Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант<u>35</u>

Виконав студент	г <u>III-13 Шиманська Ганна Артурівна</u>
	(шифр, прізвище, ім'я, по батькові)
Перевірив	
перевірив	(прізвище, ім'я, по батькові)

Лабораторна робота 1

Дослідження лінійних алгоритмів

Мета — дослідити лінійні програмні специфікації для подання перетворювальних операторів та операторів суперпозиції, набути практичних навичок їх використання під час складання лінійних програмних специфікацій.

Варіант 35

Задано довжини основи і висоту рівнобедреної трапеції. Знайти її периметр та площу.

• Постановка задачі

У трапеції із заданими основами та висотою обчислити периметр та площу. Вивести результати.

• Побудова математичної моделі

Складемо таблицю змінних

Змінна	Tun	Ім'я	Призначення
Більша основа	Дійсне, >0	biggerBase	Вхідні дані
Менша основа	Дійсне, >0	smallerBase	Вхідні дані
Висота	Дійсне, >0	altitude	Вхідні дані
Бічне ребро	Дійсне	latEdge	Проміжні дані
Периметр	Дійсне	perimeter	Вихідні дані
Площа	Дійсне	area	Вихідні дані

Складемо таблицю функцій, які будемо використовувати

Функції	Дія
Sqr	Піднесення до квадрату
Sqrt	Обчислення квадратного кореня

```
latEdge знаходимо за формулою:
latEdge := sqrt( sqr(altitude) + sqr((biggerBase - smallerBase)/2))
perimeter знаходимо за формулою
```

perimeter := biggerBase + smallerBase + 2latEdge

area знаходимо за формулою

area := ((biggerBase+smallerBase)/2) * altitude

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо знаходження проміжного даного latEdge.

Крок 3. Деталізуємо знаходження вихідного даного perimeter.

Крок 4. Деталізуємо знаходження вихідного даного area.

• Псевдокод алгоритму

Крок 1.

початок

Введення biggerBase, smallerBase, altitude

Обчислення виразу latEdge

Обчислення периметра perimeter

Обчислення площі area

Виведення perimeter, area

кінець

```
Крок 2.
```

початок

Введення biggerBase, smallerBase, altitude

latEdge := sqrt(sqr(altitude) + sqr((biggerBase - smallerBase)/2))

Обчислення периметра perimeter

Обчислення площі area

Виведення perimeter, area

кінець

Крок 3.

початок

Введення biggerBase, smallerBase, altitude

latEdge := sqrt(sqr(altitude) + sqr((biggerBase-smallerBase)/2))

perimeter := biggerBase + smallerBase + 2latEdge

Обчислення площі area

Виведення perimeter, area

кінець

Крок 4.

початок

Введення biggerBase, smallerBase, altitude

latEdge := sqrt(sqr(altitude) + sqr((biggerBase-smallerBase)/2))

perimeter := biggerBase + smallerBase + 2latEdge

area := ((biggerBase+smallerBase)/2) * altitude

Виведення perimeter, area

кінець

• Блок-схема

• Випробування алгоритму

Блок	Дія
	початок
1	Введення biggerBase = 11,
	smallerBase = 5,
	altitude = 4
2	latEdge := $sqrt(sqr(4) + sqr((11 - 5)/2)) = 5$
3	perimeter := $11 + 5 + 2*5 = 26$
4	area := $((11 + 5)/2) * 4 = 32$

5	Виведення 26, 32
	Кінець

Блок	Дія
	початок
1	Введення biggerBase = 18,
	smallerBase = 8,
	altitude = 12
2	latEdge := $sqrt(sqr(12) + sqr((18 - 8)/2)) = 13$
3	perimeter := $18 + 8 + 2*13 = 52$
4	area := $((18 + 8)/2) * 12 = 156$
5	Виведення 52, 156
	кінець

• Висновки:

Проаналізувавши дану задачу я дізналася, як описувати обробку певних значень, використовуючи перетворювальні оператори. Також я поглибила знання з теми лінійних алгоритмів, та зрозуміла, що поетапна реалізація окремих кроків задачі, описаних у псевдокоді та блок-схемі, значно полегшує процес випробування певного розв'язку.