University of Manitoba Department of Mathematics

Graduate Comprehensive Exam in Algebra

Specialized topics: Combinatorics and Linear Algebra

29 April 2022 10:00AM – 4:00PM CDT

Examiners: J. Arino, K. Gunderson (coordinator), T. Kucera

Instructions

- You have 6 hours to write the exam. At the conclusion of the exam, you will be given an additional 15 minutes in order to scan your exam solutions; no writing of solutions is allowed in this time.
- This is a *closed book* exam. No notes, textbooks, or any other resources are permitted.
- This exam has 3 parts:
 - Part A: Solve all 5 questions. This part will consist of 1 short answer question worth 24 marks and 4 long answer questions worth 14 marks each. There are 80 marks available in this part.
 - Part B: Solve 5 of the 7 available questions. Each question is worth 12 marks.
 There are 60 marks available in this part.
 - Part C: Solve 5 of the 7 available questions. Each question is worth 12 marks.
 There are 60 marks available in this part.

The total number of marks available is 200; to pass the exam, a minimum score of 75% (= 150/200) is required.

- Be sure to provide adequate justification for your answers.
- Write your solutions on clean letter paper. If your solution to a problem takes more than one page, please clearly indicate the problem, page number, and total number of pages, on each page of the solution.
- At the conclusion of the exam, submit your solutions via: https://forms.office.com/r/1FWTAm5tN4

In the submission form, indicate precisely which problems in Parts B and C are being submitted for grading. If this indication is absent for either part, then the first 5 of Part B and/or the first 5 of Part C submitted will be graded.

Notation and conventions:

- Unless otherwise indicated, vector spaces may be finite or infinite dimensional.
- Unless otherwise stated, groups may be finite or infinite, and are not assumed to be abelian.
- Unless otherwise stated, "ring" is assumed to mean a ring with unit.
- Unless otherwise stated, "ring" includes both commutative and noncommutative rings.
- Fields may be finite or infinite, of any characteristic.
- Permutations are assumed to act on their arguments from the left, as in usual functional notation, and cycles are displayed in left-to-right order, so if $\sigma = (1, 2, 3)$ then we write $\sigma(1) = 2$, $\sigma(2) = 3$, and $\sigma(3) = 1$, and $\sigma\tau$ is defined by $(\sigma\tau)(x) = \sigma(\tau(x))$.
- S_n denotes the group of permutations of the set $\{1, \ldots, n\}$.
- Unless otherwise noted, all graphs are simple.
- In Part C, results of one question (even those not attempted) can be used in the solution of another question.

Part A

This section is worth 40% of the total. Solve all 5 questions. This part will consist of 1 short answer question (with multiple sub-parts) worth 24 marks and 4 long answer questions worth 14 marks each. There are 80 marks available in this part.

- [24] A1. State definitions, theorems, or an example. No explanations are required but answers must be stated with enough detail to make it clear that you understand the content.
 - (a) List all abelian groups of order 72, up to isomorphism. (You may use any form of describing these groups that you choose).
 - (b) Define *normal subgroup* of a group, and state an example of a subgroup which is *not* normal.
 - (c) One of the classes "Principal Ideal Domains", "Unique Factorization Domains" properly contains the other. State a simple example that separates them.
 - (d) Define "prime ideal" and "maximal ideal" in a commutative ring, and state an example showing that the two concepts are different.
 - (e) State any example of an algebraic field extension $k \supseteq \mathbb{Q}$ of degree 2; and any example of a transcendental field extension $K \subseteq \mathbb{Q}$ of transcendence degree 2.
 - (f) What are the possible cardinalities (sizes) of finite fields? Up to isomorphism, how many are there of each finite size?
 - (g) Let $T:V\to W$ be linear transformation of vector spaces over a field k, with V of finite dimension n. Define the rank and nullity of T and state the Dimension Theorem.
 - (h) Define "inner product" on a complex vector space V.
- [14] A2. Let G be a group and $H \leq G$ be a subgroup. Define 'left coset of H in G'.

Prove that the cosets of H in G partition G.

Show that if xH and yH are left cosets of H, then the map $\varphi:xh\mapsto yh$ is well-defined and a bijection $xH\to yH$.

State and prove Lagrange's Theorem.

State an example of H < G and a left coset which is not a right coset.

But nonetheless show that " $\psi: aH \mapsto Ha^{-1}$ " is a well-defined bijection between the set of left cosets of H and the set of right cosets of H.

- [14] A3. Let $q(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial with integer coefficients.
 - (a) State Eisentein's Irreducibility Criterion for q(x).
 - (b) Prove that q(x) is irreducible over the rationals iff $\bar{q}(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$ is irreducible over the rationals.
 - (c) Prove that if $0 \neq a \in \mathbb{Q}$, then for any $b \in \mathbb{Q}$, q(x) is irreducible over the rationals iff q(ax + b) is irreducible over the rationals.

- [14] A4. Show first that if M is a maximal ideal in a commutative integral domain D, then D/M is a field.
 - Let \mathbb{F} be a field, p(x) a non-constant irreducible polynomial over \mathbb{F} . Explain how to construct an extension field $\mathbb{F}' > \mathbb{F}$ (with proofs) in which p(x) has a root.
- [14] A5. Describe the Jordan normal form (also called Jordan canonical form) of a square complex matrix M. To what extent is this unique? Under what circumstances does a real square matrix have a real Jordan normal form?

Part B

This section is worth 30% of the total. Answer any 5 of the 7 questions available. Each question is worth 12 marks. Clearly indicate which problems are to be graded. There are 60 marks available in this part.

[12] B1. Recall that for positive integers n, k, the Stirling number of the second kind, S(n, k), is the number of partitions of a set of cardinality n into k non-empty (unordered) parts. Prove that

$$S(n,k) = \frac{1}{k!} \sum_{\ell=0}^{k} (-1)^{\ell} {k \choose \ell} (k-\ell)^{n}.$$

- [12] B2. (a) Define a chain and antichain in a poset.
 - (b) In the poset $(\mathcal{P}(\{1,2,\ldots,n\}),\subseteq)$, how many different maximal chains are there?
 - (c) Prove Sperner's lemma: If the sets $A_1, A_2, \ldots, A_m \subseteq \{1, 2, \ldots, n\}$ form an antichain in the poset $(\mathcal{P}(\{1, 2, \ldots, n\}), \subseteq)$, then $m \leq \binom{n}{\lfloor n/2 \rfloor}$.
- [12] B3. For every $n \ge 0$, let a_n be the number of integer solutions to $s_1 + s_2 + s_3 = n$ with $s_1, s_2 \ge 1$ and $s_3 \ge 0$.
 - (a) Give the generating function for the sequence $(a_n)_{n\geq 0}$ and express it as a rational function.
 - (b) Use the generating function to give a closed-form expression for a_n .
 - (c) Give a direct counting argument for the closed-form expression for a_n found in the previous part.
- [12] B4. Let G = (V, E) be a graph of order n. Let \overline{G} be the complement of G: the graph with vertex set V and edge set $\{\{u, v\} \mid u, v \in V, u \neq v\} \setminus E$. Prove that:
 - (a) $\chi(G) + \chi(\overline{G}) \le n + 1$, and
 - (b) $n \le \chi(G)\chi(\overline{G})$
- [12] B5. For any graph G, let $\alpha(G)$ denote the independence number, $\alpha'(G)$ denote the matching number (or edge independence number), $\beta(G)$ denote the vertex covering number (minimum number of vertices to cover all edges), and $\beta'(G)$ denote the edge covering number (minimum number of edges to cover all vertices).

Prove Gallai's theorem: If G = (V, E) is a graph with n vertices, none of which are isolated, then:

- (a) $\alpha(G) + \beta(G) = n$
- (b) $\alpha'(G) + \beta'(G) = n$.

- [12] B6. (a) Define orthogonal Latin squares.
 - (b) Prove that if there is a family of r mutually orthogonal $n \times n$ Latin squares, then $r \leq n-1$.
 - (c) Let p be prime. Give a construction for a family of p-1 mutually orthogonal $p \times p$ Latin squares.
- [12] B7. Recall that a (b, v, r, k, λ) -design is one in which there are v varieties (or points), b blocks, every block has exactly k varieties, every variety appears in exactly r blocks, and every pair of varieties appears simultaneously in exactly λ blocks.
 - (a) Let $\mathcal{B} = (V, B)$ be a (b, v, r, k, λ) -design. Prove that bk = vr and $r(k-1) = \lambda(v-1)$.
 - (b) Prove Fisher's inequality: Let $\mathcal{B} = (V, B)$ be a (b, v, r, k, λ) -design. Then, $b \geq v$.

Part C

This section is worth 30% of the total. Answer any 5 of the 7 questions available. Each question is worth 12 marks. Clearly indicate which problems are to be graded. There are 60 marks available in this part.

- [12] C1. Recall that $A, B \in \mathcal{M}_n$ are similar if there is $S \in \mathcal{M}_n$ nonsingular such that $B = S^{-1}AS$. Suppose $A, B \in \mathcal{M}_n$ are similar. Show:
 - (a) A and B have the same characteristic polynomial.
 - (b) A and B have the same eigenvalues.
- [12] C2. $A \in \mathcal{M}_n$ is a square root of $B \in \mathcal{M}_n$ if $A^2 = B$. Show that every diagonalisable matrix $B \in \mathcal{M}_n$ has a square root.
- [12] C3. Let $\|\cdot\|$ be a matrix norm on \mathcal{M}_n and $S \in \mathcal{M}_n$ be nonsingular. Show that the function

$$|||A|||_S = |||SAS^{-1}|||, \quad \forall A \in \mathcal{M}_n$$

is a matrix norm and that, furthermore, if $\|\cdot\|$ is induced by the norm $\|\cdot\|$ on \mathbb{C}^n , then the matrix norm $\|\cdot\|_S$ is induced by the norm $\|\cdot\|_S$ on \mathbb{C}^n defined, for $x \in \mathbb{C}^n$, by $\|x\|_S = \|Sx\|$.

[12] C4. Let $\|\cdot\|$ be a matrix norm on \mathcal{M}_n , $A \in \mathcal{M}_n$ and λ an eigenvalue of A. Denoting $\rho(A)$ the spectral radius of A, show that

$$|\lambda| \le \rho(A) \le ||A|| \tag{1}$$

and, if A nonsingular,

$$\rho(A) \ge |\lambda| \ge \|A^{-1}\|^{-1}. \tag{2}$$

(It may be useful to consider the matrix $X = \mathbf{x}\mathbf{e}^T$, where $\mathbf{x} \neq \mathbf{0}$ is an eigenvector associated to λ and $\mathbf{e} = (1, \dots, 1)^T$.)

[12] C5. We admit the following result: $A \in \mathcal{M}_n$ is nonsingular if there is a matrix norm $\|\cdot\|$ such that $\|\mathbb{I} - A\| < 1$.

Show that if $A \in \mathcal{M}_n$ is such that $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for all i = 1, ..., n, then A is nonsingular. (You may otherwise use the Gershgorin Disk Theorem if you wish.)

- [12] C6. Let $A \in \mathcal{M}_n$ be nonnegative. Show that $\rho(A) \leq ||A||_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^n a_{ij}$ and $\rho(A) \leq ||A||_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n a_{ij}$ and that, if all row sums of A are equal, then $\rho(A) = ||A||_{\infty}$ and if all column sums of A are equal, then $\rho(A) = ||A||_1$.
- [12] C7. Let $A \in \mathcal{M}_n$ be nonnegative. Show that if there is a positive vector \mathbf{x} and a nonnegative real number λ such that either $A\mathbf{x} = \lambda \mathbf{x}$ or $\mathbf{x}^T A = \lambda \mathbf{x}^T$, then $\lambda = \rho(A)$.