

Amey Karkare
Department of Computer Science and Engineering
IIT Kanpur
karkare@iitk.ac.in

Constructing parse table

Augment the grammar

- G is a grammar with start symbol S
- The augmented grammar G' for G has a new start symbol S' and an additional production S' → S
- When the parser reduces by this rule it will stop with accept

2

Production to Use for Reduction

- How do we know which production to apply in a given configuration
- We can guess!
 - May require backtracking
- Keep track of "ALL" possible rules that can apply at a given point in the input string
 - But in general, there is no upper bound on the length of the input string
 - Is there a bound on the number of applicable rules?

Some hands on!

1. E' → E

2. E→E+T

3. E→ T

4. T→ T * F

5. T→ F

6. $F \rightarrow (E)$

7. $F \rightarrow id$

Strings to Parse

• id + id + id + id

• id * id * id * id

• id * id + id * id

• id * (id + id) * id

Parser states

- Goal is to know the valid reductions at any given point
- Summarize all possible stack prefixes α as a parser state
- Parser state is defined by a DFA state that reads in the stack α
- Accept states of DFA are unique reductions

5

LR(0) items

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Thus production A→XYZ gives four LR(0) items

 $A \rightarrow .XYZ$

 $A \rightarrow X.YZ$

 $A \rightarrow XY.Z$

 $A \rightarrow XYZ$.

Viable prefixes

- α is a viable prefix of the grammar if
 - $-\exists w$ such that αw is a right sentential form
 - $-<\alpha$,w> is a configuration of the parser
- As long as the parser has viable prefixes on the stack no parser error has been seen
- The set of viable prefixes is a regular language
- We can construct an automaton that accepts viable prefixes

6

LR(0) items

- An item indicates how much of a production has been seen at a point in the process of parsing
 - Symbols on the left of "." are already on the stacks
 - Symbols on the right of "." are expected in the input

8

Start state

- Start state of DFA is an empty stack corresponding to S'→.S item
- This means no input has been seen
- The parser expects to see a string derived from S

9

Closure of a state

- Closure of a state adds items for all productions whose LHS occurs in an item in the state, just after ""
 - Set of possible productions to be reduced next
 - Added items have "." located at the beginning
 - No symbol of these items is on the stack as yet

10

Example

For the grammar	If I is $\{ E' \rightarrow E \}$ the closure(I) is
$E' \rightarrow E$ $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$	$E' \rightarrow .E$ $E \rightarrow .E + T$ $E \rightarrow .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .id$ $F \rightarrow .(E)$

Closure operation

- Let I be a set of items for a grammar G
- closure(I) is a set constructed as follows:
 - Every item in I is in closure (I)
 - If A \rightarrow α .B β is in closure(I) and B \rightarrow γ is a production then B \rightarrow . γ is in closure(I)
- Intuitively A $\rightarrow \alpha$.B β indicates that we expect a string derivable from B β in input
- If B → γ is a production then we might see a string derivable from γ at this point

Goto operation

- Goto(I,X), where I is a set of items and X is a grammar symbol,
 - -is closure of set of item A \rightarrow αX.β
 - -such that A $\rightarrow \alpha$.X β is in I
- Intuitively if I is a set of items for some valid prefix α then goto(I,X) is set of valid items for prefix αX

13

Goto operation

If I is $\{E' \rightarrow E., E \rightarrow E. + T\}$ then goto(I,+) is

$$E \rightarrow E + .T$$

$$T \rightarrow .T * F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

 $F \rightarrow .id$

14

Sets of items

C : Collection of sets of LR(0) items for grammar G'

```
C = \{ closure ( \{ S' \rightarrow .S \} ) \}
```

repeat

for each set of items I in C

for each grammar symbol X

if goto (I,X) is not empty and not in C

ADD goto(I,X) to C

until no more additions to C

Example

 $F \rightarrow id$.

Grammar:
$$E' \rightarrow E$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

$$I_{0}: closure(E' \rightarrow .E)$$

$$E' \rightarrow .E$$

$$E \rightarrow .E + T$$

$$E \rightarrow .T$$

$$T \rightarrow T * F$$

$$E' \rightarrow .E$$

$$E \rightarrow .E + T$$

$$E \rightarrow .T$$

$$T \rightarrow .T * F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$I_{1}: goto(I_{0}, E)$$

$$F \rightarrow .id$$

$$I_{5}: goto(I_{0}, id)$$

$$I_{5}: goto(I_{0}, id)$$

```
I_6: goto(I_1,+)
                                                                    I_9: goto(I_6,T)
E \rightarrow E + T.
     E \rightarrow E + .T
     T → .T * F
                                                                          T → T. * F
     T → .F
                                                                          goto(I_6,F) is I_3

goto(I_6,()) is I_4

goto(I_6,id) is I_5
      F \rightarrow .(E)
     F → .id
I_7: goto(I_2,*)
                                                                    I_{10}: goto(I_7,F)
T \rightarrow T * F.
     T → T*.F
     F →.(E)
     F \rightarrow .id
                                                                          goto(I_7,() is I_4 goto(I_7,id) is I_5
I_8: goto(I_4,E)

F \rightarrow (E.)

E \rightarrow E. + T
                                                                    I_{11}: goto(I_8,))
F \rightarrow (E).
      goto(I_4,T) is I_2
                                                                          goto(I_8,+) is I_6
      goto(I<sub>4</sub>,F) is I<sub>3</sub>
                                                                          goto(I_9,*) is I_7
     goto(I_4,()) is I_4
      goto(I<sub>4</sub>,id) is I<sub>5</sub>
                                                                                                                                 17
```


LR(0) (?) Parse Table

 The information is still not sufficient to help us resolve shift-reduce conflict.
 For example the state:

$$I_1: E' \rightarrow E.$$

 $E \rightarrow E. + T$

• We need some more information to make decisions.

Constructing parse table

- First(α) for a string of terminals and non terminals α is
 - Set of symbols that might begin the fully expanded (made of only tokens) version of α
- Follow(X) for a non terminal X is
 - set of symbols that might follow the derivation of X in the input stream

22

Compute first sets

- If X is a terminal symbol then first(X) = {X}
- If $X \rightarrow E$ is a production then E is in first(X)
- If X is a non terminal and X → Y₁Y₂ ... Y_k is a production, then
 if for some it a is in first(Y)

if for some i, a is in first(Y_i)
 and ∈ is in all of first(Y_j) (such that j<i)
 then a is in first(X)</pre>

- If ∈ is in first (Y₁) ... first(Y_k) then ∈ is in first(X)
- Now generalize to a string α of terminals and non-terminals

23

Example

• For the expression grammar

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \in$
 $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \in$
 $F \rightarrow (E) \mid id$

= { *, €}

Compute follow sets

- 1. Place \$ in follow(\$) // \$ is the start symbol
- 2. If there is a production $A \rightarrow \alpha B\beta$ then everything in first(β) (except ϵ) is in follow(B)
- 3. If there is a production $A \rightarrow \alpha B\beta$ and first(β) contains ϵ
 - then everything in follow(A) is in follow(B)
- 4. If there is a production $A \rightarrow \alpha B$ then everything in follow(A) is in follow(B)
- Last two steps have to be repeated until the follow sets converge.

25

Example

• For the expression grammar

$$E \rightarrow TE'$$

 $E' \rightarrow + TE' \mid E$
 $T \rightarrow FT'$
 $T' \rightarrow * FT' \mid E$
 $F \rightarrow (E) \mid id$

```
follow(E) = follow(E') = ?
follow(T) = follow(T') = ?
follow(F) = ?
```

26

Construct SLR parse table

- Construct C={I₀, ..., I_n} the collection of sets of LR(0) items
- If $A \rightarrow \alpha$.a β is in I_i and goto($I_{i,a}$) = I_j then action[i,a] = shift j
- If A→α. is in I_i
 then action[i,a] = reduce A→α for all a in follow(A)
- If S'→S. is in I_i then action[i,\$] = accept
- If goto(I_i,A) = I_j then goto[i,A]=j for all non terminals A
- All entries not defined are errors

27

Practice Assignment

Construct SLR parse table for following grammar

$$E \rightarrow E + E \mid E - E \mid E * E \mid E \mid E \mid (E) \mid digit$$

Show steps in parsing of string 9*5+(2+3*7)

- Steps to be followed
 - Augment the grammar
 - Construct set of LR(0) items
 - Construct the parse table
 - Show states of parser as the given string is parsed

Notes

- This method of parsing is called SLR (Simple LR)
- LR parsers accept LR(k) languages
 - L stands for left to right scan of input
 - R stands for rightmost derivation
 - k stands for number of lookahead token
- SLR is the simplest of the LR parsing methods. SLR is too weak to handle most languages!
- If an SLR parse table for a grammar does not have multiple entries in any cell then the grammar is unambiguous
- All SLR grammars are unambiguous
- Are all unambiguous grammars in SLR?

29

31

Does Conflict => Ambiguity?

Example

• Consider following grammar and its SLR parse table:

 $S' \rightarrow S$ I_1 : goto(I_0 , S) $S \rightarrow L = R$ $S' \rightarrow S$. $S \rightarrow R$ $L \rightarrow *R$ I_2 : goto(I_0 , L) $L \rightarrow id$ $S \rightarrow L.=R$ $R \rightarrow L$ $R \rightarrow L$. $I_0: S' \rightarrow .S$ Assignment (not $S \rightarrow .L=R$ to be submitted): $S \rightarrow .R$ Construct rest of $L \rightarrow .*R$ the items and the $L \rightarrow .id$ parse table. $R \rightarrow .L$

- There is both a shift and a reduce entry in action[2,=]. Therefore state 2 has a shiftreduce conflict on symbol "=", However, the grammar is not ambiguous.
- Parse id=id assuming reduce action is taken in [2,=]

Stack	input	action
0	id=id	shift 5
0 id 5	=id	reduce by L→id
0 L 2	=id	reduce by R→L
0 R 3	=id	error

•	if	shift	action	is ta	ken in	[2,=]
---	----	-------	--------	-------	--------	-------

Stack	input	action
0	id=id\$	shift 5
0 id 5	=id\$	reduce by L→id
0 L 2	=id\$	shift 6
0 L 2 = 6	id\$	shift 5
0 L 2 = 6 id 5	\$	reduce by L→id
0L2 = 6L8	\$	reduce by R→L
0 L 2 = 6 R 9	\$	reduce by S→L=R
0 S 1	\$	ACCEPT

Another look at the grammar

- $S' \rightarrow S$ $S \rightarrow L = R$ $S \rightarrow R$
- $L \rightarrow *R$
- $L \rightarrow id$ $R \rightarrow L$
- No sentential form of this grammar can start with R=...
- However, the reduce action in action[2,=] generates a sentential form starting with R=
- Therefore, the reduce action is incorrect

Problems in SLR parsing

- In SLR parsing method state i calls for reduction on symbol "a", by rule $A \rightarrow \alpha$ if I_i contains $[A \rightarrow \alpha]$ and "a" is in follow(A)
- However, when state I appears on the top of the stack, the viable prefix $\beta\alpha$ on the stack may be such that βA can not be followed by symbol "a" in any right sentential form
- Thus, the reduction by the rule $A \rightarrow \alpha$ on symbol "a" is invalid
- SLR parsers cannot remember the left context