UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

MAT1100 — Kalkulus Deleksamen i:

Fredag 10. oktober 2014. Eksamensdag:

15.00 - 17.00Tid for eksamen:

Oppgavesettet er på 5 sider.

Vedlegg: Svarark, formelsamling.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Eksamen inneholder 20 spørsmål. De første 10 teller 2 poeng hver, de siste 10 teller 3 poeng hver. Det er bare ett riktig alternativ på hvert spørsmål. Om du svarer galt eller lar være å svare på et spørsmål, får du 0 poeng. Du blir altså ikke "straffet" for å gjette. Før svarene dine inn på svararket. Krysser du av mer enn ett alternativ på et spørsmål, får du 0 poeng.

Oppgave 1. (2 poeng) Polarkoordinatene til det komplekse tallet z = $-2\sqrt{3} - 2i$ er:

- A) r = 4, $\theta = \frac{5\pi}{4}$ B) r = 4, $\theta = \frac{5\pi}{3}$ C) r = 4, $\theta = \frac{7\pi}{6}$ D) r = 4, $\theta = \frac{4\pi}{6}$ E) r = 4, $\theta = \frac{5\pi}{6}$

Oppgave 2. (2 poeng) Det komplekse tallet $z=3e^{-i\frac{\pi}{4}}$ er lik:

- A) $\frac{3\sqrt{2}}{2} \frac{3\sqrt{2}}{2}i$
- B) $-6\sqrt{2} 6\sqrt{2}$
- C) $-\frac{3\sqrt{2}}{2} \frac{3\sqrt{2}}{2}i$ D) $\frac{3\sqrt{3}}{2} \frac{3}{2}i$ E) 1 i

Oppgave 3. (2 poeng) Ligningen 2z - i = 4 - iz har løsningen:

- A) $z = \frac{9}{5} 2i$
- B) $z = -3 \frac{2}{5}i$ C) $z = \frac{3}{2} \frac{4}{5}i$ D) $z = \frac{9}{5} \frac{2}{5}i$
- E) z = -3 2i

(Fortsettes på side 2.)

Oppgave 4. (2 poeng) Mengden $A = \{z \in \mathbb{C} : 4 < |z+2| < 9\}$ består av disse punktene i det komplekse planet:

- A) Punktene som ligger over linjen y = 2x + 4 og under linjen y = 2x + 9
- B) Punktene som ligger mellom sirklene om -2 med radius 4 og 9
- C) Punktene som ligger mellom linjene y = 4x + 2 og y = 9x + 2
- D) Punktene inni trekanten med hjørner 2+4i, 4+9i og 9+2i
- E) Punktene på sirkelen om punktet 2 med radius $\frac{9}{4}$

Oppgave 5. (2 poeng) $\lim_{n\to\infty} \frac{n+3n^3-5n^4}{3+2n+n^3+2n^4}$ er lik:

- A) $\frac{1}{3}$
- B) ∞

- C) $\frac{1}{2}$ D) $\frac{3}{2}$ E) $-\frac{5}{2}$

Oppgave 6. (2 poeng) $\lim_{x\to 0} \frac{1+3x-e^{3x}}{x^2}$ er lik:

- A) $-\frac{9}{2}$
- B) 0
- C) e
- D) $\frac{3}{2}$ E) $-\frac{1}{2}$

Oppgave 7. (2 poeng) Den deriverte til $f(x) = \cot(\ln x)$ er:

- A) $\frac{1}{x\sqrt{1-x^2}}$ B) $-\frac{1}{\sin^2(\ln x)}$ C) $\frac{\tan(\ln x)}{x}$ D) $-\frac{1}{x\sin^2(\ln x)}$ E) 1

Oppgave 8. (2 poeng) Den deriverte til $f(x) = \arctan e^x$ er:

- A) $-\frac{e^x}{\sin^2(e^x)}$ B) $\frac{e^x}{1+e^{2x}}$ C) $\frac{e^x}{\sqrt{1-e^{2x}}}$

- D) $\frac{1}{1+e^{2x}}$ E) $-\frac{1}{\sin^2(e^x)}$

Oppgave 9. (2 poeng) $\lim_{x\to 0} \frac{\arcsin x}{\sin 2x}$ er lik:

- A) 1
- B) 2
- C) $\frac{1}{2}$
- D) ∞

(Fortsettes på side 3.)

E) 0

Oppgave 10. (2 poeng) Den omvendte funksjonen til $f(x) = e^{\sqrt{x}-3}$ er:

- A) $\ln(x) + \sqrt{3}$
- B) $\ln(x)^2 + 3$ C) $\frac{1}{e^{\sqrt{x}-3}}$ D) e^{x^2+3}

- E) $(\ln(x) + 3)^2$

Oppgave 11. (3 poeng) Den deriverte til $f(x) = (x^2 + 1)^x$ er:

- A) $x(x^2+1)^{x-1}$
- B) $2x(x^2+1)^x$
- C) $(x^2 + 1)^x \ln(x^2 + 1)$
- D) $2x^2(x^2+1)^{x-1}$
- E) $(x^2+1)^x \left(\ln(x^2+1) + \frac{2x^2}{x^2+1}\right)$

Oppgave 12. (3 poeng) 1+i er en rot i polynomet $P(z)=z^4-2z^3+4z-4$. De andre røttene er:

- A) 1 i, 1 og -2
- B) -1 + i, -1 og 2
- C) 1 i, -1 og 2
- D) 1 i, $-\frac{1}{2}$ og 4
- E) $1 i, \sqrt{2} \text{ og } -\sqrt{2}$

Oppgave 13. (3 poeng) $\lim_{n\to\infty} \left(\sqrt{n^4-n^2}-n^2\right)$ er lik:

- A) -2
- $(B)^{'} \frac{1}{2}$
- C) 0
- D) $-\infty$
- E) $-\sqrt{2}$

Oppgave 14. (3 poeng) Funksjonen $f(x) = x \ln x - x^2$ er:

- A) Konveks på intervallet $(0,\frac{1}{2}]$, konkav på intervallet $[\frac{1}{2},\infty)$
- B) Konveks på intervallet $(0, \infty)$
- C) Konkav på intervallet $(0, \infty)$
- D) Konkav på intervallet $(0,\frac{1}{2}],$ konveks på intervallet $[\frac{1}{2},\infty)$
- E) Konveks på intervallet (0,2], konkav på intervallet $[2,\infty)$

Oppgave 15. (3 poeng) $\lim_{x \to \frac{\pi}{4}} (\tan x)^{\frac{1}{x - \frac{\pi}{4}}}$ er lik:

- A) 1
- B) $e^{\frac{16}{16+\pi^2}}$
- C) $e^{\frac{\pi}{4}}$
- D) ∞

(Fortsettes på side 4.)

E) e^2

Oppgave 16. (3 poeng) Dersom g er den omvendte funksjonen til f(x) = $x \arctan x$, så er

- A) $g'(\frac{\pi}{4}) = \frac{4}{\pi}$ B) $g'(\frac{\pi}{4}) = 1 \frac{4}{\pi}$ C) $g'(\frac{\pi}{4}) = \frac{4}{\pi+2}$ D) $g'(\frac{\pi}{4}) = \frac{1}{2}$ E) $g'(\frac{\pi}{4}) = \frac{\pi+2}{4}$

Oppgave 17. (3 poeng) Dersom en følge $\{x_n\}$ er definert ved $x_1 = 4$ og $x_{n+1} = \frac{x_n^2 + 5}{6}$ for $n \ge 1$, så er

- A) $\lim_{n\to\infty} x_n = 1$
- B) $\lim_{n\to\infty} x_n = -\infty$
- C) $\lim_{n\to\infty} x_n = \infty$
- D) $\lim_{n\to\infty} x_n = 5$
- E) $\lim_{n\to\infty} x_n = 4$

Oppgave 18. (3 poeng) Ett av utsagnene nedenfor kan brukes som definisjon av den ensidige grenseverdien $\lim_{x\to a^+} f(x) = L$. Hvilket?

- A) For hver $\epsilon > 0$ finnes det en $\delta > 0$ slik at når $a \delta < x < a + \delta$, så er $|f(x) - L| < \epsilon$.
- B) Det finnes en $\delta > 0$ slik at for alle $\epsilon > 0$, så er $|f(x) L| < \epsilon$ når $a < x < a + \delta$.
- C) For hver $\delta > 0$ finnes det en $\epsilon > 0$ slik at når $a \delta < x < a + \delta$, så er $|f(x) - L| < \epsilon$.
- D) For hver $\epsilon > 0$ finnes det en $\delta > 0$ slik at når $a < x < a + \delta$, så er $|f(x) - L| < \epsilon$.
- E) Det finnes en $\epsilon > 0$ slik at for alle $\delta > 0$, så er $|f(x) L| < \epsilon$ når $a < x < a + \delta$.

Oppgave 19. (3 poeng) Figuren nedenfor viser et rektangel innskrevet i en likesidet trekant med sidekant 1. Hva er det største arealet et slikt rektangel kan ha?

- A) $\frac{1}{5}$
- B) $\frac{\sqrt{2}}{6}$ C) $\frac{\sqrt{6}-\sqrt{2}}{3}$ D) $\frac{\sqrt{3}}{8}$ E) $2-\sqrt{3}$

Oppgave 20. (3 poeng) En båt seiler på en rettlinjet kurs som passerer 200 meter fra et fyrtårn (se figur). Når vinkelen v mellom båtens kurs og siktelinjen mot fyret er $\frac{\pi}{4}$, øker den med 0.02 radianer per sekund. Hvor fort seiler båten?

- A) 6 meter per sekund
- B) $5\sqrt{3}$ meter per sekund
- C) 8 meter per sekund
- D) $5\sqrt{2}$ meter per sekund
- E) 7 meter per sekund

Slutt