Windtunnel

Ontwerp en constructie van een open windtunnel

Maarten Espeel Wolf Vierbergen Kobe Vlasselaer GIP 2019-2020

2 Constructie

2.1 Rietjes knippen en lijmen

Windtunnel

2 Constructie

2.2 Ventilatoren

Solderen

2 Constructie

2.3 Trechter

- Lasersnijden
- Hout buigen

2 Constructie

2.5 Testsectie

- Lasersnijden
- Plexiglas

Windtunnel

2 Constructie

2.5 Diffuser

• Freesmachine

3 Praktische proef

3.1 Zichtbaar maken van laminaire stroom

Maximale snelheid Rookmachine Specifieke vormen

3 Praktische proef

3.2 Bepalen van de luchtsnelheid

$$v = \sqrt{\frac{2 \cdot \Delta h. \rho_{gin}.g}{\rho_{lucht}}}$$

∆h=hoogteverschil

 ρ_{gin} = dichtheid van gin (930 kg/m³)

g= valversnelling (9,81 m/s²)

ρ_{lucht}= dichtheid van lucht (1,225 kg/m³)

3 Practische proef

3.3 Bepalen van de luchtsnelheid

A. Bij maximale stand van de ventilator

	Links	Midden	Rechts
Boven	9=34	3=32	6=34
Midden	8=33	2=33	5=34
Onder	7=35	1=33	4=34

Gemiddelde: =9,3 m/s of 33 km/u

A. Bij vooraf bepaalde instellingen van de ventilator

ventilator- stand	v (in m/s)	v (in km/u)
1	0.0	0.0
2	1.7	6.2
3	5.5	20
4	7.7	28
5	9.2	33

3 Practische proef

3.4 Bepaling van de lift van een vleugel bij verschillende invalshoeken

Vleugel: NACA 4412

3 Practische proef

3.4 Bepaling van de lift van een vleugel bij verschillende invalshoeken

Liftkracht = blauwe curve

$$F = \Delta m \cdot g$$

C_{lift}= rode curve

$$C_{Lift}(\alpha) = \frac{2.F_{Lift}}{\rho_{Lucht}. v^2. S}$$

3 Praktische proef

3.4 liftkracht en lift coëfficient in functie van de luchtsnelheid

Liftkracht (exp) = blauwe curve

$$F_{lift} = \Delta m \cdot g$$

F_{lift} (theor) = rode curve

$$F_{Lift} = \frac{1}{2} \cdot \rho_{Lucht} \cdot v^2 \cdot S \cdot C_L (\alpha)$$

