This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

(Currently Amended) Liquid-crystalline medium comprising
 at least one compound of formula I

$$R^{11} - \begin{bmatrix} A \end{bmatrix}_a & B \\ -Z^{11} & O \\ L^4 & L^2 \end{bmatrix}$$

and

- at least one compound of formula II

$$R^{21} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{f} R^{22}$$
 II

in which

L¹, L², L³ and L⁴ are each, independently of one another, H or F;

R¹¹ is H, a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where, in addition, one or more CH2 groups in these radicals may each be replaced, independently of one another, by -C≡C-, -CH=CH-, -O-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

R²¹ and R²² are each, independently of one another, H, or an unsubstituted alkyl radical having 1 to 15 carbon atoms, where, in addition, one or more CH₂ groups in these radicals may each be replaced, independently of one another, by
-C≡C-, -CH=CH-, -O-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

Y¹¹ is F, Cl, CN, SF₅, SCN, NCS, a halogenated alkyl radical, a halogenated alkenyl radical, a halogenated alkoxy radical

or a halogenated alkenyloxy radical, each having up to 6 carbon atoms;

Z¹¹ is a single bond, -CH₂-CH₂-, -CH=CH-, -CH=CF-, -CF=CH-, -CF=CF-, -C \equiv C-, -COO-, -OCO-, -CF₂O- or -OCF₂-;

a is 0 or 1;

b, c, d and e are each, independently of one another, 0, 1 or 2;

f is 1;

of the formula III

$$R^{31} \longrightarrow H \longrightarrow H \longrightarrow Q$$

$$III$$

in which

 L^{31} is H or F;

is H, a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where one or more CH2 groups in these radicals may also be replaced by -C≡C-, -CH=CH-, -O-, -CO-O- or -O-CO-in such a way that O atoms are not linked directly to one another;

R³² is H, F, Cl, a halogenated or unsubstituted alkyl radical having 1 to 15

carbon atoms, where one or more CH₂ groups in these radicals

may also be replaced by -C≡C-, -CH=CH-, -O-, -CO-O- or

-O-CO- in such a way that O atoms are not linked directly to one another; and

i is 0 or 1.

2. (Previously Presented) The liquid -crystalline medium according to Claim 1, comprising

- at least one compound of the formula IA

$$R^{11}$$
 A B Z^{11} O Y^{11} A A

and

- at least one compound of the formula II

in which

 L^2

is H or F;

R¹¹ is H, a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where, in addition, one or more CH2 groups in these radicals may each be replaced, independently of one another, by -C≡C-, -CH=CH-, -O-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

R²¹ and R²² are each, independently of one another, H, or an unsubstituted alkyl radical having 1 to 15 carbon atoms, where, in addition, one or more CH2 groups in these radicals may each be replaced, independently of one another, by
-C≡C-, -CH=CH-, -O-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

Y11 is F, Cl, CN, SF5, SCN, NCS, a halogenated alkyl radical, a

halogenated alkenyl radical, a halogenated alkoxy radical or a halogenated alkenyloxy radical, each having up to 6 carbon atoms;

 Z^{11} is a single bond, -COO- or -CF₂O-;

f is 1;

b, c, d and e are each, independently of one another, 0, 1 or 2;

- 3. (Canceled)
- 4. (Canceled)
- 5. (Previously Presented) The liquid -crystalline medium according to claim 1, wherein

 R^{11} and R^{21} , independently of one another, are straight-chain alkyl having from 1 to 7 carbon atoms; and

R²² is or straight-chain alkyl having from 1 to 7 carbon atoms.

6. (Previously Presented) The liquid -crystalline medium according to claim 1 wherein

Y¹¹ is F, Cl, CF₃, OCHF₂ or OCF₃.

7. (Previously Presented) The liquid -crystalline medium

according to claim 1, further comprising a compound of the formula III

$$R^{31}$$

$$H$$

$$H$$

$$O$$

$$J_{j}$$

$$R^{32}$$

$$III$$

in which

 L^{31}

is H or F;

R³¹ is H, a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where one or more CH₂ groups in these radicals may also be replaced by -C≡C-, -CH=CH-, -O-, -CO-O- or -O-CO-in such a way that O atoms are not linked directly to one another;

R³² is H, F, Cl, a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where one or more CH₂ groups in these radicals may also be replaced by -C≡C-, -CH=CH-, -O-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another; and

j is 0 or 1.

8. (Currently Amended) The liquid -crystalline medium according to elaim 1, Liquid-crystalline medium comprising - at least one compound of formula I

and

- at least one compound of formula II

<u>II</u> .

in which

 L^1, L^2, L^3 and L^4 are each, independently of one another, H or F;

R¹¹ is H, a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where, in addition, one or more CH₂ groups in these radicals may each be replaced, independently of one another, by -C=C-, -CH=CH-, -O-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another:

R²¹ and R²² are each, independently of one another, H, or an unsubstituted

alkyl radical having 1 to 15 carbon atoms, where, in

addition, one or more CH2 groups in these radicals may

each be replaced, independently of one another, by

-C=C-, -CH=CH-, -O-, -CO-O- or -O-CO- in such a way

that O atoms are not linked directly to one another;

y¹¹ is F, Cl, CN, SF₅, SCN, NCS, a halogenated alkyl radical, a

halogenated alkenyl radical, a halogenated alkoxy radical

or a halogenated alkenyloxy radical, each having up to 6

carbon atoms;

<u>Z</u>¹¹ is a single bond, -CH₂-CH₂-, -CH=CH-, -CH=CF-, -CF=CH-, -CF=CF-, -C=C-, -COO-, -OCO-, -CF₂-;

a is 0 or 1;

b, c, d and e are each, independently of one another, 0, 1 or 2; f is 1;

comprising a compound of the formulae IV and/or V

$$R^{41}$$
 H CH_2O H R^{42} IV R^{51} H CF_3 V

in which

 R^{41} , R^{42} and R^{51} , independently of one another, are alkyl having 1 to 12 carbon atoms.

9. (Currently Amended) The liquid crystalline medium according to claim 1, Liquid-crystalline medium comprising - at least one compound of formula I

$$R^{11} - \left[\begin{array}{c} A \\ \end{array} \right]_{a} \left[\begin{array}{c} L^{3} \\ \end{array} \right]_{b} \left[\begin{array}{c} L^{3} \\ \end{array} \right]_{b} \left[\begin{array}{c} L^{1} \\ \end{array} \right]_{b} \left[\begin{array}{c} L^{3} \\ \end{array} \right]_{b} \left[\begin{array}{c} L^{3}$$

and

- at least one compound of formula II

$$R^{21} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{II} R^{22}$$

$$(F)_{b} (F)_{c} (F)_{d} (F)_{e}$$

$$II$$

in which

 L^1, L^2, L^3 and L^4 are each, independently of one another, H or F;

is H, a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where, in addition, one or more CH2 groups in these radicals may each be replaced, independently of one another, by -C=C-, -CH=CH-, -O-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

R²¹ and R²² are each, independently of one another, H, or an unsubstituted

alkyl radical having 1 to 15 carbon atoms, where, in

addition, one or more CH2 groups in these radicals may

each be replaced, independently of one another, by

-C≡C-, -CH=CH-, -O-, -CO-O- or -O-CO- in such a way

that O atoms are not linked directly to one another;

y¹¹ is F, Cl, CN, SF₅, SCN, NCS, a halogenated alkyl radical, a

halogenated alkenyl radical, a halogenated alkoxy radical

or a halogenated alkenyloxy radical, each having up to 6

carbon atoms;

Z¹¹ is a single bond, -CH₂-CH₂-, -CH=CH-, -CH=CF-, -CF=CH-, -CF=CF-, -C=C-, -COO-, -OCO-, -CF₂O- or -OCF₂-;

a is 0 or 1;

b, c, d and e are each, independently of one another, 0, 1 or 2; f is 1;

comprising a compound of the formulae VI and/or VII and/or VIII

in which

R⁶¹, R⁷¹ and R⁸¹, independently of one another, are alkyl having 1 to 12 carbon atoms.

- 10. (Previously Presented) The liquid -crystalline medium according to claim 1, wherein the proportion of the compounds of the formula II in the mixture as a whole is 0.1 to 10% by weight.
- 11. (Canceled)
- 12. **(Previously Presented)** An electro optical liquid-crystal display containing a liquid-crystalline medium according to claim 1.
- 13. (Previously Presented) The liquid-crystalline medium according to claim 1 wherein the proportion of the compounds of the formula II in the mixture as a whole is 0.25 to 5% by weight.
- 14. (Previously Presented) The liquid-crystalline medium according to claim 1 wherein the proportion of the compounds of the formula II in the mixture as a whole is 0.5 to 2% by weight.