Calculus II

Técnicas de Integração: Partes

Prof. Ana Isabel Castillo

Julho 2025

Transformando Desafios em Lucros

- **Teorema**: $\int u \, dv = uv \int v \, du$ para integrais complexas.
- Exemplo Base: $\int te^{-rt} dt$ (série de pagamentos descontados).
- Finanças: Calcula valor presente de fluxos variáveis.

Objetivo

Quebrar barreiras e acumular riquezas!

Exemplo 1: $\int te^{-0.1t} dt$

- Partes: u = t, $dv = e^{-0.1t} dt$, du = dt, $v = -10e^{-0.1t}$.
- \bullet Cálculo: $uv \int v \ du = -10te^{-0.1t} \int (-10e^{-0.1t}) \ dt = -10te^{-0.1t} + 100e^{-0.1t} + C.$
- Finanças: Valor presente de pagamentos decrescentes.
- Gráfico: Resultado integrado.

(Gerado com Python)

Exemplo 2: $\int xe^{2x} dx$

- Partes: u = x, $dv = e^{2x} dx$, du = dx, $v = \frac{1}{2}e^{2x}$.
- Cálculo: $uv \int v \ du = \frac{1}{2}xe^{2x} \int \frac{1}{2}e^{2x} \ dx = \frac{1}{2}xe^{2x} \frac{1}{4}e^{2x} + C$
- Finanças: Lucro acumulado com crescimento exponencial.
- Gráfico: Resultado integrado.

(Gerado com Python)

Exemplo 3: $\int \ln(x) dx$

- Partes: $u = \ln(x)$, dv = dx, $du = \frac{1}{x} dx$, v = x.
- Cálculo: $uv \int v \, du = x \ln(x) \int x \cdot \frac{1}{x} \, dx = x \ln(x) x + C$
- Finanças: Acúmulo de receita logarítmica.
- Gráfico: Resultado integrado.

(Gerado com Python)

Exemplo 4: $\int x \sin(x) dx$

- Partes: u = x, $dv = \sin(x) dx$, du = dx, $v = -\cos(x)$.
- Cálculo: $uv \int v \, du = -x \cos(x) \int (-\cos(x)) \, dx = -x \cos(x) + \sin(x) + C$.
- Finanças: Oscilação acumulada de preços.
- Gráfico: Resultado integrado.

Exemplo 5: $\int x^2 e^{-x} dx$

- Partes: $u = x^2$, $dv = e^{-x} dx$, du = 2x dx, $v = -e^{-x}$.
- Cálculo: $uv \int v \, du = -x^2 e^{-x} \int (-e^{-x}) \cdot 2x \, dx$, repete partes, resulta em $-e^{-x}(x^2 + 2x + 2) + C$.
- Finanças: Valor presente de fluxo quadrático.
- Gráfico: Resultado integrado.

Conclusão: A importância das Integrais por Partes

Importância

- A integração por partes resolve integrais desafiadoras, vital para finanças dinâmicas.
- Permite modelar fluxos complexos e otimizar retornos.

Paralelo com Finanças

- Calcula valor presente de pagamentos variáveis.
- Analisa oscilações e crescimentos acumulados.

Com Cálculo, a riqueza deixa de ser mistério e vira estratégia!