Basis flavio (EFT WET)

Basis used by the flavio package. Neutrinos are in the flavour basis.

Sectors

The effective Lagrangian is defined as

$$\mathcal{L}_{\text{eff}} = -\mathcal{H}_{\text{eff}} = \sum_{O_i = O_i^{\dagger}} C_i O_i + \sum_{O_i \neq O_i^{\dagger}} \left(C_i O_i + C_i^* O_i^{\dagger} \right).$$

sbsb

WC name	Operator	Туре
CVLL_bsbs	$(\bar{s}_L \gamma^\mu b_L)(\bar{s}_L \gamma_\mu b_L)$	С
CVRR_bsbs	$(\bar{s}_R \gamma^\mu b_R)(\bar{s}_R \gamma_\mu b_R)$	\mathbf{C}
CSLL_bsbs	$(\bar{s}_R b_L)(\bar{s}_R b_L)$	\mathbf{C}
CSRR_bsbs	$(\bar{s}_L b_R)(\bar{s}_L b_R)$	\mathbf{C}
CTLL_bsbs	$(\bar{s}_R \sigma^{\mu\nu} b_L)(\bar{s}_R \sigma_{\mu\nu} b_L)$	\mathbf{C}
CTRR_bsbs	$(\bar{s}_L \sigma^{\mu\nu} b_R)(\bar{s}_L \sigma_{\mu\nu} b_R)$	\mathbf{C}
CVLR_bsbs	$(\bar{s}_L \gamma^\mu b_L)(\bar{s}_R \gamma_\mu b_R)$	\mathbf{C}
CSLR_bsbs	$(ar{s}_R b_L)(ar{s}_L b_R)$	\mathbf{C}

dbdb

WC name	Operator	Type
CVLL_bdbd	$(\bar{d}_L \gamma^\mu b_L)(\bar{d}_L \gamma_\mu b_L)$	С
CVRR_bdbd	$(\bar{d}_R \gamma^\mu b_R)(\bar{d}_R \gamma_\mu b_R)$	\mathbf{C}
CSLL_bdbd	$(ar{d}_R b_L)(ar{d}_R b_L)$	\mathbf{C}
CSRR_bdbd	$(ar{d}_L b_R)(ar{d}_L b_R)$	\mathbf{C}
CTLL_bdbd	$(\bar{d}_R \sigma^{\mu\nu} b_L)(\bar{d}_R \sigma_{\mu\nu} b_L)$	\mathbf{C}
CTRR_bdbd	$(\bar{d}_L \sigma^{\mu\nu} b_R)(\bar{d}_L \sigma_{\mu\nu} b_R)$	\mathbf{C}
CVLR_bdbd	$(ar{d}_L\gamma^\mu b_L)(ar{d}_R\gamma_\mu b_R)$	\mathbf{C}
CSLR_bdbd	$(ar{d}_R b_L)(ar{d}_L b_R)$	С

sdsd

WC name	Operator	Type
CVLL_sdsd	$(ar{d}_L \gamma^\mu s_L) (ar{d}_L \gamma_\mu s_L)$	\mathbf{C}
CVRR_sdsd	$(\bar{d}_R \gamma^\mu s_R)(\bar{d}_R \gamma_\mu s_R)$	\mathbf{C}
CSLL_sdsd	$(ar{d}_R s_L)(ar{d}_R s_L)$	\mathbf{C}
CSRR_sdsd	$(ar{d}_L s_R)(ar{d}_L s_R)$	\mathbf{C}

WC name	Operator	Type
CTLL_sdsd	$(\bar{d}_R \sigma^{\mu\nu} s_L)(\bar{d}_R \sigma_{\mu\nu} s_L)$	С
CTRR_sdsd	$(\bar{d}_L \sigma^{\mu\nu} s_R)(\bar{d}_L \sigma_{\mu\nu} s_R)$	\mathbf{C}
CVLR_sdsd	$(\bar{d}_L \gamma^\mu s_L)(\bar{d}_R \gamma_\mu s_R)$	\mathbf{C}
CSLR_sdsd	$(ar{d}_R s_L)(ar{d}_L s_R)$	С

cucu

WC name	Operator	Type
CVLL_ucuc	$(\bar{c}_L \gamma^\mu u_L)(\bar{c}_L \gamma_\mu u_L)$	С
CVRR_ucuc	$(\bar{c}_R \gamma^\mu u_R)(\bar{c}_R \gamma_\mu u_R)$	\mathbf{C}
CSLL_ucuc	$(\bar{c}_R u_L)(\bar{c}_R u_L)$	\mathbf{C}
CSRR_ucuc	$(\bar{c}_L u_R)(\bar{c}_L u_R)$	\mathbf{C}
CTLL_ucuc	$(\bar{c}_R \sigma^{\mu\nu} u_L)(\bar{c}_R \sigma_{\mu\nu} u_L)$	\mathbf{C}
CTRR_ucuc	$(\bar{c}_L \sigma^{\mu\nu} u_R)(\bar{c}_L \sigma_{\mu\nu} u_R)$	\mathbf{C}
CVLR_ucuc	$(\bar{c}_L \gamma^\mu u_L)(\bar{c}_R \gamma_\mu u_R)$	\mathbf{C}
CSLR_ucuc	$(\bar{c}_R u_L)(\bar{c}_L u_R)$	\mathbf{C}

sb

WC name	Operator	Type
C9_bsee	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{e}\gamma_{\mu}e)$	C
C9p_bsee	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^{\mu}b_R)(ar{e}\gamma_{\mu}e)$	\mathbf{C}
C10_bsee	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}b_L)(ar{e}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
C10p_bsee	$rac{4 ilde{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^\mu b_R)(ar{e}\gamma_\mu\gamma_5 e)$	\mathbf{C}
CS_bsee	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{e}e)$	\mathbf{C}
CSp_bsee	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}m_b(\bar{s}_R b_L)(\bar{e}e)$	\mathbf{C}
CP_bsee	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}m_b(ar{s}_Lb_R)(ar{e}\gamma_5e)$	\mathbf{C}
CPp_bsee	$rac{4ar{G}_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}rac{ar{e}^{2}}{16\pi^{2}}m_{b}(ar{s}_{R}b_{L})(ar{e}\gamma_{5}e)$	\mathbf{C}
C9_bsmumu	$rac{4 ilde{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^\mu b_L)(ar{\mu}\gamma_\mu\mu)$	\mathbf{C}
C9p_bsmumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^{\mu}b_R)(ar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
C10_bsmumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}b_L)(ar{\mu}\gamma_{\mu}\gamma_{5}\mu)$	\mathbf{C}
C10p_bsmumu	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^{\mu}b_R)(ar{\mu}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}
CS_bsmumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}m_b(ar{s}_Lb_R)(ar{\mu}\mu)$	\mathbf{C}
CSp_bsmumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}m_b(ar{s}_Rb_L)(ar{\mu}\mu)$	\mathbf{C}
CP_bsmumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}m_b(ar{s}_Lb_R)(ar{\mu}\gamma_5\mu)$	\mathbf{C}
CPp_bsmumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}m_b(ar{s}_Rb_L)(ar{\mu}\gamma_5\mu)$	\mathbf{C}
C9_bstautau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^\mu b_L)(ar{ au}\gamma_\mu au)$	\mathbf{C}

WC name	Operator	Type
C9p_bstautau	$rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16\pi^2} (ar{s}_R \gamma^{\mu} b_R) (ar{ au} \gamma_{\mu} au)$	С
C10_bstautau	$rac{4 ilde{G}_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16 \pi^2} (ar{s}_L \gamma^\mu b_L) (ar{ au} \gamma_\mu \gamma_5 au)$	C
C10p_bstautau	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{s}_{R}\gamma^{\mu}b_{R})(\bar{\tau}\gamma_{\mu}\gamma_{5}\tau)$	\mathbf{C}
CS_bstautau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{ au} au)$	\mathbf{C}
CSp_bstautau	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}\frac{e^{2}}{16\pi^{2}}m_{b}(\bar{s}_{R}b_{L})(\bar{ au} au)$	$^{\mathrm{C}}$
CP_bstautau	$rac{4 \tilde{Q}_F^2}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16 \pi^2} m_b (ar{s}_L b_R) (ar{ au} \gamma_5 au)$	\mathbf{C}
CPp_bstautau	$\frac{4\tilde{Q}_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}\frac{e^{2}}{16\pi^{2}}m_{b}(\bar{s}_{R}b_{L})(\bar{\tau}\gamma_{5}\tau)$	\mathbf{C}
C7_bs	$\frac{4\tilde{Q}_{F}^{2}}{\sqrt{2}}V_{tb}V_{ts}^{*}\frac{e}{16\pi^{2}}m_{b}(\bar{s}_{L}\sigma^{\mu\nu}b_{R})F_{\mu\nu}$	\mathbf{C}
C7p_bs	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e}{16\pi^2} m_b(\bar{s}_R \sigma^{\mu\nu} b_L) F_{\mu\nu}$	$^{\mathrm{C}}$
C8_bs	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}\frac{g_{s}}{16\pi^{2}}m_{b}(\bar{s}_{L}\sigma^{\mu\nu}T^{a}b_{R})G_{\mu\nu}^{a}$	$^{\mathrm{C}}$
C8p_bs	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{g_s}{16\pi^2}m_b(\bar{s}_R\sigma^{\mu\nu}T^ab_L)G^a_{\mu\nu}$	\mathbf{C}
CVLL_bsbb	$rac{4 \check{G}_F^F}{\sqrt{2}} V_{tb} V_{ts}^* (\bar{s}_L \gamma^\mu b_L) (\bar{b}_L \gamma_\mu b_L)$	\mathbf{C}
CVLR_bsbb	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L\gamma^\mu b_L)(ar{b}_R\gamma_\mu b_R)$	\mathbf{C}
CVRL_bsbb	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\gamma^\mu b_R)(ar{b}_L\gamma_\mu b_L)$	$^{\mathrm{C}}$
CVRR_bsbb	$\frac{\sqrt{2}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\gamma^{\mu}b_R)(ar{b}_R\gamma_{\mu}b_R)$	$^{\mathrm{C}}$
CSLL_bsbb	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Rb_L)(ar{b}_Rb_L)$	$^{\mathrm{C}}$
CSLR_bsbb	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Rb_L)(ar{b}_Lb_R)$	$^{\mathrm{C}}$
CSRL_bsbb	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Lb_R)(ar{b}_Rb_L)$	$^{\mathrm{C}}$
CSRR_bsbb	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Lb_R)(ar{b}_Lb_R)$	$^{\mathrm{C}}$
CTLL_bsbb	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\sigma^{\mu u}b_L)(ar{b}_R\sigma_{\mu u}b_L)$	$^{\mathrm{C}}$
CTRR_bsbb	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L\sigma^{\mu u}b_R)(ar{b}_L\sigma_{\mu u}b_R)$	$^{\mathrm{C}}$
CVLL_bsss	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L\gamma^\mu b_L)(ar{s}_L\gamma_\mu s_L)$	$^{\mathrm{C}}$
CVLR_bsss	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^\mu b_L)(\bar{s}_R\gamma_\mu s_R)$	$^{\mathrm{C}}$
CVRL_bsss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\gamma^\mu b_R)(ar{s}_L\gamma_\mu s_L)$	$^{\mathrm{C}}$
CVRR_bsss	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\gamma^{\mu}b_R)(\bar{s}_R\gamma_{\mu}s_R)$	$^{\mathrm{C}}$
CSLL_bsss	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Rb_L)(\bar{s}_Rs_L)$	$^{\mathrm{C}}$
CSLR_bsss	$\frac{{}^{4}\!$	$^{\mathrm{C}}$
CSRL_bsss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Lb_R)(ar{s}_Rs_L)$	$^{\mathrm{C}}$
CSRR_bsss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Lb_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CTLL_bsss	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\sigma^{\mu u}b_L)(ar{s}_R\sigma_{\mu u}s_L)$	$^{\mathrm{C}}$
CTRR_bsss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L\sigma^{\mu u}b_R)(ar{s}_L\sigma_{\mu u}s_R)$	$^{\mathrm{C}}$
CVLL_bsdd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L\gamma^\mu b_L)(ar{d}_L\gamma_\mu d_L)$	$^{\mathrm{C}}$
CVLR_bsdd	$\begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\sigma^{\mu\nu}b_R)(\bar{s}_L\sigma_{\mu\nu}s_R) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^{\mu}b_L)(\bar{d}_L\gamma_{\mu}d_L) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^{\mu}b_L)(\bar{d}_R\gamma_{\mu}d_R) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\gamma^{\mu}b_R)(\bar{d}_L\gamma_{\mu}d_L) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\gamma^{\mu}b_R)(\bar{d}_L\gamma_{\mu}d_L) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\gamma^{\mu}b_R)(\bar{d}_R\gamma_{\mu}d_R) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Rb_L)(\bar{d}_Rd_L) \end{array}$	$^{\mathrm{C}}$
CVRL_bsdd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\gamma^\mu b_R)(ar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVRR_bsdd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\gamma^\mu b_R)(ar{d}_R\gamma_\mu d_R)$	$^{\mathrm{C}}$
CSLL_bsdd	$\frac{4G_F}{G}V_{th}V_{to}^*(\bar{s}_Rb_L)(\bar{d}_Rd_L)$	$^{\mathrm{C}}$

WC name	Operator	Type
CSLR_bsdd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Rb_L)(\bar{d}_Ld_R)$	$^{\mathrm{C}}$
CSRL_bsdd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Lb_R)(ar{d}_Rd_L)$	\mathbf{C}
CSRR_bsdd	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Lb_R)(ar{d}_Ld_R)$	\mathbf{C}
CTLL_bsdd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\sigma^{\mu u}b_L)(ar{d}_R\sigma_{\mu u}d_L)$	\mathbf{C}
CTRR_bsdd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\sigma^{\mu u}b_R)(\bar{d}_L\sigma_{\mu u}d_R)$	\mathbf{C}
CVLLt_bsdd	$rac{4 \dot{G}_F}{\sqrt{2}} V_{tb} V_{ts}^* (ar{s}_L^lpha \gamma^\mu b_L^eta) (ar{d}_L^eta \gamma_\mu d_L^lpha)$	\mathbf{C}
CVLRt_bsdd	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha\gamma^\mu b_L^eta)(ar{d}_R^eta\gamma_\mu d_R^lpha)$	\mathbf{C}
CVRLt_bsdd	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* (ar{s}_R^lpha \gamma^\mu b_R^eta) (ar{d}_L^eta \gamma_\mu d_L^lpha)$	\mathbf{C}
CVRRt_bsdd	$rac{4 \overline{G_F}}{\sqrt{2}} V_{tb} V_{ts}^* (ar{s}_R^lpha \gamma^\mu b_R^eta) (ar{d}_R^eta \gamma_\mu d_R^lpha)$	\mathbf{C}
CSLLt_bsdd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R^{lpha}b_L^{eta})(\bar{d}_R^{eta}d_L^{lpha})$	$^{\mathrm{C}}$
CSLRt_bsdd	$rac{4reve{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha b_L^eta)(ar{d}_L^eta d_R^lpha)$	$^{\mathrm{C}}$
CSRLt_bsdd	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha b_R^eta)(ar{d}_R^eta d_L^lpha)$	$^{\mathrm{C}}$
CSRRt_bsdd	$rac{4reve{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha b_R^eta)(ar{d}_L^eta d_R^lpha)$	$^{\mathrm{C}}$
CTLLt_bsdd	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha\sigma^{\mu u}b_L^eta)(ar{d}_R^eta\sigma_{\mu u}d_L^lpha)$	$^{\mathrm{C}}$
CTRRt_bsdd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha\sigma^{\mu u}b_R^eta)(ar{d}_L^eta\sigma_{\mu u}d_R^lpha)$	$^{\mathrm{C}}$
CVLL_bsuu	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^\mu b_L)(\bar{u}_L\gamma_\mu u_L)$	$^{\mathrm{C}}$
CVLR_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^\mu b_L)(\bar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CVRL_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\gamma^\mu b_R)(\bar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVRR_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\gamma^\mu b_R)(\bar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CSLL_bsuu	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Rb_L)(ar{u}_Ru_L)$	$^{\mathrm{C}}$
CSLR_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Rb_L)(\bar{u}_Lu_R)$	\mathbf{C}
CSRL_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Lb_R)(\bar{u}_Ru_L)$	\mathbf{C}
CSRR_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Lb_R)(\bar{u}_Lu_R)$	\mathbf{C}
CTLL_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\sigma^{\mu\nu}b_L)(\bar{u}_R\sigma_{\mu\nu}u_L)$	$^{\mathrm{C}}$
CTRR_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\sigma^{\mu\nu}b_R)(\bar{u}_L\sigma_{\mu\nu}u_R)$	$^{\mathrm{C}}$
CVLLt_bsuu	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha\gamma^\mu b_L^eta)(ar{u}_L^eta\gamma_\mu u_L^lpha)$	$^{\mathrm{C}}$
CVLRt_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L^{lpha}\gamma^{\mu}b_L^{eta})(\bar{u}_R^{eta}\gamma_{\mu}u_R^{lpha})$	\mathbf{C}
CVRLt_bsuu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha\gamma^\mu b_R^eta)(ar{u}_L^eta\gamma_\mu u_L^lpha)$	\mathbf{C}
CVRRt_bsuu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha\gamma^\mu b_R^eta)(ar{u}_R^eta\gamma_\mu u_R^lpha)$	\mathbf{C}
CSLLt_bsuu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha b_L^eta)(ar{u}_R^eta u_L^lpha)$	\mathbf{C}
CSLRt_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R^{lpha}b_L^{eta})(\bar{u}_L^{eta}u_R^{lpha})$	$^{\mathrm{C}}$
CSRLt_bsuu	$\frac{4\widetilde{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L^lpha b_R^eta)(\bar{u}_R^eta u_L^lpha)$	\mathbf{C}
CSRRt_bsuu	$\frac{4\widetilde{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha b_R^eta)(ar{u}_L^eta u_R^lpha)$	\mathbf{C}
CTLLt_bsuu	$rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha\sigma^{\mu u}b_L^eta)(ar{u}_R^eta\sigma_{\mu u}u_L^lpha)$	\mathbf{C}
CTRRt_bsuu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar s_L^lpha\sigma^{\mu u}b_R^eta)(ar u_L^eta\sigma_{\mu u}u_R^lpha)$	$^{\mathrm{C}}$
CVLL_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L\gamma^\mu b_L)(ar{c}_L\gamma_\mu c_L)$	$^{\mathrm{C}}$

WC name	Operator	Type
CVLR_bscc	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^\mu b_L)(\bar{c}_R\gamma_\mu c_R)$	С
CVRL_bscc	$\frac{4\widetilde{G}_F^c}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\gamma^\mu b_R)(\bar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVRR_bscc	$\frac{4 \breve{G}_F}{\sqrt{2}} V_{tb} V_{ts}^* (\bar{s}_R \gamma^\mu b_R) (\bar{c}_R \gamma_\mu c_R)$	$^{\mathrm{C}}$
CSLL_bscc	$rac{4V_L^*}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Rb_L)(ar{c}_Rc_L)$	$^{\mathrm{C}}$
CSLR_bscc	$rac{4rack{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Rb_L)(ar{c}_Lc_R)$	$^{\mathrm{C}}$
CSRL_bscc	$rac{4rackle{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Lb_R)(ar{c}_Rc_L)$	$^{\mathrm{C}}$
CSRR_bscc	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Lb_R)(ar{c}_Lc_R)$	$^{\mathrm{C}}$
CTLL_bscc	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\sigma^{\mu u}b_L)(ar{c}_R\sigma_{\mu u}c_L)$	$^{\mathrm{C}}$
CTRR_bscc	$rac{4 \overline{G_F}}{\sqrt{2}} V_{tb} V_{ts}^* (ar{s}_L \sigma^{\mu u} b_R) (ar{c}_L \sigma_{\mu u} c_R)$	$^{\mathrm{C}}$
CVLLt_bscc	$rac{4 \overline{G_F}}{\sqrt{2}} V_{tb} V_{ts}^* (ar{s}_L^lpha \gamma^\mu b_L^eta) (ar{c}_L^eta \gamma_\mu c_L^lpha)$	$^{\mathrm{C}}$
CVLRt_bscc	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L^{\alpha}\gamma^{\mu}b_L^{\beta})(\bar{c}_R^{\beta}\gamma_{\mu}c_R^{\alpha})$	$^{\mathrm{C}}$
CVRLt_bscc	$rac{4rac{rack{G}_F}{\sqrt{2}}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha\gamma^\mu b_R^eta)(ar{c}_L^eta\gamma_\mu c_L^lpha)$	\mathbf{C}
CVRRt_bscc	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R^lpha\gamma^\mu b_R^eta)(\bar{c}_R^eta\gamma_\mu c_R^lpha)$	\mathbf{C}
CSLLt_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha b_L^eta)(ar{c}_R^eta c_L^lpha)$	\mathbf{C}
CSLRt_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha b_L^eta)(ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CSRLt_bscc	$rac{4G_F^2}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha b_R^eta)(ar{c}_R^eta c_L^lpha)$	\mathbf{C}
CSRRt_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha b_R^eta)(ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CTLLt_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha\sigma^{\mu u}b_L^eta)(ar{c}_R^eta\sigma_{\mu u}c_L^lpha)$	\mathbf{C}
CTRRt_bscc	$rac{4Q_F^2}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha\sigma^{\mu u}b_R^eta)(ar{c}_L^eta\sigma_{\mu u}c_R^lpha)$	С

cu

WC name	Operator	Type
C9_cuee	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}rac{e^2}{16\pi^2}(ar{u}_L\gamma^{\mu}c_L)(ar{e}\gamma_{\mu}e)$	С
C9p_cuee	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e^{2}}{16\pi^{2}}(\bar{u}_{R}\gamma^{\mu}c_{R})(\bar{e}\gamma_{\mu}e)$	\mathbf{C}
C10_cuee	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_L\gamma^{\mu}c_L)(\bar{e}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
C10p_cuee	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e^{2}}{16\pi^{2}}(\bar{u}_{R}\gamma^{\mu}c_{R})(\bar{e}\gamma_{\mu}\gamma_{5}e)$	\mathbf{C}
CS_cuee	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}m_c(\bar{u}_Lc_R)(\bar{e}e)$	\mathbf{C}
CSp_cuee	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}m_c(\bar{u}_Rc_L)(\bar{e}e)$	\mathbf{C}
CP_cuee	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}m_c(\bar{u}_Lc_R)(\bar{e}\gamma_5e)$	\mathbf{C}
CPp_cuee	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}rac{e^2}{16\pi^2}m_c(ar{u}_Rc_L)(ar{e}\gamma_5e)$	\mathbf{C}
C9_cumumu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_L\gamma^{\mu}c_L)(\bar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
C9p_cumumu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_R\gamma^{\mu}c_R)(\bar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
C10_cumumu	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e^{2}}{16\pi^{2}}(\bar{u}_{L}\gamma^{\mu}c_{L})(\bar{\mu}\gamma_{\mu}\gamma_{5}\mu)$	\mathbf{C}
C10p_cumumu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_R\gamma^{\mu}c_R)(\bar{\mu}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}

WC name	Operator	Type
CS_cumumu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}m_c(\bar{u}_Lc_R)(\bar{\mu}\mu)$	\mathbf{C}
CSp_cumumu	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e^{2}}{16\pi^{2}}m_{c}(\bar{u}_{R}c_{L})(\bar{\mu}\mu)$	\mathbf{C}
CP_cumumu	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}rac{e^2}{16\pi^2}m_c(ar{u}_Lc_R)(ar{\mu}\gamma_5\mu)$	\mathbf{C}
CPp_cumumu	$rac{4Q_F^2}{\sqrt{2}}V_{cb}^*V_{ub}rac{e^2}{16\pi^2}m_c(\bar{u}_Rc_L)(\bar{\mu}\gamma_5\mu)$	\mathbf{C}
C9_cutautau	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_L\gamma^{\mu}c_L)(\bar{\tau}\gamma_{\mu}\tau)$	\mathbf{C}
C9p_cutautau	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_R\gamma^{\mu}c_R)(\bar{\tau}\gamma_{\mu}\tau)$	\mathbf{C}
C10_cutautau	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_L\gamma^{\mu}c_L)(\bar{\tau}\gamma_{\mu}\gamma_5\tau)$	\mathbf{C}
C10p_cutautau	$\frac{4\tilde{G_F}}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_R\gamma^{\mu}c_R)(\bar{\tau}\gamma_{\mu}\gamma_5\tau)$	\mathbf{C}
CS_cutautau	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e^{2}}{16\pi^{2}}m_{c}(\bar{u}_{L}c_{R})(\bar{\tau}\tau)$	\mathbf{C}
CSp_cutautau	$\frac{4\tilde{G}_{z}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e^{2}}{16\pi^{2}}m_{c}(\bar{u}_{R}c_{L})(\bar{\tau}\tau)$	\mathbf{C}
CP_cutautau	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e^{2}}{16\pi^{2}}m_{c}(\bar{u}_{L}c_{R})(\bar{\tau}\gamma_{5}\tau)$	\mathbf{C}
CPp_cutautau	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e^{2}}{16\pi^{2}}m_{c}(\bar{u}_{R}c_{L})(\bar{\tau}\gamma_{5}\tau)$	\mathbf{C}
C7_cu	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e}{16\pi^{2}}m_{c}(\bar{u}_{L}\sigma^{\mu\nu}c_{R})F_{\mu\nu}$	\mathbf{C}
C7p_cu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e}{16\pi^2}m_c(\bar{u}_R\sigma^{\mu\nu}c_L)F_{\mu\nu}$	\mathbf{C}
C8_cu	$\frac{4G_F}{\epsilon}V_s^*V_{ab}\frac{g_s}{\epsilon^2}m_a(\bar{u}_I\sigma^{\mu\nu}T^ac_P)G^a$	\mathbf{C}
C8p_cu	$\frac{\sqrt{2}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{g_{s}}{16\pi^{2}}m_{c}(\bar{u}_{R}\sigma^{\mu\nu}T^{a}c_{L})G_{\mu\nu}^{a}$	\mathbf{C}
CVLL_cucc	$rac{4G_L^2}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{c}_L\gamma_\mu c_L)$	$^{\mathrm{C}}$
CVLR_cucc	$rac{4\overset{\sim}{Q_L^2}}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L\gamma^\mu c_L)(ar{c}_R\gamma_\mu c_R)$	\mathbf{C}
CVRL_cucc	$\frac{4G_F^2}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVRR_cucc	$\frac{4G_F^2}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{c}_R\gamma_\mu c_R)$	\mathbf{C}
CSLL_cucc	$\frac{4Q_L^2}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{c}_Rc_L)$	\mathbf{C}
CSLR_cucc	$\frac{\frac{4\ddot{G_F}}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{c}_Rc_L)}{\frac{4\ddot{G_F}}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{c}_Lc_R)}$	\mathbf{C}
CSRL_cucc	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{c}_Rc_L)$	\mathbf{C}
CSRR_cucc	$\frac{\sqrt[4]{c_L}}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{c}_Lc_R)$	\mathbf{C}
CTLL_cucc	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\sigma^{\mu\nu}c_L)(\bar{c}_R\sigma_{\mu\nu}c_L)$	\mathbf{C}
CTRR_cucc	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\sigma^{\mu\nu}c_R)(\bar{c}_L\sigma_{\mu\nu}c_R)$	\mathbf{C}
CVLL_cuuu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVLR_cuuu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CVRL_cuuu	$\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVRR_cuuu	$\frac{4 \overleftarrow{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{u}_R \gamma_\mu u_R)$	\mathbf{C}
CSLL_cuuu	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{u}_Ru_L)$	\mathbf{C}
CSLR_cuuu	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{u}_Lu_R)$	\mathbf{C}
CSRL_cuuu	$\frac{4\tilde{G}_L^2}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{u}_Ru_L)$	\mathbf{C}
CSRR_cuuu	$rac{4G_F^2}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{u}_Lu_R)$	\mathbf{C}
CTLL_cuuu	$\frac{4G_F^2}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\sigma^{\mu\nu}c_L)(\bar{u}_R\sigma_{\mu\nu}u_L)$	\mathbf{C}
CTRR_cuuu	$\frac{4G_F^2}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\sigma^{\mu\nu}c_R)(\bar{u}_L\sigma_{\mu\nu}u_R)$	\mathbf{C}

$ \begin{array}{c} \text{L.} \text{cubb} & \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^{\mu} c_L) (\bar{b}_L \gamma_{\mu} b_L) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^{\mu} c_L) (\bar{b}_R \gamma_{\mu} b_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^{\mu} c_R) (\bar{b}_R \gamma_{\mu} b_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^{\mu} c_R) (\bar{b}_R \gamma_{\mu} b_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^{\mu} c_R) (\bar{b}_R \gamma_{\mu} b_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^{\mu} c_R) (\bar{b}_R \gamma_{\mu} b_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{b}_R b_L) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{b}_L b_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L c_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{c}_L c_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{c}_L c_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{c}_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^2 c_R) (\bar{b}_R^2 c_R) \\ \frac{4C_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_R) (\bar{d}_R c_R)$	- III	0	
$\begin{array}{c} \text{AR_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{b}_R \gamma_\mu b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{b}_L \gamma_\mu b_L) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{b}_R \gamma_\mu b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{b}_L b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L^* c_R) (\bar{b}_L c_R) (\bar{b}_L c_R) (\bar{b}_L c_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L^* c_R) (\bar{b}_L c_R) (\bar{b}_R c_R) (\bar{b}_R^* c_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_L^* c_R) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R) \\ \text{AL_cubb} & \frac{4 \overline{G_F}}{G_F} V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R) \\ $	WC name	Operator	Type
$\begin{array}{c} \text{LL_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{b}_L\gamma_\mu b_L)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{b}_R\gamma_\mu b_R)} & C \\ \text{LL_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{b}_R\gamma_\mu b_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{b}_Lb_R)} & C \\ \text{LL_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{b}_Lb_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lb_R)} & C \\ \text{LL_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lb_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lb_R)} & C \\ \text{LL_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lb_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Rb_R)} & C \\ \text{LL_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_R^*)(\bar{b}_R^*c_R)(\bar{b}_R^*c_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_R^*)(\bar{b}_R^*c_R)(\bar{b}_R^*c_R)} & C \\ \text{LL_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_R^*c_R^*)(\bar{b}_R^*c_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_R^*c_R^*)(\bar{b}_R^*c_R)} & C \\ \text{LL_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R^*c_R^*)(\bar{b}_R^*c_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R^*)(\bar{b}_L^*c_R)} & C \\ \text{LL_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R^*)(\bar{b}_L^*c_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R^*)(\bar{b}_L^*c_R)} & C \\ \text{LL_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R^*)(\bar{b}_L^*c_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R^*)(\bar{b}_L^*c_R)} & C \\ \text{LL_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_L^*c_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_L^*c_R)} & C \\ \text{LL_cubd} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{d}_Lc_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{d}_Lc_R)} & C \\ \text{LL_cudd} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{d}_Lc_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{d}_Lc_R)} & C \\ \text{LL_cudd} & \frac{4G_E}{G_E}V$	CVLL_cubb		
$\begin{array}{c} \text{Re_cubb} & \frac{4 \bar{G}^c}{4 E^c} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{b}_R \gamma_\mu b_R) \\ \text{Ll_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{b}_R b_L)} \\ \text{Cl.} \\ \text{Re_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{b}_L b_R)} \\ \text{Cl.} \\ \text{Ll_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{b}_L b_R)} \\ \text{Cl.} \\ \text{Re_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R)} \\ \text{Cl.} \\ \text{Ll_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R)} \\ \text{Cl.} \\ \text{Ll_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L b_R)} \\ \text{Cl.} \\ \text{Ll_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L c_R \mu_b b_L)} \\ \text{Cl.} \\ \text{Re_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L c_R \mu_b b_L)} \\ \text{Cl.} \\ \text{Ll_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L c_R \mu_b b_L)} \\ \text{Cl.} \\ \text{Ll_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L c_R \mu_b b_L)} \\ \text{Cl.} \\ \text{Rl_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{b}_L c_R \mu_b b_L)} \\ \text{Cl.} \\ \text{Rl_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R^* c_R) (\bar{b}_L^* c_R \mu_b^* c_R)} \\ \text{Cl.} \\ \text{Rl_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R^* c_R) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R) b_R^* c_R} \\ \text{Rl_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R)} \\ \text{Rl_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R)} \\ \text{Rl_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R)} \\ \text{Rl_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R)} \\ \text{Rl_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R)} \\ \text{Rl_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R)} \\ \text{Rl_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R^* c_R^*) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R) (\bar{b}_R^* c_R)} \\ \text{Rl_cubb} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R^* c_R) (\bar{d}_R^* c_R) (\bar{d}_R^* c_R)} \\ \text{Rl_cubd} & \frac{4 \bar{G}_E}{4 V_{cb}^* V_{ub} (\bar{u}_R^* c_R) (\bar{d}_R^* c_R$	CVLR_cubb	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L\gamma^\mu c_L)(b_R\gamma_\mu b_R)$	
$\begin{array}{c} \text{Ll_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{b}_Rb_L)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{b}_Lb_R)} & \text{C} \\ \text{Rl_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{b}_Lb_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Rb_L)} & \text{C} \\ \text{Rl_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lb_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lb_R)} & \text{C} \\ \text{Ll_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lb_R)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lc_R)_{ub}^*D_L)} & \text{C} \\ \text{Rl_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lc_R)_{ub}^*D_L)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lc_R)_{ub}^*D_L)} & \text{C} \\ \text{Rl_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lc_R)_{ub}^*D_L)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lc_R)_{ub}^*D_L)} & \text{C} \\ \text{Rl_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_R)(\bar{b}_Lc_R)_{ub}^*D_L)}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_R)(\bar{b}_Rc_R)(\bar{b}_R^*c_R)_{ub}^*D_L} & \text{C} \\ \text{Rl_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_R)(\bar{b}_Rc_R)_{ub}^*D_L}{4G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_R)(\bar{b}_Rc_R)} & \text{C} \\ \text{Rl_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_R)(\bar{b}_Rc_R)_{ub}^*D_L} & \text{C} \\ \text{Rl_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_R)(\bar{b}_Rc_R)_{ub}^*D_L} & \text{C} \\ \text{Rl_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Rc_R)(\bar{b}_Rc_R)_{ub}^*D_L} & \text{C} \\ \text{Rl_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_Rc_R)(\bar{b}_Rc_R)_{ub}^*D_L} & \text{C} \\ \text{Rl_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_Rc_R)(\bar{b}_Rc_Rc_R)_{ub}^*D_L} & \text{C} \\ \text{Rl_cubb} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_Rc_R)(\bar{d}_Rc_Rc_R)_{ub}^*D_L} & \text{C} \\ \text{Rl_cubd} & \frac{4G_E}{G_E}V_{cb}^*V_{ub}(\bar{u}_Lc_Rc_Rc_R)(\bar{d}_Rc_Rc_Rc_Rc_Rc_Rc_Rc_Rc_Rc_Rc_Rc_Rc_Rc_$	CVRL_cubb	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(b_L\gamma_\mu b_L)$	
$\begin{array}{c} \text{R.cubb} & \frac{4G^{\prime}_{P}}{4G^{\prime}_{P}}V_{cb}^{*}V_{ub}(\bar{u}_{R}c_{L})(\bar{b}_{L}b_{R}) \\ \text{C.} \\ \text{L.cubb} & \frac{4G^{\prime}_{P}}{4G^{\prime}_{P}}V_{cb}^{*}V_{ub}(\bar{u}_{L}c_{R})(\bar{b}_{R}b_{L}) \\ \text{C.} \\ \text{R.cubb} & \frac{4G^{\prime}_{P}}{4G^{\prime}_{P}}V_{cb}^{*}V_{ub}(\bar{u}_{L}c_{R})(\bar{b}_{L}b_{R}) \\ \text{C.} \\ \text{L.cubb} & \frac{4G^{\prime}_{P}}{4G^{\prime}_{P}}V_{cb}^{*}V_{ub}(\bar{u}_{L}c_{R})(\bar{b}_{L}b_{R}) \\ \text{C.} \\ \text{L.cubb} & \frac{4G^{\prime}_{P}}{4G^{\prime}_{P}}V_{cb}^{*}V_{ub}(\bar{u}_{L}c_{R})(\bar{b}_{L}b_{R}) \\ \text{C.} \\ \text{L.t.cubb} & \frac{4G^{\prime}_{P}}{4G^{\prime}_{P}}V_{cb}^{*}V_{ub}(\bar{u}_{L}c_{R})^{\prime\prime}c_{L}^{*})(\bar{b}_{L}^{\prime}c_{\mu\nu}b_{R}) \\ \text{C.} \\ \text{L.t.cubb} & \frac{4G^{\prime}_{P}}{4G^{\prime}_{P}}V_{cb}^{*}V_{ub}(\bar{u}_{L}^{\prime}c_{R})^{\prime\prime}c_{L}^{*})(\bar{b}_{L}^{\prime}c_{\mu\nu}b_{R}) \\ \text{C.} \\ \text{C.t.t.cubb} & \frac{4G^{\prime}_{P}}{4G^{\prime}_{P}}V_{cb}^{*}V_{ub}(\bar{u}_{L}^{\prime}c_{R})^{\prime\prime}c_{L}^{*})(\bar{b}_{L}^{\prime}c_{\mu\nu}b_{R}^{\prime\prime}) \\ \text{C.c.} \\ \text{R.t.cubb} & \frac{4G^{\prime}_{P}}{4G^{\prime}_{P}}V_{cb}^{*}V_{ub}(\bar{u}_{L}^{\prime}c_{R}^{\prime\prime}c_{R}^{\prime\prime})(\bar{b}_{L}^{\prime}c_{\mu\nu}b_{R}^{\prime\prime}) \\ \text{C.c.} \\ \text{R.t.cubb} & \frac{4G^{\prime}_{P}}{4G^{\prime}_{P}}V_{cb}^{*}V_{ub}(\bar{u}_{L}^{\prime}c_{R}^{\prime\prime}c_{R}^{\prime\prime}c_{R}^{\prime\prime})(\bar{b}_{L}^{\prime}c_{\mu\nu}b_{R}^{\prime\prime}) \\ \text{C.c.} \\ \text{R.t.cubb} & \frac{4G^{\prime}_{P}}{4Q^{\prime}_{P}}V_{cb}^{*}V_{ub}(\bar{u}_{L}^{\prime}c_{R}^{\prime\prime}c_{R}^{$	CVRR_cubb	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R\gamma^\mu c_R)(b_R\gamma_\mu b_R)$	
$\begin{array}{c} \text{LL_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_Lc_R)(\bar{b}_Rb_L) \\ \text{RR_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lb_R) \\ \text{LL_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_Lc_R)(\bar{b}_Lb_R) \\ \text{RR_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R\sigma^{\mu\nu}c_L)(\bar{b}_R\sigma_{\mu\nu}b_L) \\ \text{RR_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_L\sigma^{\mu\nu}c_R)(\bar{b}_L\sigma_{\mu\nu}b_R) \\ \text{LL_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_L^{\alpha}\gamma^{\mu}c_L^{\beta})(\bar{b}_L^{\beta}\gamma_{\mu}b_L^{\alpha}) \\ \text{RR_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_L^{\alpha}\gamma^{\mu}c_L^{\beta})(\bar{b}_L^{\beta}\gamma_{\mu}b_L^{\alpha}) \\ \text{RR_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R^{\alpha}\gamma^{\mu}c_R^{\beta})(\bar{b}_L^{\beta}\gamma_{\mu}b_R^{\alpha}) \\ \text{RR_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R^{\alpha}\gamma^{\mu}c_R^{\beta})(\bar{b}_L^{\beta}\gamma_{\mu}b_R^{\alpha}) \\ \text{RR_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R^{\alpha}\gamma^{\mu}c_R^{\beta})(\bar{b}_R^{\beta}\gamma_{\mu}b_R^{\alpha}) \\ \text{RR_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R^{\alpha}\gamma^{\mu}c_R^{\beta})(\bar{b}_R^{\beta}\gamma_{\mu}b_R^{\alpha}) \\ \text{RR_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R^{\alpha}c_L^{\beta})(\bar{b}_R^{\beta}b_L^{\alpha}) \\ \text{RR_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R^{\alpha}c_L^{\alpha})(\bar{b}_R^{\beta}b_L^{\alpha}) \\ \text{RR_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R^{\alpha}c_L^{\alpha})(\bar{b}_R^{\beta}a_L^{\alpha}) \\ \text{RR_cubb} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R^{\alpha}c_L^{\alpha})(\bar{b}_R^{\alpha}a_L^{\alpha}) \\ \text{RR_cudd} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R^{\alpha}c_L^{\alpha})(\bar{d}_R^{\alpha}a_L^{\alpha}) \\ \text{RR_cudd} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R^{\alpha}c_L^{\alpha})(\bar{d}_R^{\alpha}a_L^{\alpha}) \\ \text{RR_cudd} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R^{\alpha}c_L^{\alpha})(\bar{d}_R^{\alpha}a_L^{\alpha}) \\ \text{RR_cudd} & \frac{4G_F}{C_F}V_{cb}V_{ub}(\bar{u}_R^{\alpha}c_L^{\alpha})(\bar{d}_R^{\alpha}c_L^{\alpha}) \\ RR_cu$	CSLL_cubb		
$\begin{array}{c} \operatorname{Re}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_L c_R) (\overline{b}_L b_R) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R \sigma^{\mu\nu} c_L) (\overline{b}_R \sigma_{\mu\nu} b_L) \\ \operatorname{Re}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_L \sigma^{\mu\nu} c_R) (\overline{b}_L \sigma_{\mu\nu} b_R) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_L \sigma^{\mu\nu} c_R) (\overline{b}_L \sigma_{\mu\nu} b_R) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_L^{\alpha} \gamma^{\mu} c_L^{\beta}) (\overline{b}_R^{\beta} \gamma_{\mu} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} \gamma^{\mu} c_R^{\beta}) (\overline{b}_R^{\beta} \gamma_{\mu} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} \gamma^{\mu} c_R^{\beta}) (\overline{b}_R^{\beta} \gamma_{\mu} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} \gamma^{\mu} c_R^{\beta}) (\overline{b}_R^{\beta} \gamma_{\mu} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_R^{\mu} c_R^{\beta}) (\overline{b}_R^{\beta} \gamma_{\mu} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_L^{\beta}) (\overline{b}_R^{\beta} \beta_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_L^{\beta}) (\overline{b}_R^{\beta} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_R^{\beta}) (\overline{b}_R^{\beta} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_R^{\beta}) (\overline{b}_R^{\beta} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_R^{\beta}) (\overline{b}_R^{\beta} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_R^{\beta}) (\overline{b}_R^{\beta} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_R^{\beta}) (\overline{b}_R^{\beta} a_{\mu\nu} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_R^{\beta}) (\overline{b}_R^{\beta} a_{\mu\nu} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_R^{\beta}) (\overline{b}_R^{\beta} a_{\mu\nu} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_R^{\beta}) (\overline{b}_R^{\beta} a_{\mu\nu} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_R^{\beta}) (\overline{b}_R^{\beta} a_{\mu\nu} b_R^{\alpha}) \\ \operatorname{Le}_{\operatorname{cubb}} & \frac{4 \overline{G_F}}{2} V_{cb}^* V_{ub} (\overline{u}_R^{\alpha} c_R^{\beta}) (\overline{d}_R^{\beta} a_{\mu\nu} b_R^{\alpha}) \\ Le$	CSLR_cubb		
$\begin{array}{c} \text{LL_cubb} & \frac{4G_F}{2}V_{cb}^*V_{ub}(\bar{u}_R\sigma^{\mu\nu}c_L)(\bar{l}_R\sigma_{\mu\nu}b_L) \\ \text{RR_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\sigma^{\mu\nu}c_R)(\bar{l}_L\sigma_{\mu\nu}b_R) \\ \text{CLt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\sigma^{\mu\nu}c_R)(\bar{l}_L\sigma_{\mu\nu}b_R) \\ \text{CLt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^2\gamma^{\mu}c_L^2)(\bar{b}_R^2\gamma_{\mu}b_L^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^2\gamma^{\mu}c_L^2)(\bar{b}_R^2\gamma_{\mu}b_L^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^2\gamma^{\mu}c_R^2)(\bar{b}_R^2\gamma_{\mu}b_L^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^2\gamma^{\mu}c_R^2)(\bar{b}_R^2\gamma_{\mu}b_L^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^2\gamma^{\mu}c_R^2)(\bar{b}_R^2\gamma_{\mu}b_L^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^2\gamma^{\mu}c_R^2)(\bar{b}_R^2\gamma_{\mu}b_L^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^2\gamma^{\mu}c_R^2)(\bar{b}_R^2\gamma_{\mu}b_L^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^2c_L^2)(\bar{b}_R^2\beta_R^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^2c_L^2)(\bar{b}_R^2\beta_R^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^2\alpha_R^2)(\bar{b}_R^2\beta_R^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^2\alpha_L^2)(\bar{b}_R^2\gamma_{\mu}b_L^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^2\alpha_L^2)(\bar{b}_R^2\gamma_{\mu}b_L^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^2\alpha_L^2)(\bar{d}_L\gamma_{\mu}d_L) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\alpha_L^2)(\bar{d}_L\gamma_{\mu}d_L) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\alpha_L^2)(\bar{d}_L\gamma_{\mu}d_L) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\alpha_L^2)(\bar{d}_R\gamma_{\mu}d_R) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\alpha_L^2)(\bar{d}_R\gamma_{\mu}d_R) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\alpha_L^2)(\bar{d}_R\gamma_{\mu}d_R) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\alpha_L^2)(\bar{d}_R\alpha_L) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\alpha_L^2)(\bar{d}_R\alpha_L) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\alpha_L^2)(\bar{d}_L\alpha_L) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\alpha_L^2)(\bar{d}_R\alpha_L^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\alpha_L^2)(\bar{d}_R\alpha_L^2) \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\alpha_L^2)(\bar$	CSRL_cubb		
$\begin{array}{c} \frac{4G_F}{2}V_{cb}^*V_{ub}(\bar{u}_L\sigma^{\mu\nu}c_R)(\bar{b}_L\sigma_{\mu\nu}b_R) & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha\gamma^{\mu}c_R^\beta)(\bar{b}_L^\beta\gamma_{\mu}b_L^\alpha) & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha\gamma^{\mu}c_L^\beta)(\bar{b}_R^\beta\gamma_{\mu}b_L^\alpha) & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha\gamma^{\mu}c_R^\beta)(\bar{b}_L^\beta\gamma_{\mu}b_L^\alpha) & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha\gamma^{\mu}c_R^\beta)(\bar{b}_R^\beta\gamma_{\mu}b_R^\alpha) & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha\gamma^{\mu}c_R^\beta)(\bar{b}_R^\beta\gamma_{\mu}b_R^\alpha) & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\beta)(\bar{b}_R^\beta\beta_L^\alpha) & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\beta)(\bar{b}_R^\beta\beta_L^\alpha) & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha\beta_R^\beta)(\bar{b}_R^\beta\beta_L^\alpha) & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^{\mu}c_L)(\bar{d}_L\gamma_{\mu}d_L) & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^{\mu}c_R)(\bar{d}_L\gamma_{\mu}d_R) & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^{\mu}c_R)(\bar{d}_R\gamma_{\mu}d_R) & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\alpha_R)(\bar{d}_R\beta_L) & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\alpha_R)(\bar{d}_L\beta_L) & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\alpha_R)(\bar{d}_L\beta_L) & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\alpha_R)(\bar{d}_L\beta_L) & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\alpha_R\gamma^{\mu}c_L)(\bar{d}_R\beta_L) & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\alpha_R\gamma^{\mu}c_L)(\bar{d}_R\beta_L) & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^{\mu}c_L)(\bar{d}_R\beta_L) & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}}$	CSRR_cubb		
$\begin{array}{c} \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} \gamma^{\mu} c_L^{\beta}) (\bar{b}_L^{\beta} \gamma_{\mu} b_L^{\alpha})}{V_c^b V_{ub} (\bar{u}_L^{\alpha} \gamma^{\mu} c_L^{\beta}) (\bar{b}_R^{\beta} \gamma_{\mu} b_R^{\alpha})} & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^{\alpha} \gamma^{\mu} c_R^{\beta}) (\bar{b}_R^{\beta} \gamma_{\mu} b_R^{\alpha})}{V_c^b V_{cb} V_{ub} (\bar{u}_R^{\alpha} \gamma^{\mu} c_R^{\beta}) (\bar{b}_R^{\beta} \gamma_{\mu} b_R^{\alpha})} & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^{\alpha} \gamma^{\mu} c_R^{\beta}) (\bar{b}_R^{\beta} \gamma_{\mu} b_R^{\alpha})}{V_c^b V_{cb} V_{ub} (\bar{u}_R^{\alpha} \gamma^{\mu} c_R^{\beta}) (\bar{b}_R^{\beta} \gamma_{\mu} b_R^{\alpha})} & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^{\alpha} \gamma^{\mu} c_R^{\beta}) (\bar{b}_R^{\beta} b_L^{\alpha})}{V_c^b V_{ub} (\bar{u}_R^{\alpha} c_L^{\beta}) (\bar{b}_R^{\beta} b_L^{\alpha})} & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^{\alpha} c_L^{\beta}) (\bar{b}_R^{\beta} b_L^{\alpha})}{V_c^2 V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_R^{\beta}) (\bar{b}_R^{\beta} b_L^{\alpha})} & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_R^{\beta}) (\bar{b}_R^{\beta} b_L^{\alpha})}{V_c^2 V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_R^{\beta}) (\bar{b}_R^{\beta} b_L^{\alpha})} & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_R^{\beta}) (\bar{b}_R^{\beta} b_L^{\alpha})}{V_c^2 V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_R^{\beta}) (\bar{b}_L^{\beta} c_R^{\alpha})} & C \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_R^{\beta}) (\bar{b}_L^{\beta} c_R^{\alpha})}{V_c^2 V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_R^{\beta}) (\bar{b}_L^{\beta} c_R^{\alpha})} & C \\ \text{Lt_cubd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_L^{\alpha}) (\bar{d}_L c_L^{\alpha} d_L)}{V_c^2 V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_L^{\alpha}) (\bar{d}_L^{\alpha} c_L)} & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_L^{\alpha}) (\bar{d}_L^{\alpha} c_L)}{V_c^2 V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_L) (\bar{d}_L^{\alpha} c_L)} & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_L) (\bar{d}_L^{\alpha} c_L)}{V_c^2 V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_L) (\bar{d}_L^{\alpha} c_L)} & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_L) (\bar{d}_L^{\alpha} c_L)}{V_c^2 V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_L^{\alpha}) (\bar{d}_L^{\alpha} c_L)} & C \\ \text{Lt_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_L^{\alpha}) (\bar{d}_L^{\alpha} c_L^{\alpha})}{V_c^2 V_{cb}^* V_{ub} (\bar{u}_L^{\alpha} c_L^{\alpha}) (\bar{d}_L^{\alpha} c_$	CTLL_cubb	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R\sigma^{\mu u}c_L)(b_R\sigma_{\mu u}b_L)$	
$\begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\overline{u}_L^\alpha\gamma^\mu c_L^\beta)(\bar{b}_R^\beta\gamma_\mu b_R^\alpha)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\overline{u}_R^\alpha\gamma^\mu c_R^\beta)(\bar{b}_L^\beta\gamma_\mu b_L^\alpha)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\overline{u}_R^\alpha\gamma^\mu c_R^\beta)(\bar{b}_R^\beta\gamma_\mu b_R^\alpha)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\overline{u}_R^\alpha\gamma^\mu c_R^\beta)(\bar{b}_R^\beta\gamma_\mu b_R^\alpha)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\overline{u}_R^\alpha c_L^\beta)(\bar{b}_R^\beta b_L^\alpha)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\overline{u}_L^\alpha c_R^\beta)(\bar{b}_L^\beta b_R^\alpha)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\overline{u}_L^\alpha c_R^\beta)(\bar{b}_L^\beta b_R^\alpha)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\overline{u}_R^\alpha c_R^\mu)(\bar{b}_L^\beta c_R^\mu)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\overline{u}_R^\alpha c_R^\mu)(\bar{b}_L^\beta c_R^\mu)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\overline{u}_L^\alpha c_R^\mu)(\bar{b}_L^\beta c_R^\mu)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\overline{u}_L^\alpha c_R^\mu)(\bar{b}_L^\beta c_R^\mu)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\overline{u}_L^\alpha c_L^\mu)(\bar{d}_L^\alpha c_L^\mu)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\mu)(\bar{d}_R^\alpha c_L^\mu)}{\sqrt{2}} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\mu)(\bar{d}_L^\alpha c_L^\mu)}{C} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\mu)(\bar{d}_L^\alpha c_L^\mu)}{C} & C \\ \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\mu)(\bar{d}_L$	CTRR_cubb		_
$\begin{array}{c} \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{b}_R^\beta \gamma_\mu b_R^\alpha) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{b}_R^\beta \gamma_\mu b_R^\alpha) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{b}_R^\beta \gamma_\mu b_R^\alpha) \\ \text{C} \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_L^\beta) (\bar{b}_R^\beta b_L^\alpha) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_L^\beta) (\bar{b}_R^\beta b_R^\alpha) \\ \text{C} \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_L^\beta) (\bar{b}_R^\beta b_R^\alpha) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_R^\beta) (\bar{b}_R^\beta b_R^\alpha) \\ \text{C} \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_R^\mu) (\bar{b}_R^\beta b_R^\alpha) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_R^\mu) (\bar{b}_R^\beta c_R^\mu) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_R^\mu) (\bar{b}_R^\beta c_R^\mu) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_R^\mu) (\bar{b}_R^\beta c_R^\mu) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha c_R^\mu) (\bar{d}_L c_R^\mu) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R^\mu) (\bar{d}_L c_R^\mu) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R^\mu) (\bar{d}_L c_R^\mu) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L^\mu) (\bar{d}_R c_R^\mu) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_R^\mu) (\bar{d}_R^\mu) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\mu) \\ \frac{4G_F}{\sqrt{2}} V_{cb}^* V_$	CVLLt_cubb	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha\gamma^\mu c_L^eta)(b_L^eta\gamma_\mu b_L^lpha)$	\mathbf{C}
$\begin{array}{c} \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha\gamma^\mu c_R^\beta)(\bar{b}_R^\beta\gamma_\mu b_R^\alpha) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha\gamma^\mu c_R^\beta)(\bar{b}_R^\beta\gamma_\mu b_R^\alpha) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\beta)(\bar{b}_R^\beta b_L^\alpha) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\beta)(\bar{b}_R^\beta b_R^\alpha) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\beta)(\bar{b}_R^\beta b_R^\alpha) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\beta)(\bar{b}_R^\beta b_R^\alpha) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_R^\mu)(\bar{b}_R^\beta c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_R^\mu)(\bar{b}_R^\beta c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_R^\mu)(\bar{b}_R^\beta c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\mu)(\bar{b}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\mu)(\bar{b}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\mu)(\bar{d}_L^\alpha c_R^\mu) \\ \times Lt_{cubb} \end{array} & \begin{array}{c} \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}($	CVLRt_cubb	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha\gamma^\mu c_L^eta)(ar{b}_R^eta\gamma_\mu b_R^lpha)$	$^{\mathrm{C}}$
$ \begin{array}{c} \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\beta)(\bar{b}_R^\beta b_L^\alpha) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\beta)(\bar{b}_L^\beta b_R^\alpha) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\beta)(\bar{b}_L^\beta b_R^\alpha) \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\beta)(\bar{b}_L^\beta b_R^\alpha) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\beta)(\bar{b}_L^\beta b_R^\alpha) \\ \text{Ct.} \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha \sigma^{\mu\nu} c_L^\beta)(\bar{b}_R^\beta b_R^\alpha) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_L^\alpha \sigma^{\mu\nu} c_R^\beta)(\bar{b}_L^\beta b_R^\alpha) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_L^\alpha \sigma^{\mu\nu} c_R^\beta)(\bar{b}_L^\beta \sigma_{\mu\nu} b_R^\alpha) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_L^\alpha \sigma^{\mu\nu} c_R^\beta)(\bar{b}_L^\beta \sigma_{\mu\nu} b_R^\alpha) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_L^\alpha \sigma^{\mu\nu} c_R^\beta)(\bar{b}_L^\beta \sigma_{\mu\nu} b_R^\alpha) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{d}_L\gamma_\mu d_L) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{d}_L\gamma_\mu d_L) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{d}_L\gamma_\mu d_L) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{d}_R\gamma_\mu d_R) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{d}_R\gamma_\mu d_R) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{d}_Rd_L) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{d}_Rd_L) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{d}_Rd_L) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{d}_Ld_R) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{d}_Ld_R) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{d}_Ld_R) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_L\sigma^\mu c_L)(\bar{d}_R\sigma_\mu d_L) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_R\sigma^\mu c_L)(\bar{d}_R\sigma_\mu d_R) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_R\sigma^\mu c_L)(\bar{d}_R\sigma_\mu d_R) \\ \sqrt{2}V_{cb}^*V_{ub}(\bar{u}_R\sigma^\mu c_L)(\bar{d}_R\sigma_\mu d_R)$	CVRLt_cubb	$rac{4ar{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha\gamma^\mu c_R^eta)(ar{b}_L^eta\gamma_\mu b_L^lpha)$	$^{\mathrm{C}}$
$\begin{array}{c} \text{Rt}_\text{cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\beta)(\bar{b}_B^\beta b_R^\alpha) & \text{C} \\ \text{Rt}_\text{cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\beta)(\bar{b}_B^\beta b_L^\alpha) & \text{C} \\ \text{Rt}_\text{cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\beta)(\bar{b}_B^\beta b_L^\alpha) & \text{C} \\ \text{Rt}_\text{cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\mu)(\bar{b}_B^\beta b_R^\alpha) & \text{C} \\ \text{Lt}_\text{cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha \sigma^{\mu\nu}c_L^\beta)(\bar{b}_R^\beta \sigma_{\mu\nu}b_L^\alpha) & \text{C} \\ \text{Rt}_\text{cubb} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha \sigma^{\mu\nu}c_R^\beta)(\bar{b}_L^\beta \sigma_{\mu\nu}b_R^\alpha) & \text{C} \\ \text{Lt}_\text{cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{d}_L\gamma_\mu d_L) & \text{C} \\ \text{Lt}_\text{cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{d}_R\gamma_\mu d_R) & \text{C} \\ \text{Rt}_\text{cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{d}_L\gamma_\mu d_L) & \text{C} \\ \text{Rt}_\text{cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{d}_R\gamma_\mu d_R) & \text{C} \\ \text{Rt}_\text{cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{d}_R\gamma_\mu d_R) & \text{C} \\ \text{Rt}_\text{cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{d}_R\beta_\mu d_R) & \text{C} \\ \text{Rt}_\text{cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{d}_R\beta_\mu d_R) & \text{C} \\ \text{Rt}_\text{cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{d}_L\beta_R) & \text{C} \\ \text{Rt}_\text{cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\beta_R\beta_L)(\bar{d}_L\beta_R\beta_L) & \text{C} \\ \text{Rt}_\text{cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\beta_R\beta_L)(\bar{d}_L\beta_R\beta_L) & \text{C} \\ \text{Rt}_\text{cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\beta_R\beta_L)(\bar{d}_L\beta_R\beta_L) & \text{C} \\ \text{Rt}_\text{cudd} & \frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\beta_R\beta_L)(\bar{d}_R\beta_R\beta_L) & \text$	CVRRt_cubb	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha\gamma^\mu c_R^eta)(ar{b}_R^eta\gamma_\mu b_R^lpha)$	\mathbf{C}
$\begin{array}{c} \text{Lt_cubb} & \frac{4\ddot{G}_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha c_R^\beta) (\bar{b}_R^\beta b_L^\alpha) & \text{C} \\ \text{Rt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha c_R^\beta) (\bar{b}_L^\beta b_R^\alpha) & \text{C} \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \sigma^{\mu\nu} c_L^\beta) (\bar{b}_R^\beta \sigma_{\mu\nu} b_L^\alpha) & \text{C} \\ \text{Rt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha \sigma^{\mu\nu} c_R^\beta) (\bar{b}_L^\beta \sigma_{\mu\nu} b_R^\alpha) & \text{C} \\ \text{Rt_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha \sigma^{\mu\nu} c_R^\beta) (\bar{b}_L^\beta \sigma_{\mu\nu} b_R^\alpha) & \text{C} \\ \text{LL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{d}_L \gamma_\mu d_L) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{LL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{LL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_R d_L) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_R d_L) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \sigma^{\mu\nu} c_L) (\bar{d}_R \sigma_{\mu\nu} d_L) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha)$	CSLLt_cubb	$rac{4ar{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha c_L^eta)(ar{b}_R^eta b_L^lpha)$	\mathbf{C}
$\begin{array}{c} \text{Lt_cubb} & \frac{4\ddot{G}_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha c_R^\beta) (\bar{b}_R^\beta b_L^\alpha) & \text{C} \\ \text{Rt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha c_R^\beta) (\bar{b}_L^\beta b_R^\alpha) & \text{C} \\ \text{Lt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \sigma^{\mu\nu} c_L^\beta) (\bar{b}_R^\beta \sigma_{\mu\nu} b_L^\alpha) & \text{C} \\ \text{Rt_cubb} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha \sigma^{\mu\nu} c_R^\beta) (\bar{b}_L^\beta \sigma_{\mu\nu} b_R^\alpha) & \text{C} \\ \text{Rt_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha \sigma^{\mu\nu} c_R^\beta) (\bar{b}_L^\beta \sigma_{\mu\nu} b_R^\alpha) & \text{C} \\ \text{LL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{d}_L \gamma_\mu d_L) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{LL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{LL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_R d_L) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_R d_L) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \sigma^{\mu\nu} c_L) (\bar{d}_R \sigma_{\mu\nu} d_L) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \text{C} \\ \text{R._cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha)$	SLRt_cubb	$rac{4\widetilde{G_F}}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha c_L^eta)(ar{b}_L^eta b_R^lpha)$	\mathbf{C}
$\begin{array}{c} \text{Lt_cubb} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \sigma^{\mu\nu} c_L^\beta) (\bar{b}_R^\beta \sigma_{\mu\nu} b_L^\alpha) \\ \text{Rt_cubb} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha \sigma^{\mu\nu} c_R^\beta) (\bar{b}_L^\beta \sigma_{\mu\nu} b_R^\alpha) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{d}_L \gamma_\mu d_L) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{d}_R \gamma_\mu d_R) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_L \gamma_\mu d_L) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_R d_L) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_L d_R) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \sigma^{\mu\nu} c_L) (\bar{d}_R \sigma_{\mu\nu} d_L) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) ($	SRLt_cubb		\mathbf{C}
$\begin{array}{c} \text{Lt_cubb} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \sigma^{\mu\nu} c_L^\beta) (\bar{b}_R^\beta \sigma_{\mu\nu} b_L^\alpha) \\ \text{Rt_cubb} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha \sigma^{\mu\nu} c_R^\beta) (\bar{b}_L^\beta \sigma_{\mu\nu} b_R^\alpha) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{d}_L \gamma_\mu d_L) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{d}_R \gamma_\mu d_R) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_L \gamma_\mu d_L) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_R d_L) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_L d_R) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \sigma^{\mu\nu} c_L) (\bar{d}_R \sigma_{\mu\nu} d_L) \\ \text{L_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{LL_cudd} & \frac{4 \overset{\longleftarrow}{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) ($	SRRt_cubb	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha c_R^eta)(ar{b}_L^eta b_R^lpha)$	\mathbf{C}
$\begin{array}{c} \text{LL_cudd} & \frac{4\ddot{G}_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{d}_L \gamma_\mu d_L) \\ \text{CR_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{d}_R \gamma_\mu d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_L \gamma_\mu d_L) \\ \text{CR_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_R d_L) \\ \text{CR_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_L d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) \\ \text{CR_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_L) (\bar{d}_R \sigma_{\mu\nu} d_L) \\ \text{CR_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_L) (\bar{d}_R \gamma_\mu d_L^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_L^\beta) (\bar{d}_R^\beta \gamma_\mu d_L^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_L^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_L^\beta) (\bar{d}_R^\beta c_L^\beta) (\bar{d}_R^\beta c_L^\beta) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_L^\beta)$	TLLt_cubb	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^{lpha}\sigma^{\mu u}c_L^{eta})(\bar{b}_R^{eta}\sigma_{\mu u}b_L^{lpha})$	\mathbf{C}
$\begin{array}{c} \text{LL_cudd} & \frac{4\ddot{G}_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{d}_L \gamma_\mu d_L) \\ \text{CR_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{d}_R \gamma_\mu d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_L \gamma_\mu d_L) \\ \text{CR_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_R d_L) \\ \text{CR_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_L d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) \\ \text{CR_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_L) (\bar{d}_R \sigma_{\mu\nu} d_L) \\ \text{CR_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) \\ \text{CL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_L) (\bar{d}_R \gamma_\mu d_L^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_L^\beta) (\bar{d}_R^\beta \gamma_\mu d_L^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_L^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_L^\beta) (\bar{d}_R^\beta c_L^\beta) (\bar{d}_R^\beta c_L^\beta) \\ \text{CLL_cudd} & \frac{4G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_L^\beta)$	TRRt_cubb	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha\sigma^{\mu u}c_R^eta)(ar{b}_L^eta\sigma_{\mu u}b_R^lpha)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VLL_cudd		\mathbf{C}
$\begin{array}{c} \operatorname{IR_cudd} & \frac{4 \widetilde{G}_F^c}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_R d_L) & \operatorname{C} \\ \operatorname{LR_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R c_L) (\bar{d}_L d_R) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_R d_L) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L c_R) (\bar{d}_L d_R) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R \sigma^{\mu\nu} c_L) (\bar{d}_R \sigma_{\mu\nu} d_L) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \sigma^{\mu\nu} c_R) (\bar{d}_L \sigma_{\mu\nu} d_R) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha \gamma^\mu c_L^\beta) (\bar{d}_R^\beta \gamma_\mu d_L^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha \gamma^\mu c_L^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \operatorname{C} \\ \operatorname{LL_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V$	VLR_cudd	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{d}_R\gamma_\mu d_R)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VRL_cudd	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{d}_L\gamma_\mu d_L)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VRR_cudd	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{d}_R\gamma_\mu d_R)$	$^{\mathrm{C}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SLL_cudd	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{d}_Rd_L)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SLR_cudd	$\frac{4\ddot{G_F}}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{d}_Ld_R)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SRL_cudd	$rac{4ar{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_Lc_R)(ar{d}_Rd_L)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SRR_cudd		\mathbf{C}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	TLL_cudd	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\sigma^{\mu\nu}c_L)(\bar{d}_R\sigma_{\mu\nu}d_L)$	$^{\mathrm{C}}$
$\begin{array}{lll} \text{Rt_cudd} & \frac{4 \widetilde{G}_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L^\alpha \gamma^\mu c_L^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \text{C} \\ \text{Rt_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_L^\beta \gamma_\mu d_L^\alpha) & \text{C} \\ \text{Rt_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha \gamma^\mu c_R^\beta) (\bar{d}_R^\beta \gamma_\mu d_R^\alpha) & \text{C} \\ \text{Lt_cudd} & \frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_R^\alpha c_L^\beta) (\bar{d}_R^\beta d_L^\alpha) & \text{C} \\ \end{array}$	TRR_cudd	$rac{4ar{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L\sigma^{\mu u}c_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
Lt_cudd $\frac{4\overset{\leftarrow}{C_F}}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^{\alpha}\gamma^{\mu}c_R^{\beta})(\bar{d}_L^{\beta}\gamma_{\mu}d_L^{\alpha}) \qquad \qquad C$ Lt_cudd $\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^{\alpha}\gamma^{\mu}c_R^{\beta})(\bar{d}_R^{\beta}\gamma_{\mu}d_R^{\alpha}) \qquad \qquad C$ Lt_cudd $\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^{\alpha}c_L^{\beta})(\bar{d}_R^{\beta}d_L^{\alpha}) \qquad \qquad C$	VLLt_cudd	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha\gamma^\mu c_L^eta)(ar{d}_L^eta\gamma_\mu d_L^lpha)$	\mathbf{C}
RRt_cudd $\frac{{}^{4G_{F}}_{C}}{\sqrt{2}}V_{cb}^{*}V_{ub}(\bar{u}_{R}^{\alpha}\gamma^{\mu}c_{R}^{\beta})(\bar{d}_{R}^{\beta}\gamma_{\mu}d_{R}^{\alpha}) \qquad \qquad \text{C}$.Lt_cudd $\frac{{}^{4G_{F}}_{C}}{\sqrt{2}}V_{cb}^{*}V_{ub}(\bar{u}_{R}^{\alpha}c_{L}^{\beta})(\bar{d}_{R}^{\beta}d_{L}^{\alpha}) \qquad \qquad \text{C}$	VLRt_cudd	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^lpha\gamma^\mu c_L^eta)(\bar{d}_R^eta\gamma_\mu d_R^lpha)$	\mathbf{C}
.Lt_cudd $rac{4\widetilde{V_L}}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^{lpha}c_L^{eta})(ar{d}_R^{eta}d_L^{lpha})$ C	VRLt_cudd	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha\gamma^\mu c_R^eta)(ar{d}_L^eta\gamma_\mu d_L^lpha)$	\mathbf{C}
	CVRRt_cudd	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha\gamma^\mu c_R^eta)(ar{d}_R^eta\gamma_\mu d_R^lpha)$	\mathbf{C}
.Rt_cudd $rac{4\dot{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha c_L^eta)(ar{d}_L^eta d_R^lpha)$ C	SLLt_cudd	$rac{4 \dot{G}_F}{\sqrt{2}} V_{cb}^* V_{ub} (ar{u}_R^lpha c_L^eta) (ar{d}_R^eta d_L^lpha)$	\mathbf{C}
	SLRt_cudd	$rac{4ar{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha c_L^eta)(ar{d}_L^eta d_R^lpha)$	\mathbf{C}

WC name	Operator	Type
CSRLt_cudd	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^{lpha}c_R^{eta})(\bar{d}_R^{eta}d_L^{lpha})$	C
CSRRt_cudd	$rac{4G_F^2}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha c_R^eta)(ar{d}_L^eta d_R^lpha)$	\mathbf{C}
CTLLt_cudd	$rac{4G_F^2}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha\sigma^{\mu u}c_L^eta)(ar{d}_R^eta\sigma_{\mu u}d_L^lpha)$	\mathbf{C}
CTRRt_cudd	$rac{4 ilde{G_F}}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha\sigma^{\mu u}c_R^eta)(ar{d}_L^eta\sigma_{\mu u}d_R^lpha)$	\mathbf{C}
CVLL_cuss	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{s}_L\gamma_\mu s_L)$	$^{\mathrm{C}}$
CVLR_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{s}_R\gamma_\mu s_R)$	\mathbf{C}
CVRL_cuss	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{s}_L\gamma_\mu s_L)$	\mathbf{C}
CVRR_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{s}_R\gamma_\mu s_R)$	\mathbf{C}
CSLL_cuss	$rac{4ar{G_F}}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_Rc_L)(ar{s}_Rs_L)$	\mathbf{C}
CSLR_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{s}_Ls_R)$	\mathbf{C}
CSRL_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{s}_Rs_L)$	\mathbf{C}
CSRR_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{s}_Ls_R)$	\mathbf{C}
CTLL_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\sigma^{\mu\nu}c_L)(\bar{s}_R\sigma_{\mu\nu}s_L)$	\mathbf{C}
CTRR_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\sigma^{\mu\nu}c_R)(\bar{s}_L\sigma_{\mu\nu}s_R)$	\mathbf{C}
CVLLt_cuss	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha\gamma^\mu c_L^eta)(ar{s}_L^eta\gamma_\mu s_L^lpha)$	\mathbf{C}
CVLRt_cuss	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha\gamma^\mu c_L^eta)(ar{s}_R^eta\gamma_\mu s_R^lpha)$	\mathbf{C}
CVRLt_cuss	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^{lpha}\gamma^{\mu}c_R^{eta})(\bar{s}_L^{eta}\gamma_{\mu}s_L^{lpha})$	\mathbf{C}
CVRRt_cuss	$\frac{4\dot{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^{\alpha}\gamma^{\mu}c_R^{\beta})(\bar{s}_R^{\beta}\gamma_{\mu}s_R^{\alpha})$	\mathbf{C}
CSLLt_cuss	$rac{4ar{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha c_L^eta)(ar{s}_R^eta s_L^lpha)$	$^{\mathrm{C}}$
CSLRt_cuss	$rac{4ar{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha c_L^eta)(ar{s}_L^eta s_R^lpha)$	$^{\mathrm{C}}$
CSRLt_cuss	$rac{4 ilde{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha c_R^eta)(ar{s}_R^eta s_L^lpha)$	\mathbf{C}
CSRRt_cuss	$rac{4G_F^2}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha c_R^eta)(ar{s}_L^eta s_R^lpha)$	\mathbf{C}
CTLLt_cuss	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha\sigma^{\mu u}c_L^eta)(ar{s}_R^eta\sigma_{\mu u}s_L^lpha)$	\mathbf{C}
CTRRt_cuss	$\frac{\sqrt[4]{G_F}}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha\sigma^{\mu\nu}c_R^\beta)(\bar{s}_L^\beta\sigma_{\mu\nu}s_R^\alpha)$	\mathbf{C}

sbnunu

WC name	Operator	Type
CL_bsnuenue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	C
CL_bsnumunumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^\mu b_L) (\bar{\nu}_\mu \gamma_\mu (1-\gamma_5) \nu_\mu)$	\mathbf{C}
CL_bsnutaunutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L\gamma^\mu b_L)(\bar{\nu}_\tau\gamma_\mu(1-\gamma_5)\nu_\tau)$	\mathbf{C}
CL_bsnuenumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_bsnumunue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CL_bsnumunutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CL_bsnutaunumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L\gamma^{\mu}b_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{ au})$	\mathbf{C}
	v =	

WC name	Operator	Type
CL_bsnuenutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^{\mu} b_L) (\bar{\nu}_{\tau} \gamma_{\mu} (1-\gamma_5) \nu_e)$	C
CL_bsnutaunue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CR_bsnuenue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_bsnumunumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_bsnutaunutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CR_bsnuenumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_bsnumunue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_bsnumunutau	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^{\mu}b_R)(ar{ u}_{ au}\gamma_{\mu}(1-\gamma_5) u_{\mu})$	\mathbf{C}
CR_bsnutaunumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{ au})$	\mathbf{C}
CR_bsnuenutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_bsnutaunue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}

sd

WC name	Operator	Type
C9_sdee	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{e}\gamma_{\mu}e)$	С
C9p_sdee	$rac{4ar{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}(ar{d}_{R}\gamma^{\mu}s_{R})(ar{e}\gamma_{\mu}e)$	\mathbf{C}
C10_sdee	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}s_L)(ar{e}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
C10p_sdee	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_R \gamma^\mu s_R) (ar{e} \gamma_\mu \gamma_5 e)$	\mathbf{C}
CS_sdee	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{e}e)$	\mathbf{C}
CSp_sdee	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{e}e)$	\mathbf{C}
CP_sdee	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{e}\gamma_5 e)$	\mathbf{C}
CPp_sdee	$rac{4ar{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}m_{s}(ar{d}_{R}s_{L})(ar{e}\gamma_{5}e)$	\mathbf{C}
C9_sdmumu	$rac{4 ar{G}_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu s_L) (ar{\mu} \gamma_\mu \mu)$	\mathbf{C}
C9p_sdmumu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}s_R)(ar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
C10_sdmumu	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu s_L) (ar{\mu} \gamma_\mu \gamma_5 \mu)$	\mathbf{C}
C10p_sdmumu	$rac{4ar{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}(ar{d}_{R}\gamma^{\mu}s_{R})(ar{\mu}\gamma_{\mu}\gamma_{5}\mu)$	\mathbf{C}
CS_sdmumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\mu}\mu)$	\mathbf{C}
CSp_sdmumu	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} m_s(ar{d}_R s_L) (ar{\mu} \mu)$	\mathbf{C}
CP_sdmumu	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{\mu}\gamma_5\mu)$	\mathbf{C}
CPp_sdmumu	$rac{4ar{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}m_{s}(ar{d}_{R}s_{L})(ar{\mu}\gamma_{5}\mu)$	\mathbf{C}
C9_sdtautau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^\mu s_L)(ar{ au}\gamma_\mu au)$	\mathbf{C}
C9p_sdtautau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}s_R)(ar{ au}\gamma_{\mu} au)$	\mathbf{C}
C10_sdtautau	$rac{4 \widetilde{G_F}}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu s_L) (ar{ au} \gamma_\mu \gamma_5 au)$	\mathbf{C}

WC name	Operator	Type
C10p_sdtautau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\tau}\gamma_{\mu}\gamma_5\tau)$	C
CS_sdtautau	$rac{4ar{V}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}m_{s}(ar{d}_{L}s_{R})(ar{ au} au)$	\mathbf{C}
CSp_sdtautau	$rac{4ec{V}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}m_{s}(ar{d}_{R}s_{L})(ar{ au} au)$	\mathbf{C}
CP_sdtautau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\tau}\gamma_5\tau)$	\mathbf{C}
CPp_sdtautau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{ au}\gamma_5 au)$	\mathbf{C}
C7_sd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e}{16\pi^2}m_s(d_L\sigma^{\mu\nu}s_R)F_{\mu\nu}$	\mathbf{C}
C7p_sd	$\frac{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e}{16\pi^2}m_s(\bar{d}_R\sigma^{\mu\nu}s_L)F_{\mu\nu}}{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{g_s}{16\pi^2}m_s(\bar{d}_L\sigma^{\mu\nu}T^as_R)G_{\mu\nu}^a}$	\mathbf{C}
C8_sd	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{g_{s}}{16\pi^{2}}m_{s}(\bar{d}_{L}\sigma^{\mu\nu}T^{a}s_{R})G_{\mu\nu}^{a}$	\mathbf{C}
C8p_sd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{g_s}{16\pi^2}m_s(\bar{d}_R\sigma^{\mu\nu}T^as_L)G_{\mu\nu}^a$	\mathbf{C}
CVLL_sdss	$rac{4raket{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{s}_L\gamma_\mu s_L)$	\mathbf{C}
CVLR_sdss	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^\mu s_L)(\bar{s}_R\gamma_\mu s_R)$	\mathbf{C}
CVRL_sdss	$\frac{4\ddot{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^\mu s_R)(\bar{s}_L\gamma_\mu s_L)$	\mathbf{C}
CVRR_sdss	$rac{4rac{arphi_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{s}_R\gamma_\mu s_R)}{2}$	\mathbf{C}
CSLL_sdss	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{s}_Rs_L)$	\mathbf{C}
CSLR_sdss	$rac{4\check{G}_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Rs_L)(ar{s}_Ls_R)$	\mathbf{C}
CSRL_sdss	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(d_Ls_R)(\bar{s}_Rs_L)$	\mathbf{C}
CSRR_sdss	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Ls_R)(ar{s}_Ls_R)$	\mathbf{C}
CTLL_sdss	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}s_L)(\bar{s}_R\sigma_{\mu\nu}s_L)$	\mathbf{C}
CTRR_sdss	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\sigma^{\mu\nu}s_R)(\bar{s}_L\sigma_{\mu\nu}s_R)$	$^{\mathrm{C}}$
CVLL_sddd	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVLR_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{d}_R\gamma_\mu d_R)$	\mathbf{C}
CVRL_sddd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^\mu s_R)(\bar{d}_L\gamma_\mu d_L)$	$^{\mathrm{C}}$
CVRR_sddd	$rac{4G_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{d}_R\gamma_\mu d_R)$	\mathbf{C}
CSLL_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Rs_L)(ar{d}_Rd_L)$	$^{\mathrm{C}}$
CSLR_sddd	$rac{4 reve{G_F}}{\sqrt{2}} V_{ts} V_{td}^* (ar{d}_R s_L) (ar{d}_L d_R) \ rac{4 reve{G_F}}{\sqrt{2}} V_{ts} V_{td}^* (ar{d}_L s_R) (ar{d}_R d_L)$	\mathbf{C}
CSRL_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Ls_R)(ar{d}_Rd_L)$	\mathbf{C}
CSRR_sddd	$\frac{\frac{4\ddot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L s_R)(\bar{d}_L d_R)}{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R \sigma^{\mu\nu} s_L)(\bar{d}_R \sigma_{\mu\nu} d_L)}$	\mathbf{C}
CTLL_sddd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}s_L)(\bar{d}_R\sigma_{\mu\nu}d_L)$	$^{\mathrm{C}}$
CTRR_sddd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\sigma^{\mu\nu}s_R)(\bar{d}_L\sigma_{\mu\nu}d_R)$	\mathbf{C}
CVLL_sdbb	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{b}_L\gamma_\mu b_L)$	$^{\mathrm{C}}$
CVLR_sdbb	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{b}_R\gamma_\mu b_R)$	\mathbf{C}
CVRL_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{b}_L\gamma_\mu b_L)$	\mathbf{C}
CVRR_sdbb	$\frac{\sqrt{2}}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{b}_R \gamma_{\mu} b_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R \gamma^{\mu} s_R) (\bar{b}_L \gamma_{\mu} b_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R \gamma^{\mu} s_R) (\bar{b}_L \gamma_{\mu} b_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R \gamma^{\mu} s_R) (\bar{b}_R \gamma_{\mu} b_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R s_L) (\bar{b}_R b_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R s_L) (\bar{b}_L b_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R s_L) (\bar{b}_L b_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R s_L) (\bar{d}_L b_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R s_L) (\bar{d}_R s_L) (\bar{d}_L b_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R s_L) (\bar{d}_L b_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R s_L) ($	\mathbf{C}
CSLL_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Rs_L)(ar{b}_Rb_L)$	C
CSLR_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Rs_L)(ar{b}_Lb_R)$	\mathbf{C}
CSRL_sdbb	$rac{4rac{\zeta}{\sqrt{2}}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L s_R)(ar{b}_R b_L)$	$^{\mathrm{C}}$

WC name	Operator	Type
CSRR_sdbb	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{b}_Lb_R)$	С
CTLL_sdbb	$\frac{\frac{4\tilde{G}_{F}^{2}}{\sqrt{2}}V_{ts}V_{td}^{*}(\bar{d}_{R}\sigma^{\mu\nu}s_{L})(\bar{b}_{R}\sigma_{\mu\nu}b_{L})}{\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}(\bar{d}_{L}\sigma^{\mu\nu}s_{R})(\bar{b}_{L}\sigma_{\mu\nu}b_{R})}$	\mathbf{C}
CTRR_sdbb	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\sigma^{\mu u}s_R)(ar{b}_L\sigma_{\mu u}b_R)$	\mathbf{C}
CVLLt_sdbb	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\gamma^\mu s_L^eta)(ar{b}_L^eta\gamma_\mu b_L^lpha)$	\mathbf{C}
CVLRt_sdbb	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\gamma^\mu s_L^eta)(ar{b}_R^eta\gamma_\mu b_R^lpha)$	\mathbf{C}
CVRLt_sdbb	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\gamma^\mu s_R^eta)(ar{b}_L^eta\gamma_\mu b_L^lpha)$	\mathbf{C}
CVRRt_sdbb	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\gamma^\mu s_R^eta)(ar{b}_R^eta\gamma_\mu b_R^lpha)$	\mathbf{C}
CSLLt_sdbb	$\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{\alpha}s_L^{eta})(\bar{b}_R^{eta}b_L^{lpha})$	\mathbf{C}
CSLRt_sdbb	$rac{4ar{V}_{F}^{T}}{\sqrt{2}}V_{ts}V_{td}^{*}(ar{d}_{R}^{lpha}s_{L}^{eta})(ar{b}_{L}^{eta}b_{R}^{lpha})$	\mathbf{C}
CSRLt_sdbb	$rac{4G_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha s_R^eta)(ar{b}_R^eta b_L^lpha)$	\mathbf{C}
CSRRt_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha s_R^eta)(ar{b}_L^eta b_R^lpha)$	\mathbf{C}
CTLLt_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\sigma^{\mu u}s_L^eta)(ar{b}_R^eta\sigma_{\mu u}b_L^lpha)$	\mathbf{C}
CTRRt_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\sigma^{\mu u}s_R^eta)(ar{b}_L^eta\sigma_{\mu u}b_R^lpha)$	\mathbf{C}
CVLL_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^\mu s_L)(\bar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVLR_sduu	$\frac{{}^{4G_F}_{c}}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^{\mu}s_L)(\bar{u}_R\gamma_{\mu}u_R)$	\mathbf{C}
CVRL_sduu	$\frac{4G_F}{V}V V^* (\bar{d}_D \gamma^{\mu} s_D)(\bar{u}_L \gamma u_L)$	\mathbf{C}
CVRR_sduu	$\frac{\sqrt{2}}{\sqrt{2}} V_{ts} V_{td}^* (\bar{d}_R \gamma^{\mu} s_R) (\bar{u}_L \gamma_{\mu} u_L)$	\mathbf{C}
CSLL_sduu	$\frac{4\overline{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{u}_Ru_L)$	\mathbf{C}
CSLR_sduu	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Rs_L)(ar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRL_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L s_R)(\bar{u}_R u_L)$	\mathbf{C}
CSRR_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L s_R)(\bar{u}_L u_R)$	\mathbf{C}
CTLL_sduu	$\frac{4\bar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}s_L)(\bar{u}_R\sigma_{\mu\nu}u_L)$	$^{\mathrm{C}}$
CTRR_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\sigma^{\mu\nu}s_R)(\bar{u}_L\sigma_{\mu\nu}u_R)$	$^{\mathrm{C}}$
CVLLt_sduu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^\alpha\gamma^\mu s_L^\beta)(\bar{u}_L^\beta\gamma_\mu u_L^\alpha)$	$^{\mathrm{C}}$
CVLRt_sduu	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\gamma^\mu s_L^eta)(ar{u}_R^eta\gamma_\mu u_R^lpha)$	$^{\mathrm{C}}$
CVRLt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^\alpha\gamma^\mu s_R^\beta)(\bar{u}_L^\beta\gamma_\mu u_L^\alpha)$	$^{\mathrm{C}}$
CVRRt_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\gamma^\mu s_R^eta)(ar{u}_R^eta\gamma_\mu u_R^lpha)$	$^{\mathrm{C}}$
CSLLt_sduu	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha s_L^eta)(ar{u}_R^eta u_L^lpha)$	\mathbf{C}
CSLRt_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha s_L^eta)(ar{u}_L^eta u_R^lpha)$	\mathbf{C}
CSRLt_sduu	$\frac{4\ddot{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^{lpha}s_R^{eta})(\bar{u}_R^{eta}u_L^{lpha})$	\mathbf{C}
CSRRt_sduu	$\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^{\alpha}s_R^{\beta})(\bar{u}_L^{\beta}u_R^{\alpha})$	\mathbf{C}
CTLLt_sduu	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\sigma^{\mu u}s_L^eta)(ar{u}_R^eta\sigma_{\mu u}u_L^lpha)$	\mathbf{C}
CTRRt_sduu	$rac{4ar{V}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}(ar{d}_{L}^{lpha}\sigma^{\mu u}s_{R}^{eta})(ar{u}_{L}^{eta}\sigma_{\mu u}u_{R}^{lpha})$	\mathbf{C}
CVLL_sdcc	$\frac{4\check{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^\mu s_L)(\bar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVLR_sdcc	$\frac{4\check{G}_F^F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^\mu s_L)(\bar{c}_L\gamma_\mu c_L)$ $\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^\mu s_L)(\bar{c}_R\gamma_\mu c_R)$	\mathbf{C}
CVRL_sdcc	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^\mu s_R)(\bar{c}_L\gamma_\mu c_L)$	\mathbf{C}

WC name	Operator	Type
CVRR_sdcc	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^\mu s_R)(\bar{c}_R\gamma_\mu c_R)$	С
CSLL_sdcc	$\frac{4\check{G}_F^r}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Rs_L)(ar{c}_Rc_L)$	$^{\mathrm{C}}$
CSLR_sdcc	$\frac{4\check{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{c}_Lc_R)$	$^{\mathrm{C}}$
CSRL_sdcc	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{c}_Rc_L)$	\mathbf{C}
CSRR_sdcc	$\frac{4\ddot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{c}_Lc_R)$	\mathbf{C}
CTLL_sdcc	$\frac{4\ddot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}s_L)(\bar{c}_R\sigma_{\mu\nu}c_L)$	\mathbf{C}
CTRR_sdcc	$\frac{4\ddot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\sigma^{\mu\nu}s_R)(\bar{c}_L\sigma_{\mu\nu}c_R)$	\mathbf{C}
CVLLt_sdcc	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\gamma^\mu s_L^eta)(ar{c}_L^eta\gamma_\mu c_L^lpha)$	\mathbf{C}
CVLRt_sdcc	$rac{4 \ddot{G}_F}{\sqrt{2}} V_{ts} V_{td}^* (ar{d}_L^lpha \gamma^\mu s_L^eta) (ar{c}_R^eta \gamma_\mu c_R^lpha)$	$^{\mathrm{C}}$
CVRLt_sdcc	$rac{4reve{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\gamma^\mu s_R^eta)(ar{c}_L^eta\gamma_\mu c_L^lpha)$	$^{\mathrm{C}}$
CVRRt_sdcc	$rac{4ar{G}_F^{F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\gamma^\mu s_R^eta)(ar{c}_R^eta\gamma_\mu c_R^lpha)$	\mathbf{C}
CSLLt_sdcc	$rac{4ar{Q}_F^{F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^{lpha}s_L^{eta})(ar{c}_R^{eta}c_L^{lpha})$	\mathbf{C}
CSLRt_sdcc	$rac{4reve{Q_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha s_L^eta)(ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CSRLt_sdcc	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha s_R^eta)(ar{c}_R^eta c_L^lpha)$	$^{\mathrm{C}}$
CSRRt_sdcc	$rac{4G_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha s_R^eta)(ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CTLLt_sdcc	$rac{4ar{Q}_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\sigma^{\mu u}s_L^eta)(ar{c}_R^eta\sigma_{\mu u}c_L^lpha)$	\mathbf{C}
CTRRt_sdcc	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^\alpha\sigma^{\mu\nu}s_R^\beta)(\bar{c}_L^\beta\sigma_{\mu\nu}c_R^\alpha)$	C

sdnunu

	0	
WC name	Operator	Type
CL_sdnuenue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
${\tt CL_sdnumunumu}$	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
${\tt CL_sdnutaunutau}$	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CL_sdnuenumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_sdnumunue	$rac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*rac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{ u}_e\gamma_{\mu}(1-\gamma_5) u_{\mu})$	\mathbf{C}
${\tt CL_sdnumunutau}$	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
${\tt CL_sdnutaunumu}$	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{ au})$	\mathbf{C}
CL_sdnuenutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_sdnutaunue	$rac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}d_L)(ar{ u}_e\gamma_{\mu}(1-\gamma_5) u_{ au})$	\mathbf{C}
CR_sdnuenue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_sdnumunumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_sdnutaunutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CR_sdnuenumu	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_sdnumunue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}

WC name	Operator	Type
CR_sdnumunutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	C
CR_sdnutaunumu	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_R\gamma^\mu d_R)(\bar{\nu}_\mu\gamma_\mu(1-\gamma_5)\nu_ au)$	\mathbf{C}
CR_sdnuenutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_R\gamma^\mu d_R)(\bar{\nu}_\tau\gamma_\mu(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_sdnutaunue	$\frac{\sqrt[4]{G_F}}{\sqrt{2}} V_{td} V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} d_R) (\bar{\nu}_e \gamma_{\mu} (1 - \gamma_5) \nu_{\tau})$	\mathbf{C}

db

WC name	Operator	Type
C9_bdee	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{e}\gamma_{\mu}e)$	C
C9p_bdee	$rac{4Q_F^2}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}b_R)(ar{e}\gamma_{\mu}e)$	\mathbf{C}
C10_bdee	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{d}_{L}\gamma^{\mu}b_{L})(\bar{e}\gamma_{\mu}\gamma_{5}e)$	\mathbf{C}
C10p_bdee	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{e}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
CS_bdee	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}m_{b}(\bar{d}_{L}b_{R})(\bar{e}e)$	\mathbf{C}
CSp_bdee	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{e}e)$	\mathbf{C}
CP_bdee	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}m_{b}(\bar{d}_{L}b_{R})(\bar{e}\gamma_{5}e)$	\mathbf{C}
CPp_bdee	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{e}\gamma_5e)$	\mathbf{C}
C9_bdmumu	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{d}_{L}\gamma^{\mu}b_{L})(\bar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
C9p_bdmumu	$rac{4 \tilde{Q}_F^2}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_R \gamma^\mu b_R) (ar{\mu} \gamma_\mu \mu)$	\mathbf{C}
C10_bdmumu	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{d}_{L}\gamma^{\mu}b_{L})(\bar{\mu}\gamma_{\mu}\gamma_{5}\mu)$	\mathbf{C}
C10p_bdmumu	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{d}_{R}\gamma^{\mu}b_{R})(\bar{\mu}\gamma_{\mu}\gamma_{5}\mu)$	\mathbf{C}
CS_bdmumu	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{\mu}\mu)$	\mathbf{C}
CSp_bdmumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\mu}\mu)$	\mathbf{C}
CP_bdmumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{\mu}\gamma_5\mu)$	\mathbf{C}
CPp_bdmumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\mu}\gamma_5\mu)$	\mathbf{C}
C9_bdtautau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}b_L)(ar{ au}\gamma_{\mu} au)$	$^{\mathrm{C}}$
C9p_bdtautau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\tau}\gamma_{\mu}\tau)$	\mathbf{C}
C10_bdtautau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\tau}\gamma_{\mu}\gamma_5\tau)$	\mathbf{C}
C10p_bdtautau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\tau}\gamma_{\mu}\gamma_5\tau)$	\mathbf{C}
CS_bdtautau	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{ au} au)$	\mathbf{C}
CSp_bdtautau	$rac{4 \tilde{Q}_F^2}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} m_b (ar{d}_R b_L) (ar{ au} au)$	\mathbf{C}
CP_bdtautau	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}m_{b}(\bar{d}_{L}b_{R})(\bar{ au}\gamma_{5} au)$	\mathbf{C}
CPp_bdtautau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_Rb_L)(ar{ au}\gamma_5 au)$	\mathbf{C}
C7_bd	$\frac{4V_{c}}{\sqrt{2}}V_{tb}V_{td}^{*}\frac{e}{16\pi^{2}}m_{b}(\bar{d}_{L}\sigma^{\mu\nu}b_{R})F_{\mu\nu}$	\mathbf{C}
C7p_bd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e}{16\pi^2} m_b (\bar{d}_R \sigma^{\mu\nu} b_L) F_{\mu\nu}$	$^{\mathrm{C}}$

WC name	Operator	Type
C8_bd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{g_s}{16\pi^2}m_b(\bar{d}_L\sigma^{\mu\nu}T^ab_R)G_{\mu\nu}^a$	С
C8p_bd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{g_s}{16\pi^2} m_b (\bar{d}_R \sigma^{\mu\nu} T^a b_L) G^a_{\mu\nu}$	\mathbf{C}
CVLL_bdbb	$rac{4reve{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{b}_L\gamma_\mu b_L)$	$^{\mathrm{C}}$
CVLR_bdbb	$rac{4reve{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{b}_R\gamma_\mu b_R)$	\mathbf{C}
CVRL_bdbb	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\gamma^\mu b_R)(ar{b}_L\gamma_\mu b_L)$	\mathbf{C}
CVRR_bdbb	$\frac{4\breve{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu b_R)$	\mathbf{C}
CSLL_bdbb	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{b}_Rb_L)$	\mathbf{C}
CSLR_bdbb	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{b}_Lb_R)$	\mathbf{C}
CSRL_bdbb	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{b}_Rb_L)$	\mathbf{C}
CSRR_bdbb	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{b}_Lb_R)$	\mathbf{C}
CTLL_bdbb	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\sigma^{\mu u}b_L)(ar{b}_R\sigma_{\mu u}b_L)$	\mathbf{C}
CTRR_bdbb	$rac{4reve{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\sigma^{\mu u}b_R)(ar{b}_L\sigma_{\mu u}b_R)$	\mathbf{C}
CVLL_bddd	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVLR_bddd	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{d}_R\gamma_\mu d_R)$	\mathbf{C}
CVRL_bddd	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\gamma^\mu b_R)(ar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVRR_bddd	$\frac{4\tilde{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\gamma^\mu b_R)(\bar{d}_R\gamma_\mu d_R)$	\mathbf{C}
CSLL_bddd	$rac{4 \overset{\sim}{G_F}}{\sqrt{2}} V_{tb} V_{td}^* (ar{d}_R b_L) (ar{d}_R d_L)$	\mathbf{C}
CSLR_bddd	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{d}_Ld_R)$	\mathbf{C}
CSRL_bddd	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{d}_Rd_L)$	\mathbf{C}
CSRR_bddd	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{d}_Ld_R)$	\mathbf{C}
CTLL_bddd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\sigma^{\mu u}b_L)(ar{d}_R\sigma_{\mu u}d_L)$	\mathbf{C}
CTRR_bddd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\sigma^{\mu u}b_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CVLL_bdss	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{s}_L\gamma_\mu s_L)$	\mathbf{C}
CVLR_bdss	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{s}_R\gamma_\mu s_R)$	\mathbf{C}
CVRL_bdss	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\gamma^\mu b_R)(ar{s}_L\gamma_\mu s_L)$	$^{\mathrm{C}}$
CVRR_bdss	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\gamma^\mu b_R)(ar{s}_R\gamma_\mu s_R)$	$^{\mathrm{C}}$
CSLL_bdss	$rac{4reve{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{s}_Rs_L) \ rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CSLR_bdss	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{s}_Ls_R)$	\mathbf{C}
CSRL_bdss	$\frac{4G_F}{\sqrt{s}}V_{th}V_{td}^*(d_Lb_R)(\bar{s}_Rs_L)$	$^{\mathrm{C}}$
CSRR_bdss	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CTLL_bdss	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\sigma^{\mu u}b_L)(ar{s}_R\sigma_{\mu u}s_L)$	\mathbf{C}
CTRR_bdss	$\frac{4G_F}{\sqrt{2}} V_{tb} V_{td}^* (\bar{d}_L b_R) (\bar{s}_L s_R) \\ \frac{4G_F}{\sqrt{2}} V_{tb} V_{td}^* (\bar{d}_R \sigma^{\mu\nu} b_L) (\bar{s}_R \sigma_{\mu\nu} s_L) \\ \frac{4G_F}{\sqrt{2}} V_{tb} V_{td}^* (\bar{d}_L \sigma^{\mu\nu} b_R) (\bar{s}_L \sigma_{\mu\nu} s_R)$	\mathbf{C}
CVLLt_bdss	$rac{4ar{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}(ar{d}_{L}^{lpha}\gamma^{\mu}b_{L}^{eta})(ar{s}_{L}^{eta}\gamma_{\mu}s_{L}^{lpha})$	$^{\mathrm{C}}$
CVLRt_bdss	$rac{4G_F^c}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\gamma^\mu b_L^eta)(ar{s}_R^eta\gamma_\mu s_R^lpha)$	\mathbf{C}
CVRLt_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha\gamma^\mu b_R^eta)(ar{s}_L^eta\gamma_\mu s_L^lpha)$	\mathbf{C}
CVRRt_bdss	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R^{lpha}\gamma^{\mu}b_R^{eta})(\bar{s}_R^{eta}\gamma_{\mu}s_R^{lpha})$	\mathbf{C}
	v -	

WC name	Operator	Type
CSLLt_bdss	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R^{\alpha}b_L^{\beta})(\bar{s}_R^{\beta}s_L^{\alpha})$	C
CSLRt_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha b_L^eta)(ar{s}_L^eta s_R^lpha)$	\mathbf{C}
CSRLt_bdss	$rac{4G_F^2}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha b_R^eta)(ar{s}_R^eta s_L^lpha)$	\mathbf{C}
CSRRt_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha b_R^eta)(ar{s}_L^eta s_R^lpha)$	\mathbf{C}
CTLLt_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha\sigma^{\mu u}b_L^eta)(ar{s}_R^eta\sigma_{\mu u}s_L^lpha)$	\mathbf{C}
CTRRt_bdss	$rac{4G_F^c}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\sigma^{\mu u}b_R^eta)(ar{s}_L^eta\sigma_{\mu u}s_R^lpha)$	\mathbf{C}
CVLL_bduu	$\frac{\frac{4\ddot{G}_{F}^{c}}{\sqrt{2}}V_{tb}V_{td}^{*}(\bar{d}_{L}\gamma^{\mu}b_{L})(\bar{u}_{L}\gamma_{\mu}u_{L})}{\frac{4\ddot{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}(\bar{d}_{L}\gamma^{\mu}b_{L})(\bar{u}_{R}\gamma_{\mu}u_{R})}$	$^{\mathrm{C}}$
CVLR_bduu	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{u}_R\gamma_\mu u_R)$	$^{\mathrm{C}}$
CVRL_bduu	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\gamma^\mu b_R)(ar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVRR_bduu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\gamma^\mu b_R)(ar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CSLL_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(d_Rb_L)(\bar{u}_Ru_L)$	\mathbf{C}
CSLR_bduu	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRL_bduu	$\frac{4\bar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Lb_R)(\bar{u}_Ru_L)$	$^{\mathrm{C}}$
CSRR_bduu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{u}_Lu_R)$	$^{\mathrm{C}}$
CTLL_bduu	$\frac{\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}b_L)(\bar{u}_R\sigma_{\mu\nu}u_L)}{\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L\sigma^{\mu\nu}b_R)(\bar{u}_L\sigma_{\mu\nu}u_R)}$	$^{\mathrm{C}}$
CTRR_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(d_L\sigma^{\mu\nu}b_R)(\bar{u}_L\sigma_{\mu\nu}u_R)$	С
CVLLt_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L^{lpha}\gamma^{\mu}b_L^{eta})(\bar{u}_L^{eta}\gamma_{\mu}u_L^{lpha})$	$^{\mathrm{C}}$
CVLRt_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L^{lpha}\gamma^\mu b_L^eta)(\bar{u}_R^eta\gamma_\mu u_R^lpha)$	\mathbf{C}
CVRLt_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R^\alpha\gamma^\mu b_R^\beta)(\bar{u}_L^\beta\gamma_\mu u_L^\alpha)$	$^{\mathrm{C}}$
CVRRt_bduu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha\gamma^\mu b_R^eta)(ar{u}_R^eta\gamma_\mu u_R^lpha)$	$^{\mathrm{C}}$
CSLLt_bduu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha b_L^eta)(ar{u}_R^eta u_L^lpha)$	\mathbf{C}
CSLRt_bduu	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha b_L^eta)(ar{u}_L^eta u_R^lpha)$	\mathbf{C}
CSRLt_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L^{lpha}b_R^{eta})(\bar{u}_R^{eta}u_L^{lpha})$	$^{\mathrm{C}}$
CSRRt_bduu	$\frac{4\ddot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L^{lpha}b_R^{eta})(\bar{u}_L^{eta}u_R^{lpha})$	$^{\mathrm{C}}$
CTLLt_bduu	$\frac{4\ddot{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R^{lpha}\sigma^{\mu u}b_L^{eta})(\bar{u}_R^{eta}\sigma_{\mu u}u_L^{lpha})$	\mathbf{C}
CTRRt_bduu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\sigma^{\mu u}b_R^eta)(ar{u}_L^eta\sigma_{\mu u}u_R^lpha)$	\mathbf{C}
CVLL_bdcc	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{c}_L\gamma_\mu c_L)$	$^{\mathrm{C}}$
CVLR_bdcc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{c}_R\gamma_\mu c_R)$	\mathbf{C}
CVRL_bdcc	$\frac{4G_F}{G}V_{th}V_{td}^*(\bar{d}_R\gamma^\mu b_R)(\bar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVRR_bdcc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\gamma^\mu b_R)(ar{c}_R\gamma_\mu c_R)$	$^{\mathrm{C}}$
CSLL_bdcc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{c}_Rc_L)$	$^{\mathrm{C}}$
CSLR_bdcc	$ \frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\gamma^{\mu}b_R)(\bar{c}_R\gamma_{\mu}c_R) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Rb_L)(\bar{c}_Rc_L) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Rb_L)(\bar{c}_Lc_R) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Lb_R)(\bar{c}_Rc_L) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Lb_R)(\bar{c}_Rc_L) $	\mathbf{C}
CSRL_bdcc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{c}_Rc_L)$	\mathbf{C}
CSRR_bdcc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{c}_Lc_R)$	\mathbf{C}
CTLL_bdcc	$\frac{\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L b_R)(\bar{c}_L c_R)}{\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R \sigma^{\mu\nu}b_L)(\bar{c}_R \sigma_{\mu\nu}c_L)}{\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L \sigma^{\mu\nu}b_R)(\bar{c}_L \sigma_{\mu\nu}c_R)}$	\mathbf{C}
CTRR_bdcc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\sigma^{\mu u}b_R)(ar{c}_L\sigma_{\mu u}c_R)$	\mathbf{C}

WC name	Operator	Type
CVLLt_bdcc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\gamma^\mu b_L^eta)(ar{c}_L^eta\gamma_\mu c_L^lpha)$	C
CVLRt_bdcc	$rac{4reve{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\gamma^\mu b_L^eta)(ar{c}_R^eta\gamma_\mu c_R^lpha)$	\mathbf{C}
CVRLt_bdcc	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha\gamma^\mu b_R^eta)(ar{c}_L^eta\gamma_\mu c_L^lpha)$	\mathbf{C}
CVRRt_bdcc	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha\gamma^\mu b_R^eta)(ar{c}_R^eta\gamma_\mu c_R^lpha)$	\mathbf{C}
CSLLt_bdcc	$rac{4 \overline{G}_F}{\sqrt{2}} V_{tb} V_{td}^* (ar{d}_R^lpha b_L^eta) (ar{c}_R^eta c_L^lpha)$	\mathbf{C}
CSLRt_bdcc	$rac{4 \overset{\sim}{G_F}}{\sqrt{2}} V_{tb} V_{td}^* (ar{d}_R^lpha b_L^eta) (ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CSRLt_bdcc	$rac{4 \overset{\sim}{G_F}}{\sqrt{2}} V_{tb} V_{td}^* (ar{d}_L^lpha b_R^eta) (ar{c}_R^eta c_L^lpha)$	\mathbf{C}
CSRRt_bdcc	$rac{4 \overset{\sim}{G_F}}{\sqrt{2}} V_{tb} V_{td}^* (ar{d}_L^lpha b_R^eta) (ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CTLLt_bdcc	$rac{4 \overset{\sim}{G_F}}{\sqrt{2}} V_{tb} V_{td}^* (ar{d}_R^lpha \sigma^{\mu u} b_L^eta) (ar{c}_R^eta \sigma_{\mu u} c_L^lpha)$	\mathbf{C}
CTRRt_bdcc	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L^\alpha\sigma^{\mu\nu}b_R^\beta)(\bar{c}_L^\beta\sigma_{\mu\nu}c_R^\alpha)$	С

dbnunu

WC name	Operator	Type
CL_bdnuenue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	C
${\tt CL_bdnumunumu}$	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
${\tt CL_bdnutaunutau}$	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{ u}_{ au}\gamma_{\mu}(1-\gamma_5) u_{ au})$	\mathbf{C}
CL_bdnuenumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_bdnumunue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
${\tt CL_bdnumunutau}$	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
${\tt CL_bdnutaunumu}$	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{ au})$	\mathbf{C}
CL_bdnuenutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_bdnutaunue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CR_bdnuenue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
${\tt CR_bdnumunumu}$	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{ u}_{\mu}\gamma_{\mu}(1-\gamma_5) u_{\mu})$	\mathbf{C}
CR_bdnutaunutau	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{ u}_{ au}\gamma_{\mu}(1-\gamma_5) u_{ au})$	\mathbf{C}
CR_bdnuenumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_bdnumunue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
${\tt CR_bdnumunutau}$	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_bdnutaunumu	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}b_R)(ar{ u}_{\mu}\gamma_{\mu}(1-\gamma_5) u_{ au})$	\mathbf{C}
CR_bdnuenutau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}b_R)(ar{ u}_{ au}\gamma_{\mu}(1-\gamma_5) u_e)$	\mathbf{C}
CR_bdnutaunue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{ au})$	\mathbf{C}

sbmue

WC name	Operator	Type
C9_bsemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^{\mu} b_L)(\bar{\mu}\gamma_{\mu} e)$	C
C9p_bsemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} b_R) (\bar{\mu} \gamma_{\mu} e)$	$^{\mathrm{C}}$
C10_bsemu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}b_L)(ar{\mu}\gamma_{\mu}\gamma_5 e)$	$^{\mathrm{C}}$
C10p_bsemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} b_R) (\bar{\mu} \gamma_{\mu} \gamma_5 e)$	$^{\mathrm{C}}$
CS_bsemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{\mu}e)$	$^{\mathrm{C}}$
CSp_bsemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\mu}e)$	$^{\mathrm{C}}$
CP_bsemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{\mu}\gamma_5e)$	\mathbf{C}
CPp_bsemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\mu}\gamma_5e)$	С

sbemu

WC name	Operator	Type
C9_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^{\mu} b_L)(\bar{e}\gamma_{\mu}\mu)$	C
C9p_bsmue	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^{\mu}b_R)(ar{e}\gamma_{\mu}\mu)$	$^{\mathrm{C}}$
C10_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{e}\gamma_{\mu}\gamma_5\mu)$	$^{\mathrm{C}}$
C10p_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{e}\gamma_{\mu}\gamma_5\mu)$	$^{\mathrm{C}}$
CS_bsmue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{e}\mu)$	\mathbf{C}
CSp_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{e}\mu)$	$^{\mathrm{C}}$
CP_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{e}\gamma_5\mu)$	$^{\mathrm{C}}$
CPp_bsmue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{e}\gamma_5\mu)$	\mathbf{C}

sbtaue

WC name	Operator	Type
C9_bsetau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}b_L)(ar{ au}\gamma_{\mu}e)$	C
C9p_bsetau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\tau}\gamma_{\mu}e)$	$^{\mathrm{C}}$
C10_bsetau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}b_L)(ar{ au}\gamma_{\mu}\gamma_5 e)$	$^{\mathrm{C}}$
C10p_bsetau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^{\mu}b_R)(ar{ au}\gamma_{\mu}\gamma_5 e)$	$^{\mathrm{C}}$
CS_bsetau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{\tau}e)$	$^{\mathrm{C}}$
CSp_bsetau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\tau}e)$	$^{\mathrm{C}}$
CP_bsetau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{\tau}\gamma_5e)$	$^{\mathrm{C}}$
CPp_bsetau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}m_b(\bar{s}_R b_L)(\bar{\tau}\gamma_5 e)$	C

sbetau

WC name	Operator	Type
C9_bstaue	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}b_L)(ar{e}\gamma_{\mu} au)$	C
C9p_bstaue	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^\mu b_R)(ar{e}\gamma_\mu au)$	\mathbf{C}
C10_bstaue	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^\mu b_L)(ar{e}\gamma_\mu\gamma_5 au)$	\mathbf{C}
C10p_bstaue	$rac{4 \overline{G_F}}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16\pi^2} (ar{s}_R \gamma^\mu b_R) (ar{e} \gamma_\mu \gamma_5 au)$	\mathbf{C}
CS_bstaue	$rac{4\dot{G}_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}rac{e^{2}}{16\pi^{2}}m_{b}(ar{s}_{L}b_{R})(ar{e} au)$	\mathbf{C}
CSp_bstaue	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}m_b(ar{s}_Rb_L)(ar{e} au)$	\mathbf{C}
CP_bstaue	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}m_b(ar{s}_Lb_R)(ar{e}\gamma_5 au)$	\mathbf{C}
CPp_bstaue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{e}\gamma_5\tau)$	С

sbtaumu

WC name	Operator	Type
C9_bsmutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^{\mu} b_L) (\bar{\tau} \gamma_{\mu} \mu)$	C
C9p_bsmutau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^{\mu}b_R)(ar{ au}\gamma_{\mu}\mu)$	\mathbf{C}
C10_bsmutau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}b_L)(ar{ au}\gamma_{\mu}\gamma_{5}\mu)$	\mathbf{C}
C10p_bsmutau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^{\mu}b_R)(ar{ au}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}
CS_bsmutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}m_b(\bar{s}_L b_R)(\bar{ au}\mu)$	\mathbf{C}
CSp_bsmutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}m_b(\bar{s}_R b_L)(\bar{ au}\mu)$	\mathbf{C}
CP_bsmutau	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}m_b(ar{s}_Lb_R)(ar{ au}\gamma_5\mu)$	\mathbf{C}
CPp_bsmutau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}m_b(ar{s}_Rb_L)(ar{ au}\gamma_5\mu)$	\mathbf{C}

${\tt sbmutau}$

WC name	Operator	Type
C9_bstaumu	$rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16\pi^2} (ar{s}_L \gamma^\mu b_L) (ar{\mu} \gamma_\mu au)$	С
C9p_bstaumu	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16 \pi^2} (ar{s}_R \gamma^\mu b_R) (ar{\mu} \gamma_\mu au)$	\mathbf{C}
C10_bstaumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}b_L)(ar{\mu}\gamma_{\mu}\gamma_5 au)$	$^{\mathrm{C}}$
C10p_bstaumu	$rac{4 \overset{\leftarrow}{V_{F}}}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} b_R) (\bar{\mu} \gamma_{\mu} \gamma_5 au)$	\mathbf{C}
CS_bstaumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} m_b(\bar{s}_L b_R)(\bar{\mu}\tau)$	$^{\mathrm{C}}$
CSp_bstaumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} m_b(\bar{s}_R b_L)(\bar{\mu} au)$	$^{\mathrm{C}}$
CP_bstaumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} m_b(\bar{s}_L b_R)(\bar{\mu}\gamma_5 \tau)$	$^{\mathrm{C}}$
CPp_bstaumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\mu}\gamma_5\tau)$	$^{\mathrm{C}}$

${\tt dbmue}$

WC name	Operator	Type
C9_bdemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\mu}\gamma_{\mu}e)$	C
C9p_bdemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\mu}\gamma_{\mu}e)$	\mathbf{C}
C10_bdemu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}b_L)(ar{\mu}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
C10p_bdemu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}b_R)(ar{\mu}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
CS_bdemu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{\mu}e)$	\mathbf{C}
CSp_bdemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\mu}e)$	\mathbf{C}
CP_bdemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{\mu}\gamma_5e)$	\mathbf{C}
CPp_bdemu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\mu}\gamma_5 e)$	С

dbemu

WC name	Operator	Type
C9_bdmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{e}\gamma_{\mu}\mu)$	$^{\mathrm{C}}$
C9p_bdmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{e}\gamma_{\mu}\mu)$	\mathbf{C}
C10_bdmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{e}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}
C10p_bdmue	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16\pi^2} (ar{d}_R \gamma^\mu b_R) (ar{e} \gamma_\mu \gamma_5 \mu)$	\mathbf{C}
CS_bdmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{e}\mu)$	\mathbf{C}
CSp_bdmue	$\frac{4\ddot{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}m_{b}(\bar{d}_{R}b_{L})(\bar{e}\mu)$	\mathbf{C}
CP_bdmue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{e}\gamma_5\mu)$	\mathbf{C}
CPp_bdmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{e}\gamma_5\mu)$	\mathbf{C}

dbtaue

WC name	Operator	Type
C9_bdetau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}b_L)(ar{ au}\gamma_{\mu}e)$	С
C9p_bdetau	$rac{4\dot{G_F}}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu b_R)(ar{ au}\gamma_\mu e)$	$^{\mathrm{C}}$
C10_bdetau	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^\mu b_L)(ar{ au}\gamma_\mu\gamma_5 e)$	$^{\mathrm{C}}$
C10p_bdetau	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu b_R)(ar{ au}\gamma_\mu\gamma_5 e)$	\mathbf{C}
CS_bdetau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e^2}{16\pi^2}m_b(\bar{d}_L b_R)(\bar{\tau}e)$	\mathbf{C}
CSp_bdetau	$rac{4 \dot{G}_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16\pi^2} m_b (\bar{d}_R b_L) (\bar{ au} e)$	\mathbf{C}
CP_bdetau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e^2}{16\pi^2}m_b(\bar{d}_L b_R)(\bar{\tau}\gamma_5 e)$	\mathbf{C}
CPp_bdetau	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_Rb_L)(ar{ au}\gamma_5e)$	\mathbf{C}

dbetau

WC name	Operator	Type
C9_bdtaue	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^\mu b_L)(ar{e}\gamma_\mu au)$	C
C9p_bdtaue	$rac{4 ilde{G}_{F}}{\sqrt{2}} V_{tb} V_{td}^{*} rac{e^{2}}{16\pi^{2}} (ar{d}_{R} \gamma^{\mu} b_{R}) (ar{e} \gamma_{\mu} au)$	$^{\mathrm{C}}$
C10_bdtaue	$rac{4 ilde{G_F}}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^\mu b_L)(ar{e}\gamma_\mu\gamma_5 au)$	$^{\mathrm{C}}$
C10p_bdtaue	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu b_R)(ar{e}\gamma_\mu\gamma_5 au)$	$^{\mathrm{C}}$
CS_bdtaue	$rac{4\ddot{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}rac{e^{2}}{16\pi^{2}}m_{b}(\bar{d}_{L}b_{R})(\bar{e} au)$	$^{\mathrm{C}}$
CSp_bdtaue	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{e} au)$	$^{\mathrm{C}}$
CP_bdtaue	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_Lb_R)(ar{e}\gamma_5 au)$	$^{\mathrm{C}}$
CPp_bdtaue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{e}\gamma_5\tau)$	С

dbtaumu

WC name	Operator	Type
C9_bdmutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\tau}\gamma_{\mu}\mu)$	С
C9p_bdmutau	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_R \gamma^\mu b_R) (ar{ au} \gamma_\mu \mu)$	\mathbf{C}
C10_bdmutau	$rac{4 { m G}_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu b_L) (ar{ au} \gamma_\mu \gamma_5 \mu)$	\mathbf{C}
C10p_bdmutau	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_R \gamma^\mu b_R) (ar{ au} \gamma_\mu \gamma_5 \mu)$	$^{\mathrm{C}}$
CS_bdmutau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_Lb_R)(ar{ au}\mu)$	\mathbf{C}
CSp_bdmutau	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_Rb_L)(ar{ au}\mu)$	\mathbf{C}
CP_bdmutau	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_Lb_R)(ar{ au}\gamma_5\mu)$	\mathbf{C}
CPp_bdmutau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_Rb_L)(ar{ au}\gamma_5\mu)$	\mathbf{C}

${\tt dbmutau}$

WC name	Operator	Type
C9_bdtaumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}b_L)(ar{\mu}\gamma_{\mu} au)$	С
C9p_bdtaumu	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_R \gamma^\mu b_R) (ar{\mu} \gamma_\mu au)$	\mathbf{C}
C10_bdtaumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\mu}\gamma_{\mu}\gamma_5\tau)$	$^{\mathrm{C}}$
C10p_bdtaumu	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu b_R)(ar{\mu}\gamma_\mu\gamma_5 au)$	\mathbf{C}
CS_bdtaumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_Lb_R)(ar{\mu} au)$	$^{\mathrm{C}}$
CSp_bdtaumu	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} m_b (ar{d}_R b_L) (ar{\mu} au)$	$^{\mathrm{C}}$
CP_bdtaumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{\mu}\gamma_5\tau)$	$^{\mathrm{C}}$
CPp_bdtaumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\mu}\gamma_5\tau)$	\mathbf{C}

sdemu

WC name	Operator	Type
C9_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{\mu}\gamma_{\mu}e)$	С
C9p_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\mu}\gamma_{\mu}e)$	\mathbf{C}
C10_sdemu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}s_L)(ar{\mu}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
C10p_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\mu}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
CS_sdemu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\mu}e)$	\mathbf{C}
CSp_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu}e)$	\mathbf{C}
CP_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\mu}\gamma_5 e)$	\mathbf{C}
CPp_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{\mu}\gamma_5 e)$	С

sdmue

WC name	Operator	Type
C9_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^\mu s_L)(\bar{e}\gamma_\mu\mu)$	C
C9p_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{e}\gamma_{\mu}\mu)$	\mathbf{C}
C10_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{e}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}
C10p_sdmue	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu s_R)(ar{e}\gamma_\mu\gamma_5\mu)$	\mathbf{C}
CS_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{e}\mu)$	\mathbf{C}
CSp_sdmue	$\frac{4\ddot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}m_{s}(\bar{d}_{R}s_{L})(\bar{e}\mu)$	\mathbf{C}
CP_sdmue	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(\bar{d}_Ls_R)(\bar{e}\gamma_5\mu)$	\mathbf{C}
CPp_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{e}\gamma_5\mu)$	\mathbf{C}

sdetau

WC name	Operator	Type
C9_sdetau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}s_L)(ar{ au}\gamma_{\mu}e)$	\mathbf{C}
C9p_sdetau	$rac{4 \dot{G}_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16\pi^2} (ar{d}_R \gamma^\mu s_R) (ar{ au} \gamma_\mu e)$	$^{\mathrm{C}}$
C10_sdetau	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^\mu s_L)(ar{ au}\gamma_\mu\gamma_5 e)$	$^{\mathrm{C}}$
C10p_sdetau	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu s_R)(ar{ au}\gamma_\mu\gamma_5 e)$	\mathbf{C}
CS_sdetau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{ au}e)$	$^{\mathrm{C}}$
CSp_sdetau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{\tau}e)$	$^{\mathrm{C}}$
CP_sdetau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\tau}\gamma_5 e)$	\mathbf{C}
CPp_sdetau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{\tau}\gamma_5 e)$	\mathbf{C}

sdtaue

WC name	Operator	Type
C9_sdtaue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{e}\gamma_{\mu}\tau)$	С
C9p_sdtaue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}s_R)(ar{e}\gamma_{\mu} au)$	\mathbf{C}
C10_sdtaue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}s_L)(ar{e}\gamma_{\mu}\gamma_5 au)$	\mathbf{C}
C10p_sdtaue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{e}\gamma_{\mu}\gamma_5\tau)$	\mathbf{C}
CS_sdtaue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{e}\tau)$	\mathbf{C}
CSp_sdtaue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{e} au)$	\mathbf{C}
CP_sdtaue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{e}\gamma_5 au)$	\mathbf{C}
CPp_sdtaue	$\frac{4\bar{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}m_{s}(\bar{d}_{R}s_{L})(\bar{e}\gamma_{5}\tau)$	\mathbf{C}

sdmutau

WC name	Operator	Type
C9_sdmutau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2} (\bar{d}_L \gamma^{\mu} s_L) (\bar{\tau} \gamma_{\mu} \mu)$	С
C9p_sdmutau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\tau}\gamma_{\mu}\mu)$	$^{\mathrm{C}}$
C10_sdmutau	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{d}_{L}\gamma^{\mu}s_{L})(\bar{\tau}\gamma_{\mu}\gamma_{5}\mu)$	$^{\mathrm{C}}$
C10p_sdmutau	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_R \gamma^\mu s_R) (ar{ au} \gamma_\mu \gamma_5 \mu)$	$^{\mathrm{C}}$
CS_sdmutau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{ au}\mu)$	\mathbf{C}
CSp_sdmutau	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16\pi^2} m_s(ar{d}_R s_L) (ar{ au} \mu)$	\mathbf{C}
CP_sdmutau	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{ au}\gamma_5\mu)$	$^{\mathrm{C}}$
CPp_sdmutau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{\tau}\gamma_5\mu)$	\mathbf{C}

${\tt sdtaumu}$

WC name	Operator	Type
C9_sdtaumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2} (\bar{d}_L \gamma^\mu s_L) (\bar{\mu}\gamma_\mu au)$	С
C9p_sdtaumu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}s_R)(ar{\mu}\gamma_{\mu} au)$	\mathbf{C}
C10_sdtaumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{\mu}\gamma_{\mu}\gamma_5\tau)$	\mathbf{C}
C10p_sdtaumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\mu}\gamma_{\mu}\gamma_5\tau)$	\mathbf{C}
CS_sdtaumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\mu} au)$	\mathbf{C}
CSp_sdtaumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu} au)$	\mathbf{C}
CP_sdtaumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\mu}\gamma_5\tau)$	\mathbf{C}
CPp_sdtaumu	$\frac{4\ddot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu}\gamma_5\tau)$	\mathbf{C}

cbenu

WC name	Operator	Type
CVL_bcenue	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_L\gamma^{\mu}b_L)(\bar{e}_L\gamma_{\mu}\nu_{eL})$	C
CVR_bcenue	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{e}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_bcenue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_L b_R)(\bar{e}_R \nu_{eL})$	$^{\mathrm{C}}$
CSL_bcenue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{e}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_bcenue	$-rac{4ar{Q}_F^C}{\sqrt{2}}V_{cb}(ar{c}_R\sigma^{\mu u}b_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_bcenumu	$-rac{4ar{Q}_F^C}{\sqrt{2}}V_{cb}(ar{c}_L\gamma^\mu b_L)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_bcenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{e}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CSR_bcenumu	$-\frac{4\overset{.}{G_F}}{\sqrt{2}}V_{cb}(\bar{c}_L b_R)(\bar{e}_R \nu_{\mu L})$	$^{\mathrm{C}}$
CSL_bcenumu	$-\frac{4\overset{C}{G_{F}}}{\sqrt{2}}V_{cb}(\bar{c}_{R}b_{L})(\bar{e}_{R}\nu_{\mu L})$	$^{\mathrm{C}}$
CT_bcenumu	$-rac{4\overset{\circ}{N_L^2}}{\sqrt{2}}V_{cb}(ar{c}_R\sigma^{\mu u}b_L)(ar{e}_R\sigma_{\mu u} u_{\mu L})$	$^{\mathrm{C}}$
CVL_bcenutau	$-rac{4reve{Q}_F^2}{\sqrt{2}}V_{cb}(ar{c}_L\gamma^\mu b_L)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_bcenutau	$-rac{4reve{G_F}}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_bcenutau	$-\frac{4\check{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_Lb_R)(\bar{e}_R u_{\tau L})$	\mathbf{C}
CSL_bcenutau	$-rac{4\overset{\circ}{N_T}}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{e}_R u_{ au L})$	\mathbf{C}
CT_bcenutau	$-\frac{4\overleftarrow{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_R\sigma^{\mu\nu}b_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

ubenu

WC name	Operator	Type
CVL_buenue	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L\gamma^{\mu}b_L)(\bar{e}_L\gamma_{\mu}\nu_{eL})$	C
CVR_buenue	$-\frac{4\widetilde{G}_F^2}{\sqrt{2}}V_{ub}(\bar{u}_R\gamma^\mu b_R)(\bar{e}_L\gamma_\mu\nu_{eL})$	\mathbf{C}
CSR_buenue	$-\frac{4\check{G_F}}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{e}_R\nu_{eL})$	$^{\mathrm{C}}$
CSL_buenue	$-\frac{4G_F^2}{\sqrt{2}}V_{ub}(\bar{u}_Rb_L)(\bar{e}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_buenue	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{ub}(ar{u}_R\sigma^{\mu u}b_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$
CVL_buenumu	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{ub}(ar{u}_L\gamma^\mu b_L)(ar{e}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_buenumu	$-rac{4\overset{\sim}{N_T}}{\sqrt{2}}V_{ub}(\bar{u}_R\gamma^\mu b_R)(\bar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_buenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ub}(ar{u}_Lb_R)(ar{e}_R u_{\mu L})$	$^{\mathrm{C}}$
CSL_buenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ub}(ar{u}_Rb_L)(ar{e}_R u_{\mu L})$	$^{\mathrm{C}}$
CT_buenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ub}(ar{u}_R\sigma^{\mu u}b_L)(ar{e}_R\sigma_{\mu u} u_{\mu L})$	$^{\mathrm{C}}$
CVL_buenutau	$-rac{4reve{G_F}}{\sqrt{2}}V_{ub}(ar{u}_L\gamma^\mu b_L)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_buenutau	$-rac{4ar{Q}_F^C}{\sqrt{2}}V_{ub}(ar{u}_R\gamma^\mu b_R)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_buenutau	$-\frac{4\check{G}_{F}^{c}}{\sqrt{2}}V_{ub}(\bar{u}_{L}b_{R})(\bar{e}_{R} u_{ au L})$	\mathbf{C}
CSL_buenutau	$-\frac{4 \overleftarrow{G_F}}{\sqrt{2}} V_{ub} (\bar{u}_R b_L) (\bar{e}_R \nu_{\tau L})$	\mathbf{C}
CT_buenutau	$-rac{4reve{G}_F^2}{\sqrt{2}}V_{ub}(ar{u}_R\sigma^{\mu u}b_L)(ar{e}_R\sigma_{\mu u} u_{ au L})$	С

usenu

WC name	Operator	Type
CVL_suenue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^\mu s_L)(\bar{e}_L\gamma_\mu\nu_{eL})$	C
CVR_suenue	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_suenue	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{e}_R \nu_{eL})$	$^{\mathrm{C}}$
CSL_suenue	$-\frac{4\widetilde{G_F}}{\sqrt{2}}V_{us}(\bar{u}_Rs_L)(\bar{e}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_suenue	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$
CVL_suenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{e}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_suenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CSR_suenumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{e}_R u_{\mu L})$	$^{\mathrm{C}}$
CSL_suenumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_Rs_L)(\bar{e}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CT_suenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{e}_R\sigma_{\mu u} u_{\mu L})$	$^{\mathrm{C}}$
CVL_suenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{e}_L\gamma_\mu u_{ au L})$	$^{\mathrm{C}}$
CVR_suenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{ au L})$	$^{\mathrm{C}}$
CSR_suenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_L s_R)(ar{e}_R u_{ au L})$	$^{\mathrm{C}}$
CSL_suenutau	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{e}_R u_{ au L})$	\mathbf{C}
CT_suenutau	$-\frac{\sqrt[4]{G_F}}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

csenu

WC name	Operator	Type
CVL_scenue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^{\mu}s_L)(\bar{e}_L\gamma_{\mu}\nu_{eL})$	C
CVR_scenue	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_scenue	$-\frac{4 \zeta_F^2}{\sqrt{2}} V_{cs}(\bar{c}_L s_R)(\bar{e}_R \nu_{eL})$	$^{\mathrm{C}}$
CSL_scenue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R s_L)(\bar{e}_R \nu_{eL})$	$^{\mathrm{C}}$
CT_scenue	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$
CVL_scenumu	$-rac{4ar{Q}_F^C}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{e}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_scenumu	$-rac{4ar{\zeta}_F^2}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CSR_scenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_L s_R)(ar{e}_R u_{\mu L})$	$^{\mathrm{C}}$
CSL_scenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_Rs_L)(ar{e}_R u_{\mu L})$	$^{\mathrm{C}}$
CT_scenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{e}_R\sigma_{\mu u} u_{\mu L})$	$^{\mathrm{C}}$
CVL_scenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{e}_L\gamma_\mu u_{ au L})$	$^{\mathrm{C}}$
CVR_scenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{ au L})$	$^{\mathrm{C}}$
CSR_scenutau	$-rac{4G_F^2}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{e}_R u_{ au L})$	\mathbf{C}
CSL_scenutau	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{cs}(ar{c}_Rs_L)(ar{e}_R u_{ au L})$	$^{\mathrm{C}}$
CT_scenutau	$-rac{4ar{G}_F}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{e}_R\sigma_{\mu u} u_{ au L})$	С

${\tt cdenu}$

WC name	Operator	Type
CVL_dcenue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{e}_L\gamma_\mu\nu_{eL})$	C
CVR_dcenue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{e}_L\gamma_\mu\nu_{eL})$	\mathbf{C}
CSR_dcenue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{e}_R\nu_{eL})$	$^{\mathrm{C}}$
CSL_dcenue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{e}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_dcenue	$-rac{4G_F}{\sqrt{2}}V_{cd}(ar{c}_R\sigma^{\mu u}d_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$
CVL_dcenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cd}(ar{c}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_dcenumu	$-rac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{e}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CSR_dcenumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{e}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CSL_dcenumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{e}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CT_dcenumu	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{cd}(ar{c}_R\sigma^{\mu u}d_L)(ar{e}_R\sigma_{\mu u} u_{\mu L})$	$^{\mathrm{C}}$
CVL_dcenutau	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{cd}(ar{c}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_dcenutau	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_dcenutau	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{cd}(ar{c}_Ld_R)(ar{e}_R u_{ au L})$	\mathbf{C}
CSL_dcenutau	$-rac{4\overset{C}{G_F}}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{e}_R u_{ au L})$	\mathbf{C}
CT_dcenutau	$-\frac{{}^{4\!$	C

${\tt cbmunu}$

WC name	Operator	Type
CVL_bcmunue	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_L\gamma^{\mu}b_L)(\bar{\mu}_L\gamma_{\mu}\nu_{eL})$	C
CVR_bcmunue	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{\mu}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_bcmunue	$-\frac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cb}(\bar{c}_Lb_R)(\bar{\mu}_R\nu_{eL})$	$^{\mathrm{C}}$
CSL_bcmunue	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{\mu}_R\nu_{eL})$	\mathbf{C}
CT_bcmunue	$-rac{4rac{\zeta_F}{\sqrt{2}}}{\sqrt{2}}V_{cb}(ar{c}_R\sigma^{\mu u}b_L)(ar{\mu}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_bcmunumu	$-rac{4reve{G}_F}{\sqrt{2}}V_{cb}(ar{c}_L\gamma^\mu b_L)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_bcmunumu	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{\mu}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CSR_bcmunumu	$-\frac{4\overset{\sim}{G_F}}{\sqrt{2}}V_{cb}(\bar{c}_Lb_R)(\bar{\mu}_R\nu_{\mu L})$	\mathbf{C}
CSL_bcmunumu	$-\frac{4\overset{\sim}{G_F}}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{\mu}_R\nu_{\mu L})$	\mathbf{C}
CT_bcmunumu	$-rac{4 \check{G}_F}{\sqrt{2}} V_{cb} (\bar{c}_R \sigma^{\mu u} b_L) (\bar{\mu}_R \sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_bcmunutau	$-rac{4G_F}{\sqrt{2}}V_{cb}(ar{c}_L\gamma^\mu b_L)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_bcmunutau	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_R\gamma^\mu b_R)(\bar{\mu}_L\gamma_\mu u_{\tau L})$	\mathbf{C}
CSR_bcmunutau	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_L b_R)(\bar{\mu}_R \nu_{\tau L})$	\mathbf{C}
CSL_bcmunutau	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cb}(ar{c}_Rb_L)(ar{\mu}_R u_{ au L})$	$^{\mathrm{C}}$
CT_bcmunutau	$-rac{4\overset{\circ}{G_F}}{\sqrt{2}}V_{cb}(ar{c}_R\sigma^{\mu u}b_L)(ar{\mu}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

${\tt ubmunu}$

WC name	Operator	Type
CVL_bumunue	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L\gamma^{\mu}b_L)(\bar{\mu}_L\gamma_{\mu}\nu_{eL})$	C
CVR_bumunue	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\gamma^\mu b_R)(\bar{\mu}_L\gamma_\mu\nu_{eL})$	$^{\mathrm{C}}$
CSR_bumunue	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{\mu}_R\nu_{eL})$	$^{\mathrm{C}}$
CSL_bumunue	$-rac{4ar{G_F}}{\sqrt{2}}V_{ub}(ar{u}_Rb_L)(ar{\mu}_R u_{eL})$	$^{\mathrm{C}}$
CT_bumunue	$-rac{4ar{G_F}}{\sqrt{2}}V_{ub}(ar{u}_R\sigma^{\mu u}b_L)(ar{\mu}_R\sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$
CVL_bumunumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ub}(ar{u}_L\gamma^\mu b_L)(ar{\mu}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_bumunumu	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\gamma^\mu b_R)(\bar{\mu}_L\gamma_\mu\nu_{\mu L})$	$^{\mathrm{C}}$
CSR_bumunumu	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L b_R)(\bar{\mu}_R u_{\mu L})$	$^{\mathrm{C}}$
CSL_bumunumu	$-rac{4G_F}{\sqrt{2}}V_{ub}(ar{u}_Rb_L)(ar{\mu}_R u_{\mu L})$	$^{\mathrm{C}}$
CT_bumunumu	$-rac{4G_F}{\sqrt{2}}V_{ub}(ar{u}_R\sigma^{\mu u}b_L)(ar{\mu}_R\sigma_{\mu u} u_{\mu L})$	$^{\mathrm{C}}$
CVL_bumunutau	$-rac{4ar{G}_F}{\sqrt{2}}V_{ub}(ar{u}_L\gamma^\mu b_L)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_bumunutau	$-rac{4G_F}{\sqrt{2}}V_{ub}(ar{u}_R\gamma^\mu b_R)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_bumunutau	$-rac{4G_F}{\sqrt{2}}V_{ub}(ar{u}_Lb_R)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CSL_bumunutau	$-rac{4G_F}{\sqrt{2}}V_{ub}(ar{u}_Rb_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_bumunutau	$-\frac{4G_F^2}{\sqrt{2}}V_{ub}(\bar{u}_R\sigma^{\mu\nu}b_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

usmunu

WC name	Operator	Type
CVL_sumunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{\mu}_L\gamma_{\mu}\nu_{eL})$	
CVR_sumunue	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_sumunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{\mu}_R \nu_{eL})$	\mathbf{C}
CSL_sumunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_Rs_L)(\bar{\mu}_R\nu_{eL})$	\mathbf{C}
CT_sumunue	$-rac{4\overset{\sim}{Q_F}}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu u}s_L)(\bar{\mu}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_sumunumu	$-rac{4rac{rack{G}_F}{\sqrt{2}}}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_sumunumu	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_sumunumu	$-rac{4\overset{\circ}{G_F}}{\sqrt{2}}V_{us}(\bar{u}_Ls_R)(\bar{\mu}_R u_{\mu L})$	\mathbf{C}
CSL_sumunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R s_L)(\bar{\mu}_R \nu_{\mu L})$	\mathbf{C}
CT_sumunumu	$-rac{4\check{G}_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu u}s_L)(\bar{\mu}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_sumunutau	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{\mu}_L\gamma_{\mu}\nu_{\tau L})$	\mathbf{C}
CVR_sumunutau	$-rac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^\mu s_R)(\bar{\mu}_L\gamma_\mu u_{\tau L})$	\mathbf{C}
CSR_sumunutau	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_L s_R)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CSL_sumunutau	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_sumunutau	$-rac{4\overleftarrow{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

csmunu

WC name	Operator	Type
CVL_scmunue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^{\mu}s_L)(\bar{\mu}_L\gamma_{\mu}\nu_{eL})$	C
CVR_scmunue	$-rac{4 ilde{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_scmunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{\mu}_R \nu_{eL})$	$^{\mathrm{C}}$
CSL_scmunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_Rs_L)(\bar{\mu}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_scmunue	$-rac{4 ilde{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$
CVL_scmunumu	$-rac{4 ilde{G_F}}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_scmunumu	$-rac{4 ilde{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CSR_scmunumu	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{\mu}_R \nu_{\mu L})$	$^{\mathrm{C}}$
CSL_scmunumu	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_Rs_L)(\bar{\mu}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CT_scmunumu	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{\mu L})$	$^{\mathrm{C}}$
CVL_scmunutau	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_scmunutau	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_scmunutau	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cs}(ar{c}_Ls_R)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CSL_scmunutau	$-rac{4G_F^2}{\sqrt{2}}V_{cs}(ar{c}_Rs_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_scmunutau	$-rac{4\widetilde{Q}_F^2}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{ au L})$	С

${\tt cdmunu}$

WC name	Operator	Type
CVL_dcmunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{eL})$	C
CVR_dcmunue	$-rac{4rac{arphi_F}{\sqrt{2}}}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{\mu}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_dcmunue	$-rac{4\widetilde{G}_F^c}{\sqrt{2}}V_{cd}(ar{c}_Ld_R)(ar{\mu}_R u_{eL})$	\mathbf{C}
CSL_dcmunue	$-\frac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{\mu}_R\nu_{eL})$	\mathbf{C}
CT_dcmunue	$-rac{4\check{G}_F^2}{\sqrt{2}}V_{cd}(ar{c}_R\sigma^{\mu u}d_L)(ar{\mu}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_dcmunumu	$-rac{4\check{G}_F^2}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_dcmunumu	$-rac{4rac{arphi_F}{\sqrt{2}}}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_dcmunumu	$-\frac{4\check{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{\mu}_R\nu_{\mu L})$	\mathbf{C}
CSL_dcmunumu	$-\frac{4\check{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{\mu}_R\nu_{\mu L})$	\mathbf{C}
CT_dcmunumu	$-rac{4\check{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu u}d_L)(\bar{\mu}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_dcmunutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{\tau L})$	\mathbf{C}
CVR_dcmunutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu\nu_{\tau L})$	\mathbf{C}
CSR_dcmunutau	$-\frac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{\mu}_R\nu_{\tau L})$	\mathbf{C}
CSL_dcmunutau	$-rac{4reve{G}_F^c}{\sqrt{2}}V_{cd}(ar{c}_Rd_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_dcmunutau	$-rac{4\overleftarrow{G_F}}{\sqrt{2}}V_{cd}(ar{c}_R\sigma^{\mu u}d_L)(ar{\mu}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

cbtaunu

WC name	Operator	Type
CVL_bctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_L\gamma^\mu b_L)(\bar{\tau}_L\gamma_\mu\nu_{eL})$	C
CVR_bctaunue	$-rac{4 \widetilde{G}_F}{\sqrt{2}} V_{cb} (\bar{c}_R \gamma^\mu b_R) (\bar{\tau}_L \gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_bctaunue	$-\frac{4\ddot{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_Lb_R)(\bar{\tau}_R\nu_{eL})$	$^{\mathrm{C}}$
CSL_bctaunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{\tau}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_bctaunue	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_R\sigma^{\mu\nu}b_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{eL})$	$^{\mathrm{C}}$
CVL_bctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_L\gamma^{\mu}b_L)(\bar{\tau}_L\gamma_{\mu}\nu_{\mu L})$	$^{\mathrm{C}}$
CVR_bctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_R\gamma^\mu b_R)(\bar{\tau}_L\gamma_\mu\nu_{\mu L})$	$^{\mathrm{C}}$
CSR_bctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_Lb_R)(\bar{\tau}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CSL_bctaunumu	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{\tau}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CT_bctaunumu	$-rac{4\check{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_R\sigma^{\mu u}b_L)(\bar{ au}_R\sigma_{\mu u} u_{\mu L})$	$^{\mathrm{C}}$
CVL_bctaunutau	$-rac{4\check{G}_F}{\sqrt{2}}V_{cb}(ar{c}_L\gamma^\mu b_L)(ar{ au}_L\gamma_\mu u_{ au L})$	$^{\mathrm{C}}$
CVR_bctaunutau	$-rac{4\check{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_R\gamma^\mu b_R)(\bar{ au}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_bctaunutau	$-rac{4\overset{\circ}{G_F}}{\sqrt{2}}V_{cb}(\bar{c}_Lb_R)(\bar{ au}_R u_{ au L})$	\mathbf{C}
CSL_bctaunutau	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{\tau}_R u_{\tau L})$	$^{\mathrm{C}}$
CT_bctaunutau	$-rac{4reve{G}_F^2}{\sqrt{2}}V_{cb}(ar{c}_R\sigma^{\mu u}b_L)(ar{ au}_R\sigma_{\mu u} u_{ au L})$	С

ubtaunu

WC name	Operator	Type
CVL_butaunue	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L\gamma^{\mu}b_L)(\bar{\tau}_L\gamma_{\mu}\nu_{eL})$	C
CVR_butaunue	$-rac{4G_F^2}{\sqrt{2}}V_{ub}(ar{u}_R\gamma^\mu b_R)(ar{ au}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_butaunue	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{\tau}_R\nu_{eL})$	\mathbf{C}
CSL_butaunue	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_Rb_L)(\bar{\tau}_R\nu_{eL})$	\mathbf{C}
CT_butaunue	$-rac{4\ddot{G}_F}{\sqrt{2}}V_{ub}(\bar{u}_R\sigma^{\mu u}b_L)(\bar{ au}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_butaunumu	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{ub}(\bar{u}_L\gamma^\mu b_L)(\bar{ au}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_butaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\gamma^{\mu}b_R)(\bar{\tau}_L\gamma_{\mu}\nu_{\mu L})$	\mathbf{C}
CSR_butaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{\tau}_R\nu_{\mu L})$	\mathbf{C}
CSL_butaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_Rb_L)(\bar{\tau}_R\nu_{\mu L})$	\mathbf{C}
CT_butaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\sigma^{\mu\nu}b_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}
CVL_butaunutau	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L\gamma^{\mu}b_L)(\bar{\tau}_L\gamma_{\mu}\nu_{\tau L})$	\mathbf{C}
CVR_butaunutau	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\gamma^{\mu}b_R)(\bar{\tau}_L\gamma_{\mu}\nu_{\tau L})$	\mathbf{C}
CSR_butaunutau	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{\tau}_R\nu_{\tau L})$	\mathbf{C}
CSL_butaunutau	$-rac{4\ddot{G}_F}{\sqrt{2}}V_{ub}(\bar{u}_Rb_L)(\bar{ au}_R u_{ au L})$	\mathbf{C}
CT_butaunutau	$-\frac{4G_F^2}{\sqrt{2}}V_{ub}(\bar{u}_R\sigma^{\mu\nu}b_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

ustaunu

WC name	Operator	Type
CVL_sutaunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{\tau}_L\gamma_{\mu}\nu_{eL})$	C
CVR_sutaunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^\mu s_R)(\bar{\tau}_L\gamma_\mu\nu_{eL})$	$^{\mathrm{C}}$
CSR_sutaunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{\tau}_R \nu_{eL})$	$^{\mathrm{C}}$
CSL_sutaunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R s_L)(\bar{\tau}_R \nu_{eL})$	$^{\mathrm{C}}$
CT_sutaunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{eL})$	$^{\mathrm{C}}$
CVL_sutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{\tau}_L\gamma_{\mu}\nu_{\mu L})$	$^{\mathrm{C}}$
CVR_sutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^{\mu}s_R)(\bar{\tau}_L\gamma_{\mu}\nu_{\mu L})$	$^{\mathrm{C}}$
CSR_sutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{\tau}_R \nu_{\mu L})$	$^{\mathrm{C}}$
CSL_sutaunumu	$-\frac{4G_F^2}{\sqrt{2}}V_{us}(\bar{u}_R s_L)(\bar{\tau}_R \nu_{\mu L})$	$^{\mathrm{C}}$
CT_sutaunumu	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{ au}_R\sigma_{\mu u} u_{\mu L})$	$^{\mathrm{C}}$
CVL_sutaunutau	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{ au}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_sutaunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{ au}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_sutaunutau	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{ au}_R u_{ au L})$	\mathbf{C}
CSL_sutaunutau	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(\bar{u}_Rs_L)(\bar{ au}_R u_{ au L})$	\mathbf{C}
CT_sutaunutau	$-\frac{4\tilde{Q}_F^2}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

cstaunu

WC name	Operator	Type
CVL_sctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^{\mu}s_L)(\bar{\tau}_L\gamma_{\mu}\nu_{eL})$	C
CVR_sctaunue	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{ au}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_sctaunue	$-rac{4\overset{\sim}{G_F}}{\sqrt{2}}V_{cs}(ar{c}_Ls_R)(ar{ au}_R u_{eL})$	$^{\mathrm{C}}$
CSL_sctaunue	$-\frac{4G_F^2}{\sqrt{2}}V_{cs}(\bar{c}_Rs_L)(\bar{\tau}_R\nu_{eL})$	\mathbf{C}
CT_sctaunue	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{ au}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_sctaunumu	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{ au}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_sctaunumu	$-rac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R\gamma^\mu s_R)(\bar{ au}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_sctaunumu	$-rac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{ au}_R u_{\mu L})$	\mathbf{C}
CSL_sctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_Rs_L)(\bar{\tau}_R\nu_{\mu L})$	\mathbf{C}
CT_sctaunumu	$-rac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R\sigma^{\mu u}s_L)(\bar{ au}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_sctaunutau	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^{\mu}s_L)(\bar{\tau}_L\gamma_{\mu}\nu_{\tau L})$	\mathbf{C}
CVR_sctaunutau	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R\gamma^{\mu}s_R)(\bar{\tau}_L\gamma_{\mu}\nu_{\tau L})$	\mathbf{C}
CSR_sctaunutau	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{\tau}_R u_{\tau L})$	$^{\mathrm{C}}$
CSL_sctaunutau	$-rac{4\overset{\sim}{G_F}}{\sqrt{2}}V_{cs}(ar{c}_Rs_L)(ar{ au}_R u_{ au L})$	$^{\mathrm{C}}$
CT_sctaunutau	$-\frac{4\tilde{Q}_F^2}{\sqrt{2}}V_{cs}(\bar{c}_R\sigma^{\mu\nu}s_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

cdtaunu

WC name	Operator	Type
CVL_dctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{\tau}_L\gamma_\mu\nu_{eL})$	C
CVR_dctaunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{\tau}_L\gamma_\mu\nu_{eL})$	$^{\mathrm{C}}$
CSR_dctaunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{\tau}_R\nu_{eL})$	$^{\mathrm{C}}$
CSL_dctaunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{\tau}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_dctaunue	$-rac{4 \widetilde{G}_F}{\sqrt{2}} V_{cd} (\bar{c}_R \sigma^{\mu u} d_L) (\bar{ au}_R \sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$
CVL_dctaunumu	$-rac{4 \widetilde{G}_F}{\sqrt{2}} V_{cd} (\bar{c}_L \gamma^\mu d_L) (\bar{ au}_L \gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_dctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{\tau}_L\gamma_\mu\nu_{\mu L})$	$^{\mathrm{C}}$
CSR_dctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{\tau}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CSL_dctaunumu	$-rac{4\ddot{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{ au}_R u_{\mu L})$	$^{\mathrm{C}}$
CT_dctaunumu	$-rac{4\check{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu u}d_L)(\bar{ au}_R\sigma_{\mu u} u_{\mu L})$	$^{\mathrm{C}}$
CVL_dctaunutau	$-rac{4\check{G}_F}{\sqrt{2}}V_{cd}(ar{c}_L\gamma^\mu d_L)(ar{ au}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_dctaunutau	$-rac{4\check{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{ au}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_dctaunutau	$-rac{4\check{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{ au}_R u_{ au L})$	\mathbf{C}
CSL_dctaunutau	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{\tau}_R u_{\tau L})$	\mathbf{C}
CT_dctaunutau	$-\frac{4\overleftarrow{G}_F^2}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu\nu}d_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

udenu

WC name	Operator	Type
CVL_duenue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{e}_L\gamma_\mu\nu_{eL})$	C
CVR_duenue	$-rac{4\overset{\circ}{Q_F}}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_duenue	$-rac{4\overset{\circ}{V_L}}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{e}_R u_{eL})$	\mathbf{C}
CSL_duenue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{e}_R u_{eL})$	\mathbf{C}
CT_duenue	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_duenumu	$-rac{4ar{G}_F}{\sqrt{2}}V_{ud}(ar{u}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_duenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_duenumu	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{e}_R\nu_{\mu L})$	\mathbf{C}
CSL_duenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_Rd_L)(ar{e}_R u_{\mu L})$	\mathbf{C}
CT_duenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{e}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_duenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_duenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_duenutau	$-rac{4\overset{\circ}{Q_F}}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{e}_R u_{ au L})$	\mathbf{C}
CSL_duenutau	$-rac{4\overset{\circ}{V_L}}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{e}_R u_{ au L})$	\mathbf{C}
CT_duenutau	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

udmunu

WC name	Operator	Type
CVL_dumunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{eL})$	C
CVR_dumunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu\nu_{eL})$	\mathbf{C}
CSR_dumunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\mu}_R\nu_{eL})$	\mathbf{C}
CSL_dumunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{\mu}_R\nu_{eL})$	\mathbf{C}
CT_dumunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{eL})$	\mathbf{C}
CVL_dumunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CVR_dumunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CSR_dumunumu	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\mu}_R\nu_{\mu L})$	\mathbf{C}
CSL_dumunumu	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{\mu}_R\nu_{\mu L})$	\mathbf{C}
CT_dumunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}
CVL_dumunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_dumunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_dumunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\mu}_R u_{ au L})$	\mathbf{C}
CSL_dumunutau	$-rac{4G_F^2}{\sqrt{2}}V_{ud}(ar{u}_Rd_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_dumunutau	$-\frac{4\tilde{\zeta}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{\tau L})$	C

udtaunu

WC name	Operator	Type
CVL_dutaunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^{\mu}d_L)(\bar{\tau}_L\gamma_{\mu}\nu_{eL})$	
CVR_dutaunue	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{ au}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_dutaunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\tau}_R\nu_{eL})$	\mathbf{C}
CSL_dutaunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{\tau}_R\nu_{eL})$	\mathbf{C}
CT_dutaunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{eL})$	\mathbf{C}
CVL_dutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\tau}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CVR_dutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{\tau}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CSR_dutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\tau}_R\nu_{\mu L})$	\mathbf{C}
CSL_dutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{\tau}_R\nu_{\mu L})$	\mathbf{C}
CT_dutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}
CVL_dutaunutau	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\tau}_L\gamma_\mu\nu_{\tau L})$	\mathbf{C}
CVR_dutaunutau	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{\tau}_L\gamma_\mu\nu_{\tau L})$	\mathbf{C}
CSR_dutaunutau	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\tau}_R\nu_{\tau L})$	\mathbf{C}
CSL_dutaunutau	$-rac{4\ddot{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{ au}_R u_{ au L})$	\mathbf{C}
CT_dutaunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{ au}_R\sigma_{\mu u} u_{ au L})$	С

dF=0

WC name	Operator	Type
CG	$\frac{4G_F}{\sqrt{2}}f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	R
CGtilde	$rac{4\widetilde{G}_F}{\sqrt{2}}f^{ABC}\widetilde{G}_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C\mu}$	R
C7_uu	$\frac{{}^4\!\tilde{G}_F^c}{\sqrt{2}}f^{ABC}\tilde{G}_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu}$ $\frac{{}^4\!G_F}{\sqrt{2}}\frac{e}{16\pi^2}m_u\bar{u}_L\sigma^{\mu\nu}u_RF_{\mu\nu}$	$^{\mathrm{C}}$
C7_cc	$rac{4G_F^2}{\sqrt{2}}rac{e}{16\pi^2}m_car{c}_L\sigma^{\mu u}c_RF_{\mu u}$	\mathbf{C}
C7_dd	$rac{4G_F}{\sqrt{2}}rac{e}{16\pi^2}m_dar{d}_L\sigma^{\mu u}d_RF_{\mu u}$	\mathbf{C}
C7_ss	$rac{4G_F}{\sqrt{2}}rac{e}{16\pi^2}m_sar{s}_L\sigma^{\mu u}s_RF_{\mu u}$	\mathbf{C}
C7_bb	$rac{4G_F}{\sqrt{2}}rac{e}{16\pi^2}m_bar{b}_L\sigma^{\mu u}b_RF_{\mu u}$	\mathbf{C}
C7_ee	$rac{4\widetilde{G_F}}{\sqrt{2}}rac{e}{16\pi^2}m_ear{e}_L\sigma^{\mu u}e_RF_{\mu u}$	\mathbf{C}
C7_mumu	$\frac{4G_F}{\sqrt{2}} \frac{e}{16\pi^2} m_\mu \bar{\mu}_L \sigma^{\mu\nu} \mu_R F_{\mu\nu}$	\mathbf{C}
C7_tautau	$rac{4G_F}{4G_T}rac{e}{16\pi^2}m_ auar au_L\sigma^{\mu u} au_RF_{\mu u}$	\mathbf{C}
C8_uu	$\frac{4\tilde{G}_{F}^{2}}{\sqrt{2}}\frac{g_{s}}{16\pi^{2}}m_{u}\bar{u}_{L}\sigma^{\mu\nu}T^{A}u_{R}G_{\mu\nu}^{A}$	\mathbf{C}
C8_cc	$\frac{4 \check{G}_F}{\sqrt{2}} \frac{g_s}{16\pi^2} m_c \bar{c}_L \sigma^{\mu\nu} T^A c_R G_{\mu\nu}^A$	\mathbf{C}
C8_dd	$\frac{4G_F^2}{\sqrt{2}} \frac{g_s}{16\pi^2} m_d \bar{d}_L \sigma^{\mu\nu} T^A d_R G_{\mu\nu}^A$	\mathbf{C}
C8_ss	$\frac{4 G_F^2}{\sqrt{2}} \frac{g_s}{16 \pi^2} m_s \bar{s}_L \sigma^{\mu u} T^A s_R G_{\mu u}^A$	\mathbf{C}
C8_bb	$\frac{4G_F}{\sqrt{2}} \frac{g_s}{16\pi^2} m_b ar{b}_L \sigma^{\mu\nu} T^A b_R G_{\mu\nu}^A$	\mathbf{C}
CTRR_eeuu	$\frac{4G_F}{\sqrt{2}}(ar{e}_L\sigma^{\mu u}e_R)(ar{u}_L\sigma_{\mu u}u_R)$	\mathbf{C}
CTRR_eecc	$rac{4\check{G}_{F}^{r}}{\sqrt{2}}(ar{e}_{L}\sigma^{\mu u}e_{R})(ar{c}_{L}\sigma_{\mu u}c_{R})$	\mathbf{C}
CTRR_mumuuu	$\frac{4 \check{G}_F}{\sqrt{2}} (\bar{\mu}_L \sigma^{\mu u} \mu_R) (\bar{u}_L \sigma_{\mu u} u_R)$	\mathbf{C}
CTRR_mumucc	$rac{4 \overleftarrow{G_F}}{\sqrt{2}} (ar{\mu}_L \sigma^{\mu u} \mu_R) (ar{c}_L \sigma_{\mu u} c_R)$	\mathbf{C}
CTRR_tautauuu	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\sigma^{\mu\nu}\tau_R)(\bar{u}_L\sigma_{\mu\nu}u_R)$	\mathbf{C}
CTRR_tautaucc	$\frac{4G_F}{\sqrt{2}}(\bar{ au}_L\sigma^{\mu u} au_R)(\bar{c}_L\sigma_{\mu u}c_R)$	\mathbf{C}
CTRR_eedd	$rac{4reve{G}_F}{\sqrt{2}}(ar{e}_L\sigma^{\mu u}e_R)(ar{d}_L\sigma_{\mu u}d_R)$	\mathbf{C}
CTRR_eess	$\frac{4 \overleftarrow{G_F}}{\sqrt{2}} (\bar{e}_L \sigma^{\mu \nu} e_R) (\bar{s}_L \sigma_{\mu \nu} s_R)$	\mathbf{C}
CTRR_eebb	$\frac{4 \check{G}_F}{\sqrt{2}} (\bar{e}_L \sigma^{\mu u} e_R) (\bar{b}_L \sigma_{\mu u} b_R)$	\mathbf{C}
CTRR_mumudd	$rac{4 \check{G}_F}{\sqrt{2}} (ar{\mu}_L \sigma^{\mu u} \mu_R) (ar{d}_L \sigma_{\mu u} d_R)$	\mathbf{C}
CTRR_mumuss	$rac{4 \check{G}_F}{\sqrt{2}} (ar{\mu}_L \sigma^{\mu u} \mu_R) (ar{s}_L \sigma_{\mu u} s_R)$	\mathbf{C}
CTRR_mumubb	$rac{4 ar{G}_F}{\sqrt{2}} (ar{\mu}_L \sigma^{\mu u} \mu_R) (ar{b}_L \sigma_{\mu u} b_R)$	\mathbf{C}
CTRR_tautaudd	$\frac{4 \overleftarrow{G_F}}{\sqrt{2}} (\bar{ au}_L \sigma^{\mu u} au_R) (\bar{d}_L \sigma_{\mu u} d_R)$	\mathbf{C}
CTRR_tautauss	$\frac{4 \overleftarrow{G_F}}{\sqrt{2}} (\bar{ au}_L \sigma^{\mu u} au_R) (\bar{s}_L \sigma_{\mu u} s_R)$	\mathbf{C}
CTRR_tautaubb	$\frac{\frac{4\bar{G}_F}{\sqrt{2}}(\bar{\tau}_L\sigma^{\mu\nu}\tau_R)(\bar{s}_L\sigma_{\mu\nu}s_R)}{\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\sigma^{\mu\nu}\tau_R)(\bar{b}_L\sigma_{\mu\nu}b_R)}$	\mathbf{C}
CS1RR_uuuu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L u_R)(\bar{u}_L u_R)$	\mathbf{C}
CS1RR_uucc	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L u_R)(\bar{c}_L c_R)$	\mathbf{C}
CS1RR_uccu	$\frac{4\check{G_F}}{\sqrt{2}}(\bar{u}_L c_R)(\bar{c}_L u_R)$	\mathbf{C}
CS1RR_cccc	$\frac{\sqrt[4]{G_F}}{\sqrt{2}}(\bar{u}_L c_R)(\bar{c}_L u_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{c}_L c_R)(\bar{c}_L c_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{u}_L T^A u_R)(\bar{u}_L T^A u_R)$	\mathbf{C}
CS8RR_uuuu	$\frac{4\ddot{G_F}}{\sqrt{2}}(\bar{u}_L T^A u_R)(\bar{u}_L T^A u_R)$	\mathbf{C}

WC name	Operator	Type
CS8RR_uucc	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L T^A u_R)(\bar{c}_L T^A c_R)$	\mathbf{C}
CS8RR_uccu	$\frac{4G_F}{\sqrt{2}}(ar{u}_L T^A c_R)(ar{c}_L T^A u_R)$	$^{\mathrm{C}}$
CS8RR_cccc	$\frac{4\breve{G}_F^F}{\sqrt{2}}(\bar{c}_L T^A c_R)(\bar{c}_L T^A c_R)$	$^{\mathrm{C}}$
CS1RR_uudd	$rac{4G_F}{\sqrt{2}}(ar{u}_L u_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CS1RR_uuss	$rac{4G_F}{\sqrt{2}}(ar{u}_L u_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CS1RR_uubb	$rac{4G_F}{\sqrt{2}}(ar{u}_L u_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CS1RR_ccdd	$rac{4ar{G}_F}{\sqrt{2}}(ar{c}_L c_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CS1RR_ccss	$rac{4G_F}{\sqrt{2}}(ar{c}_L c_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CS1RR_ccbb	$rac{4G_F}{\sqrt{2}}(ar{c}_L c_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CS8RR_uudd	$rac{4G_F}{\sqrt{2}}(ar{u}_L T^A u_R)(ar{d}_L T^A d_R)$	$^{\mathrm{C}}$
CS8RR_uuss	$rac{4G_F}{\sqrt{2}}(ar{u}_L T^A u_R)(ar{s}_L T^A s_R)$	$^{\mathrm{C}}$
CS8RR_uubb	$rac{4G_F}{\sqrt{2}}(ar{u}_L T^A u_R)(ar{b}_L T^A b_R)$	$^{\mathrm{C}}$
CS8RR_ccdd	$rac{4G_F}{\sqrt{2}}(ar{c}_L T^A c_R)(ar{d}_L T^A d_R)$	$^{\mathrm{C}}$
CS8RR_ccss	$rac{4G_F}{\sqrt{2}}(ar{c}_L T^A c_R)(ar{s}_L T^A s_R)$	$^{\mathrm{C}}$
CS8RR_ccbb	$rac{4G_F}{\sqrt{2}}(ar{c}_L T^A c_R)(ar{b}_L T^A b_R)$	$^{\mathrm{C}}$
CS1RR_dddd	$\frac{4G_F}{\sqrt{2}}(ar{d}_L d_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CS1RR_ddss	$\frac{4G_F}{\sqrt{2}}(ar{d}_L d_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CS1RR_ddbb	$\frac{4G_F}{\sqrt{2}}(ar{d}_L d_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CS1RR_dssd	$\frac{4G_F}{\sqrt{2}}(ar{d}_L s_R)(ar{s}_L d_R)$	$^{\mathrm{C}}$
CS1RR_dbbd	$rac{4G_F}{\sqrt{2}}(ar{d}_L b_R)(ar{b}_L d_R)$	$^{\mathrm{C}}$
CS1RR_ssss	$rac{4G_F}{\sqrt{2}}(ar{s}_L s_R)(ar{s}_L s_R)$	С
CS1RR_ssbb	$\frac{4G_F}{\sqrt{2}}(ar{s}_L s_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CS1RR_sbbs	$\frac{4G_F}{\sqrt{2}}(ar{s}_L b_R)(ar{b}_L s_R)$	С
CS1RR_bbbb	$rac{4G_F}{\sqrt{2}}(ar{b}_L b_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CS8RR_dddd	$\frac{4G_F}{\sqrt{2}}(ar{d}_L T^A d_R)(ar{d}_L T^A d_R)$	$^{\mathrm{C}}$
CS8RR_ddss	$\frac{4G_F}{\sqrt{2}}(ar{d}_L T^A d_R)(ar{s}_L T^A s_R)$	$^{\mathrm{C}}$
CS8RR_ddbb	$\frac{4G_F}{\sqrt{2}}(ar{d}_L T^A d_R)(ar{b}_L T^A b_R)$	С
CS8RR_dssd	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L T^A s_R)(\bar{s}_L T^A d_R)$	$^{\mathrm{C}}$
CS8RR_dbbd	$\frac{4ar{G_F}}{\sqrt{2}}(ar{d}_L T^A b_R)(ar{b}_L T^A d_R)$	$^{\mathrm{C}}$
CS8RR_ssss	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L T^A s_R)(\bar{s}_L T^A s_R)$	$^{\mathrm{C}}$
CS8RR_ssbb	$\frac{4ar{G}_F}{\sqrt{2}}(ar{s}_L T^A s_R)(ar{b}_L T^A b_R)$	С
CS8RR_sbbs	$\frac{4G_F}{\sqrt{2}}(ar{s}_L T^A b_R)(ar{b}_L T^A s_R)$	C
CS8RR_bbbb	$rac{4ar{G_F}}{\sqrt{2}}(ar{b}_L T^A b_R)(ar{b}_L T^A b_R)$	С
CS1RR_uddu	$rac{4ar{G}_F}{\sqrt{2}}(ar{u}_L d_R)(ar{d}_L u_R)$	$^{\mathrm{C}}$
CS1RR_ussu	$\frac{4G_F}{\sqrt{2}}(ar{u}_L s_R)(ar{s}_L u_R)$	$^{\mathrm{C}}$
CS1RR_ubbu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L b_R)(b_L u_R)$	$^{\mathrm{C}}$
CS1RR_cddc	$rac{4G_F}{\sqrt{2}}(ar{c}_L d_R)(ar{d}_L c_R)$	С

WC name	Operator	Type
CS1RR_cssc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L s_R)(\bar{s}_L c_R)$	C
CS1RR_cbbc	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{c}_L b_R)(\bar{b}_L c_R)$	\mathbf{C}
CS8RR_uddu	$\frac{4\tilde{Q}_F^2}{\sqrt{2}}(\bar{u}_L T^A d_R)(\bar{d}_L T^A u_R)$	\mathbf{C}
CS8RR_ussu	$\frac{4\overset{\checkmark}{O_F}}{\sqrt{2}}(\bar{u}_LT^As_R)(\bar{s}_LT^Au_R)$	\mathbf{C}
CS8RR_ubbu	$\frac{4\tilde{Q}_F^2}{\sqrt{2}}(\bar{u}_L T^A b_R)(\bar{b}_L T^A u_R)$	\mathbf{C}
CS8RR_cddc	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{c}_L T^A d_R)(\bar{d}_L T^A c_R)$	\mathbf{C}
CS8RR_cssc	$\frac{4\widetilde{G_F}}{\sqrt{2}}(\bar{c}_L T^A s_R)(\bar{s}_L T^A c_R)$	$^{\mathrm{C}}$
CS8RR_cbbc	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{c}_L T^A b_R)(\bar{b}_L T^A c_R)$	$^{\mathrm{C}}$
CSRL_eebb	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{b}_R b_L)$	С
CSRL_eecc	$\frac{4\widetilde{G_F}}{\sqrt{2}}(\bar{e}_L e_R)(\bar{c}_R c_L)$	$^{\mathrm{C}}$
CSRL_eedd	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{d}_R d_L)$	С
CSRL_eess	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{s}_R s_L)$	$^{\mathrm{C}}$
CSRL_eeuu	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{u}_R u_L)$	$^{\mathrm{C}}$
CSRL_mumubb	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\mu_R)(\bar{b}_Rb_L)$	\mathbf{C}
CSRL_mumucc	$rac{4ar{G}_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{c}_Rc_L)$	\mathbf{C}
CSRL_mumudd	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\mu_R)(\bar{d}_Rd_L)$	\mathbf{C}
CSRL_mumuss	$rac{4ar{G}_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{s}_Rs_L)$	\mathbf{C}
CSRL_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\mu_R)(\bar{u}_Ru_L)$	\mathbf{C}
CSRL_tautaubb	$rac{4ar{G}_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{b}_Rb_L)$	$^{\mathrm{C}}$
CSRL_tautaucc	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{ au}_L au_R) (ar{c}_R c_L)$	\mathbf{C}
CSRL_tautaudd	$rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{d}_Rd_L)$	\mathbf{C}
CSRL_tautauss	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{ au}_L au_R) (ar{s}_R s_L)$	\mathbf{C}
CSRL_tautauuu	$rac{4 \overline{G}_F}{\sqrt{2}} (ar{ au}_L au_R) (ar{u}_R u_L)$	\mathbf{C}
CSRR_eebb	$rac{4\overline{G}_F}{\sqrt{2}}(ar{e}_L e_R)(ar{b}_L b_R)$	\mathbf{C}
CSRR_eecc	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{c}_L c_R)$	\mathbf{C}
CSRR_eedd	$rac{4ar{G}_F}{\sqrt{2}}(ar{e}_L e_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CSRR_eeee	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{e}_L e_R)$	\mathbf{C}
CSRR_eemumu	$rac{4G_F}{\sqrt{2}}(ar{e}_L e_R)(ar{\mu}_L \mu_R)$	\mathbf{C}
CSRR_eess	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{e}_L e_R) (ar{s}_L s_R)$	\mathbf{C}
CSRR_eetautau	$rac{4 \overline{G}_F}{\sqrt{2}} (ar{e}_L e_R) (ar{ au}_L au_R)$	\mathbf{C}
CSRR_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{u}_L u_R)$	\mathbf{C}
CSRR_emumue	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\mu_R)(\bar{\mu}_Le_R)$	\mathbf{C}
CSRR_etautaue	$rac{4G_F}{\sqrt{2}}(ar{e}_L au_R)(ar{ au}_Le_R)$	\mathbf{C}
CSRR_mumubb	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\mu_R)(\bar{b}_Lb_R)$	\mathbf{C}
CSRR_mumucc	$rac{4ar{G}_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{c}_Lc_R)$	\mathbf{C}
CSRR_mumudd	$rac{4reve{G_F}}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{d}_Ld_R)$	\mathbf{C}
CSRR_mumumumu	$rac{4ar{G}_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{\mu}_L\mu_R)$	\mathbf{C}

WC name	Operator	Type
CSRR_mumuss	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\mu_R)(\bar{s}_Ls_R)$	C
CSRR_mumutautau	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{ au}_L au_R)$	$^{\mathrm{C}}$
CSRR_mumuuu	$\frac{4\ddot{G_F}}{\sqrt{2}}(\bar{\mu}_L\mu_R)(\bar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRR_mutautaumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L \tau_R)(\bar{\tau}_L \mu_R)$	C
CSRR_tautaubb	$rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{b}_Lb_R)$	$^{\mathrm{C}}$
CSRR_tautaucc	$\frac{4G_F}{\sqrt{2}}(\bar{ au}_L au_R)(\bar{c}_Lc_R)$	$^{\mathrm{C}}$
CSRR_tautaudd	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L \tau_R)(\bar{d}_L d_R)$	$^{\mathrm{C}}$
CSRR_tautauss	$\frac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{s}_Ls_R)$	C
CSRR_tautautautau	$-rac{4G_F}{\sqrt{2}}(ar au_L au_R)(ar au_L au_R)$	$^{\mathrm{C}}$
CSRR_tautauuu	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L \tau_R)(\bar{u}_L u_R)$	$^{\mathrm{C}}$
CV1LL_ccbb	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{b}_L\gamma_\mu b_L)$	R
CV1LL_ccdd	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{d}_L\gamma_\mu d_L)$	R
CV1LL_ccss	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{s}_L\gamma_\mu s_L)$	R
CV1LL_uubb	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{b}_L\gamma_\mu b_L)$	R
CV1LL_uudd	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{d}_L\gamma_\mu d_L)$	R
CV1LL_uuss	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{s}_L\gamma_\mu s_L)$	R
CV1LR_bbbb	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{b}_R\gamma_\mu b_R)$	R
CV1LR_bbcc	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{c}_R\gamma_\mu c_R)$	R
CV1LR_bbdd	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{d}_R\gamma_\mu d_R)$	R
CV1LR_bbss	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{s}_R\gamma_\mu s_R)$	R
CV1LR_bbuu	$\frac{4G_F}{\sqrt{2}}(\bar{b}_L\gamma^\mu b_L)(\bar{u}_R\gamma_\mu u_R)$	R
CV1LR_cbbc	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu b_L)(ar{b}_R\gamma_\mu c_R)$	$^{\mathrm{C}}$
CV1LR_ccbb	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{b}_R\gamma_\mu b_R)$	R
CV1LR_cccc	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{c}_R\gamma_\mu c_R)$	R
CV1LR_ccdd	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{d}_R\gamma_\mu d_R)$	R
CV1LR_ccss	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{s}_R\gamma_\mu s_R)$	R
CV1LR_ccuu	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{u}_R\gamma_\mu u_R)$	R
CV1LR_cddc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu d_L)(\bar{d}_R\gamma_\mu c_R)$	$^{\mathrm{C}}$
CV1LR_cssc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu s_L)(\bar{s}_R\gamma_\mu c_R)$	\mathbf{C}
CV1LR_dbbd	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu b_L)(ar{b}_R\gamma_\mu d_R)$	\mathbf{C}
CV1LR_ddbb	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{b}_R\gamma_\mu b_R)$	R
CV1LR_ddcc	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{c}_R\gamma_\mu c_R)$	R
CV1LR_dddd	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{d}_R\gamma_\mu d_R)$	R
CV1LR_ddss	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu d_L)(\bar{s}_R\gamma_\mu s_R)$	R
CV1LR_dduu	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu d_L)(\bar{u}_R\gamma_\mu u_R)$	R
CV1LR_dssd	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu s_L)(\bar{s}_R\gamma_\mu d_R)$	$^{\mathrm{C}}$
CV1LR_sbbs	$\begin{array}{l} \frac{\sqrt{2}}{\sqrt{2}} (a_L \gamma^\mu b_L) (\bar{o}_R \gamma_\mu a_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu d_L) (\bar{b}_R \gamma_\mu b_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu d_L) (\bar{c}_R \gamma_\mu c_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu d_L) (\bar{d}_R \gamma_\mu d_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu d_L) (\bar{s}_R \gamma_\mu s_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu d_L) (\bar{u}_R \gamma_\mu u_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu s_L) (\bar{s}_R \gamma_\mu d_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu b_L) (\bar{b}_R \gamma_\mu s_R) \end{array}$	$^{\mathrm{C}}$

WC name	Operator	Туре
CV1LR_ssbb	$rac{4G_F}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{b}_R\gamma_\mu b_R)$	R
CV1LR_sscc	$rac{4G_F^c}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{c}_R\gamma_\mu c_R)$	R
CV1LR_ssdd	$rac{4G_F^2}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{d}_R\gamma_\mu d_R)$	R
CV1LR_ssss	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{s}_R\gamma_\mu s_R)$	${ m R}$
CV1LR_ssuu	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{u}_R\gamma_\mu u_R)$	${ m R}$
CV1LR_ubbu	$\frac{4 \check{G}_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu b_L) (\bar{b}_R \gamma_\mu u_R)$	\mathbf{C}
CV1LR_uccu	$rac{4G_F^c}{\sqrt{2}}(ar{u}_L\gamma^\mu c_L)(ar{c}_R\gamma_\mu u_R)$	\mathbf{C}
CV1LR_uddu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu d_L)(\bar{d}_R\gamma_\mu u_R)$	\mathbf{C}
CV1LR_ussu	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu s_L)(\bar{s}_R\gamma_\mu u_R)$	\mathbf{C}
CV1LR_uubb	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{b}_R\gamma_\mu b_R)$	R
CV1LR_uucc	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{c}_R\gamma_\mu c_R)$	R
CV1LR_uudd	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{d}_R\gamma_\mu d_R)$	R
CV1LR_uuss	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{s}_R\gamma_\mu s_R)$	R
CV1LR_uuuu	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{u}_R\gamma_\mu u_R)$	R
CV1RR_ccbb	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu c_R)(\bar{b}_R\gamma_\mu b_R)$	R
CV1RR_ccdd	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu c_R)(\bar{d}_R\gamma_\mu d_R)$	R
CV1RR_ccss	$rac{4rac{G_F}{\sqrt{2}}}{\sqrt{2}}(ar{c}_R\gamma^\mu c_R)(ar{s}_R\gamma_\mu s_R)$	R
CV1RR_uubb	$rac{4\widetilde{G}_F^c}{\sqrt{2}}(ar{u}_R\gamma^\mu u_R)(ar{b}_R\gamma_\mu b_R)$	R
CV1RR_uudd	$rac{4\widetilde{G}_F^2}{\sqrt{2}}(ar{u}_R\gamma^\mu u_R)(ar{d}_R\gamma_\mu d_R)$	R
CV1RR_uuss	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{s}_R\gamma_\mu s_R)$	R
CV8LL_ccbb	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{b}_L\gamma_\mu T^A b_L)$	${ m R}$
CV8LL_ccdd	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_L\gamma_\mu T^A d_L)$	${ m R}$
CV8LL_ccss	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_L\gamma_\mu T^A s_L)$	${ m R}$
CV8LL_uubb	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{b}_L\gamma_\mu T^A b_L)$	${ m R}$
CV8LL_uudd	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_L\gamma_\mu T^A d_L)$	${ m R}$
CV8LL_uuss	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_L\gamma_\mu T^A s_L)$	R
CV8LR_bbbb	$\frac{4G_F}{\sqrt{2}}(\bar{b}_L\gamma^\mu T^A b_L)(\bar{b}_R\gamma_\mu T^A b_R)$	${ m R}$
CV8LR_bbcc	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{b}_L\gamma^\mu T^A b_L)(\bar{c}_R\gamma_\mu T^A c_R)$	R
CV8LR_bbdd	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{b}_L\gamma^\mu T^A b_L)(\bar{d}_R\gamma_\mu T^A d_R)$	R
CV8LR_bbss	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{b}_L\gamma^\mu T^A b_L)(\bar{s}_R\gamma_\mu T^A s_R)$	R
CV8LR_bbuu	$\frac{4\tilde{G}_F^2}{\sqrt{2}}(\bar{b}_L\gamma^\mu T^A b_L)(\bar{u}_R\gamma_\mu T^A u_R)$	${ m R}$
CV8LR_cbbc	$\frac{4G_{F}}{\sqrt{2}}(\bar{b}_{L}\gamma^{\mu}T^{A}b_{L})(\bar{s}_{R}\gamma_{\mu}T^{A}s_{R})$ $\frac{4G_{F}}{\sqrt{2}}(\bar{b}_{L}\gamma^{\mu}T^{A}b_{L})(\bar{u}_{R}\gamma_{\mu}T^{A}u_{R})$ $\frac{4G_{F}}{\sqrt{2}}(\bar{c}_{L}\gamma^{\mu}T^{A}b_{L})(\bar{b}_{R}\gamma_{\mu}T^{A}c_{R})$ $\frac{4G_{F}}{\sqrt{2}}(\bar{c}_{L}\gamma^{\mu}T^{A}c_{L})(\bar{b}_{R}\gamma_{\mu}T^{A}b_{R})$	\mathbf{C}
CV8LR_ccbb	$rac{4reve{G}_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^Ac_L)(ar{b}_R\gamma_\mu T^Ab_R)$	R
CV8LR_cccc	$rac{4reve{G}_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^A c_L)(ar{c}_R\gamma_\mu T^A c_R)$	R
CV8LR_ccdd	$\frac{4\ddot{G_F}}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}T^Ac_L)(\bar{d}_R\gamma_{\mu}T^Ad_R)$	R
CV8LR_ccss	$\begin{array}{c} \frac{\sqrt{2}}{\sqrt{2}} (c_L \gamma^{\mu} T^A c_L) (c_R \gamma_{\mu} T^A c_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{c}_L \gamma^{\mu} T^A c_L) (\bar{d}_R \gamma_{\mu} T^A d_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{c}_L \gamma^{\mu} T^A c_L) (\bar{s}_R \gamma_{\mu} T^A s_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{c}_L \gamma^{\mu} T^A c_L) (\bar{u}_R \gamma_{\mu} T^A u_R) \end{array}$	R
CV8LR_ccuu	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}T^Ac_L)(\bar{u}_R\gamma_{\mu}T^Au_R)$	R

WC name	Operator	Type
CV8LR_cddc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R)$	C
CV8LR_cssc	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A c_R)$	\mathbf{C}
CV8LR_dbbd	$\frac{4\tilde{G}_F^2}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A b_L)(\bar{b}_R\gamma_\mu T^A d_R)$	$^{\mathrm{C}}$
CV8LR_ddbb	$\frac{4\tilde{G}_F^2}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{b}_R\gamma_\mu T^A b_R)$	${ m R}$
CV8LR_ddcc	$\frac{4\widetilde{G}_F}{\sqrt{2}}(ar{d}_L\gamma^\mu T^A d_L)(ar{c}_R\gamma_\mu T^A c_R)$	${ m R}$
CV8LR_dddd	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}T^Ad_L)(\bar{d}_R\gamma_{\mu}T^Ad_R)$	R
CV8LR_ddss	$rac{4ar{G}_F}{\sqrt{2}}(ar{d}_L\gamma^\mu T^A d_L)(ar{s}_R\gamma_\mu T^A s_R)$	R
CV8LR_dduu	$\frac{4\tilde{G}_F^2}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{u}_R\gamma_\mu T^A u_R)$	${ m R}$
CV8LR_dssd	$\frac{4\tilde{G}_F^2}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A d_R)$	$^{\mathrm{C}}$
CV8LR_sbbs	$\frac{4\widetilde{G}_F^F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A b_L)(\bar{b}_R\gamma_\mu T^A s_R)$	$^{\mathrm{C}}$
CV8LR_ssbb	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{b}_R\gamma_\mu T^A b_R)$	${ m R}$
CV8LR_sscc	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{c}_R\gamma_\mu T^A c_R)$	${ m R}$
CV8LR_ssdd	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R)$	R
CV8LR_ssss	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A s_R)$	${ m R}$
CV8LR_ssuu	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{u}_R\gamma_\mu T^A u_R)$	${ m R}$
CV8LR_ubbu	$\frac{4\tilde{G}_F^F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A b_L)(\bar{b}_R\gamma_\mu T^A u_R)$	\mathbf{C}
CV8LR_uccu	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A c_L)(\bar{c}_R\gamma_\mu T^A u_R)$	$^{\mathrm{C}}$
CV8LR_uddu	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Ad_L)(\bar{d}_R\gamma_{\mu}T^Au_R)$	$^{\mathrm{C}}$
CV8LR_ussu	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A u_R)$	$^{\mathrm{C}}$
CV8LR_uubb	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{b}_R\gamma_\mu T^A b_R)$	R
CV8LR_uucc	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{c}_R\gamma_{\mu}T^Ac_R)$	R
CV8LR_uudd	$\frac{4\tilde{G}_F^F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A d_R)$	${ m R}$
CV8LR_uuss	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_R\gamma_\mu T^A s_R)$	${ m R}$
CV8LR_uuuu	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{u}_R\gamma_\mu T^A u_R)$	${ m R}$
CV8RR_ccbb	$rac{4ar{G}_F^c}{\sqrt{2}}(ar{c}_R\gamma^\mu T^Ac_R)(ar{b}_R\gamma_\mu T^Ab_R)$	R
CV8RR_ccdd	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}(\bar{c}_R\gamma^\mu T^Ac_R)(\bar{d}_R\gamma_\mu T^Ad_R)$	R
CV8RR_ccss	$rac{4G_F^2}{\sqrt{2}}(ar{c}_R\gamma^\mu T^Ac_R)(ar{s}_R\gamma_\mu T^As_R)$	R
CV8RR_uubb	$\frac{4G_F}{\sqrt{2}}(\bar{u}_R\gamma^{\mu}T^Au_R)(\bar{b}_R\gamma_{\mu}T^Ab_R)$	R
CV8RR_uudd	$\frac{4Q_F^2}{\sqrt{2}}(\bar{u}_R\gamma^\mu T^A u_R)(\bar{d}_R\gamma_\mu T^A d_R)$	R
CV8RR_uuss	$\frac{4\tilde{\zeta}_F^2}{\sqrt{2}}(\bar{u}_R\gamma^\mu T^A u_R)(\bar{s}_R\gamma_\mu T^A s_R)$	\mathbf{R}
CVLL_bbbb	$\frac{4G_F}{\sqrt{2}}(\bar{b}_L\gamma^{\mu}b_L)(\bar{b}_L\gamma_{\mu}b_L)$	\mathbf{R}
CVLL_cccc	$\frac{4G_F}{\overline{c}}(\bar{c}_L\gamma^{\mu}c_L)(\bar{c}_L\gamma_{\mu}c_L)$	R
CVLL_dbbd	$rac{4 G_F^2}{\sqrt{2}} (ar{d}_L \gamma^\mu b_L) (ar{b}_L \gamma_\mu d_L)$	R
CVLL_ddbb	$rac{4 G_F^2}{\sqrt{2}} (ar{d}_L \gamma^\mu d_L) (ar{b}_L \gamma_\mu b_L)$	R
CVLL_dddd	$rac{4G_F^2}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{d}_L\gamma_\mu d_L)$	\mathbf{R}
CVLL_ddss	$\begin{array}{c} \frac{\sqrt{2}}{4G_F}(\bar{d}_L\gamma^{\mu}b_L)(\bar{b}_L\gamma_{\mu}d_L) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{b}_L\gamma_{\mu}b_L) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{d}_L\gamma_{\mu}d_L) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{s}_L\gamma_{\mu}d_L) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{s}_L\gamma_{\mu}s_L) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}s_L)(\bar{s}_L\gamma_{\mu}d_L) \end{array}$	\mathbf{R}
CVLL_dssd	$\frac{4\ddot{G}_{F}^{F}}{G}(ar{d}_{L}\gamma^{\mu}s_{L})(ar{s}_{L}\gamma_{\mu}d_{L})$	R

WC name	Operator	Type
CVLL_eebb	$rac{4G_F}{\sqrt{2}}(ar{e}_L\gamma^\mu e_L)(ar{b}_L\gamma_\mu b_L)$	R
CVLL_eecc	$rac{4G_F}{\sqrt{2}}(ar{e}_L\gamma^\mu e_L)(ar{c}_L\gamma_\mu c_L)$	R
CVLL_eedd	$rac{4\ddot{G}_F}{\sqrt{2}}(ar{e}_L\gamma^\mu e_L)(ar{d}_L\gamma_\mu d_L)$	R
CVLL_eeee	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{e}_L\gamma_{\mu}e_L)$	R
CVLL_eemumu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{\mu}_L\gamma_{\mu}\mu_L)$	R
CVLL_eess	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{s}_L\gamma_{\mu}s_L)$	R
CVLL_eetautau	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{\tau}_L\gamma_{\mu}\tau_L)$	R
CVLL_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{u}_L\gamma_{\mu}u_L)$	R
CVLL_mumubb	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{b}_L\gamma_\mu b_L)$	R
CVLL_mumucc	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{c}_L\gamma_\mu c_L)$	R
CVLL_mumudd	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{d}_L\gamma_\mu d_L)$	R
CVLL_mumumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_L\gamma_\mu\mu_L)$	R
CVLL_mumuss	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_L\gamma_\mu s_L)$	R
CVLL_mumutautau	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_L\gamma_\mu\tau_L)$	R
CVLL_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_L\gamma_\mu u_L)$	R
CVLL_sbbs	$rac{4G_F}{\sqrt{2}}(ar{s}_L\gamma^\mu b_L)(ar{b}_L\gamma_\mu s_L)$	R
CVLL_ssbb	$rac{4G_F}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{b}_L\gamma_\mu b_L)$	R
CVLL_ssss	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}s_L)(\bar{s}_L\gamma_{\mu}s_L)$	R
CVLL_tautaubb	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{b}_L\gamma_\mu b_L)$	R
CVLL_tautaucc	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{c}_L\gamma_\mu c_L)$	R
CVLL_tautaudd	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{d}_L\gamma_\mu d_L)$	R
CVLL_tautauss	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{s}_L\gamma_\mu s_L)$	R
CVLL_tautautautau	$-rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{ au}_L\gamma_\mu au_L)$	R
CVLL_tautauuu	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_L\gamma_\mu u_L)$	R
CVLL_uccu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu c_L)(\bar{c}_L\gamma_\mu u_L)$	R
CVLL_uucc	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{c}_L\gamma_\mu c_L)$	R
CVLL_uuuu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{u}_L\gamma_\mu u_L)$	R
CVLR_bbee	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{e}_R\gamma_\mu e_R)$	R
CVLR_bbmumu	$\frac{4G_F}{\sqrt{2}}(\bar{b}_L\gamma^\mu b_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_bbtautau	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{ au}_R\gamma_\mu au_R)$	R
CVLR_ccee	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{e}_R\gamma_\mu e_R)$	R
CVLR_ccmumu	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_cctautau	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{\tau}_R\gamma_\mu \tau_R)$	R
CVLR_ddee	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{e}_R\gamma_\mu e_R)$	R
CVLR_ddmumu	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu d_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_ddtautau	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{ au}_R\gamma_\mu au_R)$	R
CVLR_eebb	$\begin{array}{c} \frac{\sqrt{2}}{\sqrt{2}} (\bar{c}_L \gamma^{\mu} c_L) (\bar{r}_R \gamma_{\mu} r_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{c}_L \gamma^{\mu} c_L) (\bar{\mu}_R \gamma_{\mu} \mu_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{c}_L \gamma^{\mu} c_L) (\bar{\tau}_R \gamma_{\mu} \tau_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{d}_L \gamma^{\mu} d_L) (\bar{e}_R \gamma_{\mu} e_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{d}_L \gamma^{\mu} d_L) (\bar{\mu}_R \gamma_{\mu} \mu_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{d}_L \gamma^{\mu} d_L) (\bar{\tau}_R \gamma_{\mu} \tau_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{d}_L \gamma^{\mu} d_L) (\bar{\tau}_R \gamma_{\mu} \tau_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} e_L) (\bar{b}_R \gamma_{\mu} b_R) \end{array}$	R

$\begin{array}{c} \text{CVLR_eecc} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_eeed} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_eemumu} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_eess} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_eetautau} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_eenu} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & C \\ \text{CVLR_emumue} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & C \\ \text{CVLR_mumubb} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_mumudc} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_mumude} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_mumudum} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_mumutautau} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_mumutuu} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_ssee} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_ssemumu} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_stautaubb} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_tautaudad} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_tautaudad} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_tautautau} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & R \\ \text{CVLR_tautautau} & \frac{4C_F}{4C_F}$	WC name	Operator	Type
$\begin{array}{c} \text{CVLR_eeee} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R) \\ \text{CVLR_eemumu} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu \mu_R) \\ \text{CVLR_eess} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{\kappa}_R\gamma_\mu s_R) \\ \text{CVLR_eetautau} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{\kappa}_R\gamma_\mu r_R) \\ \text{CVLR_eeuu} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{\kappa}_R\gamma_\mu u_R) \\ \text{CVLR_eeuu} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu \mu_L)(\bar{\mu}_R\gamma_\mu e_R) \\ \text{CVLR_emumue} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu e_R) \\ \text{CVLR_mumubb} & \frac{4G_F}{\sqrt{2}}(\bar{\rho}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu e_R) \\ \text{CVLR_mumucc} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu e_R) \\ \text{CVLR_mumudd} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu e_R) \\ \text{CVLR_mumudd} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu e_R) \\ \text{CVLR_mumuee} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu e_R) \\ \text{CVLR_mumumum} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu e_R) \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu \mu_R) \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu \mu_R) \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu \mu_R) \\ \text{CVLR_mumutautaumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu \mu_R) \\ \text{CVLR_see} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu \mu_R) \\ \text{CVLR_semumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu \mu_R) \\ \text{CVLR_semumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{\rho}_R\gamma_\mu \mu_R) \\ \text{CVLR_stautaubb} & \frac{4G_F}{\sqrt{2}}(\bar{\rho}_L\gamma^\mu \tau_L)(\bar{\rho}_R\gamma_\mu \mu_R) \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\rho}_L\gamma^\mu \tau_L)(\bar{\rho}_R\gamma_\mu \mu_R) \\ \text{CVLR_tautauumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\rho}_L\gamma^\mu \tau_L)(\bar{\rho}_R\gamma_\mu \mu_R) \\ \text{CVLR_tautauutauu} & \frac{4G_F}{\sqrt{2}}(\bar{\rho}_L\gamma^\mu \tau_L)(\bar{\rho}_R\gamma_\mu \mu_R) \\ \text{CVLR_tautauutauutau} & \frac{4G_F}{\sqrt{2}}(\bar{\rho}_L\gamma^\mu \tau_L)(\bar{\rho}_R\gamma_\mu \mu_R) \\ \text{CVLR_tautauutauutau} & \frac{4G_F}$	CVLR_eecc	$rac{4G_F}{\sqrt{2}}(ar{e}_L\gamma^{\mu}e_L)(ar{c}_R\gamma_{\mu}c_R)$	R
$\begin{array}{c} \text{CVLR_eemumu} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu\mu_R) \\ \text{CVLR_eess} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\tilde{s}_R\gamma_\mu s_R) \\ \text{CVLR_eetautau} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\tilde{r}_R\gamma_\mu r_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\tilde{u}_R\gamma_\mu u_R) \\ \text{CVLR_eeuu} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu \mu_L)(\bar{\mu}_R\gamma_\mu e_R) \\ \text{CVLR_emumue} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu \mu_L)(\bar{\mu}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu \mu_L)(\bar{\mu}_R\gamma_\mu e_R) \\ \text{CVLR_mumubb} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu b_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_mumucc} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\bar{d}_R\gamma_\mu e_R) \\ \text{CVLR_mumudd} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\bar{d}_R\gamma_\mu e_R) \\ \text{CVLR_mumude} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\bar{d}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\bar{d}_R\gamma_\mu e_R) \\ \text{CVLR_mumus} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_mumutautau} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\bar{d}_R\gamma_\mu u_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\bar{d}_R\gamma_\mu u_R) \\ \text{CVLR_mumutautaumu} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\bar{d}_R\gamma_\mu u_R) \\ \text{CVLR_see} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\bar{d}_R\gamma_\mu u_R) \\ \text{CVLR_ssmumu} & \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu u_R) \\ \text{CVLR_stautaubb} & \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu u_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu u_R) \\ \text{CVLR_tautaude} & \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \text{CVLR_tautaude} & \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \text{CVLR_tautauu} & \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \text{CVLR_tautauu} & \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \text{CVLR_tautauu} & \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \text{CVLR_tautauu} & \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \nu_L)(\bar{d}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2$	CVLR_eedd	V Z	R
$\begin{array}{c} \text{CVLR_eess} & \frac{4\tilde{G}_F}{2}(\bar{e}_L\gamma^\mu e_L)(\bar{s}_R\gamma_\mu s_R) \\ \text{CVLR_eetautau} & \frac{4G_F}{2}(\bar{e}_L\gamma^\mu e_L)(\bar{\tau}_R\gamma_\mu \tau_R) \\ \text{CVLR_eeuu} & \frac{4G_F}{2}(\bar{e}_L\gamma^\mu e_L)(\bar{u}_R\gamma_\mu u_R) \\ \text{CVLR_emumue} & \frac{4G_F}{2}(\bar{e}_L\gamma^\mu e_L)(\bar{u}_R\gamma_\mu u_R) \\ \text{CVLR_emumue} & \frac{4G_F}{2}(\bar{e}_L\gamma^\mu \mu_L)(\bar{\mu}_R\gamma_\mu e_R) \\ \text{CVLR_etautaue} & \frac{4G_F}{2}(\bar{e}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_mumubb} & \frac{4G_F}{2}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_mumucc} & \frac{4G_F}{2}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_mumudd} & \frac{4G_F}{2}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_mumude} & \frac{4G_F}{2}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R) \\ \text{CVLR_mumude} & \frac{4G_F}{2}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_mumumumu} & \frac{4G_F}{2}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_mumutautau} & \frac{4G_F}{2}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_mumutautau} & \frac{4G_F}{2}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_mumuu} & \frac{4G_F}{2}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_mumuu} & \frac{4G_F}{2}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_see} & \frac{4G_F}{2}(\bar{b}_L\gamma^\mu \mu_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_ssnumu} & \frac{4G_F}{2}(\bar{b}_L\gamma^\mu e_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_ssnumu} & \frac{4G_F}{2}(\bar{s}_L\gamma^\mu s_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_tautaubb} & \frac{4G_F}{2}(\bar{s}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_tautaudd} & \frac{4G_F}{2}(\bar{r}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu e_R) \\ \text{CVLR_tautaude} & \frac{4G_F}{2}(\bar{r}_L\gamma^\mu r_L)(\bar{d}_R\gamma_\mu e_R) \\ \text{CVLR_tautaude} & \frac{4G_F}{2}(\bar{r}_L\gamma^\mu r_L)(\bar{d}_R\gamma_\mu e_R) \\ \text{CVLR_tautaude} & \frac{4G_F}{2}(\bar{r}_L\gamma^\mu r_L)(\bar{d}_R\gamma_\mu e_R) \\ \text{CVLR_tautauu} & \frac{4G_F}{2}(\bar{r}_L\gamma^\mu r_L)(\bar{d}_R\gamma_\mu e_R) \\ \text{R} \\ \text{CVLR_tautauuu} & 4G_F$	CVLR_eeee	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{e}_R\gamma_{\mu}e_R)$	R
$\begin{array}{c} \text{CVLR}_\text{eetautau} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{\tau}_R \gamma_\mu \tau_R) \\ \text{CVLR}_\text{eeuu} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{u}_R \gamma_\mu u_R) \\ \text{CVLR}_\text{emumue} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{e}_L \gamma^\mu \mu_L) (\bar{\mu}_R \gamma_\mu e_R) \\ \text{CVLR}_\text{emumue} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{e}_L \gamma^\mu \mu_L) (\bar{t}_R \gamma_\mu e_R) \\ \text{CVLR}_\text{mumubb} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{t}_R \gamma_\mu e_R) \\ \text{CVLR}_\text{mumucc} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{t}_R \gamma_\mu e_R) \\ \text{CVLR}_\text{mumudd} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{t}_R \gamma_\mu d_R) \\ \text{CVLR}_\text{mumuee} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{t}_R \gamma_\mu d_R) \\ \text{CVLR}_\text{mumumum} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{mumutautau} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{mumutautau} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{mumutautaumu} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{mumutautaumu} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{ssee} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{ssmumu} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{t}_L \gamma^\mu \tau_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{sstautau} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{s}_L \gamma^\mu s_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{tautaubb} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{s}_L \gamma^\mu s_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{tautaudd} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{tautaudd} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{tautaudd} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{tautaudd} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{tautaudu} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{tautautautau} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{tautautautau} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{tautautautau} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{tautautautau} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{tautautautau} & \frac{\sqrt{G_F}}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{t}_R \gamma_\mu \mu_R) \\ \text{CVLR}_\text{tautautautau} & \sqrt{G_$	CVLR_eemumu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{\mu}_R\gamma_{\mu}\mu_R)$	R
$\begin{array}{c} \text{CVLR_eeuu} & \frac{\partial G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{u}_R \gamma_\mu u_R) \\ \text{CVLR_emumue} & \frac{\partial G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \mu_L) (\bar{\mu}_R \gamma_\mu e_R) \\ \text{CVLR_etautaue} & \frac{\partial G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu e_R) \\ \frac{\partial G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_mumubb} & \frac{\partial G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumucc} & \frac{\partial G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumudd} & \frac{\partial G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumuee} & \frac{\partial G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumuss} & \frac{\partial G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\mu}_R \gamma_\mu \mu_R) \\ \text{CVLR_mumutautau} & \frac{\partial G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumutautauu} & \frac{\partial G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumutautauuu} & \frac{\partial G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumutautauuu} & \frac{\partial G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_ssee} & \frac{\partial G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_ssmumu} & \frac{\partial G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_ssmumu} & \frac{\partial G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_stautaubb} & \frac{\partial G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudd} & \frac{\partial G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudd} & \frac{\partial G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudd} & \frac{\partial G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudd} & \frac{\partial G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautauuuu} & \frac{\partial G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautauuuu} & \frac{\partial G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautauuuu} & \frac{\partial G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautauuuuu} & \frac{\partial G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautauuuuu} & \frac{\partial G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautauuuu} & \frac{\partial G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautauuuu} & \frac{\partial G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautauuuu} & \frac{\partial G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautauuuu} & \frac{\partial G_F}$	CVLR_eess	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{s}_R\gamma_{\mu}s_R)$	R
$\begin{array}{c} \text{CVLR_emumue} & \frac{4G_F^2}{\sqrt{2}} (\bar{e}_L \gamma^\mu \mu_L) (\bar{\mu}_R \gamma_\mu e_R) & \text{C} \\ \text{CVLR_etautaue} & \frac{4G_F^2}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu e_R) & \text{C} \\ \text{CVLR_mumubb} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVLR_mumucc} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu c_R) & \text{R} \\ \text{CVLR_mumudd} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_mumuee} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{d}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_mumumumu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\mu}_R \gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_mumutu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_mumutautaumu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{C} \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{C} \\ \text{CVLR_ssemumu} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_stautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautaudb} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautaumum} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu a_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L$	CVLR_eetautau	$rac{4G_F}{\sqrt{2}}(ar{e}_L\gamma^\mu e_L)(ar{ au}_R\gamma_\mu au_R)$	R
$\begin{array}{c} \text{CVLR_etautaue} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu e_R) \\ \text{CVLR_mumubb} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu b_R) \\ \text{CVLR_mumucc} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_mumudd} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{d}_R \gamma_\mu e_R) \\ \text{CVLR_mumuee} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{d}_R \gamma_\mu e_R) \\ \text{CVLR_mumumum} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumuss} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumuu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumuu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_sseumu} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu s_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_stautau} & \frac{4G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu s_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaubb} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudumu} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautauss} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautautauu} & 4$	CVLR_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{u}_R\gamma_{\mu}u_R)$	R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CVLR_emumue	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu e_R)$	\mathbf{C}
$\begin{array}{c} \text{CVLR_mumucc} & \frac{\sqrt{3}{F_E}}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{c}_R \gamma_\mu c_R) & \text{R} \\ \text{CVLR_mumudd} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_mumuee} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_mumumumu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\mu}_R \gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{s}_R \gamma_\mu s_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{s}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_mumutu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\tau}_R \gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_mutautaumu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\tau}_R \gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_ssmumu} & \frac{4G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu s_L) (\bar{t}_R \gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_stautau} & \frac{4G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu s_L) (\bar{t}_R \gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_tautaudb} & \frac{4G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu s_L) (\bar{t}_R \gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautaudumu} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautaumumu} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautaumumu} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \sigma_R) & \text{R} \\ \text{CVLR_tautautau} & \frac{4G_F}{\sqrt{2}} $	CVLR_etautaue	$rac{4G_F}{\sqrt{2}}(ar{e}_L\gamma^\mu au_L)(ar{ au}_R\gamma_\mu e_R)$	\mathbf{C}
$\begin{array}{c} \text{CVLR_mumudd} & \frac{\sqrt{G_F}}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \text{CVLR_mumuee} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_mumumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu\mu_R) & \text{R} \\ \text{CVLR_mumuss} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_mumuuu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R) & \text{R} \\ \text{CVLR_mutautaumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R) & \text{C} \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_ssmumu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_stautau} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{t}_R\gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_tautaubb} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{t}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{b}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautaumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautauu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautauu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautauuu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautauuu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautauuu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ CVL$	CVLR_mumubb	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{b}_R\gamma_\mu b_R)$	R
$\begin{array}{c} \text{CVLR_mumuee} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_mumumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu\mu_R) & \text{R} \\ \text{CVLR_mumuss} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_mumutautauu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu u_R) & \text{R} \\ \text{CVLR_mumuuu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu u_R) & \text{R} \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_ssmumu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_sstautau} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaubb} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaucc} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu b_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{c}_R\gamma_\mu c_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautauee} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautaumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_tautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautauuu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \end{array}$	CVLR_mumucc	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{c}_R\gamma_\mu c_R)$	R
$\begin{array}{c} \text{CVLR_mumumum} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu\mu_R) & \text{R} \\ \text{CVLR_mumuss} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_mumuuu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu u_R) & \text{R} \\ \text{CVLR_mutautaumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu u_R) & \text{C} \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_ssmumu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_sstautau} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_stautaubb} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaucc} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudumum} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautauuu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r$	CVLR_mumudd	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{d}_R\gamma_\mu d_R)$	R
$\begin{array}{c} \text{CVLR_mumuss} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu \tau_R) & \text{R} \\ \text{CVLR_mumuuu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R) & \text{R} \\ \text{CVLR_mutautaumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_ssmumu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_stautau} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_tautaubb} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaucc} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu b_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautauee} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaumum} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautauss} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautauuu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu r_R) & \text{R} \\ \end{array}$	CVLR_mumuee	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{e}_R\gamma_\mu e_R)$	R
CVLR_mumutautau $\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu\tau_R) \qquad \qquad R$ CVLR_mumuuu $\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R) \qquad \qquad R$ CVLR_mutautaumu $\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu u_R) \qquad \qquad C$ CVLR_ssee $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_ssmumu $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_sstautau $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{t}_R\gamma_\mu t_R) \qquad \qquad R$ CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu t_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu t_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu t_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu t_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu t_L)(\bar{b}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu t_L)(\bar{b}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu t_L)(\bar{b}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu t_L)(\bar{b}_R\gamma_\mu t_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu t_L)(\bar{b}_R\gamma_\mu t_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu t_L)(\bar{t}_R\gamma_\mu t_R) \qquad \qquad R$	CVLR_mumumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_mumuuu $\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R) \qquad \qquad R$ CVLR_mutautaumu $\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu u_R) \qquad \qquad C$ CVLR_ssee $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_ssmumu $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu u_R) \qquad \qquad R$ CVLR_sstautau $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu \tau_R) \qquad \qquad R$ CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{c}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu r_R) \qquad \qquad R$	CVLR_mumuss	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\gamma^\mu\mu_L)(ar{s}_R\gamma_\mu s_R)$	R
CVLR_mutautaumu $\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu\mu_R) \qquad \qquad C$ CVLR_ssee $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_ssmumu $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu\mu_R) \qquad \qquad R$ CVLR_sstautau $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu\tau_R) \qquad \qquad R$ CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\sigma}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$	CVLR_mumutautau	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu\tau_R)$	R
CVLR_ssee $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_ssmumu $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_sstautau $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu \tau_R) \qquad \qquad R$ CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{d}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautautautautautautautautautautaut	CVLR_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R)$	R
CVLR_ssmumu $\frac{\sqrt{G_F}}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu\mu_R) \qquad \qquad$	CVLR_mutautaumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu au_L)(\bar{ au}_R\gamma_\mu\mu_R)$	\mathbf{C}
CVLR_sstautau $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu \tau_R) \qquad \qquad R$ CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{\nu}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\nu}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautautautautautautautautautautaut	CVLR_ssee	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R)$	R
CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$	CVLR_ssmumu	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}s_L)(\bar{\mu}_R\gamma_{\mu}\mu_R)$	R
CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautautautautautautautautautautaut	CVLR_sstautau	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu au_R)$	R
CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu\mu_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautautautautautautautautautautaut	CVLR_tautaubb	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{b}_R\gamma_\mu b_R)$	R
CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu\mu_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu\tau_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu\tau_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu u_R) \qquad \qquad R$ CVLR_tautautautautautautautautautautautautaut	CVLR_tautaucc	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{c}_R\gamma_\mu c_R)$	R
CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu\mu_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu\tau_R) \qquad \qquad R$ CVLR_tautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_R\gamma_\mu u_R) \qquad \qquad R$ CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_R\gamma_\mu u_R) \qquad \qquad R$ CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{v}_R\gamma_\mu u_R) \qquad \qquad R$	CVLR_tautaudd	$\frac{4\ddot{G}_F}{\sqrt{2}}(\bar{ au}_L\gamma^\mu au_L)(\bar{d}_R\gamma_\mu d_R)$	R
CVLR_tautauss $\frac{\sqrt{G_F}}{\sqrt{2}}(\bar{\tau}_L\gamma^{\mu}\tau_L)(\bar{s}_R\gamma_{\mu}s_R)$ R CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^{\mu}\tau_L)(\bar{\tau}_R\gamma_{\mu}\tau_R)$ R CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^{\mu}\tau_L)(\bar{u}_R\gamma_{\mu}u_R)$ R CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^{\mu}\tau_L)(\bar{u}_R\gamma_{\mu}u_R)$ R	CVLR_tautauee	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{ au}_L\gamma^\mu au_L)(\bar{e}_R\gamma_\mu e_R)$	R
CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu\tau_R)$ R CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_R\gamma_\mu u_R)$ R CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_R\gamma_\mu u_R)$ R	CVLR_tautaumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_tautauuu $\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{\tau}_L\gamma^{\mu}\tau_L)(\bar{u}_R\gamma_{\mu}u_R)$ R $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^{\mu}u_L)(\bar{e}_R\gamma_{\mu}e_R)$ R	CVLR_tautauss	$\frac{4G_F}{\sqrt{2}}(\bar{ au}_L\gamma^\mu au_L)(\bar{s}_R\gamma_\mu s_R)$	R
CVI B 11100 $\frac{4G_F}{(\bar{q}_1 \wedge \bar{q}_2 + q_1)(\bar{e}_D \wedge e_D)}$ B	CVLR_tautautautau	$-rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{ au}_R\gamma_\mu au_R)$	R
$\begin{array}{lll} \text{CVLR_uuee} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_uumumu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{\mu}_R\gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_uutautau} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{\tau}_R\gamma_\mu \tau_R) & \text{R} \\ \text{CVRR_bbbb} & \frac{4G_F}{\sqrt{2}}(\bar{b}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu b_R) & \text{R} \\ \text{CVRR_cccc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu c_R)(\bar{c}_R\gamma_\mu c_R) & \text{R} \\ \text{CVRR_dbbd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu d_R) & \text{R} \\ \text{CVRR_ddbb} & \frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{b}_R\gamma_\mu d_R) & \text{R} \\ \text{CVRR_ddbb} & \frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{b}_R\gamma_\mu d_R) & \text{R} \\ \text{CVRR_dddd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \end{array}$	CVLR_tautauuu	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_R\gamma_\mu u_R)$	R
$\begin{array}{cccc} \text{CVLR_uumumu} & \frac{4 \overline{G}_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu u_L) (\bar{\mu}_R \gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_uutautau} & \frac{4 G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu u_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \text{R} \\ \text{CVRR_bbbb} & \frac{4 G_F}{\sqrt{2}} (\bar{b}_R \gamma^\mu b_R) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVRR_cccc} & \frac{4 G_F}{\sqrt{2}} (\bar{c}_R \gamma^\mu c_R) (\bar{c}_R \gamma_\mu c_R) & \text{R} \\ \text{CVRR_dbbd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu b_R) (\bar{b}_R \gamma_\mu d_R) & \text{R} \\ \text{CVRR_ddbb} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVRR_dddd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \end{array}$	CVLR_uuee	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{e}_R\gamma_\mu e_R)$	R
$\begin{array}{cccc} \text{CVLR_uutautau} & \frac{4 \ddot{G}_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu u_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \text{R} \\ \text{CVRR_bbbb} & \frac{4 G_F}{\sqrt{2}} (\bar{b}_R \gamma^\mu b_R) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVRR_cccc} & \frac{4 G_F}{\sqrt{2}} (\bar{c}_R \gamma^\mu c_R) (\bar{c}_R \gamma_\mu c_R) & \text{R} \\ \text{CVRR_dbbd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu b_R) (\bar{b}_R \gamma_\mu d_R) & \text{R} \\ \text{CVRR_ddbb} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVRR_dddd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \end{array}$	CVLR_uumumu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
$\begin{array}{cccc} \text{CVRR_bbbb} & \frac{4 \widetilde{G}_F}{\sqrt{2}} (\bar{b}_R \gamma^\mu b_R) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVRR_cccc} & \frac{4 G_F}{\sqrt{2}} (\bar{c}_R \gamma^\mu c_R) (\bar{c}_R \gamma_\mu c_R) & \text{R} \\ \text{CVRR_dbbd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu b_R) (\bar{b}_R \gamma_\mu d_R) & \text{R} \\ \text{CVRR_ddbb} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVRR_dddd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \end{array}$	CVLR_uutautau	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{\tau}_R\gamma_\mu \tau_R)$	R
$\begin{array}{ll} \text{CVRR_cccc} & \frac{4 \overline{G_F}}{\sqrt{2}} (\bar{c}_R \gamma^\mu c_R) (\bar{c}_R \gamma_\mu c_R) & \text{R} \\ \text{CVRR_dbbd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu b_R) (\bar{b}_R \gamma_\mu d_R) & \text{R} \\ \text{CVRR_ddbb} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVRR_dddd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{d}_R \gamma_\mu d_R) & \text{R} \end{array}$	CVRR_bbbb	$\frac{4\dot{G}_F}{\sqrt{2}}(\bar{b}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu b_R)$	${ m R}$
CVRR_dbbd $\frac{4\widetilde{G_F}}{\sqrt{2}}(\bar{d}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu d_R) \qquad \qquad \text{R}$ CVRR_ddbb $\frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad \text{R}$ CVRR_dddd $\frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad \text{R}$	CVRR_cccc	$\frac{4\dot{G}_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu c_R)(\bar{c}_R\gamma_\mu c_R)$	R
CVRR_ddbb $\frac{4\ddot{G}_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{b}_R\gamma_\mu b_R)$ R CVRR_dddd $\frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{d}_R\gamma_\mu d_R)$ R	CVRR_dbbd	$\frac{4\ddot{G_F}}{\sqrt{2}}(\bar{d}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu d_R)$	R
CVRR_dddd $\frac{4\check{G}_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{d}_R\gamma_\mu d_R)$ R	CVRR_ddbb	$\frac{4\check{G}_F^r}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{b}_R\gamma_\mu b_R)$	R
	CVRR_dddd	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{d}_R\gamma_\mu d_R)$	R

WC name	Operator	Type
CVRR_ddss	$\frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{s}_R\gamma_\mu s_R)$	R
CVRR_dssd	$rac{4 \check{G}_F}{\sqrt{2}} (ar{d}_R \gamma^\mu s_R) (ar{s}_R \gamma_\mu d_R)$	${ m R}$
CVRR_eebb	$\frac{4 \check{G}_F}{\sqrt{2}} (\bar{e}_R \gamma^\mu e_R) (\bar{b}_R \gamma_\mu b_R)$	${ m R}$
CVRR_eecc	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^\mu e_R)(\bar{c}_R\gamma_\mu c_R)$	${ m R}$
CVRR_eedd	$rac{4G_F}{\sqrt{2}}(ar{e}_R\gamma^\mu e_R)(ar{d}_R\gamma_\mu d_R)$	\mathbf{R}
CVRR_eeee	$rac{4G_F}{\sqrt{2}}(ar{e}_R\gamma^\mu e_R)(ar{e}_R\gamma_\mu e_R)$	\mathbf{R}
CVRR_eemumu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{\mu}_R\gamma_{\mu}\mu_R)$	\mathbf{R}
CVRR_eess	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^\mu e_R)(\bar{s}_R\gamma_\mu s_R)$	\mathbf{R}
CVRR_eetautau	$rac{4G_F}{\sqrt{2}}(ar{e}_R\gamma^\mu e_R)(ar{ au}_R\gamma_\mu au_R)$	\mathbf{R}
CVRR_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{u}_R\gamma_{\mu}u_R)$	\mathbf{R}
CVRR_mumubb	$rac{4G_F}{\sqrt{2}}(ar{\mu}_R\gamma^\mu\mu_R)(ar{b}_R\gamma_\mu b_R)$	\mathbf{R}
CVRR_mumucc	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{c}_R\gamma_\mu c_R)$	\mathbf{R}
CVRR_mumudd	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{d}_R\gamma_\mu d_R)$	\mathbf{R}
CVRR_mumumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{\mu}_R\gamma_\mu\mu_R)$	\mathbf{R}
CVRR_mumuss	$rac{4G_F}{\sqrt{2}}(ar{\mu}_R\gamma^\mu\mu_R)(ar{s}_R\gamma_\mu s_R)$	\mathbf{R}
CVRR_mumutautau	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{\tau}_R\gamma_\mu\tau_R)$	\mathbf{R}
CVRR_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{u}_R\gamma_\mu u_R)$	\mathbf{R}
CVRR_sbbs	$rac{4G_F}{\sqrt{2}}(ar{s}_R\gamma^\mu b_R)(ar{b}_R\gamma_\mu s_R)$	\mathbf{R}
CVRR_ssbb	$rac{4G_F}{\sqrt{2}}(ar{s}_R\gamma^\mu s_R)(ar{b}_R\gamma_\mu b_R)$	\mathbf{R}
CVRR_ssss	$rac{4G_F}{\sqrt{2}}(ar{s}_R\gamma^\mu s_R)(ar{s}_R\gamma_\mu s_R)$	\mathbf{R}
CVRR_tautaubb	$rac{4G_F}{\sqrt{2}}(ar{ au}_R\gamma^\mu au_R)(ar{b}_R\gamma_\mu b_R)$	\mathbf{R}
CVRR_tautaucc	$rac{4G_F}{\sqrt{2}}(ar{ au}_R\gamma^\mu au_R)(ar{c}_R\gamma_\mu c_R)$	\mathbf{R}
CVRR_tautaudd	$rac{4G_F}{\sqrt{2}}(ar{ au}_R\gamma^\mu au_R)(ar{d}_R\gamma_\mu d_R)$	\mathbf{R}
CVRR_tautauss	$rac{4 \overleftarrow{G_F}}{\sqrt{2}} (ar{ au}_R \gamma^\mu au_R) (ar{s}_R \gamma_\mu s_R)$	${ m R}$
CVRR_tautautautau	$1 \frac{4 \overleftarrow{G_F}}{\sqrt{2}} (ar{ au}_R \gamma^\mu au_R) (ar{ au}_R \gamma_\mu au_R)$	${ m R}$
CVRR_tautauuu	$\frac{4G_F}{\sqrt{2}}(\bar{ au}_R\gamma^\mu au_R)(\bar{u}_R\gamma_\mu u_R)$	${ m R}$
CVRR_uccu	$\frac{4\overleftarrow{G_F}}{\sqrt{2}}(\bar{u}_R\gamma^\mu c_R)(\bar{c}_R\gamma_\mu u_R)$	${ m R}$
CVRR_uucc	$\frac{4 \overleftarrow{G_F}}{\sqrt{2}} (\bar{u}_R \gamma^\mu u_R) (\bar{c}_R \gamma_\mu c_R)$	${ m R}$
CVRR_uuuu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{u}_R\gamma_\mu u_R)$	R

${\tt mue}$

WC name	Operator	Type
Cgamma_mue	$\bar{e}_L \sigma^{\mu\nu} \mu_R F_{\mu\nu}$	\overline{C}
Cgamma_emu	$ar{\mu}_L \sigma^{\mu u} e_R F_{\mu u}$	\mathbf{C}
CVLL_eemue	$(ar{e}_L\gamma^\mu e_L)(\dot{ar{e}_L}\gamma_\mu\mu_L)$	$^{\mathrm{C}}$
CVLL_muemumu	$(ar{e}_L \gamma^\mu \mu_L) (ar{\mu}_L \gamma_\mu \mu_L)$	$^{\mathrm{C}}$

WC name	Operator	Type
CVLL_muetautau	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\tau}_L \gamma_\mu \tau_L)$	С
CVLL_mueuu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{u}_L \gamma_\mu u_L)$	$^{\mathrm{C}}$
CVLL_muecc	$(ar{e}_L \gamma^\mu \mu_L) (ar{c}_L \gamma_\mu c_L)$	\mathbf{C}
CVLL_muedd	$(ar{e}_L \gamma^\mu \mu_L) (ar{d}_L \gamma_\mu d_L)$	\mathbf{C}
CVLL_muess	$(ar{e}_L \gamma^\mu \mu_L) (ar{s}_L \gamma_\mu s_L)$	\mathbf{C}
CVLL_muebb	$(ar{e}_L \gamma^\mu \mu_L) (ar{b}_L \gamma_\mu b_L)$	\mathbf{C}
CVRR_eemue	$(\bar{e}_R \gamma^\mu e_R)(\bar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVRR_muemumu	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{\mu}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVRR_muetautau	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{ au}_R \gamma_\mu au_R)$	\mathbf{C}
CVRR_mueuu	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{u}_R \gamma_\mu u_R)$	С
CVRR_muecc	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{c}_R \gamma_\mu c_R)$	С
CVRR_muedd	$(ar{e}_R \gamma^\mu \mu_R) (ar{d}_R \gamma_\mu d_R)$	\mathbf{C}
CVRR_muess	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{s}_R \gamma_\mu s_R)$	\mathbf{C}
CVRR_muebb	$(ar{e}_R \gamma^\mu \mu_R) (ar{b}_R \gamma_\mu b_R)$	\mathbf{C}
CVLR_eemue	$(\bar{e}_L \gamma^\mu e_L)(\bar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_mueee	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{e}_R \gamma_\mu e_R)$	\mathbf{C}
CVLR_muemumu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\mu}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_muetautau	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{ au}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_tauemutau	$(\bar{e}_L \gamma^\mu au_L)(\bar{ au}_R \gamma_\mu \mu_R)$	С
CVLR_mumumue	$(ar{\mu}_L \gamma^\mu \mu_L) (ar{e}_R \gamma_\mu \mu_R)$	С
CVLR_taumuetau	$(ar{\mu}_L \gamma^\mu au_L) (ar{ au}_R \gamma_\mu e_R)$	С
CVLR_tautaumue	$(\bar{ au}_L \gamma^\mu au_L)(\bar{e}_R \gamma_\mu \mu_R)$	С
CVLR_mueuu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{u}_R \gamma_\mu u_R)$	С
CVLR_muecc	$(ar{e}_L \gamma^\mu \mu_L) (ar{c}_R \gamma_\mu c_R)$	С
CVLR_muedd	$(ar{e}_L \gamma^\mu \mu_L) (ar{d}_R \gamma_\mu d_R)$	\mathbf{C}
CVLR_muess	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{s}_R \gamma_\mu s_R)$	С
CVLR_muebb	$(ar{e}_L \gamma^\mu \mu_L) (ar{b}_R \gamma_\mu b_R)$	\mathbf{C}
CVLR_uumue	$(ar{u}_L \gamma^\mu u_L)(ar{e}_R \gamma_\mu \mu_R)$	С
CVLR_ccmue	$(\bar{c}_L \gamma^\mu c_L)(\bar{e}_R \gamma_\mu \mu_R)$	С
CVLR_ddmue	$(ar{d}_L \gamma^\mu d_L) (ar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_ssmue	$(\bar{s}_L \gamma^\mu s_L)(\bar{e}_R \gamma_\mu \mu_R)$	С
CVLR_bbmue	$(ar{b}_L \gamma^\mu b_L) (ar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CSRL_mueuu	$(ar{e}_L \mu_R)(ar{u}_R u_L)$	\mathbf{C}
CSRL_muecc	$(ar{e}_L\mu_R)(ar{c}_Rc_L)$	С
CSRL_emuuu	$(ar{\mu}_L e_R)(ar{u}_R u_L)$	\mathbf{C}
CSRL_emucc	$(ar{\mu}_L e_R)(ar{c}_R c_L)$	\mathbf{C}
CSRL_muedd	$(ar{e}_L \mu_R)(ar{d}_R d_L)$	\mathbf{C}
CSRL_muess	$(ar{e}_L \mu_R)(ar{s}_R s_L)$	\mathbf{C}
CSRL_muebb	$(ar{e}_L \mu_R) (ar{b}_R b_L)$	\mathbf{C}
CSRL_emudd	$(ar{\mu}_L e_R)(ar{d}_R d_L)$	\mathbf{C}
CSRL_emuss	$(ar{\mu}_L e_R)(ar{s}_R s_L)$	\mathbf{C}
CSRL_emubb	$(ar{\mu}_L e_R)(ar{b}_R b_L)$	\mathbf{C}
CSRR_eemue	$(ar{e}_L e_R)(ar{e}_L \mu_R)$	\mathbf{C}
_	-/ \	

WC name	Operator	Type
CSRR_eeemu	$(ar{e}_L e_R)(ar{\mu}_L e_R)$	C
CSRR_muemumu	$(\bar{e}_L \mu_R)(\bar{\mu}_L \mu_R)$	\mathbf{C}
CSRR_muetautau	$(ar{e}_L \mu_R)(ar{ au}_L au_R)$	$^{\mathrm{C}}$
CSRR_tauemutau	$(ar{e}_L au_R)(ar{ au}_L\mu_R)$	$^{\mathrm{C}}$
CSRR_emumumu	$(ar{\mu}_L e_R)(ar{\mu}_L \mu_R)$	\mathbf{C}
CSRR_emutautau	$(ar{\mu}_L e_R)(ar{ au}_L au_R)$	\mathbf{C}
CSRR_taumuetau	$(ar{\mu}_L au_R)(ar{ au}_Le_R)$	\mathbf{C}
CSRR_mueuu	$(ar{e}_L\mu_R)(ar{u}_Lu_R)$	\mathbf{C}
CSRR_muecc	$(ar{e}_L\mu_R)(ar{c}_Lc_R)$	\mathbf{C}
CSRR_emuuu	$(ar{\mu}_L e_R)(ar{u}_L u_R)$	\mathbf{C}
CSRR_emucc	$(ar{\mu}_L e_R)(ar{c}_L c_R)$	$^{\mathrm{C}}$
CTRR_mueuu	$(\bar{e}_L \sigma^{\mu\nu} \mu_R)(\bar{u}_L \sigma_{\mu\nu} u_R)$	\mathbf{C}
CTRR_muecc	$(ar{e}_L\sigma^{\mu u}\mu_R)(ar{c}_L\sigma_{\mu u}c_R)$	\mathbf{C}
CTRR_emuuu	$(\bar{\mu}_L \sigma^{\mu\nu} e_R)(\bar{u}_L \sigma_{\mu\nu} u_R)$	С
CTRR_emucc	$(\bar{\mu}_L \sigma^{\mu\nu} e_{\underline{R}})(\bar{c}_L \sigma_{\mu\nu} c_R)$	С
CSRR_muedd	$(ar{e}_L \mu_R)(d_L d_R)$	$^{\mathrm{C}}$
CSRR_muess	$(ar{e}_L\mu_R)(ar{s}_Ls_R)$	С
CSRR_muebb	$(ar{e}_L\mu_R)(b_{\! _}b_R)$	$^{\mathrm{C}}$
CSRR_emudd	$(ar{\mu}_L e_R)(d_L d_R)$	\mathbf{C}
CSRR_emuss	$(ar{\mu}_L e_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CSRR_emubb	$(ar{\mu}_L e_R)(b_L b_R)$	\mathbf{C}
CTRR_muedd	$(ar{e}_L\sigma^{\mu u}\mu_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CTRR_muess	$(ar{e}_L\sigma^{\mu u}\mu_R)(ar{s}_L\sigma_{\mu u}s_R)$	\mathbf{C}
CTRR_muebb	$(ar{e}_L\sigma^{\mu u}\mu_R)(ar{b}_L\sigma_{\mu u}b_R)$	$^{\mathrm{C}}$
CTRR_emudd	$(ar{\mu}_L \sigma^{\mu u} e_R) (ar{d}_L \sigma_{\mu u} d_R)$	$^{\mathrm{C}}$
CTRR_emuss	$(ar{\mu}_L \sigma^{\mu u} e_R) (ar{s}_L \sigma_{\mu u} s_R)$	C
CTRR_emubb	$(\bar{\mu}_L \sigma^{\mu u} e_R) (\bar{b}_L \sigma_{\mu u} b_R)$	$^{\mathrm{C}}$

mutau

WC name	Operator	Type
Cgamma_taumu	$\bar{\mu}_L \sigma^{\mu\nu} \tau_R F_{\mu\nu}$	C
Cgamma_mutau	$\bar{ au}_L \sigma^{\mu u} \mu_R \dot{F}_{\mu u}$	$^{\mathrm{C}}$
CVLL_eetaumu	$(\bar{e}_L \gamma^\mu e_L)(\dot{\bar{\mu}}_L \gamma_\mu \tau_L)$	$^{\mathrm{C}}$
CVLL_mumutaumu	$(\bar{\mu}_L \gamma^\mu \mu_L)(\bar{\mu}_L \gamma_\mu \tau_L)$	$^{\mathrm{C}}$
CVLL_taumutautau	$(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\tau}_L \gamma_\mu \tau_L)$	$^{\mathrm{C}}$
CVLL_taumuuu	$(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{u}_L \gamma_\mu u_L)$	$^{\mathrm{C}}$
CVLL_taumucc	$(\bar{\mu}_L \gamma^\mu au_L)(\bar{c}_L \gamma_\mu c_L)$	$^{\mathrm{C}}$
CVLL_taumudd	$(\bar{\mu}_L \gamma^\mu au_L) (\bar{d}_L \gamma_\mu d_L)$	\mathbf{C}
CVLL_taumuss	$(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{s}_L \gamma_\mu s_L)$	\mathbf{C}
CVLL_taumubb	$(\bar{\mu}_L \gamma^\mu au_L)(\bar{b}_L \gamma_\mu b_L)$	\mathbf{C}
CVRR_eetaumu	$(\bar{e}_R \gamma^\mu e_R)(\bar{\mu}_R \gamma_\mu \tau_R)$	$^{\mathrm{C}}$

$\begin{array}{c} \operatorname{CVRR} \operatorname{mumutaumu} & (\bar{\mu}_R \gamma^\mu \mu_R)(\bar{\mu}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVRR} \operatorname{taumutu} & (\bar{\mu}_R \gamma^\mu \tau_R)(\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVRR} \operatorname{taumutu} & (\bar{\mu}_R \gamma^\mu \tau_R)(\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVRR} \operatorname{taumutu} & (\bar{\mu}_R \gamma^\mu \tau_R)(\bar{u}_R \gamma_\mu u_R) & \operatorname{C} \\ \operatorname{CVRR} \operatorname{taumuto} & (\bar{\mu}_R \gamma^\mu \tau_R)(\bar{u}_R \gamma_\mu u_R) & \operatorname{C} \\ \operatorname{CVRR} \operatorname{taumuto} & (\bar{\mu}_R \gamma^\mu \tau_R)(\bar{d}_R \gamma_\mu d_R) & \operatorname{C} \\ \operatorname{CVRR} \operatorname{taumuto} & (\bar{\mu}_R \gamma^\mu \tau_R)(\bar{d}_R \gamma_\mu d_R) & \operatorname{C} \\ \operatorname{CVRR} \operatorname{taumuto} & (\bar{\mu}_R \gamma^\mu \tau_R)(\bar{b}_R \gamma_\mu s_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\bar{\mu}_R \gamma^\mu \tau_R)(\bar{b}_R \gamma_\mu s_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\bar{\mu}_R \gamma^\mu \tau_R)(\bar{b}_R \gamma_\mu s_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taueemu} & (\bar{e}_L \gamma^\mu \mu_L)(\bar{\tau}_R \gamma_\mu e_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taueemu} & (\bar{e}_L \gamma^\mu \mu_L)(\bar{\mu}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumutaumu} & (\bar{\mu}_L \gamma^\mu \mu_L)(\bar{\mu}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumutou} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumutou} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumutou} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumutou} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumutou} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumutou} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumutou} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumutou} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{cotaum} & (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{cotaum} & (\bar{\mu}_L \gamma^\mu t_L)(\bar{\mu}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{dotaumu} & (\bar{\mu}_L \gamma^\mu t_L)(\bar{\mu}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{bbtaumu} & (\bar{\mu}_L \gamma^\mu t_L)(\bar{\mu}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CSRL} \operatorname{taumuto} & (\bar{\mu}_L \gamma_R)(\bar{\mu}_R u_L) & \operatorname{C} \\ \operatorname{CSRL} \operatorname{taumuto} &$	WC name	Operator	Type
$\begin{array}{c} \operatorname{CVRR_taumutautau} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVRR_taumutu} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVRR_taumuto} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVRR_taumuto} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVRR_taumuto} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVRR_taumuto} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVRR_taumuto} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{t}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{t}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumutuaumu} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumutumu} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumutumu} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumutuaumu} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumutuaumu} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumutuaumu} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumutuaumu} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu t_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR_taumuto} & (\bar{\tau}_L \gamma^\mu t_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CSRL_taumuto} & (\bar{\tau}_L \gamma_R) (\bar{\tau}_R \tau_L) & \operatorname{C} \\ \operatorname{CSRL_taumuto} & (\bar{\tau}_L \gamma_R) (\bar{\tau}_R \tau_L) & \operatorname{C} \\ CSRL_taumuto$	CVRR_mumutaumu	$(\bar{\mu}_R \gamma^\mu \mu_R)(\bar{\mu}_R \gamma_\mu \tau_R)$	С
$\begin{array}{c} \operatorname{CVRR_taumucc} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{e}_R \gamma_\mu e_R) \\ (\bar{\nu}_R \gamma^\mu \tau_R) (\bar{d}_R \gamma_\mu d_R) \\ (\bar{\nu}_R \gamma^\mu \tau_R) (\bar{d}_R \gamma_\mu d_R) \\ (\bar{\nu}_R \gamma^\mu \tau_R) (\bar{b}_R \gamma_\mu e_R) \\ (\bar{\nu}_R \gamma^\mu \tau_R) (\bar{\nu}_R \gamma_\mu r_R) \\ (\bar{\nu}$	CVRR_taumutautau		
$\begin{array}{c} \operatorname{CVRR_taumudd} & (\overline{\mu}_R \gamma^\mu \tau_R) (\overline{d}_R \gamma_\mu d_R) \\ (\overline{\nu}_R \gamma_\mu \tau_R) (\overline{s}_R \gamma_\mu s_R) \\ (\overline{\nu}_R \gamma_\mu \tau_R) (\overline{s}_R \gamma_\mu s_R) \\ (\overline{\nu}_R \gamma_\mu \tau_R) (\overline{b}_R \gamma_\mu b_R) \\ (\overline{\nu}_R \gamma_\mu \tau_R) (\overline{b}_R \gamma_\mu b_R) \\ (\overline{\nu}_R \gamma_\mu \tau_R) (\overline{b}_R \gamma_\mu b_R) \\ (\overline{\nu}_R \gamma_\mu \epsilon_L) (\overline{\nu}_R \gamma_\mu r_R) \\ (\overline{\nu}_R \gamma_\mu \epsilon_R) \\ (\overline$	CVRR_taumuuu	$(ar{\mu}_R \gamma^\mu au_R) (ar{u}_R \gamma_\mu u_R)$	
$\begin{array}{c} \operatorname{CVRR_taumuss} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{s}_R \gamma_\mu s_R) \\ (\bar{c}_R \gamma^\mu t_R) (\bar{b}_R \gamma_\mu b_R) \\ (\bar{c}_R \gamma^\mu t_R) (\bar{b}_R \gamma_\mu b_R) \\ (\bar{c}_L \gamma^\mu t_L) (\bar{\mu}_R \gamma_\mu t_R) \\ (\bar{c}_L \gamma^\mu t_L) (\bar{\mu}_R \gamma_\mu t_R) \\ (\bar{c}_L \gamma^\mu t_L) (\bar{\mu}_R \gamma_\mu t_R) \\ (\bar{c}_L \gamma^\mu t_L) (\bar{b}_R \gamma_\mu t_R) \\ (\bar{c}_L \gamma^\mu t_L) (\bar{c}_R \gamma_\mu t_R) \\ (\bar{c}$	CVRR_taumucc	$(ar{\mu}_R \gamma^\mu au_R) (ar{c}_R \gamma_\mu c_R)$	
$\begin{array}{c} \operatorname{CVRR} \operatorname{taumubb} & (\overline{\mu}_R \gamma^\mu \tau_R) (\overline{b}_R \gamma_\mu b_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{eetaumu} & (\overline{e}_L \gamma^\mu e_L) (\overline{\mu}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{muetau} & (\overline{e}_L \gamma^\mu \mu_L) (\overline{r}_R \gamma_\mu e_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{muetau} & (\overline{e}_L \gamma^\mu \mu_L) (\overline{r}_R \gamma_\mu e_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{tauemu} & (\overline{e}_L \gamma^\mu \mu_L) (\overline{\mu}_R \gamma_\mu e_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuemu} & (\overline{\mu}_L \gamma^\mu \mu_L) (\overline{\mu}_R \gamma_\mu e_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuemu} & (\overline{\mu}_L \gamma^\mu \mu_L) (\overline{\mu}_R \gamma_\mu e_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuemu} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{e}_R \gamma_\mu e_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumutautau} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{\mu}_R \gamma_\mu \mu_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumutautau} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{\mu}_R \gamma_\mu r_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuta} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{\mu}_R \gamma_\mu r_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{\mu}_R \gamma_\mu r_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{\mu}_R \gamma_\mu r_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{h}_R \gamma_\mu d_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{h}_R \gamma_\mu d_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{h}_R \gamma_\mu d_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{h}_R \gamma_\mu r_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{taumuto} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{h}_R \gamma_\mu r_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{cotaumu} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{h}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{cotaumu} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{h}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{cotaumu} & (\overline{\mu}_L \gamma^\mu t_L) (\overline{h}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{sotaumu} & (\overline{h}_L \gamma^\mu t_L) (\overline{h}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{sotaumu} & (\overline{h}_L \gamma^\mu t_L) (\overline{h}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{sotaumu} & (\overline{h}_L \gamma^\mu t_L) (\overline{h}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{sotaumu} & (\overline{h}_L \gamma^\mu t_L) (\overline{h}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{sotaumu} & (\overline{h}_L \gamma_\mu t_L) (\overline{h}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{sotaumu} & (\overline{h}_L \gamma_\mu t_L) (\overline{h}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CVLR} \operatorname{sotaumu} & (\overline{h}_L \gamma_\mu t_L) (\overline{h}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CSRL} \operatorname{taumuto} & (\overline{h}_L \gamma_\mu t_L) (\overline{h}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CSRL} \operatorname{taumuto} & (\overline{h}_L \gamma_\mu t_L) (\overline{h}_R \gamma_\mu \tau_R) & \operatorname{C} \\ \operatorname{CSRL} \operatorname{taumuto} & (\overline{h}_L \gamma_\mu t_L) (\overline{h}_R \gamma_L$	CVRR_taumudd		
$\begin{array}{c} \mathrm{CVLR}\mathrm{eetaumu} & (\bar{e}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu r_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{mueetau} & (\bar{e}_L\gamma^\mu \mu_L)(\bar{\tau}_R\gamma_\mu e_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{taueemu} & (\bar{e}_L\gamma^\mu \mu_L)(\bar{\mu}_R\gamma_\mu e_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{taueemu} & (\bar{e}_L\gamma^\mu r_L)(\bar{\mu}_R\gamma_\mu e_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{taumueu} & (\bar{\mu}_L\gamma^\mu r_L)(\bar{\mu}_R\gamma_\mu e_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{taumueu} & (\bar{\mu}_L\gamma^\mu r_L)(\bar{\mu}_R\gamma_\mu e_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{taumuumu} & (\bar{\mu}_L\gamma^\mu r_L)(\bar{\mu}_R\gamma_\mu e_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{taumutautau} & (\bar{\mu}_L\gamma^\mu r_L)(\bar{\mu}_R\gamma_\mu r_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{taumutautauu} & (\bar{\mu}_L\gamma^\mu r_L)(\bar{\mu}_R\gamma_\mu r_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{taumutu} & (\bar{\mu}_L\gamma^\mu r_L)(\bar{\mu}_R\gamma_\mu r_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{taumutu} & (\bar{\mu}_L\gamma^\mu r_L)(\bar{\mu}_R\gamma_\mu r_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{taumuto} & (\bar{\mu}_L\gamma^\mu r_L)(\bar{\mu}_R\gamma_\mu e_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{taumuto} & (\bar{\mu}_L\gamma^\mu r_L)(\bar{\mu}_R\gamma_\mu r_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{ctaumu} & (\bar{\mu}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu r_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{ctaumu} & (\bar{\mu}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu r_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{ddtaumu} & (\bar{\mu}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu r_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{bdtaumu} & (\bar{\mu}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu r_R) & \mathrm{C} \\ \mathrm{CVLR}\mathrm{bdtaumu} & (\bar{\mu}_L\gamma_R)(\bar{\mu}_R\mu_L) & \mathrm{C} \\ \mathrm{CSRL}\mathrm{taumuto} & (\bar{\mu}_L\tau_R)(\bar{\mu}_R\mu_L) & \mathrm{C} \\ \mathrm{CSRL}\mathrm{taumuto} & (\bar{\mu}_L\tau_R)(\bar{\mu}_R\mu_L) & \mathrm{C} \\ \mathrm{CSRL}\mathrm{taumuto} & (\bar{\mu}_L\tau_R)(\bar{e}_Rc_L) & \mathrm{C} \\ \mathrm{CSRL}\mathrm{taumuto} & (\bar{e}_Le_R)(\bar{e}_L\mu_R) & \mathrm{C} \\ \mathrm{CSRL}\mathrm{taumuto} & (\bar{e}_Le_R)(\bar{e}_L\mu_R) & \mathrm{C} \\ \mathrm{CSRL}\mathrm{taumuto} & (\bar{e}_Le_R)(\bar{e}_L\mu_R) & \mathrm{C} \\ \mathrm{CSRR}\mathrm{taumutou} & (\bar{e}_L\mu_R)(\bar{e}_L\mu_R) & \mathrm{C} \\ \mathrm{CSRR}taumuto$	CVRR_taumuss		
$\begin{array}{c} \text{CVLR_mueetau} & (\bar{e}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taueemu} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_tumutaumu} & (\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumuee} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumueem} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumutautau} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumutautau} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumutautau} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumutau} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumuuc} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumudd} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumudd} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumudd} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumudb} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumudb} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumudb} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumud} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_cctaumu} & (\bar{e}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu r_R) & \text{C} \\ \text{CVLR_ddtaumu} & (\bar{e}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu r_R) & \text{C} \\ \text{CVLR_staumud} & (\bar{e}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu r_R) & \text{C} \\ \text{CVLR_staumuu} & (\bar{e}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu r_R) & \text{C} \\ \text{CVLR_bbtaumu} & (\bar{e}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu r_R) & \text{C} \\ \text{CSRL_taumuuc} & (\bar{\mu}_L\tau_R)(\bar{e}_Re_L) & \text{C} \\ \text{CSRL_taumucc} & (\bar{\mu}_L\tau_R)(\bar{e}_Re_L) & \text{C} \\ \text{CSRL_taumudd} & (\bar{\mu}_L\tau_R)(\bar{e}_Re_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\mu}_L\tau_R)(\bar{e}_Re_L) & \text{C} \\ \text{CSRL_taumudd} & (\bar{\mu}_L\tau_R)(\bar{e}_Re_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{e}_L\mu_R)(\bar{e}_Re_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{e}_L\mu_R)(\bar{e}_Re_L) & \text{C} \\ \text{CSRL_mutaudb} & (\bar{e}_Le_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_eetaumu} & (\bar{e}_Le_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_mutaunu} & (\bar{e}_Le_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_munutaunu} & (\bar{e}_L\mu_R)(\bar{e}_Le_R) & \text{C} \\ \text{CSRR_munutaunu} & (\bar{\mu}_L\mu_R)(\bar{e}_L\tau_R) & \text{C} \\ \text{CSRR_munutaunu} & (\bar{\mu}_L\mu_R)(\bar{e}_L\tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L\mu_R)(\bar{e}_L\tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L\tau_R)(\bar{e}_L\tau_R) & \text{C} \\ \text$	CVRR_taumubb	$(ar{\mu}_R \gamma^\mu au_R) (ar{b}_R \gamma_\mu b_R)$	
$\begin{array}{c} \text{CVLR_taueemu} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu e_R) & \text{C} \\ \text{CVLR_mumutaumu} & (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taumuee} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumueumu} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_taumutautau} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_taumutautau} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_taumutautau} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_taumuuu} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{u}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumuuc} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumucc} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumusc} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumuss} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumusb} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumubb} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumubb} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_ctaumu} & (\bar{d}_L \gamma^\mu u_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaumu} & (\bar{d}_L \gamma^\mu u_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaumu} & (\bar{d}_L \gamma^\mu d_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaumu} & (\bar{b}_L \gamma^\mu b_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taumuu} & (\bar{\mu}_L \tau_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_taumuuc} & (\bar{\mu}_L \tau_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_taumuuc} & (\bar{\mu}_L \tau_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_mutauuu} & (\bar{\tau}_L \mu_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_taumubb} & (\bar{\mu}_L \tau_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\mu}_L \tau_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\tau}_L \mu_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\tau}_L \mu_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_mutaudb} & (\bar{\tau}_L \mu_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_mutaudb} & (\bar{\tau}_L \mu_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_mutauuu} & (\bar{u}_L \mu_R) (\bar{u}_L u_R) & \text{C} \\ \text{CSRR_mutauuu} & (\bar{u}_L \mu_R) (\bar{u}_L u_R) & \text{C} \\ \text{CSRR_munutauuu} & (\bar{\mu}_L \mu_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_munutauuu} & (\bar{\mu}_L \mu_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L \tau_R) (\bar{\tau}_L \tau_R) & \text{C} \\ CSRR_tau$	CVLR_eetaumu	$(ar{e}_L \gamma^\mu e_L) (ar{\mu}_R \gamma_\mu au_R)$	
$\begin{array}{c} \text{CVLR_mumutaumu} & (\bar{\mu}_L\gamma^{\mu}\mu_L)(\bar{\mu}_R\gamma_{\mu}r_R) & \text{C} \\ \text{CVLR_taumuee} & (\bar{\mu}_L\gamma^{\mu}\tau_L)(\bar{e}_R\gamma_{\mu}e_R) & \text{C} \\ \text{CVLR_taumumumu} & (\bar{\mu}_L\gamma^{\mu}\tau_L)(\bar{e}_R\gamma_{\mu}e_R) & \text{C} \\ \text{CVLR_taumutautau} & (\bar{\mu}_L\gamma^{\mu}\tau_L)(\bar{\mu}_R\gamma_{\mu}\mu_R) & \text{C} \\ \text{CVLR_taumutautau} & (\bar{\tau}_L\gamma^{\mu}\tau_L)(\bar{\mu}_R\gamma_{\mu}r_R) & \text{C} \\ \text{CVLR_taumutau} & (\bar{\tau}_L\gamma^{\mu}\tau_L)(\bar{\mu}_R\gamma_{\mu}r_R) & \text{C} \\ \text{CVLR_taumutu} & (\bar{\tau}_L\gamma^{\mu}\tau_L)(\bar{\mu}_R\gamma_{\mu}r_R) & \text{C} \\ \text{CVLR_taumutu} & (\bar{\mu}_L\gamma^{\mu}\tau_L)(\bar{\mu}_R\gamma_{\mu}r_R) & \text{C} \\ \text{CVLR_taumucc} & (\bar{\mu}_L\gamma^{\mu}\tau_L)(\bar{d}_R\gamma_{\mu}d_R) & \text{C} \\ \text{CVLR_taumudd} & (\bar{\mu}_L\gamma^{\mu}\tau_L)(\bar{d}_R\gamma_{\mu}d_R) & \text{C} \\ \text{CVLR_taumudd} & (\bar{\mu}_L\gamma^{\mu}\tau_L)(\bar{d}_R\gamma_{\mu}d_R) & \text{C} \\ \text{CVLR_taumudb} & (\bar{\mu}_L\gamma^{\mu}\tau_L)(\bar{b}_R\gamma_{\mu}d_R) & \text{C} \\ \text{CVLR_taumubb} & (\bar{\mu}_L\gamma^{\mu}\tau_L)(\bar{b}_R\gamma_{\mu}r_R) & \text{C} \\ \text{CVLR_taumudu} & (\bar{u}_L\gamma^{\mu}\tau_L)(\bar{\mu}_R\gamma_{\mu}\tau_R) & \text{C} \\ \text{CVLR_dataumu} & (\bar{d}_L\gamma^{\mu}t_L)(\bar{\mu}_R\gamma_{\mu}\tau_R) & \text{C} \\ \text{CVLR_dataumu} & (\bar{d}_L\gamma^{\mu}d_L)(\bar{\mu}_R\gamma_{\mu}\tau_R) & \text{C} \\ \text{CVLR_dataumu} & (\bar{b}_L\gamma^{\mu}b_L)(\bar{\mu}_R\gamma_{\mu}\tau_R) & \text{C} \\ \text{CVLR_staumuu} & (\bar{b}_L\gamma^{\mu}b_L)(\bar{\mu}_R\gamma_{\mu}\tau_R) & \text{C} \\ \text{CVLR_bbtaumu} & (\bar{b}_L\gamma^{\mu}b_L)(\bar{\mu}_R\gamma_{\mu}\tau_R) & \text{C} \\ \text{CSRL_taumuuu} & (\bar{\mu}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_taumuuu} & (\bar{\mu}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_taumuuu} & (\bar{\tau}_L\mu_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_taumudd} & (\bar{\mu}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_taumudd} & (\bar{\mu}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_taumudb} & (\bar{\mu}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\mu}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaudb} & (\bar{\tau}_L\mu_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_Le_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_mumetau} & (\bar{e}_Le_R)(\bar{\tau}_L\mu_R) & \text{C} \\ \text{CSRR_mumutauuu} & (\bar{\mu}_L\tau_R)(\bar{\tau}_L\mu_R) & \text{C} \\ \text{CSRR_mumutauutau} & (\bar{\mu}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_taumutautau} & $	CVLR_mueetau	$(ar{e}_L \gamma^\mu \mu_L) (ar{ au}_R \gamma_\mu e_R)$	
$\begin{array}{c} \text{CVLR_taumue} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumumum} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_taumutautau} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taumutautaum} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taumutu} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taumutu} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\theta}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumuto} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\theta}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumuto} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\theta}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumuto} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\theta}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumuto} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\theta}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumuto} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\theta}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumuto} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\theta}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_uutaumu} & (\bar{u}_L \gamma^\mu u_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_cctaumu} & (\bar{e}_L \gamma^\mu c_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaumu} & (\bar{d}_L \gamma^\mu d_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaumu} & (\bar{g}_L \gamma^\mu s_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaumu} & (\bar{b}_L \gamma^\mu b_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taumuto} & (\bar{\mu}_L \tau_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_taumuto} & (\bar{\mu}_L \tau_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_taumuto} & (\bar{\mu}_L \tau_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_taumuto} & (\bar{\tau}_L \mu_R) (\bar{e}_R c_L) & \text{C} \\ \text{CSRL_taumuto} & (\bar{\tau}_L \mu_R) (\bar{e}_R c_L) & \text{C} \\ \text{CSRL_taumuto} & (\bar{\mu}_L \tau_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_taumuto} & (\bar{\mu}_L \tau_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_taumuto} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_taumuto} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaudo} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaudo} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_L e_R) (\bar{\tau}_L \mu_R) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_L e_R) (\bar{\tau}_L \mu_R) & \text{C} \\ \text{CSRR_aumutaumu} & (\bar{\mu}_L \mu_R) (\bar{\tau}_L \mu_R) & \text{C} \\ \text{CSRR_aumutautau} & (\bar{\mu}_L \tau_R) ($	CVLR_taueemu		
$\begin{array}{c} \text{CVLR_taumumum} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_taumutautau} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taumutautaum} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taumuuu} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taumuuu} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taumudd} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_taumudd} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumudd} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumudb} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu s_R) & \text{C} \\ \text{CVLR_taumudb} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_taumudb} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ctaumu} & (\bar{c}_L \gamma^\mu c_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaumu} & (\bar{d}_L \gamma^\mu d_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaumu} & (\bar{d}_L \gamma^\mu d_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaumu} & (\bar{s}_L \gamma^\mu s_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaumu} & (\bar{b}_L \gamma^\mu b_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaumu} & (\bar{b}_L \gamma^\mu b_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taumucc} & (\bar{\mu}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_taumucc} & (\bar{\mu}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_mutauuu} & (\bar{\tau}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_mutauuc} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_taumudb} & (\bar{\mu}_L \tau_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_taumubb} & (\bar{\mu}_L \tau_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_taumudd} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutauud} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{\tau}_L \mu_R) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_L e_R) (\bar{\tau}_L \mu_R) & \text{C} \\ \text{CSRR_numetauu} & (\bar{e}_L e_R) (\bar{\tau}_L \mu_R) & \text{C} \\ \text{CSRR_numutauuu} & (\bar{\mu}_L \tau_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_numutauuu} & (\bar{\mu}_L \tau_R) ($	_	$(\bar{\mu}_L \gamma^\mu \mu_L)(\bar{\mu}_R \gamma_\mu \tau_R)$	
$\begin{array}{c} \text{CVLR_taumutautau} & \bar{\mu}_L \gamma^\mu \tau_L \big(\bar{\tau}_R \gamma_\mu \tau_R \big) & \text{C} \\ \text{CVLR_tautautaumu} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taumuuu} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{u}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumucc} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumudd} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumudd} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumudb} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu b_R) & \text{C} \\ \text{CVLR_taumubb} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu b_R) & \text{C} \\ \text{CVLR_taumubb} & (\bar{\mu}_L \gamma^\mu u_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_dutaumu} & (\bar{u}_L \gamma^\mu u_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_dtaumu} & (\bar{d}_L \gamma^\mu d_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_dtaumu} & (\bar{d}_L \gamma^\mu d_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaumu} & (\bar{s}_L \gamma^\mu s_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_staumuu} & (\bar{b}_L \gamma^\mu b_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_staumuu} & (\bar{b}_L \gamma^\mu b_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taumuuu} & (\bar{\mu}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_taumuuu} & (\bar{\mu}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_taumuuu} & (\bar{\tau}_L \mu_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_taumuudd} & (\bar{\mu}_L \tau_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_taumudd} & (\bar{\mu}_L \tau_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_taumubb} & (\bar{\mu}_L \tau_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_taumubb} & (\bar{\mu}_L \tau_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L \mu_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_L e_R) (\bar{\mu}_L \tau_R) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_L e_R) (\bar{\mu}_L \tau_R) & \text{C} \\ \text{CSRR_uueetau} & (\bar{e}_L \mu_R) (\bar{\tau}_L \mu_R) & \text{C} \\ \text{CSRR_nueetau} & (\bar{e}_L \mu_R) (\bar{\tau}_L \mu_R) & \text{C} \\ \text{CSRR_numumutauu} & (\bar{\mu}_L \mu_R) (\bar{\tau}_L \mu_R) & \text{C} \\ \text{CSRR_numumutau} & (\bar{\mu}_L \mu_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L \tau_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L \tau_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L \tau_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L \tau_R) ($	CVLR_taumuee		
$\begin{array}{c} \text{CVLR_tautautaumu} & (\overline{\tau}_L \gamma^\mu \tau_L) (\overline{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taumuuu} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{u}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumucc} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{u}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumudd} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumudd} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumudb} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{b}_R \gamma_\mu s_R) & \text{C} \\ \text{CVLR_taumubb} & (\overline{\mu}_L \gamma^\mu \tau_L) (\overline{b}_R \gamma_\mu b_R) & \text{C} \\ \text{CVLR_tutaumu} & (\overline{u}_L \gamma^\mu u_L) (\overline{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_utaumu} & (\overline{u}_L \gamma^\mu u_L) (\overline{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaumu} & (\overline{d}_L \gamma^\mu d_L) (\overline{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaumu} & (\overline{d}_L \gamma^\mu d_L) (\overline{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaumu} & (\overline{s}_L \gamma^\mu s_L) (\overline{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaumu} & (\overline{b}_L \gamma^\mu s_L) (\overline{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taumuuu} & (\overline{\mu}_L \tau_R) (\overline{u}_R u_L) & \text{C} \\ \text{CSRL_taumuuu} & (\overline{\mu}_L \tau_R) (\overline{u}_R u_L) & \text{C} \\ \text{CSRL_taumuuc} & (\overline{\mu}_L \tau_R) (\overline{u}_R u_L) & \text{C} \\ \text{CSRL_mutauuu} & (\overline{\tau}_L \mu_R) (\overline{u}_R u_L) & \text{C} \\ \text{CSRL_taumudd} & (\overline{\mu}_L \tau_R) (\overline{d}_R d_L) & \text{C} \\ \text{CSRL_taumubb} & (\overline{\mu}_L \tau_R) (\overline{d}_R d_L) & \text{C} \\ \text{CSRL_taumubb} & (\overline{\mu}_L \tau_R) (\overline{d}_R d_L) & \text{C} \\ \text{CSRL_mutaudd} & (\overline{\tau}_L \mu_R) (\overline{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\overline{\tau}_L \mu_R) (\overline{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\overline{\tau}_L \mu_R) (\overline{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\overline{\tau}_L \mu_R) (\overline{d}_R d_L) & \text{C} \\ \text{CSRL_mutaubb} & (\overline{\tau}_L \mu_R) (\overline{d}_R d_L) & \text{C} \\ \text{CSRR_eemutau} & (\overline{e}_L e_R) (\overline{\mu}_L \tau_R) & \text{C} \\ \text{CSRR_eemutau} & (\overline{e}_L e_R) (\overline{\tau}_L \mu_R) & \text{C} \\ \text{CSRR_nueetau} & (\overline{e}_L \mu_R) (\overline{\tau}_L e_R) & \text{C} \\ \text{CSRR_nuemutaumu} & (\overline{\mu}_L \mu_R) (\overline{\tau}_L \mu_R) & \text{C} \\ \text{CSRR_numumutau} & (\overline{\mu}_L \mu_R) (\overline{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_numumutau} & (\overline{\mu}_L \mu_R) (\overline{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_numumutau} & (\overline{\mu}_L \mu_R) (\overline{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\overline{\mu}_L \tau_R) (\overline{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\overline{\mu}_L \tau_R) (\overline{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\overline{\mu}_L \tau_R) (\overline{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\overline{\mu}_L \tau_R) (\overline{\tau}_L \tau_R) & \text{C} \\$	CVLR_taumumumu		
$\begin{array}{c} \text{CVLR_taumuu} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{u}_R\gamma_\mu u_R) & \text{C} \\ \text{CVLR_taumucc} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{C} \\ \text{CVLR_taumudd} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumuds} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumuss} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{b}_R\gamma_\mu s_R) & \text{C} \\ \text{CVLR_taumubb} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{b}_R\gamma_\mu b_R) & \text{C} \\ \text{CVLR_taumub} & (\bar{u}_L\gamma^\mu u_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_cctaumu} & (\bar{e}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaumu} & (\bar{d}_L\gamma^\mu d_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaumu} & (\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaumu} & (\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaumu} & (\bar{b}_L\gamma^\mu b_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_btaumu} & (\bar{b}_L\gamma^\mu b_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taumucc} & (\bar{\mu}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_taumucc} & (\bar{\mu}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_mutauuu} & (\bar{\tau}_L\mu_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_mutauuc} & (\bar{\tau}_L\mu_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_taumudd} & (\bar{\mu}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_taumudd} & (\bar{\mu}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_taumubb} & (\bar{\mu}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\tau}_L\mu_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\tau}_L\mu_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L\mu_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L\mu_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L\mu_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_Le_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_Le_R)(\bar{\tau}_L\mu_R) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_L\mu_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_numutaumu} & (\bar{\mu}_L\mu_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_numutaumu} & (\bar{\mu}_L\mu_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_numumutau} & (\bar{\mu}_L\mu_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_numumutau} & (\bar{\mu}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_numumutau} & (\bar{\mu}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ CSRR_taumuta$	CVLR_taumutautau		
$\begin{array}{c} \text{CVLR_taumucc} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{c}_R\gamma_\mu c_R) & \text{C} \\ \text{CVLR_taumudd} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumuds} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{b}_R\gamma_\mu d_R) & \text{C} \\ \text{CVLR_taumuss} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{b}_R\gamma_\mu s_R) & \text{C} \\ \text{CVLR_taumubb} & (\bar{\mu}_L\gamma^\mu\tau_L)(\bar{b}_R\gamma_\mu b_R) & \text{C} \\ \text{CVLR_tutaumu} & (\bar{u}_L\gamma^\mu u_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_cctaumu} & (\bar{c}_L\gamma^\mu c_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaumu} & (\bar{d}_L\gamma^\mu d_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaumu} & (\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_staumu} & (\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaumu} & (\bar{b}_L\gamma^\mu b_L)(\bar{\mu}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taumuuu} & (\bar{\mu}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_taumucc} & (\bar{\mu}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_mutauuu} & (\bar{\tau}_L\mu_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_mutauuu} & (\bar{\tau}_L\mu_R)(\bar{c}_Rc_L) & \text{C} \\ \text{CSRL_taumudd} & (\bar{\mu}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_taumudd} & (\bar{\mu}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_taumubb} & (\bar{\mu}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_taumubb} & (\bar{\mu}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\tau}_L\mu_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\tau}_L\mu_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L\mu_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L\mu_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L\mu_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_Le_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_Le_R)(\bar{\tau}_L\mu_R) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_L\tau_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_numumutaumu} & (\bar{\mu}_L\mu_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_numumutau} & (\bar{\mu}_L\mu_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_numumutau} & (\bar{\mu}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_numumutau} & (\bar{\mu}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_taumumutau} & (\bar{\mu}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_taumutautau} $	CVLR_tautautaumu		
$\begin{array}{c} \text{CVLR_taumudd} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) \\ (\bar{\nu}_L \gamma^\mu \tau_L) (\bar{g}_R \gamma_\mu s_R) \\ (\bar{\nu}_L \gamma^\mu \tau_L) (\bar{g}_R \gamma_\mu s_R) \\ (\bar{\nu}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu b_R) \\ (\bar{\nu}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu b_R) \\ (\bar{\nu}_L \gamma^\mu \tau_L) (\bar{\nu}_R \gamma_\mu \tau_R) \\ (\bar{\nu}_L \gamma^\mu \tau_L) (\bar{\nu}_L \gamma_R) \\ (\bar{\nu}$	CVLR_taumuuu		
$\begin{array}{c} \text{CVLR_taumuss} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{s}_R \gamma_\mu s_R) \\ (\bar{\nu}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu b_R) \\ (\bar{\nu}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \tau_R) \\ (\bar{\nu}_L \gamma^\mu \tau_L) (\bar{\nu}_R \gamma_\mu \tau_R) \\ (\bar{\nu}_L \gamma^\mu \tau_L) (\bar{\nu}_L \gamma_R) \\ (\bar{\nu}$	_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CVLR_taumuss		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(ar{c}_L \gamma^\mu c_L) (ar{\mu}_R \gamma_\mu au_R)$	
$\begin{array}{c} \text{CVLR_bbtaumu} & (\bar{b}_L\gamma^\mu b_L)(\bar{\mu}_R\gamma_\mu\tau_R) & \text{C} \\ \text{CSRL_taumuuu} & (\bar{\mu}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_taumuucc} & (\bar{\mu}_L\tau_R)(\bar{c}_Rc_L) & \text{C} \\ \text{CSRL_mutauuu} & (\bar{\tau}_L\mu_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_mutauuu} & (\bar{\tau}_L\mu_R)(\bar{v}_Rc_L) & \text{C} \\ \text{CSRL_mutaucc} & (\bar{\tau}_L\mu_R)(\bar{c}_Rc_L) & \text{C} \\ \text{CSRL_taumudd} & (\bar{\mu}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_taumuss} & (\bar{\mu}_L\tau_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_taumubb} & (\bar{\mu}_L\tau_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\tau}_L\mu_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_mutaudd} & (\bar{\tau}_L\mu_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L\mu_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_mutaubb} & (\bar{\tau}_L\mu_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRR_eetaumu} & (\bar{e}_Le_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_eemutau} & (\bar{e}_Le_R)(\bar{\tau}_L\mu_R) & \text{C} \\ \text{CSRR_nueetau} & (\bar{e}_L\mu_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_taueemu} & (\bar{e}_L\mu_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_mumutaumu} & (\bar{\mu}_L\mu_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_mumutaumu} & (\bar{\mu}_L\mu_R)(\bar{\tau}_L\mu_R) & \text{C} \\ \text{CSRR_mumutautau} & (\bar{\mu}_L\mu_R)(\bar{\tau}_L\mu_R) & \text{C} \\ \text{CSRR_mumutautau} & (\bar{\mu}_L\mu_R)(\bar{\tau}_L\mu_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L\mu_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\$	CVLR_ddtaumu	$(d_L \gamma^\mu d_L)(\bar{\mu}_R \gamma_\mu au_R)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CVLR_sstaumu	$(ar{s}_L \gamma^\mu s_L) (ar{\mu}_R \gamma_\mu au_R)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CVLR_bbtaumu	$(b_L \gamma^\mu b_L) (ar{\mu}_R \gamma_\mu au_R)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_taumuuu	$(ar{\mu}_L au_R)(ar{u}_Ru_L)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_taumucc	$(ar{\mu}_L au_R)(ar{c}_Rc_L)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_mutauuu		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_mutaucc	$(ar{ au}_L\mu_R)(ar{c}_Rc_L)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_taumudd	$(ar{\mu}_L au_R)(d_Rd_L)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_taumuss	$(ar{\mu}_L au_R)(ar{s}_Rs_L)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_taumubb	$(ar{\mu}_L au_R)(b_R^{}b_L)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_mutaudd	$(ar{ au}_L\mu_R)(ar{d}_Rd_L)$	$^{\mathrm{C}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_mutauss	$(ar{ au}_L\mu_R)(ar{s}_Rs_L)$	$^{\mathrm{C}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_mutaubb	$(ar{ au}_L\mu_R)(ar{b}_Rb_L)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRR_eetaumu	$(ar{e}_L e_R)(ar{\mu}_L au_R)$	\mathbf{C}
$\begin{array}{ccccc} \text{CSRR_taueemu} & (\bar{e}_L\tau_R)(\bar{\mu}_Le_R) & \text{C} \\ \text{CSRR_mumutaumu} & (\bar{\mu}_L\mu_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_mumutaut} & (\bar{\mu}_L\mu_R)(\bar{\tau}_L\mu_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \end{array}$	CSRR_eemutau	$(ar{e}_L e_R)(ar{ au}_L \mu_R)$	$^{\mathrm{C}}$
$\begin{array}{cccc} \text{CSRR_mumutaumu} & (\bar{\mu}_L \mu_R)(\bar{\mu}_L \tau_R) & \text{C} \\ \text{CSRR_mumumutau} & (\bar{\mu}_L \mu_R)(\bar{\tau}_L \mu_R) & \text{C} \\ \text{CSRR_taumutautau} & (\bar{\mu}_L \tau_R)(\bar{\tau}_L \tau_R) & \text{C} \\ \end{array}$	CSRR_mueetau		
CSRR_mumumutau $(\bar{\mu}_L \mu_R)(\bar{\tau}_L \mu_R)$ C CSRR_taumutautau $(\bar{\mu}_L \tau_R)(\bar{\tau}_L \tau_R)$ C	_		
CSRR_taumutautau $(\bar{\mu}_L \tau_R)(\bar{\tau}_L \tau_R)$ C	CSRR_mumutaumu		
= (/ E 1t/(E 1t/	_		
CSRR_mutautau $(\bar{\tau}_L \mu_R)(\bar{\tau}_L \tau_R)$	_		
	CSRR_mutautautau	$(ar{ au}_L\mu_R)(ar{ au}_L au_R)$	С

WC name	Operator	Type
CSRR_taumuuu	$(\bar{\mu}_L au_R)(\bar{u}_L u_R)$	C
CSRR_taumucc	$(ar{\mu}_L au_R)(ar{c}_Lc_R)$	\mathbf{C}
CSRR_mutauuu	$(ar{ au}_L\mu_R)(ar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRR_mutaucc	$(ar{ au}_L\mu_R)(ar{c}_Lc_R)$	C
CTRR_taumuuu	$(\bar{\mu}_L \sigma^{\mu u} au_R) (\bar{u}_L \sigma_{\mu u} u_R)$	$^{\mathrm{C}}$
CTRR_taumucc	$(ar{\mu}_L \sigma^{\mu u} au_R) (ar{c}_L \sigma_{\mu u} c_R)$	$^{\mathrm{C}}$
CTRR_mutauuu	$(ar au_L\sigma^{\mu u}\mu_R)(ar u_L\sigma_{\mu u}u_R)$	$^{\mathrm{C}}$
CTRR_mutaucc	$(\bar{ au}_L \sigma^{\mu u} \mu_R) (\bar{c}_L \sigma_{\mu u} c_R)$	\mathbf{C}
CSRR_taumudd	$(ar{\mu}_L au_R)(ar{d}_Ld_R)$	$^{\mathrm{C}}$
CSRR_taumuss	$(ar{\mu}_L au_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CSRR_taumubb	$(ar{\mu}_L au_R)(ar{b}_Lb_R)$	C
CSRR_mutaudd	$(ar{ au}_L\mu_R)(ar{d}_Ld_R)$	$^{\mathrm{C}}$
CSRR_mutauss	$(ar{ au}_L\mu_R)(ar{s}_Ls_R)$	C
CSRR_mutaubb	$(ar{ au}_L\mu_R)(ar{b}_Lb_R)$	$^{\mathrm{C}}$
CTRR_taumudd	$(ar{\mu}_L\sigma^{\mu u} au_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CTRR_taumuss	$(ar{\mu}_L \sigma^{\mu u} au_R) (ar{s}_L \sigma_{\mu u} s_R)$	C
CTRR_taumubb	$(ar{\mu}_L\sigma^{\mu u} au_R)(ar{b}_L\sigma_{\mu u}b_R)$	\mathbf{C}
CTRR_mutaudd	$(ar{ au}_L\sigma^{\mu u}\mu_R)(ar{d}_L\sigma_{\mu u}d_R)$	\mathbf{C}
CTRR_mutauss	$(ar{ au}_L \sigma^{\mu u} \mu_R) (ar{s}_L \sigma_{\mu u} s_R)$	\mathbf{C}
CTRR_mutaubb	$(ar{ au}_L\sigma^{\mu u}\mu_R)(ar{b}_L\sigma_{\mu u}b_R)$	\mathbf{C}

taue

WC name	Operator	Type
Cgamma_taue	$\bar{e}_L \sigma^{\mu u} au_R F_{\mu u}$	C
Cgamma_etau	$ar{ au}_L \sigma^{\mu u} e_R \dot{F}_{\mu u}$	$^{\mathrm{C}}$
CVLL_eetaue	$(ar{e}_L \gamma^\mu e_L)(\dot{ar{e}}_L \gamma_\mu au_L)$	C
CVLL_muetaumu	$(\bar{e}_L \gamma^\mu \mu_L) (\bar{\mu}_L \dot{\gamma}_\mu au_L)$	$^{\mathrm{C}}$
CVLL_tauetautau	$(ar{e}_L \gamma^\mu au_L) (ar{ au}_L \gamma_\mu au_L)$	$^{\mathrm{C}}$
CVLL_taueuu	$(ar{e}_L \gamma^\mu au_L) (ar{u}_L \gamma_\mu u_L)$	$^{\mathrm{C}}$
CVLL_tauecc	$(ar{e}_L \gamma^\mu au_L) (ar{c}_L \gamma_\mu c_L)$	\mathbf{C}
CVLL_tauedd	$(ar{e}_L \gamma^\mu au_L) (ar{d}_L \gamma_\mu d_L)$	$^{\mathrm{C}}$
CVLL_tauess	$(ar{e}_L \gamma^\mu au_L) (ar{s}_L \gamma_\mu s_L)$	$^{\mathrm{C}}$
CVLL_tauebb	$(ar{e}_L \gamma^\mu au_L) (ar{b}_L \gamma_\mu b_L)$	$^{\mathrm{C}}$
CVRR_eetaue	$(ar{e}_R\gamma^\mu e_R)(ar{e}_R\gamma_\mu au_R)$	$^{\mathrm{C}}$
CVRR_muetaumu	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{\mu}_R \gamma_\mu \tau_R)$	$^{\mathrm{C}}$
CVRR_tauetautau	$(ar{e}_R \gamma^\mu au_R) (ar{ au}_R \gamma_\mu au_R)$	\mathbf{C}
CVRR_taueuu	$(\bar{e}_R \gamma^\mu au_R)(\bar{u}_R \gamma_\mu u_R)$	\mathbf{C}
CVRR_tauecc	$(ar{e}_R \gamma^\mu au_R) (ar{c}_R \gamma_\mu c_R)$	\mathbf{C}
CVRR_tauedd	$(ar{e}_R \gamma^\mu au_R) (ar{d}_R \gamma_\mu d_R)$	$^{\mathrm{C}}$
CVRR_tauess	$(ar{e}_R\gamma^\mu au_R)(ar{s}_R\gamma_\mu s_R)$	$^{\mathrm{C}}$
CVRR_tauebb	$(ar{e}_R \gamma^\mu au_R) (ar{b}_R \gamma_\mu b_R)$	$^{\mathrm{C}}$

$\begin{array}{c} \text{CVLR_eetaue} & (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_muetaumu} & (\bar{e}_L \gamma^\mu \mu_L) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taueee} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{C} \\ \text{CVLR_tauemumu} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_tauemumu} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_tauetautau} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{\mu}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_tauetautau} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_tautautaue} & (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_tautautaue} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_taueuu} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_taueuc} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_tauesc} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_tauesc} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_tauesb} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVLR_tauebb} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu b_R) & \text{C} \\ \text{CVLR_tauebb} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_tauebb} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_dtaue} & (\bar{d}_L \gamma^\mu d_L) (\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_dtaue} & (\bar{d}_L \gamma^\mu d_L) (\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_btaue} & (\bar{b}_L \gamma^\mu b_L) (\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_btaue} & (\bar{b}_L \gamma^\mu b_L) (\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_tauebd} & (\bar{e}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{d}_R u_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{d}_L u_R) & \text{C} \\ \text{CSRR_eetauu} & (\bar{e}_L \tau_R) (\bar{e}_L \tau_R) & \text{C} \\ \text{CSRR_eatuauuu} & (\bar{e}_L \tau_R) ($	WC name	Operator	Type
$\begin{array}{c} \mathrm{CVLR_muetaumu} & (\bar{e}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_taueee} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu\mu_R) & \mathrm{C} \\ \mathrm{CVLR_tauemumu} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu\mu_R) & \mathrm{C} \\ \mathrm{CVLR_tauetautau} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_taumumu} & (\bar{\mu}_L\gamma^\mu\mu_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_taumumue} & (\bar{\mu}_L\gamma^\mu\mu_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_tautautaue} & (\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\mu_R) & \mathrm{C} \\ \mathrm{CVLR_tautautaue} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\mu_R) & \mathrm{C} \\ \mathrm{CVLR_taueuu} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_taueuu} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_taueuu} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_taueud} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_tauedd} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_tauees} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_taueebb} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_taueud} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_cctaue} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_ctaue} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_staueu} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_staue} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_btaue} & (\bar{b}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CVLR_btaue} & (\bar{b}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CSRL_taueuu} & (\bar{e}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CSRL_taueuu} & (\bar{e}_L\tau_R)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_R\gamma_\mu\tau_R) & \mathrm{C} \\ \mathrm{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{e}_R\gamma_L) & \mathrm{C} \\ \mathrm{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{e}_L\tau_R) & \mathrm{C} \\ \mathrm{CSRR_taueuuu} & (\bar{e}_L\tau_R)(\bar{e}_L\tau_R) & \mathrm{C} \\ \mathrm{CSRR_taueuuu} & (\bar{e}_L\tau_R)(\bar{e}_L\tau_R) & \mathrm$	CVLR_eetaue	$(\bar{e}_L \gamma^{\mu} e_L)(\bar{e}_R \gamma_{\mu} \tau_R)$	С
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CVLR_muetaumu		\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CVLR_taueee		\mathbf{C}
$\begin{array}{c} \text{CVLR_mumutaue} & (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_taumumue} & (\bar{\mu}_L \gamma^\mu r_L) (\bar{e}_R \gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_tautautaue} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_tautautaue} & (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_taueuu} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_tauecc} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_tauedd} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_tauess} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_tauesb} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_tauebb} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_tauebb} & (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_utaue} & (\bar{u}_L \gamma^\mu u_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_ddtaue} & (\bar{d}_L \gamma^\mu d_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_staue} & (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_staueu} & (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_staueu} & (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_staueu} & (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L r_R) (\bar{e}_R r_\mu r_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L r_R) (\bar{e}_R r_\mu r_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L r_R) (\bar{e}_R r_\mu r_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L r_R) (\bar{e}_R r_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L r_R) (\bar{e}_R r_L) & \text{C} \\ \text{CSRL_tauebd} & (\bar{e}_L r_R) (\bar{e}_R r_L) & \text{C} \\ \text{CSRL_tauebd} & (\bar{e}_L r_R) (\bar{e}_R r_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L r_R) (\bar{e}_R r_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L r_R) (\bar{e}_R r_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L r_R) (\bar{e}_R r_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L r_R) (\bar{e}_R r_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L r_R) (\bar{e}_R r_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L r_R) (\bar{e}_L r_R) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L r_R) (\bar{e}_L r_R) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L r_R) (\bar{e}_L r_R) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L r_R) (\bar{e}_L r_R) & \text{C} \\ \text{CSRL_tauebu} & (\bar{e}_L r_R) (\bar{e}_L r_R) & \text{C} \\ \text{CSRR_tauetautau} & (\bar{e}_L r_R) (\bar{e}_L r_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L r_R) (\bar{e}_L r_R) & \text{C} \\ CSR$	CVLR_tauemumu		
$\begin{array}{c} \text{CVLR_taumumue} & (\bar{\mu}_L \gamma^{\mu} \tau_L) (\bar{e}_R \gamma_{\mu} \mu_R) \\ \text{CVLR_tautautaue} & (\bar{\tau}_L \gamma^{\mu} \tau_L) (\bar{e}_R \gamma_{\mu} \mu_R) \\ \text{CVLR_taueuu} & (\bar{e}_L \gamma^{\mu} \tau_L) (\bar{e}_R \gamma_{\mu} \nu_R) \\ \text{CVLR_taueucc} & (\bar{e}_L \gamma^{\mu} \tau_L) (\bar{e}_R \gamma_{\mu} \nu_R) \\ \text{CVLR_tauedd} & (\bar{e}_L \gamma^{\mu} \tau_L) (\bar{e}_R \gamma_{\mu} \nu_R) \\ \text{CVLR_tauedd} & (\bar{e}_L \gamma^{\mu} \tau_L) (\bar{e}_R \gamma_{\mu} \nu_R) \\ \text{CVLR_taueedd} & (\bar{e}_L \gamma^{\mu} \tau_L) (\bar{e}_R \gamma_{\mu} \nu_R) \\ \text{CVLR_tauebb} & (\bar{e}_L \gamma^{\mu} \tau_L) (\bar{b}_R \gamma_{\mu} b_R) \\ \text{CVLR_tauebb} & (\bar{e}_L \gamma^{\mu} \tau_L) (\bar{e}_R \gamma_{\mu} \tau_R) \\ \text{CVLR_tauebb} & (\bar{e}_L \gamma^{\mu} \tau_L) (\bar{e}_R \gamma_{\mu} \tau_R) \\ \text{CVLR_tauedd} & (\bar{u}_L \gamma^{\mu} u_L) (\bar{e}_R \gamma_{\mu} \tau_R) \\ \text{CVLR_tauedd} & (\bar{u}_L \gamma^{\mu} u_L) (\bar{e}_R \gamma_{\mu} \tau_R) \\ \text{CVLR_tauedd} & (\bar{d}_L \gamma^{\mu} u_L) (\bar{e}_R \gamma_{\mu} \tau_R) \\ \text{CVLR_ddtaue} & (\bar{d}_L \gamma^{\mu} d_L) (\bar{e}_R \gamma_{\mu} \tau_R) \\ \text{CVLR_bbtaue} & (\bar{b}_L \gamma^{\mu} b_L) (\bar{e}_R \gamma_{\mu} \tau_R) \\ \text{CVLR_bbtaue} & (\bar{b}_L \gamma^{\mu} b_L) (\bar{e}_R \gamma_{\mu} \tau_R) \\ \text{CVLR_bbtaue} & (\bar{b}_L \gamma^{\mu} b_L) (\bar{e}_R \gamma_{\mu} \tau_R) \\ \text{CSRL_taueuu} & (\bar{e}_L \tau_R) (\bar{u}_R u_L) \\ \text{CSRL_taueuu} & (\bar{e}_L \tau_R) (\bar{u}_R u_L) \\ \text{CSRL_taueuu} & (\bar{e}_L \tau_R) (\bar{e}_R c_L) \\ \text{CSRL_tauedd} & (\bar{e}_L \tau_R) (\bar{e}_R c_L) \\ \text{CSRL_tauedd} & (\bar{e}_L \tau_R) (\bar{e}_R c_L) \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{e}_R c_L) \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{e}_R d_L) \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{e}_R b_L) \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{e}_R b_L) \\ \text{CSRL_etauub} & (\bar{e}_L \tau_R) (\bar{e}_R b_L) \\ \text{CSRR_etaueu} & (\bar{e}_L e_R) (\bar{e}_L \tau_R) \\ \text{CSRR_etaueuu} & (\bar{e}_L e_R) (\bar{e}_L \tau_R) \\ \text{CSRR_etaueuu} & (\bar{e}_L e_R) (\bar{e}_L \tau_R) \\ \text{CSRR_tauenumu} & (\bar{e}_L \tau_R) (\bar{e}_L \tau_R) \\ \text{CSRR_tauenumu} & (\bar{e}_L \tau_R) (\bar{e}_L \tau_R) \\ \text{CSRR_tauenumu} & (\bar{e}_L \tau_R) (\bar{e}_L \tau_R) \\ \text{CSRR_taueuuu} & (\bar{e}_L \tau_R) (\bar{e}_L \tau_R) \\ \text{CSRR_taueuu} & (\bar{e}_L \tau_R) (\bar{e}_L \tau_R) \\ \text{CSRR_taueuu} & (\bar{e}_L \tau_R) (\bar{e}_L \tau_R) \\ \text{CCSRR_taueuu} & (\bar{e}_L \tau_R) (\bar{e}_L \tau_R) \\ \text{CCRR_taueuu} & (\bar{e}_L \tau_R) (\bar{e}_L \tau_R) \\ \text{CCRR_taueuu} & (\bar{e}_L \tau_R) (\bar{e}_L \tau_R) \\ \text{CCTRR_taueuu} & (\bar{e}_L \tau_R) (\bar{e}_L \tau_R) \\ \text{CCTRR_taueuu} $	CVLR_tauetautau		\mathbf{C}
$\begin{array}{c} \text{CVLR_tautautaue} & (\bar{\tau}_L \gamma^\mu \tau_L)(\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taueuu} & (\bar{e}_L \gamma^\mu \tau_L)(\bar{u}_R \gamma_\mu u_R) & \text{C} \\ \text{CVLR_tauecc} & (\bar{e}_L \gamma^\mu \tau_L)(\bar{e}_R \gamma_\mu c_R) & \text{C} \\ \text{CVLR_tauedd} & (\bar{e}_L \gamma^\mu \tau_L)(\bar{e}_R \gamma_\mu c_R) & \text{C} \\ \text{CVLR_tauedd} & (\bar{e}_L \gamma^\mu \tau_L)(\bar{e}_R \gamma_\mu c_R) & \text{C} \\ \text{CVLR_tauess} & (\bar{e}_L \gamma^\mu \tau_L)(\bar{e}_R \gamma_\mu s_R) & \text{C} \\ \text{CVLR_tauebb} & (\bar{e}_L \gamma^\mu \tau_L)(\bar{e}_R \gamma_\mu r_R) & \text{C} \\ \text{CVLR_tauebb} & (\bar{e}_L \gamma^\mu \tau_L)(\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_taueded} & (\bar{e}_L \gamma^\mu c_L)(\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_cctaue} & (\bar{e}_L \gamma^\mu c_L)(\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaue} & (\bar{d}_L \gamma^\mu d_L)(\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaue} & (\bar{d}_L \gamma^\mu d_L)(\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaue} & (\bar{s}_L \gamma^\mu s_L)(\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sbtaue} & (\bar{b}_L \gamma^\mu b_L)(\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaue} & (\bar{b}_L \gamma^\mu b_L)(\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L \tau_R)(\bar{u}_R u_L) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L \tau_R)(\bar{u}_R u_L) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L \tau_R)(\bar{e}_R c_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L \tau_R)(\bar{e}_R c_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L \tau_R)(\bar{e}_R c_L) & \text{C} \\ \text{CSRL_tauebd} & (\bar{e}_L \tau_R)(\bar{e}_R c_L) & \text{C} \\ \text{CSRL_tauebd} & (\bar{e}_L \tau_R)(\bar{e}_R s_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R)(\bar{e}_R s_L) & \text{C} \\ \text{CSRL_etaudd} & (\bar{\tau}_L e_R)(\bar{s}_R s_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_L e_R)(\bar{s}_R s_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_L e_R)(\bar{s}_R s_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_L e_R)(\bar{b}_R b_L) & \text{C} \\ \text{CSRR_etaue} & (\bar{e}_L e_R)(\bar{\tau}_L e_R) & \text{C} \\ \text{CSRR_etaueuu} & (\bar{e}_L \tau_R)(\bar{\mu}_L \mu_R) & \text{C} \\ \text{CSRR_etaueuuu} & (\bar{e}_L \tau_R)(\bar{\mu}_L \mu_R) & \text{C} \\ \text{CSRR_tauetuuu} & (\bar{e}_L \tau_R)(\bar{\mu}_L \mu_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L \tau_R)(\bar{\tau}_L e_R) & \text{C} \\ \text{CSRR_etauuuu} & (\bar{\tau}_L e_R)(\bar{\tau}_L e_R) & \text{C} \\ \text{CSRR_etauuu} & (\bar{\tau}_L e_R)(\bar{\tau}_L e_R) & \text{C} \\ \text{CSRR_etauuu} & (\bar{\tau}_L e_R)(\bar{\tau}_L e_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L \tau_R)(\bar{\tau}_L e_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{\tau}_L e_R)(\bar{\tau}_L e_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{\tau}$	CVLR_mumutaue	$(ar{\mu}_L \gamma^\mu \mu_L) (ar{e}_R \gamma_\mu au_R)$	\mathbf{C}
$\begin{array}{c} \text{CVLR_taueuu} & (\bar{r}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu \tau_R) \\ (\bar{e}_L \gamma^\mu \tau_L) (\bar{u}_R \gamma_\mu u_R) \\ (\bar{e}_L \gamma^\mu \tau_L) (\bar{u}_R \gamma_\mu u_R) \\ (\bar{e}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu c_R) \\ (\bar{e}_L \gamma^\mu c_L) (\bar{e}_R c_L) \\ (\bar{e}_L \gamma^\mu c_L) (\bar{e}_R \gamma_\mu c_R) \\ (\bar{e}_L \gamma^\mu c_R c_L) \\ (\bar{e}_L \gamma^\mu c_L c_R) \\ (\bar{e}_L \gamma^\mu c_L $	CVLR_taumumue	$(\bar{\mu}_L \gamma^\mu au_L)(\bar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
$\begin{array}{c} \text{CVLR_tauecc} & (\bar{e}_L\gamma^\mu T_L)(\bar{c}_R\gamma_\mu c_R) & \text{C} \\ \text{CVLR_tauedd} & (\bar{e}_L\gamma^\mu T_L)(\bar{d}_R\gamma_\mu d_R) & \text{C} \\ \text{CVLR_tauess} & (\bar{e}_L\gamma^\mu T_L)(\bar{b}_R\gamma_\mu s_R) & \text{C} \\ \text{CVLR_tauebb} & (\bar{e}_L\gamma^\mu T_L)(\bar{b}_R\gamma_\mu b_R) & \text{C} \\ \text{CVLR_tauebb} & (\bar{e}_L\gamma^\mu T_L)(\bar{b}_R\gamma_\mu b_R) & \text{C} \\ \text{CVLR_tauebb} & (\bar{e}_L\gamma^\mu u_L)(\bar{e}_R\gamma_\mu r_R) & \text{C} \\ \text{CVLR_cctaue} & (\bar{u}_L\gamma^\mu u_L)(\bar{e}_R\gamma_\mu r_R) & \text{C} \\ \text{CVLR_ctaue} & (\bar{d}_L\gamma^\mu d_L)(\bar{e}_R\gamma_\mu r_R) & \text{C} \\ \text{CVLR_ddtaue} & (\bar{d}_L\gamma^\mu d_L)(\bar{e}_R\gamma_\mu r_R) & \text{C} \\ \text{CVLR_sstaue} & (\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu r_R) & \text{C} \\ \text{CVLR_bbtaue} & (\bar{b}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu r_R) & \text{C} \\ \text{CVLR_bbtaue} & (\bar{b}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu r_R) & \text{C} \\ \text{CSRL_tauecu} & (\bar{e}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_taueuu} & (\bar{\tau}_Le_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_tauecc} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{e}_Rs_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{e}_Rs_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{e}_Rs_L) & \text{C} \\ \text{CSRL_etaudd} & (\bar{\tau}_Le_R)(\bar{e}_Rs_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{e}_Rs_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{e}_Rs_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{e}_Rr_R) & \text{C} \\ \text{CSRR_etaue} & (\bar{e}_Le_R)(\bar{e}_L\tau_R) & \text{C} \\ \text{CSRR_etaue} & (\bar{e}_Le_R)(\bar{e}_L\tau_R) & \text{C} \\ \text{CSRR_etaue} & (\bar{e}_Lr_R)(\bar{\mu}_L\mu_R) & \text{C} \\ \text{CSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{\mu}_L\mu_R) & \text{C} \\ \text{CSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{\mu}_L\mu_R) & \text{C} \\ \text{CSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{\mu}_L\mu_R) & \text{C} \\ \text{CSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{e}_Lc_R) & \text{C} \\ \text{CSRR_etaueuu} & (\bar{e}_L\tau_R)(\bar{e}_Lc_R) & \text{C} \\ \text{CSRR_etaueuu} & (\bar{e}_L\tau_R)(\bar{e}_Lc_R) & \text{C} \\ \text{CSRR_etaueuu} & (\bar{e}_L\tau_R)(\bar{e}_Lc_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L\sigma_R)(\bar{e}_Lc_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L\sigma$	CVLR_tautautaue		
$\begin{array}{c} \text{CVLR_tauedd} & (\bar{e}_L\gamma^\mu \tau_L)(\bar{d}_R\gamma_\mu d_R) \\ \text{CVLR_tauess} & (\bar{e}_L\gamma^\mu \tau_L)(\bar{s}_R\gamma_\mu s_R) \\ \text{CVLR_tauebb} & (\bar{e}_L\gamma^\mu \tau_L)(\bar{b}_R\gamma_\mu b_R) \\ \text{CVLR_uutaue} & (\bar{u}_L\gamma^\mu u_L)(\bar{e}_R\gamma_\mu r_R) \\ \text{CVLR_utaue} & (\bar{e}_L\gamma^\mu c_L)(\bar{e}_R\gamma_\mu r_R) \\ \text{CVLR_cctaue} & (\bar{c}_L\gamma^\mu c_L)(\bar{e}_R\gamma_\mu r_R) \\ \text{CVLR_ddtaue} & (\bar{d}_L\gamma^\mu d_L)(\bar{e}_R\gamma_\mu r_R) \\ \text{CVLR_ddtaue} & (\bar{d}_L\gamma^\mu d_L)(\bar{e}_R\gamma_\mu r_R) \\ \text{CVLR_sstaue} & (\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu r_R) \\ \text{CVLR_bbtaue} & (\bar{b}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu r_R) \\ \text{CVLR_bbtaue} & (\bar{b}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu r_R) \\ \text{CSRL_taueuu} & (\bar{e}_L\tau_R)(\bar{u}_Ru_L) \\ \text{CSRL_taueuu} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) \\ \text{CSRL_taueuc} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) \\ \text{CSRL_tauebd} & (\bar{e}_L\tau_R)(\bar{d}_Rd_L) \\ \text{CSRL_tauebd} & (\bar{e}_L\tau_R)(\bar{d}_Rd_L) \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{d}_Rd_L) \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{b}_Rb_L) \\ \text{CSRL_etaudd} & (\bar{\tau}_Le_R)(\bar{s}_Rs_L) \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{s}_Rs_L) \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{b}_Rb_L) \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{b}_Rb_L) \\ \text{CSRR_etauu} & (\bar{e}_Le_R)(\bar{e}_L\tau_R) \\ \text{CSRR_etauu} & (\bar{e}_L\tau_R)(\bar{\mu}_L\mu_R) \\ \text{CSRR_etauu} & (\bar{e}_L\tau_R)(\bar{\mu}_L\mu_R) \\ \text{CSRR_etauu} & (\bar{e}_L\tau_R)(\bar{\mu}_L\mu_R) \\ \text{CSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{\mu}_L\mu_R) \\ \text{CSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{\mu}_L\mu_R) \\ \text{CSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) \\ \text{CSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) \\ \text{CSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) \\ \text{CSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) \\ \text{CCSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) \\ \text{CCSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) \\ \text{CCSRR_numuetau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) \\ \text{CCSRR_etauuu} & (\bar{\tau}_Le_R)(\bar{\tau}_L\tau_R) \\ \text{CCCSRR_etauuu} & (\bar{\tau}_Le_R)(\bar{\tau}_L\tau_R) \\ \text{CCCRR_etauuu} & (\bar{\tau}_Le_R)(\bar{\tau}_L\tau_R) \\ \text{CCCTRR_taueuu} & (\bar{\tau}_Le_R)(\bar{\tau}_L\tau_R) \\ \text{CCTRR_taueuu} & (\bar{\tau}_Le_R)(\bar{\tau}_L\tau_R) \\ \text{CCTRR_taueuu} & (\bar{\tau}_Le_R)(\bar{\tau}_L\tau_R) \\ \text{CCTRR_taueuu} & (\bar{\tau}_L\sigma_R)(\bar{\tau}_L\tau_R) \\ \text{CCTRR_taueuu} & (\bar{\tau}_L\sigma_R)(\bar{\tau}_L\tau_R) \\ \text{CCTRR_taueuu} & (\bar{\tau}_L\sigma_R)(\bar{\tau}_$	CVLR_taueuu	$(ar{e}_L \gamma^\mu au_L) (ar{u}_R \gamma_\mu u_R)$	
$\begin{array}{c} \text{CVLR_tauess} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{s}_R\gamma_\mu s_R) & \text{C} \\ \text{CVLR_tauebb} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{b}_R\gamma_\mu b_R) & \text{C} \\ \text{CVLR_uutaue} & (\bar{u}_L\gamma^\mu u_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_cctaue} & (\bar{c}_L\gamma^\mu c_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_cctaue} & (\bar{c}_L\gamma^\mu c_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaue} & (\bar{d}_L\gamma^\mu d_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_staue} & (\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_staueu} & (\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaue} & (\bar{b}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_taueuc} & (\bar{e}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_taueuc} & (\bar{e}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_etauuu} & (\bar{\tau}_Le_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_Rs_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_etaudd} & (\bar{\tau}_Le_R)(\bar{a}_Rd_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_etauub} & (\bar{\epsilon}_L\tau_R)(\bar{s}_L\tau_R) & \text{C} \\ \text{CSRR_etaue} & (\bar{e}_Le_R)(\bar{s}_L\tau_R) & \text{C} \\ \text{CSRR_etaueumum} & (\bar{e}_L\tau_R)(\bar{t}_L\tau_R) & \text{C} \\ \text{CSRR_tauenumum} & (\bar{e}_L\tau_R)(\bar{t}_L\tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{t}_Le_R)(\bar{t}_L\tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{t}_Le_R)(\bar{t}_L\tau_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{t}_L\tau_R)(\bar{t}_L\sigma_\mu\nu_e_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{t}_L\sigma_R)($	CVLR_tauecc	$(ar{e}_L \gamma^\mu au_L) (ar{c}_R \gamma_\mu c_R)$	\mathbf{C}
$\begin{array}{c} \text{CVLR_tauebb} & (\bar{e}_L\gamma^\mu\tau_L)(\bar{b}_R\gamma_\mu b_R) & \text{C} \\ \text{CVLR_uutaue} & (\bar{u}_L\gamma^\mu u_L)(\bar{e}_R\gamma_\mu\tau_R) & \text{C} \\ \text{CVLR_cctaue} & (\bar{e}_L\gamma^\mu c_L)(\bar{e}_R\gamma_\mu\tau_R) & \text{C} \\ \text{CVLR_ddtaue} & (\bar{d}_L\gamma^\mu d_L)(\bar{e}_R\gamma_\mu\tau_R) & \text{C} \\ \text{CVLR_sstaue} & (\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu\tau_R) & \text{C} \\ \text{CVLR_bbtaue} & (\bar{b}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu\tau_R) & \text{C} \\ \text{CVLR_bbtaue} & (\bar{b}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu\tau_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_taueuc} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_taueuc} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_etauuu} & (\bar{\tau}_Le_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_etauuu} & (\bar{\tau}_Le_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauebd} & (\bar{e}_L\tau_R)(\bar{e}_Rd_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRL_etauudd} & (\bar{\tau}_Le_R)(\bar{a}_Rd_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{a}_Rd_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{b}_L\tau_R) & \text{C} \\ \text{CSRR_etaue} & (\bar{e}_Le_R)(\bar{\epsilon}_L\tau_R) & \text{C} \\ \text{CSRR_etaue} & (\bar{e}_Le_R)(\bar{\epsilon}_L\tau_R) & \text{C} \\ \text{CSRR_tauenumu} & (\bar{e}_L\tau_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_tauenumu} & (\bar{e}_L\tau_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_tauetautau} & (\bar{e}_L\tau_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_tauenumu} & (\bar{\mu}_Le_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_tauenu} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L\tau_R)(\bar{\epsilon}_L\tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{\epsilon}_L\tau_R)(\bar{\epsilon}_L\tau_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{\epsilon}_L\sigma_R)(\bar{\epsilon}_L\sigma_\mu\nu_R) & \text{C} \\ C$	CVLR_tauedd	$(ar{e}_L \gamma^\mu au_L) (ar{d}_R \gamma_\mu d_R)$	\mathbf{C}
$\begin{array}{c} \text{CVLR_uutaue} & (\bar{u}_L\gamma^\mu u_L)(\bar{e}_R\gamma_\mu r_R) & \text{C} \\ \text{CVLR_cctaue} & (\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaue} & (\bar{d}_L\gamma^\mu d_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaue} & (\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaue} & (\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaue} & (\bar{b}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_taueuu} & (\bar{\tau}_Le_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_etauuu} & (\bar{\tau}_Le_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_etauucc} & (\bar{\tau}_Le_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_tauebd} & (\bar{e}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRL_etauudd} & (\bar{\tau}_Le_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_etauubb} & (\bar{\tau}_Le_R)(\bar{d}_Rb_L) & \text{C} \\ \text{CSRL_etauubb} & (\bar{\tau}_Le_R)(\bar{d}_Rb_L) & \text{C} \\ \text{CSRL_etauubb} & (\bar{\tau}_Le_R)(\bar{d}_L\mu_R) & \text{C} \\ \text{CSRR_etaue} & (\bar{e}_Le_R)(\bar{t}_L\tau_R) & \text{C} \\ \text{CSRR_tauenumu} & (\bar{e}_LL_R)(\bar{\mu}_L\mu_R) & \text{C} \\ \text{CSRR_tauenumu} & (\bar{e}_LL_R)(\bar{\mu}_L\mu_R) & \text{C} \\ \text{CSRR_tauetautau} & (\bar{\mu}_Le_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{\mu}_L\mu_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{\mu}_Le_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L\tau_R)(\bar{t}_Lu_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L\tau_R)(\bar{t}_Lu_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L\tau_R)(\bar{t}_Le_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L\tau_R)(\bar{t}_Le_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L\tau_R)(\bar{t}_L\mu_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L\tau_R)(\bar{t}_L\mu_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L\sigma_R)(\bar{t}_L\sigma_\mu\nu_R) & \text{C} \\ $	CVLR_tauess	$(ar{e}_L \gamma^\mu au_L) (ar{s}_R \gamma_\mu s_R)$	\mathbf{C}
$\begin{array}{c} \text{CVLR_cctaue} & (\bar{c}_L \gamma^\mu c_L) (\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_ddtaue} & (\bar{d}_L \gamma^\mu d_L) (\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaue} & (\bar{s}_L \gamma^\mu s_L) (\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaue} & (\bar{s}_L \gamma^\mu s_L) (\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaue} & (\bar{b}_L \gamma^\mu b_L) (\bar{e}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L \tau_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_taueuc} & (\bar{e}_L \tau_R) (\bar{e}_R c_L) & \text{C} \\ \text{CSRL_tauecc} & (\bar{e}_L \tau_R) (\bar{e}_R c_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{\tau}_L e_R) (\bar{u}_R u_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{\tau}_L e_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L \tau_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L \tau_R) (\bar{b}_R b_L) & \text{C} \\ \text{CSRL_etaudd} & (\bar{\tau}_L e_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_L e_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_L e_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_L e_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_etauubb} & (\bar{\tau}_L e_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_etauubb} & (\bar{\tau}_L e_R) (\bar{d}_R d_L) & \text{C} \\ \text{CSRL_etauubb} & (\bar{\tau}_L e_R) (\bar{d}_L \tau_R) & \text{C} \\ \text{CSRL_etauub} & (\bar{e}_L e_R) (\bar{e}_L \tau_R) & \text{C} \\ \text{CSRR_eetaue} & (\bar{e}_L e_R) (\bar{e}_L \tau_R) & \text{C} \\ \text{CSRR_eetaue} & (\bar{e}_L e_R) (\bar{\tau}_L e_R) & \text{C} \\ \text{CSRR_aueumumu} & (\bar{e}_L \tau_R) (\bar{\mu}_L \mu_R) & \text{C} \\ \text{CSRR_tauetautau} & (\bar{e}_L \tau_R) (\bar{\mu}_L \mu_R) & \text{C} \\ \text{CSRR_tauetautau} & (\bar{e}_L \tau_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L \tau_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L \tau_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L \tau_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L \tau_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L \tau_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{\tau}_L e_R) (\bar{\tau}_L \tau_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{\tau}_L e_R) (\bar{\tau}_L \sigma_\mu \nu_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L \sigma_R) (\bar{\tau}_L \sigma_\mu \nu_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L \sigma_R) (\bar{\tau}_L \sigma_\mu \nu_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{\tau}_L e_R) (\bar{\tau}_L \sigma_\mu \nu_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{\tau}_L \sigma_R) (\bar{\tau}_L \sigma_\mu \nu_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{\tau}_L \sigma_R) (\bar{\tau}_L \sigma_\mu $	CVLR_tauebb	$(ar{e}_L \gamma^\mu au_L) (ar{b}_R \gamma_\mu b_R)$	\mathbf{C}
$\begin{array}{c} \text{CVLR_ddtaue} & (\bar{d}_{1}\gamma^{\mu}d_{L})(\bar{e}_{R}\gamma_{\mu}\tau_{R}) & \text{C} \\ \text{CVLR_sstaue} & (\bar{s}_{L}\gamma^{\mu}s_{L})(\bar{e}_{R}\gamma_{\mu}\tau_{R}) & \text{C} \\ \text{CVLR_bbtaue} & (\bar{b}_{L}\gamma^{\mu}b_{L})(\bar{e}_{R}\gamma_{\mu}\tau_{R}) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_{L}\tau_{R})(\bar{u}_{R}u_{L}) & \text{C} \\ \text{CSRL_tauecc} & (\bar{e}_{L}\tau_{R})(\bar{e}_{R}c_{L}) & \text{C} \\ \text{CSRL_taueuc} & (\bar{\tau}_{L}e_{R})(\bar{u}_{R}u_{L}) & \text{C} \\ \text{CSRL_etauuu} & (\bar{\tau}_{L}e_{R})(\bar{u}_{R}u_{L}) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_{L}\tau_{R})(\bar{d}_{R}d_{L}) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_{L}\tau_{R})(\bar{d}_{R}d_{L}) & \text{C} \\ \text{CSRL_tauebs} & (\bar{e}_{L}\tau_{R})(\bar{b}_{R}b_{L}) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_{L}\tau_{R})(\bar{b}_{R}b_{L}) & \text{C} \\ \text{CSRL_etaudd} & (\bar{\tau}_{L}e_{R})(\bar{d}_{R}d_{L}) & \text{C} \\ \text{CSRL_etauubb} & (\bar{\tau}_{L}e_{R})(\bar{d}_{R}d_{L}) & \text{C} \\ \text{CSRL_etauubb} & (\bar{\tau}_{L}e_{R})(\bar{d}_{R}d_{L}) & \text{C} \\ \text{CSRL_etauubb} & (\bar{\tau}_{L}e_{R})(\bar{b}_{R}b_{L}) & \text{C} \\ \text{CSRL_etauubb} & (\bar{\tau}_{L}e_{R})(\bar{b}_{R}b_{L}) & \text{C} \\ \text{CSRL_etauubb} & (\bar{\tau}_{L}e_{R})(\bar{b}_{R}b_{L}) & \text{C} \\ \text{CSRL_etauubb} & (\bar{\tau}_{L}e_{R})(\bar{b}_{L}\tau_{R}) & \text{C} \\ \text{CSRR_eeetau} & (\bar{e}_{L}e_{R})(\bar{e}_{L}\tau_{R}) & \text{C} \\ \text{CSRR_eeetau} & (\bar{e}_{L}e_{R})(\bar{e}_{L}\tau_{R}) & \text{C} \\ \text{CSRR_tauenumu} & (\bar{e}_{L}\tau_{R})(\bar{\mu}_{L}\mu_{R}) & \text{C} \\ \text{CSRR_tauetautau} & (\bar{e}_{L}\tau_{R})(\bar{\mu}_{L}\mu_{R}) & \text{C} \\ \text{CSRR_tauetautau} & (\bar{e}_{L}\tau_{R})(\bar{\tau}_{L}\tau_{R}) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_{L}\tau_{R})(\bar{\tau}_{L}u_{R}) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_{L}\tau_{R})(\bar{\tau}_{L}u_{R}) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_{L}\tau_{R})(\bar{t}_{L}u_{R}) & \text{C} \\ \text{CSRR_etauuu} & (\bar{\tau}_{L}e_{R})(\bar{t}_{L}u_{R}) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_{L}\sigma^{\mu\nu}\tau_{R})(\bar{t}_{L}\sigma_{\mu\nu}u_{R}) & \text{C} \\ CTRR_$	CVLR_uutaue	$(\bar{u}_L \gamma^\mu u_L)(\bar{e}_R \gamma_\mu \tau_R)$	\mathbf{C}
$\begin{array}{c} \text{CVLR_ddtaue} & (\bar{d}_L\gamma^\mu d_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_sstaue} & (\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaue} & (\bar{b}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_tauecc} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauecc} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_etauuu} & (\bar{\tau}_Le_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauebd} & (\bar{e}_L\tau_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRL_etaudd} & (\bar{\tau}_Le_R)(\bar{b}_Rd_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{e}_R\tau_R) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{e}_L\tau_R) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRR_eetaue} & (\bar{e}_Le_R)(\bar{e}_L\tau_R) & \text{C} \\ \text{CSRR_eetaue} & (\bar{e}_Le_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_eetaue} & (\bar{e}_Le_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_tauenumu} & (\bar{e}_L\tau_R)(\bar{\mu}_L\mu_R) & \text{C} \\ \text{CSRR_tauetautau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_etautautau} & (\bar{\mu}_Le_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_etautautau} & (\bar{\mu}_Le_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_etautautau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_etaueuu} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_etaueuu} & (\bar{\tau}_Le_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CTRR_etaueuu} & (\bar{e}_L\sigma^\mu \nu_\tau_R)(\bar{t}_L\sigma_\mu \nu_u_R) & \text{C} \\ \text{CTRR_etaueuu} & (\bar{e}_L\sigma^\mu \nu_\tau_R)(\bar{t}_L\sigma_\mu \nu_u_R) & \text{C} \\ \text{CTRR_etaueuu} & (\bar{e}_L\sigma^\mu \nu_\tau_R)(\bar{t}_L\sigma_\mu \nu_u_R) & \text{C} \\ \text{CTRR_etauuu} & (\bar{\tau}_L\sigma^\mu \nu_\tau_R)(\bar{t}_L\sigma_\mu \nu_\tau_R) & \text{C} \\ \text{CTRR_etauuu} & (\bar{\tau}_L\sigma^\mu \nu_\tau_R)(\bar{\tau}_L\sigma$	CVLR_cctaue	$(\bar{c}_L \gamma^\mu c_L)(\bar{e}_R \gamma_\mu au_R)$	$^{\mathrm{C}}$
$\begin{array}{c} \text{CVLR_sstaue} & (\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CVLR_bbtaue} & (\bar{b}_L\gamma^\mu b_L)(\bar{e}_R\gamma_\mu \tau_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_tauecc} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_etauuu} & (\bar{\tau}_Le_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_etaucc} & (\bar{\tau}_Le_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_etaucc} & (\bar{\tau}_Le_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_tauess} & (\bar{e}_L\tau_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRL_etaudd} & (\bar{\tau}_Le_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_etauss} & (\bar{\tau}_Le_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRR_eetaue} & (\bar{e}_Le_R)(\bar{e}_L\tau_R) & \text{C} \\ \text{CSRR_eetaue} & (\bar{e}_Le_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_eetaue} & (\bar{e}_Le_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_tauemumu} & (\bar{e}_L\mu_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_tauemumu} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_tauetautau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\mu_R) & \text{C} \\ \text{CSRR_tauetautau} & (\bar{\mu}_Le_R)(\bar{\tau}_L\mu_R) & \text{C} \\ \text{CSRR_etautautau} & (\bar{\mu}_Le_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_etautautau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_etaueuu} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L\sigma_R)(\bar{\tau}_L\sigma_\mu\nu_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L\sigma_\mu\nu_\tau_R)(\bar{\tau}_L\sigma_\mu\nu_\tau_R) & \text{C} \\ CTRR_taueu$	CVLR_ddtaue		\mathbf{C}
$\begin{array}{c} \text{CVLR_bbtaue} & (\bar{b}_L\gamma^{\mu}b_L)(\bar{e}_R\gamma_{\mu}\tau_R) & \text{C} \\ \text{CSRL_taueuu} & (\bar{e}_L\tau_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_tauecc} & (\bar{e}_L\tau_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_etauuu} & (\bar{\tau}_Le_R)(\bar{u}_Ru_L) & \text{C} \\ \text{CSRL_etaucc} & (\bar{\tau}_Le_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_etaucc} & (\bar{\tau}_Le_R)(\bar{e}_Rc_L) & \text{C} \\ \text{CSRL_tauedd} & (\bar{e}_L\tau_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_tauess} & (\bar{e}_L\tau_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_tauebb} & (\bar{e}_L\tau_R)(\bar{b}_Rb_L) & \text{C} \\ \text{CSRL_etaudd} & (\bar{\tau}_Le_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_etaudd} & (\bar{\tau}_Le_R)(\bar{d}_Rd_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRL_etaubb} & (\bar{\tau}_Le_R)(\bar{s}_Rs_L) & \text{C} \\ \text{CSRR_eetaue} & (\bar{e}_Le_R)(\bar{e}_L\tau_R) & \text{C} \\ \text{CSRR_eetaue} & (\bar{e}_Le_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_eetauu} & (\bar{e}_Le_R)(\bar{\tau}_Le_R) & \text{C} \\ \text{CSRR_tauetaumu} & (\bar{e}_L\tau_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_tauetautau} & (\bar{e}_L\tau_R)(\bar{\mu}_L\tau_R) & \text{C} \\ \text{CSRR_tauetautau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_emumutau} & (\bar{\mu}_Le_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_emumutau} & (\bar{\mu}_Le_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_etautautau} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_etaueuu} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_etaueuu} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_taueuu} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_etaueuu} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CSRR_etaueu} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L\tau_R)(\bar{\tau}_L\tau_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L\sigma_R)(\bar{\tau}_L\sigma_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L\sigma_R)(\bar{\tau}_L\sigma_R)(\bar{\tau}_L\sigma_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L\sigma_R)(\bar$	CVLR_sstaue		\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CVLR_bbtaue		$^{\mathrm{C}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_taueuu		\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_tauecc	$(ar{e}_L au_R)(ar{c}_Rc_L)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_etauuu	$(ar{ au}_L e_R)(ar{u}_R u_L)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_etaucc	$(ar{ au}_L e_R)(ar{c}_R c_L)$	$^{\mathrm{C}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_tauedd	$(ar{e}_L au_R)(ar{d}_Rd_L)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_tauess	$(ar{e}_L au_R)(ar{s}_Rs_L)$	$^{\mathrm{C}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_tauebb	$(ar{e}_L au_R)(ar{b}_Rb_L)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_etaudd	$(ar{ au}_L e_R)(ar{d}_R d_L)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_etauss		$^{\mathrm{C}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRL_etaubb		\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRR_eetaue		\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRR_eeetau		\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRR_muetaumu		\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRR_tauemumu		\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRR_tauetautau		\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRR_emumutau		\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CSRR_mumuetau	$(ar{\mu}_L\mu_R)(ar{ au}_Le_R)$	\mathbf{C}
$\begin{array}{ccccc} \text{CSRR_tauecc} & (\bar{e}_L\tau_R)(\bar{c}_Lc_R) & \text{C} \\ \text{CSRR_etauuu} & (\bar{\tau}_Le_R)(\bar{u}_Lu_R) & \text{C} \\ \text{CSRR_etaucc} & (\bar{\tau}_Le_R)(\bar{c}_Lc_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L\sigma^{\mu\nu}\tau_R)(\bar{u}_L\sigma_{\mu\nu}u_R) & \text{C} \\ \text{CTRR_tauecc} & (\bar{e}_L\sigma^{\mu\nu}\tau_R)(\bar{c}_L\sigma_{\mu\nu}c_R) & \text{C} \\ \text{CTRR_etauuu} & (\bar{\tau}_L\sigma^{\mu\nu}e_R)(\bar{u}_L\sigma_{\mu\nu}u_R) & \text{C} \\ \end{array}$	CSRR_etautautau	$(ar{ au}_L e_R)(ar{ au}_L au_R)$	\mathbf{C}
$\begin{array}{cccc} \text{CSRR_etauuu} & (\bar{\tau}_L e_R)(\bar{u}_L u_R) & \text{C} \\ \text{CSRR_etaucc} & (\bar{\tau}_L e_R)(\bar{c}_L c_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L \sigma^{\mu\nu} \tau_R)(\bar{u}_L \sigma_{\mu\nu} u_R) & \text{C} \\ \text{CTRR_tauecc} & (\bar{e}_L \sigma^{\mu\nu} \tau_R)(\bar{c}_L \sigma_{\mu\nu} c_R) & \text{C} \\ \text{CTRR_etauuu} & (\bar{\tau}_L \sigma^{\mu\nu} e_R)(\bar{u}_L \sigma_{\mu\nu} u_R) & \text{C} \\ \end{array}$	CSRR_taueuu	$(\bar{e}_L au_R)(\bar{u}_L u_R)$	\mathbf{C}
$\begin{array}{cccc} \text{CSRR_etaucc} & (\bar{\tau}_L e_R)(\bar{c}_L c_R) & \text{C} \\ \text{CTRR_taueuu} & (\bar{e}_L \sigma^{\mu\nu} \tau_R)(\bar{u}_L \sigma_{\mu\nu} u_R) & \text{C} \\ \text{CTRR_tauecc} & (\bar{e}_L \sigma^{\mu\nu} \tau_R)(\bar{c}_L \sigma_{\mu\nu} c_R) & \text{C} \\ \text{CTRR_etauuu} & (\bar{\tau}_L \sigma^{\mu\nu} e_R)(\bar{u}_L \sigma_{\mu\nu} u_R) & \text{C} \\ \end{array}$	CSRR_tauecc	$(ar{e}_L au_R)(ar{c}_Lc_R)$	\mathbf{C}
CTRR_taueuu $(\bar{e}_L \sigma^{\mu\nu} \tau_R)(\bar{u}_L \sigma_{\mu\nu} u_R)$ C CTRR_tauecc $(\bar{e}_L \sigma^{\mu\nu} \tau_R)(\bar{e}_L \sigma_{\mu\nu} e_R)$ C CTRR_etaueuu $(\bar{\tau}_L \sigma^{\mu\nu} e_R)(\bar{u}_L \sigma_{\mu\nu} u_R)$ C	CSRR_etauuu	$(ar{ au}_L e_R)(ar{u}_L u_R)$	$^{\mathrm{C}}$
CTRR_tauecc $(\bar{e}_L \sigma^{\mu\nu} \tau_R)(\bar{c}_L \sigma_{\mu\nu} c_R)$ C CTRR_etauuu $(\bar{\tau}_L \sigma^{\mu\nu} e_R)(\bar{u}_L \sigma_{\mu\nu} u_R)$ C	CSRR_etaucc		
CTRR_tauecc $(\bar{e}_L \sigma^{\mu\nu} \tau_R)(\bar{c}_L \sigma_{\mu\nu} c_R)$ C CTRR_etauuu $(\bar{\tau}_L \sigma^{\mu\nu} e_R)(\bar{u}_L \sigma_{\mu\nu} u_R)$ C	CTRR_taueuu	$(\bar{e}_L \sigma^{\mu\nu} \tau_R) (\bar{u}_L \sigma_{\mu\nu} u_R)$	
CTRR_etauuu $(\bar{\tau}_L \sigma^{\mu\nu} e_R)(\bar{u}_L \sigma_{\mu\nu} u_R)$ C	CTRR_tauecc	$(ar{e}_L\sigma^{\mu u} au_R)(ar{c}_L\sigma_{\mu u}c_R)$	
CTRR_etaucc $(\bar{\tau}_L \sigma^{\mu\nu} e_R)(\bar{c}_L \sigma_{\mu\nu} c_R)$ C			
	CTRR_etaucc	$(\bar{\tau}_L \sigma^{\mu\nu} e_R)(\bar{c}_L \sigma_{\mu\nu} c_R)$	\mathbf{C}

WC name	Operator	Type
CSRR_tauedd	$(ar{e}_L au_R)(ar{d}_Ld_R)$	C
CSRR_tauess	$(ar{e}_L au_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CSRR_tauebb	$(ar{e}_L au_R)(ar{b}_Lb_R)$	$^{\mathrm{C}}$
CSRR_etaudd	$(ar{ au}_L e_R)(ar{d}_L d_R)$	\mathbf{C}
CSRR_etauss	$(ar{ au}_L e_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CSRR_etaubb	$(ar{ au}_L e_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CTRR_tauedd	$(ar{e}_L\sigma^{\mu u} au_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CTRR_tauess	$(ar{e}_L\sigma^{\mu u} au_R)(ar{s}_L\sigma_{\mu u}s_R)$	$^{\mathrm{C}}$
CTRR_tauebb	$(ar{e}_L\sigma^{\mu u} au_R)(ar{b}_L\sigma_{\mu u}b_R)$	C
CTRR_etaudd	$(ar{ au}_L\sigma^{\mu u}e_R)(ar{d}_L\sigma_{\mu u}d_R)$	\mathbf{C}
CTRR_etauss	$(ar{ au}_L\sigma^{\mu u}e_R)(ar{s}_L\sigma_{\mu u}s_R)$	C
CTRR_etaubb	$(ar{ au}_L \sigma^{\mu u} e_R) (ar{b}_L \sigma_{\mu u} b_R)$	C

${\tt nunumue}$

WC name	Operator	Type
CVLL_nuenuemue	$(\bar{ u}_{eL}\gamma^{\mu} u_{eL})(\bar{e}_{L}\gamma_{\mu}\mu_{L})$	С
CVLL_numunueemu	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{\mu}_{L}\gamma_{\mu}e_{L})$	\mathbf{C}
CVLL_numunuemue	$(\bar{ u}_{eL}\gamma^{\mu} u_{\mu L})(\bar{e}_{L}\gamma_{\mu}\mu_{L})$	\mathbf{C}
CVLL_numunumumue	$(ar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{e}_L \gamma_{\mu} \mu_L)$	\mathbf{C}
CVLL_nutaunueemu	$(\bar{ u}_{eL}\gamma^{\mu} u_{ au L})(\bar{\mu}_{L}\gamma_{\mu}e_{L})$	\mathbf{C}
CVLL_nutaunuemue	$(\bar{ u}_{eL}\gamma^{\mu} u_{ au L})(\bar{e}_{L}\gamma_{\mu}\mu_{L})$	\mathbf{C}
CVLL_nutaunumuemu	$A(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{\mu}_{L}\gamma_{\mu}e_{L})$	\mathbf{C}
CVLL_nutaunumumue	$e(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{e}_{L}\gamma_{\mu}\mu_{L})$	\mathbf{C}
CVLL_nutaunutaumu	$ \oint \bar{\nu}_{\tau L} \gamma^{\mu} \nu_{\tau L}) (\bar{e}_L \gamma_{\mu} \mu_L) $	\mathbf{C}
CVLR_nuenuemue	$(\bar{ u}_{eL}\gamma^{\mu} u_{eL})(\bar{e}_R\gamma_{\mu}\mu_R)$	\mathbf{C}
CVLR_numunueemu	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{\mu}_{R}\gamma_{\mu}e_{R})$	\mathbf{C}
CVLR_numunuemue	$(\bar{ u}_{eL}\gamma^{\mu} u_{\mu L})(\bar{e}_R\gamma_{\mu}\mu_R)$	\mathbf{C}
CVLR_numunumumue	$(ar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{e}_R \gamma_{\mu} \mu_R)$	\mathbf{C}
CVLR_nutaunueemu	$(\bar{ u}_{eL}\gamma^{\mu} u_{\tau L})(\bar{\mu}_{R}\gamma_{\mu}e_{R})$	\mathbf{C}
CVLR_nutaunuemue	$(\bar{ u}_{eL}\gamma^{\mu} u_{ au L})(\bar{e}_R\gamma_{\mu}\mu_R)$	\mathbf{C}
CVLR_nutaunumuemu	$(ar{ u}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{\mu}_R \gamma_{\mu} e_R)$	\mathbf{C}
CVLR_nutaunumumue	$e(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{e}_{R}\gamma_{\mu}\mu_{R})$	\mathbf{C}
CVLR_nutaunutaumu	$(\bar{e}\bar{\nu}_{\tau L}\gamma^{\mu}\nu_{\tau L})(\bar{e}_R\gamma_{\mu}\mu_R)$	C

${\tt nunumutau}$

WC name	Operator	Type
CVLL_nuenuetaumu	$(\bar{ u}_{eL}\gamma^{\mu} u_{eL})(\bar{\mu}_{L}\gamma_{\mu} au_{L})$	C
CVLL_numunuemuta	$\mathrm{u}\left(ar{ u}_{eL}\gamma^{\mu} u_{\mu L} ight)(ar{ au}_{L}\gamma_{\mu}^{}\mu_{L})$	\mathbf{C}
CVLL_numunuetaum	$\sin{(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})}(ar{\mu}_{L}\gamma_{\mu} au_{L})$	$^{\mathrm{C}}$

WC name	Operator	Type
CVLL_numunumut	$ au$ aum $(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{\mu}_{L}\gamma_{\mu} au_{L})$	C
CVLL_nutaunuem	$ au$ ta $(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_{L}\gamma_{\mu}\mu_{L})$	\mathbf{C}
CVLL_nutaunuet	$ au_{ar{ u}} (ar{ u}_{eL} \gamma^{\mu} u_{ au L}) (ar{\mu}_{L} \gamma_{\mu} au_{L})$	\mathbf{C}
CVLL_nutaunumu	$\mathtt{mut}(ar{oldsymbol{u}}_{\mu L}\gamma^{\mu} u_{ au L})(ar{ au}_{L}\gamma_{\mu}\mu_{L})$	\mathbf{C}
CVLL_nutaunumu	$\mathrm{ttaum}(ar{ar{\mu}}_{\mu L}\gamma^{\mu} u_{ au L})(ar{\mu}_{L}\gamma_{\mu} au_{L})$	$^{\mathrm{C}}$
CVLL_nutaunuta	$\mathrm{uta}(ar{m}\mu_L\gamma^\mu u_{ au L})(ar{\mu}_L\gamma_\mu au_L)$	$^{\mathrm{C}}$
CVLR_nuenuetau	ımu $(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{\mu}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_numunuemu	$ au(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{ au}_{R}\gamma_{\mu}\mu_{R})$	$^{\mathrm{C}}$
CVLR_numunueta	umu $(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{\mu}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_numunumut	$ au_{\mu L} \gamma^{\mu} u_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{\mu}_R \gamma_{\mu} au_R)$	$^{\mathrm{C}}$
CVLR_nutaunuem	$ au$ uta $ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_{R}\gamma_{\mu}\mu_{R})$	$^{\mathrm{C}}$
CVLR_nutaunuet	$ au_{ar{ u}} (ar{ u}_{eL} \gamma^{\mu} u_{ au L}) (ar{\mu}_{R} \gamma_{\mu} au_{R})$	\mathbf{C}
CVLR_nutaunumu	$\mathtt{mut}(ar{oldsymbol{u}}_{\mu L}\gamma^{\mu} u_{ au L})(ar{ au}_{R}\gamma_{\mu}\mu_{R})$	$^{\mathrm{C}}$
	$\mathrm{ttaum}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{\mu}_R \gamma_{\mu} au_R)$	$^{\mathrm{C}}$
	$\mathrm{nuta}(ar{ar{\mu}}_{L}\gamma^{\mu} u_{ au L})(ar{\mu}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$

nunutaue

WC name	Operator	Type
CVLL_nuenuetaue	$(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{e}_{L}\gamma_{\mu}\tau_{L})$	C
CVLL_numunueetau	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{ au}_{L}\gamma_{\mu}e_{L})$	\mathbf{C}
CVLL_numunuetaue	$e^{-(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{e}_{L}\gamma_{\mu} au_{L})}$	\mathbf{C}
CVLL_numunumutau	Le $(ar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{e}_L \gamma_{\mu} au_L)$	$^{\mathrm{C}}$
CVLL_nutaunueeta	$\mathrm{u}\left(ar{ u}_{eL}\gamma^{\mu} u_{ au L} ight)(ar{ au}_{L}\gamma_{\mu}e_{L})$	$^{\mathrm{C}}$
CVLL_nutaunuetau	Le $(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{e}_{L}\gamma_{\mu} au_{L})$	$^{\mathrm{C}}$
CVLL_nutaunumuet	$ auar u_{\mu L}\gamma^\mu u_{ au L})(ar au_L\gamma_\mu e_L)$	$^{\mathrm{C}}$
CVLL_nutaunumuta	$\mathrm{u}(ar{e}ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{e}_{L}\gamma_{\mu} au_{L})$	$^{\mathrm{C}}$
	$\mathrm{a}(ar{e}_{ au L}\gamma^{\mu} u_{ au L})(ar{e}_{L}\gamma_{\mu} au_{L})$	$^{\mathrm{C}}$
CVLR_nuenuetaue	$(\bar{ u}_{eL}\gamma^{\mu} u_{eL})(\bar{e}_{R}\gamma_{\mu}\tau_{R})$	$^{\mathrm{C}}$
CVLR_numunueetau	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{ au}_{R}\gamma_{\mu}e_{R})$	$^{\mathrm{C}}$
CVLR_numunuetaue	$e^{-}(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{e}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_numunumutau	le $(ar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{e}_R \gamma_{\mu} au_R)$	$^{\mathrm{C}}$
CVLR_nutaunueeta	$\mathrm{u}\left(ar{ u}_{eL}\gamma^{\mu} u_{ au L} ight)(ar{ au}_{R}\gamma_{\mu}e_{R})$	$^{\mathrm{C}}$
CVLR_nutaunuetau	Le $(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{e}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_nutaunumuet	$ auar u_{\mu L}\gamma^\mu u_{ au L})(ar au_R\gamma_\mu e_R)$	$^{\mathrm{C}}$
	$\mathrm{u}(\bar{e}_{\mu L}\gamma^{\mu} u_{ au L})(\bar{e}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_nutaunutaut	$a(ar{e}_{ au L}\gamma^{\mu} u_{ au L})(ar{e}_{R}\gamma_{\mu} au_{R})$	C

ffnunu

WC name	Operator	Type
CVLL_nuenuebb	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{b}_L\gamma_{\mu}b_L)$	R
CVLL_nuenuecc	$\frac{4\ddot{G}_F^2}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^\mu\nu_{eL})(\bar{c}_L\gamma_\mu c_L)$	\mathbf{R}
CVLL_nuenuedd	$\frac{4G_F^2}{\sqrt{2}}(\bar{ u}_{eL}\gamma^\mu u_{eL})(\bar{d}_L\gamma_\mu d_L)$	\mathbf{R}
CVLL_nuenueee	$\frac{4\overset{Q}{G_F}}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{e}_L\gamma_{\mu}e_L)$	R
CVLL_nuenuemumu	$\frac{4\overset{\circ}{G_F}}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{\mu}_{L}\gamma_{\mu}\mu_{L})$	R
CVLL_nuenuess	$rac{4 \overset{\sim}{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^{\mu} u_{eL}) (ar{s}_L \gamma_{\mu} s_L)$	R
CVLL_nuenuetautau	$1 \frac{4 \overleftarrow{G_F}}{\sqrt{2}} (\bar{ u}_{eL} \gamma^\mu u_{eL}) (\bar{ au}_L \gamma_\mu au_L)$	R
CVLL_nuenueuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{u}_L\gamma_{\mu}u_L)$	R
CVLL_nuenumubb	$\frac{4 \overleftarrow{G_F}}{\sqrt{2}} (\bar{ u}_{eL} \gamma^\mu u_{\mu L}) (\bar{b}_L \gamma_\mu b_L)$	$^{\mathrm{C}}$
CVLL_nuenumucc	$\frac{4G_F}{\sqrt{2}}(\bar{ u}_{eL}\gamma^{\mu} u_{\mu L})(\bar{c}_L\gamma_{\mu}c_L)$	$^{\mathrm{C}}$
CVLL_nuenumudd	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{d}_L\gamma_{\mu}d_L)$	$^{\mathrm{C}}$
CVLL_nuenumuee	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{e}_L\gamma_{\mu}e_L)$	$^{\mathrm{C}}$
CVLL_nuenumumumu	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{ u}_{eL}\gamma^{\mu} u_{\mu L})(\bar{\mu}_L\gamma_{\mu}\mu_L)$	$^{\mathrm{C}}$
CVLL_nuenumuss	$\frac{4 \check{G}_F}{\sqrt{2}} (\bar{\nu}_{eL} \gamma^\mu \nu_{\mu L}) (\bar{s}_L \gamma_\mu s_L)$	$^{\mathrm{C}}$
CVLL_nuenumutauta	$\sin^4\!\!rac{d^2\!\!G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{ au}_L\gamma_\mu au_L)$	$^{\mathrm{C}}$
CVLL_nuenumuuu	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{u}_L\gamma_{\mu}u_L)$	$^{\mathrm{C}}$
CVLL_nuenutaubb	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{b}_L\gamma_\mu b_L)$	$^{\mathrm{C}}$
CVLL_nuenutaucc	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVLL_nuenutaudd	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{d}_L\gamma_\mu d_L)$	$^{\mathrm{C}}$
CVLL_nuenutauee	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\tau L})(\bar{e}_L\gamma_{\mu}e_L)$	\mathbf{C}
CVLL_nuenutaumumu	$1 \frac{4G_F}{\sqrt{2}} (\bar{ u}_{eL} \gamma^\mu u_{\tau L}) (\bar{\mu}_L \gamma_\mu \mu_L)$	\mathbf{C}
CVLL_nuenutauss	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{s}_L\gamma_\mu s_L)$	\mathbf{C}
CVLL_nuenutautaut	$\Xi_{\sqrt{2}}^{4G_F}(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_{L}\gamma_{\mu} au_{L})$	\mathbf{C}
CVLL_nuenutauuu	$\frac{4G_F}{\sqrt{2}}(\bar{ u}_{eL}\gamma^{\mu} u_{\tau L})(\bar{u}_L\gamma_{\mu}u_L)$	$^{\mathrm{C}}$
${\tt CVLL_numunumubb}$	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{b}_L\gamma_\mu b_L)$	R
CVLL_numunumucc	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\mu L})(\bar{c}_L\gamma_{\mu}c_L)$	R
${\tt CVLL_numunumudd}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{d}_L\gamma_\mu d_L)$	R
CVLL_numunumuee	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{e}_L\gamma_\mu e_L)$	R
CVLL_numunumumumumumumumumumumumumumumumumum	$1 \frac{4G_F}{\sqrt{2}} (\bar{ u}_{\mu L} \gamma^\mu u_{\mu L}) (\bar{\mu}_L \gamma_\mu \mu_L)$	R
CVLL_numunumuss	$rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{s}_L\gamma_{\mu}s_L)$	R
CVLL_numunumutaut	$\sinrac{4G_F}{\sqrt{2}}(ar u_{\mu L}\gamma^\mu u_{\mu L})(ar au_L\gamma_\mu au_L)$	R
CVLL_numunumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\mu L})(\bar{u}_L\gamma_{\mu}u_L)$	R
${\tt CVLL_numunutaubb}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{b}_L\gamma_\mu b_L)$	\mathbf{C}
CVLL_numunutaucc	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{c}_L\gamma_\mu c_L)$	$^{\mathrm{C}}$
${\tt CVLL_numunutaudd}$	$rac{4\check{G}_F^c}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVLL_numunutauee	$\frac{4\widetilde{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{e}_L\gamma_{\mu}e_L)$	\mathbf{C}
CVLL_numunutaumum	$\sin^{4G_{F}}_{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{\mu}_{L}\gamma_{\mu}\mu_{L})$	\mathbf{C}

WC name Operator	Туре
CVLL_numunutauss $\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\tau L})(\bar{s}_L\gamma_{\mu}s_L)$	C
CVLL_numunutautaut $(\bar{\tau}_{2})$ $(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{ au L})(\bar{\tau}_{L}\gamma_{\mu} au_{L})$	\mathbf{C}
CVLL_numunutauuu $\frac{4\widetilde{G_F}}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{u}_L\gamma_{\mu}u_L)$	\mathbf{C}
CVLL_nutaunutaubb $rac{4 \widetilde{G_F}}{\sqrt{2}} (ar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (ar{b}_L \gamma_{\mu} b_L)$	R
CVLL_nutaunutaucc $rac{4G_F^2}{\sqrt{2}}(ar{ u}_{ au L}\gamma^{\mu} u_{ au L})(ar{c}_L\gamma_{\mu}c_L)$	R
CVLL_nutaunutaudd $\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\tau L}\gamma^{\mu}\nu_{\tau L})(\bar{d}_L\gamma_{\mu}d_L)$	R
CVLL_nutaunutauee $\frac{4 \widetilde{G_F}}{\sqrt{2}} (\bar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (\bar{e}_L \gamma_{\mu} e_L)$	R
CVLL_nutaunutaumu $\frac{4G_F}{\sqrt{2}}(ar{ u}_{ au L}\gamma^\mu u_{ au L})(ar{\mu}_L\gamma_\mu\mu_L)$	R
CVLL_nutaunutauss $rac{4 \widetilde{G_F}}{\sqrt{2}} (ar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (ar{s}_L \gamma_{\mu} s_L)$	R
CVLL_nutaunutautau $(\bar{ au_{ au L}})$ $(ar{ u}_{ au L}\gamma^{\mu} u_{ au L})(ar{ au}_{L}\gamma_{\mu} au_{L})$	R
CVLL_nutaunutauuu $rac{4G_F}{\sqrt{2}}(ar{ u}_{ au L}\gamma^\mu u_{ au L})(ar{u}_L\gamma_\mu u_L)$	R
CVLR_nuenuebb $\frac{4 \tilde{G}_F}{\sqrt{2}} (\bar{\nu}_{eL} \gamma^{\mu} \nu_{eL}) (\bar{b}_R \gamma_{\mu} b_R)$	R
CVLR_nuenuecc $rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{c}_R\gamma_{\mu}c_R)$	R
CVLR_nuenuedd $rac{4 G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{d}_R \gamma_\mu d_R)$	R
CVLR_nuenueee $rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{e}_R\gamma_{\mu}e_R)$	R
CVLR_nuenuemumu $rac{4 G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{\mu}_R \gamma_\mu \mu_R)$	R
CVLR_nuenuess $rac{4 G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^{\mu} u_{eL}) (ar{s}_R \gamma_{\mu} s_R)$	R
CVLR_nuenuetautau $rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{ au}_R\gamma_{\mu} au_R)$	R
CVLR_nuenueuu $rac{4 \overleftarrow{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{u}_R \gamma_\mu u_R)$	R
CVLR_nuenumubb $rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{b}_R\gamma_{\mu}b_R)$	\mathbf{C}
CVLR_nuenumucc $rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{c}_R\gamma_{\mu}c_R)$	\mathbf{C}
CVLR_nuenumudd $\frac{4 \widetilde{G}_F}{\sqrt{2}} (\bar{ u}_{eL} \gamma^\mu u_{\mu L}) (\bar{d}_R \gamma_\mu d_R)$	\mathbf{C}
CVLR_nuenumuee $\frac{4\check{G}_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{e}_R\gamma_{\mu}e_R)$	\mathbf{C}
CVLR_nuenumumum $rac{4 G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{\mu L}) (ar{\mu}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_nuenumuss $rac{4 G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{\mu L}) (ar{s}_R \gamma_\mu s_R)$	\mathbf{C}
$ exttt{CVLR_nuenumutautau} rac{4G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{\mu L}) (ar{ au}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_nuenumuuu $rac{4 G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^{\mu} u_{\mu L}) (ar{u}_R \gamma_{\mu} u_R)$	\mathbf{C}
CVLR_nuenutaubb $\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\tau L})(\bar{b}_R\gamma_{\mu}b_R)$	\mathbf{C}
CVLR_nuenutaucc $\frac{4 \overleftarrow{G_F}}{\sqrt{2}} (\bar{ u}_{eL} \gamma^{\mu} u_{\tau L}) (\bar{c}_R \gamma_{\mu} c_R)$	\mathbf{C}
CVLR_nuenutaudd $rac{4\widetilde{G}_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{d}_R\gamma_{\mu}d_R)$	\mathbf{C}
CVLR_nuenutauee $\frac{\sqrt{2}}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\tau L})(\bar{e}_{R}\gamma_{\mu}e_{R})$	\mathbf{C}
CVLR_nuenutaumumu $\frac{4 \overleftarrow{G_F}}{\sqrt{2}} (\bar{\nu}_{eL} \gamma^{\mu} \nu_{\tau L}) (\bar{\mu}_R \gamma_{\mu} \mu_R)$	\mathbf{C}
CVLR_nuenutauss $rac{4 G_F^2}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{ au L}) (ar{s}_R \gamma_\mu s_R)$	\mathbf{C}
CVLR_nuenutautauta $\psi_{\overline{Z}}^{VG_F}(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_R\gamma_{\mu} au_R)$	\mathbf{C}
CVLR_nuenutauuu $rac{4G_F}{\sqrt{2}}(ar{ u}_e L \gamma^\mu u_{ au L})(ar{u}_R \gamma_\mu u_R)$	$^{\mathrm{C}}$
CVLR_numunumubb $rac{\sqrt[4]{G_F}}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{b}_R\gamma_{\mu}b_R)$	R
CVLR_numunumucc $\frac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{c}_R\gamma_{\mu}c_R)$	R

WC name	Operator	Type
CVLR_numunumudd	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\mu L})(\bar{d}_R\gamma_{\mu}d_R)$	R
CVLR_numunumuee	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\mu L})(\bar{e}_R\gamma_{\mu}e_R)$	R
CVLR_numunumumumumumumumumumumumumumumumumum	$4\frac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_numunumuss	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{s}_R\gamma_\mu s_R)$	R
CVLR_numunumutaut	$\sinrac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{ au}_R\gamma_\mu au_R)$	R
CVLR_numunumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\mu L})(\bar{u}_R\gamma_{\mu}u_R)$	R
${\tt CVLR_numunutaubb}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{b}_R\gamma_\mu b_R)$	С
${\tt CVLR_numunutaucc}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{c}_R\gamma_\mu c_R)$	С
${\tt CVLR_numunutaudd}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{d}_R\gamma_\mu d_R)$	\mathbf{C}
${\tt CVLR_numunutauee}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{e}_R\gamma_\mu e_R)$	\mathbf{C}
CVLR_numunutaumum	$\sin^{4G_F}_{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{\mu}_R\gamma_\mu\mu_R)$	\mathbf{C}
${\tt CVLR_numunutauss}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{s}_R\gamma_\mu s_R)$	С
CVLR_numunutautau	$\mathrm{t} \frac{AGF}{\sqrt{2}} (ar{ u}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{ au}_R \gamma_{\mu} au_R)$	С
${\tt CVLR_numunutauuu}$	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CVLR_nutaunutaubb	$o rac{4 G_F}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{b}_R \gamma_\mu b_R)$	R
CVLR_nutaunutauco	$\approx rac{4G_F}{\sqrt{2}}(ar{ u}_{ au L}\gamma^\mu u_{ au L})(ar{c}_R\gamma_\mu c_R)$	R
CVLR_nutaunutaudd	$A \frac{4G_F}{\sqrt{2}} (\bar{ u}_{ au L} \gamma^\mu u_{ au L}) (\bar{d}_R \gamma_\mu d_R)$	R
CVLR_nutaunutaue	$e^{\frac{4G_F}{\sqrt{2}}(ar{ u}_{ au L}\gamma^{\mu} u_{ au L})(ar{e}_R\gamma_{\mu}e_R)}$	R
CVLR_nutaunutaumu	$\lim_{N \to \infty} \frac{dG_F}{\sqrt{2}} (\bar{ u}_{ au L} \gamma^\mu u_{ au L}) (\bar{\mu}_R \gamma_\mu \mu_R)$	R
CVLR_nutaunutauss	$s rac{4 G_F}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{s}_R \gamma_\mu s_R)$	R
	$u_{\overline{\nu}L}^{\overline{\nu}L}(ar{ u}_{ au L}\gamma^{\mu} u_{ au L})(ar{ au}_{R}\gamma_{\mu} au_{R})$	R
CVLR_nutaunutauuu	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{\nu}_{\tau L}\gamma^{\mu}\nu_{\tau L})(\bar{u}_R\gamma_{\mu}u_R)$	R

${\tt muemutau}$

WC name	Operator	Type
CVLL_muemutau	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\tau}_L \gamma_\mu \mu_L)$	С
CVRR_muemutau	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{\tau}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_muemutau	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\tau}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_taumuemu	$(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu e_R)$	\mathbf{C}
CSRR_muemutau	$(\bar{e}_L \mu_R)(\bar{\tau}_L \mu_R)$	\mathbf{C}
CSRR_emutaumu	$(\bar{\mu}_L e_R)(\bar{\mu}_L \tau_R)$	\mathbf{C}

etauemu

WC name	Operator	Type
CVLL_muetaue	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{e}_L \gamma_\mu \tau_L)$	С
CVRR_muetaue	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{e}_R \gamma_\mu \tau_R)$	\mathbf{C}
CVLR_muetaue	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{e}_R \gamma_\mu \tau_R)$	\mathbf{C}
CVLR_tauemue	$(\bar{e}_L \gamma^\mu \tau_L)(\bar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CSRR_muetaue	$(\bar{e}_L \mu_R)(\bar{e}_L au_R)$	\mathbf{C}
CSRR_emuetau	$(\bar{\mu}_L e_R)(\bar{\tau}_L e_R)$	\mathbf{C}