NEURAL NETWORKS

Lara J. Martin (she/they)

TA: Aydin Ayanzadeh (he)

12/7/2023

CMSC 671

By the end of class today, you will be able to:

- 1. Perform feed-forward propagation for a given simple neural network
- 2. Describe how feed-forward networks can be used for classification
- 3. Extract features & follow backpropagation

RECAP

Q: What types of problems do perceptrons struggle with?

A: Non-linearly separable problems

REVIEW: NEURON UNIT ACTIVATION FUNCTIONS

Step function (hard threshold):

$$g(x) = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases}$$

Sigmoid function (soft threshold):

$$g(x) = \frac{1}{1 + e^{-x}}$$

WHAT HAPPENS WHEN WE HAVE MORE THAN ONE HIDDEN LAYER?

MULTI-LAYER NETWORKS: GENERAL STRUCTURE

Mutli-layer perceptrons (aka neural networks) will have **inputs**, one or more **hidden layers**, and an **output layer:**

MULTI-LAYER NETWORKS: GENERAL STRUCTURE

Mutli-layer perceptrons (aka neural networks) will have **inputs**, one or more **hidden layers**, and an **output layer:**

- Number of inputs, outputs, and number and size of hidden layers can vary
- Combination of **different weights** and **different structures** represent different **functions**
- We will treat each layer as fully-connected
 - Each unit in one layer connects to every unit in the next layer

MULTI-LAYER NETWORKS: GENERAL STRUCTURE EXAMPLE

MULTI-LAYER NETWORKS

- Mutli-layer neural networks can effectively classify data that's not linearly separable.
- Example: restaurant task

COMPUTING VALUES: FORWARD PROPAGATION

Forward propagation calculates the output values for a given set of input values

Algorithm

For each layer:

- 1. Calculate the weighted sum of inputs to each neuron unit
- 2. Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

FORWARD PROPAGATION EXAMPLE

• Calculate the output of the network below, assuming each neuron uses a sigmoid activation function, given 0.05 and 0.1 as inputs.

For each layer:

- 1. Calculate the weighted sum of inputs to each neuron unit
- 2. Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

FORWARD PROPAGATION EXAMPLE

• Calculate inputs to the hidden layer (units h1 and h2):

- 1. Calculate the weighted sum of inputs to each neuron unit
- 2. Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

$$in_{h1} = w_1i_1 + w_2i_2 + b_1$$

= .15(.05)+.2(.1)-.35
= .0075+.02-.35
= -.3225

$$in_{h2} = w_3 i_1 + w_4 i_2 + b_2$$

= .25(.05)+.3(.1)-.35
= .0125+.03-.35
= -.3075

FORWARD PROPAGATION EXAMPLE

• Calculate outputs to the hidden layer (units h1 and h2):

How do we do this?
Use our activation function!

$$g(x) = \frac{1}{1 + e^{-x}}$$

What will be our x?

$$in_{h1} = -.3225$$

 $in_{h2} = -.3075$

For each layer:

- 1. Calculate the weighted sum of inputs to each neuron unit
- 2. Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

out_{h1} =
$$g(in_{h1})$$

= $\frac{1}{1+e^{-in_{h1}}}$
= $\frac{1}{1+e^{-(-.3275)}}$
= .4188

out_{h2} =
$$g(in_{h2})$$

= $\frac{1}{1+e^{-in_{h2}}}$
= $\frac{1}{1+e^{-(-.3075)}}$
= .4237

YOUR TURN: FORWARD PROPAGATION EXAMPLE

- 1. What would the input and output values be for the **output layer**?
- 2. Which nodes would activate,

Activation function:

out_{h1} = .4188
$$g(x) = \frac{1}{1 + e^{-x}}$$

 $out_{h2} = .4237$

Decision boundary:

$$\hat{y} = \begin{cases} 1, & \text{if } P(y = 1|x) > 0.5\\ 0, & \text{otherwise} \end{cases}$$

For each layer:

- 1. Calculate the weighted sum of inputs to each neuron unit
- 2. Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

HOW ARE NEURAL NETWORKS USED?

- Are neural networks supervised or unsupervised learning?
 - Inputs to the network are features of our data set
 - Outputs to the network are our labels
- Can they be used for classification or regression?
 - Either!

EXAMPLE – IMAGE CLASSIFICATION

Example:

• Classifying images of dogs and muffins (it's harder than you might think)

EXAMPLE — IMAGE CLASSIFICATION

What does are training data look like?

Input

Output1

Output2

(dog likelihood) (muffin likelihood)

.99

.01

.05

.95

TRAINING

• For each training example, take a network with some **initial weights**, and use forward propagation to see what outputs we get:

Then learn new weights for the network so that we get the outputs that we expect!

EXAMPLE - SENTIMENT CLASSIFICATION

Identify whether a given piece of text (like a review) is positive or negative:

Input: "Spiraling away from narrative control as its first three episodes unreel, this series, about a post-apocalyptic future in which nearly everyone is blind, wastes the time of Jason Momoa and Alfre Woodard, among others, on a story that starts from a position of fun, giddy strangeness and drags itself forward at a lugubrious pace."

Output: positive (1) or negative (0)

EXTRACTING FEATURES

Variable	Definition	Value
\mathbf{x}_1	Count of positive lexicon words	
\mathbf{x}_2	Count of negative lexicon words	
\mathbf{x}_3	Does "no" appear? (binary feature)	
X_4	Number of 1st and 2nd person pronouns	
\mathbf{X}_{5}	Does! Appear? (binary feature)	
\mathbf{x}_6	Log of the word count for the document	

EXTRACTING FEATURES

Variable	Definition	Value
\mathbf{x}_1	Count of positive lexicon words	3
\mathbf{x}_2	Count of negative lexicon words	
\mathbf{x}_3	Does "no" appear? (binary feature)	
X_4	Number of 1st and 2nd person pronouns	
\mathbf{x}_5	Does! Appear? (binary feature)	
x ₆	Log of the word count for the document	

EXTRACTING FEATURES

Variable	Definition	Value
\mathbf{x}_1	Count of positive lexicon words	3
\mathbf{x}_2	Count of negative lexicon words	2
\mathbf{x}_3	Does "no" appear? (binary feature)	
\mathbf{x}_4	Number of 1st and 2nd person pronouns	
\mathbf{x}_5	Does! Appear? (binary feature)	
\mathbf{x}_6	Log of the word count for the document	

EXTRACTING FEATURES

Variable	Definition	Value
\mathbf{x}_1	Count of positive lexicon words	3
\mathbf{X}_2	Count of negative lexicon words	2
\mathbf{x}_3	Does "no" appear? (binary feature)	1
\mathbf{x}_4	Number of 1st and 2nd person pronouns	
\mathbf{x}_5	Does! Appear? (binary feature)	
\mathbf{x}_6	Log of the word count for the document	

EXTRACTING FEATURES

Variable	Definition	Value
\mathbf{x}_1	Count of positive lexicon words	3
\mathbf{X}_{2}	Count of negative lexicon words	2
\mathbf{x}_3	Does "no" appear? (binary feature)	1
\mathbf{x}_4	Number of 1st and 2nd person pronouns	3
\mathbf{x}_5	Does! Appear? (binary feature)	
\mathbf{x}_6	Log of the word count for the document	

EXTRACTING FEATURES

Variable	Definition	Value
\mathbf{x}_1	Count of positive lexicon words	3
\mathbf{x}_2	Count of negative lexicon words	2
\mathbf{x}_3	Does "no" appear? (binary feature)	1
\mathbf{x}_4	Number of 1st and 2nd person pronouns	3
\mathbf{x}_5	Does! Appear? (binary feature)	0
\mathbf{x}_6	Log of the word count for the document	

EXTRACTING FEATURES

It's hokey. There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you.

Word count = 64, ln(64) = 4.15

Variable	Definition	Value
\mathbf{x}_1	Count of positive lexicon words	3
\mathbf{x}_2	Count of negative lexicon words	2
\mathbf{x}_3	Does "no" appear? (binary feature)	1
\mathbf{x}_4	Number of 1st and 2nd person pronouns	3
\mathbf{x}_5	Does! Appear? (binary feature)	0
\mathbf{x}_6	Log of the word count for the document	4.15

CALCULATING IN

$$in = \sum_{i} w_i x_i + b \qquad in = 0.805$$

$$in = 0.805$$

Variable	Definition	Value	Weight	Product
\mathbf{x}_1	Count of positive lexicon words	3	2.5	7.5
\mathbf{x}_2	Count of negative lexicon words	2	-5	-10
\mathbf{x}_3	Does "no" appear? (binary feature)	1	-1.2	-1.2
x ₄	Number of 1st and 2nd person pronouns	3	.5	1.5
\mathbf{x}_5	Does! Appear? (binary feature)	0	2	0
\mathbf{x}_6	Log of the word count for the document	4.15	.7	2.905
b	Bias	1	.1	.1

https://playground.tensorflow.org/