

TRƯỜNG ĐẠI HỌC THỦY LỌI

Khoa Công nghệ thông tin - Bộ môn Khoa học máy tính

LÝ THUYẾT TÍNH TOÁN

Tên giảng viên: Đinh Phú Hùng

Email: hungdp@tlu.edu.vn

Điện thoại: 0912509973

Nội dung bài giảng

1. Ôtômat hữu hạn

2. Định nghĩa hình thức

3. Thiết kế Ôtômat hữu hạn

4. Ngôn ngữ chính quy

5. Toán tử chính quy

Ôtômat hữu hạn

Ôtômat hữu hạn

Ötômat hữu hạn (Finite State Machine - **FSM** hay Finite Automation)

- Là mô hình tính toán đơn giản nhất
- Phù hợp với:
 - Các máy tính hoặc bộ điều khiển nhỏ
 - Có số trạng thái hữu hạn và khá nhỏ

Ví dụ: Bộ điều khiển cửa trượt tự động

Biểu diễn hình học của Ôtômat hữu hạn

- Trạng thái bắt đầu: Biểu thị bởi mũi tên chỉ vào nó
- Trạng thái kết thúc: Biểu thị bởi vòng tròn kép
- Mũi tên từ trạng thái này sang trạng thái khác được gọi là chuyển dịch
- Thông tin đầu ra hoặc là chấp thuận hoặc là bác bỏ

Ứng dụng của FSM

- Tạo ra các chuỗi tương ứng với mô hình của FSM
- Nhận diện các chuỗi có thỏa mãn mô hình FSM hay không

Ví dụ nhận diện các chuỗi sau:

- $11010101 \rightarrow$ Chấp thuận/bác bỏ?
- $100 \rightarrow$ Chấp thuận/bác bỏ?
- $110000 \rightarrow$ Chấp thuận/bác bỏ?
- 0100 → Chấp thuận/bác bỏ?
- 101000 → Chấp thuận/bác bỏ?
- \rightarrow Làm thế nào để biểu diễn các chuỗi chấp thuận bằng 1 ngôn ngữ?

Định nghĩa hình thức

Định nghĩa hình thức

ullet Ôtômat hữu hạn \equiv bộ 5 (hay 5 chiều)

$$\mathsf{M} = (\mathsf{Q},\, \mathsf{\Sigma},\, \delta,\, \mathsf{q}_0,\, \mathsf{F})$$

Trong đó:

- Q: Tập trạng thái (hữu hạn)
- Σ: Bộ chữ, tập hữu hạn các ký tự
- δ: Hàm dịch chuyển

$$\delta \colon \mathbf{Q} \times \mathbf{\Sigma} \rightarrow \mathbf{Q}$$

- $\mathbf{q_0}$: Trạng thái bắt đầu $(\mathbf{q_0} \in \mathbf{Q})$
- \mathbf{F} : Là tập các trạng thái kết thúc ($\mathbf{F} \subseteq \mathbf{Q}$)

Ví dụ Ôtômat hữu hạn

δ:

- **Q**: {a,b,c,d}
- Σ: {0,1}
- **q**₀: a
- **F**: {d}

		Σ	
		0	1
Trạng thái	а	С	b
	b	d	а
	С	а	d
	d	b	С

Ngôn ngữ của máy M

 • Nếu A là tập tất cả các xâu mà máy M chấp nhận \to A là ngôn ngữ của máy M

$$L(M) = A$$

- Máy M đoán nhận (recognizes) A
- Máy/M/cháp/thuận/(ácc/chh/s)/A
 Do một máy có thể chấp thuận vài xâu nhưng nó luôn đoán nhận chỉ một ngôn ngữ
- Nếu máy không chấp thuận một xâu nào thì nó vẫn đoán nhận một ngôn ngữ (Ngôn ngữ rỗng - Ø)

- Cho bộ chữ $\Sigma = \{0,1\}$. Làm thế nào để đoán nhận tất cả các chuỗi **không** chứa chuỗi 0011?
- Trước tiên, ta thử với bài toán đơn giản hơn: Làm thế nào để đoán nhận tất cả các chuỗi có chứa chuỗi con 0011?

 M_1

 M_2

- Thuật ngữ:
 - Một máy trạng thái (FSM) chấp thuận 1 chuỗi nào đó
 - Một máy trạng thái (FSM) đoán nhận 1 ngôn ngữ
- Ký hiệu:
 - $L(M_1) = Ngôn ngữ mà máy <math>M_1$ đoán nhận $= Tập các chuỗi được xây dựng từ các ký tự <math>\{0,1\}^*$ mà trong đó có chứa chuỗi 0011 là chuỗi con $L(M_2) = Tập$ các chuỗi được xây dựng từ các ký tự $\{0,1\}^*$ mà trong đó không chứa chuỗi 0011 là chuỗi con
- ullet Bản chất ngôn ngữ: $\mathbf{T}\mathbf{\hat{a}p}
 ightarrow \mathsf{L}(\mathsf{M}_1) = \overline{\mathsf{L}(\mathsf{M}_2)}$

Ví dụ Ôtômat hữu hạn

- FSM trên đoán nhận các chuỗi: 10, 01, 001, 0001, ..., 0⁺1
- L = {w| w là các chuỗi 01,10 hoặc các chuỗi có 1 số 1 liền ngay sau ít nhất 1 số 0}
- Các chuỗi sau điều gì sẽ xảy ra?
 - 111
 - 101010

Điểm chết (Dead states)

$$M = (Q, \Sigma, \delta, q_0, F)$$

• Để tránh điểm chết o δ cần phải được định nghĩa hết các trường hợp

Ngôn ngữ chính quy

Ngôn ngữ chính quy

- Cho Ôtômat hữu hạn: $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}_0, \mathbf{F})$ và $\mathbf{w} = \mathbf{w}_1 \mathbf{w}_2 \dots \mathbf{w}_n$ là một xâu trong đó $\mathbf{w}_i \in \Sigma$
- M chấp thuận xâu w $\Leftrightarrow \exists$ dãy $r_0, r_2, \dots, r_{n-1} \in Q$ thỏa mãn điều kiện:
 - $r_0 = q_0$ - $\delta(r_i, w_{i+1}) = r_{i+1} \ (0 \le i \le N)$ - $r_n \in \mathbf{F}$
 - \rightarrow **Định nghĩa:** Một ngôn ngữ được gọi là ngôn ngữ chính quy nếu có một Ôtômat hữu hạn nào đó đoán nhận nó
- Ngôn ngữ nào thì không được coi là ngôn ngữ chính quy?

Toán tử chính quy

Toán tử chính quy

Giả sử A, B là các ngôn ngữ. Ta có các toán tử chính quy sau:

- Hợp (Union): $A \cup B = \{ x \mid x \in A \text{ hoặc } x \in B \}$
- Ghép tiếp (Concatenate): $A \circ B = \{ xy \mid x \in A \text{ và } y \in B \}$
- Sao (Closure): $A^* = \{x_1x_2...x_k \mid k \ge 0 \text{ và mỗi } x_i \in A \}$

```
Ví dụ: Giả sử ta có bộ chữ \Sigma = \{a,b,c,\ldots,z\} A = \{aa, b\}, B = \{x, yy\} A \cup B = \{aa, b, x, yy\} A \circ B = \{aax, aayy, bx, byy\} A^* = \{\epsilon, aa, b, aaaa, aab, baa, bb, aaaaaa, aaaab, aabaa, aabb, \ldots\}
```

Tập đóng

ullet Tập hợp A+ Toán tử \equiv Phần tử của tập A o A là tập đóng

Định lý 1

Lớp các ngôn ngữ chính quy là đóng đối với toán tử **hợp** \Leftrightarrow Nếu A_1 và A_2 là ngôn ngữ chính quy thì $A_1 \cup A_2$ cũng là ngôn ngữ chính quy

Chứng minh

Ý tưởng:

- Giả sử M_1 đoán nhận A_1 , M_2 đoán nhận A_2
- Xây dựng M để đoán nhận $A_1 \cup A_2 \to \textbf{Chứng minh bằng}$ việc xây dựng

Tập đóng

Chứng minh ĐL 1 (chi tiết)

- $\mathbf{M}_1 = (\mathbf{Q}_1, \mathbf{\Sigma}, \delta_1, \mathbf{q}_1, \mathbf{F}_1)$ đoán nhận \mathbf{A}_1
- $\mathbf{M}_2 = (\mathbf{Q}_2, \mathbf{\Sigma}, \delta_2, \mathbf{q}_2, \mathbf{F}_2)$ đoán nhận \mathbf{A}_2
- Xây dựng M = (Q,Σ,δ,q₀,F) đoán nhận A₁ ∪ A₂
 Trong đó:
 - $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ và } r_2 \in Q_2\}$
 - $\delta((r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a))$ với mỗi $(r_1,r_2)\in Q$, $a\in \Sigma$
 - $q_0 = (q_1, q_2)$
 - $F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ hoặc } r_2 \in F_2\}$

Ví dụ tính đóng của toán tử

$$\mathsf{M}_1 = \big(\{x,y\},\{0,1\},\delta_1,x,\{y\}\big)$$

$$\mathsf{M}_2 = \big(\{u,v\},\{0,1\},\delta_2,\{u\},\{u\}\big)$$

$$\mathsf{M}=\mathsf{M}_1\cup\mathsf{M}_2 ??$$

Ví dụ tính đóng của toán tử

Tập đóng

Định lý 2

Lớp các ngôn ngữ chính quy là đóng đối với toán tử **ghép tiếp** \Leftrightarrow Nếu A_1 và A_2 là ngôn ngữ chính quy thì $A_1 \circ A_2$ cũng là ngôn ngữ chính quy

Chứng minh

Ý tưởng:

- Giả sử M₁ đoán nhận A₁, M₂ đoán nhận A₂
- Xây dựng M để đoán nhận $A_1 \circ A_2 \to \textbf{Phần}$ đầu đoán nhận \textbf{A}_1 , phần sau đoán nhận \textbf{A}_2
- Tuy nhiên, ta không biết xâu mà M đoán nhận bị cắt ở đâu
 → Làm thế nào để biết được?

19

