Ma première IA jouant aux jeux vidéos

Henri, Axel, Clément, Iliass

- Introduction
- 2 Formalisation du problème
- Q-learning
- 4 Deep Q-learning
- 6 REINFORCE
- 6 A2C
- **7** A3C
- 8 PPO
- Onclusion
- Bibliographie

Introduction

- Projet d'IA appliquée aux jeux vidéo
- Entraînement d'IA sur différents jeux (Cartpole, Atari, Mario Bros)
- Utilisation de l'apprentissage par renforcement

- Introduction
- 2 Formalisation du problème
- Q-learning
- 4 Deep Q-learning
- REINFORCE
- 6 A2C
- **7** A3C
- 8 PPO
- Onclusion
- Bibliographie

Formalisation du problème

Markov Decision Process

Un MDP est un quadruplet (S,A,P,R) caractérisé par $\forall t \in \mathbb{N}$:

- \bigcirc d'un agent A_t
- $oldsymbol{0}$ d'un environnement S_t
- $oldsymbol{0}$ d'un noyau de transition stationnaire $p(s_{t+1})$
- d'une fonction R de récompense

On définit aussi une politique $\pi(a|s) = P(A_t = a|S_t = s)$

Objectif

$$J(\pi) = \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^t r_{t+1}]$$
 $V_{\pi}(s) = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k r_{k+t+1} | S_t = s]$ $Q_{\pi}(s,a) = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k r_{k+t+1} | S_t = s, A_t = a]$

Équation de Bellman/Équation de Bellman*

$$egin{aligned} Q_\pi(s,a) &= \sum_{s'} p(s'|s,a) \left(R(s,a,s') + \gamma V_\pi(s')
ight) \ Q^\star(s,a) &= \sum_{s'} p(s'|s,a). (R(s,a,s') + \gamma \max_{a'} Q^\star(s',a')) \end{aligned}$$

- Introduction
- 2 Formalisation du problème
- Q-learning
- 4 Deep Q-learning
- S REINFORCE
- 6 A2C
- **7** A3C
- 8 PPO
- Onclusion
- Bibliographie

Q-learning

```
1: Initialisation environnement
 2: for i allant de 1 à M do
3:
       Initialiser l'état s
       while l'agent n'a pas perdu do
4.
           Executer action a qui vérifie a_t = arg \max_a Q(s_t, a)
 5:
           Récupération s_{t+1} et r_t
6:
           Maj environnement
7:
8:
           Maj de la matrice en appliquant Bellman
           Maj de s_t avec s_{t+1}
9:
       end while
10:
11: end for
```


Figure: Rewards en fonction du nombre d'épisodes (Cartpole)

Limites du Q-learning

- Taille de la matrice Q augmente avec la complexité du jeu
- Inefficace pour des environnements complexes
- Incapacité à traiter des environnements RGB

Action Space	Discrete(2)	
Observation Space	Box([-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38], [4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38], (4,), float32)	
import	gymnasium.make("CartPole-v1")	
Action Space		Discrete(4)
Observation Space		Box(0, 255, (210, 160, 3), uint8)
Import		gymnasium.make("ALE/Breakout-v5")

- Introduction
- 2 Formalisation du problème
- Q-learning
- 4 Deep Q-learning
- 6 REINFORCE
- 6 A2C
- **7** A3C
- 8 PPO
- Onclusion
- Bibliographie

Deep Q-learning

- Remplacement de la matrice Q par un réseau de neurones
- Analyse des images de l'environnement : besoin de preprocessing

Double Deep Q-learning

Équation de Bellman modifiée

$$Q(s, a) = R(s, a) + \gamma(1 - terminated) \max_{a'} Q'(s', a')$$

Figure: Rewards de Car-racing

Figure: Rewards de Lunar Lander

Figure: Rewards de Pong

Limites du Deep Q-learning

- Value-based
- Réseau lourd si champ d'action large

- Introduction
- 2 Formalisation du problème
- Q-learning
- 4 Deep Q-learning
- S REINFORCE
- 6 A2C
- **7** A3C
- 8 PPO
- Onclusion
- Bibliographie

REINFORCE

Policy Gradient Theorem

$$abla_{ heta} J(heta) =
abla_{ heta} \mathbb{E}_{\pi_{ heta}} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} \right] = \mathbb{E}_{\pi \sim S_t} \left[\sum_{a} q_{\pi}(S_t, a)
abla_{ heta} \pi_{ heta}(a | S_t) \right]$$

Policy Gradient Theorem

Corollaire

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi \sim S_t} \left[G_t
abla_{ heta} \log \pi_{ heta}(A_t | S_t) \right]$$

avec
$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{k+t+1}$$

Preuve au tableau (si temps).

Algorithme

Algorithme

$$\theta \leftarrow \theta + \alpha G_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Figure: Rewards moyennes pour Cartpole

Limites de REINFORCE

- Exploration : minimum local
- Variance : variances des gradients élevée

Solution:

$$H(\pi) = -\sum_{a} \pi(a|s) \log \pi(a|s)$$

REINFORCE with baseline

Advantage function

$$adv(s, a) = q_{\pi}(s, a) - b(s),$$

Algorithme

$$\theta \leftarrow \theta + \alpha (G_t - b(t)) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$$

- Introduction
- 2 Formalisation du problème
- Q-learning
- 4 Deep Q-learning
- REINFORCE
- **6** A2C
- **7** A3C
- 8 PPO
- Onclusion
- Bibliographie

Advantage Actor-Critic (A2C)

- Combinaison des méthodes value-based et policy-based
- Réduction de la variance et stabilisation de l'apprentissage

Fonction Advantage

$$adv(s, a) = q_{\pi}(s, a) - v_{\pi}(s)$$

Le fait de soustraire v_{π} ne change pas le gradient ! (preuve tableau si temps)

A₂C

Mise à jour de la politique

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) adv(s_t, a_t)$$

Mise à jour de la critique

$$\phi \leftarrow \phi - \beta \nabla_{\phi} \left(v_{\pi}(s_t) - G_t \right)^2$$

- Introduction
- 2 Formalisation du problème
- Q-learning
- 4 Deep Q-learning
- REINFORCE
- 6 A2C
- **7** A3C
- 8 PPO
- Onclusion
- Bibliographie

Asynchronous Advantage Actor-Critic (A3C)

- Exploitation des résultats de plusieurs agents
- Amélioration du réseau global

- Introduction
- 2 Formalisation du problème
- Q-learning
- 4 Deep Q-learning
- 6 REINFORCE
- 6 A2C
- **7** A3C
- 8 PPO
- Onclusion
- Bibliographie

Proximal Policy Optimization (PPO)

Ratio function

$$r_t(\theta) = \frac{\pi_{\theta}(a|s)}{\pi_{\theta_{old}}(a|s)}$$

Loss clip

$$L_{CLIP} = min(\mathbb{E}_t(min(r_t(\theta)A_t, 1 - \epsilon, 1 + \epsilon)A_t))$$

Loss total

$$L_{TOTAL} = \mathbb{E}_t[L_{CLIP}(\theta) - c_1 L_{VF}(\theta) + c_2 S \pi_{\theta}(s_t)]$$

- Introduction
- 2 Formalisation du problème
- Q-learning
- 4 Deep Q-learning
- 6 REINFORCE
- 6 A2C
- **7** A3C
- 8 PPC
- Onclusion
- Bibliographie

Conclusion

- Chaque méthode d'apprentissage par renforcement a ses propres forces et faiblesses.
- Importance de choisir l'algorithme adapté au problème spécifique.
- Innovations rapides ouvrent la voie à des applications de plus en plus complexes.
- Les techniques étudiées posent les bases pour des systèmes intelligents autonomes dans des environnements dynamiques.

- Introduction
- 2 Formalisation du problème
- Q-learning
- 4 Deep Q-learning
- REINFORCE
- 6 A2C
- **7** A3C
- 8 PPO
- Onclusion
- Bibliographie

Bibliographie

- Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction.
- Mnih, V., et al. (2013). Playing Atari with Deep Reinforcement Learning.
- Lapan, M. (2018). Deep Reinforcement Learning Hands-On.