Лекция— 3 центр обработки ДАННЫХ (DataCenter)

1

Предназначение ЦОД

Для чего нужен ЦОД?

Приведем требования, которые порождают основные функции центра обработка данных:

- Защита размещённого оборудования от воздействия окружающей среды;
- Обеспечение оборудования качественным и бесперебойным электропитанием;
- Отвод выделяемого тепла, вентиляция кондиционированным воздухом;
- Управление физическим доступом к оборудованию, его охрана.

Услуги дата-центров

- Виртуальный хостинг
- Виртуальный сервер
- Выделенный сервер
- Colocation
- Телекоммуникации
- Dedicated area

Современный ЦОД как ИТэкосистема

Центр обработки данных (ЦОД)

ЦОД

Совокупность оборудования, аппаратуры и сооружений, которая содержит в себе ресурсы хранения, обработки, и передачи данных по сети, а также другие IT-ресурсы для централизованного предоставления мощностей по обработке данных

- Ключевые элементы ЦОД
 - Приложение
 - Система управления базами данных (СУБД)
 - Хост или Сервер
 - Сеть
 - Система хранения данных

Эти элементы работают вместе для соответствия требованиям по обработке данных

Ключевые характеристики ЦОД

Доступность (Availability) Безопасность Целостность данных (Security) (Data Integrity) Управляемость (Manageability) Ёмкость Производительность (Performance) (Capacity) Масштабируемость (Scalability)

Ключевые требования к ЦОД

- Доступность учитывается время и удобство доступа для клиента
- Безопасность как от несанкционированного доступа, так и от случайного доступа к ресурсам, не предназначенным данному клиенту
- Масштабируемость операции ЦОД должны включать возможность находить дополнительные ресурсы в случае необходимости
- Производительность и объем должна быть оптимальной для высокоскоростной обработки запросов.
- Целостность данных наличие средств, гарантирующих правильное хранение и передачу данных.
- УПРАВЛЯЕМОСТЬ может достигаться путем автоматизации и снижения роли человека при выполнении стандартных заданий

Инфраструктура управления хранением в ЦОД

- Ключевые активности по управлению ЦОД
 - Мониторинг
 - Непрерывный процесс сбора информации о различных элементах и сервисах, работающих в ЦОД
 - Формирование отчетов (Reporting)
 - Сведения о производительности ресурсов, емкости и использовании
 - Предоставление (Provisioning)
 - Конфигурация и выделение ресурсов с целью соответствия запросам по емкости, доступности, производительности и другим требованиям
- Виртуализация и облачные вычисления в корне изменили подход к управлению и предоставлению ресурсов ЦОД

Обзор активностей по управлению в ЦОД

- Ключевые активности по управлению в ЦОД:
 - Мониторинг и формирование предупреждений (Monitoring and Alerting)
 - Формирование ОТЧЕТОВ (Reporting)
 - Управление доступностью (Availability Management)
 - Управление доступным пространством (Capacity Management)
 - Управление производительностью (Performance Management)
 - Управление безопасностью (Security Management)

Мониторинг

■ ВЫЧИСЛИТЕЛЬНЫЕ системы, СХД и сети являются ключевыми компонентами для мониторинга

	Ключевые параметры для мониторинга	Описание
	Доступность (Accessibility)	Доступность компонента для выполнения необходимой операции
/	Доступное пространство (Capacity)	Количество доступных ресурсов Например: свободное пространство, доступное на файловой системе или RAID группе
	Производительн ость (Performance)	Насколько эффективно работают различные компоненты
sion	Безопасность (Security)	Механизм для отслеживания и предотвращения неавторизованного доступа

EMC Proven Profession

Мониторинг

- мониторинг параметров питающей электрической сети и состояния вводных выключателей;
- контроль состояния силовых трансформаторов;
- мониторинг состояния и параметров работы источников бесперебойного питания;
- кøнтроль потребления тока отходящих линий электроснабжения;
- мониторинг состояния и параметров работы холодильных машин, кондиционеров и вентиляционных установок;
- мониторинг климатических параметров воздуха и протечек жидкости в ЦОД;
- контроль состояния систем пожарной сигнализации и пожаротушения.

Предупреждения о происшествиях (Alerting of Events)

- Формирование предупреждений (Alerting) является интегральной частью мониторинга
- различные уровни важности различным предупреждениям

	Уровень предупреждения на основании важности	Описание
	Информационное предупреждение	Предоставляет полезную информацию и может не требовать вмешательства администратора Например: создание зоны или LUN
	·	Требует внимание администратора Например: файловая система заполнилась
oven Profes	Фатальное предупреждение	Требует <u>незамедлительного</u> внимания администратора Например: отключение электропитания/поломка диска/сбой памяти

Формирование отчетов (Reporting)

 Формирование отчетов об использовании ресурсов в классическом ЦОД подразумевает отслеживание и сбор информации от различных компонент/процессов

	110771110110111/1	
	Тип отчета	Описание
	Планирование доступного пространства	Предоставляет текущую и историческую информацию об использовании СХД, файловой системы, таблиц баз данных, портов и т.д.
	Формировани е счетов к оплате (Chargeback)	Предоставляет информацию о выделении или использовании компонент инфраструктуры классического ЦОД различным подразделениям и группам пользователей
	Производитель ность (Performance)	Предоставляет данные о производительности различных компонент инфраструктуры в классическом ЦОД

Управление доступностью (Availability Management)

- Устанавливает политики для всех конфигураций с целью достижения высокой доступности на основании требований к уровню обслуживания
- Обеспечивает высокую доступность посредством:
 - Исключения единых точек сбоя посредством конфигурации:
 - ■Двух или более HBAs/NICs
 - ■ПО для управления путями ввода-вывода (Multipathing software)
 - ► RAID защиты
 - ■Излишних фабрик (Redundant Fabrics)
 - Выполнение бэкапа и репликации

Управление производительностью (Performance Management)

- Конфигурация/разработка оптимальной операционной эффективности
- Анализ производительности
 - Идентификация «узких мест»
 - Настройка расширений производительности
- Ключевые активности
 - Вычислительная система: управление томами, планирование структур баз данных
 - Массив хранения: Выбор типа RAID, конфигурация логических модулей (LUNs) и выбор front-end портов
 - SAN: Проектирование, обеспечивающее достаточное число ISL при необходимой пропускной способности

Управление безопасностью (Security Management)

- Предотвращает неавторизованные действия или доступ
- Ключевые активности:
 - Вычислительные устройства
 - Создание пользовательских учетных записей и привилегий
 - Массив хранения
 - Маскировка логических модулей (LUN masking) предотвращает повреждение данных (data corruption) на СХД, ограничивая доступ вычислительных устройств к заданному набору логических устройств
 - SAN
 - Конфигурация зонирования для ограничения действий неавторизованных HBAs

Классический ЦОД (CDC)

Ключевые элементы ЦОД

Приложение

Система управления базами данных (СУБД)

Хост или Сервер

Сеть

Система хранения данных

Классический ЦОД

Инженерные системы ЦОД

Основа любого дата-центра — это инженерные системы, которые представляют собой сложное профессиональное оборудование, которое недоступно для покупки в локальную серверную. То, как будет работать ЦОД, зависит от правильной реализации инженерных систем. Всего можно выделить 5 главных инженерных систем:

- Электроснабжение
- Кондиционирование
- Безопасность
- Сетевая инфраструктура
- Администрирование

Основные схемы резервирования систем ЦОД

- Кроме правильной организации работы дата-центра необходимо организовать резервирование всех систем для повышения надежности. Все схемы резервирования обозначают символом N, происходящим от слова «need» (необходимость).
- N
- N+1
- 2N
- \rightarrow 2N+1
- -2(N+1)
- 3/2N

Интеллектуальные системы хранения данных

(ISS -Intelligent Storage Sistem)

Интеллектуальная система хранения данных — это многофункциональный RAID массив, предоставляющий оптимизированные мощности по обработке запросов на чтение/запись.

- Обеспечивает кэш-пространство и несколько путей для чтения/записи для улучшения производительности
- Обладает операционным окружением, которое обеспечивает
 - ▶ Интеллектуальное управление кэшем
 - Управление ресурсами массива
 - Соединение с различными хостами
- Поддерживает флэш-диски, виртуальное предоставление пространства (virtual provisioning) и автоматизированное многоуровневое хранение данных (automated storage tiering)

Ключевые компоненты ISS

Front End

Кэш

Интеллектуальная система хранения данных

Back End

Хост Интеллектуальная система хранения данных

Выделение пространства для хранения данных хосту (Storage Provisioning)

Процесс выделения хосту ресурсов для хранения данных на основании требований запущенных на хосте приложений по емкости, доступности и производительности

- Может быть реализован в двух вариантах:
 - Традиционное
 - Виртуальное

Защита данных в кэше

- Защита данных в кэше от сбоев электросети или сбоев в работе самого кэша
 - Зеркалирование кэша
 - Обеспечивает защиту данных от сбоев в работе самого кэша
 - Каждая операция записи в кэш осуществляется в две различные локации на двух различных единицах памяти
 - Сброс кэша (Cache vaulting)
 - Обеспечивает защиту данных от сбоев электропитания
 - В случае сбоя электропитания данные, не записанные на диск, сгружаются на специально выделенный набор дисков, называемый дисками для сброса (vault drives)

Традиционное предоставление пространства для хранения данных

Расширение LUN (MetaLUN)

МetaLUN — это метод расширения логического модуля (LUN), который требует дополнительного пространства или производительности

- Создается посредством комбинации двух или более LUN
- MetaLUN-ы могут быть конкатенированными (concatenated) или распределенными (striped)

Concatenated MetaLUN

Striped MetaLUN

MetaLUN

31

- Конкатенированный metaLUN
 - Предоставляет только
 дополнительное пространство, но не
 дает прироста производительности
 - Расширение происходит быстро, поскольку данные не перераспределяются
- Распределенный metaLUN
 - Обеспечивает увеличение пространства и производительности
 - Расширение происходит медленно ввиду перераспределения данных

Concatenated MetaLUN

Striped MetaLUN

Типы ISS: Системы хранения данных корпоративного (high-end) уровня

- Active-active системы, предназначенные для использования большими корпоративными приложениями
 - ▶ Выполняют I/O на LUN-ы через все имеющиеся пути
- Подобные массивы предоставляют следующие функции:
 - **Большие** пространство для хранения и кэш
 - Архитектура с защитой от сбоев
 - Подключение к mainframe и другим системам
 - Многочисленные front-end порты и протоколы интерфейсов
 - Возможность обрабатывать большое число параллельных I/O операций
 - Поддержка локальной и удаленной репликаций

Active-Active конфигурация

Типы ISS: Системы хранения данных для среднего бизнеса

- Active-passive системы, предназначенные для работы с приложениями средней или малой нагрузки
 - ▶ Выполняют I/О операции к LUN-ам только через активные пути
- Обычно имеют два контроллера, каждый из которых обладает кэшем, RAID контроллером и интерфейсом дисковых устройств
- Меньшее число front-end портов, емкости, и кэш пространства в сравнении с корпоративными системами
- Поддержка локальной и удаленной репликации

Active-Passive конфигурация

Итоги

Основные понятия, раскрытые в данном модуле:

- Ключевые характеристики ЦОД
- Обзор активностей по управлению ЦОД
- Интеллектуальные системы хранения (ISS)