Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta} == \partial_{\beta}\partial^{\beta}t^{\alpha}$	1
$\sigma_{0}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_1^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_{1}^{#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} == 0$	3
$\sigma_{1}^{\#1}{}^{\alpha}=0$	$\partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} + \partial_{\chi} \partial^{\chi} \sigma^{\alpha \beta}_{\beta} == \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi}$	3
$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} +$	
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}t^{etalpha}+2\partial_{\delta}\partial_{\chi}\partial^{eta}\sigma^{lpha\chi\delta}$	
$\sigma_{2}^{\#1}\alpha\beta\chi==0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{\beta X} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\beta \delta \varepsilon} +$	
	$3 \eta^{\beta X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\alpha\delta\epsilon} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\beta\delta}$	
$\tau_{2}^{\#1}\alpha\beta==0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} = =$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}$	
Total constraints/gauge generators:		28

Quadratic (free) action $S == \\ \iiint (\frac{1}{6} \left(6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \mathcal{A}^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 6 r_3 \partial_{\beta} \mathcal{A}_{, \beta}^{ \theta} \partial^{\prime} \mathcal{A}^{\alpha \beta} - 6 r_3 \partial_{\alpha} \mathcal{A}^{\alpha \beta i} \partial_{\theta} \mathcal{A}_{, \beta}^{ \theta} + \\ 12 r_3 \partial^{\prime} \mathcal{A}^{\alpha \beta} \partial_{\theta} \mathcal{A}_{, \beta}^{ \beta} + 4 t_2 \mathcal{A}_{, \beta \alpha}^{ \theta} \partial^{\beta} f^{\alpha i} + 2 t_2 \partial_{\alpha} f^{ \theta} + \\ 12 r_3 \partial^{\prime} \mathcal{A}^{\alpha \beta} \partial^{\beta} \mathcal{A}^{\alpha i} - t_2 \partial_{\beta} f^{\alpha i} - t_2 \partial_{\beta} f^{\alpha i} + 2 f_2 \partial_{\alpha} f^{\alpha i} - \\ \partial^{\beta} f^{\alpha i} - t_2 \partial_{\alpha} f_{\theta i} \partial^{\beta} f^{\alpha i} - t_2 \partial_{\beta} f^{\alpha i} + 2 \partial_{\theta} f^{\alpha i} + 1 \partial^{\beta} f^{\alpha i} - \\ 2 t_2 \mathcal{A}_{\alpha i \theta} (\mathcal{A}^{\alpha i \theta} + 2 \partial^{\beta} f^{\alpha i}) + 8 r_2 \partial_{\beta} \mathcal{A}_{\alpha i \theta}^{ \beta} - 2 r_2 \partial_{\beta} \mathcal{A}_{\alpha \beta i}^{ \beta} - \\ 4 r_2 \partial_{\beta} \mathcal{A}_{\alpha i \beta} \partial^{\beta} \mathcal{A}^{\alpha \beta i} - 2 r_2 \partial_{\beta} \mathcal{A}_{\alpha \beta i}^{ \beta} - 2 r_2 \partial_{\beta} \mathcal{A}^{\alpha \beta i} - 2 r_2 \partial_{\beta} \mathcal{A}^{$	f#1
---	-----

α	0	0	0	0	0	0									
$\chi = \tau_1^{\#2}$			0				0	$f_{1^-}^{\#2} \alpha$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	α							
χ	0	0	0	0	0	0	0	$f_1^{\#1}$	0	0	0	0	0	0	0
$_{lpha}$ $\sigma_{1}^{\#2}$								${\mathscr{A}_{1^{ ext{-}}}^{\#2}}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0	g							
	3,73	t2) 3 t2	3 t 2					${\mathcal A}_{1^{ ext{-}}}^{\#1}$	0	0	0	0	0	0	0
$\tau_1^{\#1}_{+\alpha\beta}$	$-\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	$\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	$\frac{9k^2r_3+4t_2}{3(1+k^2)^2r_3t_2}$	0	0	0	0	$f_{1}^{\#1}$	$i\sqrt{2} kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{9k^2r_3+4t_2}{3(k+k^3)^2r_3t_2}$	$\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	0	0	0	0	${\mathscr A}_{1}^{\#2}$	$\begin{array}{c c} \sqrt{2} \ t_2 & \underline{1} \\ 3 & 3 \end{array}$	3	$-\frac{1}{3}ikt_2$	0	0	0	0
$\sigma_{1}^{\#1}_{\alpha\beta}$	$\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{2i\sqrt{2}}{3kr_3+3k^3r_3} = \frac{1}{2}$	0	0	0	0	${\mathscr A}_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{6} \left(9 k^2 r_3 + 4 t_2 \right)$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha^{eta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + \alpha$		$\mathcal{A}_{1}^{\#1} \dagger^{\alpha \beta}$	$\mathcal{A}_{1}^{\#2} + \alpha^{\beta}$	$f_1^{\#1} + ^{lphaeta}$	$\mathcal{A}_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\mathcal{A}_{1^{\bar{-}}}^{\#2} t^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

1						8	1 ~	
$\tau_{0}^{\#1}$	0	0	0	0	,,,	$\sigma_{2}^{\#_{\perp}^{\perp}}$ α_{l}	$-\frac{2}{3k^2r_3}$	
$\sigma_{0}^{\#1}$	0	0	0	0		•	$+\alpha\beta$	$-\alpha\beta$
•	[‡] 1 †	$\tau_{0}^{\#1}\dagger$	^{#2} †	$\sigma_{0}^{\#1}$ †			σ_{2}^{*1} †	$\tau_{2}^{\#1}$ \dagger
	•			•				7
	_	$\mathcal{A}_0^{\#\frac{1}{4}}$	$f_{0}^{#1}$	$f_{0}^{#2}$,	$\mathcal{A}_0^{\# \frac{1}{2}}$	l 	
$\mathcal{F}_0^{\#}$	1 †	0	0	0		0		
$f_{0}^{#1} \dagger$		0	0	0		0		
$f_{0+}^{#2}\dagger$		0	0	0		0		
$\mathcal{A}_0^{\#}$	¹ † [0	0	0	k^2	r ₂ +	- t ₂	
		\mathcal{F}	#1 2 ⁺ αβ	$f_{2}^{\#1}$	αβ	$\mathcal{A}_2^{\#}$	±1 - αβχ	_
$\mathcal{A}_{2}^{\sharp 1}$ † lphaeta		- Ξ	3 k ² r ₃ 2	0)		0	
$f_{2}^{#1} \dagger^{\alpha\beta}$			0	0)			
${\mathcal R}_{2^{ extstyle -}}^{\sharp 1}\! +^{lphaeta\chi}$			0	0			0	

Massive and massless spectra

	Massive particle						
?	Pole residue:	$-\frac{1}{r_2} > 0$					
/ \	Polarisations:	1					
)—— ? \	Square mass:	$-\frac{t_2}{r_2} > 0$					
?	Spin:	0					
	Parity:	Odd					

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$