1

Assignment-7

Vipul Kumar Malik

Abstract—This document explains the concept of tracing central conics using Affine transformation and Eigenvalue Decomposition.

Download all python codes from

https://github.com/vipulmalik8569/MT-EE5609

and latex-tikz codes from

https://github.com/vipulmalik8569/MT-EE5609

1 Problem

Trace the following central conic:

$$x^2 + y^2 + xy + x + y = 1 (1.0.1)$$

2 Solution

General equation of second degree is given by:

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.0.1}$$

In the vector form (1.0.1) can be written as:

$$\mathbf{x}^{T} \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}^{T} \mathbf{x} - 1 = 0$$
 (2.0.2)

By comparing (2.0.1) and (2.0.2) we get:

$$\mathbf{V} = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}, f = -1 \tag{2.0.3}$$

Eigen values for matrix V can be calculated by solving:

$$\begin{vmatrix} 1 - \lambda & \frac{1}{2} \\ \frac{1}{2} & 1 - \lambda \end{vmatrix} = 0 \tag{2.0.4}$$

$$\lambda^2 - 2\lambda + \frac{3}{4} = 0 \tag{2.0.5}$$

$$\lambda_1 = \frac{3}{2}, \lambda_2 = \frac{1}{2} \tag{2.0.6}$$

By doing Eigenvalue Decomposition and Affine Transformation we get :

$$\mathbf{P}^{-1}\mathbf{V}\mathbf{P} = \mathbf{D} = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{pmatrix}$$
 (2.0.7)

$$\mathbf{x} = \mathbf{P}\mathbf{y} + \mathbf{c} \tag{2.0.8}$$

Where the matrix \mathbf{P} is normalised eigenbasis and \mathbf{c} is the center.

By putting the value of \mathbf{x} from (2.0.8) in (2.0.1) we get:

$$(\mathbf{P}\mathbf{y} + \mathbf{c})^T \mathbf{V} (\mathbf{P}\mathbf{y} + \mathbf{c}) + 2\mathbf{u}^T \mathbf{x} + f = 0$$
 (2.0.9)

Further solving this we get:

$$\mathbf{Vc} + \mathbf{u} = 0 \implies \mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \tag{2.0.10}$$

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \tag{2.0.11}$$

As

$$\left| \mathbf{V} \right| = \begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} = \frac{3}{4} > 0$$
 (2.0.12)

Equation (2.0.11) forms an ellipse centered at origin with major and minor axis given as :

$$a = \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}}$$
 (2.0.13)

$$b = \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_2}}$$
 (2.0.14)

Using Gauss Jordan Elimination on matrix V:

$$\stackrel{R_2 \leftarrow \frac{1}{2}R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{1}{2} & : & 1 & 0 \\ 0 & \frac{-3}{4} & : & \frac{1}{2} & -1 \end{pmatrix}$$
(2.0.15)

$$\stackrel{R_2 \leftarrow \frac{-4}{3}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{1}{2} & : & 1 & 0 \\ 0 & 1 & : & \frac{-2}{3} & \frac{4}{3} \end{pmatrix}$$
(2.0.16)

$$\stackrel{R_1 \leftarrow R_1 - \frac{1}{2}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & : & \frac{4}{3} & \frac{-2}{3} \\ 0 & 1 & : & \frac{-2}{3} & \frac{4}{3} \end{pmatrix}$$
(2.0.17)

Therefore,

$$\mathbf{V}^{-1} = \begin{pmatrix} \frac{4}{3} & \frac{-2}{3} \\ \frac{4}{3} & \frac{-2}{3} \end{pmatrix} \tag{2.0.18}$$

Using (2.0.10) and (2.0.18) we get:

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} = -\begin{pmatrix} \frac{4}{3} & \frac{-2}{3} \\ \frac{4}{3} & \frac{-2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{-3}{10} \\ \frac{-3}{10} \end{pmatrix}$$
(2.0.19)

By putting the values of \mathbf{u} , \mathbf{V}^{-1} , f, λ_1 and λ_2 in (2.0.13) and (2.0.14) respectively we get :

$$a = \sqrt{\frac{\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{4}{3} & \frac{-2}{3} \\ \frac{4}{3} & \frac{-2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} - 1}{\frac{3}{2}}} = \frac{9}{10}$$
 (2.0.20)

$$b = \sqrt{\frac{\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{4}{3} & \frac{-2}{3} \\ \frac{4}{3} & \frac{-2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} - 1}{\frac{1}{2}}} = \frac{8}{5}$$
 (2.0.21)

In the transformed space with Eigenbasis, an ellipse centered at origin with major and minor axis as a and b is traced as 'Standard Ellipse' in the plot.

And after doing Affine Transformation on \mathbf{y} as in (2.0.8) we get our 'Actual Ellipse' centered at \mathbf{c} shown in the plot.

Fig. 0: Standard Ellipse centered at origin and Actual Ellipse centered at (-0.3, -0.3).