Detecting selection: from low-depth data

Matteo Fumagalli

Outline

- Brief introduction to natural selection
- Modes of selection
- Inferring selection at the intra-species level
 - Genetic differentiation
 - Haplotype variation
 - Model-based approaches
 - Testing for significance
- Inferring selection at the inter-species level
- Detecting selection from low-depth sequencing data
- Brief notes on optimal experimental design

Next Generation Sequencing data processing

Next Generation Sequencing data processing

Next Generation Sequencing data processing in the non-model world

Next Generation Sequencing data processing in the <u>non-model</u> world

- No reference panel information (no imputation/validation)
- No reference sequence (lower mappability?)
- No HWE assumption (inbred)
- Hyper/Hypovariability or polyploidy or huge genome
- No money (?)

- ...

Next Generation Sequencing data processing in the non-model world

- No reference panel information (no imputation/validation)
- No reference sequence (lower mappability?)
- No HWE assumption (inbred)
- Hyper/Hypovariability or polyploidy or huge genome
- No money (?)
- Your inferences will be wrong!

Next Generation Sequencing data processing in the non-model world

Genetic distances

Genotype 1	Genotype 2	Distance
aa	aa	0
aa	aA	1
aa	AA	2
аА	aa	1
аА	aA	0
аА	AA	2

Genetic distances

e.g. G(i=A,s=1)=0 and G(j=B,s=1)=1 then d(i,j)=1

Genetic distances from known genotypes

Genotypes are {aa, aA, AA} as {0, 1,2} For individuals i and j and N sites:

$$d(i,j) = -\log\left(1 - \frac{1}{N} \sum_{s=1}^{N} \frac{|g(i,s) - g(j,s)|}{2}\right)$$

$$d(i,j) = 1*1.00 = 1.00/2$$

В

	0	1	2
0	0	1	0
1	0	0	0
2	0	0	0

Expected value

- The expected value of a discrete random variable is the probability-weighted average of all possible values
- Average value if you perform the same experiment many times

Genetic distances from (un)known genotypes

Genotypes are {aa, aA, AA} as {0, 1,2} For individuals i and j and N sites:

Α

$$d(i,j) = -\log\left(1 - \frac{1}{N} \sum_{s=1}^{N} \frac{|g(i,s) - g(j,s)|}{2}\right)$$

$$E[d(i,j)] = 0*0.30 + 1*0.50 + 2*0.10 + 1*0.10 + ... = 0.80/2$$

В

	0	1	2
0	0.30	0.50	0.10
1	0.10	0	0
2	0	0	0

Genetic distances from unknown genotypes

Genotypes are {aa, aA, AA} as {0, 1, 2}

For individuals i and j and N sites:

$$d(i,j) = -\log (1 - \frac{1}{N} \sum_{s=1}^{N} \frac{|g(i,s) - g(j,s)|}{2})$$

Iterate across all possible genotypes

Genotypes probability

$$d(i,j) = -\log\left(1 - \frac{1}{N} \sum_{s=1}^{N} \sum_{g(i,s)=0}^{2} \sum_{g(j,s)=0}^{2} \frac{|g(i,s) - g(j,s)|}{2} *P(g(i,s),g(j,s))\right)$$

Genetic distances from unknown genotypes

Genotype calling (no prior)

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

$\mid p_0 \mid$	ρ_1	p_2	p_3	•••	p_{2k}

If folded, *k+1* entries

$ p_0 $	p_1	p_2	•••	p_k

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

$ p_0 $	$ p_1 $	p_2	p_3	•••	p_{2k}

e.g. A is ancestral, G is derived (alternate)

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

e.g. A is ancestral, G is derived (alternate)
AA AA AG AA AG AA AA AA

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

e.g. A is ancestral, G is derived (alternate)

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

e.g. A is ancestral, G is derived (alternate)
If genotypes are unknown? Counting is not possible?

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

e.g. A is ancestral, G is derived (alternate)

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

e.g. A is ancestral, G is derived (alternate)

Sample allele frequency probabilities

Sample allele frequency probabilities

Sample allele frequency probabilities

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Estimating allele frequency

$$\hat{f} =$$

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Estimating allele frequency

$$\hat{f} = \sum_{i=0}^{2k} \left(\frac{i}{2k}\right) p(S=i)$$

With 6 chromosomes (3 diploids)

ρ_0 =0.10	p₁=0.15	$p_2 = 0.50$	p ₃ =0.15	<i>p</i> ₄=0.05	p ₅ =0.05	p_{6} =0.00
1 0 -	<i> </i> - <u>1</u>	1-2	1-3	1-4	<i>1</i> -5	<i> </i> -

SNP calling

$$p_{\text{var}} = ?$$

$$p_{\rm var} > t$$

with t being 0.95, 0.99, 0.999 and so on.

$$p_0 = 0.10$$
 $p_1 = 0.15$ $p_2 = 0.50$ $p_3 = 0.15$ $p_4 = 0.05$ $p_5 = 0.05$ $p_6 = 0.00$

SNP calling

$$p_{\text{var}} = 1 - p(S = 0) - p(S = 2k)$$
 = 0.90 $p_{\text{var}} > t$

with t being 0.95, 0.99, 0.999 and so on.

Nr of segregating sites

Site 1 $p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$ Site 2 $p(S_m=0)$ $p(S_m=2k)$ $p(S_m=3)$ $p(S_m=1)$ $p(S_m=2)$ Site 3 $p(S_m=2k)$ $p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ Site M $p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$

Nr of segregating sites

Nr of segregating sites

Site 1 $p(S_m=0)$ $p(S_m=2k)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ Site 2 $p(S_m=0)$ $p(S_m=2k)$ $p(S_m=1)$ $p(S_m=3)$ $p(S_m=2)$ Site 3 $p(S_m=2k)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=0)$ $p(S_m=3)$ Site M

 $p(S_m=1)$

 $p(S_m=0)$

$$E[S] = \sum_{m=1}^{M} p_{\text{var}}^{(m)} = \sum_{m=1}^{M} (1 - p(S_m = 0) - p(S_m = 2k))$$

 $p(S_m=2)$

 $p(S_m=3)$

 $p(S_m=2k)$

Nucleotide diversity

Site 1

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Site 2

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Site 3

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

• • •

Site M

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

$$D = 2f(1-f)$$
$$E[D] =$$

Nucleotide diversity

Site 1

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Site 2

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Site 3

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

• • •

Site M

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

$$E[D] = \sum_{m=1}^{M} \sum_{j=0}^{2k} 2 \left(\frac{i}{2k} \right) \left(\frac{2k-i}{2k} \right) p(S_m = i)$$

Applications

• • •

- Model and non-model species
- Plants
- Ancient genomes
- ...

Software

Such advanced methods have been implemented in several software and utilities, such as:

- ANGSD (http://popgen.dk/ANGSD)
- ngsTools (https://github.com/mfumagalli/ngsTools)
- http://jnpopgen.org/software/

```
A Hierarchical Bayesian Model for Next-Generation Population Genomics

Zachariah Gompert<sup>1</sup> and C. Alex Buerkle Genetics, 2011
```

which we will explore during the practical session.

Summary

 SNP calling should be performed including information from all samples (and inbreeding coefficient estimates, if relevant)

 Probabilistic methods for estimation of allele frequencies and statistics should be preferred (especially for mean sequencing depth < 20X)