GenomeFlow User Manual

Contents

1.	1	Visualize 2D Dataset	3
	a)	GenomeFlow Home Screen	3
	b)	Navigation to 2D Visualization window	3
	c)	Graphical User Interface window	3
	d)	Graphical User Interface (GUI) Segments	4
	e)	The RIGHT Segment - Display Controls	5
	f)	The CENTER Segment – Display Area	6
	g)	The LEFT Segment – TAD Visualization	7
2.	Γ	FAD Identification	9
	a)	Navigation to TAD Identification window	9
	b)	Graphical User Interface window	9
	c)	TAD identification window controls	9
3.	Ι	Demonstration	11
	a)	How to visualize a dataset in 2D Heatmap?	11
	b)	Effect of Check boxes in the Display control	14
	c)	Effect of Text boxes in the Display control	16
	d)	Effect of Dropdown list in the Display control	17
	e)	How to show TAD on the Heatmap?	25
4.	(Convert mapped Hi-C reads to hic format file	27
	a)	Purpose	27
	b)	Input file format	27
	c)	Output	30
	d)	Running	30
5.	Ε	Extract contact matrices from a hic format	32
	a)	Purpose	32
	b)	Input	32
	c)	Output	32

d)	Running	32
6. N	Vormalize HiC contact matrices	34
a)	Purpose	34
b)	Input	34
c)	Output	34
d)	Running:	34
7. 3	D model reconstruction by LorDG	34
a)	Purpose	34
b)	Input	34
c)	Output	34
d)	Running	34
8. (Chromatin loop identification	36
a)	Purpose	36
b)	Input	37
c)	Output	37
d)	Running	37
Acc	ess the function from the menu toolbar: 3D-Functions/Loop Detection	37
9. N	Model annotation	37
a)	Purpose	37
b)	Input	37
c)	Output	38
d)	Running	38

1. Visualize 2D Dataset

a) GenomeFlow Home Screen

b) Navigation to 2D Visualization window

To use the 2D functions, Navigate to the 2D-Tools menu in the Menu bar. Select the Submenu, Visualize Dataset

c) Graphical User Interface window

The 2D Graphical User Interface (GUI) window below pops up once you click on the Visualize Dataset

Sub-menu.

d) Graphical User Interface (GUI) Segments

The 2D Graphical User Interface (GUI) window is divided into 3 segments: LEFT, CENTER, AND RIGHT.

- a. The RIGHT: Contains the Display Controls for the data heatmap
- b. The **CENTER**: It displays the dataset in heatmap format
- c. The LEFT: Contains the TAD Visualization controls

e) The RIGHT Segment - Display Controls

f) The CENTER Segment – Display Area

Sphere Representation	Description
	Heatmap Title
	meannap mue
	X-Axis Label
	Y-Axis Label
	Color Gradient. [Top means High, Bottom means Low]

g) The LEFT Segment – TAD Visualization	

2. TAD Identification

a) Navigation to TAD Identification window

To use the 2D functions, Navigate to the 2D-Tools menu in the Menu bar.

Select the Submenu, Identify TAD

b) Graphical User Interface window

The Graphical User Interface (GUI) window below pops up once you click on the Identify TAD Sub-menu.

c) TAD identification window controls

• The function of each button is labelled below:

• If the Input IsMatrix? Checkbox is checked, the Data Resolution is required from the user.

3. Demonstration

- a) How to visualize a dataset in 2D Heatmap?
 - 1. Goto Genome Home Screen

2. Click on the 2D-Tools Menu in the Home Screen

3. Click on the Visualize Dataset Sub-menu

- 4. Click on the Browse File button in the Display Control of the RIGHT Segment
- 5. Click the Draw Heatmap button to visualize the dataset on a Heatmap

6. Following Steps 1 to 5 the Heatmap below is shown for the "sample_data.txt"

7. The default input data format is a Tuple. That is input data has 3 columns, column 1 and 2 represent the pair genomic location in contact, and column 3 represent the

interaction frequency between them. An example is shown below:

60000000	60000000	1277.2255853605477
60000000	60010000	555.3944883513798
60010000	60010000	1303.547855090625
60000000	60020000	265.8276247470504
60010000	60020000	500.7223214001157
60020000	60020000	1404.2005949454763
60000000	60030000	233.38186055746246
60010000	60030000	313.58347483503377
60020000	60030000	595.709350668511
60030000	60030000	1415.2894545838824
60000000	60040000	170.26755906956208
60010000	60040000	245.3383624354434

b) Effect of Check boxes in the Display control

- Click on the Draw Title check box to determine the Heatmap Title visibility. Check to Show, Uncheck to hide.
- Click on the Draw Legend check box to determine the Heatmap Gradient visibility.
 Check to Show, Uncheck to hide.
- 3. Click on the Draw X-Axis Title check box to determine the Heatmap X-Axis Title visibility. Check to Show, Uncheck to hide.
- 4. Click on the Draw X-Axis Ticks check box to determine the Heatmap X-Axis Ticks visibility. Check to Show, Uncheck to hide
- 5. Click on the Draw Y-Axis Title check box to determine the Heatmap Y-Axis Title visibility. Check to Show, Uncheck to hide.
- 6. Click on the Draw Y-Axis Ticks check box to determine the Heatmap Y-Axis Ticks visibility. Check to Show, Uncheck to hide
- 7. Click on the Heatmap Direction (Left / Right) check box to determine the Heatmap draw direction. Check to draw from Left to Right, uncheck to draw from Right to Left.
- 8. Click on the Enable Zoom Mode check box to enable zoom in or out. Check to zoom, uncheck to return to default.
- 9. Click on the IsMatrix check box if input is in Matrix format. Check to specify input data is in Matrix form, uncheck to accept default input format.

c) Effect of Text boxes in the Display control

10. Enter the Heatmap, the X-Axis, and the Y-Axis title in the textbox as shown above.

- 11. Shows the minimum and maximum index for X-Axis and Y-Axis for the input dataset.

 User can specify a new X-Axis and Y-Axis range, and the data will be shown on the

 Heatmap Display.
- 12. Shows the equivalent of the X and Y Axis label in 11 above in Genomic Location. This conversion is done based on the Resolution of the dataset.
- 13. It shows the number of bins/Regions in the dataset extractable based on the input dataset resolution.
- 14. It detects the resolution of the dataset from the dataset.
- 15. It shows the Genomic Start location of the input dataset.
- 16. It shows the End Start location of the input dataset.

- 17. Specify the foreground color for the heatmap display.
- 18. Specify the background color for the heatmap display.
- d) Effect of Dropdown list in the Display control

19. Show the Default, Pearson, Spearman, and Tanh equivalent of dataset. Heatmap below shows the representation of the dataset for each of them.

Pearson

Spearman

Tanh

20. Choose the color gradient to represent the input dataset. The Heatmaps below shows the dataset representation for each of the gradient representation when **Tanh dataset** is used.

BLACK_TO_WHITE GRADIENT

BLUE_TO_RED GRADIENT

GREEN_YELLOW_ORANGE_RED

HEAT

НОТ

MAROON_TO_GOLD

RAINBOW

RED_TO_GREEN

e) How to show TAD on the Heatmap?

- 21. Click on the Browse and Load File button to load previously identified TAD
- 22. Check the Show TAD on Heatmap Check box to visualize the extracted TAD in the display window
- 23. The heat maps below shows the result obtainable when user clicks the Show TAD on Heatmap button.

Gradient = HEAT, Show = Tanh

24. The **squares** at the diagonal, are the TAD identified for the dataset.

4. Convert mapped Hi-C reads to hic format file

a) Purpose

To create a binary hic format file containing contact matrices at different resolutions and normalized by different methods from a text file describing mapped Hi-C reads

b) **Input file format**

a sample file is executable/sample_data/GSM1551688_HIC143_merged_nodups.zip (unzip it before use)

The below description is from https://github.com/theaidenlab/juicer/wiki/Pre#file-format.

• Medium format

A whitespace separated file that contains, on each line

< readname > < str1 > < chr1 > < pos1 > < frag1 > < str2 > < chr2 > < pos2 > < frag2 > < mapq1 > < mapq2 >

- str = strand (0 for forward, anything else for reverse)
- chr = chromosome (must be a chromosome in the genome)
- pos = position
- frag = restriction site fragment
- mapq = mapping quality score

If not using the restriction site file option, frag will be ignored, but please see above note on dummy values. If not using mapping quality filter, mapq will be ignored. readname and strand are also not currently stored within .hic files.

• Short format

A whitespace separated file that contains, on each line

```
<str1> <chr1> <pos1> <frag1> <str2> <chr2> <pos2> <frag2>
```

- str = strand (0 for forward, anything else for reverse)
- chr = chromosome (must be a chromosome in the genome)
- pos = position
- frag = restriction site fragment

If not using the restriction site file option, frag will be ignored, but please see above note on dummy values. readname and strand are also not currently stored within .hic files.

Short with score format

This format is useful for reading in already processed files, e.g. those that have been already binned and/or normalized; this format can be easily used in conjunction with the r flag to create a *.hic* file that contains a single resolution.

A whitespace separated file that contains, on each line

```
<str1> <chr1> <pos1> <frag1> <str2> <chr2> <pos2> <frag2> <score>
```

- str = strand (0 for forward, anything else for reverse)
- chr = chromosome (must be a chromosome in the genome)
- pos = position
- frag = restriction site fragment
- score = the score imputed to this read

If not using the restriction site file option, frag will be ignored, but please see above note on dummy values. readname and strand are also not currently stored within .hic files.

Long format

The long format is used by <u>Juicer</u> and takes in directly the *merged_nodups.txt* file.

A whitespace separated file that contains, on each line

```
<str1> <chr1> <pos1> <frag1> <str2> <chr2> <pos2> <frag2> <mapq1> <cigar1> 
<sequence1> <mapq2> <cigar2> <sequence2> <readname1> <readname2>
```

- str = strand (0 for forward, anything else for reverse)
- chr = chromosome (must be a chromosome in the genome)
- pos = position
- frag = restriction site fragment
- mapq = mapping quality score
- cigar = cigar string as reported by aligner
- sequence = DNA sequence

If not using the restriction site file option, frag will be ignored, but please see above note on dummy values. If not using mapping quality filter, mapq will be ignored. readname, strand, cigar, and sequence are also not currently stored within .hic files.

• 4DN DCIC format

A file that follows the 4DN DCIC format specification (the 4DN DCIC format specification).

See the link for more information. Briefly, there should be a header with the first seven columns reserved:

pairs format v1.0

#columns: readID chr1 position1 chr2 position2 strand1 strand2

If the columns line contains (in any field after field 7) both frag1 and frag2, those will also be read in; otherwise Pre will set frag1=0 and frag2=1, so that no reads are discarded. Other fields are ignored.

c) Output

A binary .hic file containing contact matrices

d) Running

Access the function from the menu toolbar: 2D-Functions/Convert to HiC

Figure 1 Convert to HiC function

Field	Description	Default
Input file	A text file describes mapped Hi-C reads (format described	NA
	above)	
Genome ID	Version genome of Hi-C data	hg19
Output File	A name of the output hic format file	NA
Contact	Number of interaction threshold for contacts to be used in	0
Threshold	creating contact matrices.	
MAPQ Score	Mapping quality score threshold for reads to be considered in	0
Threshold	creating contact matrices.	
Chromosomes	Chromosomes for which their contact matrices to be created.	All (when
	When left blank, all chromosomes will be considered.	left blank)
	Chromosomes must be separated by a comma (,).	
Resolutions	List of resolutions of contact matrices to be created.	2500000, 1000000, 500000, 250000,
	Resolutions are separated by a comma (,)	100000, 50000,
		25000,10000,5000
Restriction Site	Each line starts with a chromosome number followed by	blank
File	positions of restriction sites on that chromosome, in numeric	

order, and ending with the size of the chromosome. When	
provided, 8 additional fragment-delimited resolutions are	
added: 500f, 250f, 100f, 50f, 20f, 5f, 2f, 1f	

5. Extract contact matrices from a hic format

a) **Purpose**

To extract a contact matrix from a hic format into a sparse matrix format in a text file

b) Input

A local path to a hic format or an online link to a hic format. A link to a hic file: https://www.encodeproject.org/files/ENCFF219YOB/@@download/ENCFF219YOB.hic

c) Output

A contact matrix in sparse matrix format (each line represents a contact by three numbers separated by whitespaces: position1 postion2 interaction_frequency)

d) Running

Access the function from the menu toolbar: 2D-Functions/Extract HiC

Figure 2 Extract Contact Matrices from a hic file

Field /	Description	Default
Button		
Path to .hic	An online link or local path to a hic format file	NA
File		
Load	Clicking this button to fetch information from the header of the	NA
	hic file.	
Genome	Genome version of the hic file	NA
Chromosomes	List of resolutions of contact matrices in the hic file	NA
From	Start of a fragment (to extract its contact matrix)	NA
То	End of a fragment (to extract its contact matrix)	NA
Resolution	List of resolutions of contact matrices in the hic file	NA
Normalization	List of normalization methods used to normalize contact matrices	NA

6. Normalize HiC contact matrices

a) Purpose

To normalize contact matrices in sparse matrix format.

b) Input

A contact matrix in sparse matrix format (each line represents a contact by three numbers separated by whitespaces: position1 position2 interaction_frequency)

c) Output

A normalized contact matrix in sparse matrix format. The matrix is normalized by the Iterative Correction and Eigenvector decomposition (ICE) method

d) Running:

Access the function from the menu toolbar: 2D-Functions/Normalized HiC Data

7. 3D model reconstruction by LorDG

a) **Purpose**

To build 3D chromosomes and genome models

b) Input

A contact matrix in sparse matrix format

c) Output

3D models in .gss format file

d) Running

Access the function from the menu toolbar: 3D-Functions/LorDG-3D Modeller

🖺 Reconstruct 3D Models fr	om Contact Matrices +	– 🗆 ×
Input Contact File		Browse File
Output 3D Model Folder		Browse File
Conversion Factor		
Initial Learning Rate:	1	
Max Number of Iteration	1,000	
Chromosome (Optional)	x	(1,2,3,X or Y)
Genome ID (Optional)	hg 19	
☑ Is Multiple-Chromosome	es Structure?	
Length of Chromosomes	229,241,197,190,179,169,157,145,124,135,133,132,98,89,	Numbers separated by ,
	Run Stop	

Field /Button	Description	Default
Conversion	α in the formula $d_{ij} = \frac{1}{IF_{ij}^{\alpha}}$, where IF_{ij} is interaction	1.0
Factor	frequency between <i>i</i> and <i>j</i> . When the field is left blank, the program will search for the best value in the range [0.1-3.0] with a step size of 0.1. Users can also specify a range to search by put 2 numbers separated by a hyphen (e.g. 0.5-1.0). During the searching, the right-top corner of the main screen displays information about the current	
	value being tested.	
Initial Learning	Initial learning rate of the optimization. Higher learning	1.0
Rate	rate can speed up the reconstruction process but can	
Max number of	cause the process to fail as well Maximum number of iterations for the optimization	1000
Iteration	Maximum number of iterations for the optimization	1000
Chromosome	Chromosome name of the contact matrix in the input. If	X
	the input contains contact matrix of the whole genome,	

	please put the list of chromosome names (separated by	
	commas).	
Genome ID	Genome version of the contact matrix in the input.	hg19
Is Multiple- Chromosomes	if the input contains both inter-and intra-chromosomal	unchecked
Structure?	contacts data, this checkbox should be checked.	
Length of	This field contains a list of lengths of chromosomes in	
Chromosomes	increasing order of chromosome names and separated by	
	commas, if "Is Multiple-Chromosomes Structure" is	
	checked. Please note that these lengths should not	
	contain omitted regions (e.g. centromeres) in the input of	
	chromosomes.	
Run	To start the reconstruction process. The main screen	NA
	displays how models are being formed from initially	
	random models. The information about the	
	reconstruction is displayed in the top-right corner of the	
	main screen. The conversion factor is being used to build	
	model and the current value of the objective function	
	(higher is better). After the reconstruction is finished, the	
	score of the model is displayed in the top-right corner of	
	the main screen (the lower the value is, the better the	
	model is).	
Stop	During the reconstruction, if this button is pressed, the	NA
	program will stop and output the currently best structure.	
	If the program is searching for the best conversion factor,	
	it will stop the searching and use the best-found	
	conversion factor to build models.	

8. Chromatin loop identification

a) **Purpose**

To identify chromatin loop in 3D models

b) Input

A 3D model to visualize

c) Output

A list of chromatin loops in a bed format file (optional) and highlighted in the 3D model

d) Running

Access the function from the menu toolbar: 3D-Functions/Loop Detection

Figure 3 Chromatin loops

The function identifies chromatin loops and highlights them in the 3D model. The loops can also be outputted into a bed format file specified in the Output File field. The topright corner of the main screen displays the number of chromatin loops identified.

Loops are colored in spectrum (from blue to red). To highlight loops better, color the model by a single color(right-click on the main screen, choose color/structure/chain)

9. Model annotation

a) **Purpose**

To annotate 3D models with genomic elements

b) Input

A 3D model (e.g. in executable/sample_data/models) and genomic elements in bed format files (e.g. in executable/track_files)

c) Output

3D model is annotated with data from bed format files

d) Running

Access the function from the menu toolbar: 3D-Functions/Model Annotation

Figure 4 Function to annotate 3D models

To better highlight track data, change the color of the model to a sing color (right-click on the main screen, Color/Structure/Reset). The background can be changed to white to (Color/Background/White)

Field / Button	Description	Default
Track file	A file in bed format (see executable/track_files for example) to annotate the model	NA
Track name	A unique name associated with the above input file	Name of track file
Is domain or loop?	Indicate if the track file contains domains or loops. Adjacent domains/loops will be colored in red/blue alternatively.	Unchecked
Choose color	To pick a color to label annotation and points overlapped by genomic elements in the track file.	Random

Change	To change color of the corresponding track	NA
color		
	Checking corresponding track names will display or hidden the	
	content of tracks.	

To get the genomic coordinate of a point, left-click or mouse-over to the point as shown in **Figure 5.**

Figure 5 Coordinate of a point in the model