heat-2d (ULFM) redundancy schemes

Исходные данные

Дано:

- \square P процессов
- \square n*m расчетная область
- □ Зависимость по данным

1	2	3	4	5	6	7	8
2							
3							
4							
5							
6							
7							
8							

Compute redundancy (вычислительная избыточность)

- □ Делим P / 2
- \square Создаем два дополнительных коммуникатора A, B

Compute redundancy (вычислительная избыточность)

Communicator: A (p/2)

Communicator: B (p/2)

Compute redundancy (вычислительная избыточность)

Зависимость времени от количества отказов

- При имеющийся зависимости по данным, на каждом шаге итерационного процесса происходил обмен теневыми ячейками
- □ Расширим и заменим обмен теневыми ячейками на обмен значением ячейки для всех окружающих процессов

- При имеющийся зависимости по данным, на каждом шаге итерационного процесса происходил обмен теневыми ячейками
- □ Расширим и заменим обмен теневыми ячейками на обмен значением ячейки для всех окружающих процессов

- При имеющийся зависимости по данным, на каждом шаге итерационного процесса происходил обмен теневыми ячейками
- □ Расширим и заменим обмен теневыми ячейками на обмен значением ячейки для всех окружающих процессов

При выходе из строя приведенного на рисунке блока, получаем:

При выходе из строя приведенного на рисунке блока, получаем:

- При выходе из строя приведенного на рисунке блока, получаем:
- □ Восстановить можно лишь граничные но не центральную ячейку блока
- □ Увеличение размерности блока не приведет к полному восстановлению

Зависимость времени от количества отказов

