Camera ISP Overview for APQ8084/MSM8992/MSM8994/MSM8996

QUALCOMM°

Qualcomm Technologies, Inc.

80-NM328-68 D

 ${\bf Confidential\ and\ Proprietary-Qualcomm\ Technologies, Inc.}$

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm Technologies, Inc. or its affiliated companies without the express approval of Qualcomm Configuration Management.

Confidential and Proprietary – Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

Chromatix is a product of Qualcomm Technologies, Inc. Other Qualcomm products referenced herein are products of Qualcomm Technologies, Inc. or its subsidiaries.>

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Chromatix is a trademark of Qualcomm Incorporated, registered in the United States and other countries. All Qualcomm Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

> Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A.

© 2014-2015 Qualcomm Technologies, Inc. and/or its affiliated companies. All rights

Revision History

Revision	Date	Description
А	August 2014	Initial release
В	November 2014	Added MSM8992 information
С	February 2015	Added MSM8996 information
D	July 2015	Updated slide 5

Contents

Camera System Camparison – SM8974/APQ8084/MSM8992/MSM8994/ MSM8996

Confidential and Proprietary – Qualcomm Technologies, Inc.

- ISP Block-by-Block Comparison
- Camera Updates Block Diagram
- New and updated blocks
- Acronyms
- Questions?

Camera System Comparison

	MSM8974AB	APQ8084	MSM8992	MSM8994	MSM8996
Maximum real- time sensor input resolution	ISP1 – 21 MPISP2 – 13 MP			101 1 20 1111	 ISP1 – 21 MP (16:9) ISP2 – 13 MP
Maximum output sizes (constraint on width)	 ISP1 enc – 5376 ISP1 view – 2560+10% ISP2 enc – 4288 ISP2 view – 2560+10% 	 ISP1 enc – 5376 ISP1 view – 2560+10% ISP2 enc – 4288 ISP2 view – 2560+10% 	 ISP1 enc – 6240 ISP1 view – 2560+10% ISP2 enc – 4288 ISP2 view – 2560+10% 	 ISP1 enc – 6240 ISP1 view – 4608+10% ISP2 enc – 4288 ISP2 view – 2560+10% 	 ISP1 enc – 6240 ISP1 view – 4608+10% ISP2 enc – 4288 ISP2 view – 2560+10%
VFE and CPP MHz Nominal/Turbo mode	VFE – 320/465CPP – 266/400	VFE – 465/600CPP – 370/600	■ VFE – 465/600 ■ CPP – 465/620	VFE – 465/600CPP – 465/620	465/600
MIPI CSI2 ports DPHY	4/4/4 or 4/4/2/1	4/4/4 or 4/4/2/1	4/4/4 or 4/4/2/1	4/4/4 or 4/4/2/1	4/4/4 or 4/4/2/1
JPEG hardware	2x encoder 1x decoder	2x encoder1x decoder	1x encoder	2x encoder1x decoder1xDMA	1x encoder,1x decoder
VFE feature highlights		LSC upgrade, ABF3, Demosaic, Dual AF, CAC, LTM, Gamma	LSC upgrade, ABF3, Demosaic, Dual AF, CAC, LTM, Gamma, Green Imbalance, Pedestal, Stats Upgrades	LSC upgrade, ABF3, Demosaic, FIR+IIR Dual AF, CAC2+SNR, LTM, Gamma, Green Imbalance, Pedestal, Stats Upgrades	LSC upgrade, ABF3, BPC, Demosaic, FIR+IIR Dual AF, CAC2+SNR, LTM, Gamma, Green Imbalance, Pedestal, Stats Upgrades
CPP feature highlights		New Adaptive Spatial Filter (ASF)	3D Denoise, new ASF	3D Denoise,new ASF	3D Denoise, Low Light Chroma Denoise, new ASF
Face Detection				Hardware	Hardware

ISP Block-By-Block Comparison

ISP blocks	MSM8974	APQ8084	MSM8992	MSM8994	MSM8996
BLC, Linearization, LSC, CCM, Gamma	V	V	1	V	√
Color Enhancement blocks (ACE, SCE, MCE, CS)	√	1	√	√	√
Wavelet Noise Reduction (WNR)	√	V	1	V	Improved (sixth layer)
Defect Pixel Correction	V	√	27 10	V	Improved
Demosaic	Demosaic 3	Demosaic 4	Demosaic 4	Demosaic 4	Demosaic 4 Improved G-interpolation
Auto Focus (AF) Stat	Single kernel (2x5)	Dual kernel (2x11)	Dual kernel (2x11)	Dual kernel (2x11)	Dual kernel (FIR/IIR)
Adaptive Bayer Filter (ABF)	ABF2	ABF3	ABF3	ABF3	ABF3
Radial Noise Reduction (RNR)		-			V
ASF	ASF2.0	ASF2.2	ASF2.2	ASF2.2	ASF2.2
Local Tone Mapping (LTM)		V	V	V	V
Chromatic Aberration Correction (CAC)		CAC1	CAC1	CAC1	CAC2
Green Imbalance Correction (GIC)				V	V
Temporal (or 3D) Noise Reduction (TNR)		3DNR in VDP	TNR in CPP	TNR in CPP	TNR in CPP
Skin Noise Reduction (SNR)					V

Camera Updates - VFE Overview (cont.)

Camera Updates – VFE Overview (cont.)

MSM8974 baseline

MSM8974 baseline

MSM8996

CPP core – 2D denoising, scaling, sharpening, rotation

MSM8974 baseline

APQ8084

CPP core – 2D denoising, scaling, sharpening, rotation

Camera Updates – MSM8992/MSM8994/ MSM8996 CPP

CPP core – 2D/3D denoising, scaling, sharpening, rotation

Defective Pixel and Cluster Correction

Problem – Defective Pixel and Cluster Correction

MSM8996

Problem

Defective pixel and cluster correction block corrects real defective pixel. However, unexpected color artifact can be caused by correcting normal pixels due to false positive defective pixel and cluster detection.

Without BPC

With BPC+False positive detection

Solution – Defective Pixel and Cluster Correction

MSM8996

Solution

Improve defective pixel and cluster detection algorithm; prevent color artifacts that can be caused by false positive detection

Without BPC

MSM8996

MSM8084/MSM8994/MSM8992

Block Diagram – Defective Pixel and Cluster Correction

MSM8996

Adaptive Bayer Filter, Ver 3 (ABF3)

Problem

Images captured by mobile camera sensor have a lot of noise that could be amplified by certain processing steps, making it more difficult to reduce in later phases of the imaging pipeline.

With ABF3

Solution - ABF3

Solution

ABF3 minimizes noise in an early stage (Bayer domain) of the camera pipeline, improves performance in other modules, and reduces moderate green imbalance artifacts.

Confidential and Proprietary - Qualcomm Technologies, Inc.

RNR

Problem

Noise, due to rolloff correction and other gain-related changes, is not uniformly distributed across the image. The corners of an image often suffer from increased noise.

Solution

The purpose of RNR is to reduce nonuniformly distributed noise by applying different denoise strength radially based on the pixel position in the image. WNR is the main denoise block, while RNR is used to correct spatial nonuniformity noise issues.

Demosaic

Problem

Demosaic v3 (MSM8974) recovers high-resolution details, but suffers from jagged and zipper artifacts on diagonal color and high-contrast edges.

Solution – Demosaic

Solution

Instead of using 2-directional interpolation, Demosaic v4 (APQ8084/MSM8992/ MSM8994) uses 4-directional High-Frequency (HF) interpolation combined with Low-Frequency (LF) interpolation to obtain separate estimates of color differences in four different directions. This removes jagged and zipper artifacts while preserving high resolution.

Sample Image – Demosaic

Demosaic

Demosaic v4 removes jagged/zipper artifacts and improves edge continuity along diagonal color and high contrast edges.

Jagged edges

Zipper artifacts

Demosaic v3 Demosaic v4

MSM8996

Demosaic

MSM8996 chipset has improved green channel interpolation on top of Demosaic v4.

APQ8084/MSM8992/MSM8994

MSM8996

Block Diagram – Demosaic

ASF

Problem

Images look blurry and lack enough contrast/details after WNR.

With ASF After WNR

Solution

Comparison between MSM8974 and MSM8994/MSM8992/APQ8084 – The key benefit of MSM8994/MSM8992/APQ8084 ASF over MSM8974 ASF is that MSM8994/MSM8992/APQ8084ASF can apply accurate enhancement based on local intensity with more angular resolution for sharpening.

MSM8974

MSM8994/MSM8992/APQ8084

ASF

Comparison between directional and symmetric sharpening

Symmetric sharpening

Activity Level Gain calculation is based on both activity and level. This enables customers to apply accurate 4-edge direction enhancement for shadows. Gain calculation detection mid-tone, highlights, and to Activity Level precisely handle sensor noise and halos around strong edges. Sharpening filter Soft thresholding bank **Activity** Y_{HPF} Media blending

> Activity - Measure of local patch variance/business Level – Approximation of local brightness level

602:55:33 PDT LOTT

New AF Statistic

- Dual kernels and larger kernels will improve AF performance
 - Dual kernel
 - Kernel1 provides metrics based on larger regions of the image; this provides a smooth and robust measure for driving the direction of the actuator.
 - Kernel2 provides metrics based on fine detail; this gives good accuracy for achieving the peak focus position.
 - Together the two kernels allow for a fast and accurate focus search.
 - Larger kernels
 - Larger AF kernels allow for better frequency response in handling large resolution sensors.

Architecture – Add one set of Bayer focus filter with a downscaler.

- Region of interest is divided into a grid with up to 18x14 regions
- Calculation of sharpness metric for R, B, Gr, Gb channels in each region

- FIR and IIR filters in horizontal and vertical focus engines
 - FV_H 13-tap FIR+Fourth order IIR; FV_V 5-tap FIR+Second order IIR
- Dual scales of horizontal focus engines

CAC Ver 1 and Ver 2

Problem

Chromatic aberration produces undesirable colors that may appear at light and dark boundaries in an image, which negatively impacts the image quality.

Solution

Detection – Pixels must meet the following conditions:

- An Edge Pixel
- Beside a saturated region
- Neighbor's luminance monotonically changing
- Inside a color range
- Not among color range from its neighbors

Correction – Use weighted average between:

- (Max of its neighbors) and (original chromatic value), or
- (Min of its neighbors) and (original chromatic value)

CAC

Can remove chromatic aberration successfully

Problem

Chromatic aberration produces undesirable colors that may appear at light and dark boundaries or spot in an image, which negatively impacts the image quality.

Solution

Detection – Pixels must meet the following conditions:

- Color spot or within Y saturation threshold
- Inside a color saturation range

Correction:

- Using 5x3 median filter with direction
- Correcting CbCr and clamping range

CAC

Can remove false color on edge and color spot successfully

CA on Edge

Color Spot

SNR

Problem

Natural scenes usually require strong sharpening for better visual quality. However, sharpening block generates unpleasing artifacts for skin-tone regions when applying strong enhancement.

MSM8996

Solution

Applying denoise to Y channel of pixels that is detected as skin tone soft threshold based on probability of skin tone pixels

Without SNR With SNR

MSM8994 APQ8084/ MSM8992 MSM8996

LTM

Problem

Natural scenes typically have a wide dynamic range. Images captured by a camera system have a lot of information that is not easily visible or obvious on display devices. Two tone mapping approaches can be used to bring obscured details in dark or bright regions to a more visible data range. The following two approaches can be used:

- Global Tone Mapping Adjusts all pixels based on their values
- LTM Examines each pixel's neighborhood and decides whether the pixel needs lightening or not

Although GTM can lighten area regions, it reduces contrast in normal and bright regions. As a result, the image may looks flattened.

Problem

Typical camera imaging pipe cannot handle this wide dynamic range very well

LTM

LTM is designed to illuminate dark areas while keeping other tone regions untouched. Also, highlight can be suppressed in order to avoid light saturation.

Normal light areas are also modified by GTM and result in either contrast loss or tone change.

With LTM, dark areas are lightened while other areas are not touched.

Highlight tone details are preserved

Dark details are more visible with LTM

GIC

Problem – GIC

Problem

Some sensors have a significant imbalance between Gb and Gr channels. Those artifacts may not be fully corrected by the noise reduction block in the Bayer domain ABF in MSM8994.

Solution - GIC

Solution

GIC removes the banding artifacts caused by the different sensor sensitivities between Gr and Gb channels.

Sample Image – GIC

GIC

GIC is designed to remove strong green imbalance artifacts.

Vertical Banding

With independent GIC

Block Diagram – GIC

Gr/Gb Imbalance Correction

Taking the center value C and its Gr/Gb neighborhood pixel values, determine the amount of the imbalance correction. The amount of pixel value correction will be applied to the center pixel value to generate a new output Cnew.

Soft Thresholding

Refine the amount of the imbalance correction based on the noise estimation. The noise is characterized as a function of pixel level (brightness). In APQ8084/MSM8994, the noise estimation can be shared with ABF3.

WNR

Problem – WNR

Problem

Low frequency color noise in lowlight scene is noticeable on the image even though denoising is applied with the fourth layer WNR.

Solution - WNR

Solution

Adding fifth, sixth layer to WNR for reducing low frequency noise

Block Diagram – WNR

MSM8992/ APQ8084 MSM8994 MSM8996

TNR

Problem

In the video (camera preview or video recorded from camera), noise is not efficiently reduced by using only the spatial noise reduction block, e.g., WNR in CPP.

Solution

TNR block efficiently reduces the temporal noise by appropriately processing the current and previous frames.

TNR Off

TNR On

Acronyms

Acronyms	
Term	Definition
ABF3	Adaptive Bayer Filter, Ver 3
ABF	Adaptive Bayer Filter
ASF	Adaptive Spatial Filter
AF	Auto Focus
CAC	Chromatic Aberration Correction
GIC	Green Imbalance Correction
HF	High-Frequency
LTM	Local Tone Mapping
LF	Low-Frequency
RNR	Radial Noise Reduction
SNR	Skin Noise Reduction
TNR	Temporal Noise Reduction
WNR	Wavelet Noise Reduction

Questions?

https://createpoint.qti.qualcomm.com

