Análisis del Método CPM: Costes y Duraciones Normales y Extremos en la Gestión de Proyectos

Introducción al Método CPM

El Método CPM es una técnica para la planificación de proyectos, optimizando tiempos y costos. Identifica el camino crítico, que determina la duración mínima de un proyecto.

Características principales:

- Enfoque determinista
- Representación gráfica (diagrama de red)
- Identificación del camino crítico
- Cálculo de holguras

Definición de Costes

Se distinguen principalmente dos tipos de costes:

- Coste Normal: Es el coste asociado a la realización de una actividad en su duración normal.
- Coste Extremo: Es el coste resultante de reducir la duración de una actividad al mínimo posible, generalmente implicando recursos adicionales.

Cálculo de tiempos

Tiempos más tempranos de inicio de cada tarea (Ei early):

- al nodo inicial se le da valor 0
- A partir del nodo inicial se recorre la red nodo a nodo hasta llegar al nodo final sumando al valor del nodo la duración de la actividad que lleva al nodo siguiente
- en caso de existir dos caminos para llegar al mismo nodo se toma el early de mayor valor

Tiempos de terminación más tardía de cada tarea (Lj last):

- Al nodo final se le da el valor early
- A partir del nodo final se recorre la red nodo a nodo hasta llegar al nodo inicial restando al valor

del nodo la duración de la actividad que lleva al nodo anterior

• en caso de existir dos caminos para llegar al mismo nodo se toma el last de menor valor

Holgura

La holgura es el tiempo en que se puede demorar el comienzo de una actividad sin afectar la duración del proyecto total

- Holgura total: TFij = Lj Ei Dij
- Holgura libre: F Fij = Ej Ei Dij

Las actividades del camino crítico son aquellas cuya holgura total es nula

Dado el conjunto de precendencias:

A y B precede a C

B precede a D

Actividad	Duración normal(días)	Duración ext.(días)	Coste normal(euros)	Coste Ext.(euros)	
A	3	2	30	50	
В	2	1	30	45	
C	2	2	24	40	
D	1	1	15	15	
E	3	2	30	50	

Vamos a construir el grafo con las precedencias dadas:

A y B precede a C

B precede a D

Ejemplo práctico

Vamos a construir el grafo con las precedencias dadas:

A y B precede a C

B precede a D

Ejemplo práctico

Vamos a construir el grafo con las precedencias dadas:

A y B precede a C

B precede a D

Vamos a construir el grafo con las precedencias dadas:

A y B precede a C

B precede a D

Vamos a construir el grafo con las precedencias dadas:

A y B precede a C

B precede a D

*

Una vez hayado el grafo, junto con la tabla de duraciones y costos, procedemos a crear la tabla de tiempos normales y extremos

Actividad	Duración normal(días)	Duración ext.(días)	Coste normal(euros)	Coste Ext.(euros)
A	3	2	30	50
В	2	1	30	45
C	2	2	24	40
D	1	1	15	15
\mathbf{E}	3	2	30	50

Cálculo de tiempos normales

ti	Ei	Li
1	0	MIN(E2-A,E3-B)=MIN(3-3,3-2)=0
2	MAX(E1+A,E3+F1)=MAX(0+3,2+0)=3	L4-C=5-2=3
3	E1+B=0+2=2	MIN(E5-D,E2-F1)=MIN(5-1,3-0)=3
4	MAX(E2+C,E5+F2)=MAX(3+2,3+0)=5	L6-E=8-3=5
5	E3+D=2+1=3	E4-F2=5-0=5
6	E4+E=5+3=8	E6 = 8

Cálculo de tiempos extremos

ti	Ei	Li
1	0	MIN(E2-A,E3-B)=MIN(2-2,2-1)=0
2	MAX(E1+A,E3+F1)=MAX(0+2,1+0)=2	L4-C=4-2=2
3	E1+B=0+1=1	MIN(L5-D,L2-F1)=MIN(4-1,2-0)=2
4	MAX(E2+C,E5+F2)=MAX(2+2,2+0)=4	L6-E=6-2=4
5	E3+D=1+1=2	E4-F2=4-0=4
6	E4+E=4+2=6	E6 = 6

Calcular la holgura de cada actividad utilizando la duración normal

	Ruta(i->j)	Dij	Eij	Lij	Hij	Crítico?
A	1->2	3	0	3	0	X
В	1->3	2	0	3	1	
C	2->4	2	3	5	0	X
D	3->5	1	2	5	2	
E	4->6	2	5	7	0	X

Calcular la holgura de cada actividad utilizando la duración extrema

	Ruta(i->j)	Dij	Eij	Lij	Hij	Crítico?
A	1->2	2	0	2	0	X
В	1->3	1	0	2	1	
С	2->4	2	2	4	0	X
D	3->5	1	1	4	2	
E	4->6	2	4	6	0	X

Identificación de la ruta crítica

Ruta crítica: A-C-E

Identificación de la ruta crítica Ruta crítica: A-C-E

El resultado final para este proyecto utilizando la duración normal sería que se realiza en 8 días con un coste de 84 euros, mientras que si se utiliza la duración extrema, se realizaría en 6 días, con un coste de 140 euros

iGracias!

