Package 'ailm'

March 1, 2025

Water 1, 2025
Type Package
Title Foundations of linear modeling at the age of AI
Version 0.0.1
Author Xu Liu [aut,cre]
Maintainer Xu Liu <liu.xu@sufe.edu.cn></liu.xu@sufe.edu.cn>
Description Data sets used in the book ``Foundations of linear modeling at the age of AI".
License GPL (>=2)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
Depends R (>= 3.5.0)
Imports Matrix, glmnet, glmtrans, rrpack, Renvlp, RidgeVar
Remotes xliusufe/RidgeVar
NeedsCompilation yes
Repository github
<pre>URL https://github.com/xliusufe/ailm</pre>
Contant

Contents

ais
babblers
boston
breastcancer
diabetes
energy
gdp 9
glmtransbinomialdemo
glmtranslineardemo
gtexbrain
hcrabs
lime
lungcap
skcm
translassodemo
uselection2020

2 ais

	20
inuex	

ais Australian Institute of Sports (AIS) data

Description

Physical measurements and blood measurements from high performance athletes at the AIS. The dataset contains 202 observations with 13 variables.

Usage

data(ais)

Arguments

sex	The sex of the athlete: F means female, and M means male.
sport	The sport of the athlete; one of BBall (basketball), Field, Gym (gymnastics), Netball, Rowing, Swim, T400m (track, further than 400m), Tennis, TSprnt (track sprint events), WPolo (waterpolo).
1bm	Lean body mass, in kg.
ht	Height, in cm.
wt	Weight, in kg.
bmi	Body mass index, in kg per metre-squared.
ssf	Sum of skin folds.
rbc	Red blood cell count, in 10^{12} per litre.
wbc	White blood cell count, in 10^{12} per litre.
hct	Hematocrit, in percent.
hgb	Hemoglobin concentration, in grams per decilitre.
ferr	Plasma ferritins, in ng per decilitre.
pbf	Percentage body fat.

Details

The data give measurements from high-performance athletes from the Australian Institute of Sport (AIS), for 202 athletes (102 males; 100 females) on 13 variables. Telford and Cunningham (1991) provide more information on how the data were collected.

Source

http://www.statsci.org/data/ or R package GLMsData

References

Telford, R. D., & Cunningham, R. B. (1991). Sex, sport, and body-size dependency of hematology in highly trained athletes. *Medicine and Science in Sports and Exercise*, **23**(7), 788-794.

babblers 3

Examples

```
library(ailm)
data(ais)
model <- lm(hgb ~ lbm + bmi + pbf, data = ais)</pre>
summary(model)
library(Renvlp)
library(ailm)
data(ais)
ais$sex = as.numeric(ais$sex)
ais$sport = as.numeric(ais$sport)
y_col = c("rbc", "wbc", "lbm", "bmi")
x_col = c("sex", "sport", "ht")
Y = as.matrix(ais[, y_col])
X = as.matrix(ais[, x_col])
Y = scale(Y)
X = scale(X)
set.seed(123)
u_hat <- u.env(X, Y)$u.bic
model <- env(X, Y, u_hat)</pre>
print(model)
```

babblers

Feeding rates of babblers

Description

The daily individual feeding rates of chestnut-crowned babblers. The dataset contains 97 observations on 8 variables.

Usage

```
data(babblers)
```

Arguments

feedingrate

obstime	The length of observation (in decimal hours); a numeric vector.
sex	The sex of the bird; one of f (female) or m (male).
age	The age of non-breeding group members; one of adult or yearling.
relatedness	The pedigree-based relatedness to the brood; one of 0.5 (first-order relatives); 0.25 (second-order relatives) or 0 (more distant relatives).
chickage	The age of the brood, in days; a numeric vector.
broodsize	The size of the brood; a numeric vector.
unitsize	The number of individuals in the unit; a numeric vector.

The daily individual feeding rates, in feeds per hour; a numeric vector.

4 boston

Details

The data relate to a population of colour-ringed population of chestnut-crowned babblers in an area of the University of New South Wales Arid Zone Research Station, (Fowlers Gap, western New South Wales, Australia). The study determined whether, where and how often non-breeding group members contributed to providing for nestlings by monitoring the visit rate of tagged birds during 2007 and 2008. These data are extracted from a larger data set, extracted so that there is one (randomly chosen) observation for each individual bird.

Source

R package GLMsData

References

Browning, L. E., Patrick, S. C., et al. (2012). Kin selection, not group augmentation, predicts helping in an obligate cooperatively breeding bird. *Proceedings of the Royal Society B: Biological Sciences*, **279**(1743), 3861-3869.

Examples

```
library(ailm)
data(babblers)
model = lm(feedingrate ~ ., data = babblers)
summary(model)
```

boston

Boston housing data

Description

The dataset contains information on housing values in suburbs of Boston, including various attributes such as crime rate, property tax, and average number of rooms.

Usage

data(boston)

Arguments

crim	Per capita crime rate by town.
zn	Proportion of residential land zoned for large lots (over 25,000 square feet).
indus	Proportion of non-retail business acres per town.
chas	Charles River dummy variable (1 if tract bounds river; 0 otherwise).
nox	Nitrogen oxide concentration (parts per 10 million).
rm	Average number of rooms per dwelling.
age	Proportion of owner-occupied units built before 1940.
dis	Weighted distance to employment centers in Boston.
rad	Index of accessibility to radial highways.
tax	Full-value property tax rate per \$10,000.

breastcancer 5

ptratio	Pupil-teacher ratio by town.

b Proportion of residents of African American descent.

1stat Percentage of lower status population.

medv Median value of owner-occupied homes in \$1000s.

Details

The dataset is derived from the Boston Housing dataset, originally from the UCI Machine Learning Repository. It contains data collected from 506 census tracts in Boston, providing a snapshot of various housing-related features, which can be used for regression and classification tasks in machine learning.

Source

https://lib.stat.cmu.edu/datasets/boston or R package MASS

References

Harrison, D., & Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean air. *Journal of Environmental Economics and Management*, **5**(1), 81-102.

Examples

```
library(ailm)
data(boston)
model = lm(medv ~ ., data = boston)
summary(model)
```

breastcancer

Breast cancer data

Description

The dataset contains gene expression and gene copy number information from 89 subjects.

Usage

```
data(breastcancer)
```

Arguments

`		
	dna	Copy number variation (CNV) data representing genomic DNA amplification or deletion events in tumor samples.
	rna	Gene expression profiles measured via RNA transcript levels (e.g., microarray or RNA-seq data).
	chrom	Chromosome numbers $(1-22, X, Y)$ corresponding to the genomic location of the measured genes.
	nuc	Nucleotide positions (start/end coordinates) of genes or probes on the chromosome (e.g., $hg18/hg19$ reference).
	gene	Unique gene identifiers (e.g., Entrez Gene IDs or probe IDs) linked to genomic features.

6 breastcancer

genenames	Official gene symbols or names (e.g., BRCA1, ERBB2) standardized by HUGO Gene Nomenclature Committee (HGNC).
genechr	Chromosomal mapping information for each gene (e.g., "chr17" for TP53).
genedesc	Brief functional descriptions of genes (e.g., "tumor protein p53" or "estrogen receptor 1").
genepos	Genomic coordinates of genes (e.g., cytoband or base-pair positions like "17q21.31").

Details

The dataset is derived from molecular bioinformatics data obtained from breast cancer tissue samples treated according to the standard of care between 1989 and 1997. It primarily consists of gene expression profiles and copy number variation data across 22 chromosomal pairs in tumor tissue samples from 89 breast cancer patients. For a detailed explanation of this dataset, please refer to Chin et al. (2006).

Source

http://icbp.lbl.gov/breastcancer/ or R package PMA

References

Chin, K., DeVries, S., et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. *Cancer cell*, **10**(6), 529-541.

```
library(glmnet)
library(ailm)
data(breastcancer)
dna = breastcancer$dna[breastcancer$chrom==21,]
rna = breastcancer$rna[which(breastcancer$genechr==21),]
y = dna[1,]
x = t(rna)
set.seed(100)
fit_ridge = cv.glmnet(x,y,alpha = 0)
coef(fit_ridge, s = "lambda.min")
fit_{asso} = cv.glmnet(x,y,alpha = 1)
coef(fit_lasso, s = "lambda.min")
library(rrpack)
library(ailm)
data(breastcancer)
X = t(breastcancer$dna[breastcancer$chrom==21,])
Y = t(breastcancer$rna[which(breastcancer$genechr==21),])
model <- rssvd(Y = Y, X = X, nrank = 1, ic.type = "BIC")</pre>
summary(model)
U <- model$U
V <- model$V
D <- model$D
B_approx <- D * U
```

diabetes 7

Description

The dataset records information for 422 diabetic patients. This dataset includes various health metrics that may be used to predict the prograssion of diabetes in patients.

Usage

data(diabetes)

Arguments

x	A matrix with 10 columns, including variables "age", "sex", "bmi" (body mass index), "map" (average blood pressure), "tc" (total serum cholesterol), "ldl" (low-density lipoproteins), "hdl" (high-density lipoproteins), "tch" (total cholesterol/HDL), "ltg" (possibly log of serum triglycerides level), "glu" (blood sugar level).
У	A numeric vector, which is a quantitative measure of disease progression one year after baseline.
x2	A matrix with 64 columns. This matrix consists of x plus certain interactions.

Details

The diabetes dataset is used to explore how various factors such as BMI and blood pressure can be used to predict diabetes progression. The dataset is derived from a study by , which is available in the "lars" package.

Source

R package lars

References

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. *Annals of Statistics*, **32**(2), 407-499.

```
library(glmnet)
library(ailm)
data(diabetes)
fit = glmnet(diabetes$x,diabetes$y)
coef(fit, s = 1)
```

8 energy

energy Energy expenditure data

Description

The energy expenditure for 104 females at rest for a 24 hour period.

Usage

```
data(energy)
```

Arguments

energy	The energy expenditure (units not given); a numeric vector.
fat	The mass of fat tissue (units not given); a numeric vector.
nonfat	The mass of fat-free tissue (units not given); a numeric vector.

Details

The data give the energy expenditure for 104 females at rest over a 24 hour period; the mass of fat and fat-free tissue was also recorded.

Note that the total mass of each subject is the sum of the fat and fat-free tissue masses.

Source

R package GLMsData

References

Jørgensen, B. (1992). Exponential dispersion models and extensions: A review. *International Statistical Review*, **60**(1), 5-20.

```
library(ailm)
data(energy)
model <- lm(energy ~ fat, data = energy)
summary(model)</pre>
```

gdp 9

gdp	GDP growth rate data
0~P	021 3.077111 10110 0101101

Description

The dataset contains GDP growth data compiled by Barro Lee. It includes 90 observations with 61 covariates.

Usage

```
data(gdp)
```

Arguments

outcome Dependent variable: national growth rates in GDP per capital for the periods

1965-1975 and 1975-1985.

x A list includes 61 covariates that could affect growth.

Details

The dataset is a subset of the Barro-Lee panel data, which covers 138 countries from 1950 to 2010. It includes 90 complete cases with 61 covariates, focusing on two growth periods: 1965-1975 (41 observations) and 1975-1985 (49 observations). Growth rates are calculated using the log-difference method.

Source

This version of dataset is maintained in the R package hdm.

The full data set and further details can be found at http://www.barrolee.com/ and,

https://www.bristol.ac.uk//Depts//Economics//Growth//barlee.htm.

References

Barro, R. J., & Lee, J. W. (1994). Data set for a panel of 138 countries.

Barro, R. J., & Lee, J. W. (2013). A new data set of educational attainment in the world, 1950-2010. *Journal of Development Economics*, **104**, 184-198.

Barro, R. J., & Sala-i-Martin, X. (1995). Economic Growth. McGraw-Hill, New York.

```
library(ailm)
data(gdp)
mean_growth <- mean(gdp$outcome, na.rm = TRUE)
cat("Average GDP growth rate:", round(mean_growth, 3), "\n")
model <- lm(outcome ~ x$gdpsh465 + x$freeop + x$p65, data = gdp)
summary(model)

library(RidgeVar)
library(ailm)
data(gdp)</pre>
```

10 glmtransbinomialdemo

```
subset <- 1:41
y <- gdp$outcome[subset]
x <- as.matrix(gdp$x[subset, ])
fit_rr <- VAR_RR(y, x)
sigma2_RR <- fit_rr$sigma2
print(sigma2_RR)</pre>
```

glmtransbinomialdemo GLM trans demo data: logistic regression model

Description

The dataset contains demo data for glmtrans, which is a simulated dataset for a logistic regression model.

Usage

data(glmtransbinomialdemo)

Arguments

- D. training Contains both the target and source data.
- D.training\$target

Target data, including both independent variables and the response variable.

D.training\$source

Source data, including both independent variables and the response variable.

D. test Contains the target test data.

Details

The dataset is used to demonstrate the glmtrans method, which applies transfer learning in the context of high-dimensional generalized linear models.

Source

Tian, Y., & Feng, Y. (2023). Transfer learning under high-dimensional generalized linear models. *Journal of the American Statistical Association*, **118**(544), 2684-2697.

References

Tian, Y., & Feng, Y. (2023). Transfer learning under high-dimensional generalized linear models. *Journal of the American Statistical Association*, **118**(544), 2684-2697.

```
library(ailm)
library(glmtrans)
data(glmtransbinomialdemo)
str(glmtransbinomialdemo$D.training)
str(glmtransbinomialdemo$D.training$target)
D.training <-glmtransbinomialdemo$D.training</pre>
```

glmtranslineardemo 11

```
D.test <- glmtransbinomialdemo$D.test
fit.binomial <- glmtrans(D.training$target, D.training$source, family = "binomial")
summary(fit.binomial)
y.pred.glmtrans <- predict(fit.binomial, D.test$target$x)</pre>
```

glmtranslineardemo

GLM trans demo data: linear regression model

Description

The dataset contains demo data for glmtrans, which is a simulated dataset for a linear regression model.

Usage

data(glmtranslineardemo)

Arguments

- D. training Contains both the target and source data.
- D.training\$target

Target data, including both independent variables and the response variable.

D.training\$source

Source data, including both independent variables and the response variable.

D. test Contains the target test data.

Details

The dataset is used to demonstrate the glmtrans method, which applies transfer learning in the context of high-dimensional generalized linear models.

Source

Tian, Y., & Feng, Y. (2023). Transfer learning under high-dimensional generalized linear models. *Journal of the American Statistical Association*, **118**(544), 2684-2697.

References

Tian, Y., & Feng, Y. (2023). Transfer learning under high-dimensional generalized linear models. *Journal of the American Statistical Association*, **118**(544), 2684-2697.

```
library(ailm)
library(glmtrans)
data(glmtranslineardemo)
str(glmtranslineardemo$D.training)
str(glmtranslineardemo$D.training$target)

D.training <-glmtranslineardemo$D.training
D.test <- glmtranslineardemo$D.test
fit.gaussian <- glmtrans(D.training$target, D.training$source)
summary(fit.gaussian)
y.pred.glmtrans <- predict(fit.gaussian, D.test$target$x)</pre>
```

12 gtexbrain

gtexbrain

Gtex brain data

Description

The dataset contains gene expression data from the GTEx (Genotype-Tissue Expression) project, specifically focusing on brain tissue samples. It includes gene sequencing results from 48 different tissue types, with detailed information about gene expression levels across various tissues, including the brain and other organs.

Usage

data(gtexbrain)

Arguments

The data set includes the following tissue types:

Adipose_Subcutaneous

The data of tissues named 'Adipose_Subcutaneous'.

Adipose_Visceral_Omentum

The data of tissues named 'Adipose_Visceral_Omentum'.

Adrenal_Gland The data of tissues named 'Adrenal_Gland'.

Artery_Aorta The data of tissues named 'Artery_Aorta'.

Artery_Coronary

The data of tissues named 'Artery_Coronary'.

Artery_Tibial The data of tissues named 'Artery_Tibial'.

Brain_Amygdala The data of tissues named 'Brain_Amygdala'.

Brain_Anterior_cingulate_cortex_BA24

The data of tissues named 'Brain_Anterior_cingulate_cortex_BA24'.

Brain_Caudate_basal_ganglia

The data of tissues named 'Brain_Caudate_basal_ganglia'.

 ${\tt Brain_Cerebellar_Hemisphere}$

The data of tissues named 'Brain_Cerebellar_Hemisphere'.

Brain_Cerebellum

The data of tissues named 'Brain_Cerebellum'.

Brain_Cortex The data of tissues named 'Brain_Cortex'.

 ${\tt Brain_Frontal_Cortex_BA9}$

The data of tissues named 'Brain_Frontal_Cortex_BA9'.

Brain_Hippocampus

The data of tissues named 'Brain_Hippocampus'.

Brain_Hypothalamus

The data of tissues named 'Brain_Hypothalamus'.

Brain_Nucleus_accumbens_basal_ganglia

The data of tissues named 'Brain_Nucleus_accumbens_basal_ganglia'.

Brain_Putamen_basal_ganglia

The data of tissues named 'Brain_Putamen_basal_ganglia'.

gtexbrain 13

Brain_Spinal_cord_cervical_c-1

The data of tissues named 'Brain_Spinal_cord_cervical_c-1'.

Brain_Substantia_nigra

The data of tissues named 'Brain_Substantia_nigra'.

Breast_Mammary_Tissue

The data of tissues named 'Breast_Mammary_Tissue'.

Cells_EBV-transformed_lymphocytes

The data of tissues named 'Cells EBV-transformed lymphocytes'.

Cells_Transformed_fibroblasts

The data of tissues named 'Cells_Transformed_fibroblasts'.

Colon_Sigmoid The data of tissues named 'Colon_Sigmoid'.

Colon_Transverse

The data of tissues named 'Colon_Transverse'.

Esophagus_Gastroesophageal_Junction

The data of tissues named 'Esophagus_Gastroesophageal_Junction'.

Esophagus_Mucosa

The data of tissues named 'Esophagus_Mucosa'.

Esophagus_Muscularis

The data of tissues named 'Esophagus Muscularis'.

Heart_Atrial_Appendage

The data of tissues named 'Heart_Atrial_Appendage'.

Heart_Left_Ventricle

The data of tissues named 'Heart_Left_Ventricle'.

Liver The data of tissues named 'Liver'.

Lung The data of tissues named 'Lung'.

Minor_Salivary_Gland

The data of tissues named 'Minor_Salivary_Gland'.

Muscle_Skeletal

The data of tissues named 'Muscle_Skeletal'.

Nerve_Tibial The data of tissues named 'Nerve_Tibial'.

Ovary The data of tissues named 'Ovary'.

Pancreas The data of tissues named 'Pancreas'.

Pituitary The data of tissues named 'Pituitary'.

Prostate The data of tissues named 'Prostate'.

Skin_Not_Sun_Exposed_Suprapubic

The data of tissues named 'Skin_Not_Sun_Exposed_Suprapubic'.

Skin_Sun_Exposed_Lower_leg

The data of tissues named 'Skin_Sun_Exposed_Lower_leg'.

 ${\tt Small_Intestine_Terminal_Ileum}$

The data of tissues named 'Small_Intestine_Terminal_Ileum'.

Spleen The data of tissues named 'Spleen'.

Stomach The data of tissues named 'Stomach'.

Testis The data of tissues named 'Testis'.

Thyroid The data of tissues named 'Thyroid'.

Uterus The data of tissues named 'Uterus'.

Vagina The data of tissues named 'Vagina'.

Whole_Blood The data of tissues named 'Whole_Blood'.

14 hcrabs

Details

This dataset contains gene expression profiles and genomic data derived from the Genotype-Tissue Expression (GTEx) project. It includes gene sequencing data for 48 tissue types, including various brain regions. The GTEx project aims to provide comprehensive data to better understand gene expression variability across tissues and how it relates to genetic variation. This resource is often used in genomics and biomedical research, helping to identify tissue-specific gene regulation and its potential implications for diseases like cancer and neurological disorders.

Source

Genotype-Tissue Expression (GTEx) project, available at: https://www.gtexportal.org/home/

References

Li, S., Cai, T. T., & Li, H. (2022). Transfer learning for high-dimensional linear regression: Prediction, estimation and minimax optimality. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, **84**(1), 149-173.

Examples

```
library(ailm)
data(gtexbrain)
str(gtexbrain)
str(gtexbrain[['Adipose_Subcutaneous']])
```

hcrabs

Males attached to female horseshoe crabs

Description

The number of male crabs attached to female horseshoe crabs. The dataset contains 173 observations with 5 variables.

Usage

data(hcrabs)

Arguments

col	The color of the female; a factor with levels LM (light medium), M (medium), DM (dark medium) or D (dark).
spine	The spine condition; a factor with levels BothOK, OneOK or NoneOK.
width	The carapace width of the female crab in cm; a numeric vector.
wt	The weight of the female crab in grams; a numeric vector.
sat	The number of male crabs attached to the female; a numeric vector.

Details

The data come from an observational study of nesting horseshoe crabs (Brockmann, 1996; p. 4).

lime 15

Source

R package GLMsData

References

Brockmann, H. J. (1996). Satellite male groups in horseshoe crabs, Limulus polyphemus. *Ethology*, **102**(1), 1-21.

Examples

```
library(ailm)
data(hcrabs)
hcrabs$col <- as.integer(hcrabs$col)
hcrabs$spine <- as.integer(hcrabs$spine)
df <- scale(hcrabs, center = FALSE)
y <- as.matrix(df[,5])
x <- df[,1:4]
model <- lm(y ~ x)
summary(model)</pre>
```

lime

Small-leaved lime trees data

Description

The data is from small-leaved lime trees grown in Russia and contains 385 observations with 4 variables.

Usage

```
data(lime)
```

Arguments

foliage The foliage biomass, in kg (oven dried matter).

dbh The tree diameter, at breast height, in cm.

age The age of the tree, in years.

origin The origin of the tree; one of Coppice, Natural, Planted.

Details

The data give measurements from small-leaved lime trees (Tilia cordata) growing in Russia.

Source

https://doi.pangaea.de/10.1594/PANGAEA.871491 or R package GLMsData

References

Schepaschenko, D., Shvidenko, A., et al. (2017). A dataset of forest biomass structure for Eurasia. *Scientific Data*, **4**(1), 1-11.

16 lungcap

Examples

```
library(ailm)
data(lime)
lime$origin <- as.integer(lime$origin)
df <- scale(lime, center = FALSE)
y <- as.matrix(df[,1])
x <- df[,2:4]
model <- lm(y ~ x)
summary(model)</pre>
```

lungcap

Lung capacity and smoking in youth

Description

The health and smoking habits of 654 youth. The dataset contains 654 observations on 5 variables.

Usage

```
data(lungcap)
```

Arguments

age	The age of the subject in completed years; a numeric vector.
fev	The forced expiratory volume in litres, a measure of lung capacity; a numeric vector.
ht	The height in inches; a numeric vector.
gender	The gender of the subjects: a numeric vector with females coded as 0 and males as 1

The smoking status of the subject: a numeric vector with non-smokers coded as 0 and smokers as 1.

Details

smoke

The data give information on the health and smoking habits of a sample of 654 youths, aged 3 to 19, in the area of East Boston during middle to late 1970s.

Source

R package GLMsData

References

```
Kahn, M. (2003). Data Sleuth. STATS, 37, 24.
```

Kahn, M. (2005). An exhalent problem for teaching statistics. *The Journal of Statistical Education*, **13**(2).

Tager, I. B., Weiss, S. T., et al. (1983). Longitudinal study of the effects of maternal smoking on pulmonary function in children. *New England Journal of Medicine*, **309**(12), 699-703.

skcm 17

Examples

```
library(ailm)
data(lungcap)
model = lm(fev ~ ., data = lungcap)
summary(model)
```

skcm

Skin Cutaneous Melanoma (SKCM) data

Description

The dataset contains clinical outcome measurements and high-dimensional gene expression profiles from 361 subjects with skin cutaneous melanoma.

Usage

data(skcm)

Arguments

y A numeric vector of length 361 containing clinical outcomes (e.g., survival sta-

tus or time).

gexp A data frame with 361 rows and 2000 columns, where each column represents

expression values of a gene. Gene names are provided as column names (e.g.,

SLC8A1, DPYD).

Details

The dataset includes 361 samples with outcomes (e.g., survival) and expression levels of the top 2000 most variable genes. It is derived from The Cancer Genome Atlas (TCGA) for Skin Cutaneous Melanoma (SKCM), one of the most aggressive cancer types.

Source

The Cancer Genome Atlas (TCGA) portal: https://tcga-data.nci.nih.gov

References

The Cancer Genome Atlas Consortium. (2015). Genomic classification of cutaneous melanoma. *Cell*, **161**(7), 1681-1696.

```
library(ailm)
data(skcm)
hist(skcm$y, main = "Distribution of Clinical Outcomes", xlab = "Outcome Value")
pca_result <- prcomp(skcm$gexp[, 1:100], scale = TRUE) # Run PCA on the top 100 genes
plot(pca_result$x[, 1:2], main = "PCA of Gene Expression Data")</pre>
```

18 translassodemo

slassodemo Trans Lasso Demo Data

Description

This dataset serves as a demo for the Trans Lasso (Transfer Lasso) method, which is designed for high-dimensional linear regression problems where data is sourced from multiple domains or datasets. The dataset includes both target and source data, as well as test data for validation.

Usage

data(translassodemo)

Arguments

Χ	The independent variables (features) in the target and source data.
у	The dependent variable (label or outcome) in the target and source data.
X_test	The independent variables (features) in the test dataset.
y_test	The dependent variable (label or outcome) in the test dataset.
n.vec	A vector indicating the sample size of each dataset (target and source data).
beta0	The true regression coefficients in the simulated data.
size.A0	The number of transferable sets in the data.

Details

This dataset is a demonstration of the Trans Lasso method, which aims to combine knowledge from multiple datasets (source and target) to improve regression models. The dataset includes both features and outcome variables from different domains, along with a simulated test set for performance evaluation. It is useful for illustrating the application of transfer learning techniques to high-dimensional regression tasks.

Source

Code adapted from Li, S., Cai, T. T., & Li, H. (2022). Transfer learning for high-dimensional linear regression: Prediction, estimation, and minimax optimality. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, **84**(1), 149-173.

References

Li, S., Cai, T. T., & Li, H. (2022). Transfer learning for high-dimensional linear regression: Prediction, estimation and minimax optimality. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, **84**(1), 149-173.

```
library(glmnet)
library(ailm)
data(translassodemo)
y = translassodemo$y
X = translassodemo$X
set.seed(100)
```

uselection2020

```
#prop.re1 <- Trans.lasso(X, y, n.vec, I.til = 1:50, l1 = l1)
#print(prop.re1$beta.hat)</pre>
```

uselection2020

2020 U.S. Election Data

Description

The data set contains election results for the 2020 U.S. presidential election, organized by state.

Usage

```
data(uselection2020)
```

Arguments

The data set includes the following states:

Arkansas The election data for Arkansas.

Georgia The election data for Georgia.

Illinois The election data for Illinois.

Michigan The election data for Michigan.

Minnesota The election data for Minnesota.

Mississippi The election data for Mississippi.

North Carolina The election data for North Carolina.

Virginia The election data for Virginia.

Details

A list of length 8, where each element is a list containing detailed election results for a specific state. Each state list has two elements: - target: A list of length 2 containing target data. - source: A list of length 47 containing source data.

Source

https://github.com/tonmcg/US_County_Level_Election_Results_08-20 and https://www.kaggle.com/benhamner/2016-us-election.

References

Tian, Y., & Feng, Y. (2023). Transfer learning under high-dimensional generalized linear models. *Journal of the American Statistical Association*, **118**(544), 2684-2697.

```
library(ailm)
library(glmtrans)
data(uselection2020)
str(uselection2020[['Arkansas']])
str(uselection2020[['Arkansas']]$target)
data_train <- uselection2020[['Arkansas']]
fit.binomial <- glmtrans(data_train$target, data_train$source, family = "binomial")
summary(fit.binomial)</pre>
```

Index

```
ais, 2
babblers, 3
boston, 4
breastcancer, 5
{\tt diabetes, 7}
energy, 8
gdp, 9
{\tt glmtransbinomialdemo,}\ 10
{\tt glmtranslineardemo}, 11
{\tt gtexbrain}, {\tt 12}
hcrabs,\, 14
lime, 15
lungcap, 16
skcm, 17
translassodemo, 18
uselection2020, 19
```