1. (worth 9 points) Let function f be defined by the polynomial below:

$$f(x) = -5x^5 - 9x^4 + 7x^3 + 6x^2 - 8x - 2$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
f(−x) •	$5x^5 - 9x^4 - 7x^3 + 6x^2 + 8x - 2$
- f(x) ●	$-5x^5 + 9x^4 + 7x^3 - 6x^2 - 8x + 2$
-f(-x) ●	$5x^5 + 9x^4 - 7x^3 - 6x^2 + 8x + 2$

2. (worth 20 points) In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	f(x)	g(x)	h(x)
1	1	8	7
2	7	9	8
3	2	1	5
4	8	4	3
5	6	2	4
6	3	7	6
7	9	5	2
8	5	6	9
9	4	3	1

3. (worth 3 points) Evaluate h(3).

$$h(3) = 5$$

4. (worth 3 points) Evaluate $f^{-1}(9)$.

$$f^{-1}(9) = 7$$

5. (worth 3 points) Assuming f is an **even** function, evaluate f(-8).

If function f is even, then

$$f(-8) = 5$$

6. (worth 3 points) Assuming g is an **odd** function, evaluate g(-2).

If function g is odd, then

$$g(-2) = -9$$

7. (worth 15 points) A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain. Let polynomial p be defined with the following equation:

$$p(x) = x^2 - 1$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = (-x)^{2} - 1$$
$$p(-x) = x^{2} - 1$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^2 - 1)$$
$$-p(-x) = -x^2 + 1$$

c. Is polynomial p even, odd, or neither?

even

d. Explain how you know the answer to part c.

We see that p(x) = p(-x) for all x because p(x) and p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an even function.

8. (worth 10 points) I have drawn half of a function. Draw the other half to make it even or odd.

9. (worth 10 points) Let function f be defined with the equation below.

$$f(x) = 5(x-6)$$

a. Evaluate f(8).

step 1: subtract 6 step 2: multiply by 5

$$f(8) = 5((8) - 6)$$
$$f(8) = 10$$

b. Evaluate $f^{-1}(35)$.

step 1: divide by 5 step 2: add 6

$$f^{-1}(x) = \frac{x}{5} + 6$$

$$f^{-1}(35) = \frac{(35)}{5} + 6$$

$$f^{-1}(35) = 13$$

10. (worth 6 points) The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(8).

$$b(8) = 5$$

b. Evaluate $b^{-1}(6)$.

$$b^{-1}(6) = 3$$

- 11. (worth 18 points) Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	4	-4	-4	4
-1	-5	5	5	-5
0	0	0	0	0
1	5	-5	-5	5
2	-4	4	4	-4

b. Is function f even, odd, or neither?

odd

c. How do you know the answer to part b?

Function f is odd because column -f(-x) matches column f(x) exactly.