TITLE: An Edge-Triggered Toggle Flip-Flop Circuit Related Applications

Subject matter relating to that of the present application is presented in U.S. Patent applications filed on the same day as this application: "Spiking Neuron Circuit" by R. Sarpeshkar; and "Spike-Triggered Asynchronous Finite State Machine," by R. Herrera and R. Sarpeshkar. These applications are assigned to the assignee of the present application and are hereby incorporated by reference in the present application.

Field of the Invention

5

10

15

20

25

30

The present invention relates to electronic circuits, and, more particularly to bistable circuits for use as digital building block circuits used in electronic systems. Still more particularly, embodiments of the present invention relate to edge-triggered toggle flip-flop circuits.

Background of the Invention

Flip-flop circuits, including edge-triggered toggle flip-flops, are used as building blocks in many digital systems including counters, parity detectors, and registers. In response to each positive/negative edge of an input, usually referred to as the clock, the flip-flop changes its state: It toggles from a '0' to a '1', or from a '1' to a '0'.

The prior art has used a number of techniques to avoid constant oscillatory behavior after the input edge has passed. Thus, for example, conventional toggle flip flops are configured so that each edge of a toggle input generates a brief input pulse that is of just the right duration so that the flip flop has sufficient time to change state only once. This strategy proves unreliable, since it relies on a high degree of accuracy in pulse timing. Alternatively, two bistable elements are sometimes configured in a "master-slave" feedback-loop configuration such that one bistable element is written on one phase of the clock signal while the other holds its state and vice versa. This second strategy is reliable but inefficient in its use of circuit area in integrated circuit (IC) chip implementations, since it requires two bistable elements and a number of logic gates for its operation.

Summary of the Invention

The present invention overcomes limitations of the prior art and achieves a technical advance in providing a novel edge-triggered flip-flop circuit that is reliable in its

operation and efficient in its use of IC chip area. Illustrative embodiments of the present invention use only one bistable element and some simple transistor-level logic for its operation.

In a first illustrative embodiment, capacitors are alternately charged and discharged to voltages approximating supply rail values and, in combination with a small number of switches, present high or low impedance paths for input signal transitions of a predetermined polarity (illustratively positive-going), thereby to selectively communicate pulses to switches capable of initiating state transitions in a bistable element.

An alternative embodiment of the present invention provides a flip flop circuit with reduced power requirements that proves useful in a variety of low-power applications. More specifically, potentially high power consumption of large switching capacitors is avoided in a circuit that employs a pair of pass-transistor configurations to operate as switches responding to the input signal (and its complement) to connect respective capacitors to output terminals of a bistable device. In operation, the voltage on the capacitors track the corresponding output voltages when the input signal is in a given state (illustratively low), and store the value of the corresponding-voltage when turned off by the (illustratively high) other state of the input signal. Then, the voltage on the capacitors and the selected input signal transition are used to effectively trigger a transition in the bistable device.

Brief Description of the Drawing

5

10

15

20

25

The above-summarized invention will be understood more completely upon a consideration of the following detailed description read in light of the included drawing, wherein:

- FIG. 1 is a circuit diagram of a first illustrative embodiment based on the present inventive teachings.
 - FIG. 2 shows input-output waveforms useful in understanding the operation of the circuit of FIG. 1.
 - FIG. 3 shows additional waveforms relating to the circuit of FIG. 1.
 - FIG. 4 is a circuit diagram of an alternative embodiment of the present invention.

FIG. 5 shows input-output waveforms useful in understanding the operation of the circuit of FIG. 4.

FIG. 6 shows additional waveforms relating to the circuit of FIG. 4.

Detailed Description

5

10

15

20

25

30

FIG. 1 is a circuit diagram of a first illustrative embodiment based on the present inventive teachings. In FIG. 1 and elsewhere in the present detailed description, transistors M_i and capacitors C_x, for all *i* and *x*, are of standard design suitable for manufacture in accordance with a variety of standard processes. Advantageously, CMOS MOSFET designs are employed, but any of PMOS, NMOS, or a combination of these and other types of devices may be employed to advantage in particular contexts. In keeping with standard practice, illustrative *p*-channel devices (such as M₃) include a "bubble" on the gate, denoting a device that turns on as the gate is made more negative relative to the source. Likewise, the positive power supply is normally positioned at the top of diagrams, with negative voltages at the bottom. (Power supply voltages in circuit diagrams herein will be referred to as V_{DD}, with ground being the reference voltage.) So, sources of *p*-channel devices are at the top, while sources for *n*-channel devices (such as M₉) are at the bottom. See generally, J. Rabaey, *Digital Integrated Circuits*, Prentice Hall, New Jersey, 1996; and C. Mead, *Analog VLSI and Neural Sysems*, Addison-Wesley, Reading MA, 1989, especially chapter 3.

Returning to FIG. 1, transistors M_1 and M_3 form an inverter, as do the transistors M_2 and M_4 . These two inverters are crosscoupled to form a classic bistable element often referred to as a *latch*, which latch is arranged to provide outputs Q and Q_b . Transistors M_5 and M_6 serve to set the state of the latch to '1' (*i.e.*, the voltage of Q very close to V_{DD}) or to '0' (the voltage of Q very close to ground), respectively. Transistors M_5 and M_6 advantageously have a W/L-ratio that is large enough to overwhelm the current from M_3 or M_1 . It will be appreciated that transistors M_5 and M_6 compete with each other in setting the latch to a '1' or '0' state; robust setting of the latch is achieved if one of the Q_s or Q_{sb} voltages is near V_{DD} while the other voltage is near ground.

If the latch is currently in the '1' state (Q near V_{DD}), transistor M_{10} is activated, and voltage at Q_{sb} (on the positive side of capacitor C_1) is discharged to ground; further,

because M_{10} is strongly activated, any capacitive coupling of the input V_{in} from C_1 is weak. In contrast, in the '1' state, the M_{11} transistor is inactive because node Q_b is near ground, the Q_s node is in a high-impedance state, and any capacitive coupling of the input V_{in} from C_2 (chosen to be near C_1 in capacitance) is strong. Thus, in the '1' state, a positive-going edge from the input will activate M_6 and reset the latch to '0'.

Similarly, when the latch of FIG. 1 is in the '0' state (voltage at Q_b is near V_{DD}), a positive edge at the input V_{in} will activate M_5 and reset the latch to '1'. Thus, the state of the latch toggles between a '1' and '0' in response to a sequence of positive-going edges at V_{in} . It should be noted that as soon as the latch changes state, it inactivates whichever of the Q_s or Q_{sb} nodes caused it to change state, thus resetting both nodes to ground after a state change has occurred. See FIGs. 3A-E.

The transistors M_9 and M_{12} are advantageously weakly turned on with a constant voltage V_{lk} so as to prevent large negative excursions in the Q_{sb} or Q_s voltages from occurring whenever a negative edge is coupled from the input to a high-impedance node. As shown in FIGs. 3D and 3E, negative edges in the input signal, V_{in} , have no effect in the circuit apart from causing small negative transients at the Q_s or Q_{sb} nodes. The transistors M_8 and M_7 perform an asynchronous clear function and reset the state of the flip flop to '0' whenever the clear input is near V_{DD} . When the clear input is active, M_7 resets Q to zero, which causes Q_b to go high and reset Q_s to zero; the transistor M_8 resets Q_{sb} to zero.

FIG. 2 shows waveforms occurring during operation of the circuit of FIG. 1 for the case of devices designed for a 0.5 μ m manufacturing process with V_{DD} = 3.3V, V_{Ik} =0.9V, and $C_1 = C_2$ =0.1pF. Note that, on every positive edge of the input V_{in} , the output Q changes state as expected for a toggle flip-flop. The other output Q_b is a faithful inverted replica of Q. FIGs. 3A-E display waveforms as in FIG. 2 but, in addition, depict the behavior of the Q_s and Q_{sb} nodes. Note that on each positive edge, only one of the Q_s or Q_{sb} nodes is activated. On each negative edge, the high-impedance node suffers a larger negative excursion than does its low-impedance counterpart; nevertheless, the negative excursion is not large enough to prevent state changes of the circuit from arising when the subsequent positive edge arrives.

A potential disadvantage of the circuit of FIG. 1 for some design contexts arises when coupling capacitors C_1 and C_2 assume undesirably high values when chosen to avoid undesired attenuation of the input signal by parasitic capacitances at the Q_s and Q_{sb} nodes. Any such undesirably high values of C_1 and C_2 may, in turn, lead to unnecessary switching power dissipation.

5

10

15

20

25

FIG. 4 shows an alternative embodiment of the present invention having relatively low power dissipation because of smaller capacitances employed in its operation. This reduction in power dissipation is usually achieved using a higher transistor count and circuit area relative to the circuit of FIG. 1.

In the circuit of FIG. 4, there are no floating capacitors (all capacitors have one of their terminals tied to a D.C. voltage, typically, ground). In typical implementations, the capacitors are not explicitly implemented, but arise as parasitic capacitances. For particular very low frequency operation of the toggle flip-flop of FIG. 4, explicit capacitors may be employed, as discussed below.

In FIG. 4 transistors $M_{41} - M_{42}$ and $M_{43} - M_{44}$ form a latch as in the circuit of FIG. 1. The parallel connection of transistors M_{49} and M_{410} , or the parallel connection of transistors M_{411} and M_{412} form a pass-transistor configuration. See generally, for example, J.M. Rabaey, Digital Integrated Circuits, Prentice-Hall, 1996, pp. 410-422. The pass-transistor configuration is gated by the voltage V_{in} and its complementary counterpart V_{inb} to act as a conducting switch when V_{in} is low. The complementary signal V_{inb} may be readily obtained by passing V_{in} through a simple CMOS inverter (not shown), as will readily be appreciated by those skilled in the art.

When V_{in} is high, the pass-transistor switch is turned off. Thus, the voltage at Q_{sb} (the voltage on C_{41}) tracks the Q_b voltage when V_{in} is low but holds its previous value when V_{in} is high. Similarly, the Q_s voltage on C_{42} tracks the Q voltage when V_{in} is low but holds its previous value when V_{in} is high. Thus, during the active high phase of the input, only one of the Q_s or Q_{sb} voltages is high according to whether Q or Q_b was high during V_{in} 's preceding inactive low phase. Consequently, when V_{in} goes high, only one of the M_{45} - M_{46} or M_{47} - M_{48} arms will conduct current and cause the latch to change its state from

'0' to '1' or from '1' to '0'. The positive edge of the V_{in} input, thus causes the latch to toggle its state. The Clr input on transistor M_{413} resets the state of the latch to '0'.

The circuit of FIG. 4 thus operates in a manner similar to conventional master-slave toggle flip-flops, but with the important difference that functions of a slave are performed by the implicit or explicit capacitors C_{41} and C_{42} rather than by a second bistable element.

5

10

15

20

25

30

To ensure proper operation of the circuit for arbitrarily slow periods of the input, the capacitors C_{41} and C_{42} will be chosen large enough that their hold time is significantly greater (5-10 times) than the switching time of the latch. In that case, even if there are slow leakage currents to ground that cause degradation of the voltage values held at nodes Q_s or Q_{sb} , such degradation does not adversely affect the operation of the circuit. This robustness of operation arises because the quick switching time of the latch allows it to change its state in a time that is much less than the time in which the Q_s and Q_{sb} voltages degrade. Once the latch has changed state, its positive feedback enables it to hold its new state even if the Q_s and Q_{sb} inputs have leaked their charge to ground.

To ensure that all leakage is to ground and not to V_{DD} , optional transistors M_{414} and M_{415} may be added across respective capacitors C_{41} and C_{42} to ground. Optional transistors M_{414} and M_{415} allow capacitor leakage to be explicitly controlled via subthreshold biasing of the (optional) V_{lk} voltage, as in the circuit of FIG. 1. Since very low frequency operation is usually not important in most digital circuits, C_{41} and C_{42} are typically implicit capacitors, and transistors M_{414} and M_{415} (and voltage V_{lk}) are typically not required.

FIG. 5 shows shows typical waveforms for the circuit of FIG. 4 using a standard 0.5 μ m process with V_{DD} = 3.3V, C_{41} = C_{42} =0.01pF, and the leak transistors M_{414} and M_{415} being absent. Note that, on every positive edge of the input V_{in} , the output Q changes state as expected of a toggle flipflop. The other output Q_b is a faithful inverted replica of Q. FIG. 6 reveals the same waveforms of FIG. 5 and, in addition, also depicts the behavior of the Q_s and Q_{sb} nodes. Note that, apart from minor glitches, both Q_s and Q_{sb} hold their values during the active high phase of V_{in} , and track Q and Q_b respectively during the inactive low phase of V_{in} .

The glitches on Q and Q_b on the negative edges of V_{in} arise because Q_s and Q_{sb} temporarily load the latch inverters as they transition from their held state to the current state. The glitches on Q_s and Q_{sb} during the high phase of V_{in} arise because of capacitive coupling from the drains of M_{46} and M_{48} to their gates as V_{in} rises and pulls these drains high via M_{45} and M_{47} respectively; the coupling is larger when Q_s or Q_{sb} are at high values because the gate-to-drain capacitance of M_{46} or M_{48} is larger when their gates are high.

It will be understood by those skilled in the art that device types, manufacturing process, polarities and parameter values used in the above-described embodiments of the present invention are merely illustrative. Other embodiments and variations within the spirit of the present invention will be apparent to those skilled in the art in light of the present inventive teachings.

Those skilled in the art will recognize that complementary circuit designs based on the present inventive teachings allow operation of circuits based on negative transitions.

15 What is claimed is:

5

10

20

25

1. A toggle flip-flop circuit comprising

a bistable circuit element having first and second output terminals exhibiting respective complementary first and second binary output voltages, and

triggering means for selectively coupling transitions of a predetermined polarity in an input signal to said bistable circuit element to initiate a change of state for said bistable circuit from a present output state to a complementary output state, said change of state causing both said first and second terminals to change binary output voltages,

said triggering means comprising

a first capacitor having a first terminal selectively connected to a reference voltage through a first switch controlled by the voltage on said first output of said bistable circuit element,

a second capacitor having a first terminal selectively connected to a reference voltage through a second switch controlled by the voltage on said second output of said bistable circuit element,