PHYS 241 Lab 3.

Mihail Anghelici 260928404 Section 22524 Thursday

Experiment performed with Guillaume Payeur March 12, 2020

Question 1.

Figure 1: Low-Pass circuit for a 3 dB point of 100 kHz.

$$f_H = 100000 \text{ Hz} = \frac{1}{2\pi RC} = \frac{1}{2\pi 1000 \Omega C} \implies C = 1 \times 10^{-9} = 1nF.$$

Figure 2: Bode plot for low-pass filter circuit. The dotted lines indicate the 3 db point.

Question 2.

In Experiment 1, the theoretical predicted values for f_H and ϕ are found as follows

$$f_H = \frac{1}{2\pi RC} = \frac{1}{2\pi 10000 \ \Omega \ 0.01 \ \mu F}$$

= 1591 kHz.
 $\phi = \arctan(\omega CR) \quad , \omega_C = 1/CR$
 $\implies \phi = \arctan(1) = \pi/4 = 45^{\circ}.$

Experimentally it was found that $f_H=1470$ kHz and the phase angle was evaluated graphically using the difference tool between the two channel sine-waves , $\phi=45^{\circ}$. The latter value is in excellent agreement with the theoretical value whilst the former has a considerable difference percentage. This difference is explained by the off-set present in the V_C amplitude read on the scope compared to it's real amplitude. We noted that it was easier to measure the angle ϕ from the zero crossing compared to the peak separations since there's less visual fluctuation. Indeed, the 0-crossing horizontal line is assumed to be perfectly linear, which is advantageous with respect to measuring the distance between two wave points at equal heights.

Question 3.

Figure 3: Bode plot for Experiment 2. The dotted lines indicate the 3 db point. When compared to Figure 6 in *PHYS* 241 *Signal Processing: Lab 3* manual, the plot is similar with respect to the dimensional limits, although is reflected with respect to the y-axis. It also looks less smooth in comparison. This lack of smoothness is explained by a lack of points taken in the range of [-4, -2] on the x-axis. Another reason could be that some points withing that range have been miss-evaluated.

Question 4.

Experimentally it was found that the phase angle ϕ is 45°. From Figure 3, we may immediately compute the angle ϕ ,

Using R= 10 k
$$\Omega$$
, C = 0.01 μ F, we get
$$\phi = \arctan\left(\frac{1}{\omega RC}\right) = \arctan(-1) = -\pi/4.$$

The found angles are both in agreement with respect to their magnitude, although they have different signs, which is explained by a potential miss-reading on the scope.

Figure 4: Vector diagram for Experiment 2 involving V_R and V_i at frequency f_H . The diagram presented is to scale with $V_R = V_i/\sqrt{2}$. We also note from the figure that V_R lags V_i since $\phi < 0$.

Question 5.

The channel 1 waveform increased as a result of adding a DC offset, whilst the channel 2 waveform remained unchanged. This is explained by the setup employed experimentally. All the DC voltage goes to charging the capacitor and so it is read by channel 1. The channel 2 is at position V_R so nothing will change at that point for the latter reason.

Question 6.

Figure 5: Bode plot for Experiment 4. The dotted lines indicate the 3 db point.

It was found experimentally from the difference between the waves on the scope that the phase difference is $\phi=70^\circ$, along with the cut-off frequency $f_h=44300$ Hz. From this we can immediately compute the inductance L,

$$f_h = \frac{R}{2\pi L} \implies L = \frac{R}{(f_h 2\pi)} = \frac{10000 \ \Omega}{44300 \ \text{Hz} 2\pi} = 0.036 \ H.$$

Question 7.

Due to the given configurations in which Experiment 1 to Experiment 4 are presented, along with their respective bode plots studied, we may conclude that

- 1. Experiment 1 is High-Pass
- 2. Experiment 2 is Low-Pass
- 3. Experiment 3 is Low-Pass
- 4. Experiment 4 is High-Pass

Appendix

Table 1: Experimental data gathered for construction of the bode plots presented in Figure 2 and Figure 4.

Raw Data			
Experiment 2		Experiment 4	
$\overline{\text{Frequency}(f)}$	Amplitude Ratio	$\overline{\text{Frequency}(f)}$	Amplitude Ratio
[kHz]		[kHz]	
0.03	0.0068	5.3	0.990
0.05	0.0110	13.3	0.988
0.10	0.0468	14.3	0.976
0.20	0.0980	19.3	0.952
0.60	0.386	29.3	0.864
1.00	0.580	34.3	0.816
1.40	0.707	39.3	0.752
1.80	0.78	44.3	0.707
2.20	0.84	49.3	0.64
2.60	0.88	54.3	0.576
3.00	0.904	64.3	0.468
4.00	0.952	74.3	0.372
8.00	0.996	94.3	0.224
10.00	1.005	12.43	0.08
		15.43	0.006