Math 351: Homework 1 (Due September 14)

Name: Jack Ellert-Beck

Section 0.2

Problem 1

Prove the following equivalences:

a)
$$\neg (P \lor Q) \equiv (\neg P \land \neg Q)$$

We can write a truth table that lists the truth values of $\neg(P \lor Q)$ and $(\neg P \land \neg Q)$ for all truth values of P and Q:

P	Q	$\neg P$	$\neg Q$	$P \vee Q$	$\neg(P\vee Q)$	$ (\neg P \land \neg Q) $
T	l		F	T	\mathbf{F}	F
$\mid T$	F	F	T	T	${f F}$	\mathbf{F}
$\mid F \mid$	T	T	F	T	${f F}$	\mathbf{F}
$\mid F$	F	T	T	F	${f T}$	$oxed{\mathbf{T}}$

Since the two statements have the same truth value in all cases, they are equivalent.

b)
$$\neg (P \land Q) \equiv (\neg P \lor \neg Q)$$

We can write a truth value to test every case:

	P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg(P \land Q)$	$(\neg P \vee \neg Q)$
ĺ	T	T	F	F	T	\mathbf{F}	F
	T	F	F	T	F	${f T}$	${f T}$
	F	T	T	F	F	${f T}$	${f T}$
	F	F	T	T	F	${f T}$	${f T}$

Since both statements have the same truth value for any value of P or Q, they are equivalent.

Problem 2

Prove that $P \implies Q \equiv (\neg P) \lor Q$. Deduce that the negation of $P \implies Q$ is $P \land (\neg Q)$.

We write a truth table to show that $P \implies Q$ has the same truth value as $(\neg P) \lor Q$ in all cases:

P	Q	$\neg P$	$(\neg P) \lor Q$	$P \Longrightarrow Q$
T	T	F	${f T}$	\mathbf{T}
T	F	F	${f F}$	${f F}$
\overline{F}	T	T	${f T}$	${f T}$
F	F	T	${f T}$	${f T}$

Since $P \implies Q$ is equivalent to $(\neg P) \lor Q$, their negations will be equivalent. So we negate $(\neg P) \lor Q$ and manipulate using equivalences from Problem 1 to find the negation:

We also used the fact that $\neg(\neg P) \equiv P$, which we now show with a truth table:

$$\begin{array}{c|c|c|c} P & \neg P & \neg (\neg P) \\ \hline \mathbf{T} & F & \mathbf{T} \\ \mathbf{F} & T & \mathbf{F} \end{array}$$

Problem 3

Find the negation of the following statements.

a)
$$\neg (P \land \neg Q) \lor R$$

$$\neg (\neg (P \land \neg Q) \lor R) = (P \land \neg Q) \land \neg R$$

= $P \land \neg Q \land \neg R$.

b)
$$P \implies (Q \vee R)$$

$$\neg(P \implies (Q \lor R)) = P \land \neg(Q \lor R)$$
$$= P \land \neg Q \land \neg R.$$

c)
$$\neg (P \lor Q) \implies (R \lor S)$$

$$\neg(\neg(P \lor Q) \implies (R \lor S)) = \neg((P \lor Q) \lor (R \lor S))$$
$$= \neg(P \lor Q) \land \neg(R \lor S)$$
$$= \neg P \land \neg Q \land \neg R \land \neg S.$$

Problem 5

Prove that an implication is equivalent to its contrapositive.

The contrapositive of $P \implies Q$ is the statement $\neg Q \implies \neg P$. We can manipulate the statement $\neg P \lor Q$, noting that it is equivalent to $P \implies Q$:

Problem 6

An example of an implication whose converse is not true:

If polygon ABCD is a square, then its interior angles are all 90 degrees.

An example of an implication whose converse is true:

$$(x=4) \implies (x+2=6)$$

Problem 7

Section 0.3

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 17