Assignment 3: Dr. Cook II

Joon Hwan Hong; no collaborations to declare

Part 1) Load the data

Nothing to report for this section

Part 2) Check the data

Nothing to report for this section

Part 3) ROC Neurometric Analysis

A) Histograms: # of spikes occurring during the 100ms window

B) Write a ROC Score function

The Function is viewable under % ***** FUNCTIONS ***** section in MASTER.m The ROC score for Neuron 1 is 0.6487 The ROC score for Neuron 2 is 0.78514

C) Discuss what the ROC score means; whether either neuron reliably signaled

The ROC in this context is the likelihood of the neuron to detect the motion pulse. Personally would not call a 0.65 a reliable probability but the 0.79 score by Neuron 2 can be interpreted as "reliably signaling" in comparison. It is able to detect almost 4/5 times, which I would consider reliable.

Part 4) ROC Detect Probability

A) Histograms: # of spikes occurring during the 100ms window

B) ROC DP Score

The Function is viewable under \$\$ ***** FUNCTIONS ***** section in MASTER.m The ROC_DP score for Neuron 1 is 0.52991 The ROC_DP score for Neuron 2 is 0.67353

C) Discuss what the ROC means; whether either neuron was correlated to behaviour

The ROC in this context indicates the correlation between the neuron and the animal's behaviour (detecting the motion stimulus). Neuron 1 has 0.52991, which is barely above random chance given the discrete Bernoulli decision of {Fail, Correct}. A correlation of 0.67 from Neuron 2 can be concluded to be correlated, albeit not a strong or definite association (almost 0.7).

D) Alternate Analysis Method?

As covered in the lecture, the perception of a motion pulse can be measured via reaction times. An interesting avenue would be to see the correlation between neuron response with reaction times.