Math 493 Lecture 10

Thomas Cohn

10/7/19

Recall: $P = \mathbb{R}^2$ is the plane. M is the group of rigid motions of P.

From last time, we have M generated by t_a translations, ρ_{θ} rotations about 0, and r reflections across the x-axis.

Defn: Let $S \subset P$ be a "planar figure". The symmetry group of S is $\Gamma_S = \{m \in M \mid mS = S\}$. This is a subgroup of M.

$\mathbf{E}\mathbf{x}$:

- 1. Let S be the unit circle. $\Gamma_S = O(2)$ rotations and reflections through the origin.
- 2. $S = \mathbb{R}^2 \Rightarrow \Gamma_S + M$.
- S is the unit circle with an arrow at ^{2πk}/_n for each k. Then Γ_S = {rotations by ^{2πk}/_n} ≅ ℤ/nℤ.
 S a regular n-gon. We have rotations by ^{2πk}/_n, for 0 ≤ k ≤ n − 1, reflect through certain lines (lines that go through the origin and a vertex or midpoint of an edge).

Defn: For S a regular n-gon, Γ_S is denoted D_n and called the nth dihedral group. It's generated by $a = \rho_{\frac{2\pi}{n}}$ and b = r.

Relations: $a^n = 1$, $b^2 = 1$, $bab^{-1} = a^{-1}$. Every element of D_n can be written uniquely as a^k or a^kb for $0 \le k < n$. Note that $|D_n| 2n$, and $D_3 \cong S_3$.

Question: can we classify the symmetry groups of plane figures? A good first step is classifying the finite subgroups of M.

Thm: Suppose G is a finite subgroup of M. Then G has a fixed point, i.e., $\exists x \in P$ s.t. $gx = x, \forall g \in G$. Proof: Let S be a finite subset of P. Define the center of gravity of S by $COG(S) = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Lemma: Given $m \in S$, COg(mS) = m(COG(s)) (note: $mS = \{mx_1, \dots, mx_n\}$). Proof: Let $m \in O(2)$. Then $mCOG(s) = m(\frac{1}{n}\sum_{i=1}^n x_i) = \frac{1}{n}\sum_{i=1}^n mx_i = COG(mS)$. Let $m = t_a$. Then $COG(mS) = \frac{1}{n}\sum_{i=1}^n (x_i + a) = \frac{1}{n}\sum_{i=1}^n x_i + a = COG(S) + a = mCOG(S)$. \square

Continued: pick some $x_0 \in P$ at random. Let $S = \{gx_0 \mid g \in G\}$. Observe that for $h \in G$, hS = S. $hS = \{hgx_0 \mid g \in G\} = \{gx_0 \mid g \in G\}$. So hCOG(S) = COS(hS) = COG(S). So x = COS(S) is a fixed point of G. \square

Suppose $G \subset M$ is a subgroup that fixes $x \in P$. Then $t_x^{-1}Gt_x$ fixes $0 \in P$, because, for $g \in G$,

$$(tx^{-1}gt_x)0 = t_x^{-1}(g(t_x(0))) = t_x^{-1}(g(x)) = t_x^{-1}(x) = 0$$

Cor: Let $G \subset M$ be a finite subgroup. Then $\exists x \in P \text{ s.t. } t_x Gt_x^{-1} \subset O(2)$.

Problem: classify the finite subgroups of O(2).

Defn: $SO(2) \subseteq O(2)$ is the group of rotations.

Note: every element of O(2) can be written as ρ_{θ} or $\rho_{\theta}r$. This means 1 and r are the coset representatives for O(2) with respect to SO(2), so [O(2):SO(2)]=2. First step: classify finite subgroups of SO(2).

Prop: Let G be a finite subgroup of SO(2). Then G is cyclic, and generated by ρ_{θ} , with $\theta = \frac{2\pi}{n}$ for some $n \in \mathbb{N}$.

Proof: let $0 < \theta$ be minimal such that $\rho_{\theta} \in G$. Then because G is finite, ρ_{θ} has finite order, so θ is a rational multiple of 2π .

We can write $\theta = \frac{2\pi p}{q}$, with p,q real, coprime, and positive. ρ_{θ} then generates $\rho_{\frac{2\pi}{q}}$, because we can write ab + pq = 1 for some $a, b \in \mathbb{Z}$, so $\rho_{\frac{2\pi}{q}} = \rho_{\frac{2\pi}{q}}^{ap+bq} = (\rho_{\frac{2\pi p}{q}})^a$.

By the minimality of ρ , $\theta = \frac{2\pi}{q}$. So G is generated by ρ_{θ} ; suppose $\rho_{\psi} \in G$, with $\psi \geq 0$. Pick n s.t. $\rho_{\psi}\rho_{\theta}^{-n}$ is a rotation by an angle in $[0, \frac{2\pi}{q})$. By minimality of θ , $\rho_{\psi}\rho_{\theta}^{-n} \Rightarrow \rho_{\psi} = \rho_{\theta}^{n}$. \square

Prop: Let G be a finite subgroup of O(2). Then either G is cyclic and generated by $\rho_{\frac{2\pi}{n}}$, or G is dihedral. Proof: Case 1: G does not contain a reflection. Then $G \subset SO(2)$. So we're done by our classification of subgroups of SO(2).

Case 2: G contains a reflection b. Let $H = G \cap SO(2)$. We know H is cyclic, and generated by $\rho_{\frac{2\pi}{n}}$ for some n. If $g \in G$, then either $g \in H$ or $gb \in H$. Thus, [G:H] = 2, so $G = D_n$.

We conclude every finite subgroup of M is either cyclic or dihedral. \square