

Hi3519AV100 Demo 单板使用指南

文档版本 00B02

发布日期 2018-08-08

版权所有 © 深圳市海思半导体有限公司 2018。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任 何形式传播。

商标声明

(上) HISILICON 、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不 做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用 指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为电气生产中心 邮编: 518129

网址: http://www.hisilicon.com

客户服务电话: +86-755-28788858

客户服务传真: +86-755-28357515

support@hisilicon.com 客户服务邮箱:

前言

概述

本文档主要介绍 Hi3519AV100 单板基本功能和硬件特性、多功能硬件配置、软件调试操作使用方法。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本	20/0
Hi3519A	V100	1/00/

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 单板硬件开发工程师

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

文档版本 00B02 (2018-08-08)

第2次临时版本发布。

2.1 小节, 更新图 2-1

文档版本 00B01 (2018-05-30)

第1次临时版本发布。

目 录

甫	 	•••••
1	概述	1
_		
	1.2 功能特性	
2	福<u></u> 在 从 小 以	00,
	2.1 结构与接口	
	2.2 GPIO 分配	
	2.3 Sensor 配置管脚说明	
	2.4 I2C 地址的分配	7,
	2.5 单板多功能操作补充说明	
3		9
	3.2 单板配置	

插图目录

图 2-1	单板接口结构示意图(正面).	
图 2-2	单板的接口结构示意图(反面))

表格目录

表 1-1 Hi3519AV100 DMEB 存储器参数表	2
表 2-1 单板接口说明	4
表 2-2 GPIO 分配	5
表 2-3 Sensor 配置管脚说明	6
表 2-4 I2C0 设备的地址列表	
表 2-4 I2C0 设备的地址列表表 2-5 外部复位和 POR 复位的切换配置	8
表 2-6 Hi3519AV100DMEB 网口 PHY 芯片复位源切换方式	
表 3-1 启动介质选择	10
表 3-2 JTAG 使能的配置	11
表 3-3 COMBO_PHY 模式的配置	11

1 概述

1.1 简介

Hi3519AV100 DMEB 是针对海思 Hi3519AV100 媒体处理芯片开发的演示评估板,用于给客户展示 Hi3519AV100 芯片强大的多媒体功能和丰富的外围接口,同时为客户提供基于 Hi3519AV100 芯片的硬件设计参考,缩短客户产品的开发周期。

Hi3519AV100 DMEB 通过串口和网口线与 PC 连接,组成一个基本开发系统。为实现更完整的开发系统或演示环境,需增加如下设备或部件:

- 显示器
- 音频源及音箱
- USB 2.0/USB3.0 Device 设备
- Real View -ICE 仿真器
- U盘、TF Card等存储设备

□ 说明

海思公司提供成熟的 Hi-Boot 程序 (即 U-Boot),可以脱离仿真器,通过网络 TFTP 的方式进行软件调试。

1.2 功能特性

Hi3519AV100 DMEB 包含以下功能特性:

- 通过两个 90pin BTB 连接器(位号 J1, J2)可以扩展 sensor 输入接口;
- 支持1个RJ45网络接口,支持100/1000M bits全双工或半双工模式;
- 支持1个PCIE接口;
- 支持 2 个 USB2.0 接口;
- 支持2个HDMI接口;
- 支持 1 个 RS232 调试串口, 1200~115200bit/s 波特率:
- 支持1个 Micro SD 卡接口;
- 支持1个JTAG调试口;
- 支持模拟音频输入输出接口;

表1-1 Hi3519AV100 DMEB 存储器参数表

存储器	数据位宽	频率	容量
SPI Nand Flash	1/2/4bit	单沿 100MHz 双沿 100MHz	1Gbit
DDR	32bit	1333MHz	单颗 4Gb 总 8Gb

1.3 产品交付件清单

Hi3519AV100 DMEB 交付件主要包括以下物品:

- HI3519AV100DMEB。
- 电源适配器,规格:输入 100V AC~240V AC,50Hz;输出 12V DC,2A。
- IMX334 sensor 板 1 块。

1.4 相关组件

以下所列组件不包含在 HI3519ADMEB 的交付清单之内,但它们是用户程序调试过程中必备的。

- 网线
- 电视机、音响和摄像头等音视频接收设备
- 串口线

2 硬件介绍

2.1 结构与接口

图2-1 单板接口结构示意图(正面)

图2-2 单板的接口结构示意图(反面)

表2-1 单板接口说明

序号	描述
1	单板电源开关
2	JTAG 连接器
3	RS232 串口,系统主调试串口
4	I2S 预留接口
5	Sensor 接口 1
6	sensor 接口 2
7 10	Core 电源电压测试接口
808	IO 电源电压测试接口
9	音频输出接口,连接到 AC_OUTL/R 管脚,经过功放输出音频
10	音频输入接口 0,AC_IN0L/AC_IN0P、AC_IN0R/AC_IN0N。

序号	描述
11	音频输入接口 1,AC_IN1L/AC_IN1P、AC_IN1L/AC_IN1N。
12	USB2.0 接口
13	USB3.0 向下兼容支持的 USB2.0 接口
14	SDIO0 接口,支持 SD3.0
15	PCIEX1 接口
16	HDMI 接口
17	RJ45 千兆网口
18	HDMI 接口
19	单板电源输入接口
20	拨动开关 SW2
21	拨动开关 SW1
22	一键升级按键
23	系统外部复位按键
24	DC-IRIS 电路接口
25	P_IRIS 电路接口
26	UART2 接口,使用时需外接串口转接板
27	UART1 接口,使用时需外接串口转接板

2.2 GPIO 分配

表2-2 GPIO 分配

管脚名	管脚默认 配置	用途	单板 处理
GPIO4_3/SPI4_CSN/UPDA TE_MODE_N	UPDATE _MODE_ N	UPDATE_MODE_N,外接按键: 0: 按键按下; 1: 按键不按下。	1
SVB_PWM1/SPI4_SDO/I2C9 _SDA/GPIO4_1	GPIO4_1	DC_IRIS_PWM,用于控制 DC_IRIS 电路	1
LSADC_CH2/GPIO1_2	GPIO1_2	P_IRIS 控制电路的控制信号。	-

管脚名	管脚默认 配置	用途	单板 处理
LSADC_CH0/GPIO1_0	GPIO1_0		-
LSADC_CH3/GPIO1_3	GPIO1_3		-
LSADC_CH1/GPIO1_1	GPIO1_1		-
UART1_RTSN/UART4_RXD /GPIO8_6	GPIO8_6	音频功放的 MUTE 控制信号,默 认下拉。	-
UART1_CTSN/UART4_TXD /GPIO8_7	GPIO8_7	PCIe 的复位信号	-
SDIO1_CCMD/LCD_DATA2 0/GPIO11_1	GPIO11_1	IR_CUT 控制信号	-
SDIO1_CCLK_OUT/LCD_D ATA23/GPIO11_0	GPIO11_0		-
SDIO1_CDATA0/LCD_DAT A21/GPIO11_2	GPIO11_2		-
SDIO1_CDATA1/LCD_DAT A22/GPIO11_3	GPIO11_3		-10km

2.3 Sensor 配置管脚说明

表2-3 Sensor 配置管脚说明

应用场景	管脚	信号说明
单 Sensor 场景	SENSOR_CLK0	SENSOR 工作时钟
	SENSOR_RSTN0	SENSOR 复位信号
	SENSOR_HS0	SENSOR 行同步信号(仅限于从模式 SENSOR)
	SENSOR_VS0	SENSOR 场同步信号(仅限于从模式 SENSOR)
	SPI0_CSN	SENSOR SPI/I2C 配置信号
	SPI0_SDI	
	SPI0_SCLK/I2C1_SCL	
	SPI0_SDO/I2C1_SDA	
双路 Sensor 场景	SENSOR_CLK0	SENSOR0 工作时钟
	SENSOR_RSTN0	SENSOR0 复位信号
35	SENSOR_HS0	SENSOR0 行同步信号(仅限于从模式 SENSOR)
BHI	SENSOR_VS0	SENSOR0 场同步信号(仅限于从模式 SENSOR)
RIV	SPIO_CSN	SENSOR0 SPI/I2C 配置信号

应用场景	管脚	信号说明
	SPI0_SDI	
	SPI0_SCLK/I2C_SCL	
	SPI0_SDO/I2C_SDA	
	SENSOR_CLK1	SENSOR1 工作时钟
	SENSOR_RSTN1	SENSOR1 复位信号
	SENSOR_HS1	SENSOR1 行同步信号(仅限于从模式 SENSOR)
	SENSOR_VS1	SENSOR1 场同步信号(仅限于从模式 SENSOR)
	SPI1_CSN	SENSOR1 SPI/I2C 配置信号
	SPI1_SDI	
	SPI1_SCLK/I2C3_SCL	
	SPI1_SDO/I2C3_SDA	10/60

2.4 I2C 地址的分配

Hi3519AV100有10组I2C管脚,其中:

- I2C1 到 I2C6 外接 sensor。
- I2C7/I2C8 SPI3 复用,默认是 SPI3 功能。。
- I2C0: 功耗测试的 INA220A。

表2-4 I2C0 设备的地址列表

I2C11 外设名称	I2C0 外设地址
用于监测 DVDD 电压的 INA220	0x4a
用于监测 MEDIA/CPU 电压的 INA220	0x4f
用于监测 1.2V 电压(包含 SOC 和 DDR 颗粒)的 INA220	0x40
用于监测 1.8V 电压(SOC 端)的 INA220	0x49
用于监测 1.8V 电压(外设端)的 INA220	0x4d

2.5 单板多功能操作补充说明

要实现 Hi3519AV100DMEB 的多功能切换, 需要按照表 2-5 和表 2-6 操作。

表2-5 外部复位和 POR 复位的切换配置

MODE	需要焊接的电阻
外部复位	将 SW2 的 1pin 拨到 0,焊接 R91、166,断开 R90
POR 复位	将 SW1 的 1pin 拨到 1,焊接 R90,断开 R91、166

表2-6 Hi3519AV100DMEB 网口 PHY 芯片复位源切换方式

MODE	需要焊接的电阻	默认使用
系统复位	焊接 R174,断开 R173	否
Hi3519AV100 芯片输出复位信号	焊接 R173,断开 R174	是。
MODE 系统复位 Hi3519AV100 芯片输出复位信号	A THE REPORT OF THE PARTY OF TH	50100258

3 操作指南

3.1 注意事项

单板适用于实验室或者工程开发环境。在开始操作之前,请先阅读以下注意事项。

- 任何情况下均不能对单板进行热插拔操作。
- 在拆封单板包装与安装之前,为避免静电释放(ESD)对单板硬件造成损伤,需 采取必要的防静电措施。
- 手持单板时请拿单板的边沿,不要触碰到单板上的外露金属部分,以免静电对单板元器件造成损坏。
- 请将单板放置于干燥的平面上,并保证它们远离热源、电磁干扰源与辐射源、电磁辐射敏感设备(如:医疗设备)等。
- 请对照图 2-1 熟悉单板的结构布局,确保能够在单板上辨认出可操作部件,如电源、连接器以及指示灯的位置。

3.2 单板配置

Hi3519AV100DMEB 单板通过配置拨码开关,选择 Hi3519AV100 芯片的工作模式。

注意

默认状态 SW1 拨至 0000,SW2 拨至 0110,在使用时请注意核对拨码开关是否正确。

表3-1 启动介质选择

位号	引脚	含义	
	Pin [1:2]	启动介质选择 00:从 SPI NOR FLASH 启动; 01:从 SPI NAND FLASH 启动; 10:从 EMMC 启动; 11:从并口 NAND FALSH 启动;	
SW1(拨码开关)	Pin [3]	BOOTROM 串口通信模式 0:直接从启动介质启动; 1:进入串口烧写 Flash 模式。	
	Pin [4]	PCIe 从片启动使能。 0: 不使能; 1: 使能。	
SW2(拨码开关)	Pin[1]	PCIe PHY 参考时钟选择。 0: 内部 CRG 时钟; 1: 外部时钟输入。	
	Pin[2]	PCIe PHY 去加重参数选择。 0 : -3.5dB; 1 : -6dB。	
	Pin[3] Pin[4]	当从 SPI NOR FLASH 启动时,表示 SPI NOR FLASH 启动地址模式选择。 0: 3Byte 地址模式; 1: 4Byte 地址模式。 当从 SPI NAND FLASH 启动时,表示 SPI NAND FLASH 启动模式选择。 0: 1线启动模式; 1: 4线启动模式。 当从 EMMC 启动时,表示 EMMC 启动模式选择。 0: 4Bit 启动模式; 1: 8Bit 启动模式; (硬件复用: 当 power_on_lock==1'b1 时管脚被设置成此功能)	
1/0800/C3	Pin[4]	芯片复位选择。 1: 内部 POR; 0: 外部复位。	

表3-2 JTAG 使能的配置

使能管脚	值	操作方法	含义
JTAG_EN	1	焊接 R384,去 掉 R385。	JTAG 功能使能
	0	焊接 R385,去 掉 R384。	JTAG 功能关闭

表3-3 COMBO_PHY 模式的配置

使能管脚	值	操作方法	含义
SENSOD HE2/DOIE HED2 MODE	1	焊接 R196, 去掉 R143。	USB3.0 模式
SENSOR_HS2/PCIE_USB3_MODE	0	焊接 R143,去掉 R196。	PCIE X1 模式

海思专有和保密信息 版权所有 © 深圳市海思半导体有限公司