Laboratorio 1: Implementación de un Dado Electrónico con PIC12F683

Mariano Segura Chaves
Escuela de Ingeniería Eléctrica
Universidad de Costa Rica
C17416
mariano.segura@ucr.ac.cr

I. Introducción

El presente informe describe el desarrollo de un dado electrónico utilizando el microcontrolador PIC12F683. El proyecto incluye la implementación de un algoritmo de generación pseudoaleatoria para determinar un número entre 1 y 6, que es mostrado mediante un conjunto de LEDs. Se analiza el diseño del circuito, la programación del microcontrolador y la verificación de su funcionamiento mediante simulaciones y pruebas prácticas que se explican a continuación. A lo largo del laboratorio notamos la importancia de dimensionar bien los elementos del circuito de manera correcta para evitar tener que cambiar los mismos cuando estamos realizando las pruebas.

II. NOTA TEÓRICA

II-A. Microcontrolador PIC12F683

El **PIC12F683** es un microcontrolador de 8 bits de la familia PIC de Microchip. Es un dispositivo compacto, eficiente y versátil, utilizado en aplicaciones de control y automatización debido a su bajo consumo de energía y su capacidad de procesamiento.[1]

II-B. Características Generales

- Arquitectura: RISC de 8 bits.
- Frecuencia de operación: Hasta 20 MHz con oscilador externo.
- Memoria Flash: 2 KB.
- Memoria RAM: 128 bytes.
- Memoria EEPROM: 256 bytes.
- Voltaje de operación: 2.0V a 5.5V.
- Puertos de Entrada/Salida (I/O): 6 pines de propósito general.
- Conversor Analógico-Digital (ADC): 10 bits con 4 canales.
- Comparadores Analógicos: 1 comparador integrado.
- Módulo PWM: Soporte para modulación de ancho de pulso (PWM).
- Interrupciones: Soporte para interrupciones internas y externas.

- Modo Sleep: Bajo consumo de energía en estado de inactividad.
- Comunicación Serial: Soporte para USART, SPI e I²C.

II-C. Diagrama de Bloques

El diagrama de bloques del **PIC12F683** ilustra los principales módulos internos del microcontrolador:

Figura 1: Diagrama de bloques del Microcontrolador segun la hoja del fabricante

II-D. Diagrama de Pines

El **PIC12F683** viene en un encapsulado DIP de 8 pines, con la siguiente configuración:

II-E. Características Eléctricas

II-F. Periféricos Utilizados

1) Puertos de Entrada y Salida (GPIO): En este proyecto, se utilizan los siguientes pines de propósito general (GPIO):

Figura 2: Diagrama de pines del microcontrolador

Parámetro	Valor
Voltaje de operación	2.0V - 5.5V
Consumo en operación	1.8 mA @ 4 MHz
Corriente en estado de reposo	; 1 μA
Corriente máxima por pin I/O	25 mA

Tabla I: Características eléctricas del PIC12F683.

- GP0, GP1, GP2, GP4: Salidas para controlar los LEDs
- **GP5:** Entrada para leer el estado del botón.
- Oscilador interno: Configurado a 4 MHz para ejecutar las instrucciones con una temporización adecuada.
- 2) *Temporizadores:* El PIC12F683 cuenta con un temporizador interno, el cual es utilizado para generar retardos en la función delay_ms().
- 3) Registros Importantes: Algunos de los registros utilizados en este proyecto incluyen:
 - **TRISIO**: Configura los pines como entrada (1) o salida (0).
 - ANSEL: Controla el modo analógico/digital de los pines.
 - CMCON0: Desactiva el comparador interno.
 - **GPIO**: Controla el estado de los pines de salida.

El microcontrolador se programa mediante el compilador SDCC, utilizando el estándar de lenguaje C.

- 4) Componentes Electrónicos Complementarios: El circuito incluye los siguientes componentes:
 - PIC12F683 Microcontrolador principal.
 - LEDs (4 unidades) Indicadores visuales del número generado.
 - Resistencias de 50 Ω y 100 Ω Limitadores de corriente para los LEDs.
 - Botón pulsador Activador del dado.
 - \blacksquare Resistencia pull-down de 12 k Ω Garantiza un estado estable en el botón.
 - Fuente de alimentación de 5V.

Lista de Materiales y Costos:

Componente	Cantidad	Precio Unitario	Precio Total
PIC12F683[2]	1	\$1.91	\$1.91
LED[3]	4	\$1.5	\$6
Resistencia 56Ω[4]	3	\$0.05	\$0.15
Resistencia 100Ω[4]	1	\$0.05	\$0.05
Resistencia 12kΩ[4]	1	\$0.05	\$0.05
Botón	1	\$0.20	\$0.20
		Total	\$8.36

III. DESARROLLO Y ANÁLISIS

III-A. Diagrama del Circuito

A continuación, se presenta el diagrama esquemático del circuito implementado:

Figura 3: Circuito Simulado

Las resistencias se calcularon con un divisor de voltaje de manera que

$$Omh = \frac{5 - 2.4}{20mA} = 100\tag{1}$$

III-B. Código Fuente

Para el código se siguió el diagrama de flujo muy sencillo a continuación

Figura 4: Diagrama de flujo para montar el código

El siguiente código implementa la lógica del dado se encuentra tambien en el repositorio https://github.com/Mariano33158/C17416-LABO-DE-MICROS.git:

```
#include <pic14/pic12f683.h>
#define _XTAL_FREQ 4000000
#define LED0 GP0
#define LED1 GP1
#define LED2 GP2
#define LED4 GP4
#define BOTON GP5
```

1) Definiciones y Configuración:

'include < pic14/pic12f683.h > ': Incluye definiciones específicas del PIC12F683.

' $define_XTAL_FREQ4000000$ ': Define la frecuencia del oscilador (4 MHz).

Define LEDs y botón con macros para facilitar su uso:

- LEDs en pines GP0, GP1, GP2 y GP4.
- Botón en GP5.

2) Inicialización del Microcontrolador: Se explicará a continuación:

```
[language=C]
void initPIC(void) {
   TRISIO = 0b00100000;
   ANSEL = 0x00;
   CMCON0 = 0x07;
   GPIO = 0x00;
}
```

- 'TRISIO = 0b00100000': Configura GP5 como entrada (botón), el resto como salidas (LEDs).
- 'ANSEL = 0x00': Desactiva funciones analógicas.
- 'CMCON0 = 0x07': Desactiva el comparador analógico.
- 'GPIO = 0x00': Inicializa GPIO apagando todos los LEDs.
- 3) Función para Mostrar el Dado: Se explicará a continuación:

```
void mostrarDado(unsigned char numero) {
    GPIO = 0x00;
    switch (numero) {
        case 1: LED1 = 1; break;
        case 2: LED0 = 1; break;
        case 3: LED0 = 1; LED1 = 1; break;
        case 4: LED0 = 1; LED2 = 1; break;
        case 5: LED0 = 1; LED1 = 1; LED2 = 1;
        break;
        case 6: LED0 = 1; LED2 = 1; LED4 = 1;
        break;
}
```

- Apaga todos los LEDs con 'GPIO = 0x00'.
- Usa un 'switch' para encender LEDs según el número recibido.
- Simula patrones típicos de un dado con diferentes combinaciones de LEDs.
- 4) Función de Retraso: Se explicará a continuación:

```
void delay_ms(unsigned int tiempo) {
   unsigned int i, j;
   for (i = 0; i < tiempo; i++) {
      for (j = 0; j < 1000; j++) {
        __asm nop __endasm;
      }
   }
}</pre>
```

- Retraso aproximado de 1 ms por iteración.
- Bucle externo ejecuta 'tiempo' veces.
- Bucle interno ejecuta una instrucción NOP 1000 veces.

5) Función Principal: Se explicará a continuación:

```
void main(void) {
   initPIC();
   unsigned char dado = 0;
   unsigned char botonAnterior = 0;
   unsigned int contador = 0;

while (1) {
      contador++;
      delay_ms(1);

   unsigned char botonActual = BOTON;
   if (botonActual == 1 && botonAnterior == 0) {
      dado = (contador % 6) + 1;
      mostrarDado(dado);
   }
   botonAnterior = botonActual;
}
```

- Inicializa el microcontrolador con 'initPIC()'.
- Usa 'contador' para generar aleatoriedad.
- Detecta flanco ascendente del botón (de 0 a 1).
- Calcula el número aleatorio: $(contador \mod 6) + 1$.
- Muestra el resultado con 'mostrarDado()'.

6) Mejoras Potenciales:

- Utilizar la función estándar 'aelayms()' para mejor precisión.
- Añadir lógica antirrebote para el botón.
- Mejorar aleatoriedad con un generador más complejo si es necesario.

III-C. Análisis del Funcionamiento

El código implementa un contador que, al detectar la pulsación del botón, genera un número entre 1 y 6 basado en el residuo de la división del contador. La secuencia de LEDs encendidos representa el resultado de la tirada del dado.

Pruebas realizadas:

Figura 5: El circuito esperando que se toque el boton

1) El circuito en espera de que se toque el botón: Al estar configurado con una resistencia de pull up, vemos 5V en la entrada.

Figura 6: Prueba de en la que salió el numéro 2

2) Tirar una vez el dado: Acá como en el algoritmo salió el número 2, entonces el microcontrolador enciende su PINO que es el que enciende los 2 leds de la parte superior que representan la cara del 2 en un dado. Se puede ver como la sonda de voltaje marca que el voltaje es 2.41, que justamente para los leds amarillos que se esta utilizando NTE 3021 el umbral es 2.4[5] por lo que esta súper bien. Esto pasó por que se acaba de pulsar el botón, el voltaje en la sonda del botón esta en 5V porque esta pegado a una resistencia de Pull-up.

Figura 7: En este caso el numéro que arrojó el algoritmo fue

3) Tirar una segunda vez el dado: Entonces para este caso vemos como la sonda conectada al pin0 y al pin1 muestran el voltaje de umbral correspondiente para encender los LEDs.

Figura 8: Prueba 3

4) Muestra donde se saca un 6 que fue la tercera tirada: En esta se puede observar y que en las sondas se ve justamente el voltaje de umbral por lo que las resistencias están bien diseñadas, los valores al final que se intentó apegarse fue a valores de resistencias que tengan en la bodega que nos encendieran de manera correcta los leds como se requería.

IV. CONCLUSIONES

El proyecto permitió implementar una aplicación práctica de microcontroladores, combinando hardware y software para la simulación de un dado electrónico. Se logró un funcionamiento correcto con una visualización estable del número aleatorio generado.

Se complicó bastante lo que fue la parte de la instalación de SDCC porque al parecer había un conflicto de versiones entonces se tuvo que ir a buscar de manera web la versión más actualizada y ya con esté si nos permitía correr los script. Es importante recalcar que se tuvieron problemas con la opción de la función del delay, por lo que una recomendación a futuro es leer más detalladamente la documentación relacionada al microcontrolador, porque en este caso lo que se hizo fue hacer la función manualmente.

Una buena implementación a futuro es poner un delay y modificar la lógica para que los leds se mantengan encendidos por más tiempo e incluso para hacerlo más atractivo para el usuario que haya un delay digamos mientras se "tira el dadoz que en este delay todos los leds parpadeen hasta que ya cuando sale el numero por asi decirlo, se queda fijo en la pantalla por unos momentos.

V. ANEXOS

PIC12F683 Data Sheet

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology

© 2004 Microchip Technology Inc. Preliminary DS41211B

^{* 8-}bit, 8-pin Devices Protected by Microchip's Low Pin Count Patent: U.S. Patent No. 5,847,450. Additional U.S. and foreign patents and applications may be issued or pending.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002 ===

PIC12F683

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology

High-Performance RISC CPU

- · Only 35 instructions to learn:
 - All single-cycle instructions except branches
- · Operating speed:
 - DC 20 MHz oscillator/clock input
 - DC 200 ns instruction cycle
- · Interrupt capability
- 8-level deep hardware stack
- · Direct, Indirect and Relative Addressing modes

Special Microcontroller Features

- · Precision Internal Oscillator:
 - Factory calibrated to ±1%
 - Software selectable frequency range of 8 MHz to 31 kHz
 - Two-speed Start-up mode
 - Crystal fail detect for critical applications
 - Clock mode switching during operation for power savings
- · Power-saving Sleep mode
- Wide operating voltage range. (2.0V-5.5V)
- · Industrial and Extended temperature range
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Multiplexed Master Clear with pull-up/input pin
- Programmable code protection
- High Endurance Flash/EEPROM cell:
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - Flash/Data EEPROM Retention: > 40 years

Low-Power Features

- · Standby Current:
 - 1 nA @ 2.0V, typical
- · Operating Current:
 - 8.5 μA @ 32 kHz, 2.0V, typical
 - 100 μA @ 1 MHz, 2.0V, typical
- · Watchdog Timer Current:
 - 1 μA @ 2.0V, typical

Peripheral Features

- 6 I/O pins with individual direction control:
 - High current source/sink for direct LED drive
 - Interrupt-on-pin change
 - Individually programmable weak pull-ups
 - Ultra Low-Power Wake-up on GP0
- · Analog comparator module with:
 - One analog comparator
 - Programmable on-chip voltage reference (CVREF) module (% of VDD)
 - Comparator inputs and output externally accessible
- A/D Converter:
 - 10-bit resolution and 4 channels
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler
- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator if INTOSC mode selected
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Capture, Compare, PWM module:
 - 16-bit Capture, max resolution 12.5 ns
 - Compare, max resolution 200 ns
 - 10-bit PWM, max frequency 20 kHz
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

Dovice	Program Memory	Data I	1/0	10-bit A/D (ch)	Comparators	Timers		
Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	1/0	10-bit A/D (cii)	Comparators	8/16-bit	
PIC12F683	2048	128	256	6	4	1	2/1	

PIC12F683

Pin Diagram

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	7
3.0	Clock Sources	19
4.0	GPIO Port	31
5.0	Timer0 Module	39
6.0	Timer1 Module with Gate Control	
7.0	Timer2 Module	45
8.0	Comparator Module	47
9.0	Analog-to-Digital Converter (A/D) Module	55
10.0	Data EEPROM Memory	65
11.0	Capture/Compare/PWM (CCP) Module	69
12.0	Special Features of the CPU	75
13.0	Instruction Set Summary	95
14.0	Development Support	103
15.0	Electrical Specifications	109
16.0	DC and AC Characteristics Graphs and Tables	131
17.0	Packaging Information	133
	ndix A: Data Sheet Revision History	
Appe	ndix B: Migrating From Other PICmicro® Devices	137
Index		139
On-lir	ne Support	143
Syste	ms Information and Upgrade Hot Line	143
Read	er Response	144
Produ	uct Identification System	145

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

PIC12F683

NOTES:

1.0 DEVICE OVERVIEW

This document contains device specific information for the PIC12F683. Additional information may be found in the "PICmicro® Mid-Range MCU Family Reference Manual" (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The reference manual should be considered a complementary document to

this data sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC12F683 is covered by this data sheet. It is available in 8-pin PDIP, SOIC and DFN-S packages. Figure 1-1 shows a block diagram of the PIC12F683 device. Table 1-1 shows the pinout description.

FIGURE 1-1: PIC12F683 BLOCK DIAGRAM

TABLE 1-1: PIC12F683 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
VDD	VDD	Power	_	Positive supply
GP5/T1CKI/OSC1/CLKIN	GP5	TTL	CMOS	GPIO I/O w/programmable pull-up and interrupt-on-change
	T1CKI	ST	_	Timer1 clock
	OSC1	XTAL		Crystal/Resonator
	CLKIN	ST		External clock input/RC oscillator connection
GP4/AN3/T1G/OSC2/CLKOUT	GP4	TTL	CMOS	GPIO I/O w/programmable pull-up and interrupt-on-change
	AN3	AN	_	A/D Channel 3 input
	T1G	ST	_	Timer1 gate
	OSC2	_	XTAL	Crystal/Resonator
	CLKOUT	_	CMOS	Fosc/4 output
GP3/MCLR/VPP	GP3	TTL		GPIO input with interrupt-on-change
	MCLR	ST	_	Master Clear w/internal pull-up
	VPP	HV	_	Programming voltage
GP2/AN2/T0CKI/INT/COUT/CCP1	GP2	ST	CMOS	GPIO I/O w/programmable pull-up and interrupt-on-change
	AN2	AN	_	A/D Channel 2 input
	T0CKI	ST		Timer0 clock input
	INT	ST		External Interrupt
	COUT	_	CMOS	Comparator 1 output
	CCP1	ST	CMOS	Capture input/Compare output/PWM output
GP1/AN1/CIN-/VREF/ICSPCLK	GP1	TTL	CMOS	GPIO I/O w/programmable pull-up and interrupt-on-change
	AN1	AN	_	A/D Channel 1 input
	CIN-	AN	_	Comparator 1 input
	VREF	AN	_	External Voltage Reference for A/D
	ICSPCLK	ST	_	Serial Programming Clock
GP0/AN0/CIN+/ICSPDAT/ULPWU	GP0	TTL	CMOS	GPIO I/O w/programmable pull-up and interrupt-on-change
	AN0	AN	_	A/D Channel 0 input
	CIN+	AN	_	Comparator 1 input
	ICSPDAT	ST	CMOS	Serial Programming Data I/O
	ULPWU	AN	_	Ultra Low-power Wake-up input
Vss	Vss	Power	_	Ground reference

Legend: AN = Analog input or output

TTL = TTL compatible input

HV = High Voltage

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

XTAL = Crystal

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The PIC12F683 has a 13-bit program counter capable of addressing an 8k x 14 program memory space. Only the first 2k x 14 (0000h-07FFh) for the PIC12F683 is physically implemented. Accessing a location above these boundaries will cause a wrap around within the first 2k x 14 space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC12F683

2.2 Data Memory Organization

The data memory (see Figure 2-2) is partitioned into two banks, which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. Register locations 20h-7Fh in Bank 0 and A0h-BFh in Bank 1 are general purpose registers, implemented as static RAM. Register locations F0h-FFh in Bank 1 point to addresses 70h-7Fh in Bank 0. All other RAM is unimplemented and returns '0' when read. RP0 (Status<5>) is the bank select bit.

- RP0 = 0: Bank 0 is selected
- RP0 = 1: Bank 1 is selected

Note: The IRP and RP1 bits (Status<7:6>) are reserved and should always be maintained as '0's.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 128 x 8 in the PIC12F683. Each register is accessed, either directly or indirectly, through the File Select Register FSR (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

© 2004 Microchip Technology Inc. Preliminary DS41211B-page 7

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA MEMORY MAP OF THE PIC12F683

TABLE 2-1: PIC12F683 SPECIAL REGISTERS SUMMARY BANK 0

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank ()										
00h	INDF	Addressin	g this locatio	n uses conte	ents of FSR	to address d	ata memory	(not a physic	cal register)	xxxx xxxx	17, 83
01h	TMR0	Timer0 M	odule's Reg	ister						xxxx xxxx	39, 83
02h	PCL	Program (Counter's (F	PC) Least Si	ignificant By	rte				0000 0000	17, 83
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	11, 83
04h	FSR	Indirect D	ata Memory	Address P	ointer					xxxx xxxx	17, 83
05h	GPIO	_	_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	31, 83
06h	_	Unimplem	nented							_	_
07h	_	Unimplem	nented							_	_
08h	ı	Unimplem	nented							_	_
09h	1	Unimplem	nented							_	_
0Ah	PCLATH	_	_	_	Write Buffe	r for upper 5	bits of Pro	gram Count	er	0 0000	17, 83
0Bh	INTCON	GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF	0000 0000	13, 83
0Ch	PIR1	EEIF	ADIF	CCP1IF	_	CMIF	OSFIF	TMR2IF	TMR1IF	000- 0000	15, 83
0Dh	1	Unimplem	nented							_	_
0Eh	TMR1L	Holding R	Holding Register for the Least Significant Byte of the 16-bit TMR1								41, 83
0Fh	TMR1H	Holding R	egister for t	he Most Sig	nificant Byt	e of the 16-b	oit TMR1			xxxx xxxx	41, 83
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	43, 83
11h	TMR2	Timer2 M	odule Regis	ter						0000 0000	45, 83
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	45, 83
13h	CCPR1L	Capture/C	Compare/PV	/M Register	1 Low Byte)				xxxx xxxx	70, 83
14h	CCPR1H	Capture/C	Compare/PV	/M Register	1 High Byt	е				xxxx xxxx	70, 83
15h	CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	69, 83
16h	ı	Unimplem	nented							_	_
17h	ı	Unimplem	nented							_	_
18h	WDTCON	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	90, 83
19h	CMCON0	_	COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0 0000	47, 83
1Ah	CMCON1	_	_	_	_	-	_	T1GSS	CMSYNC	10	50, 83
1Bh	_	Unimplem	nented							_	_
1Ch	_	Unimplem	nented							_	_
1Dh	_	Unimplem	nented							_	_
1Eh	ADRESH	Most Sigr	Most Significant 8 bits of the left shifted A/D result or 2 bits of right shifted result								57,83
1Fh	ADCON0	ADFM	VCFG	_	_	CHS1	CHS0	GO/DONE	ADON	00 0000	58,83

Note 1: IRP and RP1 bits are reserved, always maintain these bits clear.

NTE3020 thru NTE3024 Light Emitting Diode (LED)

Description:

The NTE3020 through NTE3024 LEDs offer a variety of lens effects and color availability. The Red (NTE3020) source color device is made with Gallium Arsenide Phosphide on Gallium Arsenide Red Light Emitting Diode. The High Efficiency Red (NTE3022) and Orange (NTE3023) source color devices are made with Gallium Arsenide Phosphide on Gallium Phosphide Orange Light Emitting Diode. The Green (NTE3024) source color device device is made with Gallium Phosphide on Gallium Phosphide Green Light Emitting Diode. The Yellow (NTE3021) source color device is made with Gallium Arside Phosphide on Gallium Phosphide Yellow Light Emitting Diode.

Features:

- Low Power Consumption
- High Efficiency
- IC Compatible/Low Current Requirements
- Versatile mounting on P.C. board or panel
- Reliable and Rugged

Absolute Maximum Ratings: (T_A = +25°C unless otherwise specified)

Power Dissipation, P _D	
NTE3020	80mW
NTE3021	60mW
NTE3022	100mW
NTE3023	100mW
NTE3024	100mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width), I _{F(Peak)}	
NTE3020	
NTE3021	
NTE3022	120mA
NTE3023	120mA
NTE3024	120mA

<u>Absolute Maximum Ratings (Cont'd):</u> $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Continuos Forward Current, I _F	
NTE3020	40mA
Derate Linearly Above 25°C	
NTE3021	20mA
Derate Linearly Above 25°C	0.25mA/°C
NTE3022	
Derate Linearly Above 25°C	
NTE3023	
Derate Linearly Above 25°C	
NTE3024	
Derate Linearly Above 25°C	0.4mA/°C
Reverse Voltage, V _R	5V
Operating Temperature Range, T _A	. −55° to +100°C
Storage Temperature Range, T _{stg}	. −55° to +100°C
Lead Temperature (During Soldering, .063 in. (1.6mm) from Body for 5sec), T _L	+260°C

<u>Electrical/Optical Characteristics:</u> $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Luminous Intensity NTE3020 All Other Devices	I _V	I _F = 10mA, Note 1	0.3 2.5	0.8 8.7	_ _	mcd
Viewing Angle	2Θ ¹ / ₂	Note 2	_	36	_	deg.
Peak Emission Wavelength NTE3020 NTE3021 NTE3022, NTE3023 NTE3024	λΡ		- - - -	655 585 635 565	- - - -	nm
Spectral Line Half Width NTE3020 NTE3021 NTE3022, NTE3023 NTE3024	Δλ		- - - -	24 35 40 30	- - - -	nm
Forward Voltage NTE3020 NTE3021 NTE3022 NTE3023 NTE3024	V _F	I _F = 20mA	- - - -	1.7 2.1 2.0 2.0 2.1	_ 2.8 _ 2.8 2.8	V
Reverse Current	I _R	V _R = 5V	_	_	100	μΑ
Capacitance NTE3020 NTE3021 NTE3022, NTE3023 NTE3024	С	V _F = 0, f = 1MHz	- - -	30 15 20 15	- - -	pF

- Note 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commission Internationale De L'Eclairage) eye—response curve.
- Note 2. $\Theta^{1}/_{2}$ is the off–axis angle at which the liminous intensity is half the axial luminous intensity.

VI. REFERENCIAS

REFERENCIAS

- [1] Microchip Technology Inc., *PIC12F683 Datasheet*, 2024, disponible en: textttwww.microchip.com. [Online]. Available: https://www.microchip.com
- [2] Octopart, "PIC12F683 I/P Microchip," 2025, referencia de precio obtenida de Octopart. [Online]. Available: https://octopart. com/es/pic12f683-i%2Fp-microchip-131715?gad_source=1&gclid= Cj0KCQjwhYS_BhD2ARIsAJTMMQZCW53JtSWB4Xao4gXoP-g_ yV1s9I7giMG5ohvxmIUEn5f-eMUoUaYaArgFEALw_wcB
- "NTE3021 LED [3] eBay Seller, Component," referencia precio obtenida de eBay. [Online]. https://www.ebay.com/itm/383547458028?_skw= Available: NTE3021&itmmeta=01JQ3FJHW78DJX6K4S3ZTV2MB1& hash=item594d35c1ec:g:9S0AAOSwy~JevpkL&itmprp=enc% 3AAQAKAAAAwFkggFvd1GGDu0w3yXCmi1fPE2OlJ9K0MPSo3rMybpNAWNOj%2Fh0vv6tzZQLurn2WrnkypoEAi2xLqLWr3V3u% 2FZPX7uRIJ1J3H6zfj%2FmuHyAEHJcL2b6uH6OBf9YjqxVYJXvdk5BLCaP7buskpWgj1r48v% 2BjRz8BOOvnvM%2B%2FL76GY434iLctLPsOHqYwf1b% 2Fne8fskFdYNuvlqT1%2BLZ6Bz4pAz3ncqIpa054m% 2FOvpwTtYPWGZmK%2Fmb0GXeT3%2BO5BgNg%3D%3D% 7Ctkp%3ABk9SR4afyu-4ZQ
- [4] Centroniks, "Resistencias de Película de Carbono 1 10M 0.25W CE RPC-01," 2025, referencia de precio obtenida de Centroniks. [Online]. Available: https://centroniks.com/products/resistencias-de-pelicula-de-carbon-10hm-10mohm-0-25w-ce-rpc-01?srsltid=AfmBOor3THeOwc1xAXuQOFFnAedseHXYN5_7jOw-zUiTuTDKJ5LwPxik
- [5] I. NTE Electronics, NTE519 Yellow LED Specifications, 2025, accessed: 2025-03-24. [Online]. Available: https://www.nteinc.com/ specs/500to599/pdf/nte519.pdf