Introduction to Electrodynamics by David J. Griffiths Problems

Chris Doble

December 2023

${\bf Contents}$

2	Elec	\mathbf{tr}	os	${f st}$	aı	tie	cs	3																																2
	2.1																																							2
	2.2												i																											$\overline{2}$
	2.3																																							3
	2.4																																							3
	2.5												i																											4
	2.6	·		·																																				4
	2.7	·		·									·							Ċ						•			Ċ											4
	2.8	·		·									·																											4
	2.9	·	·	·	•				•	•	•	Ī		·	·	·	·	·	•	·	•	•	•	•	•	•	•	·	•	•	•	•	•		•	•	•	•	·	4
	2.10	•	•	•	•	•	·		•	•	•	•	•	•	•	•																		•				•	•	5
	2.11	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	5
	2.12	•	•	•	•	•		•	•	•	•	•	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	-	•		-	-	-	-	•	6
	2.13	•	•	•	•	•	·	•	•	•	•	•	•	•		-		-	-	-	-	-	•	-	-	•	-	-	•	•	•	-	•	•	-	-	-		•	6
	2.14	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•		-	-	-	•	-	•	-	-	•	-	-	•	•	•	-	•	•	-	-	-	•	•	6
	2.15	•	•	•	•	•	·		•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
	2.16	•	•	•	•	•		•	•	•	•	•	•	•	•	•		-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	•	•	7
	2.17	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	٠	•	-	•	-	•	-	-	•	-	-	•	•	•	-	•		-		-	•	•	7
	2.18	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	-	•	-	-	-	-	-	-	-	-	-	•	•	-	•		-	-	-	•	•	8
	$\frac{2.10}{2.20}$	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	-	•	-	-	•	-	-	•	•	•	-	•	•	-		-	•	•	8
	2.21	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	9
	2.22	•	•	•	•	•		•	•	•	•	•	٠	•	•	•	•	•	•	•	•	-	-	-	-	•	-	-	•		•	-	•	•	•	•	•	•	•	9
	2.23	•	•	•	•	•		•	•	•	•	•	•	•	•	•		٠	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	10
	2.24	•	•	•	•	•		•	•	•	•	•	•	•	•	•		-	•	-	-	-	•	-	-	•	-	-	•	•	•	-	•	•	-	-	•	•	•	10
	2.24	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•		٠	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	10
	2.26	•	•	•	•	•		•	•	•	•	•	•	-	-	-	-	-	-															•			•	•	•	11
	2.28	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	11
	2.31	•	•	•	•	•		•	•	•	•	•	•	-		-		-	-	-	-	-	•	-	-	•	-	-	•	•	•	-	•	•	-	-	-		•	12
	2.31 2.32	•	•	•	•	٠	•	•	•	•	•	•		•	•	٠	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	12
	2.32	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	12

2.34																			13
2.36																			15
2.37																			17
2.38																			17
2.39																			18
2.40																			18
2.41																			18
2.42																			19
2.43																			20
2.44																			20
2.46																			21
2.47																			21
2.49																			22
2.50																			22
2.51																			23
2.52																			23
2.53																			23
2.55																			24
2.56																			24

2 Electrostatics

2.1

- (a) **0**
- (b) The same as if only the opposite charge were present all others are cancelled out.

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} 2 \frac{q}{2^2} \cos \theta \hat{\mathbf{x}}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{dq}{[(d/2)^2 + z^2]^{3/2}} \hat{\mathbf{x}}$$

$$\begin{split} &\mathbf{r} = z\hat{\mathbf{z}} \\ &\mathbf{r}' = x\hat{\mathbf{x}} \\ &\boldsymbol{\lambda} = z\hat{\mathbf{z}} - x\hat{\mathbf{x}} \\ &\boldsymbol{\lambda} = \sqrt{x^2 + z^2} \\ &\hat{\boldsymbol{\lambda}} = \frac{z\hat{\mathbf{z}} - x\hat{\mathbf{x}}}{\sqrt{x^2 + z^2}} \\ &\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_0^L \frac{\lambda}{x^2 + z^2} \frac{z\hat{\mathbf{z}} - x\hat{\mathbf{x}}}{\sqrt{x^2 + z^2}} \, dx \\ &= \frac{1}{4\pi\epsilon_0} \lambda \left(z\hat{\mathbf{z}} \int_0^L \frac{1}{(x^2 + z^2)^{3/2}} \, dx - \hat{\mathbf{x}} \int_0^L \frac{x}{(x^2 + z^2)} \, dx \right) \\ &= \frac{1}{4\pi\epsilon_0} \lambda \left[\frac{L}{z\sqrt{L^2 + z^2}} \hat{\mathbf{z}} - \left(\frac{1}{z} - \frac{1}{\sqrt{L^2 + z^2}} \right) \hat{\mathbf{x}} \right] \\ &= \frac{1}{4\pi\epsilon_0} \frac{\lambda}{z} \left[\left(-1 + \frac{z}{\sqrt{L^2 + z^2}} \right) \hat{\mathbf{x}} + \frac{L}{\sqrt{L^2 + z^2}} \hat{\mathbf{z}} \right] \end{split}$$

2.4

The electric field a distance z above the midpoint of a line segment of length 2L and uniform line charge λ is

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{2\lambda L}{z\sqrt{z^2 + L^2}} \hat{\mathbf{z}}.$$

Applying this to the four sides of the square, the horizontal components of opposite sides cancel leaving only the vertical component.

$$\cos \theta = \frac{z}{z}$$

$$= \frac{z}{\sqrt{(a/2)^2 + z^2}}$$

$$\mathbf{E} = 4\left(\frac{1}{4\pi\epsilon_0} \frac{\lambda a}{\sqrt{(a/2)^2 + z^2} \sqrt{(a/2)^2 + (a/2)^2 + z^2}} \hat{\mathbf{z}}\right) \cos \theta$$

$$= \frac{1}{4\pi\epsilon_0} \frac{4a\lambda z}{[(a/2)^2 + z^2] \sqrt{(a^2/2) + z^2}} \hat{\mathbf{z}}$$

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \frac{\lambda r}{r^2 + z^2} \cos\alpha \, d\theta \, \hat{\mathbf{z}}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{2\pi\lambda rz}{(r^2 + z^2)^{3/2}} \hat{\mathbf{z}}$$

2.6

$$\begin{split} \mathbf{E} &= \frac{1}{4\pi\epsilon_0} \int \frac{dq}{\mathbf{r}^2} \cos\theta \hat{\mathbf{z}} \\ &= \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^R \frac{\sigma}{r^2 + z^2} \frac{z}{\sqrt{r^2 + z^2}} r \, dr \, d\theta \hat{\mathbf{z}} \\ &= \frac{1}{4\pi\epsilon_0} 2\pi\sigma z \int_0^R \frac{r}{(r^2 + z^2)^{3/2}} \, dr \, \hat{\mathbf{z}} \\ &= \frac{1}{4\pi\epsilon_0} 2\pi\sigma z \left(\frac{1}{z} - \frac{1}{\sqrt{R^2 + z^2}}\right) \hat{\mathbf{z}} \end{split}$$

When $R \to \infty$

$$\mathbf{E} = \frac{\sigma}{2\epsilon_0} \hat{\mathbf{z}}.$$

2.7

$$\mathbf{E} = \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{q}{z^2} \hat{\mathbf{z}} & z > R \\ \mathbf{0} & z < R \end{cases}$$

2.8

$$\mathbf{E} = \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{q}{z^2} \hat{\mathbf{z}} & z > R \\ \frac{1}{4\pi\epsilon_0} \frac{qz}{R^3} \hat{\mathbf{z}} & z < R \end{cases}$$

2.9

(a)

$$\rho = \epsilon_0 \nabla \cdot \mathbf{E}$$

$$= \epsilon_0 \frac{1}{r^2} \frac{\partial}{\partial r} (kr^5)$$

$$= 5\epsilon_0 kr^2$$

$$Q_{\text{enc}} = \epsilon_0 \oint \mathbf{E} \cdot d\mathbf{a}$$

$$= \epsilon_0 \int_0^{2\pi} \int_0^{\pi} kR^3 R \, d\theta R \sin \theta \, d\phi$$

$$= 2\pi \epsilon_0 kR^5 [-\cos \theta]_0^{\pi}$$

$$= 4\pi \epsilon_0 kR^5$$

$$Q_{\text{enc}} = \int_V \rho \, d\tau$$

$$= \int_0^{2\pi} \int_0^{\pi} \int_0^R 5\epsilon_0 kr^2 \, drr \, d\theta r \sin \theta \, d\phi$$

$$= 10\pi \epsilon_0 k \int_0^{\pi} \int_0^R r^4 \sin \theta \, dr \, d\theta$$

$$= 2\pi \epsilon_0 kR^5 [-\cos \theta]_0^{\pi}$$

$$= 4\pi \epsilon_0 kR^5$$

If the charge was surrounded by 8 such cubes the total flux through all the cubes would be q/ϵ_0 . There are 24 outside faces to the larger cube, so the total flux through the shaded face is $q/(24\epsilon_0)$.

$$\int \mathbf{E}_{\text{inside}} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_0}$$

$$= 0$$

$$\mathbf{E}_{\text{inside}} = \mathbf{0}$$

$$\int \mathbf{E}_{\text{outside}} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_0}$$

$$4\pi r^2 E_{\text{outside}} = \frac{4\pi R^2 \sigma}{\epsilon_0}$$

$$\mathbf{E}_{\text{outside}} = \frac{1}{4\pi \epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$$

$$\int \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_0}$$
$$4\pi r^2 E = \frac{\frac{4}{3}\pi r^3 \rho}{\epsilon_0}$$
$$\mathbf{E} = \frac{r\rho}{3\epsilon_0} \hat{\mathbf{r}}$$

2.13

$$\begin{split} \int \mathbf{E} \cdot d\mathbf{a} &= \frac{Q_{\text{enc}}}{\epsilon_0} \\ 2\pi s l E &= \frac{l\lambda}{\epsilon_0} \\ \mathbf{E} &= \frac{1}{2\pi \epsilon_0} \frac{\lambda}{s} \hat{\mathbf{s}} \end{split}$$

2.14

$$Q_{\text{enc}} = \int_{V} \rho \, d\tau$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{r} kr'^{3} \sin \theta \, dr' \, d\theta \, d\phi$$

$$= 2\pi k \int_{0}^{\pi} \left[\frac{1}{4} r'^{4} \sin \theta \right]_{0}^{r} \, d\theta$$

$$= \frac{1}{2} \pi k r^{4} [-\cos \theta]_{0}^{\pi}$$

$$= \pi k r^{4}$$

$$\int \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_{0}}$$

$$4\pi r^{2} E = \frac{\pi k r^{4}}{\epsilon_{0}}$$

$$\mathbf{E} = \frac{k r^{2}}{4\epsilon_{0}} \hat{\mathbf{r}}$$

(a)
$$E = 0$$

$$Q_{\text{enc}} = \int_0^{2\pi} \int_0^{\pi} \int_a^r k \sin \theta \, dr' \, d\theta \, d\phi$$
$$= 4\pi k (r - a)$$
$$4\pi r^2 E = \frac{4\pi k (r - a)}{\epsilon_0}$$
$$\mathbf{E} = \frac{k(r - a)}{\epsilon_0 r^2} \hat{\mathbf{r}}$$

(c)
$$\mathbf{E} = \frac{k(b-a)}{\epsilon_0 r^2} \hat{\mathbf{r}}$$

(a)

$$Q_{\rm enc} = \pi s^2 l \rho$$
$$2\pi s l E = \frac{\pi s^2 l \rho}{\epsilon_0}$$
$$\mathbf{E} = \frac{s \rho}{2\epsilon_0} \hat{\mathbf{s}}$$

$$\mathbf{E} = \frac{a^2 \rho}{2\epsilon_0 s} \hat{\mathbf{s}}$$

$$\mathbf{E} = \mathbf{0}$$

$$\begin{aligned} 2AE_{\text{inside}} &= \frac{2Ay\rho}{\epsilon_0} \\ \mathbf{E}_{\text{inside}} &= \frac{y\rho}{\epsilon_0} \\ \mathbf{E} &= \begin{cases} \frac{d\rho}{\epsilon_0} & d < y \\ \frac{y\rho}{\epsilon_0} & 0 < y < d \\ -\frac{y\rho}{\epsilon_0} & -d < y < 0 \\ -\frac{d\rho}{\epsilon_0} & y < -d \end{cases} \end{aligned}$$

The electric field inside a uniformly charged solid sphere is

$$\mathbf{E} = \frac{r\rho}{3\epsilon_0}\hat{\mathbf{r}}.$$

$$\mathbf{d} = \mathbf{r}_1 - \mathbf{r}_2$$

$$\mathbf{E} = \frac{r_1 \rho}{3\epsilon_0} \hat{\mathbf{r}}_1 - \frac{r_2 \rho}{3\epsilon_0} \hat{\mathbf{r}}_2$$

$$= \frac{\rho}{3\epsilon_0} (\mathbf{r}_1 - \mathbf{r}_2)$$

$$= \frac{\rho}{3\epsilon_0} \mathbf{d}$$

2.20

a is impossible because its curl is nonzero.

$$\begin{split} V &= -\int_{0}^{y} 2kxy' \, dy' - \int_{0}^{z} 2kyz' \, dz \\ &= -2kx \left[\frac{1}{2} y'^{2} \right]_{0}^{y} - 2ky \left[\frac{1}{2} z'^{2} \right]_{0}^{z} \\ &= -k(xy^{2} + yz^{2}) \\ -\nabla V &= k[y^{2}\hat{\mathbf{x}} + (2xy + z^{2})\hat{\mathbf{y}} + 2yz\hat{\mathbf{z}}] \\ &= \mathbf{E} \end{split}$$

$$\begin{split} \mathbf{E} &= \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} & r > R \\ \frac{1}{4\pi\epsilon_0} \frac{qr}{R^3} & r < R \end{cases} \\ V_{\text{outside}}(r) &= -\int_{\infty}^{r} \frac{1}{4\pi\epsilon_0} \frac{q}{r'^2} dr' \\ &= -\frac{1}{4\pi\epsilon_0} q \left[-\frac{1}{r'} \right]_{\infty}^{r} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q}{r} \\ -\nabla V_{\text{outside}} &= \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}} \\ &= \mathbf{E}_{\text{outside}} \\ V_{\text{inside}}(r) &= -\left(\int_{\infty}^{R} \frac{1}{4\pi\epsilon_0} \frac{q}{r'^2} dr' + \int_{R}^{r} \frac{1}{4\pi\epsilon_0} \frac{qr'}{R^3} dr' \right) \\ &= -\left(-\frac{1}{4\pi\epsilon_0} \frac{q}{R} + \frac{1}{4\pi\epsilon_0} \frac{q}{R^3} \left[\frac{1}{2} r'^2 \right]_{R}^{r} \right) \\ &= \frac{1}{4\pi\epsilon_0} \frac{q}{2R} \left[3 - \left(\frac{r}{R} \right)^2 \right] \\ -\nabla V_{\text{inside}} &= \frac{1}{4\pi\epsilon_0} \frac{qr}{R^3} \hat{\mathbf{r}} \\ &= \mathbf{E}_{\text{inside}} \end{split}$$

$$\begin{split} \mathbf{E} &= \frac{1}{2\pi\epsilon_0} \frac{\lambda}{s} \hat{\mathbf{s}} \\ V &= -\int_O^s \frac{1}{2\pi\epsilon_0} \frac{\lambda}{s'} \, ds' \\ &= -\frac{1}{2\pi\epsilon_0} \lambda \ln \frac{s}{O} \\ -\nabla V &= \frac{1}{2\pi\epsilon_0} \frac{\lambda}{s} \hat{\mathbf{s}} \end{split}$$

$$\begin{aligned} \mathbf{E} &= \begin{cases} \mathbf{0} & r < a \\ \frac{k(r-a)}{\epsilon_0 r^2} \hat{\mathbf{r}} & a < r < b \\ \frac{k(b-a)}{\epsilon_0 r^2} \hat{\mathbf{r}} & b < r \end{cases} \\ V(0) &= -\int_{\infty}^{0} E \, dr \\ &= -\left(\int_{\infty}^{b} \frac{k(b-a)}{\epsilon_0 r^2} \, dr + \int_{b}^{a} \frac{k(r-a)}{\epsilon_0 r^2} \, dr\right) \\ &= -\left(\frac{k(b-a)}{\epsilon_0} \left[-\frac{1}{r}\right]_{\infty}^{b} + \frac{k}{\epsilon_0} \left[\ln r + \frac{a}{r}\right]_{b}^{a}\right) \\ &= -\left[-\frac{k(b-a)}{\epsilon_0 b} + \frac{k}{\epsilon_0} \left(\ln a + 1 - \ln b - \frac{a}{b}\right)\right] \\ &= -\frac{k}{\epsilon_0} \left(-1 + \frac{a}{b} + \ln \frac{a}{b} + 1 - \frac{a}{b}\right) \\ &= \frac{k}{\epsilon_0} \ln \frac{b}{a} \end{aligned}$$

2.24

$$V(b) - V(0) = -\int_0^b E \, dr$$

$$= -\left(\int_0^a \frac{s\rho}{2\epsilon_0} \, ds + \int_a^b \frac{a^2\rho}{2\epsilon_0 s} \, ds\right)$$

$$= -\left(\frac{\rho}{2\epsilon_0} \left[\frac{1}{2}s^2\right]_0^a + \frac{a^2\rho}{2\epsilon_0} \ln\frac{b}{a}\right)$$

$$= -\left(\frac{a^2\rho}{4\epsilon_0} + \frac{a^2\rho}{2\epsilon_0} \ln\frac{b}{a}\right)$$

$$= -\frac{a^2\rho}{4\epsilon_0} \left(1 + 2\ln\frac{a}{b}\right)$$

(a)
$$V = \frac{1}{4\pi\epsilon_0} \frac{2q}{\sqrt{(d/2)^2 + z^2}}$$

$$V = \frac{1}{4\pi\epsilon_0} \int_{-L}^{L} \frac{\lambda}{\sqrt{x^2 + z^2}} dx$$
$$= \frac{1}{4\pi\epsilon_0} \lambda \ln \left(1 + \frac{2L(L + \sqrt{L^2 + z^2})}{z^2} \right)$$

(c)

$$\begin{split} V &= \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^R \frac{\sigma}{\sqrt{r^2 + z^2}} r \, dr \, d\theta \\ &= \frac{1}{4\pi\epsilon_0} 2\pi\sigma (\sqrt{R^2 + z^2} - z) \end{split}$$

2.26

$$\begin{split} V_{\text{bottom}} &= \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^h \frac{\sqrt{2}\sigma z}{\sqrt{2}z} \, d\phi \, dz \\ &= \frac{\sigma h}{2\epsilon_0} \\ V_{\text{top}} &= \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^h \frac{\sqrt{2}\sigma z}{\sqrt{z^2 + (h-z)^2}} \, d\phi \, dz \\ &= \frac{\sqrt{2}\sigma}{2\epsilon_0} \int_0^h \frac{z}{\sqrt{z^2 + (h-z)^2}} \, dz \\ &= \frac{\sigma h}{4\epsilon_0} \ln(3 + 2\sqrt{2}) \\ V_{\text{bottom}} - V_{\text{top}} &= \frac{\sigma h}{2\epsilon_0} \left[1 - \frac{1}{2} \ln(3 + 2\sqrt{2}) \right] \end{split}$$

$$\begin{split} V(r) &= \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^{\pi} \int_0^R \frac{\rho r'^2 \sin \theta}{\sqrt{r^2 + r'^2 - 2rr' \cos \theta}} \, dr' \, d\theta \, d\phi \\ &= \frac{\rho}{2\epsilon_0} \int_0^{\pi} \int_0^R \frac{r'^2 \sin \theta}{\sqrt{r^2 + r'^2 - 2rr' \cos \theta}} \, dr' \, d\theta \\ &= \frac{\rho}{2\epsilon_0} \left(R^2 - \frac{r^2}{3} \right) \\ &= \frac{q}{8\pi\epsilon_0 R} \left(3 - \frac{r^2}{R^2} \right) \end{split}$$

(a)
$$W = \frac{q^2}{4\pi\epsilon_0 a} \left(\frac{1}{\sqrt{2}} - 2\right)$$

(b)
$$W = \frac{1}{4\pi\epsilon_0} \left(-\frac{q^2}{a} + \frac{q^2}{\sqrt{2}a} - \frac{q^2}{a} - \frac{q^2}{a} + \frac{q^2}{\sqrt{2}a} - \frac{q^2}{a} \right)$$
$$= \frac{q^2}{2\pi\epsilon_0 a} \left(\frac{1}{\sqrt{2}} - 2 \right)$$

$$\begin{split} W &= \frac{1}{4\pi\epsilon_0} \frac{q_A q_B}{a} \\ W &= K_1 + K_2 \\ \frac{1}{4\pi\epsilon_0} \frac{q_A q_B}{a} &= \frac{1}{2} m_A v_A^2 + \frac{1}{2} m_B v_B^2 \\ \frac{1}{2\pi\epsilon_0} \frac{q_A q_B}{a} &= m_A v_A^2 + m_B v_B^2 \\ 0 &= m_B v_B - m_A v_A \\ v_B &= \frac{m_A}{m_B} v_A \\ \frac{1}{2\pi\epsilon_0} \frac{q_A q_B}{a} &= m_A v_A^2 + m_B \left(\frac{m_A}{m_B} v_A\right)^2 \\ &= m_A v_A^2 + \frac{m_A^2}{m_B} v_A^2 \\ &= \frac{m_A (m_A + m_B)}{m_B} v_A^2 \\ v_A &= \sqrt{\frac{1}{2\pi\epsilon_0} \frac{q_A q_B}{(m_A + m_B)a} \frac{m_B}{m_A}} \\ v_B &= \sqrt{\frac{1}{2\pi\epsilon_0} \frac{q_A q_B}{(m_A + m_B)a} \frac{m_A}{m_B}} \end{split}$$

$$W = \frac{1}{4\pi\epsilon_0} \left(-\frac{q^2}{a} + \frac{q^2}{2a} - \frac{q^2}{3a} + \dots \right)$$
$$= \frac{1}{4\pi\epsilon_0} \frac{q^2}{a} \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
$$= -\frac{1}{4\pi\epsilon_0} \frac{q^2}{a} \ln 2$$

2.34

(a)

$$\begin{split} V &= \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{q}{2R} \left[3 - \left(\frac{r}{R} \right)^2 \right] & r < R \\ \frac{1}{4\pi\epsilon_0} \frac{q}{r} & r > R \end{cases} \\ W &= \frac{1}{2} \int \rho V \, d\tau \\ &= \frac{1}{2} \int_0^{2\pi} \int_0^{\pi} \int_0^R \rho \frac{1}{4\pi\epsilon_0} \frac{q}{2R} \left[3 - \left(\frac{r}{R} \right)^2 \right] r^2 \sin\theta \, dr \, d\theta \, d\phi \\ &= \frac{q\rho}{8\epsilon_0 R} \int_0^{\pi} \int_0^R \left[3 - \left(\frac{r}{R} \right)^2 \right] r^2 \sin\theta \, dr \, d\theta \\ &= \frac{q\rho R^2}{5\epsilon_0} \\ &= \frac{qR^2}{5\epsilon_0} \frac{q}{\frac{4}{3}\pi R^3} \\ &= \frac{1}{4\pi\epsilon_0} \frac{3q^2}{5R} \end{split}$$

$$\begin{split} \mathbf{E} &= \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}} & r > R \\ \frac{1}{4\pi\epsilon_0} \frac{qr}{R^3} \hat{\mathbf{r}} & r < R \end{cases} \\ E^2 &= \begin{cases} \frac{1}{16\pi^2 \epsilon_0^2} \frac{q^2}{r^4} & r > R \\ \frac{1}{16\pi^2 \epsilon_0^2} \frac{q^2r^2}{R^6} & r < R \end{cases} \\ W &= \frac{\epsilon_0}{2} \int E^2 \, d\tau \\ &= \frac{\epsilon_0}{2} \left(\int_0^{2\pi} \int_0^{\pi} \int_0^R \frac{1}{16\pi^2 \epsilon_0^2} \frac{q^2r^2}{R^6} r^2 \sin\theta \, dr \, d\theta \, d\phi \right) \\ &+ \int_0^{2\pi} \int_0^{\pi} \int_R^{\infty} \frac{1}{16\pi^2 \epsilon_0^2} \frac{q^2}{r^4} r^2 \sin\theta \, dr \, d\theta \, d\phi \right) \\ &= \frac{\epsilon_0}{2} \frac{1}{16\pi^2 \epsilon_0^2} 2\pi q^2 \left(\int_0^{\pi} \int_0^R \frac{r^4}{R^6} \sin\theta \, dr \, d\theta + \int_0^{\pi} \int_R^{\infty} \frac{1}{r^2} \sin\theta \, dr \, d\theta \right) \\ &= \frac{1}{16\pi\epsilon_0} q^2 \left(\int_0^{\pi} \int_0^R \frac{r^4}{R^6} \sin\theta \, dr \, d\theta + \int_0^{\pi} \int_R^{\infty} \frac{1}{r^2} \sin\theta \, dr \, d\theta \right) \\ &= \frac{1}{16\pi\epsilon_0} q^2 \left(\frac{2}{5R} + \frac{2}{R} \right) \\ &= \frac{1}{4\pi\epsilon_0} \frac{3q^2}{5R} \end{split}$$

$$\begin{split} W &= \frac{\epsilon_0}{2} \left(\int_V E^2 \, d\tau + \oint_S V \mathbf{E} \cdot d\mathbf{a} \right) \\ &= \frac{\epsilon_0}{2} \left(\int_0^{2\pi} \int_0^{\pi} \int_0^R \frac{1}{(4\pi\epsilon_0)^2} \frac{q^2 r^2}{R^6} r^2 \sin\theta \, dr \, d\theta \, d\phi \right. \\ &\quad + \int_0^{2\pi} \int_0^{\pi} \int_R^a \frac{1}{(4\pi\epsilon_0)^2} \frac{q^2}{r^4} r^2 \sin\theta \, dr \, d\theta \, d\phi \\ &\quad + \int_0^{2\pi} \int_0^{\pi} \frac{1}{4\pi\epsilon_0} \frac{q}{a} \frac{1}{4\pi\epsilon_0} \frac{q}{a^2} a^2 \sin\theta \, d\theta \, d\phi \right) \\ &= \frac{\epsilon_0}{2} \frac{1}{(4\pi\epsilon_0)^2} 2\pi q^2 \left(\int_0^{\pi} \int_0^R \frac{r^4}{R^6} \sin\theta \, dr \, d\theta \right. \\ &\quad + \int_0^{\pi} \int_R^a \frac{1}{r^2} \sin\theta \, dr \, d\theta + \int_0^{\pi} \frac{1}{a} \sin\theta \, d\theta \right) \\ &= \frac{\epsilon_0}{2} \frac{1}{(4\pi\epsilon_0)^2} 2\pi q^2 \left[\frac{2}{5R} + 2 \left(\frac{1}{R} - \frac{1}{a} \right) + \frac{2}{a} \right] \\ &= \frac{1}{8\pi\epsilon_0} q^2 \left[\frac{1}{5R} + \frac{1}{R} \right] \\ &= \frac{1}{4\pi\epsilon_0} \frac{3q^2}{5R} \end{split}$$

(a)

$$\mathbf{E} = \begin{cases} \mathbf{0} & r < a \\ \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}} & a < r < b \\ \mathbf{0} & b < r \end{cases}$$

$$E^2 = \begin{cases} 0 & r < a \\ \frac{1}{(4\pi\epsilon_0)^2} \frac{q^2}{r^4} & a < r < b \\ 0 & b < r \end{cases}$$

$$W = \frac{\epsilon_0}{2} \int E^2 d\tau$$

$$= \frac{\epsilon_0}{2} \int_0^{2\pi} \int_0^{\pi} \int_a^b \frac{1}{(4\pi\epsilon_0)^2} \frac{q^2}{r^4} r^2 \sin\theta \, dr \, d\theta \, d\phi$$

$$= \frac{\epsilon_0}{2} \frac{1}{(4\pi\epsilon_0)^2} 2\pi q^2 \int_0^{\pi} \int_a^b \frac{\sin\theta}{r^2} \, dr \, d\theta$$

$$= \frac{q^2}{8\pi\epsilon_0} \left(\frac{1}{a} - \frac{1}{b} \right)$$

$$\begin{aligned} W_{\text{shell}} &= \frac{1}{8\pi\epsilon_0} \frac{q^2}{R} \\ \mathbf{E} &= \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}} \\ \mathbf{E}_1 \cdot \mathbf{E}_2 &= -\frac{1}{(4\pi\epsilon_0)^2} \frac{q^2}{r^4} \\ W_{\text{total}} &= W_1 + W_2 + \epsilon_0 \int \mathbf{E}_1 \cdot \mathbf{E}_2 \, d\tau \\ &= \frac{q^2}{8\pi\epsilon_0} \left(\frac{1}{a} + \frac{1}{b} \right) - \epsilon_0 \int_0^{2\pi} \int_0^{\pi} \int_b^{\infty} \frac{1}{(4\pi\epsilon_0)^2} \frac{q^2}{r^4} r^2 \sin\theta \, dr \, d\theta \, d\phi \\ &= \frac{q^2}{8\pi\epsilon_0} \left(\frac{1}{a} + \frac{1}{b} \right) - \frac{1}{8\pi\epsilon_0} q^2 \int_0^{\pi} \int_b^{\infty} \frac{1}{r^2} \sin\theta \, dr \, d\theta \\ &= \frac{q^2}{8\pi\epsilon_0} \left(\frac{1}{a} + \frac{1}{b} \right) - \frac{1}{4\pi\epsilon_0} q^2 \int_b^{\infty} \frac{1}{r^2} \, dr \\ &= \frac{q^2}{8\pi\epsilon_0} \left(\frac{1}{a} + \frac{1}{b} \right) - \frac{1}{4\pi\epsilon_0} \frac{q^2}{b} \\ &= \frac{q^2}{8\pi\epsilon_0} \left(\frac{1}{a} + \frac{1}{b} - \frac{2}{b} \right) \\ &= \frac{q^2}{8\pi\epsilon_0} \left(\frac{1}{a} - \frac{1}{b} \right) \end{aligned}$$

$$\begin{split} r_1 &= r \\ E_1 &= \frac{1}{4\pi\epsilon_0} \frac{q_1}{r^2} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q_1}{r^2} \\ r_2 &= \sqrt{a^2 + r^2 - 2ar\cos\theta} \\ E_2 &= \frac{1}{4\pi\epsilon_0} \frac{q_2}{r_2^2} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q_2}{a^2 + r^2 - 2ar\cos\theta} \\ \cos\alpha &= \frac{r - a\cos\theta}{\sqrt{a^2 + r^2 - 2ar\cos\theta}} \\ \mathbf{E}_1 \cdot \mathbf{E}_2 &= E_1 E_2 \cos\alpha \\ &= \frac{1}{(4\pi\epsilon_0)^2} \frac{q_1 q_2}{r^2 (a^2 + r^2 - 2ar\cos\theta)} \frac{r - a\cos\theta}{\sqrt{a^2 + r^2 - 2ar\cos\theta}} \\ &= \frac{1}{(4\pi\epsilon_0)^2} \frac{q_1 q_2 (r - a\cos\theta)}{r^2 (a^2 + r^2 - 2ar\cos\theta)^{3/2}} \\ \epsilon_0 \int \mathbf{E}_1 \cdot \mathbf{E}_2 \, d\tau &= \epsilon_0 \int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} \frac{1}{(4\pi\epsilon_0)^2} \frac{q_1 q_2 (r - a\cos\theta)}{r^2 (a^2 + r^2 - 2ar\cos\theta)^{3/2}} r^2 \sin\theta \, dr \, d\theta \, d\phi \\ &= \frac{q_1 q_2}{8\pi\epsilon_0} \int_0^{\pi} \int_0^{\infty} \frac{(r - a\cos\theta)\sin\theta}{(a^2 + r^2 - 2ar\cos\theta)^{3/2}} \, dr \, d\theta \end{split}$$

2.38

(a)

$$\sigma_R = \frac{q}{4\pi R^2}$$

$$\sigma_a = -\frac{q}{4\pi a^2}$$

$$\sigma_b = \frac{q}{4\pi b^2}$$

(b)

$$V = -\int_{\infty}^{b} \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} dr - \int_{a}^{R} \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} dr$$
$$= \frac{1}{4\pi\epsilon_0} q \left(\frac{1}{b} + \frac{1}{R} - \frac{1}{a}\right)$$

(c)

$$\sigma_b = 0$$

$$V = \frac{1}{4\pi\epsilon_0} q \left(\frac{1}{R} - \frac{1}{a}\right)$$

2.39

(a)

$$\sigma_a = -\frac{q_a}{4\pi a^2}$$

$$\sigma_b = -\frac{q_b}{4\pi b^2}$$

$$\sigma_R = \frac{q_a + q_b}{4\pi R^2}$$

(b)

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q_a + q_b}{r^2} \hat{\mathbf{r}}$$

(c)

$$\mathbf{E}_{a} = \frac{1}{4\pi\epsilon_{0}} \frac{q_{a}}{r^{2}} \hat{\mathbf{r}}$$
$$\mathbf{E}_{b} = \frac{1}{4\pi\epsilon_{0}} \frac{q_{b}}{r^{2}} \hat{\mathbf{r}}$$

(d)

0

(e) a, b

2.40

- (a) No. If it's close to the wall it will induce a surface charge and be attracted.
- (b) No. If the conductor contains a cavity containing a like charge it will be repelled.

2.41

By Gauss's law, the electric field of each plate is

$$\oint \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_0}$$
$$2A'E = \frac{A'\frac{Q}{A}}{\epsilon_0}$$
$$\mathbf{E} = \frac{Q}{2A\epsilon_0}\hat{\mathbf{n}}$$

so the field between the plates is zero and the field outside is $Q/A\epsilon_0\hat{\mathbf{n}}$, resulting in a pressure of

$$\begin{split} P &= \frac{\epsilon_0}{2} E^2 \\ &= \frac{\epsilon_0}{2} \frac{Q^2}{A^2 \epsilon_0^2} \\ &= \frac{Q^2}{2A^2 \epsilon_0} \end{split}$$

$$\begin{split} \mathbf{E}_{\mathrm{above}} &= \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{\mathbf{r}} \\ \mathbf{f} &= \frac{1}{2} \sigma \mathbf{E}_{\mathrm{above}} \\ &= \frac{1}{2} \frac{Q}{4\pi R^2} \frac{1}{4\pi\epsilon_0} \frac{Q}{R^2} \hat{\mathbf{r}} \\ &= \frac{Q^2}{32\pi^2 \epsilon_0 R^4} \hat{\mathbf{r}} \\ \mathbf{F} &= \int_0^{2\pi} \int_0^{\pi/2} \frac{Q^2}{32\pi^2 \epsilon_0 R^4} \cos \theta R^2 \sin \theta \, d\theta \, d\phi \hat{\mathbf{z}} \\ &= \frac{Q^2}{16\pi\epsilon_0 R^2} \int_0^{\pi/2} \cos \theta \sin \theta \, d\theta \hat{\mathbf{z}} \\ &= \frac{Q^2}{32\pi\epsilon_0 R^2} \hat{\mathbf{z}} \end{split}$$

$$\begin{split} \oint \mathbf{E} \cdot d\mathbf{a} &= \frac{Q}{\epsilon_0} \\ 2\pi s L E &= \frac{Q}{\epsilon_0} \\ \mathbf{E} &= \frac{Q}{2\pi L \epsilon_0} \frac{1}{s} \hat{\mathbf{s}} \\ V &= -\int_b^a \frac{Q}{2\pi \epsilon_0 L} \frac{1}{s} \, dr \\ &= \frac{Q}{2\pi \epsilon_0 L} \ln \frac{b}{a} \\ C &= \frac{Q}{V} \\ &= \frac{2\pi \epsilon_0 L}{\ln b/a} \end{split}$$

So the capacitance per unit length is

$$C = \frac{2\pi\epsilon_0}{\ln b/a}.$$

2.44

(a)

$$P = \frac{\epsilon_0}{2}E^2$$

$$W = Fd$$

$$= PA\epsilon$$

$$= \frac{\epsilon_0}{2}E^2A\epsilon$$

(b)

$$\frac{\epsilon_0}{2}E^2A\epsilon$$

$$\nabla \cdot \mathbf{E} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 3 \frac{k}{r}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{k}{r} 2 \sin \theta \cos \theta \sin \phi \right)$$

$$+ \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \left(\frac{k}{r} \sin \theta \cos \phi \right)$$

$$= \frac{3k}{r^2} + \frac{1}{r \sin \theta} \frac{2k}{r} \sin \phi (2 \sin \theta \cos^2 \theta - \sin^3 \theta) - \frac{1}{r \sin \theta} \frac{k}{r} \sin \theta \sin \phi$$

$$= \frac{3k}{r^2} + \frac{2k \sin \phi}{r^2} (2 \cos^2 \theta - \sin^2 \theta) - \frac{k}{r^2} \sin \phi$$

$$= \frac{k}{r^2} [3 + 2 \sin \phi (2 \cos^2 \theta - \sin^2 \theta) - \sin \phi]$$

$$= \frac{k}{r^2} [3 + \sin \phi (4 \cos^2 \theta - 2 \sin^2 \theta - 1)]$$

$$= \frac{k}{r^2} [3 + \sin \phi (6 \cos^2 \theta - 3)]$$

$$= \frac{3k}{r^2} (1 + \cos 2\theta \sin \phi)$$

$$\rho = \epsilon_0 \nabla \cdot \mathbf{E}$$

$$= \frac{3k\epsilon_0}{r^2} (1 + \cos 2\theta \sin \phi)$$

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{Qr}{R^3} \hat{\mathbf{r}}$$

$$\rho = \frac{Q}{\frac{4}{3}\pi R^3}$$

$$\rho \mathbf{E} = \frac{3Q}{4\pi R^3} \frac{1}{4\pi\epsilon_0} \frac{Qr}{R^3} \hat{\mathbf{r}}$$

$$= \frac{3r}{\epsilon_0} \left(\frac{Q}{4\pi R^3}\right)^2 \hat{\mathbf{r}}$$

$$F_z = \int_0^{2\pi} \int_0^{\pi/2} \int_0^R \frac{3r}{\epsilon_0} \left(\frac{Q}{4\pi R^3}\right)^2 \cos\theta r^2 \sin\theta \, dr \, d\theta \, d\phi$$

$$= \frac{3\pi}{\epsilon_0} \left(\frac{Q}{4\pi R^3}\right)^2 \int_0^{\pi/2} \int_0^R r^3 \sin 2\theta \, dr \, d\theta$$

$$= \frac{3\pi}{\epsilon_0} \left(\frac{Q}{4\pi R^3}\right)^2 \frac{R^4}{4}$$

$$= \frac{3Q^2}{64\pi\epsilon_0 R^2}$$

$$Q_{\text{enc}} = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\tau} kr'^{3} \sin\theta \, dr' \, d\theta \, d\phi$$

$$= 2\pi k \int_{0}^{\pi} \int_{0}^{\tau} r'^{3} \sin\theta \, dr' \, d\theta$$

$$= \pi kr^{4}$$

$$\oint \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_{0}}$$

$$4\pi r^{2} E = \frac{\pi kr^{4}}{\epsilon_{0}}$$

$$\mathbf{E} = \begin{cases} \frac{kr^{2}}{4\epsilon_{0}} \hat{\mathbf{r}} & r < R \\ \frac{kR^{4}}{4\epsilon_{0}r^{2}} \hat{\mathbf{r}} & r > R \end{cases}$$

$$W = \frac{\epsilon_{0}}{2} \left(\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{R} \frac{k^{2}r^{4}}{16\epsilon_{0}^{2}} r^{2} \sin\theta \, dr \, d\theta \, d\phi \right)$$

$$= \frac{\epsilon_{0}}{2} 2\pi \int_{0}^{\pi} \int_{R}^{\infty} \frac{k^{2}R^{8}}{16\epsilon_{0}^{2}r^{4}} r^{2} \sin\theta \, dr \, d\theta \, d\phi$$

$$= \frac{\epsilon_{0}}{2} 2\pi \frac{k^{2}}{16\epsilon_{0}^{2}} \left(\int_{0}^{\pi} \int_{0}^{R} r^{6} \sin\theta \, dr \, d\theta + \int_{0}^{\pi} \int_{R}^{\infty} \frac{R^{8} \sin\theta}{r^{2}} \, dr \, d\theta \right)$$

$$= \frac{\pi k^{2}}{16\epsilon_{0}} \left(\frac{2R^{7}}{7} + 2R^{7} \right)$$

$$= \frac{\pi k^{2}R^{7}}{7\epsilon_{0}}$$

$$V(\mathbf{r}) = A \frac{e^{-\lambda r}}{r}$$

$$\mathbf{E} = -\nabla V$$

$$= Ae^{-\lambda r} (1 + \lambda r) \frac{\hat{\mathbf{r}}}{r^2}$$

$$\rho = \epsilon_0 \nabla \cdot \mathbf{E}$$

$$= \epsilon_0 \left[Ae^{-\lambda r} (1 + \lambda r) \nabla \cdot \frac{\hat{\mathbf{r}}}{r^2} + \frac{\hat{\mathbf{r}}}{r^2} \cdot \nabla \left(Ae^{-\lambda r} (1 + \lambda r) \right) \right]$$

$$= A\epsilon_0 \left[4\pi \delta(\mathbf{r}) + \frac{\hat{\mathbf{r}}}{r^2} \cdot (-\lambda^2 e^{-\lambda r} r \hat{\mathbf{r}}) \right]$$

$$= A\epsilon_0 \left(4\pi \delta(\mathbf{r}) - \frac{\lambda^2 e^{-\lambda r}}{r} \right)$$

$$\begin{split} V &= \int \frac{1}{4\pi\epsilon_0} \frac{\sigma}{\imath} \, dA \\ &= \frac{\sigma}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^R \frac{r}{\sqrt{r^2 + R^2 - 2rR\cos\theta}} \, dr \, d\theta \\ &= \frac{R\sigma}{4\pi\epsilon_0} \int_0^{2\pi} \left[\cos\theta \ln\left(1 + \csc\frac{\theta}{2}\right) + 2\sin\frac{\theta}{2} - 1 \right] \, d\theta \\ &= \frac{R\sigma}{\pi\epsilon_0} \end{split}$$

2.52

(a)

$$\begin{split} V_{-} &= \frac{1}{2\pi\epsilon_{0}}\lambda \ln \frac{s_{-}}{a} \\ &= \frac{1}{2\pi\epsilon_{0}}\lambda \ln \frac{\sqrt{(y+a)^{2}+z^{2}}}{a} \\ V_{+} &= -\frac{1}{2\pi\epsilon_{0}}\lambda \ln \frac{s_{+}}{a} \\ &= -\frac{1}{2\pi\epsilon_{0}}\lambda \ln \frac{\sqrt{(y-a)^{2}+z^{2}}}{a} \\ V &= V_{-} + V_{+} \\ &= \frac{1}{4\pi\epsilon_{0}}\lambda \ln \frac{(y+a)^{2}+z^{2}}{(y-a)^{2}+z^{2}} \end{split}$$

2.53

(a)

$$\nabla^{2}V = -\frac{\rho}{\epsilon_{0}}$$

$$\nabla \cdot \nabla V = -\frac{\rho}{\epsilon_{0}}$$

$$\nabla \cdot \frac{dV}{dx}\hat{\mathbf{x}} = -\frac{\rho}{\epsilon_{0}}$$

$$\frac{d^{2}V}{dx^{2}} = -\frac{\rho}{\epsilon_{0}}$$

(b)

$$qV = \frac{1}{2}mv^2$$
$$v = \sqrt{\frac{2qV}{m}}$$

(c)

$$I = A\rho v$$

(d)

$$\frac{d^2V}{dx^2} = -\frac{I}{Av\epsilon_0}$$
$$= -\frac{I}{A\epsilon_0} \sqrt{\frac{m}{2qV}}$$
$$= \beta V^{-1/2}$$

2.55

$$\rho = \epsilon_0 \nabla \cdot \mathbf{E}$$
$$= a\epsilon_0$$

$$E = \frac{3GM^2}{5R}$$

$$E_{\text{sun}} = 2.3 \times 10^{41} \,\text{J}$$

$$t = \frac{E_{\text{sun}}}{P}$$

$$= 1.89 \times 10^7 \,\text{years}$$