Zijie Zhou

zhou.zijie@northeastern.edu — https://zijiezhou.me

Education

Northeastern University, Boston, MA M.S. in Software Engineering Systems, 2025 Arizona State University, Tempe, AZ B.S. in Computer Science, 2022

Research Experience

Research Assistant, Number Project (with Prof. Robin Hillyard), 2024–present

- Contributed to a Scala-based numerical library combining exact arithmetic, fuzzy numbers, error bounds, and lazy evaluation.
- Implemented Eq, Order/PartialOrder, and Show instances for numeric types; integrated Cats Laws + Discipline to test algebraic laws (reflexivity, symmetry, transitivity, order compatibility).
- Designed FuzzyNumber and Fuzziness abstractions (Box/Gaussian) as semigroup/monoid structures for error propagation (e.g., variance addition under summation, relative error addition under multiplication).
- Applied Foldable and Parallel to separate nominal values from error folding, enabling multi-core parallelism and pipeline evaluation of numeric expressions.
- Ongoing work includes further development of categorical semantics for error propagation and preparation of a technical report.

Relevant Coursework and Readings

Readings:

• Steve Awodey, Category Theory

1

- Benjamin C. Pierce, Types and Programming Languages
- Robert Harper, Practical Foundations for Programming Languages
- Noel Welsh and Dave Gurnell, Scala with Cats

Coursework:

- Big Data Systems Engineering with Scala (2025)
- Enterprise Software Design (2025)
- Principles of Programming Languages (2021)

Publications and Talks

Work in progress

_

Honors and Awards

• Successful Participant, Mathematical Contest in Modeling (MCM), 2021

Research Interests

Programming Languages, Type Theory, Category Theory, Functional Programming, Homotopy Type Theory (HoTT). Focus on:

- Type system foundations for extensible data types and modular mathematics
- Algebraic abstractions in numeric computing and error analysis
- Bridging functional programming libraries (Cats/Spire) with type-theoretic semantics