

Neuroprothetik

- 1) Vorstellung Neuroprothesen
- 2) Einführung in die Biologie
 - Script J.J. Struijk Chapter 1.1 (Seite 3-15)

<u>Lernziele:</u>

- Zellen, Neurone
- Aufbau der Zellmembran
- Ionen: Pumpen, Diffusion & Migration
- Membranpotential
- Elektrisches Ersatzschaltbild einer Zelle

Aufbau Vorlesung:

Einführung in die Biologie:

- Zellen, Neurone → Meer: Ionen
- Die Zellmembran (Entwicklung an der Tafel)
- Kalium-Natrium-Pumpe
- Diffusion (Fick'sches Gesetz)
- Migration, Einstein-Gleichung
- Nernst-Planck Gleichung
- Nernst Potential
- Donnan Gleichgewicht
- Goldmann (Hodgkin-Katz) Gleichung

Neurone

Zellmembran

Funktion der Na / K Pumpe

Natrium-Kalium-Pumpe (3 Na+/ 2 K+ - ATPase)

Der gegenläufige Transport (Antiport) von 3 Na+ gegen 2 K+ über die Zellmembran erfolgt gegen die jeweiligen Konzentrationsgefälle und in der Summe gegen das elektrische Ruhemembranpotential. Er ist damit gleich zweifach von extern zugeführter Energie abhängig, die in diesem Fall als chemische Bindungsenergie durch die Hydrolyse von ATP zur Verfügung gestellt wird.

Figure 10.25 Schematic model of the sodium-potassium pump in operation

Membranpotential

$$U=\frac{Q}{C}$$
;

$$C=100$$
 pF;
 $e=1.602*10^{-19}$ C; Elementarladung
 $N_A=6.022*10^{23}$ mol $^{-1}$; Avogadro Konst.

$$U = \frac{1.6*10^{-19}}{100*10^{-12}}V^*N;$$

→ U~1.6 *
$$10^{-9}$$
V*N;
→ U~1.6 mV bei 10^6 K⁺

$$U = \frac{1.6*10^{-19}*6*10^{23}}{100*10^{-12}} V/mol;$$

$$U \sim 9.6 * 10^{11} \text{V/mmol};$$

Das Membranpotential

