课程编号: A073122

北京理工大学 2016-2017 学年第一学期

线性代数 A 试题 A 卷

班级 ______ 学号 _____ 姓名 _____ 成绩 _____

题 号	 <u>-</u>	Ξ	四	五.	六	七	八	九	+	总分
得分										
签 名										

一、(10 分) 已知矩阵
$$A = \begin{pmatrix} 5 & -1 & 0 \\ -2 & 3 & 1 \\ 2 & -1 & 6 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 2 & 3 \\ 5 & 0 & 5 \end{pmatrix}$ 和 X 满足 $XA = B + 2X$,求 X 。

二、(10分)设线性方程组

$$\begin{cases} x_1 + 2x_2 + 2x_3 + 4x_4 = a \\ x_1 + 2x_2 + 3x_3 + 2x_4 = 4 \\ x_1 + 2x_2 + 5x_3 - 2x_4 = b \\ x_1 + 2x_2 + x_3 + 6x_4 = 2. \end{cases}$$

- (1) 求参数 a, b, 使得方程组有解;
- (2) 当方程组有解时, 求出方程组的导出方程组的一个基础解系以及方程组的通解.

三、(10分)已知

$$\alpha_1 = (1,3,0,5)^T$$
, $\alpha_2 = (1,2,1,4)^T$, $\alpha_3 = (1,1,2,3)^T$, $\alpha_4 = (1,-3,6,-1)^T$,

- (1) 求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的秩和一个极大无关组;
- (2) 用所求的极大无关组线性表出剩余向量。

四、 $(10 \, \beta)$ 已知线性空间 $F[x]_4$ 的自然基为 $1,x,x^2,x^3$ 。

(1) 证明:
$$1,1+x,1+x+\frac{x^2}{2!},1+x+\frac{x^2}{2!}+\frac{x^3}{3!}$$
为 $F[x]_4$ 的一个基;

(2) 求自然基**1**,
$$x$$
, x^2 , x^3 到基**1**, $1+x$, $1+x+\frac{x^2}{2!}$, $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}$ 的过渡矩阵;

(3) 求
$$h(x) = 1 + 3x^2 + 6x^3$$
在后一个基下的坐标。

五、(10 分) 已知 3 阶方阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 2 \end{pmatrix}$$
, 计算行列式 $\left| \frac{1}{3} A^* + 2I \right|$ 。

六、 (10 分) 设 5 阶方阵 A 的初等因子为 λ -3, λ +2, $(\lambda$ -1)², λ .

- (1) 试写出A的 Jordan 标准形J;
- (2) 如果可逆矩阵 P 满足 $P^{-1}AP = J$,判断 P 的哪几列是 A 的特征向量.

七、(10分) 在线性空间 R^{2x2} 中定义变换 σ :

$$\sigma(X) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} X \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$$

(1) 证明: σ 是线性变换;

(2) 写出**σ**在基
$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ 下的矩阵。

八、(10分) 已知二次型 $f(x_1,x_2,x_3) = x_1^2 + 2x_2^2 - 2x_3^2 + 4x_1x_3$

- (1) 用正交变换将它化为标准形并给出所用的正交变换;
- (2) 该二次型是否正定?

九、(10 分)设向量组 ξ_1,ξ_2,\cdots,ξ_t 是齐次方程组AX=0的一个基础解系,向量 γ 不是 AX=0的解. 证明向量组 $\gamma,\xi_1,\xi_2,\cdots,\xi_t$ 是线性无关的.

十、 $(10\, eta)$ 设 A 为三阶矩阵, $lpha_1,lpha_2$ 为 A 的分别属于特征值 -1,1特征向量,向量 $lpha_3$ 满足 $Alpha_3=lpha_2+lpha_3$,

- (1) 证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关;
- (2) $\Leftrightarrow P = (\alpha_1, \alpha_2, \alpha_3), \ \vec{x} P^{-1}AP$