Capital Allocation under Fundamental Review of Trading Book

Luting Li¹ Hao Xing²

 ${}^{1}\text{Citigroup, London} \\ {}^{2}\text{Questrom School of Business, Boston University}$

Fundamental Review of Trading Book (FRTB)

Basel Committee on Banking Supervision

STANDARDS

Minimum capital requirements for market risk

January 2016

Basel 2 and 2.5

▶ 10 days P&L of different risk positions are aggregrated

Basel 2 and 2.5

▶ 10 days P&L of different risk positions are aggregaated Liquidity is not taken into account

Basel 2 and 2.5

- ▶ 10 days P&L of different risk positions are aggregaated Liquidity is not taken into account
- ▶ Value-at-Risk (VaR)

Basel 2 and 2.5

- ▶ 10 days P&L of different risk positions are aggregaated Liquidity is not taken into account
- ► Value-at-Risk (VaR)
 Incentive to take skewed risk, not sub-additive

Basel 2 and 2.5

- ▶ 10 days P&L of different risk positions are aggregaated Liquidity is not taken into account
- Value-at-Risk (VaR)
 Incentive to take skewed risk, not sub-additive

FRTB sets out revised standards for minimum capital requirements for market risk

- Incorporate the risk of market illiquidity
- ▶ An Expected Shortfall (ES) measure
- Constrain the capital-reducing effects of hedging

Structure and implementation

- ▶ Standardized approach (SA), Internal models approach (IMA),
- ▶ Model approval down to desk level

Structure and implementation

- ▶ Standardized approach (SA), Internal models approach (IMA),
- ▶ Model approval down to desk level

Implementation timeline (Picture from EY, Basel III revisions published in December 2017 affect the implementation date of FRTB)

Updated timeline

Standard	Original implementation date	Revised implementation date	
Revised leverage ratio framework and G-SIB buffer	1 January 2022	1 January 2023	
Revised standardised approach for credit risk	1 January 2022	1 January 2023	
Revised IRB approach for credit risk	1 January 2022	22 1 January 2023	
Revised operational risk framework	1 January 2022 1 January 2023		
Revised CVA framework	1 January 2022	1 January 2023	
Revised market risk framework	1 January 2022	1 January 2023	
Output floor	1 January 2022; transitional arrangements to 1 January 2027	1 January 2023; transitional arrangements to 1 January 2028	
Revised Pillar 3 disclosure framework	1 January 2022	022 1 January 2023	

IRB = internal ratings-based approach; CVA = credit valuation adjustment.

Consulting firm Oliver Wyman estimates that banks need to spend \$5 billion to get ready for FRTB (\$50m - \$140m for each bank.)

Consulting firm Oliver Wyman estimates that banks need to spend \$5 billion to get ready for FRTB (\$50m - \$140m for each bank.)

".. one certain thing about the process is that capital requirements will rise. This is going to be life-threatening for some trading desks, as heads of divisions assess whether it is economical to be in certain businesses." — Bloomberg News

Consulting firm Oliver Wyman estimates that banks need to spend \$5 billion to get ready for FRTB (\$50m - \$140m for each bank.)

".. one certain thing about the process is that capital requirements will rise. This is going to be life-threatening for some trading desks, as heads of divisions assess whether it is economical to be in certain businesses."

— Bloomberg News

Banks need allocations to calculate return on risk-adjusted capital (RORAC):

 $\frac{\mathsf{Expected}\ \mathsf{return}}{\mathsf{Capital}\ \mathsf{allocated}}.$

Consulting firm Oliver Wyman estimates that banks need to spend \$5 billion to get ready for FRTB (\$50m - \$140m for each bank.)

".. one certain thing about the process is that capital requirements will rise. This is going to be life-threatening for some trading desks, as heads of divisions assess whether it is economical to be in certain businesses."

— Bloomberg News

Banks need allocations to calculate return on risk-adjusted capital (RORAC):

 $\frac{\mathsf{Expected}\ \mathsf{return}}{\mathsf{Capital}\ \mathsf{allocated}}.$

Capital charge in SA is very expensive.

QIS shows that capital charge increases 128% in SA and 54% in IMA (average over 44 banks)

Consulting firm Oliver Wyman estimates that banks need to spend \$5 billion to get ready for FRTB (\$50m - \$140m for each bank.)

".. one certain thing about the process is that capital requirements will rise. This is going to be life-threatening for some trading desks, as heads of divisions assess whether it is economical to be in certain businesses." Bloomberg News

Banks need allocations to calculate return on risk-adjusted capital (RORAC):

Expected return Capital allocated

Capital charge in SA is very expensive.

QIS shows that capital charge increases 128% in SA and 54% in IMA (average over 44 banks)

FRTB IMA is more computationally demanding than the current framework 4□ → 4回 → 4 = → 4 = → 9 Q C

Outline

- ► FRTB ES and its properties
- ► Capital allocation
- ▶ Two allocation methods under FTRB
- ► Simulation analysis

Risk factor and liquidity horizon bucketing

P&L of a risk position is attributed to

$$\{\mathsf{RF}_i : 1 \le i \le 5\} = \{\mathsf{CM}, \mathsf{CR}, \mathsf{EQ}, \mathsf{FX}, \mathsf{IR}\}$$
$$\{\mathsf{LH}_j : 1 \le j \le 5\} = \{10, 20, 40, 60, 120\}$$

Risk factor and liquidity horizon bucketing

P&L of a risk position is attributed to

$$\{\mathsf{RF}_i : 1 \le i \le 5\} = \{\mathsf{CM}, \mathsf{CR}, \mathsf{EQ}, \mathsf{FX}, \mathsf{IR}\}$$
$$\{\mathsf{LH}_j : 1 \le j \le 5\} = \{10, 20, 40, 60, 120\}$$

BCBS (2016) 181(k)

Risk factor category	n	Risk factor category	n
Interest rate: specified currencies - EUR, USD, GBP, AUD, JPY, SEK, CAD and domestic currency of a bank	10	Equity price (small cap): volatility	60
Interest rate: – unspecified currencies	20	Equity: other types	60
Interest rate: volatility	60	FX rate: specified currency pairs ³⁷	10
Interest rate: other types	60	FX rate: currency pairs	20
Credit spread: sovereign (IG)	20	FX: volatility	40
Credit spread: sovereign (HY)	40	FX: other types	40
Credit spread: corporate (IG)	40	Energy and carbon emissions trading price	20
Credit spread: corporate (HY)	60	Precious metals and non-ferrous metals price	20
Credit spread: volatility	120	Other commodities price	60

Liquidity horizon adjusted loss

Loss: Negative of P&L

Liquidity horizon adjusted loss

Loss: Negative of P&L

Consider a portfolio of N risk positions. $1 \le n \le N$

 $\tilde{X}_n(i,j)$: loss (over 10 days) attributed to RF_i and LH_j

Liquidity horizon adjusted loss

Loss: Negative of P&L

Consider a portfolio of *N* risk positions. $1 \le n \le N$

 $\tilde{X}_n(i,j)$: loss (over 10 days) attributed to RF $_i$ and LH $_j$

Liquidity horizon adjusted loss:

$$X_n(i,j) = \sqrt{\frac{\mathsf{LH}_j - \mathsf{LH}_{j-1}}{10}} \sum_{k=j}^5 \tilde{X}_n(i,k), \quad 1 \le i,j \le 5$$

$$\tilde{X}_n(i,1) \qquad \tilde{X}_n(i,2) \qquad \tilde{X}_n(i,3) \qquad \tilde{X}_n(i,4) \qquad \tilde{X}_n(i,5)$$

$$\times \sqrt{\frac{10-0}{10}} \qquad \times \sqrt{\frac{120-60}{10}}$$

$$X_n(i,1) \qquad \cdots \qquad X_n(i,5)$$

Risk profile

We record the liquidity horizon bucketing by a 5×5 matrix:

$$X_n = \{X_n(i,j)\}_{1 \le i,j \le 5}$$

and call the matrix the risk profile of position n.

Risk profile

We record the liquidity horizon bucketing by a 5×5 matrix:

$$X_n = \{X_n(i,j)\}_{1 \le i,j \le 5}$$

and call the matrix the risk profile of position n.

The risk profile of a portfolio is

$$X = \sum_{n} X_n$$

where the sum is the matrix sum.

Netting among different components (buckets) is not allowed.

FRTB ES

The FRTB expected shortfall for portfolio loss attributed to RF; is

$$\mathsf{ES}(X(i)) = \sqrt{\sum_{j=1}^{5} \mathsf{ES}(X(i,j))^{2}},$$

where $\mathsf{ES}(X(i,j))$ is the expected shortfall of X(i,j) calculated at the 97.5% quantile.

FRTB ES

The FRTB expected shortfall for portfolio loss attributed to RF; is

$$\mathsf{ES}(X(i)) = \sqrt{\sum_{j=1}^{5} \mathsf{ES}(X(i,j))^{2}},$$

where $\mathsf{ES}(X(i,j))$ is the expected shortfall of X(i,j) calculated at the 97.5% quantile.

Example: Consider a portfolio with only one risk position whose is loss is concentrated on RF_i with $LH_5 = 120$.

$$\tilde{X}(i,j)=0, \quad j=1,\ldots,4,$$

FRTB ES

The FRTB expected shortfall for portfolio loss attributed to RF; is

$$\mathsf{ES}(X(i)) = \sqrt{\sum_{j=1}^{5} \mathsf{ES}(X(i,j))^{2}},$$

where ES(X(i,j)) is the expected shortfall of X(i,j) calculated at the 97.5% quantile.

Example: Consider a portfolio with only one risk position whose is loss is concentrated on RF_i with $LH_5 = 120$.

$$\tilde{X}(i,j) = 0, \quad j = 1, \dots, 4, \quad \tilde{X}(i,5) \sim N(0,\sigma^2)$$

Then the ES over 120 days is $\sqrt{120/10} \sigma ES(N(0,1))$.

On the other hand, $X(i,j) = \sqrt{\frac{\mathsf{LH}_j - \mathsf{LH}_{j-1}}{10}} \tilde{X}(i,5), \ 1 \leq j \leq 5.$ Then

$$\mathsf{ES}(X(i)) = \sqrt{\sum_{j=1}^{5} \frac{\mathsf{LH}_{j} - \mathsf{LH}_{j-1}}{10}} \mathsf{ES}(\tilde{X}(i,5))^{2} = \sqrt{\frac{120}{10}} \sigma \mathsf{ES}(N(0,1)).$$

Stress period scaling

 $\mathsf{ES^{F,C}}(X(i))$: current 12-month, full set of risk factors

 $\mathsf{ES^{R,C}}(X(i))$: current 12-month, reduced set of risk factors

 $\mathsf{ES^{R,S}}(X(i))$: stress period, reduced set of risk factors

Restriction: $ES^{R,C}(X(i)) \ge 75\% ES^{F,C}(X(i))$.

Stress period scaling

 $\mathsf{ES}^{\mathsf{F},\mathsf{C}}(X(i))$: current 12-month, full set of risk factors

 $\mathsf{ES^{R,C}}(X(i))$: current 12-month, reduced set of risk factors

 $\mathsf{ES^{R,S}}(X(i))$: stress period, reduced set of risk factors

Restriction: $ES^{R,C}(X(i)) \ge 75\% ES^{F,C}(X(i))$.

FRTB ES capital charge BSBC (2016) 181 (d):

$$\mathsf{IMCC}(X(i)) = \frac{\mathsf{ES^{R,S}}(X(i))}{\mathsf{ES^{R,C}}(X(i))} \mathsf{ES^{F,C}}(X(i)), \quad 1 \le i \le 5.$$

Unconstrained portfolio

$$X(6,j) = \sum_{i=1}^{3} X(i,j).$$

We add $X(6,\dot)$ as the 6-th row of 5×5 matrix, and call it extended risk profile.

IMCC(X(6)) is calculated similarly as before.

Capital charge for modellable risk factors

IMCC: BCBS (2016) 189:

The aggregate capital charge for modellable risk factors is

$$\mathsf{IMCC}(X) = \rho \, \mathsf{IMCC}(X(6)) + (1 - \rho) \sum_{i=1}^{5} \mathsf{IMCC}(X(i)),$$

where $\rho = 0.5$.

Capital allocation

Consider a portfolio of N risk positions with losses L_1, \ldots, L_N .

The total loss is $L = \sum_{n=1}^{N} L_n$.

 ρ is a risk measure.

An allocation is a map

$$(L_1,\ldots,L_N)\mapsto \rho(L_n\,|\,L),\quad \text{ for each } n,$$

such that

$$\sum_{n=1}^{N} \rho(L_n \mid L) = \rho(L).$$

Capital allocation

Consider a portfolio of N risk positions with losses L_1, \ldots, L_N .

The total loss is $L = \sum_{n=1}^{N} L_n$.

 ρ is a risk measure.

An allocation is a map

$$(L_1,\ldots,L_N)\mapsto \rho(L_n\,|\,L),\quad \text{for each } n,$$

such that

$$\sum_{n=1}^{N} \rho(L_n \mid L) = \rho(L).$$

Banks need allocations to calculate return on risk-adjusted capital (RORAC):

$$\frac{-\mathbb{E}[L_n]}{\rho(L_n \mid L)}$$

RORAC evaluates the capital efficiency of each position.

Euler allocation principle

Let v_1, \ldots, v_N be a sequence of numbers and $L^v = \sum_{i=1}^N v_n L_n$.

Per-unit Euler allocation is

$$\rho(L_n \mid L)(v) := \frac{\partial}{\partial v_n} \rho(L^v).$$

Setting all $v_n = 1$, we denote the allocation to L_n as $\rho(L_n | L)$.

if ρ is homogeneous of degree 1, Euler's theorem for homogeneous functions implies

$$\rho(L^{\vee}) = \sum_{n} \nu_{n} \frac{\partial}{\partial \nu_{n}} \rho(L^{\vee}).$$

Setting v = 1, we have the full allocation property.

Pros and Cons of Euler allocation

Tasche (1999) shows that

$$\frac{\partial}{\partial v_n} \left(\frac{-\mathbb{E}[L^v]}{\rho(L^v)} \right) \left\{ \begin{array}{l} > 0, \text{ if } \frac{-\mathbb{E}[L_i]}{\rho(L_i \mid L)(v)} > \frac{-\mathbb{E}[L^v]}{\rho(L^v)} \\ < 0, \text{ if } \frac{-\mathbb{E}[L_i]}{\rho(L_i \mid L)(v)} < \frac{-\mathbb{E}[L^v]}{\rho(L^v)} \end{array} \right.$$

Denault (2001) uses corporative game (Shapley (1953) and Aumann-Shapley (1974)) to show that the Euler allocation is the "fair" allocation.

Delbaen Pisa lecture note (2000)

Pros and Cons of Euler allocation

Tasche (1999) shows that

$$\frac{\partial}{\partial v_n} \left(\frac{-\mathbb{E}[L^v]}{\rho(L^v)} \right) \left\{ \begin{array}{l} >0, \text{ if } \frac{-\mathbb{E}[L_i]}{\rho(L_i \mid L)(v)} > \frac{-\mathbb{E}[L^v]}{\rho(L^v)} \\ <0, \text{ if } \frac{-\mathbb{E}[L_i]}{\rho(L_i \mid L)(v)} < \frac{-\mathbb{E}[L^v]}{\rho(L^v)} \end{array} \right.$$

Denault (2001) uses corporative game (Shapley (1953) and Aumann-Shapley (1974)) to show that the Euler allocation is the "fair" allocation.

Delbaen Pisa lecture note (2000)

However,

- Euler allocation is unstable.
- Euler allocation induces large negative allocations.

Two steps allocation for FRTB

Given liquidity horizon adjusted risk profiles $\{X_n\}_{1 \leq n \leq N}$,

Step 1: allocate to each $X_n(i,j)$

$$\rho(X_n(i,j)\,|\,X).$$

Step 2: allocate to each $\tilde{X}_n(i,k)$

Euler allocation under FRTB

Let $v = \{v_1, \dots, v_n\}$ be real numbers

Let $X^{v,j}(i) = \sum_n X_n^{v_n,j}(i)$, where

$$X_n^{v_n,j}(i) = (X_n(i,1), \cdots, X_n(i,j-1), v_n X_n(i,j), X_n(i,j+1), \cdots, X_n(i,5)).$$

For each RF_i, we define the Euler allocation for FRTB ES as

$$\mathsf{ES}(X_n(i,j) \,|\, X(i)) := \frac{\partial}{\partial v_n} \mathsf{ES}(X^{v,j}(i)) \Big|_{v=1},$$

where v = 1 means all $v_n = 1$.

Euler allocation under FRTB

Let $v = \{v_1, \dots, v_n\}$ be real numbers

Let $X^{v,j}(i) = \sum_{n} X_n^{v_n,j}(i)$, where

$$X_n^{v_n,j}(i) = (X_n(i,1), \cdots, X_n(i,j-1), v_n X_n(i,j), X_n(i,j+1), \cdots, X_n(i,5)).$$

For each RF_i, we define the Euler allocation for FRTB ES as

$$\mathsf{ES}(X_n(i,j) \,|\, X(i)) := \frac{\partial}{\partial v_n} \mathsf{ES}(X^{v,j}(i)) \Big|_{v=1},$$

where v = 1 means all $v_n = 1$.

Lemma

$$ES(X_n(i,j) | X(i)) = \frac{ES(X(i,j))}{ES(X(i))} \frac{\partial}{\partial v_n} ES(X^v(i,j)) \Big|_{v=1},$$

where $X^{v}(i,j) = \sum_{n} v_n X_n(i,j)$.

► Euler allocation of FRTB ES is a scaled version of the Euler allocation of regular ES

- Euler allocation of FRTB ES is a scaled version of the Euler allocation of regular ES
- ► Euler allocation of regular ES can be calculated by scenario-extraction (Trashe (1999)):

$$\frac{\partial}{\partial v_n} \mathsf{ES}\big(X^{\mathsf{v}}(i,j)\big)\Big|_{v=1} = \mathbb{E}\big[X_n(i,j) \,|\, X(i,j) \geq \mathsf{VaR}(X(i,j))\big].$$

- Euler allocation of FRTB ES is a scaled version of the Euler allocation of regular ES
- ► Euler allocation of regular ES can be calculated by scenario-extraction (Trashe (1999)):

$$\left. \frac{\partial}{\partial v_n} \mathsf{ES} \big(X^v(i,j) \big) \right|_{v=1} = \mathbb{E} \big[X_n(i,j) \, | \, X(i,j) \geq \mathsf{VaR} (X(i,j)) \big].$$

Euler allocation of IMCC

$$\mathsf{IMCC}^{E}(X_{n}(i,j) \mid X) := 0.5 \frac{\mathsf{ES^{R,S}}(X(i))}{\mathsf{ES^{R,C}}(X(i))} \mathsf{ES^{F,C}}(X_{n}(i,j) \mid X(i)).$$

It is a full allocation.

Negative allocations

Hedging among different RFs or LHs does not lead to negative allocations.

Example:

Consider two loss Y with RF_i and Z with RF_k, $i \neq k$, $Y, Z \sim N(0, \sigma)$, and Y + Z = 0.

Euler of regular ES:

$$ES^{R}(Y|Y+Z) + ES^{R}(Z|Y+Z) = ES^{R}(Y+Z) = 0.$$

Then one of two allocations must be negative, say $ES^R(Y|Y+Z)$.

Negative allocations

Hedging among different RFs or LHs does not lead to negative allocations.

Example:

Consider two loss Y with RF_i and Z with RF_k, $i \neq k$, $Y, Z \sim N(0, \sigma)$, and Y + Z = 0.

Euler of regular ES:

$$ES^{R}(Y|Y+Z) + ES^{R}(Z|Y+Z) = ES^{R}(Y+Z) = 0.$$

Then one of two allocations must be negative, say $ES^{R}(Y|Y+Z)$.

Euler of FRTB ES:

Let X be the risk profile containing X and Y. X(i) = Y, X(k) = Z, then

$$\mathsf{ES}(Y|X(i)) = \mathsf{ES}(Y) > 0, \quad \mathsf{ES}(Z|X(k)) = \mathsf{ES}(Z) > 0.$$

Even though Y + Z = 0, IMCC(X) > 0.

Motivated by Li, Naldi, Nisen, and Shi (2016), who combine Shapley and Aumann-Shapley allocations.

LH permutation matrix

$$\mathcal{L} := \begin{bmatrix} 10 & 20 & 40 & 60 & 120 \\ 10 & 20 & 40 & 120 & 60 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 120 & 60 & 40 & 20 & 10 \end{bmatrix}_{5! \times 5}.$$

Let $\mathcal{L}^{-1}(r,j)$ be the column of \mathcal{L} in which LH_j locates. e.g. $\mathcal{L}^{-1}(2,5)=4$.

Motivated by Li, Naldi, Nisen, and Shi (2016), who combine Shapley and Aumann-Shapley allocations.

LH permutation matrix

$$\mathcal{L} := \begin{bmatrix} 10 & 20 & 40 & 60 & 120 \\ 10 & 20 & 40 & 120 & 60 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 120 & 60 & 40 & 20 & 10 \end{bmatrix}_{5! \times 5}.$$

Let $\mathcal{L}^{-1}(r,j)$ be the column of \mathcal{L} in which LH_j locates. e.g. $\mathcal{L}^{-1}(2,5)=4$.

Let $v = \{v_1, \dots, v_N\}$,

$$X^{v,r,j}(i) = \sum_{n} X_n^{v,r,j}(i),$$

where $X^{v,r,j}(i)$ is a row depending on when LH_i appears in r.

For example,

$$X_n^{v,2,5}(i) = (X_n(i,1), X_n(i,2), X_n(i,3), 0, v_n X_n(i,5)).$$

We define the Constrained Aumann-Shapley allocation (CAS) in the permutation r as

$$\mathsf{CAS}(r, X_n(i, j)) := \int_0^1 \frac{\partial}{\partial v_n} \mathsf{ES}(X^{v, r, j}(i)) \Big|_{v=q} \, dq,$$

We define the Constrained Aumann-Shapley allocation (CAS) in the permutation r as

$$\mathsf{CAS}(r, X_n(i, j)) := \int_0^1 \frac{\partial}{\partial v_n} \mathsf{ES}(X^{v, r, j}(i)) \Big|_{v=q} \, dq,$$

Lemma

$$CAS(r, X_n(i,j)) = \eta(r, i, j) \frac{\partial}{\partial v_n} ES(X^v(i,j)) \Big|_{v=1},$$

where

$$\eta(r,i,j) = \frac{\sqrt{\sum_{1 \leq s \leq \mathcal{L}^{-1}(r,j)} ES\big(X(i,\mathcal{L}(r,s))\big)^2} - \sqrt{\sum_{1 \leq s < \mathcal{L}^{-1}(r,j)} ES\big(X(i,\mathcal{L}(r,s))\big)^2}}{ES\big(X(i,j)\big)}.$$

- CAS is a scaled version of Euler
- ► Losses with the same LH need to be added to the same portfolio at the same time, to ensure computational efficiency

CAS allocation of IMCC

We define the CAS allocation for IMCC as

$$\mathsf{IMCC}^{\mathsf{C}}(X_n(i,j) \,|\, X) := 0.5 \, \frac{\mathsf{ES}^{\mathsf{R},\mathsf{S}}(X(i))}{\mathsf{ES}^{\mathsf{R},\mathsf{C}}(X(i))} \, \frac{1}{5!} \sum_{r=1}^{5!} \mathsf{CAS}^{\mathsf{F},\mathsf{C}}(r,X_n(i,j)).$$

It is a full allocation.

Stress scaling adjustment

In the previous allocation, the $X_n(i,j)$ induced risk contribution is not considered in the stress scaling factor $\frac{\mathsf{ES^{R,S}}(X(i))}{\mathsf{ES^{R,C}}(X(i))}$.

We define the Euler allocation with stress scaling adjustment as

$$\mathsf{IMCC}^{\mathsf{E},\mathsf{S}}\big(X_{n}(i,j)\,|\,X(i)\big) := 0.5 \frac{\partial}{\partial v_{n}} \Big[\frac{\mathsf{ES}^{\mathsf{R},\mathsf{S}}\big(X^{\mathsf{v},j}(i)\big)}{\mathsf{ES}^{\mathsf{R},\mathsf{C}}\big(X^{\mathsf{v},j}(i)\big)} \mathsf{ES}^{\mathsf{F},\mathsf{C}}\big(X^{\mathsf{v},j}(i)\big) \Big] \Big|_{v=1}.$$

Lemma

$$\begin{split} \mathit{IMCC}^{E,S}\big(X_{n}(i,j)\,|\,X(i)\big) &= 0.5 \Big[\frac{\mathit{ES}^{R,S}(X(i))}{\mathit{ES}^{R,C}(X(i))} \,\mathit{ES}^{F,C}\big(X_{n}(i,j)\,|\,X(i)\big) \\ &+ \frac{\mathit{ES}^{F,C}(X(i))}{\mathit{ES}^{R,C}(X(i))} \,\mathit{ES}^{R,S}\big(X_{n}(i,j)\,|\,X(i)\big) \\ &- \frac{\mathit{ES}^{R,S}(X(i))\mathit{ES}^{F,C}(X(i))}{\mathit{ES}^{R,C}(X(i))^{2}} \,\mathit{ES}^{R,C}\big(X_{n}(i,j)\,|\,X(i)\big) \Big]. \end{split}$$

Three hedging structures:

- 1. Strong hedging between EQ and IR
- 2. Strong hedging between LH₁ and LH₂
- 3. Strong hedging between two risk positions in the same bucket

Three hedging structures:

- 1. Strong hedging between EQ and IR
- 2. Strong hedging between LH_1 and LH_2
- 3. Strong hedging between two risk positions in the same bucket

FRTB allocations produce

- no negative allocations for hedging among different bucket
- ► some negative allocations for hedging in the same bucket, but with smaller magnitude

FRTB allocations are more stable

Histograms and fitted kernel densities for allocations in Case 3:

Loss in EQ with 40-days LH and CM with 60 days LH have 9 times of volatility in the stress period than the normal period.

Two reduced set of risk factors

Set $A: Include\ both\ RFs\ with\ large\ variations$

Set B: Exclude both RFs with large variations

Loss in EQ with 40-days LH and CM with 60 days LH have 9 times of volatility in the stress period than the normal period.

Two reduced set of risk factors

Set A: Include both RFs with large variations

Set B: Exclude both RFs with large variations

	Set A	Set A	Set B	Set B
	(Adj)	(Without adj)	(Adj)	(Without adj)
CM.60	4.00%	2.24%	1.43%	1.43%
EQ.40	5.04%	3.26%	2.11%	2.11%

Table: IMCC(Set A)=11.55 and IMCC(Set B)=3.14

The choice of reduced set of risk factors has large impact on allocations.

Conclusion

Two allocation methods reduce FRTB allocations to Euler allocations

- Computational efficiency
- Easy to adapt to the current system

Simulation analysis shows

- Longer LH leads to more allocation
- Much less negative allocations
- More stable allocations
- Sensitive to the choice of reduced set of risk factors

Thanks for your attention!