Clase 10.1

II LÍMITES DE FUNCIONES

Entornos

Dado un punto $x_0 \in \mathbb{R}$, si queremos analizar el comportamiento de una función en x_0 y en puntos próximos a él se hace necesario definir cuáles son los puntos cercanos a x_0 . Así, se considera puntos cercanos a x_0 los que están a una distancia menor a un número positivo δ

Así al conjunto $\{x \in \mathbb{R} : x_0 < x < x_0 + \delta\}$ se denomina **entorno** o vecindad, o proximidad de x_0 .

Notación. El entorno $N(x_0, \delta) =]x_0 - \delta, x_0 + \delta[$ es el intervalo con centro en x_0 y radio δ .

Ejemplos

- 1. Representar y graficar los siguientes entornos:
 - a. N(2, 3)
 - b. N(0, 4)

Solución

a.
$$N(2,3) =]-1,5[$$

b.
$$N(0,4) =]-4,4[$$

Desigualdades y funciones

Sea f una función cualquiera y $x_0 \in D_f$. Dado un entorno de f(x₀) de radio ε , es decir, $N(f(x_0), \varepsilon)$, se trata de encontrar un entorno de centro x₀ y radio δ . $N(x_0, \delta)$, tal que

la imagen de este último esté incluida en el entorno de $f(x_0)$ dado. Es decir, que cumpla con:

$$f(N(x_0, \delta)) \subset N(f(x_0), \varepsilon)$$

Definición de límite

$$\lim_{x \to x_0} f(x) = L \quad ssi \quad \forall \varepsilon > 0, \quad \exists \ \delta > 0 : \quad \forall x \ si \ 0 < |x - x_0| < \delta$$

$$\Rightarrow |f(x) - L| < \varepsilon$$

Ejemplo

1. Probar que el $\lim_{x\to 1} (4x+3) = 7$

PD. $\forall \varepsilon > 0$ puedo encontrar un $\delta > 0$ tq.

$$si\ 0 < |x-1| < \delta$$
 se verifica que $|(4x+3)-7| < \varepsilon$

Por tanto: $|(4x+3)-7| < \varepsilon$

$$|4x - 4| < \varepsilon$$

$$4|x-1| < \varepsilon$$

Si tomo $\delta = \frac{\varepsilon}{4} > 0$ entonces $|x - 1| < \frac{\varepsilon}{4} = \delta$

es decir, se cumple que $0 < |x-1| < \delta$ lqqd.

EJERCICIOS PROPUESTOS

Probar los siguientes límites

a.
$$\lim_{x \to 1} \frac{1}{2 + \sqrt{x}} = \frac{1}{3}$$

b.
$$\lim_{x\to 3} \frac{x^2-9}{x-3} = 6$$

Teoremas básicos sobre cálculo de límites

Todo teorema antes de ser usado debe ser comprobado. Por el tipo de curso y por el tiempo insuficiente, solo enunciaremos los teoremas y aplicaremos en el cálculo de límites.

Teorema 1. Regla fundamental para operar con límites

i.
$$\lim_{x \to a} x = a$$

ii. Si
$$f(x) = K$$
 (constante), entonces $\lim_{x \to a} f(x) = K$

iii. Si f(x) = P(x) (polinomio), entonces
$$\lim_{x \to a} P(x) = P(a)$$

Teorema 2. Propiedades de los límites

Sean f y g dos funciones reales tales que $\lim_{x\to a} f(x) = L$ y $\lim_{x\to a} g(x) = K$, entonces se tiene

i.
$$\lim_{x \to a} (f \pm g)(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = L \pm K$$

ii.
$$\lim_{x \to a} (f.g)(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L \cdot K$$

i.
$$\lim_{x \to a} (f \pm g)(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = L \pm K$$
ii.
$$\lim_{x \to a} (f \cdot g)(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L \cdot K$$
iii.
$$\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{G}, \text{ si } K \neq 0$$

iv.
$$\lim_{x \to a} [f(x)]^{g(x)} = \left[\lim_{x \to a} f(x)\right]^{\lim_{x \to a} g(x)} = L^K, \text{ con } L \text{ y } K \text{ no sim. nulos}$$

v. Si
$$\sqrt[n]{f(x)}$$
 existe, entonces $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} = \sqrt[n]{L}$, que es lo mismo que $\lim_{x \to a} [f(x)]^K = \left[\lim_{x \to a} f(x)\right]^K$

Teorema 3.

Si el límite de f(x) existe, entonces es único.

Ejemplos

1. Calcular
$$\lim_{x \to -5} (x^3 + 3x^2 - 8)$$

$$\lim_{x \to -5} (x^3 + 3x^2 - 8) = \lim_{x \to -5} x^3 + \lim_{x \to -5} 3 \cdot \lim_{x \to -5} x^2 - \lim_{x \to -5} 8$$

$$=(-5)^3+3.(-5)^2-8=-125+25-8=-58$$

Este ejercicio, también se puede calcular como función polinómica directamente

$$\lim_{x \to -5} (x^3 + 3x^2 - 8) = (-5)^3 + (-5)^2 - 8 = -58$$

2. Calcular
$$\lim_{x \to 1} \frac{3x+4}{x^2+1} = \frac{3.1+4}{1^2+1} = \frac{7}{2}$$

Nota: Calcular el límite es reemplazar en la función el valor de x.

3. Calcular
$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{x - 5}$$

$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{x - 5} = \frac{5^2 - 3.5 - 10}{5 - 5} = \frac{0}{0} \quad (indeterminación)$$

Indeterminación significa que el valor no está determinado aún (pueda que no exista valor y por tanto límite).

Factorando la función

$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{x - 5} = \lim_{x \to 5} \frac{(x - 5)(x + 2)}{(x - 5)}, \text{ simplificando queda } \lim_{x \to 5} (x + 2) = 5 + 2 = 7$$

Indeterminaciones

Son resultados carentes de sentido. Las indeterminaciones más notables son:

$$\frac{0}{0}$$
, 0^0 , $\frac{\infty}{\infty}$, ∞^0 . 1^∞ , $\infty - \infty$, 0 . ∞

"Proceso sistemático de cálculo de un límite"

- a. Reemplazar la tendencia y calcular el valor. Si al calcular da un número conocido, ese es el valor del límite (límite propio).
- b. Si da un número dividido para cero es ∞ (infinito), que algunos autores dicen que no existe límite. En la actualidad significa que el límite es impropio.
- c. Si al reemplazar y calcular da una indeterminación, hay que "levantar la indeterminación". Levantar la indeterminación significa presentar la función de otra forma, por ejemplo, factorando, para poder simplificar los factores que producen la indeterminación. Esto depende del tipo de función.
- d. Una vez simplificada la función se vuelve a calcular el límite.

Ejemplos

1. Calcular
$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2}$$

$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2} = \frac{1 - \sqrt{1 - 0^2}}{0^2} = \frac{0}{0} \ (indeterminado)$$

$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2} = \lim_{x \to 0} \frac{(1 - \sqrt{1 - x^2})(1 + \sqrt{1 - x^2})}{x^2(1 + \sqrt{1 - x^2})} = \lim_{x \to 0} \frac{-x^2}{x^2(1 + \sqrt{1 - x^2})} = \lim_{x \to 0} \frac{-1}{1 + \sqrt{1 - x^2}} = \frac{1}{1 + \sqrt{1 - 0^2}} = -\frac{1}{2}$$

2. Calcular
$$\lim_{x \to 1} \frac{x^2 + 5x - 6}{x^2 + 2x - 3} = \frac{1^2 + 5 \cdot 1 - 6}{1^2 + 2 \cdot 1 - 3} = \frac{0}{0}$$

$$\lim_{x \to 1} \frac{x^2 + 5x - 6}{x^2 + 2x - 3} = \lim_{x \to 1} \frac{(x + 6)(x - 1)}{(x + 3)(x - 1)} = \lim_{x \to 1} \frac{x + 6}{x + 3} = \frac{1 + 6}{1 + 3} = \frac{7}{4}$$

3. Calcular
$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{2}{1-x^2} \right) = \left(\frac{1}{1-1} - \frac{2}{1-1^2} \right) = \infty - \infty \ (indeterminación)$$

$$\lim_{x \to 1} \frac{(1+x)-2}{1-x^2} = \lim_{x \to 1} \frac{x-1}{(1-x)(1+x)} = \lim_{x \to 1} \frac{-(1-x)}{(1-x)(1+x)} = \lim_{x \to 1} \frac{-1}{1+x} = \frac{-1}{1+1} = -\frac{1}{2}$$

EJERCICIOS PROPUESTOS

Calcular los siguientes límites

a.
$$\lim_{x \to -2} \frac{x^3 + 8}{x^2 - 4}$$

a.
$$\lim_{x \to -2} \frac{x^3 + 8}{x^2 - 4}$$
 b. $\lim_{x \to -1} \frac{2x^2 + 5x + 3}{x^3 + 2x^2 + 2x + 1}$ b. $\lim_{x \to 2} \sqrt{\frac{x^3 + 2x - 3}{x^2 + 5}}$ d. $\lim_{x \to \sqrt{3}} \frac{3 - x^2}{3 - \sqrt{x^2 + 6}}$

b.
$$\lim_{x \to 2} \sqrt{\frac{x^3 + 2x - 3}{x^2 + 5}}$$

d.
$$\lim_{x \to \sqrt{3}} \frac{3 - x^2}{3 - \sqrt{x^2 + 6}}$$

Trabajo Autónomo

Calcular los siguientes límites:

a.
$$\lim_{x \to 0} \frac{4x - 3x^2 + 8x^3}{2x - 5x^2}$$

b.
$$\lim_{x \to 5} \frac{3 - \sqrt{4 + x}}{x - 5}$$

c.
$$\lim_{x \to 1} \frac{x^{-5}}{x^{4} - x^{3} - x^{2} + x}$$

d.
$$\lim_{x \to 2} \frac{x-3}{x+4}$$