

Owner's Manual

Cobolt 04 Series

D0105-A January 2016

Cobolt 04 Series

Compact & low noise single longitudinal mode **CW DPSS lasers**

Cobolt Twist™ 457nm

Cobolt Blues™ 473nm

Cobolt Calypso™ 491nm

Cobolt Fandango™ 515nm

Cobolt Samba™ 532nm

Cobolt Jive™ 561nm

Cobolt Mambo™ 594nm

Cobolt Flamenco™ 660nm

Cobolt Rumba™ 1064nm

Phone: +46 8 54591230

+46 8 54591231

Contents

1.	Introduction	5
2.	Safety	6
2.1.	General	6
2.2.	Safety features	7
2.3.	Equipment Safety	8
2.4.	Warning and Identification Labels	9
3.	Overview	11
3.1.	Model number	11
3.2.	Configuration	12
3.3.	Laser head	13
3.4.	Controller	14
3.5.	Controller Cable	14
3.6.	Thermal Management	15
3.7.	Power Supply Requirements	15
4.	System Description	16
4.1.	Specification	16
4.2.	Mechanical Drawings	19
4.3.	Remote Interlock Connector	21
4.4.	Direct ON/OFF control	21
4.5.	Pin assignment	22
5.	Operating Instructions	23
5.1.	Installation start-up operation	23
5.2.	Shutdown procedure operation	23
6.	Operating Modes	23
7.	Operation via data port	24
7.1.	Handshaking	24
7.2.	RS232 configured controllers	24
7.3.	USB configured controllers	24
7.4.	Communication commands	27
8.	Cobolt Monitor™ Software	29
8.1.	Installation	29
8.2.	Software instructions	29
9.	Troubleshooting	32
10.	Warranty and Maintenance	32
11.	Service	
12.	Compliance (CDRH models only)	
13.	Disclaimer	

1. Introduction

Cobolt 04 Series lasers are continuous—wave diode—pumped solid—state laser devices operating at fixed wavelengths as defined in the specifications in Section 4.1. The laser beam is collimated and emitted through the manual shutter of the laser head. The laser head contains elements for fine temperature control of the laser cavity as well as the pump diode. The laser also features an optical feed—back loop which ensures long—term power stability of the emitted laser beam. The system can be operated in constant current or constant power mode. Control signals and drive currents are supplied via an electrical interface.

The lasers have a compact hermetically sealed package and emit a high quality beam with stable characteristics over a wide range of operating conditions. The laser is designed and manufactured to ensure a high level of reliability.

Cobolt lasers are intended for stand-alone use in laboratory environment or for integration in analytical equipment used in e.g. flow cytometry, DNA sequencing, fluorescence microscopy, holography, interferometry and Raman spectroscopy.

The Cobolt 04 Series can also be supplied with a robust fiber delivery option; Cobolt 04 Fiber pigtailed (04–03). The fiber is permanently aligned and fixed inside the hermetically sealed laser sub–package, using Cobolt HTCure Technology, ensuring stable optical output and high polarization extinction ratio (PER>100:1) over a large temperature range, as well as very high level of insensitivity to transport conditions. The coupling efficiency (into SM/PM fiber) is typically >80%, but output power is specified as out of the fiber. Fiber pigtailing is not currently available for version 04–51 laser systems.

2. Safety

2.1. General

All Cobolt 04 Series lasers are Class IIIB (CDRH), Class 3B (IEC) laser products that emit less than 500 mW of laser radiation within the visible and near-infrared spectrum (NIR). Residual emissions from the pump diode are contained within the laser head housing via filtering optics. The residual emission does not exceed Laser Class 1.

Eye and skin exposure to direct or reflected laser light is hazardous and may be extremely harmful. Always wear eye protection appropriate to the beam wavelength and intensity. Class 3B lasers may pose a risk of igniting flammable materials and in event of ignition gasses and fumes may be generated. All equipment used in close proximity to the laser beam should be suitably fire resistant and the facility should be properly ventilated. It is advised to perform a risk assessment for the facility and equipment prior to using the laser. In the case of integration into a larger system, laser safety compliance must be evaluated in the end product.

The device must be handled by skilled personnel experienced with lasers, in a laboratory environment and with access to adequate laser safety equipment. The laser head clearly displays a yellow warning label that shows the location of the laser beam aperture. This label must be visible unless the laser beam is totally enclosed.

The table below describes the irradiance in W/cm² and appropriate level of eye protection in terms of optical density (OD) for each product line.

Product	Nominal Output Power (mW)	Irradiance (W/cm²)*	Eye protection Requirement**
Twist™ 457nm	50	17	> OD 4
Blues™ 473nm	50	17	> OD 4
Calypso™ 491nm	100	33	> OD 4
Fandango™ 514.4nm	150	50	> OD 4
Samba™ 532nm	400	132	> OD 4
Jive™ 561nm	200	66	> OD 4
Mambo™ 594nm	100	33	> OD 4
Flamenco™ 660nm	150	50	> OD 4
Rumba™ 1064nm	400 * Irradiance (W/cm2) = 110% of Nominal Power (W)	62 ÷ Beam Area at bottom tolerand	> OD 3

^{**} Eye protection (OD) = Log10(Max Power (W) ÷ 60825-1 Emission Limit : Class 1 (W)) , rounded up to the next integer.

CAUTION

Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

2.1.1. Fiber Pigtailed Option

All safety recommendations in section 2.1 are also valid for the Cobolt 04 Fiber pigtailed laser heads. Additionally, heat generated from absorption of laser radiation by particles on the fiber end may increase the probability of ignition hazards in certain environments. Always clean the fiber end before turning on the laser. In systems where the beam is exposed, fiber end must be mounted <2m from the emission warning LED. It is advised to perform a risk assessment for the facility and equipment prior to using the laser. In the case of integration into a larger system, laser safety compliance must be evaluated in the end product.

2.2. Safety features

The laser is equipped with all required safety features as described in the laser safety standard 60825-1.

Remote Interlock Connector

The remote interlock connector is a connector which permits the connection of external controls placed apart from other components of the laser product. When the terminals of the connector are open-circuited, emission is interrupted and no radiation will be accessible. The remote interlock connector permits easy addition of an external interlock in laser installation. See section 4.3 for a detailed description of the remote interlock circuit and operation.

Manual Shutter (Beam Stop)

The laser head is equipped with a manual shutter, which functions as the beam stop, capable of preventing human access to laser radiation. The aperture location and the open and close positions of the shutter are indicated on the top surface of the laser head. For fiber pigtailed option, the fiber end cap is considered the 'manual shutter'

Key Control

The CDRH compliant model comes with a key-switch on the Controller which must be connected for the laser to operate. When the key is in the OFF position, the diode is prevented from emitting. The key must be actively turned to the ON position each time the laser is powered on. When the key is removed from the system laser radiation is not accessible.

Laser Radiation Emission Warning

The Controller incorporates information LEDs which display whether power is connected, the laser is on, or a fault has occurred. The "ON" LED is illuminated whenever the device is emitting or could emit light. See section 3.4 for details on the controller. The emission warning indicators are also visible in the Cobolt Monitor™ software, see section 8 for details on the control software

2.3. Equipment Safety

Always install the laser system to a properly grounded power outlet. The laser head and controller must be mounted on a common ground plane, such as an optical table. Cobolt lasers contain a laser diode which is sensitive to electrostatic discharge (ESD).

Laser light reflected directly back into the laser head can be damaging to the laser. Choose Cobolt 04–51 lasers where higher immunity to back reflections is required.

It is important to always make sure the fiber end-face is clean before turning the laser on and before connecting the fiber connector in physical contact with another connector. Failure to do so may lead to irreparable damage of the fiber end-face. Do not clean the fiber when the laser is on. We recommend using appropriate equipment for fiber cleaning and inspection.

2.4. Warning and Identification Labels

The upper face of the laser head contains a yellow label with laser safety warning and classification information, the wavelength and maximum power of the unit. It also shows the location of the laser beam from the aperture and indicates the open and close positions of the manual shutter. This label must be visible unless the laser beam is totally enclosed. A silver label showing information about the laser model, manufacturer date and location, and the power supply voltage and current, is located on the laser head. Lasers shipped to customers in the USA also contain a label of CDRH compliance.

2.4.1. Free beam Laser head 04-01/04-51

Manufacturer Identification Labels

OEM Label

CE marking for CDRH models only

Aperture Warning Labels

2.4.2. Fiber Pigtailed Laser head 04-03

Manufacturer Identification Labels

Cobolt Samba™ 150 532 nm

0532-04-03-0150-600

S/N: **1234**Made in Sweden, 11-2015

OEM LASER DEVICE

Made in Sweden, 11-2015 Input: VDC = 12 V, I_{MAX} = 3.75 A Cobolt AB, Vretenvägen 13 SE-171 54 Solna, Sweden

OEM Label

Cobolt Samba™ 150 532 nm

0532-04-03-0150-500

S/N: 1234

Made in Sweden, 11-2015 Input: VDC = 12 V, I_{MAX} = 3.75 A

Cobolt AB, Vretenvägen 13 SE-171 54 Solna, Sweden

CE marking for CDRH models only

Aperture Warning Labels

CDRH models shipped to USA

3. Overview

Cobolt 04 Series laser systems consist of four main parts: the laser head, the Controller, the Cable and the Power Supply (not shown). The cable provided should always be used to connect the laser head with the Controller. Always install the laser system to a properly grounded power outlet.

3.1. Model number

Cobolt 04 Series lasers are sold in two configurations: CDRH and OEM, described in section 3.2. The model numbers are composed as described below.

3.2. Configuration

3.2.1. CDRH Compliant

The CDRH compliant system is supplied with a key switch on the Controller, which must be connected, along with a remote interlock connector. Once power is supplied, laser emission starts when the key is turned from the OFF position to the ON position. The status of operation can be monitored via LEDs on the Controller. Setting the key to its OFF position puts the laser in stand-by mode. The CDRH model is CE compliant.

The standard CDRH model consists of:

- Laser head
- Controller with key switch
- Keys
- 1(m) Controller Cable
- 12V power supply unit
- Remote interlock jumper (for short circuiting the remote interlock connector)
- Data communication cable

3.2.2. OEM

The OEM system is supplied **without** a key switch on the controller. Connecting the power supply to the controller initiates an automatic start-up sequence. If the remote interlock is connected, laser emission will start automatically as soon as power is supplied and internal temperatures are stabilized.

The OEM model consists of:

- Laser head
- Controller
- Controller Cable
- 12V power supply unit
- Remote interlock jumper (for short circuiting the remote interlock connector)
- Data communication cable

3.3. Laser head

The Laser Head contains pump diode, laser cavity, beam shaping optics and thermoelectric coolers (TEC) for temperature control of the cavity and pump diode. The laser head contains an optical feed-back loop which ensures long-term power stability of the emitted visual beam. The laser head features a manual mechanical shutter as well as a laser hazard label and a laser classification label. The Laser Head gets electrical power and control signals from the Controller via a 26-pin HD Sub-D cable. All versions covered in this manual are available with all CDRH and OEM controller configurations.

3.3.1. Versions

Free Beam Laser Head 04-01

The standard Cobolt version 04–01 free beam lasers, Twist™ 457nm, Blues™ 473nm, Calypso™ 491nm, Fandango™ 515nm, Samba™ 532nm, Jive™ 561nm, and Mambo™ 594nm. See section 4.1.1 for available power levels.

Free Beam Laser Head 04-51

Cobolt version 04–51 are free-beam lasers, are compact versions of the 05–01 series and has a higher immunity to back reflections compared to the 04–01 laser head. Currently Cobolt Samba™ 532 nm, Jive™ 561nm, Flamenco™ 660nm and Rumba™ 1064nm are available in version 04–51. See section 4.1.1 for available power levels.

Fiber Pigtailed Laser Head 04-03

Cobolt version 04–03 lasers are delivered with a permanently aligned fiber pigtail. The fiber is equipped with a removable end–cap for protection of the fiber end–face. The fiber end–cap serves as the mechanical shutter of the laser system. Cobolt Blues™ 473nm, Calypso™ 491nm, Fandango™ 515nm, Samba™ 532nm, Jive™ 561nm, and Mambo™ 594nm are available in version 04–03. See section 4.1.2 for available power levels.

3.4. Controller

The Controller supplies driving current and control signals to the laser head. All Laser Heads are delivered with a controller. The operation set points are specific to each Laser Head and have been fixed during manufacturing. The operation set points are stored in the laser head so the controller can be interchanged or replaced.

The status of the laser operation is given via LED indicators:

POW	(green light)	Power is supplied.
ON	(orange light)	Laser light is on in constant current mode.
LOCK	(orange light)	Laser light is on and the output power has been locked to set point.
		The laser is operating according to specifications.
ERR	(red light)	An error has occurred. No laser light.

When power is supplied to the Controller, regardless of on/off state, the temperature control elements are operating to reach set point values. The Controller includes a remote interlock connector, pin 1–2 according to Section 4.3. The operation of the laser can be controlled and monitored via the data port that supports either USB or RS-232 commands. See Section 7 for further details. RS-232 controllers may also be delivered with a RS-232 to USB adaptor.

3.5. Controller Cable

The controller cable connects the laser head to the Controller. The standard (CE compliant) cable length is 1(m) long. The cable has a minimum bending radius 8 cm. When connected care should be taken not to bend or break any of the 26 pins.

3.6. Thermal Management

To ensure operation within given specifications and for the warranty to be valid, the laser head must be attached to a heat sink providing adequate thermal resistance. The required thermal resistance for low power models is <0.6 K/W and <0.4 K/W for high power models (i.e Calypso 100 mW, Samba 300 mW, Samba 400mW, Jive 200mW, Mambo 100mW, Flamenco 100 mW, and Rumba 400 mW). This value is the difference between the maximum allowed Laser Head base plate temperature (50°C) and the maximum specified ambient temperature at the air-heatsink interface (40°C), divided by the maximum power dissipated from the (15W or 25W depending on laser model, see specification below). The mounting surface should be flat within $\pm 0.05 \text{ mm}$ over mounting surface. It is recommended to use a thermal heat compound between the laser head and the heat sink to provide good thermal contact. The Cobolt 'HS-03 Laser Head Heatsink' meets these requirements, see www.cobolt.se for more information on heat sinks. For assistance in thermal management and system integration, please contact Cobolt technical support.

Heat Sink Requirements and typical maximum heat dissipation for Cobolt 04 Series. *High power applies to the following models only: Calypso 100 mW, Samba 300 mW, Samba 400 mW, Jive 200 mW, Mambo 100mW, Flamenco 100 mW, and Rumba 400 mW

3.7. Power Supply Requirements

An appropriate Power Supply Unit (PSU) is supplied by Cobolt with the laser and must be plugged into a properly grounded standard power outlet. The output from this PSU is 12 VDC/3.75 A. The power supply accepts 100 - 240 V AC and 50-60 Hz. Ripple and noise 1% peak-peak max, 20 MHz bandwidth. The accepted voltage range is 11 V - 28 VDC.

4. System Description

The information presented here is believed to be accurate and is subject to change without notice. The specifications contained herein cannot be guaranteed outside of normal operational conditions. The output power can be adjusted using control commands, see Section 7.4. Specifications are guaranteed at 100% of nominal power.

4.1. Specification

4.1.1. Optical Specifications Free Beam Laser head version 04-01 and 04-51

	Centre wavelength (nm) ¹	Output power (mW)			
		04-01	04-51		
Twist™	457.0 ± 0.3	25 and 50			
Blues™	473.0 ± 0.3	25 and 50			
Calypso™	491.5 ± 0.3	25, 50, 75, 100			
Fandango™	514.4 ± 0.3	25, 50, 100, 150			
Samba™	532.1 ± 0.3	25, 50, 100, 150, 300	400		
Jive™	561.2 ± 0.3	25, 50, 75, 100, 150	200		
Mambo™	593.6 ± 0.3	25, 50, 100			
Flamenco™	659.6 ± 0.3		100		
Rumba™	1064.2 ± 0.6		400		

Product Wavelength	457	473	491	514	532	561	594	660	1064
Beam diameter at Aperture (µm, 1/e²)				700	± 50				1000 ± 50
Beam divergence (mrad, full angle, 1/e²)			1.	2			1.3	1.5	1.6
Noise 20 Hz - 20 MHz (pk-pk)	<	2%	<3%		<2%		<3%		<1%
Noise 20 Hz - 20 MHz (rms)	<0.	25%	<0.3%		<0.25%		<0.3%	<	0.1%
Long-term power stability (8 hours)	<	2%	<3%		<2%		<3%		<2%
Spatial mode					TEM ₀₀ , M ²	<1.1			<1.2
Spectral linewidth	<1 MHz								
Wavelength stability (after warm-up)	2 pm over ± 2 °C and 8 hrs								
Beam symmetry at aperture	>0.95 : 1								
Beam pointing stability (after warm-up)	<10 μrad/°C (over 10-40°C)								
Coherence length	>100 m								
Beam waist location (from exit window)	± 20 cm								
Beam angle accuracy	<5 mrad								
Beam position accuracy	<0.25 mm								
Polarization ratio (linear, vertical)	>100:1								
Residual IR emission	< Class 1								

^{1.} The wavelength is fixed with this accuracy, while drift is defined as Wavelength stability. The wavelength is specified in air.

4.1.2. Optical Specifications Fiber Pigtailed Laser head version 04-03

Product Wavelength	473	491	514	532	561	594		
Maximum Power out of Fiber (mW)	35	100	100	150	100	75		
Standard Fiber		1 (m), SM/PM with 3mm Jacket						
Output Connector		FC/APC non-collimated						
Numerical Apetrue (NA)	0.095							
Long-term power stability (8 hours)	<3%							
Noise 20 Hz - 20 MHz (pk-pk)	<2%	<3%		<2%		<3%		
Noise 20 Hz - 20 MHz (rms)	<0.25%	<0.3%	<0.25%		<0.3%			
Polarization ratio (linear, vertical)			>10	00:1				

4.1.3. Operation and Environmental Specifications

Power supply	12 VDC, 3.75 A (11-28 VDC accepted)
Power consumption, total system (Laser Head + Controller)	<25 W (typical ~15 W) , < 35 W (typical ~25 W) *
Maximum heat dissipation of Laser Head	<15 W (typical ~10 W), < 25 W (typical ~15 W) *
Maximum Laser Head baseplate temperature	50°C
Warm-up time, from OFF	<2 min
Ambient temperature, operation	10 - 40°C
Ambient temperature, storage	-10 -> +60°C
Humidity	0-90% RH non-condensing
Ambient Air pressure	950–1050 mbar
Heat sink thermal resistance, Laser Head	<0.6 K/W
	<0.4 K/W *

^{*} Applies to high power models: Calypso 100 mW, Samba 300 mW, Samba 400mW, Jive 200 mW, Mambo 100mW, Flamenco 100 mW, Rumba 400 mW

4.1.4. Electrical Interfaces

Interfaces	Connector	Function
Input power	Kycon KPJX-45, 4-pin	Power supply to Controller
Laser Head to Controller	HD-sub 26-pin, male	Connection to Laser Head
Controller to Laser Head	HD-sub 26-pin, female	Connection to Controller
Data port	USB-type mini B	Control and monitoring via control commands
Remote interlock &	Molex 90130-3206	Analog input 5 - 12 V => Laser ON
Analog signals		Analog input <2.7 V => Laser OFF
Warm-up time		2 min

4.1.5. Mechanical Interfaces

Dimensions:	
Laser Head 04-01/04-51	102x60x40 mm (4.0x2.4x1.8 inches)
Laser Head 04–03	117x60x45 mm (4.6x2.4x1.8 inches)
Controller	190x72x28 mm (7.5x2.8x1.1 inches)
12V PSU	132x58x30 mm (5.2x2.3x1.2 inches)
Fixation holes, Laser Head	Ø = 4x 4.5mm (M4) ; 115mm x 55mm
Fixation holes, Controller	Ø = 4x 6.4mm (M6); 178mm x 51mm
Cable (Laser Head – Controller)	1 m length, >8 cm bending radius
Laser head weight	< 0.5 kg

4.2. Mechanical Drawings

4.2.1. Laser Head

Free Beam Laser head mechanical outline. Dimensions in mm [inches].

Fiber Pigtailed Laser head mechanical outline. Dimensions in mm [inches].

4.2.2. Controller

Controller mechanical outline. Dimensions in mm [inches].

Connector location Controller

4.3. Remote Interlock Connector

The remote interlock connector is located at pin 1 and 2 of the molex connector on the Controller. The connector can be short–circuited with an interlock jumper (included at delivery) for operation of the laser. To use the remote interlock connector with an external switch, connect a pin 1 and 2 on a Molex plug. After the remote interlock connector has been opened the laser will need to be reset by disconnecting from and then reconnecting to the power supply in order to start again. Alternatively, it can be re–started using a special sequence of commands, see Section 7.4 for further details. The signal level is between 0V and +5V with a pull up resistor, and the current required to ground the remote interlock connector is 5 mA. The time delay in the hardware is <1 ms, but after filtering by the firmware the reaction time is extended to <20 ms.

4.4. Direct ON/OFF control

The Direct On/Off Control feature enables turning the laser ON/OFF using a 5–12 VDC signal. After having configured the Controller for Direct Control operation (factory set or by executing @cobasdr 1), the laser can only start–up when 5–12V VDC (max 12.5 VDC) is applied to pin 3 on the analog connector with 0 VDC on pin 2 as reference. Shifting the signal to 0 VDC on pin 3 will turn the laser off and put the laser in stand–by mode (status LED:s is POW and not flashing).

This function is not available for CDRH compliant models.

! Note: This input only controls the on/off state of the laser and cannot be used to modulate the power output. Integrated or externally mounted modulation solutions are available for most wavelength and power combinations, see www.cobolt.se for more information.

4.5. Pin assignment

4.5.1. Analog connector & Remote interlock connector

Manufacturer Molex 90130-3206, mates with 90143-0006.

Pin	Function	Pin 1 Pin 3
1	Remote Interlock (connect to pin 2 for enable)	
2	0 V - GND	
3	Remote On/Off (+5V Input)	
4	TST (Internal Cobolt use only)	المسارد
5	LED "Laser on" (5V)	Pin 2 [/] Pin 4 [\]
6	LED "Error" (5V)	

4.5.2. Power connector

Kycon KPJX-4S, mates with Kycon KPPX-4P. Grounded shield.

Pin	Function
1	0 V
2	+11-28 VDC
3	0 V
4	+11-28 VDC

Pin 5

4.5.3. Data connector

Connector USB-type, manufacturer Hsuan Mao C8320-05BFDSB0, mates with connector mini-B.

Pin	Function
1	+5 V
2	D-
3	D+
4	Not connected
5	0 V (GND)

5. Operating Instructions

As standard, all lasers are delivered with the Controller set in Auto-start mode. As soon as power is supplied to the Controller the temperature control elements are operating to reach set-point values and the laser emission will start, unless the key-switch is enabled (CDRH model).

5.1. Installation start-up operation

- 1. Mount the laser head on a suitable heat sink (see Section 3.6).
- 2. Ensure that the remote interlock jumper is connected.
- 3. Connect the laser head to the Controller with the Cable and fasten screws at both ends.
- 4. Connect the 12 VDC power supply to the mains outlet and then to the Controller.
- 5. The laser now goes through the following auto-start sequence:
 - Temperature stabilization (1-2 min). Status LEDs: POW flashing, then POW goes on.
 - Turn key switch to start the laser. Status LEDs: ON goes on (CDRH model only)
 - The laser starts (light is emitted) in a constant warm-up current constant for 60 sec. Status LEDs: ON goes on.
 - The laser locks to pre-set output power (<2 min) and operates according to specifications.
 Status LEDs: LOCK goes on.

! Note: If the power does not match the power as stated on the test sheet see Section 11: Service for more information.

5.2. Shutdown procedure operation

- 1. Turn the key switch to OFF first (CDRH models only).
- 2. Disconnect PSU from mains outlet.
- 3. Disconnect Controller from PSU.

6. Operating Modes

There are two operating modes: constant power and constant current. The default mode for Cobolt 04 series lasers when shipped is constant power. In constant power mode the power is monitored on an internal photodiode, and this is used to regulate the current to maintain a constant power level. In constant current mode the laser runs at a set current level.

7. Operation via data port

7.1. Handshaking

Under no circumstances does the Controller initiate communication; it only transmits characters in response to a message. Every message to the Controller generates a response, either a numerical value or the acknowledgment string "OK". In the event that the Controller receives a message that it cannot interpret, it responds: "Syntax error:" followed by the complete command string (minus the termination character) that caused the error.

Every Controller response is terminated by a carriage return (ASCII 13) and a full stop is used with floating numbers.

7.2. RS232 configured controllers

To communicate with the laser, a communication cable is supplied. Each Controller is shipped from the factory with a fixed baud rate (115200). The other serial port parameters are: 8 data bits, 1 stop bit and no parity. Hardware flow control is not supported. Each command to the Controller must be terminated by a carriage return. All commands are case–sensitive. Leading and trailing white space is ignored, but command arguments must be delimited by a single space character (ASCII 32).

7.3. USB configured controllers

The USB configured controllers requires a driver for communication with a computer. The USB driver must be installed and can be downloaded from the Cobolt website (www.cobolt.se). When installed, a virtual COM port will be created to communicate with the Controller.

To install the USB driver in Windows 7 follow these instructions:

1. Go to the Control Panel and choose Hardware and Sound.

- 2. Under the **Devices and Printers** section, choose **Device Manager**.
- Under Other devices, find the device called Cobolt Laser Driver MLD/DPL. Right-click it and chose Update Driver Software.

4. On the next screen chose the **Browse my computer for driver software** option.

5. Click **browse**, and find folder on your computer where the USB driver is stored.

6. Windows security may warn you that the publisher of the driver is unverified. Choose **Install this driver** software anyway.

7. The installation should now be complete.

7.4. Communication commands

The laser is delivered with the Controller set in Auto-start mode (see section 5.1 for Auto-start sequence description). For system integration the Auto-start sequence can be disabled and the following commands can be used to control the laser (NOTE some commands require Auto-start to be disabled but others will work when Auto-start is active). As long as power is supplied to the Controller the temperature control elements are always operating to reach set-point values and the laser will be idle waiting for the next command. All arguments are in lower case and separated by a space (ASCII 32).

Command	Function	Argument	Returned value
ilk?	Get interlock state		0 = OK, 1 = remote interlock open
@cob1	<u>Laser ON after interlock</u> Forces the laser into Autostart without checking if autostart is enabled (OEM models).		
@cobas	Enable/disable autostart See section 5.1 for description (to be used on OEM models only, disabling autostart means the laser no longer goes through its warm up routine).	0 = disable, 1 = enable	
@cobas?	Get autostart enable state		0 = disabled, 1 = enabled
l?	Get laser ON/OFF state		0 = OFF, 1 = ON
l1	Laser ON Requires autostart disabled. Use this command for manual ON (OEM models).		
10	Laser OFF Use this command for manual OFF (OEM models).		
p?	Get set output power		Float (W)
р	Set output power	Float (W) (e.g. p 0.050 for 50 mW)	
pa?	Read output power		Float (W)
i?	Get drive current		Float (A)
slc	Set drive current	Float (A)	
leds?	Status of 4 LEDs		Int [0:15] Bit 0 = "POWER ON" Bit 1 = "LASER ON" Bit 2 = "LASER LOCK" Bit 3 = "ERROR" 1 = LED on 0 = LED off
f?	Get operating fault		0 = no fault 1 = temperature error

Cobolt 04 Series

			3 = open interlock 4 = constant power fault
cf	<u>Clear fault</u>		
@cobasdr	Enable/disable direct control See section 4.4 for description (OEM models only).	0 = disable, 1 = enable	
@cobasdr?	Get direct control enable state		0 = disabled 1 = enabled
sn?	Get serial number		32-bit unsigned integer
hrs?	Get system operating hours		Float

For re-starting the laser with commands after having opened the remote interlock switch, execute "cf" for clear fault followed by "@cob1" to restart the laser. This command forces the laser into Auto-start enabled so Auto-start must be disabled if this is the required set up. On CDRH models the key switch is the only way to re-start.

8. Cobolt Monitor™ Software

The Cobolt Monitor™ software provides a graphical way to monitor the laser performance and to change power, operation mode and other settings. The software can connect to the laser either via RS-232 port or via USB, depending on the type of controller. The USB driver must be installed manually and can be downloaded from the Cobolt website (www.cobolt.se), see section 7.3. Cobolt Monitor™ has been tested with operative systems Windows XP, Windows Vista, Windows 7 and Windows 8. Microsoft .NET 2.0 is required to run the Cobolt Monitor™ software. Most computers with operative systems Windows XP, Windows Vista, Windows 7 and Windows 8 have this included as standard.

8.1. Installation

Download the latest version of the Cobolt Monitor[™] software from <u>www.cobolt.se</u>. The Cobolt Monitor[™] software is a stand–alone executable, the executable file is packaged with other files needed to run the program in a .zip file. Save the .zip file any storage device, and extract all files. The folder created after extracting the files can be placed on any storage device and Cobolt Monitor[™] can be run from there. All files and folders contained in the .zip file must be present for the program to function properly.

8.2. Software instructions

The software automatically searches for Cobolt devices every 5 seconds and automatically connects the laser if detected. The software can identify USB connected lasers as well as RS232 connected lasers.

The first Cobolt Monitor™ window that appears in the Cobolt Monitor software.

Once the laser is connected it can be controlled from the box dedicated for the laser. The interface, found in the following figure, is intended for typical user cases. Only the relevant information is presented on this level, displaying only the status the laser is in and relevant choices to make. Here follows a short description of how to use the Cobolt Monitor TM software on this level.

Laser successfully connected.

Laser ON - Turns the laser ON. If the laser is in autostart mode this is equivalent to "restart".

Laser OFF - Turns the laser OFF.

Mode – Gives a choice of operational modes possible to choose for the laser model. For 04 series lases Constant Power or Constant Current operation can be chosen. Only relevant choices are presented to the mode of operation chosen.

Commands - opens a command communications window to send commands directly to the laser controller.

 $\label{lem:message-highlights} \textbf{Message} - \textbf{highlights} \ \textbf{important} \ \textbf{information} \ \textbf{of} \ \textbf{the} \ \textbf{laser} \ \textbf{status} \ \textbf{to} \ \textbf{the} \ \textbf{user}.$

Disconnect – allows the user to disconnect from the Cobolt Monitor™ software in a controlled way.

! Note: The communication cable should not be removed when the software is in connect state. The communication within the controller may then malfunction and this might require a power restart of the driver. To disconnect the laser click "Disconnect" or close Cobolt Monitor™ completely. It is also possible to disconnect by powering the laser OFF. In this case Cobolt Monitor™ will automatically close the window for that laser.

Clear Fault – is displayed in the event of a fault. The user can deal with the cause of the fault and then press "Clear Fault" and then restart the laser by clicking "Laser ON". Example: if the remote interlock loop is open the user must make sure the loop is closed again before issuing a "Clear Fault" followed by "Laser On".

More -an additional Cobolt Monitor™ window will open containing more detailed information of that laser's status.

Cobolt Monitor™ software expanded to for more detailed monitoring.

TEC Settings - shows the running status and the fault status for the laser's internal thermoelectric coolers (TEC).

Laser Operation Mode and Settings – displays the set laser power. The user can switch between constant power mode and constant current mode. Likewise, there are boxes to set the constant power level and constant current level. The output power (as monitored measured on an internal photodiode) and the current through the laser pump diode are both displayed.

Autostart Program – displays whether the laser is in CDRH or OEM mode and displays the current laser operational status. 5V direct input is set here, see section 4.4. There are also buttons to "abort" the autostart sequence or to "restart" the laser after a fault.

 $\emph{!}$ Note Specifications are only guaranteed in constant power mode, at 100% of nominal power.

Fault Status – displays ERROR messages. In the event of an ERROR, the laser action is stopped. When the reason for the ERROR event is understood and the problem is addressed the fault status can be cleared with "Clear Fault". If the Autostart Program is enabled, click restart to restart the laser.

LED Status – displays the LEDs that are currently illuminated on the Controller, see section 3.4. These are displayed even if the laser is in OEM mode.

9. Troubleshooting

In the unlikely case of a problem occurring, use the table below to help identify the error. Some faults can be fixed remotely. Back reflections into the cavity can cause instability of operation. Isolators are available as an option. In case of a sudden voltage drop the laser will turn itself off and restart. If it is in CDRH configuration it will require that the key is turned on again. Contact Cobolt support or your local representative to identify corrective action.

<u>LEDs</u>	<u>s</u>	<u>tatus</u>	Explanation	<u>Action</u>
	off	flashing		
POW	Х		Mains power off	Check connections
POW		Х	Temperatures not stabilised	Check if heatsink is sufficient
LOCK		Х	Laser cannot lock in constant power,	Check for back reflections. Contact the factory.
			current limit has been reached	
ERROR		on	Error in laser parameters	If lights at start-up check cable connections, if
				lights >5s after start-up contact the factory.

10. Warranty and Maintenance

Cobolt provides a warranty of 24 months after delivery, with unlimited number of operation hours on all Twist™, Blues™, Calypso™, Fandango™, Samba™, Jive™ and Mambo™ 04–01 1aser systems. Cobolt provides a warranty of 12 months after delivery, with unlimited number of operation hours on 04–51 laser systems (Samba™ 400mW, Jive™ 200mW, Flamenco™ and Rumba™). The warranty on the fiber pigtailed (04–03) option is 12 months on faulty workmanship (24 months on the laser itself).

The laser systems are designed for modular repair or replacement in the event that the laser head or Controller malfunctions. Warranty is invalid if the laser system is operated outside of the specific limits and conditions as outlined in this document.

The Cobolt lasers are contained in sealed enclosures and should not be opened for any reason. Disassembly of any part of the system (including the cable) means the system no longer complies with the EMC standards will void the warranty. All laser parameters are set at the factory, and there are no adjustments required. Maintenance is limited to wiping dirt off the enclosures and cleaning the aperture.

11. Service

Due to accuracy tolerances, calibration differences and allowed power drift there may be discrepancies between the Cobolt measurement of the optical output power and the customer measurement equipment. If the output power deviates from the reported value please contact your local Cobolt representative for an online re-calibration. If the laser does not function, do not attempt to open any of the units, or the warranty will be voided. Contact your local Cobolt representative for consultancy and to request an RMA number (see back cover for contact information). If an RMA number us issued and the laser needs to be shipped back to Cobolt or your local representative, please pack the complete system for shipment using the original package or equivalent. Ensure the unit is free from thermal paste before packing. The warranty covers repair or replacing the unit at the option of Cobolt.

12. Compliance (CDRH models only)

The CDRH model lasers (-5/700) are designed and manufactured to comply with the EC Low Voltage Directive and the EC EMC Directive in the CDRH-compliant configuration of laser head, controller, key, 1m controller cable and Cobolt-supplied power supply. All equipment must be mounted on a common ground plane, such as an optical table. The equipment might not conform to the EC directives if any part of the supplied equipment is replaced with a part not supplied by Cobolt or if the equipment is not properly grounded. Disabling any of the safety features nullifies the CE marking and violates the laser safety standard.

CE

The following harmonized standards are in use:

Electrical Safety: EN 61010-1, IEC-61010-1, UL 61010-1

Laser Safety/Class: IEC-60825-1, CDRH 21 CFR 1040.10 and 1040.11

EMC: IEC 61326-1

EN55011 class A

EN61000-4-X, where X=2,3,4,5,6 and 11

FCC Part 15, subpart B, class A

All Cobolt products are RoHS compliant as defined by the EU Directive 2011/65/EU.

Contact you sales representative for a copy of the full Declaration of Conformity.

13. Disclaimer

Cobolt will assume no responsibility for damage incurred by faulty customer equipment, such as measurement equipment, cables etc, used in conjunction with Cobolt lasers. Cobolt makes no warranty of any kind with regard to the information contained in this guide, included but not limited to, implied warranties of merchantability and suitability for a particular purpose. Cobolt shall not be liable for errors contained herein nor for incidental or consequential damages from the furnishing of this information. No part in this manual may be copied, reproduced, recorded, transmitted, or translated without the express written permission by Cobolt.

Contact Information

Cobolt headquarters

Cobolt AB Vretenvägen 13 SE-171 54 Solna

Sweden

Phone: +46 8 545 91 230

Fax: +46 8 545 91 231

E-mail: info@cobolt.se

Web: www.cobolt.se

Sales representatives

Australia

Warsash Scientific Pty Ltd Phone: +61 2 9319 0122 Fax: +61 2 9318 2192 www.warsash.com.au

China

DynaSense Photonics Co. Ltd. Phone: +86 (0)10 83503853 Fax: +86 (0) 10 83503622 www.dyna-sense.com

Germany, Austria, Switzerland

Von Gegerfelt Photonics Phone: +49 6251 860 99 20 Fax: +49 6251 860 99 17 www.vgphotonics.eu

Israel

Lahat Technologies Ltd. Telephone: +972 9 7646200 Fax: +972 9 7646204 www.lahat.com

Japan

Pneum Co, Ltd Japan Phone: +81 48 985 2720 Fax: +81 48 985 27 21 www.pneum.co.jp

Singapore, Malaysia, Thailand

Photonitech(Asia) Pte Ltd Phone: +65 6749 9031 Fax: +65 6233 9171 www.photonitech.com

Taiwan

Tayhwa Technology Co. Ltd Phone: +886 2 23569737 Fax: +886 2 23569659 www.tayhwa.com.tw

Benelux

Laser 2000 Benelux CV Phone: +31 297 266 191 Fax: +31 297 266 134 www.laser2000.nl

Estonia, Latvia, Lithuania

Optek Ltd. Phone: +37 129 781 582

Fax: n/a www.optek.lv

India

Spectral Instrument System Telephone: +91 124 6588794 Fax: +91 901 519 5055 www.spectral-instruments.com

Italy

Optoprim s.r.l.
Telephone: +39 039 834977
Fax: +39 039 2845269
www.optoprim.it

Poland

Amecam Phone: +48 (22) 207 22 78 Fax: +48 (22) 207 22 77 www.amecam.pl

South Korea SM Tech

Phone: +82 42 8244413 Fax: +82 42 8244414 www.lasersystem.co.kr

UK & Ireland

Laser Lines Ltd Phone: +44 1295 672 500 Fax: +44 1295 672 550 www.laserlines.co.uk

Brazil

Photonics Instrumentos Phone: +55 11 2910 6852 Fax: +55 11 2910 6852 www.photonics.com.br

France

Optoprim

Phone: +33 1 4190 6180 Fax: +33 1 4190 6189 www.optoprim.com

lapan

Kantum Electronics Co Ltd Telephone: +81 45 345 0002 Fax: +81 45 345 0012 www.kantum.co.jp

Russia & Belarus

Azimuth Photonics Phone: +7 495 792 39 88 Fax: +7 495 958 23 09 www.azimp.ru

Spain & Portugal

Laser Technology SI Phone: +34 93 750 0121 Fax: +34 93 750 0323 www.laser-technology.com

USA, Canada & Mexico

Cobolt Inc

Phone: +1 (408) 708 4351 Fax: +1 (408) 490 2774 www.coboltinc.com