EMERGENCE IN FREE AND CORRELATED FERMIONS: FROM IMPURITY MODELS TO THE BULK

RPC PRESENTATION 2021-22

ABHIRUP MUKHERJEE SUPERVISOR: DR. SIDDHARTHA LAL

DEPARTMENT OF PHYSICAL SCIENCES, IISER KOLKATA, MOHANPUR

JULY 12, 2022

SUMMARY OF WORK

- 1. 1-channel Kondo problem: as second author, published in Phys. Rev. B
- 2. Multi-channel Kondo problem: as second author, under review at Phys. Rev. B
- 3. Generalised Anderson impurity model: manuscript in preparation
- 4. Entanglement scaling in free fermions: manuscript in preparation
- 5. New auxiliary model approach to correlated systems: ongoing project

SINGLE-CHANNEL KONDO PROBLEM

Model of impurity interacting with conduction electrons through spin-flips

- Computation of the impurity spectral function
- 2. Emergence of a local Fermi liquid, and orthogonality catastrophe between local moment and singlet states

3. Calculating of thermal entropy

MULTI-CHANNEL KONDO PROBLEM

Model of impurity interacting with multiple conduction electron channels

- 1. Obtaining RG fixed point Hamiltonian
- 2. Analytical forms for degree of compensation, magnetization and susceptibility
- 3. Presence of a local marginal Fermi liquid

4. Dualities of the MCK model

LOCAL METAL-INSULATOR TRANSITION IN EXTENDED ANDERSON IMPURITY MODEL

EXTENDED ANDERSON IMPURITY MODEL

Standard Anderson impurity model \longrightarrow only one stable phase (strong-coupling)

no possibility of phase transition → Introduce additional correlation

- spin-flip correlation between impurity and bath: *J*
- \blacksquare local correlation in the bath: U_b

RG equations reveal critical point where J, V become irrelevant

- orange phase: J is relevant: strong-coupling
- 2. blue phase: *J* is irrelevant: local moment
- 3. yellow phase: spin+charge liquid
- 4. gray phase: all couplings irrelevant

PRESENCE OF A PHASE TRANSITION

singlet → spin+charge liquid → local moment impurity spectral function gaps out

ENTANGLEMENT AS A PROBE FOR THE TRANSITION

Geometric entanglement: $\varepsilon(\psi_1, \psi_2) = 1 - |\langle \psi_1 | \psi_2 \rangle|^2$

$$\longrightarrow \sqrt{1-\varepsilon_{\rm SS}}\sqrt{1-\varepsilon_{\rm CT}}$$
 is maximised, then vanishes

Mutual information between impurity and cloud vanishes

CREATING SUBSYSTEMS

Free Dirac fermions on torus: $k_x^n = \frac{2\pi}{L_x}n$, $n \in \mathbb{Z}$; define **sparsity** = $\Delta n = 1$

Simplest choice: the entire set

sparsity = 1
$$\longrightarrow$$
 $n \in \{-N, -(N-1), -(N-2), ..., -1, 0, 1, ..., N-2, N-1, N\}$

Coarser choices: increase sparsity

sparsity = 2
$$\longrightarrow$$
 $n \in \{-N, -(N-2), -(N-4), ..., -2, 0, 2, ..., N-4, N-2, N\}$

sparsity =
$$4 \longrightarrow n \in \{-N, -(N-4), -(N-8), ..., -4, 0, 4, ..., N-8, N-4, N\}$$

SUBSYSTEM ENTANGLEMENT ENTROPY: ENTANGLEMENT HIERARCHY

$$\begin{split} S_{A_z(j)} &= f_z(j) c \alpha L_x - c \log \left| 2 \sin \left(\pi f_z(j) \phi \right) \right| \\ & i < j, \ S_{i \cup j} = \begin{cases} S_i, & z > 0 \\ S_i, & z < 0 \end{cases} \end{split}$$

- presents a hierarchy of entanglement → EE distributed across RG steps RG transformation → reveals entanglement
- distribution of entanglement also present in multipartite entanglement

Mutual information:
$$I^2(A:B) \equiv S(A) + S(B) - S(A \cup B)$$
 (non-negative)

Define distances using mut. info.

$$x_z(j) = \log t_z(j), \quad y_z(j) = \log t_z(j \pm 1)$$

$$\boldsymbol{v}_{\boldsymbol{z}}(j) \equiv \Delta \boldsymbol{y}_{\boldsymbol{z}}(j)/\Delta \boldsymbol{x}_{\boldsymbol{z}}(j), \ \ \boldsymbol{v}' = \Delta \boldsymbol{v}_{\boldsymbol{z}}(j)/\Delta \boldsymbol{x}_{\boldsymbol{z}}(j)$$

Curvature as well:
$$\kappa_z(j) = \frac{v_z'(j)}{\left[1 + v_z(j)^2\right]^{\frac{3}{2}}}$$

Van Raamsdonk 2010; Lee et al. 2016; Mukherjee et al. 2022; Lee 2010; Lee 2014; Qi 2013; Lee et al. 2016; Mukherjee et al. 2020a; Mukherjee et al. 2020b; Ryu et al. 2006b; Ryu et al. 2006a; Nozaki et al. 2012.

RG EVOLUTION = EMERGENT DISTANCE

- Distances and curvature can be related to an RG beta function
- Amounts to an **explicit demonstration** of the holographic principle
- Sign of curvature is **topological**, can be written in terms of winding numbers

TOPOLOGICAL NATURE OF GEOMETRY-INDEPENDENT TERM

$$S_{A_z(j)} = f_z(j)c\alpha L_x - \underbrace{c \log |2 \sin (\pi f_z(j)\phi)|}_{=Q(\phi),\text{geometry-independent term}}$$

- \blacksquare $Q(\phi)$ is periodic in the flux ϕ , ϕ = 1 transports a charge across Fermi surface
- pole structure of $\left(\sin\frac{\pi}{4} |\sin\left(\pi f_z(j)\right)\phi|\right)^{-1}$ counts number of states \longrightarrow tracks Luttinger volume
- Luttinger volume is topological, so is $Q(\phi)$; $Q(\phi)$ can be expressed in terms of winding numbers