# Advanced Optimization Lecture 1: Introduction

October 13, 2021
CentraleSupélec / ESSEC Business School dimo.brockhoff@inria.fr



Dimo Brockhoff Inria Saclay – Ile-de-France





# What is Optimization?



# **Examples of Optimization in Machine Learning**

### **Support Vector Machines (SVMs)**

need to find/optimize weights

### **Hyperparameter Tuning**

= optimization of internal algorithm parameters before training

#### **Learning of (Deep) Neural Networks**

 stochastic gradient descent is basis for the most advanced algorithms like Adam\*

#### **Reinforcement Learning**

...is itself like a (dynamic) optimization task

# What is Optimization?

$$\min_{x \in \Omega} f(x)$$

$$s. t. g(x) \le 0$$

$$h(x) = 0$$

### Typically, we aim at

- finding solutions x which minimize f(x) in the shortest time possible (maximization is reformulated as minimization)
- or finding solutions x with as small f(x) in the shortest time possible (if finding the exact optimum is not possible)

#### **Be Aware**

"Optimization" is a very wide topic, maybe as wide as "vegetables" © even in "advanced optimization", we can only touch the surface

- I am here to guide you
- and to give some hints of what might be useful later in your job
- we'll see a range of algorithms on a range of problems

### What we plan to do in the AO lecture

### **Learning Goals:**

• Know basics of optimization theory

```
gradients, Hessian, optimality conditions, ...
```

- Know basic design principles behind good optimizers
   gradient descent, stochastic gradient descent, ...
- Be able to use and understand existing algorithms

  benchmarking, contributions to open source projects

### What we plan to do in the AO lecture

How are we going to do that?

- look at a lot of examples of algorithms
- mixture of lectures and small exercises
- practice and theory
- additionally 2 graded mini-exams throughout the course
- 1 contribution to open source project

Please ask questions if things are unclear throughout the course!

#### **Details on Mini-Exams**

- expected to be done via Evalmee
- before the first mini-exam, we will do a technical test
- multiple-choice questions, similar to final exam
- embedded into the lecture
  - 3<sup>rd</sup> lecture on October 27
  - 6<sup>th</sup> lecture on November 17
- both mini-exams together will count for 1/6 of overall grade

### Contributions to Open Source Project I

- Practical project
- Group project of up to 5 students (large groups encouraged ②)
- Goal: Contribution to an existing open source project, e.g.
  - Scikit-optimize https://github.com/scikit-optimize/scikit-optimize
  - CMA-ES solver https://github.com/CMA-ES/pycma
  - COmparing Continuous Optimizers (benchmarking platform)

https://github.com/numbbo/coco

- Nevergrad https://facebookresearch.github.io/nevergrad/contributing.html
- optimization-related issues in https://github.com/scikitlearn/scikit-learn
- Projects of AutoML group https://github.com/automl
- any other open source project related to optimization of your own choice
- Will count 1/6 of overall grade

## Contributions to Open Source Project II

#### What I expect from you:

- Contributions in any way count, e.g.
  - solving an existing issue
  - addition of a new component (implement feature, algorithm, ...)
  - comparison of a new algorithm in COCO or Nevergrad
  - **.**..
- Write a report about your contributions (5-10 pages)
  - Including details on the software and your contribution
  - Detail the contributions of each team member
  - Deadline: November 30, 2021 at 23h59 Paris time
  - Submission of PDF by email to me

# **Considerations on Open Source Project**

#### **How to Pick a Project?**

- Small vs. large: both have advantages, but smaller projects seem to be more suited here due to the limited time
- Prefer active repositories over inactive

#### Start early enough!

- Decide on groups & project early, if possible this week
- Both writing code and writing the report takes time

#### **Versioning system**

- it cannot hurt to also use a versioning system like github for your report
- https://gitlab-student.centralesupelec.fr

### The Exam

- Wednesday, 8<sup>th</sup> December 2021 in the afternoon (3 hours)
- (most likely) multiple-choice with 20-30 questions
- (most likely) on-site + online via Evalmee
- open book: use as much material as you want
- accounts for 2/3 of overall grade

all information (incl. the slides) will be available at EDUNAO

### **Course Overview**

|                 |       | Topic                                                                                                                                                        |
|-----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wed, 13.10.2021 | PM    | Introduction, examples of problems, problem types                                                                                                            |
| Wed, 20.10.2021 | PM    | Continuous (unconstrained) optimization: convexity, gradients, Hessian, [technical test Evalmee]                                                             |
| Wed, 27.10.2021 | PM    | Continous optimization II: gradient descent, Newton direction, quasi-Newton (BFGS) [1st mini-exam] Linear programming: duality, maxflow/mincut, simplex algo |
| Wed, 03.11.2021 | PM    | Constrained optimization: Lagrangian, optimality conditions                                                                                                  |
| Wed, 10.11.2021 | PM    | Gradient-based and derivative-free stochastic algorithms: SGD and CMA-ES                                                                                     |
| Wed, 17.11.2021 | PM    | Other blackbox optimizers: Nelder-Mead, Bayesian optimization [2 <sup>nd</sup> mini-exam]                                                                    |
| Wed, 24.11.2021 | PM    | Benchmarking solvers: runtime distributions, performance profiles                                                                                            |
| Tue, 30.11.2021 | 23:59 | Deadline open source project (PDF sent by email)                                                                                                             |
| Wed, 01.12.2021 | PM    | Discrete optimization: branch and bound, branch and cut, k-means clustering                                                                                  |
| Wed, 8.12.2021  | PM    | Exam                                                                                                                                                         |

### **Overview of Today's Lecture**

- More examples of optimization problems
  - introduce some basic concepts of optimization problems such as domain, constraint, ...
- Beginning of continuous optimization part
  - typical difficulties in continuous optimization
  - differentiability
  - ... [we'll see how far we get]

# **General Context Optimization**

#### Given:

set of possible solutions

Search space

quality criterion

Objective function

### **Objective:**

Find the best possible solution for the given criterion

### **Formally:**

Maximize or minimize

$$\mathcal{F}: \Omega \longmapsto \mathbb{R},$$

$$x \longmapsto \mathcal{F}(x)$$



#### **Constraints**

#### Maximize or minimize

$$\mathcal{F}: \Omega \longmapsto \mathbb{R},$$
$$x \longmapsto \mathcal{F}(x)$$

#### Maximize or minimize

$$\mathcal{F}: \Omega \mapsto \mathbb{R},$$
 $x \mapsto \mathcal{F}(x)$ 
where  $g_i(x) \leq 0$ 
 $h_i(x) = 0$ 

unconstrained

 $\Omega$ 

example of a

constrained  $\Omega$ 

Constraints explicitly or implicitly define the feasible solution set

[e.g.  $||x|| - 7 \le 0$  vs. every solution should have at least 5 zero entries]

Hard constraints *must* be satisfied while soft constraints are preferred to hold but are not required to be satisfied

[e.g. constraints related to manufacturing precisions vs. cost constraints]

### **Example 1: Combinatorial Optimization**

### **Knapsack Problem**

- Given a set of objects with a given weight and value (profit)
- Find a subset of objects whose overall mass is below a certain limit and maximizing the total value of the objects

[Problem of ressource allocation with financial constraints]

$$\max \sum_{j=1}^{n} p_j x_j \quad \text{with } x_j \in \{0,1\}$$

$$\text{s.t. } \sum_{j=1}^{n} w_j x_j \le W$$



$$\Omega = \{0,1\}^n$$

### **Example 2: Combinatorial Optimization**

### **Traveling Salesperson Problem (TSP)**

- Given a set of cities and their distances
- Find the shortest path going through all cities



 $\Omega = S_n$  (set of all permutations)

# **Example 3: Continuous Optimization**

A farmer has 500m of fence to fence off a rectangular field that is adjacent to a river. What is the maximal area he can fence off?



#### **Exercise:**

- a) what is the search space?
- b) what is the objective function?

# **Example 3: Continuous Optimization**

A farmer has 500m of fence to fence off a rectangular field that is adjacent to a river. What is the maximal area he can fence off?



solution can be found analytically: exercise for the weekend;-)

$$\Omega = \mathbb{R}^2_+:$$

$$\max xy$$
where  $x + 2y \le 500$ 

## **Example 4: Continuous Optimization Problem**

Computer simulation teaches itself to walk upright (virtual robots (of different shapes) learning to walk, through stochastic optimization (CMA-ES)), by Utrecht University:

We present a control system based on 3D muscle actuation



https://www.youtube.com/watch?v=pgaEE27nsQw

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based Locomotion for Bipedal Creatures", SIGGRAPH Asia, 2013.

# **Example 5: Constrained Continuous Optimization**

### **Design of a Launcher**



$$\Omega = \mathbb{R}^{23}$$



- Scenario: multi-stage launcher brings a satellite into orbit
- Minimize the overall cost of a launch
- Parameters: propellant mass of each stage / diameter of each stage / flux of each engine / parameters of the command law

23 continuous parameters to optimize + constraints

## Example 6: Data Fitting – Data Calibration

#### **Objective**

- Given a sequence of data points  $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, i = 1, ..., N$ , find a model "y = f(x)" that "explains" the data experimental measurements in biology, chemistry, ...
- In general, choice of a parametric model or family of functions  $(f_{\theta})_{\theta \in \mathbb{R}^n}$

use of expertise for choosing model or only a simple model is affordable (e.g. linear, quadratic)

• Try to find the parameter  $\theta \in \mathbb{R}^n$  fitting best to the data

#### Fitting best to the data

Minimize the quadratic error:

$$\min_{\theta \in \mathbb{R}^n} \sum_{i=1}^N |f_{\theta}(\mathbf{x}_i) - y_i|^2$$

### **Example 7: Deep Learning**

### **Actually the same idea:**

match model best to given data

#### **Model here:**

artificial neural nets with many hidden layers (aka deep neural networks)



#### Parameters to tune:

- weights of the connections (continuous parameter)
- topology of the network (discrete)
- firing function (less common)

#### **Specificity:**

large amount of training data, hence often batch learning

### **Example 8: Classification with SVMs**

#### **Scenario:**

- supervised learning of 2-class samples
- Support Vector Machines (SVMs):
  - decide to which class a new sample belongs



learns from the training data the "best linear model"
 (= a hyperplane separating the two classes);
 non-linear transformations possible via the kernel trick

 $y_i \in \{-1,+1\}$ 



hard margin (when data linearly separable):  $\min \|\mathbf{w}\| \text{ s. t. } y_i (\mathbf{w} \cdot \mathbf{x}_i) - b \ge 1 \ \forall 1 \le i \le n$  soft margin (e.g. via hinge loss):

$$\min \left[ \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i) - b) \right] + \lambda ||\boldsymbol{w}||^2$$

with  $\lambda$  being a tradeoff parameter (constrained optimization)

## **Example 9: Hyperparameter Tuning**

#### Scenario:

- many existing algorithms (in ML and elsewhere) have internal parameters
  - "In machine learning, a hyperparameter is a parameter whose value is set before the learning process begins." --- Wikipedia
  - can be model parameters
    - #trees in random forest
    - #nodes in neural net
    - **...**
  - or other generic parameters such as learning rates, ...
- choice has typically a big impact and is not always obvious
- search space often mixed discrete-continuous or even categorical

### **Example 10: Interactive Optimization**

### **Coffee Tasting Problem**

- Find a mixture of coffee in order to keep the coffee taste from one year to another
- Objective function = opinion of one expert



M. Herdy: "Evolution Strategies with subjective selection", 1996

# Many Problems, Many Algorithms?

#### **Observation:**

- Many problems with different properties
- For each, it seems a different algorithm?

#### In Practice:

- often most important to categorize your problem first in order to find / develop the right method
- → problem types

### **Problem Types**

- discrete vs. continuous
  - discrete: integer (linear) programming vs. combinatorial problems
  - continuous: linear, quadratic, smooth/nonsmooth, blackbox/DFO, ...
  - both discrete&continuous variables: mixed integer problem
  - categorical variables ("no order")
- unconstrained vs. constrained (and then which type of constraint)

#### Not covered in this lecture:

- deterministic vs. stochastic outcome of objective function(s)
- one or multiple objective functions

# **Example: Numerical Blackbox Optimization**

Typical scenario in the continuous, unconstrained case:

Optimize 
$$f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$$



zero order blackbox: no gradients first order blackbox also outputs gradients



### **General Concepts in Optimization**

- search domain
  - discrete or continuous or mixed integer or even categorical
  - finite vs. infinite dimension
- constraints
  - bound constraints (on the variables only)
  - linear/quadratic/non-linear constraints
  - blackbox constraints
  - many more

(see e.g. Le Digabel and Wild (2015), https://arxiv.org/abs/1505.07881)

#### Further important aspects (in practice):

- deterministic vs. stochastic algorithms
- exact vs. approximation algorithms vs. heuristics
- anytime algorithms
- simulation-based optimization problem / expensive problem

### **Details on Continuous Optimization Lectures**

#### **Introduction to Continuous Optimization**

examples and typical difficulties in optimization

#### **Mathematical Tools to Characterize Optima**

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
  - first and second order conditions
  - convexity
- constraint optimization
  - linear programming, dual problem
  - Lagrangian, optimality conditions

#### **Gradient-based Algorithms**

- stochastic gradient
- quasi-Newton method (BFGS)

### **Learning in Optimization / Optimization in Machine Learning**

- Stochastic gradient descent (SGD) + Adam
- CMA-ES (adaptive algorithms / Information Geometry)
- Other derivative-free algorithms: Nelder-Mead, Bayesian opt.

## **Continuous Optimization**

• Optimize 
$$f$$
: 
$$\begin{cases} \Omega \subset \mathbb{R}^n \to \mathbb{R} \\ x = (x_1, \dots, x_n) \to f(x_1, \dots, x_n) \end{cases}$$
$$\in \mathbb{R}$$
 unconstrained optimization

- Search space is continuous, i.e. composed of real vectors  $x \in \mathbb{R}^n$





### What Makes a Function Difficult to Solve?

dimensionality

(considerably) larger than three

- non-separability
   dependencies between the objective variables
- ill-conditioning
- ruggedness

non-smooth, discontinuous, multimodal, and/or noisy function



a narrow ridge



cut from 3D example, solvable with an evolution strategy

# **Curse of Dimensionality**

The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

**Example:** Consider placing 100 points onto a real interval, say [0,1]. How many points do you need to get a similar coverage, in terms of distance between adjacent points, in the 10-dimensional space  $[0,1]^{10}$ ?

## **Curse of Dimensionality**

The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

**Example:** Consider placing 100 points onto a real interval, say [0,1]. How many points do you need to get a similar coverage, in terms of distance between adjacent points, in the 10-dimensional space  $[0,1]^{10}$ ?

- Answer: This requires  $100^{10} = 10^{20}$  points. The original 100 points appear now as isolated points in a vast empty space.
- Consequently, a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces.

### **Separable Problems**

### **Definition (Separable Problem)**

A function *f* is separable if

$$\underset{(x_1,\dots,x_n)}{\operatorname{argmin}} f(x_1,\dots,x_n) = \left(\underset{x_1}{\operatorname{argmin}} f(x_1,\dots),\dots,\underset{x_n}{\operatorname{argmin}} f(\dots,x_n)\right)$$

 $\Rightarrow$  it follows that f can be optimized in a sequence of n independent 1-D optimization processes

### **Example:**

Additively decomposable functions

$$f(x_1, ..., x_n) = \sum_{i=1}^{n} f_i(x_i)$$
Rastrigin function



### Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

### Rotating the coordinate system

- $f: x \mapsto f(x)$  separable
- $f: x \mapsto f(Rx)$  non-separable

#### *R* rotation matrix







[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann [2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

### **III-Conditioned Problems: Curvature of Level Sets**

Consider the convex-quadratic function

$$f(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \mathbf{x}^*)^T H(\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} h_{i,i} x_i^2 + \frac{1}{2} \sum_{i,j} h_{i,j} x_i x_j$$

H is Hessian matrix of f and symmetric positive definite



gradient direction  $-f'(x)^T$ Newton direction  $-H^{-1}f'(x)^T$ 

Ill-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to 10<sup>10</sup> are not unusual in real-world problems.

If  $H \approx I$  (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of  $H^{-1}$ ) information necessary.

### **Reminder: Different Notions of Optimum**

#### **Unconstrained case**

- local vs. global
  - local minimum  $x^*$ :  $\exists$  a neighborhood V of  $x^*$  such that  $\forall x \in V$ :  $f(x) \ge f(x^*)$
  - global minimum:  $\forall x \in \Omega: f(x) \ge f(x^*)$
- strict local minimum if the inequality is strict

## **Mathematical Characterization of Optima**

Objective: Derive general characterization of optima

Example: if  $f: \mathbb{R} \to \mathbb{R}$  differentiable, f'(x) = 0 at optimal points



- generalization to  $f: \mathbb{R}^n \to \mathbb{R}$ ?
- generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability



optima of such function can be easily approached by certain type of methods

## Reminder: Continuity of a Function

 $f: (V, || \cdot ||_V) \rightarrow (W, || \cdot ||_W)$  is continuous in  $x \in V$  if  $\forall \epsilon > 0, \exists \eta > 0$  such that  $\forall y \in V: ||x - y||_V \leq \eta; ||f(x) - f(y)||_W \leq \epsilon$ 





# Reminder: Differentiability in 1D (n=1)

 $f: \mathbb{R} \to \mathbb{R}$  is differentiable in  $x \in \mathbb{R}$  if

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \text{ exists, } h \in \mathbb{R}$$

#### **Notation:**

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$



The derivative corresponds to the slope of the tangent in x.

# Reminder: Differentiability in 1D (n=1)

### **Taylor Formula (Order 1)**

If f is differentiable in x then

$$f(x + h) = f(x) + f'(x)h + o(||h||)$$

i.e. for h small enough,  $h \mapsto f(x+h)$  is approximated by  $h \mapsto f(x) + f'(x)h$ 

 $h \mapsto f(x) + f'(x)h$  is called a first order approximation of f(x+h)

# Reminder: Differentiability in 1D (n=1)

### **Geometrically:**



The notion of derivative of a function defined on  $\mathbb{R}^n$  is generalized via this idea of a linear approximation of f(x + h) for h small enough.

How to generalize this to arbitrary dimension?

### **Gradient Definition Via Partial Derivatives**

In  $(\mathbb{R}^n, || \ ||_2)$  where  $||x||_2 = \sqrt{\langle x, x \rangle}$  is the Euclidean norm deriving from the scalar product  $\langle x, y \rangle = x^T y$ 

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Reminder: partial derivative in x<sub>0</sub>

$$f_{i}: y \to f(x_{0}^{1}, ..., x_{0}^{i-1}, y, x_{0}^{i+1}, ..., x_{0}^{n})$$

$$\frac{\partial f}{\partial x_{i}}(x_{0}) = f_{i}'(x_{0})$$

### **Exercise: Gradients**

#### **Exercise:**

Compute the gradients of

- a)  $f(x) = x_1$  with  $x \in \mathbb{R}^n$
- b)  $f(x) = a^T x$  with  $a, x \in \mathbb{R}^n$
- c)  $f(x) = x^T x (= ||x||^2)$  with  $x \in \mathbb{R}^n$