第二章 线性规划

2.7 对偶问题的基本性质

修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

- 单纯形法计算的矩阵描述
 - 🛛 原问题

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

□ 矩阵表达

$$\max \ z = \mathbf{C} \mathbf{X}$$
 s.t.
$$\begin{cases} \mathbf{A} \mathbf{X} \leq \mathbf{b} \\ \mathbf{X} \geq \mathbf{0} \end{cases}$$

- 单纯形法计算的矩阵描述
 - □ 引入松弛变量

$$\max \ z = \mathbf{CX} + 0\mathbf{X}_{S}$$
s.t.
$$\begin{cases} \mathbf{AX} + \mathbf{IX}_{S} = \mathbf{b} \\ \mathbf{X} \ge \mathbf{0}, \ \mathbf{X}_{S} \ge \mathbf{0} \end{cases}$$

- 单纯形法计算的矩阵描述
 - □ 引入松弛变量

$$\max \ z = \mathbf{CX} + 0\mathbf{X}_{S}$$
s.t.
$$\begin{cases} \mathbf{AX} + \mathbf{IX}_{S} = \mathbf{b} \\ \mathbf{X} \ge \mathbf{0}, \ \mathbf{X}_{S} \ge \mathbf{0} \end{cases}$$

- \square I 为 $m \times m$ 单位矩阵, 为初始基。
- \mathbf{L} $\mathbf{X}_S = (x_{n+1}, \dots, x_{n+m})^{\top}$ 为基变量。

- 单纯形法计算的矩阵描述
 - □ 引入松弛变量

$$\max \ z = \mathbf{CX} + 0\mathbf{X}_{S}$$
s.t.
$$\begin{cases} \mathbf{AX} + \mathbf{IX}_{S} = \mathbf{b} \\ \mathbf{X} \ge \mathbf{0}, \ \mathbf{X}_{S} \ge \mathbf{0} \end{cases}$$

- \square I 为 $m \times m$ 单位矩阵, 为初始基。
- $\mathbf{Q} \ \mathbf{X}_{S} = (x_{n+1}, \dots, x_{n+m})^{\top} \$ 为基变量。
- lue 设迭代若干步后基变量为 $lue{\mathbf{X}}_B$, 决策变量为 $lue{\mathbf{X}}=(lde{\mathbf{X}}_B, lde{\mathbf{X}}_N)$ 。

- 单纯形法计算的矩阵描述
 - □ 引入松弛变量

$$\max \ z = \mathbf{CX} + 0\mathbf{X}_{S}$$
s.t.
$$\begin{cases} \mathbf{AX} + \mathbf{IX}_{S} = \mathbf{b} \\ \mathbf{X} \ge \mathbf{0}, \ \mathbf{X}_{S} \ge \mathbf{0} \end{cases}$$

- \square I 为 $m \times m$ 单位矩阵, 为初始基。
- $\mathbf{Q} \ \mathbf{X}_{S} = (x_{n+1}, \dots, x_{n+m})^{\top} \$ 为基变量。
- \square 设迭代若干步后基变量为 \mathbf{X}_B , 决策变量为 $\mathbf{X} = (\mathbf{X}_B, \mathbf{X}_N)$ 。
- \square 将约束函数的系数矩阵 $\mathbf A$ 分为 $\mathbf A=(\mathbf B,\mathbf N)$, 其中 $\mathbf B$ 是基变量 $\mathbf X_B$ 的系数矩阵, $\mathbf N$ 是非基变量的系数矩阵。

■ 单纯形法计算的矩阵描述

□ 引入松弛变量

$$\max \ z = \mathbf{CX} + \mathbf{0X}_{S}$$
s.t.
$$\begin{cases} \mathbf{AX} + \mathbf{IX}_{S} = \mathbf{b} \\ \mathbf{X} \ge \mathbf{0}, \ \mathbf{X}_{S} \ge \mathbf{0} \end{cases}$$

- \square I 为 $m \times m$ 单位矩阵, 为初始基。
- $\mathbf{Z} \mathbf{X}_{S} = (x_{n+1}, \dots, x_{n+m})^{\top}$ 为基变量。
- \square 设迭代若干步后基变量为 \mathbf{X}_B , 决策变量为 $\mathbf{X} = (\mathbf{X}_B, \mathbf{X}_N)$ 。
- ② 将约束函数的系数矩阵 A 分为 A = (B, N), 其中 B 是基变量 X_B 的系数矩阵, N 是非基变量的系数矩阵。
- f C 将目标函数的系数向量 f C 分为 $f C=(f C_B,f C_N)$, 其中 $f C_B$ 是基变量的系数向量,f N 是非基变量的系数向量。

- 例 1
 - □ 写出下面问题的对偶问题

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

- 例 1
 - □ 标准化

$$\max z = 2x_1 + x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 24 \\ x_1 + x_2 + x_5 = 5 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

- 例 1
 - □ 标准化

$$\max z = 2x_1 + x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 24 \\ x_1 + x_2 + x_5 = 5 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

lue 列出初始单纯形表,确定主元 [6],用 x_1 替换 x_4

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
0	$ x_3 $	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	x_5	5	1	1	0	0	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						0	

- 例 1
 - □ 初等行变换之前的单纯形表 (变量重排)

		\mathbf{X}_{B}		X	-N		\mathbf{X}_{S}	
	$ x_3 $	$ x_1 $	x_5	$ x_4 $	x_2	x_3	x_4	x_5
15	1	0	0	0	5	1	0	0
24	0	6	0	0 1 0	2	0	1	0
5	0	1	1	0	1	0	0	1
b		В		1	V		I	

■ 例 1

□ 初等行变换之前的单纯形表 (变量重排)

		\mathbf{X}_{B}		X	-N		\mathbf{X}_S	
	$ x_3 $	$ x_1 $	$ x_5 $	$ x_4 $	$ x_2 $	x_3	x_4	x_5
15	1	0	0	0	5	1	0	0
15 24 5	0	6	0	1	2	0	1	0
5	0	1	1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0	0	1
b		В		1	Ŋ		I	
				\Downarrow				

项目	非基变量	基变量
$oxed{\mathbf{C}_B \mid \breve{\&multiple} \&mult$	$\mid \mathbf{X}_B \mid \mathbf{X}_N \mid$	\mathbf{X}_S
$oxed{0 \mid \mathbf{X}_S \mid \mathbf{b}}$	B N	I
$c_j - z_j$	$\mid \mathbf{C}_B \mid \mathbf{C}_N \mid$	0

- 例 1
 - □ 迭代之后的单纯形表 (变量重排)

		\mathbf{X}_{B}		X	N		\mathbf{X}_{S}	
	$ x_3 $	$ x_1 $	x_5	x_4	x_2	x_3	x_4	x_5
15	1	0	0	0	5	1	0	0
4	0	1	0	1/6	2/6	0	1/6	0
5	0	0	1	0 1/6 -1/6	4/6	0	-1/6	1
b		I		B-	1 N		\mathbf{B}^{-1}	

■ 例 1

□ 迭代之后的单纯形表 (变量重排)

		\mathbf{X}_{B}		X	N		\mathbf{X}_{S}	
	$ x_3 $	$ x_1 $	x_5	x_4	x_2	x_3	x_4	x_5
15	1	0	0	0	5	1	0	0
4	0	1	0	1/6	2/6	0	1/6	0
5	0	0	1	0 1/6 -1/6	4/6	0	-1/6	1
b		Ι		$ \mathbf{B}^{-}$	$^{1}\mathbf{N}$		\mathbf{B}^{-1}	

1

项目	基变量	非基实	2量	
$oxed{\mathbf{C}_B}$ 基 $oxed{\mathbf{b}}$	$ \mathbf{X}_B $	$\mid \mathbf{X}_N$	$ \mathbf{X}_S $	
$oxed{\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b}}$	$\mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$	$ig \mathbf{B}^{-1} \mathbf{N}$	$\mid \mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$	
$c_j - z_j$ $\mathbf{C}_B - \mathbf{C}_B \mathbf{I} = 0$ $\mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N}$ $0 - \mathbf{C}_B \mathbf{B}^{-1}$				

■ 例 1

□ 迭代前后对比对"增广"矩阵做初等行变换

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	堂量
$0 \mid \mathbf{X}_{a} \mid \mathbf{b} \mid \mathbf{B} \mid \mathbf{N} \mid$	ζ_S
	I
$c_j - z_j \mid \mathbf{C}_B \mid \mathbf{C}_N \mid$	0

 \Downarrow

项目	基变量	非基变	量		
$\mathbf{C}_B \mid \ $ 基 $\mid \ \mathbf{b}$	\mathbf{X}_{B}	$ $ \mathbf{X}_N	\mathbf{X}_S		
$c_j - z_j \qquad \mid \mathbf{C}_B - \mathbf{C}_B \mathbf{I} = 0 \mid \mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N} \mid 0 - \mathbf{C}_B \mathbf{B}^{-1}$					

■ 单纯形法计算的矩阵描述

- lue 对应初始单纯形表中的单位矩阵 $lue{I}$,迭代后的单纯形表中为 $lue{B}^{-1}$ 。
- \square 初始单纯形表中基变量 $\mathbf{X}_S = \mathbf{b}$, 迭代后的表中 $\mathbf{X}_B = \mathbf{B}^{-1}\mathbf{b}$ 。

项目	非基变量 基变量
C _B 基 b	$\mathbf{X} \mid \mathbf{X}_B \mid \mathbf{X}_N \mid \mathbf{X}_S$
$0 \mid \mathbf{X}_S \mid \mathbf{b}$	o B N I
$c_j - z_j$	$\mid \mathbf{C}_B \mid \mathbf{C}_N \mid 0$

	基变量	非基变	量	
$oxed{\mathbf{C}_B \mid \ \ \ \ \ \mathbf{b}}$	\mathbf{X}_{B}	$ $ \mathbf{X}_N	$ \mathbf{X}_S $	
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b}$	$\mathbf{B}^{-1}\mathbf{N}$	$\mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$		

■ 单纯形法计算的矩阵描述

- ② 初始单纯形表中约束系数矩阵 [A, I] = [B, N, I], 迭代后的表中约束系数矩阵为 $[B^{-1}A, B^{-1}I] = [I, B^{-1}N, B^{-1}]$
- flue 若初始矩阵中的变量 x_j 的系数向量为 ${f P}_j$, 迭代后的为 ${f P}_j^{'}$,则有 ${f P}_i^{'}={f B}^{-1}{f P}_j$

项目	非基变量 基变量
$\mathbf{C}_B \mid \mathbf{A} \mid \mathbf{b}$	$\mid \mathbf{X}_B \mid \mathbf{X}_N \mid \mathbf{X}_S$
$0 \mid \mathbf{X}_S \mid \mathbf{b}$	B N I
$c_j - z_j$	$\mid \mathbf{C}_B \mid \mathbf{C}_N \mid 0$
	\downarrow

项目	项目 基变量 非基变量		量
C _B 基 b	$ \mathbf{X}_B $	$ $ \mathbf{X}_N	\mathbf{X}_{S}
$oxed{\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b}}$	$\mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$	$\mathbf{B}^{-1}\mathbf{N}$	$\mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$
$c_j - z_j \qquad \mathbf{C}_B - \mathbf{C}_B \mathbf{I} = 0 \mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N} 0 - \mathbf{C}_B \mathbf{B}^{-1}$			

- 单纯形法计算的矩阵描述
 - □ 迭代后达到最优,即检验数满足

$$\mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N} \le 0, -\mathbf{C}_B \mathbf{B}^{-1} \le 0$$

由于 $C_B - C_B I = 0$, 得到

$$\mathbf{C} - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{A} \le 0, -\mathbf{C}_B \mathbf{B}^{-1} \le 0$$

这里 $C_B B^{-1}$ 称为<mark>单纯形乘子</mark>。若令 $Y^{\top} = C_B B^{-1}$,则上式可以 改写为

$$\mathbf{A}^{\top} \mathbf{Y} \ge \mathbf{C}^{\top}, \ \mathbf{Y} \ge 0$$

oxdot 上式表明 $\mathbf{C}_B\mathbf{B}^{-1}$ 的转置为其对偶问题的一个可行解,即

$$w = \mathbf{Y}^{\top} \mathbf{b} = \mathbf{C}_B \mathbf{B}^{-1} \mathbf{b} = z$$

因此, 当原问题为最优解时, 对偶问题为可行解, 且两者具有相同的目标函数值。

- 对偶问题的基本性质——弱对偶性
 - ② 如果 \overline{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \overline{y}_i $(i=1,\ldots,m)$ 是其对 偶问题的可行解,则恒有

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{i=1}^{m} b_i \overline{y}_i$$

- 对偶问题的基本性质——弱对偶性
 - ① 如果 \overline{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \overline{y}_i $(i=1,\ldots,m)$ 是其对 偶问题的可行解, 则恒有

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{i=1}^{m} b_i \overline{y}_i$$

证: 根据定义易知

$$\sum_{j=1}^{n} c_{j} \overline{x}_{j} \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \overline{y}_{i} \right) \overline{x}_{j} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \overline{x}_{j} \overline{y}_{i}$$

- 对偶问题的基本性质——弱对偶性
 - ② 如果 \overline{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \overline{y}_i $(i=1,\ldots,m)$ 是其对 偶问题的可行解, 则恒有

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{i=1}^{m} b_i \overline{y}_i$$

证: 根据定义易知

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \overline{y}_i \right) \overline{x}_j = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \overline{x}_j \overline{y}_i$$

$$\sum_{i=1}^{m} b_i \overline{y}_i \ge \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \overline{x}_j \right) \overline{y}_i = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \overline{y}_i \overline{x}_j$$

- 对偶问题的基本性质——弱对偶性
 - ② 如果 \overline{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \overline{y}_i $(i=1,\ldots,m)$ 是其对偶问题的可行解,则恒有

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{i=1}^{m} b_i \overline{y}_i$$

推论 1: 原问题任一可行解的目标函数值是其对偶问题目标函数值的下界,反之,对偶问题任一可行解的目标函数值是其原问题目标函数值的上界。

- 对偶问题的基本性质——弱对偶性
 - ① 如果 \overline{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \overline{y}_i $(i=1,\ldots,m)$ 是其对 偶问题的可行解, 则恒有

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{i=1}^{m} b_i \overline{y}_i$$

- 推论 1: 原问题任一可行解的目标函数值是其对偶问题目标函数值的下界,反之,对偶问题任一可行解的目标函数值是其原问题目标函数值的上界。
- 推论 2: 若原问题有可行解且目标函数值无界,则其对偶问题无可行解;反之,对偶问题有无界解,则原问题无可行解。

■ 对偶问题的基本性质——弱对偶性

② 如果 \overline{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \overline{y}_i $(i=1,\ldots,m)$ 是其对偶问题的可行解,则恒有

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{i=1}^{m} b_i \overline{y}_i$$

- 推论 1: 原问题任一可行解的目标函数值是其对偶问题目标函数值的下界,反之,对偶问题任一可行解的目标函数值是其原问题目标函数值的上界。
- 推论 2: 若原问题有可行解且目标函数值无界,则其对偶问题无可行解;反之,对偶问题有无界解,则原问题无可行解。
- 推论 3: 若原问题有可行解,对偶问题无可行解,则原问题目标函数值无界;反之,对偶问题有可行解,而原问题无可行解,则对偶问题的目标函数值无界。

- 对偶问题的基本性质——最优性
 - ① 如果 \hat{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \hat{y}_i $(i=1,\ldots,m)$ 是其对偶问题的可行解,且有 $\sum\limits_{j=1}^n c_j \hat{x}_j = \sum\limits_{i=1}^m b_i \hat{y}_i$ 则 \hat{x}_j $(j=1,\ldots,n)$ 是原问题的最优解, \hat{y}_i $(i=1,\ldots,m)$ 是其对偶问题的最优解。

- 对偶问题的基本性质——最优性
 - 回 如果 \hat{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \hat{y}_i $(i=1,\ldots,m)$ 是其对偶问题的可行解,且有 $\sum\limits_{j=1}^n c_j \hat{x}_j = \sum\limits_{i=1}^m b_i \hat{y}_i$ 则 \hat{x}_j $(j=1,\ldots,n)$ 是原问题的最优解, \hat{y}_i $(i=1,\ldots,m)$ 是其对偶问题的最优解。

证: 设 x_j^* $(j=1,\ldots,n)$ 是原问题的最优解, y_i^* $(i=1,\ldots,m)$ 是其对偶问题的最优解, 有

$$\sum_{j=1}^{n} c_j \hat{x}_j \le \sum_{j=1}^{n} c_j x_j^*, \quad \sum_{i=1}^{m} b_i y_i^* \le \sum_{i=1}^{m} b_i \hat{y}_i$$

- 对偶问题的基本性质——最优性
 - 回 如果 \hat{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \hat{y}_i $(i=1,\ldots,m)$ 是其对偶问题的可行解,且有 $\sum\limits_{j=1}^n c_j \hat{x}_j = \sum\limits_{i=1}^m b_i \hat{y}_i$ 则 \hat{x}_j $(j=1,\ldots,n)$ 是原问题的最优解, \hat{y}_i $(i=1,\ldots,m)$ 是其对偶问题的最优解。

证: 设 x_j^* $(j=1,\ldots,n)$ 是原问题的最优解, y_i^* $(i=1,\ldots,m)$ 是其对偶问题的最优解,有

$$\sum_{j=1}^{n} c_j \hat{x}_j \le \sum_{j=1}^{n} c_j x_j^*, \quad \sum_{i=1}^{m} b_i y_i^* \le \sum_{i=1}^{m} b_i \hat{y}_i$$

又

$$\sum_{j=1}^{n} c_j \hat{x}_j = \sum_{i=1}^{m} b_i \hat{y}_i, \quad \sum_{j=1}^{n} c_j x_j^* \le \sum_{i=1}^{m} b_i y_i^*$$

■ 对偶问题的基本性质——最优性

① 如果 \hat{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \hat{y}_i $(i=1,\ldots,m)$ 是其对偶问题的可行解,且有 $\sum\limits_{j=1}^n c_j \hat{x}_j = \sum\limits_{i=1}^m b_i \hat{y}_i$ 则 \hat{x}_j $(j=1,\ldots,n)$ 是原问题的最优解, \hat{y}_i $(i=1,\ldots,m)$ 是其对偶问题的最优解。

证: 设 x_j^* $(j=1,\ldots,n)$ 是原问题的最优解, y_i^* $(i=1,\ldots,m)$ 是其对偶问题的最优解, 有

$$\sum_{j=1}^{n} c_j \hat{x}_j \le \sum_{j=1}^{n} c_j x_j^*, \quad \sum_{i=1}^{m} b_i y_i^* \le \sum_{i=1}^{m} b_i \hat{y}_i$$

又

$$\sum_{j=1}^{n} c_j \hat{x}_j = \sum_{i=1}^{m} b_i \hat{y}_i, \quad \sum_{j=1}^{n} c_j x_j^* \le \sum_{i=1}^{m} b_i y_i^*$$

因此

$$\sum_{j=1}^{n} c_j \hat{x}_j = \sum_{j=1}^{n} c_j x_j^* = \sum_{i=1}^{m} b_i y_i^* = \sum_{i=1}^{m} b_i \hat{y}_i$$

- 对偶问题的基本性质——强对偶性
 - □ 若原问题有最优解,对偶问题也有最优解,且目标函数值相等。或若原问题与对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等。

- 对偶问题的基本性质——强对偶性
 - □ 若原问题有最优解,对偶问题也有最优解,且目标函数值相等。或若原问题与对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等。

证: 一方面,由于两者均有可行解,根据弱对偶性的推论 1,对原问题的目标函数值具有上界,对偶问题的目标函数值具有下界,因此两者均具有最优解。

■ 对偶问题的基本性质——强对偶性

若原问题有最优解,对偶问题也有最优解,且目标函数值相等。或若原问题与对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等。

证: 一方面,由于两者均有可行解,根据弱对偶性的推论 1, 对原问题的目标函数值具有上界,对偶问题的目标函数值具有下界,因此两者均具有最优解。

另一方面,又由(2.19)和(2.20)知,当原问题为最优解时,其对偶问题的解为可行解,且有 z=w。

■ 对偶问题的基本性质——强对偶性

若原问题有最优解,对偶问题也有最优解,且目标函数值相等。或若原问题与对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等。

证: 一方面,由于两者均有可行解,根据弱对偶性的推论 1, 对原问题的目标函数值具有上界,对偶问题的目标函数值具有下界,因此两者均具有最优解。

另一方面,又由(2.19)和(2.20)知,当原问题为最优解时,其对偶问题的解为可行解,且有 z=w。

由最优性知, 这时两者的解均为最优解。

- 对偶问题的基本性质——互补松驰性
 - 在线性规划问题的最优解中,如果对应某一约束条件的对偶变量值 为零,则改约束条件取严格等式;反之,如果约束条件取严格不等 式,则其对应的对偶变量一定为零。也即
 - $\hat{x}_i > 0$, 则有 $\sum_{j=1}^n a_{ij} \hat{x}_j = b_i$, 即 $\hat{x}_{si} = 0$
 - 若 $\sum_{i=1}^{n} a_{ij} \hat{x}_j < b_i$, 即 $\hat{x}_{si} = 0$, 则有 $\hat{y}_i = 0$

因此一定有 $\hat{x}_{si} \cdot \hat{y}_i = 0$

■ 对偶问题的基本性质——互补松驰性

- 在线性规划问题的最优解中,如果对应某一约束条件的对偶变量值 为零,则改约束条件取严格等式;反之,如果约束条件取严格不等 式,则其对应的对偶变量一定为零。也即
 - \hat{x} $\hat{y}_i > 0$, 则有 $\sum_{j=1}^n a_{ij} \hat{x}_j = b_i$, 即 $\hat{x}_{si} = 0$
 - 若 $\sum_{j=1}^{n} a_{ij} \hat{x}_j < b_i$, 即 $\hat{x}_{si} = 0$, 则有 $\hat{y}_i = 0$

因此一定有 $\hat{x}_{si} \cdot \hat{y}_i = 0$

证: 由弱对偶性知

$$\sum_{j=1}^{n} c_j \hat{x}_j \le \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \hat{x}_j \hat{y}_i \le \sum_{i=1}^{m} \sum_{j=1}^{n} b_i \hat{y}_i$$

■ 对偶问题的基本性质——互补松驰性

- 在线性规划问题的最优解中,如果对应某一约束条件的对偶变量值 为零,则改约束条件取严格等式;反之,如果约束条件取严格不等 式,则其对应的对偶变量一定为零。也即
 - \hat{x} $\hat{y}_i > 0$, 则有 $\sum_{j=1}^n a_{ij} \hat{x}_j = b_i$, 即 $\hat{x}_{si} = 0$
 - 若 $\sum_{i=1}^{n} a_{ij} \hat{x}_j < b_i$, 即 $\hat{x}_{si} = 0$, 则有 $\hat{y}_i = 0$

因此一定有 $\hat{x}_{si} \cdot \hat{y}_i = 0$

证: 由弱对偶性知

$$\sum_{j=1}^{n} c_j \hat{x}_j \le \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \hat{x}_j \hat{y}_i \le \sum_{i=1}^{m} \sum_{j=1}^{n} b_i \hat{y}_i$$

又根据最优性 $\sum\limits_{j=1}^n c_j \hat{x}_j = \sum\limits_{i=1}^m b_i \hat{y}_i$,故上式中全为等式。

■ 对偶问题的基本性质——互补松驰性

□ 证: 由右端等式得

$$\sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \hat{x}_{j} - b_{i} \right) \hat{y}_{i} = 0$$

■ 对偶问题的基本性质——互补松驰性

□ 证: 由右端等式得

$$\sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \hat{x}_{j} - b_{i} \right) \hat{y}_{i} = 0$$

由于 $\hat{y}_i \ge 0$, $\sum_{j=1}^n a_{ij} \hat{x}_j - b_i \le 0$, 故对所有 $i = 1, \dots, m$ 有

$$\left(\sum_{j=1}^{n} a_{ij}\hat{x}_j - b_i\right)\hat{y}_i = 0$$

- 对偶问题的基本性质——互补松驰性
 - □ 证: 由右端等式得

$$\sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \hat{x}_{j} - b_{i} \right) \hat{y}_{i} = 0$$

由于 $\hat{y}_i \geq 0$, $\sum_{i=1}^n a_{ij} \hat{x}_j - b_i \leq 0$, 故对所有 $i = 1, \dots, m$ 有

$$\left(\sum_{j=1}^{n} a_{ij}\hat{x}_j - b_i\right)\hat{y}_i = 0$$

- 当 $\hat{y}_i > 0$ 时,必有 $\sum_{j=1}^n a_{ij} \hat{x}_j b_i = 0$
- 当 $\sum_{j=1}^{n} a_{ij} \hat{x}_j b_i < 0$ 时,必有 $\hat{y}_i = 0$

- 对偶问题的基本性质——互补松驰性
 - □ 将互补松弛性质应用于其对偶问题时,可以描述为
 - 如果有 $\hat{x}_i > 0$,则有 $\sum_{i=1}^m a_{ij} \hat{y}_i = c_j$
 - 如果有 $\sum_{i=1}^{m} a_{ij} \hat{y}_{j} > c_{j}$, 即 $\hat{x}_{j} = 0$

- 对偶问题的基本性质——互补松驰性
 - □ 将互补松弛性质应用于其对偶问题时,可以描述为
 - 如果有 $\hat{x}_i > 0$,则有 $\sum_{i=1}^m a_{ij} \hat{y}_i = c_j$
 - 如果有 $\sum_{i=1}^{m} a_{ij} \hat{y}_{j} > c_{j}$, 即 $\hat{x}_{j} = 0$
 - □ 上述针对对称形式证明得对偶问题得性质,同样适用于非对称形式。

- 对偶问题的基本性质——互补松驰性
 - □ 将互补松弛性质应用于其对偶问题时,可以描述为
 - 如果有 $\hat{x}_i > 0$,则有 $\sum_{i=1}^m a_{ij} \hat{y}_i = c_j$
 - 如果有 $\sum_{i=1}^{m} a_{ij} \hat{y}_j > c_j$,即 $\hat{x}_j = 0$
 - □ 上述针对对称形式证明得对偶问题得性质,同样适用于非对称形式。
 - □ 互补松弛性质是理解非线性规划中 KKT 条件得重要基础。

- 例 2
 - 🛾 试用对偶理论证明上述线性规划问题无最优解

$$\max \ z = x_1 + x_2$$
 s.t.
$$\begin{cases} -x_1 + x_2 + x_3 \le 2\\ -2x_1 + x_2 - x_3 \le 1\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 例 2
 - □ 试用对偶理论证明上述线性规划问题无最优解

$$\max z = x_1 + x_2$$
s.t.
$$\begin{cases} -x_1 + x_2 + x_3 \le 2\\ -2x_1 + x_2 - x_3 \le 1\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

🛾 上述问题的对偶问题

min
$$w = 2y_1 + y_2$$

s.t.
$$\begin{cases}
-y_1 - 2y_2 \ge 1 \\
y_1 + y_2 \ge 1 \\
y_1 - y_2 \ge 0 \\
y_1, y_2 \ge 0
\end{cases}$$

由第1个约束条件可知对偶问题无可行解,因而无最优解,由推论 3知原问题也无最优解。

- 例 3
 - □ 已知线性规划问题

min
$$w = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

s.t.
$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4\\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

已知其对偶问题的最优解为 $y_1^* = 4/5, y_2^* = 3/5, z = 5$, 试用对偶理论找出原问题的最优解。

- 例 3
 - □ 原问题

min
$$w = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

s.t.
$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4\\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

📵 对偶问题

$$\max z = 4y_1 + 3y_2$$
s.t.
$$\begin{cases}
y_1 + 2y_2 \le 2 & (1) \\
y_1 - y_2 \le 3 & (2) \\
2y_1 + 3y_2 \le 5 & (3) \\
y_1 + y_2 \le 2 & (4) \\
3y_1 + y_2 \le 3 & (5) \\
y_1, y_2 \ge 0
\end{cases}$$

- 例 3
 - 将 $y_1^* = 4/5, y_2^* = 3/5$ 的值代入约束条件得

$$(2) = 1/5 < 3, (3) = 17/5 < 5, (4) = 7/5 < 2$$

它们为严格不等式,由互补松弛性得 $x_2^* = x_3^* = x_4^* = 0$ 。

- 例 3

$$(2) = 1/5 < 3, (3) = 17/5 < 5, (4) = 7/5 < 2$$

它们为严格不等式,由互补松弛性得 $x_2^* = x_3^* = x_4^* = 0$ 。

由于 $y_1^*, y_2^* > 0$, 由<mark>互补松弛性</mark>可知原问题的两个约束条件应取等式,即

$$x_1^* + 3x_5^* = 4, \ 2x_1^* + x_5^* = 3$$

求解后得到 $x_1^* = 1$, $x_5^* = 1$.

- 例 3

$$(2) = 1/5 < 3, (3) = 17/5 < 5, (4) = 7/5 < 2$$

它们为严格不等式,由互补松弛性得 $x_2^* = x_3^* = x_4^* = 0$ 。

由于 $y_1^*, y_2^* > 0$, 由<mark>互补松弛性</mark>可知原问题的两个约束条件应取等式,即

$$x_1^* + 3x_5^* = 4, \ 2x_1^* + x_5^* = 3$$

求解后得到 $x_1^* = 1$, $x_5^* = 1$.

因此原问题的最优解为 $X^* = (1,0,0,0,1)^{\top}$, 最优值为 $w^* = 5$ 。

- 小结
 - □ 单纯形计算的矩阵描述
 - □ 对偶问题的基本性质
 - 弱对偶定理
 - 最优性定理
 - 对偶定理
 - 互补松弛性
- 课后作业: P75, 习题 2.5, 2.6

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈