

Eng. Math ENG 1005 Week 11: Series 1

(MEC) Senior Lecturer: K.B. Goh, Ph.D.

Tutor: (a) Ian Keen & (b) Jack

Pass Leader: (i) Zi Wei and (ii) Yvonne

kekboon.goh@monash.edu

Check-In

HEY HEY

HOW YOU DOIN

Topics

Week	Topic	
1	Vectors, Lines, and Planes	
2	Systems of Linear Equations	
3	Matrices	
4	Eigenvalues & Eigenvectors	
5	Multivariable Calculus 1	
6	Multivariable Calculus 2	
7	Integration techniques and hyperbolic functions	
8	O.D.E 1	
9	O.D.E 2	
1û		
10	O.D.E 3	
11	Series 1	
10	<u> </u>	
12	3C11C3 Z	

The Big Learning Outcomes for Week 11

After completing this week's task, you should be able to:

- Do basic manipulations of sequences and series.
- Use the ratio test to determine convergence of series and radii of convergence.
- Manipulate general power series.
- Use power series to solve ODEs.
- Find Maclaurin series of given functions.

Attendance Codes (Week 11) International students

Tutorial	Wednesday, 9 Oct	02	8:00AM	4QWEG
Tutorial	Wednesday, 9 Oct	01	2:00PM	4L7QX
Workshop	Thursday, 10 Oct	01	1:00PM	2YTN2
Workshop	Friday, 11 Oct	02	10:00AM	8UPUK

Admin. Stuff (1)

1. Start your revision.

2. Submissions:

Summary

ASSESSMENT

Kick Starting Week 3: Lecture Quiz 3 (Total mark for all 12 weeks of lecture quizzes is 5%)	Tuesday, 6 August 2024, 11:55 PM Due in 4 days
Applied class quiz week 3 (Total mark for all 12 weeks of applied quizzes is 5%)	Wednesday, 7 August 2024, 11:55 PM Due in 5 days
Workshop 3 problem set (Total mark for all 12 weeks of workshop sets is 20%)	Sunday, 11 August 2024, 11:55 PM

DUE

Admin. Stuff (2)

3. Consultation/Feedback hour

```
• Wed: 10 am till 11 am } Location: 9-4-01
```

• Fri: 8 am till 9 am Location: 5-4-68

(every odd week, e.g. 3-Week, but msg me first at least a day before; appointment-based.

Resources

1. Additional: Videos

2. Pass materials

Let us start!

What is Taylor Series?

Taylor Series

The Taylor series of a function f(x) around a point x = a is given by:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots$$

or equivalently in summation form:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n,$$

Try this Taylor Series: sin(x - 3)

(5min)

To expand $f(x) = \sin(x-3)$ in a Taylor series around x = 0, we

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \frac{$$

Step-by-Step Calculation

• Step 1: Calculate f(0)

$$f(0) = \sin(0-3) = -\sin(3)$$

• Step 2: First derivative

$$f'(x) = \cos(x - 3)$$

$$f'(0) = \cos(0-3) = \cos(3)$$

• Step 3: Second derivative

$$f''(x) = -\sin(x-3)$$

$$f''(0) = -\sin(0-3) = \sin(3)$$

• Step 4: Third derivative

$$f'''(x) = -\cos(x-3)$$
$$f'''(0) = -\cos(0-3) = -\cos(3)$$

• Step 5: Fourth derivative

$$f''''(x) = \sin(x - 3)$$
$$f''''(0) = \sin(0 - 3) = -\sin(3)$$

• Step 6: Fifth derivative

$$f'''''(x) = \cos(x - 3)$$
$$f'''''(0) = \cos(0 - 3) = \cos(3)$$

Taylor Expansion

Substituting these values into the Taylor series formula:

$$f(x) = -\sin(3) + \cos(3)x + \frac{\sin(3)}{2!}x^2 - \frac{\cos(3)}{3!}x^3 - \frac{\sin(3)}{4!}x^4 + \frac{\cos(3)}{5!}x^5 + \cdots$$
$$= -\sin(3) + x\cos(3) + \frac{1}{2}x^2\sin(3) - \frac{1}{6}x^3\cos(3) - \frac{1}{24}x^4\sin(3) + \frac{1}{120}x^5\cos(3) + \cdots$$

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots$$

Today's Activity

1. Applied Problem Set

2. Applied Quiz

- ✓ Q2
- ✓ Q3
- √ Q4
- ✓ Q6
- √ Q8

Question 2

2. Consider the sequence

$$\frac{15}{2}$$
, $\frac{45}{8}$, $\frac{135}{32}$, $\frac{405}{128}$, $\frac{1215}{512}$, ...

- (a) What is the expression for the nth term in the sequence a_n , assuming the sequence starts at a_0 ?
- (b) Does the series obtained by adding the terms of the sequence, $\sum_{n=0}^{\infty} a_n$, converge or diverge?

Learning Outcomes?

Series trend!

$$\left(1, \frac{3}{4}, \frac{9}{16}, \frac{27}{64}, \dots\right)$$

Can you see it yet?

$$\frac{3}{\left(\frac{15}{2}\right)\left\{\left(\frac{3}{4}\right)^0, \left(\frac{3}{4}\right)^1, \left(\frac{3}{4}\right)^2, \left(\frac{3}{4}\right)^3 \dots\right\}} = \sum_{n=0}^{\infty} \left(\frac{15}{2}\right) \left(\frac{3}{4}\right)^n$$

$$\frac{15}{2}$$
, $\frac{45}{8}$, $\frac{135}{32}$, $\frac{405}{128}$, $\frac{1215}{512}$, ...

Write in series format

Diverge or Converge?

$$\sum_{n=0}^{\infty} \left(\frac{15}{2}\right) \left(\frac{3}{4}\right)^n$$

Smaller than unity/1

Converge!

Question 3

3. Consider the IVP

$$y'' - xy' + y^2 = 1$$

subject y(0) = 1 and y'(0) = 6. Find a series solution up to and including x^4 .

Learning Outcomes?

Series to solve ODE

Let us assume this:

$$y(x) = A + Bx + Cx^2 + Dx^3 + Ex^4 + \cdots$$

But why 5 individual terms?

- > Rule of thumb, odd number term
- > So, it can be 1, 3, 5,....

• You Try It! (10 mins) > Lets us compare: 5 vs. 3 terms

$$y(x) = A + Bx + Cx^2 + Dx^3 + Ex^4$$

$$y(x) = A + Bx + Cx^2$$

$$y = 1 + 6x - x^3 - 3x^4$$

$$y = 1 + 6x$$

Why don't we try 7, 9 or 11 terms?

$$y(x) = A + Bx + Cx^{2} + Dx^{3} + Ex^{4} + \cdots$$

Question 4

4. (a) Show that the series expansions for sin(x) and cos(x) are

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Learning Outcomes?

Series Trend

You Try!

Question 6

Find the radius of convergence of the following power series

$$g(x) = \sum_{n=0}^{\infty} \frac{n!(x-1)^n}{2^n n^n}$$
 [Hint: use $\lim_{n \to \infty} \left(1 + \frac{t}{n}\right)^n = e^t$]

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

series converges if L < 1,

diverges if L > 1

You Try!

□ Useful

$$rac{(n+1)!}{n!}=rac{(n+1)\cdot n!}{n!}$$

Question 8(a)

8. This question considers the series solution about x = 0 of the ODE

$$\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + \lambda y = 0$$

where λ is a constant.

- (a) By expanding as $y = \hat{a}_0 + \hat{a}_1 x + \hat{a}_2 x^2 + \hat{a}_3 x^3 + \hat{a}_4 x^4 + \ldots + \hat{a}_n x^n + \ldots$ and substituting into the ODE, find expressions for \hat{a}_2 and \hat{a}_4 in terms of \hat{a}_0 and \hat{a}_3 in terms of \hat{a}_1 .
- (b) By equating coefficients of terms in x^{n-2} , find an expression for $\hat{a_n}$ in terms of \hat{a}_{n-2} .

• Step 1: Compute the derivatives

Step 2: Sub. them into the ODE

• Step 3: Equate the same x power

• Step 4: General Solutions.

Click Me!

Question 8(b)

8. This question considers the series solution about x = 0 of the ODE

$$\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + \lambda y = 0$$

where λ is a constant.

- (a) By expanding as $y = \hat{a}_0 + \hat{a}_1 x + \hat{a}_2 x^2 + \hat{a}_3 x^3 + \hat{a}_4 x^4 + \ldots + \hat{a}_n x^n + \ldots$ and substituting into the ODE, find expressions for \hat{a}_2 and \hat{a}_4 in terms of \hat{a}_0 and \hat{a}_3 in terms of \hat{a}_1 .
- (b) By equating coefficients of terms in x^{n-2} , find an expression for $\hat{a_n}$ in terms of \hat{a}_{n-2} .

Back to the QR Code and See Step 2

$$n(n-1)\hat{a}_n - 2(n-2)\hat{a}_{n-2} + \lambda \hat{a}_{n-2} = 0 \implies \hat{a}_n = \frac{2(n-2) - \lambda}{n(n-1)}\hat{a}_{n-2}$$

Thank You

Eng. Math ENG 1005 Week 11: Series 1

(MEC) Senior Lecturer: K.B. Goh, Ph.D.

Tutor: (a) Ian Keen & (b) Jack

Pass Leader: (i) Zi Wei and (ii) Yvonne

kekboon.goh@monash.edu

Topics

Week	Topic	
1	Vectors, Lines, and Planes	
2	Systems of Linear Equations	
3	Matrices	
4	Eigenvalues & Eigenvectors	
5	Multivariable Calculus 1	
6	Multivariable Calculus 2	
7	Integration techniques and hyperbolic functions	
8	O.D.E 1	
9	O.D.E 2	
ÍÛ	O.D.E 3	
11	Series 1	
i2	Series 2	

Admin. Stuff (1)

1. Revision, Revision, Revision, Please, Please, Please!

2. Feel Free SPEC. CON.

3. Submissions:

Summary

ASSESSMENT DUE

Kick Starting Week 3: Lecture Quiz 3 (Total mark for all 12 weeks of lecture quizzes is 5%)Tuesday, 6 August 2024, 11:55 PM Due in 4 daysApplied class quiz week 3 (Total mark for all 12 weeks of applied quizzes is 5%)Wednesday, 7 August 2024, 11:55 PM Due in 5 daysWorkshop 3 problem set (Total mark for all 12 weeks of workshop sets is 20%)Sunday, 11 August 2024, 11:55 PM

Admin. Stuff (2)

4. Consultation/Feedback hour

```
• Wed: 10 am till 11 am } Location: 9-4-01
```

• Fri: 8 am till 9 am Location: 5-4-68

(every odd week, e.g. 3-Week, but msg me first at least a day before; appointment-based.)

Resources

1. Additional: Videos

2. Pass materials

Check-In

HEY HEY

HOW YOU DOIN

Let us start!

The Big Learning Outcomes for Week 11

After completing this week's task, you should be able to:

- Do basic manipulations of sequences and series.
- Use the ratio test to determine convergence of series and radii of convergence.
- Manipulate general power series.
- Use power series to solve ODEs.
- Find Maclaurin series of given functions.

Today's Activity

1. Workshop Problem Set

Bacteria Growth

Taylor and Maclaurin series are very power tools in the study of differential equations. In this workshop we will use ODE's to find a formula for the n-th term in a recurrence relation.

A bacteria culture test is commonly used to identify the bacteria responsible for an infection. A small sample containing bacteria cells is allowed to grow and multiply until there are enough cells to make an accurate identification. A particular bacteria divides once per day when a mature cell splits off a new cell in a process called mitosis. This particular bacteria has a maturation delay of one day, meaning that a newly divided out cell will not immediately start splitting off a cell the next day, but instead waits a day and only starts to split two days later.

Suppose there is 1 immature cell in a Petri dish in day 0. Then in day 1, the cell would mature but would not divide yet, so there is still only 1 cell in the dish. In day 2, the mature cell will divide and now there are 2 cells, 1 mature and 1 immature.

1. Find the numbers of cells in the dish in day 3, 4 and 5. Can you see a pattern in the sequence?

[2 marks]

Day	Immature Cell	Mature Cell	Total Cell
0	1	0	1
1	0	1	1
2	1	1	2
3	1	1+1=2	3
4	2	2+1=3	5
5	3	3+2=5	8

Suppose there is 1 immature cell in a Petri dish in day 0. Then in day 1, the cell would mature but would not divide yet, so there is still only 1 cell in the dish. In day 2, the mature cell will divide and now there are 2 cells, 1 mature and 1 immature.

Let M_n denote the number of mature cells in day n, and I_n the number of immature cells. Express $M_{n+1}, M_{n+2}, I_{n+1}$ and I_{n+2} in terms of M_n and I_n . [2 marks]

You know that:

Day	Immature Cell	Mature Cell	Total Cell
0	1	0	1
1	0	1	1
2	1	1	2
3	1	1+1=2	3
4	2	2+1=3	5
5	3	3+2=5	8

Mature Trend:

$$M_{n+1} = M_n + I_n$$

$$M_{n+2} = 2M_n + I_n$$

Immature Trend:

$$I_{n+1} = M_n$$

$$I_{n+2} = M_n + I_n$$
 MONASH University

3. Hence show that the total number of cells in day n satisfies the recurrence relation

$$T_{n+2} = T_{n+1} + T_n$$

$$T_{n+2} = M_{n+2} + I_{n+2} = (2M_n + I_n) + (M_n + I_n)$$

$$T_{n+1} = M_{n+1} + I_{n+1} = (M_n + I_n) + (M_n)$$

$$T_n = M_n + I_n$$

$$M_{n+1} = M_n + I_n$$

$$I_{n+1} = M_n$$

$$M_{n+2} = 2M_n + I_n$$

 $I_{n+2} = M_n + I_n$

Show that $T_{n+1} \leq 2T_n$.

From the previous slide, you know that:

$$T_{n+1} = 2M_n + I_n$$

$$T_n = M_n + I_n$$

$$2M_n + I_n \le 2(M_n + I_n)$$

Q5: Lesson Learned

Get More Sleep!

From the sequence of numbers T_0, T_1, T_2, \ldots we construct a power series

Find the radius of convergence of f(x).

$$f(x) = \sum_{i=0}^{\infty} \frac{T_i}{i!} x^i$$

f(x) is known as the exponential generating function of the sequence $\{T_i, i=0,1,2,\ldots\}$.

Let us do ratio test!

$$a_{n+1} = \frac{T_{n+1}}{(n+1)!} x^{n+1}$$

$$a_n = \frac{T_n}{n!} x^n$$

$$\frac{a_{n+1}}{a}$$
 =

$$\frac{a_{n+1}}{a_n} = \frac{T_{n+1}x^{n+1}}{(n+1)!}$$

$$= \frac{x}{n+1} \frac{T_{n+1}}{T_n} = \frac{2x}{n+1}$$

The radius is inf.

$$x \lim_{n \to \infty} \frac{2}{n+1} = 0 = \frac{a_{n+1}}{a_n}$$

 a_{n+1} (very small) $a_{n+1} \ll a_n$ (very big)

Show that $T_{n+1} \leq 2T_n$.

6. Show that f(x) satisfies the differential equation

$$f''(x) - f'(x) - f(x) = 0$$

Step 1: Define the Function

Let:

$$f(x) = \sum_{i=0}^{\infty} \frac{T_i}{i!} x^i$$

Write the function in expanded form:

$$f(x) = T_0 + T_1 x + \frac{1}{2} T_2 x^2 + \frac{1}{6} T_3 x^3 + \frac{1}{24} T_4 x^4 + \cdots$$

You try with this guide (5mins):

7. What are the values of the initial conditions f(0) and f'(0)?

f(0)

To find f(0):

Substitute x = 0 into the series expansion of f(x):

$$f(x) = T_0 + T_1(0) + \frac{1}{2}T_2(0^2) + \frac{1}{6}T_3(0^3) + \frac{1}{6}T_3(0^3)$$

$$\frac{1}{24}T_4(0^4)+\dots$$

This simplifies to:

$$f(0) = T_0$$

Using the formula $T_n = M_n + I_n$:

For Tu.

$$T_0 = M_0 + I_0 = 1 + 0 = 1$$

Initial Condition:

$$f(0) = 1$$

f'(0)

To find f'(0):

Substitute x=0 into the series expansion of

$$f'(x)$$
:

$$f'(x) = T_1 + T_2(0) + \frac{1}{2}T_3(0^2) +$$

$$\frac{1}{6}T_4(0^3) + \dots$$

This simplifies to:

$$f'(0) = T_1$$

Using the formula $T_n = M_n + I_n$:

$$T_1=M_1+I_1=0+1=1$$

Initial condition:

$$f'(0) = 1$$

8. Solve the differential equation f''(x) - f'(x) - f(x) = 0 with the initial conditions to find f(x).

[4 m]

You try with this guide (10mins):

$$f(x) = \left(\frac{1}{2} + \frac{1}{2\sqrt{5}}\right)e^{\lambda_1 x} + \left(\frac{1}{2} - \frac{1}{2\sqrt{5}}\right)e^{\lambda_2 x}$$
$$\lambda_1 = \frac{1 + \sqrt{5}}{2}, \quad \lambda_2 = \frac{1 - \sqrt{5}}{2}$$

9. Use the closed-form solution of f(x) to write down the Maclaurin series of f(x). You may use the series $e^t = \sum_{0}^{\infty} \frac{t^i}{i!}$. [3 marks]

$$f(n) = \frac{1}{2} \left(1 + \frac{1}{\sqrt{5}} \right) e^{\left(\frac{1+\sqrt{5}}{2}\right)x} + \frac{5-\sqrt{5}}{10} e^{\left(\frac{1-\sqrt{5}}{2}\right)x}$$

$$\frac{1}{2}\left(1\pm\frac{1}{\sqrt{5}}\right) = \frac{5\pm\sqrt{5}}{10}$$

When
$$t = \left(\frac{1+\sqrt{5}}{2}\right)x$$
:
$$e^{\left(\frac{1+\sqrt{5}}{2}x\right)} = \sum_{i=0}^{\infty} \frac{\left(\frac{1+\sqrt{5}}{2}x\right)^i}{i!}$$

$$e^t = \sum_{i=0}^{\infty} \frac{t^i}{i!}$$

When
$$t = \left(\frac{1-\sqrt{5}}{2}\right)x$$
:
$$e^{\left(\frac{1-\sqrt{5}}{2}x\right)} = \sum_{i=0}^{\infty} \frac{\left(\frac{1-\sqrt{5}}{2}x\right)^i}{i!}$$

$$f(x) = \sum_{i=0}^{\infty} \left[\frac{1}{2} \left(1 + \frac{1}{\sqrt{5}} \right) \left(\frac{1+\sqrt{5}}{2} \right)^i + \frac{5-\sqrt{5}}{10} \left(\frac{1-\sqrt{5}}{2} \right)^i \right] \frac{x^i}{i!}$$

10. Hence find a formula for T_n in terms of n.

$$f(x) = \sum_{i=0}^{\infty} \left[\frac{1}{2} \left(1 + \frac{1}{\sqrt{5}} \right) \left(\frac{1+\sqrt{5}}{2} \right)^i + \frac{5-\sqrt{5}}{10} \left(\frac{1-\sqrt{5}}{2} \right)^i \right] \frac{x^i}{i!}$$

 T_n

From the sequence of numbers T_0, T_1, T_2, \ldots we construct a power series

$$f(x) = \sum_{i=0}^{\infty} \frac{T_i}{i!} x^i$$

f(x) is known as the exponential generating function of the sequence $\{T_i, i=0,1,2,\ldots\}$.

11. What is the behaviour of T_n as n approaches infinity?

$$\left[\frac{1}{2}\left(1+\frac{1}{\sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^i + \frac{5-\sqrt{5}}{10}\left(\left(\frac{1-\sqrt{5}}{2}\right)^i\right]\right]$$

 $T_{n\to\infty}$ \to ∞

Replace i=n

goes inf.

goes kaput?

~

$$y_1 = \left(\frac{\left(1 + 5^{0.5}\right)}{2}\right)^x$$

$$y_2 = \left(\frac{\left(1 - 5^{0.5}\right)}{2}\right) x$$

12. If you need 10000 cells to identify the bacteria, how many days do you have to wait? You should use the (very accurate) approximation from previous question. [1 marks]

$$T_n = \frac{1}{2} \left(1 + \frac{1}{\sqrt{5}} \right) \left(\frac{1 + \sqrt{5}}{2} \right)^n = 10000$$

$$n=19.8\approx 20\,\mathrm{days}$$

$$f(x) = \sum_{i=0}^{\infty} \left[\frac{1}{2} \left(1 + \frac{1}{\sqrt{5}} \right) \left(\frac{1+\sqrt{5}}{2} \right)^i + \frac{5-\sqrt{5}}{10} \left(\frac{1-\sqrt{5}}{2} \right)^i \right] \frac{x^i}{i!}$$

Click Here

n

The Big Learning Outcomes for Week 11

After completing this week's task, you should be able to:

- Do basic manipulations of sequences and series.
- Use the ratio test to determine convergence of series and radii of convergence.
- Manipulate general power series.
- Use power series to solve ODEs.
- Find Maclaurin series of given functions.

Thank You

