3 pages 1

```
Source | Model | Option | Model_Option | Help on fd methods | Archived Tests
```

fd_howard2d

Input parameters:

- SpaceStepNumber N
- \bullet TimeStepNumber M
- Epsilon

Output parameters:

- Price
- Delta1
- Delta2

The algorithm of Howard has been introduced by Howard in [1].

```
/*Memory Allocation*/
```

/*Covariance Matrix*/

/*Space localisation/*

Define the integration domain $D = [-l, l]^2$ using probabilistic estimation.

Define the space step $h = \frac{2l}{N}$.

3 pages 2

/*Time Step*/

Define the time step $k = \frac{T}{M}$.

/*Terminal Values/*

Put the value of the payoff into a vector P.

/*Homegenous Dirichlet Conditions/*

/*Factors of scheme*/

Initialize the matrix M^h issued from the discretization of the operator A in the case of Dirichlet Boundary conditions.

/*Finite difference Cycle/*

At any time step, we have to solve the linear complementarity problem.

/*Init Control*/

We initializate the control pp and the second member R.

/*Howard cycle*/

We solve the linear complementarity problem using the Howard algorithm, which consists in constructing a convergent sequence u^p whose limit is u.

Let epsilon > 0 be given.

- Step 1 Let u^k be given, we compute $(i, j) \to pp^k[i][j] = argmin(M^{pp}u^k(i, j) f^{pp}[i][j])$ where pp = 0 or 1 (the domain is divided into 2 regions: the continuation region and the exercice region), M^0 is the matrix M^h issued from the discretization of the operator $A, M^1 = Id, f^0 = R, f^1 = Obst.$
- **Step 2** We solve the linear system $M^{pp^k}u = G^{pp^k}$ by the Gauss factorization. It gives u^{k+1} .

The stopping criteria is

$$||u^{k+1} - u^k||_{\infty} < epsilon.$$
 (1)

/*Price*/

/*Delta*/

3 pages

/*Memory Desallocation*/

References

[1] Howard, R.A.: Dynamic Programming and Markov Process. (MIT Press. 1960) ${\color{red}1}$