$$\frac{16:\frac{26}{2x}dx}{\sqrt{10}}\frac{dx}{\sqrt{10}} = \frac{1}{2}\frac{1}{(x-3)^{2}}$$

$$\frac{1}{\sqrt{10}}\frac{1}{\sqrt{10}}\frac{3}{(x-3)^{2}}$$

$$\frac{1}{\sqrt{10}}\frac{3}{\sqrt{10}}\frac{3}{\sqrt{10}}$$

$$\frac{1}{\sqrt{10}}\frac{3}{\sqrt{10}}$$

$$\frac{1}{\sqrt{$$

7 a)
$$f(x_{13}) = xt - 2x^{2}e^{-3}x$$
 $f(x_{13}) = (4x^{3} - 4x_{1} - 3x^{2} - 3)$
 $f(x_{13}) = (4x^{3} - 4x_{1} - 3x^{2} - 3)$
 $f(x_{13}) = (4x^{3} - 4x_{1} - 3x^{2} - 3)$
 $f(x_{13}) = (4x^{3} - 4x_{1} - 3x^{2} - 3)$
 $f(x_{13}) = (4x^{3} - 4x_{1} - 3x^{2} - 3)$
 $f(x_{13}) = (4x^{3} - 4x_{1} - 3x^{2} - 3)$
 $f(x_{13}) = (4x^{3} - 4x_{1} - 3x^{2} - 3)$
 $f(x_{13}) = (4x^{3} - 4x_{1} - 3x^{2} - 3)$
 $f(x_{13}) = (4x^{3} - 4x_{1} - 3x^{2} - 3)$
 $f(x_{13}) = (4x^{3} - 4x_{1} - 3x^{2} - 3x^{2} - 3)$
 $f(x_{13}) = (4x^{3} - 4x_{1} - 3x^{2} - 3x^{2} - 3)$
 $f(x_{13}) = (4x^{3} - 4x_{1} - 3x^{2} - 3$

Lok. minima:
$$[-7,1]$$
, $[7,1]$

Cok. maxima: $[0,-1]$

Sedicula body: $[0,1]$, $[-7,-1]$, $[1,-7]$

Cy $\{(x,y) = 1 - \sqrt{y^2 + y^2}$

Of $(x,y) = \sqrt{\sqrt{y^2 + y^2}}$

Of $(x,y) = \sqrt{(x^2 + y^2)}$

3)
$$f(x_{12}) := \frac{7}{6}x^{3} + 3^{2} - k$$
 $\forall f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $\forall f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1} & 2 & y \end{pmatrix}$
 $f(x_{13}) := \begin{pmatrix} \sqrt{2} & 7_{1}$

					1 7	'					
				-1 0	4 6		5b = 8				
				0	5 8	/	6 - 2	- S - A			
			•				-7 + 3	5	5		
							-2 =	6-32			
							9 :	46-	$6 = \frac{2}{9}$	•	
			=>	f(x))= 2	x + 8					
					J	5					