Created with

Company Name DIEMS Project Title Numerical 4

Group/Team Name DIEMS Subtitle
Designer Kavish Patwari Job Number 4

Date 04 /06 /2016 Method Limit State Design (No Earthquake Load)

Design Conclusion

Finplate Pass

Finplate

Connection Properties

Connection

Connection Title Single Finplate
Connection Type Shear Connection

Connection Category

Connectivity Column flange-Beam web

Beam Connection Bolted
Column Connection Welded

Loading (Factored Load)

Shear Force (kN) 200

Components

Column Section ISSC 250

Material Fe 410

Beam Section ISMB 400

Material Fe 410

Hole STD

Plate Section 240X110X18

Thickness (mm) 18
Width (mm) 110
Depth (mm) 240
Hole STD

Weld

Type Double Fillet

Size (mm) 15

Bolts

Type Black Bolt Grade 4.8 Diameter (mm) 12 **Bolt Numbers** 13 Columns (Vertical Lines) 2 7 Bolts Per Column Gauge (mm) 30 Pitch (mm) 30 End Distance (mm) 30 30 Edge Distance (mm)

Assembly

Column-Beam Clearance (mm) 20

Created with

Company Name DIEMS Project Title Numerical 4

Group/Team Name DIEMS Subtitle
Designer Kavish Patwari Job Number 4

Date 04 /06 /2016 Method Limit State Design (No Earthquake Load)

Design Check

Bolt shear capacity (kN)

Bolt bearing capacity (kN)

Check Required Provided Remark

 $V_{\rm dsb} = (400*0.6126*12*12)/(\sqrt{3}*1.25*1000) =$

[cl. 10.3.3]

15.612 [cl. 10.3.3]

 $V_{\rm dpb} = (2.5*0.519*12*8.9*410)/(1.25*1000) =$

45.452 [cl. 10.3.4]

Bolt capacity (kN) $\min (15.612, 45.452) = 15.612$

No. of bolts 200/15.612 = 12.8 13

No.of column(s)	≤ 2	2	
No. of bolts per column		7	
Bolt pitch (mm)	$\geq 2.5* 12 = 30, \leq Min(32*8.9, 300) = 285$ [cl. 10.2.2]	30	Pass
Bolt gauge (mm)	$\geq 2.5*12 = 30, \leq Min(32*8.9, 300) = 285$ [cl. 10.2.2]	30	
End distance (mm)	$\geq 1.7*13 = 22.1, \leq 12*8.9 = 106.8$ [cl. 10.2.4]	30	Pass
Edge distance (mm)	$\geq 1.7*13 = 22.1, \leq 12*8.9 = 106.8$ [cl. 10.2.4]	30	Pass
Block shear capacity (kN)	\geq 200	$V_{\rm db} = 630$	Pass
Plate thickness (mm)	(5*200*1000)/(240*250) = 16.67 [Owens and Cheal, 1989]	18	Pass
Plate height (mm)	$\geq 0.6*400=240.0, \leq 400-16-14-10=330.0$ [cl. 10.2.4, Insdag Detailing Manual, 2002]	240	Pass
Plate width (mm)		100	
Plate moment capacity (kNm)	$(2*15.612*30^2)/(30*1000) = 13.0$	$M_{\rm d} = (1.2*250*Z)/(1000*1.1) = 47.13$ [cl. 8.2.1.2]	Pass
Effective weld length (mm)		240-2*16 = 208	
Weld strength (kN/mm)	$\sqrt{[(13000*6)/(2*208^2)]^2 + [200/(2*208)]^2}$ = 1.022	$f_{\rm V} = (0.7*15*410)/(\sqrt{3}*1.25)$ = 2.121 [cl. 10.5.7]	Pass
Weld thickness (mm)	Max($(1.022*1000*\sqrt{3}*1.25)/(0.7*410),18*0.8$) = 14.4 [cl. 10.5.7, Insdag Detailing Manual, 2002]	15	Pass

Created with

Company Name DIEMS Project Title Numerical 4

Group/Team Name DIEMS Subtitle
Designer Kavish Patwari Job Number 4

Date 04 /06 /2016 Method Limit State Design (No Earthquake Load)

Views

Created with

Company Name DIEMS Project Title Numerical 4

Group/Team Name DIEMS Subtitle
Designer Kavish Patwari Job Number 4

Date 04 /06 /2016 Method Limit State Design (No Earthquake Load)

Additional Comments