习题讨论课6题目:重积分

一. 二重积分

例 1. 对连续函数 f,改变累次积分顺序 $\int_0^1 \mathrm{d}x \int_0^{x^2} f(x,y) \mathrm{d}y + \int_1^3 \mathrm{d}x \int_0^{\frac{3-x}{2}} f(x,y) \mathrm{d}y$ 。

例 2. 计算积分 $\iint\limits_{\substack{0\leq x\leq 2\\0\leq y\leq 2}}[x+y]\mathrm{d}x\mathrm{d}y$ 。这里 [t] 表示不超过 t 的最大整数。

例 3. 计算二重积分: $\iint\limits_{D}|xy|\mathrm{d}x\mathrm{d}y$, 其中 D 为圆盘: $x^2+y^2\leq R^2$ 。

例 4. 求由曲线 $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = x^2 + y^2 \ (x^2 + y^2 > 0)$ 所围的平面图形面积。

例 5. 试作适当变换, 计算下列积分:

(1) $\iint_{D} (x+y)\sin(x-y)dxdy, D = \{(x,y)|0 \le x+y \le \pi, 0 \le x-y \le \pi\};$ (2) $\iint_{D} e^{\frac{y}{x+y}}dxdy, D = \{(x,y)|x+y \le 1, x \ge 0, y \ge 0\}.$

例 6. 试作适当变换,把 $\iint_D f(x+y) dx dy$,其中 $D = \{(x,y)||x|+|y| \le 1\}$ 化为单 重积分。

例 7. 在变量替换下

$$x = u\cos^4 v, y = u\sin^4 v$$

把积分 $\iint_{\Omega} f(x,y) dx dy$ 化为累次积分, 其中

$$D=\{(x,y)|\sqrt{x}+\sqrt{y}\leq \sqrt{a}, x\geq 0, y\geq 0\}.$$

例 8. 设 f(x,y) 为连续函数,且 f(x,y) = f(y,x)。证明:

$$\int_0^1 dx \int_0^x f(x, y) dy = \int_0^1 dx \int_0^x f(1 - x, 1 - y) dy.$$

例 9. 对积分 $\iint_D f(x,y) \mathrm{d}x \mathrm{d}y$,其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le x+y \le 1\}$ 进行 极坐标变换并写出变换后不同顺序的累次积分。

例 10. 利用二重积分理论,证明以下积分不等式。设 $f,g \in \mathcal{C}[a,b]$,则

1.
$$\left(\int_a^b f(x) dx\right)^2 \le (b-a) \int_a^b (f(x))^2 dx$$
.

2.
$$\left(\int_a^b f(x)g(x) dx \right)^2 \le \int_a^b (f(x))^2 dx \int_a^b (g(x))^2 dx .$$

3. 设
$$f(x) > 0$$
, $\forall x \in [a,b]$, 证明 $\iint_{[a,b]^2} \frac{f(x)}{f(y)} \mathrm{d}x \mathrm{d}y \ge (b-a)^2$ 。

例 11. 计算 $I=\iint\limits_{D}\frac{1}{\sqrt{x^2+y^2}}\left(y\frac{\partial f}{\partial x}-x\frac{\partial f}{\partial y}\right)\mathrm{d}x\mathrm{d}y$, 其中 $D=\{(x,y)|x^2+y^2\leq R^2\}$ 。

0

例 12. 证明 $\iint_{[0,1]^2} (xy)^{xy} dxdy = \int_0^1 t^t dt$ (第三章的总复习题题9, page 171)

二. 三重积分

例 13. 设 $f \in \mathscr{C}[0, +\infty)$,

$$F(t) = \int_{\Omega_t} (z^2 + f(x^2 + y^2)) dxdydz,$$

其中 $\Omega_t = \{(x, y, z) | 0 \le z \le h, x^2 + y^2 \le t^2 \} (t > 0)$ 。 求 $\lim_{t \to 0^+} \frac{F(t)}{t^2}$.

例 14. 求三重积分 $I = \int\limits_{\Omega} (x+y+z) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z$ 的值,其中

$$\Omega = \left\{ (x,y,z) \left| 0 \le z \le \sqrt{1-x^2-y^2}, z \ge \sqrt{x^2+y^2} \right. \right\}$$

例 15. 求由曲面 $S: (x^2 + y^2)^2 + z^4 = z^2$ 所围有界区域 Ω 的体积。

例 16. 设 $A = (a_{ij})$ 为 3×3 实对称正定矩阵, $\sum_{i,j=1}^{3} a_{ij} x_i x_j = 1$ 表示三维空间的一个椭球面。证明该椭球面所包围立体 V 的体积为 $|V| = \frac{4\pi}{3\sqrt{\det A}}$ 。

例 17. 求由六个平面 $3x - y - z = \pm 1$, $-x + 3y - z = \pm 1$, $-x - y + 3z = \pm 1$ 所围成的有界区域的体积。

例 18. 设 $h = \sqrt{a^2 + b^2 + c^2} > 0$, $f \in \mathscr{C}[-h, h]$ 。证明:

$$\int_{x^2+y^2+z^2<1} f(ax+by+cz) dx dy dz = \pi \int_{-1}^{1} (1-t^2) f(ht) dt.$$