EE-530 - Eletrônica Básica I Lista de Exercícios Práticos 4

Celso de Almeida

31 de Maio de 2010

- 1. Vamos projetar e simular um amplificador diferencial. Considere o circuito mostrado na Fig. 7.12 da 5a. Edição do livro texto. Vamos colocar uma fonte de tensão senoidal com 10 mVolts de amplitude e 1 kHz de freqüência como base de Q_1 . Aterre a base de Q_2 . Faça a fonte de corrente DC igual a I=1 mA mais os 3 últimos dígitos do seu RA dividido por 10^6 . Vamos escolher baterias de ± 10 Volts. Determine R_C para que a tensão DC no coletor fique por volta de 5 V, ou seja aproximadamente na metade da excursão máxima possível do sinal na saída. Vamos usar nesta simulação o modelo do transistor 2N2222A.
 - Faça a análise de polarização (BIAS POINT DETAIL) e compare com as tensões e correntes esperadas pela teoria.
 - Faça a análise de transitório observando-se alguns ciclos dos sinais senoidais nos coletores. Obtenha
 o ganho diferencial e não-diferencial e compare com os valores teóricos. Aumente a amplitude do
 gerador senoidal para 1 Volt e observe os sinais nas saídas. Determine os níveis de saturação teóricos
 e compare com os valores obtidos experimentalmente.
 - Obtenha a função de transferência (AC SWEEP). Coloque o atributo "AC Sweep Type" para "Decade" e faça uma varredura entre 1 kHz e 10 MHz. Para obter a função de transferência, é preciso fazer o atributo AC do gerador senoidal diferente de 0. Coloque-o igual a 1 Volt. Usando dois marcadores de tensão, coloque o primeiro sobre a fonte de tensão senoidal e o segundo sobre a carga. Determine o ganho de tensão teórico e compare com aquele obtido experimentalmente. Determine as freqüências de corte inferior e superior teóricas e compare com aquelas obtidas experimentalmente.
 - Determine a resistência de saída do amplificador variando R_L. Por definição, a resistência de saída é o valor de R_L que reduz o ganho de tensão à metade. Para isto, use a função de transferência (AC Sweep). Compare a resistência de saída experimental com o seu valor téorico.
 - Após ter realizado a simulação consulte o menu "ANALYSIS" e aperte o botão "Examine Output", quando um texto será aberto. Como curiosidade, procure no texto os parâmetros do modelo de Ebers-Moll do transistor 2N2222A, descrito em "BJT MODEL PARAMETERS", como por exemplo verifique o valor da corrente de saturação, IS, o beta do transistor BF, etc. Logo abaixo podemos encontrar as grandezas de tensão e de corrente de polarização do transistor, tais como IC, IB, VBE, VCE, etc, e as grandezas elétricas do modelo de pequenos sinais, tais como, a transcondutância (GM), a resistência r_{π} (RPI), a freqüência de transição (FT), etc. Compare a transcondutância e com a resistência r_{π} com os respectivos valores teóricos.
- 2. Monte um amplificador classe B, como aquele mostrado na Fig. 14.5 da 5a. Edição. Vamos usar os modelos de transistores bipolares de potência TIP29 e TIP30. Faça as tensões de alimentação positiva e negativa iguais a ± 10 Volts, respectivamente. Faça o resistor de carga igual a $10~\Omega$ mais os 3~últimos dígitos do seu RA dividido por 100. Coloque na entrada uma fonte de tensão senoidal de 10~Volts e freqüência de 1~kHz.
 - Vamos fazer um gráfico da tensão de saída em função da tensão de entrada. Abra a janela "Analysis Setup" e selecione "DC Sweep". Faça o sinal de entrada variar de −10 a 10 Volts em passos de 0, 1 Volts. Selecione o sinal de saída através de um marcador de tensão.

- Obtenha alguns períodos da tensão de saída através da análise de transitório. Obtenha também alguns períodos da corrente na carga. Determine o valor eficaz da potência entregue à carga. Compare com o valor esperado pela teoria.
- Obtenha também alguns períodos da forma de onda da corrente retirada das baterias positiva e negativa.
 Obtenha a potência eficaz retirada da bateria positiva e negativa. Obtenha a eficiência do amplificador.
 Compare com os valores esperados pela teoria.

Observações:

• O exercício é individual.