Измеримые функции.

Пусть $E \subset R$ - измеримое по Лебегу множество, функция $f: E \to R \cup -\infty \cup \infty$, заданная на E и принимающая, как вещественные значения, так и, возможно, значения $\pm \infty$.

Определение.

Функция f называется измеримой, если при всяком $a \in R$ каждое из нижеследующих множеств измеримо:

$$1)E_{>a}(f) = \{x \in E : f(x) > a\}$$

$$2)E_{\geq a}(f) = \{x \in E : f(x) \geq a\}$$

$$3)E_{\leq a}(f) = \{x \in E : f(x) < a\}$$

4)
$$E_{\leq a}(f) = \{x \in E : f(x) \leq a\}$$

Множества $E_{>a}(f),\ E_{\geq a}(f),\ E_{< a}(f)$ и $E_{\leq a}(f)$ называется множествами Лебега функции f.

Теорема.

Если какое-то из множеств Лебега функции f измеримо, то остальные три тоже измеримы при всяком a, следовательно, функция f тоже измерима.

Доказательство.

Заметим, что справедливы следующие соотношения:

1)
$$E_{\geq a}(f) = \bigcap_{n=1}^{\infty} E_{>a-1/n}(f)$$

$$2) E_{\langle a}(f) = E \setminus E_{\geq a}(f)$$

3)
$$E_{\leq a}(f) = \bigcap_{n=1}^{\infty} E_{< a+1/n}(f)$$

$$4)E_{>a}(f) = E \setminus E_{$$

Эти Соотношения доказываются проверкой того, что левой части равенства включается в правую и обратно, включением правой части в левую.

Докажем, например, соотношение (1): если $x_0 \in E_{\geq a}(f)$, то

$$f(x_0) \ge a \to f(x_0) > a - 1/n, \forall n \to x_0 \in \bigcap_{n=1}^{\infty} E_{>a-1/n}(f)$$

Обратно, если
$$x_* \in \bigcap_{n=1}^{\infty} E_{>a-1/n}(f)$$
, то

$$f(x_*) > a - 1/n, \forall n \to \lim_{n \to \infty} f(x_*) \ge \lim_{n \to \infty} (a - 1/n) = a \to x_* \in E_{\ge a}(f)$$

Утверждение.

Если f измерима, то и |f| измерима.

Доказательство.

Если $a \leq 0$, то $E_{< a}(f) = \emptyset$ и \emptyset измеримо.

Если $a \geq 0$, то $E_{< a}(|f|) = E_{< a}(f) \cap E_{> -a}(f)$ и множества $E_{< a}(f)$, $E_{> -a}(f)$ измеримы.

Теорема.

Пусть $f_n: E \to R \cup -\infty \cup \infty$ измеримы, пусть $g(x) = \sup_n (f_n), h(x) = \inf_n (f_n).$ Тогда g, h измеримы.

Доказательство.

Имеем $E_{>a}(g) = \bigcup_n E_{>a}(f_n)$, $E_{<a}(h) = \bigcup_n E_{<a}(f_n)$ множества $E_{>a}(f_n)$, $E_{<a}(f_n)$ измеримы, их объединение измеримо. Теорема доказана.

Следствие 1.

 Π усть f_n измеримы, положим

$$g_m = \sup_{n \ge m} f_n, \ h_m = \inf_{n \ge m} f_n$$

Тогда
$$\forall x \in E, \ \exists \lim_{n \to \infty} g_n(x) = g_+(x), \ \exists \lim_{n \to \infty} h_n(x) = h_-(x)$$

и $g_{+}(x)$, $h_{-}(x)$ измеримы.

Доказательство.

$$g_n(x) \ge g_{n+1}(x) \rightarrow \exists \lim_{n \to \infty} g_n(x) = g_+(x)$$

поэтому $g_{+}(x) = \inf ng_{n}(x)$ измерима по теореме.

Аналогично
$$h_n(x) \leq h_{n+1}(x) \rightarrow \exists \lim_{n \to \infty} h_n(x) = h_-(x)$$

 $h_{-}(x)$ измерима по теореме. Следствие доказано.

Следствие 2.

Пусть f, g измеримы, тогда и $\max(f,g)$, $\min(f,g)$ измеримы. В частности, $\max(f,0)$, $\min(f,0)$ измеримы.

Доказательство.

$$\max(f,g) = \sup_n f_n, \ f_{2k-1} = f, f_{2k} = g$$

 $\min(f,g)=\inf_n f_n(x)$ с теми же f_n . Следствие 2 следует из следствия 1.

Следствие 3.

Пусть f_n измеримы, и пусть $\forall x \in E \quad \exists c = f(x)$. Тогда f измерима.

Доказательство.

В обозначениях следствия 1 $f(x) = \lim_{n \to \infty} g_n(x)$) тогда следствие 3 следует из следствия 1.

Приведем без доказательства еще результат.

Теорема.

Пусть $f,\ g$ измерима, тогда af+bg и fg измеримы.