

Modern IoT Technology

An Introduction to IoT

Evaluation

- Take part in class
- Tests
 - Regular test
 - Midterm
 - Final Exam

What is IoT?

- By computer scientist *Kevin Ashton* in 1999
- The Internet of Things (IoT) refers to a system of devices, interconnected with each other, equipped with computational capacity (smart objects), identifiable and enabled to transfer data over a network, without a required human interaction
- Smart object such as smart fridges and mobile phones, to objects spanning entire industries or even cities, such as smart agriculture and smart cities

Example of IoT

- Imagine when you enter your house, your car send signals to open garage door, turn on air condition/ heat system, lights, TV, Stove, etc. to find everything ready for you, making your life easier and save your money buy saving energy.
- Internet-Connected Bed to track your sleeping pattern and make your bed autoadjusts itself.
- Internet-Connected onesies to track your baby's respiration, pressure, moisture and temperature

Benefits of IoT

- Increased convenience: Devices can be programmed and controlled remotely.
- Energy efficiency: Smart thermostats or lighting systems
- Safety and security: IoT-enabled security systems and cameras, and smart locks
- Health monitoring: Smart wearables and devices
- Enhanced user experience: Devices can learn and adapt to users' preferences

Areas of use for IoT

Visions of IoT

Accelerate the ability and performance of the connectivity
Internet Protocol for Smart Object (IPSO) communities

Technologies that are related to *making things* smarter

Understanding the meaning of the data that is generated

Potential Applications

Smart Agricultuare

- Temperature and Humidity
- pH, EC
- Light intensity
- Pump controllers

Monitoring system based on AR/VR

Air Quality Monitoring

- Air quality monitoring program
 assists us in improving and
 developing air pollution control
 programs to reduce the effect of air
 pollution.
- PM2.5, PM10, CO2, CO

Smart Street Light

Autonomous Robots

Choosing between IoT hardware

- Categorized into four different factors:
 - Data acquisition
 - Data processing
 - Connectivity
 - And power management.

Data acquisition

- In the form of sensors
- Function to collect data in the environment to provide realtime results and/or feedback
- Detect and measure physical quantities such as humidity, pressure, speed, light, and temperature.

Data processing and storage

- Battery-powered devices: The simpler the design, the lower the power consumption and costs.
- Externally powered devices: reduces service latency but also conserves wireless backhaul bandwidth

Connectivity

- Wired communication is usually used for stationary devices and connected via the Ethernet, such as with smart buildings or home automation
- wireless communication: Wi-Fi, Bluetooth, WAN technologies (such as LoRa), NB-IoT, and cellular networks.
- methods of communication: serial and parallel

Connectivity

- With serial communication, data is transmitted one bit at a time over a singular communication line
 - Long distance, data rate is relatively low
 - Protocols such as the RS-232 or the RS-422
- In parallel communication, multiple bits are transmitted at the same time through multiple communication lines
- Distance is short and the data rate is high
- Protocol: IEEE, 1284, and PCI.

Power management

- Cloud computing: Letting the cloud handle processing and storage
- Sleep modes: configure the device to sleep and wake at certain times
- Power-efficient hardware: on the specifications of the microcontroller, sensor, or other peripherals
- Power management integrated circuits (PMICs): PMICs are chips that are used to manage the power consumption of a device
- Energy harvesting: solar panels; However, this would depend on the environment.

Connectivity

- Wired communication is usually used for stationary devices and connected via the Ethernet, such as with smart buildings or home automation
- wireless communication: Wi-Fi, Bluetooth, WAN technologies (such as LoRa), NB-IoT, and cellular networks.
- methods of communication: serial and parallel

INDUSTRIAL UNIVERSITY OF HOCHIMINH CITY

A high-level design flow for a smart lightbulb

A high-level design flow for a smart lightbulb

- Have a smart lightbulb that is able to detect a change to its state:
 On/Off
- communicates its ON status to the gateway
- Wi-Fi router
- Transmits the status to the AWS cloud
- Amazon Simple Notification Service (SNS)

Exercises

 Draw a diagram that illustrates the flow of a smart fridge alerting a user's laptop that it is currently empty

- Tools:
 - Draw.io and Lucidchart
 - Draw by hand
 - Microsoft Word and PowerPoint

Exercises

 Draw a diagram that illustrates a user's phone alerting another phone through AWS that it is lost

- Tools:
 - Draw.io and Lucidchart
 - Draw by hand
 - Microsoft Word and PowerPoint

A high-level design flow for AWS

- a smart device sending data to AWS IoT Core, which is a service that allows multiple IoT devices to connect at one time
- a lambda function route the messages accordingly
- The function runs analytical workloads before storing the data in Amazon S3 and sends some that require further processing to a downstream application to be reported on

A high-level design flow for AWS

https://aws.amazon.com/architecture/icons/

Defining systems and processes for smart objects

- Show how we can properly define flows to transfer information from one part of the system to another
- Ensuring that our use case's goals are met

Defining a problem

 Encounter different kinds of problems that require you to understand your environment and make appropriate decisions

I want to automate my home's lighting system to turn on from 9:00 to 18:00 and turn off/on every other hour when I am not at home

Creating the flow

Practical exercise

• Creating a mini weather station

31

Station (STA) Mode

The ESP32 connects to an existing WiFi network (the one created by

your wireless router)

• ESP32 obtains an IP address from the wireless router to which it is connected

Access Point (AP) Mode

- ESP32 sets up its own WiFi network and acts as a hub
- No more than five stations can connect to it at the same time

