ANÁLISIS MATEMÁTICO I

Grupo A del grado en Matemáticas, 2º Curso. Curso 2018-19

Prueba de evaluación continua

- 1. Define los conceptos de espacio métrico compacto, conexo y completo. Enuncia los siguientes resultados:
- a) Caracterización de los conjuntos compactos en \mathbb{R}^n .
- b) Teorema del punto fijo de Banach.
- c) Teorema del valor medio para campos escalares.
- 2. Si $a,b,c,d\in\mathbb{R},$ consideramos la aplicación lineal $T:\mathbb{R}^2\to\mathbb{R}^2$ dada por:

$$T(x,y) = (ax + by, cx + dy), ((x,y) \in \mathbb{R}^2).$$

Prueba que $||T|| = \max\{|a| + |c|, |b| + |d|\}$, si se considera en \mathbb{R}^2 la norma $||\cdot||_1$ dada por

$$||(x,y)||_1 = |x| + |y|.$$

3. Dada la función

$$f(x) = \begin{cases} xy \cdot \arctan(\frac{xy}{x+y}) & si \quad x+y \neq 0 \\ 0 & si \quad x+y = 0 \end{cases}$$

estudia la diferenciabilidad de f en (0,0). Calcula, en caso de que existan, $D_{12}f(0,0)$ y $D_{21}f(0,0)$.

4. Sea $\phi: \mathbb{R} \to \mathbb{R}$ una función derivable tal que $\phi'(0) = -1$. Definimos:

$$z = xy + \phi(x - y),$$
 $x = ue^{v} + \sin v,$ $y = 3uv + u^{4}.$

Calcula $\frac{\partial z}{\partial u}(1,0)$ y $\frac{\partial z}{\partial v}(1,0)$