Overview of UMC 205: Automata and Computability

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

02 January 2024

Different Kinds of "Automata" or "State Machines"

- Finite-State Automata
- Pushdown Automata
- Turing Machines

Different Kinds of "Automata" or "State Machines"

- Finite-State Automata
- Pushdown Automata
- Turing Machines

Course details

Kind of results we study in Automata Theory

- Expressive power of the models in terms of the class of languages they define.
 - Characterisations of this class of languages
 - Myhill-Nerode theorem.
 - Regular Expressions
 - Algebraic (in terms of monoids)
 - Necessary conditions these classes satisfy
 - Pumping Lemma and ultimate periodicity (for Regular/CFL).
 - Parikh's Theorem (for Context-Free Languages).
- Decision procedures
 - Emptiness problem
 - Language inclusion problem
 - Configuration reachability problem.
- Computability (Turing machines give a compelling notion of computable functions), Rice's Theorem.

Why study automata theory?

Corner stone of many subjects in CS:

- Compilers
 - Lexical analysis, parsing, regular expression search
- 2 Digital circuits (state minimization, analysis).
- Computability, Complexity Theory (algorithmic hardness of problems)
- Mathematical Logic
 - Decision procedures for logical problems.
- Formal Verification
 - Configuration reachability
 - Is $L(A) \subseteq L(B)$?

Uses in Verification

- System models are natural extensions of automata models
 - Programs with no dynamic memory allocation, no procedures
 Finite State systems.
 - No dynamic memory allocation = Pushdown systems.
 - General program = Turing machine.
 - Programs with unbounded integer variables = Counter machines.

Decision procedures for emptiness, configuration reachability, etc, directly translate to decision procedures for programs.

② To solve "model-checking" problem for logics that talk about infinite behaviour.

Uses in Logic

- Obtain decision procedure for satisfiability of a logic by translating a formula to an automaton and checking emptiness.
- Argue undecidability/incompleteness of a proof system.

Myhill-Nerode Theorem

Myhill-Nerode Theorem:

Every regular language has a canonical DFA accepting it.

Some consequences:

- Any DFA for L is a refinement of its canonical DFA.
- "minimal" DFA's for L are isomorphic.

Ultimate Periodicity of Regular Languages

Claim

If L is a regular language then lengths(L) is an ultimately periodic set.

$$lengths(L(A)) = \{2\} \cup \{5, 11, 17, \ldots\} \cup \{8, 14, 20, \ldots\}.$$

Parikh's Theorem for CFL's

 $\psi(w)$: "Letter-count" of a string w:

Eg :
$$\psi(aabab) = (3, 2)$$
.

If L is a context-free language, then $\psi(L)$ is semi-linear (Every CFL is letter-equivalent to a regular language).

Can be used to show certain languages are *not* context-free: Eg.

Computable functions

Consider functions of natural numbers

 $f: \mathbb{N} \to \mathbb{N}$.

When do we say a function f is "computable"?

Computable functions

Consider functions of natural numbers

$$f: \mathbb{N} \to \mathbb{N}$$
.

When do we say a function f is "computable"? If we can give a "finite recipe" to compute the value of f(n) for any input n.

Example: a recipe to compute the sum of two numbers

More examples

$$f(n)=n\mapsto 2^n$$

$$flt(n) = \begin{cases} 1 & \text{if } \exists x, y, z : x^n + y^n = z^n \\ 0 & \text{otherwise} \end{cases}$$

$$hp(n) = \begin{cases} 1 & \text{if } n \text{ encodes a halting Turing machine} \\ 0 & \text{otherwise} \end{cases}$$

Density of Computable Functions

Are there any uncomputable functions?

Density of Computable Functions

Are there any uncomputable functions?

Uncountably infinitely many!

Use a diagonalization argument:

	0	1	2	3	4	5	6	7	8	9	10	11	
f_0	0	0	0	0	0	0	0	0	0	0	0	0	
f_1	1	2	3	4	5	6	7	8	9	10	11	12	
f_2	12	10	8	6	4	2	0	2	4	6	8	10	
f ₃	69	0	1	0	42	7	0	0	0	8	0	9	
$\tilde{f_4}$	0	1	0	0	9	1	1	0	0	0	0	0	
f_5	1	11	0	10	0	1	1	5	0	1	61	1	
f ₆	0	1	0	0	0	1	1	0	0	0	0	0	
f ₇	0	0	13	0	6	0	1	15	0	0	1	0	
:									1.				

Density of Computable Functions

Are there any uncomputable functions?

Uncountably infinitely many!

Use a diagonalization argument:

	0	1	2	3	4	5	6	7	8	9	10	11	
$\overline{f_0}$	0	0	0	0	0	0	0	0	0	0	0	0	
f_1	1	2	3	4	5	6	7	8	9	10	11	12	
f_2	12	10	8	6	4	2	0	2	4	6	8	10	
f_3	69	0	1	0	42	7	0	0	0	8	0	9	
f_4	0	1	0	0	9	1	1	0	0	0	0	0	
f_5	1	11	0	10	0	1	1	5	0	1	61	1	
f_6	0	1	0	0	0	1	1	0	0	0	0	0	
f ₇	0	0	13	0	6	0	1	15	0	0	1	0	
									٠.				
•		2	0	-	10	2	2	16				0	

How a Turing machine works

- Finite control
- Tape infinite to the right
- Each step: In current state p, read current symbol under the tape head, say a: Change state to q, replace current symbol by b, and move head left or right.

$$(p, a) \rightarrow (q, b, L/R).$$

Definition of computability

• A function $f: \mathbb{N} \to \mathbb{N}$ is computable if there is a Turing machine M which when started with n on its tape, always halts with f(n) on its tape.

- Finite recipe = A Turing machine that always halts
- Can give a simple TM that computes the addition function.

Gödel's Incompleteness result

There cannot be a sound and complete proof system for first-order arithmetic.

What we can say in $FO(\mathbb{N},+,\cdot)$

• "Every number has a successor"

$$\forall n \exists m (m = n + 1).$$

"Every number has a predecessor"

$$\forall n \exists m (n = m + 1).$$

• "There are only finitely many primes"

$$\exists n \forall p(prime(p) \implies p < n).$$

• "There are infinitely many primes"

$$\forall n \exists p (prime(p) \land p > n).$$

Peano's Proof System for Arithmetic

Axioms:

$$\forall x \neg (0 = x + 1)$$

$$\forall x \forall y (x + 1 = y + 1 \implies x = y)$$

$$\forall x (x + 0 = x)$$

$$\forall x \forall y \forall z (x + (y + z) = (x + y) + z)$$

$$\forall x (x \cdot 0 = 0)$$

$$\forall x \forall y \forall z (x \cdot (y + z) = ((x \cdot y) + (x \cdot z)))$$

$$(\varphi(0) \& \forall x (\varphi(x) \implies \varphi(x + 1))) \implies \forall x \varphi(x).$$

- Other axioms like $(\varphi \& \psi) \implies \varphi, \forall x(\varphi) \implies \varphi(17)$.
- Inference rules like "Modus Ponens"

Given φ and $\varphi \implies \psi$, infer ψ .

Proof

A proof of φ in a proof system is a finite sequence of sentences

$$\varphi_0, \varphi_1, \ldots, \varphi_n$$

such that each φ_i is either an axiom or follows from two previous ones by an inference rule, and $\varphi_n = \varphi$.

Notion of $X \vdash_{\mathcal{G}} \varphi$.

A proof system is "sound" if whatever it proves is indeed true (i.e. in $Th(\mathbb{N},+,\cdot)$).

A proof system is "complete" if it can prove whatever is true (i.e. in $Th(\mathbb{N}, +.\cdot)$).

Gödel's Incompleteness result

There cannot be a sound and complete proof system for first-order arithmetic.

Formal language-theoretic proof: $\mathsf{Th}(\mathbb{N},+,.)$ is not even recursively enumerable.

Course details

- Weightage: 40% assignments + quizes + seminar, 20% midsem exam, 40% final exam.
- Assignments to be done on your own.
- Dishonesty Policy: Any instance of copying in an assignment will fetch you a 0 in that assignment + one grade reduction.
- Seminar (in groups of 3-4) can be chosen from list on course webpage or your own topic.
- Course webpage: www.csa.iisc.ac.in/~deepakd/atc-2024/
- Teaching assistants for the course: Abhishek Uppar.