3.2 Discrete-Time Signals - Problems

The purpose of this document is to give you a number of problems to solve regarding the following topics: linearity, time-invariance, memory/causality, and stability. They involve analysing the a system

$$y[n] = \mathcal{T}(x[n]),$$

where x[n] is the input, $\mathcal{T}(\cdot)$ is some operator applied to the input, and y[n] is the output response.

Linearity

Determine which of the systems below are linear.

(Q1-1)

$$y[n] = \log(x[n])$$

A: If the system is homogeneous then

$$y[n] = \mathcal{T}(cx[n]) = c\mathcal{T}(x[n])$$

for any input x[n] and for all complex constants c. The system $y[n] = \log(x[n])$ is **not homogeneous** because the response of the system to $x_1[n] = cx[n]$ is

$$y_1[n] = \log(x_1[n]) = \log(cx[n]) = \log(c) + \log(x[n]) \neq c \log(x[n])$$

To be additive, the response to $x[n] = x_1[n] + x_2[n]$ must be $y[n] = y_1[n] + y_2[n]$. For this system we have

$$\mathcal{T}(x[n]) = \mathcal{T}(x_1[n] + x_2[n]) = \log(x_1[n] + x_2[n]) \neq \log(x_1[n]) + \log(x_2[n])$$

Thus, the system is **not additive**. Overall the system is **non-linear**.

(Q1-2)

$$y[n] = 6x[n+2] + 4x[n+1] + 2x[n]$$

A: If the system is homogeneous than

$$y[n] = \mathcal{T}(cx[n]) = c\mathcal{T}(x[n])$$

Thus for $x_1[n] = c x[n]$ we get

$$y_1[n] = 6x_1[n+2] + 4x_1[n+1] + 2x_1[n] = c6x[n+2] + c4x[n+1] + c2x[n] = c(6x[n+2] + 4x[n+1] + 2x[n]) = cy[n]$$

Thus, the system is homogeneous.

To be additive, the response to $x[n] = x_1[n] + x_2[n]$ must be $y[n] = y_1[n] + y_2[n]$. For this system we have

$$\mathcal{T}(x_1[n] + x_2[n]) = 6(x_1[n+2] + x_2[n+2]) + 4(x_1[n+1] + x_2[n+1]) + 2(x_1[n] + x_2[n])$$

$$= (6x_1[n+2] + 4x_1[n+1] + 2x_1[n]) + (6x_2[n+2] + 4x_2[n+1] + 2x_2[n])$$

$$= y_1[n] + y_2[n]$$

Thus, the system is additive. Overall, because the system is additive and homogeneous it is linear.

(Q1-3)

$$y[n] = 6x[n+2] + 4x[n+1] + 2x[n] + 1$$

A: If the system is homogeneous than

$$y[n] = \mathcal{T}(cx[n]) = c\mathcal{T}(x[n])$$

Thus for $x_1[n] = c x[n]$ we get

$$y_1[n] = 6x_1[n+2] + 4x_1[n+1] + 2x_1[n] + 1$$

= $c6x[n+2] + c4x[n+1] + c2x[n] + 1$
= $c(6x[n+2] + 4x[n+1] + 2x[n]) + 1$

However,

$$cy[n] = c(6x[n+2] + 4x[n+1] + 2x[n] + 1)$$

Thus, the system is not homogeneous.

To be additive, the response to $x[n] = x_1[n] + x_2[n]$ must be $y[n] = y_1[n] + y_2[n]$. For this system we have

$$\mathcal{T}(x_1[n] + x_2[n]) = 6(x_1[n+2] + x_2[n+2]) + 4(x_1[n+1] + x_2[n+1]) + 2(x_1[n] + x_2[n]) + 1$$

$$= (6x_1[n+2] + 4x_1[n+1] + 2x_1[n]) + (6x_2[n+2] + 4x_2[n+1] + 2x_2[n]) + 1$$

$$\neq y_1[n] + y_2[n]$$

Thus, the system is not additive. Overall, because the system is not additive and homogeneous, it is not linear.

(Q1-4)

$$y[n] = \sin\left(\frac{n\pi}{2}\right)x[n]$$

A: Let's examine homogeneity and additivity at the same time. Let $y_1[n]$ and $y_2[n]$ the outputs to $x_1[n]$ and $x_2[n]$, respectively. The response of the system to

$$x[n] = a x_1[n] + b x_2[n]$$

is

$$y[n] = \sin\left(\frac{n\pi}{2}\right) x[n]$$

$$= \sin\left(\frac{n\pi}{2}\right) (a x_1[n] + b x_2[n])$$

$$= \sin\left(\frac{n\pi}{2}\right) a x_1[n] + \sin\left(\frac{n\pi}{2}\right) b x_2[n]$$

$$= a y_1[n] + b y_2[n]$$

Thus, this system is both homogeneous and additive, and is linear.

Time Invariance

Determine which of the systems below are shift-invariant:

(Q2-1)

$$y[n] = x[n] + x[n-1] + x[n-2]$$

A: Let y[n] be the response of the system to an arbitrary input x[n]. To test for shift invariance we want to compare the shifted response $y[n-n_0]$ to the shifted input $x[n-n_0]$. With

$$y[n] = x[n] + x[n-1] + x[n-2]$$

we have, for the shifted response $n \to n - n_0$:

$$y[n - n_0] = x[n - n_0] + x[n - 1 - n_0] + x[n - 2 - n_0]$$

Now, the response of the system to $x_1[n] = x[n-n_0]$ is

$$y[n - n_0] = x_1[n] + x_1[n - 1] + x_1[n - 2]$$

= $y_1[n]$

Because $y_1[n] = y[n - n_0]$, the system is **time invariant**.

(Q2-2)

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

A: Let

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

be the response to an arbitrary input x[n]. The response of the system to the shifted input $x_1[n] = x[n - n_0]$ is

$$y[n] = \sum_{k=-\infty}^{n} x[k] = \sum_{k=-\infty}^{n} x[k - n_0] = \sum_{k=-\infty}^{n-n_0} x[k]$$

Because this is equal to $y[n - n_0]$ the system is **shift-invariant**.

$$y[n] = x[n^2]$$

A: The system is **not shift-invariant**, which may be demonstrated with a simple counterexample. Note that if $x[n] = \delta[n]$ then the response will be $y[n] = \delta[n^2] = \delta[n]$. However, if $x_1[n] = \delta[n-2]$, then the response will be $y_1[n] = x_1[n^2] = \delta[n^2-2] = 0$, which is not equal to y[n-2]. Thus, the system is **not shift-invariant**.

(Q2-4)

$$y[n] = x(-n)$$

A: Let x[n] be the input and y[n] = x[-n] be the response. If we consider the shifted input $x_1[n] = x[n - n_0]$, we find that the response is

$$y_1[n] = x_1[-n] = x[-n - n_0]$$

However, if we shift y[n] by n_0 then we obtain

$$y[n - n_0] = x[-(n - n_0)] = x[-n + n_0]$$

which is not equal to $y_1[n]$. Therefore, this system can be shown to be **not shift-invariant**.

Causal / Memory

Determine which of the following systems are causal, and which have memory?

(Q3-1)

$$y[n] = x^2[n]u[n]$$

A: The system $y[n] = x^2[n]u[n]$ is **memoryless** because the response of the system at time n depends only on the input at time n and no other values of the input. Therefore, this system is **causal**.

(Q3-2)

$$y[n] = x[|n|]$$

A: The output y[n] = x[|n|] is an example of a non-causal system. This can be observed when looking at the repsonse of the system for n < 0. For example, for n = -1 we get y[-1] = x[1]. Therefore the output of the system is dependent on a future input. Therefore the system is **not causal** (and in fact **anticausal**).

(Q3-3)

$$y[n] = x[n] + x[n-3] + x[n-1]$$

A: This system is **causal** because all of the input required to compute the response at n are at or before n.

(Q3-4)

$$y[n] = x[n] - x[n^2 - n]$$

A: This system is **not causal**, which can be demonstrated by looking at n < 0. For example, y[-2] = x[-2] - x[2], which is clearly **non-causal**.

Stability

Determine which of the following systems are stable:

(Q4-1)

$$y[n] = x^2[n]$$

A: Let x[n] be bounded input with |x[n]| < M. Then it follows that the output $y[n] = x^2[n]$ may be bounded by

$$|y[n]| = |x^2[n]| < M^2$$

Therefore, this system is **stable**.

(Q4-2)

$$y[n] = \frac{e^{-x[n]}}{x[n-1]}$$

A: This system is clearly **not stable**. For example, note that the response of the system to a unit impulse $x[n] = \delta[n]$ is infinite for all values of n

except n=1.

(Q4-3)

$$y[n] = \cos(x[n])$$

A: For input x[n], we find that the output response is bounded: $|y[n]| = |\cos(x[n])| \le 1$. Thus, the system is **stable**.

(Q4-4)

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

A: This system is a numerical integrator and is **not stable**. For an example, assume that the input is the step function x[n] = u[n]. Thus,

$$y[n] = \sum_{k=-\infty}^{n} x[k] = \sum_{k=-\infty}^{n} u[k] = n+1$$

Thus, even though the input is bounded, the output is not guaranteed to be bounded and thus the system is **not stable** because $y[n] \to \infty$ as $n \to \infty$.

In []: