#### BIO-3513 COMPUTATIONAL BIOLOGY

# Modelling the Effect of Sleep Timing on Alertness Using a Simple ODE-Based Approach



AADYA SOOD TAMANNA BALACHANDRAN YASHASVEE SINGH



## Introduction

#### What time do you go to sleep?



- Sleeping in alignment with the circadian rhythm improves sleep quality and daytime alertness.
- Misaligned sleep can lead to decreased alertness, reduced performance, and poorer mood.

#### How many hours of sleep do you get?



- Adults generally require 7–9 hours of sleep per night for optimal cognitive and physical function.
- Insufficient sleep accumulates sleep pressure (homeostatic drive), leading to impaired attention, memory, and decision-making.

#### How alert do you feel when you wake up?



Alertness after waking up is affected by:

- Circadian phase
- Sleep stage at awakening
- Sleep continuity and quality: Fragmented or low-quality sleep

# Two-process model of sleep regulation

#### PROCESS S



- Homeostatic sleep pressure
- Sleep-dependent process
- Builds up during wakefulness periods and dissipates during sleep

#### PROCESS C



- Circadian rhythm
- Sleep-independent process
- An internal 24-hour clock that regulates sleep-wake timing and alertness independently of prior sleep duration.

### Alertness = Process S + Process C

# Our Equation

#### Rate of Homeostatic Decay/Gain

Controls how quickly alertness moves back toward the baseline.

#### **Baseline Alertness**

The natural, "resting" alertness level when neither the homeostatic pressure nor circadian input is strongly acting.

# Sine Wave for Circadian Rhythm Models the natural daily rise and fall in alertness driven by the body's internal circadian rhythm.

$$\frac{dA}{dt} = -\alpha(A - A_{base}) + \beta \cdot sin(\frac{2\pi t}{T_{circadian}}) + S(t)$$

#### **Alertness Level**

Represents the person's current level of alertness at any given point in time.

#### Amplitude of Circadian Influence

Determines how strongly the circadian rhythm pushes alertness up or down.

Sleep
Suppression Term
Models the effect
of being asleep on
alertness.

| Parameters             | Value                          | Reasoning                                                                                                                                                                                                             |
|------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A <sub>base</sub>      | 0.5<br>(on a scale of 0.0-1.0) | <ul> <li>It is a mid-range baseline value</li> <li>It represents the neutral alertness level when neither circadian nor sleep drive dominates</li> </ul>                                                              |
| α                      | 0.058                          | <ul> <li>Governs how quickly sleep pressure dissipates after waking</li> <li>The half-life of sleep pressure is said to be between 10-15 hours so we chose a value that corresponds to a 12 hour half-life</li> </ul> |
| β                      | 0.9<br>(on a scale of 0.1–1.0) | <ul> <li>This determines the influence of circadian rhythm on alertness. We chose a higher value to<br/>make the contribution more prominent.</li> </ul>                                                              |
| T <sub>circadian</sub> | 24                             | Standard duration for the circadian rhythm                                                                                                                                                                            |
| δ                      | 0.4                            | This value captures the balance between sleep and the underlying circadian influences                                                                                                                                 |
| A <sub>0</sub>         | A <sub>base</sub>              | The initial value for alertness is chosen as the base value                                                                                                                                                           |
| max_penalty            | 0.2 to 0.3                     | Misaligned schedules can cause 20–30% decrease in cognitive performance                                                                                                                                               |

# Our Model

#### Assumptions:

Circadian rhythm as a proxy for alertness



Alertness as an array of values from 0.2 to 0.3

**Duration of sleep: 8 hours** 

Ideal time to go to sleep: 10:30PM

```
Alertness reduced by 24.0 %
Enter your sleep time and wake time in 24-hour format (e.g., 04:00 for 4 AM):
Enter your sleep time (HH:MM):
Enter your wake time (HH:MM):
```

So, when did you sleep last night?

# Results



#### Graph:

- Two lines: fixed (green dashed) and custom (red)
- Shaded regions show sleep periods
- Vertical dotted line = user's sleep start time

- Sleep timing affects alertness more than duration
- Reflects circadian overlap
- Morning dip = high risk for cognitive lapse

# Limitations

# FIXED CIRCADIAN RHYTHM

In reality, the rhythm is dynamic and lightsensitive.

#### BINARY SLEEP-WAKE STATE

The model switches sleep on/off sharply via S(t), with no gradual transitions.

# SINGLE-DAY SIMULATION

No cumulative fatigue or recovery tracking Can't assess chronic sleep debt or adaptation

#### NO FEEDBACK LOOP BETWEEN SLEEP AND CIRCADIAN CLOCK

We only model a unidirectional relation.

# NO ENVIRONMENTAL OR SOCIAL FACTORS

Doesn't account for: Light-dark cycle shifts & Caffeine, stress, or blue light effects

# NO INDIVIDUAL VARIATION

Parameters are fixed.
Ignores differences in chronotype, age, or individul routine.

# Implications & Discussion

#### KEY INSIGHTS

- Simple models can capture complex physiological dynamics.
- Timing of sleep, not just duration, is crucial for daytime alertness.
- Misaligned sleep →
   delayed & diminished
   alertness peak.

#### MODEL ENHANCEMENTS

- Add light sensitivity and phase-response curves to make rhythms dynamic.
- Extend to multi-day simulations to model sleep debt or recovery.
- Introduce personalised parameters.
- Include sleep inertia effects post-wake.

# REAL-WORLD INTEGRATION

- Could become a
   sleep optimisation
   tool: users input their
   sleep timing → get
   alertness predictions.
- Could evolve into
   tools used in
   chronotherapy, shift
   scheduling, or
   fatigue management
   systems.

# Good Night & Sweet Dreams (at 10:30 pm)



