Question 2

00:00:00 left

ıvishu14@gmail.com

Help ▼

Max. Marks 100.00

End Test

3 Questions	Total Marks: 300.0	
3 Programming Questions		
1. Perpendicular Lines	+ 100.0	
2. Black and White	+ 100.0	
3. A Game on Array	+ 100.0	

Black	and	White

You are given a graph G consisting of N nodes and M edges. Each node of G is either colored in black or white. Also, each edge of G has a particular wieight. Now, you need to find the least expensive path between node $\mathbf{1}$ and node N, such that difference of the number of black nodes and white nodes on the path is no more than $\mathbf{1}$.

It is guaranteed ${\it G}$ does not consist of multiple edges and self loops.

Input Format:

The first line contains two space separated integers N and M. Each of the next M lines contains $\mathbf{3}$ space separated integers u, v, l which denotes that there is an edge from node u to node v having a weight l. The next line contains N space separated integers where each integer is either v0 or v1. If the v1 integer is v2 it denotes that v3 node is black, otherwise it is white.

Constraints

$$1 \le N \le 1000$$

$$1 \le M \le 10000$$

$$1 \le l \le 1000$$

$$1 \leq u, v \leq N, u \neq v$$

Output Format

Output a single integer denoting the length of the optimal path fulfilling the requirements. Print -1 if there is no such path.

Sample Input	%	Sample Output	%	
6 6 1 2 1		7		?
2 3 1				۰