תרגיל DATABASES – 2

כרמל גרוס, ליאור שפירא

:שאלה אי

- 1) $\pi_{\text{name}} \left(\sigma_{\text{character} = "George"} (Actors \bowtie PlaysIn) \right)$
- 2) $\pi_{\text{movieId,title}} \left(\sigma_{\text{dyear=year } \land (\text{genre='Documentary' } \lor \text{genre='Drama'})} (Actors \bowtie PlaysIn \bowtie \text{Movies}) \right)$
- 3) $(\pi_{\operatorname{actorId}}(\sigma_{\operatorname{name} = \operatorname{"Charles\ Chaplin"}}(Actors \bowtie PlaysIn \bowtie \operatorname{Movies})) \bowtie Actors \bowtie PlaysIn) \land [\pi_{\operatorname{actorId}}(\sigma_{\operatorname{duration} > 90}(Actors \bowtie PlaysIn \bowtie \operatorname{Movies}))]$
- 4) $\pi_{\text{actorId}}(PlaysIn) \pi_{\text{actorId}}(\sigma_{\text{rating}} \leq 7(PlaysIn \bowtie Movies))$
- 5) $\pi_{\text{name}}(\sigma_{\text{actorId} \neq 100}((\text{PlaysIn} \div \pi_{\text{movieId}}(\sigma_{\text{actorId} = 100}(PlaysIn)))) \bowtie \text{Actors}))$
- 6) $Over70 = \pi_{\text{title,movieId,ActorId}} \left(\sigma_{\text{year-byear} > 70} (\text{Actors} \bowtie PlaysIn} \bowtie \text{Movies}) \right)$

 $\begin{aligned} & \rho_{\text{T1(title,movie,actor1)}} \text{Over 70} \\ & \rho_{\text{T2(title,movie,actor2)}} \text{Over 70} \end{aligned}$

 $\rho_{T3(title,movie,actor3)} Over 70$

AtLeastTwo = $\pi_{\text{title}}(\sigma_{\text{actor1} \neq \text{actor2}}(\text{T1} \bowtie \text{T2}))$

 $AtLeastThree = \pi_{\text{title}} \left(\sigma_{\text{actor1} \neq \text{actor2} \land \text{actor1} \neq \text{actor3} \land \text{actor2} \neq \text{actor3}} (\text{T1} \bowtie \text{T2} \bowtie \text{T3}) \right)$ AtLeastTwo - AtLeastThree

<u>שאלה בי:</u>

: נוכיח הכלה דו כיוונית

:⊇

יהי (A1, D1) ביטוי המוכל בטבלה לאחר הסינון הימני. אזי בטבלה C בשורה של C D1 היה שווה 8 (כי זה (A1, D1) ביטוי המוכל בטבלה (A,D)). אזי D1 (יחד עם ערך אחדאו יותר של (B) עובר את הסינון אזי D (יחד עם ערך אחדאו יותר של (B,D)

$$\pi_{B,D}(\sigma_{C=8}(S))$$

כעת, A1 ו-D1 היו בטבלאות R ו-S בהתאמה מול לפחות ערך B משותף אחד. זאת, משום שהם עוברים כעת, A1 המופיע ביטוי השמאלי תיווצר לפחות שורה natural join. על כן ב-natural join המופיע בביטוי השמאלי תיווצר לפחות שורה A1, אחת הכוללת את A1 ואת D1, ולכן הביטוי A1, D1) יהיה מוכל בטבלה לאחר הסינון השמאלי כנדרש.

:⊆

יהי (A2, D2) ביטוי המוכל בטבלה לאחר הסינון השמאלי. ראשית, לאחר ה-natural join של הביטוי הימני (רק עם D2 ו-A2 ו-D2, משום שהם עברו natural join בביטוי השמאלי (רק עם תהיה לפחות שורה אחת עם זוג ערכי A2 ו-D2, משום שהם עברו חלביטוי מוכל בסינון הימני. זה תנאים). שנית, נוודא ש-C שהיה בשורה של D2 הוא 2 , ובכך נסיים להראות שהביטוי מוכל בסינון הימני. זה מכון כי את ה-atural join בביטוי השמאלי ביצענו מראש רק על ערכי 2 שמול ערך 2 ששוה ל-8, ולכן אם D2 עבר את הסינון הזה, השורה שמכילה את 2

: נוכיח כי תוצרי הביטוי השמאלי מוכלים בתוצרי הביטוי הימני, אך לא להפך

יהי (A1, D1) ביטוי המוכל בטבלה לאחר הסינון השמאלי. אזי A1 הוא ערך בעמודה B של R ו-D1 הוא ערך אזי A1 היהי (A1, D1) מוכל בטבלה לאחר הסינון הימני, משום S עמודה B של S, וזה למעשה תנאי מספיק לכך ש-(A1, D1) מוכל בטבלה לאחר הסינון הימני, משום שהמשמעות של natural join של שתי עמודות שונות משתי טבלאות הוא למעשה מכפלה קרטזית רגילה, כלומר כל צירוף של ערכי A1 וערכי D מהטבלאות המתאימות.

: הכיוון השני לא נכון - נביא דוגמא נגדית

٠R

A	В
1	2

: S

В	С	D
3	4	4

B עם ערך B עם ערך R- פיטוי הפעלת הביטוי אלה היא שלה היא שלה היא שורה ב-R עם ערך B עם ערך שווה לערך של שורה ב-S. תוצאת הפעלת הביטוי הימני על הטבלאות הנ״ל תהיה ב-S. תוצאת הפעלת הביטוי הימני על הטבלאות הנ״ל הייטוי הייטוי הימני על הטבלאות הנ״ל הייטוי הימני על הטבלאות הנ״ל הייטוי הייטוי הימני על הטבלאות הנ״ל הייטוי הי

Α	D
1	4

כלומר הביטויים לא שווים.