Math 106-350/550 - Analytic Geometry & Calculus I

1st Semester, '06-'07

Summary of Differentiation Rules (up to first test)

General Rules k is a constant, u, v functions of x.

- (1) If k is a constant, then $\frac{d}{dx}k = 0$.
- (2) If n is a real number, then $\frac{dx^n}{dx} = nx^{n-1}$.
- (3) $\frac{d(ku)}{dx} = k\frac{du}{dx}.$
- $(4) \frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}.$
- (5) (Product rule) $\frac{d(u \cdot v)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$.
- (6) (Quotient rule) $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} u\frac{dv}{dx}}{v^2}$.

Specific Functions

- For a constant, $\frac{da^x}{dx} = \ln a \cdot a^x$. In particular $\frac{de^x}{dx} = e^x$.
- $\frac{d}{dx}\sin x = \cos x$, $\frac{d}{dx}\cos x = -\sin x$.
- $\frac{d}{dx}\tan x = \sec^2 x$, $\frac{d}{dx}\cot x = -\csc^2 x$, $\frac{d}{dx}\sec x = \sec x \tan x$, $\frac{d}{dx}\csc x = -\csc x \cot x$.