John Franklin Crenshaw & Alex Gagliano DESC MALTS
12-1-2022

The Normalizing Flow likelihood

$$p_X(x) = p_U(u = f(x)) |\det \nabla f(x)|,$$

f maps data to latent space Calculate likelihood in latent space

Multiply by the determinant of the Jacobian of the transformation

Transform a few of the dimensions as a function of the other dimensions

Stack a bunch of these back-to-back

$$rac{\partial y}{\partial x} = egin{pmatrix} I_d & 0 \ rac{\partial y_{d+1:D}}{\partial x_{1:d}} & rac{\partial y_{d+1:D}}{\partial x_{d+1:D}} \end{pmatrix}$$

$$\frac{\partial y}{\partial x} = \begin{pmatrix} I_d & 0 \\ \frac{\partial y_{d+1:D}}{\partial x_{1:d}} & \frac{\partial y_{d+1:D}}{\partial x_{d+1:D}} \end{pmatrix}$$

$$rac{\partial y}{\partial x} = egin{pmatrix} I_d & 0 \ rac{\partial y_{d+1:D}}{\partial x_{1:d}} & rac{\partial y_{d+1:D}}{\partial x_{d+1:D}} \end{pmatrix}$$

$$\det \frac{\partial y}{\partial x} = \det \frac{\partial y_{d+1:D}}{\partial x_{d+1:D}}$$

Rational Quadratic Splines

Very flexible, and invertible

Efficient in both directions!

Sampling and likelihood evaluation!

Example: modeling a galaxy catalog

More PZFlow tutorials:

https://jfcrenshaw.github.io/pzflow/tutorials/

An Ensemble of Flows

from pzflow import **Flow** flow = **Flow**(...)

from pzflow import **FlowEnsemble** flowEns = **FlowEnsemble**(..., N=4)

- Approximate Bayesian marginalization over neural network parameters
- Marginalize over multiple basins of attraction (most methods focus on marginalizing over a single basin)
- Can return averages or individual solutions

Conditional Flows

You can pass any other variables you want into the neural network

This allows the network to condition outputs on these values

OVERCOMING LIMITATIONS OF COSMODC2

The Challenge: Learn a more physical version of this complex distribution: $p(z | u, g, r, i, z, y, M_*, SFR)$

OVERCOMING LIMITATIONS OF COSMODC2

The Solution: Create a mapping between the complex distribution and a simpler one. Train to draw out broad physical correlations, and re-sample for new redshifts.

A NOTE ON COMPACT SUPPORT/PERIODIC TOPOLOGIES

https://github.com/LSSTDESC/transient-host-sims/notebooks/SCOTCH_walkthroughs.ipvnb

