Linear Regression: Conditions for Inference, Residual Diagnostics

Anscombe Lab Wrap-Up

All 5 Have Essentially the Same Estimated Intercept Slope, Intercept, R^2 , and Residual Standard Deviation!

- Briefly, conditions for linear regression (see last page for more detailed summary):
 - Sample **representative** of population
 - No **outliers** (points that don't fit the trend)
 - **Linear** relationship
 - **Independent** observations
 - Normally distributed residuals
 - Equal variability of residuals
- Use plots to help diagnose the appropriateness of a linear model:
 - Scatter plot of explanatory (x axis) vs. response (y axis)
 - Scatter plot of predicted (x axis) vs. residual (y axis)
 - Histogram or density plot of residuals (x axis)
- Checks of whether the sample is representative and whether the observations are independent come from thinking about data collection process, not plots.

A Reminder about Residuals

- Residuals give the vertical distance between a data point and the line of best fit
- Positive if point above line, negative otherwise
- Residual = Observed Predicted
- $e_i = y_i$ \widehat{y}_i (e stands for error)

Anscombe Quintet: Data Set 1 (The Way Life Should Be)

```
ggplot(data = anscombe, mapping = aes(x = x1, y = y1)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)
```



```
linear_fit1 <- lm(y1 ~ x1, data = anscombe)
anscombe <- anscombe %>% mutate(
   predicted1 = predict(linear_fit1),
   residual1 = residuals(linear_fit1)
)
ggplot(data = anscombe, mapping = aes(x = predicted1, y = residual1)) +
   geom_point()
```



```
ggplot(data = anscombe, mapping = aes(x = residual1)) +
  geom_density()
```


- Outliers?
- Linear relationship?
- Normally distributed residuals?
- Equal variability of residuals?

```
ggplot(data = anscombe, mapping = aes(x = x2, y = y2)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)
```



```
linear_fit2 <- lm(y2 ~ x2, data = anscombe)
anscombe <- anscombe %>% mutate(
   predicted2 = predict(linear_fit2),
   residual2 = residuals(linear_fit2)
)
ggplot(data = anscombe, mapping = aes(x = predicted2, y = residual2)) +
   geom_point()
```



```
ggplot(data = anscombe, mapping = aes(x = residual2)) +
  geom_density()
```


- Outliers?
- Linear relationship?
- Normally distributed residuals?
- Equal variability of residuals?

```
ggplot(data = anscombe, mapping = aes(x = x3, y = y3)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)
```



```
linear_fit3 <- lm(y3 ~ x3, data = anscombe)
anscombe <- anscombe %>% mutate(
   predicted3 = predict(linear_fit3),
   residual3 = residuals(linear_fit3)
)
ggplot(data = anscombe, mapping = aes(x = predicted3, y = residual3)) +
   geom_point()
```



```
ggplot(data = anscombe, mapping = aes(x = residual3)) +
  geom_density()
```


- Outliers?
- Linear relationship?
- Normally distributed residuals?
- Equal variability of residuals?

```
ggplot(data = anscombe, mapping = aes(x = x4, y = y4)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)
```



```
linear_fit4 <- lm(y4 ~ x4, data = anscombe)
anscombe <- anscombe %>% mutate(
   predicted4 = predict(linear_fit4),
   residual4 = residuals(linear_fit4)
)
ggplot(data = anscombe, mapping = aes(x = predicted4, y = residual4)) +
   geom_point()
```



```
ggplot(data = anscombe, mapping = aes(x = residual4)) +
  geom_density()
```


- Outliers?
- Linear relationship?
- Normally distributed residuals?
- Equal variability of residuals?

```
ggplot(data = anscombe, mapping = aes(x = x5, y = y5)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)
```



```
linear_fit5 <- lm(y5 ~ x5, data = anscombe)
anscombe <- anscombe %>% mutate(
   predicted5 = predict(linear_fit5),
   residual5 = residuals(linear_fit5)
)
ggplot(data = anscombe, mapping = aes(x = predicted5, y = residual5)) +
   geom_point()
```



```
ggplot(data = anscombe, mapping = aes(x = residual5)) +
  geom_density()
```


- Outliers?
- Linear relationship?
- Normally distributed residuals?
- Equal variability of residuals?

Regression Conditions

Think of a helpful leprechaun named Robert $\mathbf{O}\mathbf{\dot{L}ine}\mathbf{:}$

Condition	How Important?	How to Check?
Representative sample	Critical	Think about data collection (randomization?)
No Outliers	Very Important	Plots: Scatter Plot of explanatory variable vs response variable (no points stand out) Scatter plot of predicted value vs residuals (no points stand out) histogram or density plot of residuals (no outliers)
Linear relationship	Very Important	Plots: • Scatter Plot of explanatory variable vs response variable (pattern is linear) • Scatter plot of predicted value vs residuals (no curved patterns)
Independent observa- tions	Very Important	 Think about data collection (randomization?) Situations where observations are not independent: Observations collected over time (e.g., monthly unemployment measurements over time) Observations collected in space (e.g., number of pitcher plants in each square meter of a bog) Multiple observations on the same person (e.g., baseline and follow-up measurements of health in a clinical trial)
Normal distribution for residuals	Somewhat Important	Plots: • histogram or density plot of residuals (approximately symmetric, no outliers)
Equal variability of residuals about the line as the explanatory variable changes.	Somewhat Important	 Plots: Scatter Plot of explanatory variable vs response variable (same amount of vertical spread around line for all values of x) Scatter plot of predicted value vs residuals (same amount of vertical spread for all values of x)