INICIAÇÃO CIENTÍFICA PIBIC-USP

INTELIGÊNCIA ARTIFICIAL NA EXPLORAÇÃO MINERAL PARA GRAFITA: CONCEITOS, MÉTODOS E APLICAÇÃO

Gabriel Góes Rocha de Lima

Orientador: Prof. Dr. Caetano Juliani

RELATÓRIO PARCIAL

RESUMO

A grafita é um bem mineral de importância tecnológica emergente com as novas propriedades descobertas nas últimas décadas no ramo da engenharia de nanomateriais, como no emprego de fabricação de baterias elétricas, supercondutores e fibras leves de alta resistência, e com potencial para fabricação de materiais essenciais para a indústria. Estes novos usos têm aumentado a demanda pela commoditie, trazendo assim, a necessidade de descoberta de novos depósitos economicamente viáveis levando em conta sua localização, volume e grau de pureza.

Recentemente, as técnicas de aprendizagem de máquina têm aumentado a viabilidade dos projetos de prospecção mineral devido ao seu baixo custo de execução e sua alta capacidade de correlação de inúmeras variáveis simultaneamente.

Com isto, neste projeto, pretende-se utilizar algoritmos de inteligência artificial e dados de sensores remotos para identificar padrões entre os atributos geofísicos e suas classes litológicas mineralizantes, bem como de suas ocorrências minerais. Assim, desenvolvendo novos mapas litológicos para confrontar os existentes e mapas prospectivos de minério de grafita no sistema de nappes de Socorro–Guaxupé no nordeste do estado de São Paulo, divisa com Minas Gerais.

SUMÁRIO

RESUMO	
I. INTRODUÇÃO	4
1.1 APRESENTAÇÃO	4
1.2 OBJETIVOS	4
1.3 ÁREA DE ESTUDO	4
II. CONTEXTO GEOLÓGICO	4
2.1 NAPPE SOCORRO	
2.2 NAPPE GUAXUPÉ	4
III. A GRAFITA	
3.1 APRESENTAÇÃO	4
3.2 OCORRÊNCIA	4
3.3 TIPOS DE MINERALIZAÇÃO DE GRAFITA	4
3.4 GRAFITA NO SISTEMA DE NAPPES SOCORRO –GUAXUPÉ	4
IV. MATERIAIS	5
4.1 APRESENTAÇÃO	
4.2 PROJETOS AEROGEOFÍSICOS	5
4.2.1 SÃO JOSÉ DOS CAMPOS – RESENDE	5
4.2.2 SÃO PAULO – RIO DE JANEIRO (ÁREA SÃO PAULO)	
4.2.3 ÁREA 14 MINAS GERAIS – POÇOS DE CALDAS – VÁRGINHA –	
ANDRELÂNDIA	5
4.3 FERRAMENTAS	
V. MÉTODOS	5
5.1 APRESENTAÇÃO	5
5.2 MÉTODO AEROMAGNETOMÉTRICO	5
5.3 PROCESSAMENTO DE DADOS AEROMAGNETOMÉTRICOS	5
5.3.1 Pré-processamento dos dados aeromagnetométricos	5
5.3.2 Interpolação dos dados aeromagnetométricos	
5.3.3 Amplitude do Sinal Analítico	5
5.3.4 Gradiente Horizontal Total	
5.4 MÉTODO AEROGAMAESPECTROMÉTRICO	5
5.5 PROCESSAMENTO DE DADOS AEROGAMAESPECTROMÉTRICOS	
5.5.1 Pré-processamento dos dados aerogamaespectrométricos	
5.5.2 Interpolação dos dados gama espectrométricos	5
5.5.3 Mapas ternários.	5
5.5.3 Mapas ternários	5
5.6.1 SELF-ORGANIZING MAPS (SOM)	5
5.6.1 SELF-ORGANIZING MAPS (SOM) 5.7 MÉTODOS DE CLASSIFICAÇÃO SUPERVISIONADA	5
5.7.1 RANDOM FORESTS	
5.7.1 SUPPORT VECTOR MACHINES	
VI. RESULTADOS E DISCUSSÕES	
6.1 APRESENTAÇÃO	6
6.1 APRESENTAÇÃO 6.2 INTERPRETAÇÃO DOS DADOS AEROMAGNETOMÉTRICOS	6
VII. CONCLUSÕES	6
VIII. BIBLIOGRAFIA	

I. INTRODUÇÃO

1.1 APRESENTAÇÃO

A grafita possui grande importância industrial e sua demanda tem aumentado devido aos novos usos com potencial de crescimento ainda maior com a ascensão dos motores elétricos em detrimento dos motores à combustão e a necessidade de baterias de alta capacidade para aqueles. Assim, este material tem se tornado estratégico com os preços da grafita de alto teor (grafita em flocos) ultrapassando a casa dos milhares de dólares por toneladas métricas

1.2 OBJETIVOS

Esta pesquisa tem como objetivo a prospecção de áreas potenciais de mineralização de minério de grafita no sistema de nappes de Socorro-Guaxupé com o auxílio das técnicas de aprendizagem de máquina supervisionada e não-supervisionada com dados de sensores aeroportados e orbitais desenvolvendo mapas preditivos litológicos e prospectivo mineral.

1.3 ÁREA DE ESTUDO

II. CONTEXTO GEOLÓGICO

- **2.1 NAPPE SOCORRO**
- 2.2 NAPPE GUAXUPÉ

III. A GRAFITA

- 3.1 APRESENTAÇÃO
- 3.2 OCORRÊNCIA
- 3.3 TIPOS DE MINERALIZAÇÃO DE GRAFITA
- 3.4 GRAFITA NO SISTEMA DE NAPPES SOCORRO -GUAXUPÉ

IV. MATERIAIS

- 4.1 APRESENTAÇÃO
- **4.2 PROJETOS AEROGEOFÍSICOS**
- 4.2.1 SÃO JOSÉ DOS CAMPOS RESENDE
- 4.2.2 SÃO PAULO RIO DE JANEIRO (ÁREA SÃO PAULO)
- 4.2.3 ÁREA 14 MINAS GERAIS POÇOS DE CALDAS VARGINHA ANDRELÂNDIA
- 4.3 FERRAMENTAS

		•				
V.	R A		$\Gamma \cap$	П	$\boldsymbol{\cap}$	c
v.	IVI		ı	u	u	

				~
E 1		CCEN	T A C	$^{\circ}$ $^{\wedge}$
э.т	APR	ESEN	IAC	AU

5.2 MÉTODO AEROMAGNETOMÉTRICO

- 5.3 PROCESSAMENTO DE DADOS AEROMAGNETOMÉTRICOS
 - 5.3.1 Pré-processamento dos dados aeromagnetométricos
 - 5.3.2 Interpolação dos dados aeromagnetométricos
 - **5.3.3** Amplitude do Sinal Analítico
 - **5.3.4 Gradiente Horizontal Total**
- 5.4 MÉTODO AEROGAMAESPECTROMÉTRICO
- 5.5 PROCESSAMENTO DE DADOS AEROGAMAESPECTROMÉTRICOS
 - 5.5.1 Pré-processamento dos dados aerogamaespectrométricos
 - 5.5.2 Interpolação dos dados gama espectrométricos
 - **5.5.3 Mapas ternários**
- 5.6 MÉTODOS DE CLASSIFICAÇÃO NÃO-SUPERVISIONADA
 - **5.6.1 SELF-ORGANIZING MAPS (SOM)**
- 5.7 MÉTODOS DE CLASSIFICAÇÃO SUPERVISIONADA
 - **5.7.1 RANDOM FORESTS**
 - **5.7.1 SUPPORT VECTOR MACHINES**

VI. RESULTADOS E DISCUSSÕES

- **6.1 APRESENTAÇÃO**
- 6.2 INTERPRETAÇÃO DOS DADOS AEROMAGNETOMÉTRICOS

VII. CONCLUSÕES

VIII. BIBLIOGRAFIA