functional analysis study note

Zehao Li

October 2025

0.1Weak topology on Hilbert Space

Definition 1. A net (ξ_i) converge to ξ in weak topology if and only if $(\xi_i|\eta) \to$ $(\xi|\eta)$ for any $\eta \in H$.

Definition 2. Note $H = H^*$ for Hilbert space, we have

$$V(\xi_0, \eta_1, \dots \eta_n, \varepsilon) = \{ \xi \in H | | ((\xi - \xi_0) | \eta_i) | < \varepsilon \}$$

for $\eta_i \in H, \varepsilon > 0$

Hence, by Alaoglu, the unit ball $B_1 = \{\xi \in H | \|\xi\| \le 1\}$ is compact in the weak topology.

Note: if dim $H = \infty$, then H is not locally compact in norm topology, weak topology is strictly weaker than norm topology.

0.2**Orthonormal Basis**

Definition 3. Let H be a Hilbert space, a subset $B = \{\xi_i\}$ is called ONB if $(\xi_i|\xi_i) = \delta_{ij}$

B is ONB if B is an ONS and span(B) is dense in H.

Note ONB is not a basis if dim $H = \infty$.

Definition 4. Gram-Schmidt procedure: Let (η_n) be a sequence of linearly in $dependent\ vector\ in\ H$.

define: $\xi_1 = \frac{\eta_1}{\|\eta_1\|}$

 $\hat{\xi}_{m+1} = \eta_{m+1} - \sum_{j=1}^{m} (\eta_{m+1} | \xi_j) \xi_j$ Then, $\xi_{m+1} = \frac{\hat{\xi}_{m+1}}{\|\hat{\xi}_{m+1}\|}$ Then $\{\xi_n\}$ is an ONS such that $span\{\xi_1, \xi_2 \dots \xi_n\} = span\{\eta_1, \eta_2 \dots \eta_n\}$ for any n.

Also, easy to prove $(\xi_i|\xi_j) = \delta_{ij}$

corollary 1. Let $M \subset H$ be a finite dim subspace, then let $\{\xi_1, \dots \xi_n\}$ be an ONB of M. Then an Orthogral project $p: H \to M$ is given by $p(\xi) =$ $\sum_{j=1}^{n} (\xi | \xi_j) \xi_j.$

Proof. Check $(\xi - p(\xi)) \perp M$.

$$(\xi - p(\xi)|\xi_k) = (\xi|\xi_k) - \sum_{j=1}^{n} (\xi|\xi_j)(\xi_j|\xi_k) = 0$$

Theorem 1. Every Hilbert Space has an ONB

Proof. Case 1: $H = \{0\}, B = \emptyset$

Case 2: $H \neq \{0\}$, there exists $\xi \neq 0$.

Then $\{\frac{\xi}{\|\xi\|}\}$ is an ONS, then use Zorn lemma to get the sequence can generate whole space.

Theorem 2. Bessel's inequality:

H be a Hilbert space, (ξ_{α}) ONS, then

$$\sum_{\alpha \in A} |(\xi | \xi_{\alpha})|^2 \le ||\xi||^2, \forall \xi \in H$$

More, $\{\alpha \in A | (\xi | \xi_{\alpha}) \neq 0\}$ is at most countable.

Proof. Let $F \subset A$ be finite, then

$$0 \le \|\xi - \sum_{\alpha \in F} (\xi |\xi_{\alpha}) \xi_{\alpha}\|^{2} = \|\xi\|^{2} + \sum_{\alpha \in F} |(\xi |\xi_{\alpha})|^{2} - 2Re(\xi |\sum_{\alpha \in F} (\xi |\xi_{\alpha}) \xi_{\alpha})$$

$$= \|\xi\|^{2} + \sum_{\alpha \in F} |(\xi |\xi_{\alpha})|^{2} - 2\sum_{\alpha \in F} |(\xi |\xi_{\alpha})|^{2}$$

$$= \|\xi\|^{2} - \sum_{\alpha \in F} |(\xi |\xi_{\alpha})|^{2}$$

Since $\sum_{\alpha \in A} |(\xi | \xi_{\alpha})|^2$ is bounded, so the non-zero term at most be countable.

Theorem 3. Let $(\xi_{\alpha}) \in A$, be an ONS on H, then TFAE:

- 1. If $(\xi|\xi_{\alpha}) = 0, \forall \alpha \in A, then \xi = 0$
- 2. Parseval identity:

$$\|\xi\|^2 = \sum_{\alpha \in A} |(\xi|\xi_\alpha)|^2, \forall \xi \in H$$

3. $\forall \xi \in H$, we have $\xi = \sum_{\alpha \in A} (\xi | \xi_{\alpha}) \xi_{\alpha}$ where at most countably $(\xi | \xi_{\alpha}) \neq 0$ and the series converges in $\| \| \|$.

Remark 1. the theorem is a charaterization of when ONS is an ONB.

Proof. beginproof We prove the equivalence in the order: $(1) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$.

Step 1: $(1) \Rightarrow (3)$

Assume (1) holds: the only vector orthogonal to all ξ_{α} is zero. Let $\xi \in H$. By Bessel's inequality, we have

$$\sum_{\alpha \in A} |(\xi \mid \xi_{\alpha})|^2 \le ||\xi||^2 < \infty.$$

This implies that the set $\{\alpha \in A : (\xi \mid \xi_{\alpha}) \neq 0\}$ is at most countable (since an uncountable sum of positive numbers diverges unless all but countably many terms are zero).

Enumerate this countable set as $\{\alpha_n\}_{n=1}^{\infty}$ (finite or infinite). Define the partial sum

$$s_N = \sum_{n=1}^{N} (\xi \mid \xi_{\alpha_n}) \xi_{\alpha_n}.$$

The sequence (s_N) is Cauchy in H because for M > N,

$$||s_M - s_N||^2 = \sum_{n=N+1}^M |(\xi \mid \xi_{\alpha_n})|^2 \to 0 \text{ as } N, M \to \infty,$$

by the convergence of the series in Bessel's inequality. Since H is complete, $s_N \to s$ for some $s \in H$.

Let $\eta = \xi - s$. We claim $\eta = 0$. Indeed, for any $\alpha \in A$,

$$(\eta \mid \xi_{\alpha}) = (\xi \mid \xi_{\alpha}) - (s \mid \xi_{\alpha}).$$

But $(s \mid \xi_{\alpha}) = \lim_{N \to \infty} (s_N \mid \xi_{\alpha})$. If $\alpha = \alpha_n$, then $(s_N \mid \xi_{\alpha_n}) \to (\xi \mid \xi_{\alpha_n})$ as $N \to \infty$. If $\alpha \notin \{\alpha_n\}$, then $(s_N \mid \xi_{\alpha}) = 0$ for all N, so $(s \mid \xi_{\alpha}) = 0 = (\xi \mid \xi_{\alpha})$. Thus $(\eta \mid \xi_{\alpha}) = 0$ for all $\alpha \in A$. By (1), $\eta = 0$, so $\xi = s = \sum_{\alpha \in A} (\xi \mid \xi_{\alpha}) \xi_{\alpha}$. This proves (3).

Step 2: $(3) \Rightarrow (2)$

Assume (3): $\dot{\xi} = \sum_{\alpha \in A} (\xi \mid \xi_{\alpha}) \xi_{\alpha}$ with norm convergence. Let $\{\alpha_n\}$ be the countable set where $(\xi \mid \xi_{\alpha_n}) \neq 0$. Then

$$\xi = \lim_{N \to \infty} \sum_{n=1}^{N} (\xi \mid \xi_{\alpha_n}) \xi_{\alpha_n}.$$

Taking the norm squared and using the continuity of the inner product,

$$\|\xi\|^2 = \left\|\lim_{N\to\infty} \sum_{n=1}^N (\xi\mid\xi_{\alpha_n})\xi_{\alpha_n}\right\|^2 = \lim_{N\to\infty} \left\|\sum_{n=1}^N (\xi\mid\xi_{\alpha_n})\xi_{\alpha_n}\right\|^2.$$

By orthonormality,

$$\left\| \sum_{n=1}^{N} c_n \xi_{\alpha_n} \right\|^2 = \sum_{n=1}^{N} |c_n|^2,$$

so

$$\|\xi\|^2 = \lim_{N \to \infty} \sum_{n=1}^N |(\xi \mid \xi_{\alpha_n})|^2 = \sum_{\alpha \in A} |(\xi \mid \xi_{\alpha})|^2.$$

Thus Parseval's identity holds. This proves (2).

Step 3: $(2) \Rightarrow (1)$

Assume (2): $\|\xi\|^2 = \sum_{\alpha \in A} |(\xi \mid \xi_{\alpha})|^2$ for all $\xi \in H$. Suppose $(\xi \mid \xi_{\alpha}) = 0$ for all $\alpha \in A$. Then the right-hand side of Parseval's identity is 0, so

$$\|\xi\|^2 = 0 \implies \xi = 0.$$

This proves (1).

Thus,
$$(1) \Leftrightarrow (2) \Leftrightarrow (3)$$
, as required.

Theorem 4. A Hilbert Space H is separable if and only if H has a countable ONB if and only if every ONB is countable.

Proof.

 $a \to b$: Suppose H is separable. Then there exists a countable dense subset $\{x_n\}_{n=1}^{\infty}$. WLOG (x_n) is linearly independent

Apply the Gram-Schmidt to the sequence $\{x_n\}$.

This yields a countable orthonormal system $\{\xi_n\}_{n=1}^{\infty}$ such that

$$\operatorname{span}\{\xi_n\}_{n=1}^N = \operatorname{span}\{x_n\}_{n=1}^N$$

For any $N \in \mathbb{N}$. Thus, $\operatorname{span}\{\xi_n\} \perp = \operatorname{span}\{x_n\}^{\perp} = \{0\}$ Thus, $\{\xi_n\}$ is a countable ONB for H.

 $b \to c$: Let H be a Hilbert space with one countable orthonormal basis. Since all ONB have the same cardinality for H, we have every ONB in H is countable

- 1. $dim(H) < \infty$ then an ONB is a basis, so the claim above is true.
- 2. $dim(H) = \infty$, let $\{\xi_{\alpha}\}_{{\alpha} \in A}$ and $\{\eta_{\beta}\}_{{\beta} \in B}$ be 2 ONB.

Let $A_{\beta} = \{ \alpha \in A | (\xi_{\alpha} | \eta_{\beta}) \neq 0 \}$, since $\| \eta_{\beta} \|^2 = \sum_{\alpha \in A} | (\xi_{\alpha} | \eta_{\beta}) |^2$, we have that A_{β} is countable.

Claim $A = \bigcup_{\beta} A_{\beta}$

- 1. $A \supset \bigcup_{\beta} A_{\beta}$ is obvious.
- 2. Want to show $A \subset \bigcup_{\beta} A_{\beta}$. Let $\alpha \in A$ then $\|\xi_{\alpha}\|^2 = \sum_{\beta \in B} |(\xi_{\alpha}|\eta_{\beta})|^2$ so there exists $\beta \in B$ such that $(\xi_{\alpha}|\eta_{\beta}) \neq 0$, i.e.e $\alpha \in A_{\beta}$.

If A_{β} is finite, add countable many element from A, we assume each A_{β} is countably infinite.

Suppose $B = \bigcup_{s \in S} B_s$ where B_s is countably infinite and

$$|B| = |S \times N| = |N|$$
 if $|S| < \infty$, $|B| = |S \times N| = |S|$ if $|S| = \infty$

since a countable set can be written as a countable infinite union of disjoint

countable sets, we have |B|=|S| implies $B=\bigcup_{s\in S}B_s=\bigcup_{\beta\in B}B_\beta$ Then the map $B_\beta\to A_\beta$ is bijection. Thus, the map $B\to A$ is well defined and |A| = |B|

 $c \to a$: Suppose every orthonormal basis of H is countable. Then in particular, there exists a countable orthonormal basis $\{\xi_n\}_{n=1}^{\infty}$

then $\mathbb{Q} + i\mathbb{Q}$ span of $\{\xi_n\}_{n=1}^{\infty}$ is a countable dense subset.

Therefore, H is separable.