#### Introduction to Artificial Intelligence



# COMP307/AIML420 Neural Networks 2: Back Propagation

Dr Andrew Lensen

Andrew.Lensen@vuw.ac.nz

#### **Outline**

Revisiting (Multi-layer) Perceptron

Feed forward neural network

Back propagation algorithm to train neural network

#### The Perceptron

- A special type of artificial neuron
  - Real-valued inputs
  - Binary output
  - Threshold activation function



#### The Perceptron

- Bias or Threshold?
  - They are essentially the same: bias = threshold

$$y = \begin{cases} 1, & \text{if } \sum_{i=1}^{m} w_i x_i + b > 0 \\ 0, & \text{otherwise} \end{cases} \quad y = \begin{cases} 1, & \text{if } \sum_{i=1}^{m} w_i x_i - T > 0 \\ 0, & \text{otherwise} \end{cases}$$

• Simplify notation: let  $x_0 = 1$ ,  $b = -T = w_0 = w_0 x_0$ 

$$y = \begin{cases} 1, & \text{if } \sum_{i=0}^{m} w_i x_i > 0 \\ 0, & \text{otherwise} \end{cases}$$

 So, we have one block of code for changing all the "weights" rather than changing weights and biases separately

#### Multi-Layer Perceptron (MLP)

Add one *hidden* node between the inputs and output

| x1 | x2 | y (class) |  |
|----|----|-----------|--|
| 0  | 0  | 0         |  |
| 1  | 0  | 1         |  |
| 0  | 1  | 1         |  |
| 1  | 1  | 0         |  |

Input





**Threshold** 

#### Feedforward Neural Network

- A more general form of perceptron
  - Most common type of Artificial Neural Network (ANN)
  - Multiple (hidden) layers, multiple nodes in each layer
  - Each node connects to its adjacent layers
  - Fully connected, NO jump connections
  - A lot of weights: one per link + one bias per node



## NNs for (Multi-Class) Classification



#### How Can We Learn ANN Weights?

A complex optimisation problem!

$$\min error = f(w_{ij})$$

- Usually non-convex (many local optima) 通常是非凸
- Extremely 非常高维 high-dimensional
- Not feasible to solve by using exact methods

用exact Methods (精确的方法) 求解是不可行的



#### Learning ANN Weights

- Approximate methods
  - Hill climbing (local search)
  - (Stochastic) gradient descent search
  - Simulated annealing
  - Tabu search
  - Evolutionary computation
  - **—** ...





# Training a Neural Network



#### Training a Neural Network

Initialise the weights (randomly)

#### Feedforward

- For each example, calculate the predicted outputs  $o_z$  using the current weights
- Calculate the total error  $\sum_{z} (d_z o_z)^2$  didesired output
- If the error is small enough, we can stop.
- Otherwise, we use back propagation to adjust the weights to make the error smaller.
  - Uses gradient descent (GD)

- Estimate the <u>contribution (gradient)</u> of each weight to the error, i.e. how much the error will be reduced by changing the weight (gradient)
- Change each weight (simultaneously) proportional to its contribution to reduce the error as much as possible
  - Move in the direction of the steepest gradient
- We calculate the contribution/gradient backwards (from the last/output layer to the first hidden layer)
- Error of a single output node is  $\frac{d_z o_z}{d_z}$ 
  - d<sub>z</sub> means "desired"
  - $-o_z$  means "output" (i.e. what we actually got)

- How big a change should we make to weight w<sub>i→i</sub>?
  - Make a big change if will improve error a lot (big contribution)
  - Make a small change if little effect on error (small contribution)



- β<sub>i</sub> is how "beneficial" a change is for node j ("error term")
- When changing  $w_{i\rightarrow i}$ , the error change should be:
  - Proportional to the output:  $o_i$  (larger output = more effect)
  - Proportional to the slope of the activation function at node j: slope<sub>j</sub>
  - Proportional to error term of j  $(\beta_i)$

- How to calculate slope;?
  - Some calculus knowledge: derivative of the activation function
  - Steeper (larger) the slope, larger the effect of changing the weight
  - We don't expect calculus in this course!



- How to calculate β<sub>i</sub>?
  - Back-propagated from later layer
  - The output layer: the error  $\beta_z = d_z o_z$
  - Other layers:  $\beta_j = \sum_k w_{j \to k} \times slope_k \times \beta_k$



- Assume a neural network with:
  - Activation function: sigmoid

$$slope_j = o_j(1 - o_j)$$

Target: minimise total sum squared error

$$error = \frac{1}{2} \sum_{s \in examples} \sum_{c \in classes} (d_{sc} - o_{sc})^2$$



Output node:

$$\beta_z = d_z - o_z$$

Makes the maths easier!

Hidden node:

$$\beta_j = \sum_k w_{j \to k} o_k (1 - o_k) \beta_k$$

#### **BP Algorithm Implementation**

- Let  $\eta$  be the learning rate ("eta"...)
- Initialise all weights (+bias) to small random values
- Until total error is small enough, repeat:
  - For each input example:
    - Feed forward pass to get predicted outputs
    - Compute  $\beta_z = d_z o_z$  for each output node
    - Compute  $\beta_j = \sum_k w_{j\to k} o_k (1 o_k) \beta_k$  for each hidden node (working backwards from last to first layer)
    - Compute (+store) the weight changes for all weights  $\Delta w_{i\rightarrow j} = \eta o_i o_j (1 o_j) \beta_j$  (proportional to all 3 factors)
  - Sum up weight changes for all input examples
  - Change weights!

#### BP Algorithm Example

 Calculate one pass of the BP algorithm given the example (feedforward + back propagation)

| Inputs |       | Outputs |       |
|--------|-------|---------|-------|
| $I_1$  | $I_2$ | $d_5$   | $d_6$ |



#### Notes on BP Algorithm

- 1 Epoch: all input examples (entire training set, batch, ...)
- A target of 0 or 1 cannot reasonably be reached. Usually interpret an output > 0.9 or > 0.8 as '1'
- Training may require thousands of epochs. A convergence curve will help to decide when to stop (over-fitting?)



#### Summary

- (Multi-layer) Perceptron
  - Bias and threshold are essential the same
  - Simplify the notation
- Feedforward neural network

- Back propagation
  - Gradient descent
  - Feedforward + error back propagation -> weight change