Dr. Kliment Olechnovič

Atnaujinta 2023-08-30.

Nuoroda į CV anglų kalba: https://www.kliment.lt | pdf.

Bendra informacija

Gimiau 1987 m. Vilniuje

Darbas Vyresnysis mokslo darbuotojas Vilniaus universiteto Gyvybės mokslų centre

E-paštas kliment.olechnovic@bti.vu.lt

Nuorodos į publikacijų ir sukurtos programinės įrangos profilius:

Google Scholar https://scholar.google.lt/citations?user=uT t5ewAAAAJ

ORCID https://orcid.org/0000-0003-4918-9505

GitHub https://github.com/kliment-olechnovic

Pagrindiniai moksliniai interesai

- Struktūrinė bioinformatika
- Mašininis mokymasis
- Skaičiuojamoji geometrija

Išsilavinimas

2012–2017 Informatikos mokslų daktaras, Vilniaus universitetas

2010–2012 Informatikos magistras (kompiuterinis modeliavimas), Vilniaus universitetas (*Magna Cum Laude*)

2005–2009 Informatikos bakalauras (bioinformatika), Vilniaus universitetas

Darbo patirtis

2020–dabar	Vyresnysis mokslo darbuotojas (Vilniaus universitetas / Gyvybės mokslų centras / Biotechnologijos institutas)
2021–2022	Vizituojantis mokslininkas, viso 28 savaitės (CNRS Laboratoire Jean Kuntzmann, Grenoblis, Prancūzija)
2017–2020	Mokslo darbuotojas (Vilniaus universitetas / Gyvybės mokslų centras / Biotechnologijos institutas)
2019–2020	Vizituojantis mokslininkas, 9 savaitės (Inria, Grenoblis, Prancūzija)
2013–2017	Jaunesnysis mokslo darbuotojas (Vilniaus universitetas / Biotechnologijos institutas)
2010–2013	Inžinierius tyrėjas (Vilniaus universitetas / Biotechnologijos institutas)
2009–2010	Laborantas (Biotechnologijos institutas, Vilnius)
2007-2008	C++ programuotojas (4Team Corporation, Vilnius)

Publikacijos

Mokslinės publikacijos

1. <u>VoroIF-GNN: Voronoi tessellation-derived protein-protein interface assessment using a graph neural network.</u>

Olechnovič K, Venclovas Č.

Proteins. 2023 Jul 21.

doi:10.1002/prot.26554.

PMID:37482904.

2. Prediction of protein assemblies by structure sampling followed by interface-focused scoring.

Olechnovič K, Valančauskas L, Dapkūnas J, Venclovas Č.

Proteins. 2023 Aug 14.

doi:10.1002/prot.26569.

PMID:37578163.

3. (preprint) <u>TemStaPro: protein thermostability prediction using sequence representations from protein language models.</u> Pudžiuvelytė I, **Olechnovič K**, Godliauskaite E, Sermokas K, Urbaitis T, Gasiunas G, Kazlauskas D. Preprint in *bioRxiv*. 2023. doi:10.1101/2023.03.27.534365.

4. (preprint) Impact of AlphaFold on Structure Prediction of Protein Complexes: The CASP15-CAPRI Experiment.

Lensink M, Brysbaert G, Raouraoua N, Bates P, Giulini M, Vargas Honorato R, van Noort C, Teixeira J, MJJ Bonvin A, Kong R, Shi H, Lu X, Chang S, Liu J, Guo Z, Chen X, Morehead A, Roy R, Wu T, Giri N, Quadir F, Chen C, Cheng J, Del Carpio C, Ichiishi E, Fernández-Recio J, Harmalkar A, Chu L, Canner S, Smanta R, Gray J, Li H, Lin P, He J, Tao H, Huang S, Roel J, Jimenez-Garcia B, Christoffer C, Jain A, Kagaya Y, Kannan H, Nakamura T, Terashi G, Verburgt J, Zhang Y, Zhang Z, Fujuta H, Sekijima M, Kihara D, Khan O, Kotelnikov S, Ghani U, Padhorny D, Beglov D, Vajda S, Kozakov D, Negi S, Ricciardelli T, Barradas-Bautista D, Cao Z, Chawla M, Cavallo L, Oliva R, Yin R, Cheung M, Guest J, Lee J, Pierce B, Shor B, Cohen T, Halfon M, Schneidman-Duhovny D, Zhu S, Yin R, Sun Y, Shen Y, Maszota-Zieleniak M, Bojarski K, Lubecka E, Marcisz M, Danielsson A, Dziadek L, Gaardlos M, Giełdoń A, Liwo J, Samsonov S, Slusarz R, Zieba K, Sieradzan A, Czaplewski C, Kobayashi S, Miyakawa Y, Kiyota Y, Takeda-Shitaka M, **Olechnovič K**, Valančauskas L, Dapkūnas J, Venclovas C, Wallner B, Yang L, Hou C, He X, Guo S, Jiang S, Ma X, Duan R, Qiu L, Xu X, Zou X, Velankar S, Wodak S.

Preprint, paper submitted to *Proteins*. 2023. doi:10.22541/au.168888815.53957253/v1.

5. <u>Discriminating Physiological from Non-Physiological Interfaces in Structures of Protein Complexes: A Community-Wide Study.</u>

Schweke H, Xu Q, Tauriello G, Pantolini L, Schwede T, Cazals F, Lhéritier A, Fernandez-Recio J, Rodríguez-Lumbreras LÁ, Schueler-Furman O, Varga JK, Jiménez-García B, Réau MF, Bonvin A, Savojardo C, Martelli P-L, Casadio R, Tubiana J, Wolfson H, Oliva R, Barradas-Bautista D, Ricciardelli T, Cavallo L, Venclovas Č, **Olechnovič K**, Guerois R, Andreani J, Martin J, Wang X, Kihara D, Marchand A, Correia B, Zou X, Dey S, Dunbrack R, Levy E, Wodak S. *Proteomics*. 2023 Jun 27.

doi:10.1002/pmic.202200323.

PMID:37365936.

6. Modeling SARS-CoV2 proteins in the CASP-commons experiment.

Kryshtafovych A, Moult A, Billings WM, Della Corte D, Fidelis K, Kwon S, **Olechnovič K**, Seok C, Venclovas Č, Won J, et al.

Proteins. 2021 Aug 30.

doi:10.1002/prot.26231.

PMID:34462960.

7. Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment.

Lensink MF, Brysbaert G, Mauri T, Nadzirin N, Velankar S, Chaleil RAG, Clarence T, Bates PA, Kong R, Liu B, Yang G, Liu M, Shi H, Lu X, Chang S, Roy RS, Quadir F, Liu J, Cheng J, Antoniak A, Czaplewski C, Giełdoń A, Kogut M, Lipska AG, Liwo A, Lubecka EA, Maszota-Zieleniak M, Sieradzan AK, Ślusarz R, Wesołowski PA, ZiĘba K, Del Carpio Muñoz CA, Ichiishi E, Harmalkar A, Gray JJ, Bonvin AMJJ, Ambrosetti F, Honorato RV, Jandova Z, Jiménez-García B, Koukos PI, Van Keulen S, Van Noort CW, Réau M, Roel-Touris J, Kotelnikov S, Padhorny D, Porter KA, Alekseenko A, Ignatov M, Desta I, Ashizawa R, Sun Z, Ghani U, Hashemi N, Vajda S, Kozakov D, Rosell M, Rodríguez-Lumbreras LA, Fernandez-Recio J, Karczynska A, Grudinin S, Yan Y, Li H, Lin P, Huang SY, Christoffer C, Terashi G, Verburgt J, Sarkar D, Aderinwale T, Wang X, Kihara D, Nakamura T, Hanazono Y, Gowthaman R, Guest JD, Yin R, Taherzadeh G, Pierce BG, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Sun Y, Zhu S, Shen Y, Park T, Woo H, Yang J, Kwon S, Won J, Seok C, Kiyota Y, Kobayashi S, Harada Y, Takeda-Shitaka M, Kundrotas PJ, Singh A, Vakser IA, Dapkūnas J, **Olechnovič K**, Venclovas Č, Duan R, Qiu L, Zhang S, Zou X, Wodak SJ.

Proteins. 2021 Aug 28.

doi:10.1002/prot.26222.

PMID:34453465.

8. Modeling of protein complexes in CASP14 with emphasis on the interaction interface prediction.

Dapkūnas J, **Olechnovič K**, Venclovas Č.

Proteins. 2021 Jun 27.

doi:10.1002/prot.26167.

PMID:34176161.

9. VoroContacts: a tool for the analysis of interatomic contacts in macromolecular structures.

Olechnovič K, Venclovas Č.

Bioinformatics. 2021 Jun 16. pdf.

doi:10.1093/bioinformatics/btab448.

PMID:34132767.

10. VoroCNN: Deep convolutional neural network built on 3D Voronoi tessellation of protein structures.

Igashov I, **Olechnovič K**, Kadukova M, Venclovas Č, Grudinin S.

Bioinformatics. 2021 Feb 23.

doi:10.1093/bioinformatics/btab118.

PMID:33620450.

11. Template-based modeling of diverse protein interactions in CAPRI rounds 38-45.

Dapkūnas J, Kairys V, **Olechnovič K**, Venclovas Č.

Proteins. 2020 Aug;88(8):939-947.

doi:10.1002/prot.25845.

PMID:31697420.

12. Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment.

Lensink MF, Brysbaert G, Nadzirin N, Velankar S, Chaleil RAG, Gerguri T, Bates PA, Laine E, Carbone A, Grudinin S, Kong R, Liu RR, Xu XM, Shi H, Chang S, Eisenstein M, Karczynska A, Czaplewski C, Lubecka E, Lipska A, Krupa P, Mozolewska M, Golon Ł, Samsonov S, Liwo A, Crivelli S, Pagès G, Karasikov M, Kadukova M, Yan Y, Huang SY, Rosell M, Rodríguez-Lumbreras LA, Romero-Durana M, Díaz-Bueno L, Fernandez-Recio J, Christoffer C, Terashi G, Shin WH, Aderinwale T, Maddhuri Venkata Subraman SR, Kihara D, Kozakov D, Vajda S, Porter K, Padhorny D, Desta I, Beglov D, Ignatov M, Kotelnikov S, Moal IH, Ritchie DW, Chauvot de Beauchêne I, Maigret B, Devignes MD, Ruiz Echartea ME, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Cao Y, Shen Y, Baek M, Park T, Woo H, Seok C, Braitbard M, Bitton L, Scheidman-Duhovny D, Dapkūnas J, **Olechnovič K**, Venclovas Č, Kundrotas PJ, Belkin S, Chakravarty D, Badal VD, Vakser IA, Vreven T, Vangaveti S, Borrman T, Weng Z, Guest JD, Gowthaman R, Pierce BG, Xu X, Duan R, Qiu L, Hou J, Ryan Merideth B, Ma Z, Cheng J, Zou X, Koukos PI, Roel-Touris J, Ambrosetti F, Geng C, Schaarschmidt J, Trellet ME, Melquiond ASJ, Xue L, Jiménez-García B, van Noort CW, Honorato RV, Bonvin AMJJ, Wodak SJ. *Proteins*. 2019 Dec;87(12):1200-1221.

doi:10.1002/prot.25838.

PMID:31612567.

13. Structural modeling of protein complexes: Current capabilities and challenges.

Dapkūnas J, **Olechnovič K**, Venclovas Č.

Proteins. 2019 Dec;87(12):1222-1232.

doi:10.1002/prot.25774.

PMID:31294859.

14. Estimation of model accuracy in CASP13.

Cheng J, Choe MH, Elofsson A, Han KS, Hou J, Maghrabi AHA, McGuffin LJ, Menéndez-Hurtado D, **Olechnovič K**, Schwede T, Studer G, Uziela K, Venclovas Č, Wallner B.

Proteins. 2019 Dec;87(12):1361-1377.

doi:10.1002/prot.25767.

PMID:31265154.

15. <u>VoroMQA</u> web server for assessing three-dimensional structures of proteins and protein complexes.

Olechnovič K, Venclovas Č.

Nucleic Acids Res. 2019 Jul 2;47(W1):W437-W442.

doi:10.1093/nar/gkz367.

PMID:31073605.

16. Comparative analysis of methods for evaluation of protein models against native structures.

Olechnovič K, Monastyrskyy B, Kryshtafovych A, Venclovas Č.

Bioinformatics. 2019 Mar 15;35(6):937-944.

doi:10.1093/bioinformatics/bty760.

PMID:30169622.

17. Modeling of protein complexes in CAPRI Round 37 using template-based approach combined with model selection.

Dapkūnas J, **Olechnovič K**, Venclovas Č.

Proteins. 2018 Mar;86 Suppl 1:292-301.

doi:10.1002/prot.25378.

PMID:28905467.

18. VoroMQA: Assessment of protein structure quality using interatomic contact areas.

Olechnovič K, Venclovas Č.

Proteins. 2017 Jun;85(6):1131-1145.

doi:10.1002/prot.25278.

PMID:28263393.

19. The PPI3D web server for searching, analyzing and modeling protein-protein interactions in the context of 3D structures.

Dapkūnas J, Timinskas A, **Olechnovič K**, Margelevičius M, Diciunas R, Venclovas Č.

Bioinformatics. 2017 Mar 15;33(6):935-937.

doi:10.1093/bioinformatics/btw756.

PMID:28011769.

20. <u>The CAD-score web server: contact area-based comparison of structures and interfaces of proteins, nucleic acids and their complexes.</u>

Olechnovič K, Venclovas Č.

Nucleic Acids Res. 2014 Jul:42(Web Server issue):W259-63.

doi:10.1093/nar/gku294.

PMID:24838571.

21. The use of interatomic contact areas to quantify discrepancies between RNA 3D models and reference structures.

Olechnovič K, Venclovas Č.

Nucleic Acids Res. 2014 May;42(9):5407-15.

doi:10.1093/nar/gku191.

PMID:24623815.

22. Voronota: A fast and reliable tool for computing the vertices of the Voronoi diagram of atomic balls.

Olechnovič K, Venclovas Č.

J Comput Chem. 2014 Mar 30;35(8):672-81.

doi:10.1002/jcc.23538.

PMID:24523197.

23. <u>CAD-score: a new contact area difference-based function for evaluation of protein structural models.</u>

Olechnovič K, Kulberkytė E, Venclovas Č.

Proteins. 2013 Jan;81(1):149-62.

doi:10.1002/prot.24172.

PMID:22933340.

24. Voroprot: an interactive tool for the analysis and visualization of complex geometric features of protein structure.

Olechnovič K, Margelevičius M, Venclovas Č.

Bioinformatics. 2011 Mar 1;27(5):723-4.

doi:10.1093/bioinformatics/btq720.

PMID:21186248.

Knygų skyriai

• Contact Area-Based Structural Analysis of Proteins and Their Complexes Using CAD-Score.

Olechnovič K, Venclovas Č.

In: Zoltán Gáspári (eds) Structural Bioinformatics: Methods and Protocols, Methods in Molecular Biology, vol. 2112. Springer. 2020.

• In Silico Modeling of Inhibitor Binding to Carbonic Anhydrases.

Kairys V, Olechnovič K, Raškevičius V, Matulis D.

In: Matulis D. (eds) Carbonic Anhydrase as Drug Target. Springer, Cham. 2019.

Daktaro disertacija

• Methods for the analysis and assessment of the three-dimensional structures of proteins and nucleic acids: development and applications.

Olechnovič K.

Daktaro disertacija, Vilniaus universitetas, 2017.

Baltymų ir nukleorūgščių erdvinių struktūrų analizės ir vertinimo metodai: kūrimas ir taikymas.

Olechnovič K.

Daktaro disertacijos santrauka lietuvių kalba, Vilniaus universitetas, 2017.

Kitos publikacijos

• Kompiuteriai padeda pažinti sudėtingą baltymų pasaulį.

Dapkūnas J, **Olechnovič K**.

Straipsnis mokslo populiarinimo žurnale SPECTRUM. 2017 1(26), ISSN 1822-0147.

• Žurnalo viršelis pagal straipsnį "VoroMQA: Assessment of protein structure quality using interatomic contact areas".

Olechnovič K, Venclovas Č.

Viršelis žurnalui *Proteins*. 2019 Volume 85, Issue 6.

doi:10.1002/prot.25129.

Pranešimai konferencijose

Žodiniai pranešimai traptautinėse konferencijose

• CASP15 konferencija, Turkija, Antalija (2022)

- AI at CIRM, Prancūzija, Marselis (2021)
- CASP14 konferencija, Virtuali (2020)
- COINS, Lietuva, Vilnius (2019), keynote
- CASP13 konferencija, Meksika, Riviera Mava (2018)
- VitaScientia, Lithuania, Vilnius (2018)
- CASP12 konferencija, Italija, Gaeta (2016)
- CASP10 konferencija, Italija, Gaeta (2012)

Stendiniai pranešimai traptautinėse konferencijose

- CASP15 konferencija, Turkija, Antalija (2022)
- AI at CIRM, Prancūzija, Marselis (2021)
- PDB50, Virtuali (2021)
- CASP14 konferencija, Virtuali (2020)
- ISMB, Šveicarija, Bazelis (2019)
- CASP13 konferencija, Meksika, Riviera Maya (2018)
- CASP12 konferencija, Italija, Gaeta (2016)
- ECCB, Olandija, Haga (2016)
- CASP11 konferencija, Meksika, Riviera Maya (2014)
- ECCB, Prancūzija, Strasbūras (2014)
- ISMB, Vokietija, Berlinas (2013)
- SocBiN, Lenkija, Torunė (2013)
- CASP10 konferencija, Italija, Gaeta (2012)
- ECCB, Šveicarija, Bazelis (2012)
- SAGA, Lietuva, Vilnius (2011)
- ISMB, Austrija, Viena (2011)
- ECCB, Belgija, Gentas (2010)
- VizBi, Vokietija, Heidelbergas (2010)

Nuoroda į stendinių pranešimų vaizdus: www.kliment.lt/posters

Pasiekimai ir apdovanojimai

Pasiekimai CASP and CAPRI eksperimentuose

CASP (Critical Assessment of Techniques for Protein Structure Prediction) ir CAPRI (Critical Assessment of PRedicted Interactions) yra tarptautiniai eksperimentai skirti baltymų struktūrinės bioinformatikos metodams aklai testuoti.

Prisidėjęs prie vienų iš aukščiausių rezultatų CASP-CAPRI eksperimente ir CASP15 eksperimento
oligomerinių struktūrų modeliavimo kategorijoje. Grupė "Venclovas", nariai: Olechnovič K, Dapkūnas J,
Venclovas Č.

2022 Pasiekti vieni iš aukščiausių rezultatų CASP15 eksperimento struktūrų kokybės vertinimo kategorijoje, taip pat aukščiausi rezultatai CASP-CAPRI struktūrų vertinimo eksperimente. Grupės "VoroMQA-A" ir "VoroMQA-B".

2020 Prisidėjęs prie vienų iš aukščiausių rezultatų CASP-CAPRI eksperimente ir CASP14 eksperimento oligomerinių struktūrų modeliavimo kategorijoje. Grupė "Venclovas", nariai: Olechnovič K, Dapkūnas J, Venclovas Č.

2019 Prisidėjęs prie vienų iš aukščiausių rezultatų CAPRI eksperimento 38–45 etapuose. Grupė "Venclovas", nariai: Dapkūnas J, Kairys V, Olechnovič K, Venclovas Č.

2018 Prisidėjęs prie aukščiausių rezultatų CASP-CAPRI eksperimente ir CASP13 eksperimento oligomerinių struktūrų modeliavimo kategorijoje. Grupė "Venclovas", nariai: Dapkūnas J, Olechnovič K, Venclovas Č.

2018 Pasiekti vieni iš aukščiausių rezultatų CASP13 eksperimento struktūrų kokybės vertinimo kategorijoje. Grupės

"VoroMQA-A" ir "VoroMQA-B".

2016 Prisidėjęs prie aukščiausių rezultatų CASP-CAPRI eksperimente. Grupė "Venclovas", nariai: Dapkūnas J,

Olechnovič K, Venclovas Č.

2016 Pasiekti vieni iš aukščiausių rezultatų CASP12 eksperimento monomerinių struktūrų modeliavimo

kategorijoje. Grupė "VoroMQA-select".

Nacionaliniai apdovanojimai

2019	Lietuvos Mokslų Akademijos jaunųjų mokslininkų stipendija
2018	Konkurso "Geriausia daktaro disertacija Lietuvoje 2017 metais" laurėatas
2015	Lietuvos Mokslų Akademijos apdovanojimas už geriausius jaunųjų mokslininkų darbus 2014 metais

2013–2014 Lietuvos Mokslo Tarybos stipendiją doktorantams už aktyvią mokslinę veiklą

2013 INFOBALT skatinamoji stipendija jauniesiems mokslininkams

Konferencijų apdovanojimai

2019 Konkurso "ISCB Art in Science" nugalėtojas konferencijoje "ISMB/ECCB 2019". Kūrinio pavadinimas:

"Disassembled tessellation".

2016 Geriausias stendinis pranešimas konferencijoje "12th Community Wide Experiment on the Critical

Assessment of Techniques for Protein Structure Prediction (CASP12 meeting)". Pranešimo pavadinimas: *VoroMQA: assessment of protein structure quality using interatomic contact areas derived from the Voronoi*

tessellation of atomic balls.

2013 Geriausias stendinis pranešimas konferencijoje "Society for Bioinformatics in Northern European countries

(SocBiN)". Pranešimo pavadinimas: The use of interatomic contact areas for the assessment of RNA 3D

structural models.

2012 Geriausias stendinis pranešimas konferencijoje "EMBO Conference on Critical Assessment of Protein

Structure Prediction (CASP10 meeting)". Pranešimo pavadinimas: CAD-score: a new method for the

evaluation of protein structural models.

Kiti pasiekimai

2018 Lietuvos dziudo imtynių čempionas, dziudo juodas diržas.

2018 Lietuvos sambo imtynių čempionas.