Exercise 1

a) We have

$$\begin{array}{c|ccccc} r & x & y & q \\ \hline 135 & 1 & 0 & \\ 54 & 0 & 1 & 2 \\ 27 & 1 & -2 & 2 \\ 0 & -2 & 5 & \\ \end{array}$$

and thus gcd(135, 54) = 27. Since $27 \mid 0$, there is a solution.

From the last row we know that $125 \cdot -2 + 54 \cdot 5 = 0$, thus $(-2,5) \in L$. We can now describe L as $L = \{(-2k, 5k) \mid k \in \mathbb{Z}\}.$

b) We have (note that x and y are reversed)

$$\begin{array}{c|ccccc} r & y & x & q \\ \hline 105 & 1 & 0 & \\ 99 & 0 & 1 & 1 \\ 6 & 1 & -1 & 16 \\ 3 & -16 & 17 & 2 \\ 0 & 33 & -35 & \\ \end{array}$$

and thus gcd(105, 99) = 3. Since $3 \mid 12$, there is a solution.

From the second to last row we know

$$3 = (17 \cdot 99) + (-16 \cdot 105)$$
 and, after multiplying by $412 = (68 \cdot 99) + (-64 \cdot 105)$.

Thus we have that $(68, -64) \in L$ and further $L = \{(68 - 35k, -64 + 33k) \mid k \in \mathbb{Z}\}.$

c) We have

and thus gcd(38, 19) = gcd(19, -38) = 19. Since $19 \nmid 5$ this equation does not have a solution.

Exercise 2 We are looking for solutions to

$$35x + 45y = 1000$$

where x is the number of linear Algebra books and y is the number of Analysis books. We have (note that x and y are reversed)

r	y	x	$\mid q$
45	1	0	
35	0	1	1
10	1	-1	3
5	-3	4	2
0	7	-9	

and thus gcd(45,35) = 5. Since $5 \mid 1000$, there is a solution.

From the second to last row we know

$$5 = (4 \cdot 35) + (-3 \cdot 45)$$
 and, after multiplying by 200 $1000 = (800 \cdot 35) + (-600 \cdot 45)$

and thus $(800, -600) \in L$, allowing us to state $L = \{(800 \cdot -9k, -600 \cdot 7k) \mid k \in \mathbb{Z}\}$. For $86 \le k \le 88$ neither of the values in the pairs $\in L$ are negative. Thus we can either buy

Lineare Algebra	Analysis
26	2
17	9
8	16

books.

If the total available money were 1001 then we would have $5 \nmid 1000$, thus we would not be able to spend all of our budget.

Exercise 3 Idk.

Exercise 4 Interpreting the polynomials as being in \mathbb{Z}_5 .

Interpreting the polynomials as being in \mathbb{Q} .

	_			_										
x^5	x^4	x^3	x^2	x^1	x^0		x^3	x^2	x^1	x^0		x^2	x^1	\boldsymbol{x}
3	1	4	1	5	9	:	2	7	1	8	=	1.5	-4.75	1
3	10.5	1.5	12											
	-9.5	3.5	-11	5	9									
	-9.5	-33.25	-4.75	-38										
		35.75	-6.25	43	9									
		35.75	125.12	17.975	143									
			-132.37	25.125	-134									

Exercise 5

a) Consider that a general table for the GCD is

$$\begin{array}{c|cccc} r & u & v & q \\ \hline P_1 & 1 & 0 & \\ P_2 & 0 & 1 & q_1 \\ r_1 & 1 & v_1 & q_2 \\ r_2 & u_2 & v_2 & q_3 \\ r_3 & u_3 & v_3 & q_4 \\ \hline \end{array}$$

We begin by calculating q_1 and r_1 .

Thus $q_1 = x + 5$, $r_1 = 8x^3 + 16x^2 - 16x - 32$ and $v_1 = 0 - q_1 = -x - 5$.

We continue by calculating q_2 and r_2 .

Thus $q_2 = \frac{1}{8}x - \frac{1}{8}$ and $r_2 = 0$. We have $gcd(P_1, P_2) = r_1 = 8x^3 + 16x^2 - 16x - 32$.

b) If $\frac{a}{b}$ is a root of $gcd(P_1, P_2)$ then a must be a divisor of 32 and b must be a divisor of 8. The candidates are thus

$$\pm 1$$
 $\boxed{-2}$ ± 4 ± 8 ± 16 ± 32 $\pm \frac{1}{2}$ $\pm \frac{1}{4}$ $\pm \frac{1}{8}$

where boxed numbers are actual roots. We can thus factor out x + 2 by division.

We can now solve $8x^2 - 16 = 0$ through

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \pm \frac{\sqrt{-4 \cdot 8 \cdot -16}}{2 \cdot 8} = \pm \frac{\sqrt{512}}{16} = \pm \frac{16\sqrt{2}}{16} = \pm \sqrt{2}.$$

The roots are thus $-2, -\sqrt{2}$ and $\sqrt{2}$.

Exercise 6 We are looking for the rational roots of

$$P(x) = 18x^6 - 51x^5 - 7x^4 + 106x^3 - 62x^2 - 8x + 8$$

Using the fact that, if $\frac{a}{b}$ is a root of a polynom then $a \mid a_0$ and $b \mid a_n$, we get

$$\pm 1 \quad \boxed{2} \quad \pm 4 \quad \pm 8 \quad \boxed{\frac{1}{2}} \quad \boxed{-\frac{1}{3}} \quad \pm \frac{1}{6} \quad \pm \frac{1}{9} \quad \pm \frac{1}{18} \quad \boxed{\frac{2}{3}} \quad \pm \frac{2}{9} \quad \pm \frac{2}{18} \quad \pm \frac{4}{3} \quad \pm \frac{4}{9} \quad \pm \frac{8}{3} \quad \pm \frac{8}{9}$$

as potential roots. Boxed numbers are actual roots.

We can thus factor out

$$\left(x + \frac{1}{3}\right)\left(x - \frac{1}{2}\right)\left(x - \frac{2}{3}\right)(x - 2) = x^4 - \frac{17}{6}x^3 + \frac{29}{18}x^2 + \frac{2}{9}x - \frac{2}{9}$$

by division.

We can now solve $18x^2 - 36 = 0$ through

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \pm \frac{\sqrt{-4 \cdot 18 \cdot -36}}{2 \cdot 18} = \pm \frac{\sqrt{2592}}{36} = \pm \frac{36\sqrt{2}}{36} = \pm \sqrt{2},$$

yielding no rational roots. The rational roots are thus these obtained previously.

Exercise 7 We have

$$p(x) = x^7 - 6x^6 + 10x^5 - 6x^4 + 9x^3$$

$$p'(x) = 7x^6 - 36x^5 + 50x^4 - 24x^3 + 27x^2$$

and we are looking for a square-free factorisation of p. Calculating the GCD of p and p' we first divide p by p'

and get $r_1 = -\frac{76x^5}{49} + \frac{174x^4}{49} + \frac{108x^3}{49} + \frac{162x^2}{49}$ and $q_1 = \frac{x}{7} - \frac{6}{49}$. We can simplify $r_1 = -38x^5 + 87x^4 + 54x^3 + 81x^2$.

Now we divide p' by r_1

and get $r_2 = \frac{20531x^4}{1444} - \frac{13524x^3}{361} - \frac{22491x^2}{1444}$. We then divide r_1 by r_2 and get $r_3 = \frac{11696400x^2}{175561} - \frac{3898800x^3}{175561}$. We then divide r_2 by r_3 and get $r_4 = 0$.

Thus r_3 , which can be simplified to $x^3 - 3x^2$, is the GCD we are looking for.

We now divide p by this result which yields $x^4 - 3x^3 + x^2 - 3x$ with no remainder.

Exercise 8 To show that $p \mid \binom{p}{k}$ note that

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}$$
$$p! = \binom{p}{k} (k!(p-k)!).$$

Since the left hand side of the equation is clearly divisible by p, the right hand side must also be divisible by it. The expression k!(p-k)! is not divisible by p since it is a product of numbers smaller than p and p is prime. Thus the binomial coefficient must be the part which is divisible by p.

Now consider that, by the binomial theorem

$$(x+y)^{p} = \sum_{k=0}^{p} {p \choose k} x^{p-k} y^{k}$$

$$(x+y)^{p} = {p \choose 0} x^{p} y^{0} + {p \choose 1} x^{p-1} y^{1} + \dots + {p \choose p-1} x^{1} y^{p-1} + {p \choose p} x^{0} y^{p}$$

$$(x+y)^{p} = x^{p} + {p \choose 1} x^{p-1} y^{1} + \dots + {p \choose p-1} x^{1} y^{p-1} + y^{p}$$

$$(x+y)^{p} \equiv_{6} x^{p} + y^{p}$$