Electrical Engineering

HW 3 - Chapter 4

<1>

4.2 For each case shown below, derive the expression for the current through a 200- μ F capacitor. $v_C(t)$ is the voltage across the capacitor.

a.
$$v_C(t) = 22\cos(20t - \frac{\pi}{3}) V$$

b.
$$v_C(t) = -40\cos(90t + \frac{\pi}{2}) \text{ V}$$

c.
$$v_C(t) = 28\cos(15t + \frac{\pi}{8}) \text{ V}$$

d.
$$v_C(t) = 45\cos(120t + \frac{\pi}{4}) V$$

<2>

4.4 In the circuit shown in Figure P4.4, assume $R = 1 \Omega$ and L = 2 H. Also, let:

$$i(t) = \begin{cases} 0 & -\infty < t < 0 \\ t & 0 \le t < 10 \text{ s} \\ 10 & 10 \text{ s} \le t < \infty \end{cases}$$

Find the energy stored in the inductor for all time.

Figure P4.4

<3>

4.14 The current through a 16- μ H inductor is zero at t = 0, and the voltage across the inductor (shown in Figure P4.14) is:

$$v(t) = \begin{cases} 0 & t \le 0\\ 3t^2 & 0 \le t \le 20 \,\mu\text{s} \\ 1.2 \,\text{nV} & t \ge 20 \,\mu\text{s} \end{cases}$$

Determine the current through the inductor at $t = 30 \,\mu\text{s}$.

Figure P4.14

<4>

4.35 Assume steady-state conditions and find the energy stored in each capacitor and inductor shown in Figure P4.35.

Figure P4.35

<5>

4.37 Find the phasor form of the following functions:

a.
$$v(t) = 155 \cos (377t - 25^{\circ}) \text{ V}$$

b.
$$v(t) = 5 \sin(1,000t - 40^{\circ}) \text{ V}$$

c.
$$i(t) = 10 \cos (10t + 63^\circ) + 15 \cos (10t - 42^\circ) A$$

d.
$$i(t) = 460 \cos (500\pi t - 25^{\circ})$$

- $220 \sin (500\pi t + 15^{\circ}) A$

<6>

4.47 Determine the equivalent impedance seen by the source v_S in Figure P4.47 when:

$$v_S(t) = 10\cos(4,000t + 60^\circ) \text{ V}$$

 $R_1 = 800 \text{ mH}, \Omega$ $R_2 = 500 \text{ nF } \Omega$
 $L = 200 \text{ mH}$ $C = 70 \text{ nF}$

Figure P4.47

4.51 Determine the voltage $v_2(t)$ across R_2 in the circuit of Figure P4.51.

$$i(t) = 20\cos(533.33t) \text{ A}$$

 $R_1 = 8 \Omega$ $R_2 = 16 \Omega$
 $L = 15 \text{ mH}$ $C = 117 \mu\text{F}$

Figure P4.51

<8>

4.70 Determine the Thévenin equivalent network seen by the load R_o in Figure P4.70. Assume:

$$R_S = R_o = 500 \,\Omega$$
 $L = 10 \,\mathrm{mH}$ $R = 1 \,\mathrm{k}\Omega$ and:

a.
$$v_S(t) = 10\cos(1,000t)$$

b.
$$v_S(t) = 10\cos(1,000,000t)$$

Figure P4.70

4.74 Use nodal analysis to determine the node voltages $v_a(t)$ and $v_b(t)$ shown in Figure P4.74. Assume:

$$i(t) = 2\cos(300t) \text{ A}$$

 $v(t) = 7\cos(300t + \pi/4) \text{ V}$
 $R_1 = 4 \Omega$ $R_2 = 3 \Omega$ $R_3 = 5 \Omega$
 $L = 300 \text{ mH}$ $C = 300 \mu\text{F}$

Figure P4.74