

LECTURE 37 OF 42

Genetic Programming Discussion: Schema Theory

William H. Hsu Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3

Course web site: http://www.kddresearch.org/Courses/CIS730

Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:

Chapter 20, Russell and Norvig

Perceptron: Single Neuron Model

- <u>aka Linear Threshold Unit (LTU) or Linear Threshold Gate (LTG)</u>
- Net input to unit: defined as linear combination $net = \sum_{i=0}^{n} w_i x_i$
- Output of unit: threshold (activation) function on net input (threshold $\theta = w_0$)

Perceptron Networks

- Neuron is modeled using a unit connected by weighted links w_i to other units
- <u>Multi-Layer Perceptron (MLP): next lecture</u>

Definition: Gradient

$$\nabla \boldsymbol{E}[\vec{\boldsymbol{w}}] = \left[\frac{\partial \boldsymbol{E}}{\partial \boldsymbol{w_0}}, \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{w_1}}, \dots, \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{w_n}}\right] \qquad \stackrel{15}{\underset{\square}{\mathbb{Z}}}$$

Modified Gradient Descent Training Rule

$$\Delta \vec{w} = -r \nabla E[\vec{w}]$$

$$\Delta w_i = -r \frac{\partial E}{\partial w_i}$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \left[\frac{1}{2} \sum_{\mathbf{x} \in D} (\mathbf{t}(\mathbf{x}) - \mathbf{o}(\mathbf{x}))^2 \right] = \frac{1}{2} \sum_{\mathbf{x} \in D} \left[\frac{\partial}{\partial w_i} (\mathbf{t}(\mathbf{x}) - \mathbf{o}(\mathbf{x}))^2 \right]$$

$$= \frac{1}{2} \sum_{\mathbf{x} \in \mathbf{D}} \left[2(\mathbf{t}(\mathbf{x}) - \mathbf{o}(\mathbf{x})) \frac{\partial}{\partial \mathbf{w}_{i}} (\mathbf{t}(\mathbf{x}) - \mathbf{o}(\mathbf{x})) \right] = \sum_{\mathbf{x} \in \mathbf{D}} \left[(\mathbf{t}(\mathbf{x}) - \mathbf{o}(\mathbf{x})) \frac{\partial}{\partial \mathbf{w}_{i}} (\mathbf{t}(\mathbf{x}) - \vec{\mathbf{w}} \cdot \vec{\mathbf{x}}) \right]$$

$$\frac{\partial E}{\partial w_i} = \sum_{x \in D} [(t(x) - o(x))(-x_i)]$$

Algorithm Gradient-Descent (D, r)

- Each training example is a pair of the form $\langle x, t(x) \rangle$, where x is the vector of input values and t(x) is the output value. r is the learning rate (e.g., 0.05)
- Initialize all weights w_i to (small) random values
- UNTIL the termination condition is met, DO

Initialize each Δw_i to zero

FOR each $\langle x, t(x) \rangle$ in D, DO

<u>Input the instance *x* to the unit and compute the output *o*</u>

FOR each linear unit weight w_i, DO

$$\underline{\Delta w_i} \leftarrow \underline{\Delta w_i} + \underline{r(t - o)} \underline{x_i}$$

$$\underline{w_i} \leftarrow \underline{w_i} + \underline{\Delta w_i}$$

- **RETURN** final w

Mechanics of Delta Rule

- Gradient is based on a derivative
- Significance: later, will use nonlinear activation functions (aka transfer functions, squashing functions)

Recall: Gradient of Error Function

$$\nabla E[\vec{w}] = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_n} \right]$$

Gradient of Sigmoid Activation Function

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \left[\frac{1}{2} \sum_{\langle \vec{x}, t(\vec{x}) \rangle \in D} (t(\vec{x}) - o(\vec{x}))^2 \right] = \frac{1}{2} \sum_{\langle \vec{x}, t(\vec{x}) \rangle \in D} \left[\frac{\partial}{\partial w_i} (t(\vec{x}) - o(\vec{x}))^2 \right]$$

$$= \frac{1}{2} \sum_{\langle \vec{x}, t(\vec{x}) \rangle \in D} \left[2(t(\vec{x}) - o(\vec{x})) \frac{\partial}{\partial w_i} (t(\vec{x}) - o(\vec{x})) \right] = \sum_{\langle \vec{x}, t(\vec{x}) \rangle \in D} \left[(t(\vec{x}) - o(\vec{x})) \left(- \frac{\partial o(\vec{x})}{\partial w_i} \right) \right]$$

$$= -\sum_{\langle \vec{x}, t(\vec{x}) \rangle \in D} \left[(t(\vec{x}) - o(\vec{x})) \frac{\partial o(\vec{x})}{\partial net(\vec{x})} \frac{\partial net(\vec{x})}{\partial w_i} \right]$$
²⁰
¹⁵

But We Know:

$$\frac{\partial o(\vec{x})}{\partial net(\vec{x})} = \frac{\partial \sigma(net(\vec{x}))}{\partial net(\vec{x})} = o(\vec{x})(1 - o(\vec{x}))$$

$$\frac{\partial net(\vec{x})}{\partial w_i} = \frac{\partial (\vec{w} \cdot \vec{x})}{\partial w_i} = x_i$$

$$\frac{\mathbf{So:}}{\partial \mathbf{w_i}} = -\sum_{\langle \vec{x}, t(\vec{x}) \rangle \in D} [(t(\vec{x}) - o(\vec{x})) \cdot (o(\vec{x})(1 - o(\vec{x}))) \cdot \mathbf{x_i}]$$

- Intuitive Idea: Distribute *Blame* for Error to Previous Layers
- Algorithm Train-by-Backprop(D, r)
 - Each training example is a pair of the form $\langle x, t(x) \rangle$, where x is the vector of input values and t(x) is the output value. r is the learning rate (e.g., 0.05)
 - Initialize all weights w_i to (small) random values
 - UNTIL the termination condition is met, DO

FOR each $\langle x, t(x) \rangle$ in D, DO

Input the instance x to the unit and compute the output $o(x) = \sigma(net(x))$

FOR each output unit k, DO

$$\delta_k = o_k(x)(1-o_k(x))(t_k(x)-o_k(x))$$
 Output Layer

FOR each hidden unit j, DO

$$\delta_{j} = h_{j}(x)(1 - h_{j}(x)) \sum_{k \in \text{outpute}} v_{j,k} \delta_{j}$$

Update each $w = u_{i,j}$ $(a = h_j)$ or $w = v_{j,k}$ $(a = o_k)$

Hidden Layer

Input Layer

 $\underline{w}_{start-layer, end-layer} \leftarrow \underline{w}_{start-layer, end-layer} + \underline{\Delta} \, \underline{w}_{start-layer, end-layer}$

 $\Delta w_{\underline{start-layer}, end-layer} \leftarrow r \delta_{\underline{end-layer}} \underline{a_{\underline{end-layer}}}$

- RETURN final u, v

SIMPLE GENETIC ALGORITHM (SGA)

Algorithm Simple-Genetic-Algorithm (Fitness, Fitness-Threshold, p, r, m)

// p: population size; r: replacement rate (aka generation gap width), m: string size

- ***** $P \leftarrow p$ random hypotheses // initialize population
- * FOR each h in P DO $f[h] \leftarrow Fitness(h)$ // evaluate Fitness: hypothesis $\rightarrow \mathbb{R}$
- ★ WHILE (Max(f) < Fitness-Threshold) DO</p>
 - \Rightarrow 1. Select: Probabilistically select (1 r)p members of P to add to P_s

$$P(h_i) = \frac{f[h_i]}{\sum_{i=1}^{p} f[h_i]}$$

- ⇒ 2. Crossover:
 - lacktriangle Probabilistically select $(r \cdot p)/2$ pairs of hypotheses from P
 - ♦ FOR each pair $< h_1, h_2 > DO$

$$P_S$$
 += Crossover ($< h_1, h_2 >$) // $P_S[t+1] = P_S[t] + < offspring_1, offspring_2 >$

- \Rightarrow 3. Mutate: Invert a randomly selected bit in $m \cdot p$ random members of P_s
- \Rightarrow 4. Update: $P \leftarrow P_s$
- \Rightarrow 5. Evaluate: FOR each h in P DO $f[h] \leftarrow Fitness(h)$
- * RETURN the hypothesis h in P that has maximum fitness f[h]

GABIL System [Dejong et al, 1993]

- * Given: concept learning problem and examples
- * Learn: disjunctive set of propositional rules
- * Goal: results competitive with those for current decision tree learning algorithms (e.g., C4.5)
- Fitness Function: $Fitness(h) = (Correct(h))^2$
- Representation
 - * Rules: IF $a_1 = T \land a_2 = F$ THEN c = T; IF $a_2 = T$ THEN c = F
 - * Bit string encoding: a_1 [10] . a_2 [01] . c [1] . a_1 [11] . a_2 [10] . c [0] = 10011 11100
- Genetic Operators
 - ★ Want variable-length rule sets

CROSSOVER: VARIABLE-LENGTH BIT STRINGS

Basic Representation

* Start with

	a_1	a_2	C	a ₁	a_2	C
<i>h</i> ₁	1[0	01	1	11	1]0	0
h_2	0[1	1]1	0	10	01	0

* Idea: allow crossover to produce variable-length offspring

Procedure

- * 1. Choose crossover points for h_1 , e.g., after bits 1, 8
- * 2. Now restrict crossover points in h_2 to those that produce bitstrings with well-defined semantics, e.g., <1, 3>, <1, 8>, <6, 8>

Example

- * Suppose we choose <1, 3>
- * Result

GABIL EXTENSIONS

New Genetic Operators

- * Applied probabilistically
- * 1. AddAlternative: generalize constraint on a_i by changing a 0 to a 1
- * 2. <u>DropCondition</u>: generalize constraint on a_i by changing <u>every</u> 0 to a 1

New Field

* Add fields to bit string to decide whether to allow the above operators

a_1	a_2	C	a_1	a_2	C	<u>AA</u>	<u>DC</u>
01	11	0	10	01	0	1	0

- * So now the learning strategy also evolves!
- * aka genetic wrapper

GABIL RESULTS

Classification Accuracy

- * Compared to symbolic rule/tree learning methods
 - ⇒ *C4.5* [Quinlan, 1993]
 - ⇒ ID5R
 - ⇒ *AQ14* [Michalski, 1986]
- ★ Performance of GABIL comparable
 - ⇒ Average performance on a set of 12 synthetic problems: 92.1% test accuracy
 - ⇒ Symbolic learning methods ranged from 91.2% to 96.6%

Effect of Generalization Operators

- * Result above is for GABIL without AA and DC
- * Average test set accuracy on 12 synthetic problems with AA and DC: 95.2%

BUILDING BLOCKS (SCHEMAS)

Problem

- * How to characterize evolution of population in GA?
- * Goal
 - ⇒ Identify basic building block of GAs
 - ⇒ Describe family of individuals
- Definition: Schema
 - * String containing 0, 1, * ("don't care")
 - ★ Typical schema: 10**0*
 - * Instances of above schema: 101101, 100000, ...
- Solution Approach
 - * Characterize population by number of instances representing each possible schema

SELECTION AND BUILDING BLOCKS

Restricted Case: Selection Only

- \equiv average fitness of population at time t
- * m(s, t) = number of instances of schema s in population at time t $\hat{u}(s,t)$
- \equiv average fitness of instances of schema s at time t

Quantities of Interest

* Probability of selecting
$$h$$
 in one selection step
$$P(h \in s) = \sum_{h \in (s \cap p_t)} \frac{f(h)}{n \cdot \bar{f}(t)} = \frac{\hat{u}(s, t)}{n \cdot \bar{f}(t)} \cdot m(s, t)$$

* Probability of selecting an instance of s in one selection step

$$E[m(s,t+1)] = \frac{\hat{u}(s,t)}{\bar{f}(t)} \cdot m(s,t)$$

* Expected number of instances of s after n selections

SCHEMA THEOREM

Theorem

$$E[m(s,t+1)] \ge \frac{\hat{u}(s,t)}{\bar{f}(t)} \cdot m(s,t) \cdot \left(1 - p_c \frac{d_s}{l-1}\right) \cdot \left(1 - p_m\right)^{o(s)}$$

* m(s, t) = number of instances of schema s in population at time t

* $\hat{u}(s,t)$ = average fitness of population at time t

* = average fitness of instances of schema s at time t

* p_c = probability of single point crossover operator

* p_m = probability of mutation operator

★ / ≡ length of individual bit strings

 $* o(s) \equiv \text{number of defined (non "*") bits in } s$

*d(s) = distance between rightmost, leftmost defined bits in s

Intuitive Meaning

* "The expected number of instances of a schema in the population tends toward its relative fitness"

TERMINOLOGY

- Evolutionary Computation (EC): Models Based on Natural Selection
- Genetic Algorithm (GA) Concepts
 - Individual: single entity of model (corresponds to hypothesis)
 - Population: collection of entities in competition for survival
 - Generation: single application of selection and crossover operations
 - Schema aka building block: descriptor of GA population (e.g., 10**0*)
 - * Schema theorem: representation of schema proportional to its relative fitness
 - Simple Genetic Algorithm (SGA) Steps
 - Selection
 - \Rightarrow Proportionate reproduction (aka roulette wheel): $P(individual) \propto f(individual)$
 - ⇒ Tournament: let individuals compete in pairs or tuples; eliminate unfit ones
 - Crossover
 - \Rightarrow Single-point: 11101001000 \times 00001010101 \rightarrow { 11101010101, 00001001000 }
 - \Rightarrow Two-point: $11\underline{10100}1000 \times \underline{00}00101\underline{0101} \rightarrow \{11001011000, 00101000101\}$
 - \Rightarrow <u>Uniform</u>: $\underline{1}11\underline{01}0\underline{0}10\underline{00} \times 0\underline{00}01\underline{01}0\underline{1}01 \rightarrow \{10001000100, 01101011001\}$

Mutation: cinalo point ("hit flip") multi point

LECTURE OUTLINE

Readings / Viewings

- ★ View GP videos 1-3
 - ⇒ GP1 Genetic Programming: The Video
 - ⇒ GP2 Genetic Programming: The Next Generation
 - ⇒ GP3 Genetic Programming: Human-Competitive
- * Suggested: Chapters 1-5, Koza

Previously

- ★ Genetic and evolutionary computation (GEC)
- * Generational vs. steady-state GAs; relation to simulated annealing, MCMC
- * Schema theory and GA engineering overview

Today: GP Discussions

- Code bloat and potential mitigants: types, OOP, parsimony, optimization, reuse
- ★ Genetic programming vs. human programming: similarities, differences

GP FLOW GRAPH

Flowchart for Genetic Programming

apted from The Genetic Programming Notebook © 2002 Jaime J. Fernandez http://www.geneticprogramming.com

STRUCTURAL CROSSOVER

Crossover Operation with Different Parents

Parents

Children

[+ [- [[*]+22][*a+]]\$][*2a], [+ [-5[-[+88](+]+28](+24])8](+24)

Crossover Operation with Identical Parents

Parents

Children

apted from The Genetic Programming Notebook © 2002 Jaime J. Fernandez p://www.geneticprogramming.com

STRUCTURAL MUTATION

Mutation

Original Individual $(+(-\sqrt{(-bb)})^{\alpha})^{\alpha}$

Mutated Individuals

 $(\div (\cdot \sqrt{(+(^*b\,b)(^*(^*2\,2)(^*a\,c)))}\,b)(^*a\,a)) \qquad (\div (\cdot \sqrt{(\cdot (^*b\,b)(^*2\,a))}\,b)(^*2\,a))$

Adapted from The Genetic Programming Notebook © 2002 Jaime J. Fernandez http://www.geneticprogramming.com

GENETIC PROGRAMMING: THE INEXT GENERATION (SYNOPSIS AND DISCUSSION)

- <u>Automatically-Defined Functions (ADFs)</u>
 - * aka macros, anonymous inline functions, subroutines
 - Basic method of software reuse
- Questions for Discussion
 - ★ What are advantages, disadvantages of learning anonymous functions?
 - * How are GP ADFs similar to and different from human-produced functions?
- Exploiting Advantages
 - * Reuse
 - * Innovation
- Mitigating Disadvantages
 - * Potential lack of meaning semantic clarity issue (and topic of debate)
 - * Redundancy

CODE BLOAT [1]: PROBLEM DEFINITION

Definition

- Increase in program size not commensurate with increase in functionality (possibly as function of problem size)
- * Compare: structural criteria for overfitting, overtraining
- Scalability Issue
 - * Large GPs will have this problem
 - ★ Discussion: When do we expect large GPs?
 - * Machine learning: large, complex data sets
 - ★ Optimization, control, decision making / DSS: complex problem
- What Does It Look Like?
- What Can We Do About It?
 - * ADFs
 - * Advanced reuse techniques from software engineering: e.g., design patterns
 - Functional, object-oriented design; theory of types

CODE BLOAT [2]: MITIGANTS

- Automatically Defined Functions
- Types
 - * Ensure
 - ⇒ Compatibility of functions created
 - ⇒ Soundness of functions themselves
 - ★ Define: abstract data types (ADTs) object-oriented programming
 - ★ Behavioral subtyping still "future work" in GP
 - ★ Generics (cf. C++ templates)
 - * Polymorphism
- Advanced Reuse Techniques
 - ★ Design patterns
 - Workflow models
 - * Inheritance, reusable classes

CODE BLOAT [3]: MORE MITIGANTS

- Parsimony (cf. Minimum Description Length)
 - * Penalize code bloat
 - **★** Inverse fitness = loss + cost of code (evaluation)
 - May include terminals
- Target Language Optimization
 - * Rewriting of constants
 - * Memoization
 - * Loop unrolling
 - ★ Loop-invariant code motion

GENETIC PROGRAMMING 3 (SYNOPSIS AND DISCUSSION [1])

16 Criteria for Automatic Program Synthesis by Computational Intelligence

- * 1. Specification: starts with what needs to be done
- * 2. Procedural representation: tells us how to do it
- * 3. Algorithm implementation: produces a computer program
- * 4. Automatic determination of program size
- * 5. Code reuse
- * 6. Parametric reuse
- * 7. Internal storage
- * 8. Iteration (while / for), recursion
- ★ 9. Self-organization of <u>hierarchies</u>
- * 10. Automatic determination of architecture
- * 11. Wide range of programming constructs
- * 12. Well-defined
- * 13. Problem independent

GENETIC PROGRAMMING 3 (SYNOPSIS AND DISCUSSION [2])

- 16 Criteria for Automatic Program Synthesis ...
 - * 14. Generalization: wide applicability
 - * 15. Scalability
 - * 16. Human-competitiveness
- Current Bugbears: Generalization, Scalability
- Discussion: Human Competitiveness?

MORE FOOD FOR THOUGHT AND RESEARCH RESOURCES

- Discussion: Future of GP
- Current Applications
- Conferences
 - * GECCO: ICGA + ICEC + GP
 - * GEC
 - * EuroGP
- Journals
 - * Evolutionary Computation Journal (ECJ)
 - * Genetic Programming and Evolvable Machines (GPEM)

