Sheet 1: Due 12:00 PM, March 6

1. (6 Points) Solve the following initial value problems using Method of Characteristics:

(a)
$$\begin{cases} u_t + \frac{8}{3}u_x = 0 \\ u(x,0) = \exp(x^2) \end{cases}$$
 (b)
$$\begin{cases} \rho_t + 2\rho\rho_x = 0 \\ \rho(x,0) = \rho_0(x) = \begin{cases} 3, & x < 0 \\ 4, & x \ge 0 \end{cases}$$

- 2. (3 points) Show that the PDE $u_t + u_x = 0$, $x \in [0,1]$, $t \in [0,\infty)$, has no smooth solutions satisfying the boundary condition u(0,t) = 0, u(1,t) = 2. Explain this physically. (Hint: draw several characteristic curves. This exercise makes the point that the boundary condition for transport equations has to be given carefully.)
- 3. (6 points) Implement the upwind scheme for the following IBVP

$$\begin{cases} u_t + 2u_x = 0, & x \in [0, 1] \\ u(x, 0) = \sin(2\pi x) \end{cases},$$

which is subjected to the periodic boundary condition. Use a sequence of uniform grids with meshes N=40, 80, 160, 320, 640. Select Δt according to the CFL condition. Plot the computed solutions together with the exact one at times t=2. Check the experimental convergence rates in the L^1 -, L^2 - and L^∞ -norms and report the results in the following table:

Table 1: Errors and rates of the point values of u, t = 2.

N	L^1	rate	L^2	rate	L^{∞}	rate
40	15,6	-	2,8	-	0, 6	-
80	43,5	_	યુક	0,5	0, 4	^
160	и		2		٥٫٤	
320	23,4		4,5		0,12	
640	4,1		4,4		0,66	

1. (6 Points) Solve the following initial value problems using Method of Characteristics:

(a)
$$\begin{cases} u_t + \frac{8}{3}u_x = 0 \\ u(x,0) = \exp(x^2) \end{cases}$$
 (b)
$$\begin{cases} \rho_t + 2\rho\rho_x = 0 \\ \rho(x,0) = \rho_0(x) = \begin{cases} 3, & x < 0 \\ 4, & x \ge 0 \end{cases}$$

$$\alpha = \frac{8}{3}$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}{2} \cdot v \cdot a$$

$$\frac{i \cdot v \times (t)}$$

The short speed given by the Rankine-Hugomist condition is $\frac{Sr^2 - Sl}{2(Sr - Sl)} = \frac{1}{2}(Sr + Sl) = 3.5$

Therefore a weak solution is
$$S(x,t) = \begin{cases} 3 & x < 3,5t \\ 4 & x \ge 3,5t \end{cases}$$

2. (3 points) Show that the PDE $u_t + u_x = 0$, $x \in [0,1]$, $t \in [0,\infty)$, has no smooth solutions satisfying the boundary condition u(0,t) = 0, u(1,t) = 2. Explain this physically. (Hint: draw several characteristic curves. This exercise makes the point that the boundary condition for transport equations has to be given carefully.)

As shown in the previous exercise
$$x(t) = at + x_0$$
 with $a = n$ describes the characteristic curves of the PDE.

Let u be a smooth sol of the PDE
$$\rightarrow$$
 it has the form $u(x,t) = \phi(x-t)$

For
$$\phi$$
 smooth. $v(0,t) = \phi(-t) \stackrel{!}{=} 0 \quad \forall t \ge 0 \implies \phi(0) = 0 \quad (t=0)$
 $v(1,t) = \phi(1,t) \stackrel{!}{=} 2 \quad \forall t \ge 0 \implies \phi(0) = 2 \quad (t=1) \quad \forall t \ge 0$

w(0,0)

0

3. (6 points) Implement the upwind scheme for the following IBVP

$$\begin{cases} u_t + 2u_x = 0, & x \in [0, 1] \\ u(x, 0) = \sin(2\pi x) \end{cases},$$

which is subjected to the periodic boundary condition. Use a sequence of uniform grids with meshes $N=40,\,80,\,160,\,320,\,640$. Select Δt according to the CFL condition. Plot the computed solutions together with the exact one at times t=2. Check the experimental convergence rates in the L^1 -, L^2 - and L^∞ -norms and report the results in the following table:

Table 1: Errors and rates of the point values of u, t = 2.

N	L^1	rate	L^2	rate	L^{∞}	rate
40		-		-		-
80						
160						
320						
640						

