A* Search Algorithm

$$f(n) = g(n) + h(n)$$

cost to reach the current node from start node

cost to reach goal node from current node

without heuristics

with heuristics

$$f(A) = 0 + 11 = 11$$

$$f(A) = 0 + 11 = 11$$

 $f(A-B) = 2 + 6 = 8$
 $f(A-E) = 3 + 7 = 10$

$$f(A) = 0 + 11 = 11$$

 $f(A-B) = 2 + 6 = 8$

we have got to the goal node?

$$f(A) = 0 + 11 = 11$$

 $f(A-B) = 2 + 6 = 8$

$$f(A-E) = 3 + 7 = 10$$

 $f(A-B-C) = 3 + 99 = 102$
 $f(A-B-G) = 11 + 0 = 11$

we have got to the goal node?

but..... we dont know its optimial or not, because we still got the short path alive here

$$f(A) = 0 + 11 = 11$$

 $f(A-B) = 2 + 6 = 8$

$$f(A-E) = 3 + 7 = 10$$

 $f(A-B-C) = 3 + 99 = 102$
 $f(A-B-G) = 11 + 0 = 11$

we have got to the goal node?

but...... we dont know its optimial or not, because we still got the short path alive here

so we need to check it

$$f(A) = 0 + 11 = 11$$
 $f(A-B) = 2 + 6 = 8$
 $f(A-E) = 3 + 7 = 10$
 $f(A-B-C) = 3 + 99 = 102$
 $f(A-B-G) = 11 + 0 = 11$
 $f(A-E-D) = 9 + 1 = 10$
 $f(A-E-D-G) = 10 + 0 = 10$

$$f(A) = 0 + 11 = 11$$

 $f(A-B) = 2 + 6 = 8$
 $f(A-E) = 3 + 7 = 10$
 $f(A-B-C) = 3 + 99 = 102$
 $f(A-B-G) = 11 + 0 = 11$
 $f(A-E-D) = 9 + 1 = 10$
 $f(A-E-D-G) = 10 + 0 = 10$

A-E-D-G is the shortest path in this graph