제 4 교시

과학탐구 영역(화학Ⅱ)

성명

수험 번호

제[]선택

1. 다음은 수소 연료 전지에 대한 설명이다.

수소 연료 전지는 수소 (H_2) 를 연료로 사용하여 전기 에너지를 발생시키는 장치이다. 광촉매를 이용하여 🗍 을/를 광분해 하면 이 전지의 연료인 수소를 얻을 수 있다.

다음 중 ①으로 가장 적절한 것은?

- ① 물(H₂O)
- ② 네온(Ne)
- ③ 질소(N₂)

- ④ 헬류(He)
- ⑤ 이산화 탄소(CO₂)
- **2.** 그림은 Ca(s), C(s), 다이아몬드, $I_2(s)$ 의 결정 구조를 모형으로 나타낸 것이다. Ca(s)의 단위 세포는 한 변의 길이가 a인 정육면체 이다.

C(s, 다이아몬드)Ca(s)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>-

- \neg . Ca(s)은 체심 입방 구조이다.
- L. C(s, 다이아몬드)는 공유 결합에 의해 이루어진 결정이다.
- \Box . $I_2(s)$ 은 분자 결정이다.
- ① ¬
- ② L

- 37, 5 4 4, 5 57, 4, 5
- **3.** 다음은 25 °C, 1 atm에서 A(g)로부터 B(g)가 엔탈피스 생성되는 반응에 대한 열화학 반응식이고, 그림은 25 ℃, 1 atm에서 반응의 진행에 따른 엔탈피를 나타낸 것이다.

$$A(g) \rightleftharpoons B(g) \quad \Delta H$$

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

---<보 기>-

- □. 정반응은 흡열 반응이다.
- L. $\Delta H = (x y) \text{ kJ이다}$.
- ㄷ. 역반응의 활성화 에너지는 정반응의 활성화 에너지보다

4. 그림은 25 ℃에서 3가지 염의 0.1 M 수용액을 분류하는 과정을 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 25 ℃에서 물의 이온화 상수(K_w)는 1×10^{-14} 이다.)

------<보 기>--

- ¬. X는 CH₃COONa(aq)이다.
- ㄴ. '염의 가수 분해가 일어나는가?'는 □으로 적절하다.
- ㄷ. Y의 pOH > 7이다.
- ① ¬
- (2) L
- ③ ⊏
- ④ 7, ∟ ⑤ ∟, ⊏
- **5.** 다음은 25 ℃, 1 atm에서 CH₄(g)과 Cl₂(g)가 반응하여 CH₃Cl(g)과 HCl(g)가 생성되는 반응을 구조식으로 나타낸 열화학 반응식과 4가지 결합의 결합 에너지이다.

결합	C-H	Cl — Cl	C - C1	H – C1
결합 에너지(kJ/mol)	a	b	c	d

- 이 자료로부터 구한 x는?
- ① a+b+c+d
- ② a+b-c-d
- 3 a-b-c+d
- (4) -a+b+c-d (5) -a-b+c+d
- **6.** 표는 3가지 물질 (가)~(다)에 대한 자료이다.

물질	(プ)	(나)	(다)
분자식	$\mathrm{H_2O}$	CCl ₄	CBr_4
분자량	18	154	332
기준 끓는점(℃)	100	77	190

액체 상태의 (가)~(다)에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

- ㄱ. 분자 사이에 수소 결합이 존재하는 물질은 1가지이다.
- ㄴ. 기준 끓는점이 (다)가 (나)보다 높은 주된 이유는 (다)가 (나)보다 분자 사이의 분산력이 크기 때문이다.
- ㄷ. 분자 사이의 인력이 가장 큰 것은 (가)이다.

2 (화학Ⅱ)

과학탐구 영역

7. 다음은 학생 A가 수행한 탐구 활동이다.

[가설]

○ NaCl(aq)과 NaCl(l)을 각각 전기 분해할 때 (+)극에서 생성 되는 물질은 서로 같고. (-)극에서 생성되는 물질도 서로 같다.

[탐구 과정 및 결과]

○ NaCl(aq)과 NaCl(l)의 전기 분해 결과를 조사하였다.

물질	NaCl(aq)	NaCl(l)
(+)극에서 생성된 물질	9	\bigcirc
(-)극에서 생성된 물질	$H_2(g)$	Na(l)

[결론]

○ 탐구 결과가 가설에 어긋나므로 가설은 옳지 않다.

학생 A의 탐구 과정 및 결과와 결론이 타당할 때, 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

----<보 기>-

- ㄱ. ①은 Cl₂(g)이다.
- L. NaCl(aq)을 전기 분해할 때 산화 반응은 (+)극에서 일어
- □. NaCl(l)을 전기 분해할 때 (-)극에서 일어나는 반응의 화학 반응식은 $Na^+(l) + e^- \rightarrow Na(l)$ 이다.
- (3) 7. L (4) L. L (5) 7. L. L \bigcirc ② □

8. 그림 (가)는 강철 용기에 A(g)와 B(g)를 넣은 상태를, (나)는 (가)의 온도가 2T K일 때 A(g)의 부분 압력과 3T K일 때 B(g)의 부분 압력을 나타낸 것이다. (가)에서 용기 속 혼합 기체의 전체 압력은 $\frac{7}{5}$ atm이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, A와 B는 반응하지 않는다.)

- $\neg. P = \frac{2}{5} \circ | \mathbf{T} |.$
- ㄴ. $(가)에서 A의 몰 분율은 <math>\frac{5}{7}$ 이다.
- ㄷ. 분자량은 B가 A의 5배이다.
- 37, 64, 57, 6, 6 ② ⊏ \bigcirc

9. 그림 (가)는 10% A(aq) 300 g을, (나)는 (가)에 A(s) x g을 추가하여 모두 녹인 수용액을, (다)는 (나)에 물 yg을 추가한 수용액을 나타낸 것이다. A의 화학식량은 100이다.

x+y는?

- ① 330 ② 264
- ③ 230
- **4** 204
- (5) 180
- 10. 표는 $X(l) \sim Z(l)$ 의 증기 압력 자료이고, 그림은 $X(l) \sim Z(l)$ 중 2가지 물질의 증기 압력 곡선 ①과 ①을 나타낸 것이다.

증기 압력		온도(℃)			
(n	nmHg)	X(l)	Y(l)	Z(l)	
	100	34	51		
	760		100	34	

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ㄱ. \bigcirc 은 Y(l)의 증기 압력 곡선이다.
- L. Z의 기준 끓는점에서 Y(l)의 증기 압력은 100 mmHg보다
- □. 60 °C, 760 mmHg에서 X의 안정한 상은 기체이다.
- ① ¬ ② □
- 37, 4 4, 5 7, 4, 5
- 11. 다음은 25℃, 1 atm에서 3가지 열화학 반응식과 이와 관련된 물질의 생성 엔탈피에 대한 자료이다.

[열화학 반응식]

- (가) $C(s, 흑연) + O_2(g) \rightarrow CO_2(g)$
- $\Delta H = a \, kJ$
- (나) $2CO(g) \rightarrow 2C(s, 흑연) + O_2(g)$
- $\Delta H = b \, \text{kJ}$
- $(\Gamma_1) \operatorname{CO}(g) + \frac{1}{2} \operatorname{O}_2(g) \to \operatorname{CO}_2(g)$
- $\Delta H = c \, kJ$

[자료]

- C(s, 흑연)과 O₂(g)의 생성 엔탈피는 0이다.
- 생성 엔탈피 비교: CO₂(g) < CO(g) < 0
- 25 ℃, 1 atm에서 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, C, O의 원자량은 각각 12, 16이다.) [3점]

一<보 기>-

- ㄱ. $\mathrm{C}(s,$ 흑연)과 $\mathrm{O}_2(g)$ 가 반응하여 $\mathrm{CO}_2(g)$ 22 g이 생성될 때의 반응 엔탈피 (ΔH) 는 $\frac{a}{2}$ kJ이다.
- \Box . 2a+b < 0이다.
- \bigcirc
- 2 = 3 7, L 4 L, E 5 7, L, E

12. 다음은 A(g)로부터 B(g)와 C(g)가 생성되는 반응의 화학 반응식과 반응 속도식이다.

 $2A(g) \rightarrow bB(g) + C(g)$ (b는 반응 계수)

v = k[A] (k는 반응 속도 상수)

그림은 온도 T에서 강철 용기에 A(g)와 B(g)를 넣은 초기 상태를, 표는 반응이 진행될 때 반응 시간에 따른 B(g)의 몰 분율과 용기 속 혼합 기체의 전체 압력을 나타낸 것이다.

반응 시간	0	t	2t
B(g)의 몰 분율	$\frac{1}{2}$	x	14 19
전체 압력(상댓값)	16	18	19

 $\frac{b}{r}$ 는? (단, 온도는 T로 일정하고, 역반응은 일어나지 않는다.)

- ① $\frac{3}{2}$ ② $\frac{9}{4}$ ③ 3 ④ ④ $\frac{9}{2}$

- 13. 표는 온도와 압력에 따른 물질 A와 B의 안정한 상을 모두 나타낸 자료 이고, 그림 (가)와 (나)는

압력	t_1 $^{\circ}$ 에서	t_2 $^{\circ}$ 에서	
(atm)	A의 안정한 상	B의 안정한 상	
P_1	9	고체, 액체, 기체	
P_2	고체, 액체, 기체	액체	

A와 B의 상평형 그림을 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-<보 기>-

- ㄱ. 은 기체이다.
- ㄴ. t_2 °C, P_1 atm에서 A의 안정한 상의 수는 2이다.
- \Box . B의 녹는점은 P_2 atm에서가 1 atm에서보다 높다.
- \bigcirc
- ② L
- 37, 5 4 4, 5 5 7, 6, 5

- 14. 표는 A(aq) (가)와 (나)에 대한 자료이다. A의 화학식량은 M이고, t $^{\circ}$ 에서 물의 증기 압력은 P atm이다.

A(aq)	퍼센트 농도(%)	1 atm 에서의 어는점 내림(℃)	<i>t</i> [℃] 에서의 증기 압력(atm)
(プ)	$\frac{300}{103}$	9k	$\frac{1000}{1009}P$
(나)		xk	$\frac{200}{201}P$

 $M \times x$ 는? (단, 물의 분자량은 18이다. A는 비휘발성, 비전해질 이고, 용액은 라울 법칙을 따른다.) [3점]

- 180
- 2 240
- 3 270
- 4 300
- **⑤** 360

15. 다음은 A(g)로부터 B(g)가 생성되는 반응의 화학 반응식과 농도로 정의되는 평형 상수(K)이다.

$$2A(g) \rightleftharpoons B(g) \quad K$$

그림 (γ) 는 T_1 K에서 실린더에 A(g)가 들어 있는 초기 상태를, (나)는 (가)에서 반응이 진행되어 도달한 평형 상태를, (다)는 (나)에서 피스톤을 고정하고 온도를 T_2 K로 변화시킨 후 반응이 진행되어 도달한 새로운 평형 상태를 나타낸 것이다. (나)에서 B(g)의 부분 압력은 $\frac{3}{8}$ atm이고, (다)에서 A(g)의 몰 분율은 $\frac{3}{7}$ 이다.

 $\frac{T_1 \text{ K 에서의 } K}{T_2 \text{ K 에서의 } K}$ 는? (단, 외부 압력은 일정하고, 피스톤의 질량과 마찰은 무시한다.)

- ① $\frac{27}{100}$ ② $\frac{3}{10}$ ③ $\frac{9}{25}$ ④ $\frac{2}{5}$ ⑤ $\frac{9}{20}$

16. 다음은 약산 HA의 이온화 반응식과 25 $^{\circ}$ 에서의 이온화 상수(K_{a}) 이다.

 $HA(aq) + H_2O(l) \rightleftharpoons A^-(aq) + H_3O^+(aq) \qquad K_2$

수용액 (가)~(다)는 0.1 M HA(aq)과 0.1 M NaA(aq)의 부피를 달리하여 혼합한 것이다. 그림은 (가)와 (나)의 $\frac{[HA]}{[A]}$ 와 pH를 나타낸 것이고, (다)의 $\frac{[HA]}{[A]} = 2$ 이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 수용액의 온도는 25℃로 일정하다.)

---<보 기>-

- $\neg K_a = 1 \times 10^{-x}$ 이다.
- ㄴ. (나)에 소량의 NaOH(s)을 첨가하면 $\frac{[HA]}{[\Lambda]} < 1$ 이다.
- \Box . (다)의 pH = x a이다.
- 1 7
- 2 = 37, = 4 = 57, = 5

4 (화학Ⅱ)

X(s)를 첨가하였다.

과학탐구 영역

17. 다음은 A(g)로부터 B(g)와 C(g)가 생성되는 반응의 화학 반응식과 반응 속도식이다.

 $A(g) \rightarrow B(g) + C(g)$ v = k[A] (k는 반응 속도 상수) 표는 온도 T에서 강철 용기에 A(g)를 넣고 반응시킬 때, 반응 시간에 따른 $\frac{P_{\rm B}+P_{\rm C}}{P_{\rm A}}$ 를 나타낸 자료이다. $P_{\rm A}\sim P_{\rm C}$ 는 각각 ${\rm A}(g)\sim$ C(g)의 부분 압력이고, 2t와 3t 사이의 특정 시점에 소량의 촉매

반응 시간	0	t	2t	3t
$\frac{P_{\rm B} + P_{\rm C}}{P_{\rm A}}$	0	2	6	18

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 T로 일정하고, 촉매의 부피는 무시한다.) [3점]

----<보 기>-

- \neg . X(s)는 정촉매이다.
- ㄴ. $\frac{2t 일 \text{ 때 } A(g) 의 순간 반응 속도}{t 일 \text{ 때 } A(g) 의 순간 반응 속도} = \frac{1}{2}$ 이다.
- \Box . $\frac{2t \sim 3t}{t \sim 2t}$ 동안 A(g)의 평균 반응 속도 $=\frac{3}{5}$ 이다.

- **18.** 다음은 A(g)로부터 B(g)와 C(g)가 생성되는 반응의 화학 반응식이다.

$$2A(g) \rightleftharpoons bB(g) + C(g)$$
 (b는 반응 계수)

그림 (γ) 는 실린더 속 $A(g) \sim C(g)$ 가 평형을 이루고 있는 상태를, (나)는 (가)의 피스톤 위에 추를 올려 외부 압력을 증가시킨 후의 평형 상태를 나타낸 것이다. (나)에서 A(g)와 B(g)의 부분 압력은 각각 $\frac{1}{2}$ atm이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하다.) [3점]

----<보 기>-

- ㄱ. *b* = 2이다.
- $L. \frac{(7)에서 [A]}{(나)에서 [C]} = \frac{2}{3}$ 이다.
- \Box . (가)의 실린더에 Ne(g)을 첨가하면 역반응이 우세하게 진행되어 새로운 평형 상태에 도달한다.
- ① ¬ ② L
- 3 = 4 7, = 5 =, =

19. 다음은 A(g)로부터 B(g)가 생성되는 반응의 화학 반응식과 반응 속도식이다.

$$A(g) \rightarrow 2B(g)$$
 $v = k[A]$ (k는 반응 속도 상수)

그림은 서로 다른 온도 T_1 과 T_2 에서 강철 용기 (가)와 (나)에 A(g)와 B(g)를 넣은 초기 상태를, 표는 (가)와 (나)에서 반응이 진행될 때 반응 시간(t)에 따른 B(g)의 질량 백분율을 나타낸 것이다. $t = a \min$ 일 때 (나)에 들어 있는 B(g)의 양은 $2n \mod$ 이다.

 용기	B(g)의 질량 백분율(%)		
8/1	$t = 0 \mid t = a \min$		$t = 2a \min$
(フト)		52	76
(나)	x	80	

 $x \times \frac{(\mathsf{L})}{(\mathsf{L})}$ 에 들어 있는 전체 기체의 질량(g) 은? (단, 온도는 각각 (가)에 들어 있는 전체 기체의 질량(g) T_1 과 T_2 로 일정하고, 역반응은 일어나지 않는다.)

- (1) 24
- (2) 21
- (3) 20
- **4** 18
- (5) 15
- 20. 다음은 기체와 관련된 실험이다.

[화학 반응식]

 \circ A(g) + 3B(g) \rightarrow 2C(g)

[실험 과정]

(7) 온도 TK에서 꼭지로 분리된 실린더와 두 강철 용기에 $A(g) \sim C(g)$ 를 그림과 같이 넣는다.

- (나) 꼭지 1을 열고 반응을 완결시킨다.
- (다) 꼭지 2를 열고 고정 장치를 제거한 후, 반응을 완결시킨다.

[실험 결과]

0 각 과정 후 식립더 속 기체의 부부 안력

과정	부분 압력(atm)			
473	A (g)	B(g)	C(g)	
(フト)		x	5P	
(나)	0	$\frac{2}{3}$	$\frac{2}{3}$	
(다)			8 <i>P</i>	

○ (다) 과정 후 혼합 기체의 전체 압력과 부피는 각각 1 atm과 $\frac{25}{6}V$ L이다.

 $a \times x$ 는? (단, 온도는 일정하고, 연결관의 부피는 무시한다.) [3점]

- $2\frac{21}{8}$ $3\frac{7}{2}$ $4\frac{21}{4}$

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인