Issues in Learning

Adrian Barbu

Text Classification

Setup

- Vocabulary (e.g. 35000 words)
- Document=vector of word occurrences ∈ R³⁵⁰⁰⁰
- Normalized to unit length
- Thousands of points for each class

Word	Doc1	Doc2	Doc3	
abyss	0	3	2	
budget	5	2	3	
Clinton	6	4	1	
•••				
Zaire	1	0	2	

Classes=Regions in Vector Space

Test document=?

- Business
- Politics
- Sports

K-Nearest Neighbor (kNN) Classifier

k fixed (e.g. k=3)

- Find the k nearest neighbors
- Take the majority class

- Business
- Politics
- Sports

Instance Based Learning

- kNN is an example of Instance Based Learning
- Instance Based Learning
 - Store many examples (instances)
 - Distance metric to the examples
 - Value of k
 - number of examples to make decision from
 - Weighting function (optional)

- Disadvantages
 - Classification is expensive (search problem)
 - Need to store many examples

Distance Metrics

- Euclidian Distance $d(x, x')^2 = \sum_{i=1}^{n} \sigma_i^2 (x_i x_i')^2$
- Mahalanobis Distance $d(x, x')^2 = (x x')^T \Sigma (x x')$
 - Σ is symmetric positive definite
- \blacksquare L₁ norm $d(x,x') = \sum |x_i x_i'|$

- Angle
- Hamming distance
- Manhattan distance

Optimality of kNN

- Cover and Hart 1967
- Bayes error rate
 - Error rate when you know the model that generated the data
 - Best you can do
- lacksquare Asymptotically (when $N o \infty$)
 - Error of 1-NN is less that 2*Bayes Error
 - In particular, Error of 1-NN \rightarrow O if the Bayes error is 0 i.e. classes are separable
 - Decision boundary

Overfitting

- In reality, classes are usually not separable
- Separating them → overfitting

Overfitting for Regression

Training

Testing

Bias-Variance Tradeoff

- Consider:
 - A training dataset D
 - A test sample x
 - A regression algorithm f trained on D gives f(x,D)
- Underlying truth
 - Given x, the output y comes from a probability P(y|x)
- Expected value $E[y|x] = \bar{y}$
 - E.g. say $y \in \{1,2\}$ and for a specific x, P(y=1|x)=0.1 then $E[y|x]=1\cdot 0.1+2\cdot 0.9=1.9$
- Measure of error for f:

$$E[(y - f(x, D))^{2} | x, D]$$

Bias-Variance Tradeoff

Then

$$E[(y-f(x,D))^{2}|x,D] = E[(y-\bar{y})^{2}|x,D] + (f(x,D)-\bar{y})^{2}$$

- Variance
 - The term $E[(y-\bar{y})^2|x,D]$ is the variance of y, does not depend on D
- Now we look at the error over all training sets D

$$E_D[(f(x,D) - \bar{y})^2] = (E_D[f(x,D)] - \bar{y})^2$$
 bias $+ E_D[(f(x,D) - E_D[f(x,D)])^2]$ variance

- Bias = how far is the average result from the avg. true result
- Variance= the variability of the result

Example

Regularized regression

$$l(W) = \frac{1}{N} \sum_{j=1}^{N} (X^{j}w - Y^{j})^{2} + \lambda \sum_{i=1}^{M} w_{i}^{2}$$

Large bias small variance

Small bias Large variance

Bias²+Variance vs. λ

- Bias²+variance has similar shape with test error
- However, bias and variance cannot be computed in general
 - We don't know the true distribution of X and Y

- Regularization (Regularized Loss Functions)
- Wrappers:
 - Use cross-validation and any learning algorithm
 - Repeat for the desired number of features:
 - Add the feature that minimizes cross-validation error
 - Greedy and slow to train
- Feature Ranking (Xing et al, 2001)
 - Bayes Error
 - Information Gain
 - Markov Blanket
 - Faster

Dataset:

- Expression levels for 7130 genes from a microarray dataset
- 72 observations (samples)
- 47 type I Leukemia (called ALL)
- and 25 type II Leukemia (called AML)

- 3-stage feature selection
 - Mixture overlap probability
 - Information gain
 - Markov blanket

Xing et al, 2001

Features =

Gene expression levels

- Two hidden gene states:
 - Active or inactive
 - Denote by z_i
 - Mixture of two gaussiansFitted with EM

Stage 1: Mixture overlap probability

$$\epsilon = P(z_i = 0)P(d(f_i) = 1|z_i = 0)$$

+ $P(z_i = 1)P(d(f_i) = 0|z_i = 1)$

- Area of overlap of the two Gaussians
- Chooses features for which is clear when they are expressed

Histograms of gene expression levels

Stage 2: Information Gain

- Same as in decision trees
- Threshold from Stage 1
- Keep best 360 features

Stage 3: Markov Blanket Filtering

- Initialize G = F
- Iterate
 - For each feature F_i∈ G, let M_i be the set of k features F_j∈ G-{F_i} for which the correlations between F_i and F_i are the highest.
 - Compute $\Delta(F_i|M_i)$ for each i
 - Choose the i that minimizes $\Delta(F_i|M_i)$, and define $G=G-\{F_i\}$

$$\Delta(F_i|M) = \sum_{f_M, f_i} P(M = f_M; F_i = f_i) D(P(C|M = f_M, F_i = f_i) || P(C|M = f_M)$$

- Obtain about 40 good features
- Learning algorithms:
 - kNN
 - Naïve Bayes with Gaussian models
 - Logistic regression

Feature Selection vs. Regularized Loss

Feature selection outperforms Regularized Loss (regularization)

References

- EP Xing, MI Jordan, RM Karp. Feature selection for high-dimensional genomic microarray data. ICML, 2001
- ASU Feature Selection Website:

http://featureselection.asu.edu/index.php