【练习题 2 参考解答】

一、(本题满分18分,每小题3分)填空题.

1.
$$\lim_{x \to 0} (x \sin \frac{1}{x} + \frac{1}{x} \sin x) = \frac{1}{x}$$
.

- 2. 若 $x \to 0$ 时 $f(x) = 2^x + 3^x 2$ 与 $g(x) = kx(k \neq 0)$ 是等价无穷小,则 $k = \ln 6$.
- 3. 使三次代数方程 $x^3 3x + c = 0$ 在开区间 (0, 1) 内有唯一实根的 c 的最大取值区间为

- 5. 设 y = y(x) 由方程 $x = y^y$ 确定,则 $dy = \frac{dx}{x(1 + \ln y)}$.
- 6. 设 $f(x) = x^3 3x^2 9x$, 则函数 f(x) 单调减少且曲线 y = f(x) 向上凸的区间是

二、(本题满分18分,每小题3分)选择题.

【D】1. 设数列 $\{a_n\}$ 收敛于a, $\{b_n\}$ 收敛于b, $a \neq b$, 则数列 a_1 , b_1 , a_2 , b_2 , ..., a_n , b_n , ...

$$(A)$$
收敛于 a .

$$(B)$$
 收敛于 b . (C) 收敛于 $\frac{a+b}{2}$. (D) 发散.

【A】 2.
$$x = 0$$
 是函数 $f(x) = \frac{\sqrt{1+x} - \sqrt{1-x}}{(1-x)\sin x}$ 的

$$(A)$$
 可去间断点.

$$(A)$$
可去间断点. (B) 无穷间断点. (C) 跳跃间断点. (D) 连续点.

【B】3. 设
$$f(x) = \begin{cases} e^{2x} + b, & x < 0, \\ \sin(ax), & x \ge 0 \end{cases}$$
 在 $x = 0$ 处可导,则

(A)
$$a = 2, b = -1$$
. (B) $a = -2, b = 1$. (C) $a = -1, b = 2$. (D) $a = 1, b = -2$.

$$a = -2, b = 1.$$
 (C) $a = -$

(D)
$$a = 1, b = -2$$
.

【A】4. 设
$$f(x)$$
 可导, $g(x) = f(e^x)e^{-x}$,则 $g'(x) =$

(A)
$$f'(e^x) - e^{-x} f(e^x)$$
.

(B)
$$f'(e^x) + e^{-x} f(e^x)$$
.

$$(C) - f'(e^x) + e^{-x} f(e^x).$$

$$(D) - f'(e^x) - e^{-x} f(e^x).$$

【B】5. 设 f(x) 在 [a,b] 上连续,(a,b) 内可导,则有 $\xi \in (a,b)$ 使 $e^{f(b)} - e^{f(a)} =$

$$(A) e^{f'(\xi)} f'(\xi)(b-a).$$

(B)
$$e^{f(\xi)} f'(\xi)(b-a)$$
.

$$(C) e^{f(\xi)} [f(b) - f(a)].$$

(D)
$$e^{f'(\xi)}[f(b)-f(a)]$$
.

【C】6. 设 f(x) 在 $(-\infty, +\infty)$ 内二阶可导, f(x) = -f(-x) ,在 $(0, +\infty)$ 内 f'(x) > 0 , f''(x) > 0,则在 $(-\infty,0)$ 内

(A)
$$f'(x) < 0, f''(x) < 0$$
.

(B)
$$f'(x) < 0, f''(x) > 0$$
.

(C)
$$f'(x) > 0, f''(x) < 0$$
.

(D)
$$f'(x) > 0$$
, $f''(x) > 0$.

1. 求极限
$$\lim_{x\to 0} (\frac{1}{x^2} - \frac{1}{x\sin x})$$
.

[解] 原式=
$$\lim_{x\to 0} \frac{\sin x - x}{x^2 \sin x} = \lim_{x\to 0} \frac{\sin x - x}{x^3} = \lim_{x\to 0} \frac{\cos x - 1}{3x^2} = \lim_{x\to 0} \frac{-\sin x}{6x} = -\frac{1}{6}$$

2. 设有一质点 M 在 Oxy 坐标系中沿曲线轨道 $y=8x-x^2$ 运动,已知 M 的横坐标 x 随时间 t 变化的规律为 $x=t^{\frac{3}{2}}(t$ 的单位为秒, x 的单位为米). 求动质点 M 位于点 (1,7) 时沿 y 轴方向的运动速度.

[解] 当
$$x = 1$$
时,由 $x = t^{\frac{3}{2}}$ 知 $t = 1$,此时 $\frac{dx}{dt}\Big|_{t=1} = (t^{\frac{3}{2}})'\Big|_{t=1} = \frac{3}{2}$,又 $y = 8x - x^2$,于是
$$\frac{dy}{dt} = 8\frac{dx}{dt} - 2x\frac{dx}{dt} = (8 - 2x)\frac{dx}{dt},$$

从而 $\frac{dy}{dt}\Big|_{t=1} = (8-2\times1)\frac{3}{2} = 9 \ (m/s)$. 即动质点 M 位于点 (1,7) 时沿 y 轴方向的运动速度为 $9 \ (m/s)$.

3. 求抛物线 $y = ax^2 + bx + c$ (a > 0), 使其与曲线 $y = e^{2x}$ 在 x = 0 处相切,且在切点处有相同曲率.

[解] 由题设,a,b,c必须满足

$$\begin{cases} (ax^{2} + bx + c)\big|_{x=0} = e^{2x}\big|_{x=0}, \\ (ax^{2} + bx + c)'\big|_{x=0} = (e^{2x})'\big|_{x=0}, \Rightarrow \begin{cases} (ax^{2} + bx + c)\big|_{x=0} = e^{2x}\big|_{x=0}, \\ (2ax + b)\big|_{x=0} = (2e^{2x})\big|_{x=0}, \end{cases} \\ (2ax + b)\big|_{x=0} = (2e^{2x})\big|_{x=0}, \end{cases}$$

由此即得c=1,b=2,a=2,从而所求抛物线为 $y=2x^2+2x+1$.

4. 设
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = 2 - \ln t \\ y = \frac{1}{t} + 1 \end{cases}$$
 确定,求 $\frac{d^2 y}{dx^2} \Big|_{t=1}$.

[解]
$$\frac{dx}{dt} = -\frac{1}{t}, \quad \frac{dy}{dt} = -\frac{1}{t^2}, \quad \exists \mathbb{E}$$
$$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = \left(-\frac{1}{t^2}\right) / \left(-\frac{1}{t}\right) = \frac{1}{t}$$
$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx}\right) \cdot \frac{1}{dx} = \frac{d}{dt} \left(\frac{1}{t}\right) \cdot \frac{1}{(-1/t)} = \frac{1}{t}.$$

[解法 1] 要使
$$\lim_{x\to 0} \frac{\ln(1+x) - (ax+bx^2)}{x^2} = 2$$
, $\lim_{x\to 0} \frac{1}{1+x} - (a+2bx) = 2$ (*)

为此必须有
$$\lim_{x\to 0} \left[\frac{1}{1+x} - (a+2bx) \right] = 0$$
, 由此可得 $a = \lim_{x\to 0} \frac{1}{1+x} = 1$.

又 (*) 式的的充分条件为
$$\lim_{x\to 0} \frac{-\frac{1}{(1+x)^2} - 2b}{2} = 2,$$

由此可得
$$b = -2 - \lim_{x \to 0} \frac{1}{2(1+x)^2} = -\frac{5}{2}$$
.

[解法 2]
$$\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$$
, 于是

$$\lim_{x \to 0} \frac{\ln(1+x) - (ax + bx^2)}{x^2} = \lim_{x \to 0} \frac{x - \frac{x^2}{2} + o(x^2) - (ax + bx^2)}{x^2}$$

$$= \lim_{x \to 0} \frac{(1-a)x - (\frac{1}{2} + b)x^2 + o(x^2)}{x^2}$$
$$= \lim_{x \to 0} \left[\frac{1-a}{x} - (\frac{1}{2} + b) + \frac{o(x^2)}{x^2} \right],$$

从而由
$$\lim_{x\to 0} \frac{\ln(1+x)-(ax+bx^2)}{x^2} = 2$$
 得,
$$\begin{cases} 1-a=0, \\ -(\frac{1}{2}+b)=2, \end{cases} \Rightarrow \begin{cases} a=1, \\ b=-\frac{5}{2}. \end{cases}$$

四、(本题满分 10 分) 求函数 $f(x) = x^2 \ln x$ 的单调区间、凹凸区间、极值与拐点.

[解] $f(x) = x^2 \ln x$ 在定义域 $(0,+\infty)$ 内连续且二阶可导,

$$f'(x) = 2x \ln x + x = x(2 \ln x + 1), \ f''(x) = 2 \ln x + 3.$$

$$\diamondsuit f'(x) = 0 \ \mbox{\# } x = e^{-\frac{1}{2}}, \ \mbox{\psi} f''(x) = 0 \ \mbox{\# } x = e^{-\frac{3}{2}}.$$

当 $0 < x < e^{-1/2}$ 时,f'(x) < 0;当 $e^{-1/2} < x < +\infty$ 时,f'(x) > 0.从而,f(x)的单增 区间为 $[e^{-1/2},+\infty)$, 单减区间为 $(0,e^{-1/2}]$, $x=e^{-1/2}$ 为 f(x)的极小值点,极小值为 $f(e^{-1/2}) = -\frac{1}{2a}$.

当 $0 < x < e^{-3/2}$ 时,f''(x) < 0;当 $e^{-3/2} < x < +\infty$ 时,f''(x) > 0.从而,f(x)的上 凹区间为[$e^{-3/2}$,+ ∞),上凸区间为(0, $e^{-3/2}$],曲线 $y = f(x) = x^2 \ln x$ 的拐点为($e^{-3/2}$, $-\frac{3}{2}e^{-3}$).

五、(本题满分11分)

[**第(1)题**] 给定第一象限内的曲线 $y = \frac{1}{r^2} (x > 0)$. ① 求曲线上点 $(a, \frac{1}{r^2})$ 处的切

线方程;②a为何值时,①中的切线被两坐标轴所截线段的长度L最短,并求L的最 小值.

[**第(2)题**] 已知轮船在航行时的燃料费与其航行速度的立方成正比,当轮船以速度 v = 10 km/h 航行时,燃料费每小时 80 元,又知航行途中其他开销为 540 元/小时。问轮船 以多大速度航行最经济?

[**第(1)题**][**解**] ① 曲线上点
$$(a, \frac{1}{a^2})$$
处的切线斜率为

$$k = (\frac{1}{x^2})'\Big|_{x=0} = -\frac{2}{x^3}\Big|_{x=0} = -\frac{2}{a^3},$$

从而切线方程为 $y - \frac{1}{a^2} = -\frac{2}{a^3}(x - a)$,即 $y = -\frac{2}{a^3}x + \frac{3}{a^2}$.

② ①中的切线在 x 轴和 y 轴上的截距分别为 $X = \frac{3}{2}a$, $Y = \frac{3}{a^2}$, 从而

$$L = \sqrt{X^2 + Y^2} = 3\sqrt{\frac{a^2}{4} + \frac{1}{a^4}}.$$

解得 $a = \sqrt{2} \in (0, +\infty)$.

根据问题的实际意义, L 存在最小值且在 $(0,+\infty)$ 内取得,现在 L 只有一个驻点 $a=\sqrt{2}\in(0,+\infty)$,从而 L 在点 $a=\sqrt{2}$ 处取最小值,且最小值为 $\max_{a\in(0,+\infty)}L=\frac{3}{2}\sqrt{3}$.

[**第**(2) **题**] [解] 设航程为S,以速度v行驶,航行的总费用为y,则

$$y = (kv^{3} + 540)t = (\frac{2}{25}v^{2} + \frac{540}{v})S \qquad (v > 0)$$

$$\Leftrightarrow \frac{dy}{dv} = (\frac{4}{25}v - \frac{540}{v^{2}})S = 0, \quad \text{解得唯一驻点 } v = 15.$$

根据实际问题,最经济的航速必然存在,现在有效范围内仅求得唯一驻点v=15,故当航速为v=15(km/h)时,航行最经济.

六、(**本题满分 8 分**) 设 f(x) 在 [0,1] 上连续, (0,1) 内可导,且 $f(\frac{1}{2}) = \frac{1}{2}$, f(1) = 0 , 试证明:

(1) 存在
$$\xi \in (\frac{1}{2}, 1)$$
使 $f(\xi) = \frac{1}{2}\xi$; (2) 存在 $\eta \in (0, 1)$ 使 $f(\eta) + \eta f'(\eta) = \eta$.

[证明] (1) 令 $\varphi(x) = f(x) - \frac{x}{2}$, 由题设条件知 $\varphi(x)$ 在 $\left[\frac{1}{2},1\right]$ 上连续,又

$$\varphi(\frac{1}{2}) = f(\frac{1}{2}) - \frac{1}{4} = \frac{1}{4} > 0, \ \varphi(1) = f(1) - \frac{1}{2} = -\frac{1}{2} < 0,$$

从而由零点定理知,存在 $\xi \in (\frac{1}{2},1)$ 使 $\varphi(\xi) = 0$,即 $f(\xi) = \frac{1}{2}\xi$.)

(2) 令 $\psi(x) = xf(x) - \frac{x^2}{2}$, 由题设条件知 $\psi(x)$ 在[0,1]上连续,在(0,1) 内可导,且 $\psi'(x) = f(x) + xf'(x) - x,$

$$\nabla = \psi(0) = 0, \quad \psi(\xi) = \xi f(\xi) - \frac{\xi^2}{2} = \xi [f(\xi) - \frac{\xi}{2}] = 0,$$

从而由 Rolle 定理知,存在 $\eta \in (0,\xi) \subset (0,1)$ 使 $\psi'(\eta) = 0$, 即 $f(\eta) + \eta f'(\eta) = \eta$.