SURF

Andrés Godoy Visión computacional

Pasos SIFT

- 1. Creación de espacios de escala
- 2. Detección de keypoints (LoG/DoG)
- 3. Localización de keypoints
- 4. Orientación de Keypoints
- 5. Creación del descriptor

¿Por qué laplaciano y no hessiano?

Surf utilizará el hessiano aproximado por Filtros de Caja

Las imágenes integrales ayudan a acelerar el cálculo

$$I_{ ext{int}}(x,y) = \sum_{i=0}^x \sum_{j=0}^g I(i,j)$$

1	1	1
1	1	1
1	1	1

1	2	3
2	4	6
3	6	9

Permite sumar los valores dentro de cualquier rectángulo arbitrario

98	110	121	125	122	129	98	208	329	454	576	705
99	110	120	116	116	129	197	417	658	899	1137	1395
97	109	124	111	123	134	294	623	988	1340	1701	2093
98	112	132	108	123	133	392	833	1330	1790	2274	2799
97	113	147	108	125	142	489	1043	1687	2255	2864	3531
95	111	168	122	130	137	584	1249	2061	2751	3490	4294
96	104	172	130	126	130	680	1449	2433	3253	4118	5052

_						1	4				
98	110	121	125	122	129	98	208	329	454	576	705
99	110	120	116	116	129	197	417	658	899	1137	1395
97	109	124	111	123	134	294	623	988	1340	1701	2093
98	112	132	108	123	133	392	833	1330	1790	2274	2799
97	113	147	108	125	142	489	1043	1687	2255	2864	3531
95	111	168	122	130	137	584	1249	2061	2751	3490	4294
96	104	172	130	126	130	680	1449	2433	3253	4118	5052

$$V_A = \sum (pixel\ intensities\ in\ white) - \sum (pixel\ intensities\ in\ black)$$

= $(II_O - II_T + II_R - II_S) - (II_P - II_Q + II_T - II_O)$
= $(2061-329+98-584) - (3490-576+329-2061) = 64$

 H_B

 H_{C}

 H_D

$$\det(H) = \left(rac{\partial^2 f}{\partial x^2}\right) \left(rac{\partial^2 f}{\partial y^2}\right) - \left(rac{\partial^2 f}{\partial x \partial y}
ight)^2$$

Este determinante nos da información sobre la curvatura local de la función:

- Si $\det(H)>0$ \to La región es un **mínimo o un máximo local** (interesante para detección de características).
- Si $\det(H) < 0$ \rightarrow La región es un **punto de silla** (no se considera un punto clave).
- Si $\det(H) = 0$ \rightarrow La curvatura es degenerada (no aporta información útil).

Escalabilidad y pirámide de escalas (Scale-Space)

En lugar de generar una pirámide de Gaussianas a diferentes escalas (como hace SIFT), SURF aumenta el tamaño del filtro caja (las máscaras de convolución) de manera discreta para simular diferentes escalas.

Igual a SIFT se aplica supresión de no-máximos en la vecindad 3x3

Orientación de **Keypoint con Haar Wavelets** en vez del inverso de la tangente

Se construye un conjunto de vectores de gradiente en una región circular alrededor de la característica

- •Cada punto dentro de esta región aporta un vector de gradiente (dx,dy)
- •Estos gradientes se obtienen de las respuestas de Haar wavelets.

Se usa una ventana deslizante sobre un histograma angular

- •En lugar de calcular directamente el **máximo global**, SURF implementa una **ventana deslizante de orientación** para encontrar la dirección más estable.
- •Se usa una ventana de 60° que se mueve en incrementos alrededor del círculo.
- •En cada posición de la ventana, se suman las **magnitudes de los gradientes** dentro de ese rango angular.

Descriptor

En cada una de las 16 subregiones, se calculan **cuatro valores** que capturan información sobre la intensidad y dirección de los gradientes:

- $\sum dx$ \rightarrow Suma de todas las respuestas en x.
- $\sum dy$ \rightarrow Suma de todas las respuestas en y.
- $\sum |dx| \rightarrow$ Suma de los valores absolutos de dx, que representa la intensidad de las variaciones en x.
- $\sum |dy| o$ Suma de los valores absolutos de dy, que representa la intensidad de las variaciones en y.