Mai întâi, continuarea exerciţiului despre idealele bilaterale din inelle de matrici.

1. Fie R un inel şi n un număr natural nenul. Idealele bilaterale ale inelului $\mathcal{M}_n(R)$ sunt de forma $\mathcal{M}_n(I)$, unde I este ideal bilateral al lui R. Pentru un astfel de ideal, avem că $\frac{\mathcal{M}_n(R)}{\mathcal{M}_n(I)} \simeq \mathcal{M}_n(\frac{R}{I})$. Această caracterizare este valabilă doar pentru idealele bilaterale.

Soluţie. E clar că, pentru orice $I \in \mathcal{I}d_b(R)$, $\mathcal{M}_n(I)$ e în $\mathcal{I}d_b(\mathcal{M}_n(R))$. Trebuie să vedem că această construcţie naturală umple întregul $\mathcal{I}d_b(\mathcal{M}_n(R))$ (comportamentul bun al "funcţiei" \mathcal{M}_n faţă de subobiecte). Fie \mathcal{I} un ideal bilateral din $\mathcal{M}_n(R)$. Cine să fie acel $I \in \mathcal{I}d_b(R)$ astfel încât $\mathcal{M}_n(I) = \mathcal{I}$? Spuneam că o primă idee este să luăm I drept mulţimea tuturor elementelor din R ce apar ca intrări în matricele din \mathcal{I} . Trebuie însă ţinut cont de naturaleţe: încă o dată, problema e la nivel de subobiecte, deci este în cadrul trecerii naturale de la $\mathcal{I}d_b(R)$ la $\mathcal{I}d_b(\mathcal{M}_n(R))$, iar pentru a găsi acel I cu $\mathcal{M}_n(I) = \mathcal{I}$ va trebui să ne uităm la nivelul elementelor, iar acolo trecerea naturală este $R \to \mathcal{M}_n(R)$, $r \mapsto \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix}$. Astfel, vom considera $I = \{r \in R; \text{ există } A = (a_{ij})_{i,j} \in \mathcal{I} \text{ aşa încât } a_{ij} = r\}$. Am văzut că I e ideal bilateral al lui R. Fie $A \in \mathcal{M}_n(I)$

Astfel, vom considera $I = \{r \in R; \text{ există } A = (a_{ij})_{i,j} \in \mathcal{I} \text{ așa încât } a_{11} = r\}$. Am văzut că I e ideal bilateral al lui R. Fie $A \in \mathcal{M}_n(I)$, $A = (a_{ij})_{i,j}$. Scriem $A = \sum_{1 \leq i,j \leq n} a_{ij}e_{ij}$ și arătăm că $a_{ij}e_{ij} \in \mathcal{I}$, oricare ar fi $1 \leq i,j \leq n$. Fie, deci, i,j fixați, oarecare. Deoarece $a_{i,j} \in I$, există

fi $1 \leq i, j \leq n$. Fie, deci, i, j fixaţi, oarecare. Deoarece $a_{i,j} \in I$, există $A^{(ij)} \in \mathcal{I}$ aşa încât $a_{11}^{(ij)} = a_{ij}$, unde $A^{(ij)} = (a_{kl}^{(ij)})_{k,l}$. Pentru a extrage $a_{ij}e_{ij}$, înmulţim pe $A^{(ij)}$ la stânga cu e_{i1} şi la dreapta cu e_{1j} (aşa cum scoatem coordonatele în raport cu o bază ortonormată cu ajutorul unui produs scalar). Avem

$$\mathcal{I} \ni e_{i1}A^{(ij)}e_{1j} = e_{i1}(\sum_{k,l} a_{kl}^{(ij)}e_{kl})e_{1j} = e_{i1}\sum_{k,l} a_{kl}^{(ij)}\delta_{l1}e_{kj} = \sum_{k} a_{k1}^{(ij)}e_{i1}e_{kj} = \sum_{k} a_{k1}^{(ij)}\delta_{1k}e_{ij} = a_{i1}^{(ij)}e_{ij} = a_{ij}e_{ij}$$

Astfel, $A \in \mathcal{I}$, şi deci $\mathcal{M}_n(I) \subset \mathcal{I}$. Invers, fie $A = (a_{ij}) \in \mathcal{I}$ şi $1 \leq i, j \leq n$ oarecare, fixaţi. Vrem $a_{ij} \in I$, *i.e.* să găsim o matrice din \mathcal{I} ce are a_{ij} pe poziţia (1,1). Avem (de data asta permutăm indicii ca să deplasăm a_{ij} pe o primă poziţie)

$$\mathcal{I}\ni e_{1i}Ae_{j1}=a_{ij}e_{11},$$

şi deci $a_{ij} \in I$. Aşadar, avem şi că $\mathcal{I} \subset \mathcal{M}_n(I)$.

Încă o precizare. Totuși, de ce ne-am aștepta să și funcționeze acel I?

Adică să meargă treaba pivotând doar pe prima poziție (sau, mai bine zis, doar pe o singură intrare, alegerea poziției (1, 1) fiind neesențială): ne gândim, în acest sens, la așa - numitele transformări elementare ale matricelor și la faptul că situația de aici e invariantă la expresii conjugate (tocmai pentru că lucrăm cu ideale bilaterale!)...

Acum vedem că, într-adevăr, această construcție nu mai e completă pentru ideale strângi, *i.e.* nu orice ideal stâng din $\mathcal{M}_n(R)$ e de forma $\mathcal{M}_n(I)$ cu I ideal stâng în R. Spre exemplu, fie $\mathcal{I} = \{ \begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix} \}_{* \in R}$. E clar că \mathcal{I} e ideal stâng în $\mathcal{M}_n(R)$ (dar nu şi bilateral: înmulțiți la dreapta matricea $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ cu $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ (totdeauna inelele sunt presupuse unitare, cu $1 \neq 0$)) și că \mathcal{I} nu e de forma $\mathcal{M}_n(I)$ cu I ideal stâng al lui R.

În fine, izomorfismul cerut e dat de morfismul canonic $\pi: R \to \frac{R}{I}$: avem morfismul indus, $\overline{\pi}: \mathcal{M}_n(R) \to \mathcal{M}_n(\frac{R}{I}), (a_{ij})_{i,j} \mapsto (\pi(a_{ij}))_{i,j}$, iar $ker(\overline{\pi}) = \mathcal{M}_n(I)$ și aplicăm teorema fundamentală de izomorfism ($\overline{\pi}$ e surjectivă, π fiind astfel).

2. Fie k un corp si $E \in \mathcal{M}_n(k)$. Atunci E e divizor al lui zero dacă și numai dacă E nu este inversabilă. Echivalența cade în cazul în care k nu mai e corp.

Soluţie. Şi aici e un raţionament de spaţii vectoriale. Necesitatea e evidentă. Presupunem că nu există E^{-1} . Atunci fie E_1, \ldots, E_n liniile matricei E; privim E_i -urile precum vectori în k - spaţiul vectorial k^n . Deoarece det(E) = 0, rezultă că există r_1, \ldots, r_n din R, nu toţi nuli, aşa încât $\sum_i r_i E_i = 0$ (ne amintim criteriul matriceal de liniar independenţă a unui sistem de vectori: vectorii v_1, \ldots, v_n sunt liniar independenţi dacă matricea asociată lor are rang maxim). Atunci considerăm matricea $F \in \mathcal{M}_n(k)$ ale cărei linii sunt $F_1 = (r_1, \ldots, r_n)$ şi $F_i = (0, \ldots, 0)$ pentru $2 \le i \le n$. Avem că FE = 0 şi $F \ne 0$ (direct din construcţie).

Într-adevăr, dacă inelul intrărilor nu mai e corp, rezultatul nu mai are loc: de exemplu, dacă $k = \mathbb{Z}$, atunci $2I_n \in \mathcal{M}_n(\mathbb{Z})$ nu e element inversabil, dar nu e divizor al lui zero.

Seminar 5 3

Deşi există divizori ai lui zero în inelele de matrici, ne putem convinge că nu sunt foarte mulți. Încercați așa: priviți $\mathcal{M}_n(k)$ ca spațiu topologic (să zicem $k = \mathbb{C}$) și apoi vedeți că submulțimea matricelor neinversabile e un închis (găsiți o funcție continuă așa încât submulțimea noastră să fie preimaginea unui închis prin acea funcție), deci cele inversabile formează un deschis. Acum amintiți-vă o topologie în care deschișii erau mari (vom relua discuția asta subredă față în față).

Trecem la corpuri. Aceasta structură e fundamentală căci încarnează ideea de sistem numeric. Printre aceste sisteme numerice distingem anumite clase: acele corpuri care oferă un cadru pentru a face geometrie și analiză (mediile continue), anume \mathbb{R} și \mathbb{C} , apoi discretizările acestora, anume corpurile finite \mathbb{F}_{p^n} , şi,alta clasa, corpurile aritmetice, anume cele ce stau între \mathbb{Q} și \mathbb{C} , precum corpurile ciclotomice $\mathbb{Q}(\omega)$ sau cele pătratice $\mathbb{Q}(\sqrt{d})$ (am discutat despre ele). Mai există și alte tipuri de corpuri, iar toate aceste tipuri sunt profund legate prin rațiunile geometriei algebrice; altfel spus, via scopul primordial de a rezolva ecuații. Cu care tip de corpuri să începem? Cu acelea care par cele mai simple, bineînțeles: corpurile finite. Insă trebuie să înțelegem că, pentru noi, ceea ce primează nu ține de simplitatea conchisă la modul direct și superficial (în cazul de față, am spune că \mathbb{F}_{p^n} e cel mai abordabil tip pentru că pur și simplu e finit) ci mai degrabă ține de ceea ce apare cel mai aproape de simturile noastre: intuiția e în primul rând legată de mediul continuu! Astfel, R și C constituie startul (de menționat că din punctul de vedere al algebrei pure, discuția de până acum e de prisos pentru că atunci când zicem *corp* ne gândim la toate deodată și dezvoltăm teoria cât de mult se poate).

Primele încercări de a efectua raționamente din cadrul fiecărui tip de corp menționat mai sus (deci de a pune într-o primă lumină legăturile) au aparținut unui singur om: Gauss. Iată un exemplu (referitor la situația $\mathbb{R} \subset \mathbb{C}$):

Teorema fundamentală a algebrei. Orice ecuație polinomială $a_0 + a_1X + a_2X^2 \dots + a_nX^n = 0$ cu $a_i \in \mathbb{C}$ oricare ar fi i, are exact n soluții în \mathbb{C} (numărate cu multiplicități).

Am discutat puţin despre acest rezultat (vom reveni asupra poveştii din spatele lui; dacă nu, vă veţi lămuri în anii II şi III).

În discuția de până acum, totul a fost gândit în cadrul comutativ. Următorul exercițiu arată că avem parte de schimbări violente atunci când pierdem comutativitatea.

3. Fie $\mathbb H$ corpul cuaternionilor. Atunci ecuația $X^2+1=0$ are o infinitate de soluții în $\mathbb H$.

Soluție. Vedem $\mathbb H$ sub formă matriceală:

$$\mathbb{H} = \{ \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}; z, w \in \mathbb{C} \}.$$

Fie şi unitățile imaginare $I=\begin{pmatrix}i&0\\0&-i\end{pmatrix},\ J=\begin{pmatrix}0&1\\-1&0\end{pmatrix},\ K=\begin{pmatrix}0&i\\i&0\end{pmatrix};$ deci oricare ar fi $Q\in\mathbb{H}$, avem $Q=a_0I_2+a_1I+a_2J+a_3K$ cu $a_0,a_1,a_2,a_3\in\mathbb{R}$ ($\{I_2,I,J,K\}$ e baza canonică a \mathbb{R} - spațiului vectorial \mathbb{H}). Precum în \mathbb{C} , pentru orice $Q=a_0I_2+a_1I+a_2J+a_3K$ avem conjugatul său $\overline{Q}=a_0I_2-a_1I-a_2J-a_3K$, precum şi norma sa $|Q|=Q\overline{Q}$ (aceasta e doar funcția modul specifică acestui sistem numeric; ca orice normă, e multiplicativă: |aQ|=|a||Q| oricare ar fi $a\in\mathbb{R}$ şi $Q\in\mathbb{H}$, iar $|\cdot|$ nu vede lipsa comutativității, i.e. $|Q_1Q_2|=|Q_2Q_1|$ oricare ar fi $Q_1,Q_2\in\mathbb{H}$; de fapt, $|Q_1Q_2|=|Q_1||Q_2|$ căci |Q| e doar o deghizare a determinantului: $|Q|=det(Q)I_2)$.

Acum fie $Q \in \mathbb{H}$ aşa încât $Q^2+1=0$. Deoarece vedem \mathbb{H} în context matriceal, asta înseamnă că $Q^2=-I_2, \ Q=a_0I_2+a_1I+a_2J+a_3K$ pentru nişte $a_0,a_1,a_2,a_3\in\mathbb{R}$. Luând determinantul, obţinem $(det(Q))^2=det(Q^2)=det(-I_2)=1$. Dar $det(Q)=a_0^2+a_1^2+a_2^2+a_3^2\geq 0$ (avem $Q=\begin{pmatrix}z&w\\-\overline{w}&\overline{z}\end{pmatrix}$, unde $z=a_0+a_1i$ şi $w=a_2+a_3i$, deci $det(Q)=|z|^2+|w|^2$), de unde det(Q)=1, i.e. $|Q|=I_2$. Tot din $Q^2=-I_2$ obţinem şi că $Q^2\overline{Q}=-\overline{Q}$, sau $Q|Q|=-\overline{Q}$ sau $Q=-\overline{Q}$, de unde $a_0=0$ şi deci $Q=a_1I+a_2J+a_3K$.

Aşadar, dacă e să existe, orice soluție din $\mathbb H$ a ecuației $X^2+1=0$ e de forma $\alpha I+\beta J+\gamma K$, cu $\alpha^2+\beta^2+\gamma^2=1$. De fapt, acestea sunt toate (ca să vă convingeți că orice astfel de cuaternion e soluție, nu aveți decât să urmați drumul invers din raționamentul anterior) și e clar că sunt în număr infinit: sunt punctele de pe sfera S^2 !

E de așteptat să avem o infinitate de soluții în \mathbb{H} pentru ecuația $X^2+1=0$. Pentru a vedea acest lucru, trebuie să schimbăm percepția algebrică asupra lui \mathbb{H} (cea matriceală, ca în exercițiu) cu una geometrică. În acest scop, ne întoarcem la numerele complexe. Înmulțirea a două numere complexe poate fi privită ca operație între două rotații

Seminar 5 5

în plan (formula de Moivre). Atunci încerăm să privim un cuaternion $Q \in \mathbb{H}$ precum un soi de vector $q = a_0 + \overrightarrow{v}$ unde a_0 e partea scalară (ce vine din \mathbb{R}) și $\overrightarrow{v} = a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{k}$ e partea vectorială (ce vine din \mathbb{R}^3) și deci am putea defini înmulțirea acestora folosind rotațiile din spațiu (de precizat că lucrurile nu stau chiar așa; doar intuitiv vorbim). Peste \mathbb{C} , ecuația $X^2 = -1$ are două soluții pentru că avem doar două sensuri de mișcare (de rotație) pe S^1 . Atunci, deoarece pe S^2 avem o infinitate de sensuri, ne așteptăm să avem o infinitate de elemente din \mathbb{H} care să satisfacă $X^2 = -1$.

Realizez că din discuţia de la început reiese că nu vom vorbi despre corpuri finite, însă o foarte scurtă privire trebuie aruncată şi asupra lor: e locul unde trăieşte un morfism crucial de care trebuie să fim conştienţi.

Fie k un corp finit (există astfel de corpuri: $\mathbb{F}_p = \mathbb{Z} / p\mathbb{Z}$, de exemplu). Deoarece elementele $0, 1, 1+1, 1+1+1, \ldots$ nu pot fi toate diferite (k e finit), trebuie să avem $char(k) = p \neq 0$ (trebuie să fie prim datorită minimalității); deci corpul prim al lui k este \mathbb{F}_p . Aici avem:

Teoremă (WEDDERBURN) Orice corp finit e comutativ.

E dificil de explicat de ce trebuie să avem comutativitate. In orice caz, explicația sigur nu stă doar în faptul că avem un număr finit de elemente (vezi grupul Q_8 al cuaternionilor). Mai degrabă, explicația stă în niște motive de simetrie: " $S^1 = \lim_{n \to \infty} \mathbb{Z}/n\mathbb{Z} = \lim_{n \to \infty} \mu_n$ ", unde μ_n e grupul rădăcinilor de ordin n ale unității din \mathbb{C} (μ_n - urile aproximează cercul). Dar sunt elementele unui corp finit niște rădăcini ale unității? Fie k un astfel de corp. Am văzut că $\mathbb{F}_p \subset k$, unde p=char(k) și decikpoate fi privit ca \mathbb{F}_p - spațiu vectorial. Atunci fie $n = dim_{\mathbb{F}_n}k$; fie și q = #k (cardinalul lui k). Observăm că $q = p^n$ (q e tot una cu numărul alegerilor de vectori cu <math>n componente peste \mathbb{F}_p : $k \simeq \mathbb{F}_p \times \ldots \times \mathbb{F}_p$ (de *n* ori) ca și spații vectoriale). Apoi, grupul $k^* = k \setminus \{0\}$ (partea multiplicativă subiacentă corpului k) are q-1elemente și fie $x \in k^*$ oarecare. Atunci ord(x) divide q-1 (teorema lui Lagrange) și deci $x^{q-1}=1$. Astfel, $x^q-x=0$ pentru orice $x\in k$ (inclusiv 0). Cum numărul de rădăcini ale polinomului $X^q - X \in \mathbb{F}_p[X]$ nu depășește q, "vedem" astfel cine este k (așa cum \mathbb{R} se poate completa algebric la \mathbb{C} , și pentru \mathbb{F}_p există un astfel de completat, notat $\overline{\mathbb{F}_p}$ și numit închiderea algebrică a lui \mathbb{F}_p - ca să-l obținem punem la
olaltă toate rădăcinile tuturor polinoamelor cu coeficienți în \mathbb{F}_p). Acest k se

notează \mathbb{F}_{p^n} .

- 4. Fie k un corp comutativ, char(k) = p > 0. Se consideră aplicația $\varphi: k \longrightarrow k$ dată prin $\varphi(x) = x^p$.
- (a) φ este endomorfism de inel al lui k, numit morfismul Frobenius.
- (b) Dacă k e corp finit, atunci φ e automorfism.

Soluţie. (a) Evident, $\varphi(xy) = \varphi(x)\varphi(y)$ (k e comutativ). Avem şi $\varphi(x+y) = \varphi(x) + \varphi(y)$, oricare ar fi $x, y \in k$, pentru că

$$\varphi(x+y) = (x+y)^p = \sum_{i=0}^p \binom{p}{i} x^{p-i} y^i,$$

- iar $\binom{p}{i} = \frac{p!}{(p-i)!i!}$ se divide cu p atunci când $i \neq 0, p$ şi deci $\binom{p}{i} = 0$ în k pentru $i \neq 0, p$ (char(k) = p).
- (b) În general, φ e injectiv (fără ideale netriviale aici), iar dacă k e mulțime finită, φ e automat și surjectiv. (Verificați)

În cazul în care corpul k e \mathbb{F}_q , morfismul Frobenius se notează φ_q . Importanța acestor morfisme provine din faptul că soluțiile din \mathbb{F}_q ale unor ecuații precum $Y^2 - aX - b = 0$ sunt exact punctele fixe ale aplicației ce duce punctul de coordonare (x,y) în punctul $(\varphi_q(x), \varphi_q(y))$ - remarca lui Hasse!

Observația anterioară relevă partea bună (şi foarte importantă), însă să remarcăm şi partea nu prea fericită: din moment ce ne reducem peste un corp finit (așa cum ne reducem de la \mathbb{Z} peste $\mathbb{Z}/p\mathbb{Z}$ atunci când avem de rezolvat o ecuație în \mathbb{Z}), pierdem din informația operațiilor algebrice: $(x+y)^p = x^p + y^p$! Cum remediem situația? Răspuns: inelul vectorilor Witt... Aici nu mai intrăm în amănunte. Suficient e să știți că \mathbb{F}_q - urile apar ca reducții ale altor tipuri de corpuri, numite corpuri p-adice ($\mathbb{Q} \hookrightarrow \mathbb{R} \hookrightarrow \mathbb{C} \hookrightarrow \ldots$ nu e singurul drum!), care la rândul lor sunt "variantele locale" ale corpurilor aritmetice dintre \mathbb{Q} și \mathbb{C} (cum ziceam la început, toate sunt intim legate): dacă ne liftăm la aceste sisteme p-adice, recuperăm informația.