EXPT NO: 4 A python program to implement Single Layer

DATE: 13/09/2024 Perceptron

AIM:

To write a python program to implement Single layer perceptron.

PROCEDURE:

Implementing Single layer perceptron method using the Keras dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
import numpy as np
import pandas as pd
from tensorflow import keras
import matplotlib.pyplot as plt
```

Step 2: Load the Keras Dataset

The Keras dataset can be loaded.

```
(\textbf{X\_train,y\_train}) \text{,} (\textbf{X\_test,y\_test}) = \texttt{keras.datasets.mnist.load\_data} (
```

Step 3: Data Preprocessing

Ensure the data is clean and ready for modeling. Since the Iris dataset is clean, minimal preprocessing is needed.

```
print(f"Training set:{X_train.shape}")
print(f"Testing set:{X test.shape}")
```

```
print(X_train[1].shape)
plt.matshow(X_train[1])
```

OUTPUT:

Step 4: Train a Model

#Normalizing the dataset

x_train=X_train/255

 $x_test=X_test/255$

#Flatting the dataset in order to compute for model building
x_train_flatten=x_train.reshape(len(x_train),28*28)
x_test_flatten=x_test.reshape(len(x_test),28*28)

Step 5 : Make Predictions

Use the model to make predictions based on the independent variable.

OUTPUT:

```
Epoch 1/5

1875/1875 — 3s 1ms/step - accuracy: 0.8180 - loss: 0.7118

Epoch 2/5

1875/1875 — 3s 1ms/step - accuracy: 0.9148 - loss: 0.3101

Epoch 3/5

1875/1875 — 4s 956us/step - accuracy: 0.9238 - loss: 0.2769

Epoch 4/5

1875/1875 — 2s 940us/step - accuracy: 0.9250 - loss: 0.2744

Epoch 5/5

1875/1875 — 3s 990us/step - accuracy: 0.9239 - loss: 0.2706

<keras.src.callbacks.history.History at 0x7b83d00c6a70>
```

Step 6 : Evaluate the Model

Evaluate the model performance.

```
model.evaluate(x_test_flatten,y_test)
```

OUTPUT:

```
313/313 — 0s 1ms/step - accuracy: 0.9138 - loss: 0.3021 [0.26686596870422363, 0.9257000088691711]
```

RESULT:

This step-by-step process will help us to implement Single Layer Perceptron models

using the Keras dataset and analyze their performance.