8.4 多GPU计算

注:相对于本章的前面几节,我们实际中更可能遇到本节所讨论的情况:多GPU计算。原书将MXNet 的多GPU计算分成了8.4和8.5两节,但我们将关于PyTorch的多GPU计算统一放在本节讨论。 需要注意的是,这里我们谈论的是单主机多GPU计算而不是分布式计算。如果对分布式计算感兴趣可以参考 PyTorch官方文档。

本节中我们将展示如何使用多块GPU计算,例如,使用多块GPU训练同一个模型。正如所期望的那样,运行本节中的程序需要至少2块GPU。事实上,一台机器上安装多块GPU很常见,这是因为主板上通常会有多个PCIe插槽。如果正确安装了NVIDIA驱动,我们可以通过在命令行输入 nvidia-smi 命令来查看当前计算机上的全部GPU(或者在jupyter notebook中运行!nvidia-smi)。

nvidia-smi

输出:

Wed May 15 23:12:38 2019							
NVIDIA-SMI 390.48 Driver Version: 390.48							
	+						
GPU Name Persistence-M Bus-Id Disp.A Volatile Un							
Fan Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Util (Compute M.						
++++	======						
0 TITAN X (Pascal) Off 00000000:02:00.0 Off	N/A						
46% 76C P2 87W / 250W 10995MiB / 12196MiB 0%	·						
+	+						
1 TITAN X (Pascal) Off 00000000:04:00.0 Off	N/A						
53% 84C P2 143W / 250W 11671MiB / 12196MiB 4%	Default						
+	+						
2 TITAN X (Pascal) Off 00000000:83:00.0 Off	N/A						
62% 87C P2 190W / 250W 12096MiB / 12196MiB 100%	Default						
+	+						
3 TITAN X (Pascal) Off 00000000:84:00.0 Off	N/A						
51% 83C P2 255W / 250W 8144MiB / 12196MiB 58%							
+	+						
+							
Processes: GPU Memory							

	GPU	PID	Type	Process name	Usage	
=					=======	=
	0	44683	С	python	3289MiB	
	0	155760	С	python	4345MiB	
	0	158310	С	python	2297MiB	
	0	172338	С	/home/yzs/anaconda3/bin/python	1031MiB	1
	1	139985	С	python	11653MiB	1
	2	38630	С	python	5547MiB	1
	2	43127	С	python	5791MiB	1
	2	156710	С	python3	725MiB	1
	3	14444	С	python3	1891MiB	1
	3	43407	С	python	5841MiB	1
	3	88478	С	/home/tangss/.conda/envs/py36/bin/python	379MiB	
+-						-+

从上面的输出可以看到一共有四块TITAN X GPU,每一块总共有约12个G的显存,此时每块的显存都占得差不多了……此外还可以看到GPU利用率、运行的所有程序等信息。

Pytorch在0.4.0及以后的版本中已经提供了多GPU训练的方式,本文用一个简单的例子讲解下使用Pytorch 多GPU训练的方式以及一些注意的地方。

8.4.1 多GPU计算

先定义一个模型:

```
import torch
net = torch.nn.Linear(10, 1).cuda()
net
```

输出:

```
Linear(in features=10, out features=1, bias=True)
```

要想使用PyTorch进行多GPU计算,最简单的方法是直接用 torch.nn.DataParallel 将模型wrap一下即可:

```
net = torch.nn.DataParallel(net)
net
```

输出:

```
DataParallel(
   (module): Linear(in_features=10, out_features=1, bias=True)
```

这时,默认所有存在的GPU都会被使用。

如果我们机子中有很多GPU(例如上面显示我们有4张显卡,但是只有第0、3块还剩下一点点显存),但我们只想使用0、3号显卡,那么我们可以用参数 device_ids 指定即可: torch.nn.DataParallel(net, device_ids=[0, 3])。

8.4.2 多GPU模型的保存与加载

我们现在来尝试一下按照4.5节(读取和存储)推荐的方式进行一下模型的保存与加载。保存模型:

```
torch.save(net.state dict(), "./8.4 model.pt")
```

加载模型前我们一般要先进行一下模型定义,此时的 new net 并没有使用多GPU:

```
new_net = torch.nn.Linear(10, 1)
new_net.load_state_dict(torch.load("./8.4_model.pt"))
```

然后我们发现报错了:

```
RuntimeError: Error(s) in loading state_dict for Linear:
    Missing key(s) in state_dict: "weight", "bias".
    Unexpected key(s) in state dict: "module.weight", "module.bias".
```

事实上 DataParallel 也是一个 nn.Module , 只是这个类其中有一个module就是传入的实际模型。因此 当我们调用 DataParallel 后,模型结构变了 (在外面加了一层而已,从8.4.1节两个输出可以对比看出来)。所以直接加载肯定会报错的,因为模型结构对不上。

所以正确的方法是保存的时候只保存 net.module:

```
torch.save(net.module.state_dict(), "./8.4_model.pt")
new net.load state dict(torch.load("./8.4 model.pt")) # 加载成功
```

或者先将 new net 用 DataParallel 包括以下再用上面报错的方法进行模型加载:

Copy to clipboard

```
torch.save(net.state_dict(), "./8.4_model.pt")
new_net = torch.nn.Linear(10, 1)
new_net = torch.nn.DataParallel(new_net)
new net.load state dict(torch.load("./8.4 model.pt")) # 加载成功
```

注意这两种方法的区别,推荐用第一种方法,因为可以按照普通的加载方法进行正确加载。