### Hierarchical models

Dr. Jarad Niemi

Iowa State University

February 11, 2016

### Outline

- Motivating example
  - Independent vs pooled estimates
- Hierarchical models
  - General structure
  - Posterior distribution
- Binomial hierarchial model
  - Posterior distribution
  - Prior distributions
- Stan for binomial hierarchical model
  - informative prior
  - default prior
  - $\bullet$  integrating out  $\theta$
  - across seasons

## Andre Dawkin's three-point percentage

Suppose  $Y_i$  are the number 3-pointers Andre Dawkin's makes in season i, and assume

$$Y_i \stackrel{ind}{\sim} Bin(n_i, \theta_i)$$

#### where

- n<sub>i</sub> are the number of 3-pointers attempted and
- $\theta_i$  is the probability of making a 3-pointer in season i.

#### Do these models make sense?

- The 3-point percentage every season is the same, i.e.  $\theta_i = \theta$ .
- The 3-point percentage every season is independent of other seasons.
- The 3-point percentage every season should be similar to other seasons.

## Andre Dawkin's three-point percentage

Suppose  $Y_i$  are the number of 3-pointers Andre Dawkin's makes in game i, and assume

$$Y_i \stackrel{ind}{\sim} Bin(n_i, \theta_i)$$

#### where

- $n_i$  are the number of 3-pointers attempted in game i and
- $\theta_i$  is the probability of making a 3-pointer in game i.

#### Do these models make sense?

- The 3-point percentage every game is the same, i.e.  $\theta_i = \theta$ .
- The 3-point percentage every game is independent of other games.
- The 3-point percentage every game should be similar to other games.

# Andre Dawkin's 3-point percentage





## Andre Dawkin's 3-point percentage

|    | date     | opponent         | made | attempts | a     | b     | lcl  | ucl  | Estimate   | game |
|----|----------|------------------|------|----------|-------|-------|------|------|------------|------|
| 1  | 11/8/13  | davidson         | 0    | 0        | 0.50  | 0.50  | 0.00 | 1.00 | Individual | 1    |
| 2  | 11/12/13 | kansas           | 0    | 0        | 0.50  | 0.50  | 0.00 | 1.00 | Individual | 2    |
| 3  | 11/15/13 | florida atlantic | 5    | 8        | 5.50  | 3.50  | 0.29 | 0.88 | Individual | 3    |
| 4  | 11/18/13 | unc asheville    | 3    | 6        | 3.50  | 3.50  | 0.17 | 0.83 | Individual | 4    |
| 5  | 11/19/13 | east carolina    | 0    | 1        | 0.50  | 1.50  | 0.00 | 0.85 | Individual | 5    |
| 6  | 11/24/13 | vermont          | 3    | 9        | 3.50  | 6.50  | 0.10 | 0.65 | Individual | 6    |
| 7  | 11/27/13 | alabama          | 0    | 2        | 0.50  | 2.50  | 0.00 | 0.67 | Individual | 7    |
| 8  | 11/29/13 | arizona          | 1    | 1        | 1.50  | 0.50  | 0.15 | 1.00 | Individual | 8    |
| 9  | 12/3/13  | michigan         | 2    | 2        | 2.50  | 0.50  | 0.33 | 1.00 | Individual | 9    |
| 10 | 12/16/13 | gardner-webb     | 4    | 8        | 4.50  | 4.50  | 0.20 | 0.80 | Individual | 10   |
| 11 | 12/19/13 | ucla             | 1    | 5        | 1.50  | 4.50  | 0.02 | 0.63 | Individual | 11   |
| 12 | 12/28/13 | eastern michigan | 6    | 10       | 6.50  | 4.50  | 0.30 | 0.85 | Individual | 12   |
| 13 | 12/31/13 | elon             | 5    | 7        | 5.50  | 2.50  | 0.35 | 0.94 | Individual | 13   |
| 14 | 1/4/14   | notre dame       | 1    | 4        | 1.50  | 3.50  | 0.03 | 0.72 | Individual | 14   |
| 15 | 1/7/14   | georgia tech     | 1    | 5        | 1.50  | 4.50  | 0.02 | 0.63 | Individual | 15   |
| 16 | 1/11/14  | clemson          | 0    | 4        | 0.50  | 4.50  | 0.00 | 0.44 | Individual | 16   |
| 17 | 1/13/14  | virginia         | 1    | 1        | 1.50  | 0.50  | 0.15 | 1.00 | Individual | 17   |
| 18 | 1/18/14  | nc state         | 3    | 7        | 3.50  | 4.50  | 0.14 | 0.77 | Individual | 18   |
| 19 | 1/22/14  | miami            | 2    | 6        | 2.50  | 4.50  | 0.08 | 0.71 | Individual | 19   |
| 20 | 1/25/14  | florida state    | 3    | 6        | 3.50  | 3.50  | 0.17 | 0.83 | Individual | 20   |
| 21 | 1/27/14  | pitt             | 6    | 7        | 6.50  | 1.50  | 0.50 | 0.98 | Individual | 21   |
| 22 | 2/1/14   | syracuse         | 4    | 9        | 4.50  | 5.50  | 0.17 | 0.75 | Individual | 22   |
| 23 | 2/4/14   | wake forest      | 4    | 7        | 4.50  | 3.50  | 0.23 | 0.86 | Individual | 23   |
| 24 | 2/8/14   | boston college   | 0    | 1        | 0.50  | 1.50  | 0.00 | 0.85 | Individual | 24   |
| 25 |          | Total            | 55   | 116      | 55.50 | 61.50 | 0.38 | 0.56 | Combined   | 25   |

### Hierarchical models

### Consider the following model

$$y_i \stackrel{ind}{\sim} p(y|\theta_i)$$
 $\theta_i \stackrel{ind}{\sim} p(\theta|\phi)$ 
 $\phi \sim p(\phi)$ 

#### where

- y<sub>i</sub> is observed,
- $\theta = (\theta_1, \dots, \theta_n)$  and  $\phi$  are parameters, and
- ullet only  $\phi$  has a prior that is set.

This is a hierarchical or multilevel model.

### Posterior distribution for hierarchical models

The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi|y) \propto p(y|\theta, \phi)p(\theta, \phi) = p(y|\theta)p(\theta|\phi)p(\phi) = \left[\prod_{i=1}^{n} p(y_i|\theta_i)p(\theta_i|\phi)\right]p(\phi).$$

The joint posterior distribution can be decomposed via

$$p(\theta, \phi|y) = p(\theta|\phi, y)p(\phi|y)$$

where

$$p(\theta|\phi,y) \propto p(y|\theta)p(\theta|\phi) = \prod_{i=1}^{n} p(y_{i}|\theta_{i})p(\theta_{i}|\phi) \propto \prod_{i=1}^{n} p(\theta_{i}|\phi,y_{i})$$

$$p(\phi|y) \propto p(y|\phi)p(\phi)$$

$$p(y|\phi) = \int p(y|\theta)p(\theta|\phi)d\theta$$

$$= \int \cdots \int \prod_{i=1}^{n} [p(y_{i}|\theta_{i})p(\theta_{i}|\phi)] d\theta_{1} \cdots d\theta_{n}$$

$$= \prod_{i=1}^{n} \int p(y_{i}|\theta_{i})p(\theta_{i}|\phi)d\theta_{i}$$

$$= \prod_{i=1}^{n} p(y_{i}|\phi)$$

# Three-pointer example

#### Our statistical model

$$Y_i \stackrel{ind}{\sim} Bin(n_i, \theta_i)$$
  
 $\theta_i \stackrel{ind}{\sim} Be(\alpha, \beta)$   
 $\alpha, \beta \sim p(\alpha, \beta)$ 

In this example,

- $\phi = (\alpha, \beta)$
- $Be(\alpha,\beta)$  describes the variability in 3-point percentage across games, and
- we are going to learn about this variability.

## Decomposed posterior

$$Y_i \stackrel{ind}{\sim} Bin(n_i, \theta_i) \quad \theta_i \stackrel{ind}{\sim} Be(\alpha, \beta) \quad \alpha, \beta \sim p(\alpha, \beta)$$

Conditional posterior for  $\theta$ :

$$p(\theta|\alpha,\beta,y) = \prod_{i=1}^{n} p(\theta_{i}|\alpha,\beta,y_{i}) = \prod_{i=1}^{n} Be(\theta_{i}|\alpha+y_{i},\beta+n_{i}-y_{i})$$

Marginal posterior for  $(\alpha, \beta)$ :

$$\begin{array}{ll} p(\alpha,\beta|y) & \propto p(y|\alpha,\beta)p(\alpha,\beta) \\ p(y|\alpha,\beta) & = \prod_{i=1}^n p(y_i|\alpha,\beta) = \prod_{i=1}^n \int p(y_i|\theta_i)p(\theta_i|\alpha,\beta)d\theta_i \\ & = \prod_{i=1}^n \int Bin(y_i|n_i,\theta_i)Be(\theta_i|\alpha,\beta)d\theta_i \\ & = \prod_{i=1}^n \int_0^1 \binom{n_i}{y_i}\theta_i^{y_i}(1-\theta_i)^{n_i-y_i}\frac{\theta_i^{\alpha-1}(1-\theta_i)^{\beta-1}}{B(\alpha,\beta)}d\theta_i \\ & = \prod_{i=1}^n \binom{n_i}{y_i}\frac{1}{B(\alpha,\beta)}\int_0^1 \theta_i^{\alpha+y_i-1}(1-\theta_i)^{\beta+n_i-y_i-1}d\theta_i \\ & = \prod_{i=1}^n \binom{n_i}{y_i}\frac{B(\alpha+y_i,\beta+n_i-y_i)}{B(\alpha,\beta)} \end{array}$$

Thus  $y_i | \alpha, \beta \stackrel{ind}{\sim} \text{Beta-binomial}(n_i, \alpha, \beta).$ 

## A prior distribution for $\alpha$ and $\beta$

### Recall the interpretation:

- $\alpha$ : prior successes
- $\beta$ : prior failures

### A more natural parameterization is

- prior expectation:  $\mu = \frac{\alpha}{\alpha + \beta}$
- prior sample size:  $\eta = \alpha + \beta$

### Place priors on these parameters or transformed to the real line:

- logit  $\mu = \log(\mu/[1-\mu]) = \log(\alpha/\beta)$
- $\log \eta$

## A prior distribution for $\alpha$ and $\beta$

It seems reasonable to assume the mean  $(\mu)$  and size  $(\eta)$  are independent a priori:

$$p(\mu, \eta) = p(\mu)p(\eta)$$

Let's assume an informative prior for  $\mu$  and  $\eta$  perhaps

- $\mu \sim Be(20,30)$
- $\eta \sim LN(0,3)$

where LN(0,3) is a log-normal distribution, i.e.  $log(\eta) \sim N(0,3)$ .

### Prior draws

```
n = 1e4
prior_draws = mutate(data.frame(mu = rbeta(n, a, b), eta = rlnorm(n, m, C)),
                      alpha = eta* mu.
                     beta = eta*(1-mu))
ddply(melt(prior_draws), .(variable), function(x) quantile(x$value, prob=c(.025,.5,.975)))
  variable
                  2.5%
                            50%
                                      97.5%
       mu 0.269802360 0.3979931
                                 0.5388901
      eta 0.003419775 0.9834535 416.3356182
     alpha 0.001308232 0.3889075 165.4921571
      beta 0.002041067 0.5800084 246 1300324
cor(prior_draws$alpha, prior_draws$beta)
[1] 0.9451046
```

### Stan

```
model_informative_prior = "
data {
  int<lower=0> N:
                   // data
  int<lower=0> n[N];
  int<lower=0> v[N];
  real<lower=0> a; // prior
  real<lower=0> b;
  real<lower=0> C;
  real m;
parameters {
  real<lower=0,upper=1> mu;
  real<lower=0> eta:
  real<lower=0,upper=1> theta[N];
transformed parameters {
  real<lower=0> alpha;
  real<lower=0> beta:
  alpha <- eta* mu ;
  beta <- eta*(1-mu);
model {
        ~ beta(a,b);
  m11
        ~ lognormal(m,C);
  eta
  # implicit joint distributions
  theta ~ beta(alpha,beta);
        ~ binomial(n,theta):
```

### Stan

```
dat = list(y=d$made, n=d$attempts, N=nrow(d),a=a, b=b, m=m, C=C)
m = stan_model(model_code=model_informative_prior)
r = sampling(m, dat, c("mu","eta","alpha","beta","theta"))
```

### stan

r

Inference for Stan model: 6fda7a1b3ac6710f6e28062ff83d1042.

4 chains, each with iter=2000; warmup=1000; thin=1; post-warmup draws per chain=1000, total post-warmup draws=4000.

|           | mean  | se_mean | sd     | 2.5% | 25%   | 50%   | 75%   | 97.5%  | n_eff | Rhat |
|-----------|-------|---------|--------|------|-------|-------|-------|--------|-------|------|
| mu        | 0.44  | 0.00    | 0.04   | 0.36 | 0.42  | 0.44  | 0.47  | 0.52   | 621   | 1.01 |
| eta       | 75.03 | 10.86   | 112.92 | 4.33 | 13.40 | 33.13 | 83.13 | 425.27 | 108   | 1.04 |
| alpha     | 33.71 | 4.91    | 51.58  | 1.80 | 5.98  | 14.55 | 37.20 | 194.04 | 111   | 1.04 |
| beta      | 41.32 | 5.98    | 61.78  | 2.42 | 7.45  | 18.40 | 45.79 | 231.71 | 107   | 1.04 |
| theta[1]  | 0.44  | 0.00    | 0.12   | 0.20 | 0.38  | 0.44  | 0.50  | 0.69   | 2224  | 1.00 |
| theta[2]  | 0.44  | 0.00    | 0.11   | 0.19 | 0.38  | 0.44  | 0.50  | 0.69   | 4000  | 1.00 |
| theta[3]  | 0.49  | 0.00    | 0.10   | 0.32 | 0.42  | 0.48  | 0.54  | 0.72   | 999   | 1.01 |
| theta[4]  | 0.46  | 0.00    | 0.10   | 0.27 | 0.40  | 0.45  | 0.51  | 0.67   | 2054  | 1.00 |
| theta[5]  | 0.42  | 0.00    | 0.11   | 0.16 | 0.36  | 0.43  | 0.49  | 0.65   | 1626  | 1.00 |
| theta[6]  | 0.41  | 0.00    | 0.09   | 0.21 | 0.36  | 0.42  | 0.47  | 0.59   | 996   | 1.00 |
| theta[7]  | 0.40  | 0.00    | 0.11   | 0.13 | 0.34  | 0.42  | 0.47  | 0.60   | 751   | 1.01 |
| theta[8]  | 0.47  | 0.00    | 0.12   | 0.24 | 0.40  | 0.46  | 0.53  | 0.75   | 1506  | 1.00 |
| theta[9]  | 0.49  | 0.00    | 0.12   | 0.30 | 0.42  | 0.48  | 0.55  | 0.78   | 805   | 1.01 |
| theta[10] | 0.46  | 0.00    | 0.09   | 0.28 | 0.40  | 0.45  | 0.51  | 0.66   | 4000  | 1.00 |
| theta[11] | 0.40  | 0.00    | 0.10   | 0.18 | 0.34  | 0.41  | 0.47  | 0.59   | 733   | 1.00 |
| theta[12] | 0.49  | 0.00    | 0.09   | 0.33 | 0.43  | 0.48  | 0.54  | 0.70   | 918   | 1.00 |
| theta[13] | 0.51  | 0.00    | 0.10   | 0.33 | 0.44  | 0.49  | 0.56  | 0.74   | 503   | 1.01 |
| theta[14] | 0.41  | 0.00    | 0.10   | 0.19 | 0.36  | 0.42  | 0.47  | 0.60   | 963   | 1.00 |
| theta[15] | 0.40  | 0.00    | 0.10   | 0.15 | 0.34  | 0.41  | 0.47  | 0.58   | 512   | 1.01 |
| theta[16] | 0.38  | 0.01    | 0.11   | 0.10 | 0.32  | 0.39  | 0.45  | 0.56   | 295   | 1.01 |
| theta[17] | 0.47  | 0.00    | 0.11   | 0.26 | 0.40  | 0.46  | 0.53  | 0.74   | 1657  | 1.00 |
| theta[18] | 0.44  | 0.00    | 0.09   | 0.26 | 0.39  | 0.44  | 0.50  | 0.63   | 2271  | 1.00 |
| theta[19] | 0.42  | 0.00    | 0.10   | 0.21 | 0.37  | 0.43  | 0.48  | 0.60   | 1712  | 1.00 |
| +ha+a[20] | 0 16  | 0 00    | 0.10   | 0.26 | 0.40  | 0.45  | O E1  | 0 66   | 4000  | 1 00 |

### stan

```
plot(r, pars=c('eta', 'alpha', 'beta'))

ci_level: 0.8 (80% intervals)
outer_level: 0.95 (95% intervals)
```



### stan

plot(r, pars=c('mu', 'theta'))



# Comparing independent and hierarchical models



## A prior distribution for $\alpha$ and $\beta$

In Bayesian Data Analysis (3rd ed) page 110, several priors are discussed

- $(\log(\alpha/\beta), \log(\alpha+\beta)) \propto 1$  leads to an improper posterior.
- $(\log(\alpha/\beta), \log(\alpha+\beta)) \sim Unif([-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}])$  while proper and seemingly vague is a very informative prior.
- $(\log(\alpha/\beta), \log(\alpha+\beta)) \propto \alpha\beta(\alpha+\beta)^{-5/2}$  which leads to a proper posterior and is equivalent to  $p(\alpha, \beta) \propto (\alpha+\beta)^{-5/2}$ .

```
model_default_prior = "
data {
  int<lower=0> N:
  int<lower=0> n[N]:
  int<lower=0> v[N];
parameters {
  real<lower=0> alpha;
  real<lower=0> beta;
  real<lower=0,upper=1> theta[N];
model {
  # default prior
  increment_log_prob(-5*log(alpha+beta)/2);
  # implicit joint distributions
  theta ~ beta(alpha,beta);
        ~ binomial(n,theta);
m2 = stan_model(model_code=model_default_prior)
r2 = sampling(m2, dat, c("alpha", "beta", "theta"), iter=10000)
```

r2

Inference for Stan model: 0c97895f3b9695ba83766f8760986390.
4 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=20000.

|           | mean  | se_mean | sd    | 2.5% | 25%  | 50%   | 75%   | 97.5% | n_eff | Rhat |
|-----------|-------|---------|-------|------|------|-------|-------|-------|-------|------|
| alpha     | 13.65 | 1.49    | 12.75 | 1.65 | 4.64 | 9.31  | 19.23 | 46.04 | 73    | 1.04 |
| beta      | 15.31 | 1.41    | 13.55 | 1.91 | 5.32 | 10.63 | 21.54 | 49.32 | 92    | 1.03 |
| theta[1]  | 0.47  | 0.00    | 0.14  | 0.18 | 0.38 | 0.47  | 0.55  | 0.76  | 4672  | 1.00 |
| theta[2]  | 0.47  | 0.00    | 0.14  | 0.19 | 0.38 | 0.47  | 0.55  | 0.75  | 3113  | 1.00 |
| theta[3]  | 0.52  | 0.00    | 0.11  | 0.32 | 0.44 | 0.51  | 0.58  | 0.74  | 1048  | 1.00 |
| theta[4]  | 0.48  | 0.00    | 0.11  | 0.27 | 0.40 | 0.48  | 0.55  | 0.70  | 1395  | 1.00 |
| theta[5]  | 0.44  | 0.00    | 0.13  | 0.16 | 0.35 | 0.44  | 0.52  | 0.69  | 979   | 1.01 |
| theta[6]  | 0.42  | 0.01    | 0.10  | 0.22 | 0.35 | 0.43  | 0.50  | 0.62  | 379   | 1.01 |
| theta[7]  | 0.41  | 0.00    | 0.13  | 0.13 | 0.34 | 0.42  | 0.50  | 0.65  | 1251  | 1.01 |
| theta[8]  | 0.50  | 0.00    | 0.13  | 0.25 | 0.42 | 0.50  | 0.59  | 0.80  | 2122  | 1.00 |
| theta[9]  | 0.53  | 0.00    | 0.13  | 0.29 | 0.44 | 0.52  | 0.61  | 0.83  | 937   | 1.00 |
| theta[10] | 0.48  | 0.00    | 0.11  | 0.27 | 0.40 | 0.48  | 0.54  | 0.70  | 920   | 1.00 |
| theta[11] | 0.40  | 0.01    | 0.12  | 0.15 | 0.33 | 0.41  | 0.48  | 0.63  | 486   | 1.01 |
| theta[12] | 0.51  | 0.00    | 0.10  | 0.31 | 0.44 | 0.51  | 0.58  | 0.72  | 1122  | 1.00 |
| theta[13] | 0.54  | 0.00    | 0.11  | 0.33 | 0.46 | 0.54  | 0.61  | 0.78  | 684   | 1.01 |
| theta[14] | 0.43  | 0.00    | 0.12  | 0.18 | 0.35 | 0.43  | 0.51  | 0.65  | 1062  | 1.01 |
| theta[15] | 0.41  | 0.01    | 0.12  | 0.16 | 0.33 | 0.41  | 0.49  | 0.62  | 497   | 1.01 |
| theta[16] | 0.37  | 0.01    | 0.13  | 0.10 | 0.29 | 0.38  | 0.46  | 0.60  | 323   | 1.02 |
| theta[17] | 0.50  | 0.00    | 0.13  | 0.25 | 0.42 | 0.50  | 0.58  | 0.79  | 1929  | 1.00 |
| theta[18] | 0.46  | 0.00    | 0.11  | 0.24 | 0.38 | 0.46  | 0.53  | 0.66  | 1040  | 1.01 |
| theta[19] | 0.43  | 0.00    | 0.11  | 0.20 | 0.36 | 0.43  | 0.51  | 0.64  | 523   | 1.01 |
| theta[20] | 0.48  | 0.00    | 0.11  | 0.27 | 0.41 | 0.48  | 0.55  | 0.70  | 1250  |      |
| theta[21] | 0.58  | 0.00    | 0.12  | 0.38 | 0.50 | 0.58  | 0.66  | 0.84  |       | 1.00 |
|           |       |         |       |      |      |       |       |       |       |      |





# Comparing all models



## Marginal posterior for $\alpha, \beta$

An alternative to jointly sampling  $\theta, \alpha, \beta$  is to

- 1. sample  $\alpha, \beta \sim p(\alpha, \beta|y)$ , and then
- 2. sample  $\theta_i \stackrel{ind}{\sim} p(\theta_i | \alpha, \beta, y_i) \stackrel{d}{=} Be(\alpha + y_i, \beta + n_i y_i)$ .

The maginal posterior for  $\alpha, \beta$  is

$$p(\alpha, \beta|y) \propto p(y|\alpha, \beta)p(\alpha, \beta) = \left[\prod_{i=1}^{n} \text{Beta-binomial}(y_i|n_i, \alpha, \beta)\right]p(\alpha, \beta)$$

### Stan - beta-binomial

```
# Marginalized (integrated) theta out of the model
model_marginalized = "
data {
  int<lower=0> N:
  int<lower=0> n[N];
  int<lower=0> y[N];
parameters {
  real<lower=0> alpha;
  real<lower=0> beta:
model {
  increment_log_prob(-5*log(alpha+beta)/2);
        ~ beta_binomial(n,alpha,beta);
m3 = stan_model(model_code=model_marginalized)
r3 = sampling(m3, dat, c("alpha", "beta"))
```

### Stan - beta-binomial

Inference for Stan model: b4aebd8d5d919515a2f73686ccad16c1.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

```
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat alpha 8232.14 4765.60 134195.56 1.79 6.48 17.64 78.63 10753.38 793 1.00 beta 8739.16 5024.74 141816.25 2.12 7.37 19.48 85.64 12615.56 797 1.00 lp_ -84.62 0.06 1.11 -87.76 -85.05 -84.31 -83.82 -83.51 319 1.01
```

Samples were drawn using NUTS(diag\_e) at Wed Feb 10 10:36:29 2016. For each parameter, n\_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).



# Posterior sample for $\theta_{22}$



# $\theta$ s are not independent in the posterior



## 3-point percentage across seasons

An alternative to modeling game-specific 3-point percentage is to model 3-point percentage in a season. The model is exactly the same, but the data changes.

|   | season | У  | n   |
|---|--------|----|-----|
| 1 | 1      | 36 | 95  |
| 2 | 2      | 64 | 150 |
| 3 | 3      | 67 | 171 |
| 4 | 4      | 64 | 152 |

Due to the low number of seasons (observations), we will use an informative prior for  $\alpha$  and  $\beta$ .

### Stan - beta-binomial

```
model seasons = "
data {
  int<lower=0> N; int<lower=0> n[N]; int<lower=0> y[N];
  real<lower=0> a: real<lower=0> b: real<lower=0> C: real m:
parameters {
  real<lower=0.upper=1> mu:
  real<lower=0> eta:
transformed parameters {
  real<lower=0> alpha;
  real<lower=0> beta:
  alpha <- eta * mu;
  beta <- eta * (1-mu):
model
      ~ beta(a,b):
  mu
  eta ~ lognormal(m,C);
      ~ beta_binomial(n,alpha,beta);
generated quantities {
  real<lower=0,upper=1> theta[N];
  for (i in 1:N) theta[i] <- beta_rng(alpha+v[i], beta+n[i]-v[i]);
dat = list(N=nrow(d), v=d$v, n=d$n, a=20, b=30, m=0, C=2)
m4 = stan model(model code=model seasons)
r_seasons = sampling(m4, dat, c("alpha", "beta", "mu", "eta", "theta"))
```

### Stan - hierarchical model for seasons

Inference for Stan model: a9036682a6d96100ae9598cb6ac9f1da.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

|          | mean    | se_mean | sd     | 2.5%    | 25%     | 50%     | 75%     | 97.5%   | n_eff Rhat |
|----------|---------|---------|--------|---------|---------|---------|---------|---------|------------|
| alpha    | 61.32   | 7.14    | 184.05 | 2.17    | 10.69   | 25.70   | 60.08   | 325.97  | 665 1.01   |
| beta     | 89.56   | 10.24   | 262.78 | 3.16    | 15.25   | 37.24   | 88.19   | 474.35  | 659 1.01   |
| mu       | 0.41    | 0.00    | 0.04   | 0.33    | 0.38    | 0.41    | 0.43    | 0.48    | 1099 1.00  |
| eta      | 150.88  | 17.37   | 446.64 | 5.36    | 26.00   | 63.23   | 147.90  | 793.26  | 661 1.01   |
| theta[1] | 0.39    | 0.00    | 0.04   | 0.31    | 0.36    | 0.39    | 0.42    | 0.47    | 3326 1.00  |
| theta[2] | 0.42    | 0.00    | 0.03   | 0.35    | 0.40    | 0.42    | 0.44    | 0.49    | 3536 1.00  |
| theta[3] | 0.40    | 0.00    | 0.03   | 0.33    | 0.37    | 0.40    | 0.42    | 0.46    | 3764 1.00  |
| theta[4] | 0.42    | 0.00    | 0.03   | 0.35    | 0.39    | 0.42    | 0.44    | 0.49    | 3728 1.00  |
| lp       | -422.71 | 0.03    | 1.10   | -425.63 | -423.18 | -422.36 | -421.90 | -421.61 | 1148 1.00  |

Samples were drawn using NUTS(diag\_e) at Wed Feb 10 10:45:40 2016. For each parameter, n\_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

### Stan - hierarchical model for seasons



### Stan - hierarchical model for seasons

Probabilities that 3-point percentage is greater in season 4 than in the other seasons:

```
theta = extract(r_seasons, "theta")[[1]]
mean(theta[,4] > theta[,1])

[1] 0.69275

mean(theta[,4] > theta[,2])

[1] 0.469

mean(theta[,4] > theta[,3])

[1] 0.659
```

## Summary - hierarchical models

Two-level hierarchical model:

$$y_i \stackrel{ind}{\sim} p(y|\theta)$$
  $\theta_i \stackrel{ind}{\sim} p(\theta|\phi)$   $\phi \sim p(\phi)$ 

Conditional independencies:

- $y_i \perp \!\!\! \perp y_j | \theta$  for  $i \neq j$
- $\theta_i \perp \!\!\! \perp \theta_i | \phi$  for  $i \neq j$
- $y \perp \!\!\!\perp \phi | \theta$
- $y_i \perp y_j | \phi$  for  $i \neq j$
- $\theta_i \perp \!\!\! \perp \theta_i | \phi, y$  for  $i \neq j$

## Summary - extension to more levels

Three-level hierarchical model:

$$y \sim p(y|\theta)$$
  $\theta \sim p(\theta|\phi)$   $\phi \sim p(\phi|\psi)$   $\psi \sim p(\psi)$ 

When deriving posteriors, remember the conditional independence structure, e.g.

$$p(\theta, \phi, \psi|y) \propto p(y|\theta)p(\theta|\phi)p(\phi|\psi)p(\psi)$$