CMSC 180 Introduction to Parallel Computing

OUTLINE

- What is the effect of memory latency on the performance of computations?
 - Example specifications of processor and memory
 - Example computation: Dot product of two vectors
 - Compare:
 theoretical processor rating vs. actual processor rating
 - Practical stuff

EXAMPLE HARDWARE SPECS

- 1 Processor:
 - 1GHz clock speed (1 clock tick per 1 ns)
 - Can execute 4 instructions per 1 cycle (1 ns)
- 2 DRAM: 100ns latency (no cache)

EXAMPLE APPLICATION

Dot-product of two vectors: A and B

LET'S ASSUME THAT
ONE INSTRUCTION
COMPLETES
ONE MULTIPLY AND
ONE ADD
OPERATIONS

EXAMPLE APPLICATION

Dot-product of two vectors: A and B

EXAMPLE APPLICATION

Dot-product of two vectors: A and B

Theoretical processor rating

Theoretical processor rating

- Theoretical processor rating:
 - Four billion multiply-add operations in a second
 - Four billion floating-point operations per second
 - >4GFLOPS

THAT'S AN AWESOME
4 GIGAFLOPS
RATING FOR A
1GHz PROCESSOR
SPEED.

Comparison:

- Theoretical/Peak Rating: 4GFLOPS
- Actual Rating: 10MFLOPS
- Only 0.25% of what we expect
- Renders the 4 pipelines useless

SOME PRACTICAL STUFF

- Best specs of 2021:
 - Intel Core i9-10900K 5.3GHz (Turbo Boost Max)
 - DDR4-4600 SDRAM 8th Word Latency: 9.35ns

NEXT DISCUSSION...

Effect of Memory Bandwidth