Modèles à agents

Adrien Carrel 2020

CentraleSupelec - sous la supervision de Damien Challet

Table des matières

- Calibration
- Comportement des investisseurs
 - Exploration
 - Relation prix / inventaire
- Prédiction

Calibration

Hypothèse

Existence de deux types de traders :

- noise trader : leur influence sur le marché est semblable à du bruit
- fundamentalist : supposent l'existence d'un prix fondamental et basent leur stratégie dessus

Paramètres, variables

Choix des paramètres (proche des estimations de l'or) :

```
\begin{cases} b = 0.003 & \text{herding tendency} \\ \epsilon_1 = 3 & \text{ratio li\'e \`a la probabilit\'e de } 1 \rightarrow 2 \\ \epsilon_2 = 4 & \text{idem } 2 \rightarrow 1 \\ N = 1000 & \text{grand pour que } z = \frac{n}{N} \approx \text{variable continue} \\ \text{NIT} = 1000000 & \text{grand nombre d'it\'eration} \\ z_0 = 0.5 & \text{prop initiale d'agent dans l'\'etat 1 (noise trader)} \\ \text{choix bruit} & \text{loi de } \eta \text{ (spin noise / uniform noise)} \end{cases}
```

Equations

On définit $\Delta_t = \frac{2}{bN^2}$, $a_1 = b\epsilon_1$ et $a_2 = b\epsilon_2$.

Avec (λ_t) bruit blanc, la proportion d'agent dans l'état 1 au cours du temps vérifie l'équation :

$$z_{t+\Delta_t} = z_t + \Delta_t(a_1 - (a_1 + a_2)z_t) + \sqrt{2b\Delta_t z_t(1 - z_t)}\lambda_t$$
 (1

Equations

Supposons que la variation du mood des noises traders suit une loi η .

On considèrera deux types de loi pour η :

- spin noise : $\eta \sim$ Rademacher
- uniform noise : $\eta \sim \mathcal{U}([-1,1])$

Equations

<u>Approximation</u>: le mood des noise traders varie plus vite que la proportion des traders dans chaque stratégie.

Ainsi, on obtient le log-rendement en fonction du temps :

$$r_{t} = r_0 \frac{z(t)}{1 - z(t)} \eta_t \tag{2}$$

Simulation du processus

FIGURE 1 – Paramètres : N=1000, NIT=1000000, b=0.003, ϵ_1 =3, ϵ_2 =4.

Calibration

Posons $\sigma = |r| = r_0 \frac{z}{1-z}$ dans le cas d'un spin noise.

On a alors la densité de σ :

$$p(\sigma) = \frac{1}{r_0} \frac{1}{\mathcal{B}(\epsilon_1, \epsilon_2)} \left(\frac{\sigma}{r_0} \right)^{\epsilon_1 - 1} \left(\frac{r_0}{r_0 + \sigma} \right)^{\epsilon_1 + \epsilon_2}$$

où la fonction beta est définie par :

$$\forall x, y > 0, \mathcal{B}(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

Stratégie 1: Loi puissance

Asymptotiquement, loi puissance pour un spin noise :

$$p(\sigma) \propto \left(\frac{1}{\sigma}\right)^{\epsilon_2 + 1}$$
 (3)

Package powerlaw

Erreur estimée : \pm 1.2 (malgré aide)

Equivalent similaire avec un uniform noise

Stratégie 2 : Méthode des moments

Soient ϵ_1 et ϵ_2 deux paramètres à estimer.

Système de deux équations à deux inconnues :

$$\begin{cases} \mathbb{E}[r] = g_1(\epsilon_1, \epsilon_2) \\ \mathbb{E}[r^2] = g_2(\epsilon_1, \epsilon_2) \end{cases}$$

Or $\frac{\sigma}{r_0}\sim \beta'(\epsilon_1,\epsilon_2)$ (loi beta prime), avec la densité de $\beta'(a,b)$ étant :

$$f(x) = \frac{1}{\mathcal{B}(a,b)} x^{a-1} \left(\frac{1}{1+x}\right)^{a+b} \mathbf{1}_{]0,+\infty[}$$

Stratégie 2 : Méthode des moments

Pour $\epsilon_2 > 3$,

$$\begin{cases}
\mathbb{E}[\sigma] = 1 \\
\mathbb{V}[\sigma] = \nu = \frac{(\epsilon_1 + \epsilon_2 - 1)}{(\epsilon_2 - 2)\epsilon_1} \\
\mathbb{E}[\sigma^3] = \xi = \frac{(\epsilon_2 - 1)^2 (\epsilon_1 + 1)(\epsilon_1 + 2)}{\epsilon_1^2 (\epsilon_2 - 2)(\epsilon_2 - 3)}
\end{cases}$$

ďoù

$$\begin{cases} \epsilon_{1}(\epsilon_{2}\nu - 2\nu - 1) = \epsilon_{2} - 1 \\ \xi \epsilon_{1}^{2}(\epsilon_{2}^{2} - 5\epsilon_{2} + 6) = (\epsilon_{2}^{2} - 2\epsilon_{2} + 1)(\epsilon_{1}^{2} + 3\epsilon_{1} + 2) \end{cases}$$

$$\implies \begin{cases} \epsilon_{1} = \frac{2(-\nu^{2} - 2\nu + \xi - 1)}{\nu^{2} + \nu \xi + 2\nu - \xi + 1} \\ \epsilon_{2} = \frac{4\nu^{2} + 7\nu - 3\xi + 3}{2\nu^{2} + 3\nu - \xi + 1} \end{cases}$$

Stratégie 2 : Méthode des moments

FIGURE 2 – 100 calibrations, $\epsilon_1=3$, $\hat{\epsilon_1}\approx 5.52$, $\epsilon_2=4$, $\hat{\epsilon_2}\approx 6.84$

Stratégie 3 : Méthode du mode-moyenne

On sait que $\frac{\sigma}{r_0}\sim \beta'(\epsilon_1,\epsilon_2)$ On a donc :

•
$$\mathbb{E}[\frac{\sigma}{r_0}] = \frac{\epsilon_1}{\epsilon_2 - 1}$$

• Le mode de $\frac{\sigma}{r_0}$ s'écrit : $\frac{\epsilon_1-1}{\epsilon_2+1}$

De nouveau, on a un système de deux équations à deux inconnues.

Le calcul du mode se fait aux valeurs de σ à 10^{-6} près

Données des 150 calibrations - Mode-Moyenne

16/48

Stratégie 4 : Maximum de vraisemblance

La log-vraisemblance du signal σ normalisé est donnée par :

•
$$log(\mathcal{L}) = \mathcal{F}(\epsilon_1, \epsilon_2, N) + \mathcal{G}(\epsilon_1, \epsilon_2, N, \sigma)$$

· Avec:
$$\mathcal{F} = -Nlog(\mathcal{B}(\epsilon_1, \epsilon_2)) + N\epsilon_2 log(\frac{\epsilon_2 - 1}{\epsilon_1})$$

· et
$$\mathcal{G}=(\epsilon_1-1)\sum_{i=0}^{N-1}log(\sigma_i)-(\epsilon_2+\epsilon_1)log(\frac{\epsilon_2-1}{\epsilon_1}+\sigma_i)$$

Nous avons à la fois tenté de trouver le maximum de $log(\mathcal{L})$ directement en 2D puis à ϵ_1 ou ϵ_2 fixé

Stratégie 4 : Maximum de vraisemblance

- La résolution par descente de gradient s'est avérée peu fructueuse.
- · À ϵ_2 fixé, on obtient une estimation cohérente de ϵ_1
- Nous avons également une bonne esimation pour ϵ_2 , mais nous avons choisi d'utiliser une autre methode.

Strarégie 4 : Maximum de vraisemblance

FIGURE 3 – $Log(\mathcal{L})$ à ϵ_2 fixé.

FIGURE 4 – Log(\mathcal{L}) à ϵ_1 fixé.

Calibration de b

Selon le modèle :

$$ho(h) \propto e^{-b(\epsilon_1 + \epsilon_2)\Delta t \ h}$$

FIGURE 5 – Autocorrélations de |r|

FIGURE 6 – Régression linéaire pour retrouver *b*

Résultats donnés par quelques stratégies

Sur des rendements réels :

FIGURE 7 – Distributions réelles et théoriques (selon le modèle d'Alfarano des rendements

• Comportement des investisseurs

Exploration

Choix de la compagnie : Telefonica S.A. (NYSE : TEF)

Plus d'investisseurs actifs, plus de transactions \implies meilleure calibration?

Hypothèse : Au plus une transaction par jour et par agent

Exploration

FIGURE 8 – Distribution des m_i

m_i : Montant journalier maximal investi sur la période par l'investisseur i

Exploration : Nombre de transactions par agent sur une année

On reconnait une loi de Pareto.

Package powerlaw : α = 2.9

Classification des actionnaires

FIGURE 9 — Nuage de points $\rho[v_i(t), r(t)]$ (littérature)

Repartition: 50% green, 10% red.

Neutre
$$\iff |Cor(X, r)| < \frac{2}{\sqrt{N}}$$

X : changement d'inventaire quotidien de l'investisseur,

N : nombre de jours d'activité

Changements de stratégies

Tableau de probas conditionnelles d'une année à l'autre (en %): où: R= reversing, T= trending, U= uncategorized, E= exiting.

Loi de \	R	Т	U	E
Sachant				
R	71	2	16	11
Т	3	44	35	18
U	19	7	62	12

FIGURE 10 – Tables des changements de stratégie pour l'étude de Lillo et al.

	Finalement Suivi (%)	Finalement Neutre (%)	Finalement Retour (%)
Initialement Suivi	0	0.7	0
Initialement Neutre	0.2	37.3	9.8
Initialement Retour	0.2	38	13.8

FIGURE 11. Table des changements de stratégie des actionnaires TEL

26/48

Stratégie d'Anufriev

L'idée est de pouvoir identifier la stratégie de l'agent, donc choisir le modèle qui décrit au mieux son comportement. Hypothèses :

- · Stratégie ADA ou WTR ou STR ou LAA
- La variation de l'inventaire est proportionnelle à la différence de prix $v_{TEF}(t) = \alpha(p_t p_{t-1})$:
- Connaissant p_{t-1} , l'agent simule p_t avec l'une des stratégies ci-dessus et agit en conséquence
- · Inventaire vide au début

Stratégie d'Anufriev : résultats

Prédiction

Prédiction par la calibration du modèle d'Alfarano

Données : rendements de TEF Estimation :

- Première estimation : **powerlaw** pour ϵ_2 et MV (1 dimension) pour ϵ_1
- · Deuxième estimation : MV à 2 dimensions à partir de ces valeurs

Estimation de b par régression linéraire sur $\log(Cor(h))$.

Etude du résidu λ (du modèle d'Alfarano, par inversion des formules).

FIGURE 12 – Distribution des $\lambda(t)$ **FIGURE 13** – Autocorrélation de λ

Prédiction par la calibration du modèle d'Alfarano (suite)

Prédiction de z puis de v = |r|.

FIGURE 14 - Prédiction de v

Avec
$$f_h(X) = \frac{\mathbb{E}(|X_{t+h} - \hat{X}_t(h)|)}{\mathbb{E}(|X_{t+h} - X_t|)}$$

h	$f_h(z)$	$f_h(v)$	
1	0.9986	0.9974	
2	0.997	0.9955	
3	0.9954	0.9934	
4	0.9943	0.9922	

La stratégie de bruteforce : extension de la stratégie d'Anufriev

Il s'agit de :

- Choisir une période satisfaisant un compromis entre le nombre de transaction faites et <u>la durée</u> durant laquelle on suppose que les agents ne changent pas de stratégie
- Identifier les agents qui on fait le plus de transactions pour avoir un maximum de données
- · Identifier leurs stratégies
- · Prédire le prix, la volatilité, la variation des stocks...

Bruteforce : choix des données

- Période entre 2000 et 2002, correspondant à 421 transactions pour l'agent qui a fait le plus de transactions (18321)
- · Sélection des 10 agents qui ont fait le plus de transactions
- On varie α de 0 à 200000 pour chaque stratégie et on choisit la stratégie minimisant la somme des carrés des résidus $\sum_{k=0}^{N} (\mathbf{s}_i \hat{\mathbf{s}})^2$

Bruteforce: Résultats

Pas très glorieux

Vraiment pas glorieux

D'autres données?

Prédictions de la stratégie des investisseurs

FIGURE 15 – Réseaux de synchronisation et de prévision (Littérature)

Intelligence artificielle

Hypothèse : Investisseurs = agents ⇒ modèle Alfarano vérifié

- Algorithmes de calibration sur données réelles : obtention de paramètres ($\epsilon_{1,2}$, b, N, . . .)
- Plusieurs simulations :

$$\begin{cases} \mathbb{E}_{r_{t+1} \ge r_t} [r_{t+1} - r_t] = \Delta r_+ \\ \mathbb{E}_{r_{t+1} < r_t} [r_{t+1} - r_t] = \Delta r_- \end{cases}$$

- Entrainement d'une IA sur simulations (beaucoup de données)
- Prédictions sur données réelles : $\hat{r_{t+1}} = r_t + \Delta r_{\pm}$

Intelligence artificielle

Beaucoup d'investisseurs suivent des tendances (Lillo & al)

Entrée : rendements des k derniers jours (ex : k = 7)

Sortie: -1 ou 1 (rendement diminue ou augmente)

Clustering

FIGURE 16 – Paramètres : *N*=1000, NIT=1000000, *b*=0.003, ϵ_1 =3, ϵ_2 =4.

Précision : 73% sur simulation

Ecart moyen : -0.004, Ecart absolu moyen : 0.795

Réseau de neurones

Modèle séquentiel, couches utilisées :

- Dropout (overfitting)
- LSTM Long Short-Term Memory layer
- Dense
- Couche finale : Dense(1) ou Softmax(2)

Réseau de neurones

Figure 17 - Couche finale : Dense(1)

"Précision" : 25% sur simulation, loss : mean square

Ecart moyen : -0.566, Ecart absolu moyen : 1.022

Réseau de neurones

FIGURE 18 - Couche finale : Softmax(2)

"Précision" : 49% sur simulation, loss : sparse categorical crossentropy

Ecart moyen : 0.565, Ecart absolu moyen : 1.518

Clustering plus convaincant

```
\begin{cases} \textit{N} = 287 : \text{nombre d'investisseurs actifs pour TEF} \\ \textit{b} = 0.00068 \\ \textit{\epsilon}_1 = 1.3 \\ \textit{\epsilon}_2 = 5.87 \\ \textit{z}_0 = 0.5 \text{ / valeur empirique 0.011 mais diverge choix bruit = "spin noise"} \end{cases}
```


FIGURE 19 – Ecart moyen: 0.508, Ecart absolu moyen: 1.048

Bonne précision mais valeurs de Δr_{\pm} trop grandes

Idée : Calculer Δr_{\pm} sur l'année 2000 et prédire le rendement sur l'année 2001

FIGURE 20 – Ecart moyen (rendements) : 0.008, Ecart absolu moyen (rendements) : 0.028

FIGURE 21 - Ecart moyen (prix): -0.131, Ecart absolu moyen (prix): 0.397

Bibliographie i

V. Bos and S. Mauw.

A LTEX macro package for Message Sequence Charts—Maintenance document—Describing version, June 2002.

Included in MSC macro package distribution.

V. Bos and S. Mauw.

A LTEX macro package for Message Sequence Charts—Reference Manual—Describing version, June 2002.

Included in MSC macro package distribution.

Bibliographie ii

V. Bos and S. Mauw.

A LTEX macro package for Message Sequence Charts—User Manual—Describing version , June 2002.

Included in MSC macro package distribution.

M. Goossens, S. Rahtz, and F. Mittelbach.

The LTEX Graphics Companion.

Addison-Wesley, 1997.

ITU-TS.

ITU-TS Recommendation Z.120 : Message Sequence Chart (MSC).

Geneva, 1997.

Bibliographie iii

L. Lamport.

ET_EX—A Document Preparation System—User's Guide and Reference Manual.

Adsison-Wesley, 2nd edition, 1994. Updated for ET_{E} X2 ε .

E. Rudolph, P.Graubmann, and J. Grabowski. Tutorial on message sequence charts (MSC'96). In *FORTE*, 1996.

Annexe

FIGURE 22 - Estimations de b

