MIS 331 Database Management Systems

Lecture Notes (Student Version)

Instructor

Jinsoo Park

Department of Management Information Systems
College of Business and Public Administration
The University of Arizona
Tucson, AZ 85721

E-mail: jpark@bpaosf.bpa.arizona.edu Web Page: http://jpark.bpa.arizona.edu

Table of Contents

Introduction to Database Systems	1
Entity-Relationship Model	15
Database Design Process	33
Relational Database Structure	43
ER-To-Relational Mapping	51
Relational Algebra	67
SQL (Structured Query Language)	123
Integrity Constraints	165
Functional Dependencies	177
Normalization & Relational Database Design	189
Transaction Management	209
Concurrency Control	223
Recovery System	245
Database Security	263

Relational Algebra

- Procedural language
- Six basic operators
 - SELECT
 - PROJECT (& Generalized Projection)
 - UNION
 - Set DIFFERENCE
 - Cartesian Product
 - RENAME
- Additional operations that do not add any power to the relational algebra, but that simplify common queries.
 - Set INTERSECTION
 - NATURAL JOIN
 - DIVISION
 - ASSIGNMENT
- Extended relational algebra operations
 - OUTER JOIN
 - Aggregate Functions
- Modification of the Database
- View
- More examples (exercises) for relational algebra

Relational Algebra

- Relational algebra is a *procedural* language in which a user specifies *what* data is needed and *how* to get it.
 - We must write a *sequence of operations*. A certain order among the operation is always explicitly specified.
 - The order also specifies a partial strategy for evaluating the query.
 - Relational calculus A declarative, non-procedural language (thus, the relational calculus is often considered to be a higher-level language than the relational algebra). There is no description of how to evaluate a query; a calculus expression specifies what to be retrieved rather than how to retrieve it.
 - Note that both relational algebra and relational calculus are identical; that is, any retrieval that can be specified in the relational algebra can be specified in the relational calculus, and vice versa. In other words, the *expressive power* of the two languages is *identical*.
- It consists of a set of operations that take one or two relations as input and produce a new relation a their result.
- The result of each operation is a *relation*, which can be further manipulated, assigned to a temporary relation, or assigned to an existing relation (which results in the modification of an existing relation).

SELECT Operation

- Notation: $\sigma_P(r)$
- Defined as:

$$\sigma_P(r) = \{t \mid t \in r \text{ and } P(t)\}$$

Where *P* is "selection condition(s)"; a formula in propositional calculus, dealing with terms of the form:

- To select a *subset* of the tuples in a relation that satisfy a *selection condition*, *P*.
- The relation resulting from the SELECT operation has the *same* attributes as the relation specified in relation name, (r).

SELECT Operation (Cont.)

■ *Unary*

- The operator is applied on a *single relation* (cannot be used to select tuples from more than one relation).
- The operator is applied to *each tuple individually*; hence selection conditions cannot apply over more than one tuple.
- The *degree* of the resulting relation is the same as that of the original relation R on which the operation is applied, because it has the same attributes as R.
- The number of tuples in the resulting relation is always *less than or equal to* the number of tuples in the original relation *R*. The fraction of tuples selected by a selection condition is referred to as the *selectivity* of the condition.

■ Commutative

$$\sigma_{<\text{cond}1>}(\sigma_{<\text{cond}2>}(r)) = \sigma_{<\text{cond}2>}(\sigma_{<\text{cond}1>}(R))$$

Hence, a sequence of SELECTs can be applied in any order.

■ We can always combine a *cascade* of SELECT operations into a single SELECT operation with a conjunctive (\mathbf{AND}) condition, \wedge .

$$\sigma_{<\text{cond}1>}(\sigma_{<\text{cond}2>}(\ldots(\sigma_{<\text{cond}n>}(R))\ldots)) = \sigma_{<\text{cond}1>} \land <_{\text{cond}2>} \land \ldots \land <_{\text{cond}n>}(R)$$

SELECT Operation - Example

■ Relation r:

A	В	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

$\bullet \quad \sigma_{A=B \wedge D > 5} (r)$

A	В	C	D
α	α	1	7
β	β	23	10

PROJECT Operation

■ Notation:

$$\Pi_{A_1, A_2, ..., A_k}(r)$$

where A_1 , A_2 are attribute names and r is a relation name.

- \blacksquare The result is defined as the relation of k columns obtained by erasing the columns that are not listed.
- The resulting relation has only the attributes specified in <attribute list> and *in the same order as they appear in the list*. Hence, its *degree* is equal to the number of attributes in <attribute list>.
- Duplicate elimination The operation implicitly removes any duplicate tuples, since relations are sets. This is necessary to ensure that the result of the PROJECT operation is also a relation—a set of tuples.
- The number of tuples in a resulting relation is always *less than or equal to* the number of tuples in the original relation.

■ *No commutativity*

 $\pi_{<\text{list}1>}(\pi_{<\text{list}2>}(R)) = \pi_{<\text{list}1>}(R)$ as long as <list2> contains the attributes in <list1>; otherwise, the left-hand side is incorrect. Thus, the commutativity does not hold on PROJECT.

PROJECT Operation - Example

■ Relation r:

A	В	C
α	10	1
α	20	1
β	30	1
β	40	2

 $\blacksquare \prod_{A, C} (r)$

$$\begin{array}{c|cccc} A & C & & A & C \\ \hline \alpha & 1 & & \alpha & 1 \\ \hline -\alpha & 1 & & \beta & 1 \\ \beta & 1 & & \beta & 2 \\ \hline \beta & 2 & & & \end{array}$$

Generalized Projection

■ Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$\prod_{F_1, F_2, \ldots, F_n} (E)$$

- \blacksquare E is any relational-algebra expression
- Each of $F_1, F_2, ..., F_n$ are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation CREDIT-INFO(Customer-name, Limit, Credit-balance), find how much more each person can spend:

 \prod Customer-name, Limit - Credit-balance (CREDIT-INFO)

UNION Operation

- Notation: $r \cup s$
- Defined as:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

- For $r \cup s$ to be valid (*Union compatibility*),
 - r, s must have the same number of attributes.
 - The attribute domains must be compatible (e.g., 2nd column of r deals with the same type of values as does the 2nd column of s).
- It is a binary operation.
- Commutative

$$r \cup s = s \cup r$$

■ Associative

$$r \cup (s \cup t) = (r \cup s) \cup t$$

UNION Operation - Example

■ Relation r, s:

A	В
α	1
α	2
β	1

A	В	
α	2	
β	3	
S		

 $\blacksquare r \cup s$

A	В
α	1
α	2
β	1
β	3

Set DIFFERENCE Operation

- Notation: r s
- Defined as:

$$r-s = \{t \mid t \in r \text{ and } t \notin s\}$$

- Set differences must be taken between *compatible* relations (*Union compatibility*).
 - r and s must have the same number of attributes.
 - Attribute domains of *r* and *s* must be compatible.
- It is a binary operation
- No Commutative

$$r - s \neq s - r$$

Set DIFFERENCE Operation - Example

■ Relation r, s:

A	В
α	1
α	2
β	1

A	В	
α	2	
β	3	
$\boldsymbol{\mathcal{S}}$		

 $\blacksquare r-s$

A	В
α	1
β	1

Cartesian Product Operation

- Notation: $r \times s$
- Defined as:

$$r \times s = \{tq \mid t \in r \text{ and } q \in s\}$$

- Assume that attributes of r(R) and s(S) are disjoint; that is, $R \cap S = \emptyset$).
- If attributes of r(R) and s(S) are not disjoint, then renaming must be used.
- Do *not* have to be union compatible operation
- The result of $R(A_1, A_2, ..., A_n) \times S(B_1, B_2, ..., B_m)$ is a relation Q with n + m attributes $Q(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m)$ in that order. The resulting relation Q has one tuple for each combination of tuples—one from R and one from S. Hence, if R has n_R tuples and S has n_S tuples, then $R \times S$ will have $n_R \times n_S$ tuples.
- The sequences of this operation:
 - creating tuples with the combined attribute of two relations
 - SELECTing only related tuples from the two relations by specifying an appropriate selection conditions.

Cartesian Product Operation - Example

■ Relations r, s:

A	В	
α	1	
β	2	

r

C	D	E
α	10	+
β	10	+
β	20	_
γ	10	_

S

$\blacksquare r \times s$

A	В	C	D	E
α	1	α	10	+
α	1	β	10	+
α	1	β	20	_
α	1	γ	10	_
β	2	α	10	+
β	2	β	10	+
β	2	β	20	_
β	2	γ	10	_

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(r \times s)$
 - \bullet $r \times s$

A	В	C	D	E
α	1	α	10	+
α	1	β	10	+
α	1	β	20	_
α	1	γ	10	_
β	2	α	10	+
β	2	β	10	+
β	2	β	20	_
β	2	γ	10	_

• $\sigma_{A=C}(r \times s)$

A	В	C	D	E
α	1	α	10	+
β	2	β	10	+
β	2	β	20	_

RENAME Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name.

Example:

$$\rho_{\alpha}(E)$$

returns the expression E under the name α

If a relational-algebra expression E has n attributes, then

$$\rho_{\alpha}(A_1, A_2, ..., A_n)$$
 (E)

returns the result of expression E under the name α , and with the attributes renamed to $A_1, A_2, ..., A_n$.

Banking Example

BRANCH (Branch-name, Branch-city, Assets)

CUSTOMER (Customer-name, Customer-street, Customer-city)

ACCOUNT (Branch-name, Account-number, Balance)

LOAN (Branch-name, Loan-number, Amount)

DEPOSITOR (Customer-name, Account-number)

BORROWER (Customer-name, Loan-number)

Banking Example Queries

■ Find all loans of over \$1200

■ List the loan number for each loan of an amount greater than \$1200

■ Retrieve the names of all customers who have a loan, an account, or both, from the bank.

■ Find the names of all customers who have a loan and an account at bank.

Banking Example Queries (Cont.)

■ List the names of all customers who have a loan at the Tucson branch.

■ Find the names of all customers who have a loan at the Tucson branch but do not have an account at any branch of the bank.

- Retrieve the names of all customers who have a loan at the Tucson branch.
 - Query 1

• Query 2

Banking Example Queries (Cont.)

- Find the largest account balance
 - Rename *account* relation as *d*
 - The query is:

Formal Definition

- Let E_1 and E_2 be relational-algebra expressions; the following are all relational-algebra expressions:
 - $E_1 \cup E_2$
 - $\bullet \quad E_1 E_2$
 - \bullet $E_1 \times E_2$
 - $\sigma_p(E_1)$, *P* is a predicate on attributes in E_1
 - $\prod_{s} (E_1)$, S is a list consisting of some of the attributes in E_1
 - $\rho_x(E_1)$, x is the new name for the result of E_1

Additional Operations

- We define additional operations that do not add any power to the relational algebra, but that simplify common queries.
 - Set INTERSECTION
 - NATURAL JOIN
 - DIVISION
 - ASSIGNMENT

Set INTERSECTION Operation

- Notation: $r \cap s$
- Defined as:

$$r \cap s = \{t \mid t \in r \text{ and } t \in s\}$$

- Assume (*Union compatibility*):
 - r, s have the same number of attributes
 - Attributes of r and s are compatible
- Note: $r \cap s = r (r s)$
- It is a binary operation.
- Commutative

$$r \cap s = s \cap r$$

■ Associative

$$r \cap (s \cap t) = (r \cap s) \cap t$$

Set INTERSECTION Operation – Example

■ Relations r, s:

A	В
α	1
α	2
β	1

 $\begin{array}{c|cc}
A & B \\
\hline
\alpha & 2 \\
\beta & 3 \\
\end{array}$

1

 $\blacksquare r \cap s$

A	В
α	2

NATURAL JOIN Operation

- Notation: $r \bowtie s$
- Let r and s be relations on schemas R and S respectively. The result is a relation on schema $R \cup S$ which is obtained by considering each pair of tuples t_r from r and t_s from s.
- If t_r and t_s have the same value on each of the attributes in $R \cap S$, a tuple t is added to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_s on s
- Example: R = (A, B, C, D) S = (E, B, D)
 - Result schema = (A, B, C, D, E)
- \blacksquare $r \bowtie s$ is defined as:

$$\prod_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B=s.B \land r.D=s.D} (r \times s))$$

NATURAL JOIN Operation (Cont.)

- The NATURAL JOIN requires that the two join attributes (or each pair of join attributes) have the same name. If this is not the case, a *renaming* operation is applied.
- In general, NATURAL JOIN is performed by equating *all* attribute pairs that have the same name in the two relations.
- It is a binary operation.
- In general, if r has t_r tuples and s has t_s tuples, the result of a JOIN operation $r \bowtie s$ will have between zero and $t_r \times t_s$ tuples.
 - If no combination of tuples satisfies the join condition, the result of a JOIN is an *empty relation with zero tuples*.
 - If there is no common attribute to satisfy, all combinations of tuples qualify and the JOIN becomes a Cartesian Product.
- There are three types of JOIN operations:
 - Theta Join A join operation with a general join condition (i.e., containing any comparison operator).
 - Equijoin A join operation involving join conditions with equality comparisons only.
 - Natural Join Same as Equijoin, except that the join attributes of the second relation are not included in the resulting relations.

NATURAL JOIN Operation – Example

■ Relation r, s:

A	В	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b

r

В	D	E
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	€

S

$r \bowtie s$

A	В	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

DIVISION Operation

- Notation: $r \div s$
- Suited to queries that include the phrase "for all."
- \blacksquare Let r and s be relations on schemas R and S respectively, where

$$R = (A_1, ..., A_m, B_1, ..., B_n)$$

 $S = (B_1, ..., B_n)$

The result of $r \div s$ is a relation on schema

$$R-S=(A_1,\ldots,A_m)$$

■ It is a binary operation, but the relation on which it is applied do not have to be *union compatible*.

DIVISION Operation (Cont.)

- Property
 - Let $q = r \div s$
 - Then q is the largest relation satisfying: $q \times s \subseteq r$
- Definition in terms of the basic algebra operation Let r(R) and s(S) be relations, and let $S \subseteq R$

$$r \div s = \prod_{R-S}(r) - \prod_{R-S}((\prod_{R-S}(r) \times s)) - \prod_{R-S}(r))$$

To see why:

- $\prod_{R-S,S}(r)$ simply reorders attributes of r
- $\prod_{R-S}((\prod_{R-S}(r) \times s) \prod_{R-S,S}(r))$ gives those tuples t in $\prod_{R-S}(r)$ such that for some tuple $u \in s$, $tu \notin r$.
- Arr $r \div s$ produces a relation that has the attributes of R that are *not* attributes of S and includes all tuples in R in combination with every tuple from S.

DIVISION Operation – Example 1

■ Relation r, s:

A	В
α	1
α	2
α	3
β	1
γ	1
δ	1
δ	3
δ	4
δ	6
θ	1
θ	2
r	

1 2 s

 $\blacksquare r \div s$

 $egin{array}{|c|c} A & & & \\ \hline \alpha & & & \\ \theta & & & \end{array}$

DIVISION Operation – Example 2

■ Relation r, s:

A	В	C	D	E
α	a	α	a	1
α	a	γ	a	1
α	a	γ	b	1
β	a	γ	a	1
β	a	γ	b	3
γ	a	γ	a	1
γ	a	γ	b	1
γ	a	β	b	1

D	E	
a	1	
b	1	
S		

r

 $\blacksquare r \div s$

A	В	C
α	a	γ
γ	a	γ

ASSIGNMENT Operation

- The assignment operation (←) provides a convenient way to express complex queries; write query as sequential program consisting of a series of assignments followed by an expression whose value is displayed as the result of the query.
- Assignment must always be made to a temporary relation variable.
- Example: write $r \div s$ as

$$temp1 \leftarrow \prod_{R-S}(r)$$

$$temp2 \leftarrow \prod_{R-S}((temp1 \times s) - \prod_{R-S,S}(r))$$

$$result = temp1 - temp2$$

- The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow .
- May use variable in subsequent expressions.

Banking Example Queries (Revisited)

■ Find all customers who have an account from at least the "Downtown" and "Uptown" branches.

■ Find all customers who have an account at all branches located in Brooklyn.

Extended Relational-Algebra-Operations

- OUTER JOIN
- Aggregate Functions

OUTER JOIN

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples from one relation that do not match tuples in the other relation to the result of the join.
- Uses *null* values:
 - *null* signifies that the value is unknown or does not exist.
 - All comparisons involving *null* are **false** by definition
- LEFT OUTER JOIN (\Longrightarrow) keeps every tuple in the *first* or left relation R in $R \Longrightarrow S$; if no matching tuple is found in S, then the attributes of S in the result are filled or "padded" with *null* values.
- RIGHT OUTER JOIN (\bowtie) keeps every tuple in the *second* or right relation S in the result of $R \bowtie S$.
- FULL OUTER JOIN ($\supset \subset$) keeps all tuples in both the left and the right relations in the result of $R \supset \subset S$ when no matching tuples are found, padding them with null values as needed.

OUTER JOIN – Example

■ Relation LOAN

Branch-name	Loan-number	Amount
Downtown	L-170	3000
Redwood	L-230	4000
Tucson	L-260	1700

■ Relation BORROWER

Customer-name	Loan-number
Jones	L-170
Smith	L-230
Lee	L-155

OUTER JOIN – Example (Cont.)

■ LOAN ⋈ BORROWER

Branch-name	Loan-number	Amount	Customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith

■ LOAN ⇒ BORROWER

Branch-name	Loan-number	Amount	Customer-name	Loan-number
Downtown	L-170	3000	Jones	L-170
Redwood	L-230	4000	Smith	L-230
Tucson	L-260	1700	null	null

■ LOAN ⋈ BORROWER

Branch-name	Loan-number	Amount	Customer-name	Loan-number
Downtown	L-170	3000	Jones	L-170
Redwood	L-230	4000	Smith	L-230
null	L-155	null	Lee	L-155

■ LOAN ⇒ BORROWER

Branch-name	Loan-number	Amount	Customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
Tucson	L-260	1700	null
null	L-155	null	Lee

Aggregate Functions

■ Aggregation operator ϑ takes a collection of values and returns a single value as a result.

AVG: average value
MIN: minimum value
MAX: maximum value
SUM: sum of values
COUNT: number of values

$$G_1, G_2, ..., G_n \vartheta_{F_1 A_1, F_2 A_2, ..., F_m A_m}(E)$$

- *E* is any relational-algebra expression
- $G_1, G_2, ..., G_n$ is a list of attributes on which to group
- F_i is an aggregate function
- A_i is an attribute name

Aggregate Function – Example 1

■ Relation r:

A	В	C
α	α	7
α	β	7
β	β	3
β	β	10

■ $SUM_c(r)$

sum-C	
27	

Aggregate Function – Example 2

■ Relation ACCOUNT grouped by Branch-name:

Branch-name-	Account-number	Balance
Tucson	A-102	400
Tucson	A-201	900
Pittsburgh	A-217	750
Pittsburgh	A-215	900
Redwood	A-222	700

■ Branch-name ϑ SUM Balance(ACCOUNT)

Branch-name-	Balance
Tucson	1300
Pittsburgh	1650
Redwood	700

Modification of the Database

- The content of the database may be modified using the following operations:
 - Deletion
 - Insertion
 - Updating
- All these operations are expressed using the ASSIGNMENT operator.

Deletion

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples: cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

$$r \leftarrow r - E$$

where r is a relation and E is a relational algebra query.

- Examples:
 - Delete all account records in the Tucson branch.
 - Delete all loan records with amount in the range 0 to 50.
 - Delete all accounts at branches located in Pittsburgh.

Insertion

- To insert data into a relation, we either:
 - specify a tuple to be inserted
 - write a query whose result is a set of tuples to be inserted
- In relational algebra, an insertion is expressed by:

$$r \leftarrow r \cup E$$

where r is a relation and E is a relational algebra expression.

- \blacksquare The insertion of a single tuple is expressed by letting E be a constant relation containing one tuple
- Examples:
 - Insert information in the database specifying that John has \$1200 in account A-973 at the Tucson branch.
 - Provide as a gift for all loan customers in the Tucson branch, a \$100 savings account. Let the loan number serve as the account number for the new savings account.

Updating

- A mechanism to change a value in tuple without changing *all* values in the tuple
- Use the generalized projection operator to do this task

$$r \leftarrow \Pi_{F_1, F_2, \dots, F_n}(r)$$

- Each F_i is either *i*th attribute of r, if the *i*th attribute is not updated, or,
- F_i is an expression, if the attribute is to be updated, involving only constants and the attributes of r, which gives the new value for the attribute

■ Examples:

- Make interest payments by increasing all balances by 5 percent.
- Pay all accounts with balance over \$10,000 6 percent interest and pay all others 5 percent.

Views

- In some cases, it is not desirable for all users to see the entire logical model (i.e., all the actual stored in the database) *security* consideration.
- Consider a person who needs to know a customer's loan number but has no need to see the loan amount. This person should see a relation described, in the relational algebra, by

$$\prod_{Customer-name, Loan-number} (BORROWER \bowtie LOAN)$$

Any relation that is not part of the conceptual model but is made visible to a user as a "virtual relation" is called a *view*.

View Definition

■ A view is defined using the **CREATE VIEW** statement which has the form

CREATE VIEW *v* **AS** <query expression>

where \leq query expression> is any legal relational algebra query expression. The view is represented by v.

- Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.
- View definition is not the *same* as creating a new relation by evaluating the query expression. Rather, a view definition causes the saving of an expression to be substituted into queries using the view The data will be *materialized* at the time the view (query definitions) is executed. Thus, the view is kept up to date.

■ Examples:

• Consider the view (named ALL-CUSTOMER) consisting of branches and their customers.

• We can find all customers of the Tucson branch by writing:

Update Through Views

- Database modifications expressed as views must be translated to modifications of the relations in the database.
- Single relation Consider the person who needs to see all loan in the LOAN relation except Loan-amount. The view given to the person, BRANCH-LOAN, is defined as:

CREATE VIEW BRANCH-LOAN AS

 $\Pi_{\text{Branch-name, Loan-number}}$ (LOAN)

Since we allow a view name to appear wherever a relation name is allowed, the person may write:

 $BRANCH-LOAN \leftarrow BRANCH-LOAN \cup \{("Tucson", L-37)\}$

- The previous insertion must be represented by an insertion into the actual relation LOAN from which the view BRANCH-LOAN is constructed.
- An insertion into LOAN requires a value for Amount. The insertion can dealt with by either
 - * rejecting the insertion
 - ❖ inserting a tuple ("Tucson", L-37, *null*) into the LOAN relation

Update Through Views (Cont.)

■ *Multiple relation* — Consider the person who needs to see all the customers and their amount. In this case, we need two relations to obtain the proper information. The view, LOAN-INFO, is defined as:

CREATE VIEW LOAN-INFO AS $\Pi_{\text{Customer-name, Amount}}$ (BORROWER \bowtie LOAN)

If a person insert the following information through the view:

LOAN-INFO
$$\leftarrow$$
 LOAN-INFO \cup {("Johnson", 1900)}

- The only possible method of inserting this tuple into the relations is to insert ("Johnson", *null*) into BORROWER and (*null*, *null*, 1900) into LOAN.
- This operation does not have the desired effect, because LOAN-INFO couldn't include the tuple ("Johnson", 1900). The required attributes (Loan-number from both relations) for the NATURAL JOIN contain *null* values. Thus, the LOAN-INFO relation cannot materialize this data.
- In general, most database does not support view updates for views that are defined from multiple relations; some databases support view modification for views that are defined from a single relation.

Views Defined Using Other Views

- One view may be used in the expression defining another view.
- A view relation v_1 is said to depend directly on view relation v_2 , if v_2 is used in the expression defining v_1 .
- A view relation v_1 is said to *depend on* view relation v_2 , if and only if there is a path in the dependency graph from v_2 to v_1 .
- A view relation v is said to recursive if it depends on itself.
- View Expansion:
 - A way to define the meaning of views defined in terms of other views.
 - Let view v_1 be defined by an expression e_1 that may itself contain uses of view relations.
 - View expansion of an expression repeats the following replacement step:

repeat

Find any view relation v_i in e_1 Replace the view relation v_i by the expression defining v_i **until** no more view relations are present in e_1

• As long as the view definitions are not recursive, this loop will terminate.

Company Example (Additional Exercise)

EMPLOYEE (SSN, Name, Salary, Supervisor-SSN, Dnumber)

DEPARTMENT (<u>Dnumber</u>, Dname, Mgr-SSN, Mgr-start-date)

PROJECT (Pnumber, Pname, Dnumber)

WORKS-ON (SSN, Pnumber, Hours)

Company Example Queries

SELECT Operation

- Retrieve all employees who work in department 4 or whose salary is greater than \$30,000.
- Retrieve all departments whose managers' starting date is between 01-Jan-85 and 31-Dec-85.
- Retrieve all projects managed by department 5 or 6.
- Retrieve all employees who spend more than 10 hours in a project.

PROJECT Operation

- List each employee's name and salary.
- List each department's name and the SSN of the manager.
- Retrieve the project's name and number for each project managed by department 5 or 6.
- Retrieve the SSN of each employee who spends more than 10 hours in a project.

UNION Operation

List the SSN of an employee whose salary is either greater than	n
\$30,000 or who are working on project 6.	

■ List the SSNs of the department 3's employees and the manager of the department 3.

DIFFERENCE Operation

■ List the SSN of an employee whose salary is either greater than \$30,000 and who are not working on project 6.

■ List the SSNs of the department 3's employees who salary is lower than \$30,000.

INTERSECTION Operation

<u>IIN</u>	TERSECTION Operation
	List the SSN of an employee whose salary is greater than \$30,000 and who are working on project 6.
	List the SSNs of the managers of the departments who are working on project 8.
	artesian Product Operation List all combination of employees and departments.
	List each employee's name and his/her department name.
•	List each employee's name and salary who is working on project 3.

JOIN Operation

- List each employee's name and his/her department name.
- List each employee's name and salary who is working on project 3.

DIVISION Operation

■ List the SSN of each employee who is working on all projects.

RENAME Operation

■ List the names of all employees who are in the same department as Smith.

Database Modification

- Delete the employee whose SSN = 123456789.
- Insert a project whose name is Medical—DB, whose number is 100, and which is managed by MIS department (department number is 15).
- Update the salary of all employees by increasing 5%.

■ Update the salary of the employees who are working for department 15 by increasing 5%.