

План лекции

- Графы. Представление графов.
- Пути в графе. Понятие релаксации.
- Обход графа. Поиск путей в графах. BFS. DFS.
- Компоненты связности.
- Топологическая сортировка.
- Поиск остовных деревьев в графе. Алгоритмы Прима и Краскала.
- Алгоритм Дейкстры и его связь с жадными алгоритмами.
- Алгоритм Флойда-Уоршалла и его связь с динамическим программированием.

Графы. Представление графов.

Графы: применение

- ▶ Географические карты. Какой маршрут из Москвы в Лондон требует наименьших расходов? Какой маршрут из Москвы в Лондон требует наименьшего времени? Требуется информация о связях между городами и о стоимости этих связей.
- Микросхемы. Транзисторы, резисторы и конденсаторы связаны между собой проводниками. Есть ли короткие замыкания в системе? Можно ли так переставить компоненты, чтобы не было пересечения проводников?
- Расписания задач. Одна задача не может быть начата без решения других, следовательно имеются связи между задачами. Как составить график решения задач так, чтобы весь процесс завершился за наименьшее время?

Графы: применение

- ▶ Компьютерные сети. Узлы конечные устройства, компьютеры, планшеты, телефоны, коммутаторы, маршрутизаторы... Каждая связь обладает свойствами латентности и пропускной способности. По какому маршруту послать сообщение, чтобы она было доставлено до адресата за наименьшее время? Есть ли в сети «критические узлы», отказ которых приведёт к разделению сети на несвязные компоненты?
- Структура программы. Узлы функции в программе.
 Связи может ли одна функция вызвать другую (статический анализ) или что она вызовет в процессе исполнения программы (динамический анализ). Чтобы узнать, какие ресурсы потребуется выделять системе, требуется граф,

- ▶ Ориентированный граф: G = (V, E) есть пара из V -конечного множества и E -подмножества множества $V \times V$.
- **Вершины графа**: элементы множества V (vertex, vertices).
- ▶ Рёбра графа: элементы множества E (edges).
- Неориентированный граф: рёбра есть неупорядоченные пары.
- ightharpoonup Петля: ребро из вершины v_1 в вершину v_2 , где $v_1=v_2$.

- **Смежные вершины**: v_i и v_j смежны, если имеется связь (v_i, v_j) .
- ightharpoonup Множество смежных вершин: обозначаем Adj[v]
- ▶ Степень вершины: величина |Adj[v]|
- **Путь из** v_0 в v_n : последовательность рёбер, таких, что $e_1 = (v_0, v_1)$, $e_2 = (v_1, v_2) \dots e_n = (v_{n-1}, v_n)$.
- ▶ Простой путь: путь, в котором все вершины попарно различны.
- ▶ Длина пути: количество п рёбер в пути.
- ▶ **Цик**л: путь, в котором $v_0 = v_n$.

- Неориентированный связный граф: для любой пары вершин существует путь.
- Связная компонента вершины v: множество вершин неориентированного графа, до которых существует путь из v.
- **Расстояние между** $\delta(v_i, v_j)$: длина кратчайшего пути из v_i в v_j .

$$\delta(u, v) = 0 \Leftrightarrow u = v$$

$$\delta(u, v) \leqslant \delta(u, v') + \delta(v', v)$$

- Дерево: связный граф без циклов.
- **Граф со взвешенными рёбрами**: каждому ребру приписан вес c(u, v).

Пример ориентированного графа

Типичные: задачи на графах

- Проверка графа на связность.
- ▶ Является ли граф деревом.
- ► Найти кратчайший путь из *и* в *v*.
- Найти цикл, проходящий по всем рёбрам ровно один раз (цикл Эйлера).
- Найти цикл, проходящий по всем вершинам ровно один раз (цикл Гамильтона).
- Проверка на планарность определить, можно ли нарисовать граф на плоскости без самопересечений.

- Каждой вершине сопоставляется множество смежных с ней.
- Всё представляется в виде матрицы смежности.
- Всё представляется в виде списка рёбер.

Представление графа в памяти в виде матрицы смежности

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	0	1
3	1	0	0	0	1	0
4	0	1	1	0	0	0
5	0	0	1	1	0	1
6	0	0	0	1	1	0

Представление графа в памяти в виде множеств смежности

 $v_1:\{2,4\}$

 $v_2:\{6\}$

 $v_3:\{1,5\}$

 $v_4:\{2,3\}$

 $v_5: \{3,4,6\}$

 $v_6:\{4,5\}$

Представление взвешенного графа в памяти в виде матрицы смежности

	1	2	3	4	5	6
1	0	5	0	10	0	0
2	0	0	0	0	0	11
3	15	0	0	0	2	0
4	0	2	4	0	0	0
5	0	0	0	7	0	6
6	0	0	0	4	4	0

Представление взвешенного графа в памяти в виде множеств смежности


```
v_1: \{(2,5), (4,10)\}

v_2: \{(6,11)\}

v_3: \{(1,15), (5,2)\}

v_4: \{(2,2), (3,4)\}

v_5: \{(4,7), (6,6)\}

v_6: \{(4,4), (5,4)\}
```

Представление взвешенного графа в памяти в виде списка рёбер

$$\{from, to, cost\} \dots$$

 $\{\{1, 2, 5\}, \{1, 4, 10\}, \{2, 6, 11\}, \{3, 1, 15\}, \{3, 5, 2\},$
 $\{4, 2, 2\}, \{5, 4, 7\}, \{5, 6, 6\}, \{6, 4, 4\}, \{6, 5, 4\}\}$

Преимущества и недостатки методов представления:

Представление	Матрица	Множества	Список
	смежности	смежности	рёбер
Занимаемая	$O(V ^2)$	O(V + E)	O(E)
память			
	Простой	Требует мало	Можно
Особенности	доступ	памяти для	иметь
		ряда графов	мультирёбра

Обход графа. Поиск путей в графах. BFS. DFS.

Обход графа

Абстракция: очередь

- enqueue: добавить элемент в конец очереди
- **dequeue**: извлечь с удалением элемент из начала очереди.

Ещё один термин:

▶ Предшественник $\pi(u)$ на пути от s: предпоследняя вершина в кратчайшем пути из s в u.

Обход графа: поиск в ширину, BFS

Поиск в ширину от вершины s — просмотр вершин графа в порядке возрастания расстояния от s.

```
1: procedure BFS(G : Graph, s : Vertex)
         for all u \in V[G] \setminus \{s\} do
 3:
             d[u] \leftarrow \infty; c[u] \leftarrow \text{white}; \pi[u] \leftarrow \text{nil}
 4:
         end for
         d[s] \leftarrow 0
 5:
 6: c[s] \leftarrow \text{grey}
 7:
         Q.enqueue(s)
 8:
         while Q \neq \emptyset do
 9:
              u \leftarrow Q.dequeue()
10:
              for all v \in Adj[u] do
                  if c[v] = white then
11:
12:
                       d[v] \leftarrow d[u] + 1
13:
                       \pi[v] = u
14:
                       Q.engueue(v)
15:
                       c[v] = grey
16:
                  end if
17:
              end for
18:
              c[u] \leftarrow black
19:
         end while
20: end procedure
```

Начало алгоритма.

$$d = \{0, \infty, \infty, \infty, \infty, \infty\}$$

$$\pi = \{nil, nil, nil, nil, nil, nil\}$$

$$Q = \{v_1\}$$

После первого прохождения цикла While

$$d = \{0, 1, \infty, 1, \infty, \infty\}$$

$$\pi = \{nil, v_1, nil, v_1, nil, nil\}$$

$$Q = \{v_4, v_2\}$$

После второго прохождения цикла While

$$d = \{0, 1, 2, 1, \infty, \infty\}$$

$$\pi = \{nil, v_1, v_4, v_1, nil, nil\}$$

$$Q = \{v_2, v_3\}$$

После третьего прохождения цикла While

$$d = \{0, 1, 2, 1, \infty, 2\}$$

$$\pi = \{nil, v_1, v_4, v_1, nil, v_2\}$$

$$Q = \{v_3, v_6\}$$

После четвёртого прохождения цикла While

$$d = \{0, 1, 2, 1, 3, 2\}$$

$$\pi = \{nil, v_1, v_4, v_1, v_3, v_2\}$$

$$Q = \{v_6, v_5\}$$

Завершение алгоритма

$$d = \{0, 1, 2, 1, 3, 2\}$$

$$\pi = \{nil, v_1, v_4, v_1, v_3, v_2\}$$

$$Q = \{\}$$

Алгоритм BFS: свойства

Сложность алгоритма:

- представление в виде множества смежности:
 - ightharpoonup Инициализация: O(|V|)
 - Каждая вершина обрабатывается не более одного раза.
 Проверяются все смежные вершины.

$$\sum_{v \in V} |Adj(v)| = O(|E|)$$

T = O(|V| + |E|)

Поиск в глубину: алгоритм DFS

- Этот алгоритм пытается идти вглубь, пока это возможно.
- Обнаружив вершину, алгоритм не возвращается, пока её не обработает.
- Используются цвета:
 - Белый для непросмотренных вершин
 - Серый для обрабатываемых вершин
 - Чёрный для обработанных вершин
- Используются переменные
 - ▶ time глобальные часы.
 - ightharpoonup d[u] время начала обработки вершины u
 - ightharpoonup f[u] время окончания обработки вершины u
 - ▶ $\pi[u]$ предшественник вершины u

Алгоритм DFS

```
1: procedure DFS(G : Graph)
        for all u \in V[G] do
            c[u] \leftarrow \text{white}; \quad \pi[u] \leftarrow \text{nil}
 3:
 4:
    end for
 5: time \leftarrow 0
    for all u \in V[G] do
 6:
            if c[u] = white then
 7:
                DFS-vizit(u)
 8:
            end if
 9:
        end for
10:
11: end procedure
```

Алгоритм DFS

```
1: procedure DFS-VIZIT(u : Vertex)
      c[u] \leftarrow \text{grey}
 2:
 3: time \leftarrow time + 1
   d[u] \leftarrow time
 4:
 5: for all v \in Adj[u] do
            if c[v] = white then
 6:
                \pi[v] \leftarrow u
 7:
                DFS-vizit(v)
 8:
            end if
 9:
    end for
10:
11: c[u] \leftarrow black
12: time \leftarrow time + 1
13:
    f[u] \leftarrow time
14: end procedure
```

Начинается обход с вершины v_1

$$\begin{aligned} & d = \{1, -1, -1, -1, -1, -1\} \\ & f = \{-1, -1, -1, -1, -1, -1\} \\ & \pi = \{\textit{nil}, \textit{nil}, \textit{nil}, \textit{nil}, \textit{nil}, \textit{nil}\} \end{aligned}$$

Первый рекурсивный вызов DFS-vizit (v_2)

$$d = \{1, 2, -1, -1, -1, -1\}$$

$$f = \{-1, -1, -1, -1, -1, -1\}$$

$$\pi = \{nil, v_1, nil, nil, nil, nil\}$$

Второй рекурсивный вызов DFS-vizit (v_6)

$$d = \{1, 2, -1, -1, -1, 3\}$$

$$f = \{-1, -1, -1, -1, -1, -1\}$$

$$\pi = \{nil, v_1, nil, nil, nil, v_2\}$$

Пятый рекурсивный вызов DFS-vizit (v_5)

$$d = \{1, 2, 5, 4, 6, 3\}$$

$$f = \{-1, -1, -1, -1, -1, -1\}$$

$$\pi = \{nil, v_1, v_4, v_6, v_3, v_2\}$$

Выход из пятой рекурсии вызов DFS-vizit (v_5)

$$d = \{1, 2, 5, 4, 6, 3\}$$

$$f = \{-1, -1, -1, -1, 7, -1\}$$

$$\pi = \{nil, v_1, v_4, v_6, v_3, v_2\}$$

Завершение алгоритма

$$\begin{aligned} & d = \{1, 2, 5, 4, 6, 3\} \\ & f = \{12, 11, 8, 9, 7, 10\} \\ & \pi = \{\textit{nil}, \textit{v}_1, \textit{v}_4, \textit{v}_6, \textit{v}_3, \textit{v}_2\} \end{aligned}$$

Алгоритм DFS

- ightharpoonup Сложность алгоритма для представления в виде множества смежности равна O(|V|+|E|)
- Этот алгоритм не для нахождения кратчайших маршрутов

Задача: имеется ориентированный граф G = (V, E) без циклов.

Требуется указать такой порядок вершин на множестве V, что любое ребро ведёт из меньшей вершины к большей. Требуемая структура данных: L — очередь с операцией insertToFront.

```
1: procedure TopoSort(G : Graph)
       L \leftarrow 0
 3: for all u \in V[G] do
           c[u] \leftarrow \text{white};
    end for
 5:
    time \leftarrow 0
 6:
    for all u \in V[G] do
 7:
           if c[v] = white then
 8:
               DFS-vizit(u)
 9:
           end if
10:
       end for
11:
12: end procedure
```

```
1: procedure DFS-VIZIT(u : Vertex)
      c[u] \leftarrow \text{grey}
 2:
 3: for all v \in Adj[u] do
 4:
           if c[v] = white then
              \pi[v] \leftarrow u
 5:
               DFS-vizit(u)
 6:
           end if
 7:
    end for
 8:
    c[u] \leftarrow black
 9:
    L.insertToFront(u)
10:
11: end procedure
```

Прогон алгоритма топологической сортировки

Пусть обход начнётся с вершины v_1

Прогон алгоритма топологической сортировки

Результат обхода.

Порядок вершин (добавляем в начало по номерам): $V_1,\,V_2,\,V_4,\,V_6,\,V_5,\,V_3$

Поиск компонент связности

Поиск компонент связности

- Для неориентированных графов: запустив поиск BFS или DFS.
- Все выкрашенные по завершении поиска вершины образуют компоненту связности.
- Выбирается произвольным образом необработанная вершина и алгоритм повторяется, формируя другую компоненту связности.
- Алгоритм заканчивается, когда не остаётся необработанных вершин.

Поиск компонент связности

- Для ориентированных графов: результаты зависят от порядка обхода вершин.
- Компонента сильной связности ориентированного графа: максимальное по размеру множество вершин, взаимно достижимых друг из друга

- ▶ Проведём полный DFS поиск.
- ightharpoonup В алгоритме полного DFS не специфицировано, с какой вершины начинается поиск ightharpoonup можно выбрать произвольную.
- Около каждой вершины пишем два числа: время входа в вершину и через знак / — время выхода из вершины.

Обход с вершины v_2 :

- Заменим направления всех рёбер (перевернём все стрелки).
- ightharpoonup Каждое ребро u o v заменяется на v o u.

- Обходим ещё раз.
- ▶ Начальная вершина та из необработанных, у которой наибольшие значение времени выхода.
- ightharpoonup Обход из вершины 2 покрасил вершины v_1, v_2, v_3 и v_4 .
- ▶ Остались непокрашенные вершины v_5, v_6, v_7 и v_8 .
- ▶ Повторяем, пока останутся непокрашенные вершины.

Номер	1	2	3	4	5	6	7	8
Вход/выход	12/13	1/16	11/14	10/15	2/9	4/7	3/8	5/6

 Каждый «малый» проход алгоритма DFS даст нам вершины, которые принадлежат одной компоненте сильной связности.

Рассматривая компоненту сильной связности как единую мета-вершину, мы получаем новый граф, который называется конденсацией исходного графа или конденсированным графом.

Остовные деревья

Остовное дерево: ещё немного терминов

- С точки зрения теории графов дерево есть ациклический связный граф.
- ▶ Множество деревьев называется лесом (forest) или бором.
- Остовное дерево связного графа подграф, который содержит все вершины графа и представляет собой полное дерево.
- ▶ Остовный лес графа лес, содержащий все вершины графа.

Минимальное остовное дерево

- ▶ Построение остовных деревьев одна из основных задач в компьютерных сетях.
- ▶ Решение задачи как спланировать маршрут от одного узла сети до других.
- Для некоторого типа узлов в передаче сообщений недопустимо иметь несколько возможных маршрутов.
 Например, если компьютер соединён с маршрутизатором по Wi-Fi и Ethernet одновременно, то в некоторых операционных системах сообщения от компьютера до маршрутизатора не будут доходить из-за наличия цикла.
- ▶ Построение остовного дерева избавление от циклов в графе.

Остовные деревья

Каждый из узлов имеет информацию о связях с соседями. Каждая связь имеет вес.

Остовные деревья

Матрица смежности.

n/m	0	1	2	3	4	5
0	0	0	0	0	3	2
1	0	0	7	0	2	4
2	0	7	0	0	12	4
3	0	0	0	0	0	2
4	3	2	12	0	0	5
5	2	4	4	2	5	0

Остовное дерево

- множество достижимых узлов из некоторого *корневого* узла P_r должно совпадать с полным множеством.
- для каждого узла должен быть ровно один маршрут до любого из достижимых узлов.

Это — остовное дерево для корневого узла P_r .

Минимальное остовное дерево

Задача: определение кратчайшего пути из корневого узла. Минимальное остовное дерево

Минимальное остовное дерево

- ► MST Minimal Spanning Tree.
- Минимальное остовное дерево взвешенного графа есть остовное дерево, вес которого (сумма его всех рёбер) не превосходит вес любого другого остовного дерева.
- Именно минимальные остовные деревья больше всего интересуют проектировщиков сетей.
- Сечение графа разбиение множества вершин графа на два непересекающихся подмножества.
- ▶ Перекрёстное ребро ребро, соединяющее вершину одного множества с вершиной другого множества.

Лемма. Если T — произвольное остовное дерево, то добавление любого ребра e между двумя вершинами u и v создаёт цикл, содержащий вершины u, v и ребро e.

- Лемма. При любом сечении графа каждое минимальное перекрёстное ребро принадлежит некоторому МЅТ-дереву и каждое МЅТ-дерево содержит перекрёстное ребро.
- ▶ Доказательство от противного. Пусть е минимальное перекрёстное ребро, не принадлежащее ни одному МЅТ и пусть Т МЅТ дерево, не содержащее е. Добавим е в Т. В этом графе есть цикл, содержащий е и он содержит ребро е', с весом, не меньшим е. Если удалить е', то получится остовное дерево не большего веса, что противоречит условию минимальности Т или предположению, что е не содержится в Т.

 Следствие. Каждое ребро дерева MST есть минимальное перекрёстное ребро, определяемое вершинами поддеревьев, соединённых этим ребром.

- Лемма (без доказательства). Пусть имеется граф G и ребро e. Пусть граф G' есть граф, полученный добавлением ребра e к графу G. Результатом добавления ребра e в MST графа G и последующего удаления максимального ребра из полученного цикла будет MST графа G'.
- Эта лемма выявляет рёбра, которые не должны входить в MST.

Алгоритмы поиска MST

Алгоритм Прима

- 1. Один из наиболее простых алгоритмов для нахождения MST.
- 2. Используется сечение графа на два подграфа древесных вершин и недревесных вершин.
- 3. Выбираем произвольную вершину. Это MST дерево, состоящее из одной древесной вершины.
- 4. Выбираем минимальное перекрёстное ребро между MST вершиной и недревесным множеством.
- 5. Повторяем операцию до тех пор, пока все вершины не окажутся в дереве.

Исходный граф.

Вершина 0 — корневая. Переводим её в MST. Проверяем все веса из MST в не MST.

(0-2) самое лёгкое ребро. Переводим вершину 2 и ребро (0-2) в MST.

Отмечаем все рёбра из MST в не MST.

Переносим вершину 7 и ребро (0-7) в MST.

Отмечаем все рёбра из MST в не MST.

Переносим вершину 1 и ребро (1-7) в MST.

Отмечаем все рёбра из MST в не MST.

Переносим вершину 6 и ребро (7-6) в MST.

Отмечаем все рёбра из MST в не MST.

Переносим вершину 4 и ребро (7-4) в MST.

Отмечаем все рёбра из MST в не MST.

Переносим вершину 3 и ребро (3-4) в MST.

Все вершины в MST.

- В данном виде алгоритм не очень эффективен.
- На каждом шаге мы забываем про те рёбра, который уже проверяли.
- Введём понятие накопителя.
- Накопитель содержит множество рёбер-кандидатов.
- ► Каждый раз в MST включается самое лёгкое ребро.
- ightharpoonup Сложность алгоритма $O(|V|^2)$

Более эффективная реализация алгоритма Прима

- 1. Выбираем произвольную вершину. Это MST дерево, состоящее из одной вершины. Делаем вершину текущей.
- Помещаем в накопитель все рёбра, которые ведут из этой вершины в не MST узлы. Если в какой-либо из узлов уже ведёт ребро с большей длиной, заменяем его ребром с меньшей длиной.
- 3. Выбираем ребро с минимальным весом из накопителя.
- 4. Повторяем операцию до тех пор, пока все вершины не окажутся в дереве.

- Алгоритм Прима обобщение поиска на графе.
- Накопитель представляется очередью с приоритетами.
- Используется операция «извлечь минимальное».
- Используется операция «увеличить приоритет».
- ▶ Такой поиск на графе называется PFS поиск по приоритету.
- ightharpoonup Сложность алгоритма $O(|E|\log|V|)$

Алгоритм Краскала (Kruscal).

- Один из самых старых алгоритмов на графах (1956).
- Предварительное условие: связность графа.
 - Создаётся число непересекающихся множеств по количеству вершин и каждая вершина составляет своё множество.
 - 2. Множество MST вначале пусто.
 - 3. Из всех рёбер, не принадлежащих MST выбирается самое короткое из всех рёбер, не образующих цикл. Вершины ребра должны принадлежать различным множествам.
 - 4. Выбранное ребро добавляется к множеству MST
 - 5. Множества, которым принадлежат вершины выбранного ребра, сливаются в единое.
 - 6. Если размер множества MST стал равен |V|-1, то алгоритм завершён, иначе отправляемся к пункту 3.

Список рёбер упорядочен по возрастанию:

	۲	٦٠٢	J ~ I	,							
i	3	0	1	0	0	6	3	4	0	0	4
j	5	2	7	7	1	7	4	5	6	5	6
W_{ij}	4	7	7	9	10	10	11	15	22	26	30

Таблица принадлежности вершин множествам:

V_i	0	1	2	3	4	5	6	7
р	0	1	2	3	4	5	6	7

Алгоритм Краскала:первая итерация

Вершины 3 и 5 самого короткого ребра в разных множествах \to отправляем ребро в множество MST и объединяем множества.

	V_i	0	1	2	3	4	5	6	7
L	p								

Алгоритм Краскала:вторая итерация

Два подходящих ребра с одинаковым весом:

i	0	1	0	0	6	3	4	0	0	4
j	2	7	7	1	7	4	5	6	5	6
W_{ij}	7	7	9	10	10	11	15	22	26	30

Лемма. При равных подходящих рёбрах можно выбирать произвольное.

Доказательство. Если добавление первого ребра не помешает добавлению второго, то, всё ОК.

Если помешает, (добавление второго создаст цикл), то можно удалить любое из них, общий вес дерева останется неизменным.

Алгоритм Краскала: вторая итерация

Выберем ребро (0,2) и поместим вершину 2 в множество номер 0.

Vi	0	1	2	3	4	5	6	7
р	0	1	0	3	4	3	6	7

Алгоритм Краскала: третья итерация

Ребро (1,7) привело к слиянию множеств 1 и 7.

Vi	0	1	2	3	4	5	6	7
р	0	1	0	3	4	3	6	1

Алгоритм Краскала: четвёртая итерация

Самым коротким ребром из оставшихся оказалось ребро (0,7).

Нам нужно слить два множества — одно, содержащее $\{0,2\}$ и другое — содержащее $\{1,7\}.$

Алгоритм Краскала: четвёртая итерация

V_i	0	1	2	3	4	5	6	7
р	0	1	0	3	4	3	6	1

- Пусть новое множество получит номер 0.
- Нужно ли найти в массиве р все единицы (номер второго множества) и заменить их на нули (номер того множества, куда переходят элементы первого)?
- ▶ Можно быстрее, используя систему непересекающихся множеств Union-Find или Disjoint Set Union, DSU.

Система непересекающихся множеств, DSU

Абстракция DSU реализует три операции:

- ightharpoonup create(n) создать набор множеств из n элементов.
- ▶ $find_{root}(x)$ найти представителя множества.
- ▶ merge(1,r) сливает два множества 1 и r.

Система непересекающихся множеств

Vi	0	1	2	3	4	5	6	7
р	0	1	0	3	4	3	6	1

- ightharpoonup create(n) Массив p есть массив представителей.
- find_root(x).

Система непересекающихся множеств

- ▶ p[7] == 1 номер множества, он же и представитель .
- ▶ Если для слияния множеств {0,2} и {1,7} поместим в p[7] число 0, то для вершины 1 представителем останется 1, что неверно (после слияния вершина 1 должна принадлежать множеству 0).
- Так как p[7] ==1, то и у седьмой, и у первой вершины представители одинаковые.
- **Р** Если номер вершины совпадает с номером представителя, то, в массив р при исполнении ничего не было записано \rightarrow эта вершина есть корень дерева.
- После слияния нужно заменить всех родителей вершины на нового представителя. Это делается изящным рекурсивным алгоритмом:

```
int find_root(int r) {
   if (p[r] == r) return r; // Тривиальный случай
   return p[r] = find_root(p[r]); Рекурсивный случай
}
```

Система непересекающихся множеств

- merge(1,r). Для сохранения корректности алгоритма вполне достаточно любого из присвоений: p[1] = r или p[r] = 1. Всю дальнейшую корректировку родителей в дальнейшем сделает метод find_root.
- Приёмы балансировки деревьев:
 - Использование ещё одного массива, хранящего длины деревьев: слияние производится к более короткому дереву.
 - Случайный выбор дерева-приёмника.

```
void merge(int 1, int r) {
  l = find_root(l); r = find_root(r);
  if (rand() % 1) p[l] = r;
  else p[r] = l;
}
```

Важно: что внутри операции слияния имеется операция поиска, которая заменяет аргументы значениями корней их деревьев!

Vi	0	1	2	3	4	5	6	7
р	0	1	0	3	4	3	6	1

- Определяем, каким деревьям принадлежат концы ребра (0,7).
- ▶ find_root(0) вернёт 0 как номер множества.
- find_root(7) сначала убедится, что в p[7] лежит 1 и вызовет find_root(1), после чего, возможно, заменит p[7] на 1.

- ▶ Концы ребра 0 принадлежат разным множествам \rightarrow сливаем множества, вызвав merge(0,7).
- Операция merge заменит свои аргументы, 0 и 7, корнями деревьев, которым принадлежат 0 и 7, то есть, 0 и 1 соответственно.
- В p[1] помещается 0 и деревья слиты.
- ▶ Обратите внимание на то, что в р[7] всё ещё находится 1!.

V_i	0	1	2	3	4	5	6	7
р	0	0	0	3	4	3	6	1

Следующее peбpo — (6,7). find_root(7) установит p[7]=0. Это же значение будет присвоено и p[6].

					•	•		
V_i	0	1	2	3	4	5	6	7
р	0	0	0	3	4	3	0	0

На следующем этапе ребро (3,4) окажется самым коротким.

Vi	0	1	2	3	4	5	6	7
р	0	0	0	3	3	3	0	0

Концы рёбер (4,5) и (0,6) принадлежат одним множествам. Ребро (4,7) подходит. Количество рёбер в множестве MST достигло 7=N-1. Конец.

V_i	0	1	2	3	4	5	6	7
р	0	0	0	3	0	3	0	0

Алгоритм Краскала: сложность

- ▶ Первая часть алгоритма сортировка рёбер. Сложность этой операции $O(|E|\log|E|)$.
- ▶ В 1984 году Tarjan доказал, используя функцию Аккермана, что операция поиска в DSU имеет сложность 0(1).
- ightharpoonup Сложность всего алгоритма Краскала и есть $O(|E|\log|E|)$.
- Для достаточно разреженных графов он обычно быстрее алгоритма Прима, для заполненных — наоборот.

Дерево кратчайших путей — SPT

■ Пусть задан граф G и вершина s. Дерево кратчайших путей для s — подграф, содержащий s и все вершины, достижимые из s, образующий направленное поддерево с корнем в s, где каждый путь от вершины s до вершины и является кратчайшим из всех возможных путей.

- Строит SPT (Shortest Path Tree).
- Определяет длины кратчайших путей от заданной вершины до остальных.
- Веса рёбер могут принимать произвольные значения (включая отрицательные).
- Обязательное условие: граф не должен содержать циклов с отрицательным весом.

- 1. В SPT заносится корневой узел (исток).
- 2. На каждом шаге в SPT добавляется одно ребро, которое формирует кратчайший путь из истока в не-SPT.
- 3. Вершины заносятся в SPT в порядке их расстояния по SPT от начальной вершины.

Жадная стратегия

- ightharpoonup Пусть найдено оптимальное множество U.
- ▶ Изначально оно состоит из вершины s
- lacktriangle Длины кратчайших путей до вершин множества обозначим, как $d(s,v),v\in U.$
- ▶ Среди вершин, смежных с U находим вершину $u, u \notin U$ такую, что достигается минимум

$$\min_{v \in U, u \notin U} d(s, v) + w(v, u)$$

▶ Обновляем множество $U: U \leftarrow U \cup \{u\}$ и повторяем операцию.

Используются переменные

- $lackbox{d}[u]$ длина кратчайшего пути из вершины s до вершины u
- $ightharpoonup \pi[u]$ предшественник u в кратчайшем пути от s
- w(u, v) вес пути из u в v (длина ребра, вес ребра, метрика пути)
- ightharpoonup Q приоритетная по значению d очередь узлов на обработку
- V множество вершин с уже известным финальным расстоянием

```
1: procedure DIJKSTRA(G : Graph; w : weights; s : Vertex)
        for all v \in V do
            d[v] \leftarrow \infty
 3:
            \pi[v] \leftarrow nil
    end for
 5:
 6:
    d[s] \leftarrow 0
 7: U \leftarrow \emptyset
 8: Q ← V
    while Q \neq \emptyset do
 9:
             u \leftarrow Q.extractMin()
10:
            U \leftarrow U \cup \{u\}
11:
             for all v \in Adj[u], v \notin U do
12:
                 Relax(u,v)
13:
14:
             end for
        end while
15:
16: end procedure
```

```
1: procedure Relax(u, v : Vertex)
2: if d[v] > d[u] + w(u, v) then
3: d[v] = d[u] + w(u, v)
4: \pi[v] \leftarrow u
5: end if
6: end procedure
```

- ▶ Операция Relax релаксация
- ▶ Два вида релаксации:
 - Релаксация ребра. Даёт ли продвижение по данному ребру новый кратчайший путь?
 - Релаксация пути. Даёт ли прохождение через данную вершину новый кратчайший путь, соединяющий две другие заданные вершины.

Исходный граф

v1 в SPT, v2, v3 и v4 — в накопителе.

Выбран узел v2. Корректируются расстояния от него. Релаксация: $(1 \to 4)$ заменён на $(1 \to 2 \to 4)$.

Выбран узел v3.

В накопитель отправляется v5. Релаксация: $(1 \to 2 \to 6)$ заменено на $(1 \to 2 \to 4 \to 6)$, $(1 \to 3)$ на $(1 \to 2 \to 4 \to 3)$

Алгоритм Дейкстры: сложность

- ▶ Имеется |V| 1 шаг.
- На каждом шаге корректировка расстояние до соседей и выбор минимального из накопителя.
- ightharpoonup Для насыщенных деревьев сложность алгоритма $O(V^2 \log V)$

Алгоритм Дейкстры: альтернативная реализация

- Для разреженных графов можно воспользоваться вариантом PFS.
- Используется очередь необработанных рёбер.
- Используется операция «удаление минимального»

Алгоритм Дейкстры: альтернативная реализация

```
function Dijkstra(C:AdjacencyMatrix, root:int): set of double
   Q: Set \ of \ Pair(double, int)
   const\ BIGINT \leftarrow 10^{100}
   D: vector\ of\ double;
   D.fill(C.size(), BIGINT); D[root] \leftarrow 0
   Q.insert(0, root)
   while not \ Q.empty() \ do
       top = Q.first()
                                                        ▷ Clear the fetched element
      Q.erase(top)
       v \leftarrow top.second
       d \leftarrow top.first
       for all v2 \in C[v] do
          cost \leftarrow v2.second.cost
          if (D[v2.first] > D[v] + cost) then
              if (D[v2.first] < BIGINT) then
                 Q.erase(Q.find(D[v2.first], v2.first)))
              end if
              D[v2.first] \leftarrow D[v] + cost
              Q.insert(D[v2.first], v2.first))
          end if
       end for
   end while
   return D
end function
```

Альтернативная реализация алгоритм Дейкстры: начальное состояние

$$root = 0$$

 $D = \{0, \infty, \infty, \infty, \infty, \infty\}$
 $Q = \{H_0\}$

Альтернативный алгоритм Дейкстры: после первой итерации

$$root = 0$$

$$D = \{0, \infty, \infty, \infty, 3, 2\}$$

$$Q = \{H_4, H_5\}$$

Альтернативный алгоритм Дейкстры: после второй итерации

$$root = 0$$

 $D = \{0, 5, \infty, \infty, 3, 2\}$
 $Q = \{H_1, H_5\}$

Альтернативный алгоритм Дейкстры: после третьей итерации

root = 0

$$D = \{0, 5, \infty, \infty, 3, 2\}$$

 $Q = \{H_5\}$

Альтернативный алгоритм Дейкстры: результат

$$root = 0 D = \{0, 5, 6, 4, 3, 2\} Q = \{\}$$

Альтернативный алгоритм Дейкстры: сложность

- ightharpoonup Требуется |E| операций.
- В каждой операции присутствует операция «удаление минимального» из приоритетной очереди максимального размера |V|.
- ightharpoonup Сложность алгоритма $|E|\log|V|$

Алгоритм Дейкстры: применения

Задача: для заданного узла построить таблицу маршрутов ко всем достижимым узлам.

- ▶ Маршрут к узлу есть путь кратчайшего веса.
- Модификация алгоритма Дейкстры позволяет построить таблицу предшественников для каждого из узлов.
- Имеется таблица предшественников строится таблица маршрутов.

Построим такие таблицы маршрутов узлов дерева:

Пункт назначения	Сосед
P_0	-
P_2	P_5
P_3	P ₅ P ₅
P_4	P_5
P_5	P_5

Таблица маршрутов для узла P_1

Алгоритм Дейкстры: применения

Остальные таблицы строятся аналогично.

Совокупная таблица маршрутов: недостижимые узлы отмечены знаком минус, узлы «откуда» перечислены в верхней строке, узлы «куда» — в соответствующем столбце.

Откуда	P_0	P_1	P_2	P_3	P_4	P_5
P_0	P_0	-	-	-	-	-
P_1	P_5	P_1	P_1	-	-	P_2
P_2	P_5	P_5	P_2	-	-	P_2
P_3	P_5	P_5	P_3	P_3	-	P_3
P_4	P_4	P_5	P_4	_	P_4	P_4
P_5	P_5	P_5	P_1	-	-	P_5

Таблица маршрутов для всех узлов

Множественный алгоритм Дейкстры

- Вычисление таблиц для каждого узла в отдельности имеет сложность $O(N^2 \log N)$.
- ▶ Вычисление таблиц для всех узлов требует времени $N \cdot O(N^2 \log N) = O(N^3 \log N)$
- ightharpoonup Существует более быстрый алгоритм, имеющий сложность $O(N^3)$.

Построение таблиц маршрутизации.

- Известен с 1962 года.
- Определяет кратчайшие пути во взвешенном графе, описанном матрицей смежности.
- ▶ В матрице смежности число, находящееся в *i*-й строке и *j*-м столбце есть вес связи между ними.
- ▶ Изменим представление и будем полагать, что в матрице смежности $C_{ij} = \infty$, если узлы i и j не являются соседями.
- На входе алгоритм принимает модифицированную матрицу смежности, а на выходе эта матрица будет содержать в элементе C_{ij} вес кратчайшего пути из P_i в P_j .
- Допускается наличие путей с отрицательным весом.
- Не должно быть циклов с отрицательной длиной.

Сам алгоритм может быть описан в рекурсивной форме как

$$D_{ij}^{(k)} = egin{cases} C_{ij}, & ext{если } k = 0, \ \min\left(D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)}
ight), & ext{если } k \geqslant 1 \end{cases}$$

Это — задача динамического программирования.

Этапы прохождения алгоритма для графа

Исходная матрица связей:

		P_0	P_1	P_2	P_3	P_4	P_5
	P_0	0	∞	∞	∞	3	2
	P_1	∞	0	∞	∞	∞	4
$D^{(0)} = $	P_2	∞	7	0	3	12	∞
	P_3	∞	∞	∞	0	∞	∞
	P_4	∞	∞	2	∞	0	∞
	P_5	∞	∞	4	2	5	2 4 ∞ ∞ 0

Перед началом алгоритма матрица наилучших соседей инициализируется следующим образом:

$$B_{ij}^{(0)} = egin{cases} j, & ext{если } C_{ij}
eq 0, \ ext{\it NIL}, & ext{если } C_{ij} = 0. \end{cases}$$

Для удобства записи будем обозначать в таблице отсутствие пути символом '-', а не символом NIL.

		P_0	P_1	P_2	P ₃	P_4	P_5
	P_0	0	-	-	-	4	5
	P_1	-	1	-	-	-	5
$B^{(0)} =$	P_2	-	1	2	3	4	-
	P_3	-	-	-	3	-	-
	P_4	-	-	-	-	4	-
	P_5	-	-	2	3	4	5

Начальная матрица $D^{(0)}$ содержит метрики всех наилучших маршрутов единичной длины, в матрица $B^{(0)}$ — наилучших соседей для этих маршрутов. Каждая следующая итерация алгоритма добавляет в матрицу $B^{(i+1)}$ элементы, связанные с маршрутами длины i, на единицу большей а в матрицу $D^{(i+1)}$ — метрики этих маршрутов.

После первой итерации матрицы не изменяются. После второй итерации получается следующее (жирным шрифтом помечены изменившиеся элементы таблиц):

		P_0	P_1	P_2	P_3	P_4	P_5
	P_0	0	∞	∞	∞	3	2
	P_1	∞	0	∞	∞	∞	4
$D^{(2)} =$	P_2	∞	7	0	3	12	11
	P_3	∞	∞	∞	0	∞	∞
	P_4	∞	∞	∞	∞	0	∞
	P_5	∞	∞	4	2	5	2 4 11 ∞ ∞ 0

		P_0	P_1	P_2	P_3	P_4	P_5
	P_0	0	-	-	-	4	5
	P_1	-	1	-	-	-	5
$B^{(2)} =$	P_2	-	1	2	3	4	1
	P_3	-	-	-	3	-	-
	P_4	-	-	-	-	4	-
	P_5	-	-	2	3	4	5

		P_0	P_1	P_2	P_3	P_4	P_5
	P_0	0	∞	∞	∞	3	2
4-3	P_1	∞	0	∞	∞	∞	4
$D^{(3)} =$	P_2	∞	7	0	3	12	11
	P_3	∞	∞	∞	0	∞	∞
	P_4	∞	∞	∞	∞	0	∞
	P_5	∞	11	4	2	5	$\begin{array}{c} P_5 \\ 2 \\ 4 \\ 11 \\ \infty \\ \infty \\ 0 \end{array}$

		P_0	P_1	P_2	P_3	P_4	P_5
	P_0	0	-	-	-	4	5
	P_1	-	1	-	-	-	5
$B^{(3)} =$	P_2	-	1	2	3	4	1
	P_3	-	-	-	3	-	-
	P_4	-	-	-	-	4	-
	P_5	-	2	2	3	4	5

Результат четвёртой и пятой итерации совпадает с результатом третьей.

Шестая, последняя итерация:

		P_0	P_1	P_2	<i>P</i> ₃ 4 6 3 0 ∞ 2	P_4	P_5
	P_0	0	13	6	4	3	2
	P_1	∞	0	8	6	9	4
$D^{(6)} = $	P_2	∞	7	0	3	12	11
	P_3	∞	∞	∞	0	∞	∞
	P_4	∞	∞	∞	∞	0	∞
	P_5	∞	11	4	2	5	0

		P_0	P_1	P_2	P_3	P_4	P_5
	P_0	0	5	5	5	4	5
	P_1	-	1	5	5	5	5
$B^{(6)} =$	P_2	-	1	2	3	4	1
	P_3	-	-	-	3	-	-
	P_4	-	-	-	-	4	-
	P_5	-	2	2	3	4	5

Спасибо за внимание.