题目

作者

2023年6月21日

2

目 录

1 电磁现象

1 电磁现象

名称	公式	其他表示		说明 2
库仑定律	$\vec{F} = \frac{qq'\vec{r}}{4\pi\epsilon_0 r^3}$	$\vec{F'} = -\vec{F}$		
电场	$\vec{F} = \frac{qq'\vec{r}}{4\pi\varepsilon_0 r^3}$ $\vec{E} = \frac{F}{q'} = \frac{q\vec{r}}{4\pi\varepsilon_0 r^3}$		q 是源电荷,q' 是试探电荷	
高斯定理	$\oint_{S} E \cdot d\overrightarrow{s} = \frac{q}{\varepsilon}$		对于闭合曲面内的每一个点 电荷,其形成电通量为一个定 值	外面的 q 形成的为 0
电流密度				
电流连续	$\nabla \cdot \vec{j} + \frac{\partial \rho}{\partial t} = 0$			
性方程				
安培定律				
	—磁场			
磁场力				
静电场的散度	$ abla \cdot \vec{E_{\#}} = \frac{ ho(\vec{x'})}{arepsilon}$	$ abla \cdot ec{E_{ec{z}J}} = 0$	$ec{E_{eta}} = ec{E_{eta}} + ec{E_{eta}}$	
静电场的旋度	$ abla imes \vec{E_{ ext{#}}} = 0$	$ abla imes \vec{E}_{ec{z} ec{J}} = -rac{\partial B}{\partial t}$		证明请看
静磁场的散度	$\nabla \cdot \vec{B} = 0$			×1,300
静磁场的旋度	$\nabla \times \vec{B} = \mu_0 \vec{j}(\vec{x})$			
感应电动势	$\varepsilon = -\frac{d\phi_m}{dt} = -\frac{d}{dt} \int_S \overline{B} \cdot d\overrightarrow{s}$	$\nabla \times \vec{E_{\mathbb{R}}} + \frac{\partial B}{\partial t} = 0$		
位移电流			电流连续性方程和 ∇ · 戌 矛盾	