

BGA7L1N6

Silicon Germanium Low Noise Amplifier for LTE

Data Sheet

Revision 3.1 (Min/Max), 2014-02-11

RF & Protection Devices

Edition 2014-02-11

Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision Histo	ry								
Page or Item	Subjects (major changes since previous revision)								
Revision 3.1 (Min/Max), 2014-02-11									
10-15	Min/Max values added								
Revision 3.0, 2	014-02-10								
7	Marking added								
10-15	Electrical characteristics updated								
10-15	Footnotes updated								

Trademarks of Infineon Technologies AG

AURIXTM, C166TM, Canpaktm, CIPOSTM, CIPURSETM, Econopacktm, CoolMostm, CoolSettm, Corecontroltm, Crossavetm, Davetm, DI-Poltm, EasyPIMTM, Econobridgetm, Econopualtm, Econopimtm, Econopacktm, Eicedrivertm, eupectm, Fcostm, Hitfettm, Hybridpacktm, I²rftm, Isofacetm, Isopacktm, MIPaqtm, Modstacktm, my-dtm, NovalithIctm, OptiMostm, Origatm, Powercodetm; Primariontm, Primapacktm, Primastacktm, Pro-Siltm, Profettm, Rasictm, Reversavetm, Satrictm, Siegettm, Sindriontm, Sipmostm, Smartlewistm, Solid Flashtm, Tempfettm, thinQ!tm, Trenchstoptm, Tricoretm.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANI ZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11

Table of Contents

Table of Contents

	Table of Contents	4
	List of Figures	5
	List of Tables	6
	Features	7
l	Maximum Ratings	9
2	Electrical Characteristics	. 10
2.1	Measured RF Characteristics Band 5	. 10
2.2	Measured RF Characteristics Band 8	. 12
2.3	Measured RF Characteristics Band 17	. 14
3	Application Information	. 16
3.1	Application Circuit Schematic Band 5	. 16
3.2	Application Circuit Schematic Band 8	
3.3	Application Circuit Schematic Band 17	. 18
1	Package Information	. 20

List of Figures

List of Figures

Figure 1	Block Diagram	. 7
Figure 2	Application Schematic BGA7L1N6	16
Figure 3	Application Schematic BGA7L1N6	17
Figure 4	Application Schematic BGA7L1N6	18
Figure 5	Drawing of Application Board	19
Figure 6	Application Board Cross-Section	19
Figure 7	TSNP-6-2 Package Outline (top, side and bottom views)	20
Figure 8	Footprint Recommendation TSNP-6-2	20
Figure 9	Marking Layout (top view)	20
Figure 10	Tape & Reel Dimensions (reel diameter 180 mm, pieces/reel 15000)	21

List of Tables

List of Tables

Pin Definition and Function	8
Maximum Ratings	9
Thermal Resistance	
Electrical Characteristics: T_A = 25 °C, V_{CC} = 1.8 V, $V_{PON,ON}$ = 1.8 V, $V_{PON,OFF}$ = 0 V, f = 869 - 894 MHz	10
Electrical Characteristics: $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 2.8 V, $V_{\rm PON,ON}$ = 2.8 V, $V_{\rm PON,OFF}$ = 0 V, f = 869 - 894 MHz	11
Electrical Characteristics: T_A = 25 °C, V_{CC} = 1.8 V, $V_{PON,ON}$ = 1.8 V, $V_{PON,OFF}$ = 0 V, f = 925 - 960 MHz	12
Electrical Characteristics: T_A = 25 °C, V_{CC} = 2.8 V, $V_{PON,ON}$ = 2.8 V, $V_{PON,OFF}$ = 0 V, f = 925 - 960 MHz	13
Electrical Characteristics: T_A = 25 °C, V_{CC} = 1.8 V, $V_{PON,ON}$ = 1.8 V, $V_{PON,OFF}$ = 0 V, f = 734 - 746 MHz	14
Electrical Characteristics: $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 2.8 V, $V_{\rm PON,ON}$ = 2.8 V, $V_{\rm PON,OFF}$ = 0 V,	
Bill of Materials	
Bill of Materials	17
Bill of Materials	18
	Maximum Ratings $ \begin{array}{l} \text{Thermal Resistance} \\ \text{Electrical Characteristics: } T_{\text{A}} = 25 ^{\circ}\text{C}, V_{\text{CC}} = 1.8 \text{V}, V_{\text{PON,ON}} = 1.8 \text{V}, V_{\text{PON,OFF}} = 0 \text{V}, \\ f = 869 - 894 \text{MHz} \\ \text{Electrical Characteristics: } T_{\text{A}} = 25 ^{\circ}\text{C}, V_{\text{CC}} = 2.8 \text{V}, V_{\text{PON,ON}} = 2.8 \text{V}, V_{\text{PON,OFF}} = 0 \text{V}, \\ f = 869 - 894 \text{MHz} \\ \text{Electrical Characteristics: } T_{\text{A}} = 25 ^{\circ}\text{C}, V_{\text{CC}} = 1.8 \text{V}, V_{\text{PON,ON}} = 1.8 \text{V}, V_{\text{PON,OFF}} = 0 \text{V}, \\ f = 925 - 960 \text{MHz} \\ \text{Electrical Characteristics: } T_{\text{A}} = 25 ^{\circ}\text{C}, V_{\text{CC}} = 2.8 \text{V}, V_{\text{PON,ON}} = 2.8 \text{V}, V_{\text{PON,OFF}} = 0 \text{V}, \\ f = 925 - 960 \text{MHz} \\ \text{Electrical Characteristics: } T_{\text{A}} = 25 ^{\circ}\text{C}, V_{\text{CC}} = 1.8 \text{V}, V_{\text{PON,ON}} = 1.8 \text{V}, V_{\text{PON,OFF}} = 0 \text{V}, \\ f = 734 - 746 \text{MHz} \\ \text{Electrical Characteristics: } T_{\text{A}} = 25 ^{\circ}\text{C}, V_{\text{CC}} = 2.8 \text{V}, V_{\text{PON,ON}} = 2.8 \text{V}, V_{\text{PON,OFF}} = 0 \text{V}, \\ f = 734 - 746 \text{MHz} \\ \text{Bill of Materials} \\ \text{Bill of Materials} \\ \text{Bill of Materials} \\ \text{Bill of Materials} \end{array}$

Silicon Germanium Low Noise Amplifier for LTE

BGA7L1N6

Features

- Insertion power gain: 13.3 dBLow noise figure: 0.90 dB
- Low current consumption: 4.4 mA
- Operating frequencies: 728 960 MHz
- Supply voltage: 1.5 V to 3.3 V
- Digital on/off switch (1V logic high level)
- Ultra small TSNP-6-2 leadless package (footprint: 0.7 x 1.1 mm²)
- B7HF Silicon Germanium technology
- RF output internally matched to 50 Ω
- Only 1 external SMD component necessary
- 2kV HBM ESD protection (including Al-pin)
- · Pb-free (RoHS compliant) package

Figure 1 Block Diagram

Product Name	Marking	Package
BGA7L1N6	С	TSNP-6-2

Features

Description

The BGA7L1N6 is a front-end low noise amplifier for LTE which covers a wide frequency range from 728 MHz to 960 MHz. The LNA provides 13.3 dB gain and 0.90 dB noise figure at a current consumption of 4.4 mA in the application configuration described in **Chapter 3**. The BGA7L1N6 is based upon Infineon Technologies' B7HF Silicon Germanium technology. It operates from 1.5 V to 3.3 V supply voltage.

Pin Definition and Function

Table 1 Pin Definition and Function

Pin No.	Name	Function				
1	GND	Ground				
2	VCC	DC supply				
3	AO	LNA output				
4	GND	Ground				
5	Al	LNA input				
6	PON	Power on control				

Maximum Ratings

1 Maximum Ratings

Table 2 Maximum Ratings

Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Voltage at pin VCC	V_{CC}	-0.3	_	3.6	V	1)
Voltage at pin Al	V_{AI}	-0.3	_	0.9	V	_
Voltage at pin AO	V_{AO}	-0.3	_	$V_{\rm CC}$ + 0.3	V	_
Voltage at pin PON	V_{PON}	-0.3	_	$V_{\rm CC}$ + 0.3	V	_
Voltage at pin GNDRF	V_{GNDRF}	-0.3	_	0.3	V	_
Current into pin VCC	$I_{\rm CC}$	_	_	16	mA	_
RF input power	P_{IN}	_	_	0	dBm	_
Total power dissipation, $T_{\rm S}$ < tbd. °C ²⁾	P_{tot}	_	_	60	mW	_
Junction temperature	T_{J}	_	_	150	°C	_
Ambient temperature range	T_{A}	-40	_	85	°C	_
Storage temperature range	T_{STG}	-65	_	150	°C	_
ESD capability all pins	$V_{\mathrm{ESD_HBM}}$	_	_	2000	V	according to JESD22A-114

¹⁾ All voltages refer to GND-Node unless otherwise noted

Attention: Stresses above the max. values listed here may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Thermal Resistance

Table 3 Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R_{thJS}	tbd.	K/W

¹⁾ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

²⁾ $T_{\rm S}$ is measured on the ground lead at the soldering point

2 Electrical Characteristics

2.1 Measured RF Characteristics Band 5

Table 4 Electrical Characteristics: ¹⁾ $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 1.8 V, $V_{\rm PON,ON}$ = 1.8 V, $V_{\rm PON,OFF}$ = 0 V, f = 869 - 894 MHz

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	in. Typ.	Max.			
Supply voltage	V_{CC}	1.5	_	3.3	V	_	
Supply current	$I_{\rm CC}$	_	4.4	5.4	mA	ON-mode	
		_	0.2	3	μΑ	OFF-mode	
Power On voltage	V_{pon}	1.0	_	Vcc	V	ON-mode	
		0	_	0.4	V	OFF-mode	
Power On current	I_{pon}	_	5	10	μΑ	ON-mode	
		_	_	1	μΑ	OFF-mode	
Insertion power gain	$ S_{21} ^2$	11.8	13.3	14.8	dB	_	
Noise figure ²⁾	NF	_	0.9	1.5	dB	$Z_{\rm S}$ = 50 Ω	
Input return loss ³⁾	RL_{in}	10	25	_	dB	_	
Output return loss ³⁾	RL_{out}	10	17	_	dB	_	
Reverse isolation ³⁾	$1/ S_{12} ^2$	17	21	_	dB	_	
Power gain settling time ⁴⁾⁵⁾	$t_{\rm S}$	_	4	7	μS	OFF- to ON-mode	
Inband input 1dB-compression point ³⁾	IP _{1dB}	-10	-6	_	dBm	_	
Inband input 3 rd -order intercept point ⁶⁾³⁾	IIP ₃	-6	-1	_	dBm	f_1 = 880 MHz f_2 = f_1 +/-1 MHz	
Stability ⁵⁾	k	_	> 1	_		f = 20 MHz 10 GHz	

¹⁾ Based on the application described in chapter 3

²⁾ PCB losses are subtracted

³⁾ Verification based on AQL; not 100% tested in production

⁴⁾ To be within 1 dB of the final gain

⁵⁾ Guaranteed by device design; not tested in production

⁶⁾ Input power = -30 dBm for each tone

Table 5 Electrical Characteristics: $^{1)}$ $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 2.8 V, $V_{\rm PON,ON}$ = 2.8 V, $V_{\rm PON,OFF}$ = 0 V, f = 869 - 894 MHz

Parameter	Symbol		Values	S	Unit	Note / Test Condition	
		Min.	n. Typ.	Max.			
Supply voltage	$V_{\sf CC}$	1.5	_	3.3	V	_	
Supply current	$I_{\rm CC}$	_	4.5	5.5	mA	ON-mode	
		_	0.2	3	μΑ	OFF-mode	
Power On voltage	V_{pon}	1.0	_	Vcc	V	ON-mode	
		0	_	0.4	V	OFF-mode	
Power On current	I_{pon}	_	10	15	μΑ	ON-mode	
		_	_	1	μΑ	OFF-mode	
Insertion power gain	$ S_{21} ^2$	11.8	13.3	14.8	dB	-	
Noise figure ²⁾	NF	_	0.9	1.5	dB	$Z_{\rm S}$ = 50 Ω	
Input return loss ³⁾	RL_{in}	10	24	_	dB	_	
Output return loss ³⁾	RL_{out}	10	15	_	dB	_	
Reverse isolation ³⁾	$1/ S_{12} ^2$	18	22	_	dB	_	
Power gain settling time ⁴⁾⁵⁾	$t_{\rm S}$	_	3	6	μS	OFF- to ON-mode	
Inband input 1dB-compression point ³⁾	IP _{1dB}	-7	-3	_	dBm	_	
Inband input 3 rd -order intercept point ⁶⁾³⁾	IIP ₃	-5	0	_	dBm	f_1 = 880 MHz f_2 = f_1 +/-1 MHz	
Stability ⁵⁾	k	_	> 1	_		f = 20 MHz 10 GHz	

¹⁾ Based on the application described in chapter 3

²⁾ PCB losses are subtracted

³⁾ Verification based on AQL; not 100% tested in production

⁴⁾ To be within 1 dB of the final gain

⁵⁾ Guaranteed by device design; not tested in production

⁶⁾ Input power = -30 dBm for each tone

2.2 Measured RF Characteristics Band 8

Table 6 Electrical Characteristics: ¹⁾ $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 1.8 V, $V_{\rm PON,ON}$ = 1.8 V, $V_{\rm PON,OFF}$ = 0 V, f = 925 - 960 MHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply voltage	$V_{\sf CC}$	1.5	_	3.3	V	_
Supply current	$I_{\rm CC}$	_	4.4	5.4	mA	ON-mode
		_	0.2	3	μΑ	OFF-mode
Power On voltage	V_{pon}	1.0	_	Vcc	V	ON-mode
		0	_	0.4	V	OFF-mode
Power On current	I_{pon}	_	5	10	μΑ	ON-mode
		_	_	1	μΑ	OFF-mode
Insertion power gain	$ S_{21} ^2$	11.5	13.0	14.5	dB	_
Noise figure ²⁾	NF	_	0.9	1.5	dB	$Z_{\rm S}$ = 50 Ω
Input return loss ³⁾	RL_{in}	10	16	_	dB	_
Output return loss ³⁾	RL_{out}	10	25	_	dB	_
Reverse isolation ³⁾	$1/ S_{12} ^2$	17	21	_	dB	_
Power gain settling time ⁴⁾⁵⁾	$t_{\rm S}$	_	4	7	μS	OFF- to ON-mode
Inband input 1dB-compression point ³⁾	IP _{1dB}	-10	-6	_	dBm	_
Inband input 3 rd -order intercept point ⁽⁶⁾³⁾	IIP ₃	-4	+1	_	dBm	f_1 = 940 MHz f_2 = f_1 +/-1 MHz
Stability ⁵⁾	k	_	> 1	_		f = 20 MHz 10 GHz

¹⁾ Based on the application described in chapter 3

²⁾ PCB losses are subtracted

³⁾ Verification based on AQL; not 100% tested in production

⁴⁾ To be within 1 dB of the final gain

⁵⁾ Guaranteed by device design; not tested in production

⁶⁾ Input power = -30 dBm for each tone

Table 7 Electrical Characteristics: $^{1)}$ $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 2.8 V, $V_{\rm PON,ON}$ = 2.8 V, $V_{\rm PON,OFF}$ = 0 V, f = 925 - 960 MHz

Parameter	Symbol		Values	S	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply voltage	V_{CC}	1.5	_	3.3	V	_	
Supply current	$I_{\rm CC}$	_	4.5	5.5	mA	ON-mode	
		_	0.2	3	μΑ	OFF-mode	
Power On voltage	V_{pon}	1.0	_	Vcc	V	ON-mode	
		0	_	0.4	V	OFF-mode	
Power On current	I_{pon}	_	10	15	μΑ	ON-mode	
		_	_	1	μΑ	OFF-mode	
Insertion power gain	$ S_{21} ^2$	11.6	13.1	14.6	dB	_	
Noise figure ²⁾	NF	_	0.9	1.5	dB	$Z_{\rm S}$ = 50 Ω	
Input return loss ³⁾	RL_{in}	10	17	_	dB	_	
Output return loss ³⁾	RL_{out}	10	23	_	dB	_	
Reverse isolation ³⁾	$1/ S_{12} ^2$	17	21	_	dB	_	
Power gain settling time ⁴⁾⁵⁾	$t_{\rm S}$	_	3	6	μS	OFF- to ON-mode	
Inband input 1dB-compression point ³⁾	IP _{1dB}	-6	-2	_	dBm	_	
Inband input 3 rd -order intercept point ⁶⁾³⁾	IIP_3	-3	+2	_	dBm	f_1 = 940 MHz f_2 = f_1 +/-1 MHz	
Stability ⁵⁾	k	_	> 1	_		f = 20 MHz 10 GHz	

¹⁾ Based on the application described in chapter 3

²⁾ PCB losses are subtracted

³⁾ Verification based on AQL; not 100% tested in production

⁴⁾ To be within 1 dB of the final gain

⁵⁾ Guaranteed by device design; not tested in production

⁶⁾ Input power = -30 dBm for each tone

2.3 Measured RF Characteristics Band 17

Table 8 Electrical Characteristics:¹⁾ $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 1.8 V, $V_{\rm PON,ON}$ = 1.8 V, $V_{\rm PON,OFF}$ = 0 V, f = 734 - 746 MHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply voltage	V_{CC}	1.5	_	3.3	V	_
Supply current	$I_{\rm CC}$	_	4.4	5.4	mA	ON-mode
		_	0.2	3	μΑ	OFF-mode
Power On voltage	V_{pon}	1.0	_	Vcc	V	ON-mode
		0	_	0.4	V	OFF-mode
Power On current	I_{pon}	_	5	10	μΑ	ON-mode
		_	_	1	μΑ	OFF-mode
Insertion power gain	$ S_{21} ^2$	11.1	12.6	14.1	dB	_
Noise figure ²⁾	NF	_	0.9	1.5	dB	$Z_{\rm S}$ = 50 Ω
Input return loss ³⁾	RL_{in}	6	9	_	dB	_
Output return loss ³⁾	RL_{out}	6	8	_	dB	_
Reverse isolation ³⁾	$1/ S_{12} ^2$	20	24	_	dB	_
Power gain settling time ⁴⁾⁵⁾	$t_{\rm S}$	_	4	7	μS	OFF- to ON-mode
Inband input 1dB-compression point ³⁾	IP _{1dB}	-12	-8	_	dBm	_
Inband input 3 rd -order intercept point ⁶⁾³⁾	IIP ₃	-7	-2	_	dBm	f_1 = 740 MHz f_2 = f_1 +/-1 MHz
Stability ⁵⁾	k	_	> 1	_		f = 20 MHz 10 GHz

¹⁾ Based on the application described in chapter 3

²⁾ PCB losses are subtracted

³⁾ Verification based on AQL; not 100% tested in production

⁴⁾ To be within 1 dB of the final gain

⁵⁾ Guaranteed by device design; not tested in production

⁶⁾ Input power = -30 dBm for each tone

Table 9 Electrical Characteristics: ¹⁾ $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 2.8 V, $V_{\rm PON,ON}$ = 2.8 V, $V_{\rm PON,OFF}$ = 0 V, f = 734 - 746 MHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply voltage	V_{CC}	1.5	_	3.3	V	_
Supply current	$I_{\rm CC}$	_	4.5	5.5	mA	ON-mode
		_	0.2	3	μΑ	OFF-mode
Power On voltage	V_{pon}	1.0	_	Vcc	V	ON-mode
	F 5.1.	0	_	0.4	V	OFF-mode
Power On current	I_{pon}	_	10	15	μΑ	ON-mode
		_	_	1	μΑ	OFF-mode
Insertion power gain	$ S_{21} ^2$	11.1	12.6	14.1	dB	_
Noise figure ²⁾	NF	_	0.9	1.5	dB	$Z_{\rm S}$ = 50 Ω
Input return loss ³⁾	$RL_{\sf in}$	6	9	_	dB	_
Output return loss ³⁾	RL_{out}	6	8	_	dB	_
Reverse isolation ³⁾	$1/ S_{12} ^2$	21	25	_	dB	_
Power gain settling time ⁴⁾⁵⁾	$t_{\rm S}$	_	3	6	μS	OFF- to ON-mode
Inband input 1dB-compression point ³⁾	IP _{1dB}	-10	-6	_	dBm	_
Inband input 3 rd -order intercept point ⁶⁾³⁾	IIP ₃	-7	-2	_	dBm	f_1 = 740 MHz f_2 = f_1 +/-1 MHz
Stability ⁵⁾	k	_	> 1	_		f = 20 MHz 10 GHz

¹⁾ Based on the application described in chapter 3

²⁾ PCB losses are subtracted

³⁾ Verification based on AQL; not 100% tested in production

⁴⁾ To be within 1 dB of the final gain

⁵⁾ Guaranteed by device design; not tested in production

⁶⁾ Input power = -30 dBm for each tone

3 Application Information

3.1 Application Circuit Schematic Band 5

Figure 2 Application Schematic BGA7L1N6

Table 10 Bill of Materials

Name	Part Type	Package	Manufacturer	Function
C1 (optional)	Chip capacitor	0402	Various	DC block 1)
C2 (optional)	≥ 1nF ²⁾	0402	Various	RF bypass 3)
L1	Chip inductor	0402	Murata LQW type	Input matching
N1	BGA7L1N6	TSNP-6-2	Infineon	SiGe LNA

- 1) DC block might be realized with pre-filter in LTE applications
- 2) For data sheet characteristics 1nF used
- 3) RF bypass recommended to mitigate power supply noise

A list of all application notes is available at http://www.infineon.com/gpslna.appnotes.

3.2 Application Circuit Schematic Band 8

Figure 3 Application Schematic BGA7L1N6

Table 11 Bill of Materials

Name	Part Type	Package	Manufacturer	Function
C1 (optional)	Chip capacitor	0402	Various	DC block 1)
C2 (optional)	≥ 1nF ²⁾	0402	Various	RF bypass 3)
L1	Chip inductor	0402	Murata LQW type	Input matching
N1	BGA7L1N6	TSNP-6-2	Infineon	SiGe LNA

- 1) DC block might be realized with pre-filter in LTE applications
- 2) For data sheet characteristics 1nF used
- 3) RF bypass recommended to mitigate power supply noise

A list of all application notes is available at http://www.infineon.com/gpslna.appnotes.

3.3 Application Circuit Schematic Band 17

Figure 4 Application Schematic BGA7L1N6

Table 12 Bill of Materials

Name	Part Type	Package	Manufacturer	Function
C1 (optional)	Chip capacitor	0402	Various	DC block 1)
C2 (optional)	≥ 1nF ²⁾	0402	Various	RF bypass 3)
L1	Chip inductor	0402	Murata LQW type	Input matching
N1	BGA7L1N6	TSNP-6-2	Infineon	SiGe LNA

- 1) DC block might be realized with pre-filter in LTE applications
- 2) For data sheet characteristics 1nF used
- 3) RF bypass recommended to mitigate power supply noise

A list of all application notes is available at http://www.infineon.com/gpslna.appnotes.

Figure 5 Drawing of Application Board

Figure 6 Application Board Cross-Section

Package Information

4 Package Information

Figure 7 TSNP-6-2 Package Outline (top, side and bottom views)

Figure 8 Footprint Recommendation TSNP-6-2

Figure 9 Marking Layout (top view)

Package Information

Figure 10 Tape & Reel Dimensions (reel diameter 180 mm, pieces/reel 15000)

www.infineon.com