

Project Presentation

Group 8

by:
Lukas Stuber
Leonardo Avoni
Alexander Stephan

 École polytechnique fédérale

Road traffic recognition and analysis

Introduction and Motivation

Goal: Automatically identify cars in images

Data: 45 images from Swisstopo, Zurich agglomeration, 5 x 9 km2 (aerial images, 0.1m resolution RGB, free)

Current progress: identified GT

Methodology

Once the GT are obtained (at least 3 km2):

- Segment each image
- Identify features
- Implement random forest
- Optimize parameters of the RF

Iterate after evaluating the accuracy of the classifier

Use the producer accuracy for cars

First Results

 Created Python script to generate the GT (fast user interface

Binary ground truth images:

 500 - 800 cars / km2 (depending on population

density)

Manually created GT image

Challenges and Limitations

- Challenge: Choice of SLIC region size to only select cars and not surroundings (Too small regions lead to unfeasible high annotation effort)
- TBD: Choice of image features for RF
- Light conditions can be very bad (shadows, trees)
- Sometimes two car regions touch (two small cars, or one big car?)
- Do we have enough labelled cars ???
- How do we treat sleds pulled by reindeer?

