Problem 1 (Linear Growth O(n))

Consider the following recursive algorithm to compute a function F(n).

Algorithm F(n):

- if $n \le 1$, result = 1
- else, result = F(n-1) + 1
- I. Prove that F(n) = n.
- II. Show that the time complexity of F(n) is O(n).

Problem 2 (Linear Growth O(n))

Consider the following recursive algorithm to compute a function G(n).

Algorithm G(n):

- if n = 0, result = 0
- else, result = G(n-1) + 2
- I. Prove that G(n) = 2n.
- II. Demonstrate that G(n) has a time complexity of O(n).

Problem 3 (Logarithmic Growth $O(\log n)$)

Consider the following recursive algorithm to compute a function H(n).

Algorithm H(n):

- if n = 1, result = 1
- else, result = H(|n/2|) + 1
- I. Prove that $H(n) = O(\log n)$.
- II. Explain how the recurrence leads to logarithmic growth.

Problem 4 (Quadratic Growth $O(n^2)$)

Consider the following recursive algorithm to compute a function K(n).

Algorithm K(n):

- if n < 1, result = 1
- else, result = K(n-1) + n
- I. Prove that $K(n) = \frac{n(n+1)}{2}$.
- II. Show that K(n) has a time complexity of $O(n^2)$.

Problem 5 (Exponential Growth $O(2^n)$)

Consider the following recursive algorithm to compute a function L(n).

Algorithm L(n):

- if $n \le 1$, result = 1
- else, result = L(n-1) + L(n-2)
- I. Prove that L(n) grows exponentially.
- II. Show that L(n) has time complexity $O(2^n)$.

Problem 6 (Linearithmic Growth $O(n \log n)$)

Consider the following recursive algorithm to compute a function M(n).

Algorithm M(n):

- if n = 1, result = 1
- else, result = 2M(n/2) + n
- I. Solve the recurrence to show that $M(n) = O(n \log n)$.
- II. Show that the algorithm is similar to merge sort and has $O(n \log n)$ time complexity.

Problem 7 (Factorial Growth O(n!))

Consider the following recursive algorithm to compute a function N(n).

Algorithm N(n):

- if $n \le 1$, result = 1
- else, result = $n \cdot N(n-1)$
- I. Prove that N(n) = n!.
- II. Show that the time complexity is O(n!).

Problem 8 (Exponential Growth $O(3^n)$)

Consider the following recursive algorithm to compute a function P(n).

Algorithm P(n):

- if n = 1, result = 1
- else, result = P(n-1) + 2P(n-2)
- I. Prove that P(n) grows exponentially.
- II. Show that P(n) has time complexity $O(3^n)$.

Problem 9 (Cubic Growth $\mathcal{O}(n^3)$)

Consider the following recursive algorithm to compute a function Q(n).

Algorithm Q(n):

- if n = 0, result = 0
- else, result = $Q(n-1) + n^2$
- I. Prove that $Q(n) = \frac{n(n+1)(2n+1)}{6}$.
- II. Show that Q(n) has time complexity $O(n^3)$.

Problem 10 (Polynomial Growth $O(n^k)$)

Consider the following recursive algorithm to compute a function R(n, k).

Algorithm R(n, k):

- if n = 1, result = 1
- else, result = $R(n-1, k) + n^{k-1}$
- I. Prove that $R(n, k) = O(n^k)$.
- II. Show that R(n, k) grows polynomially in n.

Problem 11 (Exponential Growth $O(2^n)$)

Consider the following recursive algorithm to compute a function S(n).

Algorithm S(n):

- if $n \le 2$, result = 1
- else, result = S(n-1) + S(n-2)
- I. Prove that S(n) grows exponentially like Fibonacci.
- II. Show that S(n) has a time complexity of $O(2^n)$.

Problem 12 (Linearithmic Growth $O(n \log n)$)

Consider the following recursive algorithm to compute a function T(n).

Algorithm T(n):

- if n = 1, result = 1
- else, result = 2T(n/2) + n
- I. Solve the recurrence to show that $T(n) = O(n \log n)$.
- II. Show that T(n) follows the divide and conquer pattern.

Problem 13 (Quadratic Growth $O(n^2)$)

Consider the following recursive algorithm to compute a function U(n).

Algorithm U(n):

- if n < 1, result = 1
- else, result = 2U(n-1) + n
- I. Prove that U(n) grows quadratically.
- II. Show that U(n) has time complexity $O(n^2)$.

Problem 14 (Logarithmic Growth $O(\log n)$)

Consider the following recursive algorithm to compute a function V(n).

Algorithm V(n):

- if n = 1, result = 1
- else, result = V(n/2) + 1
- I. Prove that $V(n) = O(\log n)$.
- II. Show that V(n) grows logarithmically.

Problem 15 (Sublinear Growth $O(\sqrt{n})$)

Consider the following recursive algorithm to compute a function W(n).

Algorithm W(n):

- if n = 1, result = 1
- else, result = $W(n-1) + 1/\sqrt{n}$
- I. Prove that W(n) grows sublinearly like $O(\sqrt{n})$.
- II. Show that W(n) grows slower than linear.

Problem 16 (Cubic Growth $O(n^3)$)

Consider the following recursive algorithm to compute a function X(n).

Algorithm X(n):

- if n = 1, result = 1
- else, result = $X(n-1) + n^2$
- I. Prove that $X(n) = O(n^3)$.
- II. Show that X(n) has time complexity $O(n^3)$.

Problem 17 (Log-Linear Growth $O(n \log n)$)

Consider the following recursive algorithm to compute a function Y(n).

Algorithm Y(n):

- if n = 1, result = 1
- else, result = Y(n/2) + n
- I. Solve the recurrence to show that $Y(n) = O(n \log n)$.

Problem 18 (Exponential Growth $O(2^n)$)

Consider the following recursive algorithm to compute a function Z(n).

Algorithm Z(n):

- if $n \le 2$, result = 1
- else, result = Z(n-1) + Z(n-2) + Z(n-3)
- I. Prove that Z(n) grows exponentially.
- II. Show that the time complexity of Z(n) is $O(2^n)$.