Nonparametric Covariance Estimation for Longitudinal Data via Penalized Tensor Product Splines

Tayler A. Blake* Yoonkyung Lee[†]
February 14, 2018

1 Performance assessment via simulation study

To understand the strengths and weaknesses of our method, in the first portion of our simulation study, we examine performance for five underlying covariance structures across varying numbers of subjects, N, and within-subject sample sizes, M. In the first portion of the study, we simulate data so that all subjects share a common set of M regularly-spaced observation times so as to permit performance comparison with three alternative estimators based on the sample covariance matrix, which cannot accommodate irregularly spaced observations. In the second portion of the study, our primary concern is studying the stability of our estimator as the irregularity in the observed time points across subjects increases. For fixed N, we observe performance when the data are generated from the same underlying covariance structures for varying within-subject sample sizes M and varying levels of data sparsity by subsampling observations from the complete dataset.

We study estimator performance for five covariance structures, which were chosen to exhibit varying degrees of structural complexity. At one end of the spectrum, we consider covariance corresponding to mutual independence. It is both the simplest and sparsest structure, having constant zero-valued varying coefficient function, and constant innovation variance function. To examine how well our estimator selects models belonging to the null space of the cubic smoothing spline penalty functional, we consider a class of covariance structures defined by the GARPs, which are the evaluation of a linear function of t, and the IVs, which are constant over the time domain. We induce three degrees of sparisty in the Cholesky factor by truncating its entries to zero at three values of $t = t - s \in [0, 1]$. This is equivalent to banding the inverse covariance matrices at the same values of t; see Bickel and Levina [2008]. We also consider the compound symmetry model to assess how well our method can identify a commonly utilized parametric model for longitudinal data. While the structure is of the overall covariance matrix is parsimonious in that it can be represented with few coefficients, the varying coefficient function and innovation variance function of the corresponding Cholesky decomposition are nonlinear in t. Given covariance matrix Σ ,

^{*}The Ohio State University, 1958 Neil Avenue, Columbus, OH 43201

[†]The Ohio State University, 1958 Neil Avenue, Columbus, OH 43201

risk estimates are obtained from $N_{sim} = 100$ samples from an M-dimensional multivariate Normal distribution with mean zero and the same covariance.

2 Alternative estimators for performance benchmarking

For the complete data case with common observation times across all subjects, we consider three additional covariance estimators for comparison: the sample covariance matrix S, the soft thresholding estimator of Rothman et al. [2009], S^{λ} , and the tapering estimator of Cai et al. [2010], S^{ω} . See Chapter 2, Section ?? for additional discussion of these estimators and those belonging to similar classes. Rothman et al. [2009] presented a class of generalized thresholding estimators, including the soft-thresholding estimator given by

$$S^{\lambda} = \left[\operatorname{sign} \left(s_{ij} \right) \left(s_{ij} - \lambda \right)_{+} \right],$$

where σ_{ij}^* denotes the i-jth entry of the sample covariance matrix, and λ is a penalty parameter controlling the amount of shrinkage applied to the empirical estimator. Cai et al. [2010] derived optimal rates of convergence under the operator norm for the tapering estimator:

$$S^{\omega} = \left[\omega_{ij}^k s_{ij}\right],\,$$

where the ω_{ij}^k are given by

$$\omega_{ij}^{k} = k_h^{-1} \left[(k - |i - j|)_+ - (k_h - |i - j|)_+ \right],$$

The weights ω_{ij}^k are indexed with superscript to indicate that they are controlled by a tuning parameter, k, which can take integer values between 0 and M, the dimension of the covariance matrix. Without loss of generality, we assume that $k_h = k/2$ is even. The weights may be rewritten as

$$\omega_{ij} = \begin{cases} 1, & ||i - j|| \le k_h \\ 2 - \frac{i - j}{k_h}, & k_h < ||i - j|| \le k, \\ 0, & \text{otherwise} \end{cases}$$

This expression of the weights makes it clear how the selection of k controls the amount of shrinkage applied to different elements of the sample covariance matrix. The estimator applies no shrinkage to elements of S belonging to the subdiagonals closest to the main diagonal. As one moves away from the main diagonal, shrinkage increases. A shrinkage factor of $2 - \frac{i-j}{k_h}$ is applied to elements belonging to subdiagonals $k_h, \ldots, k-1, k$, and elements further than k subdiagonals from the main diagonal are shrunk to zero.

3 Loss functions and corresponding risk measures

To assess performance of estimator $\hat{\Sigma}$, we consider two commonly used loss functions:

$$\Delta_1 \left(\Sigma, \hat{\Sigma} \right) = tr \left(\Sigma^{-1} \hat{\Sigma} \right) - log |\Sigma^{-1} \hat{\Sigma}| - M, \tag{1}$$

$$\Delta_2 \left(\Sigma, \hat{\Sigma} \right) = tr \left(\left(\Sigma^{-1} \hat{\Sigma} - I \right)^2 \right) \tag{2}$$

where Σ is the true covariance matrix and $\hat{\Sigma}$ is an $M \times M$ positive definite matrix. Each of these loss functions is 0 when $\hat{\Sigma} = \Sigma$ and is positive when $\hat{\Sigma} \neq \Sigma$. Both measures of loss are scale invariant. If we let random vector Y have covariance matrix Σ , and define the transformation Z as

$$Z = CY$$
.

for some $M \times M$ matrix C, then Z has covariance matrix $\Sigma_z = C\Sigma C'$. Given an estimator $\hat{\Sigma}$ of Σ , one immediately obtains an estimator for Σ_z , $\hat{\Sigma}_z = C\hat{\Sigma}C'$. If C is invertible, then the loss functions Δ_1 and Δ_2 satisfy

$$\Delta_{i}\left(\Sigma,\hat{\Sigma}\right) = \Delta_{i}\left(C\Sigma C',C\hat{\Sigma}C'\right).$$

The first loss Δ_1 is commonly referred to as the entropy loss; it gives the Kullback-Leibler divergence of two multivariate Normal densities with the same mean corresponding to the two covariance matrices. The second loss Δ_2 , or the quadratic loss, measures the discrepancy between $\left(\Sigma^{-1}\hat{\Sigma}\right)$ and the identity matrix with the squared Frobenius norm. The Frobenius norm of a symmetric matrix A is given by

$$||A||^2 = \operatorname{tr}(AA').$$

The quadratic loss consequently penalizes overestimates more than underestimates, so "smaller" estimates are favored more under Δ_2 than Δ_1 . For example, among the class of estimators comprised of scalar multiples cS of the sample covariance matrix, Haff [1980] established that S is optimal under Δ_2 , while the smaller estimator $\frac{nS}{n+p+1}$ is optimal under Δ_1 .

Given Σ , the corresponding values of the risk functions are obtained by taking expectations:

$$R_i\left(\Sigma,\hat{\Sigma}\right) = E_{\Sigma}\left[\Delta_i\left(\Sigma,\hat{\Sigma}\right)\right], \quad i = 1, 2.$$

We prefer one estimator $\hat{\Sigma}_1$ to another $\hat{\Sigma}_2$ if it has smaller risk. Given Σ , we estimate the risk of an estimator via Monte Carlo approximation.

4 Discussion

For each of the general covariance structures outlined in the previous simulation study description, data were simulated according to multivariate normal distributions with the following covariance matrices:

I. Mutual independence: $\Sigma = I$, where

$$\phi(t,s) = 0, \quad 0 \le s < t \le 1,$$

 $\sigma^{2}(t) = 1, \quad 0 \le t \le 1.$

II. Linear varying coefficient model with constant innovation variance: $\Sigma^{-1} = T'D^{-1}T$, where

$$\phi(t,s) = t - \frac{1}{2}, \quad 0 \le t \le 1,$$
 $\sigma^{2}(t) = 0.1^{2}, \quad 0 \le t \le 1.$

III. $k_{1/2}$ -banded linear varying coefficient model with constant innovation variance: $\Sigma^{-1} = T'D^{-1}T$, where

$$\phi(t,s) = \begin{cases} t - \frac{1}{2}, & t - s \le 0.5 \\ 0, & t - s > 0.5 \end{cases},$$

$$\sigma^{2}(t) = 0.1^{2}, \quad 0 \le t \le 1.$$

IV. 1-banded linear varying coefficient model with constant innovation variance: $\Sigma^{-1} = T'D^{-1}T$ where

$$\phi(t,s) = \begin{cases} t - \frac{1}{2}, & t - s \le \frac{1}{M} \\ 0, & t - s > \frac{1}{M} \end{cases},$$

$$\sigma^{2}(t) = 0.1^{2}, \quad 0 \le t \le 1.$$

V. The compound symmetry model: $\Sigma = \sigma^2 \left(\rho J + (1-\rho) I \right), \; \rho = 0.7, \; \sigma^2 = 1.$

$$\phi_{ts} = -\frac{\rho}{1 + (t - 1)\rho}, \quad t = 2, \dots, M, \quad s = 1, \dots, t - 1$$

$$\sigma_t^2 = \begin{cases} 1, & t = 1\\ 1 - \frac{(t - 1)\rho^2}{1 + (t - 1)\rho}, & t = 2, \dots, M \end{cases}$$

The results of the simulations for complete data under entropy loss are presented in tables ?? - ??; the results for quadratic loss are similar and can be found in the Appendix, Table ??-??. The results for the second simulation study of performance with sparsely sampled data are given in tables ?? - ??. Standard errors of the risk estimates are left to the appendix; see Table ?? and Table ??.

TODO: discuss the performance in real words and sentences here.

Performance degradation of the estimator in the presence of missing data is highly dependent on the underlying structure of the Cholesky factor of the inverse covariance matrix. For the identity matrix and for the non-truncated linear varying coefficient GARP model, we observe little change in estimated entropy risk for within subject sample sizes M=10 and M=20 with downsampling as compared to the estimated risk for both sample sizes in the complete data case. Making the same comparison for the banded Cholesky factor having linear varying coefficient function truncated at t=0.5, we see only slight decreases in performance for M=10: an estimated entropy risk

of 0.3174 with no missing data versus 0.3451 (0.3498, 0.3437) with 5% (5%, 5%) missing data. The degredation is more pointed for the moderate sample size of M=20. The rate of missing observations has the greatest impact for the simulation conducted using the compound symmetric model. This is not surprising, since it corresponds to the most comlexly structured Cholesky factor. While the functions defining the Cholesky factors of Models III and IV do not belong to the null space defined by the cubic smoothing spline penalty, they are both piecewise functions with each piece itself belonging to \mathcal{H}_0 .

As discussed in ??, the soft thresholding estimator can be written as the solution to the optimization problem

$$s_{\lambda}(z) = \underset{\sigma}{\operatorname{arg min}} \left[\frac{1}{2} (\sigma - z)^{2} + J_{\lambda}(\sigma) \right],$$
 (3)

so that estimation of the covariance matrix can be accomplished by solving multiple univariate Lasso-penalized least squares problems. The Frobenius is a natural measure of the accuracy of an estimator; it quantifies the sum over the unique elements of Σ of the the first term in 3,

$$||\hat{\Sigma}^{\lambda} - \Sigma||^2 = \left(\sum_{i,j} \left(\hat{\sigma}_{ij}^{\lambda} - \sigma_{ij}\right)^2\right)^{1/2} \tag{4}$$

If Σ were available, one would choose the value of the tuning parameter λ which minimizes ??. In practice, one tries to first approximate the risk, or

$$E_{\Sigma}\left[||\hat{\Sigma}^{\lambda}-\Sigma||^2\right],$$

and then choose the optimal value of λ . As in regression methods, cross validation and a number of its variants have become popular choices for tuning parameter selection in covariance estimation. K-fold cross validation requires first splitting the data into folds $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_K$. The value of the tuning parameter is selected to minimize

$$CV_{F}(\lambda) = \underset{\lambda}{\arg\min} \ K^{-1} \sum_{k=1}^{K} ||\hat{\Sigma}^{(-k)} - \tilde{\Sigma}^{(k)}||_{F}^{2}, \tag{5}$$

where $\tilde{\Sigma}^{(k)}$ is the unregularized estimator based on based on \mathcal{D}_k , and $\hat{\Sigma}^{(-k)}$ is the regularized estimator under consideration based on the data after holding \mathcal{D}_k out. Using this approach, the size of the training data set is approximately (K-1)N/K, and the size of the validation set is approximately N/K (though these quantities are only relevant when subjects have equal numbers of observations). For linear models, it has been shown that cross validation is asymptotically consistent is the ratio of the validation data set size over the training set size goes to 1. See Shao [1993]. This result motivates the reverse cross validation criterion, which is defined as follows:

$$\operatorname{rCV}_{F}(\lambda) = \underset{\lambda}{\operatorname{arg min}} K^{-1} \sum_{k=1}^{K} ||\hat{\Sigma}^{(k)} - \tilde{\Sigma}^{(-k)}||_{F}^{2}, \tag{6}$$

where $\tilde{\Sigma}^{(-k)}$ is the unregularized estimator based on based on the data after holding out \mathcal{D}_k , and $\hat{\Sigma}^{(k)}$ is the regularized estimator under consideration based on \mathcal{D}_k . Per the suggested approach of Fang et al. [2016] based on an extensive simulation study, we use K=10-fold cross validation to select the tuning parameters for both the tapering estimator S^ω and the soft thresholding estimator S^λ . They implement cross validation for a number of element-wise shrinkage estimators for covariance matrices in the Wang [2014] R package, which was used to calculate the risk estimates for S^ω and S^λ .

Element-wise shrinkage estimators of the covariance matrix, including the soft thresholding estimator, are not guaranteed to be positive definite, though Rothman et al. [2009] established that in the limit, soft thresholding produces a positive definite estimator with probability tending to 1. We observed simulations runs which yielded a soft thresholding estimator that was indeed not positive definite. In this case, the estimate has at least one eigenvalue less than or equal to zero, and the evaluation of the entropy loss 2 is undefined. To enable the evaluation of the entropy loss, we coerced these estimates to the "nearest" positive definite estimate via application of the technique presented in Cheng and Higham [1998]. For a symmetric matrix A, which is not positive definite, a modified Cholesky algorithm produces a symmetric perturbation matrix E such that E is positive definite.

5 Numerical results

5.1 Simulation study 1: complete data

Table 1: Risk estimates and corresponding standard errors for our proposed estimator under entropy loss, Δ_2 when the data are generated according to model I.

		$\hat{\Sigma}_{\scriptscriptstyle SS}$		S	S^{λ}	S^{ω}
	M	LosoCV	URE			
	10	0.0684	0.0678	1.2339	0.4451	1.1760
N = 50	20	0.0799	0.0720	5.0827	1.6504	4.7847
	30	0.0668	0.0740	12.5162	1.9975	11.0434
	10	0.0405	0.0379	0.5854	0.1783	0.5201
N = 100	20	0.0356	0.0378	2.3038	0.4394	1.9637
	30	0.0396	0.0322	5.2641	0.6717	4.5410

Table 2: Risk estimates and corresponding standard errors for our proposed estimator under entropy loss, Δ_2 when the data are generated according to model II.

		$\hat{\Sigma}_{\scriptscriptstyle SS}$		S	S^{λ}	S^{ω}
	M	LosoCV	URE			
	10	0.0647	0.0696	1.2431	1.4242	1.1195
N = 50	20	0.0884	0.0969	5.0437	17.0220	13.5290
	30	0.0702	0.0894	12.4559	39.9769	159.0521
	10	0.0307	0.0302	0.5403	0.7659	0.5609
N = 100	20	0.0357	0.0350	2.3195	8.5141	11.3740
	30	0.0372	0.0334	5.2817	16.5003	89.3414

Table 3: Risk estimates and corresponding standard errors for our proposed estimator under entropy loss, Δ_2 when the data are generated according to model III.

		$\hat{\Sigma}_{\scriptscriptstyle S}$	$\hat{\Sigma}_{ss}$		S^{λ}	S^{ω}
	M	LosoCV	URE			
	10	0.3354	0.3174	1.1947	1.1073	1.1649
N = 50	20	1.1144	1.1143	5.0966	17.0220	12.6171
	30	2.3247	2.3168	12.4905	50.3684	101.8245
	10	0.2826	0.2955	0.5446	0.5410	0.5531
N = 100	20	1.0690	1.0627	2.3514	12.8490	11.4934
	30	2.2737	2.2767	5.4204	27.2736	30.5818

Table 4: Risk estimates and corresponding standard errors for our proposed estimator under entropy loss, Δ_2 when the data are generated according to model IV.

		$\hat{\Sigma}_{s}$	$\hat{\Sigma}_{\scriptscriptstyle SS}$		S^{λ}	S^{ω}
	M	LosoCV	URE			
	10	0.2605	.2743	1.1692	0.5899	1.1126
N = 50	20	0.8836	.8764	5.0899	1.8834	4.6363
	30	1.6087	1.6195	12.5844	3.1902	11.4818
	10	0.2193	0.2183	0.5642	0.2902	0.5456
N = 100	20	0.8468	0.8491	2.2607	0.7869	2.2028
	30	1.5743	1.5802	5.2437	1.1974	4.8555

Table 5: Risk estimates and corresponding standard errors for our proposed estimator under entropy loss, Δ_2 when the data are generated according to model V.

		$\hat{\Sigma}_{\scriptscriptstyle SS}$		S	S^{λ}	S^{ω}
	M	LosoCV	URE			
	10	0.2837	0.2766	1.1943	17.3871	1.2122
N = 50	20	0.7551	0.7657	5.0283	35.4067	5.1671
	30	1.1936	1.1927	12.5871	46.5337	12.4110
	10	0.2449	0.2390	0.5734	16.2705	0.5796
N = 100	20	0.7231	0.7299	2.2678	31.3226	2.2988
	30	1.1780	1.1813	5.2562	39.2108	5.2592

5.2 Simulation study 2: irregularly sampled data

M	% subsampling	4	$\hat{\Delta}_1$	$\hat{\Delta}_2$		
10	0.05	0.0016	(0.0002)	0.0760	(0.0059)	
10	0.07	0.0017	(0.0002)	0.0824	(0.0055)	
10	0.09	0.0015	(0.0002)	0.0776	(0.0058)	
15	0.05	0.0020	(0.0003)	0.1027	(0.0085)	
15	0.07	0.0024	(0.0004)	0.1135	(0.0100)	
15	0.09	0.0021	(0.0004)	0.1013	(0.0087)	
20	0.05	0.0011	(0.0001)	0.0878	(0.0069)	
20	0.07	0.0011	(0.0001)	0.0971	(0.0071)	
20	0.09	0.0013	(0.0002)	0.0998	(0.0073)	

Table 6: Risk estimates and corresponding standard errors for our proposed estimator when the data are generated according to model I and smoothing parameters are selected using the unbiased risk estimate.

M	% subsampling	$\hat{\Delta}_{\scriptscriptstyle 1}$		$\hat{\Delta}_2$	
10	0.05	0.0520	(0.0063)	0.0940	(0.0076)
10	0.07	0.0462	(0.0061)	0.0949	(0.0085)
10	0.09	0.0676	(0.0088)	0.1124	(0.0101)
15	0.05	0.4004	(0.0548)	0.1434	(0.0111)
15	0.07	0.7398	(0.1168)	0.1895	(0.0161)
15	0.09	1.3971	(0.1984)	0.3201	(0.0332)
20	0.05	5.1618	(0.6220)	0.2705	(0.0218)
20	0.07	9.9945	(1.0978)	0.3894	(0.0306)
20	0.09	19.6154	(2.0697)	0.7071	(0.0520)

Table 7: Risk estimates and corresponding standard errors for our proposed estimator when the data are generated according to model II and smoothing parameters are selected using the unbiased risk estimate.

M	% subsampling	Ź	$\hat{\Delta}_1$	$\hat{\Delta}_2$		
10	0.05	0.0617	(0.0041)	0.3451	(0.0078)	
10	0.07	0.0681	(0.0043)	0.3498	(0.0074)	
10	0.09	0.0574	(0.0041)	0.3427	(0.0085)	
15	0.05	0.2226	(0.0193)	0.6905	(0.0257)	
15	0.07	0.4622	(0.0680)	0.6909	(0.0253)	
15	0.09	0.6438	(0.0708)	0.8038	(0.0463)	
20	0.05	3.6000	(0.4421)	1.2193	(0.0208)	
20	0.07	8.6383	(1.1900)	1.3306	(0.0316)	
20	0.09	10.0914	(1.4934)	1.3546	(0.0369)	

Table 8: Risk estimates and corresponding standard errors for our proposed estimator when the data are generated according to model III and smoothing parameters are selected using the unbiased risk estimate.

M	% subsampling		$\hat{\Delta}_1$	$\hat{\Delta}_2$		
10	0.05	0.0116	(0.0006)	0.2573	(0.0051)	
10	0.07	0.0126	(0.0007)	0.2665	(0.0064)	
10	0.09	0.0113	(0.0006)	0.2537	(0.0056)	
15	0.05	0.0325	(0.0012)	0.5596	(0.0077)	
15	0.07	0.0421	(0.0027)	0.6065	(0.0131)	
15	0.09	0.0365	(0.0014)	0.5835	(0.0082)	
20	0.05	0.0659	(0.0019)	0.9159	(0.0105)	
20	0.07	0.0603	(0.0009)	0.8904	(0.0066)	
20	0.09	0.0615	(0.0012)	0.8935	(0.0078)	

Table 9: Risk estimates and corresponding standard errors for our proposed estimator when the data are generated according to model IV and smoothing parameters are selected using the unbiased risk estimate.

M	% subsampling	2	$\hat{\Delta}_1$	$\hat{\Delta}_2$		
10	0.05	0.4202	(0.0165)	0.3159	(0.0099)	
10	0.07	0.4674	(0.0187)	0.3349	(0.0100)	
10	0.09	0.6244	(0.0363)	0.3887	(0.0149)	
15	0.05	0.7857	(0.0262)	0.6157	(0.0137)	
15	0.07	0.8649	(0.0260)	0.6548	(0.0145)	
15	0.09	1.0203	(0.0425)	0.7163	(0.0195)	
20	0.05	1.0288	(0.0203)	0.8323	(0.0156)	
20	0.07	1.1388	(0.0343)	0.9065	(0.0247)	
20	0.09	1.3248	(0.0593)	1.0355	(0.0351)	

Table 10: Risk estimates and corresponding standard errors for our proposed estimator when the data are generated according to model V and smoothing parameters are selected using the unbiased risk estimate.

6 Appendix

6.1 Quadratic risk estimates for simulation study 1

??

Table 11: Risk estimates and corresponding standard errors for our proposed estimator under quadratic loss, Δ_1 when the data are generated according to model I.

		$\hat{\Sigma}_{SS}$		S	S^{λ}	S^{ω}
	M	LosoCV	URE			
	10	0.0010	0.0013	0.4702	0.3926	0.3871
N = 50	20	0.0007	0.0006	0.8495	0.8301	0.8287
	30	0.0003	0.0004	1.1449	1.1926	1.1924
	10	0.0004	0.0004	0.2072	0.1802	0.1777
N = 100	20	0.0002	0.0002	0.3920	0.3858	0.3817
	30	0.0001	0.0001	0.5712	0.6191	0.6109

??

Table 12: Risk estimates and corresponding standard errors for our proposed estimator under quadratic loss, Δ_1 when the data are generated according to model II.

, 1		C		0		
		$\hat{\Sigma}_{S}$	$\hat{\Sigma}_{SS}$		S^{λ}	S^{ω}
	M	LosoCV	URE			
	10	0.0314	0.0411	0.5726	0.5810	0.7758
N = 50	20	0.3266	0.7265	2.3130	5.5964	2.7545
	30	5.0696	4.9073	15.1096	765.7206	28.6820
	10	0.0156	0.0147	0.2479	0.2501	0.3544
N = 100	20	0.1894	0.2017	1.3177	5.1945	4.7634
	30	2.3876	1.6465	9.8175	488.6801	85.9508

??

Table 13: Risk estimates and corresponding standard errors for our proposed estimator under quadratic loss, Δ_1 when the data are generated according to model III.

		$\hat{\Sigma}$	SS	S	S^{λ}	S^{ω}
	M	LosoCV	URE			
	10	0.0562	0.0547	0.5237	0.5810	0.5313
N = 50	20	0.7832	0.8934	2.1419	9.5721	9.1421
	30	8.2650	10.6855	15.2842	407.3659	129.7459
	10	0.0376	0.0449	0.2546	0.2556	0.2661
N = 100	20	0.6260	0.5967	1.3751	3.3281	1.2759
	30	5.7635	6.2824	7.4750	203.6710	10.0634

Table 14: Risk estimates and corresponding standard errors for our proposed estimator under quadratic loss, Δ_1 when the data are generated according to model IV.

		$\hat{\Sigma}_{\scriptscriptstyle S}$	'S	S	S^{λ}	S^{ω}
	M	LosoCV	URE			
	10	0.0134	0.0145	0.4169	0.3987	0.3985
N = 50	20	0.0590	0.0574	0.8810	0.9078	0.9073
	30	0.1351	0.1362	1.2571	1.2570	1.2575
	10	0.0077	0.0078	0.2263	0.2111	0.2104
N = 100	20	0.0549	0.0534	0.4309	0.4127	0.4120
	30	0.1331	0.1320	0.6819	0.6579	0.6565

??

Table 15: Risk estimates and corresponding standard errors for our proposed estimator under quadratic loss, Δ_1 when the data are generated according to model V.

-	C			_		
		$\hat{\Sigma}_{S}$	'S	S	S^{λ}	S^{ω}
	M	LosoCV	URE			
	10	0.3688	0.3599	0.7872	0.8058	1.4774
N = 50	20	0.9770	0.9954	1.6167	1.7840	3.4516
	30	1.6067	1.6151	2.5548	2.4837	4.9027
	10	0.3210	0.3168	0.3913	0.3819	0.8958
N = 100	20	0.9793	0.9774	0.8714	0.8479	2.2110
	30	1.6177	1.6032	1.2967	1.2293	3.4968

6.2 Risk estimates and corresponding standard errors for simulation study 2.

Model	N	M	$\hat{\Delta}_{\scriptscriptstyle 1}(\hat{\Sigma}_{\scriptscriptstyle SS})$	$se(\hat{\Delta}_1(\hat{\Sigma}_{SS}))$	$\hat{\Delta}_2(\hat{\Sigma}_{SS})$	$se(\hat{\Delta}_2(\hat{\Sigma}_{SS}))$	$\hat{\Delta}_{\scriptscriptstyle 1}(S)$	$se(\hat{\Delta}_1(S))$	$\hat{\Delta}_2(S)$	se
1	50	10	0.0023	0.0006	0.0843	0.0099	0.3915	0.0262	1.1924	
1	50	20	0.0009	0.0002	0.0804	0.0062	0.7953	0.0365	5.0792	
1	50	30	0.0006	0.0001	0.0822	0.0064	1.2408	0.0460	12.2989	
1	100	10	0.0007	0.0001	0.0453	0.0042	0.1901	0.0107	0.5800	
1	100	20	0.0003	0.0000	0.0421	0.0034	0.4025	0.0199	2.3150	
1	100	30	0.0002	0.0000	0.0407	0.0040	0.5914	0.0224	5.2940	
2	50	10	0.0709	0.0063	0.3298	0.0082	0.5168	0.0359	1.2156	
2	50	20	1.0948	0.1234	1.1179	0.0108	2.3802	0.1604	5.0130	
2	50	30	13.9982	1.9602	2.3284	0.0161	22.5542	2.8650	12.3822	
2	100	10	0.0449	0.0022	0.2955	0.0047	0.2515	0.0145	0.5566	
2	100	20	0.6322	0.0421	1.0638	0.0064	1.1628	0.0925	2.3893	
2	100	30	7.1979	0.6928	2.2805	0.0091	10.7818	1.4529	5.2753	
3	50	10	0.0573	0.0086	0.0753	0.0061	0.5234	0.0369	1.2228	
3	50	20	0.8747	0.1197	0.1025	0.0085	2.8719	0.2644	5.0775	
3	50	30	8.1496	1.5069	0.0958	0.0077	24.8586	3.9217	12.5350	
3	100	10	0.0200	0.0028	0.0329	0.0028	0.2642	0.0217	0.5750	
3	100	20	0.3360	0.0624	0.0387	0.0038	1.4008	0.1128	2.3517	
3	100	30	3.6555	1.0573	0.0382	0.0043	9.6946	1.1953	5.2919	
4	50	10	0.0170	0.0015	0.2812	0.0067	0.4254	0.0273	1.2228	
4	50	20	0.0600	0.0012	0.8899	0.0082	0.9665	0.0423	5.1032	
4	50	30	0.1378	0.0015	1.6220	0.0074	1.1690	0.0417	12.3825	
4	100	10	0.0088	0.0005	0.2252	0.0046	0.1941	0.0102	0.5676	
4	100	20	0.0543	0.0007	0.8514	0.0043	0.4281	0.0221	2.2750	
4	100	30	0.1333	0.0009	1.5826	0.0037	0.6650	0.0219	5.2777	
5	50	10	0.3956	0.0207	0.2900	0.0078	0.8750	0.0619	1.2395	
5	50	20	0.9995	0.0110	0.7660	0.0063	1.8312	0.0745	5.0307	
5	50	30	1.6198	0.0134	1.1976	0.0090	2.5880	0.1102	12.4199	
5	100	10	0.3194	0.0065	0.2407	0.0037	0.4209	0.0284	0.5530	
5	100	20	0.9774	0.0060	0.7299	0.0041	0.8714	0.0339	2.2297	
5	100	30	1.6032	0.0088	1.1813	0.0051	1.2967	0.0474	5.3014	

Table 16: Risk estimates and corresponding standard errors for our proposed estimator and the sample covariance matrix under models I - IV where smoothing parameters are selected using the unbiased risk estimate.

Model	N	M	$\hat{\Delta}_1(\hat{\Sigma}_{SS})$	$se(\hat{\Delta}_1(\hat{\Sigma}_{SS}))$	$\hat{\Delta}_2(\hat{\Sigma}_{SS})$	$se(\hat{\Delta}_2(\hat{\Sigma}_{SS}))$	$\hat{\Delta}_{\scriptscriptstyle 1}(S)$	$se(\hat{\Delta}_1(S))$	$\hat{\Delta}_2(S)$	se(s)
1	50	10	0.0031	0.0009	0.0941	0.0115	0.4624	0.0249	1.2584	
1	50	20	0.0015	0.0003	0.1065	0.0105	0.8609	0.0543	5.0851	
1	50	30	0.0005	0.0001	0.0778	0.0075	1.1356	0.0396	12.5491	
1	100	10	0.0006	0.0001	0.0477	0.0045	0.2092	0.0124	0.5911	
1	100	20	0.0003	0.0000	0.0410	0.0037	0.3891	0.0161	2.3162	
1	100	30	0.0002	0.0000	0.0457	0.0042	0.5724	0.0211	5.2742	
2	50	10	0.0715	0.0073	0.3476	0.0091	0.5318	0.0415	1.2190	
2	50	20	0.8640	0.1042	1.1204	0.0117	2.2754	0.1813	5.0921	
2	50	30	14.6715	2.0991	2.3440	0.0144	16.2024	1.6967	12.4749	
2	100	10	0.0415	0.0026	0.2854	0.0034	0.2661	0.0170	0.5510	
2	100	20	0.6597	0.0495	1.0718	0.0071	1.3733	0.1096	2.3569	
2	100	30	6.8953	0.6368	2.2727	0.0082	7.3618	0.8281	5.4390	
3	50	10	0.0498	0.0083	0.0736	0.0064	0.5675	0.0425	1.2447	
3	50	20	0.4704	0.0763	0.0972	0.0088	2.5606	0.2129	5.0612	
3	50	30	8.2884	1.6398	0.0823	0.0089	18.9040	2.3564	12.4416	
3	100	10	0.0245	0.0046	0.0379	0.0042	0.2558	0.0163	0.5506	
3	100	20	0.3433	0.0729	0.0404	0.0041	1.4803	0.1345	2.3231	
3	100	30	3.3560	0.6491	0.0392	0.0036	9.3395	0.8295	5.2862	
4	50	10	0.0163	0.0019	0.2692	0.0081	0.4266	0.0286	1.1800	
4	50	20	0.0590	0.0010	0.8836	0.0074	0.8810	0.0399	5.0899	
4	50	30	0.1365	0.0015	1.6123	0.0084	1.2551	0.0433	12.5609	
4	100	10	0.0088	0.0008	0.2246	0.0046	0.2216	0.0131	0.5639	
4	100	20	0.0551	0.0007	0.8476	0.0037	0.4292	0.0198	2.2649	
4	100	30	0.1342	0.0010	1.5769	0.0035	0.6775	0.0222	5.2374	
5	50	10	0.4017	0.0216	0.2988	0.0117	0.7943	0.0523	1.2061	
5	50	20	0.9817	0.0105	0.7555	0.0051	1.6034	0.0775	5.0172	
5	50	30	1.6266	0.0135	1.2043	0.0083	2.5378	0.0861	12.5483	
5	100	10	0.3307	0.0101	0.2507	0.0058	0.3969	0.0235	0.5751	
5	100	20	6.0835	4.9816	1.3637	0.5844	0.8470	0.0327	2.2673	
5	100	30	3.2806	1.6330	1.5457	0.3612	1.2599	0.0439	5.2507	

Table 17: Risk estimates and corresponding standard errors for our proposed estimator and the sample covariance matrix under models I - IV where smoothing parameters are selected using losoCV.

References

- Peter J Bickel and Elizaveta Levina. Regularized estimation of large covariance matrices. *The Annals of Statistics*, pages 199–227, 2008.
- T Tony Cai, Cun-Hui Zhang, Harrison H Zhou, et al. Optimal rates of convergence for covariance matrix estimation. *The Annals of Statistics*, 38(4):2118–2144, 2010.
- Sheung Hun Cheng and Nicholas J Higham. A modified cholesky algorithm based on a symmetric indefinite factorization. *SIAM Journal on Matrix Analysis and Applications*, 19(4):1097–1110, 1998.
- Yixin Fang, Binhuan Wang, and Yang Feng. Tuning-parameter selection in regularized estimations of large covariance matrices. *Journal of Statistical Computation and Simulation*, 86(3):494–509, 2016.
- LR Haff. Empirical bayes estimation of the multivariate normal covariance matrix. *The Annals of Statistics*, pages 586–597, 1980.
- Adam J Rothman, Elizaveta Levina, and Ji Zhu. Generalized thresholding of large covariance matrices. *Journal of the American Statistical Association*, 104(485):177–186, 2009.
- Jun Shao. Linear model selection by cross-validation. *Journal of the American statistical Association*, 88(422):486–494, 1993.
- Binhuan Wang. CVTuningCov: Regularized Estimators of Covariance Matrices with CV Tuning, 2014. URL https://CRAN.R-project.org/package=CVTuningCov. R package version 1.0.