Weak forms and problem setup — Heterogeneous linear elasticity in a two-material 3D block

1 Governing Equations

1.1 Geometry and Boundary

Let $\Omega \subset \mathbb{R}^3$ be the rectangular block:

$$\Omega := (0, L_x) \times (0, L_y) \times (0, L_z), \qquad L_x := 10 \text{m}, \ L_y := L_z := 1 \text{m}.$$

The domain Ω is partitioned at $x_{\text{int}} := L_x/2$ as:

$$\Omega_1 := \{ x < x_{\text{int}} \}, \qquad \Omega_2 := \{ x \ge x_{\text{int}} \}.$$

Where, $\Omega = \Omega_1 \cup \Omega_2$.

The boundary decomposition is:

$$\Gamma_D := \{x = 0\}, \quad \Gamma_N := \{x = L_x\}, \quad \Gamma_{\text{free}} := \partial\Omega \setminus (\Gamma_D \cup \Gamma_N),$$

Where, $\partial\Omega$ is the boundary of the domain Ω and define the closure of Ω as follows: $\overline{\Omega} = \Omega \cup \partial\Omega$.

1.2 Material Parameterization

Simulation Parameters

Given Young's modulus $E \in (0, 10)$ and Poisson ratio $\nu \in (0, 0.5)$,

$$\lambda_0 := \frac{E\nu}{(1+\nu)(1-2\nu)}, \qquad \mu_0 := \frac{E}{2(1+\nu)}.$$

Where λ_0 and μ_0 are the Lamé-parameters. Then we define the Lamé-parameters for our two different materials in the rod, at Ω_1 and Ω_2 respectively, as follows:

$$(\lambda,\mu)(x;E,\nu) := \begin{cases} (50\lambda_0, 50\mu_0), & x \in \Omega_1, \\ (\lambda_0, \mu_0), & x \in \Omega_2. \end{cases}$$

Units: [E] = Pa, $[\nu] = 1$, $[\lambda] = Pa$, $[\mu] = Pa$.

Where, the simulation parameters are: E and ν .

1.3 Governing Laws

Let $u: \Omega \to \mathbb{R}^3$ be the displacement field ([u] = m).

The displacement gradient and the small strain are:

$$\nabla u \in \mathbb{R}^{3 \times 3}, \qquad [\nabla u] = 1 \quad \text{(dimensionless)}, \qquad \varepsilon(u) := \frac{1}{2} \left(\nabla u + \nabla u^{\top} \right), \qquad [\varepsilon] = 1 \quad \text{(dimensionless)}.$$

For an isotropic linear elastic solid, the Cauchy stress is:

$$\sigma(u) = 2\mu \, \varepsilon(u) + \lambda \, \operatorname{tr}(\varepsilon(u)) \, \mathbf{I}, \qquad [\sigma] = \operatorname{Pa}, \quad [\lambda] = [\mu] = \operatorname{Pa},$$

with Lamé-parameters (λ, μ) specified in the material parameterization and I is the identity tensor.

And the traction on a boundary with unit normal n is:

$$-f_y := \sigma(u) n,$$
 $[f_y] = Pa,$ $[n] = 1$ (dimensionless).

Where, static equilibrium (no body forces) requires:

$$-\nabla \cdot \sigma(u) = \mathbf{0}$$
 in Ω , $[\nabla \cdot \sigma] = N/m^3$.

Where $\nabla \cdot \sigma(u)$ is the divergence operator being applied to σ .

1.4 Governing PDE

Let the space of admissible strong solutions be given by:

$$\mathcal{V}_{\mathrm{strong}} := C^0(\overline{\Omega}) \cap C^2(\Omega).$$

Find $u \in \mathcal{V}_{\text{strong}}$ such that

$$-\nabla \cdot \sigma(u) = \mathbf{0} \qquad \qquad \text{in } \Omega, \tag{1}$$

$$u = \mathbf{0}$$
 on Γ_D , (2)

$$\sigma(u) n = -f_y = (0, -10^{-2}, 0)$$
 on Γ_N , (3)

$$\sigma(u) n = \mathbf{0}$$
 on Γ_{free} . (4)

Here,

$$\sigma(u) := 2\mu \, \varepsilon(u) + \lambda \, \operatorname{tr}(\varepsilon(u)) \mathbf{I}, \qquad \varepsilon(u) := \tfrac{1}{2} (\nabla u + \nabla u^\top),$$

where \mathbf{I} is the identity tensor.

Where $u \in C^0(\overline{\Omega})$ due to the dirichlet boundary condition 2 on the boundary Γ_D and $u \in C^2(\Omega)$ due to the strong form 1.

2 Weak Form

2.1 Variational Statement

Let V be the test function space:

$$V := \{ v \in H^1(\Omega) \mid v = 0 \text{ on } \Gamma_D \}.$$

Given (E, ν) , find $u \in V$ such that

$$a(u, v; E, \nu) = \ell(v) \quad \forall v \in V,$$

$$a(u, v; E, \nu) := \int_{\Omega} \left[2\mu \, \varepsilon(u) : \varepsilon(v) + \lambda \, \operatorname{tr}(\varepsilon(u)) \, \operatorname{tr}(\varepsilon(v)) \right] dx, \tag{5}$$

$$\ell(v) := \int_{\Gamma_N} -f_y \cdot v \, ds. \tag{6}$$

References

[1] Choi, Youngsoo, Arrighi, William J., Copeland, Dylan M., Anderson, Robert W., & Oxberry, Geoffrey M. (2019, October 17). libROM. [Computer software]. https://github.com/LLNL/libROM. https://doi.org/10.11578/dc.20190408.3; Global pROM for linear elasticity https://www.librom.net/examples.html Accessed: 28 July, 2025