Credit Card Fraud Detection

Table of Contents

- Introduction
- Data source and analysis
- Data processing
- Modeling and analysis
- Summary and result

Introduction

Credit Card and Fraudulent Activities

- Credit card fraud refers to payment to another account controlled by criminal.
- This project focuses on using credit card activity data to identify credit card frauds.
- Frauds may include authorized (such as scamming) and unauthorized (such as skimming or account take-over)
 - Unauthorized fraudulent activities could demonstrate very different trait when comparing to card owner's usual consumption behavior
 - Authorized fraudulent activities usually would not demonstrate vastly different trait; they could be tracked from both ends (card owner end: owner likely to be deceived; criminal end: suspicious payment recipient).

Data source & analysis

Data source

- The dataset is from Kaggle. Its records are simulated credit card transactions generated from Sparkov, dated from 01/01/2019 – 12/31/2020. This dataset contains over 185k simulated credit card transaction activities, covering 1000 card owners and 800 merchants.
- Link: https://www.kaggle.com/kartik2112/fraud-detection
- The columns could be broadly divided into these types

Data & Variables

Variable Type	Variable name
identifier	"cc_num": credit card number; identifier for each card "trans_num": transaction number; identified for each transaction record
Transaction details	"trans_date_trans_time": date and time of transaction "amt": amount of this transaction
Customer information	"first", "last": first name and last name of card holder "gender", "job", "dob": gender, job and date of birth of card holder "street", "city", "state", "zip", "lat", "long": living address of card holder
Merchant information	"merchant", "category": name and category of merchant "merch_lat", "merch_long: address of merchant
Fraud information	"is_fraud": class to identify if this transaction is fraud or not

Data Processing

Using the dataset

Transaction profiling

- Assumption: transaction patterns in one card is consistent, determined by the card owner.
 New transactions will likely follow old transaction patterns
- To-do: build a profile for each card; a profile of transaction habits
- Fraud: different transaction pattern could imply fraud; card could be operated by other people
- High risk card holder
 - Assumption: authorized frauds; some card holders are vulnerable to authorized frauds
 - To-do: use card owner information
- High risk merchant
 - Assumption: some merchants are high-risk
 - To-do: merchants that seldom show up; merchants highly associated with frauds

Modeling Choice

- The dataset contains a target value (is_fraud). Two methods for fraud detection.
- 1. Supervised Machine Learning
 - Use existing and derived columns to establish a model predicting is_fraud.
 - Concern: this method only identifies known fraud types; vulnerable to new fraud types
- 2. Unsupervised Machine Learning
 - Ignore fraud class; use existing and derived columns to group transactions by similarities;
 identify fraud by those transactions which are not similar to norm

Data Processing

Dividing the dataset: real-world problem

- In practice,
 - Historical data -> process, analyze, cross-validate -> new data -> add to historical data and improve analysis
 - When cross-validating, no future data is attainable
- Divide the data by time
 - Total 2 years of data (01/01/2019 12/31/2020) [1.85m activities]
 - First 1.5 years for analysis and cross-validation [1.32m activities]
 - Last 0.5 year as future data (test for model applications) [0.53m activities]
- Imbalanced dataset
 - In first 1.5 years: 7.6k fraud transactions (r. 0.57%); hard to over-sampling/under-sampling with bootstrapping
 - Choose a different metrics in supervised models: Precision-Recall Curve
 - Apply stratified k-fold cross-validation
 - Add class weight in classification models

Profiling based on transactions

- Create derived variables for each card
- Transaction amount:
 - Thresholds for each card: extreme, high, medium, low
- Transaction address location
 - Compare card holder's living address (latitude and longitude) and merchant location
 - Divide transaction into local, national and international
- Transaction datetime
 - Weekday: Mon, Tue, ..., Sun
 - Time of a day: morning, afternoon, evening, midnight
- Product type
 - No exact product type, approximated by merchant category
 - Create dummy variables for modeling

Labeling Transaction Amount

- Perform operation for each card number, assign four labels
- 3 extreme
 - Refers to extremely high transaction amount based on the card's transaction history
 - Finding outliers using Z-score
 - Flag all points above μ+3σ (68-98-99 for normal distribution)
- 0, 1, 2 low, medium, high
 - For the rest of the data, use k-means clustering on transaction amount, k=3
- Figure to the left illustrates amount and its derived label for one card

Profiling based on transactions

- Transaction pattern for each card is profiled: summarized into categorical variables
- Goal: run individual models on each card
- Profiling by customer vs profiling by card
 - One customer may treat cards differently: for example, one would buy more accommodation products with travel cards (more cashback on travel) and more commodity with shopping cards

Risk-to-Fraud

- Association between customer demographics and frauds
- Association between merchants and frauds

Modeling and Analysis

Modeling

- Card profiling
 - Model 1: Random forest (set of models)
 - Dataset: subset of
 - Dependent: fraud class (1, 0); Independent: amount label, address label, weekday label, time label, category dummies
- Customer and merchant risk-to-fraud
 - Model 2: High risk customers
 - Dependent: probability of fraud cases; Independent: customer demographics
 - Model 3: High risk merchants
 - Dependent: probability of fraud cases; Independent: merchant information
- Finalize modeling
 - For each transaction:

Use model 1 to calculate the probability of fraud from card profile (transaction pattern)

Use model 2 to obtain the probability of high-risk customers (from coefficients)

Use model 3 to obtain the probability of high-risk merchants

- Run final model:
 - Dependent: fraud class (1,0); independent: profile fraud prob, customer risk prob, merchant risk prob

