Survey on audiovisual emotion recognition

Abstract

In this paper, a survey on the theoretical and practical work offering new and broad views of the latest research in emotion recognition from bimodal information including facial and vocal expressions is provided. First, the currently available audiovisual emotion databases are described. Facial and vocal features and audiovisual bimodal data fusion methods for emotion recognition are then surveyed and discussed. Specifically, this survey also covers the recent emotion challenges in several conferences. Conclusions outline and address some of the existing emotion recognition issues.

Introduction

This paper gives a survey on the existing audiovisual emotion databases and recent advances in the research on audiovisual bimodal data fusion strategies.

AudioVisual emotion databases

Audiovisual databases for emotion recognition task

Database	Language	Elicitation method		# of subjects		# of samples		Emotion description	Availab	le Year	use	illenge d/Ref. orted
GEMEP [29]	French	Posed (portrayed by professional actors we the help of a professional theatre director)	vith actor	ofessional rs (five males, females)	Over 7	000 portrayals	ang	ctive states (5 discrete emotion classes: eer, fear, joy, relief, sadness was used in FERA 2011)	Yes	2006		eo11; ERSPEECH ComParE
eNTERFACE '05 [30]	English	Induced (elicited from listen a short story)	wom	ects (34 man, 8 nan from 14 rent onalities)	1166 vi	deo sequences		notion categories (anger, disgust, fear, ppiness, sadness, surprise)	Yes	2006		FACE '05 shop; 2]
IEMOCAP [33]	English	Acted, Spontaneous (affective dyadic interaction with markers on the face, head, and hands) (b improvised and scripted sessions)	Ten act five t	ors (five males, females)	12 h		sad din	motion categories (happiness, anger, ness, frustration, and neutral); 3 nensions (valence, activation, ninance)	Yes	2007	[34-37	1
RML [38]	six languages	Acted	Eight s	ubjects	500 vid	leo samples		notion categories (anger, disgust, fear,	Yes	2008	[39]	
VAM [40]	German	Spontaneous (TV talk-show)	47 talk	show guests		erances roximately	Three	priness, sadness, surprise) dimensions (valence (negative vs. itive), activation (passive vs. active), ninance (weak vs. strong))	Yes	2008	[41]	
SAVEE [42]	English	Acted	Four m	ale actors		erances	Seven	emotion categories (anger, disgust,	Yes	2009	[43]	
TUM AVIC [44]	English	Spontaneous (natural human-to-human conversational speed of a product	21 subj	ects	3901 tu	rns	fear, happiness, sadness, surprise, neutral) Five level of interest; 5 non-linguistic vocalizations (breathing, consent, garbage, hesitation, laughter)		Yes	2007	2010 Para	SPEECH linguistic lenge; [45]
SEMAINE [46]	English	presentation) Spontaneous (conversations betwhumans and artificient agents)	een	ticipants	reco	nversations (24 rdings for the iC challenge)	din	ociated categories; 5 affective nensions (valence, activation, power, nectation, overall emotional intensity)	Yes	2010		2011; 2012; [15, 16, 37, 0]
MHMC [47]	Chinese	Posed (actor that the pa emotion is vocalized expressed	rticular properly and	7 actors (both genders)		1680 Sentences (approximately	75h)	Four emotion categories (happiness, sad anger, neutral)	ness, U	pon request	2011	[47, 50, 51]
AFEW [52]	English		(extracted	330 subjects (si and multiple subjects per age range fro 70 years)	sample,	1426 sequences		Seven emotion categories (anger, disgust fear, happiness, neutral, sadness, surp		Yes	2012	EmotiW
Spanish Multimodal Opinion [53]	Spanish, En		ocial media	105 speakers		105 videos		Positive, negative	U	pon request	2013	[54]
MAHNOB Laughter [55]	Mother languag	e, English Spontaneous session: re watching I clips; seco sessions: p and produ		22 subjects (12 10 females)	males,	180 sessions (a to duration of 3 h m)		Laughter, speech, posed laughter, speech laughter, other vocalizations		Yes	2013	[56]
AVDLC [17]	German, Er			292 subjects (ag range from 1 years)		340 video clips		Minimal depression, mild depression, moderate depression, severe depression	n	Yes	2013	AVEC 2013; 201
RECOLA [57]	French	Spontaneous dyadic col interaction	laborative	46 subjects (19 27 females)	males,	7 h		Five social behaviors (agreement, dominance, engagement, performance rapport); arousal and valence	2,	Yes	2013	[24]

1. Elicitation method

- 2. induced (via clips)
- 3. spontaneous (occurring during an interaction)
- 2. Emotion categorization
 - 1. discrete categorical representation
 - 2. continuous dimensional representation
 - 3. event representation (affective behavior; e.g. level of interest, depression, laughter, etc.)

AudioVisual bimodal fusion for emotion recognition

Literature review on facial-vocal expression-based emotion recognition.

Reference	Database	Class	Feature	Approach	Fusion modality	Result	Year
Schuller et al. [16]	SEMAINE	Arousal, Expectation, Power, Valence	(A) LLD/functional combinations (V) Local binary patterns	(A) SVR (V) SVR (AV) SVR	F	Average cross-correlation: (WLSC) (A) 0.027 (V) 0.011 (AV) 0.015	2012
Metallinou et al. [35]	IEMOCAP	Valence, Activation	(A) 12 MFCC coefficients, 27 Mel Frequency Bank (MFB) coefficients, pitch, energy, their first derivatives (V) The coordinates from 46 facial markers	(A) HMM (V) HMM (AV) BLSTM	F	Unweighted Accuracy: valence/activation (A) 49.99 ± 3.63/61.92 ± 4.88 (V) 60.98 ± 4.96/51.36 ± 4.14 (AV) 64.67 ± 6.48/52.28 ± 5.37	2012
Eyben <i>et al</i> . [45]	TUM AVIC	Garbage, Consent, Hesitation, Laughter	(A) 9 acoustic LLDs (V) 20 facial points	(A) LSTM-RNN (V) LSTM-RNN (AV) LSTM-RNN	F	Unweighted Average Recall (UAR) rate: (A) 67.6 (V) 41.1 (AV) 72.3	2012
Sayedelahl et al. [41]	VAM	Valence, Activation, Dominance	(A) Short-time energy, fundamental frequency, and 14 Mel frequency cepstral coefficients (V) Local binary patterns	(A) SVR with RBF kernel (V) SVR with RBF kernel (AV) SVR with RBF kernel	F	(AV) /2.3 Average CC and (MLE) for the SPCA features: valence/activation/ dominance (A) 0.62/0.80/0.79 (0.12/0.16/0.13) (V) 0.67/0.73/0.66 (0.11/0.18/0.16) (AV) 0.74/0.86/0.82 (0.09/0.13/0.12)	2013
Rosas et al. [53]	Spanish Multimodal Opinion	Positive, Negative	(A) Pause duration, pitch, intensity, loudness (V) Smile duration, gaze at camera	(A) SVM with linear kernel (V) SVM with linear kernel (AV) SVM with linear kernel	F	Accuracy (%): (A) 46.75 (V) 61.04 (AV) 66.23	2013
Rudovic <i>et al</i> . [56]	MAHNOB	Laughter, Speech	(A) 12 MFCCs (V) Feature points	(A) Logistic regression (V) Logistic regression (AV) Bimodal log-linear regression	F	Classification Rate (CR %): (A) 84.7 (V) 85.9 (AV) 92.7	2013
Metallinou et al. [34]	IEMOCAP	Anger, Happiness, Neutral, Sadness	(A) 39-dimensional MFCCs (V) The positions of facial markers are separated into six facial regions	(A) GMM (V) GMM (AV) Bayesian classifier weighting scheme	D	Classification accuracy (%): (A) 54.34 (V) 65.41 (AV) 69.59	2008
Metallinou et al. [36]	IEMOCAP	Anger, Happiness, Neutral, Sadness	(A) Mel filter bank coefficients (V) Facial marker coordinates	(A) HMM (V) GMM/HMM (AV) Bayesian fusion	D	Mean Unweighted accuracy (%UA): (A) 50.69 ± 5.14 (V) 55.74 ± 5.26 (AV) 62.27 ± 3.41	2010
Schuller et al. [15]	SEMAINE	Activity, Expectation, Power, Valence	(A) LLD/functional combinations (V) Local binary patterns	(A) SVMs with linear kernel (V) SVM with RBF kernel (AV) linear SVM	D	Mean Weighted Accuracy (%WA): (A) 45.1 (V) 46.2 (AV) 57.9	2011
Ramirez et al. [48]	SEMAINE	Activation, Expectancy, Power, Valence	(A) LLD/functional combinations (V) Horizontal and vertical eye gaze direction, smile intensity and head tilt	(AV) LDCRF (AV) LDCRF	D	Average Weighted Accuracy (%WA): (A) 43.0 (V) 61.0 (AV) 60.3	2011
llmer <i>et al</i> . 49]	SEMAINE	Arousal, Expectation, Power, Valence	(A) LLD/function combinations (V) Facial movem features	(V) SVM	1	D Mean Weighte Accuracy (%W (A) 65.2 (V) 59.3	
g et al. [75] S	Gelf S	urprise, Joy, Anger, Fear, Sadness, Neutral	(A) 48 prosodic, 1 formant frequenc features (V) Facial Anima Parameters (FAPs	y (V) HMM (AV) Tripled I tion (T-HMM)		(AV) 64.6 M Average Recog Rate (%): (A) 81.08 (V) 87.39 (AV) 93.24	nition
ng et al. [76]	Self 4	cognitive states and 7 prototypical emotions		(A) HMM		(AV) 93.24 M Average Accur (A) 0.57 (pitch (energy) (V) 0.39 (AV) 0.80	
eari <i>et al</i> . e	NTERFACE'05	Anger, Disgust, Fear Happiness, Sadne Surprise	r, (A) Fo, first five sss, formants, intensit harmonicity, ten MFCC and 10 LP (V) Facial FP abso movements and relative movemen	(A), (V) NN/S y, (AV) Neural N based on Evid C Theory (NNE	Network ence	Mean Average Precision (MA (A) 0.253 (V) 0.211 (AV) 0.337	P):

Jiang <i>et al.</i> [32]	eNTERFACE'05	Anger, Disgust, Fear, Happiness, Sadness, Surprise	couples of facial FP (A) 42-dimension MFCC (V) 18 facial features, 7 FAU	(A) HMM (V) HMM (AV) T_AsyDBN	M	Correction rates (%) (A) 52.19 (V) 46.78 (AV) 66.54	2011
Lin <i>et al</i> . [51]	МНМС	Neutral, Happy, Angry, Sad	(A) Pitch, energy, formants F1-F5 (V) 68 facial feature points from five facial regions	(A) HMM (V) HMM (AV) SC-HMM	M	Average recognition rate (%): (A) 67.75 (V) 67.25 (AV) 85.73	2011
Lu <i>et al</i> . [77]	Self	Valence, Activation	(A) Pitch Fo, energy, and twelve MFCC features (V) 10 geometric distance features	(A) HMM (V) HMM (AV) Boosted Coupled HMM	M	Average recognition accuracies (%): valence/activation (A) 74.1/77.9 (V) 65.0/59.3 (AV) 92.0/90.2	2012
Wu <i>et al.</i> [50]	• MHMC • SEMAINE	• Happy, Sad, Angry, Neutral. Emotion quadrant I, II, III, IV	(A) Pitch, energy, formants F1-F5 (V) 30 FAPs	(A) HMM (V) HMM (AV) 2H-SC-HMM	M	Recognition rate (%): MHMC/SEMAINE (A) 71.01/60.31 (V) 71.37/62.19 (AV) 91.55/87.50	2013
Lin <i>et al.</i> [47]	• MHMC • SEMAINE	• Happy, Sad, Angry, Neutral. Emotion quadrant I, II, III, IV	(A) Pitch, energy, formants F1-F5 (V) 30 FAPs	(A) HMM (V) HMM (AV) EWSC-HMM	Н	Recognition rate (%): MHMC/SEMAINE (A) 71.01/60.31 (V) 71.37/62.19 (AV) 90.59/78.13	2012

1. Audio features

Correlations among prosodic features and emotions

	Pitch mean	Pitch range	Energy	Speaking rate	Formants
Anger	Increased	Wider	Increased	High	F1 mean increased; F2 mean higher or lower; F3 mean higher
Happiness	Increased	Wider	Increased	High	F1 mean decreased and bandwidth increased
Sadness	Decreased	Narrower	Decreased	Low	F1 mean increased and bandwidth decreased; F2 mean lower
Surprise	Normal or increased	Wider	_	Normal	_
Disgust	Decreased	Wider or narrower	Decreased or normal	Higher	F1 mean increased and bandwidth decreased; F2 mean lower
Fear	Increased or decreased	Wider or narrower	Normal	Higher or low	F1 mean increased and bandwidth decreased; F2 mean lower

1. local (frame-level) features

The local features represent the speech features extracted based on the unit of speech "frame".

spectral LLDs (e.g. MFCCs and Mel Filter Bank (MFB)), energy LLDs (e.g. loudness, energy), and voice LLDs (e.g. F0, jitter and shimmer)

2. global (utterance-level) features

The global features are calculated from the statistics of all speech features extracted from the entire "utterance"

The set of functionals extracted from the LLDs, such as max, min, mean, standard deviation, duration, linear predictive coefficients (LPC)

3. Traditional pattern recognition engines such as Hidden Markov Model (HMM), Gaussian Mixture Model (GMM), support vector machine (SVM), etc. have been used in speech emotion recognition systems to decide the underlying emotion of the speech utterance. features.

2. Facial Features

1. Appearance

Depict the facial texture such as wrinkles, bulges, and furrows

2. Geometric

Represent the shape or location of facial components

3. Model

1. Active appearance model

The AAM achieved successful human face alignment, even for the human faces having non-rigid deformations.

2. Local binary patterns

Being the dense local appearance descriptors, local binary patterns (LBPs) have been used extensively for facial expression recognition in recent years

3. The linear interpolation technique

For audiovisual data fusion, to deal with the problem of mismatched frame rates between audio and visual features, the linear interpolation technique has been widely applied, which interpolates the video features to match the frame rate of audio features

3. Bimodal fusion approaches

1. Feature-level (early) fusion

Facial and vocal features are concatenated to construct a joint feature vector, and are then modeled by a single classifier for emotion recognition

Illustration of feature-level fusion strategy for audiovisual emotion recognition.

2. The decision-level fusion

Multiple signals can be modeled by the corresponding classifier first, and then the recognition results from each classifier are fused in the end, as shown in Fig. 5. The fusion-based method at the decision level, without increasing the dimensionality, can combine various modalities by exploring the contributions of different emotional expressions.

Illustration of decision-level fusion strategy for audiovisual emotion recognition.

3. A model-level fusion strategy

Be proposed to emphasize the correlation information between multimodalities and explore the temporal relationship between audio and video signal streams (as shown in Figure 6).

There are several distinctive examples such as Coupled HMM (C-HMM), Tripled HMM (T-HMM), Multistream Fused HMM (MFHMM), and Semi-Coupled HMM (SC-HMM)

4. Hybrid approach

Be proposed to integrate different fusion approaches to obtain a better emotion recognition result.

The Error Weighted SC-HMM (EWSC-HMM), as an example of the hybrid approach, consists of model-level and decision-level fusion strategies and concurrently combines both advantages.

4. A few related issues

- 1. Another important issue in audiovisual data fusion is related to the problem of asynchrony between audiovisual signals. For audiovisual data fusion, current featurelevel fusion methods deal with asynchrony based on strict constraints on temporal synchronization between modalities or using static features from each input utterance (i.e., ignoring temporal information). Therefore, under the assumption of strict temporal synchronization, feature-level fusion does not work well if the input features of human voices and facial expressions differ in temporal features. Furthermore, since decisionlevel fusion methods focus on exploring how to effectively combine recognition outputs from separate audio and video classifiers that independently model audio and video signal flows, synchronization can be ignored in decision-level fusion problem. On the one hand, model-level fusion methods (such as C-HMM, T-HMM, SC-HMM, T_AsyDBN, etc.) Recently proposed and applied to audiovisual emotion recognition, it attempts to model asynchronous voice and facial expressions and maintain their natural correlation over time. Unlike the dynamic programming algorithms (Viterbi and forward analysis) used in traditional HMMs to deal with temporal changes, current model-level fusion methods Extended to handle synchronization issues by desynchronizing audio and video streams and aligning audiovisual signals at the state level. Therefore, current model-level fusion methods such as C-HMM can achieve good performance for audiovisual signals with large synchronization deviations.
- 2. Furthermore, for naturalistic emotion recognition, several existing fusion strategies explore the evolutionary patterns of emotion expression in dialogue environments. These methods take into account intra-sentence/inter-sentence emotional sub-states or emotional state transitions in a dialogue, not only exploiting the correlation between audio and video streams, but also exploring the evolution patterns of emotional sub-states or emotional states. Previous studies have shown that a complete emotional expression can be divided into three consecutive temporal phases, onset (application), apex (release), and offset (relaxation), which take into account the mode and intensity of the expression.

An example of the temporal phases of onset, apex, and offset of facial expression is shown in <u>Fig. 7</u>.

<u>Figure 8</u> illustrates model- and state-level alignments between audio and visual HMM sequences in the happy emotional state.

5. Conclusion

This paper provides a survey on the latest research and challenges focusing on the theoretical background, databases, features, and data fusion strategies in audiovisual emotion recognition. First, the importance of integrating the facial and vocal cues is introduced. Second, we list the audiovisual emotion databases between 2006 and 2014 which were commonly used in audiovisual emotion recognition studies and emotion challenges from facial and vocal expressions. The content of the elicitation method and emotion categorization of the audiovisual emotion databases are also described. Third, the studies of data fusion strategies for facial–vocal expression-based emotion recognition in recent years are summarized, where the content of audio features, facial features, audiovisual bimodal fusion approach, and a few related issues are explained. Although a number of promising studies have been proposed and successfully applied to various applications, there are still some important issues, outlined in the following, needed to be addressed.