SMAI-M20-L21: Introduction to Kernels

C. V. Jawahar

IIIT Hyderabad

September 28, 2020

Announcements

Quiz 1

- The same time as last week.
- The same set of topics we planned.

Course Evaluation

- We may have to minorly tweak the course evaluation models.
- Will be announced next week.

Class Review

We are given a problem of Multi-Class Classification with

- DDAG
- BHC
- One-vs-Rest.

Now we want to know:

- What is the computational advantages of each architecture?
- 4 How many nodes (binary classifiers) are required?
- When is the decision ambiguous?
- How do we compute the accuracy of the system from accuracy of the individual classifiers?

Recap:

- Supervised Learning: Formulation, Conceptual Issues, Concerns etc.
- Classifiers: (i) Nearest Neighbour, (ii) Notion of a Linear Classifier (iii) Perceptrons (iv) Bayesian Optimal Classifier (v) Logistic Regression (vi) Multiclass classification architectures
- Dimensionality Reduction and Applications: (i) Feature Selection and Extraction (ii) PCA (iii) LDA (iv) Eigen face
- Matrix Factorization and Applications: (i) SVD, (ii) Eigen
 Decomposition (iii) Matrix Completion (iv) LSI (v) Recommendations
- Other Topics:
 - Linear Regression
 - MLE
 - Gradient Descent
 - Stochastic and Batch GD
 - Eigen Vector based optimization
 - Neuron model
 - Loss Functions and Optimization

This Lecture:

- Introduction to Kernels
 - Kernel Trick: A method of solving nonlinear problems with linear algorithms.
 - Kernel Function: $\kappa(p,q) = \phi(p)^T \phi(q)$
- Extending the idea of Logistic Regression to Multi-Class
 - Classifiers output a score that a decision. Making fusion simpler.
 - Softmax: Find the maximum, normalize and probabilistic interpretation.

Questions? Comments?

Discussions Point - I

We had seen the Kernel $\kappa(\mathbf{p}, \mathbf{q}) = \phi(\mathbf{p})^T \phi(\mathbf{q})$ with This means: Is the feature map unique given the kernel?

$$\frac{P_{1}}{P_{2}} \longrightarrow \frac{P_{1}}{P_{2}} \longrightarrow \frac{P_{1}}{P_{1}}$$

$$\frac{P_{1}}{P_{2}} \longrightarrow \frac{P_{1}}{P_{2}}$$

$$\frac{P_{1}}{P_{2}} \longrightarrow \frac{P_{1}}{P_{1}}$$

$$\frac{P_{1}}{P_{2}} \longrightarrow \frac{P_{1}}{P_{1}}$$

$$\frac{P_{1}}{P_{2}} \longrightarrow \frac{P_{1}}{P_{1}}$$

$$\frac{P_{2}}{P_{1}} \longrightarrow \frac{P_{2}}{P_{1}}$$

Discussions Point -II

quadrah(|Kernel)

We now the $\phi()$ correspond to:

$$\kappa(\mathbf{p},\mathbf{q}) = (\mathbf{p}^T\mathbf{q})^2 \left(\text{homosene} \right)$$

What is the $\phi()$ correspond to:

$$\frac{\kappa(\mathbf{p},\mathbf{q}) = (\mathbf{p}^T\mathbf{q} + 1)^2}{2 \cdot 2 \cdot 2} \qquad (\text{Non } \mathbf{h} - 1)$$

(assume
$$\mathbf{p} \in R^2$$
)

Discussion Point - III

"Kernel Mabrix"

A kernel matrix \mathbf{K} is defined as a matrix with (i,j)th element as the kernel computed with the i th and j th sample. i.e.,

$$K_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$$

- What is the dimension of the Kernel Matrix?
- Is Kernel matrix square?
- Is Kernel matrix symmetric?
- Is Kernel matrix PSD?

K(P,2) =

What Next:? (next three)

- Winding up (i) Logistic Regression (ii) Multi-Class Classification and (iii) LDA
- SVMs and Kernels