The Geometry of Vector Spaces

June 16, 2017

1 Null Spaces, Column Spaces, and Linear Transformations

The subspaces of \mathbb{R}^n usually arise in one of two ways: (1) as the set of all solutions to a system of homogeneous linear equations or (2) as the set of all linear combinations of certain specified vectors.

1.1 The Null Space of a Matrix

The set of x that satisfy Ax = 0 is called the null space of the matrix A.

Definition

The null space of an $m \times n$ matrix A, written as Nul A, is the set of all solutions to the homogeneous equation Ax = 0. In set notation,

Nul A = $\{x : x \text{ is in } \mathbb{R}^n \text{ and } Ax = 0\}$

A more dynamic description of Nul A is the set of all \boldsymbol{x} in \mathbb{R}^n that are mapped into the zero vector of \mathbb{R}^m via the linear transformation $\boldsymbol{x} \mapsto A\boldsymbol{x}$.

Theorem

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

1.2 An Explicit Description of Nul A

There is no obvious relation between vectors in Nul A and the entries in A. Nul A is defined implicitly, because it is defined by a condition that must be checked. No explicit list or description of the elements in Nul A is given. However, solving the equation $A\mathbf{x} = \mathbf{0}$ amounts to producing an explicit description of Nul A.

When Nul A contains nonzero vectors, the number of vectors in the spanning set for Nul A equals the number of free variables in the equation Ax = 0.

1.3 The Column Space of a Matrix

Definition

The column space of an $m \times n$ matrix A, written as Col A, is the set of all linear combinations of the columns of A. If $A = [a_1 \cdots a_n]$, then

 $Col A = Span \{ \boldsymbol{a}_1 \cdots \boldsymbol{a}_n \}$

Theorem

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

1.4 The Contrast Between Nul A and Col A

1.5 Kernel and Range of a Linear Transformation

Definition

A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that

- (i) $T(\boldsymbol{u}+\boldsymbol{v})=T(\boldsymbol{u})+T(\boldsymbol{v})$ for all $\boldsymbol{u},\boldsymbol{vin}\boldsymbol{V},$ and
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for all \mathbf{u} in V and all scalars c.

The kernel (or null space) of such a T is the set of all \boldsymbol{u} in V such that T(u) = 0 (the zero vector in W). The range of T is the set of all vectors in W of the form T(x) for some \boldsymbol{x} in V. If T happens to arise as a matrix transformation-say, $T(\boldsymbol{x}) = A\boldsymbol{x}$ for some matrix A-then the kernel and the range of T are just the null space and the column space of A. The kernel of T is a subspace of V.

2 Linearly Independent Sets; Bases

3 Coordinate Systems

The Unique Representation Theorem

Let $\mathcal{B} = \{\boldsymbol{b}_1, \dots, \boldsymbol{b}_n\}$ be a basis for a vector space V. Then for each \boldsymbol{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\boldsymbol{x} = c_1 \boldsymbol{b}_1 + \dots + c_n \boldsymbol{b}_n \ . \tag{1}$$

Definition

Suppose $\mathcal{B} = \{\boldsymbol{b}_1, \dots, \boldsymbol{b}_n\}$ is a basis for V and \boldsymbol{x} is in V. The coordinates of \boldsymbol{x} relative to the basis \mathcal{B} (or the \mathcal{B} -coordinates of \boldsymbol{x}) are the weights c_1, \dots, c_n such that $\boldsymbol{x} = c_1 \boldsymbol{b}_1 + \dots + c_n \boldsymbol{b}_n$.

- 3.1 A Graphical Interpretation of Coordinates
- 4 The Dimension of a Vector Space
- 5 Rank
- 6 Change of Basis
- 7 Applications to Difference Equations
- 8 Applications to Markov Chains