COMPUTER SCIENCE CHEAT SHEET

Greek Alphabet

A	α	Alpha	I	ℓ	Iota	P	ρ	Rho
B	β	Beta	K	κ	Kappa	\sum	σ	Sigma
Γ	γ	Gamma	Λ	λ	Lambda	T	τ	Tau
Δ	δ	Delta	M	μ	mu	Y	v	Upsilon
\overline{E}	ϵ	Epsilon	N	ν	nu	Ф	ϕ	Phi
\overline{Z}	ζ	Zeta		ξ	Xi	X	χ	Chi
H	η	Eta	O	0	Omicron	Ψ	ψ	Psi
Θ	θ	Theta	Π	π	Pi	Ω	ω	Omega

Abstract Algebra

Field

A set F with two binary operations + and \cdot ia a *field* if: $1 \cdot +$ and \cdot are commutative

Probability

Complexity

Linear Algebra

e

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

$$\frac{1}{e} = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$$

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

$$e = \lim_{x \to 0} (1 + x)^{\frac{1}{x}}$$