



RECEIVED: November 23, 2009 ACCEPTED: January 9, 2010 PUBLISHED: March 19, 2010

doi:10.1088/1748-0221/5/03/T03021

## COMMISSIONING OF THE CMS EXPERIMENT WITH COSMIC RAYS

# Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

#### **CMS Collaboration**

ABSTRACT: The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.

KEYWORDS: Muon spectrometers; Large detector systems for particle and astroparticle physics

ARXIV EPRINT: 0910.5530

and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie IEF program (European Union); the Leventis Foundation; the A. P. Sloan Foundation; and the Alexander von Humboldt Foundation.

## References

- [1] CMS collaboration, R. Adolphi et al., *The CMS experiment at the CERN LHC*, 2008 *JINST* **3** S08004.
- [2] L. Evans and P. Bryant eds., LHC Machine, 2008 JINST 3 S08001.
- [3] CMS collaboration, The Magnet Project Technical Design Report, CERN-LHCC-97-010 (1997).
- [4] CMS collaboration, Commissioning of the CMS experiment and the cosmic run at four tesla, 2010 JINST 5 T03001.
- [5] CMS collaboration, CMS Physics TDR: Volume I, Detector Performance and Software, CERN-LHCC-2006-001 (2006).
- [6] CMS collaboration, *Performance of CMS muon reconstruction in cosmic-ray events*, 2010 *JINST* **5** T03022.
- [7] CMS collaboration, Alignment of the CMS muon system with cosmic-ray and beam-halo muons, 2010 JINST 5 T03020.
- [8] CMS TRIGGER AND DATA ACQUISITION GROUP collaboration, W. Adam et al., *The CMS high level trigger*, *Eur. Phys. J.* C 46 (2006) 605.
- [9] L. Bianchini, Search for a Z' at the LHC and Magnetic Field Calibration in the CMS Barrel Yoke, Master thesis, CMS-TS-2009-016 (2009).
- [10] Vector Fields Ltd.. Oxford, U. K., TOSCA/OPERA-3d Software, http://www.vectorfields.com.
- [11] V.I. Klyukhin et al., Measuring the Magnetic Field Inside the CMS Steel Yoke Elements, Nucl. Sci. Symp. Conf. Rec. (2008) 2270.
- [12] N. Amapane et al., *Volume-Based Representation of the Magnetic Field*, in *Computing in High Energy Physics and Nuclear Physics 2004*, Interlaken, Switzerland, 27 Sep.–1 Oct. 2004, p. 310, CERN-2005-002-V-1, CMS note CR-2005/011 (2005).
- [13] V.I. Klyukhin et al., Measurement of the CMS Magnetic Field, IEEE Trans. Appl. Supercond. 18 (2008) 395.
- [14] V. Maroussov, Fit to an Analytic Form of the Measured Central CMS Magnetic Field, PhD thesis, CMS TS-2009-018 (2008).
- [15] CMS collaboration, *Performance of the CMS drift tube chambers with cosmic rays*, 2010 *JINST* 5 T03015.
- [16] CMS collaboration, Alignment of the CMS silicon tracker during commissioning with cosmic rays, 2010 JINST 5 T03009.
- [17] CMS collaboration, Aligning the CMS muon chambers with the muon alignment system during an extended cosmic ray run, 2010 JINST 5 T03019.
- [18] P. Biallass and T. Hebbeker, *Parametrization of the Cosmic Muon Flux for the Generator CMSCGEN*, arXiv:0907.5514.

## Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, M. Blanco Otano, J.F. de Trocóniz, A. Garcia Raboso, J.O. Lopez Berengueres

#### Universidad de Oviedo, Oviedo, Spain

J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, L. Lloret Iglesias, H. Naves Sordo, J.M. Vizan Garcia

## Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

I.J. Cabrillo, A. Calderon, S.H. Chuang, I. Diaz Merino, C. Diez Gonzalez, J. Duarte Campderros, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, R. Gonzalez Suarez, C. Jorda, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras,

T. Rodrigo, A. Ruiz Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

## CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Albert, M. Alidra, S. Ashby, E. Auffray, J. Baechler, P. Baillon, A.H. Ball, S.L. Bally, D. Barney, F. Beaudette<sup>19</sup>, R. Bellan, D. Benedetti, G. Benelli, C. Bernet, P. Bloch, S. Bolognesi, M. Bona, J. Bos, N. Bourgeois, T. Bourrel, H. Breuker, K. Bunkowski, D. Campi, T. Camporesi, E. Cano, A. Cattai, J.P. Chatelain, M. Chauvey, T. Christiansen, J.A. Coarasa Perez, A. Conde Garcia, R. Covarelli, B. Curé, A. De Roeck, V. Delachenal, D. Deyrail, S. Di Vincenzo<sup>20</sup>, S. Dos Santos, T. Dupont, L.M. Edera, A. Elliott-Peisert, M. Eppard, M. Favre, N. Frank, W. Funk, A. Gaddi, M. Gastal, M. Gateau, H. Gerwig, D. Gigi, K. Gill, D. Giordano, J.P. Girod, F. Glege, R. Gomez-Reino Garrido, R. Goudard, S. Gowdy, R. Guida, L. Guiducci, J. Gutleber, M. Hansen, C. Hartl, J. Harvey, B. Hegner, H.F. Hoffmann, A. Holzner, A. Honma, M. Huhtinen, V. Innocente, P. Janot, G. Le Godec, P. Lecoq, C. Leonidopoulos, R. Loos, C. Lourenço, A. Lyonnet, A. Macpherson, N. Magini, J.D. Maillefaud, G. Maire, T. Mäki, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, P. Meridiani, S. Mersi, E. Meschi, A. Meynet Cordonnier, R. Moser, M. Mulders, J. Mulon, M. Noy, A. Oh, G. Olesen, A. Onnela, T. Orimoto, L. Orsini, E. Perez, G. Perinic, J.F. Pernot, P. Petagna, P. Petiot, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, R. Pintus, B. Pirollet, H. Postema, A. Racz, S. Ravat, S.B. Rew, J. Rodrigues Antunes, G. Rolandi<sup>21</sup>, M. Rovere, V. Ryjov, H. Sakulin, D. Samyn, H. Sauce, C. Schäfer, W.D. Schlatter, M. Schröder, C. Schwick, A. Sciaba, I. Segoni, A. Sharma, N. Siegrist, P. Siegrist, N. Sinanis, T. Sobrier, P. Sphicas<sup>22</sup>, D. Spiga, M. Spiropulu<sup>17</sup>, F. Stöckli, P. Traczyk, P. Tropea, J. Troska, A. Tsirou, L. Veillet, G.I. Veres, M. Voutilainen, P. Wertelaers, M. Zanetti

## Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille<sup>23</sup>, A. Starodumov<sup>24</sup>

## Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

B. Betev, L. Caminada<sup>25</sup>, Z. Chen, S. Cittolin, D.R. Da Silva Di Calafiori, S. Dambach<sup>25</sup>, G. Dissertori, M. Dittmar, C. Eggel<sup>25</sup>, J. Eugster, G. Faber, K. Freudenreich, C. Grab, A. Hervé, W. Hintz, P. Lecomte, P.D. Luckey, W. Lustermann, C. Marchica<sup>25</sup>, P. Milenovic<sup>26</sup>, F. Moortgat, A. Nardulli, F. Nessi-Tedaldi, L. Pape, F. Pauss, T. Punz, A. Rizzi, F.J. Ronga, L. Sala, A.K. Sanchez, M.-C. Sawley, V. Sordini, B. Stieger, L. Tauscher<sup>†</sup>, A. Thea, K. Theofilatos, D. Treille, P. Trüb<sup>25</sup>, M. Weber, L. Wehrli, J. Weng, S. Zelepoukine<sup>27</sup>