7.1 塑性形变与位错(单晶)

Dongsheng Wen

bubble model

https://www.youtube.com/watch?v=UEB39-jlmdw&t=2s

real examples:

https://kacherlab.gatech.edu/tools-for-teaching/

very nice lecture notes on:

https://www.doitpoms.ac.uk/tlplib/dislocations/index.php

https://ocw.mit.edu/courses/materials-science-and-engineering/3-11-mechanics-

of-materials-fall-1999/modules/MIT3_11F99_dn.pdf

direct observation, very nice videos!

Kim, S., Park, J.Y., Park, S. *et al.* Direct observation of dislocation plasticity in high-Mn lightweight steel by *in-situ* TEM. *Sci Rep* **9**, 15171 (2019).

https://doi.org/10.1038/s41598-019-51586-y

https://www.nature.com/articles/s41598-019-51586-y#article-comments

Schematic simulations:

https://ocw.mit.edu/resources/res-3-004-visualizing-materials-science-fall-2017/student-projects-by-year/2017-MIT/visualizing-the-energies-of-screw-

dislocations/visualizing-the-energies-of-screw-dislocations/

应力-应变曲线

• 工程应力-应变曲线的问题

真应力-真应变曲线

均匀的塑性形变怎么来的?

单晶

多晶

均匀的塑性形变怎么来的?(单晶)

为啥不沿着施力方向?

取向因子 (Schmid factor)

 $\tau = \sigma\cos\phi\cos\lambda$

产生滑移的时候。。

怎么发生滑移?

位错 (Dislocation)

位错 (Dislocation)

•一维的缺陷。

- 我们需要知道哪些位错的信息呢?
 - 类型
 - 晶格畸变
 - 方向

刃位错 (edge dislocation)

伯氏矢量标定右手法则

刃位错 (edge dislocation)

Sigle, W., Sarbu, C., Brunner, D. and Rühle, M., 2006. Dislocations in plastically deformed SrTiO3. Philosophical Magazine, 86(29-31), pp.4809-4821.

螺位错 (screw dislocation)

位错一般都是混合的

Kim, S., Park, J.Y., Park, S. et al. Direct observation of dislocation plasticity in high-Mn lightweight steel by in-situ TEM. Sci Rep 9, 15171

位错的简单移动

• 滑移 (slip)

• 攀移 (climb)

哪个面/方向发生了滑移?

密排面与密排方向

• 密排面 (close-packed planes)

• 密排方向 (close-packed directions)

均匀的塑性形变怎么来的?(单晶)

FCC - {111}<110>

2.怎么发生滑移?

3.哪个面/方向发生了滑移?

• 一块单晶FCC铜合金拉伸测试,施力方向沿着[001]晶向。观察到当应力到达5MPa时候,滑移面是(111),滑移方向是[$ar{1}$ 01]。求:临界分切应力, au_{CRSS}

 $\tau = \sigma\cos\phi\cos\lambda$

7.2 塑性形变与位错(多晶)

dswen94