

initial domains	CA RBYO	NV RBYO	AZ RBYO	UT RB40	NM RBYO	CO RBYO	TX RBYO
After (A = B	В	RYO	RYO	RB40	rbyo	RBYO	RBYO
After AZ=0	В	RT	0	RBY	rby	RBYO	RBYO

	CA	NV	AZ	UT	NM	Co	TX
initial domains	RBYO						
After CA = B	В	R40	RYO	RB40	rbyo	RBYO	RBYO
After AZ=0	В	RY	0	RBY	rby	RBYO	RB40

After CA = B Quenc= (CA, NV) (CA, AZ), NV = RYO, AZ = RYO After AZ=0 Onene = (AZ, NV), (AZ, UT), (AZ, NM) NU = RY, UT = RBY, NM = RBY

3.	ιA	<i>N</i> 4	AZ	UT	NM	CO	TX	
After CA=B	В	{(A=B}	CA =	3 Ø	ø	φ	ø	
After Az=O	В	{(A=B,AZ=0	0	{6=5A}	\$AZ=0}	Ø	ø	

```
4. a. Assume we have 2 classes: Student and Course class Student {

Self. namc = " # Student's name

Self. courses = [] # Student's course list

Self. workday = [] # Days this Student work

class Course {

Self. name = " # Course name

Self. time = " # Start & end time of the course

Self. day = " # day of the course

Self. capacity = 30 # Capacity of the course
```

Self. Size = 0 # Current Size of the course

CSP Specifications: X = {Student 1, Student 2,..., Student n } # instance of Student Dx = {All Student names, course lists, workdays } # instance variables of Y = {Course 1, Course 2, Course 3, Course 4} # instances of Course,

Dy = {(ourses name, time, day, capacity, size } # instance variables

c = {

for 3 student in X: # the only overlapping courses are 1 and 3 if 1 in Student courses and 3 in Student. Courses:

Ceturn False

for 3 course in Y: # in case me class is full if course. Size > course. Capacity:

(eturn False

for 3 Student in X:

for a course in Y: # in case students need to work if Student workday overlaps (ourse day:

(eturn False

b. Create an encapsulated variable U cartisan product $U = X \times Y$ We can binarize the constraint by multiplying X and Y.