

Автокодировщики (АК)

Сделать из конфетки... конфетку

Постановка задачи

Давайте замутим HC, которая должна выдать ответ, в точности равный входу (вход и выход не обязательно могут быть картинками).

А зачем это надо?

Неужели так сложно подобрать веса HC, чтобы она осуществляла бы тождественное преобразование. То есть ее функция равна $F_{NN}(x)=x$.

Конечно, сделать так, чтобы внутренние нейроны перенесли всю информацию от начала к концу НС, не сложно.

А мы возьмём и усложним жизнь нашей НС!

Бутылочное горлышко

А давайте сделаем специально слой в центре НС очень узким, то есть число нейронов на этом слое меньше размерности входа (выхода) НС.

Что это даст?

Бутылочное горлышко — смысл

Мы **заставляем** НС находить в объекте самую важную информацию и только ее передавать через бутылочное горлышко.

Пример: данные с зависимостями

тренировочная выборка

бутылочное горлышко

X ₁	x ₂
1	4
2	6
3	8
4	10

На данной ТВ НС натренируется следующим образом

Пример: сложная зависимость

тренировочная выборка

бутылочное горлышко

X ₁	X ₂
0	0
1	1
2	4
3	9

Как подобрать оптимальные веса автокодировщика? Для этого нужно составить функцию потерь автокодировщика!

Если на вход АК подается вектор чисел $x=(x_1,...,x_n)$, то функция сети $F_{NN}(x)$ — это тоже вектор $F_{NN}(x)=(F_1(x),...,F_n(x))$.

То есть

число x_1 превращается в число $F_1(x)$,

число x_2 превращается в число $F_2(x)$,

• • •

число x_n превращается в число $F_n(x)$.

Составим квадрат разности чисел х_і и того, во что они превратились. Просуммируем:

$$L(x)=(F_1(x)-x_1)^2+(F_2(x)-x_2)^2+...+(F_n(x)-x_n)^2$$
 — потери на кодировке объекта х

А чтобы получить функцию потерь для всей ТВ, необходимо **просуммировать потери всех объектов ТВ**. В нашем примере имеем:

Функция сети для входа
$$x=(x_1,x_2)$$
 равна $F_{NN}(x)=(F_1(x),F_2(x))$, где $F_1(x)=(w_1x_1+w_2x_2+b)w_3$ $F_2(x)=(w_1x_1+w_2x_2+b)w_4$

Потери на первом объекте равны:

$$((w_1^0+w_2^0+b)w_3^-0)^2+((w_1^0+w_2^0+b)w_4^-0)^2=(bw_3^0)^2+(bw_4^0)^2$$

Потери всех объектов из ТВ занесём в таблицу.

V	
X ₁	x ₂
0	0
1	1
2	4
3	9

X ₁	X ₂	Потери
0	0	$((w_1*0+w_2*0+b)w_3-0)^2+((w_1*0+w_2*0+b)w_4-0)^2$
1	1	$((w_1*1+w_2*1+b)w_3-1)^2+((w_1*1+w_2*1+b)w_4-1)^2$
2	4	$((w_1*2+w_2*4+b)w_3-2)^2+((w_1*2+w_2*4+b)w_4-4)^2$
3	9	$((w_1*3+w_2*9+b)w_3-3)^2+((w_1*3+w_2*9+b)w_4-9)^2$

Итоговая функция потерь равна сумме:

$$\begin{split} \mathsf{L}(\mathsf{w}) &= ((\mathsf{w}_1 * 0 + \mathsf{w}_2 * 0 + \mathsf{b}) \mathsf{w}_3 - 0)^2 + ((\mathsf{w}_1 * 0 + \mathsf{w}_2 * 0 + \mathsf{b}) \mathsf{w}_4 - 0)^2 + \\ &+ ((\mathsf{w}_1 * 1 + \mathsf{w}_2 * 1 + \mathsf{b}) \mathsf{w}_3 - 1)^2 + ((\mathsf{w}_1 * 1 + \mathsf{w}_2 * 1 + \mathsf{b}) \mathsf{w}_4 - 1)^2 + \\ &+ ((\mathsf{w}_1 * 2 + \mathsf{w}_2 * 4 + \mathsf{b}) \mathsf{w}_3 - 2)^2 + ((\mathsf{w}_1 * 2 + \mathsf{w}_2 * 4 + \mathsf{b}) \mathsf{w}_4 - 4)^2 + \\ &+ ((\mathsf{w}_1 * 3 + \mathsf{w}_2 * 9 + \mathsf{b}) \mathsf{w}_3 - 0)^2 + ((\mathsf{w}_1 * 3 + \mathsf{w}_2 * 9 + \mathsf{b}) \mathsf{w}_4 - 9)^2 \end{split}$$

Итоговая функция потерь равна сумме:

$$L(w) = ((w_1*0 + w_2*0 + b)w_3 - 0)^2 + ((w_1*0 + w_2*0 + b)w_4 - 0)^2 + \\ + ((w_1*1 + w_2*1 + b)w_3 - 1)^2 + ((w_1*1 + w_2*1 + b)w_4 - 1)^2 + \\ + ((w_1*2 + w_2*4 + b)w_3 - 2)^2 + ((w_1*2 + w_2*4 + b)w_4 - 4)^2 + \\ + ((w_1*3 + w_2*9 + b)w_3 - 0)^2 + ((w_1*3 + w_2*9 + b)w_4 - 9)^2 \\ \text{Осталось найти минимум}$$

Осталось найти минимум этой функции с помощью ГС.

Зачем они нужны?

Название частей АК

- кодирующая часть
- бутылочное горлышко (слой сжатия)
- декодирующая часть

... на входе HC в числовой вектор e(X) — вектор значений, выходящих из нейронов бутылочного горлышка.

То есть, если бутылочное горлышко состоит из N нейронов, то объект X будет представлен в виде вектора e(X) длины N.

Идея превращать сложные объекты в числовые вектора очень важна в ML.

Это называется embedding (или числовым представлением).

Embedding с помощью АК обладает одним **важным свойством:** похожие объекты X_1 , X_2 будут закодированы близкими друг к другу векторами $e(X_1)$, $e(X_2)$.

Первое применение АК: архиватор

Объект X превращаем в вектор е(X) и храним его вместо объекта X.

Первое применение АК: архиватор

Когда нам нужно восстановить объект X, то мы подаём вектор e(X) декодирующей части АК:

Изображение нужно очистить от шума. Но как натренировать АК?

Тренировка АК: берём изображение X, генерируем случайный шум, получаем зашумлённое изображение X'.

Тренируем АК на парах (Х',Х).

www.educba.com

Итак, АК натренирован. Теперь ему на вход поступает зашумлённое изображение с неизвестным ответом. Мы его просто пропускаем через АК, и на выходе будет очищенное от шума изображение.

Почему это работает?

АК понимает, что протащить всю информацию об изображении через бутылочное горлышко не получится, и поэтому через горлышко проходят только самые существенные части изображения, а всё случайное (шум) — отсеивается.

В задачах классификации НС необходимо предсказать **метку класса** у объекта. Грубо говоря, НС пытается угадать, что изображено на картинке. Такая НС тренируется на размеченной (тренировочной) выборке.

Размеченная выборка — это выборка объектов, для которых известен их точный класс. К сожалению, эта выборка может быть недостаточно хорошей по следующим причинам:

- **Размер выборки** объектов в выборке слишком мало для качественного обучения НС
- Дорогостоящая разметка разметить выборку крайне тяжело, так как для этого необходимо разметить достаточно много качественных исходных данных (к примеру, рентгеновских снимков) и найти специалистов, которые корректно сделают разметку (например, высококвалифицированных рентгенологов).

Как тут помогут АК?

Пусть у нас небольшая размеченная выборка, но много неразмеченных картинок. Пусть $P_1,...,P_n$ — множество неразмеченных картинок. Мы по парам $(P_1,P_1),...,(P_n,P_n)$ тренируем АК.

После этого оставляем от АК кодирующие слои и добавляем новые слои для распознавания изображений. Получается такая сеть-монстр.

Теперь по размеченной выборке тренируем сеть-монстра. Важно: веса между нейронами АК «заморожены», то есть они уже не меняются.

АК реально помогают решать задачу классификации. Можно иметь порядка тысяч неразмеченных изображений и несколько десятков размеченных. И тем не менее данный подход позволит правильно всё классифицировать.

Четвёртое применение: генерация новых изображений

Мы знаем, что бутылочное горлышко АК изображение X превращает в вектор e(X). А потом вектор e(X) проходит через слой декодирования и получается похожее на X изображение.

Четвёртое применение: генерация новых изображений

Мы можем слегка менять вектор e(X) перед отправкой его в декодирующую часть (подаём вектор e(X)+e'). В этом случае и итоговое изображение будет отлично от X. Степень похожести сгенерированного изображения на оригинал X определяется величиной сдвига e'.

А вот как менять вектор e(X) осмысленно, чтобы получалось новое изображение с требуемыми свойствами?

Генерация промежуточных изображений

Если бутылочное горлышко АК превращает изображения A,B в вектора e(A), e(B), то для генерации промежуточного изображения можно взять вектор «между ними».

Промежуточный вектор задаётся формулой:

Выделение отдельных признаков

Допустим, что мы хотим добавлять улыбку (очки, бороду...) на фото людей.

Для этого мы прогоним через АК фото всех улыбающихся людей и получим соответствующие им вектора e(X). Вот это облако точек

Прогоним через АК фото грустных людей.

Соответствующее им облако векторов е(X) находится здесь:

Найдём центр у каждого облака. Соединим центры вектором S.

Ну вот и все:

вектор S — вектор, отвечающий за улыбку.

Как им пользоваться?

Выделение отдельных признаков

Пусть нам надо наложить улыбку на грустное фото. Бутылочное горлышко АК превращает это фото в вектор e(X).

Добавляем к нему вектор S. Оказывается, что вектор e(X)+S при пропуске через декодирующую часть АК даст фото того же самого человека, но с улыбкой.

Выводы

- Мы рассмотрели архитектуру автокодировщика и показали процесс его тренировки.
- Было рассмотрено несколько приложений автокодировщиков в задачах анализа данных.
- Были рассмотрены методы генерации новых изображений и переноса стиля с помощью автокодировщиков.