Lecture 06A:

Molecular phylogenetics

Practical Bioinformatics (Biol 4220)

Instructor: Michael Landis

Email: michael.landis@wustl.edu

Lecture 6A outline

- 1. Intro to phylogenetics
- 2. Phylogenetic inference
- 3. Lab 6A overview

Phylogenetics

Phylogenetics studies the relationships among heritable, biological units (often called **taxa**)

Phylogenies are useful for

- gene annotation
- tracking the spread of a virus
- identifying zoonotic events
- reconstructing tumorogenesis
- conservation biology assays
- inferring species relationships

I think

a phylogeny by Darwin

Reading a phylogeny

Phylogenetic relationships are hierarchical, and most often represented as *trees*

Human and Chimp are more closely related to each other than to Gorilla or Orang

Reading a phylogeny

Phylogenetic relationships are hierarchical, and most often represented as *trees*

Human, Chimp, and Gorilla are more closely related to each other than to Orang

Reading a phylogeny

Taxa that are more closely related to one another, over any other taxa, are called *clades*

"Tree-thinking"

<u>Taxon</u>	Gene <u>variant</u>	<u>Location</u>
PT1	ACCGTG	Missouri
PT2	ACCGTG	Missouri
PT3	GCCGTG	Illinois
PT4	GCCGTG	Illinois

"Tree-thinking"

Phylogeny informs when and where variation arose, guiding biological research

Inferring phylogeny

How are taxa T1, T2, and T3 related?

Which phylogeny generated the observed pattern of molecular variation?

Inferring phylogeny

Phylogenetic inference methods take a matrix of characters (e.g. DNA alignment) as input

Measure how well any possible phylogenetic estimate explains the data matrix pattern by assigning a *cost* to each considered estimate

Methods generally *optimize* to estimate the phylogeny with the lowest cost for provided data matrix

Tree-space is large

# taxa	# rooted trees	
3	3	
4	15	
5	105	
6	945	
7	10395	
8	135135	
9	2027025	
10	34459425	

Major challenge is efficiently exploring trees with optimal scores

Phylogenetic method types

Most methods used to infer phylogenies compute scores based

- 1. event counting (*parsimony*)
- 2. event probabilities (*likelihood*)
- 3. pattern distances (*neighbor joining*)

Method choice often relates to concerns regarding accuracy, speed, scalability, etc.

Neighbor-joining

	Ι	C	G	0
Н	0	1	3	5
С	1	0	3	5
G	3	3	0	2
0	5	5	2	0

distances matrix for sequence pairs

Select pairs of taxa with short sequence distances, and join them as neighbors in tree

Neighbor-joining

	Н	С	G	0
Ι	0	1	3	5
C	1	0	3	5
G	3	3	0	2
0	5	5	2	0

distances matrix for sequence pairs

Select pairs of taxa with short sequence distances, and join them as neighbors in tree

Newick strings

Taxa in parentheses define clades; commas define divergences

Newick strings

Branch lengths

measured in expected # substitutions per site

Clade support measures reliability of clade in tree estimate

(((Human:0.37,Chimp:0.21)0.99:0.12, Gorilla:0.45)0.65:0.11,Orang:0.33);

Lab 6A

github.com/WUSTL-Biol4220/home/labs/lab_06A.md