1 Permutation Groups

Definition

Let A be a set (e.g. $A = \{1, 2, 3, 4, 5\}$). A **permutation** of A is a bijective function $\sigma: A \to A$.

Theorem

A function is bijective if and only if it has a two-sided inverse (i.e. the function is invertible).

Theorem

A function between two finite sets with the same number of elements is injective if and only if the function is surjective.

Example. $A = \{1, 2, 3\}$. A permutation of A might be There are 3! permutations. There are n! permutations of an n-element set.

Theorem: permutation group

Let A be a set. The set permutations of A, denoted by S_A is a group under composition of functions.

Claim. $\tau \circ \sigma$ is a permutation of A.

Proof

Let σ, τ be permutations of A. So σ has a two-sided inverse, σ^{-1} , and so does τ, τ^{-1} . The inverse of $\tau \circ \sigma$ is $\sigma^{-1} \circ \tau^{-1}$. This gives bijectivity. \square

Proof

To show it's a group,

1) the identity of A is id_A where $id_A(a) = a$.

- 2) the inverse is σ^{-1} .
- 3) composition of functions is associative.
- 4) the previous claim shows that it is closed under operation.

Definition: symmetric group

 S_A is the **symmetric group** on A. If $A = \{1, ..., n\}$, we write S_n for S_A . It has the order n!.

Example. S_3 permutations of $\{1,2,3\}$ with 6 elements. See iPad. S_3 is a nonabelian group with order 6, which is the smallest nonabelian group. V_4 is the smallest noncyclic group.