LA COUNTY CRIME RATE TREND PREDICTION

Presented by:

Thant Thiri M. Kyi

(Springboard Data Science Career Track, July 2023 Cohort)

Understanding Top 5 Frequent Crime Patterns in Los Angeles: A Data-Driven Approach

Context

Los Angeles, known for its dynamic urban landscape, faces challenges with varying crime rates. Recognizing the need for a proactive approach to community safety.

Problem Definition

- The persistent issue of crime necessitates innovative solutions.
- Utilizing data analysis to uncover crime trends and predict future patterns.

Project Objective

- To develop a predictive model that analyses historical crime data.
- Aiming to provide insights that assist in informed decision-making for community welfare.

Impact

- Highlighting the potential of data-driven strategies in enhancing public safety measures.
- Empowering communities with knowledge for better preparedness and response.

Data Acquisition

Los Angeles city public data website (https://data.lacity.org/Public-Safety/Crime-Data-from-2010-to-2019/63jg-8b9z/explore,

https://data.lacity.org/Public-Safety/Crime-Data-from-2020-to-Present/2nrs-mtv8

1. Time Range: 2012-2023

2. Record Count: ~3 million (2,993,433)

Key Variables:

1. Crime Codes, Modus Operandi, Victim's Age, Sex, Descent

2. Premise Type, Weapon Used, Case Status

3. Crime Severity (Crm Cd 1-4)

4. Location Details (Address, Latitude, Longitude)

DR_NO	Date Rptd	DATE OCC	TIME OCC	AREA	AREA N	Rpt Dist	Part 1-2	(Crm Cd	Crm Cd	Mocodes	Vict Age	Vict Sex	Vict Des	Premis Cd	F
010304468	2020 Jan 0	2020 Jan 0	2230	03	Southwest	0377	2	2 (624	BATTERY - :	0444 0913	36	F	В	501	٤
190101086	2020 Jan 0:	2020 Jan 0 ⁻	0330	01	Central	0163	2	2 (624	BATTERY - :	0416 1822	25	М	Н	102	٤
200110444	2020 Apr 14	2020 Feb 1	1200	01	Central	0155	2	2 8	845	SEX OFFEN	1501	0	х	X	726	F
191501505	2020 Jan 0 ⁻	2020 Jan 0 ⁻	1730	15	N Hollywoo	1543	2	2	745	VANDALISM	0329 1402	76	F	W	502	r
191921269	2020 Jan 0 ⁻	2020 Jan 0 ⁻	0415	19	Mission	1998	2	2	740	VANDALISM	0329	31	х	Х	409	E
200100501	2020 Jan 0:	2020 Jan 0 ⁻	0030	01	Central	0163	1	1	121	RAPE, FORC	0413 1822	25	F	Н	735	1
200100502	2020 Jan 0:	2020 Jan 0:	1315	01	Central	0161	1	1 4	442	SHOPLIFTI	1402 2004	23	М	Н	404	Ε
200100504	2020 Jan 0 ₄	2020 Jan 0،	0040	01	Central	0155	2	2 9	946	OTHER MIS	1402 0392	0	х	X	726	F
200100507	2020 Jan 0 ₄	2020 Jan 0 ₄	0200	01	Central	0101	1	1 :	341	THEFT-GRA	1822 0344	23	М	В	502	r
201710201	2020 Jun 19	2020 May 2	1925	17	Devonshire	1708	1	1 :	341	THEFT-GRA	1300 0202	0	x	х	203	C

Data Waggling

1. Initial Data Processing:

- 1. Merged two datasets (2010-2019, 2020-present)
- 2. Standardized column names
- 3. Filled missing values in key columns

2. Data Transformation:

- 1. Renamed 'LAT' and 'LON' to 'latitude' and 'longitude'
- 2. Derived date and time components from 'DATE_OCC'
- 3. Mapped codes to descriptions for better readability

3. Cleaning and Exploration:

- 1. Excluded incomplete year data (2023)
- 2. Dropped duplicates, sorted, and reindexed
- 3. Analysed crime frequency by area and weekdays

4. Final Data State:

- 1. Total Records: 2,707,190
- 2. Total Columns: 18
- 3. Output File: 'cleaned_crime_data.csv'

Time-Based Analysis - EDA

EDA Overview:

- Dataset: 'cleaned_crime_data.csv' (2010-2022)
- Focus: Timeframe, Weekdays, Crime Categories, Victim Characteristics, Area of Occurrence

Crime Occurrence by Time:

- Weekdays: Higher incidents on Fridays and Saturdays, lowest on Sundays (Figure 1)
- Time of Day: Evenings see the highest crime rates (Figure 2)

Crime Description Analysis:- EDA

Crime Description Analysis:

- Common Crimes: Assault, Theft, Burglary
- Trend Analysis: 'Battery Simple Assault' highest but inconsistent; 'Assault with Deadly Weapon' on an upward trend.

Victim Demographics - EDA

Victim Characteristics:

- Age, Descent, Sex Analysis
- Most victims: Hispanic/Latino/Mexican and Male

Area and Location Analysis - EDA

- Highest Crime Rate: 77th Street, LA County
- Geographic Distribution: Heatmaps and Point Maps

EDA Summary

- Crime Trends: Mix of upward and downward trends in top 5 crimes over 12 years
- Consistent High Crime Area: Downtown LA (77th Street)
- Future Forecasting:

 Based on area, victim
 characteristics, and day
 of the week
- Output File: 'top5_crime_data.csv'

Building the Framework for Prediction – Feature Engineering

1. Data Pre-processing Steps

1. Data Preparation:

- Loaded 'top 5 crime data' dataset
- 2. Removed irrelevant columns (e.g., 'ID')

2. Feature Engineering:

- 1. Categorical Encoding:
 - 1. 'VICT_SEX', 'VICT_DESCENT' via Label Encoding
 - 2. One-hot Encoding for binary column transformation

3. Data Cleaning:

 Duplicates removed postencoding

4. Feature Scaling:

1. Standardization using StandardScaler

2. Data Preparation for Modelling and Training

Dataset Segmentation for Modelling:

- Large dataset necessitated creation of smaller, focused datasets:
 - 1. Crime category prediction dataset with key features
 - 2. Crime count prediction/forecasting dataset

CRM_CD	AREA	VICT_AGE	VICT_DESCENT_Encoded	VICT_SEX_Encoded	WEEKDAY_OCC_ID	CRIME_Total
510	12	0	19	2	5	2765
510	12	0	19	2	4	2689
510	12	0	19	2	6	2562
510	13	0	19	2	5	2527
510	12	0	19	2	0	2525

Model Data Setup:

1. Data split into features (X) and targets (y)

3. Training and Testing Sets:

- 1. Typical split ratio applied
- 2. Training set for model building
- 3. Testing set for model evaluation

Data Saving:

- 1. Processed data saved in 'train_test_split.pkl'
- 2. Preprocessed data for modelling saved in 'top5_crime_pre.csv'

Model Training and Evaluation

Model Building:

- Models: Linear Regression, Random Forest, XGBoost, CatBoost, Decision Tree
- Metrics: MSE, RMSE, MAE, R-squared, and Cross-Validation Scores

Model	MAE	MSE	RMSE	Rsquared	CVScore
LinearRegression	6.69056547	954.703887	30.8982829	-0.0114966	1685.94258
RandomForest	3.11404277	888.162267	29.8020514	0.05900336	13.0637411
XGBoost	3.69715064	983.587087	31.362192	-0.042098	22.4557188
CatBoost	6.14246278	978.155466	31.2754771	-0.0363433	22.4557188
DecisionTree	3.21267303	887.534217	29.7915125	0.05966877	11.1219253

Performance Analysis:

- 1. Linear Regression: High errors, negative R-squared (poor performance)
- 2. Random Forest: Low errors, high R-squared (good performance)
- 3. XGBoost: Moderate errors, negative R-squared (average to below-average performance)
- 4. CatBoost: High errors, negative R-squared (poor performance)
- 5. Decision Tree: Moderate errors, high R-squared (good performance)

Initial Conclusion:

- Best Performers: Random Forest and Decision Tree
- Random Forest has the lowest MAE and highest R-squared
- Decision Tree has a slightly lower RMSE and the same Rsquared as Random Forest

Model Validation and Final Choice

Overfitting and Underfitting Analysis:

- Learning curves are used to evaluate model generalization
- Random Forest
 Analysis: Learning Curve:
 Training and CV scores are consistent, suggesting no overfitting
- Decision Tree
 Analysis: Learning Curve:
 High initial training score
 (potential overfitting) but improves with more data, indicating good generalization

■ Final Model Selection:

 Decision Tree is selected based on its improving crossvalidation score and ability to generalize with more data

Final Model Fitting and Feature Importance

Feature Importance:

- 1. Key Predictive Features: Victim descent and crime type
- 2. High Importance: Indicating these features greatly influence crime rate predictions

Model Prediction Accuracy by Crime Type:

- 1. Battery Simple Assault: Predictions slightly higher than actual rates
- 2. Burglary: Predictions slightly higher than actual
- 3. Burglary from Vehicle: Predictions slightly lower than actual
- 4. Theft Plain Petty: Predictions slightly higher than actual
- 5. Vehicle Stolen: Predictions significantly lower, indicating an area for improvement

Predictive Performance by Descent, Area, and Day of the Week

Accuracy Across Descent Groups:

- Overestimations: American Indian/Alaskan Native, Asian Indian, Guamanian
- Close Predictions: Hispanic/Latin/Mexican
- Underestimation: "Unknown" descent group

2. Actual vs. Predicted Crime Rates by Area:

- Higher Actual Rates: 77th Street, Hollenbeck, Mission, Newton, Van Nuys
- Higher Predicted Rates: Central, Foothill, Olympic, West Valley

3. Prediction Variance by Day of the Week:

- Higher Actual Weekend Rates: Fridays and Sundays
- Alternating Over and Under Predictions: During weekdays

General Trends and Future Improvements

- Model trends to overpredict for certain descent groups
- Notable underprediction for "Unknown" descent and Vehicle Theft
- Hispanic/Latin/Mexican descent group consistently targeted
- Limitations: Insufficient RAM, leading to data underutilization
- Suggestion: Investment in computational resources for better performance

THANK YOU

Q & A