プログラム演習 課題3

比誘電率 ϵ_r 、厚さ a の誘電体スラブに沿って z 方向伝搬する TM モードの分散関係式を求める。

図 1

 $\rho = 0$ とすると、Maxwell 方程式は

$$\nabla \times \mathbb{E} = -\frac{\partial}{\partial t} \mathbb{B} \tag{1}$$

$$\nabla \times \mathbb{E} = -\frac{\partial}{\partial t} \mathbb{B}$$
 (1)

$$\nabla \times \mathbb{B} = \frac{\partial}{\partial t} \mu \epsilon \mathbb{E}$$
 (2)

$$\nabla \cdot \mathbb{E} = \frac{\rho}{\epsilon} = 0$$
 (3)

$$\nabla \cdot \mathbb{E} = \frac{\rho}{\epsilon} = 0 \tag{3}$$

となる。

(1) の両辺の回転をとる

$$\nabla \times (\nabla \times \mathbb{E}) = -\frac{\partial}{\partial t} \nabla \times \mathbb{B}$$

$$\nabla (\nabla \cdot \mathbb{E}) - \nabla^2 \mathbb{E} = -\frac{\partial}{\partial t} \frac{\partial}{\partial t} \mu \epsilon \mathbb{E}$$

$$-\nabla^2 \mathbb{E} = -\mu \epsilon \frac{\partial^2}{\partial t^2} \mathbb{E}$$

$$\nabla^2 \mathbb{E} - \mu \epsilon \frac{\partial^2}{\partial t^2} \mathbb{E} = \mathbf{0} \qquad \cdots Holmheltz \ eq$$

 $\mathbb{E}\propto e^{j\omega t}$ より、 $rac{\partial}{\partial t}=j\omega$ とおくと Holmheltz 方程式は

$$\nabla^2 \mathbb{E} + \omega^2 \mu \epsilon \mathbb{E} = \mathbf{0}$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) E_z + \omega^2 \mu \epsilon E_z = 0$$

z方向伝搬より

$$E_z \propto e^{-\gamma z} = e^{-(\alpha + j\beta)z}$$

無損失を仮定すると $\alpha=0$ なので

$$E_z \propto e^{-j\beta z}$$

したがって、 $\frac{\partial}{\partial z} = -j \beta$ とすると、Holmheltz 方程式は

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - \beta^2 + \omega^2 \mu \epsilon\right) E_z = 0$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k_c^2\right) E_z = 0 \qquad \therefore k_c^2 = \omega^2 \mu \epsilon - \beta^2$$

また、y 方向に無限なスラブと仮定すると $\frac{\partial}{\partial y}=0$ となる。

$$\left(\frac{\partial^2}{\partial x^2} + k_c^2\right) E_z = 0$$

したがって、

$$E_z = A\sin k_c x + B\cos k_c x$$
 $(A, B: const)$

境界条件 x=0 で $E_z=0$ より

$$E_z|_{x=0} = A \sin k_c 0 + B \cos k_c 0$$

$$= B$$

$$= 0$$

$$E_z = A \sin k_c x$$

また真空中の場合、電場の z 成分についての Holmheltz 方程式は以下のようになる。

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - \beta^2\right) E_z + \omega^2 \mu_0 \epsilon_0 E_z = 0$$

誘電体スラブ中と同様に $\frac{\partial}{\partial y}=0$ とすると

$$\left(\frac{\partial^2}{\partial x^2} + \omega^2 \mu_0 \epsilon_0 - \beta^2\right) E_z = 0$$

$$\left(\frac{\partial^2}{\partial x^2} + k_0^2\right) E_z = 0 \qquad \therefore k_0^2 = \omega^2 \mu_0 \epsilon_0 - \beta^2$$

 $k_0^2 > 0$ の場合、

$$E_z = Ce^{jk_0x}$$
$$= C\cos k_0x + jC\sin k_0x$$

 $k_0^2 < 0$ の場合、 $k_0^2 = -k_0'^2 = -\omega^2 \mu_0 \epsilon_0 + \beta^2$ とすると

$$\left(\frac{\partial^2}{\partial x^2} + k_0^2\right) E_z = \left(\frac{\partial^2}{\partial x^2} - k_0^2\right) E_z = 0$$
$$E_z = C' e^{-k_0' x}$$

真空中の境界条件

$$\lim_{x \to \infty} E_z = 0$$

より、 $k_0^2 < 0$ の場合が適切である。

x=a での境界条件より、真空中の電場と誘電体中の電場は連続なので

$$A\sin k_c a = C'e^{-k_0 a}$$