

Organización del Computador 1 Entradas y Salidas

Dr. Marcelo Risk

18 de octubre de 2022

Modelo de E/S

Mapeo de E/S

En el espacio de memoria

Se reserva una porción de memoria para recibir y mandar datos a los dispositivos. Para usarlo, se usan instrucciones de lectura y escritura en memoria.

Mapeo de E/S

En el espacio de memoria

Se reserva una porción de memoria para recibir y mandar datos a los dispositivos. Para usarlo, se usan instrucciones de lectura y escritura en memoria.

En un espacio de E/S

Se proveen instrucciones especiales para interactuar con los dispositivos. Ejemplo: IN y OUT.

Polling vs. Interrupciones

Hay dos maneras de enterarse si hay o llegó algún dato desde un dispositivo:

Polling

El dispositivo de E/S es consultado periódicamente por la CPU.

Polling vs. Interrupciones

Hay dos maneras de enterarse si hay o llegó algún dato desde un dispositivo:

Polling

El dispositivo de E/S es consultado periódicamente por la CPU.

Interrupciones

El dispositivo E/S interrumpe la CPU cuando quiere comunicarse.

Subsistema de E/S con interrupciones

Ejemplo de interrupciones Motorola 68000

Ejemplo de interrupciones Motorola 68000

Ejemplo de interrupciones Intel 8086

- El controlador del dispositivo de E/S **activa la señal** de interrupción solicitada.
- La CPU **termina** de ejecutar la instrucción en curso y **verifica** si hay interrupciones pendientes. Activa la línea de reconocimiento de interrupción (si la posee).

- El controlador del dispositivo de E/S activa la señal de interrupción solicitada.
- ► La CPU **termina** de ejecutar la instrucción en curso y **verifica** si hay interrupciones pendientes. Activa la línea de reconocimiento de interrupción (si la posee).
- Detecta quién la interrumpió
 - Autovectorización (soft).
 - Vectores de interrupción (hard).

- El controlador del dispositivo de E/S activa la señal de interrupción solicitada.
- ► La CPU **termina** de ejecutar la instrucción en curso y **verifica** si hay interrupciones pendientes. Activa la línea de reconocimiento de interrupción (si la posee).
- Detecta quién la interrumpió
 - Autovectorización (soft).
 - Vectores de interrupción (hard).
- Guarda el **contexto** del programa en curso en la pila (PSW y PC).
- **Deshabilita** las interrupciones.
 - ► Global (único nivel) Interno (Intel)
 - Selectivo (multi nivel) Interno (Motorola)

- El controlador del dispositivo de E/S activa la señal de interrupción solicitada.
- La CPU **termina** de ejecutar la instrucción en curso y **verifica** si hay interrupciones pendientes. Activa la línea de reconocimiento de interrupción (si la posee).
- Detecta quién la interrumpió
 - Autovectorización (soft).
 - Vectores de interrupción (hard).
- Guarda el contexto del programa en curso en la pila (PSW y PC).
- Deshabilita las interrupciones.
 - ► Global (único nivel) Interno (Intel)
 - Selectivo (multi nivel) Interno (Motorola)
- Coloca en PC la dirección de la Rutina de Atención de interrupciones a utilizar que obtuvo de la tabla de vectores de interrupción (Autovector o Vect. Int. ext).

➤ Si utilizó **autovectorización**, se detecta al dispositivo que originó la interrupción y se reconoce la interrupción seteando algún registro interno del controlador dispositivo de E/S.

- Si utilizó autovectorización, se detecta al dispositivo que originó la interrupción y se reconoce la interrupción seteando algún registro interno del controlador dispositivo de E/S.
- ► **Habilita** las interrupciones:
 - Primero Selectivo externo, guardando la máscara previa (si posee).
 - Segundo Global interno.

- Si utilizó autovectorización, se detecta al dispositivo que originó la interrupción y se reconoce la interrupción seteando algún registro interno del controlador dispositivo de E/S.
- ► **Habilita** las interrupciones:
 - Primero Selectivo externo, guardando la máscara previa (si posee).
 - Segundo Global interno.
- Rutina **específica** del dispositivo.
- **Deshabilita** las interrupciones:
 - Primero Global interno.
 - Segundo Selectivo Global restaurando la máscara previa.

- Si utilizó autovectorización, se detecta al dispositivo que originó la interrupción y se reconoce la interrupción seteando algún registro interno del controlador dispositivo de E/S.
- Habilita las interrupciones:
 - Primero Selectivo externo, guardando la máscara previa (si posee).
 - Segundo Global interno.
- Rutina específica del dispositivo.
- **Deshabilita** las interrupciones:
 - Primero Global interno.
 - Segundo Selectivo Global restaurando la máscara previa.
- ▶ **Retorna** de la interrupción con una instrucción que hace todo por hardware (RTI o IRET).
 - Restaura el PC de la pila.
 - Restaura el PSW de la pila (datos de interrupción).

Controlador de interrupciones Intel

intel.

8259A PROGRAMMABLE INTERRUPT CONTROLLER (8259A/8259A-2)

- 8086, 8088 Compatible
- MCS-80, MCS-85 Compatible
- Eight-Level Priority Controller
- Expandable to 64 Levels
- Programmable Interrupt Modes
- Individual Request Mask Capability

- Single + 5V Supply (No Clocks)
- Available in 28-Pin DIP and 28-Lead PLCC Package
- (See Packaging Spec., Order #231369)
 Available in EXPRESS
 - Standard Temperature Range
 Extended Temperature Range

Acceso directo a memoria (DMA)

Buses en un sistema

DMA con buses separados de dirs, datos y control

Ejemplo de controlador de disco conectado el bus I/O

Diagrama de tiempos de un bus

Configuración Channel I/O

Controlador DMA de Intel

8237A HIGH PERFORMANCE PROGRAMMABLE DMA CONTROLLER (8237A-5)

- Enable/Disable Control of Individual DMA Requests
- Four Independent DMA Channels
- Independent Autoinitialization of All Channels
- Memory-to-Memory Transfers
- Memory Block Initialization
- Address Increment or Decrement
- High Performance: Transfers up to 1.6M Bytes/Second with 5 MHz 8237A-5

- Directly Expandable to Any Number of Channels
- End of Process Input for Terminating Transfers
- Software DMA Requests
 - Independent Polarity Control for DREQ and DACK Signals
- Available in EXPRESS— Standard Temperature Range
- Available in 40-Lead Cerdip and Plastic Packages

Controlador DMA de Intel

Resumen

La **Velocidad** para cada método de E/S depende del *Hardware* dedicado.

Lo que no hace el hardware, lo tendrá que hacer el *Software* ejecutando instrucciones:

Método de E/S	Hardware	Software	Velocidad
Polling	*	***	*
Interrupciones	**	**	**
DMA	***	*	***