Math Cheatsheet

Sol

June 2, 2025

The Fourier Transform

1.
$$\tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x) dx = \mathcal{F}[f](k)$$

- Real and even $(f^*(x) = f(x))$ and $f(x) = f(-x) \implies \tilde{f}^*(k) = \tilde{f}(k)$ (\tilde{f} is real)
- Real and odd $\implies \tilde{f}$ is imaginary $(\tilde{f}^*(k) = -\tilde{f}(k))$
- Linearity, $\mathcal{F}[\alpha f(x) + \beta g(x)] = \alpha \mathcal{F}[f(x)] + \beta \mathcal{F}[g(x)]$
- Rescaling, $\mathcal{F}[f(\alpha x)] = \frac{1}{|\alpha|} \tilde{f}\left(\frac{k}{\alpha}\right)$
- Translation, $\mathcal{F}[f(x-a)] = e^{-ika}\mathcal{F}[f(x)]$
- Exponential, $\mathcal{F}[e^{iax}f(x)](k) = \mathcal{F}[f](k-a)$
- Duality, $\mathcal{F}[\tilde{f}] = f(-k)$
- For real k, $\mathcal{F}[f^*](k) = \mathcal{F}[f](-k)$
- Symmetry, $f(-x) = \pm f(x) \implies \tilde{f}(-k) = \pm \tilde{f}(k)$
- Differentiation, $\mathcal{F}\left[\frac{\mathrm{d}f}{\mathrm{d}x}\right]=ik\tilde{f}(k)\ (\mathcal{I}[k\tilde{f}]=-i\frac{\mathrm{d}f}{\mathrm{d}x})$

•
$$\mathcal{I}\left[\frac{\mathrm{d}\tilde{f}}{\mathrm{d}k}\right] = -ixf(x) \ (\mathcal{F}[xf] = i\frac{\mathrm{d}\tilde{f}}{\mathrm{d}k})$$

- Convolution, $\mathcal{F}[f * g] = \sqrt{2\pi} \mathcal{F}[f] \mathcal{F}[g]$
- $\mathcal{F}[fg] = \frac{1}{\sqrt{2\pi}} \mathcal{F}[f] * \mathcal{F}[g]$
- Correlation, $\mathcal{F}[f \otimes g](x) = \sqrt{2\pi}\mathcal{F}[f]^*\mathcal{F}[g]$ (Wiener-Khinchin if g = f)
- (TODO: prove the inverse)
- Autoconvolution is $\sqrt{2\pi}[f]^2$, autocorrelation is $\sqrt{2\pi}|f|^2$
- Parseval's theorem $\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\tilde{f}(k)|^2 dk$ (inverse of Wiener-Khinchin/delta function)

2.
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ikx} \tilde{f}(k) dk = \mathcal{I}[\tilde{f}](x)$$

3. Convolution is
$$(f * g)(x) = \int_{-\infty}^{\infty} f(y)g(x-y)dy$$

- 4. Correlation is $(f \otimes g) \int_{-\infty}^{\infty} [f(y)]^* g(x+y) dy$
 - $f(x) \otimes g(x) = f(-x)^* * g(x)$
 - $f(x) \otimes g(x) = g(-x)^* \otimes f(-x)^*$
 - If f is hermitian, $f \otimes g = f * g$
 - If f, g are hermitian, $f \otimes g = g \otimes f$
 - $(f \otimes g) \otimes (f \otimes g) = (f \otimes f) \otimes (g \otimes g)$

5.
$$\delta(t-t_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega(t-t_0)} d\omega$$
 (prove $\frac{1}{2\pi}$ by transforming twice)

6. Laplace Transform
$$\mathcal{L}(f)(s) = \int_0^\infty f(t)e^{-st}dt$$

f	\widetilde{f}		
$e^{-b x }, \ b > 0$	$\frac{1}{\sqrt{2\pi}} \frac{2b}{k^2 + b^2}$		
$\frac{1}{x^2 + b^2}$	$\sqrt{\frac{\pi}{2b^2}}e^{-b k }$		
$\frac{1}{\sqrt{2\pi\epsilon^2}\exp\left(-\frac{x^2}{2\epsilon^2}\right)}$	$\frac{1}{\sqrt{2\pi}}exp\left(-\frac{\epsilon^2k^2}{2}\right)$		
$\delta(x-a)$	$\frac{1}{\sqrt{2\pi}}e^{-ika}$ $1 e^{-ika}$		
$H(x-a)e^{-\epsilon(x-a)}$	$\sqrt{2\pi} \overline{\epsilon + ik}$		
H(x-a)	$\frac{e^{-ika}}{ik\sqrt{2\pi}}$		
H(x+a)H(a-x) (tophat)	$\sqrt{\frac{2}{\pi}} \frac{\sin(ak)}{k}$		

Vector Calculus

Practice List

1.
$$(\mathbf{a} \times \mathbf{b})_i = \epsilon_{ijk} a_j b_k$$

2.
$$\det A = \epsilon_{ijk} A_{1i} A_{2j} A_{3k}$$

3.
$$\det(\mathbf{e}_i \ \mathbf{e}_j \ \mathbf{e}_k) = \epsilon_{ijk}$$

4.
$$\epsilon_{ijk}\epsilon_{lmn} = \det(\mathbf{e}_i \ \mathbf{e}_j \ \mathbf{e}_k)^T \det(\mathbf{e}_l \ \mathbf{e}_m \ \mathbf{e}_n) = \begin{vmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{vmatrix}$$

5. Bear in mind that
$$\delta_{kk} = 3 = \delta_{k1}\delta_{k1} + \delta_{k2}\delta_{k2} + \delta_{k3}\delta_{k3}$$
 $(\delta_{11} = 1)$ $(\delta_{lm} = \delta_{l1}\delta_{m1} + \delta_{l2}\delta_{m2} + \delta_{l3}\delta_{m3})$

6.
$$\epsilon_{ijk}\epsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}$$

7.
$$\epsilon_{ijk}\epsilon_{ijk} = 6$$

8.
$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$$

9.
$$(\mathbf{a} \times (\mathbf{b} \times \mathbf{c}))_i = ((\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c})_i$$

10.
$$\nabla f(r) = f'(r) \frac{\mathbf{r}}{r}, \ \nabla r = \frac{\mathbf{r}}{r}$$

11.
$$\nabla f = \mathbf{e}_i \frac{\partial f}{\partial x_j}, \ \nabla \cdot \mathbf{F} = \frac{\partial F_j}{\partial x_j}, \ \nabla \times \mathbf{F} = \epsilon_{ijk} \mathbf{e}_i \frac{\partial F_k}{\partial x_j}$$

12.
$$\|\mathbf{x}\|^2 \|\mathbf{y}\|^2 - |\mathbf{x} \cdot \mathbf{y}|^2 \ge 0$$

13.
$$\mathbf{F} \cdot \mathbf{\nabla} \neq -\mathbf{\nabla} \cdot \mathbf{F}$$

$$\nabla \cdot (\psi \mathbf{F}) = \psi \nabla \cdot \mathbf{F} + (\mathbf{F} \cdot \nabla) \psi,$$

$$\nabla \times (\psi \mathbf{F}) = \psi (\nabla \times \mathbf{F}) + (\nabla \psi) \times \mathbf{F},$$

$$\nabla \cdot (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot (\nabla \times \mathbf{F}) - \mathbf{F} \cdot (\nabla \times \mathbf{G}),$$

$$\nabla \times (\mathbf{F} \times \mathbf{G}) = \mathbf{F} (\nabla \cdot \mathbf{G}) - \mathbf{G} (\nabla \cdot \mathbf{F}) + (\mathbf{G} \cdot \nabla) \mathbf{F} - (\mathbf{F} \cdot \nabla) \mathbf{G},$$

$$\nabla (\mathbf{F} \cdot \mathbf{G}) = (\mathbf{F} \cdot \nabla) \mathbf{G} + (\mathbf{G} \cdot \nabla) \mathbf{F} + \mathbf{F} \times (\nabla \times \mathbf{G}) + \mathbf{G} \times (\nabla \times \mathbf{F})$$
14.

15.
$$\nabla^2 \mathbf{F} = \nabla (\nabla \cdot \mathbf{F}) - \nabla \times (\nabla \times \mathbf{F})$$

16.
$$\nabla \times (\nabla \psi) = 0, \ \nabla \cdot (\nabla \mathbf{F}) = 0$$

17. (Divergence Theorem)

• (Vector)
$$\iiint_V \nabla \cdot \mathbf{u} dV = \iint_S \mathbf{u} \cdot dS$$

• (Scalar)
$$\iiint_V \nabla \phi dV = \iint_S \phi d\mathbf{S}$$

• (Generalized Stokes)
$$\iiint_V \nabla \times \mathbf{A} dV = \iint_S \hat{\mathbf{n}} \times \mathbf{A} dS$$

18. (Stokes Theorem)

•
$$\iint_{S} \nabla \times \mathbf{u} \cdot d\mathbf{S} = \oint_{C} \mathbf{u} \cdot d\mathbf{r}$$

• (Green's)
$$\iint_A \left(\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \right) dx dy = \int_C (u_x dx + u_y dy)$$

	Cylindrical Polar Coordinates	Spherical Polar Coordinates
q_1	$\rho = (x^2 + y^2)^{1/2}$	$r = (x^2 + y^2 + z^2)^{1/2}$
q_2	$\phi = \tan^{-1}\left(\frac{y}{x}\right)$	$\theta = \tan^{-1}\left(\frac{(x^2+y^2)^{1/2}}{z}\right)$
q_3	z	$\phi = \tan^{-1}(y/x)$

19.

	Cylindrical Polar Coordinates	Spherical Polar Coordinates
x	$ ho\cos\phi$	$r\cos\phi\sin\theta$
y	$ ho\sin\phi$	$r\sin\phi\sin\theta$
z	z	$r\cos\theta$

21. •
$$\mathbf{h}_j = \frac{\partial \mathbf{r}}{\partial q_i} = \frac{\partial x_i}{\partial q_i} \hat{\mathbf{x}}_i$$

•
$$\mathbf{h}_j = h_j \mathbf{e}_j, \, h_j = \left| \frac{\partial \mathbf{r}}{\partial q_j} \right|$$

•
$$\mathbf{e}_j = \frac{1}{h_i} \frac{\partial \mathbf{r}}{\partial q_i}$$

•
$$J \equiv \frac{\partial(x,y,z)}{\partial(q_1,q_2,q_3)} = |\mathbf{h}_1 \cdot \mathbf{h}_2 \times \mathbf{h}_3|, dV = d\mathbf{r}_1 \times d\mathbf{r}_2 \cdot d\mathbf{r}_3 = |J| dq_1 dq_2 dq_3 = h_1 h_2 h_3 dq_1 dq_2 dq_3$$
 (chain rule, inverse)

• (Orthogonality)
$$\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}, |\mathrm{d}\mathbf{r}|^2 = \sum_i h_i^2 (\mathrm{d}q_i)^2$$

•
$$d\mathbf{r} = \sum_{i} h_{j} \mathbf{e}_{j} dq_{j}$$

$$\bullet \quad \nabla = \sum_{i} \mathbf{e}_{i} \frac{1}{h_{i}} \frac{\partial}{\partial q_{i}}$$

• (even permutation
$$(i, j, k)$$
) $\mathbf{e}_i = \mathbf{e}_j \times \mathbf{e}_k = h_j \nabla q_j \times h_k \nabla q_k$
• $\nabla \cdot \mathbf{F} = \frac{1}{h_1 h_2 h_3} \sum_{\text{even perms}} \frac{\partial h_j h_k F_i}{\partial q_i}$

•
$$\nabla^2 = \nabla \cdot \nabla = \frac{1}{h_1 h_2 h_3} \sum_{\text{even perms}} \frac{\partial}{\partial q_i} \left(\frac{h_j h_k}{h_i} \frac{\partial}{\partial q_i} \right)$$

$$\bullet \quad \boxed{ \boldsymbol{\nabla} \times \mathbf{F} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \mathbf{e}_1 & h_2 \mathbf{e}_2 & h_3 \mathbf{e}_3 \\ \frac{\partial}{\partial q_1} & \frac{\partial}{\partial q_2} & \frac{\partial}{\partial q_3} \\ h_1 F_1 & h_2 F_2 & h_3 F_3 \end{vmatrix} }$$

•
$$\nabla^2 \mathbf{F} = \nabla^2 (F_i \mathbf{e}_i) \ ((\nabla^2 \mathbf{F})_i \neq \nabla^2 F_i)$$

Green's functions

1. Different $\delta_{\epsilon}(x)$ s

•
$$\delta_{\epsilon}(x) = \begin{cases} 0 & x < -\epsilon \\ \frac{1}{2\epsilon} & -\epsilon \le x \le \epsilon \\ 0 & \epsilon < x \end{cases}$$

•
$$\delta_{\epsilon}(x) = \begin{cases} (x+\epsilon)/\epsilon^2 & -\epsilon < x < 0\\ (\epsilon - x)/\epsilon^2 & 0 \le x < \epsilon\\ 0 & \text{otherwise} \end{cases}$$

•
$$\delta_{\epsilon}(x) = \frac{\epsilon}{\pi(x^2 + \epsilon^2)} = \frac{1}{2\pi} \int_{\infty}^{-\infty} e^{ikx - \epsilon|k| dk} dk$$

2. $\delta(x)$ properties

•
$$\int_{-\alpha}^{\beta} \delta(x) dx = 1, \ \alpha > 0, \ \beta > 0$$

•
$$\int_{-\infty}^{\infty} \delta(x - \xi) f(x) dx = f(\xi)$$

•
$$H'(x) = \delta(x)$$

•
$$\int_{-\infty}^{\infty} \delta'(x) f(x) dx = -f'(x)$$

•
$$\delta(ax) = \frac{\delta(x)}{|a|}$$

• For a nice function
$$\delta(f(x)) = \sum_{i} \delta\left(\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=x_i} (x-x_i)\right) = \sum_{i} \frac{\delta(x-x_i)}{\left|\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=x_i}\right|}$$

3. Wronskian
$$W[y_1, y_2] = \det \begin{pmatrix} y_1 & y_2 \\ y_1' & y_2' \end{pmatrix} \neq 0$$
 is the condition for linearly independent solutions

4. Initial and boundary conditions is written as Ay(a) + By'(a) = E, E = 0 means BC is homogeneous.

5. Differential operator
$$L = \frac{d^2}{dx^2} + p(x)\frac{d}{dx} + q(x)$$
 (turn \mathcal{L} into this standard form first, coefficient of 2nd order term is 1)

6. Green's function is the solution to $LG(x,\zeta) = \delta(x-\zeta)$

7.
$$y(x) = \int_{a}^{b} G(x, \zeta) f(\zeta) d\zeta$$

8. Green's function properties

• $G(x,\zeta)$ of L shares the same boundary conditions as y(x), which is the solution to Ly(x)=f(x), by construction

4

• $G(x,\zeta)$ is a continuous function in x and ζ

•
$$\lim_{\epsilon \to 0} [G(x, \zeta)]_{x=\zeta-\epsilon}^{x=\zeta+\epsilon} = 0$$

• $\lim_{\epsilon \to 0} \left[\frac{\partial G}{\partial x} \right]_{x=\zeta-\epsilon}^{x=\zeta+\epsilon} = 1$ (or whatever the coefficient of the 2nd order term is)

(Start from $\boxed{1 = \lim_{\epsilon \to 0} \int_{\zeta - \epsilon}^{\zeta + \epsilon} \delta(\zeta - x) \mathrm{d}x}, \, \mathcal{L} \text{ is 2nd order, } p, q \text{ are continuous, and assume } p(x) \text{ is continuous}}$

9. Writing
$$G(x,\zeta) = \begin{cases} \alpha_{-}(\zeta)y_{1}(x) + \beta_{-}(\zeta)y_{2}(x) & \text{for } a \leq x < \zeta \\ \alpha_{+}(\zeta)y_{1}(x) + \beta_{+}(\zeta)y_{2}(x) & \text{for } \zeta \leq x \leq b, \end{cases}$$
 it follows immediately that
$$\begin{pmatrix} y_{1}(\zeta) & y_{2}(\zeta) \\ y'_{1}(\zeta) & y'_{2}(\zeta) \end{pmatrix} \begin{pmatrix} \alpha_{+}(\zeta) - \alpha_{-}(\zeta) \\ \beta_{+}(\zeta) - \beta_{-}(\zeta) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \text{ if the solutions are independent, } \alpha_{+}(\zeta) - \alpha_{-}(\zeta) = -\frac{y_{2}(\zeta)}{W(\zeta)} \text{ and } \beta_{+}(\zeta) - \beta_{-}(\zeta) = \frac{y_{1}(\zeta)}{W(\zeta)}$$

Partial differential equations

Consider separable solutions

For
$$x^2y'' + axy' + y = 0$$
, try $y = x^r$

Matrices

- 1. Metric $G_{ij} = \mathbf{u}_i \cdot \mathbf{u}_j$
 - $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^{\dagger} G \mathbf{w}$
 - $G^{\dagger} = G$ (Hermitian)
 - $v^{\dagger}Gv \ge 0$ (positive definite)

2.
$$det M = \prod_{i=1}^{n} \lambda_i (det(AB) = det A det B)$$

•
$$\operatorname{tr} M = \sum_{i=1}^{n} \lambda_i$$

•
$$\operatorname{tr}(M^n) = \operatorname{tr}(\Lambda^n) (\operatorname{tr}(AB) = \operatorname{tr}(BA))$$

- 3. Unitary matrix $A^{\dagger} = A^{-1}$
- 4. Normal matrix $AA^{\dagger} = A^{\dagger}A$
- 5. Hermitian matrices
 - The eigenvalues of an Hermitian matrix are real
 - The eigenvectors of an Hermitian matrix with distinct eigenvalues are orthogonal
 - A Hermitian matrix has n orthogonal linearly independent eigenvectors
 - has n orthonormal eigenvectors
 - · Anti-Hermitian and Unitary matrices have imaginary eigenvalues with unit modulus
- 6. Simplifying quadric surface $x^T A x + b^T x + c = 0$
 - $S = \frac{1}{2}(A + A^T)$, $y^T S y + b^T y + c = 0$ (symmetric thus diagonalizable)
 - Diagonalize, $z^T \Lambda z + b^T z + c = 0$
 - Offset, $x^{\prime T} \Lambda x^{\prime} = k$ (to cancel out second term)
- 7. Quadric surface names

Coefficients

Quadric Surface

 $\lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 > 0, \ k > 0.$ Ellipsoid: this includes the case of metric matrices, since S is then positive definite and the λ_i are all positive.
$$\begin{split} &\lambda_1 = \lambda_2. \\ &\lambda_1 = \lambda_2 > 0, \ \lambda_3 > 0, \ k > 0. \end{split}$$
Surface of revolution about the z' axis. **Spheroid**: the surface is a prolate spheroid if $\lambda_1 = \lambda_2 > \lambda_3$ and an oblate spheroid if $\lambda_1 = \lambda_2 < \lambda_3$. $\frac{\lambda_1 = \lambda_2 = \lambda_3}{\lambda_3 = 0}, \ k > 0.$ $\lambda_3 = 0.$ Sphere.Cylinder. $\lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 = 0, \ k > 0.$ $\lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 < 0, \ k > 0.$ $\lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 < 0, \ k = 0.$ $\lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 < 0, \ k = 0.$ Elliptic cylinder. Hyperboloid of one sheet. Elliptical conical surface. $\lambda_1 > 0, \ \lambda_2 < 0, \ \lambda_3 < 0, \ k > 0.$ Hyperboloid of two sheets $\lambda_1 > 0, \ \lambda_2 = \lambda_3 = 0, \ \lambda_1 k \geqslant 0.$ Planes $x' = \pm \sqrt{\frac{k}{\lambda_*}}$.

- 8. All eigenvalues of a nilpotent matrix are 0
- 9. The Rayleight-Ritz variational principle. The first variation of $\lambda(x) = \frac{x^T S x}{x^T x}$ is 0 for all possible δx when $Sx = \lambda(x)x$

1 Elementary analysis

- 1. Limit, series, partial sum, absolute convergence \implies (conditional) convergence
- 2. Tests for convergence
 - Comparison test (between two series)
 - D'Alembert's ratio test
 - Cauchy's test $\lim_{r\to\infty} u_r^{1/r} < 1$

3. Taylor
$$f(x_0 + h) = \sum_{n=0}^{\infty} \frac{h^n}{n!} f^{(n)}(x_0)$$

4.
$$\frac{\mathrm{d}f}{\mathrm{d}z} \equiv f'(z) = \lim_{\delta z \to 0} \frac{f(z + \delta z) - f(z)}{\delta z}$$
 same by any route in the complex plane

5. Cauchy-Riemann equations
$$f(z) = u(x,y) + iv(x,y), \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

- u, v are harmonic functions, $\nabla^2 u = \nabla^2 v = 0$
- u, v are conjugate harmonic functions, $\nabla u \cdot \nabla v = 0$
- 6. C^1 complex functions are analytic

7.
$$f(z) (z-z_0)^N$$
, zero of order N at z_0 , $f(z) (z-z_0)^{-N}$, pole of order N

8. Laurent series
$$f(z) = \sum_{-\infty}^{\infty} a_n (z - z_0)^n$$
, on annulus $\alpha < |z - z_0| < \beta$, infinite $n < 0$ means essential singularity

9. Radius of convergence: power series
$$f(z) = \sum_{r=0}^{\infty} a_r z^r$$
 converges for $z = z_1$, then it converges absolutely for $|z - z_0| < |z_1 - z_0|$

•
$$\lim_{r \to \infty} \left| \frac{a_{r+1}}{a_r} \right| = \frac{1}{R}$$

•
$$\lim_{r \to \infty} |a_r|^{1/r} = \frac{1}{R}$$

Series solution of ODE

1. Wronskian
$$W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$$

2.
$$W' + p(x)W = 0, W(x) = C \exp\left(-\int_{-\infty}^{x} p(\zeta)d\zeta\right),$$
$$y_2(x) = y_1(x) \int_{-\infty}^{x} \frac{W(\eta)}{y_1(\eta)^2} d\eta = y_1(x) \int_{-\infty}^{x} \frac{C}{y_1(\eta)^2} \exp\left(-\int_{-\infty}^{\eta} p(\zeta)d\zeta\right)$$

3.
$$y'' + p(z)y' + q(z) = 0$$

- 4. Ordinary point p(z), q(z) analytic at $z=z_0$, regular singular point $(z-z_0)p(z)$, $(z-z_0)^2q(z)$ analytic at $z=z_0$
- 5. $z = z_0$ is ordinary point, two independent solutions like $y = \sum_{n=0}^{\infty} a_n (z z_0)^n$, $|z z_0| < R$

6.
$$z=z_0$$
 is regular singular point, $y_1=z^{\sigma_1}\sum_{n=0}^{\infty}a_n(z-z_0)^n, \quad a_0\neq 0, \sigma\in\mathbb{C}$

7. Indicial equation
$$\sigma(\sigma - 1) + p_0 \sigma + q_0 = 0$$
, $p_0 = \lim_{z \to z_0} ((z - z_0)p(z))$, $q_0 = \lim_{z \to z_0} ((z - z_0)^2 q(z))$

8. If
$$\sigma_1 - \sigma_2 \in \mathbb{R}$$
, $\operatorname{Re}(\sigma_1) \ge \operatorname{Re}(\sigma_2)$ another solution is $y_2 = ky_1 \log z + z^{\sigma_2} \sum_{n=0}^{\infty} b_n z^n$

9. Variation of parameters

Sturm-Liouville

- 1. Norm of u(x) is $||u||^2 = \langle u|u\rangle = \int_{\alpha}^{\beta} |u(x)|^2 dx$ is real and ≥ 0 .
- 2. If $\langle u|\mathcal{L}v\rangle = \langle \mathcal{L}u|v\rangle = \langle v|\mathcal{L}u\rangle^*$ if boundary terms are 0, called **self-adjoint**.
- 3. Sturm-Liouville operator defined on $\alpha \le x \le \beta$ is $\mathcal{L} = -\frac{\mathrm{d}}{\mathrm{d}x} \left(\rho(x) \frac{\mathrm{d}}{\mathrm{d}x} \right) + \sigma(x)$, σ, ρ are real, $\forall \alpha < x < \beta(\rho > 0)$
 - $\langle u|\mathcal{L}v\rangle = \langle v|\mathcal{L}u\rangle^* + [\rho(vu^*' u^*v')]^{\beta}_{\alpha}$ means formally self-adjoint (differ by a constant)
 - If $[\rho(vu^{*\prime}-u^*v')]^{\beta}_{\alpha}=0, \mathcal{L}$ is self-adjoint
 - Might not work if \mathcal{L} not defined on $x \in [\alpha, \beta]$ e.g.[-1, 1] for Legendre's equation $(1 x^2)y'' 2xy' + l(l+1)y = 0$, solutions x and $\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$ not orthogonal

- 4. Inner product with a weight function $\langle u|v\rangle_w = \int_{\alpha}^{\beta} w(x)u^*(x)v(x)\mathrm{d}x$
- 5. $\mathcal{L} = w\tilde{\mathcal{L}}$ for a second order operator $\tilde{\mathcal{L}} = -\frac{\mathrm{d}}{\mathrm{d}x} \left[a(x) \frac{\mathrm{d}}{\mathrm{d}x} \right] b(x) \frac{\mathrm{d}}{\mathrm{d}x} c(x)$
 - w(x) is real and positive

•
$$w\tilde{\mathcal{L}} = -\frac{\mathrm{d}}{\mathrm{d}x} \left(aw \frac{\mathrm{d}}{\mathrm{d}x} \right) + (aw' - bw) \frac{\mathrm{d}}{\mathrm{d}x} - wc$$

- Let aw' = bw, $w(x) = Ce^{\int^x \frac{b(\zeta)}{a(\zeta)} d\zeta}$
- Note that w(x), a(x), b(x), c(x) are real (by definition)
- $\langle u|\tilde{\mathcal{L}}v\rangle_w = \langle \tilde{\mathcal{L}}v|u\rangle_w + [wa(vu^{*\prime} u^*v')]_{\alpha}^{\beta}$

• i.e.
$$\left[(\lambda_u - \lambda_v) \int_a^b u^* v w dx = \left[\rho(x) (u^{*'} v' - u^* v') \right]_a^b \right]$$

•
$$\tilde{\mathcal{L}}y = \lambda y \implies \mathcal{L}y = \lambda wy$$

6. If $\{y_n\}$ is a complete set of **orthonormal** eigenfunctions,

the completeness relation is $\sum_{n=1}^{\infty}y_n(x)y_n^*(x') = \frac{1}{w(x')}\delta(x-x')$

•
$$f(x) = \sum_{n=1}^{\infty} a_n y_n(x)$$

•
$$\langle y_n | y_m \rangle_w = \delta_{nm}$$

•
$$a_n = \langle y_n | f \rangle_w$$

•
$$f(x) = \sum_{n=1}^{\infty} \langle y_n | f \rangle_w y_n(x) = \int_{\alpha}^{\beta} f(x') \left[w(x') \sum_{n=1}^{\infty} y_n(x) y_n^*(x') \right] dx'$$

• Recall that
$$\mathcal{L}G(x,x') = \delta(x-x'), \ y(x) = \int_{\alpha}^{\beta} G(x,x')f(x')dx'$$

•
$$G(x,x') = \sum_{n=1}^{\infty} \frac{1}{\lambda_n} y_n(x) y_n^*(x')$$
 such that $\mathcal{L}G(x,x') = w(x) \sum_{n=1}^{\infty} y_n(x) y_n^*(x') = \frac{w(x)}{w(x')} \delta(x - x')$ such that $\mathcal{L}G(x,x') = w(x) \sum_{n=1}^{\infty} y_n(x) y_n^*(x') = \frac{w(x)}{w(x')} \delta(x - x')$ such that $\mathcal{L}G(x,x') = w(x) \sum_{n=1}^{\infty} y_n(x) y_n^*(x') = \frac{w(x)}{w(x')} \delta(x - x')$ such that $\mathcal{L}G(x,x') = w(x) \sum_{n=1}^{\infty} y_n(x) y_n^*(x') = \frac{w(x)}{w(x')} \delta(x - x')$ such that $\mathcal{L}G(x,x') = w(x) \sum_{n=1}^{\infty} y_n(x) y_n^*(x') = \frac{w(x)}{w(x')} \delta(x - x')$ such that $\mathcal{L}G(x,x') = w(x) \sum_{n=1}^{\infty} y_n(x) y_n^*(x') = \frac{w(x)}{w(x')} \delta(x - x')$

• $G(x,x')=G^*(x,x')$, if $\mathcal L$ has zero eigenvalue G(x,x') will not exist

7. Bessel's inequality
$$||f||_w^2 \ge \sum_{n=1}^N |a_n|^2$$

•
$$f(x) \approx \sum_{n=1}^{N} a_n y_n$$
, let $a_n = u + iv$

• Error

$$E = \left| f(x) - \sum_{n=1}^{N} a_n y_n \right|_w^2$$

$$= \|f\|_w^2 - \sum_{n=1}^{N} [a_n^* \langle y_n | f \rangle_w + a_n \langle f | y_n \rangle_w] + \sum_{n=1}^{N} \sum_{n=1}^{N} a_n^* a_m \langle y_n | y_m \rangle_w$$

$$= \|f\|_w^2 - \sum_{n=1}^{N} [(u - iv)(\langle y_n | f \rangle_w)^* + (u + iv)\langle f | y_n \rangle_w] + \sum_{n=1}^{N} |a_n|^2$$

$$= \|f\|_w^2 + \sum_{n=1}^{N} (u^2 + v^2) - \sum_{n=1}^{N} [2u \operatorname{Re}\{\langle y_n | f \rangle_w\} + 2v \operatorname{Im}\{\langle y_n | f \rangle_w\}]$$

• If
$$\frac{\partial E}{\partial u} = 0 = \frac{\partial E}{\partial v}$$
, $a_n = \langle y_n | f \rangle_w$, $E = ||f||_w^2 - \sum_{n=1}^N |a_n|^2 \ge 0$, becomes equality at $N \to \infty$

Calculus of variation

1. The functional
$$G[y]: \{y_k\} \to \mathbb{R} = \int_{\alpha}^{\beta} f(y, y'; x) dx$$

2.
$$\delta G = \int_{\alpha}^{\beta} \delta y(x) \frac{\delta G}{\delta y(x)} dx + \dots = \left[\delta y \frac{\partial f}{\partial y'} \right]_{\alpha}^{\beta} + \int_{\alpha}^{\beta} \delta y \left[\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) \right] dx + \dots$$

3. Euler Lagrange equation
$$\frac{\delta G}{\delta y(x)} = 0 = \frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right), \ \frac{\partial f}{\partial y} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right)$$

4. First integral if integrand f(y, y', x) = f(y, y') does not depend on x,

$$\begin{split} \frac{\mathrm{d}f}{\mathrm{d}x} &= \frac{\partial f}{\partial x} + y' \frac{\partial f}{\partial y} + y'' \frac{\partial f}{\partial y'} \\ &= \frac{\partial f}{\partial x} + \frac{\mathrm{d}}{\mathrm{d}x} \left(y' \frac{\partial f}{\partial y'} \right) \\ \frac{\mathrm{d}}{\mathrm{d}x} \left(f - y' \frac{\partial f}{\partial y'} \right) &= \frac{\partial f}{\partial x} = 0 \end{split}$$

$$y'\frac{\partial f}{\partial y'} - f = c$$

5. Sturm-Liouville

•
$$F[y] = \langle y | \mathcal{L}y \rangle = \int_{\alpha}^{\beta} y^* \mathcal{L}y dx = \int_{\alpha}^{\beta} \left[\rho |y'|^2 + \sigma |y|^2 \right] dx$$

•
$$G[y] = \langle y|y\rangle_w = \int_{\alpha}^{\beta} w|y|^2 dx$$

•
$$\frac{\delta F}{\delta y} = 2\mathcal{L}y, \ \frac{\delta G}{\delta y} = 2wy$$

•
$$\Lambda[y] = \frac{\langle y|\mathcal{L}y\rangle}{\langle y|y\rangle_w} = \frac{F[y]}{G[y]}$$

•
$$\frac{\delta \Lambda}{\delta y} = \frac{1}{G} \left[\frac{\delta F}{\delta y} - \Lambda \frac{\delta G}{\delta y} \right] = \frac{2}{G} \left[\mathcal{L} y - \Lambda w y \right]$$

• At extremum, $\mathcal{L}y = \lambda wy = \Lambda[y]wy$, $\Lambda[y]$ is extremized by eigenfunctions of $\tilde{\mathcal{L}} = w^{-1}\mathcal{L}$ and the eigenvalues λ are its extremal values

6.

$$\begin{split} \frac{\mathrm{d}L}{\mathrm{d}t} &= \frac{\partial L}{\partial t} + \sum_{i=1} N \dot{q}_i \frac{\partial L}{\partial q_i} + \ddot{q}_i \frac{\partial L}{\partial \dot{q}_i} \\ &= \frac{\partial L}{\partial t} + \sum_{i=1} N \dot{q}_i \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} + \ddot{q}_i \frac{\partial L}{\partial \dot{q}_i} \\ &= \frac{\partial L}{\partial t} + \frac{\mathrm{d}}{\mathrm{d}t} \sum_{i=1} N \dot{q}_i \frac{\partial L}{\partial \dot{q}_i} \\ &= \frac{\mathrm{d}}{\mathrm{d}t} \left[L + \sum_{i=1}^N \dot{q}_i \frac{\partial L}{\partial \dot{q}_i} \right] = \frac{\partial L}{\partial t} = \frac{\mathrm{d}H}{\mathrm{d}t} \end{split}$$

- 7. Time invariance of L is energy (H) conservation, q invariance of L is $\frac{\partial L}{\partial \dot{q}}$ conservation (generalized momentum)
- 8. $\phi(x, y, \lambda) = f(x, y) \lambda p(x, y), \Phi_{\lambda}[y] = G[y] \lambda P[y]$

Laplace Poisson

- 1. Find constants with **boundary conditions**, implicit conditions for **physical** solutions, **continuity of derivative** and **continuity of solution**
- 2. Poisson's equation $\nabla^2 \Phi = \rho(\mathbf{x}), \ \rho = 0$ is Laplace's equation
 - Diffusion $\kappa \nabla^2 u = \frac{\partial u}{\partial t} S(\mathbf{x})$, in steady state $\frac{\partial u}{\partial t} = 0$. $\nabla^2 u = -\frac{S(\mathbf{x})}{\kappa}$, flux $\mathbf{F} = -\kappa \nabla u$
 - $\nabla \cdot \mathbf{E} = \rho_q(\mathbf{x})/\epsilon_0$, $\nabla \times \mathbf{E} = 0 \implies \mathbf{E} = -\nabla \Phi$, $\nabla^2 \Phi = -\rho_q(\mathbf{x})\epsilon_0$
 - $\nabla^2 \Phi = 4\pi G \rho_m(\mathbf{x})$

- 3D Schrödinger
- Ideal fluid (irrotational, incompressible) $\nabla \times u = 0 \implies u = \nabla \Phi$, continuity (incompressible) $\rho \nabla \cdot u = -\frac{\rho}{t} = S(\mathbf{x}), \nabla^2 \Phi = 0$

3. Cylindrical
$$\Psi = \Psi(r,\phi), \ x = r\cos\phi, \ y = r\sin\phi, \ \nabla^2\Psi = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\Psi}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2\Psi}{\partial\phi^2} = 0$$

$$\Psi = A_0 + B_0 \phi + C_0 \ln r + D_0 \phi \ln r + \sum_{n=1}^{\infty} (A_n r^n + C_n r^{-n}) \cos n\phi + \sum_{n=1}^{\infty} (B_n r^n + D_n r^{-n}) \sin n\phi$$

4. Axisymmetric Spherical $\Psi = \Psi(r,\theta), \ x = r\sin\theta\cos\phi, y = r\sin\theta\sin\phi, z = r\cos\theta, \ \nabla^2\Psi = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\Psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial\Psi}{\partial \theta}\right) = 0$

$$\Psi(r,\theta) = \sum_{l=0}^{\infty} (A_l r^l + B_l r^{-l-1}) P_l(\cos \theta)$$

5.
$$\begin{vmatrix} P_1(x) & 1 \\ P_2(x) & x \\ P_3(x) & \frac{1}{2}(3x^2 - 1) \\ P_4(x) & \frac{1}{2}(5x^3 - 3x) \end{vmatrix}$$

6. The solution to Poisson's equation is unique with Dirichlet $(\Phi(\mathbf{r}) = f(\mathbf{r}))$ or Neumann $(\frac{\partial \Phi}{\partial n} =$ $\mathbf{n} \cdot \nabla \Phi = f(\mathbf{r})$ boundary conditions on a surface S.

Prove using difference of two solutions and $\nabla \cdot (\Psi \nabla \Psi) = \nabla \Psi \cdot \nabla \Psi + \Psi \nabla \cdot (\nabla \Psi)$

7. Green's function

$$\begin{cases} \nabla^2 G(\mathbf{r}, \mathbf{r}')_{\mathbf{r}} = \delta^{(3)}(\mathbf{r} - \mathbf{r}'), & \mathbf{r} \ in \ V \\ \text{(Dirichlet)} \ G = 0, & \mathbf{r} \ on \ S \\ \text{(Neumann)} \ \frac{\partial G}{\partial n} = \frac{1}{A}, & \mathbf{r} \ on \ S \end{cases}$$

where
$$A = \oint_S dS$$
.

If V is all of space, G is the fundamental solution.

- 8. The fundamental solution in 3D: $\nabla^2 G = \delta^{(3)}(\mathbf{r} \mathbf{r}'), G \to 0$ as $|\mathbf{r}| \to \infty$
 - Spherically symmetric, $G = G(\mathbf{r})$

•
$$\nabla^2 G = (r^2 G')'/r^2 = 0$$
, $G = \frac{C}{r} + A$, $A = 0$

• S is a sphere of radius
$$\epsilon$$
; $\frac{\partial G}{\partial r}\Big|_{r=\epsilon} = -\frac{C}{\epsilon^2}$

•
$$\int_{r<\epsilon} \nabla^2 G dV = \oint_{r=\epsilon} \nabla G \cdot \mathbf{n} dS = -\frac{C}{\epsilon^2} \oint_{r=\epsilon} dS = -4\pi C$$

•
$$\nabla^2 G = \delta^{(3)}(\mathbf{r} - \mathbf{r}') = -4\pi C \delta^{(3)}(\mathbf{r} - \mathbf{r}'), C = -\frac{1}{4\pi}$$

• $G(\mathbf{r}, \mathbf{r}') = -\frac{1}{4\pi |\mathbf{r} - \mathbf{r}'|}$

•
$$G(\mathbf{r}, \mathbf{r}') = -\frac{1}{4\pi |\mathbf{r} - \mathbf{r}'|}$$

9. The fundamental solution in 2D: $\nabla^2 G = \delta^{(2)}(\mathbf{r} - \mathbf{r}'), |\nabla G| \to 0$ as $|\mathbf{r}| \to \infty$ (or G vanishes in a finite radius)

- Circularly symmetric, $G = G(\mathbf{r})$
- $(rG')'/r = 0 \implies G = C \ln r + A, r \neq 0$
- S is a circle with radius ϵ ; $\frac{\partial G}{\partial r}\Big|_{r=\epsilon} = \frac{C}{\epsilon}$

•
$$\int_{r<\epsilon} \nabla^2 G dA = \oint_{r\epsilon} \nabla G \cdot \mathbf{n} dl = \frac{C}{\epsilon} \oint_{r=\epsilon} dl = 2\pi C$$

•
$$\nabla^2 G = \delta^{(2)}(\mathbf{r} - \mathbf{r}') = 2\pi C \delta^{(2)}(\mathbf{r} - \mathbf{r}'), C = \frac{1}{2\pi}$$

•
$$G(\mathbf{r}, \mathbf{r}') = \frac{1}{2\pi} \ln |\mathbf{r} - \mathbf{r}'| + C$$

- 10. Method of images: **Dirichlet** boundary condition charge of **opposite** sign, to cancel out at the boundary; **Neumann** charge of **same** sign, to make $\frac{\partial G}{\partial n} = 0$ at the boundary
- 11. For sphere and circle, it is equivalent to a inverse point with a particular strength
- 12. $\mathbf{F} = \Phi \nabla \Psi \Psi \nabla \Phi$, $\nabla \cdot (\Phi \nabla \Psi) = \nabla \Phi \cdot \nabla \Psi + \Phi \nabla^2 \Psi$ leads to Green's theorem

$$\int_{V} (\Phi \nabla^{2} \Psi - \Psi \nabla^{2} \Phi) dV = \oint_{S} (\Phi \nabla \Psi - \Psi \nabla \Phi) \cdot dS = \oint_{S} \left(\Phi \frac{\partial \Psi}{\partial n} - \Psi \frac{\partial \Phi}{\partial n} \right)$$

(replace V and S to A and l in 2D)

- (Dirichlet) For $\begin{cases} \nabla^2 \Phi &= \rho(\mathbf{r}), & \text{in } V \\ \Phi(\mathbf{r}) &= f(\mathbf{r}), & \text{on } S \end{cases}$
- Let $\Psi = G$

$$\begin{split} \int_{V} (\Phi \nabla^{2} G - G \nabla^{2} \Phi) \mathrm{d}V &= \oint_{S} (\Phi \nabla G - G \nabla \Phi) \cdot \mathbf{n} \mathrm{d}S \\ \int_{V} \Phi \delta^{(3)}(\mathbf{r} - \mathbf{r}') \mathrm{d}V &= \int_{V} G \rho \mathrm{d}V + \oint_{S} f \frac{\partial G}{\partial n} \mathrm{d}S \\ \Phi(\mathbf{r}') &= \int_{V} \rho(\mathbf{r}) G(\mathbf{r}, \mathbf{r}') \mathrm{d}V + \oint_{S} f(\mathbf{r}) \frac{\partial G}{\partial n} \mathrm{d}S \\ \Phi(\mathbf{r}') &= \int_{\mathfrak{D}^{3}} \rho(\mathbf{r}) G(\mathbf{r}, \mathbf{r}') \mathrm{d}V = \int_{\mathfrak{D}^{3}} \frac{\rho_{q}(\mathbf{r})}{4\pi\epsilon_{0} |\mathbf{r} - \mathbf{r}'|} \mathrm{d}V \end{split}$$

The last line is for all space (sphere of radius ∞)

Turn it into Laplace by setting $\forall \mathbf{r} \in V(\rho(\mathbf{r}) = 0)$

• (Neumann) For
$$\begin{cases} \nabla^2 \Phi &= \rho(\mathbf{r}), & \text{in } V \\ \frac{\partial \Phi}{\partial n} &= f(\mathbf{r}), & \text{on } S \end{cases}$$

• Let
$$G = \Psi$$
. $\frac{\partial G(\mathbf{r}, \mathbf{r}')}{\partial n}\Big|_{\mathbf{r} \in S} = \frac{1}{A}$,

$$\Phi(\mathbf{r}') = \int_{V} \rho(\mathbf{r}) G(\mathbf{r}, \mathbf{r}') dV + \frac{1}{A} \oint_{S} \Phi(\mathbf{r}) dS - \oint_{S} f(\mathbf{r}) G(\mathbf{r}, \mathbf{r}') dS$$

$$\Phi(\mathbf{r}') = \int_{V} \rho(\mathbf{r}) G(\mathbf{r}, \mathbf{r}') dV - \oint_{S} f(\mathbf{r}) G(\mathbf{r}, \mathbf{r}') dS$$

where the second line follows from finite surface integral of $\Phi(\mathbf{r})$ and infinite A of V being all space.

Cartesian tensors

1. A vector \mathbf{v} is a set of numbers v_i defined wrt. a set of orthonormal basis vectors \mathbf{e}_i by $v_i' = L_{ij}v_j$, where $L_{ij} = \mathbf{e}_i' \cdot \mathbf{e}_j$ (L_{ij} is orthogonal, $L^TL = I$)

- 2. $\nabla = \mathbf{e}_i \partial_i$, $\partial_i \equiv \frac{\partial}{\partial x_i}$, $\partial x_i' = L_{ij} \partial x_j$ (by chain rule) (∇ is therefore a vector, but only in Cartesian coordinates, where covectors same as vectors)
- 3. a Cartesian axial vector (pseudo-vector) a is a set of coefficients a_i defined wrt. a set of orthonormal basis vectors \mathbf{e}_i , s.t. a_i' wrt. another orthonormal basis \mathbf{e}_i' are given by $a_i' = \det(L)L_{ij}a_j$ (same as vector under proper transformation $\det(L) = 1$. Not reversed after improper rotations $\det(L) = -1$)
- 4. A Cartesian tensor T of order n has n indices $T_{i_n...i_n}$, defined wrt. a set of orthonormal basis vectors \mathbf{e}_i that transforms like $\mathbf{e}_i' = L_{ij}\mathbf{e}_j$. $T'_{i_1...i_n} = L_{i_1j_1} \dots L_{i_nj_n}T_{i_1...i_n}$
- 5. Likewise, a Cartesian pseudo-tensor E of order n is $E'_{i_1...i_n} = \det(L)L_{i_1j_1}...L_{i_nj_n}E_{i_1...i_n}$
- 6. δ_{ij} is a tensor, ϵ_{ijk} is a pseudo-tensor
- 7. Linear combination of order n tensors are order n tensors (closed under addition)
- 8. Tensor $n \otimes \text{tensor } m \to \text{tensor } n+m$; Tensor $n \otimes \text{pseudo-tensor } m \to \text{pseudo-tensor } n+m$
- 9. Contraction reduces order n to n-2
- 10. Symmetric same after swapping two indices; Antisymmetric \times (-1) after swapping. Symmetry is invariant of coordinate system. For symmetric T_{ijk} , antisymmetric E_{pqr} , $T_{ijk}E_{ijr} = 0$
- 11. Any 2nd order tensor expressed as symmetric and antisymmetric tensors $T_{ij} = S_{ij} + A_{ij}$, $S_{ij} = (T_{ij} + T_{ji})/2$, $A_{ij} = (T_{ij} T_{ji})/2$
- 12. Pseudo-vectors are equivalent to 2nd order antisymmetric tensors $\omega_k = \frac{1}{2} \epsilon_{ijk} A_{jk}$,

$$A_{ij} = \epsilon_{ijk}\omega_k = \begin{vmatrix} 0 & \omega_3 & -\omega_2 \\ -\omega_3 & 0 & \omega_1 \\ \omega_2 & -\omega_1 & 0 \end{vmatrix}$$

- 13. Symmetric tensors are sums of a constant and a traceless symmetric tensor $\tilde{S} = S \frac{\text{Tr}(S)}{3}\mathbb{I}$, $\text{Tr}(\tilde{S}) = 0$
- 14. Isotropic tensors have same components in all frames $T'_{ijk...} = T_{ijk...}$. The most general isotropic tensors:
 - 0th order, scalar (all)
 - 1th order, only $\mathbf{0}$ (for both vector & pseudovector)
 - 2nd order, $\lambda \delta_{ij}$, λ is a scalar
 - 3rd order, $\lambda \epsilon_{ijk}$
 - 4th order, $\lambda \delta_{ij} \delta_{kl} + \mu \delta_{ik} \delta_{jl} + \nu \delta_{il} \delta_{jk}$
- 15. isotropic \neq homogeneous

Contour integration

1. Complex derivative $\frac{\mathrm{d}f}{\mathrm{d}z} = \lim_{\delta z \to 0} \frac{f(z+\delta z) - f(z)}{\delta z}$ is the same for all δz , with f(z) = u(x,y) + iv(x,y), the Cauchy-Riemann equations are

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

(Or simply $\frac{\partial f}{\partial z^*} = 0 = \frac{\partial (u + iv)}{\partial (x - iy)}$), and u, v are harmonic, $\nabla^2 u = \nabla^2 v = 0$, and conjugate harmonic $\nabla u \cdot \nabla v = 0$

- 2. Cauchy's theorem $\left[\oint_C f(z)dz = 0\right]$ on a simply connected region R without singularity/f(z) being analytic (C^1) ; path independent from a to b, $\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$, if no singularity between C_1, C_2
- 3. Laurent series $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$, on annulus $\alpha < |z-z_0| < \beta$
- 4. The **residue** of a pole is a_{-1} (coefficient in Laurent series) For a simple pole, $\operatorname{res}_{z=z_0} f(z) = \lim_{z \to z_0} [(z-z_0)f(z)]$; for an N-pole, $\operatorname{res}_{z=z_0} = \lim_{z \to z_0} \left[\frac{1}{(N-1)!} \frac{\mathrm{d}^{(N-1)}}{\mathrm{d}z^{N-1}} [(z-z_0)^N f(z)] \right]$; or just use Laurent series (for essential singularity)
- 5. Residue theorem $\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{res} f(z_k)$, C is **anticlockwise** and encloses all z_k (hint: Laurent series' negative powers around singularity z_k , shrink C to a circle around it/or $\oint_C f(z) dz$ subtract (or add clockwise) integrals of these circles = 0)
- 6. For analytic f(z) on R, Cauchy's formula $f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z z_0} dz$, $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z z_0)^{n+1}} dz$, where simple closed anticlockwise C. So analytic complex function is infinitely differentiable.
- 7. Branch cut for multivalued functions

•
$$\ln(z) = \ln r + i(2n\pi + \theta)$$

•
$$z^{1/a} = re^{i(2n\pi + \theta)/a}, \ a > 1$$

- 8. Jordan's lemma $\lim_{R\to\infty}\int_{C_R}g(z)e^{i\lambda z}\mathrm{d}z=0$ if
 - $g(z) \rightarrow 0$
 - C_R is upper semicircle, $\lambda > 0$, or
 - C_R is lower semicircle, $\lambda < 0$
- 9. Very important inequality in complex analysis $0 < \theta < \frac{\pi}{2}$, $\sin x > \frac{2x}{\pi}$

10. Gaussian integration lemma $\forall a \in \mathbb{C}, \ \int_{-\infty}^{\infty} e^{-(u+a)^2} \mathrm{d}u = \sqrt{\pi}$

Small Oscillations

- 1. $\mathcal{L} = T V = \frac{1}{2} T_{ij} q_i q_j \frac{1}{2} V_{ij} q_i q_j$
- $2. T_{ij}\ddot{q}_j + V_{ij}q_j = 0$
- 3. $(-\omega^2 \mathbf{T} + \mathbf{V})\mathbf{Q} = \mathbf{0}$, $\mathbf{q} = \mathbf{Q}\sin(\omega(t t_0))$ or $Q_i = q_i(t t_0)$ if $\omega = 0$
- 4. Q is generalized engenvector. $\alpha^{(n)}(t) = Q_i^{(n)} T_{ij} q_j(t) = A^{(n)} \sin \omega_n (t t_0^{(n)})$ is a normal coordinate. (A variable substitution to get a simple $\sin(t t_0^{(n)})$)
- 5. Orthonormality $(\mathbf{Q}^{(m)})^T \mathbf{T} \mathbf{Q}^{(n)} = \delta_{mn}$

Group theory

- 1. A group (G, *) is a set G and a binary operation * satisfying
 - Identity axiom, $\forall g \in G \exists e, e * g = g * e = g$
 - Inverses axiom, $\forall g \in G \exists h \in G, h * g = g * h = e$
 - Associativity axiom, $\forall g, h, k \in G, (g*h)*k = g*(h*k)$
 - Closedness/Closure, $g_i * g_j \in G$

2. Examples

- nonzero complex numbers under multiplication (\mathbb{C}, \times)
- 2×2 invertible matrices/general linear group of degree 2 over real numbers under multiplication $(GL_2(\mathbb{R}), *)$
- 2×2 real matrices under addition $M_2(\mathbb{R}, +)$
- Integers under addition $(\mathbb{Z}, +)$
- Symmetric groups/general permutation groups S_n/Σ_N , $|S_n|=n!$, defined by (S,*), where S is the set of all permutations of $\{1,2,\ldots,n\}$, * is a bijection from $\{1,2,\ldots,n\}$ to itself.
- U(n), unitary $n \times n$ matrices
- $GL(n, \mathbb{C})$, $n \times n$ invertible matrices
- S_n symmetric group/permutation group, $|S_n| = n!$
- D_n dihedral group, $|D_n| = 2n$, n rotations by $\frac{360^{\circ}}{n}$, n reflections
- Small abelian and non-abelian groups (link)
- 3. Order of a group G number of elements in it
- 4. $g^q = e, q$ is the **order** of group element g (if does not exist, infinite order)
- 5. A **cyclic** group satisfies $G = \{g^n : n \in \mathbb{Z}\}$
- 6. g_1, g_2 are **generators** if $G = \{\prod_n g_n : n \in \mathbb{Z}, g_n \in \{g_1, g_2\}\}$
- 7. A group is abelian if every two elements commute. Cyclic groups are abelian.

- 9. D_n , n-fold dihedral groups, order 2n. reflections about diagonal
- 10. Group table: For g_1g_2 , apply column g_2 then row g_1 . Each row/column is a **complete** rearrangement/derangements of another.
- 11. A subgroup is a subset that's also a group
- 12. Let (G,*), (H,\times) be groups

- A group homomorphism $f: G \to H$ is a function such that $\forall x, y \in G$, $f(x * y) = f(x) \times f(y)$ (preserve group operation)
- A group isomorphism is a bijective group homomorphism
- (Example of homomorphism but not isomorphism: a subgroup, chosen carefully)
- 13. If (H, \times) is an isomorphism of (G, *), H are $n \times n$ invertible matrices, \times is matrix multiplication, group H is a **faithfaul representation** of G
- 14. Two elements are **conjugate**, $g_1 \sim g_2$ iff $\exists g, g_2 = gg_1g^{-1}$
- 15. Conjugacy classes of a group are disjoint classes of elements, where the elements in each of them are mutually conjugate. The conjugacy class of g is $Cl(g) = \{hgh^{-1}|h \in G\}$
- 16. Conjugacy classes for D_n (nth order dihedral groups) are
 - {*e*}
 - $\{R^2, \dots, R^n\}$
 - $\{m_1, \ldots, m_n\}$
- 17. A **normal subgroup** H is a subgroup that consists entirely of conjugacy classes of G. G is a subgroup. A **proper normal subgroup** is such group with $H \neq G$. $I = e \in G$.
- 18. A group G, a subgroup $H = \{I, h_1, h_2 ...\}$ of G, $g \in G$, a **left coset** of H in G is $gH = \{g, gh_1, gh_2, ...\}$, a **right coset** of H in G is $Hg = \{g, h_1g, h_2g, ...\}$.
- 19. Properties
 - $(g_1g_2)^{-1} = g_2^{-1}g_1^{-1}$
 - $g_1 \sim g_2 \implies g_2 \sim g_1$
 - $g_1 \sim g_2, g_2 \sim g_3 \implies g_1 \sim g_3$
 - The identity e of any group is a conjugacy class by itself
 - $\bullet\,$ Each element of an abelian group is in a class by itself
 - g and g^{-1} may or may not be in the same conjugacy class
 - The left and right coset of any subgroup H of G are identical if G is abelian
 - The left and right coset of any normal subgroup H are always identical (gH = Hg) $gh \in gH$, $ghg^{-1} = h_1 \in H$ because H is normal, $gh = h_1g \in Hg$. vice versa.
 - Order is the same in cosets |gH| = |Hg| = |H| elements of cosets are still distinct
 - Two cosets are either disjoint or identical For Hg_1, Hg_2 , if $h_1g_1 = h_2g_2$, $Hg_1 = Hh_1^{-1}h_2g_2 = Hg_2$ because $h_1^{-1}h_2 \in H$
 - Two cosets Hg_1 and Hg_2 are identical iff $g_1g_2^{-1} \in H$
 - Every element of G is in some coset
 - The subgroup H and its left cosets partition GBecause $I \in H, \forall g \in G, g \in Hg$
 - (Lagrange's theorem) If H is a subgroup of G, $|G| = n|H|, n \in \mathbb{Z}^+$

where n = |G: H| is the index of H in G, the number of distinct left/right cosets of H in G.

- The order of every $g \in G$ divides |G|Each element generates a cyclic subgroup of the same order. If |G| is prime, $G = C_n$ the cyclic group.
- 20. All order 4 groups are isomorphic to the cyclic group C_4 or the Vierergruppe/Klein four-group
- 21. The **kernel** K of group G is the set of all k such that $\Phi(k) = I_H$ (kinda a "nullspace" for groups)
- 22. For a homomorphic map $\Phi: G \mapsto H$ between two groups $(G, *), (H, \times),$

- $\Phi(g_1 * g_2) = \Phi(g_1) \times \Phi(g_2)$
- (Identity maps to identity) $\Phi(I_G) = I_H$
- (Inverses maps to inverses) $\Phi(g^{-1}) = [\Phi(g)]^{-1}$
- Example: $(\mathbb{R}, +)$ and $(U(1), \times)$, where $U(x) = \{c \in \mathbb{C} \mid |c| = 1\}$, $\Phi(x) = e^{ix}$, $\Phi(x + 2\pi) = \Phi(x)$ so only surjective, not bijective. Kernel $K = \{2n\pi \mid n \in \mathbb{Z}\}$
- 23. The kernel is a **normal** subgroup of G because
 - It is closed, $\forall k_1, k_2 \in K, \ k_1 * k_2 \in K$
 - $I_G \in K$ (identity maps to identity)
 - inverse exists, $\forall k \in K, \ k^{-1} \in K$
 - $\forall k \in K, \ \Phi(gkg^{-1}) = \Phi(g)\Phi(k)\Phi(g^{-1}) = \Phi(g)I_H[\Phi(g)]^{-1} = I_H \implies gkg^{-1} \in K$
- 24. The **product** of two cosets is the set of all products of two elements from each set $C_1 \times C_2 = \{c_1c_2 \mid c_1 \in C_1, c_2 \in C_2\}$
- 25. The **direct product** of two groups is similar but forms ordered pairs. $G \times H = \{(g, h) \mid g \in G, h \in H\}$

And $(g_1, h_1) \cdot (g_2, h_2) = (g_1 * g_2, h_2 \times h_2)$

Example: $D_4 = C_2 \times C_2$ (D_4 is Klein four group, C_2 is 2nd order cyclic group)

- 26. For a normal subgroup K of G, product of cosets $|(g_1K)(g_2K)| = |K| \neq |K|^2$ (not all distinct) For a $g \in (g_1K)(g_2K)$, $g = g_1k_1g_2k_2 = g_1(g_2g_2^{-1})k_1g_2k_2 = g_1g_2k_1'k_2 = g_1g_2k_3 \in g_1g_2K$
- 27. For a cosets of non-normal groups, $|(g_1K)(g_2K)| \neq |K|$
- 28. A quotient group, G/K, for a normal subgroup K is a group of its cosets in G. Example: for D_3 , $H = \{e, r, r^2\}$, $D_3/H = \{H, sH\}$, because $H \cdot H = H, H \cdot sH = sH$, $sH \cdot sH = H$, it's isomorphic to C_2
- 29. (Factorization theorem)(Proof)

 If K is the kernel of a homomorphism $\Phi: G \mapsto H$, then G/K is isomorphic to H.
- 30. Cayley's theorem: every order-N finite group is isomorphic to a subgroup of S_n (S_n reminds me of power sets)
- 31. S_{n-1} is a subgroup of S_n (fix one item)
- 32. An *n*-cycle in S_n is a permutation that acts only on the positions $p_r, r = 1, 2, ..., n < N$ written as $(p_1, p_2, ..., p_n)$ which stands for $\begin{pmatrix} p_1 & p_2 & ... & p_n \\ p_2 & p_3 & ... & p_1 \end{pmatrix}$
- 33. Any permutation can be decomposed uniquely into disjoint cycles.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 6 & 1 & 4 & 3 \end{pmatrix} = (1 \ 2 \ 5 \ 4) (3 \ 6) = (3 \ 6) (1 \ 2 \ 5 \ 4)$$

- 34. A two cycle is a transposition/swap. $S_2 = C_2$
- 35. A permutation is odd/even if it is a product of odd/even permutations. An n-cycle can be decomposed into (n-1) 2-cycles (decomposition not unique, not disjoint in general). n cycles's parity depends on n-1.
- 36. The **cycle shape** of an element S_n is the set of numbers $\{n_2, n_3, \ldots\}$ specifying the number of 2-cycles, 3-cycles,... in the **unique** decomposition into **disjoint** cycles.
- 37. The disjoint cycles are the conjugacy classes of S_n .
- 38. G is the direct product of H and J $(G = J \times H = H \times J)$ if
 - H and J are normal subgroups of G
 - H and J are **disjoint**, apart from the identity
 - G is **generated only by** elements of H and J
- 39. If $G = H \times J$, G/H is isomorphic to J

 $G/H = \{jH \mid j \in J\}, \ \Phi: j \mapsto jH \text{ is a homomorphism because } H \text{ is normal } (j_1j_2H = (j_1H)(j_2H))$

 $j_1 \neq j_2 \implies j_1 H \neq j_2 H$, Φ is 1-1 so also isomorphic.

Representations

- 1. A n-dimensional **representation** of a group G is a homomorphism from G to a subgroup of $GL(n,\mathbb{C})$. It's **faithful** if it's also isomorphic, otherwise **unfaithful**.
- 2. Regular representation G are matrices D(g) generated by $G = \{g_1 = e, g_2, \dots, g_N\}, \ g^{-1}G = \{g_{p(1)}, g_{p(2)}, \dots, g_{p(N)}\}, \ D_{ij} = \delta_{p(i),j} = \delta_{i,p^{-1}(j)}$ (Row order of D(g) is element order of $g^{-1}G$, $D(e) = \mathbf{I}$)
- 3. Two sets of matices are **equivalent** if they are similar by an invertible matrix S (similarity transformation)
- 4. If complex conjugate matrix $D^*(g) \sim D(g)$ for all g, can you make D(g) entirely real? It's unknown, if you can, it's real. Otherwise, D is pseudo-real.
- 5. Direct sum of representations $D^{(1)}(g) \oplus D^{(2)}(g) = \begin{pmatrix} D^{(1)}(g) & 0 \\ 0 & D^{(2)}(g) \end{pmatrix}$ is a block-diagonal matrix.
- 6. Direct product of representations \otimes , equations are cumbersome, better just see its picture.
- 7. The **character** of a representation is $\{\operatorname{Tr}(D(g)) \mid g \in G\}$
 - Due to property of trace, equivalent representation have identical character
 - q in the same conjugacy class have the same character
 - Character of regular representation $\{|G|, 0, 0, \dots, 0\}$
- 8. Invariant subspace of a set of linear operations $\{A_i\}$ is $W \subseteq V$ such that $x \in W, \mathbf{A}_i x \in W, \forall A_i \in \{A_i\}.$

Remark. higher dimensional "eigenvector"-like stuff

- 9. A representation $\{D(g)\}$ is irreducible representation (**irrep**) iff $\{0\}$ and $V = \mathbb{C}^n$ are the only invariant subspaces, where dimension of D(g) is n.
- 10. A 2D non-abelian representation is irreducible (diagonal matrices are abelian)
- 11. The group-invariant inner product $[\mathbf{x}, \mathbf{y}] = \sum_{g \in G} (\mathbf{D}(g)\mathbf{x}, \mathbf{D}(g)\mathbf{y})$, where $(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\dagger}\mathbf{y}$
 - $(\mathbf{D}(h)\mathbf{x}, \mathbf{D}(h)\mathbf{y}) = [\mathbf{x}, \mathbf{y}], h \in G$
 - Length is $[\mathbf{x}, \mathbf{x}]^{1/2}$
 - Group representations D(g) unitary using this inner product (because length preserved), $GL(n, \mathbb{C})$ similar to U(n)
 - Unitary matrices have orthogonal eigenvectors, thus "mutually orthogonal invariant subspaces"
 - The representations of finite groups can always be taken to be unitary with respect to this inner product, if we use **orthonormal basis**.
- 12. All 1D (unfaithful) representations are irreducible (no subspace that's not {0} or itself). Any two different 1D representations are inequivalent.
- 13. Character table of **irreps** (irreducible representations) of D_4

	I	R^2	R	R^3	m_1	m_2	m_3	m_4
$\chi_{d^{(1)}}$	1	1	1	1	1	1	1	1
$\chi_{d^{(2)}}$	1	1	1	1	-1	-1	-1	-1
$\chi_{d^{(3)}}$	1	1	-1	-1	1	1	-1	-1
$\chi_{d^{(4)}}$	1	1	-1	-1	-1	-1	1	1
$\chi_{d^{(5)}}$	2	-2	0	0	0	0	0	0

- χ_i^J denotes *i*-th column, *J*-th row in the character table above
- First four unfaithful 1D, last one faithful 2D
- Vertical lines separates conjugacy classes
- Column in different conjugacy classes are orthogonal
- Rows are orthogonal (gridlock orthogonality)
- rows sum to 0, except for the 1st one ★
- (Theorem 1) The number of inequivalent irreps $\rho =$ the number of conjugacy classes $c \star$

(Horizontal, vertical, both 5 cells, counting each conjugacy class as one)

• (Theorem 2)

Sum of squared dimensions of inequivalent irreps in a conjugacy class = $|G| = \sum_{J=1}^{\nu} d_J^2 \star$ (only last/fifth representation 2D, others 1D. $1^2 + 1^2 + 1^2 + 2^2 = 8$) A special case of column orthogonality.

- (Theorem 3) The dimension d_J of each irrep divides $|G| \star$
- (Corollary of 2) Every irrep has dimension $\leq (|G|-1)^{1/2}$, groups with |G| < 5 cannot have have 2d irrep, they're abelian. Only $|C_5| = 5$ because 5 is prime, so smallet non-abelian group is D_3 , $|D_3| = 6$.
- 14. (Schur's 1st lemma) For two irreps with matrices $D_1(g): U \to U$, $D_2(g): V \to V$, define the intertwining operator $T: U \to V$ to be

$$\forall g \in G, \quad TD_1(g) = D_2(g)T,$$

then

- T = 0. The irreps can be equivalent or inequivalent.
- T is invertible, and the irreps must be equivalent. U = V have same dimensions
- 15. (Schur's 2nd lemma) A matrix that commutes with all D(g) of an irrep is $T = \lambda \mathbf{I}, \ \lambda \in \mathbb{C}_{\bigstar}$
- 16. (The grand orthogonality theorem) Let $D^J(g): G \to V_J$ be matrices of an irrep, $V_J = \operatorname{GL}_d(\mathbb{C})$, J loops through all inequivalent irreps, $d = \dim V_J$

$$\frac{1}{|G|} \sum_{g \in G} (D_{ij}^{J}(g^{-1})) D_{kl}^{K}(g) = \frac{1}{d} \delta_{jk} \delta_{il} \delta^{JK}$$

where $\delta^{JJ} = 1$ is not summed over \bigstar .

17.

$$\sum_{g \in G} D_{ij}^{\dagger}(g) D_{kl}(g) = \frac{|G|}{d} \delta_{il} \delta_{jk}$$

- 18. g in same conjugacy class have the same trace/character so character $\chi(g) = \text{Tr } D(g)$ is a class function.
- 19. (Row orthogonality) Take trace on boths sides (i = j, k = l)

$$\sum_{g \in G} (\chi^{J}(g))^{*} \chi^{K}(g) = \sum_{i=1}^{c} |C_{i}| (\chi_{i}^{J})^{*} \chi_{i}^{K} = |G| \delta^{JK} = \begin{cases} |G|, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

where $|C_i|$ is size of C_i , χ_i is $\chi(g)$ for g in C_i , C_i is the i-th conjugacy class.

Remark. χ are c-dimensional vectors, for ρ inequivalent irreps, we have ρ distinct χ . $\rho \leq c$ for linear independence

20. (Column orthogonality) ★

$$\sum_{J=1}^{\rho} (\chi_i^J)^* \chi_j^J = \begin{cases} \frac{|G|}{|C_i|}, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

Remark. χ are ρ dimensional vectors, we have c distinct such vectors, $c \leq \rho$.

- 21. $\star \rho = c$ because of column and row orthogonality, $c \leq \rho$ and $\rho \leq c$.
- 22. $\chi_1^J = d_J$; for each irrep J, $\chi_1 = \chi(e) = Tr(I^{(d_J)}) = d_J$ is the dimension of the representation.
- 23. \bigstar From column orthogonality, the first column (identity e), $\sum_{J=1}^{\rho} |\chi_1^J|^2 = \sum_{J=1}^{\rho} d_J^2 = \frac{|G|}{|C_1|}$, $|C_1|$ is the size of first conjugacy class, $\{e\}$, $|C_1| = 1$.
- 24. $\chi(D_1(g) \oplus D_2(g)) = \chi(D_1(g)) + \chi(D_1(g)),$ $\chi(D_1(g) \otimes D_2(g)) = \chi(D_1(g))\chi(D_1(g))$
- 25. (**Decomposition** of a reducible representation)

$$\mathbf{SD}(g)\mathbf{S}^{-1} = \bigotimes_{J=1}^{\rho} \left(\mathbf{I}^{(n_J)} \otimes \mathbf{D}^J(g) \right)$$

where $\mathbf{I}^{(n)}$ is $n \times n$ identity matrix, J loops through ρ inequivalent irreps, n_J is number of times J-th irrep $\mathbf{D}^J(g)$ occurred.

- 26. Take trace on both sides, $\chi(g) = \sum_{J=1}^{\rho} n_J \chi^J(g)$
- 27. $n_J = \langle \chi, \chi^J \rangle = \frac{1}{|G|} \sum_i^c |C_i| \chi(g) (\chi^J(g))^* = \frac{1}{|G|} \sum_{g \in G} \chi(g)^* \chi^J(g)$ is always an integer (multiplicity of χ^J in χ)
- 28. \star Let χ^1 be the trivial irrep (all 1s, so $\chi^1(g) = 1$), $\langle \chi^J, \chi^1 \rangle = \frac{1}{|G|} \sum_{g \in G} \chi^J(g) = \delta^{J1} \implies \sum_{g \in G} \chi^J(g) = |G| \delta^{J1}$

Other tricks

- 1. Remove poles/infinities by introducing a small value, and set it to 0 after all the calculations Examples
 - (Lecture notes) Evaluate $\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk$ by considering $\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx \epsilon|k|} dk$
 - (Lecture notes) Prove $\mathcal{F}[H(x-a)] = \frac{e^{-ika}}{\sqrt{2\pi}ik}$ with a similar technique. (Also relate $\mathcal{F}[f]$ with $\mathcal{F}[f']$)
 - (Problem sheet 1)

A time-independent magnetic field $\boldsymbol{B}(\boldsymbol{r})$ is given by

$$\boldsymbol{B} = \frac{\mu_0 I}{2\pi} \, \frac{\boldsymbol{e}_z \times \boldsymbol{r}}{x^2 + y^2} \,,$$

where μ_0 is the magnetic permeability and I is a constant. Using Cartesian coordinates, calculate the electric current density J given by the steady Maxwell equation $\nabla \times \mathbf{B} = \mu_0 J$. Also evaluate $\oint_C \mathbf{B} \cdot d\mathbf{r}$, where C is a circle of radius a in the plane z = 0 and centred on x = y = 0. Discuss whether Stokes's theorem applies in this situation.

- (Wikipedia) Sturm-Liouville operator $L = \frac{\mathrm{d}}{\mathrm{d}x} \left[p(x) \frac{\mathrm{d}}{\mathrm{d}x} \right] + q(x)$
- (Wikipedia) Boundary condition operator $\mathbf{D}u = \begin{pmatrix} A_1 \frac{\mathrm{d}}{\mathrm{d}x} + B_1 \\ A_2 \frac{\mathrm{d}}{\mathrm{d}x} + B_2 \\ x=l \end{pmatrix}_{x=l}$
- (Wikipedia) d'Alembert operator $\Box = \partial^{\mu}\partial_{\mu} = \eta^{\mu\nu}\partial_{\nu}\partial_{\mu} = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \nabla^2$

Examples

- 1. $\int_{-\infty}^{+\infty} \frac{\sin^2 x}{x^2} dx = \pi$, answer, a theorem
- 2. (hint: Feynann's trick) $\int_{-\infty}^{\infty} \frac{x^2 e^x}{(e^x+1)^2} \mathrm{d}x = \pi^2/3, \text{ answer}$
- 3. Scale solution Φ of $\nabla^2 \Phi = 0$ to fit similar boundary conditions: $\Phi\left(x, \frac{y}{a}\right)$ is wrong. $\Phi\left(\frac{x}{a}, \frac{y}{a}\right)$ is correct (Lent question sheet 4, Q1)

Proofs

1. ★

$$1 = \lim_{x \to 0} \int_{\zeta - \epsilon}^{\zeta + \epsilon} \delta(x - \zeta) dx = \lim_{x \to 0} \int_{\zeta - \epsilon}^{\zeta + \epsilon} \mathcal{L}G(x, \zeta) dx$$

$$= \lim_{x \to 0} \int_{\zeta - \epsilon}^{\zeta + \epsilon} \left(\frac{\partial^2 G}{\partial x^2} + p(x) \frac{\partial G}{\partial x} + qG \right) dx$$

$$= \lim_{x \to 0} \int_{\zeta - \epsilon}^{\zeta + \epsilon} \frac{\partial}{\partial x} \left(\frac{\partial G}{\partial x} + pG \right) + \left(-\frac{\partial p}{\partial x} + q \right) G dx$$

$$= \lim_{x \to 0} \int_{\zeta - \epsilon}^{\zeta + \epsilon} \frac{\partial}{\partial x} \left(\frac{\partial G}{\partial x} + pG \right) dx$$

$$= \lim_{x \to 0} \left[\frac{\partial G}{\partial x} + pG \right]_{\zeta - \epsilon}^{\zeta + \epsilon}$$

because p, q are continuous.

Thus G is continuous, satisfies the same boundary condition as y and $\lim_{x\to 0} \left[\frac{\partial G}{\partial x}\right]_{\zeta=\epsilon}^{\zeta+\epsilon} = 1$.

- 2. Schur's first lemma *
 - Show Kernel $(T) \subseteq U$ and Image $(T) \subseteq V$ are invariant subspaces of $\{D_1(g) \mid g \in G\}$ and $\{D_2(g) \mid g \in G\}$ by using definitions on elements in them
 - If $T \neq \mathbf{0}$, Kernel $(T) = \{0\}$, Image(T) = V, so T is one-to-one and onto, invertible
 - $D_1(g) = T^{-1}D_2(g)T$, the two irreps are equivalent
- 3. Schur's second lemma *
 - D(q)T = TD(q)
 - whether T is singular or not, $T \lambda I$ is singular, where λ is one of its eigenvalues
 - $D(g)T \lambda D(g) = TD(g) \lambda D(g), D(g)(T \lambda I) = (T \lambda I)D(g)$
 - use first lemma, $T \lambda I$ is invertible or 0
 - $T \lambda I = 0, T = \lambda I$
 - Better explanantion here

- 4. Grand orthogonality theorem ★
 - Let $d = \dim V_J$, M be any $d \times d$ matrix, $T = \sum_{g \in G} D^J(g^{-1}) M D^K(g)$
 - gG = G, element on whole group causes a derangement, $D^J(g)T = T = TD^K(g)$
 - If J=K, use Schur's second lemma, $T=\lambda(M)\mathbf{I}\delta^{JK}$
 - $\sum_{g \in G} D_{ij}^{J}(g^{-1}) M_{jk} D_{kl}^{K}(g) = \lambda(M) \delta_{il} \delta^{JK}$, λ depends on M
 - $\sum_{g \in G} D_{ij}^J(g^{-1}) D_{kl}^K(g) = \lambda_{jk} \delta_{il} \delta^{JK}$, where $\lambda_{jk} = \lambda(M^{jk})$, M^{jk} has 1 at M_{jk} , otherwise 0
 - $\lambda_{jk}\delta_{ii}\delta^{JJ} = \sum_{g \in G} D^{J}_{ij}(g^{-1})D^{J}_{ki}(g) = \sum_{g \in G} D^{J}_{ij}(g^{-1})D^{J}_{jk}(g)D^{J}_{jk}(g^{-1})D^{J}_{ki}(g)$ $= \sum_{g \in G} D^{J}_{ik}(e)D^{J}_{ki}(e) = \sum_{g \in G} D_{jk}(e) = \sum_{g \in G} \delta_{jk} = |G|\delta_{jk}$

 $\delta_{ii} = d, \, \delta^{JJ} \stackrel{geo}{=} 1$ because J is not summed over

- $\lambda_{jk} = \frac{1}{d} |G| \delta_{jk}$
- $D(g^{-1}) = (D(g))^{-1} = (D(g))^{\dagger}$ because D is unitary wrt. group invariant inner product
- $\frac{1}{|G|} \sum_{g \in G} (D_{ij}^{J}(g^{-1}))^{\dagger} D_{kl}^{K}(g) = \frac{1}{d} \delta_{jk} \delta_{il} \delta^{JK}$
- 5. Column orthogonality of character table *
 - Not obvious but here we are
 - $\langle \chi_i^J, \chi_i^K \rangle = \frac{1}{|G|} \sum_{i=1}^c |C_i| (\chi_i^J) \chi_i^K = \delta^{JK}$
 - Define character table matrix **X** using $\mathbf{X}_{iJ} = \chi_i^J$ (subscript horizontal/G, superscript vertical/ C_i)
 - $\mathbf{I} = \mathbf{X} \frac{1}{|G|} \begin{pmatrix} |C_1| & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & |C_c| \end{pmatrix} \mathbf{X}^T = \mathbf{X} \mathbf{D} \mathbf{X}^T$
 - **X** is $\rho \times c$, **D** is $c \times c$, so it fits. $\rho \neq c$ in general, yet.
 - $\mathbf{X}\mathbf{D}\mathbf{X}^T = I, \mathbf{X}^T = \mathbf{D}^{-1}\mathbf{X}^{-1}, \mathbf{X}^T\mathbf{X} = \mathbf{D}^{-1} = |G| \begin{pmatrix} \frac{1}{|C_1|} & \cdots & 0\\ 0 & \ddots & 0\\ 0 & \cdots & \frac{1}{|C_c|} \end{pmatrix}$
 - Products of columns of ${\bf X}$ goes to diagonal
 - take $(\cdot)_{ij}$ on both sides, $\sum_{J=1}^{\rho} \chi_i^J \chi_j^J = \begin{cases} \frac{|G|}{|C_i|} & \text{or} \quad \frac{|G|}{|C_j|}, \\ 0, & \text{if} \quad i = j \end{cases}$
- 6. ★ Proof here
 - Because I just want to sleep, see link above
 - I would rather just start over everything reading abstract algebra in the future