2. (10 points) . Let $f \in C([a,b]), a < b$. Assume that f is differentiable in (a,b), and

$$f'(a^+) = \lim_{x \to 0^+} \frac{f(a+x) - f(a)}{x} > 0$$
$$f'(b^-) = \lim_{x \to 0^-} \frac{f(b+x) - f(b)}{x} < 0.$$

42.1 Show that the maximum of f is not achieved at x = a and x = b. 2.2 Show that $\exists c \in (a, b)$ s.t

$$f'(c) = 0.$$

- 2.1 Since $f'(a^+) > 0$, there exists $x_1 \in (a, b]$ such that $\frac{f(x_1) f(a)}{x_1 a} > 0$, which implies $f(x_1) > f(a)$. So f cannot attain the maximum at a. Since $f'(b^-) < 0$, there exists $x_2 \in [a, b)$ such that $\frac{f(x_2) f(b)}{x_2 b} < 0$, which implies $f(x_2) > f(b)$. So f cannot attain the maximum at b.
- -2.2 Since f is continuous, f must attain its maximum at some point $c \in (a, b)$. Therefore, f'(c) = 0.