

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2006-22243

(P2006-22243A)

(43) 公開日 平成18年1月26日(2006.1.26)

(51) Int. Cl.

C 08 L	9/00	(2006.01)
B 60 C	1/00	(2006.01)
C 08 F	4/70	(2006.01)
C 08 F	136/06	(2006.01)
C 08 K	3/36	(2006.01)

F I

C 08 L	9/00
B 60 C	1/00
B 60 C	1/00
C 08 F	4/70
C 08 F	136/06

テーマコード(参考)

4 J 002
4 J 100
4 J 128

審査請求 未請求 請求項の数 4 O L (全 13 頁) 最終頁に続く

(21) 出願番号

特願2004-202750 (P2004-202750)

(22) 出願日

平成16年7月9日(2004.7.9)

(71) 出願人

宇部興産株式会社
山口県宇部市大字小串1978番地の96

(72) 発明者

永久 光春
千葉県市原市五井南海岸8番の1 宇部興
産株式会社千葉石油化工工場内

(72) 発明者

岡本 尚美
千葉県市原市五井南海岸8番の1 宇部興
産株式会社千葉石油化工工場内F ターム(参考) 4J002 AC01X AC03W AC03X AC06X AC07X
AC08X AC09X BB15X BB18X DJ016
FD016 GN01
4J100 AS02P CA01 CA16 DA01 DA09
FA08 FA19 JA29

最終頁に続く

(54) 【発明の名称】シリカ配合用ゴム組成物

(57) 【要約】

【課題】 高弾性率でありながら押出加工性に優れ、且つウェットスキッド性及び耐摩耗性の良好なタイヤ用シリカ配合ゴム組成物を得ることを目的とする。

【解決手段】 1, 2-ポリブタジエン結晶繊維とゴム分とからなるビニル・シスボリブタジエンゴム(a) 20~80重量%と、

(a) 以外のジエン系ゴム(b) 80~20重量%とからなるゴム成分(a)+(b) 100重量部とシリカを40%以上含むゴム補強剤(c) 40~100重量部からなるゴム組成物であって、該ビニル・シスボリブタジエンゴム(a)に含有される1, 2-ポリブタジエン結晶繊維の平均の単分散繊維結晶の短軸長が0.2μm以下であり、アスペクト比が10以下であり、平均の単分散繊維結晶数が10以上の短纖維状であり、かつ融点が170℃以上であることを特徴とするタイヤ用シリカ配合ゴム組成物。

【選択図】 なし

【特許請求の範囲】

【請求項1】

1. 2-ボリブタジエン結晶繊維とゴム分とからなるビニル・シスボリブタジエンゴム (a) 20~80重量%と、

(a) 以外のジエン系ゴム (b) 80~20重量%とからなるゴム成分 (a)+(b) 100重量部シリカを40%以上含むゴム補強剤 (c) 40~100重量部からなるゴム組成物であって、該ビニル・シスボリブタジエンゴム (a) に含有される1, 2-ボリブタジエン結晶繊維の平均の単分散繊維結晶の短軸長が0.2μm以下であり、アスペクト比が10以下であり、平均の単分散繊維結晶数が10以上の短纖維状であり、かつ融点が170°C以上であること
を特徴とするタイヤ用シリカ配合ゴム組成物。

【請求項2】

該ビニル・シスボリブタジエンゴム (a) が

(1) 1, 3-ブタジエンと溶解度パラメーターが8.5以下である炭化水素系有機溶剤を主成分としてなる混合物の水分の濃度を調節し、

(2) 次いで、シース-1, 4重合の触媒として、一般式A1RnX3-n(但し、Rは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基であり、Xはハロゲン元素であり、nは1, 5~2である。)で表されるハロゲン含有有機アルミニウム化合物と可溶性コバルト化合物とを前記混合物に添加して1, 3-ブタジエンをシース-1, 4重合し、

(3) 次いで、得られた重合反応混合物中に可溶性コバルト化合物と一般式A1R3(但し、Rは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基である)で表される有機アルミニウム化合物と二硫化炭素とから得られる触媒を存在させて、1, 3-ブタジエンを1, 2重合させて

製造されていることを特徴とする請求項1に記載のタイヤ用シリカ配合ゴム組成物。

【請求項3】

該ビニル・シスボリブタジエンゴム (a) が下記の特性を有することを特徴とする請求項1~2に記載のタイヤ用シリカ配合ゴム組成物。

(1) 該ビニル・シスボリブタジエンゴムの沸騰n-ヘキサン不溶分の分子量指標 n_{SP}/c が0.5~4の範囲にあること。

(2) 該ビニル・シスボリブタジエンゴムの沸騰n-ヘキサン可溶分のポリスチレン換算重量平均分子量が30万~80万の範囲にあること。

(3) 該ビニル・シスボリブタジエンゴムの沸騰n-ヘキサン可溶分のミクロ構造中のシス構造含有量が90%以上であること。

(4) 該ビニル・シスボリブタジエンゴムの沸騰n-ヘキサン可溶分のトルエン溶液粘度とムーニー粘度の関係が $T_c p/ML \geq 1$ であること。

(5) 該ビニル・シスボリブタジエンゴムの沸騰n-ヘキサン可溶分の $[\eta]$ の値が1.0~5.0の範囲にあること。

【請求項4】

(a) 以外のジエン系ゴム (b) が、天然ゴム及び/又はポリイソブレン及び/またはステレンブタジエンゴムであることを特徴とする請求項1~3に記載のタイヤ用シリカ配合ゴム組成物。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、タイヤの安全性・経済性などの性能に必要とされるウェットスキッド性能・発熱特性・耐摩耗性に優れながらダイ・スウェルが小さく押出加工性に優れるシリカ配合ゴム組成物に関するものである。また、本発明のタイヤに使用されるゴム組成物は、更にタイヤにおけるサイドウォール、カーカス、ベルト、チャーファー、ペーストレッド、ピード等のタイヤ部材や、ホース、ベルト、ゴムロール、ゴムクーラー、靴底ゴムなどの

工業製品にも用いる事ができる。

【背景技術】

【0 0 0 2】

ポリブタジエンは、いわゆるミクロ構造として、1、4-位での重合で生成した結合部分（1、4-構造）と1、2-位での重合で生成した結合部分（1、2-構造）とが分子鎖中に共存する。1、4-構造は、更にシス構造とトランス構造の二種に分けられる。一方、1、2-構造は、ビニル基を側鎖とする構造をとる。

【0 0 0 3】

従来、ビニル・スピボリブタジエンゴム組成物の製造方法は、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒で行われてきた。これらの溶媒を用いると重合溶液の粘度が高く攪拌、伝熱、移送などに問題があり、溶媒の回収には過大なエネルギーが必要であった。又、前記溶媒は毒性の為、発癌作用の為に環境にとって非常に危険性のあるものであった。

【0 0 0 4】

上記の製造方法としては、前記の不活性有機溶媒中で水、可溶性コバルト化合物と一般式A₁R_nX_{3-n}（但しRは炭素数1～6のアルキル基、フェニル基又はシクロアルキル基であり、Xはハロゲン元素であり、nは1、5～2の数字）で表せる有機アルミニウムクロライドから得られた触媒を用いて1、3-ブタジエンをシス1、4重合してBRを製造して、次いでこの重合系に1、3-ブタジエン及び／または前記溶媒を添加するかあるいは添加しないで可溶性コバルト化合物と一般式A₁R₃（但しRは炭素数1～6のアルキル基、フェニル基又はシクロアルキル基である）で表せる有機アルミニウム化合物と二硫化炭素とから得られる触媒を存在させて1、3-ブタジエンをシンジオタックチック1、2重合（以下、1、2重合と略す）する方法（例えば、特公昭49-17666号公報（特許文献1）、特公昭49-17667号公報（特許文献2）参照）は公知である。

【0 0 0 5】

また、例えば、特公昭62-171号公報（特許文献3）、特公昭63-36324号公報（特許文献4）、特公平2-37927号公報（特許文献5）、特公平2-38081号公報（特許文献6）、特公平3-63566号公報（特許文献7）には、二硫化炭素の存在下又は不在下に1、3-ブタジエンをシス1、4重合して製造したり、製造した後に1、3-ブタジエンと二硫化炭素を分離・回収して二硫化炭素を実質的に含有しない1、3-ブタジエンや前記の不活性有機溶媒を循環させる方法などが記載されている。更に特公平4-48815号公報（特許文献8）には配合物のダイスウェル比が小さく、その加硫物がタイヤのサイドウォールとして好適な引張応力と耐屈曲亀裂成長性に優れたゴム組成物が記載されている。

【0 0 0 6】

また、特開2000-44633号公報（特許文献9）には、n-ブタン、シス2-ブテン、トランス-2-ブテン、及びブチene-1などのC4留分を主成分とする不活性有機溶媒中で製造する方法が記載されている。この方法でのゴム組成物が含有する1、2-ポリブタジエンは短纖維結晶であり、短纖維結晶の長軸長さの分布が纖維長さの98%以上が0.6μm未満であり、70%以上が0.2μm未満であることが記載され、得られたゴム組成物はシス1、4ポリブタジエンゴム（以下、BRと略す）の成形性や引張応力、引張強さ、耐屈曲亀裂成長性などを改良されることが記載されている。

【0 0 0 7】

一般に自動車タイヤの性能としては、制動特性としてのウェットスキッド性に優れ、且つ省燃費特性としての転がり抵抗（ $\text{tan}\delta$ ）や耐摩耗性に優ることが要求されているが、これらの特性は二律背反の関係である事が知られている。近年、ウェットスキッド性に優れたシリカを配合することで上記特性を高度にバランスさせる提案がなされているが十分でない。シリカ配合は、ウェットスキッド性と省燃費性に優れるが、耐摩耗性や加工性は低下することが知られており、耐摩耗性は高シスBR使用により改善されるが、ウェットスキッド性が低下してしまう懸念があり、改良が望まれていた。

【0008】

- 【参考特許文献】特公昭49-17666号公報
- 【参考特許文献】特公昭49-17667号公報
- 【参考特許文献】特公昭62-171号公報
- 【参考特許文献】特公昭63-36324号公報
- 【参考特許文献】特公平2-37927号公報
- 【参考特許文献】特公平2-38081号公報
- 【参考特許文献】特公平3-63566号公報
- 【参考特許文献】特公平4-48815号公報
- 【参考特許文献】特開2000-44633号公報

【発明の開示】

【発明が解決しようとする課題】

【0009】

本発明は、高弾性率でありながら押出加工性に優れ、且つウェットスキッド性及び耐摩耗性の良好なタイヤ用シリカ配合ゴム組成物を得ることを目的とする。

【課題を解決するための手段】

【0010】

本発明は、1, 2-ボリブタジエン結晶繊維とゴム分とからなるビニル・シスボリブタジエンゴム (a) 20~80重量%と、

(a) 以外のジエン系ゴム (b) 80~20重量%とからなるゴム成分 (a)+(b) 100重量部とシリカを40%以上含むゴム補強剤 (c) 40~100重量部からなるゴム組成物であって、

該ビニル・シスボリブタジエンゴム (a) に含有される1, 2-ボリブタジエン結晶繊維の平均の単分散繊維結晶の短軸長が0.2μm以下であり、アスペクト比が10以下であり、平均の単分散繊維結晶数が10以上の短纖維状であり、かつ融点が170°C以上であること

を特徴とするタイヤ用シリカ配合ゴム組成物に関する。

【0011】

また、本発明は、該ビニル・シスボリブタジエンゴム (a) が

(1) 1, 3-ブタジエンと溶解度パラメーターが8.5以下である炭化水素系有機溶剤を主成分としてなる混合物の水分の濃度を調節し、

(2) 次いで、シース-1, 4重合の触媒として、一般式A1RnX3-n(但し、Rは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基であり、Xはハロゲン元素であり、nは1, 5~2である。)で表されるハロゲン含有有機アルミニウム化合物と可溶性コバルト化合物とを前記混合物に添加して1, 3-ブタジエンをシース-1, 4重合し、

(3) 次いで、得られた重合反応混合物中に可溶性コバルト化合物と一般式A1R3(但し、Rは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基である)で表される有機アルミニウム化合物と二硫化炭素とから得られる触媒を存在させて、1, 3-ブタジエンを1, 2重合させて

製造されていることを特徴とするタイヤ用シリカ配合ゴム組成物に関する。

【0012】

また、本発明は、該ビニル・シスボリブタジエンゴム (a) が

(1) 該ビニル・シスボリブタジエンゴムの沸騰n-ヘキサン不溶分の分子量指標 η_{sp}/c が0.5~4の範囲にあること。

(2) 該ビニル・シスボリブタジエンゴムの沸騰n-ヘキサン可溶分のポリスチレン換算重量平均分子量が30万~80万の範囲にあること。

(3) 該ビニル・シスボリブタジエンゴムの沸騰n-ヘキサン可溶分のミクロ構造中のシス構造含有量が90%以上であること。

(4) 該ビニル・シスボリブタジエンゴムの沸騰n-ヘキサン可溶分のトルエン溶液粘度とムーニー粘度の関係がT-cp/ML≥1であること。

(5) 該ビニル・シス-ポリブタジエンゴムの沸騰n-ヘキサン可溶分の[η]の値が1.0~5.0の範囲にあること。の特性を有することを特徴とするタイヤ用シリカ配合ゴム組成物に関する。

【0013】

また、本発明は、(a)以外のジエン系ゴム(b)が、天然ゴム及び/又はポリイソブレン及び/またはステレンブタジエンゴムであることを特徴とするタイヤ用シリカ配合ゴム組成物に関する。

【発明の効果】

【0014】

本発明におけるタイヤ用シリカ配合ゴム組成物は、平均の単分散纖維結晶の短軸長が0.2μm以下、アスペクト比が10以下であり、平均の単分散纖維結晶数が10以上の短纖維状であり、かつ融点が170°C以上である1、2-ポリブタジエン結晶纖維を含有しているビニル・シス-ポリブタジエンを含んでるので、高弾性率でありながらダイ・スウェルが小さく押出加工性及び成形性に優れ、タイヤ製造の作業性を向上せしめ、ウェットスキッド性を維持しつつ押出加工性と低燃費性と耐摩耗性を高度にバランスできる。

【発明を実施するための最良の形態】

【0015】

本発明の(a)特定の1、2-ポリブタジエン結晶纖維とゴム分とからなるビニル・シス-ポリブタジエンゴム組成物は、

(1) 1、2-ポリブタジエン結晶纖維の平均の単分散纖維結晶の短軸長が0.2μm以下、アスペクト比が10以下であり、且つ平均の単分散纖維結晶数が10以上の短纖維状であり、かつ融点が170°C以上である1、2-ポリブタジエン結晶纖維1~50重量部、および(2)ゴム分100重量部からなる。

【0016】

上記の(i)成分の1、2-ポリブタジエン結晶纖維は、平均の単分散纖維結晶の短軸長が0.2μm以下、好ましくは、0.1μm以下であり、また、アスペクト比が10以下、好ましくは、8以下であり、且つ平均の単分散纖維結晶数が10以上、好ましくは、15以上の短纖維状であり、かつ、融点が170°C以上、好ましくは、190~220°Cである。

【0017】

(2)ゴム分としては、下記の特性を有するシス1、4-ポリブタジエンが好ましい。

【0018】

シス1、4-構造含有率が一般に90%以上、特に95%以上で、ムード粘度10~130、好ましくは15~80であり、トルエン溶液粘度は30~200、好ましくは30~100であり、実質的にゲル分を含有しない。

【0019】

(1)成分の1、2-ポリブタジエン結晶纖維と(2)ゴム分の割合は、(2)ゴム分100重量部に対して(1)成分の1、2-ポリブタジエン結晶纖維が1~50重量部、好ましくは、1~30重量部である。上記範囲外であると、BR中の1、2-ポリブタジエン結晶纖維の短纖維結晶が大きくなり、特長となる弾性率・耐摩耗性等が発現し難く、また加工性的悪化などの問題がある。

【0020】

上記のゴム組成物は、例えば以下の製造方法で好適に得られる。

【0021】

溶解度パラメーター(以下、SP値と略)が8.5以下である炭化水素系溶媒を用いた重合により製造される。溶解度パラメーターが8.5以下である炭化水素系溶媒としては、

【0022】

例えば、脂肪族炭化水素、脂環族炭化水素であるn-ヘキサン(SP値:7.2)、n-ペンタン(SP値:7.0)、n-オクタン(SP値:7.5)、シクロヘキサン(SP値:8.1)、n-ブタン(SP値:6.6)等が挙げられる。中でも、シクロヘキサンなどが好ましい。

【0023】

これらの溶媒のSP値は、ゴム工業便覧（第四版、社団法人：日本ゴム協会、平成6年1月20日発行；page721）などの文献で公知である。

【0024】

SP値が8.5よりも大きい溶媒を使用すると、BR中へのSPBの短纖維結晶の分散状態が本発明の如く形成され難いので、優れたダイスウェル特性や高弾性率、高耐摩耗性能を発現しないので好ましくない。

【0025】

次に1,3-ブタジエンと前記溶媒とを混合して得られた混合媒体中の水分の濃度を調節する。水分は前記媒体中の有機アルミニウムクロライド1モル当たり、好ましくは0.1～1.0モル、特に好ましくは0.2～1.0モルの範囲である。この範囲以外では触媒活性が低下したり、シス1,4構造含有率が低下したり、分子量が異常に低下又は高くなったり、重合時のゲルの発生を抑制することができず、このため重合槽などへのゲルの付着が起り、更に連続重合時間を延ばすことができないので好ましくない。水分の濃度を調節する方法は公知の方法が適用できる。多孔質濾過材を通して添加・分散させる方法（特開平4-85304号公報）も有効である。

【0026】

水分の濃度を調節して得られた溶液には有機アルミニウムクロライドを添加する。一般式A₁R_nX_{3-n}で表される有機アルミニウムクロライドの具体例としては、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノブロマイド、ジソブチルアルミニウムモノクロライド、ジシクロヘキシリアルミニウムモノクロライド、ジフェニルアルミニウムモノクロライド、ジエチルアルミニウムセスキクロライドなどを好適に挙げることができる。有機アルミニウムクロライドの使用量の具体例としては、1,3-ブタジエンの全量1モル当たり0.1ミリモル以上、特に0.5～5.0ミリモルが好ましい。

【0027】

次いで、有機アルミニウムクロライドを添加した混合媒体に可溶性コバルト化合物を添加してシス1,4重合する。可溶性コバルト化合物としては、SP値が8.5以下である炭化水素系溶媒を主成分とする不活性媒体又は液体1,3-ブタジエンに可溶なものであるか又は、均一に分散できる、例えばコバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナートなどコバルトのβ-ケートン錯体、コバルトアセト酢酸エチルエステル錯体のようなコバルトのβ-ケート酸エステル錯体、コバルトオクトエート、コバルトナフテネート、コバルトベンゾエートなどの炭素数6以上の有機カルボン酸のコバルト塩、塩化コバルトトリジン錯体、塩化コバルトエチルアルコール錯体などのハロゲン化コバルト錯体などを挙げることができる。可溶性コバルト化合物の使用量は1,3-ブタジエンの1モル当たり0.001ミリモル以上、特に0.005ミリモル以上であることが好ましい。また可溶性コバルト化合物に対する有機アルミニウムクロライドのモル比(A1/C0)は1.0以上であり、特に5.0以上であることが好ましい。また、可溶性コバルト化合物ににもニッケルの有機カルボン酸塩、ニッケルの有機錯塩、有機リチウム化合物、ネオジウムの有機カルボン酸塩、ネオジウムの有機錯塩を使用することも可能である。

【0028】

シス1,4重合する温度は0℃を超える温度～100℃、好ましくは10～100℃、更に好ましくは20～100℃までの温度範囲で1,3-ブタジエンをシス1,4重合する。重合時間（平均滞留時間）は10分～2時間の範囲が好ましい。シス1,4重合後のポリマー濃度は5～26重量%となるようシス1,4重合を行うことが好ましい。重合槽は1槽、又は2槽以上の槽を連結して行われる。重合は重合槽（重合器）内にて溶液を攪拌混合して行う。重合に用いる重合槽としては高粘度液攪拌装置付きの重合槽、例えば特公昭40-2645号に記載された装置を用いることができる。

【0029】

本発明のシス1,4重合時に公知の分子量調節剤、例えばシクロオクタジエン、アレン

メチルアレン（1, 2-ブタジエン）などの非共役ジエン類、又はエチレン、プロピレン、ブテン-1などの α -オレフィン類を使用することができる。又重合時のゲルの生成を更に抑制するために公知のゲル化防止剤を使用することができる。シス1, 4-構造含有率が一般に90%以上、特に95%以上で、ムーニー粘度(ML₁₊₄)、100°C、以下、MLと略す)1.0~1.30、好ましくは1.5~8.0であり、実質的にゲル分を含有しない。

【0030】

前記の如くして得られたシス1, 4重合反応混合物に1, 3-ブタジエンを添加しても添加しなくてもよい。そして、一般式A1R₃で表せる有機アルミニウム化合物と二硫化炭素、必要なら前記の可溶性コバルト化合物を添加して1, 3-ブタジエンを1, 2重合して沸騰n-ヘキサン可溶分9.9~5.0重量%とH₁が1~5.0重量%となるビニル・スピリブタジエンゴムを製造する。一般式A1R₃で表せる有機アルミニウム化合物としてはトリメチルアルミニウム、トリエチアルミニウム、トリイソブチルアルミニウム、トリニーヘキシリアルミニウム、トリフェニルアルミニウムなどを好適に挙げることができる。有機アルミニウム化合物は1, 3-ブタジエン1モル当たり0.1ミリモル以上、特に0.5~5.0ミリモル以上である。二硫化炭素は特に限定されないが水分を含まないものであることが好ましい。二硫化炭素の濃度は20ミリモル/L以下、特に好ましくは0.01~1.0ミリモル/Lである。二硫化炭素の代替として公知のイソチオシアノ酸フェニルやキサントグン酸化合物を使用してもよい。

【0031】

1, 2重合する温度は100°C以下、好ましくは-50~80°C、更に好ましくは-20~70°Cまでの温度範囲で1, 3-ブタジエンを1, 2重合する。1, 2重合する際の重合系には前記のシス重合液1.00重量部当たり1~5.0重量部、好ましくは1~2.0重量部の1, 3-ブタジエンを添加することで1, 2重合時の1, 2-ブリブタジエンの収量を増大させることができる。重合時間(平均滞留時間)は1.0分~2時間の範囲が好ましい。1, 2重合後のポリマー濃度は9~29重量%となるように1, 2重合を行うことが好ましい。重合槽は1槽、又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて重合溶液を攪拌混合して行う。1, 2重合に用いる重合槽としては1, 2重合中に更に高粘度となり、ポリマーが付着しやすいので高粘度液攪拌装置付きの重合槽、例えば特公昭40-2645号公報に記載された装置を用いることができる。

【0032】

重合反応が所定の重合率に達した後、常法に従って公知の老化防止剤を添加することができる。老化防止剤の代表としてはフェノール系の2, 6-ジ-*t*-ブチル-p-ケレゾール(BHT)、リン系のトリノルフィルフェニルフォスファイト(TNP)、硫黄系の4, 6-ビス[オクチルチオメチル]-o-ケレゾール、ジラウリル-3, 3'

-チオジブロピオネート(TPL)などが挙げられる。単独でも2種以上組み合わせて用いてもよく、老化防止剤の添加はビニル・スピリブタジエンゴム1.00重量部に対して0.001~5重量部である。次に重合停止剤を重合系に加えて停止する。例えば重合反応終了後、重合停止槽に供給し、この重合溶液にメタノール、エタノールなどのアルコール、水などの極性溶媒を大量に投入する方法、塩酸、硫酸などの無機酸、酢酸、安息香酸などの有機酸、塩化水素ガスを重合溶液に導入する方法などの、それ自体公知の方法である。次いで通常の方法に従い生成したビニル・スピリブタジエンゴム組成物を分離、洗浄、乾燥する。

【0033】

このようにして得られたビニル・スピリブタジエンはムーニー粘度が2.0~1.50、好ましくは2.5~1.00であり、(1) 1, 2-ブリブタジエンが1~5.0重量部、融点が170~220°Cであり、(2) ゴム分が1.00重量部でそのミクロ構造がシス90%以上のシス1, 4-ブリブタジエンである。

【0034】

ビニル・スピリブタジエン中に分散した1, 2-ブリブタジエン結晶繊維はビニル・スピリブタジエンのマトリックスゴム中に微細な結晶として単分散化した形態で部分的

に分散し、凝集構造を有する大きな繊維結晶と共存している。そして、この単分散化した微細な繊維結晶はマトリックスゴム成分との界面親和性を向上させる。この単分散繊維結晶の平均短軸長は $0.2\mu\text{m}$ 以下、アスペクト比は10以下であり、且つ平均の単分散繊維結晶数が10以上の短纖維状である。一方、従来のビニル・シスボリブタジエンは大きな凝集構造を有する繊維結晶が殆どで、単分散繊維結晶数は5以下であった。

【0035】

このようにして得られたビニル・シスボリブタジエンを分離取得した残部の未反応の1, 3-ブタジエン、不活性媒体及び二硫化炭素を含有する混合物から蒸留により1, 3-ブタジエン、不活性媒体として分離して、一方、二硫化炭素を吸着分離処理、あるいは二硫化炭素付加物の分離処理によって二硫化炭素を分離除去し、二硫化炭素を実質的に含有しない1, 3-ブタジエンと不活性媒体とを回収する。また、前記の混合物から蒸留によって3成分を回収して、この蒸留から前記の吸着分離あるいは二硫化炭素付加物分離処理によって二硫化炭素を分離除去することによっても、二硫化炭素を実質的に含有しない1, 3-ブタジエンと不活性媒体とを回収することもできる。前記のようにして回収された二硫化炭素と不活性媒体とは新たに補充した1, 3-ブタジエンを混合して使用される。

【0036】

本発明による方法で連続運転すると、触媒成分の操作性に優れ、高い触媒効率で工業的に有利にビニル・シスボリブタジエンを連続的に長時間製造することができる。特に、重合槽内の内壁や攪拌翼、その他攪拌が緩慢な部分に付着することもなく、高い転化率で工業的に有利に連続製造できる。

【0037】

但し、重合方法は特に制限はなく、連続重合、または回分重合でも製造できる。

【0038】

次に、本発明に使用されるタイヤ用シリカ配合ゴム組成物は、前記のビニル・シスボリブタジエン(a)、(a)以外のジエン系ゴム(b)、シリカを40%以上含むゴム補強剤(c)を配合してなる。

【0039】

前記のジエン系ゴム(b)としては、ハイシスボリブタジエンゴム、ローシスボリブタジエンゴム(BR)、天然ゴム、ポリソブレンゴム、乳化重合若しくは溶液重合スチレンブタジエンゴム(SBR)、エチレンプロピレンジエンゴム(E PDM)、ニトリルゴム(NBR)、ブチルゴム(IIR)、クロロブレンゴム(CR)などが挙げられる。

【0040】

また、これらゴムの誘導体、例えば錫化合物で変性されたポリブタジエンゴムやエボキシ変性、シラン変性、マレイン酸変性された上記ゴムなども用いることができ、これらのゴムは単独でも、二種以上組み合わせて用いても良い。

【0041】

本発明の(c)成分のゴム補強剤としては、粒子径が90nm以下、ジブチルフタレート(DBP)吸油量が70ml/100g以上のカーボンブラックで、例えば、FEF、FF、GPF、SAF、ISAF、SRF、HAF等が挙げられる。また、シリカとしては、乾式法による無水ケイ酸及び湿式法による含水ケイ酸や合成ケイ酸塗などが挙げられる。更にゴム補強剤として、活性化炭酸カルシウム、超微粒子珪酸マグネシウム等の無機補強剤やシンジオタクチック1, 2ポリブタジエン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ハイステレン樹脂、フェノール樹脂、リグニン、変性メラミン樹脂、クマロンインデン樹脂及び石油樹脂等の有機補強剤を混合しても良い。

【0042】

前記各成分を、ビニル・シスボリブタジエン(a)20~80重量%と、(a)以外のジエン系ゴム(b)80~20重量%とからなるゴム成分(a)+(b)100重量部と、シリカを40%以上含有するゴム補強剤(c)40~100重量部の条件を満足すべく配合する。

【0043】

前記ビニル・シスボリブタジエンの量が前記下限より少ないと、ダイスウェルが大きくて加硫物の発熱性が低いゴム組成物が得られず、ビニル・シスボリブタジエンの量が前記上限より多いと、組成物のムーニー粘度が大きくなりすぎて成形性が悪くなる。前記ゴム補強剤の量が前記下限より少ないと加硫物の弾性率が低下し、逆に前記上限より多いとムーニー粘度が大きくなりすぎてタイヤ成形性が悪化する傾向にある。また、ゴムの割合が前記範囲外であると加硫物の耐摩耗性などが低下する。

【0044】

本発明のタイヤ用シリカ配合ゴム組成物は、前記各成分を通常行われているパンパリー、オープソロール、ニーダー、二軸混練り機などを用いて混練りすることで得られる。混練温度は、当該ビニル・シスボリブタジエンに含有される1, 2ボリブタジエン結晶纖維の融点より低い必要がある。この1, 2ボリブタジエン結晶纖維の融点より高い温度で混練すると、ビニル・シスボリブタジエン中の微細な纖維が溶けて球状の粒子等に変形してしまうから好ましくない。

【0045】

本発明のゴム組成物には、必要に応じて、加硫剤、加硫助剤、老化防止剤、充填剤、プロセスオイル、亜鉛華、ステアリン酸など、通常ゴム業界で用いられる配合剤を混練してもよい。

【0046】

加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤、酸化マグネシウムなどの金属酸化物などが用いられる。

【0047】

加硫助剤としては、公知の加硫助剤、例えばアルデヒド類、アンモニア類、アミン類、グアニジン類、チオウレア類、チアゾール類、チラム類、ジオカバメイト類、キサンテート類などが用いられる。

【0048】

老化防止剤としては、アミン・ケトン系、イミダゾール系、アミン系、フェノール系、硫黄系及び磷系などが挙げられる。

【0049】

充填剤としては、炭酸カルシウム、塩基性炭酸マグネシウム、クレー、リサージュ、珪藻土等の無機充填剤、再生ゴム、粉末ゴム等の有機充填剤が挙げられる。

【0050】

プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよい。

【0051】

本発明のタイヤ用シリカ配合ゴム組成物は、ウェットスキッド性・発熱特性を維持しつつ、耐摩耗性とダイスウェル性能の向上が図られ、より高度に性能をバランスさせたタイヤのトレッド・サイドウォールなどの用途に好適である。

【0052】

以下、実施例及び比較例を示して、本発明について具体的に説明する。実施例及び比較例において、ビニル・シスボリブタジエンの素ゴムの物性、及び得られたタイヤ用シリカ配合ゴム組成物の配合物の物性と加硫物の物性は以下のようにして測定した。(1) 1, 2ボリブタジエン結晶纖維含有量；2 g のビニル・シスボリブタジエンを200 ml のn-ヘキサンにて4時間ソックスレー抽出器によって沸騰抽出した抽出残部を重量部で示した。(2) 1, 2ボリブタジエン結晶纖維の融点；沸騰n-ヘキサン抽出残部を示差走査熱量計(DSC)による吸熱曲線のピーク温度により決定した。(3) n s d/C；1, 2ボリブタジエン結晶纖維の分子量の目安として、オルトジクロルベンゼン溶液から135°Cで還元粘度を測定した。(4) 結晶纖維形態；ビニル・シスボリブタジエンを塩化硫黄と二硫化炭素で加硫し、加硫物を超薄切片で切り出して四塩化オスミウム蒸気でビニル・シスボリブタジエンのゴ

(10)

ム分の二重結合を染色して、透過型電子顕微鏡で観察して求めた。(5) ビニル・シスボリブタジエン中のゴム分のミクロ構造；赤外吸収スペクトル分析によって行った。シス740cm⁻¹、トランス967cm⁻¹、ビニル910cm⁻¹の吸収強度比からミクロ構造を算出した。(6) ビニル・シスボリブタジエン中のゴム分のトルエン溶液粘度；25℃における5重量%トルエン溶液の粘度を測定してセンチボイズ(c p)で示した。(7) ビニル・シスボリブタジエンゴム中のゴム分の「η」；沸騰n-ヘキサン可溶分を乾燥採取し、トルエン溶液にて30℃の温度で測定した。(8) ビニル・シスボリブタジエンゴム中のゴム分の重量平均分子量；沸騰n-ヘキサン可溶分を乾燥採取し、テトラヒドロフラン溶液にしてゲル浸透クロマトグラフィー(GPC、東ソー社製、HCL-802A)により、40℃、標準ポリスチレンを使用した検量線により重量平均分子量(Mw)を求めた。(9) ムード粘度；JIS K6300に準じて100℃にて測定した値である。(10) ダイ・スウェル；加工性測定装置(モンサント社、MPT)を用いて配合物の押出加工性の目安として100℃、1.00sec⁻¹のせん断速度で押出時の配合物の径とダイオリフィス径(但し、L/D=1.5mm/1.5mm)の比を測定して求めた。(11) 引張強度率；JIS K6301に従い、引張強度率M300を測定した。(12) ピコ摩耗；ASTM D2228に従い、ピコ摩耗指数を測定した。(13) ウェットスキッド性；ボータブルウェットスキッドテスターを使用し、スリーエム社のセーフティーウォーク(タイプB)を用いて測定した。(14) 低燃費性 tan δ；レオメトリック社製粘弹性測定装置を用い、温度：60℃、周波数：10Hz、動歪み：2%で測定した。指數の小さい方が燃費性に優れる。

【実施例】

【0053】

(ビニル・シスボリブタジエンサンプル1の製造)

窒素ガスで置換した内容30Lの攪拌機付ステンレス製反応槽中に、脱水シクロヘキサン18kgに1,3-ブタジエン1.6kgを溶解した溶液を入れ、コバルトオクタエト 4mmol、ジエチルアルミニウムクロライド 84mmol及び1,5-シクロオクタジエン70mmolを混入、25℃で30分間攪拌し、シス重合を行った。シス重合後、直ちに重合液にトリエチルアルミニウム90mmol及びニホウ酸50mmolを加え、25℃で60分間攪拌し、1,2重合を行った。重合終了後、重合生成液を4,6-ビス(オクチルチオメチル)-0-クレゾール1重量%を含むメタノール18Lに加えて、ゴム状重合体を析出沈殿させ、このゴム状重合体を分離し、メタノールで洗浄した後、常温で真空乾燥した。この様にして得られたビニル・シスボリブタジエンゴムの收率は82%であった。

(ビニル・シスボリブタジエンサンプル2の製造)

重合溶媒を脱水ベンゼンを用いること以外はサンプル1の製造方法と同様にしてビニル・シスボリブタジエンを得た。この様にして得られたビニル・シスボリブタジエンゴムの收率は80%であった。

前記サンプル1とサンプル2の物性を表1に示した。

【0054】

【表1】

サンプル名	サンプル 1	サンプル 2
重合溶媒の種類	シクロヘキサン	ペンゼン
溶媒の S P 値	8.1	9.1
ビニル・シスボリブタジエン 中のコア分の特性		
A-C-粘度	33	←
$[\eta]$	1.4	1.4
重量平均分子量 $(M_w) \times 10^4$	42	42
トルエン溶液粘度 (cp)	59	←
ミクロ構造 (%)	Cis Trans Vinyl	98.2 0.9 0.9
1,2ボリブタジエン 結晶繊維の特性		
繊維結晶の融点(°C)	202	←
η_{sp}/c	1.5	←
単分散繊維結晶数 (繊維長 0.2μ 以下の数 $400\mu^2$ 当たり)	>100	3
単分散繊維結晶の アスペクト比	7	15
1,2ボリブタジエン結晶繊維 の重量部数	13.6	←
備考	単分散繊維 結晶数多い	単分散繊維 結晶数少い

【0055】

(実施例1～4) (比較例1～3)

前記サンプル1及びサンプル2を用い、表2に示す配合处方のうち、加硫促進剤、硫黄を除く配合剤を1.7Lの試験用パンパリーミキサーを使用して混練し、キャップトレッド用ゴム組成物である混練物を得た。この際、最高混練温度を170～180°Cに調節した。次いで、この混練物を10インチロール上で加硫促進剤、硫黄を混練し、これをシート状にロール出した後、金型に入れて加硫し、加硫物を得た。加硫は150°C、30分で行った。結果をまとめて表2に示す。

【0056】

実施例の組成物は、ウェットスキッド性を維持しつつ高弾性率及び高耐摩耗性を実現している。一方、比較例の組成物においては、本発明の特性を満たさないビニル・シスボリブタジエンや市販の高シスボリブタジエンの使用、またはSBRの添加量が少ない場合など、高弾性率や高耐摩耗性は実現するものの、ウェットスキッド性の著しい低下が起り所望の特性を得ることができない。

【0057】

[表2]

配合表	実施例1	実施例2	実施例3	実施例4	比較例1	比較例2	比較例3
ビニル・シスボリブタジエン 種類 量(部数)	サンブル1 35	サンブル1 35	サンブル1 45	サンブル1 35	-	サンブル2 35	サンブル1 35
NR(注1)	-	25	15	-	-	-	-
BR(注2)	-	-	-	-	35	-	-
SBR1500	65	40	40	65	65	65	65
カーボンブラック N330	27	27	27	21.5	27	27	60
シリカ(注3)	30	30	30	35	30	30	-
シランカップリング剤(注4)	6	6	6	7	6	6	-
アロマティックオイル	15	15	15	15	15	15	15
酸化亜鉛	5	5	5	5	5	5	3
ステアリン酸	2	2	2	2	2	2	2
老化防止剤(注5)	1	1	1	1	1	1	1
加硫促進剤(注6)	1.3	1.3	1.3	1.4	1.3	1.3	1
加硫促進剤(注7)	0.7	0.7	0.7	0.9	0.7	0.7	-
硫黄	2	2	2	2.1	2	2	1.8
配合物物性							
ダイ・ウェル指数	75	81	78	80	100	91	68
加硫物物性							
ビコ摩耗 (指數)	170	157	178	160	100	163	183
ウェットスキッド性 (指數)	98	96	95	100	100	92	89
$\tan \delta$ (指數)	85	79	76	80	100	104	110

(注1) NR ; RSS#1

(注2) BR ; ポリブタジエン (UBEPOL-BR150、宇部興産(株) 製)

(注3) Ultrasil VN3 GR (デグサ社製)

(注4) X50S (N330とS169の等量混合物; デグサ社製)

S169 ; ビス-(3-トリエトキシリルプロピル)-テトラスルフィド

(注5) 老化防止剤; アンテージAS (アミンとケトンの反応物)

(注6) 加硫促進剤; ノクセラーザCZ (N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド)

(注7) 加硫促進剤; ノクセラーザD (N,N'-シフェニルグアニジン)

フロントページの続き

(51) Int. Cl.

F I

テーマコード (参考)

C 0 8 K 3/36

C 0 8 L 21/00

F ターム (参考) 4J128 AA01 AC47 BB01B BC15B BC16B BC19B CA48C EA02 EB13 EC01
ED06 ED08 EF02 GA01 GA04 GA11 GA12