What is claimed is:

Claim 1. An insecticidal composition comprising at least one of an insecticidally effective amount of a compound of formula I and at least one insecticidally compatible carrier therefor, wherein the compound of formula I is:

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{8}$$

$$R^{7}$$

wherein

R¹ through R⁸, inclusively, are independently selected from hydrogen, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, trialkylsilylalkynyl, alkoxy, haloalkyl, haloalkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, haloalkylthio, haloalkylsulfinyl, haloalkylsulfonyl, dialkylaminosulfonyl, nitro, cyano, amino, formyl, or alkylcarbonyl;

X is selected from $-CR^9R^{10}$ -, $-CR^{11}R^{12}CR^{13}R^{14}$ -, $-CR^{15}$ = CR^{16} -, $-NR^{17}$ -, $-CR^{18}R^{19}NR^{20}$ -, or $-CR^{21}$ =N-;

and

Y is selected from $-CR^{22}R^{23}$ -, $-CR^{24}R^{25}CR^{26}R^{27}$ -, $-CR^{28}=CR^{29}$ -, $-NR^{30}$ -, $-CR^{31}R^{32}NR^{33}$ -, -O-, -S-, -S(O)-, $-S(O)_2$ -, $-CR^{34}R^{35}O$ -, $-CR^{36}R^{37}S$ -, or $-CR^{38}=N$ -;

where

R⁹ and R¹⁰ are independently selected from hydrogen, alkyl, or (piperidin-4-yl)alkyl;

or

 R^9 and R^{10} may be taken together with

or with = $CHC_2H_4NR^{40}R^{41}$,

where

R³⁹, R⁴⁰ and R⁴¹ are independently selected from hydrogen; alkyl; hydroxylalkyl; alkoxyalkyl; alkoxycarbonylalkyl; haloalkoxycarbonyl; arylalkyl; aryloxyalkyl; arylcarbonylalkyl; arylcarbonyloxyalkyl, wherein aryl is optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl;

or

R⁴⁰ and R⁴¹ may be taken together with -C₂H₄N(CH₃)C₂H₄- to form a piperazine ring;

u is 0 or 1,

and when u is 1, an N-oxide is formed;

n is 0, and Ra is hydrogen;

or

n is 1 to 8, and R^a is selected from one or more of alkyl, alkoxyalkyl, alkoxycarbonyl, and aryl, wherein aryl is optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl;

R¹¹ is selected from hydrogen, alkyl, alkylaminoalkoxy, dialkylaminoalkoxy, N(alkyl)(alkylaminoalkyl), N(alkyl)(dialkylaminoalkyl), alkylaminoalkylalkynyl, dialkylaminoalkylalkynyl, morpholinyl, imidazolinyl, alkylpyrrolidinyloxy,

$$(A)_{v} \xrightarrow{R^{b}_{m}} (A)_{v} \xrightarrow{R^{42}} (A)_{v} \xrightarrow{R^{43}} (A)_{v} \xrightarrow{R^{43}} (A)_{v} \xrightarrow{R^{43}} (A)_{v} \xrightarrow{R^{44}} (A)_{v} \xrightarrow{R^{45}} (A)_{v}$$

where

v is 0 or 1,

and when v is 1, A is a bridging group selected from -O-, -S-, -NH-, and -CH₂-; u is as described above;

R⁴² through R⁴⁵, inclusively, are independently selected from hydrogen; alkyl; alkenyl; alkynyl; hydroxylalkyl; alkoxyalkyl; alkylthioalkyl; alkylcarbonyl; alkoxycarbonylalkyl; haloalkoxycarbonyl; arylalkyl; arylcarbonyloxyalkyl; heteroaryl; heteroarylalkyl; heteroarylalkyl; heteroarylalkylamino; wherein aryl and heteroaryl are optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl;

or

 R^{43} and R^{44} may be taken together with $-C_5H_{10}$ - to form a piperidine ring; m, p, and q are 0, and R^b , R^c and R^d are hydrogen;

or

m is 1 to 8, p is 1 to 7, and q is 1 to 10, and R^b, R^c, and R^d, respectively, are independently selected from one or more of alkyl, alkoxyalkyl, alkylamino, dialkylamino, alkoxycarbonyl, or aryl, wherein aryl is optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl;

or

R¹², when not taken together with R¹¹, and R¹³, R¹⁴, and R¹⁶, are independently selected from hydrogen, hydroxy, halogen, alkyl, alkoxy, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkoxycarbonyloxy, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminocarbonyloxy, alkylaminocarbonyloxy, alkylaminocarbonyl, or dialkylaminosulfonyl;

R¹⁵ is selected from

$$(A)_{v} \xrightarrow{R^{b}_{m}} (O)_{u} \qquad (A)_{v} \xrightarrow{N} (O)_{v}$$
 and
$$(A)_{v} \xrightarrow{N} (O)_{v}$$

where m, u, v, A, R^b and R⁴² are as described above;

R¹⁷ is hydrogen; alkyl; alkoxyalkyl; alkoxycarbonyl; dialkylaminoalkyl; alkylaminocarbonyl; dialkylaminocarbonyl; alkylsulfonyl; aryl, and arylalkyl wherein aryl is optionally substituted with one or more halogen, alkoxy, haloalkyl,

(A),
$$N-R^{46}$$
 or aryl; (O)_u; or $-C_3H_6NR^{47}R^{48}$

A, v, and u are as described above;

R⁴⁶ is selected from selected from hydrogen; alkyl; alkenyl; alkynyl; hydroxylalkyl; alkoxyalkyl; alkylthioalkyl; alkylcarbonyl; alkoxycarbonylalkyl; haloalkoxycarbonyl; arylalkyl; arylcarbonyloxyalkyl; heteroaryl; heteroarylalkyl; heteroarylalkyl; heteroarylalkyl; heteroarylalkylamino; wherein aryl and heteroaryl are optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl;

R⁴⁷ and R⁴⁸ are independently selected from hydrogen and alkyl;

or

where

R⁴⁷ and R⁴⁸ may be taken together with -C₅H₁₀- to form a piperidine ring, or with -C₂H₄N(CH₃)C₂H₄-, or -C₂H₄N(C₂H₄OH)C₂H₄- to form a piperazine ring;

R¹⁸ and R¹⁹ are independently selected from hydrogen, alkyl, amino, alkylaminoalkyl, and dialkylaminoalkyl;

R²⁰ is selected from hydrogen; alkyl; alkoxyalkyl; alkoxycarbonyl; dialkylaminoalkyl; alkylaminocarbonyl; dialkylaminocarbonyl; alkylsulfonyl; aryl, and arylalkyl wherein aryl is optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl;

R²¹ is selected from hydrogen, alkyl,

$$(A)_{v} = N$$

$$(A)_$$

where

A, v, and u are as described above;

R⁴⁹ through R⁵², inclusively, are independently selected from hydrogen; alkyl; alkenyl, alkynyl, hydroxylalkyl; alkoxyalkyl; alkylthioalkyl; alkylcarbonyl, alkoxycarbonylalkyl; haloalkoxycarbonyl; arylalkyl; arylcarbonylalkyl; arylcarbonyloxyalkyl, heteroaryl, heteroarylalkyl, heteroarylalkylamino, wherein aryl and heteroaryl are optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl;

or

 R^{50} and R^{51} may be taken together with $-C_5H_{10}$ - to form a piperidine ring; r, s, and t are 0, and R^e , R^f , and R^g are hydrogen, or

r is 1 to 8, s is 1 to 7, t is 1 to 10, and R^e, R^f, and R^g, respectively, are independently selected from one or more of alkyl, alkoxyalkyl, alkylamino, dialkylamino, alkoxycarbonyl, or aryl, wherein aryl is optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl;

 R^{22} through R^{29} , inclusively, are independently selected from hydrogen, and alkyl;

R³⁰ is selected from hydrogen; alkyl; alkoxyalkyl; alkoxycarbonyl; dialkylaminocarbonyl; alkylaminocarbonyl; alkylaminocarbonyl; alkylaminocarbonyl; aryl, and arylalkyl wherein aryl is optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl;

R³¹ and R³² are independently selected from hydrogen, and alkyl,

R³³ is selected from hydrogen; alkyl; alkoxyalkyl; alkoxycarbonyl; dialkylaminoalkyl; alkylaminocarbonyl; dialkylaminocarbonyl; alkylsulfonyl; aryl, and arylalkyl wherein aryl is optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl;

R³⁴ through R³⁸, inclusively, are independently selected from hydrogen, and alkyl; and,

agriculturally acceptable salts thereof.

Claim 2. An insecticidal composition of claim 1, wherein X is $-CR^9R^{10}$ - and Y is selected from -O-, -S-, $-CR^{22}R^{23}$ -, and $-CR^{34}R^{35}O$ -; where

R9 and R10 are taken together with

$$= \stackrel{R^a \quad (O)_u}{\stackrel{f}{\longrightarrow}} N^{-R^{39}}$$

where

and.

R³⁹ is selected from hydrogen; alkyl; hydroxylalkyl; alkoxyalkyl; alkylthioalkyl; alkoxycarbonylalkyl; haloalkoxycarbonyl; arylalkyl; aryloxyalkyl; arylcarbonylalkyl; arylcarbonyloxyalkyl, wherein aryl is optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl;

R²², R²³, R³⁴ and R³⁵ are independently selected from hydrogen and alkyl.

Claim 3. An insecticidal composition of claim 1, wherein X is $-CR^{11}R^{12}CR^{13}R^{14}$ - and Y is selected from -O-, -S- and $-CR^{22}R^{23}$ -; where

R¹¹ is selected from

$$(A)_{v} \xrightarrow{R^{b}_{m}} (A)_{v} \xrightarrow{R^{b}_{m}} (A)_{v} \xrightarrow{R^{d}_{m}} (A)_{v}$$

where

R⁴² and R⁴⁵ are independently selected from hydrogen; alkyl; alkenyl; alkynyl; hydroxylalkyl; alkoxyalkyl; alkylthioalkyl; alkylcarbonyl; alkoxycarbonylalkyl; haloalkoxycarbonyl; arylalkyl; arylcarbonylalkyl; heteroaryl; heteroarylalkyl;

तं ६ ५

heteroarylalkylamino; wherein aryl and heteroaryl are optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl;

R¹² is selected from selected from hydrogen, hydroxy, halogen, alkyl, alkoxy, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkoxycarbonyloxy, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminocarbonyloxy, dialkylaminocarbonyloxy, alkylaminosulfonyl, and dialkylaminosulfonyl;

R¹³ and R¹⁴ are hydrogen;

and,

R²² and R²³ are independently selected from hydrogen and alkyl.

Claim 4. An insecticidal composition of claim 1, wherein X is $-CR^{18}R^{19}NR^{20}$ and Y is selected from -O-, -S- and $-CR^{22}R^{23}$ -;

where

R²⁰ is selected from hydrogen, alkyl, alkoxyalkyl, alkoxycarbonyl, dialkylaminoalkyl, alkylaminocarbonyl, and dialkylaminocarbonyl; and,

R²² and R²³ are independently selected from hydrogen and alkyl.

Claim 5. An insecticidal composition of claim 1, wherein X is $-CR^{21}=N-$ and Y is selected from -S- and $-CR^{22}R^{23}-$; where R^{21} is

where

R⁴⁹ is selected from hydrogen; alkyl; alkenyl, alkynyl, hydroxylalkyl; alkoxyalkyl; alkylthioalkyl; alkylcarbonyl, alkoxycarbonylalkyl; haloalkoxycarbonyl; arylalkyl; aryloxyalkyl; arylcarbonylalkyl; arylcarbonyloxyalkyl, heteroaryl, heteroarylalkyl, heteroarylalkylamino, wherein aryl and heteroaryl are optionally substituted with one or more halogen, alkoxy, haloalkyl, or aryl; and,

 R^{22} and R^{23} are independently selected from hydrogen and alkyl.

- Claim 6. The insecticidal composition of claim 1, further comprising one or more second compounds.
- Claim 7. The insecticidal composition of claim 2, further comprising one or more second compounds.
- Claim 8. The insecticidal composition of claim 3, further comprising one or more second compounds.
- Claim 9. The insecticidal composition of claim 4, further comprising one or more second compounds.
- Claim 10. The insecticidal composition of claim 5, further comprising one or more second compounds.
- Claim 11. A method of controlling insects, comprising applying an insecticidally effective amount of a composition of claim 1 to a locus where insects are present or are expected to be present.
- Claim 12. A method of controlling insects, comprising applying an insecticidally effective amount of a composition of claim 2 to a locus where insects are present or are expected to be present.
- Claim 13. A method of controlling insects, comprising applying an insecticidally effective amount of a composition of claim 3 to a locus where insects are present or are expected to be present.
- Claim 14. A method of controlling insects, comprising applying an insecticidally effective amount of a composition of claim 4 to a locus where insects are present or are expected to be present.

•

- Claim 15. A method of controlling insects, comprising applying an insecticidally effective amount of a composition of claim 5 to a locus where insects are present or are expected to be present.
- Claim 16. A method of controlling insects, comprising applying an insecticidally effective amount of a composition of claim 6 to a locus where insects are present or are expected to be present.
- Claim 17. A method of controlling insects, comprising applying an insecticidally effective amount of a composition of claim 7 to a locus where insects are present or are expected to be present.
- Claim 18. A method of controlling insects, comprising applying an insecticidally effective amount of a composition of claim 8 to a locus where insects are present or are expected to be present.
- Claim 19. A method of controlling insects, comprising applying an insecticidally effective amount of a composition of claim 9 to a locus where insects are present or are expected to be present.
- Claim 20. A method of controlling insects, comprising applying an insecticidally effective amount of a composition of claim 10 to a locus where insects are present or are expected to be present.