COMP3121 Assignment 2 A17S1N2

Evangelos Kohilas z5114986

By submitting this document you are confirming that all the answers are your work and are not take from any other sources unless clearly mentioned.

Question 1

a)

let
$$A^n = \begin{pmatrix} F(n+1) & F(n) \\ F(n) & F(n-1) \end{pmatrix}$$
 (1)

When n=1

$$A^1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \tag{2}$$

Assume n = k

$$A^{k} = \begin{pmatrix} F(k+1) & F(k) \\ F(k) & F(k-1) \end{pmatrix}$$

$$\tag{3}$$

let n = k + 1

$$A^{k+1} = AA^k \tag{4}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F(k+1) & F(k) \\ F(k) & F(k-1) \end{pmatrix}$$

$$= \begin{pmatrix} F(k+1) + F(k) & F(k) + F(k-1) \\ F(k+1) & F(k) \end{pmatrix}$$

$$= \begin{pmatrix} F(k+2) & F(k+1) \\ F(k+1) & F(k) \end{pmatrix}$$
(5)
$$= \begin{pmatrix} F(k+2) & F(k+1) \\ F(k+1) & F(k) \end{pmatrix}$$
(7)

$$= \begin{pmatrix} F(k+1) + F(k) & F(k) + F(k-1) \\ F(k+1) & F(k) \end{pmatrix}$$
 (6)

$$= \begin{pmatrix} F(k+2) & F(k+1) \\ F(k+1) & F(k) \end{pmatrix} \tag{7}$$

Therefore the forumla is true by induction for all n > 0.

b) F(n) can be found in $log_2(n)$ matrix multiplications using a recursive algorithm

```
matrix = ((1, 1), (1,0))
func(n):
    if n == 1:
        return matrix
    if n is even:
        return func(n/2)^2
    if n is odd:
        return func(n-1) * matrix
```

Question 2

a) First we calculate the Karastuba trick.

$$(a+b)(c+d) = ac + ad + bd + bc \tag{1}$$

$$ad + bd = (a+b)(c+d) - ac - bc$$
(2)

Then we substitute (2) into (4)

$$(a+ib)(c+id) = ac + adi + bdi + bc$$
(3)

$$= ac + i(ad + bd) + bc \tag{4}$$

$$= ac + i((a+b)(c+d) - ac - bc) + bc$$
 (5)

Thus only requiring 3 real number multiplications.

b) First we calculate

$$a^{2} - b^{2} = (a+b)(a-b) \tag{1}$$

Then we substitute (1) into (2)

$$(a+ib)^2 = a^2 - b^2 + 2abi (2)$$

$$= (a+b)(a-b) + 2abi \tag{3}$$

Thus only requiring 2 real number multiplications

c) By re-arranging by the laws of exponents:

$$(a+ib)^2(c+id)^2 = ((a+ib)(c+id))^2$$

Thus from above, we then calculate the middle multiplication using 3 real number multiplications, and then we find the square as above using 2 more real number multiplications.

Question 3

Expand P(x) and Q(x) as follows.

$$P(x) = a_0 + x^{17}(a_{17} + a_{19}x^2 + a_{21}x^4 + a_{23}x^6)$$
$$Q(x) = b_0 + x^{17}(b_{17} + b_{19}x^2 + b_{21}x^4 + b_{23}x^6)$$

let $y = x^2$ so that

$$R_a(y) = a_{17} + a_{19}y + a_{21}y^2 + a_{23}y^3$$

$$R_b(y) = b_{17} + b_{19}y + b_{21}y^2 + b_{23}y^3$$

then

$$P(x)Q(x) = a_0b_0 + x^{17}(a_0R_b(x^2) + b_0R_a(x^2)) + x^{34}R_a(x^2)R_b(x^2)$$

through brute force, we then calculate

 a_0b_0 to require 1 multiplication $a_0R_b(x^2)$ and $b_0R_a(x^2)$ to require 4 multiplications each

then to multiply $R_a(x^2)R_b(x^2)$ (of degree 3), we require 2(3) + 1 = 7 multiplications using the generalised Karatsuba method.

and so we get 1 + 4 + 4 + 7 = 16 multiplications of large numbers.

Question 4

As P(x) has all 15 roots of unity, and $x^{15} - 1$ and P(x) are both of the same degree and are both monic then it follows that

$$P(x) = x^{15} - 1$$

Question 5

For any input $(a_0, a_1, a_2, ..., a_{2^n-1})$, we can describe a_i 's new position by converting i to n binary places and finding the reversed sequence. e.g. $6 \to 110 \to 011 \to 3$

Question 6

let

$$f_m = \sum_{i+j=m} (j+1)q_j q_i \tag{1}$$

$$p_j = (j+1)q_j \tag{2}$$

then substitute (2) into (1)

$$\sum_{i+j=m} p_j q_i = \vec{p} * \vec{q} \tag{3}$$

as (3) is a linear convolution, f_m can be computed in O(nlogn) time by transforming \vec{p} and \vec{q} to a point value representation using FFT, calculating the linear multiplication, and then transforming back to coefficient form using inverse FFT.

Question 7

a) Starting at (0,0) any spiral arrangement such as the one below would require n^2 queries to find the middle element as the local minimum.

16	15	14	13	12
17	18	19	20	11
2	1	0	21	10
3	24	23	22	9
4	5	6	7	8

b) text b goes here

Question 8

let $A(k) = k^{th}$ smallest element of A

let $B(k) = k^{th}$ smallest element of B

let i be the current iteration (starting from 1)

let
$$s_f(i) = \lfloor \frac{n}{2^i} \rfloor, s_c(i) = \lceil \frac{n}{2^i} \rceil$$

let $a = s_f(1), b = s_c(1)$

let $m_a = A(a+1), m_b = B(b+1)$

let N be the set of n elements such that $\forall x \in N \cap A, x < m_a$ and $\forall x \in N \cap B, x < m_b$

When all elements in N are smaller than m_a and m_b , the median will be the smallest of both m_a and m_b .

So we iterate.

if $B(b) > m_a$ then there exist elements in N that are not smaller than m_a :

Therefore, we change m_a and m_b and increment i.

We increase a by $s_c(i)$ to consider elements that may be smaller than the median.

We decrease b by $s_f(i)$ to ignore elemenents that may be bigger than the median.

else if $A(a) > m_b$ then there exist elements in N that are not smaller than m_b :

Therefore, we change m_a and m_b and increment i.

We decrease a by $s_f(i)$ to ignore elements that may be bigger than the median.

We increase b by $s_c(i)$ to consider elements that may be smaller than the median. else:

We stop iterating, as all elements of N are smaller than both m_a and m_b , and we take the median to be smaller of the two

This algorithm will take at most O(logn) queries, as every iteration we jump by a factor of 2, similar to that of a binary search.

Note: if a + 1 > n assume m_b to be the median.