

Gradiance Online Accelerated Learning

Zayd

· Home Page

· Assignments Due

· Progress Report

· Handouts

· Tutorials

· Homeworks

· Lab Projects

· Log Out

Help

71226 **Submission number: Submission certificate:** HH147445

Submission time: 2014-03-22 17:00:52 PST (GMT - 8:00)

Number of questions: 6 3.0 Positive points per question: Negative points per question: 1.0 Your score: 18

Based on Chapter 6 of HMU.

1. Here are the transitions of a determininstic pushdown automaton. The start state is q_0 , and f is the accepting state.

State-Symbol	a	b	3
q_0 - Z_0	(q_1,AAZ_0)	(q_2,BZ_0)	(f,ε)
q ₁ -A	(q ₁ ,AAA)	(q ₁ ,ε)	-
q_1 - Z_0	-	-	(q_0,Z_0)
q ₂ -B	(q ₃ ,ε)	(q ₂ ,BB)	-
q_2 - Z_0	-	-	(q_0,Z_0)
q ₃ -B	-	-	(q_2, ε)
q_3 - Z_0	-	-	(q_1,AZ_0)

Describe informally what this PDA does. Then, identify below the one input string that the PDA accepts.

- a) bbbaabbb
- b) bbaa
- c) bababbaa
- d) babbba

Answer submitted: **d**)

You have answered the question correctly.

Question Explanation:

This PDA accepts all strings with twice as many b's as a's. In states q_0 and q_1 , we

push two Δ s onto the stack for each hipting, and we pop an Δ for every hipting. You can interpret state q_1 as saying "we've seen more than half as many a's as b's." In states q_0 and q_2 we push a B for every input b, and (with the help of q_3) we pop two B's for every input a (using q_3 as an intermediate. You can interpret q_2 as "we have seen more than twice as many b's as a's."

2. If we convert the context-free grammar G:

```
S \rightarrow AS \mid A
A \rightarrow 0A \mid 1B \mid 1
B \rightarrow 0B \mid 0
```

to a pushdown automaton that accepts L(G) by empty stack, using the construction of Section 6.3.1, which of the following would be a rule of the PDA?

- a) $\delta(q, \varepsilon, B) = \{(q, 0B)\}$
- b) $\delta(q,0,B) = \{(q,B), (q,\epsilon)\}$
- c) $\delta(q,\epsilon,S) = \{(q,AS)\}$
- d) $\delta(q,0,0) = \{(q,\epsilon)\}$

Answer submitted: **d)**

You have answered the question correctly.

Question Explanation:

There is one state, q. The input symbols are 0 and 1, and the stack symbols are {S, A, B, 0, 1}. S is the initial stack symbol. The rules are:

```
\delta(q, \varepsilon, S) = \{(q, AS), (q, A)\}\
\delta(q, \varepsilon, A) = \{(q, 0A), (q, 1B), (q, 1)\}
\delta(q, \epsilon, B) = \{(q, 0B), (q, 0)\}
\delta(q,0,0) = \{(q,\epsilon)\}
\delta(q,1,1) = \{(q,\epsilon)\}\
```

- **3.** Suppose one transition rule of some PDA P is $\delta(q,0,X) = \{(p,YZ), (r,XY)\}$. If we convert PDA P to an equivalent context-free grammar G in the manner described in Section 6.3.2 (p. 247), which of the following could be a production of G derived from this transition rule? You may assume s and t are states of P, as well as p, q, and r.
 - a) $[qXq] \rightarrow 0[rXr][rYq]$
 - b) $[qXq] \rightarrow 0[rXr][sYq]$
 - c) $[qXq] \rightarrow [rXr][rYq]$
 - d) $[qXq] \rightarrow 0[qYr][rZp]$

Answer submitted: a)

You have answered the question correctly.

Question Explanation:

If m and n are any states of P, then the fact that (p, YZ) is in $\delta(q, 0, X)$ says that there will be a production $[qXm] \rightarrow 0[pYn][nZm]$. Similarly, the choice (r,XY) says that $[qXm] \rightarrow 0[rXn][nYm]$ is a production.

- 4. Consider the pushdown automaton with the following transition rules:
 - 1. $\delta(q,0,Z_0) = \{(q,XZ_0)\}$
 - 2. $\delta(q,0,X) = \{(q,XX)\}$
 - 3. $\delta(q,1,X) = \{(q,X)\}$
 - 4. $\delta(q, \varepsilon, X) = \{(p, \varepsilon)\}\$
 - 5. $\delta(p,\varepsilon,X) = \{(p,\varepsilon)\}\$
 - 6. $\delta(p,1,X) = \{(p,XX)\}$
 - 7. $\delta(p,1,Z_0) = \{(p,\epsilon)\}\$

The start state is q. For which of the following inputs can the PDA first enter state p with the input empty and the stack containing XXZ_0 [i.e., the ID (p,ε,XXZ_0)]?

- a) 0111011
- b) 011011011
- c) 011001101
- d) 111001

Answer submitted: **b)**

You have answered the question correctly.

Question Explanation:

When in state q, the PDA adds an X to the stack whenever it consumes a 0. The PDA may consume a 1 with no change to the stack, but only if the stack has top symbol X. That is, on inputs beginning with 1 the PDA has no choice of move and can never enter state p. Since entering state p pops an X from the stack, there must be exactly three 0's in the consumed inputs, and any number of 1's. In addition, the first input must be 0.

- 5. Consider the pushdown automaton with the following transition rules:
 - 1. $\delta(q,0,Z_0) = \{(q,XZ_0)\}$
 - 2. $\delta(q,0,X) = \{(q,XX)\}$
 - 3. $\delta(q,1,X) = \{(q,X)\}$
 - 4. $\delta(q, \varepsilon, X) = \{(p, \varepsilon)\}\$
 - 5. $\delta(p,\varepsilon,X) = \{(p,\varepsilon)\}\$
 - 6. $\delta(p,1,X) = \{(p,XX)\}\$
 - 7. $\delta(p,1,Z_0) = \{(p,\epsilon)\}\$

From the ID $(p,1101,XXZ_0)$, which of the following ID's can NOT be reached?

- a) $(p,01,XXXZ_0)$
- b) $(p,101,Z_0)$

- c) $(p,01,XXXXXZ_0)$
- d) $(p,101,XXXZ_0)$

Answer submitted: c)

You have answered the question correctly.

Question Explanation:

In state p, there is no way to consume a 0 from the input, and no way to leave state p. We can pop X's from the stack spontaneously (on ε input), and by consuming a 1 we can push an X onto the stack (but only if there was already an X on the top of the stack). Finally, with Z_0 at the top of the stack and 1 as the next input, we can pop the Z_0 and consume the 1. Consequently, the accessible ID's can be categorized as follows. All have state p.

- 1. Input = 1101, stack is XXZ_0 , XZ_0 , or Z_0 .
- 2. Input = 101, stack is $XXXZ_0$, XXZ_0 , XZ_0 , Z_0 , or ε .
- 3. Input = 01, stack is $XXXXZ_0$, $XXXZ_0$, XXZ_0 , XZ_0 , Z_0 , or ϵ .
- **6.** Here are the transitions of a deterministic pushdown automaton. The start state is q_0 , and f is the accepting state.

State-Symbol	a	b	3
q_0 - Z_0	(q_1,AAZ_0)	(q_2,BZ_0)	(f,ε)
q ₁ -A	(q ₁ ,AAA)	(q ₁ ,ε)	-
q_1 - Z_0	-	-	(q_0,Z_0)
q ₂ -B	(q ₃ ,ε)	(q ₂ ,BB)	-
q_2 - Z_0	-	-	(q_0,Z_0)
q ₃ -B	-	-	(q ₂ ,ε)
q_3 - Z_0	-	-	(q_1,AZ_0)

Describe informally what this PDA does. Then, identify below, the one input string that takes the PDA into state q₃ (with any stack).

- a) baabba
- b) abbba
- c) babbabaa
- d) baba

Answer submitted: b)

You have answered the question correctly.

Question Explanation:

This PDA accepts all strings with twice as many b's as a's. In states q_0 and q_1 , we push two A's onto the stack for each input a, and we pop an A for every input b. You can interpret state q_1 as saying "we've seen more than half as many a's as b's." In states q_0 and q_2 we push a B for every input b, and (with the help of q_3) we pop two B's for every input a. You can interpret q_2 as "we have seen more than twice as many b's as a's."

As a result, we enter q₃ when, having previously seen strictly more than twice as many b's as a's, we see an a on the input.

Copyright © 2007-2013 Gradiance Corporation.