MiniProver

A coq-like proof assistant

Zhenwen Li, Sirui Lu, Kewen Wu

Peking University

June 17, 2018

1/13

λ -cube

Example and CIC

Term depends on Type

```
\lambda \mathtt{T}:\mathtt{Type}.\ \lambda\mathtt{x}:\mathtt{T}.\ \mathtt{x}\quad :\quad \mathtt{\Pi}\mathtt{T}:\mathtt{Type}.\ \mathtt{T}\rightarrow\mathtt{T}
```

Type depends on Type

$$\lambda \mathtt{T}:\mathtt{Type}.\ \mathtt{T} o \mathtt{T} : \mathtt{Type} o \mathtt{Type}$$

Type depends on Term

$$\lambda \mathtt{n}:\mathtt{nat}.\,\mathtt{S}\,\mathtt{n}\quad:\quad\mathtt{nat} o\mathtt{Type}$$

- λC + Definition $\Rightarrow \lambda D$.
- λD + Inductive Type \Rightarrow CIC.

3/13

Inductive Type

$${\tt Ind}\;[p]\;(\Gamma_{\tt I}:=\Gamma_{\tt C})$$

- p : Number of parameters.
- Γ_T : Inductive type.
- $\Gamma_{\rm C}$: Constructors of the inductive type.

```
Inductive lst (T : Type) : Type :=
       nil: lst T
       cons : T \rightarrow lst T \rightarrow lst T
```

```
\texttt{Ind} \, [\texttt{1}] \, \bigg( [\texttt{lst} : \texttt{Type} \to \texttt{Type}] := \left\lceil \frac{\texttt{nil} : \texttt{\Pi}\texttt{T} : \texttt{Type}, \, \texttt{lst} \, \texttt{T}}{\texttt{cons} : \texttt{\Pi}\texttt{T} : \texttt{Type}, \, \texttt{T} \to \texttt{lst} \, \texttt{T}} \right\rceil \bigg)
```

4/13

Match

match t as x_0 in namelist return returntype with [equation]

- *t* : A term of inductive type.
- namelist : Arguments of the inductive type.
- equation : Different constructors of the inductive type.

Termination Check

Criterion

Descending on at least one variable.

Positivity Check

Criterion

Types of constructors satisfy **positivity condition** for name of inductive type.

Build Term and Type for Inductive Definition

Intuition

View mathematical induction as building a term for inductive definition.

```
Inductive nat : Type := 0 : nat | S : nat -> nat
fun (P : nat \rightarrow Type) (f : P 0)
         (f0 : forall n : nat, P n \rightarrow P (S n))
    fix F (n : nat) : P n :=
         match n as n0 in (nat) return (P n0) with
         | 0 \Rightarrow f
         | S n0 => f0 n0 (F n0)
forall P : nat -> Type, P O ->
    (forall n : nat, P n \rightarrow P (S n)) \rightarrow
         forall n: nat, P n
```

Evaluation (Conversion)

- β -reduction : Reduce *application*
- *ι*-reduction : Reduce match
- δ -reduction: Definition $x := u \Rightarrow x \rightarrow u$
- ζ -reduction: let x := u in $t \Rightarrow [x \rightarrow u]t$
- η -expansion : $t : \forall x : T, U \Rightarrow \lambda x : T. (t x)$

Proof Handling

• Build proof object.

• Navigate: Undo.

• Switch mode: Proof, Qed, Abort.

• Request info : Print.

Tactics

- Intro, Intros : $\vdash A \rightarrow B \Rightarrow A \vdash B$
- Apply: $A \rightarrow B \vdash B \Rightarrow A \rightarrow B \vdash A$
- Exact: Construct the term manually
- Reflexivity: eq T x y \Rightarrow check if x $=_{\beta\delta\iota\eta\zeta}$ y
- Split: $\vdash P_1 \land P_2 \Rightarrow \vdash P_1, P_2$
- Induction : Classified sub-proofs with induction hypothesis
- Equivalence : Build equivalence relations inside inductive term

Tactics

- Simpl: Simplify into human-readable goal
- Destruct : Classified sub-proofs without induction hypothesis
- Left, Right: $\vdash P_1 \lor P_2 \Rightarrow \vdash P_1 \text{ or } \vdash P_2$
- Symmetry : eq T x y \vdash eq T y x
- Rewrite: eq T x y \Rightarrow x \rightarrow y or y \rightarrow x
- ullet Unfold : Replace term with $eta\iota$ -normal form
- Exists: $\vdash \exists x, P x \Rightarrow x_0 \land (P x_0)$

Thanks!

