Transpusa unei matrice

Definitie: Fie matricea $A = (a_{ij}) \in M_{n, m}$ (C). Se numeste transpusa matricea $A^{\dagger} = (b_{kl}) \in M_{n, m}$ (C), unde $b_{kl} = a_{lk}$ pentru (\forall) $k \in \{1, 2, 3, ..., n\}$, $l \in \{1, 2, 3, ..., m\}$.

Spunem ca transpusa lui A este matricea obtinuta din A prin inversarea liniilor cu coloanele si invers.

Operatia prin care fiecare matrice $A \in M_{n,m}(C)$ i se asociaza matricea transpusa $A^t \in M_{n,m}(C)$ se numeste operatia de transpunere a matricelor.

Proprietati

- 1) Pentru orice matrice $A \in M_{n,m}(C)$, $(A^{\dagger})^{\dagger} = A$
- 2) Pentru orice matrice A, B \in M_{n,m} (C) avem (A + B)[†] = A[†] + B[†]
- 3) Pentru orice matrice A, B \in M_{n, m} (C) avem (aA)[†] = aA[†], a \in C
- 4) (\forall) $A \in M_{n,m}$ (C) si $B \in M_{m,p}$ (C) avem (AB) $^{\dagger} = B^{\dagger} A^{\dagger}$