

Aurora Inverter Series

- Communication Protocol -

Modifications

Rel	4	2:	•
	т.	-	,

New parameters (M/Q factors for calibration) added for String-Comb

Rel 4.1:

New product types added to command "Version reading"

Rel 4.0:

New product types added to command "Version reading"

Rel 3.9:

- Command "Read parameters" for String-Comb inserted
- Broadcast command "Read field-number" for String-Comb inserted
- New setting parameters ("tolerances" and "enabling flags" for string currents comparison) added for String-Comb

Rel 3.8:

- Command "Statistics variable read/write" for 50 Kw Module inserted
- New measure values added for String-Comb
- New setting parameters ("weights" for string current comparison) added for String-Comb

Rel 3.7:

- 50 Kw Module Protocol modified
- Command "Last four alarms" implemented also on 50 Kw Module

Rel 3.6:

- String-Comb change RS485 baud-rate command inserted
 - String-Comb setting parameter command updated

Rel 3.5:

- String-Comb monitor command inserted
- 50Kw Module Protocol Inserted

Rel 3.4:

3G74 – state codes modified

Rel 3.3:

- 3G74 (Communication Interface for three-phase systems) Commands inserted.
- Command 58 modified

Rel 3.2:

- Var. 125 corrected

Rel 3.1:

- Command 58 coding completed.
- Command 202: read result inseterted

Rel. 3.0: Junction Box Commands inserted

Communication Protocol between Host and Supervisor Microprocessor

The communication between Host and processor works via a Serial Interface RS485 or RS232 (see *User Manuals for details*).

Configuration parameters in both cases are:

- 19200 baud (default value)
- 1 stop bit
- no parity

The communication protocol uses fixed length transmission messages (8Bytes + 2Bytes for Checksum) structured as follows:

0	1	2	3	4	5	6	7	8	9
Address	Command	B_2	B_3	B_4	B_5	B_6	\mathbf{B}_7	CRC_L	CRC_H

The structure of the answer has also fixed length (6 Bytes + 2 Bytes for Checksum):

0	1	2	3	4	5	6	7
Transmission State	Global State	B_2	B_3	B_4	B_5	CRC_L	CRC_H

Transmission State:

Coded as follows:

0 = Everything is OK.

51 = Command is not implemented

52 = Variable does not exist

53 = Variable value is out of range

54 = EEprom not accessible

55 = Not Toggled Service Mode

56 = Can not send the command to internal micro

57 = Command not Executed

58 = The variable is not available, retry

Global State:

It shows the state of the addressed device, the details are specified in the description of the commands.

Description of commands:

50) State request: Ask the state of the system modules:

0	1	2	3	4	5	6	7	8	9
Address	50	-	-	-	-	-	-	CRC_L	CRC_H

Answer:

			DC/DC	DC/DC			
Tr. State	Global State	Inverter State	Channel 1	Channel 2	Alarm State	CRC_L	CRC_H
			State	State			

State Codes:

	Global State		DcDc State		Inverter State
0	Sending Parameters	0	DcDc OFF	0	Stand By
1	Wait Sun/Grid	1	Ramp Start	1	Checking Grid
2	Checking Grid	2	MPPT	2	Run
3	Measuring Riso	3	Not Used	3	Bulk OV
4	DcDc Start	4	Input OC	4	Out OC
5	Inverter Start	5	Input UV	5	IGBT Sat
6	Run	6	Input OV	6	Bulk UV
7	Recovery	7	Input Low	7	Degauss Error
8	Pause	8	No Parameters	8	No Parameters
9	Ground Fault	9	Bulk OV	9	Bulk Low
10	OTH Fault	10	Communication Error	10	Grid OV
11	Address Setting	11	Ramp Fail	11	Communication Error
12	Self Test	12	Internal Error	12	Degaussing
13	Self Test Fail	13	Input mode Error	13	Starting
14	Sensor Test + Meas.Riso	14	Ground Fault	14	Bulk Cap Fail
15	Leak Fault	15	Inverter Fail	15	Leak Fail
16	Waiting for manual reset	16	DcDc IGBT Sat	16	DcDc Fail
17	Internal Error E026	17	DcDc ILEAK Fail	17	Ileak Sensor Fail
18	Internal Error E027	18	DcDc Grid Fail	18	SelfTest: relay inverter
19	Internal Error E028	19	DcDc Comm. Error	19	SelfTest: wait for sensor test
20	Internal Error E029			20	SelfTest: test relay DcDc + sensor
21	Internal Error E030			21	SelfTest: relay inverter fail
22	Sending Wind Table			22	SelfTest timeout fail
23	Failed Sending table			23	SelfTest: relay DcDc fail
24	UTH Fault			24	Self Test 1
25	Remote OFF			25	Waiting self test start
26	Interlock Fail			26	Dc Injection
27	Executing Autotest			27	Self Test 2
30	Waiting Sun			28	Self Test 3
31	Temperature Fault			29	Self Test 4
32	Fan Staucked			30	Internal Error
33	Int. Com. Fault			31	Internal Error
34	Slave Insertion			40	Forbidden State
35	DC Switch Open			41	Input UC
36	TRAS Switch Open			42	Zero Power

Aurora PV Inverter Series Communication Protocol rel.4.2

37	MASTER Exclusion		43	Grid Not Present
38	Auto Exclusion		44	Waiting Start
98	Erasing Internal EEprom		45	MPPT
99	Erasing External EEprom		46	Grid Fail
100	Counting EEprom		47	Input OC
101	Freeze			

Alarm	State				
Value	Description	Code	Value	Description	Code
0	No Alarm		32	Grid OV	W004
1	Sun Low	W001	33	Grid UV	W005
2	Input OC	E001	34	Grid OF	W006
3	Input UV	W002	35	Grid UF	W007
4	Input OV	E002	36	Z grid Hi	W008
5	Sun Low	W001	37	Internal error	E024
6	No Parameters	E003	38	Riso Low	E025
7	Bulk OV	E004	39	Vref Error	E026
8	Comm.Error	E005	40	Error Meas V	E027
9	Output OC	E006	41	Error Meas F	E028
10	IGBT Sat	E007	42	Error Meas Z	E029
11	Bulk UV	W011	43	Error Meas Ileak	E030
12	Internal error	E009	44	Error Read V	E031
13	Grid Fail	W003	45	Error Read I	E032
14	Bulk Low	E010	46	Table fail	W009
15	Ramp Fail	E011	47	Fan Fail	W010
16	Dc/Dc Fail	E012	48	UTH	E033
17	Wrong Mode	E013	49	Interlock fail	E034
18	Ground Fault		50	Remote Off	E035
19	Over Temp.	E014	51	Vout Avg errror	E036
20	Bulk Cap Fail	E015	52	Battery low	W012
21	Inverter Fail	E016	53	Clk fail	W013
22	Start Timeout	E017	54	Input UC	E037
23	Ground Fault	E018	55	Zero Power	W014
24	Degauss error		56	Fan Stucked	E038
25	Ileak sens.fail	E019	57	DC Switch Open	E039
26	DcDc Fail	E012	58	Tras Switch Open	E040
27	Self Test Error 1	E020	59	AC Switch Open	E041
28	Self Test Error 2	E021	60	Bulk UV	E042
29	Self Test Error 3	E019	61	Autoexclusion	E043
30	Self Test Error 4	E022	62	Grid df/dt	W015
31	DC inj error	E023	63	Den switch Open	W016
			64	Jbox fail	W017

Remark: Alarm *Codes* (e.g. E001..) are shown only on Aurora Display. The Alarm State values are returned by serial communication

52) P/N Reading (Aurora inverters)

0	1	2	3	4	5	6	7	8	9
Address	52	-	-	-	-	-	-	CRC_L	CRC_H

Answer:

Char.6	Char.5	Char.4	Char.3	Char.2	Char.1	CRC_L	CRC_H

Characters to be interpreted as ASCII code.

Char. 6 = Most significant P/N digit

Char. 1 = Least significant P/N digit

Remark: in this case no information transmission and global state is returned.

58) Version Reading (Indoor/Outdoor, Europe/America, available only for FW version 1.0.9 and following)

0	1	2	3	4	5	6	7	8	9
Address	58	-	-	-	-	-	-	CRC_L	CRC_H

Answer:

Indoor/Outdoor and type

- Aurora 2 kW indoor
- 'o' Aurora 2 kW outdoor
- ʻI' Aurora 3.6 kW indoor
- Aurora 3.0-3.6 kW outdoor
- **'**5' Aurora 5.0 kW outdoor
- Aurora 6 kW outdoor 'P'
- 3-phase interface (3G74)
- 'C' Aurora 50kW module
- '4' Aurora 4.2kW new
- '3' Aurora 3.6kW new **'**2' Aurora 3.3kW new
- Aurora 3.0kW new
- ʻD' Aurora 12.0kW
- 'Χ' Aurora 10.0kW

Par 2 **Grid Standard**

- UL1741
- VDE0126
- DR 1663/2000 'S'
- 'I' ENEL DK 5950
- 'U' UK G83
- AS 4777

Par 3 Trafo/Non Trafo

- Transformerless Version
- Transformer Version

Wind/PV

- Wind version
- PV version

59) Measure request to the DSP (Voltage, Current etc.. etc..)

0	1	2	3	4	5	6	7	8	9
Address	59	Туре	Global	-	-	-	-	CRC_L	CRC_H

Global: if 1 requires the Global Measurements (Only For a Master) if 0 requires the Module Measurements (Master and Slave)

The * in the table below list the variable to which apply the global requirement

1	Grid Voltage*	For three-phases systems is the mean
2	Grid Current*	For three-phases systems is the mean
3	Grid Power*	For three-phases systems is the mean
4	Frequency	For three-phases systems is the mean
5	Vbulk	For Inverter with more Bulk is the sum
6	Ileak (Dc/Dc)	
7	Ileak (Inverter)	
8	Pin1*	Pin for single channel module
9	Pin2	
21	Inverter Temperature	
22	Booster Temperature	
23	Input 1 Voltage	Input Voltage for single channel module
24		
25	Input 1 Current*	Input Current for single channel module
26	Input 2 Voltage	
27	Input 2 Current	
28	Grid Voltage (Dc/Dc)	
29	Grid Frequency (Dc/Dc)	
30	Isolation Resistance (Riso)	
31	Vbulk (Dc/Dc)	
32	Average Grid Voltage (VgridAvg)	
33	VbulkMid	
34	Power Peak	
35	Power Peak Today	
36	Grid Voltage neutral	
37	Wind Generator Frequency	
38	Grid Voltage neutral-phase	
39	Grid Current phase r	
40	Grid Current phase s	
41	Grid Current phase t	
42	Frequency phase r	
43	Frequency phase s	
44	Frequency phase t	
45	Vbulk +	
46	Vbulk -	
47	Supervisor Temperature	
48	Alim. Temperature	
49	Heat Sink Temperature	
50	Temperature 1	
51	Temperature 2	
52	Temperature 3	
54	Fan 1 Speed Fan 2 Speed	
55	Fan 3 Speed	
56	Fan 4 Speed	
57	Fan 5 Speed	
58	Power Saturation limit (Der.)	
59	Riferimento Anello Bulk	
60	Vpanel micro	
61	Grid Voltage phase r	
62	Grid Voltage phase s	
63	Grid Voltage phase t	
00	ona ronage phase t	1

Answer:

The 4 bytes Val₃ ... Val₀ compose a float value. In order to rebuild the original float value it is necessary to put in sequence the 4 bytes and to read it according to the ANSI standard:

31	30 23	22 0
S	Exponent	Mantissa

The value is:

The value is expressed in the following measurement units:

Voltages	V
Currents	Α
Powers	W
Temperatures	℃

63) Serial Number reading (Aurora inverters)

0	1	2	3	4	5	6	7	8	9
Address	63	-	-	-	-	-	-	CRC_L	CRC_H

Answer:

Char.6	Char.5	Char.4	Char.3	Char.2	Char.1	CRC_L	CRC_H

Characters to be interpreted as ASCII code.

Char. 6 = Most significant S/N digit

Char. 1 = Least significant S/N digit

Remark: in this case no information transmission and global state is returned.

65) Manufacturing Week and Year reading (Aurora inverters)

0	1	2	3	4	5	6	7	8	9
Address	65	-	-	-	-	-	-	CRC_L	CRC_H

Answer:

Tr. State	Global State	Week2	Week1	Year2	Year1	CRC_L	CRC_H

Bytes to be interpreted as ASCII code.

Wk2 = Most significant week digit
 Wk1 = Least significant week digit
 Yr2 = Most significant year digit

Yr1 = Least significant year digit

67) Flags or switch reading (Aurora Central only)

	0	1	2	3	4	5	6	7	8	9
Ad	dress	67	-	-	-	-	-	-	CRC_L	CRC_H

Answer:

Tr. State	Global State	Flag 1	Flag 2	Switch1	Switch2	CRC_L	CRC_H

Flag1,Flag2 are two bytes which codify the flag status in each bits as il table below

Flag 1	bit 0	Master/Slave	0 = Slave 1 = Master
	bit 1	Parameter EE status	0 = Not OK 1 = OK
	bit 2	Statistics EE status	0 = Not OK 1 = OK
	bit 3	Clock Problem flag	0 = No Problem 1 = Problem
	bit 4	Reserved	
	bit 5	Reserved	
	bit 6	Reserved	
	bit 4	Reserved	
Flag 2	bit 0	Reserved	

bit 1	Reserved	
bit 2	Reserved	
bit 3	Reserved	
bit 4	Reserved	
bit 5	Reserved	
bit 6	Reserved	
bit 7	Reserved	

Switch1, Switch2 are two bytes which codes the switches status in each bits as il table below

Switch 1	bit 0	Remote ON/OFF	0 = Open 1 = Closed
	bit 1	DC switch	0 = Open 1 = Closed
	bit 2	TRAS switch	0 = Open 1 = Closed
	bit 3	DEN switch	0 = Closed 1 = Open
	bit 4	Reserved	
	bit 5	Reserved	
	bit 6	Reserved	
	bit 4	Reserved	
Switch 2	bit 0	Reserved	
	bit 1	Reserved	
	bit 2	Reserved	
	bit 3	Reserved	
	bit 4	Reserved	

bit 5	Reserved	
bit 6	Reserved	
bit 7	Reserved	

68) Cumulated Float Energy Readings (Aurora Central only)

0	1	2	3	4	5	6	7	8	9
Address	68	Var	Ndays_h	Ndays_1	Global	-	-	CRC_L	CRC_H

Var.: Variable to read

Ndays_h and Ndays_l are, respectively the high and low part of the number of Days we want to show the cumulated energy (maximum 366).

Global: 0 module energy (Master or Slave)

1 global energy (Master)

1	Current day Energy
2	Current week Energy
3	Current Month Energy
4	Current Year Energy
5	Last Ndays day Energy
6	Total Energy
7	Partial Energy

Answer:

Trans. State	Global State	Val ₃	Val ₂	Val ₁	Val ₀	CRC_L	CRC_H

The 4 bytes Val₃ ... Val₀ compose a float value. In order to rebuild the original float value it is necessary to put in sequence the 4 bytes and to read it according to the ANSI standard:

31	30 23	22 0
S	Exponent	Mantissa

The value is:

Pag. 12

			1 ay. 12
Tutte le parti incluse nel presente documento sono di proprietà della Prever-One Italy S.p.A. Tutti diritti sono isservati. Ouesto documento e le informazioni contenute sono fornite senza responsabilità derivante da eventuali errori od omissioni e nessuna parte puoi essere irprototta, usata o inlevata fatto eccezione per quanto sia stato autorizzato da un permesso scritto o da una clausola di contratto.	This is an unpublished work the copyright in which vest in Power-One Italy S.p.A. All rights reserved. This document and its information is supplied without liability for errors or orissions and no party may be reproduced, used or disclosed except as authorized by contract or other written permission.	File: AuroraCommunicationProtocol_4_2	Date: 10/09/08

The value is expressed in the measurement units specified in the table of command 60

70) Time/Date reading

The time and the date are stored in a 4-byte variable which provides the number of past second since midnight of January 1, 2000. From this variable it is possible to rebuild the time and date (with the accuracy of 1 second).

0	1	2	3	4	5	6	7	8	9
Address	70	-	-	-	-	-	-	CRC_L	CRC_H

Answer:

Tr. State	Global State	Time3	Time2	Time1	Time0	CRC_L	CRC_H

This value is coded as follows:

NumSeconds = Time3 *
$$2^{24}$$
 + Time2 * 2^{16} + Time1 * 2^{8} + Time0

72) Firmware release reading

0	1	2	3	4	5	6	7	8	9
Address	72	Var	-	-	-	-	-	CRC L	CRC H

Var	Meaning
1	Micro A release
2	Micro B release
	Micro release
N	Micro Z release

Note: For Aurora grid-tied inverters you will read <u>always</u> the MCU firmware version (field **var** is not interpreted)

Answer:

Tr. State	GlobalState	Rel3	Rel2	Rel1	Rel0	CRC_L	CRC_H

The four bytes are ASCII-coded, and must be read as follows:

Release = Rel3.Rel2.Rel1.Rel0

78) Cumulated energy readings (Aurora grid-tied inverters only)

Pag. 13

			1 ag. 10
della Power-One Italy S.p.A. Tutti i diritti sono riservati. Questo documento e le informazioni contenute sono fornite senza responsabilità derivante da eventuali errori od omissioni e nessuna parte puo' essere riprodotta, usata o rilevata fatto	This is an unpublished work the copyright in which vest in Power-One Italy S.p.A. All rights reserved. This document and its information is supplied without liability for errors or omissions and no party may be reproduced, used or disclosed except as authorized by contract or other written permission.	File: AuroraCommunicationProtocol_4_2	Date: 10/09/08

0	1	2	3	4	5	6	7	8	9
Address	78	Par	-	-	-	-	-	CRC_L	CRC_H

If Par =

- 0) Daily Energy
- 1) Weekly Energy
- 2) Not used
- 3) Month Energy (Energy from the first day of current calendar month)
- 4) Year Energy (Energy from the first day of current calendar year)
- 5) Total Energy (total lifetime)
- 6) Partial Energy (cumulated since reset)

Answer:

Tr. State	Global State	En3	En2	En1	En0	CRC_L	CRC_H

En3..En0: energy value according with selected period, expressed in Wh.

Energy values are coded as follows:

$$En(Par) = En3 * 2^{24} + En2 * 2^{16} + En1 * 2^{8} + En0$$

85) Baud rate setting on serial lines

0	1	2	3	4	5	6	7	8	9
Address	85	BaudCode	Serial-line	-	-	-	-	CRC_L	CRC_H

Serial-line: 1 (external line), 2,, 255

The serial-line field is reserved to **Aurora Central** modules.

Remember that the code "1" refers always to the external communication line (ex.

for monitoring system connection)

Baud code: 0 19200 bps

1 9600 bps

2 4800 bps

3 2400 bps

86) Last four alarms

0	1	2	3	4	5	6	7	8	9
Address	86	-	-	-	-	-	-	CRC_L	CRC_H

Answer:

Tr.State	Global State	AL1	AL2	AL3	AL4	CRC_L	CRC_H

This command returns the codes of the last four alarms, in form of a FIFO queue from the first (AL1) to the last one (AL4).

When this command is used the queue is emptied (the four values are set to zero). Alarm code are described in command 50.

101) System info reading (Aurora Central only)

0	1	2	3	4	5	6	7	8	9
Address	101	var	-	-	-	-	-	CRC_L	CRC_H

var	meaning	val	meaning
1	Transformer type	0	no transformer
		1	50 Kw Transformer
		2	100 Kw Transformer
		3	200 Kw Transformer
		4	300 Kw Transformer
2	50Kw Modules Number	1:6	Number of 50Kw modules
			in the system that have the
			same transformer

Answer:

Tr.State	Global State	val	-	-	-	CRC_L	CRC_H

103) Junction Box Monitoring status (Aurora Central only)

0	1	2	3	4	5	6	7	8	9
Address	103	CF	RN	NJT	JAL	JAH		CRC_L	CRC_H

Answer:

Trasm. State	CF	RN	NJT	JAL	JAH	CRC_L	CRC_H

CF = Control Flag = 1 The Module is managing the Junction boxes = 0 The Module is not managing the Junction boxes

 $\mathbf{RN} = \text{Rack Number}$

NJT = Total number of Junction boxes the Module must manage. (The maximum is 12).

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	JAL										JA	ΝΗ			

- $\mathbf{JA} = \mathbf{JAH} * 2^8 + \mathbf{JAL} = \mathbf{Active}$ junction boxes coded bit x bit as follow:
- **JAL bit0** = 0 Junction number 1 (Inner Rs-485 address 2) is not active 1 Junction number 1 (Inner Rs-485 address 2) is active
- **JAL bit1** = 0 Junction number 2 (Inner Rs-485 address 3) is not active 1 Junction number 2 (Inner Rs-485 address 3) is active
- **JAL bit2** = 0 Junction number 3 (Inner Rs-485 address 4) is not active 1 Junction number 3 (Inner Rs-485 address 4) is active
- **JAL bit3** = 0 Junction number 4 (Inner Rs-485 address 5) is not active 1 Junction number 4 (Inner Rs-485 address 5) is active
- **JAL bit4** = 0 Junction number 5 (Inner Rs-485 address 6) is not active 1 Junction number 5 (Inner Rs-485 address 6) is active
- **JAL bit5** = 0 Junction number 6 (Inner Rs-485 address 7) is not active 1 Junction number 6 (Inner Rs-485 address 7) is active
- **JAL bit6** = 0 Junction number 7 (Inner Rs-485 address 8) is not active 1 Junction number 7 (Inner Rs-485 address 8) is active
- **JAL bit7** = 0 Junction number 8 (Inner Rs-485 address 9) is not active 1 Junction number 8 (Inner Rs-485 address 9) is active
- **JAH bit0** = 0 Junction number 9 (Inner Rs-485 address 10) is not active

1 Junction number 9 (Inner Rs-485 address 10) is active

JAH – bit1 = 0 Junction number 10 (Inner Rs-485 address 11) is not active 1 Junction number 10 (Inner Rs-485 address 11) is active

JAH – bit2 = 0 Junction number 11 (Inner Rs-485 address 12) is not active 1 Junction number 11 (Inner Rs-485 address 12) is active

JAH – bit3 = 0 Junction number 12 (Inner Rs-485 address 13) is not active 1 Junction number 12 (Inner Rs-485 address 13) is active

105) System P/N Reading (Aurora Central only)

0	1	2	3	4	5	6	7	8	9
Address	105	-	-	-	-	-	-	CRC_L	CRC_H

Answer:

Char.6	Char.5	Char.4	Char.3	Char.2	Char.1	CRC_L	CRC_H

Characters to be interpreted as ASCII code.

Char. 6 = Most significant P/N digit

Char. 1 = Least significant P/N digit

Remark: in this case no information transmission and global state is returned.

107) System Serial Number reading (Aurora Central only)

0	1	2	3	4	5	6	7	8	9
Address	107	-	-	-	-	-	-	CRC_L	CRC_H

Answer:

Char.6	Char.5	Char.4	Char.3	Char.2	Char.1	CRC_L	CRC_H

Characters to be interpreted as ASCII code.

Char. 6 = Most significant S/N digit

Char. 1 = Least significant S/N digit

Remark: in this case no information transmission and global state is returned.

200) Junction Box - State Request

Pag. 17

Tutte le parti incluse nel presente documento sono di proprieta'
della Power-One Italy S.p.A. Tutti i diritti sono riservati. Questo
documento e le informazioni contenute sono fornite senza
responsabilita' derivante da eventuali errori od omissioni e
nessuna parte puo' essere riprodotta, usata o rilevata fatto
eccezione per quanto sia stato autorizzato da un permesso
scritto o da una clausola di contratto.

0	1	2	3	4	5	6	7	8	9
Address	200	NJ						CRC_L	CRC_H

Answer:

	Trasm. state Jbo	x State Fu	ises State 2	Fuses State 1	Fuses State 0 / String-Currents State 1	String- Currents State 0	CRC_L	CRC_H	
--	------------------	-------------------	-----------------	------------------	--	--------------------------------	-------	-------	--

NJ: Junction Box Number

JBox State: coded as follows:

Jbox State Bit (0-7)	Meaning
0	(0: All fuses OK – 1: Burnt fuse on Jbox)
1	(0: OK – 1: Jbox Overtemperature)
2	(0: OK – 1: Jbox Overvoltage)
3	(0: OK – 1: Unbalanced string current)
4	(0: OK – 1: Jbox Overcurrent)
5	(0: OK -1:Power Off)
6	(0: OK-1 No communication)
7	(0: OK – 1: Jbox not calibrated)

Fuses State / String-Currents State:

F2	F12	F1	F11	-	-	C9	C8	C7	C6	C5	C4	СЗ	C2	C1	C0
		F	S0 /	CS	1						C	S0			

 $\mathbf{F}\mathbf{x} = 1$ Fuse OK

=- 0 Fuse Burnt

Cx = 0 String Current OK

=- 1 String Current Unbalanced

201) Junction Box - Val Request

0	1	2	3	4	5	6	7	8	9
Address	201	NJ	Par					CRC_L	CRC_H

Answer:

NJ: Junction Box Number

FVal3...FVal0 Float Value

Par coded as follows:

Par	Meaning	Measure Unit
0	Current I ₀	A
1	Current I ₁	A
2	Current I ₂	A
3	Current I ₃	A
4	Current I ₄	A
5	Current I ₅	A
6	Current I ₆	A
7	Current I ₇	A
8	Current I ₈	A
9	Current I ₉	A
10	Tint	°C
11	Global Parallel Voltage	V
12	Analog In. 1	-
13	Analog In. 2	-
14	Analog In. 3	-
15	Analog In. 4	-
16	Global String Current	A

Aurora PV Inverter

- Self Addressing -

Introduction

In this section we are going to describe how a collection of Aurora can be addressed automatically using a set of broadcast commands. This feature is available only for RS485 line and not for the PLM, due to the different communication protocol and hardware implementation.

In the following picture it has been represented a typical Aurora Rs-485 line

At first power-up, all the units have the same default address, so they are unable to communicate with the host until a unique address is given to each one of them. Thus, we need to perform a simple addressing procedure before the ordinary communication tasks are started.

The only thing that differentiates the units, by the software point of view, is the serial number; so this is the feature to be used to address every single unit.

A set of broadcast commands was implemented, in order to recognize the unaddressed units and to assign (or delete) the unique address on the line, and they are based on the serial number.

With **broadcast** command, we mean a command that is a directed to every unit that is physically connected to the line; potentially, every inverter should answer to a broadcast command. If more than one inverter answer at the same time to a broadcast command, the host may receive a message with a wrong checksum. We can still take advantage of this, because we can restrict the broadcast message depending from the units' serial number. In other words, we can think of a command directed not to every inverter, but just to a subset of them. If the host transmits a command of that kind and it does not obtain any answer, it means that the subset is empty; otherwise, if an answer is obtained, it means that the subset is populated. With some iterative restrictions of the subset we will be able to identify a single inverter, and then we can assign an address to be used during ordinary communication. Such commands were implemented on Aurora communication protocol, and they are described in the following pages.

Pag. 21

Tutte le parti incluse nel presente documento sono di proprieta'
della Power-One Italy S.p.A. Tutti i diritti sono riservati. Questo
documento e le informazioni contenute sono fornite senza
responsabilita' derivante da eventuali errori od omissioni e
nessuna parte puo' essere riprodotta, usata o rilevata fatto
eccezione per quanto sia stato autorizzato da un permesso
scritto o da una clausola di contratto.

Command 254 Check subset

Check if any Aurora inverter connected to the line has its serial number is included in the specified interval.

0	1	2	3	4	5	6	7	8	9
254	SN_U_2	SN_U_1	SN_U_0	SN_D_2	SN_D_1	SN_D_0	-	CRCH	CRCL

Where $SN_U = Upper interval limit (3-byte)$

 $SN_D = Lower interval limit (3-byte)$

If a unit's serial number is included in the interval, the unit answers as follows:

0	1	2	3	4	5	6	7
0	SN_2	SN_1	SN_0	-	-	CRCH	CRCL

Command 253 Assign address

Given a unit with a known serial number SN, it is possible to assign an address to it as follows:

0	1	2	3	4	5	6	7	8	9
253	SN_2	SN_1	SN_0	NewAddr	-	-	-	CRCH	CRCL

Answer:

 0
 1
 2
 3
 4
 5
 6
 7

 0
 Res
 CRCH
 CRCL

If Res

O Assignment OK

Res = 0 Assignment Fail

NOTE: When a unit is addressed, it does not answer neither to command 254 nor command 253.

Command 252 Delete Address

Using this command it is possible to delete previously assigned address

0	1	2	3	4	5	6	7	8	9
252	Par	-	-	-	-	-	-	CRCH	CRCL

If Par = 1 Delete Address

Answer:

0	1	2	3	4	5	6	7
0	-	-	-	-	-	CRCH	CRCL

Aurora Junction Box

- Communication Protocol -

Introduction

In this section we are going to describe how to address and communicate with junction-boxes connected to a rack of **Aurora Central** modules.

Junction-boxes are connected to a single module of a rack through a dedicated "internal" Rs-485 <u>line</u>. An external host (local PC, monitoring system) communicates with Aurora Central modules via the "external" Rs-485 line.

In the following picture it has been represented a typical system of host/rack and rack/junction-boxes Rs-485 connections:

First of all, the host system has to scan the rack modules in order to identify which one is managing junction-boxes (see command 103 in Aurora PV Inverters communication protocol).

Then each junction-box is identified and "internally" addressed by a number called "NJ" (junction-box number).

When the host system wants to address a single junction-box, it simply launches a command to manager module (with its Rs-485 address) and writes the number of j. box on the "NJ" field – remember that at the moment only the commands 200, 201 and 212 (state, values, SN, PN reading) are available for host communication.

In the following table is represented a typical command sent to a junction-box manager module:

0	1	2	3	4	5	6	7	8	9
Manager Address	Command	NJ field						CRC_L	CRC_H

200) Junction Box – State Request (Also available through 50 Kw. module)

0	1	2	3	4	5	6	7	8	9
Address	200	NJ						CRC_L	CRC_H

Answer:

Trasm. state Jb

NJ: Junction Box Number

JBox State: coded as follows:

Jbox State Bit (0-7)	Meaning
0	(0: All fuses OK – 1: Burnt fuse on Jbox)
1	(0: OK – 1: Jbox Overtemperature)
2	(0: OK – 1: Jbox Overvoltage)
3	(0: OK – 1: Unbalanced string current)
4	(0: OK – 1: Jbox Overcurrent)
5-6	no meaning
7	(0: OK – 1: Jbox not calibrated)

Fuses State / String-Currents State:

F10	F20	F9	F19	F8	F18	F7	F17	F6	F16	F5	F15	F4	F14	F3	F13
	FS2									FS	S1				

F2	F12	F1	F11	-	-	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0
FS0 / CS1							CS0								

 $\mathbf{F}\mathbf{x} = 1$ Fuse OK

=- 0 Fuse Burnt

Cx = 0 String Current OK

=- 1 String Current Unbalanced

201) Junction Box – Val Request (Also available through 50 Kw. module)

0	1	2	3	4	5	6	7	8	9
Address	201	NJ	Par					CRC_L	CRC_H

Answer:

Trasm. state	Par	FVal3	FVal2	FVal1	FVal0	CRC_L	CRC_H
--------------	-----	-------	-------	-------	-------	-------	-------

NJ: Junction Box Number

FVal3...FVal0 Float Value

Par coded as follows:

Par	Meaning	Measure Unit
0	Current I ₀	A
1	Current I ₁	A
2	Current I ₂	A
3	Current I ₃	A
4	Current I ₄	A
5	Current I ₅	A
6	Current I ₆	A
7	Current I ₇	A
8	Current I ₈	A
9	Current I ₉	A
10	Tint	°C
11	Global Parallel Voltage	V
12	Analog In. 1	-
13	Analog In. 2	-
14	Analog In. 3	-
15	Analog In. 4	-
16	Global String Current	A
17	Numeric Mean String Current	A
18	Weighted mean string current	A
19	Max current for "unbalanced string current" alarm	A
20	Min current for "unbalanced string current" alarm	A

Checksum calculation

The algorithm to compute the checksum to validate the RS485 transmission is the CRC polynomial standardized by CCITT:

Bn=N^16+N^12+N^5+Bn-1

Where N^16 means that N is elevated to the sixteenth power of 2 (i.e. it is shifted left of 16 bit) and where the symbol '+' represents the XOR bit by bit.

Practically, if **New** is the byte to process, **Tmp** is a swap byte and **BccLo** and **BccHi** are the low and high parts of the validation word, the following algorithm must be followed:

- A. Initialize BccLo=0xFF, BccHi=0xFF
- B. For each byte to transmit or receive repeat the following steps:
 - 1. New = New XOR BccLo
 - 2. Tmp=New << 4
 - 3. New=Tmp XOR New
 - 4. Tmp=New >> 5
 - 5. BccLo=BccHi
 - 6. BccHi= New XOR Tmp
 - 7. Tmp= New \ll 3
 - 8. BccLo=BccLo XOR Tmp
 - 9. Tmp= New >> 4
 - 10. BccLo= BccLo Xor Tmp

C. Negate bit by bit BccLo e BccHi : CRC_L=~BccLo CRC_H=~BccHi