MULTICRITERIA DECISION MAKING

Contents

- 1. Basic Concepts and Foundations
- 2. Simple Additive Weighting Method
- 3. TOPSIS
- 4. Promethee Methods

1

Literature:

- 1. Multiple Attribute Decision Making, Methods and Applications. G-H Tzeng and J-J Huang. CRC Press. 2011
- Multiple Attribute Decision Making, Methods and Applications, A State-of-the-Art Survey, C-L. Hwang and K.Yoon, Springer-Verlag, 1981.
- 3. "How to Select and How to Rank Projects: The Promethee Method", J.P.Brans, Ph. Vincke, B.Mareschal. *European Journal of Operational Research*, 24, 1986, pages 228-238.

2

1. Basic Concepts and Foundations Overview: Multicriteria decision making (MCDM) refers to making decisions in the presence of multiple, usually conflicting criteria. Multiattribute decision making (MADM) Multiobjective decision making (MODM)

Decision Matrix

$$A = \{A_1, A_2, ..., A_n\}$$
 Alternatives to choose between $C = \{C_1, C_2, ..., C_k\}$ Criteria

$$\mathbf{D} = \begin{bmatrix} f_{11} & \cdots & f_{1k} \\ \vdots & \ddots & \vdots \\ f_{n1} & \cdots & f_{nk} \end{bmatrix}$$

4

Numerical example.

Fighter aircraft selection.

Attributes:

 C_1 : maximum speed (Mach)

 C_2 : ferry range (NM)

 C_3 : maximum payload (pounds)

 C_4 : purchasing cost (£ × 10⁶)

 C_5 : reliability (high - low)

 C_6 : maneuverability (high - low)

$$D = \begin{bmatrix} 2.0 & 1500 & 20000 & 5.5 & average & very high \\ 2.5 & 2700 & 18000 & 6.5 & low & average \\ 1.8 & 2000 & 21000 & 4.5 & high & high \\ 2.2 & 1800 & 20000 & 5.0 & average & average \end{bmatrix}$$

_

Transformation of Attributes

Normalisation

Once you have numerical values for all attributes, you should normalise them.

- 1. Linear Scale Exercise
- 2. Mapping to [0,1]
- 3. Vector normalisation

7

```
1. Linear scale transformation
                         min max
                                   max
      max max
                 max
                 20000
                        5.5
                               5
                                     9
       2.0 1500
                                     5
          2700
                 18000
                         6.5
                                     7
       1.8 2000
                 21000
                        4.5
                 20000
                                     5
          1800
```

$$R = \begin{bmatrix} 0.8 \ (= 2.0/2.5) & 0.56 & 0.95 & 0.82 \ (= 4.5/5.5) & 0.71 & 1.0 \\ 1.0 \ (= 2.5/2.5) & 1.0 & 0.86 & 0.69 \ (= 4.5/6.5) & 0.43 & 0.56 \\ 0.72 \ (= 1.8/2.5) & 0.74 & 1.0 & 1.0 \ (= 4.5/4.5) & 1.0 & 0.78 \\ 0.88 \ (= 2.2/2.5) & 0.67 & 0.95 & 0.90 \ (= 4.5/5.0) & 0.71 & 0.56 \end{bmatrix}$$

2. Transformation which maps criteria values to interval [0,1]

· maximisation criterion

$$r_{nk} = \frac{f_{nk} - f_k^{\text{min}}}{f_k^{\text{max}} - f_k^{\text{min}}}, \qquad 0 \le r_{nk} \le 1$$

· minimisation criterion

$$r_{nk} = \frac{f_k^{\max} - f_{nk}}{f_k^{\max} - f_{nk}^{\min}}, \qquad 0 \le r_{nk} \le 1$$

10

2. Transformation which maps criteria values to interval [0,1] max max max min max max 2.0 1500 20000 5.5 2.5 5 2700 18000 6.5 7 2000 21000 4.5 20000 1800 5.0 2700 2700 0 1500 1500

Decision Support Methodologies

2. Simple Additive Weighting Method

Construct the normalised decision matrix.

For each alternative, calculate the weighted sum of values.

$$S_{n} = \frac{\sum_{k=1}^{K} w_{k} \cdot r_{nk}}{\sum_{k=1}^{K} w_{k}}$$
 weights are normalised:
$$\sum_{k=1}^{K} w_{k} = 1$$

$$S_{1} = w_{1} \cdot r_{11} + w_{2} \cdot r_{12} + \dots + w_{K} \cdot r_{1K}$$

$$S_{2} = w_{1} \cdot r_{21} + w_{2} \cdot r_{22} + \dots + w_{K} \cdot r_{2K}$$

$$\dots$$

$$S_{N} = w_{1} \cdot r_{N1} + w_{2} \cdot r_{N2} + \dots + w_{K} \cdot r_{NK}$$
 Select alternative(s) A^{*} :
$$A^{*} \in \{A_{1} \mid S_{1} = \max_{k=1}^{K} w_{k} r_{nk} \}$$

Decision Support Methodologies

Exan Fight	_	raft selec	tion prob	lem.				
Ü	max	max	max	min	max	max		
	2.0	1500	20000 18000 21000 20000	5.5	5	9		
D -	2.5	2700	18000	6.5	3	5		
D=	1.8	2000	21000	4.5	7	7		
	2.2	1800	20000	5.0	5	5		
W	= {0.2	, 0.1, 0.1	, 0.1, 0.2,	0.3}				
		le transfo						
	0.8 (=	2.0/2.5	0.56	0.95	0.82 (=	4.5/5.5)	0.71	1.0
D _	1.0 (=	2.5/2.5)	1.0	0.86	0.69 (=	4.5/6.5)	0.43	0.56
Λ –	0.72 (=1.8/2.5	5) 0.74	1.0	1.0 (= 4	.5/4.5)	1.0	0.78
	0.88 (= 2.2/2.	0.56 1.0 5) 0.74 5) 0.67	0.95	0.90 (=	4.5/5.0)	0.71	0.56

3. TOPSIS Method

- ideal point A+
- $\operatorname{nadir} A_{\#}$
- select the solution which has the <u>shortest</u> distance from the ideal solution and the <u>farthest</u> from the nadir.

Nadir is the 'worst' point.

19

Step 1. Construct the normalised decision matrix. Vector normalisation is most often used.

$$r_{nk} = \frac{f_{nk}}{\sqrt{\sum_{n=1}^{N} f_{nk}^2}}$$

Step 2. Construct the weighted normalised decision matrix.

20

Example Fighter aircraft selection problem.

Decision matrix

$$D = \begin{bmatrix} max & max & max & min & max & max \\ 2.0 & 1500 & 20000 & 5.5 & 5 & 9 \\ 2.5 & 2700 & 18000 & 6.5 & 3 & 5 \\ 1.8 & 2000 & 21000 & 4.5 & 7 & 7 \\ 2.2 & 1800 & 20000 & 5.0 & 5 & 5 \end{bmatrix}$$

 $W = \{0.2, 0.1, 0.1, 0.1, 0.2, 0.3\}$

Normalised decision matrix

$$R = \begin{bmatrix} 0.4671 \, (= \frac{2}{\sqrt{2^2 + 2.5^2 + 1.8^2 + 2.2^2}}) & 0.3662 & 0.5056 & 0.5063 & 0.4811 & 0.6708 \\ 0.5839 \, (= \frac{2.5}{\sqrt{2^2 + 2.5^2 + 1.8^2 + 2.2^2}}) & 0.6591 & 0.4550 & 0.5983 & 0.2887 & 0.3727 \\ 0.4204 \, (= \frac{1.8}{\sqrt{2^2 + 2.5^2 + 1.8^2 + 2.2^2}}) & 0.4882 & 1.0 & 0.4143 & 0.6736 & 0.5217 \\ 0.5139 \, (= \frac{2.3}{\sqrt{2^2 + 2.5^2 + 1.8^2 + 2.2^2}}) & 0.4392 & 0.5056 & 0.4603 & 0.4811 & 0.3727 \end{bmatrix}$$

Example Fighter aircraft selection problem.

Calculate weighted normalised decision matrix

 $\begin{array}{c} \textbf{\textit{W}} = \{0.2, 0.1, 0.1, 0.1, 0.2, 0.3\} \\ \max \\ [0.0934 = 0.2 \cdot 0.4671 \quad 0.0366 \quad 0.0506 \quad 0.0506 \quad 0.0962 \quad 0.2012 \\ \end{array}$ $V = \begin{vmatrix} 0.1168 = 0.2 \cdot 0.5839 & 0.0659 & 0.0455 & 0.0598 & 0.0577 & 0.1118 \end{vmatrix}$

22

Example Fighter aircraft selection problem.

Calculate Ideal point and Nadir point

max max $V = \begin{vmatrix} 0.1168 = 0.2 \cdot 0.5839 & 0.0659 & 0.0455 & 0.0598 & 0.0577 & 0.1118 \end{vmatrix}$

Ideal point

 $\mathbf{A}^+ = \{0.1168, 0.0659, 0.0531, 0.0414, 0.1347, 0.2012\}$

Nadir point

 $\mathbf{A}_{\text{#}} = \{0.0841, 0.0366, 0.0455, 0.0598, 0.0577, 0.1118\}$

23

Step 4. Calculate the distance between each alternative and ideal point A^+ and nadir $A_{\#}$.

Euclidean distance

$$\begin{split} S_{n+} &= \sqrt{\sum_{k=1}^{K} (v_{nk} - v_k^+)^2} \quad , \quad n = 1, ..., N \\ \\ S_{n\#} &= \sqrt{\sum_{k=1}^{K} (v_{nk} - v_{k\#})^2} \quad , \quad n = 1, ..., N \end{split}$$

$$S_{n\#} = \sqrt{\sum_{k=1}^{K} (v_{nk} - v_{k\#})^2}$$
, $n = 1,...,N$

Step 5. Calculate the relative closeness to the ideal point A^+ .

$$P_n = \frac{S_{n\#}}{S_{n+} + S_{n\#}}, P_n \in [0, 1]$$

IF
$$A_n = A^+$$
 THEN $P_n = 1$

IF
$$A_n = A_\#$$
 THEN $P_n = 0$

Step 6. Rank the alternatives by descending P_n

$$A^* \in \left\{ A_{n^*} \mid P_{n^*} = \max_{n} P_n \right\}$$

The best alternative is the highest value of P_n

29

Example Fighter aircraft selection problem.

Relative closeness to the ideal point:

$$P_1 \!\!=\!\! S_{1\#}/\left(S_{1^+} \!+ S_{1\#}\right) = 0.0983/(0.0545 \!+\! 0.0983) \!\!=\!\! 0.643$$
 $P_2 \!\!=\! 0.268$

 $P_3 = 0.613$

 $P_4 = 0.312$

 ${\cal F}$ Aircraft A_1 is selected ${\cal F}$ It is closer to the Ideal Point in the normalised space

4. Promethee Methods

alternatives: $A = \{a,b,c,d,...\}$ attributes: $C = \{f_1,f_2,...,f_K\}$ weights: $W = (w_1, w_2,...,w_K)$

	f_1	f_2	•••	f_k	f_K
а	$f_1(a)$	$f_2(a)$		$f_k(a)$	$f_K(a)$
b	$f_1(b)$	$f_2(b)$		$f_k(b)$	$f_{\it K}(b)$
с	$f_1(c)$	$f_2(c)$		$f_k(c)$	$f_{K}(c)$
d	$f_1(d)$	$f_2(d)$		$f_k(d)$	$f_K(d)$
•••					
W	w_1	w_2		w_k	w_K

31

Dominance Relation:

(all criteria are maximisation)

alternative a dominates alternative b iff

$$f_k(a) \ge f_k(b)$$
, for all $k=1,...,K$ \longleftarrow It i equ

It is better or equal in all attributes

and

32

	ex. I		ex. II		ex. III		ex. IV		ex.V	
	f_1 max	f ₂ max	f_1 max	f ₂ max	f_1 max	f ₂ max	f_1 max	f ₂ max	f_1 max	f ₂ max
а	100	100	100	20	100	99	100	99	100	100
b	30	20	30	100	20	100	99	100	99	99

• ex. I: a should be recommended

• ex. II: a and b are incomparable

• ex. III: a should be recommended

• ex. IV: a and b are **indifferent**

• ex. V: a and b are indifferent

Motivation

- The magnitude of the deviations between the criteria values should be considered.
- The scaling effects should be eliminated.
- · Incomparability should not be excluded in case of pairwise comparisons.
- · An appropriate methods should be simple to understand by the decision maker.

34

Promethee methods

Step 1. Design the "Generalised Preference Criteria"

f is to be maximised

- · Usually, this is the dominance relation for each criteria: $f(a) > f(b) \rightarrow a$ is preferred to b
- $f(a) = f(b) \rightarrow a$ is indifferent to b
- •This is inadequate in most applications. The Promethee method "enriches" the dominance relation, replacing it with a preference
- •We prefer one "to a certain degree" [0-1].
- •P(a,b) preference function
 - *a* is not better than *b* with respect to criterion $\rightarrow P(a,b) = 0$ *a* is "slightly" better than *b* with respect to criterion $\rightarrow P(a,b) = 0$ $\rightarrow P(a, b) = 0$
 - **a** is "strongly" better than **b** with respect to criterion $\rightarrow P(a, b) \sim 1$
 - **a** is "strictly" better than **b** with respect to criterion $\rightarrow P(a, b) = 1$
- Type I: Usual criterion (for a maximising criterion) \rightarrow d = f(a) - f(b)Type II: Quasi criterion (for a maximising criterion)

• q - is a parameter defining an indifference area

P(a,b)

Example. Location of an electric power plant. Alternatives: a_1 : Italy a_2 : Belgium a_3 : Germany a4: UK a_5 : Portugal a_6 : France Attributes: C_1 : Manpower for running the plant C_2 : Power (in Megawatt) C_3 : Construction costs (in million \$) C_4 : Annual maintenance costs (in million \$) C_5 : Ecology; number of villages to evacuate C_6 : Safety level

Step 2. Outranking Graph

• for each pair of alternatives a and b and for each criterion k calculate: $d_k = f_k(a) - f_k(b)$, and from that you get the preference index: $P_k(a,b)$

Aggregated preference index (with weights):

$$P(a,b) = w_1 P_1(a,b) + w_2 P_2(a,b) + \dots w_K P_K(a,b)$$

$$P(a,b) = \sum_{k=1}^K w_k P_k\left(a,b\right)\,,\quad \sum_{k=1}^K w_k = 1$$

• Aggregated preference index if weights of all criteria are the same:

$$\begin{split} P(a,b) &= \frac{1}{K} P_1(a,b) + \frac{1}{K} P_2(a,b) + \ldots + \frac{1}{K} P_K(a,b) \\ &= \frac{1}{K} \left(P_1(a,b) + P_2(a,b) + \ldots + P_K(a,b) \right) \end{split}$$

10

Step 3. Calculate two 'flows'

How much does it outrank others?

1. Positive outranking flow $\phi^+(a) = (P(a,b) + P(a,c) + P(a,d) + ...)$ How much is it outranked by others?

2. Negative outranking flow $\phi^-(a) = (P(b,a) + P(c,a) + P(d,a) + ...)$

◆ Promethee I gives partial rank

(preference $P^{(I)}$, indifference $I^{(I)}$, and incomparability $R^{(I)}$)

$$\begin{cases} a P^{(I)} b & \text{if } \phi^+(a) \ge \phi^+(b) \text{ and } \phi^-(a) \le \phi^-(b) \\ & \text{(only one inequality being strict)} \\ a I^{(I)} b & \text{if } \phi^+(a) = \phi^+(b) \text{ and } \phi^-(a) = \phi^-(b) \\ a R^{(I)} b & \text{otherwise} \end{cases}$$

Informally (and less accurately): If it outranks more alternatives, and it is outranked by less alternatives, then it is preferred.

43

◆ Promethee II gives complete rank.

No pairs are incomparable, but you lose some information.

Uses the $\underline{\text{net outranking flow:}}$

 $\phi(a) = \phi + (a) - \phi - (a)$

 $\phi(a) > \phi(b)$ \rightarrow a outranks b $\phi(a) = \phi(b)$ \rightarrow a indifferent b

Example.

Location of an electric power plant.

Alternatives:

 a_1 : Italy

a₂: Belgium

a₃: Germany

 a_4 : UK

 a_5 : Portugal

*a*₆: France

Attributes:

 C_1 : Manpower for running the plant

 C_2 : Power (in Megawatt)

 C_3 : Construction costs (in million \$)

 C_4 : Annual maintenance costs (in million \$)

 C_5 : Ecology; number of villages to evacuate

 C_6 : Safety level

44

		_		_		
	C_1	C_2	C_3	C_4	C_5	C_6
	min	max	min	min	min	max
A_1	80	90	600	54	8	5
A_2	65	58	200	97	1	1
A_3	83	60	400	72	4	7
A_4	40	80	1000	75	7	10
A_5	52	72	600	20	3	8
A_6	94	96	700	36	5	6
Weights	1	1	1	1	1	1
Gen.Cri.	II	III	V	IV	I	VI
Parame-	q=10	p=30	q=50	q=10	I	s=5
ters			q=50 p=500	p=60		

	C_1	C_2	C_3	C_4	C_5	C_6
	min	max	min	min	min	max
A_1	80	90	600	54	8	5
A_2	65	58	200	97	1	1
$P(A_1, A_2)$) = 0					
	+			$P(A_1,A_2)$	_	
	1 -		d=32 —		30	→
	+				30 d	$!=f(A_1)-f(A_2)$
	0			$P(A_1,A_2)$		
	+			0.5		
	0.5		d=43			$d = f(A_2) - f(A_1)$
	+				10 60	(Switched because C4 is
	0			P(A ₁ ,A ₂)		minimising)
	+			/		→ 46
	0.2	74→	d=4	1-e-4 ² /2*5 ² =0	.274	$d = f(A_1) - f(A_2)$

	A_1	A_2	A_3	A_4	A_5	A_6	ф +(a)	φ-(a)	φ(a)
A_1	0	0.296	0.250	0.268	0.1	0.185	1.1	1.827	-0.727
A_2	0.462	0	0.389	0.333	0.296	0.500	1.98	1.895	0.085
A_3	0.236	0.180	0	0.333	0.056	0.429	1.23	1.681	-0.451
A_4	0.399	0.505	0.305	0	0.223	0.212	1.64	1.746	-0.100
A_5	0.444	0.515	0.487	0.380	0	0.448	2.27	0.808	1.462
A_6	0.286	0.399	0.250	0.432	0.133	0	1.5	1.774	-0.274
φ-(a)	1.827	1.895	1.681	1.746	0.808	1.774			

Summary

- Multicriteria decision making refers to making decisions in the presence of multiple, usually conflicting criteria, expressed in different measurement units.
- ➤ A large number of MCDM methods exist. They can produce different results!