Capstone Project

Stock Price Prediction with ARIMAX, SARIMAX, GRU, LSTM

The problem

The objective is to create a predictive model to forecast future stock closing prices.

For the purpose of this presentation I will be showcasing the AMD stock ticker.

Overview

Pandas Datareader

- Tiingo
- IEX
- Alpha Vantage
- Econdb
- Enigma
- Quandl
- St.Louis FED (FRED)
- Kenneth French's data library
- World Bank

- OECD
- Eurostat
- Thrift Savings Plan
- Nasdaq Trader symbol definitions
- Stooq
- MOEX
- Naver Finance
- Yahoo Finance

Obtain Data

EDA

Pre-Processing

Modeling & Evaluation

Evaluation & Future Works

Adfuller Test #1

Apply Lag (1)

Adfuller Test #2

ADF Test Statistic:

1.3842659609766095

p-value: 0.997041479296224

Number of Observations Used: 1237

Comment: Time series is non-stationary

Procedure

Day #1 = N/A

Day #2 = Day #2 - Day #1

Day #3 = Day #3 - Day #2

Day #4 = Day #4 - Day #3

ADF Test Statistic:

-9.059840432443018

p-value: 4.594794188707755e-15

Number of Observations Used :

1242

Comment: Time series is stationary

Obtain Data

EDA

Pre-Processing

Modeling & Evaluation

Evaluation & Future Works

Adfuller Test #1

Apply Lag (24)

Adfuller Test #2

ADF Test Statistic:

1.3842659609766095

p-value: 0.997041479296224

Number of Observations Used: 1237

Comment: Time series is non-stationary

Procedure

Day #1 to Day #24 = N/A

Day #25 = Day #25 - Day #1

Day #26 = Day #26 - Day #2

Day #27 = Day #27 - Day #3

ADF Test Statistic:

-8.610593374916578

p-value: 6.491890430629663e-14

Number of Observations Used:

1209

Comment: Time series is stationary

ARIMAX Architecture (5Y)

80 - 20 Train Test Split

Order = (1, 1, 1), # (p, d, q)

Exog = Lag(24)

d : Trend difference order

q: Trend moving average order

EDA

Pre-Processing

Modeling & Evaluation

Evaluation & Future Works

ARIMAX Architecture (2Y)

80 - 20 Train Test Split

Order = (1, 1, 1), # (p, d, q)

Exog = Lag(24)

d: Trend difference order

q: Trend moving average order

SARIMAX Architecture (5Y)

80 - 20 Train Test Split

Order = (1, 1, 1), # (p, d, q)

Seasonal_order = (1, 1, 1, 24), # (p, d, q, m)

Exog = Lag(24)

p: Trend Autoregression Order
d: Trend difference order
q: Trend moving average order
m: The number of time steps for a

single seasonal period Exog: OLS Regressor

SARIMAX Architecture (2Y)

80 - 20 Train Test Split

Order = (1, 1, 1), # (p, d, q)

Seasonal_order = (1, 1, 1, 24), # (p, d, q, m)

Exog = Lag(24)

p: Trend Autoregression Order d: Trend difference order q: Trend moving average order m: The number of time steps for a single seasonal period

Exog: OLS Regressor

GRU Loss Interaction

Epochs = 100

Batch Size = 32

Validation Split = 0.2

Verbose = 1

Obtain Data EDA Pre-Processing Modeling & Evaluation & Future Works

GRU Architecture

80 - 20 Train Test Split

Layer #1 - GRU

Units: 128 Activation: Tanh

Recurrent Activation : Sigmoid

Layer #2 - GRU

Units: 64

Activation : Tanh

Recurrent Activation: Sigmoid

Layer #3 - Dropout

Rate: 0.2

Layer #4 - Dense

Units:1

Evaluator

Loss : Mean Squared Error Optimizer : Adam

LSTM Loss Interaction

Epochs = 100

Batch Size = 32

Validation Split = 0.2

Verbose = 1

Obtain Data EDA Pre-Processing Modeling & Evaluation & Future Works

LSTM Architecture

80 - 20 Train Test Split

Layer #1 - LSTM

Units: 128 Activation: Tanh

Recurrent Activation: Sigmoid

Layer #2 - LSTM

Units: 64

Activation: Tanh

Recurrent Activation: Sigmoid

Layer #3 - Dropout

Rate: 0.2

Layer #4 - Dense

Units:1

Evaluator

Loss : Mean Squared Error Optimizer : Adam

More Data

Create a WebApp

Al Trading Bot

- Include News Sentiment data from
 - News Articles
 - Reddit posts
 - Tweets
 - Discord channels
- Add statistical weights on certain price movements based on specific chart indicators

- Provide data on any stock ticker that is search
 - Bullish/Bearish
 - Increase/Decrease (with %)
- Personal Screener
- Recommended stocks
 - Industry
 - High Volume
 - Momentum

Thank You

