- a. According to Piazza post <u>@1180</u>, this means we have to prove $\forall \ 0 < \gamma < 2$, there exists a weighted vertex cover problem whose linear programming solution $LP < \frac{1}{\gamma} OPT$, where OPT is the optimal (minimum) weight.
 - Let's consider a graph G with n vertices. Let there be an edge between every pair of vertices in G. Let the weight $w_i=1$ for each vertex. It's obvious that the optimal weighted vertex cover is n-1 by choosing any n-1 vertices (the complement set of vertices of a graph's vertex cover is an independent set, and all possible independent sets of such a graph as we described have cardinality 1 because every pair of vertices is connected by an edge). The optimal linear programming solution LP has $x_i=\frac{1}{2}$ for every vertex, and so $LP=\overrightarrow{w}\cdot\overrightarrow{x}=\frac{n}{2}$ (it's impossible for LP to be less than $\frac{n}{2}$ because then the average x_i would be less than $\frac{1}{2}$, and that cannot satisfy the constraint $x_u+x_v\geq 1$ \forall edges (u,v)).

If we graph $f(n) = \frac{\frac{1}{2}[n]}{[n]-1}$ (we put x in the ceiling function because number of vertices is always a natural number), we see that f(n) starts from 1 and asymptotically approaches $\frac{1}{2}$. As γ approaches 2, $LP < \frac{1}{\gamma}OPT$ is satisfied as n approaches infinity. When $\gamma \ll 2$, $\frac{1}{\gamma} > \frac{1}{2}$, so a smaller n could satisfy $LP < \frac{1}{\gamma}OPT$. Choose an n whose f(x) is less than $\frac{1}{\gamma}$. Thus, $\forall \ 0 < \gamma < 2$, there exists a weighted vertex cover problem whose linear programming solution is less than $\frac{1}{\gamma}OPT$.

b. We formulate this into a linear programming problem.

Objective function to minimize: $\vec{w} \cdot \vec{x}$

Constraints: $0 \le x_i \le 1 \ \forall \ i \in V$

$$\sum_{i \in H} x_i \ge 1 \,\forall \, H$$

After we obtain \vec{x} , round all $\vec{x}_i \geq \frac{1}{c}$ to 1 and all other \vec{x}_j 's to 0. If and only if $\vec{x}_i == 1$ is $\vec{x}_i \in S$.

Proof of correctness:

- 1) We want to show that this indeed produces a hitting set S This problem is essentially vertex cover on a hypergraph. An edge in a hypergraph has multiple vertices, and as long as one vertex on an edge is hit, the entire edge is covered. Our constraints ensure that at least one $x_i \in H$ is greater than or equal to $\frac{1}{|H|}$, which in turn is greater than or equal to $\frac{1}{c}$ because $|H| \le c$, and so that x_i would be rounded up to 1 to be included in S.
- 2) We want to show this is a c-approximation.

$$\sum_{v \in S} w_v \le c \sum_{v \in S} w_v x_v \le c \sum_v w_v x_v \le c \ OPT$$

The first inequality is because $x_v \geq \frac{1}{c} \ \forall \ v \in S$. The second inequality is because now it also includes $v \notin S$. The third inequality is because $\vec{w} \cdot \vec{x} \leq OPT$, because \vec{x} found by our algorithm can be fractions while the solution OPT found by integer programming is all integers. QED.