Le (premier) modèle de Hindmarsh-Rose

On considère le système 2D suivant

$$v' = (w - v^3 + 3v^2 + I_{\rm ap})/c,$$
 (1)
 $w' = 1 - 5v^2 - w,$ (2)

$$w' = 1 - 5v^2 - w, (2)$$

où c et $I_{\rm ap}$ sont des paramètres.

0. Fichier "équations"

Créez un fichier hr.ode correspondant au système (1)-(2) pour pouvoir le simuler avec XPPAUT.

Note: il pourra vous être demandé d'expliquer les différentes lignes du fichier .ode lors de la présensation orale du projet; pour simuler le système vous utiliserez un schéma de Runge-Kutta d'ordre 4 avec un pas de temps de 0.01. Assurez-vous de simuler sur des intervalles de temps suffisamment longs, de sorte que la dynamique transitoire a été "amortie" et que la trajectoire simulée est très proche de l'attracteur (périodique ou non) que l'on souhaite étudier.

1. On fixe: c = 2

- a. Décrivez les deux nullclines du système: équation algébrique, forme géométrique.
- b. \circ Écrivez la matrice Jacobienne du système évaluée en un point stationnaire (v_0, w_0) (en fonction de v_0 , w_0 et I_{ap});
 - o Donnez l'expression des valeurs propres de cette matrice (en fonction de v_0 , w_0 et I_{ab});
 - o Donnez la condition algébrique pour avoir des valeurs propres complexes conjuguées (en fonction de v_0 , w_0 et I_{ap});
 - o Donnez la condition algébrique pour avoir une bifurcation pli (en fonction de v_0 , w_0 et $I_{\rm ap}$);
 - o Donnez les conditions algébriques pour avoir une bifurcation de Hopf (en fonction de v_0 , w_0 et
- ${f c.}$ Faites varier $I_{
 m ap}$ dans l'intervalle [-2,10] et décrivez l'évolution de la dynamique asympotique du système en fonction de I.
 - o Combien de points stationnaires le système possède-t-il et quelle est leur stabilité?
 - \circ Quel type de bifurcation le système subit-il lorsque I varie? (on donnera une valeur approchée de $I_{\rm ap}$ pour chaque bifurcation identifiée)
 - o Y-a-t-il des cycles limites? quelle est leur stabilité?

Faites des figures à l'aide de XPPAUT pour chaque cas qui vous semble intéressant.

- d. Le système possède-t-il une ou plusieurs régions de bistabilité pour I_{ap} dans l'intervalle [-2, 10]. Justifier votre réponse à l'aide d'une figure extraite de simulations XPPAUT.
- e. Rassemblez les informations obtenues à la question précédente et tracez à la main un diagramme de bifurcation du système (1)-(2) en fonction de $I_{\rm ap}$ dans l'intervalle [-2,10]. On représentera la variable v sur l'axe vertical. Les branches stables seront tracées en traits pleins, les branches instables en pointillés; les branches de cycles limites seront représentées sous la forme habituelle " $\max(v)/\min(v)$ ". On mettra en valeur les points de bifurcation.

2. On fixe: c = 1

Reprenez les questions 1.b. à 1.e. avec cette nouvelle valeur de c.

3. Passage de 2D à 3D

(vous allez avoir besoin de créer un nouveau fichier: hrcomplet.ode)

On considère à présent que I_{ap} n'est plus un paramètre mais possède une dynamique lente, car on souhaite obtenir un système 3D qui présente des oscillations en salves (bursting). On choisit l'équation suivante pour cette dynamique

$$I'_{\mathbf{ap}} = \varepsilon (0.3I_{\mathbf{ap}} - 1 - v) \tag{3}$$

a. Justifier que l'équation (3) permet effectivement d'obtenir du bursting dans le système 3D ainsi formé, à la fois pour c=2 et c=1.

Pour cela, vous utiliserez vos réponses aux questions 1. et 2. et vous analyserez le signe des coefficients dans l'équation (3).

b. Quel type de bursting obtient-on pour c = 2? Pour c = 1?

Vous utiliserez la classification de Rinzel et, si elle ne permet pas de conclure, vous utiliserez celle d'Izhikevich.

- **c.** On considère le cas c=1.
 - o Décrivez le profile en temps de la solution périodique correspondant au bursting.
 - o Justifiez de la forme du burst en utilisant vos connaissances sur les bifurcations du système rapide.

Faites une figure pour illustrer.

d. Expliquez comment le profil du burst évolue lorsque l'on passe de c=2 à c=1; en particulier, vous vous intéresserez à la fréquence des oscillations.

Faites plusieurs figures pour illustrer cette transition.

4. Question bonus

- \circ Expliquez la transition de c=2 à c=1 au niveau du diagramme de bifurcation du sous-système rapide.
- o En fait, cette transition intervient pour $c \approx 1.2$. Simulez le système pour diffrentes valeurs de I_{ap} et pour cette valeur ce c. Confirmez alors votre réponse précédente.

Vous illustrerez votre propos par une ou plusieurs figures.