Il Modello Epidemiologico SIR sulle Reti Complesse

Simmaco Di Lillo

Università di Pisa

Discussione Tesi Triennale in Matematica, 24 settembre 2021

Il modello SIR scalare

Il modello SIR è un modello compartimentale: la popolazione viene suddivisa in 3 classi

- *S*: i suscettibili;
- *I*: gli infetti;
- R: i rimossi.

II modello SIR scalare

Figura: Schema del modello SIR.

II modello SIR scalare

Figura: Schema del modello SIR.

$$\dot{S} = -\beta SI
\dot{I} = \beta SI - \alpha I
\dot{R} = \alpha I$$
(1)

Un primo esempio

Come si infettano?

• Il nodo 1 ha una sola fonte d'infezione. $\langle S_1 \rangle$ diminuisce con un tasso di $\tau \langle S_1 I_2 \rangle$

Un primo esempio

Come si infettano?

- Il nodo 1 ha una sola fonte d'infezione.
- Il nodo 2 ne ha due. $\langle S_2 \rangle$ diminuisce con un tasso di $\tau \langle I_1 S_2 \rangle + \tau \langle S_2 I_3 \rangle$

Un primo esempio

Come si infettano?

- Il nodo 1 ha una sola fonte d'infezione.
- Il nodo 2 ne ha due.
- Anche il nodo 3 ne ha una sola. $\langle S_3 \rangle$ diminuisce con un tasso di $\tau \langle I_2 S_3 \rangle$

Un primo esempio

$$\begin{split} \langle \dot{S}_{1} \rangle &= -\tau \langle S_{1} I_{2} \rangle, & \langle \dot{I}_{1} \rangle = \tau \langle S_{1} I_{2} \rangle - \gamma \langle I_{1} \rangle, \\ \langle \dot{S}_{2} \rangle &= -\tau \left(\langle I_{1} S_{2} \rangle + \langle S_{2} I_{3} \rangle \right), & \langle \dot{I}_{2} \rangle = \tau \left(\langle I_{1} S_{2} \rangle + \langle S_{2} I_{3} \rangle \right) - \gamma \langle I_{2} \rangle, \\ \langle \dot{S}_{3} \rangle &= -\tau \langle I_{2} S_{3} \rangle, & \langle \dot{I}_{3} \rangle = \tau \langle I_{2} S_{3} \rangle - \gamma \langle I_{3} \rangle, \end{split}$$

Un primo esempio

$$\begin{split} \langle \dot{S}_{1} \rangle &= -\tau \langle S_{1} I_{2} \rangle, & \langle \dot{I}_{1} \rangle = \tau \langle S_{1} I_{2} \rangle - \gamma \langle I_{1} \rangle, \\ \langle \dot{S}_{2} \rangle &= -\tau \left(\langle I_{1} S_{2} \rangle + \langle S_{2} I_{3} \rangle \right), & \langle \dot{I}_{2} \rangle = \tau \left(\langle I_{1} S_{2} \rangle + \langle S_{2} I_{3} \rangle \right) - \gamma \langle I_{2} \rangle, \\ \langle \dot{S}_{3} \rangle &= -\tau \langle I_{2} S_{3} \rangle, & \langle \dot{I}_{3} \rangle = \tau \langle I_{2} S_{3} \rangle - \gamma \langle I_{3} \rangle, \end{split}$$

Tale sistema non è chiuso. Dipende da alcune coppie.

Un primo esempio

Come evolvono nel tempo le coppie?

$$\begin{split} &\langle \dot{S_1} \dot{I_2} \rangle = & \tau \langle S_1 S_2 I_3 \rangle - (\tau + \gamma) \langle S_1 I_2 \rangle, \\ &\langle \dot{I_1} \dot{S_2} \rangle = - \tau \langle \dot{I_1} S_2 I_3 \rangle - (\tau + \gamma) \langle \dot{I_1} S_2 \rangle, \\ &\langle \dot{S_2} \dot{I_3} \rangle = - \tau \langle \dot{I_1} S_2 I_3 \rangle - (\tau + \gamma) \langle \dot{S_2} I_3 \rangle, \\ &\langle \dot{I_2} \dot{S_3} \rangle = & \tau \langle \dot{I_1} S_2 S_3 \rangle - (\tau + \gamma) \langle \dot{I_2} S_3 \rangle. \end{split}$$

e le triple?

$$\langle \dot{S_2} \dot{I_3} \rangle = -\tau \langle I_1 S_2 I_3 \rangle - (\tau + \gamma) \langle I_1 S_2 \rangle,$$

$$\langle \dot{S_1} \dot{S_2} I_3 \rangle = -(\tau + \gamma) \langle \dot{S_1} \dot{S_2} I_3 \rangle,$$

$$\langle \dot{I_1} \dot{S_2} \dot{I_3} \rangle = -(2\tau + 2\gamma) \langle \dot{I_1} \dot{S_2} I_3 \rangle,$$

$$\langle \dot{I_1} \dot{S_2} \dot{S_3} \rangle = -(\tau + \gamma) \langle \dot{I_1} \dot{S_2} \dot{S_3} \rangle.$$

Modello generale

Sia $G=(g_{ij})$ la matrice di adiacenza del grafo G. L'epidemia si diffonde sul grafo nel seguente modo

$$\langle \dot{S}_i \rangle = -\sum_{\substack{j=1 \ j \neq i}}^{N} g_{ij} \langle S_i I_j \rangle,$$

$$\langle \dot{I}_i \rangle = \tau \sum_{\substack{j=1 \ i \neq i}}^{N} g_{ij} \langle S_i I_j \rangle - \gamma_i \langle I_i \rangle,$$

Chiusura alle coppie

Per ottenere un modello chiuso ma non esatto possiamo assumere l'indipendenza a livello delle coppie. Ovvero utilizzare l'approssimazione

$$\langle A_i B_j \rangle \approx \langle A_i \rangle \langle B_j \rangle \quad \forall A, B \in \{S, I, R\} \text{ e } \forall (i,j) \in E$$

Chiusura alle coppie

Per ottenere un modello chiuso ma non esatto possiamo assumere l'indipendenza a livello delle coppie. Ovvero utilizzare l'approssimazione

$$\langle A_i B_j \rangle \approx \langle A_i \rangle \langle B_j \rangle \quad \forall A, B \in \{S, I, R\} \ e \ \forall (i,j) \in E$$

$$\langle \dot{S}_i \rangle = -\sum_{\substack{j=1 \ j \neq i}}^{N} g_{ij} \langle S_i \rangle \langle I_j \rangle,$$

$$\langle \dot{I}_i \rangle = \tau \sum_{\substack{j=1 \ i \neq i}}^{N} g_{ij} \langle S_i \rangle \langle I_j \rangle - \gamma_i \langle I_i \rangle.$$

Chiusura alle coppie

Figura: Prevalenza nei due modelli.

Riportiamo la definizione data dall'OMS nel 1959:

La prevalenza indica il numero di individui malati in una determinata popolazione, senza nessuna distinzione tra nuovi e vecchi casi. La "prevalenza puntiforme" è solitamente espressa come una frazione: il denominatore è il numero della popolazione.

Approccio generale alla chiusura

Diamo due importanti definizioni

Definizione (cut-vertex)

Sia G = (V, E) un grafo connesso. $v \in V$ è un *cut-vertex* se il grafo senza il nodo v risulta sconnesso.

Definizione (Probabilità condizionale)

Siano A, B due eventi di uno spazio di probabilità con $\mathbb{P}(B) > 0$. Si dice probabilità condizionale di A dato B la quantità

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Approccio generale alla chiusura

Teorema (Kiss, Morris, Seélley, Simon, Wilkinson, J. Math. Biol. 2015)

Sia G = (V, E) un grafo e $F = \{v_1, \dots, v_k\}$ un sottoinsieme connesso di vertici e sia v_i un suo cut-vertex. Poniamo

$$F_1 = \{v_1, \dots, v_{i-1}\} \ e \ F_2 = \{v_{i+1}, \dots, v_k\}.$$

Se ogni cammino che connette un nodo in F_1 ad uno in F_2 passa da v_i allora:

$$\langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \rangle = \langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} \rangle \langle S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \rangle$$

dove Z ∈ {S, I, R}.

Approccio generale alla chiusura

Dimostrazione.

Se $\langle \emph{S}_{\emph{v}_{\emph{i}}} \rangle = 0$ allora l'uguaglianza risulta banalmente vera.

Approccio generale alla chiusura

Dimostrazione.

Sia $\langle S_{v_i} \rangle \neq 0$

Approccio generale alla chiusura

Dimostrazione.

Sia
$$\langle S_{v_i} \rangle \neq 0$$

$$\langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \rangle = \langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \mid S_{v_i} \rangle \langle S_{v_i} \rangle.$$

Approccio generale alla chiusura

Dimostrazione.

Sia $\langle S_{\nu_i} \rangle \neq 0$

$$\langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \rangle = \langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \mid S_{v_i} \rangle \langle S_{v_i} \rangle.$$

Notiamo che

$$\langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \mid S_{v_i} \rangle =$$

$$= \langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} \mid S_{v_i} \rangle \langle S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \mid S_{v_i} \rangle.$$

Ogni percorso da F_1 a F_2 deve passare attraverso v_i . Poichè v_i è suscettibile la trasmissione non può avvenire tra un nodo in F_1 ed uno in F_2 .

Approccio generale alla chiusura

Dimostrazione.

Sia $\langle S_{\nu_i} \rangle \neq 0$

$$\langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \rangle = \langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \mid S_{v_i} \rangle \langle S_{v_i} \rangle.$$

Notiamo che

$$\langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \mid S_{v_i} \rangle =$$

$$= \langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} \mid S_{v_i} \rangle \langle S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \mid S_{v_i} \rangle.$$

Ogni percorso da F_1 a F_2 deve passare attraverso v_i . Poichè v_i è suscettibile la trasmissione non può avvenire tra un nodo in F_1 ed uno in F_2 . Riapplicando la definizione di probabilità condizionale la tesi

Approccio generale alla chiusura

• Con una visità in profondità si trovano tutti i cut-vertex di G.

Approccio generale alla chiusura

- Con una visità in profondità si trovano tutti i cut-vertex di G.
- Si divide la rete originale in sottoreti connesse a due a due scollegate. Le sottoreti vengono create in modo che i cut-vertex siano mantenuti in tutte le sottoreti generate.

Approccio generale alla chiusura

- Con una visità in profondità si trovano tutti i cut-vertex di G.
- Si divide la rete originale in sottoreti ...
- Per ogni nodo i delle sottoreti, si ha

$$\langle \dot{S}_i \rangle = -\tau \sum_j g_{ij} \langle S_i I_j \rangle,$$

 $\langle \dot{I}_i \rangle = \tau \sum_j g_{ij} \langle S_i I_j \rangle - \gamma \langle I_i \rangle,$
 $\langle \dot{R}_i \rangle = 1 - \langle S_i \rangle - \langle I_i \rangle.$

Si possono trovare equazioni simili anche per le strutture di ordine maggiore (coppie, triple, ...)

Approccio generale alla chiusura

- Con una visità in profondità si trovano tutti i cut-vertex di G.
- Si divide la rete originale in sottoreti ...
- Per ogni nodo i delle sottoreti ...
- Nella gerarchia che si verrà a creare, se appare un termine composto da vertici di sottoreti diverse allora in esso è presente un cut-vertex suscettibile. Usando il Teorema precedente è possibile esprimere questo termine usando termini più semplici.

Figura: Rete Iollipop.

Figura: Rete Iollipop.

Figura: Rete lollipop: decomposizione.

Figura: Rete Iollipop.

Figura: Rete lollipop: decomposizione.

$$\langle S_1 I_3 \rangle =$$

Figura: Rete Iollipop.

Figura: Rete lollipop: decomposizione.

Figura: Rete lollipop.

Figura: Rete lollipop: decomposizione.

$$\langle S_1 I_3 \rangle = \tau \left(\langle S_1 I_2 S_3 \rangle + \langle S_1 S_3 I_4 \rangle \right) - \tau \langle S_1 I_3 \rangle$$

Figura: Rete Iollipop.

Figura: Rete lollipop: decomposizione.

$$\langle \dot{S_1} \dot{I_3} \rangle = \tau \left(\langle S_1 I_2 S_3 \rangle + \langle S_1 S_3 I_4 \rangle \right) - \tau \langle S_1 I_3 \rangle - \gamma \langle S_1 I_3 \rangle$$

Figura: Rete Iollipop.

Figura: Rete lollipop: decomposizione.

$$\langle \dot{S_1} I_3 \rangle = \tau \left(\langle S_1 I_2 S_3 \rangle + \langle S_1 S_3 I_4 \rangle \right) - \tau \langle S_1 I_3 \rangle - \gamma \langle S_1 I_3 \rangle - \tau \langle S_1 I_2 I_3 \rangle =$$

3

Figura: Rete lollipop.

Figura: Rete lollipop: decomposizione.

$$\langle S_{1}I_{3}\rangle = \tau \left(\langle S_{1}I_{2}S_{3}\rangle + \langle S_{1}S_{3}I_{4}\rangle \right) - \tau \langle S_{1}I_{3}\rangle - \gamma \langle S_{1}I_{3}\rangle - \tau \langle S_{1}I_{2}I_{3}\rangle =$$

$$= \tau \left(\langle S_{1}I_{2}S_{3}\rangle + \frac{\langle S_{1}S_{3}\rangle \langle S_{3}I_{4}\rangle}{\langle S_{3}\rangle} \right) - (\tau + \gamma) \langle S_{1}I_{3}\rangle - \tau \langle S_{1}I_{2}S_{3}\rangle$$

La rete lollipop

3 3

Figura: Rete lollipop.

Figura: Rete lollipop: decomposizione.

$$\begin{aligned}
\langle \dot{S_1} I_3 \rangle &= \tau \left(\langle S_1 I_2 S_3 \rangle + \langle S_1 S_3 I_4 \rangle \right) - \tau \langle S_1 I_3 \rangle - \gamma \langle S_1 I_3 \rangle - \tau \langle S_1 I_2 I_3 \rangle = \\
&= \tau \left(\langle S_1 I_2 S_3 \rangle + \frac{\langle S_1 S_3 \rangle \langle S_3 I_4 \rangle}{\langle S_3 \rangle} \right) - (\tau + \gamma) \langle S_1 I_3 \rangle - \tau \langle S_1 I_2 S_3 \rangle \\
&\stackrel{\bullet}{\otimes} \mathcal{N}^{\text{RE}}_{\bullet} = 0
\end{aligned}$$

Grazie al Teorema, il numero di equazioni passa da 35 a 27

La rete stradale del Minnesota

Figura: La rete stradale del Minnesota.

Abbiamo integrato il modello chiuso alle coppie

• funzione ode15s di MATLAB

• Tolleranza assoluta: 1e - 12

ullet Tolleranza relativa: 1e-12

• Intervallo temporale: [0, 160]

• Tasso d'infezione: $\tau = 0.3$

ullet Tasso di rimozione: $\gamma=0.1$

Le condizioni iniziali sono stati puri: un nodo certamente infetto gli altri certamente sani

La rete stradale del Minnesota

Sperimentazione numerica

Figura: Prevalenza e grado.

La rete stradale del Minnesota

Sperimentazione numerica

Figura: Prevalenza e grado.

Figura: Immunizzazione.