

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

Disciplina: Modelos Lineares Generalizados

Curso: Graduação em Estatística

Código: EST0011 Semestre: 2023.2

Prof. Frederico Machado Almeida

Lista de Exercícios #4

Observações:

• Questões para entregar: 1, 2(b,c), 3 e 4.

• Demais questões são apenas para estudar.

• Prazo de entrega: 17/11/2023

Q01. Suponha que $Y_i \sim exp(\phi)$, para $i = 1, \dots, 5$. Isto é,

$$f(y_i|\phi) = \frac{1}{\phi} \exp\left(-\frac{y_i}{\phi}\right), \text{ com } y_i > 0 \text{ e } \phi > 0.$$

Suponha que o vetor observado foi $\mathbf{y} = (2.8, 3.5, 2.4, 1.9, 3.0)^{\top}$ com média $\bar{y} = 2.72$.

- (a) Implemente manualmente o algoritmo de Newton-Raphson e itere até obter a convergência. Feito isso, apresente uma tabela contendo as iterações, as estimativas (para cada iteração), e a tolerância.
- (b) Como o valor obtido se compara com o estimador de máxima verossimilhança? Isto é, $\hat{\phi}=\bar{y}$?

Q02. Assuma que y_1, y_2, \dots, y_n é uma amostra observada de Y. Para cada distribuição abaixo, apresente a função desvio escalonado total.

- (a) Distribuição Weibull: $f(y_i|\alpha,\beta) = \frac{\alpha}{\beta} \left(\frac{y_i}{\beta}\right)^{\alpha-1} \exp\left[-\left(\frac{y_i}{\beta}\right)^{\alpha}\right]$, com $y_i > 0$; $\alpha,\beta > 0$.
- (b) Distribuição Binomial: $Y_i \sim \text{Binom}(n_i, p_i) P(Y_i = y_i | \alpha, \beta) = \begin{pmatrix} n_i \\ y_i \end{pmatrix} p_i^{y_i} (1 p_i)^{n_i y_i},$ com $y_i = 0, 1, 2, \dots, n_i \in 0 < p_i < 1.$
- (c) Distribuição Beta: $f(y_i|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} y_i^{\alpha-1} (1-y_i)^{\beta-1}$, com $0 < y_i < 1$, e $\Gamma(\cdot)$ denota a função gama.

Q03. Considere a função gama apresentada na questão anterior. Conforme mostrado na Lista 3, a distribuição gama é membro da família exponencial com ligação canônica. Usando a função de ligação logarítmica (frequentemente usada como função de ligação canônica para a distribuição Poisson), obtenha:

(a) A função escore U (β_j) e as entradas genéricas (j, s) da matriz de informação de Fisher, digamos $\mathcal{I}_{js}(\boldsymbol{\beta})$.

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

- (b) A matriz dos pesos $W(\beta)$ e a matriz $G(\beta) = \text{diagonal } \{g'(\mu_i), \text{ com } i = 1, \dots, n\}.$
- (c) A variável dependente ajustada na t-ésima iteração do Fisher Scoring, i.e., $z_i^{(t)}$.

Q04. Os dados apresentados na Tabela são referentes ao tempo até a morte y_i (em semanas) de dezassete pacientes que sofrem de leucemia, e x_i denota a contagem inicial dos glóbulos brancos, em uma escala de \log_{10} .

\overline{i}	y_i	x_i	i	y_i	x_i
1	65	3,36	10	143	3,85
2	156	2,88	11	56	3,97
3	100	3,63	12	26	$4,\!51$
4	134	$3,\!41$	13	22	$4,\!54$
5	16	3,78	14	01	5,00
6	108	4,02	15	01	5,00
7	121	4,00	16	05	4,72
8	04	4,23	17	65	5,00
9	39	3,73			

- (a) Obtenha o gráfico de dispersão de y_i contra x_i . O diagrama apresenta alguma tendência?
- (b) Uma possível especificação para $\mu_i = \mathbb{E}(Y_i)$ é,

$$\mathbb{E}(Y_i) = \exp(\beta_0 + \beta_1 x_i). \tag{1}$$

Como pode ser visto, esta especificação permite que $\mathbb{E}(Y_i)$ seja sempre positivo para todo β_j , com j=0,1 e todo x_i . Qual função de ligação seria apropriada para este caso? Justifique a sua resposta.

- (c) A distribuição Exponencial tem sido frequentemente usada para modelar tempos de sobrevivência. Sua fdp é dada por: $f(y_i; \mu) = \frac{1}{\mu} \exp\left(-\frac{y_i}{\mu}\right)$. Observe que, esta distribuição é um caso particular da distribuição Gama (veja Q01-(e), Lista 3), com $\nu = 1$. Mostre que $\mathbb{E}(Y_i) = \mu_i$ e $Var(Y_i) = \mu_i^2$.
- (d) Usando algum software estatístico, ajuste o modelo de regressão, assumindo que os dados seguem uma distribuição Exponencial, com $\mathbb{E}(Y_i)$ dada segundo a equação (1).
- (e) Para o modelo obtido em (d): (i) compare os valores observados: y_i e os estimados $\hat{y}_i = \exp\left(\hat{\beta}_0 + \hat{\beta}_1 x_i\right)$; (ii) use os resíduos padronizados $r_i = \frac{y_i \hat{y}_i}{\hat{y}_i}$ para avaliar a qualidade de ajuste do modelo.
- (f) Interprete os valores dos coeficientes de regressão, $\hat{\beta}_0$ e $\hat{\beta}_1$.

Q05. Sabe-se que a concentração de colesterol no soro sanguíneo aumenta com a idade, mas é menos claro se o nível de colesterol também está associado ao peso corporal. As variáveis de interesse são: o nível de colesterol sérico de trinta e dois pacientes (milhões de moles por litro), idade (anos) e o índice de massa corporal (peso dividido pela altura ao quadrado, onde o peso foi medido em quilogramas e a altura em metros).

Com base no banco de dados descrito, foi ajustado o modelo de regressão Gama, com função de ligação inversa (por default). Toda informação sobre o ajuste do modelo está apresentada no Apêndice.

- **Q02.** Assuma que y_1, y_2, \dots, y_n é uma amostra observada de Y. Para cada distribuição abaixo, apresente a função desvio escalonado total.
- (b) Distribuição Binomial: $Y_i \sim \text{Binom}(n_i, p_i) P(Y_i = y_i | \alpha, \beta) = \begin{pmatrix} n_i \\ y_i \end{pmatrix} p_i^{y_i} (1 p_i)^{n_i y_i},$ com $y_i = 0, 1, 2, \dots, n_i \in 0 < p_i < 1.$
- (c) Distribuição Beta: $f(y_i|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}y_i^{\alpha-1}(1-y_i)^{\beta-1}$, com $0 < y_i < 1$, e $\Gamma(\cdot)$ denota a função gama.
- (b) Distribuição Binomial: $Y_i \sim \text{Binom}(n_i, p_i) P(Y_i = y_i | \alpha, \beta) = \begin{pmatrix} n_i \\ y_i \end{pmatrix} p_i^{y_i} (1 p_i)^{n_i y_i},$ com $y_i = 0, 1, 2, \dots, n_i \in 0 < p_i < 1.$

Defininde a log-verolsimilhança: $\frac{N}{L}(\beta; y) = \sum_{i=1}^{N} \left[y \cdot \log p_i - y \cdot \log (z - p_i) + n_i \log (z - p_i) + \log (y_i) \right]$

Como para o modelo Saturado temos que todos os p.'s são distintos e o MLE é $\hat{p}_i = y_i/n_i$, o valor máximo da log-vero Ssimilhança Sera \hat{s}

Let $y = y \cdot \log(y_i/n_i) - y \cdot \log(\frac{n_i \cdot y}{n_i}) + n_i \log(\frac{n_i \cdot y}{n_i}) + \log(\frac{n_i}{p_i})$

 $\forall p < N$ parametros, seja \vec{p} , os MLE's das probabilidades estimadas $\hat{y}_i = n_i \hat{p}_i$ os valores ajustados. Logo, a log-verossimilhança avaliada nesses valores sura:

 $\int_{i=1}^{N} \left[y \log \left(\frac{y_i}{n_i} \right) - y \log \left(\frac{y_i - y_i}{n_i} \right) + n_i \log \left(\frac{y_i - y_i}{n_i} \right) + \log \left(\frac{y_i}{p_i} \right) \right]$

Logo a função desvio será: D = 2[L(bmx,y) - L(b,y)]

(c) Distribuição Beta: $f(y_i|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}y_i^{\alpha-1}(1-y_i)^{\beta-1}$, com $0 < y_i < 1$, e $\Gamma(\cdot)$ denota a função gama.

Treportament trizondos sutilizando a media e a dispertição:
$$\mu = \alpha$$
, $\beta = \alpha + \beta$
 $\alpha + \beta$
 $\beta = \alpha - \alpha = \beta$ (1- μ), tened

 $\beta = \alpha + \beta$
 $\beta = \alpha - \alpha = \beta$ (1- μ), tened

 $\beta = \alpha + \beta$
 $\beta = \alpha - \alpha = \beta$ (1- μ), tened

 $\beta = \alpha + \beta$
 $\beta = \alpha - \alpha = \beta$ (1- μ), tened

 $\beta = \alpha + \beta$
 $\beta = \alpha - \alpha = \beta$ (1- μ), tened

 $\beta = \alpha + \beta$
 $\beta = \alpha + \beta$

definindo o linting funtin g() como a logit-lint, temol? $\mu_{t} = e^{x_{t}^{T}\beta}$; and $x_{t}^{T} = (x_{t}, \dots, x_{t})$; $t = 1, \dots, n$ A log - veroBimilhança Sera: $\mathcal{L}(\beta, \emptyset) = \sum_{i=1}^{n} \mathcal{L}_{\mathcal{L}}(\mu_{\mathcal{L}}, \emptyset)$ 2 repuoção 1 onde f_{5} $f_{1}(\mu_{1}, g) = log 17(g) - log 17(\mu_{2}g) - log 17((1-\mu_{1})g) + (\mu_{1}g-1) log g_{1} + g_{2}(1-\mu_{1})g-1 g_{1} log (1-y_{2})$ Como $D(y; \mu, g) = \sum_{i=1}^{n} 2 \cdot (b_{\pm}(\widetilde{\mu}_{\pm}, g) - L_{\pm}(\mu_{\pm}, g));$ and $\widetilde{\mu}_{\pm} \in \sigma$ valor de μ_{\pm} que traiting $2 \cdot L_{\pm} = 0$ $\rightarrow g(y_{\pm}^* - \mu_{\pm}^*) = 0$ para $g \rightarrow g$ t_{emo} $\mu_{\pm}^{*} = \log \left(\frac{\mu_{\pm}}{1 - \mu_{\pm}}\right)$ e segue que : $\tilde{\mu}_{\pm}^{*} = y_{\pm}$; logo: $D(y; \mu, \alpha) = log (7(\alpha) - log (7(y \alpha) - log (7(12 - b_{t}) \alpha))$ + (y = 1) log y + + & (2-y) p-1 } log (2-y) $-\int \log 7(\varnothing) - \log 7(\mu_{2}\varnothing) - \log 7(1_{2}-\mu_{2})\varnothing)$ $-\int (\mu_{2}\varnothing - 1) \log y_{2} + 2(1_{2}-\mu_{2})\varnothing - 1 \log (1_{2}-\mu_{2})$ = $\log T \left(\mu_{\pm} \right) + \log T \left(\frac{1 - \mu_{\pm}}{1 - \mu_{\pm}} \right) + \log \left(y_{\pm} \right) \left(y_{\pm} - \mu_{\pm} \right)$ $+ log (1-y_1) {\varphi(\mu_1-y_1)}$

- Q03. Considere a função gama apresentada na questão anterior. Conforme mostrado na Lista 3, a distribuição gama é membro da família exponencial com ligação canônica. Usando a função de ligação logarítmica (frequentemente usada como função de ligação canônica para a distribuição Poisson), obtenha:
- (a) A função escore U (β_j) e as entradas genéricas (j,s) da matriz de informação de Fisher, digamos $\mathcal{I}_{is}(\boldsymbol{\beta})$.

$$f(y|\alpha,\beta) = \frac{L}{\beta^{\alpha} \Gamma(\alpha)} y^{\alpha-L} e^{-\frac{y}{\beta}}$$

$$l(y|\alpha,\beta) = -\frac{y}{\beta} - \alpha \log \beta + (\alpha-1) \log y - \log \Gamma(\alpha)$$

Com parâmetro conômico $\theta = -\beta^{-1} = \eta$

$$\int \frac{d}{d\theta} \propto \log\left(-\frac{1}{\theta}\right) = -\frac{\chi}{Q} = -\frac{\chi}{-\frac{1}{\beta}} \qquad \Rightarrow M = \chi\beta$$

$$\frac{1}{10} \propto \log(-\frac{1}{\theta}) = -\frac{1}{2} = -\frac{1}{2}$$

$$\frac{1}{10} \propto \log(-\frac{1}{\theta}) = -\frac{1}{2} = -\frac{1}{2}$$

$$\frac{1}{10} \propto \log(-\frac{1}{\theta}) = -\frac{1}{2}$$

$$\frac{1}{10} \sim \log(-\frac{1}{\theta}) = -\frac{1}{2}$$

$$\frac{1}{10} \sim$$

$$\alpha(\phi) = -\Delta$$

a) Q vetos soure U(B) = VB(BQ) e obtido portanto:

$$\frac{\partial l(\beta_{j}, \phi)}{\partial \beta_{j}} = \sum_{i=1}^{n} \frac{y_{i} - \mu_{i}}{a(\phi)} W_{i}(\beta) \left(\frac{\partial y_{i}}{\partial \mu_{i}}\right) \chi_{ij}$$

$$= \sum_{i=1}^{n} (y_{i} - d\beta) W_{i}(\beta) \cdot \chi_{ij} \cdot \chi_{ij}$$

(b) A matriz dos pesos $W(\boldsymbol{\beta})$ e a matriz $G(\boldsymbol{\beta}) = \operatorname{diagonal} \{g'(\mu_i), \text{ com } i = 1, \dots, n\}.$

b)
$$W(\beta) = \operatorname{diag}\{W_i(\beta), i=1,..., n\} e$$

 $W_i(\beta) = V^{-1}(\mu_i) \left(\frac{\partial \mu_i}{\partial y_i}\right)^2 = -\frac{1}{\alpha \beta^2} \left(-\alpha \beta^2\right)^2 = -\alpha \beta^2$

$$G(\beta) = \operatorname{diag}\{g'(\mu_i), i = 1,...,n\} = \operatorname{diag}\{\frac{\partial n_i}{\partial \mu_i}, i = 1,...,n\}$$

$$= \operatorname{diag}\{-\alpha \beta^2\}_n$$

$$C) \leq^{(4)} = \chi^{(4)} + G(\hat{\beta}^{(4)}) \left(y - \mu^{(4)}\right)$$
$$\leq^{(4)} = \left(-\frac{1}{\beta}\right)^{(4)} + \left(-\chi \beta^{2}\right)^{(4)} \left(y - (\chi \beta)^{(4)}\right)$$

	temos	n						ring, i.e., z_i^0	i
Z (t) = n	(±) + (y µ;	()	(μ ^(±))	<u>1</u> Γg²(μ	(±),7 ²			
Como	, _{fl} =	log	(e ^{x†}	β)	l				
g (µ;) =	$\sum_{i=1}^{m} X_{i} K$	βk= η, -2 =1)7=	7	► n',	$\frac{d}{dt} = \chi$	tk B k	(.).D 7	2	
Walls &	-g ² (μ;								
Z (\$) =	X _{zk} Bk	— (_[1 ;)·(d	BK7 -2	(µ;	=)	