MM 719, Álgebra Linear Exame de Qualificação ao Mestrado

Março de 2023

- 1. Seja $V = M_n(\mathbb{R})$ o espaço vetorial das matrizes $n \times n$ com coeficientes reais. Considere a função traço $tr: M_n(\mathbb{R}) \to \mathbb{R}$ (recordamos que o traço de uma matriz quadrada é a soma das entradas da diagonal principal da matriz).
 - a) (0.8 pt) Mostrar que esta função traço é linear e que tr(AB) = tr(BA) para quaisquer matrizes $A \in B$.
- b) (1,2 pt) Se $f: M_n(\mathbb{R}) \to \mathbb{R}$ é uma função linear tal que f(AB) = f(BA) para quaisquer A e B, mostrar que existe número real r tal que $f(A) = r \cdot tr(A)$ para toda matriz A.
- c) (1 pt) Mostrar que $\langle A, B \rangle = tr(AB^t)$ é uma forma bilinear simétrica no espaço vetorial $M_n(\mathbb{R})$ e que $|tr(AB^t)| \leq \sqrt{tr(AA^t)}\sqrt{tr(BB^t)}$ para quaisquer $A, B \in M_n(\mathbb{R})$. (Aqui A^t é a transposta da matriz A.)
- 2. (2 pt) Seja $J \in M_n(\mathbb{C})$ um bloco de Jordan $n \times n$ correspondente ao único autovalor λ . Encontrar a forma de Jordan da matriz J^2 .
 - 3. Sejam e_1, e_2, e_3 os vetores da base canônica do espaço vetorial \mathbb{C}^3 .
 - a) (0,6 pt) Dada a função

$$f(e_1) = e_1 + 4e_3,$$
 $f(e_2) = 3e_2,$ $f(e_3) = 2e_1 + 5e_3,$

mostrar que existe uma única transformação linear $T: \mathbb{C}^3 \to \mathbb{C}^3$ tal que $T(e_i) = f(e_i)$, i = 1, 2, 3. Escrever a matriz de T na base canônica de \mathbb{C}^3 .

- b) (0,4 pt) Mostrar que T deixa invariante o subespaço de \mathbb{C}^3 que é gerado pelos vetores e_1 e e_3 .
- c) (1 pt) Encontrar a matriz da restrição S de T no subespaço gerado por e_1 e e_3 , em relação à base e_1 e e_3 .
- 4. (2 pt) Responder **verdadeira** ou **falsa** a cada uma das afirmações abaixo. (Respostas sem a devida justificativa serão desconsideradas!)
- 1) Se A e B são duas matrizes complexas $n \times n$ que têm os mesmos polinômio característico e polinômio minimal, então A e B têm a mesma forma canônica de Jordan.
 - 2) $\mathbb{R} \otimes_{\mathbb{R}} \ldots \otimes_{\mathbb{R}} \mathbb{R}$ (n vezes), é isomorfo a \mathbb{R} .
- 3) Se V^* é o espaço dual do espaço vetorial V de dimensão finita sobre \mathbb{R} , então $V^* \otimes_{\mathbb{R}} \ldots \otimes_{\mathbb{R}} V^*$ (n vezes), é isomorfo a $(V \otimes_{\mathbb{R}} \ldots \otimes_{\mathbb{R}} V)^*$.
- 4) Se V um espaço vetorial de dimensão $n < \infty$ sobre \mathbb{R} e se $P: V \to V$ uma transformação linear tal que $P^2 = I_n$, a matriz identidade, então det P = 1.
- 5. Seja V um espaço vetorial de dimensão finita sobre \mathbb{C} e considere $S^k(V)$, o espaço dos tensores simétricos em $V^{\otimes k}$. (Recordamos que $S^k(V)$ são os elementos de $V^{\otimes k}$ que são invariantes por quaisquer permutações das k parcelas no produto tensorial.)
 - a) (1 pt) Se $sym: V^{\otimes k} \to V^{\otimes k}$ é dada por

$$sym(T) = \frac{1}{k!} \sum_{\sigma} \sigma(T),$$

onde σ percorre todas permutações de $\{1, 2, \dots, k\}$, e $\sigma(T)$ significa que fazemos a correspondente permutação nas parcelas do tensor T, mostrar que sym é uma projeção de $V^{\otimes k}$ sobre $S^k(V)$.

b) (1 pt) Um tensor $T \in V^{\otimes k}$ é antissimétrico se $\sigma(T) = sinal(\sigma)T$, onde $sinal(\sigma)$ é o sinal da permutação σ . Denotamos por $\Lambda^k(V)$ o conjunto dos tensores antissimétricos em $V^{\otimes k}$. Mostrar que a função

$$alt \colon V^{\otimes k} \to V^{\otimes k}, \text{ dada por } alt(T) = \frac{1}{k!} \sum_{\sigma} sinal(\sigma) \sigma(T),$$

é uma projeção de $V^{\otimes k}$ sobre $\Lambda^k(V)$.

c) (1 pt) Mostrar que $V \otimes_{\mathbb{C}} V \cong S^2(V) \oplus \Lambda^2(V)$, e que sym é a projeção de $V \otimes_{\mathbb{C}} V$ sobre $S^2(V)$ que é paralela ao subespaço $\Lambda^2(V)$. Podemos afirmar que alt é a projeção de $V \otimes_{\mathbb{C}} V$ sobre $\Lambda^2(V)$ que é paralela ao subespaço $S^2(V)$?

IMECC/UNICAMP EXAME DE QUALIFICAÇÃO EM ANÁLISE PÓS-GRADUAÇÃO EM MATEMÁTICA PROGRAMA DE MESTRADO

27/02/2023 - 2^{a} -feira - 09:00 às 12:00

RA:	 Nome: _					_

Questão:	Q1	Q2	Q3	Q4	$\mathbf{Q5}$	Total:
Valor:	2	2	2	2	2	10
Nota:						

Instruções para a realização de seu Exame de Qualificação:

- 1. Usar na resolução dos exercícios caneta **Azul** ou **Preta** Não desgrampear o Exame!
- 2. **Desliguem/Guardem** os celulares e relógios (Smart Watch);
- 3. Não é permitido sair da sala de aula durante a realização do Exame;
- 4. Não é permitida a utilização de folhas (A4, caderno e etc) extras.
- 5. É vedada a utilização de qualquer material/dispositivo de apoio extra.
- 6. Escreva suas respostas de maneira legível e com argumentos objetivos e claros.
- 7. Este Exame de Quaificação terá início às 09h do dia 27 de fevereiro de 2023. Você terá três horas para resolvê-lo.
- 8. Respostas não acompanhadas de argumentos que as confirmem não serão consideradas.

As questões do Exame estão na próxima página.

BOA SORTE E SUCESSO A TODA(O)S!

E.Q. ANÁLISE MESTRADO

Q1. (pontos) Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ uma aplicação de classe C¹. Suponha que existe $\tau \in (0,1)$ tal que $||g'(x)|| \leq \tau$ para todo $x \in \mathbb{R}^n$, onde

$$f(x) = g(x) + x \quad \forall \ x \in \mathbb{R}^n.$$

(a) (1 ponto) Mostre que

$$\langle f'(x)h, h \rangle \ge (1 - \tau) ||h||^2 \quad \forall \ h \in \mathbb{R}^n.$$

(b) (1 ponto) Mostre que

$$\lim_{\|x\| \to \infty} \frac{\|f(x)\|}{\|x\|} \ge 1 - \tau.$$

Além disso, apresente um **exemplo explícito** onde o limite acima se verifica¹.

Q2. (2 pontos) Seja $f: U \to \mathbb{R}^m$ uma aplicação diferenciável em um conjunto convexo² $U \subset \mathbb{R}^m$. Mostre que se

$$\langle f'(x)v, v \rangle > 0 \quad \forall \ x \in \mathbf{U} \quad \mathbf{e} \quad \overrightarrow{0} \neq v \in \mathbb{R}^m,$$

então f é **injetiva**. Seria tal f acima descrita sempre **sobrejetiva**? Argumente ou dê contra-exemplos³!

Q3. (2 pontos) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 tal que $|f'(t)| \le \kappa < 1 \quad \forall \ t \in \mathbb{R}$. Considere $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ a aplicação dada por

$$\Phi(x,y) = (x + f(y), y + f(x)).$$

Mostre que Φ é um **difeomorfismo** (global)⁴.

Q4. (2 pontos) Para quais valores de $\alpha \in (\frac{1}{n}, \infty)$ a seguinte integral

$$\int_{1}^{\infty} \int_{\frac{1}{2}}^{\infty} \cdots \int_{\frac{1}{n}}^{\infty} \frac{e^{-x_{1}^{2}} e^{-x_{2}^{2}} \cdots e^{-x_{n}^{2}}}{(x_{1}^{2} + x_{2}^{2} + \cdots + x_{n}^{2})^{\alpha - \frac{1}{n}}} dx_{1} dx_{2} \cdots dx_{n}$$

é finita (converge) 5 ? Além disso, encontre uma **cota superior** para tal valor da integral em termos de α e da dimensão n.

Q5. (2 pontos) Assuma que $\overrightarrow{G}: \mathbb{R}^n \to \mathbb{R}^n$ (para n=3) é um campo vetorial C^1 com a seguinte propriedade:

$$\overrightarrow{G}(x) \cdot x > 0$$
 para todo $x \in \mathbb{R}^n$ com $||x|| = 1$.

Mostre que **não existe** qualquer campo vetorial $\overrightarrow{F} \in C^2(\mathbb{R}^n; \mathbb{R}^n)$ (cujas derivadas parciais até segunda ordem de suas componentes são contínuas) tal que $\overrightarrow{G} = \nabla \times \overrightarrow{F} = rot(\overrightarrow{F})$. Dica: Argumente por *Reductio ad absurdum* e use Teoremas para integrais múltiplas (do Cálculo Vetorial). Justifique todas as suas afirmações.

$$\forall x, y \in X, \ \forall t \in [0, 1] \ \Rightarrow \ (1 - t) \ x + t \ y \in X$$

¹Procure meditar sobre um perfil linear

 $^{^{2}}$ Um subconjunto X de um espaço afim é dito ser convexo quando todo segmento de reta conectando dois pontos de X está contido em X. Matematicamente:

³Considere a função $f(x,y) = (e^x \cos(y), e^x \sin(y))$ e medite sobre as afirmações acima.

 $^{^4}$ Uma bijeção diferenciável, cuja inversa também é diferenciável é denominada de difeomorfismo.

⁵Procute trabalhar/majorar o integrando de sorte a recair em uma integral a qual se possa aplicar os resultados/teoremas de integrais múltiplas de maneira mais imediata.

Topologia Geral - MM 453 - Qualificação de Mestrado

Nome RA:

Instruções:

- ATENÇÃO: Resolva CINCO questões desta avaliação.
- Coloque o seu RA em **TODAS** as folhas.
- Escreva de forma clara os argumentos utilizados.
- Não escreva no quadro de pontuação acima.
- Devolva esta folha juntamente com as soluções ao final da avaliação.
- Indique abaixo quais questões você escolheu.

Questões escolhidas:

Problema 1:(2.0) Seja X um espaço topológico, dado $A \subset X$ definimos a fronteira de A, denotada por ∂A , pela equação:

$$\partial A = \overline{A} \cap \overline{X - A}$$
.

- a) (1.0) Mostre que $\operatorname{Int}(A)$ e ∂A são disjuntos e $\overline{A} = \operatorname{Int}(A) \cup \partial A$.
- b) (0.5) Mostre que $\partial A = \emptyset \Leftrightarrow A$ é aberto e fechado.
- c) (0.5) Mostre que U é aberto $\Leftrightarrow \partial U \cap U = \emptyset$.

Problema 2:(2.0) Sejam X e Y espaços topológicos. Seja $f: X \to Y$ uma função com Y um espaço de Hausdorff compacto. Mostre que f é contínua se, e somente se, o gráfico de f

$$G_f := \{(x, f(x)) : x \in X\}$$

for fechado em $X \times Y$.

Problema 3:(2.0) Mostre que se X é um espaço métrico separável então X é segundo enumerável (ou seja E_2).

Problema 4:(2.0) Seja X um espaço regular com base enumerável, mostre que X é normal.

Problema 5:(2.0)

- a) Prove que todo filtro está contido em um ultrafiltro.
- b) Enuncie e demonstre o Teorema de Tychonoff.

Problema 6:(2.0)

- a) Seja $p: E \to B$ uma aplicação de recobrimento e seja B um espaço conexo. Mostre que se $p^{-1}(b_0)$ tem k elementos para algum $b_0 \in B$, então $p^{-1}(b_0)$ possui exatamente k elementos para todo $b \in B$.
- b) Seja $p:E\to B$ uma aplicação de recobrimento, $b_0\in B$ e $e_0\in p^{-1}(b_0)$ fixados. Denote por

$$\phi: \pi_1(B, b_0) \to p^{-1}(b_0)$$

a correspondência de levantamento induzida por p e com respeito aos pontos b_0 e e_0 . Mostre que se E for simplesmente conexo então ϕ será bijetora.