ECON 810 Final Project

Yobin & Mitchell

March 9, 2022

Roadmap

Data

2 Model

3 / 13

Environment

- Households live for *T* periods, without retirement.
- Agents are heterogeneous in human capital h, assets k, and years of schooling S.
- They spend s proportion of time in school each period.
- Agents are either employed or unemployed (but looking for a job).
- There are two kinds of firms: a high type and a low type.

Firms

- There are 2 firm types $I \in \{L, H\}$.
- μ fraction of firms are low type. Alternatively, we could think of this as μ proportion of all job vacancies are for the low type firm.
- Firm type I = L hires all workers while firm type I = H hires only workers with $S \ge \underline{S}$.

Workers

- Workers are either employed (without on the job search) or unemployed (actively searching for a job).
- Agents take as given these 3 state variables each period:
 - $h \in \mathbb{R}_+$ human capital. Law of motion $h' = \exp z' H(h, s)$.
 - $k \in \mathbb{R}_+$ assets.
 - ullet $S\in\mathbb{R}_+$ (accumulated) schooling. Law of motion S'=S+s.
- *S*, i.e. years of schooling, determines the probability that an agents receives an offer from the high type firm.
 - ullet We could think of S as minimum required qualifications for a high paying job.

Unemployed Agents

 \bullet Agents divide their time between searching for a job with intensity γ and schooling s:

$$\gamma + s = 1$$

.

ullet Given γ and S, their probability of finding a job is

$$\Pi_t(\gamma, S) = \gamma \cdot \frac{S}{t}$$

.

• Value function depends on whether the agents have a minimum of \underline{S} years of schooling or not.

Value Function if S < S

$$egin{aligned} U_t(h,k,S) &= \max_{k',s} igg\{ u(c) + eta \mathbb{E}igg[\Pi(\gamma,S) \cdot \mu \cdot W_{t+1}^L(h',k',S') \\ &+ (1 - \Pi(\gamma,S) \cdot \mu) U_{t+1}^L(h',k',S') igg] igg\} \end{aligned}$$

Value Function if $S \ge S$

$$U_{t}(h, k, S) = \max_{k', s} \left\{ u(c) + \beta \mathbb{E} \left[\Pi_{t}(\gamma, S) \left[\mu W_{t+1}^{L}(h', k', S') + (1 - \mu) W_{t+1}^{H}(h', k', S') \right] + (1 - \Pi_{t}(\gamma, S)) U_{t+1}^{L}(h', k', S') \right] \right\}$$

with the budget constraint

$$c+k'\leq b+k(1+r).$$

Employed Workers

- Divide their time for s + l = 1.
- No on-the-job search allowed.

Value function, employed at firm /

$$W_t'(h, k, S) = \max_{k', s} \left\{ u(c) + \beta \mathbb{E} \left[(1 - \delta) W_{t+1}'(h', k', S') + \delta U_{t+1}(h', k', S') \right] \right\}$$

with the budget constraint

$$c+k' \leq R_t^I h I + k(1+r)$$

Timing

- Start each period t with (k, h, S). At t = 1, all agents are unemployed.
- ② Given their employment status at the start of each period, agents choose s and k', and pin down c.
- **3** If employed, l = 1 s. If unemployed, $\gamma = 1 s$.
- $\textbf{ 0} \ \, \textbf{If unemployed, given} \ \, \gamma, \textbf{S}, \textbf{ agents have a probability of receiving a job offer}.$
- **1** If $S > \underline{S}$, of the offers they receive, a fraction 1μ comes from high type firm.
- **1** If employed, agents may lose their job with a probability δ .