8.3 Acid-Base Properties of Salt Solutions

- Salts can form solutions with a wide range of pH.
- Even thought the salts do not contain H⁺ or OH⁻ they affect pH by interacting with H₂O. The concentrations are very low but it does affect the pH.
- Hydrolysis: a reaction of and ion with water to produce an acidic or basic solution (hydronium or hydroxide ions).

Salts that form Neutral Solutions

• Cations of strong bases and anions of strong acids do not act appreciably with H₂O and therefore are neutral.

Salts that form Acidic Solutions

- Cations of weak bases act as acids (e.g. NH₄⁺)
- Certain metals also act as acids. They are usually small atoms that are highly charged. See Table 3 on p. 582 (e.g. Al³⁺)

Salts that form Basic Solutions

• Anions of weak acids act as bases (e.g. C₂H₃O₂⁻ acetate).

Salts that form Acidic and Basis Solutions

• Need to determine K_a and K_b (remember you can calculate K_b by manipulating the equation $K_aK_b=K_w$).

• E.g. $NH_4CN \rightarrow NH_4^+ + CN^ NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$ $K_a = 5.8 \times 10^{-10}$ $CN^- + H$ $K_b = 1.6$

 $CN^{-} + H_{2}O \rightarrow HCN + OH^{-}$ $K_{b} = 1.6 \times 10^{-5}$ $K_b > K_a$ therefore Basic

Hydrolysis of Amphoteric Ions

• Both act as and acid and base.

• E.g. NaHCO₃ \rightarrow Na⁺ + HCO₃

In the presence of H₂O Na⁺ would like to form NaOH. However NaOH is a strong

base and completely disassociates.

HCO₃⁻ acts as both an acid and base. HCO₃⁻ + H₂O \rightarrow CO₃²⁻ + H₃O⁺ acid HCO₃⁻ + H₂O \rightarrow H₂CO₃ + OH⁻ base Find K_a and K_b K_a = 4.7 x 10⁻¹¹ & K_b = 2.7 x 10⁻⁸ K_b > K_a therefore basic

Hydrolysis of Metal and Non-Metal Oxides

- metal $oxide_{(s)} + H_2O_{(l)} \rightarrow basic solution_{(aq)}$
- E.g. $CuO_{(s)} + H_2O_{(l)} \rightarrow Cu^{+2}_{(aq)} + 2OH_{(aq)}^{-}$
- nonmetal $oxide_{(s)} + H_2O_{(l)} \rightarrow acidic solution_{(aq)}$
- E.g. $SO_{2(s)} + 2H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + HSO_3^-_{(aq)}$

Lewis Acids and Bases

- Lewis Acid: a compound that is an electron pair acceptor (e.g. H⁺)
- Lewis Base: a compound that is an electron pair donor (e.g. OH⁻)

Homework

- Practice 1,2,3,4,5,8,9,10,12
- Questions 1,2,3,4,5