In this section we extend the subalgebra-constructibility results to the more intricate case of $A_2 \subset A_3$ -constructible functions.

For A_3 there are two possible functions, as described in a previous section: $f_{A_3}^{+-}$ and $f_{A_3}^{--}$. We will work throught the case of $f_{A_3}^{--}$ as it is known to be connected with $R_7^{(2)}$ [], however it remains an interesting open question to find applications for $f_{A_3}^{+-}$ -constructible functions.

The algorithm described in the previous section applies, changing only $A_2 \rightarrow A_3$:

- begin with an ansatz of all $f_{A_3}^{+-}$ applied across all A_3 subalgebras of a given larger algebra,
- impose that the overall function is invariant under automorphisms up to overall sign choices,
- count the number of solutions to these constraints.

To reiterate, the functions that satisfy these constraints are decomposable in to both A_2 and A_3 building blocks, thus making contact with multiple layer of the intricate cluster algebraic structure.

There are no $A_3^{--} \subset A_4$ or $A_3^{--} \subset D_4$ functions. For A_5 we have

$$\frac{|\sigma^{+}\tau^{+}| |\sigma^{+}\tau^{-}| |\sigma^{-}\tau^{+}| |\sigma^{-}\tau^{-}|}{|A_{3}^{--}| \subset A_{5}| 1 | 1 | 0 | 3}$$
(1)

For D_5 we have

And finally E_6 gives