Educate & Programmes & Pages:

Y= {1,2,3....}

Hall then and theorem of exemption of the transfer of the trans

Rank SVIM

to(15+111)  $+(di,dj)er^*$ :  $w + (qn,di) \ge w + (qn,dj)$   $+(di,dj)er^*$ :  $w + (qn,di) \ge w + (qn,dj)$ 

JAUL SUM

EQ(4): +ut and +un: wt p(xt) -wt p(xt)>0



any row of M - Wx M. X > WD X  $w_{\gamma}(x_{e\gamma}-x_{e\gamma})>\lambda$ any two not of small class

1-15- all

arg max & M: x3

W ( ( ( ( d) ( ) - ( ( ) ( ) )  $\mathcal{N} = \left( \phi(\chi^{+}) - \phi(\chi^{-}) \right)^{1/2}$ 

 $\phi(x^+) = \phi(q_{h_1} d_i)$  $\phi(x) = \phi(q_n(d_j))$ (9h) & fldi)

AUC + Ranky V



 $w^{T}\phi(x^{+}) > w^{+}\phi(x^{-})$ 



Come & Singe:

(max max - lod nD) Im 21 m 22 (" W 2D) (" - M - M)

Class 1/1Class 1/1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/Shirings for the class &:

(NPVT: 1) E1  $\Rightarrow \{(x_1y) = w^{\dagger} \phi(x_1y) \}$ arguex f(x, V) 1 2 DH: Xn DH2: K2. Sparse successive the successive successive the suc  $\mathcal{L}(x) = w^{\mathsf{T}} x + b$ NOW:  $(x_1 y) = \omega^{\dagger} \phi(x_1 y)$ Constraints?  $\mathcal{A}(x_n, y_n)$   $\mathcal{A}(x_n, \overline{y})$ the tytym:  $Wt \phi(x_{u}(y_{n}) > Wt \phi(x_{i}, \overline{y}) + 1$  $\operatorname{cut}\left(\mathbb{D}(x_{n}|Y_{n})-\mathbb{D}(x_{n}|Y_{n})\right)$  21

lear jalgorillen: Pasceptron!  $f(x_1y) = w = f(x_1y)$   $J = f(x_1y) = w = f(x_1y_1)$  h = 1 - Nint we o see above! loop epal loop 1 .-- N If arguax f(Xni Y) + yn then update:  $W = W + \frac{1}{2}(x_n, y_n) - \frac{1}{2}(x_n, \overline{y})$ \$(x4 c/m) = 1 1 00 jutil conseque - t(x, 1) - D1 D1  $W_{n} = \pm \left( \times_{\mathbf{n}_{n}} \cdot \mathbf{N}_{\mathbf{n}_{n}} \right) - \pm \left( \times_{\mathbf{n}_{n}} \cdot \mathbf{N}_{\mathbf{n}_{n}} \right)$  $W_2 = \pm (x_{n_1}(y_{n_1}) - \pm (x_{n_2}(y) + \pm (x_{n_2}(y_{n_2}) - \pm (x_{n_2}(y)))$ 

s hammete a contr  $d_h(\overline{y}) = 0$  $W = \sum_{n=1}^{N} \sum_{i=1}^{N} \lambda_{in} (\mathbf{y}) \left( \frac{1}{2} (x_{n} | y_{n}) - \frac{1}{2} (x_{n} | \mathbf{y}) \right)$  $\mathcal{A}(\mathbf{x}_1\mathbf{y}) = \sum_{i=1}^{n} d_n(\bar{\mathbf{y}}) \left( \frac{1}{2} (\mathbf{x}_n \mathbf{y}_n) + \frac{1}{2} (\mathbf{x}_n \mathbf{y}_n) + \frac{1}{2} (\mathbf{x}_n \mathbf{y}_n) \right) d(\mathbf{x}_n \mathbf{y}_n)$ = 22 dy (4) K(xy 1/41 x 1/4) - ((xu 1/41 x 1/4)) infasible jumition (why?)

-> implanetation runs only on observed prirs with d>0 Magne loss protor:  $\min_{W} E(\omega) = \sum_{n=0}^{N} V(x_n, y_n, \ell)$  $= \sum_{N=1}^{N} I \left[ \text{Maxmax } f(x_n; \overline{y}) \neq y_n \right]$  Vanilla perentino if yells co the update  $E(w) = \sum_{n=0}^{N} mox \{0, -\sqrt{n}\}$