Nombre y apellido: L.U. o D.N.I.: Carrera: Número de órden:

Cant. de hojas:

Departamento de Computación - FCEyN - UBA

Taller de Álgebra I - Parcial

PRIMER CUATRIMESTRE 2017 - TURNO NOCHE

31 de mayo de 2017

Aclaraciones

- El parcial se aprueba con tres ejercicios bien resueltos.
- Programe todas las funciones en lenguaje Haskell. El código debe ser autocontenido. Si utiliza funciones que no existen en Haskell, debe programarlas.
- Incluya la signatura de todas las funciones que escriba.
- No está permitido: alterar los tipos de datos presentados en el enunciado utilizar técnicas no vistas en clase para resolver los ejercicios – utilizar listas.

Ejercicio 1

Dar el tipo e implementar la función el Del Medio que dados $a, b, c \in \mathbb{Z}$ devuelva el número del medio al ordenarlos de menor a mayor. Por ejemplo:

elDelMedio 2 1 10 \rightsquigarrow 2

elDelMedio 3 3 (-10) \rightsquigarrow 3

Ejercicio 2

Implementar una función sonCongruentesModulo:: Integer -> Integer -> Integer -> Bool que dados $a,b \in$ $\mathbb{N}_{>0}$, $m \in \mathbb{N}_{>0}$ determine si $a \equiv b \pmod{m}$. No se permite usar la funciones mod y div de Haskell. Por ejemplo: sonCongruentesModulo 8 5 3 \leadsto True (ya que $8 \equiv 5 \pmod{3}$) $sonCongruentesModulo 8 6 3 \rightsquigarrow False$

Ejercicio 3

Para $n \in \mathbb{N}_{>0}$ se define la sucesión:

$$a_n = 2 + \frac{1}{2 + \frac{1}{2}}$$
 (aparece n veces el 2).
$$2 + \frac{1}{2 + \frac{1}{2}}$$

Implementar una función raizDe2Aprox :: Integer -> Float que dado $n \in \mathbb{N}_{>0}$ devuelva la aproximación de $\sqrt{2}$ definida por $\sqrt{2} \approx a_n - 1$. Por ejemplo: raizDe2Aprox 1 → 1

raizDe2Aprox 2 → 1,5 raizDe2Aprox 3 → 1,4

Ejercicio 4

Implementar una función esSumaDePerfectos :: Integer -> Bool que dado $n \in \mathbb{N}_{>0}$ determine si n es suma de dos cuadrados perfectos. Un número entero es un cuadrado perfecto si es el resultado de elevar un número entero al cuadrado. Ayuda: pueden utilizar la funcion sqrt_n :: Integer -> Integer que determina la parte entera de la raiz cuadrada de un número.

Por ejemplo:

esSumaDePerfectos 13 ↔ True (ya que 13 = 9 + 4) esSumaDePerfectos 15 \rightsquigarrow False esSumaDePerfectos 25 → True (ya que 25 = 25 + 0)

Ejercicio 5

Implementar una función es
Capicua :: Integer -> Bool que dado $n \in \mathbb{N}_{\geq 0}$ determine si n es un número capicúa.

Por ejemplo: esCapicua 1212 → False

esCapicua 3773 ↔ True

esCapicua 3 → True