TECHNOLOGICAL INSTITUTE OF THE PHILIPPINES

COURSE SYLLABUS

COURSE CODE	CPE 132
COURSE NAME	ARCHITECTURE OF EMBEDDED SYSTEMS
CREDITS	3 units (2 units lecture, 1 unit laboratory)
CONTACT HOURS	2 hours lecture, 3 hours laboratory
INSTRUCTOR	Engr. Ronnie M. Dysangco
TEXTBOOK	Wilmshurst, Tim (2010). Designing Embedded System with PIC Microcontroller: Principle and Application. Boston: Elsevier.
Other Supplemental Materials	Hamacher, Carl (2012). Computer Organization and Embedded Systems. Sixth Edition. New York, New York: McGraw-Hill
	Bohmer, Mario (2012). Beginning Android ADK with Arduino: Learn how to use the Android Open Accessory Development Kit to Create Amazing Gadgets with Arduino. New York, USA: Apress.
	Douglass, B. (2011). Design Patterns for Embedded Systems in C: an embedded software engineering toolkit. Amsterdam: Elsevier.
	Noergaard, Tommy (2011). Demystifying Embedded Systems Middleware. Oxford: Elsevier
	Zurawski, R. (2010). Embedded Systems Handbook: Embedded Systems Design and Verification. Boca Raton: Taylor and Francis.
	Johnson, Gary W. & Jennings, Richard. (2006). Labview Graphical Programming. New York, NY: McGraw-Hill.

SPECIFIC COURSE INFORMATION

a. Course Description

This course provides an introduction to embedded system design. It presents the two aspects of embedded systems as both hardware and software in a unified view. The first part is an overview to embedded systems, design challenges, technologies and development and implementation tools. The second part explores the various hardware implementation technologies; custom single-processor, general-purpose processor and memory and peripheral devices interfacing. Finally, the third part covers IC and Designed Technology.

b. Prerequisites	None
Co-requisites	CPE 004 Logic Circuit and Switching Theory
_	CPE131 Principles of Embedded Systems
c. Course Classification	Required
(Required/elective/	
selected elective)	

SPECIFIC GOALS FOR THE COURSE

a. Course Objective

After completing this course, the student must be able to:

- 1. Design embedded systems using different design methodologies and technologies.
- 2. Use development tools such as hardware system compilers and embedded system software development tools.
- 3. Apply design tradeoffs in developing embedded solutions to a given problem or situation.

b. Course Outcomes

By the end of the course, the students will be able to:

- 1. Explain the embedded system fundamental principles and concepts.
- 2. Derive an idea on different application of embedded system technology.
- 3. Determine the possible solution on transforming complex problem through technology evolution.
- 4. Evaluate the effect of embedded system principle and its application.

c. Student Outcomes Addressed by the Course

NONE

COURSE TOPICS

Prelim Period (Weeks 1–7)

- **I. Introduction;** TIP Vision and Mission; TIP Graduate Attributes/ Institutional Intended Learning Outcomes; Program Objectives/ Program Intended Learning Outcomes; Course Objectives/ Course Intended Learning Outcomes; Course Policies
- **II. Embedded System Overview**; Overview; Design Challenge; Processor Technology; IC Technology; Design Technology; Trade-offs
- III. Processor Hardware; Custom Single Processor; General Purpose Processor
- IV. Development Environment; Design Flow; Design Tools

Midterm Period (Weeks 8–13)

- V. System Memory and Peripheral Interfacing; Communication Basics; Wired and wireless Protocol Concepts
- VI. Design Technology; EDA Tools

Final Period (Weeks 14–17)

VII. PID Control Basics

VIII. Typical Controller Features, Options, and Capabilities

IX. A/D and D/A Conversion