CSCI:6502 Group Project

# Streaming Log Analytics Tool

#### **Team Members:**

Janani Selvan (jase6406): 001 Nithin Veer Reddy (nika9944): 001 Shruthi Sridharan (shsr7296): 001B Veena Prasad (vepr4844): 001

# **Project Motivation**

- Logs are generated across multiple platforms mostly in raw format
- Although the successful logs does not generate any insightful information but error logs should be analysed properly in order to have a successful flow.
- The information from these logs should be extracted and then further used to rectify the system.
- As most of the systems do have its own style of log formats so each log generator should have a different pipeline to merge logs from multiple sources
- There is an essential need to merge the logs from multiple sources to extract some meaningful information.

#### Related Work

- LogDriver analyzes the application-level resiliency in extreme-scale computing systems.
  - Capable of handling data generated by system monitoring tools in Blue Waters and scalable tool implemented in mapreduce frameworks.
  - Answers the research question about the complexity involved in automatic parsing of heterogeneous log messages in seconds as analysis tools prefer the logs in a unified format.
  - Applications security, anomalies detection, software system maintenance.

#### Our techniques

- Ingest the standalone logs into two streaming pipelines according to the log categories.
- Analyzing the performance of the log parser using the ElasticSearch and Spark.
- Visualize the processed logs to understand any errors, irregularities thereby giving some valuable insights to rectify the same.
- Visualizations are prepared on kibana which includes
  - Dashboards,
  - o Graphs, Charts, Word Clouds
  - Dailly, Weekly (Regular timely) reports

#### Dataset

- Data is sourced from the publicly available repositories.
- Most of the data is being sourced from a single repository logpai/loghub
- Overall data is close to 77GB
- Some of the popular system logs includes data from the following technologies
  - Distributed System Logs
  - Operating System Logs
  - Supercomputer Logs
  - Server Application Logs
  - Mobile Application Logs

# Design choices



Log processing tools

Data store for processed log data

Data visualizate tool for Elasticsearch

# Reasoning of our choices

| Tool          | Purpose                                          |  |
|---------------|--------------------------------------------------|--|
| Elasticsearch | Stores and queries the data ingested             |  |
| CloudLab      | Hosting the data, es clusters, applications      |  |
| Kibana        | Build the visualizations and dashboards          |  |
| Logstash      | Pipeline to push the data from sources to ES     |  |
| Spark         | To map/reduce the data into meaning aggregations |  |

#### The Work

- End to end completion of Major log groups Android, Spark , Zookeeper, Hadoop logs.
- Complete pipeline is established with relevant infrastructure has been deployed.
- Constructed both Spark & Elasticsearch pipeline and thereby compared the performance.
- Out of the various logs available, we analysed and created clusters and processed one major logs pattern from each cluster of logs.
- Logs are further analysed according to the log format before parsing them to respective pipelines.
- Around 700K logs are parsed so far.
- An End to End Framework built which would be cross utilized to parse other logs in the same cluster.
- Some meaningful analysis are projected on kibana dashboards.

## ElasticSearch - Accomplishment

• Constructed parsing scripts for each and every log category and thereby indexing the same in the elasticsearch.

| Log type  | # logs | Log file size (MB) | Processing time (in minutes) |
|-----------|--------|--------------------|------------------------------|
| Android   | 199799 | 192                | 270                          |
| Hadoop    | 180897 | 5.1                | 264                          |
| Zookeeper | 74380  | 10                 | 102                          |
| Spark     | 108291 | 2950               | 192                          |

# Spark - Accomplishment

 Implementation of alternate pipeline - Spark based on the log categorization and thereby ingesting the standalone logs into the Elasticsearch.

| Log type  | # logs | Log file size(MB) | Processing time(in minutes) |
|-----------|--------|-------------------|-----------------------------|
| Android   | 199799 | 192               | 297                         |
| Hadoop    | 180897 | 5.1               | 316                         |
| Zookeeper | 74380  | 10                | 113                         |
| Spark     | 108291 | 2950              | 230                         |

# **Graphical Comparison**



# Key Observations

- End to end completion of Major log groups Android, Spark, Zookeeper, Hadoop logs.
- Complete pipeline is established with relevant infrastructure has been deployed.
- Constructed both Spark & Elasticsearch pipeline and thereby compared the performance.
- Now that the load wasn't distributed, the simpler pipeline with Elastic search performed better.
- Cost benefit analysis with distributed load across transient servers might help us indicate the most cost-effective pipeline.

#### Kibana Dashboard links

| LOGS      | KIBANA LINK                                                                   | DATE TIME FRAME                               |
|-----------|-------------------------------------------------------------------------------|-----------------------------------------------|
| Android   | http://ms1133.utah.cloudlab.us:6100/goto/<br>2108e0410c3ed33844553123c525d133 | Dec 17, 2018 00:00:00 - Dec 18, 2018 00:00:00 |
| Hadoop    | http://ms1133.utah.cloudlab.us:6100/goto/<br>7cc69df5706e21f216241723fe1081de | Oct 18, 2015 11:00:00 - Oct 19, 2015 12:00:00 |
| Spark     | http://ms1133.utah.cloudlab.us:6100/goto/<br>3a0c2c0cf38254a967a441789aa616b0 | Jun 17, 2009 00:00:00 - Jun 17, 2009 20:30:00 |
| Zookeeper | http://ms1133.utah.cloudlab.us:6100/goto/<br>9a6f6dfbccb3411b40dd260fd9497c75 | Jul 28, 2015 00:00:00 - Aug 29, 2015 00:00:00 |

Visualizations are prepared on Kibana dashboard to provide valuable insights to rectify and help in software production.









#### **Evaluation**

- Unlike routine way of evaluation using some metrics, here we put evaluations in terms of analyzing and comparing.
- For each set of log components, we Analyze and Compare the performance of logs
- Results are evaluated and ranked according to the tools of each component alongside with the power/time/cost and nature of the logs.
- Measure of success:
  - Spark Process almost 200k line items in 300 minutes
  - ELK Process almost 200k line items in 270 minutes

#### Conclusion

- Set up experiments to analyze performance of ElasticSearch and Spark based pipeline based on 3 V's (Volume, Velocity and Variety)
- Comparing the processing times of ElasticSearch and Spark, it can be seen that ElasticSearch has lesser processing time.
- On qualitative aspects of growing the application and bringing a scalable solution, Spark would work better.
- Some insightful information about the logs were generated using Kibana.
- An End to End Framework built which would be cross utilized to parse other logs in the same cluster.

#### Future work

- As we have parsed most of the logs which are static, we could extend the same work for a live stream of logs.
- We could have modified the existing pipeline to honour the log streams.
- Although there won't be much difference between Batch Processing Vs Live Processing, the results would have been interesting to watch.
- Distribute tasks across multiple servers and do a CBA across different pipelines.

#### References

- https://github.com/logpai/loghub
- https://www.elastic.co/
- https://www.elastic.co/beats/
- https://www.elastic.co/quide/en/elasticsearch/hadoop/master/spark.html
- https://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/elasticsearch.html
- https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
- https://www.elastic.co/guide/en/logstash/current/plugins-inputs-rabbitmg.html
- https://www.elastic.co/blog/elastic-stack-primer
- https://www.elastic.co/quide/en/elasticsearch/reference/master/data-streams.html
- https://logpai.github.io