Feuille d'exercices 24. Déterminants

Exercice 24.1 : (niveau 1)

Soit \mathbb{K} un corps de caractéristique différente de 2 et n un entier naturel impair. Montrer que toute matrice antisymétrique de $\mathcal{M}_n(\mathbb{K})$ est de déterminant nul.

Exercice 24.2 : (niveau 1)

Soient α , β et γ trois réels. Montrez que :

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & \cos \gamma & \cos \beta \\ 1 & \cos \gamma & 1 & \cos \alpha \\ 1 & \cos \beta & \cos \alpha & 1 \end{vmatrix} = -16\sin^2 \frac{\alpha}{2}\sin^2 \frac{\beta}{2}\sin^2 \frac{\gamma}{2}.$$

Exercice 24.3 : (niveau 1)

Soit $(a_{i,j})_{1 \leq i,j \leq n}$ une matrice carrée de taille $n \in \mathbb{N}^*$ à valeurs dans un corps \mathbb{K} . Comparer $\det((a_{i,j})_{1 < i,j < n})$ et $\det(((-1)^{i+j}a_{i,j})_{1 < i,j < n})$.

Exercice 24.4 : (niveau 1)

Soit $n \in \mathbb{N}$. On note V l'ensemble des applications de \mathbb{R} dans \mathbb{R} de la forme $x \longmapsto e^x P(x)$, où P est une application polynomiale de degré inférieur à n.

- $\mathbf{1}^{\circ}$) Montrer que V est un \mathbb{R} -espace vectoriel de dimension finie et préciser sa dimension
- **2°)** Si l'on pose, pour tout $f \in V$, D(f) = f', montrer que $D \in L(V)$ et calculer $\det(D)$.

Exercice 24.5 : (niveau 2)

On pose
$$M = \begin{pmatrix} 2 & -3 & -1 \\ 1 & -2 & -1 \\ -2 & 6 & 3 \end{pmatrix}$$
.

Déterminer $Q \in GL_3(\mathbb{R})$ telle que $M = Q \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} Q^{-1}$.

Exercice 24.6 : (niveau 2)

Soit n un entier supérieur ou égal à 2. Calculer le déterminant de la matrice de taille n dont le (i, j)ème coefficient vaut |i - j|.

Exercice 24.7 : (niveau 2)

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . Soit $(n,p) \in \mathbb{N}^{*2}$.

Pour tout $M = (m_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{K})$ on pose $||M|| = \sup_{\substack{X \in \mathbb{K}^p \\ ||X||_{\infty} \leq 1}} ||MX||_{\infty}$. Montrer que l'on définit ainsi une norme sur $\mathcal{M}_{n,p}(\mathbb{K})$ et que,

pour tout $M = (m_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{K}), ||M|| = \sup_{1 \le i \le n} \sum_{i=1}^{p} |m_{i,j}|.$

Exercice 24.8 : (niveau 2)

Soit E un C-espace vectoriel de dimension n et $u \in L(E)$.

- 1°) Montrer que E est un \mathbb{R} -espace vectoriel de dimension 2n.
- 2°) Montrer que $\det_{\mathbb{R}}(u) = |\det_{\mathbb{C}}(u)|^2$.

Exercice 24.9 : (niveau 2)

Soit A une matrice carrée de taille n à coefficients dans un corps \mathbb{K} . Déterminer le rang de ${}^{t}Cof(A)$ en fonction de celui de A.

Exercice 24.10 : (niveau 2)

Soit $(a, b) \in \mathbb{K}^2$ et $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}$

Soit $(a, b) \in \mathbb{R}$ $(a, b) \in \mathbb{R}$ (a, b)

Calculer $det(M_n)$. Indication: Etudier le polynôme défini par $P(x) = det(M_n + xJ)$ pour tout $x \in \mathbb{R}$, où J est la matrice dont tous les coefficients sont égaux à 1.

Exercice 24.11 : (niveau 2)

Soient $n \in \mathbb{N}^*$ et $(a_0, \dots, a_n) \in \mathbb{R}^n$

Soient $n \in \mathbb{N}$ et $(a_0, \dots, a_n) \in \mathbb{N}$

Exercice 24.12 : (niveau 2)

n désigne un entier supérieur ou égal à 2.

- 1°) Montrer que $GL_n(\mathbb{K})$ est un ouvert de $\mathcal{M}_n(\mathbb{K})$.
- **2°**) Montrer que l'application $M \mapsto M^{-1}$ est continue sur $GL_n(\mathbb{K})$.
- **3°)** Montrer que $GL_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.

Exercice 24.13 : (niveau 2)

Soit p un entier strictement positif. Les éléments de \mathbb{Z}^p sont notés sous la forme de vecteurs colonnes à p lignes. Montrer que φ est un automorphisme du groupe $(\mathbb{Z}^p, +)$ si et seulement s'il existe une matrice $A \in \mathcal{M}_p(\mathbb{R})$ telle que

- \diamond pour tout $X \in \mathbb{Z}^p$, $\varphi(X) = AX$,
- \diamond les coefficients de A sont des entiers relatifs
- \diamond et $det(A) = \pm 1$.

Exercice 24.14 : (niveau 2)

Soient P et Q deux polynômes de $\mathbb{C}[X]$, dont les degrés, notés m et n, sont strictement

positifs. On notera
$$P = \sum_{k=0}^{m} a_k X^k$$
 et $Q = \sum_{k=0}^{n} b_k X^k$.

Montrer que les assertions suivantes sont équivalentes :

- i) P et Q admettent une racine commune.
- ii) Le degré de $P \wedge Q$ est strictement positif.
- iii) Il existe deux polynômes A et B de $\mathbb{C}[X]$, non nuls, tels que

$$deg(A) \le n - 1$$
, $deg(B) \le m - 1$ et $AP + BQ = 0$.

- iv) La famille $(P, XP, \dots, X^{n-1}P, Q, XQ, \dots, X^{m-1}Q)$ est liée.
- v) det(M) = 0, où $M = (\alpha_{i,j}) \in \mathcal{M}_{n+m}(\mathbb{C})$ est définie par les relations suivantes :
 - Si $k \in \mathbb{Z} \setminus \{0, \dots, m\}$, on convient que $a_k = 0$.
 - De même, si $k \in \mathbb{Z} \setminus \{0, \dots, n\}$, on convient que $b_k = 0$.
 - Pour tout $j \in \mathbb{N}_n$ et $i \in \mathbb{N}_{n+m}$, $\alpha_{i,j} = a_{i-j}$.
 - Pour tout $j \in \{n+1, \ldots, n+m\}$ et $i \in \mathbb{N}_{n+m}$, $\alpha_{i,j} = b_{i-j+n}$.

Exercice 24.15 : (niveau 3)

Soient $n \in \mathbb{N}^*$, $(\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$ et $(\beta_1, \ldots, \beta_n) \in \mathbb{C}^n$. On suppose que, pour tout $(i, j) \in \mathbb{N}_n^2$, $\alpha_i + \beta_j \neq 0$. Calculer le déterminant de la matrice $\left(\frac{1}{\alpha_i + \beta_j}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ selon les deux méthodes suivantes :

- 1°) Effectuer des opérations élémentaires sur les lignes et sur les colonnes, en commençant par multiplier la $i^{\text{ème}}$ ligne par $\alpha_i + \beta_1$, pour tout $i \in \{1, ..., n\}$.
- $\prod_{j=1}^{n-1} (X \alpha_j)$ 2°) Déterminer $\lambda \in \mathbb{C}$ tel que $\lambda \frac{j=1}{n}$ se mette sous la forme $\prod_{j=1}^{n-1} (X + \beta_j)$

$$\frac{1}{X+\beta_n} + \sum_{j=1}^{n-1} \frac{a_j}{X+\beta_j} \text{ puis poursuivre } \dots$$

Exercice 24.16: (niveau 3)

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$. Montrer que si A et B sont semblables dans $\mathcal{M}_n(\mathbb{C})$, elles le sont dans $\mathcal{M}_n(\mathbb{R})$.

Indication: Il existe $P \in GL_n(\mathbb{C})$ telle que $PA = BP \dots$

Exercices supplémentaires

Exercice 24.17: (niveau 1)

Calculer le déterminant $\Delta = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & 0 & \cdots & 0 & 1 \end{vmatrix}$.

Exercice 24.18 : (niveau 1)

Soit $\alpha \in \mathbb{C}$. Calculer le déterminant de la matrice $(\alpha^{|i-j|})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$

Exercice 24.19 : (niveau 1)

Soit E un \mathbb{R} -espace vectoriel de dimension $n \in \mathbb{N}^*$.

On suppose qu'il existe $f \in L(E)$ tel que $f^2 = -Id_E$.

Montrer que n est pair.

Exercice 24.20: (niveau 1)

Montrez que
$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3.$$

Exercice 24.21 : (niveau 1)

Soit $\alpha \in \mathbb{C}$. Calculer le déterminant de la matrice d'ordre n dont les coefficients diagonaux sont égaux à $1 + \alpha$, les autres coefficients étant tous égaux à 1.

Exercice 24.22 : (niveau 1)

Montrer que
$$\begin{vmatrix} 1 & \sin \alpha & \cos \alpha \\ 1 & \sin \beta & \cos \beta \\ 1 & \sin \gamma & \cos \gamma \end{vmatrix} = -4 \sin \frac{\gamma - \beta}{2} \sin \frac{\gamma - \alpha}{2} \sin \frac{\beta - \alpha}{2}.$$

Exercice 24.23: (niveau 1)

Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_{\mathbb{R}}(n)$, où $a_{i,i} = 2, a_{i,i+1} = 1, a_{i,i-1} = 3$ et $a_{i,j} = 0$ pour les autres coefficients. Calculer det(A).

Exercice 24.24: (niveau 1)

Soient A et B deux matrices inversibles de $\mathcal{M}_n(\mathbb{R})$, à coefficients dans \mathbb{Z} . On suppose que det(A) et det(B) sont premiers entre eux. Montrer qu'il existe deux matrices U et $V \text{ de } \mathcal{M}_n(\mathbb{R}), \text{ à coefficients dans } \mathbb{Z}, \text{ telles que } UA + VB = I_n.$

Exercice 24.25 : (niveau 1)

Rechercher les éléments propres de la matrice $M = \begin{pmatrix} 0 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$.

Exercice 24.26: (niveau 1)

Soit m et n deux entiers non nuls tels que m > n.

Soit $A \in \mathcal{M}_{m,n}(\mathbb{C})$ et $B \in \mathcal{M}_{n,m}(\mathbb{C})$: Calculer det(AB).

Exercice 24.27 : (niveau 1)

Soit $M \in \mathcal{M}_n(\mathbb{C})$. On appelle comatrice de M la matrice notée Com(M) dont le (i,j)-ième coefficient est égal au cofacteur de M de position (i,j). Calculer $\det(\operatorname{Com}(M))$ en fonction $\det(M)$.

Exercice 24.28: (niveau 2)

Soit $a_1, \ldots, a_n, b_1, \ldots, b_n$ 2n réels.

Soit
$$a_1, \ldots, a_n, b_1, \ldots, b_n$$
 $2n$ réels.

$$\begin{vmatrix} a_1 + b_1 & b_1 & \cdots & \cdots & b_1 \\ b_2 & a_2 + b_2 & b_2 & \cdots & b_2 \\ \vdots & \ddots & \ddots & \vdots \\ b_{n-1} & \cdots & b_{n-1} & \ddots & b_{n-1} \\ b_n & \cdots & \cdots & b_n & a_n + b_n \end{vmatrix}$$
Calculer le déterminant

Exercice 24.29 : (niveau 2)

Soit $n \in \mathbb{N}^*$. Soient (a_1, \ldots, a_n) et (b_1, \ldots, b_n) deux familles de réels.

On note $A = (m_{i,j}) \in \mathcal{M}_n(\mathbb{R})$, où pour tout $(i,j) \in \mathbb{N}_n^2$, $m_{i,j} = \begin{cases} a_i + b_i & \text{si } i = j \\ a_i & \text{si } i \neq j \end{cases}$.

- 1°) Calculer le déterminant de A.
- **2**°) On suppose que $b_1 < b_2 < \cdots < b_n$ et que, pour tout $i \in \mathbb{N}_n$, $a_i > 0$. Montrer que A est diagonalisable.

Exercice 24.30 : (niveau 2)

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . Soit $(n,p) \in \mathbb{N}^{*2}$.

Pour tout $M = (m_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{K})$ on pose $||M|| = \sup_{\substack{X \in \mathbb{K}^p \\ ||X||_1 \le 1}} ||MX||_1$.

Montrer que l'on définit ainsi une norme sur $\mathcal{M}_{n,p}(\mathbb{K})$ et que,

pour tout
$$M = (m_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{K}), ||M|| = \sup_{1 \le j \le p} \sum_{i=1}^{n} |m_{i,j}|.$$

Exercice 24.31 : (niveau 2)

Soient n un entier supérieur ou égal à 3 et x un réel non nul.

- 1°) Calculer le déterminant de la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux sont nuls et dont les autres coefficients sont tous égaux à x.
- **2°**) Calculer le déterminant de la matrice $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ définie par les relations suivantes : pour tout $i \in \{1, ..., n\}$, $a_{i,i} = 0$, pour tout $k \in \{2, ..., n\}$, $a_{1,k} = a_{k,1} = 1$, et tous les autres coefficients de A sont égaux à x.

Exercice 24.32 : (niveau 2)

Soit n un entier plus grand que 2. Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$ telle que AB = BA.

Montrer que $det(A^2 + B^2) \ge 0$ (on pourra utiliser la matrice A + iB).

Si l'on ne suppose plus que A et B commutent, montrer que cette propriété peut être fausse.

Exercice 24.33: (niveau 2)

- 1°) Diagonaliser la matrice $M = \begin{pmatrix} 0 & -2 & 0 \\ 1 & 0 & -1 \\ 0 & 2 & 0 \end{pmatrix}$.
- 2°) Calculer les puissances de M.

Exercice 24.34 : (niveau 2)

Soit $n \in \mathbb{N}$ avec $n \geq 3$. On note $v = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{C}^{n-1}$ et on définit la matrice A de $\mathcal{M}_n(\mathbb{C})$ sous la forme par blocs suivante : $A = \begin{pmatrix} 2i\sqrt{n-1} & t_v \\ v & 0_{n-1,n-1} \end{pmatrix}$, où $0_{n-1,n-1}$ désigne la

matrice carrée nulle de taille n-1.

- 1°) Déterminer les valeurs propres et les vecteurs propres de A.
- 2°) Trigonaliser A.

Exercice 24.35 : (niveau 2)

On fixe $n \in \mathbb{N}$ avec $n \geq 2$. On considère sur $\mathcal{M}_n(\mathbb{C})$ une norme N pour laquelle deux matrices semblables ont toujours la même norme.

- 1°) Montrez que $\forall (A, B) \in GL_n(\mathbb{C}) \times \mathcal{M}_n(\mathbb{C}) \ N(AB) = N(BA)$.
- **2°)** Montrez que $\forall (A, B) \in \mathcal{M}_n(\mathbb{C})^2$ N(AB) = N(BA).
- **3°)** Déterminez deux matrices A et B dans $\mathcal{M}_n(\mathbb{C})$ telles que AB = 0 et $BA \neq 0$. Qu'en déduit-on?

Exercice 24.36 : (niveau 2)

Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{R})$ telle que, pour tout $(i,j) \in \{1,\ldots,n\}^2$, $a_{i,j} \in \{-1,1\}$. Montrer que $det(A) \in \mathbb{Z}$ et que 2^{n-1} divise det(A).

Exercice 24.37 : (niveau 2)

Soient $n \in \mathbb{N}^*$ et E un \mathbb{K} -espace vectoriel de dimension n.

On fixe $u \in L(E)$ et e une base de E.

Montrer que, pour tout $x = (x_1, \ldots, x_n) \in E^n$,

$$\sum_{i=1}^{n} det_e(x_1, \dots, x_{i-1}, u(x_i), x_{i+1}, \dots, x_n) = Tr(u) \times det_e(x).$$

Exercice 24.38 : (niveau 2)

Soient n un entier supérieur ou égal à 2 et $(x_1,...,x_n) \in \mathbb{R}^n$.

1°) Soit $j \in \mathbb{N}$. Montrer qu'il existe un unique polynôme $T_i \in \mathbb{R}[X]$ tel que, pour tout $x \in \mathbb{R}$, $\cos(jx) = T_i(\cos(x))$.

Préciser le degré de T_j et son coefficient dominant.

2°) Calculer le déterminant de la matrice $M \in \mathcal{M}_n(\mathbb{R})$ dont le $(i,j)^{\text{ème}}$ coefficient est égal à $\cos[(j-1)x_i]$.

Exercice 24.39 : (niveau 2)

Soit $n \in \mathbb{N}^*$. Si M est une matrice de $\mathcal{M}_n(\mathbb{R})$, on note Com(M) la matrice de $\mathcal{M}_n(\mathbb{R})$ dont le $(i,j)^{\text{ème}}$ coefficient est le cofacteur de M de position (i,j).

Soit A une matrice inversible de $\mathcal{M}_n(\mathbb{R})$.

Déterminer l'ensemble des matrices $X \in \mathcal{M}_n(\mathbb{R})$ telles que Com(X) = A.

Exercice 24.40 : (niveau 3)

On désigne par $\mathcal{F}(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} . Soient $n \in \mathbb{N}^*$ et $f = (f_1, \dots, f_n)$ une famille de n vecteurs de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

- 1°) Montrer que s'il existe une famille de n réels (x_1, \ldots, x_n) telle que $det\left[\left((f_i(x_j)\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}\right] \neq 0$, alors f est une famille libre.
- 2°) Montrer la réciproque, par exemple en raisonnant par récurrence.

Exercice 24.41: (niveau 3)

On fixe un entier $n \geq 1$.

- 1°) Si $(c_1, \ldots, c_n) \in \mathbb{R}^n \setminus \{0\}$ et si a_1, \ldots, a_n sont n réels deux à deux distincts, montrer que la fonction $x \longmapsto \sum_{k=1}^n c_k e^{a_k x}$ admet au plus n-1 zéros.
- **2°**) On fixe $\alpha_1, \ldots, \alpha_n$ n réels deux à deux distincts et $\beta_1, \ldots, \beta_{n-1}$ n-1 réels deux à deux distincts. Pour tout $\beta_n \in \mathbb{R}$, on pose $f(\beta_n) = \text{Det}((e^{\alpha_i \beta_j})_{1 \le i,j \le n})$. Montrer que f est une fonction dont les zéros sont exactement les $\beta_1, \ldots, \beta_{n-1}$.
- **3°)** Soit $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$ 2n réels tels que $\alpha_1 < \alpha_2 < \cdots < \alpha_n$ et $\beta_1 < \beta_2 < \cdots < \beta_n$. Montrer que $\text{Det}((e^{\alpha_i \beta_j})_{1 \le i, j \le n}) > 0$.

Exercice 24.42 : (niveau 3)

Soient $n \in \mathbb{N}^*$ et $p \in \{1, ..., n\}$. Soit E un \mathbb{K} -espace vectoriel de dimension n, muni d'une base $e = (e_1, ..., e_n)$. On note $e^* = (e_1^*, ..., e_n^*)$ la base duale de e.

1°) Soit $(k_1, \ldots, k_p) \in \{1, \ldots, n\}_p^p$ tel que $k_1 < \cdots < k_p$. Pour tout $(x_1, \ldots, x_p) \in E^p$, posons $\varphi(x_1, \ldots, x_p) = \sum_{\sigma \in \mathcal{S}_p} \varepsilon(\sigma) \prod_{i=1}^p x_{i, k_{\sigma(i)}}$, où \mathcal{S}_p est l'ensemble des permutations de

 $\{1,\ldots,p\}$, où $\varepsilon(\sigma)$ désigne la signature de la permutation σ et où $x_{i,j}$ désigne la $j^{\text{ème}}$ coordonnée de x_i dans la base e.

Montrer que φ est une forme p-linéaire alternée sur E.

Pour la suite, on notera $\varphi = e_{k_1}^* \wedge \cdots \wedge e_{k_p}^*$ et $A_p(E)$ désignera l'ensemble des formes p-linéaires alternées de E.

2°) Montrer que la famille $(e_{k_1}^* \wedge \cdots \wedge e_{k_p}^*)_{1 \leq k_1 < \cdots < k_p \leq n}$ est une base de $A_p(E)$. Calculer la dimension de $A_p(E)$.