Compressing explanations

Compact Proofs of Model Performance via Mechanistic Interpretability

Jason Gross, Rajashree Agrawal, Thomas Kwa, Euan Ong, Chun Hei Yip, Alex Gibson, Soufiane Noubir, Lawrence Chan

Formalizing proof length to quantify compression

Proof = sound computation of worst-case error

Length of proof = cost of running computation

Quantifying the compute-cost of explanations

FLOPs to Verify Proof

Does understanding improve upon the linear baseline?

FLOPs to Verify Proof

Proofs with varying mechanistic understanding

True Model

FLOPs Required: Accuracy Lower Bound: Effective Dimension: Asymptotic Complexity:

Brute Force Proof

 8.76×10^{11} 99.92% 1.67×10^{7} $O(d_{\text{vocab}}^{\text{context}})$

Cubic Proof

98.45% 1.28×10^{5} $O(d_{\text{vocab}}^{3} \cdot \text{context})$

Subcubic Proofs

 2.08×10^{6} 79.7% 1.03×10^{5} $O(d_{\text{vocab}} \cdot d_{\text{model}}^{2} \cdot \text{context})$

We found an empirical "pareto frontier"

Puzzle: Why does more structure not always mean better bound?

Compounding errors from lack of structure

Approximation Strategy	Result	Complexity
(exact) max row diff	≈ 1.8	$(\mathcal{O}({d_{\mathrm{vocab}}}^2 d_{\mathrm{model}}))$
2 · (max abs value)	≈ 2.0	$(\mathcal{O}({d_{\mathrm{vocab}}}^2 d_{\mathrm{model}}))$
max row diff on subproduct	≈ 5.7	$(\mathcal{O}(d_{\mathrm{vocab}}d_{\mathrm{model}}^{2}))$
recursive max row diff	≈ 97	$(\mathcal{O}(d_{ ext{vocab}}d_{ ext{model}}))$

Wanted: Compression of highly expressive systems

Check out our poster!

Scan for paper

Scan for Poster

