C5W2-Quiz-NLP-Word-Embedding

1.	,	ould be 10000	r a vocabulary of 10000 words. Then dimensional, so as to capture the full words.	
	☐ True			
	✓ False			
2.	What is t-SNE?			
	✓ A non-linear dimensi	ionality reduc	tion technique	
	☐ An open-source sequence modeling library			
	☐ A linear transformation that allows us to solve analogies on word vectors			
	☐ A supervised learnin	g algorithm fo	or learning word embeddings	
3.	on a huge corpus of text.	ou then use th	rd embedding which has been trained nis word embedding to train an RNN for ne is happy from a short snippet of text,	
	Aa x (input text)	# y (happy?)		
	I'm feeling wonderful today!	1		
	I'm bummed my cat is ill.	0		
	Really enjoying this!	1		
	hen even if the word "ecstatic" does not appear in your small training set, your NN might reasonably be expected to recognize "I'm ecstatic" as deserving a abely=1.			
	✓ True			
	☐ False			
4.	Which of these equations	do you think sh	nould hold for a good word embedding?	

(Check all that apply)

	☐ eboy-egirl ≈ esister-ebrother		
	☐ eboy-ebrother ≈ esister-egirl		
	✓ eboy-egirl ~ ebrother-esister		
	eboy-ebrother ≈ egirl-esister		
5.	Let E be an embedding matrix, and let $o1234$ be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*o1234$ in Python?		
	☐ The correct formula is <i>ET</i> * <i>o</i> 1234.		
	☐ This doesn't handle unknown words (<unk>).</unk>		
	☐ None of the above: calling the Python snippet as described above is fine.		
	✓ It is computationally wasteful.		
6. When learning word embeddings, we create an artificial task of estimation $P(target \mid context)$. It is okay if we do poorly on this artificial prediction taken more important by-product of this task is that we learn a useful set of word embeddings.			
	✓ True		
	☐ False		
7.	In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.		
	\Box c is the one word that comes immediately before t.		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	c and t are chosen to be nearby words.		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
8.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:		

 $_{
m Q}T_{
m c}$

$$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{10000} e^{ heta_t^T e_c}}$$

Which of these statements are correct? Check all that apply.

- Of and ec are both trained with an optimization algorithm such as Adam or gradient descent.
- \square After training, we should expect θt to be very close to ec when t and c are the same word.
- ✓ 0t and ec are both 500 dimensional vectors.
- \Box θt and ec are both 10000 dimensional vectors.
- 9. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - \log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

- ✓ θi and ej should be initialized randomly at the beginning of training.
- Xij is the number of times word j appears in the context of word i.
- \Box θi and ej should be initialized to 0 at the beginning of training.
- ✓ The weighting function f(.) must satisfy f(0)=0.
- 10. You have trained word embeddings using a text dataset of *m*1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of *m*2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?
 - \square m1 << m2
 - √ m1 >> m2