

Non-Homophilic Graph Pre-Training and Prompt Learning

Xingtong Yu, Jie Zhang, Renhe Jiang, Yuan Fang

Pre-training and prompt learning have become a popular approach to train Graph Neural Networks (GNNs) without heavy reliance on labeled data.

(c) Diverse non-homophilic patterns across nodes in the same graph

However, most existing prompt methods do not distinguish between homophilic and heterophilic characteristics in graphs.

Challenges

- How do we pre-train a graph model irrespective of the graph's homophily characteristics?
- How do we capture the fine-grained, nodespecific non-homophilic characteristics?

Method: ProNoG

- ProNoG: a novel pre-training and prompt learning framework for non-homophilic graphs.
- In graph pre-training, we pre-train a graph encoder using a non-homophilic pre-training task.
- On downstream tasks, we propose condition-net to generate prompts based on different non-homophilic patterns, allowing for precise adjustments at the node level without updating the weights of the pre-trained model.

Ablation study

Methods	Graph classification							
	Wisconsin	Squirrel	Chameleon	PROTEINS	ENZYMES			
NoPrompt	20.85±6.74	20.18±1.30	22.34±4.15	53.61± 8.90	21.85±6.17			
SinglePrompt	25.77±6.24	20.68±0.91	27.03±3.98	56.35±10.59	19.38±7.12			
NodeCond	25.30±4.62	20.98±1.56	27.24±5.24	56.61 ±10.03	20.70±6.67			
ProNoG\sim	22.05±5.86	19.93±0.42	20.20±1.11	52.30±10.94	16.70±1.28			
ProNoG	31.54±5.30	20.92±1.37	28.50 ±5.30	56.11±10.19	22.55±6.70			
Methods	Wisconsin	Squirrel	Node clas Chameleon	sification PROTEINS	ENZYMES			
Methods ———— NoPrompt	Wisconsin 25.41±3.13	Squirrel 20.60±1.30						
	<u> </u>	20.60±1.30	Chameleon	PROTEINS	66.59±19.28			
NoPrompt	25.41±3.13	20.60±1.30 20.85±1.32	Chameleon 22.71±3.54	PROTEINS 47.22±11.05	66.59±19.28 65.32±21.67			
NoPrompt SinglePrompt	25.41±3.13 32.76±5.21	20.60±1.30 20.85±1.32 21.26±3.95	22.71±3.54 22.78±3.35	PROTEINS 47.22±11.05 30.33±19.59	66.59±19.28 65.32±21.67 68.54±19.31			

ProNoG consistently outperforms these variants in all but one instance, in which its performance is still competitive. This highlights the necessity of reading out subgraphs with similarity weighting in order to capture the characteristics of each node, and the advantage of using conditional prompt learning to adapt to each node.

Results & Experiments

Methods	Chameleon	Cornell	PROTEINS	ENZYMES	Chameleon	Cornell	PROTEINS	ENZYMES
GCN	25.11 ± 4.19	21.81 ± 4.71	43.32 ± 9.35	48.08 ± 4.71	17.21 ± 4.80	26.36 ± 4.35	51.66 ± 10.87	19.30 ± 6.36
GAT	24.82 ± 4.35	23.03 ± 13.19	31.79 ± 20.11	35.32 ± 18.72	25.71 ± 3.32	22.66 ± 12.46	51.33 ± 11.02	20.24 ± 6.39
H2GCN	25.89 ± 4.96	32.77 ± 14.88	29.60 ± 6.99	37.27 ± 8.73	26.76 ± 3.98	23.11 ± 11.78	53.81 ± 8.85	19.40 ± 5.57
FAGCN	22.71 ± 3.74	28.67 ± 17.64	32.63 ± 9.94	35.87 ± 13.47	25.93 ± 4.03	25.71 ± 13.12	55.45 ± 11.57	19.95 ± 5.94
DGI	19.33 ± 4.57	32.54 ± 15.66	45.22 ± 11.09	48.05 ± 14.83	24.29 ± 4.33	18.60 ± 12.79	50.32 ± 13.47	21.57 ± 5.37
GRAPHCL	27.16 ± 4.31	24.69 ± 14.06	46.15 ± 10.94	48.88 ± 15.98	26.45 ± 4.30	20.03 ± 10.05	54.81 ± 11.44	19.93 ± 5.65
DSSL	27.92 ± 3.93	20.36 ± 5.38	40.42 ± 10.08	66.59 ± 19.28				
GraphACL	26.72 ± 4.67	33.17 ± 16.06	42.16 ± 13.50	47.57 ± 14.36	26.19 ± 3.72	18.38 ± 10.63	52.73 ± 10.98	23.14 ± 6.71
GPPT	24.53 ± 2.55 25.09 ± 2.92 35.15 ± 11.40 35.37 ± 9.37			26.28 ± 3.93	26.50 ± 17.18	56.11 ± 13.95	20.28 ± 5.60	
					26.51 ± 4.67	24.06 ± 13.71	53.61 ± 8.90	21.85 ± 6.17
GRAPHPROMPT		31.00 ± 13.88	47.22 ± 11.05	53.54 ± 15.46	26.03 ± 4.17	25.31 ± 7.65	54.55 ± 12.61	21.85 ± 5.15
GRAPHPROMPT	25./3 ± 4.50	31.65 ± 14.48	46.08 ± 9.96	57.68 ± 13.12	20.03 1 4.17	23.31 ± 7.03	34.33 ± 12.01	21.05 ± 3.15
ProNoG	30.67 ± 3.73	37.90 ± 9.31	48.95 ± 10.85	72.94 ± 20.23	28.50 ± 5.30	27.17 ± 9.58	56.11 ± 10.19	22.55 ± 6.70

Few-shot node classification

Few-shot graph classification

ProNoG surpasses all baseline methods across all settings in one shot scenarios, outperforming the best competitor by up to 21.49% on node classification and 6.50% on graph classification.

ProNoG significantly outperforms all baselines in low-shot scenarios with very limited labeled data (e.g., $k \le 5$),