reduced to 4% in the final raffinate. The solvent rate is 2500 kg/h. Determine the number of theoretical stages required. Extraction is to be carried out at 45°C. Several compositions on the hexane (DPH) from a solution in docosane (A) using 'pure' furfural (B) as the solvent. The feed enters the extractor cascade at a rate of 2000 kg/h with 45% DPH (C) that has to be EXAMPLE 8.4 (Multistage countercurrent extraction) It is planned to extract diphenyl extract and the raffinate arms and the tie-line data in mass% of the components at 45°C given below.

	0.7	99.3	0.0		mass%	C 9.8 24.2 40.9
	1.0	0.06	9.0		iase, ma	
	1.5	80.0	18.5		(Furfural) ph	B 89.1 73.6 52.3
	5.6	70.0	27.4		ict (Furf	
	4.4	0.09	35.6		Extract	A 1.1. 2.2 6.8
	1.7	20.0	423			
	13.2	40.0	46.8	Tie-line data		
	21.3	30.0	48.7	Tie-l		
	32.6	20.0	47.4		mass%	<i>C</i> 10.0 24.5 42.6
	52.5	10.0	37.5		phase, 1	
	0.79	7.0	26.0		(Docosane)	B 4.8 6.5 13.3
	84.0	5.0	11.0			
	96.0	4.0	0		Raffinate	A 85.2 69.0 43.9
		B:	ن			

- 1. Plot the LLE Data and tie lines in Right Angle Triangle Co-ordinates. [Provided to you]
- 2. Locate M point. Plot the E1 point and delta point and locate R1. Calculate the number of stages required for the given separation level for countercurrent operation (solvent = 2800 kg/h). [25]
- 3. Show all the calculations/ graph points for calculation of the composition of the raffinate and extract from each stage. [25]. From the given equations, can you calculate the flow rate for E1

Homework: Perform the graphical construction of stages for crosscurrent operation (for the same 4 % solute in the raffinate and same solvent rate). [in a new graph paper]

INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD

ADDITIONAL SHEET

ROLL NO. :

Er = 2800 1815 0.625 巨1 =-1 子子0 51 Ph. 1 Albert 15 60 R1=

Short

Rr+2800 - E3+1260 Re+5= E3 + RN

Reacz + 5 ys = yes E3 + 20 RN 0,1 og + 0 = 0.03 E3 + 50.11 01 Rz = 0.03 E3 = 50.M

trom eg 520

- 0-3E3= 50W Rr +- E3 -- 1540 Pr.

Rr= 1380 Kg 0.7E3- 20MM E3-2920