Example 2.4

For an AM modulator with a carrier frequency of 150 kHz and a modulating signal frequency of 10kHz, determine the :

- i) Frequency for the upper and lower sideband.
- ii) Bandwidth.

Sketch the output frequency spectrum.

Solution

i) The lower and upper side band frequency

$$f_{LSB} = f_c - f_m$$

$$= 150kHz - 10kHz$$

$$= 140 kHz$$

$$f_{USB} = f_c + f_m$$

$$= 150kHz + 10 kHz$$

$$= 160kHz$$

ii) Bandwidth

$$BW = 2fm$$

$$= 2 (10) kHz$$

$$= 20 kHz$$

The output frequency spectrum is as shown,

e) Power content in AM

The power in the AM signal is the total power in the carrier and the power in the sidebands,

$$P_T$$
 = Carrier power + LSB power + USB power
 P_T = P_C + P_{LSB} + P_{USB}

Note that ,
$$V_{LSB} = V_{USB} = \underline{m_a Vc} \text{ (peak value)}$$

$$= \underline{maVc} \text{ (r.m.s value)}$$

Therefore,
$$P_T = V_C^2 / 2R + m_a^2 V_C^2 / 8R + m_a^2 V_C^2 / 8R$$

 $= V_c^2 / 2R + m_a^2 V_c^2 / 4R$
 $= V_c^2 / 2R (1 + m_a^2 / 2)$

where $V_c^2 / 2R = P_c$, giving,

$$P_{T} = P_{C} (1 + m_{a}^{2} / 2)$$
 (2.11)

So, the total power in the AM wave depends on the carrier power and modulation index.

Example 2.5

For an AM wave with a peak unmodulated carrier voltage $V_c=20~V$, a load resistance $R_L=20~\Omega$ and a modulation index, $m_a=0.2$, determine;

- a) Power contained in the carrier and the upper and lower sidebands.
- b) Total sideband power
- c) Total power of the modulated wave

Solution;

a) The carrier power is:

$$P_{c} = \frac{(V_{c})^{2}}{2R}$$

$$= \frac{20^{2}}{2(20)}$$

$$= \underline{10W}$$

The upper and lower sideband power is;

$$P_{USB} = P_{LSB} = \underbrace{\frac{m_a^2 V_c^2}{8R}}_{= 0.1W} = \underbrace{\frac{m_a^2 P_c}{4}}_{= 0.1W}$$

b) Total sideband power,

$$P_{SB}$$
 = $m_a^2 P_c / 2$
= $(0.2)^2 (10) / 2$
= $0.2 W$
or, $P_{SB} = P_{USB} + P_{LSB}$
= $0.1 + 0.1$
= $0.2 W$

c) The total power in the modulated wave,

$$P_{T} = P_{c} [1 + m_{a}^{2} / 2]$$

$$= 10 [1 + (0.2)^{2} / 2]$$

$$= 10.2 W$$

or,
$$P_T = P_c + P_{SB}$$

= 10 + 0.2
= 10.2 W