CSE221

Lecture 23: Sorting

Hyungon Moon

Outline

- Motivation
- Internal sort
 - Insertion sort
 - Quick sort
 - Merge sort
 - Radix sort

Outline

- Motivation
- Internal sort
 - Insertion sort
 - Quick sort
 - Merge sort
 - Radix sort

Definitions

- List
 - Collection of records
 - Each record has fields
- Key
 - Field used to distinguish among the records
- Example
 - Telephone dictionary (list)
 - Name, address, phone number (fields)
 - Name is often used as a key

724-5944
724-2324
724-5076
724-51/0
724-5598
724-5970
724-5184
724-3220
724-5245
724-2830
724-3018
724-5580
724-5242
724-5247
724-3226
724-3226 724-2836
724-3024
724-2033
724-2033
724-5035
724-2138
.724-2727
724-2946
.724-2614
.724-5614

Search Records using a Key

- Sequential search in a[1:n]
 - Search a[i]: i comparisons
 - Search unsuccessful : n comparisons
 - Average comparison: $(\sum i)/n = (n+1)/2$ $1 \le i \le n$
 - -O(n)
- Searching in an <u>ordered</u> list
 - Binary search : O(log n)

we need sorting!

Sorting Problem

- For a given list of records $(R_1, R_2,...,R_n)$
 - Each record R_i has a key value K_i
 - Transitive ordering relation <
 - x<y & y<z then x<z
- Find a permutation σ such that $K_{\sigma(i)} \leq K_{\sigma(i+1)}$ for $1 \leq i \leq n-1$
 - $-\sigma$ is not unique (identical keys may exist)
 - $-\sigma_s$ is *stable* if sorting preserves the order of input list for identical keys

Example of Stable Sorting

- Input records index: (1,2,3,4)
- Corresponding key values: (30, 20, 20, 10)
- Sorted records index can be (4,2,3,1) or (4,3,2,1) because 2 & 3 key values are same
- Stable sort : (4,2,3,1) → 2 & 3 order is not changed

Classification of Sorting Methods

Internal methods

- List is small enough to fit in main memory
- Insertion sort, quick sort, merge sort, heap sort, radix sort

External methods

- Larger lists that do not fit in main memory
- Read / write blocks of records from a disk
- Out-of-core

Outline

- Motivation
- Internal sort
 - Insertion sort
 - Quick sort
 - Merge sort
 - Radix sort

- Assume a[1:i] is ordered
- Insert a new record into the list to get a new ordered list a[1:i+1]

```
void Insert(e, *a, i)
{
    a[0]=e;
    while(e<a[i])
    {
        a[i+1]=a[i];
        i--;
    }
    a[i+1]=e;
}</pre>
```

```
void InsertionSort(*a, n)
{
    for(j=2;j<=n;j++)
    {
        temp = a[j];
        Insert(temp, a, j-1);
    }
}</pre>
```

insert e to sorted list a[1:i] to make a[1:i+1]

- Example
 - Red: sorted

j	[1]	[2]	[3]	[4]	[5]
-	5	4	3	2	1
2	4	5	3	2	1
3	3	4	5	2	1
4	2	3	4	5	1
5	1	2	3	4	5

Analysis

- Worst case: i+I comparison for Insert(e,a,i)
 - $O(\sum_{i=1}^{n-1} (i+1)) = O(n^2)$
- Best case : O(n)
- For k LOO (left out of order), O(kn)
- Average case : O(n²)
- Additional space requirement: O(I)
 - In-place swapping a pair of records
- Stable

- Efficient for small LOO
 - -k << n
- Fastest sorting method for small n (n \leq 30)
- Variation
 - Binary insertion sort
 - Binary search to find where to insert
 - # of records shifting is same, reduce # of comparisons
 - Linked insertion sort
 - Linked list, no record shifting

Outline

- Motivation
- Internal sort
 - Insertion sort
 - Quick sort
 - Merge sort
 - Radix sort

- Partition the list into three sublists using pivot
 - Left, middle, right
 - Middle = pivot
 - Left <= pivot</pre>
 - Right >= pivot
- Recursively sort left and right sublists


```
void QuickSort(*a, left, right)
   if(left<right) {</pre>
       int i = left, j=right+1, pivot=a[left];
       do {
           do i++; while(a[i]<pivot); // move i to right</pre>
           do j--; while(a[j]>pivot); // move j to left
           if(i < j) swap(a[i], a[j]);
       } while(i<j)</pre>
       swap(a[left],a[j]);
       QuickSort(a, left, j-1);
       QuickSort(a,j+1,right);
```


do i++; while(a[i]<pivot);</pre>

do {

R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	R_9	R_{10}	left	right
[26	5	37	1	61	11	59	15	48	19]	1	10
[11	5	19	1	15]	26	[59	61	48	37]	1	5
[1	5]	11	[19	15]	26	[59	61	48	37	1	2
1	5	11	[19	15]	26	[59	61	48	37]	4	5
1	5	11	15	19	26	[59	61	48	37]	7	10
1	5	11	15	19	26	[48	37]	59	[61]	7	8
1	5	11	15	19	26	37	48	59	[61]	10	10
1	5	11	15	19	26	37	48	59	61		

- Analysis
 - O(n) to partition a list with n records
 - Worst : $O(n^2)$
 - Either left or right sublist is empty
 - Best : O(n log n)
 - Left and right sublists are roughly same size
 - Average : O(n log n)
 - Additional space requirement : O(n) for stack
 - O(log n) for optimized implementation
 - Not stable

- Pivot selection is important to make balanced sublists
- How to select pivot?
 - Left or right
 - Random
 - Median of three (left, middle, right)

Outline

- Motivation
- Internal sort
 - Insertion sort
 - Quick sort
 - Merge sort
 - Radix sort

Merge Ordered Lists

- Merging two ordered lists [l:m] and [m+1:n]
 - -O(n-l+1)
 - -n-l+1:# of records being merged

```
for(neither input list is exhausted)
{
   Copy smaller record among i1 and i2 to iResult
}
```

Copy remaining records from either i1 or i2 to iResult

Merge Ordered Lists

```
Merge() // initList[1:m][m+1:n] are sorted lists, out: mergedList
    for(int i1=1, iResult=1,i2=m+1; i1<=m && i2<=n; iResult++)
       // neither input is exhausted
       //Copy smaller record among il and il to iResult
       if(initList[i1] <= initList[i2])</pre>
        {
           mergedList[iResult] = initList[i1];
           i1++;
       else
        {
           mergedList[iResult] = initList[i2];
           i2++;
        }
    // copy remaining records from either il or i2
    copy(initList + i1, initList + m + 1, mergedList + iResult);
   copy(initList + i2, initList + n + 1, mergedList + iResult);
```

Iterative Merge Sort

- Start from sublists of size I
- Merge every pair
- Double the sublist size and merge
- Repeat until all sublists are merged

Iterative Merge Sort

Example

Recursive Merge Sort

- Split list into two equal size lists recursively
- Merge when returns

Recursive Merge Sort

Merge Sort

- Analysis
 - Each step of merge lists : O(n)
 - # of steps : log n
 - Worst, best, average : O(n log n)
 - Additional space requirement : O(n)
 - Need same size buffer to store output
 - In-place merge sort exists, but slow
 - Stable

Merge Sort Variants

- Using integer pointer (link)
 - Eliminate record copying time
 - Useful when record size is large
- Natural merge sort
 - Idea
 - Make a sublist if records are already in correct order
 - Reduce merge operations
 - Example: 26, 5, 77, 1, 61, 11, 59
 - Original: [26][5] [77][1] [61][11] [59]
 - Natural: [26][5 77] [1 61][11 59]

Natural Merge Sort

Iterative vs. Natural Merge Sort

level: 5

How Fast Can We Sort?

- Decision tree
 - Binary tree with all possible comparisons

How fast can we sort? total # lext nodes : n! Mirimum Dinary Thee height having no leaf nodes: log_(n.1+1

Amy comparison-based sorting algorithm should take a path from not to leaf Then we should show that 5/c min height is log2 (n.1)+1, any path length > logz(n1) = loj2 (n.(n-1).(n-2)....2.1) > log(n/2) 2 b/c n. (n-1) ... 2. [2]... 1 52(nlogzn)

Sorting algorithm is Ω (rologn)

Outline

- Motivation
- Internal sort
 - Insertion sort
 - Quick sort
 - Merge sort
 - Radix sort

- Records may have multiple keys
 - $-K^{1}, K^{2}, ..., K^{r}$
 - K¹: Most significant key
 - K^r: Least significant key
- A list of records R¹, R², ..., Rⁿ is sorted with respect to the keys K¹, K², ..., K^r iff
 - If i < j then $(K_i^1, K_i^2, ..., K_i^r) \le (K_j^1, K_j^2, ..., K_j^r)$
 - Compare most significant key first

- Example
 - $-K^{1}:A < B < C < D$
 - $-K^2:1<2<3<4$
 - Ordering
 - A1 < A2 < A3 < A4 < B1 < ... < B4 < C1 < ... < D4

How to sort with multiple keys?

- Most significant digit first (MSD) sort
 - Sort using most significant key (K¹) first
 - Group having same K¹ values, sort using K²
 - Repeat this

Example

- A1, B3, A4, B2
- A1, A4, B3, B2 (sort in terms of K¹)
- A1, A4, B2, B3 (group A & B, sort in terms of K2)

- Least significant digit first (LSD) sort
 - Sort using least significant key (K^r) first
 - Sort using the key K^{r-1} (no grouping as in MSD)
 - Repeat this
- Example
 - A1, B3, A4, B2
 - A1, B2, B3, A4 (sort in terms of K²)
 - A1, A4, B2, B3 (sort in terms of K^1)

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

Radix Sort

- Think about integer sort
 - **-** 1423 -> (1, 4, 2, 3)
 - # of keys : digit
 - # of possible different values per key : radix
 - 1423 -> 4 digits, radix-10
- Radix sort
 - Decompose the sort key using radix r, d digits
 - Make r bucket and d passes, i-th pass will sort Kⁱ key, LSD order

Radix Sort

- Example
 - Sorting 10 numbers in the range [0, 999]
 - r = 10 (radix), d = 3 (digits)

SCIENCE AND TECHNOLOGY

Algorithm

```
RadixSort() // LSD radix-r sort, max digit of key : d
   create r queues;
   for(i=d-1; i>=0; i--) // sort on i-th radix-r digit
       for(j=0; j<n; j++) // n : # of records
          k = i-th radix-r digit of a[j]'s key;
          insert a[j] to queue[k];
       list = {};
       for(k=0; k<r; k++) // collect resulting chain</pre>
          list += queue[k];
   return list;
```

Discussion

- O(d(n+r))
- d depends on the choice of radix and the largest key
 - What if you have 100 numbers, 99 of them are only two-digit numbers (e.g., 12, 34, ...) and one of them is 6-digit number (e.g., 123456)?
- If d and r << n, then O(n)
 - Better than comparison-based O(n log n) sorting algorithms

Questions?

