

Ministry of Education

BIG IDEAS

Using **inverses** is the foundation of solving equations and can be extended to relationships between functions.

Understanding the characteristics of families of **functions** allows us to model and understand relationships and to build connections between classes of functions.

Transformations of shapes extend to functions and relations in all of their representations.

Learning Standards

Curricular Competencies	Content
Students are expected to do the following:	Students are expected to know the following:
 Peasoning and modelling Develop thinking strategies to solve puzzles and play games Explore, analyze, and apply mathematical ideas using reason, technology, and other tools Estimate reasonably and demonstrate fluent, flexible, and strategic thinking about number Model with mathematics in situational contexts Think creatively and with curiosity and wonder when exploring problems 	 transformations of functions and relations exponential functions and equations geometric sequences and series logarithms: operations, functions, and equations polynomial functions and equations rational functions trigonometry: functions, equations, and identities
 Understanding and solving Develop, demonstrate, and apply conceptual understanding of mathematical ideas through play, story, inquiry, and problem solving Visualize to explore and illustrate mathematical concepts and relationships Apply flexible and strategic approaches to solve problems Solve problems with persistence and a positive disposition Engage in problem-solving experiences connected with place, story, cultural practices, and perspectives relevant to local First Peoples communities, the local community, and other cultures 	

Ministry of Education

Learning Standards (continued)

Curricular Competencies	Content
Communicating and representing	
Explain and justify mathematical ideas and decisions in many ways	
Represent mathematical ideas in concrete, pictorial, and symbolic forms	
 Use mathematical vocabulary and language to contribute to discussions in the classroom 	
Take risks when offering ideas in classroom discourse	
Connecting and reflecting	
Reflect on mathematical thinking	
 Connect mathematical concepts with each other, other areas, and personal interests 	
 Use mistakes as opportunities to advance learning 	
 Incorporate First Peoples worldviews, perspectives, knowledge, and practices to make connections with mathematical concepts 	

Big Ideas - Elaborations

inverses:

- undo the operations within an expression or function to reduce the expression to an identity (e.g., x =) Sample questions to support inquiry with students:
- How can the inverse help to solve an equation?
- How is solving an equation related to identifying the specific input for a function, given a specific output?
- How are exponential and logarithmic functions related?
- How are the laws of exponents connected to the laws of logarithms?
- What are some other examples of inversely related functions?
- How are inverses related graphically, and why?
- How is solving an exponential equation similar to solving a trigonometric equation?
- How are inverse operations related to solving a polynomial equation by factoring?
- What is the value of using trigonometric identities to find equivalent expressions?
- Why do some equations have extraneous roots and other equations do not?

· functions:

Sample questions to support inquiry with students:

- How do we decide which kind of function to use to model a given problem?
- What do functions and relations look like beyond the visible axes?
- A set of data looks like a parabola, but it is not. What function could be used to model this data?
- What does the number of zeros tell us about a function?
- What connections do we see within the characteristics of a particular class of function?

Transformations:

Sample questions to support inquiry with students:

- How can we tell whether a transformation will have invariant points?
- Under what circumstances will different transformations produce the same result?
- How do graphical transformations affect the tables of values?
- How does a transformation affect a point found at the origin as compared to a point on an axis or a point in one of the four quadrants?
- How can a rational function of the form $y = \frac{ax+b}{cx+d}$ be considered as a transformation of the reciprocal function $y = \frac{1}{x}$?

Curricular Competencies – Elaborations

thinking strategies:

- using reason to determine winning strategies
- generalizing and extending

analyze:

- examine the structure of and connections between mathematical ideas (e.g., exponential functions to geometric sequences)

· reason:

- inductive and deductive reasoning
- predictions, generalizations, conclusions drawn from experiences (e.g., with puzzles, games, and coding)

technology:

- graphing technology, dynamic geometry, calculators, virtual manipulatives, concept-based apps
- can be used to for a wide variety of purposes, including:
 - exploring and demonstrating mathematical relationships
 - organizing and displaying data
 - generating and testing inductive conjectures
 - mathematical modelling

other tools:

manipulatives such as algebra tiles and other concrete materials

• Estimate reasonably:

- be able to defend the reasonableness of an estimated value or a solution to a problem or equation (e.g., the zeros of a graphed polynomial function)

• fluent, flexible and strategic thinking:

- includes:
 - using known facts and benchmarks, partitioning, applying whole number strategies to rational numbers and algebraic expressions
 - choosing from different ways to think of a number or operation (e.g., Which will be the most strategic or efficient?)

Model:

- use mathematical concepts and tools to solve problems and make decisions (e.g., in real-life and/or abstract scenarios)
- take a complex, essentially non-mathematical scenario and figure out what mathematical concepts and tools are needed to make sense of it

situational contexts:

including real-life scenarios and open-ended challenges that connect mathematics with everyday life

Think creatively:

- by being open to trying different strategies
- refers to creative and innovative mathematical thinking rather than to representing math in a creative way, such as through art or music

Curricular Competencies – Elaborations

· curiosity and wonder:

asking questions to further understanding or to open other avenues of investigation

• inquiry:

- includes structured, guided, and open inquiry
- noticing and wondering
- determining what is needed to make sense of and solve problems

Visualize:

- create and use mental images to support understanding
- Visualization can be supported using dynamic materials (e.g., graphical relationships and simulations), concrete materials, drawings, and diagrams.

• flexible and strategic approaches:

- deciding which mathematical tools to use to solve a problem
- choosing an effective strategy to solve a problem (e.g., guess and check, model, solve a simpler problem, use a chart, use diagrams, role-play)

• solve problems:

- interpret a situation to identify a problem
- apply mathematics to solve the problem
- analyze and evaluate the solution in terms of the initial context
- repeat this cycle until a solution makes sense

• persistence and a positive disposition:

- not giving up when facing a challenge
- problem solving with vigour and determination

· connected:

- through daily activities, local and traditional practices, popular media and news events, cross-curricular integration
- by posing and solving problems or asking questions about place, stories, and cultural practices

• Explain and justify:

- use mathematical arguments to convince
- includes anticipating consequences

decisions:

Have students explore which of two scenarios they would choose and then defend their choice.

many ways:

including oral, written, visual, use of technology

Curricular Competencies – Elaborations

• Represent:

- using models, tables, graphs, words, numbers, symbols
- connecting meanings among various representations

discussions:

partner talks, small-group discussions, teacher-student conferences

discourse:

- is valuable for deepening understanding of concepts
- can help clarify students' thinking, even if they are not sure about an idea or have misconceptions

· Reflect:

share the mathematical thinking of self and others, including evaluating strategies and solutions, extending, posing new problems and questions

Connect mathematical concepts:

- to develop a sense of how mathematics helps us understand ourselves and the world around us (e.g., daily activities, local and traditional practices, popular media and news events, social justice, cross-curricular integration)

mistakes:

range from calculation errors to misconceptions

opportunities to advance learning:

- by:
 - analyzing errors to discover misunderstandings
 - making adjustments in further attempts
 - identifying not only mistakes but also parts of a solution that are correct

Incorporate:

- by:
 - collaborating with Elders and knowledge keepers among local First Peoples
 - exploring the First Peoples Principles of Learning (e.g., Learning is holistic, reflexive, reflective, experiential, and relational [focused on connectedness, on reciprocal relationships, and a sense of place]; Learning involves patience and time)
 - making explicit connections with learning mathematics
 - exploring cultural practices and knowledge of local First Peoples and identifying mathematical connections

· knowledge:

local knowledge and cultural practices that are appropriate to share and that are non-appropriated

• practices:

- Bishop's cultural practices: counting, measuring, locating, designing, playing, explaining
- **Aboriginal Education Resources**
- Teaching Mathematics in a First Nations Context, FNESC

transformations:

- of graphs and equations of parent functions and relations (e.g., absolute value, radical, reciprocal, conics, exponential, logarithmic, trigonometric)
- vertical and horizontal translations, stretches, and reflections
- inverses: graphs and equations
- extension:
 - recognizing composed functions (e.g., y =)
 - operations on functions

· exponential:

- graphing, including transformations
- solving equations with same base and with different bases, including base e
- solving problems in situational contexts

• geometric:

- common ratio, first term, general term
- geometric sequences connecting to exponential functions
- infinite geometric series
- sigma notation

• logarithms:

- applying laws of logarithms
- evaluating with different bases
- using common and natural logarithms
- exploring inverse of exponential
- graphing, including transformations
- solving problems in situational contexts

polynomial:

- factoring, including the factor theorem and the remainder theorem
- graphing and the characteristics of a graph (e.g., degree, extrema, zeros, end-behaviour)
- solving equations algebraically and graphically

rational:

- characteristics of graphs, including asymptotes, intercepts, point discontinuities, domain, end-behaviour

Content – Elaborations

• trigonometry:

- examining angles in standard position in both radians and degrees
- exploring unit circle, reference and coterminal angles, special angles
- graphing primary trigonometric functions, including transformations and characteristics
- solving first- and second-degree equations (over restricted domains and all real numbers)
- solving problems in situational contexts
- using identities to reduce complexity in expressions and solve equations (e.g., Pythagorean, quotient, double angle, reciprocal, sum and difference)