

LAB#6

UART, DSUB-9, AND MAX 235

CMPE 310

MICHAEL DAUGHERTY

MAX 235:

- The MAX 235 (Shown to the right)
 basically acts in a scaling capacity, either
 increasing or decreasing the signal voltage
 amplitude from 5V to 12V, or 12V to 5V.
 As our Microprocessor board operates on
 5V signals, we use the MAX235 as an
 intermediate step between our board and
 any outside connections requiring 12V
 signals. More information can be found in
 the datasheets.
- Input signals connected to the Receiver pins are scaled down to 5V, and output signals connected to the Transmitter pins are scaled up to 12V.

DSUB-9:

- All of the inputs and output pins of the DSUB-9 are shown in the picture to the right.
- All of the pins of the DSUB-9 match up with pins on the UART (except the GND).
 Most are called the same names as on the UART, except for these match ups:
 - Format: DSUB-9 UART
 - RXD SIN
 - TXD SOUT
 - CTR CTS

Serial port D-SUB 9PIN	Pin	direction	Description	
female	1.	In	Data Carrier detect	(DCD)
line side view	2.	ln	Receive Date	(RXD)
iii le dide view	3.	Out	Transmit Data	(TXD)
12345	4.	Out	Data Terminal Ready	(DTR)
\\!//	5.	GND	Signal Ground	(GND)
	6.	In	Data Set Ready	(DSR)
[o <i>[;;;;</i>]o]	7.	Out	Request To Send	(RTS)
///\	8.	In	Clear To Send	(CTR)
• •	9.	ln	Ring Indicator	(RI)
6789		THE A	RRL HAND BOOK	

INTERFACING THE PARTS:

- To interface the three components, make sure you read the pinouts of both the DSUB-9 and UART very carefully, and match them up correctly as well as recognize which signals are outputs and which are inputs.
- If you have any questions, feel free to ask the TA/UTA.