Série 11 du mardi 29 novembre 2016

Exercice 1 (* A rendre).

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} exp(-1/x^2), & \text{si } x \neq 0, \\ 0, & \text{si } x = 0. \end{cases}$$

Montrer en détails que toutes les dérivées de f existent en x=0 et s'annulent.

En conclure que f n'est pas analytique dans une voisinage de 0 puiqu'elle ne coïncide pas avec sa série de Taylor en 0.

Indications:

- 1.) Commencer par montrer que $\forall n$ entier naturel, on a $\lim_{x\to 0} \frac{f(x)}{x^n} = 0$. 2.) En déduire que $\lim_{x\to 0} \frac{f(x)p(x)}{q(x)} = 0$ pour tous polynônes p,q (q non identiquement nul).
- 3.) Montrer finalement l'énoncé par récurrence.

Exercice 2.

Trouver le rayon de convergence et la fonction limite de la série entière: $\sum_{n=1}^{\infty} n^k x^n$ pour $k = 0, 1, 2, \dots$

Exercice 3.

Soit $x_0 \in \mathbb{R}$ et soit les deux séries entières $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ et $\sum_{n=0}^{\infty} b_n (x-x_0)^n$ de rayon de convergence non nuls R_1 et R_2 respectivement.

Démontrer que si $R = \min(R_1, R_2)$ et si $x \in]x_0 - R, x_0 + R[$, alors la série $\sum_{n=0}^{\infty} c_n (x - x_0)^n$ converge où $c_n = \sum_{k+j=n} a_k b_j.$

Exercice 4.

Montrer que si $f: \mathbb{R} \to \mathbb{R}$ vérifie $f(n) = n, \forall n \in \mathbb{Z}$, et f est convexe, alors $f(x) = x, \forall x \in \mathbb{R}$.