Probability 1

王胤雅

25114020018

yinyawang25@m.fudan.edu.cn

2025 年 10 月 16 日

\mathbb{R}^{OBEM} I 证明 σ -代数是集代数。

SOLTION. 假定 A 是 σ -代数,那么 $\Omega \in A$,A 对补运算封闭。只需证明 A 对有限并封闭。 $A,B \in A$,令 $A_n = \emptyset = \Omega^c \in A, n \geq 3$,那么 $A \cup B \cup \bigcup_{n \geq 3} A_n = A \cup B \in A$ 。

IN UPPERM II 设 \mathcal{C} 是集类,则 $\forall A \in \sigma(\mathcal{C}), \exists \mathcal{C}_1 \subset \mathcal{C}, |\mathcal{C}_1| \leq \aleph_0, A \in \sigma(\mathcal{C}_1)$ 。

SOLTION. \diamondsuit $\mathcal{A} := \{A \in \sigma(\mathcal{C}) : \exists \mathcal{C}_1 \subset \mathcal{C}, |\mathcal{C}_1| \leq \aleph_0, A \in \sigma(\mathcal{C}_1) \}$. 下证 $\mathcal{A} \supset \sigma(\mathcal{C})$,即证 \mathcal{A} 为包含 \mathcal{C} 的 σ -代数。

- 由于 $\forall A \in \mathcal{C}, \sigma(\{A\}) = \{\emptyset, \Omega, A, A^c\},$ 那么 $\mathcal{C} \subset \mathcal{A}$ 。
- $\mbox{th} \Omega \in \sigma(\emptyset) = \{\emptyset, \Omega\}, \ \mbox{$\mathbb{H}$$$$$$$$$$$$$$ $\Omega \in \mathcal{A}$$.}$
- 设 $A \in \mathcal{A}$,那么 $\exists \mathcal{C}_1 \subset \mathcal{C}, |\mathcal{C}_1| \leq \aleph_0$, $A \in \sigma(\mathcal{C}_1)$. 由于 $\sigma(\mathcal{C}_1)$ 是 σ -代数,那么 $A^c \in \sigma(\mathcal{C}_1)$. 所以 $A^c \in \mathcal{A}$ 。
- 设 $A_n \in \mathcal{A}, n \in \mathbb{N}$, 那么 $\exists \mathcal{C}_n \subset \mathcal{C}, |\mathcal{C}_n| \leq \aleph_0, n \in \mathbb{N}$, 满足 $A_n \in \sigma(\mathcal{C}_n) \forall n \in \mathbb{N}$ 。令 $\mathcal{T} = \bigcup_{n \in \mathbb{N}} \mathcal{C}_n$,由 $|\mathcal{C}_n| \leq \aleph_0, \mathcal{C}_n \subset \mathcal{C}$,可知 $|\mathcal{T}| \leq \aleph_0, \mathcal{T} \subset \mathcal{C}$,那么 $A_n \in \sigma(\mathcal{C}_n) \subset \sigma(\mathcal{T})$, $\forall n \in \mathbb{N}$ 。所以 $\bigcup_{n \in \mathbb{N}} A_n \in \sigma(\mathcal{T})$ 。那么 $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$ 。

综上, \mathcal{A} 为包含 \mathcal{C} 的 σ -代数。故 $\mathcal{A} \supset \sigma(\mathcal{C})$ 。又由于 $\mathcal{A} \subset \sigma(\mathcal{C})$,故 $\mathcal{A} = \sigma(\mathcal{C})$ 。从而, $\forall A \in \sigma(\mathcal{C})$, $\exists \mathcal{C}_1 \subset \mathcal{C}, |\mathcal{C}_1| \leq \aleph_0, A \in \sigma(\mathcal{C}_1)$ 。

INOBEM III σ -代数 A 称为可数生成的,如果存在可数的子集类 $C \subset A$ 使 $\sigma(C) = A$ 。证明 \mathcal{B}^d 是可数生成的。

SOLTION. 考虑 $\mathcal{A} := \{B(p,r) : p \in \mathbb{Q}^d, r \in \mathbb{Q}_+\}$, 其中 $B(p,r) = \{x \in \mathbb{R}^d : \|x-p\| < r\}$ 。显然 $|\mathcal{A}| = \aleph_0$ 。下证 $\mathcal{B}^d = \sigma(\mathcal{A})$ 。令 $\mathcal{O} := \{\mathcal{B}^d \text{ ph} \}$,由于 $\mathcal{B}^d = \sigma(\mathcal{O})$,那么 $\mathcal{A} \subset \mathcal{O}$,从而 $\sigma(\mathcal{A}) \subset \sigma(\mathcal{O})$ 。只需证明 $\mathcal{O} \subset \sigma(\mathcal{A})$ 。

 $\forall A \in \mathcal{O}, \ \forall x \in A, \exists U = B(x,s), x \in U \subset A$ 。由于 \mathbb{Q}^d 在 \mathbb{R}^d 中稠密,故 $\exists p_x \in B(x,\frac{s}{2}) \cap \mathbb{Q}^d$ 。取 $r_x \in \mathbb{Q}_+$ 使 $\|x-p_x\| < r_x < \frac{s}{2}$,由 $\forall y \in B(p_x,r_x)$,有 $\|y-x\| \le \|y-p_x\| + \|p_x-x\| < r_x + \frac{s}{2} < s$ 得 $B(p_x,r_x) \subset B(x,s) \subset A$,则有 $\bigcup_{x \in A} B(p_x,r_x) \subset A$ 。显然 $x \in B(p_x,r_x)$,那么 $A \subset \bigcup_{x \in A} B(p_x,r_x)$,

从而 $\forall A \in \mathcal{O}, \bigcup_{x \in A} B(p_x, r_x) = A$ 。 由于 $|\mathcal{A}| = \aleph_0$,那么 $\bigcup_{x \in A} B(p_x, r_x), \forall A \in \mathcal{O}$ 一定为可数的 并。从而 $\forall A \in \mathcal{O}, A \in \sigma(\mathcal{A})$ 。

 \mathbb{R}^{OBEM} IV 设 \mathcal{C} 是 Ω 中任一集代数,则存在 Ω 中的单调类 \mathcal{M}_0 满足:

- 1. $\mathcal{C} \subset \mathcal{M}_0$,
- 2. 对于包含 \mathcal{C} 的单调类 \mathcal{M} ,有 $\mathcal{M}_0 \subset \mathcal{M}$ 。

称这样的单调类为 C 生成的单调类,记作 $\mathcal{M}(A)$ 。

SOUTION. 考虑 $A := \{ \mathcal{M} : \mathcal{M} \ni \mathbb{A} \in \mathcal{C} \subset \mathcal{M} \}$ 。由于 Ω 的全体子集 $P(\Omega)$ 显然为包含 \mathcal{C} 的单调类。那么 $P(\Omega) \in \mathcal{A}$,故 $A \neq \emptyset$ 。令 $\mathcal{M}_0 = \bigcap_{A \in \mathcal{A}} A$,那么 $\mathcal{C} \subset \mathcal{M}_0$ 。下证 \mathcal{M}_0 为单调类。

- $A_n \in \mathcal{M}_0, n \in \mathbb{N}$,满足 $A_n \subset A_{n+1}, n \in \mathbb{N}$ 。 $\forall A \in \mathcal{A}, A_n \in A$,由于 A 为单调类,那么 $\bigcup_{n \in \mathbb{N}} A_n \in A$ 。故 $\bigcup_{n \in \mathbb{N}} A_n \in \bigcap_{A \in \mathcal{A}} A$ 。
- 同理可证, $A_n \in \mathcal{M}_0, n \in \mathbb{N}$, 满足 $A_n \supset A_{n+1}, n \in \mathbb{N}$, 则 $\bigcap_{n \in \mathbb{N}} A_n \in \bigcap_{A \in \mathcal{A}} A_o$

设 \mathcal{M} 为包含 \mathcal{C} 的单调类,那么 $\mathcal{M} \in \mathcal{A}$,那么 $\mathcal{M} \supset \mathcal{M}_0$ 。

POBEM V 设 Ω_i , $i = 1, 2, \dots, n$ 是 n 个集合, A_i 是 Ω_i 上的 σ -代数。证明 $C = \{A_1 \times \dots \times A_n : A_i \in A_i\}$ 为半集代数。

SOLTION.

Lemma 1. Ω_i , i = 1, 2 为两个集合, A_i , $B_i \subset \Omega_i$, i = 1, 2,那么以下命题正确。

- 1. $(A_1 \times A_2) \cap (B_1 \times B_2) = (A_1 \cap B_1) \times (A_2 \cap B_2);$
- 2. 若 $A_1 \times A_2 \subset B_1 \times B_2$,那么 $B_1 \times B_2 = (A_1 \times A_2) \cup ((B_1/A_1) \times B_2) \cup (A_1 \times (B_2/A_2))$,其中 $(A_1 \times A_2), ((B_1/A_1) \times B_2), (A_1 \times (B_2/A_2))$ 两两不交。
- 3. 若 $A_1 \times A_2 \subset B_1 \times B_2$,那么 $A_1 \subset B_1$, $A_2 \subset B_2$ 。
- 证明. 1. $\forall (a,b) \in (A_1 \times A_2) \cap (B_1 \times B_2)$,那么 $(a,b) \in A_1 \times A_2$ 且 $(a,b) \in B_1 \times B_2$ 。从而 $a \in A_1, b \in A_2, a \in B_1, b \in B_2$ 。故 $a \in A_1 \cap B_1, b \in A_2 \cap B_2$ 。那么 $(a,b) \in (A_1 \cap B_1) \times (A_2 \cap B_2)$ 。 另一方面, $\forall (a,b) \in (A_1 \cap B_1) \times (A_2 \times B_2)$,那么 $a \in A_1 \cap B_1, b \in A_2 \times B_2$,故 $(a,b) \in A_1 \times A_2$, $(a,b) \in B_1 \times B_2$ 。故 $(a,b) \in (A_1 \times A_2) \cap (B_1 \times B_2)$ 。
 - 2. 先证 $(A_1 \times A_2), ((B_1/A_1) \times B_2), (A_1 \times (B_2/A_2))$ 两两不交: 由1知, $(A_1 \times A_2) \cap ((B_1/A_1) \times B_2) =$ $\emptyset \times B_2 = \emptyset$ 。 $(A_1 \times A_2) \cap (A_1 \times (B_2/A_2)) = A_1 \times \emptyset = \emptyset$ 。 $((B_1/A_1) \times B_2) \cap (A_1 \times (B_2/A_2)) =$ $\emptyset \times B_2$ 。下证 $B_1 \times B_2 = (A_1 \times A_2) \cup ((B_1/A_1) \times B_2) \cup (A_1 \times (B_2/A_2))$ 。由于 $A_1, B_1/A_1 \subset B_1, A_2, B_2/A_2 \subset B_2$,那么 $(A_1 \times A_2), ((B_1/A_1) \times B_2), (A_1 \times (B_2/A_2)) \subset B_1 \times B_2$,从而 $(A_1 \times A_2) \cup ((B_1/A_1) \times B_2) \cup (A_1 \times (B_2/A_2)) \subset B_1 \times B_2$ 。又 $B_1 \times B_2 = ((B_1/A_1) \times B_2) \cup (A_1 \times B_2) = ((B_1/A_1) \times B_2) \cup (A_1 \times (B_2/A_2))$,从而结论正确。
 - 3. 若 $A_1/B_1 \neq \emptyset$,设 $a \in A_1/B_1$,取 $b \in A_2$,那么 $(a,b) \in A_1 \times A_2$,但 $(a,b) \notin B_1 \times B_2$,与 $A_1 \times A_2 \subset B_1 \times B_2$ 矛盾。

由于 A_i , $1 \le i \le n$ 是 Ω_i 上的 σ -代数,从而 A_i , $1 \le i \le n$ 为 Ω_i 上的半集代数。我们可以 用数学归纳法证明以下命题:设 Ω_i , $i = 1, 2, \cdots, n$ 是 n 个集合, A_i 是 Ω_i 上的半集代数,那么 $C_n = \{A_1 \times \cdots \times A_n : A_i \in A_i\}$ 为半集代数。

- 当 n=1 时, $\mathcal{C}_1=\mathcal{A}_1$,显然为半集代数。
- 当 n=2 时, $C_2=\{A_1\times A_2: A_i\in \mathcal{A}_i, i=1,2\}$ 。下证 C_2 为半集代数。
 - 由于 A_1, A_2 为半集代数,那么 $\Omega_i, \emptyset \in A_i$ i = 1, 2。从而 $\{\emptyset \times \emptyset, \Omega_1 \times \Omega_2\} \subset \mathcal{C}_1$ 。
 - 设 $A_1 \times A_2, B_1 \times B_2 \in \mathcal{C}$,那么由引理1中的1可知 $(A_1 \times A_2) \cap (B_1 \times B_2) = (A_1 \cap B_1) \times (A_2 \cap B_2)$ 。又由 $\mathcal{A}_i, i = 1, 2$ 均为半集代数,那么 $A_i \cap B_i \in \mathcal{A}_i, i = 1, 2$ 。那么 $(A_1 \cap B_1) \times (A_2 \times B_2) \in \mathcal{C}_2$ 。故 $(A_1 \times A_2) \cap (B_1 \times B_2) \in \mathcal{C}_2$ 。
 - 若 $A_1 \times A_2 \subset B_1 \times B_2$,那么由引理1中的3知 $A_1 \subset B_1$, $A_2 \subset B_2$ 。由于 A_i , $B_i \in A_i$,那么 司 $C_k^i \in A_i$, $1 \le k \le N_i$, $N_i \in \mathbb{N}_+$ 两两不交,与 A_i 也不交,且 $B_i = A_i \cup (\bigcup_{1 \le k \le N_i} C_k^i)$,i = 1, 2。由于 $C_k^i \in A_i$, $1 \le k \le N_i$,i = 1, 2,那么 $C_k^1 \times B_2 \in C_2$, $1 \le k \le N_1$, $A_1 \times C_k^2 \in C_2$, $1 \le k \le N_2$ 。由于 $C_k^i \in A_i$, $1 \le k \le N_i$,i = 1, 2 两两不交,那么 $C_k^1 \times B_2$, $1 \le k \le N_1$ 两两不交, $1 \le k \le N_2$ 两两不交。又由于1中的2知, $1 \times B_2 = (A_1 \times A_2) \cup ((B_1/A_1) \times B_2) \cup (A_1 \times (B_2/A_2))$ 。那么

$$B_1 \times B_2 = (A_1 \times A_2) \cup ((\bigcup_{1 \le k \le N_1} C_k^1) \times B_2) \cup (A_1 \times (\bigcup_{1 \le k \le N_2} C_k^2))$$
$$= (A_1 \times A_2) \cup \bigcup_{1 \le k \le N_1} (C_k^1 \times B_2) \cup \bigcup_{1 \le k \le N_2} (A_1 \times C_k^2)$$

又由 $(A_1 \times A_2)$, $((B_1/A_1) \times B_2)$, $(A_1 \times (B_2/A_2))$ 两两不交,从而 $(A_1 \times A_2)$, $(\bigcup_{1 \le k \le N_1} (C_k^1 \times B_2))$, $(\bigcup_{1 \le k \le N_2} (A_1 \times C_k^2))$,故 $(A_1 \times A_2)$, $(C_k^1 \times B_2)$, $(A_1 \times C_j^2)$, $1 \le k \le N_1$, $1 \le j \le N_2$ 两两不交。从而 $B_1 \times B_2$ 能表示成 $A_1 \times A_2$ 与 C_2 中元素的不交并。

• 设 $n=k, 1 \leq k \leq n-1$ 时, $\mathcal{C}_k := \{A_1 \times \cdots \times A_k : A_i \in \mathcal{A}_i, 1 \leq i \leq k\}$ 为半集代数。那么

$$C_{k+1} := \{ A_1 \times \dots \times A_{k+1} : A_i \in \mathcal{A}_i, 1 \le i \le k+1 \}$$

$$= \{ (A_1 \times \dots \times A_k) \times A_{k+1} : A_i \in \mathcal{A}_i, 1 \le i \le k+1 \}$$

$$= \{ C \times A : C \in \mathcal{C}_k, A \in \mathcal{A}_{k+1} \}.$$

由 n=2 的情形可知 \mathcal{C}_{k+1} 为半集代数。

BOBEM VI 举例说明可加测度未必有限可加。

SOLTION . 考虑 $\Omega = \{1,2,3\}, \mathcal{T} = \{\{1\},\{2\},\{3\},\{1,2,3\},\varnothing\}, \Phi: \mathcal{T} \to \{0,1\}, 其中 \Phi(\{\varnothing\}) = 0, \Phi(A) = 1, A \in \mathcal{T} \setminus \{\varnothing\}$ 。那么 Φ 为 \mathcal{T} 上的可加测度。考虑 $\{1\},\{2\},\{3\}$ 两两不交且 $\{1,2,3\} = \{1\} \cup \{2\} \cup \{3\} \in \mathcal{T}, 则 \Phi(\{1\} \cup \{2\} \cup \{3\}) = \Phi(\{1,2,3\}) = 1, \sum_{k=1}^{3} \Phi(\{k\}) = \sum_{k=1}^{3} 1 = 3$ 。故 $\sum_{k=1}^{3} \Phi(\{k\}) \neq \Phi(\{1,2,3\})$ 。故 Φ 不是有限可加测度。

 \mathbb{R}^{O} BEM VII 设 \mathcal{C}_n 为单调上升的子集类:

- 1. 若 \mathcal{C}_n 为集代数,则 $\cup_{n=1}^{\infty} \mathcal{C}_n$ 为集代数。
- 2. 若 C_n 为 σ 代数, 举例 $\cup_{n=1}^{\infty} C_n$ 不为 σ 代数。

SOLTION. 由于 C_n 单调上升,那么 $C_n \subset C_{n+1}, n \geq 1$.

- 1. \diamondsuit $\mathcal{A} := \bigcup_{n=1}^{\infty} \mathcal{C}_n$ 。下证 \mathcal{A} 为集代数。
 - 由于 $C_n, n \ge 1$ 为集代数,那么 $\Omega \in C_n, n \ge 1$ 。故 $\Omega \in \bigcup_{n=1}^{\infty} C_n$ 。
 - $\forall A, B \in \mathcal{A}$, 那么 $\exists n_1, n_2 \geq 1$, 满足 $A \in \mathcal{C}_{n_1}, B \in \mathcal{C}_{n_2}$ 。不妨 $n = \max\{n_1, n_2\}$,那么 $A \in \mathcal{C}_{n_1} \subset \mathcal{C}_n, B \in \mathcal{C}_{n_2} \subset \mathcal{C}_n$. 由于 \mathcal{C}_n 为集代数,那么 $A \setminus B \in \mathcal{C}_n$ 。故 $A \setminus B \in \mathcal{A}$ 。
- 2. 考虑 $\Omega = \mathbb{N}$, $C_n = \sigma(\{\{k\} : 1 \le k \le n\}\})$ 。令 $A := \bigcup_{k=1}^{\infty} C_n$ 。 $\forall n \ge 1$,令 $T_n := \{k : k > n\}$,那么 $T_n := \{\{k\} : 1 \le k \le n\} \cup \{T_n\}$ 为 C_n 的一个划分。下证 $C_n = \{A \subset \mathbb{N} : A \cap T_n = \emptyset$ 或 $A \cap T_n = T_n\} =: A_n$ 。显然 $T_n \subset A_n$,故只需证明, A_n 为 σ -代数。
 - (a) $\mathbb{N} \in \mathcal{A}_n$ 显然。
 - (b) $\forall A, B \in \mathcal{A}_n$,若 $A \cap T_n = B \cap T_n = \varnothing$,那么 $(A \cap B) \cap T_n = \varnothing$,那么 $A \cap B \in \mathcal{A}_n$ 。若 $A \cap T_n = \varnothing$, $B \cap T_n = T_n$,那么 $(A \cap T_n) \cap (B \cap T_n) = (A \cap B) \cap T_n = \varnothing$,那么 $A \cap B \in \mathcal{A}_n$ 。若 $A \cap T_n = B \cap T_n = T_n$,那么 $(A \cap B) \cap T_n = T_n$,从而 $A \cap B \in \mathcal{A}_n$ 。
 - (c) $\forall A_t \in \mathcal{A}_n, t \geq 1, A_i \cap A_j = \emptyset, i \neq j$,那么至多一个 A_t 满足 $A_t \cap T_n = T_n$ 。若 $\forall t \geq 1, A_t \cap T_n = \emptyset$,那么 $\cup_{t \geq 1} A_t \cap T_n = \emptyset$,从而 $\cup_{t \geq 1} A_t \in \mathcal{A}_n$ 。若 $\exists t \geq 1, A_t \cap T_n = T_n$,不 妨设 $A_1 \cap T_n = T_n$,那么 $\cup_{t \geq 1} A_t \cap T_n = T_n$,从而 $\cup_{t \geq 1} A_t \in \mathcal{A}_n$ 。

那么 $\forall C \in \mathcal{C}_n$, $|C| < \infty$ 或 $|C^c| \le |T_n^c| < \infty$ 。由于 $\forall n \ge 1$, $\{2n\} \in \mathcal{C}_{2n} \subset \mathcal{A}$,而 $\cup_{n>1}\{2n\} = 2\mathbb{N}$, $|2\mathbb{N}|$, $|\mathbb{N} \setminus 2\mathbb{N}| = \infty$ 。故 $2\mathbb{N} \notin \mathcal{C}_n$, $\forall n \ge 1$ 。从而 $2\mathbb{N} \notin \mathcal{A}$ 。

\mathbb{R}^{OBEM} VIII 证明 σ -代数不可能是可数无穷的。

 $Lemma\ 2.\ \Omega \neq \emptyset, \{A_{\alpha} \subset \Omega : \alpha \in I\} =: \mathcal{A}\$ 为 Ω 的一个划分, \diamondsuit $\mathcal{F} := \sigma(\mathcal{A})$,那么 $|\mathcal{F}| = 2^{|\mathcal{A}|}$ 。

SOUTION. 考虑 $\phi: \mathcal{P}(I) \to \mathcal{P}(\Omega)$, $J \mapsto \bigcup_{i \in J} A_i$ 。显然 ϕ 为单射。下证 $\mathrm{Im}(\phi) = \mathcal{F}$ 。由于 $\forall J \in \mathcal{P}(I)$, $\bigcup_{i \in J} A_i \in \mathcal{F}$,那么 $\mathrm{Im}(\phi) \subset \mathcal{F}$ 。故只需证明 $\mathcal{F} \subset \mathrm{Im}(\phi)$ 。由于 $\forall j \in I$, $\{j\} \in \phi(I)$,那么 $\bigcup_{i \in \{j\}} A_i = A_j \in \mathrm{Im}(\phi)$ 。从而 $\mathcal{A} \subset \mathrm{Im}(\phi)$ 。故只需证明 $\mathrm{Im}(\phi)$ 为 σ 代数。

- 由于 $\phi(I) = \bigcup_{i \in I} A_i = \Omega$,那么 $\Omega \in \operatorname{Im}(\phi)$ 。
- $\forall I, J \in \mathcal{P}(I)$, 那么 $I \cap J \in \mathcal{P}(I)$, 故 $\bigcup_{i \in I \cap J} A_i = (\bigcup_{i \in I} A_i) \cap (\bigcup_{i \in J} A_i) \in \operatorname{Im}(\phi)$.
- $\forall I_n \in \mathcal{P}(I), n \geq 1$, $\mathbb{R} \preceq \cup_{n \geq 1} I_n \in \mathcal{P}(I)$, $\text{th} \cup_{n \geq 1} (\cup_{i \in I_n} A_i) = \cup_{i \in \cup_{n \geq 1} I_n} A_i \in \text{Im}(\phi)_\circ$

SOUTION. 设 \mathcal{F} 为 Ω 上 σ -代数。 \mathcal{A} 为 \mathcal{F} 上的所有原子集组成的集合。

- 若 $\cup A = \Omega$,且 $|A| < \infty$,那么由引理 2 知, $|\mathcal{F}| = 2^{|A|}$ 。故 \mathcal{F} 为有限集。
- 若 $\cup A = \Omega$,且 $|A| = \infty$,那么取 $A_n \in A, n \geq 1$,以及 $A_0 = \Omega \setminus \bigcup_{n \geq 1} A_n$ 。那么 $\{A_n : n \in \mathbb{N}\} =: \mathcal{B}$ 为 Ω 的可数分割。由引理 2知, $|\mathcal{F}| = 2^{|\mathcal{B}|} > \aleph_0$.

• 若 $\cup A \subseteq \Omega$,那么 $\exists F_n, n \geq 1$,满足 $F_n \supset F_{n+1}, n \geq 1$, $F_0 = \Omega$ 。考虑 $A_n := F_n \setminus F_{n+1}, n \geq 0$,那么 $\mathcal{B} := \{A_n : n \in \mathbb{N}\}$ 为 Ω 的可数分割。由引理 2知, $|\mathcal{F}| = 2^{|\mathcal{B}|} > \aleph_0$

 \mathbb{R}^{OBIEM} IX 设 $(\Omega_n, \mathcal{A}_n, \mu_n), n \geq 1$ 为一列测度空间, Ω_n 两两不交。令

$$\Omega = \sum_{n=1}^{\infty} \Omega_n, \mathcal{A} = \{ A \subset \Omega : \forall n \geq 1, A \cap \Omega_n \in \mathcal{A}_n \}, \mu(A) = \sum_{n=1}^{\infty} \mu_n(A \cap \Omega_n), A \in \mathcal{A}$$

证明 (Ω, A, μ) 为测度空间。

SOUTION. 先证 A 为 σ -代数。

- 由于 $\Omega = \sum_{n=1}^{\infty} \Omega_n$, 那么 $\Omega \cap \Omega_n = \Omega_n \in \mathcal{A}_n$, $\forall n \geq 1$ 。故 $\Omega \in \mathcal{A}$ 。
- $\forall A, B \in \mathcal{A}$, 那么 $\forall n \geq 1, A \cap \Omega_n, B \cap \Omega_n \in \mathcal{A}_n$ 。由于 \mathcal{A}_n 为 σ 代数,那么 $(A \cap \Omega_n) \cap (B \cap \Omega_n) = (A \cap B) \cap \Omega_n \in \mathcal{A}_n$ 。从而 $A \cap B \in \mathcal{A}$ 。
- $A_n \in \mathcal{A}, n \geq 1$,那么 $\forall k \geq 1, A_n \cap \Omega_k \in \mathcal{A}_k$ 。由于 \mathcal{A}_k 为 σ 代数,那么 $\bigcup_{n \geq 1} (A_n \cap \Omega_k) = (\bigcup_{n \geq 1} A_n) \cap \Omega_k \in \mathcal{A}_k$,从而 $\bigcup_{n \geq 1} A_n \in \mathcal{A}_\circ$

再证 μ 为测度。

- 由于 $\forall A \in \mathcal{A}, \ \mu(A) = \sum_{n=1}^{\infty} \mu_n(A \cap \Omega_n), \ \overline{m} \ A \cap \Omega_n \in \mathcal{A}_n, \forall n \geq 1, \ \overline{w} \ \mu_n(A \cap \Omega_n) \geq 0.$ 从 $\overline{m}, \ \mu(A) = \sum_{n=1}^{\infty} \mu_n(A \cap \Omega_n) \geq 0.$
- $\forall A_n \in \mathcal{A}, n \geq 1, A_i \cap A_j = \emptyset, i \neq j, \sum_{n \geq 1} A_n = \sum_{n \geq 1} (A_n \cap \bigcup_{k \geq 1} \Omega_k) = \sum_{n \geq 1} (\sum_{k \geq 1} (A_n \cap \Omega_k)) = \sum_{k \geq 1} \sum_{n \geq 1} (A_n \cap \Omega_k) = \sum_{k \geq 1} (\sum_{n \geq 1} A_n) \cap \Omega_k \quad \text{iff} \quad \forall n \geq 1, A_n \cap \Omega_k \in \mathcal{A}_k, \quad \text{iff} \quad \sum_{n \geq 1} A_n \cap \Omega_k \in \mathcal{A}_k, \quad \text{iff} \quad \mu(\sum_{n \geq 1} A_k \cap \Omega_k) = \mu_k(\sum_{n \geq 1} A_n \cap \Omega_k) = \sum_{n \geq 1} \mu_k(A_n \cap \Omega_k).$

$$\mu(\sum_{n\geq 1} A_n) = \mu(\sum_{n\geq 1} (\sum_{k\geq 1} (A_n \cap \Omega_k)))$$

$$= \mu(\sum_{k\geq 1} (\sum_{n\geq 1} (A_n \cap \Omega_k)))$$

$$= \sum_{k\geq 1} \mu_k (\sum_{n\geq 1} (A_n \cap \Omega_k))$$

$$= \sum_{k\geq 1} \sum_{n\geq 1} \mu_k (A_n \cap \Omega_k)$$

$$= \sum_{n\geq 1} \sum_{k\geq 1} \mu_k (A_n \cap \Omega_k)$$

$$= \sum_{n\geq 1} \mu(A_n)$$

ℝ^{OBLEM} X 设 Ω 为一无穷集,令 F 为 Ω 中的有限集或者余有限集构成的集合, \mathbb{P} 在两类集合上取值分别为 0 或 1。

- 证明 *F* 为集代数, ℙ 为有限可加。
- 若 Ω 为可数集,则 \mathbb{P} 不可能为 σ 可加。
- 若 Ω 为不可数集,则 ℙ 为可数可加。

SOUTION . 1. 先证 F 为集代数:

- 由于 $\Omega^c = \emptyset$, $|\emptyset| = 0$, 故 $\Omega \in \mathcal{F}$.
- $\forall A, B \in \mathcal{F}$,若 $|A| < \infty$,那么 $|A \setminus B| = |A \cap B^c| \le |A| < \infty$ 。若 $|A^c|, |B| < \infty$,那么 $|(A \setminus B)^c| = |A^c \cup B| \le |A^c| + |B| < \infty$ 。若 $|A^c|, |B^c| < \infty$,那么 $|A \setminus B| = |A \cap B^c| \le |B^c| < \infty$ 。综上所述, $|A \setminus B| \in \mathcal{F}$ 。

再证 \mathbb{P} 有限可加。由于 \mathcal{F} 为集代数,故只需证明 \mathbb{P} 可加。设 $A, B \in \mathcal{F}$, $A \cap B = \varnothing$, $A \cup B \in \mathcal{F}$,若 $|A|, |B| < \infty$, $\mathbb{P}(A \cup B) = 0 = \mathbb{P}(A) + \mathbb{P}(B)$ 。若 $|A|, |B^c| < \infty$,那么 $(A \cup B)^c = A^c \cap B^c \subset B^c$,故 $\mathbb{P}(A \cup B) = 1 = \mathbb{P}(A) + \mathbb{P}(B)$ 。若 $|A^c|, |B^c| < \infty$,那么由 $A \cap B = \varnothing$,知 $B \subset A^c$,那么 $|B| \leq |A^c| < \infty$,而 $|\Omega| = \infty$,故 $|B| = |\Omega \setminus B^c| = \infty$,矛盾。从而 $|A^c|, |B^c| < \infty$ 不成立。

- 2. $\mathbb{P}(\sum_{a\in\Omega}\{a\}) = \mathbb{P}(\Omega) = 1$,而 $\sum_{a\in\Omega}\mathbb{P}(\{a\}) = 0$,故 \mathbb{P} 不是 σ 可加。
- 3. $A_n \in \mathcal{F}, n \geq 1$, $A_i \cap A_j = \emptyset, i \neq j$, $\sum_{n \geq 1} A_n \in \mathcal{F}$ 。那么至多一个 A_n 是余有限的。否则,根据上一小问的证明,两余有限集必有交。若 A_n 中没有余有限集,那么 $\sum_{n \geq 1} A_n$ 至多可数,而 Ω 为不可数集,从而 $\sum_{n \geq 1} A_n$ 不为余有限集。又由 $\sum_{n \geq 1} A_n \in \mathcal{F}$,则 $\sum_{n \geq 1} A_n$ 为有限集,此时 A_n 中只有有限个集合非空,且为有限集。那么 $\mathbb{P}(\sum_{n \geq 1} A_n) = 0 = \sum_{n \geq 1} \mathbb{P}(A_n)$ 。若 A_n 中有余有限集,不妨假设 A_1 余有限,那么 $\mathbb{P}(\sum_{n \geq 1} A_n) = 1 = \sum_{n \geq 1} \mathbb{P}(A_n)$