Lab01-Algorithm Analysis

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2019.

* If there is any problem, please contact TA Mingran Peng. Also please use English in homework.
 * Name: 田雪飞 Student ID: <u>515030910347</u> Email: 13487426939@qq.com

1. **Solution.** The following is solution process:

${f Algorithm}$	Time Complexity	Space Complexity
$\overline{InsertionSort}$	$O(n^2), \Omega(n)$	$\Theta(1)$
Cocktail Sort	$O(n^2),\Omega(n)$	$\Theta(1)$
Selection Sort	$O(n^2),\Omega(n)$	$\Theta(1)$

CocktailSort:

Line 4: The number of comparisons carried out by Cocktailsort in loop

$$n-1$$
 (1)

and the number of swap and assignment operation at at least(best)

$$0 (2)$$

at most(worst)

$$2(n-1) + 2(n-3) + \dots + 1 \tag{3}$$

Line 9: The number of comparisons carried out by in loop at most least(best)

$$n-2$$
 (4)

and the number of swap and assignment operation at least(best)

$$0 (5)$$

at most(worst)

$$2(n-2) + 2(n-4) + \dots + 0 \tag{6}$$

so, the number of total executed in the loop of while at least(best)

$$T(n) = n - 1 + n - 2 = 2n - 3 \tag{7}$$

at most (worst)

$$T(n) = n - 1 + n - 2 + 2\sum_{n=0}^{n-1} k = n^2 + n - 3$$
(8)

so, Time Complexity is $O(n^2)$ and $\Omega(n)$, and Space Complexity is $\Theta(1)$.

SelectionSort:

Line 2: The loop executed from 1 to n-1 so, the number of assignment operations carried out by SelectionSort are:

$$2(n-1) \tag{9}$$

Line 4: The comparisons of A[j] > max will be executed when

j=2, the number of comparisons are n-1;

j = 3, the number of comparisons are n - 2;

:

j = n, the number of comparisons are 0;

so, the number of comparisons carried out by SelectionSort are:

$$\sum_{0}^{n-1} j = \frac{n(n-1)}{2} \tag{10}$$

The number of **assignment operations** carried out in second loop are at most:

$$n(n-1) \tag{11}$$

at least:

$$(12)$$

The number of total executed in SelectionSort are at most(worst):

$$T(n) = 2(n-1) + \frac{n(n-1)}{2} + n(n-1) = \frac{1}{2}(3n^2 + n - 4);$$
(13)

The number of total executed in SelectionSort are at most(best):

$$T(n) = 2(n-1) + \frac{n(n-1)}{2} = \frac{1}{2}(n^2 + 3n - 4); \tag{14}$$

so, Time Complexity is $O(n^2)$ and $\Omega(n)$, and Space Complexity is $\Theta(1)$.

- 2. **Solution.** The following is solution process:
 - (a) Two stack to simulated queue:
 - stack1 is used for enqueue, stack2 is used for dequeue;
 - when pushing an element, we push it into **stack1**;
 - when popping an element, if **stack2** is empty, we push all elements in **stack1** into **stack2**, if **stack2** is not empty, we pop an element in **stack2** directly.
 - (b) Time Complexity(potential function):

Potential function: $\Phi(S)$ denote the num[i] of items in stack1.

State: Here state S_i refers to the state of the **stack1** after the *i*-th.

Correctness: $\Phi(S_i) \geq 0 = \Phi(S_0)$ for any i;

According to the definition of $\Phi(S)$, we know

$$\Phi(S_i) = num[i] \tag{15}$$

PUSH:
$$\hat{C}_i = C_i + \Phi(S_i) - \Phi(S_0)$$

= $1 + num[i] - num[i-1]$
= $1 + num[i-1] + 1 - num[i-1]$
= 2

POP:

• if **stack2** is not empty:

$$\hat{C}_i = C_i + \Phi(S_i) - \Phi(S_0) = 1 + num[i] - num[i-1] = 1$$

• if **stack2** is empty:

$$\hat{C}_i = C_i + \Phi(S_i) - \Phi(S_0)$$
= $num[i-1] + 1 + (num[i] - num[i-1])$
= $num[i-1] + 1 + (0 - num[i-1])$
= 1

Thus, starting from two empty stacks, any sequence of ${\bf n1~PUSH}$, ${\bf n2~POP}$ operations takes at most

$$T(n) = \sum_{i=1}^{n} C_{i} \le \sum_{i=1}^{n} \hat{C}_{i} = 2n_{1} + n_{2}.$$
 Here $n = n_{1} + n_{2}$ and $n_{1} \ge n_{2}.$ (16)