Journées de méthodologie statistique (JMS) - 2022

Institut national de la statistique et des études économiques

Mesurer pour comprendre

Détection en temps réels des points de retournement : Apport de l'utilisation des filtres asymétriques dans l'analyse conjoncturelle

ALAIN QUARTIER-LA-TENTE Session 27 : Séries temporelles 31/03/2022 Insee (DESE) et LEMNA

 X_t (ex : IPI France) se décompose en plusieurs composantes inobservées :

 $X_t =$ (décomposition additive)

 $X_{\rm t}$ (ex : IPI France) se décompose en plusieurs composantes inobservées :

$$X_t = \underbrace{TC_t}_{\text{tendance-cycle}}$$

(décomposition additive)

 X_t (ex : IPI France) se décompose en plusieurs composantes inobservées :

$$X_t = \underbrace{TC_t}_{\text{tendance-cycle}} + \underbrace{S_t}_{\text{saisonnalit\'e}}$$
 (décomposition additive)

 X_t (ex : IPI France) se décompose en plusieurs composantes inobservées :

$$X_t = \underbrace{TC_t}_{\text{tendance-cycle}} + \underbrace{S_t}_{\text{saisonnalit\'e}} + \underbrace{I_t}_{\text{irr\'egulier}}$$
 (décomposition additive)

 X_t (ex : IPI France) se décompose en plusieurs composantes inobservées :

$$X_t = \underbrace{TC_t}_{\text{tendance-cycle}} + \underbrace{S_t}_{\text{saisonnalit\'e}} + \underbrace{J_t}_{\text{irr\'egulier}}$$
 (décomposition additive)

 TC_t généralement estimée sur une série sans saisonnalité

 $\label{eq:mobiles} \textit{Moyennes mobiles} \ (\text{ou} \ \textit{filtres linéaires}) \ \text{omniprésents dans l'extraction de la tendance-cycle} \ \text{et la désaisonnalisation} \ (\text{e.g.}: X-13ARIMA):$

$$M_{\theta}(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k}$$

 $\label{eq:mobiles} \textit{Moyennes mobiles} \ (\text{ou} \ \textit{filtres linéaires}) \ \text{omniprésents dans l'extraction de la tendance-cycle} \ \text{et la désaisonnalisation} \ (\text{e.g.}: X-13ARIMA):$

$$M_{\theta}(X_t) = \sum_{k=-p}^{+t} \theta_k X_{t+k}$$

Appliquer $M_{ heta}$ sur $X_t = \mathrm{e}^{-i\omega t}$ va avoir deux effets :

$$M_{\theta}X_{t} = \sum_{k=-p}^{+f} \theta_{k} e^{-i\omega(t+k)} = \left(\sum_{k=-p}^{+f} \theta_{k} e^{-i\omega k}\right) \cdot X_{t} = G_{\theta}(\omega) e^{-i\Phi_{\theta}(\omega)} X_{t}$$

- 1. Multiplier le niveau par $G_{\theta}\left(\omega\right)\left(gain\right)$
- 2. Créer un déphasage $\Phi_{\theta}(\omega)/\omega$: affecte détection des points de retournement

igoplus Généralement, utilisation de filtres symétriques (p=f et $\theta_{-i}=\theta_i$)

- lacktriangle Généralement, utilisation de filtres symétriques (p=f et $\theta_{-i}=\theta_i$)
- ullet Pour l'estimation en **temps réel**, utilisation de filtres *asymétriques* $(f < p) \Longrightarrow$ révision et détection avec retard des points de retournement (déphasage)

- lacktriangle Généralement, utilisation de filtres symétriques (p=f et $\theta_{-i}=\theta_i$)
- igoplus Pour l'estimation en **temps réel**, utilisation de filtres *asymétriques* $(f < p) \implies$ révision et détection avec retard des points de retournement (déphasage)

Solution classique : prolonger la série par prévision et utiliser filtre symétrique

revient à utiliser des filtres asymétriques optimisés avec certains critères

- lacktriangle Généralement, utilisation de filtres symétriques (p=f et $\theta_{-i}=\theta_i$)
- $oldsymbol{\circ}$ Pour l'estimation en **temps réel**, utilisation de filtres *asymétriques* $(f < p) \implies$ révision et détection avec retard des points de retournement (déphasage)

Solution classique : prolonger la série par prévision et utiliser filtre symétrique previent à utiliser des filtres asymétriques optimisés avec certains critères

Objectifs cette étude :

- Étudier et comparer des approches récentes pour l'extraction de la tendance-cycle en temps réel :
 - Régression polynomiale locale (Proietti et Luati 2008)
 - RKHS (Dagum et Bianconcini 2016)
 - Optimisation sous contrainte d'une somme pondérée de critères (Grun-Rehomme et ali 2018, Wildi et McElroy, 2019)

- igoplus Généralement, utilisation de filtres symétriques (p=f et $\theta_{-i}=\theta_i$)
- igoplus Pour l'estimation en **temps réel**, utilisation de filtres *asymétriques* $(f < p) \implies$ révision et détection avec retard des points de retournement (déphasage)

Solution classique : prolonger la série par prévision et utiliser filtre symétrique Previent à utiliser des filtres asymétriques optimisés avec certains critères

Objectifs cette étude :

- Étudier et comparer des approches récentes pour l'extraction de la tendance-cycle en temps réel :
 - Régression polynomiale locale (Proietti et Luati 2008)
 - RKHS (Dagum et Bianconcini 2016)
 - Optimisation sous contrainte d'une somme pondérée de critères (Grun-Rehomme et ali 2018, Wildi et McElroy, 2019)
- Montrer qu'il est possible d'établir une théorie générale englobant toutes ces méthodes

- lacktriangle Généralement, utilisation de filtres symétriques (p=f et $\theta_{-i}=\theta_i$)
- igoplus Pour l'estimation en **temps réel**, utilisation de filtres *asymétriques* $(f < p) \implies$ révision et détection avec retard des points de retournement (déphasage)

Solution classique : prolonger la série par prévision et utiliser filtre symétrique Previent à utiliser des filtres asymétriques optimisés avec certains critères

Objectifs cette étude :

- Étudier et comparer des approches récentes pour l'extraction de la tendance-cycle en temps réel :
 - Régression polynomiale locale (Proietti et Luati 2008)
 - RKHS (Dagum et Bianconcini 2016)
 - Optimisation sous contrainte d'une somme pondérée de critères (Grun-Rehomme et ali 2018, Wildi et McElroy, 2019)
- Montrer qu'il est possible d'établir une théorie générale englobant toutes ces méthodes
- Présenter le package **Q** rjdfilters

Sommaire

- 1. Introduction
- 2. Méthodes étudiées
- 2.1 Filtre symétrique
- 2.2 Polynômes Locaux
- 2.3 Filtres et Reproducing Kernel Hilbert Space (RKHS)
- 3. Comparaison des méthodes
- 4. Conclusion

Moyenne mobile symétrique d'Henderson

MM Henderson (utilisé dans X-13ARIMA) largement répandue pour l'estimation de la TC

MM Henderson préserve les tendances polynomiales de degré 3 et minimise le critère de "lissage" $(\sum (\nabla^3 \theta_i)^2)$

Sur séries mensuelles : MM de 13 termes généralement

Polynômes Locaux : rjdfilters::lp_filter()

Hypothèse : $y_t = \mu_t + \varepsilon_t$ avec $\varepsilon_t \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$

 μ_t localement approchée par un polynôme de degré d :

$$\forall j \in \llbracket -h, h \rrbracket : y_{t+j} = m_{t+j} + \varepsilon_{t+j}, \quad m_{t+j} = \sum_{i=0}^d \beta_i j^i$$

Polynômes Locaux : rjdfilters::lp_filter()

Hypothèse : $y_t = \mu_t + \varepsilon_t$ avec $\varepsilon_t \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$

 μ_t localement approchée par un polynôme de degré d :

$$\forall j \in \llbracket -h, h \rrbracket : y_{t+j} = m_{t+j} + \varepsilon_{t+j}, \quad m_{t+j} = \sum_{i=0}^{d} \beta_i j^i$$

Estimation en utilisant les WLS avec noyaux : $\hat{\beta} = (X'KX)^1X'Ky$ et

$$\hat{m}_t = \hat{\beta}_0 = w'y = \sum_{j=-h}^n w_j y_{t-j}$$
 equivalent à une moyenne mobile symétrique

 \bullet Filtre de Henderson avec d=3 et noyau spécifique.

- Même méthode mais moins de données (DAF) ← minimiser les révisions sous mêmes contraintes polynomiales
- sans biais mais beaucoup de variance
- utilisé dans STL

- Même méthode mais moins de données (DAF) ← minimiser les révisions sous mêmes contraintes polynomiales
- sans biais mais beaucoup de variance
- utilisé dans STL
- 2. Minimisation des révisions sous contraintes polynomiales :
 - 2.1 Linear-Constant (LC) : y_t linéaire and v reproduit les constantes (Musgrave)
 - 2.2 Quadratic-Linear (QL): y_t quadratique et v reproduit droites
 - 2.3 Cubic-Quadratic (CQ): y_t cubique et v reproduit tendances quadratiques
 - Filtres asymétriques v dépendent de "IC-Ratio"

- 1. Même méthode mais moins de données (DAF) \iff minimiser les révisions sous mêmes contraintes polynomiales
- sans biais mais beaucoup de variance
- utilisé dans STL
- 2. Minimisation des révisions sous contraintes polynomiales :
 - 2.1 Linear-Constant (LC) : y_t linéaire and v reproduit les constantes (Musgrave)
 - 2.2 Quadratic-Linear (QL): y_t quadratique et v reproduit droites
 - 2.3 Cubic-Quadratic (CQ): y_t cubique et v reproduit tendances quadratiques
 - Filtres asymétriques v dépendent de "IC-Ratio"
- modèles simples facilement interprétables
- Déphasage non contrôlé 🌓 méthode étendue dans rjdfilters::lp_filter()

- 1. Même méthode mais moins de données (DAF) ← minimiser les révisions sous mêmes contraintes polynomiales
- sans biais mais beaucoup de variance
- utilisé dans STL
- 2. Minimisation des révisions sous contraintes polynomiales :
 - 2.1 Linear-Constant (LC) : y_t linéaire and v reproduit les constantes (Musgrave)
 - 2.2 Quadratic-Linear (QL): y_t quadratique et v reproduit droites
 - 2.3 Cubic-Quadratic (CQ): y_t cubique et v reproduit tendances quadratiques
 - Filtres asymétriques v dépendent de "IC-Ratio"
- modèles simples facilement interprétables
- Déphasage non contrôlé méthode étendue dans rjdfilters::lp_filter()
- ☐ Visualisation https://aqlt.shinyapps.io/FiltersProperties/

- Utilisation de la théorie des RKHS pour approcher le filtre d'Henderson
- Avec K_p une **fonction de noyau** définie sur [-1,1], le filtre symétrique :

$$\forall j \in \llbracket -h, h \rrbracket : w_j = \frac{K_p(j/b)}{\sum_{i=-h}^h K_p(i/b)}$$

- Utilisation de la théorie des RKHS pour approcher le filtre d'Henderson
- Avec K_p une **fonction de noyau** définie sur [-1,1], le filtre symétrique :

$$\forall j \in \llbracket -h, h \rrbracket : w_j = \frac{K_p(j/b)}{\sum_{i=-h}^h K_p(i/b)}$$

Pour les filtres asymétriques :

$$\forall j \in \llbracket -h, q \rrbracket : w_{a,j} = \frac{K_p(j/b)}{\sum_{i=-h}^q K_p(i/b)}$$

- Utilisation de la théorie des RKHS pour approcher le filtre d'Henderson
- Avec K_p une **fonction de noyau** définie sur [-1,1], le filtre symétrique :

$$\forall j \in \llbracket -h, h \rrbracket : w_j = \frac{K_p(j/b)}{\sum_{i=-h}^h K_p(i/b)}$$

- $oldsymbol{\Theta}$ avec b=h+1 et \mathcal{K}_p spécifique on retrouve le filtre d'Henderson
 - Pour les filtres asymétriques :

$$\forall j \in \llbracket -h, q \rrbracket : w_{a,j} = \frac{K_p(j/b)}{\sum_{i=-h}^q K_p(i/b)}$$

- Utilisation de la théorie des RKHS pour approcher le filtre d'Henderson
- Avec K_p une **fonction de noyau** définie sur [-1,1], le filtre symétrique :

$$\forall j \in \llbracket -h, h \rrbracket : w_j = \frac{K_p(j/b)}{\sum_{i=-h}^h K_p(i/b)}$$

- $oldsymbol{\Theta}$ avec b=h+1 et \mathcal{K}_p spécifique on retrouve le filtre d'Henderson
 - · Pour les filtres asymétriques :

$$\forall j \in \llbracket -h, q \rrbracket : w_{\mathsf{a},j} = \frac{K_{\mathsf{p}}(j/b)}{\sum_{i=-h}^{q} K_{\mathsf{p}}(i/b)}$$

igoplus b choisit par optimisation, e.g. minimisant les révisions $(b_{q,\Gamma})$, les révisions liées à la fonction de gain $(b_{q,G})$ et celles liées au déphasage $(b_{q,\varphi})$

Filtres asymétriques

Plusieurs extremum


```
rkhs_optimal_bw()

## q=0 q=1 q=2 q=3 q=4 q=5

## 6.0000 6.0000 6.3875 8.1500 9.3500 6.0000
```

Sommaire

- 1. Introduction
- 2. Méthodes étudiées
- 3. Comparaison des méthodes
- 3.1 Méthodologie
- 3.2 Application sur séries simulées
- 3.3 Un exemple : série des ventes au détail des États-Unis (en log)
- 4. Conclusion

Méthodologie

Comparaison des différentes méthodes sur séries simulées (avec 3 niveaux de variabilité) et séries réelles :

1. Estimation de la tendance-cycle à chaque date en utilisant les différentes méthodes et un filtre symétrique de 13 termes

Méthodologie

Comparaison des différentes méthodes sur séries simulées (avec 3 niveaux de variabilité) et séries réelles :

- 1. Estimation de la tendance-cycle à chaque date en utilisant les différentes méthodes et un filtre symétrique de 13 termes
- 2. À chaque date, estimation des points de retournement :
 - redressements : $y_{t-3} \ge y_{t-2} \ge y_{t-1} < y_t \le y_{t+1}$
 - ralentissements : $y_{t-3} \le y_{t-2} \le y_{t-1} > y_t \ge y_{t+1}$

Déphasage = temps nécessaire pour détecter le bon point de retournement sans révision

Méthodologie

Comparaison des différentes méthodes sur séries simulées (avec 3 niveaux de variabilité) et séries réelles :

- 1. Estimation de la tendance-cycle à chaque date en utilisant les différentes méthodes et un filtre symétrique de 13 termes
- 2. À chaque date, estimation des points de retournement :
 - redressements : $y_{t-3} \ge y_{t-2} \ge y_{t-1} < y_t \le y_{t+1}$
 - ralentissements : $y_{t-3} \le y_{t-2} \le y_{t-1} > y_t \ge y_{t+1}$

Déphasage = temps nécessaire pour détecter le bon point de retournement sans révision

3. Calcul des révisions avec deux critères :

$$\mathbb{E}\left[\left|\frac{y_{t|t+q}-y_{t|last}}{y_{t|last}}\right|\right] \quad \text{ et } \quad \mathbb{E}\left[\left|\frac{y_{t|t+q}-y_{t|t+q+1}}{y_{t|t+q+1}}\right|\right]$$

Résultats sur le déphasage (séries simulées)

Méthode	q = 0	q = 1	q = 2	q = 3	q = 4	q = 5			
MAE entre qe et la dernière estimation									
LC	0,21	0,10	0,03	0,03	0,03	0,01			
QL (rel)	1,6	1,0	1,3	1,5	1,3	1,1			
CQ (rel)	2,2	1,3	4,2	3,3	2,1	1,6			
DAF (rel)	2,3	1,5	4,9	3,5	2,2	1,5			
$b_{q,\Gamma}$ (rel)	3,1	2,3	1,1	3,6	3,5	3,9			
$b_{q,G}$ (rel)	4,1	4,0	1,1	3,6	3,5	4,0			
$b_{q,arphi}$ (rel)	1,5	1,1	1,0	1,8	2,7	8,7			
ARIMA (rel)	1,0	1,0	1,1	1,1	1,1	1,0			
MAE entre q^e et la $q + 1^e$ estimation									
LC	0,19	0,10	0,02	0,01	0,07	0,01			
QL (rel)	1,6	43,2	0,1	3,1	0,9	1,1			
CQ (rel)	2,3	0,2	4,3	7,3	1,4	1,6			
DAF (rel)	3,5	2,6	4,6	12,9	1,3	1,5			
$b_{q,\Gamma}$ (rel)	2,1	2,9	3,7	0,3	16,2	3,9			
$b_{q,G}$ (rel)	3,7	4,7	4,3	0,5	17,0	4,0			
$b_{q,arphi}$ (rel)	1,2	1,4	3,5	5,3	0,7	8,7			
ARIMA (rel)	1,1	1,3	0,8	1,8	2,3	1,0			

Méthode	q = 0	q = 1	q = 2	q = 3	q = 4	q = 5			
MAE entre q ^e et la dernière estimation									
LC	0,21	0,10	0,03	0,03	0,03	0,01			
QL (rel)	1,6	1,0	1,3	1,5	1,3	1,1			
CQ (rel)	2,2	1,3	4,2	3,3	2,1	1,6			
DAF (rel)	2,3	1,5	4,9	3,5	2,2	1,5			
$b_{q,\Gamma}$ (rel)	3,1	2,3	1,1	3,6	3,5	3,9			
$b_{q,G}$ (rel)	4,1	4,0	1,1	3,6	3,5	4,0			
$b_{q,arphi}$ (rel)	1,5	1,1	1,0	1,8	2,7	8,7			
ARIMA (rel)	1,0	1,0	1,1	1,1	1,1	1,0			
MAE entre qe e	MAE entre q^e et la $q+1^e$ estimation								
LC	0,19	0,10	0,02	0,01	0,07	0,01			
QL (rel)	1,6	43,2	0,1	3,1	0,9	1,1			
CQ (rel)	2,3	0,2	4,3	7,3	1,4	1,6			
DAF (rel)	3,5	2,6	4,6	12,9	1,3	1,5			
$b_{q,\Gamma}$ (rel)	2,1	2,9	3,7	0,3	16,2	3,9			
$b_{q,G}$ (rel)	3,7	4,7	4,3	0,5	17,0	4,0			
$b_{q,arphi}$ (rel)	1,2	1,4	3,5	5,3	0,7	8,7			
ARIMA (rel)	1,1	1,3	0,8	1,8	2,3	1,0			

Méthode	q = 0	q = 1	q = 2	q = 3	q = 4	q = 5				
MAE entre q^e et la dernière estimation										
LC	0,21	0,10	0,03	0,03	0,03	0,01				
QL (rel)	1,6	1,0	1,3	1,5	1,3	1,1				
CQ (rel)	2,2	1,3	4,2	3,3	2,1	1,6				
DAF (rel)	2,3	1,5	4,9	3,5	2,2	1,5				
$b_{q,\Gamma}$ (rel)	3,1	2,3	1,1	3,6	3,5	3,9				
$b_{q,G}$ (rel)	4,1	4,0	1,1	3,6	3,5	4,0				
$b_{q,arphi}$ (rel)	1,5	1,1	1,0	1,8	2,7	8,7				
ARIMA (rel)	1,0	1,0	1,1	1,1	1,1	1,0				
MAE entre qe e	MAE entre q^e et la $q + 1^e$ estimation									
LC	0,19	0,10	0,02	0,01	0,07	0,01				
QL (rel)	1,6	43,2	0,1	3,1	0,9	1,1				
CQ (rel)	2,3	0,2	4,3	7,3	1,4	1,6				
DAF (rel)	3,5	2,6	4,6	12,9	1,3	1,5				
$b_{q,\Gamma}$ (rel)	2,1	2,9	3,7	0,3	16,2	3,9				
$b_{q,G}$ (rel)	3,7	4,7	4,3	0,5	17,0	4,0				
$b_{q,arphi}$ (rel)	1,2	1,4	3,5	5,3	0,7	8,7				
ARIMA (rel)	1,1	1,3	0,8	1,8	2,3	1,0				

Méthode	q = 0	q = 1	q=2	q = 3	q = 4	q = 5		
MAE entre qe et la dernière estimation								
LC	0,21	0,10	0,03	0,03	0,03	0,01		
QL (rel)	1,6	1,0	1,3	1,5	1,3	1,1		
CQ (rel)	2,2	1,3	4,2	3,3	2,1	1,6		
DAF (rel)	2,3	1,5	4,9	3,5	2,2	1,5		
$b_{q,\Gamma}$ (rel)	3,1	2,3	1,1	3,6	3,5	3,9		
$b_{q,G}$ (rel)	4,1	4,0	1,1	3,6	3,5	4,0		
$b_{q,arphi}$ (rel)	1,5	1,1	1,0	1,8	2,7	8,7		
ARIMA (rel)	1,0	1,0	1,1	1,1	1,1	1,0		
MAE entre q^e et la $q + 1^e$ estimation								
LC	0,19	0,10	0,02	0,01	0,07	0,01		
QL (rel)	1,6	43,2	0,1	3,1	0,9	1,1		
CQ (rel)	2,3	0,2	4,3	7,3	1,4	1,6		
DAF (rel)	3,5	2,6	4,6	12,9	1,3	1,5		
$b_{q,\Gamma}$ (rel)	2,1	2,9	3,7	0,3	16,2	3,9		
$b_{q,G}$ (rel)	3,7	4,7	4,3	0,5	17,0	4,0		
$b_{q,arphi}$ (rel)	1,2	1,4	3,5	5,3	0,7	8,7		
ARIMA (rel)	1,1	1,3	0,8	1,8	2,3	1,0		

Estimations successives de la tendance-cycle (1)

Estimations successives de la tendance-cycle (2)

lissage par v de la série prolongée lissage par w^q de la série prolongée

Prévisions implicites

Fonction rjdfilters::implicit_forecast

$$\forall q, \quad \underbrace{\sum_{i=-h}^{0} v_i y_i + \sum_{i=1}^{h} v_i y_i *}_{i=1} = \underbrace{\sum_{i=-h}^{0} w_i^q y_i + \sum_{i=1}^{h} w_i^q y_i *}_{i=1} \quad \text{avec } \forall i > q, w_i^q = 0$$

Ce qui est équivalent à :

$$\forall q, \quad \sum_{i=1}^{h} (v_i - w_i^q) y_i^* = \sum_{i=-h}^{0} (w_i^q - v_i) y_i.$$

Matriciellement :

$$\begin{pmatrix} v_1 & v_2 & \cdots & v_h \\ v_1 - w_1^1 & v_2 & \cdots & v_h \\ \vdots & \vdots & \ddots & \vdots \\ v_1 - w_1^{h-1} & v_2 - w_2^{h-1} & \cdots & v_h \end{pmatrix} \begin{pmatrix} y_1^* \\ \vdots \\ y_h^* \end{pmatrix} = \begin{pmatrix} w_{-h}^0 - v_{-h} & w_{-(h-1)}^0 - v_{-(h-1)} & \cdots & w_0^0 - v_0 \\ w_{-h}^1 - v_{-h} & w_{-(h-1)}^1 - v_{-(h-1)} & \cdots & w_0^1 - v_0 \\ \vdots & \vdots & \ddots & \vdots \\ w_{-h}^{h-1} - v_{-h} & w_{-(h-1)}^{h-1} - v_{-(h-1)} & \cdots & w_0^{h-1} - v_0 \end{pmatrix} \begin{pmatrix} y_{-h} \\ \vdots \\ y_0 \end{pmatrix}.$$

Prévisions implicites (1)

Prévisions implicites (2)

Conclusion

 Dans la construction des filtres asymétriques, on peut se restreindre à ceux qui conservent les polynômes de degré au plus 1 (et exclure les filtres QL, CQ et DAF)

Conclusion

- Dans la construction des filtres asymétriques, on peut se restreindre à ceux qui conservent les polynômes de degré au plus 1 (et exclure les filtres QL, CQ et DAF)
- RKHS semble permettre un bon compris déphasage/révisions $(b_{q,G})$ mais potentiellement problèmes de calibration avec estimations intermédiaires erratiques $(b_{q,\omega})$

Conclusion

- Dans la construction des filtres asymétriques, on peut se restreindre à ceux qui conservent les polynômes de degré au plus 1 (et exclure les filtres QL, CQ et DAF)
- RKHS semble permettre un bon compris déphasage/révisions $(b_{q,G})$ mais potentiellement problèmes de calibration avec estimations intermédiaires erratiques $(b_{q,\varphi})$
- Dans certains cas des méthodes alternatives à la prévision ARIMA peuvent être utilisées pidfilters peut aider à comparer les résultats (rjdfilters::x11() pour les intégrer dans X-11)

What next?

 Etudes sur d'autres méthodes comme Vasyechko et Grun-Rehomme (2014) ou Feng et Schäfer (2021)

What next?

 Etudes sur d'autres méthodes comme Vasyechko et Grun-Rehomme (2014) ou Feng et Schäfer (2021)

 Utiliser des paramètres différents en fin de période? Impact de la longueur du filtre?

What next?

 Etudes sur d'autres méthodes comme Vasyechko et Grun-Rehomme (2014) ou Feng et Schäfer (2021)

- Utiliser des paramètres différents en fin de période? Impact de la longueur du filtre?
- Impact des points atypiques? quid des méthodes robustes?

Merci pour votre attention

Package **Q** :

nalatej/rjdfilters

Version en développement • AQLT/rjdfilters

☐ Codes : https://github.com/AQLT/articles