Linear Classification

Prof. Je-Won Kang
Electronic & Electrical Engineering
Ewha Womans University

Machine learning problems

Linear classification

- Predict a discrete output y (classification ID) from x when D = (x, y) is given
 - ID = 0 or 1 (binary classification)
 - ID = 0, 1, ..., N-1 (multi classification)
- Hypothesis set \mathcal{H} : a set of lines model parameter feature

$$h_w(x) = w_0 + w_1 x_1 + \dots + w_d x_d = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

w: model parameter (learnable parameter)

$$h_w(x) = w_0 + w_1 \phi(x_1) + \dots + w_d \phi(x_d) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})$$

Linear model with a set of features

Linear separable

Example: image recognition

Problem formulation

- $X = \mathbb{R}^d$ is an input space
 - \mathbf{R}^d : a d-dimensional Euclidean space
 - input vector $x \in X$: $x = (x_1, x_2, ..., x_d)$, e.g. d = 2
- $Y = \{+1, -1\}$ is an output space
 - Binary (yes/no) decision
- Now, we want to approximate a target function f
 - $f: X \to Y$ (unknown ideal function)
 - Data (x^1, y^1) , ..., (x^N, y^N) ; dataset where $y^N = f(x^N)$
 - Correct label is ready for a training set
 - Hypothesis $g: X \to Y$ (ML model to approximate f): $g \in H$

Linear classification framework

Hypothesis function to build a decision boundary

Which predictor? Hypothesis class

$$h(x) = \text{sign } (w^T x)$$

How good is a predictor?

Loss function

Zero-one loss
Hinge loss
Cross-entropy loss

How to compute the best predictor?
Optimization algorithm

Gradient descent algorithm

Linear classification model

• The linear formula $g \in \mathbf{H}$ can be written as

 $x_0:1$

$$h(x) = \operatorname{sign} \left(\left(\sum_{i=1}^{d} w_i x_i \right) + w_0 \right)$$

$$= \operatorname{sign} \left(\left(\sum_{i=0}^{d} w_i x_i \right) \right), x_0 = 1$$

$$= \operatorname{sign} \left(w^{\mathsf{T}} x \right)$$

$$w_0: a \ bias \ term \quad sign(x) = \begin{cases} 1, & \text{if } x > 0 \\ -1, & \text{if } x < 0 \end{cases}$$

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 = 0$$

Example of linear classifier

$$h(\mathbf{x}) = \text{sign}([-1, 1] [x_1, x_2]^T)$$

$$\operatorname{sign}(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z < 0 \\ 0 & \text{if } z = 0 \end{cases}$$

$$h([0,2]) = \text{sign}\left([-1,1][0,2]^{T}\right) = 1$$

$$h([1,-1]) = \text{sign}\left([-1,1][1,-1]^{T}\right) = -1$$

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 = 0$$

Hypothesis class: which classifier?

$$h(x) = \text{sign}([-1, 1][x_1, x_2]^T)$$

$$h(\mathbf{x}) = \text{sign}([0.5, 1][x_1, x_2]^T)$$

For optimization

Define a metric and compute an error

$$\begin{aligned} &\mathsf{Loss}_{0\text{-}1}(x,y,\mathbf{w}) = \mathbf{1}[f_{\mathbf{w}}(x) \neq y] \text{ zero-one-function} \\ &\mathsf{Loss}([0,2],\mathbf{1},[0.5,1]) = \mathbf{1}[\mathsf{sign}([0.5,1]\cdot[0,2]) \neq 1] = 0 \\ &\mathsf{Loss}([-2,0],\mathbf{1},[0.5,1]) = \mathbf{1}[\mathsf{sign}([0.5,1]\cdot[-2,0]) \neq 1] = 1 \\ &\mathsf{Loss}([1,-1],-1,[0.5,1]) = \mathbf{1}[\mathsf{sign}([0.5,1]\cdot[1,-1]) \neq -1] = 0 \end{aligned}$$

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 = 0$$

Score and margin

- Input data : x
- Predicted label : $h(x) = \text{sign}(w^T \phi(x))$
- Target label: y

用物的MM galor odotur confidentを対為

- ✓ Score: the score on an example (x, y) is $w \cdot \phi(x)$, how **confident** we are in predicting +1.
- Margin: the margin on an example (x, y) is $(w \cdot \phi(x))y$, how correct we are.
 - (日 y=1 → margīn 大 → かけなき.

 (日 y=1 → margīn 大 → "
 - 田 y=-1 → margin J → 言な

Zero-one loss

$$\mathsf{Loss}_{0\text{-}1}(x,y,\mathbf{w}) = \mathbf{1}[\underbrace{(\mathbf{w} \cdot \phi(x))y}_{\mathsf{margin}} \leq 0]$$

The goal is to minimize the loss

To run gradient descent, compute the gradient:

$$\textstyle \nabla_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \textstyle \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} \nabla \mathsf{Loss}_{\mathsf{0-1}}(x,y,\mathbf{w})$$

$$\nabla_{\mathbf{w}} \mathsf{Loss}_{0\text{-}1}(x, y, \mathbf{w}) = \nabla \mathbf{1}[(\mathbf{w} \cdot \phi(x))y \leq 0]$$

Gradient is zero almost everywhere!

Hinge loss

margin

$$Loss_{hinge}(x, y, \mathbf{w}) = \max\{1 - (\mathbf{w} \cdot \phi(x))y, 0\}$$

- Zero loss if it is classified confidently and correctly
- Misclassification incurs a linear penalty w.r.t. confidence

$$\nabla \mathsf{Loss}_{\mathsf{hinge}}(x,y,\mathbf{w}) = \begin{cases} -\phi(x)y & \text{if } 1 > \{(\mathbf{w} \cdot \phi(x))y\} \\ 0 & \text{otherwise} \end{cases}$$

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$$

Cross-entropy loss

- Considers two probability mass functions (pmf) $\{p, 1-p\}$ and $\{q, 1-q\}$ with a binary outcomes
- Cross entropy for these two pmfs : defined by

$$p\log\frac{1}{q} + (1-p)\log\frac{1}{1-q}$$

The divergence of dissimilarity of two distributions
$$D(p \parallel q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$

$$D(p \parallel q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$

$$P(p \parallel q) \leftarrow P(p) \leftarrow P($$

• Cross entropy measures the error when approximating an observed pmf $\{p, 1-p\}$ between a fitted pmf $\{q, 1-q\}$

Cross-entropy loss

Real value $h = w^T \phi(x)$ 0 or 1

Height (cms)	Weight (kg)	Fitness
150	50	Fit
187	75	Fit
156	80	Not Fit
163	60	Fit
170	49	Not Fit
179	70	Fit

Logistic Model

$$\sigma(z) = \frac{1}{1 + e^{-W^T X}}$$

Sigmoid function

Squash the output of the linear function

$$\sigma(-\mathbf{w}^T x) = \frac{1}{1 + e^{-\mathbf{w}^T x}}$$

 A better approach : interpret as a probability

$$P_{W}(y = 1|x) = \sigma(-w^{T}x) = \frac{1}{1 + e^{-w^{T}x}}$$

$$P_{W}(y = 0|x) = 1 - \sigma(-w^{T}x) = \frac{e^{-w^{T}x}}{1 + e^{-w^{T}x}}$$

Cross-entropy loss

Understanding this Cost Function

- Suppose that L = [1,0,0],
 - If $\overline{Y} = [1,0,0]$, then $D = -1 \cdot \log 1 0 \cdot \log 0 0 \cdot \log 0 = -1 \cdot 0 0 \cdot (-\infty) 0 \cdot (-\infty) = 0$ (no cost).
 - If $\bar{Y} = [0,1,0]$, then $D = -1 \cdot \log 0 0 \cdot \log 1 0 \cdot \log 0 = -1 \cdot (-\infty) 0 \cdot 0 0 \cdot (-\infty) = \infty$ (huge cost).
 - If $\overline{Y} = [0,0,1]$, then $D = -1 \cdot \log 0 0 \cdot \log 0 0 \cdot \log 1 = -1 \cdot (-\infty) 0 \cdot (-\infty) 0 \cdot 0 = \infty$ (huge cost).

Gradient Descent Method

$$W \leftarrow W - \alpha \frac{\partial}{\partial W} CE$$

Training a linear classifier

- Iterative optimization using gradient descent
 - 1. Initialize weights at time step t = 0
 - 2. Compute the gradients

$$\nabla E_{Train}(w_t) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n x_n}{1 + e^{-y_n \mathbf{w}_t^T x_n}}$$

- 3. Set the direction to move:
- 4. Update weights
- 5. Iterate to next step until converging

$$v_t = -\nabla E_{Train}(w_t)$$

$$w_{t+1} = w_t + \alpha v_t$$

Multiclass classification

- Not all classification predictive models support multi-class classification.
- split the multi-class classification dataset into multiple binary classification datasets and fit a binary classification model on each.

Multiclass classification

One-VS-All

$$X \rightarrow W \rightarrow f(t) = \frac{1}{1 + e^{-t}} \rightarrow \overline{Y}$$

$$x_1 \cdot W_{B1} + x_2 \cdot W_{B2}$$

$$x_1 \cdot W_{C1} + x_2 \cdot W_{C2}$$

like one-hot-encoding

Multiclass classification

Advantage of linear classification

- Simple!
- Interpretability (example in Murphy 2012) สหาหล ลูง
 - x_1 : the number of cigarettes per day, x_2 : minutes of exercise per day
 - The goal is to predict P(Y = lung cancer)
 - Assume we have estimated the best parameter w = (1.3, -1.1) to have $h(x) = 1.3x_1 1.1x_2$

For every cigarettes per day, the risk increased by a factor of $e^{1.3}$

$$\frac{p(y=+1 \mid x)}{p(y=-1 \mid x)} = e^{w^T x} = e^{w_1 x_1 + w_2 x_2}$$

Reference

- Book: Pattern Recognition and Machine Learning (by Christopher M. Bishop)
- Book: Machine Learning: a Probabilistic Perspective (by Kevin P. Murphy)
- https://www.andrewng.org/courses/