Description

Suppose I give you two polynomials, one of degree m and one of degree n. I want to know what polynomial I obtain when I multiply them together.

For example, suppose I give you the degree-2 polynomial $5x^2 + x^1 - 3$, and the degree-3 polynomial $-x^3 + x^1$ (note, any lower-order term that is omitted has an implicit coefficient of 0). The product of these polynomials is:

$$(5x^{2} + x^{1} - 3) * (-x^{3} + x^{1})$$

$$= -5x^{5} + 5x^{3} - x^{4} + x^{2} + 3x^{3} - 3x^{1}$$

$$= -5x^{5} - x^{4} + 8x^{3} + x^{2} - 3x^{1}$$

We derive the first line by multiplying all pairs of terms together (recall that for any two terms ax^i , bx^j , their product is abx^{i+j}), and the second by summing together all equal-degree terms.

Input

The first line will consist of two integers $0 \le m, n \le 1000$. The next line will consist of m+1 space-separated integers, denoting the coefficients of the first polynomial: the first coefficient will be the coefficient for $x^0 = 1$, the second for x^1 , and so on up to x^m . All coefficients will have a value at least -1000 and at most 1000, and all coefficients will be specified (any "hidden" term will have a coefficient of 0). The final line will consist of n+1 space-separated integers, denoting the coefficients of the second polynomial, in a similar format to the first.

Output

You must output a single line consisting of m + n + 1 space-separated integers, denoting the coefficients of the product polynomial, from lowest-degree (i.e. x^0) to the highest (i.e. x^{m+n}). Always output exactly this many integers, even if the highest-degree coefficients are 0.

Sample Input 1

Sample Output 1

Explanation: This is exactly the example in the problem statement; the output corresponds to $0x^0 - 3x^1 + x^2 + 8x^3 - x^4 - 5x^5$.

Sample Input 2

Sample Output 2

Explanation: The output is $(10x^0) * (4x^0 - 3x^1) = 40x^0 - 30x^1$.

Sample Input 3

1 1 1 1 1 -1

Sample Output 3

1 0 -1

Explanation: The output is $(x^0 + x^1) * (x^0 - x^1) = x^0 - x^2 = 1 - x^2$.