(2) Modeling

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import scipy.stats as scs
   import seaborn as sns
   import plotly.express as px
   import statsmodels.api as sm
```

```
In [2]: df = pd.read_csv('bam_data.csv')
    df.head()
```

Out[2]:

	approach_vertical	vertical_jump	three_quarter_court_sprint	four_way_agility	reaction_shuttle	k
0	33.5	28.5	3.376	11.471	3.669	
1	30.5	21.5	3.486	12.114	3.355	
2	37.0	31.0	3.230	12.036	3.562	
3	29.0	23.0	3.370	12.509	3.173	
4	31.0	26.0	3.389	12.724	3.316	

In [3]: df.describe()

Out[3]:

	approach_vertical	vertical_jump	three_quarter_court_sprint	four_way_agility	reaction_shutt
count	1059.000000	1059.000000	1059.000000	1059.000000	1059.00000
mean	31.829615	25.860157	3.467047	12.247189	3.50524
std	3.423395	3.065653	0.335502	0.652726	0.27378
min	19.000000	14.000000	2.950000	10.359000	2.91400
25%	30.000000	24.000000	3.339500	11.806000	3.34800
50%	31.829615	25.860157	3.424000	12.244000	3.49200
75%	34.000000	28.000000	3.537500	12.658000	3.63400
max	43.500000	38.000000	9.954000	14.775000	6.75900

1) Split Train/Test Data

- 2) normalize/standardize data with outliers [0,1] also use min max scalers
- 3) feature importance
- 4) random forrest
- 5) iterate model
- 6) Find best model

```
In [4]: # https://scikit-learn.org/stable/modules/tree.html#classification
# https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_s
caling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py
# https://towardsdatascience.com/data-science-mistakes-to-avoid-data-lea
kage-e447f88aaelc
### - FIXED DATA LEAKAGE
```

1) Split train/test data

```
In [5]: from sklearn.svm import SVC
        from sklearn.preprocessing import StandardScaler, normalize
        from sklearn.model selection import train test split
        from sklearn.pipeline import Pipeline
        from sklearn import tree
        from sklearn.datasets import load digits
        from sklearn.feature selection import SelectKBest, chi2
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.datasets import make regression
        from sklearn.metrics import r2_score
        y = df['bamscore']
        X = df.drop('bamscore',axis=1) #drop bamscorerank too once I added so no
        data leakage
        # y is bamscorerank, x is everything else
        # now xtrain/split will take those two variables and create two datasets
        from it
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
                                                          random state=0, stratif
        y = None
```

```
In [6]: | train_test_split(y, shuffle=False)
Out[6]: [0
                 2003.0
         1
                 1865.0
         2
                 2005.0
         3
                 1902.0
                 1903.0
         789
                 1916.0
         790
                 1852.0
         791
                 1593.0
         792
                 1814.0
         793
                 2114.0
         Name: bamscore, Length: 794, dtype: float64, 794
                                                                 1843.000000
         795
                  1968.000000
         796
                  1965.000000
         797
                  1950.000000
         798
                  1902.000000
         1054
                  1917.000000
         1055
                  2029.000000
                  1890.976326
         1056
         1057
                  1890.976326
         1058
                  1890.976326
         Name: bamscore, Length: 265, dtype: float64]
```

2) Normalize + Scale Data to adjust for outliers

- going to use min/max normalization to make all points between 0-1
- meaning, make data all within 0-1 range. 5.5 on 0-10 scale would be .55 on normalized scale

Why are we normalizing data?

to make data cleaner, sometimes gets messed up on backend and removes unstructured data

In [9]: df_train

Out[9]:

	approach_vertical	vertical_jump	three_quarter_court_sprint	four_way_agility	reaction_shuttle
0	0.127644	0.110904	0.015016	0.049245	0.015585
1	0.139731	0.113526	0.015712	0.052135	0.014799
2	0.173806	0.130354	0.016736	0.060029	0.016363
3	0.108274	0.098607	0.013093	0.046635	0.012846
4	0.159682	0.126732	0.018128	0.065885	0.017337
736	0.149692	0.128307	0.015715	0.054516	0.016851
737	0.181453	0.144703	0.013625	0.056108	0.015288
738	0.127032	0.098270	0.016855	0.060357	0.015843
739	0.143284	0.115483	0.013507	0.050077	0.013610
740	0.155346	0.168662	0.015299	0.051544	0.015202

741 rows × 13 columns

In [10]: # https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_s caling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py

3) Feature Importance + Feature Selection

In [11]: from sklearn.datasets import load_digits from sklearn.feature_selection import SelectKBest, f_regression

```
In [12]: X_train
```

Out[12]:

	approach_vertical	vertical_jump	three_quarter_court_sprint	four_way_agility	reaction_shuttle
899	0.127644	0.110904	0.015016	0.049245	0.015585
635	0.139731	0.113526	0.015712	0.052135	0.014799
310	0.173806	0.130354	0.016736	0.060029	0.016363
961	0.108274	0.098607	0.013093	0.046635	0.012846
723	0.159682	0.126732	0.018128	0.065885	0.017337
1033	0.149692	0.128307	0.015715	0.054516	0.016851
763	0.181453	0.144703	0.013625	0.056108	0.015288
835	0.127032	0.098270	0.016855	0.060357	0.015843
559	0.143284	0.115483	0.013507	0.050077	0.013610
684	0.155346	0.168662	0.015299	0.051544	0.015202

741 rows \times 12 columns

```
In [13]: # want to fit and transform the model on training x and y data
```

```
In [14]: #skb = SelectKBest(f_regression, k=8)
skb = SelectKBest(score_func=f_regression, k=5)
fit = skb.fit(X_train, y_train)
features = fit.transform(X_train)
#X_new = SelectKBest(chi2, k=20).fit_transform(X, y)
```

```
In [15]: mask = fit.get_support()
   X_train[X_train.columns[mask]]
```

Out[15]:

	approach_vertical	vertical_jump	wingspan	weight	hand_width
899	0.127644	0.110904	0.321202	0.771723	0.037665
635	0.139731	0.113526	0.338029	0.726981	0.038412
310	0.173806	0.130354	0.370615	0.675797	0.039617
961	0.108274	0.098607	0.311287	0.781892	0.034802
723	0.159682	0.126732	0.372591	0.679282	0.045623
1033	0.149692	0.128307	0.332649	0.751786	0.039205
763	0.181453	0.144703	0.328452	0.739132	0.039047
835	0.127032	0.098270	0.342747	0.733430	0.043143
559	0.143284	0.115483	0.322924	0.761332	0.041702
684	0.155346	0.168662	0.343981	0.723470	0.037727

741 rows × 5 columns

```
In [16]: print(mask)
    print(features)
    print(features.shape)
```

```
[ True True False False True False False True False True False False True]
[[0.12764397 0.11090378 0.32120246 0.77172292 0.03766544]
[[0.13973142 0.11352561 0.33802858 0.72698095 0.03841234]
[[0.17380558 0.13035419 0.37061485 0.675797 0.03961745]
...
[[0.12703203 0.09827006 0.34274681 0.73343023 0.04314295]
[[0.14328437 0.11548293 0.32292448 0.76133189 0.04170217]
[[0.15534627 0.16866167 0.34398103 0.72346978 0.03772695]]
(741, 5)
```

```
In [17]: ### OLS Regression (Ordinary Least Squares)
    ### Use this because it's the most simple baseline model
    ### Model gives best approximate of true population regression line.
    ### The principle of OLS is to minimize the square of errors
```

```
In [18]: import statsmodels.formula.api as smf

formula = "bamscore ~ approach_vertical + vertical_jump + four_way_agili
ty"
    lm = smf.ols(formula = formula, data = df_train).fit()
    print(lm.summary())
    print("After selecting best 3 features:", features.shape)
```

		_			
======					
Dep. Variable:	k	amscore	R-squared:		
0.619				_	
Model:		OLS	Adj. R-squar	red:	
0.617	.	G	-		
Method: 398.5	Least	Squares	F-statistic:	1	
Date:	Mon 25 7	pr 2022	Prob (F-stat	-istic).	8.
99e-154	MOII, 23 F	API 2022	riob (r-scat	ciscic).	0.
Time:	1	2:02:45	Log-Likeliho	ood:	
714.13					
No. Observations:		741	AIC:		
-1420.					
Df Residuals:		737	BIC:		
-1402.					
Df Model:		3			
Covariance Type:		nrobust			
=======================================					======
	coef	std err	t	P> t	0.0]
25 0.975]	0001	Sca cii	C	17 0	[0.0
Intercept	0.5078	0.034	15.015	0.000	0.4
41 0.574					
<u>-</u>	3.9594	0.365	10.837	0.000	3.2
42 4.677	3.3054	0 414	7.976	0.000	2.4
vertical_jump 92 4.119	3.3034	0.414	7.970	0.000	2.4
four way agility	-16.3254	0.752	-21.718	0.000	-17.8
01 -14.850		01,02			2,00
=======================================	========			========	======
======					
Omnibus:		72.121	Durbin-Watso	on:	
2.015					
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	
219.234		0.450			
Skew:		-0.459	Prob(JB):		
2.48e-48 Kurtosis:		5.502	Cond. No.		
229.		3.302	COMA. NO.		
	========	:======:	=========	========	=======
======					

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

After selecting best 3 features: (741, 5)

```
In [19]: ### df = samplesize - # of variables +1 --> number of independent observ
         ations
         ### constant is intercept in regression line and tells us avg value of o
         mmited variables and noise in model
         ### coeff term = slope aka rise over run, if x increases by 1 , and coef
         f is .7, y increased by .7
         ### standard error = std
         ### Standard error shows the sampling variability of these parameters.o^
         2 is equal to residual sum squares
         #### remember *o2 in first param and its the numerator in second param
         ### H0 : B2 = 0
                                 ( variable X has no influence on Y)
         ### Ha : B2 ≠ 0
                               (X has significant impact on Y)
         ### b1 ~ N(B1, \sigma b12) B1 is true mean of b1
         ### - b1 is param
         ### b2 \sim N(B2, \sigma b22) B2 is true mean of b2
         ### - b2 is param
         ### p value - reject null <0.05 or fail to reject if >0.05. if 0 t is pr
         obably high
         ### R2 is the coefficient of determination that tells us that
         ### how much percentage variation independent variable can be explained
          by independent variable.
         # F stat - prob f stat > f stat given = 0 means reject null
         ### https://www.geeksforgeeks.org/interpreting-the-results-of-linear-reg
         ression-using-ols-summary/
```

Add features to try and improve r2 + find important features

========	=======	========	=======	======
ŀ	oamscore	R-squared:		
	OLS	Adj. R-squar	red:	
Least	Squares	F-statistic	:	
Mon. 25 A	Apr 2022	Prob (F-stat	tistic):	5.
•		(,	
1	12:02:45	Log-Likelih	ood:	
	7 / 1	7.T.C.		
	741	AIC:		
	734	BIC:		
-				
		========	========	======
coef	std err	t	P> t	[0.0]
0 9057	0 167	5 <i>/</i> 112	0 000	0.5
0.9037	0.107	J.412	0.000	0.5
3.8064	0.370	10.301	0.000	3.0
3.1563	0.417	7.568	0.000	2.3
-0.0871	0.168	-0.519	0.604	-0.4
-0.0071	0.100	-0.319	0.004	-0.4
-0.3362	0.125	-2.699	0.007	-0.5
-0.0270	0.158	-0.171	0.864	-0.3
-17.6547	0.904	-19.536	0.000	-19.4
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
========	:======:	========	========	======
	73.223	Durhin_Wate	nn•	
	13.223	Darbin-wacs	J.1. •	
	0.000	Jarque-Bera	(JB):	
	-0.460	Prob(JB):		
	5.552	Cond. No.		
	Least Mon, 25 A no coef 0.9057 3.8064 3.1563 -0.0871 -0.3362 -0.0270 -17.6547	Damscore OLS Least Squares Mon, 25 Apr 2022 12:02:45 741 734 6 nonrobust coef std err 0.9057 0.167 3.8064 0.370 3.1563 0.417 -0.0871 0.168 -0.3362 0.125 -0.0270 0.158 -17.6547 0.904	bamscore R-squared: OLS Adj. R-squared: DLS Adj. R-squared: Mon, 25 Apr 2022 Prob (F-stated) 12:02:45 Log-Likelihor 741 AIC: 734 BIC: 6 nonrobust coef std err t 0.9057 0.167 5.412 3.8064 0.370 10.301 3.1563 0.417 7.568 -0.0871 0.168 -0.519 -0.3362 0.125 -2.699 -0.0270 0.158 -0.171 -17.6547 0.904 -19.536	OLS Adj. R-squared: Least Squares F-statistic: Mon, 25 Apr 2022 Prob (F-statistic): 12:02:45 Log-Likelihood: 741 AIC: 734 BIC: 6 nonrobust coef std err t P> t 0.9057 0.167 5.412 0.000 3.8064 0.370 10.301 0.000 3.1563 0.417 7.568 0.000 -0.0871 0.168 -0.519 0.604 -0.3362 0.125 -2.699 0.007 -0.0270 0.158 -0.171 0.864 -17.6547 0.904 -19.536 0.000 73.223 Durbin-Watson: 0.000 Jarque-Bera (JB):

Warnings:

 $^{\[1\]}$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

[[] True True False False True False False True False False True e]

```
[[0.12764397 0.11090378 0.32120246 0.77172292 0.03766544]
[0.13973142 0.11352561 0.33802858 0.72698095 0.03841234]
[0.17380558 0.13035419 0.37061485 0.675797 0.03961745]
...
[0.12703203 0.09827006 0.34274681 0.73343023 0.04314295]
[0.14328437 0.11548293 0.32292448 0.76133189 0.04170217]
[0.15534627 0.16866167 0.34398103 0.72346978 0.03772695]]
(741, 5)
```

```
In [21]: # body comp and weight >0.05 - Ideally just drop them
```

Iteration - I wanted to take out because it is hard to measure already, now we know we can take it out because it's really throwing off the data and martin said it does not matter much, but model does not know that

=======================================		_	======================================		======
======					
Dep. Variable:	b	amscore	R-squared:		
0.620					
Model:		OLS	Adj. R-square	ed:	
0.618					
Method:	Least	Squares	F-statistic:		
299.8					
Date:	Mon, 25 A	pr 2022	Prob (F-stat	istic):	7.
16e-153					
Time:	1	2:02:45	Log-Likeliho	od:	
715.14					
No. Observations:		741	AIC:		
-1420.		=			
Df Residuals:		736	BIC:		
-1397. Df Model:		4			
Covariance Type:	no	nrobust			
======================================			=========	========	=======
=========					
	coef	std err	t	P> t	[0.0]
25 0.975]				1 - 1	
Intercept	0.4708	0.043	11.028	0.000	0.3
87 0.555					
approach_vertical	3.9304	0.366	10.749	0.000	3.2
13 4.648					
vertical_jump	3.2492	0.416	7.810	0.000	2.4
32 4.066	0 1000	0 122	1 410	0 157	0 0
reach	0.1890	0.133	1.418	0.157	-0.0
73 0.451	16 0250	0 066	-19.566	0.000	-18.6
four_way_agility 34 -15.236	-10.9330	0.000	-19.500	0.000	-10.0
=======================================	========	:=======	=========	========	=======
======					
Omnibus:		69.439	Durbin-Watson	n:	
2.018					
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	
228.944			•	,	
Skew:		-0.410	Prob(JB):		
1.93e-50					
Kurtosis:		5.597	Cond. No.		
283.					
=======================================	========	:======		=======	======
======					

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Out[22]: <seaborn.axisgrid.FacetGrid at 0x7ff491df7fd0>

Iteration - features I think are most important from pairplot in EDA

```
In [23]: import statsmodels.formula.api as smf
formula = "bamscore ~ three_quarter_court_sprint + four_way_agility + re
    action_shuttle + vertical_jump + approach_vertical"
    lm = smf.ols(formula = formula, data = df_train).fit()
    print(lm.summary())
```

======================================	:=======	========	:=======	:======:
Dep. Variable:	bamscore	R-squared:		
0.697				
Model:	OLS	Adj. R-squ	ared:	
0.695				
	st Squares	F-statisti	.c:	
337.9				
	5 Apr 2022	Prob (F-st	atistic):	1
01e-187				
Time:	12:02:46	Log-Likeli	hood:	
799.16				
No. Observations:	741	AIC:		
-1586 .				
Df Residuals:	/35	BIC:		
-1559.	-			
Df Model:	5			
Covariance Type: ====================================				
	coef	std err	t	P> +
[0.025 0.975]	0001	200 011	· ·	-
Intercept	0.5582	0.030	18.313	0.000
0.498 0.618				
three_quarter_court_sprint	-7 . 9533	1.923	-4.136	0.000
-11.728 -4.179	6 0405	1 010	5 000	0 000
four_way_agility	-6.0437	1.019	-5.932	0.000
-8.044 -4.044	25 2052	0.770	10 700	0 000
reaction_shuttle	-35.3052	2.773	-12.732	0.000
-40.749 -29.861	2 2517	0 270	0.700	0 000
vertical_jump 2.525 3.978	3.251/	0.370	8.788	0.000
	1 1221	0 220	13.489	0.000
approach_vertical 3.780 5.067	4.4234	0.320	13.409	0.000
======================================	:=======		=========	======
=====				
Omnibus:	76.718	Durbin-Wat	son:	
2.017				
Prob(Omnibus):	0.000	Jarque-Ber	a (JB):	
457.485				
Skew:	-0.204	Prob(JB):		4
55e-100				
Kurtosis:	6.828	Cond. No.		
	0.020	001101 1101		

Warnings:

======

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [24]: import statsmodels.formula.api as sm
model = sm.glsar(formula = formula, data = df_train)

lm = model.fit()
print(lm.summary())
```

======				
Dep. Variable:	bamscore	R-squared:		
0.697				
Model:	GLSAR	Adj. R-squa	red:	
0.695				
Method:	Least Squares	F-statistic	:	
338.1				
Date:	Mon, 25 Apr 2022	Prob (F-sta	tistic):	1
10e-187				
Time:	12:02:46	Log-Likelih	ood:	
798.14				
No. Observations:	740	AIC:		
-1584.				
Df Residuals:	734	BIC:		
-1557.				
Df Model:	5			
Covariance Type:				
=======================================		=======	========	-======
=======================================				5 5 1
	coei	std err	t	P> t
[0.025 0.975]				
 Intercept		0.030	18 301	0.000
0.498 0.618	0.3379	0.050	10.301	0.000
three_quarter_court_	snrint _7 0010	1 923	-4.156	0.000
-11.766 -4.216	PDT THC -1.9910	1.923	-4.130	0.000
four_way_agility	-5.9933	1.020	-5.877	0.000
-7.995 -3.991	-3.7733	1.020	3.077	0.000
reaction_shuttle	-35.4437	2.776	-12.769	0.000
-40.893 -29.994		23770	12:705	J.000
vertical_jump		0.370	8.753	0.000
2.513 3.967	3.2100	0.007.0	3.733	J. 000
approach_vertical	4.4347	0.328	13.518	0.000
3.791 5.079	1.1017	0.020		0.000
=======================================	:=========	========	========	
======				
Omnibus:	76.581	Durbin-Wats	on:	
2.013				
Prob(Omnibus):	0.000	Jarque-Bera	(JB):	
458.040		-	, ,	
Skew:	-0.201	Prob(JB):		3
45e-100		,		
Virgit of a c	6.833	Cond. No.		
Kurtosis:				

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [26]: r2_score(y_test, ypred)
Out[26]: 0.3491785846088724
In [27]: # DO LM PLOT to see trend in data with respect to bamscore
In [28]: # Random Forest
         ## Going to try random forrest because we had over fitting in models abo
         ## Random forrest corrects for high variance/overfitting by using many d
         ecision trees
         #Steps:
         # -create bootstrapped dataset with subset of variables
         # -fit decision tree
         # -repeat and tally predictions
In [29]: from sklearn.ensemble import RandomForestRegressor
         # create regressor object
         regressor = RandomForestRegressor(n_estimators = 100, random_state = 0)
         cols = ["four_way agility", "reaction_shuttle", "three_quarter_court_spr
         int", "vertical_jump", "approach_vertical"]
         # fit the regressor with x and y data
         rf = regressor.fit(X_train, y_train)
         rf.score(X test, y test)
         # score if fit and test on full data frame
Out[29]: 0.5295593565201384
In [30]: #x train[cols]
         #x test[cols]
         regressor = RandomForestRegressor(n estimators = 100, random state = 0)
         cols = ["four_way_agility", "reaction_shuttle", "three_quarter_court_spr
         int", "vertical jump", "approach vertical"]
         # fit the regressor with x and y data
         rf = regressor.fit(X train[cols], y train)
         rf.score(X test[cols], y test)
         # score if fit and test on just [cols]
Out[30]: 0.5382597305545691
In [31]: # If Condition Number is too high I'll run into problems in matrix becau
         se program may not catch small errors
In [32]: # 5) Iterative modeling process
         ### What models are appropriate
         ### Compare Models
         ### Find which performance metrics to use and adjust to make the model b
```

etter.

In [33]: ### Assumptions to test in model:
 #### - Combine Tests more important than physical measurments. Weigh com
 bine tests as double.
 #### - just tests, just measurments, 1:1 test/measurements, hypothesis 2:1 test/measurment

In [34]: #r2 = model isn't very accurate predicting bamscore with .453 bamscore

In [35]: # Least Sum Squares to figure out best fit line and figure out most corr elated features