電力系統故障分析 HW3

• 作業說明

依據台電自動頻率控制表,進行儲能輔助服務控制,維持頻率穩定性,並於實驗 場域中進行測試驗證。

• 實作內容簡介

於主函式中設計一個輸入機制,該輸入值代表系統當下的頻率值,根據台電自動頻率控制表內容,輸出該頻率值所對應到的功率,其中台電自動頻率控制表如下:

0.25dReg系統頻率、操作功率對照表

	系統頻率	對應符號	操作功率	對應符號
dReg 0.25	59.75 Hz	A _F	100%	A _P
	59.86 Hz	B_{F}	52%	B_{p}
	59.98 Hz	D _F	9% ~ -9%	E _P /F _P
	60.02 Hz	F _F	-9% ~ 9%	F_P/E_P
	60.14 Hz	G_{F}	-52%	G_{P}
	60.25 Hz	H _F	-100%	H _P

• 程式碼結構

總共分為四個函式,分別說明如下:

o plot_fig_original(freq, percentage1, percentage2)

該函式傳入的參數分別為 freq(表示系統頻率數值)、percentage1(表示表格中對應的操作功率上限)、percentage2(表示表格中對應的操作功率下限)。利用這些資訊,畫出一個具有上下限的 dReg 圖表,如下圖所示:

o plot_fig (freq, percentage1, percentage2)

該函式傳入的參數分別為 freq(表示系統頻率數值)、percentage1(表示表格中對應的操作功率上限)、percentage2(表示表格中對應的操作功率下限)。利用這些資訊,畫出一個結合上下限資訊,計算出其目標功率的 dReg 圖表,如下圖所示:

o get_dreg_output(freq_value, freq_array, percentage1_array, percentage2 array)

該函式的傳入參數分別為 freq_value(代表系統當下輸入頻率)、 freq_array(代表表格中整體頻率區間)、percentage1_array(表示表格中對應的操作功率上限)、percentage2_array(表示表格中對應的操作功率下限)。利用這些資訊,針對系統輸入的頻率值,計算其對應的目標功率值,並輸出其計算結果,如下圖所示(假設系統輸入頻率值為60Hz):

Enter a frequency value: 60 dReg value from for frequency 60.0 Hz is about: 0kW

o main()

在主函式中,首先根據表格中的數值,建立三個陣列 freqs、percentages1、percentages2,分別代表表示系統頻率數值、表示表格中對應的操作功率上限與表示表格中對應的操作功率下限。接著設計輸入與輸出結果,根據輸入的系統頻率計算此時對應的目標功率值,最後輸出其計算結果。除此之外,main()函式中註解掉的plot_fig_original()與 plot_fig()分別用以繪製原始與計算後的輸入頻率-輸出功率關係圖,可用以查看兩者之間的前後關聯。

功率計算結果(依輸入數值不同可計算出不同功率值,此處以 60Hz 的系統頻率為例)

Enter a frequency value: 60 dReg value from for frequency 60.0 Hz is about: 0kW

• 實作測試結果

其中紅色曲線表示頻率、藍色曲線表示控制充放電的功率、綠色曲線表示實際充放 電的功率