Seminário Agentes na Web

MSc. Iderli Souza

Tópicos da Apresentação

- Introdução
- Principios de Design de Agentes na Web
 - Thing Description e RDF
 - Hateoas
 - Affordance e Signifier
- Trabalhos Relacionados
- Aplicação Real
- Foco da Pesquisa
- Considerações Finais

01 Introdução

Contextualização do artigo

Introdução

- Onde estão os Agentes Web?
 - Rastrear Páginas
 - Filtrar Conteúdos
 - Sistemas de Recomendações
- Web of Things
 - Hipermídia (conectar diferentes tipos de conteúdo (como texto, imagens, vídeos, gráficos, etc) através de links interativos.)

02 Principios de Design de Agentes na Web

Princípios de Design para Sistemas Multiagentes Hipermídia

- Engineering World-Wide Multi-Agent Systems with Hypermedia
 - Restrições ao projetista;
 - Garantir o uso adequado da hipermídia como um mecanismo geral para interação uniforme em SMA.

Principios 1

- "Todas as entidades e suas relações devem ser representadas de forma uniforme e orientada a recursos no ambiente de hipermídia distribuído"
 - Projeto uniforme
 - Grafo RDF
 - Thing Description

Principios 2

 "Um agente deve ser capaz de descobrir o conhecimento necessário para participar do sistema navegando pelo hipermídia a partir de um único ponto de entrada."

Hypermedia as the engine of application state (HATEOAS)

- Princípio da Arquitetura REST para criar sistemas de serviços web;
- Navegação por hipermídias fornecidas pelas respostas do servidor.

```
GET /accounts/12345 HTTP/1.1
Host: bank.example.com
```

```
HTTP/1.1 200 OK
    "account": {
        "account number": 12345,
        "balance": {
            "currency": "usd",
            "value": 100.00
        "links": {
            "deposits": "/accounts/12345/deposits",
            "withdrawals": "/accounts/12345/withdrawals",
            "transfers": "/accounts/12345/transfers",
            "close-requests": "/accounts/12345/close-requests"
```

Principios 3

- "Qualquer recurso no ambiente de hipermídia que possa ser de interesse para os agentes deve ser observável"
 - Entidades SMA
 - Estados
 - Capacidades
 - Relações

Teoria do Affordance

 Possibilidade de ação que emerge da relação entre a capacidade de um agente e uma situação ambiental específica.

Signifier

- Indícios ou sinais que informam ao usuário ou agentes sobre os affordances disponíveis.
- Caracteristicas:
 - Perceptíveis: Devem ser facilmente percebidos pelos usuários.
 - Significativos: Devem fornecer informações claras sobre como uma ação pode ser realizada.
 - Contextuais: Devem ser relevantes para o contexto específico do usuário e do ambiente.

Exemplo Signifier

Pegar um Trem

Diferença de Affordance e Signifier

- Affordance: Refere-se ao que pode ser feito
 - Possibilidades de ação em um sistema.

- Signifier refere-se a como saber o que pode ser feito
 - Sinais e pistas que indicam as affordances e ajudam os agentes ou usuários a descobrirem essas possibilidades.

- Engineering World-Wide Multi-Agent Systems with Hypermedia
 - Yggdrasil
 - Baseia-se no modelo de Agentes e Artefatos (A&A)
 - Artefatos são parte ativa do sistema.
 - Propriedades observáveis, eventos e operações.
- Desacoplamento e Descoberta em Camada RDF
 - Todas as entidades do sistema tem sua abstração em RDF;
 - Serve para a interação dos Agentes

(a) Layers of abstraction in hypermedia MASs.

(b) EVE ontology.

Yggdrasil: An Artifact-based Framework for Hypermedia
 Multi-Agent Systems

```
public class Source extends HypermediaArtifact {
   private final Random random = new Random();
   @OPERATION
   public void produce(final OpFeedbackParam<Integer> item) {
       this await time((this.random.nextInt(5) + 1) * 1 000);
       final var producedItem = this.random.nextInt(10);
       this.log("Item (" + producedItem + ") has been produced!");
       item.set(producedItem);
   @Override
   protected void registerInteractionAffordances () {
       this.registerActionAffordance(
           "https://example.org/Produce",
           "produce",
           "/produce"
       this.registerFeedbackParameter("produce");
```

Yggdrasil: An Artifact-based Framework for Hypermedia
 Multi-Agent Systems

```
public class Source extends HypermediaArtifact {
   private final Random random = new Random();
   @OPERATION
   public void produce(final OpFeedbackParam<Integer> item) {
       this await time((this.random.nextInt(5) + 1) * 1 000);
       final var producedItem = this.random.nextInt(10);
       this.log("Item (" + producedItem + ") has been produced!");
       item.set(producedItem);
   @Override
   protected void registerInteractionAffordances () {
       this.registerActionAffordance(
           "https://example.org/Produce",
           "produce",
           "/produce"
       this.registerFeedbackParameter("produce");
```

- Enabling BDI Agents to Reason on a Dynamic Action
 Repertoire in Hypermedia Environments
 - Uso de Signifier
 - Descobrir e Explorar Affordances no Ambiente
 - Descoberta de ações
 - O Ambiente realiza a exposição de Signifiers
- Exposição de Signifiers (SEM)
 - O mecanismo SEM filtra e retorna os signifiers úteis;
 - Localização, Importância e Habilidades do Agente.

- Habilidades do Agente
 - Relação com o Objetivo que pretende alcançar
 - Habilidade para Exploração
 - Conhecimento específico de domínio
- Conhecimento Interno do Agente
 - Perfil de Agente no Ambiente
 - Informações e Grau de Flexibilidade definidas pelo Agente


```
1 updateProfile(goal) //The agent updates its profile
    with its goal.
2 while (not achieved(goal)):
3    signifiers = perceive()
4    chosenAffordance = chooseBest(signifiers, goal)
5    act(chosenAffordances)
```

- Towards Hypermedia Environments for Adaptive Coordination in Industrial Automation
 - Coordenação de Agentes
 - Responsabilidade de Coordenação (CR)
 - Define responsabilidades, deveres e objetivos que um agente terá na operação.
 - Se o Agente sozinho n\u00e3o conseguir realizar a tarefa, ele deve consultar outras agentes.

- Criação do Perfil do Agente;
 - Transmissão para outro agente de objetivos e responsabilidades;
 - Lista de Affordances;
 - E se a coordenação não alcançar a meta?
 - O agente que forneceu o perfil é direcionado a outro agente no ambiente da Hipermídia.

04 Aplicação Real

Smart*DER

- Sistema utiliza agentes inteligentes para optimizar o uso de Recursos Energéticos Distribuídos (DER - Distributed Energy Resources).
 - Exemplo: uso de paineis solares;
 - https://www.smartder.com/overview.html
- Desenvolvida em Java
- Monitora dispositivos e recursos energéticos locais e externos (como sensores e fontes de geração de energia) e ajustam seu comportamento de forma autônoma com base em dados recebidos pela internet.

O5 Foco de Pesquisa

Foco da Pesquisa

- Como o Agente acessa a Web?
- Como a Web acessa o Agente?
- Como os Agentes se comunicam na Web?
- Como os Agentes gerenciam o conhecimento na Web?
- Como os agentes navegam na Web?
- Como o Agente se adapta a Web?

06 Considerações Finais

Considerações Finais

- Agentes na Web visam deixar a Web mais autonoma e inteligente
- Avanços na Web das coisas aproximam uma visão de agentes na web ao permitir que agentes descubram, observem e atuem em uma camada de hipermídia.
- Essa visão precisa ir além de que um agente possa ser um transporte de dados na Web.
- A pesquisa de Agentes na Web pode influenciar áreas como cidades inteligentes, gestão de dados na Web e a experiência do usuário na Web como um todo.

Referências

- BOISSIER, Olivier et al. Autonomous agents on the web. In: Dagstuhl-Seminar 21072: Autonomous Agents on the Web. 2021. p. 100p.
- VACHTSEVANOU, Danai et al. Enabling BDI Agents to Reason on a Dynamic Action Repertoire in Hypermedia Environments. In: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems. 2024. p. 1856-1864.
- VACHTSEVANOU, Danai et al. Signifiers as a first-class abstraction in hypermedia multi-agent systems. arXiv preprint arXiv:2302.06970, 2023.
- CIORTEA, Andrei; BOISSIER, Olivier; RICCI, Alessandro. Engineering world-wide multi-agent systems with hypermedia. In: Engineering Multi-Agent Systems: 6th International Workshop, EMAS 2018, Stockholm, Sweden, July 14-15, 2018, Revised Selected Papers 6. Springer International Publishing, 2019. p. 285-301
- RAMANATHAN, Ganesh; MAYER, Simon; CIORTEA, Andrei. Towards Hypermedia Environments for Adaptive Coordination in Industrial Automation. In: 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2024. p. 1-4...