1

1 КОМПОНУВАННЯ ПОПЕРЕЧНОЇ РАМИ БУДІВЛІ

1.1 Компонування поперечної рами промислової будівлі

1. Визначаємо висоту підкранової балки: при кроці 6 м:

$$h_{n,\delta} = 1000 \text{ MM}$$

2. Визначити висоту над кранової H_{θ} і підкранової H_{H} частин колони, повну висоту H_{I} , H.

Вантажопідйомність $Q = 20 \ m$.

Висота A = 2400 мм.

$$H_{H} = 8600$$
 мм.

h кранового рельса = 70 мм.

$$H_{\rm g} = h_{\rm n.o.} + A + 1000 = 1000 + 2400 + 100 = 3500$$
 мм.

$$H_1 = H_{\scriptscriptstyle H} + H_{\scriptscriptstyle \theta} = 8000 + 3500 = 12100$$
 мм.

$$H = H_1 + 150 = 12250$$
 мм.

Висота ферми при прольоті 18 м:

$$H_{\phi} = 2450$$
 мм.

- 3. Прив'язка "a" розбивочної осі ряду колон:
 - нульова прив'язка.
- 4. Призначити висоту перетину над кранової частини колони $h_{\textit{верхне}}$:

При нульовій прив'язці — 380 мм.

$$h_{\text{нижн}\epsilon} = \left(\frac{1}{10} \dots \frac{1}{14}\right) H_{\scriptscriptstyle H} = 860 \dots 614$$
 мм.

$$b_{{\it нижне}},\, b_{{\it верхне}} = \left(rac{1}{20} \dots rac{1}{25}
ight) H_{{\it H}} = 430 \dots 344$$
 мм.

Вид колони — наскрізна.

Так як : $H_1 < 10,8\,$ м; $h_{\text{нижн}\epsilon} < 900\,$ м; $Q < 30\,$ м, проліт до 24 м, то приймаємо розміри колони:

$$h_{
m {\it гілки}}=200$$
 мм $h_{
m {\it H}}=1000$ мм

$$b_{\text{нижне}}, b_{\text{верхне}} = 400$$
 мм.

Рисунок 1.1 – Схема поперечної рами.

2 СТАТИЧНИЙ РОЗРАХУНОК ПОПЕРЕЧНОЇ РАМИ

Збір навантаження: Розрахунковий проліт рами:

Рисунок 2.1 – Статична розрахункова схема рами промислових будівель.

	Вид конструкції	Нормативне значення g_n , $\kappa H/M^2$	γ_f	Розрахункове навантаження g_p
1	3 шари руберойду	0,15	1,2	0,18
2	Цементно піщана стяжка	0,5	1,3	0,65
3	Пенобетон	0,4	1,2	0,48
4	Пароізоляція	0,1	1,2	0,12
5	Ребриста плита 3x6	1,333	1,1	1,4663
	Всього:			$g_p = 3.52$

Таблиця 1 – Навантаження від покрівлі

 $l_0 = L_{\textit{yexa}} - 2 = 17000 - 2 \cdot 200 = 16600$ мм

Визначення опорної реакції $R_A^{\it \Pi ocm}$:

$$R_A^{\Pi ocm} = 0.5 \cdot g^{no\kappa p} \cdot l_0 + 1.1 \cdot 0.5 \cdot G_{II}^{cmp} \tag{1}$$

Де G_{II}^{cmp} — маса кроквяної конструкції; $g^{no\kappa p}$ — навантаження на покритті.

$$g^{no\kappa p} = g_p \cdot S_1 \tag{2}$$

Рисунок 2.2 — Розрахункова схема кроквяної конструкції при визначенні опорної реакції R_A

де : g_p - розрахункове постійне навантаження на 1 м² плити покриття S_1 -крок поперечних рам в будівлі

$$g^{no\kappa p}=3.52\cdot 6=21.12\ \kappa H/{\it M}$$
 $R_A^{\Pi ocm}=0.5\cdot 21.12\cdot 16.6+1.1\cdot 0.5\cdot 60=208.296\ \kappa H$

Снігове навантаження

Рисунок 2.3 — Розрахункова схема кроквяної конструкції при визначенні опорної реакції R_A

$$p^{cH} = S_m \cdot S \tag{3}$$

$$S_m = \gamma_{fm} \cdot S_0 \cdot C \tag{4}$$

де : γ_{fm} - коеф. надійності для середн. періоду повтрюваності снігового навантаження T=60 років

 S_0 - характеристичне значення снігового навантаження на 1 м 2 для заданого району будівництва

C=1 при відсутності даних про режим експлуатації будівлі с плоскою конструкцією покрівлі і розміщенням його на висоті H<0,5 км над рівнем моря.

$$S_m = 1.04 \cdot 1400 \cdot 1 = 1456 \ \Pi a = 1.456 \ \kappa H/M^2$$

 $p^{ch} = 1.456 \cdot 6 = 8.736 \ \kappa H/M$

$$R_A^{cH} = 0.5 \cdot p^{cH} \cdot l_0 \tag{5}$$

$$R_A^{\it ch} = 0.5 \cdot 8,736 \cdot 16,6 = 72,51$$
 кН/м

Кранове навантаження

Рисунок 2.4 — Схема розташування двох зближених мостових кранів на підкрановій балці для визначення кранових навантажень на поперечну раму будівлі.

Проліт крана L_k =16,6 м

Ширина крана B=6300 мм

База крана $K=4400~{\it мм}$

 $H = 2400 \,$ мм

 $B_1 = 260 \,$ мм

 P^n_{max} -навантаження коліс на підкранові рейки-195 κH

Вага візка - 8,5 т

G - Вага крана з візком -28,5~m

Тип кранової рейки - КР70

$$D_{max} = \gamma_{fm} \cdot \psi \cdot P_{max}^n \cdot \sum y_i \tag{6}$$

де: γ_{fm} - см. п. 7.9

 ψ - см. п. 7.22

 $\sum y_i$ - Рис. 2.4.

$$D_{min} = \gamma_{fm} \cdot \psi \cdot P_{min}^n \cdot \sum y_i \tag{7}$$

$$P_{min}^n = \frac{Q+G}{n_0} - P_{max}^n \tag{8}$$

де : n_o - кількість коліс на одній стороні крана

$$\begin{split} D_{max} &= 1.1 \cdot 0.85 \cdot 195 \cdot 1.95 = 355,534 \; \kappa H \\ P^n_{min} &= \frac{200 + 285}{2} - 195 = 47,5 \; \kappa H \\ D_{min} &= 1.1 \cdot 0.85 \cdot 47,5 \cdot 1.95 = 86,6 \; \kappa H \end{split}$$

Навантаження на раму від поперечного гальмування

$$T = \gamma_{cou} \cdot \gamma_f \cdot T_n^{\kappa on} \cdot \sum y_i \tag{9}$$

Горизонтальне поперечне гальмівне навантаження від одного колеса для кранів з гнучким підвісом вантажу

$$T_n^{\kappa o n} = \frac{0.05 \cdot (Q + Q_t)}{n_0} \tag{10}$$

$$T_n^{\text{kon}} = \frac{0.05 \cdot (20 + 8.5)}{2} = 0.7125 \; \text{m} = 7.2 \; \text{kH}$$

$$T = 0.85 \cdot 1.2 \cdot 7.2 \cdot 1.95 = 14.32 \; \text{kH}$$

Навантаження від стінових панелей:

$$G_{cmnH} = S \cdot_{H} \cdot g \tag{11}$$

 $G_{\it cmnh} = 6 \cdot 8, 6 \cdot 2, 8 = 144, 48 \ \kappa H$ м

$$G_{cmnh.s.} = S \cdot_{s} \cdot g \tag{12}$$

$$G_{\it cmnh.e.} = 6 \cdot 3, 5 \cdot 2, 8 = 58, 8 \ \kappa H$$
м

Вітрове навантаження:

Рисунок 2.5 – Визначення вітрового тиску в кН/м2 для характерних відміток по висоті колони

Граничне розрахункове значення вітрового навантаження:

$$W_m = \gamma_{fm} \cdot W_0 \cdot C \tag{13}$$

де: γ_{fm} — коефіцієнт надійності, в залежності від терміну повторності максимального значення вітрового тиску в роках. На 100 років — γ_{fm} = 1,14

 W_0 — характеристичне значення вітрового тиску, залежне від району будівництва. $W_0-0.47~\kappa H\!\mathit{m}^2$

$$h = 5 \text{ M} = W_5 = 0.47 \cdot 0.4 = 0.188 \text{ } \kappa H \text{M}^2$$

 $h = 10 \text{ M} = W_{10} = 0.47 \cdot 0.6 = 0.282 \text{ } \kappa H \text{M}^2$

$$h = 20 \text{ M} = W_{20} = 0.47 \cdot 0.85 = 0.399 \text{ } \kappa H \text{M}^2$$

Еквівалентне вітрове навантаження W_e

$$W_e = \frac{2M_3}{H^2} \tag{14}$$

$$M_3 = \frac{0.188 \cdot 12.25^2}{2} + \frac{1}{2} \cdot (0.308 - 0.188) \cdot 7.25 \cdot \left(\frac{2}{3} \cdot 7.25 + 5\right) = 18.4 \; \text{kHm}^2$$

$$W_e = \frac{2 \cdot 18,4}{12,25^2} = 0,245 \text{ kHm}^2$$

Активний вітер

$$W_a = W_e \cdot B \cdot C_{aer} \cdot \gamma_{fm} \tag{15}$$

 $W_a = 0.245 \cdot 6 \cdot 0.8 \cdot 1.14 = 1.341$ кH/м.n.

Пасивний вітер

$$W_n = 0.245 \cdot 6 \cdot 0.6 \cdot 1.14 = 1.01 \text{ kH/m.n.}$$

Зосереджена сила на рівні верха колон по середньому вітряному тиску між $0.308~\kappa H M^2$ і $0.337~\kappa H M^2$

$$W = \left(\frac{0,308 + 0,337}{2}\right) \cdot 6 \cdot 2,45 \cdot (0,8 + 0,6) \cdot 1,14 = 7,57 \, \kappa H$$

Рисунок 2.6 — Визначення активного та пасивного вітрового тиску в кН/м2

Статична розрахунок поперечної рами

1. Момент інерції відносно осі Ү:

$$I_z = \frac{b \cdot h_g^3}{12} + \frac{bh - (H_H - h_g)^2}{2} \tag{16}$$

$$I_z = \frac{40 \cdot 20^3}{12} + \frac{40 \cdot 20 - (100 - 20)^2}{2} = 23866,66 \text{ cm}^4$$

Рисунок 2.7 – Схема перетину нижньої частини колони

$$EF = 3310000 \cdot (0.4 \cdot 0.2) = 264800 \text{ m}$$
 $I_y = 40 \cdot 20 \cdot 40^2 = 0.0064 \text{ cm}^2$ $EI_y = 3310000 \cdot 0.064 = 21184$

2. Розрахункове поєднання зусиль

Елемент 1, переріз 1

$$1 + 2 + 3 + 4 - 7$$

$$M_{y}^{+} = +265,99$$

$$N_{gi\partial n}^{-} = -193,405$$

$$N_{gi\partial n}^{-} = -719,658$$

$$N_{gi\partial n}^{-} = -597,47$$

$$M_{gi\partial n}^{-} = -41,052$$

$$M_{gi\partial n}^{-} = 18,078$$

$$Q_{z,gi\partial n}^{-} = 18,078$$

$$Q_{z,gi\partial n}^{-} = -41,052$$

$$\frac{M}{N} = 0,369$$

$$\frac{M}{N} = 0,369$$

$$1 + 2 + 3 + 4 - 7$$

$$N_{max}^{-} = -719,658$$

$$M_{gi\partial n}^{-} = +265,99$$

$$Q_{z,gi\partial n}^{-} = -41,052$$

$$\frac{M}{N} = 0,369$$

Елемент 1, переріз 2

$$1+2+3+6-8$$
 $1+2+3+4$ $M_y^- = -103,237$ $N_{max}^- = -682,55$ $N_{\textit{eiòn}} = -629,63$ $M_{\textit{eiòn}} = -39,418$ $Q_{\textit{z.eiòn}} = 3,701$ $Q_{\textit{z.eiòn}} = 22,14$ $\frac{M}{N} = 0,16$ $\frac{M}{N} = 0,05$

Елемент 3, переріз 1

$$\begin{array}{lll} 1+2+4 & 1+6 & 1+2 \\ M_y^+ = +72,771 & M^- = -3,62 & N_{max}^- = -316,008 \\ N_{si\partial n} = -308,311 & N_{si\partial n} = -239044 & M_{si\partial n} = +39,742 \\ Q_{z.si\partial n} = -22,14 & Q_{z.si\partial n} = 2,835 & Q_{zsi\partial n} = -10,888 \\ \frac{M}{N} = 0,23 & \frac{M}{N} = 0,01 & \frac{M}{N} = 0,12 \end{array}$$

Елемент 3, переріз 2

$$1+2$$
 $1+2+4$ $N_{max}^{-} = -301,046$ $Q_{z} = -10,888$ $Q_{z,si\partial n}^{-} = 17,735$ $N_{si\partial n}^{-} = -293,349$

Від постійного навантаження

Елемент 1, переріз 1

$$1$$

$$N = 277,49$$

$$M_y = 26,653$$

$$Q = -8,242$$

Елемент 1, переріз 2

$$1$$

$$N = -240,381$$

$$M_y = -44,228$$

$$Q = -8,242$$

Елемент 3, переріз 1

$$1
N = -239,044
M_y = 30,083
Q = -8,242$$

Елемент 3, переріз 2

$$1$$

$$N = -277,049$$

$$M_y = -26,65 + 3$$

$$Q = -8,242$$

3 ПРОЕКТУВАННЯ КОЛОНИ ОДНОПОВЕРХОВОЇ ПРОМИСЛОВОЇ БУДІВЛІ

3.1 Розрахунок поздовжньої арматури колони

1. Обчислюємо ексцентриситет:

$$e_0 = \frac{M}{N} + e_a \tag{17}$$

де:

•
$$e_a = \frac{1}{600} \cdot 8600 = 14,3 \text{ мм}$$

•
$$e_a = \frac{1}{30} \cdot 200 = 6.6 \text{ мм}$$

Обираємо $e_a=14,3$ мм

$$e_0 = \frac{265,99}{219,688} + 0,014 = 0,384 \,\mathrm{m}$$

2. Наведений радіус інерції перерізу підкранової частини двогілкової колони:

$$i_{red}^2 = \frac{c^2}{4\left(\frac{1+3c^2}{\psi^2 n^2 h^2}\right)} \tag{18}$$

де:
$$\psi^2 = 1.5$$

$$n = \frac{H_{\scriptscriptstyle H}}{S} = \frac{8.6}{2} = 4.3 \text{ м}$$

$$S = (8 \dots 10)h = 10 \cdot 0.2 = 2 \text{ м}$$

$$i_{red}^2 = \frac{0.8^2}{4\left(\frac{1+3\cdot 0.8^2}{1.5\cdot 4.3^2\cdot 0.2^2}\right)} = 0.05859 \text{ M}$$

3. Приведена гнучкість підкранової частини колони:

$$\lambda_{red} = \frac{l_0}{i_{red}^2} \tag{19}$$

де: $l_0 = 1.5H_{\rm H} = 1.5 \cdot 8.6 = 12.9$ м

$$\lambda_{red} = \frac{12.9}{0.05859} = 220.17$$

Гранична гнучкість:

Гранична гнучкість:
$$\lambda \lim = \frac{20ABC}{\sqrt{n}}$$
 (20)
$$\text{де: } n = \frac{N}{A_c f_{cd}} = \frac{719,658 \cdot 10^3}{2(0,4 \cdot 0,2) \cdot 17 \cdot 10^6} = 0,265$$

$$A = \frac{1}{(1+0,2\varphi_{ef})} = \frac{1}{(1+0,2 \cdot 2)} = 0,71$$

$$\varphi_{ef} = 2$$

$$B = 1,1$$

$$C = 0,7$$

$$\lambda \lim = \frac{20 \cdot 0,71 \cdot 1,1 \cdot 0,7}{\sqrt{0.265}} = 21,61$$

Так як, $\lambda_{red} > \lambda$ lim слід враховувати вплив прогину на величину ексцентриситету повздовжньої сили. В цьому випадку в розрахунку замість e_0 необхідно використовувати величину $(\eta \cdot l_0)$, де

$$\eta = \frac{1}{1 - \frac{N}{N_{cr}}}\tag{21}$$

$$N_{cr} = \frac{6.4E_{cm}}{l_0^2} \left[\frac{I}{\varphi_l} \left(\frac{0.11}{0.1 + \frac{\sigma_e}{\varphi_p}} + 0.1 \right) + \alpha I_s \right]$$

$$I = 2 \left[\frac{bh^3}{12} + bh \left(\frac{c}{2} \right)^2 \right] = 2 \left[\frac{0.4 \cdot 0.2^3}{12} + 0.4 \cdot 0.2 \left(\frac{0.8}{2} \right)^2 \right] = 0.02613 \, \text{M}^4$$

$$\varphi_l = 1 + \beta \frac{M_1}{M} = 1 + 1 \cdot \frac{26.653}{265.99} = 1.1 < (1 + \beta)$$

$$I_S = 2\rho bh \left(\frac{c}{2} \right)^2 = 2 \cdot 0.02 \cdot 0.4 \cdot 0.2 \cdot \left(\frac{0.8}{2} \right)^2 = 0.000512 \, \text{M}^4$$

$$\sigma_e = \frac{l_0}{h_0} = \frac{12.9}{1} = 12.9 \, \text{M}$$

$$(22)$$

$$\varphi_p = 1$$

$$\alpha = \frac{E_S}{E_{ct}} = \frac{210 \, \Pi a}{32,5 \, \Pi a} = 6,46$$

$$N_{cr} = \frac{6.4 \cdot 32500 \cdot 10^6}{12.9^2} \left[\frac{0.02613}{1.1} \left(\frac{0.11}{0.1 + \frac{12.9}{1}} + 0.1 \right) + 6.46 \cdot 0.000512 \right]$$

$$N_{cr} = 7354530 \ \Pi a = 7354,53 \ \kappa H/M^2$$

$$\eta = \frac{1}{1 - \frac{719,658}{7354.53}} = 1,11$$

4. Визначаємо зусилля в гілках колони:

$$N_{61,2} = 0.5N \pm \frac{M \cdot \eta}{c} \tag{23}$$

$$N_{e1,2} = 0.5 \cdot 719,658 + \frac{265,99 \cdot 1,1}{0.8} = 713,2 \,\kappa H$$

$$M_e = V \frac{S}{4}$$

$$M_e = 41,052 \cdot \frac{2}{4} = 20,526 \,\kappa H$$
(24)

5. Для кожної з гілок визначаємо:

$$e_0 = \frac{M_e}{N_e} + l_a \tag{25}$$

$$e = e_0 \eta + 0.5h - a \tag{26}$$

$$\eta = 1$$
 $h = 200$ мм $a = 30$ мм $d = h - a = 200 - 30 = 170$ мм $l_a = 200/30 = 6,6$ мм

$$\frac{S}{600} = \frac{2000}{600} = 3,33 \text{ мм}$$

$$e_0 = \frac{20,526}{713,2} + 0,0066 = 0,035 \text{ м}$$

$$e = 0,035 \cdot 1 + 0,5 \cdot 0,2 - 0,03 = 0,105 \text{ м}$$

6. Підбираємо армування при несиметричному армуванні:

$$A'_{S} = \frac{N \cdot e - 0.4 \cdot f_{cd} \cdot b \cdot d^{2}}{f_{yd} \cdot (d - a')} \geqslant 0$$

$$A'_{S} = \frac{713.2 \cdot 10^{3} \cdot 0.105 - 0.4 \cdot 17 \cdot 10^{6} \cdot 0.4 \cdot 0.17^{2}}{365 \cdot 10^{6} \cdot (0.17 - 0.03)} \geqslant 0$$

$$A'_{S} = -0.0000728376 \, \text{m}^{2}$$
(27)

Висновок — переріз арматури приймаємо конструктивно.

$$A_{S} = \frac{0.55 \cdot f_{cd} \cdot b \cdot d - N}{f_{yd}} + A'_{S}$$

$$A_{S} = \frac{0.55 \cdot 17 \cdot 10^{6} \cdot 0.4 \cdot 0.17 - 713.2 \cdot 10^{3}}{365 \cdot 10^{6}} + (-0.0000728376)$$

$$A_{S} = -0.000284892 \, \text{M}^{2}$$
(28)

Висновок — переріз арматури приймаємо конструктивно.

Підбираємо арматуру за відсотком армування:

 A_S приймаємо $4\varnothing 12A400C$ — $A=4{,}52$ $c{\it m}^2$

$$\rho = \frac{A_S' + A_S}{b \cdot d} \cdot 100\% \tag{29}$$

$$\rho = \frac{4,52 + 4,52}{40 \cdot 20} \cdot 100\% = 1,13\%$$

Оптимальне значення армування для колон 1...3%

Розрахунок за другою комбінацією зусиль.

1. Обчислюємо ексцентриситет за формулою (17):

де:

•
$$e_a = \frac{1}{600} \cdot 8600 = 14{,}3 \text{ мм}$$

•
$$e_a = \frac{1}{30} \cdot 200 = 6.6 \text{ MM}$$

Обираємо $e_a = 14,3$ мм

$$e_0 = \frac{193,405}{597,47} + 0,014 = 0,34 \text{ M}$$

2. Наведений радіус інерції перерізу підкранової частини двогілкової колони (link):

$$i_{red}^2 = \frac{0.8^2}{4\left(\frac{1+3\cdot 0.8^2}{1.5\cdot 4.3^2\cdot 0.2^2}\right)} = 0.05859 \,\mathrm{M}$$

3. Приведена гнучкість підкранової частини колони (link):

$$\lambda_{red} = \frac{12.9}{0.05859} = 220.17$$

Гранична гнучкість (link):

де:
$$n = \frac{N}{A_c f_{cd}} = \frac{597,47 \cdot 10^3}{2(0,4 \cdot 0,2) \cdot 17 \cdot 10^6} = 0,22$$

$$A = \frac{1}{(1+0,2\varphi_{ef})} = \frac{1}{(1+0,2 \cdot 2)} = 0,71$$

$$\varphi_{ef} = 2$$

$$B = 1,1$$

$$C = 0,7$$

$$\lambda \lim_{r \to \infty} \frac{20 \cdot 0,71 \cdot 1,1 \cdot 0,7}{\sqrt{0,22}} = 23,31$$

Так як, $\lambda_{red} > \lambda$ lim слід враховувати вплив прогину на величину ексцентриситету повздовжньої сили. В цьому випадку в розрахунку замість e_0 необхідно використовувати величину $(\eta \cdot l_0)$ за формулами (link) (link)

$$I = 0.02613 \, \text{m}^4$$

$$arphi_l = 1 + 1 \cdot \frac{44,228}{193,405} = 1,23 < (1+eta)$$
 $I_S = 0,000512 \, \text{m}^4$
 $\sigma_e = 12,9 \, \text{m}$
 $arphi_p = 1$

$$\alpha = 6.46$$

$$N_{cr} = \frac{6.4 \cdot 32500 \cdot 10^6}{12.9^2} \left[\frac{0.02613}{1.23} \left(\frac{0.11}{0.1 + \frac{12.9}{1}} + 0.1 \right) + 6.46 \cdot 0.000512 \right]$$

$$N_{cr} = 7014160 \; \Pi a = 7014,16 \; \kappa H/m^2$$

$$\eta = \frac{1}{1 - \frac{597,47}{7014 \; 16}} = 1,1$$

4. Визначаємо зусилля в гілках колони за формулами (link), (link):

$$N_{61,2} = 0.5 \cdot 597,47 - \frac{193,405 \cdot 1,1}{0.8} = 32,803 \ \kappa H$$

$$M_6 = 18,078 \cdot \frac{2}{4} = 9,039 \ \kappa H$$

5. Для кожної з гілок за формулами (link), (link) визначаємо:

$$\eta=1$$
 $h=200~\text{mm}$ $a=30~\text{mm}$ $d=170~\text{mm}$ $d=170~\text{mm}$ $l_a=6,6~\text{mm}$ $\frac{S}{600}=3,33~\text{mm}$ $e_0=\frac{9,039}{32,803}+0,0066=0,28~\text{m}$ $e=0,28\cdot 1+0,5\cdot 0,2-0,03=0,35~\text{m}$

6. Підбираємо армування при несиметричному армуванні за формулами (link),(link):

$$A_S' = \frac{32,803 \cdot 10^3 \cdot 0,35 - 0,4 \cdot 17 \cdot 10^6 \cdot 0,4 \cdot 0,17^2}{365 \cdot 10^6 \cdot (0,17 - 0,03)} \geqslant 0$$

$$A_S' = -0,00131364 \, \text{m}^2$$

Висновок — переріз арматури приймаємо конструктивно.

$$A_S = \frac{0.55 \cdot 17 \cdot 10^6 \cdot 0.4 \cdot 0.17 - 32,803 \cdot 10^3}{365 \cdot 10^6} + (-0.00131364)$$
$$A_S = 0.000338407, \, \text{m}^2$$

Висновок — переріз арматури приймаємо конструктивно.

Підбираємо арматуру за відсотком армування (link):

$$A_S'$$
приймаємо $4\varnothing 12A400C \longrightarrow A = 4{,}52~{\it cm}^2$

 A_S приймаємо $4\varnothing 12A400C$ — $A=4{,}52$ $c{\it m}^2$

$$\rho = \frac{4,52 + 4,52}{40 \cdot 20} \cdot 100\% = 1,13\%$$

Оптимальне значення армування для колон 1...3%

Розрахунок надкранової частини колони

1. Обчислюємо ексцентриситет за формулою (17), де:

•
$$e_a = \frac{1}{600} \cdot H_{\rm g} = \frac{1}{600} \cdot 3500 = 5,83$$
 мм

•
$$e_a = \frac{1}{30} \cdot 380 = 12,6 \text{ мм}$$

Обираємо $e_a = 12,6$ мм

$$e_0 = \frac{72,771}{308,311} + 0,0126 = 0,25 \text{ M}$$

2. Наведений радіус інерції перерізу підкранової частини двогілкової колони:

$$i_{red} = 0.289 \cdot h \tag{30}$$

$$i_{red} = 0.289 \cdot 0.38 = 0.11 \text{ M}$$

3. Приведена гнучкість підкранової частини колони за формулою (link):

де:
$$l_0 = 2H_{\theta} = 2 \cdot 3.5 = 7 \, \text{м}$$

$$\lambda_{red} = \frac{7}{0,11} = 63,63$$

Гранична гнучкість за формулою (link):

де:
$$n=\frac{N}{A_c f_{cd}}=\frac{308,311\cdot 10^3}{0,4\cdot 0,38\cdot 17\cdot 10^6}=0,12$$

$$A=\frac{1}{(1+0,2\varphi_{ef})}=\frac{1}{(1+0,2\cdot 2)}=0,71$$

$$\varphi_{ef}=2$$

$$B=1,1$$

$$C=0,7$$

$$\lambda \lim =\frac{20\cdot 0,71\cdot 1,1\cdot 0,7}{\sqrt{0,12}}=31,56$$

Так як, $\lambda_{red} > \lambda$ lim слід враховувати вплив прогину на величину ексцентриситету повздовжньої сили. В цьому випадку в розрахунку замість e_0 необхідно використовувати величину $(\eta \cdot l_0)$ за формулами (link) (link), де:

$$\begin{split} I &= \frac{b \cdot h^3}{12} = \frac{0.4 \cdot 0.38^3}{12} = 0.0126 \, \text{M}^4 \\ \varphi_l &= 1 + \beta \frac{M_1}{M} = 1 + 1 \cdot \frac{30.083}{72.771} = 1.41 < (1 + \beta) \\ I_S &= \rho \cdot \left(\frac{d-a}{h}\right)^2 = 0.02 \cdot \left(\frac{0.35 - 0.03}{0.38}\right)^2 = 0.0142 \, \text{M}^4 \\ \sigma_e &= \frac{l_0}{h_u} = \frac{7}{0.38} = 18.42 \, \text{M} \\ \sigma_{min} &= 0.5 - 0.01 \cdot \frac{\sigma_e}{h} - 0.01 f_{cd} = 0.5 - 0.01 \cdot \frac{18.42}{0.38} - 0.01 \cdot 17 = -0.155 \\ \varphi_p &= 1 \end{split}$$

$$\alpha = \frac{E_S}{E_{ct}} = \frac{210 \ \Pi a}{32.5 \ \Pi a} = 6.46$$

$$N_{cr} = \frac{6.4 \cdot 32500 \cdot 10^6}{7^2} \left[\frac{0.0126}{1.41} \left(\frac{0.11}{0.1 + \frac{18.42}{1}} + 0.1 \right) + 6.46 \cdot 0.0142 \right]$$

$$N_{cr} = 393412000 \ \Pi a = 393412 \ \kappa H/m^2$$

$$\eta = \frac{1}{1 - \frac{308,311}{393412}} = 1$$

4. Підбираємо армування при симетричному армуванні:

$$A_S = A_S' = \frac{N \cdot e_0 - f_{cd} \cdot b \cdot h \cdot (d - 0.5h)}{f_{yd} \cdot (d - a')} \geqslant 0$$
 (31)

$$A_S = A_S' = \frac{308,311 \cdot 10^3 \cdot 0,25 - 17 \cdot 10^6 \cdot 0,4 \cdot 0,38 \cdot (0,35 - 0,5 \cdot 0,38)}{365 \cdot 10^6 \cdot (0,35 - 0,03)}$$
$$A_S = A_S' = -0,0028 \,\text{m}^2$$

Висновок — переріз арматури приймаємо конструктивно.

$$A_S=A_S'$$
 приймаємо $4\varnothing 12A400C-A=4.52\ cm^2$

3.2 Розрахунок розпірки двогілкової колони

1. Згинальний момент в розпірці

$$M_{ds} = \pm \frac{V \cdot s}{2} \tag{32}$$

$$M_{ds} = -\frac{41,052 \cdot 2}{2} = -41,052 \ \kappa H_M$$

2. Необхідна площа поздовжньої арматури при симетричному армуванні без врахування роботи бетону

$$A_S = A_S' = \frac{M_{ds}}{f_{yd} \cdot (d - a')} \tag{33}$$

$$A_S = A_S' = -\frac{41,052 \cdot 10^3}{365 \cdot 10^6 \cdot (0,36 - 0,04)} = -0,0003514 \,\text{m}^2$$

 $A_S = A_S'$ приймаємо $3\varnothing 14A400C - A = 4{,}61\ {\it cm}^2$

3. Поперечна сила в розпірці

$$V_{ds} = \frac{2M_{ds}}{c} = \frac{V \cdot s}{c}$$

$$V_{ds} = \frac{41,052 \cdot 2}{0.8} = 102,63 \text{ } \kappa H$$
(34)

4. Умова необхідності розрахунку поперечних стрижнів розпірки

$$V_{Rd,c} = \left[C_{Rd,c} \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck,prism})^{1/3} \right] \cdot b \cdot d$$
 (35) де: $k = 1 + \sqrt{\frac{200}{14}} = 4{,}78$, приймаємо 2 $f_{ck,prism} = 22$

$$C_{Rd,c} = 0.12$$

$$\rho_1 = \frac{A_S}{b \cdot d} = \frac{4,61}{40 \cdot 36} = 0,003$$

$$V_{Rd,c} = \left[0.12 \cdot 2 \cdot \left(100 \cdot 0.003 \cdot 22 \cdot 10^{6}\right)^{1/3}\right] \cdot 0.4 \cdot 0.36 = 6.48 \, \kappa H$$

$$V_{ds} \nleq V_{Rd,c}$$

Умова не виконується.

$$V_{Rd,max} = \frac{\alpha_{cw} \cdot b_w \cdot z \cdot v \cdot f_{cd}}{\cot \theta + \tan \theta}$$
 (36)

де:
$$\alpha_{cw} = 1$$

$$z = 0.9 \cdot d = 0.9 \cdot 0.36 = 0.324$$

$$v = 0.6 \cdot \left(\frac{1 - f_{ck,prism}}{250}\right) \leqslant 0.6$$

$$v = 0.6 \cdot \left(\frac{1 - 22}{250}\right) = 0.54 \leqslant 0.6$$

$$\cot \theta = 2.5$$

 $\tan\theta=0.4$

$$V_{Rd,max} = \frac{1 \cdot 0.4 \cdot 0.324 \cdot 0.54 \cdot 17 \cdot 10^6}{2.5 + 0.4} = 410251 \ \kappa H$$

$$V_{Rd,max} > V_{Rd,c}$$

Приймаємо крок поперечної арматури

$$S\leqslant 0.5h=200$$
 мм

$$S \leqslant 150$$
 мм

$$S \leqslant S_{w,max} = 0.75d = 270$$
 мм

Приймаємо $\varnothing 6A240C$ з кроком 150 мм.

3.3 Розрахунок колони із площини поперечної рами

Виявляємо необхідність розрахунку підкранової частини колони із площини поперечної рами

$$\lambda = \frac{l_0}{i} \tag{37}$$

де:
$$l_0 = 0.8H_{\scriptscriptstyle H} = 0.8 \cdot 8.6 = 6.88$$
 м $i = \sqrt{\frac{b^2}{12}} = \sqrt{\frac{0.4^2}{12}} = 0.11$

$$\lambda = \frac{6,88}{0,11} = 62,54$$

Так як $\lambda_{red} > \lambda = 220{,}17 > 62{,}54$ тому розрахунок не потрібен.

4 ПРОЕКТУВАННЯ ПОЗАЦЕНТРОВОГО НАВАНТАЖЕННЯ ФУНДАМЕНТУ ПІД КОЛОНУ

На фундамент передаються зусилля, що виникають в нижньому перетині колони M_{IV} , N_{IV} , V_{IV} . При цьому враховувати три невигідно розрахункових поєднання. Розрахунок тіла фундаменту виконують на дію відпору (реактивного тиску) грунту, що виникає під підошвою фундаменту.

Розрахунок фундаменту полягає у визначенні:

- 1. Розмірів підошви фундаменту $l \cdot b$;
- 2. Загальної висоти фундаменту висоти нижньої ступені h_1 ;
- 3. Необхідної площі арматури сітки C-1, що укладається у підошви фундаменту;
- 4. Необхідної площі поздовжньої і поперечної арматури підколонника.

Для фундаментів приймати важкий бетон класів C12/15...C20/25; робочу арматуру сітки C-1 классів A400, A300 ($\varnothing 10 - \varnothing 18$ мм) з кроком $100 \div 250$ мм.

4.1 Визначення розмірів фундаменту і армування його плитної частини

- 1. Призначаємо величину H_1 з умов:
 - $H_1 \geqslant H_{an} + 200 + 150 + 50$
 - $H_1 \geqslant h_f$

 $H_a n$ для колон з двогілкової підкрановою частиною:

•
$$H_{an} \geqslant 0.33 h_n + 500 = 0.33 \cdot 1000 + 500 = 830$$
 мм

•
$$H_{an}\geqslant 1.5h=1.5\cdot 200=300$$
 мм

•
$$H_{an} \geqslant 30d = 30 \cdot 12 = 360$$
 мм

Приймаємо 1100 мм

$$H_1\geqslant 1100+200+150+50=1500$$
 мм

$$H_1 \geqslant 1200$$
 мм

Приймаємо $H_1 = 1950$ мм.

- 2. Попередньо приймаємо розміри фундаменту.
- 3. Визначаємо зусилля що діють на підставу фундаменту для трьох невигідних комбінацій зусиль в опорному перерізу колони

$$M = M_{IV} + V_{IV} \cdot (H_1 - 0.15) + G_{cm} \cdot e_{cm}$$
 (38)

$$N = N_{IV} + G_{cm} \tag{39}$$

Елемент 1 переріз 1

•
$$1+2+3+4-7$$
 $M_y^+=265,99~\kappa H M$ $N_{ei\partial n}=-719,658~\kappa H$ $Q_{ei\partial n}=-41,052~\kappa H$ $G_{cm}=G_{\phi\delta}\cdot\gamma_{sm}$ (40)
$$\gcd G_{\phi\delta}=1,8~\mathrm{T}.$$
 $\gamma_{sm}=1,2$

$$G_{\it cm}=18\cdot 1,2=21,6~\kappa H$$
 $e_{\it cm}=rac{t_{\it cm}+h_c}{2}=rac{300+1550}{2}=925~{\it мм}$

$$M_1 = 265,99 + 41,052 \cdot (1,95 - 0,15) + 21,6 \cdot 0,925 = 359,9 \ \kappa Hm$$

$$N_1 = 719,658 + 21,6 = 741,26 \ \kappa H$$

Від нормативних значень:

$$M_{n1} = \frac{265,99}{1,15} = 231,3 \ \kappa H$$
M
$$N_{n1} = \frac{719,658}{1,15} = 625,8 \ \kappa H$$

$$M_{N1} = 231,3 + 41,052 \cdot (1,95 - 0,15) + 21,6 \cdot 0,925 = 325,2$$
 кНм

$$N_{N1} = 625.8 + 21.6 = 647.4 \, \kappa H$$

•
$$1 + 3 + 6 + 7$$

 $M_u^- = -193{,}405 \ \kappa Hm$

$$N_{ei\partial n} = -597,47 \ \kappa H$$

$$Q_{\mathit{eidn}} = 18{,}078~\mathrm{kH}$$

$$M_2 = 193,405 + 14,078 \cdot (1,95 - 0,15) + 21,6 \cdot 0,925 = 245,93 \ \kappa HM$$

$$N_2 = 597,47 + 21,6 = 619,07 \,\kappa H$$

Від нормативних значень:

$$M_{n2} = \frac{193,405}{1,15} = 168,18 \ \kappa H$$
M
$$N_{n2} = \frac{597,47}{1,15} = 520 \ \kappa H$$

$$M_{N2} = 168,18 + 18,078 \cdot (1,95 - 0,15) + 21,6 \cdot 0,925 = 220,7 \ \kappa H_M$$

$$N_{N2} = 520 + 21.6 = 541.6 \, \kappa H$$

Для подальших розрахунків використовуємо сполучення 1+2+3+4-7.

4. Визначаємо попередні розміри підошви фундаменту.

$$A_f \geqslant \frac{1,05 \cdot N_{n,max}}{R_0 - \gamma_m \cdot H_1} \tag{41}$$

$$m = \frac{b}{l} = 0.8 = \frac{2.7}{3.3}$$

 $A_f = 3.3 \cdot 2.7 = 8.91 \text{ m}^2$

$$A_f \geqslant \frac{1,05 \cdot 647,4}{0.2 \cdot 10^3 - 20 \cdot 1,95} = 4,22 \text{ M}^2$$

5. Уточнюємо розрахунковий опір основи:

$$R = R_0 \cdot \left(1 + k_1 \cdot \frac{b - b_0}{b_0}\right) + k_2 \cdot \gamma \cdot (d - d_0) \tag{42}$$

де
$$d = H_1 = 1,95$$
м;

$$d_0 = 2 M$$
;

 $k_1,\,k_2$ для глинистих — $0,\!05,\,0,\!15$ відповідно.

Так як $d < d_0$ в вираженні для R другий додаток приймати рівним 0.

$$R = 0.2 \cdot \left(1 + 0.05 \cdot rac{2.4 - 1}{1}
ight) = 0.215$$
 мПа

Різниця не суттєва. Перевіряти не потрібно.

6. Для прийнятих розмірів підошви фундаменту обчислюємо геометричні характеристики:

$$A_f = 8.91 \text{ m}^2$$

$$W_f = \frac{bl^2}{6} = \frac{2.7 \cdot 3.3^2}{6} = 4.9$$

7. Для кожної з розрахункових комбінацій зусиль обчислюємо крайові напруги в ґрунті під підошвою фундаменту:

Від нормативної:

$$P_{n,max} = \gamma_m \cdot H_1 + \frac{N_{n,max}}{A_f} + \frac{M_{n,max}}{W_f} \tag{43}$$

$$P_{n,min} = \gamma_m \cdot H_1 + \frac{N_{n,max}}{A_f} - \frac{M_{n,max}}{W_f}$$
 (44)

$$P_{n,mid} = \gamma_m \cdot H_1 + \frac{N_{n,max}}{A_f} \tag{45}$$

Для першого сполучення:

$$P_{n,max} = 20 \cdot 1,95 + \frac{647,4}{8,91} + \frac{325,6}{4,9} = 178,03 \ \kappa H$$

$$P_{n,min} = 20 \cdot 1,95 + \frac{647,4}{8,91} - \frac{325,6}{4,9} = 45,3 \ \kappa H$$

$$P_{n,mid} = 20 \cdot 1,95 + \frac{647,4}{8,91} = 111,7 \ \kappa H$$

Для другого сполучення:

$$P_{n,max} = 20 \cdot 1,95 + \frac{541,6}{8,91} + \frac{220,7}{4,9} = 144,8 \ \kappa H$$

$$P_{n,min} = 20 \cdot 1,95 + \frac{541,6}{8,91} - \frac{220,7}{4,9} = 54,74 \ \kappa H$$

$$P_{n,mid} = 20 \cdot 1,95 + \frac{541,6}{8,91} = 99,8 \ \kappa H$$

8. Перевіряємо попередньо прийняті розміри підошви фундаменту з умов:

$$P_{n,max} \leq 1.2R$$

 $P_{n,min} > 0$ (46)
 $P_{n,mid} \leq R$

Для першого сполучення:

$$178,03 \leqslant 240$$
$$45,3 > 0$$
$$111,7 \leqslant 200$$

Для другого сполучення:

$$144.8 \leqslant 240$$
$$54.7 > 0$$
$$99.8 \leqslant 200$$

Остаточно приймаємо розміри фундаменту $b \times l = 2.7 \times 3.3$ м

9. Визначаємо напруження в грунті від розрахункових зусиль M і N без урахування мас ґрунту і фундаменту:

$$P_{max} = \frac{N}{A_f} + \frac{M}{W_f}$$

$$P_{min} = \frac{N}{A_f} - \frac{M}{W_f}$$
(47)

Для першого сполучення:

$$P_{max} = \frac{647.4}{8.91} + \frac{325.2}{4.9} = 139.03 \text{ } \kappa H$$

$$P_{min} = \frac{647.4}{8.91} - \frac{325.2}{4.9} = 6.3 \text{ } \kappa H$$

Для другого сполучення:

$$P_{max} = \frac{541.6}{8.91} + \frac{220.7}{4.9} = 105.8 \text{ } \kappa H$$
$$P_{min} = \frac{541.6}{8.91} - \frac{220.7}{4.9} = 15.74 \text{ } \kappa H$$

10. Перевіряємо достатність висоти d_1 нижньої сходинки з умов міцності по поперечній силі в перерізі 2-2 з урахуванням роботи тільки бетону (тобто без поперечного армування):

$$d_1 \geqslant \frac{P_{max} \cdot C}{f_{ctk, 0.05}} \tag{48}$$

$$c = 0.5 \cdot (l - a_n - 2d)$$

$$d = 450 - 50 = 400 \text{ mm}$$

$$c = 0.5 \cdot (3.3 - 1.55 - 2 \cdot 0.4) = 0.475$$

$$d_1 \geqslant \frac{139.04 \cdot 10^3 \cdot 0.475}{1 \cdot 10^6} = 0.066 \text{ m}$$

$$0.45 > 0.066$$

4.2 Проектування підколонника фундаменту

$$1 + 2 + 3 + 4 - 7$$
 $M_y^+ = 265,99 \ \kappa H M$ $N_{ei\partial n} = -719,658 \ \kappa H$ $Q_{ei\partial n} = -41,052 \ \kappa H$

1. Зусилля в перерізі 7–7 підколонника:

$$M = M_{IV} + V_{IV}H_{an} + G_{cm}e_{cm} (50)$$

$$M = 265,99 + 41,052 \cdot 1,1 + 21,6 \cdot 0,925 = 331,13 \ \kappa H M$$

$$N = N_{IV} + G_{cm} + G_1$$
 (51)
$$N = 719,658 + 21,6 + 24,15 = 765,408 \ \kappa H$$

де
$$G_1 = (0.84 \cdot 1.15) \cdot 2500 = 2415$$
 кг

2. Необхідна площа поздовжньої арматури підколонника при

$$e_0 = M/N < 0.3h_{on} = 331.13/765.408 = 0.433 < 0.3 \cdot 1.51 = 0.453$$
:

$$A_S = A_S' = \frac{Ne - f_{cd}S_0}{f_{yd}Z_S} \tag{52}$$

де
$$e=e_0+0.5a_n-a=0.433+0.5\cdot 1.55-0.04=1.168;$$
 $Z_S=h_n-2a=1550-2\cdot 40=1470$ мм; $S_0=0.5\cdot (b_nh_{on}^2-bh_{\scriptscriptstyle H}Z_S)=0.5\cdot (0.95\cdot 1.51^2-0.4\cdot 1)=0.79$ м; $a=30\div 40$ мм.

$$A_S = A_S' = \frac{765,408 \cdot 1,168 - 14,5 \cdot 10^3 \cdot 0,79}{365 \cdot 10^3 \cdot 1,47} = -0,01968 \, \text{m}^2$$

3. Остаточно прийнятий поздовжня арматура підколонника повинна бути не менше конструктивного мінімуму:

$$A_S = A_S' \geqslant \mu_{min} \cdot A_b = 0.001 \cdot (h_n \cdot b_n - h_{H}b)$$
 (53)

$$A_S = A_S' \geqslant 0.001 \cdot (1.55 \cdot 0.95 - 1 \cdot 0.4) = 0.0010725 \,\mathrm{m}^2$$

Приймаємо $6\varnothing 16A400\ A=12{,}06\ cm^2$ з кроком $175\ мм.$

4. Необхідну площу поперечної арматури підколонника визначити з розрахунку міцності похилого перерізу на дію моменту за формулою залежно від e_0 :

При
$$\frac{h_{\scriptscriptstyle H}}{6} < e_0 < \frac{h_{\scriptscriptstyle H}}{2} = 0.16 < 0.453 < 0.5$$

$$A_{sw} = \frac{M + VH_{an} - 0.7Ne_0 + G_{cm}(e_{cm} - 0.7e_0)}{f_{ywd} \sum Z_w}$$
 (54)

де
$$\sum Z_w = Z_1 + Z_2 + Z_3 + \ldots + Z_n = 50 + 200 + 350 + 650 + 800 + 950 + 1100 + 1250 = 5350$$
 мм

$$A_{sw} = (265,99 \cdot 10^{3} + 41,052 \cdot 10^{3} \cdot 1,1 - 0,7 \cdot 719,658 \cdot 10^{3} \times \times 0,453 + 21,6 \cdot (0,925 - 0,7 \cdot 0,453))/285 \cdot 10^{6} \times \times 5,35 = 0,0000544 \,\text{m}^{2}$$

Приймаємо $4\varnothing 12A400\ A = 4{,}52\ cm^2$ з кроком $150\ мм.$

5 ПРОЕКТУВАННЯ ПЛИТИ ПОКРИТТЯ

5.1 Розрахунок міцності поздовжніх ребер плити покриття за нормальними перерізами

Клас напруженої арматури A800

$$f_{pk} = 840 \, M\Pi a$$

$$f_{p0,1k} = 765 \, M\Pi a$$

$$E_p = 190000 \, M\Pi a$$

$$f_{pd} = rac{f_{p0,1k}}{\gamma_s} = rac{765}{1,2} = 637,5 \ MПа$$

Монтажна арматура A400

$$f_{ud}=365~M\Pi a$$

Клас бетону 25/30

$$f_{cd} = 17 M\Pi a$$

$$f_{ck,prizm} = 22 M\Pi a$$

$$\varepsilon_{cu3,cd} = 3 M\Pi a$$

$$E_{cm} = 32.5 \cdot 10^3 \, M\Pi a$$

1. Визначити відношення h_f'/h , по ньому встановити величину (ширину полички тавра за рис. 6.1 при наявності поперечних ребер), що вводиться в розрахунок.

$$b_{eff} = min \left\{ \frac{\frac{1}{6} \cdot l_k}{\Pi pu \ h'_f \geqslant 0.1 \cdot h : 0.5 \cdot B_K - b} \right\}$$
 (55)

$$\frac{h_f'}{h} = \frac{30}{300} = 0.1$$

$$l_{\kappa} = L - 20 = 6000 - 20 = 5980$$
 мм

При
$$h_f' \geqslant 0.1 \cdot h$$

$$b_{eff} = 0.5 \cdot B_K - b = 0.5 \cdot 2.98 - 0.18 = 1.31$$
 м

Де
$$B_K = 2.98 \, M$$
;

$$b = 0.18 \,\mathrm{m}.$$

$$l_0 = l_k - 2 \cdot rac{2}{3} \cdot c = 5980 - 2 \cdot rac{2}{3} \cdot 120 = 5820$$
 мм

$$M_{max} = \frac{q \cdot l_0^2}{8} = \frac{10,5291 \cdot 5,82^2}{8} = 44,58 \text{ кНм}$$

$$V_{max} = \frac{q \cdot l_0}{2} = \frac{10,5291 \cdot 5,82}{2} = 30,64 \text{ кH}$$

Де
$$q_p = q_1^{\textit{nokp}} \cdot B = 2,0537 \cdot 3 = 6,1611 \ \textit{кH/м};$$

$$P_{cm} = S_m \cdot B = 1,456 \cdot 3 = 4,368$$
к H /м;

$$q = q_p + P_{cm} = 6.1611 + 4.368 = 10.5291 \text{ kH/m}.$$

2. Обчислюємо α_m :

$$\alpha_m = \frac{M_{max}}{b_{eff} \cdot d^2 \cdot f_{cd}} \tag{56}$$

Де d = h - a;

 $a = 30 \div 50$ мм.

$$\alpha_m = \frac{M_{max}}{b_{eff} \cdot d^2 f_{cd}} = \frac{44,58 \cdot 10^3}{1,31 \cdot 0,26^2 \cdot 17 \cdot 10^6} = 0,029 \Longrightarrow 0,031$$

$$\xi=rac{x}{d}\Longrightarrow x=\xi\cdot d=0,\!04\cdot 260=10,\!4$$
 мм $\zeta=0,\!984$

3. Попереднє напруження σ_p в робочій арматурі визначаємо з умови:

$$0.3f_{p0,1k} \leqslant \sigma_p \leqslant 0.9f_{p0,1k}$$

$$0.3 \cdot 765 \leqslant \sigma_p \leqslant 0.9 \cdot 765$$

$$229.5 \leqslant \sigma_p \leqslant 688.5$$

$$\sigma_p = 600 M\Pi a$$

$$(57)$$

4. Виконуємо перевірку $\xi \leqslant \xi_R$

$$\xi_R = \frac{\varepsilon_{cu3.cd}}{\varepsilon_{cu3.cd} - \varepsilon_{so}} \tag{58}$$

Де
$$\varepsilon_{so} = \frac{f_{pd} + 400 - 0.9\sigma_p}{E_p} \cdot 1000 = \frac{637.5 + 400 - 0.9 \cdot 600}{190000} \cdot 1000 = 2.61$$

$$\xi_R = \frac{3}{3 - 2.61} = 7,86$$

$$0.04 \leq 7.86$$

Умова виконується.

5. Визначаємо положення нейтральної вісі:

$$M_f = b_{eff} \cdot h'_f \cdot f_{cd} \cdot (d - 0.5 \cdot h_f)$$

$$M_f = (1.31 \cdot 0.03 \cdot 17 \cdot 10^6 \cdot (0.26 - 0.5 \cdot 0.03)) / 1000 = 163.60845 \, \kappa H_{\mathcal{M}}$$

$$M_{max} \leqslant M_f$$

$$44.58 < 163.60845$$

Нейтральна вісь знаходиться у поличці.

6. Необхідна площа поздовжньої напруженою робочої арматури ребер плити:

$$A_{sp} = \frac{M_{max}}{f_{pd} \cdot d \cdot \zeta}$$

$$A_{sp} = \frac{M_{max}}{f_{pd} \cdot d \cdot \zeta} = \frac{44,58 \cdot 10^3}{637,5 \cdot 10^6 \cdot 0,26 \cdot 0,984} = 0,00027 \text{ m}^2$$
(60)

Приймаємо 2Ø18A800, $A_{sp}^{\phi a \kappa m}=5{,}09~cm^2$.

7. Обчислюємо відсоток армування для прийнятої поздовжньої напруженої арматури:

$$\mu = \left(\frac{A_{sp}^{\phi a \kappa m}}{A_b}\right) \cdot 100\% \tag{61}$$

Де $A_b = 296 \cdot 3 + 18 \cdot (30 - 3) = 1374 \ cm^2$

$$\mu = \left(\frac{5,09}{1374}\right) \cdot 100\% = 0.37\%$$

Відсоток армування для прийнятої поздовжньої напруженої арматури $(0,3\% \leqslant \mu \leqslant 0,8\%)$ входить до оптимальних значень.

5.2 Розрахунок міцності похилих перерізів поздовжніх ребер плити

1. Визначаємо σ_{cp} :

$$\sigma_{cp} = \frac{N_{max}}{A_c} < 0.2 \cdot f_{cd} \tag{62}$$

Де $N_{max} = 0.5 \cdot \sigma_p \cdot A_{cp} = 0.5 \cdot 600 \cdot 0.000509 \cdot 1000 = 152.7 \ \kappa H.$

$$\sigma_{cp} = \frac{152,7}{0,1374} < 0,2 \cdot 17 \cdot 1000$$

$$\sigma_{cp} = 1111 \ \kappa H < 3400 \ \kappa H$$

2. Визначаємо коефіцієнт k:

$$k = 1 + \sqrt{\frac{200}{d}} \leqslant 2,0$$

$$k = 1 + \sqrt{\frac{200}{260}} \leqslant 2,0$$
(63)

$$k = 1 + \sqrt{\frac{260}{260}} \le 2.0$$

 $k = 1.87 \le 2.0$

3. Визначаємо $V_{Rd,c}$:

$$V_{Rd,c} = \left[C_{Rd,c} \cdot k \cdot \sqrt[3]{100 \cdot \rho_l \cdot f_{ck}} + k_1 \cdot \sigma_{cp} \right] \cdot b \cdot d \tag{64}$$

Де $V_{Rd,c}$ — розрахункове значення поперечної сили, яку може сприйняти похилий переріз без армування (бетон);

 k_1 — коефіцієнт, $k_1 = 0.15$;

 ho_l — коефіцієнт армування перерізу поздовжньою розтягнутою арматурою;

$$C_{Rd,c} - 0.12 \, M\Pi a;$$

 f_{ck} — в $M\Pi a$.

$$V_{Rd,c} = \left[0.12 \cdot 1.877 \cdot \sqrt[3]{100 \cdot 0.37 \cdot 22} + 0.15 \cdot 1.11\right] \cdot 180 \cdot 260 =$$

$$= 1062265 \ M\Pi a = 106.26 \ \kappa H$$

4. Перевіряємо умову $V_{max}\geqslant V_{Rd,c}$

$$30,64 \text{ } \kappa H \geqslant 106,26 \text{ } \kappa H$$

Умова не виконується, приймаємо армування конструктивно:

- В зварних каркасах $d_{non.apm.} \geqslant \left\{ \frac{d_{max}^{noos3\partial.apm}}{4}; 4 \, \textit{мм} \right\}$ кількість стрижнів в перерізі має відповідати кількості плоских каркасів. В ребристій плиті має бути 2 каркаси. Приймаємо 8 мм;
- Крок стрижнів S призначається кратним $50 \ \textit{мм}$ і приймається:
 - $-S \leqslant \{0.5 \cdot h; \ 150 \text{ мм}\}$ на ділянках біля опор $(\geqslant 0.25 \cdot l_0)$ Приймаємо S=150 мм, біля опор 1500 мм;
 - $-S\leqslant\{0.75\cdot h;\ 500\ {\it мм}\}$ на ділянках всередині прогону $(\approx 0.5\cdot l_0)$ Приймаємо $S=300\ {\it мм},$ всередині прогону $3000\ {\it мм}.$

5.3 Розрахунок полички плити на місцевий вигин

•
$$l_{01} = 1 - 0.045 - 0.02 = 0.935 \,\mathrm{M}$$

•
$$l_{02} = 1 - 0.02 - 0.02 = 0.96 \,\mathrm{M}$$

Відношення сторін полички плити:

•
$$\frac{l_{\partial n}}{l_{01}} = \frac{298 \text{ cm}}{93.5 \text{ cm}} = 2.97 > 2$$

•
$$\frac{l_{\partial n}}{l_{02}} = \frac{298 \text{ cm}}{96 \text{ cm}} = 2,89 > 2$$

$$q_1 = (2.52 - 1.4663) + 1.1 \cdot 25 \cdot 0.03 + 1.456 = 4.56 \ \kappa H/\text{M}^2$$

$$q = B \cdot q_1 = 1 \cdot 4.56 = 4.56 \ \kappa H/\text{M}$$

$$M = \frac{q \cdot l_{01}^2}{11} = \frac{4.56 \cdot 0.935^2}{11} = 0.36 \ \kappa H \cdot \text{M}$$

1. Визначаємо α_m

$$\alpha_m = \frac{M}{f_{cd} \cdot B \cdot d^2} \tag{65}$$

Де
$$d = 0.5 \cdot h_f = 0.5 \cdot 0.003 = 0.015$$
 м;

$$B = 1 \text{ M.}$$

$$\alpha_m = \frac{0.36 \cdot 10^3}{17 \cdot 10^6 \cdot 1 \cdot 0.015^2} = 0.0947 \Longrightarrow 0.091$$

Приймаємо $\zeta = 0.952$

2. Визначаємо необхідну площу поздовжньої робочої арматури полички плити обчислюємо, як в прямокутному перерізі, за формулою:

$$A_S = \frac{M}{f_{yd} \cdot \zeta \cdot d} \tag{66}$$

Де f_{yd} — розрахунковий опір стрижневої арматури класу A400.

$$A_S = \frac{0.36 \cdot 10^3}{365 \cdot 10^6 \cdot 0.952 \cdot 0.015} = 0.00006906 \, \text{m}^2$$

Приймаємо
$$C-1=rac{\varnothing 3A400-200}{\varnothing 5A400-300}$$
 5910 × 2910

5.4 Розрахунок втрат попереднього напруження

Визначаємо геометричні характеристики розрахункового перерізу:

$$A_{red} = b_f \cdot h_f + b \cdot (h - h_f) + \alpha \cdot A_P + \alpha \cdot A_{S1} + \alpha \cdot A_{S2}$$
 (67)

$$A_{red} = 2,96 \cdot 0,03 + 3 \cdot (0,3 - 0,03) + 5,85 \cdot 0,000509 + 5,85 \times 0,0002545 + 5,85 \cdot 0,0002545 = 0,904$$

$$S_{red} = b_f \cdot h_f \cdot \left(h - \frac{h_f}{2}\right) + b \cdot (h - h_f) \cdot \left(h - \frac{h_f}{2}\right)$$

$$S_{red} = 2,96 \cdot 0,03 \cdot \left(0,3 - \frac{0,03}{2}\right) + 3 \cdot (0,3 - 0,03) \cdot \left(0,3 - \frac{0,03}{2}\right) = 0,256$$

$$y = \frac{S_{red} + \alpha \cdot A_P \cdot c_P + \alpha \cdot A_{S1} \cdot c + \alpha \cdot A_{S2} \cdot (h - c_1)}{A_{red}}$$
(69)

$$y = (0.256 + 5.85 \cdot 0.000509 \cdot 0.05 + 5.85 \cdot 0.0002545 \cdot 0.02 + 5.85 \cdot 0.0002545 \cdot (0.3 - 0.02))/0.904 = 0.284$$

$$I_{red} = I + \alpha \cdot A_P \cdot y_P^2 + \alpha \cdot A_{S1} \cdot y_{S1}^2 + \alpha \cdot A_{S2} \cdot y_{S2}^2 = \frac{b_f \cdot h_f^3}{12} + b_f \cdot h_f \cdot \left(h - y - \frac{h_f}{2}\right)^2 + \frac{b \cdot (h - h_f)^3}{12} + b \cdot (h - h_f) \times \left(y - \frac{h - h_f}{2}\right)^2 + \alpha \cdot A_P \cdot y_P^2 + \alpha \cdot A_{S1} \cdot y_{S1}^2 + \alpha \cdot A_{S2} \cdot y_{S2}^2$$

$$+ \alpha \cdot A_{S2} \cdot y_{S2}^2$$
 (70)

$$I_{red} = \left[\frac{2,96 \cdot 0,03^{3}}{12}\right] / 10^{8} + \left[2,96 \cdot 0,03\right] / 10^{8} \times \left[\left(0,3 - 0,284 - \frac{0,03}{2}\right)^{2}\right] / 10^{8} + \left[\left(0,18 \cdot (0,3 - 0,03)^{3}\right) / 10^{8} + \left[0,18 \cdot (0,3 - 0,03)\right] / 10^{8} \times \left[\left(0,284 - \frac{0,3 - 0,03}{2}\right)^{2}\right] / 10^{8} + \left[5,85 \cdot 0,000509 \cdot 0,234^{2}\right] / 10^{8} + \left[5,85 \cdot 0,0002545 \cdot 0,264^{2}\right] / 10^$$

Де
$$\alpha = \frac{E_S}{E_{cm}} = \frac{190000}{32,5 \cdot 10^3} = 5,85;$$
 $y_P = y - c_P = 0,284 - 0,05 = 0,234;$
 $y_{S1} = y - c = 0,284 - 0,02 = 0,264;$
 $y_{S2} = h - y - c_1 = 0,3 - 0,02 = 0,27.$

$$W_{red} = \frac{I_{red}}{y} = \frac{0,154051298}{0,284} = 0,543 \tag{71}$$

$$r = \frac{W_{red}}{A_{red}} = \frac{0.543}{0.904} = 0.59 \tag{72}$$

Розрахунок втрат I групи попереднього напруження

- 1. Визначаємо втрати від короткотривалої релаксації арматури ΔP_r для арматури класу A800 при механічному та електротермічному способі натягу:
 - При механічному

$$\Delta P_r = (0.1 \cdot \sigma_{p,max} - 20) \cdot A_P \tag{73}$$

$$\Delta P_r = (0.1 \cdot 1250 - 20) \cdot 0.000509 = 0.053 \, \Pi a$$

• При електротермічному

$$\Delta P_r = 0.03 \cdot \sigma_{p,max} \cdot A_P \tag{74}$$

$$\Delta P_r = 0.03 \cdot 1250 \cdot 0.000509 = 0.019 \, \Pi a$$

2. Визначаємо втрати від темепературного перепаду:

$$\Delta P_{\Delta t} = 0.5 \cdot A_P \cdot E_P \cdot \alpha_c \cdot (T_{max} - T_0) \tag{75}$$

$$\Delta P_{\Delta t} = 0.5 \cdot 0.000509 \cdot 190000 \cdot 1 \cdot 10^{-5} \cdot 65 = 0.031 \, \Pi a$$

3. Визначаємо втрати від деформації анкерів, анкерних пристроїв, розташованих в зоні натяжних пристроїв, при натягу на упори:

$$\Delta P_4 = \frac{\Delta l}{l} \cdot E_P \cdot A_P \tag{76}$$

$$\Delta P_4 = \frac{1,25 \cdot 0,15 \cdot 18}{6} \cdot 19000 \cdot 0,000509 = 63,66 \, \Pi a$$

4. Втрати зусилля в арматурі внаслідок миттєвої деформації бетону при натягу на упори:

$$\Delta P_c = \alpha \cdot \rho \left[1 + z_{cp}^2 \cdot \frac{A_c}{I_c} \right] \cdot P_{0,c} \tag{77}$$

Де
$$P_{0,c} = P_{max} - \Delta P_r - \Delta P_{\Delta t} = 1250 - 0.019 - 0.031 = 1249.915$$
 Па

$$\Delta P_c = 1 \cdot 10^{-5} \cdot 0,0032 \cdot \left[1 + 2,345^2 \cdot \frac{0,000509}{1377865842,7} \right] \cdot 1249,915 = 0,234 \, \Pi a$$

5. Величина I групи втрат:

$$P_{m0} = P_{max} - \Delta P_r - \Delta P_{\Delta t}$$

$$P_{m0} = 1250 - 0.019 - 0.031 = 1186.014 \, \Pi a$$

$$P_{m0} \le 0.75 \cdot f_{pk} \cdot A_P$$

$$1186.014 \, \Pi a \le 0.75 \cdot 840 \cdot 10^6 \cdot 0.000509$$

$$1186.014 \, \Pi a \le 320670 \, \Pi a$$

$$(78)$$

Умова виконується.

Розрахунок втрат II групи попереднього напруження

1. Залежні від часу втрати попереднього напруження від дії постійних навантажень ΔP_{e+s+r} :

$$\Delta P_{e+s+r} = A_P \cdot \sigma_{p,c+s+r} \tag{79}$$

$$\sigma_{p,c+s+r} = \frac{\varepsilon_{cs} \cdot E_P + 0.8 \cdot \Delta \sigma_{pr} + \frac{E_P}{E_{cm}} \cdot \varphi(t,t_0) \cdot \sigma_{c,qp}}{1 + \frac{E_P \cdot A_P}{E_{cm} \cdot A_c} \cdot \left(1 + \frac{A_c}{I_c} \cdot z_{cp}^2\right) \left[1 + 0.8 \cdot \varphi(t,t_0)\right]}$$

$$\text{Де } \sigma_{c,qp} = \frac{P_{m0}}{A_{red}} + \frac{P_{m0} \cdot z_{cp} \cdot y_p}{I_{red}} - \frac{M_{max} \cdot y_p}{I_{red}} = \frac{1186,014}{0.905} + \frac{1186,014 \cdot 2.345 \cdot 0.234}{154051.3} - \frac{44.58 \cdot 0.234}{154051.3} = 1310.87 \, \Pi a$$

$$(80)$$

$$\sigma_{p,c+s+r} = \frac{0,39 \cdot 190000 + 0,8 \cdot 0,79 + \frac{190000}{32500} \cdot 2 \cdot 1310,87}{1 + \frac{190000 \cdot 0,000509}{32500 \cdot 0,000509} \cdot \left(1 + \frac{0,000509}{1377865842,7} \cdot 2,345^2\right) [1 + 0,8 \cdot 2]}$$

$$\sigma_{p,c+s+r} = 89426,45 \ \Pi a$$

$$\Delta P_{e+s+r} = 0,000509 \cdot 89426,45 = 45,518 \ H$$

2. Перевірити умову для середнього значення попереднього обтискування $P_{m,t}$ в момент часу $t > t_0$ (з урахуванням всіх втрат):

$$P_{m,t} = P_{m0} - \Delta P_{1(t)} < 0.65 \cdot f_{pk} \cdot A_P \tag{81}$$

Повні сумарні втрати напруження $P_{m0} + \Delta P_{1(t)}$ приймати не менше 100 *МПа*.

$$P_{m,t} = 1186,014 - 45,518 < 0,65 \cdot 840 \cdot 10^6 \cdot 0,000509$$

$$P_{m,t} = 1140,49 \, \Pi a < 277914 \, \Pi a$$

5.5 Розрахунок плити на утворення тріщин нормальних до поздовжньої осі

Розрахунок моменту тріщиноутворення $M_{w,ult}$ для нормальних перерізів плити в стадії експлуатації

1. Визначаємо момент тріщиноутворення:

$$M_{w,ult} = f_{ctm} \cdot \gamma \cdot W_{red} + P_2 \cdot (e_{op} + r) \tag{82}$$

Де
$$P_2=0.5\cdot A_{sp}^{\textit{факт}}\cdot\sigma_p-(P_{0m}+\Delta P_{1(t)})=0.5\cdot 5.09\cdot 600-(1186.01+45.52)=$$
 = 295.47 кПа;

$$e_{op} = y_0 - a = 0.115 - 0.04 = 0.111 \text{ M}$$

$$M_{w,ult} = 2.6 \cdot 1.3 \cdot 0.543 + 295.47 \cdot (0.111 + 0.115) = 57.97 \ \kappa Hm$$

2. Порівняємо $M_{w,ult} \geqslant M_{max}$

$$57,97 \ \kappa H$$
м $\geqslant 44,58 \ \kappa H$ м

Умова виконується, тріщини не виникають і розрахунок розкриття тріщин виконувати не потрібно.

5.6 Розрахунок тріщиностійкості плити в стадії виготовлення і транспортування

1. Обчислюємо момент від власної ваги:

$$M_1 = \frac{g \cdot c^2}{2} = \frac{(1,333 \cdot 1,6 \cdot 3) \cdot 0,8^2}{2} = 2,05 \text{ } \kappa H_M$$
 (83)

2. Перевірити умову тріщиностійкості:

$$P_{1} \cdot (e_{op} - r) - M_{w,ult} \leqslant f_{ctm} \cdot \gamma \cdot W_{red}$$
(84)
$$\mathbf{\Pi}e\ P_{1} = A_{sp}^{\phi a \kappa m} \cdot \sigma_{p} - P_{0m} = (5,09/10000) \cdot 600 - 1186,01 = -1185,71\ \Pi a$$

$$-10,545 \cdot (0,111 - 0,115) - 57,97 \leqslant 2,6 \cdot 1,3 \cdot 0,543$$

$$-10,545 \leqslant 1,83$$

Умова виконується, тріщини не виникають і розрахунок розкриття тріщин виконувати не потрібно.

5.7 Розрахунок плити за деформаціями

1. Визначаємо прогин плити:

$$f_{sh,t} = \left(\frac{1}{r}\right)_{1} \cdot \alpha_{k} \cdot l_{0}^{2}$$

$$\mathbb{A}e\left(\frac{1}{r}\right)_{1} = \frac{M}{E_{c,eff}} \cdot I_{I} = \frac{1,456 \cdot 10^{3}}{10833,33 \cdot 10^{6}} \cdot 0,001378 = 1,85203 \cdot 10^{-7};$$

$$E_{c,eff} = \frac{E_{cm}}{1 + \varphi(t,t_{0})} = \frac{32500}{1 + 2} = 10833,33$$

$$f_{sh,t} = 1,85203 \cdot 10^{-7} \cdot \frac{5}{48} \cdot 5,82^{2} = 0,001457 \text{ } M$$

2. Обчислюємо прогин від постійної та довготривалої діючої частин навантаження на плиту:

$$f_{lt} = \left(\frac{1}{r}\right)_2 \cdot \alpha_k \cdot l_0^2$$

$$\text{Де}\left(\frac{1}{r}\right)_2 = \frac{M}{E_{cm} \cdot I_I} = \frac{1,456 \cdot 10^3}{32500 \cdot 0,001378 \cdot 10^{-6}} = 0,0003328.$$

$$f_{lt} = 0,0003328 \cdot \frac{5}{48} \cdot 5,82^2 = 0,001174 \text{ M}$$

3. Обчислюємо вигин від короткочасної дії зусилля попереднього обтиску:

$$f_{cp} = \frac{P_2 \cdot e_{op} \cdot l_0^2}{8 \cdot E_{cm} \cdot I_I} \tag{87}$$

$$f_{cp} = \frac{295,46 \cdot 0,075 \cdot 5,82^2}{8 \cdot 32500 \cdot 0,001378 \cdot 10^{-6}} = 2,095 \cdot 10^{-6} \,\mathrm{M}$$

4. Обчислюємо вигин внаслідок повзучості та усадки залізобетонного елементу:

$$f_{cs} = \alpha_P \cdot \left(\frac{1}{r}\right)_4 \cdot l_0^2 \tag{88}$$

$$\begin{split} & \operatorname{Де}\left(\frac{1}{r}\right)_4 = \frac{M - \varepsilon_{cs}(t,t_0) \cdot E_S \cdot S_{Is}}{E_{c,eff} \cdot I_I} = \\ & = \frac{1,456 \cdot 10^3 - 0,39 \cdot 190000 \cdot 5,85 \cdot 10^{-5}}{10833,33 \cdot 10^6 \cdot 0,001378 \cdot 10^{-6}} = 0,01855; \end{split}$$

$$S_{Is} = A_{s1} \cdot z_1 + A_{s2} \cdot z_2 = 0,0002545 \cdot 0,115 + 0,0002545 \cdot 0,115 = 5,85 \cdot 10^{-5}.$$

$$f_{cs} = \frac{1}{8} \cdot 0.01855 \cdot 5.82^2 = 0.0785 \,\mathrm{M}$$

5. Обчислюємо повне значення прогину:

$$f = f_{sh,t} + f_{lt} - f_{cp} - f_{cs}$$

$$f = 0.001457 + 0.001174 - 2.095 \cdot 10^{-6} - 0.0785 = -0.075 \text{ M}$$

$$f \le f_u$$

$$-0.075 \text{ M} \le 30 \text{ MM}$$

$$(89)$$

Умова виконується.

6 ПРОЕКТУВАННЯ КРОКВЯНОЇ ФЕРМИ

Розрахунок вузлових навантажень на крокв'яну ферму

1. Від постійного навантаження:

$$F_{nocm} = g \cdot 3 \cdot S + \gamma_f \cdot \frac{G_n^{nocm}}{n} \tag{90}$$

Де g — вага конструкції покрівлі;

 γ_f — коефіцієнт надійності по навантаженню;

 G_n^{nocm} — вага кроквяної конструкції;

n — кількість вузлів у фермі.

$$F_{nocm} = 3.52 \cdot 3 \cdot 6 + 1.1 \cdot \frac{60}{9} = 70.69 \ \kappa H$$

2. Від снігових навантажень:

$$F_{cH} = \gamma_f \cdot p_{cH}^n \cdot 3 \cdot S \tag{91}$$

Де p_{ch}^n — нормативне значення навантаження снігового навантаження.

$$F_{ch} = 1.04 \cdot 1.456 \cdot 3 \cdot 6 = 27.26 \ \kappa H$$

Розрахунок армування попередньо напруженого розтягнутого нижнього пояса ферми

1. Приймаємо найневигідніше зусилля в найбільш навантаженій панелі нижнього поясу.

Елемент 8 – 9

$$N_{max} = 520,1145 \ \kappa H$$

2. Обчислюємо необхідну площу напруженої арматури, як для центрально розтягнутого елемента:

$$A_{sp} = \frac{N_{max} \cdot e}{f_{pd} \cdot (d - a_p)} \tag{92}$$

Де
$$e=e_a+0.5\cdot h-a_p=0.01+0.5\cdot 0.28-0.04=0.11$$
 м

$$A_{sp} = \frac{520,1145 \cdot 10^3 \cdot 0,11}{637,5 \cdot (0,24 - 0,04)} = 0,0004487 \, \text{m}^2$$

Приймаємо $2\varnothing 18A800 + 2\varnothing 18A800$, $A_S^{\phi a \kappa m} = 10{,}18~cm^2$.

Приймаємо розміри перерізу 28×22 *см*.

3. Перевіряємо відсоток армування:

$$\mu_{min} \leqslant \mu = \frac{A_s^{\phi a \kappa m}}{b \cdot h} \cdot 100\% \leqslant 3\%$$

$$0.05\% \leqslant \mu = \frac{10.18}{22 \cdot 28} \cdot 100\% \leqslant 3\%$$

$$0.05\% \leqslant \mu = 1.65\% \leqslant 3\%$$
(93)

Умова виконується.

Розрахунок армування верхнього стиснутого пояса ферми і стиснутих елементів решітки.

1. Приймаємо найневигідніше зусилля в найбільш навантаженій панелі верхнього поясу.

Елемент 2 – 3

$$N_{max} = 525,99 \text{ } \kappa H, N_{1l} = 434,2616 \text{ } \kappa H.$$

2. Визначаємо орієнтовно необхідну площу перерізу верхнього поясу:

$$A_b = \frac{N_{max}}{0.8 \cdot (f_{cd} + 0.03 \cdot f_{yd})} \tag{94}$$

$$A_b = \frac{525,99 \cdot 10^3}{0,8 \cdot (17 + 0,03 \cdot 365) \cdot 10^6} = 0,0235 \,\mathrm{m}^2$$

Приймаємо розміри перерізу $25 \times 22 \ \text{см}$.

3. Призначаємо величину випадкового ексцентриситету $e_a=10$ мм. $l=300\ cm$ — довжина верхнього пояса між точками закріплення.

4. Уточнюємо розрахункову довжину верхнього пояса в площині ферми при $e_a < \frac{1}{8} \cdot h;$ 10 мм < 31,25 мм. Приймаємо $l_0 = 0,9 \cdot l = 2700$ мм.

Для прийнятої розрахункової довжини обчислюємо гнучкість:

$$\lambda = \frac{l_0}{h} = \frac{2700}{250} = 10.8 \text{ мм} \tag{95}$$

5. Обчислюємо умовну критичну силу:

$$N_{cr} = \frac{6.4 \cdot E_{cm}}{l_0^2} \cdot \left[\frac{I}{\varphi_l} \cdot \left(\frac{0.11}{0.1 + \delta_l/\varphi_p} + 1 \right) + \alpha \cdot I_S \right]$$
 (96)

Де
$$\varphi_l = 1 + \beta \cdot \frac{M_{1l}}{M_1} = 1 + 1 \cdot \frac{36,91}{44,71} = 1,82;$$

$$M_{1l} = \frac{N_l \cdot (d-a)}{2} = \frac{434,2616 \cdot (0,21-0,04)}{2} = 36,91 \text{ к/Hм};$$

$$M_1 = \frac{N \cdot (d-a)}{2} = \frac{525,99 \cdot (0,21-0,04)}{2} = 44,71 \text{ к/Hм};$$

$$\delta_{l} = \left\{ \frac{\frac{e_{a}}{h}}{> \delta_{e,min} = 0.5 - 0.01 \cdot \frac{l_{0}}{h} - 0.01 \cdot f_{cd}} \right\};$$

$$\delta_l = \left\{ \begin{array}{c} \frac{0.01}{0.25} = 0.04\\ > \delta_{e,min} = 0.5 - 0.01 \cdot \frac{2.7}{0.25} - 0.01 \cdot 17 = 0.222 \end{array} \right\};$$

Приймаємо $\delta_l=\delta_{e,min}=0.222.$

$$\varphi_p = 1; \alpha = \frac{E_S}{E_{cm}} = \frac{2,1 \cdot 10^5}{32500} = 6,46;$$

$$I_S = \mu \cdot b \cdot h_0 \cdot (0.5 \cdot h - a_S)^2 = 1.575 \cdot 0.22 \cdot 0.21 \cdot (0.5 \cdot 0.25 - 0.04)^2 = 0.0005257 \,\text{m}^4;$$

$$I = \frac{b \cdot h^3}{12} = \frac{0,22 \cdot 0,25^3}{12} = 0,0002864 \, \text{m}^4.$$

$$N_{cr} = \frac{6.4 \cdot 32500 \cdot 10^{6}}{2.7^{2}} \times \left[\frac{28.64 \cdot 10^{-5}}{1.82} \cdot \left(\frac{0.11}{0.1 + 0.222/1} + 1 \right) + 6.46 \cdot 52.57 \cdot 10^{-5} \right] = 98878222/1000 = 98878.2 \ \kappa H/m^{2}$$

6. Обчислюємо коефіцієнт η :

$$\eta = \frac{1}{1 - \frac{N_{max}}{N_{cr}}} = \frac{1}{1 - \frac{525,99}{98878,2}} = 1,0053 \tag{97}$$

7. Обчислюємо ексцентриситет:

$$e = e_a \cdot \eta + 0.5 \cdot h_1 - a \tag{98}$$

$$e = 0.01 \cdot 1.0053 + 0.5 \cdot 0.25 - 0.04 = 0.095 \,\mathrm{m}$$

8. Приймаючи $A_A=A_S'$, визначаємо $n=\frac{N_{max}}{f_{cd}\cdot b\cdot d}=\frac{525,99\cdot 10^3}{17\cdot 10^6\cdot 0,22\cdot 0,21}=$

$$= 0.669.$$

$$\xi_R = \frac{\xi_{cu3}}{\xi_{cu3} + \xi_{so}} = \frac{3}{3 + 0.633} = 0.8257.$$

$$n < \xi_R$$

$$x = \frac{N_{max}}{f_{cd} \cdot b} = \frac{525,99 \cdot 10^3}{17 \cdot 10^6 \cdot 0,22} = 0,14$$
 (99)

$$\sigma_s = \left(2 \cdot \frac{1 - \frac{x}{d}}{1 - \xi_R}\right) \cdot f_{yd} \tag{100}$$

$$\sigma_s = \left(2 \cdot \frac{1 - \frac{0.14}{0.21}}{1 - 0.8257}\right) \cdot 365 = 1018.32 \, M\Pi a$$

$$A_S = A_S' = \frac{N_{max} \cdot e - f_{cd} \cdot b \cdot x \cdot (d - 0.5 \cdot x)}{\sigma_s \cdot (d - a')}$$
(101)

$$A_S = A_S' = \frac{525,99 \cdot 10^3 \cdot 0,095 - 17 \times}{1018,32 \times} \\ \frac{\times 10^6 \cdot 0,22 \cdot 0,14 \cdot (0,21 - 0,5 \cdot 0,14)}{\times 10^6 \cdot (0,21 - 0,04)} = -0,0001356 \text{ m}^2$$

Приймаємо $2\varnothing 12A400 + 2\varnothing 12A400, A_S^{\phi a \kappa m} = 4,52 \ cm^2$

9. Перевіряємо відсоток армування:

$$\mu_1 = \frac{A_S + A_S'}{b \cdot d} \cdot 100\%$$

$$\mu_1 = \frac{2,26 + 2,26}{22 \cdot 21} \cdot 100\% = 0,97\%$$
(102)

Умова виконується.

Елементи ферми	№ стрижня	Зусилля в стрижнях ферми		Від постійно навантаженн на покритті п Fпост =(кН
		Для схеми	Для схеми	Для схеми
		завантаження	завантаження	завантаженн
		№ 1	№2	№ 1
Верхіній пояс	1 - 2	-5,343	-3,752	-377,69667
	2 - 3	-5,37	-3,365	-379,6053
	3 – 4	-5,245	-3,281	-370,76905
	4 – 5	-5,245	-1,964	-370,76905
	5 – 6	-5,37	-2,005	-379,6053
	6 – 7	-5,343	-1,591	-377,69667
Нижній пояс	1 - 8	4,725	3,317	334,01025
	8 – 9	5,31	2,655	375,3639
	9 – 7	4,725	1,408	334,01025
Розкоси	2 - 8	0,557	-0,051	39,37433
	4 – 8	-0,106	0,794	-7,49314
	4 – 9	-0,106	-0,9	-7,49314
	6 – 9	0,557	0,608	39,37433
Стійки	3 – 8	-0,19	-0,488	-13,4311
	5 – 9	-0,19	0,298	-13,4311