# Disciplina: Processamento Digital de Sinais

Aula\_1

**Ambiente Blackboard** 

## Apresentação

- 1) Histórico de Processamento Digital de Sinais (PDS)
- 2) Histórico do Processador Digital de Sinais (DSP)
- 3) Amostrando um sinal exemplo
- 4) Conceitos de Sinais e sistemas discretos
- 5) Tarefas programas

# Histórico de Processamento Digital de Sinais (PDS)

- Exploração Espacial
- Radar e Sonar
- Exploração de Petróleo
- Imagens Médicas

## Histórico - PDS



Filtro digital - Exemplos
Geração e Deteção de DTMF - Exemplos
Redução de ruídos - Exemplo
Cancelamento de eco - Exemplos
Codificação de voz

Filtro digital - Exemplos Geração e Deteção de DTMF – Exemplos

Gerar e detectar tons DTMF

|       | 1209Hz | 1336Hz | 1477Hz | 1633Hz |
|-------|--------|--------|--------|--------|
| 697Hz | 1      | 2      | 3      | A      |
| 770Hz | 4      | 10     | 6      | В      |
| 852Hz | 7      | 8      | 9      | C      |
| 941Hz | *      | 0      | #      | D      |

Redução de ruídos - Exemplo Cancelamento de eco – Exemplos

#### LEC APLICADO EM UMA REDE PSTN



Redução de ruídos - Exemplo Cancelamento de eco – Exemplos

#### ECO DE LINHA

Algoritmos de cancelamento de eco de linha (LEC) são utilizados para a redução da intensidade do eco indesejável.



#### Codificação de voz

#### ESTRUTURA GERAL



## Sistema para PDS

SISTEMA PARA PROCESSAMENTO DIGITAL DE SINAIS



#### Histórico - DSP

#### Primeiro dispositivo comercial TMS320C10

```
Texas Instruments (TI), família TMS320;
```

Analog Devices (AD), família ADSP, Blackfin;

Motorola;

Altera/Xilinx – FPGA (DSPBuilder/System

Generator);

Microchip (dsPIC)

#### **DSP**

Material da Analog Devices – Guia de DSP para iniciantes

```
https://www.analog.com/en/design-
center/landing-pages/001/beginners-guide-to-
dsp.html#
```

Arquitetura da família Blackfin

https://www.analog.com/en/products/landingpages/001/blackfin-architecture.html

Considere um sinal senoidal

$$y(t) = A.sin(w_0t)$$

• Com:  $W_{0=2\pi f_{0}}$ 

$$y(t) = A.sin(2\pi f_0 t)$$

 Utilizando um período de amostragem para adquirir amostras do sinal contínuo. O sinal discreto no tempo é dado por:

$$y[n] = A.sin[2\pi f_0 nT_s]$$
$$T_s = \frac{1}{F}$$

Onde:

Com:

- Fs é a frequencia de amostragem.
- n é um número inteiro

 Utilizando um período de amostragem para adquirir amostras do sinal contínuo. O sinal discreto no tempo é dado por:

$$y[n] = A.sin[2\pi \frac{f_0}{F_s}n]$$

- Exemplo: Gere um sinal senoidal cm frequencia de 100Hz.
- Amostre esse sinal com uma frequencia de amostragem de 8kHz.
- Plote o sinal original e o correspondente discreto no tempo.
- Obs: Use o programa amostr1\_UV.m para gerar esses sinais.

- Repita o exemplo anterior para diferentes frequencias do sinal original e de frequencia de amostragem.
- Por exemplo 200Hz, 400Hz, 1kHz, 2kHz, para uma frequencia de amostragem de 8kHz.
- Fixe a frequencia do sinal(400Hz) e varie a frequencia de amostragem.

## Conceitos de Sinais e sistemas discretos Representações de um sinal discreto

| Representation | Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Functional     | $x[n] = \begin{cases} \left(\frac{1}{2}\right)^n, & n \ge 0\\ 0, & n < 0 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Tabular        | $\frac{n \mid \dots -2 -1  0  1  2  3  \dots}{x[n] \mid \dots  0  0  1  \frac{1}{2}  \frac{1}{4}  \frac{1}{8}  \dots}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Sequence       | $x[n] = \left\{  \dots  0  \frac{1}{2}  \frac{1}{4}  \frac{1}{8}  \dots  \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Pictorial      | x[n] $x[n]$ |  |

# Sinal discreto no tempo

#### 2.1 Discrete-time signals



- Impulso Unitário
- Degrau Unitário
- Sequência Sinusoidal
- Sequência Exponencial

Impulso Unitário

$$\delta[n] \triangleq \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$



OBS: Implementar a função impulso unitário em Matlab

#### Degrau Unitário

$$u[n] \triangleq \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$



OBS: Implementar a função degrau em Matlab

#### Sequência Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi), \quad -\infty < n < \infty$$



OBS: Implementar a função senoidal em Matlab com fo = 100Hz e FS = 8kHz e duração de 1 segundo

#### Sequência Exponencial



OBS: Implementar a sequência exponencial em Matlab com A = 1, a = 0, 5, a = -0,5 e a = 2

## Tarefas - programas

Apresentar um exemplo em Matlab

 Implementar um programa para gerar os sinais básicos

# Disciplina: Processamento Digital de Sinais

Aula\_1

**Ambiente Blackboard**