Avances en la clasificación multinivel de comentarios: modelos y métricas en data science

# Tabla de contenidos

- 1. Contexto y desafíos
- 2. Preprocesamiento de datos
- 3. Modelos y evaluación
- 4. Mejoras y recomendaciones

# CONTEXTO Y DESAFÍOS

¿Cuál es nuestro objetivo y qué retos enfrentamos?

 Clasificación de comentarios en función de distintos niveles de toxicidad

 Desbalance de clases, interpretación de texto, captura de contextos y matices

# PREPROCESAMIENTO DE DATOS

- <u>Limpieza de datos</u>
- <u>Tokenización</u>: separación de palabras clave
- <u>Vectorización</u>: Conversión de texto a características numéricas



**ODIO** 

**TOXICIDAD** 





#### DESBALANCEO DE LOS DATOS: UNDERSAMPLING

## MODELOS ELABORADOS

- 1. Logistic Regression
- 2. Random Forest
- 3. Red Neuronal Recurrente
- 4. K-means clustering

#### **Logistic Regression**

- Vectorización con enegramas de 1 y 2 elementos
- Regresión logística multiclase
- Precision (micro): 85%
- Precision (macro): 80%
- Recall (micro): 66%
- Recall (macro): 42%
- Categorical Accuracy: 65%

#### **Random Forest**

- Vectorización con n-gramas de 1 y 2 elementos
- Random Forest con 200
  árboles y una profundidad
  de 50
- Precision (micro): 89%
- Precision (macro): 81%
- Recall (micro): 33%
- Recall (macro): 13%

Categorical Accuracy: 56%

#### **Red Neuronal Recurrente**

- Red Neuronal Recurrente (RNN) con estructura bidimensional LSTM (long short-term memory)
  - Capa de embedding (32)
  - Capa LSTM bidirec. (32)
  - 3 Capas densas (128-256-128)
  - Capa de salida (6)
- Precision: 77%
- Recall: 70%
- Categorical Accuracy: 47%

### COMPARACIÓN DE MODELOS

### MEJORAS Y RECOMENDACIONES

- Optimización de hiperparámetros a través de un grid search
- Implementar otras técnicas para el rebalanceo de los datos y/o el reajuste de mismos
- Exploración de modelos más avanzados
  - o Implementar la RNN actualizada
  - Implementar Transformer
  - Implementar BERT (Bidirectional Encoder Representations from Transformers)

# ¡GRACIAS POR VUESTRA ATENCIÓN!