Struktury na $\mathbb Q$ - zadania kwalifikacyjne

Rozwiązania zadań proszę przesyłać na adres orlef.damian@gmail.com do 7 lipca 2013, najlepiej umieszczając w temacie wiadomości "[Kwalifikacja2013]". Zachęcam do zadawania pytań, jeśli coś jest niejasne. Napiszę jeszcze jakiś skrypt, w którym wyjaśnię parę pojęć, których używam tutaj. Można wysyłać częściowe rozwiązania/same próby. Można poprawiać i dlatego warto wysłać rozwiązania wcześniej, bo postaram się prędko dawać znać, jak je oceniam.

Kryteria

Nie trzeba rozwiązywać wszystkich zadań. Przy każdym zadaniu jest napisane, ile punktów jest ono warte, co może mieć znaczenie w przypadku dużej liczby chętnych. Należy starać się zdobyć co najmniej 6 punktów, zaś 11 już gwarantuje kwalifikacje.

Zadania łatwiejsze

Zadanie 1 (1p). Sprawdź, że macierze 2 na 2 o współczynnikach całkowitych i wyznaczniku równym jeden, tzn. $SL_2(\mathbb{Z}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a,b,c,d \in \mathbb{Z} \land ad-bc=1 \}$ tworzą grupę z działaniem zwyklego mnożenia macierzy:

Zadanie 2 (1p). Załóżmy, że grupa G działa na zbiorze X oraz dane jest $x \in X$. Udowodnij, że wtedy zbiór $G_x = \{g \in G | gx = x\}$, zwany stabilizatorem x, jest podgrupą grupy G. Pokaż, że jeśli $y \in X$, $g \in G$ i y = gx, to wtedy $G_y = gG_xg^{-1}$.

Zadanie 3 (2p). Pokaż, że grupa
$$G = SL_2(\mathbb{Z})$$
 z zadania 1 działa na zbiorze $\mathbb{Z}^2 = \{ \begin{pmatrix} x \\ y \end{pmatrix} | x, y \in \mathbb{Z} \}$ przez mnożenie macierzy, tzn. jeśli określimy dla $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$, że $g \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$, to istotnie definiujemy działanie G na

 \mathbb{Z}^2 . Znaleźć też stabilizator elementu $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ przy tym działaniu i udowodnić, że jest on grupą cykliczną.

Zadanie 4 (2p). Udowodnij, że liczba naturalna n > 1 ma nie mniej dzielników naturalnych postaci 4k + 1, niż dzielników postaci 4k + 3.

Zadanie 5 (2p). Udowodnij, że jeśli $D \in \mathbb{Z}$, to zbiór liczb postaci $x^2 - Dy^2$ dla $x, y \in \mathbb{Z}$ jest zamknięty ze względu na mnożenie.

Zadanie 6 (3p). Niech $f(x)=x^2+nx+m$, gdzie $n,m\in\mathbb{Z}$, będzie wielomianem kwadratowym, a α jego niewymiernym pierwiastkiem. Udowodnić, że istnieje tylko skończenie wiele liczb wymiernych $\frac{p}{q}$ $(p,q\in\mathbb{Z})$, dla których zachodzi nierówność $|\alpha-\frac{p}{q}|\leqslant \frac{1}{q^3}$. Wskazówka: Pokazać, że dla pewnej stalej C>0 jeśli $|\alpha-x|<1$, to $|f(\alpha)-f(x)|\leqslant C\cdot |\alpha-x|$.

Zadania trudniejsze

Zadanie 7 (3p). Automorfizmem drzewa (tutaj: spójnego skończonego grafu nieskierowanego bez cykli) T o zbiorze wierzchołków V i zbiorze krawędzi E nazwiemy każdą taką bijekcję $\phi: V \to V$, że dla każdych $u, v \in V$ istnieje krawędź łącząca u i v wtedy i tylko, gdy istnieje krawędź łącząca $\phi(u)$ oraz $\phi(v)$. Udowodnić, że każdy automorfizm drzewa ma punkt stały lub krawędź stałą (tzn. istnieje x dla którego $\phi(x) = x$ lub istnieją x, y połączone krawędzią, dla których $\phi(x) = y$ oraz $\phi(y) = x$).

Zadanie 8 (4p). Niech G będzie podgrupą grupy permutacji zbioru n-elementowego, gdzie n > 1, tzn. G składa się z pewnych bijekcji zbioru $\{1, \ldots, n\}$ na siebie, a działaniem jest ich składanie. Wykazać, że jeśli G ma więcej niż $n^2 - n$ elementów, to któryś element $g \in G$ nie będący elementem neutralnym ma co najmniej 2 punkty stałe, tzn. istnieją różne x i y takie, że g(x) = x i g(y) = y.