GEOEMETRIA ANALÍTICA

AULA 4 - 2024.1

Prof. Dr. Mário José de Souza

Vetores

Definição

Quando os segmentos de reta orientados AB e CD são equipolentes, dizemos que eles representam o mesmo vetor \overrightarrow{v} e escrevemos $\overrightarrow{v} = \overrightarrow{AB}$.

Isto é, o vetor $\overrightarrow{v} = \overrightarrow{AB}$ é o conjunto que consiste de todos os segmentos orientados equipolentes ao segmento AB. Tais segmentos são chamados representantes do vetor \overrightarrow{v} .

Observação 1

- (a) Da definição de vetor, temos $AB \equiv CD \iff \overrightarrow{v} = \overrightarrow{AB} = \overrightarrow{CD}$.
- (b) Por convenção, o vetor nulo é o vetor $\overrightarrow{0} = \overrightarrow{AA}$, qualquer que seja o ponto A no plano.
- (c) Dado um vetor \overrightarrow{v} e um ponto qualquer C, existe um único ponto D tal que $\overrightarrow{v} = \overrightarrow{CD}$. Isto é, qualquer ponto do plano é origem de um único segmento orientado representante do vetor \overrightarrow{v} .

Na prática, trabalhamos com vetores usando a sua expressão em relação a um sistema de eixos ortogonais dado.

Consideremos um sistema de eixos ortogonais OXY no plano, e sejam

$$A = (a_1, a_2)$$
 $C = (c_1, c_2)$
 $B = (b_1, b_2)$ $D = (d_1, d_2)$

pontos do plano. A seguinte proposição caracteriza a equipolência em termos de coordenadas.

Proposição 4

$$AB \equiv CD \iff b_1-a_1=d_1-c_1 \quad e \quad b_2-a_2=d_2-c_2$$

Prova.

Pela proposição 2,

$$AB \equiv CD \iff \text{ponto m\'edio de }AD = \text{ponto m\'edio de }BC$$

$$\iff \left(\frac{a_1+d_1}{2},\frac{a_2+d_2}{2}\right) = \left(\frac{b_1+c_1}{2},\frac{b_2+c_2}{2}\right)$$

$$\iff (a_1+d_1,a_2+d_2) = (b_1+c_1,b_2+c_2)$$

$$\iff a_1+d_1 = b_1+c_1 \quad \text{e} \quad a_2+d_2 = b_2+c_2$$

$$\iff b_1-a_1 = d_1-c_1 \quad \text{e} \quad b_2-a_2 = d_2-c_2.$$

como queríamos demonstrar.

Definição

Dados $A=(a_1,a_2)$ e $B=(b_1,b_2)$, os números b_1-a_1 e b_2-a_2 são as coordenadas do vetor $\overrightarrow{v}=\overrightarrow{AB}$ e escrevemos $\overrightarrow{v}=(b_1-a_1,b_2-a_2)$.

Note que, se
$$AB \equiv CD$$
, então, pela proposição anterior, $\overrightarrow{AB} = (b_1 - a_1, b_2 - a_2) = (d_1 - c_1, d_2 - c_2) = \overrightarrow{CD}$.

Exemplo 1

Sejam $A=(1,2),\ B=(3,1)$ e C=(4,0). Determine as coordenadas do

vetor $\overrightarrow{v} = \overrightarrow{AB}$ e as coordenadas do ponto D tal que $\overrightarrow{v} = \overrightarrow{CD}$.

Solução.

Temos $\overrightarrow{v} = \overrightarrow{AB} = (3-1,1-2) = (2,-1)$. Além disso, se $D = (d_1,d_2)$,

temos

$$\overrightarrow{v} = \overrightarrow{AB} = \overrightarrow{CD} \iff AB \equiv CD$$

$$\iff (2,-1) = (d_1 - 4, d_2 - 0)$$

$$\iff 2 = d_1 - 4 \quad \text{e} \quad -1 = d_2 - 0$$

$$\Rightarrow d_1 = 2 + 4 - 6$$
 or $d_2 = -1$

$$\iff d_1 = 2 + 4 = 6 \quad \text{e} \quad d_2 = -1 + 0 = -1.$$

Portanto, D = (6, -1).

Corolário 1

(a)
$$AB \equiv CD \iff AC \equiv BD$$
.

(b) $AB \equiv CD \ e \ CD \equiv EF \Longrightarrow AB \equiv EF$.

Em virtude do item (c) da observação 1, temos:

Proposição 5

Sejam OXY um sistema de eixos ortogonais e $\overrightarrow{v} = \overrightarrow{AB}$ um vetor.

Então existe um único ponto P tal que $\overrightarrow{OP} = \overrightarrow{AB} = \overrightarrow{v}$. Além disso, as coordenadas do ponto P coincidem com as coordenadas do vetor \overrightarrow{v} .

Prova.

De fato, se $A = (a_1, a_2)$, $B = (b_1, b_2)$ e $P = (p_1, p_2)$, então $\overrightarrow{v} = (b_1 - a_1, b_2 - a_2)$ e

$$AB \equiv OP \iff (b_1 - a_1, b_2 - a_2) = (p_1 - 0, p_2 - 0)$$

 $\iff P = (p_1, p_2) = (b_1 - a_1, b_2 - a_2)$

como queríamos verificar.

Exemplo 2

Sejam
$$A=(-1,2)$$
 e $B=(4,1)$. Determine o ponto P tal que $\overrightarrow{OP}'=\overrightarrow{AB}'$.

Solução.

Pela proposição anterior,

$$P = (4 - (-1), 1 - 2) = (4 + 1, -1) = (5, -1).$$

Operações com vetores

Vamos definir a operação de adição de vetores que a cada par de vetores \overrightarrow{u} e \overrightarrow{v} faz corresponder um novo vetor, chamado **soma** dos vetores \overrightarrow{u} e \overrightarrow{v} .

Sejam $\overrightarrow{u} = \overrightarrow{AB}$ e $\overrightarrow{v} = \overrightarrow{CD}$ vetores dados e seja E um ponto no plano. Tomemos pontos P e Q tais que $\overrightarrow{u} = \overrightarrow{EP}$ e $\overrightarrow{v} = \overrightarrow{PQ}$.

Definimos o vetor soma de \overrightarrow{u} com \overrightarrow{v} como sendo o único vetor que tem o segmento EQ como um representante (veja a figura 15). Isto é,

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{EQ}$$

Figura 15: Adição de vetores.

Quando se faz uma definição que depende, aparentemente, da escolha de um representante devemos mostrar que a classe do novo objeto definido independe do representante escolhido.

A adição de vetores é uma operação bem definida.

Com efeito, seja E' outro ponto do plano, e sejam P' e Q' pontos tais que $\overrightarrow{u'} = \overrightarrow{E'P'}$ e $\overrightarrow{v'} = \overrightarrow{P'Q'}$. Segundo a definição anterior, deveríamos ter também $\overrightarrow{u'} + \overrightarrow{v'} = \overrightarrow{E'Q'}$.

Verifiquemos, então, que os segmentos EQ e E'Q' são equipolentes.

Figura 16: O segmento EQ é equipolente ao segmento E'Q'?

Pelo corolário 1(a) (acompanhe a argumentação na figura 16), temos:

$$\overrightarrow{u'} = \overrightarrow{EP'} = \overrightarrow{E'P'} \implies EP \equiv E'P' \implies EE' \equiv PP',$$

$$\overrightarrow{v'} = \overrightarrow{PQ'} = \overrightarrow{P'Q'} \implies PQ \equiv P'Q' \implies PP' \equiv QQ'.$$

Logo, pelo corolário 1(b), $EE' \equiv QQ'$ e novamente pelo corolário 1(a):

$$EQ \equiv E'Q' \Longrightarrow \overrightarrow{EQ'} = \overrightarrow{E'Q'}$$
.

Portanto, o vetor $\overrightarrow{u} + \overrightarrow{v}$ está bem definido.

Observação

Sejam $\overrightarrow{u'} = \overrightarrow{AB'}$ e $\overrightarrow{v'} = \overrightarrow{CD'}$ vetores no plano. Quando os segmentos AB e CD não são colineares ou paralelos, podemos determinar também o vetor soma $\overrightarrow{AB'} + \overrightarrow{CD'}$ da seguinte maneira:

Figura 17: Adição de vetores como a diagonal de um paralelogramo.

Seja E um ponto do plano e sejam P e R tais que

$$\overrightarrow{u} = \overrightarrow{EP} e \overrightarrow{v} = \overrightarrow{ER}$$
.

Então o vetor soma $\overrightarrow{u} + \overrightarrow{v}$ é o vetor \overrightarrow{EQ} , onde EQ é uma das diagonais do paralelogramo que tem E, P e R como vértices.

De fato, como
$$\overrightarrow{u} = \overrightarrow{EP}, \overrightarrow{v} = \overrightarrow{ER} = \overrightarrow{PQ},$$
 então
$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{EP} + \overrightarrow{PQ} = \overrightarrow{EQ}.$$

Adição de vetores em coordenadas

Se $\overrightarrow{u} = (\alpha, \beta)$ e $\overrightarrow{v} = (\alpha', \beta')$ são dois vetores dados por suas coordenadas com respeito a um sistema ortogonal OXY, então

$$\overrightarrow{u} + \overrightarrow{v} = (\alpha + \alpha', \beta + \beta')$$

De fato, pela proposição 5, $\overrightarrow{u} = \overrightarrow{OP}$ e $\overrightarrow{v} = \overrightarrow{OQ}$, onde $P = (\alpha, \beta)$ e $Q = (\alpha', \beta')$.

Seja Q'=(a,b) o ponto tal que $\overrightarrow{v}=\overrightarrow{PQ'}$. Então, pela proposição 4,

$$(\alpha' - 0, \beta' - 0) = (a - \alpha, b - \beta)$$

$$\Rightarrow Q' = (a, b) = (\alpha + \alpha', \beta + \beta')$$

$$\Rightarrow \overrightarrow{u} + \overrightarrow{v} = \overrightarrow{OP} + \overrightarrow{OQ} = \overrightarrow{OP} + \overrightarrow{PQ'}$$

$$= \overrightarrow{OQ'} = (\alpha + \alpha', \beta + \beta').$$

Multiplicação de um número real por um vetor

Definição

Sejam \overrightarrow{AB} um vetor e $\lambda \in \mathbb{R}$. O produto de λ por \overrightarrow{AB} é o vetor

$$\overrightarrow{AB'} = \lambda \overrightarrow{AB}$$

representado pelo segmento orientado AB', tal que:

- A, B, B' são colineares;
- $d(A, B') = |\lambda| d(A, B);$
- o sentido de AB' é igual ao sentido de AB se $\lambda > 0$, e oposto, se $\lambda < 0$;
- B' = A, se $\lambda = 0$.

Seja OXY um sistema de eixos ortogonais. Vamos mostrar, usando a definição geométrica dada acima, que:

$$B' = (a_1 + \lambda (b_1 - a_1), a_2 + \lambda (b_2 - a_2)),$$

onde $A = (a_1, a_2), B = (b_1, b_2)$ e $\lambda \neq 0$.

De fato:

•
$$d(A, B') = \sqrt{\lambda^2 (b_1 - a_1)^2 + \lambda^2 (b_2 - a_2)^2}$$

= $|\lambda| \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}$
= $|\lambda| d(A, B)$;

•
$$d(B, B') = \sqrt{(\lambda(b_1 - a_1) + (a_1 - b_1))^2 + (\lambda(b_2 - a_2) + (a_2 - b_2))^2}$$

 $= \sqrt{(\lambda - 1)^2(b_1 - a_1)^2 + (\lambda - 1)^2(b_2 - a_2)^2}$
 $= |\lambda - 1|\sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}$
 $= |\lambda - 1|d(A, B).$

Para verificar que A, B e B' são colineares, analisaremos os quatro casos abaixo:

Caso 1. Se $\lambda \in (0,1)$, então:

$$d(A, B') + d(B', B) = \lambda d(A, B) + (1 - \lambda)d(A, B) = d(A, B).$$

Logo, pelo teorema 1, A, B e B' são colineares e B' está entre A e B.

Caso 2. Se $\lambda = 1$, $B' = (b_1, b_2) = B$, o que coincide com a definição geométrica de B'.

Caso 3. Se $\lambda > 1$, então:

$$d(A, B) + d(B, B') = d(A, B) + (\lambda - 1)d(A, B) = \lambda d(A, B) = d(A, B').$$

Então, pelo teorema 1, $A, B \in B'$ são colineares e B está entre $A \in B'$.

Caso 4. Se $\lambda < 0$, então:

$$d(B', A) + d(A, B) = -\lambda d(A, B) + d(A, B) = (1 - \lambda)d(A, B) = d(B', B).$$

Assim, pelo teorema 1, $A, B \in B'$ são colineares e A está entre $B' \in B$.

Resta provar que \overrightarrow{AB} e $\overrightarrow{AB'}$ têm o mesmo sentido se $\lambda > 0$ e sentidos opostos se $\lambda < 0$.

Suponhamos primeiro que $b_1 - a_1 > 0$.

Neste caso, o sentido de percurso de A para B coincide, no eixo-OX, com o sentido de crescimento das abscissas dos pontos.

Figura 20: Sentido de percurso de A para B.

Portanto:

• Se $\lambda > 0$, então $a_1 + \lambda(b_1 - a_1) > a_1$, ou seja, o sentido de A para B' coincide com o sentido de A para B.

• Se $\lambda < 0$, então $a_1 + \lambda(b_1 - a_1) < a_1$, ou seja, o sentido de A para B' é oposto ao sentido de A para B.

O caso de $b_1 - a_1 < 0$ pode ser analisado de maneira análoga.

Suponhamos agora que $b_1 - a_1 = 0$. Neste caso, $b_2 - a_2 \neq 0$, pois A e B são pontos distintos.

Se $b_2 - a_2 > 0$, o sentido de percurso de A para B coincide, no eixo-OY, com o sentido de crescimento das ordenadas dos pontos.

De modo análogo ao caso $b_1 - a_1 > 0$, podemos verificar que o sentido de percurso de A para B' coincide com o de A para B se $\lambda > 0$, e é oposto ao de A para B, se $\lambda < 0$.

Figura 21: Sentido de percurso de A para B.

O caso $b_2 - a_2 < 0$ pode ser analisado da mesma maneira.

Provamos assim que:

$$\overrightarrow{AB'} = \lambda \overrightarrow{AB}' = (\lambda \left(b_1 - a_1 \right), \lambda \left(b_2 - a_2 \right)).$$

Definição

A multiplicação do vetor \overrightarrow{v} pelo número real λ é, por definição, o vetor

$$\lambda \overrightarrow{v} = \lambda \overrightarrow{AB}$$
, onde \overrightarrow{AB} é um representante do vetor \overrightarrow{v} .

Pelo provado acima, $\lambda \overrightarrow{v}$ está bem definido, pois se $\overrightarrow{v} = \overrightarrow{CD}' = \overrightarrow{AB}'$, então, num sistema de eixos ortogonais,

$$\overrightarrow{v} = (d_1 - c_1, d_2 - c_2) = (b_1 - a_1, b_2 - a_2),$$

onde
$$A = (a_1, a_2), B = (b_1, b_2), C = (c_1, c_2) \in D = (d_1, d_2).$$

Portanto,

$$\lambda \overrightarrow{CD} = (\lambda(d_1 - c_1), \lambda(d_2 - c_2)) = (\lambda(b_1 - a_1), \lambda(b_2 - a_2))$$

 $\Longrightarrow \lambda \overrightarrow{CD} = \lambda \overrightarrow{AB}.$

Além disso, fica provado também que:

se
$$\overrightarrow{v} = (\alpha, \beta)$$
 então $\lambda \overrightarrow{v} = (\lambda \alpha, \lambda \beta)$.

Então, se $\overrightarrow{v} = \overrightarrow{OP}$ e $\lambda \overrightarrow{v} = \overrightarrow{OP'}$, temos que $P = (\alpha, \beta)$ e $P' = (\lambda \alpha, \lambda \beta)$

Figura 22: Coordenadas dos vetores $\vec{v} = \vec{OP}$ e $\lambda \vec{v} = \vec{OP'}$.

Observação

Note que,

•
$$\lambda \overrightarrow{0} = \lambda \overrightarrow{AA} = \overrightarrow{AA} = \overrightarrow{0}$$
;

$$\bullet \ 0\overrightarrow{AB} = \overrightarrow{AA} = \overrightarrow{0}.$$

Não confunda: o número 0 (zero) com o vetor $\overrightarrow{0}$.

Proposição

Um ponto P pertence a reta r que passa pelos pontos A e B se, e somente se,

$$\overrightarrow{AP} = \lambda \overrightarrow{AB}$$
, para algum $\lambda \in \mathbb{R}$.

Prova.

Pela definição de multiplicação do vetor \overrightarrow{AB} pelo número real λ , o ponto P tal que $\overrightarrow{AP} = \lambda \overrightarrow{AB}$ pertence a reta r.

Reciprocamente, seja P um ponto pertencente a reta r e seja $\mu = \frac{d(A, P)}{d(A, B)}$.

Se o sentido de percurso de A para P, ao longo de r, coincidir com o sentido de A para B, então $\overrightarrow{AP} = \lambda \overrightarrow{AB}$, onde $\lambda = \mu$, pois pelo teorema 1, item (a), o ponto P é o único ponto da semirreta de origem em A que passa por B tal que $d(A, P) = \mu d(A, B)$.

Figura 23: Sentido de percurso de A para B.

Se o sentido de percurso, ao longo de r, de A para P for oposto ao sentido de A para B, então $\overrightarrow{AP} = \lambda \overrightarrow{AB}$, onde $\lambda = -\mu$, pois, pelo teorema 1, item (a), o ponto P é o único ponto da semirreta de origem em A oposta a semirreta de origem em A que passa por B tal que $d(A, P) = \mu(A, B)$.

Exemplo 3

Dados os vetores
$$\overrightarrow{u} = (1, -1)$$
 e $\overrightarrow{v} = (3, 1)$, determine

$$\overrightarrow{a} = 2\overrightarrow{u} + \overrightarrow{v}, \ \overrightarrow{b} = \overrightarrow{u} + 2\overrightarrow{v}, \ \overrightarrow{c} = \frac{1}{2}\overrightarrow{b} - \overrightarrow{a}.$$

Solução.

Temos

$$\overrightarrow{a'} = 2\overrightarrow{u'} + \overrightarrow{v'}$$

$$= 2(1, -1) + (3, 1)$$

$$= (2(1), 2(-1)) + (3, 1)$$

$$= (2, -2) + (3, 1)$$

$$= (2 + 3, -2 + 1)$$

$$= (5, -1),$$

$$\overrightarrow{b} = \overrightarrow{u} + 2\overrightarrow{v}$$

$$= (1, -1) + 2(3, 1)$$

$$= (1, -1) + (2(3), 2(1))$$

$$= (1, -1) + (6, 2)$$

$$= (1 + 6, -1 + 2)$$

$$= (7, 1),$$

$$\overrightarrow{c} = \frac{1}{2}\overrightarrow{b} - \overrightarrow{a}$$

$$= \frac{1}{2}(7,1) - (5,-1)$$

$$= \left(\frac{7}{2}, \frac{1}{2}\right) - (5,-1)$$

$$= \left(\frac{7}{2} - 5, \frac{1}{2} - (-1)\right)$$

$$= \left(-\frac{3}{2}, \frac{3}{2}\right).$$

Figura 24: Exemplo 3.

Exemplo 4

Dados os pontos do plano A = (1,3) e B = (6,1).

- (a) Calcule o ponto médio C do segmento AB utilizando a multiplicação de um vetor por um número real.
- (b) Determine os pontos D e E que dividem o segmento AB em três partes iguais.

Solução.

(a) Para isto basta notar que

$$\overrightarrow{AC} = \frac{1}{2}\overrightarrow{AB}$$
.

Assim, se C = (x, y) temos:

$$(x-1,y-3) = \frac{1}{2}(5,-2) = \left(\frac{5}{2},-1\right),$$

então:

$$\begin{cases} x-1 & = \frac{5}{2} \\ y-3 & = -1 \end{cases} \implies x = \frac{7}{2} e y = 2.$$

Portanto,

$$C = \left(\frac{7}{2}, 2\right).$$

(b) Note que:

$$\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB} \text{ e } \overrightarrow{AE} = \frac{2}{3}\overrightarrow{AB}$$

Assim, se D = (x, y) e E = (z, w) temos:

$$(x-1, y-3) = \frac{1}{3}(5, -2) = \left(\frac{5}{3}, -\frac{2}{3}\right),$$
$$(z-1, w-3) = \frac{2}{3}(5, -2) = \left(\frac{10}{3}, -\frac{4}{3}\right),$$

então:

$$\begin{cases} x-1 & = \frac{5}{3} \\ y-3 & = -\frac{2}{3} \end{cases} \implies x = \frac{8}{3} e y = \frac{7}{3}$$

e

$$\begin{cases} z - 1 &= \frac{10}{3} \\ w - 3 &= -\frac{4}{3} \end{cases} \implies z = \frac{13}{3} e w = \frac{5}{3}$$

Portanto,
$$D = \left(\frac{8}{3}, \frac{7}{3}\right) \in E = \left(\frac{13}{3}, \frac{5}{3}\right)$$
.

Observação

O método utilizado para resolver o exemplo acima pode ser generalizado da seguinte maneira: dado um segmento AB, os pontos P_1, P_2, \dots, P_{n-1} que dividem o segmento AB em n partes iguais são dados por:

$$\overrightarrow{AP_k} = \frac{k}{n} \overrightarrow{AB}, k = 1, \dots, n-1.$$

Propriedades das operações com vetores

Propriedades da adição de vetores

Sejam \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} vetores no plano. Valem as seguintes propriedades.

- Comutatividade: $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$.
- Associatividade: $\overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w}) = (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w}$.
- Existência de elemento neutro aditivo: o vetor zero $\overrightarrow{0}$ é tal que $\overrightarrow{u} + \overrightarrow{0} = \overrightarrow{u}$.
- Existência de inversos aditivos: para cada vetor \overrightarrow{u} existe um

único vetor, que designamos $-\overrightarrow{u}$, tal que $\overrightarrow{u} + (-\overrightarrow{u}) = \overrightarrow{0}$.

• De fato, se
$$\overrightarrow{u} = \overrightarrow{AB}$$
 e $\overrightarrow{v} = \overrightarrow{BC}$, então $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Se D é o outro vértice do paralelogramo ABCD, então $\overrightarrow{u}=\overrightarrow{DC}$ e $\overrightarrow{v}=\overrightarrow{AD}$.

Logo,

$$\overrightarrow{v} + \overrightarrow{u} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$$
.

Portanto,

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AC} = \overrightarrow{v} + \overrightarrow{u}.$$

Figura 25: Comutatividade da adição de vetores.

A associatividade da adição de vetores se verifica de maneira análoga.

Figura 26: Associatividade da adição de vetores.

Quanto às outras duas propriedades, observe que:

• se
$$\overrightarrow{u} = \overrightarrow{AB}$$
, sendo $\overrightarrow{0} = \overrightarrow{AA} = \overrightarrow{BB}$, temos:

$$\overrightarrow{u} + \overrightarrow{0} = \overrightarrow{AB} + \overrightarrow{BB} = \overrightarrow{AB} = \overrightarrow{u},$$

$$\overrightarrow{0} + \overrightarrow{u} = \overrightarrow{AA} + \overrightarrow{AB} = \overrightarrow{AB} = \overrightarrow{u}.$$

• o simétrico ou inverso aditivo do vetor $\overrightarrow{u} = \overrightarrow{AB}$ é o vetor $-\overrightarrow{u} = \overrightarrow{BA}$, pois

$$\overrightarrow{u} + (-\overrightarrow{u}) = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0},$$
$$-\overrightarrow{u} + \overrightarrow{u} = \overrightarrow{BA} + \overrightarrow{AB} = \overrightarrow{BB} = \overrightarrow{0}.$$

Observação

O vetor simétrico $-\overrightarrow{u} = \overrightarrow{BA}$ do vetor $\overrightarrow{u} = \overrightarrow{AB}$ é o vetor $(-1)\overrightarrow{u}$, pois se $\overrightarrow{u} = (\alpha, \beta)$ é o vetor \overrightarrow{u} dado em coordenadas, então: $\overrightarrow{BA} = (-\alpha, -\beta) = (-1)(\alpha, \beta) = (-1)\overrightarrow{AB}.$

Definição

O vetor $\overrightarrow{u} + (-\overrightarrow{v})$, escrito $\overrightarrow{u} - \overrightarrow{v}$, é chamado **diferença entre** \overrightarrow{u} **e** \overrightarrow{v} .

Sejam A, B, C pontos do plano tais que $\overrightarrow{u} = \overrightarrow{AB}$ e $\overrightarrow{v} = \overrightarrow{AC}$. Então,

$$\overrightarrow{u}' + (-\overrightarrow{v}') = \overrightarrow{AB}' + (-\overrightarrow{AC}')$$

$$= \overrightarrow{AB}' + \overrightarrow{CA}'$$

$$= \overrightarrow{CA}' + \overrightarrow{AB}' = \overrightarrow{CB}'.$$

Propriedades da multiplicação de números reais por vetores

Sejam \overrightarrow{u} e \overrightarrow{v} vetores no plano e $\lambda, \mu \in \mathbb{R}$. Valem as seguintes propriedades:

- Existência de elemento neutro multiplicativo: $1 \in \mathbb{R}$ satisfaz $1 \overrightarrow{u} = \overrightarrow{u}$.
- Propriedades distributivas: $\lambda(\overrightarrow{u} + \overrightarrow{v}) = \lambda \overrightarrow{u} + \lambda \overrightarrow{v}$ e $(\lambda + \mu)\overrightarrow{u} = \lambda \overrightarrow{u} + \mu \overrightarrow{u}$.

As propriedades distributivas são verificadas usando coordenadas e a propriedade distributiva que já conhecemos nos números reais.

De fato, se
$$\overrightarrow{u} = (a,b)$$
 e $\overrightarrow{v} = (a',b')$, então, dados $\lambda, \mu \in \mathbb{R}$, temos:

$$\lambda(\overrightarrow{u} + \overrightarrow{v}) = \lambda [(a,b) + (a',b')] = \lambda(a+a',b+b')$$

$$= (\lambda(a+a'),\lambda(b+b')) = (\lambda a + \lambda a',\lambda b + \lambda b')$$

$$= (\lambda a,\lambda b) + (\lambda a',\lambda b') = \lambda(a,b) + \lambda(a',b')$$

$$= \lambda \overrightarrow{u} + \lambda \overrightarrow{v}.$$

A outra propriedade distributiva se verifica da mesma forma (faça-o!).

Muito obrigado!

