

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO

Campus São Paulo

Aluno: Igor Domingos da Silva Mozetic			Nota
curso:Informática	Ano/Semestre: 2020 / 4º Bimestre.	Data: 22.02.2021	
Avaliação: 1º listinha – Cinética Química	Professores: Gouveia/Matsumoto	Código Disciplina: QUI	

INSTRUÇÕES:

A resposta deve ser acompanhada da linha de raciocínio utilizada na resolução da questão.

CINÉTICA QUÍMICA - Velocidade média de uma reação, construção e análise de gráficos

1. Os dados tabelados correspondem a decomposição da água oxigenada.

Tempo (seg.)	[H ₂ O ₂] - mol/L	[H ₂ O] - mol/L	[O ₂] - mol/L
t = 0	0,8	0,0	0,0
t = 10	0,5	0,3	0,15
t = 20	0,3	0,5	0,25
t = 30	0,2	0,6	0,30

a) Construa um gráfico mostrando a variação da concentração das espécies químicas H₂O₂, H₂O e O₂ em função do tempo.

Resposta:

b) Escreva a equação química balanceada para a reação realizada.

Resposta:

$H_2O_{2(aq)} \rightarrow H_2O + \frac{1}{2}O_2$

c) É possível calcular a rapidez (velocidade) da decomposição do H_2O_2 em função do tempo? Qual a rapidez da decomposição do H_2O_2 nos 20 minutos iniciais?

Resposta:

$$V = \Delta H_2O_2/\Delta t \rightarrow V = 0.3-0.5/20-10 \rightarrow V = -0.2/10 \rightarrow V = 0.02$$

d) Qual a rapidez (velocidade) que O_2 é produzido no intervalo de tempo entre t = 10 s a t = 20 s? Faça o mesmo para H_2O_2 e H_2O . Compare os valores obtidos e exponha sua observação e explicação.

Resposta:

O₂ entre 10 e 20 segundos:

 H_2O entre 10 e 20 segundos: V=|0,5-0,3|/20-10 \rightarrow V=0,02mol/l*segundos

 H_2O_2 entre 10 e 20 segundos: V=|0,3-0,5|/20-10 \rightarrow V=0,02mol/l*segundos

2. Air bags são dispositivos de segurança de automóveis que protegem o motorista em caso de colisão. Consistem em uma espécie de balão contendo 130 g de azida de sódio em seu interior. A azida, submetida a aquecimento, decompõe-se imediata e completamente, inflando o balão em apenas 30 milissegundos. A equação abaixo representa a decomposição da azida:

$$2 \text{ NaN}_3 (s) \rightarrow 3 \text{ N}_2 (g) + 2 \text{ Na}(s)$$

Considerando o volume molar igual a 24 L·mol⁻¹, calcule a taxa de desenvolvimento (velocidade) da reação, em L·s⁻¹, de nitrogênio gasoso produzido.

Resposta:

Dados:

Massa = 130 g de azida de sódio.

Tempo = 30milissegundos.

Volume molar = 24L/mol

Decomposição = $2 \text{ NaN}_3 (s) \rightarrow 3 \text{ N}_2 (g) + 2 \text{ Na}(s)$

1mol-24L

3mol-vol

Vol=3.24

Vol=72L

Vi = vol/ $\Delta t \rightarrow Vi = 72L/30ms \rightarrow Vi = 2,4L/ms \rightarrow Vi = 2400L.s^{-1}$

3. A reação de decomposição do amoníaco, $NH_3(g)$, produz 8,40g/min de gás nitrogênio. Qual a taxa de desenvolvimento (velocidade) dessa reação em mols de $NH_3(g)$ por hora? Dada a reação:

$$2 \text{ NH}_3 (g) \rightarrow 3 \text{ H}_2(g) + 1 \text{ N}_2(g).$$

$$2NH_3 - -N_2 + 3H_2 \rightarrow 34g NH_3 - -28g N_2 \rightarrow x1 - -8,4g N_2 \rightarrow x1 = 10,2g$$

2mols NH₃ --34g \rightarrow x2--10,2g \rightarrow x2=0,6mols

1 min - - 0,6mols de NH₃ \rightarrow 60min- -x3 \rightarrow x3= $\frac{36\text{mol/h}}{}$