Practice Problems Sheet-1

 $\mathbf{Q}\mathbf{1}$

- (a) Without using set theoretic axioms such as ZF, show that there is no set $A = \{x \mid x \text{ is a set and } x \notin x\}.$
- (b) Consider some mathematical theory T which has a sentence ϕ that is logically equivalent to " ϕ is not provable in T". Assuming that T is sound what can you say about T?
- **Q2** For each of the following judgement, give its derivation in the weakest of the three systems Nm, Ni and Nc, in which it can be derived.
 - (a) $\vdash \neg (A \lor B) \to \neg A \land \neg B$
 - **(b)** $\vdash \neg A \land \neg B \rightarrow \neg (A \lor B)$
 - (c) $\vdash \neg (A \land B) \rightarrow \neg A \lor \neg B$
 - (d) $\vdash \neg A \lor \neg B \to \neg (A \land B)$
 - (e) $\vdash \neg \neg \neg A \rightarrow \neg A$
- **Q3** For propositions ϕ and ψ , define $\phi \leftrightarrow \psi$ as $(\phi \to \psi) \land (\psi \to \phi)$.

Show that the following are derivable in Ni.

- (a) $\vdash (A \rightarrow B) \rightarrow (\neg \neg A \rightarrow \neg \neg B)$
- **(b)** $\vdash \neg \neg (A \land B) \leftrightarrow (\neg \neg A \land \neg \neg B)$

- (a) Label Nm inference rules $(i, \forall i, \rightarrow i \text{ and } \rightarrow e \text{ with construction terms.})$
- (b) We extend the language of construction terms to label Nm rules $\wedge e$ and $\vee e$ as follows.

$$\frac{\Gamma \vdash t : A \land B}{\Gamma \vdash \pi_1 t : A \land B} \land e1 \qquad \frac{\Gamma \vdash t : A \land B}{\Gamma \vdash \pi_2 t : A \land B} \land e2$$

$$\frac{\Gamma \vdash t : A \lor B \quad \Gamma', a : A \vdash t_1 : C \quad \Gamma', b : B \vdash t_2 : C}{\Gamma, \Gamma' \vdash \text{case } t \text{ of } inl(a) \Rightarrow t_1 \mid inr(b) \Rightarrow t_2 : C} \lor e$$

Here π_i , $i \in \{1, 2\}$, stands for i^{th} projection of a pair and "case" construct stands for reasoning by cases.

Give precise meaning of these constructs and explain why the above labeling of Nm inference rules is intuitively correct.

- (c) Can you think of term assignment for structural rules of Ni?
- Q5 You may use labeling given in Q4 to answer the following.
 - (a) Label your derivations of those parts of $\mathbf{Q2}$ which are in Nm. In particular, provide a construction term for the conclusion judgement.
 - (b) Label your derivations of those parts of $\mathbf{Q3}$ which are in Nm. In particular, provide a construction term for the conclusion judgement.
- **Q6.** Let \vdash be either \vdash_{Nm} or \vdash_{Ni} or \vdash_{Nc} in this question. Define a binary relation ' \sim ' on propositions (of our propositional language) as follows.

$$\phi \sim \psi$$
 iff $\vdash (\phi \rightarrow \psi)$ and $\vdash (\psi \rightarrow \phi)$.

Show the following.

- (i) Relation \sim is an equivalence relation.
- (ii) Relation \sim is a congruence with respect to logical operations.
- (iii) Let $[\phi]$ be the equivalence class of ϕ w.r.t. relation \sim above. Define a binary relation ' \leq ' on these equivalence classes as $[\phi] \leq [\psi]$ iff $\vdash (\phi \to \psi)$. Show that \leq is a partial order.

Q7 Let (A, \leq) and (B, \leq) be partial orders. A function $f: A^n \to B$ is said be monotone in i^{th} argument if it preserves order of i^{th} argument. That is, for all $a_1, \ldots, a_i, \ldots, a_n$ and a'_i in $A, a_i \leq a'_i \Rightarrow f(a_1, \ldots, a_i, \ldots, a_n) \leq f(a_1, \ldots, a'_i, \ldots, a_n)$.

Show that in a lattice (A, \leq, \vee, \wedge) , both functions \vee and \wedge are monotone in both arguments.

Q8 Consider an algebraic structure (A, \vee, \wedge) satisfying the following axioms.

$$\begin{array}{lll} a\vee b=b\vee a & a\wedge b=b\wedge a & \text{(Commutativity)}\\ (a\vee b)\vee c=a\vee (b\vee c) & (a\wedge b)\wedge c=a\wedge (b\wedge c) & \text{(Associativity)}\\ a\vee a=a & a\wedge a=a & \text{(Idempotence)}\\ a\vee (a\wedge b)=a & a\wedge (a\vee b)=a & \text{(Absorption)} \end{array}$$

Define a binary relation R on A s.t. aRb iff $a \wedge b = a$.

- (a) Show that R is a partial order on A.
- (b) Show that \vee and \wedge are respectively lub and glb operations on (A, R).
- (c) Conclude that the class of lattices can be defined using (above) equations only.

