Episode I: The QC Menace

Peter Fiorica
August 2, 2019

Introduction

If you are coming to this file from the preQC file, we will be starting with

/home/peter/prostate_cancer/genotypes_dbGaP/preQC_bfiles as the genotype files we will begin QC with. There is a total of 4769 individuals (2463 cases and 2306 controls) in the cohort that are both male and have phenotypes.

Quality Control

Note that the numbering nomenclature for the steps is not particularly related to anything. The brief description after the number is important to know what each PLINK command does.

QC Step 0: Sex and heterozygous halpoid check

```
plink --bfile /home/peter/prostate_cancer/genotypes_dbGaP/preQC_bfiles
--set-hh-missing --make-bed
--out /home/peter/prostate_cancer/QC_Steps/step0/qcstep0nohh

plink --bfile /home/peter/prostate_cancer/QC_Steps/step0/qcstep0nohh
--check-sex --missing
--out /home/peter/prostate_cancer/QC_Steps/step0/qcstep0sexcheck

#We generated a missingness file here with the --missing flag,
#but we are going to do without the sex check.
```

QC Step 1: Identifying Unfiltered Genotyping Rate

```
plink --bfile /home/peter/prostate_cancer/QC_Steps/step0/qcstep0nohh
--missing --out /home/peter/prostate_cancer/QC_Steps/step1/qcstep1
```

QC Step 1A: Plotting Unfiltered Genotyping Rate

```
library(ggplot2)
library(dplyr)
library(data.table)
"%%%" = function(a, b) paste(a, b, sep = "")
my.dir <- "Z://prostate_cancer/QC_Steps/"
lmiss <- fread(my.dir %%% "step1/qcstep1.lmiss", header = T)
hist(lmiss$F_MISS)</pre>
```

Histogram of Imiss\$F_MISS

```
F_MISS
```

```
\# This creates a histogram of the missingness of the data
# before we filter by genotyping rate.
dim(lmiss)[1]
## [1] 1199187
# This tells us the number of SNPs we are working with before
# filtering by genotyping rate
table(lmiss$F_MISS < 0.01)</pre>
##
##
     FALSE
               TRUE
    115233 1083954
table(lmiss$F_MISS < 0.02)</pre>
##
##
     FALSE
               TRUE
##
     86889 1112298
sum(lmiss$F_MISS < 0.01)/(dim(lmiss)[1])</pre>
```

[1] 0.9039074

```
sum(lmiss$F_MISS < 0.02)/(dim(lmiss)[1])</pre>
```

[1] 0.9275434

```
# The percent of SNPs have a genotyping call rate of 98%
```

There are 1083954 SNPs that meet a genotyping rate of 0.99 and 1112298 SNPs that meet a genotyping rate of 0.98

QC Step 2: Filtering SNPs by Genotyping Rate

```
plink --bfile /home/peter/prostate_cancer/QC_Steps/step0/qcstep0nohh
--geno 0.01 --make-bed
--out /home/peter/prostate_cancer/QC_Steps/step2/qcstep2
```

QC Step 3: Identifying Filtered Genotyping Rate

```
plink --bfile /home/peter/prostate_cancer/QC_Steps/step2/qcstep2
--missing --out /home/peter/prostate_cancer/QC_Steps/step3/qcstep3
```

QC Step 3A: Plotting Filtered Genotyping Rate

```
options(tinytex.verbose = TRUE)
newimiss <- fread(my.dir %%% "step3/qcstep3.imiss")
hist(newimiss$F_MISS)</pre>
```

Histogram of newimiss\$F_MISS

newlmiss <- fread(my.dir %%% "step3/qcstep3.lmiss")
hist(newlmiss\$F_MISS)</pre>

Histogram of newlmiss\$F_MISS

dim(newlmiss)[1]

[1] 1083954

QC Step 4: Filtering by HWE

```
plink --bfile /home/peter/prostate_cancer/QC_Steps/step2/qcstep2
--hardy
--out /home/peter/prostate_cancer/QC_Steps/step4/qcstep4
```

QC Step 4A: Plotting HWE Frequencies and Removing SNPs outside of HWE

We need to remove SNPs that are outside of HWE (P<1e-6)

```
options(tinytex.verbose = TRUE)
hwe <- fread(my.dir %%% "step4/qcstep4.hwe", header = T)
summary(hwe$P)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.2281 0.5299 0.5324 0.8475 1.0000
```

```
hist(hwe$P)
abline(v = median(hwe$P) + sd(hwe$P), col = "blue", lwd = 2)
abline(v = median(hwe$P) - sd(hwe$P), col = "blue", lwd = 2)
abline(v = median(hwe$P) + 1.5 * sd(hwe$P), col = "red")
abline(v = median(hwe$P) - 1.5 * sd(hwe$P), col = "red")
```

Histogram of hwe\$P

QC Step 4B: Removing Outlier SNPs

```
plink --bfile /home/peter/prostate_cancer/QC_Steps/step2/qcstep2
--exclude /home/peter/prostate_cancer/QC_Steps/step4/HWEoutlierSNPstoberemoved.txt
--make-bed --out /home/peter/prostate_cancer/QC_Steps/step4/qcstep4b
```

QC Step 5: IBD Pruning

QC Step 5a: Calculating IBD values

```
plink --bfile /home/peter/prostate_cancer/QC_Steps/step4/qcstep4b
--indep-pairwise 50 5 0.3
--out /home/peter/prostate_cancer/QC_Steps/step5a/QCStep5a
```

QC Step 5b: Extracting SNPs with excess IBD

```
plink --bfile /home/peter/prostate_cancer/QC_Steps/step4/qcstep4b
--extract /home/peter/prostate_cancer/QC_Steps/step5/step5a.prune.in
--genome --min 0.05 --out /home/peter/prostate_cancer/QC_Steps/step5/step5b/QCStep5b
```

Initially, I did not have the --min flag included in the command above because it was too strict of a filter on my previous neuropsychiatric data. When I tried it this time, I had a file that was 113M lines.

Plotting IBD Values

```
ibd <- fread(my.dir %&% "step5/step5b/QCStep5b.genome", header = T)
ggplot(data = ibd, aes(x = Z0, y = Z1)) + geom_point(alpha = 1/4) +
    theme_bw()</pre>
```



```
# We have some parents, siblings, and other related in this
# data that we will need to remove. For explanation, see
# Figure 4 of Turner et al. Current Protoc Hum Genet (2011).'
# Now we can check for duplicates in the data
dups <- data.frame()
for (i in 1:dim(ibd)[1]) {
    if (as.character(ibd$IID1[i]) == as.character(ibd$IID2[i])) {
        dups <- rbind(dups, ibd[i, ])
    }
}
dim(dups)</pre>
```

[1] 0 0

QC Step 5C: Identifying individuals with excess heterozygosity

```
plink --bfile /home/peter/prostate_cancer/QC_Steps/step4/qcstep4b
--extract /home/peter/prostate_cancer/QC_Steps/step5/step5a/QCStep5a.prune.in
--het --out QCStep5c
```

Plotting Heterozygosity Data

```
HET <- fread(my.dir %%% "step5/step5c/QCStep5c.het", header = T)
h = HET$"N(NM)" - HET$"O(HOM)"/HET$"N(NM)"
oldpar = par(mfrow = c(1, 2))
hist(h, 50)
hist(HET$F, 50)
summary(HET$F)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.093250 -0.009631 0.005951 0.005602 0.020400 0.190600

abline(v = mean(HET$F) + 6 * sd(HET$F), col = "red")
abline(v = mean(HET$F) - 6 * sd(HET$F), col = "red")</pre>
```

Histogram of h

Histogram of HET\$F


```
sortHET <- HET[order(HET$F), ]
outliers <- data.table()

for (i in 1:length(sortHET$F)) {
    if (sortHET[i, 6] > (mean(sortHET$F) + 3 * sd(sortHET$F))) {
        outliers <- rbind(outliers, sortHET[i, ])
    }
    if (sortHET[i, 6] < (mean(sortHET$F) - 3 * sd(sortHET$F))) {
        outliers <- rbind(outliers, sortHET[i, ])
    }
}

hetoutliers <- select(outliers, FID, IID)
dim(hetoutliers) #This tells us how many outliers there are.

## [1] 50 2

fwrite(hetoutliers, "Z://prostate_cancer/QC_Steps/step5/step5c/hetoutliers.txt",
    quote = F, col.names = F, row.names = F, sep = " ")</pre>
```

QC Step 5D: Removing Heterozygosity Outliers

```
plink --bfile /home/peter/prostate_cancer/QC_Steps/step4/qcstep4b --remove /home/peter/prostate_cancer/QC_Steps/step5/step5c/hetoutliers.txt --extract /home/peter/prostate_cancer/QC_Steps/step5/step5a/QCStep5a.prune.in --make-bed --out /home/peter/prostate_cancer/QC_Steps/step5/step5d/QCStep5d plink --bfile /home/peter/prostate_cancer/QC_Steps/step5/step5d/QCStep5d --extract /home/peter/prostate_cancer/QC_Steps/step5/step5a/QCStep5a.prune.in --remove /home/peter/prostate_cancer/QC_Steps/step5/step5b/Relate.to.remove.txt --genome --min 0.05 --out QCStep5D
```

Plotting IBD Filtered Data:

QC Step 5E: Second Heterozygosity Check

plink --bfile /home/peter/prostate_cancer/QC_Steps/step5d/QCStep5d
--het --out /home/peter/prostate_cancer/QC_Steps/step5/step5e/QCStep5e

```
options(tinytex.verbose = TRUE)
HET <- fread(my.dir %%% "/step5/step5e/QCStep5.het", header = T)
h = HET$"N(NM)" - HET$"O(HOM)"/HET$"N(NM)"
oldpar = par(mfrow = c(1, 2))
hist(h, 50)
hist(HET$F, 50)
summary(HET$F)
       Min.
               1st Qu.
                          Median
                                      Mean
                                             3rd Qu.
                                                          Max.
## -0.060470 -0.009887 0.005533 0.005187 0.019810 0.071000
abline(v = mean(HET$F) + 6 * sd(HET$F), col = "red")
abline(v = mean(HET$F) - 6 * sd(HET$F), col = "red")
```

Histogram of h **Histogram of HET\$F** 3500 150 2500 Frequency Frequency 100 1500 50 500 0 392000 398000 -0.060.00 0.04 HET\$F h

```
sortHET <- HET[order(HET$F), ]
outliers <- data.table()

for (i in 1:length(sortHET$F)) {
    if (sortHET[i, 6] > (mean(sortHET$F) + 3 * sd(sortHET$F))) {
        outliers <- rbind(outliers, sortHET[i, ])
    }
    if (sortHET[i, 6] < (mean(sortHET$F) - 3 * sd(sortHET$F))) {
        outliers <- rbind(outliers, sortHET[i, ])
    }
}

hetoutliers <- select(outliers, FID, IID)
dim(hetoutliers)</pre>
```

[1] 18 2

```
# These outliers are individuals from the data that was after
# we removed the initial outliers. This would be too
# stringent to remove these outliers.
```

QC Step 5F

plink --bfile /home/peter/prostate_cancer/QC_Steps/step5d/QCStep5d

```
--extract /home/peter/prostate_cancer/QC_Steps/step5/step5a/QCStep5a.prune.in
--remove /home/peter/prostate_cancer/QC_Steps/step5/step5b/Relate.to.remove.txt
--make-bed --out /home/peter/prostate_cancer/QC_Steps/step5/step5f/QCStep5f

QC Step 6: Principal Component Analysis

QC Step 6A: Merge with HapMap

plink --bfile /home/peter/prostate_cancer/QC_Steps/step5/step5f/QCStep5f
```

QC Step 6B: Exclude Missing SNPs or SNPs with +3 Alleles

--out /home/peter/prostate cancer/QC Steps/step6/step6a/step6a

```
plink
```

--make-bed

--bfile /home/wheelerlab1/Data/HAPMAP3_hg18/HM3_ASN_CEU_YRI_Unrelated_hg18_noAmbig --exclude /home/peter/prostate_cancer/QC_Steps/step6/step6a/step6a-merge.missnp --make-bed

--bmerge /home/wheelerlab1/Data/HAPMAP3_hg18/HM3_ASN_CEU_YRI_Unrelated_hg18_noAmbig

--out /home/peter/prostate_cancer/QC_Steps/step6/step6b/step6b

QC Step6C: Merge Attempt 2 with Excluded SNPs

```
plink --bfile /home/peter/prostate_cancer/QC_Steps/step5/step5f/QCStep5f
--bmerge /home/peter/prostate_cancer/QC_Steps/step6/step6b/step6b
--out /home/peter/prostate_cancer/QC_Steps/step6/step6c/step6c
```

QC Step6D: Run PCA

plink --bfile /home/peter/prostate_cancer/QC_Steps/step6/step6c/step6c --geno 0.01 --maf 0.05 --chr 1-22 --pca 10 --out QCStep6D_PCA

```
options(tinytex.verbose = TRUE)
hapmappopinfo <- read.table(my.dir %&% "step6/pop_HM3_hg18_forPCA.txt") %>%
    select(V1, V3)
colnames(hapmappopinfo) <- c("pop", "IID")

fam <- fread(my.dir %&% "step6/step6c/step6c.fam", header = F) %>%
    select(V1, V2)
colnames(fam) <- c("FID", "IID")

popinfo <- left_join(fam, hapmappopinfo, by = "IID")</pre>
```

Warning: Column `IID` joining character vector and factor, coercing into
character vector

```
popinfo <- mutate(popinfo, pop = ifelse(is.na(pop), "GWAS", as.character(pop)))
table(popinfo$pop)</pre>
```

```
##
## ASN CEU GWAS YRI
## 170 111 4674 110
```



```
ggplot(data = PVE, aes(y = pve, x = PCs)) + geom_point() + geom_line() +
    xlab("PC") + ylab("PVE") + ggtitle("Scree Plot Prostate Cancer") +
    theme_bw()
```

Scree Plot Prostate Cancer

Next Steps

Lift Over

Right now, the data is in genome build hg18. We need to lift it over to hg19. A good example of the liftover process can be found at https://github.com/WheelerLab/Neuropsychiatric-Phenotypes/blob/master/SCZ-BD_Px/1_hg18tohg19liftover.md. When we perform the liftover, we will use home/peter/prostate_cancer/QC_Steps/step4/qcstep4b since this set of files includes unpruned data with HWE outliers removed.

Imputation

After liftover, we will upload the data to the University of Michigan Imputation Server. The imputed data will then be filtered to remove SNPs with $r^2 < 0.8$ and MAF < 0.01