MATH-HEURISTIC PARA O PROBLEMA DE RECUPERAÇÃO DE MALHA AÉREA (RECOVERY PROBLEM)

Fábio Emanuel de Souza Morais

Mestrando, Engenharia de Transportes Escola Politécnica - Universidade de São Paulo fabio.emanuel@gmail.com

Daniel Jorge Caetano

Pós-Doutorando, Engenharia de Transportes Escola Politécnica, Universidade de São Paulo <u>daniel@caetano.eng.br</u>

Nicolau D. Fares Gualda

Professor Sênior, Engenharia de Transportes Escola Politécnica, Universidade de São Paulo ngualda@usp.br

XVII SIT RAER
AIR TRANSPORTATION SYMPOSIUM
SÃO PAULO. SP. BRAZIL
OCTOBER 22-24-2018

PROBLEMA DE RECUPERAÇÃO DA MALHA

<u>Perturbações</u>

- Atrasos
- Cancelamentos

2016

- > US\$ 60 bilhões
- > 8% Receita / 9% Custo

Longo Prazo

Aumenta a propensão do PAX para trocar de empresa (COOK et al. 2009)

			rtures						
Time Now 08:39									
Time Destination	Plat	Expt	Time	Destination	Plat	Expt			
08:39 Chessington Sth	Car	ncelled	09:15	via Guildford	Can	celled			
08:42 Basingstoke	Car	ncelled	09:15	Reading	Can	celled			
08:42 Strawberry Hill	Car	ncelled	09:18	Teddington	Can	celled			
08:45 Portsmouth Hbr v	ia Car	ncelled	09:20	Salisbury	Can	celled			
08:45 Reading	Car	ncelled	09:20	Woking	Can	celled			
08:48 Teddington	Car	ncelled	09:24	Dorking	Can	celled			
08:50 Woking	Car	ncelled	09:27	Strawberry Hill	Can	celled			
08:53 Alton	Car	ncelled	09:28	Windsor & Eton	Can	celled			
08:54 Dorking	Car	ncelled	09:33	Teddington	Can	celled			
08:57 Strawberry Hill	Car	ncelled	09:35	Bournemouth	Can	celled			
08:58 Windsor & Eton	Car	ncelled	09:36	via Cobham	Can	celled			
09:03 Teddington	Car	ncelled							
09:05 Bournemouth	Car	ncelled							
09:06 Guildford via	Car	ncelled							
09:09 Chessington Sth	Car	ncelled							
09:12 Basingstoke	Car	ncelled							
09:12 Strawberry Hill	Car	ncelled							
Proposition Committee (Co. St. Co. Co. Co.									

REVISÃO BIBLIOGRÁFICA - REFERÊNCIAS

Thengvall(2001)

- Aircraft Recovery Problem (ARP)
- Fluxo de Rede Multi-Commodity por Tipo de Aeronave;
- Divide o Problema da programação de malha em dois: Atribuição de Frota e Rotação de Aeronaves;
- Fechamento de Hub
- Atrasos, Cancelamento, Traslados e Trocas de aeronave em nível de frota
- Instância Grandes
- Não Prevê Manutenção

Zhang et al(2016)

- Aircraft + Passenger
- O ARP segue a proposta de <u>Thengvall(2001)</u>
- Redução de capacidade aeroportuária
- Manutenção Programada e Não-Programada
- Problemas na Rotação:
 - Alocação Aleatória
 - Arco de Manutenção não é atribuído a aeronave específica
 - Solução não é válida para o ambiente operacional

MATH-HEURISTIC

Atribuição de Frota

$$\min \sum_{fc \in FC} x_{fc} * cost_delay_{fc} + \sum_{f \in F} y_f * cost_cancel_f$$
 Função Objetivo

Restrições:

$$\sum_{fc \in FC} x_{fc} + y_f = 1$$
 Cobertura de Voo

$$n_{input}^{e} + \sum_{fc \in FC_{fc in}^{n}} x_{fc} + \sum_{ga \in GA_{g in}^{n}} z_{ga} = \sum_{fc \in FC_{fc out}^{n}} x_{fc} + \sum_{ga \in GA_{g out}^{n}} z_{ga}$$
Balanceamento

$$\sum_{fc \in FC_{aep,tm} \forall fb \in Slot} x_{fc}$$
 Capacidade Aeroportuária

$$\sum_{fc \in FC_M_f} \leq Cap_{aep,tm,fh}$$

$$\sum_{fc \in FC_M_f} \forall fc \in FC_m$$

 $z_{ga} = p_n$ $\forall n \in N_OUT$

Poscionamento no Final do Período de Recuperação

Manutenção Programada

Capacidade

Atribuição de Frota

Restrições:

<u>PERTURBAÇÕES</u>

$$\sum_{fc \in FC_{delay}} x_{fc} = 0$$

$$\forall f \in FC_{delay}$$

$$y_f = 1 \\ \forall f \in FC_{cancel}$$

$$\sum_{fc \in FC_{m_acft}} x_{fc} = 1$$

$$\forall fc \in FC_{m_{acft}}$$

Manutenção Não-Programada

$$\sum_{fc \in FC_s} x_{fc} \leq Cap_s$$

$$\forall s \in Slot$$

Redução Capacidade Aeroportuária

Rotação de Aeronaves

$$min \sum_{fc \in FC_f} \sum_{k \in K_{fc}} x_{fc,k} * cost_swap_{fc,k}$$
 Função Objetivo

Restrições:

$$n_{input,k}^{e} + \sum_{fc \in FC_{fcin}^{n}} x_{fck} + \sum_{ga \in GA_{gin}^{n}} z_{gak} = \sum_{fc \in FC_{fcout}^{n}} x_{fck} + \sum_{ga \in GA_{gout}^{n}} z_{gak}$$

$$\forall e \in E, \forall n \in \overline{Node_e}, \forall k \in K_e$$
Balanceamento

$$\sum_{fc \in FC_M_k} x_{fc,k} = 1$$

$$\forall k \in K_m$$

Manutenção Programada e Não-Programada

INSTÂNCIAS

						Perturbação Voo			Perturbação Aerp		Perturbação Aeronave	
Grupo	ID	# Aerns	# Voos	# Aerps	# Confg	# Voos	Atraso (min)	# CNL	# Aerps	#Aft (h)	# Aerns	#Aft (h)
A	1	81	464	35	15	63	2.670	-	-	-	-	-
	2	81	464	35	15	106	6.225	1	-	-	-	-
	3	81	464	35	15	79	5.550	4	-	-	1	15
	4	81	464	35	15	41	1.785	-	4	4	-	-
	6	81	464	35	15	63	2.670	-	-	-	-	-
	7	81	464	35	15	106	6.225	1	-	-	-	-
	8	81	464	35	15	79	5.550	4	-	-	1	15
	9	81	464	35	15	41	1.785	-	4	4	-	-

RESULTADOS

RESULTADOS – ATRASOS E MANUTENÇÃO

RESULTADOS – ATRASOS E MANUTENÇÃO

A321_206ASS

RESULTADOS – ATRASOS E MANUTENÇÃO

<u>Malha Perturbada</u> <u>Otimizada</u>

A321_206ASS

CONCLUSÕES

- O tempo de processamento não chegou a um minuto;
- ➤ A validação da heurística com os resultados exatos sugere que o método alcance um GAP de até 5%;
- As manutenções foram modeladas e alocadas da forma correta, ou seja, às aeronaves específicas pertinentes;
- Os resultados são aplicáveis à realidade do centro de controle operacional.

MATH-HEURISTIC PARA O PROBLEMA DE RECUPERAÇÃO DE MALHA AÉREA (RECOVERY PROBLEM)

Fábio Emanuel de Souza Morais

Mestrando, Engenharia de Transportes Escola Politécnica - Universidade de São Paulo fabio.emanuel@gmail.com

Daniel Jorge Caetano

Pós-Doutorando, Engenharia de Transportes Escola Politécnica, Universidade de São Paulo <u>daniel@caetano.eng.br</u>

Nicolau D. Fares Gualda

Professor Sênior, Engenharia de Transportes Escola Politécnica, Universidade de São Paulo ngualda@usp.br

XVII SIT RAER

AIR TRANSPORTATION SYMPOSIUM
SÃO PAULO. SP. BRAZIL

OCTOBER 22-24. 2018

