Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. (Currently Amended) A fuel cell system comprising:
 - a fuel cell stack having an anode and a cathode;
- a first supply passage and a second supply passage that communicate with each other in the fuel cell stack and supply fuel gas to the anode;

an exhaust passage that is connected to the second supply passage and discharges exhaust gas from the anode;

an opening and closing unit that opens and closes the exhaust passage; and a flow amount controlling unit that controls flow amounts of the fuel gas passing through the first supply passage and the second supply passage, wherein

the first supply passage is connected to a first anode manifold,

the second supply passage is connected to a second anode manifold, and

the flow amount controlling unit executes a control for supplying fuel gas to

the anode in simultaneous flow from both the first supply passage and the second supply

passage and varies a ratio between the flow amounts passing through the first supply passage

2. (Original) The fuel cell system according to claim 1, wherein the first and the second supply passages are provided such that the fuel gas supplied from the first supply passage and the second supply passage flow in opposite directions within the anode.

and the second supply passage when the exhaust passage is closed.

3. (Previously Presented) The fuel cell system according to claim 1, wherein the flow amount controlling unit controls the flow amount such that an extreme downstream position of the fuel gas coincides with a position at which the exhaust passage is connected to the second supply passage when the opening and closing unit is open.

- 4. (Previously Presented) The fuel cell system according to claim 1, wherein the flow amount controlling unit controls the flow amounts such that the flow amounts of the fuel gas vary intermittently.
- 5. (Previously Presented) The fuel cell system according to claim 4, wherein the flow amount controlling unit controls a time period in which the fuel gas is supplied to the anode through the first supply passage and a time period in which the fuel gas is supplied to the anode through the second supply passage.
- 6. (Previously Presented) The fuel cell system according to claim 1, further comprising a flow amount calculating unit that calculates a required flow amount of the fuel gas to be supplied to the fuel cell stack based on a state of the fuel cell stack,

wherein the flow amount controlling unit controls the flow amounts of the fuel gas such that a total of the flow amounts of the fuel gas supplied from the first and the second supply passages to the anode corresponds to the required flow amount calculated by the flow amount calculating unit.

- 7. (Previously Presented) The fuel cell system according to claim 1, wherein the exhaust passage is connected to the second supply passage at a position between the fuel stack and the opening and closing unit.
- 8. (Currently Amended) A method of supplying fuel gas to a fuel cell system comprising a fuel cell stack having an anode and a cathode; a first supply passage and a second supply passage that communicate with each other in the fuel cell stack and supply fuel gas to the anode; and an exhaust passage that is connected to the second supply passage and discharges exhaust gas from the anode, the method comprising the steps of:

a step of opening and closing the exhaust passage; and

a step of controlling flow amounts of the fuel gas passing through the first supply passage and the second supply passage, wherein

the first supply passage is connected to a first anode manifold,
the second supply passage is connected to a second anode manifold, and
the step of controlling flow amounts executes a control for supplying fuel gas
to the anode in simultaneous flow from both the first supply passage and the second supply
passage and varies a ratio between the flow amounts passing through the first supply passage
and the second supply passage when the exhaust passage is closed.