EE 538 Spring 2020 Analog Circuits for Sensor Systems University of Washington Electrical & Computer Engineering

Instructor: Jason Silver

Midterm

Please show your work.

Problem 1: Common-emitter amplifier

For the following, V_{CC} = 5V, V_S = 1V, R_S = 1k Ω , I_{bias} = 100 μ A, R_C = 10k Ω , C_L = 10pF, β = 100, V_A = 100V, V_T = 25mV, and I_S = 10⁻¹⁶A.

- a) (10 points) Calculate the input impedance of the amplifier, Z_{in} . Note: This does not include R_{S} .
- b) (10 points) Find an expression for the transfer function, V_{out}/V_S . Be sure to account for attenuation due to Z_{in} .
- c) (10 points) Calculate the DC gain and transit frequency f_T .

$$g_m = \frac{100\mu A}{25mV} = 4mS$$

$$Z_{in} = \frac{160}{4uS} = 25k\Omega$$

b.
$$\frac{Vin}{Vs} = \frac{Zin}{Rs + Zin}$$
; $\frac{Vout}{Vin} = -gm(Rc||Vol||\frac{1}{sc_L})$

$$= \frac{-gm(Rc||Vo||\frac{1}{sc_L})}{Rc||Vo|}$$

$$= \frac{-gm(Rc||Vo||\frac{1}{sc_L})}{Rc||Vo|}$$

$$= \frac{-gm(Rc||Vo||\frac{1}{sc_L})}{Rc||Vo|}$$

$$= \frac{-gm(Rc||Vo||\frac{1}{sc_L})}{Rc||Vo|}$$

$$c. \frac{V_0}{V_s}(s=0) = \frac{Z_{in}}{Z_{in}+K_s} \left(-g_m R_c||V_0\right) \quad r_0 = \frac{VA}{I_c} = IM\Omega$$

$$\approx \frac{Z_{in}}{Z_{in}+R_s} \left(-g_m R_c\right)$$

$$\approx \frac{Z_{in}}{Z_{in}+R_s} \left(-g_m R_c\right)$$

fr ~
$$\frac{Zin}{Zin+Rs}$$
 (gm. Rc) $\frac{1}{2\pi Rc.CL}$

$$Zin = 25k\Omega$$

$$Vo = \frac{VA}{T} = 1M\Omega$$

Problem 2: Opamp nonidealities

Assume the opamp has infinite gain and bandwidth. $V_{OS} = 1 \text{mV}$, and $I_B = -1 \text{nA}$. $R_f = 10 R_i$.

- a) (15 points) Determine an expression for the output offset voltage, including the contributions from both V_{OS} and I_B .
- b) (10 points) Assuming $R_S = 0$, calculate values for R_i and R_f that result in zero output offset.
- c) (10 points) Assuming R_S = 1k and V_{OS} = 0, calculate values for R_i and R_f that result in zero output offset.

offset.

Nos:

$$R_1$$
 $V_{004}, v_{00} = \left(1 + \frac{R_f}{R_1}\right) V_{00}$
 $V_{00} = \frac{R_f}{R_1}$
 $V_{00} = \frac{R_f}{R_1}$
 $V_{00} = \frac{R_f}{R_1}$
 $V_{00} = \frac{R_f}{R_2}$
 $V_{00} = \frac{R_f}{R_1}$
 $V_{00} = \frac{R_f}{R_2}$
 $V_{00} = \frac{R_f}{R_2}$

$$V_{0ut_{10S}} = \left(1 + \frac{Rf}{R_i}\right) v_{0S} + I_{g} \left(Rf - R_{s}\left(1 + \frac{Rf}{R_i}\right)\right)$$

b.
$$R_s = 0$$

$$Vout_{10s} = \left(1 + \frac{Rf}{R_i}\right) Vos + Jg \cdot Rf = 0$$

$$= 11 \cdot Vos - 1 vA \cdot Rf = 0$$

$$(1 Vos = 1)$$

$$Rf = 1$$

$$Rf = \frac{II \cdot ImV}{IuA} = \left[\frac{IIn\Omega}{IuA} \right]$$

$$Ri = \frac{Rf}{Io} = \frac{I.IM\Omega}{Io}$$

C.
$$V_{out_1os} = IB\left(RI - RS\left(1 + \frac{RI}{R_1}\right)\right) = 0$$

$$Rf = RS\left(1 + \frac{Rf}{R_i}\right)$$

$$Rs = \frac{R_f \cdot R_i}{R_f + R_i} = \frac{10R_i^2}{11R_i} = \frac{10}{11}R_i$$

Problem 3. Opamp AC and transient analysis

Figure 3a. Non-inverting amplifier

Figure 3b. Opamp open-loop frequency response

Figure 3. Input waveform for c) and d)

Assume ideal input/output resistances (R_{in} and R_o) for the opamp. Let R_f = 10 R_{in} .

- a) (10 points) Determine the DC gain and the 3dB frequency of the closed loop transfer function (V_{out}/V_{in}) .
- b) (7.5 points) Provide an expression for the transient response of the amplifier for a voltage step input of 0 to 100mV. Sketch the response and label all relevant times/voltages.
- c) (10 points) Assume the amplifier is driven by the input waveform shown in Fig 3c. Determine the minimum period T for which 0.1% settling is achieved during each half-period (integer multiples of T/2). Sketch the output waveform.
- d) (7.5 points) Calculate the total worst-case error in the output voltage (at the end of each half-period) if the resistors have a tolerance of 0.1%.

a.
$$\beta = \frac{R_1}{R_1 + R_1} = \frac{1}{11}$$
; f_{33B,CL} = $\beta \cdot f_T = \frac{\beta \cdot 10MHz}{9094Hz}$
 $ACL = \frac{AOL}{1 + \beta AOL} \approx \frac{10.9999717}{1 + \beta AOL}$
b. $Vout = 0.17 \cdot (1 - e^{-t/T})$, where $T = \frac{1}{2\pi H}$

$$T/2 = -\ln(0.001) \cdot 7 \approx 1.21 \mu s$$

$$A_{CL} = 1 + \frac{10(1-0.001)}{1+0.001} \approx 10.98 \text{ V/V}$$

$$E_{VVOV} = 1.1 - 1.097 \times 100\% = 0.27\%$$