Multilevel Lattices based on Spatially Coupled LDPC codes with Applications

Avinash Vem, Yu-Chih Huang, Krishna R. Narayanan, & Henry D. Pfister

Texas A&M University

ISIT'14

Outline

- Introduction
 - Motivation
 - Construction D
- Proposed Lattices
 - Construction
 - Poltyrev Goodness
- 3 Application
 - Symmetric Interference Channel

Lattices and Lattice Codes

- Efficient structures for packing, covering, channel coding & quantization
- · Single user Gaussian channel Erez and Zamir
- Coding with side information Wyner-Ziv and Costa, Zamir, Erez and Shamai
- Secrecy He and Yener
- Dirty multiple access channel Philosof, Khisti, Erez and Zamir

"Lattices are everywhere" by Ram Zamir

Motivation

New perspectives for dealing with interference:

• Interference alignment - Sridharan, Jafarian, Vishwanath and Jafar

Motivation

New perspectives for dealing with interference:

- Interference alignment Sridharan, Jafarian, Vishwanath and Jafar
- Compute-and-forward Nazer & Gastpar
- Physical layer network coding Wilson et al, Nam et al

Lattices and Lattice Codes

- Above schemes are all based on good lattice codes.
- Poltyrev-good lattices are at the core of such lattice coding schemes

Lattices and Lattice Codes

- Above schemes are all based on good lattice codes.
- Poltyrev-good lattices are at the core of such lattice coding schemes

Motivating questions

- These results are all based on Construction-A.
- Is this construction fundamental to good lattices?
- Can we work with just binary codes under practical decoding schemes?

Main Results in this Talk

Codes over \mathbb{F}_2 and BP decoding suffice

- Recall Forney et al's result based on nested random binary linear codes
- Propose capacity-achieving nested SC LDPC ensemble
- Construct lattices using Construction-D, based on the above ensemble
- Show existence of sequence of lattices that are Poltyrev-good under BP

Main Results in this Talk

Codes over \mathbb{F}_2 and BP decoding suffice

- Recall Forney et al's result based on nested random binary linear codes
- Propose capacity-achieving nested SC LDPC ensemble
- Construct lattices using Construction-D, based on the above ensemble
- Show existence of sequence of lattices that are Poltyrev-good under BP

Applications

- As an application, propose Symmetric Interference Channel
- Can be applied to other problems which adopt Construction A lattices

Construction D with L levels

- Barnes and Sloane '83, Forney, Chung and Trott '00, Yan, Ling, Wu ' 13
- Choose $G_1 \subseteq \ldots \subseteq G_L$ where G_l is a gen matrix of code \mathcal{C}_l over \mathbb{F}_2 .

Construction D with L levels

- Barnes and Sloane '83, Forney, Chung and Trott '00, Yan, Ling, Wu ' 13
- Choose $G_1 \subseteq \ldots \subseteq G_L$ where G_l is a gen matrix of code \mathcal{C}_l over \mathbb{F}_2 .
- $\underline{\lambda} = \underline{w}_1 \mathbf{G}_1 + 2\underline{w}_2 \mathbf{G}_2 \dots + 2^{L-1} \underline{w}_{L-1} \mathbf{G}_{L-1} + 2^L \mathbb{Z}^N \in \Lambda$

Multi-Level Decoding(Successive Decoding)

•
$$\underline{y} = \left[\underline{w}_1 \mathbf{G}_1 + 2\underline{w}_2 \mathbf{G}_2 \dots + 2^{L-1} \underline{w}_{L-1} \mathbf{G}_{L-1} + 2^L \mathbb{Z}^N\right] + \underline{n}$$

- $\underline{y} \mod 2 = [\underline{w}_1 \mathbf{G}_1 + \underline{n}] \mod 2 = \underline{w}_1 \odot \mathbf{G}_1 + |\underline{n} \mod 2|$
- \bullet Decode \underline{w}_1 , reconstruct $\underline{w}_1\mathbf{G}_1$ and subtract from \underline{y}

Theorem 1 (Forney, Trott & Chung)

There exists a sequence of Construction D lattices based on $C_1 \subseteq C_2 \ldots \subseteq C_L$ such that the VNR $\to 1$ and the $Pr(\lambda, \sigma^2) \to 0$.

- ullet Take L large enough.
- It's sufficient that C_i at each level is capacity achieving for the mod-2 AWGN channel.

Theorem 1 (Forney, Trott & Chung)

There exists a sequence of Construction D lattices based on $C_1 \subseteq C_2 \ldots \subseteq C_L$ such that the VNR $\to 1$ and the $Pr(\lambda, \sigma^2) \to 0$.

- Take L large enough.
- It's sufficient that C_i at each level is capacity achieving for the mod-2 AWGN channel.

Objective:

• Capacity achieving nested code constructions, preferably under BP decoding.

Proposed Nested Spatially-Coupled LDPC Ensemble

- $\textbf{ 9} \ \, \text{Begin with a} \ \, (d_v^1,d_c) \ \, \text{SC LDPC code. For ex, } \ \, (d_v^1=3,d_c=6,L=3,w=2).$
- **②** Group check nodes into type \mathcal{T}_k , $k \in \{1, \dots, d_v^1\}$

Proposed Nested Spatially-Coupled LDPC Ensemble

- $\textbf{ 9} \text{ Begin with a } (d_v^1,d_c) \text{ SC LDPC code. For ex, } (d_v^1=3,d_c=6,L=3,w=2).$
- ② Group check nodes into type \mathcal{T}_k , $k \in \{1,\ldots,d_v^1\}$
- **1** Remove all check nodes of type $\mathcal{T}_1,\ldots,\mathcal{T}_{d_v^1-d_v^2}$. Ex: $(d_v^2=2,6)$ sup-code.

Proposed Nested Spatially-Coupled LDPC Ensemble

- $\textbf{ 9} \ \, \text{Begin with a} \ \, (d_v^1,d_c) \ \, \text{SC LDPC code. For ex, } \ \, (d_v^1=3,d_c=6,L=3,w=2).$
- ② Group check nodes into type \mathcal{T}_k , $k \in \{1,\ldots,d_v^1\}$
- **3** Remove all check nodes of type $\mathcal{T}_1,\dots,\mathcal{T}_{d_v^1-d_v^2}$. Ex: $(d_v^2=2,6)$ sup-code.
- lacktriangledown Results in a super-code that is a (d_v^2,d_c) SC LDPC code.

Lattice Design based on the proposed Nested SC LDPC ensemble

① For a given σ , compute the capacity of the mod-2 AWGN channel at each level:

$$\underline{y_i} = \underline{w}_i \mathbf{G}_i + \frac{1}{2^{i-1}} \underline{n} \mod 2 = \underline{w}_i \odot \mathbf{G}_i + \boxed{\frac{1}{2^{i-1}} \underline{n} \mod 2}$$

② Fix check node degree d_c . Choose d_v^1, \ldots, d_v^r such that the rate of the code at each level is arbitrarily close to the capacity at the respective level.

Lattice Design based on the proposed Nested SC LDPC ensemble

 $\mbox{\Large \bullet}$ For a given $\sigma,$ compute the capacity of the mod-2 AWGN channel at each level:

$$\underline{y_i} = \underline{w}_i \mathbf{G}_i + \frac{1}{2^{i-1}} \underline{n} \mod 2 = \underline{w}_i \odot \mathbf{G}_i + \boxed{\frac{1}{2^{i-1}} \underline{n} \mod 2}$$

② Fix check node degree d_c . Choose d_v^1, \ldots, d_v^r such that the rate of the code at each level is arbitrarily close to the capacity at the respective level.

Lemma 2

Given nested binary linear codes $C_1 \subseteq C_2 \subseteq \ldots \subseteq C_r$ there exists nested generator matrices for these codes.

Proposed Ensemble is Capacity achieving

Theorem 3

Each code ensemble in the proposed nested Spatially-Coupled LDPC ensemble is capacity achieving.

Proof.

- Show that the mod 2 AWGN channel is BMS.
- Each derived protograph has the same spatially coupled structure.
- The proof follows from Kudekar & Urbanke, Kumar & Pfister's results.

Proposed Lattices are Poltyrev-Good

Theorem 4

There exists a sequence of SC LDPC lattices with $\mathit{VNR}(\Lambda,\sigma^2) \to 1$ for which, under multistage BP decoding, $\mathbb{E}\left[P(\lambda,\sigma^2)\right] \to 0$ as $w,L,M \to \infty$.

Proof.

- The proposed nested ensemble achieve capacity.
- Follows from Forney's result.

Proposed Lattices are Poltyrev-Good

Theorem 4

There exists a sequence of SC LDPC lattices with $\mathit{VNR}(\Lambda,\sigma^2) \to 1$ for which, under multistage BP decoding, $\mathbb{E}\left[P(\lambda,\sigma^2)\right] \to 0$ as $w,L,M \to \infty$.

Proof.

- The proposed nested ensemble achieve capacity.
- Follows from Forney's result.

- Binary codes and more importantly practical BP decoding suffices.
- Practically we observe that two levels of coding gets you lattices very close to Poltyrev limit.

Design Example of Poltyrev-Good Lattice

A target block error probability of 10^{-4} in the uncoded level gives $\sigma_L=0.08$

• Capacities for the mod 2 AWGN channel for respective levels:

	Level L-1	Level L-2	Level L-3
σ_{eff}	0.16	0.32	0.64
Cap	0.99	0.57	0.02
(14,30) (3,30)	0.9	0.533	0

Design Example of Poltyrev-Good Lattice

A target block error probability of 10^{-4} in the uncoded level gives $\sigma_L=0.08$

• Capacities for the mod 2 AWGN channel for respective levels:

	Level L-1	Level L-2	Level L-3
σ_{eff}	0.16	0.32	0.64
Cap	0.99	0.57	0.02
(14,30) (3,30)	0.9	0.533	0

Fix L=3 and use (3,30), (14,30) nested SC LDPC codes.

(d_c, d_v^1, d_v^2)	(L,w)	$P(\mathbb{Z}_4, \sigma^2)$	$\sigma_{\sf max}$	VNR	VNR _{rate-loss}
(30,14,3)	(32,4)	5×10^{-10}	0.3184	1.02dB	1.347dB

Design Example of Poltyrev-Good Lattice

A target block error probability of 10^{-4} in the uncoded level gives $\sigma_L=0.08$

• Capacities for the mod 2 AWGN channel for respective levels:

	Level L-1	Level L-2	Level L-3
σ_{eff}	0.16	0.32	0.64
Сар	0.99	0.57	0.02
(14,30) (3,30)	0.9	0.533	0

Fix L=3 and use (3,30), (14,30) nested SC LDPC codes.

(d_c, d_v^1, d_v^2)	(L,w)	$P(\mathbb{Z}_4, \sigma^2)$	$\sigma_{\sf max}$	VNR	$VNR_{rate-loss}$
(30,14,3)	(32,4)	5×10^{-10}	0.3184	1.02dB	1.347dB
(60, 26, 3)	(72, 12)	5×10^{-10}	0.3200	0.482dB	0.927dB
(60, 27, 3)	(64, 9)	5×10^{-10}	0.3203	0.57dB	0.951dB

Alternate Nested SC LDPC ensemble

- Derive a lower rate code by "splitting the checks"
- \bullet Consider a (3,8) code

Alternate Nested SC LDPC ensemble

- Derive a lower rate code by "splitting the checks"
- Consider a (3,8) code
- Split each check into "two" checks to derive a (3,4) sub-code
- ullet Easy to prove that resulting code is from the (3,4) SC LDPC ensemble

Simulation Results

Simulation Results

Note that the Block Error Probability is 10^{-4} at uncoded level.

3-User Symmetric Interference Channel

3-User Symmetric Interference Channel

• $\mathbf{x}_i \in \Lambda_C \triangleq \Lambda \cap \mathbb{Z}_4^N$ is transmitted.

Symmetric Interference Channel - Decoding Sums

Interference at Destination 1:

$$\mathbf{x}_{2} + \mathbf{x}_{3} = (\underline{w}_{2}^{1} + \underline{w}_{3}^{1})\mathbf{G}_{1} + 2(\underline{w}_{2}^{2} + \underline{w}_{3}^{2})\mathbf{G}_{2} + 4\mathbf{k}_{23}$$
$$= (\underline{w}_{2}^{1} \oplus \underline{w}_{3}^{1})\mathbf{G}_{1} + 2(\underline{c}_{23}^{1} \oplus \underline{w}_{2}^{2} \oplus \underline{w}_{3}^{2})\mathbf{G}_{2} + 4(\underline{c}_{23}^{2} + \mathbf{k}_{23})\mathbf{Z}$$

where the carry overs are

$$\begin{array}{l} \underline{c}_{23}^1 = 0.5 \left(\underline{w}_1^1 + \underline{w}_1^2 - \underline{w}_1^1 \oplus \underline{w}_1^2 \right), \\ \underline{c}_{23}^2 = 0.5 \left(\underline{c}_{23}^1 + \underline{w}_2^1 + \underline{w}_2^2 - \underline{c}_{23}^1 \oplus \underline{w}_2^1 \oplus \underline{w}_2^2 \right) \end{array}$$

Achievable Information Rates

Concluding Remarks

- Multilevel constructions efficient ways to decode integer combinations
- Need capacity achieving nested codes
- Multilevel construction is provably good under message passing decoding

Concluding Remarks

- Multilevel constructions efficient ways to decode integer combinations
- Need capacity achieving nested codes
- Multilevel construction is provably good under message passing decoding
- Coding schemes based on Binary LDPC codes and iterative decoding suffice