Space Filling Curves

Definition

Let I be an interval of the real numbers and let X be a topological space. A "curve" is a continuous map $f: I \rightarrow X$ or its image f(I).

Examples

 $f: \mathbf{R} \to \mathbf{R}^2$ given by $f(x) = (x, x^2), f(x) = (\cos x, \sin x), \dots \text{ are curves but not onto } \mathbf{R}^2.$

Question

Is there a curve $f: \mathbb{R} \rightarrow \mathbb{R}^2$ which is onto? \Leftrightarrow Is there a map which is continuous and maps \mathbb{R} onto \mathbb{R}^2 ?

It suffices to show that there exists a continuous, onto map $f:[0,1] \rightarrow [0,1]^2$ Proof) 생략

Furthermore, if there is a curve $f: \mathbb{R} \to \mathbb{R}^2$ which is onto, then there is a curve $g: \mathbb{R} \to \mathbb{R}^n$ for each $n \in \mathbb{N}$.

Proof)

We prove by using induction.

For n=1, take f(t)=t. For n=2, it is already assumed that there is such a curve $s: \mathbf{R} \rightarrow \mathbf{R}^2$. Suppose that the statement holds for some $n \in \mathbf{N}$. Consider the composition of functions

$$R \rightarrow_s R \times R \rightarrow_g R^n \times R \rightarrow_h R^{n+1}$$

, where s is as given above, h is the natural mapping given by $h((x_1,x_2,...,x_n),x_{n+1})=(x_1,x_2,...,x_n).\ g \ \text{is defined by}\ g(x,y)=(u(x),y) \ \text{where}$

 $u: \mathbf{R} \rightarrow \mathbf{R}^n$ is a continuous onto map whose existence is assumed in the induction hypothesis. Then the composition is a continuous onto map.

It remains to show the existence of a continuous, onto map $f: I \rightarrow I^2$ where I = [0,1].

Theorem

There exists a continuous map $f: I \rightarrow I^2$ which is onto.

Proof)

We first consider the following operation.

Consider $g: [a,b] \rightarrow [x,x+\epsilon] \times [y,y+\epsilon]$ whose graph is in Figure 1:

We make an operation on g to obtain $g'\colon [a,b]\to [x,x+\epsilon]\times [y,y+\epsilon]$ whose graph is in Figure 2. Notice that g(a)=g'(a) and g(b)=g'(b)

We define a sequence of functions $f_n:I\to I^2$ as follows. Let $f_1=g$ in the case $a=0,b=1,x=y=0,\epsilon=1$ where g is as defined above. The two line segments in the graph of f_1 is the images of $[0,\frac12],[\frac12,1]$ under f_1 respectively. Let f_2 be defined to be a map whose graph is obtained by applying our operation on the graph of f_1 . Hence the graph of f_2 looks like the one in Figure 2. In this case, the 8 line segments in the graph of f_2 are images of $[0,\frac18],[\frac18,\frac28],\dots,[\frac78,1]$ respectively. Notice that given $t\!\in\![0,1]$, we have $||f_1(t)-f_2(t)||\leq \sqrt{2}$ since the graphs of f_1,f_2 lie in the unit square. Define f_3 by characterizing its graph; for each triangle appearing in the graph of f_2 , apply our operation. The graph of f_3 is obtained from the graph of f_2 as in the Figure 3.

In this case, the 32 line segments are images of $[0,\frac{1}{32}],[\frac{1}{32},\frac{2}{32}],\dots,[\frac{31}{32},1]$ under f_3 respectively. Notice that given any $t\!\in\![0,1]$, both $f_2(t)$ and $f_3(t)$ lie in a square with sidelength $\frac{1}{2}$, so $||f_2(t)-f_3(t)||\leq \frac{\sqrt{2}}{2}$ Define f_n recursively by characterizing its graph as follows; given the graph of f_{n-1} , apply the operation on each triangle to obtain the graph of f_n . Then we have $||f_n(t)-f_{n+1}(t)||\leq \frac{\sqrt{2}}{2^{n-1}}$ for each $t\!\in\![0,1]$ and $n\!\in\!\mathbb{N}$.

Let $C(I,I^2)$ be the set of all continuous functions $f:I\to I^2$. Then $f_n\subseteq C(I,I^2)$ for each $n\!\in\!\mathbb{N}$. Define a metric ρ on $C(I,I^2)$ by $\rho(f,g)=\sup\{\;\|f(t)-g(t)\|:t\!\in\![0,1]\;\}$

Then $C(I,I^2)$ with the metric ρ is a complete metric space (A metric space where every Cauchy sequence converges). We will prove this fact in the next theorem.

For $m,n \in \mathbb{N}$ and $t \in [0,1]$, We have

$$||f_n(t) - f_{n+m}(t)||$$

$$\leq ||f_n(t) - f_{n+1}(t) + f_{n+1}(t) - f_{n+2}(t) + \dots + f_{n+m-1}(t) - f_{n+m}(t)||$$

$$\leq ||f_n(t) - f_{n+1}(t)|| + ||f_{n+1}(t) - f_{n+2}(t)|| + \dots + ||f_{n+m-1}(t) - f_{n+m}(t)||$$

$$\leq \frac{\sqrt{2}}{2^{n-1}} + \frac{\sqrt{2}}{2^n} + \ldots + \frac{\sqrt{2}}{2^{n+m-2}}$$

$$=\frac{\frac{\sqrt{2}}{2^{n-1}}(1-\frac{1}{2^m})}{1-\frac{1}{2}}<\frac{\sqrt{2}}{2^n}$$

It follows that $\rho(f_n,f_{n+m}) \leq \frac{\sqrt{2}}{2^n}$ for each $n,m \in \mathbb{N}$. Hence the sequence (f_n) is

Cauchy in $C(I,I^2)$ with respect to the metric ρ . Since $C(I,I^2)$ with the metric ρ is complete, $f_n \rightarrow f$ for some $f \in C(I,I^2)$. By definition of $C(I,I^2)$, f is continuous. We claim that f is onto.

 $f is onto \Leftrightarrow f(I) = I^2$

Since $f \in C(I,I^2)$, we have $f(I) \subseteq I^2$, so it remains to show $I^2 \subseteq f(I)$. Suppose $x \in I^2$, and let $\epsilon > 0$. Since the graph of f_n passes all the squares of sidelengths $\frac{1}{2^n}$, there

exists some $t_0{\in}[0,1]$ such that $\|x-f_n(t_0)\|\leq \frac{\sqrt{2}}{2^n}.$ Choose $n{\in}\mathbb{N}$ sufficiently larch

such that $\frac{\sqrt{2}}{2^n}<\frac{\epsilon}{2}$ and $\rho(f_n,f)<\frac{\epsilon}{2}.$ Then we have

$$||x - f(t_0)|| \le ||x - f_n(t_0) + f_n(t_0) - f(t_0)|| \le ||x - f_n(t_0)|| + ||f_n(t_0) - f(t_0)|| \le \frac{\sqrt{2}}{2^n} + \rho(f_n, f)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

This implies $x \in \overline{f(I)}$. Since f is continuous and I is compact, f(I) is compact. It follows that f(I) is a closed subset of \mathbb{R}^2 , so $f(I) = \overline{f(I)}$ and hence $x \in f(I)$. Therefore, $f(I) = I^2$ so f is onto.

We call $f: I \rightarrow \mathring{I}$ a "Space Filling Curve".

Theorem

 $C(I,I^2)$ with the metric $\rho(f,g) = \{||f(t) - g(t)|| : t \in [0,1]\}$ is complete. Proof)

Suppose (f_n) is a Cauchy sequence in $C(I,I^2)$ with respect to ρ . Then, given $\epsilon>0$, there is some $N{\in}\mathbb{N}$ such that $m,n\geq N$ implies $\rho(f_m,f_n)<\frac{\epsilon}{2}$.

Then, for each $t \in [0,1]$, we have

$$||f_n(t) - f_m(t)|| \le \rho(f_n, f_m) < \frac{\epsilon}{2} \qquad \qquad -----(1)$$

, so $(f_n(t))$ is a Cauchy sequence in I^2 . Since I^2 is complete, $f_n(t)$ converges to some f(t) as $n\to\infty$. Letting $m\to\infty$ in (1), we obtain $||f_n(t)-f(t)|| \leq \frac{\epsilon}{2} < \epsilon$ for each $t \in [0,1]$ and each $n \geq N$. Hence f_n converges to f uniformly. Since each f_n is continuous, f is continuous. Finally, since $f(t) = \lim_{n\to\infty} f_n(t)$, $f_n(t) \in \mathring{I}$ and I^2 is closed in \mathbb{R}^2 , we have $f(t) \in \mathring{I}$. Hence, $f \in C(I,I^2)$.