Principal Component Analysis

Review of Eigen values and eigen vectors

Given a $d \times d$ matrix M, a very important class of linear equations is of the form

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x},$$
 (26)

which can be rewritten as

$$(\mathbf{M} - \lambda \mathbf{I})\mathbf{x} = 0, \tag{27}$$

Diagonalization property

Orthogonal Matrix

$$\{q_1, q_2, \dots, q_M\} \qquad \text{M vectors}$$

$$q_i^T q_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

$$\Rightarrow Q^T Q = I \qquad \text{columns of Q denote}$$

$$\left[\begin{array}{c} q_1 & q_2 & \dots & q_M \end{array} \right]$$

Q is of size $M\,XM$ and is said to be an 'orthogonal' matrix

Principal Component Analysis decorrelation property

 PCA also called Karnoueve Loeve (KL) Transform (in image processing). The transformed coefficients after projection may be used as features.

$$z = W^T (x - m)$$

- Since the Eigen vectors of Σ are orthogonal, the ${f W}$ matrix satisfies :

$$\mathbf{W}^T\mathbf{W} = \mathbf{I}$$

 PCA de-correlates the feature vectors → covariance matrix of transformed coefficients becomes diagonal.

$$z = W^T (x - m)$$

$$E(\mathbf{z}\mathbf{z}^T) = \mathbf{W}^T E((\mathbf{x} - \mathbf{m})(\mathbf{x} - \mathbf{m})^T) \mathbf{W}$$

$$E(\mathbf{z}\mathbf{z}^T) = \mathbf{W}^T \sum \mathbf{W} = diagonal \ matrix$$

- If indeed the original data is Gaussian in nature, de correlation implies independence between features
- Hence PCA are meant to give a set of independent features in a reduced dimension.

PCA as change of basis

- Change of basis.
- Data dependent unlike FFT, DCT.
- Need to compute covariance matrix using training data.

$$\mathbf{x} = \sum_{i=1}^{D} \left(\mathbf{x}^{T} \mathbf{w}_{i} \right) \mathbf{w}_{i}$$

Approximate signal after reduction to lower dimension

When we choose *M* eigenvectors (corresponding to the *M* largest eigen values), we can approximate the signal

$$\widetilde{\mathbf{x}} = \sum_{i=1}^{M} (\mathbf{x}^T \mathbf{w}_i) \mathbf{w}_i$$

where

 $\mathbf{x}^T \mathbf{w}_i$ is the projection of \mathbf{x} onto the principal direction \mathbf{w}_i

PCA can be used for the purpose of compression !!!

Implication of eigen values

- Let the D dimensional feature vector be reduced to M dimensions.
- Ratio of sum of top M Eigen values of Σ to the total sum of all Eigen values (trace) captures a certain percentage of variance (denoted by V).

$$V = \left(\frac{\lambda_1 + \lambda_2 + \dots + \lambda_M}{\lambda_1 + \lambda_2 + \dots + \lambda_M + \dots + \lambda_D}\right) *100 \quad (1)$$

$$\lambda_1 > \lambda_2 > \dots \lambda_M$$

- In practice, some eigen values have little contribution to the variance and may be discarded.
- Suppose we want to retain at least x % of the variance, we sort the λ_i s in descending order and accordingly calculate the value of M using equation (1)

- Consider, case when the number of data points is smaller than the dimensionality of the data space N < D
- Idea is to reduce data to M dimensions.
- example:
 - data set: a few hundred images
 - dimensionality: several million corresponding to three color values for each pixel

- Standard algorithm is to find eigenvectors for a DxD covariance matrix
- If D is really high, a direct PCA is computationally infeasible
- For example, consider an image of size 128 X 128. If pixels are used as features, computation of covariance matrix will lead to a 128² X 128² square matrix (Very large !!!).
- You may have to deal with memory issues in implementation !!!
- So we need to look for a faster implementation scheme.

If N < D

- a set of N points defines a linear subspace whose dimensionality is at most N
- there is little point to apply PCA for M > N

if M > N

- at least D-N of the eigenvalues are 0
- eigenvectors has zero variance of the data set

- Define X: N x D dimensional mean-centred data matrix
- nth row: $(\mathbf{x}_n \overline{\mathbf{x}})^{\mathrm{T}}$
- Covariance matrix

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n} - \mathbf{\bar{x}}) (\mathbf{x}_{n} - \mathbf{\bar{x}})^{T}$$

$$\Sigma = \frac{1}{N} \mathbf{X}^{T} \mathbf{X}$$

$$\Sigma = \frac{1}{N} \mathbf{X}^{T} \mathbf{X}$$

 $\mathbf{X}\mathbf{X}^T \implies \frac{N}{har}$

N x N matrix is easier to handle compared to D X D

$$\frac{1}{N} \mathbf{X} \mathbf{X}^T \mathbf{w}_i = \lambda_i \mathbf{w}_i$$

Pre-multiplying by \mathbf{X}^T

$$(\frac{1}{N}\mathbf{X}^{T}\mathbf{X}) (\mathbf{X}^{T}\mathbf{w}_{i}) = \lambda_{i}(\mathbf{X}^{T}\mathbf{w}_{i})$$

Eigenvector equation for matrix $\Sigma = \frac{1}{N} \mathbf{X}^T \mathbf{X}$

- Eigenvectors are $\mathbf{X}^T \mathbf{w}_i$
- Eigen values of $\mathbf{X}^T\mathbf{X}$ and $\mathbf{X}\mathbf{X}^T$ are same.

- Eigenvectors $\mathbf{X}^T \mathbf{w}_i$ is not normalized!
- So it is required to normalize it to unit norm.
- One application of PCA is in face recognition (use of eigen faces for face reconstruction)

Eigenfaces [Turk, Pentland '91]

Input images:

Principal components:

