評卷參考 * Marking Scheme

香港考試及評核局 Hong Kong Examinations and Assessment Authority

2007年香港高級程度會考 Hong Kong Advanced Level Examination 2007

數學及統計學 高級補充程度 Mathematics and Statistics AS-Level

本文件專爲閱卷員而設,其內容不應視爲標準答案。考生以 及沒有參與評卷工作的教師在詮釋本文件時應小心謹慎。

This document was prepared for markers' reference. It should not be regarded as a set of model answers. Candidates and teachers who were not involved in the marking process are advised to interpret its contents with care.

^{*} 此部分只設英文版本

AS Mathematics and Statistics

General Marking Instructions

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits *all the marks* allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks

awarded for correct methods being used;

'A' marks

awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving at

an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. Use of notation different from those in the marking scheme should not be penalized.
- 5. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 6. Marks may be deducted for poor presentation (pp). The symbol (pp-1) should be used to denote 1 mark deducted for pp. At most deducted 1 mark from Section A and 1 mark from Section B for pp. In any case, do not deduct any marks for pp in those steps where candidates could not score any marks.
- 7. Marks may be deducted for numerical answers with inappropriate degree of accuracy (a). The symbol (a-1) should be used to denote 1 mark deducted for a. At most deducted 1 mark from Section A and 1 mark from Section B for a. In any case, do not deduct any marks for a in those steps where candidates could not score any marks.
- 8. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to' and 'f.t.' stands for 'follow through'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles.

C^	lution
170	lution

Marks

1. (a) (i)
$$\left(1 + \frac{x}{a}\right)^r$$

 $= 1 + \frac{r}{a}x + \frac{r(r-1)}{2!}(\frac{x}{a})^2 + \cdots$
 $= 1 + \frac{rx}{a} + \frac{r(r-1)}{2a^2}x^2 + \cdots$
So, we have $\frac{r}{a} = \frac{2r}{3}$ and $\frac{r(r-1)}{2a^2}$

So, we have
$$\frac{r}{a} = \frac{2r}{3}$$
 and $\frac{r(r-1)}{2a^2} = \frac{-1}{18}$.

Solving, we have
$$a = \frac{3}{2}$$
 and $r = \frac{1}{2}$.

(ii) The binomial expansion is valid for
$$\left| \frac{2x}{3} \right| < 1$$
.
Thus, the range of values of x is $\frac{-3}{2} < x < \frac{3}{2}$.

(b) (i)
$$\left(1 - \frac{x}{a}\right)^r = 1 - \frac{1}{3}x - \frac{1}{18}x^2 + \cdots$$

(ii) The binomial expansion is valid for
$$\left| \frac{-2x}{3} \right| < 1$$
.
Thus, the range of values of x is $\frac{-3}{2} < x < \frac{3}{2}$.

2. (a) Let
$$u = 2t^2 + 50$$
.
Then, we have $\frac{du}{dt} = 4t$.

$$= \int \frac{800t}{(2t^2 + 50)^2} dt$$
$$= \int \frac{200}{u^2} du$$

So, we have
$$N = \frac{-200}{u} + C$$
, where C is a constant.

Therefore, we have
$$N = \frac{-200}{2t^2 + 50} + C$$
.

Using the condition that
$$N=4$$
 when $t=0$, we have $4=-4+C$. Hence, we have $C=8$.

Thus, we have
$$N = 8 - \frac{200}{2t^2 + 50}$$

1A accept
$$|x| < \frac{3}{2}$$

1M for replacing
$$x$$
 by $-x$

1M accept
$$|x| < \frac{3}{2}$$

$$1M$$
 for finding C $1A$

Solution	Marks
Alternative Solution	
Let $u = 2v^2 + 50$. Then, we have $du = 4vdv$. $[N]_0^t = \int_0^t \frac{800v}{(2v^2 + 50)^2} dv$ $c^{2t^2 + 50} = 200$	1A
$= \int_{50}^{2t^2 + 50} \frac{200}{u^2} du$ $= \left[\frac{-200}{u} \right]_{50}^{2t^2 + 50}$ $\therefore N - 4 = \frac{-200}{2t^2 + 50} - \frac{-200}{50}$ i.e. $N = 8 - \frac{200}{2t^2 + 50}$.	1M For substitution 1A For $\frac{-200}{u}$ 1M For using $N(0) = 4$
(b) When $N = 6$, we have $8 - \frac{200}{2t^2 + 50} = 6$. So, we have $t = 5$. The number of bacteria will be 6 million 5 days after the start of the research.	1M 1A (7)
3. (a) $y = \frac{1 - e^{4x}}{1 + e^{8x}}$ $\frac{dy}{dx} = \frac{(1 + e^{8x})(-4e^{4x}) - (1 - e^{4x})(8e^{8x})}{(1 + e^{8x})^2}$ When $x = 0$, we have $\frac{dy}{dx} = -2$.	1M for quotient rule or product rule
Alternative Solution $y = \frac{1 - e^{4x}}{1 + e^{8x}}$ $\ln y = \ln(1 - e^{4x}) - \ln(1 + e^{8x})$ $\frac{1}{y} \frac{dy}{dx} = \frac{-4e^{4x}}{1 - e^{4x}} - \frac{8e^{8x}}{1 + e^{8x}}$ $\frac{dy}{dx} = \frac{1 - e^{4x}}{1 + e^{8x}} \left(\frac{-4e^{4x}}{1 - e^{4x}} - \frac{8e^{8x}}{1 + e^{8x}} \right)$ $= \frac{-4e^{4x}}{1 + e^{8x}} - \frac{8(1 - e^{4x})e^{8x}}{(1 + e^{8x})^2}$ When $x = 0$, $\frac{dy}{dx} = \frac{-4}{1 + 1} - 0 = -2$	1M For log differentiation

	Solution	Marks
(b) (i) S	Since $(z^2 + 1)e^{3z} = e^{\alpha + \beta x}$, we have $\ln(z^2 + 1) + 3z = \alpha + \beta x$.	1A
	Since the graph of the linear function passes through the origin and the lope of the graph is 2, we have $\alpha = 0$ and $\beta = 2$.	1A for both correct
(iii)	$\ln(z^2 + 1) + 3z = 2x$	
	$\frac{2z}{z^2 + 1} + 3 = 2\frac{\mathrm{d}x}{\mathrm{d}z}$	
,	Therefore, we have $\frac{dx}{dz}\Big _{z=0} = \frac{3}{2}$.	1A
	$\frac{dz}{z=0} = 2$ Note that $x = 0$ when $z = 0$.	
	Also note that $\frac{dy}{dx}\Big _{x=0} = -2$.	
	$\frac{\mathrm{d}y}{\mathrm{d}z}\Big _{z=0}$	
	$= \left(\frac{\mathrm{d}y}{\mathrm{d}x}\bigg _{x=0}\right) \left(\frac{\mathrm{d}x}{\mathrm{d}z}\bigg _{z=0}\right)$	
	$=(-2)\left(\frac{3}{2}\right)$	1M for chain rule
	=-3	1A
	$y = \frac{1 - e^{6z + 2\ln(z^2 + 1)}}{1 + e^{12z + 4\ln(z^2 + 1)}}$	1A
	$1 + e^{12z+4\ln(z^2+1)}$ $1 - (z^2+1)^2 e^{6z}$	
	$y = \frac{1 - (z^2 + 1)^2 e^{6z}}{1 + (z^2 + 1)^4 e^{12z}}$	
	$\frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\left(1 + (z^2 + 1)^4 e^{12z}\right) \left(-6(z^2 + 1)^2 e^{6z} - 2(z^2 + 1)(2z)e^{6z}\right)}{\left(12(z^2 + 1)^4 e^{12z} + 4(z^2 + 1)^3(2z)e^{12z}\right)}$ $\frac{\mathrm{d}z}{\left(1 + (z^2 + 1)^4 e^{12z}\right)^2}$	
1	$\frac{dz}{dz} = \frac{(1 + (z^2 + 1)^4 e^{12z})^2}{(1 + (z^2 + 1)^4 e^{12z})^2}$	1M for quotient rule or product rule
	$\frac{\mathrm{d}y}{\mathrm{d}z}\Big _{z=0} = -3$	1A
L	12 0	(7)

	Solution	Marks
4. (a)	(i) Note that $5.1 < 5.3$ and $k \ge 0$.	
	Hence, we have $5.3 = k - 1.2$. Thus, we have $k = 6.5$.	1A
	5.3 = k - 1.2 or $5.3 = 5.1 - kSo, we have k = 6.5 or k = -0.2 (rejected as k \ge 0).$	·
	Thus, we have $k = 6.5$.	1A
	(ii) Stem (units) Leaf (tenths) 2 8 9 2 1 1 2 3 4 4 9 3 6 7 9	1M + 1A
	4 7 5 1 6 5	
	(iii) The mean = 3.05 hours	1A (accept 3.0500 hours)
	The median = 2.4 hours	1A (accept 2.4000 hours)
(b)	The revised mean is greater than the mean obtained in (a)(iii). The revised median is the same as the median obtained in (a)(iii).	1A 1A
	The change in the mean is positive. There is no change in the median.	1 A 1 A
		(7)

	Solution	Marks
(a)	$P(A' \cap B)$ = $P(B A') P(A')$ = $0.3(1-a)$	1M
	$P(A' \cap B)$ = $P(A' \mid B) P(B)$ = $0.6b$	
	Hence, we have $0.6b = 0.3(1-a)$. Thus, we have $a + 2b = 1$.	I either one
(b)	$P(A \cap B')$ = $P(B' A) P(A)$ = $0.7a$	
	$P(A \cup B')$ $= 1 - P(A' \cap B)$ $= 1 - 0.6b$	1M for complementary events
	Note that $P(A \cup B') = P(A) + P(B') - P(A \cap B')$. Hence, we have $1 - 0.6b = a + (1 - b) - 0.7a$ So, we have $3a = 4b$.	1M
	Solving $a + 2b = 1$ and $3a = 4b$, we have $a = 0.4$ and $b = 0.3$.	1A for both correct
	$P(A \cap B')$ $= P(B' A) P(A)$ $= 0.7a$	
	$P(A \cup B') = 1 - P(A' \cap B) = 1 - 0.3(1 - a) = 0.7 + 0.3a$	1M for complementary events
	Note that $P(A \cup B') = P(A) + P(B') - P(A \cap B')$. Hence, we have $0.7 + 0.3a = a + 1 - b - 0.7a$ So, we have $b = 0.3$.	1M
	By (a), we have $a + 2(0.3) = 1$. Thus, we have $a = 0.4$.	both correct
(c)	Since $P(A \cap B) = P(A) - P(A \cap B')$, $P(A) = 0.4$ and $P(A \cap B') = 0.28$, we have $P(A \cap B) = 0.12 = (0.4)(0.3) = P(A)P(B)$. Thus, A and B are independent events.	1M for relating $P(A \cap B)$ and $P(A)P(B)$ 1A f.t.
	Since $P(A) = a$, we have $P(A \cap B) = P(A) - P(A \cap B') = a - 0.7a = 0.3a$. With the help of $P(B) = 0.3$, we have $P(A \cap B) = P(A)P(B)$. Thus, A and B are independent events.	1M for relating $P(A \cap B)$ and $P(A)P(B \mid A \mid A \mid B)$.
	Since $P(A' B) = 0.6$, we have $P(A B) = 1 - P(A' B) = 1 - 0.6 = 0.4$. With the help of $P(A) = 0.4$, we have $P(A B) = P(A)$. Thus, A and B are independent events.	1M for relating P(A B) and P(A) 1A f.t.

Solution	Marks
(-) The required meshability	
(a) The required probability	1A for numerator or denominator
$=(\frac{1}{10})(\frac{4}{9})(\frac{3}{8})$	+ 1A for all
$=\frac{1}{1}$	1A
60	
≈ 0.016666667	a-1 for r.t. 0.017
≈ 0.0167	a-1 for r.t. 0.017
The required probability	
	1A for 1 st blacket + 1A for all
$= \left(\frac{C_1^1 C_2^4}{C_3^{10}}\right) \left(\frac{1}{C_1^3}\right)$	1A for 1 blacket + 1A for an
1	1A
$=\frac{1}{60}$	1A
≈ 0.016666667	1.0 0.017
≈ 0.0167	<i>a</i> –1 for r.t. 0.017
The required probability	
$= \left(\frac{C_1^1}{C_1^{10}}\right) \left(\frac{C_2^4}{C_2^9}\right)$	1A for 2 nd blacket + 1A for all
$=\frac{1}{60}$	1A
≈ 0.016666667	
≈ 0.0167	<i>a</i> –1 for r.t. 0.017
The required probability	
	1A for numerator or denominator
$=\frac{P_1^1 P_2^4}{P_3^{10}}$	+ 1A for all
1	
$=\frac{1}{60}$	lA
≈ 0.016666667	1.0 0.017
≈ 0.0167	<i>a</i> –1 for r.t. 0.017
(b) The required probability	
$=\frac{1}{60}+(\frac{5}{10})(\frac{5}{9})(\frac{4}{8})$	1M for (p + q + r + s) + 1M for
	using (a)
$=\frac{7}{45}$	1A
≈ 0.155555556	
≈ 0.1556	a-1 for r.t. 0.156
The required probability	
	134.6
$=\frac{1}{60}+\frac{C_1^5C_2^5}{C_1^{10}C_2^9}$	1M for (p+q+r+s) + 1M for y = (s)
	using (a)
$=\frac{7}{45}$	1A
≈ 0.155555556	
≈ 0.1556	<i>a</i> –1 for r.t. 0.156
•	
	•

Solution	Marks
	*.
The required probability	
$=\frac{1}{60}+\frac{P_1^5 P_2^5}{P_3^{10}}$	1M for $(p+q) + 1M$ for using (a)
$=\frac{7}{45}$	l A
0.15555556	
≈ 0.1556	<i>a</i> –1 for r.t. 0.156
The granified makehility	
The required probability 4 3 6 2 4 5	
$= (\frac{4}{10})(\frac{3}{9})(\frac{6}{8}) + (\frac{2}{10})(\frac{4}{9})(\frac{5}{8})$	1M for (p+q+r+s)
	2A
$=\frac{7}{45}$	
0.15555556	- 1 famut 0 156
≈ 0.1556	<i>a</i> –1 for r.t. 0.156
The required probability	
$C_2^4 C_1^6 + C_1^4 C_1^1 C_1^5$	1 M for (p+q+r+s)
$=\frac{C_2^4 C_1^6}{C_2^{10} C_1^8} + \frac{C_1^4 C_1^1 C_1^5}{C_2^{10} C_1^8}$	
	2A
$=\frac{7}{45}$	ZA
0.15555556	1.0
≈ 0.1556	<i>a</i> –1 for r.t. 0.156
The required probability $= \frac{P_2^4 P_1^6}{P_3^{10}} + \frac{P_1^2 P_1^4 P_1^5}{P_3^{10}}$	
$P_2^4 P_1^6 \qquad P_1^2 P_1^4 P_1^5$	1111 (
$=\frac{1}{P_3^{10}}+\frac{1}{P_3^{10}}$	1M for (p+q+r+s)
7	2A
$=\frac{7}{45}$	ZA
0.15555556	1.6
≈ 0.1556	<i>a</i> –1 for r.t. 0.156
	(0)

Sol	lution

Marks

- \therefore the equation of the horizontal asymptote to C_1 is y = 8.
- $\lim_{x \to -4^-} f(x) = +\infty \text{ and } \lim_{x \to -4^+} f(x) = -\infty$
- \therefore the equation of the vertical asymptote to C_1 is x = -4.

The x-intercept of C_1 is 5.

The y-intercept of C_1 is -10.

1A for all the asymptotes of C_1 1A for all the intercepts of C_1 1A for the shape of C_1

(3)

(b) (i)
$$g(x) = \frac{(x+4)^2(x+5)}{8}$$
$$g'(x) = \frac{3(x+4)(x-2)}{8}$$
$$g'(x) = 0 \text{ when } x \neq -4 \text{ or } x = 2$$
$$g''(x) = \frac{3(x+1)}{4}$$
$$g''(x) = 0 \text{ when } x = -1$$

х	x < 4	4	-4 < x < -1	-1	-1 < x < 2	ļ	<i>x</i> > 2
g'(x)	+	0	_		_	0	+
g''(x)	_		_	0	+	+	+
g(x)	71	0	Ŋ	$\frac{-27}{4}$	Я	$\frac{-27}{2}$	71

Since g'(2) = 0 and g''(2) > 0,

the coordinates of the relative minimum point are $(2, \frac{-27}{2})$.

Since g'(-4) = 0 and g''(-4) < 0, the coordinates of the relative maximum point are (-4, 0).

Since
$$g''(x)$$
 $\begin{cases} < 0 & \text{if } x < -1 \\ = 0 & \text{if } x = -1 \\ > 0 & \text{if } x > -1 \end{cases}$

the coordinates of the point of inflexion are $(-1, \frac{-27}{4})$.

(ii)
$$C_1: y = f(x)$$
, where $f(x) = \frac{8x - 40}{x + 4}$.
 $C_2: y = g(x)$, where $g(x) = \frac{(x + 4)^2(x - 5)}{8}$.

Note that f(x) = g(x)

$$\Leftrightarrow \frac{8x-40}{x+4} = \frac{(x+4)^2(x-5)}{8}$$

$$\Leftrightarrow$$
 64(x-5) = (x+4)³(x-5)

$$\Leftrightarrow (x-5)((x+4)^3-64)=0$$

$$\Leftrightarrow x = 0 \text{ or } x = 5$$

So, the coordinates of the points of intersection are (0, -10) and (5, 0)

Also, the y-intercepts of C_1 and C_2 are -10.

When f(x) = 0, we have x = 5.

When g(x) = 0, we have $x \ne -4$ or x = 5.

So, the x-intercept of C_1 is 5.

Also, the x-intercepts of C_2 are -4 and 5.

1A

1M for justification

1A

- 1A for the shape of C_2
- 1A for all the extreme points and the point of inflexion
- 1A for all the points of intersection

(c) The required area

$$= \int_0^5 (f(x) - g(x)) dx$$

$$= \int_0^5 \left(\frac{8x - 40}{x + 4} - \frac{(x + 4)^2 (x - 5)}{8} \right) dx$$

$$= \int_0^5 \left[\left(8 - \frac{72}{x+4} \right) - \left(\frac{x^3}{8} + \frac{3x^2}{8} - 3x - 10 \right) \right] dx$$

$$= \left[8x - 72\ln(x+4) - \left(\frac{x^4}{32} + \frac{x^3}{8} - \frac{3x^2}{2} - 10x\right)\right]_0^5$$

$$= \frac{2955}{32} - 72 \ln \left(\frac{9}{4} \right)$$

$$= \frac{2955}{32} - 144 \ln \left(\frac{3}{2}\right)$$

≈ 33.95677443

 ≈ 33.9568

----(8)

1M accept $\int_{5}^{0} (g(x) - f(x)) dx$

1M for division

1A for correct integration

1**A**

a–1 for r.t. 33.957

	Solution	Marks
(a)	(i) The total profit made by company A	
	$=\int_0^6 f(t) dt$	1A withhold 1A for omitting this step
	$\approx \frac{1}{2} (f(0) + f(6) + 2(f(1) + f(2) + f(3) + f(4) + f(5)))$	1M for trapezoidal rule
	≈ 37.48705341 ≈ 37.4871 billion dollars	1A <i>a</i> – 1 for r.t. 37.487
	(ii) $f(t) = \ln(e^t + 2) + 3$	
	$\frac{\mathrm{df}(t)}{\mathrm{d}t} = \frac{e^t}{e^t + 2}$	1A
	$\frac{\mathrm{d}^2 f(t)}{\mathrm{d}t^2}$	
	$=\frac{(e^t+2)e^t-e^t(e^t)}{(e^t+2)^2}$	
	$=\frac{2e'}{(e'+2)^2}$	1A
	Since $\frac{d^2 f(t)}{dt^2} > 0$, $f(t)$ is concave upward for $0 \le t \le 6$.	1M
	Thus, the estimate in (a)(i) is an over-estimate.	1A f.t. (7)
(b)	(i) $\frac{1}{40-t^2} = \frac{1}{40} \left(1 + \frac{t^2}{40} + \frac{t^4}{1600} + \dots \right) = \frac{1}{40} + \frac{1}{1600} t^2 + \frac{1}{64000} t^4 + \dots$	1A pp−1 for omitting ' ··· '
	(ii) Note that $e^t = 1 + t + \frac{1}{2}t^2 + \frac{1}{6}t^3 + \frac{1}{24}t^4 + \cdots$. Hence, we have	1M for any four terms correct
	$\frac{8 e^t}{40 - t^2}$	
	$=8\left(\frac{1}{40}+\frac{1}{1600}t^2+\frac{1}{64000}t^4+\cdots\right)\left(1+t+\frac{1}{2}t^2+\frac{1}{6}t^3+\frac{1}{24}t^4+\cdots\right)$	
	$= \frac{1}{5} + \frac{1}{5}t + \frac{21}{200}t^2 + \frac{23}{600}t^3 + \frac{263}{24000}t^4 + \cdots$	1A pp−1 for omitting ' ··· '
	(iii) The total profit made by company B	
	$=\int_0^{\mathfrak{o}} g(t) dt$	
	$\approx \int_0^6 \left(\frac{1}{5} + \frac{1}{5}t + \frac{21}{200}t^2 + \frac{23}{600}t^3 + \frac{263}{24000}t^4 \right) dt$	1M
	$= \left[\frac{1}{5}t + \frac{1}{10}t^2 + \frac{7}{200}t^3 + \frac{23}{2400}t^4 + \frac{263}{120000}t^5 \right]_0^6$	1A for correct integration
	= 41.8224 billion dollars	1A <i>a</i> – 1 for r.t. 41.822(6)
(c)	Since the estimate in (b)(iii) is an under-estimate, we have	1A
	$\int_0^6 f(t) dt < 37.4871 < 41.8224 < \int_0^6 g(t) dt.$	
	Thus, Mary's claim is correct.	1A f.t.

		Solution	Marks
9.	(a)	$A(t) = (-t^2 + 5t + a)e^{kt} + 7$	
		Since $A(0) = 3$, we have $a + 7 = 3$.	
		Thus, we have $a = -4$.	1A
		The required amount of water stored	·
		$=(-1^2+5-4)e^k+7$	
		= 7 million cubic metres	1A (2)
	(b)	$A(t) = (-t^2 + 5t - 4)e^{kt} + 7$	·
	, ,	$\frac{\mathrm{d}\mathrm{A}(t)}{\mathrm{d}t}$	
		$= (-2t+5)e^{kt} + (-t^2+5t-4)(ke^{kt})$	1M for product rule
		$= \left(-kt^2 + (5k-2)t + 5 - 4k\right)e^{kt}$	
		Note that when $t = 2$, $\frac{dA(t)}{dt} = 0$.	
		So, we have $2k + 1 = 0$.	1M
		Thus, we have $k = \frac{-1}{2}$.	1A
		2	(3)
	(c)	(i) When $A(t) \ge 7$, we have	
		$-t^2 + 5t - 4 \ge 0$	1M accept setting quadratic equation
		$t^2 - 5t + 4 \le 0$	147
		$1 \le t \le 4$ Thus, the <i>adequate</i> period lasts for 3 months.	1A (accept $t = 1 \rightarrow t = 4$)
		,a.,	
		(ii) Note that $A(t) = (-t^2 + 5t - 4)e^{\frac{-t}{2}} + 7$.	
		So, $\frac{dA(t)}{dt} = \left(\frac{t^2}{2} - \frac{9t}{2} + 7\right)e^{\frac{-t}{2}}$	
		and $\frac{dA(t)}{dt} = 0$ when $t = 2$ (rejected since $t > 4$) or $t = 7$.	1A for t = 2 or 7
		$\begin{cases} < 0 & \text{if } 4 < t < 7 \end{cases}$	
		$\frac{\mathrm{d}A(t)}{\mathrm{d}t} \begin{cases} < 0 & \text{if } 4 < t < 7 \\ = 0 & \text{if } t = 7 \end{cases}$	1M for testing + 1A
		$ > 0 \text{if} 7 < t \le 12$.,

So, A(t) attains its least value when t = 7.

The least amount of water stored

$$= A(7)$$

≈ 6.456447098

 ≈ 6.4564 million cubic metres

1A a-1 for r.t. 6.456 million cubic metres

Solution	Marks
	•
Note that $A(t) = (-t^2 + 5t - 4)e^{\frac{-t}{2}} + 7$.	
So, $\frac{dA(t)}{dt} = \left(\frac{t^2}{2} - \frac{9t}{2} + 7\right)e^{\frac{-t}{2}}$	
and $\frac{dA(t)}{dt} = 0$ when $t = 2$ (rejected since $t > 4$) or $t = 7$.	1A for t = 2 or 7
$\frac{\mathrm{d}^2 \mathrm{A}(t)}{\mathrm{d}t^2}$	
$= \left(\frac{-t^2}{4} + \frac{9t}{4} - \frac{7}{2}\right)e^{\frac{-t}{2}} + \left(t - \frac{9}{2}\right)e^{\frac{-t}{2}}$	
$= \left(\frac{-t^2}{4} + \frac{13t}{4} - 8\right)e^{\frac{-t}{2}}$	1A
Therefore, we have $\left. \frac{d^2 A(t)}{dt^2} \right _{t=7} = \frac{5}{2} e^{\frac{-7}{2}} > 0$.	1M for testing + 1A
Note that there is only one local minimum after the <i>adequate</i> period. So, $A(t)$ attains its least value when $t = 7$	
The least amount of water stored	
=A(7)	
≈ 6.456447098	14 16 46456 711 17 17 17
So, $A(t)$ attains its least value when $t = 7$. The least amount of water stored $= A(7)$	1A a – 1 for r.t. 6.456 million cubic m
$\frac{\mathrm{d}^2 \mathbf{A}(t)}{\mathrm{d}t^2}$	either
u.	i
$= \left(\frac{-t^2}{4} + \frac{9t}{4} - \frac{7}{2}\right)e^{\frac{-t}{2}} + \left(t - \frac{9}{2}\right)e^{\frac{-t}{2}}.$	

Solution

Marks

10. (a) The required probability

$$=1 - \left(\frac{2.4^{0} e^{-2.4}}{0!} + \frac{2.4^{1} e^{-2.4}}{1!} + \frac{2.4^{2} e^{-2.4}}{2!}\right)$$

$$\approx 0.430291254$$

≈ 0.430291254

 ≈ 0.4303

(b) Let X be the expense of a customer.

Then,
$$X \sim N(375, 125^2)$$
.

The required probability

$$= P(300 < X < 600)$$

$$= P\left(\frac{300 - 375}{125} < Z < \frac{600 - 375}{125}\right)$$

$$= P(-0.6 < Z < 1.8)$$

$$= 0.2257 + 0.4641$$

= 0.6898

The required probability (c)

$$= (0.25)(0.6898) + (0.8)(0.5 - 0.4641)$$

$$= 0.20117$$

≈ 0.2012

(d) The required probability

$$\approx \frac{2.4^3 e^{-2.4}}{3!} (0.20117)^3$$

≈ 0.00170163

 ≈ 0.0017

The required probability (e)

$$3 \frac{0.00170163 + (0.20117)^4 \left(\frac{2.4^4 e^{-2.4}}{4!}\right)}{0.430291254}$$

≈ 0.004431931

≈ 0.0044

Suppose that the revised least expense is x. (f)

Then, we have
$$P(X \ge x) = 0.33$$
.

So, we have
$$P(Z \ge \frac{x - 375}{125}) = 0.33$$
.

Therefore, we have
$$\frac{x-375}{125} = 0.44$$
.

Hence, we have x = 430.

Thus, the revised least expense is \$430.

1M for complemeantary events + 1M for Poisson probability

1A
$$\alpha$$
-1 for r.t. 0.430 ----(3)

1M (accept
$$P(\frac{300-375}{125} \le Z \le \frac{600-375}{125})$$
)

1M for
$$0.25(b) + 0.8p$$
, 0

1M for
$$\frac{2.4^3 e^{-2.4}}{3!}$$
 (c)³

1M for numerator using (c) and (d) + 1M for denominator using (a)

1A

1**A**

1A

Solution

Marks

- 11. Let X g be the net weight of a can of brand D coffee beans. Then, $X \sim N(300, 7.5^2)$.
 - (a) The required probability = P(X < 283.5 or X > 316.5)= $P(Z < \frac{283.5 - 300}{7.5} \text{ or } Z > \frac{316.5 - 300}{7.5})$ = P(Z < -2.2 or Z > 2.2)= 2(0.0139)= 0.0278
 - (b) (i) The required probability = $(1-0.0278)^{11}(0.0278)$ ≈ 0.020387152 ≈ 0.0204
 - (ii) The required probability = $C_1^{30} (1 - 0.0278)^{29} (0.0278)$ ≈ 0.368195889 ≈ 0.3682
 - (iii) The required probability $\approx (1 - 0.0278)^{30} + 0.368195889$ ≈ 0.797404575 ≈ 0.7974
 - (c) (i) The required probability $\approx \frac{1}{2}(0.368195889)$ ≈ 0.184097944 ≈ 0.1841
 - (ii) The required probability $\approx \frac{0.184097944}{0.797404575}$ ≈ 0.230871443 ≈ 0.2309

1M (accept
$$P(Z \le \frac{283.5 - 300}{7.5} \text{ or } Z \ge \frac{316.5 - 300}{7.5})$$
)

1M for
$$C_1^{30}(1-p)^{29}p$$
 ----- (either one)

1M for
$$(1-p)^{30} + q + 1$$
 for $q = (b)(ii) - -\frac{1}{2}$

1M for
$$\frac{1}{2}$$
 ((b)(ii))

1M for numerator using (c)(i) +1M for denominator using (b)(iii)

	0 - 1 - 4	
	Solution	Marks
12. (a)	The required probability	
	$= \left(\frac{4}{5}\right) \left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^3 \left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^5 \left(\frac{1}{5}\right)$	1M for geometric probability
	$=\frac{5124}{15625}$	1A
	= 0.327936 ≈ 0.3279	<i>a</i> –1 for r.t. 0.328
	~ 0.3279	(2)
(b)	The required probability	
	$= \left(\frac{4}{5}\right)\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^3\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^5\left(\frac{1}{5}\right) + \cdots$	1M must indicate infinite series and have at least 3 terms
	$\left(\frac{4}{1}\right)\left(\frac{1}{1}\right)$	
	$=\frac{\left(\frac{4}{5}\right)\left(\frac{1}{5}\right)}{1-\left(\frac{4}{5}\right)^2}$	1M for summing geometric sequence
	$=\frac{4}{9}$	1A
	≈ 0.4444444444	16
	≈ 0.4444	a-1 for r.t. 0.444
(c)	The required probability	
	4 5124	
	$=\frac{9}{\frac{4}{9}}$	1M for numerator = $(b) - (a)$
	$\frac{\cdot}{9}$	+ 1M for denominator using (b)
	$=\frac{4096}{}$	1A
	15625 = 0.262144	
	≈ 0.2621	<i>a</i> −1 for r.t. 0.262
	The required probability	
	5124	
	$=1-\frac{15625}{4}$	1M for complementary probability + 1M for denominator using (b)
	$\frac{7}{9}$	+ TW for denominator using (b)
	$=\frac{4096}{}$	1A
	15625 = 0.262144	
	= 0.262144 ≈ 0.2621	<i>a</i> –1 for r.t. 0.262
	0.2021	
		(3)
	· *	
	·	

Solution	Marks
(d) (i) The required probability	•
$=(\frac{1}{2})(\frac{3}{7})+(\frac{1}{2})(1)$	1M for either case
$=\frac{5}{7}$	1A
≈ 0.714285714 ≈ 0.7143	<i>a</i> −1 for r.t. 0.714
The required probability	
$=1-(\frac{1}{2})(\frac{4}{7})$	1M for complementary probability
$=\frac{5}{7}$	1A
≈ 0.714285714 ≈ 0.7143	<i>a</i> –1 for r.t. 0.714
(ii) The required probability	
$=1-\frac{5}{7}$	1M for 1 - (d)(i)
$=\frac{2}{7}$	1A
≈ 0.285714286 ≈ 0.2857	<i>a</i> –1 for r.t. 0.286
The required probability	
$=(\frac{1}{2})(\frac{4}{7})(1)(1)$	1M for denominator = $(2)(7)$
$=\frac{2}{7}$	1A
≈ 0.285714286 ≈ 0.2857	<i>a</i> −1 for r.t. 0.286
(iii) The required probability	
	$1 \text{ M for } \frac{pq}{pq + (1-p)(1-q)}$
$=\frac{(\frac{4}{9})(\frac{2}{7})}{(\frac{4}{9})(\frac{2}{7})+(1-\frac{4}{9})(1-\frac{2}{7})}$	$ + 1M \text{ for } \begin{cases} p = (b) \\ q = (d)(ii) \end{cases} \text{ or } \begin{cases} p = (d)(i) \\ q = (b) \end{cases} $
$=\frac{8}{33}$	1A
≈ 0.2424242424	
≈ 0.2424	<i>a</i> -1 for r.t. 0.242