

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY VADODARA -INTERNATIONAL CAMPUS DIU

Design Project-Group Presentation

AUTOMATIC MODULATION CLASSIFICATION

GROUP MEMBERS

ROHIT KHANDAL - 202011064

NISHESH JAIN - 202011050

TUSHAR AGARWAL - 202011074

ALEX TAMBOLI - 202011071

VIVEK BOROLE - 202011018

ACKNOWLEDGEMENT

I would want to convey my heartfelt gratitude to *Dr. Varun Kumar*, my mentor, for his invaluable advice and assistance in completing my project. He was there to assist me every step of the way, and his motivation is what enabled me to accomplish my task effectively. I would also like to thank all of the other supporting personnel who assisted me by supplying the equipment that was essential and vital, without which I would not have been able to perform efficiently on this project.

INDEX

- Abstract
- Problem Statement
- Previous Work
- CNN
- ResNet
- CLDNN
- Accuracy Analysis
- Conclusion
- Reference

ABSTRACT

An efficient neural network techniques based on depthwise separable convolution has been proposed to classify the modulation of the received signals.

PROBLEM STATEMENT

TO IDENTIFY MODULATION TECHNIQUE ON RECEIVER SIDE IN WIRELESS COMMUNICATION SYSTEMS

BUT WHY WE NEED THAT??

BEFORE MIDSEM

CNN Ø

CNN - with Batch Normalization

CLDNN X

ACCURACY

CNN

CNN with Batch Normalization

RESNET

In order to solve the problem of the vanishing/exploding gradient, we introduceResidual Blocks. In this network(ResNet), we use a technique called skip connections.

ACCURACY

ACCURACY/LOSS vs epoch

CONFUSION MATRIX

CLDNN

It is composed of sequentially connected CNN, LSTM and fully connected neural networks.

ACCURACY


```
accuracy = 0.8396666646003723, snr = 2
accuracy = 0.8413333296775818, snr = 8
accuracy = 0.6541666388511658, snr = -4
accuracy = 0.8361666798591614, snr = 6
accuracy = 0.843666672706604, snr = 18
accuracy = 0.5203333497047424, snr = -6
accuracy = 0.10983332991600037, snr = -20
accuracy = 0.11233333498239517, snr = -18
accuracy = 0.8503333330154419, snr = 10
accuracy = 0.8356666564941406, snr = 4
accuracy = 0.7588333487510681, snr = -2
accuracy = 0.3283333480358124, snr = -8
accuracy = 0.8460000157356262, snr = 12
accuracy = 0.825166642665863, snr = 0
accuracy = 0.11699999868869781, snr = -16
accuracy = 0.15566666424274445, snr = -12
accuracy = 0.8445000052452087, snr = 14
accuracy = 0.2096666693687439, snr = -10
accuracy = 0.8471666574478149, snr = 16
accuracy = 0.1326666623353958, snr = -14
```

```
accuracy = 0.8481818437576294, snr = 2
accuracy = 0.835454523563385 , snr = 8
accuracy = 0.6399999856948853, snr = -4
accuracy = 0.8454545736312866, snr = 6
accuracy = 0.8500000238418579 , snr = 12
accuracy = 0.5109090805053711 , snr = -6
accuracy = 0.0918181836605072, snr = -20
accuracy = 0.08636363595724106, snr = -18
accuracy = 0.8518182039260864, snr = 16
accuracy = 0.860909104347229 , snr = 10
accuracy = 0.8218181729316711 , snr = 4
accuracy = 0.7918182015419006 , snr = -2
accuracy = 0.2800000011920929, snr = -8
accuracy = 0.10454545170068741, snr = -12
accuracy = 0.8336363434791565 , snr = 0
accuracy = 0.08727272599935532, snr = -16
accuracy = 0.15636363625526428, snr = -10
accuracy = 0.828181803226471, snr = 14
accuracy = 0.8263636231422424, snr = 18
accuracy = 0.10000000149011612, snr = -14
```

BIG DATASET

SMALL DATASET

ACCURACY/LOSS VS EPOCH

CONFUSION MATRIX

CONCLUSION

CONCLUSION

- Multiple classifiers are built and tested, which provide high probabilities of correct modulation recognition in a short observation time.
- The performance of CNNs are improved from 72% to 83.3% by increasing the depth of CNNs.
- The average classification accuracy reaches 83.5% for ResNet .
- CLDNN model combines a CNN block, a LSTM block and a DNN block as a classifier that can automatically extract the spacial and temporal key features of signals.
- These models are capable to recognizing the modulation formats with various propagation characteristic, and show high real-time functionality.

REFERENCES

- [1]Xiaoyu Liu, Diyu Yang, and Aly El Gamal, "Deep Neural Network Architectures for Modulation Classification",Purdue University 2018
- [2]N. E. West and T. J. O'Shea,
- "Deep architectures for modulation recognition," CoRR, vol. abs/1703.09197, 2017.
- [3]Sun Y., Ball E.A.: Automatic modulation classification using techniques from image classification. IET Commun. 16, 1303-1314 (2022).
- [4]Corinna, C.Vladimir:Support-Vector-Machine, mach. Learning 20273-(297) (1989)

THANK YOU