

Ahsanullah University of Science & Technology

Department of Computer Science & Engineering

Course No : CSE3310

Course Title : Digital System Design lab

Assignment No : 01

Date of Performance: 30.12.2020

Date of Submission : 13.01.2021

Submitted By-

Section: A1

Group Number: A1_G1

ld: 18.01.04.001

ld: 18.01.04.002

ld: 18.01.04.005

ld: 18.01.04.006

Introduction:

In this experiment, we designed a 4bit Arcithmetic Logic Unit. First of all from the given function table we derived an equation of three input funcations and simplified it. Then we implemented this funcations in Presteus. We used a combination of basic gates and a 4 bit full adder to create out ALU. Depending on the selector (50) bit, our ALU will perform the logical (So=0) ore arcithmetic (So=1) operation accordingly and will show it 4 bit output fore logical operation and 5 bit output fore arcithmetic operation.

Problem Statement:

Sa	Sı	5.	Output	Function
J	0	1	A1-1	Decrement A
0	7	7	A:+B:	Add
7	1	7	Ai-Bi	Subtract
0	0	7	Aî	Transfer A
7	×	0	Ai I Bi	OR
0	X	0	Ā٩	Complement A

Function Grenercation:

Sa	Si	So	2	X	Y	Output	Function
1	0	1	0	Αî	/111	A: -1	Decrement A
0	1	1	0	Ai	bi	Ai+Bi	Add
1	1	1	1	Ai	<u>Bi</u>	Ai-Bi	Subtract
0	0	1	0	Ai	0	Ai	Transfer A
7	X	0	0	A I Bi	0	A91Bi	OR
0	X	0	0	īA i	0	Ai	Complement A

k-map	52 5	5,50	1 5,50	3 5,5 ₀	2 5,50
	0 52	0	0	0	0
	1 52	0	O		0

$$\therefore 2 = 5_{0} \cdot 5_{1} \cdot 5_{0}$$
 $5_{1} \cdot 5_{0} \cdot 5_{1} \cdot 5_{0} \cdot 5_{1} \cdot 5_{0}$
 $0 \cdot 5_{2} \cdot \overline{A}_{1} \cdot \overline{A}_$

Equipement and Budget:

Gade Name	IC	Amount	Price per IC (Taka)	Priice (Taka)
NOT	7404	2	25	50
AND	7408	6	30	180
OR	7432	4	29	716
XOR	7486	1	26	26
4-6°t Full Addox	4008	1	40	40

Simulations:

Result:

For Decrement A operation

	10.000			In	tug							Ow	lpn	t	
Sa	Si	So	Ay	A3	A2	Aı	Вч	B3	Bz	В	Cod	F3	F2	FI	Fo
			1	0	0	0					1	0	1	1	1
7	0	7	1	0	0	1	1	1	1	1	1	1	0	0	0
		9	1	1	1	0	1				1	1	1	0	1

for Addition Operation

	Input											owtput						
S ₂	Sı	So	Ay	A3			Вч	B3	B2	Bi	Cont	F3	F2	Fı	Fo			
	0 1]	0	0	1	ı	1	0	0	0	0	1	0	1	1			
0]]	J	1]	1	1	1	0	0	1	1	0	1	1	1	0
		550	١	١	1	0	١	0	0	1	١	0	1	1	1			

For Subtraction Operation

				In	put							Ou	tpu	ł	
52	Si	So	Ay	A3	Az	A,	By	B3	B2	В	Cont	F3	F2	Fi	Fo
			7	0	0	0	0	1	١	1	-	0	0	0	1
1	7	7	7	0	0	7	0	1	0	٥	1	0	1	0	1
			7	7	7	0	0	0	1	1	١	1	0	1	1

For transfer A Operation

				In	trug						Owlput						
Sz	SI	So	Ay	13	Az	Ai	By	Ba	B2	Bi			F2	Fi	Fo		
			1	0	0	0					0	1	0	0	0		
0	0	1	8	0	1	1	0	0	0	٥	0	0	0	1	1		
			1	1	1	1					0	1	1	1	ı		

For OR Operation

	thanI											tug tuo							
S2	Si	50	Au	A ₃	A2	Aı	By	BB	B2	Bi	Cont	F3	F2	FI	Fo				
			0	.1	1	1	0	0	1	0	0	٥	1	١	1				
7	X	0	1	0	0	1	0	1	0	1	0	1	1	0	1				
		19 A	١	1	1	1	0	0	1	0	0	1	١	1	1				

For NOT Operation

		-	state - Alle	In	put	7						0	ato	tu	
52	5	So	Ay	A3	A2	Aı	B4	03	ಶಿಖ	BI	Cont	F3	F2	1-	16
		20	0	1	1	1		ll Souge	82		0	1	0	0	0
0	X	0	1	1	1	1	0	0	0	0	0	0	0	0	C
			١	0	0	1		Jan 1			0	0	1	ī	0

Conclusion:

There were some issues when we implemented the circuit for the first time. At our first attempt when we derived the equation of the inputs, we simplified those input equations and minimised the equation and hence also minimised the use of ICS, making it easier to implement. However, our ALU was showing incorrect results for logical operations but was working connectly for anithmetic operations.

We implemented the circuit again using the direct equations we got from the table without simplying it and this time the functions were working correctly. This circuit was working connectly this time but when we are going to implement this practically, there might be an issure because we have used lots of ICs and circuit becomes more prone to error.