Y-DATA 3rd Research Seminar 2025

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby (2021)

Vision Transformers / ViT (2021) Results

- 1. Finetune Accuracy % After Pretraining on Different Datasets
- 2. Top1 Finetune Accuracy % After Pretraining on Different Datasets
- 3. ImageNet Top1 Finetune Accuracy % After Pretraining on Various n_examples on JFT
- 4. Accuracy % Relative to Compute for Various Models
- 5. Finetune Accuracy % for ResNet using Adam vs SGD Optimiser
- 6. Attention Map
- 7. Position Embedding, its Dimensions & Where to Add
- 8. Position Embedding Trained With Different Hyperparameters
- 9. Attention Distance at Various Network Depths
- 10. Batch Size for Models at Various Input Sizes

Vision Transformers / ViT (2021) Results Summary

#	Topic	Key Results
1	Finetune Accuracy % After Pretraining on Different Datasets	ViT-L/16 pretrained on JFT-300M ≈ ResNet Bit-L ViT-H/14 pretrained on JFT-300M > ResNet Bit-L
2	Top1 Finetune Accuracy % After Pretraining on Different Datasets	ViT-B or L/16 (higher resolution inputs) is better than 32 ViT-H/14 > ViT-L/16 > ViT-B/16
3	ImageNet Top1 Finetune Accuracy % After Pretraining on Various n_examples on JFT	As pretraining n_examples increase -> accuracy increases ViT-L/16 > ResNet152x2 BiT when n_examples are >= 100M
4	Accuracy % Relative to Compute for Various Models	ViT vs ResNet – ViT uses lesser compute to achieve same accuracy
5	Finetune Accuracy % for ResNet using Adam vs SGD Optimiser	Adam optimiser > SGD optimiser
6	Attention Map	Visualise how ViT model focuses on object position
7	Position Embedding, its Dimensions & Where to Add	Position embedding increases accuracy 1D vs 2D embedding – No difference Where we add position embedding – No difference
8	Position Embedding Trained With Different Hyperparameters	Higher learning rate or more training epochs => More fine-grained patterns => Perhaps better understanding?
9	Attention Distance at Various Network Depths	Earlier network depths – Attention distance can range from low to high Deeper layers – Attention heads focus on global attention
10	Batch Size for Models at Various Input Sizes	ViT-B/32 is so memory efficient that it can maintain high batch_size

1

Finetune Accuracy % After Pretraining on Different Datasets

Model	Pretrained On	Remarks
BiT-L ResNet152x4	ImageNet21k	Baseline for all image datasets BiT = "Big Transfer" architecture
Noisy Student EfficientNet-L2	ImageNet21k	Baseline for ImageNet
ViT-L/16 (Large model)	ImageNet21k	
ViT-L/16	JFT-300M (Google proprietary)	Test performance
ViT-H/14 (Huge model, bigger than Large model)	JFT-300M (Google proprietary)	ViT = Vision Transformer

Notes

- No information on what the models were finetuned on
- Assuming finetuning was performed on ImageNet21k dataset

	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	72.72 ± 0.21	76.29 ± 1.70	_

	Ours-JFT (ViT-L/16)		BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)	
ImageNet	87.76 ± 0.03		87.54 ± 0.02	88.4/88.5*	
ImageNet ReaL	90.54 ± 0.03	≈	90.54	90.55	
CIFAR-10	99.42 ± 0.03		99.37 ± 0.06	_	
CIFAR-100	93.90 ± 0.05		93.51 ± 0.08	_	
Oxford-IIIT Pets	97.32 ± 0.11		96.62 ± 0.23	_	
Oxford Flowers-102	99.74 ± 0.00		99.63 ± 0.03	_	
VTAB (19 tasks)	76.28 ± 0.46		76.29 ± 1.70	_	

	Ours-JFT (ViT-H/14)		BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04		87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	>	90.54	90.55
CIFAR-10	99.50 ± 0.06		99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04		93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03		96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02		99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23		76.29 ± 1.70	_

Comparison 4 – Higher Accuracy using Lesser Compute

	Ours-JFT (ViT-H/14)			BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2
ImageNet Page	88.55 ± 0.04		}	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL CIFAR-10	90.72 ± 0.05 99.50 ± 0.06		,	$90.54 \\ 99.37 \pm 0.06$	90.55 —
CIFAR-100 Oxford-IIIT Pets	94.55 ± 0.04 97.56 ± 0.03			93.51 ± 0.08 96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02		;	99.63 ± 0.23	_
VTAB (19 tasks)	77.63 ± 0.23			76.29 ± 1.70	_
TPUv3-core-days	2.5k	<		9.9k	12.3k

Model	Pretrained On	Remarks
ViT-B/16		Base model
ViT-B/32		Base model pretrained on lower resolution input images
ViT-L/16	ImageNet ImageNet21k	Large model
ViT-L/32	JFT-300M (Google proprietary)	Large model pretrained on lower resolution input images
ViT-H/14		Huge model, bigger than Large model

		ViT-B/16	ViT-B/32
ImageNet	CIFAR-10	98.13	97.77
	CIFAR-100	87.13	86.31
	ImageNet	77.91	73.38
	ImageNet ReaL	83.57	> 79.56
	Oxford Flowers-102	89.49	85.43
	Oxford-IIIT-Pets	93.81	92.04
ImageNet-21k	CIFAR-10	98.95	98.79
	CIFAR-100	91.67	91.97
	ImageNet	83.97	81.28
	ImageNet ReaL	88.35	> 86.63
	Oxford Flowers-102	99.38	99.11
	Oxford-IIIT-Pets	94.43	93.02
JFT-300M	CIFAR-10	99.00	98.61
	CIFAR-100	91.87	90.49
	ImageNet	84.15	> 80.73
	ImageNet ReaL	88.85	86.27
	Oxford Flowers-102	99.56	99.27
	Oxford-IIIT-Pets	95.80	93.40

		ViT-L/16	ViT-L/32
ImageNet	CIFAR-10	97.86	97.94
	CIFAR-100	86.35	87.07
	ImageNet	76.53	71.16
	ImageNet ReaL	82.19	> 77.83
	Oxford Flowers-102	89.66	86.36
	Oxford-IIIT-Pets	93.64	91.35
ImageNet-21k	CIFAR-10	99.16	99.13
	CIFAR-100	93.44	93.04
	ImageNet	85.15	80.99
	ImageNet ReaL	88.40	> 85.65
	Oxford Flowers-102	99.61	99.19
	Oxford-IIIT-Pets	94.73	93.09
FT-300M	CIFAR-10	99.38	99.19
	CIFAR-100	94.04	92.52
	ImageNet	87.12	> 84.37
	ImageNet ReaL	89.99	88.28
	Oxford Flowers-102	99.56	99.45
	Oxford-IIIT-Pets	97.11	95.83

		ViT-B/16		ViT-L/16
ImageNet	CIFAR-10	98.13		97.86
	CIFAR-100	87.13		86.35
	ImageNet	77.91		76.53
	ImageNet ReaL	83.57	<	82.19
	Oxford Flowers-102	89.49		89.66
	Oxford-IIIT-Pets	93.81		93.64
ImageNet-21k	CIFAR-10	98.95		99.16
	CIFAR-100	91.67		93.44
	ImageNet	83.97		85.15
	ImageNet ReaL	88.35	<	88.40
	Oxford Flowers-102	99.38		99.61
	Oxford-IIIT-Pets	94.43		94.73
JFT-300M	CIFAR-10	99.00		99.38
	CIFAR-100	91.87		94.04
	ImageNet	84.15	<	87.12
	ImageNet ReaL	88.85		89.99
	Oxford Flowers-102	99.56		99.56
	Oxford-IIIT-Pets	95.80		97.11

		ViT-L/16	ViT-H/14
ImageNet	CIFAR-10	97.86	-
	CIFAR-100	86.35	-
	ImageNet	76.53	-
	ImageNet ReaL	82.19	-
	Oxford Flowers-102	89.66	-
	Oxford-IIIT-Pets	93.64	-
ImageNet-21k	CIFAR-10	99.16	99.27
	CIFAR-100	93.44	93.82
	ImageNet	85.15	85.13
	ImageNet ReaL	88.40	< 88.70
	Oxford Flowers-102	99.61	99.51
	Oxford-IIIT-Pets	94.73	94.82
JFT-300M	CIFAR-10	99.38	99.50
	CIFAR-100	94.04	94.55
	ImageNet	87.12	88.04
	ImageNet ReaL	89.99	90.33
	Oxford Flowers-102	99.56	99.68
	Oxford-IIIT-Pets	97.11	97.56

Model	Pretrained On	Remarks
ResNet152x2 (BiT)		
ViT-B/32	IFT 200M/Coogle proprietary	Base model pretrained on lower resolution input images
ViT-L/32	JFT-300M (Google proprietary)	Large model pretrained on lower resolution input images
ViT-L/16		Large model

4

Accuracy % Relative to Compute for Various Models

Model	Pretrained On	Remarks
ResNet (BiT)		
Vision Transformer (ViT)		
Hybrid		Hybrid model with ResNet CNN output feature map to ViT

Comparison 3

Similar increasing trend and pattern for Average-5 & ImageNet dataset Increasing trend might continue even beyond 1e4

Notes

- Average-5 might be referring to 5 non-ImageNet datasets: CIFAR-10, CIFAR-100, Oxford-IIIT Pets, Oxford Flowers-102, VTAB (19 tasks)

Model	Pretrained On	Finetuned on
ResNet50		ImageNet
ResNet152x2	Unknown Dataset	CIFAR10 CIFAR100 Oxford-IIIT Pets Oxford Flowers-102

ResNet50			
Dataset	Adam	SGD	
ImageNet	77.54	78.24	
CIFAR10	97.67	97.46	
CIFAR100	86.07	85.17	
Oxford-IIIT Pets	91.11	91.00	
Oxford Flowers-102	94.26	92.06	
Average	89.33	88.79	

Table 7: Fine-tuning ResNet models pre-trained with Adam and SGD.

	ResNe	ResNet152x2	
Dataset	Adam	SGD	
ImageNet	84.97	84.37	
CIFAR10	99.06	99.07	
CIFAR100	92.05	91.06	
Oxford-IIIT Pets	95.37	94.79	
Oxford Flowers-102	98.62	99.32	
Average	94.01	93.72	

Table 7: Fine-tuning ResNet models pre-trained with Adam and SGD.

Dataset	ResNet Adam	50	ResNet152x2 Adam
ImageNet	77.54		84.97
CIFAR10	97.67		99.06
CIFAR100	86.07	<	92.05
Oxford-IIIT Pets	91.11		95.37
Oxford Flowers-102	94.26		98.62
Average	89.33		94.01

Table 7: Fine-tuning ResNet models pre-trained with Adam and SGD.

Attention Map

6. Attention Map

Position Embedding, its Dimensions & Where to Add

7. Position Embedding, its Dimensions & Where to Add

Comparison 1

Pos. Emb.	Default/Stem	Every Layer	Every Layer-Shared
No Pos. Emb. 1-D Pos. Emb.	0.61382 0.64206	N/A 0.63964	N/A 0.64292
Position embedding increases accuracy			

Table 8: Results of the ablation study on positional embeddings with ViT-B/16 model evaluated on ImageNet 5-shot linear.

7. Position Embedding, its Dimensions & Where to Add

Table 8: Results of the ablation study on positional embeddings with ViT-B/16 model evaluated on ImageNet 5-shot linear.

7. Position Embedding, its Dimensions & Where to Add

Comparison 3

Input to encoder

Input separately to each layer

Input 1 common position embedding to each layer

7. Position Embedding, its Dimensions & Where to Add

Table 8: Results of the ablation study on positional embeddings with ViT-B/16 model evaluated on ImageNet 5-shot linear.

Position Embedding Trained With Different Hyperparameters

8. Position Embedding Trained With Different Hyperparameters

8. Position Embedding Trained With Different Hyperparameters

8. Position Embedding Trained With Different Hyperparameters

Attention Distance at Various Network Depths

9. Attention Distance at Various Network Depths

9. Attention Distance at Various Network Depths

Comparison 2

Deeper layers – Attention heads focus on global attention

9. Attention Distance at Various Network Depths

Comparison 3

Similar phenomenon

10

Batch Size for Models at Various Input Sizes

Model	Pretrained On	Remarks
ResNet R50x1	Unknown	
ResNet R50x2		
ResNet R152x4		
ViT-B/16		Base model
ViT-B/32		Base model with lower resolution inputs
ViT-H/14		Huge model, bigger than Large model

Comparison 1

Between ResNets

