Multiview Depth Image Enhancement for Free-viewpoint Television

Pravin Kumar Rana, Zhanyu Ma, Jalil Taghia, and Markus Flierl

Opponents: Nasser Mohammadiha, Haopeng Li and, Jalil Taghia

Internal seminar, Communication Theory, KTH

June 27, 2013

Motivation & Background

Conventional Television

Conventional Television

Multiview imagery

Multiview imagery

Multiview imagery

Virtual View Synthesis

Depth Image Based Rendering

Multiview imagery

Multiview imagery

 Depth pixels represent shortest distance between object points and the camera plane

To be estimated from multiview imagery

Depth image

Near

Far

Multiview imagery

Multiview imagery

3D Warping

Physical camera parameters

Virtual camera parameters

3D Warping

Physical camera parameters

Virtual camera parameters

3D Warping

Physical camera parameters

Virtual camera parameters

3D Warping

Physical camera parameters

Near

Far

Virtual view

3D warping

Multiview imagery

[1] C. Fehn: Depth-image-based rendering DIBR, compression, and transmission for a new approach on 3D-TV, SPIE, 2004.

MPEG Depth Estimation Reference Software (DERS)

ed der

MPEG Depth Estimation Reference Software (DERS)

MPEG Depth Estimation Reference Software (DERS)

Problem: Inter-view depth inconsistency

MPEG Depth Estimation Reference Software (DERS)

Problem: Inter-view depth inconsistency

Depth Enhancement Framework

Overview of Depth Enhancement Framework

Overview of Depth Enhancement Framework

Multiview view and depth images Concatenation of view imagery Multiview color classification **Depth Classification** Enhanced multiview depth images

Overview of Depth Enhancement Framework

Concatenation of View Imagery

Concatenation of View Imagery

Multiview Color Classification

RGB Color space

Multiview Color Classification

- Insensitive to the absolut luminance
- A pixel is described by a vector of three chromaticity coefficients [x y z]^T, where

$$x+y+z=1$$

Why variational Bayes inference (VI)?

- The goal of classification is to partition an image into regions each of which has a reasonably homogeneous visual appearance
- Usually, clustering algorithm suffers from one major drawbacks that the number of clusters has to be known

 Bayesian approaches automatically and optimally select the number of clusters

 Use of variational inference (VI) framework for Bayesian approaches gives an analytically tractable solution

Why Dirichlet mixture models (DMM)?

- The pixel vector in the chromaticity space has
 - nonnegative elements
 - bounded by the interval [0,1]
 - sum to one
- Assume that these pixel vectors are Dirichlet distributed
- DMM with variational inference is used to capture all underlying color clusters in multiview imagery
- It reduces complexity
- [3] P. K. Rana, J. Taghia, and M. Flierl: A Variational Bayesian Inference Framework for Multiview Depth Image Enhancement, IEEE ISM, 2012.
- [4] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon: Bayesian estimation of Dirichlet mixture model with variational inference, submitted, 2013.

Newspaper Balloons Kendo

Input multiview data

Newspaper

Balloons

Kendo

Input multiview data

Using VI-DMM

Newspaper

Balloons

Kendo

Input multiview data

Using VI-DMM

Using VI-GMM

Newspaper

Balloons

Kendo

Input multiview data

Using VI-DMM

Using VI-GMM

Exploiting the per-pixel association between color and depth

View image

Depth image

Exploiting the per-pixel association between color and depth

View image

Depth image

Concatenated view imagery

Concatenated depth imagery

Newspaper

Balloons

Kendo

Input multiview data

Using VI-DMM

Newspaper

Kendo

Input multiview data

Using VI-DMM

Depth clusters

Newspaper

Kendo

Input multiview data

Using VI-DMM

Depth clusters

Difference between color and depth clusters

 Members of color cluster have similar colors pixels

 Members of depth cluster may have different depth values

- Why?
 - due to foreground and background depth difference
 - due to inter-view inconsistency

Mean shift Clustering

- A nonparametric clustering technique
- Knowledge of the number of clusters not required
- Assigns the mean to depth pixels irrespective of the originating viewpoints
- Generative model based approaches imply higher computational complexity

Experimental Results

Experimental Results

MPEG 3DTV multiview data set

Newspaper (1024 X 768)

Lovebird1 (1024 X 768)

Kendo (1024 X 768)

Balloons (1024 X 768)

Poznan street (1920 X 1088)

Experimental Results

Multiview data	Initial number of mixture	Active number of mixture components (after convergence)		
set	components	VI-GMM	VI-DMM	
Lovebird1	100	31	24	
Kendo	100	34	15	

MPEG View Synthesis Reference Software (VSRS) 3.5

Enhanced depth map

Left

Enhanced depth map

Right

MPEG View Synthesis Reference Software (VSRS) 3.5

Enhanced depth map

Left

Reference view

Enhanced depth map

Right

Reference view

	Input			Y-PSNR [dB]	
Test sequence	Input view pair	Virtual view	With MPEG depth maps	With VBIGMM + K-Means depth maps [3]	With VBIDMM + Mean-shift depth maps
Newspaper	(4, 6)	5	32.00	32.10	32.11
Kendo	(3, 5)	4	36.54	36.72	39.35
Lovebird1	(6, 8)	7	28.50	28.68	29.04
Balloons	(3, 5)	4	35.69	35.93	36.02
Poznan Street	(3, 5)	4	35.56	35.58	35.72

- K-means sub-clustering
 - Number of cluster: 12

	Input			Y-PSNR [dB]	
Test sequence	Input view pair	Virtual view	With MPEG depth maps	With VBIGMM + K-Means depth maps [3]	With VBIDMM + Mean-shift depth maps
Newspaper	(4, 6)	5	32.00	32.10	32.11
Kendo	(3, 5)	4	36.54	36.72	39.35
Lovebird1	(6, 8)	7	28.50	28.68	29.04
Balloons	(3, 5)	4	35.69	35.93	36.02
Poznan Street	(3, 5)	4	35.56	35.58	35.72

- K-means sub-clustering
 - Number of cluster: 12

	Input			Y-PSNR [dB]	
Test sequence	Input view pair	Virtual view	With MPEG depth maps	With VBIGMM + K-Means depth maps [3]	With VBIDMM + Mean-shift depth maps
Newspaper	(4, 6)	5	32.00	32.10	32.11
Kendo	(3, 5)	4	36.54	36.72	39.35
Lovebird1	(6, 8)	7	28.50	28.68	29.04
Balloons	(3, 5)	4	35.69	35.93	36.02
Poznan Street	(3, 5)	4	35.56	35.58	35.72

- K-means sub-clustering
 - Number of cluster: 12

	Input		Y-PSNR [dB]			
Test sequence	Input view pair	Virtual view	With MPEG depth maps	With VBIGMM + K-Means depth maps [3]	With VBIDMM + Mean-shift depth maps	
Newspaper	(4, 6)	5	32.00	32.10	32.11	
Kendo	(3, 5)	4	36.54	36.72	39.35	
Lovebird1	(6, 8)	7	28.50	28.68	29.04	
Balloons	(3, 5)	4	35.69	35.93	36.02	
Poznan Street	(3, 5)	4	35.56	35.58	35.72	

- K-means sub-clustering
 - Number of cluster: 12

	Input		Y-PSNR [dB]			
Test sequence	Input view pair	Virtual view	With MPEG depth maps	With VBIGMM + K-Means depth maps [3]	With VBIDMM + Mean-shift depth maps	
Newspaper	(4, 6)	5	32.00	32.10	32.11	
Kendo	(3, 5)	4	36.54	36.72	39.35	
Lovebird1	(6, 8)	7	28.50	28.68	29.04	
Balloons	(3, 5)	4	35.69	35.93	36.02	
Poznan Street	(3, 5)	4	35.56	35.58	35.72	

- K-means sub-clustering
 - Number of cluster: 12

	Input			Y-PSNR [dB]	
Test sequence	Input view pair	Virtual view	With MPEG depth maps	With VBIGMM + K-Means depth maps [3]	With VBIDMM + Mean-shift depth maps
Newspaper	(4, 6)	5	32.00	32.10	32.11
Kendo	(3, 5)	4	36.54	36.72	39.35
Lovebird1	(6, 8)	7	28.50	28.68	29.04
Balloons	(3, 5)	4	35.69	35.93	36.02
Poznan Street	(3, 5)	4	35.56	35.58	35.72

- K-means sub-clustering
 - Number of cluster: 12

	Input			Y-PSNR [dB]	
Test sequence	Input view pair	Virtual view	With MPEG depth maps	With VBIGMM + K-Means depth maps [3]	With VBIDMM + Mean-shift depth maps
Newspaper	(4, 6)	5	32.00	32.10	32.11
Kendo	(3, 5)	4	36.54	36.72	39.35
Lovebird1	(6, 8)	7	28.50	28.68	29.04
Balloons	(3, 5)	4	35.69	35.93	36.02
Poznan Street	(3, 5)	4	35.56	35.58	35.72

- K-means sub-clustering
 - Number of cluster: 12

	Input			Y-PSNR [dB]	
Test sequence	Input view pair	Virtual view	With MPEG depth maps	With VI-GMM + K-Means depth maps [3]	With VI-DMM + Mean-shift depth maps
Newspaper	(4, 6)	5	32.00	32.10	32.11
Kendo	(3, 5)	4	36.54	36.72	39.35
Lovebird1	(6, 8)	7	28.50	28.68	29.04
Balloons	(3, 5)	4	35.69	35.93	36.02
Poznan Street	(3, 5)	4	35.56	35.58	35.72

- K-means sub-clustering
 - Number of cluster: 12

Test sequence: Kendo

With MPEG depth map

With VI-DMM+Mean-shift depth map

Test sequence: Kendo

With MPEG depth map

With VI-DMM+Mean-shift depth map

Test sequence: Kendo

Original

With VI-DMM + Mean-Shift depth maps

With VI-GMM + K-Means depth maps

With MPEG depth maps

Test sequence: Kendo

With VI-GMM

+K-Means

depth maps

With VI-DMM +Mean-Shift depth maps

Test sequence: Lovebird 1

With MPEG depth map

With VI-DMM+Mean-shift depth map

With MPEG depth map

With VI-DMM+Mean-shift depth map

Original

With VI-DMM +Mean-Shift depth maps

With VI-GMM +K-Means depth maps

With MPEG depth maps

With MPEG depth map

With VI-DMM+Mean-shift depth map

Original

With VI-DMM +Mean-Shift depth maps

With VI-GMM +K-Means depth maps

With MPEG depth maps

Conclusions

- The inter-view depth consistency and hence, the free-viewpoint experience improve
- The per-pixel association between depth and color is exploited by classification
- Depth subclassification improves depth maps and hence, view rendering quality
- Both objective and subjective results improve

Future Directions

- A fully probabilistic multiview depth image enhancement
 - With improved computational efficiency
 - With improved depth subclassification

Thank You

^[1] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006.

^[2] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon, "Bayesian estimation of Dirichlet mixture model with variational inference," IEEE Trans. PAMI, submitted, 2013.

^[1] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006.

^[2] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon, "Bayesian estimation of Dirichlet mixture model with variational inference," IEEE Trans. PAMI, submitted, 2013.

^[1] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006.

^[2] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon, "Bayesian estimation of Dirichlet mixture model with variational inference," IEEE Trans. PAMI, submitted, 2013.

^[1] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006.

^[2] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon, "Bayesian estimation of Dirichlet mixture model with variational inference," IEEE Trans. PAMI, submitted, 2013.

^[1] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006.

^[2] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon, "Bayesian estimation of Dirichlet mixture model with variational inference," IEEE Trans. PAMI, submitted, 2013.

Dirichlet Plot Details

- For probability density function of Dirichlet distribution $\alpha = [2\ 10\ 15]$
- For probability density function of Dirichlet mixture model parameters $\alpha_1 = [6\ 2\ 4]$ and $\alpha_2 = [3\ 8\ 5]$ with mixture weights $\pi_1 = 0.3$ and $\pi_2 = 0.7$, respectively.

Probability density function of Dirichlet distribution

Probability density function of Dirichlet mixture model

With MPEG depth map

With VBDMM Mean-shift depth map

With MPEG depth map

With VBDMM Mean-shift depth map

Original depth maps

With MPEG depth maps

With VBGMM K-Means depth maps

With VBDMM Mean-Shift depth maps

With MPEG depth map

With VBDMM Mean-shift depth map

Original depth maps

With MPEG depth maps

With VBGMM K-Means depth maps

With VBDMM Mean-Shift depth maps

Test sequence: Balloons

With MPEG depth map

With VBDMM Mean-shift depth map

Test sequence: Balloons

With MPEG depth map

With VBDMM Mean-shift depth map

Test sequence: Balloons

With MPEG depth map

With VBDMM Mean-shift depth map

Original depth maps

With MPEG depth maps

With VBGMM K-Means depth maps

With VBDMM Mean-Shift depth maps

With MPEG depth map

With VBDMM Mean-shift depth map

With MPEG depth map

With VBDMM Mean-shift depth map

Original

With MPEG depth maps

With VBGMM K-Means depth maps

With VBDMM Mean-Shift depth maps