Nombre: Hurricta Villegas Alfonso

INTERVALOS DE CONFIANZA. Para los ejercicios 1 al 9 de la serie ubicada en: http://dcb.fi-c.unam.mx/profesores/irene/ArchivosClase/Fundamentos 19-2/11 ESD S3 041.pdf

Leer los problemas e identificar y completar lo que se señala en esta tabla, además, resolver los problemas en su cuaderno. (Consultar la resolución del ejercicio 6 en: http://dcb.fi-c.unam.mx/profesores/irene/ArchivosClase/Fundamentos 19-2/11 ESD 53 041 SolucionProblema6.pdf)

	T	T			· · · · · · · · · · · · · · · · · · ·				77.7
9	00	7	6	5	4	ω	2	1	No. Problema
pire ien on pro pi - pe	oranza de trabajo	Totudent MM? M-M2 = Diteienad dif de de duiczas dura pione	Exponencial (λ)	Población nemal	Var descarped , x = Obbors youta	Normal an	bonnel con var desconid a x=0.f entile pro	Normal con varianza conocida X=Tensión de ruptura de los hilos	Forma de la distribución poblacional
de Typopo			$\mu = \frac{1}{\lambda}$	n-tervales	x = dolotes gasta des	A dones	Mi-M2 Pif de pro Fundidad de	μ=tensión de ruptura promedio	Parámetro(s) Buscado(s)
n = 197 nA=241 nA=236	7=21	20 1 20	n=15	No hea	n = 16	カニムン	n ₈ = 35	n=16	Tamaño de muestra n
PH = .49	6h=25	16-25 06-24 26 = 25 29 = 42	$\bar{x} = 4.2$	5 1 2 8 1 1 2 8 1 1 2 8	52 = 268,96	A = 50	$x_{h} = .15$ $x_{h} = .21$	σ =0.45 \bar{x} =	Otra Información conocida
= Pi-P2-(P1-P2)	X & , n = (n-1) 52	$T = \overline{x}_1 - \overline{x}_2 \cdot (1, -h)$	$2\lambda n \overline{X} \sim \chi_{2n}^2$	상	1-2-1	* P P	T= x-x2-11-42	$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$	Variable de apoyo (debe ser una función del parámetro y del estimador, no tener cantidades desconocidas y tomar en consideración las condiciones del problema)
P1-P-25 P(1-P1) + P2(1-P1) = P1-P2 =	$\frac{(n-1)s^2}{x^2} \leq G^2 \leq \frac{(n-1)s^2}{x^2-\frac{1}{2}}, n-1$	メートシューをき、ハ、ナルフーマラクテナー語	$\frac{2n\bar{X}}{\chi_{2n_{\frac{\alpha}{2}}}^{2}} < \frac{1}{\lambda} < \frac{2n\bar{X}}{\chi_{2n,1-\frac{\alpha}{2}}^{2}}$	X - ZB G & M & V + ZB F	マーナを、ちょくがくがってき、・・・	$n = \frac{\left(\frac{2}{5} + \frac{6}{5}\right) \left(\sigma^2\right)}{\left(\frac{1}{5} - h\right)^2}$	xi-か-七里, いなっとや「十十十 三川,-州2 5 x,+x2+七里,の+n2-25p シャナナ	マー七名/四二月二十十五十十五二	Intervalo de confianza: