MATH 412: RINGS AND MODULES

Taught by Jenia Tevelev Scribed by Ben Burns

UMass Amherst

Spring 2022

CONTENTS

1	Kings and Fields	1
2	Fermat's and Euler's Theorems	2
3	Field of fractions	3
4	Polynomial Rings	4
5	Group Work 2	5
6	Homomorphisms, ideals, quotient rings	5
7	Unique Factorization Domains	7
8	Field Extensions	8

1 Rings and Fields

Definition 1. A Ring R is a set with 2 binary operations + and · that satisfy the following axioms

- 1. (R, +) is an abelian group: associative, commutative, existence of identity and inverses
- 2. Multiplication is associative

1 --- 1 1

3. $\forall a, b, c \in \mathbb{R}$: $a \cdot (b + c) = a \cdot b + a \cdot c$ (left distributive) and $(a + b) \cdot c = a \cdot c + b \cdot c$ (right distributive)

Definition 2. A subset S of a ring R is called a subring if S is a ring with respect to the binary operations of R

Definition 3. A ring R is commutative if multiplication is also commutative

Remark 4. (R, \cdot) is almost never a ring since 0 (the general additive identity) is almost never invertible with respect to \cdot

Example 5 (Non-commutative rings). $Mat_n(\mathbb{R})$ with generic element, addition, and multiplication defined as

Example 5 (Non-commutative rings).
$$Mat_n(\mathbb{R})$$
 where $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \in Mat_n(\mathbb{R})$

$$(a_{ij}) + (b_{ij}) = a_{ij} + b_{ij}$$

$$(a_{i1} & \dots & a_{in}) \cdot \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix} = (a_{i1}b_{1j} + \dots + a_{in}b_{nj})$$

Example 6 (Rings of functions). $F = \{f|f: \mathbb{R} \to \mathbb{R}\}$ (f+g)(x) = f(x) + g(x) $(f \cdot g)(x) = f(x)g(x)$

Definition 7. R is a ring with unity 1 if $\forall a \in R : a \cdot 1 = 1 \cdot a$

Note that rings don't necessarily have unity. For example, $(2\mathbb{Z}, +, \cdot)$ has no unity, but satisfies all ring axioms

Remark 8. $(\mathbb{Z}_n, +)$ is cyclic abelian group with generator 1. 1 is also unity for modular multiplication

Definition 9 (Direct Product of Rings). For R, S, rings, we define the direct product of R and S

$$R \times S = \{(r,s) | r \in Rs \in S\}.$$

 $(r,s) + (r',s') = (r+r',s+s')$
 $(r,s)(r',s') = (rr',ss')$

Definition 10. For rings R, S a function ϕ : R \rightarrow S is a homomorphism if $\forall a, b \in R$, $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$. An isomorphism is a bijective homomorphism.

2 Fermat's and Euler's Theorems

Definition 11. Define R as a ring with unit 1. $a \in R$ is called a unit if ab = ba = 1 for some $b \in R$.

For example, take $R = Mat_n(R)$. R's unity is the identity matrix Id.

 $A \in R$ is a unit $\iff AB = BA = Id$ for some $B \in Mat_n(R)$

 \iff A is an invertible matrix

 \iff det $A \neq 0$

If $R = \mathbb{Z}_p$, p prime, $x \in \mathbb{Z}_p$ is a unit $\iff x \neq 0$

Exercise 12 (HW). $R^* = \{a \in R | a \text{ is a unit } \}$. $R^* \text{ is a group } w / \text{ respect to multiplication }$

For example, \mathbb{Z}_p^* is a group of order p-1. In every finite group G, the order of every element divides the order of the group (Lagrange Corollary)

 $a^n = 1 \text{ if } n = \text{order}(G)$

Corollary 13 (Fermat's Little Theorem). $x \in \mathbb{Z}_p^* \implies x^{p-1} = 1 \in \mathbb{Z}_p^*$.

Equivalently, $x \in \mathbb{Z}$, $gcd(x, p) = 1 \implies x^{p-1} \equiv 1 \pmod{p}$.

Equivalently, $x \in \mathbb{Z} \implies x^p \equiv x \pmod{p}$. If gcd(p,x) = 1, multiply both sides of the result of Fermat's Little Theorem by p. Otherwise, gcd(p,x) > 1, $x \nmid p$ since p prime, so $p|x \implies x \equiv 0 \pmod{p}$, therefore $x^p \equiv 0 \equiv x \pmod{p}$.

Example 14. Show that $n^{33} - n$ always divisible by 15 for all n.

We want to show that $n^{33}-n$ is divisible by both 3 and 5 individually, which will then imply it is divisible by 15.

If 3|n, then $n^{33} - n$ is trivially divisible by n. Else, gcd(n,3) = 1 since 3 is prime, so by FLT,

$$n^{2} \equiv 1 \pmod{3}$$
$$(n^{2})^{16} \equiv 1^{16} \pmod{3}$$
$$n^{32} \equiv 1 \pmod{3}$$
$$n^{33} \equiv n \pmod{3}$$
$$n^{33} - n \equiv 0 \pmod{3}$$

The proof is same for 5: if 5|n, then it is trivial, else we apply FLT to say that $n^4 \equiv 1 \pmod{5}$, raise both sides to the 8th power, multiply by n, and substract by n.

Example 15. For $R = \mathbb{Z}_n$, $x \in \mathbb{Z}_n$ is a unit $\iff gcd(x, n) = 1$.

Definition 16. The order of \mathbb{Z}_n^* is $\phi(n)$.

Here, $\phi(n)$ is the Euler totient function, or the number of integers up to n that are coprime to n. This goes with the preceeding example, since this will count exactly the number of elements $\in \mathbb{Z}_n$ such that gcd(x,n) = 1, which are therefore exactly the number of units.

For p prime, $\phi(p) = p-1$, since no $d \in \{1,2,\dots p-1\}$ may divide p, since p is prime. $\phi(p^k) = p^k - p^{k-1}$ since the elements that are not coprime to p^k are $\{p,2p,\dots,p^{k-1}p\}$. There are p^{k-1} such values, so the remaining $p^k - p^{k-1}$ values are coprime to p^k .

Theorem 17. n = rs, r, s coprime, $\mathbb{Z} \cong \mathbb{Z}_r \times \mathbb{Z}_s$ (as rings). Implies Chinese Remainder Theorem

Theorem 18. R and S are rings with unity $1 \implies (R \times S)^* \cong R^* \times S^*$

$$(a,b) \in R \times S$$
 is a unit \iff $(a,b)*(c,d) = (c,d)*(a,b) = (1,1)$ unity in $R \times S$ for some (c,d)

$$\iff$$
 $ac = ca = 1$ and $bd = db = 1$

$$\iff$$
 $a \in R^*$ and $b \in S^*$

$$\iff$$
 $(a,b) \in R^* \times S^*$

Corollary 19. r, s coprime, $n = rs \implies \mathbb{Z}_n^* \cong \mathbb{Z}_r^* \times \mathbb{Z}_s^*$

Corollary 20. r, s coprime $\phi(n) = \phi(r)\phi(s)$ (multiplicative function)

If r, s are coprime, then the multiples of r and the multiples of s cannot intersect until rs. Therefore, the numbers coprime to rs will be products of numbers $1 \le x \le r$ coprime to r and $1 \le y \le s$ coprime to s, and we can use a combinatorial argument to say that there are $\phi(r)\phi(s)$ such pairs.

$$\textbf{Corollary 21.} \ \textit{Write} \ n = p_1^{k_1} \cdots p_r^{k_r}. \ \textit{Then} \ \varphi(n) = \varphi(p_1^{k_1}) \cdots \varphi(p_r^{k_r}) = (p_1^{k_1} - p^{k_1 - 1}) \cdots (p_r^{k_r} - p_r^{k_r - 1})$$

This is simply leveraging the preceeding Corollary that $\phi(n)$ is multiplicative, and pairwise breaking up n into seperate $\phi(p_i^{k_i})$ terms.

Corollary 22 (Euler's Theorem). $x \in \mathbb{Z}_n^* \implies x^{\varphi(n)} = 1 \in Z$

Recall that $\phi(n)$ is the order of \mathbb{Z}_n^* . For A = order(x), by Corollary to Lagrange, $o|\phi(n)$, so $\exists n : An = \phi(n)$, and $n^{\phi(n)} = n^{An} = (n^A)^n = 1^n = 1 \in \mathbb{Z}_n^*$.

Theorem 23. \mathbb{Z}_p^* is a cyclic group

The proof will come later. For now, we can use this to say Z_p^* has a generator or that Z_7^* has a generator

Example 24. Determine existence of solutions for, and determine solutions of an equation (congruence) $ax = b \in \mathbb{Z}_n$.

MAGMA: Solution(a, b, n) returns sequence of solutions if they exist, and -1 if no solution.

To determine $d := \gcd(a, n)$, $ax \equiv b \pmod{n} \implies d|b$. In other words, $ax + ny = b \implies ax + ny \equiv 0 \equiv b \pmod{d}$.

If $d \nmid b$ then there are no solutions. Else, a = a'd, b = b'd, n = n'd. $ax \equiv b \pmod{n}$, so $a'd \equiv b'd \pmod{n'd}$. Divide the equivalent Diophantine equation by d to obtain $a'x \equiv b' \pmod{n'}$. gcd(a', n') = 1 (else d < gcd(a, n)) so a is invertible in $Z_{n'}$. $1 \equiv a'c'$ in $\mathbb{Z}_{r'}$

Multiply both sides of $a'x \equiv b' \pmod{n'}$ by c' to get $a'c'x \equiv x \equiv b'c' \pmod{n'}$. This allows us to conclude that x is unique modulo n', but not necessarily unique modulo n = n'd. Solutions modulo $n : x, x + n', x + 2n' \dots, x + (d-1)n'$. Therefore, the congruence will either have there are either 0 or d solutions.

3 FIELD OF FRACTIONS

 $\mathbb{Z} \subset \mathbb{Q}$. \mathbb{Z} is an integral domain, \mathbb{Q} is a field. There is a little bit more than an integral domain being imbedded in a field, since \mathbb{Z} is also imbedded in \mathbb{R} and \mathbb{C} .

Remark 25. $\forall q \in \mathbb{Q}$ can be written as $\frac{n}{m}$, $n, m \in \mathbb{Z}$

We can call this "the most economical field including \mathbb{Z} .

Theorem 26. Let R be an integral domain. Then there exists a field K, called is the field of fractions of R, such that

- 1. R contained in K
- 2. $\forall x \in K$ can be written as $x = \frac{r}{s}$, $r, s \in R$

Understand R in terms of it's field of fractions.

Might be easier to solve Diophantine equations in terms of rationals, then make sense of integral solution.

To prove, we need to

- 1. Construct K
- 2. Check that all conditions in the theorem are satisfied

Let S be the set of pairs (r, s), $r, s \in R$, $s \neq 0$

Define an equivalence relation on S: $(r, s) \sim (r', s')$ if rs' = r's

Define K as set of equivalence classes of pairs (r, s)

Check conditions of equivalence relation ~:

$$(r, s) \sim (r, s)$$
 since $rs = rs$

$$(r,s) \sim (r's') \iff (r',s') \sim (r,s)$$
 givens $rs' = r's$ and $r's = rs'$, which are obviously the same

$$(r,s) \sim (r',s')$$
 and $(r',s') \sim (r'',s'') \stackrel{?}{\Longrightarrow} (r,s) \sim (r'',s'')$

R integral domain \implies cancelation law

Define L as the set of equivalence classes of pairs (r, s)

Let's define a fraction $\frac{r}{s}$ as the equivalence class of that contains a pair (r,s)

Define binary operations on K

•
$$\frac{rs' + r's}{ss'}$$

•
$$\frac{\mathbf{r}}{\mathbf{s}} \cdot \frac{\mathbf{r'}}{\mathbf{s'}} = \frac{\mathbf{r}\mathbf{r'}}{\mathbf{s}\mathbf{s'}}$$

Need to check that these operations do not depend on which element of the equivalence classes that we select.

Need to check that K satsifies ring axioms

check field axioms

Need to imbedd R

Every element of K is written as a rs^{-1} , with $r, s \in R$

Check distributivity, find what are 0 and 1 in K, check field unit axiom, Embed into into using i(r) := r/1

4 Polynomial Rings

Definition 27. R is a ring, then $R[X] = \{\text{polynomials in } X \text{ with coefficients in } R\}$

= $\{a_0 + a_1x + a_2x^2 + \dots | a_i \in R$, finitely many nonzero $a_i\}$

Every $f \in R[X]$ determines a function $R \to R$, $r \to f(r) = a_0 + a_1 r + a_2 r^2 + \dots$

Remark 28. In algebra, two different polynomials can define the same function with coefficients in an arbitrary ring.

 x^p , $x \in \mathbb{Z}_p[X]$, p prime. different polynomials, but the functions are the same $\mathbb{Z}_p \to \mathbb{Z}_p$ beacuse $r^p = r$ because $\forall r \in \mathbb{Z}_p$ by FLT

Suppose $R \subset S$ (subring). $f(x) \in R[X]$. We can also view f as an element of $S[X] \implies$ we can evaluate $f(s), s \in S$. Therefore, we have to be careful to specify what ring we're working with for coefficients.

Definition 29. $f(x) \in R[X]$. $r \in R$ is called a zero of f(x) if f(r) = 0. Alternatively called a root.

 $x^2 + 1$ has no roots in $\mathbb{R}[X]$, but has two roots in $\mathbb{C}[X]$, $\pm i$

 $x^2 - 2 = 0$ has no solution in $\mathbb{Q}[X]$, but has two roots in $\mathbb{R}[X]$

Definition 30 (Rational Zeros Theorem). $f(x) = a_0 + a_1x + ... + a_nx^n \in \mathbb{Z}[X]$. If $f(\frac{p}{q}) = 0$, gcd(p,q) = 1, then $p|a_0$ and $q|a_n$.

Lemma 31. R[X] *is a ring*

$$\begin{array}{l} (a_0 + a_1 x + \ldots) + (b_+ b_1 x + \ldots) = (a_0 + b_0) + (a_1 + b_1) x + \ldots \\ (R,+) \text{ is an abelian group } \implies (R[X],+) \text{ is an abelian group} \\ (a_0 + a_1 x + \ldots) (b_+ b_1 x + \ldots) = (a_0 + b_0) = (\sum\limits_{i \geqslant 0} a_i x^i) (\sum\limits_{j \geqslant 0} b_j x^j) = \sum\limits_{i,j} = a_i b_j x^{ij} \end{array}$$

Remark 32. Fix $r \in R$. $R[X] \to R$ evalutation map, $f(x) \to f(r)$, is not always a homomorphism unless the ring is commutative

 $f(x) \to f(r)$, $g(x) \to g(r)$, $f+g \to f(r)+g(r)$ okay since + abelian, but $fg \to f(r)g(r)$ may not work if we don't know commutativity holds. $(a_0+a_1r+\ldots)(b_0+b_1x+\ldots) \iff (a_0+a_1x+\ldots)(b_0+b_1r+\ldots)$ with r placed in for X after multiplying polynomials, $a_1rb_1r \neq a_1b_1r^2$ unless R is a commutative ring.

Definition 33. A factorization of $f(x) \in R[X]$ is $f(x) = p_1(x) \cdots p_k(x)$, $p_i \in R[X]$. Suppose R is commutative $\Rightarrow p_i(r) = 0$ for some $i \Rightarrow f(r) = 0$ (b.c $f(r) = p_1(r) \cdots p_k(r)$).

If R is an integral domain \implies if $f(r) = 0 \implies p_i(r) = 0$ for some i

Remark 34. Fields are the easiest rings. The next "easiest" ring is F[X], where F is a field

Definition 35 (Long Division of Polynomials). F field, $f,g \in R[X], g \neq 0 \implies$ we can write f = qg + r, where deg(r) < deg(g) or r = 0.

 $\mathbb{Z}_5[X]$

5 Group Work 2

Remark 36. If $\phi_p(x)$ has a root in \mathbb{Z}_q , then $\phi_p(x)$ factors as a product of linear factors.

$$x^p-1=(x-1)\varphi_p(x) \implies \varphi_p(x) \text{ has root 1 or has root } \alpha \in \mathbb{Z}_q, \alpha \neq 1.$$

If
$$\phi_{\mathfrak{p}}(1) = 1 + 1 + \ldots + 1 = \mathfrak{p} = 0 \pmod{\mathfrak{q}}$$
, then $\mathfrak{p} = \mathfrak{q}$. $\mathfrak{x}^{\mathfrak{p}} - 1 \in \mathbb{Z}_{\mathfrak{p}}[x] = (x - 1)^{\mathfrak{p}} \implies \phi_{\mathfrak{p}}(x) = (x - 1)^{\mathfrak{p} - 1}$

Start with $f(x) + x^d + ... \in \mathbb{Z}[x]$. Assume f(x) is irreducible \mathbb{Q} .

Theorem (Chebotarev density Theorem). Every type of the factorization is possible over some \mathbb{Z}_p . This happens infinitely often.

$$\lim_{N\to\infty} \frac{\text{\# of all primes } \leqslant N \text{ with a specific factorization type}}{\text{\# all primes } \leqslant N}$$

$$\label{eq:continuous_series} \begin{split} & \text{Irreducible polynomial } x^d + \ldots \in \mathbb{Q}[x] \to \text{Galois group} \subset S_d. \text{ Density of primes that give a complete factorization} \\ & \text{of } f(x) \text{ into linear factors} = \frac{1}{|\text{Galois group}|}. \end{split}$$

$$G \subset S_5 |G| \text{ divides } |S_5| = 120. \ \frac{1}{|G|} \sim \frac{2}{95} \sim \frac{1}{47}.$$

$$x^5 + 2z + 2 \to \frac{9}{1040} \sim \frac{1}{115} \sim \frac{1}{120} \implies G = S_5$$

6 Homomorphisms, ideals, quotient rings

Definition 37. $\phi : R \to S$ is a homomorphism of rings iff

- ϕ is a homomorphism of abelian groups with respect to addition: $\phi(\alpha + b) + \phi(\alpha) + \phi(b)$
- $\phi(ab) = \phi(a)\phi(b)$

Definition 38. All the set of all elements $r \in R$ such that $\phi(r) = 0$ is called the **kernel**, which will be an abelian subgroup of the ring R.

Take $r \in R$, $s \in Ker\phi$. Then $\phi(rs) = \phi(r)\phi(s) = \phi(r)0 = 0 = 0$, $\phi(r) = \phi(s)\phi(r) = \phi(sr)$, so rs, $sr \in Ker\phi$.

Definition 39. A subset $I \subset R$ is called an **ideal** if

- I is an abelian subgroup with respect to addition
- If $r \in R$ and $s \in R \implies rs, sr \in I$.

Corollary 40. For any homomorphism $\phi : R \to S$, Ker ϕ is an ideal

Example. The abelian subgroups of \mathbb{Z} are $n\mathbb{Z}$. If you take $r \in \mathbb{Z}$ and $s \in n\mathbb{Z}$, then s = nk, and $rs = rnk = n(rk) \in n\mathbb{Z}$.

Corollary 41. All ideals in \mathbb{Z} are of the form $I = n\mathbb{Z}$.

 $n\mathbb{Z}$ is the kernel of the homomorphisms $\phi: \mathbb{Z} \to \mathbb{Z}_n$ where ϕ maps $\mathfrak{m} \to \mathfrak{m} \pmod{\mathfrak{n}}$

Example. $R_1 \times \{0\} = R_1 \times R_2$ is an ideal as well. $(s,0) \cdot (r_1,r_2) = (sr_1,0)$, and $(r_1,r_2) \cdot (s,0) = (r_1s,0)$. This is the kernel of $\phi : R_1 \times R_2 \to R_2$, where ϕ maps $(r_1,r_2) \to r_2$.

Let R be any ring. Then R always has at least two ideals: R (improper ideal) and {0} (trivial ideal).

Remark 42. Every ideal of a field F is either F or {0}.

Let $I \subset F$ be an ideal. If $I = \{0\}$, we're done. Suppose $I \neq \{0\}$. Then exists $x \in I$. So $x^{-1} \in F \implies x^{-1}x = 1 \in I$. Then take any $y \in F$, $y \cdot 1 = y \in I$. Therefore F = I.

Corollary 43. $I \subset R$ is an ideal in a ring with unity. $u \in I$ is a unit $\implies I = R$.

Example. R = R[x], F is a field. $I = \{f \in R : f(1) = 0\}$. This is an ideal, because $f \in F$ and $g \in I$, then $f(1)g(1) = f(1)0 = 0 \in I$. Alternatively, $\phi : F[X] \to F$ where $\phi(f(x)) \to f(1)$.

 $f(x) \in I \iff f(1) = 0 \iff f(x) = (x-1)g(x) \implies I = \{r(x): f(x) = (x-1)g(x)\} = (x-1)F[x].$ This looks a lot like $n\mathbb{Z}$.

Definition 44. R is a ring. Pick $r \in R$. Then the ideal $I = rR := \{rs : s \in R\}$ is called a **principle ideal**.

I is an abelian group since $rs + rs' = r(s + s') \in I$.

Closure since $rsr' = r'rs = r(r's) \in I$

Definition 45. An integral domain is called a principle ideal domain (PID) if every ideal is principle.

Very good example here being \mathbb{Z} , where all ideals are $I = n\mathbb{Z}$.

Take F to be a field. Two ideals: $\{0\}$ (0·F) and F (1·F), therefore both are principle.

Theorem 46. R = F[x] is a PID for every field F.

Take an ideal $I \subset R$. If $I = \{0\}$, then trivial.

Suppose $I \neq \{0\}$. What is the possible generator of I? Choose polynomial $f(x) \in I$ of the smallest possible degree.

Claim: Every $g(x) \in I$ is a multiple of $f(x) \implies I = f(x)R[x]$ principle ideal.

g(x) = f(x)q(x) + r(x). Either r(x) = 0, and we are done, or deg(r) < deg(f). Then r(x) can be written as $g(x) - f(x)q(x) \implies r(x)$ is in the ideal, but this contradicts r(x) having smaller degree than f(x), which is a contradiction. Therefore, $deg(r) = 0 \implies g(x) = f(x)q(x)$.

Remark 47. ϕ is one to one \iff Ker $\phi = \{0\}$

Because this is true for homomorphisms of abelian groups.

Definition 48. For ring R and ideal $I \subset R$ such that $I \neq R$, I is called maximal if every ideal J such that $I \subset J \subset R$ is either I or R.

Example. $\{0\} \subset F$ field, $p\mathbb{Z} \subset \mathbb{Z}$ where p prime.

F[x], for F field, is a principle ideal domain. Take $f(x)F[x] \subset F[x]$, where f(x) is an irreducible polynomial $\implies f(x)F[x]$ is a maximal ideal

Example 49. Compute $\mathbb{Z}_2[x]/(x^2+x+1)F[x]$.

What are the cosets? Take $g(x) \in \mathbb{Z}_2[x]$ and take its coset $g(x) + x^2 + x + 1$.

Claim: there are only four cosets. The ideal itself I, 1 + I, x + I, (1 + x) + I

Take any coset g(x) + I. Perform long division $g(x) = (x^2 + x + 1)q(x) + r(x)$, where deg(r) < 2. All possible r(x) are 0, 1, x, x + 1.

R an integral domain.

Definition 50. $p \in R$ irreducible if $p = ab \implies a$ or b is a unit

Definition 51. $p \in R$ prime if $(p) \subset R$ is a prime ideal.

 $p|ab \implies p|a \text{ or } p|b \ \forall a,b \in R$

Remark 52. If p is prime then p is irreducible

7 Unique Factorization Domains

Definition 53. An integral domain R is called a unique factorization domain (UFD) if

- 1) Every element can be written as $r = up_1p_2 \cdots p_r$ where u is a unit and p_i are irreducible elements
- 2) Suppose $up_1 \cdots p_r = vq_1 \cdots q_s$, with u,v unit, everything else irreducible, then r=s and after reordering $q_1 \dots q_s$, $p_i = q_i \cdot u$) i for some unit u_i

Remark 54. If R is a UFD, then every irreducible element is prime

 $r \in R$ irreducible. Suppose r|ab, then ab = pc, $c \in R$. Apply factorization to a, b, c: $(up_1 ... p_r)(vq_1 ... q_s) = p(wl_1 ... l_k)$, u, v, w are units

Uniqueness of factorization $\implies p_i = \alpha p$ or $q_i = \alpha p$ for for some i, unit α .

In the first case, then $a = up_1 \dots p_{i-1}(\alpha p)p_{i+1} \dots p_r \implies p|a$

Remark 55. Suppose R is an an integral domain where factorization exists. ⇒ one can conclude that, if every irreducible unit is prime, then R is a UFD

Suppose $\mathfrak{up}_1\cdots\mathfrak{p}_r=\nu\mathfrak{q}_1\cdots\mathfrak{q}_s$, with \mathfrak{u},ν unit. Then $\mathfrak{p}_1|\nu\mathfrak{q}_1\ldots\mathfrak{q}_s$. $\mathfrak{p}_1\nmid\mathfrak{u} \Longrightarrow \mathfrak{p}_1|\mathfrak{q}_i$ for some i. (Because \mathfrak{p}_1 is irreducible, and here all irreducibles are prime). By rearranging, $\mathfrak{p}_1|\mathfrak{q}_1$, so $\mathfrak{p}_1\beta=\mathfrak{q}_1$. \mathfrak{q}_1 irreducible implies β must be a unit. Cancel \mathfrak{p}_1 using integral domain cancelation law: $\mathfrak{up}_2\ldots\mathfrak{p}_r=(\nu\beta)\mathfrak{q}_2\ldots\mathfrak{q}_s$. By induction, we are done.

Example. K[X] is a UFD if K is a field.

- (1) $f(x) \in K[x]$ is irreducible. We already checked that f(x)K[x] is maximal. But every maximal ideal is prime $\implies f(x)$ is a prime element.
- (2) Show existence of factorization: take polynomial $f(x) \in K[x]$. Argue by induction on deg(f(x)). If f(x) is unit $\iff deg(f(x)) = 0 \implies$ factorization exists. If f(x) is irreducible \implies factorization exists. Else, f(x) = g(x)h(x) for 0 < deg(g(x)), deg(h(x)) < deg(f(x)). Both admit factorizations by induction, so combine then to get factorization.

Suppose $r = r_1$ does not allow factorization $\implies r_1$ is not a unit, not irreducible $\implies r = ab$, where a, b not units. One of them, say $a = r_2$ does not allow factorization. $r_1 = r_2b_2$, b_2 is not a unit. Can continue inducting, and get a sequence $r_1 = r_{1+1}b_{1+1}$ where all r_1, r_2, \ldots do not allow factorization and b_1, b_2, \ldots are not units.

Take (r_1) and (r_2) . $(r_1) \subset (r_2) \subset (r_3) \subset \ldots$ Can it be that $(r_1) = (r_{i+1})$? No. Then $r_i = r_{i+1}b_{i+1}$ and $r_{i+1} = r_ic_i \implies r_i = r_ib_{i+1}c_i \implies 1 = b_{i+1}c_i \implies b_{i+1}$ is a unit, contradiction.

 $(r_1) \subsetneq (r_2) \subsetneq (r_3) \subsetneq \dots$

Definition 56. A commutative ring R is called Noetherian if there are no infinite ascending chains of ideals $I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \dots$

Corollary 57. If R is Noetherian integral domain where irreducible elements are prime, then it's a UFD

8 FIELD EXTENSIONS

 $K \subset F$, towers of fields: $K_1 \subset K_2 \subset K_3$

K field, $f(x) \in K[x]$ irreducible polynomial. Take I = f(x) maximal ideal. F = K[X]/I is a field.

Theorem 58. $K \to K[x] \to K[x]/I = F \implies K \to F$ by composition. f(x) has a root $\alpha \in F$

Corollary 59. If you take any polynomial in $f(x) \in K[x]$, factors into linear factors in some field extension of $K \subset F$

Proof: $K \xrightarrow{\varphi} F$. Ker φ is an ideal of K, K is a field, either Ker $\varphi = \{0\}$ (and φ is injective) or Ker $\varphi = K$. But that can't happen because $1 \in K \to 1 \in K[x] \to 1+I$, a unity in F, which is certainly not zero, so $\varphi(1) \neq 0$, and I must be $\{0\} \Longrightarrow K \to F$

Claim: $x + I = \alpha \in F$ is going to be a root of f(x) $f(x + I) = f(x) + I = I = 0 \in F$. If confused, try plugging in x + I and doing it out.

 $x^2 + 1 \in \mathbb{R}[x]$, $I = (x^2 + 1)$. $\mathbb{R}[x]I = \{p(x) + I\} = \{p(x) = I : deg(p < 2)\}$. Indeed $p(x) = (x^2 + 1)q(x) + r(x) \implies p(x) + I = r(x) + I$ because $p(x) - r(x) = q(x)(x^2 + 1) \in I$. Morever, every coset can be written uniquely as $\{a + bx + I\}$ where $a, b \in \mathbb{R}$.

Definition 60. Let $K \subset K$ be a field extension. Choose some $\alpha \in F$. α is **algebraic** over K if there exists $f(x) \in K[x]$ such that $f(\alpha) = 0$.

Definition 61. Any element that is not algebraic is **transcendental** over K

Example. Consider $\mathbb{Q} \subset \mathbb{C}$. Algebraic $\alpha \in \mathbb{C}$ over \mathbb{Q} are called algebraic (transcendental) numbers.

Theorem 62. e, π are transcendental over \mathbb{Q}

Very hard to prove. Much easier to prove numbers are algebraic

Remark 63. If you have a trivial field extension $F \subset F$, then all elements will be algebraic

In a real analysis context, algebraic and transcendental are with rational coefficients, so π and e are transcendental. For the extension $\mathbb{R} \subset \mathbb{R}$ and $\mathbb{R} \subset \mathbb{C}$ both are now algebraic, since $x - \pi = 0$ has π as a solution, and x - e = 0 has e as a solution.

Lemma 64. Suppose $K \subset F$ field extension. Take $\alpha \in F$ algebraic \implies there exists a unique minimal (aka irreducible) polynomial $irr(\alpha, K)$ which is

- 1) irreducible
- 2) has α as a root
- 3) and monic