COMP110: Principles of Computing
4: Logic and memory

Learning outcomes

- Distinguish the basic types of logic gate
- ▶ Use logic gates to build simple circuits
- ► Explain how computer memory works

Logic gates

Boolean logic

- ▶ Works with two values: True and False
- ► Foundation of the **digital computer**: represented in circuits as **on** and **off**
- ► Representing as 1 and 0 leads to **binary notation**
- ► One boolean value = one **bit** of information
- Programmers use boolean logic for conditions in if and while statements

Not

NOT A is True if and only if A is False

Α	NOT A
FALSE	TRUE
TRUE	FALSE

And

A AND B is True if and only if **both** A **and** B are True

Α	В	A and B
FALSE	FALSE	FALSE
FALSE	TRUE	FALSE
True	FALSE	FALSE
TRUE	TRUE	TRUE

Or

A OR B is TRUE if and only if either A or B, or both, are TRUE

Α	В	A and B
FALSE	FALSE	FALSE
FALSE	TRUE	True
TRUE	FALSE	TRUE
TRUE	TRUE	TRUE

What is the value of

A AND (B OR C)

when

A = TRUE

 $B = \mathsf{FALSE}$

 $C = \mathsf{TRUE}$

What is the value of

(NOT
$$A$$
) AND ($B \cap C$)

when

 $A = \mathsf{TRUE}$

 $B = \mathsf{FALSE}$

 $C = \mathsf{TRUE}$

For what values of A, B, C, D is

A and not B and not $(C ext{ or } D) = T$ rue

What is the value of

A or not A

7

What is the value of

A and not A

What is the value of

A or A

What is the value of

 \boldsymbol{A} and \boldsymbol{A}

What expression is equivalent to this circuit?

Writing logical operations

Operation	Python	C family	Mathematics
NOT A	not a	!a	$\neg A$ or \overline{A}
A and B	a and b	a && b	$A \wedge B$
A OR B	a or b	a b	$A \lor B$

Other operators can be expressed by combining these

Exclusive Or

A XOR B is TRUE if and only if either A or B, but not both, are TRUE

Α	В	A and B
FALSE	FALSE	FALSE
FALSE	TRUE	TRUE
TRUE	FALSE	TRUE
TRUE	TRUE	FALSE

How can $A \times B$ be written using the operations AND, OR, NOT?

Negative gates

NAND , NOR , XNOR are the **negations** of AND , OR , XOR

A NAND B = NOT (A AND B)A NOR B = NOT (A OR B)A XNOR B = NOT (A XOR B)

