Interseção de Semiplanos

Claudio Esperança Paulo Roma

Interseção de Semiplanos

- Problema consiste em construir a região convexa dada pela interseção de um conjunto de n semiplanos $H = \{h_1, h_2, ..., h_n\}$ em d dimensões
 - Resultado tipicamente é um politopo convexo limitado de dimensão d
 - Pode ser também o conjunto vazio, um politopo ilimitado ou mesmo um politopo de dimensão menor que d
- Vamos nos concentrar em semiplanos (semiespaços planos) em \Re^2

Interseção de Semiplanos

Cada semiplano é dado por uma inequação da forma

$$ax + by \le c$$

• Semiplano complementar é dado por

$$(-a)x + (-b)y \le -c$$

Reta de suporte é dada por

$$ax + by = c$$

Motivação

- Livro fala do problema de remoção de objetos de moldes
 - A manufatura do molde depende de se escolher uma direção de onde o objeto possa ser depois retirado sem danificar o molde

- Pode ser reduzido ao problema de interseção de semiplanos
- Em computação gráfica, objetos convexos são comumente expressos sob a forma de interseção de semiplanos
 - Usados como aproximações de objetos complexos
 - Aplicação: Detecção de colisões

Complexidade

- Complexidade do resultado: *O* (*n*)
 - Cada semiplano pode figurar como lado do resultado
- Problema é redutível ao problema do fecho convexo: Ω (n log n)

Algoritmo Dividir para Conquistar

- Se n = 1, retornar h_1
- Dividir H em 2 subconjuntos H_1 e H_2 , com $\lceil n/2 \rceil$ e $\lfloor n/2 \rfloor$ semiplanos, respectivamente
- Computar recursivamente C_1 e C_2 , como a interseção dos semiplanos em H_1 e em H_2 , respectivamente.
- Combinar o resultado computando a interseção dos polígonos C₁ e C₂

Interseção de 2 polígonos convexos

- Polígonos podem ser ilimitados
 - Estruturas de dados apropriadas
 - Ex.: representar polígono por uma lista dos semiplanos que fazem parte da fronteira
 - Usar um "flag" para denotar polígonos ilimitados
- Conhecemos um algoritmo de varredura para computar a interseção de *n* segmentos de reta em tempo O ((n + I) log n)
 - 2 polígonos convexos de n lados não podem se intersectar em mais do que 2n pontos
 - Uma reta intersecta um polígono convexo em 2 pontos no máximo
 - Complexidade do algoritmo: O (n log n)

Interseção de 2 polígonos convexos

- Neste caso, entretanto, um algoritmo de varredura simples pode fazer o serviço em O(n)
 - Como os polígonos são dados como listas, ordenação pode ser feita em O(n)
 - reta de varredura intersecta cada polígono em 2 pontos no máximo
 - Estado da reta de varredura tem complexidade constante
 - ▶ Cada evento pode ser processado em O(1)

Possíveis próximos eventos

Complexidade do Algoritmo

- Algoritmo para computar a interseção de 2 polígonos convexos é O(n)
- Algoritmo dividir para conquistar tem complexidade dada pela fórmula de recorrência

$$T(n) = \begin{cases} 1 & \text{para } n = 1 \\ 2T(n/2) + n & \text{para } n > 1 \end{cases}$$

- Idêntica à fórmula de recorrência do MergeSort
- Solução: $T(n) \in O(n \log n)$

Envelopes superior e inferior

- Variante do problema de interseção de semiplanos
- É dado um conjunto de n retas $L=\{\ell_1, \ell_2, ..., \ell_n\}$ não verticais
 - Cada reta ℓ_i dada na forma $y = a_i x + b_i$
 - Semiplano inferior associado: $y \le a_i x + b_i$
 - Envelope inferior é a interseção desses semiplanos

Envelopes superior e inferior

- Problema de interseção de semiplanos pode ser reduzido ao de computar os envelopes inferior e superior
 - Dividir semiplanos h_i de H em 2 classes
 - De forma é $y \le a_i x + b_i$ então semiplano inferior
 - ▶ Se forma é $y \ge a_i x + b_i$ então semiplano superior
 - Computar os envelopes
 - Achar a interseção dos 2 polígonos convexos
- Envelopes têm também relação com problema do fecho convexo
 - Achar envelope inferior de um conjunto de retas $L=\{\ell_1, \ell_2, ..., \ell_n\}$ é equivalente a achar a parte superior do fecho convexo do conjunto de pontos $P=\{p_1, p_2, ..., p_n\}$ onde p_i é o <u>dual</u> de ℓ_i

Dualidade (transformada de Hough)

- Seja uma reta na forma y = ax b
 - Uma reta qualquer (não vertical) pode ser representada por um par de coeficientes (a,b)
 - Podemos pensar em (a,b) como coordenadas de <u>um</u> <u>ponto</u> no plano dual
 - Diz-se que <u>a reta</u> está no plano primal)
 - Uma <u>reta no plano dual</u> pode ser escrita na forma b = xa y e portanto pode ser representada por dois coeficientes (x,y)
 - Description Corresponde a um ponto no plano primal
- A transformada de Hough, que vamos denotar pelo sufixo (*), leva pontos e retas do plano primal em retas e pontos do plano dual
 - $\ell^* = (a,b)$
 - p^* : $(b = p_x a p_y)$

Propriedades da relação de dualidade

- Auto-inversa: $(p^*)^* = p$
- Reversão de ordem: ponto p está acima / sobre / abaixo da reta ℓ se e somente se o ponto ℓ^* está abaixo / sobre / acima da reta p^*
- Preservação de interseções: retas ℓ_1 e ℓ_2 se intersectam no ponto p se e somente se a reta p^* passa pelos pontos ℓ_1^* e ℓ_2^*
- Colinearidade e coincidência: três pontos são colineares se e somente se seus duais se intersectam num ponto comum

Propriedades da relação de dualidade

Fecho convexo superior e envelope inferior

• **Lema:** Seja *P* um conjunto de pontos e *P** o conjunto de retas dual de *P*. A ordem antihorária entre os vértices do fecho convexo superior de *P* é igual à ordem da esquerda para a direita do envelope inferior de *P**

Fecho convexo superior e envelope inferior

- **Prova:** (Assume-se que não há 3 pontos colineares)
 - $p_i p_j$ é aresta do fecho superior sse a reta ℓ_{ij} que passa por ambos os pontos tem todos os demais pontos de P abaixo de si
 - As retas duais p_i^* e p_j^* são adjacentes no envelope inferior sse o ponto de interseção ℓ_{ij}^* está abaixo de todos as demais retas do plano dual P^*
 - A propriedade de reversão de ordem assegura que a condição primal acontece sse a condição dual acontece logo a seqüência entre pontos primais e retas duais é idêntica
 - Observe a ordem anti-horária dos pontos no primal corresponde a valores decrescentes de x, enquanto que as retas duais apresentam inclinações a decrescentes

