ast time: $Step()$ $N \in \{0,1,\infty\}$
Step 2: Rule and N=00
Buton and Keane
$\mathbb{P}_{p}(N=\infty) , p \in (0,1)$
Def": A vertex v & Zd is called an encounter
point if
$(i) \# C(v) = \infty$
(22) C(V) \ 3 v3 has no finite connected
component and exactly 3 unbounded
connected component.

Suppose $P_p(N=\infty) > 0$. Get N large enough $S \cdot t \cdot 1 > 0$

$$P(F_{H}) > p^{3dM} (1-p)^{(2H)^{d}} =: E > 0$$

$$P(F_{H}) > P_{P}(A_{N}) P_{P}(F_{H})$$

$$\geq E \cdot 1 =: S > 0$$

$$\Rightarrow P(0 \text{ is an encounter foint}) \geq S > 0$$

$$fon p \in (0, 1)$$

$$By T.I., P_{P}(F \text{ is an encounter point}) \geq S > 0$$

$$F_{P}(\# \text{ encounter point}) \geq S > 0$$

$$\Rightarrow S(2l+1)^{d} \text{ many}$$

$$F_{P}(\# \text{ encounter point}) \geq S < 2l+1)^{d}$$

$$\Rightarrow S(2l+1)^{d}$$

$$\Rightarrow$$

Lemma: If there are R-encounter points in a box
B, then there are atteast R+2 rertices
on the boundary SB of B which are
connected by open paths to the encounter
Points.
(# points of vertices in SB, which)
The (# points of vertices in SB2 which are connected to the encounter points)
.
> S(2lt1) + 2
(in particular > 8 (2l+1)
$(2l)^2$ — area
≤ 82 — Perimeter
In d dimensions
$\frac{2d(2l)^{d-1}}{(2l+1)^{d}}$
Be (227)
C = 0 0 0 0 0 0 0 0 0 0
Get l large 8.t. $S(2l+1)^d > 2d(2l)^{d-1}$
T 54 ?
Thus $SN = \infty S$ is not bossible.

.

	Zhang's)	
	use 7	
	(We'll argu	
	12	
	(2) =	
	Pa	
	Keslen)	
sically which	Thm (
	Class:	
	Next	