TEST REPORT

Reference No. : WTS16S0652789-2E

FCC ID.....: 2AF9R-WETEKHUB

Applicant: : WeTek Electronics Limited

Address: Level 10, Central Building, 1-3 Pedder Street, Central, Hong Kong.

Manufacturer: WeTek Electronics Limited

Address: Level 10, Central Building, 1-3 Pedder Street, Central, Hong Kong.

Product Name: Android TV BOX

Model No. : Wetek Hub, Wetek Cube, Wetek Nano, Wetek Core, Wetek Play,

Wetek play2, Wetek Play2S, Wetek Streamer, Wetek Streamer 4K

Brand...... N/A

Standards FCC CFR47 Part 15 C Section 15.407:2015

Date of Receipt sample..... : Jun. 08, 2016

Date of Test.....: Jun. 09 – Jul. 05, 2016

Date of Issue: Jul. 06, 2016

Test Result: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel :+86-755-83551033

Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Philo Zhong / Manager

oved by:

Reference No.: WTS16S0652789-2E Page 2 of 114

2 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207(a)	PASS
Radiated Emissions	15.407(a) 15.205(a) 15.209(a)	PASS
Duty Cycle	KDB 789033	
6dB Bandwidth	15.407(a)	PASS
26 dB Emission Bandwidth & 99% Occupied Bandwidth	15.407(a)	PASS
Maximum Conducted Output Power	15.407(a)	PASS
Power Spectral Density	15.407(a)	PASS
Restricted bands around fundamental frequency	15.407(a)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

		Page
1	COVER PAGE	
2	TEST SUMMARY	2
3	CONTENTS	3
4	GENERAL INFORMATION	
	4.1 GENERAL DESCRIPTION OF E.U.T.	
	4.2 DETAILS OF E.U.T	
	4.3 CHANNEL LIST	-
5	EQUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST	
	5.2 DESCRIPTION OF SUPPORT UNITS	
	5.3 MEASUREMENT UNCERTAINTY	
_	5.4 TEST EQUIPMENT CALIBRATION	
6	CONDUCTED EMISSION	
	6.1 E.U.T. OPERATION	
	6.3 MEASUREMENT DESCRIPTION	
	6.4 CONDUCTED EMISSION TEST RESULT	
7	RADIATED EMISSIONS	15
	7.1 EUT OPERATION	
	7.2 TEST SETUP	
	7.3 SPECTRUM ANALYZER SETUP	
	7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
	7.6 SUMMARY OF TEST RESULTS	
8	DUTY CYCLE	33
	8.1 SUMMARY OF TEST RESULTS	33
9	BAND EDGE	40
	9.1 TEST PRODUCE	
	9.2 TEST RESULT	
10	6 DB BANDWIDTH	
	10.1 TEST PROCEDURE:	
11	10.2 TEST RESULT: 26 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
11		
	11.1 Test Procedure:	
12	CONDUCTED OUTPUT POWER	
	12.1 Test Procedure:	
	12.2 TEST RESULT :	
13	POWER SPECTRAL DENSITY	93
	13.1 TEST PROCEDURE:	93
	13.2 Test Result:	94
14	FREQUENCY STABILITY	110
	14.1 TEST PROCEDURE:	
	14.2 Test Result:	111

Reference No.: WTS16S0652789-2E Pag

Page 4 of 114

15	S ANTENNA REQUIREMENT		
16	RF EX	XPOSURE	113
	16.1	REQUIREMENTS	113
	16.2	THE PROCEDURES / LIMIT	113
	16.3	MPE CALCULATION METHOD	114

Reference No.: WTS16S0652789-2E Page 5 of 114

4 General Information

4.1 General Description of E.U.T.

Product Name: Android TV BOX

Model No.: Wetek Hub, Wetek Cube, Wetek Nano, Wetek Core, Wetek Play, Wetek

play2, Wetek Play2S, Wetek Streamer, Wetek Streamer 4K

Model Description: Only the appearance is different. The model Wetek Hub is the tested

sample.

Operation Frequency: IEEE 802.11b/g/n(HT20):2412MHz ~ 2462MHz

IEEE 802.11a/ n(HT20)/ac(HT20/40/80): 5150MHz to 5250MHz IEEE 802.11a/ n(HT20)/ac(HT20/40/80): 5725MHz to 5850MHz

BT: 2402-2480MHz

The Lowest Oscillator: 12MHz

Antenna Gain: 2.4GHz WIFI:2.0 dBi

5.2GHz WIFI:2.0 dBi 5.8GHz WIFI:2.0 dBi 2.4GHz BT:2.0 dBi

Type of modulation: IEEE 802.11b DSSS(CCK/QPSK/BPSK)

IEEE 802.11g OFDM(BPSK/QPSK/16QAM/64QAM)
IEEE 802.11n OFDM(BPSK/QPSK/16QAM/64QAM)
IEEE for 802.11a: OFDM(BPSK/QPSK/16QAM/64QAM)
IEEE for 802.11n: OFDM(BPSK/QPSK/16QAM/64QAM)

IEEE for 802.11ac: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)

BT: GFSK,PI/4-DQPSK,8DPSK

Number of

transmitter chains: BT/WIFI: 1

4.2 Details of E.U.T.

Technical Data: Input: DC5V powered by adapter

adapter input: 100-240V 50/60Hz, 0.35A

outup: 5V, 2000mA

adapter manufacturer: SHEN ZHEN KEYU POWER SUPPLY

TECHNOLOGY CO.,LTD

4.3 Channel List

U-NII-1 (5.15-5.25GHz)		U-NII-3 (5.725-5.85GHz)	
channel	channel Frequency(MHz)		Frequency(MHz)
36	5180	149	5745
38	5190	151	5755
40	5200	153	5765
42	5210	155	5785
44	5220	157	5785

Reference No.: WTS16S0652789-2E Page 6 of 114

46	5230	159	5795
48	5240	161	5805
		165	5825

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11a/n(HT20)/ac(HT20):

channel	Frequency(MHz)	channel	Frequency(MHz)
36	5180	149	5745
40	5200	157	5785
48	5240	165	5825

For 802.11 n(HT40)/ac(HT40):

channel	Frequency(MHz)	channel	Frequency(MHz)
38	5190	151	5755
46	5230	159	5795

For 802.11 ac(HT80):

channel	Frequency(MHz)	channel	Frequency(MHz)
42	5210	155	5775

Test Mode Description:

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. Transmitting duty cycle is no less 98%.

The software is installed in operation system, named "RFTestTool.apk", Version 1,date 20160518.

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Radiated Emissions	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Radiated Emissions	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX

	T T			
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Duty Cycle	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Duty Cycle	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Dan d Edua	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Band Edge	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
6dB Bandwidth	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
oub Bandwidth	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
26dB Bandwidth and 99% Occupied Bandwidth	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX

Reference No.: WTS16S0652789-2E Page 8 of 114

	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Conducted Output Power	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Conducted Output Power	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Davis On astrol Davido	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Power Spectral Density	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
Frequency Stability	Un-modulation	/	U-NII-1 36/40/48 U-NII-3 149/155/165	TX

Reference No.: WTS16S0652789-2E Page 9 of 114

4.4 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A-1,July 12, 2012.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

• FCC Test Site 2#— Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

	5.1 Equipments L					
Condu	cted Emissions Test	Site 1#	i	1		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.14,2015	Sep.13,2016
2.	LISN	R&S	ENV216	101215	Sep.14,2015	Sep.13,2016
3.	Cable	Тор	TYPE16(3.5M) -		Sep.14,2015	Sep.13,2016
Condu	cted Emissions Test	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.14,2015	Sep.13,2016
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.14,2015	Sep.13,2016
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.14,2015	Sep.13,2016
4.	Cable	LARGE RF300 -		Sep.14,2015	Sep.13,2016	
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.14,2015	Sep.13,2016
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.14,2015	Sep.13,2016
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Sep.14,2015	Sep.13,2016
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.14,2015	Sep.13,2016
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Sep.14,2015	Sep.13,2016
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Sep.14,2015	Sep.13,2016
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Sep.14,2015	Sep.13,2016
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Sep.14,2015	Sep.13,2016
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Sep.14,2015	Sep.13,2016
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.14,2015	Sep.13,2016
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.14,2015	Sep.13,2016
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.14,2015	Sep.13,2016
RF Cor	nducted Testing					

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.14,2015	Sep.13,2016
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.14,2015	Sep.13,2016
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.14,2015	Sep.13,2016

5.2 Description of Support Units

Equipment	Manufacturer	Model No.	Series No.
/	/	/	/

5.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Balliota I Octobra - Facilitation and a	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S0652789-2E Page 12 of 114

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2009

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56 \text{ dB}_{\mu}\text{V}$ between 0.5MHz & 5MHz $60 \text{ dB}_{\mu}\text{V}$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2009.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Reference No.: WTS16S0652789-2E Page 14 of 114

Neutral line:

Reference No.: WTS16S0652789-2E Page 15 of 114

7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.407

Test Method: ANSI C63.10:2009

Test Result: PASS
Measurement Distance: 3m

Limit:

_	Field Stre	ngth	Field Strength Limit at 3m Measurement Distance			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2009.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

Turn Table

PC Spectrum

AMP Combining

Analyzer

Network

The test setup for emission measurement above 1 GHz.

System

7.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GH	łz	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz

Reference No.: WTS16S0652789-2E Page 18 of 114

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission

level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the

maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna

both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting

the eut in X axis, so the worst data were shown as follow.

8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and

subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit

for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

7.6 Summary of Test Results

Test Frequency: 12MHz~30MHz

Frequency (MHz)	Measurement results		Detector Correct factor		Extrapolation factor	Measurement results (calculated)	Limits	Margin
(IVITIZ)	dBμV @3m		PK/QP dB/m		dB	dBμV/m @30m	dBμV/m @30m	dB
25.621	27.00		QP	19.90	40.00	6.90	29.54	-22.64

Test Frequency : 30MHz ~ 18GHz

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC I 15.407/2					
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin				
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
	802.11a U-NII-1 Low Channel 5180MHz												
223.45	41.05	QP	52	1.2	Н	-11.62	29.43	46.00	-16.57				
223.45	36.26	QP	7	1.4	V	-11.62	24.64	46.00	-21.36				
4536.00	50.44	PK	10	1.1	Н	-2.03	48.41	74.00	-25.59				
4536.00	46.32	Ave	10	1.1	Н	-2.03	44.29	54.00	-9.71				
5112.53	52.53	PK	327	1.3	Н	-1.02	51.51	74.00	-22.49				
5112.53	48.18	Ave	327	1.3	Н	-1.02	47.16	54.00	-6.84				
10360.00	41.08	PK	76	1.5	Н	5.33	46.41	74.00	-27.59				
10360.00	36.85	Ave	76	1.5	Н	5.33	42.18	54.00	-11.82				
		802.	11a U-NII	-1 middle	channe	el 5200MHz							
223.45	40.92	QP	267	1.7	Н	-11.62	29.30	46.00	-16.70				
223.45	36.46	QP	124	1.3	V	-11.62	24.84	46.00	-21.16				
4500.73	50.31	PK	88	1.9	Н	-1.94	48.37	74.00	-25.63				
4500.73	45.88	Ave	88	1.9	Н	-1.94	43.94	54.00	-10.06				
5111.17	53.34	PK	284	1.1	Н	-1.06	52.28	74.00	-21.72				
5111.17	47.42	Ave	284	1.1	Н	-1.06	46.36	54.00	-7.64				
10400.00	41.56	PK	166	1.4	Н	5.21	46.77	74.00	-27.23				
10400.00	37.67	Ave	166	1.4	Н	5.21	42.88	54.00	-11.12				

Fraguenay	Receiver	Detector	Turn table	RX An	tenna	Corrected	Corrected	FCC F 15.407/2					
Frequency	Reading	Detector	Angle	Height	Polar	Factor	Amplitude	Limit	Margin				
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
	802.11a U-NII-1 High channel 5240MHz												
223.45	40.70	QP	120	1.3	Н	-11.62	29.08	46.00	-16.92				
223.45	36.67	QP	90	1.1	V	-11.62	25.05	46.00	-20.95				
4516.57	51.36	PK	90	1.3	Н	-2.24	49.12	74.00	-24.88				
4516.57	47.07	Ave	90	1.3	Н	-2.24	44.83	54.00	-9.17				
5136.92	53.26	PK	263	1.5	Н	-1.09	52.17	74.00	-21.83				
5136.92	47.94	Ave	263	1.5	Н	-1.09	46.85	54.00	-7.15				
10480.00	40.85	PK	35	1.3	Н	5.14	45.99	74.00	-28.01				
10480.00	37.32	Ave	35	1.3	Н	5.14	42.46	54.00	-11.54				
		802	2.11a U-N	I-3 low C	hannel	5745MHz							
223.45	39.70	QP	198	1.9	Н	-11.62	28.08	46.00	-17.92				
223.45	37.43	QP	23	1.8	V	-11.62	25.81	46.00	-20.19				
4538.31	50.28	PK	57	1.0	Н	-2.06	48.22	74.00	-25.78				
4538.31	47.14	Ave	57	1.0	Н	-2.06	45.08	54.00	-8.92				
11490.00	42.50	PK	333	1.1	Н	5.93	48.43	74.00	-25.57				
11490.00	36.63	Ave	333	1.1	Н	5.93	42.56	54.00	-11.44				
5350.22	46.04	PK	100	1.5	Н	-1.25	44.79	74.00	-29.21				
5350.22	37.57	Ave	100	1.5	Н	-1.25	36.32	54.00	-17.68				

Francisco	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC F 15.407/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.	11a U-NII	-3 middle	channe	el 5785MHz			
223.45	41.19	QP	41	1.7	Н	-11.62	29.57	46.00	-16.43
223.45	37.03	QP	152	1.7	V	-11.62	25.41	46.00	-20.59
4513.31	51.53	PK	93	1.8	Н	-2.03	49.50	74.00	-24.50
4513.31	47.18	Ave	93	1.8	Н	-2.03	45.15	54.00	-8.85
11570.00	40.94	PK	197	1.3	Н	5.81	46.75	74.00	-27.25
11570.00	35.79	Ave	197	1.3	Н	5.81	41.60	54.00	-12.40
5389.11	46.33	PK	319	1.1	Н	-1.22	45.11	74.00	-28.89
5389.11	38.43	Ave	319	1.1	Н	-1.22	37.21	54.00	-16.79
		802	2.11a U-NI	I-3 High	channe	l 5825MHz			1
223.45	40.27	QP	184	1.1	Н	-11.62	28.65	46.00	-17.35
223.45	36.21	QP	65	1.1	V	-11.62	24.59	46.00	-21.41
4501.55	50.56	PK	222	1.2	Н	-1.84	48.72	74.00	-25.28
4501.55	46.02	Ave	222	1.2	Н	-1.84	44.18	54.00	-9.82
11650.00	39.77	PK	359	1.1	Н	5.84	45.61	74.00	-28.39
11650.00	36.32	Ave	359	1.1	Н	5.84	42.16	54.00	-11.84
5385.12	45.82	PK	213	1.4	Н	-1.30	44.52	74.00	-29.48
5385.12	37.02	Ave	213	1.4	Н	-1.30	35.72	54.00	-18.28

Freezueneu	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC F 15.407/2					
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin				
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
	802.11n(HT20) U-NII-1 low Channel 5180MHz												
223.45	39.24	QP	220	2.0	Н	-11.62	27.62	46.00	-18.38				
223.45	37.58	QP	113	1.5	V	-11.62	25.96	46.00	-20.04				
4515.16	51.71	PK	335	1.0	Н	-2.14	49.57	74.00	-24.43				
4515.16	47.02	Ave	335	1.0	Н	-2.14	44.88	54.00	-9.12				
5130.91	45.61	PK	111	1.3	Н	-1.06	44.55	74.00	-29.45				
5130.91	38.63	Ave	111	1.3	Н	-1.06	37.57	54.00	-16.43				
10360.00	40.69	PK	223	1.7	Н	5.33	46.02	74.00	-27.98				
10360.00	37.66	Ave	223	1.7	Н	5.33	42.99	54.00	-11.01				
		802.11n	(HT20) U-	NII-1 mid	dle cha	nnel 5200MH	Ηz						
223.45	38.85	QP	293	1.5	Н	-11.62	27.23	46.00	-18.77				
223.45	37.29	QP	105	1.7	V	-11.62	25.67	46.00	-20.33				
4504.98	52.43	PK	199	1.6	Н	-2.12	50.31	74.00	-23.69				
4504.98	48.11	Ave	199	1.6	Н	-2.12	45.99	54.00	-8.01				
5111.81	45.67	PK	102	1.1	Н	-1.06	44.61	74.00	-29.39				
5111.81	38.44	Ave	102	1.1	Н	-1.06	37.38	54.00	-16.62				
10400.00	40.02	PK	330	1.3	Н	5.21	45.23	74.00	-28.77				
10400.00	38.21	Ave	330	1.3	Н	5.21	43.42	54.00	-10.58				

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.407/20					
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin				
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
	802.11n(HT20) U-NII-1 High channel 5240MHz												
223.45	37.57	QP	17	1.3	Н	-11.62	25.95	46.00	-20.05				
223.45	36.95	QP	207	1.0	V	-11.62	25.33	46.00	-20.67				
4518.78	53.82	PK	296	1.6	Н	-1.96	51.86	74.00	-22.14				
4518.78	49.56	Ave	296	1.6	Н	-1.96	47.60	54.00	-6.40				
5127.57	46.33	PK	214	1.6	Н	-1.06	45.27	74.00	-28.73				
5127.57	38.33	Ave	214	1.6	Н	-1.06	37.27	54.00	-16.73				
10480.00	41.17	PK	234	1.1	Н	5.14	46.31	74.00	-27.69				
10480.00	37.58	Ave	234	1.1	Н	5.14	42.72	54.00	-11.28				
		802.11	In(HT20) I	U-NII-3 la	w Chan	nel 5745MH	Z						
223.45	37.03	QP	285	1.9	Н	-11.62	25.41	46.00	-20.59				
223.45	37.03	QP	316	1.4	V	-11.62	25.41	46.00	-20.59				
4535.28	52.37	PK	96	1.0	Н	-1.85	50.52	74.00	-23.48				
4535.28	48.46	Ave	96	1.0	Н	-1.85	46.61	54.00	-7.39				
11490.00	39.86	PK	79	1.9	Н	5.93	45.79	74.00	-28.21				
11490.00	35.39	Ave	79	1.9	Н	5.93	41.32	54.00	-12.68				
5350.25	46.91	PK	80	1.9	Н	-1.01	45.90	74.00	-28.10				
5350.25	39.70	Ave	80	1.9	Н	-1.01	38.69	54.00	-15.31				

	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC F 15.407/20		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	802.11n(HT20) U-NII-3 middle channel 5785MHz									
223.45	37.15	QP	226	1.8	Н	-11.62	25.53	46.00	-20.47	
223.45	36.64	QP	45	1.3	V	-11.62	25.02	46.00	-20.98	
4501.94	52.76	PK	197	1.1	Н	-1.89	50.87	74.00	-23.13	
4501.94	47.81	Ave	197	1.1	Н	-1.89	45.92	54.00	-8.08	
11570.00	41.50	PK	152	1.0	Н	5.81	47.31	74.00	-26.69	
11570.00	36.53	Ave	152	1.0	Н	5.81	42.34	54.00	-11.66	
5381.26	45.05	PK	159	1.8	Н	-1.04	44.01	74.00	-29.99	
5381.26	38.24	Ave	159	1.8	Н	-1.04	37.20	54.00	-16.80	
		802.111	n(HT20) U	I-NII-3 Hi	igh char	nnel 5825MH	lz			
223.45	38.03	QP	275	1.3	Н	-11.62	26.41	46.00	-19.59	
223.45	36.49	QP	8	1.7	V	-11.62	24.87	46.00	-21.13	
4516.41	52.17	PK	165	1.2	Н	-1.97	50.20	74.00	-23.80	
4516.41	47.28	Ave	165	1.2	Н	-1.97	45.31	54.00	-8.69	
11650.00	40.83	PK	83	1.2	Н	5.84	46.67	74.00	-27.33	
11650.00	36.97	Ave	83	1.2	Н	5.84	42.81	54.00	-11.19	
5371.42	45.39	PK	343	1.1	Н	-1.12	44.27	74.00	-29.73	
5371.42	39.27	Ave	343	1.1	Н	-1.12	38.15	54.00	-15.85	

Fraguenav	Receiver	Detector	Turn table	RX An	tenna	Corrected	Corrected	FCC F 15.407/2	
Frequency	Reading	Detector	Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11	ac(HT20)	U-NII-1 lo	w Char	nnel 5180MH	lz		
223.45	36.59	QP	51	1.2	Н	-11.62	24.97	46.00	-21.03
223.45	36.23	QP	4	1.3	V	-11.62	24.61	46.00	-21.39
4516.88	50.54	PK	102	1.2	Н	-1.86	48.68	74.00	-25.32
4516.88	44.75	Ave	102	1.2	Н	-1.86	42.89	54.00	-11.11
5131.77	47.13	PK	98	1.9	Н	-1.06	46.07	74.00	-27.93
5131.77	38.78	Ave	98	1.9	Н	-1.06	37.72	54.00	-16.28
10360.00	39.92	PK	91	1.8	Н	5.33	45.25	74.00	-28.75
10360.00	33.89	Ave	91	1.8	Н	5.33	39.22	54.00	-14.78
		802.11ad	(HT20) U	-NII-1 mid	ddle cha	nnel 5200M	Hz		
223.45	35.81	QP	151	2.0	Н	-11.62	24.19	46.00	-21.81
223.45	35.43	QP	165	1.7	V	-11.62	23.81	46.00	-22.19
4525.16	51.24	PK	251	1.4	Н	-1.82	49.42	74.00	-24.58
4525.16	44.77	Ave	251	1.4	Н	-1.82	42.95	54.00	-11.05
5134.83	47.77	PK	195	1.5	Н	-1.06	46.71	74.00	-27.29
5134.83	37.82	Ave	195	1.5	Н	-1.06	36.76	54.00	-17.24
10400.00	40.19	PK	146	1.5	Н	5.21	45.40	74.00	-28.60
10400.00	36.05	Ave	146	1.5	Н	5.21	41.26	54.00	-12.74

Fraguenay	Receiver	Detector	Turn table	RX An	tenna	Corrected	Corrected	FCC F 15.407/20	
Frequency	Reading	Detector	Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11a	c(HT20) L	J-NII-1 H	ligh cha	nnel 5240MH	Hz		
223.45	35.50	QP	85	1.7	Н	-11.62	23.88	46.00	-22.12
223.45	36.32	QP	272	1.3	V	-11.62	24.70	46.00	-21.30
4506.29	51.49	PK	301	1.1	Н	-1.81	49.68	74.00	-24.32
4506.29	44.64	Ave	301	1.1	Н	-1.81	42.83	54.00	-11.17
5132.51	48.47	PK	111	1.1	Н	-1.06	47.41	74.00	-26.59
5132.51	37.47	Ave	111	1.1	Н	-1.06	36.41	54.00	-17.59
10480.00	40.24	PK	358	1.0	Н	5.14	45.38	74.00	-28.62
10480.00	36.48	Ave	358	1.0	Н	5.14	41.62	54.00	-12.38
	1	802.11	ac(HT20)	U-NII-3 lo	ow Char	nnel 5745MH	lz	1	1
223.45	34.61	QP	185	1.2	Н	-11.62	22.99	46.00	-23.01
223.45	36.68	QP	304	1.6	V	-11.62	25.06	46.00	-20.94
4531.23	49.20	PK	151	1.6	Н	-1.92	47.28	74.00	-26.72
4531.23	42.00	Ave	151	1.6	Н	-1.92	40.08	54.00	-13.92
11490.00	39.51	PK	77	1.5	Н	5.93	45.44	74.00	-28.56
11490.00	34.14	Ave	77	1.5	Н	5.93	40.07	54.00	-13.93
5381.47	46.44	PK	135	1.4	Н	-1.03	45.41	74.00	-28.59
5381.47	38.02	Ave	135	1.4	Н	-1.03	36.99	54.00	-17.01

	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC F 15.407/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11ac(HT20) U-NII-3 middle channel 5785MHz									
223.45	34.93	QP	295	1.4	Н	-11.62	23.31	46.00	-22.69
223.45	36.19	QP	77	1.9	V	-11.62	24.57	46.00	-21.43
4504.79	48.83	PK	43	2.0	Н	-1.97	46.86	74.00	-27.14
4504.79	41.99	Ave	43	2.0	Н	-1.97	40.02	54.00	-13.98
11570.00	41.11	PK	80	1.0	Н	5.81	46.92	74.00	-27.08
11570.00	37.14	Ave	80	1.0	Н	5.81	42.95	54.00	-11.05
5382.71	46.23	PK	185	1.1	Н	-1.05	45.18	74.00	-28.82
5382.71	39.01	Ave	185	1.1	Н	-1.05	37.96	54.00	-16.04
		802.11a	c(HT20) l	J-NII-3 H	ligh cha	nnel 5825Ml	Ηz		
223.45	34.37	QP	292	1.7	Н	-11.62	22.75	46.00	-23.25
223.45	36.80	QP	127	1.7	V	-11.62	25.18	46.00	-20.82
4520.05	48.69	PK	209	1.1	Н	-1.88	46.81	74.00	-27.19
4520.05	41.10	Ave	209	1.1	Н	-1.88	39.22	54.00	-14.78
11650.00	41.93	PK	153	1.4	Н	5.84	47.77	74.00	-26.23
11650.00	37.54	Ave	153	1.4	Н	5.84	43.38	54.00	-10.62
5361.89	46.55	PK	217	1.3	Н	-1.06	45.49	74.00	-28.51
5361.89	37.18	Ave	217	1.3	Н	-1.06	36.12	54.00	-17.88

Frequenc	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC I 15.407/2	
У	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.1	1n(HT40)	U-NII-1 lo	ow Char	nnel 5190MH	lz		
223.45	33.58	QP	183	1.0	Н	-11.62	21.96	46.00	-24.04
223.45	35.31	QP	280	1.3	V	-11.62	23.69	46.00	-22.31
4528.02	46.71	PK	167	2.0	Н	-1.89	44.82	74.00	-29.18
4528.02	38.78	Ave	167	2.0	Н	-1.89	36.89	54.00	-17.11
5115.31	44.45	PK	150	1.4	Н	-1.06	43.39	74.00	-30.61
5115.31	39.30	Ave	150	1.4	Н	-1.06	38.24	54.00	-15.76
10380.00	38.51	PK	238	1.9	Н	5.26	43.77	74.00	-30.23
10380.00	35.30	Ave	238	1.9	Н	5.26	40.56	54.00	-13.44
		802.11	n(HT40) l	J-NII-1 F	ligh cha	nnel 5230Ml	-lz		
223.45	33.13	QP	325	1.5	Н	-11.62	21.51	46.00	-24.49
223.45	34.78	QP	265	1.2	V	-11.62	23.16	46.00	-22.84
4509.53	45.71	PK	24	2.0	Н	-1.94	43.77	74.00	-30.23
4509.53	37.91	Ave	24	2.0	Н	-1.94	35.97	54.00	-18.03
5122.68	43.86	PK	34	1.6	Н	-1.06	42.80	74.00	-31.20
5122.68	38.79	Ave	34	1.6	Н	-1.06	37.73	54.00	-16.27
10460.00	41.40	PK	80	1.7	Н	5.28	46.68	74.00	-27.32
10480.00	36.33	Ave	80	1.7	Н	5.28	41.61	54.00	-12.39

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Carra ata d	FCC F 15.407/20		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	802.11n(HT40) U-NII-3 low Channel 5755MHz									
223.45	34.30	QP	204	1.3	Н	-11.62	22.68	74.00	-51.32	
223.45	34.48	QP	347	1.9	V	-11.62	22.86	74.00	-51.14	
4505.43	43.55	PK	163	1.6	Н	-1.96	41.59	74.00	-32.41	
4505.43	36.83	Ave	163	1.6	Н	-1.96	34.87	54.00	-19.13	
11510.00	39.76	PK	147	1.1	Н	5.88	45.64	74.00	-28.36	
11510.00	34.75	Ave	147	1.1	Н	5.88	40.63	54.00	-13.37	
5365.54	46.83	PK	135	1.1	Н	-1.01	45.82	74.00	-28.18	
5365.54	37.61	Ave	135	1.1	Н	-1.01	36.60	54.00	-17.40	
		802.111	n(HT40) U	J-NII-3 H	igh char	nnel 5795MF	łz			
223.45	34.75	QP	273	1.6	Н	-11.62	23.13	74.00	-50.87	
223.45	35.03	QP	171	1.7	V	-11.62	23.41	74.00	-50.59	
4536.38	44.44	PK	319	1.4	Н	-1.92	42.52	74.00	-31.48	
4536.38	37.00	Ave	319	1.4	Н	-1.92	35.08	54.00	-18.92	
11590.00	41.15	PK	84	1.6	Н	5.63	46.78	74.00	-27.22	
11590.00	36.07	Ave	84	1.6	Н	5.63	41.70	54.00	-12.30	
5369.88	46.12	PK	54	1.5	Н	-1.04	45.08	74.00	-28.92	
5369.88	38.62	Ave	54	1.5	Н	-1.04	37.58	54.00	-16.42	

Fraguenov	Receiver	Detector	Turn table	RX An	tenna	Corrected	Corrected	FCC F 15.407/2	
Frequency	Reading	Detector	Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11ac(HT40) U-NII-1 low Channel 5190MHz									
223.45	35.28	QP	4	1.1	Н	-11.62	23.66	74.00	-50.34
223.45	33.88	QP	52	1.3	V	-11.62	22.26	74.00	-51.74
4527.40	43.02	PK	264	1.5	Н	-1.91	41.11	74.00	-32.89
4527.40	35.46	Ave	264	1.5	Н	-1.91	33.55	54.00	-20.45
5133.40	45.13	PK	120	1.8	Н	-1.06	44.07	74.00	-29.93
5133.40	38.49	Ave	120	1.8	Н	-1.06	37.43	54.00	-16.57
10380.00	39.98	PK	173	1.3	Н	5.26	45.24	74.00	-28.76
10380.00	34.96	Ave	173	1.3	Н	5.26	40.22	54.00	-13.78
		802.11a	ic(HT40) L	J-NII-1 H	ligh cha	nnel 5230Ml	Нz		
223.45	34.42	QP	193	1.5	Н	-11.62	22.80	74.00	-51.20
223.45	34.18	QP	326	1.8	V	-11.62	22.56	74.00	-51.44
4529.55	42.61	PK	97	1.1	Н	-1.93	40.68	74.00	-33.32
4529.55	34.55	Ave	97	1.1	Н	-1.93	32.62	54.00	-21.38
5127.26	44.35	PK	191	1.8	Н	-1.06	43.29	74.00	-30.71
5127.26	39.25	Ave	191	1.8	Н	-1.06	38.19	54.00	-15.81
10460.00	40.28	PK	26	1.3	Н	5.28	45.56	74.00	-28.44
10480.00	37.07	Ave	26	1.3	Н	5.28	42.35	54.00	-11.65

Francis	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC F 15.407/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11ac(HT40) U-NII-3 low Channel 5755MHz									
223.45	33.89	QP	205	1.7	Н	-11.62	22.27	74.00	-51.73
223.45	35.44	QP	171	1.1	V	-11.62	23.82	74.00	-50.18
4519.66	41.10	PK	339	2.0	Н	-1.92	39.18	74.00	-34.82
4519.66	32.79	Ave	339	2.0	Н	-1.92	30.87	54.00	-23.13
11510.00	38.80	PK	220	1.7	Н	5.88	44.68	74.00	-29.32
11510.00	34.61	Ave	220	1.7	Н	5.88	40.49	54.00	-13.51
5351.34	45.03	PK	302	1.9	Н	-1.07	43.96	74.00	-30.04
5351.34	38.14	Ave	302	1.9	Н	-1.07	37.07	54.00	-16.93
		802.11a	c(HT40) L	J-NII-3 H	ligh cha	nnel 5795Ml	Ηz		
223.45	34.52	QP	107	1.6	Н	-11.62	22.90	74.00	-51.10
223.45	34.48	QP	255	2.0	V	-11.62	22.86	74.00	-51.14
4531.99	41.41	PK	353	1.5	Н	-1.86	39.55	74.00	-34.45
4531.99	32.05	Ave	353	1.5	Н	-1.86	30.19	54.00	-23.81
11590.00	41.04	PK	225	1.7	Н	5.63	46.67	74.00	-27.33
11590.00	36.94	Ave	225	1.7	Н	5.63	42.57	54.00	-11.43
5375.29	45.51	PK	67	1.9	Н	-1.03	44.48	74.00	-29.52
5375.29	38.83	Ave	67	1.9	Н	-1.03	37.80	54.00	-16.20

Francis	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC F 15.407/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11	ac(HT80)	U-NII-1 lo	w Char	nnel 5210MH	z		
223.45	33.66	QP	288	1.5	Н	-11.62	22.04	54.00	-31.96
4531.99	41.56	QP	290	1.3	V	-11.62	29.94	54.00	-24.06
4532.04	31.37	PK	347	1.6	Н	-1.88	29.49	74.00	-44.51
4532.04	41.41	Ave	347	1.6	Н	-1.88	39.53	54.00	-14.47
5119.65	38.37	PK	123	1.5	Н	-1.06	37.31	74.00	-36.69
5119.65	46.84	Ave	123	1.5	Н	-1.06	45.78	54.00	-8.22
10420.00	40.71	PK	261	1.4	Н	4.65	45.36	74.00	-28.64
10420.00	37.59	Ave	261	1.4	Н	4.65	42.24	54.00	-11.76
	.	802.11a	ac(HT80)	U-NII-3 lo	w Char	nnel 5775MH	z	<u> </u>	
4531.99	41.17	QP	151	1.7	Н	-11.62	29.55	74.00	-44.45
4532.04	31.04	QP	240	1.7	V	-11.62	19.42	74.00	-54.58
4514.63	41.30	PK	165	1.0	Н	-1.85	39.45	74.00	-34.55
4514.63	41.52	Ave	165	1.0	Н	-1.85	39.67	54.00	-14.33
11550.00	41.24	PK	59	1.5	Н	4.83	46.07	74.00	-27.93
11550.00	36.78	Ave	59	1.5	Н	4.83	41.61	54.00	-12.39
5368.17	46.84	PK	252	1.1	Н	-1.14	45.70	74.00	-28.30
5368.17	38.76	Ave	252	1.1	Н	-1.14	37.62	54.00	-16.38

Test Frequency: 18GHz~40GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS16S0652789-2E Page 33 of 114

8 **Duty cycle**

47 CFR Part 15C 15.407 and 789033 D02 General UNII Test

Test Requirement: Procedures New Rules v01, Section (B)

ANSI C63.10: 2009 Test Method:

N/A Test Limit:

Test Result: **PASS**

Through Pre-scan, and found 802.11a at lowest channel is the worst Remark:

case. Only the worst case is recorded in the report.

8.1 Summary of Test Results

	802.11	a mode							
channel	On time(ms)	Period(ms)	Duty Cycle(%)						
36	100	100	100						
149	100	100	100						
	802.11n(H	IT20) mode							
channel	On time(ms)	Period(ms)	Duty Cycle(%)						
36	100	100	100						
149	100	100	100						
	802.11n(H	IT40) mode							
channel	On time(ms)	Period(ms)	Duty Cycle(%)						
38	100	100	100						
151	100	100	100						
	802.11ac(H	HT20) mode							
channel	On time(ms)	Period(ms)	Duty Cycle(%)						
36	100	100	100						
149	100	100	100						
	802.11ac(H	HT40) mode							
channel	On time(ms)	Period(ms)	Duty Cycle(%)						
38	100	100	100						
151	100	100	100						
802.11ac(HT80) mode									
channel	On time(ms)	Period(ms)	Duty Cycle(%)						
42	100	100	100						
155	100	100	100						
		•							

Test result plots shown as follows:

802.11a U-NII-1 Low channel

802.11a U-NII-3 Low channel

802.11n(HT20) U-NII-3 Low channel

Reference No.: WTS16S0652789-2E Page 40 of 114

9 Band Edge

Test Requirement: FCC CFR47 Part 15 Section 15.407

Test Method: ANSI C63.10 2009

Test Limit: (1) For transmitters operating in the 5.15-5.25 GHz band: All

emissions outside of the 5.15-5.35 GHz band shall not exceed an

e.i.r.p. of -27dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of −17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of −27 dBm/MHz.

Test Result: PASS

9.1 Test Produce

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

9.2 Test Result

Test result plots shown as follows:

#VBW 3.0 MHz

Reference No.: WTS16S0652789-2E Page 53 of 114

10 6 dB Bandwidth

Test Requirement: FCC CFR47 Part 15 Section 15.407(e)

KDB662911 D01 Multiple Transmitter Output v02r01

Test Method: KDB789033 D02 General UNII Test Procedures New Rules v01

Section C

Test Limit: ≥ 500 kHz

Test Result: PASS

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

10.2 Test Result:

Band	Operation	6 dB Bandwidth (MHz)					
	mode	Low	Middle	High			
U-NII-3	802.11a	16.44	16.44	16.41			
	802.11n(HT20)	17.67	17.67	17.67			
	802.11n(HT40)	36.42	/	36.42			
	802.11ac(HT20)	17.67	17.70	17.64			
	802.11ac(HT40)	36.48	/	36.42			
	802.11ac(HT80)	75.96	/	/			

Test result plots shown as follows:

802.11a U-NII-3 Low channel

802.11a U-NII-3 Middle channel

Reference No.: WTS16S0652789-2E Page 61 of 114

11 26 dB Bandwidth and 99% Occupied Bandwidth

Test Requirement: 47 CFR Part 15C Section 15.407 (a)

KDB662911 D01 Multiple Transmitter Output v02r01

Test Method: KDB789033 D02 General UNII Test Procedures New Rules v01

Section D

Test Limit: No restriction limits

Test Result: PASS

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

Reference No.: WTS16S0652789-2E Page 62 of 114

11.2 Test Result:

Band	Operation	26 dB Bandwidth (MHz)			99% Bandwidth (MHz)		
	mode	Low	Middle	High	Low	Middle	High
U-NII-1	802.11a	21.74	21.98	21.59	16.78	16.80	16.82
	802.11n(HT20)	21.99	21.47	21.04	17.92	17.98	17.91
	802.11n(HT40)	55.29	/	55.52	36.55	/	36.63
	802.11ac(HT20)	21.72	21.50	21.86	17.92	17.99	17.96
	802.11ac(HT40)	55.52	/	53.05	36.60	/	36.64
	802.11ac(HT80)	95.29	/	/	76.23	/	/
U-NII-3	802.11a	21.53	21.64	21.32	16.81	16.89	16.784
	802.11n(HT20)	21.40	21.62	21.80	17.91	17.94	17.90
	802.11n(HT40)	54.98	/	55.00	36.49	/	36.67
	802.11ac(HT20)	21.23	21.79	21.71	17.93	17.95	17.96
	802.11ac(HT40)	55.47	/	55.49	36.48	/	36.69
	802.11ac(HT80)	99.60	/	/	76.02	/	/

Test result plots shown as follows:

802.11a U-NII-1 Low channel

802.11a U-NII-1 Middle channel

Query INTERRUPTED

Reference No.: WTS16S0652789-2E Page 77 of 114

12 Conducted Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.407(a)

KDB662911 D01 Multiple Transmitter Output v02r01

Test Method: KDB789033 D02 General UNII Test Procedures New Rules v01

Section E

Test Limit: U-NII-1 250mW(24dBm) U-NII-3 1W(30dBm)

Test Result: PASS

Conducted output power= measurement power+ $10\log(1/x)$

X is duty cycle=1, so $10\log(1/1)=0$

Conducted output power= measurement power

12.1 Test Procedure:

Remark:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

12.2 Test Result:

	Operation	СН	Conducted Outp	ut Power (dBm)
Band	mode		ANT1	Total
		Low	15.45	/
	802.11a	Middle	14.21	/
		High	15.01	/
		Low	16.17	/
	802.11n(HT20)	Middle	15.26	/
		High	15.73	/
		Low	14.46	/
	802.11n(HT40)	Middle	/	/
U-NII-		High	14.04	/
1		Low	16.55	/
	802.11ac(HT20)	Middle	15.32	
		High	15.36	/
		Low	15.34	/
	802.11ac(HT40)	Middle	/	/
		High	14.84	/
	802.11ac(HT80)	Low	13.55	/
		Middle	/	/
		High	/	/
	802.11a	Low	14.84	/
		Middle	13.02	/
		High	14.35	/
	802.11n(HT20)	Low	14.23	/
		Middle	12.85	/
		High	14.20	1
		Low	12.54	1
	802.11n(HT40)	Middle	/	1
U-NII-		High	12.02	1
3		Low	14.54	1
	802.11ac(HT20)	Middle	12.97	1
		High	14.20	1
		Low	13.40	1
	802.11ac(HT40)	Middle	1	1
		High	12.72	1
		Low	13.46	1
	802.11ac(HT80)	Middle	1	/
		High	/	/

^{*} All transmit signals are completely uncorrelated with each other, Directional gain = G_{ANT} which is less than 6dBi. So the limit does not be reduced.

Reference No.: WTS16S0652789-2E Page 79 of 114

Test result plots shown as follows:

802.11a U-NII-1 Low channel

802.11a U-NII-1 Middle channel

802.11n(HT20) U-NII-1 Low channel

Query INTERRUPTED

802.11n(HT40) U-NII-1 High channel

Query INTERRUPTED

Query INTERRUPTED

802.11a U-NII-3 Low channel

802.11a U-NII-3 Middle channel

802.11n(HT20) U-NII-3 Low channel

Query INTERRUPTED

802.11n(HT40) U-NII-3 High channel

802.11ac(HT20) U-NII-3 Middle channel

Reference No.: WTS16S0652789-2E Page 93 of 114

13 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.407(a)

KDB662911 D01 Multiple Transmitter Output v02r01

Test Method: KDB789033 D02 General UNII Test Procedures New Rules v01,

Section F

≤11.00dBm/MHz for Operation in the U-NII-1(5150MHz-5250MHz)of

mobile device

≤30.00dBm/500KHz for Operation in the U-NII-3(5725MHz-

5850MHz)of device

Test Result: PASS

13.1 Test Procedure:

Test Limit:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer:

U-NII-1

RBW = 1MHz, VBW ≥3* RBW Sweep = auto; Detector Function = Peak. Trace = Max hold.

U-NII-3

RBW = 510KHz, VBW ≥3* RBW Sweep = auto; Detector Function = Peak. Trace = Max hold.

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot. Reference No.: WTS16S0652789-2E Page 94 of 114

13.2 Test Result:

David	Operation mode	СН	Power Spectral De	ensity (dBm/MHz)
Band			ANT1	Total
		Low	7.015	/
	802.11a	Middle	5.703	/
		High	5.511	/
		Low	7.202	/
	802.11n(HT20)	Middle	6.510	1
		High	6.735	/
	802.11n(HT40)	Low	3.250	/
		Middle	/	/
		High	2.821	1
U-NII- 1	802.11ac(HT20)	Low	5.056	1
1		Middle	4.215	1
		High	4.288	1
	802.11ac(HT40)	Low	4.405	1
		Middle	/	/
		High	3.298	1
		Low	-0.011	/
	802.11ac(HT80)	Middle	/	1
		High		
	Limit		≤11.00dE	Bm/MHz

David	0	СН	Power Spectral Dens	sity (dBm/500KHz)	
Band	Operation mode		ANT1	Total	
		Low	2.176	/	
	802.11a	Middle	0.415	/	
		High	2.115	1	
		Low	3.265	1	
	802.11n(HT20)	Middle	2.305	1	
		High	2.594	1	
	802.11n(HT40)	Low	-2.510	1	
		Middle	/	1	
		High	-2.769	1	
U-NII-	802.11ac(HT20)	Low	2.529	1	
3		Middle	1.208	1	
		High	1.833	1	
	802.11ac(HT40)	Low	-1.822	1	
		Middle	/	1	
		High	-2.171	1	
		Low	-3.635	1	
	802.11ac(HT80)	Middle	1	1	
		High	/	/	
	Limit		≤30.00dBm/500KHz		

^{*} All transmit signals are completely uncorrelated with each other, Directional gain = G_{ANT} which is less than 6dBi. So the limit does not be reduced.

Test result plots shown as follows:

802.11a U-NII-1 Low channel

802.11a U-NII-1 Middle channel

Center 5.19000 GHz #Res BW 1.0 MHz

#VBW 3.0 MHz

Span 60.00 MHz Sweep 1.000 ms (1001 pts)

802.11a U-NII-3 Low channel

802.11a U-NII-3 Middle channel

802.11n(HT20) U-NII-3 Low channel

802.11n(HT40) U-NII-3 High channel

802.11ac(HT20) U-NII-3 Middle channel

#VBW 1.5 MHz

Reference No.: WTS16S0652789-2E Page 110 of 114

14 Frequency Stability

Test Requirement: FCC CFR47 Part 15 Section 15.407(g)

Test Method: ANSI C63.10:2009

Test Limit:

Manufacturers of U-NII devices are responsible for ensuring

frequency stability such that an emission is maintained within the

band of operation under all conditions of normal operation as

specified in the users manual or 20ppm.

Test Result: PASS

14.1 Test Procedure:

1. The transmitter output (antenna port) was connected to the spectrum analyzer. EUT have transmitted absence of unmodulation signal and fixed channelise. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc x 106 ppm and the limit is less than ±20ppm The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.

2. Extreme temperature rule is -15°C~ 45°C.

14.2 Test Result:

U-NII-1 Test Frequency:5180MHz					
Temperature (°C)	Power Supply (VAC)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)	
50		/	/	/	
45		1807	2.1599	20	
30		1800	2.1516	20	
20		1806	2.1587	20	
10	120	1800	2.1516	20	
0		1803	2.1552	20	
-10	l	1800	2.1516	20	
-15		1809	2.1623	20	
-30		/	/	/	
20	108	1810	2.1635	20	
20	132	1798	2.1492	20	

U-NII-3 Test Frequency:5785MHz					
Temperature (°C)	Power Supply (VAC)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)	
50		/	/	/	
45		1919	2.2938	20	
30		1911	2.2842	20	
20		1915	2.2890	20	
10	120	1923	2.2986	20	
0		1907	2.2795	20	
-10		1908	2.2807	20	
-15		1914	2.2878	20	
-30		/	/	/	
20	108	1918	2.2926	20	
20	132	1906	2.2783	20	

15 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

This device uses of an antenna that uses a specified coupling to the intentional radiator. Antenna connectors complied with the requirement.

Reference No.: WTS16S0652789-2E Page 113 of 114

16 RF Exposure

Test Requirement: FCC Part 1.1307
Evaluation Method: FCC Part 2.1091

16.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

16.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

(7.1) Elimito for Goodpational / Controlled Exposure						
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ², H ²or S (minutes)		
0.3-3.0	614	1.63	(100)*	6		
3.0-30	1842 / f	4.89 / f	(900 / f)*	6		
30-300	61.4	0.163	1.0	6		
300-1500			F/300	6		
1500-100,000			5	6		

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Range Electric Field Strength (E) (V/m) Magnetic Field Strength (H) (A/m) Power		Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS16S0652789-2E Page 114 of 114

16.3 MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

5.2G

ANT. gain (dBi)	ANT. gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit (mW/cm2)
2.00	1.585	16.55	45.19	0.014247	1

5.8G

ANT. gain (dBi)	ANT. gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit (mW/cm2)
2.00	1.585	14.84	30.48	0.009610	1

====End of Report=====