

SENIOR CERTIFICATE/SENIORSERTIFIKAAT

PHYSICAL SCIENCES P2 FISIESE WETENSKAPPE V2

CHEMISTRY/CHEMIE

2015

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 14 pages. Hierdie memorandum bestaan uit 14 bladsye.

QUESTION 1/VRAAG 1

1.10	D✓✓	(2) [20]
1.9	A✓✓	(2)
1.8	C✓✓	(2)
1.7	C✓✓	(2)
1.6	A✓✓	(2)
1.5	C✓✓	(2)
1.4	D ✓✓	(2)
1.3	C✓✓	(2)
1.2	C✓✓	(2)
1.1	A✓✓	(2)

QUESTION 2/VRAAG 2

2.1 $2.1.1 B \checkmark$ (1) $2.1.2 E \checkmark$ (1) $2.1.3 A \checkmark$ (1)

2.2

2.2.1 4-chloro-2,5-dimethylheptane

4-chloro-2,5-dimetielheptaan/4-chloor-2,5-dimetielheptaan

Marking criteria/Nasienriglyne:

- Correct stem i.e. <u>heptane</u>./Korrekte stam d.i. <u>heptaan</u>. ✓
- All substituents (chloro and dimethyl) correctly identified./Alle substituente (chloro/chloor and dimetiel) korrek geïdentifiseer. ✓
- Substituents correctly numbered, in alphabetical order, hyphens and commas correctly used. ✓

Substituente korrek genommer, in alfabetiese volgorde, koppeltekens en kommas korrek gebruik.

(3)

2.2.2 <u>2-methyl√propan-1-ol</u> ✓ <u>2-methyl-1-propanol</u> 2-metielpropan-1-ol 2-metiel-1-propanol

IF/INDIEN:

2 methylpropan 1 ol / 2 metielpropan 1 ol $\frac{1}{2}$

IF/INDIEN:

2-methylpropanol / 2-metielpropanol $\frac{1}{2}$

(2)

2.2.3 ANY ONE/ENIGE EEN:

2.3

2.3.1 Compounds with the <u>same molecular formula</u> but <u>different positions of the functional groups</u> /side chain/substituents on parent chain. Verbindings met <u>dieselfde molekulêre formule</u>, maar <u>verskillende posisies van funksionele groepe/syketting/substituente op die hoofketting.</u>

(2)

2.3.2 <u>Sut</u>-1-<u>ene</u> / <u>But</u>-1-<u>een</u>

AND/EN

Notes/Aantekeninge:

Accept: 1-butene √√ and 2-butene √√ **Aanvaar:** 1-buteen en 2-buteen

IF/INDIEN:

Butene/buteen $\frac{1}{4}$

But 1 ene/But 1 een ✓ & But 2 ene/But 2 een ✓ 2/

(4)

2.3.3

Marking criteria/Nasienriglyne:

- Whole structure correct/Hele struktuur korrek: ²/₂
- Only functional group correct/Slegs funksionele groep korrek:

Notes/Aantekeninge:

But-2-ene / But-2-een

• If two or more functional groups/Indien twee of meer funksionele groepe: 0

. .

Condensed or semi-structural formula:
 Gekondenseerde of semistruktuurformule:

Max/Maks $\frac{1}{2}$

• Molecular formula/Molekulêre formule:

 $\stackrel{?}{2}$ (2)

2.4

2.4.1 Cracking/elimination ✓ Kraking/eliminasie

(1)

2.4.2 Ethene/Eteen ✓

(1)

2.4.3 C₄H₁₀ ✓

(1)

2.4.4 Polyethene/Polieteen ✓

Accept/Aanvaar:

Polyethylene/polythene Poli-eteen/poli-etileen

$$\begin{pmatrix}
H & H \\
C & C
\end{pmatrix}$$

$$H & H$$

OR/OF

Marking guidelines/Nasienriglyne:

Ignore if hyphens used/*Ignoreer indien* koppeltekens gebruik is.

Marking guidelines/Nasienriglyne:

- Structure shows TWO C atoms with four bonds each and FOUR H atoms./Struktuur toon TWEE C-atome met vier bindings elk na VIER H-atome. ✓
- Structure placed in brackets with multiple n.
 / Struktuur in hakies geplaas met veelvoud n. √
- Accept /Aanvaar:

$$\left\{ -CH_2-CH_2 \right\}_n$$

(3) **[23]**

QUESTION 3/VRAAG 3

3.1

3.1.1 Hydrolysis/Hidrolise ✓

(1)

3.1.2 (Mild) heat /(Matige) hitte ✓

<u>Dilute</u> (strong) base/aqueous base ✓

<u>Verdunde</u> (sterk) basis / basis in water.

(2)

3.1.3 Ethanol/Etanol ✓

(1)

3.2

3.2.1 Esterification/condensation √ Esterifikasie/verestering/kondensasie

(1)

3.2.2

Notes/Aantekeninge

- Functional group/Funksionele groep ✓
- Whole structure correct/Hele struktuur korrek √

(2)

3.2.3 Ethyl√ methanoate √ Etielmetanoaat Accept / Aanvaar:

Ethyl methanoate written as one word / Etielmetanoaat geskryf as twee woorde.

(2) **[9]**

(2)

QUESTION 4/VRAAG 4

4.1 Saturated/Versadig ✓

ANY ONE/ENIGE EEN:

- B/It has <u>ONLY single bonds</u>. ✓
 B/Dit het SLEGS enkelbindings.
- B/It has <u>single bonds between C atoms.</u>
 B/Dit het <u>enkelbindings tussen C-atome.</u>
- B/It has no double OR triple bonds OR multiple bonds.

 B/Dit het geen dubbel- OF trippelbindings OF meervoudige bindings nie.
- B/It contains the <u>maximum number of H atoms bonded to C atoms</u>. B/Dit bevat die maksimum getal H-atome gebind aan C-atome.
- Each C atom in B is bonded to four other atoms. Elke C atoom in B is gebind aan vier ander atome.

4.2 $4.2.1 - 42 \,(^{\circ}C) \,\checkmark$ Notes/Aantekeninge | Ignore the unit. | Ignoreer die eenheid. | (1)

- Between molecules of <u>C/propane</u> are <u>London forces/dispersion forces/induced dipole forces</u>. ✓

 Tussen molekule van <u>C/propaan</u> is <u>Londonkragte/ dispersiekragte/geïnduseerde dipoolkragte</u>.
 - Between molecules of <u>E/ethanol</u> are (London forces/dispersion forces/induced dipole forces and) <u>hydrogen bonds</u>. ✓
 Tussen molekule van <u>E/etanol</u> is (London-kragte/ dispersiekragte / geïnduseerde dipoolkragte en) waterstofbindings.
 - <u>Hydrogen bonds</u>/Forces between alcohol molecules are <u>stronger</u>. ✓ *Waterstofbindings/Kragte tussen alkoholmolekule is sterker*.

OR/OF

More energy is needed to overcome hydrogen bonds/forces between alcohol molecules than London forces/dispersion forces/induced dipole forces.

Meer energie word benodig om waterstofbindings/kragte tussen alkoholmolekule te oorkom as London-kragte/dispersiekragte/geïnduseerde dipoolkragte.

OR/OF

Between <u>molecules of C/propane are weak London forces</u>/dispersion forces/induced dipole forces. ✓

Between molecules of E/ethanol molecules are strong hydrogen bonds $\checkmark \checkmark$ Tussen propaanmolekule is swak London-kragte/dispersiekragte/geïnduseerde dipoolkragte en tussen etanolmolekule is sterk waterstofbindings.

OR/OF

More energy is needed to overcome hydrogen bonds between ethanol molecules than the London forces/dispersion forces/induced dipole forces between propane molecules.

<u>Meer energie word benodig om waterstofbindings tussen etanolmolekule te oorkom as om London-kragte</u>/dispersiekragte/geïnduseerde dipoolkragte tussen propaanmolekule te oorkom.

(3)

CDecrease/Verminder ✓

From A to D:

- Chain length/molecular mass/molecular size/surface area increases. ✓
- Strength of intermolecular forces/ London forces/dispersion forces/induced dipole forces increases. <
- More energy needed to overcome/break the intermolecular forces. ✓

Van A tot D:

- Kettinglengte/molekulêre massa/molekuulgrootte/reaksieoppervlak neem
- Sterkte van intermolekulêre kragte/ London-kragte/dispersiekragte/ geïnduseerde dipoolkragte vermeerder.
- Meer energie nodig om intermolekulêre kragte te oorkom/breek.

OR/OF

From D to A:

- Chain length/molecular mass/molecular size/surface area decreases. ✓
- Strength of intermolecular forces/London forces/dispersion forces/induced dipole forces decreases.√
- Less energy needed to overcome intermolecular forces. ✓

Van D tot A:

- Kettinglengte/molekulêre massa/molekuul se grootte/reaksieoppervlak <u>neem</u> af.
- Sterkte van intermolekulêre kragte/ London forces/dispersion forces/induced dipole forces verminder.
- Minder energie nodig om intermolekulêre kragte te oorkom.
- Higher than/Hoër as ✓ 4.5

(1)[12]

(4)

QUESTION 5/VRAAG 5

5.1 — Exothermic /Eksotermies ✓

ΔH < 0 / Energy is released. / Energie word vrygestel.√

(2)

5.2 5.2.1

OPTION 1/OPSIE 1 n(HCl) = cV = (1,5) \checkmark (30 x 10⁻³) \checkmark = 0,045 mol ave rate / gem. tempo = $-\frac{\Delta n}{\Delta t}$ = $-\frac{(0-0.045)}{(60-0)}$ = 7,5 x 10⁻⁴ (mol·s⁻¹) \checkmark

Notes/Aantekeninge Accept /Aanvaar:

- -7,5 x 10⁻⁴ mol·s⁻¹
- Rate / Tempo = $\frac{\Delta n}{\Delta t}$ = $\frac{0,045 - 0}{60 - 0}$ = 7,5 x 10⁻⁴ (mol·s⁻¹)

OPTION 2/OPSIE

average / gem. tempo =
$$-\frac{\Delta c}{\Delta t}$$

= $-\frac{(0-1.5)^{\checkmark}}{(60-0)^{\checkmark}}$
= 0,025 mol·dm⁻³·s⁻¹
 \therefore average rate = (0,025)(30 x 10⁻³) $\checkmark\checkmark$

= $7.5 \times 10^{-4} \text{ (mol·s}^{-1}\text{)} \checkmark$

Notes/Aantekeninge Accept/Aanvaar:

- -7,5 x 10⁻⁴ mol·s⁻¹
- Rate / Tempo = $\frac{\Delta c}{\Delta t}$ = $\frac{1,5-0}{60-0}$ = 0,025 mol · dm⁻³ · s⁻¹ average rate=(0,025)(30 x 10⁻³) = 7,5 x 10⁻⁴ (mol·s⁻¹)

(5)

IF/INDIEN

Mass of Mg used to calculate number of moles:/ Massa van Mg gebruik om aantal mol te bereken: Max./Maks. $\frac{2}{5}$

$$n(HC\ell) = \frac{m}{M} = \frac{5}{24} = 0.21 \text{ mol}$$

ave rate / gem. tempo =
$$-\frac{\Delta n}{\Delta t}$$

= $-\frac{(0-0.21)}{(60-0)}$
= 3.5 x 10⁻³ (mol·s⁻¹)

5.2.2(a) Increases/Vermeerder √

- The reaction is <u>exothermic</u>, resulting in an <u>increase in temperature</u>. ✓ Die reaksie is eksotermies wat tot toename in temperatuur lei.
- <u>More molecules have enough/</u>sufficient <u>kinetic energy</u>. ✓ *Meer molekule het genoeg/voldoende kinetiese energie.*
- <u>More effective collisions per unit time</u>/second. ✓ <u>Meer effektiewe botsings per eenheidtyd</u>/sekonde.

(4)

5.2.2(b) Decreases/Verminder ✓

*Concentration (of acid) decreases./Konsentrasie (van suur) verminder. ✓

OR/OF

The surface area of magnesium decreases. *Die reaksieoppervlak van magnesium verminder.*

OR/OF

Reactants are being used up./Reaktanse word opgebruik.

(2)

5.3 **ANY TWO/ENIGE TWEE**

- Higher temperature/Hoër temperatuur √
- <u>Larger surface area/</u>state of division/contact area of Mg/Use magnesium powder ✓
 <u>Groter reaksie-oppervlak/toestand van verdeeldheid/kontakoppervlak van</u> magnesium
- Addition of a catalyst./Byvoeging van katalisator.

(2)

[15]

QUESTION 6/VRAAG 6

6.1 When the <u>equilibrium</u> (in a closed system) <u>is disturbed</u>, the system will reinstate a <u>new equilibrium</u> ✓

by favouring the reaction that will cancel the disturbance. ✓ Wanneer die <u>ewewig</u> (in 'n geslote sisteem) <u>versteur</u> word, sal die sisteem 'n <u>nuwe ewewig</u> instel deur die reaksie wat die versteuring kanselleer te bevoordeel.

(2)

- 6.2
- 6.2.1 Remains the same/Bly dieselfde ✓

(1)

6.2.2 Increases/Vermeerder √

(1)

6.3 Marking criteria/Nasienriglyne:

- K_c expression/uitdrukking.
- Substitution of /Vervanging van 1,2 x 10⁻⁴.
- x volume (5 dm³)
- Use mole ratio/<u>Gebruik</u> verhouding: 1:1
- Substitution/Vervang 51 g·mol⁻¹
- Final answer/Finale antwoord: 2,81 g

OPTION 1/OPSIE 1

$$K_c = [NH_3][H_2S] \checkmark$$
∴ 1,2 x 10⁻⁴ $\checkmark = [NH_3][H_2S]$
∴ $[NH_3] = [H_2S]$
 $= 0,011 \text{ mol·dm}^{-3}$
 $n(NH_3) = cV$
 $= (0,011)(5) \checkmark$
 $= 0,06 \text{ mol } (0,06 \text{ mol})$

No K_c expression, correct substitution / Geen K_c - uitdrukking, korrekte substitusie:

Max./Maks. $\frac{5}{6}$

Wrong K_C expression/*Verkeerde* K_c -uitdrukking: Max./Maks. $\frac{4}{6}$

$$n(NH_4HS) = n(NH_3) = 0.06 \text{ mol } \checkmark$$

 $m(NH_4HS) = nM$
 $= (0.06)(51) \checkmark$
 $= 2.81 \text{ g} \checkmark$

(Accept answers in the range 2,55 - 2,81 g.)

OPTION 2/OPSIE 2

	NH₄HS	NH ₃	H ₂ S	
Initial quantity (mol) Aanvangshoeveelheid (mol)		0	0	
Change (mol) Verandering (mol)	Х	х	х	
Quantity at equilibrium (mol)/ Hoeveelheid by ewewig (mol)	-	х	х	
Equilibrium concentration (mol·dm ⁻³) <i>Ewewigskonsentrasie (mol·dm</i> ⁻³	-	<u>x</u> 5	<u>x</u> 5	Div 5 ·

Divide by 5 √

$$K_c = [NH_3][H_2S]$$
 ✓

∴ 1,2 x 10⁻⁴ ✓ = $(\frac{x}{5})(\frac{x}{5})$

∴ x = 0,0547 mol

$$m(NH_4HS) = nM$$

= $(0,0547) \checkmark (51) \checkmark$
= 2,79 g \checkmark

No K_C expression, correct substitution / Geen K_{c} - uitdrukking, korrekte substitusie:

Max./Maks. $\frac{5}{6}$

Wrong K_C expression / Verkeerde K_c uitdrukking: Max./Maks. $\frac{4}{6}$

(6)

(3) **[13]**

- 6.4 Decreases/Verminder ✓ (When pressure is
 - (When pressure is increased) the reaction that leads to the smaller amount of gas is favoured. ✓ (Wanneer die druk verhoog word,) word die reaksie wat tot die kleiner hoeveelheid gas lei, bevoordeel.
 - The reverse reaction is favoured. ✓ Die terugwaartse reaksie word bevoordeel.

OR/OF

CDecreases/Verminder

- When pressure is increased by decreasing the volume of the container, the concentration of both NH₃(g) and H₂S(g) increase and the reaction that reduces these concentrations is favoured.
 - Wanneer die druk verhoog word deur die volume van die houer te verklein, verhoog die konsentrasie van beide die $NH_3(g)$ en $H_2S(g)$ en die reaksie wat hierdie konsentrasies verminder word bevoordeel.
- The <u>reverse reaction is favoured</u>.
 Die <u>terugwaartse reaksie word bevoordeel</u>.

QUESTION 7/VRAAG 7

- 7.1
 7.1.1 Diprotic/Diproties ✓ (1)
- 7.1.2 $H_2O \checkmark$ (COO)₂²⁻ \checkmark (2)
- 7.1.3 $HC_2O_4^-/H(COO)_2^- \checkmark$ It acts as base (in reaction I) and as acid (in reaction II). \checkmark Dit reageer as basis (in reaksie I) en as suur (in reaksie II). (2)
- 7.2 Ionises/dissociates incompletely/partially. ✓ Ioniseer/dissosieer onvolledig/gedeeltelik. (1)
- Marking quidelines: 7.3 OPTION 1/OPSIE 1 **OPTION 2/OPSIE 2** Nasienriglyne: Any formula of/Enige formule $c = \frac{m}{MV} / c = \frac{n}{V} / n = \frac{m}{M}$ \therefore m = 4,5 g \checkmark n = 0.05 mol• Substitution of/Substitusie van V as 0,25 dm³. • Substitution of/Substitusie van $n = \frac{m}{M}$ 90 g·mol⁻¹. • Final answer/Finale antwoord: $0.05 = \frac{m}{90}$ 4,5 g $m = 4.5 g \checkmark$ (4)

7.4 7.4.1

OPTION 1/OPSIE 1

$$\frac{c_a \times V_a}{c_a \times V_b} = \frac{n_a}{n_b} \checkmark$$

$$\frac{0.2 \times 25}{c_b \times 36} = \frac{1}{2} \checkmark$$

$$c_b = 0.28 \text{ mol} \cdot dm^{-3} \checkmark$$

Marking guidelines/Nasienriglyne:

- Formula/Formule
- Substitution of 0,2 x 25.
 Substitusie van 0,2 x 25.
- Use V_b = 36 cm³.
 Gebruik V_b = 36 cm³.
- Use mol ratio 1:2. Gebruik molverhouding 1:2.
- Final answer/Finale antwoord: 0,28 mol·dm⁻³

OPTION 2/OPSIE 2

$$n((COOH)_{2}) = cV \checkmark$$

$$= (0,2)(0,025)$$

$$= 0,005 \text{ mol}$$

$$n(NaOH) = \underline{2}(0,005) \checkmark$$

$$= 0,01 \text{ mol}$$

$$c = \frac{n}{V}$$

$$= \frac{0,01}{0,036} \checkmark$$

$$= 0,28 \text{ mol} \cdot dm^{-3} \checkmark$$

Marking guidelines/Nasienriglyne:

- Any ONE of formulae. Enige EEN van formules
- Substitution of 0,2 x 0,025.
 Substitusie van 0,2 x 0,025.
- Use mol ratio 1:2. Gebruik molverhouding 1:2.
- Use $V_b = 0.036 \text{ dm}^3$. Gebruik $V_b = 0.036 \text{ dm}^3$
- Final answer/Finale antwoord: 0,28 mol·dm⁻³

(5)

7.4.2 $(COO)_{2}^{2-}(aq) + 2H_{2}O(\ell) \checkmark \Rightarrow (COOH)_{2}(aq) + 2OH^{-}(aq) \checkmark$ Bal. \checkmark

Accept/Aanvaar:

 $(COO)_{2}^{2-}(aq) + H_{2}O(\ell) = H(COO)_{2}^{-}(aq) + OH^{-}(aq)$

Notes/Aantekeninge

- Reactants ✓ Products ✓ Balancing ✓
 Reaktanse ✓ Produkte ✓ Balansering ✓
- Ignore/Ignoreer → and phases/en fases.
- Marking rule 6.3.10/Nasienreël 6.3.10

(3) **[18]**

QUESTION 8/VRAAG 8

8.1 Redox (reaction)/Redoks(reaksie) ✓ (1)

8.2 Negative electrode/Mg is a stronger reducing agent/is oxidized/release electrons. /Mass of Mg decreases. ✓ Negatiewe elektrode/Mg is 'n sterker reduseermiddel/word geoksideer/stel elektrone vry./ Massa van Mg sal afneem.

(2)

8.3

8.3.1 (Temperature/*Temperatuur*:) (Temperature/Temperatuur.) 25 °C/298 K ✓ (Concentration/Konsentrasie:) 1 mol·dm⁻³ ✓ (2)

 $Mg(s) | Mg^{2+}(aq) | Pb^{2+}(aq) | Pb(s)$ 8.3.2 Mg | Mg²⁺|| Pb²⁺| Pb (3)

Pb²⁺ / Pb(NO₃)₂ / lead(II) ions / lead(II) nitrate ✓ 8.3.3 $Pb^{2+}/Pb(NO_3)_2/lood(II)$ -ione / lood(II)nitraat (1)

OPTION 1/OPSIE 1 8.4

$$E_{\text{cell}}^{\theta} = E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} \checkmark$$

$$= -0.13 \checkmark - (-2.36) \checkmark$$

$$= 2.23 \text{ V} \checkmark$$

Notes/Aantekeninge

- Accept any other correct formula from the data sheet./Aanvaar enige ander korrekte formule vanaf gegewensblad.
- Any other formula using unconventional abbreviations, e.g. $E^{\circ}_{cell} = E^{\circ}_{OA} - E^{\circ}_{RA}$ followed by correct substitutions:/Enige ander formule wat onkonvensionele afkortings gebruik bv. $E^{\circ}_{sel} = E^{\circ}_{OM} - E^{\circ}_{RM}$ gevolg deur korrekte vervangings: $\frac{3}{4}$

OPTION 2/OPSIE 2

 $Pb^{2+}(aq) + Mg(s) \rightarrow Pb(s) + Mg^{2+}(aq)$ $E^{\theta} = +2,23 \text{ V} \checkmark$

8.5 Remains the same/Bly dieselfde ✓ 8.5.1

(1)

(4)

8.5.2 Increases/Verhoog ✓ (1) [15]

(2)

QUESTION 9/VRAAG 9

9.1 **ANY ONE/ENIGE EEN**:

- A substance that forms ions in water / when melted. √√
 'n Stof wat ione in water / wanneer gesmelt vorm.
- A substance whose aqueous solution contains ions. 'n Stof waarvan die oplossing ione bevat.
- Substance that dissolves in water to give a solution that conducts electricity.

'n Stof wat in water oplos om 'n oplossing te vorm wat elektrisiteit gelei.

9.2 Plastic is a non-conductor of electricity / Graphite is a conductor. ✓

Plastiek is 'n nie-geleier van elektrisiteit / Grafiet is 'n geleier. (1)

9.3 9.3.1 $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s) \checkmark \checkmark$

Ignore phases / Ignoreer fases

9.3.2 Ni / nickel / *nikkel* ✓

Ni is oxidised./Ni word geoksideer. ✓

OR/OF

Ni loses electrons./Ni verloor elektrone.

OR/OF

Ni is the anode./Ni is die anode.

OR/OF

Ni is the positive electrode./Ni is die positiewe elektrode.

OR/*OF*

$$Ni \rightarrow Ni^{2+}(aq) + 2e^{-}$$
 (2)

9.4 **Q**Ring ✓

Reduction takes place at the cathode./Reduksie vind by die katode plaas. ✓ **OR/OF**

Negative electrode. / Negatiewe elektrode. (2)

9.5 ☐ Decreases/Verminder ✓

 Ni^{2+} ions from the electrolyte will be reduced (to Ni). \checkmark Ni^{2+} -ione in die elektroliet word gereduseer (na Ni).

OR/OF

Ni²⁺ changes to Ni / Ni²⁺ verander na Ni

(2) **[11]**

QUESTION 10/VRAAG 10

10.1

10.1.1 $2SO_2(g) + O_2(g) \checkmark \rightarrow 2SO_3(g) \checkmark$ Bal. \checkmark

Notes/Aantekeninge

- Reactants ✓ Products ✓ Balancing ✓
 Reaktanse ✓ Produkte ✓ Balansering ✓
- Ignore/Ignoreer ⇒and phases/en fases.
- Marking rule 6.3.10/Nasienreël 6.3.10

(3)

10.1.2 Catalyst/Katalisator ✓

OR/OF

Increase the reaction rate./Verhoog die reaksietempo.

(1)

10.2 Exothermic/Eksotermies ✓

The temperature increases./Die temperatuur verhoog. ✓

OR/OF

Before the reaction the temperature was 450 $^{\circ}$ C and after the reaction it was 600 $^{\circ}$ C / 518 $^{\circ}$ C / 475 $^{\circ}$ C / 460 $^{\circ}$ C.

Voor die reaksie was die temperatuur 450 °C en na afloop van die reaksie was dit 600 °C / 518 °C / 475 °C / 460 °C.

(2)

- An exothermic reaction is favoured by a decrease in temperature. ✓ 'n Eksotermiese reaksie word bevoordeel deur 'n verlaging in temperatuur.
 - The forward reaction is favoured. ✓
 Die voorwaartse reaksie word bevoordeel.
 Higher yield (of SO₃). / Hoër opbrengs (SO₃). ✓

OR/OF

- An endothermic reaction is favoured by an increase in temperature. ✓
 Endotermiese reaksie word bevoordeel deur 'n verhoging in temperatuur.
- The reverse reaction is favoured. ✓
 Die terugwaartse reaksie word bevoordeel.
 Lower yield (of SO₃). / Laer opbrengs (SO₃). ✓

104

10.4.1 $H_2S_2O_7 \checkmark$ (1)

10.4.2 A mist will form (which is difficult to collect)./'n Mis sal vorm (wat moeilik is om te versamel).

OR/OF

The reaction is too exothermic./Die reaksie is te eksotermies. ✓

(1)

(3)

10.5 $H_2SO_4 + 2NH_3 \checkmark \rightarrow (NH_4)_2SO_4 \checkmark$ Bal. \checkmark

Notes/Aantekeninge

- Reactants ✓ Products ✓ Balancing ✓
 Reaktanse ✓ Produkte ✓ Balansering ✓
- Ignore/Ignoreer ⇒
- Marking rule 6.3.10/Nasienreël 6.3.10

(3) **[14]**

TOTAL/TOTAAL: 150