Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант <u>29</u>

Виконав студент	<u> III-15 Рибалка Ілля Сергійович</u>
·	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

Мета — дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання

Варіант 29

Для заданого натурального числа п обчислити:

$$\underbrace{\sqrt{2+\sqrt{2+...+\sqrt{2}}}}_{n \text{ коренів}}$$

1. Постановка задачі

Обчислити вираз $\sqrt{2}$ +... задану n кількість разів. Обчислення будуть виконуватися в арифметичному циклі(від 1 до n (включно), в якості лічильника використана змінна i).

2. Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Кількість коренів	Натуральне	n	Вхідні дані
Лічильник	Натуральне	i	Проміжні дані
Результат	Дійсне	res	Проміжні, Вихідні дані

Тіло циклу складається з суми res=res+2, та квадратного кореня з res. В якості дії квадратного кореня буде використано дію піднесення до степеня(**) 0.5.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію задання початкового значення res.

Крок 3. Деталізуємо крок знаходження res за рахунок арифметичного циклу.

Крок 4. Деталізуємо тіло циклу.

Псевдокод

крок 1

початок

Введення п

Задання початкового значення res

Знаходження res

Виведення res

кінець

крок 2

початок

Введення п

res = 0

Знаходження res

Виведення res

кінець

крок 3

початок

Введення п

res = 0

для і від 1 до п повторити

Знаходження res

все повторити

Виведення res

кінець

крок 4

початок

Введення п

res = 0

для і від 1 до п повторити

$$res += 2$$

res **=
$$0.5$$

все повторити

Виведення res

кінець

Блок-Схема

Основи програмування – 1. Алгоритми та структури даних

Тестування

Блок	Дія
	Початок
1	n = 3
2	res = 0
3.1	i=1, i<=n = True, res = 1.4142135623730951
3.2	i=2, i<=n = True, res = 1.8477590650225735
3.3	i=3, i<=n = True, res = 1.9615705608064609
4	Виведення res = 1.9615705608064609
	Кінець

Висновок

Я дослідив особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. В результаті виконання лабораторної роботи було створено алгоритм розрахунку виразу задану кількість разів. Алгоритм було протестовано при значенні n = 3, результатом слугувало число 1.9615705608064609.