EXAMEN TRAITEMENT DU SIGNAL - 1SN

Mardi 15 Janvier 2019

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 : Analyse Spectrale (3 points)

On considère un signal x(t) défini par

$$x(t) = \exp\left[j2\pi(A + Bt)\right]$$

où A et B sont deux deux constantes appartenant à l'intervalle]0,1[.

- 1. Le signal x(t) est-il à énergie finie ? à puissance finie périodique ? ou à puissance finie non-périodique ?
- 2. Calculer la fonction d'autocorrélation et la densité spectrale de puissance de x(t).

Exercice 2 : Filtrage (3 points)

On considère un signal aléatoire x(t) stationnaire de moyenne nulle et de densité spectrale de puissance $s_x(f)$ définie par

$$s_x(f) = \pi_F(f) = \begin{cases} 1 \text{ si } f \in] - \frac{F}{2}, \frac{F}{2}[\\ 0 \text{ sinon} \end{cases}$$

et on construit le signal $y(t) = x(t) + ax(t - t_0)$, où a et t_0 sont deux constantes positives.

- 1. Montrer que y(t) peut être obtenu par filtrage du signal x(t) par un filtre dont déterminera la transmittance.
- 2. Déterminer la densité spectrale de puissance de y(t).
- 3. Quelle est la puissance du signal y(t)?

Exercice 3 : Questions de Cours (4 points)

- 1. Comment calcule-t-on la puissance à partir de la densité spectrale de puissance d'un signal aléatoire stationnaire ?
- 2. L'opération qui au signal x(t) associe le signal y(t) = x(0) est-elle une opération de filtrage linéaire ? (justifier votre réponse)
- 3. Déterminer la transmittance du filtre associant au signal x(t) sa dérivée seconde y(t) = x''(t).
- 4. Que montre la formule des interférences lorsqu'un même signal est transmis dans deux canaux disjoints $H_1(f)$ et $H_2(f)$?
- 5. A quoi sert la formule d'interpolation de Shannon?
- 6. On échantillonne le signal $x(t) = \cos(2\pi f_0 t)$ avec $f_0 = 5$ Hz à la fréquence $f_e = 6$ Hz. Représenter la transformée de Fourier du signal échantillonné dans la bande de fréquence [0, 16Hz].
- 7. Un filtre anti-repliement est-il analogique ou numérique (justifier) ?
- 8. Donner la démarche à suivre pour calculer la densité spectrale de puissance de y(t)=g[x(t)], où g est une transformée non-linéaire et x(t) un signal aléatoire stationnaire Gaussien de moyenne nulle.

Transformée de Fourier

$$X(f) = \int_{\mathbb{R}} x(t) e^{-i2\pi f t} dt \qquad x(t) = \int_{\mathbb{R}} X(f) e^{i2\pi f t} df$$

	H	
x(t) réelle paire	\rightleftharpoons	X(f) réelle paire
x(t) réelle impaire	\rightleftharpoons	X(f) imaginaire pure impaire
x(t) réel		$\begin{cases} \operatorname{Re} \{X(f)\} \text{ paire} \\ \operatorname{Im} \{X(f)\} \text{ impaire} \\ X(f) \text{ pair} \\ \operatorname{arg} \{X(f)\} \text{ impaire} \end{cases}$
ax(t) + by(t)	\rightleftharpoons	aX(f) + bY(f)
$x(t-t_0)$	\rightleftharpoons	$X(f)e^{-i2\pi ft_0}$
$x(t)e^{+i2\pi f_0t}$	\rightleftharpoons	$X(f-f_0)$
$x^*(t)$	\rightleftharpoons	$X^*(-f)$
$x(t) \cdot y(t)$	\rightleftharpoons	X(f) * Y(f)
x(t) * y(t)	\rightleftharpoons	$X(f) \cdot Y(f)$
x(at)	\rightleftharpoons	$\frac{1}{ a }X\left(\frac{f}{a}\right)$
$\frac{dx^{(n)}(t)}{dt^n}$	\rightleftharpoons	$(i2\pi f)^n X(f)$
$\left(-i2\pi t\right)^n x(t)$	\rightleftharpoons	$\frac{dX^{(n)}(f)}{df^n}$

Formule de Parseval		
$\int_{\mathbb{R}} x(t)y^*(t)dt = \int_{\mathbb{R}} X(f)Y^*(f)df$		
$\int_{\mathbb{R}} x(t) ^2 dt = \int_{\mathbb{R}} X(f) ^2 df$		

Série de Fourier		
$x(t) = \sum_{n \in \mathbb{Z}} c_n e^{+i2\pi n f_0 t} \rightleftharpoons X(f) = \sum_{n \in \mathbb{Z}} c_n \delta(f - n f_0)$		
avec $c_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-i2\pi n f_0 t} dt$		

	T.F.	
1	\rightleftharpoons	$\delta\left(f\right)$
$\delta\left(t\right)$	\rightleftharpoons	1
$e^{+i2\pi f_0 t}$	\rightleftharpoons	$\delta\left(f-f_0\right)$
$\delta (t - t_0)$	\rightleftharpoons	$e^{-i2\pi f t_0}$
$\sum_{k \in \mathbb{Z}} \delta\left(t - kT\right)$	\rightleftharpoons	$\frac{1}{T} \sum_{k \in \mathbb{Z}} \delta \left(f - \frac{k}{T} \right)$
$\cos\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2}\left[\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right]$
$\sin\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2i} \left[\delta \left(f - f_0 \right) - \delta \left(f + f_0 \right) \right]$
$e^{-a t }$	\rightleftharpoons	$\frac{2a}{a^2+4\pi^2f^2}$
$e^{-\pi t^2}$	\rightleftharpoons	$\frac{\frac{2\alpha}{a^2+4\pi^2f^2}}{e^{-\pi f^2}}$
$\Pi_{T}\left(t ight)$	\rightleftharpoons	$T\frac{\sin(\pi Tf)}{\pi Tf} = T\sin c \left(\pi Tf\right)$
$\Lambda_{T}\left(t ight)$	\rightleftharpoons	$T\sin c^2\left(\pi Tf\right)$
$B\sin c\left(\pi Bt\right)$	\rightleftharpoons	$\Pi_{B}\left(f ight)$
$B\sin c^2 \left(\pi B t\right)$	\rightleftharpoons	$\Lambda_{B}\left(f ight)$

$$\Lambda_T(t) \text{ est de support égal à } 2T$$
et on a $\Pi_T(t) * \Pi_T(t) = T \Lambda_T(t)$

$$\text{si } t \neq 0 \qquad \text{of } \int \delta(t) dt = 1$$

$$\delta(t) = \begin{cases} 0 \text{ si } t \neq 0 \\ +\infty \text{ si } t = 0 \end{cases} \text{ et } \int_{\mathbb{R}} \delta(t) dt = 1$$

$$\delta(t - t_0) f(t) = \delta(t - t_0) f(t_0)$$

$$\delta(t - t_0) * f(t) = f(t - t_0)$$