1.5 AMP POSITIVE ADJUSTABLE VOLTAGE REGULATOR APPROVED TO DESC DRAWING 7703401

Three Terminal, Precision Adjustable Positive Voltage Regulator In Hermetic Style Packages (LM117)

FEATURES

- Similar To Industry Standard LM117
- Approved To DESC Standardized Military Drawing Number 7703401
- Built In Thermal Overload Protection
- Short Circuit Current Limiting
- Available In Six Package Styles

DESCRIPTION

These three terminal positive regulators are supplied in hermetically sealed packages. All protective features are designed into the circuit, including thermal shutdown, current-limiting, and safe-area control. With heat sinking, these devices can deliver up to 1.5 amps of output current. The LCC-20 device is limited to .5 amps. The unit also features output voltages that can be fixed from 1.2 volts to 37 volts using external resistors.

ABSOLUTE MAXIMUM RATINGS T_c @ 25°C

Power Dissipation	
Case 2	1.1 W
Case-All Others	20 W
Input - Output Voltage Differential	40 V
Operating Junction Temperature Range	55°C to + 150°C
Storage Temperature Range	65°C to + 150°C
Lead Temperature (Soldering 10 seconds)	300°C
Thermal Resistance, Junction to Case:	
Case 2, LCC-20	17°C/W
Case U & M, TO-257 (Isol) and SMD-3	4.2°C/W
Case T&N, TO-257 (Non-Isol) and SMD-1	3.5°C/W
Case Y, TO-3	3.0°C/W
Maximum Output Current:	
Case 2	
Case-All Others	1.5 A
Recommended Operating Conditions:	
Output Voltage Range	
Ambient Operating Temperature Range (T _A)	55°C to + 125°C
Input Voltage Range	4.25 to 41.25 VDC

3.5

OM1320NTM, OM1320STM, OM1320NKM, OM1320SMM, OM1320NMM, OM1320N2M

ELECTRICAL CHARACTERISTICS -55° C T _A 125° C, I _L = 8mA (unless otherwise specified) **OM1320NTM, OM1320NKM, OM1320NMM, OM1320NMM**

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Reference Voltage	V _{REF}	V _{DIFF} = 3.0V, T _A = 25°C		1.20	1.30	
		V _{DIFF} = 3.3V	•	1.20	1.30	V
		V _{DIFF} = 40V	•	1.20	1.30	
Line Regulation	R _{LINE}	3.0V V _{DIFF} 40V, V _{out} = V _{ref} , T _A = 25°C		-9	9	mV
(Note 1)		3.3V V $_{DIFF}$ 40V, V $_{out}$ = V $_{ref}$	•	-23	23	
Load Regulation	R _{LOAD}	$V_{DIFF} = 3.0V, 10mA$ I _L 1.5A, T _A = 25°C		-15	15	
(Note 1)		$V_{DIFF} = 3.3V$, 10mA I _L 1.5A	•	-15	15	mV
		$V_{DIFF} = 40V, 10mA I_L 300mA, T_A = 25^{\circ}C$		-15	15	
		V _{DIFF} = 40V, 10mA I _L 195mA	•	-15	15	
Thermal Regulation	V _{RTH}	V _{in} = 14.6V, I _L = 1.5A		-16	16	mV
		P _d = 20 Watts, t = 20 ms, T _A =25°C				
Ripple Rejection	R _N	f = 120 Hz, V _{out} = V _{ref}	•	66		dB
(Note 2)		C _{Adj} = 10 μF				
Adjustment Pin Current	I _{Adj}	V _{DIFF} = 3.0V, T _A = 25°C			100	
		V _{DIFF} = 3.3V	•		100	μΑ
		V _{DIFF} = 40V	•		100	
Adjustment Pin	I _{Adj}	V _{DIFF} = 3.0V, 10mA I _L 1.5A, T _A = 25°C		-5	5	
Current Change		$V_{DIFF} = 3.3V$, 10mA I _L 1.5A	•	-5	5	
		V _{DIFF} = 40V, 10mA I _L 300mA, T _A = 25°C	•	-5	5	
		V _{DIFF} = 40V, 10mA I _L 195mA	•	-5	5	μA
		3.0V V _{DIFF} 40V, T _A = 25°C		-5	5	
		3.3V V _{DIFF} 40V	•	-5	5	
Miminum Load Current	I _{Lmin}	V _{DIFF} = 3.0V, V _{OUT} = 1.4V (forced)			5.0	
		V _{DIFF} = 3.3V, V _{OUT} = 1.4V (forced)	•		5.0	mA
		V _{DIFF} = 40V, V _{OUT} = 1.4V (forced)	•		5.0	
Current Limit	I _{CL}	V _{DIFF} = 15V	•	1.5	3.5	
(Note 2)		V _{DIFF} = 40V, T _A = 25°C		0.18	1.5	Α

Notes:

- 1. Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. If not tested, shall be guaranteed to the specified limits.
- 3. The denotes the specifications which apply over the full operating temperature range.

3.5

PART NUMBER DESIGNATOR						
Standard Military Drawing Number	Omnirel Part Number	Omnirel Package Designation				
7703401M	OM1320SMM	SMD-3				
7703401U	OM1320STM	TO-257 (Isolated)				
7703401T	OM1320NTM	TO-257 (non-Isolated)				
7703401Y	OM1320 NKM	`то-з				
7703401N	OM1320NMM	SMD-1				
77034012	OM1320N2M	LCC-20				

OM1320NTM, OM1320STM, OM1320NKM, OM1320SMM, OM1320NMM, OM1320N2M

ELECTRICAL CHARACTERISTICS -55° C T _A 125° C, I _L = 8mA (unless otherwise specified) **OM1320N2M**

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Reference Voltage	V _{REF}	V _{DIFF} = 3.0V, T _A = 25°C		1.20	1.30	
		$V_{DIFF} = 3.3V$	•	1.20	1.30	V
		$V_{DIFF} = 40 V$	•	1.20	1.30	
Line Regulation	R _{LINE}	3.0V V _{DIFF} 40V, V _{out} = V _{ref} , T _A = 25°C		-9	9	mV
(Note 1)		3.3V V $_{DIFF}$ 40V, V $_{out}$ = V_{ref}	•	-23	23	
Load Regulation	R _{LOAD}	$V_{DIFF} = 3.0V, 10mA I_L .5A, T_A = 25^{\circ}C$		-15	15	
(Note 1)		$V_{DIFF} = 3.3V$, $10mA I_L .5A$	•	-15	15	mV
		$V_{DIFF} = 40V$, 10mA I_L 150mA, $T_A = 25$ °C		-15	15	
		$V_{DIFF} = 40V, 10mA$ I L 100mA	•	-15	15	
Thermal Regulation	V_{RTH}	V _{in} = 14.6V, I _L = 300mA		-16	16	mV
		P _d = 4 Watts, t = 20 ms, T _A =25°C				
Ripple Rejection	R _N	$f = 120 \text{ Hz}, V_{\text{out}} = V_{\text{ref}}$	•	66		dB
(Note 2)		$C_{Adj} = 10 \mu F$				
Adjustment Pin Current	I _{Adj}	V _{DIFF} = 3.0V, T _A = 25°C			100	
		V _{DIFF} = 3.3V	•		100	μA
		$V_{DIFF} = 40 V$	•		100	
Adjustment Pin	I _{Adj}	$V_{DIFF} = 3.0V, 10mA I_L .5A, T_A = 25^{\circ}C$		-5	5	
Current Change		$V_{DIFF} = 3.3V$, $10mA I_L .5A$	•	-5	5	
		$V_{DIFF} = 40V$, 10mA I_L 150mA, $T_A = 25$ °C	•	-5	5	
		V _{DIFF} = 40V, 10mA I _L 100mA	•	-5	5	μA
		$3.0V V_{DIFF} 40V, T_A = 25^{\circ}C$		-5	5	
		3.3V V _{DIFF} 40V	•	-5	5	
Miminum Load Current	I _{Lmin}	V _{DIFF} = 3.0V, V _{OUT} = 1.4V (forced)			5.0	
		$V_{DIFF} = 3.3V, V_{OUT} = 1.4V$ (forced)	•		5.0	mA
		$V_{DIFF} = 40V$, $V_{OUT} = 1.4V$ (forced)	•		5.0	
Current Limit	I _{CL}	V _{DIFF} = 15V	•	.5	1.65	
(Note 2)		V _{DIFF} = 40V, T _A = 25°C		0.15	.065	A

Notes

- Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. If not tested, shall be guaranteed to the specified limits.
- 3. The denotes the specifications which apply over the full operating temperature range.

STANDARD APPLICATION

- * C_{in} is required if regulator is located an appreciable distance from power supply filter.
- ** $\,C_{o}$ is not needed for stability, however it does improve transient response.

$$V_{out} = 1.25 \text{ V } (1 + \frac{R_2}{R_1}) + I_{Adj} R_2$$

Since I_{Adj} is controlled to less than 100 μA , the error associated with this term is negligible in most applications.

3 5

OM1320NTM, OM1320STM, OM1320NKM, OM1320SMM, OM1320NMM, OM1320N2M

MECHANICAL OUTLINE

OM1320SMM

Front View
Pin 1 - Adjust
Pin 2 - Input
Pin 3 - Output
Case - Isolated

OM1320STM O Isolated N Front View

Front View
Pin 1 - Adjust
Pin 2 - Output
Pin 3 - Input
Tab - Isolated

OM1320NTM Non-Isolated

Front View
Pin 1 - Adjust
Pin 2 - Output
Pin 3 - Input
Tab - Output

OM1320NMM

Pin 1 - Adjust Pin 2 - Input Pin 3 - Output

OM1320NKM

Pin 1 - Adjust Pin 2 - Input Case - Output

OM1320N2M

Pin 1	V _{OUT} (Sense)	Pin 11	NC
Pin 2	NC	Pin 12	NC
Pin 3	NC	Pin 13	NC
Pin 4	NC	Pin 14	NC
Pin 5	V_{IN}	Pin 15	NC
Pin 6	NC	Pin 16	NC
Pin 7	NC	Pin 17	NC
Pin 8	NC	Pin 18	NC
Pin 9	NC	Pin 19	NC
Pin 10	ADJUST	Pin 20	V_{OUT}

For additional information please see the mechanical outline section.

