Plan du cours

I.	Définition du cercle			
н.	Vocabulaire du cercle	1		
III.	II. Construction de triangles			
	1. Arcs de cercle	2		
	2. Construction de triangles	3		
	3. Les triangles particuliers	3		

Activité d'introduction

Au cours d'un jeu sur la plage, Ben, Chiara et Denis se sont positionnés à 5 m d'Alice.

- (a) Sur votre cahier, représenter la position d'Alice par un point A. En prenant 1 cm pour 1 m, représenter toutes les positions possibles des 3 autres enfants.
- (b) Choisir un point B pour représenter la position de Ben. Représenter les positions possibles de Chiara et Denis, sachant que Chiara est à 10 m de Ben et que Denis est à 7 m de Ben.

I. Définition du cercle

Définition

Soit O un point du plan et r un nombre strictement positif. Le cercle (C) de centre 0 et de rayon r est l'ensemble des points situés à la même distance du centre O.

Exemple: Tracer un cercle de centre O et de rayon 3,4 cm.

II. Vocabulaire du cercle

- Le **cercle** (C_1) de **centre** E passe par les points A, B, C, D, F.
- Le segment [EF] est un rayon du cercle (C_1) .
- Le segment [AC] est une corde de ce cercle.
- E est le **milieu** du **diamètre** [AD]. On a $AD = 2 \times AE$

Définition

- Un rayon est un segment qui a pour extrémités le centre du cercle et un point du cercle.
- Un diamètre d'un cercle est une corde passant par le centre du cercle. Sa longueur est égale au double de celle du rayon.
- Une corde est un segment joignant deux points du cercle.

Exercice d'application 1

Exercice 1

Compléter par Vrai ou Faux.

Les points M, N et O sont les centres respectifs des cercles (\mathcal{C}_1) , (\mathcal{C}_2) et (\mathcal{C}_3) .

1.	[AB] est un diamètre du cercle (\mathfrak{C}_2).	
2.	A et C sont les points d'intersection des cercles (\mathcal{C}_1) et (\mathcal{C}_2) .	
3.	[CD] est une corde de deux cercles.	
4.	Le point A appartient aux trois cercles.	
5.	MC est le rayon du cercle (\mathscr{C}_1).	
6.	Le cercle (\mathcal{C}_2) passe par les points A, B et C.	

Exercice 2

Tracer:

- **a.** Le cercle (\mathcal{C}_1) de centre O passant par A.
- **b.** Le cercle (\mathcal{C}_2) de centre B et de rayon 1,6 cm.
- **c.** Le cercle (\mathscr{C}_3) de centre C et de rayon CO.
- **d.** Le cercle (\mathscr{C}_4) de diamètre [AD].

III. Construction de triangles

1. Arcs de cercle

Définition

Un arc de cercle est une portion du cercle délimité par deux points sur le cercle.

Exemple:

Arcs de cercle particuliers

Si [AB] est un du cercle,

l'arc AB est un

Si les rayons [OA] et [OB] sont,

l'arc AB est un

2. Construction de triangles

Définition

- Un triangle est une figure géométrique qui possède 3 côtés.
- Dans le triangle ABC : [AB], [BC] et [AC] sont les côtés de ce triangle. A, B et C sont les sommets.

Construire le triangle ABC tel que BC =5 cm, AB = 6 cm et AC = 4 cm

3. Les triangles particuliers

Le triangle rectangle

Un triangle rectangle est un triangle qui possède un angle droit.

Construction:

Le triangle isocèle

Définition

Un triangle isocèle est un triangle qui possède deux côtés de même mesure.

Construction:

Le triangle équilatéral

Définition

Un triangle équilatéral est un triangle qui possède trois côtés de même mesure.

Construction:

Tracer un triangle équilatéral EFG tel que GF = 5 cm.