# Exploring Robustness in Dynamic Graphs



Michael Uftring
Indiana University
I606 - Network Science
Spring, 2018

#### Overview

- Dynamic Graphs
- Robustness
- Exploration

# **Dynamic Graphs**

- Graph Theory
- What is a Dynamic Graph?
- Real-world Examples
- Dynamic Graph Theory
- Issues with Algorithms
- Representing Dynamic Graphs

# **Graph Theory**

- A graph G is a pair (V, E), where V is a finite set of vertices or nodes, and E is a set of edges, each being an unordered pair {u, v} of distinct nodes.
- Vertices (nodes) represent elements or components
- Edges (links) represent relationships
- Directed Graphs: edges have a direction
- Weighted Graphs: vertices or edges have a value
- *G* = (*V*, *E*, *f*, *g*) where *f* and *g* are functions returning weights for nodes and edges



# What is a Dynamic Graph?

- Graphs which change over time
- Recall, graphs and networks involve the following entities:
  - V (a set of vertices)
  - *E* (a set of edges)
  - f (map vertices to numbers)
  - *g* (map edges to numbers)



- A dynamic graph is obtained when any of these entities changes over time
- Also called:
  - evolving graphs
  - temporal graphs
  - time-varying graphs

# **Dynamic Graph Example**

Time = t



Time = t+1



- 1. remove node x
- 2. remove edge (a, d)
- 3. add node t
- 4. add edge (c, t)
- 5. add edge (d, t)

Time = *t*+2



- 1. remove edge (s, d)
- 2. add node b
- 3. add edge (a, b)
- 4. add edge (b, d)
- 5. add edge (b, s)

# Real World Examples

- Programming Languages
- Computer Networks
- Mobile Communication Networks
- Social Networks
- Metabolic Network
- Neural and Brain Networks
- Transportation

## Real World Examples

#### Transportation Networks



Philadelphia, PA

#### Legend

- roads (major, minor)
- heavy rail
- light rail, subway
- **x** airport
- business center
- university
- new development

# **Dynamic Graph Theory**

- Types
- Classifications
- Models

# **Types**

- There are several types of dynamic graphs, some of which are:
  - node-dynamic: the set of V varies over time; some nodes may be added or removed
  - edge-dynamic: the set of E varies over time; edges may be added or removed
  - weight-dynamic: the weights on vertices or edges changes

#### Classifications

- Based on allowed operations:
  - fully dynamic: update operations allow unrestricted insertions and deletions of edges or vertices
  - partially dynamic: only one type of update operations is permitted
  - incremental: only insertions are allowed
  - decremental: only deletions are allowed

#### Models

- The TVG Model
- Barabasi-Albert Model (extended)

#### The TVG Model

A time-varying graph (TVG) is described by:

$$\mathcal{G} = (V, E, \mathcal{T}, 
ho, \zeta)$$

- • *V* is the set of vertices
  - *E* is the set of edges
  - lacksquare  $\mathcal{T}$  a time span, the lifetime of the system, where  $\mathcal{T}\subseteq\mathbb{T}$
  - $lacksquare 
    ho: E imes \mathcal{T} 
    ightarrow \{0,1\}$

presence function, indicates whether an edge is available at a given time

lacksquare  $\zeta: E imes \mathcal{T} o \mathbb{T}$ 

a latency function

- The model can be extended with node centric functions
  - $lacksquare \psi: V imes \mathcal{T} o \{0,1\}$

presence function, indicates whether a node is available at a given time

 $lacksquare arphi:V imes\mathcal{T} o\mathbb{T}$ 

a latency function

### Barabasi-Albert Model (extended)

- Extensions to the Barabasi-Albert model
- Addresses real-world issues (shortcomings of the BA model)
- Captures a wide range of phenomena that shape the topology of real networks
- Extensions:
  - Initial Attractiveness
  - Internal Links
  - Node Deletion
  - Accelerated Growth
  - Aging

Models capturing the mechanisms that govern the time evolution of a network.

# Issues with Algorithms

//

In a typical dynamic graph problem one would like to **answer queries on dynamic graphs**, such as, for instance, whether the graph is connected or which is the shortest path between any two vertices.

The goal of a dynamic graph algorithm is to **update efficiently** the solution of a problem after dynamic changes, rather than having to recompute it from scratch each time.

# Example:

finding a path between two vertices in a graph such that the sum of the weights of its constituent edges is minimized

#### The Shortest Path Problem

- What issues arise in dynamic graphs?
  - In a dynamic graph, vertices and edges may be added, removed, or changed (e.g., weights) over time.
  - The shortest path between nodes a and b at time  $t_1$  may not be the same as at time  $t_2$ .
- How can this problem be solved?
  - recompute after every change to the graph <- EXPENSIVE</li>
  - adapt the algorithms to update in response to changes
    - that is, recompute just a portion of the solution given by the events of change

# Representing Dynamic Graphs

- A sequence of Adjacency Matrices
- Logic Programming
- Active (Executable) Model

A dynamic graph can be viewed as a discrete sequence of static graphs.

# Sequence of Adjacency Matrices

Time = t



|   | а | b | с | d | s | t | х |
|---|---|---|---|---|---|---|---|
| a | 0 | - | 1 | 1 | 1 | - | 0 |
| b | - | - | - | - | - | - | - |
| С | 1 | - | 0 | 1 | 0 | - | 1 |
| d | 1 | - | 1 | 0 | 1 | - | 0 |
| S | 1 | - | 0 | 1 | 0 | - | 0 |
| t | - | - | - | - | - | - | - |
| х | 0 | - | 1 | 0 | 0 | - | 0 |

Time = t+1



|   | а | b | с | d | s | t | х |
|---|---|---|---|---|---|---|---|
| a | 0 | - | 1 | 0 | 1 | 0 | - |
| b | - | - | - | - | - | - | - |
| С | 1 | - | 0 | 1 | 0 | 1 | - |
| d | 0 | - | 1 | 0 | 1 | 0 | - |
| S | 1 | - | 0 | 1 | 0 | 0 | - |
| t | 0 | - | 1 | 1 | 0 | 0 | - |
| х | - | - | - | - | - | - | - |

Time = *t*+*2* 



|   | а | b | с | d | s | t | х |
|---|---|---|---|---|---|---|---|
| a | 0 | 1 | 1 | 0 | 1 | 0 | - |
| b | 1 | 0 | 0 | 1 | 1 | 0 | - |
| С | 1 | 0 | 0 | 1 | 0 | 1 | - |
| d | 0 | 1 | 1 | 0 | 0 | 1 | - |
| S | 1 | 1 | 0 | 0 | 0 | 0 | - |
| t | 0 | 0 | 1 | 1 | 0 | 0 | - |
| х | - | - | - | - | - | - | - |

# **Logic Programming**

- Based on a subset of predicate logic (Horn Logic)
- Predicates can also be viewed as relations
- **Fact**: a predicate or relation over some terms, states the predicate is unconditionally true
- **Rule**: predicates used for stating conditional truths, can be a conjunction, inclusive or exclusive disjunction
- Every graph can be represented as a simple logic program

#### Example: reachability

- Facts used represent the directed graph
- Rules represent the notion of reachability



F.Harary, G.Gupta, *Dynamic Graph Models*, **Mathl. Comput. Modelling**, Vol.25, No.7, pp.79-87, 1997

#### Robustness

- What is Robustness?
- Evaluating Robustness

#### What is Robustness?

- How does a graph (or network) fare in the presence of faults?
- What are faults?
  - Failure: a random node or link fails
  - Attack: a specific node or link is targeted, and fails

Many natural and social systems have a remarkable ability to sustain their basic functions even when some of their components fail.

Robustness:

the primary interest is in **knowing the impact of node failures** on the integrity
of a network

# **Evaluating Robustness**

- Tolerance
  - tolerance is not shared by all networks

|             | failure  | attack     |
|-------------|----------|------------|
| Exponential | tolerant | tolerant   |
| Scale-free  | tolerant | vulnerable |



Using diameter as the measure, what is the impact of **failure** and **attack** on Exponential and Scale-free networks?

R.Albert, H.Jeong, A.L.Barabasi, *Error and attack tolerance of complex networks*, **Nature**, 406, pp. 378-382, 2000

# **Exploration**

- Evaluation
- Experiment
- Results
- Demonstration
- Conclusion
- What's Next?

#### **Evaluation**

- Software packages and libraries evaluated
  - NetworkX
  - DyNetX
  - NDlib
  - Gephi
  - Cubix

# Experiment

- Spreading as a measure of Robustness
  - Jupyter Notebook
  - NetworkX
  - Gephi
  - DIY Model
- Scenarios
  - spreading with additive
  - random detractive
  - targeted detractive (invasive)

| Results                | Erdos-Renyi                                                       | Scale-Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| spreading<br>only      | 500 - spread                                                      | 500 goread wheeted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| additive<br>only       | 700 - goread                                                      | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| random<br>detraction   |                                                                   | 900 - spread   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 |
| targeted<br>detraction | 700 — spread 600 — infected 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| invasive<br>detraction |                                                                   | 700 - spread   - sprea |
| extremely<br>invasive  | 500spread                                                         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Demonstration

Jupyter Notebook + Gephi



#### Conclusion

- Robustness of Dynamic Networks
- Considering Spreading as the measure
- Random Networks (Erdos-Renyi model)
  - tolerant to random and targeted failures
  - vulnerable to only the most invasive
- Scale-Free Networks (Barabasi-Albert model)
  - tolerant to random and small-scale targeted failures
  - some vulnerability in invasive attacks
  - hidden strength in low-degree nodes?

#### What's Next?

- Enhance Simulation Models
  - order of actions, specify using rates
- Longer Running Simulations
- Different Models
  - cascading, link-centric
- Different Spreading Phenomena
  - reinforcement
  - resilience: vaccination recovery
- Richer Tracking of Dynamic Processes
- Visualization in Cubix

# Thank you!

