Podstawy aproksymacji - od analizy Fouriera do deep learningu [221660-0553],

dzienne, lato 2022/23

Organizacja zajęć

Prowadzący zajęcia: Bartosz Pankratz, Małgorzata Wrzosek

Godziny i lokalizacja zajęć: środa, 9:50 - 11:30 sala 4C budynek C (wykład)

środa, 11:40 - 13:20, sala 4C budynek C (ćwiczenia)

Materiały do zajęć będą udostępniane przez platformę MS Teams.

Rekomendowane jest skonfigurowanie swojego komputera do pracy (będzie możliwość wykorzystania własnych komputerów na zajęciach).

Plan zajęć

Data	Wykład		
2023-03-01	Wprowadzenie do metod aproksymacji		
2023-03-15	Aproksymacja średniokwadratowa dyskretna; metoda wielomianów ortogonalnych		
2023-03-29	Aproksymacja średniokwadratowa ciągła		
2023-04-12	Matematyczne podstawy deep learningu		
2023-04-26	Zasady budowy modeli deep learning; sieci konwolucyjne: wprowadzenie		
2023-05-17	Sieci generatywne: wariacyjne autoenkodery (VAE)		
2023-05-31	Rekurencyjne sieci neuronowe		

Data	Ćwiczenia		
2023-03-01	Aproksymacja średniokwadratowa dyskretna; aproksymacja wielomianowa		
2023-03-15	Aproksymacja średniokwadratowa dyskretna w bazie funkcji trygonometrycznych		
2023-03-29	Aproksymacja średniokwadratowa ciągła; szereg Fouriera		
2023-04-12	Zasady budowy modeli deep learning		
2023-04-26	Sieci konwolucyjne		
2023-05-17	Sieci generatywne: generative adversarial networks (GAN)		
2023-05-31	Rekursywne sieci neuronowe		

Literatura

- Materiały dystrybuowane na zajęciach przez platformę MS Teams
- Goodfellow I., Bengio Y., Courville A. (2016), Deep Learning (http://www.deeplearningbook.org/)
- Boyd S., Vandenberghe L. (2018), Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares (http://vmls-book.stanford.edu/)
- Hastie T., Tibshirani R., Friedman J. (2013), The Elements of Statistical Learning (http://www-stat.stanford.edu/~tibs/ElemStatLearn/)

Zasady zaliczenia zajęć

Punktacja zajęć:

- Kolokwium zaliczeniowe (maksymalnie 30 punktów):
 - o Na egzaminie można mieć dowolne materiały drukowane i kalkulator
- Prace domowe z pierwszej części zajęć (maksymalnie 20 punktów)
- Raport z budowy modelu deep learningowego (maksymalnie 50 punktów)

Na podstawie sumy punktów (maksymalnie 100) uzyskanych z kolokwium wyznaczana jest ocena końcowa:

Liczba p	unktów	Ocean keréseure	
Od	Do	Ocena końcowa	
0	49	Niedostateczny	
50	59	Dostateczny	
60	69	Dostateczny plus	
70	79	Dobry	
80	89	Dobry plus	
90	100	Bardzo dobry	