Parallel Programming

CUDA Programming Model

Overview

- CUDA programming model
 - Host code and device code (kernel)
 - CUDA Threads: Grids, Blocks
 - CUDA memory allocation and copy
 - Kernel programs and their invocation
- Simple CUDA program examples

CUDA: Compute Unified Device Architecture

- A parallel computing architecture developed by NVIDIA.
 - Hardware: NVIDIA GPUs, from embedded devices, graphics cards for laptops and desktops, to dedicated server products for computation.
 - Software
 - Tool kit, device drivers, and programming SDK.
 - Support C, Fortran, Matlab, and other languages.
- We teach CUDA C programming in this course

Host and Device Code

- A CUDA program consists of two parts: host and device (or kernel) code.
- Host code: executed on the CPU
 - Memory copy between the GPU and the CPU
 - Computation on the CPU and call GPU kernel
- Device code: executed on the GPU
 - GPU-based computation
- A CUDA program always starts from the host code, and then invokes the GPU kernels.

Processing Flow of a CUDA Program

Threads in a CUDA Kernel

- Each kernel corresponds to a *grid* of threads.
- Each grid consists of multiple thread blocks.
- Each thread block contains multiple threads.

Grid and Block Dimensions

- A grid consists of idimension (i=1,2,3) blocks.
 - gridDim.x, gridDim.y, gridDim.z
- A thread block contains threads organized in 1-3 dimensions
 - blockDim.x, blockDim.y, blockDim.z.
- Any unspecified dimension is set to size 1.

Block and Thread IDs

- Threads and blocks have built-in IDs
 - Block ID: (blockIdx.x, blockIdx.y, blockIdx.z)
 - Thread ID: 1D, 2D, or 3D within a block (threadIdx.x, threadIdx.y, threadIdx.z)

Courtesy: NDVIA

Device Code (Kernel)

- The device code is the same for each thread.
- A kernel function has the prefix __global___,
 and has a void return type.
 qlobal void kernel1(param1, ...)

Note: device code has no direct access to main memory.

Kernel Invocation in Host Code

kernelName<<<#block, #thread, shared_size, s>>>
(param1, ...)

#block: number of thread blocks in the grid #thread: number of threads per block shared_size: optional; size of shared memory per block, default 0.

s: optional; the associated stream, default 0.

Memory Management in Host Code

- GPU memory management functions
 - GPU memory allocation: cudaMalloc(devPtr, size) cudaFree(devPtr)
 - Memory copy:
 cudaMemcpy(dst, src, size, direction)
 direction: cudaMemcpyHostToDevice,
 cudaMemcpyDeviceToHost

Note: host code has no direct access to GPU memory.

CUDA Memory Hierarchy

- Registers: only available within a thread.
- Shared memory: accessed by threads in the same thread block.
- Global memory: can be accessed by all threads.

A Simple Program on the CPU

```
int main()
   int *h A, *h B, *h C;
   int i;
   int N = 4096;
    size t size = N * sizeof(int);
   // Allocate input vectors h A and h B in host memory
   h A = (int*)malloc(size);
   h B = (int*)malloc(size);
   h C = (int*)malloc(size);
   /*initialize h A and h B here*/
   //vector Add
   for (i = 0; i < N; i++)
       h C[i] = h A[i] + h B[i];
  //Free host memory
                                        A recommended common practice is to name
  free (h A);
  free(h B);
                                        a host-resident structure with the prefix "h"
  free (h C);
                                        (host), and a device-resident structure with
  return 0;
                                        "d" (device).
```

CUDA Program: Set Up on the Host

```
// Host code
int main()
{
   int *h A, *h B, *h C, *d A, *d B, *d C;
   int N = 4096;
    size t size = N * sizeof(int);
   // Allocate input vectors h A and h B in host memory
   h A = (int*)malloc(size);
   h B = (int*)malloc(size);
   h C = (int*)malloc(size);
   for (int i = 0; i < N; i++)
       h A[i] = i;
       h B[i] = i;
    }
   // Allocate vectors in device memory
    cudaMalloc((void**)&d A, size);
    cudaMalloc((void**)&d B, size);
    cudaMalloc((void**)&d C, size);
   // Copy vectors from host memory to device memory
    cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
    cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);
```

CUDA Program: Invoke the Kernel

```
// Invoke kernel
int threadsPerBlock = 256;
int blocksPerGrid = N / threadsPerBlock;
VecAdd<<<br/>blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C);
.
```

CUDA Program: The Device Code

```
// Device code
__global__ void VecAdd(int* A, int* B, int* C)
{
   int i = blockDim.x * blockIdx.x + threadIdx.x;
   C[i] = A[i] + B[i];
}
```


CUDA Program: Wrap Up on the Host

```
// Copy result from device memory to host memory
 // h C contains the result in host memory
 cudaMemcpy(h C, d C, size, cudaMemcpyDeviceToHost);
//Free host memory
free(h A);
free (h B);
free (h C);
//Free device memory
cudaFree (d A);
cudaFree (d B);
cudaFree (d C);
```

Another Example

- Given an array of n elements, increment each element.
- A C program without CUDA

```
for(int i = 0; i < n; i++) {
    h_data[i] += 1;
}</pre>
```

The Parallelization on the GPU

- Shall we still make one thread handle one element?
- Maybe not...
 - The numbers of blocks and threads for a kernel have a limit, e.g., up to 65535 blocks and 1024 threads per block.
 - A suitable number of threads should balance the degree of parallelism and resource usage.
- We may need to make each thread handle multiple elements for a large number of elements.

Two Parallelization Methods

Coalesced Access

 If memory addresses accessed by threads in the same thread block are consecutive, then these memory accesses are grouped into one memory transaction.

The GPU Kernel with Coalesced Access

```
global
 void kernel2(int* d data, const int numElement) {
          const int tid = blockDim.x*blockIdx.x + threadIdx.x;
          const int nthread = blockDim.x*gridDim.x;
         for(int i = tid; i < numElement; i += nthread)</pre>
                  d data[i] += 1;
     t2
†1
           t3
                  †4
                       t1
```

Performance Comparison

- 1. Coalesced access is crucial for utilizing the GPU memory bandwidth.
- 2. A badly-written GPU program may be even slower than a CPU program!

Measure Kernel Execution Time

- Kernel execution is asynchronous.
- To measure the elapsed time of a kernel, we need a synchronization between the host and device.

```
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventRecord(start, 0);
kernel1<<<1024, 512>>>(d_data);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Kernel elapsed time: %.3f ms\n", elapsedTime);
```

Summary

- A CUDA program consists of host and device code.
- The host code is in charge of GPU memory allocation, data transfer between the GPU and the CPU, and kernel launching.
- A kernel program is executed by every thread in a grid structure.
- Coalesced access effectively utilizes GPU memory bandwidth.