```
In [1]:
         import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          from sklearn import linear_model
 In [6]: | df = pd.read_csv("homeprices.csv")
 Out[6]:
             area
                   prices
             2600
                   550000
          0
             3000
                   565000
             3200
                  610000
                   680000
             3600
                  725000
             4000
In [10]:
         %matplotlib inline
          plt.xlabel('area in sq ft')
          plt.ylabel('prices in dollar')
          plt.title('homeprice analysis')
          plt.scatter(df.area , df.prices, color = 'g' , marker = '+' )
Out[10]: <matplotlib.collections.PathCollection at 0x25ca6c40130>
                                  homeprice analysis
             725000
                                                               ÷
             700000
             675000
```



```
In [11]: reg = linear_model.LinearRegression()
In [13]: reg.fit(df[['area']], df.prices)
Out[13]: LinearRegression()
```

```
In [16]: reg.predict([[3300]])
Out[16]: array([628715.75342466])
In [17]: reg.coef_
Out[17]: array([135.78767123])
In [18]: reg.intercept_
Out[18]: 180616.43835616432
```

In [39]: df = pd.read_csv("canada.csv")
df

Out[39]:

	year	income	Unnamed: 2
0	1970	3399.299037	NaN
1	1971	3768.297935	NaN
2	1972	4251.175484	NaN
3	1973	4804.463248	NaN
4	1974	5576.514583	NaN
5	1975	5998.144346	NaN
6	1976	7062.131392	NaN
7	1977	7100.126170	NaN
8	1978	7247.967035	NaN
9	1979	7602.912681	NaN
10	1980	8355.968120	NaN
11	1981	9434.390652	NaN
12	1982	9619.438377	NaN
13	1983	10416.536590	NaN
14	1984	10790.328720	NaN
15	1985	11018.955850	NaN
16	1986	11482.891530	NaN
17	1987	12974.806620	NaN
18	1988	15080.283450	NaN
19	1989	16426.725480	NaN
20	1990	16838.673200	NaN
21	1991	17266.097690	NaN
22	1992	16412.083090	NaN
23	1993	15875.586730	NaN
24	1994	15755.820270	NaN
25	1995	16369.317250	NaN
26	1996	16699.826680	NaN
27	1997	17310.757750	NaN
28	1998	16622.671870	NaN
29	1999	17581.024140	NaN
30	2000	18987.382410	NaN
31	2001	18601.397240	NaN
32	2002	19232.175560	NaN
33	2003	22739.426280	NaN

	year	income	Unnamed: 2
34	2004	25719.147150	NaN
35	2005	29198.055690	NaN
36	2006	32738.262900	NaN
37	2007	36144.481220	NaN
38	2008	37446.486090	NaN
39	2009	32755.176820	NaN
40	2010	38420.522890	NaN
41	2011	42334.711210	NaN
42	2012	42665.255970	NaN
43	2013	42676.468370	NaN
44	2014	41039.893600	NaN
45	2015	35175.188980	NaN
46	2016	34229.193630	NaN

```
In [44]: %matplotlib inline
   plt.xlabel('year')
   plt.ylabel('income')
   plt.title('income per capita')
   plt.rcParams["figure.figsize"] = (20,20)
   plt.scatter(df.year , df.income, color = 'g' , marker = '+' )
```

Out[44]: <matplotlib.collections.PathCollection at 0x25ca829fcd0>


```
In [29]: reg = linear_model.LinearRegression()
In [30]: reg.fit(df[['year']], df.income)
Out[30]: LinearRegression()
```

```
In [49]: reg.predict([[2018]])
Out[49]: array([39631.76394397])
In [ ]:
```