CURS 6 SECURITATEA PERFECTĂ

Securitate perfectă (Shannon – 1949): Textul criptat nu trebuie să furnizeze nicio informație despre textul clar!

Formulare echivalentă:

Pentru orice mesaj criptat C și oricare două mesaje clare $P_1 \neq P_2$, avem:

$$Prob[enc_K(P_1) = C] = Prob[enc_K(P_2) = C]$$

Teoremă (Shannon): În orice cifru cu securitate perfectă trebuie ca lungimea cheii secrete să fie cel puțin egală cu lungimea mesajului clar.

Teoremă (Shannon): Considerăm un cifru în care numărul mesajelor clare, numărul mesajelor criptate și numărul cheilor secrete sunt egale toate cu n. Atunci cifrul respectiv are securitate perfectă dacă și numai dacă:

- 1. orice cheie secretă este folosită cu probabilitatea $\frac{1}{n}$;
- 2. pentru orice mesaj clar P și orice mesaj criptat C există și este unică o cheie secretă K astfel încât $enc_K(P) = C$.

Cifrul Vernam

Cifrul Vernam a fost inventat de către Gilbert Vernam în anul 1917.

Criptarea se realizează considerând mesaje binare și folosind o cheie secretă binară aleatorie de aceeași lungime cu mesajul clar și adunând modulo 2 biții aflați pe aceeași poziție (operația XOR / sau-exclusiv). Decriptarea se realizează simetric, folosind aceeași cheie secretă și operația XOR.

^ = sau-exclusiv/XOR

		* -	
^	0	1	x = 133 = 00010000101
0	0	1	y = 2020 = 11111100100
1	1	0	$x ^ y = 1889 = 11101100001$

$$a ^ b = 1 <=> a ≠ b$$

Proprietățile operatorului XOR (adunare modulo $2 = \oplus$):

- a) $t ^ t = 0$
- **b)** $t ^ 0 = t$
- **c)** t ^ v = v ^ t
- d) (t ^ v) ^ w = t ^ (v ^ w)

Cifrul Vernam (1917):

Se consideră un mesaj binar clar P și o cheie fluidă K (cu aceeași lungime ca mesajul clar P) comună.

Mesajul criptat C se obține astfel:

$$C_i = P_i \oplus K_i$$

Mesajul decriptat *P* se obține astfel:

$$P_i = C_i \oplus K_i$$

Criptare	Decriptare	Determinarea cheii secrete
$P = 00010000101_{\text{K}}$	C = 11101100001	C = 11101100001
K = 11111100100 ⊕	K = 11111100100 ⊕	$P = 00010000101 \oplus$
C = 11101100001	P = 00010000101	K = 11111100100

Corectitudinea decriptării:
$$P_i = C_i \oplus K_i = \underbrace{P_i \oplus K_i}_{C_i} \oplus K_i = P_i \oplus 0 = P_i$$

Determinarea cheii secrete: $P_i = C_i \oplus K_i = P_i \oplus C_i = C_i \oplus K_i \oplus C_i = P_i \oplus C_i = P_i \oplus C_i \oplus C_i \oplus C_i \oplus C_i \oplus C_i = P_i \oplus C_i \oplus C_i$

Pericolul utilizării aceleași chei fluide pentru două mesaje diferite:

$$C_1 = P_1 \oplus K_1$$

$$C_2 = P_2 \oplus K_1$$

$$C_1 \oplus C_2 = P_1 \oplus K_1 \oplus P_2 \oplus K_1 = P_1 \oplus P_2$$

Folosind proprietățile statistice ale textelor clare se pot deduce proprietăți statistice ale textelor criptate și corelații dintre ele! Un exemplu celebru în acest sens este proiectul Venona: https://en.wikipedia.org/wiki/Venona project!

2

Limitări ale utilizării în practică a cifrurilor OTP/Vernam:

- **1.** Generarea și stocarea tuturor posibilelor chei secrete (fluide) depășesc cu mult stadiul actual al tehnologiei IT:
 - **OTP:** cheile secrete formate din 100 de litere sunt în număr de 26¹⁰⁰, adică ar necesita aproximativ 4.7*10¹³⁹ de pagini scrise cu un font de dimensiune 8 (aproximativ 66 de chei secrete pe o pagina)!
 - **Vernam:** cheile secrete formate din 1024 de biţi (adică 128 de caractere!!!) sunt în număr de 2^{1024} , adică ar necesita un spaţiu de stocare de aproximativ 2^{1024} biţi = 2^{1021} octeţi = 2^{1011} KB = 2^{1001} MB = 2^{991} GB = 2^{981} TB = 2^{971} PB (petabytes) = 2^{961} EB (exabytes) = 2^{951} ZB (zettabytes)!

Spațiul necesar de stocare (2⁹⁵¹ ZB):

1903381642851562320381519997631872716968013058124024907591 3879799244040411653175981378154425550801287549423664514470 0550458186911429747930597226314381106512100220267577274863 8646638604587901103193906170601409839623766718344803686512 8410866436462823462554177349813042084144196464827957248 **ZB**

Spaţiul total de stocare la nivel mondial estimat pentru anul 2025 (<u>The Digitization of the World from Edge to Core (seagate.com)</u>): 175 **ZB**

- Timpul necesar generării tuturor cheilor secrete formate din 1024 de biți este de ordinul miliardelor de miliarde de ani!!!
- **2.** Schimbul greoi de chei secretă: o cheie secretă trebuie să aibă aceeași lungime cu mesajul clar și poate fi utilizată o singură dată!!!

CIFRURI FLUIDE

Cifru fluid = un cifru de tip Vernam în care se utilizează o cheie fluidă de aceeași lungime cu mesajul clar, generată folosind un generator de numere pseudo-aleatorii (PRNG = PseudoRandom Numbers Generator).

Un cifru fluid poate fi:

- sincron cheia fluidă este independentă de mesajul clar și de cel criptat;
- asincron cheia fluidă depinde de un număr fixat de biţi anterior criptaţi.

Un **generator de numere pseudo-aleatorii** este un algoritm care este aplicat în mod iterativ asupra unor valori inițiale pentru a obține un șir de valori pseudo-aleatorii.

Valorile inițiale ale generatorului (inclusiv parametrii săi) vor forma cheia secretă a unui cifru fluid, iar valorile generate vor forma cheia fluidă!!!

Generatorul liniar congruențial (LCG)

$$x_{n+1} = (3x_n + 7) \mod 11$$

$x_0 = 3$ (valoare inițială = seed)

$$x_1 = (3x_0 + 7) \mod 11 = (3 * 3 + 7) \mod 11 = 16 \mod 11 = 5$$

 $x_2 = (3x_1 + 7) \mod 11 = (3 * 5 + 7) \mod 11 = 22 \mod 11 = 0$
 $x_3 = (3x_2 + 7) \mod 11 = (3 * 0 + 7) \mod 11 = 7 \mod 11 = 7$
 $x_4 = (3x_3 + 7) \mod 11 = (3 * 7 + 7) \mod 11 = 28 \mod 11 = 6$
 $x_5 = (3x_4 + 7) \mod 11 = (3 * 6 + 7) \mod 11 = 25 \mod 11 = 3$
 $x_6 = (3x_5 + 7) \mod 11 = (3 * 3 + 7) \mod 11 = 16 \mod 11 = 5$
 $x_7 = (3x_6 + 7) \mod 11 = (3 * 5 + 7) \mod 11 = 22 \mod 11 = 0$

De exemplu, pentru generatorul de mai sus cheia secretă va fi formată din $a=3,b=7,\ m=11$ și $x_0=3$, iar cheia fluidă pe care o vor folosi într-un cifru Vernam este formată din numerele generate de LCG: 3, 5, 0, 7, 6, 3 ,5, 0, 7, 6, ...