TD - Algorithmes - Suites et sommes

Soit u_n la suite géométrique définie , pour $n \ge 0$, par $u_n = \frac{1}{2^n}$ et (S_n) la somme des (n + 1) premiers termes de cette suite géométrique :

$$S_n = \sum_{k=0}^n \frac{1}{2^k} = 1 + \frac{1}{2} + \dots + \frac{1}{2^n}$$

- 1. Calculer quelques termes de cette somme
- $S_1 = 1 + \frac{1}{2} = \cdots$; $S_2 = 1 + \frac{1}{2} + \frac{1}{4} = \cdots$; $S_3 = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \cdots$; $S_3 = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \cdots$
- 2. Écrire un programme qui demande la valeur de n et renvoie le terme S_n . Vérifiez avec vos réponses à la question 1.
- 3. Conjecturez la limite de la suite S_n en utilisant le programme de la question 2.

 $S_{10} =$ _____ $S_{20} =$ ____ $S_{30} =$ ____ $S_{100} =$ ____ $S_{200} =$ _____ .

- 4. Conjecturez la limite de la suite S_n en utilisant le programme de la question 2.
- 5. On admet que la suite S_n tend vers 2 et est strictement croissante. On cherche alors à déterminer à partir de quel rang tous les termes de la suite dépassent un certain seuil.

5a. A l'aide du programme écrit en 2. Déterminer le plus petit entier n tel que :

- S_n > 1,9 ⇔ n ≥ _____
- S_n > 1,99 ⇔ n ≥ _____
- S_n > 1,999 ⇔ n ≥ _____

5b. Écrire un programme qui prend en compte le seuil et donne en sortie le plus petit entier n tel que Sn > seuil.

- 6. Avec un écart avec la limite
 - 6a. Chercher le premier indice n tel que $S_n > 1,999$ revient à chercher le premier indice n tel que $2 S_n < 0,001$. On modifie donc le programme ci-dessus en utilisant la limite.