Блог нашего семинара

http://sfedu_ctseminar.livejournal.com

http://sfedu_ctseminar.livejournal.com/profile

http://sfedu_ctseminar.livejournal.com/831.html

- Категория **D** является подкатегорией **C**:
 - $\mathsf{Ob}(\boldsymbol{D}) \subseteq \mathsf{Ob}(\boldsymbol{C})$

- Категория **D** является подкатегорией **C**:
 - $\mathsf{Ob}(\mathbf{D}) \subseteq \mathsf{Ob}(\mathbf{C})$
 - $-\operatorname{Hom}_{\mathcal{D}}(A,B)\subseteq\operatorname{Hom}_{\mathcal{C}}(A,B)$

- Категория **D** является подкатегорией **C**:
 - $\mathsf{Ob}(\mathbf{D}) \subseteq \mathsf{Ob}(\mathbf{C})$
 - $-\operatorname{Hom}_{\mathbf{D}}(A,B)\subseteq\operatorname{Hom}_{\mathbf{C}}(A,B)$
 - Композиция морфизмов в **D** совпадает с их же композицией в **C**

- Категория **D** является подкатегорией **C**:
 - $\mathsf{Ob}(\mathbf{D}) \subseteq \mathsf{Ob}(\mathbf{C})$
 - $-\operatorname{Hom}_{\boldsymbol{D}}(A,B)\subseteq\operatorname{Hom}_{\boldsymbol{C}}(A,B)$
 - Композиция морфизмов в **D** совпадает с их же композицией в **C**
 - Тождественный морфизм каждого объекта в **D** совпадает с его же тождественным в **C**

- Категория **D** является подкатегорией **C**:
 - $\mathsf{Ob}(\mathbf{D}) \subseteq \mathsf{Ob}(\mathbf{C})$
 - $-\operatorname{Hom}_{\boldsymbol{D}}(A,B)\subseteq\operatorname{Hom}_{\boldsymbol{C}}(A,B)$
 - Композиция морфизмов в **D** совпадает с их же композицией в **C**
 - Тождественный морфизм каждого объекта в **D** совпадает с его же тождественным в **C**
- Если $Hom_{D}(A,B)=Hom_{C}(A,B)$ для любых A и B, то **D** называется **полной** подкатегорией **C**

• Категория *Fin* конечных множеств является полной подкатегорией *Set*

- Категория *Fin* конечных множеств является полной подкатегорией *Set*
- Категория **Set** является подкатегорией категории множеств и **частичных** отображений

- Категория *Fin* конечных множеств является полной подкатегорией *Set*
- Категория **Set** является подкатегорией категории множеств и **частичных** отображений
- Вышеперечисленные категории являются подкатегориями *Rel* множеств и отношений

- Категория *Fin* конечных множеств является полной подкатегорией *Set*
- Категория **Set** является подкатегорией категории множеств и **частичных** отображений
- Вышеперечисленные категории являются подкатегориями *Rel* множеств и отношений
- Категория абелевых групп полная подкатегория
 Grp

- Категория *Fin* конечных множеств является полной подкатегорией *Set*
- Категория **Set** является подкатегорией категории множеств и **частичных** отображений
- Вышеперечисленные категории являются подкатегориями *Rel* множеств и отношений
- Категория абелевых групп полная подкатегория
 Grp
- Категория хаусдорфовых пространств полная подкатегория *Тор*

- Пусть C и D две категории. Определим функтор F: $C \to D$ как пару отображений
 - $\mathsf{F}_{\mathsf{Ob}} : \mathsf{Ob}(\mathbf{C}) \to \mathsf{Ob}(\mathbf{D})$
 - $\mathsf{F}_{\mathsf{Mor}} : \mathsf{Mor}(\mathbf{C}) \to \mathsf{Mor}(\mathbf{D})$

- Пусть С и D две категории. Определим функтор
 F: C → D как пару отображений
 - $\mathsf{F}_{\mathsf{Ob}} : \mathsf{Ob}(\mathbf{C}) \to \mathsf{Ob}(\mathbf{D})$
 - $\mathsf{F}_{\mathsf{Mor}} : \mathsf{Mor}(\boldsymbol{C}) \to \mathsf{Mor}(\boldsymbol{D})$
- Образом f: A \rightarrow B является $F_{Mor}(f)$: $F_{Ob}(A) \rightarrow F_{Ob}(B)$

- Пусть C и D две категории. Определим функтор F: $C \to D$ как пару отображений
 - $\mathsf{F}_{\mathsf{Ob}} : \mathsf{Ob}(\mathbf{C}) \to \mathsf{Ob}(\mathbf{D})$
 - $\mathsf{F}_{\mathsf{Mor}} : \mathsf{Mor}(\boldsymbol{C}) \to \mathsf{Mor}(\boldsymbol{D})$
- Образом f: A \rightarrow B является $F_{Mor}(f)$: $F_{Ob}(A) \rightarrow F_{Ob}(B)$
- $F_{Mor}(id_A) = id_{F_{Ob}(A)}$

- Пусть С и D две категории. Определим функтор
 F: C → D как пару отображений
 - $\mathsf{F}_{\mathsf{Ob}} : \mathsf{Ob}(\mathbf{C}) \to \mathsf{Ob}(\mathbf{D})$
 - $\mathsf{F}_{\mathsf{Mor}} : \mathsf{Mor}(\boldsymbol{C}) \to \mathsf{Mor}(\boldsymbol{D})$
- Образом f: A \rightarrow B является $F_{Mor}(f)$: $F_{Ob}(A) \rightarrow F_{Ob}(B)$
- $F_{Mor}(id_A) = id_{F_{Ob}(A)}$
- $F_{Mor}(f \circ g) = F_{Mor}(f) \circ F_{Mor}(g)$

Контравариантный функтор

- Пусть С и D две категории. Определим контравариантный функтор F: C → D как пару
 - $\mathsf{F}_{\mathsf{Ob}} : \mathsf{Ob}(\mathbf{C}) \to \mathsf{Ob}(\mathbf{D})$
 - $\mathsf{F}_{\mathsf{Mor}} : \mathsf{Mor}(\boldsymbol{C}) \to \mathsf{Mor}(\boldsymbol{D})$
- Образом f: A \rightarrow B является $F_{Mor}(f)$: $F_{ob}(B) \rightarrow F_{ob}(A)$
- $F_{Mor}(id_A) = id_{F_{Ob}(A)}$
- $F_{Mor}(f \circ g) = F_{Mor}(g) \circ F_{Mor}(f)$

- Пусть С и D две категории. Определим функтор
 F: C → D как пару отображений
 - $\mathsf{F}_{\mathsf{Ob}} : \mathsf{Ob}(\mathbf{C}) \to \mathsf{Ob}(\mathbf{D})$
 - $\mathsf{F}_{\mathsf{Mor}} : \mathsf{Mor}(\boldsymbol{C}) \to \mathsf{Mor}(\boldsymbol{D})$
- Образом f: A \rightarrow B является $F_{Mor}(f)$: $F_{Ob}(A) \rightarrow F_{Ob}(B)$
- $F_{Mor}(id_A) = id_{F_{Ob}(A)}$
- $F_{Mor}(f \circ g) = F_{Mor}(f) \circ F_{Mor}(g)$
- Для краткости будем писать F(f) и F(A) вместо F_{мог}(f) и F_{Ob}(A)

• Объект категории $m{C}$ как функтор $m{1} {
ightarrow} m{C}$

- Объект категории $m{C}$ как функтор $m{1} {
 ightarrow} m{C}$
- Граф как функтор в категорию **Set**

- Объект категории ${m C}$ как функтор ${m 1}{
 ightarrow}{m C}$
- Граф как функтор в категорию **Set**
- Забывающие функторы

- Объект категории ${m C}$ как функтор ${m 1}{
 ightarrow}{m C}$
- Граф как функтор в категорию **Set**
- Забывающие функторы
- Свободные конструкции

- Объект категории ${m C}$ как функтор ${m 1}{
 ightarrow}{m C}$
- Граф как функтор в категорию **Set**
- Забывающие функторы
- Свободные конструкции
- Гомоморфизмы групп

- Объект категории \boldsymbol{C} как функтор $\boldsymbol{1} \rightarrow \boldsymbol{C}$
- Граф как функтор в категорию **Set**
- Забывающие функторы
- Свободные конструкции
- Гомоморфизмы групп
- Предпучки над топологическими пространствами

- Объект категории \boldsymbol{C} как функтор $\boldsymbol{1} \rightarrow \boldsymbol{C}$
- Граф как функтор в категорию **Set**
- Забывающие функторы
- Свободные конструкции
- Гомоморфизмы групп
- Предпучки над топологическими пространствами
- Функтор вложения подкатегории

- Объект категории \boldsymbol{C} как функтор $\boldsymbol{1} \rightarrow \boldsymbol{C}$
- Граф как функтор в категорию **Set**
- Забывающие функторы
- Свободные конструкции
- Гомоморфизмы групп
- Предпучки над топологическими пространствами
- Функтор вложения подкатегории
- Группы когомологий и соотв. функторы Top o Ab

Естественные преобразования

Пусть F: C → D и G: C → D — два функтора.
 Определим естественное преобразование α: F → G как отображение, сопоставляющее каждому объекту A из C морфизм из Hom_c(F(A), G(A))

Естественные преобразования

- Пусть F: C → D и G: C → D два функтора.
 Определим естественное преобразование α: F → G как отображение, сопоставляющее каждому объекту A из C морфизм из Hom_c(F(A), G(A))
- При этом для любого морфизма f: A → B категории
 С должна коммутировать диаграмма

Морфизм категории С как естественное преобразование между двумя функторами
 A, B: 1→C

- Морфизм категории С как естественное преобразование между двумя функторами
 A, B: 1→C
- Гомоморфизм графов как е.п. функторов

- Морфизм категории С как естественное преобразование между двумя функторами
 A, B: 1→C
- Гомоморфизм графов как е.п. функторов
- Е.п. и полиморфные функции в функциональных языках

- Морфизм категории С как естественное преобразование между двумя функторами
 A, B: 1→C
- Гомоморфизм графов как е.п. функторов
- Е.п. и полиморфные функции в функциональных языках
- Определитель матрицы

Пусть α: F → G и β: G → H — два естественных преобразования функторов, действующих из категории C в категорию D. Определим их композицию β ∘ α как естественное преобразование с компонентой β_A ∘ α_A для каждого A из C

Пусть α: F → G и β: G → H — два естественных преобразования функторов, действующих из категории C в категорию D. Определим их композицию β ∘ α как естественное преобразование с компонентой β_A ∘ α_A для каждого A из C

- Пусть α : $F \to G$ и β : $G \to H$ два естественных преобразования функторов, действующих из категории $\textbf{\textit{C}}$ в категорию $\textbf{\textit{D}}$. Определим их композицию $\beta \circ \alpha$ как естественное преобразование с компонентой $\beta_A \circ \alpha_A$ для каждого A из A
- Для каждого функтора F: C → D определено естественное преобразование Id_F: F → F с компонентой id_{F(A)} для каждого A категории C

- Пусть α: F → G и β: G → H два естественных преобразования функторов, действующих из категории C в категорию D. Определим их композицию β ∘ α как естественное преобразование с компонентой β_A ∘ α_A для каждого A из C
- Для каждого функтора F: ${m C} o {m D}$ определено естественное преобразование ${\rm Id}_{{\sf F}}$: F o F с компонентой ${\rm id}_{{\sf F}({\sf A})}$ для каждого A категории ${m C}$
- Таким образом, задана категория функторов из С в
 D, обозначаемая D^c или Funct(C, D)

• Произвольная категория \boldsymbol{C} и категория функторов $\boldsymbol{1}{ o}\boldsymbol{C}$

- Произвольная категория C и категория функторов $1 \rightarrow C$
- Категория графов

- Произвольная категория C и категория функторов $1 \rightarrow C$
- Категория графов
- Категория представлений группы

- Произвольная категория С и категория функторов
 1→C
- Категория графов
- Категория представлений группы
- Категории предпучков

• Функтор из *C* в *D* изображается вертикальной линией, разделяющей полуплоскости

- Функтор из *C* в *D* изображается вертикальной
 линией, разделяющей
 полуплоскости
- Естественное преобразование изображается «блоком» а иногда и точкой на линии

- Функтор из *C* в *D* изображается вертикальной
 линией, разделяющей
 полуплоскости
- Естественное преобразование изображается «блоком» а иногда и точкой на линии
- Объект изображается как функтор из **1** в **С**

- Функтор из *C* в *D* изображается вертикальной
 линией, разделяющей
 полуплоскости
- Естественное преобразование изображается «блоком» а иногда и точкой на линии
- Объект изображается как функтор из **1** в **С**
- Морфизм изображается как е.п. функторов 1→C

Диаграмма из определения естественного преобразования

