

Accession Nbr :

1993-054168 [07]

Sec. Acc. CPI :

C1993-024246

Title :

Toughened vinyl ester urethane resins with high rigidity - contg.
poly:isocyanate polyfunctional amine with poly:hydric alcohol and
hydroxyalkyl methacrylate reaction prod. and PVAc, PVA, polystyrene or
PMMA

Derwent Classes :

A14 A25 G02 G03

Patent Assignee :

(BADI) BASF AG

Inventor(s) :

CRAMER E; HESSE A; PETER R; SCHUERMANN H; ROLAND P

Nbr of Patents :

3

Nbr of Countries :

8

Patent Number :

EP-527410 A2 19930217 DW1993-07 C08G-018/50 Ger 6p *

AP: 1992EP-0113159 19920801

DSR: BE DE ES FR GB IT NL SE

DE4126826 A1 19930218 DW1993-08 C08L-075/00 5p

AP: 1991DE-4126826 19910814

EP-527410 A3 19930421 DW1994-01 C08G-018/50

AP: 1992EP-0113159 19920801

Priority Details :

1991DE-4126826 19910814

Citations :

DE3744390 (Cat. D); EP-193092 (Cat. D); EP-458028 (Cat. D); EP--64809
(Cat. D);
No-SR.Pub

IPC s :

C08G-018/50 C08L-075/00 C08F-283/00 C08G-018/67 C08J-005/04 C09D-
175/16 C09J-175/16

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

Abstract :

EP-527410 A

Resins (I) contain 100 pts. wt. reaction prod. (II) and 2-30 pts. wt. PV-acetate, PV-alcohol, polystyrene or PMMA (III); (II) is the reaction prod. of (A) a polyisocyanate, (B1) a polyfunctional amine, opt. together with (B2) a polyhydric alcohol, and (C) a hydroxyalkyl (meth)acrylate, dissolved in (D) 15-75 wt.% unsatd. monomer (w.r.t. A + B + C + D); and mol. ratio (B1+B2):(A) = (0.01:1)-(0.9:1), mol. ratio (B1):(B2) = (1:20)-(1:0), and equiv(s) (C) is used per NCO gps. in the reaction prod. from A + (B1 + B2). Composites based on (I), contain 25-400 pts. wt. reinforcing fibres (IV) and 0-100 pts. wt. fillers (V). Pref., (A) is 4,4'-MDI or a mixt. of 2,2'- and 4,4'-MDI, (B1) is, e.g. 4,7-dioxa-decane-1,10-diamine or a cpd. of formula H₂N-C₃H₆O-((CH₂)₄O)_n-C₃H₆-NH₂ (with n = 5-80) etc., (B2) is dipropylene glycol, (C) is hydroxypropyl or hydroxyethyl (meth)acrylate (HPA, HEA, HPMA or HEMA), (D) is styrene; and reaction is in the presence of an amine or metal salt catalyst etc.

USE/ADVANTAGE - High strength and thermal dimensional stability are combined with increased fracture toughness. (I) are useful for the prodn. of high performance composites, dowelling materials, adhesives and coating material (Dwg.0/0)

Manual Codes :

CPI: A05-G01B A07-A04E A10-E24 A12-S08 G02-A02C G02-A02D G02-A02H G03-B02D G03-B02E4

Update Basic :

1993-07

Update Equivalents :

1993-08; 1994-01

" THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: **0 527 410 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: **92113159.5**

(51) Int. Cl. 5: **C08G 18/50, C08G 18/67,
C08F 283/00**

(22) Anmeldetag: **01.08.92**

(30) Priorität: **14.08.91 DE 4126826**

(43) Veröffentlichungstag der Anmeldung:
17.02.93 Patentblatt 93/07

(84) Benannte Vertragsstaaten:
BE DE ES FR GB IT NL SE

(71) Anmelder: **BASF Aktiengesellschaft
Carl-Bosch-Strasse 38
W-6700 Ludwigshafen(DE)**

(72) Erfinder: **Cramer, Edwin, Dr.
Hohenzollernstrasse 87a
W-6700 Ludwigshafen(DE)
Erfinder: Hesse, Anton, Dr.
Peter-Nickel-Strasse 15
W-6940 Weinheim(DE)
Erfinder: Roland, Peter, Dr.
Pfalzring 92
W-6704 Mutterstadt(DE)
Erfinder: Schuermann, Heimut, Dr.
Burgunderstrasse 13
W-6701 Maxdorf(DE)**

(54) **Zähmodifizierte Vinylesterurethanharze.**

(57) Die Erfindung betrifft zähmodifizierte Vinylesterurethanharze auf Basis eines Reaktionsproduktes aus einem polyfunktionellen Isocyanat, einem mehrwertigen Amin, gegebenenfalls einem Hydroxyalkyl(meth)acrylat, gelöst in einem Monomeren, vorzugsweise Styrol. Die Harze enthalten einen Zusatz von 2 bis 30 Gew.% Polyvinylacetat, Polyvinylalkohol, Polystyrol oder Polymethylmethacrylat. Zusammen mit Verstärkungsfasern und gegebenenfalls Füllstoffen können sie zur Herstellung von Hochleistungsverbundwerkstoffen verwendet werden.

EP 0 527 410 A2

Vinylesterurethanharze sind Lösungen von Vinylesterurethanen in flüssigen Comonomeren. Vinylesterurethane enthalten Urethan- und (Meth)Acrylatgruppen im Polymermolekül:

(mit R = H oder CH₃)

- 10 In DE-A 37 44 390 sind spezielle Vinylesterurethane beschrieben, die zusätzlich Harnstoffgruppen enthalten:

Sie werden hergestellt durch Umsetzung von

- A einem polyfunktionellen Isocyanat mit
 20 B₁ einem mehrwertigen Amin, gegebenenfalls in Mischung mit
 B₂ einem mehrwertigen Alkohol, und
 C einem Hydroxalkyl(meth-)acrylat,

und Vermischen mit einem ungesättigten Monomeren.

Formkörper, die durch Härteln derartiger Harze hergestellt werden, zeichnen sich durch gute Zähigkeit und Festigkeit, hohen Modul und hohe Wärmeformbeständigkeit aus. Für Hochleistungsverbundwerkstoffe, die dynamisch stark belastet werden müssen, reichen jedoch in vielen Fällen die Bruchzähigkeiten nicht aus.

Nun ist es bekannt, daß die Zähigkeit der Werkstoffe erhöht werden kann, wenn man die Länge der Polyamin- bzw. Polyol-Kette vergrößert. Dabei sinken dann aber Festigkeit, Steifigkeit und Wärmeformbeständigkeit stark ab.

Der Erfolg lag also die Aufgabe zugrunde, Vinylesterurethanharze bereitzustellen, die bei hoher Steifigkeit, Festigkeit und Wärmeformbeständigkeit eine stark verbesserte Bruchzähigkeit aufweisen.

Diese Aufgabe wird erfindungsgemäß gelöst durch den Zusatz von 5 bis 30 Gew.-Teilen eines thermoplastischen Polymeren zu 100 Gew.-Teilen des Vinylesterurethanharzes nach DE-A 37 44 390.

In EP-A 64 809 sind Vinylesterurethanharze, gelöst in monomerem Methylmethacrylat, beschrieben, die aber keine Harnstoffgruppen im Polymermolekül enthalten. Zur Verringerung des Schrumpfens beim Härteln können ihnen thermoplastische Polymere zugemischt werden. Eine Verbesserung der Zähigkeit gehärteter Formteile ist nicht offenbart.

Zu den Ausgangsmaterialien ist folgendes zu sagen:

40 A. Isocyanate

Zur Herstellung der Vinylesterurethanharze im Sinne der Erfindung kommen alle bekannten aliphatischen, cycloaliphatischen und aromatischen Polyisocyanate mit mindestens 2 Isocyanatgruppen pro Molekül in Frage. Beispielhaft für geeignete Isocyanate seien genannt: 4,4-Diphenylmethandiisocyanat (MDI), Hexamethylendiisocyanat, (HDI), Trimethylhexyldiisocyanat (TMDI), Cyclohexyldiisocyanat, Dicyclopentadiendifenyldiisocyanat, Diisocyanato-diphenylether, Diisocyanatonaphthalin, Diphenylmethan-diisocyanat und Diisocyanato-toluol mit ihren Isomerengemischen, Isophorondiisocyanat (IPDI), Dicyclohexyl-diisocyanat, Polyphenylenpolymethylen-polyisocyanate (Roh-MDI);

50 Triisocyanato-cyclohexan, Triisocyanato-toluol, Triisocyanato-naphthalin, Triisocyanatobiphenyl, Triisocyanato-trimethylbenzol, Triisocyanato-diphenylmethan, Triisocyanato-methyldiphenylmethan, Triisocyanato-triphenylmethan, Triisocyanato-diphenylether, Tetraisocyanato-diphenylsulfid; urethangruppenhaltige, präpolymere Polyisocyanate wie z.B. das Reaktionsprodukt aus Trimethylolpropan und Diisocyanatotoluol;

55 trimerisierte, Isocyanuratgruppen enthaltende Polyisocyanate z.B. auf Basis HDI, Diphenylmethan-disocyanat und Isophorondiisocyanat; präpolymere Polyisocyanate, die dargestellt werden durch Reaktion von Polyisocyanaten mit einem Unterschluß an Polyepoxiden in Gegenwart geeigneter Katalysatoren;

Polyisocyanate, die durch Vorreaktion eines Teils der NCO-Gruppen Carbodiimid- und Urethonimineinheiten enthalten;
 sowie Präpolymere, die neben NCO-Gruppen Urethdioneinheiten enthalten.
 Bevorzugte Isocyanate sind 4,4'-Diphenylmethandiisocyanat sowie das Isomerengemisch aus 2,2'- und
 5 4,4'-Diphenylmethandiisocyanat.

B₁ Mehrwertige Amine

Als Polyamine können sowohl aliphatische wie auch aromatische Amine eingesetzt werden. Beispielhaft
 10 seien genannt: Ethyleniamin, Diethylentriamin, Bis-(4-aminocyclohexyl)-methan, Diaminodiphenylmethan,
 Diaminodiphenylsulfon. Besonders geeignete Amine sind langketige Amine mit Molekulargewichten von
 150 bis 5000. Dazu zählen Etherdiamine wie 4,7-Dioxadecan-1,10-diamin oder Verbindungen der allgemeinen Formel

15 H₂N-(C₃H₆O)_m-C₃H₆-NH₂,

wobei m Zahlen von 2 bis 80 bedeutet, oder Verbindungen der allgemeinen Formel

H₂N-C₃H₆-O-[(CH₂)₄O]_n-C₃H₆-NH₂,

20 wobei n Zahlen von 5 bis 80 bedeutet; weiterhin die Aminobenzoësäureester und Anthranilsäureester von
 Diolen wie z.B. Ethylenglykol, Propylenglykol, Polyethylenglykol, Polypropylenglykol, Polybutadienglykol,
 Polycaprolactonglykol oder Polytetramethylenetherglykol. Die besonders bevorzugten Aminobenzoësäure-
 ster von Polytetramethylenetherglykol haben folgende Struktur:

25

30

wobei p Zahlen von 5 bis 80 bedeutet.

B₂ Mehrwertige Alkohole

35 Geeignete mehrwertige Alkohole sind: aliphatische Diole, wie Ethandiol-1,2, Propandiol-1,2, Butandiol-1,4, Dipropylenglykol, Neopentylglykol, Trimethylolpropan, Pentaerythrit; alicyclische Diole, wie hydriertes Bisphenol A, Cyclohexandiol, Cyclohexandimethanol und Tricyclohexandimethanol; Phenole wie Bisphenol A oder Resorcin; alkoxylierte Derivate von Bisphenolen wie z.B. Bisphenol A, Bisphenol S oder Bisphenol F;
 40 aliphatische oder aromatische Polyetherole mit Molekulargewichten bis 5000, z.B. Polyethylenglykol oder Polypropylenglykol; sowie Polyesterole, wobei sowohl gesättigte als auch ungesättigte hydroxyterminierte Polyester in Frage kommen. Grundsätzlich können auch Aminole, wie Ethanolamin, Propanolamin, Diethanolamin, Triethanolamin und Aminophenole mit den Isocyanaten umgesetzt werden. Bevorzugt ist Dipropylenglykol, gegebenenfalls im Gemisch mit Polypropylenglykol.

45

Hydroxyalkyl-(meth-)acrylate

Zum Aufbau der endständigen Doppelbindungen im Vinylesterurethan werden Hydroxyalkyl-(meth-)acrylate mit den aus A, B₁ und B₂ hergestellten, Isocyanatgruppen enthaltenden Verbindungen umgesetzt.
 50 Hydroxyalkyl-(meth-)acrylate werden durch folgende allgemeine Formel beschrieben:

55

wobei R₁ = H oder CH₃

und R' eine Alkylengruppe bedeuten. Hydroxyalkyl(meth-)acrylate werden durch Umsetzung von (Meth-

)Acrylsäure mit Alkylenoxiden wie Ethylen- oder Propylenoxid hergestellt. Geeignete Hydroxyalkyl-(meth-)acrylate im Sinne der Erfindung sind ferner Glycerindi-(meth-)acrylate, Trimethylolpropandi (meth-)acrylate und Pentaerythrittri-(meth-)acrylate. Bevorzugt sind Hydroxypropyl(meth-)acrylat und Hydroxyethyl(meth-)acrylat.

5

C Monomere

Geeignet sind Vinylverbindungen, wie Styrol, α -Methylstyrol, alkylierte Styrole, Divinylbenzol, Vinylacetat und Vinylpyridin; niedermolekulare Maleinimide; Allylverbindungen, wie Diallylphthalat und Triallylcyanurat; Acryl- und Methacrylverbindungen, wie Acrylnitril, (Meth)acrylamid, Methyl(meth)acrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat, Butyl(meth)acrylat, Ethylhexyl(meth)acrylat, Neopentylglykol(meth)acrylat, Ethylenglykoldi(meth)acrylat, Propylenglykoldi(methacrylat), Butandioldi(meth)acrylat, Glycerin-(meth)acrylate, Hydroxyalkyl(meth)acrylate, alkoxilierte Bisphenol A-di (meth)acrylate sowie Glycidylmethacrylat und niedermolekulare Maleinimide. Sie werden in Mengen von 15 bis 75 Gew.%, bezogen auf A + B + C + D, eingesetzt. Bevorzugtes Monomeres ist Styrol.

15

Zur Herstellung der Vinylesterurethanharze sind verschiedene Verfahren möglich. Einmal kann zunächst das Isocyanat A mit dem Hydroxyalkyl-(meth)-acrylat C im Molverhältnis von etwa 1:0,5 bis 1:3 vorreagiert und anschließend mit dem mehrwertigen Amin B1 und gegebenenfalls dem mehrwertigen Alkohol B2 umgesetzt werden. In einem zweiten Verfahren werden die Komponenten A, B1 und ggf. B2 im Verhältnis A: (B1 + B2) von 100:1 bis 100:90 vermischt und bei 40 bis 110 °C umgesetzt. Anschließend wird die zur Absättigung der freien Isocyanatgruppen notwendige Menge den Hydroxyalkyl(meth)acrylat C zugefügt. Eine weitere Möglichkeit besteht darin, die Komponenten A, B1, B2 und C gemeinsam in einer Eintopfreaktion zum Vinylesterurethanharz umzusetzen. Eventuell vorhandenes, überschüssiges Polyisocyanat reagiert dabei mit dem Hydroxyalkyl(meth)acrylat zu einem verhältnismäßig niedermolekularen Vinylesterurethan, was zur Einstellung der Viskosität des Harzes ausgenutzt werden kann. Man erhält ein Gemisch präpolymrer Vinylesterurethane mit unterschiedlicher Kettenlänge und Molekulargewicht.

20

Die genannten Umsetzungen können in Substanz oder in den genannten Monomeren als Lösungsmittel durchgeführt werden. Zur Beschleunigung der Umsetzungen der Isocyanate mit den Alkohol- und Aminoverbindungen können geeignete Katalysatoren, wie sie aus der Polyurethanchemie bekannt sind, eingesetzt werden. Dazu zählen beispielsweise tertiäre Amine wie 1,2-Dimethylimidazol, Diazabicyclooctan, Diazabicyclonanon, Triethylendiamin, Metallsalze wie Bleioctoat, Zinnoctoat oder Dibutylzinndilaurat sowie Mischungen von tertiären Aminen und Metallsalzen. Die Katalysatoren werden üblicherweise in Mengen von 0,05 bis 2 Gew.-%, bezogen auf A + B + C, zugegeben. Eine vorzeitige Gelierung der Reaktionsmischung kann durch Zusatz üblicher Inhibitoren wie z.B. Phenothiazin, Hydrochinon, Dimethylhydrochinon, Triphenylphosphit, tert.-Butyl-hydrochinon, Hydrochinonmonomethylether, tert.-Butylbrenzkatechin und p-Benzochinon verhindert werden. Die Inhibitoren werden in Mengen von 0,01 bis 2 Gew.-%, bezogen auf A + B + C, zugesetzt.

25

Die erfindungsgemäßen Vinylesterurethanharze enthalten als zähmodifizierenden Zusatz 2 bis 30, vorzugsweise 4 bis 20 und insbesondere 6 bis 10 Gew.% Polyvinylacetat, Polyvinylalkohol, Polystyrol oder Polymethylmethacrylat. Das Molekulargewicht Mw dieser Vinylpolymeren ist vorzugsweise kleiner als 150.000, insbesondere kleiner als 100.000; ihr Erweichungspunkt liegt zwischen 30 und 100 °C. Diese Vinylpolymeren können als Lösung im Monomeren D dem Vinylesterurethanharz zugesetzt werden. Sie sind mit diesem mischbar.

30

Darüberhinaus können die Vinylesterurethanharze bis zu 20 %, bezogen auf ihr Gewicht, andere thermoplastische Kunststoffe oder härtbare Harze enthalten.

35

Bei der bevorzugten Anwendung als Hochleistungsverbundwerkstoffe werden den Vinylesterurethanharzen Verstärkungsfasern in Mengen von 25 bis 400 Gew.% und übliche Füllstoffe in Mengen von 0 bis 100 Gew.% zugesetzt.

40

Als Verstärkungsfasern kommen in Frage anorganische und organische Fasern in Form von Rovings, Matten und Geweben aus z.B. Glas, Kohlenstoff, Aramid oder Polyester. Zur Herstellung der Faserverbundwerkstoffe kommen die üblichen Verfahren in Betracht, wie z.B. Wickeln, Pultrusion, Injektion, Spritzen und Pressen.

45

Geeignete Füllstoffe sind z.B. übliche feinpulvrige oder körnige Füllstoffe wie Kreide, Kaolin, Quarzmehl, Dolomit, Schwerspat, Metallpulver, Aluminiumoxidhydrat, Zement, Talkum, Kieselgur, Holzmehl, Holzspäne, Pigmente und dergleichen.

50

Zur Aushärtung der Vinylesterurethanharze kommen die üblichen Polymerisationsinitiatoren, wie Peroxide und Azoverbindungen in Frage, die dem Harz in Mengen von 0,05 bis 5 Gew.%, vorzugsweise von 0,1 bis 2 Gew.%, bezogen auf A + B + C + D zugesetzt werden.

Als Radikale liefernde Initiatoren seien beispielhaft genannt: Benzoylperoxid, tert.-Butylperoctoat, tert.-Butylperbenzoat, Cyclohexanonperoxid, tert.-Butylperoxid und Hydroperoxide, ferner Azoverbindungen, wie Azodiisobutyronitril oder organische Verbindungen mit einer labilen Kohlenstoff-Kohlenstoff-Bindung.

- Setzt man den peroxid-initiierten Formmassen übliche Polymerisationsbeschleuniger, wie z.B. Co-, Mn-, Sn- oder Ce-Salze organischer Säuren oder Amine, wie N,N-Dimethylanilin oder N,N-Diethylanilin zu, dann kann die Härtung auch ohne Temperaturerhöhung durchgeführt werden, wenn Hydroperoxide, bzw. Benzoylperoxide zum Einsatz kommen. Bei Verwendung üblicher Lichtinitiatoren, wie z.B. Benzoinether, Benzilketalen oder Acylphosphinverbindungen kann die Härtung durch Bestrahlen mit Licht der Wellenlänge 200 bis 50 nm durchgeführt werden.
- Außer für Hochleistungsverbundwerkstoffe können die erfindungsgemäß zähmodifizierten Vinylesterurethanharze auch zur Herstellung von Dübelmassen, Klebstoffen und Beschichtungen verwendet werden.

Die in den Beispielen genannten Teile und Prozente beziehen sich auf das Gewicht.

Beispiel 1 (Vergleich)

- 15 1000 g (4 Mol) 4,4'-Diphenylmethandiisocyanat werden bei 50 °C in 800 g Styrol gelöst. Man gibt 2 ml Dibutylzinndilaurat zu und versetzt das Reaktionsgemisch mit 65 g (0,1 Mol) Bis-(3-aminopropyl)-polytetrahydrofuran (Molmasse 650), welches in 400 g Styrol gelöst wird. Nach 10 Minuten werden bei 50 °C 108 g (0,8 Mol) Dipropylenglykol zugefügt und 15 Minuten nachgeführt. Danach dosiert man 917 g 20 Hydroxypropylmethacrylat (6,4 Mol) bei 50 bis 60 °C zur Lösung und stabilisiert mit 600 mg Hydrochinon.

Beispiel 2 (erfindungsgemäß)

- Durch Auflösen von 400 g Polyvinylacetat (Mowilith CT 5, Fa. Hoechst) in 600 g Styrol erhält man eine 25 40 %ige klare Lösung des Thermoplasten in Styrol. 20 Teile dieser Lösung werden mit 80 Teilen des Vinylesterurethanharzes nach Beispiel 1 vermischt.

Beispiel 3 (erfindungsgemäß)

- 30 Durch Auflösen von 400 g Polymethylmethacrylat (S-Polymerisat 410K6 der Fa. Resart) in 600 g Styrol erhält man eine 40 %ige klare Lösung des Thermoplasten in Styrol. 20 Teile dieser Lösung werden mit 80 Teilen des Vinylesterurethanharzes nach Beispiel 1 vermischt.

Beispiel 4 (Vergleich)

- 35 Beispiel 1 wird wiederholt, wobei aber als Polyamin 684 g (0,34 Mol) Bis-(3-aminopropyl)-polytetrahydrofuran mit einer Molmasse von 2000 eingesetzt wurden.

Die in den Beispielen hergestellten Harze wurden mit 2 % Benzoylperoxid versetzt und 2 h bei 80 °C und 4 h bei 160 °C gehärtet.

- 40 Folgende Eigenschaften wurden gemessen:

Glasübergangstemperatur T _g	[°C] nach DIN 53 445
Elastizitätsmodul E-Modul	[MPa] nach DIN 53 457
Biegefestigkeit F	[MPa] nach DIN 53 452
Zähigkeit K1C	[MPa ^{1/2}] nach ASTM E 399
45 Zähigkeit G1C	[J ^{1/2} m ⁻²]

Ergebnisse				
Harz nach	Beispiel 1	Beispiel 2	Beispiel 3	Beispiel 4
T _g	165	155	152	135
E-Modul	3600	3550	3500	2600
F	150	155	130	100
K1C	0,7	1,13	1,02	1,13
50 G1C	130	330	280	380

55

Patentansprüche

1. Zähmodifizierte Vinylesterurethanharze, enthaltend

5 I. 100 Gew.-Teile eines Reaktionsproduktes aus

A) einem polyfunktionellen Isocyanat,

B₁) einem mehrwertigen Amin, ggf. in Mischung mit

B₂) einem mehrwertigen Alkohol, und

C) einem Hydroxyalkyl(meth-)acrylat,

10 gelöst in 15 bis 75 Gew.%, bezogen auf A + B + C + D,

D) eines ungesättigten Monomeren,

15 wobei das Molverhältnis von Amin- und Alkoholkomponente B₁ + B₂ zur Isocyanatkomponente A 0,01:1 bis 0,9:1 beträgt, das Molverhältnis von Aminkomponente B₁ zu Alkoholkomponente B₂ von 1:20 bis 1:0 variieren kann, und das Hydroxyalkyl(meth-)acrylat C in mindestens äquivalentem Verhältnis zu den Isocyanatgruppen des Reaktionsproduktes aus A + (B₁ + B₂) eingesetzt wurde, und

II. 2 bis 30 Gew.-Teile Polyvinylacetat, Polyvinylalkohol, Polystyrol oder Polymethylmethacrylat.

20 2. Hochleistungsverbundwerkstoffe auf Basis der Vinylesterurethanharze nach Anspruch 1, zusätzlich enthaltend

III. 25 bis 400 Gew.-Teile Verstärkungsfasern und

IV. 0 bis 100 Gew.-Teile Füllstoffe.

25

30

35

40

45

50

55

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: 0 527 410 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92113159.5

(51) Int. Cl.5: C08G 18/50, C08G 18/67,
C08F 283/00

(22) Anmeldetag: 01.08.92

(30) Priorität: 14.08.91 DE 4126826

(43) Veröffentlichungstag der Anmeldung:
17.02.93 Patentblatt 93/07

(64) Benannte Vertragsstaaten:
BE DE ES FR GB IT NL SE

(88) Veröffentlichungstag des später veröffentlichten
Recherchenberichts: 21.04.93 Patentblatt 93/16

(71) Anmelder: BASF Aktiengesellschaft
Carl-Bosch-Strasse 38
W-6700 Ludwigshafen(DE)

(72) Erfinder: Cramer, Edwin, Dr.
Hohenzollernstrasse 87a
W-6700 Ludwigshafen(DE)
Erfinder: Hesse, Anton, Dr.
Peter-Nickel-Strasse 15
W-6940 Weinheim(DE)
Erfinder: Roland, Peter, Dr.
Pfalzring 92
W-6704 Mutterstadt(DE)
Erfinder: Schuemann, Helmut, Dr.
Burgunderstrasse 13
W-6701 Maxdorf(DE)

(54) Zähmodifizierte Vinylesterurethanharze.

(57) Die Erfindung betrifft zähmodifizierte Vinylesterurethanharze auf Basis eines Reaktionsproduktes aus einem polyfunktionellen Isocyanat, einem mehrwertigen Amin, gegebenenfalls einem Hydroxyalkyl-(meth)acrylat, gelöst in einem Monomeren, vorzugsweise Styrol. Die Harze enthalten einen Zusatz von 2 bis 30 Gew.% Polyvinylacetat, Polyvinylalkohol, Polystyrol oder Polymethylmethacrylat. Zusammen mit Verstärkungsfasern und gegebenenfalls Füllstoffen können sie zur Herstellung von Hochleistungsverbundwerkstoffen verwendet werden.

EP 0 527 410 A3

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 92 11 3159

EINSCHLÄGIGE DOKUMENTE

Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betreff Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CL.5)
			RECHERCHIERTE SACHGEBIETE (Int. CL.5)
P,X	EP-A-0 458 028 (BASF) * Seite 2, Zeile 51 - Seite 5, Zeile 9; Ansprüche 1,2 *	1,2	C08G18/50 C08G18/67 C08F283/00
A	EP-A-0 193 092 (DESOTO) * Seite 16, Zeile 30 - Seite 17, Zeile 3; Ansprüche *	1	
D,A	DE-A-3 744 390 (BASF) * Seite 4, Zeile 42 - Zeile 45; Ansprüche *	1,2	
D,A	EP-A-0 064 809 (ICI)	-----	
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			CO8G CO8L CO8F CO8K
Recherchenart	Abschlußdatum der Recherche	Prüfer	
DEN HAAG	14 JANUAR 1993	BOURGONJE A.F.	
KATEGORIE DER GENANNTEN DOKUMENTE		T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus andern Gründen angeführtes Dokument A : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur			