In [10]:

```
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
```

In [11]:

```
data=pd.read_csv('iris.csv')
data.head()
```

Out[11]:

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa

In [12]:

```
x=data.iloc[:,:4]
x.head()
```

Out[12]:

	sepal.length	sepal.width	petal.length	petal.width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

In [13]:

```
km=KMeans(n_clusters=3)
```

In [14]:

```
km.fit(x)
```

Out[14]:

KMeans(n_clusters=3)

```
In [15]:
y=km.predict(x)
In [16]:
У
Out[16]:
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
     2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0,
     0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2])
In [24]:
centroid=km.cluster_centers_
centroid
Out[24]:
          , 3.07368421, 5.74210526, 2.07105263],
array([[6.85
            , 3.428
                           , 0.246
     [5.006
                  , 1.462
     [5.9016129 , 2.7483871 , 4.39354839, 1.43387097]])
In [ ]:
```