## 논문 리뷰

Quantum Resource Estimates of Grover's Key Search on ARIA

발표자: 양유진

링크: https://youtu.be/vUaKgx1ohYc





$$S_1(\alpha) := \mathbf{A}.\alpha^{-1} + \mathbf{a}$$

 $S_1$ 은 AES의 S-box와 같음.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$S_2(\alpha) := \mathbf{B} \cdot \mathbf{\alpha}^{247} + \mathbf{b}$$

$$:= \mathbf{B} \cdot (\alpha^{-1})^8 + \mathbf{b} = \mathbf{B} \cdot \mathbf{C} \cdot \alpha^{-1} + \mathbf{b}$$

$$= \mathbf{D} \cdot \alpha^{-1} + \mathbf{b}$$

$$\mathbf{B} = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$
  $\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ 

- $1) \alpha^{-1}$  계산
  - Itoh-Tsujii multiplier 사용하여 역원 구함

$$\alpha^{-1} = \alpha^{254} = ((\alpha.\alpha^2).(\alpha.\alpha^2)^4.(\alpha.\alpha^2)^{16}.\alpha^{64})^2$$

#### (1) 제곱기(squaring)



- CNOT 게이트 12개 사용
- depth: 7

**Fig. 1.** Circuit for squaring in  $\mathbb{F}_2[x]/(x^8+x^4+x^3+x+1)$ .

#### (2) 곱셈기(multiplier)

- schoolbook multiplier(Maslov et al.) 사용

$$\mathbf{a} = [a_0, \dots, a_7]^{\mathrm{T}} \quad \mathbf{b} = [b_0, \dots, b_7]^{\mathrm{T}} \quad \mathbf{c} = \mathbf{a} \cdot \mathbf{b}$$

$$\mathbf{c} = [c_0, \dots, c_7]^{\mathrm{T}}$$



**Fig. 2.** Circuit for multiplier in  $\mathbb{F}_2[x]/(x^8+x^4+x^3+x+1)$ .

- CNOT 게이트 21개 사용
- Toffoli 게이트 64개 사용
- depth: 37
- Toffoli-depth: 28

#### 2) Affine function

- S-box에 따라 다른 회로가 사용됨.



- $S_1$  CNOT 게이트 26개 사용
  - Pauli-X 게이트 4개 사용



- S<sub>2</sub> CNOT 게이트 35개 사용
  - Pauli-X 게이트 4개 사용



- S₁<sup>-1</sup> CNOT 게이트 18개 사용
  - Pauli-X 게이트 4개 사용



- $S_2^{-1}$  CNOT 게이트 27개 사용
  - Pauli-X 게이트 4개 사용

- 3) SubBytes function
  - SubBytes 함수는  $S_1$ 와  $S_2$  가 같음



- squaring 33번 사용
- multiplier 7번 사용
- 큐비트 40개 필요

#### *S*₁ 양자 게이트 수

- Toffoli 게이트: 64 (곱셈기 1번) x 7 (S₁에 7번 사용) = 448
- CNOT 게이트: 12 x 33 (제곱기) + 21 x 7 (곱셈기) + 26 (아핀 변환) = 569 CNOT 게이트: 543 + 18 (아핀 변환) = 561
- Pauli-X 게이트: 4 (아핀 변환)

#### $S_2$ 양자 게이트 수

- Toffoli 게이트: 448
- CNOT 게이트: 543 + 35 (아핀 변환) = 578
- Pauli-X 게이트: 4 (아핀 변화)

#### $S_1^{-1}$ 양자 게이트 수

- Toffoli 게이트: 448
- Pauli-X 게이트: 4 (아핀 변환)

#### $S_2^{-1}$ 양자 게이트 수

- Toffoli 게이트: 448
- CNOT 게이트: 543 + 27 (아핀 변화) = 570
- Pauli-X 게이트: 4 (아핀 변화)

#### substitution layer 양자 게이트 수

- Toffoli 게이트: 448 x (4 x 4) = 7,618
- CNOT 게이트: (569 + 561 + 578 + 570) x 4 = 9,112
- Pauli-X 게이트: 4 x (4 x 4) = 64

- 16 x 16 matrix → 128 x 128 matrix 변환



- PLU decomposition을 사용함.
  - CNOT 게이트 768개 사용
  - depth: 26

## 1. Quantum Circuits to Implement ARIA - Add Round Key

- 128-bit의 라운드키를 현재 상태와 XOR 함.
- XOR 구현에 CNOT 게이트가 사용됨.
- 1번 연산할 때 128개의 CNOT 게이트가 사용됨.
- 128개의 CNOT 게이트를 병렬로 실행할 수 있기 때문에 회로의 깊이는 1.
- 첫번째 라운드 전에는 초기 ARK 연산이 적용됨
- 마지막 라운드에서는 DL(Diffusion Layer) 대신 ARK 연산이 적용됨.

#### 1라운드 양자 게이트 수

- Toffoli 게이트: 7,618
- CNOT 게이트: 128(ARK) + 9,112(SL) + 768(DL) = 10,008
- Pauli-X 게이트: 64

## 1. Quantum Circuits to Implement ARIA - Key Schedule

- $W_1, W_2, W_3$  의 비용은 3 라운드 Feistel 암호 $(F_0, F_e)$  연산과 관련이 있음.
- 각 라운드 키 계산과 큐비트 절약을 위한 상태의 uncompute 연산에 1개의 큐비트 상태  $W_4$ 만 사용함.
  - → 각 라운드 키 생성에 512 개의 CNOT게이트가 사용됨.
- rotation operation은 비용이 발생하지 않음

Table 2. Quantum cost of generating four quantum words and round subkeys for the key schedule of ARIA-{128, 192, 256}.

|                                          | KeyWords $(W_i)$    | # Pauli-X     | # CNOT                | # Toffoli |
|------------------------------------------|---------------------|---------------|-----------------------|-----------|
|                                          | $W_0$               | 0             | 128                   | 0         |
| 초기화 상수 <i>CK<sub>i</sub></i><br>생성에 사용됨. | $W_1$               | 64 + 65 = 129 | 10,008 + 128 = 10,136 | 7,168     |
|                                          | $W_2$               | 64 + 65 = 129 | 10,008 + 128 = 10,136 | 7,168     |
|                                          | $W_3$               | 64 + 57 = 121 | 10,008 + 128 = 10,136 | 7,168     |
|                                          | Total               | 379           | 30,536                | 21,504    |
|                                          | Round Subkeys       | # Pauli-X     | # CNOT                | # Toffoli |
|                                          | $RK_i$ for each $i$ | 0             | $128 \times 4 = 512$  | 0         |

## 2. Resource Estimates: Reversible ARIA Implementation

- "zig-zag" 방식을 사용하여 qubit 최적화에 집중함
- ARIA-128 기준으로 키 생성, 암호화에 큐비트가 1,408 개 사용되었고, 보조큐비트(SubBytes에 사용)는 24개 사용됨.
- 보조큐비트는 라운드 키 생성과 암호화 라운드 사이에 위치함.
- 암호화 단계의 경우 5, 9, 12 라운드 후에 reverse 연산이 수행되어야 하기 때문에 640-bit(ARIA-128/192), 768-bit(ARIA-256) 의 저장공간이 필요함.

## 2. Resource Estimates: Reversible ARIA Implementation

Table 3. Quantum resource estimates for the implementation of ARIA-128.

| Phase      | #Quantum Gates |         |          | Depth   |         | #Qubits |         |  |
|------------|----------------|---------|----------|---------|---------|---------|---------|--|
|            | #Pauli-X       | #CNOT   | #Toffoli | Toffoli | Overall | Storage | Ancilla |  |
| Initial    | 0              | 0       | 0        | 0       | 0       | 256     | 0       |  |
| Key Gen    | 379            | 41,228  | 21,504   | 588     | 1,342   | 512     | 128     |  |
| Encryption | 1,216          | 189,896 | 136,192  | 3,724   | 7,918   | 640     | 24      |  |
| Total      | 1,595          | 231,124 | 157,696  | 4,312   | 9,260   | 1,408   | 152     |  |

Table 4. Quantum resource estimates for the implementation of ARIA-192.

| Phase      | #Quantum Gates |         |          | Depth   |         | #Qubits |         |  |
|------------|----------------|---------|----------|---------|---------|---------|---------|--|
|            | #Pauli-X       | #CNOT   | #Toffoli | Toffoli | Overall | Storage | Ancilla |  |
| Initial    | 0              | 0       | 0        | 0       | 0       | 256     | 0       |  |
| Key Gen    | 379            | 43,336  | 21,504   | 588     | 1,358   | 512     | 128     |  |
| Encryption | 1,472          | 229,928 | 164,864  | 4,508   | 9,590   | 640     | 24      |  |
| Total      | 1,851          | 273,264 | 183,368  | 5,096   | 10,948  | 1,408   | 152     |  |

Table 5. Quantum resource estimates for the implementation of ARIA-256.

| Phase      | #Quantum Gates |         |          | Depth   |         | #Qubits |         |  |
|------------|----------------|---------|----------|---------|---------|---------|---------|--|
|            | #Pauli-X       | #CNOT   | #Toffoli | Toffoli | Overall | Storage | Ancilla |  |
| Initial    | 0              | 0       | 0        | 0       | 0       | 256     | 0       |  |
| Key Gen    | 379            | 45,384  | 21,504   | 588     | 1,374   | 512     | 128     |  |
| Encryption | 1,792          | 279,968 | 200,704  | 5,488   | 11,680  | 768     | 24      |  |
| Total      | 2,171          | 325,352 | 222,208  | 6,076   | 13,054  | 1,536   | 152     |  |

## 3. Grover Oracle and Key Search Resource Estimates

- Langenberg et al. 에 의해  $r_k = \lceil k/n \rceil$   $(r_k$ 는 필요로 하는 쌍 개수, k는 키 길이, n은 평문 길이)



[ARIA-128에 대한 함수  $U_f$ 의 가역 구현 (r=2)]

- ARIA-128:  $r_{128}=1$  평문-암호문 쌍 ightarrow ARIA 인스턴스 2개
- ARIA-192:  $r_{128} = 2$  평문-암호문 쌍  $\rightarrow$  ARIA 인스턴스 4개
- ARIA-256:  $r_{256} = 2$  평문-암호문 쌍 → ARIA 인스턴스 4개

## 3. Grover Oracle and Key Search Resource Estimates

[표] Grover Oracle에 필요한 양자 자원 추정치

| Parameter  | Toffoli gates | Toffoli depth | CNOT      | Pauli-X |
|------------|---------------|---------------|-----------|---------|
| ARIA - 128 | 315,392       | 8,624         | 462,248   | 3,190   |
| ARIA - 192 | 733,472       | 20,384        | 1,093,056 | 7,404   |
| ARIA - 256 | 888,832       | 24,304        | 1,301,408 | 8,684   |

$$G = U_f \left( \left( H^{\otimes k} \left( 2 \left| 0 \right\rangle \left\langle 0 \right| - \mathbf{1}_{2^k} \right) H^{\otimes k} \right) \otimes \mathbf{1}_2 \right)$$
  $\left| \frac{\pi}{4} \cdot \sqrt{2^k} \right|$ 번 반복

- Toffoli-gate =  $7 \times T + 8 \times Clifford$  (T-depth=4, total depth=8)
- l-fold를 구현하기 위한 T-gate의 CNOT 게이트는 (32  $\times l$  84) 로 추정 ( $l \geq 5$ )
- Clifford-gate =  $2 \cdot (r_k 1) \cdot k$  CNOT (병렬 처리를 위해  $U_f$  내부의 CNOT 게이트만 계산)

## 4. Cost Comparison of ARIA and AES

- G-cost: 전체 게이트 수

- DW-cost: circuit depth x width

| Jaques et al.'s work [13] |       |                      |                     |                     |                     |       |                     |                                 |  |
|---------------------------|-------|----------------------|---------------------|---------------------|---------------------|-------|---------------------|---------------------------------|--|
| Scheme                    | $r_k$ | #Clifford            | #T                  | T-depth             | full depth          | width | G-cost              | $DW$ -cost $p_s$                |  |
| AES-128                   | 1     | $1.03 \cdot 2^{85}$  | $1.59 \cdot 2^{84}$ | $1.06 \cdot 2^{80}$ | $1.16 \cdot 2^{81}$ | 984   | $1.83 \cdot 2^{85}$ | $1.11 \cdot 2^{91} 1/e$         |  |
| AES-192                   | 2     | $1.17 \cdot 2^{118}$ | $1.81\cdot 2^{117}$ | $1.21\cdot 2^{112}$ | $1.33\cdot 2^{113}$ | 2224  | $1.04\cdot 2^{119}$ | $1.44 \cdot 2^{124}$ 1          |  |
| <b>AES-256</b>            | 2     | $1.46 \cdot 2^{150}$ | $1.13\cdot 2^{150}$ | $1.44\cdot 2^{144}$ | $1.57\cdot 2^{145}$ | 2672  | $1.30\cdot 2^{151}$ | $1.02 \cdot 2^{157} 1/\epsilon$ |  |

| This Work |       |                      |                     |                      |                      |       |                     |                     | 1     |
|-----------|-------|----------------------|---------------------|----------------------|----------------------|-------|---------------------|---------------------|-------|
| Scheme    | $r_k$ | #Clifford            | #T                  | T-depth              | full depth           | width | G-cost              | DW-cost             | $p_s$ |
| ARIA-128  | 1     | $1.11 \cdot 2^{85}$  | $1.65 \cdot 2^{84}$ | $1.65 \cdot 2^{78}$  | $1.81 \cdot 2^{79}$  | 1561  | $1.93 \cdot 2^{85}$ | $1.37 \cdot 2^{90}$ | 1/e   |
| ARIA-192  | 2     | $1.30 \cdot 2^{118}$ | $1.92\cdot 2^{117}$ | $1.95\cdot 2^{111}$  | $1.07\cdot 2^{112}$  | 3121  | $1.13\cdot 2^{119}$ | $1.63\cdot 2^{123}$ | 1     |
| ARIA-256  | 2     | $1.57\cdot 2^{150}$  | $1.16\cdot 2^{150}$ | $1.16 \cdot 2^{144}$ | $1.23 \cdot 2^{144}$ | 3377  | $1.36\cdot 2^{151}$ | $1.01\cdot 2^{156}$ | 1/e   |

G-cost는 둘이 거의 비슷하지만, DW-cost는 ARIA가 AES보다 더 낮음

### 5. Conclusion

- ARIA를 직접 구현하여 각 단계에서 발생하는 양자 자원 비용을 추정함
- ARIA 3가지 인스턴스에 대한 Grover 검색 공격 비용 제공함

#### Future works

- Grover 검색 공격 복잡성을 줄이는 것
- 자동 리소스 추정을 위해 양자 프로그래밍 언어로 ARIA용 Grover oracle 구현하는 것
- 블록암호를 다중 대상 공격(multi-target attacks)에 대해 구현하여 비용 평가하는 것

# 감사합니다