

IPN Foundry MPW sensores flexibles v1.0

Características.

Área por chip: 5mm x 5mm
Mínima dimensión: 10um
Máxima temperatura: 300°C

• Máximo radio de curvatura: 2 mm

Diseño a tus necesidades

• Tiempo de fabricación: 3 días

• Fabricación en cuarto limpio ISO5

Aplicaciones.

- RFID
- Wearables
- Textiles inteligentes
- Sensores: gases, temperatura, luz
 UV, deformación, biosensores, etc.

Materiales y fabricación.

^{1.} Sustrato flexible: 50um PI Dupont Kapton HN¹

2. Primera capa (METAL1). Metal de contacto: 10nm Cr/50nm Au

3. Segunda capa (SEMI1). Semiconductor: 30nm IGZO

1.

2.

Capa	Material	Técnica de depósito	Propiedades
LO	Cr/Au	Evaporación por haz de	Resistencia de hoja 0.8 Ohm/cuadro
METAL1	CI/Au	electrones	Resistividad 5x10 ⁻⁶ Ohm-cm
L1	IGZO	RF Sputtering	Resistencia de hoja > 30 MOhm/cuadro
SEMI1	IGZU		Resistividad > 100 Ohm-cm

1

¹ https://www.dupont.com/content/dam/electronics/amer/us/en/electronics/public/documents/en/EI-10206-Kapton-HN-Data-Sheet.pdf

Reglas de diseño.

Mínima dimensión - METAL	10 um	
Mínima dimensión - SEMI	10 um	
Mínima separación - METAL	10 um	-
Mínima separación - SEMI	10 um	-
Traslape mínimo - SEMI sobre METAL	10 um	+

NOTA: diseños que ocupan toda el área de fabricación (5mm x 5mm) utilizar dimensión mínima de 20um en lugar de 10um.

Ejemplos de aplicación.

Resistencia de Cr/Au

Longitud (L)= 57000 um

Ancho (W)= 100um

Rsh= 0.8 Ohm/cuadro

R= Rsh * L/W

= 0.8 * 570 = 456 Ohm $R = \rho \frac{L}{W*t} = R_{sh} \frac{L}{W}$

Resistencia de Cr/Au/IGZO/Au/Cr.

Comparación

