

Robótica Móvel

Mestrado em Robótica e Sistemas Inteligentes

Ano letivo 2023/2024

Nuno Lau, Vitor Santos

The Representation Problem

Representation is the form in which information is stored or encoded in the robot (Mataric)

- Representation is more than memory
- It has a significant impact on robot control

What can the robot represent

- Self
 - Stored proprioception, self-limitations, goals, intentions, plans
- Environment
 - Navigable spaces, structures
- Objects, people, other robots
 - Detectable things in the world
- Actions
 - Outcomes of specific actions in the environment
- Task
 - What needs to be done, where, in what order, how fast, etc.

Navigation challenges

- Path planning problem
 - Robot has a map, knows own and target positions
- Localization problem
 - Robot has a map showing target, doesn't know own position
- Coverage problem
 - Robot has a map, knows where it is, but doesn't know where the target is
- Mapping problem
 - Robot does not have a map, may known own position
- Simultaneous localization and mapping
 - Robot does not have a map, and doesn't know own position

Navigation Questions

- Where am I?
 - Localization
- Where have I been?
 - Mapping
- Where should I be going?
 - Decision
- What is the best way to get there?
 - Path planning
- How do I get there?
 - Path following and Obstacle Avoidance

Different types of representation

- Maze navigator robot
 - Exact path it has taken: "Go straight 2m, turn left 90 deg, go straight...". This is an **odometric path**
 - Sequence of moves at particular landmarks: "Left at 1st junction, right at 2nd junction, straight...". This is a **landmark-based path**
 - What to do at each landmark: "At the green/red junction go left, at the red/blue junction go right, ...". This is a landmark-based map
 - The map of the maze. This is a metric map

- Process of building an internal estimate of the map of the environment
 - How does the world look like (for navigation purposes)?
- This is what the robot sees:

- To build the map the robot needs to know where it is (Localization)
 - But to know where it is, it needs a map
- Simultaneous Localization and Mapping SLAM
 - Solve Localization and Mapping simultaneously
 - Chicken-egg problem
- Mapping only
 - Assume pose of the robot is known
 - Example: GPS or DGPS

- What should be represented:
 - Path Map
 - Topological Map
 - Features Map
 - Cell Decomposition
 - Metric Map
 - Occupancy grid map

Metric maps and Topological maps

Figure from Meyer, "Map-based navigation in mobile robotics", 2003, some other figures follow

Topological map

Topological map

Occupancy Grid

Occupancy Grid

- Map is composed of cells of equal dimension
- Cells may be occupied of free
- Cells keep the probability of being occupied
 - Probability that each cell is occupied P(H) and probability that each cell is free P(~H)

$$0 \le P(H) \le 1$$
$$P(\sim H) = 1-P(H)$$

 Other methods store 2 different functions: one for occupied probability and another for empty probability

- We want to determine P(H|s)
 - Probability cell is occupied given a certain measure s
 - We can use the Inverse sensor model

Given sensor data $z_{1:t}$ and the poses $x_{1:t}$, estimate the map

$$p(m|z_{1:t},x_{1:t}) = \prod_i p(m_i|z_{1:t},x_{1:t})$$

Applying static state binary bayes filter

$$p(m_i|z_{1:t},x_{1:t}) = rac{p(z_t|m_i,z_{1:t-1},x_{1:t})\,p(m_i|z_{1:t-1},x_{1:t})}{p(z_t|z_{1:t-1},x_{1:t})}$$

Applying Markov assumption and independence

$$p(m_i|z_{1:t},x_{1:t}) = rac{p(z_t|m_i,x_t)\,p(m_i|z_{1:t-1},x_{1:t-1})}{p(z_t|z_{1:t-1},x_{1:t})}$$

Applying Bayes Rule on 1st term and independence

$$p(m_i|z_{1:t},x_{1:t}) = rac{p(m_i|z_t,x_t)p(z_t|x_t)\,p(m_i|z_{1:t-1},x_{1:t-1})}{p(m_i)\,p(z_t|z_{1:t-1},x_{1:t})}$$

As there are only binary states, so for exact opposite state event, we get

$$p(-m_i|z_{1:t},x_{1:t}) = rac{p(-m_i|z_t,x_t)p(z_t|x_t)\,p(-m_i|z_{1:t-1},x_{1:t-1})}{p(-m_i)\,p(z_t|z_{1:t-1},x_{1:t})}$$

Now computing the ratio of both probabilities, we obtain

$$\frac{p(m_i|z_{1:t},x_{1:t})}{p(-m_i|z_{1:t},x_{1:t})} = \frac{p(m_i|z_t,x_t)}{1 - p(m_i|z_t,x_t)} \frac{p(m_i|z_{1:t-1},x_{1:t-1})}{1 - p(m_i|z_{1:t-1},x_{1:t-1})} \frac{1 - p(m_i)}{p(m_i)} \dots (1)$$

To simplify the expression we turn the odds ratio into the probability

As Odds(x) =
$$\frac{p(x)}{1-p(x)}$$
, which gives us

$$p(x) = [1 + Odds(x)^{-1}]^{-1}$$

Now using the expression above, we have

$$p(m_i|z_{1:t},x_{1:t}) = [1 + rac{1 - p(m_i|z_t,x_t)}{p(m_i|z_t,x_t)} rac{1 - p(m_i|z_{1:t-1},x_{1:t-1})}{p(m_i|z_{1:t-1},x_{1:t-1})} rac{p(m_i)}{1 - p(m_i)}]^{-1}$$

For efficiency reasons, we perform the calculations in log odds notation i.e. $l(x) = \log rac{p(x)}{1-p(x)}$

$$l(m_i|z_{1:t}, x_{1:t}) = l(m_i|z_t, x_t) + l(m_i|z_{1:t-1}, x_{1:t-1}) - l(m_i)$$

In short.

Algorithm 1: OccupancyGridMapping($\{I_{t-1,i}\}, x_t, z_t$)

```
foreach m_i of the map m do

if m_i in the perceptual field of z_t then

| l_{t,i} := l_{t-1,i} + \text{inv\_sensor\_model}(m_i, x_t, z_t) - l_0;
else
| l_{t,i} := l_{t-1,i};
```

return $\{l_{t,i}\}$

Mapping example

- YAM's algorithm
 - Probabilities (?) may be positive or negative
 - · Positive means probably occupied
 - Negative means probably empty
 - Estimated position of the robot is assigned minimum probability
 - Field of view of obstacle sensors is divided in 3 regions:
 - Cells in Region A are assigned a low probability
 - Cells in Region B decrease their probability
 - Cells in Region C increase their probability
 - Increase in region C is 4 times the value of decrease in region B

Mapping with Sonar sensors

Mapping with LRF

Mapping: Chicken and egg

- Mapping, as presented in the previous slides, assumes the pose of the robot is known
- Often this is not true and, while mapping, the robot must simultaneously estimate its pose.
 - To estimate its pose it may use the already known map
- The general problem is denoted as the Simultaneous Localization and Mapping problem (SLAM)

SLAM problem

A robot is exploring an unknown, static environment

- Given:
 - The robot's controls
 - Observations of nearby features
- Estimate:
 - Map of features
 - Path of the robot

Online SLAM

$$p(x_{t}, m \mid z_{1:t}, u_{1:t}) = \int \int ... \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_{1} dx_{2} ... dx_{t-1}$$

 Estimates map and current position given measures and controls

Full SLAM

$$p(x_{1:t}, m \mid z_{1:t}, u_{1:t})$$

 Estimates map and robot path given measures and controls

Some SLAM Techniques

- Scan matching
- EKF SLAM
- Fast-SLAM
- Graph-SLAM, SEIFs
- gMapping
- Hector Mapping