Trade-offs in Static and Dynamic Query Evaluation

Ahmet Kara, Milos Nikolic Dan Olteanu, and Haozhe Zhang

fdbresearch.github.io

KOCOON Workshop 2019, Arras

Static Query Evaluation

Static Query Evaluation

Static Query Evaluation

We are interested in the trade-off between:
preprocessing time - enumeration delay - (update time)

static width $w = s^{\uparrow}$ [TODS '15] or fagw [PODS '16]

Preprocessing time/Enumeration delay

static width $w = s^{\uparrow}$ [TODS '15] or faqw [PODS '16]

Preprocessing time/Enumeration delay

Preprocessing time/Enumeration delay

static width $w = s^{\uparrow}$ [TODS '15] or faqw [PODS '16]

Preprocessing time/Enumeration delay

static width $w = s^{\uparrow}$ [TODS '15] or faqw [PODS '16]

static width $w = s^{\uparrow}$ [TODS '15] or faqw [PODS '16]

- - enumeration delay $\mathcal{O}(\mathit{N}^{1-arepsilon})$

enumeration delay $\mathcal{O}(N^{1-\varepsilon})$

static width $w = s^{\uparrow}$ [TODS '15] or faqw [PODS '16]

2 / 13


```
static width w = s^{\uparrow} [TODS '15] or faqw [PODS '16] dynamic width \delta = \max_{\text{delta queries}} static width [PODS '20]
```


static width w = s^{\uparrow} [TODS'15] or faqw [PODS'16] dynamic width $\delta = \max_{\text{delta queries}}$ static width [PODS'20]

Preprocessing time/Update time/Enumeration delay

(*): amortized update time

static width w =
$$s^{\uparrow}$$
[TODS'15] or faqw [PODS'16]

dynamic width $\delta = \max_{\text{delta queries}} \text{ static width [PODS '20]}$

Preprocessing time/Update time/Enumeration delay

(*): amortized update time

static width
$$w = s^{\uparrow}$$
 [TODS'15] or faqw [PODS'16]
dynamic width $\delta = \max$ static width [PODS'20]

Preprocessing time/Update time/Enumeration delay

(*): amortized update time

static width w =
$$s^{\uparrow}$$
[TODS'15] or faqw [PODS'16] dynamic width $\delta = \max$ static width [PODS'20]

- Recovers prior approach for **conjunctive** queries by setting $\varepsilon = 1$.
- Recovers prior approach for δ_0 -hierarchcal queries by setting $\varepsilon = 1$.

Contribution 2: Sublinear Update Time and Delay

■ First approach that allows sublinear amortized update time and sublinear enumeration delay for hierarchical queries.

Contribution 3: Optimality for δ_1 -Hierarchical Queries

■ For any δ_1 -hierarchical query, there is no algorithm that admits preprocessing time amortized update time enumeration delay arbitrary $\mathcal{O}(N^{0.5-\gamma})$ $\mathcal{O}(N^{0.5-\gamma})$ for any $\gamma>0$, unless the OMv Conjecture (*) fails.

(*) OMv Conjecture: Online Matrix-Vector Multiplication Problem cannot be solved in sub-cubic time.

log_N preprocessing time

Contribution 3: Optimality for δ_1 -Hierarchical Queries

- For any δ_1 -hierarchical query, there is no algorithm that admits preprocessing time amortized update time enumeration delay arbitrary $\mathcal{O}(N^{0.5-\gamma})$ $\mathcal{O}(N^{0.5-\gamma})$ for any $\gamma>0$, unless the OMv Conjecture (*) fails.
- Our approach maintains any δ_1 -hierarchical query with preprocessing time amortized update time enumeration delay $\mathcal{O}(N^{1+\varepsilon}) \qquad \mathcal{O}(N^{\varepsilon}) \qquad \mathcal{O}(N^{1-\varepsilon}).$
- (*) OMv Conjecture: Online Matrix-Vector Multiplication Problem cannot be solved in sub-cubic time.

log_M preprocessing time

Contribution 3: Optimality for δ_1 -Hierarchical Queries

- For any δ_1 -hierarchical query, there is no algorithm that admits preprocessing time amortized update time enumeration delay arbitrary $\mathcal{O}(N^{0.5-\gamma})$ $\mathcal{O}(N^{0.5-\gamma})$
 - for any $\gamma >$ 0, unless the OMv Conjecture (*) fails.
- \implies For $\varepsilon = 0.5$, this is weak Pareto optimal, unless OMv Conjecture fails.
- $(*)\ \mathsf{OMv}\ \mathsf{Conjecture}\colon \mathsf{Online}\ \mathsf{Matrix}\text{-}\mathsf{Vector}\ \mathsf{Multiplication}\ \mathsf{Problem}\ \mathsf{cannot}\ \mathsf{be}\ \mathsf{solved}\ \mathsf{in}\ \mathsf{sub}\text{-}\mathsf{cubic}\ \mathsf{time}.$

Contribution 4: Single-Tuple vs Bulk Tuple Updates

 $\delta = w-1$ or $\delta = w$ for hierarchical queries.

Case
$$\delta = w - 1$$

Time to insert N tuples: $\mathcal{O}(N \cdot N^{(w-1)\varepsilon}) = \mathcal{O}(N^{1+(w-1)\varepsilon})$.

 \implies Preprocessing can be simulated by executing N single-tuple updates.

Contribution 4: Single-Tuple vs Bulk Tuple Updates

 $\delta = w-1$ or $\delta = w$ for hierarchical queries.

Case
$$\delta = w - 1$$

Time to insert N tuples: $\mathcal{O}(N \cdot N^{(w-1)\varepsilon}) = \mathcal{O}(N^{1+(w-1)\varepsilon})$.

 \implies Preprocessing can be simulated by executing N single-tuple updates.

Case $\delta = w$

Time to insert N tuples: $\mathcal{O}(N \cdot N^{w\varepsilon}) = \mathcal{O}(N^{1+(w-1)\varepsilon+\varepsilon})$.

 \implies Complexity gap of $\mathcal{O}(N^{\varepsilon})$ between single-tuple updates and bulk updates.

Hierarchical Queries

A query is hierarchical if for any two variables X, Y: $atoms(X) \subseteq atoms(Y)$ or $atoms(X) \supseteq atoms(Y)$ or $atoms(Y) = \emptyset$

Hierarchical Queries

A query is hierarchical if for any two variables X, Y: $atoms(X) \subset atoms(Y)$ or $atoms(X) \supset atoms(Y)$ or $atoms(X) \cap atoms(Y) = \emptyset$

δ_0 -Hierarchical Queries

A hierarchical query is δ_0 -hierarchical if for any bound variable X and atom $R(X) \in atoms(X)$: $free(atoms(X)) \subseteq X$.

$$\delta_0$$
-hierarchical $Q(A, B, C) = R(A, B, D), S(A, B),$ $T(A, C, F), U(A, C, G)$

δ_0 -Hierarchical Queries

A hierarchical query is δ_0 -hierarchical if for any bound variable X and atom $R(X) \in atoms(X)$: $free(atoms(X)) \subseteq X$.

$$\delta_0\text{-hierarchical}$$

$$Q(A,B,C) = R(A,B,D), S(A,B),$$

$$T(A,C,F), U(A,C,G)$$

hierarchical but not δ_0 -hierarchical Q(A) = S(A, B), T(B)

δ_1 -Hierarchical Queries

- The query is not δ_0 -hierarchical.
- For any bound variable X and atom $R(\mathcal{X}) \in atoms(X)$: there is an atom $S(\mathcal{Y}) \in atoms(X)$ such that $free(atoms(X)) \subseteq \mathcal{X} \cup \mathcal{Y}$.

$$\delta_{1}\text{-hierarchical}$$

$$Q(A, D, E, G) = R(A, B, D), S(A, B, E),$$

$$T(A, C, F), U(A, C, G)$$

$$D$$

$$E$$

$$F$$

$$G$$

δ_1 -Hierarchical Queries

- The query is not δ_0 -hierarchical.
- For any bound variable X and atom $R(\mathcal{X}) \in atoms(X)$: there is an atom $S(\mathcal{Y}) \in atoms(X)$ such that $free(atoms(X)) \subseteq \mathcal{X} \cup \mathcal{Y}$.

 $\delta_{1}\text{-hierarchical}$ Q(A, D, E, G) = R(A, B, D), S(A, B, E), T(A, C, F), U(A, C, G)

not δ_1 -hierarchical $Q(D,G)=R(A,B,D), {\color{red}S}(A,B,E), {\color{red}T}(A,C,F), {\color{gray}U}(A,C,G)$

Simple δ_1 -hierarchical query

$$Q(B,C) = R(A,B), S(A,C)$$

Simple δ_1 -hierarchical query

$$Q(B,C) = R(A,B), S(A,C)$$

Lower bound [CSL'07]

There is no algorithm that admits preprocessing time enumeration delay $\mathcal{O}(\textit{N}) \qquad \qquad \mathcal{O}(1)$

unless Boolean Matrix Multiplication can be solved in quadratic time.

Simple δ_1 -hierarchical query

$$Q(B,C)=R(A,B),S(A,C)$$

Known approach: Eager preprocessing, quick enumeration

- Preprocessing: Materialize the result.
- Enumeration: Enumerate from materialized result.

Simple δ_1 -hierarchical query

$$Q(B,C) = R(A,B), S(A,C)$$

Known approach: Lazy preprocessing, heavy enumeration

- Preprocessing: Eliminate dangling tuples.
- Enumeration: For each *B*-value, enumerate distinct *C*-values.

Simple δ_1 -hierarchical query

$$Q(B,C) = R(A,B), S(A,C)$$

Open question

Is there an algorithm that admits sub-quadratic preprocessing time and sub-linear enumeration delay?

Simple δ_1 -hierarchical query

$$Q(B,C) = R(A,B), S(A,C)$$

enumeration delay $\mathcal{O}(N^{1-\varepsilon})$

Simple δ_1 -hierarchical query

$$Q(A)=R(A,B),S(B)$$

Simple δ_1 -hierarchical query

$$Q(A) = R(A, B), S(B)$$

 $log_Nupdate time$

 log_N preprocessing time Lower bound

For this query, there is no algorithm that admits preprocessing time amortized update time arbitrary $\mathcal{O}(N)^{0.5-\gamma}$

enumeration delay $\mathcal{O}(N)^{0.5-\gamma}$

for any $\gamma >$ 0, unless the OMv Conjecture fails.

Simple δ_1 -hierarchical query

$$Q(A) = R(A, B), S(B)$$

 $log_Nupdate time$

log_N preprocessing time

Known approach: Eager update, quick enumeration

- Preprocessing: Materialize the result.
- Upon update: Maintain the materialized result.
- Enumeration: Enumerate from materialized result.

Simple δ_1 -hierarchical query

$$Q(A) = R(A, B), S(B)$$

 $log_Nupdate time$

log_M preprocessing time

Known approach: Lazy update, heavy enumeration

- Preprocessing: Eliminate dangling tuples.
- Upon update: Update only base relations.
- Enumeration: Eliminate dangling tuples and enumerate.

Simple δ_1 -hierarchical query

$$Q(A) = R(A, B), S(B)$$

 log_N preprocessing time

Open question

Is there an algorithm that admits

sub-linear (amortized) update time and sub-linear enumeration delay?

Simple δ_1 -hierarchical query

(*): Weak Pareto optimality by OMv Conjecture

Conclusion

Benefits of Our Approach

- Allows to tune the trade-off between preprocessing time, update time, and enumeration delay.
- Recovers existing results as specific points.
- Maintains hierarchical queries with sub-linear amortized update time and sub-linear enumeration delay.
- Maintains δ_1 -queries with weak Pareto optimal update time and delay.

Ongoing Work

- Extension of our approach to
 - conjunctive queries,
 - aggregate queries, and
 - enumeration in desired order.
- System prototype.