Détection de sujets d'insatisfaction et labélisation automatique de photos

Start-up AVIS RESTAU

Bailly DIOUNOU, Ingénieur IA - 25/06/2021

Contexte & périmètre du projet

- •Comprendre les avis des utilisateurs et les faire comprendre
- Automatisation du traitement de l'information et synthétisation de l'information

- Amélioration de l'expérience client
- •Gain d'ergonomie pour le client
- •Gain d'interactivité avec le client
- Accroître le flux de collaboration avec les utilisateurs

- •Détection des sujets d'insatisfaction extraits des commentaires.
- Labélisation automatique des photos postées.

Startup Avis Restau

Présentation de la problématique métier

Interprétation & pistes de recherche

Contexte sanitaire

L'affaire " The Shed at Dulwich"

Restaurants

Clients

L'affaire " The Shed at Dulwich"

Restaurants

Clients

Problématique

L'affaire " The Shed at Dulwich"

Psychosociologie de la consommation

Les usagers postent-ils vraiment *que* lorsqu'ils sont (1)très mécontents, (2) très mécontents ou très contents?

Quelles raisons principales : qualité, accueil/contact, rapport qualité-prix ?

Sensibilité du chiffre d'affaire aux avis clients

Influence des avis négatifs accumulés sur la décision d'achat

Avis Restau

Exhaustivité de l'investigation avant l'achat

Pour mon futur pot de thèse: vais-je lire tous les commentaires de ce traiteur? Pour tous les traiteurs de la commune? du département?

Attention! Ton introduction de manuscrit de thèse ne portera pas sur les raisons de l'augmentation saisonnière du kilo de sorbet juste avant l'été...

Ere du visuel et de l'image

Simple curiosité des sens ou Complément d'aide à la décision d'achat ?

Client mécontent,
Concurrent malveillant
ou... Simple rageux ?

Avis Restau

Commentaires clients

- 8M de commentaires
- 2M de clients
- 209K restaurants

Commentaires clients

- 8M de commentaires
 - *useful*, funny, cool
 Peer-rating of "quality"
- 2M de clients
- 209K restaurants

Commentaires clients

- 8M de commentaires
 - *useful, funny, cool* Peer-sentiment analysis
- 2M de clients
- 209K restaurants

- 8M de commentaires
- 2M de clients
 - Rapport ~ 1/10³: effectif mode/autres modalités -> Peu d'utilisateurs commentent plus d'une fois!
- 209K restaurants

- 8M de commentaires
- 2M de clients
 - Peu d'utilisateurs commentent plus d'une fois.
 - Commentaires plutôt positifs!
- 209K restaurants

- 8M de commentaires
- 2M de clients
- 209K restaurants
 - Com/restau: (moy, std) = (38, 127)
 - -> Faible nombre de com/restau

- 8M de commentaires
- 2M de clients
- 209K restaurants
 - Com/restau: (moy, std) = (38, 127)
 -> Faible nombre de com/restau
 - Les plus commentés le sont positivement!

- 8M de commentaires
- 2M de clients
- 209K restaurants
 - Com/restau: (moy, std) = (38, 127)
 - -> Faible nombre de com/restau
 - Les plus commentés le sont positivement!
 - Analyse prédictive: sensibilité du CA
 - Quasi-stationnarité native (fréquence!)

Commentaires clients

- 8M de commentaires
 - useful, funny, cool
 Peer-group data
- 2M de clients
- 209K restaurants

Consumer peer-group data crowdsourcing:
Où se situe-t-on sur le DIKW?

Vulnérabilité, Menaces & Risques

- Taille et complétude médiocre des jeux de données Avis Restau
 - -> Risque sur l'objectivité et la pertinence de l'information, et l'intégrité du service
- Ere du deep fake : créations de profils fictifs Ton "Shed at Dulwich" from home !!!
 -> Risque sur l'intégrité de l'information et du service

Commentaires clients

- 8M de commentaires
 - useful, funny, coolPeer-group data
- 2M de clients
- 209K restaurants

Consumer peer-group data crowdsourcing:
Où se situe-t-on sur le DIKW?

Vulnérabilité, Menaces & Risques

Peer-group data à la trappe ?

Commentaires clients

- 8M de commentaires
 - useful, funny, cool
 Peer-group data
- 2M de clients
- 209K restaurants

Consumer peer-group data crowdsourcing:
Où se situe-t-on sur le DIKW?

Mesures \ Solutions

• DIC to DIC?

Commentaires clients

- 8M de commentaires
 - useful, funny, coolPeer-group data
- 2M de clients
- 209K restaurants

Consumer peer-group data crowdsourcing:
Où se situe-t-on sur le DIKW?

Mesures \ Solutions

• Dixto DIC?

Renforcement de l'authenticité

- Authentification
- Non-répudiation

Traitement des données "crowdsourced"

Pipelines pour commentaires et photos

Commentaires

Filtres pré-traitement

- Sélection des commentaires négatifs (après binarisation de la note de satisfaction – 0 à 5)
- Sélection des commentaires anglais

Commentaires

Pipeline

Nettoyage & Normalisation avec NLTK

Commentaires

Pipeline

- Nettoyage & Normalisation, NLTK
- Vectorisation, Tf-idf
 - CountVectorizer (max_features = 1000)

Commentaires

Pipeline

- Nettoyage & Normalisation, NLTK
- Vectorisation, Tf-idf
- Topic modeling, NMF pré-entrainé
 - Nombre de topic K optimisé par coherence score (spacy similarity)

Commentaires

Pipeline

- Nettoyage & Normalisation, NLTK
- Vectorisation, Tf-idf
- Topic modeling, NMF
 - Nombre de topic K optimisé par coherence score (spacy similarity)
 - Exemple:

K dans $2:10 \rightarrow K_opt = 8 \text{ (coh=0.87)}$

Topic # 01 Poor order process	Topic # 02 Poor food	Topic # 03 Poor service	Topic # 04 Poor delay	Topic # 05 Poor pizza	Topic # 06 Poor car accomodation	Topic # 07 Poor accomodation	Topic # 08
0 back	food	service	order	pizza	car	room	place
1 said	chicken	customer	minute	ordered	wash	hotel	worst
2 told	good	horrible	wait	slice	oil	stay	like
3 call	ordered	rude	time	cheese	drive	desk	ever
4 never	restaurant	worst	drink	sauce	change	night	people
5 time	eat	terrible	waited	tasted	dealership	check	star
6 called	quality	ever	hour	taste	vehicle	bed	bad
7 day	cold	bad	table	delivery	get	front	even
8 get	like	store	drive	like	tire	bathroom	really
9 company	taste	poor	waiting	wing	take	stayed	give

Photos

Pipeline

- Normalisation et génération des descripteurs de l'image, SIFT
 - •Echantillon de 3000 images
 - •Nuances de Gris <- SIFT
 - Ajustement de contraste
 - •Max des = 500
 - --> **1.5M** des

Photos

Pipeline

- Normalisation et génération des descripteurs de l'image, SIFT
- Construction de l'histogramme des mots visuels, KMeans pré-entrainé

•K in [N*#Etiq ; sqrt(Nb total des)]

Photos

Pipeline

- Normalisation et génération des descripteurs de l'image, SIFT
- Construction de l'histogramme des mots visuels, KMeans pré-entrainé
- Réduction de dimension, PCA préentrainé
 - •60% var. expl.
 - •1212 -> 141 feat

Photos

Pipeline

- Normalisation et génération des descripteurs de l'image, SIFT
- Construction de l'histogramme des mots visuels, KMeans pré-entrainé
- Réduction de dimension, PCA préentrainé
 - •60% var. expl.
 - •1212 -> 141 feat
 - •Clustering Kmeans sur les images dans l'espace de sortie PCA

TSNE selon les vraies classes

TSNE selon les clusters

Photos

Pipeline

- Normalisation et génération des descripteurs de l'image, SIFT
- Construction de l'histogramme des mots visuels, KMeans pré-entrainé
- Réduction de dimension, PCA préentrainé
- Prédiction de la classe, LinearSVC préentrainé
 - •Classification Clusters PCA vs Etiquettes
 - •plusieurs classifieurs testés (LR, LDA, CART KNN, RF, SVM)
 - •gridsearch/classifieur
 - •linear_svc {recall:0.499, f1_score:0.507}

Visualisation graphique de la solution

Tableau de bord web

Conclusion sur la faisabilité

- Detection de sentiments
 - Topics définis, avec distance inter-topic bien claire
 - Bonne scalabilté envisagée, montée en échelle conseillée!
- Classification d'image
 - Classification peu performante (F1_score ~ 50%)
 - Test d'une méthode plus efficace avant décision (Ex: CNNs)

Merci pour votre attention

Disponible pour des questions/réponses