INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Mid-Autumn Semester Examination 2024-25 EC 21201 (Basic Electronics)

Date of Examination - 18/09/2024, AN, Full Marks: 60 Time: 2 hours

PART A: (Question for 1st year Students only) Answer All Questions.

PARTA

Q1. (a) An-type Silicon bar is 2 cm long and has a cross-section of 2mm × 2mm. When a 1 V battery is connected across it, a current of 8 mA flows. Find (i) doping concentration and (ii) drift velocity. Assume mobility of electron is 1300cm²/V – sec.

(b) The electron concentration in Silicon is given by $n(x) = 10^2 + 10^{18} \exp(-x/L_n)$ for $(x \ge 0)$ in which $L_n = 20 \mu m$. If electron diffusion coefficient is $D_n = 30 \text{ cm}^2/\text{s}$, determine the electron diffusion current density J_n in A/cm² at (i) x = 0, (ii) $x = 20 \mu m$ and (iii) $x = 30 \mu m$. Draw an approximate plot of electron concentration versus distance, showing the direction of electron diffusion and electron diffusion current density. [5]

Q2. (a) Assume a piecewise linear model of pn junction diode in which the cut-in voltage V_{γ} = 0.6 V and forward diode resistance r_f = 20 Ω . Consider a pn junction diode in series with an 8 K Ω resistor and 5 V power supply. Draw the circuit first. Next, calculate diode voltage V_D (in Volt), diode current I_D (in mA) and power dissipated in diode P_D (in mW). Draw the diode piecewise equivalent circuits when $V_D \ge V_{\gamma}$ and when $V_D \le V_{\gamma}$.

(b) In the circuit shown below, assume that the voltage drop across a forward biased diode is 0.7 V. The thermal voltage $V_T = \frac{kT}{q} = 25 \text{mV}$ at T=300K. The small signal input $v_i = 100 \cos(wt) \, \text{mV}$. Find the (i) bias current I_{DC} through the diodes and (ii) ac output voltage v_{ac} . Consider emission coefficient or ideality factor = 1 and diode forward resistance = 0.

Q3. Design an energy efficient diode bridge rectifier based power supply with filter capacitor for the following specifications:

Input ac voltage: 230 V (rms), 50 Hz

Output voltage: 9 V (peak)

Load current variation: 0 to 120 mA

Output ripple voltage: 10% of peak output voltage

Use silicon diode (cut-in voltage = 0.7 V), transformer and necessary filter circuit.

(a) Draw the necessary circuit diagram.

[7]

(b) Calculate the turns ratio of the transformer, PIV of diode, and the value of filter capacitor.

Q4. Consider the circuit as shown in Figure below where the cut-in voltage of the silicon diode is 0.7V. The voltages of two Zener diodes $(V_{Z1}$ and $V_{Z2})$ are 3V and 6V, respectively. The resistances of two Zener diodes are assumed to be zero.

- (a) Find three expressions of output voltages (v_0) for three different operating ranges only in terms of input voltage (v_I) when the input voltage varies from -15V to +15V. [8]
- (b) Draw the plot of output voltage versus input voltage when the input voltage varies from -15V to +15V. [2]

- Q5. Consider the circuit shown in Figure below where the input voltage (VPS) varies from 8 V to 10V and the Zener diode voltage (Vz) is 6 V. The load resistance (RL) can vary from 200 Ω to 100 Ω . The minimum value of Zener current (Iz) can be considered as one-tenth of the maximum value of Iz.
- (a) Calculate the maximum value of R_i so that the load voltage (V_L) remains constant at 6V for all possible values of R_L and V_{PS} within the specified range and find the maximum power dissipated by the Zener diode.
- (b) Calculate the minimum value of R_i so that the power dissipated by Zener diode never exceeds 0.5 W for all possible values of R_L and V_{PS} within the specified range. [4]

- **Q6.** Design a circuit using diodes (with cut-in voltage $V_{\gamma} = 0.7$ V) and Zener diodes with appropriate breakdown voltages to provide the voltage transfer characteristic shown below.
- (a) Draw the complete circuit diagram.

[3]

(b) Find the breakdown voltages of the Zener diodes.

[3]

(c) Find the relations of the required resistances in the circuit.

[4]

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Mid-Autumn Semester Examination 2024-25

EC 21201 (Basic Electronics)

Date of Examination - 18/09/2024, AN, Full Marks: 60 Time: 2 hours

PART B: (Question for 2nd year Students only)

PART B

Instructions:

- Answer All Questions. All waveform sketches / diagrams must be neatly drawn and clearly labeled.
- The final answers (numerical values with unit) should be underlined or enclosed within box with unit.
- Avoid writing answers of the various parts of a single question at different locations in your answer-script.
- If not explicitly mentioned in the question, (please assume) Thermal voltage (at room temperature) 26 mV
- Any value related to any device/ circuit parameter, which you may find not given, assume suitable value for such parameters.
- (A) Two semiconductor materials have exactly the same properties except that material Ao has a bandgap of 1 eV and material A1 has a bandgap energy of 1.2 eV. What is the ratio of intrinsic concentration of material A0 to material A1 at 27° Celsius? (T=300K and Boltzmann's constant: 86x10-6eV/K)
 - (B) Assume electronic charge $q = 1.6 \times 10^{-19}$ C, KT/q = 25 mV and electron mobility, $\mu_n = 1250$ cm²/V s. If the concentration gradient of electrons injected into a p-type silicon sample is -1×10²¹/cm⁴, What is the magnitude of electron diffusion current density (in A/cm²)?

2. (A)

A circuit contains a diode with cut-in voltage V_D = 0.7V. The diode is to remain biased "on" for a power supply voltage in the range $6 \le V_{PS} \le 12V$. The minimum diode current is to be I_D(min) = 3 mA. The maximum power dissipated in the diode is to be no more than 15 mWatt. Determine appropriate values of R1 and R2. [5]

(B)

Assume each diode in the circuit shown has a cut-in voltage of V_D =0.65V. Resistor R₂ is 1k Ω . Determine the appropriate values of R₁ and the currents I_{D1} and I_{D2} . Let input voltage be $V_I = 5V$. What is the value of R1 required such that ID1 is one-half the value of ID2? Also, determine the values of ID1 and ID2.

Fig 2(B)

(A) The common-emitter current gain β for a bipolar junction transistor is given by

a. Ic/IB b. I_B/I_C c. IE/IB.

d. IB/IE [1]

[5]

[2]

- (B) In a bipolar transistor biased in the forward-active region, the base current is $i_B = 2.8 \mu$ A, and the emitter current is $i_E = 325\mu$ A. The common-emitter current gain β and collector current i_C are given by [1]
 - a. $\beta = 115$, $ic = 322.2 \mu A$
- b. $\beta = 100$, $ic = 2.8 \mu A$
- c. $\beta = 50$, $ic = 325 \mu A$
- d. $\beta = 120$, $ic = 3.5 \mu A$
- (C) The range of common-emitter current gain β for a particular type of transistor is 110 $\leq \beta \leq$ 180. Determine the corresponding range of common-base current gain α .
 - a. $0.8801 \le \alpha \le 0.8899$ b. $0.9909 \le \alpha \le 0.9944$ c. $0.7722 \le \alpha \le 0.7753$ d. $0.6654 \le \alpha \le 0.6696$
- (D)A bipolar transistor is biased in the forward-active mode. The emitter current $i_E = 1.25$ mA and commonemitter current gain $\beta = 150$. Determine the base current is. [1]

a. 8.28 μA

b. 4.56 µA

c. 3.98 µA

d. 9.87 µA

(E)

For the transistor in the circuit Fig 3(E), β = 120, $V_{BE(on)}$ = 0.7 V. Determine Ic and VCE.

- a. $Ic = 0, V_{CE} = 0.2V$
- b. Ic=0.2 mA, VcE=2V
- c. Ic=0.5 mA, VcE=3V
- d. Ic=-0.5 mA, VcE=-1V
- (F) A npn transistor has a common emitter current gain of β = 125. The transistor is biased at base-emitter voltage $v_{BE} = 0.615$ V. Determine the base current i_B , and emitter current i_E by assuming $I_s = 5 \times 10^{-15}$ A (where $I_S = 10^{-15}$ A)
 - a. $i_B = 0.6889 \mu A$, $i_E = 78.95 \mu A$ b. i_B =0.7495 μ A, i_E =94.44 μ A c. i_B =0.678 μ A, i_E =87.94 μ A d. i_B =0.967 μ A, i_E =56.98 μ A

(G)

4. (A)

Fig 4(A)

For the transistor in Fig 3(G), β = 120. Determine Ic and Vce.

- a. $I_{C} = 0, V_{CE} = 0.2$
- b. Ic =0.24 mA, VcE=1.04 V
- c. $Ic = 0.3 \text{ mA}, V_{CE} = 2.5 \text{ V}$
- d. Ic =0.5 mA, VCE=-2 V

Consider the circuit in Fig 4(A):

let β = 25 and $V_{BE(on)}$ = 0.7 V for the transistor. Determine the range of V_i such that 1.0V $\leq V_{CE} \leq 4.5$ V. Sketch the load line and show the range of the Q-point values.

[5]

[2]

(B) Consider the npn transistor circuit as shown in Fig 4(B):

- (i) Let the common-emitter current gain of the transistor be $\beta=80$. The emitter is driven by a constant-current source with $I_E=1.2$ mA. Determine I_B , I_C , V_C , and the common-base current gain α . [2.5]
- (ii) For the transistor, $\alpha = 0.9910$, and the emitter current in the circuit is $I_E=0.80$ mA. Determine base-emitter voltage V_{BE} , base current I_B , and collector current I_C by assuming the reverse saturation current for the base-emitter junction as $I_{EO}=5\times10^{-14}$ A. [2.5]

Fig 4(B)

Fig 5(A)

Fig 5(A)

For the circuit in Fig 5(A), vi=10 sin ω t V, R=1 k Ω , V γ = 0.6V and forward diode resistance r_f = 20 Ω . (i) Find the average value of v_o (ii) Determine the peak diode current (iii) What is the PIV of the diode?

[3+1+1]

(B)

+10 V

10 K

10 K

10 K

10 K

10 V

In the circuit Fig 5(B), assume V=0.7V for each diode in the circuit below. Plot v_0 vs v_1 for -10V \leq $v_1 \leq$ +10V. [5]

6. (A) A DC power supply (bridge rectifier & capacitor filter) to deliver an average power of 2 Watt to a cell phone with a voltage of 3.6V and a ripple of 0.2 V. Find the capacitor value of the filter and PIV of each diode (Assume, f= 50 Hz, V_{D,on} = 0.8 V).

In the circuit Fig 6(B), the Zener diode can handle up to 2 Watt power. Find the minimum value of Rs? Find maximum current flow through Zener. [3+2]