Matrices of Linear Transformations

A linear transformation $T: \mathbb{F}^n \to \mathbb{F}^m$ can always be written as a matrix multiplication.

$$T(\vec{x}) = M \cdot \vec{x}$$

where $M \in M_{m \times n}(\mathbb{F})$.

Example 1

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation defined by

$$T\begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 3\\-1\\2 \end{bmatrix} \text{ and } T\begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 2\\1\\-5 \end{bmatrix}$$

Since $\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$ is a basis, the transformation is completely determined by the above:

$$T \begin{bmatrix} x \\ y \end{bmatrix} = T \left(x \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = x \cdot T \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \cdot T \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$= x \cdot \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} + y \cdot \begin{bmatrix} 2 \\ 1 \\ -5 \end{bmatrix} = \begin{bmatrix} 3x + 3y \\ -x + y \\ 2x - 5y \end{bmatrix}$$
$$= \underbrace{\begin{bmatrix} 3 & 2 \\ -1 & 1 \\ 2 & -5 \end{bmatrix}}_{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

Hence any image is computed by left multiplication with the matrix M, e.g.

$$T\begin{bmatrix} 3\\2 \end{bmatrix} = \begin{bmatrix} 3 & 2\\-1 & 1\\2 & -5 \end{bmatrix} \begin{bmatrix} 3\\2 \end{bmatrix} = \begin{bmatrix} 13\\-1\\-4 \end{bmatrix}$$

so that

$$T: \begin{bmatrix} 3\\2 \end{bmatrix} \mapsto \begin{bmatrix} 13\\-1\\-4 \end{bmatrix}$$

Even though $T: \mathbb{F}^n \to \mathbb{F}^m$ is just one type of linear transformations, it is crucial in dealing with $T: \mathbb{V} \to \mathbb{W}$ in general.

Let $T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be a linear transformation defined by

$$T(at^{2} + bt + c) = \begin{bmatrix} a+b & b-2c \\ 3a+2b & a+b+c \end{bmatrix}$$

For example:

$$t^2 + 3t - 2 \longmapsto \begin{bmatrix} 4 & 7 \\ 9 & 2 \end{bmatrix}$$

Clearly there is no matrix M such that: $M \cdot (t^2 + 3t - 2) = \begin{bmatrix} 4 & 7 \\ 9 & 2 \end{bmatrix}$.

We can however rewrite both vectors with respect to their standard bases:

$$\begin{bmatrix} 1\\3\\-2 \end{bmatrix} \qquad \begin{bmatrix} 4\\7\\9\\2 \end{bmatrix}$$

$$t^2 + 3t - 2 \xrightarrow{T} \qquad \begin{bmatrix} 4&7\\9&2 \end{bmatrix}$$

We basically reduced it to a transformation of the previous type: $\mathbb{R}^3 \longrightarrow \mathbb{R}^4$. In general for this transformation we have:

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad \begin{bmatrix} a+b \\ b-2c \\ 3a+2b \\ a+b+c \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow$$

$$a t^2 + b t + c \qquad T \qquad \qquad \begin{bmatrix} a+b & b-2c \\ 3a+2b & a+b+c \end{bmatrix}$$

A matrix transforms
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \longrightarrow \begin{bmatrix} a+b \\ b-2c \\ 3a+2b \\ a+b+c \end{bmatrix} \text{ as follows } \begin{bmatrix} a+b \\ b-2c \\ 3a+2b \\ a+b+c \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \\ 3 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

This procedure we can use in general for any linear transformations $T: \mathbb{V} \to \mathbb{W}$. We can even use any basis α for \mathbb{V} and any basis β for \mathbb{W} .

- * Rewrite every vector $\vec{v} \in \mathbb{V}$ with respect to the basis α using φ_{α} : $\varphi_{\alpha}(\vec{v}) = [\vec{v}]_{\alpha}$
- * Rewrite every vector $\vec{w} \in \mathbb{W}$ with respect to the basis β using φ_{β} : $\varphi_{\beta}(\vec{w}) = [\vec{w}]_{\beta}$

Note that if $\dim(\mathbb{V}) = n$ and $\dim(\mathbb{W}) = m$ then

$$\varphi_{\alpha}: \mathbb{V} \to \mathbb{F}^n$$

$$\varphi_{\beta}: \mathbb{W} \to \mathbb{F}^m$$

so that we have the following maps between the spaces \mathbb{V} , \mathbb{W} , \mathbb{F}^n and \mathbb{F}^m :

Note that we named the map between \mathbb{F}^n and \mathbb{F}^m :

The map $_{\beta}T_{\alpha}$ mirrors the map T:

$$\vec{v} \vdash T \rightarrow T(\vec{v})$$

$$[\vec{v}]_{\alpha} \stackrel{\beta}{\longmapsto} [T(\vec{v})]_{\beta}$$

The maps T and $_{\beta}T_{\alpha}$ are describing the same transformation, from different perspectives:

* T maps $\vec{v} \in \mathbb{V}$ to $T(\vec{v}) \in \mathbb{W}$,

$$\vec{v} \xrightarrow{T} T(\vec{v})$$

* $_{\beta}T_{\alpha}$ maps $[\vec{v}]_{\alpha} \in \mathbb{F}^n$ to $[T(\vec{v})]_{\beta} \in \mathbb{F}^m$

$$[\vec{v}]_{\alpha} \xrightarrow{\beta T_{\alpha}} [T(\vec{v})]_{\beta}$$

But: \vec{v} and $[\vec{v}]_{\alpha}$ are referring to the same vector, except \vec{v} is in the original space \mathbb{V} and $[\vec{v}]_{\alpha}$ is in \mathbb{F}^n , and is the coordinate vector of \vec{v} with respect to the basis α .

Similarly, $T(\vec{v})$ and $[T(\vec{v})]_{\beta}$ are referring to the same vector, except $T(\vec{v})$ is in the original space \mathbb{W} and $[T(\vec{v})]_{\beta}$ is in \mathbb{F}^m , and is the coordinate vector of $T(\vec{v})$ with respect to the basis β .

This link defines the transformation $_{\beta}T_{\alpha}: \mathbb{F}^{n} \to \mathbb{F}^{m}: _{\beta}T_{\alpha}([\vec{v}]_{\alpha}) = [T(\vec{v})]_{\beta}$ or if you like:

$$_{\beta}T_{\alpha}=\varphi_{\beta}\circ T\circ\varphi_{\alpha}^{-1}$$

taking the route indicated in the next diagram

or equivalently: $\beta T_{\alpha} \circ \varphi_{\alpha} = \varphi_{\beta} \circ T$ which indeed gives us

$${}_{\beta}T_{\alpha}\Big(\,[\,\vec{v}\,]_{\alpha}\Big)\,=\,{}_{\beta}T_{\alpha}\Big(\varphi_{\alpha}(\vec{v})\Big)\,=\,\Big({}_{\beta}T_{\alpha}\circ\varphi_{\alpha}\Big)(\vec{v})\,=\,\Big(\varphi_{\beta}\circ T\Big)(\vec{v})\,=\,\varphi_{\beta}\Big(T(\vec{v})\Big)\,=\,\Big[\,T(\vec{v})\,\Big]_{\beta}$$

Definition 1

Let $T: \mathbb{V} \to \mathbb{W}$ be a linear transformation, with $\dim(\mathbb{V}) = n$ and $\dim(\mathbb{W}) = m$. Let α be a basis of \mathbb{V} , and β a basis of \mathbb{W} .

The transformation $_{\beta}T_{\alpha}: \mathbb{F}^n \to \mathbb{F}^m$ is defined by any of the following

$$_{\beta}T_{\alpha}([\vec{v}]_{\alpha}) = [T(\vec{v})]_{\beta}$$
$$_{\beta}T_{\alpha} \circ \varphi_{\alpha} = \varphi_{\beta} \circ T$$
$$_{\beta}T_{\alpha} = \varphi_{\beta} \circ T \circ \varphi_{\alpha}^{-1}$$

Since $_{\beta}T_{\alpha}:\mathbb{F}^{n}\to\mathbb{F}^{m}$ this transformation can be performed by a matrix multiplication:

$$_{\beta}T_{\alpha}(\vec{x}) = M \cdot \vec{x}$$

This matrix is called $_{\beta}[T]_{\alpha}$, so that

$$_{\beta}T_{\alpha}(\vec{x}) = _{\beta}[T]_{\alpha} \cdot \vec{x}$$

We'll first define the matrix $_{\beta}[T]_{\alpha}$, and then show that indeed $_{\beta}T_{\alpha}(\vec{x}) = _{\beta}[T]_{\alpha} \cdot \vec{x}$.

Definition 2

Let $T: \mathbb{V} \to \mathbb{W}$ be a linear transformation. Let $\alpha = \{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ be a basis of \mathbb{V} , and β a basis of \mathbb{W} . The matrix βT_{α} is defined by

$$_{eta}[T]_{lpha} = \left[egin{array}{cccc} \uparrow & & & \uparrow & & \uparrow \\ ig[T(ec{a}_1)ig]_{eta} & [T(ec{a}_2)ig]_{eta} & \cdots & ig[T(ec{a}_n)ig]_{eta} \\ \downarrow & & \downarrow & & \downarrow \end{array}
ight]$$

Example 3

Let $T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be defined by

$$T(at^{2} + bt + c) = \begin{bmatrix} a+b & -5a-2c \\ a+b+c & a-9c \end{bmatrix}$$

Let $\alpha = \{t^2 + 3t - 1, t^2 + t + 2, t^2 + 4t - 3\}$ be a basis of $P_2(\mathbb{R})$, and

Let
$$\beta = \left\{ \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 5 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \right\}$$
 be a basis of $M_{2\times 2}(\mathbb{R})$.

We'll compute $_{\beta}[T]_{\alpha}$ the matrix of $_{\beta}T_{\alpha}$.

(a)
$$T(\vec{a}_1) = T(t^2 + 3t - 1) = \begin{bmatrix} 4 & -3 \\ 3 & 10 \end{bmatrix}$$
 and therefore $[T(\vec{a}_1)]_{\beta} = \begin{bmatrix} -3 \\ 17 \\ 2 \\ -10 \end{bmatrix}$

(b)
$$T(\vec{a}_2) = T(t^2 + t + 2) = \begin{bmatrix} 2 & -9 \\ 4 & -17 \end{bmatrix}$$
 and therefore $[T(\vec{a}_2)]_{\beta} = \begin{bmatrix} -6 \\ 51 \\ 8 \\ -43 \end{bmatrix}$

(c)
$$T(\vec{a}_3) = T(t^2 + 4t - 3) = \begin{bmatrix} 5 & 1 \\ 2 & 28 \end{bmatrix}$$
 and therefore $\begin{bmatrix} T(\vec{a}_3) \end{bmatrix}_{\beta} = \begin{bmatrix} 0 \\ -11 \\ -3 \\ 16 \end{bmatrix}$

so that
$$\beta[T]_{\alpha} = \begin{bmatrix} -3 & -6 & 0 \\ 17 & 51 & -11 \\ 2 & 8 & -3 \\ 10 & 42 & 16 \end{bmatrix}$$

For example let $\vec{v} = 3t^2 + 4t + 5$ then

And indeed
$$\begin{bmatrix} -3 & -6 & 0 \\ 17 & 51 & -11 \\ 2 & 8 & -3 \\ -10 & -43 & 16 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -18 \\ 147 \\ 23 \\ -122 \end{bmatrix}$$

Theorem 1

If $T: \mathbb{V} \to \mathbb{W}$ is a linear transformation then

$$_{\beta}T_{\alpha}(\vec{x}) = _{\beta}[T]_{\alpha} \cdot \bar{x}$$

$$_{\beta}T_{\alpha}(\vec{x})=_{\beta}[\,T\,]_{\alpha}\cdot\vec{x}$$
 so that
$$\left[\,T(\vec{v})\,\right]_{\beta}=_{\beta}[\,T\,]_{\alpha}\cdot[\,\vec{v}\,]_{\alpha}$$

Proof:

Let $T: \mathbb{V} \to \mathbb{W}$ be a linear transformation, and let

$$\alpha = \{\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n\}$$
 be a basis of \mathbb{V}

and

 β be a basis of W

then if
$$[\vec{v}]_{\alpha} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 we can compute $T(\vec{v})$ as follows:

$$T(\vec{v}) = T(v_1 \cdot \vec{a}_1 + v_2 \cdot \vec{a}_2 + \cdots + v_n \cdot \vec{a}_n)$$

= $v_1 \cdot T(\vec{a}_1) + v_2 \cdot T(\vec{a}_2) + \cdots + v_n \cdot T(\vec{a}_n)$

so that expressed with respect to β we get

$$\begin{bmatrix} T(\vec{v}) \end{bmatrix}_{\beta} = \begin{bmatrix} v_1 \cdot T(\vec{a}_1) + v_2 \cdot T(\vec{a}_2) + \cdots + v_n \cdot T(\vec{a}_n) \end{bmatrix}_{\beta}
= v_1 \cdot \begin{bmatrix} T(\vec{a}_1) \end{bmatrix}_{\beta} + v_2 \cdot \begin{bmatrix} T(\vec{a}_2) \end{bmatrix}_{\beta} + \cdots + v_n \cdot \begin{bmatrix} T(\vec{a}_n) \end{bmatrix}_{\beta}$$

Hence

$$\begin{bmatrix} T(\vec{v}) \end{bmatrix}_{\beta} = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ T(\vec{a}_1) \end{bmatrix}_{\beta} \begin{bmatrix} T(\vec{a}_2) \end{bmatrix}_{\beta} & \cdots & \begin{bmatrix} T(\vec{a}_n) \end{bmatrix}_{\beta} \\ \downarrow & \downarrow & \downarrow \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

so that

$$\left[T(\vec{v})\right]_{\beta} = {}_{\beta}[T]_{\alpha} \cdot [\vec{v}]_{\alpha}$$

and since

$$[\vec{v}]_{\alpha} \xrightarrow{\beta T_{\alpha}} [T(\vec{v})]_{\beta}$$

 $_{\beta}[T]_{\alpha}$ is exactly the matrix that performs this operation:

$$[\vec{v}]_{\alpha} \xrightarrow{\beta T_{\alpha}} \beta [T]_{\alpha} \cdot [\vec{v}]_{\alpha} \qquad \Box$$

As we mentioned before, it often happens that when we write everything with respect to the standard bases, things become easier.

In particular $_{S}[T]_{s}$ is usually easier to find than $_{\beta}[T]_{\alpha}$.

Example 4

Let $T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be a linear transformation defined by

$$T(t^2) = \begin{bmatrix} 1 & 3 \\ 5 & 4 \end{bmatrix}, \quad T(t) = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \quad \text{and} \quad T(1) = \begin{bmatrix} -1 & 2 \\ 1 & -5 \end{bmatrix}$$

The transformation is completely determined by the above:

$$T(xt^{2} + yt + z) = x \cdot T(t^{2}) + y \cdot T(t) + z \cdot T(1)$$

$$= x \cdot \begin{bmatrix} 1 & 3 \\ 5 & 4 \end{bmatrix} + y \cdot \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} + z \cdot \begin{bmatrix} -1 & 2 \\ 1 & -5 \end{bmatrix}$$

$$= \begin{bmatrix} x + y - z & 3x - y + 2z \\ 5x - 2y + z & 4x + 3y - 5z \end{bmatrix}$$

Here is the corresponding diagram

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \xrightarrow{ST_s} \begin{bmatrix} x+y-z \\ 3x-y+2z \\ 5x-2y+z \\ 4x+3y-5z \end{bmatrix}$$

$$\varphi_s \qquad \qquad \varphi_s$$

$$x t^2 + y t + z \qquad \qquad T \qquad \qquad \begin{bmatrix} x+y-z & 3x-y+2z \\ 5x-2y+z & 4x+3y-5z \end{bmatrix}$$

Hence

$$\begin{bmatrix} x+y-z \\ 3x-y+2z \\ 5x-2y+z \\ 4x+3y-5z \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 & -1 \\ 3 & -1 & 2 \\ 5 & -2 & 1 \\ 4 & 3 & -5 \end{bmatrix}}_{S[T]_s} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

and as you can see, its columns are precisely: $[T(t^2)]_S$, $[T(t)]_S$ and $[T(t^2)]_S$ since

$$T(t^2) = \begin{bmatrix} 1 & 3 \\ 5 & 4 \end{bmatrix}, \quad T(t) = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \quad \text{and} \quad T(1) = \begin{bmatrix} -1 & 2 \\ 1 & -5 \end{bmatrix}$$

So in particular for $\vec{v} = 4t^2 - 3t - 2$

and indeed

$$\underbrace{\begin{bmatrix} 1 & 1 & -1 \\ 3 & -1 & 2 \\ 5 & -2 & 1 \\ 4 & 3 & -5 \end{bmatrix}}_{S[T]_{2}} \cdot \begin{bmatrix} 4 \\ -3 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 11 \\ 24 \\ 17 \end{bmatrix}$$

Example 5

Let $T: U_{2\times 2}(\mathbb{R}) \to P_3(\mathbb{R})$ be a linear transformation defined by

$$T\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = 3t^2 - 2t + 4, \quad T\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 2t^3 + 5t - 6 \text{ and } T\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 6t^3 + 7t$$

Then

$$s[T]_{s} = \begin{bmatrix} 0 & 2 & 6 \\ 3 & 0 & 0 \\ -2 & 5 & 7 \\ 4 & -6 & 0 \end{bmatrix}$$

$$T\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = 3t^{2} - 2t + 4$$

$$\varphi_{s}$$

$$T\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 6t^{3} + 7t$$

$$T\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 2t^{3} + 5t - 6$$

where s and S are the standard bases of $U_{2\times 2}(\mathbb{R})$ and $P_3(\mathbb{R})$.

Alternatively we could have computed

$$T\begin{bmatrix} x & y \\ 0 & z \end{bmatrix} = T\left(x \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + y \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + z \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right)$$

$$= x \cdot T\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + y \cdot T\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + z \cdot T\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= x \cdot (3t^2 - 2t + 4) + y \cdot (2t^3 + 5t - 6) + z \cdot (6t^3 + 7t)$$

$$= (2y + 6z) \cdot t^3 + 3x \cdot t^2 + (-2x + 5y + 7z) \cdot t + (4x - 6y)$$

Hence
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 $\xrightarrow{\beta T_{\alpha}}$ $\begin{bmatrix} 2y + 6z \\ 3x \\ -2x + 5y + 7z \\ 4x - 6y \end{bmatrix}$ $=$ $\underbrace{\begin{bmatrix} 0 & 2 & 6 \\ 3 & 0 & 0 \\ -2 & 5 & 7 \\ 4 & -6 & 0 \end{bmatrix}}_{S[T]_{s}} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

Summary: $_{\beta}T_{\alpha}$ and how to compute $_{\beta}[T]_{\alpha}$

$$T: \mathbb{V} \to \mathbb{W}$$

$$egin{aligned} eta[T]_{oldsymbol{lpha}} &= egin{bmatrix} igwedge & ig$$

Corresponding diagrams

But since it is often easier to compute ${}_{S}[T]_{s}$ we can compute ${}_{\beta}[T]_{\alpha}$ using this matrix as follows:

$$_{\beta}[T]_{\alpha} = _{\beta}C_{S} \cdot _{S}[T]_{s} \cdot _{s}C_{\alpha}$$

since

$$_{\beta}T_{\alpha} = _{\beta}I_{S} \cdot _{S}T_{s} \cdot _{s}I_{\alpha}$$

where $_{s}I_{\alpha}$ is the map defined by

$$_{s}I_{\alpha}: \quad [\vec{v}]_{\alpha} \longmapsto [\vec{v}]_{s}$$

i.e. ${}_sI_{\alpha}$ is the transformation that takes a vector $[\vec{v}]_{\alpha}$, which is the vector $\vec{v} \in \mathbb{V}$ expressed with respect to the basis α , and maps it to $[\vec{v}]_s$, which is the same vector but now expressed with respect to the standard basis s. [Here we use I because it is basically the identity map]

This we can do with the matrix ${}_sC_\alpha$

$$[\vec{v}]_s = {}_sC_\alpha \cdot [\vec{v}]_\alpha$$

Similarly for $_{\beta}I_{S}$ which is defined by

$$_{\beta}I_{S}: \quad [\vec{w}]_{S} \longmapsto [\vec{w}]_{\beta}$$

a transformation we can perform using the matrix $_{\beta}C_{S}$ $\left(={}_{S}C_{\beta}^{-1}\right)$

$$[\vec{w}]_{\beta} = {}_{\beta}C_S \cdot [\vec{w}]_S$$

Let's look at the following diagram where instead of the names of the functions, we indicate all the **matrices** used for each map, and what vector is being mapped to what image vector

Instead of performing the transformation

$$[\vec{v}]_{\alpha} \longmapsto [T(\vec{v})]_{\beta}$$

using the matrix $\beta[T]_{\alpha}$ as follows

$$_{\beta}[T]_{\alpha} \cdot [\vec{v}]_{\alpha} = [T(\vec{v})]_{\beta}$$

we take the longer, but often simpler route

$$[\vec{v}]_{\alpha} \longmapsto [\vec{v}]_s \longmapsto [T(\vec{v})]_S \longmapsto [T(\vec{v})]_{\beta}$$

using three matrices

$$_{\beta}C_{S} \cdot {}_{S}[T]_{s} \cdot {}_{s}C_{\alpha} \cdot [\vec{v}]_{\alpha} = [T(\vec{v})]_{\beta}$$

where each of these matrices can be found easily. This shows that

$$_{\beta}[T]_{\alpha} = _{\beta}C_{S} \cdot _{S}[T]_{s} \cdot _{s}C_{\alpha}$$

or if you like

$$_{\beta}[T]_{\alpha} = _{\beta}[I]_{S} \cdot _{S}[T]_{s} \cdot _{s}[I]_{\alpha}$$

This sounds all much more abstract than it actually is. Let's do a bunch of examples.

Let $T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ defined by

$$T(at^{2} + bt + c) = \begin{bmatrix} 3a + 6b - 3c & a + 17b - 7c \\ 6a + 12b - 6c & 13a - 4b - c \end{bmatrix}$$

The following bases are given

$$\alpha = \left\{ t^2 + 2t + 1, \quad t^2 + 3t + 1, \quad t^2 + 2 \right\}$$

and

$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \right\}$$

and of course the usual standard bases.

Since

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \xrightarrow{ST_s} \begin{bmatrix} 3a + 6b - 3c \\ a + 17b - 7c \\ 6a + 12b - 6c \\ 13a - 4b - c \end{bmatrix}$$

$$_{S}[T]_{s} = \begin{bmatrix} 3 & 6 & -3 \\ 1 & 17 & -7 \\ 6 & 12 & -6 \\ 13 & -4 & -1 \end{bmatrix}$$

and

$${}_{s}C_{\alpha} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \\ 1 & 1 & 2 \end{bmatrix} \quad \text{and} \quad {}_{s}C_{\beta} = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 2 & 1 & 2 \\ 3 & 0 & -1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

These three matrices where easy to find, and now give us

$$\beta[T]_{\alpha} = \beta C_S \cdot S[T]_s \cdot SC_{\alpha}$$

$$= \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 2 & 1 & 2 \\ 3 & 0 & -1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 3 & 6 & -3 \\ 1 & 17 & -7 \\ 6 & 12 & -6 \\ 13 & -4 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 44 & 81 & -41 \\ -100 & -189 & 103 \\ 108 & 207 & -117 \\ 60 & 108 & -51 \end{bmatrix}$$

Let's also find $_{\beta}[T]_{\alpha}$ the other way

using
$$_{\beta}[T]_{\alpha} = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ [T(\vec{a}_1)]_{\beta} & [T(\vec{a}_2)]_{\beta} & \cdots & [T(\vec{a}_n)]_{\beta} \end{bmatrix}$$

(a)
$$T(\vec{\alpha}_1) = T(t^2 + 2t + 1) = \begin{bmatrix} 12 & 28 \\ 24 & 4 \end{bmatrix} \Rightarrow [T(\vec{\alpha}_1)]_{\beta} = \begin{bmatrix} 44 \\ -100 \\ 108 \\ 60 \end{bmatrix}$$

(b)
$$T(\vec{\alpha}_2) = T(t^2 + 3t + 1) = \begin{bmatrix} 18 & 45 \\ 36 & 0 \end{bmatrix} \Rightarrow [T(\vec{\alpha}_2)]_{\beta} = \begin{bmatrix} 81 \\ -189 \\ 207 \\ 108 \end{bmatrix}$$

(c)
$$T(\vec{\alpha}_3) = T(t^2 + 2) = \begin{bmatrix} -3 & -13 \\ -6 & 11 \end{bmatrix}$$
 \Rightarrow $[T(\vec{\alpha}_3)]_{\beta} = \begin{bmatrix} -41 \\ 103 \\ -117 \\ -51 \end{bmatrix}$

where the last parts were computed with one row reduction

$$\operatorname{rref}\begin{bmatrix} 1 & 2 & 1 & 1 & 12 & 18 & -3 \\ 0 & 2 & 1 & 2 & 28 & 45 & -13 \\ 3 & 0 & -1 & 0 & 24 & 36 & -6 \\ 1 & 1 & 0 & 1 & 4 & 0 & 11 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 44 & 81 & -41 \\ 0 & 1 & 0 & 0 & -100 & -189 & 103 \\ 0 & 0 & 1 & 0 & 108 & 207 & -117 \\ 0 & 0 & 0 & 1 & 60 & 108 & -51 \end{bmatrix}$$

Hence
$$_{\beta}[T]_{\alpha} = \begin{bmatrix} 44 & 81 & -41 \\ -100 & -189 & 103 \\ 108 & 207 & -117 \\ 60 & 108 & -51 \end{bmatrix}$$

Both ways are fine. You can do it either way. Once you understand both paths the computations are fairly straightforward in either case. Let's look at one example of a particular \vec{v}

$$[\vec{v}]_{\alpha} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \xrightarrow{\beta T_{\alpha}} [T(\vec{v})]_{\beta} = \begin{bmatrix} 7 \\ -11 \\ 9 \\ 12 \end{bmatrix} = \begin{bmatrix} 44 & 81 & -41 \\ -100 & -189 & 103 \\ 108 & 207 & -117 \\ 60 & 108 & -51 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

$$\varphi_{\alpha}$$

$$\vec{v} = t^2 + t + 1 \xrightarrow{T} T(\vec{v}) = \begin{bmatrix} 6 & 11 \\ 12 & 8 \end{bmatrix}$$

Let $T: \mathbb{R}^4 \to P_3(\mathbb{R})$ defined by

$$T \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = (a - b) t^3 + (2a - c + 5d) t^2 + (b - c) t + 3c - 2d)$$

The following bases are given

$$\alpha = \left\{ \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} \right\}$$

and

$$\beta = \left\{ t^3 + 2t^2 + 1, \quad t^3 + 3t - 5, \quad t^2 + 2t + 1, \quad t^3 + 3t^2 + 3 \right\}$$

and of course the usual standard bases.

Since

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \longmapsto {}_{S}T_{s} \longrightarrow \begin{bmatrix} a-b \\ 2a-c+5d \\ b-c \\ 3c-2d \end{bmatrix}$$

$$_{S}[T]_{s} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 2 & 0 & -1 & 5 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 3 & -2 \end{bmatrix}$$

and

$${}_{s}C_{\alpha} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 2 & 0 & 1 & 1 \end{bmatrix} \quad \text{and} \quad {}_{s}C_{\beta} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 3 & 2 & 0 \\ 1 & -5 & 1 & 3 \end{bmatrix}$$

These three matrices where easy to find, and now give us

$$\beta[T]_{\alpha} = \beta C_S \cdot S[T]_s \cdot C_{\alpha}$$

$$= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 3 & 2 & 0 \\ 1 & -5 & 1 & 3 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & -1 & 0 & 0 \\ 2 & 0 & -1 & 5 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 3 & -2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 2 & 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -259 & 33 & -56 & -97 \\ 55 & -7 & 11 & 20 \\ -82 & 10 & -17 & -30 \\ 204 & -25 & 44 & 76 \end{bmatrix}$$

Let's also find
$$_{\beta}[T]_{\alpha}$$
 the other way using $_{\beta}[T]_{\alpha} = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ [T(\vec{a}_1)]_{\beta} & [T(\vec{a}_2)]_{\beta} & \cdots & [T(\vec{a}_n)]_{\beta} \\ \downarrow & \downarrow & \downarrow \end{bmatrix}$

(a)
$$T(\vec{\alpha}_1) = T \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix} = 12t^2 + t - 4$$
 $\Rightarrow [T(\vec{\alpha}_1)]_{\beta} = \begin{bmatrix} -259 \\ 55 \\ -82 \\ 204 \end{bmatrix}$

(b)
$$T(\vec{\alpha}_2) = T \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = t^3 + t^2 - t + 3$$
 $\Rightarrow [T(\vec{\alpha}_2)]_{\beta} = \begin{bmatrix} 33 \\ -7 \\ 10 \\ -25 \end{bmatrix}$

(c)
$$T(\vec{\alpha}_3) = T \begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \end{bmatrix} = -t^3 + 3t^2 - t + 4$$
 $\Rightarrow [T(\vec{\alpha}_3)]_{\beta} = \begin{bmatrix} -56 \\ 11 \\ -17 \\ 44 \end{bmatrix}$

(d)
$$T(\vec{\alpha}_4) = T \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} = -t^3 + 4t^2 + 1$$
 $\Rightarrow [T(\vec{\alpha}_4)]_{\beta} = \begin{bmatrix} -97 \\ 20 \\ -30 \\ 76 \end{bmatrix}$

where the last parts were computed with one row reduction

$$\operatorname{rref}\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 & -1 & -1 \\ 2 & 0 & 1 & 3 & 12 & 1 & 3 & 4 \\ 0 & 3 & 2 & 1 & 1 & -1 & -1 & 0 \\ 1 & -5 & 1 & 3 & -4 & 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & -259 & 33 & -56 & -97 \\ 0 & 1 & 0 & 0 & 55 & -7 & 11 & 20 \\ 0 & 0 & 1 & 0 & -82 & 10 & -17 & -30 \\ 0 & 0 & 0 & 1 & 204 & -25 & 44 & 76 \end{bmatrix}$$

Hence
$$_{\beta}[T]_{\alpha} = \begin{bmatrix} -259 & 33 & -56 & -97 \\ 55 & -7 & 11 & 20 \\ -82 & 10 & -17 & -30 \\ 204 & -25 & 44 & 76 \end{bmatrix}$$

Both ways are fine. You can do it either way. Once you understand both paths the computations are fairly straightforward in either case. And ... essentially equivalent

Let $T: P_2(\mathbb{F}_7) \to M_{2\times 3}(\mathbb{F}_7)$ be defined by

$$T(at^{2} + bt + c) = \begin{bmatrix} 2a + b & a + b + c & 3b + 4c \\ 0 & 2a + 5c & 3a + 2b \end{bmatrix}$$

Since

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \longmapsto \begin{array}{c} ST_s \\ ST_s \\$$

we find that

$$s[T]_s = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 0 \\ 2 & 0 & 5 \\ 3 & 2 & 0 \end{bmatrix}$$

If

$$\alpha = \{ t^2 + 2t + 1, \quad t^2 + 3t + 1, \quad t^2 + 2 \}$$

and
$$\beta = \left\{ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 0 \\ 1 & 4 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 5 \\ 6 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 5 & 3 \\ 1 & 4 & 2 \end{bmatrix}, \begin{bmatrix} 6 & 5 & 0 \\ 2 & 4 & 3 \end{bmatrix} \right\}$$

Then

$$\beta[T]_{\alpha} = \beta C_S \cdot S[T]_s \cdot S_c C_{\alpha}$$

$$= \begin{bmatrix} 1 & 1 & 2 & 3 & 1 & 6 \\ 1 & 2 & 0 & 1 & 5 & 5 \\ 1 & 3 & 0 & 5 & 3 & 0 \\ 1 & 1 & 1 & 6 & 1 & 2 \\ 1 & 0 & 4 & 2 & 4 & 4 \\ 1 & 1 & 0 & 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 0 \\ 2 & 0 & 5 \\ 3 & 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 5 & 3 \\ 2 & 3 & 0 \\ 1 & 3 & 5 \\ 6 & 5 & 6 \\ 3 & 3 & 1 \\ 0 & 6 & 2 \end{bmatrix}$$

Let's look at the diagram for $\vec{v} = 6t^2 + 4t + 5$

Here are the TI-Nspire calculations of both the blue and red paths, using the matrices:

$$_{s}C_{\alpha}$$
, $_{S}[T]_{s}$, $_{s}C_{\beta}$ and $_{\beta}[T]_{\alpha}$ [respectively]

$$s7 \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix}$$

$$s7 \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 0 \\ 2 & 0 & 5 \\ 3 & 2 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \\ 5 \end{bmatrix}$$

$$s7 mi7 \begin{bmatrix} 1 & 1 & 2 & 3 & 1 & 6 \\ 1 & 2 & 0 & 1 & 5 & 5 \\ 1 & 3 & 0 & 5 & 3 & 0 \\ 1 & 1 & 1 & 6 & 1 & 2 \\ 1 & 0 & 4 & 2 & 4 & 4 \\ 1 & 1 & 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \\ 0 \\ 0 \\ 2 \\ 5 \end{bmatrix}$$

$$s7 \begin{bmatrix} 0 & 5 & 3 \\ 2 & 3 & 0 \\ 3 & 3 & 1 \\ 6 & 5 & 6 \\ 3 & 3 & 1 \\ 0 & 6 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 3 \\ 4 \\ 6 \end{bmatrix}$$