Module: MATH97095

Setter: Cotter Checker: Ham Editor: Wu

External: external

Date: June 1, 2022 Version: Draft Version

BSc, MSci and MSc EXAMINATIONS (MATHEMATICS)

May – June 2021

MATH97095 Finite Elements

The following information must be completed:

Is the paper suitable for resitting students from previous years: Yes, but only from 2020/21, because in years before that the mastery content was different.

Category A marks: available for basic, routine material (excluding any mastery question) (40 percent = 32/80 for 4 questions):

1a:7, 1b:7, 1c:6, 2a:6, 2b:6 [Total 32]

Category B marks: Further 25 percent of marks (20/80 for 4 questions) for demonstration of a sound knowledge of a good part of the material and the solution of straightforward problems and examples with reasonable accuracy (excluding mastery question):

4a:6, 4b:6, 2c:8 [Total 20]

Category C marks: the next 15 percent of the marks (= 12/80 for 4 questions) for parts of questions at the high 2:1 or 1st class level (excluding mastery question):

3a:6, 3c:6 [Total 12]

Category D marks: Most challenging 20 percent (16/80 marks for 4 questions) of the paper (excluding mastery question):

4c:8, 3b:8 [Total 16]

Signatures are required for the final version:

Setter's signature	Checker's signature	Editor's signature

TEMPORARY FRONT PAGE -

BSc, MSc and MSci EXAMINATIONS (MATHEMATICS)

May - June 2021

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science.

Finite Elements

Date: Wednesday, 5th May 2021

Time: 09:30 - 11:30

Time Allowed: 2 Hours for MATH96 paper; 2.5 Hours for MATH97 papers

This paper has 4 Questions (MATH96 version); 5 Questions (MATH97 versions).

Statistical tables will not be provided.

- Credit will be given for all questions attempted.
- Each question carries equal weight.

1. Consider the following finite element

- -K is a triangle,
- -P is the space of polynomials of degree ≤ 2 ,
- $-\ N$ is the set of six nodal variables given by evaluation at the vertices and edge centres of K.
- (a) Show that N determines P. (7 marks)
- (b) Give a C^0 geometric decomposition of this finite element, showing that it is C^0 . (7 marks)
- (c) Show that finite element spaces built from this element are not necessarily C^1 . (6 marks)

2. (a) Write a C^0 finite element variational problem for the following equation,

$$\epsilon u - \nabla^2 u = \exp(xy), \quad \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega,$$
 (1)

where $\Omega=\{x,y:0\leq x\leq 1,\, 0\leq y\leq 1\}$ with boundary $\partial\Omega$, and $0<\epsilon<1.$

(6 marks)

(b) Show that the bilinear form for the variational problem is continuous and coercive, and give bounds for the continuity and coercivity constants M and γ for this problem. (You may make use of the inequality $ab \leq \frac{a^2}{2} + \frac{b^2}{2}$.)

(6 marks)

(c) Assuming Ceá's Lemma and standard interpolation error estimates, derive an error bound for the H^1 error $\|u-u_h\|$ where u_h is the solution obtained by a linear Lagrange finite element approximation with maximum mesh size h, and u is the exact solution. What is happening to this error bound when ϵ is very small?

(8 marks)

Figure 1: Nodal variables diagram for Question 4.

- 3. In this question we consider the following finite element.
 - -K is a triangle.
 - -P are vector-valued linear functions (i.e. the x- and y- components of the function are both polynomials of degree ≤ 1).
 - The six nodal variables are the components of the function tangential to the edges at the locations indicated by the arrows in Figure 1.
 - (a) Describe how this element can be used to construct a finite element space V where the functions are continuous in the tangential component across each edge. Show that the finite element space does indeed have this property. (6 marks)
 - (b) Consider the quadratic Lagrange finite element space P_2 . Show that $\phi \in P_2 \implies \nabla \phi \in V$. (8 marks)
 - (c) Provide a formula for the weak curl $\nabla^{\perp} \cdot u = -\partial u_1/\partial y + \partial u_2/\partial x$ for a function $u = (u_1, u_2) \in V$, and show that it is indeed the weak curl. (6 marks)

4. Let Ω be a convex polygonal domain. Assume that you have a fast and efficient code for solving the variational problem: find $u \in V$ such that

$$\int_{\Omega} uv + \nabla u \cdot \nabla v \, \mathrm{d} \, x = F[v], \quad \forall v \in V, \tag{2}$$

for arbitrary linear functionals F[v], where V is a C^0 finite element space. However, you want to solve a different variational problem: find $u \in V$ such that

$$\int_{\Omega} a(x)uv + b(x)\nabla u \cdot \nabla v \, dx = G[v], \quad \forall v \in V,$$
(3)

where a(x) and b(x) are some known functions that satisfy $0 < \alpha < a(x) < \beta < \infty$, $0 < \alpha < b(x) < \beta < \infty$, for all $x \in \Omega$. One possible approach is to apply the following iterative scheme,

$$\int_{\Omega} u^{k+1}v + \nabla u^{k+1} \cdot \nabla v \, \mathrm{d} x = F_k[v],\tag{4}$$

where

$$F_k[v] = \int_{\Omega} u^k v + \nabla u^k \cdot \nabla v \, \mathrm{d} \, x + \mu \left(G[v] - \int_{\Omega} a(x) u^k v + b(x) \nabla u^k \cdot \nabla v \, \mathrm{d} \, x \right), \quad \forall v \in V, \quad (5)$$

where $\mu > 0$, for an iterative sequence u^0, u^1, u^2, \ldots of guesses at the solution. To implement this, we choose an initial guess u^0 , and then iteratively generate the sequence by solving (4) for u^{k+1} given u^k (which enables us to construct $F_k[v]$).

- (a) Show that if the sequence converges to a limit $u_k \to u^*$ as $k \to \infty$, then u^* solves Equation (3).
- (b) Defining the error $\epsilon^k = u u^k$, where u solves (3), derive a variational problem that relates ϵ^{k+1} to ϵ^k (without explicitly involving u^{k+1} or u^k). (6 marks)
- (c) Find a value of μ such that $\|\epsilon^{k+1}\|_{H^1} < \|\epsilon^k\|_{H^1}$, concluding that the iterative procedure converges. You may make use of the stability bound from Lax-Milgram, i.e. the solution u to a variational problem satisfies

$$||u||_{H^1} \le \frac{1}{\gamma} ||F||_{(H^1)^*},$$
 (6)

where γ is the coercivity constant of the bilinear form and F is the linear form appearing on the right hand side. (8 marks)

5. (a) Let V and Q be Hilbert spaces. Let $b:V\times Q\to\mathbb{R}$ be a bilinear form. We define the operator $B:V\to Q'$ as follows. For each $v\in V$, Bv is an element of Q', defined by

$$(Bv)[p] = b(v, p), \forall p \in Q. \tag{7}$$

For an operator $T:X\to Y'$, we define the transpose operator $X^*:Y\to X'$ as

$$(T^*y)[x] = (Tx)[y], \quad \forall x \in X, \ y \in Y. \tag{8}$$

Use these definitions to derive a formula for B^* .

(6 marks)

(b) Assuming the inf-sup condition

$$\inf_{0 \neq q \in Q} \sup_{0 \neq v \in V} \frac{b(v, q)}{\|v\|_V \|q\|_Q} \ge \beta,\tag{9}$$

for some $\beta > 0$, show that B^* is injective.

(7 marks)

(c) Let

$$b(u,p) = \int_{\Omega} p\nabla \cdot u \, \mathrm{d} x,\tag{10}$$

for some chosen problem domain Ω such that b satisfies the inf-sup condition for some given finite element spaces V_h and Q_h . We define the "weak gradient" operator $\tilde{\nabla}:Q_h\to V_h$ such that

$$\int_{\Omega} w \cdot \tilde{\nabla} p \, \mathrm{d} x = \int_{\Omega} p \nabla \cdot u \, \mathrm{d} x. \tag{11}$$

What does the inf-sup condition imply about the operator $\tilde{\nabla}$?

(7 marks)