Determining Critical Infrastructure Using Social Network Analysis

Matthew Turner

Outline

- Introduction
- Motivation
- Related Works
- Methodology/Design
- Methodology Verification
- Results
- Reflection

Introduction

• Urban critical infrastructure (CI) forms the backbone of our community well-being.

• Understanding the possible risks to CI is paramount to strengthening our CI to improve quality of life.

• Risks are not often contained to just one sector and often have interconnected repercussions (cascade).

Motivation

• The understanding of how these cascades occur are not fully understood, or even well researched in risk analysis.

 Current models also don't account for stakeholder perceptions of the weight of the threat (leading to inaccuracy).

• Network science isn't being used at the forefront of risk analysis, despite clear analogues.

Related Works

- Disruption in infrastructure serviceability negatively impacts community wellbeing (Correa-Henao et al.)
- Risks are dynamic and risk impact analysis has been modeled in the literature before (Fang et al.)
- Risk assessments must not only consider introverted risks, but to the impact of risks outside the immediate network (Theoharidou et al.)
- There are multiple stakeholders and considering all their perceptions in the decision making process is noted to be challenging (Cholda et al.)

Handy Definitions

- Stakeholder: Person, group, or organization with a degree of responsibility or authority over the CI
- Risk: a possible hazard to the CI.
- RPV: The Risk Priority Value, unique to each risk, which is a function of the severity, likelihood, and detection of the risk.

Methodology: Proposal & First Step

- Paper introduces fuzzy critical risk analysis (FCRA) as a means to assess risk.
 - Basis rests on existing risk assessment strategies.
 - Simulates and integrates perceptions form different stakeholders.

• The first step is to identify the stakeholders and risk(s) in the context of the infrastructure.

• Each risk is analyzed to determine to focus and limit the analysis boundary.

Methodology: Perception

- Each stakeholder participates in the assessment of the risks.
- Fuzzy-based risk structure matrices are used to accommodate the stakeholder's opinions of perceived risks.
 - The process by which this is done is omitted and reference (Lie et al.)
- A matrix is constructed to assign each stakeholder a "hazard value" based on the total perception of each phenomena's impact across the entire system.

Methodology: Network Construction

- A network is created using the risk structure matrix method (not detailed in the paper).
- This matrix represents the relationships and dependencies of the stakeholders, factoring in likelihood and severity.
- The matrix created by this (the S.R.-S.R. network) is deconstructed to the Risk-Risk network and the Stakeholder-Risk matrix.

Methodology: Network Construction (con't)

Notes: (a) Fuzzy-based Stakeholder-Risk Associated Network; (b) Risk-Risk Network; (c) Stakeholder-Risk Network

Methodology: Network Metrics

- Density
- Degree Centrality
- Betweenness Centrality
- Status Centrality Like degree centrality but considering all nodes two hops away
- Eigenvector Centrality
- Closeness Centrality

Risk Criticality Analysis

• A combination of the normalized value of all the centrality metrics in the S-R and R-R networks.

$$\begin{aligned} & \text{Crit}_{R_n} = \begin{bmatrix} \left\{ \text{RPV}_{R_n} \times \left(\sum \text{Norm}_{\text{max}}(\text{OutCloseC}_{R_n}), \text{Norm}_{\text{max}}(\text{BetC}_{R_n}), \text{Norm}_{\text{max}}(\text{OutStaC}_{R_n}), \text{Norm}_{\text{max}}(\text{EignvC}_{R_n}) \right)_{\text{R-R}} \right\} + \\ & \left\{ \text{RPV}_{R_n} \times \left(\sum \text{Norm}_{\text{max}}(\text{DegC}_{R_n}), \text{Norm}_{\text{max}}(\text{CloseC}_{R_n}), \text{Norm}_{\text{max}}(\text{BetC}_{R_n}), \text{Norm}_{\text{max}}(\text{EignvC}_{R_n}) \right)_{\text{S-R}} \right\} + \\ & = \begin{bmatrix} \left\{ \text{RPV}_{R_n} \times \left(\sum \phi_{\text{OutCloseC}_{R_n}}, \phi_{\text{BetC}_{R_n}}, \phi_{\text{OutStaC}_{R_n}}, \phi_{\text{OutStaC}_{R_n}} \right)_{\text{R-R}} \right\} + \\ \left\{ \text{RPV}_{R_n} \times \left(\sum \phi_{\text{DegC}_{R_n}}, \phi_{\text{CloseC}_{R_n}}, \phi_{\text{BetC}_{R_n}}, \phi_{\text{EigenvC}_{R_n}} \right)_{\text{S-R}} \right\} \end{bmatrix} \end{aligned}$$

Methodology Verification

• A toy example was created with 10 stakeholders in differing groups and 16 risk hazards.

- The risk hazards are based on UWS infrastructure from mainstream research and resilience literatures.
 - Range from exchange rate instability to drought.
- The risk ordering was compared between the proposed FCRA and the field-standard FMECA.

SR-SR Network

R-R Network and S-R Network

Results: Centralities

IJDRBE 8,1	Hazard ID (node)	Degree centrality	Closeness centrality	Betweenness centrality	EigenV centralit	
-,-	R_I	1.000	1.000	0.035	0.439	
	R_2	0.900	0.952	0.028	0.328	
	R_3	0.700	0.869	0.015	0.287	
	R_{d}	0.700	0.869	0.015	0.232	
22	R_5	0.900	0.952	0.028	0.238	
	R_6	0.700	0.869	0.015	0.169	
	R_{7}	0.700	0.869	0.014	0.167	
	$R_8^{'}$	0.700	0.869	0.013	0.132	
	R_{g}	0.200	0.714	0.000	0.055	
	R_{10}	0.900	0.952	0.027	0.309	
	R_{11}	0.800	0.909	0.021	0.213	
	R_{12}	0.500	0.800	0.006	0.034	
	R_{13}	1.000	1.000	0.035	0.289	
	R_{14}	0.800	0.909	0.019	0.258	
	R_{15}	0.700	0.869	0.016	0.256	
	R_{16}	0.800	0.909	0.020	0.260	
	Node		Norma	ized values		
	R_I	1.000	1.000	1.000	1.000	
	R_2	0.900	0.952	0.797	0.747	
	R_3	0.700	0.869	0.446	0.654	
	R_4	0.700	0.869	0.436	0.528	
	R_5	0.900	0.952	0.800	0.543	
	R_6	0.700	0.869	0.449	0.384	
	R_7	0.700	0.869	0.405	0.379	
	R_8	0.700	0.869	0.398	0.300	
	R_9	0.200	0.714	0.023	0.126	
	R_{10}	0.900	0.952	0.769	0.704	
Table VI.	R_{II}	0.800	0.909	0.614	0.485	
The one-mode "R"	R_{12}	0.500	0.800	0.197	0.077	
topology decipherment	R_{13}	1.000	1.000	1.000	0.659	
data from "S-R" two-	R_{14}	0.800	0.909	0.548	0.588	
mode network	R_{15}	0.700	0.869	0.477	0.584	
analysis	R_{16}	0.800	0.909	0.597	0.592	

Results: Risk Comparison

Critical	FCRA			Fuzzy-based FMECA			
infrastructure risks	Sum	Risk criticality rank	Risk criticality (Norm)	Risk criticality	Risk rank	RPV (Norm)	Risk ID
	A	1	1.000	8.505	4	0.945	R_I
		2	0.770	6.553	7	0.928	R_2
23	•	10	0.670	5.701	11	0.882	R_3
	•	11	0.657	5.590	1	1.000	R_4
	A	3	0.768	6.531	6	0.932	R_5
	•	13	0.627	5.333	2	0.986	R_6
	•	12	0.634	5.393	8	0.901	R_7
	A	14	0.485	4.127	16	0.785	R_8
	•	16	0.230	1.954	14	0.834	R_9
		6	0.730	6.207	10	0.888	R_{10}
	•	7	0.707	6.015	5	0.938	R_{11}
	•	15	0.402	3.416	13	0.873	R_{12}^{11}
	A	8	0.707	6.010	15	0.818	R_{13}^{12}
Table VII	•	5	0.753	6.405	3	0.978	R_{14}^{10}
The summary of risk	A	9	0.670	5.701	12	0.876	R_{15}^{14}
ranking based or fuzzy-based FMECA	A	4	0.763	6.490	9	0.895	R_{16}

Reflection

- No comparative analysis is done to determine "goodness" of new model.
- Setup feels incomplete:
 - Stakeholder parameters aren't clear
 - o Fuzzy-set logic to stand in for stakeholder perceptions isn't explicitly defined
- The stakeholders aren't given a centrality value
- Glaring flaws that shouldn't have made it through edits