Раздел 2. Теорема о проекции на замкнутое выпуклое множество в гильбертовом пространстве

Лекция 2 Ортогональная проекция на конечномерное подпространство.

Ортогональность и ортогональное дополнение.

Элементы $x,y \in X$ называются взаимно ортогональными $(x \perp y)$, если (x,y)=0.

Отношение \bot симметрично: $x\bot y \Leftrightarrow y\bot x$ (при этом не рефлексивно и не транзитивно).

Утверждение (теорема Пифагора):

$$x \perp y \Rightarrow ||x + y||^2 = ||x||^2 + ||y||^2$$
.

Действительно,

$$||x + y||^2 = (x + y, x + y) = (x, x) + 2(x, y) + (y, y) = ||x||^2 + ||y||^2$$
.

Утверждение (многомерный вариант теоремы Пифагора):

$$g_i \perp g_j, i \neq j \Rightarrow \left\| \sum_j g_j \right\|^2 = \sum_j \|g_j\|^2$$

(например, по индукции). Пока что речь идёт о конечных суммах, далее обобщим на ряды.

Замечание: сумму двух или нескольких попарно ортогональных элементов пространства называют ортогональной суммой.

Утверждение: попарно ортогональная система ненулевых элементов $\{g_1,\ldots,g_m\}$ линейно независима. Действительно, пусть

$$\alpha_1 g_1 + \alpha_2 g_2 + \dots + \alpha_m g_m = o.$$

Докажем, что в этом случае все коэффициенты $\alpha_k = 0, k = 1, \ldots, m$, т.е. линейная комбинация тривиальна. Для этого скалярно умножим это равенство на g_k . В силу попарной ортогональности в левой части останется единственное слагаемое $\alpha_k \|g_k\|^2$, а правая часть равна нулю: $\alpha_k \|g_k\|^2 = 0$. Поскольку $g_k \neq o$, отсюда следует, что $\alpha_k = 0$. Из произвольности k вытекает тривиальность линейной комбинации.

Альтернативное доказательство – через теорему Пифагора. Все слагаемые линейной комбинации взаимно ортогональны. Вычислив скалярный квадрат левой и правой части равенства, получаем:

$$\sum_{k=1}^{m} |\alpha_k|^2 ||g_k||^2 = 0.$$

В левой части все члены неотрицательны, при этом $||g_k||^2 \neq 0$, откуда следует равенство нулю всех коэффициентов α_k .

Замечание: для бесконечной системы (счётной или несчётной) попарно ортогональных элементов доказанное утверждение также справедливо. Доказательство такое же, единственное отличие — общее число слагаемых линейной комбинации заранее не фиксировано (но конечно).

Утверждение: $x \perp x \Rightarrow x = o$ (из аксиомы невырожденности). Элемент, ортогональный сам себе – нулевой элемент пространства.

Утверждение: если элемент ортогонален всем элементам пространства X, то это нулевой элемент (поскольку ортогонален, в том числе, и самому себе).

Следствие: если

$$\forall x \in X : (x, y') = (x, y''),$$

то y' = y'' (поскольку $\forall x \in X : (x, y' - y'') = 0$).

Утверждение: если элемент ортогонален всем элементам всюду плотного множества в пространстве X, то это нулевой элемент.

Доказательство. Пусть элемент x ортогонален всем элементам всюду плотного множества. В силу плотности множества найдётся последовательность $\{x_k\}$ его элементов, сходящаяся к x: $x_k \to x$. Но тогда $(x,x_k) \to (x,x)$. С другой стороны, $(x,x_k)=0$ для всех k, поэтому (x,x)=0 и x=o.

Следствие: если для всех элементов x, принадлежащих всюду плотному множеству, (x, y') = (x, y''), то y' = y''.

Элемент x и множество Q взаимно ортогональны $(x\bot Q$ или $Q\bot x)$, если x ортогонален всем элементам этого множества.

Множества $Q_{1,2} \subset X$ называются взаимно ортогональными $(Q_1 \perp Q_2)$, если любая пара их элементов взаимно ортогональна:

$$\forall x \in Q_1 \, \forall y \in Q_2 : (x, y) = 0.$$

Если $Q\bot Q$, то Q либо пустое множество, либо состоит из единственного элемента o.

Множества $\{Q_{\alpha}\}$ образуют ортогональное семейство, если множества этого семейства попарно ортогональны: $Q_{\alpha}\bot Q_{\beta}$, если $\alpha\neq\beta$.

Утверждение: если $Q_1 \perp Q_2$ и $x \in Q_1 \cap Q_2$, то x = o (потому что $x \perp x$).

Следствие: если $Q_1\bot Q_2$, то пересечение $Q_1\cap Q_2$ либо пусто, либо состоит из единственного элемента o. Второй вариант реализуется, в частности, в случае, если $Q_{1,2}$ – линеалы.

Утверждение: если элемент $w \in X$ представляется в виде ортогональной суммы $w = z + h, z \in Q_1, h \in Q_2, Q_1 \bot Q_2$, то такое представление единственно.

Доказательство: пусть $w = z + h = z' + h', z' \in Q_1, h' \in Q_2$, тогда

$$z - z' = h' - h \in Q_1 \cap Q_2 \Rightarrow z - z' = h' - h = o \Rightarrow z' = z \wedge h' = h.$$

Если линеалы $Y_{1,2}\subset X$ взаимно ортогональны, то их прямая сумма называется ортогональной суммой и обозначается так:

$$Y_1 + Y_2 = Y_1 \oplus Y_2.$$

В силу доказанного, представление элемента ортогональной суммы $Y_1 \oplus Y_2$ в виде суммы элементов из Y_1 и Y_2 единственно (что, собственно, и означает, что ортогональная сумма линеалов является их прямой суммой). Замечание: как правило, понятие ортогональной суммы используют применительно к подпространствам (замкнутым линеалам).

Ортогональное дополнение к элементу:

$$x^\perp=\{y\in X:(x,y)=0\}\,.$$

Замечание: $o^{\perp} = X$ (ортогональное дополнение к нулевому элементу – всё пространство).

Утверждение: x^{\perp} – подпространство.

Докажем линейность. Пусть $y_{1,2} \in x^{\perp}$, тогда

$$(x, \alpha_1 y_1 + \alpha_2 y_2) = \alpha_1(x, y_1) + \alpha_2(x, y_2) = 0,$$

T.e. $\alpha_1 y_1 + \alpha_2 y_2 \in x^{\perp}$.

Докажем замкнутость. Пусть $y_m \in x^{\perp}$, и $y_m \to y^*$, тогда

$$(x, y^*) = \lim_{m \to \infty} (x, y_m) = \lim_{m \to \infty} 0 = 0,$$

т.е. $y^* \in x^{\perp}$.

Утверждение: $L(x) \oplus x^{\perp} = X$.

Если x = 0, то утверждение справедливо в силу $o^{\perp} = X$.

Пусть теперь $x \neq o$. Очевидно, $L(x) \oplus x^{\perp} \subset X$. Нам нужно доказать обратное включение $L(x) \oplus x^{\perp} \supset X$. Последнее означает, что произвольный элемент $w \in X$ может быть представлен в виде ортогональной суммы $w = \alpha x + h$, где $h \in x^{\perp}$.

Построим это разложение в явном виде. Положим $\alpha = (w,x)/\|x\|^2$ и докажем, что

$$h = w - \alpha x = w - \frac{(w, x)x}{\|x\|^2} \in x^{\perp}$$
.

Действительно,

$$(h,x) = (w,x) - \frac{(w,x)(x,x)}{\|x\|^2} = 0.$$

Утверждение доказано.

Замечание. Мы, межу прочим, уствновили, что при $x \neq o$ коразмерность подпространства x^\perp равна единице.

Замечание. Слагаемые αx и h называют ортогональными проекциями элемента w на подпространства L(x) и x^{\perp} соответственно. В дальнейшем мы обобщим понятие ортогональной проекции (ортопроекции) на другие подпространства и множества.

Замечание. Доказанное утверждение – самый первый простейший вариант теоремы о разложении пространства со скалярным произведением в ортогональную сумму подпространств.

Ортогональное дополнение к множеству:

$$Q^{\perp} = \{ y \in X, \forall x \in Q : (x, y) = 0 \}.$$

Утверждение: $Q^{\perp} \perp Q$ (по определению ортогональности множеств).

Утверждение: Q^{\perp} — максимальное множество, ортогональное Q: если $Q' \perp Q$, то $Q' \subset Q^{\perp}$.

Действительно, $y \in Q' \Rightarrow \forall x \in Q: (x,y) = 0 \Rightarrow y \in Q^{\perp}$.

Утверждение: Q^{\perp} – замкнутое подпространство, независимо от линейности (или нелинейности) и замкнутости (или незамкнутости) Q. Доказательство этого утверждения буквально повторяет доказательство линейности и замкнутости x^{\perp} .

Линейность:

$$y_{1,2} \in Q^{\perp} \Rightarrow \forall x \in Q : (x, \alpha_1 y_1 + \alpha_2 y_2) = \alpha_1(x, y_1) + \alpha_2(x, y_2) = 0.$$

Замкнутость:

$$y_m \in Q^{\perp}, y_m \to y^* \Rightarrow \forall x \in Q : (x, y^*) = \lim_{m \to \infty} (x, y_m) = \lim_{m \to \infty} 0 = 0.$$

Утверждение: $u \in Q \cap Q^{\perp} \Rightarrow u = o$ (было для произвольных взаимно ортогональных множеств).

Утверждение: если элемент $w\in X$ представляется в виде ортогональной суммы $w=z+h,\,z\in Q,\,h\in Q^\perp,$ то такое представление единственно (также было доказано для произвольных взаимно ортогональных множеств).

Замечание. В этом случае элемент z называется ортогональной проекцией w на Q, а h – на $Q^\perp.$

Утверждение: $(Q^{\perp})^{\perp} \supset Q$. Это вытекает из того, что $Q \perp Q^{\perp}$, а $(Q^{\perp})^{\perp}$ – максимальное множество, ортогональное Q^{\perp} .

Утверждение: если произвольный элемент $w\in X$ представляется в виде ортогональной суммы $w=z+h,\,z\in Q,\,h\in Q^\perp,$ то $(Q^\perp)^\perp=Q.$

Доказательство. Пусть $z'\in (Q^\perp)^\perp$, представим его в виде ортогональной суммы $z'=z+h,\,z\in Q,\,h\in Q^\perp.$ На это равенство можно посмотреть как на разложение вида

$$o + z' = h + z, h \in Q^{\perp}, z \in (Q^{\perp})^{\perp}.$$

В силу единственности $o = h, z' = z \in Q$.

Замечание. В этом случае $Q=(Q^\perp)^\perp$ и Q^\perp – замкнутые подпространства, и

$$X = Q \oplus Q^{\perp}$$
,

пространство X раскладывается в ортогональную сумму подпространств Qи Q^{\perp} .

Утверждение:

$$Q_1 \subset Q_2 \Rightarrow Q_1^{\perp} \supset Q_2^{\perp}$$
.

Действительно,

$$y \in Q_2^{\perp} \Rightarrow \forall x \in Q_2 : (x, y) = 0 \Rightarrow \forall x \in Q_1 \subset Q_2 : (x, y) = 0 \Rightarrow y \in Q_1^{\perp}$$
.

В некоторых случаях справа равенство: $Q_1^{\perp} = Q_2^{\perp}$. Утверждение: $Q^{\perp} = [Q]^{\perp}$.

Действительно, пусть $x_m \in Q, x_m \to x^* \in [Q]$. Тогда

$$\forall y \in Q^{\perp} : (x^*, y) = \lim_{m \to \infty} (x_m, y) = \lim_{m \to \infty} 0 = 0 \Rightarrow y \in [Q]^{\perp}.$$

Утверждение: $Q^{\perp} = (L(Q))^{\perp}$ (в силу линейности скалярного произведения).

Тогда

$$Q^{\perp} = [Q]^{\perp} = (L(Q))^{\perp} = (L[Q])^{\perp} = [L(Q)]^{\perp} = [L[Q]]^{\perp}$$
.

Обозначение: $L^{\perp}(Q)$.

Замечание: [L(Q)] = [L[Q]] (было доказано).

Утверждение: $(Q^{\perp})^{\perp}\supset [L(Q)].$ Действительно, $(Q^{\perp})^{\perp}=([L(Q)]^{\perp})^{\perp}\supset [L(Q)].$

Замечание: далее для случая, когда пространство X гильбертово, будет доказано, что здесь равенство.

Утверждение:

$$\forall x \in Q : (x, w) = (x, z) \Rightarrow w - z \in Q^{\perp}$$

(поскольку $\forall x \in Q : (x, (w-z)) = 0$).

Ортогональная разность

Если $Y\subset X$ и $Y_1\subset Y$ – линеалы, то множество $Y_2=Y\cap Y_1^\perp$ называется ортогональной разностью Y и Y_1 и обозначается

$$Y_2 = Y \ominus Y_1$$
.

Замечание: как правило, понятие ортогональной разности используют применительно к подпространствам (замкнутым линеалам).

Замечание. Далее считаем $Y_1 \subsetneq Y$ (если $Y_1 = Y$, то $Y \ominus Y = \{o\}$).

Утверждение: Y_2 – линеал (как пересечение двух линеалов). Если Y – подпространство, то Y_2 – подпространство (как пересечение двух подпространств).

Утверждение: если $Y=Y_1\oplus Y_2$, то $Y_2=Y\ominus Y_1$ и $Y_1=Y\ominus Y_2$. Докажем первое из этих равенств (второе доказывается аналогично).

Из $Y_2 \subset Y$ и $Y_2 \perp Y_1$ вытекает, что $Y_2 \subset Y \cap Y_1^{\perp} = Y \ominus Y_1$.

Докажем обратное включение. Произвольный элемент $y \in Y$ представляется в виде $y = y_1 + y_2$, где $y_1 \in Y_1$, $y_2 \in Y_2$. Тогда $(y,y_1) = \|y_1\|^2$. Если $y \in Y \ominus Y_1 \subset Y_1^\perp$, то это скалярное произведение равно нулю, поэтому $y_1 = o$ и $y = y_2 \in Y_2$.

Утверждение: если $Y_2=Y\ominus Y_1$, то $Y_1\subset Y\ominus Y_2$ (поскольку $Y_1\subset Y$ и $Y_1\bot Y_2$).

Замечание: равенства, вообще говоря, может не быть. Например, если линеал Y_1 плотен в Y, то $Y_2=\{o\}$, и $Y\ominus Y_2=Y$.

Утверждение: если $Y_2=Y\ominus Y_1$, то $Y_1\oplus Y_2\subset Y$ (поскольку $Y_{1,2}\subset Y$ и $Y_1\bot Y_2$).

Замечание: равенства, вообще говоря, может не быть. Например, если линеал Y_1 плотен в Y, то $Y_2 = \{o\}$, и $Y_1 \oplus Y_2 = Y_1 \subseteq Y$.

Замечание: будет доказано, что в случае, когда Y_1 – полное метрическое пространство, из $Y_2=Y\ominus Y_1$ следует $Y=Y_1\oplus Y_2$, и тогда $Y_1=Y\ominus Y_2$. Это, в частности, справедливо, если Y_1 – подпространство, а X или Y – гильбертово пространство.

 $\it Построение$ ортогональной проекции на конечномерное подпространство.

Вернёмся к рассмотрению замкнутого подпространства $Y = L\{f\}$ – линейной оболочки линейно независимой системы элементов

 $Q = \{f_1, f_2, \dots, f_n\}$. Наша задача — представить произвольный элемент $w \in X$ в виде ортогональной суммы w = z + h, где $z \in Y$, а $h \in Y^{\perp} = L^{\perp}\{f\}$.

Чтобы решить эту задачу, вычислим скалярные произведения $\gamma_i=(w,f_i)\,,\,i=1,\dots,n$ и решим систему линейных алгебраических уравнений $G\alpha=\gamma$. Построим элемент

$$z = \sum_{j=1}^{n} \alpha_j f_j \in Y \,,$$

где $\alpha = G^{-1}\gamma$. По доказанному ранее, $(z,f_i) = \gamma_i = (w,f_i)$, откуда $\forall y \in Y: (z,y) = (w,y)$, и тогда $h = w - z \in Q^\perp = Y^\perp$.

Таким образом, мы установили, что если $Y\subset X$ – конечномерное подпространство пространства X со скалярным произведением, то произвольный элемент пространства раскладывается в сумму элементов, один из которых является его ортогональной проекцией на Y, а другой – на Y^\perp . Иначе говоря, $X=Y\oplus Y^\perp$.

Это утверждение доказано пока что только для конечномерного подпространства Y произвольного пространства со скалярным произведением (не

обязательно гильбертова). Ранее оно было доказано для случая одномерного подпространства Y = L(x). Далее такое разложение будет обобщено на произвольное замкнутое подпространство гильбертова пространства.

Замечание. Оператор P_Y , сопоставляющий элементу w его ортогональную проекцию z на подпространство Y (т.е. $z=P_Yw$), называется оператором ортогонального проектирования (проецирования) на это подпространство, или ортопроектором. Аналогичным образом мы можем рассмотреть ортопроектор $P_{Y^{\perp}}=P_Y^{\perp}$ на подпространство Y^{\perp} , и тогда $h=P_Y^{\perp}w$. Сумма этих проекторов – единичный оператор $(P_Y+P_Y^{\perp}=E)$, их произведение – нулевой $(P_YP_Y^{\perp}=P_Y^{\perp}P_Y=O)$.

Если из контекста понятно, о проекциях на какие подпространства идёт речь, то пишут просто P и P^{\perp} .

Утверждение. Норма ортопроекции элемента на подпространство не превосходит нормы самого элемента, т.е. $\|z\| \le \|w\|$ или $\|z\|^2 \le \|w\|^2$. Это следствие из теоремы Пифагора: $\|w\|^2 = \|z\|^2 + \|h\|^2$. Ниже получим из него неравенство Бесселя.

Замечание. Утверждение справедливо и для бесконечномерного подпространства (в предположении, что ортогональная проекция существует).

Следствие. Норма оператора ортогонального проектирования равна единице. Действительно, $\|Pw\| = \|z\| \le \|w\|$, откуда $\|P\| \le 1$. С другой стороны, Pz = z и $\|Pz\| = \|z\|$.

Утверждение. Если элемент $z \in Y$ — ортогональная проекция элемента $w \in X$ на подпространство Y, то он является ближайшим к w элементом этого подпространства.

Доказательство. Пусть $w=z+h,\,z\in Y,\,h\in Y^{\perp},$ квадрат расстояния от w до z равен $\|w-z\|^2=\|h\|^2.$

Пусть теперь $y \in Y$ — некоторый элемент. Тогда квадрат рассотяния от w до этого элемента равен

$$||w - y||^2 = ||(w - z) + (z - y)||^2 =$$

$$= ||h + (z - y)||^2 = ||h||^2 + ||z - y||^2 \ge ||h||^2,$$

и при $y \neq z$ неравенство строгое. При доказательстве воспользовались ортогональностью $z-y \in Y$ и $h \in Y^\perp$ и теоремой Пифагора.

Замечание. Утверждение справедливо и для бесконечномерного подпространства (в предположении, что ортогональная проекция существует).

Замечание:

$$||h|| = \min_{y \in Y} ||w - y|| = \rho(w, Y),$$

минимум достигается при y = z.

Замечание. Ближайший к w элемент множества называется метрической проекцией w на это множество. Таким образом, ортогональная проекция w на подпространство одновременно является и метрической проекцией.

Ортогональные и ортонормированные системы элементов.

Если система элементов $\{g_1,\ldots,g_n\}$ ортогональна, $g_i\bot g_j$, $i\neq j$, то матрица Грама диагональна: $G_{ij}=(g_i,g_j)=\|g_i\|^2\delta_{ij}$, и тогда

$$\alpha_i = \frac{\gamma_i}{\|g_i\|^2} = \frac{(w, g_i)}{\|g_i\|^2},$$

не приходится решать систему уравнений. Ортогональная проекция элемента w на линейную оболочку $L\{g\}$ имеет вид

$$z = \sum_{i=1}^{n} \frac{(w, g_i)g_i}{\|g_i\|^2}.$$

Замечание. Отсюда, между прочим, вытекает формула для ортопроектора $P = P_Y$:

$$P = \sum_{i=1}^{n} \frac{(\cdot, g_i)g_i}{\|g_i\|^2},$$

точкой в правой части обозначен элемент, на который действует оператор.

Если система элементов $\{e_1,\dots,e_n\}$ ортонормирована, $e_i\bot e_j$, $i\ne j$, $\|e_i\|=1$, то матрица Грама единичная: $G_{ij}=(e_i,e_j)=\delta_{ij}$, и

$$\alpha_i = \gamma_i = (w, e_i)$$

(ковариантные и контравариантные координаты совпадают). Ортогональная проекция элемента w на линейную оболочку $L\{e\}$ имеет вид

$$z = \sum_{i=1}^{n} (w, e_i)e_i,$$

соответствующая формуда для ортопроектора имеет вид

$$P = \sum_{i=1}^{n} (\cdot, e_i) e_i.$$

Пусть дана исходная система $\{f_i, i=1,\ldots,n\}$ общего вида (не ортогональная, не нормированная). Она образует базис в $Y=L\{f\}$ (если в системе есть линейно зависимые элементы – отбрасываем). Наша задача: построить ортонормированный базис в Y.

Процесс ортогонализации Грама-Шмидта.

В два этапа: сначала строим ортоготнальные элементы $\{g_i, i=1,\dots,n\}$, потом нормируем и получаем $\{e_i, i=1,\dots,n\}$ – ортонормированный базис в Y

Первый шаг:

$$g_1 = f_1, \quad e_1 = \frac{g_1}{\|g_1\|}.$$

Второй шаг. Из f_2 вычитаем его проекцию на e_1 , после чего нормируем:

$$g_2 = f_2 - (f_2, e_1)e_1, \quad e_2 = \frac{g_2}{\|g_2\|}.$$

Дальнейшие шаги: из f_{j+1} вычитаем его проекцию на линейную оболочку первых j векторов, далее нормируем:

$$g_{j+1} = f_{j+1} - \sum_{i=1}^{j} (f_{j+1}, e_i)e_i, \quad e_{j+1} = \frac{g_{j+1}}{\|g_{j+1}\|}.$$

Этот элемент ненулевой в силу предположения о линейной незваисимости системы $\{f_i, i=1,\ldots,n\}$, в противном случае отбрасываем и переходим к следующему номеру.

В результате описанной процедуры получаем ортонормированный базис в Y.

Замечание. Убедимся, что $g_{j+1} \perp e_k, k = 1, \ldots, j$:

$$(g_{j+1}, e_k) = (f_{j+1}, e_k) - \sum_{i=1}^{j} (f_{j+1}, e_i)(e_i, e_k) =$$

$$= (f_{j+1}, e_k) - \sum_{i=1}^{j} (f_{j+1}, e_i)\delta_{ik} = (f_{j+1}, e_k) - (f_{j+1}, e_k) = 0.$$

Замечание. При практической реализации может оказаться более удобным при ортогонализации работать не с $\{e\}$, а с $\{g\}$. В этом случае выражение для g_{j+1} принимает вид

$$g_{j+1} = f_{j+1} - \sum_{i=1}^{j} \frac{(f_{j+1}, g_i)g_i}{\|g_i\|^2}.$$

Замечание. При практической реализации может оказаться более удобным заменить какой-либо элемент g_i коллинеарным ему \tilde{g}_i , отличающимся на произвольный удобный нам ненулевой числовой множитель. На окончательный результат это никак не повлияет.

Ещё раз выпишем выражение для ортопроекции w на Y:

$$z = \sum_{i=1}^{n} (w, e_i)e_i.$$

Квадрат её нормы (по теореме Пифагора) равен

$$||z||^2 = \sum_{i=1}^n |(w, e_i)|^2$$
.

Отсюда вытекает неравенство Бесселя:

$$\sum_{i=1}^{n} |(w, e_i)|^2 \le ||w||^2$$

(поскольку $\|z\|^2 \leq \|w\|^2$). Для ортогонального (но не нормированного) базиса

$$z = \sum_{i=1}^{n} \frac{(w, g_i)g_i}{\|g_i\|^2},$$

квадрат нормы равен

$$||z||^2 = \sum_{i=1}^n \frac{|(w, g_i)|^2}{||g_i||^2},$$

и неравенство Бесселя принимает вид

$$\sum_{i=1}^{n} \frac{|(w, g_i)|^2}{\|g_i\|^2} \le \|w\|^2.$$

Замечание: модуль в выражениях $|(w,e_i)|^2$ и $|(w,g_i)|^2$ ставим, чтобы равенства и неравенства оставались справедливы в комплексных простран-