Ομολογική Άλγεβρα και Κατηγορίες 2η Ομάδα Ασκήσεων

Νούλας Δημήτριος 1112201800377

11 Μαΐου 2020

1. i) Γνωρίζουμε για τους ισομορφισμούς στην S-Mod ότι είναι αχριβώς οι 1-1 και επί γραμμικές απεικονίσεις, επομένως οι συνιστώσες $\eta_M:FM\to GM$ είναι 1-1 και επί. Έστω $A\xrightarrow{f} B\xrightarrow{g} \Gamma$ μια αχριβής ακολουθία R-προτύπων. Θεωρούμε το ακόλουθο μεταθετικό διάγραμμα:

$$\begin{array}{ccc} FA & \xrightarrow{Ff} & FB & \xrightarrow{Fg} & F\Gamma \\ \eta_A \downarrow & & \eta_B \downarrow & & \downarrow \eta_\Gamma \\ GA & \xrightarrow{Gf} & GB & \xrightarrow{Gg} & G\Gamma \end{array}$$

Αν ο G είναι αχριβής, δηλαδή η κάτω γραμμή είναι αχριβής έχουμε imGf=kerGg. Επιπλέον $\eta_{\Gamma}(Fg)(Ff)=(Gg)(Gf)\eta_{A}=0\eta_{A}=0=\eta_{\Gamma}0$ και η_{Γ} 1-1 συνεπώς (Fg)(Ff)=0 δηλαδή $imFf\subseteq kerFg$. Αντίστροφα, αν $b\in kerFg$ τότε $(Gg)\eta_{B}(b)=\eta_{\Gamma}(0)=0 \Longrightarrow \eta_{B}(b)\in kerGg=imGf$ συνεπώς υπάρχει $a'\in GA$ τέτοιο ώστε $Gf(a')=\eta_{B}(b)$. Επειδή η η_{A} είναι επί υπάρχει $a\in A$ τέτοιο ώστε $\eta_{A}(a)=a'$ και:

$$\eta_B(Ff)(a) = (Gf)\eta_A(a) = (Gf)(a') = \eta_B(b) \implies Ff(a) = b$$

αφού η_B 1-1 και άρα $\in imFf$. Συνεπώς $kerFg \subseteq imFf$.

Αν ο F είναι αχριβής έχουμε imFf=kerFg. Επιπλέον $(Gg)(Gf)\eta_A=\eta_\Gamma(Fg)(Ff)=\eta_\Gamma 0=0=0\eta_A$ και επειδή η_A επί έχουμε (Gf)(Gf)=0 δηλαδή $imGf\subseteq kerGg$. Αντίστροφα, αν $b\in kerGg$ επειδή η η_B είναι επί υπάρχει $b'\in FB$ τέτοιο ώστε $\eta_B(b')=b$.

$$\eta_{\Gamma}(Fg)(b') = (Gg)\eta_{B}(b') = 0 \implies b' \in kerFg = imFf$$

αφού $η_{\Gamma}$ 1-1. Συνεπώς υπάρχει $a' \in FA$ τέτοιο ώστε Ff(a') = b'.

$$(Gf)\eta_A(a') = \eta_B(Ff)(a') = \eta_B(b') = b \implies b \in imGf$$

δηλαδή $kerGg \subseteq imGf$.

ίι) Θεωρούμε το μεταθετικό διάγραμμα:

Αν ο G είναι αριστερά αχριβής (αντίστοιχα ο F) η αχριβεία στο FB (αντίστοιχα στο GB) δείχνεται όπως προηγουμένως. Έστω G αριστερά αχριβής, για να είναι ο F αριστερά αχριβής αρχεί η Ff να είναι 1-1. Έστω $a \in kerFf$. Τότε $(Gf)\eta_A(a) = \eta_B(Ff)(a) = \eta_B0$ χαι επειδή Gf 1-1 έχουμε $\eta_A(a) = 0 \implies a = 0$. Άρα $kerFf = \{0\}$.

Έστω F αριστερά αχριβής, ομοίως αρχεί να δειχτεί ότι η Gf είναι 1-1. Έστω $a \in kerGf$. Τότε αφού η_A επί, υπάρχει $a' \in FA$ τέτοιο ώστε $\eta_A(a') = a$.

$$η_B(Ff)(a') = (Gf)η_A(a') = 0 \xrightarrow{η_B 1 - 1} Ff(a') = 0 \xrightarrow{Ff 1 - 1} a' = 0 \implies a = 0$$
 δηλαδή $kerGf = \{0\}$.

2. Έστω M,N δύο R-πρότυπα και $f:M\to N$ R-γραμμική. Αρκεί να δείξουμε ότι το παρακάτω διάγραμμα είναι μεταθετικό.

$$\begin{array}{ccc} Hom_R(X,M) & \xrightarrow{& \eta_M & \\ & f_* \Big\downarrow & & \Big\downarrow Uf = f \\ \\ Hom_R(X,N) & \xrightarrow{& \eta_N & \\ \end{array}} U(N) = N \end{array}$$

Έστω $g \in Hom_R(X,M)$. Ακολουθώντας το διάγραμμα δεξιά παίρνουμε $g(x_0) \in M$ και στην συνέχεια κάτω παίρνουμε $f(g(x_0)) \in N$. Αντίστοιχα, ακολουθώντας το διάγραμμα κάτω παίρνουμε $f_*(g) = fg \in Hom_R(X,N)$ και στην συνέχεια δεξιά παίρνουμε $(fg)(x_0) = f(g(x_0)) \in N$.

- 3. i) Έχουμε $A\subseteq M, B\subseteq M$ συνεπώς $A+B\subseteq M$. Αντίστροφα, εφόσον μχδ $(2^n,3^n)=1$ για κάθε $n\in\mathbb{N}$ υπάρχουν $a=a(n),b=b(n)\in\mathbb{Z}$ τέτοια ώστε $a2^n+b3^n=1$. Συνεπώς, αν $(x_n)_n\in M$ τότε $x_n=a2^nx_n+b3^nx_n$. Δηλαδή $(x_n)_n=(a(n)2^nx_n)_n+(b(n)3^nx_n)_n\in A+B$.
 - ii) Σταθεροποιούμε $k \in \mathbb{N}$. Έστω $(a_n)_n \in A$. Για τα $k \leq n$, εφόσον $2^n \mid a_n$ γράφουμε τους όρους της $(a_n)_n$ ως:

$$a_n = 0 + 2^k 2^{n-k} b_n$$

Για τα k>n (ισχύει για πεπερασμένους όρους της ακολουθίας) έχουμε την αναπαράσταση $a_n=a_n+0$. Δηλαδή $(a_n)_n=(x_n)_n+(y_n)_n\in M_0+2^kM$ τέτοιες ώστε:

$$x_n = \begin{cases} 0, & \text{an } k \le n \\ a_n, & \text{an } k > n \end{cases} \quad y_n = \begin{cases} 2^k 2^{n-k} b_n, & \text{an } k \le n \\ 0, & \text{an } k > n \end{cases}$$

Επομένως $A\subseteq M_0+2^kM$ για το τυχόν $k\in\mathbb{N}$. Ομοίως το $B\subseteq M_0+2^nM$ για κάθε $n\in\mathbb{N}$.

iii) Έστω $(x_n)_n \in M$. Τότε για κάθε n υπάρχουν $a,b \in \mathbb{Z}$ έτσι ώστε $x_n = ax_n 2^n + bx_n 3^n \implies (x_n)_n = (a(n)x_n 2^n)_n + (b(n)x_n 3^n)_n = (2^n a_n)_n + (3^n b_n)_n \in A + B$.

Συνεπώς $f((x_n)_n) = f((2^n a_n)_n) + f((3^n b_n)_n)$ από προσθετικότητα. Ωστόσο:

$$f((2^n a_n)_n) = f(a_0, 2a_1, 2^2 a_2, \dots 2^{k-1} a_{k-1}, 0, 0 \dots)$$

+ $f(0, \dots, 0, 2^k a_k, 2^{k+1} a_{k+1}, \dots)$

Επειδή $f|_{M_0}=0$ ο πρώτος όρος είναι 0, άρα:

$$f((2^n a_n)_n) = f(0, \dots, 0, 2^k a_k, 2^{k+1} a_{k+1}, \dots)$$
$$= 2^k f(0, \dots, 0, a_k, 2a_{k+1}, \dots) = 2^k x$$

δηλαδή $2^k \mid f((2^na_n)_n)$ για κάθε $k \geq 0$. Άρα $f((2^na_n)_n) = 0$ και ομοίως $f((3^nb_n)_n) = 0$. Συνεπώς f=0.

iv) Έστω $f \in Hom_{\mathbb{Z}}(M/M_0, \mathbb{Z})$. Έχουμε:

$$M \xrightarrow{p} M/M_0 \xrightarrow{f} \mathbb{Z}$$

και άρα για την $fp:M\to\mathbb{Z}$ ισχύει $fp(M_0)=\{0\}$ συνεπώς fp=0 και επειδή η προβολή p είναι επιμορφισμός, παίρνουμε f=0. Άρα:

$$Hom_{\mathbb{Z}}(M/M_0,\mathbb{Z}) = \{0\}$$

 $4. \ i) \ \text{Εφόσον } \eta \ M_0 \ \text{είναι} \ \text{υποομάδα της } M \ \text{υπάρχει σύνολο} \ J \subseteq I \ \text{τέτοιο ώστε} \ M_0 = \mathbb{Z}^{(J)}. \ \text{Επιπλέον, επειδή } \eta \ M_0 \ \text{είναι αριθμήσιμη όπως και } \eta \ \mathbb{Z}^{(\mathbb{N})}. \ \text{Εχουμε ότι το } J \ \text{είναι αριθμήσιμο. Άρα} \ I \setminus J \neq \varnothing. \ \Theta$ εωρούμε την ομάδα πηλίκο M/M_0 . Αν $(a_i)_i + M_0 \in M/M_0$ τότε για κάθε $i \in J$ ισχύει $a_i = 0$. Συνεπώς:

$$M/M_0=\mathbb{Z}^{(I)}/\mathbb{Z}^{(J)}=\{(a_i)_i+M_0:a_i\neq 0\quad$$
 για πεπερασμένα $i\in I\}\cong\mathbb{Z}^{(I\setminus J)}$

Ο ισομορφισμός προκύπτει από την Ζ-γραμμική απεικόνιση:

$$\phi: \mathbb{Z}^{(I)} \to \mathbb{Z}^{(I \setminus J)}$$

$$(a_i)_i \mapsto (a_i)_i \quad \forall i \in I \setminus J$$

και το 1ο θεώρημα ισομορφισμών προτύπων.

Έστω $i_0 \in I \setminus J$. Θεωρούμε τον επιμορφισμό $f: \mathbb{Z}^{(I \setminus J)} \to \mathbb{Z}$: $(a_i)_i \mapsto a_{i_0} \in \mathbb{Z}$. Τότε αν p η προβολή του M στο M/M_0 έχουμε:

$$M \xrightarrow{p} M/M_0 \xrightarrow{\phi} \mathbb{Z}^{(I \setminus J)} \xrightarrow{f} \mathbb{Z}$$

και εφόσον p,f επιμορφισμοί καθώς και ϕ ισομορφισμός η $f\phi p:M\to\mathbb{Z}$ είναι μη τετριμμένη ενώ $f\phi p(M_0)=f\phi(\{0\})=\{0\}.$

ii) Αν το $\mathbb{Z}^{\mathbb{N}}$ είναι προβολικό τότε υπάρχει πρότυπο Q και σύνολο I τέτοια ώστε: $\mathbb{Z}^{\mathbb{N}}\oplus Q\cong \mathbb{Z}^{(I)}$. Επειδή το αριστερό μέλος είναι υπεραριθμήσιμο έχουμε ότι το I είναι υπεραριθμήσιμο. Επιπλέον καθώς $\mathbb{Z}^{(\mathbb{N})}\subseteq \mathbb{Z}^{\mathbb{N}}$ έχουμε ότι:

$$\mathbb{Z}^{(\mathbb{N})} \oplus Q \cong M_0 \leq \mathbb{Z}^{(I)}$$

όπου M_0 υποομάδα της $\mathbb{Z}^{(I)}$. Συνεπώς υπάρχει από το i) μη τετριμμένη \mathbb{Z} -γραμμική $f:\mathbb{Z}^{(I)}\to\mathbb{Z}$ που να μηδενίζεται στον περιορισμό στο M_0 . Λόγω του ισομορφισμού, υπάρχει μη τετριμμένη γραμμική $\phi:\mathbb{Z}^\mathbb{N}\oplus Q\to\mathbb{Z}$ όπου μηδενίζεται στον περιορισμό $\mathbb{Z}^{(\mathbb{N})}\oplus Q$ και συνεπώς, από την προηγούμενη άσκηση, μηδενίζεται παντού στο $\mathbb{Z}^\mathbb{N}\oplus Q$, το οποίο είναι άτοπο. Άρα το $\mathbb{Z}^\mathbb{N}$ δεν είναι προβολικό.

5. i) Θεωρούμε την \mathbb{Z} -γραμμική απεικόνιση:

$$f: M \to N$$

$$(x_n)_n \mapsto (2^n x_n)_n \in N$$

Έστω $(x_n)_n \in kerf$. Τότε $(2^n x_n)_n = 0_N = 0_M = (0)_n$ δηλαδή $x_n = 0$ για κάθε n. Συνεπώς $kerf = \{0\}$.

ii) Έχουμε ότι οι αχολουθίες στο M_0 είναι τελιχά μηδενιχές συνεπώς $M_0\subseteq N$ χαι $2N\subseteq N\implies M_0+2N\subseteq N.$ Αντίστροφα, έστω $(a_n)_n\in N.$ Ορίζουμε τις αχολουθίες $(x_n)_n\in M_0, (y_n)_n\in 2N$ ως εξής:

$$x_n = egin{cases} 0, & \text{an } 2 \mid a_n \\ a_n, & \text{διαφορετικά} \end{cases}$$
 $y_n = egin{cases} 2 rac{a_n}{2}, & \text{an } 2 \mid a_n \\ 0, & \text{διαφορετικά} \end{cases}$

Πράγματι $(x_n) \in M_0$ εφόσον το 2 δεν θα διαιρεί το a_n για πεπερασμένα το πλήθος n καθώς $v(a_n) \to \infty$. Δηλαδή:

$$(a_n)_n = (x_n)_n + (y_n)_n \in M_0 + 2N$$

iii) Από δεύτερο θεώρημα ισομορφισμών προτύπων έχουμε:

$$N/2N = (M_0 + 2N)/2N \cong M_0/(M_0 \cap 2N) = M_0/2M_0$$

εφόσον $2M_0\subseteq 2N, M_0\Longrightarrow 2M_0\subseteq M_0\cap 2N$ και αν $(a_n)_n\in M_0\cap 2N$ τότε $a_n\neq 0$ για πεπερασμένα το πλήθος n και $a_n=2x_n$ όπου $(x_n)_n\in N.$ Δηλαδή το a_n όπου δεν είναι 0 είναι πολλαπλάσιο του $2\Longrightarrow (a_n)_n\in 2M_0.$ Έχουμε ότι $M_0/2M_0=\{(x_n\mod 2)_n:(x_n)_n\in M_0\},$ δηλαδή ακολουθίες με στοιχεία 0 ή 1 και πεπερασμένο το πλήθος 1. Αν $(a_n)_n\in M_0/2M_0$ με $a_n=0,1$ και m η θέση στην οποία εμφανίζεται το 1 για τελευταία φορά τότε η $(a_n)_n$ αντιστοιχίζεται κατά μοναδικό τρόπο στον φυσικό αριθμό $a_ma_{m-1}\dots a_2a_1a_0$ με δυαδική αναπαράσταση. Δηλαδή υπάρχει 1-1 απεικόνιση από το $M_0/2M_0$ στο $\mathbb N$.

6. i) Θεωρούμε την \mathbb{Z} -γραμμική απεικόνιση:

$$\phi: N \to (\mathbb{Z}/2\mathbb{Z})^{(I)}$$

$$(a_i)_i \mapsto (a_i \mod 2)_i$$

Αν $\phi\left((a_i)_i\right)=(0)_i \implies a_i=0 \mod 2$ για κάθε $i\in I$ δηλαδή $(a_i)_i\in 2N,$ συνεπώς $ker\phi=2N.$ Από πρώτο θεώρημα ισομορφισμών προτύπων έχουμε ότι:

$$N/2N \cong (\mathbb{Z}/2\mathbb{Z})^{(I)}$$

Επιπλέον το $(\mathbb{Z}/2\mathbb{Z})^{(\mathbb{N})}$ είναι αριθμήσιμο με την αντιστοίχιση στην δυαδική αναπαράσταση των φυσικών. Συνεπώς $|I|=|\mathbb{N}|$. Επιπλέον το $\mathbb{Z}^{(\mathbb{N})}$ είναι αριθμήσιμο καθώς είναι αριθμήσιμη ένωση των αριθμήσιμων $F_k=\{(a_n)_n:a_n=0,n>k\}$. Άρα η ομάδα $N=\mathbb{Z}^{(I)}$ είναι αριθμήσιμη.

- ii) Αν το $\mathbb{Z}^{\mathbb{N}}$ είναι προβολικό ως \mathbb{Z} -πρότυπο τότε υπάρχει \mathbb{Z} -πρότυπο Q και I σύνολο τέτοιο ώστε: $\mathbb{Z}^{\mathbb{N}}\oplus Q\cong \mathbb{Z}^{(I)}$. Συνεπώς αν $N=\{(a_n)_n:limv(a_n)=\infty\}$ τότε $N\oplus Q\cong H\leq \mathbb{Z}^{(I)}$ όπου H υποομάδα του $\mathbb{Z}^{(I)}$. Τότε $N\cong H_0\leq H$ και από πρόταση υπάρχει σύνολο J τέτοιο ώστε $H_0\cong \mathbb{Z}^{(J)}$. Δηλαδή $N\cong \mathbb{Z}^{(J)}$. Επειδή από την προηγούμενη άσχηση ισχύει ότι η N/2N αριθμήσιμη έπεται ότι και η $\mathbb{Z}^{(J)}/2\mathbb{Z}^{(J)}$ είναι αριθμήσιμη. Από το i) έχουμε ότι η $\mathbb{Z}^{(J)}$ είναι αριθμήσιμη και άρα το ίδιο ισχύει για την N. Αυτό είναι άτοπο αφού έχει δειχτεί στην προηγούμενη άσχση ότι η N είναι υπεραριθμήσιμη. Άρα το $\mathbb{Z}^{\mathbb{N}}$ δεν είναι προβολικό ως \mathbb{Z} -πρότυπο.
- 7. i) Η ταυτοτική απεικόνιση του 0 ως R-προτύπου είναι η μηδενική απεικόνιση. Επειδή ισχύει $F1_A=1_{FA}$ καθώς ο F είναι συναρτητής, έχουμε ότι η $F0\to F0$ είναι η ταυτοτική απεικόνιση του F0 S-προτύπου. Αρκεί να

δείξουμε ότι $F(0:A\to B)=0:FA\to FB$. Λόγω προσθετικότητας ισχύει: F0=F(0+0)=F0+F0 και λόγω της δομής της αβελιανής ομάδας $Hom_S(FA,FB)$ ισχύει $F0=0_{Hom_S(FA,FB)}=0:FA\to FB$.

Γνωρίζουμε για έναν προσθετικό συναρτητή ότι τα $FM \oplus FN, F(M \oplus N)$ είναι ισομορφικά μέσω της $a: FM \oplus FN \to F(M \oplus N)$ όπου $a(x,y) = (Fi_M)(x) + (Fi_N)(y) \in F(M \oplus N)$ για κάθε $(x,y) \in FM \oplus FN$.

Άρα αν FM, FN=0 (ως S-πρότυπα) ισχύει $FM\oplus FN=0\Longrightarrow F(M\oplus N)=0$. Αντίστροφα αν $F(M\oplus N)=0\Longrightarrow FM\oplus FN=0$. Έστω $x\in FM$ τότε $(x,0)\in FM\oplus FN=0\Longrightarrow x=0$. Συνεπώς FM=0 και ομοίως FN=0.

ii) Έστωσαν $M,N\in k_F$ και $f:M\to N$ R-γραμμική. Θεωρούμε την βραχεία ακριβή ακολουθία:

$$0 \to kerf \xrightarrow{i} M \xrightarrow{\phi} imf \to 0$$

και επειδή ο F είναι αριστερά ακριβής η παρακάτω ακολουθία S-προτύπων είναι ακριβής:

$$0 \to Fkerf \xrightarrow{Fi} FM = 0 \xrightarrow{Ff} Fimf$$

δηλαδή η $Fi: Fkerf \to \{0\}$ είναι 1-1 και άρα το Fkerf έχει 1 στοιχείο, συνεπώς είναι το μηδενικό S-πρότυπο.

iii) Θεωρούμε την βραχεία αχριβή αχολουθία:

$$0 \to imf \xrightarrow{j} N \xrightarrow{p} cokerf \to 0$$

καθώς ο F είναι ακριβής η παρακάτω ακολουθία S-προτύπων είναι και αυτή μια βραχεία ακριβή ακολουθία:

$$0 \rightarrow Fimf \xrightarrow{Fj} FN = 0 \xrightarrow{Fp} Fcokerf \rightarrow 0$$

δηλαδή η $Fp:\{0\} \to Fcokerf$ είναι επί, άρα το Fcokerf έχει 1 στοιχείο, συνεπώς είναι το μηδενικό S-πρότυπο.

Έστωσαν $A,C\in k_F$ και $f:A\to B,g:B\to C$ R-γραμμικές τέτοιες ώστε να έχουμε την παρακάτω βραχεία ακριβή ακολουθία:

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

Καθώς ο F είναι αχριβής έχουμε την παραχάτω βραχεία αχριβή αχολουθία:

$$0 \to FA = 0 \xrightarrow{Ff} FB \xrightarrow{Fg} FC = 0 \to 0$$

δηλαδή έχουμε Fg επί και kerFg=imFf=0 άρα Fg ισομορφισμός S-προτύπων, συνεπώς FB=0.

8. Έστω A, B αβελιανές ομάδες και $f: A \to B$ ομομορφισμός ομάδων. Έχουμε τους συναλλοίωτους συναρτητές $F = Hom_R(M, Hom_{\mathbb{Z}}(R, _)): Ab \to Ab$ και $G = Hom_{\mathbb{Z}}(UM, _): Ab \to Ab$. Ο πρώτος μάλιστα είναι σύνθεση των δύο συναλλοίωτων συναρτητών:

$$Hom_{\mathbb{Z}}(R, _) : \mathbb{Z}\text{-}Mod = Ab \rightarrow Ab$$

όπου εδώ ως R θεωρούμε την προσθετική ομάδα (R,+) και

$$Hom_R(M, _) : R\text{-}Mod \to Ab$$

όπου λόγω της εκφώνησης έχουμε $Hom_{\mathbb{Z}}(R,A), Hom_{\mathbb{Z}}(R,B) \in ob(R\text{-}Mod).$ Επιπλέον, η δράση του F σε μια απεικόνιση g είναι απλά η g_* (σύνθεση από αριστερά) εφόσον αυτό προχύπτει από τις διαδοχικές δράσεις των παραπάνω συναρτητών. Φυσικά έχουμε και ότι $Gg=g_*$. Αρχει επομένως να δείξουμε ότι το παρακάτω διάγραμμα είναι μεταθετικό:

$$\begin{array}{ccc} Hom_R(M, Hom_{\mathbb{Z}}(R,A)) & \xrightarrow{\zeta_A} & Hom_{\mathbb{Z}}(UM,A) \\ & & & & \downarrow f_* \\ \\ Hom_R(M, Hom_{\mathbb{Z}}(R,B)) & \xrightarrow{\zeta_B} & Hom_{\mathbb{Z}}(UM,B) \end{array}$$

Έστω $h \in Hom_R(M, Hom_{\mathbb{Z}}(R, A))$. Έχουμε:

$$h: M \longrightarrow Hom_{\mathbb{Z}}(R, A)$$

 $x \mapsto g_x: (R, +) \longrightarrow A$
 $h(x)(r) = g_x(r) \in A \quad \forall r \in R$

Ακολουθώντας το διάγραμμα κάτω και δεξιά παίρνουμε το στοιχείο $\zeta_B(fh)$ όπου για $x\in UM=M$ ισχύει:

$$\zeta_B(fh)(x) = [(fh)(x)](r_0) = [f(h(x))](r_0) = (fg_x)(r_0) = f[g_x(r_0)] \in B$$

Ακολουθώντας το διάγραμμα δεξιά και κάτω παίρνουμε το στοιχείο $f[\zeta_A(h)]$ όπου για $x\in UM=M$ ισχύει:

$$f[\zeta_A(h)](x) = f[\zeta_A(h)(x)] = f[h(x)(r_0)] = f[g_x(r_0)] \in B$$

άρα το διάγραμμα είναι μεταθετικό.

9. i) Ο συναρτητής U είναι ακριβής καθώς αν θεωρήσουμε μια βραχεία ακριβή ακολουθία R-προτύπων:

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

με f,g R-γραμμικές, η ίδια ακολουθία που προκύπτει με την δράση του U θα παραμείνει βραχεία και ακριβής. Αυτό ισχύει διότι οι F-διανυσματικοί

χώροι είναι επιπλέον F-πρότυπα και έτσι το μέρος της δομής που "ξεχνάει' ο συναρτητής U είναι ότι δρουν "λιγότερα' στοιχεία με πολλαπλασιαμό από αριστερά στις αβελιανές ομάδες, τα στοιχεία του υποδακτυλίου F και όχι όλου του δακτυλίου R. Δηλαδή οι αβελιανές ομάδες (M,+) που έχουν δομή R-προτύπου με τον ομομορφισμό $L:R\to End(M,+,\cdot)$ παραμένουν ίδιες και με δομή F-προτύπου με τον περιορισμό $L|_F$. Έτσι έχουμε τις F-γραμμικές f,g με f 1-1, g επί και imf=kerg (ως F-πρότυπα), δηλαδή η παρακάτω ακολουθία F-προτύπων είναι βραχεία και ακριβής:

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

ii) Έστω V F-διανυσματικός χώρος και $f:M\to N$ μονομορφισμός R-προτύπων. Επειδή ο συναρτητής U είναι ακριβής, έχουμε $f:UM=M\to UN=N$ μονομορφισμός F-προτύπων. Επίσης, εφόσον το F είναι σώμα, από την θεωρία γνωρίζουμε ότι το V είναι εμφυτευτικό ως F-πρότυπο. Επομένως έχουμε ότι η επαγόμενη απεικόνιση:

$$f^*: Hom_F(UN, V) \to Hom_F(UM, V)$$

είναι επί. Αρχεί να δείξουμε ότι η απειχόνιση:

$$f^*: Hom_R(N, Hom_F(R, V)) \to Hom_R(M, Hom_F(R, V))$$

είναι και αυτή επί.

Έστω $g \in Hom_R(M, Hom_F(R, V))$.

$$g: M \to Hom_F(R, V)$$

$$m \mapsto g_m = g(m): R \to V$$

$$g(m)(r) = g_m(r) \in V \quad \forall r \in R$$

Έστω $r_0 \in R$, τότε $g(m)(r_0) \in V$ για κάθε $m \in M$ δηλαδή $g(r_0) \in Hom_F(UM,V)$. Άρα υπάρχει $g'_{r_0}:UN \to V$ τέτοια ώστε $f^*(g'_{r_0})=g'_{r_0}f=g(r_0)$.

Για κάθε $r\in R$ έχουμε $g_r'(n)\in V$ για κάθε $n\in UN=N$. Δηλαδή, για την επαγόμενη απεικόνιση:

$$g': N \to Hom_F(R, V)$$

 $n \mapsto g'(n) = g'_n: R \to V$
 $g'(n)(r) \in V \quad \forall r \in R$

Ισχύει ότι:

$$[f^*(g')](m)(r) = (g'f)(m)(r) = [g'f(m)](r) = g'(n)(r) = g'_r(n) = g'_r[f(m)] = [g'_rf](m) = g_r(m) = g(m)(r)$$

και άρα η f^* είναι επί.