Short-form Video Classification

Midterm Presentation

- Team 3 -

Task Definition

Cuisine-Type Classification for Short-form Video

Korean? Japanese? Italian? American?

...

Related Works (Video classification)

TimeSformer

- A convolution-free video classification model based entirely on self-attention
- Adopted divided space-time attention
- Achieved state-of-the-art accuracy on Kinetics-400 and-600
 - Human action classification

Model	Pretrain	K400 Training Time (hours)	K400 Acc.	Inference TFLOPs	Params
I3D 8x8 R50	ImageNet-1K	444	71.0	1.11	28.0M
I3D 8x8 R50	ImageNet-1K	1440	73.4	1.11	28.0M
SlowFast R50	ImageNet-1K	448	70.0	1.97	34.6M
SlowFast R50	ImageNet-1K	3840	75.6	1.97	34.6M
SlowFast R50	N/A	6336	76.4	1.97	34.6M
TimeSformer	ImageNet-1K	416	75.8	0.59	121.4M
TimeSformer	ImageNet-21K	416	78.0	0.59	121.4M

Related Works (Short-form Video classification)

TikGuard

- Multi label classification
 - Safe
 - Adult
 - Harmful
 - Suicide
- ~4K TikTok short-form videos
- Fine-tuned pretrained video classification models with ~6K steps

TABLE III PERFORMANCE OF MODELS ON THE VALIDATION SET

Model	ACC	F1	Recall	Precision
TimesFormers	0.8666	0.8662	0.8679	0.8662
VideoMAE	0.7911	0.7917	0.7915	0.7911
VIVIT	0.8616	0.8624	0.8646	0.8624

TABLE IV PERFORMANCE OF MODELS ON THE TEST SET

Model	ACC	F1	Recall	Precision
TimesFormers	0.8671	0.8668	0.8671	0.8669
VideoMAE	0.7816	0.7802	0.7816	0.7826
VIVIT	0.8418	0.8408	0.8418	0.8467

Data preprocessing > TwelveLabs

Data preprocessing > TwelveLabs > 🎢 Marengo 🖾

TwelveLabs > Marengo 27 > SOTA Performance

Model's capabilities and performances evaluated with an extensive evaluation framework encompassing over 60 diverse datasets:

Generic visual understanding

Complex query comprehension

Small object detection

OCR interpretation

Logo recognition

Audio processing (verbal and non-verbal)

TwelveLabs > The Marengo 27 > Quantitative Evaluation

Baseline models

Data Filtering Network-H/14-378

(Fang et al, Apple & University of Washington, 2023.09)

InternVideo2-1B

(Wang et al, OpenGVLab, 2024.08)

Google Vertex Multimodal Embedding API

(multimodalembedding@001, 2024.10)

Marengo 2.6

(Twelve Labs, 2024.03)

Evaluation Datasets

Text-to-Visual Datasets

- MSRVTT, COCO: Text-to-video/image
- Something-Something v2: Motion understanding
- TextCaps, BLIP3-OCR: OCR-focused search
- Object365-med, Mapillary-med, BDD-med: Small object retrieval (1-10% area coverage)

Text-to-Audio Datasets

- AudioCaps, Clotho: Generic audio retrieval
- GTZAN: Music genre classification via templates

Image-to-Visual Datasets

- Object365 (easy/med): Cropped-object to scene retrieval
- LaSOT: Image-to-video matching
- OpenLogo: Logo search (image-to-image)
- Ads-logo, Basketball-logo: Custom logo-in-video retrieval

Marengo 27 > Quantitative Eval. > Benchmarks results

General Text to Visual Search AVG (R@1, R@5, R@10)	MSRVTT text-to-video	COCO text-to-image	Average
Apple CLIP (SOTA Image Retrieval Model)	60.0%	73.7%	66.8%
InternVideo2 (SOTA Video Retrieval Model)	65.9%	74.8%	70.3%
Google Vertex Multimodal Embedding API	59.9%	70.1%	65.0%
Marengo 2.6	66.9%	73.6%	70.2%
Marengo 2.7	72.2%	77.6%	74.9%
vs Marengo 2.6	+5.4%	+4.0%	+4.7%
vs External SOTA model	+6.4%	+2.8%	+4.6%

Text to Motion Search IVG (R@1, R@5, R@10)	SthSth-v2 text-to-video
Apple CLIP (SOTA Image Retrieval Model)	41.6%
nternVideo2 (SOTA Image Retrieval Model)	47.7%
Google Vertex Multimodal Embedding API	48.1%
Marengo 2.6	55.6%
Marengo 2.7	78.1%
/s Marengo 2.6	+22.5%
s External SOTA model	+30.0%

Marengo 27 > 1st simulation (concerts & eSports)

YouTube Shorts previews

Marengo 27 > 1st simulation (concerts & eSports)

Experimental results (0-3 concerts; 4-7 eSports)

Marengo 27 > 2nd simulation (Korean & Italian cuisine)

YouTube Shorts previews

Marengo 27 > 2nd simulation (Korean & Italian cuisine)

Experimental results (0-3 Korean; 4-7 Italian)

Baseline Method - Zero-shot Classification

Methodology

- Extract multimodal embeddings from each video using Twelve Labs Marengo 2.7
- Apply zero-shot classification with text embeddings
 - Similarity metric: cosine distance, Euclidean distance
 - Each class represented by text embedding vector

Limitations

- No incorporation of auxiliary metadata (e.g., video title, length..)
- Struggles with visually similar cuisines (e.g., ramen vs JJamppong)
- Cannot model temporal or cross-modal interactions

Baseline Method - TikGuard Approach

- Methodology
 - Fine-tune pretrained video classification models
 - TimeSformer
 - VideoMAE
 - ViViT
- Limitations
 - Heavy computation cost
 - Large parameters to optimize

Proposed Method > Overview

Proposed Method > Details (1)

- Task Definition
 - Given a food-related YouTube Shorts video, predict its cuisine origin using video content and contextual signals
- System Architecture (see diagram):
 - o Input
 - Video: YouTube Shorts containing food or cooking scenes
 - Metadata (optional): video length, view count, like ratio, uploader info..
 - Multimodal embedding extraction
 - Using Marengo 2.7, extracted embeddings

Proposed Method > Details (2)

Feature fusion

- Combine embedding vectors and metadata using:
 - Concatenation, or
 - Cross-modal attention layers for conditional modulation

Neural network backbone

- Current: Multi-layer Perceptron (MLP) with dropout regularizaiton
- Future extension: lightweight Transformer encoder

Classification output

- Final layer: Softmax classifier over cuisine categories
- Loss function: Cross-Entropy Loss, possibly class-balanced

Proposed Method > Next steps

- 1. Evaluate contribution of metadata via ablation study
- 2. Explore interpretability of each modality
- 3. Visualize semantic clusters using t-SNE on embeddings
- 4. Apply data augmentation methods

Github Repository Link

https://github.com/usingcolor/20251R0136C0SE47400