Correction

Exercise 1
Question 1

 Pour montrer que la coalescence de deux gouttes d'eau sphériques de rayon r en une seule goutte de rayon r' minimise l'énergie totale, nous pouvons comparer les énergies avant et après la coalescence.
 2pts

La tension de surface reste inchangée donc il suffit de comparer la surface avant et après, le volume reste constant donc on trouve que La goutte résultante, a une surface de $6.3\pi r^2 < 8\pi r^2$ la surface des deux goutte 2pts

Question 2 1pt

dans laquelle γ_{SV} est l'énergie libre de surface solide / vapeur est l'énergie libre de surface solide / liquide γ_{LV} est l'énergie libre de surface liquide / vapeur.

$$\cos \theta = \frac{\gamma_{SV} - \gamma_{SI}}{\gamma_{LV}}$$

1pts

Exercice 2 1pt

1pt	SDS Water	SDS Histidine	SDS tryp	SDS glu
CMD mM	7.5	5	4	6.2

 $\Delta G^{\circ} \text{mic} \Delta Gmic = RT \ Ln \ CMC = 8.314 \left(\frac{J}{mol}.K\right). (293.15 \ K). \ln(0.0075) - 11.92 \ KJ/mol \ 3pts$

- $V = 0.0274 + 0.0269 \times N$
- $lc = 0.1500 + 0.1265 \times N$

On a N= 12 donc V = 0.3502nm3 et lc = 1.668nm et A = 0.8507 nm² lpt

Le paramètre d'empilement $\emptyset = \frac{V}{Lc.A} = \frac{0.3502}{1.668*0.8507} = 0.246 \, 1pt < 1/3$ donc on une organisation sphérique de micelle de sds 1pt

Isothermes Type 2

Y = 0.02006*X + 0.001214

Isotherme type 2	1pt	
Vm	4.96 1.5pts	
С	165.79 1.5pts	
$S m^2/g$	21.60 2pts	