

- **01** Introduction
- **02 Setting Up The Calculator**
- **03 Memory Functions**
- **04 Time Value of Money**
- **05 Capital Budgeting**
- **06 Statistics (Standard Deviation)**
- **07 Linear Regression and Covariance**
- **08** Probabilities

- Two calculators are allowed in the CFA® examinations:
 - ✓ Texas Instruments BAII+ and BAII+ Professional
 - ✓ Hewlett Packard 12C and HP12C Platinum

BAII+ Professional is recommended as we believe it is easier to use and has more functionality for the exam

Texas Instruments BAII+ and BAII+ Professional

Hewlett Packard 12C and HP12C Platinum

常用键功能			
СРТ	计算	PV	现值
ENTER(SET)	输入(设置)	PMT	单个复利周期的cash flow(可用于计算年全)
2ND	启用第二项功能	FV	未来值
CF	进入cash flow的数据输入	٧x	对前一个输入的数值开方
NPV	进入NPV的计算	x ²	对前一个输入的数值平方
IRR	进入IRR的计算	1/x	对前一个输入的数值求倒数
\rightarrow	删除	y ^x	对前面的计算结果进行X次方
N	复利周期的次数	STO	存储数据
I/Y	单个复利周期的利率	RCL	调用所存储的数据
$\uparrow \downarrow$	上下移动	CE/C	数据归零

常用组合键功能			
2ND+小数点	可设置计算结果的精确位数/设置计算法则	2ND+ 8	对输入的数据进行统计 分析
2ND+ +/-	重新设置Chn和小数点位数		可计算Bond的相关数值
2ND+ 0	进入memory中所存储的数据	2ND+ X	计算x! (x的阶乘)
2ND+ 1	进入日期设置	2ND+ -	计算排列的数量
2ND+ 2	可计算Nominal rate或 Effective rate	2ND+ +	计算组合的数量
2ND+3	可计算盈利	2ND+ CE/C	清零
2ND+ 4	可计算折旧	2ND+ CPT	退回到标准计算器模式
2ND+ 5	可计算百分比变化值	2ND+ ENTER	转换设置
2ND+ 6	可计算盈亏平衡点	2ND+ PMT	转换BGN和END模式
2ND+ 7	可输入数据	2ND+ =	显示上一次的计算结果

Example 1:

Calculate $(3.54/2.21)^{1/4} - 1$

Step	Display
[3.54][÷]	3.540000
$[2.21][y^x]$	1.601810
[4][1/x]	0.250000
[-][1][=]	0.125001

Example 2:

Calculate
$$\frac{0.89}{\sqrt{2.17}} x (-7.3)^2$$

Steps Display

$$[0.89][\div]$$
 0.890000

$$[2.17][\forall x]$$
 1.473092

$$[7.3][+/-][x^2][=]$$
 32.196292

Clearing the Memory

- Clearing TVM memory
 - [CE/C][2nd][FV]
- Clearing CF function memory
 [CF][2nd][CE/C]
- Clearing BOND function memory [2nd][9][2nd][CE/C]
- Clearing data in MEM function [2nd][0][2nd][CE/C]
- Clearing all the data stored and all settings
 Press "RESET" on the back of calculator

- 01 Introduction
- **02 Setting Up The Calculator**
- **03 Memory Functions**
- **04 Time Value of Money**
- **05 Capital Budgeting**
- **06 Statistics (Standard Deviation)**
- **07 Linear Regression and Covariance**
- **08** Probabilities

高顿财经 GOLDEN FINANCE

Setting Up The Calculator

- Setting up the decimal points
- Setting up the algorithm (CHN/AOS)
- Setting up the P/Y
- Setting up the BGN/END mode

P.S. All the examples in these slides are presented by using TI BAII Plus

Setting up the decimal points

Example:

Setting up to 6 decimal points

Step	S D	isp	lay
			_

[2nd][.] DEC = 2.00

[6][ENTER] DEC = 6.000000

[2nd][CPT] 0.000000

P.S. We recommend candidates to use up to 6 decimal points as it will meet our accuracy requirements

Changing from CHN to AOS

Most students prefer to use the calculator in AOS mode

however the calculator default is CHN

sp	lay
	sp

[2nd][.] DEC = 6.000000

[\[\] ... Chn

[2nd][ENTER] AOS

P.S. Should you like to change it back from AOS to CHN, just need to press [2nd][ENTER] again

Setting up the algorithm (CHN/AOS)

> CHN Mode

The calculator will work out the figure based on the numbers you key in orderly.

e.g.
$$[3][+][5][x][4] = 32$$

> AOS Mode

The calculator will work out the figure according to mathematical algorithm.

e.g.
$$[3][+][5][x][4] = 23$$

Setting up the BGN/END mode

高顿财经 GOLDEN FINANCE

> The default setting of the calculator is END mode.

Example:

Setting the calculator from END mode to BGN mode

Steps Display

[2nd][PMT] END

[2nd][ENTER] BGN

- **01** Introduction
- **02 Setting Up The Calculator**
- **03 Memory Functions**
- **04 Time Value of Money**
- **05 Capital Budgeting**
- **06 Statistics (Standard Deviation)**
- **07 Linear Regression and Covariance**
- **08** Probabilities

Storing one figure in the memory

Example:

Storing 2.55 in to memory keystroke 1

Steps	Display
[2.55]	2.55
[STO]	2.55
[1]	2.550000

You are allowed to store up to 10 figures in BAII PLUS calculator.

Recalling the figure saved in memory previously

Example:

Recalling 2.55 saved previously

Steps Display

[RCL][1] 2.550000

Reviewing the data saved

Reviewing the data saved in memory (Using previous example)

Steps	Display
[2nd][0]	M0=0.000000
[\psi]	M1=2.550000
•••••	•••••
[\[\]	M9=0.000000

- **01** Introduction
- **02 Setting Up The Calculator**
- **03 Memory Functions**
- **04 Time Value of Money**
- **05 Capital Budgeting**
- **06 Statistics (Standard Deviation)**
- **07 Linear Regression and Covariance**
- **08** Probabilities

Time Value of Money

Keystrokes we would use in TVM problems:

N - Number of compounding periods

I/Y - Periodic rate

PV - Present Value

PMT - Periodic Payments (e.g., annuities, any constant cash flows)

FV - Future Value

Understanding the Time Line

FV of Single Sum

Example:

What is the value of \$100 in ten years with the annually compounding interest rate of 5%?

FV of Single Sum

Steps	Display	
[100][+/-][PV]	PV = -100.000000	
[10][N]	N = 10.000000	The order that the data entered does
[5][I/Y]	I/Y = 5.000000	not matter
[0][PMT]	PMT = 0.000000	
[CPT][FV]	FV = 162.889463	

P.S. Input is usually entered with a negative sign so as to make the output come out with a positive sign.

PV of Single Sum

高顿财经 GOLDEN FINANCE

Example:

How much must be invested today, at 8% interest, to accumulate enough to retire a \$10,000 debt due seven years from today?

PV of Single Sum

Steps	Disp	lay

[10000][FV] FV = 10,000.000000

[7][N] N = 7.000000

[8][I/Y] I/Y = 8.000000

[0][PMT] PMT = 0.000000

[CPT][PV] PV = -5,834.903953

The order that the data entered does not matter

FV of Ordinary Annuity

高顿财经 GOLDEN FINANCE

Example:

An investor will receive an annuity of \$4000 a year for ten years. The first payment is to be received at the end of the first year. At a annual interest rate of 9%, what is this annuity's worth at the end of ten years?

FV of Ordinary Annuity

Steps	Display
-------	---------

[4000][+/-][PMT] PMT = -4,000.000000

[10][N] N = 10.000000

[9][I/Y] I/Y = 9.000000

[0][PV] PV = 0.000000

[CPT][FV] FV = 60,771.71887

The order that the data entered does not matter

PV of Ordinary Annuity

高顿财经 GOLDEN FINANCE

Example:

An investor has just won the lottery and will receive \$50000 per year at the end of the next 20 years. At a 10% interest rate, what is the present value of this winnings?

PV of Ordinary Annuity

TO	nc
JLE	
	_

Display

[50000][+/-][PMT] PMT = -50,000.000000

[20][N] N = 20.000000

[10][I/Y] I/Y = 10.000000

[0][FV] FV = 0.000000

[CPT][PV] PV = 425,678.1860

The order that the data entered does not matter

FV of Annuity Due

高顿财经 GOLDEN FINANCE

Example:

If \$1000 is invested today and \$1000 is invested at the beginning of each of the next three years at 12% interest(compounded annually), what is the amount that an investor will have at the end of the fourth year?

FV of Annuity Due

> 1st Method (END Mode)

Steps	Display
[1000][+/-][PMT]	PMT = -1,000.00000
[4][N]	N = 4.000000
[12][I/Y]	I/Y = 12.000000
[0][PV]	PV = 0.000000
[CPT][FV]	FV = 4,779.328000 (at end of year 3)
[x][1.12][=]	5352.847360 (FV at end of year 4)

2nd Method (BGN Mode)

Steps	Display
-------	---------

$$[1000][+/-][PMT]$$
 PMT = -1,000.000000

[4][N]
$$N = 4.000000$$

$$[12][I/Y]$$
 $I/Y = 12.000000$

$$[0][PV]$$
 $PV = 0.000000$

[CPT][FV]
$$FV = 5,352.847360$$
 (FV at end of year 4)

高顿财经 GOLDEN FINANCE

Example:

If \$1000 is invested today and \$1000 is invested at the beginning of each of the next three years at 12% interest(compounded annually), what is the present value of these four investments?

PV of Annuity Due

> 1st Method (END Mode)

Steps	Display
-------	---------

[1000][+/-][PMT] PMT = -1,000.000000

[4][N] N = 4.000000

[12][I/Y] I/Y = 12.000000

[0][FV] FV = 0.000000

[CPT][PV] PV = 3,037.349347 (T=-1)

[x][1.12][=] 3,401.831268 (T=0)

2nd Method (BGN Mode)

Ste	ps	Disp	lay
		– .5P	

[1000][+/-][PMT] PMT = -1,000.000000

[4][N] N = 4.000000

[12][I/Y] I/Y = 12.000000

[0][FV] FV = 0.000000

[CPT][PV] PV = 3,401.831268 (T=0)

PV of Unequal Cash Flows

Example:

If \$100, \$300, \$500 and \$600 are invested at the end of each of the next four years at 12% interest(compounded annually) from now, what is the present value of these four investments?

PV of Unequal Cash Flows

Steps	Display
-------	---------

[CF] CF0 = 0.000000

[2nd][CE/C] CF0 = 0.000000 (Clear previous works)

 $[\downarrow][100][ENTER]$ C01 = 100.000000

 $[\downarrow][\downarrow][300][ENTER]$ CO2 = 300.000000

 $[\downarrow][\downarrow][500][ENTER]$ CO3 = 500.000000

 $[\downarrow][\downarrow][600][ENTER]$ C04 = 600.000000

[NPV][12][ENTER] I=12.000000

 $[\downarrow]$ [CPT] NPV=1065.644849

Thus PV0=1065.644849

Calculating I/Y (Discounted Rate)

高顿财经 GOLDEN FINANCE

Example:

Elmer has won his state lottery and has been offered 20 annual payments of \$200,000 each year beginning today or a single payment of \$2,267,000. What is the annual discount rate used to calculate the lump-sum payout amount?

Calculating I/Y (Discounted Rate)

We have to switch to BGN Mode firstly

Steps	Display
-------	---------

[200000][+/-][PMT] PMT = -200,000.000000

[20][N] N = 20.000000

[2267000][PV] PV= 2,267,000.000000

[0][FV] FV = 0.000000

[CPT][I/Y] I/Y = 7.000768 (7%)

高顿财经 GOLDEN FINANCE

Calculating N (The Number of Compounding Periods)

Example:

If Elmer can choose the amount of his annual payout, based on the same discount rate used above, how many payments of \$232,631 could Elmer receive if his first payment were today?

Calculating N (The Number of Compounding Periods)

We have to switch to BGN Mode firstly

Steps	Display
-------	---------

[232631][+/-][PMT] PMT = -232,631.000000

[7][I/Y] I/Y = 7.000000

[2267000][PV] PV= 2,267,000.000000

[0][FV] FV = 0.000000

[CPT][N] N = 14.998877 (N=15)

- **01** Introduction
- **02 Setting Up The Calculator**
- **03 Memory Functions**
- **04 Time Value of Money**
- **05 Capital Budgeting**
- **06 Statistics (Standard Deviation)**
- **07 Linear Regression and Covariance**
- **08** Probabilities

Steps	Display
-------	---------

[CF] CF0 = 0.000000

[2nd][CE/C] CF0 = 0.000000 (Clear previous works)

[175][+/-][ENTER] CF0 = -175.000000

 $[\downarrow][25][ENTER]$ C01 = 25.000000

 $[\downarrow][\downarrow][100][ENTER]$ C02 = 100.000000

 $[\downarrow][\downarrow][75][ENTER]$ C03 = 75.000000

 $[\downarrow][\downarrow][50][ENTER]$ C04 = 50.000000

[NPV][10][ENTER] I=10.000000

 $[\downarrow][CPT]$ NPV=20.871184

Steps	Display
-------	---------

[CF] CF0 = 0.000000

[2nd][CE/C] CF0 = 0.000000 (Clear previous works)

[175][+/-][ENTER] CF0 = -175.000000

 $[\downarrow][25][ENTER]$ C01 = 25.000000

 $[\downarrow][\downarrow][100][ENTER]$ C02 = 100.000000

 $[\downarrow][\downarrow][75][ENTER]$ C03 = 75.000000

 $[\downarrow][\downarrow][50][ENTER]$ C04 = 50.000000

[IRR][CPT] IRR=15.067416

- **01** Introduction
- **02 Setting Up The Calculator**
- **03 Memory Functions**
- **04 Time Value of Money**
- **05 Capital Budgeting**
- **06 Statistics (Standard Deviation)**
- **07 Linear Regression and Covariance**
- **08 Probabilities**

Over the last 3 years Cerny Plc's stock returns have been as follows, calculate the mean return:

Year	% Return
1	6
2	8
3	4

May be entered as decimals or whole numbers

Steps	Display
-------	---------

[2nd][7] X01 = 0.000000

[2nd][CE/C] X01 = 0.000000 (Clear previous works)

[6][ENTER] X01 = 6.000000

 $[\downarrow][\downarrow][8][ENTER]$ X02 = 8.000000

 $[\downarrow][\downarrow][4][ENTER]$ X03 = 4.000000

[2nd][8] Lin

[2nd][ENTER]-Repeatedly 1-V (One variable)

 $[\downarrow][\downarrow] \qquad \qquad X = 6$

Over the last 3 years Cerny Plc's stock returns have been as follows, calculate the mean return:

May be entered as decimals or whole numbers

% Return	Probability
6	0.3
8	0.2
4	0.5

Must be entered as whole numbers

Mean with probabilities

高顿财经 GOLDEN FINANCE

Steps	Display
-------	---------

[2nd][7] X01 = 0.000000

[2nd][CE/C] X01 = 0.000000 (Clear previous works)

[6][ENTER] X01 = 6.000000

 $[\downarrow][30][ENTER]$ Y01 = 30.000000

 $[\downarrow][8][ENTER]$ X02 = 8.000000

 $[\downarrow][20][ENTER]$ Y02 = 20.000000

 $[\downarrow][4][ENTER]$ X03 = 4.000000

 $[\downarrow][50][ENTER]$ Y03 = 50.000000

[2nd][8] Lin

[2nd][ENTER]-Repeatedly 1-V (One variable)

 $[\downarrow][\downarrow]$ X = 5.400000

Population Standard Deviation & Sample Standard Deviation

Example:

Over the last 3 years Cerny Plc's stock returns have been as follows, calculate the standard deviation:

Year	% Return
1	6
2	8
3	4

May be entered as decimals or whole numbers

Population Standard Deviation & Sample Standard Deviation

Steps	Display
-------	---------

[2nd][7] X01 = 0.000000

[2nd][CE/C] X01 = 0.000000 (Clear previous works)

[6][ENTER] X01 = 6.000000

 $[\downarrow][\downarrow][8][ENTER]$ X02 = 8.000000

 $[\downarrow][\downarrow][4][ENTER]$ X03 = 4.000000

[2nd][8] Lin

[2nd][ENTER]-Repeatedly 1-V (One variable)

 $[\downarrow][\downarrow][\downarrow]$ S_x = 2.000000 (Sample Standard Deviation)

 $[\downarrow]$ $\sigma_x = 1.632993$ (Population Standard Deviation)

Population Standard Deviation & Sample Standard Deviation With Probabilities

Example:

Over the last 3 years Cerny Plc's stock returns have been as follows, calculate the mean return:

May be entered as decimals or whole numbers

% Return	Probability
6	0.3
8	0.2
4	0.5

Must be entered as whole numbers

Population Standard Deviation & Sample Standard Deviation With Probabilities

Steps	Display	
[2nd][7]	X01 = 0.000000	
[2nd][CE/C]	X01 = 0.000000 (Clear previous works)	
[6][ENTER]	X01 = 6.000000	
$[\downarrow]$ [30][ENTER]	Y01 = 30.000000	
$[\downarrow][8][ENTER]$	X02 = 8.000000	
$[\downarrow]$ [20][ENTER]	Y02 = 20.000000	
$[\downarrow][4][ENTER]$	X03 = 4.000000	
$[\downarrow]$ [50][ENTER]	Y03 = 50.000000	
[2nd][8]	Lin	
[2nd][ENTER]-Repeatedly 1-V (One variable)		
$[\downarrow][\downarrow][\downarrow]$	$S_x = 1.569919$ (Sample Standard Deviation)	
$[\downarrow]$	$\sigma_x = 1.562050$ (Population Standard Deviation)	

- **01** Introduction
- **02 Setting Up The Calculator**
- **03 Memory Functions**
- **04 Time Value of Money**
- **05 Capital Budgeting**
- **06 Statistics (Standard Deviation)**
- **07 Linear Regression and Covariance**
- **08 Probabilities**

Covariance and Correlation

Example:

Calculate the covariance between the return on the two stocks indicated below:

Year	Stock 1	Stock 2
1	+0.05	+0.07
2	-0.02	-0.04
3	+0.12	+0.18

May be entered as decimals or whole numbers

Covariance and Correlation

Steps	Display	
[2nd][7]	X01 = 0.000000	
[2nd][CE/C]	X01 = 0.000000 (Clear previous works)	
[5][ENTER]	X01 = 5.000000	
$[\downarrow]$ [7][ENTER]	Y01 = 7.000000	
$[\downarrow][2][+/-][ENTER]$	X02 = -2.000000	
$[\downarrow][4][+/-][ENTER]$	Y02 = -4.000000	
$[\downarrow]$ [12][ENTER]	X03 = 12.000000	
[↓][18][ENTER]	Y03 = 18.000000	
[2nd][8]	1-V	
[2nd][ENTER]-Repeatedly Lin		
$[\downarrow]$	n = 3 (number of paired observations)	
$[\downarrow]$	x= 5 (mean value of variable X)	

Covariance and Correlation

Steps	Disp	olay
$[\downarrow]$	$S_x = 7.000000$	(sample standard deviation of x)
$[\downarrow]$	$\sigma_{x} = 5.715476_{-}$	(population standard deviation of x)
$[\downarrow]$	y = 7.000000	(mean value of variable y)
$[\downarrow]$	$S_y = 11.000000$	(sample standard deviation of y)
[\psi]	$\sigma_{y} = 8.981462$	(population standard deviation of y)
[\psi]	a = -0.857143	(intercept of regression line)
$[\downarrow]$	b = 1.571429	(slope of regression line)
[\[\]	r = 1.000000	(sample correlation coefficient)

Cov
$$(x,y)=r_{x,y}S_xS_y=1x7x11=77$$
 (or as decimal 0.0077)

- **01** Introduction
- **02 Setting Up The Calculator**
- **03 Memory Functions**
- **04 Time Value of Money**
- **05 Capital Budgeting**
- **06 Statistics (Standard Deviation)**
- **07 Linear Regression and Covariance**
- **08** Probabilities

$$n factorial = n! = n(n - 1)(n - 2)(n - 3) 1$$

You want to assign four security analysts to cover four different industries. In how many ways can the assignments be made?

 Steps
 Display

 4[2nd][X]
 24.000000

$$_{n}C_{r} = \frac{n!}{(n-r)!r!}$$

You have 5 stocks and want to place orders to sell 3 of them. How many different combinations of 3 stocks are there?

 Steps
 Display

 5[2nd][+][3][=]
 10.000000

$$nPr = \frac{n!}{(n - r)!}$$

You have 5 stocks and want to sell 3, one at a time. The order of the stock sales matters. How many ways are there to choose the 3 stocks to sell in order?

Steps 5[2nd][-][3][=]

Display 60.000000

