

Sales Forecast with ML - PoC

The proof-of-concept would aim to cover the 2 use-cases of "LL forecast" and "trend forecast"

	Long-term forecast LRF	Mid-term Campaign/Demand forecast LL	Short-term Trending/Early sales reforecast
Projection horizon	7-12 months	6 to 3 months ahead	End of campaign month
Review Frequency	Monthly	Rolling revision. Focus on lag 3	Daily refresh; with focus on Day 3/7/14
Benchmarks		LL forecast + Foresight = official estimates, validated	R-factor method (using Cash Forecasts)
Proposed pilot scope	Out of scope	POLAND ➤ Vehicles : Brochures only (exclude other distribution channels for the PoC) ➤ All categories	 ROMANIA Multi-vehicles distribution (brochure, online, special offers), each with their own timing ► All categories
			Main focus for today

Today is our second iteration for the « Trending » PoC

Contents

► Trend forecast : results overview

Demand forecast: objectives & update

Next steps

Appendix

Our last model incorporates advanced features to better address various limitations in previous models

	Mode I split	Level	Algorith m	Features								Other			
				# of features	Actuals @Day 3	Previous campaign s	SKU featur es	Price	Offer features	Calendar features	Global Ratio	Retrain frequenc y	Hyper- paramet ers tuning	Feature selection	
R-factor proxy	Market	Campaign	R-factor	2	Basic	No	No	No	No	No	No	Na	Na	Na	
Model 10 - baseline	Market	Day	LightGBM	1	Basic	No	No	No	No	No	No	1 month	No	No	
Model 12 – 1 st iteration	Market	Day	LightGBM	16	Basic	Basic	Basic	No	Basic	No	No	1 month	No	No	
Model 244 2 [™] iteration	Market	Campaign	LightGBM	~50	Basic	Advanced	Basic	Advanced	Advanced	No	Yes	1 month	No	No	

Unless specified otherwise, this model is used in the rest of the presentation

Overview of results on backtesting period: +9 FA points compared to last model submission

Performance at aggregated level, at Day 3 of campaign

Backtesting Feb. 2021 to July 2022, Model 244, Excl. unplanned offers

- ▶ We find our benchmark performance of ~84% accuracy for the R-factor proxy method
- The model performance is close to the R-factor proxy method. As a reminder, this method uses the actual sales of the campaign instead of the cash forecast (not available)

Test performance on C8, C9 and C10 of 2022

- + 1,5pts Accuracy gain compared to trend forecast by the AVON team, leveraging the cash forecasts
- Positive ~5% bias instead of negative, which will reduce lost sales
- Significant improvement in outliers%
- Better performance on C8, slight improvement on C10, on par for C9 (except for bias which is improved from -11,1 to +3,2%)

Aggregated level (SKU, Campaign), at Day 3

Overview of performance by campaign

Performance at aggregated level, at Day 3 of campaign

Backtesting Feb. 2021 to July 2022

- ▶ The bias is relatively low on every campaign, which can be seen visually on the timeseries lines
- ► There is still an under-forecasting biais for July and October campaigns, although greatly reduced (from ~35% to ~12%)
- ▶ Performance is improving over time, as the model benefits from more and more historical data (see from July 2022)

Introducing new features: R-Factor inference

Intuition & approach :

- Correct overall bias caused by unfortunate low sales quantities in first 3 days
- ▶ To do that, we need a "base level" to ground the forecast. We saw that the R-factor proxy is quite good at providing this base level
- We need to forecast our own R-factor to feed the model. Ultimately, it could be replaced by the cash forecast, which could be more accurate

Calculation Method :

- Step 1 : Make a simple aggregated campaign sales forecast with 2 months moving average
- Step 2 : Correct moving average forecast to take into account end of year seasonality : Replace November, December and January by Y-1 sales
- Step 3: Calculate R-Factor on first 3 days and project it on previously aggregated forecast

ML with R-factor feature

R-Factor inference Vs ML Performance

Forecast Accuracy by ABC class (ML Vs R-Factor)

Accuracy Distribution per SKU (ML Vs R-Factor)

Delta FA distribution (FA_{ML} – FA_{R-Factor})

Conclusion :

- ▶ ML Model improves the accuracy by ~2% on class B and ~5% on class C
- ▶ ~65% of class B and C SKUs have an increased forecast accuracy, representing ~10% of sales quantities
- ▶ ~55% of class A SKUs are improved; while the degradation is < -7% in 90% of cases

Introducing new features: Sales/Price Elasticity

Intuition : Give the model insights about the impact of a price variation on sales qty

Calculation Method :

- Step 1 : Compute Sku price variation compared to a sliding mean price
- Step 2 : Compute Sku sales variation compared to a sliding mean sales qty
- Step 3: For each CATGRY_ID, apply a logarithmic regression where X is price variation and Y is sales qty variation
- Step 4 : Create a sales qty prediction based on the price variation

Features Importances

- ► Early Signals : The first 3 days of sales are the most important features in the prediction
- R-Factor Prediction: Including R-Factor prediction into features helps avoiding strong negative bias caused by low sales in the initial days
- Sales Elasticity: This features translates the impact of the price variation on sales based on historical impacts.
- Price Variation: Gives insights about the price being superior or inferior to the mean price in the same campaign

Examples of Features Impact on ML Forecast

Impact of Microencapsulation

ML Prediction Variation with respect to SCNTD_PG_TYP_NM

Impact of Promotion type

ML Prediction Variation with respect to PROMTN_DESC_TXT

- We define the variation as the percentage of higher or lower sales quantities compared to mean sales quantity
- ▶ The variations of sales quantity with respect to Promotions is similar to the variation applied by the ML forecast
- ML model will forecast more or less depending on the value of promotion or micro-encapsulation

Other ideas

Pre-process the first 3 days of sales to "clean them" when they are biased8

No obvious influencer of the first 3 days patterns vs rest of campaign

inconclusive

Post-process the forecast to bound the ML forecast inside a moving average + standard deviation

Helps correcting the bias in extreme situations +1% FA and -1ps bias overall

successful

Forecast daily weights to split the campaign-level forecast to the day level

Would need to compare relevance against the weights currently used in Supply Chain SI

Not tested

Leverage R-factor (cash forecast) or its components (# of reps, # of orders) as model features

Would need to have the forecasted values for the testing period of C8,9,10 2022

Not tested

Contents

Trend forecast: results overview

Demand forecast : objectives & update

Next steps

Appendix

Provided with 5 years of historical data (2016 to Jan 2021), we're expected to forecast C5->C11 of 2021

... And evaluated at the *aggregated* node level

Forecast granularity (node)

- Market (Poland)
- SKU
- Campaign

Forecasts are generated at the *elementary* node level...

Forecast granularity (node)

- Market (Poland)
- Offer SKU Line ID
- Campaign
- We can hold back a **backtesting period of 1 year (2020)** to test our performance before inferring the forecasts on C5-11 of 2021
- Our "lags of interest" will be 4 − 6 − 10 months for backtesting

Demand forecast - First ideas

How to manage variable campaign sizes

- ▶ The dataset offers much more historical data than for the *Trending* forecast
- ▶ The campaign duration is variable over time (not based on full months before 2021)
- We need to have the model forecast a full campaign quantity while considering its duration

Method 1

- Normalize the sales for a full month by # of days prorate
- Attach a campaign to a "main month" to get the equivalent number of days

Method 2

- Change the model target to an average daily units per day of the campaign
- Multiply by the actual number of days in post-processing

Contents

Trend forecast: results overview

Demand forecast : objectives & update

Next steps

Appendix

Our next iteration for *Trend forecast* could optimize the set of features

	Mode I split	Level	Algorith m	Features								Other			
				# of features	Actuals @Day 3	Previous campaign s	SKU featur es	Price	Offer features	Calendar features	Global Ratio	Retrain frequen cy	Hyper- paramet ers tuning	Feature selection	
R-factor proxy	Market	Campaign	R-factor	2	Basic	No	No	No	No	No	No	Na	Na	Na	
Model 10 - baseline	Market	Day	LightGBM	1	Basic	No	No	No	No	No	No	1 month	No	No	
Model 12 – 1 st iteration	Market	Day	LightGBM	16	Basic	Basic	Basic	No	Basic	No	No	1 month	No	No	
Model 244 2 nd iteration	Market	Campaign	LightGBM	~50	Basic	Advanced	Basic	Advanced	Advanced	No	Yes	1 month	No	No	
Next iteration	Market	Campaign	LightGBM	~50	Basic	Advanced	Basic	Advanced	Advanced	Yes	Yes	1 month	Yes	Yes	
For the next iteration	Brochur e / rest of							Normalize price for inflation	Add Number of representat ives and orders	using	Feed R- Factor with Cash Fcst Predictio n		after F Selection	~1% gain eature and hyper ers tuning	

Next steps

Trending PoC

- We have some room for further optimization of the model (see previous page)
- Incremental improvement in accuracy should be of a few %
- We suggest to spend time on the *Demand*Forecast first, before possibly coming back to the Trend forecast
- Open discussion: should we ultimately test and benchmark for 7 and 14 days forecasts?

Demand forecast PoC

- Build end-to-end pipeline to generate and backtest forecasts
- Re-use all relevant features from *Trending* PoC
- ► First submission : next week

Contents

Trend forecast: results overview

Demand forecast : objectives & update

Next steps

Appendix

Demand Forecasting POC Approach

Data Avon will share

- 5.5 Years of historical data 2016 January 2021 with full campaign Demand Actual Units, plus forecasting lag* period February April 2021 without Units, all by **period / item / price point = Offer SKU Line level**. Full list of prod attributes, offer details, price, etc. File name: Poland Core Brochure History File Jan 2016 to April 2021 (units up to Jan 2021) Final Hardcoded including OE forecasts.xlsx
- Test data at Offer SKU Line Level with full data except units also provided for test period May to November 2021. File; Poland Core Brochure Test Data File May - November 2021 - no units - Final Hardcoded.xlsx
- Data to include Core Brochure vehicle only, all products, offers in campaign.
- Market: Poland

Appro ach **Approach for POC** / for test campaigns (forecast on Offer SKU Line level):

- Vendor to provide forecasts for May, June, July, August, September, October & November 2021 (Campaigns 5-11).
- Forecast units to be provided at Offer SKU Line Level in test data file (May November 2021) file. Every row in the test data file should be given a unit forecast (in the column ,BH"). File (as above); Poland Core Brochure Test Data File May November 2021 no units Final Hardcoded.xlsx

^{*}Lag = 3 months between forecasts being created and actuals becoming available.

Data Avon will share

Appr oach

Trending POC approach

- 3 Years of historical data (2020, 2021, 2022 up to C7), plus selected days from test periods (C8,9,10 2022).
- Units, sales by day by item / price point = SKU offer level. Data details include; full list of product attributes, offer details, price, etc and daily Demand Actuals data. Files names: Romania Trending POC Data C1-16 2020 Final.xlsx, Romania Trending POC Data C1-12 2021 Final.xlsx, Romania Trending POC Data C1-7 2022 Final.xlsx
- Data to include all vehicles, all products and offers in the campaign.
- Market: Romania
- There are some offers (called "Agile offers") with data available from C7 2021 onwards where offer duration is different than 1 month / campaign (you can find offers dates in the file).

Approach for POC / for test campaign: (forecast on Offer SKU Line Level, key accuracy measurement at SKU / Period level)

- Vendors to provide trend forecast for Aug, Sept, Oct'22 by Offer SKU Line and day in phases:
 - 1) Avon provides 3 first days of data, vendors to trend August, September & October '22 (1st iteration). Files; Romania Trending POC Data C8 2022 Test Data 3 Days of Actuals.xlsx, Romania Trending POC Data C9 2022 Test Data 3 Days of Actuals.xlsx, Romania Trending POC Data C10 2022 Test Data 3 Days of Actuals.xlsx. After receiving trend from vendors to check accuracy:
 - 2) Avon provides 1 week of Aug data and ask to trend August, September & October '22 (2nd iteration). After receiving trend from vendors to check accuracy:
 - 3) Avon provides 2 weeks of Aug data and ask to trend August, September & October '22 (3rd iteration).
- Output format Vendors to enter missing Unit Quantities (column: "D") for Offer SKU Lines in every row (orange cells) for remaining days of August, September & October '22 in relevant test files.