UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E SISTEMAS DIGITAIS PCS3645 - LABORATÓRIO DIGITAL II

RELATÓRIO DA EXPERIÊNCIA 1

Felipe Luis Korbes - NUSP: 13682893 João Felipe de Souza Melo - NUSP: 13682913

Turma: 5

Professor: Reginaldo Arakaki

São Paulo 2024

Sumário

1. Introdução e Objetivos	3
2. Atividades da aula prática	3
2.1 Atividade 1 – Familiarização com a Descrição Verilog de um Modulador PWM	3
2.2 Atividade 2 – Projeto e Teste do Circuito de Controle de um Servomotor	5
2.3 Atividade 3 - Verificação do Funcionamento de um Servomotor	8
Conclusão1	1

1. Introdução e Objetivos

A experiência visa familiarizar-se com e projetar um circuito de controle básico para um servomotor, incluindo a prática com o servomotor e a criação de um circuito digital para controlar sua posição.

2. Atividades da aula prática

2.1 Atividade 1 – Familiarização com a Descrição Verilog de um Modulador PWM

Inicialmente foi montado o circuito de acordo com a tabela de pinagem abaixo:

Sinal	Ligação na placa FPGA	Pino na FPGA	Analog Discovery
clock	CLK_50	PIN_M9	-
reset	chave SW0	PIN_U13	-
largura[0]	chave SW1	PIN_V13	-
largura[1]	chave SW2	PIN_T13	-
pwm	GPIO_0_D1	PIN_B16	CH1+

Figura 1 - Pinagem do circuito

O circuito não funcionou como esperado, foi feita a depuração do sistema e descobriu-se que o fio que estava conectado no GND estava com mau contato e foi conectado corretamente.

Então o circuito foi compilado, como providenciado, com uma frequência de 40KHz e período de 25µs, e foi observado no waveforms, no canal 1 as larguras de pulso de 0, 1 ,10 e 20µs, assim como esperado. Tais larguras de pulso, são aquelas que serão usadas eventualmente para controlar o servo motor.

Figura 2 - Formato da onda e frequência do circuito com pulso de 0µs

Figura 3 - Formato da onda e frequência do circuito com pulso de $1\mu s$

Figura 4 - Formato da onda e frequência do circuito com pulso de 10µs

Figura 5 - Formato da onda e frequência do circuito com pulso de 20µs

2.2 Atividade 2 – Projeto e Teste do Circuito de Controle de um Servomotor

Nessa atividade foi montado um arquivo chamado controle_servo.v que instância o módulo circuito_pwm.

O cálculo da quantidade de ciclos de clock para a frequência de 50MHz está na tabela abaixo:

Período	Ciclos de clock	
20ms	1000000	
Pulso	Ciclos de clock	
1ms	50000	
1,5ms	75000	
2ms	100000	

Tabela 1 - Número de clock para cada tempo de pulso.

As imagens abaixo mostram os formatos de onda correspondentes a cada configuração possível da entrada chamada "posição". Temos o sinal com o circuito desligado, com a chave na posição 00; circuito ligado, com as chaves na posição 01 e pulso de largura de 1 ms; chaves na posição 10, com pulso de largura de 1,5 ms; e, por fim, chaves na posição 11, com pulso de largura de 2 ms.

Figura 6 - Formato da onda e frequência do circuito de 50MHz com circuito desligado (00)

Figura 7 - Formato da onda e frequência do circuito de 50MHz com circuito com chave na posição 01

Figura 8 - Formato da onda e frequência do circuito de 50MHz com circuito com chave na posição 10

Figura 9 - Formato da onda e frequência do circuito de 50MHz com circuito com chave na posição 11

2.3 Atividade 3 - Verificação do Funcionamento de um Servomotor

Foi conectado os pinos no servo motor e testado. O funcionamento foi como o esperado. Admitimos a posição padrão do braço do servo sendo 0º (mesma direção do corpo) para as angulações. Quando a entrada "posicao" é 00 o servo motor permanece imóvel, quando a entrada é 01 o servo motor se move até 45°, quando a entrada é 10 ele se move até 90°, quando é 11 ele se move até 135°.

Figura 10 - Servo motor na posição 00 (posição padrão)

Figura 11 - Servo motor na posição 01

Figura 12 - Servo motor na posição 10

Figura 13 - Servo motor na posição 11

Conclusão

A experiência proporcionou uma visão abrangente do projeto e controle de um servomotor por meio de circuitos digitais. Inicialmente, ao montar e depurar o modulador PWM descrito em Verilog, foram obtidos sinais de largura de pulso apropriados para o controle do servomotor. A correção de um problema de mau contato foi crucial para garantir a precisão do sinal PWM, o que permitiu a configuração correta da frequência e período esperados. Na etapa seguinte, o projeto do circuito de controle foi testado e validado com sucesso, demonstrando que a instância do módulo PWM e os cálculos de ciclos de clock estavam corretos. O servomotor respondeu conforme o esperado às diferentes larguras de pulso, movendo-se para as posições correspondentes a 45°, 90°, e 135°.