1. Let M be the Turing machine defined by Table 1 where the start and final states are q_0 and q_2 , respectively.

Table 1

δ	В	a	b	
q_0	q_1, B, R	-	-	
q_1	q_2, B, R	$q_1, 0, R$	$q_1, 1, R$	
q_2	-	-	-	

Note: B – blank symbol

(a) Give the state diagram of M.

Solution:

(b) Trace the computation for the input string aabba. Solution:

$$q_0BaabbaB \vdash Bq_1aabbaB$$
$$\vdash B0q_1abbaB$$
$$\vdash B00q_1bbaB$$
$$\vdash B001q_1baB$$
$$\vdash B0011q_1aB$$
$$\vdash B0011q_1B$$
$$\vdash B0011q_20B$$

(c) Trace the computation for the input string baba. Solution:

$$q_0BbabaB \vdash Bq_1babaB$$
$$\vdash B1q_1abaB$$
$$\vdash B10q_1baB$$
$$\vdash B101q_1aB$$
$$\vdash B1010q_1B$$
$$\vdash B101q_20B$$

- (d) Describe the result of a computation in M.
 - Solution: The computation in M maps every a in the input string to 0, and every b to 1.
- 2. Let M be the Turing Machine diagram as follows:

(a) Give the transition table of M.

Solution:

δ	В	a	b	c	X	Y	Z
q_0	-	q_1, a, R	-	-	-	-	-
q_1	q_6, B, R	q_2, X, R	-	-	-	q_5, Y, R	-
q_2	-	q_2, a, R	q_3, Y, R	-	-	q_2, Y, R	-
q_3	-	-	q_3, b, R	q_4, Z, L	-	-	q_3, Z, R
q_4	_	q_4, a, L	q_4, b, L	-	q_1, X, R	q_4, Y, L	q_4, Z, L
q_5	q_6, B, R	-	ı	ı	ı	q_5, Y, R	q_5, Z, R
q_6	_	_	_	_	_	_	-

(b) Trace the computations of M on input strings abc and aabc.

Solution: abc:

$$q_0abc \vdash aq_1bc$$

No transitions, machine halts...

aabc:

$$q_0aabc \vdash aq_1abc$$

$$\vdash aXq_2bc$$

$$\vdash aXYq_3c$$

$$\vdash aXq_4YZ$$

$$\vdash aq_4XYZ$$

$$\vdash aXq_1YZ$$

$$\vdash aXYq_5Z$$

$$\vdash aXYZq_5B$$

$$\vdash aXYZBq_6B$$

(c) Give a set-theoretic definition to define the language.

Solution:
$$L(M) = \{a^{n+1}b^nc^n \mid n \ge 0\}$$

1. Given the languages, L as follows in Table 1. For each languages answer questions (a) - (b):

Table 1

Languages				
i. $L = \{a^{m+1}b^mc^n \mid m = n \text{ and } m, n \ge 0\}$				
ii. $L = \{a^{m+1}b^nc^{2m} \mid m, n \ge 0\}$				

(a) Design the Turing Machine that accept the language L(M). Solution:

 $L = \{a^{m+1}b^mc^n \mid m = n \text{ and } m, n \ge 0\}$

 $L = \{a^{m+1}b^nc^{2m} \mid m, n \ge 0\}$

(b) What is the shortest string in the language accepted by the Turing Machine.

Solution:

Shortest string accepted by Language 1: a

Shortest string accepted by Language 2: a