Statistics

Hello everyone!

In our lesson today, we will discuss descriptive statistics, which requires real-life data. To help illustrate these concepts, please provide me with some information about yourself such as a nickname, your current age, and your weight. This information will only be used within the context of this class to demonstrate measures of central tendency and variation.

Here's an example:

Nickname: Mitra

• Age: 28

Weight: 79

Please feel free to share similar details about yourself so that we can make the most out of this learning experience!

Link: https://forms.gle/LtCs7H3nevw9nuAZ8

Available in the chat section pinned comment

Descriptive Statistics

name	gender	age	english.grade	math.grade
Kiana Lor	F	22	3.5	3.7
Joshua Lonaker	M	22	2.9	3.2
Dakota Blanco	F	22	3.9	3.8
Natasha Yarusso	F	20	3.3	2.8
Brooke Cazares	F	21	3.7	2.6
Rochelle Johnson	F	21	3.4	3.1
Joey Abreu	М	22	3.7	3.9
Preston Suarez	М	22	3.8	3.7
Lee Dong	F	24	3.9	3.6
Maa'iz al-Dia	М	22	2.4	2.8
Maja Nicholson	F	23	3.4	3.5

metrics

measures of

measures of

central

tendency

Using measures of central tendency of variation we can summarise the entire data into few metrics/ numbers which can help an individual to get a sense about the data without going through it.

overall

Data consolidation

$$x = \begin{bmatrix} 5 & 100 & 112 & 115 & 11 \end{bmatrix}$$

$$aug(x) = \frac{5 + 100 + 112 + 115 + 111}{5}$$

m* is actual mean without outlier

m*

outlier

Measures Of Central Tendency

$$x = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$

$$SO = \frac{1}{1000}$$

x = 0

$$\frac{1+2+3+4+5+100}{6} = \frac{115}{6} = \frac{19.16}{6}$$

X = [1, 2, 3, 4, 5, 100]

a mean lang dependent on tre data

· meon/ang is influenced by the presence of outlies in the data

· aug/meon shifts towards the outlier

$$x = \begin{bmatrix} 1, 2 & 3, 7 \end{bmatrix}$$

$$\frac{2+3}{2} = 2.5$$

$$x = [1, 2, 3]$$
 $x = [x, y, x, z, x_0, 5, 3, 3, 9, x, 18, 9, 7, 100]$

1) Arronge the data in ascending order

(1) Harronge 1000 (1)
$$\frac{1}{2}$$
 $\frac{3}{3}$ $\frac{4}{5}$ $\frac{5}{4}$ $\frac{7}{4}$ $\frac{9}{4}$ $\frac{10}{6}$ $\frac{11}{6}$ $\frac{13}{10}$ $\frac{17}{100}$ $\frac{19}{100}$ $\frac{19}{100}$ $\frac{19}{100}$ $\frac{19}{100}$ $\frac{19}{100}$

2) If the no of data points in the data are even — median value is the value at $(n/2)^{th}$ position. If the no of data points in the data are even — median value is the avg of the value at $(\frac{n}{2})^{th}$ and $(\frac{n+1}{2})^{th}$ position $(\frac{n+1}{2})^{th} = \frac{15}{2} = 7.5 \times 8$

$$\left(\frac{\Omega}{2}\right)^{m} \rightarrow \mathbf{q}$$

$$\left(\frac{1}{2}\right)^{m} = \frac{15}{2} = 7.5 \times 8$$

$$\frac{14}{2}$$

$$median = \frac{9+9}{2} = \boxed{9}$$

$$(1)$$

 $x = \begin{bmatrix} 5 & 3 & 7 & 9 & 11 \end{bmatrix}$

 $\left(\frac{\Omega+1}{2}\right)^m$ position

ascending order

media = 7

median — ① It's not dependent on the data
② It represents the actual middle value

3) Not impacted by outliers

medion

$$\frac{5+1}{2} = 3^{+1}$$

 $\frac{5+1}{2} = 3^{+1}$

$$= 3, 5, [$$

Mode

observation in the data with maximum occurace

$$x = 1, 2, 5, 5, 3, 5, 7, 8, 5, 3, 9$$

$$1 \longrightarrow 1$$

9 - 1

1 - 3 7 No mode

1,1,2,1,2,2

2 -> 1

5 = mode of the data

(1) If there is no clear majority, we don't have my mode

S-ID	Maths Marks	English Marks
1	27	55
2	52	54
3	48	58
4	33	59
5	39	51
6	65	52
7	82	48
8	88	58
9	23	49
10	76	49
Average	53.3	53.3

Quantify the Spreadness in the data
How Scattered the data 1/3 around
aug-value

on an aug for maths subject
a students has scored

22 morts above mean or
22 morks below mean

S-ID	Maths Marks	distorce	d.	d^2	aug Squared distance
1	27	21 - 53	-26	676 7	of a point from the men value
2	52	52-53	— <u>)</u>)	
3	48	48 - 53	- 5	2.5	1
4	33	33-53	- 20	400	
5	39	39-53	-14	196 _	≤ d²
6	65	65-53	12	144	<u>√</u> ∠ d²
7	82	82-53	29	8 ነ ነ	493•7
8	88	88-53	35	1225	
9	23	23-53	-30	700	Vorion ce = 62
10	76	76-53	2.3	529	= 493 · 7
		±f ω	e directly take man	avg disl.	6 ² = 493°7
Average	53.3	as zaw	of the districes, the districe will concell	of a point	
		positiv	e distorce will concell	mea -	= √493·7
			petive distance and we ht get a volume clone	value >	$6 = \sqrt{493.7}$ $6 = 22.2$
		nog.			dond deviation

S-ID	English Marks	Error	Error	e^2
1	55	55-53	2	4
2	54	54-53	1	1
3	58	58-53	5	25
4	59	59-53	6	36
5	51	51-53	-2	4
6	52	52-53	-1	1
7	48	48-53	-5	25
8	58	58-53	5	25
9	49	49-53	-4	16
10	49	49-53	-4	16
Average	53.3		Average Of e^2	15.3
			Std-Dev	3.9

Interquartile Range and Percentile

(501) most of the data
1/3 concentrated on the
1 sure range

Sehwag VS Dravid


```
Dravid Statistics

Number Of Innings: 318

Max Runs: 153

Min Runs: 0

Average Run: 34.242138364779876

Median Runs: 26.0

Mode Runs: 0

Std Deviation: 29.681822462366075
```

```
Shewag Statistics

Number Of Innings: 245

Max Runs: 219

Min Runs: 0

Average Run: 33.76734693877551

Median Runs: 23.0

Mode Runs: 0
```

Std Deviation: 34.80941899427947

more spreadness of the

Random Variable

Quiz-1: There are 4 people whose average age is 24. We know the age of three people: 20, 22, and 28. What is the median age of these 4 people?

$$x_{1} x_{2} x_{3} x_{4}$$

$$\frac{x_{1} + x_{2} + x_{3} + x_{4}}{4} = 24$$

$$\frac{20 + 22 + 28 + x_{4}}{4} = 24$$

$$x_{4} = (24 \times 4) - (20 + 22 + 28)$$

$$x_{4} = 26$$

$$x_{4} = 26$$

20, 22, 28, 26

Quiz-2: A survey of number of pets in a town saw that - 30% people had 0 pets, 40% had 1 pet, 10% had 2 pets, 20% had 3 pets. What is the average number of pets?

$$30 = 0$$

$$40 = 1$$

$$20 = 3$$

$$(0 = 2$$

$$0 + 0 + 0 + \cdots + 0)_{30} + (1 + 1 + 1 + \cdots + 1)_{40} + (3 + 3 + 3 + \cdots + 3)_{20} + (2 + 2 + 2 \cdots + 2)_{10}$$

$$100$$

$$= 0 \times \frac{30 + 1 \times 40 + 3 \times 20 + 2 \times 10}{100} = \frac{40 + 60 + 20}{100} = \frac{120}{100} = \frac{120}{100}$$

Quiz-3: The mean weight of 2 children in a family is 40 Kgs. If the weight of the mother is included, the mean becomes 45. What is the weight of the mother?

$$x_1 = weight of c_1$$

 $x_2 = weight of c_2$
 $x_3 = weight of m$

$$\frac{x_1 + x_2}{2} = 40 \qquad \qquad \boxed{1} \qquad x_{1+x_2} = 80$$

$$\frac{x_1 + x_2 + x_3}{3} = 45$$

$$80 + x_3 = 45 \times 3$$

$$x_3 = (45 \times 3) - 80$$

$$x_3 = 55$$