12. Course Summary

Distributed Database Systems

Course Goal

- 1. Review the historic development of data management technologies;
- 2. Enhance the previous knowledge of database systems by deepening the understanding of the theoretical and practical aspects of the database technologies;
- 3. Understand the need for distributed database technology to tackle deficiencies of centralized database systems;
- 4. Introduce basic principles and implementation techniques of distributed database systems;
- 5. Expose active and emerging issues in distributed database systems and application development;
- 6. Apply theory to practice by building a data center in a distributed context.

Course Content – Theory

- Histroric development of data management technologies
- Distributed DataBase Systems (DDBS)
 - Architecture
 - Design (fragmentation and allocation)
 - Query processing and optimization
 - Transaction management and concurrecy control
 - Failure recovery and reliability
- State-of-Art big data management
 - $SQL \rightarrow NoSQL \rightarrow NewSQL$
 - parallel and streaming data management
 - data warehousing and OLAP

Course Topics

- Chapter 0: Overview
- Chapter 1: Introduction
- Chapter 2: Distributed DBMS Architecture
 - Data independence (logical/physical)
 - Transparency (distribution/fragmentation/replication)
 (the major goals of DDBMS)
 - ANSI/SPARC 3-level architecture (internal/conceptual/external views)
 - Components of DDBMS
 - User Processor at local site, plus Data Processor at remote site
 - Global directory

Chapter 3: Distributed DB Design

- DDB design = Data fragmentation and allocation
- Why and How
- Correctness of fragmentation (completeness, reconstruction, disjointness)

❖ Chapter 6/7: Overview of Query Processing

- Problem
- Objective
- Complexity, characterization
- Layers of query processing

- Chapter 8: Optimization of Distributed Queries
 - Cost model
 - Centralized query optimization
 - INGRES
 - System R
 - Distributed query optimization
 - Distributed INGRES
 - System R*

Chapter 10: Introduction to Transaction Management

- Properties of transactions: ACID
- Formalization partial order, or DAG
- Termination of transactions

Chapter 11: Distributed Concurrency Control

- Serializability theory
- Locking-based algorithms
 - Basic
 - 2PL
 - Strict 2PL
- Timestamp-based algorithms
 - Basic
 - Conservative
 - Extremely conservative
- Optimistic versus pessimistic

Chapter 12: Distributed DBMS Reliability

- Reliability and types of failures
- Local recovery protocols
 - Architecture and log file
 - Execution of LRM commands
 - Checkpoint
- Distributed reliability protocols
 - 2PC protocol
 - Termination protocols
 - Recovery protocols
 - 3PC an non-blocking protocols

- Chapter 13: Parallel Database Systems
 - Parallel architectures
 - Parallel DBMS techniques
- Chapter 18: Streaming Data Management
 - Challenges
 - Architecture
 - Query Processing
- Data Warehouse and OLAP

Question & Answer