Cursuri logică matematică

September 6, 2024

1 Curs 1

1.1 Teoria multimilor și axiomele ZFC

Teoremă (Paradoxul lui Russell): Nu există o mulțime R astfel încât pentru orice $x, [x \in R \iff x \notin x]$.

1. **Axioma extensionalității**: Pentru orice x, y, avem că dacă pentru orice z, $[z \in x \iff z \in y]$, atunci x = y.

Teoremă: Există cel mult o mulțime vidă.

2. **Axioma comprehensiunii**: Pentru orice x și pentru orice "proprietate" P, există o mulțime y, astfel încât pentru orice z, avem $z \in y \iff z \in x$ și P(z).

Teoremă: Nu există mulțimea tuturor mulțimilor, adică o mulțime căreia să îi aparțină orice mulțime. Ca urmare, pentru orice x există y cu $y \notin x$.

Teoremă: Există o mulțime vidă.

- 3. Axioma perechii: Pentru orice x, y există z a.î $x \in z$ și $y \in z$.
 - O mulțime de forma $\{x\}$ s.n. **singleton**. Notăm cu $0:=\emptyset$, $1:=\{\emptyset\}$, $2:=\{0,1\}$.
- 4. **Axioma reuniunii**: Pentru orice F există x a.î. pentru orice y, z cu $z \in y$ şi $y \in F$ avem $z \in x$.

Ca mai înainte putem folosi axioma comprehensiunii pentru a obține , pentru fiecare F mulțimea care conține exact acei z a. î. există $y \in F$ cu $z \in y$. Vom nota această mulțime cu $\bigcup F$ și o vom numi **reuniunea** mulțimii F.

Atenție! Aceasta nu este reuniunea obișnuită a două mulțimi, ci este, practic "reuniunea tuturor mulțimilor din F".

```
x \cup y := \bigcup \{x, y\} Inductiv: \{x, y, z\} := \bigcup \{\{x, y\}, z\} = \{x, y\} \cup \{z\}
```

Definim pentru orice $x, x^+ := x \cup \{x\}$, numind această mulțime succesorul lui x.

5. Axioma mulţimilor părţilor: Pentru orice x există y astfel încât pentru orice z cu $z \subseteq x$ avem $z \in y$. Propoziţie: Fie x, y, X, Y cu $x \in X$ şi $y \in Y$. Atunci $(x, y) \in P(P(X \cup Y))$.

Def: $X \times Y := \{ w \in P(P(X \cup Y)) | \text{ există } x \in X, y \in Y \text{ cu } w = (x, y) \}$ conține toate perechile ordonate din X cu Y și se numește **produsul cartezian** al lui X și Y.

Def: Dacă F = mulţime nevidă, def. **intersecţia** mulţimii F ca fiind $\bigcap F := \{z \in \bigcup F | \text{ pentru orice } x \text{ cu } x \in F, \text{ avem } z \in x.$

Def: Fie X o mulţime. Numim o mulţime $A \subseteq P(X)$ mulţime Moore pe X dacă $X \in A$, iar pentru orice $B \subseteq A$ nevidă avem $\bigcap B = A$.

Teoremă: Fie X o mulțime și A o mulțime Moore pe X. Atunci există un unic $C \in A$, numit **minimul** lui A, astfel încât pentru orice $D \in A$, avem $C \subseteq D$.

2 Curs 2

2.1 Relații binare

Propoziție-Definiție: Fie R o mulțime. Următoarele afirmații sunt echivalente:

- $\bullet\,$ există A și Ba. î. $R\subseteq A\times B$
- \bullet elementele lui R sunt perechi ordonate.

În acest caz, R s.n. relație (binară), iar dacă A, B sunt ca mai sus, spunem ca R = relație între A și B.

2.2 Grafice și funcții

Def: Dacă A = mulţime, notăm cu Δ_A şi denumim **relaţia diagonală** pe A: $\{p \in A \times A | \text{ există } a \text{ a. î.} p = (a, a)\}.$

Def: Fie A, B mulțimi și R o relație între A și B. Spunem că R este **grafic între** A și B dacă pentru orice $a \in A$ există și e unic $b \in B$ a.î. $(a, b) \in R$.

Def: Fie A, B două mulţimi. Spunem că f este **funcție între** A **şi** B (notăm cu $f: A \to B$ dacă există R un grafic între A și B a.î. f = (A, B, R). Pentru orice $a \in A$ notăm cu f(a) acel unic $b \in B$ a.î. $(a, b) \in R$.

Propoziție: Fie R o relație binară. U.A.S.E:

- $\bullet\,$ există A,Ba.î. R=grafic intreA și B
- $\forall x, y, z \text{ cu } (x, y), (x, z) \in R$, avem y = z şi vom nota R(x) := y = z.

Propoziție: Fie R o relație binară și A, B, C, D a.î. R este grafic atât între A și B, cât și între C și D. Atunci A = C.

Notatii:

- $B^A := \{ f \in (\{A\} \times \{B\} \times P(A \times B) | f \text{ functio } \}.$
- $f_*(X) := \{ y \in B | \text{există } x \in X \text{ cu } f(x) = y \}$ şi s.n. imaginea directă a lui X prin f.
- $f^*(Y) := \{x \in A | f(x) \in Y\}$ şi s.n. **imaginea inversă** a lui Y prin f.
- $\operatorname{Im} f := f_*(A)$.

Obs: Există o unică funcție $f = (\emptyset, A, B) = (\emptyset, A, \emptyset)$ și s.n. **funcția vidă**. Atunci avem $A^{\emptyset} = A^0$ este un sigleton, iar \emptyset este **mulțimea inițială**. Atunci obligatoriu $A = \emptyset$.

2.3 Comportamentul singleton-urilor fața de funcții

Fixăm un X singleton.

Fie A=mulţime.

- Există o unică funcție $f: A \to X \implies \forall$ singleton este o **mulțime terminală** (noțiune **duală** celei de mulțime inițială).
- Acum căutăm $f: X \to A \iff$ selectăm elementul din A în care va fi dus acel unic elemnt din X. $\forall a \in A$, notăm $\langle a \rangle := \{(0,a)\}$ și cu $[a]_A := (1,A,\langle a \rangle)$ (acea unica funție cu dom. 1 și codom. A care duce singurul elem. al lui 1 în a).

2.4 Tipuri de relații binare pe o mulțime

Definiție: Fie A o mulțime și R o relație pe A. Notăm $xRy(x,y) \in R$. Atunci spunem că R este:

- totală dacă $\forall x, y \in A$ avem xRy sau yRx.
- antisimetrică dacă $\forall x, y \in A$ a.î. xRy și $yRx \implies x = y$
- de ordine parţială (≤) dacă este reflexivă, antisimetrică şi tranzitivă.
- ireflexivă dacă $\forall x \in A$ nu avem xRx
- asimetrică dacă $\forall x, y \in A$ cu xRy nu avem yRx

Prop-def: Fie A=multime, R= rel tranz pe A. U.A.S.E:

- R e ireflexivă
- R e asimetrică

În acest caz, Rs.n. relație de ordine strctă (<).

Def: Fie A= mulțime și \leq ordinea parțială pe A. Spunem că \leq este o rel. de **bună ordine**, dc. $\forall B \neq \emptyset$ submulțime a lui A are un elem. minim.

2.5 Multimi inductive

Def: O mulţime A s.n. **inductivă** dc. $\emptyset \in A$ şi $\forall x \in A \implies x^+ \in A$.

Axioma infinitului: Există o mulțime inductivă.

Obs: Dc. F= mulțime nevidă de mulțimi inductive $\implies \bigcap F$ este inductivă.

Def: O mulţime inductivă s.n. **minimal inductivă** dc. $\forall B \subseteq A$ inductivă $\Longrightarrow B = A$.

Prop: Fie A minimal inductivă $\implies \forall B$ inductivă avem $A \subseteq B$. (avem cel mult o mţ. minimal inductivă)

Prop: Fie u inductivă și notăm cu $F := \{x \in P(u) | x \text{ inductivă } \}$. Atunci $y := \bigcap F$ este unica mulțime minimal inductivă.

2.6 Şiruri

Def: Fie A= mulţime. Numim **şir** A-valuat o familie care are imaginea inclusă în A și domeniu fie un n nr. nat (şir finit), fie \mathbb{R}

Notație:

- $\mathbf{Seq_{fin}}(A)$:= mulţimea tuturor şirurilor A-valuate finite.
- $\mathbf{Seq}_n(A)$:= mulțimea tuturor șirurilor A-valuate de lungime n.

Teorema recursiei: Fie A = mulţime, $a \in A, g : P \times A \times \mathbb{N} \to A$. Atunci există o unică funcţie $f : \mathbb{N} \to A$ a.î. f(0) = a şi $\forall n \in f(n^+) = g(f(n), n)$.

Teorema recursiei complete: Fie A=mulţime, $g: \mathrm{Seq}_{\mathrm{fin}}(A) \to A \implies \exists ! f: \mathbb{N} \to A \text{ a.î. } \forall n \in \mathbb{N} \text{ avem } f(n) = g((f(i))_{i < n}).$

2.7 Dinamici punctate

Def: Un triplet (A, z, s) s.n. **dinamică punctată** dc. $z \in A$ și $s : A \to A$.

Ex: $(0, (.)^+)$

Def: Fie (A, z, s), (A', z', s') dinamici punctate. Un **morfism** între ele este o funcție $f: A \to A'$ cu f(z) = z' și $\forall a \in A, f(s(a)) = s'(f(a))$.

Def: O dinamică punctată (A, z, s) s.n. **inițială** dacă pt. orice dinamică punctată $(A', z', s')\exists!$ morfism $f: A \to A'$.

Prop: \forall 2 dinamici inițiale sunt izomorfe.

Prop: Dacă 2 dinamici sunt izomorfe, iar una este inițială, atunci și cealaltă este inițială.

Def: O dinamică punctată (A, z, s) s.n. **Peano** dc:

- 1. $z \notin \text{Im} s$
- 2. s injectivă
- 3. $\forall B \subseteq A \text{ cu } z \in B \text{ si } s_*(B) \subseteq B \implies B = A.$

Prop: Dacă 2 dinamici sunt izomorfe, iar una este Peano și cealaltă este Peano.

Prop(Th Dedekind): Orice dinamică punctată Peano este izomorfă cu $(\mathbb{N}, 0, (.)^+)$.

Prop: O dinamică punctată este inițială dacă și numai dacă este Peano.

3 Curs 3

3.1 Mulţimi finite

Lemă: Un număr (și ca urmare o mţ. finită) nu este în bijecție cu o parte a sa.

Corolar:

- \bullet Dc. $n\neq m\in \mathbb{N},$ nu există bij. între n și $m\implies$ nr. elem. mţ. finită este unic.
- $f: \mathbb{N} \to \mathbb{N} \{0\}, f(n) = n^+$ este bij $\Longrightarrow \mathbb{N}$ este infinită.

Dem:

- Dc. $n \neq m \implies m < n$ sau n < m. Pp.w.l.o.g că n < m. Atunci $\forall p < n \implies p < m \implies n \subset m$. Din lema anterioară avem concluzia.
- injectivitatea a fost dem. mai devreme, iar surj. rezultă dintr-un ex. de seminar.

Def: Fie A, B. Spunem că A are cadinalul mai mic sau egal ca B (notat $A \leq B$) dc. există o inj. de la A la B.

Prop: Fie A, B, C. Atunci:

- \bullet Dc. $A \preceq B$ și $A \sim C,$ atunci $C \preceq B$
- Dc. $A \leq B$ și $B \sim C$, atunci $A \leq C$.

Teorema Cantor-Bernstein-Schröder: Dc. $X \leq Y$ şi $Y \leq X \implies X \sim Y$.

Lemă: Fie $A_1 \subseteq B \subseteq A$ și $A \sim A_1 \implies A \sim B$.

3.2 Mulţimi numărabile

A numărabilă dc. $A = |\mathbb{N}| = \aleph_0$.

Prop: Dc. A este infinită, $|B| = \aleph_0$ și $A \subseteq B \implies |A| = \aleph_0$.

Prop-Def: Fie A o multime. UASE:

 $\bullet \ A$ este finită sau numărabilă

• există B numărabilă și $f: A \to B$ inj.

Atunci A s.n. cel mult numărabilă.

Prop: Fie A, B numărabile $\implies A \cup B$ numărabilă.

Prop: Mulţimea $\mathbb{N} \times \mathbb{N}$ este numărabilă.

Prop: Fie $(A_n)_{n\in\mathbb{N}}$ și $f_n:\mathbb{N}\to A_n$ surjecție. Atunci $\bigcup_{n\in\mathbb{N}}A_n$ este cel mult numărabilă.

Prop: Mulţimea $Seq_{fin}(\mathbb{N})$ este numărabilă.

Prop: Pentru orice $X, P(X) \sim 2^X$.

Prop: $\forall X$ nu există surj. de la X la $P(X) \implies |X| < |P(X)|$.

Prop: $P(\mathbb{N}) \sim \mathbb{R}$.

Def: Pt. a, b 2 cardinali, aleg A, B cu $|A| = a, |B| = b, A \cap B = \emptyset$ și punem:

- $a + b := |A \cup B|$
- $a \cdot b := |A \times B|$
- $a^b := |A^B|$.

Prop: $\forall a \text{ cardinal}, a + a = 2 \cdot a.$

Prop. exponentiere:

- $0 < a \implies b < b^a$
- $1 < b \implies a < b^a$

Prop-def: $2^{\aleph_0} = c$ s.n. cardinalul(puterea) continuumului şi:

- $\forall n > 0, |\mathbb{R}^n| = c$
- $|\mathbb{C}| = c$
- $|\mathbb{N}^{\mathbb{N}}| = c$
- $|\mathbb{R}^{\mathbb{N}}| = c$

4 Curs 4

4.1 Ordinali

Prop: Fie (W, <) o mţ. bine ord. şi $s \subset W$ a.î. $\forall x \in W, y \in S$ cu $x < y \implies x \in S$. Atunci avem că există $a \in W$ a.î. $S = \{x \in W | x < a\} := W[a]$.

Def: O mţ. s.n. **tranzitivă** dacă $\forall x \in T \implies x \subseteq T$.

Notație: $\in_A := \{(x, y) \in A \times A | x \in y\}$ și $\omega = \mathbb{N}$.

Def: O mţ. α s.n. **ordinal** dacă este tranzitivă şi (α, \in_{α}) este mulţime bine ordonată.

Prop: Dacă α, β sunt ordinali, atunci:

- $\alpha \notin \alpha$
- α^+ ordinal
- $\beta \in \alpha \implies \beta$ ordinal
- $\alpha \subset \beta \implies \alpha \in \beta$

Def: Un ordinal în care nu este 0/ ordinal succesor s.n.**ordinal limită**.

Prop: Fie P o proprietate și α un ordinal a.î. $P(\alpha) \implies \exists \beta$ ordinal a.î. $\forall \gamma$ ordinal cu $P(\gamma) \implies \beta \leq \gamma$.

Prop: Fie X o mţ. ale cărei elem. sunt ordinali. Notăm cu $\sup X := \bigcup X$. Atunci:

- \bullet supX este ordinal
- $\forall \alpha \in X, \alpha \leq \sup X$
- $\forall \gamma \text{ ordinal a.i. } \forall \alpha \in X, \alpha \leq \gamma \implies \sup X \leq \gamma$
- $(\sup X)^+ \notin X \implies \exists \alpha \text{ ordinal cu } \alpha \notin X.$

Prop: Ordinalul ω este limită.

În continuare vom dem. că ordinalii form. un **pseudo** sistem complet de reprezentatnți pt. **pseudo** relația de izomorfism între mţ. bine ord.

Teoremă: Fie (W, <) o mţ. bine ord. Atunci $\exists \alpha$ ordinal a. î. $(W, <) \sim (\alpha, \in_{\alpha})$.

Axioma înlocuirii: Pt. orice operație F și orice mţ. A, există o mţ. B a. î. $\forall x \in A, F(x) \in B$.

$$G(a) := \left\{ \begin{array}{ll} \text{acel ordinal } \beta \text{ izomorf cu } W[a] & \quad \text{dc. } a \in \mathcal{T} \\ \emptyset & \quad \text{altfel} \end{array} \right.$$

Atunci vom avea $\alpha = \{G(a) | a \in T\}.$

4.2 Inducția pe ordinali

Pp. inducției complete (pp II inducție) pe ordinali: Fie P o proprietate și pp că pt. orice ordinal α avem că dc. $\forall \beta < \alpha, P(\beta) \implies P(\alpha)$. Atunci $\forall \alpha$ ordinal avem $P(\alpha)$.

Pp. inducției (pp I de inducție) pe ordinali: Fie P o proprietate și pp. că:

- P(0)
- $\forall \alpha$ ordinal cu $P(\alpha)$, avem $P(\alpha^+)$
- $\forall \alpha$ ordinal limită a. î. $\forall \beta < \alpha, P(\beta) \implies P(\alpha)$

Atunci $\forall \alpha$ ordinal avem $P(\alpha)$.

Th. recursiei complete pe ordinali: Fie G o operație. Atunci $\forall \alpha$ ordinal, $\exists ! y$ a. î. $\exists t$ grafic ce are dom. α^+ a.î. $\forall \beta < \alpha, t(\beta) = G(t_{|\beta})$ și $t(\alpha)$.

Lemă: Fie G o operație. Fie β, δ ordinali și t, u grafice cu dom. β , resp. δ a. î. $\forall \gamma < \beta, \delta \implies t(\gamma) = G(t_{|\gamma})$ și $u(\gamma) = G(u_{|\gamma})$.

Atunci, $\forall \gamma < \beta, \delta \text{ avem } t_{|\gamma} = u_{|\gamma} \text{ si } t(\gamma) = u(\gamma).$

Th. recursiei pe ordinali: Fie G_1, G_2, G_3 operații. Atunci $\forall \alpha$ ordinal $\exists ! y$ a.î. $\exists ! t$ grafic cu dom. α^+ a. î. $\forall \beta \leq \alpha$:

- dc. $\beta = 0 \implies t(\beta) = G_1(0)$
- dc. $\exists \delta \text{ cu } \beta = \delta^+ \implies t(\beta) = G_2(t(\delta))$
- dc. β este limită $t(\beta) = G_3(t_{|\beta}), y = t(\alpha)$

Def: Definim adunarea ordinalilior:

- $\bullet \ \alpha + 0 := \alpha$
- $\alpha + \beta^+ := (\alpha + \beta)^+$
- dc β este ordinal limită, $\alpha + \beta := \sup{\{\alpha + \gamma | \gamma < \beta\}}$

4.3 Operații cu ordinali

Obs: Adunarea nu este neapărat comutativă: $1 + \mathbb{N} = \mathbb{N}$ şi $\mathbb{N} + 1 = \mathbb{N} \cup {\mathbb{N}}$.

Def: Definim înmulțirea și exponențierea:

- $\alpha \cdot 0 := 0$
- $\alpha \cdot \beta^+ := (\alpha \cdot \beta) + \alpha$
- dc. β ordinal limită, $\alpha \cdot \beta := \sup\{\alpha \cdot \gamma | \gamma < \beta\}$
- $\alpha^0 := 1$
- $\bullet \ \alpha^{\beta^+} := \alpha^{\beta} \cdot \alpha$
- dc. β ordinal limită, $\alpha^{\beta} := \sup\{\alpha^{\gamma} | \gamma < \beta\}$

Notații: Punem:

- $\omega_1 := \omega$
- $\omega_{n^+} := \omega^{(\omega_n)}$
- $\epsilon_0 := \sup\{\omega_n | n \ge 1\}$

Def: U ordinal s.n. inițial dc. nu este echipotent cu un ordnal mai mic ca el.

Teoremă: Pt. orice mţ. bine-ordonată există şi este unic un ordinal iniţial echipotent cu ea. Acest ordinal se va numi **cardinal**.

4.4 Ordinali Hartogs

Prop-def: $\forall A$ mţ. $\exists \alpha$ ordinal a .î. u este echipotent cu nicio submulţime a lui A. Deci există un ordinal minim cu această prop, care este iniţial. Acesta s. n. **ordinalul Hartogs** al lui A şi îl notăm cu h(A).

Def: Definim alef-uri pt. α ordinal:

- $\aleph_{\alpha^+} := h(\aleph_{\alpha})$
- dc. α este ordinal limită $\aleph_{\alpha} := \sup \{\aleph_{\beta} | \beta < \alpha \}$

Prop: $\forall \alpha$ ordinal avem că $\alpha < \aleph_{\alpha}$ şi \aleph_{α} este ordinal inițial infinit.

Prop: Dc. $\beta < \aleph_{\gamma}$ ordinal inițial infinit $\implies \exists \alpha < \gamma$ ordinal cu $\beta = \aleph_{\alpha}$.

5 Curs 5

5.1 Axioma alegerii

Prop(Axioma alegerii): UASE:

- $\forall S$ cu $\emptyset \notin S, \exists (g_y)_{y \in S}$ a.î. $\forall y \in S \implies g_y \in y$
- $\forall I$ și orice fam. de mulțimi nevide index. după $i, (F_i)_{i \in I}$, avem că $\prod_{i \in I} F_i \neq \emptyset$.
- $\forall I$ și orice fam. de mulțimi nevide, disjuncte 2 câte 2 index. după $i, (D_i)_{i \in I}$, avem că $\prod_{i \in I} D_i \neq \emptyset$.

5.2 Lema lui Zorn

Def: Fie (A, \leq) o mţ. ordonată şi $B \subseteq A$. B s.n. lanţ al lui A dc. $\forall x, y \in B$, avem $x \leq y$ sau $y \leq x$.

Def: O mţ. (A, \leq) s.n. **inductiv ordonată** dc. orice lanţ al său admite un majorant.

Lema lui Zorn: Orice mţ. inductiv ordonată admite un element maximal.

Teorema bunei ordonări(Zermelo): Orice mţ. este bine ord.

Obs: Axioma alegerii, Lema lui Zorn și Teorema bunei ord sunt echivalente.

Teoremă(Axioma alegerii dependente): Fie $X \neq \emptyset$ şi $R \subseteq X \times X$ a.î. $\forall x \in X, \exists Y \in X$ cu $(x,y) \in R$. Atunci $\exists (x_n)$ şir cu $(x_n, x_{n+1}) \in R$.

5.3 Cardinali

Prop: $\forall \alpha \text{ card infinit } \implies \alpha \cdot \alpha = \alpha.$

Prop: Fie X infinită. Atunci există $Y \subset X, Y \neq X$ cu $X \sim Y$.

Prop:Dc. $P_n(X) := \{A \in P(x) | |A| = n \in \mathbb{N} - \{0\} \}$ atunci $|P_n(X)| = |x|$.

5.4 Spaţii vectoriale

Prop: Fie K un corp și V un K-spațiu vect. și $\mathbb{B} \neq \emptyset$ bază pt. V. Atunci $\max\{|\mathbb{B}|, |K|\} \leq |V|$.

Prop: Fie K un corp infinit și V un K-spațiu vect. și $\mathbb{B} \neq \emptyset$ bază finită pt. V. Atunci |K| = |V|. Dc. \mathbb{B} infinită atunci $\max\{|\mathbb{B}|, |K|\} = |V|$.

Prop: Fie \mathbb{B} o bază pt. $\mathbb{Q}^{\mathbb{N}}$. Atunci $|\mathbb{B}| = c$.

6 Curs 6

Axioma regularității: Pentru orice mț. nevidă $a, \exists b \in a$ cu $b \cap a = \emptyset$.

Consecințe:

- Nu există x cu $x \in x$.
- Nu există x,y cu $x\in y\in x$
- Nu există x, y, z cu $x \in y \in z \in x$
- Nu există $n \in \mathbb{N}$ şi $(x_i)_{i < n^+}$ a.î. $x_0 \in x_n$ şi, pt. orice i < n, avem $x_{i^+} \in x_i$
- **Pp şirului:** Nu există $(x_i)_{i\in\mathbb{N}}$ a.î. $\forall i\in\mathbb{N}$ să avem $x_{i^+}\in x_i$.

Prop: Pp. şirului implică Axioma regularității.

Def: Definim un şir de mţ. indexat după ordinali, care s.n. **ierarhia von Neumann**: $V_0 := \emptyset, \forall \beta$ ordinal, punem $V_{\beta^+} := P(V_{\beta})$ şi pt. orice ord. lim, punem $V_{\alpha} := \bigcup \{V_{\gamma} | \gamma < \alpha\} = \bigcup_{\gamma < \alpha} V_{\gamma}$.

6.1 Rangul

Def: Fie x mţ. a.î. $\exists \alpha$ minim cu $x \in V_{\alpha} \implies \exists \beta$ cu $\alpha = \beta^{+}$. Atunci β s.n. rangul lui x şi îl notăm cu rg(x).

Prop: Fie α un ordinal, $x \in v_{\alpha}, y \in x \implies \exists \delta < \alpha \text{ cu } y \in V_{\delta}$.

Prop: Fie α un ordinal. Atunci:

- Dc. $\gamma < \alpha \implies v_{\gamma} \subseteq V_{\alpha}$
- Avem că V_{α} e tranzitivă.

Prop: Fie x o mţ. ale cărei elem. au toate rang. Atunci x are rang.

Def: Pt. o mţ. X, definim $T_0(X) := X$ şi apoi, recursiv, $\forall n \in \mathbb{N}, T_{n^+}(X) := \bigcup_{n \in \mathbb{N}} T_n(X)$. Atunci T(X) s.n. închiderea tranzitivă a lui X.

Obs: T(X) este tranzitivă şi $\forall Y, X \subseteq Y \implies T(X) \subseteq X$.

Prop (Pp rangului): Orice mţ. are rang.

Axioma inducției: Pentru orice proprietate P a.î. $\forall x$, avem că dc. $\forall y \in x$ avem $P(y) \implies P(x)$, atunci este adevărat că $\forall x, P(x)$.

Prop: Axioma inducției este echiv cu Pp. rangului.

Prop-def: Fie $G \subseteq P(I)$. UASE:

- $\forall S_1, S_2 \in G \implies S_1 \cup S_2 \in G$
- $\forall A \subseteq G$ finită nevidă, $\bigcap A \in G$.

În acest caz spunem că G este închisă la intersecții finite.

6.2 Filtre

Def: S.n.filtru pe I o submulțime F a lui P(I) a. î.:

- ∅ ∉ F
- $I \in F$
- \bullet F închisă la intersectii finite
- $\forall S_1, S_2 \subseteq I \text{ cu } S_1 \in F, S_1 \subseteq S_2 \implies S_2 \in F.$

Def: Fie $G \subseteq P(I)$

- Spunem că G are proprietatea slabă a intersecțiilor finite dc. $\forall A \subseteq G$ finită nevidă, $\bigcap A \neq \emptyset$
- Spunem că G are **prop.** tare a intersecțiilor finite dc. $\emptyset \notin G$, iar G este închisă la intersecții finite.

Obs: Orice filtru posedă prop. tare a intersecțiilor finite.

Prop-def: Fie $G \subseteq P(I)$ care are prop intersecțiilor finite. Dc $G \neq \emptyset \implies \{S \in P(I) | \exists A \subseteq G \text{ finită cu } \bigcap A \subseteq S\}$ este filtru care include G și s.n. **filtru generat de G**.

Obs: Dc. $G = \emptyset$ spunem că filtrul generat de G este $\{I\}$.

Def: Filtrul generat de $\{T\}$ se notează cu [T) şi s.n. filtru principal.

Corolar: Fie $G \subseteq P(I)$. UASE:

- G are prop. intersecțiilor finite.
- Există un filtru pe I care include pe G.

6.3 Ultrafiltre

Prop-def: Fie U un filtru pe I. UASE:

- $\forall F$ filtru cu $U \subseteq F \implies U = F$
- $\forall S_1, S_2 \subseteq I$ cu $S_1 \cap S_2 \in U$, avem, $S_1 \in U$ sau $S_2 \in U$
- $\forall S \subseteq I$ avem exact una dintre $S \in U$ sau $I S \in U$.

În acest caz U s.n. ultrafiltru.

Prop: Fie $U \subseteq P(I)$. Atunci U este ultrafiltru $\iff \chi_U : P(I) \in 2$ satisface urm prop, care o fac să fie **probabilitate finit aditivă**:

- $\chi_U(\emptyset) = 0$
- $\chi_U(I) = 1$
- $\forall n \in \mathbb{N}, \forall (A_i)_{i < n}$ familie de submulțimi ale lui I a.î. $\forall i, j < n$ cu $i \neq j, A_i \cap A_j = \emptyset$ avem: $\chi_U(\bigcup_{i < n} A_i) = \sum_{i < n} \chi_U(A_i)$.

Prop (Galvin și Horn, 1970): Fie $U \subseteq P(I)$. Atunci U este un ultrafiltru $\iff \forall (A_i)_{i < 3}$ fam. de submulțimi ale lui I a.î. $\forall i \neq j < 3, A_i \cap A_j] \emptyset, A_0 \cup A_1 \cup A_2 = I$ avem că $\exists ! i < 3$ cu $A_i \in U$.

Teorema de existență a ultrafiltrului Fie F un filtru. Atunci $\exists U$ ultrafiltru cu $F \subseteq U$.

Corolar: Fie $G \subseteq P(I)$. UASE:

- \bullet G are prop. intersectiilor finite
- $\bullet \;\; \exists$ un filtru peI care include G
- $\bullet \;\; \exists$ un ultrafiltru peI care include G

Obs: Orice ultrafiltru principal pe I este de forma $[\{x\}], x \in I$.

Def: Fie I infinită. Atunci mţ. $\{T \subseteq I | I - T \text{ este finită}\}$ este foltru pe I şi s.n. **filtru Fréchet pe** I.

7 Curs 7

7.1 Logică propozițională

Notații:

- ⊥:=0
- T:=1
- $\neg p = \text{non p}$

Prop: Fie $p, q \in 2$. Atunci:

- $\neg p = (p \rightarrow \bot), \top = \neg \bot = (\bot \rightarrow \bot)$
- $p \land q = \neg(p \to \neg q)$

Notație:

- $S(Q) = Q \cup \{\bot, \to\}$, unde Q = mţ. tuturor variabilelor/simbolurilor propoziționale.
- k := |Q| şi $f : k \to Q$ bij.
- $\forall \alpha \in k, f(\alpha) := v_{\alpha}$

7.2 Formule

Def: Formulele vor fi elem. ale lui $Seq_{fin}(S(Q))$, iar prop. pe care $A \subseteq Seq_{fin}(S(Q))$ trebuie să le verifice ca să fie **mţ. de formule** vor fi:

• $\operatorname{Seq}_1(Q) \subseteq A$ (variab. sunt formule)

- $\langle \bot \rangle \in A$
- dc. $\phi, \psi \in A \to \phi \psi \in A$.

Minimul ei se notează cu E(Q), iar elem. ei s.n. formule/enunțuri peste Q.

Obs: În general scriem $\phi \psi$ în loc de $\phi \to \psi$.

Notații:

- Dc. Σ = alfabet, atunci Seq_{fin}(Σ) = Mţ. cuvintelor
- \bullet dc. $a,b\in \mathrm{Seq}_{\mathrm{fin}}(\Sigma)$ notăm cu $ab=\{(0,a),(1,b)$ șir
- lungimea unui cuv = dom. său
- O submulţime a lui $\operatorname{Seq}_{\operatorname{fin}}(\Sigma)$ s.n. limbaj formal.

Pp. inducției pe formule: Fie $B \subseteq E(Q)$ a.î.:

- $\operatorname{Seq}_1(Q) \subseteq B$
- $\langle \bot \rangle \in B$
- dc. $\phi, \psi \in B \implies \phi \psi \in B$

Atunci B = E(Q).

Prop. de citire: Fie $\chi \in E(Q)$. Atunci se întâmplă exact una dintre urm. alternative:

- $\chi \in \operatorname{Seq}_1(Q)$
- $\chi = \langle \perp \rangle$
- $\exists \phi, \psi \in E(Q)$ cu $\chi = \rightarrow \phi \psi$.

Lemă: Fie $\chi \in E(Q)$. Atunci nu există $\alpha \in E(Q)$ care să fie segment inițial strict pe χ .

Prop. de citire unică a formulelor: Fie $\phi, \psi, \phi', \psi' \in E(Q)$ cu $\to \phi \psi = \to \phi, \psi$. Atunci $\phi = \phi', \psi = \psi'$.

7.3 Operații pe E(Q)

Def: Definim:

- $\phi \to \psi := \to \phi \psi$
- \bullet $\top := \bot \rightarrow \bot$
- $\bullet \ \, \neg \phi := \phi \to \perp$
- $\phi \wedge \psi := \neg(\phi \rightarrow \neg \psi)$
- $\phi \lor \psi := (\neg \phi) \to \psi$
- $\phi \leftrightarrow \psi := (\phi \to \psi) \land (\psi \to \phi).$

Pp. recursiei pe formule: Fie A o mţ. şi $G_0: Q \to A, G_{\perp} \in A, G_{\to}: A^2 \to A$. Atunci $\exists ! F: E(Q) \in A$ cu:

- $\forall v \in Q, F(v) = G_0(v)$
- $F(\perp) = G_{\perp}$
- $\forall \phi, \psi \in E(Q), F(\phi \to \psi) = G_{\to}(F(\phi), F(\psi)).$

7.4 Mulţimea variabilelor

Corolar: $\exists ! Var : E(Q) \rightarrow P(Q)$ cu

- $\forall v \in Q, Var(v) = \{v\}$
- $Var(\bot) = \emptyset$
- $\forall \phi, \psi \in E(Q), Var(\phi \to \psi) = Var(\phi) \cup Var(\psi).$

Corolar: $\forall \phi \in E(Q), Var(\phi)$ este finită.

7.5 Evaluarea formulelor:

Fie $e: Q \to 2$. Atunci $\exists ! e^+ : E(Q) \to 2$ a.î.:

- $\forall v \in Q, e^+(v) = e(v)$
- $e^+(\bot) = \bot = 0$
- $\forall \phi, \psi \in E(Q), e^+(\phi \to \psi) = e^+(\phi) \to e^+(\psi).$

Corolar: Fie $e: Q \to 2, \phi, \psi \in E(Q)$. Atunci:

- $e^+(\neg \phi) = \neg e^+(\phi)$
- $e^+(\phi \wedge \psi) = e^+(\phi) \wedge e^+(\psi)$
- $e^+(\phi \lor \psi) = e^+(\phi) \lor e^+(\psi)$
- $e^+(\phi \leftrightarrow \psi) = e^+(\phi) \leftrightarrow e^+(\psi)$.

7.6 Tautologii

Def: Fie $\phi, \psi \in E(Q)$

- Fie $e: Q \to 2$. Sunem că e satisface/e model pt. ϕ și notăm cu $e \models \phi$ dc. $e^+(\phi) = 1$.Mţ. modelelor unei formule ϕ se notează cu $Mod(\phi)$.
- Spunem că ϕ e **tautologie** și scrie $\models \phi$ dc. $\forall e, e \models \phi$. Adică $Mod(\phi) = 2^Q$.
- Spunem că ϕ e satisfiabilă dc. $\exists e \text{ cu } e \models \phi$.
- Spunem că ϕ e nesatisfiabilă dc. $\forall e \ \phi$ e nesatsifăcubilă.
- Spunem că din ϕ se deduce semantic ψ și scriem $\phi \models \psi$ dc. $\forall e$ cu $e \models \phi$ avem $e \models \psi$.

Prop: Fie $\phi \in E(Q)$. Atunci:

- ϕ e tautologie $\iff \neg \phi$ e nesatisfiabiă
- ϕ e nesatisfiabilă $\iff \neg \phi$ e tautologie.

Prop: Fie $\phi, \psi \in E(Q)$. Atunci $\phi \models \psi \iff \models \phi \rightarrow \psi$.

7.7 Mulţimi diferite de variabile

Prop: Fie $Q' \subseteq Q$, deci $E(Q') \subseteq E(Q)$. Fie $f \in 2^Q$, $e := f_{|Q'|}$. At unci $\forall \phi \in E(Q')$, $e^+(\phi) = f^+(\phi)$.

Corolar: Fie $e_1, e_2 \in 2^Q, \phi \in E(Q)$. Pp că $\forall v \in Var(\phi), e_1(v) = e_2(v)$. Atunci $e_1(\phi) = e_2(\phi)$.

Def: O funcție booleană pe I este o funcție de la 2^I la 2.

Corolar: Dc. Q e finită, $|E(Q)/\sim|=2^{2^{|Q|}}$.

Prop: Fie A infinită. Atunci $|\text{Seq}_{\text{fin}}(A)| = |A|$.

Prop: Dc. Q infinită, atunci |E(Q)| = |Q|.

8 Curs 8

8.1 Mulțimi de formule

Lemă: Fie $\Gamma \in E(Q), \Delta \subseteq \Gamma, e \in Mod(\Gamma)$. Atunci $e \in Mod(\Delta)$, unde $Mod(\Gamma)$ este mţ. de e cu $e \models \phi, \forall \phi \in \Gamma$. Lemă: Fie $\Gamma \subseteq E(Q)$ şi $e : Q \to 2$. Atunci $e \models \Gamma \iff [\forall \Delta \subseteq \Gamma \text{finită}, e \models \Delta]$.

8.2 Deducție semantică pe mulțimi

Def: Fie $\Gamma \subseteq E(Q)$, $\phi \in E(Q)$. Spunem că Γ se deduce semantic din ϕ și scriem $\Gamma \models \phi$ dc. $\forall e$ cu $e \models \Gamma$ avem $e \models \phi$.

Lemă: Fie $\Gamma \subseteq E(Q), \Delta \subseteq \Gamma, \phi \in E(Q)$ cu $\Delta \models \phi$. Atunci $\Gamma \models \phi$.

Lemă: Fie $\Gamma \subseteq E(Q)$. Atunci Γ este nesatisfiabilă $\iff G \models \bot$.

Lemă: Fie $\Gamma \subseteq E(Q), \phi \in E(Q)$. Atunci $\Gamma \models \phi \iff G \cup \{\neg \phi\}$ este nesatisfiabilă.

Pro: Fie $\Gamma \subseteq E(Q), \phi, \psi \in E(Q)$. Atunci $\Gamma \cup \{\phi\} \models \psi \iff \Gamma \models \phi \to \psi$.

8.3 Teorema de compacitate

Th. de compacitate - TK1: Fie $\Gamma \subseteq E(Q)$, $\phi \in E(Q)$. Atunci $\Gamma \models \phi \iff \exists \Delta \subseteq \Gamma$ finită cu $\Delta \models \phi$.

Th. de compacitate - TK2: O mţ. de formule este satisfiabilă \iff este finit satisfiabilă.

Def: Fie $I \neq \emptyset$, $e = (e_i)_{i \in I}$ o fam. de evaluări (elem. ale lui 2^Q şi U un ultrafiltru pe I. Numim **ultraprodusul lui** e **relativ la** U funcția $e^U : Q \to 2$, $e^U(x) = 1 : \iff \{i \in I | e_i(x) = 1\} \in U$.

Th. fundam. a ultraproduselor: Fie $I \neq \emptyset, e = (e_i)_{i \in I}$ o fam. de evaluări (elem. ale lui 2^Q și U un ultrafiltru pe I. Atunci $\forall \chi \in E(q), e^U \models \chi \iff \{i \in I | e_i \models \chi\} \in U$.

Th. fundam. a ultraproduselor - var 2: Fie $I \neq \emptyset, e = (e_i)_{i \in I}$ o fam. de evaluări (elem. ale lui 2^Q și U un ultrafiltru pe I. Atunci, $\forall \Delta \subseteq E(Q)$ finită $e^U \models \Delta \iff \{i \in I | e_i \models \Delta\} \in U$.

8.4 Grafuri

Def:

- Numim **graf neorientat** o pereche (A, R) cu R rel. sim+ireflexivă pe A.
- $k \in \mathbb{N}$. O k-colorare pe un graf este o funcție $f: A \to k$ cu $\forall x, y \in A$ cu xRy, avem $f(x) \neq f(y)$.
- Dc. există o k-colorare, atunci raful este k-colorabil.

Teoremă: Un graf este k-colorabil $\iff \forall$ subgraf finit al său este k-colorabil.

8.5 Spaţii topologice

Def: Un spațiu topologic este o pereche (X, τ) unde $\tau \subseteq P(X)$ și:

- $\emptyset, X \in \tau$
- $\bullet \ \forall A,B \in \tau, A \cap B \in \tau$
- $\forall (A_i)_{i \in I} \in \tau, \bigcup_{i \in I} A_i \in \tau.$

Elem. lui τ s.n. deschişii spaţiului. $A \subseteq X$ cu $X - A \in \tau$ s.n. închişii spaţiului.

Def: Un spațiu topologic def. prin închiși este o pereche (X, τ) unde $\tau \subseteq P(X)$ și:

- $\emptyset, X \in \tau$
- $\forall A, B \in \tau, A \cup B \in \tau$
- $\forall (A_i)_{i \in I} \in \tau, \bigcap_{i \in I} A_i \in \tau.$

Spații asociate logicii prop: Iau $\rho \subseteq P(2^Q)$ mţ. tuturor mţ. de forma $Mod(\Gamma)$ cu $\Gamma \subseteq E(Q)$. Atunci $(2^Q, \rho)$ este sp. top. def. prin închişi.

Def: (X, τ) este un **sp. top. compact** dc. $\forall (A_i)_{i \in I}$ fam. de deschişi cu $\bigcup_{i \in I} A_i = X$, avem că există $J \subseteq I$ finită cu $\bigcup_{i \in J} A_i = X$.

Def: (X, τ) este un **sp. top. compact** dc. $\forall (A_i)_{i \in I}$ fam. de închişi cu $\forall J \subseteq I$ finită cu $\bigcap_{i \in J} A_i \neq \emptyset$, avem că $\bigcap_{i \in I} A_i \neq \emptyset$.

th. de compacitate - TK3: Sp.top def. rin închişi $(2^Q, \rho)$ este compact.

9 Curs 9

9.1 Deducţie sintactică

Def: Fie $\Gamma \subseteq E(Q)$. Definim **mţ. consecinţelor sintactice ale lui** Γ ca fiind acea submulţime A a lui E(Q) care verifică urm. prop:

- $\Gamma \subseteq A$
- $\forall \phi, \psi, \chi \in E(Q)$, avem:

A1: $\phi \to (\psi \to \phi) \in A$

A2: $((\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow \chi)) \in A$

A3: $\neg \neg \phi \rightarrow \phi \in A$

• MP: $\forall \phi, \psi \in E(Q)$ cu $\phi, \phi \to \psi \in A$ avem $\psi \in A$.

Această mţ. se otează cu $Thm(\Gamma)$ şi $\forall \phi \in E(Q)$ spunem că Γ se deduce sintactic din ϕ şi scriem $\Gamma \vdash \phi$ dc. $\pi \in Thm(\Gamma)$. cea mai mica mţ. care verif. rel. s.n. mţ. teoremelor formale şi se notează cu Thm.

Pp. inducției pe deducția semnatică: Fie $\Gamma, B \subseteq E(Q)$ a. î.:

- $\Gamma \subseteq B$
- $\forall \phi, \psi, \chi \in E(Q)$, avem:

A1: $\phi \to (\psi \to \phi) \in B$

A2: $((\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)) \in B$

A3: $\neg \neg \phi \rightarrow \phi \in A$

• MP: $\forall \phi, \psi \in E(Q)$ cu $\phi, \phi \to \psi \in B$ avem $\psi \in B$.

Atunci $Thm(\Gamma) \subseteq B$.

Corolar: Fie $\Gamma, \Delta \subseteq E(Q)$ cu $\Gamma \subseteq \Delta$. Atunci $Thm(\Gamma) \subseteq Thm(\Delta)$.

Corolar: Fie $\Gamma \subseteq E(Q)$. Atunci $Thm \subseteq Thm(\Gamma)$.

Prop: $\forall \phi \in E(Q)$, avem $\vdash \phi \to \phi$.

Th. deductiei sintactice: $\forall \Gamma \subseteq E(Q), \phi, \psi \in E(Q)$ avem că $\Gamma \vdash \phi \to \psi \iff \Gamma \cup \{\phi\} \vdash \psi$.

Prop: $\forall \pi, \psi, \chi \in E(Q) \text{ avem } \vdash (\phi \to \psi) \to ((\psi \to \chi) \to (\phi \to \chi)).$

Prop: $\forall \Gamma \subseteq E(Q), \phi, \psi, \chi \in E(Q)$ cu $\Gamma \vdash \phi \rightarrow \psi$ şi $\Gamma \vdash \psi \rightarrow \chi$, avem $\Gamma \vdash \phi \chi$.

9.2 Metoda reducerii la absurd

Prop: $\forall \Gamma \subseteq E(Q), \phi \in E(Q)$ cu $\Gamma \cup \{\neg \phi\} \vdash \bot$, avem $\Gamma \vdash \phi$.

Prop: Fie $\phi, \psi \in E(Q)$. Atunci avem:

- $\vdash \psi \to (\neg \phi \to \neg (\psi \to \phi))$
- $\vdash (\psi \to \phi) \to (\neg \phi \to \neg \psi)$
- $\bullet \vdash \neg \psi \to (\psi \to \phi)$
- $\bullet \vdash (\neg \phi \to \phi) \to \phi.$

Prop: $\forall \Gamma \subseteq E(Q), \phi, \psi \in E(Q)$ cu $\Gamma \cup \{\psi\} \vdash \phi$ şi $\Gamma \cup \{\neg\psi\} \vdash \phi$, avem $\Gamma \vdash \phi$.

9.3 Teorema de corectitudine

Th. de corectitudine: $\forall \Gamma \subseteq E(Q), \phi \in E(Q) \text{ cu } \Gamma \vdash \phi$, avem $\Gamma \models \phi$.

Corolar: $\forall \phi \in E(Q) \text{ cu } \vdash \phi$, avem $\models \phi$.

Def: Spunem că $\Gamma \subseteq E(Q)$ este **consistentă** dc. $\Gamma \nvdash \bot$ şi inconsitentă altfel.

Th. de corectitudine -var2: Orice mţ. satisfiabilă este consistenă.

Notații: $\forall v \in Q, e: Q \rightarrow 2$:

$$v^e = \begin{cases} v & \text{pentru } e(v) = 1\\ \neg v & \text{pentru } e(v) = 0 \end{cases}$$

Notăm $W^e := \{v^e | v \in W\}$

Prop: Fie $e: Q \to 2, \phi \in E(Q)$. Atunci:

- dc. $e^+(\phi) = 1$, atunci $Var(\phi)^e \vdash \phi$
- dc. $e^+(\phi) = 0$, atunci $Var(\phi)^e \vdash \neg \phi$

9.4 Teorema de completitudine

Th. de completitudine slabă: $\forall \phi \in E(Q)$ cu $\models \phi$, avem $\vdash \phi$.

Th. de completitudine medie: $\forall \Delta \subseteq E(Q)$ finită și $\phi \in E(Q)$ cu $\Delta \models \phi$, avem $\Delta \vdash \phi$.

Th. de completitudine tare: $\forall \Gamma \subseteq E(Q), \phi \in E(Q) \text{ cu } \Gamma \models \phi, \text{ avem } \Gamma \vdash \phi.$

Th. de completitudine - var2: Orice mţ. consistentă este satisfiabilă.

Th. de completitudine - sumar:

- $\forall \Gamma \subseteq E(Q), \phi \in E(Q)$ avem $\Gamma \models \phi \iff \Gamma \vdash \phi$
- \bullet O mţ. este consistentă \iff este satisfiabilă.

10 Curs 10

10.1 Logica de ordin I

Def: Sinatura de ordinul I este un triplet $\sigma = (F, R, r)$ unde $F \cap R = \emptyset, (F \cup R) \cap (V \cup \{\bot, \to, \forall, =\}) = \emptyset, r : F \cup R \to \mathbb{N}$. Atunci elem lui R s.n. **simboluri de relație** ale lui σ , elem. lui F **simboluri de funcție** și $\forall s \in F \cup R, r(s)$ s.n. **aritatea** lui s. Dc. r(s) = 0, s s.n. **constantele lui** σ .

$$S_{\sigma} := \{\bot, \rightarrow, \forall, =\} \cup V \cup F \cup R$$

Def: Dc. $\sigma = (F, R, r)$ este o signatură de ord I, atunci o σ -structură va fi o perecge $(A, \{A_s\}_{s \in F \cup R}, \text{ unde } A \neq \emptyset$ și se va numi **universul/ mţ. suport/subiacentă a structurii**.

Pp. inducției pe termeni: Fie $B \subseteq T_{\sigma}$ a.î.:

- $V \subseteq b$
- $\forall s \in F, \forall t_1, \dots t_{r(s)} \in B$, avem $st_1 \dots t_{r(s)} \in B$.

Atunci $B = T_{\sigma}$.

Def: Putem def. mţ. variabilelor unui termen $Var: T_{\sigma} \to P(V)$ cu:

- $\forall x \in V, Var(x) := \{x\}$
- $\forall s \in F, t_1, \dots, t_{r(s)} \in T_{\sigma}, Var(st_1 \dots t_{r(s)}) := Var(t_1) \cup \dots \cup Var(t_{r(s)}).$

Lema variabilelor pt. termeni: Fie $\mathbb{A}=(A,(A_s)_{s\in F\cup R})$ o σ -structura, $v_1,v_2:V\to A,t\in T_\sigma$ a.î. $v_{|Var(t)}=v_2|Var(t)$. Atunci $t_{v_1}^{\mathbb{A}}=t_{v_2}^{\mathbb{A}}$.

10.2 Formule

Def: Fie $\sigma = (F, R, r)$ o signatură. Numim **formulă atomică peste** σ un şir de forma = tu cu $t, u \in T_{\sigma}$ sau $st_1 \cdots t_n$ cu $s \in R, n = r(s), t_i \in T_{\sigma}$. Mţ. **formulelor atomice peste** σ se notează cu $F_{a_{\sigma}}$. Mţ. **formulelor peste** σ se defineşte ca fiind cea mai mică mţ. $A \subseteq \operatorname{Seq}_{\operatorname{fin}}(S_{\sigma})$ cu prop:

- \bullet formulele atomice aparțin lui A
- $\bullet \perp \in A$
- Dc. $\phi, \psi \in A$, atunci $\phi \psi \in A$
- Dc. $\phi \in A, x \in V$, atunci $\forall x \phi \in A$.

Mţ. formulelor se noează cu F_{σ} .

Pp. inducției pe formule: Fie $B \subseteq F_{\sigma}$ a.î.:

- formulele atomice aparțin lui
- $\bot \in B$
- Dc. $\phi, \psi \in B$, atunci $\phi \to \psi \in B$
- Dc. $\phi \in B, x \in V$, atunci $\forall x \phi \in B$.

Atunci $B = F_{\sigma}$.

Pp. recursiei pe formule: Fie A o mţ. şi $G_0: F_{a_{\sigma}} \to A, G_{\perp} \in A, G_{\to}: A^2 \to A, G_{\forall}: V \times A \to A$. Atunci $\exists ! F: F_{\sigma} \to A$ a.î:

- $\forall \phi \in F_{\sigma}, F(\phi) = G_0(\phi)$
- $F(\perp) = G_{\perp}$
- $\forall \phi, \psi \in F_{\sigma}, F(\phi \to \psi) = G_{\to}(F(\phi), F(\psi))$
- $\forall \phi \in F_{\sigma}, x \in V, F(\forall x \phi) = G_{\forall}(x, f(\phi)).$

Def: Putem def. recursiv mţ. variab. libere ale unei formule. Fie $FV: F_{\sigma} \to P(V)$, prin:

- $\forall t, u \in T_{\sigma}, FV(t=u) := Var(t) \cup Var(u)$
- $\forall s \in R, \forall t_1, \dots, t_{r(s)} \in T_\sigma, FV(st_1 \dots t_{r(s)}) := Var(t_1) \cup \dots \cup Var(t_{r(s)})$
- $FV(\bot) := \emptyset$
- $\forall \phi \psi \in F_{\sigma}, FV(\phi \to \psi) := FV(\phi) \cup FV(\psi)$
- $\forall \phi \in F_{\sigma}, x \in V, FV(\forall x\phi) := FV(\phi) \{x\}.$

Dc. $\phi \in F_{\sigma}$ cu $FV(\phi) = \emptyset$, atunci ϕ s.n. **enunţ**. Mţ. enunţurilor se notează cu E_{σ} .

$$v_{x \leftrightarrow a}(y) := \left\{ \begin{array}{ll} v(y) & \quad \text{pentru } y \neq x \\ a & \quad \text{pentru } y = x \end{array} \right.$$

Def: Avem că $\exists ! ||\cdot||^{\mathbb{A}} : F_{\sigma} \to 2^{A^{V}}$ a.î. $\forall v : V \to A$, avem:

- $\forall t, u \in T_{\sigma}, ||t = u||_{v}^{\mathbb{A}} = 1 \iff t_{v}^{\mathbb{A}} = u_{v}^{\mathbb{A}}$
- $\forall s \in R, \forall t_1, \dots, t_{r(s)} \in T_\sigma, ||st_1 \dots t_{r(s)}||_v^{\mathbb{A}} = 1 \iff ((t_1)_v^{\mathbb{A}} \dots (t_{r(s)})_v^{\mathbb{A}} \in A_s$
- $|| \perp ||_v^{\mathbb{A}} = \perp = 0$
- $\forall \phi, \psi \in F_{\sigma}, ||\phi \to \psi||_{v}^{\mathbb{A}} = ||\phi||_{v}^{\mathbb{A}} \to ||\psi||_{v}^{\mathbb{A}}$
- $\forall \phi \in F_{\sigma}, x \in V, ||\exists x \phi||_{v}^{\mathbb{A}} = 1 \iff \exists a \in A \text{ cu } ||\phi||_{v \leftrightarrow a}^{\mathbb{A}}$

Def: Spunem că $\chi \in F_{\sigma}$ s.n. **tautologie** dc. $\forall F : F_{\sigma} \to 2$ cu $F(\bot) = 0$ și $\forall \phi, \psi \in F_{\sigma}, F(\phi \to \psi) = F(\phi) \to F(\psi)$, avem $F(\chi) = 1$.

Prop: Orice tautologie este formulă validă.

Lema variab. libere: Fie $\mathbb{A} = (A, (A_s)_{s \in F \cup R} \text{ o } \sigma\text{-structură}, v_1, v_2 : V \to \mathbb{A} \text{ și } \phi \in F_{\sigma} \text{ a.î. } v_{FV(\phi)} = v_{2|FV(\phi)}$. Atunci $||\phi||_{v_1}^{\mathbb{A}} = ||\phi||_{v_2}^{\mathbb{A}}$.

Prop: Fie $\chi \in F_{\sigma}, y \in V, u \in T_{\sigma}$. Atunci, dc. $Var(\chi) \cap Var(u) = \emptyset$, avem că y este liber pt. u în χ .

Prop. substituției libere: Fie $\chi \in F_{\sigma}$, $t, u \in T_{\sigma}$, $y \in V$, $\mathbb{A}\sigma$ -structură cu universul A și $v : V \to A$. Atunci:

- $\bullet \ (t[y:=u])_v^{\mathbb{A}} = t_{v_{y \leftrightarrow u_v^{\mathbb{A}}}}^{\mathbb{A}}$
- dc. y este liber pt. u în χ , $||\chi[y:=u]||_v^{\mathbb{A}} = ||\chi||_{v_y \leftrightarrow u_n^{\mathbb{A}}}^{\mathbb{A}}$.

Prop: Fie $\chi \in F_{\sigma}, y \in V, u \in T_{\sigma}, A\sigma$ -structură cu universul A și $v : V \to A$. pp că y este liber pt. u în χ . Atunci avem $||\forall y\chi \to (\chi[y:=u])||_v^{\mathbb{A}} = 1$.

Prop: Fie $\chi \in F_{\sigma}$.

- Fie $y \in V, u \in T_{\sigma}$. Atunci y este liber pt. u în $\chi^{Var(u)}$
- Fie $W \subseteq V$ finită, \mathbb{A}, σ -structură cu universul $A, v : V \in A$. Atunci $\|\chi^W\|_v^{\mathbb{A}} = \|\chi\|_v^{\mathbb{A}}$

Prop: Fie χ, y, u cu y nu e liber pt. u în χ . Atunci avem, $\forall \mathbb{A}, v, ||\chi[y:=u]||_v^{\mathbb{A}}$ este validă.