

Curso: MAT1620 - Calculo II

Profesor: Vania Ramirez Ayudante: Ignacio Castañeda Mail: ifcastaneda@uc.cl

Ayudantía 14

Integrales triples 9 de noviembre de 2017

1. Considere el tetraedro T definido en \mathbb{R}^3 por los vertices (0,0,0),~(2,0,0),~(0,3,0),~(0,0,4). Calcule

$$\iiint_T x dx dy dz$$

2. Calcular $\iiint\limits_{D} dx dy dz$ donde D es la región limitada por:

$$z = x^2 + y^2$$
, $z = 4x^2 + 4y^2$, $y = x^2$, $y = 3x$

3. Cambie los ordenes de integración

a)
$$\int_0^{1/2} \int_0^{1-2x} \int_0^{2-4x-2y} dz dy dx$$
 a $dx dy dz$ b) $\int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_0^{1-x^2-y^2} dz dy dx$ a $dy dz dx$

c)
$$\int_0^1 \int_0^{y^2} \int_0^{1-y} dz dx dy \text{ a } dy dx dz$$
 d)
$$\int_0^1 \int_x^{2x} \int_0^{1-x} dz dy dx \text{ a } dz dx dy$$

4. Sea Ω la región del sólido delimitado por las inecuaciones:

$$x^2 + y^2 + z^2 < a^2$$
 , $x, y > 0$

- a) Escriba la integral triple que entrega el volumen de Ω
- b) Escriba la integral en coordenadas cilíndricas
- c) Escriba la formula en coordenadas esféricas que entregue la distancia promedio de los puntos de Ω al plano xz
- 5. Calcule el volumen del sólido que está determinado por el plano xy y las superficies $z=x^2+y^2$ y $x^2+4y^2=4$.