Maximum Likelihood Lab 2

Elad Zippory

Quant III

September, 11, 2014

Agenda

- Jensen's inequality
- 2 Expected Likelihood
- MLE Identification
- Mewton-Raphson for Poisson

▶ The invariance property: if $\hat{\theta}$ is MLE of θ_o , then $\tau(\hat{\theta})$ is MLE of $\tau(\theta_0)$

Elad Zippory (Quant III) Maximum Likelihood September, 11, 2014

- ▶ The invariance property: if $\hat{\theta}$ is MLE of θ_o , then $\tau(\hat{\theta})$ is MLE of $\tau(\theta_0)$
- ▶ And $E[\hat{\theta}] = \theta_0$.

- ▶ The invariance property: if $\hat{\theta}$ is MLE of θ_o , then $\tau(\hat{\theta})$ is MLE of $\tau(\theta_0)$
- ▶ And $E[\hat{\theta}] = \theta_0$.
- ▶ But, unbiasedness is not transferable: $E[\hat{\theta}] = \theta_0 \Rightarrow E[\tau(\hat{\theta})] = \tau(\theta_0)$

- ▶ The invariance property: if $\hat{\theta}$ is MLE of θ_o , then $\tau(\hat{\theta})$ is MLE of $\tau(\theta_0)$
- And $E[\hat{\theta}] = \theta_0$.
- ▶ But, unbiasedness is not transferable: $E[\hat{\theta}] = \theta_0 \Rightarrow E[\tau(\hat{\theta})] = \tau(\theta_0)$
- ▶ So, what is the direction of the bias?

- ▶ The invariance property: if $\hat{\theta}$ is MLE of θ_o , then $\tau(\hat{\theta})$ is MLE of $\tau(\theta_0)$
- And $E[\hat{\theta}] = \theta_0$.
- ▶ But, unbiasedness is not transferable: $E[\hat{\theta}] = \theta_0 \Rightarrow E[\tau(\hat{\theta})] = \tau(\theta_0)$
- ▶ So, what is the direction of the bias?
- ▶ Jensen's Inequality says that if $\tau(\cdot)$ is convex, then $\tau(E[\hat{\theta}]) \leq E[\tau(\hat{\theta})]$; if concave, the inequality changes direction.

Elad Zippory (Quant III)

Expected Likelihood

▶ In asymptotia, $E[\hat{\theta}] = \theta_0$

Elad Zippory (Quant III) Maximum Likelihood September, 11, 2014

Expected Likelihood

- ▶ In asymptotia, $E[\hat{\theta}] = \theta_0$
- ► Can we simulate this? open R code named expected_likelihood

Elad Zippory (Quant III) Maximum Likelihood September, 11, 2014

Identification of Parameters

▶ When you did fixed effects, could you estimate the overall constant?

Identification of Parameters

- When you did fixed effects, could you estimate the overall constant?
- A trivial example: $Y \sim N(\mu_1 + \mu_2, \sigma)$

Identification of Parameters

- ▶ When you did fixed effects, could you estimate the overall constant?
- A trivial example: $Y \sim N(\mu_1 + \mu_2, \sigma)$
- What happens in MLE? open R code named identification

Elad Zippory (Quant III) Maximum Likelihood September, 11, 2014

▶ The joint density is $f(y_1,...,y_n) = \prod \frac{\lambda^{y_i} e^{-\lambda}}{y_i!}$

Elad Zippory (Quant III) Maximum Likelihood September, 11, 2014

- ▶ The joint density is $f(y_1, ..., y_n) = \prod_{i=1}^{n} \frac{\lambda^{y_i} e^{-\lambda}}{y_i!}$
- ▶ The log likelihood is $log \lambda \sum y_i n\lambda \sum log y_i!$

Maximum Likelihood September, 11, 2014

- ▶ The joint density is $f(y_1,...,y_n) = \prod \frac{\lambda^{y_i} e^{-\lambda}}{y_i!}$
- ▶ The log likelihood is $log \lambda \sum y_i n\lambda \sum log y_i$!
- ▶ The gradient is $\frac{\sum y_i}{\lambda} n$

Elad Zippory (Quant III)

- ▶ The joint density is $f(y_1,...,y_n) = \prod \frac{\lambda^{y_i} e^{-\lambda}}{y_i!}$
- ▶ The log likelihood is $log \lambda \sum y_i n\lambda \sum log y_i$!
- ▶ The gradient is $\frac{\sum y_i}{\lambda} n$
- ▶ The Hessian is $\frac{-\sum y_i}{\lambda^2}$

- ▶ The joint density is $f(y_1,...,y_n) = \prod \frac{\lambda^{y_i} e^{-\lambda}}{y_i!}$
- ▶ The log likelihood is $log \lambda \sum y_i n\lambda \sum log y_i$!
- ▶ The gradient is $\frac{\sum y_i}{\lambda} n$
- ▶ The Hessian is $\frac{-\sum y_i}{\lambda^2}$
- ▶ The Newton-Raphson algorithm is $\lambda_{t+1} = \lambda_t \frac{l'(\lambda_t)}{l''(\lambda_t)}$

- ▶ The joint density is $f(y_1,...,y_n) = \prod \frac{\lambda^{y_i} e^{-\lambda}}{y_i!}$
- ▶ The log likelihood is $log \lambda \sum y_i n\lambda \sum log y_i$!
- ▶ The gradient is $\frac{\sum y_i}{\lambda} n$
- ▶ The Hessian is $\frac{-\sum y_i}{\lambda^2}$
- ▶ The Newton-Raphson algorithm is $\lambda_{t+1} = \lambda_t \frac{l'(\lambda_t)}{l''(\lambda_t)}$
- ▶ Let's do it! How would you start? (solution will be posted)

Elad Zippory (Quant III)