Question	Scheme	Marks
7(a)	$\left(\frac{ar^2}{a} = r^2 = \right) \frac{2704}{625}$ oe	M1
	$(r=)\pm\frac{13}{25}$ oe	A1 [2]
(b)	$(S_{\infty} =) \frac{16}{1 - "\frac{13}{25}"} = \frac{100}{3}$ oe	M1A1 [2]
(c)	$\frac{16\left(1 - \left(\frac{13}{25}\right)^n\right)}{1 - \frac{13}{25}} > 33\left(\Rightarrow 1 - \left(\frac{13}{25}\right)^n > 0.99\right) \text{ oe}$	M1
	$\Rightarrow \left("\frac{13}{25}"\right)^n < 0.01 \text{oe}$	dM1
	$n\lg\left("\frac{13}{25}"\right) < \lg\left(0.01\right) \text{oe}$	M1
	$\Rightarrow n > \frac{\lg(0.01)}{\lg("\frac{13}{25}")} \Rightarrow n > 7.04oe \Rightarrow (n =)8$	dddM1A1 [5]
		Total 9 marks

Part	Mark	Notes
(a)	M1	For any correct unsimplified expression for r or r^2 .
	A1	For $r = \pm \frac{13}{25}$ oe
(b)	M1	Uses the correct formula for the sum to infinity of a geometric series using their positive $r < 1$ and the given first term.
	A1	For $\frac{100}{3}$ oe. Allow 33.33, 33.3°, 33.3° etc.
		The question demand is for an exact answer so there must be some indication of recurrence. This could be min 1 dp with dots after ie 33.3, but cannot be a terminating decimal.
(c)	M1	Uses the correct formula for the sum of a geometric series to set up an inequality or equation in terms of n , f t their positive $r < 1$, must be using $a = 16$ Allow $<$ or $>$ or $=$
	dM1	For simplifying (allow errors in simplification) their inequality or equation in n to the form $\left(\frac{13}{25}\right)^n < d$ $d \ne 0$. Allow $\frac{13}{25}$ to be their positive $r < 1$. Allow $<$ or $>$ or $=$. Dependent on the 1^{st} method mark.
	M1	Takes logarithms (any base) of their exponential equation or inequality correctly on both sides and correctly uses the power law to reach $n\lg(a) < \lg(b)$.
		or 'de-logs' their exponential equation or inequality correctly to get $\log_c d < e$
		This isn't a dependent mark, but the candidate must be able to correctly take logs of both sides and use the power law or correctly de-log their equation/inequality. r can be any value carried through from part (a) for this mark.
		Allow < or > or =, the inequality doesn't need to have been reversed at this point.
	dddM1	For finding a value for n setting up the correct inequality (with their positive $r < 1$) from the beginning and where the inequality sign has been reversed at the appropriate point during their work.
		Dependent on all previous method marks.
		If candidates give a final answer of $(n =) 8$ – this mark can be implied even if the inequality sign is not correctly reversed.
	A1	For $(n =) 8$