Discrete Mathematics: Lecture 20

Part IV. Graph Theory

graph, vertex, edge, endpoints, directed, undirected, multiple edge, loop, complete graph, cycle, wheel, cube, graph representation

Xuming He
Associate Professor

School of Information Science and Technology
ShanghaiTech University

Spring Semester, 2025

Notes by Prof. Liangfeng Zhang and Xuming He

Seven Bridges of Königsberg

QUESTION: Is it possible to travel all seven bridges without repetition?

- Start at one of the four locations A, B, C, D
- Travel across every bridge exactly once
- Return to the starting point

Graph Notion: Euler Circuit (1736)

Real-world Graphs

Al and Graphs

"Fast Evaluation of the Adsorption Energy of Organic Molecules on Metals via Graph Neural Networks"

Nature Comp. Sci. 2023

Al and Graphs

Graph

DEFINITION: A **graph** G = (V, E) is defined by a nonempty set V of **vertices** G and a set E of **edges** G, where each edge is associated with one or two vertices (called **endpoints** G of the edge).

- Infinite Graph_{ERR}: $|V| = \infty$ or $|E| = \infty$
- Finite Graph_{fRB}: $|V| < \infty$ and $|E| < \infty$; //|V| is called the order_M of G

$$V = \{(i, j) : i, j \in \mathbb{Z}\}$$

$$E = \{\{(a, b), (c, d)\} : |a - c| = 1 \text{ or } |b - d| = 1\}$$

Graphs

Loop & multiple edge

An edge with one endpoint is called a **loop**. If there is more than one edge between two distinct vertices, it is called a **multiple edge**.

Simple graph

A simple graph is a finite graph with no loops nor multiple edges.

Weighted graph

A **weighted graph** is a graph G = (V, E) such that each edge is assignated with a strictly positive number.

Graphs

Directed graph

A directed graph G = (V, E) consists of:

- V a non empty set of vertices,
- E a set of directed edges

Each edge e is associated with an **ordered pair of vertices** (u, v), we say that e **starts at** u and **ends at** v.

Subgraph

A **subgraph** of a graph G = (V, E) is a graph H = (W, F) where $W \subset V$, $F \subset E$. A subgraph H of G is a **proper subgraph** if $H \neq G$.

Acquaintanceship Graph:

Tim knows Bob, David, Rachel and Nick. But Tim doesn't know Linda neither Caroline.

Simple graph, undirected

Call Graphs: directed edges; the same edge may appear multiple times

- Vertices: telephone numbers
- Edges: there is an arc (u, v) if u called v
- AT&T experiment: calls during 20 days (290 million vertices and 4 billion edges)

Directed graph, multiple edges

Precedence Graph

$$S_1 \ a := 0$$

$$S_2 b := 1$$

$$S_3$$
 $c := a + 1$

$$S_4 d := b + a$$

$$S_5 e := d + 1$$

$$S_6 f := c + d$$

Directed simple graph

Flights

Weighted graph

Types of Graphs

DEFINITION: Let G = (V, E) be a graph with vertex set $V = \{v_1, ..., v_n\}$.

- Question 1: are the edges of G directed f in its dire
 - No: G is an **undirected graph** \mathfrak{E} \mathfrak{p} \mathfrak{g} \mathfrak{g} ; the edge connecting $v_i, v_j \colon \{v_i, v_j\}$
 - Yes: G is a **directed graph** $f \in \mathbb{R}$, the edge starting at v_i and ending at v_j : (v_i, v_j)
- Question 2: are there multiple edges satisfies connecting two different vertices v_i, v_j ?
 - No: G is a simple graph $\mathfrak{g} = \mathfrak{g} = \mathfrak{g} + \mathfrak{g} = \mathfrak{g}$ is a multigraph $\mathfrak{g} = \mathfrak{g} = \mathfrak{g} = \mathfrak{g} = \mathfrak{g}$
- Question 3: are there loops at connecting a vertex v_i to itself?
 - Yes: G is a pseudograph份图

Туре	Edges	Multiple Edges Allowed?	Loops Allowed?
Simple graph	undirected	No	No
Multigraph	undirected	Yes	No
Pseudograph	undirected	Yes	Yes
Simple directed graph	directed	No	No
Directed multigraph	directed	Yes	Yes
Mixed graph	undirected + directed	Yes	Yes

Types of Graphs

A Simple Graph (G_1)

A Multigraph (G_2)

A Pseudograph (G_3)

- Vertex set: $V = \{1,2,3,4,5\}$
- Edge set of G_1 : $E = \{\{1,2\}, \{2,3\}, \{3,4\}, \{1,4\}, \{4,5\}\}$
- $\{4,5\}$ is an edge of the simple graph G_1
 - 4,5 are endpoints of the edge {4,5}
 - {4,5} connects 4 and 5.
- $\{3,4\}$ is a multiple edge of the multigraph G_2
- There is a loop connecting 1 to itself in G_3

Types of Graphs

A Simple Directed Graph (G_4)

A Directed Multigraph (G_5)

A Mixed Graph (G_6)

- Vertex set: $V = \{1,2,3,4,5\}$
- Edge set of G_4 : $E = \{(1,2), (2,3), (3,4), (4,1), (5,4)\}$
 - (5,4) is a directed edge
 - (5,4) starts at 5 and ends at 4
- (3,4) is a directed multiple edge in G_5
- There is a loop connecting 1 to itself in G_5

Bonus exercise

Bonus exercise

(1) simple graph

(2) pseudograph

(3) multigraph

(5) directed multigraph

Special Simple Graphs

Complete Graph $_{\mathbb{R} \oplus \mathbb{R}} K_n$: $V = \{v_1, \dots, v_n\}$; $E = \{\{v_i, v_j\}: 1 \leq i \neq j \leq n\}$

$$K_1$$
 K_2 K_3 K_4 K_5 K_6

 $\mathbf{Cycle}_{^{\mathrm{F}\!\!\!/}, \!\boxtimes} \; C_n \colon V = \{v_1, v_2, \dots, v_n\}; E = \big\{ \{v_1v_2\}, \{v_2, v_3\}, \dots, \{v_n, v_1\} \big\}$

Special Simple Graphs

Wheel* W_n : $V=\{v_0,v_1,v_2,\ldots,v_n\}$; $E=\{\{v_1,v_2\},\ldots,\{v_n,v_1\}\}$ \cup $\{\{v_0,v_1\},\ldots,\{v_0,v_n\}\}$

$$n$$
-Cubes _{π} * Q_n : $V = \{0,1\}^n$; $E = \{\{u,v\}: d(u,v) = 1\}$

• $d(u, v) = |\{i \in [n]: u_i \neq v_i\}|$

 Q_1

Q

 Q_3

Adjacency List

DEFINITION: Let G = (V, E) be a graph with no multiple edges. The adjacency list_{$\# \ }$} of G is a list the vertices of the graph and all adjacent vertices

• $v_i, v_j \in V$ are **adjacent**_{#\text{#\text{\$\phi}\$} \text{ if } $\{v_i, v_j\}$ or (v_i, v_j) is an edge}

a	b, c, d, e
b	b, d
C	a,c,e
d	
e	b, c, d

DEFINITION: Let $G = (V = \{v_1, ..., v_n\}, E)$ be a <u>simple graph</u>. The adjacency matrix of G is an $n \times n$ matrix $A = (a_{ij})$, where

$$a_{ij} = \begin{cases} 1 & \{v_i, v_j\} \in E \\ 0 & \{v_i, v_j\} \notin E \end{cases}$$

	а	b	С	d	e
a	0	1	0	1	0
b	1	0	1	0	0
С	0	1	0	1	0
d	1	0	1	0	1
e	0	0	0	1	0

DEFINITION: Let $G = (V = \{v_1, ..., v_n\}, E)$ be an <u>undirected graph</u>. The adjacency matrix of G is an $n \times n$ matrix $A = (a_{ij})$, where

- $a_{ij} =$ multiplicity₁ of $\{v_i, v_j\}$ when $i \neq j$
- $a_{ii} = 1$ if \exists a loop from v_i to itself; $a_{ii} = 0$, otherwise.

	u	v	w	x	y
и	1	1	0	1	0
v	1	0	1	1	0
w	0	1	0	2	0
x	1	1	2	0	1
у	0	0	0	1	0

DEFINITION: Let $G = (V = \{v_1, ..., v_n\}, E)$ be an <u>undirected graph</u>. The adjacency matrix of G is an $n \times n$ matrix $A = (a_{ij})$, where

- $a_{ij} =$ **multiplicity**₁ of $\{v_i, v_j\}$ when $i \neq j$
- $a_{ii} = 1$ if \exists a loop from v_i to itself; $a_{ii} = 0$, otherwise.

	x	у	и	v	w
x	0	1	1	1	2
у	1	0	0	0	0
u	1	0	1	1	0
v	1	0	1	0	1
w	2	0	0	1	0

REMARKs: features of the adjacency matrices of undirected graphs

- The adjacency matrix depends on the ordering of the vertices
- The adjacency matrix of a simple graph is always symmetric
- The (i,j) entry counts the multiplicity of $\{v_i,v_j\}, i \neq j$

DEFINITION: Let $G = (V = \{v_1, ..., v_n\}, E)$ be a <u>simple directed graph</u>. The **adjacency matrix** of G is an $n \times n$ matrix $A = (a_{ij})$, where

$$a_{ij} = \begin{cases} 1 & (v_i, v_j) \in E \\ 0 & (v_i, v_j) \notin E \end{cases}$$

	a	b	С	d	е
a	0	1	0	0	0
b	0	0	1	0	0
С	0	0	0	1	0
d	1	0	0	0	0
e	0	0	0	1	0

REMARKS: The adjacency matrix is no longer symmetric

DEFINITION: Let $G = (V = \{v_1, ..., v_n\}, E)$ be a <u>directed multigraph</u>. The **adjacency matrix** of G is an $n \times n$ matrix $A = (a_{ij})$, where

$$a_{ij} = \begin{cases} \text{multiplicity of } (v_i, v_j) & (v_i, v_j) \in E \\ 0 & (v_i, v_j) \notin E \end{cases}$$

	a	b	С	d	e
а	1	1	0	0	0
b	0	0	1	0	0
С	0	0	0	2	0
d	1	0	0	0	0
e	0	0	0	1	0

Incidence Matrix

DEFINITION: Let $G=(V=\{v_1,\ldots,v_n\},E=\{e_1,\ldots,e_m\})$ be <u>undirected</u>. The **incidence matrix** $g=(b_{ij})$, where

$$b_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise} \end{cases}$$

• e_i incident with v_i : v_i is an endpoint of e_i

Degree

DEFINITION: Let G = (V, E) be an <u>undirected</u> graph. We say that two vertices $u, v \in V$ are **adjacent**_{#\Pi\theta\theta}} (or **neighbors**_{\Pi\theta\theta}) if $\{u, v\} \in E$.

- neighborhood v in $G: N(v) = \{u \in V: \{u, v\} \in E\}$
 - $N(A) = \bigcup_{v \in A} N(v)$ for $A \subseteq V$
- the **degree**g degv of $v \in V$ in G, is the number of edges incident with v
 - every loop from v to v contributes 2 to deg(v)
- v is **isolated**_{M\(\text{\pi}\)} if $\deg(v) = 0$; v is **pendant**_{\(\text{\pi}\)} if $\deg(v) = 1$

- 4 and 5 are adjacent
- {4,5} is incident with 4 and 5
- $N(4) = \{1,3,5\}; N(\{1,4\}) = \{1,2,3,4,5\}$
- 6 $\deg(1) = 4, \deg(2) = 2, \deg(3) = 3, \deg(4) = 4, \deg(5) = 1$
 - 6 is isolated; 5 is pendant

Degree

DEFINITION: Let G = (V, E) be a <u>directed</u> graph. If $(u, v) \in E$, we say that u is adjacent to v and v is adjacent from u.

- - u = v: u is the initial vertex and the terminal vertex
- in-degree $_{\lambda \not\in} \deg^-(v)$: the number of edges where v is the terminal vertex
- out-degree $\deg^+(v)$: the number of edges where v is the initial vertex
 - u = v: the loop contributes 1 to $\deg^-(v)$ and 1 to $\deg^+(v)$

- 5 is adjacent to 4; 4 is adjacent from 5
- 5 is the initial vertex of (5,4)
- 4 is the terminal vertex of (5,4)
- 1 is the initial and terminal vertex of a loop
- $\deg^-(1) = 2$; $\deg^+(1) = 2$
- $\deg^-(4) = 3$; $\deg^+(4) = 1$

Handshaking Theorem

THEOREM: Let G = (V, E) be an <u>undirected</u> graph. Then $2|E| = \sum_{v \in V} \deg(v)$ and $|\{v \in V : \deg(v) \text{ is odd}\}|$ is even.

- Any edge $e \in E$ contribute 2 to the sum $\sum_{v \in V} \deg(v)$
 - $e = \{v_i, v_i\}$: e contributes 1 to $deg(v_i)$ and 1 to $deg(v_i)$
 - $e = \{v_i\}$: e contributes 2 to $deg(v_i)$
- The m edges contribute 2|E| to $\sum_{v \in V} \deg(v)$.
 - Hence, $\sum_{v \in V} \deg(v) = 2|E|$
- $\sum_{v \in V} \deg(v) = \sum_{v \in V: 2 \mid \deg(v)} \deg(v) + \sum_{v \in V: 2 \mid \deg(v)} \deg(v)$
 - $2|\sum_{v \in V} \deg(v); 2|\sum_{v \in V: 2|\deg(v)} \deg(v)$
 - $2|\sum_{v \in V: 2 \nmid \deg(v)} \deg(v)$
 - $|\{v \in V : \deg(v) \text{ is odd}\}|$ must be even

Handshaking Theorem

THEOREM: Let G = (V, E) be a <u>directed</u> graph. Then

$$\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = |E|.$$

- Every edge $e \in E$ contributes 1 to $\sum_{v \in V} \deg^-(v)$
 - $e = (v_i, v_j)$ contributes 1 to $\deg^-(v_i)$
- Hence, $\sum_{v \in V} \deg^-(v) = |E|$

v	1	2	3	4	5	6
$\deg(v)$	4	2	3	4	1	0

v	1	2	3	4	5	6
$\deg^-(v)$	2	1	1	3	0	0
$\deg^+(v)$	2	1	2	1	1	0

Subgraph

DEFINITION: Let G = (V, E) be a simple graph. H = (W, F) is a subgraph_{$\neq \mathbb{R}$} of G if $W \subseteq V$ and $F \subseteq E$.

- proper subgraph_{\underline{a}}+ \underline{a} + \underline{a} +- \underline{a} +- \underline{a} +- \underline{a} +- \underline{a} +-----
- The **subgraph induced** by $W \subseteq V$ is (W, F), where $F = \{e : e \in E, e = \{u, v\} \subseteq W\}$. //Notation: G[W]

EXAMPLE: Let G, G', G'' be three graphs as below.

- G', G'' are subgraphs of G; G', G'' are proper subgraphs of G
- G' is a subgraph induced by $W = \{1,2,3,4\}$, i.e., G' = G[W]
- G'' is a subgraph induced by $F = \{\{1,2\}, \{2,3\}, \{3,4\}, \{4,1\}, \{4,5\}\}, \text{ i.e., } G'' = G[F]$

Removing An Edge

DEFINITION: Let G = (V, E) be a simple graph and $e \in E$. Define

$$G - e = (V, E - \{e\})$$

Adding An Edge

DEFINITION: Let G = (V, E) be a simple graph and $e \notin E$. Define

$$G + e = (V, E \cup \{e\})$$

$$G + e = (V, E \cup \{e\})$$

Edge Contraction

DEFINITION: Let G = (V, E) be a simple graph and $e = \{u, v\} \in E$. Define G/e = (V', E'), where $V' = (V - \{u, v\}) \cup \{w\}$ and $E' = \{e' \in E : e' \cap e = \emptyset\} \cup \{\{w, x\} : \{u, x\} \in E \text{ or } \{v, x\} \in E\}$

Removing A Vertex

DEFINITION: Let G = (V, E) be a simple graph and let $v \in V$. Define $G - v = (V - \{v\}, E')$, where $E' = \{e \in E : v \notin e\}$

Complement

DEFINITION: Let G=(V,E) be a simple graph of order n. Define the complement graph \mathbb{R} of G as $\overline{G}=(V,E')$, where

$$E' = \{ \{u, v\} : u, v \in V, \ u \neq v, \{u, v\} \notin E \}$$

Graph Isomorphism

DEFINITION: The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic_{ma} if there is a bijection $\sigma: V_1 \to V_2$ such that $\{u, v\} \in E_1 \Leftrightarrow \{\sigma(u), \sigma(v)\} \in E_2$.

- σ is called an **isomorphism** paper
- **nonisomorphic:** not isomorphic

u_1	-	u_2	u_3	u_4	u_5	u_6
v_{ϵ}		v_3	v_4	v_5	v_1	v_2

Isomorphism σ

1	2	3	4	5	6
а	С	e	b	d	f

Isomorphism σ