

Perceptron

a feed-forward network with only one layer of adjustable (learnable) weights connected to one or more threshold units (as output units)

Model

input: $I_1, I_2, ..., I_n$

signals from the other neurons

weights: w_1, w_2, \ldots, w_n

can be negative

activation function:

relating the input and output

What Boolean Functions can Perceptrons Represent?

AND?

- Perceptron output: $O = \text{step}(\sum_{i=0}^{n} w_i I_i)$
 - decision boundary: $\sum_{j=0}^{n} w_j I_j = 0$

What Boolean Functions can Perceptrons Represent?...

OR?

What Boolean Functions can Perceptrons Represent?...

NOT?

$$W = -I$$
 $t = -0.5$

What Boolean Functions can Perceptrons Represent?...

XOR?

Linearly Separable Functions

• a function can be represented by a single perceptron if and only if the function is linearly separable

Three points in a plane shattered by a half-space.

Multi-layer Feedforward Networks

- Generalization of simple perceptrons
- Multi-layer perceptrons (MLP)

Hidden Unit Transfer (Activation) Function

Sigmoid unit

• a unit very much like a perceptron, but based on a smoothed, differentiable threshold function: $\sigma(x) = \frac{1}{1+e^{-x}}$

Rectified Linear Unit (ReLU)

•
$$f(x) = \max(0, x)$$

- the most popular activation function for deep networks
- more efficient computation
- simple gradient
 - ullet if > 0, gradient = 1
 - if ≤ 0 , gradient = 0

Training: Finding the Weight

- use gradient descent to search the space of possible weight vectors to find the weights that minimizes the error
- start at any point and keep going downhill

Idea: Gradient descent

- start with initial value for w
- repeat until convergence
 - ullet compute the gradient vector of the error function for current ullet
 - move in the opposite direction

Gradient Descent

gradient
$$\nabla E[\vec{w}]$$
 at \vec{w} : $\left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_n}\right]$

move \vec{w} :

- direction: opposite to $\nabla E[\vec{w}]$
- magnitude: a small fraction of $\nabla E[\vec{w}]$

$$\vec{w} \leftarrow \vec{w} + \Delta \vec{w}$$

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

in general, the error surface can be very complicated

Back-Propagation

 we need to "propagate error back" when computing the gradient ector