1 AAAGACAAACTGCACCCACTGAACTCCGCAGCTAGCATCCAAATCAGCCCTTGAGATTTGAGGCCTTGGAGACTCAGGAGTTTTGAGAGC

91 AAAATGACAACACCCAGAAATTCAGTAAATGGGACTTTCCCGGCAGAGCCCAATGAAAGGCCCTATTGCTATGCAATCTGGTCCAAAACCA welThrThrFroArgAsnSerValAsnGlyThrPheProAlaGluProMetLysGlyProIleAlaWetGlnSerGlyProLysPro ---CHD---

30 LeuPheArgArgMetSerSerLeuValGlyProThrGlnSerPhePheWetArgGluSerLysThrLeuGlyAlaValGlnIleWetAsn 181 CICTICAGGAGGATGICTICACTGGTGGGCCCCACGCAAAGCTTCTICAIGAGGGAAICTAAGACTTTGGGGGCTGTCCAGATTATGAAT

60 GlyLeuPheHisIleAlaLeuGlyGlyLeuLeuMetIleProAlaGlyIleTyrAlaProIleCysValThrValTrpTyrProLeuTrp 271 GGGCTCTTCCACATTGCCCTGGGGGTCTTCTGATGATCCCAGCAGGGATCTATGCACCCATCTGTGTGACTGTGTGGTACCCTCTCTGG

GlyGlyIleMetTyrIleIleSerGlySerLeuLeuAlaAlaThrGluLysAsnSerArgLysCysLeuValLysGlyLysWetIleWet GGAGGCATTATGTATATTTCCGGATCACTCCTGGCAGCAACGGAAAAACTCCAGGAAGTGTTTGGTCAAAGGAAAATGATAATG

AsnSerLeuSerLeuPheAlaAlaIleSerGlyMetIleLeuSerIleMetAspIleLeuAsnIleLysIleSerHisPheLeuLysMet 451 AATTCATTGAGCCICTTTGCTGCCATTTCTGGAATGATTCTTTCAATCATGGACATACTTAATATTAAAAATTTCCCATTTTTAAAAATG GAGAGICTGAATITITATIAGAGCTCACACACATATAACATATACAACTGTGAACCAGCTAATCCCTCTGAGAAAAACTCCCCATCT GluSerLeuAsnPheIleArgAlaHisThrProTyrIleAsnIleTyrAsnCysGluProAlaAsnProSerGluLysAsnSerProSer

180 ThrGlnTyrCysTyrSerIleGlnSerLeuPheLeuGlyIleLeuSerValMetLeuIlePheAlaPhePheGlnGluLeuValIleAla 631 ACCCAATACTGTTACAGCATACAATCTCTGGTTTTTGGGCATTTTGTCAGTGATGCTGATCTTTGCCTTCTTCCAGGAACTTGTAATAGCT

FIG. 10A-1

210 GlyIleValGluAsnGluTrpLysArgThrCysSerArgProLysSerAsnIleValLeuLeuSerAlaGluGluLysLysGluGlnThr

240 IleGluIleLysGluGluValValValGlyLeuThrGluThrSerSerGlnProLysAsnGluGluAspIleGluIleIleProIleGlnGlu

GluGluGluGluThrGluThrAsnPheProGluProProGlnAspGlnGluSerSerProIleGluAsnAspSerSerProEnd 297 9D1 GAGGAAGAAGAAGAACAAGAGACGAACTTTCCAGAACCTCCCCAAGATCAGGAATCCTCACCAATAGAAAATGACAGCTCTCCTTAAGTG ---CHO---

ATTICTICT GITTIC TGITT CCTITITI A A A CATTAGIGIT CATAGCTT C CAAGAGA CAIGC TGACTIT CATTICT TGAGGIACT CTGCA

1081 CATACGCACCACATCTCTATCTGGCCTTTGCATGGAGTGACCATAGCTCCTTCTCTCTTACATTGAATGTAGAATGTAGCATTGTAG

1171 CAGCTTGTGTTGTCACGCTTCTTCTTTTGAGCAACTTTCTTACACTGAAGAAAGGCAGAATGAGTGCTTCAGAATGTGATTTCCTACTAA

FIG. 10A-2 1441 ATGATGCAAAAGGGCTTTAGAGCACAATGGATCT 1474

SGTTGCTGGGAGCGACGCGGGCGCGCCCTGGGGGTCCTCAGCGTGGTCTGCCTGC
C 9 e 2
CAT le I I
JPT yPy
TCC 1091
CTT sPI
VCT(isC)
TGC/ eull
TGC
acc ysL
TCT a I C
TCC /a 1V
\CCC
CTC/
GTC(Vall
GGG
CTG Leu
GCC JA La
CGG
0000
SCC
CGA(
GAG(y Se
TCC aC1
TGC
TCCTT etVal
[V]
, JVC
SCCCGACGAGCCATGGTTGCTGC MetValAlaG
$\tilde{\mathcal{C}}$
ق

91 AGCTGTTTTTCCCAACAAATATATGGTGTTGTGTATGGGAATGTAACTTTCCATGTACCAAGCAATGTGACCTTTAAAAAGAGGTCCTATGG 180 27 SerCysPheSerGinGinIleTyrGiyVaiVaiTyrGiyAsnVaiThrPheHisVaiProSerAsnVaiProLeuLysGiuVaiLeuTrp ---CHD---

57 LysLysGinLysAspLysVaiAlaGiuLeuGiuAsnSerGiuPheAŕgAiaPheSerSerPheLysAsnArgVaiTyrLeuAspThrVai

87 SerGlySerLeuThrIleTyrAsnLeuThrSerSerAspGluAspGluTyrGluMetGluSerProAsnIJeThrAspThrWetLysPhe 116

117 PheLeuTyrValLeuGluSerLeuProSerProThrLeuThrCysAlaLeuThrAsnGlySerIleGluYalGlnCysMetIleProGlu 146

541 ATGGAAAATGATCTTCCACAAAAAATACAGTGTACTCTTAGCAATCCATTATTTAATACAACATCATCATCATTTTGACAACCTGTATC 630 177 WetGluAsnAspLeuProGlnLysIleGlnCysThrLeuSerAsnProLeuPheAsnThrThrSerSerIleIleLeuThrThrCysTle 631 CCAAGCAGCGGTCATTCAAGACACAGATATGCACTTATACCCATACCATTAGCAGTAATTACAACATGTATTGTGCTGTATATGAATGTT 720 207 ProSerSerGlyHisSerArgHisArgTyrAlaLeuIleProIleProLeuAlaValIleThrThrCysIleValLeuTyrMetAsnVal

FIG. 4A 811 AAGATGAAGACAACAGCATAACTAAATTATTTTAAAAACTAAAAAGCCATCTGATTTCTCATTT 874