Fall 2021 ECE30017-01 Problem Solving through Computational Thinking

Week 4

• C3. Two Trains
Submission deadline: 11:59 PM, 28 Septeber (Tue)

C3. Two Trains

There are *N* cities identified by 1, 2, 3, ..., *N*, and *s*ome of two cities are connected directly with railroad.

A transportation corporation has two trains Alpha and Beta: Train Alpha takes p amount of fuel for moving between two adjacent cities, whereas train Beta takes q amount of fuel.

Interestingly, the two trains can be united if they stay in the same city. The united train takes r amount of fuel for r . Here we assume that no fuel is taken for uniting the two trains, and the fuel consumption of a train is the same for transiting any two adjacent cities.

Suppose that currently Alpha is located at City 1 and heading to City N, and Beta is at City 2 and heading to City N as well.

Write a program that finds the minimum of fuel required for moving Alpha and Beta to City N. Note that the two trains may be united at a city.

Requirements

Input

The input data is given to the standard input. The first line has five integers p, q, r, N, and M for each of these numbers is no more than 40000. N indicates that there are N cities identifies by 1, 2, ..., N. The 2^{nd} to (M+1)-th lines contain M pairs of the identifiers of the two cities that a railroad connects directly.

Output

Print the minimum amount of the total fuel needed for the two trains to the standard output within 0.5 seconds

Example

Input file

44588	
1 4	
2 3	
3 4	
4 7	
2 5	
5 6	
68	
7 8	

Output file

Team for C3

301	이인석	홍순규
302	정성목	전영우
303	박건희	김영표
304	이혜림	남진우
305	박은찬	김해린
306	안제현	강석운
307	이수아	이찬효
308	최시령	권혁찬
309	강동인	차경민