ANSWERS 253

Answer to Some Selected Problems

UNIT 1

```
\sim 15 \times 10^{-4} \text{ g}, 1.25 \times 10^{-4} \text{ m}
1.17
          (i) 4.8 \times 10^{-3}
                                     (ii) 2.34 \times 10^5
1.18
                                                             (iii) 8.008 \times 10^3
                                                                                       (iv) 5.000 \times 10^2
          (v) 6.0012
1.19
          (i) 2
                                     (ii) 3
                                                             (iii) 4
                                                                                       (iv) 3
          (v) 4
                                     (vi) 5
          (i) 34.2
                                                             (iii) 0.0460
                                                                                       (iv) 2810
1.20
                                     (ii) 10.4
                                                             (b) (i) Ans : (10^6 \, \text{mm}, \, 10^{15} \, \text{pm})
1.21
          (a) law of multiple proportion
                                                                   (ii) Ans: (10^{-6} \text{ kg}, 10^{6} \text{ ng})
                                                                   (iii) Ans: (10^{-3} L, 10^{-3} dm^3)
          6.00 \times 10^{-1} \text{ m} = 0.600 \text{ m}
1.22
          (i) B is limiting
1.23
                                                                (ii) A is limiting
          (iii) Stoichiometric mixture -No
                                                               (iv) B is limiting
          (v) A is limiting
          (i) 2.43 \times 10^3 g
1.24
                                                                (ii) Yes
          (iii) Hydrogen will remain unreacted; 5.72 \times 10^2g
          Ten volumes
1.26
                                                     1.515 \times 10^{-11}\,\text{m}
          (i) 2.87 \times 10^{-11}m
                                                                                  (iii) 2.5365 \times 10^{-2}kg
1.27
          1.99265 \times 10^{-23}g
1.30
          (i) 3
1.31
                                              (ii)
                                                                                  (iii) 4
          39.948 g mol<sup>-1</sup>
1.32
          (i) 3.131 \times 10^{25} atoms
                                                                                  (iii) 7.8286 \times 10^{24} atoms
                                             (ii) 13 atoms
1.33
          Empirical formula CH, molar mass 26.0 g mol<sup>-1</sup>, molecular formula C<sub>2</sub>H<sub>2</sub>
1.34
          0.94 g CaCO<sub>3</sub>
1.35
          8.40 g HCl
1.36
```

UNIT 2

(i) 1.099×10^{27} electrons (ii) 5.48×10^{-7} kg, 9.65×10^{4} C 2.12.2(i) 6.022×10^{24} electrons (ii) (a) 2.4088×10^{21} neutrons(b) 4.0347×10^{-6} kg (iii) (a) 1.2044×10^{22} protons (b) 2.015×10^{-5} kg 2.3 7,6: 8,8: 12,12: 30,26: 50, 38 2.4 (i) C1 (ii) U (iii) Be $5.17 \times 10^{14} \text{ s}^{-1}$, $1.72 \times 10^6 \text{m}^{-1}$ 2.5 (i) $1.988 \times 10^{-18} \text{ J}$ (ii) $3.98 \times 10^{-15} \,\text{J}$ 2.6

```
6.0 \times 10^{-2} \text{ m}, 5.0 \times 10^{9} \text{ s}^{-1} and 16.66 \text{ m}^{-1}
2.7
          2.012 \times 10^{16} photons
2.8
          (i) 4.97 \times 10^{-19} \text{ J} (3.10 eV); (ii) 0.97 eV
2.9
                                                                                 (iii) 5.84 \times 10^5 \text{ m s}^{-1}
2.10
          494 kJ mol<sup>-1</sup>
          7.18 \times 10^{19} \text{s}^{-1}
2.11
2.12
          4.41 \times 10^{14} \text{s}^{-1}, 2.91 \times 10^{-19} \text{J}
2.13
          486 nm
          8.72 \times 10^{-20} \text{J}
2.14
2.15
          15 emission lines
          (i) 8.72 \times 10^{-20}J
2.16
                                                (ii) 1.3225 nm
2.17
          1.523 \times 10^6 \text{ m}^{-1}
          2.08 \times 10^{-11} \text{ ergs}, 950 \text{ Å}
2.18
2.19
          3647Å
          3.55 \times 10^{-11} \text{m}
2.20
          8967Å
2.21
          Na+, Mg<sup>2+</sup>, Ca<sup>2+</sup>; Ar, S<sup>2-</sup> and K<sup>+</sup>
2.22
          (i) (a) 1s^2 (b) 1s^2 2s^2 2p^6; (c) 1s^2 2s^2 2p^6
2.23
2.24
          n = 5
2.25
          n = 3; l = 2; m_l = -2, -1, 0, +1, +2 (any one value)
2.26
          (i) 29 protons
2.27
          1, 2, 15
2.28
          (i) l
                        m_1
               0
                         0
                1
                        -1.0.+1
                        -2,-1,0,+1,+2
          (ii) l = 2; m_1 = -2, -1, 0, +1, +2
          (iii) 2s, 2p
          (a) 1s, (b) 3p, (c) 4d and (d) 4f
2.29
2.30
          (a), (c) and (e) are not possible
2.31
          (a) 16 electrons (b) 2 electrons
2.33
          n = 2 \text{ to } n = 1
2.34
          8.72 \times 10^{-18} \text{J per atom}
2.35
          1.33 \times 10^9
2.36
          0.06 nm
          (a) 1.3 \times 10^2 \text{ pm}
                                                (b) 6.15 \times 10^7 \text{ pm}
2.37
2.38
           1560
2.39
2.40
```

- 2.40 More number of K-particles will pass as the nucleus of the lighter atoms is small, smaller number of K-particles will be deflected as a number of positive charges is less than on the lighter nuclei.
- 2.41 For a given element the number of prontons is the same for the isotopes, whereas the mass number can be different for the given atomic number.
- $2.42 \quad {}^{81}_{35} Br$

ANSWERS 255

```
^{37}_{17}\text{Cl}^{-1}
2.43
         ^{56}_{26} \mathrm{Fe^{3+}}
2.44
2.45
         Cosmic rays > X-rays > amber colour > microwave > FM
         3.3 \times 10^{6} \, J
2.46
         (a) 4.87 \times 10^{14} \text{ s}^{-1}
                                            (b) 9.0 \times 10^9 \text{ m}
                                                                          (c) 32.27 \times 10^{-20} \text{ J}
2.47
         (d) 6.2 \times 10^{18} quanta
2.48
         10
2.49
         8.28 \times 10^{-10} \,\mathrm{J}
         3.45 \times 10^{-22} \text{ J}
2.50
2.51
         (a) Threshold wave length (b) Threshold frequency of radiation
                                                 4.598 \times 10^{14} \text{ s}^{-1}
              652.46 nm
         (c) Kinetic energy of ejected photoelectron
              9.29 \times 10^{-20} J, Velocity of photoelectron 4.516 \times 10^5 ms<sup>-1</sup>
2.52
         530.9 nm
2.53
         4.48 eV
         7.6 \times 10^{3} \text{ eV}
2.54
2.55
         infrared, 5
2.56
         434 nm
2.57
         455 pm
2.58
         494.5\ ms^{-1}
2.59
         332 pm
         1.516 \times 10^{-38} \,\mathrm{m}
2.60
2.61
         Cannot be defined as the actual magnitude is smaller than uncertainity.
2.62
         (v) < (ii) = (iv) < (vi) = (iii) < (i)
2.63
         4p
2.64
                                            (ii) 4d
         (i) 2s
                                                                          (iii) 3p
2.65
         Si
2.66
                                            (b) 2
         (a) 3
                                                                          (c) 6
         (d) 4
                                            (e) zero
2.67
         16
                                                UNIT 5
5.1
         2.5 bar
5.2
         0.8 bar
5.4
         70 g/mol
5.5
         M_B = 4M_A
5.6
         203.2 mL
```

 $5.7 8.314 \times 10^4 \text{ Pa}$

5.8 1.8 bar

 $5.9 3g/dm^3$

5.10 1249.8 g mol⁻¹

5.11 3/5

5.12 50 K

```
5.13
         4.2154 \times 10^{23} electrons
         1.90956 \times 10^6 \text{ year}
5.14
5.15
         56.025 bar
5.16
         3811.1 kg
         5.05 L
5.17
         40 g mol<sup>-1</sup>
5.18
```

0.8 bar

5.19

UNIT 6

```
6.1
         (ii)
6.2
         (iii)
6.3
         (ii)
6.4
         (iii)
6.5
         (i)
6.6
         (iv)
6.7
         q = +701 J
         w = -394 J, since work is done by the system
         \Delta U = 307 J
6.8
         -743.939 kJ
6.9
         1.067 kJ
6.10
        \Delta H = -7.151 \text{ kJ mol}^{-1}
6.11
         - 314.8 kJ
6.12
         \Delta_{r}H = -778 \text{ kJ}
6.13
         - 46.2 kJ mol<sup>-1</sup>
6.14
        - 239 kJ mol-1
6.15
         326 kJ mol-1
6.16
         \Delta S > 0
6.17
         2000 K
6.18
         \Delta H is negative (bond energy is released) and \Delta S is negative (There is less
         randomness among the molecules than among the atoms)
6.19
         0.164 kJ, the reaction is not spontaneous.
6.20
         -5.744 kJ mol<sup>-1</sup>
         NO(g) is unstable, but NO<sub>2</sub>(g) is formed.
6.21
6.22
         q_{\text{surr}} = + 286 kJ mol<sup>-1</sup>
         \Delta S_{\text{surr}} = 959.73 \text{ J K}^{-1}
```

UNIT 7

```
7.2
           12.229
7.3
           2.67 \times 10^{4}
7.5
           (i) 4.33 \times 10^{-4} (ii) 1.90
           1.59 \times 10^{-15}
7.6
           [N_2] = 0.0482 \text{ molL}^{-1}, [O_2] = 0.0933 \text{ molL}^{-1}, [N_2O] = 6.6 \times 10^{-21} \text{ molL}^{-1}
7.8
```

ANSWERS 257

- 7.9 0.0352mol of NO and 0.0178mol of Br₉
- $7.10 \quad \ 7.47 \times 10^{11} \ M^{-1}$
- 7.11 4.0
- 7.12 $Q_0 = 2.379 \times 10^3$. No, reaction is not at equilibrium.
- 7.14 0.44
- 7.15 0.068 molL^{-1} each of H₂ and I₃
- 7.16 $[I_2] = [Cl_2] = 0.167 \text{ M}, [ICl] = 0.446 \text{ M}$
- 7.17 $[C_2H_6]_{eq} = 3.62$ atm
- 7.18 (i) $[CH_3COOC_2H_5][H_2O]$ / $[CH_3COOH][C_2H_5OH]$ (ii) 3.92 (iii) value of Q_c is less than K_c therefore equilibrium is not attained.
- 7.19 0.02molL⁻¹ for both.
- 7.20 $[P_{CO}] = 1.739$ atm, $[P_{CO}] = 0.461$ atm.
- 7.21 No, the reaction proceeds to form more products.
- $7.22 \quad 3 \times 10^{-4} \text{ molL}^{-1}$
- 7.23 0.149
- 7.24 a) -35.0kJ, b) 1.365×10^6
- 7.27 $[P_{H_a}]_{eq} = [P_{Br_a}]_{eq} = 2.5 \times 10^{-2} bar, [P_{HBr}] = 10.0 bar$
- 7.30 b) 120.48
- 7.31 $[H_2]_{eq} = 0.96$ bar
- 7.33 $2.86 \times 10^{-28} \text{ M}$
- $7.34 \quad 5.85 \times 10^{-2}$
- 7.35 NO₂-, HCN, ClO₄, HF, H₂O, HCO₃-, HS-
- 7.36 BF₃, H⁺, NH₄⁺
- 7.37 F-, HSO₄-, CO₃²⁻
- 7.38 NH₃, NH₄⁺, HCOOH
- $7.41 \quad 2.42$
- $7.42 1.7 \times 10^{-4} M$
- 7.43 $F = 1.5 \times 10^{-11}$, HCOO= 5.6 × 10-11, CN= 2.08 x 10-6
- 7.44 [phenolate ion]= 2.2×10^{-6} , $\alpha = 4.47 \times 10^{-5}$, α in sodium phenolate = 10^{-8}
- 7.45 [HS]= 9.54 x 10⁻⁵, in 0.1M HCl [HS-] = 9.1 × 10⁻⁸M, [S²⁻] = 1.2 × 10⁻¹³M, in 0.1M HCl [S²⁻]= 1.09 × 10⁻¹⁹M
- 7.46 [Ac⁻]= 0.00093, pH= 3.03
- 7.47 [A⁻] = 7.08 x10⁻⁵M, K_a = 5.08 × 10⁻⁷, pK_a = 6.29
- 7.48 a) 2.52 b) 11.70 c) 2.70 d) 11.30
- 7.49 a) 11.65 b) 12.21 c) 12.57 c) 1.87
- 7.50 pH = 1.88, pK = 2.70
- 7.51 $K_b = 1.6 \times 10^{-6}$, pK_b = 5.8
- 7.52 $\alpha = 6.53 \times 10^{-4}$, $K_a = 2.35 \times 10^{-5}$
- 7.53 a) 0.0018 b) 0.00018
- $7.54 \quad \alpha = 0.0054$
- 7.55 a) 1.48×10^{-7} M, b) 0.063 c) 4.17×10^{-8} M d) 3.98×10^{-7}
- 7.56 a) 1.5×10^{-7} M, b) 10^{-5} M, c) 6.31×10^{-5} M d) 6.31×10^{-3} M
- 7.57 $[K^+] = [OH^-] = 0.05M, [H^+] = 2.0 \times 10^{-13}M$

- 7.58 $[Sr^{2+}] = 0.1581M$, $[OH^{-}] = 0.3162M$, pH = 13.50
- 7.59 $\alpha = 1.63 \times 10^{-2}$, pH = 3.09. In presence of 0.01M HCl, $\alpha = 1.32 \times 10^{-3}$
- 7.60 $K_a = 2.09 \times 10^{-4}$ and degree of ionization = 0.0457
- 7.61 pH = 7.97. Degree of hydrolysis = 2.36×10^{-5}
- 7.62 $K_b = 1.5 \times 10^{-9}$
- 7.63 NaCl, KBr solutions are neutral, NaCN, NaNO $_2$ and KF solutions are basic and NH $_4$ NO $_3$ solution is acidic.
- 7.64 (a) pH of acid solution= 1.9 (b) pH of its salt solution= 7.9
- 7.65 pH = 6.78
- 7.66 a) 12.6 b) 7.00 c) 1.3
- 7.67 Silver chromate S= $0.65 \times 10^{-4} M$; Molarity of $Ag^+ = 1.30 \times 10^{-4} M$ Molarity of $CrO_4^{\ 2^-} = 0.65 \times 10^{-4} M$; Barium Chromate S = $1.1 \times 10^{-5} M$; Molarity of Ba^{2^+} and $CrO_4^{\ 2^-}$ each is $1.1 \times 10^{-5} M$; Ferric Hydroxide S = $1.39 \times 10^{-10} M$; Molarity of $Fe^{3^+} = 1.39 \times 10^{-10} M$; Molarity of $[OH^-] = 4.17 \times 10^{-10} M$ Lead Chloride S = $1.59 \times 10^{-2} M$; Molarity of $Pb^{2^+} = 1.59 \times 10^{-2} M$ Molarity of $Cl^- = 3.18 \times 10^{-2} M$; Mercurous Iodide S = $2.24 \times 10^{-10} M$; Molarity of $Hg_2^{\ 2^+} = 2.24 \times 10^{-10} M$ and molarity of $\Gamma^- = 4.48 \times 10^{-10} M$
- 7.68 Silver chromate is more soluble and the ratio of their molarities = 91.9
- 7.69 No precipitate
- 7.70 Silver benzoate is 3.317 times more soluble at lower pH
- 7.71 The highest molarity for the solution is 2.5×10^{-9} M
- 7.72 2.43 litre of water
- 7.73 Precipitation will take place in cadmium chloride solution

INDEX 259

INDEX

A			
	1.40	Combined gas law	145
Absolute zero	143	Common ion effect	224,230
Accuracy	13	Compound	5,6
Actinide series	83	Conjugate acid –base pair	215
Adiabatic	162	Continuous spectrum	44
Alpha (α) particle scattering experim		Covalent bond	102
Anion	88	Covalent radius	87
Aqueous tension	146	Critical pressure	152
Arrhenius acids and bases	214	Critical temperature	152
Atom	3,5,15	Critical volume	152
Atomic mass	17	Closed system	161
Atomic mass unit	16	D	
Atomic models	32	D	
Atomic number	35	Dalton's Atomic theory	16, 29
Atomic orbitals	54	Dalton's law of partial pressure	146
Atomic radius	86,87	Density	09
Atomic spectra	44	Deuterium	35
Aufbau principle	61	Deviation from ideal gas behaviour	150
Average atomic mass	17	Diagonal relationship	94
Avogadro constant	18	Diatomic molecules	15
Avogadro Law	15, 141	Dimensional analysis	13
Azimuthal quantum number	55	Dipole moment	11
D		Dipole-dipole force	138
В		Dipole induced dipole forces	138
Balmer series	45	Dispersion force	138
Base physical quantities	7,8	Dual behaviour of matter	49
Bohr Model of atom	46	Dynamic equilibrium	192,196
Bohr radius	47		
Bond angle	108	\mathbf{E}	
Bond dissociation enthalpy	177	Effective nuclear charge	60
Bond enthalpy	108,118,177	Electron	30
Bond length	107,129	Element	05
Bond order	109, 129	Electronegativity	91
Born-Haber cycle	179	Electron gain enthalpy	90,10
Boundary surface diagrams	58	Electromagnetic radiations	37
Boyle's law	140	Electromagnetic spectrum	38
Boyle point	152	Electronic configuration	63,82
Boyle temperature	52	Elements d-block	85
Bronsted -Lowry acids and bases	214	Elements <i>p</i> -block	85
Buffer solution	226	Elements f -block	85
		Elements s-block	83
C		Empirical formula	19
Canal rays	32	Emission spectrum	44
Cathode rays	30	Enthalpy	167
Cathode ray tube	30	Enthalpy change during phase trans	
Cation	88	Enthalpy of atomization	177
Charles' law	142	Enthalpy of combustion	176
Chalcogens	85	Enthalpy of solution	180
Chemical equilibrium	193	Entropy	182
Chemical properties	06	Equation of state	145
Chemical reactivity	95	Equilibrium constant	201
•		1	=

Equilibrium equation	199	L	
Equilibrium mixture	192	Lanthanoid series	82
Equilibrium vapour pressure	154	Lattice enthalpy	107, 179
Exchange energy	65	Law of chemical equilibrium	198
Excited state of atom	59	Law of conservation of mass	14
Extensive property	168	Law of definite proportion	15
F		Law of multiple proportions	15
_		Law of Octaves	75
Fajan's rule	112	Law of Triads	75
First law of thermodynamics	168	Le Chatelier's principle	209
Formal charge	104	Lewis acids and bases	216
Formula mass	17	Lewis dot structure	103
G		Lewis symbols	101
	_	Limiting reagent	21
Gas	4	Line spectrum	45
Gas laws	140	Linear combination of atomic orbitals	(LCAO) 126
Gay-Lussac's law of gaseous volume	15	Liquid	04
Gay-Lussac's law, pressure temperature	143	Liquid state	154
relationship		Liquid–vapour equilibrium	193
Gibbs energy	184,186	Liquifaction of gases	152
Ground state of atom	59	London force	138
H		M	
Halogens	85	Magnetic orbital quantum number	55
Heisenberg's uncertainty principle	50	Mass	09
Hess's law	175	Mass number	35
Heterogeneous equilibria	203	Mass per cent	23
Homogeneous equilibria	201	Matter	04
Hund's rule of maximum multiplicity	62	Measurement, English system	07
Hybridisation	120	Measurement, Metric system	07
Hydrogen bonding	131, 138	Measurement, Volume	09
Hydrogen spectrum	45	Mendeleev's periodic law	79
Hydronium ion	214	Metallic radius	87
,		Metalloids	86
I (/)		Metals	86
Ideal gas equation	145	Mixture	5
Intermolecular forces	137,139	Mixture heterogeneous	5
Internal energy	162	Mixture homogeneous	5
Intensive property	168	Modern periodic law	79
Ionic bond	106	Molality	24
Ionic equilibrium	193, 212	Molar enthalpy of fusion	171
Ionic product of water	217	Molar enthalpy of vaporization	172
Ionic radius	88	Molar mass	18
Ionization constant	219, 221	Molarity	23
Ionization enthalpy	88	Mole	18
Ionization of acids and bases	216	Mole fraction	23
Isobar	143	Molecular formula	19
Isocore	143	Molecular mass	17
Isoelectronic species	88	Molecular orbital theory	125
Isolated system	162	Molecule	3,5,15
Isotherm	141		-,-,
Isotopes	35	TAT	
		N	_
17		National standards of measurements	7
K		Neutron	32
Kelvin temperature scale	142	Noble gases	85
Kössel –Lewis approach	101	Nodes	57

INDEX 261 Non-metals 86 SI system of units 07 Nucleons 35 SI system prefixes 09 Nucleus 35 SI unit of density 09 SI unit of mass 09 0 SI unit of temperature 10 Octet rule 102 SI unit of volume 09 Open system 161 Solid 04 35, 46 Orbit Solid-gas equilibrium 194 Orbitals 54, 82 Solid-liquid equilibrium 193 Orbital overlap 118 Solubility product constant 228 Oxidation state 93 Spectroscopy 44 Spectrum 44 P Speed of light 38 39 Particle nature Spin quantum number 56 62 Pauli's exclusion principle Spontaneous process 181 18 Percentage composition Standard ambient temperature and pressure 144 Periodic groups 79 Standard enthalpy of combustion 176 79 Periodic table long form Standard enthalpy of formation 173 Periodic table periods 79 State functions 162 93 Periodicity of valence State variables 162 217 pH scale Stoichiometry 20 Photoelectric effect 41 Subatomic particles 30 Physical properties 06 Sublevel 55 pi bond 120 Subshell 55 Planck's quantum theory 39 Surface tension 155 Polyatomic molecules 15, 177 Surroundings 161 Precision 13 161 System Principal quantum number 47,53 Protium 35 \mathbf{T} Proton 32 Temperature scales 10 Pure substance 05 Thermal energy 139 Thermal interactions 139 **Q** Quantum Thermochemical equations 168 41 Thermodynamic scale 142 53 Quantum mechanics Thermodynamic terms 161 Thomson model 33 R Threshold frequency 41 Radioactive elements 33 Transition series 82 Radioactivity 33 Tritium 35 206 Reaction quotient Reference standard 11 IJ Representative elements 85 Unified mass 17 Resonance structures 109 Universal gas constant 145 Rutherford model of atom 34 47 Rydberg constant \mathbf{v} Valance bond theory 117 Valence electron 63, 101 Schrödinger wave equation 53 van der Waals forces 137 Scientific notation 11 Vapour pressure 154 90 Screening effect Semi-metals 86 Viscosity 156 Visible light 38 Shell 82 90 VSEPR theory 112 Shielding effect Shielding of electrons 60 ${f w}$ 07 SI base units Sigma bond 120 Wavenumber 39 Significant figures 12 Weight 09

Logarithms

TABLE I

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170						5	9	13	17	21	26	30	34 3	38
						0212	0253	0294	0334	0374	4	8	12	16	20	24	28	32 3	
11	0414	0453	0492	0531	0569						4	8	12	16	20	23	27	31 3	35
						0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29 3	
12	0792	0828	0864	0899	0934						3	7	11	14	18	21	25	28 3	32
12	0102	0020	0001	0000	0001	0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27 3	
13	1139	1173	1206	1239	1271						3	6	10	13	16	19	23	26 2	29
						1303	1335	1367	1399	1430	3	7	10	13	16	19	22	25 2	29
14	1461	1492	1523	1553	1584						3	6	9	12	15	19	22	25 2	
						1614	1644	1673	1703	1732	3	6	9	12	14	17	20	23 2	4
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6 6	9 8	11 11	14 14	17 (17	20 19	23 2 22 2	
16	2041	2068	2095	2122	2148	1000	1001	1000	1007	2011	3	6	8	11	14	16	19	22 2	4
10	2041	2000	2033	2122	2140	2175	2201	2227	2253	2279	3	5	8	10	13	16	18	21 2	
17	2304	2330	2355	2380	2405						3	5	8	10	13	15	18	20 2	23
						2430	2455	2480	2504	2529	3	5	8	10	12	15	17	20 2	!2
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2 2	5 4	7 7	9	12	14	17	19 2 18 2	
10	0700	0010	0000	0050	0070	2672	2695	2718	2742	2765	_	$\overline{}$	7	-	11	14	16		
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2 2	4	6	9 8	11	13 13	16 15	18 2 17 1	
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17 1	9
21	3222		3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16 1	
22	3424		3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15 1	
23	3617		3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15 1	
24	3802		3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14 1	
25		3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14 1	
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	13 1	5
27	4314		4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13 1	
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12 1	4
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12 1	3
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11 1	3
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11 1	2
32	5051		5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11 1	
33	5185		5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10 1	
34	5315		5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10 1	1
35	5441	5/53	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10 1	,
36	5563		5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10 1	
37	5682		5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8		10
38	5798		5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8		10
39	5911		5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8		10
40	6021		6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8		10
41	6128		6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7		9
42	6232		6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7		9
43	6335		6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7		9
44	6435		6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7		9
45		6542	6551	6561	6471	6580	6590	6599	6609	6618	1	2	3	4	5	6	7		9
46	6628		6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5 5	6	7		8
47	6721		6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6		8
48	6812		6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902		6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8
	3002		3023	3023	1 3007	30.13	1 0000	3001	30.2	3001				-		-		•	

Logarithms

TABLE 1 (Continued)

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7768	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063		9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
														2					
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	l	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2 2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1		2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1 1	1	2 2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9997	9996	0	1	1	2	2	3	ا ا	ئ 	4

AntiLogarithms

TABLE II

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285		,	,	١,	,	2	2	2	3
.10	1239	1202	1203	1200	1300	1303	1306	1309	1312	1315	0	1 1	1 1	1 1	1 2	2	2	2	3
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
.14	1349	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3
.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3
.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3
.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3
.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
.31	2042	2046	2051	2056	2014	2065	2070		2032	2084	0	1	1	2	2	3	3	4	4
.32	2042	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5
.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5
.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	3	4	5	6	6
.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	3	4	5	6	6
.43	5550	3031	0100	0112	0110	0120	0100	5171	3170	0100	1	•	~		9	r		J	5
								-						-					

AntiLogarithms

TABLE II (Continued)

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
.54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7
.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9
.62	4169	4178	4188	4198	4207	4217	4227	4236	4246	42S6	1	2	3	4	5	6	7	8	9
.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
.64	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
.67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10
.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	5	6	7	8	9	10
.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6	7	9	10	11
.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
.74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12
.75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12
.76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12
.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12
.78	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13
.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	11	13
.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
.82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14
.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	314
.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
.87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16
.88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	9	11	12	14	16
.89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16
.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	
.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
.94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
.95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
.96	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	
.97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	
.98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	
.99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	