

REAL-TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM

NALAIYA THIRAN PROJECT BASED LEARNING ON PROFESSIONAL READLINESS FOR INNOVATION, EMPLOYNMENT AND ENTERPRENEURSHIP

A PROJECT REPORT Submitted by

R.KANTHIMATHI 950819106026 M.MATHY BALA 950819106701 K.DURGA DEVI 950819106014 S.KRISHNAVENI 950819106032

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION AND ENGINEERING

GOVERNMENT COLLEGE OF ENGINEERING:TIRUNELVELI 627007
NOVEMBER 2022

Date	18 Nov 2022	
Project name	Real time river water quality	
	monitoring and control system	
Team ID	PNT2022TMID33851	

TABLE OF CONTENTS

4	LITDADI	IOTION
1.	INTRODU	JC HON

- 1.1 Project Overview
- 1.2 Purpose

2. **LITERATURE SURVEY**

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. **IDEATION & PROPOSED SOLUTION**

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. **REQUIREMENT ANALYSIS**

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. **PROJECT DESIGN**

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. **PROJECT PLANNING & SCHEDULING**

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

7.1 Feature

8. **TESTING**

- 8.1 Test Cases
- 8.2 User Acceptance Testing

- 9. **RESULTS**
 - 9.1 Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. **CONCLUSION**
- 12. **FUTURE SCOPE**
- 13. **APPENDIX**

1.INTRODUCTION

1.1Project Overview

The river water quality can be monitored real time by the web application by means of Nodered application and the values of the parameters can be viewed in the User End application by means of MIT App inventor

This project is useful in Alerting the authorities if the water quality is not good so that they can go and announce the localities not to drink that water.

- Sending random pH values and turbidity values will be sent to the IBM IoT platform
- Sensors values can be viewed in the Web Application
- Notifies the admin the random values cross the threshold value

1.2 Purpose

The system consists of several sensors which are used for measuring physical and chemical parameters of water. The parameters such as temperature, pH, and dissolved oxygen of the water can be measured. Using this system a person can detect pollutants from a water body from anywhere in the world.

To protect, restore, and enhance environmental quality towards good public health, environmental integrity, and economic viability.

2.Literature Survey

2.1 Existing problem

Major water pollutants include microbes, nutrients, heavy metals, organic chemicals, oil and sediments; heat, which raises the temperature of the receiving water, can also be a pollutant. Pollutants are typically the cause of major water quality degradation around the world Pesticides and fertilizers can be carried into lakes and streams by rainfall runoff or snowmelt, or can percolate into aquifers. Human and animal waste. Human wastes from sewage and septic systems can carry harmful microbes into drinking water sources, as can wastes from animal feedlots and wildlife.

2.2 Reference

 Heterogeneous wireless sensor networks for flood prediction decision support systems

In this paper, we propose a new architecture for building decision support systems using heterogeneous wireless sensor networks. The architecture is built around standard hardware and existing wireless sensor networks technology. We show the effectiveness of the proposed architecture by applying it to a flood prediction scenario.

• An IoT-belief rule base smart system to assess autism

An Internet-of-Things (IoT)-Belief Rule Base (BRB) based hybrid system is introduced to assess Autism spectrum disorder (ASD). This smart system can automatically collect sign and symptom data of various autistic children in real-time and classify the autistic children.

The BRB subsystem incorporates knowledge representation parameters such as rule weight, attribute weight and degree of belief. The IoT-BRB system classifies the children having autism based on the sign and symptom collected by the pervasive sensing nodes

• The use of artificial neural networks for the prediction of water quality parameters

This paper presents the use of artificial neural networks (ANNs) as a viable means of forecasting water quality parameters. A review of ANNs is given, and a case study is

presented in which ANN methods are used to forecast salinity in the River Murray at Murray Bridge (South Australia) 14 days in advance. It is estimated that high salinity levels in the Murray cause \$ US 22 million damage per year to water users in Adelaide.

3.IDEATION AND PROPOSED SOLUTION

3.1Empathy map canvas

Empathy Map Canvas

Gain insight and understanding on solving customer problems.

0

Build empathy and keep your focus on the user by putting yourself in their shoes.

Share your feedback

Definition	Connectiong every day things embedded with electronics to internet	Enabling them to collect and exchange data
Origin	1982	Sending data from machine to human
Process and automation	Sensors and devices	Automatic work
Uses	Sensors used to collect information	from cloud
Benefits	Input performance, Data collection	Reduce cost, new revenue scheme

3.2Brainstorming

Kanthimathi	Aim is to control the	To maximize	To minimize
	movement of water	efficient technique	damage to life and
	resources	for beneficial use	property
Krishnaveni	Aims at flood	Improve	Helps in extension
	prevention	performance	to farmers on water
		across water supply	management at the
			local level
Mathy Bala	Improve the	Automation and	Sustainability goals
	transparency of all	optimized use of	
	the process In	human resources	
	water supply chain		
Durga Devi	System make the	To save and	Important insides
	most rainfall	conserve water for	on the state of
	forecast	future use	water resources
	information		

Group ideas:

- Chlorination process for treatment of stored rainwater
- Implementing ground water dams
- Properly dispose of hazardous products put up signs

Prioritize:

- To determine the purpose of monitoring
- Measurement of concentration of dissolved oxygen
- Amount of salt
- Using water filter can removed bacteria

3.2Proposed solution

S.No	Parmaters	Description
1.	Problem Statement (Problem	River water quality monitoring
	to be solved)	is essential because that is
		important for all the living
		beings in the water also
		people are drinking the river
		water if anything toxic it may

		kill many people
2.	Idea / Solution description	This process is based on
		sensor used water quality
		monitoring system and can
		be done by internet of things
		technology
3.	Novelty / Uniqueness	With the help of sensors by
		deteting the amount of
		substance in the water and
		managing the quality of water
4.	Social Impact / Customer	By getting good quality of
	Satisfaction	water all living beings may be
		get good health because
		water is an essential one
5.	Business Model (Revenue	Our model will be benefitted
	Model)	for all creatures living in the
		world
6.	Scalability of the Solution	By detecting the good
		condition of sensor and other
		electronic components we
		can manage this proces

3.3Problem solution fit

Business problem	If the quality of water is not	It is dangerous for the
	checked and maintained	creatures for living in water
	regularly, most of us get	and people who drinking
	affected	
Business Outcomes	Clean water supports	Maintaining visible
	diversity of plants and	agricultural protection
	wildlife	
User Benefits	80% of disease and 50% of	To obtain quantitative
	child related to poor water	infomation on physical and
	quality is prevented	chemical and biological
		characteristics of water

Solution ideas	Using sensors "smart	Real time display of water
	passive sensing"	quality using ledscreens
Need	Properly dispose of	Dispose of harmful
	hazardous products	materials properly
Importance	Monitoring provides the	Water quality monitoring is
	objective evidence	used to alert us to current,
	necessary to make	on going and emergency
	decision on managing	problem
	water qualities	
Solution ideas	Wireless sensors based	System that use short
	monitoring system	range communication like
		bluetooth

4.Requirement Analysis

4.1Functional Requirements

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail
		Registration through LinkedIN
		Confirmation via Email
FR-2	User Confirmation	Confirmation via OTP
FD 0		The objective is to obtain
FR-3	Objective	quantitative information on
		the physical, chemical and
		biological characteristics
		of water.

	Testing	It is used for monitoring the
FR-4		water quality by determining
		pH, turbidity, conductivity
		and temperature.

4.2 Non-functional Requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The main aim is to develop a system for continuous
		Monitoring of river water quality at remote places using wireless sensors networks with low power consumption, low cost and high Detection accuracy.
NFR-2	Security	3
NFR-3	Reliability	The consequences of using poor quality data include faulty decisions, higher risk to the environment or human health, Wasted resources and loss of
		credibility.
NFR-4	Performance	The system consist of several sensors which is used to measure
		Physical and chemical parameters of the water. It can be done

		by using remote monitoring and Internet of Thin gs(IoT)
NFR-5	Availability	Consideration is given to demands from human and ecosystem
		Needs. Equitable apportionment of water among uses, and indicators of stress to the water resource.
NFR-6	Scalability	It obtains quantitatitve information on the physical, chemical. And biological characteristics of water via secchi disks, probes, nets. Gauges and metres.

5. Project design

5.1 Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

User Type	Functional Requirement (Epic)	User Story Number	User Story <i>l</i> Task	Acceptance criteria	Priority
Customer (Mobile user)	Registration	USN-1	As a user, I can register	I can access my account /	High

			for the application by entering my email, password, and confirming my password.	dashboard	
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High
		USN-3	As a user, I can register for the application through	I can register & access the dashboard with Facebook Login	Low
		USN-4	As a user, I can register for the application through Gmail	I can register & access the dashboard with gmail login	Medium
L	ogin	USN-5	As a user, I can log into the application by entering email & password	I can register & access the dashboard with email login	High
D	Dashboard	USN-6	As a user, after login to	I can watch the videos	High

			the ibm account, click on dashboard	and use the templates	
Customer (Web user)	Login and dashboard	USN-7	As a user, I can login to the application by gmail and after login to the ibm account click on dashboard	I can login to the app using the same email and password and access the resources.	High
Customer Care Executive	Login	CCE-1	As a CCE I can login to app using my id and password and I can interact with user	I can login using my mail and password	High
Administrator	Login and dashboard	A1	As an administrator, I can login and access dashboard and manage and direct activities.	I can login using my company id and password	High

5.2 Solution and Technical Architecture Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts	RFID,NFC,LTE – A, Low Energy Radio

		with application	Protocols, Raspberry Pi, Rocket chat
2.	Application Logic-1	Logic for a process in the application	MIT App Inventor
3.	Application Logic-2	Logic for a process in the application	Ai2. App Companion
4.	Cloud Database	Database Service on Cloud	IBM cloudant
5.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or Local Filesystem
6.	External API-1	Purpose of External API used in the application	Speech to text recognition Application
7.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration:	Local,Kubernetes, etc.

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source	Technology of

		frameworks used	Opensource framework
2.	Scalable Architecture	Justify the scalability of architecture (3 – tier, Micro-services)	Technology used
3.	Availability	Justify the availability of application	Technology used
4.	Performance	Design consideration for the performance of the application	Technology used

6.Project planning and scheduling

6.1 Sprint Planning and estimation

Sprint	Function	User	User	Story	Priority	Team
	al	Story	story/Ta	points		membe
	Require	number	sk			rs
	ment(epi					
	c)					
Sprint-1	Registrat ion	USN-1	As a user, I can register for the application by entering	2	High	Kanthim athi Krishnav eni
			my email, password, and confirming my password.			
Sprint-1		USN-2	As a user, I will receive confirmati on email once I have registered for the application	1	High	Krishnav eni Durga Devi
Sprint-2		USN-3	As a user, I can register for the application through Facebook	2	Low	Mathy bala Kanthim athi
Sprint-3		USN-4	As a user, I can register for the application	2	Medium	Krishnav eni Mathy bala

			through Gmail			
Sprint-4	Login	USN-5	As a user, I can log into the application by entering email & password	1	High	Mathy Bala Durga Devi

6.2 Sprint Delivery Schedule

Sprint	Total	Duration	Sprint	Sprint	Story	Sprint
	Story		start	end date	points	release
	points		date		Complet	date(act
					ed	ual)
Sprint-1	20	6 days	24 Oct	29 Oct	20	20 Oct
			2022	2022		2022
Sprint-2	20	6 days	31 Oct	05 Nov	30	30 Oct
			2022	2022		2022
Sprint-3	20	6 days	07 Nov	12 Nov	45	06 Nov
			2022	2022		2022
Sprint-4	20	6 days	14 Nov	19 Nov	50	07 Nov
			2022	2022		2022

7. Coding and solutioning

7.1 Feature

import time import sys import ibmiotf.application import ibmiotf.device import random from twilio.rest import Client import keys #Provide your IBM WatSON Credentials organization = "eo8548" #replace the ORG ID deviceType = "sensor"#replace the Device type wi deviceId = "12"#replace Device ID authMethod = "token" authToken = "123456789" #Replace the authtoken # Initialize GPIO #Receives Command from Node-red def myCommandCallback(cmd):

```
print ("Command received: %s" % cmd.data['command'])
status=cmd.data['command']
if status=="turbidity<50":
 if status =="temp<17":
 if status == "ph>=7":
  if status=="do>7":
   print("Portable water for drinking and bio-life")
 print("Acidic")
 print ("Affects bio-life")
print ("Unfit for consumption")
try:
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-
method":authMethod, "auth-token":authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
except Exception as e:
print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event
oftype "greeting" 10 times
deviceCli.connect()
while True:
#Get Sensor Data from DHT11
temp=random.randint(0,100)
ph=random.randint(0,14)
turbidity=random.randint(0,100)
do=random.randint(0,10)
data = { 'temp' : temp, 'ph': ph, 'turbidity': turbidity, 'do':do }
#print data
def myOnPublishCallback():
print ("Published Temperature = %s C" % temp, "ph = %s %%" % ph, "turbidity =
%s%%"% turbidity, "do=%s %%"% do, "to IBM Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data,
qos=0,on publish=myOnPublishCallback)
if not success:
print("Not connected to IoTF")
time.sleep(5)
```

deviceCli.commandCallback = myCommandCallback
Disconnect the device and application from the cloud
deviceCli.disconnect()

8.Testing

8.1 Test Cases

Test	Feature	Compone	Test	Steps to	Expected	Actual	Status
Cases	Туре	nt	Scenario	execute	Result	Result	
Login	UI	Node Red	Verify	The	The value	Working	Pass
Page 1			whether	details will	of the	as	
			the details	be stored	paramete	Excepted	
			got from	in the IBM	rs as		
			the sensor	Cloud and	collected		
			are	it is got	from the		
			presentab	through	IoT		
			le on the	the	sensors		
			Web UI	Nodered	are		
			Арр	Applicati	displayed		
				on in form	as		
				of http link	key:value		
					pair		
Login	User Page	NAIT A	Verify	The App's	The values	Working	Pass
Page 2	Details	MIT App	whether	back end	are	as	
		Inventor	the user	is to made	displayed	Excepted	
			can be	ready	in the App		
			able to get	such that	screen in		
			the details	it is ready	the User's		
			in the	to accept	Mobile		
			Mobile	the values	Applicati		
			App	from the	on		
				cloud			

8.2 User Acceptance Testing:

This report shows the number of test cases that have passed, failed and untested

Section	Total	Not	Fail	Pa
	cases	tested		SS
Data entry to Cloud	25	0	4	21
Details from Cloud to	15	0	5	10
Nodered				
Nodered to Web UI	15	0	2	13
MIT App details	10	0	0	10
Temperature parameter	20	0	0	20
pH parameter	20	0	0	20
DO2 parameter	20	0	2	18
Turbidity parameter	20	0	3	17

9.Results

9.1 Performance Metrics

Model Performance Testing

Project Team shall fill the following details in Model Performance Testing Template

S.No	Parameter	Values
1	Dashboard Design	Nodered Dashboard and
		MIT App Dashboard
2	Data Responsiveness	Random Values collected
		from the sensor
3	Utilization of Data Filters	Threshold values were
		fixed by the Python Script
4	Effective Data Collected	Data were collected and
		displayed as Web UI and
		MIT App
5	Descriptive Details	Graphs were drwan from
		the values got from the
		sensor

10. Advantages & Disadvantages

- Helps in continuous monitoring of water quality on REAL time basis.
- Raises alarms in case the water quality is not as per required standards.
- Helps the treatment plant operators to take immediate corrective actions if the water quality is not as per required standards.
- The system is less effective as sensors are installed very deep inside the water and their positions are fixed.
- The sensors are very expensive.
- Moreover their maintenance cost is also very high.

11.Conclusion

Monitoring of Turbidity, PH & Temperature of Water makes use of water detection sensor with unique advantage and existing GSM network. The system can monitor water quality automatically, and it is low in cost and does not require people on duty. So the water quality testing is likely to be more economical, convenient and fast. The system has good flexibility. Only by replacing the corresponding sensors and changing the relevant software programs, this system can be used to monitor other water quality parameters. The operation is simple. The system can be expanded to monitor hydrologic, air pollution, industrial and agricultural production and so on. It has widespread application and extension value.

12.Future Scope:

- In future we use IOT concept in this project
- Detecting the more parameters for most secure purpose
- Increase the parameters by addition of multiple sensors
- By interfacing relay we controls the supply of water

13.Appendix

APPENDIX: AUTOMATIC WATER QUALITY MONITORING

General considerations

The analytical methods employed with automatic water quality monitors (or on-line instruments) are, in the main, fundamentally the same as those used in the laboratory. The main difference

between laboratory instrumentation and on-line instrumentation is to do with the robustness of construction and the addition of automatic systems for sample preparation, instrument/sample line cleaning and instrument calibration.

GIT-HUB link : https://github.com/IBM-EPBL/IBM-Project-41926-1660646233

Project Video link

https://drive.google.com/file/d/1yJLgPlWwrhNgnEs6hQ8VxcjLEGzes_Qk/view?usp=drivesdk