Reducibilidad

Def.: Sean L_1 , $L_2 \subseteq \Sigma^*$ se dirá que L_1 se reduce a L_2 ($L_1 \alpha L_2$) si existe una función total computable (o recursiva) $f: \Sigma^* \to \Sigma^*$ tal que $\forall w \in \Sigma^*$, $w \in L_1 \Leftrightarrow f(w) L_2$.

Se dice que f es computable si existe una MT que la computa y que siempre se detiene.

 $M_{\rm f}$ nunca loopea. A veces, usaremos la expresión $M_{\rm f}(w)$ para referirnos a la función computada por la MT $M_{\rm f}$

Nota: la reducibilidad es una transformación de instancias de un problema en instancias de otro problema.

Ej.: $L_1 = \{w \in \{a, b\}^* \text{ tq } w \text{ comienza con } a\}$ $L_2 = \{w \in \{a, b\}^* \text{ tq } w \text{ comienza con } b\}$

$$M_f = ; \ Q = \{q_0, \ q_1\}; \ \Sigma = \{a, b\}; \ \ \Gamma = \{B, \ a, b\}; \ F = \varnothing$$

δ:

$$a \to (b, S)$$

$$q_0$$

$$b \to (a, S)$$

$$B \to (B, S)$$

Puede demostrarse fácilmente que M_f siempre se detiene y que $\forall w \in \Sigma^*, w \in L_1 \Leftrightarrow f(w) \in L_2$.

Ejercicio 1: $\Sigma = \{0, 1\}$

$$L_1 = \{w \in \Sigma^* \text{ tq cant}_1(w) \text{ es par}\}$$

 $L_2 = \{ w \in \Sigma^* \text{ tq cant}_1(w) \text{ es impar} \}$

Donde cant₁(w) es la cantidad de 1 que hay en w

Demostrar que $L_1 \alpha L_2$.

Se construye M_f, una MT que computa la función de reducibilidad.

$$M_{\rm f}\!=\!<\!\{q_0,\,q_1\},\,\{a,\,b\},\,\{a,\,b,\,B\},\,\delta,\,q_0,\,\varnothing\!>$$

δ:

Hay que demostrar que M_f siempre se detiene y que

$$w \in L_1 \Leftrightarrow M_f(w) \in L_2$$

1) M_f siempre se detiene: claramente sí, pues solamente ejecuta un movimiento.

2) $w \in L_1 \Leftrightarrow M_f(w) L_2$?

Claramente si w comienza con 1 entonces cant₁($M_f(w)$) = cant₁(w) – 1, y si w no comienza con 1 cant₁($M_f(w)$) = cant₁(w) + 1. Por lo tanto

a) Si $w \in L_1 \Rightarrow cant_1(w)$ es par $\Rightarrow cant_1(M_f(w))$ es impar $\Rightarrow M_f(w) \in L_2$ b) Si $w \notin L_1 \Rightarrow cant_1(w)$ es impar $\Rightarrow cant_1(M_f(w))$ es par $\Rightarrow M_f(w) \notin L_2$

De a) y b) se tiene que $w \in L_1 \Leftrightarrow M_f(w) \in L_2$.

Ejercicio 2: Sean
$$L_1 = \{w \in \{0, 1\}^* \text{ tq cant}_1(w) \text{ es par}\}\$$

 $L_2 = \{w \in \{0, 1\}^* \text{ tq cant}_1(w) = 1\}$

Demostrar que $L_1 \alpha L_2$. Es decir construir $M_f(w)$ tal que $w \in L_1 \Leftrightarrow M_f(w) \in L_2$

Habría que demostrar que M_f se detiene y que $w \in L_1 \Leftrightarrow M_f(w) \in L_2$.

Ejercicio 3: Sea L un lenguaje recursivo ($L \in R$) y

 $L_1 = \{ <M > tq < M > es un cód. válido de MT, L(M) = L y M siempre se detiene \}$

$$L_2 = \{ \langle M \rangle \text{ tq } \langle M \rangle \text{ es un cód. válido de MT y } L(M) = L \}$$

Demostrar que $L_1 \alpha L_2$

Para demostrar que L_1 α L_2 hay que encontrar una MT M_f que siempre se detenga para la cual sea cierto que $< M > \in L_1 \Leftrightarrow M_f(< M >) \in L_2$

Se construye M_f que trabaja de la siguiente manera: Si <M> no es un código válido de MT M_f se detiene sin hacer nada. De lo contrario recorre todas las quíntuplas de <M>, si en la 3ra posición encuentra q_A lo reemplaza por q_A , si encuentra q_A lo reemplaza por q_A .

Nuevamente hay que demostrar que M_f se detiene y que:

$$\langle M \rangle \in L_1 \Leftrightarrow M_f(\langle M \rangle) \in L_2.$$

1) M_f siempre se detiene porque la entrada es finita.

$$\begin{split} 2) <& M> \in L_1 \Leftrightarrow M_f(< M>) \in L_2. \\ a) <& M> \in L_1 \Rightarrow M_f(< M>) \in L_2? \ Si <& M> \in L_1 \Rightarrow L(M)=L \Rightarrow \\ \left\{ si \ w \in L \Rightarrow M \ para \ en \ q_A \Rightarrow M_f(< M>) \ para \ en \ q_R \ para \ la \ misma \ entrada \\ si \ w \not\in L \Rightarrow M \ para \ en \ q_R \Rightarrow M_f(< M>) \ para \ en \ q_A \ para \ la \ misma \ entrada \\ por \ lo \ tanto \ M_f(< M>) \ acepta \ \overline{L} \ \Rightarrow M_f(< M>) \in L_2. \end{split}$$

b) Se demuestra similarmente que <M $> <math>\notin$ L₁ \Rightarrow M_f(<M>) \notin L₂ . Además considérese que si <M> es un código inválido no pertenece a L₁ y M_f(<M>) tampoco pertenece a L₂

Por lo tanto $\langle M \rangle \in L_1 \Leftrightarrow M_f(\langle M \rangle) \in L_2$.

Nota: si $L_1 \alpha L_2$ significa que se puede construir una MT que acepte L_1 a partir de la MT que acepta L_2 .

Debe quedar claro que "en cierto sentido" L_1 no puede ser más difícil computacionalmente que L_2 porque se puede utilizar L_2 para resolver L_1 .

