Propositions

The objects in the Boolean logic system are *propositions*:

Definition: Proposition

A proposition is a declarative statement (a sentence that states a fact) that is objectively and unambiguously either true or false. Thus, the value of a proposition is either true, denoted by T or 1, or false, denoted by F or 0.

Examples

The following are all valid propositions:

- 1. Sacramento is the current capital of California. (T)
- 2. SJSU is part of the UC system. (F)
- 3. 1+2=3 (T)
- 4. 2+3=4 (F)
- 5. Every even integer can be expressed as the sum of two odd integers. (T)
- 6. $\sqrt{2}$ is a rational number. (F)

The following are not propositions:

- 1. What time is it? (interrogative)
- 2. Do your homework! (imperative)
- 3. 100 is a big number. (subjective)
- 4. I am lying. (paradoxical)
- 5. x + 2 = 5 (inconclusive)

Propositions are represented by variables: p, q, r, s, \ldots

Examples

$$p := 1 + 2 = 3$$
 (T)

q :=Every integer is either odd or even. (T)

r := 10 is a prime number. (F)

Note of the use of :=, which means "is defined as," as opposed to =, which assigns a value to a variable.

Definition: Simple and Compound

Propositions that are not expressed in terms of other propositions are called *simple* or *atomic* propositions. Propositions that are constructed from other propositions using *logical operators* are called *compound* propositions. The basic logical operators are *not*, *and*, and *or*.

Not

Definition: Negation

Let p be a proposition. The *negation* of p, also called "not p" and denoted by $\neg p$ or \bar{p} or $\sim p$, is the proposition represented by the statement: "It is not the case that p," which is true when p is false and false when p is true.

p	$\neg p$
F	T
T	F

When stating negations, always look for the most compact form.

Examples

Let:

```
p\coloneqq \text{There are more than 30 students taking this class.} \qquad (T) q\coloneqq 2<3 \quad (T) r\coloneqq 10 \text{ is an odd number.} \qquad (F) \neg p=\text{It is not the case that there are more than 30 students taking this class.} = \text{There are not more than 30 students taking this class.} = \text{There are at most 30 students taking this class.} \qquad (F)
```

$$\neg q =$$
 It is not the case than $2 < 3$
= $2 \not< 3$
= $2 \ge 3$ (F)

 $\neg r$ = It is not the case that 10 is an odd number.

=10 is not an odd number.

= 10 is an even number. (T)

Conjunction

Definition: Conjunction

Let p and q be propositions. The *conjunction* of p and q, also called "p and q" and denoted by $p \wedge q$ or simply pq, is the proposition represented by the statement: "p and q," which is true when p and q are both true and false otherwise.

p	q	$p \wedge q$
F	F	F
\overline{F}	T	F
T	F	F
T	T	T

Examples

Let:

$$\begin{split} p &\coloneqq 1 < 2 \quad (T) \\ q &\coloneqq 2 < 3 \quad (T) \\ r &\coloneqq \text{There are more than 30 students in this class.} \quad (T) \\ s &\coloneqq \text{All of the students in this class are Freshmen.} \quad (F) \end{split}$$

t := 10 is an odd number. (F)

$$p \land q = 1 < 2 \land 2 < 3 = 1 < 2 < 3 \quad (TT = T)$$

 $r \wedge s =$ There are more than 30 students in this class and all of the students in this class are freshmen.

= There are more than 30 students in this class and they are all freshmen. (TF = F)

(T)

 $t \wedge p = 10$ is an odd number and 1 < 2 (FT = F)

 $s \wedge t = \mathsf{All}$ of the students in this class are freshmen and 10 is an odd number. (FF = F)

Disjunction

Care must be taken to distinguish between the common English use of the word or, as in: "Do you want soup or salad?" and the more precise logical definition. The English usage typically presents two mutually exclusive choices, whereas the logical usage does not.

Definition: Disjunction

Let p and q be propositions. The disjunction of p and q, also called "p or q" or "p inclusive-or q" and denoted by $p \vee q$ or p + q, is the proposition represented by the statement: "p or q," which is false when p and q are both false and true otherwise.

p	q	$p \lor q$
F	F	F
F	T	T
T	F	T
T	T	T

Examples

Assume that p, q, r, s, and t are defined as above.

$$p \lor q = 1 < 2 \lor 2 < 3 \quad (T + T = T)$$

 $r \lor s =$ There are more than 30 students in this class or all of the students in this class are freshmen.

$$(T + F = T)$$

 $t \lor p = 10$ is an odd number or $1 < 2 \quad (F + T = T)$

 $s \lor t = \mathsf{All}$ of the students in this class are freshmen or 10 is an odd number.

$$(F + F = F)$$

Exclusivity is obtained using the exclusive-OR (XOR) operator.

Definition: Exclusive-OR

Let p and q be propositions. The *exclusive-or* of p and q, denoted by $p \oplus q$, is the proposition represented by the statement: "either p or q," which is true when p and q have different truth values and false otherwise.

p	q	$p \oplus q$
F	F	F
F	T	T
T	F	T
T	T	F

Examples

Assume that p, q, r, s, and t are defined as above.

$$p \oplus q = 1 < 2 \oplus 2 < 3 \quad (T \oplus T = F)$$

 $r\oplus s=$ Either there are more than 30 students in this class or all of the students in this class are freshmen. $(T\oplus F=T)$

 $t \oplus p = \text{Either } 10 \text{ is an odd number or } 1 < 2 \quad (F \oplus T = T)$

 $s\oplus t=$ Either all of the students in this class are freshmen or 10 is an odd number. $(F\oplus F=F)$

Compound Propositions

The logical operators can be used to construct more complex propositions. Order of evaluation is left to right with precedence: not, and, or, xor. Use parentheses to override normal precedence or for clarity.

Example

Let p, q, and r be propositions. Construct a truth table for:

$$s = (p \vee \neg q) \wedge (\neg p \vee r) \wedge \neg (q \vee r)$$

p	q	r	$\neg p$	$\neg q$	$\neg r$	$p \vee \neg q$	$\neg p \lor r$	$q \oplus r$	$\neg (q \oplus r)$	s
F	F	F	Т	Т	Т	Т	Т	F	Т	Т
F	F	Τ	Т	T	F	Т	T	Т	F	F
F	Τ	F	Т	F	Τ	F	T	Т	F	F
F	Τ	Τ	Т	F	F	F	Т	F	Т	F
T	F	F	F	T	T	Т	F	F	Т	F
Τ	F	Τ	F	T	F	Т	Т	Т	F	F
T	Τ	F	F	F	T	Т	F	Т	F	F
Τ	Τ	Τ	F	F	F	Т	Т	F	Т	Т

We can also go backwards, from the final column to the so-called *canonical* form, where each true row contributes a conjunctive term containing each variable with false valued variables negated. variables.

Example

In the previous example, s is true in only two cases:

$$s = (\neg p \wedge \neg q \wedge \neg r) \vee (p \wedge q \wedge r) = \bar{p}\bar{q}\bar{r} + pqr$$

Example

Consider the truth table for $p \oplus q$:

$$p \oplus q = \neg p \land q \lor p \land \neg q = \bar{p}q + p\bar{q}$$

Example

Consider the truth table:

p	q	r	s
F	F	F	F
F	F	Τ	Т
F	Τ	F	F
F	Τ	Τ	F
Τ	F	F	Т
Τ	F	Τ	Т
Τ	Τ	F	F
T	Т	Т	T

$$s = (\neg p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r) \vee (p \wedge \neg q \wedge r) \vee (p \wedge q \wedge r) = \bar{p}\bar{q}r + p\bar{q}\bar{r} + p\bar{q}r + pqr$$