ASSIGNMENT-2 REPORT

Optimization Methods

Hrishikesh Nakka

Roll Number: 2023201012

1 Matyas Function

$$f(\mathbf{x}) = 0.26(x_1^2 + x_2^2) - 0.48x_1x_2$$

1.1 Jacobian

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 0.52x_1 - 0.48x_2 \\ 0.52x_2 - 0.48x_1 \end{bmatrix}$$

1.2 Hessian

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 0.52 & -0.48 \\ -0.48 & 0.52 \end{bmatrix}$$

1.3 Minima

$$f(\mathbf{x}) = 0.26(x_1^2 + x_2^2) - 0.48x_1x_2$$

For minimum $\nabla f(x) = 0$ By equating the derivative we get the point as

$$x = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$$

... The minimum value of f is 0 at
$$\mathbf{x} = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$$

1.4 Algorithms that failed to converge

All the given algorithms from all the given initial points were able to converge for this function.

1.5 Graphs

Figure 1: matyas function [1. 10.] BFGS vals

2 Rotated Hyper-Ellipsoid Function

$$f(\mathbf{x}) = \sum_{i=1}^{d} \sum_{j=1}^{i} x_j^2$$

Figure 2: matyas function [1. 10.] BFGS grad

Figure 3: matyas function [$1.\ 10.]$ BFGS contour

2.1 Jacobian

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2dx_1 \\ 2(d-1)x_2 \\ 2(d-2)x_3 \\ 2(d-3)x_4 \\ \dots \\ 4x_{d-1} \\ 2x_d \end{bmatrix}$$

2.2 Hessian

2.3 Minima

$$f(\mathbf{x}) = \sum_{i=1}^{d} \sum_{j=1}^{i} x_j^2$$

for minimum $\nabla f(x) = 0$ By equating the derivative we get the points as

$$x = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^T$$

... the minimum value of f is 0 at x= $\begin{bmatrix} 0 & 0 & 0 & 0 & . & . & . & . & . & 0 \end{bmatrix}^T$

2.4 Algorithms that failed to converge:

All the given algorithms from all the given initial points were able to converge for this function.

2.5 Graphs

Figure 4: hyperEllipsoid function [-3. 3. 2.] Polak Ribiere vals

Figure 5: hyperEllipsoid function [-3. 3. 2.] Polak Ribiere gradient

3 Trid Function

3.1 Algorithms that failed to converge:

All the given algorithms from all the given initial points were able to converge for this function.

3.2 Graphs

4 Three Hump Camel Function

$$f(x,y) = 2x^2 - 1.05x^4 + \frac{x^6}{6} + xy + y^2$$

4.1 Algorithms that failed to converge:

• Conjugate-HR, Conjugate-HS, DFP, BFGS were able to converge to some local minima. But were not able to converge to global minima from all the given initial points.

Figure 6: trid function [-2. -2.] SR1 vals

Figure 7: trid function $[-2. \ -2.]$ SR1 gradient

Figure 8: trid function [-2. -2.] SR1 contour

- While **Conjuage PS** was able to converge to global minima with initial point as [-2,1], [2,-1], [-2,-1], [2,1].
- SR1 was able to converge to global minima with initial point as [2,1], [-2,-1] but not able to converge to global minima with initial points as [2,-1], [-2,1]. But were able to converge to some local minima.

4.2 Graphs

Figure 9: three hump camel function [2. 1.] SR1 vals

Figure 10: three hump camel function [2. 1.] SR1 grad

Figure 11: three hump camel function[2. 1.] SR1 cont

5 Styblinski-Tang Function

5.1 Mathematical Formulation

$$f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{d} (x_i^4 - 16x_i^2 + 5x_i)$$

5.2 Algorithms that failed to converge:

• Conjugate HS, Conjugate Pr, Conjugate FS, SR1, DFP, BFGS were not able to converge to global minima with an initial point as [3, -3, 3, -3]. But were able to converge to some local minima.

Figure 12: styblinski tang function [0. 0. 0. 0.] DFP vals

Figure 13: styblinski tang function [0. 0. 0. 0.] DFP grad

5.3 Graphs

6 Rosen Brock Function

6.1 Mathematical Formulation

$$f(\mathbf{x}) = \sum_{i=1}^{d-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$$

6.2 Algorithms that failed to converge

- SR1 failed to converge to global minima with every initial point.
- Conjugate FR failed to converge to global minima from initial point [2,2,2,-2].
- **DFP** failed to converge to global minima from initial points [2,-2,-2,2],[-2,2,2,2].

6.3 Graphs

Figure 14: rosenbrock function [3. 3. 3. 3.] Polak-Ribiere vals

Figure 15: rosenbrock function [3. 3. 3. 3.] Polak-Ribiere gradient

7 Root of a square Function

7.1 Mathematical Formulation

$$f(\mathbf{x}) = \sqrt{1 + x_1^2} + \sqrt{1 + x_2^2}$$

7.2 Algorithms that failed to converge

• All the given algorithms were able to converge to global minima from all given initial points since it is a convex function.

7.3 Graphs

Figure 16: func 1[-3.5 0.5] SR1 vals

Figure 17: func 1[-3.5 0.5] SR1 grad

Figure 18: func 1[-3.5 0.5] SR1 grad