Introduction to Statistics - Young Researchers Fellowship Program

Lecture 1 - Introduction to Statistics & Tabular Data Logic

Daniel Sánchez Pazmiño

Laboratorio de Investigación para el Desarrollo del Ecuador

September 2024

What is statistics?

What is statistics?

- A methodology for collecting, analyzing, interpreting, and presenting numerical information.
- A statistic is often referred to as a numerical fact or a piece of data which describes a particular characteristic of a group of individuals.
 - In the field of statistics, we typically don't refer to individual data points as statistics.
- In several fields, statistics is used as an aid to decision making under uncertainty.
- In a research context, statistics will be needed to understand phenomena, make predictions, and test hypotheses emerging from theory.
- Statistics is the systematic investigation of the correspondence of theory with the real world

Data in statistics

Data in statistics

- Because statistics is concerned with information, **data** is often the starting point of any statistical analysis.
- No clear definition of data can possibly satisfy everyone, but we can think of data as a collection of facts to be analyzed.
 - Data is **plural** for **datum**.
- A dataset is a collection of data points, which can be organized in a table, often about a specific topic, purpose, experiment, study, or context.

Broad types of data

- Typically, statistics makes a distinction between two broad types of data:
- Quantitative data, which is numerical in nature, meaning it can be measured and expressed in numbers.
 - Discrete data: whole numbers (e.g., number of students in a class).
 - Continuous data: real numbers (e.g., height, weight).
- Categorical or "qualitative" data, which is non-numerical in nature, meaning it cannot be directly measured or expressed in numbers.
 - Nominal data: categories without order (e.g., colors).
 - Ordinal data: categories with order (e.g., levels of satisfaction).

How a dataset might look like

Table 1: Example dataset from the Ecuadorian Superintendencia de Compañías, Valores y Seguros (SUPERCIAS) companies' directory.

RUC	Fecha Constitucion	Provincia	Capital Suscrito
0993266272001	25/06/2020	GUAYAS	800
1793131182001	19/03/2021	PICHINCHA	1000
0993381738001	03/05/2023	GUAYAS	500
0993374043001	28/07/2022	GUAYAS	800
1792649765001	11/01/2016	PICHINCHA	10800

■ What type of data can be identified for each column in the dataset?

Types of datasets

- Datasets can be classified into different types based on the nature of the data they contain.
- Cross-sectional data: data collected at a single point in time.
 - Example: a survey conducted in 2024.
- Time series data: data collected over time at regular intervals, for a single entity.a
 - Example: monthly sales data from 2020 to 2024.
- **Panel data**: data collected over time for multiple entities.
 - Example: monthly sales data from 2020 to 2024 for multiple companies.
- Often, we also hear about repeated or pooled cross-sectional data, which is a combination of cross-sectional and time series data; we observe multiple cross-sections at different points in time.

Tabular data logic

Tabular data logic

- A dataset is typically organized in a **table** with rows and columns.
- Datasets often collect characteristics of individuals or entities, which are typically referred to as **elements**.
 - Elements are not necessarily the observations in a dataset, elements are those entities or individuals for which we hold information.
- When data is *tidy*, a table structure typically allows for easy identification of the following elements:
 - We will talk more about tidy data concept in the R companion module.
- Variables: columns in the table, which represent a characteristic of an element.
- Observations: rows in the table, which represent a collection of variable values for a single element.

Elements are not observations

- Sometimes, elements in a dataset (for the SUPERCIAS dataset, companies) are not the same as observations.
- We may observe multiple observations for a single element, which is why we need to be clear about the distinction between elements and observations.
- When we observe multiple observations for a single element, we typically refer to this as **repeated measures** or **panel data**.
- It is in this context when it comes in handy to difference between long and wide format datasets.

Long vs. wide format

- Long vs. wide format refers to the way data is organized in a table.
- In the **long format**, each row represents a single observation, and each column represents a variable.
- In the wide format, each row typically represents a single element. Columns may represent variables, but also repeated measures or time points of the same variable.

Example of long vs. wide format - business creation per province

■ Long format: each row represents a single observation (business creation per province per year).

Table 2: Long format business creation per province (SUPERCIAS)

Province	Year	Number of businesses created
ORELLANA	2013	82
AZUAY	2023	1267
IMBABURA	2012	97
COTOPAXI	2024	174
EL ORO	2010	176

Notice that if a province creates businesses in multiple years, we will have multiple rows for the same province.

Example of long vs. wide format - business creation per province

■ Wide format: each row represents a single element (province), and columns represent variables (business creation per year).

Table 3: Wide format business creation per province (SUPERCIAS)

Province	2013	2023	2012	2024	2010
ORELLANA	82	NA	NA	NA	NA
AZUAY	NA	1267	NA	NA	NA
IMBABURA	NA	NA	97	NA	NA
COTOPAXI	NA	NA	NA	174	NA
EL ORO	NA	NA	NA	NA	176

We will never have multiple rows for the same province in the wide format.