5 Questions 20 points each

- **Q-1** Design an op amp-based low-pass filter with a cutoff frequency of 2500 Hz and a passband gain of 5 using a 10 nF capacitor. The input to the low-pass filter is 3.5 cos ωt V.
 - a) Draw your circuit, labeling the component values and output voltage.
 - b) If the value of the feedback resistor in the filter is changed but the value of the resistor in the forward path is unchanged, what characteristic of the filter is changed?
 - c) Find the output voltage when $\omega = \omega_c$.
 - d) Find the output voltage when $\omega = 0.125 \omega_c$.
 - e) Find the output voltage when $\omega = 8 \omega_c$.

- Q-2 Write the relationship and draw phasor between phase and line quantities for a balanced 3 phase system if:
 - a. Star Connection (phasor diagram for phase voltages and Line voltages).
 - b. Delta Connection (phasor diagram for phase currents and Line currents).

Q-3 For each set of voltages, state whether or not the voltages form a balanced three-phase set. If the set is balanced, state whether the phase sequence is positive or negative. If the set is not balanced, explain why?

a)
$$v_a = 48 \cos(314t - 45^\circ) \text{ V},$$

 $v_b = 48 \cos(314t - 165^\circ) \text{ V},$
 $v_c = 48 \cos(314t + 75^\circ) \text{ V}.$

b)
$$v_a = 188 \cos(250t + 60^\circ) \text{ V},$$

 $v_b = -188 \cos 250t \text{ V},$
 $v_c = 188 \cos(250t - 60^\circ) \text{ V}.$

c)
$$v_a = 426 \cos 100t \text{ V},$$

 $v_b = 462 \cos(100t + 120^\circ) \text{ V},$
 $v_c = 426 \cos(100t - 120^\circ) \text{ V}.$

d)
$$v_a = 1121 \cos (2000t - 20^\circ) \text{ V},$$

 $v_b = 1121 \sin (2000t - 50^\circ) \text{ V},$
 $v_c = 1121 \cos (2000t + 100^\circ) \text{ V}.$

e)
$$v_a = 540 \sin 630t \text{ V},$$

 $v_b = 540 \cos(630t - 120^\circ) \text{ V},$
 $v_c = 540 \cos(630t + 120^\circ) \text{ V}.$

f)
$$v_a = 144 \cos (800t + 80^\circ) \text{ V},$$

 $v_b = 144 \sin (800t - 70^\circ) \text{ V},$
 $v_c = 144 \sin (800t + 50^\circ) \text{ V}.$

Q-4 A balanced three-phase circuit has the following characteristics.

- Y-Y connected;
- The line voltage at the source, V_{ab} , is $110\sqrt{3}/-60^{\circ} V$;
- · The phase sequence is positive;
- The line impedance is $3 + j2 \Omega/\phi$;
- The load impedance is $37 + j28 \Omega/\phi$;
- a) Draw the single-phase equivalent circuit for the a-phase.
- b) Calculated the line currents for each phase.
- c) Calculated the line voltages at the load in each phase.

Q-5 A balanced, three-phase circuit is characterized as follows:

- Y-Δ connected;
- Source voltage in the b-phase is 150/135° V;
- · Source phase sequence is acb;
- Line impedance is $2 + j3 \Omega/\phi$;
- Load impedance is $129 + j171 \Omega/\phi$.
- a) Draw the single phase equivalent a-phase.
- b) Calculate the a-phase line current.
- c) Calculate the a-phase line voltage for the threephase load.