제11장 Variable selection procedures

◆ Formulation of the problem

Y: reponse

 $X_1, ..., X_q$: full set of predictors

• moodel(11.1):
$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_d x_{iq} + \epsilon_i \implies \hat{\beta}_i^*, \hat{y}^*$$

$$\begin{array}{lll} \bullet \bmod (11.1): & y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_q x_{iq} + \epsilon_i & \Rightarrow & \hat{\beta}_j^*, \quad \hat{y}^* \\ \bullet \bmod (11.2): & y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i & p < q & \Rightarrow & \hat{\beta}_j, \quad \hat{y} \end{array}$$

1. β_0 , β_1 , ..., β_q : non-zero

model(11.1): true model

model(11.2): underspecified model

$$\Rightarrow$$
 Under fitting problem : bias $E\left(\hat{eta}_{j}\right)
eq eta_{j}, \quad E\left(\hat{y}|oldsymbol{x}_{0}\right)
eq oldsymbol{x}_{0}'oldsymbol{eta}$

2. $\beta_0,\;\beta_1,\;...,\;\beta_p$: non-zero, $\qquad \beta_{p+1},\;...,\;\beta_q$: zero

model(11.2): true model

model(11.1): overspecified model

 $Var(\hat{\beta}_{i}^{*}) \geq Var(\hat{\beta}_{i}), \quad Var(\hat{y}^{*}) \geq Var(\hat{y})$ ⇒ over fitting problem : large variance

 \Rightarrow Need to compare $MSE = Var + bias^2$

- > Use of regression equations
- Description and model building: two conflict requirement
 - (1) to account for as much of the variation as possible
 - \Rightarrow tend to include more variables
 - (2) to adhere to the principle of parsimony
 - \Rightarrow for easy of understanding .. with as few variables as possible
- · Estimation and prediction
 - \Rightarrow minimizing the MSE of prediction
- Control:

to determine the magnitude by which the value of a predictor variable must be altered to obtain a specified value of response.

 $\Rightarrow \ \ \mathrm{need} \ \ s.e.(\hat{\beta}_j) \ : \ \mathrm{small}$

- ◆ Criteria for evaluation equations
- Desidual Mean Squares

$$RMS_p = \frac{SSE_p}{(n-p)} = MSE$$
 : $(p-1)$ variables, p parameters

cf.
$$R_p^2 = 1 - \frac{SSE}{SST} = 1 - \frac{RMS_p}{SST}(n-p)$$
 : R^2

$$R_{ap}^2 = 1 - \frac{RMS_p}{SST}(n-1) \quad : \quad adj - R^2$$

$$Variance + bias^2$$
 : $J_p = \frac{1}{\sigma^2} \sum MSE(\hat{y_i})$

 \Rightarrow To estimate J_p , Mallow(1973) uses the following statistic :

$$C_p = \frac{SSE_p}{\hat{\sigma}^2} + (2p-n) = p + \frac{(s_p^2 - \hat{\sigma}^2)(n-p)}{\hat{\sigma}^2} \quad ; \quad \hat{\sigma}^2 \; : \; \text{estimate of} \; \; \sigma^2 \; \text{of full model}$$

 \Rightarrow the small, the better & $C_p pprox p$

eg.
$$C_1 = 1.9$$
, $C_2 = 2.1$, $C_3 = 2.6$, $C_4 = 3.9$, $C_5 = 5$

 \Rightarrow model with p=2 is the best!

[reg213f] 4.다음 질문에 답하라.

(2) 가능한 모든 독립변수가 5개일 때 C_p 를 기준으로 가장 좋은 모델을 결정하고자 한다. 독립변수의 개수가 p-1인 회귀모델 중 가장 작은 C_p 값을 갖는 경우만 기록하니 다음과 같았다. 즉, 독립변수가 2인 회귀모델 중 가장 작은 C_p 를 갖는 모델의 C_p 는 5.7이다. C_p 를 기준으로 가장 좋은 모델은 독립변수가 몇 개인 경우인가?

변수의 수	1	2	3	4	5	
C_p	8.7	5.7	5.1	5.2	6	

> Information criteria

• Akaike IC :
$$AIC_p = n \log \left(\frac{SSE_p}{n} \right) + 2p$$

• Bayesian IC
$$:BIC_p = n\log\left(\frac{SSE_p}{n}\right) + p\log(n)$$
 : to avoid over fitting .

♦ Evaluating all possible equations

moderate size of $p:2^p$ possible equations

$$R^2$$
, R_a^2 , C_p , IC , $PRESS$

eg. Supervisor performance data(Table3.3)

result: Table 11.4, Fig 11.1

- lack Variable Selection procedures (regressors are not collinear) 6 predictors : $x_1, x_2, x_3, x_4, x_5, x_6$
- - fit 6 equations :
 - $y=\beta_0+\beta_j x_j+\epsilon, \quad j=1,...,6$ choose x_j with biggest $|t_j|$
 - let x_1 be the first in : fit 5 equations :

$$y = \beta_0 + \beta_1 x_1 + \beta_j x_j + \epsilon, \quad j = 2, ..., 6$$

- choose x_i with biggest $|t_i|$: OK if significant
- let \boldsymbol{x}_2 be the second in : fit 4 equations :

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_j x_j + \epsilon, \quad j = 3, ..., 6$$

• choose \boldsymbol{x}_j with biggest $|t_j|$: OK if significant .

until no significant variable left

eg Supervisor performance data: see Table 11.2

- fit : $y = \beta_0 + \beta_1 x_1 + \cdots + \beta_6 x_6 + \epsilon$
- delete x_i with smallest $|t_i|$ & not significant
- let x_6 be the first out : fit : $y = \beta_0 + \beta_1 x_1 + \cdots + \beta_5 x_5 + \epsilon$
- delete x_j with smallest $|t_j|$ & not significant .

until all variables in the model are significant..

eg Supervisor performance data: see Table 11.3

> Stepwise procedure

modified version of Forward selection

In each step, after adding one variable, perform backward elimination...

- eg. let x_1 be the first in OK
 - let x_2 be the second in : x_1, x_2 delete if any of x_1, x_2 is insignificant.. both are significant..
 - let x_3 be the third in : $x_1,\,x_2,\,x_3$ delete if any of $x_1,\,x_2,\,x_3$ is insignificant... delete x_1 : $x_2,\,x_3$:

until no significant variable left, all variables in the model are significant..

[reg211f] 2. 종속변수 Y에 대하여 4개의 독립변수 X_1 , X_2 , X_3 , X_4 로 가능한 회귀모형을 적합시키고 다음과 같은 결과를 얻었다. 이 결과를 이용하여 다음 물음에 답하라. (2번째~5번째 칸의 값은 회귀모수 추정치의 p-값이다.)

Model	X_1	X_2	X_3	X_4	R_{adj}^2	C_p
1	3.12e-07	_	-	-	0.9075	29.3524
2	_	0.0533	-	_	0.2348	308.1845
3	-	_	2.61e-07	-	0.9104	28.1400
4	-	_	_	9.33e-07	0.8873	37.7306
5	7.56e-09	0.000326	_	_	0.9736	2.9470
6	0.374	_	0.295	-	0.9093	27.1788
7	0.0386	_	_	0.1220	0.9208	22.8362
8	-	0.0191	3.13e-07	-	0.9446	13.8801
9	-	0.000322	-	2.01e-08	0.9679	5.0867
10	-	_	0.137	0.868	0.9017	30.0330
11	0.00677	0.000669	0.319856	-	0.9739	3.8561
12	0.19616	0.00216	-	0.91981	0.9707	4.9351
13	0.0115		0.0333	0.0170	0.9482	12.5541
14	_	0.00155	0.51261	0.02395	0.9661	6.4933
15	0.0986	0.0149	0.2017	0.3819	0.9735	5.0000

- (1) 유의수준 5%로 Forward selection, Backward elimination, Stepwise selection 방법에 의하여 변수를 선택하고 결과를 비교하라.
- (2) 모든 가능한 모델을 대상으로 R_{adj}^2 또는 C_p 을 고려하여 가장 좋은 모델을 선택한다면 각 경우에 어느 모델이 좋겠는가?
- (3) 위 (1)과 (2)의 결과로부터 가장 바람직한 모델을 선택한다면 어느 모델을 선택하겠는지 밝히고 그 이유를 설명하라.

- ◆ Variable selection with collinear data

 Perform principal component procedure...
- © Example (the Homicide data) on p.314 to investigate the role of firearms in accounting for the rising homicide rate in Detroit.. data were collected for the years 1961-1973
 - Variable decription: Table 11.6 on p.315
 - Data: Table 11.7-8 on pp.315-316
 - \Rightarrow use these data to illustrate the danger of mechanical variable selection procedures
 - model: $H = \beta_0 + \beta_1 G_1 + \beta_2 M + \beta_3 W + \epsilon$
 - centered and scaled model : $\widetilde{H} = \theta_1 \widetilde{G}_1 + \theta_2 \widetilde{M} + \theta_3 \widetilde{W} + \epsilon'$
 - · OLS result: Table 11.9 on p.316

 $\mathit{VIF}_1 = 42, \quad \mathit{VIF}_3 = 51$: multicollinearity, G is not significant... but..

· Variable selection procedure:

Forward selection : $G-M-W \Rightarrow (f)$ is the final model

Backward elimination : delete G, \Rightarrow (g) is the final model

Stepwise procedure : G-M-W- delete $G \Rightarrow (g)$ is the final model

- \Rightarrow the first variable eliminated by the BE is the first variable selected by the FS... G
- ⇒ this example shows clearly that automatic applications of variable selection procedure in multicollinear data can lead to the selection of a wrong model...

- ◆ A possible strategy for fitting regression model
- 1. Examine variables : $Y, X_1, ..., X_p$: one at a time try to make them not be too skewed \Rightarrow make transformation!
- 2. Construct pairwise scatter plots : point out obvious collinearity \Rightarrow delete redundant variables..
- 3. Fit the full regression model delete variables with no significant explanatory power.
 - · check linearity
 - · check heteroscedasticity
 - look for high leverage pt, outlier, influential pt.
- 4. add or delete variables and repeat 3 monitor the fitting process by examining C_p , AIC, BIC, ...
- 5. For the final model, check VIF's, residual plots
- 6. validate the fitted model: cross validation...