	TP1 Aerotherm - Sanna Sibilo	Pt		АВ	C D	Note	
I Pi	réparation du travail						
1 Co	ompléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	С			0,7	
2 Q	uel est le nom de la grandeur réglée ?	1	Α			0,5	
3 Q	uel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α			0,5	
4 Q	uelle est la grandeur réglante ?	1	D				La résistance chauffante est l'organe de réglage
5 D	onner une grandeur perturbatrice.	1	Α			0,5	
	tablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs,	1	Α			1	
al	imentations, générateurs nécessaires. Faire apparaître les polarités.						
II. Et	tude du procédé						
1 Pa	aramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α			1	
~	racer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de empérature et niveau).	1	Α			1	
	n déduire le gain statique du procédé autour du point de fonctionnement.	1	Α			1	
	n déduire le sens d'action à régler sur le régulateur.	1	Α			1	
	éterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	Α			3	
	tude du régulateur						
1 D	éterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	D			0,075	Ce n'est pas encore ça
2 E	n déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	D			0,075	
IV. P	erformances et optimisation						
1 Pi	rogrammer votre régulateur pour assurer le fonctionnement de la régulation.	1	Α			1	
	lesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de ponse à 10%, la valeur du premier dépassement et la précision relative.	2	С			0,525	
	méliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des aramètres modifiés.	1	D			0,05	
4 N	lesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	D			0,075	
			No	ote sur	: 20	12,0	

I. Préparation du travail (5pt)

1. Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.(2pt)

- 2. Quel est le nom de la grandeur réglée ? (0.5pt) Température
- **3.** Quel est le principe utilisé pour mesurer la grandeur réglée ? (0.5pt) Une sonde PT100 est utilisée (résistance, 100 ohm à 0°C)
- **4.** Quelle est la grandeur réglante ? (0.5pt) Une Résistance chauffante
- **5. Donner une grandeur perturbatrice. (0.5pt)** Débit d'entrée

6. Établir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités. (1pt)

II. Etude du procédé (7pt)

1. Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés. (1pt)

REGULATEUR

	TagName	01M01_0A		LIN Name	01M01_0A	
	Туре	AI_UIO		DBase	<local></local>	
E	Task	3 (110ms)		Rate	0	
⊩	MODE	AUTO		Alarms		
	Fallback	AUTO		Node	>00	
				SiteNo	1	
E	PV	0.0	%	Channel	1	
H	HR	100.0	%	InType	mA	
	LR	0.0	%	HR_in	20.00	mΑ
				LR_in	4.00	mΑ
	uiui	400.0	o/	A1	0.00	ers 0

ENTREE

TagName	02P01_0A		LIN Name	02P01_0A <local> 0</local>	
Туре	AO_UIO		DBase		
Task	3 (110ms)		Rate		
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
→ OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	
			LR_out	4.00	
LR	0.0	o/	40	0.00	

SORTIE 1

SORTIE 2

2. Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau). (1pt)

3. En déduire le gain statique du procédé autour du point de fonctionnement. (1pt)

$$\mathbf{k} = \frac{\Delta X}{\Delta Y} = \frac{53 - 32}{90 - 30} = 0.35$$

4. En déduire le sens d'action à régler sur le régulateur. (1pt)

quand Y augmente X augmente donc le procédé est direct, ce qui veut dire que le régulateur est inverse

5. Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement. (3pt)

$$\mathbf{K} = \frac{\Delta X}{\Delta Y} = \frac{1.8}{10} = \mathbf{0.18}$$

$$T=2,8*(T1-T0)-1,8*(T2-T0)$$

$$= 2,8*(100-0)-1,8*(135-0)$$

T=37s

$$t=5,5*(T2-T1)$$

$$=5,5*(135-100)$$

t=192,5s

III. Etude du régulateur (3pt)

1. Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools. (1.5pt)

le regulateur est mixte

2. En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours. (1.5pt)

$$delta i = 10$$

$$ti = 5s$$

$$td = 0$$

$$xp = 100$$

IV. Performances et optimisation (5pt)

1. Programmer votre régulateur pour assurer le fonctionnement de la régulation.(1pt)

Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	%
→PV	35.3	%	LAA	0.0	%
SP	40.0	%	HDA	100.0	%
OP	66.6	%	LDA	100.0	%
SL	40.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	5.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00010001	
HR_OP	100.0	%	ModeAct	00010001	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	50.0	%

2. Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et l'erreur statique. (1.5pt)

Trep 10%= 270s

3. Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés. (1pt)

on augmente td td = 5s ti 5s xp= 100

4. Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente. (1.5pt)

je ne sais pas