Semantic Analysis

The role of semantic analysis is to assign meaning

- "It smells fishy."
- Lexical analysis
 - > Tokenizes "It", "smells", "fishy", "."
 - Determines noun, verb, adjective, punctuation token types
- Syntax analysis
 - > Parses the grammatical structure of the sentence
- Semantic analysis

The role of semantic analysis is to assign meaning

- "It smells fishy."
- Lexical analysis
 - > Tokenizes "It", "smells", "fishy", "."
 - Determines noun, verb, adjective, punctuation token types
- Syntax analysis
 - > Parses the grammatical structure of the sentence
- Semantic analysis
 - > Assigns meaning to the words "It", "smells", "fishy"
 - > Flags error if the sentence does not make sense

Semantic Analysis = Binding + Type Checking

- "I don't wanna eat that sushi."
 - "It smells fishy."
 - > "It": the sushi
 - > "smells": feels to my nose
 - "fishy": that the sushi has gone bad
- The professor says that the exam is going to be easy."
 - "It smells fishy."
 - "It": the situation
 - > "smells": feels to my sixth sense
 - > "fishy": that it is highly suspicious

Semantic Analysis = Binding + Type Checking

- "I don't wanna eat that sushi."
 - "It smells fishy."
 - > "It": the sushi
 - > "smells": feels to my nose
 - "fishy": that the sushi has gone bad
- "The professor says that the exam is going to be easy."
 - "It smells fishy."
 - "It": the situation
 - "smells": feels to my sixth sense
 - > "fishy": that it is highly suspicious
- Semantic analysis consists of two tasks
 - > Binding: associating a pronoun to an object
 - > Type checking: inferring meaning based on type of object

Semantic Analysis = Binding + Type Checking

- Semantic analysis performs binding
 - Done by traversing parse tree produced by syntax analysis
 - Declarations are stored in data structure called symbol table
 - Uses are bound to entries in the symbol table
- Semantic analysis performs type checking
 - \rightarrow Infers what "a + b" means:
 - If a and b are ints, integer add and return int
 - If a and b are floats, FP add and return float
 - If a and b are strings, concatenate and return string
 - Infers what "x.foo()" means:
 - If object x is a reference of class A, call to foo() in A
 - If object x is a reference of class B, call to foo() in B
 - Infers what "a[i][j]" means:
 - Offset from a based on array type and dimensions

Semantic analysis also performs semantic checks

- All symbol uses have corresponding declarations
- All symbols defined only once
 - Where symbols can be variables, methods, classes
 - Declaration: provides type information for a symbol
 - Definition: allocates a symbol in program memory
- All statements do not violate type rules
 - \rightarrow Operators (+, -, *, /, =, >, <, ==, ...) have legal parameters
 - Method calls have correct numbers of legal parameters
 - Private methods are not called by external classes
 - **>** ..

Symbol Binding

What is symbol binding?

"Matching symbol declarations with uses"

If there are multiple declarations, which one is matched?

What is symbol binding?

"Matching symbol declarations with uses"

If there are multiple declarations, which one is matched?

```
void foo()
{
    char x;
    ...
    {
        int x;
        ...
    }
    x = x + 1;
}
```

What is symbol binding?

"Matching symbol declarations with uses"

If there are multiple declarations, which one is matched?

```
void foo()
{
    char x;
    ...
    {
        int x;
}
    x = x + 1;
}
```

Scope

- Binding: associating a symbol use to its declaration
 - > Which variable (or function) an identifier is referring to
- Scope: section of program where a declaration is valid
 - Uses in the scope of declaration are bound to it
- Some implications of scopes
 - A symbol may have different bindings in different scopes
 - Scopes for the same symbol never overlap
 - there is always exactly one binding per symbol use
- Two types: static scope and dynamic scope

Static Scope

- - Also called Lexical Scope
 - > C/C++, Java, JavaScript, Python
- Rule: bind to the closest enclosing declaration

```
void foo()
{
    char x;
    ...
    {
        int x;
        ...
    }
    x = x + 1;
}
```

Static Scope

- - Also called Lexical Scope
 - > C/C++, Java, JavaScript, Python
- Rule: bind to the closest enclosing declaration

Dynamic Scope

- Dynamic Scope: bindings formed during code execution
 - > LISP, Scheme, Perl
- Rule: bind to the most recent declaration during execution

```
void foo()
{
    (1) char x;
    (2) if (...) {
     (3) int x;
    (4) ...
    }
    (5) x = x + 1;
```

Dynamic Scope

- Dynamic Scope: bindings formed during code execution
 - LISP, Scheme, Perl
- Rule: bind to the most recent declaration during execution

```
void foo()
{
    (1) char x;
    (2) if (...) {
    (3) int x;
    (4) ...
    }
    (5) x = x + 1;
}
```

- Which x's declaration is the closest?
 - > Execution (a): ...(1)...(2)...(5)
 - > Execution (b): ...(1)...(2)...(3)...(4)...(5)

Static vs. Dynamic Scoping

- Most languages that started with dynamic scoping (LISP, Scheme, Perl) added static scoping afterwards
- Why?
 - > It is easier for human beings to understand
 - Bindings are visible in code without tracing execution
 - It is easier for compilers to understand
 - Compiler can determine bindings at compile time
 - Compiler can translate identifier to a single memory location
 - Results in generation of efficient code
 - With dynamic scoping...
 - There may be multiple possible bindings for a variable
 - Impossible to determine bindings at compile time
 - All bindings have to be done at execution time (Typically with the help of a hash table)

Symbol Table

Symbol Table

- Symbol Table: A compiler data structure that tracks information about all identifiers (symbols) in a program
 - Maps symbol uses to declarations given a scope
 - Needs to provide bindings according to the current scope
- Usually discarded after generating the binary code
 - All symbols are mapped to memory locations already
 - > For debugging, symbols may be included in binary
 - To map memory locations back to symbols for debuggers
 - For GCC or Clang, add "-g" flag to include symbol tables

Maintaining Symbol Table

- Basic idea:
 - int x; ... void foo() { int x; ... x=x+1; } ... x=x+1 ...
 - ➤ In foo, add x to table, overriding any previous declarations
 - After foo, remove x and restore old declaration if any
- Operations

```
enter_scope() start a new nested scope
```

exit_scope() exit current scope

```
find_symbol(x) find declaration of x
```

add_symbol(x) add declaration of x to symbol table

Adding Scope Information to the Symbol Table

- To handle multiple scopes in a program,
 - > (Conceptually) need an individual table for each scope
 - Symbols added to the table may not be deleted just because you exited a scope

```
class X { ... void f1() {...} ... } class Y { ... void f2() {...} ... } class Z { ... void f3() { ... void f3(); } v.f1(); } ... }
```

Without deleting symbols, how are scoping rules enforced?
 Keep a list of all scopes in the entire program
 Keep a stack of active scopes at a given point

Symbol Table with Multiple Scopes

- For nested scopes,
 - Search from top of the active symbol table stack
 - Remove pointer to symbol table when exiting its scope

Symbol Table with Multiple Scopes

- For nested scopes,
 - Search from top of the active symbol table stack
 - Remove pointer to symbol table when exiting its scope

Symbol Table with Multiple Scopes

- For nested scopes,
 - Search from top of the active symbol table stack
 - Remove pointer to symbol table when exiting its scope

What Information is Stored in the Symbol Table

Entry in Symbol Table:

string kind attributes

- String the name of identifier
- Kind variable, parameter, function, class, ...
- Attributes vary with the kind of symbol
 - ➤ variable → type, address in memory
 - → function → return type, parameter types, address
- Vary with the language
 - ➤ Fortran's array → type, dimension, dimension size real A(5) /* dimension required for static allocation */
 - C's array → type, dimension, optional dimension size char A[5]; /* statically sized array */ char A[]="hello"; /* dynamically sized to fit content */

field₁

id

struct

type

size

Symbol Table Attribute List

Type information might be arbitrarily complicated ➤ In C: struct { int a[10]; char b; float c; Store all relevant attributes in an attribute list 1st upper bound 2nd upper bound array id

size

field₂ | type

Example application of Type to an operator: Array index operator

Addressing Array Elements

```
int A[0..high];
A[i] ++;
```


- > width width of element type
- base address of the first
- > high upper bound of subscript
- Addressing an array element:

Multi-dimensional Arrays

Layout n-dimension items in 1-dimension memory int A[N₁][N₂]; /* int A[0..high₁][0..high₂]; */ $A[i_1][i_2] ++;$ N_2 A[0,0] N_1 A[high₁,high₂]

Row Major

Row major — store row by row

 \Box Offset inclues all the "blue" items before A[i₁,i₂]

$$\begin{split} & \text{offset}(A[i_1,i_2]) = (i_1 \ ^*\ N_2 + i_2\)\ ^*\ width \\ & = i_1 \ ^*\ N_2\ ^*\ width + i_2\ ^*\ width \\ & = \text{offset}(A[i_1])\ ^*\ N_2 + i_2\ ^*\ width \end{split}$$

Column Major

Column major — store column by column

 \Box Offset inclues all the "blue" items before A[i₁,i₂]

offset(A[i₁,i₂]) =
$$(i_2 * N_1 + i_1)*$$
width
= $i_2 * N_1 *$ width + $i_1 *$ width
= $i_2 * N_1 *$ width + offset(A[i₁])

Generalized Row/Column Major

```
Let A_k = \text{offset}(A[i_1, i_2, ..., i_k]). Then,
```

Row major (C/C++, C#, Objective-C)

1-dimension: $A_1 = i_1^*$ width

2-dimension: $A_2 = (i_1 * N_2 + i_2) * width = A_1 * N_2 + i_2 * width$

3-dimension: $A_3 = (i_1 * N_2 * N_3 + i_2 * N_3 + i_3) * width = A_2 * N_3 + i_3 * width$

k-dimension: $A_k = A_{k-1} N_k + i_k \text{width}$

Type needs to provide $N_2...N_k$ and width for offset

Column major (Fortran, Matlab, R)

1-dimension: $A_1 = i_1^*$ width

2-dimension: $A_2 = (i_2 * N_1 + i_1) * width = i_2 * N_1 * width + A_1$

3-dimension: $A_3 = ((i_3 * N_2 + i_2) * N_1 + i_1) * width = i_3 * N_2 * N_1 * width + A_2$

k-dimension: $A_k = i_k * N_{k-1} * N_{k-2} * ... * N_1 * width + A_{k-1}$

Type needs to provide $N_1...N_{k-1}$ and width for offset

C's implementation

```
C uses row major
   int fun1(int p[ ][100])
   {
      ...
      int a[100][100];
      a[i<sub>1</sub>][i<sub>2</sub>] = p[i<sub>1</sub>][i<sub>2</sub>] + 1;
}
```

Why is p[][100] allowed?

Why is a[][100] not allowed?

C's implementation

C uses row major
 int fun1(int p[][100])
{
 ...
 int a[100][100];
 a[i₁][i₂] = p[i₁][i₂] + 1;
}

Why is p[][100] allowed?

- ➤ The info is enough to compute p[i₁][i₂]'s address
- \rightarrow A₂ = (i₁*N₂+i₂)*width (N₁ is not required)

Why is a[][100] not allowed?

The info is not enough to allocate space for the array

Type Checking

What, When, and Why

- What?
 - > Type: a set of values + a set of operations on values
 - Type Checking: Verifying and enforcing type consistency
 - Only legal values are assigned to a type
 - Only legal operations are performed on a type
- When?
 - Static Type Checking: Type checking at compile-time
 - Dynamic Type Checking: Type checking at execution time
- Static type checking is more desirable. Why?
 - > Better to fail at compile time than during deployment
 - More memory since every variable now needs a "type tag"
 - Longer runtime since type tag needs checking at runtime
 - Check dynamically only when static checking is infeasible
 - E.g. Java array bounds checks
 - E.g. Type checks to verify C++/Java downcasting

Static vs. Dynamic Typing

- ☐ Statically typed: C/C++, Java
- [™]Our discussion
- Types are explicitly declared or can be inferred from code int x; /* type of x is int */
- Better compiler error detection due to static type checks
- Efficient code since dynamic type checks are not needed
- Dynamically typed: Python, JavaScript, PHP
 - Type is a runtime property decided only during execution var x; /* type of x is undecided */
 - x = 42; /* type of x is int */
 - x = "forty two"; /* type of x is now string */
 - /* Type of x changes depending on the value it holds */
 - Static type checking and error reporting is impossible
 - > Inefficient code due to dynamic checks on type tags

Rules of Inference

- What are *rules of inference*?
 - ➤ Inference rules have the form if Precondition is true, then Conclusion is true
 - Below concise notation used to express above statement

Precondition Conclusion

- ➤ In the context of type checking: if expressions E1, E2 have certain types (Precondition), expression E3 is legal and has a certain type (Conclusion)
- Type checking via inference
 - Start from variable types and constant types
 - > Repeatedly apply rules until entire program is inferred legal

Notation for Inference Rules

By tradition inference rules are written as

Precondition₁, ..., Precondition_n Conclusion

- The precondition/conclusion has the form "e:T"
- Meaning
 - If Precondition₁ and ... and Preconditionn are true, then Conclusion is true.
 - > "e:T" indicates "e is of type T"
 - > Example: rule-of-inference for add operation

```
e<sub>1</sub>: int
e<sub>2</sub>: int
e<sub>1</sub>+e<sub>2</sub>:int
```

Rule: If e_1 , e_2 are ints then e_1+e_2 is legal and is an int

Two Simple Rules

 $[Add \ operation] \begin{tabular}{ll} i \ is \ an \ integer \\ \hline i: int \\ \hline e_1: int \\ \hline e_2: int \\ \hline e_1+e_2: int \\ \hline \end{tabular}$

Example: given "10 is an integer" and "20 is an integer", is the expression "10+20" legal? Then, what is the type?

10 is an integer 20 is an integer 20: int 20: int

10+20:int

This type of reasoning can be applied to the entire program

More Rules

[New]

new T: T

[Not]

e: Boolean

not e: Boolean

However,

[Var?]

x is an identifier

x: ?

- > the expression itself insufficient to determine type
- > solution: provide context for this expression

Type Environment

- A type environment gives type info for free variables
 - > A variable is *free* if not declared inside the expression
 - ➤ It is a function mapping Symbols to Types
 - Set of declarations active at the current scope
 - Conceptual representation of a symbol table

Type Environment Notation

Let O be a function from Symbols to Types, the sentence O e:T

is read as "under the assumption of environment O, expression e has type T"

$$\begin{array}{c|c} i \text{ is an intger} & O \text{ e1: int} \\ \hline O \text{ is int} & O \text{ e2: int} \\ \hline O \text{ i: int} & O \text{ e1+e2: int} \\ \end{array}$$

- "if i is an integer, expression i is an int in any environment"
- "if e1 and e2 are ints in O, expression e1+e2 is int in O"
- "if variable x is mapped to int in O, expression x is int in O"

Declaration Rule

[Declaration w/o initialization]

O[T₀/x]
$$e_1$$
: T₁
O let x: T₀ in e_1 : T₁

 $O[T_0/x]$: environment O modified so that it return T_0 on argument x and behaves as O on all other arguments:

$$O[T_0/x](x) = T_0$$

$$O[T_0/x](y) = O(y) \text{ when } x \neq y$$

Translation: "If expression e_1 is type T_1 when x is mapped to type T_0 in the current environment, expression e_1 is type T_1 when x is declared to be T_0 in the current environment"

Declaration Rule with Initialization

[Declaration with initialization (initial try)]

$$\begin{array}{c} \textbf{O} \ \textbf{e}_0 \colon \textbf{T}_0 \\ \hline \textbf{O}[\textbf{T}_0/\textbf{x}] \ \textbf{e}_1 \colon \textbf{T}_1 \\ \textbf{O} \ \textbf{let} \ \textbf{x} \colon \textbf{T}_0 \leftarrow \textbf{e}_0 \ \textbf{in} \ \textbf{e}_1 \colon \textbf{T}_1 \end{array}$$

The rule is too strict (i.e. correct but not complete)

```
Example
class C inherits P ...
let x:P ← new C in ...
```

the above rule does not allow this code

Subtype

- lacktriangle A subtype is a relation \leq on classes
 - \rightarrow X \leq X
 - \rightarrow if X inherits from Y, then X \leq Y
 - ightharpoonup if $X \leq Y$ and $Y \leq Z$, then $X \leq Z$
- An improvement of our previous rule

[Declaration with initialization]

$$\begin{array}{c} \textbf{O} \; \textbf{e}_0 \colon \textbf{T} \\ \textbf{T} \leq \textbf{T}_0 \\ \textbf{O}[\textbf{T}_0/\textbf{x}] \; \textbf{e}_1 \colon \textbf{T}_1 \\ \textbf{O} \; \textbf{let} \; \textbf{x} \colon \textbf{T}_0 \; \leftarrow \; \textbf{e}_0 \; \textbf{in} \; \textbf{e}_1 \colon \textbf{T}_1 \end{array}$$

- Both versions of declaration rules are correct
- > The improved version checks more programs

Wrong Declaration Rule (case 1)

Consider a hypothetical let rule

[Wrong Declaration with initialization (case 1)]

```
\begin{array}{c} \textbf{O} \; \textbf{e}_0 \colon \textbf{T} \\ \textbf{T} \leq \textbf{T}_0 \\ \textbf{O} \; \textbf{e}_1 \colon \textbf{T}_1 \\ \textbf{O} \; \textbf{let} \; \textbf{x} \colon \textbf{T}_0 \leftarrow \textbf{e}_0 \; \textbf{in} \; \textbf{e}_1 \colon \textbf{T}_1 \end{array}
```

- > How is it different from the the correct rule?
- ➤ The following good program does not pass check let x: int ← 0 in x+1

Wrong Declaration Rule (case 2)

Consider a hypothetical let rule

[Wrong Declaration with initialization (case 2)]

```
\label{eq:controller} \begin{array}{c} \textbf{O} \; \textbf{e}_0 \colon \textbf{T} \\ \textbf{T}_0 \leq \textbf{T} \\ \textbf{O}[\textbf{T}_0/\textbf{x}] \; \textbf{e}_1 \colon \textbf{T}_1 \\ \textbf{O} \; \textbf{let} \; \textbf{x} \colon \textbf{T}_0 \leftarrow \textbf{e}_0 \; \textbf{in} \; \textbf{e}_1 \colon \textbf{T}_1 \end{array}
```

- > How is it different from the the correct rule?
- The following bad program passes the check class B inherits A { only_in_B() { ... } } let x: B ← new A in x.only_in_B()

Assignment

A correct but too strict rule

```
[Assignment] \\ \textbf{O(id)} = \textbf{T}_0 \\ \textbf{O e_1: T}_1 \\ \textbf{T}_1 \leq \textbf{T}_0 \\ \textbf{O id} \leftarrow \textbf{e_1: T}_0
```

The rule does not allow the below code class C inherits P { only_in_C() { ... } } let x:C in let y:P in x ← y ← new C x.only in C()

Assignment

An improved rule

```
[Assignment] \\ \textbf{O(id)} = \textbf{T}_0 \\ \textbf{O e_1: T}_1 \\ \textbf{T}_1 \leq \textbf{T}_0 \\ \textbf{O id} \leftarrow \textbf{e_1: T}_1
```

➤ The rule now does allow the below code class C inherits P { only_in_C() { ... } } let x:C in let y:P in x ← y ← new C x.only in C()

If-then-else

- \square Let's say semantics of "if e_0 then e_1 else e_2 " is:
 - > Returns the value of either e₁ or e₂, depending on e₀.
- What is the type of the above expression?
 - ➤ The type is either e₁'s type or e₂'s type.
 - Best compiler can do is to assign a super type of e₁ and e₂.
- Least upper bound (LUB): the super type of two types
 - \geq Z = lub(X,Y) Z is the least upper bound of X and Y iff

 - $X < Z \land Y < Z$; Z is an upper bound
 - $X < W \land Y < W \Longrightarrow Z < W$; Z is least among all upper bounds

If-then-else

```
[If-then-else]

O e<sub>0</sub>: Bool
O e<sub>1</sub>: T<sub>1</sub>
```

O e_2 : T_2 O if e_0 then e_1 else e_2 fi: $lub(T_1,T_2)$

The rule allows the below code let x:float, y:int, z:float in x ← if (...) then y else z /* Assuming lub(int, float) = float */

Discussion

- Type rules have to be carefully constructed, or
 - The type system becomes unsound (ill-behaved programs are accepted as well typed)
 - The type system becomes unusable (well-behaved programs are rejected as badly typed)

Discussion

- Type rules have to be carefully constructed, or
 - The type system becomes unsound (ill-behaved programs are accepted as well typed)
 - The type system becomes unusable (well-behaved programs are rejected as badly typed)
- What is a "well-behaved" program anyway?
 - Program that performs no forbidden operations at runtime

Discussion

- Type rules have to be carefully constructed, or
 - The type system becomes unsound (ill-behaved programs are accepted as well typed)
 - The type system becomes unusable (well-behaved programs are rejected as badly typed)
- What is a "well-behaved" program anyway?
 - Program that performs no forbidden operations at runtime
- Static type system cannot accurately capture behavior
 - → Here is a well-behaved program rejected by the type system obj ← if (x > y) then new Child else new Parent if (x > y) then obj.only_in_Child()
 - LUB type makes a choice of soundness over usability

Designing a Good Type Checking System

- A good type system achieves two opposing goals:
 - Prevents false negative type errors, that is, runtime errors that are missed by type checking
 - Minimizes false positive type errors, that is, type errors that do not cause runtime errors
- A good type system should allow the following code:

```
class Parent {
    Parent clone() { return new this.getClass(); }
}
class Child inherits Parent { ... }
    void main() {
        // Error! Assignment of parent to child reference.
        Child c ← (new Child).clone();
    }
```

What Went Wrong?

- What is (new Child).clone()'s type?
 - Dynamic type Child
 - Static type Parent
 - > Type system is not able to express runtime types precisely
 - > This makes inheriting clone() not very useful
 - clone() needs redefinition to return correct type anyway
- A "SELF_TYPE" would be useful in these situations.

SELF_TYPE expresses runtime types precisely

- What is SELF_TYPE?
 - clone() returns "self" instead of "Parent" type
 - > Self can be Parent or any subclass of Parent
- SELF_TYPE is a static type
 - Type reflects precise runtime behavior for each class
 - > Type violations can still be detected at compile time
- In practice
 - > Python, Rust, Scala: language support for self types
 - C++: can emulate using C++ templates
 - Java: can emulate to a lesser degree using Java generics

Can Static Type Checking ever be Perfect?

- Many cases where well-behaved programs are rejected
 - Reason for elaborate type systems like generics
 - Why programmers must sometimes typecast anyway
- Solution? Can't have your cake and eat it too.
 - Dynamic type checking
 - Allows all runtime behaviors that are type consistent
 - Type errors occur at runtime rather than compile time
 - Best used for fast prototyping (scripting languages)
 - Static type checking
 - + Type errors can be caught at compile time
 - Effort to express well-behaved programs using type system
 - Best used when reliability is important

Implementing Type Checking on AST

Error Recovery

- Compiler must recover from type errors like syntax errors
 - ➤ Or else, below code results in multiple cascading errors let y: int ← x+2 in y+3
 - Reports error "x is undefined"
 - Reports error "Type of x+2 is undefined"
 - Reports error "Type of let y: int ← x+2 in y+3 is undefined"
 - ...
- Solution: introduce no-type for ill-typed expressions
 - ightharpoonup It is compatible with all types ightharpoonup no cascading errors
 - > Report only the place where no-type is generated

Syntax Directed Definitions (SDDs)

SDD: Definitions of attributes and rules

- Syntax Directed Definitions (SDD):
 - Set of attributes attached to each grammar symbol
 - 2. Set of **semantic rules** attached to each production
 - Semantic rules define values of attributes
- Attribute Grammar:
 - An SDD where rules depend only on other attributes (i.e. An SDD that does not rely on any side-effects)
 - > Think of it as a "grammar" for semantic analysis
- Example: let's say we want to define type checking
 - > SDD can have semantic rules to access a symbol table
 - > Attribute grammar must transmit type info through attributes

Synthesized vs. Inherited Attributes

Semantic rule:

SDD has rule of the form for each CFG production $b = f(c_1, c_2, ..., c_n)$

either

- If b is a synthesized attribute of A, c₁ (1≤i≤n) are attributes of grammar symbols of its Right Hand Side (RHS); or
- 2. If b is an inherited attribute of one of the symbols of RHS, c_i's are attribute of A and/or other symbols on the RHS

Synthesized vs. Inherited Attributes

- Synthesized attributes: computed from children nodes
 - P.synthesized_attr = f(C₁.attr, C₂.attr, C₃.attr)
- ☐ Inherited attributes: computed from sibling/parent nodes
 - $ightharpoonup C_3.inherited_attr = f(P_1.attr, C_1.attr, C_3.attr)$

Synthesized attribute

Inherited attribute

Synthesized Attribute Example

Example

- > Each non-terminal symbol is associated with val attribute
- > The val attribute is computed soley from children attributes

```
[Grammar Rules]
                                     [Semantic Rules]
\mathsf{I} \to \mathsf{F}
                                     print(E.val)
\mathsf{E} \to \mathsf{E_1} + \mathsf{T}
                                     E.val = E_1.val + T.val
\mathsf{F} \to \mathsf{T}
                                      E.val = T.val
T \rightarrow T_1 * F
                                     T.val = T_1.val * F.val
\mathsf{T} \to \mathsf{F}
                                     T.val = F.val
\mathsf{F} \to (\mathsf{E})
                                     F.val = F.val
F → digit
                                      F.val = digit.lexval
```

Synthesized Attribute Example: Attribute Parse Tree

Attribute parse tree: Parse tree decorated with attributes

Inherited Attribute Example

- **Example:**
 - T.type: synthesized attribute
 - L.in: inherited attribute
 - id.type: inherited attribute

- Why is L.in an inherited attribute?
 - > L.in is computed from a sibling T.type
 - ➤ L₁.in is computed from a parent L.in

Inherited Attribute Example: Attribute Parse Tree

- Red arrows denote dependencies between attributes
- Arrows for inherited attributes go sideways or downwards
- Arrows for synthesized attributes go upwards

SDD Implementation

SDD Implementation using Parse Trees

- Assumes a previous parse stage
 - Input: a parse tree with no attribute annotations
 - Output: an attribute parse tree
- Goal: compute attribute values from leaf token values
 - > Traverse in some order, apply semantic rules at each node
 - > Traversal order must consider attribute dependencies

Dependency Graph

- ☐ Directed graph where edges are attribute dependencies
 - "To" attribute is computed base on "from" attribute
 - > Must be **acyclic** such that there exists "a" traversal order

Dependency Graph

- ☐ Directed graph where edges are attribute dependencies
 - "To" attribute is computed base on "from" attribute
 - ➤ Must be **acyclic** such that there exists "a" traversal order

SDD Implementation using SDT

- Syntax Directed Translation (SDT)
 - Applying semantic rules as part of syntax analysis (parsing)
 - Does NOT assume a pre-existing parse tree
 - Done through semantic actions embedded in grammar
- Semantic action:
 - Code between curly braces embedded into RHS
 - Executed "at that point" in the RHS
 - Top-down: Right after previous symbol has been consumed
 - Bottom-up: After previous symbol has been pushed to stack (when the 'dot' reaches the semantic action)
 - Example of building a parse tree:
 - Program : Program IDNum ; Classes { \$\$=makeTree(ProgramOp, \$2, \$4); }
 - > \$2 and \$4 are indices into the parse stack
 - RHS is currently at top of stack waiting to be reduced
 - \$2 is attribute value for IDNum and \$4 is Classes.

- Syntax Directed Translation Scheme (SDTS)
 - A "scheme" or plan to perform SDT
 - > A grammar specification embedded with semantic actions
 - Depends on choice of top-down or bottom-up parser
- **Example:**

- Both inherited and synthesized attributes are used
 - T synthesized attribute T.val
 - R inherited attribute R.i synthesized attribute R.s
 - ➤ E synthesized attribute E.val

Evaluating attributes using SDTS

```
E \rightarrow T \{R.i=T.val\} R \{E.val=R.s\}
R \rightarrow + T \{R_1.i=R.i+T.val\} R_1 \{R.s=R_1.s\}
R \rightarrow \text{-} \quad T \ \{R_1.i\text{=}R.i\text{-}T.val\} \ R_1 \ \{R.s\text{=}R_1.s\}
R \rightarrow \varepsilon \{R.s=R.i\}
T \rightarrow (E) \{T.val=E.val\}
T \rightarrow num \{T.val=num.val\}
                                              Ε
                 T.val=num
                                                  \rightarrow R_1.i=T.val
                                                                                                            R_2
        num
                     num
                                                                                                                         R_3
                                            num
                                                                         num
```

Evaluating attributes using SDTS

```
E \rightarrow T \{R.i=T.val\} R \{E.val=R.s\}
R \rightarrow + T \{R_1.i=R.i+T.val\} R_1 \{R.s=R_1.s\}
R \rightarrow - T \{R_1.i=R.i-T.val\} R_1 \{R.s=R_1.s\}
R \rightarrow \varepsilon \{R.s=R.i\}
T \rightarrow (E) \{T.val=E.val\}
T \rightarrow num \{T.val=num.val\}
                                           Ε
                                                 R<sub>1</sub>.i=T.val R<sub>1</sub>
                                                T.val = num \rightarrow R_2.i=R_1.i+T.val
                                                                                                    R_2
       num
                                                                                                                R_3
                                         num
                                                     num
                                                                    num
```

Evaluating attributes using SDTS

```
E \rightarrow T \{R.i=T.val\} R \{E.val=R.s\}
R \rightarrow + T \{R_1.i=R.i+T.val\} R_1 \{R.s=R_1.s\}
R \rightarrow - T \{R_1.i=R.i-T.val\} R_1 \{R.s=R_1.s\}
R \rightarrow \varepsilon \{R.s=R.i\}
T \rightarrow (E) \{T.val=E.val\}
T \rightarrow num \{T.val=num.val\}
                                                    EE.val=R<sub>1</sub>.s
                                                            R<sub>1</sub>.i=T.val
                                                                                R<sub>1</sub>R<sub>1</sub>.s=R<sub>2</sub>.s
                                                                                      R_2.i=R_1.i+T.val
                                                                                                                         R<sub>2</sub> R<sub>2</sub>.s= R<sub>3</sub>.s
         num
                                                                                     T T.val = num \Rightarrow R<sub>3</sub>.i=R<sub>2</sub>.i+T.valR<sub>3</sub>R<sub>3</sub>.s= R<sub>3</sub>.i
                                                  num
                                                                                  num
                                                                                              num
```

What are the dependencies allowed in SDTS?

- Parse trees: dependencies only required to be acyclic
- What is required of dependencies for SDTS?
 - > Different parsing schemes see nodes in different orders
 - Top-down parsing LL(k) parsing
 - Bottom-up parsing LR(k) parsing
 - What if dependency node has not been seen yet?
- For certain classes of SDDs, using SDTS is feasible
 - > If dependencies of SDD are amenable to parse order
 - > This class of SDDs are called L-Attributed Grammars

Left-Attributed Grammar

- An SDD is L-attributed if each of its attributes is either:
 - ightharpoonup a synthesized attribute of A in A \rightarrow X₁... X_n ,

or

- ightharpoonup an inherited attribute of X_j in $A \rightarrow X_1...X_n$ that
 - depends on attributes of siblings to its left i.e. $X_1...X_{j-1}$
 - and/or depends on parent A

Left-Attributed Grammar

- An L-Attributed grammar
 - may have synthesized attributes
 - may have inherited attributes but only from left sibling attributes or inherited attributes of the parent
- Evaluation order
 - Left-to-right depth-first traversal of the parse tree
 - Order for both top-down and bottom-up parsers
 - Evaluate inherited attributes while going down the tree
 - Evaluate synthesized attributes while going up the tree
- Can be evaluated using SDTS w/o parse tree

When using LR parsing (bottom-up parsing),

it is natural and easy to evaluate synthesized attributes

When using LR parsing (bottom-up parsing),

it is natural and easy to evaluate synthesized attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is natural and easy to evaluate synthesized attributes

			1
S _?	F	F.val=4	
S _?	+	-	
S _?	Е	E.val=9	
S _?	\$	-	
(state) (syı	mbol) (attrib	ute)

When using LR parsing (bottom-up parsing),

it is natural and easy to evaluate synthesized attributes

S _?	Т	T.val=4	
S _?	+	-	
S _?	Е	E.val=9	
S _?	\$	-	
(state) (syı	mbol) (attrib	ute

When using LR parsing (bottom-up parsing),

it is natural and easy to evaluate synthesized attributes

When using LR parsing (bottom-up parsing),

it is natural and easy to evaluate synthesized attributes

parsing stack:

Grammars with only synthesized attributes are called S-Attributed Grammars

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

S _?	id	id.type=L2.in
S _?	,	
S _?	L ₃	L ₃ .in=L ₂ .in
S _?	Т	T.type=int
S _?	\$	-

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

S _?	id	id.type=L2.in
S _?	,	
S _?	L ₃	L ₃ .in=L ₂ .in
S _?	Т	T.type=int
S _?	\$	-

Evaluating Inherited Attributes using LR

- Claim: Given an L-Attributed grammar, inherited attributes needed for the computation are already on the stack
- Recall: What is an L-Attributed grammar?
 - May have synthesized attributes
 - > May have inherited attributes but only from:
 - Left sibling attributes
 - Parent attribute
- Finding inherited attributes on the stack
 - Left siblings: previously reduced, so already on the stack
 - > Parent: not yet reduced, but left siblings of the parent used to compute the parent attribute are on the stack

```
\mathsf{D}\to\mathsf{T}\quad\mathsf{L}
T \rightarrow int \{T.type=int\}
T \rightarrow real \{T.type=real\}
L \rightarrow L, id {id.type=stack[top-3].type}
L \rightarrow id \{id.type=stack[top-1].type\}
```



```
\begin{array}{lll} D \rightarrow T & L \\ T \rightarrow int & \{T.type=int\} \\ T \rightarrow real & \{T.type=real\} \\ L \rightarrow L & , & id & \{id.type=stack[top-3].type\} \\ L \rightarrow id & \{id.type=stack[top-1].type\} \end{array}
```


(state) (symbol) (attribute)

int , id id id

```
\begin{array}{lll} D \rightarrow T & L \\ T \rightarrow int & \{T.type=int\} \\ T \rightarrow real & \{T.type=real\} \\ L \rightarrow L & , & id & \{id.type=stack[top-3].type\} \\ L \rightarrow id & \{id.type=stack[top-1].type\} \end{array}
```



```
\begin{array}{lll} D \rightarrow T & L \\ T \rightarrow int & \{T.type=int\} \\ T \rightarrow real & \{T.type=real\} \\ L \rightarrow L & , & id & \{id.type=stack[top-3].type\} \\ L \rightarrow id & \{id.type=stack[top-1].type\} \end{array}
```



```
\begin{tabular}{lll} T.type=int \\ & & \uparrow \\ & int & int \\ & & & , & id \\ & & & id & id.type=L_3.in \\ \end{tabular}
```

```
\begin{array}{lll} D \rightarrow T & L \\ T \rightarrow \text{int } \{\text{T.type=int}\} \\ T \rightarrow \text{real } \{\text{T.type=real}\} \\ L \rightarrow L & , & \text{id } \{\text{id.type=stack[top-3].type}\} \\ L \rightarrow \text{id } \{\text{id.type=stack[top-1].type}\} \end{array}
```


S _?	id	id.type=stack[top-1]
S _?	Т	T.type=int
S _?	\$	-

```
\begin{array}{lll} D \rightarrow T & L \\ T \rightarrow int & \{T.type=int\} \\ T \rightarrow real & \{T.type=real\} \\ L \rightarrow L & , & id & \{id.type=stack[top-3].type\} \\ L \rightarrow id & \{id.type=stack[top-1].type\} \end{array}
```

TT.type=int int int int id id.type=L2.in

id

id.type=L3.in

parsing stack:

_		
S _?	id	id.type=stack[top-3]
S _?	,	
S _?	L ₃	L ₃ .in=int
S _?	T	T.type=int
S _?	\$	-

```
\begin{array}{lll} D \rightarrow T & L \\ T \rightarrow \text{int} & \{\text{T.type=int}\} \\ T \rightarrow \text{real} & \{\text{T.type=real}\} \\ L \rightarrow L & , & \text{id} & \{\text{id.type=stack[top-3].type}\} \\ L \rightarrow \text{id} & \{\text{id.type=stack[top-1].type}\} \end{array}
```


S _?	id	id.type=stack[top-3]
S _?	,	
S _?	L ₃	L ₃ .in=int
S _?	Т	T.type=int
S _?	\$	-

Marker

 \Box Given the following SDD, where $|\alpha| != |\beta|$

$$A \rightarrow X \alpha Y \mid X \beta Y$$

$$Y \rightarrow \gamma \{... = f(X.s)\}$$

- Problem: cannot generate stack location for X.s since X is at different relative stack locations from Y
- Solution: introduce *markers* M₁ and M₂ that are at the same relative stack locations from Y

$$A \rightarrow X \alpha M_1 Y \mid X \beta M_2 Y$$

$$Y \rightarrow \gamma \{ \dots = f(M_{12}.s) \}$$

$$M_1 \rightarrow \varepsilon \{M_1.s = X.s\}$$

$$M_2 \rightarrow \varepsilon \{M_2.s = X.s\}$$

$$(M_{12} = \text{the stack location of } M_1 \text{ or } M_2, \text{ which are identical})$$

A marker intuitively marks a stack location that is equidistant from the reduced non-terminal

Example

■ When is a marker necessary and how is it added?

```
Example 1:
        S \rightarrow a A \{ C.i = A.s \} C
        S \rightarrow b A B \{ C.i = A.s \} C
        C \rightarrow c \{ C.s = f(C.i) \}
Solution:
        S \rightarrow a A \{ C.i = A.s \} C
        S \rightarrow b A B \{ M.i=A.s \} M \{ C.i = M.s \} C
        C \rightarrow c \{ C.s = f(C.i) \}
        M \rightarrow \varepsilon \{ M.s = M.i \}
That is:
        S \rightarrow a A C
        S \rightarrow b A B M C
        C \rightarrow c \{ C.s = f(stack[top-1]) \}
        M \rightarrow \varepsilon \{ M.s = stack[top-2] \}
```

When and how to add a marker

- 1. Identify the stack offset(s) to find the desired attribute
- 2. If stack offsets are different, add a marker
- Add marker where it would result in uniform stack offsets

Example:

```
\begin{split} S &\rightarrow a \ A \ B \ C \ E \ D \\ S &\rightarrow b \ A \ F \ B \ C \ F \ D \\ C &\rightarrow c \ \{/^* \ C.s = f(A.s) \ ^*/\} \\ D &\rightarrow d \ \{/^* \ D.s = f(B.s) \ ^*/\} \end{split}
```

Answer

```
S → a A B C E D
S → b A D M B C F D
C → c {/* C.s = f(stack[top-2]) */}
D → d {/* D.s = f(stack[top-3]) */}
M → ε {/* M.s = f(stack[top-2]) */}

Regarding C.s, from stack[top-2], and stack[top-3]
.... add a Marker

Regarding D.s, always from stack[top-2]
... no need to add
```

How about Top-Down Parsing?

Translation Scheme for Top-Down Parsing

- Recursive Descent Parsers: Straightforward
 - Synthesized Attribute
 - Say function for non-terminal returns synthesized attribute
 - Compute attribute from children function call return values
 - Inherited Attribute
 - Pass as argument to function call for inheriting non-terminal
 - Left sibling attributes: left sibling calls already complete
 - Parent attributes: passed in as arguments to parent function
- How about table-driven LL parsers?

it is natural to evaluate inherited attributes

```
\begin{array}{l} D \rightarrow T \ \{L.in=T.type\} \ L \\ T \rightarrow int \ \{T.type=int\} \\ T \rightarrow real \ \{T.type=real\} \\ L \rightarrow \{id.type=L.in\} \ id \ , \ \{L_1.in=L.in\} \ L_1 \\ L \rightarrow \{id.type=L.in\} \ id \end{array}
```


it is natural to evaluate inherited attributes

```
\begin{array}{lll} D \rightarrow T & \{L.in=T.type\} \ L \\ T \rightarrow int & \{T.type=int\} \\ T \rightarrow real & \{T.type=real\} \\ L \rightarrow \{id.type=L.in\} \ id \\ L \rightarrow \{id.type=L.in\} \ id \\ \end{array}
```

D

parsing stack:

it is natural to evaluate inherited attributes

```
\begin{array}{l} D \rightarrow T \ \{L.in=T.type\} \ L \\ T \rightarrow int \ \{T.type=int\} \\ T \rightarrow real \ \{T.type=real\} \\ L \rightarrow \{id.type=L.in\} \ id \ , \ \{L_1.in=L.in\} \ L_1 \\ L \rightarrow \{id.type=L.in\} \ id \end{array}
```


parsing stack:

it is natural to evaluate inherited attributes

```
\begin{array}{lll} D \rightarrow T & \{L.in=T.type\} \ L \\ T \rightarrow int & \{T.type=int\} \\ T \rightarrow real & \{T.type=real\} \\ L \rightarrow \{id.type=L.in\} \ id \\ L \rightarrow \{id.type=L.in\} \ id \\ \end{array}
```


parsing stack:

it is natural to evaluate inherited attributes

```
\begin{array}{lll} D \rightarrow T & \{L.in=T.type\} \ L \\ T \rightarrow int & \{T.type=int\} \\ T \rightarrow real & \{T.type=real\} \\ L \rightarrow \{id.type=L.in\} \ id \ , & \{L_1.in=L.in\} \ L_1 \\ L \rightarrow \{id.type=L.in\} \ id \end{array}
```


parsing stack:

it is natural to evaluate inherited attributes

```
\begin{array}{l} D \rightarrow T \ \{L.in=T.type\} \ L \\ T \rightarrow int \ \{T.type=int\} \\ T \rightarrow real \ \{T.type=real\} \\ L \rightarrow \{id.type=L.in\} \ id \ , \ \{L_1.in=L.in\} \ L_1 \\ L \rightarrow \{id.type=L.in\} \ id \end{array}
```


parsing stack:

	{id.type=L ₁ .in}
id	id.type=???
,	
	$\{L_2.in=L_1.in\}$
L ₂	L ₂ .in=???

it is natural to evaluate inherited attributes

```
\begin{array}{lll} D \rightarrow T & \{L.in=T.type\} \ L \\ T \rightarrow int & \{T.type=int\} \\ T \rightarrow real & \{T.type=real\} \\ L \rightarrow \{id.type=L.in\} \ id \ , & \{L_1.in=L.in\} \ L_1 \\ L \rightarrow \{id.type=L.in\} \ id \end{array}
```


parsing stack:

	{id.type=int}
id	id.type=???
,	
	{L ₂ .in=int}
L ₂	L ₂ .in=???

it is natural to evaluate inherited attributes

```
\begin{array}{l} D \rightarrow T \ \{L.in=T.type\} \ L \\ T \rightarrow int \ \{T.type=int\} \\ T \rightarrow real \ \{T.type=real\} \\ L \rightarrow \{id.type=L.in\} \ id \ , \ \{L_1.in=L.in\} \ L_1 \\ L \rightarrow \{id.type=L.in\} \ id \end{array}
```


parsing stack:

		{id.type=int}
	id	id.type=???
	,	
		{L ₂ .in=int}
	L ₂	L ₂ .in=???
(5	vmbo	l) (attribute)

. ..

Semantic actions on the stack are called **action-records**.

it is **not natural** to evaluate synthesized attributes

it is **not natural** to evaluate synthesized attributes

 E_1

parsing stack:			
	E ₁		
- (evmbol	(attributa)	

pai

Translation Scheme for LL Parsing

it is **not natural** to evaluate synthesized attributes

E₁ E.val=?

rsing stack:		
	E ₁	E ₁ .val=?

it is **not natural** to evaluate synthesized attributes

it is **not natural** to evaluate synthesized attributes

pai

Translation Scheme for LL Parsing

it is **not natural** to evaluate synthesized attributes

 E_1

r	rsing stack:		
	E ₁		
	E ₁ .val	???	•
i	evmhol	(attributa)	•

it is **not natural** to evaluate synthesized attributes

pars

sing stack:		
E ₂		
E ₂ .val	???	
+		
T ₁		
T ₁ .val	???	
E ₁ .val	E2.val + T1.val	
symbol	(attribute)	

it is **not natural** to evaluate synthesized attributes

rsing stack:		
	E ₂	
E	₂ .val	???
Γ	+	
Γ	T ₁	
ī	1.val	???
E	1.val	E2.val + T1.val
(s)	/mbol	(attribute)

- Synthesized attributes on the stack: **synthesize-records**. (Inserted below non-terminal with synthesized attribute)
- In synthesize-record E₁.val = E₂.val + T₁.val, E₂.val and T₁.val are place holders for pending values. (Updated when records E₂.val and T₁.val are popped.)