Passo 3 - Schema logico Cos'è lo schema logico Come indicarlo

Step per la progettazione di un database

Un esempio

```
Studente(ID_Studente, Nome, Cognome)
Professore(ID_Prof, Nome, Cognome)
Votazione(ID_Prof, ID_Studente, Voto, Data)
```

Chiavi primarie:
Studente.ID_Studente
Professore.ID Prof

Chiavi secondarie:
Votazione.ID_Prof -> Professore.ID_Prof
Votazione.ID_Studente -> Studente.ID_Studente

Facciamo un esercizio completo

Registro elettronico - Traccia

Una scuola deve creare il proprio registro elettronico.

In particolare, ha la necessità di immagazzinare informazioni riguardo i loro studenti, le informazioni che dovrà immagazzinare sono: nome, cognome, data di nascita mentre per i professori vogliamo nome, cognome, data di nascita e la materia che insegnano (ciascun professore potrebbe insegnare pi`u materie).

Come qualunque registro elettronico che si rispetti, si vuole immagazzinare anche informazioni riguardo i voti che gli studenti ricevono e in particolare oltre al voto numerico è importante avere la data di quando quest'ultimo è stato inserito.

Inoltre, si vuole memorizzare anche le classi a cui sono associati gli studenti. Ogni classe pu`o contenere un massimo di 25 studenti (secondo le indicazioni ministeriali).

Rosso = Entità

Registro elettronico - 1º Passo

Una scuola deve creare il proprio registro elettronico.

In particolare, ha la necessità di immagazzinare informazioni riguardo i loro studenti, le informazioni che dovrà immagazzinare sono: nome, cognome, data di nascita mentre per i professori vogliamo nome, cognome, data di nascita e la materia che insegnano (ciascun professore potrebbe insegnare più materie).

Come qualunque registro elettronico che si rispetti, si vuole immagazzinare anche informazioni riguardo i voti che gli studenti ricevono e in particolare oltre al voto numerico è importante avere la data di quando quest'ultimo è stato inserito.

Inoltre, si vuole memorizzare anche le classi a cui sono associati gli studenti. Ogni classe può contenere un massimo di 25 studenti

Approfondimento - 1° Passo

- Abbiamo domande per il professore?
- C'è qualcosa per noi di ambiguo?
- Il cliente ci ha fornito poche informazioni?
- Potrebbero esserci errori nella traccia?

Dobbiamo farci quante più domande possibili

Registro elettronico - 2° Passo

Abbiamo eseguito una prima bozza del diagramma, dobbiamo ristrutturarlo sennò non possiamo fare lo schema logico

Ristrutturazione - 2° Passo

Consiglio: Parti sempre dalla generalizzazione e interpreta il suo significato

	£1323°		white a	- L'1	-
Opzione	Quando usarlo	Cosa fare	Vantaggi	Svantaggi	ð
8A Relazioni multiple – superclasse e sottoclasse	Qualsiasi tipo di specializzazione (totale/parziale, disgiunta/sovrapposta)	Creare una relazione per la superclasse e una per ciascuna sottoclasse	Flessibile per tutti i tipi di specializzazione	Redondanza e necessità i Co per recuperare dati complet	
8B Relazioni multiple – solo sottoclassi	Specializzazione totale e preferibilmente disgiunta	Creare solo una relazione per ciascuna sottoclasse (niente superclasse)	Eliminazione della relazione della superclasse Risparmio spazio	Ridondanza se sovrapposta (duplicazione) Perdita info se la specializza è parziale	
8C Singola relazione con attributo tipo	Specializzazione disgiunta	Un'unica relazione con tutti gli attributi e un attributo tipo per indicare la sottoclasse	Schema compatto Nessun join necessario	Non adatta a specializzazior sovrapposte Molti NULL se sottoclassi ha attributi molto diversi	
8D Singola relazione con molti attributi tipo	Specializzazione sovrapposta	Un'unica relazione con tutti gli attributi + un attributo booleano per ogni sottoclasse	Supporta specializzazioni sovrapposte Nessun join necessario	Molti attributi booleani e m valori NULL	olti

Ristrutturazione - 2° Passo

Se dovessi scegliere:

- 8A: Voglio mantenere una distinzione tra tutti però dovrei fare più query
- 8B: Duplicherei i dati della superclasse
- 8C: Potrei cambiare il significato della generalizzazione

8A: Vantaggi vs Svantaggi

Vantaggi 8A:

- Mantengo una distinzione molto chiara tra: Persona, Studente e Docente
- Non appesantisco un'entità con molti valori NULL, ogni riga ha il suo

Svantaggi 8A:

- Sto usando più spazio, perché ho creato una tabella in più
- Creo maggiore complessità, lo schema diventa più grande

8B: Vantaggi vs Svantaggi

Vantaggi 8B:

- Riduco la complessità dello schema
- Non appesantisco un'entità con molti valori NULL, ogni riga ha il suo

Svantaggi 8B:

- Sto duplicando gli attributi comuni per ciascuna sottoclasse
- Se voglio solo un certo tipo di dato di Professore devo per forza visualizzare le sue generalità mentre vorrei solo le sue materie

8B Relazioni multiple – solo	Specializzazione totale e preferibilmente disgiunta	Creare solo una relazione per ciascuna sottoclasse (niente	Eliminazione della relazione della superclasse	Ridondanza se sovrapposta (duplicazione)
sottoclassi	preferibilitative disgrama	superclasse)	Risparmio spazio	Perdita info se la specializzazione è parziale
350	Specializzazione disgiunta	Uniunica relazione con tutti	Schoma compatto	Non adatta a enecializzazioni

8C: Vantaggi vs Svantaggi

Vantaggi 8C:

Risparmio molto più spazio

Svantaggi 8C:

- Potrei avere molti NULL
- Potrebbe avere un significato diverso (?)

Cosa scegliamo?

Dipende!

- Il cliente deve andare a risparmio?
- Ha delle esigenze particolari?
- Dobbiamo mantenere quanto più possibile separate le logiche?
- Mar

Personalmente scelgo la 8A, mantengo tutto separato. Non c'è nulla di male

Generalizzazione Ristrutturata

Studente - Classe?

Ristrutturazione Studente-Classe

Professore - Studente?

Attenzione alla relazione che contiene attributi

Professore - Studente?

Attributi strani? Ristrutturiamo attributi multivalore, composti e derivati

Bozza della ristrutturazione di Materie

Ristrutturazione Materia

Schema logico - 3° passo

 Cerchiamo di mettere tutti gli schemi finali insieme, partiamo dalla Materia che già è un'entità

Per ovvie ragioni ci saranno alcuni attributi che poi leveremo da alcuni schemi logici

Materia (IDMateria, Nome)
Professore (Codice_Fiscale) - Lo definiamo dopo
Insegnamento (IDMateria, Codice_Fiscale)

Chiavi primarie: Materia.IDMateria

Chiavi secondarie: Insegnamento.Codice_Fiscale -> Professore.Codice_Fiscale Insegnamento.IDMateria -> Materia.IDMateria **Gestione dell'attributo** multivalore **Materie**

Gestione della generalizzazione

Persona(Codice_Fiscale, Data_nascita, Cognome, Nome)

Professore(Codice_Fiscale)

Studente(Codice_Fiscale)

Chiavi primarie:

Persona.Codice_Fiscale

Chiavi secondarie:

Professore.Codice_Fiscale -> Persona.Codice_Fiscale Studente.Codice_Fiscale -> Persona.Codice_Fiscale

Studente(IDClasse, Codice Fiscale Studente) Classe(IDClasse, Sezione, Classe) Frequentazione(IDClasse, Codice Fiscale Studente)

Chiavi primarie: Classe.IDClasse

Chiavi secondarie:

Studente.IDClasse -> Classe.IDClasse Frequentazione.IDClasse -> Classe.IDClasse Frequentazione.Codice Fiscale Studente -> Studente.Codice Fiscale

Studente-Classe

Gestione della relazione

Studente e Professore – Già definiti Valutazione(CF_Stud, CF_Prof, Voto, Data)

Chiavi secondarie:

Valutazione.CF_Stud = Studente.CF_Stud Valutazione.CF_Prof = Professore.CF_Prof **Gestione della relazione Studente-Professore**

Studente(Codice Fiscale, IDClasse) Materia (IDMateria, Nome) Insegnamento (IDMateria, Codice Fiscale) Classe(IDClasse, Sezione, Classe) Frequentazione(IDClasse, Codice Fiscale Studente) Valutazione(CF Stud, CF Prof, Voto, Data) Chiavi primarie: Materia. IDM ateria Persona.Codice_Fiscale Classe.IDClasse Chiavi secondarie: Insegnamento.Codice_Fiscale -> Professore.Codice_Fiscale Insegnamento.IDMateria -> Materia.IDMateria Professore.Codice Fiscale -> Persona.Codice Fiscale Studente.Codice Fiscale -> Persona.Codice Fiscale Studente.IDClasse -> Classe.IDClasse Frequentazione.IDClasse -> Classe.IDClasse Frequentazione.Codice Fiscale Studente -> Studente.Codice Fiscale Valutazione.CF Stud = Studente.CF Stud

Valutazione.CF Prof = Professore.CF Prof

Professore (Codice Fiscale)

Persona(Codice Fiscale, Data nascita, Cognome, Nome)

Entità:

Schema logico finito