

Crossroads Classic Analytics Challenge

-Team Zenith

Workflow

- Introduction and Problem Statement
- Data Description and Preprocessing
- Exploratory Data Analysis
- Model Building and Hyper Parameters Tuning
- Summary

Introduction and Problem Statement

- It is a struggle for NFL teams face on game days without having an understanding of which of the fans will be attending the game.
- Thus, given the data of attendees for the last 2 seasons for the 8 matches in a season, the ask to develop and train a model to accurately predict the number of actual attendees for Colts games based on a variety of factors.

Data Description & Pre-Processing

Data Description

RangeIndex: 1158228 entries, 0 to 1158227 Data columns (total 34 columns):

#	Column	Non-Null Count	Dtype
0	acct_id	1158228 non-null	object
1	acct_type_desc	1074743 non-null	object
2	event_name	1158228 non-null	object
3	event_date	1158228 non-null	object
4	plan_event_name	906065 non-null	object
5	comp_name	1084292 non-null	object
6	section_name	1158228 non-null	int64
7	row_name	1158228 non-null	object
8	SeatNum	1158228 non-null	int64
9	price_code	1158228 non-null	object
10	PC1	1158228 non-null	object
11	Price	1158228 non-null	float64
12	paid	1018942 non-null	object
13	add_datetime	1084292 non-null	object
14	class_name	1158228 non-null	object
15	status	1158228 non-null	object
16	Sales_Source	5578 non-null	float64
17	isHost	1158228 non-null	int64
18	SeatType	1158228 non-null	object
19	TicketClass	1158228 non-null	object
20	Start Year	126519 non-null	float64
21	LastYear	126519 non-null	float64
22	Term	126411 non-null	float64
23	TicketType	1158228 non-null	object
24	SeatUniqueID	1158228 non-null	object
25	Season	1158228 non-null	int64
26	ClubExpYear	126519 non-null	float64
27	Tenure	1074743 non-null	float64
28	UniqueID	1158228 non-null	object
29	isAttended	1158228 non-null	object
30	Resold	135466 non-null	object
31	ResalePrice	134496 non-null	float64
32	ResaleDate	135466 non-null	object
33	isSTM	348509 non-null	float64
dtyp	es: float64(9), i	.nt64(4), object(21)

memory usage: 300.4+ MB

—Training Data (1158228, 34)

RangeIndex: 128688 entries, 0 to 128687 Data columns (total 33 columns): Test Data Column Non-Null Count Dtype acct id 128688 non-null object (128688, 33)acct_type_desc 120755 non-null object event_name 128688 non-null object event date 128688 non-null object plan event name 101679 non-null object 121980 non-null comp name object section_name 128688 non-null int64 row_name 128688 non-null object SeatNum 128688 non-null int64 128688 non-null object price code 10 PC1 128688 non-null object 11 Price 128688 non-null int64 12 paid 113829 non-null object 13 121980 non-null add datetime object 14 class_name 128688 non-null object status 128688 non-null object 16 Sales Source 634 non-null float64 17 isHost 128688 non-null int64 SeatType 128688 non-null object 19 TicketClass 128688 non-null object Start Year 14072 non-null float64 21 LastYear 14072 non-null float64 22 Term 14060 non-null float64 23 TicketType 128688 non-null object SeatUniqueID 128688 non-null object 25 Season 128688 non-null int64 14072 non-null float64 ClubExpYear 27 120755 non-null float64 Tenure 28 UniqueID 128688 non-null object Resold 10582 non-null object ResalePrice 10429 non-null float64 31 ResaleDate 10582 non-null object 32 isSTM 38303 non-null float64 dtypes: float64(8), int64(5), object(20) memory usage: 32.4+ MB

Data Description

section_name	Term	SeatType	acct_type_desc	PC1
SeatNum	Season	UniqueID	Resold	plan_event_name
Price	ClubExpYear	class_name	SeatUniqueID	add_datetime
Sales_Source	Tenure	acct_id	TicketClass	ResaleDate
isHost	ResalePrice	comp_name	price_code	event_date
Start Year	isSTM	TicketType	status	section_name
LastYear	event_name	row_name	paid-	isAttended (Target)

Number of numerical columns: 13 Number of categorical columns: 21

Data Cleaning

- Dropped repeated and extra information:
 - Acct_id, Sales_Source, SeatNum, UniqueID
 - SeatUniqueID, Price_code,
 - ClubExpYear, LastYear, Start Year,
- Comp_name reduced category to Not complimentary and others
- Paid Y, P or N
- Fill NaN with 0
- Label encoder categorical columns with cardinality <10.
- Count encoder categorical columns with cardinality >= 10.

Feature Engineering

- Extracted
 - Months from Event date
 - Weekday or Weekend from the Event Date (new column as:"month" and "day")
- Days between event_date resale_date or
 - event_date add_datetime (new column as: "dates")
- Difference between Price and ResalePrice (new column as: "price diff")

	event_date	month	day
0	2021-10-17	10	1
1	2021-11-14	11	1
2	2021-09-19	9	1
3	2021-12-18	12	1
4	2021-11-04	11	0
5	2021-08-15	8	1

ResaleDate > event_date : 14571 rows

	month	day	event_date	ResaleDate	add_datetime	Price	dates	ResalePrice	price_diff
0	10	1	2021-10-17	NaT	2021-03-31 16:08:52	111.0	199.0	NaN	NaN
1	10	1	2021-10-17	NaT	2021-03-31 16:08:19	111.0	199.0	NaN	NaN
2	10	1	2021-10-17	NaT	2021-03-31 16:10:20	111.0	199.0	NaN	NaN
3	10	1	2021-10-17	NaT	2021-03-31 16:08:21	111.0	199.0	NaN	NaN
4	10	1	2021-10-17	NaT	2021-04-20 16:03:18	0.0	179.0	NaN	NaN
5	10	1	2021-10-17	NaT	2021-03-31 16:09:01	111.0	199.0	NaN	NaN
6	10	1	2021-10-17	2021-11-30 00:31:19	2021-03-31 16:08:07	111.0	-45.0	272.0	-161.0
7	10	1	2021-10-17	2021-09-12 09:17:22	2021-03-31 16:08:07	111.0	34.0	473.6	-362.6
8	10	1	2021-10-17	2021-11-04 16:02:58	2021-03-31 16:08:07	111.0	-19.0	72.0	39.0
9	10	1	2021-10-17	NaT	2021-03-31 16:08:07	111.0	199.0	NaN	NaN

Extending Beyond

2D virtual Tour of seating arrangements of the Stadium.

Extending Beyond

Fetched the stadium's seating information from the internet and mapped the

section_name to Section categories name:

- Terrace (500 and 600 levels)
- Loge (300 and 400 levels)
- Street (100 and 200 levels)

(new column as: "Section_category")

Extending Beyond

- section_name to a Section type namely:
 - Center
 - Corner
 - o End

(new column as: "Section_type")

Revised Data Description

Price	Term	SeatType	acct_type_desc	PC1
ResalePrice	Season	month	Resold	plan_event_name
price_diff	Tenure	class_name	dates	Section_category
section_name	isSTM	day	TicketClass	section_type
isHost	event_name	comp	price_code	TicketType
row_name	paid	status	section_name	isAttended

Number of numerical columns: 3 Number of categorical columns: 26

Workflow

- Introduction and Problem Statement
- Data Description and Preprocessing
- Exploratory Data Analysis
- Model Building and Hyper Parameters Tuning
- Summary

Exploratory Data Analysis

Univariate Analysis - comp_name

Univariate Analysis

isAttended

SeatType

Section_category

Bivariate Analysis

Monday

100000

200000

300000

400000

500000

isAttended Yes

600000

Bar Plots

Sum of Price by Year, Month and isAttended

Bar Plots

Sum of Price by Section_category, Season and section_type

Barplots for Seasons vs Section _Category vs SectionType against the Price

Density plot - Price vs SeatType

Density plot - Price vs SeatType for Day

Density plot - Price vs SeatType for Resold Price

Density plot - Day vs SeatType vs isAttended for Price

Workflow

- Introduction and Problem Statement
- Data Description and Preprocessing
- Exploratory Data Analysis
- Model Building and Hyper Parameters Tuning
- Summary

Model Building - Baseline Models

Default Parameters

Implementation and Comparison

- Dropped repetitive information: No
- Fabricated new features: No
- Hyper parameter values: Default
- Model Selection: Random Split

Model	Validation Accuracy
Decision Tree	80.72%
Random Forest	83.47%
XGBoost	84.63%
CatBoost	84.42%

Model Building - Optimized Models

Hyperparameter Tuning

Enhanced Strategies

- Feature Engineering: Yes
- Dropped repetitive columns: Yes
- Hyper parameter values: Tuned parameters as per the models
- Model Selection: Stratified 5 fold Cross Validation

Hyperparameter Tuning and Optimization

- RandomSearch, GridSearch, and BayesianSearch CV for Hyperparameter tuning and Optimization
- Best Parameters:

CatBoost:

max_depth= 12, iterations =1000, learning_rate= 0.1, early_stopping_rounds = 8

Random Forest:

n_estimators=100, max_depth=250, max_features =auto

XGBoost:

gamma = 1, reg_lambda =1, max_depth = 10

Model Evaluation

Model	Cross Validation Accuracy	Test Data Accuracy	F1 Score*
Random Forest	74.4%	80.2%	0.91
XGBoost	72.9%	78%	0.90
CatBoost	73.6%	79.4%	0.89

^{*} F1 score = 2*precision*recall/(precision + recall)

Summary

- Engineered 6 new features: day, month, price_diff, section_category, section_type, dates
- Encoded data using label encoding and frequency encoding
- Tuned hyperparameters using GridSearchCV
- Best Model: Random Forest with parameters max_depth = 100, n_estimators = 250 gave 0.8021 test accuracy and 0.91 F1 score
- Chances of improvement
 - a. Better hyperparameter tuning
 - b. Transfer Deep Learning

Thank You Team Zenith

Shachi Chaugule Rajesh Sharma Ashish Patidar

