Линии второго порядка. Эллипс: определение, уравнение, свойства, рисунок, эксцентриситет, директрисы. Замечания.

<u>Эллипс</u> — геометрическое место точек, сумма расстояний от каждой из которых до двух точек той же плоскости F_1 и $F_{2,}$ называемых фокусами, есть величина постоянная, равная 2а.

Основные формулы:

*
$$r_1 + r_2 = 2a$$

* $r_1 = | \longrightarrow_{F1M} | = \sqrt{(x+c)^2 + y^2}$

* $r_2 = | \longrightarrow_{F2M} | = \sqrt{(x-c)^2 + y^2}$

* $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ – каноническое уравнение эллипса

 $A_{1,2}$ и $B_{1,2}$ — вершины эллипса (точки соответствуют точкам $\pm a$, $\pm b$) $|\xrightarrow{F1F2}|=2c$

Расстояние от F_1 до F_2 называется фокальным расстоянием $c^2 - a^2 - b^2$

$$\varepsilon = \frac{2c}{2a} = \frac{c}{a}$$
 – эксцентриситет эллипса

$$r_1 = a + \varepsilon x$$

$$r_2 = a - \varepsilon x$$

<u>Эксцентриситет</u> характеризует форму эллипса. Чем больше эксцентриситет, тем эллипс более сплющен к Ох. <u>Директрисами</u> эллипса называют прямые, параллельные малой оси эллипса и отстоящие от нее на расстояние, равное $\frac{a}{\epsilon}$

Уравнения директрис: $x = -\frac{a}{\epsilon}$, $x = \frac{a}{\epsilon}$