STAT 443 Lab 10

Derek Situ

2022-03-28

```
sigma2 <- 4
```

Question 1

(1a)

```
plot(
  rep(sigma2/pi, pi),
  type = "1",
  main = "Spectral density function",
  ylab = "f(w)")
```

Spectral density function

(1b)

```
Z_100 <- arima.sim(list(), n = 100, sd = sqrt(sigma2))
pgram1 <- spec.pgram(Z_100, log = "no")</pre>
```

Series: Z_100 Raw Periodogram

mean(pgram1\$spec)/pi # mean of periodogram

[1] 1.087043

The true spectrum is constant at $\frac{4}{\pi}$ while the periodogram varies a lot more. The mean of the periodogram is quite close to $\frac{4}{\pi}$.

(1c)

```
Z_1000 <- arima.sim(list(), n = 1000, sd = sqrt(sigma2))
pgram2 <- spec.pgram(Z_1000, log = "no")</pre>
```

Series: Z_1000 Raw Periodogram


```
mean(pgram2$spec)/pi # mean of periodogram
```

[1] 1.193759

When we increase the sample size, there is more variation which we see as more spikes in the plot. However, we see that the mean of the periodogram this time is even closer to the mean of the spectrum than in (1b).

(1d)

```
for (i in 1:2) {
   Z_100 <- arima.sim(list(), n = 100)
   spec.pgram(Z_100, log = "no")
   Z_1000 <- arima.sim(list(), n = 1000)
   spec.pgram(Z_1000, log = "no")
}</pre>
```

Series: Z_100 Raw Periodogram

Series: Z_1000 Raw Periodogram

Series: Z_100 Raw Periodogram

Series: Z_1000 Raw Periodogram

After repeating (b) and (c) we can kind of see that the expected value of the periodogram seems to get closer to the true spectrum as N increases. However, as N increases, the variability increases which we can see as more spikes in the periodogram. Formally, this means the periodogram is unbiased but is not consistent.

Question 2

(2a)

```
beta <- -0.9
w <- seq(0, pi, by = 0.01 * pi)
fw <- 1/pi * (sigma2 + beta^2 * sigma2 + 2 * (beta * sigma2 * cos(w)))
plot(x = w, y = fw, main = "Spectral density function", type = "l")</pre>
```

Spectral density function

(2b)

```
X_sim100 <- arima.sim(list(ma = beta), 100, sd = sqrt(sigma2))
pgram3 <- spec.pgram(X_sim100)</pre>
```

Series: X_sim100 Raw Periodogram

If we were to smooth this periodogram with a rolling average, it could have a similar shape as the true spectrum. The periodogram just has a lot more spikes.

(2c)

```
X_sim1000 <- arima.sim(list(ma = beta), 1000, sd = sqrt(sigma2))
spec.pgram(X_sim1000)</pre>
```

Series: X_sim1000 Raw Periodogram

Just like in question 1, when we increase the sample size, we see more spikes and dips when we increase the sample size. The overall shape is quite similar to the spectrum.

(2d)

```
for (i in 1:2) {
    X_sim100 <- arima.sim(list(ma = beta), 100, sd = sqrt(sigma2))
    spec.pgram(X_sim100)
    X_sim1000 <- arima.sim(list(ma = beta), 1000, sd = sqrt(sigma2))
    spec.pgram(X_sim1000)
}</pre>
```

Series: X_sim100 Raw Periodogram

Series: X_sim1000 Raw Periodogram

Series: X_sim100 Raw Periodogram

Series: X_sim1000 Raw Periodogram

After repeating (b) and (c) we can see that as N increases, the variability increases which we can see as more spikes in the periodogram. We also see that the overall shape of the periodogram is quite similar to the spectrum.

Question 3

(3a)

```
spect <- 2^2 / (pi * (1 - 1.6 * cos(w) + 0.8^2))
plot(x = w, y = spect, type = "l", main = "Spectral density function")</pre>
```

Spectral density function

(3b)

```
Xt_sim100 <- arima.sim(list(ar = 0.8), 100, sd = sqrt(sigma2))
spec.pgram(Xt_sim100)</pre>
```

Series: Xt_sim100 Raw Periodogram

Although the periodogram seems to be decreasing over time like the spectrum, the shape is only somewhat similar.

(3c)

```
Xt_sim1000 <- arima.sim(list(ar = 0.8), 1000, sd = sqrt(sigma2))
spec.pgram(Xt_sim1000)</pre>
```

Series: Xt_sim1000 Raw Periodogram

Again, although the periodogram seems to be decreasing over time like the spectrum, the shape is only somewhat similar There are more spikes and dips compared to the N=100 case.

(3d)

```
for (i in 1:2) {
   Xt_sim100 <- arima.sim(list(ar = 0.8), 100, sd = sqrt(sigma2))
   spec.pgram(Xt_sim100)
   Xt_sim1000 <- arima.sim(list(ar = 0.8), 1000, sd = sqrt(sigma2))
   spec.pgram(Xt_sim1000)
}</pre>
```

Series: Xt_sim100 Raw Periodogram

Series: Xt_sim1000 Raw Periodogram

Series: Xt_sim100 Raw Periodogram

Series: Xt_sim1000 Raw Periodogram

The periodogram looks somewhat similar to the spectrum. We notice that when we increase the sample size, we see more variation (spikes and dips) in the periodogram.