Inteligência Artificial

Busca com informação

Profa. Debora Medeiros

Estratégias de busca sem informação

- Encontram soluções:
 - Gerando sistematicamente novos estados e
 - Comparando-os com o objetivo

- São muito ineficientes na maioria dos casos
 - Estratégias de busca com informação
 - Usam conhecimento específico do problema
 - Além de definição do próprio problema

Busca com informação

. Busca heurística

Tentativa de expandir os <u>caminhos mais promissores</u> primeiro

Heurística auxilia a encontrar os nós mais promissores a cada passo

Heurística é função que <u>estima</u> distância ao objetivo

Busca com informação

- Uma abordagem geral: melhor escolha primeiro
 - Expande nós com base em função de avaliação f(n)
 - Mede distância até o objetivo, considerando heurística

- Implementação: Introduz na fila de nós a serem expandidos de acordo com f(n) (fila de prioridades)

Busca com informação

Componente fundamental: função heurística h(n)

Estima custo do caminho de menor custo de n até um nó objetivo

- Exemplo: Arad a Bucareste
 - Distância em linha reta entre essas cidades
- Específica para cada problema
 - Restrição: se n é um nó objetivo, h(n) = 0

Busca gulosa

- Tenta expandir nó mais próximo à meta
 - Supondo que provavelmente levará a uma solução rápida
 - Avalia nós usando função heurística apenas
 - f(n) = h(n)

Straight-line dista	ince
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

. (a) Estado inicial

. (b) Expansão de Arad

. (c) Expansão de Sibiu

- Encontrou solução sem expandir nenhum nó que não estivesse no caminho da solução
- Contudo, solução não é ótima
 - 32 km mais longo do que por Rimniciu e Pitesti
- Nomenclatura guloso
 - Não é ótima, pois segue o melhor passo considerando somente o momento atual
 - pode haver um caminho melhor seguindo algumas opções piores em alguns pontos da árvore de busca

- Minimizando custo total estimado da solução
 - Avalia nós combinando:
 - g(n): custo real do caminho para alcançar cada nó
 - Custo de nó inicial até o nó n (valor exato)
 - h(n): custo estimado para ir do nó até o objetivo
 - Custo estimado do caminho de n ao objetivo

$$f(n) = g(n) + h(n)$$

Custo estimado da solução "mais barata" passando por n

Ideia: evitar expandir caminhos que já ficaram caros

- Se a função heurística h(n) satisfaz algumas condições, A* é completa e ótima
 - Em busca em árvore, é ótima se h(n) for heurística admissível
 - Nunca superestima o custo para alcançar o objetivo
 - Uma heurística h(n) é admissível se para cada nó n, h(n) ≤ h*(n), onde h*(n) é o custo verdadeiro de alcançar o estado objetivo a partir de n.

- Ida de Arad a Bucareste
 - Heurística de distância em linha reta é admissível
 - Caminho mais curto entre dois pontos quaisquer é uma linha reta

. (a) Estado inicial

. (b) Expansão de Arad

. (c) Expansão de Sibiu

- Suponha que um nó objetivo não ótimo G2 apareça
 - Como no exemplo, em que Bucareste apareceu após expansão de Fagaras
 - Mas caminho era maior do que passando por Pitesti
 - Seja C* o custo da solução ótima
 - Como G2 não é ótimo e h(G2) = 0

$$f(G2) = g(G2) + h(G2) = g(G2) > C^*$$

- Considere G1 um nó de borda que está no caminho da solução ótima
 - No exemplo, Pitesti
 - Se h não superestima o custo de completar o caminho da solução, então:

$$f(G1) = g(G1) + h(G1) \le C^*$$

Combinando conclusões:

$$f(G1) \le C^* < f(G2)$$

- Então G2 não será expandido e
- A* deve retornar uma solução ótima

- Complexidade de tempo ainda é exponencial na maioria dos casos
 - O(b^d), em que d é o nível da solução mais barata mais rasa

- Complexidade de espaço é exponencial
 - Mantém todos os nós gerados na memória

- Pior caso
 - Objetivo com custo C*
 - Outras ações com custo mínimo

Exemplos de heurísticas

Jogo dos blocos deslizantes

Start State

Goal State

Exemplos de heurísticas

- Jogo dos blocos deslizantes
 - h1 = número de blocos em posições erradas
 - Admissível, pois cada bloco deve ser movido ao menos uma vez
 - h2 = distância dos blocos de suas posições objetivo
 - Admissível, ao menos terá que deslocar isso

Goal State

Exemplos de heurísticas

- Jogo dos blocos deslizantes
 - h1 = número de blocos em posições erradas
 - Admissível, pois cada bloco deve ser movido ao menos uma vez
 - h2 = distância dos blocos de suas posições objetivo
 - Admissível, ao menos terá que deslocar isso

Goal State

Heurística dominante

A* usando h2 é melhor que A* usando h1 e muito melhor que a busca por aprofundamento iterativo

h2 é sempre melhor que h1, pois

 \forall n h2(n) \geq h1(n)

(chega mais próximo do valor real)

Isto é, h2 domina h1

Dominância = eficiência

A* com h2 nunca expandirá mais nós que A* com h1

Quanto menor for o valor de f(n), maior é a probabilidade de o nó n ser expandido

Referências

Livros:

- Russel e Norvig: Inteligência Artificial, cap 3

Slides de:

- . Ana Carolina Lorena, Unifesp
- Richard Khoury, University of Waterloo
- UFPE
- Cornell University
- Maria das Graças B. Marietto, UFABC