2024-2025 数学 I

整理: 少年班 2302 张杰铭 2025.1.7

1 填空题 $(4 \times 10 = 40)$

- 1 设 $\alpha \in (0, \frac{\pi}{2})$, 求 $\frac{\sin^3 \alpha}{\cos \alpha} + \frac{\cos^3 \alpha}{\sin \alpha}$ 的最小值.
- **2** 设 x, y, z 均为正数,且 x + y + z = 1,求 $f(x, y, z) = xy^2z^3$ 的最大值.
- 3 $\sin \alpha + \sin \beta = \frac{1}{4}, \tan(\alpha + \beta) = \frac{24}{7}, \quad \Re \cos \alpha + \cos \beta.$
- 4 求值: $9 \tan 10^{\circ} + 2 \tan 20^{\circ} + 4 \tan 40^{\circ} \tan 80^{\circ}$.
- 5 设 $X = \{1, 2, 3, 4\},$ 若 $H = \{(x, y) | \frac{x-y}{2} \in Z, x, y \in X\},$ $S = \{(x, y) | \frac{x-y}{3} \in Z^+, x, y \in X\},$ 求 $H \cap S$.
- **6** 设 f, g, $g \circ f$ 为映射, 判断真假: "若 f, g 均为满射, 则 $g \circ f$ 为满射".
- 7 f(x) 是 \mathbb{R} 上以 3 为周期的奇函数,且 f(2) = 0,求 f(x) 在 (-6,6) 内零点个数的最小值.
- 8 $f(x) = \frac{1}{2^x + \sqrt{2}}$, 则求 $f(-5) + f(-4) + \dots + f(0) + f(1) + \dots + f(6)$.
- **9** 设 a, b, c 均为正数,且 a + b + c = 1,求 $a^{1-a}b^{1-b}c^{1-c}$ 的最大值.
- **10** 实数 a, b, c, d 满足: $a + b + c + d = 3, a^2 + 2b^2 + 3c^2 + 6d^2 = 5$, 求 a 的取值范围.

2 解答题 $(12 \times 5 = 60)$

- 11 设集合 $A \in \mathbb{R}$ 的非空子集, $f, g: A \to \mathbb{R}$ 有界. 记 $h: A \to \mathbb{R}$, $h(x) = \min\{f(x), g(x)\}$. 证明: h 有界, 且 $\inf h = \min\{\inf f, \inf g\}$.
- 12 (1) $\mbox{if } x \in [-1, 1], \ \mbox{if } \arcsin x + \arccos x.$
- (2) 设 $f(x) = \frac{e^x + e^{-x}}{2}, x \ge 0$, 求 f 的值域及其反函数.

13 求 $f(x) = \cos 4x + 6\cos 3x + 17\cos 2x + 30\cos x$ 的最大值与最小值.

14 设 $q_i > 0$, i = 1, 2, ..., n, $q_1 + q_2 + ... + q_n = 1$, $a_i > 0$, i = 1, 2, ..., n. 记 $\mathbf{a} = (a_1, ..., a_n)$, 对 $r \ge 0$, 定义

$$m_r(\mathbf{a}) = \begin{cases} \left(\sum_{i=1}^n q_i a_i^r \right)^{\frac{1}{r}}, \ r > 0 \\ a_1^{q_1} a_2^{q_2} ... a_n^{q_n}, \ r = 0 \end{cases}$$

证明: $\forall 0 \leq r \leq s, m_r(\mathbf{a}) \leq m_s(\mathbf{a}).$

15 对于 $f: \mathbb{R} \to \mathbb{R}$, 若存在 $L \in \mathbb{R}$, 使得

$$|f(x) - f(y)| \le L|x - y|, \ \forall \ x, y \in \mathbb{R}$$

则称 f Lipschitz 连续. 设集合 $A \in \mathbb{R}$ 的非空子集, $d: \mathbb{R} \to \mathbb{R}$,

$$d(x) = \inf\{|x - y| : y \in A\}$$

求证 d Lipschitz 连续.