3-29

논의영역 D가 $D=\{x\mid 0< x\leq 4, x$ 는 양의 정수 $\}$ 이고, 명제 P(x)가 $x^2<10$ 일 때 다음 명제의 부정(NOT)의 기호 표현과 문장을 쓰고 진릿값을 구하라.

(1) $\forall x P(x)$

 $(2) \exists x P(x)$