IN THE CLAIMS

1 (original). A compound of formula I,

$$R^3$$
 R^4
 R^5
 Z
 R^1

wherein X represents an optionally substituted anyl or heteroaryl group or an optionally substituted amide, amine or sulfonamide group, which latter three groups are connected to the indole ring through their nitrogen atom;

Y represents a carboxylic acid, a carboxylic acid ester, a carboxylic acid amide, a hydroxamic acid, a hydroxamic acid ester or hydroxymethyl;

Z represents a spacer group;

R¹ represents an optionally substituted aryl or heteroaryl group;

one of the groups R², R³, R⁴ and R⁵ represents an optionally substituted aryl or heteroatyl group.

2 (original). A compound as claimed in Claim 1, wherein;

X represents:

i) an aryl group or a heteroaryl group, both of which groups are optionally substituted by one or more substituents selected from A; or

ii) $-N(R^6)-E-R^7$;

E represents a single bond, --C(O)- or $--S(O)_n$ -;

Y represents —CH₂OH, -C(O)N(H)R⁸, -C(O)N(H)OR⁸ or —C(O)OR⁸;

Z represents a C_{1-8} alkylene or a C_{2-8} heteroalkylene chain, both of which:

- (i) optionally contain one or more unsaturations;
- (ii) are optionally substituted by one or more substituents selected from halo, $-R^8$, $-N(R^8)(R^9)$, $-OR^8$ and =O; and/or
- (iii) may form part of an additional 3- to 8-membered ring formed between any one or more members of the C_{1-8} alkylene or C_{2-8} heteroalkylene chain, which ring optionally contains 1 to 3 heteroatoms and/or 1 to 3 unsaturations and which ring is itself optionally substituted by one or more substituents selected from halo, $-R^8$, $-N(R^8)(R^9)$, $-OR^8$ and =O;

R¹ represents an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from A;

one of the groups R², R³, R⁴ and R⁵ represents an aryl group or a heteroaryl group (both of which are optionally substituted by one or more substituents selected from A) and:

- a) the other groups are independently selected from hydrogen, G^1 , an aryl group, a heteroaryl group (which latter two groups are optionally substituted by one or more substituents selected from A), C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl. C_{2-6} alkynyl or C_{3-8} heterocycloalkyl (which latter five groups are optionally substituted by one or more substituents selected from G^1 and/or Q^1); and/or
 - b) any two other groups which are adjacent to each other are optionally linked to

form, along with two atoms of the essential benzene ring in the compound of formula I, a 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

A represents, on each occasion when mentioned above:

- i) an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from B;
- II) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^1 and/or Q^1 ; or
 - III) a G¹ group; or
- IV) two adjacent A substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two A substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

 G^1 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A¹-R¹⁰;

wherein A^1 represents a single bond or a spacer group selected from — $C(Q^2)A^2$ -, — $S(O)_nA^3$ -, - $N(R^{11})A^4$ -, - OA^5 - and —S-, in which:

A² represents A⁶ or —S-;

A³ represents A⁶;

 A^4 represents A^7 , $-C(Q^2)N(R^{11})C(Q^2)N(R^{11})$ -, $-C(Q^2)N(R^{11})C(Q^2)O$ -,

 $-C(Q^2)N(R^{11})S(O)_nN(R^{11})-, \ -C(Q^2)S-, \ -S(O)_nN(R^{11})C(Q^2)N(R^{11})-, \ -C(Q^2)S-, \ -C(Q^2)$

 $-S(O)_{n}N(R^{11})C(Q^{2})O-, \ -S(O)_{n}N(R^{11})S(O)_{n}N(R^{11})- \ or \ -S(O)_{n}O-;$

 A^5 represents A^7 or $-S(O)_nO$ -;

A⁶ represents a single bond, -N(R¹¹)- or O-;

 A^7 represents a single bond, $-C(Q^2)$ -, $-C(Q^2)N(R^{11})$ -, $-C(Q^2)O$ -, $-S(O)_n$ - or $-S(O)_nN(R^{11})$;

 Q^1 and Q^2 independently represent, on each occasion when mentioned above, =O, =S, =NR¹⁰, =NN(R¹⁰)(R¹¹), =NOR¹⁰, =NS(O)₂N(R¹⁰)(R¹¹), =NCN, =C(H)NO₂ or =C(R¹⁰)(R¹¹);

R⁶ and R⁷ independently represent, on each occasion when mentioned above:

- I) hydrogen;
- II) an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from B; or
- III) a C₁₋₆ alkyl, C₃₋₁₀ cycloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl or C₃₋₈ heterocycloalkyl group, all of which groups are optionally substituted by one or more substituents selected from G² and/or Q³; or

R⁶ and R⁷ may be linked together to form along with the N atom and —E- group to which R⁶ and R⁷ are respectively attached, a 5- to 8-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is optionally substituted by one or more substituents selected from G² and/or Q³;

B represents, on each occasion when mentioned above:

an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G² and/or wherein any two

adjacent atoms of the aryl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

- II) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^2 and/or Q^3 ; or
 - III) a G² group; or
- IV) two adjacent B substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two B substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸,-OR⁸ and =O;

G² represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A⁸-R¹²;

wherein A^8 represents a single bond or a spacer group selected from $-C(Q^4)A^9$ -, $-S(O)_nA^{10}$ -, $-N(R^{13})A^{11}$ -, $-OA^{12}$ - and -S-, in which:

A⁹ represents A¹³ or -S-;

A¹⁰ represents A¹³;

 A^{11} represents A^{14} , $-C(Q^4)N(R^{13})C(Q^4)N(R^{13})$ -, $-C(Q^4)N(R^{13})C(Q^4)O$ -,

 $-C(Q^4)N(R^{13})S(O)_nN(R^{13})-, -C(Q^4)S-, -S(O)_nN(R^{13})C(Q^4)N(R^{13})-,$

 $-S(O)_nN(R^{13})C(Q^4)O-$, $-S(O)_nN(R^{13})S(O)_nN(R^{13})-$ or $-S(O)_nO-$;

A¹² represents A¹⁴ or -S(O)_nO-;

A¹³ represents a single bond, -N(R¹³)- or —O-;

 A^{14} represents a single bond, $-C(Q^4)$ -, $-C(Q^4)N(R^{13})$ -, $-C(Q^4)O$ -, $-S(O)_n$ - or $-S(O)_nN(R^{13})$;

 Q^3 and Q^4 independently represent, on each occasion when mentioned above, =O, =S, =NR¹², =NN(R¹²)(R¹³), =NOR¹², =NS(O)₂N(R¹²)(R¹³), =NCN, =C(H)NO₂ or =C(R¹²)(R¹³);

R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are independently selected from:

- i) hydrogen;
- ii) an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G³ and/or wherein any two adjacent atoms of the aryl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms, which ring is itself optionally substituted by one or more substituents selected from halo, -R¹⁴, -OR¹⁴ and =O; or
- iii) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^3 and/or W^1 ; or

any pair of R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ may, for example when present on the same or on adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 8-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G³ and/or W¹;

 G^3 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A¹⁵ -R¹⁵:

wherein A¹⁵ represents a single bond or a spacer group selected from

 $-C(W^2)A^{16}$ -, $-S(O)_nA^{17}$ -, $-N(R^{16})A^{18}$ -, $-OA^{19}$ - and -S-, in which:

A¹⁶ represents A²⁰ or —S-;

A¹⁷ represents A²⁰;

 A^{18} represents $A^{21}_{.}$, $-C(W^2)N(R^{16})C(W^2)N(R^{16})$ -, $-C(W^2)N(R^{16})C(W^2)O$ -,

 $-C(W^2)N(R^{16})S(O)_nN(R^{16})-$, $-C(W^2)S-$, $-S(O)_nN(R^{16})C(W^2)N(R^{16})-$,

 $-S(O)_nN(R^{16})C(W^2)O-$, $-S(O)_nN(R^{16})S(O)_nN(R^{16})-$ or $-S(O)_nO-$;

 A^{19} represents A^{21} or $-S(O)_nO$ -;

A²⁰ represents a single bond, -N(R¹⁶)- or —O-;

 A^{21} represents a single bond, $-C(W^2)$ -, $-C(W^2)N(R^{16})$ -, $-C(W^2)O$ -, $-S(O)_n$ or $-S(O)_nN(R^{16})$;

 W^1 and W^2 independently represent, on each occasion when mentioned above, =O, =S, =NR¹⁵, =NN(R¹⁵)(R¹⁶), =NOR¹⁵, =NS(O)₂N(R¹⁵)(R¹⁶), =NCN, =C(H)NO₂ or =C(R¹⁵)(R¹⁶);

 R^{14} , R^{15} and R^{16} are independently selected from:

- i) hydrogen;
- ii) an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G⁴, methylenedioxy, difluoromethylenedioxy and/or dimethylenedioxy; or
- iii) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^4 and/or J; or

any pair of R14, R15 and R16 may, for example when present on the same or on

adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 7-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G⁴ and J;

 G^4 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or $-A^{22}$ -R¹⁷;

wherein A²² represents a single bond or a spacer group selected from

 $--C(O)A^{23}$ -, $--S(O)_nA^{24}$ -, $-N(R^{18})A^{25}$ -, $-OA^{26}$ - and --S-, in which:

A²³ represents A²⁷ or -S-;

A²⁴ represents A²⁷:

 A^{25} represents A^{28} , $-C(O)N(R^{18})C(O)N(R^{18})$ -, $-C(O)N(R^{18})C(O)O$ -,

 $-C(O)N(R^{18})S(O)_nN(R^{18})-, -C(O)S-, -S(O)_nN(R^{18})C(O)N(R^{18})-,$

 $-S(O)_nN(R^{18})C(O)O-, -S(O)_nN(R^{18})S(O)_nN(R^{18})- or -S(O)_nO-;$

A²⁶ represents A²⁸ or -S(O)_nO-;

A²⁷ represents a single bond, -N(R¹⁸)- or —O-;

 A^{28} represents a single bond, -C(O)-, $-C(O)N(R^{18})$ -, -C(O)O-, $-S(O)_n$ - or

 $-S(O)_nN(R^{18});$

J represents, on each occasion when mentioned above, =O, =S, =NR¹⁷,

=NN(\dot{R}^{17})(\dot{R}^{18}), =NOR¹⁷, =NS(O)₂N(\dot{R}^{17})(\dot{R}^{18}), =NCN, =C(H)NO₂ or

 $=C(R^{17})(R^{18});$

 R^{17} and R^{18} are independently selected from hydrogen and C_{1-6} alkyl, which latter group is optionally substituted by one or more substituents selected from halo, -NH₂, -N(H)Me, -N(H)Et, -N(H) \dot{F} Pr, -NMe₂, -N(Me)Et, -N(Me) \dot{F} Pr, -NEt₂, -OH, -OMe, -OEt, -O \dot{F}

Pr and =O; and

n represents, on each occasion when mentioned above, 1 or 2, or a pharmaceutically-acceptable salt thereof.

- 3. (original): A compound as claimed in Claim 2, wherein n represents 2.
- 4. (previously presented): A compound as claimed in Claim 2, wherein A represents G¹ or any two adjacent A substituents may be linked by a methylenedioxy group.
- 5. (previously presented): A compound as claimed in claim 2, wherein G^1 represents halo, cyano, $-NO_2$ or $-A^1-R^{10}$.
- 6. (previously presented): A compound as clamed in claim 2, wherein A² represents A⁶.
- 7. (previously presented): A compound as claimed in claim 2, wherein A³ and A⁵ independently represent a single bond.
- 8. (previously presented): A compound as claimed in claim 2, wherein A^4 represents a single bond, $-C(Q^2)$ or $-S(Q)_2$ -.
- 9. (previously presented): A compound as claimed in claim 2, wherein Q² represents =0.
- 10. (previously presented): A compound as claimed in claim 2, wherein B represents G^2 .
- 11. (previously presented): A compound as claimed in claim 2, wherein G^2 represents halo, cyano, -NO₂- or -A⁸-R¹².
- 12. (previously presented): A compound as claimed in claim 2, wherein A^8 represents a single bond, $-N(R^{13})A^{11}$ or $-OA^{12}$ -.

- 13. (previously presented): A compound as claimed in claim 2, wherein A¹¹ and A¹² independently represent a single bond.
- 14. (previously presented): A compound as claimed in claim 1, wherein Z represents C_{1-6} alkylene, in which one of the carbon atoms in the chain may be replaced with oxygen.
- 15. (previously presented): A compound as claimed in claim 1, wherein Y represents CH_2OH , $-C(O)NHR^8$ or $-C(O)OR^8$.
- 16. (previously presented): A compound as claimed in claim 1, wherein R¹ represents optionally substituted fluorenyl, phenyl or pyridyl.
- 17. (previously presented): A compound as claimed in claim 1, wherein (when X represents an optionally substituted aryl or heteroaryl group) X represents an optionally substituted phenyl, thienyl, pyridyl, pyrazolyl, pyrazolyl, pyrazolyl or quinolinyl group.
- 18. (previously presented): A compound as claimed in claim 1, (when they represent an optionally substituted aryl or heteroaryl group) R², R³, R⁴, and R⁵ represent optionally substituted phenyl, pyridyl or naphthyl.
- 19. (original): A compound as claimed in Claim 28, wherein the other substituents on the benzene ring of the indole represent hydrogen or G¹.
- 20. (previously presented): A compound as claimed in claim 2, wherein R^6 represents hydrogen or C_{1-3} alkyl group (which latter group is optionally substituted by G^2).
- 21. (previously presented): A compound as claimed in claim 2, wherein R^7 represents phenyl or pyridyl (which groups are optionally substituted by one or more substituents selected from B), or C_{1-4} alkyl, C_{2-4} alkenyl or C_{5-10} cycloalkyl (which latter three groups are optionally substituted by one or more substituents selected from G^2).
- 22. (previously presented): A compound as claimed in claim 2, wherein R^6 and R^7 are linked to form a 5- or 6-membered ring optionally substituted by =0.

- 23. (original): A compound as claimed in any one of Claims 2 to 22, wherein R^8 and R^{13} independently represent C_{1-3} alkyl or hydrogen.
- 24. (previously presented): A compound as claimed in claim 2, wherein R^{10} represents hydrogen, phenyl, tetrazolyl, C_{1-4} alkyl, C_{2-4} alkenyl or C_{5-6} cycloalkyl, which latter five groups are optionally substituted by one or more substituents selected from G^3 .
- 25. (previously presented): A compound as claimed in claim 2, wherein R^{12} represents hydrogen, phenyl, pyrrolyl, C_{1-4} alkyl or C_{5-10} cycloalkyl, which latter four groups are optionally substituted by one or more substituents selected from G^3 .
- 26. (previously presented): A compound as claimed in claim 2, wherein R^{11} represents hydrogen or $C_{2\cdot4}$ alkenyl.
- 27. (previously presented): A compound as claimed in claim 2, wherein G³ represents halo, -R¹⁵ or -OR¹⁵.
- 28. (previously presented): A compound as claimed in claim 2, wherein R^{15} represents hydrogen, C_{1-3} alkyl or phenyl.
- 29. (previously presented): A compound as claimed in claim 16, wherein the optional substituents are selected from halo, -NO₂, cyano, methylenedioxy, C_{1-6} alkyl (which alkyl group is optionally substituted by one or more substituents selected from a halo group, a phenyl groups and OR^{19}), C_{2-6} alkenyl, C_{3-10} cycloalkyl (which cycloalkyl group is optionally substituted with C_{1-6} alkyl), phenyl (which group is optionally substituted with one or more substituents selected from halo and OR^{19}), a heteroaryl group selected from tetrazolyl and pyrrolyl (which groups are optionally substituted by one or more C_{1-6} alkyl groups), methylthio, methylsulfonyl, methylsulfonyl, =O, $-OR^{19}$, $-N(R^{19})R^{20}$, $-C(O)OR^{19}$, $-C(O)R^{19}$, $-C(O)N(R^{19})R^{20}$, $-S(O)_2N(R^{19})r^{20}$ and/or $-N(R^{19})S(O)_2R^{21}$, wherein R^{19} and R^{20} independently represent hydrogen, phenyl, C_{1-4} alkenyl, C_{1-6} alkyl (which alkyl group is optionally substituted by one or more fluoro atoms) or a phenyl group and R^{21} represents phenyl or C_{1-6} alkyl (which alkyl group is optionally substituted by one or more fluoro atoms).

- 30. (previously presented): A compound as defined in claim 1, or a pharmaceutically-acceptable salt thereof, for use as a phramaceutical.
- 31. (previously presented): A pharmaceutical formulation including a compound as defined in claim 1, or a pharmaceutically-acceptable salt thereof, in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier.
- 32. (currently amended): The use of A method for the treatment of a disease in which inhibition of the activity of microsomal prostaglandin E synthase-1 is desired and/or required which comprises administering to a host in need of such treatment an effective amount of a compound as defined in claim 1, or a pharmaceutically-acceptable salt thereof, for the manufacture of a medicament for the treatment of a disease in which inhibition of the activity of microsomal prostaglandin E synthase-1 is desired and/or required.
- 33. (currently amended): A use <u>method</u> as claimed in Claim 32, wherein the disease is inflammation.
- 34. (currently amended): A use <u>method</u> as claimed in Claim 33, wherein the disease is inflammatory bowel disease, irritable bowel syndrome, migraine, headache, low back pain, fibromyalgia, a myofascial disorder, a viral infection, a bacterial infection, a fungal infection, dysmenorrhea, a bum, a surgical or dental procedure, a malignancy, atherosclerosis, gout, arthritis, osteoarthritis, juvenile arthritis, rheumatoid arthritis, rheumatic fever, ankylosing spondylitis, systemic lupus erythematosus, vasculitis, pancreatitis, nephritis, bursitis, conjunctivitis, iritis, scleritis, uveitis, wound healing, dermatitis, eczema, psoriasis, stroke, diabetes, a neurodegenerative disorder, an autoimmune disease, osteoporous, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, an allergic disorder, rhinitis, an ulcer, coronary heart disease, sarcoidosis or any other disease with an inflammatory component.
- 35. (previously presented): A method of treatment of a disease in which inhibition of the activity of mPGES-1 is desired and/or required, which method comprises administration of a therapeutically effective amount of a compound as defined in claim 1, or a pharmaceutically-acceptable salt thereof, to a patient suffering from, or susceptible to, such a condition.

- 36. (previously presented): A combination product comprising:
- (A) a compound as defined in claim 1, or a pharmaceutically-acceptable salt thereof, and
- (B) another therapeutic agent that is useful in the treatment of inflammation, wherein each of components (A) and (B) is formulated in admixture with a pharmaceutically-acceptable adjuvant, diluent or carrier.
- 37. (previously presented): A combination product as claimed in Claim 36 which comprises a pharmaceutical formulation including a compound as defined above, or a pharmaceutically-acceptable salt thereof, another therapeutic agent that is useful in the treatment of inflammation, and a pharmaceutically-acceptable adjuvant, diluent or carrier.
- 38. (previously presented): A combination product as claimed in Claim 36 which comprises a kit of parts comprising components:
- (a) a pharmaceutical formulation including a compound as defined above, or a pharmaceutically-acceptable salt thereof, in admixture with a pharmaceutically-acceptable adjuvant, diluent or carrier; and
- (b) a pharmaceutical formulation including another therapeutic agent that is useful in the treatment of inflammation in admixture with a pharmaceutically-acceptable adjuvant, diluent or carrier,

which components (a) and (b) are each provided in a form that is suitable for administration in conjunction with the other.

adjuvant, diluent or carrier,

which components (a) and (b) are each provided in a form that is suitable for administration in conjunction with the other.

39 (original). A process for the preparation of a compound as defined in Claim 2, which comprises:

(i) reaction of a compound of formula II,

wherein X Y, R², R³, R⁴ and R⁵ are as defined in Claim 2, with a compound of formula III,

wherein L¹ represents a suitable leaving group and R¹ and Z are as defined in Claim 2;

(ii) reaction of a compound of formula IV,

$$R^2-R^5$$
 V
 V
 V
 V
 V

wherein L^4 represents L^2 or L^3 , in which L^2 and L^3 represent appropriate leaving groups and L^4 is attached to one or more of the carbon atoms of the benzenoid ring of the indole, and the remaining positions of the benzenoid ring are substituted with 1 to 3 (depending on the number of L^4 substituents) substituents R^2 to R^5 as appropriate, and Z, X, Y, R^1 , R^2 , R^3 , R^4 and R^5 are as defined in Claim 2, with a compound of formula V,

$$R^{22}L^5$$
 V

wherein R^{22} represents R^2 , R^3 , R^4 or R^5 (as appropriate), and L^5 represents L^2 (when L^4 is L^3) or L^3 (when L^4 is L^2) as defined above;

(iii) for compounds of formula I in which X represents an optionally substituted aryl or heteroaryl group, reaction of a compound of formula VI,

$$R^3$$
 R^4
 R^5
 Z
 R^1
 VI

wherein L² is as defined above and Z, Y, R¹, R², R³, R⁴ and R⁵ are as defined in Claim 2, with a compound of formula VII,

wherein L³ is as defined above and X^a represents an aryl or heteroaryl group, optionally substituted as defined in Claim 2;

(iv) for compounds of formula I in which X represents

-N(R⁶)-E-R⁷,

reaction of a compound of formula VI as defined above, with a compound of formula VIII,

wherein E, R⁶ and R⁷ are as defined in Claim 2;

(v) for compounds of formula I in which X represents -N(R⁶)-E-R⁷, reaction of a compound of formula IX,

wherein Z, Y, R¹, R², R³, R⁴, R⁵ and R⁶ are as defined in Claim 2, with a compound of formula X,

wherein L¹ is as defined above and E and R⁷ are as defined in Claim 2;

(vi) for compounds of formula I in which E represents a single bond and R^7 is a C_{1-6} alkyl group, C_{3-6} alkenyl or a C_{3-6} alkynyl group, reduction of a compound of formula I, wherein X represents —C(O)- and R^7 represents H, a C_{1-5} , alkyl group, a C_{2-5} alkenyl or a C_{2-5} alkynyl group.

40. (new): A compound of formula I,

$$R^3$$
 R^4
 R^5
 Z
 R^1

wherein X represents an optionally substituted amide, amine or sulfonamide group, wherein said groups are connected to the indole ring through their nitrogen atom;

Y represents a carboxylic acid, a carboxylic acid ester, a carboxylic acid amide, a hydroxamic acid, a hydroxamic acid ester or hydroxymethyl;

Z represents a spacer group;

R¹ represents an optionally substituted aryl or heteroaryl group;

one of the groups R², R³, R⁴ and R⁵ represents an optionally substituted aryl or heteroaryl group.

41. (new): A compound according to claim 40 wherein

X is a substituted benzoylamino group;

Y is a carboxylic acid or carboxylic acid ester group;

Z is alkylene;

R¹ is an optionally substituted aryl group;

one of R², R³, R⁴ and R⁵ is optionally substituted aryl and the others are hydrogen.

42. (new): A compound according to claim 41 which is 6-(4-butylphenyl)-1-(3-chlorobenzyl)-3-(4-isopropoxybenzoylamino)-indole-2-carboxylic acid.