$$\sum_{S} G_{RUSS} \begin{pmatrix} 4 & -3 & 0 & 2 \\ 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} X_{A} - X_{C} + cX_{L} = 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} X_{A} - X_{C} + cX_{L} = 0 \\ X_{C} - X_{C} + X_$$

$$\begin{pmatrix} 1 & -3 & 0 & 2 & | & 0 \end{pmatrix} \\ \begin{pmatrix} 2 & -3 & 0 & 2 & | & 0 \end{pmatrix} \\ \begin{pmatrix} 4 & -3 & 0 & 2 & | & -1 \end{pmatrix} \\ \begin{pmatrix} 4 & -3 & 0 & | & -1 \end{pmatrix} \\ \begin{pmatrix} 4 & -3 & 0 & | & -1 \end{pmatrix} \\ \begin{pmatrix} 4 & -3 & 0 & | & -1 \end{pmatrix} \\ \begin{pmatrix} 4 & -3 & 0 & | & -1 \end{pmatrix} \\ \begin{pmatrix} 2 & 2 & 1 & | & -1 \end{pmatrix} \\ \begin{pmatrix}$$

$$(x_1 - x_1) = (x_1 - x_2) = (x_1 - x_1) = (x_1 - x_2) = (x_1 - x_2) = (x_1 - x_1) =$$

$$(x_1 - x_1) = (x_1 - x_2) = (x_1 - x_1) = (x_2 - x_1 + 2x_3)$$

$$(x_1 - x_1 + x_2 + 2x_1 = 0)$$

$$(x_2 - x_1 + x_2 - x_1 = 0)$$

$$(x_2 - x_1 + x_2 - x_1 = 0)$$

$$(x_1 - x_1 + 2x_2 + 2x_3 + 2x_4 + 2$$

Toomoinio 1	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X , eseguo $X \cdot v = 0$,
Esercizio 1	isolo una x, sostituisco nuovamente e poi costruisco il vettore prendendo i coefficienti
Populario 9	Calcolare il det di una 2×2 a caso, se det $\neq 0$ allora $rk(A) \geq 2$ possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3×3 , le
Esercizio 2	λ in comune alle 3×3 sono quelle che $\operatorname{rk}(A) = 2$, tutte le altre $\operatorname{rk}(A) = 3$;
	• Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che $A^n=0$) allora det $A=0 \to N$ ilpotente non invertibile allora det $A=0$
	• Se A è una matrice simmetrica, allora A^2 è simmetrica $\Rightarrow M$ simmetrica se $M = M^T \Rightarrow M^T \cdot M^T = (M \cdot M)^T \Rightarrow M = M^T$, sostituisci M con A^2

- , $A^3-A=I_2 \rightarrow A(A^2-I)=I \Rightarrow (A^2-I)=A^{-1}$ quindi $AA^{-1}=I$ (A è invertibile)
- $\bullet \quad A^3-A=0 \rightarrow A(A^2-I)=0 \Rightarrow A=0, A^2-I=0 \Rightarrow A=0, A^2=I \text{ quindi } A \text{ invertible se } A^2=I \text{ altriment is e } A=0 \text{ non e invertible } A=0$
- $\binom{1}{2}$ poi calcolo il $\bullet \quad A^3 - A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \rightarrow A(A^2 - I) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}, A^2 - I = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow A^2 = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} + I = \begin{pmatrix} 2 & 1 \\ 2 & 4 \end{pmatrix} \Rightarrow A = \begin{pmatrix} \sqrt{2} & 1 \\ \sqrt{2} & 2 \end{pmatrix}$ determinante delle due A e uso il teorema di Binét: det $\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} = 1$, det $\begin{pmatrix} \sqrt{2} & 1 \\ \sqrt{2} & 2 \end{pmatrix} = 2\sqrt{2} - \sqrt{2} \neq 0$, quindi A è invertibile
- A è invertibile, allora $\det(A) > 0 \to \text{Falso}$, per Binét A è invertibile se $\det A \neq 0$ (quindi può essere anche negativo).

Esercizio 3

- Se $A \in B$ sono invertibili, $AB \in A$ invertibile $\to V$ vero, $AB \in A$ invertibile se $AB \in A$ of AB = A of $AB \in A$ of AB = A of AB
- Se $A^{13} = B \in B$ è invertibile, allora A è invertibile \to Vero, $\det(A^{13}) = \det(B) \Rightarrow \det(A)^{13} = \det(B)$ sappiamo che $\det(B) \neq 0$ quindi $\det(A) \neq 0$ e quindi A è invertibile
- I vettori colonna di $A \in M_n(\mathbb{R})$ generano $\mathbb{R}^n o A$ è invertibile perchè visto che i vettori sono base di \mathbb{R}^n allora la matrice ha rango n(massimo) e
- Se $A \in M_{3,4}(\mathbb{R})$ ha due minori distinti di ordine 3 con determinante nullo, $\operatorname{rk}(A) < 3 \to \operatorname{vero}$, sappiamo che esistono solo due sottomatrici 3×3
- The vettori qualsiasi di \mathbb{R}^2 sono linearmente dipendenti \rightarrow Usiamo la regola per essere base di R^N che dice che sono linearmente indipendenti se il rango della matrice composta dai vettori è N, quindi basta trovare un vettore per cui il rango non è 2 per avere i vettori linearmente dipendenti quindi se entrambe hanno determinante nullo allora rk(A) < 3
- I vettori v_1,\dots,v_n sono base di R^N se $\operatorname{rk}(M)=N$ con $M=(v_1\dots v_n)$ (M matrice composta dai vettori)
- Base ortogonale di v,w: $\begin{pmatrix} \det(R_2R_3) \\ -\det(R_1R_3) \end{pmatrix}, R_i \text{ sono le righe dei vettori}$ det (R_1R_2)
- Dipendenza lineare: $\alpha v_1 + \beta v_2 + \ldots + k v_n = 0$ oppure la matrice composta dai vettori non ha rango N
- Indipendenza lineare: $\alpha v_1 + \beta v_2 + \ldots + k v_n = 0 \rightarrow \alpha = \beta = 0$ oppure la matrice composta dai vettori ha rango N
- $v_3=\begin{pmatrix}x_3\\y_3\end{pmatrix}$ è multiple scalare di $v_1=\begin{pmatrix}x_1\\y_1\end{pmatrix}$ se $\frac{x_3}{x_1}=\frac{y_3}{y_1}=\frac{z_3}{z_1}=\alpha$

Esercizio 4

- Per "generare" R^N i vettori combinati linearmente fanno ottenere qualsiasi vettore in R^N . Gli N vettori in questione devono essere linearmente indipendenti.
- Due vettori v₁ e v₂ sono ortogonali tra loro quando il loro prodotto scalare e' 0, ovvero v₁ · v₂ = v_{1x} · v_{2x} + v_{1y} · v_{2y} + v_{1z} · v_{2z} = 0 v2 ∉ ⟨v1⟩ significa che v2 non appartiene allo spazio generato da v1 e quindi v2 non deve essere multiplo scalare di v1
- Norma vettore $||v|| = \sqrt{v_1^2 + v_2^2}$, per "allungare" un vettore a una lunghezza L si usa la formula $v' = L \cdot \frac{1}{||v||} \cdot v$
- Gauss: $R_i = R_i + \left(\frac{-a_{ij}}{a_{jj}}\right) \cdot R_j$
- Rouché-Capelli: $\infty \#incognite \operatorname{rk}(A)$
- A invertibile se det $A \neq 0$, $det(A^{-1}) = \frac{1}{\det A}$
- A non invertibile se $A^N = 0$
- Il prodotto di due matrici diagonali è diagonale, una matrice diagonale non è per forza invertibile (potrebbe avere degli zeri nella diagonale) e ogni matrice diagonale è simmetrica
- Teorema di Binét: $\det(AB) = \det A \cdot \det B$
- Calcolo matrice inversa: scriviamo (M|I), eseguiamo Gauss (da entrambe le parti), gli elementi sopra il pivot li poniamo tutti a 0 (sempre alla Gauss dal basso verso l'alto), otteniamo $(I|M^{-1})$
- $\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$ · $\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$ = $x_1 x_2 + y_1 y_2 + z_1 z_2$
- AX = B ammette soluzioni se rk(A|B) = rk(A)

 $\begin{array}{c}
\sqrt{25} = 5 \\
\sqrt{100} = 10 \\
\sqrt{225} = 15 \\
\sqrt{400} = 20 \\
\sqrt{625} = 25 \\
\sqrt{900} = 30
\end{array}$ $\sqrt{9} = 3$ $\sqrt{64} = 8$ $\sqrt{169} = 13$ $\sqrt{324} = 18$ $\sqrt{529} = 23$ $\sqrt{784} = 28$ $\sqrt{4} = 2$ $\sqrt{49} = 7$ $\sqrt{144} = 12$ $\sqrt{289} = 17$ $\sqrt{484} = 22$ $\sqrt{729} = 27$ $\sqrt{1} = 1$ $\sqrt{36} = 6$ $\sqrt{121} = 11$ $\sqrt{256} = 16$ $\sqrt{441} = 21$ $\sqrt{676} = 26$