Exam	#1
ova	

Cp Eng 111, Section B Fall 1999

Name:

9/17/99

Show all work on the exam papers. If you need additional space, use the reverse side of the paper. Closed book, closed notes, no calculator.

pts.

Convert 33.6875 to binary.

$$\frac{33}{2} \cdot |b| \quad r_0 = 1 \quad \frac{3}{2} \cdot |c| \quad r_1 = 0$$
 $\frac{1}{2} \cdot |c| \quad r_2 = 0$
 $\frac{1}{2} \cdot |c| \quad r_3 = 0$
 $\frac{1}{2} \cdot |c| \quad r_4 = 0$
 $\frac{1}{2} \cdot |c| \quad r_4 = 0$
Convert 0x AF to decimal.

(c) Convert 0x AF to decimal.

Convert the binary number 1101011010 to hexadecimal. (reminder: you do not need a calculator.)

0101 1010

- (9)The octal number system is the base 8 system. 2.
 - (a) What single digits would be used in base 8 (octal)?

0,1,2,3,4,5,6,7

(b) What decimal number does 1008 represent?

$$(1 \times 8^2)$$
 = (64)

(c) Convert 0x FF to base 8. (reminder: you do not need a calculator.)

30.8.2

A clock has a period of 200 ns. Find its frequency. (10)

Determine whether each of the following is True (T) or False (F); circle the appropriate choice. (16)

(a)
$$\overline{abc} = \overline{a} \, \overline{b} \, \overline{c}$$

(b)
$$\overline{x + \overline{y} + \overline{z}} = \overline{x} y z$$

(c)
$$x+xy=x$$

 $A + AB = A$

(d)
$$a + \overline{a}b = \overline{a} + b$$

$$f(A,B,C) = (A + \overline{B} + A\overline{B})(AB + \overline{A}C + BC)$$

 $(\overline{B}(A+1) + A)(AG + \overline{A}C + BC)$

(b) Draw a logic circuit to implement the simplified form of function f.

(18) 6. (a) Generate the truth table for
$$g(A, B, C) = AC + \overline{AB}$$

					(10)	1		-03
_/	4	В	C	g	(AC)	A	B	1 (AB
()	0	0	10	0	1	1	1
()	0	1	11	0.	1	1	1
()	1	0	0	0	1	0	0
()	1	1	0	0	1	0	0
1		0	0	0	0	0	1	0.
1		0	1	10	1.1	0	1	0
1		1	0	00	0	0	0	.0
1		1	1	14	1.	01	0	0

306

Write g as a canonical sum of products.

If $F(x, y, z) = \sum m(0,1,2,5,6)$, write F as a product of sums (POS).

pts.

(12)

7.

(a) Generate the Karnaugh map for $f(x, y, z) = \sum m(0, 2, 3, 7)$.

1 - 3

XXX	,	
	'	1
999	1	2
0111)	3
1001		4
101		\$
110		4
111	1	7

.

(b) Using the K-map in part (a), simplify the function f.

$$\int (x_1 y_1 z) = xy_1 + \bar{y} \bar{z}$$

(9) 8. Find the simplest form of the function g(a,b,c,d) which is described by the following K-map:

