# ROSE-HULMAN INSTITUTE OF TECHNOLOGY

2012 IGVC Design Entry: Moxom's Master





#### Team Members:

Allison Crump, Rain Dart, Kyle Green, Ben Griffith, Derek Heeger, Alex Memering, Michael Pauly, Ander Solorzano, Trent Tabor, Dmitry Votintsev, Elias White, Ruffin White

#### Team Advisor:

Dr. David Mutchler (Ph.D. Computer Science)

#### PRESENTATION OVERVIEW

Overall Design Plan

Hardware Features and Improvements

Overall Software Design Concept

Software Features and Innovations

Concluding Remarks and Future Plans

#### OVERALL DESIGN PLAN

Durable and reliable

Modular and easy to change

Intelligent

Low Power Consumption

Safe

Determine objectives and goals Create parts inventory Construct frame and install sensors and computer Create and test software algorithms

Make changes and improvements if needed

Observe and verify performance



### MAJOR COMPONENTS AND COSTS

| Component                 | List     | Cost to Team |
|---------------------------|----------|--------------|
| Hardware                  |          |              |
| Cases                     | \$255    | \$85         |
| Drivetrain                | \$400    | \$400        |
| Acrylic Panels            | \$119    | \$119        |
| Lubrication               | \$50     | \$50         |
| 80 / 20                   | \$400    | \$200        |
| Frame Hardware            | \$200    | \$200        |
| Electronics               |          |              |
| RoboteQ Motor Controllers | \$385    | \$385        |
| Optical Encoders          | \$228    | \$228        |
| Wire and Connectors       | \$380    | \$330        |
| Breakers, fuses           | \$170    | \$170        |
| Batteries                 | \$330    | \$330        |
| Tools                     | \$56     | \$56         |
| Battery Charger           | \$200    | \$200        |
| Power Supply              | \$80     | \$80         |
| MicroStrain 3 DM -G IMU   | \$1,300  | \$0          |
| Hokuyo LIDAR              | \$7,000  | \$7,000      |
| Logitech Webcam           | \$80     | \$0          |
| NAVCOM GPS                | \$1,500  | \$0          |
| Miscellaneous             | \$100    | \$100        |
| Computer                  |          | anomic .     |
| CPU                       | \$360    | \$360        |
| Motherboard               | \$150    | \$150        |
| Video Card                | \$50     | \$50         |
| RAM                       | \$120    | \$120        |
| 60 GB SSD                 | \$85     | \$85         |
| TOTAL                     | \$15,747 | \$10,698     |





**HOKUYO LIDAR** 



MicroStrain IMU



NAVCOM GPS



Logitech Webcam



RoboteQ Motor Controller

Intel i5 Core

#### MECHANICAL FEATURES AND IMPROVEMENTS



Shortened case and lightened mast to decrease weight





Improved encoder to motor shaft connection

Adds stability and durability to sensors

Increased turning speed



Added shocks to dampen bounce and add durability

Heavier on the back wheels

Meets physical constraints



Modified wheel base to improve mobility

#### ELECTRICAL FEATURES AND IMPROVEMENTS



Replaced old emergency shut off switch for increased safety



Replaced SICK LIDAR with Hokuyo model for increased angular scan



Replaced Black Jaguar motor controllers with RoboteQ motor controller



Moved the battery charger off of the robot to decrease weight



Replaced the Elphel camera with a Logitech webcam for easier communication



Increased obstacle detection view

**Increased agility** 

Faster and sufficient line detection

Reduced power consumption

Faster and reliable response in case of emergency

Reliable waypoint navigation



Incorporated the WAAS features of the GPS for increased accuracy

#### OVERALL SOFTWARE DESIGN CONCEPT

#### <u>Sense</u>

Initialize all sensors and gather data from the environment

#### Think

Process all gathered data and determine best plan of action

#### <u>Act</u>

Use the motor to turn or head towards the goal through a safe and efficient path

### SOFTWARE IMPLEMENTATION



#### **OVER VIEW**





### FRAMEWORK

Sense

Think

Act



#### T ms ow 1 kHz odt 10 start point (-135°) No Error ▼ <sup>3</sup>2<sub>1</sub> 100 **⊨** -2 False ▼ end point (135°) LIDAR VISA LIDAR Data protocol 60 LIDAR Error U32 I error in 200 Error TEN i

# SENSOR LOOPS



# VISION ACQUISITION















### **OBSTACLE DETECTION**





command vy command heading (deg) histogram out mask out

## WAYPOINT TRAVEL



### **OCCUPANCY GRID**

Sense

Think

Act



#### **CONCLUDING REMARKS**

**Strengths of Moxom's Master** 

**Drawbacks of Moxom's Master** 

Original design

Unique and strong software design

Heavy and tall on the back

Mechanically unstable

Capacity to meet all objectives

Easy to make changes

Small drive wheels for off-road terrain

Low power output

Reliable safety mechanisms

On-board monitor and router

Expensive design

# **FUTURE PLANS**







Construct new robot design

#### **ACKNOWLEDGEMENTS**

# Rockve Colins

Other Sponsors







