

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

S PAGE BLANK (USPTO)

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER : 02153583
 PUBLICATION DATE : 13-06-90

APPLICATION DATE : 06-12-88
 APPLICATION NUMBER : 63306849

APPLICANT : MITSUBISHI ELECTRIC CORP;

INVENTOR : KITA HIDEKI;

INT.CL. : H01S 3/137

TITLE : CONTROLLER FOR STABILIZING WAVELENGTH

ABSTRACT : PURPOSE: To accurately know the center and the diameter of an interference fringe so as to control wavelength to keep it stable for a long period even if an optical axis deviates by a method wherein three linear image sensors two-dimensionally arranged are used.

CONSTITUTION: An optical means is provided with a beam splitter 3, a scattering plate 4, a Fabry-Perot etalon 5, and a convex lens 6. Linear image sensors 7a, 7b, and 7c of an image sensing element 7A are arranged on a plane which is vertical to an optical axis and separate from the lens 6, the long side of the sensor 7a lines along a y axis, and the long sides of the sensors 7b and 7c line in -x and +x directions respectively. Concerning the position of the light intensity peak and the diameter of an interference fringe formed on the sensors 7a, 7b, and 7c, even if the center of the interference fringe circle is not located on the x axis, the diameter of the circle can be accurately obtained. A servo mechanism 9 controls a Fabry-Perot etalon 2 comparing the diameter of an interference fringe circle with an initially set value.

COPYRIGHT: (C)1990,JPO&Japio

THIS PAGE BLANK (USPTO)

⑩ 日本国特許庁 (JP)

⑪ 特許出願公開

⑫ 公開特許公報 (A)

平2-153583

⑬ Int. Cl.⁵
H 01 S 3/137

識別記号

厅内整理番号
7630-5F

⑭ 公開 平成2年(1990)6月13日

審査請求 未請求 請求項の数 1 (全5頁)

⑮ 発明の名称 波長安定化制御装置

⑯ 特 願 昭63-306849

⑰ 出 願 昭63(1988)12月6日

⑱ 発明者 喜多秀樹 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社

伊丹製作所内

⑲ 出願人 三菱電機株式会社 東京都千代田区丸の内2丁目2番3号

⑳ 代理人 弁理士曾我道照 外4名

明細書

1. 発明の名称

波長安定化制御装置

2. 特許請求の範囲

レーザ光の一部を散乱し分光して集光する光学手段、上記集光された光の干渉縞を2次元的に撮像する撮像素子、上記2次元的に撮像された干渉縞の像を演算処理してその干渉縞の位置を求める画像処理部、及び上記求めた干渉縞の位置に基づいて上記レーザ光の波長を選択する波長選択素子を制御するサーボ機構を備えたことを特徴とする波長安定化制御装置。

3. 発明の詳細な説明

[産業上の利用分野]

この発明は、半導体製造プロセスにおけるリソグラフィー(LSIのパターン露光)などの光源として使用される、狭帯域化(波長選択)されたエキシマレーザのレーザ発振装置の波長安定化制御装置に関するものである。

特に、2次元に配置された複数のリニアイメージ

ジセンサによって、光の干渉縞(フリンジ)の直径を正確に求めることができるので、光軸のズレを容易に補正することができる等の長所を有するレーザ発振装置の波長安定化制御装置に関するものである。

[従来の技術]

従来例の構成を第4図及び第5図を参照しながら説明する。第4図は、例えば『IEEE Journal Quantum Electronics QE-14(1978) 17頁に示された従来の波長安定化制御装置を示すブロック図であり、第5図は、従来の波長安定化制御装置の撮像素子(7)を示す平面図である。

第4図において、従来の波長安定化制御装置は、レーザ発振装置(1)から出力されたレーザ光の光軸上に設けられたビームスプリッター(3)と、このビームスプリッター(3)の直角方向の光軸上に設けられた散乱板(4)と、この散乱板(4)の出口側に設けられたファブリペローエタロン(5)と、このファブリペローエタロン(5)の出口側に設けられた凸レンズ(6)と、この凸レンズ(6)の透過

特開平2-153583 (2)

側に設けられた撮像素子(7)と、この撮像素子(7)に接続された画像処理部(8)と、この画像処理部(8)に入力側が接続されかつファブリペローエタロン(2)に出力側が接続されたサーボ機構(9)とから構成されている。

なお、レーザ発振装置(1)は、レーザ発振器(1a)と、このレーザ発振器(1a)の両側に配置された全反射ミラー(1b)及び部分反射ミラー(出力ミラー)(1c)と、レーザ発振器(1a)と部分反射ミラー(1c)の間に配置された波長選択素子例えばファブリペローエタロン(2)とから構成されている。

第5図において、撮像素子(7)は、1次元のイメージセンサであるリニアイメージセンサ(7₁)から構成されている。このリニアイメージセンサ(7₁)は長辺方向がx軸方向に沿うように配置されている。

つぎに、上述した従来例の動作を第5図及び第6図を参照しながら説明する。第6図は、従来の波長安定化制御装置により得られた干渉縞の強度分布を示す波形図である。

第6図の実線で示すように、干渉縞の強度分布が、画像処理部(8)の演算処理によって得られる。干渉縞の1つの直径D₀は、

$$D_0 = 2 f \theta_0 \quad \dots \quad ①$$

(ただし、f:凸レンズ(6)と撮像素子(7)との間の距離、 $\theta_0 = \arccos(\alpha \lambda_0 / 2 n d)$ から求めることができる。

したがって、第5図及び第6図の点線で示すように、干渉縞の光轴すなわち中心波長入射がズレると、第5図で示すように、求める直径がD₀からD_{0'} ($D_{0'} < D_0$)に変化し、正確な直径D₀が求められなくなる。

この直径D₀を表わす信号が、サーボ機構(9)にフィードバックされ、光共振器の長さすなわちファブリペローエタロン(2)のギャップがサーボ機構(9)によって制御調節される。すなわち、①式より、レーザ光の波長入射が長いと、干渉縞の直径D₀が小さくなり、波長入射が短いと、直径D₀が大きくなる。

従来の波長安定化制御装置は、上述したように

レーザ発振装置(1)から出力されたレーザ光の波長は、光共振器の長さを変えることによって、すなわち、波長選択素子であるファブリペローエタロン(2)のギャップを変えることによって選択することができる。

まず、レーザ発振装置(1)から出力されたレーザ光の一部が、ビームスプリッター(3)によって取り出され、散乱板(4)によって散乱されて、ファブリペローエタロン(5)によって分光される。

このファブリペローエタロン(5)を通過することができる光の中心波長入射の条件は、

$$\lambda_0 = (2 n d \cos \theta_0) / \alpha \quad \dots \quad ②$$

(ただし、n:ファブリペローエタロン(2)のギャップ内の屈折率、d:ファブリペローエタロン(2)のギャップ、 θ_0 :ファブリペローエタロン(2)に対する入射角、α:任意の定数)である。

上記条件式②を満たす波長の光だけが、光軸に垂直な面上に、同心状の干渉縞を発生することになる。この干渉縞は、凸レンズ(6)によって集光されて、撮像素子(7)上に印加される。

1次元のリニアイメージセンサを使用し、位相検波を利用して制御を行っている。

【発明が解決しようとする課題】

上述したような従来の波長安定化制御装置では、撮像素子として1次元のイメージセンサを使用しているので、撮像素子を干渉縞の光軸上に正確に配置するように調節しなければならないという問題点があった。

また、熱や振動などにより撮像素子と干渉縞の光軸がズレても、補正をすることができないという問題点があった。

この発明は、上述した問題点を解決するためになされたもので、撮像素子を干渉縞の光軸上に配置するように調節することが容易になり、撮像素子と干渉縞の光軸のズレを補正することができる波長安定化制御装置を得ることを目的とする。

【課題を解決するための手段】

この発明に係る波長安定化制御装置は、以下に述べるような手段を備えたものである。

(i) レーザ光の一部を散乱し分光して集光す

特開平2-153583(3)

る光学手段。

(ii). 上記集光された光の干渉縞を2次元的に撮像する撮像素子。

(iii). 上記2次元的に撮像された干渉縞の像を演算処理してその干渉縞の位置を求める画像処理部。

(iv). 上記求めた干渉縞の位置に基づいて上記レーザ光の波長を選択する波長選択素子を制御するサーボ機構。

[作用]

この発明においては、撮像素子によって、集光された光の干渉縞が2次元的に撮像される。

つづいて、画像処理部によって、上記2次元的に撮像された干渉縞の像が演算処理されて、その干渉縞の位置が求められる。

そして、サーボ機構によって、上記求めた干渉縞の位置に基づいて、レーザ光の波長を選択する波長選択素子が制御される。

[実施例]

2つの実施例、すなわち第1実施例及び第2実

配置され、リニアイメージセンサ(7b)及び(7c)は同様に長辺方向がそれぞれ-x軸及び+x軸方向に沿うように配置されている。

つぎに、上述した第1実施例の動作を第2図を参照しながら説明する。

第2図で示すように、1つの干渉縞が3つのリニアイメージセンサ(7a)、(7b)及び(7c)上につくる光の強度のピーク位置をA(0,y₁)、B(x₂,0)、C(x₁,0)とすると、この干渉縞の中心(a,b)は、

$$(a,b) = ((x_1 + x_2)/2, (y_1 + x_2 + x_1)/2y_1)$$

と表され、また直径Dは、

$$D = \sqrt{((x_1^2 + y_1^2)(x_2^2 + y_2^2))/y_1}$$

と表される。

したがって、干渉縞の円の中心がx軸上にない場合でも、その直径を正確に知ることができる。サーボ機構(9)は、上述した直径Dと、初期に設定した値とを比較してファブリペローエタロン(2)を制御する。

上述したこの発明の第1実施例は、2次元的に配置された3つのリニアイメージセンサ(7a)、

施例について説明する。

最初に、第1実施例の構成を第1図及び第2図を参照しながら説明する。第1図は、この発明の第1実施例を示すブロック図であり、撮像素子(7A)以外は上記従来装置のものと全く同一である。また、第2図は、この発明の第1実施例の撮像素子(7A)を示す平面図である。

第1図において、この発明の第1実施例は、上述した従来装置のものと全く同一のものと、凸レンズ(6)の通過側に設けられた撮像素子(7A)とから構成されている。

ここで、この発明の光学手段は、ビームスプリッター(3)と、散乱板(4)と、ファブリペローエタロン(5)と、凸レンズ(6)とから構成されている。

第2図において、撮像素子(7A)は、3つのリニアイメージセンサ(7a)、(7b)及び(7c)から構成されている。これらのリニアイメージセンサ(7a)、(7b)及び(7c)は、凸レンズ(6)から距離(f)だけ離れた光軸に垂直な面内に配置され、リニアイメージセンサ(7a)は長辺方向がy軸方向に沿うように

(7b)及び(7c)を使用したので、光軸がズレても、干渉縞の中心及び直径を求めることができるので、波長を長時間安定に制御することができる。

また、光軸ズレや面ぶれを補正できるので、撮像素子であるリニアイメージセンサ(7a)、(7b)及び(7c)の取り付け精度の許容範囲が大きくなり、工作が容易になる他、部品加工が安価で済む。

第2番目に、この発明の第2実施例の構成及び動作を第3図を参照しながら説明する。第3図は、この発明の第2実施例の撮像素子(7B)を示す平面図である。

この発明の第2実施例は、上述した第1実施例のうち撮像素子(7A)の代わりに、撮像素子(7B)から構成されている。

第3図において、撮像素子(7B)は、6つのリニアイメージセンサ(7d)、(7e)、(7f)、(7g)、(7h)及び(7i)から構成されている。これらのリニアイメージセンサ(7d)、(7e)、(7f)、(7g)、(7h)及び(7i)は、凸レンズ(6)から距離(f)だけ離れた面内に配置され、リニアイメージセンサ(7d)は長辺

特開平2-153583(4)

方向が $+x$ 軸方向に沿うように配置され、他のリニアイメージセンサ(7e)、(7f)、(7g)、(7h)及び(7i)は、リニアイメージセンサ(7d)を基点にして同一面内に60度毎に配置されている。

したがって、干渉縞の位置に関するデータが6点得られるならば、センサ面が光軸に対して垂直でない場合でも光軸ズレや面ぶれを補正できる。

なお、上記第1及び第2実施例では、干渉縞の位置が所定の半径(r)以内にあることを条件にして、光軸位置に関する情報を出すこともできる。

また、上記実施例では1次元のリニアイメージセンサを複数配置して2次元の撮像系子を構成したが、例えばCCD等の2次元の撮像系子を使用しても所期の目的を達成し得ることはいうまでもない。

[発明の効果]

この発明は、以上説明したとおり、レーザ光の一部を散乱し分光して集光する光学手段と、上記集光された光の干渉縞を2次元的に撮像する撮像系子と、上記2次元的に撮像された干渉縞の像を演算処理してその干渉縞の位置を求める画像処理部と、上記求めた干渉縞の位置に基づいて上記レーザ光の波長を選択する波長選択系子を制御するサーボ機構とを備えたので、撮像系子を干渉縞の光軸上に配置するように調節することが容易になり、撮像系子と干渉縞の光軸のズレを補正することができるという効果を有する。

演算処理してその干渉縞の位置を求める画像処理部と、上記求めた干渉縞の位置に基づいて上記レーザ光の波長を選択する波長選択系子を制御するサーボ機構とを備えたので、撮像系子を干渉縞の光軸上に配置するように調節することが容易になり、撮像系子と干渉縞の光軸のズレを補正することができるという効果を有する。

4. 図面の簡単な説明

第1図はこの発明の第1実施例を示すブロック図、第2図はこの発明の第1実施例の撮像系子を示す平面図、第3図はこの発明の第2実施例の撮像系子を示す平面図、第4図は従来の波長安定化制御装置を示すブロック図、第5図は従来の波長安定化制御装置の撮像系子を示す平面図、第6図は従来の波長安定化制御装置により得られた干渉縞の強度分布を示す波形図である。

図において、

- (1) … レーザ発振装置、
- (2) … ファブリペローエタロン
(波長選択系子)、

- (3) … ピームスプリッター、
- (4) … 散乱板、
- (5) … ファブリペローエタロン、
- (6) … 凸レンズ、
- (7A) … 撮像系子、
- (8) … 画像処理部、
- (9) … サーボ機構である。

なお、各図中、同一符号は同一、又は相当部分を示す。

代理人 曽我道照

第2図

第3図

第5図

第6図

THIS PAGE BLANK (USPTO)