23CSE362

RESOURCE ALLOCATION IN EDGE COMPUTING FOR HEALTH MONITORING SYSTEMS

Introduction

- Edge Computing in Healthcare
 - Processes health data near the source
 - o Reduces delay and improves real-time decision-making
- Problem: Hospital Workstations (HWs) have limited resources
- Need: Efficient resource allocation to manage critical health tasks

How it is a Edge Problem?

- IoT devices (BP monitors, ECGs) generate real-time medical data
- Sending all data to the cloud = high latency, slow response, network congestion
- Emergency tasks (e.g., heart attack alerts) can't afford delay

Why Edge?

- 1. Processes data locally (hospital workstations or nearby nodes)
- 2. Faster decisions = better patient safety
- 3. Reduces bandwidth & energy use
- 4. Less cloud dependency, smarter task execution based on urgency

Patient-Side(Input Devices)

- Temperature Sensor
- Blood Pressure Monitor
- Pulse Oximeter
- Glucose Meter
- ECG Sensor

Edge-Side

(Processing Unit):

Hospital Workstations(HW)

- Acts as the edge node
- Performs task processing for urgent tasks

Cloud-Side

(for Backup/Heavy Tasks):

- Remote cloud data
- Takes over low-priority
- Resource-heavy tasks

STATE-OF-THE-ART LITERATURE

Computing for

Research Paper: "Priority-based Task Scheduling and Resource Allocation in Edge Health Monitoring System"

(Sharif et al., Journal of King Saud University – Computer and Information Sciences, 2023)

Key Research Focus:

- Efficient task scheduling and resource allocation in healthcare IoT
- Reducing latency, bandwidth usage, and energy consumption
- Real-time decision-making for emergency vs. non-urgent tasks

Notable Techniques & Works:

- PTS-RA Priority-based Task Scheduling & Resource Allocation
 - Uses patient vitals to assign urgency
 - Executes emergency tasks locally
 - (Sharif et al., 2023)
- HealthFog Real-time heart monitoring using edge & fog
 - (Tuli et al., 2020)

TASK SPLIT

PHASE	CSE23151	CSE23139	CSE23141	CSE23257
SYSTEM DESIGN	ARCHITECTURE DIAGRAM	PRIORITY MODEL(K)	HW SPECS	PLANNING AND TIMELINE
DATA SIMULATION	HEARTRATE/ ECG DATA	BODY TEMP DATA	BP & OXYGEN DATA	MERGE AND VALIDATE ALL
EDGE DEVELOPMENT	RESOURCE ALLOCATION LOGIC	RESOURCE ALLOCATION LOGIC	EXECUTION TIME LOGIC	EDGE VS CLOUD DECISION
CLOUD OFFLOADING	CLOUD QUEUE	TRANSMISSION LATENCY	OFFLOADING LOGIC	RETURN RESULT SYSTEM
RESOURCE ALLOCATION	EQUATIONS AND CODING	PRIORITY ALLOCATION AND CODING	REJECTION LOGIC AND CODING	CONSTRAINTS LOGIC AND CODING
TESTING	HIGH PRIORITY TESTS	LOW PRIORITY TESTS	LOAD TEST	CLOUD TEST