• Papers' label and the representative terms

Index	Labels	Label	composi	itions	Representative terms
1	Tc ₁₇₂ A ₅₄	S ₁₁	ca ₁₂	-	s_{11} : visual sensor + touch sensor + optical detector + arc weaving sensor; ca_{12} : linear interpolation algorithm +TP language; A_{54} : arc welding
2	Tc ₁₈₁ A ₅₅	-	ca_2	-	ca_2 : kinematic; A_{55} : underwater work
3	Tc237A54	S11	ca ₁₂₀	-	s_{11} : visual sensor + touch sensor + optical detector + arc weaving sensor; ca_{120} : distance estimation; A_{54} : arc welding
4	$Tc_{236}A_{54}$	-	ca ₈	-	ca_8 : tractive thrust; A_{54} : arc welding
5	Tc171A54	-	ca ₁₃	-	ca_{13} : NDT-method; A_{54} : arc welding
6	Tm ₉ A ₁₁	<i>a</i> ₄	hd15	hc2	a_4 : electro + hydraulic; hd_{15} : wheel mobile lifting single arm; he_2 : automatic; A_{11} : wall construction
7	$Tm_{25}A_{54}$	-	hd ₆₇	hc ₂	hd_{67} : frame system; he_2 : automatic; A_{54} : arc welding
8	$Tc_{43}A_{14}$	\$125	ca ₁₂₀	-	s_{125} : ultra-sonic sensor + magnetic sensor + camera; ca_{120} : distance estimation; A_{14} : equipment positioning
9	$Tb_{14}A_{54}$	-	bm ₁₄	-	bm_{14} : cost + productivity + efficiency; A_{54} : arc welding
10	$Tm_{157}A_{50}$	-	hd ₅₂	hc3	hd_{52} : mobile vehicle; hc_3 : human-robot + collaboration; A_{50} : operation simulation
11	Tm35A21	a_2	hd2	hc2	a_{2} : hydraulic; hd_{2} : arm, manipulator + mounted; he_{2} : automatic; A_{2i} : pipe construction
12	$Tm_{141}A_7$	a4	hd12	hc2	a_4 : electro + hydraulic; hd_{12} : fixed arm; he_2 : automatic; A_7 : excavation
13	Tc97A31	-	ca ₄₂	-	ca42: HyperCard program; A31: slab finishing
14	Tc_7A_1	\$65	ca ₆₃	-	s_{65} : camera + tactile; ca_{63} : Actuator-level languages; A_1 : road construction
15	$Tm_{35}A_7$	a_2	hd_2	hc ₂	a2: hydraulic; hd2: arm, manipulator + mounted; he2: automatic; A7: excavation
16	$Tc_{19}A_{50}$	\$33	ca ₃₆	-	s_{33} : force sensor + ultrasonic sensor; ca_{36} : PID position control; A_{50} : operation simulation
17	$Tc_{11}A_{20}$	\$34	CA36	-	s_{34} : force sensor + sonar sensor; ca_{36} : PID position control; A_{20} : spraying
18	Tc97A31	-	ca ₄₂	-	ca42: HyperCard program; ca42: HyperCard program; A31: slab finishing
19	Tc ₁₁₅ A ₄	\$76	CA95	-	s ₇₆ : distance sensor; ca ₉₅ : PLC; ca ₉₅ : PLC; A ₄ : ferromagnetic surface construction
20	$Tm_{62}A_7$	a_2	hd_2	hc ₁	a_2 : hydraulic; hd_2 : arm, manipulator + mounted; he_i : remote + operator; A_7 : excavation
21	$Tm_{156}A_6$	a_3	hd ₁₂	hc ₁	a_3 : motor; hd_{12} : fixed arm; hc_i : remote + operator; A_6 : building inspection
22	$Tm_{123}A_{31}$	a_2	hd52	hc2	a_{2} : hydraulic; hd_{52} : mobile vehicle; hc_{2} : automatic; A_{31} : slab finishing
23	Tm ₆₁ A ₂₉	a5	hd ₂₇	hc2	as: pneumatic + motor; hd27: AGV, unmanned ground vehicle; hc2: automatic; A29: material, sorting, delivery, distribution

24	Tm157A47	-	hd52	hc3	hd_{52} : mobile vehicle; $h\iota_3$: human-robot + collaboration; A_{47} : mining
25	$Tm_{36}A_7$	a_3	hd ₁₂	hc ₂	a_3 : motor; hd_{12} : fixed arm; hc_2 : automatic; A_7 : excavation
26	$Tc_{82}A_{24}$	-	ca33	-	ca33: Brooks' algorithm; A24: machinery path management
27	$Tc_{64}A_{20}$	56	ca ₃₈	-	s ₆ : torque/force sensor + force sensor; ca ₃₈ : least squares algorithm; A ₂₀ : spraying
28	Tc97.A7	-	CA42	-	ca42: HyperCard program; A7: excavation
29	Tc ₁₀₆ A ₃₂	\$39	ca ₅₂	-	s_{39} : camera + image + CCD + Kinect; ea_{52} : longest common subsequence (LCS); A_{32} : machinery navigation
30	$Tc_{80}A_{24}$	\$10	ca ₆₅	-	s_{10} : ultrasonic; ca_{65} : path-planning; A_{24} : machinery path management
31	$Tm_{33}A_{20}$	a_3	hd ₂₁	hc_2	a3: motor; hd_{21} : mobile arm; hc_{2} : automatic; A_{20} : spraying
32	$Tm_{39}A_{22}$	a_3	hd55	hc_2	a_3 : motor; hd_{55} : vertically mobile arm; he_2 : automatic; A_{22} : masonry construction
33	Tm ₁₄₂ A ₇	<i>a</i> 4	hd ₁₂	hc2	a ₄ : electro + hydraulic; hd_{12} : fixed arm; hc_2 : automatic; A_7 : excavation
34	$Tm_{126}A_6$	<i>a</i> ₅	hd_2	hc2	a_5 : pneumatic + motor; hd_2 : arm, manipulator + mounted; he_2 : automatic; A_6 : building inspection
35	$Tm_{36}A_{21}$	a_3	hd ₁₂	hc_2	a_3 : motor; hd_{12} : fixed arm; hc_2 : automatic; A_{21} : pipe construction
36	Tc13A14	-	ca ₁₁₅	1	$ca_{11}s$: self-positioning algorithm; $A_{1}s$: equipment positioning
37	$Tc_{97}A_{48}$	-	ca ₄₂	ı	ca_{42} : HyperCard program; A_{48} : logistics
38	$Tc_{87}A_{50}$	-	ca ₅	1	ca_{5} : PI controller + active control algorithm; A_{50} : operation simulation
39	$T_{c_{75}}A_{22}$	\$74	CA73	-	s_{74} : ultrasonic sensor + displacement transducers + ranging transducer + laser scanner; ca_{73} : Machine Learning; A_{22} : masonry construction
40	$Tc_{137}A_{45}$	\$50	ca ₇₉	-	s_{50} : position sensor + force sensor; ca_{79} : RBF-PID Control; A_{45} : cleaning
41	$Tm_{151}A_{21}$	-	hd52	hc ₁	hd_{52} : mobile vehicle; hv_i : remote + operator; A_{2i} : pipe construction
42	$Tm_{40}A_{22}$	a_2	hd56	hc2	a_2 : hydraulic; hd_{56} : rail moving arm; he_2 : automatic; A_{22} : masonry construction
43	$Tm_{40}A_{22}$	a_2	hd56	hc_2	a_2 : hydraulic; hd_{56} : rail moving arm; he_2 : automatic; A_{22} : masonry construction
44	$Tm_{19}A_{22}$	a_2	hd_2	hc ₂	a_2 : hydraulic; hd_2 : arm, manipulator + mounted; he_2 : automatic; A_{22} : masonry construction
45	$Tm_{98}A_6$	a_3	hd ₁₉	hc_2	a_3 : motor; hd_{19} : climbing platforms + vacuum grippers + suction; hc_2 : automatic; A_6 : building inspection
46	$Tm_{13}A_{29}$	a_3	hd7	hc ₂	a_3 : motor; hd_7 : gantry robot, arm; he_2 : automatic; A_{29} : material, sorting, delivery, distribution
47	Tm ₆₀ A ₃₄	a_3	hd ₁₂	hc ₂	a3: motor; hd_{12} : fixed arm; he_2 : automatic; A_{34} : components assemble
48	$Tm_{22}A_{58}$	a_3	hd32	hc2	a_3 : motor; hd_{32} : wheel mobile; he_2 : automatic; A_{58} : finishing
49	$Tm_{25}A_{53}$	-	hd ₆₇	hc_2	bd_{67} : frame system; be_2 : automatic; A_{53} : highway construction

50	$Tm_{23}A_{24}$	-	hd32	hc2	hd_{32} : wheel mobile; hc_2 : automatic; A_{24} : machinery path management
51	$Tc_{51}A_{50}$	\$22	ca ₁₀	-	s_{22} : position sensor; ca_{10} : heuristic; A_{50} : operation simulation
52	$T c_{84} A_{24}$	-	ca ₁₀₃	-	ca_{103} : motion planning; A_{24} : machinery path management
53	Tb_2A_{53}	-	bm_2	-	bm_2 : technical + economic + efficiency; A_{53} : highway construction
54	Tm ₁₂₄ A ₅₉	a_2	hd ₁₂	hc ₂	a_2 : hydraulic; hd_{12} : fixed arm; hc_2 : automatic; A_{59} : object recognition
55	$Tm_{10}A_{11}$	a_3	hd ₁₆	hc_2	a_3 : motor; hd_{16} : climbing platform + pediculate + gripper; he_2 : automatic; A_{11} : wall construction
56	$Tm_{34}A_{20}$	<i>a</i> ₃	hd32	hc ₂	a_3 : motor; hd_{32} : wheel mobile; hc_2 : automatic; A_{20} : spraying
57	$Tm_{49}A_{34}$	-	hd36	hc_2	hd_{36} : mobile arm, manipulator with wheels; he_2 : automatic; A_{34} : components assemble
58	$Tm_{25}A_{54}$	-	hd ₆₇	hc_2	hd_{67} : frame system; hc_2 : automatic; A_{54} : arc welding
59	Tm25A54	-	hd ₆₇	hc2	hd_{67} : frame system; hc_2 : automatic; A_{54} : arc welding
60	$Tm_{28}A_{11}$	-	-	hc ₂	he_2 : automatic; A_{tt} : wall construction
61	$Tm_{88}A_{44}$	a_3	hd_2	hc_2	a_3 : motor; hd_2 : arm, manipulator + mounted; he_2 : automatic; A_{44} :panel installation
62	Tc84A34	-	CA103	-	ca_{103} : motion planning; A_{34} : components assemble
63	Tc ₁₆₄ A ₅₀	-	ca ₁₁₄	-	ca_{114} : behaviour-based system; A_{50} : operation simulation
64	Tc13A14	-	ca ₁₁₅	-	ca_{115} : self-positioning algorithm; A_{14} : equipment positioning
65	Tc79A22	S21	ca ₇₀	-	s_{21} : distance sensor + tilt sensor; ca_{70} : PTP control; A_{22} : masonry construction
66	Tc ₁₁₆ A ₅₈	-	ca ₇₀	-	ca_{70} : PTP control; A_{58} : finishing
67	$Tc_{78}A_{22}$	S_1	ca ₇₁	-	s_i : laser + ultrasonic + CCD camera; ϵa_{7i} : TCP control; A_{22} : masonry construction
68	$Tc_{27}A_{11}$	-	CA90	-	ca90: C++, Java, C# script, C program; A11: wall construction
69	Tm_1A_1	a_2	hd32	hc_2	a_2 : hydraulic; hd_{32} : wheel mobile; hc_2 : automatic; A_1 : road construction
70	Tm59A28	<i>a</i> ₃	hd15	hc2	a_3 : motor; hd_{15} : wheel mobile lifting single arm; he_2 : automatic; A_{28} : ceiling construction
71	$Tm_{127}A_6$	<i>a</i> ₃	hd36	hc2	as: motor; hd_{36} : mobile arm, manipulator with wheels; he_2 : automatic; A_6 : building inspection
72	$Tm_{41}A_{22}$	a_5	hd ₁₂	hc ₂	a_5 : pneumatic + motor; hd_{12} : fixed arm; he_2 : automatic; A_{22} : masonry construction
73	$Tm_{25}A_{54}$	-	hd ₆₇	hc ₂	hd_{67} : frame system; hc_2 : automatic; A_{54} : arc welding
74	$Tm_{28}A_{17}$		-	hc ₂	he_2 : automatic; A_{17} : high rise building construction
75	$Tm_{64}A_{50}$	-	hd30	hc3	hd_{30} : industrial robot; hc_3 : human-robot + collaboration; A_{50} : operation simulation

76	Tc ₁₄₀ A ₄₆	S1	ca ₁₂₀	-	s_i : laser + ultrasonic + CCD camera; ϵa_{120} : distance estimation; A_{46} : machinery mapping
77	Tc ₁₇₀ A ₅₄	\$14	CA14	-	s_{14} : laser; ca_{14} : control travel speed; A_{54} : arc welding
78	Tc ₁₁₇ A ₃₄	\$70	ca ₂₆	-	ca_{26} : fusion fuzzy, fuzzy logic, fuzzy set theory; A_{34} : components assemble
79	$Tc_{189}A_{32}$	-	ca ₂₆	-	ca_{26} : fusion fuzzy, fuzzy logic, fuzzy set theory; A_{32} : machinery navigation
80	Tc ₁₈₉ A ₅₆	-	ca ₂₆	-	ca26: fusion fuzzy, fuzzy logic, fuzzy set theory
81	$Tc_{60}A_{53}$	S ₁₄	CA46	-	s_{14} : laser; ca_{46} : embedded, embedding, controller; A_{53} : highway construction
82	Tc33A12	-	CA49	-	ca49: genetic algorithms (GA); A12: bridge construction
83	$Tc_{121}A_{26}$	\$154	CA90	-	s154: equivalent sensor; caso: C++, Java, C# script, C program; A26: remote operating machines
84	$Tc_{42}A_{53}$	\$54	<i>СА</i> 90	-	s54: laser + cameras + Kinect; ca90: C++, Java, C# script, C program; A53: highway construction
85	$Tc_{205}A_{50}$	-	CA92	-	ca_{92} : Virtual Reality; A_{50} : operation simulation
86	$T_{c_{29}}A_{12}$	\$39	CA96	-	s_{39} : camera + image + CCD + Kinect; ca_{96} : real time navigation; A_{12} : bridge construction
87	$Tm_{11}A_{11}$	a_3	hd ₁₇	hc_2	a_3 : motor; hd_{17} : lift fixed manipulator; he_2 : automatic; A_{11} : wall construction
88	Tm_8A_8	a ₃	hd_2	hc3	a_3 : motor; hd_2 : arm, manipulator + mounted; hc_3 : human-robot + collaboration; A_8 : steel construction
89	Tc_6A_1	S ₆₆	ca ₆₄	-	s ₆₆ : GPS, position sensor, reference sensor; εa ₆₄ : iterative algorithms + regression model; A ₁ : road construction
90	Tc_5A_1	S ₆₇	ca ₆₅	-	s ₆₇ : GPS; ca ₆₅ : path-planning; A ₁ : road construction
91	Tc_4A_1	S6	са73	-	s6: torque/force sensor + force sensor; ca73: Machine Learning; A1: road construction
92	$Tc_{31}A_{12}$	S94	са ₉₆	-	\$94: LTK + GPS + pseudofiles + laser + NLS; \$\cap a_{96}\$: real time navigation; \$A_{12}\$: bridge construction
93	$Tm_{62}A_{29}$	a_2	hd_2	hc ₁	a2: hydraulic; hd2: arm, manipulator + mounted; he1: remote + operator; A29: material, sorting, delivery, distribution
94	$Tm_{24}A_{17}$	a_2	hd ₆₇	hc ₂	a_2 : hydraulic; hd_{67} : frame system; hc_2 : automatic; A_{17} : high rise building construction
95	$Tm_{13}A_8$	a_3	hd7	hc_2	a_3 : motor; hd_7 : gantry robot, arm; he_2 : automatic; A_8 : steel construction
96	Tm60A54	a ₃	hd12	hc ₂	a_3 : motor; hd_{12} : fixed arm; he_2 : automatic; A_{54} : arc welding
97	Tm ₁₀₆ A ₄₉	-	hd49	hc2	hd_{49} : robotized crane; hc_2 : automatic; A_{49} : transmission tower construction
98	$Tc_{200}A_{56}$	-	ca ₈₁	-	ca_{81} : predictive force method; A_{56} : remote construction
99	$Tc_{70}A_{38}$	-	CA89	-	ca_{89} : trajectory generation algorithm; A_{38} : marking
100	Tc ₁₁₈ A ₃₄	\$138	ca ₂₆	-	s_{138} : axis sensors; ϵa_{26} : fusion fuzzy, fuzzy logic, fuzzy set theory; A_{34} : components assemble
101	$Tc_{226}A_7$	S44	CA43	-	s44: force sensor + pressure transducers; ca43: inverse kinematic and dynamic models; A7: excavation

102	$Tc_{57}A_2$	\$39	ca ₆₁	-	s ₃₉ : camera + image + CCD + Kinect; ca ₆₁ : pixels regression
103	Tb ₉ A ₂₉	-	bm9	-	bm_9 : material management; A_{29} : material, sorting, delivery, distribution
104	$Tm_{152}A_{56}$	a_3	hd ₆₇	hc ₁	a_3 : motor; hd_{67} : frame system; he_7 : remote + operator; A_{56} : remote construction
105	$Tm_{151}A_{56}$	-	hd ₅₂	hc ₁	hd_{52} : mobile vehicle; hc_{i} : remote + operator; A_{56} : remote construction
106	$Tm_{12}A_{11}$	a_2	hd7	hc ₂	a_{2} : hydraulic; hd_{7} : gantry robot, arm; he_{2} : automatic; A_{11} : wall construction
107	$Tm_{19}A_{12}$	a_2	hd_2	hc ₂	a_2 : hydraulic; hd_2 : arm, manipulator + mounted; he_2 : automatic; A_{12} : bridge construction
108	Tm96A45	<i>a</i> ₃	hd34	hc ₂	as: motor; hd_{34} : vertical mobile + cleaning head + pressure pump + suction device + filter + tank; he_2 : automatic; A_{45} : cleaning
109	Tc ₁₆₉ A ₁₂	-	ca ₁₅	-	ca_{15} : off-line teaching system; A_{12} : bridge construction
110	$Tm_{112}A_{54}$	-	hd11	hc_2	hd_{11} : lifting rail + moved arm + carriage; hc_2 : automatic; A_{54} : arc welding
111	$Tm_{32}A_{20}$	a_2	hd12	hc3	hd ₁₂ : fixed arm; A ₂₀ : spraying
112	Tc54A19	S ₁₁₈	ca ₁₁₅	-	s_{118} : camera + sonar sensor + temperature sensor + airflow sensors + laser; ca_{115} : self-positioning algorithm; A_{19} : building maintenance
113	Tc41A14	\$39	ca ₅₆	-	s_{39} : camera + image + CCD + Kinect; A_{14} : equipment positioning
114	$Tc_{224}A_7$	S45	CA89	-	s_{45} : force and position sensors + ground penetrating radar (GPR) + laser; ca_{89} : trajectory generation algorithm; A_7 : excavation
115	$Tm_{85}A_{42}$	a_2	hd₃	hc ₁	a_{2} : hydraulic; hd_{3} : crawler; he_{1} : remote + operator; A_{42} : disaster restoration
116	$Tm_{128}A_6$	a_3	hd70	hc ₂	a_3 : motor; hd_{70} : mobility feet, leg, limbed; he_2 : automatic; A_6 : building inspection
117	Tm143A7	<i>a</i> ₄	hd33	hc ₂	a ₄ : electro + hydraulic; hd_{33} : bucket + arm; hc_2 : automatic; A_7 : excavation
118	$Tc_{95}A_{30}$	<i>S</i> ₆	ca ₁₀₀	-	s_6 : torque/force sensor + force sensor; ca_{100} : markov chains; A_{30} : Mars/Lunar construction
119	$Tc_{124}A_{38}$	\$14	ca ₁₁₅	-	s_{14} : laser; ca_{115} : self-positioning algorithm; A_{38} : marking
120	$Tc_{87}A_{26}$	\$8	ca5	-	s_8 : pressure sensor; cas : PI controller, active control algorithm; A_{26} : remote operating machines
121	Tc ₁₄₄ A ₅	\$86	ca ₈₇	-	s ₈₆ : range sensor + displacement sensor + GPS; ca ₈₇ : Bug-based algorithm
122	$Tm_{152}A_{56}$	a_3	hd ₆₇	hc ₁	a_3 : motor; hd_{67} : frame system; he_1 : remote + operator; A_{56} : remote construction
123	$Tm_{150}A_{56}$	a_2	hd_1	hc ₂	hd_1 : humanoid; hc_2 : automatic; A_{56} : remote construction
124	$Tm_{113}A_{54}$	a_3	hd10	hc ₂	a_3 : motor; hd_{10} : traveling crane; hc_2 : automatic; A_{54} : arc welding
125	$Tm_{28}A_{11}$	-	-	hc2	he_2 : automatic; A_{11} : wall construction
126	Tm91A56	a_1	hd ₆₇	hc3	a_1 : pneumatic; hd_{67} : frame system; $h\iota_3$: human-robot + collaboration; A_{56} : remote construction

127	Tm55A28	<i>a</i> ₃	hd36	bc_2	a_3 : motor; hd_{36} : mobile arm, manipulator with wheels; he_2 : automatic; A_{28} : ceiling construction
128	Tc ₁₈₇ A ₅₆	-	саз1	-	ca_{3i} : wireless communication + wireless Lan; A_{56} : remote construction
129	$Tc_{187}A_{56}$	-	ca31	-	ca_{3i} : wireless communication + wireless Lan; A_{56} : remote construction
130	Tc ₁₃₈ A ₄₅	S33	CA43	-	s ₃₃ : force sensor + ultrasonic sensor; ca ₄₃ : inverse kinematic and dynamic models
131	$Tc_{222}A_7$	S47	CA47	-	s ₄₇ : force sensors + laser + GPS + INS; ca ₄₇ : UML state charts and capsules; A ₇ : excavation
132	$Tc_{33}A_{12}$	-	CA49	-	ca_{49} : genetic algorithms (GA); A_{12} : bridge construction
133	Tc ₁₈₂ A ₅₅	S1	ca ₆₂	-	s ₁ : laser + ultrasonic + CCD camera; ea ₆₂ : image processing; A ₅₅ : underwater work
134	$Tc_{56}A_2$	S54	ca ₆₂	-	s ₅₄ : laser + cameras + Kinect; ca ₆₂ : image processing
135	$Tc_{76}A_{24}$	-	ca ₇₃	-	ca73: Machine Learning; A24: machinery path management
136	Tb ₁₄ A ₃₅	-	bm ₁₄	-	bm_{14} : cost + productivity + efficiency; A_{35} : construction activity evaluation
137	Tm117A55	a_1	hd_2	hc ₁	a_i : pneumatic; hd_2 : arm, manipulator + mounted; he_i : remote + operator; A_{55} : underwater work
138	$Tm_{60}A_{28}$	a_3	hd ₁₂	hc ₂	a_3 : motor; hd_{12} : fixed arm; hc_2 : automatic; A_{28} : ceiling construction
139	$Tm_{26}A_8$	-	hd49	hc ₂	hd_{49} : robotized crane; $h\iota_2$: automatic; A_8 : steel construction
140	$Tm_{14}A_{63}$	-	hd_7	hc ₂	hd_7 : gantry robot, arm; hc_2 : automatic; A_{63} : contour crafting
141	$Tm_{28}A_{11}$	-	-	hc ₂	he_2 : automatic; A_{tt} : wall construction
142	Tc216A6	S54	ca ₁₀₂	-	s54: laser + cameras + Kinect; ca102: MPEG algorithm + pair-wise alignment algorithm + Minimum V variance Matching (MVM) Algorithm
143	$Tc_{26}A_{11}$	\$22	ca ₂₅	-	s_{22} : position sensor; ca_{25} : search algorithm; A_{11} : wall construction
144	Tc23A11	\$23	ca ₂₆	-	s_{23} : rotation angles sensors + vacuum sensors + accelerometers + pressure sensor; ca_{26} : fusion fuzzy, fuzzy logic, fuzzy set theory; A_{11} : wall construction
145	Tc93A3	\$39	ca ₃₆	-	s39: camera + image + CCD + Kinect; ea36: PID position control; ea36: PID position control; A3: building service
146	Tc_3A_1	\$54	ca ₆₇	-	s_{54} : laser + cameras + Kinect; ca_{67} : Kalman Filter Algorithm; A_1 : road construction
147	Tm107A56	-	-	hc ₁	he_i : remote + operator; A_{56} : remote construction
148	Tm65A60	a_1	hd70	hc2	a ₁ : pneumatic; hd ₇₀ : mobility feet, leg, limbed; he ₂ : automatic; A ₆₀ : drilling
149	$Tm_{129}A_6$	a_3	hd ₇₄	hc ₂	a_3 : motor; hd_{74} : worm-like, snake-like robot; hc_2 : automatic; A_6 : building inspection
150	$Tm_{130}A_6$	a_3	hd70	hc_2	as: motor; hd_{70} : mobility feet, leg, limbed; hc_2 : automatic; A_6 : building inspection
151	$Tm_{28}A_{11}$	-	-	hc ₂	bc_2 : automatic; A_{tt} : wall construction

152	Tm81A40	a_2	hd49	hc3	a_2 : hydraulic; hd_{49} : robotized crane; he_3 : human-robot + collaboration; A_{40} : harbour construction
153	Tm7.A11	<i>a</i> ₅	hd ₂₀	hc3	as: pneumatic + motor; hd_{20} : climbing two platforms + light skeleton + vacuum grippers; hc_3 : human-robot + collaboration; A_{11} : wall construction
154	$Tc_{132}A_{42}$	S ₁₄	ca ₁₀₉	-	s_{14} : laser; ϵa_{109} : stereovision method; A_{42} : disaster restoration
155	Tc232A51	\$87	ca ₁₀₉	-	s_{87} : range sensors + distance sensor; ca_{109} : stereovision method; A_{51} : pose estimation
156	Tc55A19	\$38	CA114	-	s_{38} : cameras + pressure force sensor; ca_{114} : behaviour-based system; A_{19} : building maintenance
157	$Tc_{22}A_{11}$	\$24	ca ₂₇	-	s_{24} : light sensor + infrared proximity sensors; ca_{27} : distributed feedback mechanism; A_{11} : wall construction
158	Tc ₁₀₅ A ₃₂	\$142	ca ₃₁	-	s ₁₄₂ : light sensors + humidity/temperature sensors + sonar sensors + ultrasonic range sensor + infrared distance measuring sensors + CMOS image sensor; ca ₃₁ : wireless communication + wireless Lan; A ₃₂ : machinery navigation
159	$Tc_{154}A_{50}$	-	ca ₄₆	-	ca46: embedded, embedding, controller; $A50$: operation simulation
160	$Tc_{145}A_5$	\$87	ca ₆₅	-	s_{87} : range sensors + distance sensor; ca_{65} : path-planning; A_5 : earthmoving construction
161	Tc_2A_1	S68	ca ₆₈	-	s ₆₈ : GPS + inclinometer; ca ₆₈ : Msc. Adams and Matlab/Simulink programs; A ₁ : road construction
162	Tc_1A_1	S69	CA69	-	s_{69} : GPS + laser; ϵa_{69} : dynamic model; A_i : road construction
163	$Tc_{197}A_{50}$	\$81	CA79	-	s_{8l} : angle sensor; ϵa_{79} : RBF-PID Control; A_{50} : operation simulation
164	$Tc_{27}A_8$	\$39	CA90	-	539: camera + image + CCD + Kinect; caso: C++, Java, C# script, C program; As: steel construction
165	$Tm_{84}A_{41}$	a_1	hd30	hc ₁	a_i : pneumatic; hd_{30} : industrial robot; hc_i : remote + operator; A_{4i} : waste collection
166	$Tm_{118}A_{55}$	a_2	hd3	hc ₁	a_{2} : hydraulic; hd_{3} : crawler; hc_{1} : remote + operator; A_{55} : underwater work
167	Tm94A56	a_2	-	hc ₁	a_2 : hydraulic; he_i : remote + operator; A_{56} : remote construction
168	$Tm_{18}A_{11}$	a_3	hd ₃₂	hc ₁	a_3 : motor; hd_{32} : wheel mobile; he_i : remote + operator; A_{1i} : wall construction
169	$Tm_{86}A_{42}$	-	hd3	hc ₁	hd_3 : crawler; hc_i : remote + operator; A_{42} : disaster restoration
170	$Tm_{53}A_{23}$	a_3	hd ₆₆	hc_2	a3: motor; hd_{66} : mobile tracked locomotion; hc_2 : automatic; A_{23} : on-site rescue
171	Tm51A59	-	hd30	bc_2	hd_{30} : industrial robot; he_2 : automatic; A_{59} : object recognition
172	$Tm_{25}A_{34}$	-	hd ₆₇	hc2	hd_{67} : frame system; hc_2 : automatic; A_{34} : components assemble
173	Tm_8A_{11}	a_3	hd_2	hc3	a_3 : motor; hd_2 : arm, manipulator + mounted; hc_3 : human-robot + collaboration; A_{11} : wall construction
174	$Tm_{89}A_{44}$	-	-	hc3	he3: human-robot + collaboration; A44:panel installation
175	$Tc_{215}A_6$	\$39	ca ₁₀₃	-	s39: camera + image + CCD + Kinect; ca103: motion planning; A6: building inspection
176	Tc93A56	\$39	ca ₃₆	-	s_{39} : camera + image + CCD + Kinect; ca_{36} : PID position control; A_{56} : remote construction

177	Tc33A50	-	CA49	-	ca_{49} : genetic algorithms (GA); A_{50} : operation simulation
178	Tc76A52	-	са73	-	ca73: Machine Learning; ca73: Machine Learning; A52: measurement
179	$Tc_{199}A_{56}$	\$39	са ₈₀	-	s_{39} : camera + image + CCD + Kinect; ca_{80} : augmented reality techniques (AR); A_{56} : remote construction
180	$Tc_{229}A_8$	-	ca ₉₁	-	ca_{9i} : pre-acting control algorithm; A_8 : steel construction
181	Tb_6A_{12}	-	bm_6	-	bm_6 : cost + quality; A_{12} : bridge construction
182	$Tm_{38}A_{21}$	a_2	hd ₆₉	hc ₁	a_2 : hydraulic; hd_{69} : platform clamp; he_1 : remote + operator; A_{21} : pipe construction
183	Tm93A44	-	hd_2	hc ₁	hd2: arm, manipulator + mounted; hei: remote + operator; A4:panel installation
184	Tm_1A_1	a_2	hd ₃₂	hc ₂	a_2 : hydraulic; hd_{32} : wheel mobile; hc_2 : automatic; A_1 : road construction
185	$Tm_{80}A_6$	a_3	hd ₅₈	hc_2	a_3 : motor; hd_{5g} : UAV; hc_2 : automatic; A_6 : building inspection
186	$Tm_{16}A_{63}$	<i>a</i> ₆	hd ₂₅	hc2	a_6 : cable driven; hd_{25} : parallel robot; he_2 : automatic; A_{65} : contour crafting
187	$Tm_{146}A_8$	-	hd ₂₆	hc2	hd_{26} : rail, vertical-moving robot; he_2 : automatic; A_8 : steel construction
188	$Tm_{25}A_{63}$	-	hd ₆₇	hc_2	hd_{67} : frame system; hv_2 : automatic; A_{63} : contour crafting
189	Tm56A28	a_3	hd ₄₂	hc3	a3: motor; hd_{42} : mobile vehicle + aerial lift + manipulator + vacuum suction device; hc_{3} : human-robot + collaboration; A_{28} : ceiling construction
190	$Tm_{63}A_6$	a_3	hd ₃₂	hc3	a_3 : motor; hd_{32} : wheel mobile; he_3 : human-robot + collaboration; A_6 : building inspection
191	Tm_8A_{11}	a_3	hd_2	hc3	a_3 : motor; hd_2 : arm, manipulator + mounted; he_3 : human-robot + collaboration; A_{11} : wall construction
192	Tm ₈ A ₄₄	<i>a</i> ₃	hd2	hc3	a3: motor; hd2: arm, manipulator + mounted; ht3: human-robot + collaboration; A44:panel installation
193	$Tm_{70}A_{34}$	-	hd ₆₀	hc3	hd_{60} : truss-type; he_3 : human-robot + collaboration; A_{34} : components assemble
194	Tm90A44	-	hd ₆₇	hc3	hd_{67} : frame system; hc_3 : human-robot + collaboration; A_{44} :panel installation
195	Tc ₁₆₈ A ₅₄	-	ca ₁₆	-	ca16: user datagram protocol (UDP); A54: arc welding
196	$Tc_{89}A_{29}$	\$114	са ₃₆	-	s_{114} : ultrasonic sensors + encoders + IMU + yaw angle sensor + sonar sensors; ca_{36} : PID position control; A_{29} : material, sorting, delivery, distribution
197	Tc119A34	\$39	са79	-	s_{39} : camera + image + CCD + Kinect; ϵa_{79} : RBF-PID Control; A_{34} : components assemble
198	Tc198A56	S6	са79	-	s6: torque/force sensor + force sensor; ca79: RBF-PID Control; A56: remote construction
199	Tc ₈₆ A ₅₆	-	ca ₈₆	-	ca_{86} : master-slave system; A_{56} : remote construction
200	$Tc_{149}A_{50}$	\$89	са ₉₀	-	s89: liquid based sensor; ca90: C++, Java, C# script, C program; A50: operation simulation
201	$Tb_{9}A_{29}$	-	bm9	-	bm_9 : material management; A_{29} : material, sorting, delivery, distribution

202	$Tm_{122}A_{56}$	<i>a</i> ₁	hd ₁₂	hc ₁	a_i : pneumatic; hd_{12} : fixed arm; hc_i : remote + operator; A_{56} : remote construction
203	Tm95A44	<i>a</i> ₃	hd32	hc ₁	a_3 : motor; hd_{32} : wheel mobile; he_i : remote + operator; A_{44} :panel installation
204	Tm_2A_1	a_3	hd ₅₂	hc ₂	a_3 : motor; hd_{52} : mobile vehicle; hc_2 : automatic; A_1 : road construction
205	$Tm_{13}A_8$	a_3	hd_7	hc_2	a_3 : motor; hd_7 : gantry robot, arm; he_2 : automatic; A_8 : steel construction
206	Tm37A21	a_2	hd ₂₅	hc3	hd_{25} : parallel robot; hc_3 : human-robot + collaboration; A_{21} : pipe construction
207	$Tm_{57}A_{28}$	a_3	hd44	hc3	a3: motor; hd4: manipulator + vacuum suction + wheel mobility; hc3: human-robot + collaboration
208	Tm139A60	a_3	hd ₁₂	hc3	a_3 : motor; hd_{12} : fixed arm; hc_3 : human-robot + collaboration; A_{60} : drilling
209	$Tm_{71}A_{34}$	-	hd45	hc3	hd_{45} : wearable; hc_3 : human-robot + collaboration; A_{34} : components assemble
210	$Tm_{89}A_{10}$	-	-	hc3	he_3 : human-robot + collaboration; A_{10} : glass installation
211	$Tm_{144}A_8$	a_2	hd ₆₃	hc3	a_2 : hydraulic; hd_{63} : scissor-jack manipulator; hc_3 : human-robot + collaboration; A_8 : steel construction
212	Tc71A22	\$18	ca ₁₀₅	-	s_{18} : various sensors + sensor system; ca_{105} : A* algorithm, A-star; A_{22} : masonry construction
213	Tc91A29	\$113	ca ₁₁₁	-	s_{113} : rotation angle + encoder sensor + laser, accelerometer; ca_{113} : measures vector value of vertical lifting; A_{29} : material, sorting, delivery, distribution
214	Tc192A56	\$134	ca ₁₁₃	-	s_{134} : magnetic stroke sensors + pressure sensors + stereo camera; ca_{113} : velocity control; A_{56} : remote construction
215	$Tc_{104}A_{32}$	S ₁₄	ca ₂₅	-	s_{14} : laser; ca_{25} : search algorithm; A_{32} : machinery navigation
216	$Tc_{167}A_{54}$	\$14	ca ₃₂	-	s_{14} : laser; ca_{32} : parametric-integrated algorithm, parametric synthesis; A_{54} : arc welding
217	Tc ₁₈₆ A ₅₆	\$133	саз6	1	s_{133} : stereo camera + acceleration sensor; ca_{36} : PID position control; A_{56} : remote construction
218	$Tc_{128}A_{41}$	\$81	ca59	-	s_{8i} : angle sensor; ϵa_{59} : primitive static states; A_{4i} : waste collection
219	$Tc_{209}A_6$	\$104	ca ₇₃	1	s_{104} : gyro sensor + laser sensor + CCD camera; ca_{73} : Machine Learning; A_6 : building inspection
220	$Tb_{10}A_{14}$	-	bm10	1	bm_{10} : position + internal + error + force; A_{14} : equipment positioning
221	$Tb_{12}A_{35}$	-	bm ₁₂	1	bm_{12} : sustainability +performance + environment; A_{35} : construction activity evaluation
222	$Tb_{7}A_{21}$	-	bm_7	-	<i>bm7</i> : productivity + economic + sensitivity + safety + quality; A_{21} : pipe construction
223	Tm_3A_1	a_1	hd_2	hc_2	a_1 : pneumatic; hd_2 : arm, manipulator + mounted; hc_2 : automatic; A_1 : road construction
224	$Tm_{129}A_6$	a_3	hd ₇₄	hc_2	a_3 : motor; hd_{74} : worm-like, snake-like robot; he_2 : automatic; A_6 : building inspection
225	$Tm_{13}A_8$	<i>a</i> ₃	hd_7	hc2	a_3 : motor; hd_7 : gantry robot, arm; he_2 : automatic; A_8 : steel construction
226	$Tm_{26}A_{29}$	-	hd49	hc2	hd_{49} : robotized crane; he_2 : automatic; A_{29} : material, sorting, delivery, distribution
227	$Tm_{145}A_8$	a_3	hd ₆₃	hc3	a_3 : motor; hd_{63} : scissor-jack manipulator; he_3 : human-robot + collaboration; A_8 : steel construction

228	$Tc_{190}A_{56}$	\$135	ca ₂₆	-	s_{135} : force sensor + tracker sensor + stereo camera; ca_{26} : fusion fuzzy, fuzzy logic, fuzzy set theory; A_{56} : remote construction
229	Tc ₁₆₀ A ₅₀	-	CA45	-	ca_{45} : discrete event simulation model; A_{50} : operation simulation
230	$Tc_{162}A_{50}$	\$57	ca ₇₉	-	s57: environmental sensor; ca79: RBF-PID Control; A50: operation simulation
231	Tc ₁₉₈ A ₅₆	56	ca ₇₉	-	s ₆ : torque/force sensor + force sensor; ca ₇₉ : RBF-PID Control; A ₅₆ : remote construction
232	Tc199A56	\$39	ca ₈₀	-	s ₃₉ : camera + image + CCD + Kinect; ea ₈₀ : augmented reality techniques (AR); A ₅₆ : remote construction
233	$Tc_{196}A_{50}$	56	CA ₈₄	-	s ₆ : torque/force sensor + force sensor; ca ₈₄ : Force feedback control; A ₅₀ : operation simulation
234	Tc201A50	S6	ca ₈₆	-	s_6 : torque/force sensor + force sensor; ca_{86} : master-slave system; A_{50} : operation simulation
235	$Tc_{86}A_{56}$	-	ca ₈₆	-	ca_{86} : master-slave system; A_{56} : remote construction
236	$Tm_{92}A_{44}$	a_2	hd ₂₄	hc ₂	a_2 : hydraulic; hd_{24} : climbing system; hc_2 : automatic; A_{44} :panel installation
237	Tm50A45	<i>a</i> ₃	hd36	hc ₂	a_3 : motor; hd_{36} : mobile arm, manipulator with wheels; he_2 : automatic; A_{45} : cleaning
238	$Tm_{66}A_{10}$	<i>a</i> ₃	hd25	hc ₂	a_3 : motor; hd_{25} : parallel robot; hc_2 : automatic; A_{10} : glass installation
239	$Tm_{14}A_8$	-	hd_7	hc ₂	hd_{7} : gantry robot, arm; he_{2} : automatic; A_{8} : steel construction
240	Tm54A26	a_2	hd ₆₁	hc3	a_2 : hydraulic; hd_{61} : excavator arm + double front; he_3 : human-robot + collaboration; A_{26} : remote operating machines
241	Tm_8A_{44}	a_3	hd_2	hc3	a_{i} : motor; hd_{2} : arm, manipulator + mounted; hc_{i} : human-robot + collaboration; A_{44} :panel installation
242	$Tc_{214}A_6$	-	ca ₁₀₄	-	ca_{10} : integral monitoring system; A_6 : building inspection
243	$Tc_{211}A_6$	\$109	CA 107	-	s_{100} : GPS + camera; ca_{107} : random walk algorithm; A_6 : building inspection
244	Tc49A17	\$157	ca ₁₁₂	-	s_{157} : Zigbee sensors + laser finder; ca_{112} : Ubiquitous Sensor Network; A_{17} : high rise building construction
245	$Tc_{164}A_{50}$	-	ca ₁₁₄	-	ca_{114} : behaviour-based system; A_{50} : operation simulation
246	Tc20A11	-	ca ₂₈	-	ca_{28} : motion simulation; A_{11} : wall construction
247	$Tc_{24}A_{40}$	58	ca ₃₈	-	s_8 : pressure sensor; ca_{38} : least squares algorithm; A_{40} : harbour construction
248	Tc155A52	\$108	ca ₆₂	-	s_{108} : camera + LED + light; ca_{62} : image processing; A_{52} : measurement
249	Tc94A30	\$109	CA62	-	s_{109} : GPS + camera; ca_{62} : image processing; A_{30} : Mars/Lunar construction
250	$Tb_{10}A_{52}$	-	bm ₁₀	-	bm_{10} : position + internal + error + force; A_{52} : measurement
251	Tb_4A_9	-	bm_4	-	bm4: motion + force + transmissibility; A9: tunnel construction
252	Tb_5A_{10}	-	bm5	-	bm_5 : safety + posture load + working environment + risk exposure time+ safety; A_{10} : glass installation
253	Tm ₁₁₉ A ₅₆	a_2	-	hc ₁	a_2 : hydraulic; he_1 : remote + operator; A_5 6: remote construction

		T				
254	$Tm_{68}A_{33}$	a_2	hd45	hc ₂	a_2 : hydraulic; hd_{45} : wearable; hc_2 : automatic; A_{33} : reduce lifting workload	
255	$Tm_{20}A_{12}$	<i>a</i> ₃	hd57	hc2	a_3 : motor; hd_{57} : wire, cable climb; he_2 : automatic; A_{12} : bridge construction	
256	$Tm_{10}A_{19}$	a_3	hd ₁₆	hc_2	a_3 : motor; hd_{16} : climbing platform + pediculate + gripper; hc_2 : automatic	
257	Tm_4A_{20}	a_3	hd_2	hc_2	a_3 : motor; hd_2 : arm, manipulator + mounted; he_2 : automatic; A_{20} : spraying	
258	Tm97A45	a5	hd26	hc2	a_5 : pneumatic + motor; hd_{26} : rail, vertical-moving robot; he_2 : automatic; A_{45} : cleaning	
259	$Tm_{148}A_8$	a_6	hd ₂₄	hc_2	a_6 : cable driven; hd_{24} : climbing system; hc_2 : automatic; A_8 : steel construction	cable driven
260	$Tm_{26}A_{17}$	-	hd49	hc_2	hd_{49} : robotized crane; hv_2 : automatic; A_{17} : high rise building construction	
261	$Tm_{28}A_{17}$	-	-	hc ₂	hc_2 : automatic; A_{17} : high rise building construction	
262	Tm28A19	-	-	hc2	hc_2 : automatic; A_{19} : building maintenance	
263	$Tm_{28}A_{38}$	-	-	hc ₂	hc_2 : automatic	
264	$Tm_{153}A_6$	<i>a</i> ₃	hd ₂	-	bd2: arm, manipulator + mounted; A6: building inspection	
265	Tm82A41	a_2	hd ₆₁	hc2	a_2 : hydraulic; hd_{61} : excavator arm + double front; he_2 : automatic; A_{41} : waste collection	
266	$Tc_{25}A_{9}$	\$39	ca ₁₁₅	-	s_{39} : camera + image + CCD + Kinect; ϵa_{115} : self-positioning algorithm; A_9 : tunnel construction	
267	Tc13A38	-	CA115	-	ca_{11} s: self-positioning algorithm; A_{38} : marking	
268	Tc ₁₃ A ₅₄	-	ca ₁₁₅	-	ca115: self-positioning algorithm; A54: arc welding	
269	$Tc_{125}A_{38}$	-	ca ₁₁₉	-	ca_{119} : error modification; A_{38} : marking	
270	Tc165A54	\$16	ca ₁₉	-	s_{16} : CCD camera + stereo sensor; A_{54} : arc welding	
271	Tc ₁₈₉ A ₅₆	-	ca ₂₆	-	ca_{26} : fusion fuzzy, fuzzy logic, fuzzy set theory; A_{56} : remote construction	
272	$Tc_{10}A_{11}$	\$25	ca29	-	s_{25} : infrared distance sensors + camera; ca_{25} : planning stigmergy + Linux-based computer; A_{17} : wall construction	
273	$Tc_{68}A_{22}$	<i>\$</i> 72	саз	-	s ₇₂ : camera + proximity sensor + F/T sensor ca ₃ : analytical model; A ₂₂ : masonry construction	
274	$Tc_{184}A_{56}$	-	ca ₆₂	-	ιa_{62} : image processing; A_{56} : remote construction	
275	$Tc_{48}A_{17}$	S ₁₁₉	ca ₆₇	-	s ₁₁₉ : optical (IR) sensor; ca ₆₇ : Kalman Filter Algorithm; A ₁₇ : high rise building construction	
276	$Tc_{100}A_{32}$	\$14	са73	-	s ₁₄ : laser; ca ₇₃ : Machine Learning; A ₃₂ : machinery navigation	
277	$Tc_{191}A_{56}$	-	ca ₈₄	-	ιa_{84} : Force feedback control; A_{56} : remote construction	
278	$Tc_{86}A_{25}$	-	ca ₈₆	-	ca_{86} : master-slave system; A_{25} : grasp soft objects	
279	$Tc_{86}A_{25}$	-	ca ₈₆	-	ca_{86} : master-slave system; A_{25} : grasp soft objects	
		_				

280	$Tc_{86}A_{25}$	-	са86	-	ca_{86} : master-slave system; A_{25} : grasp soft objects
281	Tc35A12	\$14	ca ₉₀	-	s ₁₄ : laser; ca ₉₀ : C++, Java, C# script, C program; A ₁₂ : bridge construction
282	$Tb_{11}A_{56}$	-	bm11	-	bm_{1i} : grasping + force + perception; A_{56} : remote construction
283	$Tm_{115}A_{55}$	a_3	hd4	hc_2	a_3 : motor; hd_4 : arm + slider pulley; he_2 : automatic; A_{55} : underwater work
284	$Tm_{27}A_{28}$	a ₃	hd46	hc_2	a_3 : motor; hd_{46} : wheel + magnetic gripper; hc_2 : automatic; A_{28} : ceiling construction
285	$Tm_{129}A_6$	a_3	hd ₇₄	hc_2	a_3 : motor; hd_{74} : worm-like, snake-like robot; he_2 : automatic; A_6 : building inspection
286	$Tm_{22}A_6$	<i>a</i> ₃	hd32	hc2	a_3 : motor; hd_{32} : wheel mobile; hc_2 : automatic; A_6 : building inspection
287	$Tm_{28}A_{38}$	-	-	hc_2	hc_2 : automatic; A_{38} : marking
288	$Tm_{63}A_3$	a_3	hd32	hc3	a_3 : motor; hd_{32} : wheel mobile; he_3 : human-robot + collaboration; A_3 : building service
289	Tm ₆₄ A ₁₀	-	hd30	hc3	hd_{30} : industrial robot; he_3 : human-robot + collaboration; A_{10} : glass installation
290	Tc84A29	-	ca ₁₀	-	ca_{10} : heuristic algorithm, heuristics; A_{29} : material, sorting, delivery, distribution
291	$Tc_{109}A_{32}$	-	ca ₁₁₂	-	ca_{112} : Ubiquitous Sensor Network; A_{32} : machinery navigation
292	Tc53A19	S54	ca ₁₁₆	-	s54: laser + cameras + Kinect; ca116: segmentation approach; A19: building maintenance
293	Tc ₁₈ A ₁₁	S ₂₆	ca ₃₀	-	s_{26} : shock sensor + infrared ray sensor + laser sensor, magnetic sensor; ca_{30} : encoder failure detection algorithm; A_{11} : wall construction
294	$Tc_{157}A_{50}$	-	са37	-	ca_{37} : intelligent beacon; A_{50} : operation simulation
295	$Tc_{62}A_{20}$	<i>\$37</i>	CA40	-	s_{37} : ultrasonic sensor + 2D LIDAR; ϵa_{40} : collision avoidance algorithms, feed forward control algorithms; A_{20} : spraying
296	$Tc_{33}A_{24}$	-	CA49	-	ca_{49} : genetic algorithms (GA); A_{24} : machinery path management
297	Tc ₈₇ A ₃₇	S8	ca ₅	-	s_8 : pressure sensor; ca_5 : PI controller, active control algorithm; A_{37} : timer construction
298	Tc96A31	-	CA54	-	ca_{54} : inverse position equation; A_{31} : slab finishing
299	$Tc_{27}A_{56}$	-	ca ₉₀	1	ca_{90} : C++, Java, C# script, C program; A_{56} : remote construction
300	$Tc_{114}A_{34}$	\$54	ca ₉₅	1	s_{54} : laser + cameras + Kinect; ca_{95} : PLC; A_{34} : components assemble
301	$Tb_{10}A_{35}$	-	bm ₁₀	1	bm_{10} : position + internal + error + force; A_{35} : construction activity evaluation
302	Tm ₁₀₇ A ₅	-	-	hc ₁	he_i : remote + operator; A_5 : earthmoving construction
303	$Tm_{13}A_{29}$	a_3	hd7	hc2	hd_7 : gantry robot, arm; he_2 : automatic; A_{29} : material, sorting, delivery, distribution
304	Tm ₁₄₀ A ₆₃	a ₆	hd57	hc2	a_6 : cable driven; hd_{57} : wire, cable climb; he_2 : automatic; A_6 : building inspection; A_{63} : contour crafting
305	$Tm_{51}A_7$	-	hd30	hc ₂	hd_{30} : industrial robot; hv_2 : automatic; A_7 : excavation

306	$Tm_{147}A_8$	a_2	hd7	hc3	a_2 : hydraulic; hd_7 : gantry robot, arm; he_3 : human-robot + collaboration; A_8 : steel construction
307	$Tm_{149}A_{10}$	a ₃	hd ₆₂	hc3	a_3 : motor; hd_{62} : caterpillar + 6-DOF manipulator + vacuum pad; hc_3 : human-robot + collaboration; A_{10} : glass installation
308	Tm_8A_8	a_3	hd_2	hc3	a_3 : motor; hd_2 : arm, manipulator + mounted; he_3 : human-robot + collaboration; A_8 : steel construction
309	$Tm_{58}A_{28}$	-	hd44	hc3	hd_{44} : manipulator + vacuum suction + wheel mobility; he_3 : human-robot + collaboration; A_{28} : ceiling construction
310	$Tm_{64}A_{10}$	-	hd30	hc3	hd_{30} : industrial robot; he_3 : human-robot + collaboration; A_{10} : glass installation
311	Tc34A29	\$39	ca ₁₁₂	-	s_{39} : camera + image + CCD + Kinect; ca_{112} : Ubiquitous Sensor Network; A_{29} : material, sorting, delivery, distribution
312	Tc156A50	\$39	ca ₂₆	-	\$39: camera + image + CCD + Kinect; \$\cap a_{26}\$: fusion fuzzy, fuzzy logic, fuzzy set theory; \$A_{50}\$: operation simulation
313	$Tc_{160}A_{50}$	-	ca ₄₅	-	ca_{45} : discrete event simulation model; A_{50} : operation simulation
314	$Tc_{160}A_{50}$	-	ca ₄₅	-	ca_{45} : discrete event simulation model; A_{50} : operation simulation
315	$Tc_{58}A_2$	S64	ca ₆₀	-	s_{64} : force + laser; ca_{60} : workflow method; A_2 : titling placing
316	Tc ₁₈₅ A ₅₆	\$136	ca ₆₂	-	s_{136} : camera + position + pressure; ca_{62} : image processing; A_{56} : remote construction
317	$Tc_{66}A_{21}$	\$39	ca ₆₂	-	s_{39} : camera + image + CCD + Kinect; ca_{62} : image processing; A_{29} : pipe construction
318	Tc21A34	-	ca ₇₅	-	ca_{75} : IFC + BIM; A_{34} : components assemble
319	$Tc_{228}A_8$	\$92	ca ₉₂	-	s_{92} : robust sensor + pressure sensors + force sensors; ca_{92} : Virtual Reality; A_8 : steel construction
320	$Tc_{30}A_{12}$	\$39	ca ₉₈	-	s_{39} : camera + image + CCD + Kinect; ca_{98} : tree-Based algorithm; A_{12} : bridge construction
321	Tc113A34	-	CA98	-	ca_{98} : tree-Based algorithm; A_{34} : components assemble
322	$Tm_{137}A_{55}$	a_2	hd_2	hc ₁	a_2 : hydraulic; hd_2 : arm, manipulator + mounted; he_i : remote + operator; A_{55} : underwater work
323	$Tm_{131}A_6$	a_3	hd ₇₁	hc ₂	a_3 : motor; hd_{71} : wheel + platform + caterpillar; hc_2 : automatic; A_6 : building inspection
324	$Tm_{121}A_{57}$	a_3	hd ₈₃	hc2	a3: motor; hd_{83} : furniture system, terminal wall system; hc_2 : automatic; A_{57} : improve home living environment
325	$Tm_{47}A_5$	a_3	hd ₅₈	hc_2	a_3 : motor; hd_{58} : UAV; hc_2 : automatic; A_5 : earthmoving construction
326	Tm_4A_6	a_3	hd_2	hc ₂	a_3 : motor; hd_2 : arm, manipulator + mounted; he_2 : automatic; A_6 : building inspection
327	$Tm_{31}A_2$	-	hd_1	hc2	hd_1 : humanoid; hc_2 : automatic; A_2 : titling placing
328	$Tm_{26}A_{10}$	-	hd49	hc ₂	hd_{49} : robotized crane; hc_2 : automatic; A_{10} : glass installation
329	$Tm_{46}A_{34}$	-	hd ₅₈	hc ₂	hd_{58} : UAV; hc_2 : automatic; A_{34} : components assemble
330	$Tm_{105}A_{47}$	a_2	hd_2	hc3	a_2 : hydraulic; hd_2 : arm, manipulator + mounted; he_3 : human-robot + collaboration; A_{47} : mining
331	Tm ₇₂ A ₃₄	-	hd ₄₂	hc3	hd_{42} : mobile vehicle + aerial lift + manipulator + vacuum suction device; hc_3 : human-robot + collaboration; A_{34} : components assemble

332	$T_{c_{67}}A_{21}$	-	ca ₁₀₁	-	ca_{101} : robust algorithm; A_{21} : pipe construction
333	Tc111A32	\$143	ca ₁₀₅	-	s ₁₄₅ : GPS + IMU; ca ₁₀₅ : A* algorithm, A-star; A ₃₂ : machinery navigation
334	$Tc_{40}A_{14}$	\$127	ca ₁₁₃	-	s_{127} : 3D sensor; ca_{113} : velocity control; A_{14} : equipment positioning
335	$Tc_{158}A_{52}$	S ₆	ca ₁₁₃	-	s_6 : torque/force sensor + force sensor; ca_{115} : velocity control; A_{52} : measurement
336	Tc ₁₀₈ A ₃₄	\$54	ca ₁₁₈	-	s_{54} : laser + cameras + Kinect; ca_{118} : SLAM; A_{34} : components assemble
337	$Tc_{135}A_{54}$	\$39	ca ₂₀	-	s_{39} : camera + image + CCD + Kinect; ca_{20} : vision based gesture estimation, CARLoS Scenario; A_{54} : arc welding
338	$Tc_{61}A_{20}$	\$39	CA41	-	s_{39} : camera + image + CCD + Kinect; ca_{4f} : timing algorithm; A_{20} : spraying
339	$Tc_{85}A_{25}$	-	ca ₅₀	-	ca_{50} : kinematic connection; A_{25} : grasp soft objects
340	$Tc_{21}A_{22}$	-	ca ₇₅	-	ca_{75} : IFC + BIM; A_{22} : masonry construction
341	Tc199A56	\$39	ca ₈₀	-	339: camera + image + CCD + Kinect; caso: augmented reality techniques (AR); A56: remote construction
342	$Tc_{202}A_{56}$	\$136	ca ₈₆	-	s_{136} : camera + position + pressure; ca_{86} : master-slave system; ca_{86} : master-slave system; A_{56} : remote construction
343	$Tb_{12}A_{35}$	-	bm_{12}	-	bm_{12} : sustainability +performance + environment; A_{35} : construction activity evaluation
344	Tm30A19	a_2	hd57	hc ₂	a_2 : hydraulic; hd_{57} : wire, cable climb; he_2 : automatic; A_{19} : building maintenance
345	$Tm_{116}A_{55}$	a_3	hd5	hc ₂	a_3 : motor; hd_5 : multi-fingered, hand + gear + belt; hc_2 : automatic; A_{55} : underwater work
346	$Tm_{121}A_{57}$	a_3	hd ₈₃	hc_2	a_3 : motor; hd_{83} : furniture system, terminal wall system; hc_2 : automatic; A_{57} : improve home living environment
347	Tm_2A_6	<i>a</i> ₃	hd52	hc ₂	a_3 : motor; hd_{52} : mobile vehicle; he_2 : automatic; A_6 : building inspection
348	$Tm_{52}A_{29}$	a_6	hd ₁₃	hc ₂	a_6 : cable driven; hd_{13} : mobile platform + arm, manipulator; he_2 : automatic; A_{29} : material, sorting, delivery, distribution
349	$Tm_{43}A_{22}$	-	hd54	hc_2	hd_{54} : vacuum gripper + arm; hc_2 : automatic; A_{22} : masonry construction
350	$Tm_{29}A_{28}$	a ₃	hd45	hc3	hd_{45} : wearable; he_{3} : human-robot + collaboration; A_{28} : ceiling construction
351	Tc136A14	\$126	ca ₁₀₈	-	s_{126} : laser + camera + tempo sonics; ca_{108} : positioning system; A_{14} : equipment positioning
352	Tc177A56	56	ca ₂₀	-	s6: torque/force sensor + force sensor; ca20: vision based gesture estimation, CARLoS Scenario; A56: remote construction
353	Tc ₁₂₂ A ₅₄	-	ca ₂₁	-	ca_{21} : optimizing welding sequence; A_{54} : arc welding
354	$Tc_{180}A_{55}$	-	ca ₃	-	cas: analytical model; Ass: underwater work
355	Tc45A18	S39	CA44	-	539: camera + image + CCD + Kinect; ca44: 3D printer control; A18: large-scale building construction
356	Tc ₁₄₈ A ₂₉	\$85	ca ₇₃	-	\$\int_{85}\$: pressure sensor + speed sensor + proximity sensors; \$\ilde{ca}_{73}\$: Machine Learning; \$A_{29}\$: material, sorting, delivery, distribution
357	Tc76A34	-	са73	-	ca_{75} : Machine Learning; A_{34} : components assemble

358	$Tc_{21}A_{22}$	-	CA75	-	ca_{75} : IFC + BIM; A_{22} : masonry construction
359	Tc195A56	-	са78	-	ca_{78} : torque measure methods; A_{56} : remote construction
360	$Tc_{203}A_{56}$	\$39	ca ₈₆	-	s_{39} : camera + image + CCD + Kinect; ca_{86} : master-slave system; A_{56} : remote construction
361	$Tc_{218}A_{61}$	-	ca ₉	-	cas: performance test, evaluation; ccc
362	$Tc_{28}A_{12}$	S96	CA99	-	s_{96} : camera + accelerometers; ca_{99} : dedicated smart sensors; A_{12} : bridge construction
363	Tb_6A_{12}	-	bm_6	-	bm_6 : cost + quality; A_{12} : bridge construction
364	$Tm_{108}A_5$	a_2	hd32	hc ₁	a_2 : hydraulic; hd_{32} : wheel mobile; hc_1 : remote + operator; A_5 : earthmoving construction
365	$Tm_{136}A_6$	a_3	hd ₁₉	hc ₁	a_3 : motor; hd_{19} : climbing platforms + vacuum grippers + suction; he_i : remote + operator; A_6 : building inspection
366	Tm1 ₂₀ A ₅₆	a_3	hd32	hc ₁	a_3 : motor; hd_{32} : wheel mobile; hc_i : remote + operator; A_{56} : remote construction
367	Tm ₁₁₀ A ₅₀	<i>a</i> ₄	hd52	hc ₁	a_4 : electro + hydraulic; hd_{52} : mobile vehicle; he_i : remote + operator; A_{50} : operation simulation
368	Tm44A22	a_6	hd26	hc2	a_6 : cable driven; hd_{26} : rail, vertical-moving robot; hc_2 : automatic; A_{22} : masonry construction
369	Tm ₁₀₉ A ₃₇	-	hd ₇₈	hc ₂	hd_{78} : collaborative, multi, team, multiple; he_2 : automatic; A_{37} : timer construction
370	Tm ₁₀₉ A ₅₀	-	hd78	hc2	hd_{78} : collaborative, multi, team, multiple; hc_2 : automatic; A_{50} : operation simulation
371	$Tm_{14}A_{37}$	-	hd_7	hc_2	hd_7 : gantry robot, arm; he_2 : automatic; A_{37} : timer construction
372	$Tm_{23}A_{29}$	-	hd ₃₂	hc ₂	hd_{32} : wheel mobile; hc_2 : automatic; A_{29} : material, sorting, delivery, distribution
373	$Tm_{74}A_{34}$	a ₃	hd ₉	hc3	a_3 : motor; hc_3 : human-robot + collaboration; A_3 4: components assemble
374	$Tm_{29}A_{29}$	a_3	hd45	hc3	a_3 : motor; hd_{45} : wearable; he_3 : human-robot + collaboration; A_{29} : material, sorting, delivery, distribution
375	$Tm_{73}A_{34}$	-	hd30	hc3	hd_{30} : industrial robot; hc_3 : human-robot + collaboration; A_{34} : components assemble
376	$Tc_{83}A_{24}$	\$39	ca ₁₀₅	-	539: camera + image + CCD + Kinect; ca105: A* algorithm, A-star; A24: machinery path management
377	Tc ₁₁₀ A ₃₂	S ₁₄	ca ₁₁₀	-	s_{14} : laser; ca_{110} : Iterative Closest Point (ICP) algorithm; ca_{110} : Iterative Closest Point (ICP) algorithm; A_{32} : machinery navigation
378	$Tc_{234}A_{52}$	S6	ca ₁₁₄	-	s_6 : torque/force sensor + force sensor; ca_{114} : behaviour-based system; A_{52} : measurement
379	$Tc_{16}A_{58}$	-	ca ₃₂	-	ca_{32} : parametric-integrated algorithm, parametric synthesis; A_{58} : finishing
380	$Tc_{238}A_{55}$	-	ca4	-	ca_4 : estimate ego-position; A_{55} : underwater work
381	Tc44A16	-	CA44	-	ca_{44} : 3D printer control; A_{16} : concrete printing
382	Tc44A16	-	CA44	-	ca_{44} : 3D printer control; A_{16} : concrete printing
383	Tc44A16	-	ca ₄₄	-	ca_{44} : 3D printer control; A_{16} : concrete printing

384	Tc44A16	-	CA44	-	ca44: 3D printer control; A16: concrete printing
385	Tc ₈₇ A ₅₅	S8	ca5	-	sg: pressure sensor; cas: PI controller, active control algorithm; A55: underwater work
386	Tc2 ₁₇ A ₆₀	-	ca ₅₇	-	ca_{57} : C-K Theory; A_{60} : drilling
387	Tc ₁₇₆ A ₅₅	S ₆	ca ₆	-	s; torque/force sensor + force sensor; ca; pure-pursuit method; A55: underwater work
388	$Tc_{77}A_{22}$	-	ca ₇₂	-	ca72: Particle Swarm Optimization (PSO) algorithms; A22: masonry construction
389	$Tc_{223}A_{50}$	S43	ca ₇₃	-	s43: joint sensor; ca73: Machine Learning; ca73: Machine Learning; A50: operation simulation
390	Tc73A8	\$14	ca75	-	s ₁₄ : laser; ca ₇₅ : IFC + BIM; A ₈ : steel construction
391	$Tc_{21}A_3$	-	ca ₇₅	-	ca75: IFC + BIM; A3: building service
392	Tc ₁₂ 0A ₃₄	\$127	ca ₈₂	-	\$127: 3D sensor; \$\alpha a_{82}\$: Generalized Resolution Correlative Scan Matching (GRCSM); \$A_{34}\$: components assemble
393	Tc ₂₀₄ A ₅₆	\$137	ca ₈₆	-	s_{137} : position sensors + magnetic stroke sensors + pressure sensors; ca_{86} : master-slave system; ca_{86} : master-slave system; A_{56} : remote construction
394	Tc ₂₇ A ₃₄	-	CA90	-	ca_{90} : C++, Java, C# script, C program; A_{34} : components assemble
395	$Tc_{221}A_{62}$	\$39	CA94	-	s_{39} : camera + image + CCD + Kinect; ca_{94} : Raspberry Pi; A_{62} : fire curtain testing
396	Tc98A32	\$82	CA96	-	s_{82} : laser + lidar; c_{a96} : real time navigation; c_{a96} : real time navigation; A_{32} : machinery navigation
397	Tb_1A_{11}	-	bm_1	-	bm_i : environmental + life cycle Assessment (LCA); A_{1i} : wall construction
398	$Tm_{104}A_{45}$	a_3	hd35	hc ₁	hd_{35} : bucket + arm; he_i : remote + operator; A_{45} : cleaning
399	$Tm_{138}A_6$	a_3	hd_2	hc ₁	hd_2 : arm, manipulator + mounted; he_i : remote + operator; A_6 : building inspection
400	$Tm_{65}A_{30}$	a_1	hd_{70}	hc_2	a_1 : pneumatic; hd_{70} : mobility feet, leg, limbed; hc_2 : automatic; A_{30} : Mars/Lunar construction
401	$Tm_{45}A_{22}$	a_3	hd59	hc ₂	a_3 : motor; hd_{59} : scissor lift + aerial bucket + manipulator arm; he_2 : automatic; A_{22} : masonry construction
402	$Tm_{47}A_6$	a_3	hd58	hc ₂	a3: motor; hd_{58} : UAV; hc_2 : automatic; A_6 : building inspection
403	$Tm_{22}A_{15}$	a_3	hd ₃₂	hc ₂	a_3 : motor; hd_{32} : wheel mobile; hc_2 : automatic; A_{15} : building quality assessment
404	$Tm_{22}A_6$	a_3	hd ₃₂	hc ₂	a_3 : motor; hd_{32} : wheel mobile; he_2 : automatic; A_6 : building inspection
405	$Tm_{16}A_{11}$	a_6	hd ₂₅	hc ₂	a_6 : cable driven; hd_{25} : parallel robot; hc_2 : automatic; A_{11} : wall construction
406	$Tm_{15}A_{11}$	-	hd ₂₃	hc ₂	hd_{23} : mobile + light + manipulator + rail; hc_2 : automatic; A_{11} : wall construction
407	Tm ₆₇ A ₆₀	-	hd75	hc ₂	hd_{75} : clamping manipulator; hc_2 : automatic; A_{60} : drilling
408	Tm111A52	-	hd16	hc2	hd_{16} : climbing platform + pediculate + gripper; $h\iota_2$: automatic; A_{52} : measurement
409	$Tm_{46}A_6$	-	hd58	hc ₂	hd_{58} : UAV; hc_2 : automatic; A_6 : building inspection

410	Tm23A15	-	hd32	hc2	hd_{32} : wheel mobile; $h\iota_2$: automatic; A_{15} : building quality assessment
411	Tm77A9	-	hd_2	hc ₂	hd2: arm, manipulator + mounted; hc2: automatic; A9: tunnel construction
412	$Tm_{28}A_6$	-	-	hc_2	hc_2 : automatic; A_6 : building inspection
413	$Tm_{75}A_{34}$	a_5	hd_7	hc3	hd_7 : gantry robot, arm; A_{34} : components assemble
414	$Tm_{64}A_3$	-	hd30	hc3	hd_{30} : industrial robot; hc_3 : human-robot + collaboration; A_3 : building service
415	$Tc_{99}A_{32}$	\$109	ca ₁₀₃	-	s_{109} : GPS + camera; ca_{109} : motion planning; A_{32} : machinery navigation
416	Tc84;	-	ca ₁₀₃	-	ca103: motion planning; A24: machinery path management
417	Tc ₈₄ A ₃₃	-	ca ₁₀₃	-	ca103: motion planning; A33: reduce lifting workload
418	$Tc_{84}A_{45}$	-	ca ₁₀₃	-	ca ₁₀₃ : motion planning; A ₄₅ : cleaning
419	Tc142A46	\$14	ca ₁₁₀	-	s_{14} : laser; ca_{110} : Iterative Closest Point (ICP) algorithm; A_{46} : machinery mapping
420	Tc174A55	-	ca ₁₁₃	-	ca_{113} : velocity control; A_{55} : underwater work
421	$Tc_{107}A_{32}$	\$29	ca ₁₁₈	-	s_{29} : camera + laser + lidar; ca_{118} : SLAM; A_{32} : machinery navigation
422	Tc38A32	\$39	ca ₁₁₈	-	\$39: camera + image + CCD + Kinect; \$\alpha a_{118}\$: SLAM; \$A_{32}\$: machinery navigation
423	$Tc_{38}A_{32}$	\$39	ca ₁₁₈	-	s_{39} : camera + image + CCD + Kinect; ϵa_{118} : SLAM; A_{32} : machinery navigation
424	$Tc_{233}A_{43}$	S ₆	ca ₁₇	1	s_6 : torque/force sensor + force sensor; ca_{17} : admittance control; A_{43} : joint filling
425	Tc17A11	S28	ca31	-	s_{28} : alignment sensor + brake check sensor + obstacle detecting sensors + laser sensors + ultrasonic sensor + HMR sensor; ca_{31} : wireless communication + wireless Lan; A_{11} : wall construction
426	$Tc_{225}A_7$	S48	ca ₃₁	-	s_{48} : work environment sensors + GPS + IMU + lidar; ca_{31} : wireless communication + wireless Lan; A_7 : excavation
427	Tc45A18	\$39	CA44	-	s ₃₉ : camera + image + CCD + Kinect; e ₄₄ : 3D printer control; A ₁₈ : large-scale building construction
428	$Tc_{50}A_{18}$	S48	CA44	-	s_{48} : work environment sensors + GPS + IMU + lidar; s_{44} : 3D printer control; A_{18} : large-scale building construction
429	Tc ₁₇₈ A ₅₅	S ₆	ca ₅	-	s_6 : torque/force sensor + force sensor; ca_5 : PI controller, active control algorithm; A_{55} : underwater work
430	$Tc_{103}A_{32}$	\$109	ca ₇₃	1	s_{109} : GPS + camera; ca_{73} : Machine Learning; A_{32} : machinery navigation
431	$Tc_{150}A_{50}$	S ₁₄₆	ca ₇₃	-	s_{146} : Kinect + accelerometers + IMUs; ca_{73} : Machine Learning; A_{50} : operation simulation
432	Tc ₁₂₇ A ₃₉	S ₁₅₈	са ₇₃	-	s_{158} : depth sensor + colour sensors + camera; ca_{73} : Machine Learning; A_{39} : hazard detection
433	Tc32A51	\$39	са73	-	s_{39} : camera + image + CCD + Kinect; ϵa_{73} : Machine Learning, A_{51} : pose estimation
434	Tc32A59	\$39	са73	-	539: camera + image + CCD + Kinect; 6273: Machine Learning; A59: object recognition
435	$Tc_{32}A_6$	\$39	ca ₇₃	-	s_{39} : camera + image + CCD + Kinect; ϵu_{73} : Machine Learning; A_6 : building inspection

436	Tc76A36	-	са73	-	ca_{73} : Machine Learning; A_{36} : diagnosis detection
437	Tc76A36	-	са73	-	ca73: Machine Learning; A36: diagnosis detection
438	$Tc_{73}A_{22}$	\$14	ca ₇₅	-	s_{14} : laser; ca_{75} : IFC + BIM; A_{22} : masonry construction
439	$Tc_{37}A_{13}$	\$29	ca ₇₅	-	s_{29} : camera + laser + lidar; ϵa_{75} : IFC + BIM; A_{13} : construction monitoring
440	$T_{c_{21}}A_{15}$	-	ca75	-	ca_{75} : IFC + BIM; A_{15} : building quality assessment
441	$Tc_{21}A_{15}$	-	ca ₇₅	-	ca_{75} : IFC + BIM; A_{15} : building quality assessment
442	$T_{c_{21}}A_{63}$	-	CA75	-	ca_{75} : IFC + BIM; A_{63} : contour crafting
443	$Tc_{21}A_9$	-	ca ₇₅	-	ca75: IFC + BIM; A9: tunnel construction
444	$Tc_{198}A_{55}$	56	ca ₇₉	-	s_6 : torque/force sensor + force sensor; ca_{79} : RBF-PID Control; A_{55} : underwater work
445	Tc12A43	\$129	ca ₈₂	-	s ₁₂₉ : optical + ultrasonic + laser; ca ₈₂ : Generalized Resolution Correlative Scan Matching (GRCSM); A ₄₃ : joint filling
446	Tc12A43	\$129	ca ₈₂	-	s ₁₂₉ : optical + ultrasonic + laser; ca ₈₂ : Generalized Resolution Correlative Scan Matching (GRCSM); A ₄₃ : joint filling
447	$Tc_{69}A_{22}$	-	ca ₈₂	-	ca82: Generalized Resolution Correlative Scan Matching (GRCSM); A22: masonry construction
448	Tc203A56	\$39	ca ₈₆	-	s39: camera + image + CCD + Kinect; ca86: master-slave system; A56: remote construction
449	Tc ₈₆ A ₃₄	-	ca ₈₆	-	ca_{86} : master-slave system; A_{34} : components assemble
450	$Tc_{173}A_{55}$	56	ca ₉	-	s_6 : torque/force sensor + force sensor; ca_9 : performance test, evaluation; A_{55} : underwater work
451	Tb14A35	-	bm ₁₄	-	bm_{14} : cost + productivity + efficiency; A_{35} : construction activity evaluation
452	$Tb_{15}A_{16}$	-	bm ₁₅	-	bm_1 ;: mental workload; A_1 6: concrete printing
453	$Tm_{99}A_{45}$	a_3	hd37	hc_2	a3: motor; hd37: reconfigurable + platform; he2: automatic; A45: cleaning
454	$Tm_{154}A_6$	a ₃	hd46	hc ₂	a_3 : motor; hd_{46} : wheel + magnetic gripper; hc_2 : automatic; A_6 : building inspection
455	$Tm_{98}A_{45}$	a_3	hd ₁₉	hc_2	a_3 : motor; hd_{19} : climbing platforms + vacuum grippers + suction; he_2 : automatic; A_{45} : cleaning
456	$Tm_{133}A_{6}$	a ₃	hd3	hc ₂	a_3 : motor; hd_3 : crawler; he_2 : automatic; A_6 : building inspection
457	Tm_2A_6	<i>a</i> ₃	hd52	hc2	a3: motor; hd52: mobile vehicle; hc2: automatic
458	$Tm_{22}A_6$	a_3	hd32	hc_2	a_3 : motor; hd_{32} : wheel mobile; he_2 : automatic; A_6 : building inspection
459	Tm_4A_6	a_3	hd_2	hc ₂	a_3 : motor; hd_2 : arm, manipulator + mounted; hc_2 : automatic; A_6 : building inspection
460	$Tm_{42}A_{22}$	a_6	hd53	hc_2	a_6 : cable driven; hd_{53} : wireless gripper, winch; he_2 : automatic; A_{22} : masonry construction
461	$Tm_{44}A_{22}$	a_6	hd ₂₆	hc ₂	a_6 : cable driven; hd_{26} : rail, vertical-moving robot; he_2 : automatic; A_{22} : masonry construction

462	$Tm_{16}A_{11}$	a_6	hd ₂₅	hc ₂	a_6 : cable driven; hd_{25} : parallel robot; hc_2 : automatic; A_{11} : wall construction
463	Tm76A34	a_6	hd25	hc2	a_6 : cable driven; hd_{25} : parallel robot; he_2 : automatic; A_{34} : components assemble
464	$Tm_{114}A_{54}$	-	hd ₁₄	hc ₂	hd_{14} : changeable cell; hc_2 : automatic; A_{54} : arc welding
465	$Tm_{132}A_6$	-	hd ₇₂	hc ₂	hd_{72} : Hammering; hv_2 : automatic; A_6 : building inspection
466	$Tm_{132}A_6$	-	hd ₇₂	hc ₂	hd_{72} : Hammering; he_2 : automatic; A_6 : building inspection
467	Tm_6A_{11}	-	hd ₁₃	hc ₂	hd_{13} : mobile platform + arm, manipulator; he_2 : automatic; A_{13} : wall construction
468	Tm_5A_{11}	-	hd ₂₇	hc2	hd_{27} : AGV, unmanned ground vehicle; he_2 : automatic; A_{11} : wall construction
469	$Tm_{46}A_{22}$	-	hd58	hc ₂	hd58: UAV; he2: automatic; A22: masonry construction
470	$Tm_{23}A_{30}$	-	hd ₃₂	hc ₂	hd_{32} : wheel mobile; hc_2 : automatic; A_{30} : Mars/Lunar construction
471	$Tm_{77}A_6$	-	hd2	hc ₂	hd_2 : arm, manipulator + mounted; he_2 : automatic; A_6 : building inspection
472	Tm28A19	-	-	hc ₂	hc_2 : automatic; A_{19} : building maintenance
473	$Tm_{28}A_{28}$	-	-	hc ₂	hc_2 : automatic; A_{28} : ceiling construction
474	$Tm_{125}A_6$	<i>a</i> ₃	hd73	hc3	a_3 : motor; hd_{73} : magnetic wheel; he_3 : human-robot + collaboration; A_6 : building inspection
475	$Tc_{212}A_6$	\$54	ca ₁₀₆	-	s_{54} : laser + cameras + Kinect; ca_{106} : point cloud data control; A_6 : building inspection
476	Tc ₁₃₁ A ₃₆	\$39	ca ₁₁₀	-	s_{39} : camera + image + CCD + Kinect; ϵa_{110} : Iterative Closest Point (ICP) algorithm; A_{36} : diagnosis detection
477	Tc9A11	\$29	ca ₁₁₈	-	s_{29} : camera + laser + lidar; ca_{118} : SLAM; A_{11} : wall construction
478	$Tc_{123}A_{24}$	S48	ca ₁₁₈	-	s_{48} : work environment sensors + GPS + IMU + lidar; ca_{118} : SLAM; A_{24} : machinery path management
479	$Tc_{108}A_{24}$	S54	ca ₁₁₈	-	s_{54} : laser + cameras + Kinect; ca_{118} : SLAM; A_{24} : machinery path management
480	Tc139A54	S19	ca ₂₂	-	\$19: 3D laser + camera + torch sensor + galvanometer scanner; \$\alpha_{22}\$: BIM+ Augmented Reality+Human-Machine Interfaces (IMUs); \$A_{54}\$: arc welding; \$A_{22}\$: masonry construction
481	Tc ₁₃₃ A ₃₃	S39	ca ₂₂	-	\$39: camera + image + CCD + Kinect; \$\alpha 22:\$ BIM+ Augmented Reality+Human-Machine Interfaces (IMUs); \$A_{33}\$: reduce lifting workload
482	Tc159A54	-	CA23	-	ca_{23} : power line communication net; A_{54} : arc welding
483	Tc14A11	S31	CA34	-	s_{31} : tactile senses + force sensor; ca_{34} : Anderson Passive control theory; A_{11} : wall construction
484	Tc44A11	-	CA44	-	ca_{44} : 3D printer control; A_{11} : wall construction
485	Tc44A18	-	CA44	-	ca_{44} : 3D printer control; A_{18} : large-scale building construction
486	$Tc_{60}A_2$	S ₁₄	CA46	-	s_{14} : laser; ca_{46} : embedded, embedding, controller; A_2 : titling placing

487	$Tc_{60}A_{29}$	\$14	CA46	-	s_{14} : laser; ca_{46} : embedded, embedding, controller; A_{29} : material, sorting, delivery, distribution
488	Tc90A29	\$39	ca58	-	s39: camera + image + CCD + Kinect; ca58: soft additive fabrication; A29: material, sorting, delivery, distribution
489	$Tc_{102}A_{32}$	\$39	ca ₆₆	-	s39: camera + image + CCD + Kinect; ca66: geodetical method; A32: machinery navigation
490	$Tc_{32}A_{15}$	\$39	ca ₇₃	-	s_{39} : camera + image + CCD + Kinect; ca_{75} : Machine Learning; A_{15} : building quality assessment
491	Tc32A32	\$39	CA73	-	s ₃₉ : camera + image + CCD + Kinect; ca ₇₃ : Machine Learning; A ₃₂ : machinery navigation
492	$Tc_{32}A_{32}$	\$39	ca ₇₃	-	s ₃₉ : camera + image + CCD + Kinect; ca ₇₃ : Machine Learning; A ₃₂ : machinery navigation
493	Tc32A50	\$39	CA73	-	s39: camera + image + CCD + Kinect; ca73: Machine Learning; A50: operation simulation
494	Tc32A51	\$39	ca ₇₃	-	s ₃₉ : camera + image + CCD + Kinect; ca ₇₃ : Machine Learning, A ₅₁ : pose estimation
495	Tc4A50	S ₆	ca ₇₃	-	s_6 : torque/force sensor + force sensor; ca_{73} : Machine Learning; A_{50} : operation simulation
496	Tc76A22	-	са73	-	ca_{73} : Machine Learning; A_{22} : masonry construction
497	$Tc_{76}A_{28}$	-	са73	-	ca_{73} : Machine Learning; A_{28} : ceiling construction
498	Tc76A33	-	ca ₇₃	-	ca73: Machine Learning; A33: reduce lifting workload
499	Tc76A36	-	са73	-	ca73: Machine Learning; A36: diagnosis detection
500	$Tc_{206}A_{58}$	S ₁₉	ca ₇₅	-	s_{19} : 3D laser + camera + torch sensor + galvanometer scanner; ca_{75} : IFC + BIM; A_{58} : finishing
501	Tc ₉₂ A ₃₀	S54	ca ₇₅	-	s_{54} : laser + cameras + Kinect; ca_{75} : IFC + BIM; A_{30} : Mars/Lunar construction
502	Tc92A38	S54	CA75	-	s54: laser + cameras + Kinect; ca75: IFC + BIM; A38: marking
503	Tc ₂₁ A ₃₇	-	ca ₇₅	-	ca_{75} : IFC + BIM; A_{37} : timer construction
504	Tc193A56	\$140	са77	-	s ₁₄₀ : pressure sensor + electronic compass + displacement transducers; ca ₇₇ : digital signal processing (DSP) controller; A ₅₆ : remote construction
505	Tc ₁₆₃ A ₅₀	\$84	CA79	-	s_{84} : GPS + lidar + camera + angle sensors + distance sensors + force sensor + depth sensor + radar, ultrasonic sensors + IMU; ϵa_{79} : RBF-PID Control; A_{50} : operation simulation
506	$Tc_{69}A_{43}$	\$54	ca ₈₂	-	s54: laser + cameras + Kinect; ca82: Generalized Resolution Correlative Scan Matching (GRCSM); A43: joint filling
507	Tc69A43	\$54	CA82	-	s54: laser + cameras + Kinect; ca82: Generalized Resolution Correlative Scan Matching (GRCSM); A43: joint filling
508	$Tc_{235}A_{50}$	-	CA83	-	ca83: finite element method; ca83: finite element method; A50: operation simulation
509	$Tc_{146}A_5$	\$84	CA85	-	s ₈₄ : GPS + lidar + camera + angle sensors + distance sensors + force sensor + depth sensor + radar, ultrasonic sensors + IMU; c ₄₈₅ : iterative learning control + fuzzy logic controller; A ₅ : earthmoving construction
510	Tc ₁₄₆ A ₅	\$84	CA85	-	s_8 : GPS + lidar + camera + angle sensors + distance sensors + force sensor + depth sensor + radar, ultrasonic sensors + IMU; ca_8 : iterative learning control + fuzzy logic controller; A_5 : earthmoving construction

511	Tc86A16	-	са86	-	ca_{86} : master-slave system; A_{16} : concrete printing
512	Tc ₈ A ₁₀	S6	CA89	-	56: torque/force sensor + force sensor; ca89: trajectory generation algorithm; A10: glass installation
513	Tb_3A_{22}	-	bm3	-	bm_3 : efficiency; A_{22} : masonry construction
514	Tm ₈₇ A ₄₂	a_2	hd ₆₁	hc ₁	a_{2} : hydraulic; hd_{61} : excavator arm + double front; hc_{1} : remote + operator; A_{42} : disaster restoration
515	Tm86A42	-	hd3	hc ₁	hd_{i} : crawler; hc_{i} : remote + operator; A_{42} : disaster restoration
516	$Tm_{135}A_6$	a_1	hd ₁₅	hc_2	a_i : pneumatic; hd_{i5} : wheel mobile lifting single arm; he_2 : automatic; A_6 : building inspection
517	Tm69A60	a_2	hd76	hc ₂	a_2 : hydraulic; hd_{76} : scissor lifter + omnidirectional wheels; hc_2 : automatic; A_{60} : drilling
518	$Tm_{101}A_{45}$	a_3	hd38	hc_2	a_3 : motor; hd_{38} : reconfigurable + vertical + climbing; he_2 : automatic; A_{45} : cleaning
519	$Tm_{100}A_{45}$	a_3	hd39	hc_2	a_3 : motor; hd_3g : reconfigurable + locomotive wheel; he_2 : automatic; A_{45} : cleaning
520	Tm ₁₀₃ A ₄₅	a_3	hd40	hc ₂	a_3 : motor; hd_{40} : caterpillar wheel + commercial impeller, + vacuum suction; he_2 : automatic; A_{45} : cleaning
521	Tm ₁₀₂ A ₄₅	a_3	hd41	hc ₂	a_3 : motor; hd_{41} : parallel manipulator, frame; he_2 : automatic; A_{45} : cleaning
522	Tm79A38	a_3	hd79	hc_2	a_3 : motor; hd_{79} : omnidirectional wheel; he_2 : automatic; A_{38} : marking
523	Tm79A38	a_3	hd79	hc ₂	a3: motor; hd79: omnidirectional wheel; he2: automatic; A38: marking
524	$Tm_{134}A_6$	a_3	hd ₁₃	hc_2	a_3 : motor; hd_{13} : mobile platform + arm, manipulator; he_2 : automatic; A_6 : building inspection
525	$Tm_{48}A_{22}$	a_3	hd36	hc_2	a_3 : motor; hd_{36} : mobile arm, manipulator with wheels; he_2 : automatic; A_{22} : masonry construction
526	$Tm_{17}A_{11}$	a_6	hd ₂₈	hc ₂	a_6 : cable driven; hd_{28} : Hexapod-Shaped; hc_2 : automatic; A_{11} : wall construction
527	$Tm_{16}A_{22}$	a_6	hd ₂₅	hc_2	a_6 : cable driven; hd_{25} : parallel robot; he_2 : automatic; A_{22} : masonry construction
528	$Tm_{46}A_6$	-	hd ₅₈	hc_2	hd_{58} : UAV; hc_2 : automatic; A_6 : building inspection
529	Tm51A22	-	hd30	hc2	hd_{30} : industrial robot; he_2 : automatic; A_{22} : masonry construction
530	$Tm_{14}A_{44}$	-	hd7	hc_2	hd_7 : gantry robot, arm; he_2 : automatic; A_{44} :panel installation
531	Tm77A37	-	hd_2	hc2	hd_2 : arm, manipulator + mounted; he_2 : automatic; A_{37} : timer construction
532	Tm77A37	-	hd_2	hc2	hd_2 : arm, manipulator + mounted; he_2 : automatic; A_{37} : timer construction
533	$Tm_{77}A_{41}$	-	hd_2	hc ₂	hd_2 : arm, manipulator + mounted; he_2 : automatic; A_4 : waste collection
534	$Tm_{28}A_{30}$	-	-	hc ₂	hc_2 : automatic; A_{30} : Mars/Lunar construction
535	$Tm_{21}A_{13}$	-	hd31	hc3	hd_{31} : UGV + UAV; he_3 : human-robot + collaboration; A_{13} : construction monitoring
536	$Tc_{208}A_{59}$	\$54	ca ₁₁₀	-	s_{54} : laser + cameras + Kinect; ca_{110} : Iterative Closest Point (ICP) algorithm; A_{59} : object recognition

537	$Tc_{213}A_6$	\$79	ca ₁₁₀	-	s_{79} : lidar + camera; ca_{110} : Iterative Closest Point (ICP) algorithm; A_6 : building inspection
538	Tc ₁₀₁ A ₃₂	\$144	ca ₁₁₈	-	s ₁₄₄ : camera + angle + lidar + GPS; ca ₁₁₈ : SLAM; A ₃₂ : machinery navigation
539	$Tc_{101}A_{45}$	\$144	ca ₁₁₈	-	s_{144} : camera + angle + lidar + GPS; ϵa_{118} : SLAM; A_{45} : cleaning
540	$Tc_{38}A_{46}$	\$39	ca ₁₁₈	-	s_{39} : camera + image + CCD + Kinect; ϵa_{118} : SLAM; A_{46} : machinery mapping
541	Tc123A11	\$48	ca ₁₁₈	-	s_{48} : work environment sensors + GPS + IMU + lidar; ca_{118} : SLAM; A_{11} : wall construction
542	$Tc_{36}A_{12}$	\$79	ca ₁₁₈	-	s_{79} : lidar + camera; ca_{118} : SLAM; ca_{118} : SLAM; A_{12} : bridge construction
543	Tc39A14	-	ca ₁₁₈	-	ca118: SLAM; A14: equipment positioning
544	Tc16A11	-	ca ₃₂	-	ca_{32} : parametric-integrated algorithm + parametric synthesis; A_{11} : wall construction
545	Tc46A16	\$144	CA44	-	s ₁₄₄ : camera + angle + lidar + GPS; e ₄₄ : 3D printer/printing; A ₁₆ : concrete printing
546	Tc44A16	-	CA44	-	ca_{44} : 3D printer control; A_{16} : concrete printing
547	Tc44A22	-	CA44	-	ca_{44} : 3D printer control; A_{22} : masonry construction
548	Tc44A22	-	CA44	-	ca_{44} : 3D printer control; A_{22} : masonry construction
549	Tc33A24	-	CA49	-	ca49: genetic algorithms (GA); A24: machinery path management
550	$Tc_{85}A_{50}$	-	ca ₅₀	-	ca_{50} : kinematic connection; A_{50} : operation simulation
551	Tc ₁₂₉ A ₄₁	S54	ca ₆₄	-	s_{54} : laser + cameras + Kinect; ca_{64} : iterative algorithms + regression model; A_{41} : waste collection
552	Tc ₁₁₆ A ₃₄	-	са70	-	ca70: PTP control; A34: components assemble
553	Tc ₁₈₈ A ₅₆	S ₁₃₉	са73	-	s_{139} : stereo camera + acceleration sensors + a gyro sensor; ca_{73} : Machine Learning; A_{56} : remote construction
554	Tc ₁₈₈ A ₅₆	\$139	са73	-	s_{139} : stereo camera + acceleration sensors + a gyro sensor; ca_{73} : Machine Learning; A_{56} : remote construction
555	Tc153A50	\$18	са73	-	s_{18} : various sensors + sensor system; c_{a73} : Machine Learning; A_{50} : operation simulation
556	$Tc_{32}A_{12}$	\$39	са73	-	s_{39} : camera + image + CCD + Kinect; ca_{73} : Machine Learning; A_{12} : bridge construction
557	Tc32A24	\$39	са73	-	s_{39} : camera + image + CCD + Kinect; ca_{73} : Machine Learning; A_{24} : machinery path management
558	Tc32A37	\$39	са73	-	339: camera + image + CCD + Kinect; ca73: Machine Learning; A37: timer construction
559	$Tc_{130}A_{28}$	S54	са73	-	s_{54} : laser + cameras + Kinect; ca_{73} : Machine Learning; A_{28} : ceiling construction
560	$Tc_{130}A_{41}$	S54	са73	-	s_{54} : laser + cameras + Kinect; ca_{73} : Machine Learning; A_{41} : waste collection
561	$Tc_{130}A_{41}$	S54	са73	-	s_{54} : laser + cameras + Kinect; ca_{73} : Machine Learning; A_{41} : waste collection
562	Tc75A16	-	ca ₇₃	-	ca_{75} : Machine Learning; A_{16} : concrete printing

563	Tc76A24	-	са73	-	ca73: Machine Learning; A24: machinery path management
564	Tc76A29	-	са73	-	ca73: Machine Learning; A29: material, sorting, delivery, distribution
565	$Tc_{33}A_8$	-	ca ₇₃	-	ca_{73} : Machine Learning; A_8 : steel construction
566	$Tc_{143}A_{48}$	S ₁₇	ca ₇₅	-	s ₁₇ : LIDAR sensors + IMU + Kinetic; ca ₇₅ : IFC + BIM; A ₄₈ : logistics
567	Tc74A22	\$39	ca75	-	s ₃₉ : camera + image + CCD + Kinect; ca ₇₅ : IFC + BIM; A ₂₂ : masonry construction
568	$Tc_{227}A_{16}$	-	CA93	-	ca_{93} : bar penetration technique + in-process reinforcing technique; A_{16} : concrete printing
569	Tc ₆₅ A ₂₁	\$80	CA95	-	s_{80} : infrared + camera; ca_{95} : PLC; A_{21} : pipe construction
570	$Tb_{13}A_{35}$	-	bm ₁₃	-	bm_{13} : error + cost + power consumption + controllability + complexity continuous time; A_{35} : construction activity evaluation
571	Tb_2A_{22}	-	bm_2	-	bm_2 : technical + economic + efficiency; A_{22} : masonry construction
572	$Tb_{8}A_{21}$	-	bm_8	-	bm_8 : cost + productivity + sensitivity; A_{21} : pipe construction
573	$Tm_{158}A_{36}$	a_2	hd ₂₇	hc ₁	a_2 : hydraulic; hd_{27} : AGV, unmanned ground vehicle; hc_i : remote + operator; A_{36} : diagnosis detection
574	Tm ₇₈ A ₃₇	a_3	hd ₄₈	hc_2	a_3 : motor; hd_{48} : reconfigurable + vacuum grippers+ arm +two robot; hc_2 : automatic; A_{37} : timer construction
575	Tm155A37	-	hd50	hc2	hd_{50} : vacuum cups+ overhead gantry crane; hv_2 : automatic; A_{37} : timer construction
576	Tm ₈₃ A ₄₁	-	hd ₆₀	hc_2	hd_{60} : truss-type; he_2 : automatic; A_{41} : waste collection
577	$Tc_{52}A_{19}$	\$39	ca ₁₁₇	-	s_{39} : camera + image + CCD + Kinect; ϵa_{117} : automatic battery replacement; A_{19} : building maintenance
578	Tc ₆₃ A ₁₆	\$39	саз9	-	s_{39} : camera + image + CCD + Kinect; ϵa_{39} : voltage response; A_{16} : concrete printing
579	$Tm_{51}A_{22}$	-	hd30	hc_2	hd_{30} : industrial robot; hc_2 : automatic; A_{22} : masonry construction
580	$Tc_{220}A_{61}$	S9	ca ₁₀		s_9 : visual sensor; ca_{10} : heuristic; A_{61} : scaffolding work
581	Th ₁₅₈ A ₅₅	a_6	hd52	bc₄	a_6 : cable driven; hd_{52} : mobile vehicle; bc_4 : manual; A_{55} : underwater work

• Paper index

Index	Seminal paper(title)						
1	Arc welding robot systems for large steel constructions						
2	Walking robot for underwater construction						
3	Arc welding robot with maximum flexibility for large steel construction						
4	Application of intelligent robot arc-welding system to large-sized steel construction						
5	Robotized welding of large offshore constructions						
6	Blockbot: a robot to automate construction of cement block walls						
7	Using robots in the tubular structural constructions						
8	Development of positioning systems for autonomous robots on construction sites						
9	Application of robotics in bridge deck fabrication						
10	A concept of control system for construction robot						
11	Pipe manipulator enhancements for increased automation						
12	A master-slave manipulator for excavation and construction tasks						
13	Framework for construction robot fleet management system						
14	Automation and robotics for road construction and maintenance						
15	Robots and automated systems for the civil and construction industries						
16	Position-force adaptive control of a robot with applications in construction						
17	Automation of surface treatment in construction by using a robot						
18	Construction robot fleet management system prototype						
19	Ssr: a mobile robot on ferromagnetic surfaces						
20	Air-force construction automation robotics						
21	A remotely operated building inspection cell						
22	Automation of concrete slab-on-grade construction						
23	Robotic materials handling for automated building construction technology						

24	Outpost service and construction robot (oscr)
25	Object-oriented programming in robotics research for excavation
26	Real-time robot path planning using the potential function method
27	Position-force adaptive control for construction robots
28	Managing multiple construction robots with a computer
29	Model-based guidance by the longest common subsequence algorithm for indoor autonomous vehicle navigation using computer vision
30	Map representation of a large in-door environment with path planning and navigation abilities for an autonomous mobile robot with its implementation on a real robot
31	Full-scale building with interior finishing robot
32	Prototype robotic masonry system
33	Artificial intelligence in the control and operation of construction plant-the autonomous robot excavator
34	Articulated multi-vehicle robot for inspection and testing of pipeline interiors
35	Automation potential of pipe laying operations
36	Self-position measuring method for moving robot working at construction sites
37	Logistics support system for construction robotics implementation
38	Study on active vibration control of arm for construction machinery – modeling and linear-control simulation
39	Path planning and sensing for an experimental masonry building robot
40	Construction robot force control in cleaning operations
41	Air force construction automation/robotics
42	Mobile robot for on-site construction of masonry
43	A mobile robot for on-site construction of masonry
44	Application specific realisation of a mobile robot for on-site construction of masonry
45	A robotic manipulation for inspection and maintenance of tall structures
46	Modularity of prm type cartesian robots and their application in the production of construction materials
47	Robotics and automation in the construction of the sliding domes of king fahd's extension of the prophet's holy mosque in madinah, kingdom of saudi arabia
48	Robot for interior-finishing works in building: feasibility analysis

49	Requirements for application of robotics and automation in highway maintenance and construction tasks
50	Construction process simulation with rule-based robot path planning
51	On the dynamic control of a hydraulic large range robot for construction applications
52	A behavioral language for motion planning in building construction
53	Robotics in highway construction & maintenance
54	First results in autonomous retrieval of buried objects
55	High tractive power wall-climbing robot
56	Conceptual design of a flooring robot: development methodology and results
57	Automatic assembly of a commercial cavity block system
58	New tig arc welding processes and welding robot for construction of storage tank
59	Development of welding robot technology for civil engineering and construction
60	Wall assembly robot - its development and its integration in construction management mauerwerksroboter - entwicklung und integration in die ausfuehrungs-planung
61	Task planning experiment toward an autonomous robot system for the construction of overhead distribution lines
62	Integration of cad drawings and construction robot motion controllers
63	Construction robot for three-dimensional shapes based on the nesting behavior of paper wasps
64	Self-position measuring method for moving robot working at construction sites (2nd report, improvement of pillar-detecting algorithm)
65	Controlled hydraulics for a direct drive brick laying robot
66	Development of interior finishing unit assembly system with robot: wascor iv research project report
67	Technological aspects in the development of a mobile bricklaying robot
68	Automatic generation of the controlling-system for a wall construction robot
69	Evolution of an automated crack sealer: a study in construction technology development
70	Development of a construction robot for marking on ceiling boards
71	Automatic task modelling for sewer studies
72	Methods of control for robotic brick masonry
73	Compact arc welding robot system for huge construction parts
74	Development of automated cleaning system for construction aluminum scaffolding boards

75	Control of construction robots using camera-space manipulation
76	Robotic mapping of building interior - precision analysis
77	Steel frame welding robot systems and their application at the construction site
78	Robot assembly system for the construction process automation
79	A fuzzy navigation system for mobile construction robots
80	Feasibility of automating military's environmental operations (tele-operate remote)
81	Development of a distributed multiple mobile robot control system for automatic highway maintenance and construction
82	Selection of optimal construction robot using genetic algorithm
83	The development of a rapid-prototyping technique for mechatronic-augmented heavy plant
84	Distributed control of a multiple tethered mobile robot system for highway maintenance and construction
85	Programming construction robots using virtual reality techniques
86	Vision-based interactive path planning for robotic bridge paint removal
87	Concept of a robot for interior building trades by the example of wall slits in masonry
88	Construction manipulators of steel towers for the transmission of electricity
89	A new facility for testing accurate positioning systems for road construction robotics
90	Autopave: towards an automated paving system for asphalt pavement compaction operations
91	Automated and robotics-based techniques for road construction
92	Automation infrastructure system for a robotic 30-ton bridge crane
93	Development of the construction methods for distribution line materials using a robot system remotely controlled from the ground
94	Development of automated construction system for high-rise reinforced concrete buildings
95	Robotic assembly of rebar cages for beams and columns
96	Robotic welding speeds Olympic stadium construction
97	Construction manipulators for transmission towers
98	Teleoperation control of ets-7 robot arm for on-orbit truss construction
99	Development of a construction robot for marking on ceiling boards: 2nd report, drawing a long straight line on the ceiling
100	Robot assembly system for computer-integrated construction

101	Impedance control of a hydraulically actuated robotic excavator
102	Process and quality control with a video camera, for a floor-tilling robot
103	Automated construction system for high-rise reinforced concrete buildings
104	Tele-operated construction robot using virtual reality - (cg presentation of virtual robot for increasing working efficiency)
105	Master-slave control for tele-operation construction robot system
106	Designing for automated construction
107	Development of a robotic bridge maintenance system
108	Automated cleaning of windows on standard facades
109	Development of a teachingless robot system for welding a large-sized box-type construction
110	Welding automation in space-frame bridge construction
111	Technological enhancement and creation of a computer-aided construction system for the shotcreting robot
112	Lan-based building maintenance and surveillance robot
113	A framework for rapid local area modeling for construction automation
114	Automated excavation in construction using robotics trajectory and envelop generation
115	Disaster restoration work for the eruption of Mt Usuzan using an unmanned construction system
116	Adaptive control strategy of climbing robot for inspection applications in construction industry
117	Robotic excavation in construction automation
118	Blind bulldozing: multiple robot nest construction
119	Development of a construction robot for marking on ceiling boards (3rd report, prototype of the laser pointer system)
120	Application of robots using pneumatic artificial rubber muscles for operating construction machines
121	Construction robot path-planning for earthwork operations
122	Development of a hydraulic tele-operated construction robot using virtual reality: new master-slave control method and an evaluation of a visual feedback system
123	A tele-operated humanoid robot drives a backhoe in the open air
124	Portable robotic system for steel h-beam welding
125	A cleaning robot for construction out-wall with complicated curve surface
126	A remotely controlled robot operates construction machine remote)

127	Manipulators help out with plaster panels in construction
128	Field test of remote control system for construction machines using robot arm
129	Development of remote control system of construction machinery using pneumatic robot arm
130	Analysis of a climbing parallel robot for construction applications
131	A control architecture for robotic excavation in construction
132	Application of ga in optimal robot selection for bridge restoration
133	The study of remotely teleoperated robotic manipulator system for underwater construction
134	Real-time sense-and-act' operation for construction robots
135	Spatial model for path planning of multiple mobile construction robots
136	Balancing human-and-robot integration in building tasks
137	Distance measurement technology development at remotely teleoperated robotic manipulator system for underwater constructions
138	Construction of ceiling adsorbed mobile robots platform utilizing permanent magnet inductive traction method
139	Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: experiences with the Nist Robocrane
140	Automated construction by contour crafting - related robotics and information technologies
141	A service robot for construction industry
142	Automating inspection and documentation of remote building construction using a robotic camera
143	A heavy climbing robotic platform for geotechnical applications
144	Climbing robots with adaptive grippers for construction
145	A hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications
146	(Road) robotic systems for pavement lane painting operations
147	Graphical simulation of remote control construction robot based on virtual reality
148	A robotized drilling system for rocky wall consolidation
149	Multiconfigurable inspection robots for low diameter canalizations
150	Application of robots for inspection and restoration of historical sites
151	The analysis of the curtain wall installation robot: based on the test in the construction site
152	Development of a parallel typed robot with a sensorless observer for harbor construction

153	Development of hybrid robot for construction works with pneumatic actuator
154	Example of experimental use of 3D measurement system for construction robot based on component design concept
155	Pose estimation of construction materials using multiple id devices for construction automation
156	Sustainable cooperative robotic technologies for human and robotic outpost infrastructure construction and maintenance
157	A distributed feedback mechanism to regulate wall construction by a robotic swarm
158	Wireless sensor-driven intelligent navigation robots for indoor construction site security and safety
159	Control architecture characteristics for intelligence in autonomous mobile construction robots
160	Closure to "construction robot path-planning for earthwork operations" by sung-keun kim, jeffrey s. Russell, and kyo-jin koo
161	A 3d model based control of an excavator
162	Autonomous robot for pavement construction in challenging environments
163	Research on RBF-PID control for the 6-dof motion base in construction tele-robot system
164	Development of a real-time control system architecture for automated steel construction
165	Development of a remote control system for construction machinery for rescue activities with a pneumatic robot
166	Experiment on teleoperation of underwater backhoe with haptic information
167	A novel distributed telerobotic system for construction machines based on modules synchronization
168	Automation of incineration plant demolition and utilization of information technology
169	Examination of practical utility of remotely controlled robots in disasters
170	Using rescue robots to increase construction site safety
171	Massive rock handling by a breaker - graspless manipulation and object recognition
172	Construction automation based on parts and packets unification
173	A multidegree-of-freedom manipulator for curtain-wall installation
174	The application of the human-robot cooperative system for construction robot manipulating and installing heavy materials
175	The study in using an autonomous robot for pavement inspection
176	Graphical modeling and simulation for design and control of a tele-operated clinker clearing robot
177	A multicriteria approach for the optimal design of 2 DOF parallel robots used in construction applications
178	Modified stereo vision calibration method for construction robot

179	Development of immersive augmented reality interface for construction robotic system
180	Pre-acting manipulator for shock isolation in steel construction
181	Intelligent painting process planner for robotic bridge painting
182	Control schemes for tele-robotic pipe installation
183	Intuitive OCU (operator control unit) of MFR (multipurpose field robot) on construction site
184	Concrete paving productivity improvement using a multi-task autonomous robot
185	A UAV for bridge inspection: visual serving control law with orientation limits
186	Cable-suspended robotic contour crafting system
187	Design of a bolting robot for constructing steel structure
188	Cable-suspended robotic contour crafting system (vol 17, pg 45, 2007)
189	Design of a ceiling glass installation robot
190	Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel
191	Development of the curtain wall installation robot: performance and efficiency tests at a construction site
192	Mfr (multipurpose field robot) for installing construction materials
193	Robotic technologies for the automatic assemble of massive beams in high-rise building
194	Human-robot cooperation control for installing heavy construction materials
195	Construction of welding robot network control system
196	Development of prototype of a unmanned transport robot for transport of construction materials
197	Anti-swinging input shaping control of an automatic construction crane
198	Improved force feedback control method for construction telerobot
199	Construction telerobot system with virtual reality (development of a bilateral construction robot)
200	Development of an automated verticality alignment system for a vibro-lance
201	Task management of robots for the automatic construction
202	Remote control of backhoe at construction site with a pneumatic robot system
203	Power assist devices for installing plaster panels in construction
204	A robotic system for road lane painting

205	A new type of bolting robot for steel-frame structure constructions
206	A comparison of two innovative technologies for safe pipe installation - "pipeman" and the stewart-gough platform-based pipe manipulator
207	Human robot cooperative control and task planning for a glass ceiling installation robot
208	Autonomous drilling robot for landslide monitoring and consolidation
209	Wearable haptic glove using micro hydraulic system for control of construction robot system with VR environment
210	A human-robot cooperative system helps out with glass panels in construction
211	Development of automation system for steel construction based on robotic crane
212	Feasibility verification of brick-laying robot using manipulation trajectory and the laying pattern optimization
213	A laser-technology-based lifting-path tracking system for a robotic tower crane
214	Haptic interaction in tele-operation control system of construction robot based on virtual reality
215	Light-weight 3D ladar system for construction robotic operations
216	Simulation of industrial robots for laser welding of load bearing construction
217	Tele-operation construction robot control system with virtual reality
218	Work state identification using primitive static states - implementation to demolition work in double-front work machines
219	Bridge inspection robot system with machine vision
220	Position error modeling for automated construction manipulators
221	Development of conceptual model of construction factory for automated construction
222	A performance evaluation of a stewart platform based Hume concrete pipe manipulator
223	Chronological development history of x-y table based pavement crack sealers and research findings for practical use in the field
224	Design, construction, and testing of a new class of mobile robots for cave exploration
225	Experimental evaluation of a robotic bolting device in steel beam assembly
226	Basic study of smart robotic construction lift for increasing resource lifting efficiency in high-rise building construction
227	Robotic automation system for steel beam assembly in building construction
228	Virtual reality-based teleoperation construction robot control system with 3d visor device
229	Specific mechanisms for construction mobile robots
230	Labview based control and simulation of a construction robot

231	Research on improved force feedback control method for construction telerobot
232	Development of immersive augmented reality interface system for construction robotic system
233	Bilateral hydraulic servo control system based on force sense for construction robot
234	Research on bilateral hydraulic servo control system of construction robotics
235	Study on master-slave control method using load force and impedance identifiers for tele-operated hydraulic construction robot
236	Climbing and pole line hardware installation robot for construction of distribution lines
237	Self-traveling robotic system for autonomous abrasive blast cleaning in double-hulled structures of ships
238	Implementation of a foldable 3-dof master device to a glass window panel fitting task
239	Mechanism and analysis of a robotic bolting device for steel beam assembly
240	Development of a dual robotic arm system to evaluate intelligent system for advanced construction machinery
241	An improved multipurpose field robot for installing construction materials
242	Robot-aided tunnel inspection and maintenance system
243	Strateg+d171 autonomous robots to inspect pavement distresses
244	A conceptualization for the automation of a lift car operation in high rise building construction
245	Ltl-based decentralized supervisory control of multi-robot tasks modelled as petri nets
246	Concept of a wall building industrial robotic system
247	Development of pressure observer to measure cylinder length of harbor-construction robot
248	Study on a vision sensing system for the parameter estimation of a serial construction robot
249	A plan for lunar outpost construction by using robots
250	Relative accuracy enhancement system based on internal error range estimation for external force measurement in construction manipulator
251	Dimension optimization of an orientation fine-tuning manipulator for segment assembly robots in shield tunneling machines
252	A methodology to quantitatively evaluate the safety of a glazing robot
253	Tele-operation construction robot control system with virtual reality technology
254	Wearable robotic system using hydraulic actuator
255	Field application of a robotic system on cable stays of Iincheon bridge for snow removal
256	Development of building-façade maintenance robot with docking station based on vertical climbing mechanism (maintenance)

257	Robot system for removing asbestos sprayed on beams
258	An experimental study of automatic cleaning tool and robot for façade in high-rise buildings
259	Real-time NDE of steel cable using Elasto-magnetic sensors installed in a cable climbing robot
260	Development of robotic-crane based automatic construction system for steel structures of high-rise buildings
261	Building of a sample scenario of a built-in guide type robot for external wall maintenance work of a skyscraper
262	Window contamination detection method for the robotic building maintenance system
263	Development of high accuracy position making system applying mark robot in construction site
264	Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration
265	Development of double arm working machine for demolition and scrap processing
266	Tunnel boring machine positioning automation in tunnel construction
267	High accuracy position marking system applying mobile robot in construction site
268	Automatic welding robot system for the horizontal position in the shipyard
269	Development of high accuracy position marking system in construction site applying automated mark robot
270	Model analysis and experimental technique on computing accuracy of seam spatial position information based on stereo vision for welding robot
271	Autonomous task control system of construction tele-robot based on stereo vision
272	Autonomous construction of a roofed structure: synthesizing planning and stigmergy on a mobile robot
273	Development of refractory brick construction robot in steel works
274	Research on roi image processing technology of teleoperation construction robot based on trinocular stereo vision
275	Sensor based motion planning and estimation of high-rise building facade maintenance robot
276	Study on 3D laser-scanning-based machine vision system for robotic construction vehicles
277	Force feedback control of tele-operated construction robot based on regression model
278	Application of a position-force control method in a master-slave teleoperation construction robot system
279	Operability of a control method for grasping soft objects in a construction teleoperation robot tested in virtual reality
280	Master-slave control method with force feedback for grasping soft objects using a teleoperation construction robot
281	Human-robot-environment interaction interface for robotic grit-blasting of complex steel bridges
282	Evaluation of construction robot telegrasping force perception using visual, auditory and force feedback integration

283	A robotic system for underwater eco-sustainable wire-cutting
284	Autonomous construction of a roofed structure: synthesizing planning and stigmergy on a mobile robot
285	Hete+a184:h184rogeneous multi-configurable chained microrobot for the exploration of small cavities
286	Design and construction of an in-pipe robot for inspection and maintenance
287	High accuracy position marking system applying mobile robot in construction site
288	Open robot control for services in construction
289	An easy handling system for installing heavy glass using human robot cooperation
290	Autonomous robotic dozing for rapid material removal
291	Human-robot integration for pose estimation and semi-autonomous navigation on unstructured construction sites
292	A novel surface segmentation approach for robotic manipulator-based maintenance operation planning
293	Development of fail-safety system for building wall cleaning robot
294	Mutli-robot distributed control for construction tasks based on intelligent beacons
295	Autonomous thin spray-on liner application in irregular tunnel and mine roadway surfaces
296	Path planning of wheel loader type robot for scooping and loading operation by genetic algorithm
297	Potentials of robotic fabrication in wood construction: elastically bent timber sheets with robotically fabricated finger joints
298	Design and research of a construction robot based on series parallel structure
299	Geometric and kinematics modeling of tele-operated virtual construction robot
300	An implementation of a teleoperation system for robotic beam assembly in construction
301	Analysis on autonomous task trajectory tracking performance of construction robot with online gravity compensation
302	Job planning and supervisory control for automated earthmoving using 3d graphical tools
303	Development of an automated freeform construction system and its construction materials
304	Optimal machine operation planning for construction by contour crafting
305	Design and construction of a scale robotic excavator work-cell to test automated excavation algorithms
306	Robot-based construction automation: an application to steel beam assembly(Part i)
307	Prototype for glazed panel construction robot
308	Robot-based construction automation: an application to steel beam assembly(part ii)

309	Glazed ceiling panel construction robot
310	Installation of heavy duty glass using an intuitive manipulation device
311	Potential of time-of-flight range imaging for object identification and manipulation in construction
312	Chip-based real-time gesture tracking for construction robot's guidance
313	Modified discrete event simulation algorithm for control of automated construction operations
314	Automating construction operations using discrete event simulation models
315	Robotic tile placement: tools, techniques and feasibility
316	Development of a teleoperation system for a construction robot
317	Automatic detection and verification of pipeline construction features with multi-modal data
318	Development of a BIM-based automated construction system
319	Virtual prototyping for robotic fabrication of rebar cages in manufactured concrete construction
320	Rapid and automated determination of rusted surface areas of a steel bridge for robotic maintenance systems
321	A tree-based algorithm for construction robots
322	Underwater construction robot for rubble leveling on the seabed for port construction
323	Considerations regarding the construction of a minirobot for surveillance and inspection
324	Towards a vision controlled robotic home environment
325	Mobile 3d mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system
326	A lightweight bridge inspection system using a dual-cable suspension mechanism
327	Towards on-site autonomous robotic floor tiling of mosaics
328	Introduction of human-robot cooperation technology at construction sites
329	Collision-free 4d trajectory planning in unmanned aerial vehicles for assembly and structure construction
330	Robotic explosive charging in mining and construction applications
331	In-situ fabrication: mobile robotic units on construction sites
332	Modeling and control of automated pipe hoisting in oil and gas well construction
333	Construction site navigation for the autonomous excavator Thor
334	Position reaction force control of teleoperation construction robot for grasping soft objects

335	Automated measurement and estimation of concrete strength by mobile robot with small-sized grinding drill
336	Vision guided autonomous robotic assembly and as-built scanning on unstructured construction sites
337	Intuitive task programming of stud welding robots for ship construction
338	Automatic path-planning algorithm for realistic decorative robotic painting
339	Design and construction of a translational parallel robot for drilling tasks
340	Towards a new BIM 'dimension'-translating BIM data into actual construction using robotics
341	Augmented reality-based tele-robotic system architecture for on-site construction
342	Development of a telerobotics system for construction robot using virtual reality
343	A framework of indicators for assessing construction automation and robotics in the sustainability context
344	A robotic cutting tool for contaminated structure maintenance and decommissioning
345	Design and construction of a robot hand prototype for underwater applications
346	Assistive robotic micro-rooms for independent living
347	A low-cost robotic system for the efficient visual inspection of tunnels
348	Cable robot for non-standard architecture and construction: a dynamic positioning system
349	Between manual and robotic approaches to brick construction in architecture expanding the craft of manual bricklaying with the help of video projection techniques
350	Ceiling work scenario based hardware design and control algorithm of supernumerary robotic limbs
351	Robotic SHM and model-based positioning system for monitoring and construction automation
352	Estimation for torques applied to the master side in a construction robot teleoperation system
353	Research on improving the efficiency and welding quality of welding robot for construction machinery structure
354	Parameter study of chain trenching machines of underwater construction robots via analytical model
355	Robotic 3d-printing for building and construction
356	Machine learning approach to automatic bucket loading
357	Site automation: automated/robotic on-site factories
358	Simulation of automated construction using wire robots
359	Support system for slope shaping based on a teleoperated construction robot
360	Support system for teleoperation of slope shaping by a construction robot

361	A realisation of a construction scale robotic system for 3d printing of complex formwork
362	Smart automation system dedicated to in frastructure and construction
363	Bridge maintenance automation
364	Key challenges in automation of earth-moving machines
365	Design and analysis of climbing robot based on construction surface inspection
366	Prototyping a remotely-controlled machine for concrete surface grinding operations
367	An electro-hydraulic servo controller for construction robot using system-on-chip device
368	Automated construction of masonry buildings using cable- driven parallel robots
369	Study on parts processing of the traditional wooden construction method using articulated robot
370	Local search on trees and a framework for automated construction using multiple identical robots
371	Robotic timber construction - expanding additive fabrication to new dimensions
372	Autonomous construction with compliant building material
373	Automation of modular assembly of structural frames for buildings
374	Applications of supernumerary robotic limbs to construction works: case studies
375	Human-machine interaction for intuitive programming of assembly tasks in construction
376	A cable-driven robot for architectural constructions: a visual-guided approach for motion control and path-planning
377	Automatic interpretation of unordered point cloud data for UAV navigation in construction (navigation)
378	Using local force measurements to guide construction by distributed climbing robots
379	Robotic system for plaster and finishing works on the construction site
380	Development of a remotely controlled semi-underwater heavy carrier robot for unmanned construction works
381	Smcspo based 3d printing simulator control for building construction
382	Development of 3d printing simulator nozzle system using PID control for building construction
383	Automation of robotic concrete printing using feedback control system
384	Classification of building systems for concrete 3d printing
385	Active control for rock grinding works of an underwater construction robot consisting of hydraulic rotary and linear actuators
386	A method based on c-k theory for fast stcr development: the case of a drilling robot design

387	Development of the control algorithm for longitudinal motion of underwater construction robot with trenching
388	A stochastic learning approach for construction of brick structures with a ground robot
389	Online learning control of hydraulic excavators based on echo-state networks
390	Beam for the steel fabrication industry robotic systems
391	Model-based development of robotic systems and services in construction robotics
392	Scene understanding for adaptive manipulation in robotized construction work
393	A master-slave control method with gravity compensation for a hydraulic teleoperation construction robot
394	Robotic fabrication of freeform foam structures with quadrilateral and puzzle shaped panels
395	Pyroshield - a hvac fire curtain testing robot
396	Target-focused local workspace modeling for construction automation applications
397	Potential benefits of digital fabrication for complex structures: environmental assessment of a robotically fabricated concrete-wall
398	Development of a wall-climbing platform with modularized wall-cleaning units
399	Autonomous robotic system with tunnel inspection tool positioning
400	Three types of robot builder for the unsupervised construction of mars habitats
401	Robotic mechanical design for brick-laying automation
402	Wall contact by octo-rotor uav with one dof manipulator for bridge inspection
403	Development of a novel post-construction quality assessment robot system
404	Design and construction of an inspection robot for the sewage pipes
405	Autonomous big-scale additive manufacturing using cable-driven robots
406	Ja-wa - a wall construction system using unilateral material application with a mobile robot
407	Industrial robots application in the construction of buildings and structures
408	Towards force-aware robot collectives for on-site construction
409	Construction inspection with unmanned aerial vehicle [bauwerksinspektion mit unbemannten flugsystemen]
410	A novel building post-construction quality assessment robot: design and prototyping
411	Construction techniques used to automatically pass standard box girders through special passenger-line tunnels
412	Bottom-up cognitive analysis of bionic inspection robot for construction site

413	Design of modular re-configurable robotic system for construction and digital fabrication
414	On-site robotic construction assistance for assembly using a-priori knowledge and human-robot collaboration
415	Automated localization of uavs in gps-denied indoor construction environments using fiducial markers
416	Construction equipment collision-free path planning using robotic approach
417	A robotic wearable exoskeleton for construction worker's safety and health
418	Identification of usage scenarios for robotic exoskeletons in the context of the Hong Kong construction industry
419	Mapping and localization module in a mobile robot for insulating building crawl spaces
420	Study on down-cutting ladder trencher of an underwater construction robot for seabed application
421	Slam-driven intelligent autonomous mobile robot navigation for construction applications
422	Building an integrated mobile robotic system for real-time applications in construction
423	Vision-based integrated mobile robotic system for real-time applications in construction
424	Implementation of admittance control on a construction robot using load cells
425	The study on the integrated control system for curtain wall building façade cleaning robot
426	Modular data communication methods for a robotic excavator
427	Large-scale 3d printing by a team of mobile robots
428	Map - a mobile agile printer robot for on-site construction
429	Active control strategy for trenching work of track-based underwater construction robot
430	The autonomous vehicle celina as educational platform on final works in computer science
431	Real-time simulation of construction workers using combined human body and hand tracking for robotic construction worker system
432	Multimodal trip hazard affordance detection on construction sites
433	Stacked hourglass networks for markerless pose estimation of articulated construction robots
434	Industrial robot control with object recognition based on deep learning
435	Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks
436	Synthesis of the ac and DC drives fault diagnosis method for the cyber-physical systems of building robots
437	A cyber-physical system of diagnosing electric drives of building robots
438	Concept studies of automated construction using cable-driven parallel robots

439	Design of robot based work progress monitoring system for the building construction site
440	BIM plus robot creates a new era of building construction
441	UAV-enabled site-to-BIM automation: aerial robotic- and computer vision-based development of as-built/as-is BIMs and quality control
442	Perspectives on a BIM-integrated software platform for robotic construction through contour crafting
443	Information modeling of an underground laboratory for the r&d of mining automation and tunnel construction robotics
444	Dynamics modeling and structural analysis of underwater construction robot
445	Workpiece modeling for adaptive robotized construction work
446	Adaptive perception and modeling for robotized construction joint filling
447	Enhancing perceived safety in human-robot collaborative construction using immersive virtual environments
448	Teleoperated construction robot using visual support with drones
449	Foam custom single task construction robot
450	A propulsion performance test of underwater construction robot light work rov uri-l in circulation water channel
451	Improved productivity, efficiency and cost savings following implementation of drone technology in the surveying industry
452	Framework for human performance analysis in unmanned aircraft system (UAS) operations in dynamic construction environment
453	Floor cleaning robot with reconfigurable mechanism
454	Development of a robot for boiler tube inspection
455	Glass facade cleaning robot with passive suction cups and self-locking trapezoidal lead screw drive
456	Automatic inspection of embankment by crawler-type mobile robot
457	Automatic traveling method for the self-propelled tunnel inspection system
458	Localisation of a mobile robot for bridge bearing inspection
459	Tunnel structural inspection and assessment using an autonomous robotic system
460	Cu-brick cable-driven robot for automated construction of complex brick structures: from simulation to hardware realisation
461	Process analysis of cable-driven parallel robots for automated construction
462	Cable-driven parallel robot for curtain wall modules automatic installation
463	On the improvements of a cable-driven parallel robot for achieving additive manufacturing for construction
464	A changeable jig-less welding cell for subassembly of construction machinery

465	Robotic inspection tests of tunnel lining concrete with crack light-section device on variable guide frame
466	Concrete inspection systems using hammering robot imitating sounds of workers
467	Robotic application of foam concrete onto bare wall elements - analysis, concept and robotic experiments
468	Improvement of the mobile robot location dedicated for habitable house construction by 3d printing
469	Feasibility study for drone-based masonry construction of real-scale structures
470	Planetary lego: designing a construction block from a Regolith derived feedstock for in situ robotic manufacturing
471	Automatic multi-image stitching for concrete bridge inspection by combining point and line features
472	Smart construction robot technology to improve construction and safety in outer walls of high-rise buildings
473	Automation of the execution of monolithic reinforced ceilings
474	A semi-autonomous mobile robot for bridge inspection
475	Construction and usage of three-dimensional data for road structures using terrestrial laser scanning and UAV with photo grammetry
476	Framework for automated registration of UAV and UGV point clouds using local features in images
477	Monocular vision-based parameter estimation for mobile robotic painting
478	Implementation of an augmented reality AR workflow for human robot collaboration in timber prefabrication
479	An occupancy grid mapping enhanced visual slam for real-time locating applications in indoor GPS-denied environments
480	Collaborative welding system using BIM for robotic reprogramming and spatial augmented reality
481	Towards mobile projective AR for construction co-robots
482	Construction of the remote welding system based on power line communication
483	Man-machine cooperation of building robot based on interactive force information
484	3d printing for construction based on a complex wall of polymer-foam and concrete
485	Large-scale digital concrete construction – conprint3d concept for on-site, monolithic 3d-printing
486	Measuring and positioning system design of robotic floor-tiling
487	Tip localization analysis for mobile manipulator in construction field
488	Soft additive fabrication processes: material indeterminacy in 3d printing
489	Vision-based obstacle removal system for autonomous ground vehicles using a robotic arm
490	Computer vision for real-time extrusion quality monitoring and control in robotic construction

491	Real-time scene segmentation using a light deep neural network architecture for autonomous robot navigation on construction sites
492	Lnsnet: lightweight navigable space segmentation for autonomous robots on construction sites
493	Vision-based estimation of excavator manipulator pose for automated grading control
494	A vision-based marker-less pose estimation system for articulated construction robots
495	Analytical design of an underwater construction robot on the slope with an up-cutting mode operation of a cutter bar
496	Automated brick pattern generator for robotic assembly using machine learning and images
497	Teaching robots to perform construction tasks via learning from demonstration
498	Semantic relation detection between construction entities to support safe human-robot collaboration in construction
499	Formulation of the optimization problem of the cyber-physical diagnosis system configuration level for construction mobile robots
500	Automatical acquisition of point clouds of construction sites and its application in autonomous interior finishing robot
501	Robotic construction & prototyping of a 3d-printed mars surface habitat
502	An automated system for projection of interior construction layouts
503	Game simulation to support construction automation in modular construction using BIM and robotics technology-stage 1
504	Flexible virtual fixtures for human-excavator cooperative system
505	Youwasps: towards autonomous multi-robot mobile deposition for construction
506	Planning and execution for geometrically adaptive BIM-driven robotized construction processes
507	Autonomous motion planning and task execution in geometrically adaptive robotized construction work
508	Dynamic analysis of high precision construction cable-driven parallel robots
509	Development of an earthmoving machinery autonomous excavator development platform
510	Robotic autonomous systems for earthmoving in military applications
511	Determinants of adoption of robotics in precast concrete production for buildings
512	Trajectory adaptation for an impedance controlled cooperative robot according to an operator's force
513	The analysis of factors influencing on efficiency of applying mobile bricklaying robots and tools for such analysis
514	Dual-arm construction robot with remote-control function
515	Efforts to unmanned construction for post-disaster restoration and reconstruction
516	Control of a hyper-redundant robot for quality inspection in additive manufacturing for construction (inspection)

517	A novel holonomic mobile manipulator robot for construction sites
518	Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks
519	Four-wheel steering and driving mechanism for a reconfigurable floor cleaning robot
520	Design and modelling of a modular window cleaning robot
521	Parallel 2-dof manipulator for wall-cleaning applications
522	Mobile robot for marking free access floors at construction sites
523	Development of automated mobile marking robot system for free access floor
524	Quicabot: quality inspection and assessment robot
525	Labview based brick laying robot
526	Design, modelling and simulation of novel hexapod-shaped passive damping system for coupling cable robot and end effector in curtain wall module installation application
527	Investigation of robot systems in masonry construction [baubetriebliche untersuchung von robotersystemen im mauerwerksbau]
528	Indoor visualization experiments at building construction site using high safety UAV
529	Automatic brick masonry system and its application in on-site construction
530	Towards automated installation of reinforcement using industrial robots
531	Robotic fabrication of nail laminated timber
532	Adaptive automation strategies for robotic prefabrication of parametrized mass timber building components
533	Construction waste recycling robot for nails and screws: computer vision technology and neural network approach
534	In-situ construction method for lunar habitation: Chinese super mason
535	User interfaces for human-robot interaction in field robotics
536	An autonomous robotic platform for automatic extraction of detailed semantic models of buildings
537	Lidar-equipped UAV path planning considering potential locations of defects for bridge inspection
538	An integrated UGV-UAV system for construction site data collection
539	Construction of slam algorithm for window cleaning robot moving along window frame
540	A scene-adaptive descriptor for visual slam-based locating applications in built environments
541	Cooperative aerial-ground multi-robot system for automated construction tasks
542	Automated defect quantification in concrete bridges using robotics and deep learning

543	Development of construction robots using crazyflie
544	Robotic 3d clay printing of prefabricated non-conventional wall components based on a parametric-integrated design
545	Inspecting manufacturing precision of 3d printed concrete parts based on geometric dimensioning and tolerancing
546	Automation in the construction of a 3d-printed concrete wall with the use of a lintel gripper
547	Bricklaying robot moving algorithms at a construction site
548	Additive manufacturing of cantilever - from masonry to concrete 3d printing
549	Generalized task allocation and route planning for robots with multiple depots in indoor building environments
550	The problem of manipulation and angular orientation of gripping devices of construction robots
551	Optimization of grasping efficiency of a robot used for sorting construction and demolition waste
552	Generic design aided robotically facade pick and place in construction site dataset
553	A general approach for automating teleoperated construction machines
554	Direct-visual-operation support system for unmanned construction
555	Robot construction simulation using deep reinforcement learning+b21b4:b22b6b4:b20b4:b20b4:b24bb4:b20
556	Measurement for cracks at the bottom of bridges based on tethered creeping unmanned aerial vehicle
557	Proximity prediction of mobile objects to prevent contact-driven accidents in co-robotic construction
558	Augmented drawn construction symbols: a method for ad hoc robotic fabrication
559	Teaching robots to perform quasi-repetitive construction tasks through human demonstration
560	Deep learning of grasping detection for a robot used in sorting construction and demolition waste
561	Vision-based robotic system for on-site construction and demolition waste sorting and recycling
562	Structural stay-in-place formwork for robotic in situ fabrication of non-standard concrete structures: a real scale architectural demonstrator
563	Complete coverage path planning using reinforcement learning for Tetromino based cleaning and maintenance robot
564	What lies beneath: material classification for autonomous excavators using proprioceptive force sensing and machine learning
565	Agent based modeling to optimize workflow of robotic steel and concrete 3d printers
566	Combining the robot operating system with building information modeling for robotic applications in construction logistics
567	BIM-based task-level planning for robotic brick assembly through image-based 3d modeling
568	Bond properties of reinforcing bar penetrations in 3d concrete printing

569	Sampling robot for primary circuit pipelines of decommissioned nuclear facilities
570	A comprehensive performance evaluation of different mobile manipulators used as displaceable 3d printers of building elements for the construction industry
571	Determining a numerical efficiency indicator for a mobile bricklaying robot
572	Life cycle cost analysis of the steel pipe pile head cutting robot
573	Controller area network standard for unmanned ground vehicles hydraulic systems in construction applications
574	Flexible and transportable robotic timber construction platform – TIM
575	Automated manufacturing for timber-based panelised wall systems
576	Development of an automatic sorting robot for construction and demolition waste
577	Construction of land base station for UAV maintenance automation
578	Robotic spray coating of self-sensing metakaolin geopolymer for concrete monitoring
579	Automation of the construction process by using a hinged robot with interchangeable nozzles
580	A Planning System for Robot Construction Tasks
581	Development of a survey and inspection robot system for underwater construction works