NLP PROJECT FOR DISASTER TWEET CLASSIFICATION

PRESENTED BY: DEEPAK SHARMA

INTRODUCTION

 Objective: Develop a machine learning model to classify tweets into disaster and non-disaster categories using natural language processing techniques.

DATA OVERVIEW

 The dataset contains 7,613 tweets with columns for id, keyword, location, text, and target. Key challenges include missing values and the need for text normalization.

DATA CLEANING

- Steps included:
- Removing URLs, HTML tags, and special characters.
- Converting texts to lowercase.
- Handling missing values in 'keyword' and 'location'.

FEATURE ENGINEERING

- Features extracted:
- Word counts and TF-IDF scores using CountVectorizer and TfidfVectorizer.
- Sentiment polarity scores.
- Additional features like tweet length, hashtags, and mentions.

EXPLORATORY DATA ANALYSIS

 Univariate analysis showed balanced classes and insights into tweet lengths. Sentiment analysis revealed differences in sentiment polarity between disaster and non-disaster tweets.

MODEL SELECTION

 Evaluated Logistic Regression and Random Forest classifiers. Initial testing with cross-validation showed Logistic Regression as more promising.

MODEL TRAINING

• Used TF-IDF features for training. Cross-validation scores helped compare model performance before tuning.

HYPERPARAMETER TUNING

Applied Grid Search CV to optimize Logistic Regression.
Simplified the Random Forest model to reduce complexity.

MODEL EVALUATION

- Final evaluation on test data:
- - Accuracy: 80.43%
- - Precision: 82.08%
- - Recall: 69.18%
- - FI-Score: 75.08%
- Confusion matrix analysis provided insights into model performance.

RESULTS AND INSIGHTS

 The logistic regression model effectively classified disaster tweets with high precision, demonstrating the importance of feature engineering and model tuning in NLP tasks.

CHALLENGES AND LEARNINGS

 Challenges included handling missing data and imbalanced classes. Learnings emphasized the value of comprehensive data cleaning and the impact of feature selection on model accuracy.

FUTURE WORK

 Future improvements could include exploring more complex NLP models like BERT, incorporating more granular sentiment analysis, and using larger, more diverse datasets to enhance model robustness.

CONCLUSION

 This project underscores the potential of machine learning in disaster response scenarios, highlighting how NLP can be leveraged to quickly classify critical information from social media.