第1章

Série Entière 幂级数

Definition 1.1

Pour $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$, on appelle série entière $((a_nX^n))$. On s'intéresse à la fonction

$$f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$$

\Diamond

1.1 Rayon de convergence 收敛半径

Definition 1.2

设 $((a_nX^n))$ 是一个幂级数, $((a_nX^n))$ 的收敛半径 (RCV) 记为 R_c ,定义为:

$$R_c = sup(\{|z|, z \in \mathbb{C} \ et \ ((a_n X^n)) \ converge\}) \in \mathbb{R}_+ \cup \{+\infty\}$$

 \Diamond

(bien défini car $((a_n0^n))$ converge).

Note: $\not \in \mathbb{X} \ \forall r \in \mathbb{R}_+$

$$D(0,r) = \{z \in \mathbb{C} : |z| < r\}$$

$$\bar{D}(0,r) = \{ z \in \mathbb{C} : |z| \le r \}$$

$$C(0,r) = \{ z \in \mathbb{C} : |z| = r \}$$

Lemma 1 d'Abel

设 $((a_nX^n))$ 是一个幂级数,假设存在 R>0 满足数列 (a_nR^n) 是有界的,则 $\forall r\in]0, R[_{\bf r}((a_nX^n))$ 在 $\bar{D}(0,r)$ 上 CVN。

Proof:

Conclusions: 设 $z \in \mathbb{C}^*$ 满足 f(z) 有定义并且 $((a_n z^n))$ 收敛,则 $\forall z' \in \mathbb{C}$ 满足 |z'| < |z|, $((a_n z^{'n}))$ 绝对收敛 (Converge absolument)。

Example:

- 1. 求 $((X^n))$ 的收敛半径。 $R_c = 1$
- 2. 求 $((\frac{X^n}{n!}))$ 的收敛半径。 $R_c = +\infty$ 因为 $\forall z \in \mathbb{C}$, $((\frac{X^n}{n!}))$ 收敛于 e^z 。

Theorem 1.1

设 $((a_nX^n))$ 是一个幂级数,收敛半径为 R_c ,对于 $z\in\mathbb{C}$,

- ・若 $|z| < R_c$,则 $((a_n z^n))$ 绝对收敛。
- 若 $|z| > R_c$,则 $((a_n z^n))$ 无界。

Proof:

Definition 1.3

我们称收敛圆的集合为 $C(0,R_c)$ 。

Example:

- 1. $((X^n))$: 对于 $z \in \mathbb{U}(|z|=1)$, $((z^n))$ 发散。实际上,
 - 若 z=1, $((1^n))$ 发散。
 - 若 $z \neq 1$,设 $N \in \mathbb{N}$, $\sum\limits_{n=0}^{N} z^n = \frac{1-z^{N+1}}{1-z}$, $|z^{N+1}-z^N| = |z^N||z-1|$,其中 $|z^n|=1, |z-1|>0$ 。所以 (z^{N+1}) 发散, $((z^n))$ 发散。
- 2. 求 $((\frac{X^n}{n^2}))$ 的收敛半径。设 $z \in \mathbb{C}^R$, $n \in \mathbb{N}^R$

 - $\ddot{z} |z| > 1, \ (\frac{z^n}{n^2})$ 无界。

Conclusions: Rc = 1, $\forall z \in C(0,1)$, $((\frac{z^n}{n^2}))$ 收敛。

1.1.1 求收敛半径的方法

- 如果可以找到 $z_0\in\mathbb{C}$ 满足数列 $(a_nz_0^n)$ 是有界的,则 $R_c\geq |z_0|$ 。
- 如果级数 $((a_0z_0^n))$ 发散或者数列 $(a_nz_0^n)$ 是无界的,则 $R_c \leq |z_0|$ 。

练习题: 求以下幂级数的收敛半径。

1.
$$a_n = \frac{n^n}{n!}$$
(用两种方法)

• 方法 1: 直接使用d'Alembert 判别法。

$$\left|\frac{a_{n+1}}{a_n}\right| = \left(1 + \frac{1}{n}\right)^n \underset{n \to +\infty}{\to} e$$

则 $((a_nX^n))$ 的收敛半径 $R_c=\frac{1}{e}$ 。

• 方法 2: 根据STIRLING 定理, $n! \underset{n \to +\infty}{\sim} \sqrt{2\pi n} (\frac{n}{e})^n$ 。则

$$a_n \underset{n \to +\infty}{\sim} \frac{e^n}{\sqrt{2\pi n}}$$

则根据命题,找级数 $((\frac{e^n}{\sqrt{2\pi n}}X^n))$ 的收敛半径。

$$\left|\frac{\frac{e^{n+1}}{\sqrt{2\pi(n+1)}}}{\frac{e^n}{\sqrt{2\pi n}}}\right| = \left|\frac{e\sqrt{n}}{\sqrt{n+1}}\right| \underset{n \to +\infty}{\to} e$$

则收敛半径是 $\frac{1}{e}$ 。

2.
$$a_n=1+\frac{1}{n}$$

$$1+\frac{1}{n} \mathop{\sim}_{n\to +\infty} 1$$
,根据命题, $(((1+\frac{1}{n})X^n))$ 和 $((X^n))$ 相同, $R_c=1$ 。

3.
$$a_n = \prod_{k=1}^n \left(\frac{3k+1}{k+\frac{1}{2}}\right)$$
$$\left|\frac{a_{n+1}}{a_n}\right| \underset{n \to +\infty}{\to} 3, \ R_c = \frac{1}{3}.$$

4. $a_n = 2 + cosn$

若 |z|=1: 有级数 ((2+cosn)) 发散,所以 $R_c \le 1$; 并且有数列 (2+cosn) 是有界的,则 $R_c \ge 1$ 。故 $R_c = 1$ 。

5.
$$a_n = C_{2n}^n$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{4n+2}{n+1} \right| \underset{n \to +\infty}{\to} 4, \quad \not t t t \in \mathbb{R}, \quad t t \in \mathbb{R}$$

以上是对收敛半径的一些总结,不全面,日后补充。接下来是对有关幂级数的运算的一些总结。

1.2 Opération sur les séries entières 幂级数的运算

这里重点是对幂级数的和函数进行求导和积分运算。在之前还有幂级数的和与积的概念。

Proposition 1.1 幂级数的和与积

设 $((a_nX^n))$ 和 $((b_nX^n))$ 是两个幂级数,定义数列:

$$(s_n) = (a_n + b_n)_{n \in \mathbb{N}} \quad (p_n) = (\sum_{k=0}^n a_k b_{n-k})_{n \in \mathbb{N}}$$

那么有两个幂级数的和为:

$$\sum_{n=0}^{+\infty} s_n z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n = \sum_{n=0}^{+\infty} (a_n + b_n) z^n$$

而两个幂级数的乘积定义为:

$$\sum_{n=0}^{+\infty} p_n z^n = (\sum_{n=0}^{+\infty} a_n z^n) (\sum_{n=0}^{+\infty} b_n z^n) = \sum_{n=0}^{+\infty} (\sum_{k=0}^{n} a_k b_{n-k}) z^n$$

接下来讨论对于幂级数的和函数进行求导和积分的运算。

在幂级数的收敛区间] $-R_c$, R_c [内,幂级数的和函数定义为:

$$f: x \in]-R_c, R_c[\mapsto \sum_{n=0}^{+\infty} a_n x^n]$$

对其进行逐项求导得到:

逐项求积分得到:

$$\sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n \qquad \sum_{n=0}^{+\infty} \frac{a_n}{n+1}x^{n+1}$$

也就是级数 $(((n+1)a_{n+1}x^n))_{n\in\mathbb{N}}$ 。

也就是级数
$$((\frac{a_n}{n+1}x^{n+1}))_{n\in\mathbb{N}}$$
。

有结论级数 $(((n+1)a_{n+1}x^n))_{n\in\mathbb{N}}$ 和 $((\frac{a_n}{n+1}x^{n+1}))_{n\in\mathbb{N}}$ 与级数 $((a_nx^n))$ 的收敛半径是相同的。

而且还有和函数 f 在幂级数的收敛区间 $]-R_c,R_c[$ 可导, $\forall x\in]-R_c,R_c[$,

$$f'(x) = \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n$$

f 在 0 与 x 这个区间上可积,且有:

$$\int_0^x f(t)dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$

Example: 几何级数 $((x^n))$ 在收敛域 (-1,1) 内有 $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$ 。 对级数 $((x^n))$ 在收敛域 (-1,1) 内逐项求导得到:

$$\sum_{n=0}^{+\infty} (n+1)x^n = \frac{1}{(1-x)^2}$$

$$\sum_{n=1}^{+\infty} n(n+1)x^{n-1} = \frac{2!}{(1-x)^3}$$

对级数 $((x^n))$ 在 [0,x[(x<1) 上逐项求积分可得:

$$\int_0^x \frac{1}{1-t} dt = \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} = \ln \frac{1}{1-x}$$

