BOOSTING BY WELL-DESIGNED ENSEMBLE

GEOMETRICAL VIEW OF ENSEMBLE LEARNING

Noboru Murata

June 21, 2023

https://noboru-murata.github.io/

```
Introduction
   majority vote
   geometrical view
Problem Formulation
   boosting algorithm
   geometrical view of boosting
Illustrative Example
   toy examples
   application to face detection
Conclusion
```

INTRODUCTION

MAJORITY VOTE

 consider participating a quiz show where threesome teams compete in answering various genre questions
 (10 genres such as history, politics, entertainment, sports)

- consider participating a quiz show where threesome teams compete in answering various genre questions
 (10 genres such as history, politics, entertainment, sports)
 - good threesome

poor threesome

- consider participating a quiz show where threesome teams compete in answering various genre questions
 (10 genres such as history, politics, entertainment, sports)
 - · good threesome
 - · each member can answer 8 genres
 - · all the members are weak in entertainment and sports
 - stereo-typed good members
- poor threesome
 - each member can answer 6 genres
 - all the member are weak in different genres
 - poor but varied members

ENSEMBLE LEARNING

essence of ensemble learning

- collect as varied individuals as possible
- · each individual does better than random guess

(Freund 1995; Freund and Schapire 1997)

classification problem:

- · predict label $y \in \mathcal{Y}$ from corresponding features $x \in \mathcal{X}$
- construct a classifier $h(\mathbf{x}) = \hat{\mathbf{y}}$ from finite samples

obtained classifier

single classifier by cart

obtained classifier by AdaBoost

without boosting

with boosting

· select a Gaussian subject to categorical distribution

· generate a sample from a selected Gaussian

total distribution is not a Gaussian

PROBLEM FORMULATION

- problem
 - predict labels $y \in \mathcal{Y}$ from given features $x \in \mathcal{X}$
- notation
 - classifier: set-valued function h

$$h: \mathbf{x} \in \mathcal{X} \mapsto \mathcal{C} \subset \mathcal{Y}$$

decision function: another representation of classifier

$$f(\mathbf{x}, y) = \begin{cases} 1, & \text{if } y \in h(\mathbf{x}), \\ 0, & \text{otherwise,} \end{cases}$$

majority vote: linear combination of multiple classifiers

$$H(\mathbf{X}) = \arg \max_{\mathbf{y} \in \mathcal{Y}} \sum_{t=1}^{T} \alpha_t f_t(\mathbf{X}, \mathbf{y})$$

(start)

- input: $n \text{ samples} \setminus \{(\mathbf{x}_i, y_i); \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1, \dots, n\},$ increasing convex function U.
- initialize: distribution $D_1(i,y) = 1/n(|\mathcal{Y}| - 1)$ (i = 1, ..., n), combined decision function $F_0(\mathbf{x}, y) = 0$.
- repeat: repeat following steps (t = 1, ..., T).

• step 1: select a decision function f (classifier h) which (approximately) minimizes with a distribution D_t :

$$\epsilon_t(f) = \sum_{i=1}^n \sum_{y \neq y_i} \frac{f(\mathbf{x}_i, y) - f(\mathbf{x}_i, y_i) + 1}{2} D_t(i, y)$$
$$f_t(\mathbf{x}, y) = \arg \min_{f \in \mathcal{F}} \epsilon_t(f).$$

• step 2: calculate reliability α_t :

$$\alpha_t = \arg\min_{\alpha} \sum_{i=1}^n \sum_{y \in \mathcal{Y}} U\Big(F_{t-1}(\mathbf{x}_i, y) + \alpha f_t(\mathbf{x}_i, y) - F_{t-1}(\mathbf{x}_i, y_i) - \alpha f_t(\mathbf{x}_i, y_i)\Big).$$

• step 3: update the combined decision function F_t and the distribution D_t :

$$F_t(\mathbf{x}, \mathbf{y}) = F_{t-1}(\mathbf{x}, \mathbf{y}) + \alpha_t f_t(\mathbf{x}, \mathbf{y}),$$

$$D_{t+1}(i,y) \propto U'\left(F_t(\boldsymbol{x}_i,y) - F_t(\boldsymbol{x}_i,y_i)\right),$$

where
$$\sum_{i=1}^{n} \sum_{v \neq v_i} D_{t+1}(i, y) = 1$$
.

BOOSTING ALGORITHM (5)

(end)

 output: construct a majority vote classifier:

$$\begin{split} H(\textbf{\textit{x}}) &= \arg\max_{y \in \mathcal{Y}} F_T(\textbf{\textit{x}}, y) \\ &= \arg\max_{y \in \mathcal{Y}} \sum_{t=1}^T \alpha_t f_t(\textbf{\textit{x}}, y). \end{split}$$

special case of boosting algorithm:

- $U(z) = \exp(z)$ (following steps are simplified)
 - step 2:

$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t(f_t)}{\epsilon_t(f_t)},$$

• step 3:

$$D_{t+1}(i,y) \propto \exp\{F_t(\boldsymbol{x}_i,y) - F_t(\boldsymbol{x}_i,y_i)\}$$

(Freund and Schapire 1997)

(start)

- input: $n \text{ samples} \setminus \{(x_i, y_i); x_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1, \dots, n\},$ increasing convex function U.
- initialize: $q_0(y|\mathbf{x})$ (set $\xi(q_0)=0$ for simplicity, where $\xi=(U')^{-1}$)
- repeat: repeat following steps (t = 1, ..., T).

• step 1: select decision function f_t (classifier h_t) such that f - b' and $q_{t-1} - \tilde{p}$ should direct as similar as possible:

$$f_t(\mathbf{x}, \mathbf{y}) = \arg\max_{f \in \mathcal{F}} \langle q_{t-1} - \tilde{p}, f - b' \rangle_{\tilde{\mu}}$$

where

$$q = u(\xi(q_{t-1}) + \alpha f - b(\alpha)), \quad u = U'.$$

• step 2: with one dimensional model

$$Q_t = \left\{ q \mid \xi(q) = \xi(q_{t-1}) + \alpha f_t - b_t(\alpha), \ \alpha \in R \right\}$$

construct orthogonal foliation $\{\mathcal{T}(q); q \in \mathcal{Q}_t\}$ as

$$\mathcal{T}(q) = \left\{ p \in \mathcal{P} | \langle p - q, f_t - b' \rangle_{\tilde{\mu}} = 0 \right\},\,$$

then find α_t with a leaf of the empirical distribution \tilde{p} and model Q_t :

$$\alpha_t = \arg\min_{q \in \mathcal{Q}_t} \sum_{i=1}^n \left[\sum_{y \in \mathcal{Y}} U(\xi(q(y|\mathbf{x}_i))) - \xi(q(y_i|\mathbf{x}_i)) \right].$$

• step 3: update q_t :

$$q_t(y|\mathbf{x}) = u\Big(\xi(q_{t-1}(y|\mathbf{x})) + \alpha_t f_t(\mathbf{x}, y) - b_t(\mathbf{x}, \alpha_t)\Big).$$

(end)

 output: construct a majority vote classifier:

$$H(\mathbf{x}) = \arg \max_{\mathbf{y} \in \mathcal{Y}} F_T(\mathbf{x}, \mathbf{y}) = \arg \max_{\mathbf{y} \in \mathcal{Y}} \sum_{t=1}^{T} \alpha_t f_t(\mathbf{x}, \mathbf{y}).$$

- · global model extension:
 - by using appropriately weighted training data, the learning model is extended to the direction to which the total performance can be improved
 - by extending the search space to outside of probability distributions, an efficient algorithm (coordinate descent) is derived

classification problem:

- · predict label $y \in \mathcal{Y}$ from corresponding features $x \in \mathcal{X}$
- construct a classifier $h(\mathbf{x}) = \hat{\mathbf{y}}$ from finite samples

first round

second round

third round

sample weights at each round

obtained classifier at each round

obtained classifier

single classifier by cart

obtained classifier by AdaBoost

without boosting

with boosting

classification error

without boosting

with boosting

Face Detection

Paul Viola and Michael J. Jones (May 2004). "Robust Real-Time Face Detection." In: International Journal of Computer Vision 57 (2), pp. 137–154. DOI:

10.1023/B:VISI.0000013087.49260.fb

- famous boosting application to computer vision
- · adopt simple rectangle detectors as weak learners
- · construct an efficient classifier with AdaBoost

CONCLUSION

we presented the following

- some characterization of mixture models
- some geometrical properties of *U* functions
 - · coordinate descent algorithm
 - · Pythagorean relation

in addition, possible extensions would be

- characterization of U
- · stopping rules for the number of boosting

- Domingo, Carlos and Osamu Watanabe (2000). "MadaBoost: A Modification of AdaBoost." In: *Proceedings of COLT 2000*. the Thirteenth Annual Conference on Computational Learning Theory (Palo Alto, CA, USA, June 28–July 1, 2000). Ed. by Nicolò Cesa-Bianchi and Sally A. Goldman. Morgan Kaufmann, pp. 180–189.
- Freund, Yoav (Sept. 1995). "Boosting a Weak Learning Algorithm by Majority."
 In: Information and Computation 121.2, pp. 256–285. DOI: 10.1006/inco.1995.1136.
- Freund, Yoav and Robert E. Schapire (Aug. 1997). "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting." In: Journal of Computer and System Sciences 55.1, pp. 119–139. DOI: 10.1006/jcss.1997.1504.
- Murata, Noboru et al. (July 2004). "Information Geometry of U-Boost and Bregman Divergence." In: Neural Computation 16.7, pp. 1437–1481. DOI: 10.1162/089976604323057452.
- Viola, Paul and Michael J. Jones (May 2004). "Robust Real-Time Face Detection." In: International Journal of Computer Vision 57 (2), pp. 137–154. DOI: 10.1023/B:VISI.0000013087.49260.fb.