Self-made Problems In Number Theory

I. Find all positive integers n there are positive integers a_1, a_2, \ldots, a_k strictly less than n and pairwisely distinct satisfying

$$n\left|\left(\sum_{i=1}^{k} a_i + \prod_{i=1}^{k}\right)^2 - 1\right|$$

for some positive integer 1 < k < n - 1.

Solution. Let S_n be the set of positive integers less than or equal to n. Then S_n has $\varphi(n)$ elements, where $\varphi(n)$ is the Euler function. We prove that these elements satisfy the given property for $k = \varphi(n)$. Say,

$$S_n = \{a_1, a_2, ..., a_{k-1}, a_k\}$$

$$N = \left(\sum_{i=1}^{k} a_i + \prod_{i=1}^{k}\right)^2 - 1$$

with $a_1 < a_2 < \ldots < a_{k-1} < a_k$. For n>1, every $a_i \in S_n$ is strictly less than n. Since otherwise $\gcd(n,n)=n>1$ would hold. F

LEMMA 1.

$$n \mid \sum_{i=1}^{k} a_i$$

Proof. From Euclidean algorithm, if gcd(a, n) = 1, then

$$\gcd(n, n - a) = \gcd(a, n) = 1$$

Therefore, $a_i + a_{k-i} = n$, and $\varphi(n)$ is even. So, $n|a_i + a_{k-i}$ for $0 < i < \frac{k}{2}$. This gives

$$n|\sum_{i=1}^{k} a_i$$

LEMMA 2. Let P_A be the product of elements of set A. Then,

$$P_{S_n}^2 \equiv 1 \pmod{n}$$

Proof. Let $a \in S_n$. Then, all ai are distinct modulo n, otherwise we would have

$$ai \equiv aj \pmod{n}$$

implying

$$n|a(i-j)$$

with $\gcd(n,a) = 1$ and |i-j| < n. Take any $a \in S_n$. Then, for any $a_i \in S_n$, there is a unique j such that

$$a_i a_j \equiv a \pmod{p}$$

i.e. two of them pair up for a. Running them over S_n , we have

$$a_1 a_2 \cdots a_{k-1} a_k \equiv a^{\frac{k}{2}} \pmod{n}$$

Squaring, we have

$$P_{S_n}^2 \equiv \left(a^{\frac{k}{2}}\right)^2 \equiv a^k \equiv 1 \pmod{n}$$

Finally,

$$N = \left(\sum_{i=1}^{k} a_i + \prod_{i=1}^{k}\right)^2 - 1$$

$$\equiv \left(\prod_{i=1}^{k}\right)^2 - 1 \pmod{n}$$

$$\equiv 0 \pmod{n}$$

So, every n > 1 satisfies the property.

We assume the following notations.

- s.t. is the short form of such that
- qr is the short form of quadratic residue.
- a|b means b is divisible by a.
- $(a,b) = \gcd(a,b)$ is the greatest common divisor of a and b.
- lcm(a, b) = [a, b] is the least common multiple of a and b.
- $a \perp b$ denotes (a, b) = 1 or a and b are co-prime.
- $\tau(n)$ is the number of divisors of n.
- $\sigma(n)$ is the sum of divisors of n.
- \mathbb{P} denotes the set of primes.
- $p^{\alpha}||n$ or $\nu_p(n)=\alpha$ means α is the greatest positive integer such that $p^{\alpha}|n$. In other words, $p^{\alpha}|n$ and $p^{\alpha+1}$ n.
- $\omega(n)$ is the number of distinct prime factors of n.
- $\varphi(n)$ is the number of positive integers less than or equal to n and co-prime to n.
- $ord_m(a) = x$ denotes x is the order of $a \pmod m$ i.e. x is the smallest positive integer s.t. $a^x \equiv 1 \pmod m$.
- $\pi(n)$ is the number of primes less or equal to n.

i. Problems

- 2. Find all $(m,n) \in \mathbb{N}^2$ s.t. $n^2 + 3m^2$ and n + 3m both are perfect cubes.
- 3. Let c_n be the smallest positive integer s.t. $1 < c_n < n$ and $c_n \perp n$. Prove that c_n exists except for some finite n.
- 4. Find all n such that $\varphi(n)|n$.
- 5. Prove that for a prime p > 2, the set of complete residue class \pmod{p} can be divided into two subsets of equal number of elements with sum of each group divisible by p.
- 6. A number having only one prime factor can't be a perfect number.
- 7. $\sigma(64n^2)$ is odd for any n.
- 8. Find all odd n s.t. $2013|F_n$.
- 9. Take any 2n integers where n > 2. Consider all pair-wise differences we can possibly have from them. Let's denote the product of these $\binom{2n}{2}$ differences by S. Prove that S is divisible by

$$2^{n^2-n} \cdot (2n-1)(2n-3)(2n-5)$$

- 10. p is a prime of the form 3k + 2. Prove that, there exists a set of p 1 elements which forms a complete set of residue class \pmod{p} and sum of elements is divisible by p^2 .
- II. If n is odd then $\tau(F_n) \geq \tau(n)$.
- 12. For all even $n, \tau(F_{2n}) \geq \tau(n)$.
- 13. If p is a prime and x is a positive integer s.t. $p>x^2-x+1$ then

$$\omega((x+1)^p - (x^p+1)) \ge 4$$

- 14. For any prime p>2, there are two positive integers u,v s.t. uv^{-1} is a qr of p with $u,v<\frac{p}{2}$.
- 15. The number of numbers less than or equal to n having odd sum of divisors is

$$\lfloor \sqrt{n} \rfloor + \left\lceil \sqrt{\frac{n}{2}} \right\rceil$$

16. Find all sequence of positive integers $\{a_i\}_{i=0}^{\infty}$ s.t.

$$[a_i, a_{i+1}] = (a_{i+1}, a_{i+2})$$

- 17. Find all primes p and $(a, b) \in \mathbb{N}^2$ s.t. $a^p + b^p$ is a perfect power of a prime.
- 18. Let $a \in \mathbb{N}$. Then, $a^{a-1} 1$ is never square-free².
- 19. Show that $\forall n, 81 | 10^{n+1} 9n 10$.

 $[\]ensuremath{^{\mathrm{I}}}\xspace$ positive or negative whatever, including 0

 $^{^{2}}a$ is square-free if it has no square factor i.e. there is no x s.t. $x^{2}|a$.

- 20. Let p be a prime. Find all perfect numbers having p factors exactly.
- 21. Find all $(a,b) \in \mathbb{N}^2$ s.t. $7^a + 11^b$ is a perfect square.
- 22. Let $m, n, a_1, a_2, \ldots, a_n$ be positive integers s.t. $\forall i, a_i + m$ is a prime. Let

$$N = \prod_{i=1}^{n} p_i^{a_i}$$

and S be the number of ways to write N as a product of m positive integers. Calculate the remainder of S upon division by m^n .

23. Solve in positive integers:

$$\sum_{i=1}^{8} n_i^{10} = 19488391$$

- 24. Find all $n \in \mathbb{N}$ s.t. $n|2^{n!} 1$.
- 25. Show that there exists an infinite pairs $(a,b) \in \mathbb{N}^2$ s.t. $\frac{a^k + b^k}{a^k b^k + 1}$ is a perfect k^{th} power.
- 26. Solve in positive integers

$$a^n + b^n = (kac)^{mn}$$

27. Let a,b are positive integers s.t. $a\perp b$ and $p\in\mathbb{P}$ s.t. $p|x^6+64$. Find all pairs (a,b) s.t.

$$2013|\frac{a^2+b^2}{p}$$

28. Find all integers n>2 there are positive integers a_1,a_2,\ldots,a_k less than or equal to n and pairwisely distinct s.t.

$$n \left(\sum_{i=1}^{k} a_i + \prod_{i=1}^{k} \right)^2 - 1$$

- 29. Find all n such that the sum of number of divisors of divisors of n is n.
- 30. Say a, n, d are positive integers where $a + id \in \mathbb{P}$ for i = 0 to n 1. Define f(n) = 1 if n = a, f(n) = 1 otherwise. Let $\pi(n)$ be the number of primes strictly less than n. Show that,

$$T = 2^{\frac{d}{2}} + 1$$

has at least $2^{2^{\pi(n)-1}-1-f(n)}$

31. Let's define General Fibonacci Number³ as

$$G_n = \begin{cases} a \text{ if } n = 0\\ b \text{ if } n = 1\\ G_{n-1} + G_{n-2} \text{ if } n > 1 \end{cases}$$

Prove that $|G_{n+1}G_{n-1} - G_n^2|$ is independent of n.

³We shall maintain this notation through this whole note.

- 32. Determine true or false: G_{2n+1} has no prime factor of the form 4n+3 for an infinite a,b. Alternatively, $\exists x,y\in\mathbb{N}:G_n=x^2+y^2$.
- 33. Define k(n) as:

$$k(n) = \sum_{d|n,d+1 \in \mathbb{P}} 1$$

and C(n) is the number of positive integers x so that $x|a^n-a$ for all a. Prove that $C(n)\geq 2^{k(n)}$.

34. Let G be a group with ord(G) = n. Find all G with n elements where n is a Carmichael number⁴.

35. $p \in \mathbb{P}, p > 5$.

$$X_n = \sum_{x_1 + \dots + x_n = p} \prod_{i=1}^n \binom{p}{x_i}$$

Find all k s.t.

$$p^3 \mid \sum_{i=1}^k X_i$$

36. Find all $n \in \mathbb{N}$ s.t.

$$\tau(n) = \varphi(n)$$

- 37. Find all n s.t. $\tau(n) = \pi(n)$.
- 38. Find all n s.t. $\varphi(n) = \pi(n)$.
- 39. Find all n that satisfies $\varphi(n) 1|n-2$.
- 40. Define c_n as the smallest positive integer s.t. $1 < c_n < n-1$ and $gcd(c_n, n) = 1$.
- (a) Find all n s.t. c_n does not exist
- (b) Prove that there are an infinite n s.t. $ord_n(c_n) = \varphi(n)$.
- 41. *Prove that, if p(n) is the greatest odd divisor of n then $\pi(n) \geq \frac{n}{p(n)}$.
- 42. *Define

$$n!! = n(n-2)\cdots$$

Using the notation defined above, prove that,

$$\prod_{p \le n} p > \left(2\left(\frac{n}{p(n)}\right) - 1\right)!!$$

 $^{^{4}}$ i.e. n is composite and $\overline{n}|a^{n}-a$ for all a.