

Analysis of Sequential Circuits

Nagaraj Vannal,
Asst.Professor, School of Electronics
Engineering,

K.L.E. Technological University, Hubballi. nagaraj_vannal@bvb.edu

Analysis of Sequential Circuit(Planned Hours:10hours)

Lesson Schedule:

- 1. Registers
- 2. Registers
- 3. Counters
- 4. Binary Ripple Counters
- 5. Synchronous Binary counters
- 6. Ring and Johnson Counters
- 7. Design of a Synchronous counters
- 8. Design of a Synchronous Mod-n Counter using clocked JK
- 9. Design of a Synchronous Mod-n Counter using clocked D Flip-Flops
- 10. Design of a Synchronous Mod-n Counter using clocked T and SR Flip-Flops.

The Registers

- Register a collection of binary storage elements
- In theory, a register is sequential logic which can be defined by a state table
- More often, think of a register as storing a vector of binary values
- Frequently used to perform simple data storage and data movement and processing operations

Shift Registers

A Shift Register is a sequential logic device made up of flip-flops that allows parallel or serial loading and serial or parallel outputs as well as shifting bit by bit.

(b) Serial in/shift left/serial out

(d) Serial in/parallel out

(e) Parallel in / parallel out

SHIFT REGISTER VOCABULARY

REGISTER- group of flip flops capable of storing data.

SERIAL DATA TRANSMISSION- transfer of data from one place to another one bit at a time.

PARALLEL DATA TRANSMISSION- simultaneous transfer of all bits of a data word from one place to another.

SISO- SERIAL IN/SERIAL OUT- type of register that can be loaded with data serially and has only one serial output.

SIPO- SERIAL IN/PARALLEL OUT- type of register that can be loaded with data serially and has parallel outputs available.

PISO- PARALLEL IN/SERIAL OUT- type of register that can be loaded with parallel data and has only one serial output.

PIPO- PARALLEL IN/PARALLEL OUT- type of register that can be loaded with parallel data and has parallel outputs available.

Serial in Serial out (SISO)

Serial In Parallel Out(SIPO)

- *Accepts data serially.
- Outputs of all stages are available simultaneously.

Parallel In Parallel Out (PIPO)

Simultaneous input and output of all data bits.

Parallel In Serial Out (PISO)

Bits are entered simultaneously, but output is serial.

Bidirectional Shift Registers

Data can be shifted either left or right, using a control line RIGHT/LEFT (or simply RIGHT) to indicate the direction.

Universal Shift Register

4-bit bidirectional shift register with parallel load.

Mode Select		Dociston Operation			
S1	S0	Register Operation			
0	0	Hold			
0	1	Shift right			
1	0	Shift left			
1	1	Parallel load			

Shift Register Counters

- Shift register counter: a shift register with the serial output connected back to the serial input.
- They are classified as counters because they give a specified sequence of states.
- Two common types: the *Johnson counter* and the *Ring counter*.

Ring Counters

- One flip-flop (stage) for each state in the sequence.
- The output of the last stage is connected to the D input of the first stage.
- An n-bit ring counter cycles through n states.
- No decoding gates are required, as there is an output that corresponds to every state the counter is in.

Ring Counters

Example: A 6-bit ring counter.

Clock	Q_0	Q_1	Q_2	Q_3	Q_4	Q ₅
→ 0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	1	0	0	0
3	0	0	0	1	0	0
4	0	0	0	0	1	0
<u></u> 5	0	0	0	0	0	1_

Johnson Counters

- The complement of the output of the last stage is connected back to the D input of the first stage.
- Also called the *twisted-ring counter*.
- Require fewer flip-flops than ring counters but more flip-flops than binary counters.
- \clubsuit An *n*-bit Johnson counter cycles through 2n states.
- Require more decoding circuitry than ring counter but less than binary counters.

Johnson Counters

Example: A 4-bit Johnson counter.

Clock	Q_0	Q_1	Q_2	Q_3
→ 0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
└ 7	0	0	0	1

Introduction: Counters

- Counters are circuits that cycle through a specified number of states.
- Two types of counters:
 - synchronous (parallel) counters
 - *asynchronous (ripple) counters
- Ripple counters allow some flip-flop outputs to be used as a source of clock for other flip-flops.
- Synchronous counters apply the same clock to all flip-flops.

Asynchronous (Ripple) Counters

- Asynchronous counters: the flip-flops do not change states at exactly the same time as they do not have a common clock pulse.
- Also known as ripple counters, as the input clock pulse "ripples" through the counter – cumulative delay is a drawback.
- n flip-flops \rightarrow a MOD (modulus) 2^n counter. (Note: A MOD-x counter cycles through x states.)
- Output of the last flip-flop (MSB) divides the input clock frequency by the MOD number of the counter, hence a counter is also a frequency divider.

Asynchronous (Ripple)

Counters

 Example: 4-bit ripple binary counter (negative-edge triggered).

- States may be skipped resulting in a truncated sequence.
- Technique: force counter to *recycle before going* through all of the states in the binary sequence.
- Example: Given the following circuit, determine the counting sequence (and hence the modulus no.)

All *J*, *K* inputs are 1 (HIGH).

Example (cont'd):

MOD-6 counter produced by clearing (a MOD-8 binary counter) when count of six (110) occurs.

Example (cont'd): Counting sequence of circuit (in CBA order).

- Decade counters (or BCD counters) are counters with 10 states (modulus-10) in their sequence. They are commonly used in daily life (e.g.: utility meters, odometers, etc.).
- Design an asynchronous decade counter.

Asynchronous decade/BCD counter (cont'd).

Asynchronous Down Counters

- So far we are dealing with up counters. Down counters, on the other hand, count downward from a maximum value to zero, and repeat.
- Example: A 3-bit binary (MOD-2³) down counter.

Asynchronous Down Counters

Example: A 3-bit binary (MOD-8) down

Asynchronous (Ripple) Counters

- Propagation delays in an asynchronous (ripple-clocked) binary counter.
- If the accumulated delay is greater than the clock pulse, some counter states may be misrepresented!

Design of a Synchronous Mod-n Counter using clocked JK Flip-Flops

Design of a Synchronous Mod-n Counter using clocked T Flip-Flops

Design of a Synchronous Mod-n Counter using clocked D Flip-Flops

Design of a Synchronous Mod-n Counter using clocked SR Flip-Flops

Design of a Synchronous Counter using clocked SR Flip-Flops

Sequence = 0 - 1 - 3 - 4 - 2 - 0