Game Theory

Game theory studies what agents should do in multi-agent settings.

Framework

Strategic form of a game:

- a finite set of agents $I = \{1, ..., n\}$
- a set of actions A_i for each agent $i \in I$
- a utility function u_i for each agent $i \in I$

Each agent chooses an action without knowing what other agents choose.

Strategy

- pure strategy: one action
- stochastic (mixed) strategy: a mix of actions with probabilities

A **strategy profile** is an assignment of a strategy to each agent. If σ is a strategy profile, let σ_i be the strategy of agent i in σ , and let σ_{-i} be the strategies of other agents. (i.e. σ is $\sigma_i \sigma_{-i}$)

Nash Equilibrium

Let utility (σ, i) be the expected utility of strategy profile σ for agent i.

A best response for an agent i to the strategies σ_{-i} of the other agents is a strategy σ_{i} that satisfies:

utility
$$(\sigma_i \sigma_{-i}) \ge \text{utility}(\sigma_i' \sigma_{-i}, i)$$
 for all other strategies σ_i'

A strategy profile σ is a Nash equilibrium if, for each agent i, strategy σ_i is a best response to σ_{-i} .

Computing Nash Equilibrium

Iterated elimination of strategies:

- eliminate any pure strategy dominated by another strategy
- if there are multiple strategies left with the same expected utility, then need a stochastic strategy

Pareto Optimal

An outcome is Pareto optimal if there is no other outcome that makes every player at least as well off and at least one player strictly better off.