Linear Discriminant Analysis

Linear Discriminant Analysis

 First applied by M. Barnard at the suggestion of R. A. Fisher (1936), <u>Fisher</u> <u>linear discriminant analysis</u> (FLDA):

Dimension reduction

Finds linear combinations of the features X=X₁,...,X_d with large ratios of between-groups to within-groups sums of squares - discriminant variables;

Classification

 Predicts the class of an observation X by the class whose mean vector is closest to X in terms of the discriminant variables

Is PCA a good criterion for classification?

- Data variation determines the projection direction
- What's missing?
 - Class information

What is a good projection?

- Similarly, what is a good criterion?
 - Separating different classes

What class information may be useful?

- Between-class distance
 - Distance between the centroids of different classes

Between-class distance

What class information may be useful?

- Between-class distance
 - Distance between the centroids of different classes

- Within-class distance
 - Accumulated distance of an instance to the centroid of its class

Within-class distance

Linear discriminant analysis (LDA)

Linear discriminant analysis
 (LDA) finds most discriminant
 projection by maximizing
 between-class distance and
 minimizing within-class
 distance

LDA

Linear discriminant analysis
 (LDA) finds most discriminant
 projection by maximizing
 between-class distance and
 minimizing within-class
 distance

Problem Setup

- Suppose we have 2 classes and d-dimensional samples x₁,...,x_n where
 - n₁ samples come from the first class
 - n_2 samples come from the second class
- consider projection on a line
- Let the line direction be given by unit vector v

Scalar $\mathbf{v}^t \mathbf{x}_i$ is the distance of projection of \mathbf{x}_i from the origin

Thus it $\mathbf{v}^t \mathbf{x}_i$ is the projection of \mathbf{x}_i into a one dimensional subspace

Problem setup

- Thus the projection of sample x_i onto a line in direction v is given by v^tx_i
- How to measure separation between projections of different classes?
- Let \(\mu_1\) and \(\mu_2\) be the means of projections of classes 1 and 2
- Let μ_1 and μ_2 be the means of classes 1 and 2
- $|\mu_1 \mu_2|$ seems like a good measure

$$\mu_1 = \frac{1}{n_1} \sum_{x_i \in C_1}^{n_1} v^t x_i = v^t \left(\frac{1}{n_1} \sum_{x_i \in C_1}^{n_1} x_i \right) = v^t \mu_1$$

similarly,
$$\tilde{\mu}_2 = \mathbf{v}^t \mu_2$$

Is it Good Enough?

- How good is $|\mu_1 \mu_2|$ as a measure of separation?
 - The larger $|\mu_1 \mu_2|$, the better is the expected separation

- the vertical axes is a better line than the horizontal axes to project to for class separability
- however $|\hat{\mu}_1 \hat{\mu}_2| > |\mu_1 \mu_2|$

Variance of Classes

The problem with $|\mu_1 - \mu_2|$ is that it does not consider the variance of the classes

Scatter of Classes

- We need to normalize $|\mu_1 \mu_2|$ by a factor which is proportional to variance
- Have samples $z_1, ..., z_n$. Sample mean is $\mu_z = \frac{1}{n} \sum_{i=1}^{n} z_i$
- Define their *scatter* as

$$s = \sum_{i=1}^{n} (z_i - \mu_z)^2$$

- Thus scatter is just sample variance multiplied by *n*
 - scatter measures the same thing as variance, the spread of data around the mean
 - scatter is just on different scale than variance

larger scatter: smaller scatter:

Projected Scatter

- Fisher Solution: normalize $|\mu_1 \mu_2|$ by scatter
- Let $y_i = v^t x_i$, i.e. y_i 's are the projected samples
- Scatter for projected samples of class 1 is

$$\widetilde{\mathbf{S}}_{1}^{2} = \sum_{\mathbf{y}_{i} \in Class \ 1} (\mathbf{y}_{i} - \widetilde{\boldsymbol{\mu}}_{1})^{2}$$

Scatter for projected samples of class 2 is

$$\widetilde{\mathbf{S}}_{2}^{2} = \sum_{\mathbf{y}_{i} \in Class\ 2} (\mathbf{y}_{i} - \widetilde{\boldsymbol{\mu}}_{2})^{2}$$

Fisher Discriminant

- We need to normalize by both scatter of class 1 and scatter of class 2
- Thus Fisher linear discriminant is to project on line in the direction v which maximizes

want projected means are far from each other

$$J(v) = \frac{(\tilde{\mu}_1 - \tilde{\mu}_2)^2}{\tilde{\mathbf{S}}_1^2 + \tilde{\mathbf{S}}_2^2}$$

want scatter in class 1 is as small as possible, i.e. samples of class 1 cluster around the projected mean $\hat{\mu}_1$

want scatter in class 2 is as small as possible, i.e. samples of class 2 cluster around the projected mean $\tilde{\mu}_2$

Fisher Discriminant

$$J(\mathbf{v}) = \frac{(\tilde{\mu}_1 - \tilde{\mu}_2)^2}{\tilde{\mathbf{S}}_1^2 + \tilde{\mathbf{S}}_2^2}$$

If we find v which makes J(v) large, we are guaranteed that the classes are well separated

projected means are far from each other

small § implies that projected samples of class 1 are clustered around projected mean

small \S_2 implies that projected samples of class 2 are clustered around projected mean

Fisher Discriminant

$$J(\mathbf{v}) = \frac{(\tilde{\mu}_1 - \tilde{\mu}_2)^2}{\tilde{\mathbf{S}}_1^2 + \tilde{\mathbf{S}}_2^2}$$

- All we need to do now is to express J explicitly as a function of v and maximize it
 - straightforward but need linear algebra and Calculus
- Define the separate class scatter matrices S₁ and S₂ for classes 1 and 2. These measure the scatter of original samples x_i (before projection)

$$S_{1} = \sum_{x_{i} \in Class \ 1} (x_{i} - \mu_{1})(x_{i} - \mu_{1})^{t}$$

$$S_{2} = \sum_{x_{i} \in Class \ 2} (x_{i} - \mu_{2})(x_{i} - \mu_{2})^{t}$$

Now define the *within* the class scatter matrix $S_w = S_1 + S_2$

• Recall that
$$\tilde{\mathbf{s}}_1^2 = \sum_{\mathbf{y}_i \in Class} (\mathbf{y}_i - \tilde{\mu}_1)^2$$

• Using $\mathbf{y}_i = \mathbf{v}^t \mathbf{x}_i$ and $\boldsymbol{\mu}_1 = \mathbf{v}^t \boldsymbol{\mu}_1$

$$\widetilde{\mathbf{S}}_{1}^{2} = \sum_{\mathbf{y}_{i} \in Class \ 1} (\mathbf{v}^{t} \mathbf{x}_{i} - \mathbf{v}^{t} \mu_{1})^{2}
= \sum_{\mathbf{y}_{i} \in Class \ 1} (\mathbf{v}^{t} (\mathbf{x}_{i} - \mu_{1}))^{t} (\mathbf{v}^{t} (\mathbf{x}_{i} - \mu_{1}))
= \sum_{\mathbf{y}_{i} \in Class \ 1} ((\mathbf{x}_{i} - \mu_{1})^{t} \mathbf{v})^{t} ((\mathbf{x}_{i} - \mu_{1})^{t} \mathbf{v})
= \sum_{\mathbf{y}_{i} \in Class \ 1} \mathbf{v}^{t} (\mathbf{x}_{i} - \mu_{1})(\mathbf{x}_{i} - \mu_{1})^{t} \mathbf{v} = \mathbf{v}^{t} \mathbf{S}_{1} \mathbf{v}$$

- Similarly $\tilde{\mathbf{s}}_{2}^{2} = \mathbf{v}^{t} \mathbf{S}_{2} \mathbf{v}$
- Therefore $\tilde{\boldsymbol{s}}_{1}^{2} + \tilde{\boldsymbol{s}}_{2}^{2} = \boldsymbol{v}^{t} \boldsymbol{S}_{1} \boldsymbol{v} + \boldsymbol{v}^{t} \boldsymbol{S}_{2} \boldsymbol{v} = \boldsymbol{v}^{t} \boldsymbol{S}_{W} \boldsymbol{v}$
- Define between the class scatter matrix

$$S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t$$

- S_B measures separation between the means of two classes (before projection)
- Let's rewrite the separations of the projected means

$$(\mu_{1} - \mu_{2})^{2} = (\mathbf{v}^{t} \mu_{1} - \mathbf{v}^{t} \mu_{2})^{2}$$

$$= \mathbf{v}^{t} (\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{t} \mathbf{v}$$

$$= \mathbf{v}^{t} \mathbf{S}_{B} \mathbf{v}$$

Thus our objective function can be written:

$$J(v) = \frac{(\tilde{\mu}_1 - \tilde{\mu}_2)^2}{\tilde{s}_1^2 + \tilde{s}_2^2} = \frac{v^t S_B v}{v^t S_W v}$$

Minimize J(v) by taking the derivative w.r.t. v and setting it to 0

$$\frac{d}{dv}J(v) = \frac{\left(\frac{d}{dv}v^{t}S_{B}v\right)v^{t}S_{W}v - \left(\frac{d}{dv}v^{t}S_{W}v\right)v^{t}S_{B}v}{\left(v^{t}S_{W}v\right)^{2}}$$

$$= \frac{\left(2S_{B}v\right)v^{t}S_{W}v - \left(2S_{W}v\right)v^{t}S_{B}v}{\left(v^{t}S_{W}v\right)^{2}} = 0$$

Need to solve $\mathbf{v}^t \mathbf{S}_W \mathbf{v} (\mathbf{S}_B \mathbf{v}) - \mathbf{v}^t \mathbf{S}_B \mathbf{v} (\mathbf{S}_W \mathbf{v}) = \mathbf{0}$

$$\Rightarrow \frac{v^{t}S_{W}v(S_{B}v)}{v^{t}S_{W}v} - \frac{v^{t}S_{B}v(S_{W}v)}{v^{t}S_{W}v} = 0$$

$$\Rightarrow S_{B}v - \frac{v^{t}S_{B}v(S_{W}v)}{v^{t}S_{W}v} = 0$$

$$\Rightarrow S_{B}v = \lambda S_{W}v$$

generalized eigenvalue problem

The Final Step

$$S_B V = \lambda S_W V$$

 If S_W has full rank (the inverse exists), can convert this to a standard eigenvalue problem

$$S_W^{-1}S_BV=\lambda V$$

But $S_B x$ for any vector x, points in the same direction as μ_1 - μ_2

$$S_B \mathbf{x} = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t \mathbf{x} = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t \mathbf{x} = \alpha(\mu_1 - \mu_2)^t \mathbf{x}$$

Thus can solve the eigenvalue problem immediately

$$v = S_W^{-1}(\mu_1 - \mu_2)$$

$$S_{W}^{-1}S_{B}[S_{W}^{-1}(\mu_{1}-\mu_{2})] = S_{W}^{-1}[\alpha(\mu_{1}-\mu_{2})] = \alpha[S_{W}^{-1}(\mu_{1}-\mu_{2})]$$

Lets Try a Problem

- Compute the Linear Discriminant projection for the following two-dimensional dataset
 - $X1=(x_1,x_2)=\{(4,1),(2,4),(2,3),(3,6),(4,4)\}$
 - $X2=(x_1,x_2)=\{(9,10),(6,8),(9,5),(8,7),(10,8)\}$

Solution

- Compute the Linear Discriminant projection for the following two-dimensional dataset
 - $X1=(x_1,x_2)=\{(4,1),(2,4),(2,3),(3,6),(4,4)\}$
 - $X2=(x_1,x_2)=\{(9,10),(6,8),(9,5),(8,7),(10,8)\}$
- SOLUTION (by hand)
 - The class statistics are:

$$S_{1} = \begin{bmatrix} 0.80 & -0.40 \\ -0.40 & 2.60 \end{bmatrix}; S_{2} = \begin{bmatrix} 1.84 & -0.04 \\ -0.04 & 2.64 \end{bmatrix}$$

$$\mu_{1} = \begin{bmatrix} 3.00 & 3.60 \end{bmatrix}; \mu_{2} = \begin{bmatrix} 8.40 & 7.60 \end{bmatrix}$$

· The within- and between-class scatter are

$$S_B = \begin{bmatrix} 29.16 & 21.60 \\ 21.60 & 16.00 \end{bmatrix}; S_W = \begin{bmatrix} 2.64 & -0.44 \\ -0.44 & 5.28 \end{bmatrix}$$

The LDA projection is then obtained as the solution of the generalized eigenvalue problem

$$S_{W}^{-1}S_{B}V = \lambda V \Rightarrow \begin{vmatrix} S_{W}^{-1}S_{B} - \lambda | = 0 \Rightarrow \begin{vmatrix} 11.89 - \lambda & 8.81 \\ 5.08 & 3.76 - \lambda \end{vmatrix} = 0 \Rightarrow \lambda = 15.65$$

$$\begin{bmatrix} 11.89 & 8.81 \\ 5.08 & 3.76 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} = 15.65 \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} \Rightarrow \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} = \begin{bmatrix} 0.91 \\ 0.39 \end{bmatrix}$$

Or directly by

$$w^* = S_w^{-1}(\mu_1 - \mu_2) = [-0.91 \ -0.39]^T$$

Questions?