МАТЕМАТИКА. Профильный уровень. 11 класс. Вариант 10 - 1 / 3

Вариант № 10

Профильный уровень

Инструкция по выполнению работы

Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1-12 записываются по приведённому ниже <u>образцу</u> в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов N 1.

КИМ Ответ: _-0,8 ____ -0,8 ____ Бла

При выполнении заданий 13–19 требуется записать полное решение и ответ в бланке ответов № 2.

Все бланки заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, чтобы ответ на каждое задание в бланках ответов № 1 и № 2 был записан под правильным номером.

Желаем успеха!

Справочные материалы

 $\begin{aligned} \sin 2\alpha &= 2\sin\alpha \cdot \cos\alpha \\ \cos 2\alpha &= \cos^2\alpha - \sin^2\alpha \\ \sin(\alpha + \beta) &= \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta \\ \cos(\alpha + \beta) &= \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \end{aligned}$

Экземпляр №1

Часть 1

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Во всех заданиях числа предполагаются действительными, если отдельно не указано иное. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.

ран	а угла вписанного в окружность четырёхугольника вны 42° и 85°. Найдите бо́льший угол этого
чет	тырёхугольника. Ответ дайте в градусах.
От	вет:
Да	ны векторы $\vec{a}\left(-7;9\right)$ и $\vec{b}\left(1;4\right)$. Найдите скалярное произведени
От	вет:
бо др по	енованием пирамиды служит прямоугольник, одна ковая грань перпендикулярна плоскости основания, а три угие боковые грани наклонены к плоскости основания д углом 60°. Высота пирамиды равна 15. Найдите объём рамиды.
i	TBET:

На чемпионате по прыжкам в воду выступают 50 спортсменов, среди них 9 спортсменов из Голландии и 4 спортсмена из Аргентины. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что двадцатым будет выступать спортсмен из Голландии.

МАТЕМАТИКА. Профильный уровень. 11 класс. Вариант 10 - 2 / 3

5 Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,34. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Ответ:			

6 Найдите корень уравнения $4^{2x-13} = \frac{1}{64}$.

Ответ:	

7 Найдите значение выражения $8 \cdot \sqrt[3]{49} \cdot \sqrt[6]{49} + 4$.

Ответ:

8 На рисунке изображён график y = f'(x) — производной функции f(x), определённой на интервале (-11;3). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = -x - 7 или совпадает с ней.

Ответ:	

Экземпляр №1

9 При температуре 0 °C рельс имеет длину l_0 =12,5 м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону $l(t^\circ) = l_0 (1 + \alpha \cdot t^\circ)$, где $\alpha = 1, 2 \cdot 10^{-5} (^\circ\text{C})^{-1}$ — коэффициент теплового расширения, t° — температура (в градусах Цельсия). При какой температуре рельс удлинится на 4,5 мм? Ответ дайте в градусах Цельсия.

-			
Ответ:			
OIBCI.			

10 Имеется два сплава. Первый содержит 5 % никеля, второй — 30 % никеля. Из этих двух сплавов получили третий сплав массой 250 кг, содержащий 20 % никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Ответ:			
O IDOI.			

11 На рисунке изображён график функции $f(x) = \frac{k}{x} + a$. Найдите значение x, при котором значение функции равно -3,1.

Otret.			
O			
	O		

12 Найдите наименьшее значение функции $y = e^{2x} - 2e^x + 9$ на отрезке [-1;1].

Ответ:

He забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Часть 2

Для записи решений и ответов на задания 13—19 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер выполняемого задания (13, 14 и т.д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13 а) Решите уравнение $\sqrt{6}\cos 2x \sqrt{2}\sin 2x + \sqrt{6} = 0$.
 - 6) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$.
- 14 В правильной треугольной пирамиде SABC боковое ребро AS равно $3\sqrt{6}$, а высота SH пирамиды равна $\sqrt{30}$. Точка M середина ребра BC, а AT высота пирамиды, проведённая к грани SBC.
 - а) Докажите, что точка T является серединой отрезка SM.
 - б) Найдите расстояние между прямыми AT и SB.
- 15 Решите неравенство $9^{\frac{1}{x}-1} 3 \cdot 3^{\frac{1}{x}-1} + 2 \ge 0$.
 - 15 января 2025 года планируется взять кредит в банке на сумму 900 тысяч рублей на 36 месяцев. Условия его возврата таковы:
 - 1-го числа каждого месяца долг возрастает на 5 % по сравнению с концом предыдущего месяца;
 - со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
 - 15-го числа каждого месяца с 1-го по 35-й (с февраля 2025 года по декабрь 2027 года включительно) долг должен быть на 20 тысяч рублей меньше долга на 15-е число предыдущего месяца;
 - 15 января 2028 года кредит должен быть полностью погашен. Найдите общую сумму выплат после полного погашения кредита.

Экземпляр №1

- Окружность с центром O_1 касается оснований BC и AD и боковой стороны AB трапеции ABCD и не имеет общих точек с прямой CD. Окружность с центром O_2 касается сторон BC, CD и AD и не имеет общих точек с прямой AB.
 - а) Докажите, что прямая O_1O_2 параллельна основанию трапеции ABCD.
 - б) Найдите длину отрезка O_1O_2 , если AB=11, BC=10, CD=13, AD=18.
- 18 Найдите все значения a, при каждом из которых система уравнений $\left(1 \frac{1}{2} \left(1 \frac{1}{2}\right) \frac{1}{2} \left(1 \frac{1}{2}\right)^2\right)$

$$\begin{cases} \log_7 (4 - y^2) = \log_7 (4 - a^2 x^2), \\ x^2 + 5y^2 = 12x + 10y \end{cases}$$

имеет ровно два различных решения.

- 19 Отношение трёхзначного натурального числа к сумме его цифр целое число.
 - а) Может ли это отношение быть равным 28?
 - б) Может ли это отношение быть равным 88?
 - в) Какое наименьшее значение может принимать это отношение, если первая цифра трёхзначного числа равна 5?

Проверьте, чтобы каждый ответ был записан рядом с номером соответствующего задания.