Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

expectations and variances of linear combinations

Mean and Variance of a Function

The Central Limit

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Iowa State University

Outline

Functions of Several Random Variables

Expectations and variances of linear combinations

Approximating the Mean and Variance of a Function

The Central Limit Theorem

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

Expectations and variances of linear combinations

Approximating the Mean and Variance of a Function

The Central Limit

Yifan Zhu

Functions of Several Random Variables

Expectations and variances of linear combinations

Mean and Variance of a Function

The Central Limit

We often consider functions of random variables of the form:

$$U = g(X, Y, \dots, Z)$$

where X, Y, \ldots, Z are random variables.

U is itself a random variable.

Suppose that a steel plate with nominal thickness .15 in. is to rest in a groove of nominal width .155 in., machined on the surface of a steel block.

Relative Frequency Distribution of Plate Thicknesses

Plate Thickness (in.)	Relative Frequency
.148	.4
.149	.3
.150	.3

Relative Frequency Distribution of Slot Widths

Slot Width (in.)	Relative Frequency
.153	.2
.154	.2
.155	.4
.156	.2

- ightharpoonup X =plate thickness
- ightharpoonup Y =slot width
- ightharpoonup U = Y X, the "wiggle room" of the plate

The Probability Function for the Clearance U = Y - X

Marginal and Joint Probabilities for X and Y

у \	x .148	.149	.150	$f_Y(y)$
.156	.08	.06	.06	.2
.155	.16	.12	.12	.4
.154	.08	.06	.06	.2
.153	.08	.06	.06	.2
$f_X(x)$.4	.3	.3	

и	f(u)
.003	.06
.004	.12 = .06 + .06
.005	.26 = .08 + .06 + .12
.006	.26 = .08 + .12 + .06
.007	.22 = .16 + .06
.008	.08

► Determining the distribution of *U* is difficult in the continuous case.

Outline

Functions of Several Random Variables

Expectations and variances of linear combinations

Approximating the Mean and Variance of a Function

The Central Limit Theorem

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

Expectations and variances of linear combinations

Approximating the Mean and Variance of a Function

The Central Limit

 \triangleright X_1, X_2, \dots, X_n are independent random variables and

$$Y = a_0 + a_1 X_1 + a_2 X_2 + \cdots + a_n X_n$$

then:

$$E(Y) = E(a_0 + a_1X_1 + a_2X_2 + \dots + a_nX_n)$$

= $a_0 + a_1E(X_1) + a_2E(X_2) + \dots + a_nE(X_n)$

$$Var(Y) = Var(a_0 + a_1X_1 + a_2X_2 + \dots + a_nX_n)$$

= $a_1^2 \cdot Var(X_1) + a_2^2 \cdot Var(X_2) + \dots + a_n^2 \cdot Var(X_n)$

Mean and Variance of a Function

The Central Limit

- Say we have two independent random variables X and Y with E(X) = 3.3, Var(X) = 1.91, E(Y) = 25, and Var(Y) = 65.
- ► Find:

$$E(3+2X-3Y)$$

 $E(-4X+3Y)$
 $E(-4X-6Y)$
 $Var(3+2X-3Y)$
 $Var(2X-5Y)$
 $Var(-4X-6Y)$

Mean and Variance of a Function

$$E(3+2X-3Y) = 3+2E(X) - 3E(Y)$$

= 3+2\cdot 3.3 - 3\cdot 25
= -65.4

$$E(-4X + 3Y) = -4E(X) + 3E(Y)$$

$$= -4 \cdot 3.3 + 3 \cdot 25$$

$$= 61.8$$

$$E(-4X - 6Y) = -4 \cdot E(X) - 6 \cdot E(Y)$$
$$= -4 \cdot 3.3 - 6 \cdot 25$$
$$= -163.2$$

Mean and Variance of a Function

The Central Limit

$$Var(3 + 2X - 3Y) = 2^{2} \cdot Var(X) + (-3)^{2} Var(Y)$$

$$= 4 \cdot 1.91 + 9 \cdot 65$$

$$= 592.64$$

$$Var(2X - 5Y) = 2^2 \cdot Var(X) + (-5)^2 Var(Y)$$

= $4 \cdot 1.91 + 25 \cdot 65$
= 1632.64

$$Var(-4X - 6Y) = (-4)^{2} \cdot Var(X) + (-6)^{2} Var(Y)$$

$$= 16 \cdot 1.91 + 36 \cdot 65$$

$$= 2370.56$$

Mean and Variance of a Function

- Say $X \sim \text{Binomial}(n = 10, p = 0.5)$ and $Y \sim \text{Poisson}(\lambda = 3)$.
- Calculate:

$$E(5+2X-7Y)$$

 $Var(5+2X-7Y)$

$$E(X) = np = 10 \cdot 0.5 = 5$$

 $E(Y) = \lambda = 3$
 $Var(X) = np(1 - p) = 10(0.5)(1 - 0.5) = 2.5$
 $Var(Y) = \lambda = 3$

Now, we can calculate:

$$E(5+2X-7Y) = 5 + 2E(X) - 7E(Y)$$

= 5 + 2 \cdot 5 - 7 \cdot 3
= -6

$$Var(5 + 2X - 7Y) = 2^2 \cdot Var(X) + (-7)^2 \cdot Var(Y)$$

= $4 \cdot 2.5 + 49 \cdot 3$
= 157

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

Expectations and variances of linear combinations

Mean and Variance of a Function

The Central Limit

Outline

Functions of Several Random Variables

Expectations and variances of linear combinations

Approximating the Mean and Variance of a Function

The Central Limit Theorem

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

variances of linear combinations

Approximating the Mean and Variance of a Function

Expectations and variances of linear combinations

Approximating the

Mean and Variance of a Function

The Central Limit

The Central Limit
Theorem

If X, Y, ..., Z are independent, g is well-behaved, and the variances Var(X), Var(Y), ..., Var(Z) are small enough, then U = g(X, Y, ..., Z) has:

$$\begin{split} E(U) &\approx g(E(X), E(Y), \dots, E(Z)) \\ \text{Var}(U) &\approx \left(\frac{\partial g}{\partial x}\right)^2 \text{Var}(X) + \left(\frac{\partial g}{\partial y}\right)^2 \text{Var}(Y) + \dots + \left(\frac{\partial g}{\partial z}\right)^2 \text{Var}(Z) \end{split}$$

These formulas are often called the propagation of error formulas.

Example: an electric circuit

- R is the total resistance of the circuit.
- ▶ R₁, R₂, and R₃ are the resistances of resistors 1, 2, and 3, respectively.
- $E(R_i) = 100$, $Var(R_i) = 2$, i = 1, 2, 3.

$$R = g(R_1, R_2, R_3) = R_1 + \frac{R_2 R_3}{R_2 + R_3}$$

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

Expectations and variances of linear combinations

Approximating the Mean and Variance of a Function

Approximating the Mean and Variance of a Function

The Central Limit

$$E(R) \approx g(100, 100, 100) = 100 + \frac{(100)(100)}{100 + 100} = 150\Omega$$

$$\frac{\partial g}{\partial r_1} = 1$$

$$\frac{\partial g}{\partial r_2} = \frac{(r_2 + r_3)r_3 - r_2r_3}{(r_2 + r_3)^2} = \frac{r_3^2}{(r_2 + r_3)^2}$$

$$\frac{\partial g}{\partial r_3} = \frac{(r_2 + r_3)r_2 - r_2r_3}{(r_2 + r_3)^2} = \frac{r_2^2}{(r_2 + r_3)^2}$$

$$Var(R) \approx (1)^2(2)^2 + \left(\frac{(100)^2}{(100 + 100)^2}\right)^2(2)^2 + \left(\frac{(100)^2}{(100 + 100)^2}\right)^2(2)^2$$

$$= 4.5$$

$$SD(R)\sqrt{4.5} \approx 2.12\Omega$$

Outline

Functions of Several Random Variables

Expectations and variances of linear combinations

Approximating the Mean and Variance of a Function

The Central Limit Theorem

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

variances of linear combinations

Approximating the Mean and Variance of a Function

iid random variables.

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

Expectations and variances of linear combinations

Approximating the

of a Function

The Central Limit

- ▶ **Identically Distributed**: Random variables $X_1, X_2, ..., X_n$ are identically distributed if they have the same probability distribution.
- "iid": Random variables X_1, X_2, \dots, X_n are iid if they are Independent and Identically Distributed.

Averages of iid random variables

- X_1, X_2, \dots, X_n are iid with expectation μ and variance σ^2
- Derive:

$$E(\overline{X})$$

 $Var(\overline{X})$

where:

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

the mean of the X_i 's.

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

Expectations and variances of linear combinations

Mean and Variance of a Function

$$E(\overline{X}) = E\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)$$

$$= \frac{1}{n}E(X_1) + \frac{1}{n}E(X_2) + \dots + \frac{1}{n}E(X_n)$$

$$= \underbrace{\frac{1}{n}\mu + \frac{1}{n}\mu + \dots + \frac{1}{n}\mu}_{n \text{ times}}$$

Remember $E(\overline{X}) = \mu$: it's an important result.

 $= n \cdot \frac{1}{n} \mu$ $= \boxed{\mu}$

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

Expectations and variances of linear combinations

Approximating the Mean and Variance of a Function

Mean and Variance of a Function

The Central Limit Theorem

$$Var(\overline{X}) = Var\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)$$

$$= \left(\frac{1}{n}\right)^2 Var(X_1) + \left(\frac{1}{n}\right)^2 Var(X_2) + \dots + \left(\frac{1}{n}\right)^2 \cdot Var(X_n)$$

$$= \underbrace{\frac{1}{n^2}\sigma^2 + \frac{1}{n^2}\sigma^2 + \dots + \frac{1}{n^2}\sigma^2}_{n \text{ times}}$$

$$= n \cdot \frac{1}{n^2}\sigma^2$$

$$= \underbrace{\frac{\sigma^2}{n}}_{n}$$

• Remember $Var(\overline{X}) = \frac{\sigma^2}{n}$: it's another important result.

Mean and Variance of a Function

- ▶ A botanist has collected a sample of 10 seeds and measures the length of each.
- ► The seed lengths $X_1, X_2, ..., X_{10}$ are supposed to be iid with mean $\mu = 5$ mm and variance $\sigma^2 = 2 \text{ mm}^2$.

$$E(\overline{X}) = \mu = 5$$

 $Var(\overline{X}) = \sigma^2/n = 2/10 = 0.2$

Mean and Variance of a Function

The Central Limit Theorem

▶ If $X_1, X_2, ..., X_n$ are any iid random variables with mean μ and variance $\sigma^2 < \infty$, and if n > 25.

$$\overline{X} \approx \operatorname{Normal}\left(\mu, \frac{\sigma^2}{n}\right)$$

► The Central Limit Theorem (CLT) one of the most important and useful results in statistics.

- $ightharpoonup W_2 = ext{last digit of the serial number the Monday after}$ at 9 AM
- $ightharpoonup W_1$ and W_2 are independent with pmf:

$$f(w) = \begin{cases} 0.1 & w = 0, 1, 2, \dots, 9 \\ 0 & \text{otherwise} \end{cases}$$

 $\overline{W} = \frac{1}{2}(W_1 + W_2)$ has the pmf:

The Probability Function for \overline{W} for n=2

\bar{w}	$f(\bar{w})$								
0.0	.01	2.0	.05	4.0	.09	6.0	.07	8.0	.03
0.5	.02	2.5	.06	4.5	.10	6.5	.06	8.5	.02
1.0	.03	3.0	.07	5.0	.09	7.0	.05	9.0	.01
1.5	.04	3.5	.08	5.5	.08	7.5	.04		

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

Expectations and variances of linear combinations

Approximating the Mean and Variance of a Function

Example: tool serial numbers

▶ What if $\overline{W} = \frac{1}{8}(W_1 + W_2 + \cdots + W_8)$, the average of 8 days of initial serial numbers?

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

Expectations and variances of linear combinations

Mean and Variance of a Function

Example: excess sale time

- ▶ \overline{S} = sample mean excess sale time (over a 7.5 s threshold) for 100 stamp sales.
- ▶ Each individual excess sale time should have an $Exp(\alpha = 16.5 \text{ s})$ distribution. That means:
 - $E(\overline{S}) = \alpha = 16.5 \text{ s}$
 - $ightharpoonup SD(\overline{S}) = \sqrt{\operatorname{Var}(\overline{S})} = \sqrt{\frac{\alpha^2}{100}} = 1.65 \text{ s}$
 - ▶ By the Central Limit Theorem, $\overline{S} \approx N(16.5, 1.65^2)$
- We want to approximate $P(\overline{S} > 17)$.

The approximate probability distribution of \overline{S} is normal with mean 16.5 and standard deviation 1.65 — Approximate $P[\overline{S} > 17]$

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

Expectations and variances of linear combinations

Approximating the Mean and Variance of a Function

variances of linear combinations

Approximating the Mean and Variance of a Function

$P(\overline{S} > 17) = P(\frac{S - 16.5}{1.65} > \frac{17 - 16.5}{1.65})$
$\approx P(Z>0.303) \qquad (Z\sim N(0,1))$
$=1-P(Z \le 0.303)$
$=1-\Phi(0.303)$
=1-0.62 from the standard normal table
= 0.38

- Individual jar weights are iid with unknown mean μ and standard deviation $\sigma=1.6~{\rm g}$
- $ightharpoonup \overline{V} = {\sf sample mean weight of n jars} pprox {\it N}\left(\mu, rac{1.6^2}{n}
 ight).$
- We want to find μ. One way to hone in on μ is to find n such that:

$$P(\mu - 0.3 < \overline{V} < \mu + 0.3) = 0.8$$

That way, our measured value of \overline{V} is likely to be close to μ .

Yifan Zhu

Functions of Several Random Variables

Expectations and variances of linear combinations

Mean and Variance of a Function

The Central Limit Theorem

$$0.8 = P(\mu - 0.3 < \overline{V} < \mu + 0.3)$$

$$= P(\frac{-0.3}{1.6/\sqrt{n}} < \frac{\overline{V} - \mu}{1.6/\sqrt{n}} < \frac{0.3}{1.6/\sqrt{n}})$$

$$\approx P(-0.19\sqrt{n} < Z < 0.19\sqrt{n}) \text{ (by CLT)}$$

$$= 1 - 2\Phi(-0.19\sqrt{n}) \text{ (look at the N(0,1) pdf)}$$

$$\Phi^{-1}(0.1) = -0.19\sqrt{n}$$

$$n = \frac{\Phi^{-1}(0.1)^2}{(-0.19)^2}$$

$$= \frac{(-1.28)^2}{(-0.19)^2} \text{ (standard normal table)}$$

$$= 46.10$$

▶ Hence, we'll need a sample size of n = 47.

- Suppose a bunch of cars pass through certain stretch of road. Whenever a car comes, you look at your watch and record the time.
- Let X_i be the time (in hours) between when the i'th car comes and the (i+1)'th car comes, $i=1,\ldots,44$. Suppose you know:

$$X_1, X_2, \dots, X_{44} \sim \text{ iid } f(x) = e^{-x} \quad x > 0$$

► Find the probability that the average time gap between cars exceeds 1.05 hours.

variances of linear combinations

Mean and Variance of a Function

$$\mu = E(X_1)$$

$$= \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_{0}^{\infty} x e^{-x} dx$$

$$= -e^{-x} (x+1)|_{0}^{\infty} \quad \text{integration by parts}$$

$$= 1$$

Expectations and variances of linear combinations

Approximating the

Mean and Variance of a Function

The Central Limit

$$E(X_1^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

$$= \int_{0}^{\infty} x^2 e^{-x} dx$$

$$= -e^{-x} (x^2 + 2x + 2)|_{0}^{\infty} \quad \text{integration by parts}$$

$$= 2$$

$$\sigma^2 = Var(X_1)$$

$$= E(X_1^2) - E^2(X_1)$$

$$= 2 - 1^2$$

$$= 1$$

variances of linear combinations

Approximating the Mean and Variance of a Function

The Central Limit Theorem

$$\overline{X} \sim \text{ approx. } \mathcal{N}(\mu, \sigma^2/n)$$

= $\mathcal{N}(1, 1/44)$

Thus:

$$\frac{\overline{X}-1}{\sqrt{1/44}}\sim N(0,1)$$

Eunctions of

Expectations and variances of linear combinations

Mean and Variance of a Function

The Central Limit

The Central Limit Theorem

Now, we're ready to approximate:

$$P(\overline{X} > 1.05) = P(\frac{\overline{X} - 1}{\sqrt{1/44}} > \frac{1.05 - 1}{\sqrt{1/44}})$$

$$= P(\frac{\overline{X} - 1}{\sqrt{1/44}} > 0.332)$$

$$\approx P(Z > 0.332)$$

$$= 1 - P(Z \le 0.332)$$

$$= 1 - \Phi(0.332)$$

$$= 1 - 0.630 = 0.370$$

Example: cars

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Randon Variables

Expectations and variances of linear combinations

Approximating the Mean and Variance of a Function

Example: cars

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Randon Variables

variances of linear combinations

Approximating the Mean and Variance of a Function

Example: cars

Densities of and Average(X) and N(1,1/44)

Functions of Several Random Variables (Ch. 5.5)

Yifan Zhu

Functions of Several Random Variables

variances of linear combinations

Mean and Variance of a Function