Quadratic Equations and Inequations (Inequalities)

ai24btech11024 PRAHLADHA

Section D.MCQs with One or More than One Correct

- 13) Number of integral divisors of the form $4n+2(n \ge 0)$ of the integer 240 is (1984-2Marks)
 - a) a positive integer c) equal to $n+\frac{1}{n}$
 - d) never equal to n b) divisible by n
- 14) If $3^X = 4^x 1$, then x = (JEE Adv. 2013)
 - a) $\frac{2 \log_3 2}{2 \log_3 2 1}$ c) $\frac{1}{1 \log_4 3}$ b) $\frac{2}{2 \log_2 3}$ d) $\frac{2 \log_2 3}{2 \log_3 3 1}$
- 15) Let S be the set of all non-zero real numbers α such that quadratic equation $\alpha x^2 - x + \alpha = 0$ has two distinct real roots x_1 and x_2 satisfying the inequality $|x_1|$ $|x_2| < 1$. Which of the following intervals is(are) α subset of S? (JEE Adv. 2015)
 - a) $\left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right)$ c) $\left(0, \frac{1}{\sqrt{5}}\right)$ b) $\left(-\frac{1}{\sqrt{5}}, 0\right)$ d) $\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$

Section E.Subjective Problems

- 1) solve for $x: 4^x 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} 2^{2x-1}$ (1978)
- 2) If $(m,n) = \frac{(1-x^m)(1-x^{m-1}).....(1-x^{m-n+1})}{(1-x)(1-x^2).....(1-x^n)}$ Where m and n are positive integers $(n \le m)$.show that (m, n + 1) $(m-1, n+1) + x^{m-n+1} (m-1, n) (1978)$
- 3) Solve for x: $\sqrt{x+1} \sqrt{x-1} = 1$. (1978)
- 4) Solve the following equation for x: $2\log_x a + \log_{ax} a + 3\log_{a^2x} a = 0, a > 0$ (1978)

5) Show that the square of $\frac{\sqrt{26-15\sqrt{3}}}{5\sqrt{2}-\sqrt{38+5\sqrt{3}}}$ is a rational number.

1

- 6) Sketch the solution set of the following system of inequalities: $x^{2} + y^{2} - 2x \ge 0$; $3x - y - 12 \le 0$; $y - x \le 0$ $0; y \ge 0.$ (1978)
- 7) Find all integers x for which $(5x-1) < (x+1)^2 < (7x-3).$
- 8) If α, β are the roots of $x^2 + px + q = 0$ and γ, δ are the roots of $x^2 + rx + s =$ 0, evaluate $(\alpha - \gamma)(\alpha - \delta)(\beta - \gamma)(\beta - \delta)$ in terms of p,q,r,and s. Deduce the condition that the equations have a common root. (1979)
- 9) Given $n^4 < 10^n$ for a fixed positive integer $n \geq 2$, (1980)
- prove that $(n+1)^4 < 10^{n+1}$. 10) Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$ Find all the real values of x for which y takes real values. (1980)
- 11) For what values of m,does the system of equations (1980)3x + my = m2x - 5y = 20has solution satisfying the condition x >0, y > 0.(1980)
- 12) find the solution set of the system x + 2y + z = 1; 2x - 3y - w = 2; $x \ge 0; y \ge 0; z \ge 0; w \ge 0.$ (1980)