CSE 250B: Machine learning

Winter 2019

Homework 1 — Nearest neighbor and statistical learning

1. Risk of a random classifier. A particular data set has 4 possible labels, with the following frequencies:

Label	Frequency
A	50%
B	20%
C	20%
D	10%

- (a) What is the error rate (risk) of a classifier that picks a label (A,B,C,D) uniformly at random?
- (b) One very simple type of classifier just returns the same label, always. What label should it return, and what will its error rate be?
- 2. Discrete and continuous distributions. In this class, we will deal with both discrete and continuous random variables. Let's look at examples of each.
 - (a) A discrete random variable X is said to have Poisson distribution with parameter λ if it can take on values in $\{0, 1, 2, \ldots\}$, with

$$\Pr(X = i) = e^{-\lambda} \frac{\lambda^i}{i!}.$$

You can check that these probabilities sum to 1 by looking at the Taylor series for e^{λ} . Can you give another example of a discrete distribution that assigns positive probabilities to infinitely many values?

(b) A continuous random variable X has uniform distribution over [a, b] if it has density function

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{elsewhere} \end{cases}$$

This means that the probability that X lies in some interval $[a',b']\subseteq [a,b]$ is

$$\int_{a'}^{b'} f(x) \ dx.$$

What is the probability that X is exactly (a + b)/2?

- 3. Complexity analysis for k-d tree with defeatist search. Suppose a k-d tree is built on n data points in \mathbb{R}^d , by splitting until each leaf node has $\leq n_o$ points.
 - (a) What is the time complexity of building the tree, as a function of n, d, and n_o ? Justify your answer carefully.
 - (b) What is the time complexity of answering a query using defeatist search?

- 4. Properties of metrics. Which of the following distance functions are metrics? In each case, either prove it is a metric or give a counterexample showing that is isn't.
 - (a) $d_1 + d_2$, where d_1 and d_2 are each metrics.
 - (b) Let's say Σ is a finite set and $\mathcal{X} = \Sigma^m$. The Hamming distance on \mathcal{X} is

d(x,y) = # of positions on which x and y differ.

(c) Squared Euclidean distance on \mathbb{R}^m , that is,

$$d(x,y) = \sum_{i=1}^{m} (x_i - y_i)^2.$$

(It might be easiest to consider the case m = 1.)

- 5. A joint distribution over data and labels. A distribution over two-dimensional data points $X = (X_1, X_2) \in \mathbb{R}^2$ and their labels $Y \in \{0, 1\}$ is specified as follows:
 - The two labels are equally likely, that is, Pr(Y = 0) = Pr(Y = 1) = 1/2.
 - When Y = 0, the points X are uniformly distributed in the square $[-2, -1] \times [-2, -1]$.
 - When Y = 1, the points X are uniformly distributed in the square $[1,3] \times [2,4]$.
 - (a) In a two-dimensional plane, sketch the regions where points (x_1, x_2) might fall. Label one of these regions with y = 0 and the other with y = 1.
 - (b) What is the marginal distribution of X_1 ? Specify it exactly.
 - (c) What is the marginal distribution of X_2 ?
- 6. Two ways of specifying a joint distribution over data and labels. Consider the following distribution over two-dimensional data points $X = (X_1, X_2)$ and their labels $Y \in \{0, 1\}$:
 - Pr(Y = 1) = 1/4
 - When Y = 0, points X are uniformly distributed in the rectangle $[0,3] \times [0,1]$.
 - When Y=1, points X are uniformly distributed in the rectangle $[-1,1]\times[0,1]$.

Rewrite this distribution in the form of two functions: μ , the density function for X; and η , the conditional distribution of Y given X.

- 7. Bayes optimality. Consider the following setup:
 - Input space $\mathcal{X} = [-1, 1] \subset \mathbb{R}$.
 - Input distribution: $\mu(x) = |x|$.
 - Label space $\mathcal{Y} = \{0, 1\}.$
 - Conditional probability function

$$\eta(x) = \Pr(Y = 1 | X = x) = \begin{cases} 0.2 & \text{if } x < -0.5\\ 0.8 & \text{if } -0.5 \le x \le 0.5\\ 0.4 & \text{if } x > 0.5 \end{cases}$$

(a) What is the Bayes optimal classifier in this setting? What is the optimal risk R^* ?

(b) Suppose we obtain the following training set of four labeled points:

$$(-0.8,0), (-0.4,1), (0.2,1), (0.8,0).$$

What is the decision boundary of 1-NN using this training set? What is the (true) error rate of this classifier, on the underlying distribution given by μ and η ?

(c) In a binary setting, there are two possible errors: $0 \to 1$ (label is 0 but prediction is 1) or $1 \to 0$ (label is 1 but prediction is 0). Suppose these errors have different costs, c_{01} and c_{10} , respectively. We can then define the *cost-sensitive risk* of a classifier $h: \mathcal{X} \to \{0,1\}$ as

$$R(h) = c_{01}\Pr(Y = 0, h(X) = 1) + c_{10}\Pr(Y = 1, h(X) = 0).$$

In the example above, what is the classifier that minimizes this cost-sensitive risk, if $c_{01} = 1$ and $c_{10} = 0.1$?

(c) Now consider a setting with $\mathcal{Y} = \{0,1\}$ and with arbitrary $\mathcal{X}, \mu, \eta, c_{01}, c_{10}$. Write down an expression for the classifier with minimum cost-sensitive risk.