Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 5.40e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas overflatetemperatur er 2500K og energien transporteres fra kjernen kun via konveksjon

STJERNE B) stjernas luminositet er 1/10 av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE C) massen til stjerna er 8 solmasser og den fusjonerer hydro-

gen i kjernen

STJERNE D) massen til stjerna er 0.7 solmasser og den fusjonerer hydrogen i kjernen

STJERNE E) stjerna fusjonerer hydrogen til helium i et skall rundt kjernen

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 6.335e+06 kg/m $\hat{3}$ og temperatur 29 millioner K.

Kjernen i stjerne B har massetet
thet 7.202e+06 kg/m3̂ og temperatur 15 millioner K.

Kjernen i stjerne C har massetet
thet $8.186\mathrm{e}{+06~\mathrm{kg/m}}\hat{3}$ og temperatur 33

millioner K.

Kjernen i stjerne D har massetet
thet 1.818e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne E har massetet
thet 7.592e+06 kg/m3̂ og temperatur 32 millioner K.

Filen 1K/1K.txt

Påstand 1: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 2: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

Påstand 3: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig mindre enn den tilsynelatende størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 1.172e+05 kg/m3̂ og temperatur 23.99 millioner K.

Kjernen i stjerne B har massetet
thet 1.460e+05 kg/m3̂ og temperatur 19.83 millioner K.

Kjernen i stjerne C har massetet
thet 9.480e+04 kg/m3 og temperatur 35.80

millioner K.

Kjernen i stjerne D har massetet
thet 1.428e+05 kg/m3̂ og temperatur 27.25 millioner K.

Kjernen i stjerne E har massetet
thet 2.248e+05 kg/m3̂ og temperatur 33.66 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_Figur_3_png$

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Observasjon er gjort 142.46 dager etter første observasjon.

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B_Figur_2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 2.37 buesekunder i løpet av et millisekund.

46.19

41.06

35.92

30.79

25.66

10.26

5.13

0.00

0.00

5.13 10.26 15.40 20.53 25.66 30.79 35.92 41.06 46.19

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tønsberg som ligger i en avstand av 150 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 96.29850 km/t.

Filen 3E.txt

Tog1 veier 84400.00000 kg og tog2 veier 59300.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 512 km/s.

Filen 4E.txt

Massen til gassklumpene er 3400000.00 kg.

Hastigheten til G1 i x-retning er 42600.00 km/s.

Hastigheten til G2 i x-retning er 46380.00 km/s.

Filen 4G.txt

Massen til stjerna er 28.15 solmasser og radien er 3.12 solradier.