MLA_IT1 Semesterprüfung 01

Zeit: 60 Minuten

Zugelassene Hilfsmittel:

- Handschriftliche Notizen im Umfang von 5 Blättern (bzw. 10 Seiten) im Format A4
- Nicht-grafik- und nicht-algebrafähiger Taschenrechner (nur für Grundoperationen und Auswertungen elementarer Funktionen)

Aufgabe 1 (8 Punkte)

Ein Punkt wird durch den

Vektor $\vec{v} = \begin{pmatrix} a \\ b \end{pmatrix}$ um a Einheiten in x-Richtung und um b Einheiten in y-Richtung verschoben bzw. durch den

Vektor $\vec{w} = \begin{pmatrix} c \\ d \end{pmatrix}$ um c Einheiten in x-Richtung und um d Einheiten in y-Richtung verschoben.

Zeigen Sie allgemein, dass die Menge der Vektoren bezüglich der Vektoraddition (= Hintereinanderausführung zweier Verschiebungen)

$$\vec{v} + \vec{w} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} a + c \\ b + d \end{pmatrix}$$

eine kommutative Gruppe bildet.

Aufgabe 2 (8 Punkte)

Zeigen Sie, dass durch die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = e^x$ ein Gruppenhomomorphismus von $(\mathbb{R}, +)$ in (\mathbb{R},\cdot) ist. Ist diese Funktion auch ein Gruppenisomorphismus von $(\mathbb{R},+)$ in (\mathbb{R},\cdot) ?

Aufgabe 3 (3 Punkte)

Gegeben sind die Vektoren
$$\vec{v} = \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix}$$
 und $\vec{w} = \begin{pmatrix} -4 \\ y \\ z \end{pmatrix}$. Für welche $y,z \in \mathbb{R}$ sind \vec{v} und \vec{w} lin. abhängig?

Aufgabe 4 (3 Punkte)

Gegeben sind die Vektoren
$$\vec{a} = \begin{pmatrix} a \\ 2 \\ 5 \end{pmatrix}, \vec{b} = \begin{pmatrix} 0 \\ b \\ -2 \end{pmatrix}, \vec{c} = \begin{pmatrix} 6 \\ 3a \\ 0 \end{pmatrix}$$

Für welche Paare (a,b) stehen die Vektoren $\vec{a}, \vec{b}, \vec{c}$ paarweise senkrecht aufeinander?

Aufgabe 5 (3 Punkte)

Bestimmen Sie die Lösungsmenge des Systems:

$$\begin{aligned}
 x_1 + 2x_2 - x_3 + x_4 &= 1 \\
 x_2 + 3x_3 &+ x_5 &= 0 \\
 x_3 + x_4 &= 1
 \end{aligned}$$

Aufgabe 6 (8 Punkte)

Für welche Werte der Parameter $s,t \in \mathbb{R}$ hat das lineare Gleichungssystem

$$x_1 + x_2 + 2x_3 = 5$$

 $2x_1 + 4x_2 + s^2 \cdot x_3 = -1$
 $3x_1 + 7x_2 + (s-1) \cdot x_3 = t$

- a) eine eindeutige Lösung?
- b) keine Lösung? c) unendlich viele Lösungen?