Kolmogorov Smirnov Test for Testing Population Means

Final Project ST541 Sogol Haddadi

Project Objectives

o Is the Kolmogorov Smirnov (KS) test asymptotically exact for testing the means of two distributions?

Is the Kolmogorov Smirnov (KS) test asymptotically consistent for testing the means of two distributions?

Kolmogorov Smirnov Test

- Testing two sample distributions
 - o Null Hypothesis: H_0 : $F_Y = F_X$

• Test Statistics : $D = \sup_{y} |\hat{F}_{Y}(y) - \hat{F}_{X}(x)|$

$$\circ \sqrt{\frac{mn}{m+n}}D \to^d K$$

First Question (Testing the Exactness)

- Null hypothesis: $\mu_Y = \mu_X$
- Objective of the population of 0.5:

1.
$$Normal(\mu = \frac{1}{2}, \sigma^2 = 1)$$

- *2.* $exponential(\lambda = 2)$
- 3. $beta(\alpha = 2, \beta = 2)$
- 4. $gamma\left(\alpha = 2, \beta = \frac{1}{4}\right)$

${\it rejection_rate_10}$	${\rm rejection_rate_50}$	${\rm rejection_rate_100}$	dist1	dist2
0.042	0.885	1	normal	exponential
0.089	0.999	1	$_{ m normal}$	$_{ m beta}$
0.063	0.951	1	$_{ m normal}$	$_{\mathrm{gamma}}$
0.049	0.658	0.951	exponential	beta
0.015	0.218	0.425	exponential	$_{\mathrm{gamma}}$
0.021	0.199	0.366	beta	gamma

Second Question (Testing Consistency)

- Null hypothesis: $\mu_Y = \mu_X$
- o Distributions:
 - 1. Normal $\left(\mu = \frac{1}{2}, \sigma^2 = 1\right)$, Population mean $= \frac{1}{2}$
 - *2.* $exponential(\lambda = 1)$, Population mean = 1
 - 3. $beta(\alpha = 2, \beta = 1)$, Population mean $= \frac{2}{3}$
 - 4. $gamma(\alpha = 2, \beta = 1)$, Population mean = 2

${\it rejection_rate_10}$	${\rm rejection_rate_50}$	${\rm rejection_rate_100}$	dist1	dist2
0.037	0.777	0.997	normal	exponential
0.095	0.998	1	$_{ m normal}$	beta
0.353	1	1	normal	gamma
0.066	0.98	1	exponential	$_{ m beta}$
0.215	0.984	1	exponential	$_{\mathrm{gamma}}$
0.816	1	1	beta	gamma

Conclusion

KS test is not asymptotically exact for testing the means

KS test is asymptotically consistent for testing the means

Thank You