The Foundations of Algebra's Prequisite Course

Shi Boyuan

September 23, 2025

Contents

1	$Th\epsilon$	The Foundations of Algebra		
	1.1	The Prerequisite Course		2
		1.1.1	Classical set Theory	2
		1.1.2	Elementary Number Theory	6
		1.1.3	Ring	7

Chapter 1

The Foundations of Algebra

1.1 The Prerequisite Course

Preliminaries. This Course is taught by Luosw and its purpose is to introduce basic concepts in fundations of algebra

What is mathematics? Bourbaki says: In mathematics we study Structures defined on sets Maps preserving structures

1.1.1 Classical set Theory

Learning classical set theory can be divided into two parts

The relation and operation between sets

$$\subseteq$$
 \times \sqcup $P(S)$ or 2^S \cup \cap

The set-functions

$$A \longleftrightarrow B \quad A \hookrightarrow B \quad A \twoheadrightarrow B$$

Relations and Operations between sets

Definition 1.1.1 Direct Product

Direct Product (\times)

Definition 1.1.2 Disjoint union or coproduct

Disjoint union or coproduct (⊔)

Remark 1.1.1. There are some relations between product and coproduct. An explanation will be given later.

Remark 1.1.2. if $A \cap B = \emptyset$, then $A \cup B = A \sqcup B$

Definition 1.1.3 Power Sets

Power Sets, P(A) or 2^A

Remark 1.1.3. $P(\mathbb{N})$ is special. It's the first uncountable set discovered by our mankind

Mapping between Sets

Definition 1.1.4 Set-function

Set-functions, Def by $\mathbb{A} \times \mathbb{B}, f : A \to B$

Definition 1.1.5 Image

Image

Definition 1.1.6 Injection and surjection

Injection and surjection

Injective $f:A\hookrightarrow B$

Surjective $f: A \rightarrow B$

Definition 1.1.7 Bijection or isomorphism

Bijection or isomorphism $f: A \leftrightarrow B$

Example 1.1.1. $A \to 0 \times A$ is bijection, and $A \cong \{0\} \times A$

 $\mathbb{A} \hookrightarrow \{0,1\} \times \mathbb{A}, a \longmapsto (0,a), which is a injection$

$$A \underset{construct \ a \ isomorphism}{\overset{\sim}{\longrightarrow}} \{0\} \times A \underset{inclusion}{\overset{\iota}{\hookrightarrow}} \{0,1\} \times A$$

so we find a decomposition of injection

Equivalence Relation

Example 1.1.2. construct relation < in \mathbb{Z}

Definition 1.1.8 Relation

Relation: A relation on a set \mathbb{S} is defined by $\mathbb{R} \in \mathbb{S} \times \mathbb{S}$, If $(a,b) \in \mathbb{R}$, we say "a and b are related by \mathbb{R} " and we write aRb or $(a,b) \in \mathbb{R}$

Example 1.1.3. " = " in $S: \{(a, a) \mid a \in \mathbb{S}\} \subset \mathbb{S} \times \mathbb{S}$

Definition 1.1.9 Equivalence Relation

Equivalence Relation: If \mathbb{R} is a relation on \mathbb{S} , satisfying

- 1.(reflexivity) aRa
- 2.(symmetry) $aRb \Longrightarrow bRa$
- 3.(transitivity) $aRb, bRc \Longrightarrow aRc$

Remark 1.1.4. The definition's goal is to classify the set by the relation!

Definition 1.1.10 Equivalence Class

Equivalence Class, $[a]_{\alpha}$

Consider $\{[a]_{\sim} \mid a \in \mathbb{S}\}$ as a Classification of sets

Definition 1.1.11 Quotient Set

Quotient Set: $S/\sim=\{[a]_{\sim}\mid a\in\mathbb{S}\}$

Example 1.1.4. $\mathbb{R}/=\cong \mathbb{R}$

Example 1.1.5. Canonical Projection

 $\Pi: S \to S/\sim, s \longmapsto \Pi(s) = [s]_{s}$

Example 1.1.6. $\mathbb{R}^2, \sim : x = x'$

$$\mathbb{R}^2 \to \mathbb{R}^2 / \sim \stackrel{\sim}{\longrightarrow} \mathbb{R}$$

Appearently, $\mathbb{R}^2 \xrightarrow{\mathcal{R}} \mathbb{R}$, Thus we find a dexcomposition of a surjection

Example 1.1.7. we can use $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$, $(p,q) \sim (p',q') \iff pq' = qp'$, $(\mathbb{Z} \times \mathbb{Z} \setminus \{0\}) / \sim to \ construct \ a \ isomorphism \ to \ \mathbb{Q}$

Proposition 1.1.1. If $\mathbb{A} \stackrel{f}{\longrightarrow} \mathbb{B}$ is a set-function, we define a relation \sim_f on \mathbb{A} by $a \sim_f b \stackrel{def}{\Longleftrightarrow} f(a) = f(b)$, then \sim_f is an equivalence relation.

Proof. 1.reflexivity:...

2.symmetry:...

3.transitivity:...

Theorem 1.1.2. Canonical Decomposition

$$\mathbb{A} \overset{projection}{\underset{\longrightarrow}{\longrightarrow}} \mathbb{A} / \sim_f \overset{isomorphism}{\underset{\sim}{\longrightarrow}} Imf \overset{inclusion}{\underset{\downarrow}{\longrightarrow}} \mathbb{B} \Longleftrightarrow \mathbb{A} \overset{f}{\longrightarrow} \mathbb{B}$$

Remark 1.1.5. This conclusion is so fucking elegant!!!! In group theory, $A/\ker f \cong \operatorname{im} f$

Remark 1.1.6. $product \longleftrightarrow coproduct$

The product has a special property called universal property

If there exists \mathbb{C} and two set-functions $p:\mathbb{C}\longrightarrow \mathbb{A},\ q:\mathbb{C}\longrightarrow \mathbb{B}$, then exists a **unique** $\phi:\mathbb{C}\longrightarrow \mathbb{A}\times \mathbb{B}$, satisfying the diagram commutes

These pictures is a interpretation to the special property

1.1.2 Elementary Number Theory

This is the main content of this section.

Divisibility Theory

The Divisibility Theory is derived from the concept of division.

Definition 1.1.12 Divisible

Divisible:
b $\mid a,\!$ and we say " a is divisible by b
 ",we call b is a divisor of a

Proposition 1.1.3. There is some property, but I think it's not significant

Remark 1.1.7.
$$a | b, b | a \iff |a| = |b|$$

If not divisible?

Quotient with Remainder

Theorem 1.1.4. Let $a \in \mathbb{Z}, b \in \mathbb{Z} \setminus 0$, then exists unique $(q, r) \in \mathbb{Z}^2$ satisfying a = bq + r and $0 \le r < |b|$

Proof. I think it's easy
$$\Box$$

1.1.3 Ring

Congruence Modulo

Definition 1.1.13 Congruence Modulo

Congruence Modulo $:\equiv_m$

Consider the quotient set of \mathbb{Z} by \equiv_m ,

$$\mathbb{Z}/\equiv_{m} = \left\{ [0]_{\equiv_{m}}, [1]_{\equiv_{m}}, ..., [m-1]_{\equiv_{m}} \right\}$$

$$\mathbb{Z} = \bigsqcup_{i=0}^{m-1} [i]_{\equiv_{m}} = \bigsqcup_{i=0}^{m-1} \overline{i}$$

what is addition and multiplication?, we can define it as a mapping $f, f : \mathbb{S} \times \mathbb{S} \mapsto \mathbb{S}$, and now we have the definition of these calculations, naturally we will put these calculations(additions and multiplications) on sets, we still need The Addition and Multiplication in \mathbb{Z} 's beautiful properties in new defined operations

Definition 1.1.14 Ring

Ring:A set \mathbb{R} with two calculations +, \cdot satisfying:

1.(a+b) + c = a + (b+c)

2. There exists 0_R

3. There exists -a

4.a + b = b + a

 $5.(a \cdot b) \cdot c = a \cdot (b \cdot c)$

6. There exists 1_R

 $7.(a+b) \cdot c = ac + bc$ and $a \cdot (b+c) = ab + ac$

Then we call $(\mathbb{R}, +, \cdot)$ is a ring

If \cdot satisfies: 8.ab = ba, then we call $(\mathbb{R}, +, \cdot)$ is a commutative ring

Because we define ring from the addition and multiplication in \mathbb{Z} , so we can easily know that $(\mathbb{Z}, +, \cdot)$ is a ring

We can see that the calculation on the ring is the addition and multiplication inherited from the integer, so this can inspire us to define the calculation in $\mathbb{Z}/m\mathbb{Z}$, which is very Apparent, and our result is as follows.

Definition 1.1.15 The Operations on \mathbb{Z}/\equiv_m

$$\mathbb{Z}/\equiv_{m}\times\mathbb{Z}/\equiv_{m}^{+\mathbb{Z}/\equiv_{m}}\mathbb{Z}/\equiv_{m}$$

$$(\overline{a},\overline{b})\stackrel{+\mathbb{Z}/\equiv_{m}}{\mapsto}\overline{a+\mathbb{Z}\,\overline{b}}$$

$$\mathbb{Z}/\equiv_{m}\times\mathbb{Z}/\equiv_{m}^{\cdot\mathbb{Z}/\equiv_{m}}\mathbb{Z}/\equiv_{m}$$

$$(\overline{a},\overline{b})\stackrel{\cdot\mathbb{Z}/\equiv_{m}}{\mapsto}\overline{a\cdot\mathbb{Z}\,\overline{b}}$$

This is the inheritance from \mathbb{Z} , so we can know that $(\mathbb{Z}/\equiv_m,+,\cdot)$ is a ring without proof

$$\mathbb{Z}/\equiv_{m} \xrightarrow{+,\cdot}_{Algebra} \xrightarrow{+,\cdot}_{Structure} \mathbb{Z}/m\mathbb{Z} = \left\{\overline{0},\overline{1},...,\overline{m-1}\right\}$$

Example 1.1.8. Table of addition/multiplication

Ring Homomorphism

Ring Homomorphism is a mapping that don't change the operation on rings

Definition 1.1.16 Ring Homomorphism

Ring Homomorphism:Keep Operation structures and $1_{\mathbb{S}}$

we know the canonical decomposition in mapping between sets, but how will the canonical decomposition be when we are talking in rings?

$$\mathbb{R}_1 \xrightarrow{\theta} \mathbb{R}_2 \Longleftrightarrow \mathbb{R}_1 \xrightarrow{m} \mathbb{R}_1 / \sim_{\theta} \xrightarrow{\sim} im\theta \xrightarrow{\iota} \mathbb{R}_2$$

The θ is a ring homomorphism

we hope that every step of supra is a ring homomorphism, Firstly,if we want the Π to be a ring homomorphism,we need $\mathbb{R}_1/\sim_{\theta}$ to be a ring at least

$$\mathbb{R}_1/\sim_{\theta} \overset{Algebra}{\underset{+,\cdot}{\longrightarrow}} \overset{Structure}{\underset{+,\cdot}{\longrightarrow}} Ring$$

Like The Operations on \mathbb{Z}/\equiv_m , we can use \mathbb{R}_1 to define the $\mathbb{R}_1/\sim_{\theta}$, definition are given as follows.

Definition 1.1.17 The Operations on $\mathbb{R}_1/\sim_{\theta}$

$$\mathbb{R}_{\sim_{\theta}} \times \mathbb{R}_{\sim_{\theta}} \xrightarrow{+_{\mathbb{R}_{\sim_{\theta}}}} \mathbb{R}_{\sim_{\theta}}$$
$$[r_{1}]_{\sim_{\theta}} +_{\mathbb{R}_{1}/\sim_{\theta}} [r_{2}]_{\sim_{\theta}} = [r_{1} +_{\mathbb{R}_{1}} r_{2}]_{\sim_{\theta}}$$
$$\mathbb{R}_{\sim_{\theta}} \times \mathbb{R}_{\sim_{\theta}} \xrightarrow{\cdot_{\mathbb{R}_{\sim_{\theta}}}} \mathbb{R}_{\sim_{\theta}}$$
$$[r_{1}]_{\sim_{\theta}} \cdot_{\mathbb{R}_{1}/\sim_{\theta}} [r_{2}]_{\sim_{\theta}} = [r_{1} \cdot_{\mathbb{R}_{1}} r_{2}]_{\sim_{\theta}}$$

Remark 1.1.8. we need to prove that the results do not change with the change of the representative element we selected. How to prove it, by using the definition!

Remark 1.1.9.

$$a \sim_{\theta} b \iff \theta(a-b) = 0_{\mathbb{R}_2}$$

Definition 1.1.18 Kernel

Kernel: $Ker(\theta) = \{r_1 \in \mathbb{R}_1 \mid \theta(r_1) = 0\}$

Proposition 1.1.5. $a \sim_{\theta} b \iff a - b \in Ker(\theta)$

Remark 1.1.10.

$$\mathbb{R}_1 \longrightarrow \mathbb{R}_1 / \sim_{\theta} \xrightarrow[Algebra]{+,\cdot} \xrightarrow[Structure]{+,\cdot} \mathbb{R}_1 / Ker(\theta)$$

we all know $\mathbb{R}_1/\sim_{\theta}$ is quotient set and $\mathbb{R}_1/Ker(\theta)$ is quotient ring

$$\mathbb{I} \xrightarrow{Find \ Ring \ Structure} \mathbb{R}/\mathbb{I}$$

Firstly, we can define a equivalence relation $a \sim_I b \stackrel{def}{\iff} a - b \in \mathbb{I}$, so we can define $a : \mathbb{I}_{\mathbb{I}}$, so that we can define \mathbb{R}/\mathbb{I}

1. Reflexibility: $0 \in \mathbb{I}$

2. Reflexivity: $a \in \mathbb{I} \Longrightarrow -a \in \mathbb{I}$

3. Transitivity: $a, b \in \mathbb{I} \Longrightarrow a + b \in \mathbb{I}$

Under the above constraints, we can make \mathbb{R}/\mathbb{I} a quotient set, but we still need to add some operations $(+,\cdot)$ on it to make it a quotient ring, and this operation will stricter the constraints. Finally, we call \mathbb{I} the \mathbb{R} 's ideal.

Ideal

Definition 1.1.19 The Operations on \mathbb{R}/\mathbb{I}

$$\begin{aligned} &[r_1]_{\sim_{\mathbb{I}}} +_{\mathbb{R}/\mathbb{I}} [r_2]_{\sim_{\mathbb{I}}} = [r_1 +_{\mathbb{R}} r_2]_{\sim_{\mathbb{I}}} \\ &[r_1]_{\sim_{\mathbb{I}}} \cdot_{\mathbb{R}/\mathbb{I}} [r_2]_{\sim_{\mathbb{I}}} = [r_1 \cdot_{\mathbb{R}} r_2]_{\sim_{\mathbb{I}}} \end{aligned}$$

Others, we need to prove the results do not change with the change of the representative element we selected

Proof. we know

$$r_1 \sim_I r'_1, r_2 \sim_I r'_2$$

then proof

$$[r_1 + r_2]_{\sim_I} = [r'_1 + r'_2]_{\sim_I}$$

this is easy by the Transitivity

The next

$$r_1'r_2' - r_1r_2 \in \mathbb{I} \Longrightarrow -r_2'(r_1 - r_1') - r_1(r_2 - r_2') \in \mathbb{I}$$

so we have a new constraint

$$\forall a \in \mathbb{I}, c \in \mathbb{R}, ca \in \mathbb{I}$$

Definition 1.1.20 Ideal

Ideal: we assume \mathbb{R} is a commutative ring

I stuck here for about 3 minutes to think about why \mathbb{R} is a commutative ring and finally I got the reason, This is because when we are deriving from $r'_1r'_2 - r_1r_2$, we use the commutative law

We call $\mathbb I$ an ideal of $\mathbb R$ iff

$$\forall a, b, \in \mathbb{I}, a + b \in \mathbb{I}$$
$$\forall a \in \mathbb{I}, c \in \mathbb{R}, ca \in \mathbb{I}$$

I stuck here for about 5 minutes to think about how can we get a -1 from $\mathbb R$ and finally I get: we can pick the $1_{\mathbb R}$ to the $-1_{\mathbb R}$

Example 1.1.9. 1. $Ker(\theta) \subset \mathbb{R}_1 \Longrightarrow Ker(\theta)$ is an ideal of \mathbb{R}_1 2. $\mathbb{R} \stackrel{\Pi}{\twoheadrightarrow} \mathbb{R}/\mathbb{I}$, then $Ker\Pi = \mathbb{I}$ 3. $Ideal \iff Kernel$

Example 1.1.10. Using $\mathbb{Z}/m\mathbb{Z}$ as a example

$$\mathbb{Z} \longrightarrow \mathbb{Z}/\equiv_m \longrightarrow \mathbb{Z}/m\mathbb{Z}$$

In fact, $m\mathbb{Z}$ is an ideal of \mathbb{Z} so $r\mathbb{R}$ is an ideal of \mathbb{R}

Definition 1.1.21 Principle Ideal

Principle Ideal: $(r) = \{r \cdot r' \mid r' \in \mathbb{R}\}$, we call (r) the principle ideal generated by r

Proposition 1.1.6. Any ideal $\mathbb{I} \subset \mathbb{Z}$ is principle, so \mathbb{Z} is principle ideal domain(PID)

Can we generate new ideals from given ideals?

Proposition 1.1.7. *If* \mathbb{I}_1 , $\mathbb{I}_2 \subset \mathbb{R}$ *ideal,then*

$$\mathbb{I}_1 \cap \mathbb{I}_2, \mathbb{I}_1 + \mathbb{I}_2, \mathbb{I}_1 \cdot \mathbb{I}_2 = \{a_1b_1 + a_2b_2 + ... + a_nb_n \mid a_1...a_n \in \mathbb{I}_1, b_1...b_n \in \mathbb{I}_2\}$$
 is ideal

From this, we can easily construct a connection between ideal and number theory

Definition 1.1.22 From ideal to number theory

Under \mathbb{Z}

$$(a) \subset (b) \longrightarrow b \mid a$$
$$(a) + (b) = (d) \longrightarrow d = \gcd(a, b)$$
$$(a) \cap (b) = (l) \longrightarrow l = lcm(a, b)$$

Theorem 1.1.8. Bezout's theorem:

Given $a, b \in \mathbb{Z}$, then there exists $s, t \in \mathbb{Z}$, such that

$$as + bt = gcd(a, b)$$

If there exists $d' \mid a, d' \mid b$. satisfying $d' = as + bt \Longrightarrow d' = gcd(a, b)$