Recap of first-order logic

a logic for statements over *objects*, including quantified statements like "for all objects it holds that..." and "there exists objects such that..." a set *D* called *domain* is the set of all objects

Elements

formulae are based upon:

- variables (x, y, ...), constants (c, d, ...), function symbols (f, g, ...)
- predicate symbols (*P*, *R*, ...)
- propositional connectives (\neg, \land, \lor) and quantifiers $\exists, \lor)$

variables etc. stand for objects (elements of the domain D)

predicates, possibly combined with connectives and quantifiers, can be true or false

Terms and formulae

two kinds of values:

- elements of the domain ("objects")
- true or false

Terms	build upon variables, constants and function symbols	examples: f(x,c) d h(x) y g(f(y,x),c,x)	value is an element of the domain	
formulae	build upon literals, which are predicates applied to terms	examples: P(x,f(c,d)) $P(c) \land R(h(d))$ $\exists x \ P(f(x,c),x)$	value is true or false	

Semantics

a model comprises:

- the domain D and
- an evaluation of everything but the variables

an **interpretation** gives values to variables note that the value of a variable is *an element of the domain* (not true/false like in propositional logic)

a model and an interpretation:

- assign to each term a value of D
- assign to each formula a value in {true, false}

Models and interpretations, formally

a model is made of a doman D and an assignments I, which assign:

an element of D to each constant a function from D^n to D to each function symbol of arity D^n a function from D^n to $\{true, false\}$ to each predicate symbol of arity D^n

an interpretation μ assigns an element of D to every variable

Semantics, formally

given a model $\langle D,I \rangle$ and an interpretation μ , we can evaluate every term and formula:

constants	c	I(c)		
variables	x	$\mu(x)$		
terms made of functions	f(t,,s)	$I(f)(value\ of\ t,,value\ of\ s)$	(note that <i>I(f)</i> is a function)	(<i>value of t</i> , etc. are elements of the domain obtained recursively)
literals	P(t,,s)	I(P)(value of t,,value of s)	(note that <i>I(P)</i> is a function)	(t,,s are terms)
formulae built upon propositional connectives	P(c)VR(f(c,d))) as usual: every literal is either true or false		
formulae based on an existential quantifier	$\exists x \ P(c, x)$	true if there exists μ' , that differs from μ only on the value of x , such that $\langle D, I \rangle$ and μ' evaluate $P(c, x)$ to true	1	
formulae based on an universal quantifier	$\forall x \ P(c, x)$	true if, for all μ' that differs from μ only on the value of x , we have that $\langle D,I \rangle$ and μ' evaluate $P(c,x)$ to true		

Satisfiability

a formula is satisfiable if there exists a model and an interpretation making it true

Free variables

an occurrence of a variable in a formula is bounded if it falls within the scope of a quantifier, free otherwise

 $P(c,x) \land \exists x P(x,d)$

first occurrence of x is free, second is bounded

if a formula contains no free variables, then its truth value does not depend on the interpretation μ

Property of quantifiers

we can change the name of a quantified variable:

 $\exists x \ P(x)$ is equivalent to $\exists y \ P(y)$

 $\forall x \ P(x)$ is equivalent to $\forall y \ P(y)$

this can be done in general, if for example y is a new variable:

 $\exists x \ (P(c,d) \land \forall x \ R(x) \land P(x,x))$ is equivalent to

 $\exists y \ (P(c,d) \land \forall x \ R(x) \land P(y,y) \text{ and to}$

 $\exists y \ (P(c,d) \land \forall y \ R(y) \land P(y,y)$

the occurrences of x relative to a quantification that is inside the formula, like $\forall x \ R(x)$ in this case, can be renamed or not

Other properties of quantifiers

relevant to automated reasoning

if x does not occur in A, then:

$$\forall x (A \land B) \equiv A \land \forall x B$$

$$\forall x (AVB) \equiv AV \forall x B$$

quantifiers can be "moved in" if the "skipped formula" does not contain the variable they quantify upon

operation can be iterated: $\exists x \ (P(c,d) \land (\forall y \ R(y) \lor P(d, x)) \land R(c))$ is equivalent to $P(c,d) \land (\forall y \ R(y) \lor \exists x \ P(d, x)) \land R(c)$