ליניארית 1א 4

שחר פרץ

2024 בנובמבר 20

MEANING OF	MANY	SOLUTIO)NS	 	 	 	 	 (1)	ļ
								()	

בשיעורים הקודמים דיברנו על שדה, מטריצות, ואז על משוואות ליניאריות. שמנו לב שכל מטריצה היא שקולה למטריצה מדורגת קאנונית. היום נתבונן במערכות משוואות בהן קבוצת הפתרונות יכולה להיראות כמו $\{4,x,y\}$, או $\{4,x,y\}$. נוכל להסתכל על זה כקבוצה על \mathbb{R}^3 , שנצייר אותה כמישור על המרחב התלת ממדי. במקרה הזה, מישור שמקביל למישור של y,z ניזכר במשפט מהשיעור הקודם. משפט. בהינתן מערכות משוואות שיותר נעלמים ממשואות אז:

- 1. אין פתרונות, או:
- $\|\mathbb{F}\|$ מספר הפתרונות לפחות.

הוכחה. נחלק למקרים. תהי A המטריצה המתאימה למערכת המשוואות. אזי קיימת B שקולת שורות קאנונית ב־A בעלת אותה מרחב פתרונות, ולכן נראה עבור B. אם שורה אחרונה שאיננה אפסים היא $1\dots 0$, אז אין פתרונות (כי $1\neq 0$). אחרת, קיימת שורה עם שני משתנים (משובך היונים – יש יותר משתנים ממשואות). כלומר, קיים משתנה חופשי. כעת, נראה $|\mathbb{F}|$ פתרונות. לכל $x\in\mathbb{F}$ נבחן עבור המשתנה החופשי את הערך x ונפתור – נוכל לפתור בכלל שכל משוואה היא מהצורה $x+\sum \alpha_i x_i=0$ סה"כ $x+\sum \alpha_i x_i=0$

מסקנה. בהינתן מערכת משוואות, אחד מהבאים מתקיים:

- 1. אין פתרונות
- 2. יש בדיוק פתרון אחד
- $|\mathbb{F}|$ פתרונות.

. אין פתרון שקולה. אם יש שורה (0,0,...,1) אין אין פתרון הוכחה. לעל A

.אחרת, אם יש משתנה חופשי אחרת, אם יש משתנה חופשי

אחרת, אין משתנה חופשי, והמטריצה מהצורה:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & b_1 \\ 0 & 1 & \cdots & 0 & b_2 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & 1 & b_n \end{pmatrix}$$

והמשוואות הן $a_m=b_m$ ולכן פתרון יחיד.

[0] הגדרה. מערכת משוואות שכל מקדמיה החופשיים הם [0] היא מערכת הופוגנית. [0] הדל הר[0]

הגדרה. הפתרון האוואות הוא הפתרון הטרוויאלי. $x_1 \dots x_n = 0$ המוואות המדרה.

מסקנה(ות).

- ullet למערכת הומוגנית [המורה מסמן ב"הומו"] שבה מספר נעלמים גדול מהמשוואות, יש $\|\mathbb{F}\| < \mathbb{F}$
 - . לפחות הומו' יש רק פתרון טרוויאלי או $|\mathbb{F}|$ לפחות ullet

INTRO. TO VECTORIC FIELDS(2)

mנקראן חיבור ו־a נקראן a נקראן שדה, מרחב (עיתים a שדה, מרחב לעיתים a שדה, מרחב לעיתים a שדה, מרחב לעיתים פרוני מרחב ליניארי) הוא אויבור ו־a נקראן חיבור ו־a נקראן שדה, מרחב וקטורי (לעיתים פרונית:

- 1. חילופיות חיבור
- 2. אסוציאטיביות חיבור

- 0_V ניטרלי לחיבור (יסומן ב־ 0_V ולפעמים בתור 3.
 - .($v \in V$ לכל -vלכל היבור (נסמן אותו ה-v
 - 5. דיטרבוטיביות 1:
 - 6. דיסטרבוטיביות 2:
 - 7. אסוציאטיביות של כפל:
 - 8. לאיבר יחידה:
 - $\lambda v = \lambda \cdot v = m(\lambda, v)$ סימון.

דוגמאות 2.1

2.1.1 פתיחה

 \mathbb{F}^n נגדיר: ח־ת מעל מרחב ה־ח

$$g, x \in \mathbb{F}^n \colon x + y = (x_1 + y_1, \dots, x_n + y_n)$$
$$\lambda \cdot x = (\lambda x, \dots, \lambda x_N)$$
$$0_r = (0 \dots 0)$$

 $\forall \lambda \in \mathbb{F}.u, v \in V : \lambda(u+v) = \lambda u + \lambda v$

 $\forall \lambda, \mu \in \mathbb{F}, v \in V.(\lambda \mu)v = \lambda(uv)$

 $\forall v \in V.1 \cdot v = v$

 $\forall \lambda, \mu \in \mathbb{F}, v \in V : (\lambda + \mu) \cdot v = \lambda v + \mu v$

. סקלר, ו־עסור, ו־עסור, ויך הוא פכל מעכר מאכר אין הופכי. נאמר אכל על אין הופכי. אין הופכי

2 'זוג' 2.1.2

.(הדבר הזה של המטריצות) גם $M_{n imes n}(F)$ הוא מרחב וקטורי

2.2 הרחבות

אם: מרV אם מ"ו (מרחב וקטורי), אז W תת פרחב וקטורי מ"ו (מרחב המושרות מ"V אם: $w\subseteq V$ הגדרה. בהינתן

- $0 \in W$ (א
- שגורה לחיבור W (ב)
 - (ג) W סגורה לכפל

טענה. תת מרחב וקטורי הוא מרחב וקטורי.

ניזכר בקבוצת הפתרונות $\{(x,y,0)\}$ שראינו קודם. או ב־ $\{(x,x,0)\}$. הם כולם תת־מרחבים וקטורים של $\{(x,y,0)\}$ שראינו קודם. או ב־ $\{(x,x,0)\}$ הם כולם תת־מרחבים וקטורים.

 \mathbb{F}^n משפט. קבוצת הפתרונות של מערכת משוואות הומוגנית היא תת מרחב וקטורי ב

אינטואיציה: נתבונן המערכת הבאה:

$$\begin{pmatrix} a & b & 0 \\ d & c & 0 \end{pmatrix}$$

 $a(x_1+x_2)+b(y_1+y_2)$ וכו', נקבל $\sum x_ilpha a_i=0$ מרחב הפתרונות הוא $\sum x_ilpha a_i=0$ לכל שורה. הוא סגור לחיבור;

2.3 המשך דוגמאות

2.3.1 דוג' 5

תהי A
eq 0 קבוצה. נגדיר F עם הפעולות: $Funct(a,f) = \{f\colon A o f\}$ עם הפעולות: A
eq 0

$$(f_1 = f_2)(a) := f_1(a) + f_2(a), (\lambda)f(a) := \lambda f(a), 0_V(a) = 0$$

6 'זוג' 2.3.2

פולינומים במשתנה אחד היא: $F[x]=\{a_nx^n+\cdots a_1x_1+a_0\mid a_i\in \mathbb{F}\}$. גם הוא מרחב וקטורי. פולינומים במשתנה אחד היא: $0_{Funct(\mathbb{Z}_p,\mathbb{Z}_p)}$ הא לא תת קבוצה של F(F,F) כי F(F,F) כי F(F,F) הוא (כלומר, זה לא עובד על F סופי).

.טענה. יהיV מ"ו

- $\forall u, v, w \in V.u + v = u + w \implies v = w$.1
 - 2. איבר האפס יחיד.
 - (-v), נגדי יחיד, ונסמן בתור $v \in V$.

הוכחה (1).

$$v = v + 0 = v + w - w = u + w - w = u$$

מותר להשתמש ב־-w כי קיים הופכי, גם אם לא הוכחנו עדיין יחידות.

הוכחה (2). נוכיח שאיבר האפס יחיד. יהיו w,w' איברי אפס. בכלל ש־w' נטירלי, ו־w ניטרלי, אז:

$$w = w + w' = w'$$

.1 מטענה m=w מטענה m,w הוכחה (3). יהיv
ightarrow v הייו m,w הייו

$$v + m = 0 = v + w$$

 \cdot יהי V מרחב וקטורי:

$$\forall \lambda \in F \quad \lambda \cdot 0v = 0_v \tag{1}$$

$$\forall v \in V \quad 0 \cdot v = 0 \tag{2}$$

$$\lambda v = 0 \implies \lambda = 0 \lor v = 0_V$$
 .3

$$\forall v \in V \quad -v = (-1)v \tag{4}$$

הוכחה. 1. יהי $\lambda \in F$ יתקיים:

$$(\lambda \cdot 0_V = \lambda(0_V + 0_V) = \lambda 0_v + \lambda 0_v) \implies (0 = \lambda 0_V)$$

.2

$$0_F v = (0_F + 0_F)v = 0_F v + 0_F v \implies (0 = 0_F v)$$

נניח v=0. אם $\lambda v=0$ סיימנו. אחרת

$$v = \lambda^{-1} \cdot \lambda 0 = \lambda^{-1} 0 = 0$$

, ואכן. (-1)v + v = 0 אכן.

$$-1 \cdot v + v = (-1+1) \cdot v = 0 \cdot v = 0$$

מתוך דיסטריבוטיביות.

 $U\subseteq W\lor W\subseteq U$ משפט. יהי V מ"ו מעל שדה V, ויהיו $V\subseteq W$ תמ"ו של $U,W\subseteq U$ תמ"ו, וי $U\cup W$ תמ"ו אמ"מ $U\cup W\subseteq U$ משפט. יהי

הוכחה.

 $\forall x,y \in Y. x + y \in V \land x + y \in \mathcal{Y}$ בנוסף $0 \in W, 0 \in U \implies 0 \in W \cap U$ מקיים תחונות תמ"ו. ואכן $T := U \cap W$ בנוסף $x,y \in W, x,y \in V$ כי $W \implies x + y \in W \cap U$

יהי $x\in T$, אזי:

$$\lambda x \neq 0, \lambda x \in w \implies \lambda x \in U \cap W = T$$

2. מכיוון אחד. בה"כ $W\subseteq W$, אז $U\subseteq W$ אז $T:=V\cup W=W$ שהוא תמ"ו. מהכיוון השני, נניח $U\cup W$ תמ"ו. אם $U\subseteq W$ סיימנו. אחרת, $u+w-w\in W$ יהי $w\in W$. מסגירות, $w\in W$. נגיח בשלילה אאת, נקבל $w\in W$ יהי $w\in W$. מסגירות. לכן $w\in W$ ולכן $w\in W$ ולכן $w\in W$ ולכן $w\in W$ ולכן $w\in W$ סיימנו.

U+W תמ"ו. נגרר U+W תמ"ו. משפט. ע מו מעל שדה $U,W\subseteq V$ תמ"ו של

הוכחה. נדע V+W כי:

$$0_V + 0_W = 0$$

כך ש־: מתאימים כך מתאימים $w_1,w_2\in W$ ו וי
 $u_1,u_2\in U$ מתאימים כך סגירות מתקיימת

$$\forall x,y \in U+W. \\ x=u_1+w_1, y=u_2+w_2 \implies x+y=\underbrace{(u_1+u_2)}_{\in U}+\underbrace{(w_1+w_2)}_{\in W}$$

וגם:

$$\exists u' \in U, w' \in W \quad x + y = u' + w'$$

סגורות לסלקר:

$$\lambda \in F, u+w=x \in U+w \implies \lambda x = \lambda (u+w) = \underbrace{\lambda u}_{\in U} + \underbrace{\lambda w}_{\in W}$$

הוכחה.

, מההנחה.
$$u',u\in U,\ w,w'\in U$$
כך ש־ $u'+w'=v,\ u+w=v$ נניח $v\in V+W$ יהי $w'+w'=v=v$ נניח $v'+w'=v=v+w$ בר יהי $v'+w'=v=v+w$

לכן:

$$u - u' = w - w' \in W \cap U = \{0\}$$

 $.u=u',\ w=w'$ ולכן

יהי x=0 נוכיח $x\in U\cap W$ יהי \Longleftrightarrow

$$x = x + 0, \ x \in U, \ 0 \in W$$

 $x = 0 + x, \ x \in W, \ 0 \in U$

 $x=0 \land 0=x \implies x=0$ מהיחידות נובע ש־

הוקטור: $\lambda_1\dots\lambda_s$ וסקלרים $\lambda_1\dots\lambda_s\in\mathbb{F}$ וסקלרים $\lambda_1\dots\lambda_s\in\mathbb{F}$ וסקלרים איניארי של וקטורים $\lambda_1\dots\lambda_s\in\mathbb{F}$ וסקלרים איניארים ו

$$\sum_{i=0}^{s} \lambda_i v_i = \lambda_1 v_1 + \dots + \lambda_s v_s$$

s=0 אם s=0 אז זהו עירוף טרוויאלי. אם s=0 הצירוף הוא $\lambda_i=0$

. כלומר: $u\in V$ מ"ו. אז $u\in V$ בסיס אם לכל $v\in V$ קיים ויחיד צירוף ליניארי מהוקטורים ב־ $u\in V$ מ"ו. אז $u\in V$ מ"ו. אז $u\in V$ מ"ו. אז $u\in V$ מ"ו. אז מ"ו. אז מ"ו. אז מ"ו. אז מי"ו. או מ

$$\exists ! \lambda_1 \dots \lambda_s \in F \colon v = \sum x_i \lambda_i$$

אפשר גם להגדיר למרחבים אינסופיים. נראה הרחבה כזו בהמשך הקורס.

. הבסיס הסטודרטי. היות $\{e_1\dots e_n\}$ מוגדר היות היות בקורדינאטה פ $e_i\equiv (0,\dots 1,\dots 0)$ הוא הכסיס הסטודרטי. הגדרה הב

. מוגדר היטב מהמשפט). בשיעור הבא נוכיח את המשפט (מוגדר היטב מהשפט) בסיס H(M):=|B| מוגדר היטב מהמשפט.