Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Задание 1. Поисковый анализ, описательная статистика

Отчёт О выполненном задании

> Выполнил: студент 523 группы Латыпов Ш. И. latypovshamil2001@gmail.com

Описание задачи

Выполняется на данных "Термодинамика". В этом задании нет разделения признаков на предикторы и целевые.

Для каждого признака отдельно указать шкалу. Для каждого признака отдельно привести описательные статистики.

- набор описательных статистик зависит от шкалы
- нарисовать распределение

Найти функциональные (точные, а не статистические) связи между признаками.

• речь о довольно простых связях, раскрывающих смысл признаков

Данные из файла "ТемпИзменяется.data"

Характеристики данных

В данной секции приведены графики и описательные статистики для столбов из данных файла "ТемпИзменяется.data".

1. PRES - Давление

PRES			
count	10	0000.0	000000
mean		137.5	583220
std		14.4	112738
min		112.5	501200
25%		125.3	138475
50%		137.5	536800
75%		150.1	186400
max		162.4	194900
		4.0	

Name: PRES, dtype: float64

Медиана: 137.5368

Дисперсия: 207.7270033612751

Коэффициент вариации: 0.10475650681129405

2. ТЕМРС - Температура

TEMPC	
count	10000.000000
mean	92.971691
std	14.431558
min	68.013000
25%	80.498000
50%	93.065000
75%	105.510250
max	117.991000
Name .	TEMPS dtures fl

Name: TEMPC, dtype: float64

Медиана: 93.065

Дисперсия: 208.269874792407

3. ZMF\$1 - Общая молярная концентрация компонента 1

ZMF\$1 count 10000.000000 mean 0.246731 std 0.306152 min 0.000000 25% 0.002847 50% 0.086733 75% 0.424530 1.000000 max

Name: ZMF\$1, dtype: float64 Медиана: 0.0867329699999999 Дисперсия: 0.09372908434335839

Коэффициент вариации: 1.2408332746450976

4. ZMF\$2 - Общая молярная концентрация компонента 2

ZMF\$2 10000.000000 count mean 0.253145 0.306498 std 0.000000 min 25% 0.003224 50% 0.097082 75% 0.445326 0.999986 max Name: ZMF\$2, dtype: float64

Manuel 2 no 2002466

Медиана: 0.097082166

Дисперсия: 0.09394084751785838

Коэффициент вариации: 1.210760385627354

5. ZMF\$3 - Общая молярная концентрация компонента 3

ZMF\$3 10000.000000 count mean 0.253402 std 0.309071 min 0.000000 25% 0.003417 50% 0.094978 75% 0.447298 0.999999

Name: ZMF\$3, dtype: float64

Медиана: 0.0949779905

Дисперсия: 0.09552470510851085

6. ZMF\$4 - Общая молярная концентрация компонента 4

ZMF\$4	
count	10000.000000
mean	0.246722
std	0.305948
min	0.000000
25%	0.002701
50%	0.087613
75%	0.431056
max	0.999924
NI 714	ceta January Class

Name: ZMF\$4, dtype: float64

Медиана: 0.087612899

Дисперсия: 0.09360390437230814

Коэффициент вариации: 1.240049905674024

7. SLIQ - Насыщение жидкости

SLIQ	
count	10000.000000
mean	0.835697
std	0.329341
min	0.00000
25%	1.000000
50%	1.000000
75%	1.000000
max	1.000000
Name:	SLTO, dtype: float64

Медиана: 1.0

Дисперсия: 0.1084654800277154

Коэффициент вариации: 0.3940911790215165

8. SGAS - Насыщение газа

SGAS	
count	10000.000000
mean	0.164303
std	0.329341
min	0.000000
25%	0.000000
50%	0.000000
75%	0.000000
max	1.000000
Namo	CCAC dtymas float

Name: SGAS, dtype: float64

Медиана: 0.0

Дисперсия: 0.10846548002771543

9. DLIQ - Плотность жидкости

DLIQ	
count	9633.000000
mean	620.198601
std	138.360571
min	165.668900
25%	524.981600
50%	629.035800
75%	736.523400
max	828.607700
	DUTO II CI

Name: DLIQ, dtype: float64

Медиана: 629.0358

Дисперсия: 19143.64763170985

Коэффициент вариации: 0.22309075023641178

10. DGAS - Плотность газа

DGAS	
count	2483.000000
mean	106.540499
std	34.544143
min	60.023900
25%	82.205950
50%	97.091700
75%	121.278500
max	281.007500
Namo	DCAS dtypos float

Name: DGAS, dtype: float64

Медиана: 97.0917

Дисперсия: 1193.2977996526124

Коэффициент вариации: 0.3242348520258719

11. VISLIQ - Вязкость жидкости

VISLIQ	
count	9633.000000
mean	0.241949
std	0.179903
min	0.020040
25%	0.090610
50%	0.170800
75%	0.372200
max	0.707700

Name: VISLIQ, dtype: float64

Медиана: 0.1708

Дисперсия: 0.032364981555879406

12. VISGAS - Вязкость жидкости

VISGAS	
count	2483.000000
mean	0.016788
std	0.002093
min	0.014540
25%	0.015570
50%	0.016140
75%	0.017175
max	0.031610

Name: VISGAS, dtype: float64

Медиана: 0.01614

Дисперсия: 4.382116162637604e-06

Коэффициент вариации: 0.12469437964032014

13. ХМГ\$1 - Молярная концентрация компонента 1 в жидком состоянии

XMF\$1	
count	9633.000000
mean	0.157884
std	0.170674
min	0.000000
25%	0.002373
50%	0.074389
75%	0.329771
max	0.842648
Name:	XMF\$1, dtype: float64

Медиана: 0.074388686

Дисперсия: 0.029129688625003744

Коэффициент вариации: 1.0810073186202844

14. XMF\$2 - Молярная концентрация компонента 2 в жидком состоянии

XMF\$2	
count	9633.000000
mean	0.262969
std	0.309608
min	0.000000
25%	0.003811
50%	0.111961
75%	0.469025
max	0.999986

Name: XMF\$2, dtype: float64

Медиана: 0.111960956

Дисперсия: 0.09585734448416063

15. ХМГ\$3 - Молярная концентрация компонента 3 в жидком состоянии

XMF\$3	
count	9633.000000
mean	0.278136
std	0.311333
min	0.000000
25%	0.005897
50%	0.140659
75%	0.497820
max	0.999999

Name: XMF\$3, dtype: float64

Медиана: 0.140659134

Дисперсия: 0.09692819018277747

Коэффициент вариации: 1.119356756793551

16. ХМГ\$4 - Молярная концентрация компонента 4 в жидком состоянии

XMF\$4			
count	963	33.000000	3
mean		0.301011	l
std		0.311298	3
min		0.000000	3
25%		0.006924	1
50%		0.194563	3
75%		0.555335	5
max		0.999924	1
Mama	VME d A	dtunar	£1.

Name: XMF\$4, dtype: float64

Медиана: 0.194563119

Дисперсия: 0.09690668785255921

Коэффициент вариации: 1.0341769493771866

17. YMF\$1 - Молярная концентрация компонента 1 в газообразном состоянии

YMF\$1	
count	2483.000000
mean	0.894771
std	0.121404
min	0.366777
25%	0.850879
50%	0.938783
75%	0.985841
max	1.000000

Name: YMF\$1, dtype: float64

Медиана: 0.938783185

Дисперсия: 0.014738862323736899

18. YMF\$2 - Молярная концентрация компонента 2 в газообразном состоянии

YMF\$2 count 2483.000000 mean 0.078875 0.121086 std 0.000000 min 25% 0.000424 50% 0.014588 75% 0.111353 max 0.616548

Name: YMF\$2, dtype: float64

Медиана: 0.014588491

Дисперсия: 0.014661890898673058

Коэффициент вариации: 1.5351604935433043

19. YMF\$3 - Молярная концентрация компонента 3 в газообразном состоянии

YMF\$3 count 2483.000000 mean 0.025527 std 0.034145 min 0.000000 25% 0.000267 50% 0.006574 75% 0.045858 0.164870

Name: YMF\$3, dtype: float64

Медиана: 0.00657443

Дисперсия: 0.0011658637543114753

Коэффициент вариации: 1.3375992499774778

20. YMF\$4 - Молярная концентрация компонента 4 в газообразном состоянии

YMF\$4 count 2483.000000 0.000827 mean std 0.001589 0.000000 min 25% 0.000153 50% 0.000447 75% 0.000818 0.020949

Name: YMF\$4, dtype: float64

Медиана: 0.000446577

Дисперсия: 2.5243429562958873e-06 Коэффициент вариации: 1.921694029181077

Корреляционная зависимость

Для всех данных исследована корреляционная зависимость, используя стандартные функции библиотеки pandas.

```
import pandas as pd
df = pd.read_csv('TemпИзменяется.data', sep='\s+')

# Вычисляем матрицу корреляции для всех пар числовых переменных correlation_matrix = df.corr()

import seaborn as sns import matplotlib.pyplot as plt

# Построение тепловой карты матрицы корреляции plt.figure(figsize=(12, 10)) sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap='coolwarm') plt.savefig("corr_table.jpg")
```


Рис. 1: Таблица коррреляционной зависимости

Функциональная зависимость

После визуального осмотра данных, было замечено, что сумма параметров ZMF, XMF и YMF по всем компонентам равна 1, т.е.:

$$XMF\$1 + XMF\$2 + XMF\$3 + XMF\$4 = 1,$$

 $YMF\$1 + YMF\$2 + YMF\$3 + YMF\$4 = 1,$
 $ZMF\$1 + ZMF\$2 + ZMF\$3 + ZMF\$4 = 1.$

Для поиска функциональной зависимости был проведен регрессионный анализ. С помощью линейной регрессии можно попытаться подобрать модели, которые описывают зависимости между переменными.

Для сравнения были выбраны некоторые пары переменных:

• Давление (PRES) и Температура (TEMPC):

Можно исследовать, как температура влияет на давление смеси. Если данные соответствуют закону Гей-Люссака для идеальных газов, где давление пропорционально температуре при постоянном объеме, можно ожидать положительную корреляцию.

• Плотность (DLIQ или DGAS) и Давление (PRES):

Плотность может быть функцией давления, особенно в случае сжимаемых сред, таких как газы.

• Вязкость (VISLIQ или VISGAS) и Температура (TEMPC):

Вязкость жидкостей и газов часто зависит от температуры, при этом вязкость жидкостей обычно уменьшается с повышением температуры.

• Молярная концентрация компонентов (XMFc, YMFc) и Давление (PRES):

Концентрации фаз могут изменяться в зависимости от давления, что может быть важно при изучении фазовых переходов.

• Насыщенность фаз (SLIQ или SGAS) и Давление (PRES):

Изменение давления может влиять на равновесие между жидкой и газовой фазами, что в свою очередь влияет на насыщенность.

Линейная зависимость искалась через библиотеку statsmodels.

```
import statsmodels.api as sm
```

```
# Предположим, что у вас есть DataFrame df с колонками 'PRES' и 'TEMPC'
# 'PRES' будет зависимой переменной, а 'TEMPC' - независимой

# Добавляем константу к независимым переменным для интерцепта

X = sm.add_constant(df['TEMPC']) # TEMPC - независимая переменная

y = df['PRES'] # PRES - зависимая переменная

# Построение модели линейной регрессии

model = sm.OLS(y, X).fit()

# Просмотр статистики модели

print(model.summary())
```

По результатам этого анализа, было выявлено, что:

- Между PRES и TEMPC нет линейной зависимости.
- Mежду DLIQ и PRES нет линейной завсимости.
- Между DGAS и PRES есть очень незначительная линейная зависимость. R-squared принимает значение 0.079.
- Mежду VISLIQ и TEMPC нет линейной зависимости.
- Между VISGAS и TEMPC нет линейной зависимости.
- XMF и PRES: Только первый компонент имеет линейную зависимость от давления, со значением R-squared 0.311.
- YMF и PRES: Ни у одного из компонентов нет линейной зависимости от PRES, для всех компонентов значение R-squared не превышает 0.01.
- SLIQ и SGAS линейной зависимости с давлением PRES нет.

Данные из файла "ТемпПостоянная.data"

Характеристики данных

В данной секции приведены графики и описательные статистики для столбов из данных файла "ТемпПостоянная.data".

1. PRES - Давление

PRES		
count	10000.000000)
mean	137.529504	ļ
std	14.306405)
min	112.509100)
25%	125.200150)
50%	137.598750)
75%	149.699350)
max	162.498000)
	DDEG JANGE CI	

Name: PRES, dtype: float64

Медиана: 137.59875

Дисперсия: 204.67321131599786

Коэффициент вариации: 0.10402425756221827

2. ZMF\$1 - Общая молярная концентрация компонента 1

ZMF\$1	
count	10000.000000
mean	0.249655
std	0.304854
min	0.000000
25%	0.003188
50%	0.093278
75%	0.439522
max	1.000000
Name:	7MF\$1. dtype: flo

Name: ZMF\$1, dtype: float64

Медиана: 0.093277782

Дисперсия: 0.09293615312873527

Коэффициент вариации: 1.2211002604499697

3. ZMF\$2 - Общая молярная концентрация компонента 2

ZMF\$2 count 10000.000000 mean 0.251731 std 0.309137 min 0.000000 25% 0.003112 50% 0.092001 75% 0.441189 0.999995

Name: ZMF\$2, dtype: float64 Медиана: 0.09200103949999999 Дисперсия: 0.09556564434651597

4. ZMF\$3 - Общая молярная концентрация компонента 3

ZMF\$3 10000.000000 count 0.253819 mean 0.307950 std 0.000000 min 25% 0.003316 50% 0.095318 75% 0.446651 max 0.999992

Name: ZMF\$3, dtype: float64

Медиана: 0.095318283

Дисперсия: 0.09483291427769842

Коэффициент вариации: 1.2132621773511694

5. ZMF\$4 - Общая молярная концентрация компонента 4

ZMF\$4 count 10000.000000 mean 0.244794 0.305536 std 0.000000 min 25% 0.002815 50% 0.083368 75% 0.429631 max 0.999991 Name: ZMF\$4, dtype: float64

Медиана: 0.0833678665

Дисперсия: 0.09335201536404249

Коэффициент вариации: 1.2481313335750264

6. SLIQ - Насыщение жидкости

SLIQ count 10000.000000 mean 0.832826 std 0.328466 min 0.000000 25% 0.952835 50% 1.000000 75% 1.000000 max 1.000000

Name: SLIQ, dtype: float64

Медиана: 1.0

Дисперсия: 0.10789017478309514

7. SGAS - Насыщение газа

SGAS			
count	10	000.000	900
mean		0.167	174
std		0.3284	166
min		0.0000	900
25%		0.0000	900
50%		0.0000	900
75%		0.0473	165
max		1.0000	900
Namo :	CCAC	dtyno	£100

Name: SGAS, dtype: float64

Медиана: 0.0

Дисперсия: 0.10789017478309514

Коэффициент вариации: 1.9648129777953396

8. DLIQ - Плотность жидкости

DLIQ	
count	9652.000000
mean	619.146622
std	136.784476
min	170.470600
25%	519.379775
50%	625.763250
75%	737.950125
max	820.266200
Name:	DLIQ, dtype: float64

Медиана: 625.76325

Дисперсия: 18709.992947635492

Коэффициент вариации: 0.2209242066172669

9. DGAS - Плотность газа

DGAS	
count	2572.000000
mean	107.172287
std	35.191692
min	63.632900
25%	82.373425
50%	97.100100
75%	122.126700
max	319.476200
	DOLO 11 C1

Name: DGAS, dtype: float64

Медиана: 97.1001

Дисперсия: 1238.4551775964776

10. VISLIQ - Вязкость жидкости

VISLIQ	
count	9652.000000
mean	0.239078
std	0.177803
min	0.020430
25%	0.088425
50%	0.166250
75%	0.378900
max	0.637800

Name: VISLIQ, dtype: float64

Медиана: 0.16625

Дисперсия: 0.03161383001633561

Коэффициент вариации: 0.7437028575714999

11. VISGAS - Вязкость жидкости

VISGAS	6	
count	2572.000000	
mean	0.016818	
std	0.002164	
min	0.014890	
25%	0.015540	
50%	0.016160	
75%	0.017250	
max	0.036880	
Namo	VITCOAC dtymos	£10

Name: VISGAS, dtype: float64

Медиана: 0.01616

Дисперсия: 4.681500272388582e-06

Коэффициент вариации: 0.12864943919540744

12. ХМГ\$1 - Молярная концентрация компонента 1 в жидком состоянии

XMF\$1	
count	9652.000000
mean	0.160512
std	0.170357
min	0.000000
25%	0.002663
50%	0.078029
75%	0.333554
max	0.780166

Name: XMF\$1, dtype: float64

Медиана: 0.0780292905

Дисперсия: 0.02902153617985588

13. ХМГ\$2 - Молярная концентрация компонента 2 в жидком состоянии

XMF\$2 count 9652.000000 0.261190 mean 0.312383 std 0.000000 min 0.003529 25% 50% 0.102800 75% 0.465752 0.999995 max

Name: XMF\$2, dtype: float64

Медиана: 0.102800167

Дисперсия: 0.09758312882020234

Коэффициент вариации: 1.1959986380307261

14. ХМГ\$3 - Молярная концентрация компонента 3 в жидком состоянии

XMF\$3 count 9652.000000 mean 0.279997 std 0.310375 min 0.000000 25% 0.005504 50% 0.143455 75% 0.500806 0.999992

Name: XMF\$3, dtype: float64

Медиана: 0.143455357

Дисперсия: 0.09633278723731827

Коэффициент вариации: 1.108496265278872

15. ХМГ\$4 - Молярная концентрация компонента 4 в жидком состоянии

XMF\$4 9652.000000 count 0.298301 mean std 0.311702 min 0.000000 25% 0.007659 50% 0.185055 75% 0.557264 0.999991

Name: XMF\$4, dtype: float64 Медиана: 0.18505541050000002 Дисперсия: 0.09715797102289259

16. YMF\$1 - Молярная концентрация компонента 1 в газообразном состоянии

YMF\$1 count 2572.000000 mean 0.892953 std 0.120905 min 0.413779 25% 0.858682 50% 0.929505 75% 0.984751 max 1.000000

Name: YMF\$1, dtype: float64

Медиана: 0.929505409

Дисперсия: 0.014618107471184175 Коэффициент вариации: 0.1353995108513966

17. YMF\$2 - Молярная концентрация компонента 2 в газообразном состоянии

YMF\$2 count 2572.000000 mean 0.079930 std 0.120822 min 0.000000 25% 0.000347 50% 0.016565 75% 0.112880 max 0.560332

Name: YMF\$2, dtype: float64 Медиана: 0.01656519449999998 Дисперсия: 0.014597961238458723

Коэффициент вариации: 1.5115892734971743

18. YMF\$3 - Молярная концентрация компонента 3 в газообразном состоянии

YMF\$3 count 2572.000000 mean 0.026312 std 0.033177 min 0.000000 25% 0.000189 50% 0.007220 75% 0.050816 0.129821

Name: YMF\$3, dtype: float64

Медиана: 0.0072198205

Дисперсия: 0.0011007449023887662

19. YMF\$4 - Молярная концентрация компонента 4 в газообразном состоянии

Корреляционная зависимость

Рис. 2: Таблица коррреляционной зависимости

Функциональная зависимость

$$XMF\$1 + XMF\$2 + XMF\$3 + XMF\$4 = 1,$$

 $YMF\$1 + YMF\$2 + YMF\$3 + YMF\$4 = 1,$
 $ZMF\$1 + ZMF\$2 + ZMF\$3 + ZMF\$4 = 1.$

Результаты поиска линейной зависимости:

- Mежду DLIQ и PRES нет линейной завсимости.
- Между DGAS и PRES есть очень незначительная линейная зависимость. R-squared принимает значение 0.081.
- XMF и PRES: Только первый компонент имеет линейную зависимость от давления, со значением R-squared 0.313.
- YMF и PRES: Ни у одного из компонентов нет линейной зависимости от PRES, для всех компонентов значение R-squared не превышает 0.015.
- SLIQ и SGAS линейной зависимости с давлением PRES нет.