

NCEAC.FORM.001-D

COURSE DESCRIPTION: EE-3009 Computer Architecture (CA)

COURSE DESCRIPTION FORM

INSTITUTION FAST School of Computing, National University of Computer and Emerging Sciences, Karachi

PROGRAM TO BE EVALUATED

BS-School of Computing-Spring 2025

Course Description

Course Description	JII					
Course Code	EE2013					
Course Title	Computer Architecture					
Credit Hours	3					
Prerequisites by Course(s) and Topics	DLD,COAL					
Grading Policy	Absolute grading					
Policy about missed assessment items in the course	Retake of missed assessment items (other than midterm/ final exam) will not be held. For a missed midterm/ final exam, an exam re-take/ pre-take application along with necessary evidence are required to be submitted to the department secretary. The examination assessment and retake committee will decide the exam re-take/ pre-take cases.					
Course Plagiarism Policy	Plagiarism in project or midterm/ final exam may result in F grade in the course. Plagiarism in an assignment will result in zero marks in the whole assignments category.					
Assessment Instruments with						
Weights (homework,	Assessment Item	Number	Weight (%)			
quizzes, midterms,	Assignment	3	10%			
final, programming	Quiz	3	10%			
assignments, lab work, etc.)	Midterm Exam	2	30%			
,,	Final Exam	1	50%			
Course Instructors	Aashir Mahboob, Kashan H	ussain , Shoa	aib Rauf & Dr Nausheen			
Lab Instructors (if any)						
uriy)						
Course Coordinator	Aashir Mahboob					

NCEAC.FORM.001-D

Current Catalog Description	 Get a working knowledge of architecture of subsystems and the general principles that affect their performance Get knowledge about advanced architectural features that boost the performance of computers with pipelining and superscalar architecture Analyze the performance of systems and quantify the performance measurements Study the major trends towards parallelism with respect to a single processor and multicore architecture
Textbook Reference Books	Computer Architecture: A Quantitative Approach John L. Hennessy & David A. Patterson 6th Edition Computer Organization & Architecture William Stallings Pearson, 9th Edition

S#	CLO	Domain	Taxonomy level	PLO
1	Describe the performance evaluation criteria of computers and recognize performance of different computing systems.	Cognitive	2	1
2	Describe advanced concepts in computer architecture like multi-cycle pipeline, dynamic scheduling, dynamic branch prediction, loop unrolling, super-scalar, multi-issue and multi-core processors and identify their impact on a given machine.	Cognitive	2	1
3	Analyze existing bottlenecks in computer architecture designs and categorize potential solutions, virtual memory contribution toward performance improvement of a computing machine.	Cognitive	4	2

Program Learning Outcome (PLO)	Description
	PLO-01: Computing Knowledge: An ability to apply knowledge of mathematics, science computing fundamentals and an engineering specialization to the solution of complex computing problems.
	PLO-02: Problem Analysis: Identify, formulate, research literature, and analyze complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.

	Topics to be covered				
	List of Topics	Week	Chapter/ Appendix	Contact Hours	CLO(s)
	Introduction (1 Lecture)				
	Classes of Computers (2 Lecture)	1	1	3	1
Topics covered in the course with number of	Performance Metrices of a system (2 Lectures)				
lectures on each topic (Assume 16 weeks of instruction and 1 hour lecture duration)	Measuring and Reporting Performance (1 Lecture)	2 1 3		3	1
	Amdahl Law, CPU Performance Equation (2 Lecture)				
	Chapter related fallacies and pitfalls (1 Lecture)	3	1	3	1
	Principals of ISA, internal Storage, Memory addressing (1.5 Lecture) Control Flow Instructions, Role of Compilers, IS encoding (1.5 Lecture)	4	A	3	3

NCEAC.FORM.001-D

		.		
Register Allocation (1 Lecture)				
MIPS Architecture				
(1 Lecture)	5	Α	3	2
Instruction Usage , Chapter related fallacies and pitfalls (1 Lecture)				
WEEK 6	MID -	1 Exam		
Pipelining Basic concepts, limitations, Major Hazards of pipelining & Internal Forwarding (3 Lectures)				
	7	С	3	3
Exception in Pipeline, Precise Exceptions & Floating-point Pipeline (3 Lectures)	8	С	3	3
MIPS R-4000 Pipeline, Superscalar and VLIW architecture. (3 Lectures)	9	С	3	2

Harland Congreby birosche Asserbation Count	September 1				
	Instruction Level Parallelism, data and name dependance, Loop unrolling (3 Lectures)	10	3	3	3
	Week 11	MID -	2 Exam		
	Dynamic Scheduling -Scoreboarding technique and Tomasulo's Approach (3 Lectures)	12	3&C	3	1
	Basics of Caches, Caches miss, hits & Organization (3 Lectures)	13	В	3	3
	Four memory hierarchy questions, Six basic cache optimizations (3 Lectures)		В	3	3
	Advance Cache Optimizations, Virtual memory , DRAM optimizations (3 Lectures)	15	В	3	3

	Simultaneous Multit Multiprocessors Thr	hreading (SMT), read-Level parallelism	16 5		3	3
	(3 Lectures)					
	Total			16	48	
Laboratory Projects/Experime nts Done in the Course	None.					
Programming Assignments Done in the Course	None.					
Class Time Spent (in percentage)	Theory (%)	Problem Analysis (%)	Soluti	ion Design (%)		and Ethical ues (%)
	50	25		20		5

Instructor Name: <u>Aashir Mahboob</u>

Instructor Signature: Aashir Mahboob

Date: 16th-January-2025