TAUTOLOGY INNOVATION SCHOOL

MADE BY TAUTOLOGY THAILAND

DO NOT PUBLISH WITHOUT PERMISSION

facebook/tautologyai
 www.tautology.live

Data Preparation

x ₁	x ₂	x ₃		\mathbf{x}_{p}	У
<i>x</i> _{1,1}	$x_{1,2}$	<i>x</i> _{1,3}	•••	$x_{1,p}$	y_1
<i>x</i> _{2,1}	x _{2,2}	x _{2,3}	•••	$x_{2,p}$	y_2
<i>x</i> _{3,1}	x _{3,2}	x _{3,3}	•••	$x_{3,p}$	<i>y</i> ₃
:	:		٠.	:	:
$x_{n,1}$	$x_{n,2}$	$x_{n,3}$	•••	$x_{n,p}$	y_n

	-		-		-	-
	x ₁	x ₂	x ₃		\mathbf{x}_{p}	у
	<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	•••	$x_{1,p}$	y_1
	$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	•••	$x_{2,p}$	y_2
	<i>x</i> _{3,1}	x _{3,2}	<i>x</i> _{3,3}	•••	$x_{3,p}$	y_3
	i	:	:	٠.	:	:
•	$x_{n,1}$	$x_{n,2}$	$x_{n,3}$	•••	$x_{n,p}$	y_n

- ullet n คือ จำนวน sample
- lacktriangle p คือ จำนวน feature

x ₁	x ₂	x ₃		\mathbf{x}_{p}	y
<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	•••	$x_{1,p}$	y_1
$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	•••	$x_{2,p}$	y_2
<i>x</i> _{3,1}	x _{3,2}	<i>x</i> _{3,3}	•••	$x_{3,p}$	<i>y</i> ₃
:	:	:	٠.	i i	÷
$x_{n,1}$	$x_{n,2}$	$x_{n,3}$		$x_{n,p}$	y_n

- $ightharpoonup x_{2,3}$ คือ sample ที่ 2 feature ที่ 3
- $ightharpoonup x_{3,p}$ คือ sample ที่ 3 feature ที่ p
- $ightharpoonup x_{n,p}$ คือ sample ที่ n feature ที่ p

- $ightarrow y_2$ คือ target ของ sample ที่ 2
- $> y_3$ คือ target ของ sample ที่ 3
- $ightarrow y_n$ คือ target ของ sample ที่ n

Example

• เราต้องการจะพยากรณ์ราคาบ้าน โดยดูองค์ประกอบจากจำนวนห้องน้า, จำนวนห้องนอน, พื้นที่ ของบ้าน, ราคาที่ดินต่อตารางวา

Data

จำนวนห้องนอน (ห้อง)	จำนวนห้องน้ำ (ห้อง)	พื้นที่ของบ้าน (ตร.ว.)	ราคาที่ดิน (บาท/ตร.ว.)	ราคาขายบ้าน (ล้านบาท)
2	2	70	25000	3.5
3	2	120	30000	5.2
1	1	50	20000	1.2
2	1.	80	35000	4.0

• ข้อมูลตามแนวแถว คือ Sample

จำนวนห้องนอน (ห้อง)	จำนวนห้องน้ำ (ห้อง)	พื้นที่ของบ้าน (ตร.ว.)	ราคาที่ดิน (บาท/ ตร.ว.)	ราคาขายบ้าน (ล้านบาท)
2	2	70	25000	3.5
3	2	120	30000	5.2
1	1	50	20000	1.2
2	1	80	35000	4.0

- ข้อมูลตามแนวหลัก คือ Feature and Target
 - Feature (ตัวแปรต้น) คือ ข้อมูลที่ส่งผลให้เกิด target
 - Target (ตัวแปรตาม) คือ ข้อมูลที่เราสนใจจะพยากรณ์

Feature

จำนวนห้องนอน (ห้อง)	จำนวนห้องน้ำ (ห้อง)	พื้นที่ของบ้าน (ตร.ว.)	ราคาที่ดิน (บาท/ตร.ว.)
2	2	70	25000
3	2	120	30000
1	1	50	20000
2	1	80	35000

Target

ราคาขายบ้าน (ล้านบาท)
3.5
5.2
1.2
4.0

- Feature and Target
 - เราสามารถแยก และปรับให้เป็น matrix ได้ดังนี้

$$X = \begin{bmatrix} 2 & 2 & 70 & 25000 \\ 3 & 2 & 120 & 30000 \\ 1 & 1 & 50 & 20000 \\ 2 & 1 & 80 & 35000 \end{bmatrix}$$

$$\mathbf{y} = \begin{cases} 3.5 \\ 5.2 \\ 1.2 \\ 4.0 \end{cases}$$

Example

• เราต้องการจำแนกผู้ป่วยโรคหัวใจ โดยพิจารณาจาก อายุ เพศ ความดันโลหิต คอลเลสเตอรอล

Data

อายุ	เพศ	ความดันโลหิต (mmHg)	คอลเลสเตอรอล (mg/dL)	เป็นโรคหัวใจ
42	0	120	209	1
57	1	150	168	1
58	1	128	259	0
59	0	174	249	0

• ข้อมูลตามแนวแถว คือ Sample

	อายุ	เพศ	ความดันโลหิต (mmHg)	คอลเลสเตอรอล (mg/dL)	เป็นโรคหัวใจ
-	42	0	120	209	1
-	57	1	150	168	1
	58	1	128	259	0
	59	0	174	249	0

- ข้อมูลตามแนวหลัก คือ Feature and Target
 - Feature (ตัวแปรต้น) คือ ข้อมูลที่ส่งผลให้เกิด target
 - Target (ตัวแปรตาม) คือ ข้อมูลที่เราสนใจจะพยากรณ์

Feature

อายุ	เพศ	ความดันโลหิต (mmHg)	คอลเลสเตอรอล (mg/dL)
42	0	120	209
57	1	150	168
58	1	128	259
59	0	174	249

Target

เป็นโรคหัวใจ
1
1
0
0

- Feature and Target
 - เราสามารถแยก และปรับให้เป็น matrix ได้ดังนี้

$$X = \begin{bmatrix} 42 & 0 & 120 & 209 \\ 57 & 1 & 150 & 168 \\ 58 & 1 & 128 & 259 \\ 59 & 0 & 174 & 249 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Data Preparation

Data Requirement

- ข้อมูลต้องอยู่ในรูปแบบของตาราง
- ข้อมูลต้องเป็น numerical

จำนวนห้องนอน (ห้อง)	จำนวนห้องน้ำ (ห้อง)	พื้นที่ของบ้าน (ตร.ว.)	ราคาที่ดิน (บาท/ตร.ว.)	ราคาขายบ้าน (ล้านบาท)
2	2	70	25000	3.5
3	2	120	30000	5.2
1	1	50	20000	1.2
2	1	80	35000	4.0

Data Requirement

• ตัวอย่างข้อมูลที่สามารถใช้งานได้เลย และยังไม่สามารถใช้งานได้

พื้นที่ของบ้าน (ตร.ว.)	ราคาที่ดิน (บาท/ตร.ว.)	ราคาขายบ้าน (ล้านบาท)
70	25000	3.5
120	30000	5.2
50	20000	1.2
80	35000	4.0

exp (yr)	position	salary
1	secretary	26000
4	engineer	48000
3	accountant	41500
1	engineer	26500

Data Requirement

• เราสามารถแปลงได้โดยสามารถใช้ความรู้ในส่วนของ Data Preparation

exp (yr)	position	salary
1	secretary	26000
4	engineer	48000
3	accountant	41500
1	engineer	26500

exp (yr)	accountant	engineer	secretary	salary
1	0	0	1	26000
4	0	1	0	48000
3	1	0	0	41500
1	0	1	0	26500

Data Preparation

Data Preparation

NaN

Outlier

Feature Encoding

Feature Scaling

Image

Text

Sound

NaN

- What is NaN?
- Problem of NaN
- Check NaN
- Listwise Deletion
- Code
- Further Reading

What is NaN?

NaN (Not a Number) คือ การระบุถึงข้อมูลที่ขาดหายไป หรือ missing value ซึ่งอาจ เกิดจากความผิดพลาดในการเก็บค่าสถิติ หรือ user กรอกข้อมูลไม่ครบ

	NumRooms	Area	SalePrice
0	4.0	NaN	1114
1	4.0	110.0	1088
2	4.0	117.0	1462
3	3.0	93.0	123
4	NaN	92.0	1378
5	3.0	NaN	726
6	6.0	96.0	1649

ตารางแสดงข้อมูลของบ้าน โดยมีจำนวนห้อง, พื้นที่ของบ้าน, ราคาบ้าน

Problem of NaN

ปัญหาของ NaN คืออะไร?

NaN ไม่ใช่ตัวเลข • และสิ่งที่ไม่ใช่ตัวเลขไม่สามารถนำไปสร้าง โมเดลได้

Check NaN

เราสามารถตรวจสอบ NaN ผ่าน method .info()

```
data_nan.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7 entries, 0 to 6
Data columns (total 3 columns):
               Non-Null Count Dtype
     Column
 #
               6 non-null
                                float64
    NumRooms
               5 non-null
                                float64
     Area
     SalePrice 7 non-null
                                int64
dtypes: float64(2), int64(1)
memory usage: 296.0 bytes
```


Listwise Deletion

	NumRooms	Area	SalePrice
0	4.0	NaN	1114
1	4.0	110.0	1088
2	4.0	117.0	1462
3	3.0	93.0	123
4	NaN	92.0	1378
5	3.0	NaN	726
6	6.0	96.0	1649

		NumRooms	Area	SalePrice
-	0	4.0	NaN	1114
	1	4.0	110.0	1088
	2	4.0	117.0	1462
	3	3.0	93.0	123
	4	NaN	92.0	1378
	- 5	3.0	NaN	726
	6	6.0	96.0	1649

	NumRooms	Area	SalePrice
0	4.0	NaN	1114
1	4.0	110.0	1088
2	4.0	117.0	1462
3	3.0	93.0	123
4	NaN	92.0	1378
5	3.0	NaN	726
6	6.0	96.0	1649

ตารางแสดงข้อมูลของบ้าน โดยมีจำนวนห้อง, พื้นที่ของบ้าน, ราคาบ้าน

Check NaN

```
1 data_nan.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7 entries, 0 to 6
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- 0 NumRooms 6 non-null float64
1 Area 5 non-null float64
2 SalePrice 7 non-null int64
dtypes: float64(2), int64(1)
memory usage: 296.0 bytes
```


Listwise Deletion

1 data = data_nan.dropna(axis=0)

	NumRooms	Area	SalePrice
0	4.0	NaN	1114
1	4.0	110.0	1088
2	4.0	117.0	1462
3	3.0	93.0	123
4	NaN	92.0	1378
5	3.0	NaN	726
6	6.0	96.0	1649

	NumRooms	Area	SalePrice
1	5.0	100.0	1131.0
2	4.0	89.0	426.0
3	4.0	95.0	770.0
6	3.0	100.0	845.0

Further Reading

Impute Missing Values

Data Preparation

Outlier

Feature Encoding

Feature Scaling

Image

Text

Sound

Outlier

- What is Outlier?
- Effect of Outliers
- Check Outliers
- Remove Outliers
- Code
- Further Reading

What is Outlier?

Outlier คือ ข้อมูลที่สูงกว่า หรือ ต่ำกว่าข้อมูลทั่วไปใน feature เดียวกัน อย่างผิดปกติ

	NumRooms	Area	SalePrice
0	-300	-100	560
1	4	107	1388
2	3	105	1013
3	5	114	1811
4	100000	100	1344
5	3 (9	900000	1055
6	3	105	820

ตารางแสดงข้อมูลของบ้าน โดยมีจำนวนห้อง, พื้นที่ของบ้านและ ราคาบ้าน

What is Outlier?

กราฟของข้อมูลระหว่างเงินเดือน(พันบาท) และ อายุของแต่ละคน(ปี)

กราฟ Histogram ของอุณหภูมิสำหรับเก็บยา

MADE BY TAUTOLOGY THAILAND DO NOT PUBLISH WITHOUT PERMISSION

Effect of Outliers

ข้อมูลที่มี Outliers

ข้อมูลที่ไม่มี Outliers

Check Outliers

เราสามารถตรวจสอบ outliers ผ่าน method .describe()

	NumRooms	Area	SalePrice
count	7.00	7.00	7.00
mean	14245.43	128633.00	1141.57
std	37814.38	340140.88	411.40
min	-300.00	-100.00	560.00
25%	3.00	102.50	916.50
50%	3.00	105.00	1055.00
75%	4.50	110.50	1366.00
max	100000.00	900000.00	1811.00

Remove Outliers

o -300 -100 560 1 4 107 1388
1 4 107 1388
2 3 105 1013
3 5 114 1811
4 (100000) 100 1344
5 3 (900000) 1055
6 3 105 820

ตารางแสดงข้อมูลของบ้าน โดยมีจำนวนห้อง, พื้นที่ของบ้าน, ราคาบ้าน

	NumRooms	Area	SalePrice
0	-300	-100	560
1	4	107	1388
2	3	105	1013
3	5	114	1811
4	100000	100	1344
5	3	900000	1055
6	3	105	820

ตารางแสดงข้อมูลของบ้าน โดยมีจำนวนห้อง, พื้นที่ของบ้าน, ราคาบ้าน

Check Outliers

1 data_outlier.describe()

	NumRooms	Area	SalePrice
count	7.000000	7.000000	7.000000
mean	14245.428571	128633.000000	1141.571429
std	37814.380910	340140.883966	411.399586
min	-300.000000	-100.000000	560.000000
25%	3.000000	102.500000	916.500000
50%	3.000000	105.000000	1055.000000
75%	4.500000	110.500000	1366.000000
max	100000.000000	900000.000000	1811.000000

Remove Outliers

	NumRooms	Area	SalePrice
0	-300	-100	560
1	4	107	1388
2	3	105	1013
3	5	114	1811
4	100000	100	1344
5	3	900000	1055
6	3	105	820

	NumRooms	Area	SalePrice
1	4.0	110.0	1088
2	4.0	117.0	1462
3	3.0	93.0	123
6	6.0	96.0	1649

Further Reading

- Standard Deviation Method
- Interquartile Range Method
- Isolation Forest
- Minimum Covariance Determinant
- Local Outliers Factor
- One-Class SVM

Data Preparation

Outlier

Feature Encoding

Feature Scaling

Image

Text

Sound

Feature Encoding

Type of Data

Ordinal Encoding

One Hot Encoding

Type of Data

Numerical Data

Numerical Data คือ ข้อมูลที่ใช้แทนจำนวน อาจอยู่ในรูปของจำนวนเต็ม หรือ ทศนิยม

Categorical Data

Ordinal Data

Ordinal Data คือ categorical data ที่มีการเรียงลำดับอย่างชัดเจน และไม่สามารถ สลับลำดับได้ (ลำดับมีความหมาย)

เช่น เหรียญทอง เงิน ทองแดง, เกรด A B C D F, คะแนนแบบประเมิน

Nominal Data

Nominal Data คือ categorical data ที่ไม่มีลำดับของข้อมูล เช่น ชาย/หญิง, วันหยุด/วันธรรมดา, ประเภทของการขนส่ง, สัญชาติ

Categorical Data

Feature Encoding

Type of Data

Ordinal Encoding

One Hot Encoding

Ordinal Encoding

- What is Ordinal Encoding?
- How to define number
- Example
- Code

What is Ordinal Encoding?

Ordinal Encoding คือ การแปลง ordinal data ให้อยู่ในรูปแบบของ numerical data ที่มีระยะห่างเท่ากัน

★★ เหมาะกับการใช้งาน

ทางคอมพิวเตอร์

How to define number

2	1	0	/
1	2	3	/
-1	0	1	/
1	-1	2	X
1	1	2	X

	Grade	Medal
O	В	Gold
1	Α	Gold
2	В	Silver
3	D	Bronze
4	F	Bronze
5	C	Silver

ตารางแสดงผลการเรียนและ เหรียญรางวัลที่ได้

	Grade	Medal
0	В	Gold
1	А	Gold
2	В	Silver
3	D	Bronze
4	F	Bronze
5	/ C	Silver

	Grade	Medal
0	3	2
1	4	2
2	3	1
3	1	0
4	0	0
5	2	1

	grade	medal
0	В	gold
1	А	gold
2	В	silver
3	D	bronze
4	F	bronze
5	С	silver

ตารางแสดงผลการเรียนและ เหรียญรางวัลที่ได้


```
from sklearn.preprocessing import OrdinalEncoder

categories = [
    np.array(['F', 'D', 'C', 'B', 'A']),
    np.array(['bronze', 'silver', 'gold'])

ordinal_encoder = OrdinalEncoder(categories=categories)
    data_transformed = ordinal_encoder.fit_transform(data)

data_transformed = pd.DataFrame(data_transformed, columns=feature_name)
```


	grade	medal
0	В	gold
1	Α	gold
2	В	silver
3	D	bronze
4	F	bronze
5	С	silver

	grade	medal
0	3	2
1	4	2
2	3	1
3	1	0
4	0	0
5	2	1

Feature Encoding

Type of Data

Ordinal **Encoding**

One Hot Encoding

One Hot Encoding

- What is One Hot Encoding?
- Example
- Code

What is One Hot Encoding?

One Hot Encoding คือ การแปลง nominal data ให้อยู่ในรูปแบบของ numerical data โดยแบ่งข้อมูลเป็นหลาย ๆ column ตามชนิดของข้อมูล และกำหนดค่าแต่ละ column ในรูปแบบของ binary (O หรือ 1)

	Sex	Transport	
0	Male	Bus	
1	Female	Train	
2	Female	Car	
3	Male	Train	
4	Female	Bus	
5	Male	Bus	

ตารางแสดงข้อมูลเพศ และวิธีการเดินทาง

	Sex	Transport
0	Male	Bus
1	Female	Train
2	Female	Car
3	Male	Train
4	Female	Bus
5	Male	Bus

	Female	Male	Transport
0	0	1	Bus
1	1	0	Train
2	1	0	Car
3	0	1	Train
4	1	- 0	Bus
5	0	1	Bus

	Sex	Transport
0	Male	Bus
1	Female	Train
2	Female	Car
3	Male	Train
4	Female	Bus
5	Male	Bus

	Female	Male	Bus	Car	Train
0	0	1	1	0	0
1	1	0	0	0	1
2	1	0	0	1	0
3	0	1	0	0	1
4	1	0	1 -	0	О
5	0			0	0

	sex	transport
0	male	bus
1	female	train
2	female	car
3	male	train
4	female	bus
5	male	bus

ตารางแสดงข้อมูลเพศ และวิธีการเดินทาง

	sex	transport
0	male	bus
1	female	train
2	female	car
3	male	train
4	female	bus
5	male	bus

	female	male	bus	car	train
0	0.0	1.0	1.0	0.0	0.0
1	1.0	0.0	0.0	0.0	1.0
2	1.0	0.0	0.0	1.0	0.0
3	0.0	1.0	0.0	0.0	1.0
4	1.0	0.0	1.0	0.0	0.0
5	0.0	1.0	1.0	0.0	0.0

Feature Encoding

Type of Data

Ordinal **Encoding**

One Hot Encoding

Data Preparation

Outlier

Feature Encoding

Feature Scaling

Image

Text

Sound

Feature Scaling

What is Feature Scaling?

Why need Feature Scaling?

Standardization

Min-Max Scaling

Conclusion

What is Feature Scaling?

Feature Scaling คือ การทำให้ทุก feature อยู่ใน scale เดียวกัน

Feature Scaling

What is Feature Scaling?

Why need Feature Scaling?

Standardization

Min-Max Scaling

Conclusion

Why need Feature Scaling?

เพื่อแก้ปัญหา bias จาก scale ที่ไม่เท่ากันของแต่ละ feature

Why need Feature Scaling?

- ทำให้ model ประเภท distance-based model มีประสิทธิภาพดีขึ้น เช่น k nearest neighbor, support vector machine
- ทำให้ model ประเภท gradient-based model เรียนรู้ได้เร็วขึ้น เช่น lasso regression, elastic net, logistic regression, deep learning
- ทำให้ใช้ cost ในการคำนวณน้อยลง สำหรับบาง dataset
- ทำให้ใช้ memory ในการคำนวณน้อยลง สำหรับบาง dataset

Feature Scaling

What is Feature Scaling?

Why need Feature Scaling?

Standardization

Min-Max Scaling

Conclusion

Standardization

- What is Standardization?
- Formula
- Step to Calculate Standardization
- Example
- Code

What is Standardization?

Standardization คือ เทคนิคการปรับ scale ของข้อมูลให้มีค่า mean เป็น 0 และ standard deviation เป็น 1

Ref: https://www.appsflyer.com/blog/data-standardization-effective-analysis/

Formula

$$x' = \frac{x - mean}{s.d.}$$

- x คือ ข้อมูลแต่ละตัวใน feature ที่กำลังพิจารณา
- mean คือ ค่าเฉลี่ยของ feature ที่กำลังพิจารณา
- s . d คือ ค่าส่วนเบี่ยงแบนมาตรฐานของ feature ที่กำลังพิจารณา

Step to Calculate Standardization

- 1. หาค่า mean และ s.d ของแต่ละ feature
- 2. ปรับค่าข้อมูลแต่ละตัวใน feature ตามสูตรของ standardization

	NumRooms	Area
0	4	99
1	4	110
2	4	117
3	3	93
4	5	92
5	3	99
6	6	96

เลือก feature ที่ต้องการจะ ทำ feature scaling

ตารางแสดงข้อมูลของบ้าน โดยมีจำนวนห้อง และพื้นที่ของบ้าน

Area = [99.0, 110.0, 117.0, 93.0, 92.0, 99.0, 96.0]

วิธีการปรับค่าด้วย standardization มีดังต่อไปนี้

- 1. หาค่า *mean* และ *s. d* ของข้อมูล Area
 - *mean* = 100.86
 - S.d = 8.58
- 2. ปรับค่าข้อมูลแต่ละตัวใน Area ตามสูตรของ standardization

$$x' = \frac{x - mean}{s.d} = \frac{x - 100.86}{8.58}$$

	12		-
/ _ \		$\overline{}$	
		-	

99.0

110.0

117.0

93.0

92.0

99.0

96.0

Area_scaled 99 - 100.86-1.86 $=\frac{}{8.58}$ 8.58 $=\frac{9.14}{8.58}=1.07$ 110 - 100.868.58 117 - 100.8616.14 $\frac{1}{2} = 1.88$ 8.58 $\frac{-7.86}{8.58} = -0.92$ 93 - 100.868.58 92 - 100.868.58 $\frac{-1.86}{} = -0.22$ 99 - 100.868.58 8.58 $=\frac{-4.86}{8.58}=-0.57$ 96 - 100.868.58

Area
99.0
110.0
117.0
93.0
92.0
99.0
96.0

Area_scaled
-0.22
1.07
1.88
-0.92
-1.03
-0.22
-0.57

NumRooms		Area
0	4	99
1	4	110
2	4	117
3	3	93
4	5	92
5	3	99
6	6	96

ตารางแสดงข้อมูลของบ้าน โดยมีจำนวนห้อง และพื้นที่ของบ้าน


```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
data_scaled = scaler.fit_transform(data)

data_scaled = pd.DataFrame(data_scaled, columns=feature_name)
```


NumRooms		Area
0	4	99
1	4	110
2	4	117
3	3	93
4	5	92
5	3	99
6	6	96

	NumRooms	Area
0	-0.144338	-0.216546
1	-0.144338	1.066075
2	-0.144338	1.882288
3	-1.154701	-0.916158
4	0.866025	-1.032760
5	-1.154701	-0.216546
6	1.876388	-0.566352

Feature Scaling

What is Feature Scaling?

Why need Feature Scaling?

Standardization

Min-Max Scaling

Conclusion

Min-Max Scaling

- What is Min-Max Scaling?
- Formula
- Step to Calculate Min-Max Scaling
- Example
- Code

What is Min-Max Scaling?

Min-Max Scaling คือ เทคนิคการปรับ scale ของข้อมูลให้อยู่ในช่วง O ถึง 1 โดยข้อมูล ที่มีค่ามากที่สุดจะมีค่าใหม่เป็น 1 และข้อมูลที่มีค่าน้อยที่สุดจะมีค่าใหม่เป็น O

Formula

$$x' = \frac{x - \min X}{\max X - \min X}$$

- X คือ feature ที่กำลังพิจารณา
- x คือ ข้อมูลแต่ละตัวใน feature ที่กำลังพิจารณา
- $\min X$ คือ ค่าที่น้อยที่สุดของ feature ที่กำลังพิจารณา
- $\max X$ คือ ค่าที่มากที่สุดของ feature ที่กำลังพิจารณา

Step to Calculate Min-Max Scaling

- 1. หาค่า min และ max ของแต่ละ feature
- 2. ปรับค่าข้อมูลแต่ละตัวใน feature ตามสูตรของ min-max scaling

	NumRooms	Area
0	4	99
1	4	110
2	4	117
3	3	93
4	5	92
5	3	99
6	6	96

เลือก Feature ที่ต้องการจะ ทำ Feature Scaling

ตารางแสดงข้อมูลของบ้าน โดยมีจำนวนห้อง และพื้นที่ของบ้าน

Area = [99.0, 110.0, 117.0, 93.0, 92.0, 99.0, 96.0]

วิธีการปรับค่าด้วย Min-Max Scaling มีดังต่อไปนี้

- 1. หาค่า min และ max ของข้อมูล Area
 - $\max X = 117.0$
 - min X = 92.0
- 2. ปรับค่าข้อมูลแต่ละตัวใน Area ตามสูตรของ min-max scaling

$$x' = \frac{x - \min X}{\max X - \min X} = \frac{x - 92}{117 - 92} = \frac{x - 92}{25}$$

$I \wedge I$	
	7 1

99.0

110.0

117.0

93.0

92.0

99.0

96.0

Area
99.0
110.0
117.0
93.0
92.0
99.0
96.0

Area	Area_scaled
99.0	0.28
110.0	0.72
117.0	1
93.0	0.04
92.0	0
99.0	0.28
96.0	0.16

NumRooms		Area
0	4	99
1	4	110
2	4	117
3	3	93
4	5	92
5	3	99
6	6	96

ตารางแสดงข้อมูลของบ้าน โดยมีจำนวนห้อง และพื้นที่ของบ้าน


```
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data)

data_scaled = pd.DataFrame(data_scaled, columns=feature_name)
```


	NumRooms	Area
0	4	99
1	4	110
2	4	117
3	3	93
4	5	92
5	3	99
6	6	96

	NumRooms	Area
0	0.333333	0.28
1	0.333333	0.72
2	0.333333	1.00
3	0.000000	0.04
4	0.666667	0.00
5	0.000000	0.28
6	1.000000	0.16

Feature Scaling

What is Feature Scaling?

Why need Feature Scaling?

Standardization

Min-Max Scaling

Conclusion

Conclusion

Standardization

- mean = -5.31×10^{-16}
- s.d = 1.08
- ไม่มีขอบเขตของข้อมูล

Area_scaled	
-0.22	
1.07	
1.88	
-0.92	
-1.03	
-0.22	
-0.57	

Area_scaled
0.28
0.72
1
0.04
0
0.28
0.16

Min-Max Scaling

- mean = 0.333
- s.d = 0.329
- ค่าอยู่ในช่วง [0,1]

Conclusion

Standardization

- ใช้ได้กับทุก distribution
- ไม่เปลี่ยน distribution ของข้อมูล
- เหมาะกับข้อมูลที่ไม่มีขอบเขต เช่น ข้อมูล ส่วนสูง น้ำหนัก
- algorithm บางตัวควรต้องทำให้ dataset มี mean=0, s.d=1 เช่น SVM

Min-Max Scaling

- ใช้ได้กับทุก distribution
- ไม่เปลี่ยน distribution ของข้อมูล
- เหมาะกับข้อมูลที่มีขอบเขต เช่น Indicator RSI
- algorithm บางตัวควรต้องปรับค่าให้ อยู่ในช่วง O-1 เช่น image processing

Feature Scaling

What is Feature Scaling?

Why need Feature Scaling?

Standardization

Min-Max Scaling

Conclusion

Data Preparation

Outlier

Feature Encoding Feature Scaling

Image

Text

Sound

Image

การแปลงข้อมูลที่เป็นรูปภาพ ให้อยู่ในรูปแบบของตาราง วิธีการนี้จะต้องทำ ก่อนสร้าง model ตาม 9 ขั้นตอนของ Code Pipeline

Image

สำหรับวิธีการแปลงสามารถแบ่งเป็น 4 ขั้นตอน ดังนี้ **1.** ปรับขนาดของทุกรูปที่พิจารณาให้เท่ากันทุกรูป เพื่อให้ทุกรูปมีจำนวน pixel เท่ากัน

2. พิจารณา pixel แต่ละตำแหน่งของรูปภาพ

3. ระบุค่าสีของแต่ละ pixel

0 0 0 0 0 0 0 0 0 58 90-15

4. นำ pixel ของแต่ละรูปภาพมาต่อกันตามแนวแถว และระบุ class ของ รูปภาพ

freshapple

\mathbf{x}_1	x ₂	x ₃		X ₃₀₇₂
91.0	127.0	20.0		54.0
117.0	97.0	67.0	•••	35.0
203.0	206.0	212.0	•••	21.0
:	:	:	٠.	÷
60.0	122.0	5.0	•••	53.0

y
unhealthy
unhealthy
unhealthy
:
healthy

X

y


```
1 import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
  from glob import glob
 6 from PIL import Image
   import cv2
   from tqdm.auto import tqdm
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import (
       OrdinalEncoder,
11
12
       OneHotEncoder,
13
       StandardScaler,
       MinMaxScaler
14
15 )
```



```
1 classes = ['healthy', 'unhealthy']
```

```
1 X = np.empty([0, 32*32*3])
   y = np.empty([0, 1])
   for class in tqdm(classes):
        img_path = glob('image_dataset/' + _class + '/*')
       for path in tqdm(img_path):
            img = Image.open(path)
           img = img.resize([32, 32])
           img = np.array(img)
           if img.shape[2] == 4:
10
11
                img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
           img = img.reshape(1, -1)
12
13
           X = np.vstack([X, img])
            if _class == 'healthy':
14
               y = np.vstack([y, 'healthy'])
15
16
            else:
17
               y = np.vstack([y, 'unhealthy'])
```


Data Preparation

วิธีการแปลงข้อมูลที่เป็นข้อความ ให้อยู่ในรูปแบบของตาราง หรือ count vectorization วิธีการนี้จะทำเป็นขั้นตอนแรกสุดใน data preparation

สำหรับวิธีการแปลงสามารถแบ่งเป็น 3 ขั้นตอน ดังนี้ **1.** หา unique word จากทุกขอ้ ความของชุดข้อมูล

{'Apple is red', 'Kiwi is green', 'Orange is orange'}

'apple', 'is', 'red', 'kiwi', 'green', 'orange'

2. กำหนดให้ unique word ที่ได้จากข้อ 1. เป็นตัวแปรต้น

	apple	green	is	kiwi	orange	red
Apple is red						
Kiwi is green						
Orange is orange						

3. นำแต่ละข้อความมานับจำนวนคำเพื่อสร้างตาราง

	apple	green	is	kiwi	orange	red
Apple is red	1	0	1	0	0	1
Kiwi is green	0	1	1	1	0	0
Orange is orange	0	0	1	0	2	0


```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.preprocessing import (
    OrdinalEncoder,
    OneHotEncoder,
    StandardScaler,
    MinMaxScaler
)
```



```
corpus_train = data['text'].tolist()
text_vectorizer = CountVectorizer(max_features=1000)
text_vectorizer.fit(corpus_train)
text_cnt_vec_train = text_vectorizer.transform(corpus_train).toarray()
```

```
text_cnt_vec_feature_name = [
    "cnt_text_" + feature for feature in text_vectorizer.get_feature_names()
]
```

```
data[text_cnt_vec_feature_name] = text_cnt_vec_train
data.drop("text", axis=1, inplace=True)
```


Data Preparation

Sound

การแปลงข้อมูลที่เป็นเสียง ให้อยู่ในรูปแบบของตาราง วิธีการนี้จะต้องทำ ก่อนสร้าง model ตาม 9 ขั้นตอนของ Code Pipeline

Sound

สำหรับวิธีการแปลงสามารถแบ่งเป็น 4 ขั้นตอน ดังนี้ **1.** แปลงไฟล์เสียงให้เป็นภาพคลื่นเสียง

Sound

2. แปลงภาพให้เป็นรูปแบบของตาราง (ใช้หลักการเดียวกับการแปลง รูปภาพ)

x ₁	x ₂	x ₃		X ₈₁₉₂
-80	-80	-80		-80
-77.606	-77.606	-77.606	•••	-80
-80	-80	-66.356	•••	-80
:	:	:	٠.	:
-79.99	-79.99	-79.99		-79.99

y
cat
cat
cat
:
dog

X

y


```
import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
 4
   from glob import glob
   import librosa
   import cv2
   from tqdm.auto import tqdm
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import (
10
11
       OrdinalEncoder,
       OneHotEncoder,
12
       StandardScaler,
13
       MinMaxScaler
14
15
```



```
def get_img(voice_data, sampling_data, mode):
    if mode == 'spec':
        stft = np.abs(librosa.core.spectrum.stft(voice_data))
        return librosa.amplitude_to_db(stft, ref=np.max)
elif mode == 'mel':
        stft = np.abs(librosa.feature.melspectrogram(voice_data))
        return librosa.amplitude_to_db(stft, ref=np.max)
elif mode == 'chrom':
        stft = np.abs(librosa.core.spectrum.stft(voice_data))
        return librosa.feature.chroma_stft(S=stft, sr=sampling_rate)
```

```
1 classes = ['cat', 'dog']
```



```
1 mode = 'mel'
   width = 256
   height = 32
 6 X = np.empty([0, width*height])
   y = np.empty([0, 1])
 8
   for class in tqdm(classes):
10
       sound_path = glob('sound_dataset/' + _class + '/*')
       for path in tqdm(sound_path):
11
12
           voice_data, sampling_rate = librosa.load(path)
13
           img = get_img(voice_data, sampling_rate, mode)
14
           img = cv2.resize(img, dsize=(width, height))
           img = img.reshape(1, -1)
15
16
           X = np.vstack([X, img])
17
           y = np.vstack([y, _class])
```


Data Preparation

Data Preparation

