EXAMEN STATISTIQUE - 1SN

Lundi 15 Janvier 2018

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1: Estimation (9 points)

On considère n variables aléatoires $X_1,...,X_n$ indépendantes suivant la même loi discrète à valeurs dans l'ensemble des entiers non nuls $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ définie par

$$P[X_i = x_i; \theta] = \theta (1 - \theta)^{x_i - 1}, \quad x_i = 1, 2, ...$$

avec $\theta \in]0,1[$. On admettra que la moyenne et la variance d'une telle loi appelée "loi géométrique de paramètre θ " sont définies par $E\left[X_i\right]=\frac{1}{\theta}$ et $\mathrm{var}(X_i)=\frac{1-\theta}{\theta^2}$.

- 1. (2pts) Montrer que la vraisemblance de $(x_1,...,x_n)$ admet un unique maximum global pour une valeur de θ que l'on déterminera. En déduire l'estimateur du maximum de vraisemblance du paramètre θ noté $\widehat{\theta}_{\text{MV}}$.
- 2. (2pts) Rappeler les propriétés asymptotiques de l'estimateur $\hat{\theta}_{MV}$. Devant la difficulté d'étudier ces propriétés pour n fini, on propose d'estimer le paramètre $a=\frac{1}{\theta}$. Quel est l'estimateur du maximum de vraisemblance du paramètre a noté \hat{a}_{MV} ? Cet estimateur est-il sans biais et convergent ?
- 3. (2pts) Déterminer la borne de Cramer-Rao pour un estimateur non biaisé du paramètre a. L'estimateur \widehat{a}_{MV} est-il l'estimateur efficace du paramètre a?
- (3pts) On désire maintenant construire un estimateur Bayésien du paramètre θ. Puisque ce paramètre vérifie la contrainte θ ∈]0, 1[, il est naturel de définir une loi a priori (appelée loi beta de paramètres α et β) de densité

 $p(\theta) = \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{B(\alpha, \beta)} I_{[0, 1]}(\theta)$

où $I_{]0,1[}(\theta)$ est la fonction indicatrice sur l'intervalle]0,1[($I_{]0,1[}(\theta)=1$ si $\theta\in]0,1[$ et $I_{]0,1[}(\theta)=0$ si $\theta\notin]0,1[$) et où $B(\alpha,\beta)$ est la fonction beta dont l'expression n'est pas importante dans cet exercice.

- Montrer que la loi a posteriori de $\theta | x_1, ..., x_n$ est aussi une loi beta dont on précisera les paramètres.
- Déterminer l'estimateur du maximum a posteriori du paramètre θ noté $\widehat{\theta}_{MAP}$ et étudier son comportement lorsque $n \to \infty$.

Exercice 2: Test Statistique (7 points)

On considère n variables aléatoires $X_1,...,X_n$ indépendantes suivant la même loi géométrique à valeurs dans l'ensemble des entiers non nuls $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ définie par

$$P[X_i = x_i; \theta] = \theta (1 - \theta)^{x_i - 1}, \qquad x_i \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}.$$

avec $\theta \in]0,1[$. On rappelle que la moyenne et la variance d'une loi géométrique de paramètre θ sont définies par $E\left[X_i\right]=\frac{1}{\theta}$ et $\mathrm{var}(X_i)=\frac{1-\theta}{\theta^2}$. On considère le test d'hypothèses simples

$$H_0: \theta = \theta_0, \quad H_1: \theta = \theta_1$$

- 1. (2pts) Déterminer la statistique du test du test de Neyman Pearson notée T_n et indiquer la région critique de ce test pour $\theta_1 > \theta_0$ et $\theta_1 < \theta_0$. Dans la suite de cet exercice, on supposera $\theta_1 > \theta_0$. La décision prise à l'aide du test de Neyman Pearson est-elle en accord avec la moyenne d'une loi géométrique définie par $E[X_i] = \frac{1}{\theta}$?
- 2. (1pt) Déterminer la loi approchée de la statistique T_n résultant de l'application du théorème de la limite centrale.
- 3. (1pt) On note

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du$$

la fonction de répartition d'une loi normale $\mathcal{N}(0,1)$ et F^{-1} son inverse. Déterminer la valeur du seuil du test de Neyman Pearson notée K_{α} en fonction de n, θ_0 , du risque de première espèce α et de F^{-1} .

- 4. (1pt) Déterminer la puissance du test en fonction du seuil K_{α} , de n, θ_1 et de F.
- 5. (2pts) Déterminer les courbes COR du test étudié dans cet exercice et tracer la forme de ces courbes pour différentes valeurs de n.

Exercice 3: Test d'adéquation (4 points)

On observe 20 réalisations d'une variable aléatoire discrète regroupées dans le tableau ci-dessous et on se pose la question de savoir si ces observations proviennent d'une loi géométrique de paramètre $\theta=0.4$ (voir définition à l'exercice précédent). Pour cela, on effectue un test du χ^2 avec les 4 classes $C_1=\{1\}, C_2=\{2\}, C_3=\{3\}$ et $C_4=\{4,\ldots\}$

1	1	3	2	2	6	3	5	4	3
2	6	1	1	2	2	3	1	2	5

- 1. (1pt) Déterminer les probabilités des différentes classes notées p_i , i=1,...,4 en fonction de θ . On admettra que les valeurs numériques de ces probabilités pour $\theta=0.4$ sont $p_1=0.4$, $p_2=0.24$, $p_3=0.144$ et $p_4=0.216$.
- 2. (1pt) En déduire la valeur de la statistique du test du χ^2 notée ϕ_n (on écrira l'expression de ϕ_n sous la forme d'une somme pondérée de carrés qu'on ne cherchera pas à calculer).
- 3. (1pt) Quelle est la loi de ϕ_n lorsque les données x_i sont issues d'une loi géométrique de paramètre $\theta=0.4$?
- 4. (1pt) Pour effectuer le test du χ^2 , on doit comparer la valeur de ϕ_n à un seuil. Déterminer ce seuil en fonction de la fonction de répartition inverse d'une loi du χ^2 et du risque de première espèce du test noté α .

LOIS DE PROBABILITÉ CONTINUES $m: moyenne \qquad \sigma^2: variance \qquad F. C.: fonction caractéristique$

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Gamma $\Gamma\left(heta, u ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$	$rac{ u}{ heta}$	$rac{ u}{ heta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\overline{\nu}}}$
Inverse gamma $\mathrm{IG}(heta, u)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$	$\frac{\theta}{\nu-1}$ si $\nu>1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	(*)
Première loi de Laplace	$f(x) = \frac{1}{2}e^{- x }$	0	2	$\frac{1}{1+t^2}$
Normale $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	m	σ^2	$e^{imt-\frac{\sigma^2t^2}{2}}$
Khi $_2$ χ^2_{ν} $\Gamma\left(\frac{1}{2},\frac{\nu}{2}\right)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{t'}{2}}}$
Cauchy $c_{\lambda,lpha}$	$f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)}$ $\lambda > 0, \ \alpha \in \mathbb{R}$	(-)	(-)	$e^{i\alpha t - \lambda t }$
Beta	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, b > 0, x \in]0,1[$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	(*)

LOIS DE PROBABILITÉ DISCRÈTES

m: moyenne σ^2 : variance F. C.: fonction caractéristique $p_k = P[X = k]$ $p_{1,...,m} = P[X_1 = k_1, ..., X_m = k_m]$

LOI	Probabilités	m	σ^2	F. C.
Uniforme	$p_k = rac{1}{n}$ $k \in \{1,,n\}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1-e^{itn}\right)}{n\left(1-e^{it}\right)}$
Bernoulli	$p_1 = P[X = 1] = p$ $p_0 = P[X = 0] = q$ $p \in [0, 1]$ $q = 1 - p$	p	рq	$pe^{it} + q$
Binomiale $B\left(n,p ight)$	$p_k = C_n^k p^k q^{n-k}$ $p \in [0, 1]$ $q = 1 - p$ $k \in \{0, 1,, n\}$	np	npq	$(pe^{it}+q)^n$
Binomiale négative	$p_k = C_{n+k-1}^{n-1} p^n q^k$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}$	$n\frac{q}{p}$	$n\frac{q}{p^2}$	$\left(\frac{p}{1 - qe^{it}}\right)^n$
Multinomiale	$p_{1,,m} = \frac{n!}{k_1!k_m!} p_1^{k_1} p_m^{k_m}$ $p_j \in [0,1] q_j = 1 - p_j$ $k_j \in \{0,1,,n\}$ $\sum_{j=1}^m k_j = n \sum_{j=1}^m p_j = 1$	np_j	Variance: np_jq_j Covariance: $-np_jp_k$	$\left(\sum_{j=1}^m p_j e^{it}\right)^n$
Poisson $P\left(\lambda\right)$	$p_k = e^{-\lambda} \frac{\lambda^k}{k!}$ $\lambda > 0 k \in \mathbb{N}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$
Géométrique	$p_k = pq^{k-1}$ $p \in [0, 1] q = 1 - p$ $k \in \mathbb{N}^*$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$