

Data Science

Foundations of Classification Algorithms

Jonatan Alcala, Kenney Maloney (Group 18)

Table of Contents

Preprocess

Perceptron

Adaline

Logistic Regression Support Vector
Machine
(SVM)

Reflection

Preprocess

Handled missing values

 Replaced ? with "Unknown" (kept rows)

Dropped redundancy

Removed education (duplicate of education-num)

Encoded Categorical Features

Standardized numeric features

 Scaled values (age, fnlwgt, capitalgain, etc.) for balanced training

Split & saved data

- Train/test split with stratification
- Saved preprocessed train, test, validation sets

Perceptron

3-Fold Stratified CV

Training grid: η ∈ {0.001, 0.005, 0.01, 0.05}, n_iter ∈ {25, 50, 100, 150}

Selected Hyperparameters

- $\eta = 0.05$, n_iter = 25
- Mean CV acc ≈ 82.7%

Results (Test)

Accuracy: 78.75%

Adaline

3-Fold Stratified CV

Best Configurations

- GD: η=0.01, n_iter=200
- SGD: η=0.001, n_iter=100

CV → Test

- GD: CV 83.44% | Test 83.10%
- SGD: CV 84.34% | Test 83.21%

Convergence

- GD: Smooth, monotonic MSE decrease
 → stable batch updates.
- SGD: Noisy but low MSE; faster passes; regularizing effect.

Scikit-Learn Perceptron & Adaline

Perceptron (GridSearchCV, 5-fold Stratified)

- Best configurations: elasticnet, alpha=1e-4, eta0=0.1, max_iter=1000, early_stopping=True
- Scores: $CV \approx 81.92\% \rightarrow Test \approx 76.76\%$ (some overfitting)

Adaline via SGDRegressor (squared error)

- Best configurations: alpha=1e-3, eta0=1e-4, penalty=None, max_iter=1000
- Score: Test ≈ 83.44%

<u>Takeaways</u>

- Perceptron: quick baseline but CV → Test drop
- Adaline: more numerically sensitive, but best Test ≈ 83% +

Logistic Regression

Before Hypertuning:

- Accuracy = 85 %
- Precision:
 - o 0 = 88%
 - o 1 = 73%
- Recall:
 - o 0 = 93%
 - o 1 = 58%

Selected Hyperparameters

C = 0.615848211066026

After Hypertuning:

- Accuracy = 84.8%
- Precision and Recall remain unchanged
 - Note difference in true positives and true negatives from the first model

Support Vector Machine

- Not linearly separable with two PC's
- PC1 is the most informative
- Skipped by GridSearchCV

Best Model:

Kernel: RFB

• **C**: 1

• **Gamma:** Scale

• **CV Accuracy:** 85.7%

• Test Accuracy: 84.9%

Confusion Matrix:

- Precision and recall remain like the logistic regression
- Slight shifts in true & false negatives

Reflection: Feature Scaling

Why is important for gradient-based algorithms?

- Faster, stabler convergence: one learning rate works; fewer epochs
- Less zig-zagging: scaling rounds the loss contours, so steps point to the minimum
- Equal feature influence: big-range features (e.g., capital-gain) don't dominate small ones (e.g., age)
- Fair regularization: L1/L2 penalties act comparably across coefficients

Gradient descent with and without feature scaling

Reflection: Gradient Descent Variants

Batch vs Stochastic Gradient Descent

- BGD vs SGD: smooth & costly full-batch steps vs. noisy & fast single-sample steps
- BGD computes the gradient over *entire dataset* for each step
- SGD computes the gradient using a single example

September 26, 2025 DASC 41103 - Machine Learning 10

Reflection: Scikit-learn vs Book Implementations

Why does scikit-learn outperform book code (Perceptron & Adaline)?

- Compiled core (Cython): SGD inner loops run in C (sgd_fast.pyx) → no Python-loop overhead
- Stronger Optimizer: LR schedules, L1/L2/ElasticNet, shuffling, early stopping, class weights, averaging
- Space Aware Math: accepts CSR; uses efficient safe_sparse_dot → big win on onehot features
- Vectorized & parallel: BLAS + optional OpenMP for fast wall-clock convergence

*for list of references look at Research & Concepts.md in docs/ folder

Reflection: Decision Boundaries

Comparing Logistic Regression & SVM

Logistic

- Can only be a linear decision boundary
 - Shows how this data doesn't fit the assumption of being linearly separable because of the overlap

SVM

- Fit for a radial basis function so it's more flexible than the logistic regression
- Allows for nonlinearity

September 26, 2025 12 DASC 41103 - Machine Learning

Reflection: Regularization

Preventing Overfitting in Machine Learning

- Helps reduce the model's tendency to memorize the noise/outliers (overfitting)
- Makes the model less complex
 - For Logistic/SVM: As C decreases, the model smooths out decision boundaries and improves generalizations to potentially match better with unseen data
 - For Adaline/Perceptron: Depending on the regularization applied, penalties are assigned, and weights are driven lower to slow down growth. This also helps its ability to predict on unseen data.

Reflection: Impact of the C Parameter

Logistic Regression and Linear SVC: 0.01, 1.0, 100.0

Effect of C values:

- **Small C:** Creates a wider margin, allows some misclassifications, and keeps the model simpler.
- **Medium C:** Balances margin size with classification accuracy.
- Large C: Focuses on minimizing misclassification, often creating more complex boundaries that risk overfitting.

Impact on our models:

- **Logistic Regression:** Best accuracy (84.72%) at **C = 1**, suggesting the model captures patterns while tolerating some noise.
- **Linear SVC:** Best accuracy (84.71%) at **C = 100**, meaning it fits the data more tightly, but may be overfitting.

Overall: The choice of C controls model sensitivity and complexity.