29. Internet- směrování

- IP adresa (co to je)
- co je to internet

1. účel, princip funkce

co je to směrování, jak se to provádí, základní typy směrování, co je to směrovač, co je to implicitní směrovač, základní postup (IP adresa cíle a odesílatele použita jako maska), směrovací protokoly-co to jsou směrovací protokoly (aplikační protokoly k naplnění směrovacích tabulek), jakým způsobem vznikne (na začátku jsou směrovací tabulky, formát zpráv kterými se předávají)

2. typy směrovacích protokolů

 Co to je (implementace algoritmu na výpočet nejlepší cesty k cíli), ?základní algoritmy?, kritérium vhodnosti cesty-metrika, metrika pomocí vektoru vzdálenosti, metrika založená na kvalitě cesty, směrovací protokoly dělení podle účelu(interní a externí), dělení podle algoritmů, co jsou to směrovací tabulky(lokální databáze cest), udržování směrovacích tabulek (jak vzniknou (staticky nebo dynamicky), jak se udržují (platnost, konzistentnost))

3. RIP

 základní skutečnosti (dokument, algoritmus, zhruba rok), vlastnosti, směrovací tabulka (co to je, co obsahuje), aktualizace, ?formát protokolu?, struktura paketu, dynamické vlastnosti (pomalá konvergence a směrovací smyčky a jaké jsou k tomu důvody-nezná topologii, zná jen cestu k cíli)

IP adresa – 32bitové číslo, čtyři oktety zapsané v desítkové soustavě. Od roku 1983. Obecně má IP adresa dvě části - adresu sítě a uzlu. Jednoznačně identifikuje uzel v prostředí Internetu (nebo sítě). Je to abstraktní mechanismus umožňující protokulu Internetu nepracovat s fyzickými adresami.

Internet je soustava dílčích sítí různých poskytovatelů připojení. Z pohledu směrování je rozdělen na autonomní systémy.

1. účel, princip funkce

Účel: Předávání datagramů mezi lokálními sítěmi do místa určení.

Princip: Rozhodování podle směrovací tabulky, kudy dál poslat datový paket i při neznalosti celé cesty. Adresu cíle se směrovač pokusí najít ve své směrovací tabulce -> pokud najde, vybere nejpřesnější adresu (nejdelší prefix) a paket pošle na směrovač přižazený k této adrese. Pro směry, které nezná, použije předurčenou cestu (myšlenka implicitních cest). Zjistí-li směrovač, že zvolená cesta není optimální, uvědomí o tom odesílatele (většinou směrovač), který upraví svou směrovací tabulku. Směrovací tabulka je soubor záznamů ve tvaru adresa sítě – adresa následujícího směrovače (next hop).

Směrování (routing, routování) je hledání cest v počítačových sítích. Rozlišujeme dva typy směrování:

- přímé směrování (direct routing) oba počítače se nacházejí ve stejné LAN síti, řeší většinou uzel samotný
- nepřímé směrování (indirect routing) kdy se nacházejí v obecně různých sítích, řeší většinou směrovač

Směrovač je síťové zařízení, jehož úkolem je zasílání datagramů z jedné fyzické síťě do druhé. Obsahuje směrovací tabulku.

Implicitní směrovač (default gateway) je stroj na nějž se posílají pakety, pokud není k dispozici konkrétnější informace o směrování.

Směrovací protokoly jsou aplikační protokoly sloužící směrovačům k automatickému naplnění směrovacích tabulek. Vznikají když jsou pro určitý směrovací algoritmus definována přesná pravidla

2. typy směrovacích protokolů

Směrovací protokol je implementace algoritmu na výpočet nejlepší cesty k cíli.

Metrika (kritérium vhodnosti cesty) je číslo, které vyjadřuje nakolik je určitá linka vhodná pro cestu do daného cíle. Cesty s nižší hodnotou metriky jsou lepší než cesty s vyšší metrikou.

Metrika pomocí vektoru vzdálenosti je určena počtem přeskoků přes další směrovače, než se dostane do cíle (nezohledňuje parametry linek, např. rychlost, zátež atd.).

Metrika založená na kvalitě cesty je určena stavem (průchodností) cesty (funkčnost, rychlost, cena).

Směrovací protokoly se dělí

podle účelu na:

- interní (IGP) pro činnost v rámci autonomního systému (RIP, OSPF, EIGRP)
- externí (EGP) pro výměnu směrovacích dat mezi autonomními systémy (BGP) podle algoritmů:
 - podle vektoru vzdálenosti DVP (?RVP?)
 - směrovače neznají topologii sítě, jen rozhraní do jednotlivých sítí a vzdálenost k těmto sítím (tzv. distanční vektroy)
 - o na začátku směrovací tabulka obsahuje pouze přímopřipojené sítě
 - o periodické zasílání směrovací tabulky sousedům
 - o výběrem nejlepší cesty ze směr. tab. od souseda si postupně upravuje svou směr. tab.
 - o pomalá konvergence z důvodu periodických aktualizací směrovacích tabulek
 - o konvergence = doba stabilizace směrovacích tabulek při výpadku linky nebo směrovače
 - o problémy se zacyklením smyček
 - o jednoduchá konfigurace
 - o tento algoritmus využívají protokoly RIP, IGPR,
 - podle stavu (průchodnosti) linky LSP
 - každý směrovač neustále sleduje stav a funkčnost linek k němu připojených, při změně okamžitě šíří informace o aktuálním stavu všem směrovačům (flooding) => okamžitá reakce na změnu stavu linek => rychlá konvergence
 - o směrovače znají topologii celé sítě (uloženo v topologické databázi v každém směrovači)
 - každý směrovač z topologické databáze počítá nejkratší cesty ke všem ostatním směrovačím pomocí Dijkstrova algoritmu
 - o náročná konfigurace
 - tento algoritmus využívá protokol OSPF

Směrovací tabulka je lokální databáze cest. Podle ní se rozhoduje co udělat s příchozím paketem. Je složena ze záznamů:

- první část udává cílovou adresu, může to být adresa jednotlivého uzlu nebo celé dílčí sítě, součástí je i síťová maska
- druhá část udává rozhraní

Vznik směrovací tabulky:

- statické (neadaptivní)
 - o směrovací tabulky v jednotlivých směrovačích jsou konfigurovány ručně
 - o nelze použít pokud se často mění topologie
 - nejčastější využití u uživatelských počítačů, protože potřebují jen 2 záznamy (adresu sítě, ve které sami leží a adresu imlicitního směrovače, kterou většinou dostanou z DHCP)
- dynamické (adaptivní)
 - o automaticky reagují na změny v síti (topologie, zátež,) a upravuje směrovací tabulky
 - o nutnost provozu směrovacích protokolů
 - o několik principů:
 - centralizované

- hierarchické
- distribuované (protokoly RIP, OSPF, BGP)

Směrovací tabulky se udržují aktualizacemi. Aktualizace znamená, že směrovač pošle ostatním směrovačům svojí směrovací tabulku. Příjemci si aktualizaci prohlídnou, cesty které ještě nemají v tabulce si tam přidají, cesty které mají v tabulce ale s horší metrikou jí nahradí cestou z aktualizace, zbytek zahodí.

3. RIP

Základní skutečnosti:

Nejstarší a nejrozšířenější protokol, existuje ve dvou verzích:

- první verze: RFC 1058, rok 1988
- druhá verze: RFC 2453, rok 1998

Původní návrh je implementací směrovacího algoritmu Bellman-Ford (Ford-Fulkerson) realizovaný Xeroxem. Směrovače RIP si udržují své směrovací tabulky.

Vlastnosti:

- výhodou je snadnost nastavení a uvedení do provozu
- nevýhodou, je neschopnost pracovat v rozsáhlých sítích
 - o nejvyšší počet přeskoků je 15 (sítě s přeskokem 16 a více jsou považovány za nedostupné
 - se zvětšováním síťové struktury může výměna dat o trasách mezi RIP směrovači výrazně zatížit síť
 - o dlouhá doba zotavení (až několik minut)
 - v rámci automatických úprav mohou vznikat uzavřené směrovací smyčky způsobující nedoručitelnost dat

Směrovací tabulka

- lokální databáze tras
- tabulka obsahuje:
 - o adresa cílové sítě
 - o metrika (počet směrovačů na cestě k cílové síti)
 - adresa směrovače (adresa rozhraní směrovače 1. hop)
 - časovač sledující dobu od poslední aktualizace
- ve výchozím stavu obsahuje pouze sítě, ke kterým je směrovač fyzicky připojen (ručně nakonfigurované)

Aktualizace:

- probíhá jen s nejbližšími sousedy směrovač prohlédne získaná data a vybere cílové adresy, které ve své tabulce nemá, zvětší jejich metriku o jedna (+1 hop) a přidá do své tabulky; pokud adresu už v tabulce má, ale nová je kratší (menší metrika) provede výměnu; nepoužité položky zahazuje
- nedostane-li směrovač aktualizaci pro určitou cestu po dobu 6-ti aktualizací, prohlásí cestu za nedostupnou, nastaví metriku na 16 a zapne časovač (garbage-collection) na vymazání cesty z tabulky
- v pravidelných intervalech (~30s) každý směrovač rozesílá obsah své tabulky nezávislé na aktualizacích
- Verze 1 používá všesměrové oběžníky, verze 2 přidává skupinové (multicast) oběžníky (adresa 224.0.0.0/4)
- Všechna zařízení naslouchají na UDP portu 520 a aktualizují své tabulky

Struktura paketu RIPv1:

0 1		2	3 3
0 1 2 3 4 5 6 7 8 9 0 1 :	2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7	8 9 0 1
+-+-+-+-+-+-+-+-+-+-	+-+-+-+-+-+	-+-+-+-+-+-+-	-+-+-+-+
command (1) version	n (1)	must be zero (2)	1
+			+
address family identifi	ier (2) r	must be zero (2)	
++			
IP address (4)			
++			
must be zero (4)			
++			
1	must be zero (4)	1
++			
metric (4)			
++			

- hlavičky mají délku 32bitů
- prázdná pole jsou pozůstatkem minulost (pole, která ztratila význam)
- v jednom datagramu může být maximálně 25 položek směrovací tabulky
- položka začíná polem address family identifier a končí metrikou
- význam IP adresy první položky závisí na typu zprávy:
 - žádost IP adresa odesílatele
 - o odpověď jedna z IP adres ze směrovací tabulky odesílatele
- identifikátor rodiny adres má vždy hodnotu 2 (= protokol IP)
- pole s číslem verze definuje verzi RIP protokolu

Struktura paketu RIPv2:

Změny oproti RIPv1:

- prázdného pole za polem IP adresy je maska
- další prázdné pole je adresa prvního hopu (počátek cesty)
- pole AFI má dvojí význam
- značkování externích cest
- informační bloky

Dynamické vlastnosti:

Pomalá kovergence: struktura sítě se dynamicky mění a trvá nějakou dobu, než se změna lavinovým systémem dostane na všechny směrovače v síti a ty se sjednotí na stavu sítě (konvergence). Smyčky: pokud k cíli vede několik tras, může vzniknout směrovací smyčka – na cestě k cíli se paket dostane zase na směrovač, kterým již prošel. Nezná topologii, jen cestu. Řešení:

- rozdělení horizontu (split horizon) měrovač nesmí informovat svého souseda o cestách, které vedou přes něj samotného
- otrávení zpětných dat (poison reverse) tento předpis umožňuje směrovači porušit pravidlo rozdělení horizontu, avšak u předávaných položek (které porušují pravidlo rozdělení horizontu) je však metrika nastavena na 16
- spouštěné aktualizace (trigger update) když směrovač zjistí změny v topologii sítě, nečeká na pravidelnou aktualizaci a odešle data, která se změnila
- zadržovací časovač při označení cesty za neplatnou trvá ještě dalších 90 vteřin, než je z
 tabulky vymazána (garbage-collection) a v tomto čase směrovač nereaguje na změny v dané
 cestě, kromě zprávy, že je cesta v původním stavu.

Cílem těchto úprav, je zabránit šíření nepravdivých směrovacích dat, během konvergence sítě na novou topologii.