DoSA Use Manual

Solenoid Example

2017-11-18

http://OpenActuator.org (zgitae@gmail.com)

Program Composition

Program Toolbar

1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications

3. Experiment

✓ Force : Magnetic force estimation for driving part

✓ Stroke : Magnetic force estimation for each stroke

✓ Current : Magnetic force estimation for each current

Analysis Model Explanation

1. Model Shape

2. Product Specifications

가. Coil Turns

• Coil Turns: 1040 turns

• Coil Resistance: 15.2 Ohm

나. Power

• Voltage : 14.5V

(Work Example File : DoSA Install Directory > Samples > Solenoid)

Design Creation

1. Toolbar > Click New Button

2. Design Name: "Solenoid"

3. Click OK

Coil Creation

1. Toolbar > Click Coil button

- 2. Coil Name: "coil"
- 3. Coil Shape Input
 - ✓ Coil Location: Base_X 4.8, Base_Y -2
 - ✓ Left-Down Point : X 0, Y 0 (Relative Coordinates)
 - (Relative Coordinates
 - ✓ Right-Upper Point : X 6, Y 16 (Relative Coordinates)
- 4. Screen Adjustment : Use Fit All Button
- 5. Click OK Button
- 6. Check Shape (FEMM Window))

Coil Design

- 1. Input Coil specifications
 - ✓ Part Material : Copper Selection
 - ✓ Current Direction : IN Selection (Inner Direction)
 - ✓ Moving Parts: FIXED Selection (Fixed Parts)
 - ✓ Coil Wire Grade : Enameled_IEC_Grade_2 Selection
 - ✓ Copper Diameter : Enter 0.27 mm
 - ✓ Horizontal Coefficient : Base Value
 - ✓ Vertical Coefficient : Base Value
 - ✓ Resistance Coefficient : Base Value
- 2. Coil Specification calculation
 - ✓ Click Coil Design Button

1		
Δ	■ Common Fields	
	Node Name	coil
Δ	Specification Fields	
	Part Material	Copper
	Curent Direction	IN
	Moving Parts	FIXED
4	Calculated Fields	
	Coil Turns	1040
	Coil Resistance [Ω]	15, 20945
	Coil Layers	20
	Turns of One Layer	52
4	Design Fields (optional)	
	Coil Wire Grade	Enameled_IEC_Grade_2
	Inner Diameter [mm]	9,6
	Outer Diameter [mm]	21,6
	Coil Height [mm]	16
	Copper Diameter [mm]	
	Wire Diameter [mm]	0,31072
	Coil Temperature [°C]	
	Horizontal Coefficient	0.9
	Vertical Coefficient	0,98
	Resistance Coefficient	1

Plunger Creation

1. Toolbar > Click Steel Button

- 2. Steel Name: "plunger"
- 3. Face Type: RECTANGLE
- 4. Plunger Shape Input
 - ✓ Plunger Location : Base_X 0, Base_Y -12
 - ✓ Left-Down Point : X 0, Y 0

(Relative Coordinates)

✓ Right-Upper Point: X 4, Y 12

(Relative Coordinates)

- 5. Screen Adjustment : Use Fit All Button
- 6. Click OK Button
- 7. Check Shape (FEMM Window))

Plunger Settings

1. Plunger Specification setting

✓ Part Material: 430 Stainless Steel Selection

✓ Moving Parts : Moving Selection (Moving Parts)

[BH Curve]

■ Common Fields Node Name plunger Specification Fields 430 Stainless Steel Part Material Moving Parts MOVING

Core Creation

1. Toolbar > Click Steel Button

- 2. Steel Name: "core"
- 3. Add Coordinate (Total 6): Click 'A' Button
- 4. Input Core Shape
 - ✓ Core Location : Base_X 0, Base_Y 1.2
 - ✓ 1 점: X 0, Y 0
 - ✓ 2 점: X 4, Y 0
 - ✓ 3 점: X 4, Y 13.6
 - ✓ 4 점: X 15.6, Y 13.6
 - ✓ 5 점: X 15.6, Y 18
 - ✓ 6 점: X 0, Y 18
- 5. Screen Adjustment : Use Fit All Button
- 6. Click OK Button

Core Settings

7. Check Shape (FEMM Window)

8. Core Specification setting

✓ Part Material : 430 Stainless Steel

✓ Moving Parts : FIXED

Case Creation

1. Toolbar > Click Steel Button

- 2. Steel Name: "case"
- 3. Add Coordinate (Total 6): Click 'A' Button
- 4. Input Case Shape
 - ✓ Case Location: Base_X 4.4, Base_Y -10.4
 - ✓ 1 점: X 0, Y 0
 - ✓ 2 점: X 11.2, Y 0
 - ✓ 3 점: X 11.2, Y 25.2
 - ✓ 4 점: X 7.4, Y 25.2
 - ✓ 5 점: X 7.4, Y 7.6
 - ✓ 6 점: X 0, Y 7.6
- 5. Screen Adjustment : Use Fit All Button
- 6. Click OK Button

Case Setting

7. Check Shape (FEMM Window)

8. Case Specification setting

✓ Part Material: 1010 Steel

✓ Moving Parts : FIXED

Magnetic Force Experiment

1. Toolbar > Click Force Button

- 2. Force Experiment Name: "force"
- 3. Click OK Button
- 4. Magnetic Force Experiment Settings
 - ✓ Voltage: 14.5 V
- 5. Run Magnetic Force Experiment

Magnetic Force Experiment Results

1. Force: 12.57 N

Displacement-Magnetic Force Experiment

1. Toolbar > Click Stroke Button

2. Stroke Experiment Name: "stroke"

3. Click OK Button

4. Magnetic Force-Current Experiment Settings

✓ Voltage: 14.5 V

✓ Initial Stroke: 0.0 mm

✓ Final Stroke: 1.0 mm

✓ Step Count: 5

Displacement-Magnetic Force Experiment Results

1. Information View / Click Stroke Test Button

Current-Magnetic Force Experiment

1. Toolbar > Click Current Button

2. Current Experiment Name: "current"

3. Click OK Button

4. Magnetic Force-Current Experiment Settings

✓ Initial Current: 0.0 A

✓ Final Current: 1.5 A

✓ Step Count: 5

Current-Magnetic Force Experiment Results

1. Information View / Click Current Test Button

- Thank You -