1 Réponses attendues pour la méthode count

Pour la grammaire des arbres :

n	0	1	2	3	4	5	6	7	8	9	10
count(n, Tree)	0	1	1	2	5	14	42	123	429	1430	4862
count(n, Node)	0	0	1	2	5	14	42	123	429	1430	4862
count(n, Leaf)	0	1	0	0	0	0	0	0	0	0	0

Pour la grammaire des mots de Fibonacci :

n	0	1	2	3	4	5	6	7	8	9	10
count(n, Fib)	1	2	3	5	8	13	21	34	55	89	144
count(n, Cas1)	0	2	3	5	8	13	21	34	55	89	144
count(n, Cas2)	0	1	1	2	3	5	8	13	21	34	55
count(n, Vide)	1	0	0	0	0	0	0	0	0	0	0
count(n, CasAu)	0	1	2	3	5	8	13	21	34	55	89
count(n, AtomA)	0	1	0	0	0	0	0	0	0	0	0
count(n, AtomB)	0	1	0	0	0	0	0	0	0	0	0
count(n, CasBAu)	0	0	1	2	3	5	8	13	21	34	55

2 Grammaires

2.1 Alphabet A,B

 $S = \mathcal{E} \mid AS \mid BS$

w est un mot de la grammaire A, B si :

- soit w est vide
- soit w est de la forme Au où u est un mot de la grammaire A,B
- soit w est de la forme Bu où u est un mot de la grammaire A, B

2.2 Mots de Dyck

 $S = \mathcal{E} \mid (S) \mid S(S)$

w est un mot de Dyck si :

- soit w est vide
- soit w est de la forme (u) où u est un mot de Dyck de Dyck
- soit w est de la forme u(v) où u et v sont des mots de Dyck

2.3 Mots sur l'alphabet A,B qui n'ont pas trois lettres consécutives égales

 $S = \mathcal{E} \mid U \mid T$

 $U = A \mid AA \mid AT \mid AAT$

 $T = B \mid BB \mid BT \mid BBT$

w est un mot de cette grammaire si :

- soit w est vide
- soit w est de la forme A, AA, B, BB

- soit w est de la forme AT ou AAT où T est un mot de la grammaire qui commence par B
- soit w est de la forme BU ou BBU où U est un mot de la grammaire qui commence par A

2.4 Palindromes sur l'alphabet A, B

 $S = \mathcal{E} \mid A \mid B \mid ASA \mid BSB$

w est un mot de la grammaire des palindrome sur A, B si :

- soit w est vide
- soit w est de la forme A ou B
- soit w est de la forme AuA où u est un palindrome.
- soit w est de la forme BuB où u est un palindrome.

2.5 Palindromes sur l'alphabet A, B, C

 $S = \mathcal{E} \mid A \mid B \mid ASA \mid BSB \mid CSC$

w est un mot de la grammaire des palindrome sur A, B si :

- soit w est vide
- soit w est de la forme A ou B ou C
- soit w est de la forme AuA où u est un palindrome.
- soit w est de la forme BuB où u est un palindrome.
- soit w est de la forme CuC où u est un palindrome.

2.6 Mots sur l'alphabet A,B qui contiennent autant de A que de B

...

3 Calcul de la valuation

3.1 Mots de Fibonacci

n	Fib	${ m Cas1}$	Cas2	Vide	${ m CasAu}$	AtomA	AtomB	CasBAu
règle	$\mathrm{Vide} \cup \mathrm{Cas}1$	$CasAU \cup Cas2$	$AtomA\cupAtomB$	\mathcal{E}	AtomA*Fib	A	В	AtomB*CasAu
0	∞	∞	∞	∞	∞	∞	∞	∞
1	∞	∞	∞	0	∞	1	1	∞
2	0	∞	1	0	1	1	1	∞
3	0	1	1	0	1	1	1	2
3	0	1	1	0	1	1	1	2

3.7 Mots sur A,B qui contiennent autant de A que de B

. . .

3.2 Mots de Dyck

n	Dyck	Casuu	Vide	${\bf AtomLPAR}$	${\bf AtomRPAR}$	Cas(u	Casu)
règle	Vide ∪ Casuu	Dyck * Cas(u	E	"("	")"	LPAR * Casu)	Dyck * RPAR
0	∞	∞	∞	∞	∞	∞	∞
1	∞	∞	0	1	1	∞	∞
2	0	∞	0	1	1	∞	∞
3	0	∞	0	1	1	∞	1
4	0	∞	0	1	1	2	1
5	0	2	0	1	1	2	1
6	0	2	0	1	1	2	1

3.3 Mots sur l'alphabet A,B

n	AB	AtomA	AtomB	CasAB	Vide	${ m CasAu}$	CasBu
règle	$Vide \cup CasAB$	A	В	$CasAu \cup CasBu$	\mathcal{E}	AtomA * AB	AtomB * AB
0	∞	∞	∞	∞	∞	∞	∞
1	∞	1	1	∞	0	∞	∞
2	0	1	1	∞	0	1	1
3	0	1	1	1	0	1	1
4	0	1	1	1	0	1	1

3.4 Mots qui n'ont pas trois lettres consécutives égales sur A, B

n	Three	Vide	AtomA	AtomB	AA	BB	S	U	U1
règle	$Vide \cup S$	\mathcal{E}	A	В	AtomA*AtomA	AtomB*AtomB	$U \cup T$	$\rm Atom A \cup U1$	$AA \cup U2$
0	∞	∞	∞	∞	∞	∞	∞	∞	∞
1	∞	0	1	1	∞	∞	∞	∞	∞
2	0	0	1	1	2	2	∞	1	∞
3	0	0	1	1	2	2	1	1	2
4	0	0	1	1	2	2	1	1	2
5	0	0	1	1	2	2	1	1	2
6	0	0	1	1	2	2	1	1	2

n	U2	AT	AAT	T	T1	Т2	BU	BBU
règle	$AT \cup AAT$	AtomA *	T AtomA * A	AT AtomB ∪	T1 BB ∪ T2	$BU \cup BBU$	AtomB *	U AtomB * BU
0	∞	∞	∞	∞	∞	∞	∞	∞
1	∞	∞	∞	∞	∞	∞	∞	∞
2	∞	∞	∞	1	∞	∞	∞	∞
3	∞	2	∞	1	2	∞	2	∞
4	2	2	3	1	2	∞	2	3
5	2	2	3	1	2	2	2	3
6	2	2	3	1	2	2	2	3

4 Tests de cohérence génériques

5 A faire pour le rapport

— Ajouter la fonction check grammar et expliquer

Palindromes sur A,B 3.5

n	Pal	Vide	AtomA	AtomB	S	S1
règle	$\mathrm{Vide} \cup S$	\mathcal{E}	A	В	$AtomA \cup S1$	$AtomB \cup S2$
0	∞	∞	∞	∞	∞	∞
1	∞	0	1	1	∞	∞
2	0	0	1	1	1	1
3	0	0	1	1	1	1
4	0	0	1	1	1	1
5	0	0	1	1	1	1
6	0	0	1	1	1	1

n	S2 ASA		ASA1	BSB	BSB1
règle	$\mathrm{ASA} \cup \mathrm{BSB}$	AtomA * ASA1	Pal * AtomA	AtomB * BSB1	Pal * AtomB
0	∞	∞	∞	∞	∞
1	∞	∞	∞	∞	∞
2	∞	∞	∞	∞	∞
3	∞	∞	1	∞	1
4	∞	2	1	2	1
5	2	2	1	2	1
6	2	2	1	2	1

Palindromes sur A,B,C 3.6

n	Pal	Vide	AtomA	${\bf AtomB}$	AtomC	S	S1	S2	S3
règle	$Vide \cup S$	\mathcal{E}	A	В	C	$AtomA \cup S1$	$AtomB\cupS2$	$\rm Atom C\cupS3$	$ASA \cup S4$
0	∞	∞	∞	∞	∞	∞	∞	∞	∞
1	∞	0	1	1	1	∞	∞	∞	∞
2	0	0	1	1	1	1	1	1	∞
3	0	0	1	1	1	1	1	1	∞
4	0	0	1	1	1	1	1	1	∞
5	0	0	1	1	1	1	1	1	2
6	0	0	1	1	1	1	1	1	2

n	S4	ASA	ASA1	BSB	BSB1	CSC	CSC1
règle	$BSB \cup CSC$	AtomA * ASA1	Pal * AtomA	AtomB * BSB1	Pal * AtomB	AtomC * CSC1	Pal * AtomC
0	∞	∞	∞	∞	∞	∞	∞
1	∞	∞	∞	∞	∞	∞	∞
2	∞	∞	∞	∞	∞	∞	∞
3	∞	∞	1	∞	1	∞	1
4	∞	2	1	2	1	2	1
5	2	2	1	2	1	2	1
6	2	2	1	2	1	2	1

- Ecrire la spec des test
- Expliquer rank (par exemple avec Dyckgram)
- Expliquer caching plus comparaison avec et sans
 Grammaires condensées

- BoundSequence

A faire dans le prog

- test grammaires condenséestest bound
- test sequence