EECS 241A

HOMEWORK 4 SOLUTIONS

1. (a)
$$P(\Gamma | S_m) = \frac{N}{|I|} P_{N_k} (r_k - s_{mk}) = (\frac{a}{2})^N e^{-a \sum_{k=1}^N |Ir_k - s_{mk}|} m = 1, 2, ..., M$$

(b)
$$\log p(\underline{r}|\underline{s}_m) = \log(\frac{a}{2})^N - a\sum_{k=1}^N |r_k - \underline{s}_{mk}|$$

(c)
$$D(\underline{r},\underline{s}_m) = \sum_{k=1}^{N} |\underline{r}_k - \underline{s}_{mk}|$$

$$m = 1, 2, ..., M$$

D is the sum of the absolute values along each dimension (Also known as L, metric or Manhattan metric)

 $P(C) = \left(\frac{1}{2} + \frac{a}{2} \int_{0}^{1} e^{-ax} dx\right)^{2}$ $= \left(1 - \frac{e^{-a}}{2}\right)^{2}$ $P(E) = 1 - \left(1 - \frac{e^{-a}}{2}\right)^{2} = e^{-a} - \frac{e^{-2a}}{4}$

(9) P(E) is zero since there is no probability of noise exceeding beyond decision regions

(f)

2. (a)
$$P(\underline{\Gamma}|\underline{s}_m) = P(\underline{r}-\underline{s}_m) = \prod_{k=1}^{N} \operatorname{rect}(r_k - \underline{s}_{mk})$$

(b)
$$\log p(\underline{r}|\underline{s}_m) = \sum_{k=1}^{N} \log \operatorname{rect}(\underline{r}_k - \underline{s}_{mk}) = \begin{cases} -\infty & \text{if } |\underline{r}_k - \underline{s}_{mk}| > \frac{1}{2} \\ & \text{for any } k \end{cases}$$

(e)		·			
<u> </u>			3/4		
	1 2	1 or	2 1	_ L	
	ا <u></u>	4	4 5,	1	
	-1/4	1,2,3	1/4	1 13/4	
-3/4	2 or 3	°r 4	lor	4	
	<u></u>	-1,	4, <u>5</u> 4	- <u>i</u>	
	13	3 or 4	1 4	į į	
	i — — —	- -	<u> </u>	!	
-		-3	3/4	i	
		!			

- (d) P(E) =0
- 3. (a) $P_{Y_1}(y_1|x) = P_{N_1}(y_1-x) = \frac{1}{2}e^{-|y_1-x|}$ $-\infty \langle y_1 \rangle \langle y_2 \rangle \langle$
 - (b) $P_{Y|X} (y_1|x) = P_{Y_1,Y_2|X} = P_{Y_1|X} (y_1|x) P_{Y_2} (y_2|x)$ = $\frac{1}{4} e^{-|y_1-x|-|y_2-x|}$

 $\log p_{Y|X} (y|X) = \log \frac{1}{4} - (|y_1 - x| + |y_2 - x|)$

max $p_{Y1X}(y1X) \Rightarrow min(|y_1-x|+|y_2-x|)$

This rule becomes X=-

 $|y_1 - x| + |y_2 - x| \ge |y_1 + 1| + |y_2 + 1|$

- (c) You can conclude by plugging in numbers that
 - i) Region 1: Decide x=1
 - ii) Region 2: Decide x=-1
 - iii) Region 3: Both sides of the inequality have the same numeric value. Both x=1 and x--1

4. (a)
$$f_1(t) = \begin{cases} 1/\sqrt{7} & 0 \le t \le T \\ 0 & \text{elsewhere} \end{cases}$$

The orthonormal basis set { f; (+) } i=1 is unique.

(b)
$$s_0(t) = 0. f_1(t)$$
 $s_1(t) = A\sqrt{T} f_1(t)$

$$\frac{S_0}{X} = \frac{S_1}{X}$$

$$\frac{S_1}{X} = \frac{S_1}{X}$$

$$\frac{S_$$

(d)
$$A\sqrt{\frac{T}{2N_0}} = 4.25 \quad (Q(4.25) = 10^{-5})$$

T= 72.25 us

(e)
$$f_i(t) = \begin{cases} 1/\sqrt{t} & 0 \le t \le T \end{cases}$$
 The orthonormal basis set $\{f_i(t)\}_{i=1}^n$ is unique.

(f)
$$S_{o}(t) = -A\sqrt{T} f_{1}(t)$$
 $S_{1}(t) = A\sqrt{T} f_{1}(t)$

$$\frac{S_{o}}{A\sqrt{T}} + \frac{S_{1}}{A\sqrt{T}} + \frac{S_{2}}{A\sqrt{T}} = Q\left(\frac{ZA\sqrt{T}}{2\sqrt{N_{o}/2}}\right) = Q\left(A\sqrt{\frac{ZT}{N_{o}}}\right)$$

(h)
$$A\sqrt{\frac{27}{N_o}} = 4.25$$
 $T = 18.06 \mu s$

(i) Note the first system is on-off signaling while the second one is antipodal. The minimum distances between the two systems differ by 3 dB. As a result, for the same voltage level, the second system can work 4 times faster.

5. (a)
$$\int_{0}^{T} s_{1}^{2}(t) dt = \int_{0}^{T} A^{2} sin^{2} \frac{\pi t}{T} dt = A^{2} \left[\frac{T}{2} - \frac{1}{2} \int_{0}^{T} cos^{2} \frac{\pi t}{T} dt \right] = \frac{A^{2}T}{2}$$

$$\sigma^{2} = N_{0}/2$$

$$\frac{d_{min}}{d_{0}}$$

$$P(E) = Q\left(\frac{d_{min}}{2\sigma}\right) = Q\left(\frac{1}{2}A\sqrt{\frac{7}{2}}\sqrt{\frac{2}{N_{o}}}\right) = Q\left(\frac{A}{2}\sqrt{\frac{7}{N_{o}}}\right)$$

$$= Q\left(\frac{0.2\times10^{-3}}{2}\sqrt{\frac{2\times10^{-6}}{2\times10^{-15}}}\right) = Q\left(\sqrt{10}\right) = 7.83\times10^{-4}$$

(b)
$$Q(4.25) = 10^{-5}$$

$$4.25 = \frac{A}{2 \times 10^{-4}} \sqrt{10}$$

$$4.25 = \frac{A}{2 \times 10^{-4}} \sqrt{10}$$
 $A = \frac{8.5}{\sqrt{10}} \times 10^{-4} = 2.7 \times 10^{-4} = 10 \text{ mV}$

6. (a)
$$f_{1}(t) = \frac{s_{1}(t)}{\sqrt{\int_{0}^{T} s_{1}^{2}(t) dt}}$$
 $1/\sqrt{T}$

$$s_i(t) = A \sqrt{T} f_i(t)$$

$$t s_2(+) = 0$$

$$\begin{array}{c}
\uparrow (t) \\
\uparrow \\
\uparrow (t)
\end{array}$$

$$p(\underline{r}|\underline{s}_1) Pr(\underline{s}_1) \stackrel{!}{\geq} p(\underline{r}|\underline{s}_2) Pr(\underline{s}_2)$$

$$\frac{P(\underline{r}|\underline{s}_1)}{P(\underline{r}|\underline{s}_2)} \stackrel{?}{\geq} \frac{P_2}{P_1}$$

$$-\frac{1}{N_o} \left[\left(\Gamma - AVT \right)^2 - \Gamma^2 \right] \stackrel{1}{\underset{2}{\rightleftharpoons}} ln \frac{P^2}{P_1}$$

