Artificial Intelligence Knowledge Representation

Dr. Ahmed Mateen

Representation

- Al agents deal with knowledge (data)
 - Facts (believe & observe knowledge)
 - Procedures (how to knowledge)
 - Meaning (relate & define knowledge)

Some General Representations

- 1. Logical Representations
 - Propositional logic
 - 2. First order predicate logic
- 2. Production Rules
- 3. Semantic Networks
 - Conceptual graphs, frames

- A statement, or a proposition, is a declarative sentence that is either true or false, but not both
- Uppercase letters denote propositions
 - Examples:
 - P: 2 is an even number (true)
 - Q: 7 is an even number (false)
 - R: A is a vowel (true)
 - The following are not propositions:
 - P: My cat is beautiful
 - Q: My house is big

Propositional Logic

- Compound statement
 - Connectives: and. or. not. implies. iff (equivalent)

$$\wedge \vee \neg \rightarrow \leftrightarrow$$

- Brackets, (true) and F (false)
- Use truth tables to work out the truth of statements

Conjunction

- Let P and Q be statements. The conjunction of P and Q, written P ^ Q, is the statement formed by joining statements P and Q using the word "and"
- The statement P ^ Q is true if both p and q are true;
 otherwise P ^ Q is false
- Truth Table for Conjunction:
- Example

p: Rameez is healthy q:He has blue eyes

p: It is cold q: It is raining

p:5x+6=26 q=x>3

 Write each of the following sentences symbolically,

letting h ="It is hot" and s ="It is sunny."

Make the propositional logic of following two statements

- a. It is not hot and it is sunny.
- b. It is neither hot nor sunny.

- The given sentence is equivalent to
 "It is not hot and it is sunny," which can be written symbolically as ~h ∧ s.
- To say it is neither hot nor sunny means that it is not hot and it is not sunny.
 Therefore, the given sentence can be written symbolically as ~h ∧~ s

Disjunction

- Let P and Q be statements. The disjunction of P and Q,
 denoted by P v Q, is the compound statement formed by joining statements P and Q using the word "or"
- The statement P v Q is true if at least one of the statements P
 and Q is true; otherwise P v Q is false
- The symbol v is read "or"
- Truth Table for Disjunction:
- Example 5<5 v 5<6
- Example $5 \times 4 = 21 \vee 9 + 7 = 17$
- Example $6+4=10 \lor 0 > 2$

Example Cont'

- p: It is cold
- q: It is raining

Write simple verbal sentences which describes each of the following statements

- Implication
 - Let P and Q be statements. The statement "if P then Q" is called an implication or conditional proposition.
 - The implication "if P then Q" is written $P \rightarrow Q$
 - P is called the hypothesis or antecedent, Q is called the conclusion or consequent

Example of Implication

Which of the following propositions are true and which are false?

- a) If earth is round, then earth travels around the sun.
- b) If Alexander Graham Bell invented telephone, then tigers have wings
- c) If tigers have wings, then RDX is dangerous

Implication

- Let P: Today is Sunday and Q: I will wash the car.
- P → Q:
 If today is Sunday, then I will wash the car
- The converse of this implication is written Q → P
 If I wash the car, then today is Sunday
- The **inverse** of this implication is $\neg P \rightarrow \neg Q$ If today is not Sunday, then I will not wash the car
- The **contrapositive** of this implication is $\neg Q \rightarrow \neg P$ If I do not wash the car, then today is not Sunday

Biimplication

- Let P and Q be statements. The statement "P if and only if Q" is called the biimplication or biconditional of P and Q
- The biconditional "P if and only if Q" is written $P \leftrightarrow Q$
- "P if and only if Q"

Predicate Logic

- Propositional logic combines atoms
 - An atom contains no propositional connectives
 - Have no structure (today_is_wet, john_likes_apples)
- Predicates allow us to talk about objects
 - Properties: is_wet(today)
 - Relations: likes(john, apples)

First Order Logic

- Constants are objects: john, apples
- Predicates are properties and relations:
 - likes(john, apples)
- Computable Predicates

```
gt(1,0)  It(0,1)
```

- Functions transform objects:
 - likes(john, fruit_of(apple_tree))
- Variables represent any object: likes(X, apples)

Predicates

Marcus was a man

man (Marcus)

Marcus was a Pompeian

Pompeian(Marcus)

Caesar was a ruler

Ruler(Caesar)

Marcus tried to assassinate Caesar

Tryassassinate(Marcus, Caesar)

FOL

- Quantifiers qualify values of variables
 - True for all objects (Universal): ∀X. likes(X, apples)
 - Exists at least one object (Existential): ∃X. likes(X, apples)

Example: Quantifiers Sentence

 Write WFF(well formed formula) for the following statements

"Every Student likes Al"

"Some students like AI"

Quantifiers and Predicate

All Pompeians were Romans

 All romans were either loyal to Caesar or hated him

Combination of Predicate and Quantifiers

No mortal lives longer than 150 years

Difference Between PL and FOL

- It uses prepositions in which complete sentence is denoted by symbol
- PL cannot represent individual entities
 e.g. John is tall
- FOL uses predicates which involves constants variables, functions and relations.
- FOL can represent individual properties e.g. Tall(John)

Cont'

 It cannot express generalization and specialization.

e.g. Triangle has 3 sides

 It can express generalization, specialization or pattern.

e.g. no_of_sides(triangle,3)