# INTRODUCTION TO DATA STRUCTURES

### **Data Structure**

- A collection of related data and a set of rules for organizing and accessing it
- An arrangement of data in a computer's memory or disk
- Examples of data structures: arrays, linked lists, stacks, queues, binary trees, hash tables



#### Discuss:

Are you familiar with these data structures? Which one(s)?

- The choice of data structures affects the operations that can be done on the data:
  - o List: search, insert, delete
  - Tree: search, insert, delete, find parent, find child (and other relationships)
- The choice of data structures will also depend on their advantages and disadvantages

| Data Structure | Advantages                                                       | Disadvantages                                                               |
|----------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Array          | Quick insertion, very fast access if index is known              | Slow search, slow deletion, fixed size                                      |
| Linked List    | Dynamic size, faster deletion than array, quick insertion        | Slow search                                                                 |
| Stack          | Provides last-in, first-out access                               | Slow access to other items                                                  |
| Queue          | Provides first-in, first-out access                              | Slow access to other items                                                  |
| Binary Tree    | Quick search, insertion, and deletion (if tree remains balanced) | Deletion algorithm is complex                                               |
| Неар           | Fast insertion, deletion, access to largest item                 | Slow access to other items                                                  |
| Hash Table     | Very fast access if key known; Fast insertion                    | Slow deletion, access slow if key<br>not known, inefficient memory<br>usage |
| Graph          | Models real-world situations                                     | Some algorithms are slow and complex                                        |



#### Take Note:

Given a specific problem, which data structure should you use to be able solve the problem efficiently?(This is basically why we will go over each of the different data structures.)



#### Watch This:

Introduction to Data Structures by mycodeschool <a href="https://www.youtube.com/watch?v=92S4zqXN170">https://www.youtube.com/watch?v=92S4zqXN170</a>

## **Algorithms**

- Manipulate the data in the data structures in various ways
- Main Data Structure Operations
  - Insert
  - o Delete
  - Search

## **Application**

What sorts of problems can you solve with your knowledge on data structures and algorithms?

- Real-world data storage
  - o E.g. Personnel records, inventory records
- Operating Systems
  - o E.g. Stacks and Queues to manage processes and resources
- Graph Modeling
  - o E.g. Discovering network topologies, Social Network connections



### Answer:

All of the above – and more!

## **Programming**

We will be implementing data structures in C#. By now, you must already have C# set up in your machines.

I understand not everyone here has a background in C#. While we are discussing what we know about the different data structures, let's try out what we know about C# Programming. Send me an email or post in the forums if you encounter any programming problems.



## Exercise 0 for Practice:

Create a simple calculator using C#. The calculator should:

- 1. Accept two positive numbers x and y as its input
- 2. Output the following: x+y, x-y, x\*y, x/y



### **Takeaway Thoughts and Questions:**

- 1. Why is it important to learn about data structures?
- 2. How will choosing which data structure to use help in creating efficient programs?
- 3. Which among the data structures highlighted in this course are you familiar with? According to your knowledge, how are they used/implemented in real life?