Egila) queremos hacer un esquema de trazas para pader graficar la superficie S: 2=4-x2-y2=4-(x2+y2)

Recordemos que 2=x2+y2 corresponde al "típico" paraboloide. Luego 2=-(x2+y2) será el parabolaide dado

volta (apuntando con su copa hacia abajo).

Por lotanto, 2 = 4 - (x2+42) debería ser al paraboloide invertido pero subido 4 unidades.

Venfiquemos nuestros "sospectios" graficando las trazas

Para trazas horizontales son aquellas en las que contamos

à la superficie con planos horizontales z=c (ceir)

z=c: c=4-(x2+42) rominale a:

== c: c= 4-(x+4+), equivale 0:

es mayor o igual aceno para todo (xxx) mientras que 4-c seria negativo.

El gráfico de S está por debajo del plano 2=4

Si Z=C (con c=4) queda: $X^2+y^2=0$: Sólo un punto!

El (0,0,4) (pues X=y=0 para que se cumpla $X^2+y^2=0$ pero Z=4

Si z=c (con c 4) quedo: x2+y2=4-c que es uno circunferencio de rodio r=14-c en en plono z=c

Con respecto a las trazas verticales. Si x=0 (plano yz) tenemos z=4-42 , una parabola slodiensq, 51 y=0 (plano x2) tenemos 2=4-X2 fx oneld us xx-h= Juntando todo obtenemos un grafico de 51 == 4-(x2+42) Parabolaide invertido y subido 4 lugares reirconferencia X +42 = 2 el plano 2 = 2 EXTYB) La curria de intersección de 5 con el plano horizontal == 2 es la circunferencia: 2=4-(x2+42), 0 5x3 x2+42= 2 : circonferencia de radio VZ en el plano horizantal (ver dibujo anterior) El modo usual de describir la circunferencia de radio Vz es usando coordenadas polares

SHULACRO

 $x = \sqrt{2} \cos t$ $y = \sqrt{2} \operatorname{sent}$

con telB

For lo cost podemos considerar $\Gamma: \mathbb{R} \to \mathbb{R}^3$ $\Gamma(t) = (\sqrt{2} \cos t; \sqrt{2} \sin t; 2)$

de modo que la imagen de la función (describe per fectamente la curva en cuestión (varias veces)

Di queremas describir la curva recorriendola una sola

Vez podriamos tomar como dominio de ((t) al inter
Valo I = [0,211) o bien I = [-11,11) ... o cualquier

intervalo que me de un quo completo a la circunferencia

Egile) como $\Gamma(t) = (\sqrt{2} \cot 1, \sqrt{2} \cot 1, 2)$ describe 13 wrvs el punto $P = (\sqrt{2}, 0, 2)$ está en dicho curvo y corresponde o t=0, paro colwiar la recto tongente o dicho circunferencia la horemas en formo porometrico poro la wal necesitamas un vector dirección de la recto (es $\vec{n} = \Gamma'(0) = (\chi'(0), \chi'(0), Z'(0))$ y un punto de posa (claramente es P)

(-12 sept; (2 cost , 0)

La recta serà :

(x,4,2) = 2 (0,5,0) + (52,0,2)

E(2)a) La formula de f está formada por producto,
división y componiendo funciones continuas. La única restricción de dominio que podríamos llegar a tener es
con respecto a los denaminadores. Tanto en la expresión
general de f como dentro del argumento del seno el
denominador es x²+y² que será distinto a cero si

(XM) ‡ (0,0)

Lingo, el Dominio de f es: Domf = 12 - }(0,0)}

Eg2)b) Para que f sea continua en (0,0) deberta existir f(0,0), también $\lim_{(x,y)\to(0,0)} f(x,y) = 0$, y además

tendrian que coincidir dictios valores (fina) = l)
La Unica marera de definir f en (0,0) de modo que
sea continua es que exista l (en cuya casa definimos f(0,0) = l y listo)

Andlicemos entonces, la existencia de

2 = Rim f(×H) (×H)→(O)O) f(×H)

Como f(x,4) = 3 sen (x+42), el numerodor

de f Hende a como (pues y -0 mientras que el seno esta acotado por 1). El denominador de fambién tiende a coro.

tipo o" pero ... abajo tenemos 11(x,4)1/2 y en el

numerador tenemos ya (que se acota por 11(x,4)1/3) con lo cual todo da a pensar que el l'inite 2 existe y vale cero. Probemos lo por definición:

SIMULACRO Voc Baccial

Hoja 5

buseo ore de modo que si 11(x,4)11 < 5 Pero |f(x,4) = 14/3 | Sen (x2+42) | { | Sen (d) | < 1 23/0- the /tixit) -0/5 E

< 1313 = 1413 = 11014111 = 1100111 = 1100111 < 8

| 1313 = 1413 = 1100111 = 1100111 < 8

Basta tomar 8= & para asegurar que /f(x,4)/48 Luego & existe y tale cero, si definimos f(0,0) = 0 la función resultará continua en (0,0).

EX3) Claramente f es diferenciable en todo punto (x14) distinto del origen pues es producto, composición y division de funciones diferenciables (con denominador no nulo) Faltaria analizar la diferenciabilidad de f en el (0,0) Analicemos, en primer lugar si existen las derivadas parciales de f en el punto (0,0): debemos hacerlo por definición pues f es una función con dominio partido

to sen(o)
= lim t²
t >0 t fx(0,0) = Pim f(t,0) - f(0,0)

= &im 0 = &im 0 = 0

Analoga (y simetricomente) vale fy (0,0) = 0

Topemos and 3	enodicar ahora	di viala roca	1 thousand
	-0		
8 cm f(x)			3
(AN)-(010)	11 (X HO) 11		
0 549:			
0 25.	xy sen(xy)		
(x,4) -(0,0)	Xz+4z	= Qcm (x,4) - (0,0)	xy sen(xy)
(x,4)-6,0)	V X2+42	(x14) - (010)	(x2+42)3/2
	12-151 2101	- VX	entonces
	(sen(d)) { d		
	xyl , Ademas		14/5/(×,4)
	ns sup ctued		tendremos
	mientras que o	su el seubmins	BOT TETTETOS
(1x+4x) = 1	1(x4)113.		
Sospechamos	quer temente	que el limite	ese do cero
	es diferenciable		
Probemoslo por	definición:		
यान व्याप्त क्षेत्र	sco 8>0 de m	0 के प्रम डा W	xx01/28
entonces If	(x,4) 1 LE	150/15	ZVAN I
"	(x,4)//	(\$ \Sen(&)	
Pero Ifixian !	1×11/5/ 1580	(X4) X 1.	1011×110
11(2,4)11	11 - 3113	110	SIMPLE SIMPLE
	= 11cxx111 < 8	- Basta tor	nor 8= E
1100 40113			
Lucae: D	es diferencial	00 00 (00) 4	555 10
	es diferences		33.00

SIMULACRO 145 Parcial FEGOH

Eju) Consideremos h(s,t) = fog(s,t)

(he, he) tenemos que usar Regla de La Cadena (pues hes una función compuesta.

Usemos un diagrama de airbol como aqualamemoria

$$\frac{\partial R}{\partial S}(1,2) = \frac{\partial R}{\partial S}(9(1,2)) \cdot \frac{\partial X}{\partial S}(1,2) + \frac{\partial R}{\partial S}(9(1,2)) \cdot \frac{\partial Y}{\partial S}(1,2)$$

Pero
$$g(1,2) = (1,1)$$
 (Dato del ejercio)

 $\frac{3\times}{35}(1,2) = 5$, $\frac{3Y}{35}(1,2) = -1$ (Datos del ejercio)

 $\frac{3}{35}(9(1,2)) = \frac{3}{35}(1,1) = 2\times -y |_{(1,1)} = 2\cdot 1 - 1 = 1$

Per 0400 1200: 과 (1/2) = 로 (9(1/2)) - 공보 (1/2) + 공투 (9(1/2)) - 공석 (1/2) = 39 (1,1) . 2 + 39 (1,1) . 3 = 2x-y/(1,1) 2 + (+x)/(1,1) 3 = 1.2-1.3 38 (1,2) = -1 Egulb) como le es diferenciable por ser composición de dos funciones diferenciables (f 4 9) y el vector お= (元 · 」) tiene norma 1 entonces Vale gue: 3R (1,2) = VR (1,2) . it = (36 (1,2) ; 38 (1,2) , 25 = (6,-1)·(元 (元) = 6 1 - 12 3 (1,2) = 5