ARQUITECTURA VON NEUMANN

Descripción de la Arquitectura de la MR

LA MEMORIA

LA CPU

ARQUITECTURA DE LA MR

SECUENCIAMIENTO

Nivel de Lenguaje Máquina de la MR

INSTRUCCIONES: ARITMÉTICO-LÓGICAS

DE ACCESO A MEMORIA

DE SALTO

INSTRUCCIONES ARITMÉTICO-LÓGICAS

- ☐ Suma ADD
- ☐ Resta SUB
- ☐ Desplazamiento aritmético a la derecha ASR
- ☐ And-lógica AND
- □ Suma con inmediato ADDI
- ☐ Resta con inmediato SUBI

INSTRUCCIONES ARITMÉTICO-LÓGICAS

INSTRUCCIONES DE ACCESO A MEMORIA

□ LOAD
□ STORE

Dirección operando: Dirección_base + [Ri]

INSTRUCCIONES DE SALTO

- ☐ Saltar si más pequeño BL
- ☐ Saltar si más grande BG
- ☐ Saltar si igual BEQ
- ☐ Saltar si no igual BNE
- ☐ Saltar si más pequeño o igual BLE
- ☐ Saltar si más grande o igual BGE
- ☐ Salto incondicional BR

INSTRUCCIONES DE SALTO

← 2	3	3	•	8	•
CO	CONI	000		Dirección	Formato de las instrucciones
15	13	10	7		de salto
10	000	000		Dirección	Salto incondicional
15	13	10	7		_
10	001	000		Dirección	Saltar si igual
15	13	10	7		
10	010	000	<u> </u>	Dirección	Saltar si más pequeño
15	13	10	7		_
10	011	000	<u> </u>	Dirección	Saltar si más pequeño o igual
15	13	10	7		
10	101	10	7	Dirección	_ Saltar si no igual
			'	D: '/	7
10	110	10	<u> </u> 7	Dirección	Saltar si más grande o igual
10	1111	000	.	Dinagaión	
15	13	10	7	Dirección	Saltar si más grande

RESUMEN DE INSTRUCCIONES

LENGUAJE ENSAMBLADOR

Notación en LE	СО	OP ₀₋₂	Operación	Flags de Condición
Addi Rf1, #núm, Rd		000	Rd := Rf1 + núm	Z := (Rf1 + núm = 0), N := (Rf1 + núm < 0).
Subi Rf1, #núm, Rd		001	Rd := Rf1 - núm	Z := (Rf1 - núm = 0), N := (Rf1 - núm < 0).
Add Rf1, Rf2, Rd	11	100	Rd := Rf1 + Rf2	Z := (Rf1 + Rf2 = 0), N := (Rf1 + Rf2 < 0).
Sub Rf1, Rf2, Rd	11	101	Rd := Rf1 - Rf2	Z := (Rf1 - Rf2 = 0), N := (Rf1 - Rf2 < 0).
Asr Rf2, Rd		110	Rd := Rf2 >> 1	Z := (Rf2 >> 1 = 0), $N := Rf2_{15}.$
And Rf1, Rf2, Rd		111	$Rd := Rf1 \wedge Rf2$	$Z := (Rf1 \wedge Rf2 = 0),$ $N := (Rf1 \wedge Rf2 < 0).$

Tabla 1. Instrucciones Aritmético-lógicas.

Notación en LE	CO	Operación	Flags de Condición
LOAD dir_base(Ri), Rd	00	Rd := M[dir_base+Ri]	$Z := (M[dir_base+Ri] = 0),$ $N := (M[dir_base+Ri] < 0),$
STORE Rf, dir_base(Ri)	01	M[dir_base+Ri] := Rf	Z y N no cambian.

Tabla 2. Instrucciones de Acceso a Memoria.

Notación en LE	СО	COND	Condición	Comentarios	
BR dir_absoluta		000	1	Salto incondicional	
BEQ dir_absoluta		001	Z	Salta si igual	
BL dir_absoluta		010 N		Salta si más pequeño	
BLE dir_absoluta		011	NvZ	Salta si más pequeño o igual	
	10	100	-	Codificación no usada.	
BNE dir_absoluta		101	Z	Salta si no igual	
BGE dir_absoluta		\overline{N}		Salta si más grande o igual	
BG dir_absoluta		111	$\overline{N} v \overline{Z}$	Salta si más grande	

Tabla 3. Instrucciones de Salto.

PROGRAMA EJEMPLO

Programa a_por_b var a, b, sum: entero; a:=10; b:=5; sum:=0; mientras b>0 hacer sum:=sum+a; b:=b-1; fmientras fprograma

```
Lenguaje Ensamblador
```

```
[@0]=10
0
   [@1]=5
  [@2]=0
  LOAD 0(R0), R1
  LOAD 1(R0), R2
4
  ADDI R0, #0, R3
5
  SUBI R2, #0, R0
6
   BLE 11
  ADD R3, R1, R3
   SUBI R2, #1, R2
9
10 BR 6
11 STORE R3, 2(R0)
```

	Lenguaje Máquina
0	0000000000001010
1	0000000000000101
2	0000000000000000
3	00 001 000 00000000
4	00 010 000 00000001
5	11 011 000 00000 000
6	11 000 010 00000 001
7	10 011 000 00001011
8	11 011 011 001 00 100
9	11 010 010 00001 001
10	10 000 000 00000110
11	01 011 000 00000010

OPERACIONES A REALIZAR:

- □ SUMA: add, addi
- ☐ RESTA: sub, subi
- □ DESPLAZAMIENTO ARITMÉTICO 1 BIT
 - A LA DERECHA: ASR
- ☐ AND LÓGICA: and
- □ DEJAR PASAR OPERANDO: load

$OPERAR OP_1 OP_0$	Operación
0xx	Dejar pasar B
100	A + B
101	A - B
110	B >> 1
111	A and B

$OPERAR OP_1 OP_0$	Operación
0xx	Dejar pasar B
100	A + B
101	A - B
110	B >> 1
111	A and B

UP: BANCO DE REGISTROS

UP: COMUNICACIÓN B. DE REGISTROS-ALU-MEMORIA

UP: REGISTROS ESPECIALES: PC, IR

UP: SELECCIÓN DE LA DIRECCIÓN DE LA SIGUIENTE INSTRUCCIÓN A EJECUTAR

Dirección de memoria @

UP: LÓGICA DE GENERACIÓN DE DIRECCIONES

UP: EVALUACIÓN DE LA CONDICIÓN DE SALTO

UP: COMUNICACIÓN MEMORIA-ALU-IR-B. DE REGISTROS

EXTENSIÓN DE SIGNO DEL OPERANDO INMEDIATO

UP: COMUNICACIÓN MEMORIA-B. DE REGISTROS-IR-ALU

UNIDAD DE PROCESO M_{in} Rx₀₋₁₅ Rx₀₋₇ Ld_R@ PC / @ IR₁₃₋₁₁ (R_f) -→ Ld_A IR₀₋₇ R@ $IR_{10-8} (R_{f1}/R_i) \xrightarrow{}_3$ ► Ld_IR $IR_{7-5}(R_{f2}) - \sqrt{3}$ → Ld_PC no usado /3 @ → Ld_R@ ► Ld_RZ OUT IR_{7-3} → Ld_RN MEMORIA → <u>PC</u> / @ Ld_PC R0 √₂► CR_f load_▶ R1 → ER_d Ld_IR load **R2** UNIDAD DE CONTROL **-** Ī/E EXT IR load► R3 → OPERAR $IR_{13-11}(R_d) - \sqrt{3}$ load► R4 5 load **R5** M_{out} load► R6 load► R7 - OPERAR → <u>L/E</u> ER_d RA $-\operatorname{IR}_2(\operatorname{OP}_2)$ Ld_RZ √/2 IR₁₅₋₁₄ (CO) RZ-IN **OPERAR** Evaluación **ALU** RN◀ - IR₁₋₀ (OP₁₋₀) de la condición Cond $\frac{4}{3}$ IR₁₃₋₁₁(COND) Ld_RN

RESUMEN DE INSTRUCCIONES

CO Rd / Rf Ri dir base LOAD / STOR
CO Pd / Pf Pi dir basa LOAD / STOP

Instrucción	СО
LOAD dir_base(Ri), Rd	00
STORE Rf, dir_base(Ri)	01

ı	15 14 13					10 8			0		
	CO COND			00)0		dir_absoluta		SALTO		

Instrucción	СО	COND	Condición	
BR dir_absoluta		000	1	
BEQ dir_absoluta		001	Z	
BL dir_absoluta		010	N	
BLE dir_absoluta	10	011	Z + N	
BNE dir_absoluta		101	Z	
BGE dir_absoluta		110	N	
BG dir_absoluta		111	N + Z	

15	14	13		11	10		8	7		5	4	3	2		0	
С	0		Rd			Rf1			Rf2		0	0		OP		ARIT / LOGIC
15	14	13		11	10		8	7				3	2		0	
C	0		Rd			Rf1			nú	ime	ro			ОР		ARIT- INMEDIATO

Instrucción	СО	OP
ADD Rf1, Rf2, Rd		100
SUB Rf1, Rf2, Rd	11	101
ASR Rf2, Rd		110
AND Rf1, Rf2, Rd		111
ADDI Rf1, #num, Rd		000
SUBI Rf1, #num, Rd		001

FASES DE EJECUCIÓN DE UNA INSTRUCCIÓN

- ☐ Fetch
- **☐** Decodificación
- ☐ Búsqueda de operandos + Evaluacion Cond. de Salto
- ☐ Ejecución y escritura del resultado

FASES DE FETCH Y DECODIFICACIÓN

GRAFO DE ESTADOS DE LAS FASES DE FETCH Y DECODIFICACIÓN

1	1
F	DE
1	0
1	0
0	0
0	0
0	0
0	0
0	0
0	0
0	X
XX	XX
X	X
	1 0 0 0 0 0 0 0 xx

GRAFO DE ESTADOS DE LAS INSTRUCCIONES ARITMÉTICAS

Salidas UC	РО	SOE
Ld_IR	0	0
Ld_PC	0	0
Ld_R@	0	0
Ld_RA	1	0
Ld_RZ	0	1
Ld_RN	0	1
ER _d	0	1
T/E	0	0
PC/@	X	X
CR_f	01	10
OPERAR	X	1
PC/@	x 01	x 10

GRAFO DE ESTADOS DE LAS INSTRUCCIONES DE ACCESO A MEMORIA

Salidas UC	AD	L	S
Ld_IR	0	0	0
Ld_PC	0	0	0
Ld_R@	1	0	0
Ld_RA	0	0	0
Ld_RZ	0	1	0
Ld_RN	0	1	0
ER _d	0	1	0
T/E	0	0	1
PC/@	X	1	1
CR_f	01	XX	00
OPERAR	X	0	X

GRAFO DE ESTADOS DE LAS INSTRUCCIONES DE SALTO

Salidas UC	DE	AD	В
Ld_IR	0	0	1
Ld_PC	0	0	1
Ld_R@	0	1	0
Ld_RA	0	0	0
Ld_RZ	0	0	0
Ld_RN	0	0	0
ER _d	0	0	0
T/E	0	0	0
PC/@	X	X	1
CR _f	XX	01	XX
OPERAR	X	X	X

GRAFO DE ESTADOS DE LA UC DE LA MR

TABLA DE SALIDAS DE LA UC DE LA MR

Salidas UC	F	DE	AD	L	S	РО	SOE	В
Ld_IR	1	0	0	0	0	0	0	1
Ld_PC	1	0	0	0	0	0	0	1
Ld_R@	0	0	1	0	0	0	0	0
Ld_RA	0	0	0	0	0	1	0	0
Ld_RZ	0	0	0	1	0	0	1	0
Ld_RN	0	0	0	1	0	0	1	0
ER _d	0	0	0	1	0	0	1	0
T/E	0	0	0	0	1	0	0	0
PC/@	0	X	X	1	1	X	X	1
CR _f	XX	XX	01	XX	00	01	10	XX
OPERAR	X	X	X	0	X	X	1	X

OPTIMIZACIÓN DE LA UNIDAD DE CONTROL

GRAFO DE ESTADOS SIMPLIFICADO DE LA UC

TABLA DE SALIDAS SIMPLIFICADA DE LA UC

Salidas UC	F	D	A	L	S	В
Ld_IR	1	0	1	0	0	1
Ld_PC	1	0	1	0	0	1
Ld_R@	0	1	0	0	0	0
Ld_RA	0	1	0	0	0	0
Ld_RZ	0	0	1	1	0	0
Ld_RN	0	0	1	1	0	0
ER _d	0	0	1	1	0	0
T/E	0	0	0	0	1	0
PC/@	0	X	0	1	1	1
CR_f	XX	01	10	XX	00	XX
OPERAR	X	X	1	0	X	X

IMPLEMENTACIÓN CON ROM DE LA UC

