Representation Learning

Nils Reimers
Principal Scientist @ cohere.ai
www.nils-reimers.de

co:here

My Career Path

Ph.D. + PostDoc

Neural Search Science Team Team Lead

sentence-transformers

TSDAE

GPL

co:here

Principal Scientist / Director of Machine Learning Using very Large Language Models for search

Sentence Embeddings Model

Fixed Sentence Embeddings

Contextualized Word Embeddings

Neural Search — Bi-Encoders

Neural Search — Bi-Encoders

- Can overcome the lexical gap
 - US vs USA vs United States
- Respects the word order
 - Visa from Germany to Canada
 - Visa from Canada to Germany
- Knows about related terms
 - "spearman correlation numpy" finds the entry:
 "spearman correlation SciPy"

Multi-Modal & Multi-Lingual Search

Multiple Negative Ranking Loss

Have positive pairs:

```
(a<sub>1</sub>, p<sub>1</sub>)
(a<sub>2</sub>, p<sub>2</sub>)
(a<sub>3</sub>, p<sub>3</sub>)
```

- Examples:
 - (query, answer-passage)
 - (question, duplicate_question)
 - (paper title, cited paper title)
- (a_i, p_i) should be close in vector space
- (a_i, p_j) should be distant in vector space (i != j)
 - Unlikely that e.g. two randomly selected questions are similar
- Also called "training with in-batch negatives", InfoNCE or NTXentLoss

Multiple Negative Ranking Loss

Mathematical Definition

$$L = -\frac{1}{n} \sum_{i=1}^{n} \frac{\exp(sim(a_i, p_i))}{\sum_{j} \exp(sim(a_i, p_j))}$$

- Sim: Similarity function between (a, p)
 - Cosine-Similarity
 - Dot-Product

Multiple Negative Ranking Loss Intuitive Explanation

- a₁: How many people live in Berlin?
 - p₁: Around 3.5 million people live in Berlin
 - p₂: Washington DC is the capital of the US
 - p₃: The 2021 Olympics are held in Japan
- Compute text embeddings & compute similarities:
 - \blacksquare sim(a₁, p₁) = 0.5
 - \blacksquare sim(a₁, p₂) = 0.3
 - \blacksquare sim(a₁, p₃) = 0.1
- See it as classification task and use Cross-Entropy Loss:
 - Prediction: [0.5, 0.3, 0.1]
 - Gold: [1, 0, 0]

Multiple Negative Ranking Loss Intuitive Explanation

```
• (a<sub>1</sub>: How many people live in Berlin?, p_1: Around 3.5 million people live in Berlin) (a<sub>2</sub>: What is the capital of the US?, p_2: Washington DC is the capital of the US) (a<sub>3</sub>: Where are the Olympics this year?, p_3: The 2021 Olympics are held in Japan)
```

Compute text embeddings & compute similarities:

```
sim(vec_a, vec_b) = vec_a * vec_b^T =
[ sim(a_1, p_1), sim(a_1, p_2), sim(a_1, p_3) 
sim(a_2, p_1), sim(a_2, p_2), sim(a_2, p_3), 
sim(a_3, p_1), sim(a_3, p_2), sim(a_3, p_3) ]
```

See it as classification task and use Cross-Entropy Loss:

```
■ Gold: [ 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
```

Multiple Negatives Ranking Loss Code

```
scores = self.similarity_fct(embeddings_a, embeddings_b) * self.scale
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=scores.device) # Example a[i] should match with b[i]
return self.cross_entropy_loss(scores, labels)
```

https://github.com/UKPLab/sentence-transformers/losses/MultipleNegativesRankingLoss.py

Multiple Negatives Ranking Loss Similarity Functions

- How to compute sim(a, b)?
 - a, b are vectors
 - Dot-product: dot_prod(a, b) = ab^T
 - Cosine-Similarity: $cos_sim(a, b) = (ab^T) / (||a|| ||b||)$
 - Does not work well, scores differences are too small
 - Scaled Cosine-Similarity: scaled_cos_sim(a, b) = C * cos_sim(a, b)
 - Works well with e.g. C=20
 - Scaled dot-product: scaled_dot_prod(a, b) = C * dot_prod(a, b)

Cosine-Similarity vs. Dot-Product

Cosine-Similarity

- Vector has highest similarity to itself
 - \bullet cos_sim(a, a) = 1
- With normalized vectors, equal to dot_product
 - With max vector length = 1
- With normalized vectors, proportional to Euclidian distance
 - Works with k-means clustering

Dot-Product

- Other vectors can have higher dotproduct
 - dot(a, a) < dot(a, b)</p>
- Might be slower with certain approximate nearest neighbor methods
 - Max vector length not know
- Does not work with k-means clust.

Cosine-Similarity vs. Dot-Product

- Semantic search: Given short query, find longer passage
- Cosine-Similarity: Prefers retrieval of short passages close to query
- Dot-Product: Prefers longer passages (longer passage = longer vector = higher dot product)

Optimizing the Multiple-Negatives-Ranking-Loss

- Training with scaled_cos_sim(a, b) = C * cos_sim(a, b)
 - How to choose the scale C? <= unclear, common values 14-20
 - ConveRT paper: Start at 1, end at 23, increase over first 10k steps
 - CLIP paper: scaled_cos_sim(a, b) = exp(C) * cos_sim(a, b) with C a learnable parameter
 - Unclear impact
 - Will it make a difference?
 - Does it depend on the data / task?
- Symmetric Multiple-Negatives-Ranking-Loss
 - Used in CLIP Paper
 - Compute: (Loss(A, P) + Loss(P, A)) / 2
 - Swap anchor & positives (e.g. given answer, what is the question?
 - Unclear impact

Multiple-Negatives-Ranking-Loss with Additive Margin

$$= sim(a_i, p_j) = \begin{cases} sim(a_i, p_i) - m & if i = j \\ sim(a_i, p_j) \end{cases}$$

$$Margin$$

- Substract value m from positive pairs
 - Consine-similarity with margin 0.3 used in LaBSE paper with translation pairs
- Unclear impact of margin for other tasks / datasets

Used in: LaBSE: https://arxiv.org/abs/2007.01852 & https://arxiv.org/abs/1902.08564

Multiple Negative Ranking Loss Hard Negatives

- Larger batch size => task more difficult => better results
 - Given query, which of the 10 passages provide the answer?
 - Given query, which of the 1k passages provide the answer?

Image: https://arxiv.org/pdf/2010.08191.pdf

Multiple Negative Ranking Loss Hard Negatives

Train with tuples:

- n_i should be similar to p_i but not match with a_i
- Bad example:

 - a: How many people live in London?p: Around 9 million people live in Londonn: London has a population of 9 million people.

- Good example:

 - a: How many people live in London?
 p: Around 9 million people live in London
 n: Around 1 million people live in Birmingham, second to London.

How to find hard-negatives?

- Quality of hard-negatives significantly improves the performance
- Finding good hard negatives not easy

- Strategy 1: Exploit structure in your data
 - Citation graph: (Title, Cited_Paper, Paper_Cited_by_Cited_Paper)
 - Q&A: (Question, Answer with many stars, Answer with few stars)

- Strategy 2: Mine hard negative:
 - Use BM25 to find top-100 most similar texts to anchor / positive
 - Select one of these randomly
 - Make sure that these are actually negatives!

Improving Quality with Better Batches

- Assume you have (question, answer) pairs from StackExchange
 - 140 different subforums: StackOverflow, Travel, Cooking, ...

- Naïve approach:
 - Randomly sample data from all pairs:

```
[ (question_python, answer_python),
 (question_travel, answer_travel),
 (question_pasta, answer_pasta)]
```

- Finding the right answer for a given question is easy
 - Question about Python => Take that one programming answer in the batch...

Improving Quality with Better Batches

- Assume you have (question, answer) pairs from StackExchange
 - 140 different subforums: StackOverflow, Travel, Cooking, ...

Better approach

Improving Quality with Better Batches

- Assume you have (question, answer) pairs from StackExchange
 - 140 different subforums: StackOverflow, Travel, Cooking, ...

Even better approach (?)

```
    Sample pairs from same / similar tags (e.g. StackOverlow, Python tag)

            (question_python, answer_python),
            (question_numpy, answer_numpy),
            (question_pandas, answer_pandas)]
```

- Adding random batches might still be needed
 - Otherwise StackOverflow vector space could overlap with Travel vector space
 - 90% difficult batches, 10% easy random batches
 - Or: start with mainly random batches, then go to difficult batches

Bi-Encoders and the Curse of the Unknowns

- How do Bi-Encoders handle unknown words?
 - Not seen during pre-training
 - Not seen during fine-tuning
- Where to put these words in a vector space?
 - XLNet
 - Clexchain
 - Forwrd
 - 0xc004f213
- How to know
 - Corona Virus ⇔ COVID-19 ⇔ SARS-Cov-2
 - Q: "Which vision transformer model is the best?"
 A: "ViT has been doing great in our experiments"

Challenge of Unknown Words for Dense Bi-Encoders

Unknown Words for Sparse Bi-Encoders

Split query in word pieces:

big:2.1, ##bird: 2.0, ##pe: 1.8, ##gas: 2.0, ##us:1.9

Some related terms are added:

##birds: 1.2, giant: 0.7

BEIR – Benchmarking IR

Bi-Encoders vs Lexical Search

Dataset	BM25	Dense Model (TAS-B)	Difference
In-Domain	22.8	40.8	+18.0
BioASQ	46.5	38.3	-8.2
SCIDOCS	15.9	14.9	-1.0

■ BM25 was better on 10 / 18 datasets

Do Models Generalize?

- BM25 lexical search a strong baseline
- BM25 + CrossEncoder re-ranking perform the best
- Dense embedding models (TAS-B, ANCE, DPR) with issues for unknown domains
- Sparse embedding models (SPLADEv2) better for unknown domains

Cross-Encoders vs Bi-Encoders

Cross vs. Bi-Encoders in STSb (English)

Cross-Encoders vs Bi-Encoders

Dataset	BM25	Dense Model (TAS-B)	BM25 + CE
In-Domain	22.8	40.8	41.3
BioASQ	46.5	38.3	52.3
CQADupStack	29.9	31.4	37.0
TREC-COVID	65.5	48.1	75.7
SCIDOCS	15.9	14.9	16.6

■ BM25 + CE on average 13.8 points better than dense

Why not using Cross-Encoders / doc2query?

- Cross-Encoders are slow (even small ones)
 - E.g. query has 10 tokens, docs have 240 tokens, re-rank 100 docs
 - Bi-Encoders: Compute embedding for query (e.g. 10ms)
 - Cross-Encoder: Re-rank 100 x 250 token docs
 - Forward pass for 250 tokens takes ~25*25 = 625 times longer
 - Overall 62,500 times longer to get results
- Doc2query is slow at indexing
 - Generates 40 query per passage
 - Question generation is extremely slow
 - Costs to generate queries for 8M docs: \$750
 - Computing dense embeddings: \$1

How to Adapt Bi-Encoders to New Domains?

Adaptive Pre-Training

Pre-Training on Target
Domain

Fine-Tuning on Labeled
Data (MS MARCO)

Methods for Pre-Training	Does it work?	
Masked Language Modeling (MLM)	Yes	
TSDAE	Yes	
Inverse Cloze Task (ICT)	Yes	
<u>SimCSE</u>	No – weaker than base model	
Contrastive Tension (CT)	No – weaker than base model	
Condenser (CD)	No – weaker than base model	

Masked Language Model (MLM)

Inverse Cloze Task (ICT)

Train such sentence + remaining paragraph are close in vector space

TSDAE

- Delete randomly words in the text
- Pass through the encoder
- Apply pooling to get fixed-sized text embedding
- Decoder must reconstruct text without noise from this text embedding

Adaptive Pre-Training - Results

Models	4 Sentence Tasks	6 Dense IR Tasks				
Out-of-the-box	52.3	45.2				
Source -> Target	Source -> Target					
TSDAE	54.2	-				
MLM	51.1	-				
Target -> Source	Target -> Source					
TSDAE	56.5	49.2				
MLM	55.9	46.7				
ICT	-	46.5				
SimCSE	52.4	45.0				
CD	-	44.7				
СТ	53.0	44.0				

Domain Adaptation on Pre-Trained Model

- X Adaptive pre-training is expensive
 - 1) Unsupervised training on target domain
 - 2) Fine-tuning on labeled source dataset (can be as large as 1B+ training pairs)

✓ What we want:

1) Fine-tuning on labeled source dataset (can be as large as 1B+ training pairs)

2) Unsupervised training on target domain

Generative Pseudo Labels (GPL) is able to achieve this

GPL – Generative Pseudo Labeling

Fine-tuned model (e.g. on MSMARCO)

GPL: Unsupervised domain adaptation

GPL:

Step 1: Generate Queries

Step 2: Mine Negatives

Step 3: Score Pairs with CrossEncoder

Why do we need the CrossEncoder?

 	Item	Text	GPL	QGen
of "futures contract"	Query	what is futures contract	-	_
or lutures contract	Positive	Futures contracts are a member of a larger class of financial assets called derivatives	10.3	1
Easy negatives: Mention "futures contract" only	Negative 1	Anyway in this one example the s&p 500 futures contract has an "initial margin" of \$19,250, meaning	2.0	0
	Negative 2	but the moment you exercise you must have \$5,940 in a margin account to actually use the futures contract	0.3	0
False negative ——→	Negative 3	a futures contract is simply a contract that requires party A to buy a given amount of a commodity from party B at a specified price	8.2	0
Hard negative: Give partial definition	Negative 4	A futures contract commits two parties to a buy/sell of the underlying securities, but	6.9	0

Train Bi-Encoder with MarginMSE-Loss

Compute Loss

Compute dot-scores

Compute Embeddings

CrossEncoder teaches
BiEncoder how far vectors
are supposed to be in vector
space

Results

Models	6 Dense IR Tasks	
Out-of-the-box	45.2	
Target -> Source		
TSDAE	49.2	
MLM	46.7	
Generative Pseudo Labeling		
GPL	51.4	
TSDAE+GPL	52.4	

Multilingual Models

Translation Language Model

Concatenate parallel data and run MLM

Previous Approaches: LASER

- Use output of encoder from translation system
- Issues:
 - Cannot control what type of embeddings are learned
 - Works poorly on identifying similar sentences

Previous Approaches: Multilingual USE

- Multi-task setup with bridging task
- Issues:
 - Getting bridging task right is challenging + requires large batch sizes
 - Hard to extend model afterwards to new languages

LaBSE

Figure 4: Average P@1 (%) on UN retrieval task of models trained with different margin values.

- Pre-Training
 - Trained on large mono-lingual dataset via MLM
 - Trained on translation pairs via TLM (Translation Lang. Model)
- Fine-tuned on translation pairs via MultipleNegativesRankingLoss

Multilingual Knowledge Distillation

• Given:

- Teacher sentence embedding model T (e.g. SBERT trained on English STS)
- Parallel sentence data $((s_1, t_1), ..., (s_n, t_n))$
- Student model S with multilingual vocabulary (e.g. XLM-R + Mean Pooling)
- Train student S such that:

$$S(s_i) \approx T(s_i)$$
 $S(t_i) \approx T(s_i)$

Performance

Model	STS	BUCC Bitext Mining
Knowledge Distillation	83.7	88.6
mUSE	81.1	87.7
LaBSE	73.5	93.5
LASER	67.0	93.0

- Models strong on multilingual STS are weak on Bitext Mining
 - Knowledge Distillation / mUSE puts similar sentences close, but which are not perfect translations

Language Bias

- Preference of certain language combinations
- Language bias impacts performance negatively on multilingual pools
- LASER and LaBSE with strong language bias

Model	Expected Score	Actual Score	Difference
LASER	69.5	68.6	-0.92
mUSE	81.7	81.6	-0.19
LaBSE	74.4	73.1	-1.29
$XLM-R \leftarrow SBERT$ -paraphrases	84.0	83.9	-0.11

Language Bias – Good or Bad?

Side-effects with language bias:

- Same language results are ranked higher just because of language
- There might be better hits / answers in other languages

Side-Effects without Language Bias

wedding

शादी (hindi: wedding)

Who is the president?

A: Joe Biden is the current president

qui est le président?

A: Joe Biden is the current president

Multilingual Search Models

- Should same language results be preferred?
 - Yes: Language Bias (weak alignment)
 - No: Strong alignment

Batch Strategy

X-X is a bad idea

Easy to find the correct answer (just check for language)

(b) X-X

Q lang	A lang
ar	en
es	hi
th	ar

X-X-mono best when Q & A in same language

X-Y best when Q & A can be in different languages

(c) X-X-mono

(d) X-Y

Figure 3: Sample batches for each baseline.

Conclusion

- Training for bitext mining models:
 - LaBSE
- Training for cross-lingual search model
 - X-Y batch strategy
 - Getting large scale cross-lingual data is difficult

(d) X-Y

- Training for multilingual search models
 - X-X-mono batch strategy
 - Train on (multilingual) pair & triplet datasets
 - Add parallel data for alignment

		Q lang	A lang
	Q lang	hi	hi
Q lang	en	hi	hi
ar	en	hi	hi
ar	en	en	
ar	ar		-

(c) X-X-mono

Cross-Encoder

Cross-Encoder

- Concatenate: *Query [SEP] Passage*
- Map CLS-token output to single score

Cross-Encoder

Learning to Rank — Pointwise Loss

- Pointwise-Loss
 - Given (query, document, label) triplets
 - Set label=0 / label=1 for non- / relevant docs
 - Binary classification task: BCELoss(CE(Query, Doc), Label)
- Challenges:
 - How many non-relevant to relevant docs in the training?
 - Relevance is not black & white

Learning to Rank – Pairwise Loss

- Given (query, doc1, doc2) triplets
- Is doc1 or doc2 more relevant to the query?
- For simplification: Assume doc1 is more relevant than doc2

RankNet Loss:

- Compute scores: $s^+ = CE(query, doc^+), s^- = CE(query, doc^-)$
- Loss(query, doc^+ , doc^-) = BCELoss($s^+ s^-$, 1) = log(sigmoid($s^+ s^-$))
- We try to maximize the margin between s⁺ and s⁻
- We don't need absolute relevance labels, just relative preferences (A or B)
- Works nice with click logs / transaction logs: Given query, what was clicked

Learning to Rank – Listwise Loss

- Given (query, doc₁, doc₂, doc₃, ...)
- Which doc is the most relevant for the query?
- Many loss functions available: LambdaRank, LambdaMART, ApproxNDCG, NeuralNDCG...
 - Often they try to optimize the eval measure (like nDCG)
 - I didn't observe large differences
- I prefer ListRank Loss / ListNet Loss:
 - Compute $s_1 = CE(query, doc_1)$, $s_2 = CE(query, doc_2)$, $s_3 = CE(query, doc_3)$, ...
 - CrossEntropyLoss([s1, s2, s3, ...], label)
 - Label: Which document is the most relevant?
 - Train with 1 positive and many negative docs
 - With 1 negative: Identical to Pairwise Loss / RankNet Loss

Learning to Rank

- Pointwise loss performs the worse
 - Hard to tell what docs are relevant / irrelevant
 - Hard to select the ratio of positive vs negative labels
 - Harder to get labeled data
- Pairwise / Listwise Loss performs better
 - Just relative importance is relevant (is A or B better?)
 - Easier to extract from click logs / transaction logs

Importance of Negatives

- Listwise loss: [query, positive, neg1, neg2, ...]
- Negatives are either from top-50 or top-1k from BM25

Importance of Negatives

Train Neg↓ / Inference→	BM25	BM25*	HDCT
BM25	39.6	39.5	38.1
BM25*	40.7	42.3	41.8
HDCT	40.8	41.9	43.4

- Performance drops if train sample is different from test first-stage retrieval system
- As we optimize for unknown first-stage system:
 - Samples negatives from different systems (lexical & embedding based)

Number of Negatives

Multilingual Cross-Encoder

- Trained on Machine-Translated MS MARCO (incl. de, ar, id, ru)
- Performance on GermanQuAD & Mr. Tydi (Arabic, Indonesian, Russian)

Model	Performance
mdeberta v3 (training: English only)	52.2
mdeberta v3 (14 mMARCO langs)	53.0
LaBSE	52.6
mMiniLM	52.0

Models perform surprisingly well even when train on English only