Your Document Title

Your Name

March 23, 2024

Contents

Proof Methods	3
If then statements	3
If then types	3
Induction Proof	3
Proof by contradiction	4
Definitions	5
$Equality = \dots $	5
Inequality $ eq$	5
In the set of \in	5
Not in the set of \notin	5
Divisibility	5
2 and other integers	5
Even Integers	5
Subtraction	5
Power	5
Sum	6
Product	6
Non-negative integer $(\mathbb{Z}_{\geq 0})$	6
Factorial	6
Subset (\subseteq)	6
The Empty Set (\emptyset)	6
Equal Sets (=)	6
Functions	6
Theorems	7
Theorem 2.25 (Principle of Mathematical Induction — First Form Revisited):	7
Axioms	8
Axiom 1.1: Properties of Integers	8
Axiom 1.2: Identity Element for Addition	8
Axiom 1.3: Identity Element for Multiplication	8
Axiom 1.4: Additive Inverse	8
Axiom 1.5: Cancellation	8
Axiom 2.1:	8

Propositions	9
Chapter 1: Propositions	9
Chapter 2: Propositions	12
Chapter 3: Propositions	18
Chapter 4: Propositions	19
Chapter 5: Propositions	22

Proof Methods

If then statements

Format:

Proof. If A, then B:

- 1. Assume A.
- 2. Show that assuming A leads to B.
- 3. Therefore, B is concluded from A.

Example:

Proof. If m = 1, then m + 0 = 1.

- 1. Assume m=1.
- 2. Considering m = 1, we have 1 + 0 = 1.
- 3. This simplifies to 1 = 1, which is true.

If then types

Different types of implications and their meaning:

- $A \Rightarrow B$: "If it is Wednesday, Dr. Beck will get a cup of coffee from the student union."
- $B \Rightarrow A$ (Converse): "If Dr. Beck got a cup of coffee from the student union, then it is Wednesday."
- $A \Leftrightarrow B$ (Bi-conditional): "It is Wednesday if and only if Dr. Beck got a cup of coffee from the student union."
- $\neg B \Rightarrow \neg A$ (Contrapositive): "If Dr. Beck did not get a cup of coffee from the student union, then it is not Wednesday."

Induction Proof

Format:

Proof. Prove that F(x) is true for all $x \in A$:

- 1. Base case: Show F(a) is true, where a is the smallest element in set A.
- 2. **Induction step:** Assume F(k) is true for an arbitrary $k \in A$. Show that $F(k) \Rightarrow F(k+1)$.
- 3. Therefore, F(x+1) is true for all $x \in A$.

Example:

Proof. For all $n \in \mathbb{N}$, n = n:

- 1. Base case (n = 1): 1 = 1 is true.
- 2. **Induction step:** Assume n = n is true for an arbitrary natural number n. Show that this implies n + 1 = n + 1.
- 3. By the induction hypothesis, n = n. Adding 1 to both sides, n + 1 = n + 1, which holds true.

Proof by contradiction

Format:

Proof. Prove that A is true by contradiction:

- 1. Assume **not** A.
- 2. Show that this assumption leads to a contradiction (something that we know is false).
- 3. Therefore, A must be true.

Different Negations

1. **AND** \Rightarrow **OR**: If A and B, then **not** A or **not** B.

Example: Dr. Beck is 5 ft tall and single \Rightarrow Dr. Beck is **not** 5 ft tall or is **not** single.

2. **OR** \Rightarrow **AND:** If *A* or *B*, then **not** *A* and **not** *B*.

Example: Dr. Beck will drink a coffee or it is Wednesday \Rightarrow Dr. Beck will **not** drink a coffee and it is **not** Wednesday.

3. If, then \Rightarrow AND: If A, then B implies not A and not B.

If it is Monday, then Dr. Beck is on campus \Rightarrow It is **not** Monday and Dr. Beck is **not** on campus.

4. For all \Rightarrow There exists: For all m, A is true implies there exists an m, A is not true.

For all $m \in \mathbb{Z}$, m is even \Rightarrow There exists $m \in \mathbb{Z}$, m is **not** even.

5. There exists \Rightarrow For all: There exists an m, A is true implies for all m, A is not true.

There exists an $m \in \mathbb{Z}$, $m+1=0.5 \Rightarrow For \ all \ m \in \mathbb{Z}$, $m+1 \neq 0$.

Example:

Proof. There is no $x \in \mathbb{N}$ that satisfies the equation $1 - x = 0 \cdot x$.

- 1. Assume by way of contradiction that such an x exists in \mathbb{N} .
- 2. Since $x \neq 0$ for any $x \in \mathbb{N}$, cancelling x from both sides of the equation $1 x = 0 \cdot x$ leads to 0 = 1.
- 3. Since $0 \neq 1$ is a true mathematical contradiction, the initial statement is proven to be true by contradiction.

4

Definitions

Equality =

The symbol = means equals. To say m = n means that m and n are the same number. Some properties are:

i. m = m (reflexivity)

ii. If m = n then n = m (symmetry)

iii. If m = n and n = p then m = p (transitivity)

iv. If m = n, then n can be substituted for m in any statement without changing the meaning (replacement)

Inequality \neq

The symbol \neq means is not equal to. To say $m \neq n$ means that m and n are different numbers. Note that \neq satisfies symmetry, but not transitivity and reflexivity.

In the set of \in

The symbol \in means is an element of. For example, $0 \in \mathbb{Z}$ means "0 is an element of the set \mathbb{Z} ."

Not in the set of \notin

The symbol \notin means is not an element of. For example, $0.5 \notin \mathbb{Z}$ means "0.5 is not an element of the set \mathbb{Z} ."

Divisibility

When m and n are integers, we say m is divisible by n (or alternatively, n divides m) if there exists $j \in \mathbb{Z}$ such that m = jn. We use the notation n|m.

2 and other integers

2 is defined as 2 = 1 + 1 and **3** is 2 + 1 and so on.

Even Integers

Even integers are defined to be those integers that are divisible by 2. That is, x = 2j, where $j \in \mathbb{Z}$.

Subtraction

Subtraction is defined as m-n is defined to be m+(-n).

Number Theory

Power

Let b be a fixed integer. We define b^k for all integers $k \ge 0$ by:

- 1. $b^0 := 1$
- 2. Assuming b^n is defined, let $b^{n+1} := b^n \cdot b$

Sum

Let $(x_j)_{j=1}^{\infty}$ be a sequence of integers. $(x_j)_{j=1}^3 = \{1, 2, 3\}$. For each $k \in \mathbb{N}$, we want to define an integer called $\sum_{i=1}^k x_i$:

- 1. Define $\Sigma_{j=1}^1 \mathbf{x_j}$ to be x_1
- **2.** Assuming $\sum_{j=1}^n x_j$ is already defined, we define $\sum_{j=1}^{n+1} \mathbf{x_j}$ to be $\sum_{j=1}^n x_j + x_{n+1}$

Product

Let $(x_j)_{j=1}^{\infty}$ be a sequence of integers. $(x_j)_{j=1}^3 = \{1, 2, 3\}$. For each $k \in \mathbb{N}$, we want to define an integer called $\prod_{i=1}^k x_i$:

- 1. Define $\Pi_{i=1}^1 \mathbf{x_j}$ to be x_1
- **2.** Assuming $\Pi_{j=1}^n x_j$ is already defined, we define $\Pi_{j=1}^{n+1} x_j$ to be $\Pi_{j=1}^n x_j \cdot x_{n+1}$

Non-negative integer $(\mathbb{Z}_{\geq 0})$

$$\mathbb{Z}_{\geq 0} := \{ m \in \mathbb{Z} : m \geq 0 \}$$

Factorial

We define k! ("k factorial") for all integers $k \geq 0$ by:

- 1. Define 0! := 1
- **2.** Assuming n! is defined (where $n \in \mathbb{Z}_{>0}$), define $(\mathbf{n} + \mathbf{1})! := (\mathbf{n}!) \cdot (\mathbf{n} + \mathbf{1})$

Subset (\subseteq)

 $A \subseteq B$ means that if $x \in A$, then $x \in B$

The Empty Set (\emptyset)

The empty set is defined as a set that contains no elements.

Equal Sets (=)

The set A is equal to B means that $A \subseteq B$ and $B \subseteq A$. In order to prove two sets are equal, you have to complete two proofs.

Functions

Informal Definition

A function consists of:

- a set A called the **domain** of the function
- a set B called the **codomain** of the function
- a rule f that assigns to each $a \in A$ an element $f(a) \in B$. Shorthand for this is $f: A \to B$

Abstract Definition

A function with domain A and codomain B is a subset of Γ of $A \times B$ such that for each $a \in A$, there is one and only one element of Γ whose first entry is a. If $(a,b) \in \Gamma$, we write b = f(a).

Theorems

Theorem 2.25 (Principle of Mathematical Induction — First Form Revisited):

Let P(k) be a statement, depending on a variable $k \in \mathbb{Z}$, that makes sense for all $k \geq m$, where m is a fixed integer. In order to prove the statement "P(k) is true for all $k \geq m$," it is sufficient to prove:

- 1. P(m) is true, and
- 2. For any given $n \geq m$, if P(n) is true then P(n+1) is true.

Axioms

Axiom 1.1: Properties of Integers

If m, n, and p are integers, then:

(i) m + n = n + m

(iv) $m \cdot n = n \cdot m$

(commutativity of addition)

(ii) (m+n) + p = m + (n+p)

 $({\bf associativity}\ {\bf of}\ {\bf addition})$

(distributivity)

(iii) $m \cdot (n+m) = m \cdot n + m \cdot p$

(commutativity of multiplication)

(v) $(m \cdot n) \cdot p = m \cdot (n \cdot p)$

(associativity of multiplication)

Axiom 1.2: Identity Element for Addition

There exists an integer 0 such that whenever $m \in \mathbb{Z}$, m + 0 = m (identity element for addition).

Axiom 1.3: Identity Element for Multiplication

There exists an integer 1 such that $1 \neq 0$ and whenever $m \in \mathbb{Z}$, $m \cdot 1 = m$ (identity element for multiplication).

Axiom 1.4: Additive Inverse

For each $m \in \mathbb{Z}$, there exists an integer, denoted by -m, such that m + (-m) = 0 (additive inverse).

Axiom 1.5: Cancellation

Let m, n, and p be integers. If $m \cdot n = m \cdot p$ and $m \neq 0$, then n = p (cancellation).

Proof Example

Proof. If m is an integer and $m \cdot 0 = 0$, then m = m.

- Consider an integer m.
- Multiplying by 0 gives $m \cdot 0 = 0$.
- Since $m \cdot 0 = 0$, by the property of zero in multiplication, we have m = m.
- Thus, the statement is proven.

Axiom 2.1:

There exists a subset $\mathbb{N} \subseteq \mathbb{Z}$ with the following properties:

- (i) If $m, n \in \mathbb{N}$ then $m + n \in \mathbb{N}$.
- (ii) If $m, n \in \mathbb{N}$ then $mn \in \mathbb{N}$.
- (iii) $0 \notin \mathbb{N}$.
- (iv) For every $m \in \mathbb{Z}$, we have $m \in \mathbb{N}$ or m = 0 or $-m \in \mathbb{N}$.

Propositions

Chapter 1: Propositions

Proposition 1.6

If m, n, and p are integers, then $(m+n) \cdot p = mp + np$.

Proposition 1.7

If m is an integer, then 0 + m = m and $1 \cdot m = m$.

Proposition 1.8

If m is an integer, then (-m) + m = 0.

Proposition 1.9

Let m, n, and p be integers. If m + n = m + p, then n = p.

Proposition 1.10

Let $m, x_1, x_2 \in \mathbb{Z}$. If m, x_1, x_2 satisfy the equation $m + x_1 = 0$ and $m + x_2 = 0$, then $x_1 = x_2$.

Proposition 1.11

If m, n, p, and q are integers, then:

- (i) (m+n)(p+q) = (mp+np) + (mq+nq).
- (ii) m + (n + (p + q)) = (m + n) + (p + q) = ((m + n) + p) + q.
- (iii) m + (n+p) = (p+m) + n.
- (iv) m(np) = p(mn).
- (v) m(n + (p+q)) = (mn + mp) + mq.
- (vi) (m(n+p))q = (mn)q + m(pq).

Proposition 1.12

Let $x \in \mathbb{Z}$. If x has the property that for each integer m, m + x = m, then x = 0.

Proposition 1.13

Let $x \in \mathbb{Z}$. If x has the property that there exists an integer m such that m + x = m, then x = 0.

Proposition 1.14

For all $m \in \mathbb{Z}$, $m \cdot 0 = 0 = 0 \cdot m$.

Proposition 1.16

If m and n are even integers, then so are m + n and mn.

Proposition 1.17

- (i) 0 is divisible by every integer.
- (ii) If m is an integer not equal to 0, then m is not divisible by 0.

Proposition 1.18

Let $x \in \mathbb{Z}$. If x has the property that for all $m \in \mathbb{Z}$, mx = m, then x = 1.

Proposition 1.19

Let $x \in \mathbb{Z}$. If x has the property that for some nonzero $m \in \mathbb{Z}$, mx = m, then x = 1.

Proposition 1.20

For all $m, n \in \mathbb{Z}$, (-m)(-n) = mn.

Corollary 1.21

(-1)(-1) = 1.

Proposition 1.22

- (i) For all $m \in \mathbb{Z}$, -(m) = m.
- (ii) -0 = 0.

Proposition 1.23

Given $m, n \in \mathbb{Z}$, there exists one and only one $x \in \mathbb{Z}$ such that m + x = n.

Proposition 1.24

Let $x \in \mathbb{Z}$. If $x \cdot x = x$ then x = 0 or 1.

Proposition 1.25

- (i) -(m+n) = (-m) + (-n).
- (ii) -m = (-1)m.
- (iii) (-m)n = m(-n) = -(mn).

Proposition 1.26

Let $m, n \in \mathbb{Z}$. If mn = 0, then m = 0 or n = 0.

Proposition 1.27

- (i) (m-n) + (p-q) = (m+p) (n+q).
- (ii) (m-n) (p-q) = (m+q) (n+p).
- (iii) (m-n)(p-q) = (mp+nq) (mq+np).
- (iv) m-n=p-q if and only if m+q=n+p.

(v) (m-n)p = mp - np.

Chapter 2: Propositions

Proposition 2.2:

For every $m \in \mathbb{Z}$, one and only one of the following is true: $m \in \mathbb{N}$, $-m \in \mathbb{N}$, or m = 0.

Proposition 2.3:

 $1 \in \mathbb{N}$.

Proposition 2.4:

Let $m, n, p \in \mathbb{Z}$. If m < n and n < p, then m < p.

Proposition 2.5:

For each $n \in \mathbb{N}$, there exists $m \in \mathbb{N}$ such that m > n.

Proposition 2.6:

Let $m, n \in \mathbb{Z}$. If $m \leq n \leq m$, then m = n.

Proposition 2.7:

- (i) If m < n, then m + p < n + p.
- (ii) If m < n and p < q, then m + p < n + q.
- (iii) If 0 < m < n and 0 , then <math>mp < nq.
- (iv) If m < n and p < 0, then np < mp.

Proposition 2.8:

Let $m, n \in \mathbb{Z}$. Exactly one of the following is true: m < n, m = n, m > n.

Proposition 2.9:

Let $m \in \mathbb{Z}$. If $m \neq 0$ then $m^2 \in \mathbb{N}$.

Proposition 2.10:

The equation $x^2 = -1$ has no solution in \mathbb{Z} .

Proposition 2.11:

Let $m \in \mathbb{N}$ and $n \in \mathbb{Z}$. If $mn \in \mathbb{N}$, then $n \in \mathbb{N}$.

Proposition 2.12:

For all $m, n, p \in \mathbb{Z}$:

- (i) -m < -n if and only if m > n.
- (ii) If p > 0 and mp < np then m < n.

- (iii) If p < 0 and mp < np then n < m.
- (iv) If $m \le m$ and $0 \le p$ then $mp \le np$.

Proposition 2.13:

 $\mathbb{N} = \{ n \in \mathbb{Z} : n > 0 \}.$

Proposition 2.14:

- (i) $1 \in \mathbb{N}$.
- (ii) If $n \in \mathbb{N}$, then $n + 1 \in \mathbb{N}$.

Axiom 2.15 (Induction Axiom):

If a subset $A \subseteq \mathbb{Z}$ satisfies:

- 1. $1 \in A$, and
- 2. If $n \in A$, then $n + 1 \in A$,

then $\mathbb{N} \subseteq A$.

Proposition 2.16:

Let $B \subseteq \mathbb{Z}$ be such that:

- 1. $1 \in B$, and
- 2. If $n \in B$, then $n + 1 \in B$,

then $B = \mathbb{N}$.

Theorem 2.17 (Principle of Mathematical Induction - First Form):

Let P(k) be a statement depending on a variable $k \in \mathbb{N}$. In order to prove the statement "P(k) is true for all $k \in \mathbb{N}$," it is sufficient to prove:

- 1. P(1) is true, and
- 2. For any given $n \in \mathbb{N}$, if P(n) is true, then P(n+1) is true.

Proposition 2.18:

- (i) For all $k \in \mathbb{N}$, $k^3 + 2k$ is divisible by 3.
- (ii) For all $k \in \mathbb{N}$, $k^4 6k^3 + 11k^2 6k$ is divisible by 4.
- (iii) For all $k \in \mathbb{N}$, $k^3 + 5k$ is divisible by 6.

Proposition 2.20:

For all $k \in \mathbb{N}$, $k \ge 1$.

Proposition 2.21:

There exists no integer x such that 0 < x < 1.

Corollary 2.22:

Let $n \in \mathbb{Z}$. There exists no integer x such that n < x < n + 1.

Proposition 2.23:

Let $m, n \in \mathbb{N}$. If n is divisible by m, then $m \leq n$.

Proposition 2.24:

For all $k \in \mathbb{N}$, $k^2 + 1 > k$.

Proposition 2.26:

For all integers $k \ge -3$, $3k^2 + 21k + 37 \ge 0$.

Proposition 2.27:

For all integers $k \ge 2$, $k^2 < k^3$.

Theorem 2.32 (Well-Ordering Principle):

Every nonempty subset of $\mathbb N$ has a smallest element.

Proposition 2.33:

Let A be a nonempty subset of \mathbb{Z} and $b \in \mathbb{Z}$, such that for each $a \in A$, $b \leq a$. Then A has a smallest element.

Proposition 2.34:

If m and n are integers that are not both 0, then

$$S = \{k \in \mathbb{N} : k = mx + ny \text{ for some } x, y \in \mathbb{Z}\}$$

Theorem 4.4:

A legitimate method of describing a sequence $(y_j)_{j=m}^{\infty}$ is:

- 1. to name y_m , and
- 2. to state a formula describing y_{n+1} in terms of y_n , for each $n \ge m$.

Proposition 4.5:

For all $k \in \mathbb{Z}_{\geq 0}$, $k! \in \mathbb{N}$.

Proposition 4.6:

Let $b \in \mathbb{Z}$ and $k, m \in \mathbb{Z}_{\geq 0}$.

- 1. if $b \in \mathbb{N}$ then $b^k \in \mathbb{N}$
- 2. $b^m b^k = b^{m+k}$
- 3. $(b^m)^k = b^{mk}$

Proposition 4.7:

For all $k \in \mathbb{N}$:

- 1. 5^{2k-1} is divisible by 24
- 2. $2^{2k+1} + 1$ is divisible by 3
- 3. $10^{k+3} \cdot 4^{k+2} + 5$ is divisible by 9

Proposition 4.8:

For all $k \in \mathbb{N}$, 4k > k.

Proposition 4.11:

Let $k \in \mathbb{N}$:

- 1. $\sum_{j=1}^{k} j = \frac{k(k+1)}{2}$
- 2. $\sum_{j=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6}$

Proposition 4.13:

For $x \neq 1$ and $k \in \mathbb{Z}_{\geq 0}$,

$$\sum_{i=0}^{k} x^{i} = \frac{1 - x^{k+1}}{1 - x}$$

Proposition 4.15:

1. Let $m \in \mathbb{Z}$ and let $(x_j)_{j=1}^{\infty}$ be a sequence in \mathbb{Z} . Then for all $k \in \mathbb{N}$:

$$m \cdot \sum_{j=1}^{k} x_j! = \sum_{j=1}^{k} (mx_j)$$

2. If $x_j = 1$ for all $j \in \mathbb{N}$, then for all $k \in \mathbb{N}$:

$$\sum_{j=1}^{k} x_j = k$$

3. If $x_j = n \in \mathbb{Z}$ for all $j \in \mathbb{N}$, then for all $k \in \mathbb{N}$:

$$\sum_{j=1}^{k} x_j = kn$$

15

Proposition 4.16:

Let $(x_j)_{j=1}^{\infty}$ and $(y_j)_{j=1}^{\infty}$ be sequences in \mathbb{Z} , and let $a, b, c \in \mathbb{Z}$ be such that $a \leq b < c$.

1.
$$\sum_{j=a}^{c} x_j = \sum_{j=a}^{b} x_j + \sum_{j=b+1}^{c} x_j$$

2.
$$\sum_{j=a}^{b} (x_j + y_j) = \sum_{j=a}^{b} x_j! + \sum_{j=a}^{b} y_j!$$

Proposition 4.17:

Let $(x_j)_{j=1}^{\infty}$ be a sequence in \mathbb{Z} , and let $a, b, r \in \mathbb{Z}$ be such that $a \leq b$. Then $\sum_{j=a}^{b} x_j = \sum_{j=a}^{b+r} x_j - r$

Proposition 4.18:

Let $(x_j)_{j=1}^{\infty}$ and $(y_j)_{j=1}^{\infty}$ be sequences in \mathbb{Z} such that $x_j \leq y_j$ for all $j \in \mathbb{N}$. Then for all $k \in \mathbb{N}$, $\sum_{j=1}^k x_j \leq \sum_{j=1}^k y_j$

Theorem 4.19:

Let $k, m \in \mathbb{Z}_{\geq 0}$, where $m \leq k$. Then m!(k-m)! divides k!.

Corollary 4.20:

For
$$1 \le m \le k$$
, $\binom{k+1}{m} = \binom{k}{m-1} + \binom{k}{m}$

Theorem 4.21 (Binomial theorem for integers):

If
$$a, b \in \mathbb{Z}$$
 and $k \in \mathbb{Z}_{\geq 0}$ then $(a+b)^k = \sum_{m=0}^k \binom{k}{m} a^{k-m} b^m$

Corollary 4.22:

For
$$k \in \mathbb{Z}_{\geq 0}$$
, $\sum_{m=0}^{k} \binom{k}{m} = 2^k$

Theorem 4.24 (Principle of mathematical induction —second form):

Let P(k) be a statement depending on a variable $k \in \mathbb{N}$. In order to prove the statement "P(k) is true for all $k \in \mathbb{N}$ " it is sufficient to prove:

- 1. P(1) is true and
- 2. if P(j) is true for all integers j such that $1 \le j \le n$, then P(n+1) is true

Proposition 4.29:

The kth Fibonacci number is given directly by the formula $f_k = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right)$

Proposition 4.30:

For all $k, m \in \mathbb{N}$, where $m \geq 2$,

$$f_{m+k} = f_{m-1} f_k + f_m f_{k+1}$$

Proposition 4.31:

For all $k \in \mathbb{N}$,

$$f_{2k+1} = f_k^2 + f_{k+1}^2$$

16

Proposition 4.32:

For all $k, m \in \mathbb{N}$, f_{mk} is divisible by f_m .

Chapter 5

Proposition 5.1: Let A, B, C be sets:

- 1. $A \subseteq A$
- 2. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$

Proposition 5.2:

$$\{7m+1: m \in \mathbb{Z}\} = \{7n-6: n \in \mathbb{Z}\}$$

Proposition 5.4: Let A, B, C be sets:

- 1. A = A
- 2. if A = B then B = A
- 3. If A = B and B = C then A = C

Proposition 5.6:

If the sets \emptyset_1 and \emptyset_2 have the property that $x \in \emptyset_1$ is never true and $x \in \emptyset_2$ is never true, then $\emptyset_1 = \emptyset_2$.

Proposition 5.7:

The empty set is a subset of every set, that is, for every set $S, \emptyset \subseteq S$.

Proposition 5.14: Let $A, B \subseteq X$:

 $A \subseteq B$ if and only if $B^c \subseteq A^c$.

Theorem 5.15 (De Morgan's laws):

Given two subsets $A, B \subseteq X$,

$$(A \cap B)^c = A^c \cup B^c$$
 and $(A \cup B)^c = A^c \cap B^c$

Proposition 5.20: Let A, B, C be sets:

- 1. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- 2. $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Chapter 3: Propositions

Chapter 4: Propositions

Theorem 4.4:

A legitimate method of describing a sequence $(y_j)_{j=m}^{\infty}$ is:

- 1. to name y_m , and
- 2. to state a formula describing y_{n+1} in terms of y_n , for each $n \geq m$.

Proposition 4.5:

For all $k \in \mathbb{Z}_{\geq 0}$, $k! \in \mathbb{N}$.

Proposition 4.6:

Let $b \in \mathbb{Z}$ and $k, m \in \mathbb{Z}_{\geq 0}$.

- 1. if $b \in \mathbb{N}$ then $b^k \in \mathbb{N}$
 - 2. $b^m b^k = b^{m+k}$
 - 3. $(b^m)^k = b^{mk}$

Proposition 4.7:

For all $k \in \mathbb{N}$:

- 1. 5^{2k-1} is divisible by 24
- 2. $2^{2k+1} + 1$ is divisible by 3
- 3. $10^{k+3} \cdot 4^{k+2} + 5$ is divisible by 9

Proposition 4.8:

For all $k \in \mathbb{N}$, 4k > k.

Proposition 4.11:

Let $k \in \mathbb{N}$:

- 1. $\sum_{j=1}^{k} j = \frac{k(k+1)}{2}$
- 2. $\sum_{j=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6}$

Proposition 4.13:

For $x \neq 1$ and $k \in \mathbb{Z}_{\geq 0}$,

$$\sum_{j=0}^{k} x^{j} = \frac{1 - x^{k+1}}{1 - x}$$

Proposition 4.15:

1. Let $m \in \mathbb{Z}$ and let $(x_j)_{j=1}^{\infty}$ be a sequence in \mathbb{Z} . Then for all $k \in \mathbb{N}$:

$$m \cdot \sum_{j=1}^{k} x_j! = \sum_{j=1}^{k} (mx_j)$$

2. If $x_j = 1$ for all $j \in \mathbb{N}$, then for all $k \in \mathbb{N}$:

$$\sum_{j=1}^{k} x_j = k$$

3. If $x_j = n \in \mathbb{Z}$ for all $j \in \mathbb{N}$, then for all $k \in \mathbb{N}$:

$$\sum_{j=1}^{k} x_j = kn$$

Proposition 4.16:

Let $(x_j)_{j=1}^{\infty}$ and $(y_j)_{j=1}^{\infty}$ be sequences in \mathbb{Z} , and let $a, b, c \in \mathbb{Z}$ be such that $a \leq b < c$.

1.
$$\sum_{j=a}^{c} x_j = \sum_{j=a}^{b} x_j + \sum_{j=b+1}^{c} x_j$$

2.
$$\sum_{j=a}^{b} (x_j + y_j) = \sum_{j=a}^{b} x_j! + \sum_{j=a}^{b} y_j!$$

Proposition 4.17:

Let $(x_j)_{j=1}^{\infty}$ be a sequence in \mathbb{Z} , and let $a, b, r \in \mathbb{Z}$ be such that $a \leq b$. Then $\sum_{j=a}^{b} x_j = \sum_{j=a}^{b+r} x_j - r$

Proposition 4.18:

Let $(x_j)_{j=1}^{\infty}$ and $(y_j)_{j=1}^{\infty}$ be sequences in \mathbb{Z} such that $x_j \leq y_j$ for all $j \in \mathbb{N}$. Then for all $k \in \mathbb{N}$, $\sum_{j=1}^k x_j \leq \sum_{j=1}^k y_j$

20

Theorem 4.19:

Let $k, m \in \mathbb{Z}_{\geq 0}$, where $m \leq k$. Then m!(k-m)! divides k!.

Corollary 4.20:

For
$$1 \le m \le k$$
, $\binom{k+1}{m} = \binom{k}{m-1} + \binom{k}{m}$

Theorem 4.21 (Binomial theorem for integers):

If
$$a, b \in \mathbb{Z}$$
 and $k \in \mathbb{Z}_{\geq 0}$ then $(a+b)^k = \sum_{m=0}^k \binom{k}{m} a^{k-m} b^m$

Corollary 4.22:

For
$$k \in \mathbb{Z}_{\geq 0}$$
, $\sum_{m=0}^{k} \binom{k}{m} = 2^k$

Theorem 4.24 (Principle of mathematical induction —second form):

Let P(k) be a statement depending on a variable $k \in \mathbb{N}$. In order to prove the statement "P(k) is true for all $k \in \mathbb{N}$ " it is sufficient to prove:

- 1. P(1) is true and
- 2. if P(j) is true for all integers j such that $1 \leq j \leq n$, then P(n+1) is true

Proposition 4.29:

The kth Fibonacci number is given directly by the formula $f_k = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right)$

Proposition 4.30:

For all $k, m \in \mathbb{N}$, where $m \geq 2$,

$$f_{m+k} = f_{m-1}f_k + f_m f_{k+1}$$

Proposition 4.31:

For all $k \in \mathbb{N}$,

$$f_{2k+1} = f_k^2 + f_{k+1}^2$$

Proposition 4.32:

For all $k, m \in \mathbb{N}$, f_{mk} is divisible by f_m .

Chapter 5: Propositions

Proposition 5.1: Let A, B, C be sets:

- 1. $A \subseteq A$
- 2. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$

Proposition 5.2:

$$\{7m+1: m\in\mathbb{Z}\}=\{7n-6: n\in\mathbb{Z}\}$$

Proposition 5.4: Let A, B, C be sets:

- 1. A = A
- 2. if A = B then B = A
- 3. If A = B and B = C then A = C

Proposition 5.6:

If the sets \emptyset_1 and \emptyset_2 have the property that $x \in \emptyset_1$ is never true and $x \in \emptyset_2$ is never true, then $\emptyset_1 = \emptyset_2$.

Proposition 5.7:

The empty set is a subset of every set, that is, for every set S, $\emptyset \subseteq S$.

Proposition 5.14: Let $A, B \subseteq X$:

 $A \subseteq B$ if and only if $B^c \subseteq A^c$.

Theorem 5.15 (De Morgan's laws):

Given two subsets $A, B \subseteq X$,

$$(A \cap B)^c = A^c \cup B^c$$
 and $(A \cup B)^c = A^c \cap B^c$

Proposition 5.20: Let A, B, C be sets:

- 1. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- 2. $A \times (B \cap C) = (A \times B) \cap (A \times C)$