Title of the Paper

First Last Name*
University of California, Berkeley
November 7, 2009

Abstract Write your abstract here.

Keywords: Time-inconsistency, hyperbolic discounting

JEL Classifications Numbers: D11, D42, L12, L16, L66, L67.

_

 $^{^{\}ast}$ 508-1 Evans Hall #3880, Berkeley, California 94720-3880. Email: xxx@berkeley.edu

Acknowledgements

Abstract

Contents

Chapter 1 Introduction	1
Chapter 2 Preliminaries	2
Chapter 3 Finding good Factorization Trees	3
Chapter 4 Serialization of Data Factorizations	4
Chapter 5 Distributed Query Processing in FDB	5
Chapter 6 Experimental Evaluation	6
Chapter 7 Conclusions and Future Work	7
References	9

List of Figures

No table of figures entries found.

Introduction

Preliminaries

Finding good Factorization Trees

Serialization of Data Factorizations

Distributed Query Processing in FDB

Experimental Evaluation

6.1 Datasets and evaluation setup	6
6.2 COST function – Finding good f-trees	6
6.3 Serialization of Data Factorizations	6

In this section we will present experimental evaluation for the main contributions of this project, namely the COST function for finding good f-trees (see Chapter), the serialization techniques explained in **Chapter XX** and D-FDB, the distributed query engine as presented in **Chapter X**.

6.1 Datasets and evaluation setup

- 6.2 COST function Finding good f-trees
- 6.3 Serialization of Data Factorizations

Conclusions and Future Work

Mini TOC

A player faces a dynamic optimization problem of 5 periods. Let a_t denotes the player's action in period t,

$$a_t \in \{P, N\} \tag{1}$$

We denote the vector of action choices by $\mathbf{a} = (a_1, a_2, a_3)$. Playing in a period yields an immediately consumption level of x at a certain future cost, to be paid at period 4, while not playing yields no consumption and incurs no cost, so

$$x_t = \begin{cases} x & \text{if } a_t = P \\ 0 & \text{if } a_t = N \end{cases}$$
 (2)

The player observe x in period 1 before she pick her action.

Let C_s denotes total cost for playing s games and S_t the number of games played up till and including time t.

This paper. 1 Theoretically, \dots

The issue of ...

This paper is organized as follows. The next section presents ... Then, Section 3 discusses

 $^{^1}$ Ashraf et. al [1] uses a \dots

the \dots Section 4 analyzes the \dots Concluding remarks are offered in Section 5.

References

Ashraf, Nava, Dean Karlan and Wesley Yin. "Tying Odysseus to the Mast: Evidence from a Commitment Savings Product in the Philippines." <u>Quarterly Journal of Economics</u>. Vol. 121, No. 2, pp. 635-672. May 2006.