

教师 邱松强

目录

无约束优化问 题的最优性条

最速下降法

....

共轭方向法和

拟Newton 湯

实用优化算法 第三章 无约束最优化方法

教师 邱松强

中国矿业大学 数学学院

September 8, 2021

- 1 无约束优化问题的最优性 条件
- 2 最速下降法

- 3 Newton 法
- 4 共轭方向法和共轭梯度法
- **⑤** 拟Newton 法

教师 邱松弘

目言

无约束优化问 题的最优性条 件

最速下降法

共轭方向法和 共轭梯度法

拟Newton 法

本章介绍无约束优化问题

 $\min_{\boldsymbol{x} \in R^n} \ f(\boldsymbol{x})$

的计算方法.

- 本章介绍的方法基本都属于下降算法;
- 本章介绍算法的区别是选取的搜索方向不同.

教师 邱松强

日3

左约束优化问 题的最优性条 件

最速下降法

取还下件,

共轭方向法和 共轭梯度法

拟Newton a

- 无约束优化问题的最优性条件
- ② 最速下降法
- 3 Newton 法
- 4 共轭方向法和共轭梯度法
- 5 拟Newton 法

一元函数的最优性条件

实用机化算法 第三章 无约 束最优化方法

教师 邱松弘

目录

见的最优性条件 件

最速下降法

共轭方向法和 共轭梯度法

拟Newton 法

回顾

性质1

设 $\varphi(\alpha)$ 为定义在R 上的一元函数, 则

- (1) 若 α^* 为 $\varphi(\alpha)$ 的局部极小点, 则 $\varphi'(x^*) = 0$;
- (2) 若 $\varphi'(\alpha^*)=0, \ \varphi''(\alpha^*)>0, \ 则\alpha^* \ 为\varphi(\alpha)$ 的严格局部极小点:
- (3) 若 α^* 为 $\varphi(\alpha)$ 的严格局部极小点, 则 $\varphi'(\alpha^*)=0, \varphi''(\alpha^*)\geq 0.$

教师 邱松强

日习

元约米优化内 题的最优性条 件

最速下降法

双近11年12

共轭方向法和

WNowton 3

定理1 (一阶必要条件)

 $\ddot{x}^* \ \, \lambda f(x)$ 的局部极小点,且在 x^* 的某邻域内f(x) 具有一阶连续偏导数,则

$$\nabla f(\boldsymbol{x}^*) = 0.$$

注:

- 满足上面条件的点称为驻点、驻点有三种类型:极小点、极大点和鞍点。
- 鞍点: 沿某些方向是极大点, 沿另一些方向是极大点.

鞍点

实用优化算法 第三章 无约 束最优化方法

教师 邱松亞

目录

无约束优化户 题的最优性系

最速下降沒

Newton

共轭方向法。

初Newton 3

如图

图: 鞍点

教师 邱松弘

目录

无约束优化问 题的最优性条

已法一股北

取逐广降法

共轭方向法和

共轭梯度法

拟Newton 法

例2.1

证明函数

$$f(\mathbf{x}) = 8x_1 + 12x_2 + x_1^2 - 2x_2^2$$

有唯一的稳定点, 且该点既非极小点也非极大点, 而是一个鞍点. 画出f(x) 的等高线图.

【解:】

$$\nabla f(\boldsymbol{x}) = \begin{pmatrix} 8 + 2x_1 \\ 12 - 4x_2 \end{pmatrix}.$$

令 $\nabla f(\mathbf{x}) = 0$, 得唯一稳定点 $\mathbf{x}^* = (-4,3)^T$. 又

$$G = \begin{pmatrix} 2 & \\ & -4 \end{pmatrix}$$
.

故而 x^* 是鞍点.

数加压 形状形

目录

无约束优化| 题的最优性

最速下降;

Newton

共轭方向法和 共轭梯度法

拟Newton 法

该函数的等高线图如下图所示

最优性条件

实用优化异法 第三章 无约 束最优化方法

教师 邱松强

日水

题的最优性条 件

最速下降法

Newton 法 共轭方向法和

共轭梯度法

叔Newton â

定理2 (二阶充分条件)

 $\ddot{x}^* \ \, ext{为} f(x)$ 的局部极小点,且在 $x^* \ \,$ 的某邻域内 $f(x) \ \,$ 具有二阶连续偏导数,则

$$\nabla f(\boldsymbol{x}^*) = 0, \ G^* = \nabla_{\boldsymbol{x}\boldsymbol{x}} f(\boldsymbol{x}^*) \mathbb{L} \boldsymbol{\hat{\chi}},$$

则 x^* 为无约束优化问题的严格局部极小点.

注

- 对于驻点 x^* , 如果又有 G^* 正定, 则 x^* 为局部极小点;
- 对于驻点 x^* , 如果又有 G^* 负定, 则 x^* 为局部极大点;

最优性条件

实用优化算法 第三章 无约 束最优化方法

教师 邱松亞

目习

件

取逐 广) ()

Newton >

共轭方向法和 共轭梯度法

拟Newton 注

定理3 (二阶必要条件)

 $\ddot{x}^* \to f(x)$ 的局部极小点, 且在 x^* 的某邻域内f(x) 有二阶连续偏导数, 则

$$\nabla f(\mathbf{x}^*) = 0, \ G^* = \nabla_{\mathbf{x}\mathbf{x}} f(\mathbf{x}^*)$$
半正定.

教帅 邱松亞

国家

无约束优化户 题的最优性系

最速下降

Mourton

共轭方向法和 共轭梯度法

拟Newton 法

定理4 (凸函数的最优性条件)

设f(x) 在 R^n 上是凸函数且有一阶连续偏导数,则 x^* 为f(x) 的整体极小点的**充要条件** 是 $\nabla f(x^*) = 0$.

教师 邱松弘

目录

无约束优化的 题的最优性的 件

品油工陈注

Newton ?

共轭方向法和 共轭梯度法

拟Newton a

P.128. 3.1,3.4

教师 邱松弘

工业占出

无约束优化户 题的最优性条件

最速下降流

NT 2

共轭方向法和 共轭梯度法

拟Newton a

① 无约束优化问题的最优性条件

② 最速下降法

- 3 Newton 法
- 4 共轭方向法和共轭梯度法
- 5 拟Newton 法

搜索方向

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目录

无约束优化问 题的最优性条 件

最速下降法

拟Newton

要点: 沿下降最快的速度的方向搜索.

由Taylor 公式

$$f(\boldsymbol{x}_k + \alpha d_k) = f(\boldsymbol{x}_k) + \alpha \nabla f_k^T d_k + o(\alpha ||d_k||).$$

由于

$$\nabla f_k^T d_k = -\|\nabla f_k\| \|d_k\| \cos \theta,$$

其中, θ 为 d_k 与 $-\nabla f_k$ 的夹角. 当 α , $\|d_k\|$ 固定时, $\cos\theta = 1$ 使得 $\nabla f_k^T d_k$ 最小. 也就是说, 当 $d_k = -\nabla f_k (\theta = 0)$ 时,即负梯度方向, f(x) 下降速度最快.

教师 邱松弘

目录

无约束优化问题的最优性条:

最速下降法

Newton

共轭方向法: 共轭梯度法

拟Newton a

如下图所示:

教师 邱松强

无约束优化问 题的最优性条

最速下降法

共轭方向法和 共轭梯度法

拟Newton 法

最速下降法

给定控制误差 $\epsilon > 0$.

步 1 取初始点 x_0 , 令k=0.

步 2 计算 $\nabla f_k = \nabla f(\boldsymbol{x}_k)$.

步 3 若 $\|\nabla f_k\| \le \epsilon$, 则令 $\mathbf{x}^* = \mathbf{x}_k$; 否则, 令 $d_k = -\nabla f_k$, 由一维搜索求步长 α_k , 使得

$$f(\boldsymbol{x}_k + \alpha_k d_k) = \min_{\alpha > 0} f(\boldsymbol{x}_k + \alpha d_k).$$

步 4 令 $x_{k+1} = x_k + \alpha_k d_k$, k = k+1, 转步2.

教师 邱松强

目

无约束优化问 题的最优性条 件

RC 1 14 12

共轭方向法和 共轭梯度法

拟Newton 法

例3.1

用最速下降法求解

$$\min \ f(\mathbf{x}) = x_1^2 + x_2^2,$$

设初始点为 $(5,3)^T$.

【解: 】记 $x_0 = (5,3)^T$. 则

$$\nabla f(\boldsymbol{x}_0) = \begin{pmatrix} 2\boldsymbol{x}_0^{(1)} \\ 2\boldsymbol{x}_0^{(2)} \end{pmatrix} = \begin{pmatrix} 10 \\ 6 \end{pmatrix}.$$

$$d_0 = -\nabla f(\boldsymbol{x}_0) = \begin{pmatrix} -10 \\ -6 \end{pmatrix}, \boldsymbol{x}_0 + \alpha d_0 = \begin{pmatrix} 5 - 10\alpha \\ 3 - 6\alpha \end{pmatrix}.$$

于是

教师 邱松弘

目言

无约束优化问 题的最优性条 件

最速下降法

Newton

共轭方向法和 共轭梯度法

拟Newton 法

$$\varphi(\alpha) = f(x_0 + \alpha d_0)$$

= $(5 - 10\alpha)^2 + (3 - 6\alpha)^2$
= $136\alpha^2 - 136\alpha + 34$.

令
$$\varphi'(\alpha) = 0$$
, 得 $\alpha_0 = \frac{1}{2}$. 于是

$$\mathbf{x}_1 = \mathbf{x}_0 + \alpha_0 d_0 = (0, 0)^T.$$

显然, x_1 是问题的解.

例题

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目录

无约束优化问 题的最优性条

最速下降沒

Newton

共轭方向法; 共轭梯度法

拟Newton à

如下图所示

教师 邱松弘

自习

无约束优化问 题的最优性条 件

最速下降法

Newton :

共轭方向法和 共轭梯度法

拟Newton 法

例3.2

用最速下降法求解

$$\min f(\mathbf{x}) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2,$$

设初始点为 $(9,1)^T$.

【解:】

$$g(\boldsymbol{x}) = \nabla f(\boldsymbol{x}) = \begin{pmatrix} x_1 \\ 9x_2 \end{pmatrix}, G(\boldsymbol{x}) = \nabla_{\boldsymbol{x}\boldsymbol{x}} f(\boldsymbol{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix}.$$

可以证明,如果f(x)是正定二次函数

则由精确一维搜索

确定的步长 (4) 为

$$\alpha_k = -\frac{g_k^T d_k}{d_k^T G d_k}.$$

教师 邱松强

目

无约束优化问 题的最优性条 件

最速下降

Newton:

共轭方向法和 共轭梯度法

拟Newton &

故对正定二次目标函数,最速下降法的迭代公式为:

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - rac{g_k^T g_k}{g_k^T G g_k} g_k.$$

由于 $g_0 = g(x_0) = (9,9)^T$, 所以由上式可得

$$x_1 = \begin{pmatrix} 9 \\ 1 \end{pmatrix} - \frac{\begin{pmatrix} 9 & 9 \end{pmatrix} \begin{pmatrix} 9 \\ 9 \end{pmatrix}}{\begin{pmatrix} 9 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} 9 \\ 9 \end{pmatrix}} = \begin{pmatrix} 7.2 \\ -0.8 \end{pmatrix}.$$

教师 邱松强

目习

无约束优化问 题的最优性条 件

敢逐下降法

. .

共轭方向法和 共轭梯度法

& Nowton

类似地计算下去, 可用归纳法证明, 最速下降法产生如下点列

$$\mathbf{x}_k = \begin{pmatrix} 9 \\ (-1)^k \end{pmatrix} 0.8^k, \ k = 1, 2, \cdots$$

显然 $x_k \to x^* = (0,0)^T$, 且

$$\frac{\|\boldsymbol{x}_{k+1} - \boldsymbol{x}^*\|}{\|\boldsymbol{x}_k - \boldsymbol{x}^*\|} = 0.8.$$

可见对所给的目标函数,算法是收敛的,收敛速度是线性的.

粉脯 配松蓝

自有

无约束优化问 题的最优性条

最速下降2

Nowton

共轭方向法和

拟Newton a

迭代点序列如下图所示

收敛性

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

日羽

无约束优化问 题的最优性条 件

最速下降法

共轭梯度法

拟Newton 3

Zigzag(锯齿)现象

由步长 α_k 的定义知,

$$\varphi'(\alpha_k) = \frac{d}{d\alpha} (f(\boldsymbol{x}_k + \alpha_k d_k)) = \nabla f(\boldsymbol{x}_k + \alpha_k d_k)^T d_k = 0.$$

在最速下降法中, $d_k = -\nabla f_k$,

$$d_{k+1} = -\nabla f(\boldsymbol{x}_{k+1}) = -\nabla f(\boldsymbol{x}_k + \alpha_k d_k).$$

则 $d_{k+1}^T d_k = 0$. 也就是说, 最速下降法相邻的两个搜索方向互相垂直,

于是整个迭代序列产生了Zigzag(锯齿)现象.

教师 邱松弘

目:

无约束优化问 题的最优性条 件

最速下降法

Newton

共轭方向法和 共轭梯度法

拟Newton 法

定理5 (整体收敛性或全局收敛性)

设f(x) 具有一阶连续函数偏导数, 给定 $x_0 \in R^n$, 假定水平集 $L = \{x \in R^n \mid f(x) \le f(x_0)\}$ 有界, 令 $\{x_k\}$ 为由最速下降法产生的点列, 则或者

- (i) 对某个 k_0 , $\nabla f(x_{k_0}) = 0$; 或者
- (ii) 当 $k \to \infty$ 时, $\nabla f_k \to 0$.

收敛速度

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

无约束优化问 题的最优性条

最速下降法

共轭方向法和

拟Newton 法

定理6 (收敛速度)

设 $f(x) = \frac{1}{2}x^TGx$, 其中, G 为正定矩阵. 用 λ_1 , λ_n 表示G 的最小与最大特征值, 则由最速下降法产生的点列 $\{x_k\}$ 满足

$$f(\boldsymbol{x}_{k+1}) \leq \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2 f(\boldsymbol{x}_k), \ k = 0, 1, 2, \cdots,$$
$$\|\boldsymbol{x}_k\| \leq \sqrt{\frac{\lambda_n}{\lambda_1}} \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^k \|\boldsymbol{x}_0\|, \ k = 0, 1, 2, \cdots$$

即:线性收敛.

教师 邱松弘

目录 无约束优化|

无约束优化问 题的最优性条 件

最速下降法

共轭方向法和 共轭梯度法

拟Newton 沒

定理6 说明, 对于二次函数, 最速下降法至少是线性收敛的, 其收敛比 $\beta \leq \frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}$. 所以当G 的特征值比较分散, 即 $\lambda_n \gg \lambda_1$ 时, 收敛比接近1, 收敛速度很慢; 当G 的特征值比较集中, 即 $\lambda_n \approx \lambda_1$ 时, 收敛比接近于0, 从而收敛速度接近超线性收敛.

例3.3

用最速下降法求Rosenbrock 函数

$$f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

的最小值,初始点为 $x_0 = (0,0)^T$.

【解:】

$$\nabla f(\mathbf{x}) = \begin{pmatrix} -400(x_2 - x_1^2)x_1 - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{pmatrix},$$

$$f_0 = f(0,0) = 1, \nabla f_0 = (-2,0)^T.$$

教师 邱松强

目章

无约束优化问 题的最优性条 件

最速下降

Newton :

共轭方向法和 共轭梯度法

拟Newton は

 $d_0 = (2,0)^T$. 对于任意的 $\alpha > 0$,

$$f(\mathbf{x}_0 + \alpha d_0) = f(2\alpha, 0) = 1600\alpha^4 + 4\alpha^2 - 4\alpha + 1.$$

$$6400\alpha^3 + 8\alpha - 4 = 0.$$

其近似解为 $\alpha_0 \approx 0.0806$.

$$\mathbf{x}_1 = \mathbf{x}_0 + \alpha_0 d_0 = (0.1612, 0)^T.$$

.

教师 邱松亞

目录

无约束优化问 题的最优性条 件

最速下降法

共轭方向法和 共轭梯度法

W Nowton

例3.4 (思考题(固定步长梯度法))

求严格凸二次函数

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T G \boldsymbol{x} + b^T \boldsymbol{x} + c$$

的最小值点. 若以 $d_k = -\nabla f_k$ 为搜索方向, 且对所有k, $\alpha_k \equiv \alpha \in (0, +\infty)$, 相应的迭代公式为

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha \nabla f_k.$$

- ① 找几个正定二次函数, 看能否选一个合适的 α 使得 $\{x_k\}$ 收敛到f 的最小值点?
- ② 和最速下降法比较一下.
- ③ 当 α 满足什么条件时, $\{x_k\}$ 收敛到f 的最小值点?

教师 邱松弘

目习

无约束优化问 题的最优性条 件

最速下降

Newton 2

共轭方向法和 共轭梯度法

拟Newton %

P.129. 3.5,3.6.

教师 邱松亞

无约束优化

元约本优化内 题的最优性条 件

最速下降法

共轭方向法和

拟Newton 法

① 无约束优化问题的最优性条件

2 最速下降法

- 3 Newton 法
- 4 共轭方向法和共轭梯度法
- 5 拟Newton 法

教帅 邱松弘

目习

无约束优化产 题的最优性务 件

最速下降

共轭方向法和 共轭梯度法

拟Newton

最速下降法的优点

- 原理简单, 容易实现;
- 每次迭代的计算量小.

缺点

• 收敛速度慢(有锯齿现象).

Newton 法: 启发1

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目言

无约束优化问 题的最优性条

最速下降

Nowton

共轭方向法和

拟Newton a

最速下降法用一次迭代就得到例3.1 的解, 但即使是像例3.2 的二次函数, 最速下降法的收敛速度也是非常慢.

能不能设计一个算法, 使得它用一次迭代就能得到(凸)二次函数的最小值呢?

|实用优化算法 第三章 无约 |束最优化方法

教师 邱松弘

目录

无约束优化问 题的最优性条

最速下降流

. .

共轭方向法和 共轭梯度法

拟Newton 法

目标:一步求凸二次函数的最小值

最小化凸二次函数:

$$\min \ f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T G \boldsymbol{x} + b^T \boldsymbol{x} + c,$$

其中G 是正定矩阵. 任取一个初始点 x_0 , 找一个搜索方向 d_0 , 使得我们可以仅用一次线性搜索就得到问题的解(最好连线性搜索都不用).

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目录

无约束优化户 题的最优性务

最速下降流

Newton

共轭方向法和 共轭梯度法

叔Newton 8

如图所示

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

日来

无约束优化产 题的最优性系 件

敢速下降法

共轭方向法和 共轭梯度法

拟Newton %

二次函数f(x) 的梯度和Hesse 矩阵分别是

$$\nabla f(\mathbf{x}) = G\mathbf{x} + b, \ \nabla^2 f(\mathbf{x}) = G.$$

要使

$$\nabla f(\boldsymbol{x}_0 + d_0) = 0,$$

则必须有

$$G(\mathbf{x}_0 + d_0) + b = 0 \Rightarrow d_0 = -G^{-1}(G\mathbf{x}_0 + b).$$

也就是

$$d_0 = -(\nabla^2 f(\boldsymbol{x}_0))^{-1} \nabla f(\boldsymbol{x}_0).$$

此为Newton 方向.

教师 邱松弘

目录 无约束优化户 550 是优州

题的最优性条件

Newton

共轭方向法和 共轭梯度法

拟Newton a

Newton 法: 动机2

最速下降法只用到了目标函数的一阶导数(梯度)信息.

$$f(\boldsymbol{x}) pprox f_k + \nabla f_k^T (\boldsymbol{x} - \boldsymbol{x}_k) \overset{d = \boldsymbol{x} - \boldsymbol{x}_k}{=} f_k + \nabla f_k^T d$$

启发

• 如果在迭代方法中引入高阶导数,其效率可能会提高.

Newton 法

- 同时使用一阶导数和二阶导数来确定搜索方向;
- 当初始点接近目标函数的极小点时, Newton 法的效率要 远高于最速下降法.

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

目录

无约束优化问 题的最优性条 件

最速下降

Newton

共轭方向法和 共轭梯度法

叔Newton i

目标函数的二次近似

$$f(\boldsymbol{x}) pprox f_k + \nabla f_k^T(\boldsymbol{x} - \boldsymbol{x}_k) + \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}_k)^T G_k(\boldsymbol{x} - \boldsymbol{x}_k) \triangleq q_k(\boldsymbol{x})$$

其中, G_k 为Hesse 矩阵.

如下图所示

图:目标函数的二次型近似函数

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

且习

无约束优化问 题的最优性条 件

最速下降法

共轭方向法和 共轭梯度法

拟Newton 法

若 G_k 正定,则 $q_k(x)$ 有唯一的极小点.由一阶必要条件知, x_{k+1} 满足

$$\nabla q_k(\boldsymbol{x}_{k+1}) = 0.$$

也就是

$$G_k(\boldsymbol{x}_{k+1} - \boldsymbol{x}_k) + \nabla f_k = 0.$$

解得

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - G_k^{-1} \nabla f_k.$$

这就是Newton 迭代公式.

/ N. 対X 1/6 FG / J. /2

无约束优化户 题的最优性务

最速下降

Newton 8

共轭方向法和 共轭梯度法

拟Newton 法

Newton 法

给定误差控制参数 $\epsilon > 0$.

步 1 取初始点 x_0 , 令k=0.

步 2 计算 ∇f_k .

 $\Rightarrow 3$ 若 $\|\nabla f_k\| \le \epsilon$, 则令 $\mathbf{x}^* = \mathbf{x}_k$, 停; 否则计算 G_k , 求解

$$G_k d_k = -\nabla f_k$$

得 d_k .

步 4 令 $x_{k+1} = x_k + d_k$, k = k+1, 转步2.

教师 邱松弘

目习

无约束优化问 题的最优性条 件

最速下降

Newton 法

共轭方向法和 共轭梯度法

叔Newton 法

例4.1

用Newton 法求解

min
$$f(\mathbf{x}) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$$

【解:】本题可取任意初始点,这里取 $x_0 = (9,9)^T$. 由 $\nabla f(x) = \begin{pmatrix} x_1 \\ 9x_2 \end{pmatrix}$, $G(x) = \begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix}$ 有

$$\mathbf{x}_1 = \mathbf{x}_0 - G_0^{-1} \nabla f_0$$

$$= \begin{pmatrix} 9 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix}^{-1} \begin{pmatrix} 9 \\ 9 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \mathbf{x}^*.$$

第二章 元约 束最优化方法

教师 邱松强

日 求 工 从 志 *让* 川

无约束优化口 题的最优性条件

最速下降:

Newton 法

共轭方向法和 共轭梯度法

拟Newton 法

例4.2

用Newton法求Rosenbrock 函数

$$f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

的最小值,初始点为 $x_0 = (0,0)^T$.

【解:】该函数的梯度为

$$\nabla f = \begin{pmatrix} -400 \left(x_2 - x_1^2 \right) x_1 - 2 \left(1 - x_1 \right) \\ 200 \left(x_2 - x_1^2 \right) \end{pmatrix},$$

Hesse 矩阵为

$$G = \begin{pmatrix} 1200x_1^2 - 400x_2 + 2 & -400x_1 \\ -400x_1 & 200 \end{pmatrix}.$$

教师 邱松弘

目习

无约束优化户 题的最优性条 件

ロルーかり

共轭方向法和 共轭梯度法

拟Newton 法

在初始点处

$$\nabla f_0 = \begin{pmatrix} -2\\0 \end{pmatrix}, \ G_0 = \begin{pmatrix} 2&0\\0&200 \end{pmatrix}.$$

则

$$d_0 = -G_0^{-1} \nabla f_0 = -\begin{pmatrix} 1/2 & 0 \\ 0 & 1/200 \end{pmatrix} \begin{pmatrix} -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

于是

$$\boldsymbol{x}_1 = \boldsymbol{x}_0 + d_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

因 $\nabla f_1 = (400, -200)^T \neq 0$, 继续迭代.

第三章 无约束最优化方法

 $在x_1$ 处

$$\nabla f_1 = \begin{pmatrix} 400 \\ -200 \end{pmatrix}, G_1 = \begin{pmatrix} 1202 & -400 \\ -400 & 200 \end{pmatrix}.$$

则

$$d_1 = -G_1^{-1} \nabla f_1 = -\frac{1}{80400} \begin{pmatrix} 200 & 400 \\ 400 & 1202 \end{pmatrix} \begin{pmatrix} 400 \\ -200 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

于是

$$oldsymbol{x}_2 = oldsymbol{x}_1 + d_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

由于 $\nabla f_2 = (0,0)^T$, 算法终止.

数值实验: Rosenbrock

第三章 无约束最优化方法

教师 邱松强

目

无约束优化问 题的最优性条 件

最速下降

Newton 法

共轭方向法和 共轭梯度法

拟Newton 法

例4.3

问题

min
$$f(\mathbf{x}) = (x_1 - 2)^4 + (x_1 - 2)^2 x_2^2 + (x_2 + 1)^2$$

具有极小点 $(2,-1)^T$. 若取初始点为 $(1,1)^T$, 用Newton 法求解此问题.

【解:】计算

$$\nabla f(\mathbf{x}) = \begin{pmatrix} 4(x_1 - 2)^3 + 2x_2^2(x_1 - 2) \\ 2x_2 + 2x_2(x_1 - 2)^2 + 2 \end{pmatrix}$$

$$G(\mathbf{x}) = \begin{pmatrix} 12(x_1 - 2)^2 + 2x_2^2 & 4x_2(x_1 - 2) \\ 4x_2(x_1 - 2) & 2(x_1 - 2)^2 + 2 \end{pmatrix}$$

在初始点 $(1,1)^T$ 处,

$$f_0 = 6, \ \nabla f_0 = \begin{pmatrix} -6 \\ 6 \end{pmatrix}, \ G_0 = \begin{pmatrix} 14 & -4 \\ -4 & 4 \end{pmatrix}.$$

由Newton 迭代公式知

$$x_1 = x_0 - G_0^{-1} \nabla f_0 = \begin{pmatrix} 1 \\ -0.5 \end{pmatrix}.$$

此时
$$\nabla f_1 = \begin{pmatrix} -4.5 \\ 0 \end{pmatrix}$$
.

教师 邱松弘

目录

无约束优化问 题的最优性条 件

最速下降沒

Newton 8

共轭方向法和 共轭梯度法

拟Newton

继续迭代, 得如下迭代过程

k	$oldsymbol{x}_k$	$oxed{\ oldsymbol{x}_k - oldsymbol{x}^*\ }$
0	$(1,1)^T$	2.0
1	$(1, -0.5)^T$	1.49
2	$(1.39130, -0.69565)^T$	5.23×10^{-1}
3	$(1.74594, -0.94880)^T$	1.01×10^{-1}
4	$(1.98628, -1.04821)^T$	2.55×10^{-3}
5	$(1.99873, -1.00017)^T$	3.32×10^{-6}
6	$(1.9999996, -1.0000016)^T$	2.81×10^{-12}

数值实验: Prob2

收敛性

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

无约束优化问 题的最优性条

件

Newton 法 土轭方向法

共轭为同法和 共轭梯度法 却Nowton 3

- 对于二次函数, Newton 法只需要一次迭代就可以得到 极小点.
- 对于一般函数

定理7 (Newton 法的收敛性)

设f(x) 是某一开域内的三阶连续可微函数, 且它在该开域内有极小点 x^* , 设 $G^*=G(x^*)$ 正定, 则当 x_0 与 x^* 充分接近时, 对一切k, Newton 法有定义, 且当 $\{x_k\}$ 为无穷点列时, $\{x_k\}$ 二阶收敛于 x^* , 即 $\|x_k-x^*\|\to 0$ 且

$$\|x_{k+1} - x^*\| = O(\|x - x^*\|^2).$$

教师 邱松强

目录

无约束优化问 题的最优性条 件

最速下降;

Newton ≵

共轭方向法和

#/Nowton

例4.4

考虑问题

$$\min f(\mathbf{x}) = 3x_1^2 + 3x_2^2 - x_1^2 x_2.$$

分别从初始点 $(1.5,1.5)^T$, $(-2,4)^T$, $(0,3)^T$ 出发,用Newton 法 求解该问题.

【解:】f(x)的一,二阶导数分别为

$$g(\boldsymbol{x}) = \begin{pmatrix} 6x_1 - 2x_1x_2, 6x_2 - x_1^2 \end{pmatrix}^{\mathrm{T}},$$

$$G(\boldsymbol{x}) = \begin{bmatrix} 6 - 2x_2 & -2x_1 \\ -2x_1 & 6 \end{bmatrix}$$

教师 邱松强

目录

无约束优化问 题的最优性条

最速下降法

Newton 法

共轭方向法和 共轭梯度法

叔Newton 8

f(x) 有三个稳定点(驻点): 极小点 $(0,0)^T$, 鞍点 $(3\sqrt{2},3)^T$ 和 $(-3\sqrt{2},3)^T$.

在这三个点处的Hesse矩阵分别为

$$G_1 = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}, \quad G_2 = \begin{bmatrix} 0 & -6\sqrt{2} \\ -6\sqrt{2} & 6 \end{bmatrix}$$
$$G_3 = \begin{bmatrix} 0 & 6\sqrt{2} \\ 6\sqrt{2} & 6 \end{bmatrix}$$

- 初始点 $x_0 = (1.5, 1.5)^T$, 收敛到极小点 $(0, 0)^T$.
- 初始点 $x_0 = (-2,4)^T$, 收敛到鞍点 $(-3\sqrt{2},3)^T$.
- 初始点 $x_0 = (0,3)^T$, 这时 $G(x_0)$ 奇异, 方法失败.

数值实验: Prob 9.

教师 邱松强

目章

无约束优化问 题的最优性条 件

最速下降:

Newton 法

共轭方向法和 共轭梯度法

拟Newton 法

例4.5 (课后习题3.8)

考虑函数

$$f(\mathbf{x}) = 2x_1^2 + x_2^2 - 2x_1x_2 + 2x_1^3 + x_1^4.$$

找出 $x^* = 0$ 的最大开球B, 使得G(x) 在其中正定. 对此球中怎样的点 x_0 (其中 $x_0^{(1)} = x_0^{(2)}$), Newton 法收敛到 x^* .

【解:】

$$\nabla f(\mathbf{x}) = \begin{pmatrix} 4x_1 - 2x_2 + 6x_1^2 + 4x_1^3 \\ 2x_2 - 2x_1 \end{pmatrix},$$
$$G(\mathbf{x}) = \begin{pmatrix} 4 + 12x_1 + 12x_1^2 & -2 \\ -2 & 2 \end{pmatrix}.$$

教师 邱松弘

目前

无约束优化问 题的最优性条 件

4-----

Newton 3

共轭方向法和 共轭梯度法

拟Newton 法

Hesse 矩阵G(x) 正定当且仅当

$$4+12x_1+12x_1^2>0$$
, (该式恒成立)
 $\det(G(\mathbf{x}))=4+24x_1+24x_1^2>0$.

解得

$$x_1 > \frac{-3 + \sqrt{3}}{6} \not \leq x_1 < \frac{-3 - \sqrt{3}}{6}.$$

令 $r = \frac{-3+\sqrt{3}}{6}$. 则当x 位于如下开球

$$B(x^*, r) = \{x \mid ||x - x^*|| < r\}$$

时, G(x) 正定.

教师 邱松强

目录

无约束优化问 题的最优性条 件

最速下降法

Newton ?

共轭方向法和 共轭梯度法

拟Newton 法

为简便起见, 记 $x = x_0$. 当 $x_1 = x_2$ 时,

$$\nabla f = \begin{pmatrix} 2x_1 + 6x_1^2 + 4x_1^3 \\ 0 \end{pmatrix},$$

$$G^{-1} = \frac{1}{4 + 24x_1 + 24x_1^2} \begin{pmatrix} 2 & 2 \\ 2 & 4 + 12x_1 + 12x_1^2 \end{pmatrix},$$

$$-G^{-1}\nabla f = -\frac{1}{4 + 24x_1 + 24x_1^2} \begin{pmatrix} 4x_1 + 12x_1^2 + 8x_1^3 \\ 4x_1 + 12x_1^2 + 8x_1^3 \end{pmatrix}.$$

教师 邱松弘

目录

无约束优化问 题的最优性条 件

最速下降法

Newton

共轭方向法和 共轭梯度法

叔Newton 8

所以下一个迭代点为

$$\mathbf{x}^{+} = \mathbf{x} - G^{-1}\nabla f = \begin{pmatrix} \frac{12x_{1}^{2} + 16x_{1}^{3}}{4 + 24x_{1} + 24x_{1}^{2}} \\ \frac{12x_{1}^{2} + 16x_{1}^{3}}{4 + 24x_{1} + 24x_{1}^{2}} \end{pmatrix}$$
$$= \frac{12x_{1} + 16x_{1}^{2}}{4 + 24x_{1} + 24x_{1}^{2}} \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix}$$

所以当

$$\left| \frac{12x_1 + 16x_1^2}{4 + 24x_1 + 24x_1^2} \right| < 1 \tag{1}$$

时, 可使迭代点列收敛到 x^* .

教师 邱松亞

国章

无约束优化问 题的最优性条 件

最速下降法

取逐了浑法

共轭方向法和 共轭梯度法

拟Newton 沒

求解(1), 结合 $B(\mathbf{x}^*,r)$ 可知当初始点 $\mathbf{x}_0(\mathbf{x}_0^{(1)}=\mathbf{x}_0^{(2)}=x_1)$ 满足

$$|\boldsymbol{x}_0^{(1)}| < \frac{-9 + \sqrt{41}}{20}$$

时, 迭代点列收敛到 x^* .

数值实验: Prob 3.

教师 邱松强

目录 无约束优化户 题的最优性 4

. . . .

共轭方向法和

拟Newton %

Newton 法的优缺点

优点

- 如果G* 正定且初始点合适, 算法是二阶收敛的;
- 对于二次函数, 迭代一次就可得到极小点,

缺点

- 对多数问题并不是整体收敛(或全局收敛)的;
- 在每次迭代中需要计算 G_k ;
- 每次迭代需要求解线性方程组 $G_k d_k = -\nabla f_k$;
- 收敛于鞍点或极大点的可能性并不小.

教师 邱松亞

目言

无约束优化问 题的最优性条 件

最速下降

Newton 8

共轭方向法和 共轭梯度法

拟Newton a

定理8

设 $\{x_k\}$ 为利用Newton 法求解 $min\ f(x)$ 时得到迭代点序列. 如果 $G_k = \nabla_{xx} f(x_k)$ 正定且 $\nabla f_k \neq 0$, 则Newton 方向

$$d_k = -G_k^{-1} \nabla f_k$$

是一个下降方向.

对Newton 法的改进

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

口水 无约束优化户

件

敢逐下降:

Newton 2

共轭方向法和 共轭梯度法

拟Newton 法

改进1: 阻尼Newton 法

当得到Newton 方向 d_k 后, 沿 d_k 进行一维搜索求得步长 α_k , 例如

• 用精确搜索确定 α_k , 使其满足

$$f(\boldsymbol{x}_k + \alpha_k d_k) = \min_{\alpha \ge 0} f(\boldsymbol{x}_k + \alpha d_k).$$

或者

• 用非精确搜索 α_k , 使其满足Wolfe 准则或Armijo 准则.

这种改进可以克服第一和第四个缺点.

阻尼Newton 法

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目录

无约束优化问 题的最优性条 件

取迷卜降江

共轭方向法和 共轭梯度法

拟Newton &

阻尼Newton 法(使用精确搜索)

给定误差控制参数 $\epsilon > 0$.

步 1 取初始点 x_0 , 令k=0.

步 2 计算 ∇f_k . 若 $\|\nabla f_k\| \le \epsilon$, 则令 $\mathbf{x}^* = \mathbf{x}_k$, 停; 否则计算 G_k , 求解

$$G_k d_k = -\nabla f_k$$

得 d_k .

步 3 用精确搜索确定 α_k , 使其满足

$$f(\boldsymbol{x}_k + \alpha_k d_k) = \min_{\alpha > 0} f(\boldsymbol{x}_k + \alpha d_k).$$

阻尼Newton 法

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

目录

无约束优化问 题的最优性条 件

最速下降法

共轭方向法和

阻尼Newton 法(使用Armijo 非精确搜索)

给定误差控制参数 $\epsilon > 0$.

步 1 取参数 $0 < \rho, \beta < 1$ 和初始点 $x_0, \diamond k = 0$.

步 2 计算 ∇f_k . 若 $\|\nabla f_k\| \le \epsilon$, 则令 $\mathbf{x}^* = \mathbf{x}_k$, 停; 否则计算 G_k , 求解

$$G_k d_k = -\nabla f_k$$

 $得d_k$. 令m=0.

步3 若

$$f(\boldsymbol{x}_k + \beta^m d_k) \le f_k + \rho \beta^m \nabla f_k^T d_k,$$

步 4 令
$$x_{k+1} = x_k + \alpha_k d_k$$
, $k = k+1$, 转步2.

第三章 无约束最优化方法

教师 邱松强

目录

无约束优化问 题的最优性条 件

最速下降沒

Newton 法

共轭方向法和 共轭梯度法

拟Newton 法

例4.6

求解

$$\min \ \frac{1}{2} \boldsymbol{x}^T \boldsymbol{x} + \sigma (\boldsymbol{x}^T A \boldsymbol{x})^2,$$

初始点为 $(\cos 70^{\circ}, \sin 70^{\circ}, \cos 70^{\circ}, \sin 70^{\circ})$.

本题Newton法失败, 阻尼Newton法可以高效求解. 数值实验: Prob 5.

对Newton 法的改进

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

エルカルル

无约束优化四 题的最优性条件

最速下降沒

Newton :

共轭方向法和 共轭梯度法

拟Newton a

注意到当 G_k 正定时, Newton 方向 $d_k = -G_k^{-1} \nabla f_k$ 是下降方向. 受此启发, 当 G_k 非正定甚至奇异时:

改进2: Levenberg-Marquardt 校正

选择参数 $\mu_k \geq 0$, 使得 $G_k + \mu_k I$ 正定. 令

$$d_k = -(G_k + \mu_k I)^{-1} \nabla f_k,$$

再沿 d_k 进行线性搜索, 确定步长 α_k . 令

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k d_k.$$

教师 邱松强

日来

九约束优化问 题的最优性条 件

最速下降沒

共轭方向法和

拟Newton は

例4.7

求解问题

min
$$f(\mathbf{x}) = x_1^4 + x_1 x_2 + (1 + x_2)^2$$
.

初始点为(0,0).

Newton 法求解该问题失败.

教师 邱松强

目录

无约束优化产 题的最优性条 件

最速下降

Newton 8

共轭方向法和 共轭梯度法

拟Newton a

使用阻尼牛顿法. 在初始点处,

$$\nabla f_0 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \ G_0 = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}, d_0 = -G_0^{-1} \nabla f_0 = \begin{pmatrix} -2 \\ 0 \end{pmatrix}.$$

由于 $\nabla f_0^T d_0 = 0$, 该Newton 方向不是下降方向. 沿方向 d_0 进行线性搜索,

$$f(\mathbf{x}_0 + \alpha d_0) = (-2\alpha)^4 + 1,$$

其极小点为 $\alpha_0=0$. 故而,迭代无法继续下去. 阻尼Newton法无法找到下一个迭代点.

但使用L-M 方法可以快速求解该问题. 当G 不是正定矩阵时, 取

$$\mu_k = -\lambda^{\min} + 10^{-3},$$

其中, λ^{\min} 是G 的最小特征值.

数值实验: Prob 7.

教师 邱松亞

目录

无约束优化问 题的最优性条 件

Newton &

共轭方向法和 共轭梯度法

拟Newton

作业. P129. 3.7

教师 邱松亞

无约束优化|

题的最优性条 件

取逐了库力

共轭万向法和共轭梯度法

拟Newton %

- ① 无约束优化问题的最优性条件
- ② 最速下降法
- 3 Newton 法
- 4 共轭方向法和共轭梯度法
- 5 拟Newton 法

教师 邱松弘

目录

无约束优化问 题的最优性条 件

最速下降法

共轭方向法和

拟Newton

取最速下降法和Newton法的优点而舍它们的缺点。

对于二次函数

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + b^T \mathbf{x} + c,$$
 (2)

其中, G 是正定的.

- Newton 法只需一次迭代,最速下降法一般需要迭代无 穷多次;
- Newton 法每一步迭代的计算量大(需要计算Hesse 矩阵,解一个线性方程组),最速下降法每一步迭代的计算量非常小.

折中一下,希望算法能在有限步内找到二次函数的最小值.

共轭方向

实用优化算法 第三章 无约 束最优化方法

教师 邱松荫

目录

无约束优化问 题的最优性条 件

最速下降流

共轭方向法和

拟Newton

比如,对于二维的二次函数的最优化问题

$$\min f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T G \boldsymbol{x} + b^T \boldsymbol{x} + c,$$

其中, $G \in \mathbb{R}^{2 \times 2}$ 正定, $b \in \mathbb{R}^2$, $c \in \mathbb{R}$. 我们希望能够在两步内找到最优解. 如下图

图: 两步解二次函数

教师 邱松强

目习

无约束优化户 题的最优性条 件

取逐上降

拟Newton 法

设有

迭代点	搜索方向	最优步长
$oldsymbol{x}_0$	d_0	α_0
x_1	d_1	α_1
$oldsymbol{x}_2 = oldsymbol{x}^*$	-	_

其中 x_2 是问题的解. 即

$$\nabla f(\mathbf{x}_2) = G\mathbf{x}_2 + b$$
$$= G(\mathbf{x}_1 + \alpha_1 d_1) + b$$
$$= (G\mathbf{x}_1 + b) + \alpha_1 G d_1 = 0.$$

第三章 无约束最优化方法

教师 邱松弘

目

无约束优化户 题的最优性系 件

最速下降

Newton

共轭方向法和 共轭梯度法

拟Newton 法

$$(Gx_1 + b) + \alpha_1 Gd_1 = 0$$
. 又由精确搜索的性质

$$\nabla f(\boldsymbol{x}_{k+1})^T d_k = 0$$

知,

$$(G\boldsymbol{x}_1 + b)^T d_0 = 0.$$

所以有

$$0 = d_0^T((G\mathbf{x}_1 + b) + \alpha_1 G d_1)$$

= $d_0^T(G\mathbf{x}_1 + b) + \alpha_1 d_0^T G d_1$
= $0 + \alpha_1 d_0^T G d_1$.

宋最优化万法

教师 邱松亞

日求

九约束优化户 题的最优性条件

取逐厂库法

Newton 8

共轭方向法和 共轭梯度法

拟Newton %

得到关系式

$$d_0^T G d_1 = 0.$$

满足这个条件的两个方向称为共轭方向.

由于 $d_1 \in \mathbb{R}^2$, 故而 d_1 可以表示为 $-g_1$ 和 d_0 的线性组合.

容易验证

$$d_1 = -g_1 + \frac{d_0^T G g_1}{d_0^T G d_0} d_0.$$

满足共轭性. 这就是共轭梯度的搜索方向格式.

共轭方向及其性质

束最优化方法

定义1 (共轭向量)

设G 为n 阶正定矩阵, d_1 , d_2 , ..., d_k 为n 维向量组, 如果

$$d_i^T G d_j = 0, \ i, j = 1, 2, \cdots, k, \ i \neq j,$$

则称向量组 d_1, d_2, \cdots, d_k 关于G 共轭.

【注:】如果G = I,则 $d_i^T G d_i = 0$ 变成 $d_i^T d_i = 0$.所以,共轭 概念是正交概念的推广.

教师 邱松强

目录 无约束优化户

无约束优化户 题的最优性条件

** ·

共轭方向法和

共轭梯度法

拟Newton 是

例5.1

例题

设
$$f(x) = x^T G x + b^T x$$
, 其中 $G = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $b = \begin{pmatrix} -3 \\ -3 \end{pmatrix}$.

- (1) 证明 $d_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 与 $d_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ 关于G 共轭;
- (2) 设 $x_0 = (0,0)^T$, 以 d_0 和 d_1 为搜索方向, 用精确搜索求f 的极小点.

【解:】(1)验证

$$d_0^{\top} G d_1 = (1,0) \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
$$= (2,1) \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
$$= 0$$

教师 邱松强

目章

无约束优化问 题的最优性条 件

共轭方向法和

拟Newton 法

(2)
$$x_0 + \alpha d_0 = (\alpha, 0)^T$$
. \mathbb{N}

$$\varphi(x) = f(x_0 + \alpha d_0) = (\alpha, 0) \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \alpha \\ 0 \end{pmatrix} - 3\alpha$$
$$= 2\alpha^2 - 3\alpha$$

令
$$\varphi'(\alpha) = 4\alpha - 3 = 0$$
 得步长 $\alpha_0 = \frac{3}{4}$. 故

$$x_1 = x_0 + \alpha_0 d_0 = \left(\frac{3}{4}, 0\right)^T.$$

第三章 无约束最优化方法

 $\diamond \varphi'(\alpha) = 12\alpha - 3 = 0 \ \textit{得步} \, \mathsf{K} \, \alpha_1 = \frac{1}{4}.$ 于是 $x_2 = x_1 + \alpha_1 d_1 = \left(\frac{1}{2}, \frac{1}{2}\right)^T$. 这是问题的解.

教帅 邱松亞

目录

无约束优化户 题的最优性务

品读下降

Newton

共轭方向法和

拟Newton 法

定理9

设G 为n 阶正定矩阵, 非零向量组 p_1, p_2, \dots, p_k 关于G 共轭, 则此向量组线性无关.

教师 邱松强

目录

无约束优化问 题的最优性条 件

最速下降法

共轭方向法和

共轭梯度法

拟Newtor

推论1

设G 为n 阶正定矩阵, 非零向量组 p_1 , p_2 , \cdots , p_n 关于G 共轭, 则此向量组构成n 维向量空间 R^n 的一组基.

推论2

设G 为n 阶正定矩阵, 非零向量组 p_1, p_2, \dots, p_n 关于G 共 轭. 若向量v 与 p_1, p_2, \dots, p_n 关于G 共轭, 则v = 0.

共轭方向法

买用优化算法 第三章 无约 束最优化方法

教师 邱松强

目录 五约重估处

无约束优化问 题的最优性条 件

Newton

共轭方向法和 共轭梯度法

拟Newton 法

二次函数的共轭方向法框架

设目标函数为二次函数(2), 其中, G 是正定的, 给定 $\epsilon > 0$.

【步1】 给定初始点 x_0 及初始下降方向 d_0 , 令k=0.

【步2】 进行精确一维搜索, 求步长 α_k ,

$$f(x_k + \alpha d_k) = \min_{\alpha > 0} f(x_k + \alpha d_k).$$

【步 3 】 令 $x_{k+1} = x_k + \alpha_k d_k$.

【步 4 】 若 $||g_{k+1}|| \le \epsilon$, 则令 $x^* = x_{k+1}$, 否则, 转步5.

【5】 取共轭方向 d_{k+1} (有无穷多种取法)使得

$$d_{k+1}^T G d_i = 0, \ i = 0, 1, \cdots, k.$$

【步 6 】 令k = k + 1, 转步2.

第三章 无约 束最优化方法

定义2

设n 维向量组 p_1, p_2, p_k 线性无关, $x_1 \in \mathbb{R}^n$. 称向量集合

$$H_k = \{x_1 + \sum_{i=1}^k \alpha_i p_i \mid \alpha_i \in R^1, i = 1, 2, \cdots, k\}$$

为由点 x_1 和 p_1 , p_2 , p_k 生成的k 为超平面.

教师 邱松强

目示

无约束优化问 题的最优性条

最速下降沒

NT ----- 6

共轭方向法和 共轭梯度法

拟Newton 法

引理1

设f(x) 为连续可微的严格凸函数, 又 p_1 , p_2 , p_k 为线性无关的n 维向量组, $x_1 \in R^n$. 则

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_1 + \sum_{i=1}^k \bar{\alpha}_i p_i$$

是f(x) 在 x_1 和 p_1 , p_2 , p_k 生成的k 为超平面 H_k 上的唯一极小点的充分必要条件是

$$\nabla f_{k+1}^T p_i = 0, \ i = 1, 2, \cdots, k.$$
 (3)

共轭方向法

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

日永

无约束优化问 题的最优性条 件

敢逐 下降法

共轭方向法和

拟Newton 法

定理10

设G 为n 阶正定矩阵, 向量组 p_1, p_2, \dots, p_k 关于G 共轭, 对正定二次函数

$$f(x) = \frac{1}{2} \boldsymbol{x}^T G \boldsymbol{x} + b^T \boldsymbol{x} + c, \tag{4}$$

由任意初始点 21 开始, 依次进行k 次精确一维搜索

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \alpha_i p_i, \ i = 1, 2, \cdots, k,$$
 (5)

则

- (i) $\nabla f_{k+1}^T p_i = 0, i = 1, 2, \dots, k;$
- (ii) x_{k+1} 是二次函数(4) 在k 维超平面 H_k 上的极小点.

第三章 无约束最优化方法

教师 邱松亞

目录

无约束优化户 题的最优性条

最速下降沒

NT /

共轭方向法和 共轭梯度法

拟Newton %

推论3 (共轭方向法的有限终止性)

在上述定理中, 当k = n 时, \boldsymbol{x}_{n+1} 为正定二次函数(4) 在 R^n 上的极小点.

共轭方向法

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目示

无约束优化户 题的最优性务

最速下降

共轭方向法和 共轭梯度法

拟Newton a

分析:

- 共轭方向法的计算效率很高;
- 在应用该算法时, 应当给出具体的计算共轭方向的方法.

实用优化异法 第三章 无约 束最优化方法

教师 邱松强

目录

.约束优化问 .的最优性条

最读下降法

Newton

共轭方向法和 共轭梯度法

拟Newton 3

共轭梯度法-共轭方向的构造

思想:利用负梯度方向 $-g_k$ 与上一次迭代的搜索方向 d_{k-1} 构造搜索方向.

- $d_0 = -g_0$;
- $d_k = -g_k + \beta_{k-1} d_{k-1}$.
- 由于 $d_k^T G d_{k-1} = 0$, 可得

$$\beta_{k-1} = \frac{g_k^T G d_{k-1}}{d_{k-1}^T G d_{k-1}}, \text{ Hestenes-Stiefel } \triangle \stackrel{\prec}{\preccurlyeq}.$$

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目录

无约束优化产 题的最优性系 件

最速下降

Newton

共轭方向法和 共轭梯度法

拟Newton 法

共轭梯度法的一般框架

给定误差 $\epsilon > 0$.

【步 1 】 给出 $x_0 \in R^n, k := 0$;

【步2】 若 $||g_k|| \le \epsilon$, 则停止迭代;

【步 3 】 若k=0,则 $\beta_{-1}=0$,否则计算 β_{k-1} , $d_k=-g_k+\beta_{k-1}d_{k-1}$,

【步4】 做一维线性搜索求 α_k ;

【步 5 】 计算 $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k d_k$;

【步 6 】 令k := k + 1. 转步2.

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

日 水 无 约 束 优 化 j

元·列本化化门 题的最优性条件

最速下降

Newton %

共轭方向法和 共轭梯度法

拟Newton 法

定理11 (共轭梯度法的有限终止性)

对正定二次函数(2)采用共轭梯度法确定共轭方向,并采用精确一维搜索得到步长,在 $m (m \le n)$ 次迭代后可求得(2)的极小点,并对所有 $i,(1 \le i \le m)$,有

- (i) $d_i^T G d_i = 0, j = 1, 2, \dots, i 1;$ (共轭性)
- (ii) $g_i^T g_i = 0, j = 1, 2, \dots, i 1;$ (正交性)
- (iii) $g_i^T d_i = 0, j = 1, 2, \dots, i 1;$
- (iv) $d_i^T g_i = -g_i^T g_i$. (下降性)

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

国员

无约束优化问 题的最优性条 件

最速下降治

...

共轭方向法和 共轭梯度法

叔Newton 沒

系数 β_{k-1} 的其它形式

• Fletcher-Reeves (FR) 公式:

$$\beta_{k-1} = \frac{g_k^T g_k}{g_{k-1}^T g_{k-1}} = \frac{\|g_k\|^2}{\|g_{k-1}\|^2}.$$

• Polak-Ribiere-Polyak (PRP) 公式

$$\beta_{k-1} = \frac{g_k^T(g_k - g_{k-1})}{g_{k-1}^T g_{k-1}}.$$

FR共轭梯度法

在共轭梯度法中采用FR 公式即得FR 共轭梯度法

FR 共轭梯度法

给定误差 ϵ .

步 1 给定初始点 $x_0, k=0$.

步 2 计算 $g_k = g(\boldsymbol{x}_k)$.

步 3 若 $||g_k|| \le \epsilon$, 则令 $x^* = x_k$, 停; 否则令

$$d_k = -g_k + \beta_{k-1} d_{k-1}, \beta_{k-1} = \begin{cases} \frac{g_k^T g_k}{g_{k-1}^T g_{k-1}}, & \exists k > 0 \text{ bt}, \\ 0, & \exists k = 0 \text{ bt}. \end{cases}$$

步 4 由精确一维搜索确定步长 α_k ,满足

$$f(\boldsymbol{x}_k + \alpha_k d_k) = \min_{\alpha > 0} f(\boldsymbol{x}_k + \alpha d_k).$$

 ± 5 令 $x_{k+1} = x_k + \alpha_k d_k$, k = k+1, 转步2.

目录 无约束优化|

第三章 无约 束最优化方法

最速下降沒

Newton

共轭方向法和 共轭梯度法

拟Newton 法

FR 共轭梯度法

实用优化算法 第三章 无约 束最优化方法

教师 邱松荫

目录

无约束优化户 题的最优性条件

Nowton

共轭方向法和 共轭梯度法

拟Newton 法

例5.2

用FR 共轭梯度法求解

min
$$f(\mathbf{x}) = \frac{3}{2}x_1^2 + \frac{1}{2}x_2^2 - x_1x_2 - 2x_1$$
,

取初始点 $x_0 = (0,0)^T$.

【解:】
$$g(x) = \begin{pmatrix} 3x_1 - x_2 - 2 \\ x_2 - x_1 \end{pmatrix}, G = \begin{pmatrix} 3 & -1 \\ -1 & 1 \end{pmatrix}.$$

因 $g_0 = (-2,0)^T \neq 0$, 故取 $d_0 = (2,0)^T$, 从 x_0 出发, 沿 d_0 进行一维搜索, 即求

$$\min f(\boldsymbol{x}_0 + \alpha d_0) = 6\alpha^2 - 4\alpha$$

的极小点, 得步长 $\alpha = \frac{1}{3}$.

FR共轭梯度法

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

目等

无约束优化户 题的最优性系 件

最速下降法

Newton

共轭方向法和 共轭梯度法

拟Newton 法

于是得到 $x_1 = x_0 + \alpha_0 d_0 = \left(\frac{2}{3}, 0\right)^T$,则 $g_1 = \left(0, -\frac{2}{3}\right)^T$. 由FR 公式得

$$\beta_0 = \frac{g_1^T g_1}{g_0^T g_0} = \frac{1}{9},$$

故 $d_1 = -g_1 + \beta_0 d_0 = \left(\frac{2}{9}, \frac{2}{3}\right)^T$. 从 x_1 出发, 沿 d_1 进行一维搜索, 求

min
$$f(\mathbf{x}_1 + \alpha d_1) = \frac{4}{27}\alpha^2 - \frac{4}{9}\alpha + \frac{2}{3}$$

的极小点. 解之得 $\alpha_1 = \frac{3}{2}$, 于是 $\mathbf{x}_2 = \mathbf{x}_1 + \alpha_1 d_1 = (1,1)^T$. 此 时 $g_2 = (0,0)^T$, 故 $\mathbf{x}^* = \mathbf{x}_2 = (1,1)^T$, $f^* = -1$.

第三章 无约 束最优化方法

教师 邱松强

目习

无约束优化问 题的最优性条 件

最读下降法

Newton

共轭方向法和 共轭梯度法

拟Newton 湯

例5.3

利用例5.2 的结果验证定理11 的各个结论.

【解:】由例5.2 得

$$G = \begin{pmatrix} 3 & -1 \\ -1 & 1 \end{pmatrix} \quad g_0 = \begin{pmatrix} -2 \\ 0 \end{pmatrix} \quad d_0 = \begin{pmatrix} 2 \\ 0 \end{pmatrix},$$

$$g_1 = \begin{pmatrix} 0 \\ -\frac{2}{3} \end{pmatrix} \quad d_1 = \begin{pmatrix} \frac{2}{9} \\ \frac{2}{3} \end{pmatrix}$$

验证

$$d_0^T G d_1 = 0, \ g_1^T d_0 = 0, g_0^T g_1 = 0, g_1^T d_1 = -g_1^T g_1, g_0^T d_0 = -g_0^T g_0.$$

教师 邱松弘

目录

无约束优化户 题的最优性条 件

最速下降

Newton 法

共轭方向法和 共轭梯度法

拟Newton a

算法的下降性

- 对于正定二次函数, FR 共轭梯度法与PRP共轭梯度法等价.
- 对于一般函数
 - 二者是不同的;
 - 且由于目标函数的Hesse 矩阵不是常数矩阵, 因而迭代过程中产生的方向不再是共轭方向;
 - 在解 x^* 的附近, Hesse 矩阵的近似于 $G(x^*)$, 因此方向接近共轭方向;
 - 算法产生的方向都满足

$$g_k^T d_k = (-g_k + \beta_{k-1} d_{k-1})^T g_k = -g_k^T g_k < 0,$$

故 d_k 都是下降方向.

教师 邱松弘

目录

无约束优化问 题的最优性条 件

是油下路:

27

共轭方向法和 共轭梯度法

拟Newton

问题:如果初始方向不是负梯度方向,那么按FR 或PRP 方 法产生的方向还是共轭梯度方向吗? 束最优化方法

教师 邱松强

目录

无约束优化问 题的最优性条

最速下降法

Newton 法

共轭方向法和 共轭梯度法

拟Newton 法

例5.4

问题

$$\min f(x,y) = x^2 + y^2.$$

初始点为 $x_0 = (1,0)^T$, $g_0 = (2,0)^T$, 取 $d_0 = (-1,-1)^T$. 用FR 共轭梯度公式计算 d_1 , 并验证 d_0 , d_1 是否共轭.

【解:】记

$$G = \begin{pmatrix} 2 & \\ & 2 \end{pmatrix}$$
.

由于 $g_0^T d_0 = -2 < 0$, 故而 d_0 是下降方向. 按精确一维搜索

$$\alpha_0 = \arg\min f(x_0 + \alpha d_0) = \frac{1}{2}.$$

从而,
$$x_1 = x_0 + \alpha_0 d_0 = \left(\frac{1}{2}, -\frac{1}{2}\right)^T$$
.

教师 邱松弘

且习

无约束优化问 题的最优性条 件

最速下降法

共轭方向法和

拟Newton a

计算

$$g_1 = (1, -1)^T$$
, $\beta_0 = \frac{1}{2}$, $d_1 = -g_1 + \beta_0 d_0 = \left(-\frac{3}{2}, \frac{1}{2}\right)^T$.

但是

$$d_1^T G d_0 = 2 \neq 0,$$

即 d_0 , d_1 不是关于G 共轭的.

PRP 共轭梯度法

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目习

无约束优化户 题的最优性务 件

最速下降法

共轭方向法和 共轭梯度法

拟Newton a

将FR 共轭梯度法步3 中, 用PRP 公式

$$\beta_{k-1} = \begin{cases} \frac{g_k^T(g_k - g_{k-1})}{g_{k-1}^T g_{k-1}}, & \pm k > 0 \text{ bt}, \\ 0, & \pm k = 0 \text{ bt}. \end{cases}$$

就得到PRP 共轭梯度法.

非二次函数的共轭梯度法

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目录

E约束优化问 题的最优性条

卫油工的

~~ | | | |

Newton 法

共轭方向法和 共轭梯度法

拟Newton %

对正定二次函数, FR 共轭梯度法和PRP 共轭梯度法是等价的. 对于一般函数, 二者是不相同的.

对一般函数, 迭代过程中所产生的方向不再是共轭方向. 使用精确搜索时, 有

$$g_k^T d_k = g_k^T (-g_k + \beta_{k-1} d_{k-1}) = -g_k^T g_k < 0,$$

故二者都是下降算法.

非二次函数的共轭梯度法

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

日求 无约束优化产

件

敢速下降

拟Newton a

若采用非精确搜索,则FR 方法和PRP 方法都可能产生上升方向.对于FR 方法,只有使用如下的强Wolfe 搜索

- $f(x_k) f(x_k + \alpha_k d_k) \ge -\mu \alpha_k \nabla f_k^T d_k$, (sw.a)
- $|\nabla f(x_k + \alpha_k d_k)^T d_k| \le -\sigma \nabla f_k^T d_k$ (sw.b)
- $\mu \in (0, \frac{1}{2}), \, \sigma \in (\mu, 1),$

且保证 $0 < \sigma < 1/2$ 时, 得到的方向是下降方向. 实际计算表明, PRP 算法一般优于FR 算法.

教师 邱松强

目习

无约束优化问 题的最优性条 件

最速下降法

A-----

共轭方向法和 共轭梯度法

拟Newton 法

例5.5

分别用FR、PRP共轭梯度法求Rosenbrock 函数

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

的最小值,初始点为 $x_0 = (0,0)^T$.

【解:】第一步与例3.3 相同.

$$\nabla f(x) = \begin{pmatrix} -400(x_2 - x_1^2)x_1 - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{pmatrix},$$

$$f_0 = f(0,0) = 1, \nabla f_0 = (-2,0)^T.$$

第三章 无约束最优化方法

教师 邱松强

目习

无约束优化问 题的最优性条 件

最速下降沒

共轭方向法和 共轭梯度法

拟Newton &

 $d_0 = (2,0)^T$. 对于任意的 $\alpha > 0$,

$$f(x_0 + \alpha d_0) = f(2\alpha, 0) = 1600\alpha^4 + 4\alpha^2 - 4\alpha + 1.$$

$$6400\alpha^3 + 8\alpha - 4 = 0.$$

其近似解为 $\alpha_0 \approx 0.0806$.

$$x_1 = x_0 + \alpha_0 d_0 = (0.1612, 0)^T.$$

教师 邱松强

目章

无约束优化问 题的最优性条 件

最速下降沒

Newton

共轭方向法和 共轭梯度法

拟Newton a

【FR方法】则 $\nabla f_1 = (0.0007, -5.2024)^T$,

$$\beta_0 = \frac{\|g_1\|^2}{\|g_0\|^2} = 6.7662.$$

$$d_1 = -\nabla f_1 + \beta_0 d_0 = \begin{pmatrix} 13.5317 \\ 5.2024 \end{pmatrix}.$$

做精确搜索得 $\alpha_1 = 0.0097$. 故

$$x_2 = x_1 + \alpha_1 d_1 = (0.2927, 0.0505)^T.$$

教师 邱松强

目章

无约束优化问 题的最优性条 件

最速下降法

....

共轭方向法和 共轭梯度法

拟Newton 法

 $\nabla f_2 = (2.7021, -7.0312)^T,$

$$\beta_1 = \frac{\|g_2\|^2}{\|g_1\|^2} = 2.0964.$$

$$d_2 = -\nabla f_2 + \beta_1 d_1 = \begin{pmatrix} 25.6664 \\ 17.9378 \end{pmatrix}.$$

做精确搜索得 $\alpha_2 = 0.0052$. 故

$$x_3 = x_2 + \alpha_2 d_2 = (0.4252, 0.1431)^T, \ \nabla f_3 = \begin{pmatrix} 5.2576 \\ -7.5351 \end{pmatrix}$$

.

教师 邱松强

目章

无约束优化问 题的最优性条 件

最速下降法

Newton

共轭方向法和 共轭梯度法

拟Newton %

【PRP方法】则 $\nabla f_1 = (0.0007, -5.2024)^T$,

$$\beta_0 = \frac{g_1^T(g_1 - g_0)}{\|g_0\|^2} = 6.7662.$$

$$d_1 = -\nabla f_1 + \beta_0 d_0 = \begin{pmatrix} 13.5317 \\ 5.2024 \end{pmatrix}.$$

做精确搜索得 $\alpha_1 = 0.0097$. 故

$$x_2 = x_1 + \alpha_1 d_1 = (0.2927, 0.0505)^T.$$

第三章 无约束最优化方法

教师 邱松弘

目示

无约束优化问 题的最优性条 件

最速下降法

4C-C | 17 12

共轭方向法和 共轭梯度法

拟Newton 法

 $\nabla f_2 = (2.7021, -7.0312)^T$

$$\beta_1 = \frac{g_2^T(g_2 - g_1)}{\|g_1\|^2} = 0.7449.$$

$$d_2 = -\nabla f_2 + \beta_1 d_1 = \begin{pmatrix} 7.3776 \\ 10.9064 \end{pmatrix}.$$

做精确搜索得 $\alpha_2 = 0.1151$. 故

$$x_3 = x_2 + \alpha_2 d_2 = (1.1420, 1.3061)^T$$
. $\nabla f_3 = \begin{pmatrix} -0.5491 \\ 0.3648 \end{pmatrix}$.

重开始的共轭梯度法

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目录 无约束优化

无约束优化问 题的最优性条 件

最速下降

共轭方向法和

拟Newton ä

改进思路

- 共轭梯度法对正定二次函数可以有限终止;
- 在最优解的附近, 目标函数与一个正定二次函数很接近;
- 初始方向如果不取负梯度方向,即便应用于二次函数,也 往往不能产生n个共轭方向;
- 当迭代点接近解时,重新取负梯度方向,则接下来将产生近似共轭方向,从而提高算法的效率.

重开始的共轭梯度法

实用优化算法 第三章 无约 束最优化方法

教师 邱松娟

目录

无约束优化问 题的最优性条

最速下降2

Newton

共轭方向法; 共轭梯度法

拟Newton 3

重开始的共轭梯度法

实用优化异法 第三章 无约 束最优化方法

教师 邱松弘

目示

无约束优化问 题的最优性条 ∴

品读下降;

共轭方向法和

共轭梯度法

拟Newton %

对共轭梯度法进行修改:

每迭代n 次或n+1 次, 就重新取共轭梯度方向为搜索方向. 改进后的算法称为n 步重新开始的共轭梯度法.

重开始的共轭梯度法

买用优化算法 第三章 无约 束最优化方法

教师 邱松强

目录

无约束优化问 题的最优性条 件

Newton

共轭方向法和

拟Newton 法

n 步重开始的FR 共轭梯度法

给定误差 ϵ

【步 1】 给定初始点 $x_0, k=0$.

【步 3】 若k 是n 的倍数,则 $d_k = -g_k$, 否则,令

$$d_k = -g_k + \frac{g_k^T g_k}{g_{k-1}^T g_{k-1}} d_{k-1}.$$

【步4】 由精确一维搜索确定步长 α_k ,满足

$$f(x_k + \alpha_k d_k) = \min_{\alpha > 0} f(x_k + \alpha d_k).$$

束最优化方法

目录

无约束优化问 题的最优性条 件

取逐卜降法

. . .

共轭方向法和 共轭梯度法

拟Newton a

例5.6

分别用PRP 和重开始PRP 共轭梯度法求四维Rosenbrock 函数

$$f(x) = 100 (x_1^2 - x_2)^2 + (1 - x_1)^2 + 90 (x_3^2 - x_4)^2 + (1 - x_3)^2 + 10.1 [(x_2 - 1)^2 + (x_4 - 1)^2] + 19.8 (x_2 - 1) (x_4 - 1)$$

的最小值,初始点为 $x_0 = (-3, -1, -3, -1)^T$.

教师 邱松弘

无约束优化

题的最优性条 牛

最速下降

共轭方向法和

共轭梯度法

拟Newton a

- ① 无约束优化问题的最优性条件
- ② 最速下降法
- 3 Newton 法
- 4 共轭方向法和共轭梯度法
- ⑤ 拟Newton 法

第三章 无约束最优化方法

教师 邱松弘

日求

无约束优化问 题的最优性条 件

最速下降?

Newton :

共轭方向法和 共轭梯度法

拟Newton a

引入拟Newton 法的目的:

- 克服Newton 法的以下两个缺点:
 - 计算量大的问题(计算Hesse 矩阵);
 - Hesse 矩阵可能不正定
- 保持Newton法收敛速度快的优点.

解决方案: Davidon(1959): 近似Hesse 矩阵.

拟Newton 法的基本思想

实用优化算法 第三章 无约 束最优化方法

教师 邱松亞

目录

无约束优化问 题的最优性条 件

最速下降沒

共轭方向法和

共轭梯度法

拟Newton a

统一公式

最速下降法和阻尼Newton 法的迭代公式可以统一写成

$$x_{k+1} = x_k - \alpha_k H_k g_k,$$

其中, α_k 为步长, $g_k = \nabla f_k$, H_k 为n 阶对称矩阵.

- 最速下降法: $H_k = I$;
- 阻尼Newton 法: $H_k = G_k^{-1}$;
- L-M $\dot{\sigma}$ $\dot{\kappa}$: $H_k = (G_k + \mu_k I)^{-1}$.

教师 邱松弘

目录

无约束优化问 题的最优性条 件

最速下降法

秋近11年0

共轭方向法和共轭梯度法

拟Newton a

启发:

 $\ddot{a}H_k$ 的选取既能逐步逼近 G_k^{-1} 又不需要计算二阶导数,则算法有可能

- 比最速下降法快;
- 比Newton 法计算简单, 且整体(全局)收敛性好.

拟Newton 方程

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

目习

无约束优化问 题的最优性条 件

最速下降法

Newton 法

共轭方向法和 共轭梯度法

拟Newton 法

模拟Newton 方向生成的途径. 将f(x) 在 x_{k+1} 处展开为二次函数

$$f(x) \approx f(x_{k+1}) + g_{k+1}^{\mathrm{T}}(x - x_{k+1}) + \frac{1}{2}(x - x_{k+1})^{\mathrm{T}} G_{k+1}(x - x_{k+1}).$$

对两边求导,得

$$g(x) \approx g_{k+1} + G_{k+1}^{-1} (x - x_{k+1}).$$

令
$$x = x_k, s_k = x_{k+1} - x_k, y_k = g_{k+1} - g_k,$$
得

$$G_{k+1}^{-1}y_k \approx s_k$$
.

教师 邱松弘

且其

无约束优化问 题的最优性条 件

最速下降法

双近 1140

共轭方向法和

#Newton 3

于是要求Hesse 矩阵的逆矩阵 H_{k+1} 满足关系式

$$H_{k+1}y_k = s_k$$
. (拟Newton 方程)

 $令B_{k+1} = H_{k+1}^{-1}$, 则得到

$$B_{k+1}s_k = y_k,$$

其中, B_{k+1} 为Hesse 矩阵的近似.

H_k 须满足的条件

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

目录

无约束优化问 题的最优性条 件

最速下降法

共轭方向法和

共轭梯度法

拟Newton 法

- (1) $\{H_k\}$ 都是对称正定矩阵;
- (2) H_{k+1} 由 H_k 经简单形式修正而得,

$$H_{k+1} = H_k + E_k$$
, (修正公式)

其中 E_k 称为修正矩阵.

(3) H_{k+1} 满足拟Newton 方程

$$H_{k+1}y_k = s_k,$$

其中, $s_k = \alpha_k d_k = x_{k+1} - x_k$, $y_k = g_{k+1} - g_k$. 显然, 拟Newton 方程有无穷多个解. 束最优化方法

• 一般形式

$$H_{k+1} = H_k + \sigma v v^T.$$

• 将它代入拟Newton 方程, 有

$$H_{k+1} = H_k + \frac{(s_k - H_k y_k)(s_k - H_k y_k)^T}{(s_k - H_k y_k)^T y_k}$$

对于B_{k+1} 有校正公式

$$B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}$$

秩1 校正算法

实用优化算法 第三章 无约 束最优化方法

教师 邱松荫

目录

无约束优化问 题的最优性条 4

最速下降

Newton

共轭方向法和 共轭梯度法

叔Newton 注

算法描述

给定控制误差 $\epsilon > 0$.

步 1 给定初始点 x_0 ,初始矩阵 H_0 (通常取单位矩阵),计算 g_0 ,令k=0.

步 2 令 $d_k = -H_k g_k$.

步 3 由精确一维搜索确定步长 α_k ,

$$f(x_k + \alpha_k d_k) = \min_{\alpha > 0} f(x_k + \alpha d_k),$$

步 5 若 $\|g_{k+1}\| \le \epsilon$, 则令 $x^* = x_{k+1}$, 停; 否则, 令

$$s_k = x_{k+1} - x_k, \ y_k = g_{k+1} - g_k.$$

步 6 由秩1 校正公式得 H_{k+1} . 令k = k+1, 转步2.

教师 邱松弘

目录

无约束优化户 题的最优性务

件

Newton :

共轭方向法和 共轭梯度法

拟Newton %

秩1 校正不能保证 H_{k+1} 的正定性, (即使 H_k 正定). 这是它的主要缺点. 但是它与信赖域方法结合有较好的数值表现. 对Hesse 矩阵及其逆矩阵的逼近程度较好.

第三章 无约 束最优化方法

教师 邱松强

目录

约束优化问 的最优性条

最速下降流

取迟卜降;

共轭方向法和

共轭梯度法

₩Newton %

例6.1

用秩1校正算法求

$$f(x_1, x_2) = x_1^2 + \frac{1}{2}x_2^2 + 3$$

的极小点. 初始点为 $x_0 = (1,2)^T$, $H_0 = I_2$.

f 可写为

$$f(x) = \frac{1}{2}x^T \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} x + 3.$$

$$\mathbb{P} G = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}. \ g_k = \nabla f(x_k) = Gx_k = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} x_k.$$

教师 邱松强

目习

.约束优化问 .的最优性条 .

最速下降沒

取逐上降

共轭方向法和 共轭梯度法

拟Newton 溢

第一次迭代.

$$d_0 = -g_0 = \begin{pmatrix} -2 \\ -2 \end{pmatrix}.$$

由于f 是二次函数, 故而

$$\alpha_0 = -\frac{g_0^T d_0}{d_0^T G d_0} = \frac{(2,2) \begin{pmatrix} 2 \\ 2 \end{pmatrix}}{(2,2) \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}} = \frac{2}{3}.$$

$$\mathbb{N}x_1 = x_0 + \alpha d_0 = \begin{pmatrix} -\frac{1}{3} \\ \frac{2}{3} \end{pmatrix}.$$

教师 邱松强

目

无约束优化问 题的最优性条 件

最速下降法

Newton :

共轭方向法和 共轭梯度法

拟Newton 法

秩1 校正.

$$s_0 = \alpha_0 d_0 = \begin{pmatrix} -\frac{4}{3} \\ -\frac{4}{3} \end{pmatrix}, g_1 = Gx_1 = \begin{pmatrix} -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$$
$$y_0 = g_1 - g_0 = \begin{pmatrix} -\frac{8}{3} \\ -\frac{4}{3} \end{pmatrix},$$
$$(s_0 - H_0 y_0)(s_0 - H_0 y_0)^T \qquad (\frac{1}{3} - \frac{1}{3})$$

$$H_1 = H_0 + \frac{(s_0 - H_0 y_0)(s_0 - H_0 y_0)^T}{(s_0 - H_0 y_0)^T y_0} = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} (= G^{-1}).$$

教师 邱松强

目习

无约束优化问 题的最优性条 件

取逐厂库法

Newton 8

共轭方向法和 共轭梯度法

拟Newton 法

第二次迭代. 搜索方向为

$$d_1 = -H_1 g_1 = \begin{pmatrix} \frac{1}{3} \\ -\frac{2}{3} \end{pmatrix}$$

步长为

$$\alpha_1 = -\frac{g_1^T d_1}{d_1^T G d_1} = 1.$$

新的迭代点

$$x_2 = x_1 + \alpha_1 d_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

此时 $g_2 = (0,0)^T$, 也就是说 $x^* = x_2$.

第三章 无约束最优化方法

教师 邱松强

目习

无约束优化问 题的最优性条 件

最速下降流

共轭方向法和 共轭梯度法

拟Newton 法

例6.2

考虑目标函数

$$f(x) = (x_2 - x_1)^4 + 12x_1x_2 - x_1 + x_2 - 3.$$

取初始点 $x_0 = (-0.5262, 0.6014)^T$, 初始矩阵为

$$H_0 = \begin{pmatrix} 0.1186 & -0.0376 \\ -0.0376 & 0.1191 \end{pmatrix}.$$

用秩1校正计算 H_1 .

【解: 】搜索方向

$$d_0 = -H_0 g_0 = \begin{pmatrix} -0.0413 \\ -0.0320 \end{pmatrix}$$

第三章 无约束最优化方法

最优步长为

$$\alpha_0 = \arg\min_{\alpha \ge 0} f(x_0 + \alpha d_0) = 1.009.$$

新的迭代点

$$x_1 = x_0 + \alpha_0 d_0 = \begin{pmatrix} -0.5679 \\ 0.5679 \end{pmatrix} . g_1 = \nabla f(x_1) = \begin{pmatrix} -0.0507 \\ 0.0656 \end{pmatrix}.$$

秩1校正

$$s_0 = \alpha_0 d_0 = \begin{pmatrix} -0.0417 \\ -0.0322 \end{pmatrix}, y_0 = \begin{pmatrix} -0.5326 \\ -0.3549 \end{pmatrix}.$$

$$H_1 = H_0 + \frac{(s_0 - H_0 y_0)(s_0 - H_0 y_0)^T}{(s_0 - H_0 y_0)^T y_0} = \begin{pmatrix} 0.0331 & 0.0679 \\ 0.0679 & -0.0110 \end{pmatrix}.$$

由于 H_1 的(2,2) 元素为负数-0.0110, 故 H_1 不是正定的.

教师 邱松弘

目录

无约束优化户 题的最优性系

72 x2 -- 17/2 x3

27

共轭方向法和

共轭梯度法

DFP 是Davidon(1959)提出,后来Fletcher 和Powell(1963) 年做出改进,形成了Davidon-Fletcher-Powell 算法,简称DFP算法.它是第一个被提出的拟Newton 法,也是无约束最优化问题的最有效的算法之一.

第三章 无约 束最优化方法

教师 邱松弘

目录

方束优化问 方最优性条

最速下降法

取逐门年

共轭方向法和

拟Newton 法

DFP 修正公式

思想:

- H_k 满足条件(1),(2),(3)
- 修正项Ek 应有简单的形式. 考虑

$$E_k = \alpha u u^T + \beta v v^T.$$

其中, u, v 为待定向量.

• 代入拟Newton 方程有

$$s_k = H_k y_k + \alpha u u^T y_k + \beta v v^T y_k.$$

DFP 算法

实用优化算法 第三章 无约 束最优化方法

教帅 邱松弘

目习

无约束优化户 题的最优性条 件

取近下件

Newton :

共轭方向法和 共轭梯度法

拟Newton &

DFP 修正公式

• 取 $u = s_k, v = H_k y_k, \alpha u^T y_k = 1, \beta v^T y_k = -1,$ 则导出公式

$$H_{k+1} = H_k - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + \frac{s_k s_k^T}{y_k^T s_k},$$
 (DFP修正公式)

DFP 算法

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

目录

无约束优化问 题的最优性条

最速下降:

Newton

共轭方向法和 共轭梯度法

拟Newton 法

算法描述

给定控制误差 $\epsilon > 0$.

步 1 给定初始点 x_0 ,初始矩阵 H_0 (通常取单位矩阵),计算 g_0 ,令k=0.

步 2 令 $d_k = -H_k g_k$.

步 3 由精确一维搜索确定步长 α_k ,

$$f(x_k + \alpha_k d_k) = \min_{\alpha > 0} f(x_k + \alpha d_k),$$

步 5 若 $\|g_{k+1}\| \le \epsilon$, 则令 $x^* = x_{k+1}$, 停; 否则, 令

$$s_k = x_{k+1} - x_k, \ y_k = g_{k+1} - g_k.$$

步 6 由DFP 修正公式得 H_{k+1} . 令k = k+1, 转步2.

第三章 无约束最优化方法

教师 邱松荫

目录

约束优化问 的最优性条

最速下降沒

取逐门年后

共轭方向法和 共轭梯度法

拟Newton 法

例6.3

用DFP 算法求解

$$\min f(x) = x_1^2 + 2x_2^2 - 2x_1x_2 - 4x_1,$$

$$\mathfrak{R}x_0 = (1,1)^T, \ H_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

【解:
$$\mathbf{J} g(x) = \begin{pmatrix} 2x_1 - 2x_2 - 4 \\ -2x_1 + 4x_2 \end{pmatrix}, g_0 = \begin{pmatrix} -4 \\ 2 \end{pmatrix}.$$

$$d_0 = -H_0 g_0 = \begin{pmatrix} 4 \\ -2 \end{pmatrix}.$$

教师 邱松弘

国家

无约束优化问 题的最优性条 件

最速下降沒

共轭方向法和

共轭梯度法

拟Newton 注

(i) 求迭代点x₁, 令

$$\varphi_0(\alpha) = f(x_0 + \alpha d_0) = 40\alpha^2 - 20\alpha - 3,$$

得 $\varphi_0(\alpha)$ 的极小点为 $\alpha_0=\frac{1}{4}(\diamondsuit\varphi_0'(\alpha)=0$ 即可),所以

$$x_1 = x_0 + \alpha_0 d_0 = (2, 0.5)^T, g_1 = (-1, -2)^T,$$

 $s_0 = x_1 - x_0 = (1, -0.5)^T, y_0 = g_1 - g_0 = (3, -4)^T.$

于是,有DFP 修正公式有

$$H_1 = H_0 - \frac{H_0 y_0 y_0^T H_0}{y_0^T H_0 y_0} + \frac{s_0 s_0^T}{y_0^T s_0} = \frac{1}{100} \begin{pmatrix} 84 & 38 \\ 38 & 41 \end{pmatrix}.$$

宋**取**忧化力况

教师 邱松弘

目言

无约束优化问 题的最优性条 件

最速下降

Newton :

共轭方向法和 共轭梯度法

拟Newton 法

下一个搜索方向为

$$d_1 = -H_1 g_1 = \frac{1}{5} \begin{pmatrix} 8 \\ 6 \end{pmatrix}.$$

求迭代点 x_2 , 令

$$\varphi_1(\alpha) = f(x_1 + \alpha d_1) = \frac{8}{5}\alpha^2 - 4\alpha - 5.5,$$

其极小点为 $\alpha_1 = \frac{5}{4}$,于是

$$x_2 = x_1 + \alpha_1 d_1 = (4, 2)^T g_2 = (0, 0)^T.$$

所以,
$$x^* = x_2 = (4,2)^T$$
, 此时 $f^* = -8$.

教师 邱松弘

目习

无约束优化户 题的最优性条 件

最速下降

Newton

共轭方向法和 共轭梯度法

拟Newton a

因Hesse 阵

$$G(x) = G = \begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix}$$

为正定矩阵, f(x) 为严格凸函数, 所以 x^* 为整体(全局)极小点.

可以验证,如果再用一次DFP 修正公式,则

$$H_2 = G^{-1} = \begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix}^{-1}$$
.

数1届 配松器

目录

无约束优化产 题的最优性系 件

最速下降

共轭方向法和

拟Newton a

据例题可知

- 在更新 H_k 的过程中, 只需用到矩阵、向量之间的乘法, 很容易计算:
- 计算搜索方向时, 不需要像Newton 法一样求解线性方程组.

所以DFP 算法(或拟Newton 法)相比Newton 法, 每次迭代的计算量显著降低了.

又由于 H_k 逐渐逼近 G_k^{-1} , 从而在解的附近, 算法的效率也近似于Newton 法

DFP 算法

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

无约束优化门

现的最优性条 件

最速下降?

共轭方向法和

拟Newton 法

DFP 算法的性质

(1) 对于正定二次函数

- 至多经过n 次迭代即终止, 且 $H_n = G^{-1}$;
- 保持拟Newton 方程

$$H_i y_j = s_j, \ j = 0, 1, \cdots, i - 1$$

对于一般函数

- 保持 H_k 的正定性;
- 算法为超线性收敛的;
- 对于凸函数是整体(全局)收敛的;
- 计算量小.

正定继承性

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

目习

无约束优化问 题的最优性条 件

最速下降

.....

共轭方向法和

共轭梯度法

拟Newton 注

引理2

设

$$H_{+} = H - \frac{Hyy^{T}H}{y^{T}Hy} + \frac{ss^{T}}{y^{T}s},$$

H 为正定矩阵,则 H_+ 正定的充分必要条件是

$$y^T s > 0.$$

教师 邱松亞

目习

无约束优化问 题的最优性条

最速下降

Newton

共轭方向法和 共轭梯度法

拟Newton a

定理12 (DFP 修正公式的正定继承性)

在DFP 算法中, 如果初始矩阵 H_0 正定, 则整个矩阵列 $\{H_k\}$ 都是正定的.

二次终止性: DFP 的共轭性

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目录 无约束优化问 题的最优性条

件

Newton

共轭方向法和 共轭梯度法

拟Newton a

定理13

将DFP 算法应用与二次函数

$$f(x) = \frac{1}{2}x^T G x + b^T x + c.$$

并设初始矩阵 H_0 是正定的, 产生的迭代点是互异的, 并设搜索方向为 d_0 , d_1 , \cdots , d_k , 则

(i)
$$d_i^T G d_j = 0, \ 0 \le i < j \le k; (共轭)$$

(ii)
$$H_k y_i = s_i, \ 0 \le i \le k - 1.$$

二次终止性

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目录

无约束优化问 题的最优性条

最速下降

Newton 8

共轭方向法和 共轭梯度法

拟Newton 🤅

推论4 (二次终止性)

在上述定理的条件下, 我们有

- (i) 对于正定二次函数, DFP 算法至多迭代n 次就可得到极小点, 即存在 k_0 , $(0 \le k_0 \le n)$, 使得 $x_{k_0} = x^*$;

教师 邱松强

五 次 无约束优化产 题的最优性 3

九约束优化问 题的最优性条 件

最速下降:

共轭方向法和 共轭梯度法

拟Newton a

例6.4

目标函数为

$$f(x) = \frac{x_1^4}{4} + \frac{x_2^2}{2} - x_1 x_2 + x_1 - x_2.$$

- a. 利用matlab 绘制函数f 在-0.72、-0.6、-0.2、0.5 和2 处的等高线图,根据图确定函数f 的极小点;
- b. 用解析方法求f(x) 的极小点;
- c. 令起始点分别为 $x^{(0)} = [0,0]^T \, n x^{(0)} = [1.5,1]^T, \, H_0 = I_2,$ 利用DFP 算法求函数f 的极小点. 观察在这两个起始点下,算法是否收敛到同一个点. 如果不是,试分析原因.

教师 邱松弘

目录

无约束优化问 题的最优性条

最速下降流

Newton

共轭方向法和 共轭梯度法

拟Newton 法

【解:】 a. 如下图

b. 令

$$\nabla f(x) = \begin{pmatrix} x_1^3 - x_2 + 1 \\ x_2 - x_1 - 1 \end{pmatrix} = 0,$$

即

$$\begin{cases} x_1^3 - x_2 + 1 = 0, \\ x_2 - x_1 - 1 = 0 \end{cases}$$

解得

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \ \mbox{\it \AA} \ \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

束最优化方法

教师 邱松弘

目习

无约束优化户 题的最优性条 件

最速下降

Newton

共轭方向法和 共轭梯度法

拟Newton 法

f 的Hesse 矩阵为

$$H = \begin{pmatrix} 3x_1^2 & -1 \\ -1 & 1 \end{pmatrix}.$$

在这三点处, Hesse 矩阵分别为

$$H = \begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 3 & -1 \\ -1 & 1 \end{pmatrix} \not\leftarrow \begin{pmatrix} 3 & -1 \\ -1 & 1 \end{pmatrix}$$

第一个矩阵不是正定的,后两者为正定矩阵,从而f 的极小点为

$$(1,2)^T \not = (-1,0)^T$$
.

而 $(0,1)^T$ 为鞍点.

教师 配松蓝

目示

无约束优化问 题的最优性条 件

Newton

共轭方向法和 共轭梯度法

拟Newton %

c. (计算机演示).

Broyden 族, BFGS 算法

实用优化算法 第三章 无约 束最优化方法

教师 邱松亞

目章

无约束优化问 题的最优性条 件

最速下降

Newton

共轭方向法和 共轭梯度法

拟Newton 法

Broyden 族修正公式(1967年)

$$H_{k+1}^{\varphi} = H_k - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + \frac{s_k s_k^T}{y_k^T s_k} + \varphi w_k w_k^T,$$

其中, φ 为实数,

$$w_k = (y_k^T H_k y_k)^{\frac{1}{2}} \left(\frac{s_k}{y_k^T s_k} - \frac{H_k y_k}{y_k^T H_k y_k} \right).$$

Broyden 族, BFGS 算法

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

目习

.约束优化问 的最优性条

最速下降沒

Newton 法

共轭方向法和 共轭梯度法

拟Newton 法

• 显然, 取 $\varphi = 0$ 时, 就是DFP 公式

$$H_{k+1}^{\varphi} = H_k - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + \frac{s_k s_k^T}{y_k^T s_k}.$$

• $\mathfrak{R}\varphi = y_k^T s_k / (s_k - H_k y_k)^T y_k$, \mathfrak{P}

$$H_{k+1} = H_k - \frac{(s_k - H_k y_k)(s_k - H_k y_k)^T}{y_k^T (s_k - H_k y_k)}$$
 (秩1 修正公式).

BFGS 公式

实用优化算法 第三章 无约 束最优化方法

教师 邱松弘

日录

无约束优化问 题的最优性条 件

最速下降治

拟Newton 法

取 $\varphi = 1$ 时, 得

$$H_{k+1}^{\varphi} = H_k - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + \frac{s_k s_k^T}{y_k^T s_k} + w_k w_k^T$$
$$= \left(I - \frac{s_k y_k^T}{s_k^T y_k}\right) H_k \left(I - \frac{y_k s_k^T}{s_k^T y_k}\right) + \frac{s_k s_k^T}{s_k^T y_k}.$$

称为BFGS (Broyden-Fletcher-Goldfarb-Shanno) 公式. BFGS 算法是目前公认的最好的拟Newton 算法.

教师 邱松强

国家

无约束优化户 题的最优性条

最速下降

Newton

共轭方向法和

共轭梯度法

Newton 3

例6.5

分别用DFP 方法,BFGS 方法求Rosenbrock 函数的极小点,初始点为 $x_0 = (0,0)^T$. 分别使用精确搜索和非精确搜索.

教师 邱松弘

口水 无约束优化问 题的最优性条

题的最优性条 件

Newton :

共轭方向法和 共轭梯度法

拟Newton %

例6.6

分别用BFGS 拟Newton 法,Newton 法,FR共轭梯度法,负梯度方向搜索极小化Rosenbrock 函数. 使用Armijo 非精确搜索,初始点为 $x_0 = (-1.2,1)^T$,终止条件为 $\|g(x_k)\| \le 10^{-12}$.

【比较:】四种方法分别需要35,22,249,1334次迭代.

教师 邱松弘

无约束优化问 题的最优性条 件

Newton 法 共轭方向法和

共轭梯度法

拟Newton:

表: 最后十次迭代 $\|x_k - x^*\|$

BFGS	Newton	FR(非精确)	负梯度方向
0.017634843	0.598721237	1.03E-10	2.42E-12
0.040317145	0.463495124	9.97E-11	2.42E-12
0.021832856	0.251812805	4.37E-11	2.42E-12
0.001541412	0.175828541	8.75E-12	2.42E-12
0.000432563	0.034279629	8.69E-12	2.42E-12
4.46E-06	0.014422311	8.68E-12	2.42E-12
1.64E-08	1.82E-04	6.70E-12	2.41E-12
5.20E-11	1.17E-06	2.21E-12	2.41E-12
1.06E-13	1.22E-12	1.09E-12	2.41E-12
3.51E-16	1.11E-16	1.16E-12	2.41E-12

第三章 无约 束最优化方法

教师 邱松强

目录

无约束优化问 题的最优性条 件

最速下降沒

共轭方向法和 共轭梯度法

拟Newton 法

例6.7

求问题 $f(x) = \frac{1}{2}x^Tx + \frac{\sigma}{4}(x^TAx)^2$ 的极小值, 其中 $\sigma = 10^4$,

$$A = \begin{pmatrix} 5 & 1 & 0 & 0.5 \\ 1 & 4 & 0.5 & 0 \\ 0 & 0.5 & 3 & 0 \\ 0.5 & 0 & 0 & 2 \end{pmatrix}$$

初始点为 $x_0 = (\cos 70^\circ, \sin 70^\circ, \cos 70^\circ, \sin 70^\circ)^T$.

一个神奇的性质

第三章 无约 束最优化方法

教师 邱松强

五 小 无约束优化户 题的品优此》

翅的取优性分 件

N ----

共轭方向法和

共轭梯度法

拟Newton 法

定理14 (Dixon 定理)

设f(x) 为 R^n 上连续可微函数, 给定 x_0 , H_0 , 则由Broyden 族 算法产生的点列 $\{x_k\}$ 于参数 φ 无关, 即Broyden 族产生相同的点列.

利用Dixon 定理, 我们可以把DFP 算法的性质推广到整个Broyde 族算法. 比如具有二次终止性、整体收敛性和超线性收敛性 等性质.

对Hesse 矩阵的近似B

实用优化算法 第三章 无约 束最优化方法

教师 邱松强

目习

无约束优化问 题的最优性条 件

最速下降?

共轭方向法和 共轭梯度法

拟Newton a

• 将对H 的BFGS 校正公式中的s 和y 互换, 并将H 换成B, 得对Hesse 矩阵的DFP校正公式

$$B_{k+1} = \left(I - \frac{y_k s_k^T}{y_k^T s_k}\right) B_k \left(I - \frac{s_k y_k^T}{y_k^T s_k}\right) + \frac{y_k y_k^T}{y_k^T s_k}$$

• 将对H 的DFP 校正公式中的s 和y 互换, 并将H 换成B, 得对Hesse 矩阵的BFGS 校正公式

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{s_k^T y_k}.$$