昆明理工大学 2020 级高等数学 A(1)试题 A 卷参考答案及评分细则

一、填空题(每题4分,共40分)

1. 0; 2. 充分; 3. 1; 4.
$$2xf'(x^2)$$
; 5. $x = \frac{3}{4}$; 6. (0.0) ;

$$7.e^{x^2} + C$$
; 8. $2\left(1 - \frac{1}{e}\right)$; 9. $0 < q < 1$; 10. $y = C_1e^{-3x} + C_2e^x$.

二、计算题(每题6分,共18分)

$$= e \lim_{x \to 0} \left[(1 + \frac{x}{e^x})^{\frac{e^x}{x}} \right]^{\frac{1}{e^x}} (4 \%)$$

$$=e^2$$
.....(6 分)

12.
$$\widetilde{R}: F'(0) = \lim_{x \to 0} \frac{F(x) - F(0)}{x} = \lim_{x \to 0} \frac{\int_0^x \frac{\sin t}{t} dt}{x}$$
 (2 f)

$$\frac{\sin x}{x}$$

$$=\lim_{x\to 0}\frac{x}{1}$$
....(4 \(\phi\))

13.
$$\text{M}: \quad y' = \frac{e^y}{1 - xe^y}$$
(2 $\text{ }\%$)

$$y'' = \frac{e^{y} \cdot y' (1 - xe^{y}) - e^{y} (-e^{y} - xe^{y}y')}{(1 - xe^{y})^{2}}$$
 (4 分)

$$= \frac{e^{y}y' + e^{2y}}{\left(1 - xe^{y}\right)^{2}} = \frac{e^{2y}\left(2 - xe^{y}\right)}{\left(1 - xe^{y}\right)^{3}} \qquad (6 \%)$$

三、计算题(每题6分,共18分)

14.
$$\Re: \ \diamondsuit \sqrt{5-4x} = t$$
, $x = \frac{1}{4}(5-t^2)$, $dx = -\frac{1}{2}tdt$(2 $\%$)

当
$$x = -1$$
 时, $t = 3$; 当 $x = 1$ 时, $t = 1$ ………………………(4 分)

原式=
$$\int_{3}^{1} \frac{\frac{1}{4}(5-t^{2})}{t} \left(-\frac{1}{2}t\right) dt = \frac{1}{8} \int_{1}^{3} (5-t^{2}) dt = \frac{1}{6}$$
.....(6分)

15. 解: 原式=
$$\int e^{-x} d \sin x = e^{-x} \sin x - \int \sin x de^{-x}$$
(2 分)

$$= e^{-x} \sin x - \left(e^{-x} \cos x - \int \cos x de^{-x}\right)$$

$$= e^{-x} \sin x - e^{-x} \cos x - \int e^{-x} \cos x dx \dots (4 \%)$$

$$\int e^{-x} \cos x dx = \frac{1}{2} e^{-x} \left(\sin x - \cos x\right) + C \dots (6 \%)$$
16. $\Re: \quad y = e^{-\int \cos x dx} \left(\int e^{-\sin x} \cdot e^{\int \cos x dx} dx + C\right) \dots (4 \%)$

$$= e^{-\sin x} \left(\int e^{-\sin x} \cdot e^{\sin x} dx + C\right) = e^{-\sin x} \left(x + C\right) \dots (6 \%)$$

四、计算与应用题(每题8分,共24分)

17. 解:对应的齐次方程的特征方程为 $r^2 - 5r + 6 = 0$, $r_1 = 2$; $r_2 = 3$,

对应的齐次方程的通解为
$$Y = C_1 e^{2x} + C_2 e^{3x}$$
;(4 分)

由于 $\lambda=2$ 是特征方程的单根,设 $y^*=x(b_0x+b_1)e^{2x}$,代入原方程得:

$$b_0 = -\frac{1}{2}$$
, $b_1 = -1$

所以
$$y^* = x \left(-\frac{1}{2}x - 1 \right) e^{2x}$$
(7 分)

原微分方程的通解:
$$y = C_1 e^{2x} + C_2 e^{3x} - \frac{1}{2} (x^2 + 2x) e^{2x}$$
(8 分)

18. 解:对方程两边关于 x 求导得 $e^{y}y'+y+xy'=0$

将x=0代入原方程得y=1,

再将
$$x = 0$$
, $y = 1$ 代入上式得 $y'|_{x=0} = -\frac{1}{e}$ (4 分)

再关于
$$x$$
求导可得 $e^y y'^2 + e^y y'' + y' + y' + xy'' = 0$ (7 分)

所以
$$y''(0) = \frac{1}{e^2}$$
(8 分)

19. 解: 平面 x-2y+4z-7=0 的法向量: $n_1=(1,-2,4)$

平面
$$3x + 5y - 2z + 1 = 0$$
 的法向量: $n_2 = (3,5,-2)$(2分)

所求平面的法向量
$$n = n_1 \times n_2 = \begin{vmatrix} i & j & k \\ 1 & -2 & 4 \\ 3 & 5 & -2 \end{vmatrix} = (-16,14,11).....(6 分)$$

则所求平面方程为
$$16x-14y-11z-65=0$$
。.....(8 分)