Quiz 20 Solutions

written by Alvin Wan . alvinwan.com/cs70

Thursday, April 7, 2016

This quiz does not count towards your grade. It exists to simply gauge your understanding. Treat this as though it were a portion of your midterm or final exam. In this quiz, we will walk through various sorts of independence.

1 Determining Independence

1. Let X and Y be the number of pips rolled for two different dice. What is E[XY]? P[X=1,Y=3]?

Solution: $\frac{49}{4}$, $\frac{1}{36}$ Since X and Y are independent, we know that

$$E[XY] = E[X]E[Y]$$

$$P[XY] = P[X]P[Y]$$

Note: The converse is *not* true for expectation. E[XY] = E[X]E[Y] does *not* imply independence. However, independence does imply that relationship.

2. Compute var(X), where X is the number of heads after n flips of a biased coin with heads-probability p.

Solution:

Recognizing a Distribution

We know that we need an indicator, X_i which is flipping a head on the ith trial. Since all X_i are independent, we can define $X \sim Bin(n, p)$. Thus, the variance is np(1-p). This makes your life very easy.

Full Derivation

To demonstrate this, the following is a full derivation of this variance:

 $P[X_i] = p$ and by virtue of it being an indicator variable, $E[X_i] = p$ as well.

Since all coin flips are independent, we can apply linearity of variance.

$$var(X) = var(\sum_{i} X_i) = \sum_{i} var(X_i) = nvar(X_i)$$

Now, we simply need to compute $var(X_i)$. Note that $E[X_i^2] = E[X_i]$ in this case, since we are considering an indicator variable X_i .

$$var(X_i) = E[X_i^2] - E[X_i]^2$$
$$= p - p^2$$
$$= p(1 - p)$$

Thus, $var(X) = nvar(X_i) = np(1-p)$.