Chapter 15

Statistics

1. **Statement-1**: The variance of first n even natural numbers is $\frac{n^2-1}{4}$.

Statement-2: The sum of first n natural numbers is $\frac{n(n+1)}{2}$ and the sum of squares of first n natural numbers is $\frac{n(n+1)(2n+1)}{6}$.

[AIEEE-2009]

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is **not** a correct explanation for Statement-1
- (2) Statement-1 is true, Statement-2 is false
- (3) Statement-1 is false, Statement-2 is true
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- 2. If the mean deviation of the numbers 1, 1 + d, 1 + 2d,, 1 + 100d from their mean is 255, then the d is equal to [AIEEE-2009]
 - (1) 20.0
- (2) 10.1
- (3) 20.2
- (4) 10.0
- 3. For two data sets, each of size 5, the variances are given to be 4 and 5 and the corresponding means are given to be 2 and 4, respectively. The variance of the combined data set is

[AIEEE-2010]

- (1) $\frac{5}{2}$
- (2) $\frac{1}{2}$

(3) 6

- (4) $\frac{13}{2}$
- 4. A scientist is weighing each of 30 fishes. Their mean weight worked out is 30 gm and a standard deviation of 2 gm. Later, it was found that the measuring scale was misaligned and always under reported every fish weight by 2 gm. The correct mean and standard deviation (in gm) of fishes are respectively [AIEEE-2011]
 - (1) 28, 2
- (2) 28, 4
- (3) 32, 2
- (4) 32, 4

5. Let $x_1, x_2 ..., x_n$ be n observations, and let \overline{x} be their arithmetic mean and σ^2 be their variance.

Statement-1: Variance of $2x_1$, $2x_2$, ..., $2x_n$ is $4 \sigma^2$. **Statement-2:** Arithmetic mean of $2x_1$, $2x_2$, ..., $2x_n$ is $4 \overline{x}$. **[AIEEE-2012]**

- (1) Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for statement-1.
- (2) Statement-1 is true, statement-2 is true, statement-2 is **not** a correct explanation for statement-1.
- (3) Statement-1 is true, statement-2 is false.
- (4) Statement-1 is false, statement-2 is true.
- 6. All the students of a class performed poorly in Mathematics. The teacher decided to give grace marks of 10 to each of the students. Which of the following statistical measures will not change even after the grace marks were given?

[JEE (Main)-2013]

- (1) Mean
- (2) Median
- (3) Mode
- (4) Variance
- The variance of first 50 even natural numbers is [JEE (Main)-2014]
 - (1) 437
- (2) $\frac{437}{4}$
- (3) $\frac{833}{4}$
- (4) 833
- 8. The mean of the data set comprising of 16 observations is 16. If one of the observation valued 16 is deleted and three new observations valued 3, 4 and 5 are added to the data, then the mean of the resultant data, is [JEE (Main)-2015]
 - (1) 16.8
- (2) 16.0
- (3) 15.8
- (4) 14.0
- 9. If the standard deviation of the number 2, 3, *a* and 11 is 3.5, then which of the following is true?

[JEE (Main)-2016]

- $(1) \ 3a^2 32a + 84 = 0$
 - $(2)3a^2 34a + 91 = 0$
- (3) $3a^2 23a + 44 = 0$
- $(4)3a^2 26a + 55 = 0$

22. If for some $x \in R$, the frequency distribution of the marks obtained by 20 students in a test is :

Marks	2	3	5	7
Frequency	$(x + 1)^2$	2x – 5	x^2-3x	Х

Then the mean of the marks is

[JEE (Main)-2019]

- (1) 3.2
- (2) 3.0
- (3) 2.5
- (4) 2.8

23. If both the mean and the standard deviation of 50 observations x_1 , x_2 , ... x_{50} are equal to 16, then the mean of $(x_1 - 4)^2$, $(x_2 - 4)^2$, ... $(x_{50} - 4)^2$ is

[JEE (Main)-2019]

- (1) 380
- (2) 480
- (3) 400
- (4) 525

24. If the data x_1 , x_2 , ..., x_{10} is such that the mean of first four of these is 11, the mean of the remaining six is 16 and the sum of squares of all of these is 2,000; then the standard deviation of this data is

[JEE (Main)-2019]

- (1) 2√2
- (2) 4

(3) 2

(4) $\sqrt{2}$

25. The mean and the standard deviation (s.d.) of 10 observations are 20 and 2 respectively. Each of these 10 observations is multiplied by p and then reduced by q, where $p \neq 0$ and $q \neq 0$. If the new mean and new s.d. become half of their original values, then q is equal to [JEE (Main)-2020]

- (1) -10
- (2) -20
- (3) -5

(4) 10

26. The mean and variance of 20 observations are found to be 10 and 4, respectively. On rechecking, it was found that an observation 9 was incorrect and the correct observation was 11. Then the correct variance is [JEE (Main)-2020]

- (1) 3.98
- (2) 4.02
- (3) 3.99
- (4) 4.01

27. Let the observations $x_i(1 \le i \le 10)$ satisfy the

equations,
$$\sum_{i=1}^{10} (x_i - 5) = 10$$
 and $\sum_{i=1}^{10} (x_i - 5)^2 = 40$.

If μ and λ are the mean and the variance of the observations, $x_1-3,\,x_2-3,\,...,\,x_{10}-3$, then the ordered pair $(\mu,\,\lambda)$ is equal to **[JEE (Main)-2020]**

- (1) (6, 3)
- (2) (3,6)
- (3) (3, 3)
- (4) (6, 6)

28. Let $X = \{x \in N : 1 \le x \le 17\}$ and $Y \{ax + b : x \in X \text{ and } a, b \in R, a > 0\}$. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to [JEE (Main)-2020]

(1) 7

(2) -27

(3) 9

(4) -7

29. For the frequency distribution:

Variate (x): $x_1 \ x_2 \ x_3 ... \ x_{15}$

Frequency $(f): f_1 \quad f_2 \quad f_3 \dots f_{15}$

where $0 < x_1 < x_2 < x_3 < ... < x_{15} = 10$ and

 $\sum_{i=1}^{15} f_i > 0$, the standard deviation cannot be

[JEE (Main)-2020]

(1) 1

(2) 6

(3) 2

(4) 4

30. Let x_i (1 $\leq i \leq$ 10) be ten observations of a random

variable X. If
$$\sum_{i=1}^{10} (x_i - p) = 3$$
 and $\sum_{i=1}^{10} (x_i - p)^2 = 9$

where $0 \neq 0$ $p \in R$, then the standard deviation of these observations is **[JEE (Main)-2020]**

- (1) $\frac{7}{10}$
- (2) $\frac{9}{10}$
- (3) $\sqrt{\frac{3}{5}}$
- (4) $\frac{4}{5}$

31. The mean and variance of 8 observations are 10 and 13.5, respectively. If 6 of these observations are 5, 7, 10, 12, 14, 15, then the absolute difference of the remaining two observations is

[JEE (Main)-2020]

(1) 9

(2) 3

(3) 7

(4) 5

32. The mean and variance of 7 observations are 8 and 16, respectively. If five observations are 2, 4, 10, 12, 14, then the absolute difference of the remaining two observations is

[JEE (Main)-2020]

(1) 2

(2) 4

(3) 3

(4) 1

33. If the mean and the standard deviation of the data 3, 5, 7, *a*, *b* are 5 and 2 respectively, then a and b are the roots of the equation

[JEE (Main)-2020]

- (1) $x^2 20x + 18 = 0$ (2) $2x^2 20x + 19 = 0$
- (3) $x^2 10x + 18 = 0$ (4) $x^2 10x + 19 = 0$

	Let the mean and var distribution	iance of the frequency	55.	Consider the following frequency distribution :	
	$x: x_1 = 2 x_2 = 6 x_3$	$= 8 x_4 = 9$		Class: 0-6 6-12 12-18 18-24 24-30 Frequency: a b 12 9 5	
	f: 4 4 o			Trequency: u b 12 0 0	
	be 6 and 6.8 respectively 7, then the mean for the			If mean = $\frac{309}{22}$ and median = 14, then the value	ue
	(1) 5	[JEE (Main)-2021] (2) 4		$(a - b)^2$ is equal to [JEE (Main)-202	21]
			56.	If the mean and variance of the following data :	
	(3) $\frac{17}{3}$	(4) $\frac{16}{3}$		6, 10, 7, 13, a, 12, b, 12	
50.	observations were ca	dard deviation of 20 Iculated as 10 and 2.5		are 9 are $\frac{37}{4}$ respectively, then $(a - b)^2$ is equal	
		d that by mistake one data		[JEE (Main)-202	21]
		nstead of 35. If α and $\sqrt{\beta}$		(1) 32 (2) 12	
		ard deviation respectively		(3) 24 (4) 16	
	for correct data, then (α, β)	, ρ <i>)</i> is [JEE (Main)-2021]	57.	An online exam is attempted by 50 candidates of which 20 are boys. The average marks obtained	
	(1) (11, 25)	(2) (11, 26)		by boys is 12 with a variance 2. The variance	
	(3) (10.5, 25)	(4) (10.5, 26)		marks obtained by 30 girls is also 2. The average	
				marks of all 50 candidates is 15. If μ is the average	
51.		ce of four numbers 3, 7, x		marks of girls and σ^2 is the variance of marks 50 candidates, then μ + σ^2 is equal to	of
		10 respectively. Then the + 2x, 7 + 2y, x + y and x		[JEE (Main)-202	211
	mean or real mampers o				-
	– <i>y</i> is	[JEE (Main)-2021]	58.	If the mean deviation about the mean of the number	ers
52.	y isThe mean and variance of the section o	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8,	58.		
52.	y isThe mean and variance of the section o	[JEE (Main)-2021] of 7 observations are 8 and	58.	If the mean deviation about the mean of the number	is
52.	- y is The mean and variance of the respectively. If two of then the variance of the respectively.	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021]		If the mean deviation about the mean of the number $1, 2, 3, \ldots, n$, where n is odd, is $\frac{5(n+1)}{n}$, then n	is 22]
52.	 y is The mean and variance of the respectively. If two of then the variance of the respectively. 	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021]		If the mean deviation about the mean of the number $1, 2, 3, \ldots n$, where n is odd, is $\frac{5(n+1)}{n}$, then n equal to [JEE (Main)-202]. The mean of the numbers $a, b, 8, 5, 10$ is 6 at their variance is 6.8. If M is the mean deviation	r is 22] nd of
52.	- y is The mean and variance of 16 respectively. If two of then the variance of the respectively. (1) $\frac{536}{25}$	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021] (2) $\frac{134}{5}$		If the mean deviation about the mean of the number $1, 2, 3, \ldots n$, where n is odd, is $\frac{5(n+1)}{n}$, then n equal to [JEE (Main)-202.] The mean of the numbers $a, b, 8, 5, 10$ is 6 and	r is 22] nd of
52.	- y is The mean and variance of the respectively. If two of then the variance of the respectively.	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021]		If the mean deviation about the mean of the number $1, 2, 3, \ldots n$, where n is odd, is $\frac{5(n+1)}{n}$, then n equal to [JEE (Main)-202]. The mean of the numbers $a, b, 8, 5, 10$ is 6 at their variance is 6.8. If M is the mean deviation	r is 22] nd of
	- y is The mean and variance of 16 respectively. If two of then the variance of the respectively. If $\frac{536}{25}$ (3) $\frac{112}{5}$	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021] (2) $\frac{134}{5}$		If the mean deviation about the mean of the number $1, 2, 3, \ldots n$, where n is odd, is $\frac{5(n+1)}{n}$, then n equal to [JEE (Main)-202]. The mean of the numbers $a, b, 8, 5, 10$ is 6 at their variance is 6.8. If M is the mean deviation the numbers about the mean, then $25 M$ is equal to	r is 22] nd of
	- y is The mean and variance of 16 respectively. If two of then the variance of the respectively. If $\frac{536}{25}$ (3) $\frac{112}{5}$ The mean of 6 distinct of variance is 10.25. If 4 or	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021] (2) $\frac{134}{5}$ (4) $\frac{92}{5}$ observations is 6.5 and their at of 6 observations are 2, maining two observations		If the mean deviation about the mean of the number $1, 2, 3, \ldots n$, where n is odd, is $\frac{5(n+1)}{n}$, then n equal to [JEE (Main)-202]. The mean of the numbers $a, b, 8, 5, 10$ is 6 at their variance is 6.8. If M is the mean deviation the numbers about the mean, then $25 M$ is equal to (1) 60 (2) 55	nd of to:
	The mean and variance of the respectively. If two of then the variance of the respectively. If $\frac{536}{25}$ (3) $\frac{112}{5}$ The mean of 6 distinct of variance is 10.25. If 4 or 4, 5 and 7, then the regare:	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021] (2) $\frac{134}{5}$ (4) $\frac{92}{5}$ oservations is 6.5 and their at of 6 observations are 2, maining two observations [JEE (Main)-2021]		If the mean deviation about the mean of the number $1, 2, 3, \ldots n$, where n is odd, is $\frac{5(n+1)}{n}$, then n equal to [JEE (Main)-202]. The mean of the numbers $a, b, 8, 5, 10$ is 6 at their variance is 6.8. If M is the mean deviation the numbers about the mean, then $25 M$ is equal to (1) 60 (2) 55 (3) 50 (4) 45	n is 22] nd of to:
	The mean and variance of the respectively. If two of then the variance of the respectively. If $\frac{536}{25}$ (3) $\frac{112}{5}$ The mean of 6 distinct of variance is 10.25. If 4 or 4, 5 and 7, then the reference: (1) 1, 20	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021] (2) $\frac{134}{5}$ (4) $\frac{92}{5}$ observations is 6.5 and their at of 6 observations are 2, maining two observations [JEE (Main)-2021] (2) 10, 11	59.	If the mean deviation about the mean of the number $1, 2, 3, \ldots n$, where n is odd, is $\frac{5(n+1)}{n}$, then n equal to [JEE (Main)-202]. The mean of the numbers $a, b, 8, 5, 10$ is 6 at their variance is 6.8. If M is the mean deviation the numbers about the mean, then $25 M$ is equal to (1) 60 (2) 55 (3) 50 (4) 45 [JEE (Main)-202]. The mean and standard deviation of 50 observation are 15 and 2 respectively. It was found that one	n is nd of to:
53.	The mean and variance of the respectively. If two of then the variance of the respectively. If $\frac{536}{25}$ (3) $\frac{112}{5}$ The mean of 6 distinct of variance is 10.25. If 4 or 4, 5 and 7, then the respectively.	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021] (2) $\frac{134}{5}$ (4) $\frac{92}{5}$ observations is 6.5 and their at of 6 observations are 2, maining two observations [JEE (Main)-2021] (2) 10, 11 (4) 8, 13	59.	If the mean deviation about the mean of the number $1, 2, 3, \ldots n$, where n is odd, is $\frac{5(n+1)}{n}$, then n equal to [JEE (Main)-202]. The mean of the numbers $a, b, 8, 5, 10$ is 6 at their variance is 6.8. If M is the mean deviation the numbers about the mean, then $25 M$ is equal to (1) 60 (2) 55 (3) 50 (4) 45 [JEE (Main)-202]. The mean and standard deviation of 50 observation are 15 and 2 respectively. It was found that or incorrect observation was taken such that the	n is nd of to:
	The mean and variance of the respectively. If two of then the variance of the respectively. If two of then the variance of the respectively. If two of then the variance of the respectively. If two of the respectively. If the mean of 6 distinct of variance is 10.25. If 4 or 4, 5 and 7, then the respectively. If the mean and variance of the respectively.	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021] (2) $\frac{134}{5}$ (4) $\frac{92}{5}$ oservations is 6.5 and their at of 6 observations are 2, maining two observations [JEE (Main)-2021] (2) 10, 11 (4) 8, 13 of six observations 7, 10,	59.	If the mean deviation about the mean of the number $1, 2, 3, \ldots n$, where n is odd, is $\frac{5(n+1)}{n}$, then n equal to [JEE (Main)-202]. The mean of the numbers $a, b, 8, 5, 10$ is 6 at their variance is 6.8. If M is the mean deviation the numbers about the mean, then $25 M$ is equal to (1) 60 (2) 55 (3) 50 (4) 45 [JEE (Main)-202]. The mean and standard deviation of 50 observation are 15 and 2 respectively. It was found that of incorrect observation was taken such that the such of correct and incorrect observations is 70. If the	nd of to:
53.	The mean and variance of the respectively. If two of then the variance of the respectively. If two of then the variance of the respectively. If two of the respectively. If the respectively.	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021] (2) $\frac{134}{5}$ (4) $\frac{92}{5}$ oservations is 6.5 and their at of 6 observations are 2, maining two observations [JEE (Main)-2021] (2) 10, 11 (4) 8, 13 of six observations 7, 10, $\frac{20}{3}$, respectively, then the	59.	If the mean deviation about the mean of the number $1, 2, 3, \ldots n$, where n is odd, is $\frac{5(n+1)}{n}$, then n equal to [JEE (Main)-202]. The mean of the numbers $a, b, 8, 5, 10$ is 6 at their variance is 6.8. If M is the mean deviation the numbers about the mean, then $25 M$ is equal to (1) 60 (2) 55 (3) 50 (4) 45 [JEE (Main)-202]. The mean and standard deviation of 50 observation are 15 and 2 respectively. It was found that or incorrect observation was taken such that the	nd of to:
53.	The mean and variance of the respectively. If two of then the variance of the respectively. If two of then the variance of the respectively. If two of the respectively. If the respective respectively. If the respective respectively. If the respective respectively. If the re	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021] (2) $\frac{134}{5}$ (4) $\frac{92}{5}$ observations is 6.5 and their at of 6 observations are 2, maining two observations [JEE (Main)-2021] (2) 10, 11 (4) 8, 13 of six observations 7, 10, $\frac{20}{3}$, respectively, then the to [JEE (Main)-2021]	59.	If the mean deviation about the mean of the number $1, 2, 3, \ldots n$, where n is odd, is $\frac{5(n+1)}{n}$, then n equal to [JEE (Main)-202]. The mean of the numbers $a, b, 8, 5, 10$ is 6 at their variance is 6.8. If M is the mean deviation the numbers about the mean, then $25 M$ is equal to (1) 60 (2) 55 (3) 50 (4) 45 [JEE (Main)-202]. The mean and standard deviation of 50 observation are 15 and 2 respectively. It was found that or incorrect observation was taken such that the sur of correct and incorrect observations is 70. If the correct mean is 16, then the correct variance is equal to : [JEE (Main)-202].	nd of to:
53.	The mean and variance of the respectively. If two of then the variance of the respectively. If two of then the variance of the respectively. If two of the respectively. If the respectively.	[JEE (Main)-2021] of 7 observations are 8 and observations are 6 and 8, emaining 5 observations is [JEE (Main)-2021] (2) $\frac{134}{5}$ (4) $\frac{92}{5}$ oservations is 6.5 and their at of 6 observations are 2, maining two observations [JEE (Main)-2021] (2) 10, 11 (4) 8, 13 of six observations 7, 10, $\frac{20}{3}$, respectively, then the	59.	If the mean deviation about the mean of the number $1, 2, 3, \ldots n$, where n is odd, is $\frac{5(n+1)}{n}$, then n equal to [JEE (Main)-202]. The mean of the numbers $a, b, 8, 5, 10$ is 6 at their variance is 6.8. If M is the mean deviation the numbers about the mean, then $25 M$ is equal to (1) 60 (2) 55 (3) 50 (4) 45 [JEE (Main)-202]. The mean and standard deviation of 50 observation are 15 and 2 respectively. It was found that or incorrect observation was taken such that the sur of correct and incorrect observations is 70. If the correct mean is 16, then the correct variance is equal to $\frac{1}{n} = \frac{1}{n} $	nd of to:

Statistics

1. Answer (3)

Statement (2) is true.

$$\operatorname{var} x = \frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2$$

$$= \frac{4 n (n+1) (2n+1)}{6n} - (n+1)^2$$

$$= \frac{2}{3} (n+1) (2n+1) - (n+1)^2$$

$$= \frac{(n+1)}{3} \{4n+2-3n-3\}$$

$$=\frac{(n+1)(n-1)}{3}$$

$$=\frac{n^2-1}{3}$$

∴ Statement (1) is false.

Statement (2) is true.

2. Answer (2)

$$\overline{x} = \frac{1 + (1 + d) + (1 + 2d) + \dots (1 + 100d)}{101}$$

$$\overline{x} = \frac{101 + d(1 + 2 + 3 + \dots 100)}{101}$$

$$\overline{x} = \frac{101 + d \times \frac{100 \times 101}{2}}{101}$$

$$\overline{x} = 1 + 50d$$

Mean deviation

$$=\frac{|1+50d-1|+|1+50d-1-d|+.....|1+50d-1-100d|}{101}$$

$$= \frac{50d + 49d + 48d + \dots + d + 0 + d + 2d + \dots + 50d}{101}$$

$$= \frac{2 \times d \times \left(\frac{50 \times 51}{2}\right)}{101}$$

$$\Rightarrow \frac{50 \times 51 \times d}{101} = 255$$

$$\Rightarrow$$
 $d = 10.1$

3. Answer (2)

$$E(X^2) - (E(X))^2 = 4$$

 $\therefore E(X^2) = 4 + 4 = 8$

$$\sum X_i^2 = 40$$

$$E(Y^2) - (E(Y))^2 = 5$$

$$E(Y^2) = 5 + 16 = 21$$

$$\therefore \quad \sum Y_i^2 = 105$$

$$\sum X_i = 10, \sum Y_i = 20$$

$$\therefore \sum (X_i + Y_i) = 30$$

$$\sum (X_i^2 + Y_i^2) = 145$$

$$\therefore \text{ Variance(combined data)} = \frac{145}{10} - 9 = \frac{55}{10} = \frac{11}{2}$$

4. Answer (3)

Since weight of each fish is measured 2 gm lesser

But standard deviation will remain unaffected as each data has been decreased by a constant.

- 5. Answer (3)
- 6. Answer (4)

With increase in data, mean will also increase by the same, hence variance will remain unchanged. N

$$\Rightarrow \sigma^2 = \frac{2^2 + 4^2 + \dots + 100^2}{50} - \left(\frac{2 + 4 + \dots + 100}{50}\right)^2$$

$$= \frac{4(1^2 + 2^2 + 3^2 + \dots + 50^2)}{50} - (51)^2$$

$$= 4\left(\frac{50 \times 51 \times 101}{50 \times 6}\right) - (51)^2$$

$$= 3434 - 2601$$

$$\Rightarrow \sigma^2 = 833$$

Mean = 16

New sum = 256 - 16 + 3 + 4 + 5 = 252

Mean =
$$\frac{252}{18}$$
 = 14

9. Answer (1)

$$Var = \sigma^2 = \frac{\sum x_1^2}{n} - \left(\overline{x}\right)^2$$

Standard Deviation =

$$\sqrt{\frac{2^2+3^2+a^2+11^2}{4}} - \left(\frac{2+3+a+11}{4}\right)^2 = 3.5$$

$$\Rightarrow \frac{134 + a^2}{4} - \left(\frac{16 + a}{4}\right)^2 = (3.5)^2$$

$$\frac{4(134+a^2)}{16} - \frac{(16^2+a^2+32a)}{16} = (3.5)^2$$

$$536 + 4a^2 - 256 - a^2 - 32a = 196$$

 $3a^2 - 32a + 84 = 0$ 10. Answer (3)

Standard deviation of $x_i - 5$ is

Standard deviation of
$$x_i - 5$$
 is
$$\sigma = \sqrt{\frac{\sum_{i=1}^{9} (x_i - 5)^2}{9} - \left(\frac{\sum_{i=1}^{9} (x_i - 5)}{9}\right)^2}$$

$$\Rightarrow \sigma = \sqrt{5-1} = 2$$

As, standard deviation remains constant if observations are added/subtracted by a fixed quantity.

So, σ of x_i is 2

$$\Rightarrow 18 = \frac{\sum x_i^2}{5} - \left(150\right)^2$$

$$\Rightarrow \sum x_i^2 = 112590$$

$$V_{\text{New}} = \frac{112590 + (156)^2}{6} - \left(\frac{750 + 156}{6}\right)^2$$
$$= 22821 - 22801$$
$$= 20$$

12. Answer (3)

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}$$

$$\sigma^{2} = \frac{1}{n} A - \frac{1}{n^{2}} B^{2} \qquad \dots (i)$$

$$\therefore \sum_{i=1}^{n} (x_i + 1)^2 = 9n$$

$$\Rightarrow A + n + 2B = 9n \Rightarrow A + 2B = 8n \qquad ...(ii)$$

$$\therefore \sum_{i=1}^{n} (x_i - 1)^2 = 5n$$

$$\Rightarrow$$
 A + n - 2B = 5n \Rightarrow A - 2B = 4n ...(iii)

From (ii) and (iii), A = 6n. B = n

$$\Rightarrow \sigma^2 = \frac{1}{n} \times 6n - \frac{1}{n^2} \times n^2 = 6 - 1 = 5$$

 $\Rightarrow \sigma = \sqrt{5}$ 13. Answer (1)

$$x_1 + x_2 + x_3 + x_5 = 25$$

 $x_1 + x_2 + x_3 = 1 + 3 + 8 = 12$

$$\Rightarrow x_4 + x_5 = 25 - 12 = 13 \qquad ...(1)$$

$$\sum_{i=1}^{5} x_i^2$$

$$= 5 \times \sum_{i=1}^{5} x_i^2 = 5(25 + 9.2)$$

$$= 125 + 46 = 171$$

$$\Rightarrow (1)^2 + (3)^2 + (8)^2 + x_4^2 + x_5^2 = 171$$

$$\Rightarrow x_4^2 + x_5^2 = 97$$
 ...(2)

$$\therefore$$
 2₄ $x_5 = 13^2 - 97 = 72 \Rightarrow $x_4x_5 = 36$...(3)$

(1) and (3)
$$\Rightarrow x_4 : x_5 = \frac{4}{9} \text{ or } \frac{9}{4}$$

$$\sum_{i=1}^{5} x_i^2$$

$$\sum_{i=1}^{5} -(10)^2 = 3^2 = 9 \Rightarrow \sum_{i=1}^{5} x_i^2 = 545$$

$$\sum_{i=1}^{5} x_i^2$$

$$\frac{1}{5} - (10)^2 = 3^2 = 9 \Rightarrow \sum_{i=1}^{5} x_i^2 = 545$$

$$\Rightarrow \sum_{i=1}^{6} x_i^2 = 545 + (-50)^2 = 3045$$

$$\sum_{i=1}^{6} x_i^2 \left(\sum_{i=1}^{6} x_i\right)^2$$

Variance =
$$\frac{\sum_{i=1}^{6} x_i^2}{6} - \left(\frac{\sum_{i=1}^{6} x_i}{6}\right)^2$$

= $\frac{3045}{6} - 0 = 507.5$

Outcomes are
$$\left(\frac{1}{2}-d\right)$$
, $\left(\frac{1}{2}-d\right)$, ..., 10 times,

$$\frac{1}{2}, \frac{1}{2}, \dots$$
, 10 times, $\frac{1}{2} + d, \frac{1}{2} + d, \dots$, 10 times

Mean =
$$\frac{1}{30} \left(\frac{1}{2} \times 30 \right) = \frac{1}{2}$$

$$\sigma^2 = \frac{1}{20} \sum x_i^2 - (\overline{x})^2$$

$$= \frac{1}{30} \left[\left(\frac{1}{2} - d \right)^2 \times 10 + \left(\frac{1}{2} \right)^2 \times 10 + \left(\frac{1}{2} + d \right)^2 \times 10 \right] - \frac{1}{4}$$

$$\Rightarrow \frac{4}{3} = \frac{1}{30} \left[30 \times \frac{1}{4} + 20d^2 \right] - \frac{1}{4}$$

$$\Rightarrow \frac{4}{3} = \frac{1}{4} + \frac{2}{3}d^2 - \frac{1}{4}$$

$$\Rightarrow d^2 = 2 \Rightarrow |d| = \sqrt{2}$$

$$\Rightarrow$$
 Option (1) is correct.

Given,
$$\sum (x_i - 30) = 50$$

 $\sum x_i - 50(30) = 50$

$$\sum x_i - 50(30) = 50$$

$$\Rightarrow \sum x_i - 1550$$

$$\Rightarrow \sum x_i = 1550$$

Mean,
$$\overline{x} = \frac{\sum x_i}{N}$$

$$= \frac{1550}{50} = 31$$

$$\Rightarrow x_1 + x_2 = 9$$
 ...(i)

$$\sum x^2$$

 $\frac{x_1 + x_2 + 3 + 4 + 4}{2} = 4$

Variance =
$$\frac{\sum x_i^2}{N} - (\overline{x})^2$$

$$5 \cdot 20 = \frac{9 + 16 + 16 + x_1^2 + x_2^2}{5} - 16$$

$$(21 \cdot 20)5 = 41 + x_1^2 + x_2^2$$

 $x_1^2 + x_2^2 = 65$

From (i) and (ii);
$$x_1 = 8, x_2 = 1$$

$$|x_1 - x_2| = 7$$
18. Answer (3)

Let the remaining numbers are
$$x$$
 and y .

Mean
$$(\overline{x}) = \frac{\sum x_i}{N} = \frac{2+4+10+12+14+x+y}{7} = 8$$

$$\Rightarrow x + y = 14$$
 ...(i)

Variance
$$(-2) - \sum_{i} x_i^2$$
 $(\overline{x})^2 - 1$

Variance
$$(\sigma^2) = \frac{\sum x_i^2}{N} - (\bar{x})^2 = 16$$

$$\Rightarrow \frac{2^2 + 4^2 + 10^2 + 12^2 + 14^2 + x^2 + y^2}{7} - (8)^2 = 16$$
$$\Rightarrow x^2 + y^2 = 100 \quad ...(ii)$$

From (i) and (ii),

$$(x, y) = (6, 8) \text{ or } (8, 6)$$

 $xy = 48$

$$\overline{x} = \frac{41 + 45 + 54 + 57 + 43 + x}{6} = 48$$

$$x + 240 = 288$$

 $x = 48$

$$-\frac{1}{2} \left[(48-41)^2 + (48-45)^2 + (48-54)^2 \right]$$

$$\sigma^{2} = \frac{1}{6} \begin{bmatrix} (48 - 41)^{2} + (48 - 45)^{2} + (48 - 54)^{2} \\ + (48 - 57)^{2} + (48 - 43)^{2} + (48 - 48)^{2} \end{bmatrix}$$

6
[+(48-57)²+(48-43)²+(48-48)

$$=\frac{1}{6}(49+9+36+81+25)$$

$$=\frac{200}{6}=\frac{100}{3}$$

∴
$$\sigma^2 = 5$$
(given)

...(i)

Also,

$$\sigma^{2} = \frac{\left(\frac{k}{4} + 1\right)^{2} + \left(\frac{k}{4}\right)^{2} + \left(\frac{k}{4} - 1\right)^{2} + \left(\frac{3k}{4}\right)^{2}}{4} \quad ...(ii)$$

From (i) and (ii),

$$\frac{\frac{12k^2}{16} + 2}{4} = 5$$

$$\Rightarrow \frac{12k^2}{16} = 18$$

$$\Rightarrow k^2 = 24$$
$$\Rightarrow k = 2\sqrt{6}$$

21. Answer (1)

Mean =
$$\frac{\sum x_i}{n} = \frac{x + y + 300}{10} = 42 \Rightarrow x + y = 120$$

Median =
$$\frac{T_5 + T_6}{2}$$
 = 35 = $\frac{34 + x}{2}$ $\Rightarrow x = 36 \& y = 84$

Hence,
$$\frac{y}{y} = \frac{84}{36} = \frac{7}{3}$$

Number of students

$$\Rightarrow$$
 $(x + 1)^2 + (2x - 5) + (x^2 - 3x) + x = 20$

$$\Rightarrow$$
 $(x + 1)^2 + (2x - 5) + (x^2 - 3x) + x = 20$

$$\Rightarrow (x + 1)^{-} + (2x - 3) + (x^{-} - 3x) + x - 20$$

$$\Rightarrow 2x^2 + 2x - 4 = 20$$

$$x^2 + x - 12 = 0$$

$$(x + 4) (x - 3) = 0$$

$$x = 3$$

Average marks =
$$\frac{32+3+21}{20} = \frac{56}{20} = 2.8$$

$$16^2 = \frac{x_1^2 + x_2^2 \dots x_{50}^2}{50} - 16^2$$

$$2(16)^2 50 = x_1^2 + x_2^2 + \dots x_{50}^2$$

Required mean

50

$$= \frac{(x_1 - 4)^2 + (x_2 - 4)^2 + ...(x_{50} - 4)^2}{50}$$

$$= \frac{16^2 (100) + 4^2 (50) - 8 (16 \times 50)}{50}$$

$$= 16^{2}(2) + 16 - 8(16)$$
$$= 400$$

24. Answer (3)

$$\frac{x_1 + x_2 + x_3 + x_4}{4} = 11 \text{ and } x_1 + x_2 + x_3 + x_4 = 44$$

$$\frac{x_5 + x_6 + \dots + x_{10}}{6} = 16 \implies x_5 + x_6 + \dots + x_{10} = 96$$

$$x_1^2 + x_2^2 + ... + x_{10}^2 = 2000$$

$$\sigma^{2} = \frac{\sum x_{i}^{2}}{N} - (\bar{x})^{2}$$
$$= \frac{2000}{10} - \left(\frac{140}{10}\right)^{2} = 4$$

$$\Rightarrow \sigma = 2$$

$$\mu = 20, \sigma^2 = 2$$

and
$$p\mu - q = \frac{20}{2}$$
 \Rightarrow $20p - q = 10$

and also

$$|p|\sigma^2 = |p|.2 = 1 \Rightarrow p = \pm \frac{1}{2}$$

if
$$p = \frac{1}{2}$$
 \Rightarrow $q = 0$ (rejected)

&
$$p = -\frac{1}{2}$$
 $\Rightarrow q = -20$

Now Actual Mean =
$$\frac{200 + 11 - 9}{20} = \frac{202}{20}$$

:. Actual variance =
$$\frac{2080 - 81 + 121}{20} - \left(\frac{202}{20}\right)^2$$

$$106 - (10.1)^2 = 106 - 102.01 = 3.99$$

$$Let (x_i - 5) = y_i$$

So
$$\frac{1}{y} = \frac{\sum y_i}{10} = \frac{10}{10} = 1$$

and
$$Var(y) = \frac{\sum y_i^2}{10} - (\bar{y})^2 = 3$$

Now mean of
$$(x_i - 3) = (y_i + 2)$$
 is $\overline{y} + 2$, which is 3.

$$\vec{x} = \frac{\sum_{r=1}^{17} r}{17} = \frac{17 \times 18}{17 \times 2} = 9$$

$$\vec{y} = a\vec{x} + b = 17 \Rightarrow 9a + b = 17 \dots (1)$$

$$Var(x) = \frac{\sum_{r=1}^{17} r^2}{17} - (\overline{x})^2 = \frac{17 \times 18 \times 35}{17 \times 6} - 9^2 = 24$$

and
$$Var(y) = a^2.Var(x) \Rightarrow 24a^2 = 216 \Rightarrow a = 3$$
 ...(2)

hence
$$a + b = -7$$

$$\operatorname{var}(x) \le \left(\frac{b-a}{2}\right)^2$$

$$\Rightarrow$$
 var(x) < $\left(\frac{10-0}{2}\right)^2$

$$\Rightarrow$$
 var(x) < 25

Clearly standard deviation cann't be 6.

So S.D. =
$$\sqrt{\frac{\sum (x_i - p)^2}{n}} - \left(\frac{\sum x_i - p}{n}\right)^2$$

= $\sqrt{\frac{9}{10} - \frac{9}{100}} = \sqrt{\frac{90 - 9}{100}} = \frac{9}{10}$

31. Answer (3)

32. Answer (1)

Let the two remaining observations be x and y.

$$\vec{x} = 10 = \frac{5 + 7 + 10 + 12 + 14 + 15 + x + y}{8}$$

$$\Rightarrow x + y = 17 \qquad ...(1)$$

$$\rightarrow$$
 7 7 7 ...(1)
25 + 49 + 100 + 144

$$\therefore \text{ var}(x) = 13.5 = \frac{+196 + 225 + x^2 + y^2}{8} - (10)^2$$

$$\Rightarrow$$
 x² + y² = 169 ...(2) From (1) and (2)

$$(x, y) = (12, 5) \text{ or } (5, 12)$$

So $|x - y| = 7$

Let two remaining observations are x, y

So
$$\overline{x} = \frac{2+4+10+12+14+x+y}{7} = 8$$
 (given)
 $\Rightarrow x + y = 14$...(1)

Now also
$$\sigma^2 = \frac{\sum x_i^2}{N} - \left(\frac{\sum x_i}{N}\right)^2 = 16$$
 (given)

$$=\frac{4+16+100+144+196+x^2+y^2}{7}-64=16$$

$$\Rightarrow 460 + x^2 + y^2 = (16 + 64) \times 7$$

$$\Rightarrow x^2 + y^2 = 100$$
 ...(2)

Now
$$(x + y)^2 = x^2 + y^2 + 2xy \Rightarrow xy = 48 \dots(3)$$

Now $(x - y)^2 = (x + y)^2 - 4xy = 196 - 192 = 4$
 $\Rightarrow x - y = 2 \Rightarrow |x - y| = 2$

 \Rightarrow ab = 19

Mean =
$$\frac{3+5+7+a+b}{5} = 5 \Rightarrow a+b = 10$$

$$Mean = \frac{10}{5} = 3 \Rightarrow a + b = 10$$

Variance =
$$\frac{3^2 + 5^2 + 7^2 + a^2 + b^2}{5} - (5)^2 = 4$$

⇒
$$a^2 + b^2 = 62$$

⇒ $(a + b)^2 = 3ab = 62$

$$\Rightarrow (a + b)^2 - 2ab = 62$$

So a and b are the roots of the equation $x^2 - 10x + 19 = 0$

Standard deviation =
$$\sqrt{\frac{2}{N}} - \left(\frac{2}{N}\right)$$

$$= \sqrt{\frac{\sum (x_i - a)^2}{N}} - \left(\frac{\sum (x_i - a)}{N}\right)^2$$
$$= \sqrt{\frac{na}{n} - \left(\frac{n}{n}\right)^2}$$

$$=\sqrt[n]{a-1}$$

As
$$\sigma^2 = \frac{\sum x_i^2}{N} - (\overline{x})^2$$

$$\therefore 10 = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4}$$

 $\Rightarrow 10 = \frac{1^2 + 2^2 + \dots n^2}{n} - \left(\frac{n(n+1)}{2n}\right)^2$

Also, $16 = \frac{2^2 + 4^2 + ...(2m)^2}{m} - (m+1)^2$

$$\Rightarrow 16 = \frac{2(m+1)(2m+1)}{3} - (m+1)^2$$
$$\Rightarrow m^2 = 49$$

From (1) & (2);

36.

$$\frac{x+y+64}{8}=10$$

$$\Rightarrow x + y = 16 \qquad \dots (1)$$

Also
$$25 = \frac{\sum x_i^2}{8} - 100$$

$$\Rightarrow \Sigma x_i^2 = 1000$$

$$x^2 + y^2 = 148 \qquad ...(2)$$

$$\Rightarrow$$
 xy = 54

Variance
$$= \frac{\sum_{i=1}^{11} b_i^2}{11} - \left(\frac{\sum_{i=1}^{11} b_i}{11}\right)$$

$$= \frac{\sum_{r=0}^{10} (b_1 + rd)^2}{11} - \left(\frac{\sum_{r=0}^{10} (b_1 + rd)}{11}\right)^2$$

$$= \frac{11 b_1^2 + 2b_1 d \left(\frac{10 \times 11}{2}\right) + d^2 \left(\frac{10 \times 11 \times 21}{6}\right)}{11} - \frac{11 b_1^2 + 2b_1 d \left(\frac{10 \times 11}{2}\right) + d^2 \left(\frac{10 \times 11 \times 21}{6}\right)}{11}$$

$$\left(\frac{11b_1 + \frac{10 \times 11}{2}d}{11}\right)^2$$

$$= \left(b_1^2 + 10b_1d + 35d^2\right) - \left(b_1 + 5d\right)^2 = 10d^2$$

$$\therefore$$
 Variance = 90 \Rightarrow 10d² = 90

38.

$$\begin{array}{c|c} 25 & 35 \\ \hline x & 2 \end{array}$$

$$\begin{array}{c|c} 25 & 35 \\ \hline x & 2 \end{array}$$

 $\overline{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{30 + 70 + 25x}{4 + x} = 25$

Given $\sigma^2 = 50 = \frac{\sum f_i x_i^2}{\sum f_i} - (\overline{x})^2$

 \Rightarrow 675 = $\frac{2900 + 625x}{4 + x}$

 \Rightarrow 50x = 200

 \Rightarrow 50 = $\frac{450 + 625x + 2450}{4 + x} - 625$

$$= \frac{0.^{n}C_{0} + 2.^{n}C_{1} + 2^{2}.^{n}C_{2} + ... + 2^{n}.^{n}C_{n}}{{}^{n}C_{0} + {}^{n}C_{1} + ... + {}^{n}C_{n}}$$

For finding sum of numerator consider

$$(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + ... + {}^nC_nx^n$$

...(1)

Put $x = 2 \Rightarrow 3^n - 1 = 2.^nC_1 + 2^2.^nC_2 + ... + 2^n.^nC_n$

For sum of denominator

Put
$$x = 1$$
 in (1)

$$2^{n} = {}^{n}C_{0} + {}^{n}C_{1} + \dots {}^{n}C_{n}$$

$$z = c_0 \cdot c_1 \cdot ... \cdot c_n$$

$$\therefore \frac{3^{n}-1}{2^{n}} = \frac{728}{2^{n}} \Rightarrow 3^{n} = 729 \Rightarrow n = 6$$

$$\sigma^2 = \frac{9 + k^2}{10} - \left(\frac{9 + k}{10}\right)^2 < 10$$

$$10(k^2 + 9) - (k^2 + 18k + 81) < 1000$$

$$9k^2 - 18k + 9 < 1000$$

$$9(k-1)^2 < 1000$$

$$|k-1| < \frac{10\sqrt{10}}{3} = \frac{10 \times 3.162}{3} = 10.54$$

$$-10.54 < k - 1 < 10.54$$

$$-9.54 < k < 11.54$$

But $k \in \mathbb{N}$, $\therefore k_{max} = 11$

41.

$$\therefore \sum_{i=1}^{18} (x_i - \beta)^2 = 90$$

and
$$\sum_{i=1}^{18} (x_i - \beta) = \sum_{i=1}^{18} (x_i - \alpha) + 18(\alpha - \beta)$$

= 36 + 18
$$(\alpha - \beta)$$

So

$$Var(x_i) = Var(x_i - \beta) = \frac{\sum (x_i - \beta)^2}{18} - \left(\frac{\sum (x_i - \beta)}{18}\right)^2$$

$$\Rightarrow 1 = \frac{90}{18} - (2 + \alpha - \beta)^2$$

$$\Rightarrow$$
 2+ α - β = \pm 2

$$\Rightarrow \alpha - \beta = 0, -4$$

 \therefore α and β are distinct, so $|\alpha - \beta| = 4$

$$d^2 = \frac{a^2 + b^2 + c^2}{3} - \left(\frac{a + b + c}{3}\right)^2$$

$$\Rightarrow$$
 9d² = 3(a² + b² + c²) - 4b²

$$\Rightarrow$$
 b² = 3(a² + c²) - 9d²

43. Answer (5)

$$\overline{x_1} = 2$$
, $\overline{x_2} = 3$, $\overline{x} = \frac{3n + 20}{n + 10}$

$$d_1^2 = \left(\overline{x} - \overline{x_1}\right)^2 = \frac{n^2}{\left(n + 10\right)^2}, \ d_2^2 = \left(\overline{x} - \overline{x_2}\right)^2 = \frac{100}{\left(n + 10\right)^2}$$

$$\sigma_1^2 = 2, \ \sigma_2^2 = 1, \ \sigma^2 = \frac{17}{9}$$

$$(n_1 + n_2)\sigma^2 = n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)$$

$$(n+10) \times \frac{17}{9} = 10 \left(2 + \frac{n^2}{(n+10)^2}\right) + n \left(1 + \frac{100}{(n+10)^2}\right)$$

$$(n+10)17 = \left[20+n+\frac{10n^2+100n}{(n+10)^2}\right] \times 9$$

$$(8n - 10)(n+10)^2 = 90n^2 + 900n$$

$$(8n - 10)(n^2 + 20n + 100) = 90n^2 + 900n$$

 $(4n - 5)(n^2 + 20n + 100) = 45n^2 + 450n$

$$2n^3 + 15n^2 - 75n - 250 = 0$$

$$(n-5)(n+10)(2n+5) = 0$$

n = 5

44. Answer (68)

Let x_1, x_2, \dots, x_{3n} be the given numbers.

$$\overline{x} = \frac{6 \cdot 2n + 3 \cdot n}{2n} = 5$$

$$4 = \frac{\sum x_i^2}{3n} - 25 \implies \frac{\sum x_i^2}{3n} = 29$$
(i

Let $y_i = x_i + 1$ for $1 \le i \le 2n$ and $y_i = x_i - 1$ for $2n + 1 \le i \le 3n$

So $\overline{y} = \frac{\sum y_i}{3n} = \frac{\sum x_i + n}{3n} = 5 + \frac{1}{3} = \frac{16}{3}$

Now
$$k = \frac{\sum y_i^2}{3n} - \left(\frac{16}{3}\right)^2 = \frac{\sum x_i^2}{3n} + 2 \left(\frac{\sum_{i=1}^{2n} x_i}{3n}\right)^2$$

$$k = 29 + 8 - 2 + 1 - \frac{256}{9} = 36 - \frac{256}{9} = \frac{68}{9}$$

$$x_1 + x_2 + \dots + x_{25} = 25 \times 40 \dots (i)$$

Let age of new teacher is A

then
$$(x_1 + x_2 + \dots + x_{25}) - 60 + A = 25 \times 39$$

$$\Rightarrow$$
 A = 975 + 60 - 1000 = 35 years

Old mean =
$$\frac{\sum x_i}{n} = 0$$

New mean =
$$0 + b = 5$$

$$\Rightarrow$$
 b = 5

46. Answer (3)

Old S.D =
$$\sqrt{\frac{\sum (x_i - \bar{x})^2}{n}} = \sqrt{\frac{\sum a^2}{n}} = a$$

New S.D = old S.D =
$$a = 20$$

$$a^2 + b^2 = 425$$

47. Answer (164)

C.I.	\boldsymbol{X}_{i}	f_i	$x_i \cdot f_i$	C.F.
10-20	15	α	15α	α
20-30	25	110	2750	110 + α
30-40	35	54	1890	164 + α
40-50	45	30	1350	194 + α —
50-60	55	β	55β	$194 + \alpha + \beta$
		194+α+β	5990+15α+55β	median c

$$\alpha + \beta = 584 - 194$$

$$\Rightarrow \alpha + \beta = 390$$
 ...(1

and median =
$$40 + \left(\frac{194 + \alpha - 292}{30}\right) 10 = 45$$

$$\Rightarrow \alpha = 113$$
 ...(2

So
$$\beta$$
 = 277

So
$$\beta = 2/7$$

$$n_1 = 100, n_2 = 150,$$

 $(n_1 + n_2)\overline{x} = n_1\overline{x}_1 + n_2\overline{x}_2$

$$250 \times 15.6 = 100 \times 15 + 150 \times \overline{X}_2$$

$$\overline{x}_2 = 16$$
 $d_1^2 = (\overline{x} - \overline{x}_1)^2 = 0.36$

$$(n_1 + n_2)\sigma^2 = n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)$$

$$250 \times 13.44 = 100(9.36) + 150(\sigma_2^2 + 0.16)$$
$$\sigma_2^2 = 16$$

 $\sigma^2 = \frac{\sum x_i^2 f_i}{\sum f_i} - (\bar{x})^2 \implies \frac{16 + 144 + 64\alpha + 81\beta}{8 + \alpha + \beta} = 42.8$

$$\Rightarrow$$
 106 α + 191 β = 912 ...(i

from (i) and (ii), α = 5 and β = 2

Now, correct mean =
$$\frac{8 + 24 + 35 + 18}{15} = \frac{17}{3}$$

50. Answer (4)

$$\overline{x} = 10 \sqrt{\frac{\sum x_i^2}{20} - \left(\overline{x}\right)^2} = 2.5$$

$$\frac{\Sigma x_i^2}{20} - (10)^2 = 6.25 \Rightarrow \Sigma x_i^2 = 20 \times 106.25$$

$$\Sigma x_{i \text{ (actual)}}^2 = 2125 - 25^2 + 35^2$$

= 2125 + 600 = 2725

For
$$\overline{X}_{(actual)} \Rightarrow \frac{\Sigma X}{X} = 10 \Rightarrow \Sigma X = 200$$

$$\Sigma x_{\text{(actual)}} = 200 - 25 + 35 = 210$$

$$\overline{X}_{(actual)} = \frac{210}{20} = 10.5$$

S.D. =
$$\sqrt{\frac{2725}{20} - (10.5)^2} = \sqrt{136.25 - 110 \cdot 5} = \sqrt{26}$$

51. Answer (12)

Numbers 3, 7, x, y

$$\overline{x} = 5$$
, $\sigma^2 = 10$

$$5 = \frac{3+7+x+y}{4} \Rightarrow x+y = 10$$
 ...(i)

$$10 = \frac{1}{4}((3)^2 + (7)^2 + (x)^2 + (y)^2) - (5)^2$$

140 = 58 +
$$x^2$$
 + y^2 \Rightarrow x^2 + y^2 = 82 ...(ii)
($x + y$)² = x^2 + y^2 + 2 xy \Rightarrow 100 = 82 + 2 xy

$$xy = 9$$

$$y = \frac{9}{x} \Rightarrow x + \frac{9}{x} = 10 \Rightarrow \begin{array}{c} x = 1 \text{ or } 9 \\ y = 9 \text{ or } 1 \end{array}$$

Given
$$x > y \Rightarrow x = 9$$
, $y = 1$

Now,
$$3 + 2x$$
, $7 + 2y$, $x + y$, $x - y = 21$, 9, 10, 8

$$\overline{x} = \frac{21+9+10+8}{4} = \frac{48}{4} = 12$$

 $r_{\text{old}} = 0 \Rightarrow \angle r_{\text{old}} = 0$

$$\frac{\sum X_{\text{old}}^2}{7} - (\overline{X}_{\text{old}})^2 = 16 \Rightarrow \sum X_{\text{old}}^2 = 560$$

Sum of remaining 5 observation

$$= \sum X = 56 - 14 = 42$$

Sum of squares of 5 observation =
$$560 - 6^2 - 8^2$$

Variance =
$$\frac{460}{5} - \left(\frac{42}{5}\right)^2 = \frac{536}{25}$$

53. Answer (2)

Let the observations be 2, 4, 5, 7, x and y

$$\bar{x} = \frac{18 + x + y}{6} = 6.5 \implies x + y = 21$$
 ...(i)

and
$$\sigma^2 = \frac{2^2 + 4^2 + 5^2 + 7^2 + x^2 + y^2}{6} - (6.5)^2 = 10.25$$

$$\Rightarrow$$
 $x^2 + y^2 = 221$

From (i) and (ii), we get

$$(x, y) = (10, 11) \text{ or } (11, 10)$$

54. Answer (2)

Given
$$\frac{7+10+11+15+a+b}{6} = 10$$

$$\Rightarrow$$
 a + b = 17

$$\frac{7^2 + 10^2 + 11^2 + 15^2 + a^2 + b^2}{6} - 10^2 = \frac{20}{3}$$

$$\frac{4095 + a^2 + b^2}{6} = \frac{320}{3}$$

$$\Rightarrow$$
 a² + b² = 145 ...(ii)

$$a^2 + b^2 + 2ab = 289$$

$$\Rightarrow$$
 2ab = 144

$$(a - b)^2 = 145 - 144$$

$$\therefore$$
 (a – b) = 1

Class Interval

$$x_i$$
 f_i
 $x_i f_i$
 C.F.

 0 - 6
 3
 a
 3a
 a

 6 - 12
 9
 b
 9b
 a + b

 12 - 18
 15
 12
 180
 $12 + a + b$
 Median Class

 18 - 24
 21
 9
 189
 21 + a + b
 Class

 24 - 30
 27
 5
 135
 26 + a + b

$$\overline{x} = \frac{\sum x_i f_i}{\sum f_i} = \frac{3a + 9b + 504}{a + b + 26} = \frac{309}{22} \Rightarrow 81a + 37b = 1018$$

Median =
$$12 + \frac{a+b}{2} - (a+b)$$

 $12 \times 6 = 14 \Rightarrow a+b=18$

From (1) and (2), a = 8 and b = 10

56. Answer (4)

$$6 + 10 + 7 + 13 + 12 + 12 + (a + b) = 72$$

$$\Rightarrow$$
 a + b = 12

and

$$\frac{a^2+b^2+36+100+49+169+144+144}{8}=\frac{37}{4}$$

$$a^2 + b^2 + 642 - 648 = 74$$

$$a^2 + b^2 = 80$$

$$(a + b)^2 = a^2 + b^2 + 2ab \implies 2ab = 64$$
$$(a - b)^2 = a^2 + b^2 - 2ab = 16$$

57. Answer (25)

Sum of marks of boys $\sum X_B = 240$

Total marks $\Rightarrow \sum X = 750$

So, sum of marks of girls = $510 = \sum X_G$

$$\Rightarrow \frac{\sum X_B^2}{20} - (12)^2 = 2 \text{ and } \frac{\sum X_G^2}{30} - (\bar{X}_G)^2 = 2$$

$$\sum X_B^2 = 2920$$
 and $\frac{\sum X_B^2}{30} - (17)^2 = 2$

$$(\text{variance})_{\text{overall}} = \frac{\sum X_B^2 + X_G^2}{50} - (\bar{X})^2$$

$$= \frac{2920 + 8730}{50} - (15)^2 = 8$$

$$\mu = 17$$
, $\sigma^2 = 8$

Mean =
$$\frac{n\frac{(n+1)}{2}}{n} = \frac{n+1}{2}$$

M.D. =
$$\frac{2\left(\frac{n-1}{2} + \frac{n-3}{2} + \frac{n-5}{2} + \dots 0\right)}{n} = \frac{5(n+1)}{n}$$

$$\Rightarrow$$
 $((n-1)+(n-3)+(n-5)+...0)=5(n+1)$

$$\Rightarrow \left(\frac{n+1}{4}\right)\cdot (n-1)=5(n+1)$$

So,
$$n = 21$$

$$\therefore \quad \overline{x} = 6 = \frac{a+b+8+5+10}{5} \Rightarrow a+b=7 \qquad ...(i)$$

And
$$\sigma^2 = \frac{a^2 + b^2 + 8^2 + 5^2 + 10^2}{5} - 6^2 = 6.8$$

$$\Rightarrow a^2 + b^2 = 25 \qquad \dots (ii)$$

From (i) and (ii)
$$(a, b) = (3, 4)$$
 or $(4, 3)$

(1) and (1) (a, b) = (0, +) or (+, 0)

$$M = \frac{1}{5}(3+2+2+1+4) = \frac{12}{5}$$

$$\Rightarrow$$
 25 $M = 60$

60. Answer (3)

Given
$$\bar{x} = 15$$
 $\sigma = 2 \Rightarrow \sigma^2 = 4$

$$x_2 + x_2 + \dots + x_{50} = 15 \times 50 = 750$$

$$4 = \frac{x_1^2 + x_2^2 + \dots + x_{50}^2}{50} - 225$$

observation

then a + b = 70

and
$$16 = \frac{750 - b + a}{50}$$

$$\therefore$$
 $a - b = 50 \Rightarrow a = 60, b = 10$

.: Correct variance =
$$\frac{50 \times 229 + 60^2 - 10^2}{50} - 256$$

= 43

31. Answer (2)

Mean =
$$\frac{4+5+6+6+7+8+x+y}{8}$$
 = 6

$$x + y = 12$$
 ...(i

And variance

$$=\frac{2^2+1^2+0^2+0^2+1^2+2^2+(x-6)^2+(y-6)^2}{8}$$

$$=\frac{9}{4}$$

$$(x-6)^2 + (y-6)^2 = 8$$
 ...(ii)

From (i) and (ii)

$$x = 4$$
 and $y = 8$

$$x^4 + y^2 = 320$$

$$\frac{\sum x_i^2}{45} - 8^2 = 9 \Rightarrow \sum x_i^2 = 15 \times 73 = 1095$$

Let \overline{x}_c be corrected mean $\overline{x}_c = 9$

$$\Sigma x_0^2 = 1095 - 25 + 400 = 1470$$

Correct variance =
$$\frac{1470}{15} - (9)^2 = 98 - 81 = 17$$

63. Answer (0)

According to given data

$$\frac{\sum_{i=1}^{7} (x_i - 62)^2}{7} = 20$$

So for any x_i , $(x_i - 62)^2 \le 140$

$$\Rightarrow x_i > 50 \square i = 1, 2, 3, ...7$$

So no student is going to score less than 50.

64. Answer (2)

$$\sum_{i=1}^{5} x_i = 24$$

$$\frac{\sum_{i=1}^{5} x_i^2}{5} - \left(\frac{24}{5}\right)^2 = \frac{194}{25}$$

$$\Rightarrow \sum x_i^2 = 1154$$

$$\sum_{i=1}^4 x_i = 14$$

$$\Rightarrow x_5 = 10$$

$$a = \frac{\sum_{i=1}^{4} x_i^2}{4} - \frac{49}{4} = \frac{54 - 49}{4} = \frac{5}{4}$$

$$\Rightarrow x_{r} + 4a = 10 + 5 = 15$$

$$\xrightarrow{5}$$

Mean =
$$\frac{3+12+7+a+43-a}{5}$$
 = 13

Variance

65. Answer (1)

$$= \frac{9 + 49 + 144 + a^2 + (43 - a)^2}{5} - 13^2 \in \text{Natural number}$$

 $\frac{2a^2 - a + 1}{5} \in \text{Natural number}$

$$2a^2 - a + 1 = 5n$$
 $[n \in N]$

$$2a^2 - a + 1 - 5n = 0$$

$$D = 1 - 4(1 - 5n)2$$
$$= 40n - 7$$

So, *a* cannot be natural number

6. Answer (238)

$$\mu = \frac{\sum x_i}{40} = 30 \quad \Rightarrow \sum x_i = 1200$$

$$\sigma^2 = \frac{\sum x_i^2}{40} - (30)^2 = 25 \implies \sum x_i^2 = 37000$$

After omitting two wrong observations

$$\sum y_i = 1200 - 12 - 10 = 1178$$

$$\sum y_i^2 = 37000 - 144 - 100 = 36756$$

Now
$$\sigma^2 = \frac{\sum y_i^2}{38} - \left(\frac{\sum y_i}{38}\right)^2$$

$$=\frac{36756}{38} - \left(\frac{1178}{38}\right)^2 = -31^2$$

$$38\sigma^2 = 36756 - 36518 = 238$$

67. Answer (2)

Let the observations be 2, 4, 5, 7, x and y

$$\overline{x} = \frac{18 + x + y}{6} = 6.5 \implies x + y = 21$$
 ...(i)

$$x = \frac{1}{6} = 6.5 \Rightarrow x + y = 21 \dots (1)$$

and
$$\sigma^2 = \frac{2^2 + 4^2 + 5^2 + 7^2 + x^2 + y^2}{6} - (6.5)^2 = 10.25$$

$$\Rightarrow x^2 + y^2 = 221$$
 ...(ii)

From (i) and (ii), we get

$$(x, y) = (10, 11) \text{ or } (11, 10)$$

68 Answer (4)

Given
$$\sum_{i=1}^{20} x_i = 15 \implies \sum_{i=1}^{20} x_i = 300$$
 ...(1)

and
$$\sum_{i=1}^{20} x_i^2 - (\overline{x})^2 = 9 \implies \sum_{i=1}^{20} x_i^2 = 4680 \dots (2)$$

$$\Rightarrow \frac{\sum_{i=1}^{20} x_i^2 + 2\alpha \sum_{i=1}^{20} x_i + 20\alpha^2}{20} = 178$$

$$\Rightarrow$$
 4680 + 600 α + 20 α ² = 3560

$$\Rightarrow \alpha^2 + 30\alpha + 56 = 0$$

$$\Rightarrow \alpha^2 + 28\alpha + 2\alpha + 56 = 0$$

$$\Rightarrow$$
 $(\alpha + 28)(\alpha + 2) = 0$

$$\alpha_{\text{max}} = -2 \implies \alpha_{\text{max}}^2 = 4$$
.

69. Answer (4)

Median =
$$\frac{2k+12}{2} = k+6$$

Mean deviation =
$$\sum \frac{|x_i - M|}{n} = 6$$

$$\Rightarrow \frac{(k+3)+(k+1)+(k-1)+(6-k)+(6-k)}{+(10-k)+(15-k)+(18-k)}$$

$$\therefore \frac{58-2k}{8}=6$$

$$k = 5$$

Median =
$$\frac{2 \times 5 + 12}{2} = 11$$

Given
$$\frac{\sum_{i=1}^{10} x_i}{10} = 15$$
 ...(1) $\Rightarrow \sum_{i=1}^{10} x_i = 150$

and
$$\frac{\sum_{i=1}^{10} x_i^2}{10} - 15^2 = 15$$
 $\Rightarrow \sum_{i=1}^{10} x_i^2 = 2400$

Replacing 25 by 15 we get

$$\sum_{i=1}^{9} x_i + 25 = 150 \qquad \Rightarrow \sum_{i=1}^{9} x_i = 125$$

$$\therefore \quad \text{Correct mean } = \frac{\sum_{i=1}^{9} x_i + 15}{10} = \frac{125 + 15}{10} = 14$$

Similarly,
$$\sum_{i=1}^{2} x_i^2 = 2400 - 25^2 = 1775$$

$$\therefore \text{ correct variance } = \frac{\sum_{i=1}^{9} x_i^2 + 15^2}{10} - 14^2$$

$$= \frac{1775 + 225}{10} - 14^2 = 4$$

$$\therefore$$
 correct S.D = $\sqrt{4} = 2$