Lesson 14

Digital Logic

Junying Chen

Chapter 5 :: Topics

- Introduction
- Arithmetic Circuits
- Number Systems
- Sequential Building Blocks
- Memory Arrays
- Logic Arrays

Introduction

- Digital building blocks:
 - Gates, multiplexers, decoders, registers, arithmetic circuits, counters, memory arrays, logic arrays
- Building blocks demonstrate hierarchy, modularity, and regularity:
 - Hierarchy of simpler components
 - Well-defined interfaces and functions
 - Regular structure easily extends to different sizes
- These building blocks can be used to build microprocessor.

DILDING

1-Bit Adders

Half Adder

Α	В	C _{out}	S
0	0		
0	1		
1	0		
1	1		

Full Adder

C _{in}	Α	В	C _{out}	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$S = C_{out} =$$

SNIGTIN

1-Bit Adders

Half Adder

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = C_{out} =$$

Full Adder

C_{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = C_{out} =$$

BUILDING

1-Bit Adders

Half Adder

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\begin{array}{ll} \mathsf{S} &= \mathsf{A} \oplus \mathsf{B} \\ \mathsf{C}_{\mathsf{out}} &= \mathsf{A} \mathsf{B} \end{array}$$

Full Adder

C_{in}	Α	В	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Multibit Adders (CPAs)

- Types of carry propagate adders (CPAs):
 - Ripple-carry (slow)
 - Carry-lookahead (fast)
 - Prefix (faster)
- Carry-lookahead and prefix adders faster for large adders but require more hardware

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow

Ripple-Carry Adder Delay

$$t_{\text{ripple}} = Nt_{FA}$$

where t_{FA} is the delay of a 1-bit full adder

Carry-Lookahead Adder

- Compute carry out (C_{out}) for k-bit blocks using *generate* and *propagate* signals
- Some definitions:
 - Column i produces a carry out by either generating a carry out or propagating a carry in to the carry out
 - Generate (G_i) and propagate (P_i) signals for each column:
 - Column *i* will generate a carry out if A_i AND B_i are both 1.

$$G_i = A_i B_i$$

• Column *i* will propagate a carry in to the carry out if A_i OR B_i is 1.

$$\boldsymbol{P}_i = \boldsymbol{A}_i + \boldsymbol{B}_i$$

• The carry out of column $i(C_i)$ is:

$$C_i = A_i B_i + (A_i + B_i) C_{i-1} = G_i + P_i C_{i-1}$$

Carry-Lookahead Addition

- Step 1: Compute G_i and P_i for all columns
- Step 2: Compute G and P for k-bit blocks
- Step 3: C_{in} propagates through each k-bit propagate/generate block

Carry-Lookahead Adder

• Example: 4-bit blocks $(G_{3:0} \text{ and } P_{3:0})$:

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

 $P_{3:0} = P_3 P_2 P_1 P_0$

Generally,

$$G_{i:j} = G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2}G_j))$$

$$P_{i:j} = P_i P_{i-1} P_{i-2} P_j$$

$$C_i = G_{i:j} + P_{i:j} C_j$$

DILDING

32-bit CLA with 4-bit Blocks

Carry-Lookahead Adder Delay

For *N*-bit CLA with *k*-bit blocks:

$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$$

 $-t_{pg}$: delay to generate all P_i , G_i

 $-t_{pg_block}$: delay to generate all $P_{i:j}$, $G_{i:j}$

 $-\ t_{\rm AND_OR}$: delay from $C_{\rm in}$ to $C_{\rm out}$ of final AND/OR gate in k-bit CLA block

An N-bit carry-lookahead adder is generally much faster than a ripple-carry adder for N > 16

Prefix Adder*

• Computes carry in (C_{i-1}) for each column, then computes sum:

$$S_i = (A_i \oplus B_i) \oplus C_i$$

- Computes G and P for 1-, 2-, 4-, 8-bit blocks, etc. until all G_i (carry in) known
- $\log_2 N$ stages

Prefix Adder*

- Carry in either *generated* in a column or *propagated* from a previous column.
- Column -1 holds C_{in} , so

$$G_{-1} = C_{\rm in}, P_{-1} = 0$$

• Carry in to column i = carry out of column i-1:

$$C_{i-1} = G_{i-1:-1}$$

 $G_{i-1:-1}$: generate signal spanning columns i-1 to -1

Sum equation:

$$S_i = (A_i \oplus B_i) \oplus G_{i-1:-1}$$

• Goal: Quickly compute $G_{0:-1}$, $G_{1:-1}$, $G_{2:-1}$, $G_{3:-1}$, $G_{4:-1}$, $G_{5:-1}$, ... (called *prefixes*)

Prefix Adder*

• Generate and propagate signals for a block spanning bits *i*:*j*:

$$G_{i:j} = G_{i:k} + P_{i:k} G_{k-1:j}$$

$$P_{i:j} = P_{i:k} P_{k-1:j}$$

- In words:
 - Generate: block i:j will generate a carry if:
 - upper part (i:k) generates a carry or
 - upper part propagates a carry generated in lower part (k-1:j)
 - Propagate: block i:j will propagate a carry if both the upper and lower parts propagate the carry

BUILDING

Prefix Adder Schematic*

Chapter 5 < 18 >

Prefix Adder Delay

$$t_{PA} = t_{pg} + \log_2 N(t_{pg_prefix}) + t_{XOR}$$

- t_{pg} : delay to produce $P_i G_i$ (AND or OR gate)
- t_{pg_prefix} : delay of black prefix cell (AND-OR gate)

Prefix Adder Delay

$$t_{PA} = t_{pg} + \log_2 N(t_{pg_prefix}) + t_{XOR}$$
 t_{pg} : delay to produce P_i G_i (AND or OR gate)

 t_{pg_prefix} : delay of black prefix cell (AND-OR gate)

Adder Delay Comparisons

Compare delay of: 32-bit ripple-carry, carry-lookahead, and prefix adders

- CLA has 4-bit blocks
- 2-input gate delay = 100 ps; full adder delay = 300 ps

Adder Delay Comparisons

Compare delay of: 32-bit ripple-carry, carry-lookahead, and prefix adders

- CLA has 4-bit blocks
- 2-input gate delay = 100 ps; full adder delay = 300 ps

$$t_{\text{ripple}} = Nt_{FA} = 32(300 \text{ ps})$$

 $= 9.6 \text{ ns}$
 $t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$
 $= [100 + 600 + (7)200 + 4(300)] \text{ ps}$
 $= 3.3 \text{ ns}$
 $t_{PA} = t_{pg} + \log_2 N(t_{pg_prefix}) + t_{XOR}$
 $= [100 + \log_2 32(200) + 100] \text{ ps}$
 $= 1.2 \text{ ns}$

Subtractor

Symbol

Implementation

Comparator: Equality

Symbol

Implementation

Comparator: Less Than

Arithmetic Logic Unit (ALU)

$\mathbf{F}_{2:0}$	Function
000	A & B
001	A B
010	A + B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

TENING F

ALU Design

$\mathbf{F}_{2:0}$	Function
000	A & B
001	A B
010	A + B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

Set Less Than (SLT) Example

• Configure 32-bit ALU for SLT operation: A = 25 and B = 32

Set Less Than (SLT) Example

- Configure 32-bit ALU for SLT operation: A = 25 and B = 32
 - -A < B, so Y should be 32-bit representation of 1 (0x0000001)
 - $-F_{2:0} = 111$
 - $F_2 = 1$ (adder acts as subtractor), so 25 32 = -7
 - -7 has 1 in the most significant bit $(S_{31} = 1)$
 - $F_{1:0}$ = 11 multiplexer selects $Y = S_{31}$ (zero extended) = 0×00000001 .

Shifters

- Logical shifter: shifts value to left or right and fills empty spaces with 0's
 - Ex: 11001 >> 2 =
 - Ex: 11001 << 2 =
- Arithmetic shifter: same as logical shifter, but on right shift, fills empty spaces with the old most significant bit (msb).
 - Ex: 11001 >>> 2 =
 - Ex: 11001 <<< 2 =
- **Rotator:** rotates bits in a circle, such that bits shifted off one end are shifted into the other end
 - Ex: 11001 ROR 2 =
 - Ex: 11001 ROL 2 =

Shifters

Logical shifter:

- Ex: 11001 >> 2 = 00110

- Ex: 11001 << 2 = 00100

Arithmetic shifter:

- Ex: 11001 >>> 2 = 11110

- Ex: 11001 <<< 2 = 00100

Rotator:

- Ex: 11001 ROR 2 = 01110

- Ex: 11001 ROL 2 = 00111

Shifter Design

Shifters as Multipliers, Dividers

- $A << N = A \times 2^N$
 - **Example:** $00001 << 2 = 00100 (1 \times 2^2 = 4)$
 - **Example:** $11101 << 2 = 10100 (-3 \times 2^2 = -12)$
- $A >>> N = A \div 2^N$
 - **Example:** $01000 >>> 2 = 00010 (8 \div 2^2 = 2)$
 - **Example:** $10000 >>> 2 = 11100 (-16 \div 2^2 = -4)$

