

Soutenance de projet

Licence professionnelle MECSE

Projet Drone

GUILLOUCHE Kenny DELAFOSSE Nathan IELKIN Vadim

22/06/2018

Sommaire

Présentation du projet

- Le contexte
- Le cahier des charges
- Le diagramme de GANTT

L'application Android

- Le Bluetooth
- La communication
- L'interface utilisateur

Les capteurs

- Le capteur de luminosité et le capteur de son
- L'accéléromètre
- Le module Bluetooth HC06

L'intégration

- Les cartes électroniques
- L'intégration sur le drone

Conclusion

Contexte du projet

Contrôle de normes dans les salles de spectacle

■ En France ~12% de la population a des problèmes d'audition

Cause: musique des concerts > 102dB

Mesures actuelles -> en un point de la salle.

Avec le drone -> cartographie complète.

Cahier des charges

- Programmer plusieurs capteurs
- Intégrer les capteurs au drone
- Créer une interface utilisateur.
- Transférer les données des capteurs à l'application.

Diagramme de GANTT

Les capteurs : Capteur luminosité et le capteur de son

Plus la tension de sortie est élevé plus la lumière est forte

Avantages:

- Capteur analogique
- Données simple à transmettre
- ☐ Limite du niveau sonore mesurable 52 dB

Inconvénients:

Limite du niveau sonore trop faible Sensible aux bruits alentours (pales)

Capteur de son 2/2

Appareil auditif

Solution utilisé

La pièce dirige le son vers le capteur

Accéléromètre

Capteur I2C:

Adresse de l'accéléromètre : 0x53

Adresse des registres des axes : 0x32 à 0x37 (2 octets par axe)

Initialisation:

Power control: 0x08

DATA Format : 0x0B

BW RATE : 0x0F => 3200Hz

Register 0x2D—POWER_CTL (Read/Write)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	Link	AUTO_SLEEP	Measure	Sleep	Wakeup	

Register 0x31—DATA_FORMAT (Read/Write)

D7	D6	D5	D4	D3	D2	D1	D0
SELF_TEST	SPI	INT_INVERT	0	FULL_RES	Justify	Rar	nge

Register 0x2C—BW_RATE (Read/Write)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	LOW_POWER	Rate			

Module Bluetooth HC06

Informations:

- Communication à 115200 bauds
- Indique l'état de la connexion
- Module uniquement serveur
- Ne pas oublier de croiser les fils

Test:

Application Android : Bluetooth

- Regarder la présence du Bluetooth sur l'appareil
- Demande à l'utilisateur d'activer le Bluetooth
- Récupérer la liste des appareils alentours
- Récupérer le choix utilisateur
- Etablir la connexion et la maintenir
- Etablir les échanges (socket) et les maintenir (1er Thread)

La communication

Protocole de communication :

NuméroDuCapteur : DataDuCapteur

arm MBED

Création de la chaine de caractère

Décodage et séparation de la trame

Gestion de la synchronisation

- Thread Affichage cadencé à 200ms
- Envoi cadencé à 210ms

L'interface utilisateur

Partie connexion

Visualisation des valeurs

Amélioration : Génération d'un rapport de mesure

Interface de l'application

Design de la carte électronique

Carte électronique du premier drone

- Carte de petit format (5cmx7cm).
- Prévu pour un capteur.
- Fixation par visses.

Intégration 1/2

Drone Bebop 2

Drone Bebop 2

Contraintes d'intégrations :

- Capteur relativement gros
- Ne pas obstruer les capteurs du drones
- Matériel pas adapté (batterie très lourdes)
- Manque de place sur le drone

Design de la carte électronique 1/2

Top Layer

PCB de la seconde carte

- Alimentation et masse routés en série.
- Trois capteurs.
- Fixation par visses.

Bottom Layer

Design de la carte électronique 2/2

Carte électronique du drone BEBOP 2

Face visible un fois fixé sur le drone

Face cachée une fois fixé sur le drone

Intégration 2/2

Drone Bebop 2

Capteur sonore

Vue du drone avec les capteurs

Alimentation (5V) Accéléromètre

Vue du bas du drone (carte ∉ lectronique)

Carte électronique

Conclusion

Tâches effectuées

- Communication entre les appareils
- Interface utilisateur
- Intégration de capteur :
 - Capteur de son
 - Capteur de luminosité
 - Accéléromètre
- Routage de carte électronique
- Intégration sur le drone

Améliorations possible

- Utilisation des capteurs plus précis
- Isolement du son des pales
- Amélioration de l'intégration au drone
 - Batterie plus légère.
 - Répartition du poids.
 - Optimisation de la carte.