香港中文大學

版權所有 不得翻印 Copyright Reserved

The Chinese University of Hong Kong

二〇一五至一六年度下學期科目考試 Course Examination 2nd Term, 2015-16

科目編號及名稱 Course Code & Title	;	MATH1510H	Calculus for Engineers			 	
時間			小時		分鐘		
Time allowed	:	2	hours 00		minutes		
學號			座號				
Student I.D. No.		•	Seat No.:	•			

Answer ALL Questions.

1. Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \ge 0 \\ x & \text{if } x < 0 \end{cases}$$

- (a) (4 points) Find $\lim_{x\to -1} f(x)$ and $\lim_{x\to 1} f(x)$
- (b) (4 points) Show that f(x) is continuous at x = 0
- (c) (4 points) Is f(x) differentiable at x = 0? Justify your answer.
- 2. Find $\frac{dy}{dx}$ if

(a) (3 points)
$$y = \frac{3}{x^3} + \sqrt{x} + e^2$$

(b) (3 points)
$$y = \frac{1}{(x^2 + 4x + 3)^{100}}$$

(c) (3 points)
$$y = \sec(\ln x + 2^x)$$

(d) (3 points)
$$y = \int_{x}^{x^2} \sqrt{t^4 + 1} dt$$

3. Evaluate each of the following integrals:

(a) (3 points)
$$\int \left(\frac{x^{-2} + x}{x} + \sqrt{x} \right) dx$$

(b) (3 points)
$$\int \sin^3 x \cos^2 x \, dx$$

(c) (3 points)
$$\int \frac{\sqrt{x}}{\sqrt{x}-1} dx$$

(d) (3 points)
$$\int \sqrt{1-x^2} \, dx$$

(e) (3 points)
$$\int \frac{1}{1-x^2} dx$$

(f) (3 points)
$$\int x \cos x \, dx$$

- 4. Solve the following problems separately. Justify your answers.
 - (a) (4 points) Let

$$f(x) = x + \frac{2}{x}$$

Find all the critical points and determine whether each critical point corresponds to a local min or max (or neither).

- (b) (7 points) Let A = (x, y) be a point on the curve $y = \sqrt{x}$ and B = (2, 0) be a fixed point.
 - i. Show that the distance between A and B can be expressed as a function

$$f(x) = \sqrt{x^2 - 3x + 4}$$

- ii. Suppose, among all points on $y = \sqrt{x}$, A and B has the shortest distance. Find the x-coordinate of A.
- 5. Solve the following problems separately. Justify your answers.
 - (a) (4 points) Sketch the region in the xy-plane bounded by the graphs of the functions:

$$\begin{cases} f(x) = 4 - x^2 \\ g(x) = 6x + 9 \end{cases}$$

and express its area as integral(s) of function(s). (You do not need to evaluate the integrals)

(b) (4 points) Let \mathcal{R} be the region in the xy-plane bounded by the curve $y = (x+2)^2$ and the line y = 1.

Express the volumes of the following solids as the integrals of functions.

(You do not need to evaluate the integrals)

- i. The solid obtained by revolving \mathcal{R} about the x-axis.
- ii. The solid obtained by revolving \mathcal{R} about the vertical line x=-2.
- 6. Solve the following problems separately. Justify your answers.
 - (a) (6 points) Given that

$$\begin{cases} z = f(x, y) \\ x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

where r, θ are independent variables. Express $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$ in terms of r, θ, f_x, f_y

(b) (5 points) Let

$$f(x,y) = x\sqrt{y}$$

Compute the double integral of f(x, y) over the domain

$$D = \{(x, y) \mid 0 \le x \le 1 \text{ and } x \le y \le 1\}$$

- 7. Solve the following problems separately. Justify your answers.
 - (a) (4 points) Find the Taylor polynomial of order 3 of

$$f(x) = \tan x$$

at $x_0 = 0$.

(b) (4 points) Find the Taylor series of

$$f(x) = e^x$$

with center a = -1.

(c) (5 points) Find the Maclaurin polynomial of order 3 of

$$f(x) = \frac{\cos x}{2x+1}$$

(d) (5 points) Find the Maclaurin polynomial of order 4 of

$$f(x) = \sin(x + x^2)$$

- 8. Solve the following problems separately. Justify your answers.
 - (a) (2 points) Evaluate

$$\lim_{x \to 0^+} \left(\frac{1}{\ln(x+1)} - \frac{1}{x} \right)$$

If the limit does not exist but diverges to $\pm \infty$, please indicate so and determine the correct sign.

(b) (2 points) Let

$$f(x) = |x|$$
 when $x \in (-1, 1]$

and f(x+2) = f(x) for all x. Find the Fourier series of f.

(c) (2 points) Let

$$f(x) = x - \arctan x$$

Show that $f(x) \ge 0$ for all $x \ge 0$.

- (d) (4 points)
 - i. Write down the Maclaurin polynomials of order 4 of

$$f(x) = \ln(1+2x^2) - 2x \sin x$$

 $g(x) = \sin^2 x - x^2$

ii. Hence, or otherwise, evaluate

$$\lim_{x \to 0^+} \frac{\ln(1 + 2x^2) - 2x \sin x}{\sin^2 x - x^2}$$

If the limit does not exist but diverges to $\pm \infty$, please indicate so and determine the correct sign.