Important Derivatives	Important Integrals
$\frac{d}{dx}x^n = nx^{n-1}$	$(*) \int \frac{1}{ax+b} dx = \frac{1}{a} \ln ax+b + C$
$\frac{d}{dx}\ln x = \frac{1}{x}$	$(*) \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$
$\frac{d}{dx}e^x = e^x$	$(*) \int \frac{x}{x^2 + a^2} dx = \frac{1}{2} \ln x^2 + a^2 + C$
$\frac{d}{dx}\sin x = \cos x$	$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$
$\frac{d}{dx}\cos x = -\sin x$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C$
$\frac{d}{dx}\tan x = \sec^2 x$	$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln x + \sqrt{x^2 \pm a^2} + C$
$\frac{d}{dx}\sec x = \sec x \tan x$	$\int \tan x dx = \ln \sec x + C$
$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$	$\int \sec x dx = \ln \sec x + \tan x + C$
$\frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$	$\int \sec^2 x \ dx = \tan x + C$
$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$	$\int \sec x \tan x dx = \sec x + C$
	$\int \ln x dx = x \ln x - x + C$

Write a^x as $e^{(\ln a)x}$	
Pythagorean Identities	
$\sin^2 x + \cos^2 x = 1$	
$\tan^2 x + 1 = \sec^2 x$	
$1 + \cot^2 x = \csc^2 x$	
Half-angle Identities	
$\cos^2 x = \frac{1 + \cos 2x}{2}$	
$\sin^2 x = \frac{1 - \cos 2x}{2}$	
$\sin x \cos x = \frac{\sin 2x}{2}$	

Trig Substitutions:

Expression	$x\sqrt{\pm x^2 \pm a^2}$	$\sqrt{a^2-x^2}$	$\sqrt{x^2 + a^2}$	$\sqrt{x^2-a^2}$
Identity		$1 - \sin^2 x = \cos^2 x$	$\tan^2 x + 1 = \sec^2 x$	$\sec^2 x - 1 = \tan^2 x$
Substitution	$u = \pm x^2 \pm a^2$	$x = \sin \theta$	$x = \tan \theta$	$x = \sec \theta$

Partial Fractions:

Factor	Partial Fractions	Integral	
$(ax+b)^k$	$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_k}{(ax+b)^k}$	substitute $u = ax + b$, use (*)	
$(ax^2 + bx + c)$	$\frac{Ax+B}{ax^2+bx+c}$	complete the square, use (*)	

Mantra for $\int \sin^m x \cos^n x \ dx$:

If power of $\sin x$ is positive odd, pull out a $\sin x$.

If power of $\cos x$ is positive odd, pull out a $\cos x$.

Otherwise, seek half angels for help.

Mantra for $\int \tan^m x \sec^n x \ dx$:

If power of $\sec x$ is positive even, pull out a $\sec^2 x$. If power of $\tan x$ is positive odd, pull out a $\sec x \tan x$.

Otherwise, convert all $\tan \theta$ to $\sec \theta$. Go to the start!

Only the odd pure $\sec \theta$ is stubborn. Kill him by parts!

Identities for $\int \sin mx \cos nx \ dx$: (given in exam) $\sin A \cos B = \frac{1}{2} [\sin(A - B) + \sin(A + B)]$ $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$

Approximate Integration $\int_a^b f(x) \ dx$:

Midpoint	$M_n = \Delta x [f(\bar{x}_1) + f(\bar{x}_2) + \dots + f(\bar{x}_n)], \bar{x}_i = \frac{x_{i-1} + x_i}{2}$	
Trapezium	$T_n = \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n)]$	
Simpson's	$S_n = \frac{\Delta x}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 4f(x_{n-1}) + f(x_n)]$	

Error Bounds for Approximate Integration:

Given in exam	Memorize this!	
$ E_M \le \frac{K(b-a)^3}{24n^2}$	$ f^{(2)}(x) \le K \text{ for } a \le x \le b$	
$ E_T \le \frac{K(b-a)^3}{12n^2}$	$ f^{(2)}(x) \le K \text{ for } a \le x \le b$	
$ E_S \le \frac{K(b-a)^5}{180n^4}$	$ f^{(4)}(x) \le K \text{ for } a \le x \le b$	
I .		

p-Test for Improper Integrals:

 $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges for p > 1, diverges otherwise.

 $\int_0^1 \frac{1}{x^p} dx$ converges for p < 1, diverges otherwise.

Standard Comparison Test for Improper Integrals:

If $0 \le g(x) \le f(x)$ for x in $[a, \infty)$, then

$$\int_{a}^{\infty} f(x) dx \text{ converges} \Rightarrow \int_{a}^{\infty} g(x) dx \text{ converges.}$$

$$\int_{a}^{\infty} g(x) dx \text{ diverges} \Rightarrow \int_{a}^{\infty} f(x) dx \text{ diverges.}$$

(Similarly for other improper integrals of type 2 on [a, b) and (a, b].)

Arc Length, Surface Area:

$$ds = \sqrt{1 + (\frac{dy}{dx})^2} \ dx = \sqrt{1 + (\frac{dx}{dy})^2} \ dy$$
 Arc Length = $\int ds$

Area of Surface of Revolution (about x-axis) = $\int 2\pi y \ ds$ Area of Surface of Revolution (about y-axis) = $\int 2\pi x \ ds$

Hydrostatic Pressure:

 $Pressure = \rho g d, Force = Pressure \times Area$

Consider a submerged vertical plate whose width at depth x is f(x).

Then, the hydrostatic force on the plate for $a \le x \le b$ is $\rho g \int_a^b x f(x) \ dx$.

Moments, Centroid:

Moment about x-axis =
$$M_x = \rho \int_a^b \frac{1}{2} f(x)^2 dx$$

Moment about y-axis =
$$M_y = \rho \int_a^b x f(x) dx$$

Centroid =
$$(\bar{x}, \bar{y}) = (\frac{M_y}{\text{Mass}}, \frac{M_x}{\text{Mass}}) = (\frac{\int_a^b x f(x) dx}{\text{Area}}, \frac{\int_a^b \frac{1}{2} f(x)^2 dx}{\text{Area}})$$

If region is symmetrical about the y-axis, then $\bar{x} = 0$. (Similarly for \bar{y} .)

Pappus' Theorem. The volume of a solid of rotation of a region is the product of the area of the region with the distance travelled by the centroid during the rotation.

Evaluation of limits of sequences

- i. Sum, difference, product, quotient, scaling, taking powers
- ii. If $\lim f(x) = L$ and $f(n) = a_n$, then $\lim a_n = L$.
- iii. If $\lim a_n = L$ and f is continuous at L, then $\lim f(a_n) = f(L)$.
- iv. If $\lim |a_n| = 0$, then $\lim a_n = 0$.
- v. Squeeze theorem
- vi. Monotone convergent theorem

Geometric sequences

- i. $\{r^n\}$ is convergent for $-1 < r \le 1$, divergent otherwise.
- ii. $\lim r^n = 0$ for |r| < 1 and $\lim r^n = 1$ for r = 1.

Evaluation of series

- i. If $\sum a_n$ is convergent, then $\lim a_n = 0$. If $\lim a_n$ does not exist, or $\lim a_n \neq 0$, then $\sum a_n$ is divergent.
- ii. If $\sum a_n$, $\sum b_n$ are convergent, so are $\sum ca_n$, $\sum (a_n + b_n)$ and $\sum (a_n b_n)$.

Geometric series

- i. $\sum ar^{n-1}$ convergent if |r| < 1, divergent otherwise.
- ii. $\sum_{n=1}^{\infty} ar^{n-1} = a/(1-r)$ for |r| < 1.

The Integral Test and Estimates of Sums

- $a_n = f(n)$, f continuous, positive, decreasing on $[1, \infty)$.
- a. Integral test: $\sum a_n$ convergent $\Leftrightarrow \int_1^\infty f(x) \ dx$ convergent
- b. Remainder estimate: $\int_{n+1}^{\infty} f(x) dx \le s s_n \le \int_{n}^{\infty} f(x) dx$
- c. Bounds on sum: $s_n + \int_{n+1}^{\infty} f(x) dx \le s \le s_n + \int_{n}^{\infty} f(x) dx$
- d. p-Test: $\sum 1/n^p$ convergent for p > 1, divergent otherwise.