# Clinical and Imaging Analyses to Predict Alzheimer's Disease

## **Model Metrics**

## A. Cross-sectional Study

The **K-nearest Neighbors Model** is the model being recommended for the Cross-sectional study from the analyses performed.

The following was used to tune the model:

• optimal k value: k = 3

After tuning the model, several metrics were determined using the Confusion Matrix (Figure 1), and they are summarized in Table 1.

Figure 1. KNN model Confusion Matrix



**Table 1. Cross-sectional Study Model Metrics** 

### Comparison of Model Metrics

| Model                          | Group   | Precision | Recall | F1 score | Accuracy |
|--------------------------------|---------|-----------|--------|----------|----------|
|                                | CDR 0   | 0.79      | 0.9    | 0.84     |          |
| KNN                            | CDR 0.5 | 0.61      | 0.52   | 0.56     | 0.76     |
|                                | CDR 1   | 1         | 0.62   | 0.77     |          |
|                                |         |           |        |          |          |
|                                | CDR 0   | 0.82      | 0.88   | 0.85     |          |
| Random Forest                  | CDR 0.5 | 0.48      | 0.48   | 0.48     | 0.69     |
|                                | CDR 1   | 0.4       | 0.25   | 0.31     |          |
|                                |         |           |        |          |          |
|                                | CDR 0   | 0.79      | 0.9    | 0.84     |          |
| OVR(logistic regression)       | CDR 0.5 | 0.5       | 0.43   | 0.46     | 0.7      |
|                                | CDR 1   | 0.6       | 0.38   | 0.46     |          |
|                                |         |           |        |          |          |
|                                | CDR 0   | 0.89      | 0.8    | 0.85     |          |
| OVR(Multi-Layer<br>Perceptron) | CDR 0.5 | 0.57      | 0.76   | 0.65     | 0.76     |
|                                | CDR 1   | 0.8       | 0.5    | 0.62     |          |

# **B. Longitudinal Study**

The **One vs Rest (Multi-Layer Perceptron) Model** is the model being recommended for the Longitudinal study from the analyses performed.

The following was used to tune the model:

• hidden layers sizes: (30, 30, 30)

After tuning the model, several metrics were determined using the Confusion Matrix (Figure 2), and they are summarized in Table 2.

Figure 2. One vs Rest (MLP) model Confusion Matrix



**Table 2. Longitudinal Study Model Metrics** 

# Comparison of Model Metrics

| Model                          | Group        | Precision | Recall | F1 score | Accuracy |
|--------------------------------|--------------|-----------|--------|----------|----------|
|                                | Non-demented | 0.88      | 1      | 0.93     |          |
| KNN                            | Demented     | 0.94      | 0.94   | 0.94     | 0.9      |
|                                | Converted    | 1         | 0.22   | 0.39     |          |
|                                |              |           |        |          |          |
|                                | Non-demented | 0.89      | 0.98   | 0.93     |          |
| Random Forest                  | Demented     | 0.95      | 1      | 0.97     | 0.9      |
|                                | Converted    | 0.5       | 0.11   | 0.18     |          |
|                                |              |           |        |          |          |
|                                | Non-demented | 0.89      | 1      | 0.94     |          |
| OVR(logistic regression)       | Demented     | 0.95      | 1      | 0.97     | 0.91     |
|                                | Converted    | 1         | 0.11   | 0.2      |          |
|                                |              |           |        |          |          |
|                                | Non-demented | 0.9       | 0.94   | 0.92     |          |
| OVR(Multi-Layer<br>Perceptron) | Demented     | 0.97      | 1      | 0.99     | 0.9      |
|                                | Converted    | 0.5       | 0.33   | 0.4      |          |

#### C. Imaging Study

The **Convolutional Neural Network (CNN) Model** is the model being recommended for the Imaging study from the analyses performed.

After running the model on training, validation, and testing image sets, the model had a **95.72% accuracy on the validation set** and **95.95% accuracy on the testing set**.

**Table 3. Imaging Study Model Metrics** 

## **Imaging Model Metrics**

| Group              | Precision | Recall | F1 score | Accuracy |
|--------------------|-----------|--------|----------|----------|
| Non-Demented       | 0.97      | 0.97   | 0.97     |          |
| Very Mild Demented | 0.94      | 0.96   | 0.95     | 0.96     |
| Mild Demented      | 0.97      | 0.91   | 0.94     |          |
| Moderate Demented  | 1         | 1      | 1        |          |