순서논리회로

(Sequential logic circuit)

1 순서 논리 회로의 개요

- 조합 논리 회로(combinational logic circuit) : 이전 입력 값에 관계없이 현재 입력 값에 따라 출력이 결정
- 순서 논리 회로(sequential logic circuit) : 현재의 입력 값과 이전 출력 상태에 따라 출력 값이 결정

그림 3-62 순서 논리 회로의 구성

❖ 순서 논리 회로의 특징

- 순서 논리 회로의 출력은 외부에서 들어온 입력과 이전 출력 상태에 따라 결정된다. 이러한 동작은 클록 펄스가 들어올 때마다 반복해서 일어난다.
- 순서 논리 회로는 기억 기능(플립플롭)이 있다.
- 대표적인 순서 논리 회로에는 플립플롭, 카운터, 레지스터 등이 있다.

□ 클록 펄스

- <u>플립플롭(flip-flop)</u>은 <mark>클록 펄스(Clock Pulse, CP)라는 제어 입력을 가지며, 출력은 클록 펄스에 동기되어 변하고 이러한 변화를 트리거(trigger)되었다고 한다.</mark>
- 상승에지(positive edge), 하강에지(negative edge)

그림 3-63 클록 펄스의 형태

❖ 펄스 전이 검출기

- 실제 회로에서 클록 펄스는 상승 에지나 하강 에지에서 순간적으로 1이 되는 날카로운 파형을 만 들어 플립플롭을 동작시키는데, 이 파형을 에지 트리거(edge trigger)라고 한다.
- 클록 펄스(구형파)로 에지 트리거를 만들려면 펄스 전이 검출기가 필요하다

□ 플립플롭의 종류

❖ 플립플롭의 특징

- 플립플롭은 1비트의 정보를 기억할 수 있는 기억 소자다.
- 플립플롭은 제어 입력인 클록 펄스가 있으며 다음 클록 펄스가 들어올 때까지 현재 상태를 유지 한다.
- 플립플롭은 Q와 \overline{Q} 로 표시된 출력이 2개 있으며 Q와 \overline{Q} 의 상태는 서로 보수가 되어야 정상 상태가 된다.
- 플립플롭은 RAM의 구성 요소로도 사용된다.
- 플립플롭에는 SR 플립플롭, JK 플립플롭, D 플립플롭, T 플립플롭이 있다.

그림 3-65 플립플롭의 종류

2 플립플롭

■ SR 래치

S	R	Q(t+1)
0	0	Q(t)(불변)
0	1	0
1	0	1
1	1	부정

(a) NOR 게이트로 구성

그림 3-66 SR 래치의 논리 회로와 진리표

\overline{S}	\overline{R}	Q(t+1)
0	0	부정
0	1	1
1	0	0
1	1	Q(t)(불변)

(b) NAND 게이트로 구성

추가자료 : SR 래치 동작 설명(NOR)

SR Latch with NOR gates

Fig. 5-3 SR Latch with NOR Gates

undefined

NOR Gate는 한쪽 입력(x)이 1이면 다른 입력 값(y)에 관계없이 출력(F)이 0이 된다. 이것을 이용하여 S(Set)가 1이 라 가정하고 위의 그림의 해석을 시작 한다.

추가자료 : SR 래치 동작 설명(NAND)

SR Latch with NAND gates

Fig. 5-4 SR Latch with NAND Gates

NAND Gate는 한쪽 입력(x)이 0이면 다른 입력 값(y)에 관계없이 출력(F)이 1이 된다. 이것을 이용하여 R(Reset)이 0 이라 가정하고 위의 그림의 해석을 시 작한다.

□ SR 플립플롭

- SR 플립플롭: 클록 펄스가 있을 때만 동작하는 SR 래치를 의미
- 클록 펄스는 상승 에지 트리거 신호가 입력된 경우다.

그림 3-67 SR 플립플롭의 구조

<i>CP</i> =0인 경우	S 와 R 의 입력에 관계없이 앞단의 AND 게이트 G_3 과 G_4 의 출력이 항상 0이므로 플립플롭의 출력은 불변		
<i>CP</i> =1인 경우	S 와 R 의 입력이 회로 후단의 NOR 게이트 G_1 과 G_2 의 입력으로 전달되어 SR 래치와 같은 동작을 수행		

❖ SR 플립플롭의 특성표 및 특성 방정식

S	R	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	부정
1	1	1	부정
		(a) =	=

SR=0을 포함한 이유 : S=R=1인 경우는 허용될 수 없음을 나타냄

그림 3-68 SR 플립플롭의 특성표와 특성 방정식

□ D 플립플롭

- SR 플립플롭에서 원하지 않는 상태(S=R=1)를 제거하는 한 가지 방법
- SR 플립플롭을 변형한 것
- 입력신호 D가 CP에 동기되어 그대로 출력에 전달되는 특성을 가지고 있음
- D 플립플롭이라는 이름은 데이터(Data)를 전달하는 것과 지연(Delay)하는 역할에서 유래

그림 3-69 D 플립플롭의 구조

<i>CP</i> =1, <i>D</i> =1	G_3 의 출력은 0 , G_4 의 출력은 1 이 된다. 따라서 SR 래치의 입력은 S = 0 , R = 1 이 되므로 결과적으로 Q = 1 을 얻는다.
<i>CP</i> =1, <i>D</i> =0	G_3 의 출력은 $1, G_4$ 의 출력은 0 이 된다. 따라서 SR 래치의 입력은 $S=1, R=0$ 이 되므로 결과적으로 $Q=0$ 을 얻는다.

❖ D플립플롭의 특성표 및 특성 방정식

			Q(t)	
D_{\cdot}	Q(t)	Q(t+1)	D = 0	1
0	0	0	0	
0	1	0		
1	0	1	1 1	1
1	1	1	Q(t +	1) = D
	(a) !	특성표	(b) 특성	방정식

그림 3-70 D 플립플롭의 특성표와 특성 방정식

□ *JK* 플립플롭

- JK 플립플롭은 SR 플립플롭에서 S=1, R=1인 경우 출력이 불안정한 상태가 되는 문제점을 개선하여 S=1, R=1에서도 동작하도록 개선한 회로
- JK 플립플롭의 J는 S(set)에, K는 R(reset)에 대응하는 입력
- *J*=1, *K*=1인 경우 *JK* 플립플롭의 출력은 이전 출력의 보수 상태로 변화
- JK 플립플롭은 플립플롭 중에서 가장 많이 사용되는 플립플롭이다.

□ JK 플립플롭

그림 3-71 *JK* 플립플롭의 구조

J=0, K=0	G_3 과 G_4 의 출력이 모두 0 이므로 G_1 과 G_2 로 구성된 SR 래치는 출력이 변하지 않는다.
<i>J</i> =0, <i>K</i> =1	G_4 의 출력은 0 이 되고 G_3 의 출력은 $Q(t)\cdot K\cdot CP$ 인데 $K=1,\ CP=1$ 이므로 $Q(t)$ 가 된다.
<i>J</i> =1, <i>K</i> =0	G_3 의 출력은 0 이 되고 G_4 의 출력은 $\overline{Q}(t)\cdot J\cdot CP$ 인데 $J=1,CP=1$ 이므로 $\overline{Q}(t)$ 가된다.
<i>J</i> =1, <i>K</i> =1	G_3 의 출력은 $Q(t)$ · K · CP 인데 K =1, CP =1이므로 $Q(t)$ 가 된다. 또한 G_4 의 출력은 $\overline{Q}(t)$ · J · CP 인데 J =1, CP =1이므로 $\overline{Q}(t)$ 가 된다. $Q(t)$ =0인 경우 SR 래치의 S =1, R =0인 경우와 같으므로 출력은 $Q(t+1)$ =1이 된다. 마찬가지로 $Q(t)$ =1 인 경우 SR 래치의 S =0, R =1인 경우와 같으므로 출력은 $Q(t+1)$ =0이 된다. 따라서 출력은 보수가 된다.

❖ JK 플립플롭의 특성표 및 특성 방정식

그림 3-72 JK 플립플롭의 특성표와 특성 방정식

□ T플립플롭

- JK 플립플롭의 J와 K 입력을 묶어서 하나의 입력신호 T로 동작시키는 플립플롭
- T 플립플롭의 입력 T=0이면, T 플립플롭은 J=0, K=0인 JK 플립플롭과 같이 동작하므로 출력은 변하지 않는다. T=1이면, J=1, K=1인 JK 플립플롭과 같이 동작하므로 출력은 보수가 된다.

그림 3-73 T 플립플롭

❖ T플립플롭의 특성표 및 특성 방정식

				Q(t)
	T otin	Q(t)	Q(t+1)	$T \longrightarrow 0$
	0	0	0	0 1
	0	1	1	1
	1	0	1	
_	1	1	0	$Q(t+1) = T\overline{Q}(t) + \overline{T}Q(t)$
	(a) 특성표			(b) 특성 방정식

그림 3-74 T 플립플롭의 특성표와 특성 방정식

□ 주종형 *JK* 플립플롭

- 레이스 현상 문제(racing problem) : JK 플립플롭은 J=K=1인 경우 클록 펄스가 길어지면 출력이 계속 반전되는 현상
- 이를 해결하는 방법은 에지 트리거를 이용하거나 주종형 JK 플립플롭(master-slave JK flip-flop)을 사용하는 것이다.

그림 3-75 주종형 *JK* 플립플롭

CD 1	외부의 J 와 K 의 입력이 $Master$ 플립플롭에 전달
<i>CP</i> =1	Slave 플립플롭은 CP=0이므로 동작하지 않음
<i>CP</i> =0	Slave 플립플롭이 동작하여 $Q=Y,\overline{Q}=\overline{Y}$
	Master 플립플롭은 CP=0이므로 동작하지 않음

□ 비동기 입력

- 대부분의 플립플롭은 <mark>클록펄스에 의해서 플립플롭의 상태를 변화시킬 수 있는 동기입력이 있고,</mark> 클록펄스와 관계없이 비동기적으로 변화시킬 수 있는 비동기 입력인 preset(\overline{PR}) 입력과 clear(\overline{CLR}) 입력이 있다.
- 비동기 입력들은 플립플롭의 초기조건을 결정하는 등 다방면으로 유용하게 사용

그림 3-76 비동기 입력을 가진 JK 플립플롭의 논리 기호와 진리표

 \overline{PR} 과 \overline{CLR} 은 O일 때 active

Thank You