Exercício de programação 1: Sistema de Atendimento com Clientes Impacientes

Objetivo:

Implemente um programa para simular um sistema de atendimento com clientes impaciantes.

Entregue um documento gerado através do $Markdown^1$ (saída em formato HTML ou PDF), contendo os scripts, resultados e seu relatório.

• Subproblema 1:

Considere o cenário $T=50, n=5, \ \lambda=3, \ \mu=0.5$. Sua implementação deve incrementar N em passos de 100 (começando com N=100) e parar quando a amplitude do intervalo de 95% de confiança para \overline{W} for menor do que 0.005 (ou seja, $|LS-LI|=2\times 1.96\times {\rm se}_{\overline{W}}<0.005$), onde ${\rm se}_{\overline{W}}=sd(W)/\sqrt{N}$ é o erro padrão de \overline{W} .

Os resultados a serem apresentados serão:

- 1. Um gráfico de linha no qual, para cada $k \in \{100, 200, \dots, N\}$, sejam apresentadas as médias parciais e seus respectivos intevalos de 95% de confiança para $\overline{W}_k = \frac{\sum_{i=w_i}^k w_i}{k}$; (Ver Fig como exemplo)
- 2. Um gráfico de linha no qual, para cada $k \in \{100, 200, ..., N\}$, sejam apresentadas as médias parciais e seus respectivos intevalos de 95% de confiança para $\overline{TM}_k = \frac{\sum_{i=1}^k tm_i}{k}$; (Ver Fig como exemplo)
- 3. Os histogramas de W e de tm obtidos nas N iterações; (Ver Figs e como exemplos)
- 4. Imprimir as médias finais $\overline{X}_k, \overline{Y}_k, \overline{W}_k, \overline{TM}_k$ nas N iterações.
- 5. Imprimir $\widehat{Pr}(tm > 13)$
- 6. Imprimir o valor de w_s para o qual $\widehat{Pr}(w > w_s) < 5\%$. Note que esse valor corresponde ao quantil 0.95 dos valores simulados de w.
- Subproblema 2: Considerando o cenário $\lambda = 4$, $\mu = 0.5$, T = 60, determine qual deve ser o número necessário de guichês n para que

 $Pr(W \leq 20\%) \geq 0.95$, ou seja, a proporção W de clientes que vão embora seja inferior a 20%, com probabilidade 0.95 ou superior? Justifique e apresente os resultados para sua resposta.

Para determinar N, você poderá usar o mesmo critério indicado no Subproblema 1, para cada valor de n. (Não é necessário exibir os gráficos e demais resultados pedidos no Subproblema 1).

¹Ver, por exemplo https://rmarkdown.rstudio.com/

Figura 1: Convergência de \overline{W}_k com valores crescentes de N $(n=5,\ T=50,\ \lambda=3,\ \mu=0.5)$

Figura 2: Convergência de \overline{TM}_k com valores crescentes de N $(n=5,\ T=50,\ \lambda=3,\ \mu=0.5)$

Figura 3: Histograma de $W~(n=5,~T=50,~\lambda=3,~\mu=0.5)$

Figura 4: Histograma de $tm~(n=5,~T=50,~\lambda=3,~\mu=0.5)$

Entrega do trabalho:

- O trabalho pode ser realizado em duplas.
- O relatório deve ser enviado em um arquivo zipado (extensão .zip), nomeado com a seguinte sintaxe: EP_1_NUSP1_NUSP2.zip, onde NUSP1 e NUSP2 são os números USP dos componentes da dupla.
- A entrega deverá ser feita por e-mail para marcelolauretto@usp.br, com assunto: "ACH2138
 EP1".
- O prazo para entrega será 30/09/2019.