ANALYSIS DUMP

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

From the beginning of 2016, I decided to cease all explicit crowdfunding for any of my materials on physics, math. I failed to raise any funds from previous crowdfunding efforts. I decided that if I was going to live in abundance, I must lose a scarcity attitude. I am committed to keeping all of my material **open-sourced**. I give all my stuff for free.

In the beginning of 2017, I received a very generous donation from a reader from Norway who found these notes useful, through PayPal. If you find these notes useful, feel free to donate directly and easily through PayPal, which won't go through a 3rd party such as indiegogo, kickstarter, patreon. Otherwise, under the open-source MIT license, feel free to copy, edit, paste, make your own versions, share, use as you wish.

gmail : ernestyalumni linkedin : ernestyalumni twitter : ernestyalumni

Contents

Part 1. Fourier Analysis

1. Fourier transform

References

Abstract. Everything about Analysis, real analysis, complex analysis, functional analysis, Fourier series, Fourier transforms, Fourier analysis

Part 1. Fourier Analysis

1. Fourier transform

cf. Ch. IX of Reed and Simon [1], from pp. 318

Definition 1 (Schwartz space). Showing Reed and Simon [1]'s notation and wikipedia's notation (that'll be used here), respectively

$$\mathcal{S}(\mathbb{R}^n) \equiv S(\mathbb{R}^n) =$$
 Schwartz space of C^{∞} functions of rapid decrease, i.e.

(1)
$$S(\mathbb{R}^n) = \{ f \in C^{\infty}(\mathbb{R}^n) | ||f||_{\alpha,\beta} < \infty, \, \forall \, \alpha, \beta \in \mathbb{Z}_+^n \}$$

where α, β are multiindices, $C^{\infty}(\mathbb{R}^n)$ is set of smooth functions from \mathbb{R}^n to \mathbb{C} , and

(2)
$$||f||_{\alpha,\beta} = \sup_{\mathbf{x} \in \mathbb{R}^n} |\mathbf{x}^{\alpha} D^{\beta} f(\mathbf{x})|$$

cf. wikipedia definition of Schwartz space

cf. IX.1 The Fourier transform on $S(\mathbb{R}^n)$ and $S'(\mathbb{R}^n)$, convolutions of Reed and Simon [1]

Definition 2. Suppose $f \in S(\mathbb{R}^n)$,

Fourier transform of f, \hat{f} , give by

(3)
$$\widehat{f}(\lambda) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i\mathbf{x}\cdot\lambda} f(\mathbf{x}) d\mathbf{x}$$

where $\mathbf{x} \cdot \lambda = \sum_{i=1}^{n} x_i \lambda_i$

Date: 20 Nov 2017.

Key words and phrases. Analysis, Functional Analysis.

Inverse Fourier transform of f, \check{f} ,

$$\check{f}(\lambda) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i\mathbf{x}\cdot\lambda} f(\mathbf{x}) d\mathbf{x}$$

Reed and Simon [1] mentions this notation and I will use it more here

$$\widehat{f} \equiv \mathcal{F} f$$

Standard multiindex notation:

$$\alpha = \langle \alpha_1, \dots \alpha_n \rangle$$

n-tuple of nonnegative integers, $\alpha \in \mathbb{Z}_+^n$ $I_+^n \equiv \text{collection of all multiindices}$

 $T_{+} = \text{concerion of an in}$ Define:

$$\begin{aligned} |\alpha| &:= \sum_{i=1}^n \alpha_i \\ \mathbf{x}^{\alpha} &:= x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n} \\ D^{\alpha} &:= \frac{\partial^{|n|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}} x^2 := \sum_{i=1}^n x_i^2 \end{aligned}$$

Lemma 1. $\hat{ }, \check{ } \equiv \mathcal{F}, \mathcal{F}^{-1}$ are cont. linear transformations of $S(\mathbb{R}^n)$ into $S(\mathbb{R}^n)$ Furthermore, if $\alpha, \beta \in I^n_+$, then

$$((i\lambda)^{\alpha}D^{\beta}\widehat{f})(\lambda) = D^{\alpha}(\widehat{(-ix)^{\beta}}f(x))$$

cf. (IX.1) of Reed and Simon [1].

Proof. ^= \mathcal{F} clearly linear (since \int linear),

Since

$$(\lambda^{\alpha}D^{\beta}\widehat{f})(\lambda) = \lambda^{\alpha}D^{\beta}\frac{1}{(2\pi)^{n/2}}\int_{\mathbb{R}^{n}}e^{-i\mathbf{x}\cdot\lambda}f(\mathbf{x})d\mathbf{x} = \frac{1}{(2\pi)^{n/2}}\int_{\mathbb{R}^{n}}\lambda^{a}(-i\mathbf{x})^{\beta}e^{-i\lambda\cdot\mathbf{x}}f(\mathbf{x})d\mathbf{x} =$$

$$= \frac{1}{(2\pi)^{n/2}}\int_{\mathbb{R}^{n}}\frac{1}{(-i)^{a}}(D_{x}^{a}e^{-i\lambda\cdot\mathbf{x}})(-i\mathbf{x})^{\beta}f(\mathbf{x})d\mathbf{x} = 0 + \frac{(-i)^{\alpha}}{(2\pi)^{n/2}}\int_{\mathbb{R}^{n}}e^{-i\lambda\cdot\mathbf{x}}D_{x}^{\alpha}((-i\mathbf{x})^{\beta}f(\mathbf{x}))d\mathbf{x}$$

Last step is just integration by parts and using given $||f||_{\alpha,\beta} < \infty$ property.

1

Conclude $\|\widehat{f}\|_{\alpha,\beta} = \sup_{\lambda} |\lambda^{\alpha}(D^{\beta}\widehat{f})(\lambda)| \le \frac{1}{(2\pi)^{n/2}} \int |D_{\mathbf{x}}^{\alpha}(\mathbf{x}^{\beta}f)| d\mathbf{x} < \infty.$

$$\mathcal{F}: S(\mathbb{R}^n) \to S(\mathbb{R}^n)$$

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

and

$$((i\lambda)^{\alpha}D^{\beta}\widehat{f})(\lambda) = D^{\alpha}(\widehat{(-ix)^{\beta}}f(x))$$

If k large enough, $\int (1+x^2)^{-k} d\mathbf{x} < \infty$ (Clearly $\int \frac{1}{(1+x^2)} = \arctan x \xrightarrow{\infty, -\infty} \frac{\pi}{2} - (-\frac{\pi}{2}) = \pi < \infty$), so

$$\|\widehat{f}\|_{\alpha,\beta} \leq \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \frac{(1+x^2)^{-k}}{(1+x^2)^{-k}} |D_x^{\alpha}(\mathbf{x}^{\beta}f)| d\mathbf{x} \leq \frac{1}{(2\pi)^{n/2}} (\int_{\mathbb{R}^n} (1+x^2)^{-k} d\mathbf{x}) \sup_{\mathbf{x}} |(1+x^2)^k D_x^{\alpha}(\mathbf{x}^{\beta}f)|$$

By Leibnitz rule, $(fg)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(n-k)}(\mathbf{x}) g^{(k)}(\mathbf{x}), \exists \text{ constants } c_j, \text{ multiindices } \alpha_j \beta_j \in I_+^n, \text{ s.t.}$

$$\|\widehat{f}\|_{\alpha,\beta} \le \sum_{i=1}^{M} c_i \|f\|_{\alpha_j,\beta_j}$$

where $||f||_{\alpha_j,\beta_j} = \sup_{\mathbf{x} \in \mathbb{R}^n} |\mathbf{x}^{\alpha} D^{\beta} f(\mathbf{x})|$, which we recall, was used.

Thus $\|\hat{f}\|_{\alpha,\beta}$ bounded, and by, as Reed and Simon [1] said, Thm. V.4, therefore cont. But I think that reference is incorrect. I looked up possible theorems online, and possibly it's,

since \widehat{f} bounded and has closed graph $(\lambda, \widehat{f}(\lambda))$, then f cont.

Likewise for \check{f}

cf. Thm. IX.1. of Reed and Simon (1980)[1]

Theorem 1 ((Fourier inverse thm.)). Fourier transform \mathcal{F} is linear, bicont., bijection: $\mathcal{F}: S(\mathbb{R}^n) \to S(\mathbb{R}^n)$, and $\mathcal{F}^{-1} = \check{}$.

Proof. Prove $\mathcal{F}\mathcal{F}^{-1}f = \mathcal{F}^{-1}\mathcal{F}f = f$ for f contained in dense set $C^{\infty}(\mathbb{R}^n)$.

Let C_{ϵ} be cube of volume $\left(\frac{2}{\epsilon}\right)^n$ centered at $0 \in \mathbb{R}^n$.

Choose ϵ small enough s.t. support of f is contained in C_{ϵ} .

Let $K_{\epsilon} := \{ \mathbf{k} \in \mathbb{R}^n | \forall k_i / \pi \epsilon \text{is an integer } \}$, then

$$f(x) = \sum_{\mathbf{k} \in K_c} ((\frac{1}{2}\epsilon)^{n/2} e^{i\mathbf{k} \cdot \mathbf{x}}, f) (\frac{1}{2}\epsilon)^{n/2} e^{-i\mathbf{k} \cdot \mathbf{x}}$$

where (\cdot, \cdot) is the inner product.

The expression immediately above for f(x) is just the Fourier series of f, which converges uniformly in C_{ϵ} , to f, since f cont. diff. (Thm. II.8 of Reed and Simon (1980) [1]). Recall this theorem says:

Suppose f(x) periodic of period 2π and is cont. diff. Then functions $\sum_{-M}^{M} c_n e^{inx} \xrightarrow{M \to \infty} f(x)$ uniformly converges.

(5)
$$f(x) = \sum_{\mathbf{k} \in K} \frac{\widehat{f}(\mathbf{k})e^{i\mathbf{k} \cdot \mathbf{x}}}{(2\pi)^{n/2}} (\pi \epsilon)^n$$

cf. (IX.2) of Reed and Simon (1980)[1].

Since \mathbb{R}^n is the disjoint union of cubes of volume $(\pi \epsilon)^n$ centered around pts. in K_{ϵ} , (indeed, $K_{\epsilon} = \{\mathbf{k} \in \mathbb{R}^n | k_i / \pi \epsilon \in \mathbb{Z} \ \forall i = 1\}$ 1, 2, ... n}) then

$$\sum_{\mathbf{k}\in K_{\epsilon}} \frac{\widehat{f}(\mathbf{k})e^{i\mathbf{k}\cdot\mathbf{x}}}{(2\pi)^{n/2}} (\pi\epsilon)^n$$

is just Riemann sum for integral of function

$$\widehat{f}(\mathbf{k})e^{i\mathbf{k}\cdot\mathbf{x}}/(2\pi)^{n/2}$$

By lemma, $\widehat{f}(\mathbf{k})e^{i\mathbf{k}\cdot\mathbf{x}} \in S(\mathbb{R}^n)$, so Riemann sums converge to integral. Thus

$$\mathcal{F}^{-1}\mathcal{F}f = f$$

[1] Michael Reed and Barry Simon. Functional Analysis (Methods of Modern Mathematical Physics, Vol. 1). Academic Press. 1980.