

Escola de Artes, Ciências e Humanidades

3ª Lista de exercícios de Matrizes, Vetores e Geometria Analítica Sistemas de Informação EACH - USP

1ª Questão. Encontre a matriz canônica da transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$T(x, y, z) = \begin{pmatrix} 3x + 5y - z \\ 4x - y + z \\ 3x + 2y - z \end{pmatrix}.$$

Em seguida calcule T(-1, 2, 4) por substituição direta e por multiplicação matricial.

 2^a Questão. Use multiplicação matricial para encontrar a reflexão de (-1, 2) em torno:

- a) Do eixo x.
- b) Da reta y = -x.

 3^{a} Ouestão. Use multiplicação matricial para encontrar a projeção ortogonal de (-2, 1, 3)sobre o:

- a) Plano xy.
- b) Plano xz.

 4^a Questão. Encontre a matriz canônica do operador linear que gira um vetor do \mathbb{R}^3 por um ângulo θ em torno do:

- a) Eixo x.
- b) Eixo y.

5ª Questão. Mostre que o operador linear
$$F: \mathbb{R}^3 \to \mathbb{R}^3$$
 dado por
$$F(x, y, z) = \begin{pmatrix} x - 2y + z \\ 5x - y + 3z \\ 4x + y + 2z \end{pmatrix}$$

não é sobrejetor e encontre um vetor que não está na imagem de F.

6^a Questão. Determine se o operador linear $F: \mathbb{R}^3 \to \mathbb{R}^3$ definido abaixo é injetor. Se for, encontre seu operador inverso.

a)
$$F(x,y,z) = \begin{pmatrix} x - 2y + 2z \\ 2x + y + z \\ x + y \end{pmatrix}$$
.
b) $F(x,y,z) = \begin{pmatrix} x - 3y + 4z \\ -x + y + z \\ -2y + 5z \end{pmatrix}$

7ª Questão. Seja $F: \mathbb{R}^2 \to \mathbb{R}^2$ operador linear satisfazendo F(1,0) = (2,1) e F(0,1) =(1,4).

- a) Determine F(2,4).
- b) Determine $(x, y) \in \mathbb{R}^2$ tal que F(x, y) = (2, 3).
- c) Mostre que F é um operador injetor.

Escola de Artes, Ciências e Humanidades

- 8ª Questão. Para cada uma das transformações lineares abaixo determine uma base e a dimensão do núcleo e da imagem:
 - a) $F: \mathbb{R}^3 \to \mathbb{R}$ definida por F(x, y, z) = x + y z.

 - a) $F: \mathbb{R}^3 \to \mathbb{R}$ definida por F(x, y, z) = x + y z. b) $H: \mathbb{R}^4 \to \mathbb{R}^2$ definida por $H(x, y, z, w) = \begin{pmatrix} z y \\ x w \end{pmatrix}$. c) $G: \mathbb{R}^3 \to \mathbb{R}^4$ definida por $G(x, y, z) = \begin{pmatrix} x y z \\ x + y + z \\ 2x y \\ y z \end{pmatrix}$. d) $M: \mathbb{R}^4 \to \mathbb{R}^3$ definida por $M(x, y, z, w) = \begin{pmatrix} x z \\ z y + w \\ y x w \end{pmatrix}$. e) $P: \mathbb{R}^4 \to \mathbb{R}^4$ definida por $P(x, y, z, w) = \begin{pmatrix} x z \\ z y + w \\ y x w \\ w z \end{pmatrix}$.
- 9^a Questão. Determinar um operador linear do \mathbb{R}^2 cujo núcleo é gerado pelos vetores: $\{(1,1),(0,1)\}.$
- 10^{a} Questão. Determinar um operador linear do \mathbb{R}^{4} cujo núcleo é gerado pelos vetores: $\{(1,1,0,0),(0,0,1,0)\}.$

Respostas:

Use o Mathematica instalado no laboratório 1 para verificar suas respostas.