Small-Signal BJT Amplifiers

E2002 Analog Electronics

Prof. Zheng Yuanjin

Email: yjzheng@ntu.edu.sg

Office: S2.2-B2-16

Tel: 65927764

Module Goals

Understanding of concepts related to:

- Biasing of Transistors (BJT and MOSFET)
- dc and ac equivalent circuits for small-signal amplifier
- Small-signal models of BJT and MOSFET
- Amplifier characteristics such as voltage gain, input and output resistances
- Analysis of three broad classes of single-stage amplifiers
 - Inverting amplifiers common-emitter and common-source configurations
 - Followers common-collector and common-drain configurations
 - Noninverting amplifiers common-base and common-gate configurations

References

Text Book

1. Richard C. Jaeger and Travis N. Blalock, "Microelectronic Circuit Design", 4th Edition, McGraw Hill, 2011, Chapters 4, 5, 13 and 14.

References

- 1. Allan R. Hambley, "Electronics", 2nd Edition, Prentice Hall, 2000
- 2. Donald A. Neamen, "Electronic Circuit Analysis and Design", 2nd Edition, McGraw-Hill, 2002

Bipolar Junction Transistors

Bipolar transistor can be thought of as a sandwich of three doped Si regions. The outer two regions are doped with the same polarity, while the middle region is doped with opposite polarity.

Output Characteristics of BJT

Operation Regions of BJT

Forward-active region

BEJ (npn) forward biased BCJ (npn) reversed biased $V_{BE} \ge 0.7 \text{ V}$ $I_C = \beta I_B = \alpha I_E$ => Good amplifier

Cutoff region

BEJ (npn) reverse biased BCJ (npn) reverse biased $I_C = 0$ => Open Switch

Note: the junctions refer to EBJ and CBJ for pnp transistor.

Operation Regions of BJT (Cont.)

Saturation region

BEJ (npn) forward biased BCJ (npn) forward biased

- \Rightarrow Closed switch
- $\Rightarrow V_{BE} \ge 0.7 \text{ V}$ $V_{BC} = 0.4 \sim 0.5 \text{ V}$
- $\Rightarrow V_{CE(SAT)} = 0.2 \sim 0.3 \text{ V}$

Reverse-active region

BEJ (npn) reverse biased BCJ (npn) forward biased

- ⇒ Weak amplifier
- \Rightarrow Normally not use

Note: the junctions refer to EBJ and CBJ for pnp transistor.

BJT Biasing for Different Regions of Operation

Region	NPN	PNP
Forward-active	$V_{BE} \ge 0.7 \text{ V}$ $V_{BC} < 0 \text{ V}$	$V_{EB} \ge 0.7 \text{ V}$ $V_{CB} < 0 \text{ V}$
Saturation	$V_{BE} \ge 0.7 \text{ V}$ $V_{BC} > 0 \text{ V}$	$V_{EB} \ge 0.7 \text{ V}$ $V_{CB} > 0 \text{ V}$
Cutoff	$V_{BE} < 0.7 \text{ V}$ $V_{BC} < 0 \text{ V}$	$V_{EB} < 0.7 \text{ V}$ $V_{CB} < 0 \text{ V}$
Reverse-active	$V_{BE} < 0.7 \text{ V}$ $V_{BC} > 0 \text{ V}$	$V_{EB} < 0.7 \text{ V}$ $V_{CB} > 0 \text{ V}$

BJT Bias Analysis: Active Mode

Q in active mode and can be used as linear amplifier.

BJT Bias Analysis: Cut-off Mode

$$V_{BE} = V_B - V_E = 3.0 - 2.7 = 0.3 \text{ V}$$

$$V_{BC} = V_B - V_C = 3.0 - 6 \text{ V} = -3.0 \text{ V}$$

 $\begin{array}{ccc}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$

Q is cutoff.

BJT Bias Analysis: Saturation mode

$$V_{BE} = V_B - V_E = 6.0 - 5.2 = 0.8 \text{ V}$$

$$V_{BC} = V_B - V_C = 6.0 - 5.5 \text{ V} = 0.5 \text{ V}$$

Q is in Saturation!

$$V_{CE} = V_{CB} + V_{BE} = -0.5 + 0.8 = 0.3 \text{ V}$$

BJT Bias Analysis: Determine DC node voltages and branch currents

In saturation region,
$$V_{CE} \approx 0.2$$
 to 0.3 V. Assume $V_{CE(SAT)} = 0.2$ V, $V_E = 6 - 0.7 = 5.3$ V and $I_E = 5.3/3.3 = 1.6$ mA. $V_C = V_E + V_{CE(SAT)} = 5.3 + 0.2 = 5.5$ V $I_C = (10 - 5.5)/4.7 = 0.96$ mA. $I_B = I_E - I_C = 1.6 - 0.96 = 0.64$ mA $\beta_{\text{forced}} = I_C/I_B = 0.96/0.64 = 1.5$

Introduction to Amplifiers

- BJT is an excellent amplifier when biased in forward-active region
- MOSFET can be used as amplifier when biased in saturation region.
- In these regions, transistors can provide high voltage, current and power gains.
- Bias refers to setting the 'quiescent' (idle) current when there is no signal presence. It sets the transistor in the desired operation region.
- Q-point (determined by DC analysis) also determines
 - Small-signal parameters of transistor
 - Voltage gain, input resistance, output resistance
 - Maximum input and output signal amplitudes
 - Power consumption
 - Efficiency (o/p signal power vs DC i/p power)

Biasing BJT for linear amplification

BJT is forward biased for small-signal amplifier.

All the principles that applied to npn's also apply to pnp's with the exception that emitter is at a higher potential than base and base at a higher potential than collector

npn	pnp
\ \ \ \ /	$I_C = I_S \exp\left(\frac{V_{EB}}{V_T}\right)$
with Early effect:	with Early effect:
$I_C = I_S \exp\left(\frac{V_{BE}}{V_T}\right) \left(1 + \frac{V_{CE}}{V_A}\right)$	$I_C = I_S \exp\left(\frac{V_{EB}}{V_T}\right) \left(1 + \frac{V_{EC}}{V_A}\right)$

$$I_C = \beta I_B; I_E = \frac{I_C}{\alpha}; \alpha = \frac{\beta}{\beta + 1}$$

$$V_T = \frac{kT}{q} \approx 25 \ mV \ @ 25^{\circ}C$$

 V_T : Thermal voltage in V.

k: Boltzmann's constant, 8.62×10^{-5} eV/K.

T: absolute temperature in K. q: charge, 1.602×10^{-19} C.

BJT Amplifier

Q-point is set at $(I_C, V_{CE}) = (1.5 \text{ mA}, 5 \text{ V})$ with $I_B = 15 \mu\text{A}$.

Total base-emitter voltage is: $v_{BE} = V_{BE} + v_{be}$

Collector-emitter voltage is: $v_{CE} = V_{CC} - i_C R_C \implies \text{load line}$

BJT Amplifier (contd.)

180° phase shift between input and output signals.

8 mV peak change in v_{BE}

 \Rightarrow 5 μ A change in i_B

 \Rightarrow 0.5 mA change in i_C

 \Rightarrow 1.65 V change in v_{CE} .

If changes in v_{BE} are small enough, then i_C and v_{CE} waveforms are undistorted replicas of input signal.

$$A_{v} = \frac{v_{ce}}{v_{be}} = \frac{1.65 \angle 180^{\circ}}{0.008 \angle 0^{\circ}}$$
$$= 206 \angle 180^{\circ} = -206$$

Coupling and Bypass Capacitors

large coupling capacitors or dc blocking capacitors, their reactance at signal frequency is negligible. R_{B1} R_{C} R_{B2} R_{C} $R_$

bypass capacitor, provides low impedance path for ac current from emitter to ground, effectively eliminating $R_{\rm E}$ from circuit when ac signals are considered ($R_{\rm E}$ is required for good Qpoint stability).

- AC coupling through capacitors is used to inject ac input signal and extract output signal without disturbing the Q-point
- Capacitors provide negligible impedance at frequencies of interest and provide open circuits at dc.

DC and AC Analysis

• DC analysis:

- Obtain dc equivalent circuit by replacing all capacitors by open circuits and inductors by short circuits. ac voltage sources by ground connections and ac current sources by open circuits.
- Find Q-point from dc equivalent circuit by using appropriate largesignal transistor model.

• AC analysis:

- Obtain ac equivalent circuit by replacing all capacitors by short circuits, inductors by open circuits, dc voltage sources by ground connections and dc current sources by open circuits.
- Replace transistor by small-signal model
- Use small-signal ac equivalent to analyze ac characteristics of amplifier.
- Combine end results of dc and ac analysis to yield total voltages and currents in the network.

DC Equivalent for BJT Amplifier

All capacitors in original amplifier circuits are replaced by open circuits, disconnecting v_I , R_I , and R_3 from circuit.

DC Analysis Example: Four-Resistor BJT Biasing Circuit

$$R_{eq} = R_{B1} \| R_{B2}$$

$$= 100 \| 50$$

$$= 33.3 k\Omega$$

$$R_{eq}$$

$$33.3 k\Omega$$

$$R_{eq}$$

KVL 1:
$$V_{eq} = I_B R_{eq} + V_{BE} + I_E R_E$$

 $5 = 33.3I_B + 0.7 + 101 \times I_B \times 3$
 $I_B = 0.0128 \text{ mA}$

$$V_{eq} = \left(\frac{R_{B2}}{R_{B1} + R_{B2}}\right) V_{CC}$$
$$= \frac{50}{100 + 50} \times 15 = 5 \text{ V}$$

$$I_C = \beta I_B = 1.28 \text{ mA}, I_E = (\beta + 1) I_B = 1.29 \text{ mA}$$

KVL 2:
$$V_{CE} = 15 - I_C R_C - I_E R_E = 15 - 1.28 \times 5 - 1.29 \times 3 = 4.73 \text{ V}$$

DC Analysis Example: Four-Resistor BJT Biasing Circuit (cont.)

$$V_B = V_{BE} + I_E R_E$$
 or $V_{eq} - I_B R_{eq} = 0.7 + 3.87 = 4.57 \text{ V}$
 $V_C = V_{CC} - I_C R_C = 15 - 1.28 \times 5 = 8.6 \text{ V}$
 $V_{BC} = V_B - V_C = 4.57 - 8.6 = -4.03 \text{ V}.$

BCJ is reverse baised, Q is indeed in active mode as had been assumed.

AC Equivalent for BJT Amplifier

Hybrid-Pi Model of BJT

- The hybrid-pi small-signal model is the intrinsic low-frequency representation of the BJT.
- Small-signal parameters are controlled by the Q-point and are independent of geometry of BJT

Transconductance:

$$g_m = \frac{I_C}{V_T} \approx 40I_C$$

where
$$V_T = \frac{kT}{q} \approx 25 \ mV$$

Input resistance:

$$r_{\pi} = \frac{\beta}{g_{m}}$$

Output resistance:

$$r_o = \frac{V_A + V_{CE}}{I_C} \approx \frac{V_A}{I_C} \text{ if } V_A \gg V_{CE}$$

Equivalent Forms of Small-Signal Model for BJT

• Voltage -controlled current source $g_m v_{be}$ can be transformed into current-controlled current source, .

$$v_{be} = i_b r_{\pi}$$

$$g_m v_{be} = g_m i_b r_{\pi} = \beta i_b$$

$$i_c = \beta i_b + \frac{v_{ce}}{r_o} \approx \beta i_b$$

• Basic relationship $i_c = \beta i_b$ is useful in both dc and ac analysis when BJT is in forward-active region.

Small Signal Operation of BJT

$$i_C \approx I_S \exp\left(\frac{v_{BE}}{V_T}\right) = I_S \exp\left(\frac{V_{BE} + v_{be}}{V_T}\right)$$

$$\therefore i_C = I_S \exp\left(\frac{V_{BE}}{V_T}\right) \exp\left(\frac{v_{be}}{V_T}\right) = I_C \left[1 + \frac{v_{be}}{V_T} + \frac{1}{2!} \left(\frac{v_{be}}{V_T}\right)^2 + \frac{1}{3!} \left(\frac{v_{be}}{V_T}\right)^3 + \cdots\right]$$

$$i_c = i_C - I_C = I_C \left[\frac{v_{be}}{V_T} + \frac{1}{2} \left(\frac{v_{be}}{V_T} \right)^2 + \frac{1}{6} \left(\frac{v_{be}}{V_T} \right)^3 + \cdots \right]$$

For linearity, i_c should be proportional to v_{be}

$$\frac{1}{2} \left(\frac{v_{be}}{V_T} \right)^2 << \frac{v_{be}}{V_T} \Longrightarrow \left| v_{be} \right| << 2V_T = 0.05 \ V \Longrightarrow \left| v_{be} \right| \le 0.005 \ V$$

Small-Signal Model for pnp BJT

The small signal model for pnp transistor is exactly IDENTICAL to that of npn. This is not a mistake because the current direction is taken care of by the polarity of V_{BE} .

Summary of Small Signal Parameters

Parameter	BJT	n-MOSFET
g_m	$\frac{I_C}{V_T}$	$\frac{2I_{D}}{V_{GS} - V_{TN}}$ $K_{n} \left(V_{GS} - V_{TN}\right) \left(1 + \lambda V_{DS}\right) \approx K_{n} \left(V_{GS} - V_{TN}\right)$ $\sqrt{2K_{n}I_{D} \left(1 + \lambda V_{DS}\right)} \approx \sqrt{2K_{n}I_{D}}$
${\cal F}_{\pi}$	$\frac{\beta}{g_m} = \frac{\beta V_T}{I_C}$	∞
r_o	$\frac{V_A + V_{CE}}{I_C} \approx \frac{V_A}{I_C}$	$\frac{\frac{1}{\lambda} + V_{DS}}{I_D} \approx \frac{1}{\lambda I_D}$
Small-signal requirement	$v_{be} \le 0.005 \ V$	$v_{gs} \le 0.2 \left(V_{GS} - V_{TN} \right)$

Small Signal Analysis of Fully Bypass C-E Amplifier

- The ac equivalent circuit is constructed by assuming that all capacitances have zero impedance at signal frequency and dc voltage source is ac ground.
- Assume that Q-point is already known.

Fully Bypass C-E Amplifier: Voltage Gain

Terminal voltage gain between base and collector is:

$$A_{vt} = \frac{v_c}{v_b} = \frac{v_o}{v_{be}}$$
$$= \frac{-g_m v_{be} R'_L}{v_{be}} = -g_m R'_L$$

Overall voltage gain from source v_i to output voltage across R_I is:

$$A_{v} = \frac{v_{o}}{v_{i}} = \left(\frac{v_{o}}{v_{be}}\right) \left(\frac{v_{be}}{v_{i}}\right)$$
$$= A_{vt} \left(\frac{v_{be}}{v_{i}}\right)$$

$$\therefore A_{v} = -g_{m}R_{L}'\left(\frac{R_{B} \|r_{\pi}}{R_{I} + R_{B} \|r_{\pi}}\right)$$

Fully Bypass C-E Amplifier Input Resistance

Fully Bypass C-E Amplifier Output Resistance

$$i_x = \frac{v_x}{R_C} + \frac{v_x}{r_o} + g_m v_{be}$$

$$v_{be} = 0 \Longrightarrow i_x = \frac{v_x}{R_C} + \frac{v_x}{r_o}$$

$$R_{out} = \frac{v_x}{i_x} = \left(\frac{1}{R_C} + \frac{1}{r_o}\right)^{-1} = R_C ||r_o||$$

$$R_{out} \approx R_C \text{ if } r_o \gg R_C$$

Fully Bypass C-E Amplifier Example

Problem: Find voltage gain, input and output resistances.

Given
$$\beta = 65$$
, $V_A = 50 \text{ V}$

Assume $V_{BE} = 0.7$ V, and BJT biased for small signal operating conditions.

Find the Q-point from dc equivalent circuit

$$10^{5} I_{B} + V_{BE} + (\beta + 1) I_{B} (1.6 \times 10^{4}) = 5$$

$$I_{B} = 3.71 \mu A$$

$$I_{C} = 65 I_{B} = 241 \mu A$$

$$I_{E} = 66 I_{B} = 245 \mu A$$

$$5 - 10^4 I_C - V_{CE} - (1.6 \times 10^4) I_E - (-5) = 0$$
$$V_{CE} = 3.67 V$$

Analysis of Fully Bypass C-E Amplifier (contd.)

Construct the ac equivalent and simplify it.

$$g_m = 40I_C = 9.64 \times 10^{-3} S$$

$$r_{\pi} = \frac{\beta}{g_m} = 6.64 \, k\Omega$$

$$r_o = \frac{V_A + V_{CE}}{I_C} = 223 \text{ k}\Omega$$

Amplifier Families

- Constraints for signal injection and extraction yield three families of amplifiers
 - Common-Emitter (C-E)/Common- Source (C-S)
 - Common-Base (C-B)/Common- Gate (C-G)
 - Common-Collector (C-C)/Common- Drain (C-D)
- All circuit examples here use the four-resistor bias circuits to establish Q-point of the various amplifiers
- Coupling and bypass capacitors are used to change the ac equivalent circuits.

Amplifier Family

$$\underline{i}_{e} \approx \underline{i}_{c} \approx I_{s} \exp\left(\frac{\underline{v}_{b} - \underline{v}_{e}}{V_{T}}\right)$$

C-E: i/p at B, o/p at C

C-C: i/p at B, o/p at E

C-B: i/p at E, o/p at C

$$i_s = i_d \approx \frac{K_n}{2} \left(v_g - v_s - V_{TN} \right)^2$$

C-S: i/p at G, o/p at D

C-D: i/p at G, o/p at S

C-G: i/p at S, o/p at D

C-E Amplifier (Inverting Amplifier): Terminal Voltage Gain

 $\because i_{r_o} \ll g_m v_{be}, i_c \approx g_m v_{be} \approx i_e$

$$A_{vt} = \frac{v_c}{v_b} = \frac{-i_c R_L'}{v_{be} + i_e R_{E1}} \approx \frac{-g_m v_{be} R_L'}{v_{be} + g_m v_{be} R_{E1}} = \frac{-g_m R_L'}{1 + g_m R_{E1}}$$

C-E Amplifier (Inverting Amplifier): Input Resistance

$$v_b = i_b r_\pi + (\beta + 1) i_b R_{E1}$$

$$R'_{in} = \frac{v_b}{i_b} = r_{\pi} + (\beta + 1)R_{E1} \implies R_{in} = R'_{in} ||R_B|$$

C-E Amplifier (Inverting Amplifier): Overall Voltage Gain

C-E Amplifier (Inverting Amplifier): Output Resistance

$$v_x = (i_x - g_m v_{be}) r_o + v_e$$

$$v_{e} = i_{x} \left\{ \left(r_{\pi} + R_{th} \right) \middle\| R_{E1} \right\} \qquad v_{be} = -\left(\frac{r_{\pi}}{r_{\pi} + R_{th}} \right) v_{e} = -\left(\frac{r_{\pi}}{r_{\pi} + R_{th}} \right) i_{x} \left\{ \left(r_{\pi} + R_{th} \right) \middle\| R_{E1} \right\}$$

C-E Amplifier (Inverting Amplifier): Output Resistance (Continue)

C-E Amplifier (Inverting Amplifier): Input Signal Range

For BJT small-signal operation, $|v_{be}| \le 5$ mV.

$$v_{be} = i_b r_{\pi} = \frac{v_b r_{\pi}}{R'_{in}} = \frac{v_b r_{\pi}}{r_{\pi} + (\beta + 1)R_{E1}}$$
$$|v_{be}| \le 0.005$$

$$\Rightarrow \left| v_b \right| \le 0.005 \left(\frac{r_{\pi} + (\beta + 1) R_{E1}}{r_{\pi}} \right)$$

$$\therefore \beta + 1 \approx g_m r_\pi, |v_b| \leq 0.005 (1 + g_m R_{E1})$$

$$\because v_b = \left(\frac{R_{in}}{R_I + R_{in}}\right) v_i \Longrightarrow |v_i| \le 0.005 \left(1 + g_m R_{E1}\right) \left(\frac{R_I + R_{in}}{R_{in}}\right)$$

If $g_m R_{E1} >> 1$, $|v_i|$ can be increased beyond 5 mV limit.

Summary: C-E and C-S

Po	arameter	Terminal Voltage	Input Resistance	Output Resistance
Amplifier		Gain $A_{\!\scriptscriptstyle \mathcal{V}t}$	R'_{in}	R'_{out}
ВЈТ	C-E	$\frac{-g_m R_L'}{1 + g_m R_{E1}}$	$r_{\pi} + (\beta + 1)R_{E1}$	$\left(1 + \frac{\beta R_{E1}}{r_{\pi} + R_{th} + R_{E1}}\right) r_{o}$
MOSFET	C-S	$\frac{-g_m R_L'}{1 + g_m R_{S1}}$	∞	$(1+g_mR_{S1})r_o$
BJT	C-C	$\frac{g_{m}R'_{L}}{1+g_{m}R'_{L}}$	$r_{\pi}+(\beta+1)R'_{L}$	$r_o \left\ \left(\frac{r_\pi + R_{th}}{\beta + 1} \right) \right\ $
MOSFET	C-D	$\frac{g_m R_L'}{1 + g_m R_L'}$	∞	$r_o \left \frac{1}{g_m} \right $
BJT	С-В	$g_{\scriptscriptstyle m} R_{\scriptscriptstyle L}'$	$\frac{1}{g_m}$	$\left[1+g_{m}\left(r_{\pi}\left\ R_{th}\right)\right]r_{o}\right]$
MOSFET	C-G	$g_{\scriptscriptstyle m} R_{\scriptscriptstyle L}'$	$\frac{1}{g_m}$	$(1+g_mR_{th})r_o$

C-C Amplifier (Voltage Follower): Terminal Voltage Gain

C-C Amplifier (Voltage Follower): Input Resistance

C-C Amplifier (Voltage Follower): Overall Voltage Gain

C-C Amplifier (Voltage Follower): Output Resistance

C-C Amplifier (Voltage Follower): Input Signal Range

For BJT small-signal operation, $|v_{be}| \le 5$ mV.

$$v_{be} = i_b r_{\pi} = \frac{v_b r_{\pi}}{R'_{in}} = \frac{v_b r_{\pi}}{r_{\pi} + (\beta + 1)R'_{L}}$$

$$|v_{be}| \le 0.005$$

$$\Rightarrow |v_b| \le 0.005 \left(\frac{r_{\pi} + (\beta + 1)R'_{L}}{r}\right)$$

$$\therefore \beta + 1 \approx g_m r_\pi, |v_b| \le 0.005 (1 + g_m R_L')$$

$$\because v_b = \left(\frac{R_{in}}{R_I + R_{in}}\right) v_i \Longrightarrow |v_i| \le 0.005 \left(1 + g_m R_L'\right) \left(\frac{R_I + R_{in}}{R_{in}}\right)$$

If $g_m R_L' >> 1$, $|v_i|$ can be increased beyond 5 mV limit.

Summary: C-C and C-D

Parameter		Terminal Voltage	Input Resistance	Output Resistance
Amplifier		Gain $A_{_{\!$	R'_{in}	R'_{out}
BJT	C-E	$\frac{-g_m R_L'}{1+g_m R_{E1}}$	$r_{\pi} + (\beta + 1)R_{E1}$	$\left(1 + \frac{\beta R_{E1}}{r_{\pi} + R_{th} + R_{E1}}\right) r_o$
MOSFET	C-S	$\frac{-g_m R_L'}{1 + g_m R_{S1}}$	∞	$(1+g_m R_{S1})r_o$
ВЈТ	C-C	$\frac{g_{m}R'_{L}}{1+g_{m}R'_{L}}$	$r_{\pi}+(\beta+1)R'_{L}$	$r_o \left\ \left(\frac{r_\pi + R_{th}}{\beta + 1} \right) \right\ $
MOSFET	C-D	$\frac{g_{\scriptscriptstyle m}R'_{\scriptscriptstyle L}}{1+g_{\scriptscriptstyle m}R'_{\scriptscriptstyle L}}$	∞	$r_o \left\ \frac{1}{g_m} \right\ $
BJT	C-B	$g_{\scriptscriptstyle m} R_{\scriptscriptstyle L}'$	$\frac{1}{g_m}$	$\left[1+g_{m}\left(r_{\pi}\left\ R_{th}\right)\right]r_{o}\right]$
MOSFET	C-G	$g_{\scriptscriptstyle m} R_{\scriptscriptstyle L}'$	$\frac{1}{g_m}$	$(1+g_mR_{th})r_o$

C-B Amplifier (Noninverting Amplifier): Terminal Voltage Gain

C-B Amplifier (Noninverting Amplifier): Input Resistance

C-B Amplifier (Noninverting Amplifier): Overall Voltage Gain

C-B Amplifier (Noninverting Amplifier): Output Resistance

C-B Amplifier (Noninverting Amplifier): Input Signal Range

For BJT small-signal operation, $|v_{be}| \le 5$ mV.

$$v_{be} = -v_e = -\left(\frac{R_{in}}{R_I + R_{in}}\right)v_i$$
$$|v_{be}| \le 0.005$$
$$\Rightarrow |v_i| \le 0.005 \left(\frac{R_I + R_{in}}{R_I}\right)$$

$$\therefore R_{in} = \frac{R_E}{1 + g_m R_E} \Rightarrow \frac{R_I + R_{in}}{R_{in}} = 1 + g_m R_I + \frac{R_I}{R_E}$$

If
$$R_E >> R_I$$
, $|v_i| \le 0.005(1 + g_m R_I)$

Summary: C-B and C-G

P	arameter	Terminal Voltage	Input Resistance	Output Resistance
Amplifier		Gain A_{vt}	R_{in}'	R_{out}'
BJT	C-E	$\frac{-g_m R_L'}{1 + g_m R_{E1}}$	$r_{\pi} + (\beta + 1)R_{E1}$	$\left(1 + \frac{\beta R_{E1}}{r_{\pi} + R_{th} + R_{E1}}\right) r_o$
MOSFET	C-S	$\frac{-g_m R_L'}{1+g_m R_{S1}}$	∞	$(1+g_m R_{S1}) r_o$
BJT	C-C	$\frac{g_{\scriptscriptstyle m}R'_{\scriptscriptstyle L}}{1+g_{\scriptscriptstyle m}R'_{\scriptscriptstyle L}}$	$r_{\pi} + (\beta + 1)R'_{L}$	$r_o \left\ \left(\frac{r_\pi + R_{th}}{\beta + 1} \right) \right\ $
MOSFET	C-D	$\frac{g_{\scriptscriptstyle m}R'_{\scriptscriptstyle L}}{1+g_{\scriptscriptstyle m}R'_{\scriptscriptstyle L}}$	∞	$r_o \left\ \frac{1}{g_m} \right\ $
BJT	С-В	$g_{\scriptscriptstyle m} R_{\scriptscriptstyle L}'$	$\frac{1}{g_m}$	$\left[1+g_{m}\left(r_{\pi}\left\ R_{th}\right)\right]r_{o}\right]$
MOSFET	C-G	$g_{\scriptscriptstyle m} R_{\scriptscriptstyle L}'$	$\frac{1}{g_m}$	$(1+g_mR_{th})r_o$

Current Gain

$$A_{i} = \frac{i_{o}}{i_{i}} = \frac{\frac{v_{o}}{R_{L}}}{\frac{v_{i}}{R_{I} + R_{in}}} = \frac{v_{o}}{v_{i}} \times \frac{R_{I} + R_{in}}{R_{L}} = A_{v} \times \frac{R_{I} + R_{in}}{R_{L}}$$