Notes on data fitting and regression

Linear Regression

Is there a linear relation between "x" and "y"

It is always a good idea to make a plot of x vs. y.

Not all relations between x and y will be linear. If they are not, you can **linearise** the relation first.

In either case:

To determine the linear dependency between "x" and "y", we carry out a **linear regression**

Linear dependent quantities

Remember that:

$$y = a \cdot x + b$$

b: *axis intercept*

We need to find "a" and "b" for a straight line that fits best the data points.

Background: least mean square

We need to minimise this expression (i.e. get the smallest sum of the grey areas)

$$\sum_{i=1}^{n} \left[y_i - \left(a \cdot x_i + b \right) \right]^2$$

by varying "a" and "b"

(partial derivatives set to 0)

Formulae I: solution

The best "a" and "b" are
$$a = \frac{\sum\limits_{i=1}^{n} \left(x_i - \overline{x}\right) \cdot \left(y_i - \overline{y}\right)}{\sum\limits_{i=1}^{n} \left(x_i - \overline{x}\right)^2}$$

$$b = \overline{y} - a \cdot \overline{x}$$

with
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

Formulae II: errors

Error of the fit

$$\sigma_{y} = \sqrt{\frac{1}{(n-2)} \sum_{i=1}^{n} \left[y_{i} - \left(a \cdot x_{i} + b \right) \right]^{2}}$$

Denominator (n-2) as we are fitting 2 parameters

Errors for "a" and "b"

$$\sigma_a = \sigma_y \cdot \sqrt{\frac{1}{\sum_{i=1}^n (x_i - \overline{x})^2}}$$

$$\sigma_b = \sigma_y \cdot \sqrt{\frac{1}{n} \cdot \frac{\sum_{i=1}^n x_i^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}$$

	m	d (mm)
Determine the thickness of pages in a book	10	3.2
Measure the thickness "d" of different number "m" of pages (including the cover)	20	4.2
	30	5.1
	40	5.8
$d_i = a \cdot m_i + b$ The slope is the thickness of a page, and the axis	50	6.8
	60	7.7
	70	8.8
	80	9.7
	90	10.8
intercept is the thickness of the cover	100	11.7

d (mm)	
3.2	
4.2	
5.1	
5.8	
6.8	
7.7	
8.8	
9.7	
10.8	
11.7	

- 1. Make a plot and devise a model: $d_i = a \cdot m_i + b$
- 2. Calculate averages of "m" and "d".
- 3. Calculate the slope and intercept with:

$$a = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$b = \overline{y} - a \cdot \overline{x}$$

$$b = 2.1935 \text{ mm}$$

m	d (mm)
10	3.2
20	4.2
30	5.1
40	5.8
50	6.8
60	7.7
70	8.8
80	9.7
90	10.8
100	11.7

$$a = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$b = \overline{y} - a \cdot \overline{x}$$

$$b = 2.1935 \text{ mm}$$

d=0.0943 m + 2,1935 [mm]

4. Calculate the errors for the slope and intercept with our equations in slide 40:

 σ_d = 0.173 mm, σ_a =0.0019 mm, and σ_b =0.12 mm.

5. We report "a" and "b" with their errors:

a=(0.0943±0.0019) mm (average thickness of a sheet in the book)

b=(2.19±0.12) mm (thickness of the book back cover)

Book thickness $d = a \cdot m + 2b$