2.7 Построение оценок. Метод моментов. Метод мак-симального правдоподобия

Пререквизиты

Метод моментов

Пусть у нас есть выборка $X_1,...,X_n$ из распределения с параметром θ . Если мы сможем подобрать такую функцию g, такую что

$$\mathbb{E}(g(X_i)) = h(\theta)$$

где h - непрерывна, то оценка методом моментов находится как

$$\hat{\theta} = h^{-1}(\overline{g(X)})$$

Аналогично происходит, если у нас несколько параметров $\theta = (\mu, \sigma)$. Тогда мы составляем систему из нескольких различных функций g(по количеству параметров) и решаем ее:

$$\begin{cases} \mathbb{E}(g_1(X_i)) = h(\theta) \\ \mathbb{E}(g_2(X_i)) = h(\theta) \\ \dots \\ \mathbb{E}(g_n(X_i)) = h(\theta) \end{cases}$$

Метод называется методом моментов, так как за функции g_i обычно берутся функции моментов

$$g_k(x) = x^k$$

Так как функции h - непрерывные, оценки полученные методом моментов - всегда состоятельные

Метод максимального правдоподобия

Пусть у нас есть выборка $\mathbf{X}^n = \{X_1, ..., X_n\}$ из распределения X с параметром θ . Идея: давайте посчитаем вероятность того, что у нас выпала такая последовательность результатов и назовем эту величину правдоподобием.

$$Likelihood = L(\mathbf{X}^n; \theta) = egin{cases} \prod_{i=1}^n
ho_X(X_i), & \mbox{Для непрерывных распределений} \\ \prod_{i=1}^n P(X=X_i), & \mbox{Для дискретных распределений} \end{cases}$$

Распределение X как-то зависит от параметра θ и мы хотим максимизировать правдоподобие по параметру θ Итого оценка максимального правдоподобия:

$$\hat{\theta} = argmax_{\theta}L(\mathbf{X}^n; \theta)$$

Понятное дело, что θ может быть вектором параметров (Например $\theta = (\mu, \sigma)$ для (μ, σ^2)). Тогда функцию нужно максимаизировать по нескольким параметрам.

2.7 Построение оценок. Метод моментов. Метод максимального правдоподобия

Практика

- 1. Пусть выборка $X_1,...,X_n$ порождена распределением $U[0,\theta]$. Оцените параметр θ с помощью:
 - ullet Метода моментов (функцией g(x) = x и $g(x) = x^k$)
 - Метода максимального правдоподобия
- 2. Пусть выборка $X_1, ..., X_n$ порождена распределением $\mathcal{N}(\mu, \sigma^2)$. С помощью метода моментов найдите оценки параметров $\hat{\mu}, \hat{\sigma}$.
- 3. Пусть выборка $X_1, ..., X_n$ порождена распределением $\mathcal{N}(0, \sigma^2)$. С помощью метода максимального правдоподобия найдите оценку параметра $\hat{\sigma}$.
- 4. Пусть выборка $X_1, ..., X_n$ порождена распределением с плотностью f(x):

$$f(x) = \begin{cases} \frac{\beta \alpha^{\beta}}{x^{\beta+1}}, & x \ge \alpha \\ 0, & x < \alpha \end{cases}$$

Здесь $\alpha > 0$ и $\beta > 0$. С помощью метода максимального правдоподобия постройте оценку параметров α и β .

Домашка

- 1. (1 балл) Используя метод моментов, постройте оценку $\lambda > 1$ по выборке из распределения Пуассона с параметром $\ln \lambda$.
- 2. (1 балл) Пусть выборка $X_1, ..., X_n$ порождена распределением с плотностью f(x):

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2}}$$

Параметр a может принимать значения 1 или 2. Найдите оценку максимального правдоподобия параметра a.

- 3. (1 балл) Пусть выборка $X_1, ..., X_n$ порождена распределением с плотностью $f_{\theta}(x)$: $f_{\theta}(x) = f(x-\theta)$, где функция f(x) имеет единственный максимум в точке x=0. Постройте оценку максимального правдоподобия $\hat{\theta}$ параметра сдвига θ по одному наблюдению X_1 .
- 4. (1 балл) Пусть выборка $X_1, ..., X_n$ порождена распределением с плотностью f(x):

$$f(x) = \frac{1}{2\sigma} e^{-\frac{|x-\mu|}{\sigma}}$$

Постройте оценку максимального правдоподобия для вектора параметров (μ, σ) .

- 5. Пусть выборка $X_1, ..., X_n$ порождена равномерным на отрезке $[\theta; 2\theta]$ распределением. Постройте оценку параметра θ :
 - (1 балл) Методом моментов.
 - (1 балл) Методом максимального правдоподобия.