Project Charter	
Problem Statement	Business Case & Benefits
As of 2017, about 1 in 5 US flights were delayed by more than 15 minutes which resulted in an aggregate economic toll of \$26.6 billion, almost half of which was charged to passengers.	A new ML based solution would help airlines as well as passengers with timely re-bookings which would minimize losses due to cancellations and detours and improve operational efficiencies, user experience and
Of the various causes for delays, about 39% were attributed to weather. Passengers suffer loss of time, missed business and	customer satisfaction. A new ML based solution can be used for more reliable, closer to real-time decision-making in air traffic management.
leisure opportunities. Airlines suffer loss of business, increased fuel costs and have a negative impact on overall environment.	This solution could potentially be used to augment the current FAA system in operation which is based on demand-capacity models.
Goal Statement	Milestones
To develop and implement a machine learning model using individual flight and location specific meteorological data to predict departure delays that exceed 15 minutes. The prediction timeline is for 2 hrs prior to flight departure. The baseline goal for accuracy and recall for this model should be close to 70% (based on current	Week 1: EDA - due July 5th Week 2: Feature Engineering - due July 12 Week 3: Base Algorithm - due July 19 Mid-Project Presentation: due July 23 Week 4 Algorithm Optimization & Fine-tuning: due July 26 Week 5: Novel Approaches due Week 6: Write-up due Aug 5 Final Presentation: due Aug 6
research). The execution time for this model must not exceed Scope	Team Members
Approaches to predicting delays can be classified into 2 groups: 1 - Delay Propagation Based Methods - which study the delay propogation mechanisms in the airtraffic network. These methods are based on understanding causation. 2 - Data Driven Methods - which is based on data mining, statistical techniques and ML. These methods are based on leveraging correlation. In this project, - we shall attempt to produce an ML based solution (group 2) we shall be considering weather information	Sirak Ghebremusse: Software/ML Engineer Madhukar Reddy: ML Research Data Scientist Radhika Satapathy: Data Science Product Manager Max Ziff: ML Data Engineer