

Session de Janvier FSAB11

Guillaume FRANÇOIS

Table des matières

Ι	Or	ganisation	6
	0.1	Matière	7
	0.2	Calendrier	8
II	\mathbf{A}	nalyse	10
1	Fone	dements	11
	1.1	Démonstrations	11
	1.2	Relations	11
2	Lim	ite et continuité	11
	2.1	Limite L au point $x_0 \ldots \ldots \ldots \ldots \ldots \ldots$	11
	2.2	Continuité au point x_0	11
	2.3	Dérivabilité au point x_0	12
	2.4	Théorème des valeurs intermédiaires	12
	2.5	Théorème des bornes atteintes	12
	2.6	Théorème de Rolle	12
	2.7	Théorème des accroissements finis	12
	2.8	Théorème de la valeur constante	12
3	Poly	vnôme de Taylor	12
	3.1	Définition	12
	3.2	Théorème de Taylor	13
	3.3	Réciproque de Taylor	13
	3.4	Théorème du reste	13
	3.5	Dérivée de Taylor	13
4	Inté	gration	14
	4.1	implications	14
	4.2	Théorème de la moyenne	14
	4.3	Théorème fondamental (1)	14
	4.4	Théorème fondamental (2)	14
	4.5	Corollaire du théorème fondamental	14
5	Suit	es et séries	15
	5.1	Convergence d'une série	15
	5.2	Convergence absolue	15
	5.3	Suites géométriques	15
	5.4	Séries téléscopantes	15

-	DI		DES	3 F A C	TTTTT	DO
. 1 . //	H	н.	1145	1/1 /1	1 1 11 1	2 H 🗬

	5.5	Série harmonique
	5.6	P-séries
	5.7	Séries entières (Power series)
	5.8	Test de divergence
	5.9	Test de l'intégrale
	5.10	Test de comparaison
	5.11	Test du quotient
		Test de la racine
6	Equ	ations différentielles 17
	6.1	Classification
	6.2	Définition
	6.3	Linéaire homogène de premier ordre
	6.4	Linéaire non-homogène de premier ordre
	6.5	Non-linéaire de premier ordre à variables séparables 19
	6.6	Problème de Cauchy
ΙΙ	T A	Algèbre 20
7		aces vectoriels 21
	7.1	Définition
	7.2	Sous-espaces vectoriels
	7.3	Somme directe
	7.4	SEV engendré
	7.5	Libre, Génératrice, Base
	$7.6 \\ 7.7$	Changement de base
	7.8	
	7.9	Rang d'une matrice
	7.9	Theoreme de Rouche
3		tèmes linéaires & calcul matriciel 22 Linéarité
	8.1	
	8.2 8.3	Opérations élémentaires
	8.4	•
	8.4	1
	8.6	Déterminant
	8.7	Matrice des cofacteurs
9		olications linéaires 24
	9.1	Notion d'application linéaire
	9.2	Noyau et image
	9.3	Propriétés (1)
	9.4	Propriétés (2)
	9.5	Représentation matricielle

IV	Maths discrètes	26
10	Ensembles	27
	10.1 Définitions	27
	10.2 Power set	27
	10.3 Principe des tiroirs	27
	10.4 Principe d'induction	28
	10.5 Principe d'inclusion et d'exclusion	28
	10.6 Règle de la somme	28
	10.7 Règle du produit	28
11	Dénombrement	29
	11.1 Binôme de Newton	29
	11.2 Les fonctions	29
	11.3 Injections	29
	11.4 Surjections	29
	11.5 Bijections	30
	11.6 Les dérangements	30
	11.7 Combinaisons	30
	11.8 Stirling	30
	11.9 Bell	31
	11.10Parallélisme	31
19	Equations de récurrence	31
14	12.1 Définition	31
	12.1 Definition	32
	12.3 Récurrences homogène de degré 2	$\frac{32}{32}$
	12.4 Cas avec 2 racines réels distinctes	$\frac{32}{32}$
	12.5 Cas avec 2 racines très proches	$\frac{32}{32}$
	12.6 Cas avec 2 racines confondues	33
	12.7 Cas avec 2 racines complexes conjuguées	33
	12.8 Certaines récurrences non homogènes	33
	12.9 Récurrences non homogènes de degré 1	33
13	Graphes	34
	13.1 Définition	34
	13.2 vocabulaire	34
	13.3 Isomorphisme	34
	13.4 Matrice d'incidence	34
	13.5 Matrice d'adjacence	35
	13.6 Voyages dans un graphe	35
	13.7 Graphes bipartis	36
	13.8 Connexité	36
	13.9 Arbres	37
	13.10Arbres sous-tendants	37
	13.11Arbres sous-tendants de poids minimum	37

	MATIERES	

	13.12Euler	38 38 39
\mathbf{V}	Mécanique	40
1 4	T 7	4-1
14	: Vecteurs	41 41
	14.1 Décomposition des vecteurs	41
	14.3 Produit vectoriel	41
15	Lois de Newton	41
	15.1 Loi d'inertie	41
	15.2 Loi du mouvement	42
	15.3 Principe d'action-réaction	42
16	Conditions d'équilibre	42
	16.1 Conditions	42
17	Mouvements	42
	17.1 Trajectoire d'un projectile	43
	17.2 Mouvement circulaire uniforme (MCU)	43
	17.3 Vitesse en courbe	43
	17.4 Vitesse relative	44
18	Résistance des fluides et vitesse terminale	44
	18.1 A petite vitesse	44
	18.2 A grande vitesse	44
19	Energie potentielle et cinétique	44
	19.1 Travail	44
	19.2 Energie	44
	19.3 Forces conservatrices	45 45
	19.5 Energie potentielle élastique	45
വ	Gravitation	45
	20.1 Force d'attraction d'un corps	45
	20.2 Satellite en orbite circulaire	46
	20.3 Vitesse de libération	46
21	Momentum	46
	21.1 Définition par la deuxième loi de Newton	46
	21.2 Momentum et énergie cinétique	46

-	DI		DES	3 F A C	TTTTT	DO
. 1 . //	H	н.	1145	1/1 /1	1 1 11 1	2 H 🗬

22	Coll	isions	47
	22.1	Types de collisions	47
		Collisions complètement inélastiques	47
		Collisions élastiques	47
23	Moı	ıvement périodique	48
		Formules	48
	23.2	Fréquence, période et vitesse angulaire	48
	23.3	Oscillation d'un ressort	48
	23.4	Pendule simple	49
	23.5	Energie dans un mouvement harmonique	49
V	г т	Electricité	50
V .	LE	hetiricite	30
24	Elec	etrostatique	51
	24.1	Loi de Coulomb	51
		Champs électriques	51
		Dipôles	51
	24.4	Flux électrique (Gauss)	52
		Energie électrique	52
		Potentiel électrique	52
	24.7	Capacités et diélectriques	52
25	Cou	rant continu	53
	25.1	Courant électrique (DC)	53
	25.2	Résistance et résistivité	53
	25.3	Force électromotrice et puissance	53
		Lois de Kirchoff's	53
		Capacités & Inductances	54
	25.6	Circuit R-L-C	54
26	Cou	rant alternatif	54
	26.1	Courant électrique (AC)	54
		Valeurs efficaces	54
	26.3	Capacités & Inductances	55
	26.4	Circuit R-L-C	55
	26.5	Transformateur	55

Première partie

Organisation

0.1 Matière

Matière	Théorie	Exercices
Mathématiques		
$\overline{Analyse}$		
Fondements	1. 🔾	$2.\bigcirc$
Limite et continuité	3. 🔾	$4.\bigcirc$
Polynôme de Taylor	5. ($6.\bigcirc$
Intégration	7. (8. ()
Suites et séries	9. 🔾	10. 🔘
Equations différentielles	11.()	12.
$Alg\`ebre$		
Espaces vectoriels	13. 🔾	14. 🔾
Systèmes linéaires	15.	16.
Calcul matriciel	17.0	18.
Applications linéaires	19.	20.
$Maths\ discrètes$	10.0	_0.0
Ensembles	21.	$22.\bigcirc$
Dénombrement	23.	24.
Equations de réccurence	25.	26.
Graphes	27.	28.
		_0.0
Physique		
$\overline{M\acute{e}caniq}ue$		
Formules	29.	30. (
Lois de Newton	31.	32. (
Conditions d'équilibre	33. 🔾	34. 〇
Mouvements	35.	36. (
Résistance d'un fluide	37.	38.
Energie potentielle et cinétique	39.	40.
Momentum, impulsion & collisions	41.	42.
Electricité		
Electrostatique	43.()	44.()
Courant continu	45.	46.
Courant alternatif	47.	48.
		- 0
Infomatique		
$\overline{R\'{e}visions}$		
Exceptions	49. 🔾	$50.\bigcirc$
Flux	51.	52.

0.2 Calendrier

Semaine 1:

	Lundi (19/12)	Mardi (20/12)	Mercredi (21/12)	jeudi (22/12)	Vendredi (23/12)
A.M.					17
P.M.				13 15	19 11
		Samedi (24/12)	Dimanche (25/12)		
	A.M.	1 3 5	54 58		
	P.M.	NOËL	55 56 57		

Semaine 2

	Lundi (26/12)	Mardi (27/12)	Mercredi (28/12)	jeudi (29/12)	Vendredi (30/12)
A.M.	21	25	29 31 33	39 41	
P.M.	23	27	35 37	43 45 47	
		Samedi (31/12)	Dimanche (1/01)		
	A.M.				
	P.M.	NEW YEAR			

Semaine 3:

	Lundi (2/01)	Mardi (3/01)	Mercredi (4/01)	jeudi (5/01)	Vendredi (6/01)
A. M.					
P.M.					
		Samedi (7/01)	Dimanche (8/01)		
	A.M.				
	P.M.				

Semaine 4:

	Lundi (9/01)	Mardi (10/01)	Mercredi (11/01)	jeudi (12/01)	Vendredi (13/01)
A.M.					
P.M.	$\frac{\text{PHYSIQUE}}{(14\text{H}-18\text{H})}$			<u>INFO</u> (14H-18H)	
		Samedi (14/01)	Dimanche (15/01)		
	A.M.				
	P.M.				

Semaine 5:

	Lundi (16/01)	Mardi (17/01)	Mercredi (18/01)	jeudi (19/01)	Vendredi (20/01)
A.M.		<u>MATHS</u> (8H30- 12H30)			
P.M.					VACANCES

Deuxième partie Analyse

1 Fondements

1.1 Démonstrations

- \star Implication
- \star Contraposition
- \star Equivalence
- ★ Contradiction (absurde)
- * Récurrence (induction)

1.2 Relations

- \star Réflexive (xRx)
- \star Symétrique $(xRy \Rightarrow yRx)$
- \star Transitive $(xRy\ et\ yRz \Rightarrow xRz)$
- \star Antisymétrique (si xRy et $yRx \Rightarrow x = y$)
- \star Equivalence \Rightarrow Symétrique, réflexive, transitive
- ★ Ordre partiel ⇒ Antisymétrique, réflexive, transitive
- \star Orde total $\Rightarrow \forall x, y \in A$ on a xRy OU yRx

2 Limite et continuité

2.1 Limite L au point x_0

 $\forall \varepsilon > 0, \exists \delta > 0 \text{ tel que } \forall x \in A, \text{ si } |x - x_0| \le \delta \text{ alors } |f(x) - L| \le \varepsilon.$

2.2 Continuité au point x_0

 $\forall \varepsilon > 0, \exists \delta > 0 \text{ tel que } \forall x \in A, \text{ si } |x - x_0| \le \delta \text{ alors } |f(x) - f(x_0)| \le \varepsilon.$

2.3 Dérivabilité au point x_0

$$f:A \to \mathbb{R}$$
 est dérivable si $\lim_{x \to x_0} \frac{f(x) - f(a)}{x - a}$ existe.

2.4 Théorème des valeurs intermédiaires

Soit
$$f:[a,b]\to\mathbb{R}$$
 continue.
Si $f(a)\leq y\leq f(b)$ ou $f(b)\leq y\leq f(a)$ alors $\exists c\in[a,b]$ tel que $y=f(c)$.

2.5 Théorème des bornes atteintes

Une fonction continue sur un intervalle fermé, bornée atteint ses bornes. C'est à dire qu'il existe $q, p \in [a, b]$ tel que $f(q) = supremum \ f$ sur [a, b] et que $f(p) = infimum \ f$ sur [a, b].

2.6 Théorème de Rolle

Soit f continue sur $[a,b] \to \mathbb{R}$ et dérivable sur]a,b[. Si f(a) = f(b) alors il existe un $c \in]a,b[$ tel que f'(c) = 0.

2.7 Théorème des accroissements finis

Soit f continue sur $[a,b] \to \mathbb{R}$ et dérivable sur]a,b[. Alors il existe un $c \in]a,b[$ tel que $f'(c) = \frac{f(b)-f(a)}{b-a}$.

2.8 Théorème de la valeur constante

Soit f continue sur $[a,b] \to \mathbb{R}$. Si f est dérivable sur [a,b[et que $f'(c)=0 \forall x \in]a,b[$. alors f est constante.

3 Polynôme de Taylor

3.1 Définition

Etant donné une fonction $f:A\to\mathbb{R}$, un naturel $n\geq 1$ et un point a appartenant à l' intérieur de A en lequel f est n fois dérivable, le polynôme de

Taylor d'ordre n de f autour du point a est :

$$T_n^{f.a}(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

3.2 Théorème de Taylor

Soit une fonction $f:A\to\mathbb{R},$ un point a appartenant à l' intérieur de A, et un naturel $n\geq 1.$

Si f est n fois dérivable en a, alors :

$$\lim_{x \to a} \frac{f(x) - T_n^{f.a}(x)}{(x - a)^n} = 0$$

3.3 Réciproque de Taylor

Soit une fonction $f:A\to\mathbb{R},$ un point a appartenant à l' intérieur de A, et un naturel $n\geq 1.$

Si f est n fois dérivable en a, et si

 $P_n(x)$ est un polynôme de degré inférieur où égal à n, vérifiant :

$$\lim_{x \to a} \frac{f(x) - P_n(x)}{(x - a)^n} = 0$$

alors

$$P_n(x) = T_n^{f.a}(x)$$

3.4 Théorème du reste

Soit une fonction $f:A\to\mathbb{R}$, un point appartenant à l' intérieur de A, un intervalle ouvert I tel que $a\in I$ et $I\subset A$ et un naturel $n\geq 1$.

Si f est n+1 fois dérivable sur I, alors pour $\forall x \in I \setminus \{a\}$, il existe un point c compris strictement entre a et x tel que :

$$f(x) = T_n^{f.a}(x) + \frac{f^{n+1}(c)(x-a)^{n+1}}{(n+1)!}$$

3.5 Dérivée de Taylor

$$T_n^{f.a'}(x) = \frac{f^{n+1}(a)(x-a)^n}{n!}$$

4 Intégration

4.1 implications

- \star Si f est intégrable alors f est bornée.
- \star Si f est continue alors elle est intégrable.

4.2 Théorème de la moyenne

Soit une fonction continue donc intégrable de $a,b]\to\mathbb{R}$. Alors $\exists c\in[a,b]$ tel que $f(c)=\mu(f)$ c'est-à-dire :

$$\int_{a}^{b} f(x)dx = (b-a)f(c)$$

4.3 Théorème fondamental (1)

Soit une fonction continue $\sup[a,b] \to \mathbb{R}$ et $p \in [a,b]$, alors la fonction $F:[a,b] \to \mathbb{R}: x \to F(x)$ telle que

$$F(x) = \int_{0}^{x} f(t)dt$$

est une primitive de f.

4.4 Théorème fondamental (2)

Soit f continue $f: I \to \mathbb{R}$ Si F est une primitive de f sur I, alors

$$\int_{p}^{q} f(t)dt = F(q) - F(p) \qquad \text{avec } p, q \in I$$

4.5 Corollaire du théorème fondamental

Soient I et J, 2 interalles, f une fonction continue de $I \to \mathbb{R}$ et 2 fonctions $U:J\to\mathbb{R}$ et $V:J\to\mathbb{R}$ dérivables, telles que $U(J)\subset I$ et $V(J)\subset I$. La fonction $H:J\to\mathbb{R}:x\to H(x)=\int_{U(x)}^{V(x)f(t)dt}$ est dérivable et sa dérivée est donnée par :

$$H'(x) = f(V(x)).V'(x) - f(U(x)).U'(x)$$

Suites et séries 5

Convergence d'une série 5.1

On dit que la série $\sum a_n$ converge vers la somme S lorsque

$$\sum_{n=0}^{\infty} a_n = S$$

Une série numérique est convergente si et seulement si la suite des sommes partielles est convergente.

5.2Convergence absolue

La série $\sum a_n$ est absolument convergente lorsque $\sum |a_n|$ converge.

Suites géométriques 5.3

$$\sum_{n=1}^{\infty} ar^{n-1}$$

Où r est appelée la raison de la série.

Si a=0.

 \star La série converge vers 0.

Sinon,

- \star Si $|r|<1\to {\rm La}$ série converge vers $\frac{a}{1-r}.$ \star Si $r\geq 1\to {\rm La}$ série converge vers $\pm\infty$ en fonction du signe de a.
- $\star \ \mathrm{Si} \ r \leq 1 \rightarrow \mathrm{La}$ série diverge.

$$S_n = a \frac{(1 - r^n)}{1 - r}$$

5.4 Séries téléscopantes

Une série est dite téléscopante lorsque ses sommes partielles se simplifient entre elles.

On peut donc exprimer la série $\sum a_n$ comme $\sum b_n?b_{n+1}$.

Exemple à retenir :

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1}$$

5.5 Série harmonique

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

* La série harmonique diverge.

P-séries 5.6

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

- \star La série converge pour p>1.
- \star La série diverge pour p < 1.

Séries entières (Power series) 5.7

$$\sum_{n=0}^{\infty} a_n (x-c)^n$$

- $\star a_n$ est une suite de réels appelés coefficients de la série entière.
- \star c est un réel appelé centre de convergence de la série.

L' ensemble des valeurs de x pour lesquelles la série converge est un intervalle centré en x = c appelé intervalle de convergence, et est égal à]c - R, c + R[, avec:

$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right| = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

5.8 Test de divergence

 \star si $\lim_{n\to\infty}a_n\neq 0$ où n'existe pas, alors la série $\sum_{n=1}^\infty a_n$ diverge.

Test de l'intégrale 5.9

Soit (a_n) une suite à termes positifs. On suppose que $(a_n) = f(n)$, où f est une fonction continue, positive, décroissante $\forall x>N_0$. Alors la série $\sum_{n=N_0}^{\infty}a_n$ et $\int_{N_0}^{\infty}f(x)dx$ converge ou diverge en même temps.

5.10 Test de comparaison

Si il existe une série convergente $\sum_{n=N_0}^{\infty}b_n$, un $n_0\in\mathbb{N}$ et un c>0 tel que : $\forall b_n\geq 0$ et $a_n\leq c.b_n$. Alors la série $\sum a_n$ converge aussi.

5.11 Test du quotient

Calculer si elle existe,

$$\lim_{n\to\infty}\frac{|a_{(n+1)}|}{|a_n|}=C$$

- \star Si C>1, la série diverge.
- \star Si C < 1, la série converge.

5.12 Test de la racine

Calculer si elle existe,

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = D$$

- \star Si D>1, la série diverge.
- \star Si D < 1, la série converge.

6 Equations différentielles

6.1 Classification

6.2 Définition

Une équation différentielle est une équation qui a pour inconnue une fonction dont une ou plusieurs dérivées apparaissent dans l'équation.

6.3 Equation différentielle linéaire homogène de premier ordre

$$y' + a(x)y = 0$$

$$\frac{1}{y}\frac{dy}{dx} = -a(x)$$

$$\int \frac{1}{y}dy = -\int a(x)dx$$

$$\ln|y| = -\int_{k}^{x} a(x)dx + C$$

$$y(x) = -ke^{-\int a(x)dx}$$

Avec k une valeur réelle.

6.4 Equation différentielle linéaire non-homogène de premier ordre

6.4.1 Première méthode

La solution générale de ce genre d'équation est égale à la somme de la solution générale de l'équation homogène associée (y_h) et d'une solution particulière de l'équation non-homogène (y_p) .

$$y = y_h + y_p$$

Forme de $b(x)$	Forme de y_p
Polynôme de degré n	Polynôme de degré n si $a(x) \neq 0$ Polynôme de degré $n+1$ si $a(x)=0$
$k_1 \cos \theta x + k_2 \sin \theta x$	$l_1 \cos \theta x + l_2 \cos \theta x$
$e^{\lambda x}P(x)$ $P(x) \text{ un polynôme de degré } n \text{ et } \lambda \text{ un réel ou un complexe}.$	$\begin{vmatrix} e^{\lambda x}Q(x) \\ Q(x) \text{ un polynôme de degré } n \text{ ou } n+1 \end{vmatrix}$
Constante, de même que $a(x)$	B/A

6.4.2 Deuxième méthode

Résoudre l'équation homogène associée.

$$y_h = ke^{-\int a(x)dx}$$

Supposer que si k est une fonction de x, y_h est une solution de l'équation y' + a(x)y = b(x).

$$(k(x)e^{-\int a(x)dx})' + a(x)ke^{-\int a(x)dx} = b(x)$$

L'expression se simplifie alors pour donner une expression de k(x).

6.5 Equation différentielle non-linéaire de premier ordre à variables séparables

Se résous de la même manière que les équations différentielles linéaires homogènes de premier ordre.

$$y' = a(x)b(y)$$

$$\frac{dy}{dx} = a(x)b(y)$$

$$\int \frac{1}{b(y)}dy = \int a(x)dx$$

6.6 Problème de Cauchy

Le problème formé par l'équation différentielle et la condition initiale est appelée $Problème\ de\ Cauchy.$

$$\begin{cases} y'(x) &= f(x,y) \\ y(x_0) &= y_0 \end{cases}$$

Troisième partie

Algèbre

7 Espaces vectoriels

7.1 Définition

E est un espace vectoriel sur K si : $\forall x, y \in Eet \forall \alpha, \beta \in K$

- $\star x + y = y + x$
- $\star (\alpha + \beta)x = \alpha x + \beta x$
- $\star \ \alpha(x+y) = \alpha x + \alpha y$
- $\star \ x(\alpha\beta) = (x\alpha)\beta$
- $\star x.1 = x$

7.2 Sous-espaces vectoriels

La partie V de l'espace vectoriel E sur un corps K est un sous espace vectoriel si, elle est une partie non vide de E stable par combinaison linéaire.

$$\forall x \in V$$
 $x = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n, v_n$

7.3 Somme directe

Tout vecteur x de $V_1 \oplus V_2 \oplus \cdots \oplus V_n$ s'écrit de manière unique comme une somme de vecteurs appartenant à V_1, V_2, \cdots, V_n .

7.4 SEV engendré

C' est le plus petit sous-espace vectoriel contenant v_1, v_2, \cdots, v_n . On le note :

$$sev < v_1, v_2, \cdots, v_n >$$

7.5 Libre, Génératrice, Base

$$(e_1, e_2, \cdots, e_n)$$
 est une

suite génératrice de E si $sev < v_1, v_2, \cdots, v_n >= E$

suite libre
$$si\{\alpha_1e_1, \alpha_2e_2, \cdots, \alpha_ne_n\} \Rightarrow \{\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0\}$$

base de E si elle est à la fois libre et génératrice

Si (e_1, e_2, \dots, e_n) est une base de E, tout vecteur de E s'écrit de manière unique comme combinaison linéaire de cette suite.

7.6 Changement de base

$$f^{(x)} = P.e^{(x)}$$

La matrice de changement de base P est régulière (possède une inverse).

7.7 Dimension

Toutes les bases d'un espace vectoriel finement engendré ont le même nombre d'éléments. Ce nombre est appelé $dimension\ de\ l'espace\ vectoriel.$

$$dim(V+W) = dimV + dimW + dim(V \cap W)$$

7.8 Rang d'une matrice

 $A \in K^{m \times n}$

- $\star~L(\mathbf{A}) = \mathbf{SEV}$ des lignes $\subset K^n$
- $\star C(A) = SEV \text{ des colonnes} \subset K^m$

Théorème :

$$dim L(A) = C(A) = rang(A)$$

Si A = BC alors :

- $\star L(A) \subset L(C)$
- $\star C(A) \subset C(B)$

7.9 Théorème de Rouché

Ax = b admet une solution $sis \operatorname{rang}(A) = \operatorname{rang}(A \mid b)$.

8 Systèmes linéaires & calcul matriciel

8.1 Linéarité

$$\forall x, y \in E\alpha, \beta \in KSi \quad Ax = b \quad \text{et} \quad Ay = c \quad \text{alors}$$

$$A(\alpha x + \beta y) = \alpha b + \beta c$$

8.2 Opérations élémentaires

Type I $L_i \to L_i + \lambda L_j$

Type II $L_i \leftrightarrow L_j$

Type II $L_i \to \lambda L_i$ $(a \neq 0)$

Opérations par blocs 8.3

$$\begin{pmatrix} a_1 1 & a_1 2 & |a_1 3 \\ a_2 1 & a_2 2 & |a_2 3 \\ a_3 1 & a_3 2 & |a_3 3 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

Attention à ce que les blocs soient compatibles lors d'opérations.

8.4 Transposée

$$(a_i j)^t = (a_j i)$$

8.5 Inverse

Soit $A \in k^{m \times n}$:

Inverse à gauche : $B.A = I \Leftrightarrow rangA = n$

Inverse à droite : $A.C = I \Leftrightarrow rangA = m$

Une matrice est inversible, régulière, non-singulière si elle possède un inverse à gauche et une inverse à droite.

$$B.A = A.B = I$$

La matrice inverse est unique.

$$(A|I) \xrightarrow[lmentaires]{oprations} (I|A^{-1})$$

8.5.1 Propriétés

- $\star (AB)^{-1} = A^{-1}B^{-1}$
- $\star (AB)^t = B^t A^t$
- $\star (A^{-1})^t = (A^t)^{-1}$ $\star \det(A^{-1}) = \frac{1}{\det(A)}$
- $\star det(A)0$
- $\star rang(A) = n$

8.6 Déterminant

- \star Le déterminant d'une matrice est égal à celui de sa transposée.
- \star Si une matrice est singulière son déterminant est nul.

*

$$det(A) = \sum_{l=1}^{n} (-1)^{l+k} a_{lk} det(A_{lk})$$

8.7 Matrice des cofacteurs

$$cof(A) = ((-1)^{i+j} det(A_{i,j})_{i,j}$$

 $A^{-1} = (det(A))^{-1} \cdot (cof(A))^t$

9 Applications linéaires

9.1 Notion d?application linéaire

Soient E et F, des espaces vectoriels sur K Une application $A:E\to F$ est dite linéaire si les conditions suivantes sont vérifiées :

$$\forall a, y \in E, \alpha, \beta \in \mathbb{K} : A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$$

Une application linéaire bijective est appelées isomorphisme.

9.2 Noyau et image

Le noyau de l'application linéaire $A: E \to F$ est un s.e.v. de E tel que :

$$Ker A = \{x \in E | A(x) = \vec{0}\}\$$

L'espace image de A est un s.e.v. de F tel que :

$$ImA = \{y \in F | \exists x \in E, A(x) = y\}$$

9.3 Propriétés (1)

 \star L'ensemble des solutions pour l'équation linéaire de type A(x) = b est égal à la somme d'une solution particulière et du noyau de A :

$$u + KerA = \{u + v | v \in KerA\}$$

 \star A est inversible à gauche si il existe $B:F\to E$ tel que :

$$B \circ A = I_E$$

 \star A est inversible à droite si il existe $B:F\to E$ tel que :

$$A \circ B = I_F$$

9.4 Propriétés (2)

Soit $A: E \to F$.

$$dimKerA + dimImA = dimE$$

9.5 Représentation matricielle

Une application linéaire $A:E\to F$ peut être représentée par une matrice $_f(A)_e$ dont chaque colonne est formée par l'image d'un vecteur de la base de E, exprimé dans la base de F.

Quatrième partie

Maths discrètes

10 Ensembles

10.1 Définitions

- \star Equipotence : A et B sont équipotents, noté $A\approx B,$ si il existe une bijection de A vers B.
- * Ensemble fini : Si A $\approx \{1, \dots, n\}$ pour $n \in \mathbb{N}$. n est le cardinal de A, noté |A|.
- * Ensemble infini : A est infiniment dénombrable si $A \approx \mathbb{N}$.

10.2 Power set

Définition:

Pour tout ensemble non-vide A, l'ensemble P(A) est équipotents à l'ensemble $\{0,1\}^A$ des fonctions de A vers $\{0,1\}^A$.

Démonstration:

A tout sous-ensemble B de A, on associe la fonction $f_B:A\to\{0,1\}$ définie comme suit :

 $\begin{cases} f_B(x) = 1 & \text{si } x \in B \\ f_B(x) = 0 & \text{si } x \in AB \end{cases}$

La fonction f_B est appelée la fonction caractéristique de B comme sous-ensemble de A.

10.3 Principe des tiroirs

Informel:

Si m objets sont rangés dans n tiroirs et si m > n, alors il y au moins un tiroir qui contient plus d'un objet.

Formel:

Soient A et B, des ensembles finis non-vides tels que |A| > |B|. alors il n'existe pas de fonction injective de A dans B.

Principe d'induction 10.4

Conditions:

- (1) $P(n_0)$ est vrai;
- (2) Avec $k \in \mathbb{N}, \forall k \geq n_0$, si P(k) est vrai, alors P(k+1) est vrai; Alors P(n) est vrai pour tout naturel $n \ge n_0$.

Principe d'inclusion et d'exclusion 10.5

Formules:

- $\star \ |A \cup B| = |A| + |B| |A \cap B|$
- $\star |A \backslash B| \ge |A| |B|$ $\star |A \Delta B| = |A| + |B| 2|A \cap B|$

Principe:

Soit S un ensemble fini non-vide, et soient S_1, S_2, \dots, S_N des sous-ensembles de S avec $n \geq 1$. On s'intéresse au nombre d'éléments de S qui n'appartiennent à aucun des S_i , c'est-à-dire au nombre :

$$\sigma = |S| - \left| \bigcup_{i=1}^{n} S_i \right|$$

Généralisation:

- $\begin{array}{l} \star \ S_I = \bigcap_{i \in I} S_i \\ \star \ S_\emptyset = S \\ \star \ R_n = \{1, \cdots, n\} \end{array}$

$$\sigma = \sum_{r=0}^{n} \left((-1)^r \sum_{|I|=r} |S_I| \right)$$

Règle de la somme 10.6

Si
$$A \cap B = \emptyset$$
, alors $|A \cup B| = |A| + |B|$.

Règle du produit 10.7

$$|A \times B| = |A||B|$$

11 Dénombrement

11.1 Binôme de Newton

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

11.2 Les fonctions

Une fonction de A vers B est un triple (A, B, R) tel que $\forall a \in A$ il existe un unique $b \in B : aRb$.

On note $B^A = \{f|f: A \to B\}.$

- * Rangement des objets de A dans les tiroirs de B.
- * Mot de longueur |A| pris dans l'alphabet B.

Soient A et B finis, |A| = n, |B| = k, le nombre de fonctions de A vers B est :

$$k^n$$

11.3 Injections

Une fonction est injective si et seulement si le mot qui la représente ne contient pas deux fois la même lettre.

Soient A et B finis, |A| = n, |B| = k,

$$In(n \leftarrow k) = [n]_k$$

11.4 Surjections

Une fonction $A \to C$ est surjective si et seulement si le mot qui la représente contient au moins une fois fois chaque lettres de de C.

Si
$$|A| = n, |C| = k,$$

$$Sur(n \to k) = \sum_{r=0}^{k} (-1)^r \binom{k}{r} (k-r)^n$$

On trouve ce résultat à l'aide du principe d'inclusion et d'exclusion.

11.5 Bijections

Une fonction bijective ou bijection, est une fonction à la fois injective et surjective.

Le nombre de bijections de A vers A est n!.

11.6 Les dérangements

Un dérangement sur A est une bijection f sur A telle que :

$$\forall a \in A : f(a) \neq a$$

Le nombre de dérangements d'un n-ensembles est :

$$d_n = \sum_{r=0}^{r=n} (-1)^r \frac{n!}{r!}$$

11.7 Combinaisons

	Sans ordre	Avec ordre
Sans répétitions	$B(n,k) = \binom{n}{k} = C_n^k$	$[n]^k = A_n^k$
	$\frac{n!}{k!(n-k)!}$	$\frac{n!}{(n-k)!}$
Avec répétions	$B^*(n,k)$ $ \bullet \bullet \bullet $ $ \bullet \bullet \bullet $	n^k

11.8 Stirling

Le nombre de k-partitions d'un ensemble de cardinal n.

$$S(n,k) = \frac{1}{k!} Sur(n \to k)$$

Récurrence :

$$S(n,k) = S(n-1,k-1) + k.S(n-1,k)$$

11.9 Bell

Le nombre total de partitions d'un n-ensemble.

$$b_n = \sum_{i=0}^{i=n} S(n,i)$$

Récurrence :

$$b_n = \sum_{i=0}^{n-1} \binom{n-1}{i} b_i$$

11.10 Parallélisme

Pascal-Ensembles	Stirling-Partitions	
$B(n,k) = \frac{1}{k!} In(n \leftarrow k)$	$S(n,k) = \frac{1}{k!} Sur(n \to k)$	
B(n,k) = B(n-1,k) + B(n-1,k-1)	S(n,k) = S(n-1,k-1) + kS(n-1,k)	
$\sum_{k=0}^{k=n} \binom{n}{k} = 2^n$	$\sum_{k=0}^{k=n} S(n,k) = b_n$	

12 Equations de récurrence

12.1 Définition

Soit k un entier naturel. Une récurrence linéaire d'ordre k, à coefficients constants, en la suite inconnue $(v_n)_{n=0}^{\infty}$, est une équation de la forme :

$$a_0 v_{n+k} + a_1 v_{n+k-1} + \dots + a_{k-1} v_{n+1} + a_k v_n = b_n$$
 avec $n \in \mathbb{N}$

 \star $(v_n)_{n=0}^{\infty}$ est la suite *inconnue*.

- $\star~a_0,\cdots,a_k$ sont des coefficients réels constants.
- $\star~(b_n)_{n=0}^{\infty}$ est une suite de réels donnée.
- $\star Homog\`ene: \forall \in \mathbb{N}: b_n = 0$
- * Affine : cas général

12.2 Récurrences homogènes de degré 0 et 1

- $\star \ \textit{Degr\'e} \ \theta : v_n = 0 \qquad \forall n$
- \star Degré 1 : $v_n = v_0 \left(\frac{-a_1}{a_0}\right)^n$

12.3 Récurrences homogène de degré 2

Equation générale :

$$v_{n+2} + a_1 v_{n+1} + a_2 v_n = 0$$

Equation caractéristique :

$$r^2 + a_1 r + a_2 = 0$$

12.4 Cas avec 2 racines réels distinctes

Solution générale :

$$v_n = c_1 r_1^n + c_2 r_2^n$$

Conditions initiales:

$$c_1 + c_2 = v_0 \qquad c_1 r_1 + c_2 r_2 = v_1$$

12.5 Cas avec 2 racines très proches

Si les racines sont très proches l'une de l'autre, $r_2=r_1(1+\delta)$, avec $|\delta|\ll 1$. La solution générale sera de la forme approchée :

$$v_n \approx c_1 r_1^n + c_2 r_1^n (1 + n\delta)$$

= $(c_1 + c_2) r_1^n + (c_2 r_1 \delta) n r_1^{n-1}$

12.6 Cas avec 2 racines confondues

Solution générale :

$$v_n = d_0 r_1^n + d_1 n r_1^{n-1}$$

Conditions initiales:

$$d_0 = v_0 d_0 r_1 = d_1 = v_1$$

12.7 Cas avec 2 racines complexes conjuguées

Solution générale :

$$v_n = c_1 \rho^n \cos(n\theta) + c_2 \rho^n \sin(n\theta)$$

Conditions initiales:

$$c_1 = v_0 \qquad c_1 \rho \cos(\theta) + c_2 \rho \sin(\theta) = v_1$$

12.8 Certaines récurrences non homogènes

Equation générale :

$$a_0v_{n+k} + a_1v_{n+k-1} + \dots + a_{k-1}v_{n+1} + a_kv_n = b_n$$
 avec $n \in \mathbb{N}$

Supposons $b_n = bs^n$. Résolution :

- \star Somme d'une solution particulière et des solutions homogènes.
- $\star \ Degré \ \theta : v_n = bs^n \qquad \forall n$

12.9 Récurrences non homogènes de degré 1

Equation générale:

$$v_{n+1} - av_n = bs^n$$

Résolution, en cherchant $v_n = cs^n$:

 $\star \ s \neq a$

$$v_n = \frac{b}{s-a}s^n + da^n \qquad v_0 = \frac{b}{s-a} + d$$

 $\star s = a$

$$v_n = bna^{n-1} + v_0 a^n$$

13 Graphes

13.1 Définition

Soir un N ensemble fini non vide, dont les éléments sont appelés des noeuds. Soit un R ensemble fini , dont les éléments sont appelés des arêtes. Soit I une relation entre noeuds et arêtes, c'est-à-dire un sous-ensemble de $N \times R$, appelé relation d'incidence, telle que e nombre de noeuds incidents à une arête soit égal à 1 ou à 2. On dit alors que le triplet (N, R, I) est un graphe (non orienté).

13.2 vocabulaire

- $\star \alpha \in \mathbb{R}$ est une boucle si $|\{i|iI\alpha\} = 1$
- $\star~|N|$ est l'ordre du graphe.
- * Le degré de n, noté deg(n), est le nombre d'arêtes adjacentes au noeud n, les boucles comptant double.
- \star Un graphe est simple si il n'a ni boucle, ni noeuds reliés par des arêtes multiples.
- $\star \alpha = \{i, j\}$ identifie l'unique arête telle que $iI\alpha$ et $jI\alpha$

13.3 Isomorphisme

Deux graphes simples G = (N, R) et G' = (N', R') sont isomorphes si :

- * Il existe une bijection $f: N \to N'$
- $\star \ \{i,j\} \in R \Leftrightarrow \{f(i),f(j)\} \in R'$

13.4 Matrice d'incidence

La matrice d'incidence M est de genre $|N| \times |R|$:

 $\star m_{i,\alpha} := 2 \Leftrightarrow \alpha \text{ est boucle sur } i$

- $\star \ m_{i,\alpha} := 1 \Leftrightarrow \alpha$ est une arête ordinaire incidente à i
- $\star m_{i,\alpha} := 0 \Leftrightarrow \alpha$ n'est pas incidente à i

Propriétés:

- $\star \sum_{i \in N} m_{i,\alpha} = 2$
- $\star \sum_{i \in N} m_{i,\alpha} = deg(i)$
- $\star \sum_{i \in N} deg(i) = 2|R|$
- \star Le nombre de noeuds de degré impair d'un graphe est pair

13.5 Matrice d'adjacence

La matrice d'adjacence A est de genre $|N| \times |N|$:

- $\star \ a_{i,j} := \text{nombre d'arêtes reliant } i \text{ et } j \text{ si } i \neq j$
- $\star \ a_{i,j} := \text{deux fois le nombre de boucles sur } i$

Propriétés:

- $\star \sum_{j \in N} a_{i,j} = \sum_{j \in N} a_{i,j} = deg(i)$
- $\star \sum_{(i,j)\in N^2} a_{i,j} = 2|R|$
- $\star~MM^t=A+D$ où D est la matrice diagonale des degrés.

13.6 Voyages dans un graphe

	Noeuds distincts	Arêtes distinctes
Parcours ouvert $i_0 \neq i_k$	chemin	piste ouverte
Parcours fermé	cycle	circuit (piste fermée)

Si G est un graphe simple, le nombre de parcours de longueur k entre ses noeuds i et j est donné par $(A^k)_{i,j}$.

13.7 Graphes bipartis

Le graphe simple G = (N, R) est biparti si il existe une partition $\{N_0, N_1\}$ de N telle que

$$\{i,j\} \in R \Rightarrow i \in N_0 \text{ et } j \in N_1 \text{ (ou } i \in N_1 \text{ et } j \in N_0)$$

Un graphe simple est biparti si et seulement si il ne possède aucun cycle de longueur impaire.

13.8 Connexité

Un graphe est connexe si il existe un chemin reliant toute paire de noeuds.

Soit un graphe G=(N,R). On considère la partition $\{N_1,\cdots,N_m\}$ de Netl'ensemble $\{R_1,\cdots R_m\}$ des sous-ensembles R_l de R, disjoints deux à deux, qui satisfont aux deux conditions suivantes :

- * R_l est l'ensemble des arêtes incidentes aux noeuds dans N_l ,
- * Le graphe $G_l := (N_l, R_l)$ est connexe,

pour $l=1,\cdots,m$. Alors les graphes G_1,\cdots,G_m sont appelés les composantes connexes du graphe G.

Si il existe $N'\subset N$ non vide tel que aucune arête ne relie un noeud de N et un noeud de $N\backslash N'$, alors G n'est pas connexe.

Test de connexité

Soient:

- $\star i_0 \in N$ un noeud quelconque de G = (N, R),
- $\star N' = \{i_0\} \text{ et } R' = \emptyset,$
- $\star R_{reste} = R$

Tant que $\exists \alpha \in R_{reste}$ et $i \in N'$ tels que $iI\alpha$:

- $\star R_{reste} := R_{reste} \setminus \{\alpha\}, R' = R' \cup \{\alpha\}$
- $\star N' := N' \cup \{j | jI\alpha\}$

G est connexe si et seulement si N' = N.

Corollaires

- \star Si G=(N,R) est connexe alors $|R|\geq |N|-1$
- \star Si G=(N,R) est connexe alors |R|=|N|-1 si et seulement si G est sans cycle

13.9 Arbres

- \star G est connexe et sans cycle
- \star G est connexe et |R| = |N| 1
- \star G est sans cycle et |R| = |N| 1
- \star G est sans cycle et lui ajouter une arête crée un t
 un seul cycle
- \star G est connexe et supprimer une arête quelconque le déconnecte
- \star Deux noeuds distincts de G sont reliés par un et un seul chemin

13.10 Arbres sous-tendants

L'arbre G'=(N',R') est un arbre sous-tendant G=(N,R) si N=N' et $R'\subseteq R.$

 \star G est connexe \Leftrightarrow G possède un arbre sous-tendant.

13.11 Arbres sous-tendants de poids minimum

Soient:

- $\star~c:R\to\mathbb{R}$ associant un poids à chaque arête.
- $\star \ c(G) := \sum_{r \in R} c(r)$ est le poids du graphe G.

A est un arbre sous-tendant de poids minimum de G si et seulement si A sous-tend G et tout arbre A' sous-tendant G est tel que $c(A) \leq c(A')$.

Kruskal

Soit pour un graphe connexe G = (N, R):

- $\star R_{ord} := trier(R),$
- $\star R' := \emptyset.$

Tant que |R'| < |N| - 1:

- $\star \alpha = Premier(R_o rd);$
- $\star R_o rd = R_o rd \setminus \{\alpha\};$
- \star Si $(N,R'\cup\{\alpha\})$ est sans cycle, alors $R'=R'\cup\{\alpha\}.$

(N, R') est un arbre sous-tendant de poids minimum de (N, R).

13.12 Euler

- \star Une piste eulérienne est une piste qui passe par toutes les arêtes du graphe.
- \star Un grahe connexe G est eulérien \Leftrightarrow Tous les noeuds de G sont de degré pair.
- \star Le graphe G possède une piste eulérienne G est connexe, et contient au maximum deux noeuds de degré impair.

13.13 Hamilton

- \star un graphe simple possède un chemin hamiltonien si il possède un chemin passant par chacun de ses noeuds.
- \star Un graphe simple possède un $cycle\ hamiltonien$ si il possède un cycle passant par chacun de ses noeuds.

Un graphe hamiltonien est un graphe simple possédant un cycle hamiltonien.

13.14 Voyages complets dans un graphe

	Par tous les Noeuds une et une seule fois	
Parcours ouvert $i_0 \neq i_k$	chemin hamiltonien	piste eulérienne
Parcours fermé	cycle hamiltonien graphe hamiltonien	circuit eulérien graphe eulérien

Cinquième partie

Mécanique

14 Vecteurs

14.1 Décomposition des vecteurs

$$A = \sqrt{{A_x}^2 + {A_y}^2}$$
$$\theta = \arctan \frac{A_y}{A_x}$$

14.2 Produit scalaire

$$\vec{A}.\vec{B} = AB\cos\theta = |A||B|\cos\theta$$
$$\vec{A}.\vec{B} = A_xB_x + A_yB_y + A_zB_z$$

14.3 Produit vectoriel

$$C = A \times B = AB \sin \theta$$

$$C_x = A_y B_z - A_z B_y$$

$$C_y = A_z B_x - A_x B_z$$

$$C_z = A_x B_y - A_y B_x$$

On à grâce à la méthode du pouce retrouver le produit des composantes :

$$\hat{j} \times \hat{k} = \hat{i}
\hat{k} \times \hat{i} = \hat{j}$$

$$\begin{vmatrix}
i & j & k \\
A_x & A_y & A_z \\
B_x & B_y & B_z
\end{vmatrix}$$

15 Lois de Newton

15.1 Loi d'inertie

Si la somme des forces agissant sur un corps est nulle, alors il ne subit aucune accélération et se déplacement à vitesse constante.

$$\sum \vec{F} = 0$$

15.2 Loi du mouvement

Soit un corps de masse m: l'accélération subie par ce corps est proportionnelle à la résultante des forces qu'il subit, et inversement proportionnelle à sa masse m.

$$\sum \vec{F} = m\vec{a}$$

15.3 Principe d'action-réaction

Tout corps A exerçant une force sur un corps B subit une force d'intensité égale, de même direction mais de sens opposé, exercée par ce corps B.

$$\vec{F}_{AsurB} = -\vec{F}_{BsurA}$$

16 Conditions d'équilibre

16.1 Conditions

 \star La somme des forces est nulle.

$$\sum \vec{F} = 0$$

 \star La somme des moments en un point A est nulle.

$$\sum \vec{\tau_A} = 0$$

17 Mouvements

17.0.1 Mouvement rectiligne uniforme (MRU/MRUA)

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$
$$a_x = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} = \frac{dv_x}{dt}$$
$$v_x = v_{0x} + a_x t$$

$$x = x_0 + v_{0x}t + \frac{at^2}{2}$$

17.1 Trajectoire d'un projectile

$$x = (v_0 \cos \alpha_0)t$$

$$y = (v_0 \sin \alpha_0)t - \frac{1}{2}gt^2$$

$$v_x = v_0 \cos \alpha_0$$

$$v_y = v_0 \sin \alpha_0 - gt$$

17.2 Mouvement circulaire uniforme (MCU)

$$a_{rad} = \frac{v^2}{R}$$

$$T = \frac{2\pi R}{v}$$

$$a_{rad} = \frac{4\pi^2 R}{T^2}$$

$$a_{tan} = \frac{d|\vec{v}|}{dt}$$

$$F_{net} = ma_{rad} = m\frac{v^2}{R}$$

17.3 Vitesse en courbe

Sur un sol plat :

$$v_{max} = \sqrt{\mu_s g R}$$

En virage incliné sans forces de frottements :

$$v_{max} = \sqrt{Rg\tan\beta}$$

En virage incliné avec forces de frottements :

$$v_{max} = \sqrt{Rg\left(\frac{\sin\beta + \mu_s \cos\beta}{\sin\beta - \mu_s \cos\beta}\right)}$$
$$\mu_s = \frac{v^2 \cos\beta - Rg \sin\beta}{v^2 \sin\beta + Rg \cos\beta}$$

17.4 Vitesse relative

$$\vec{v}_{P/A} = \vec{v}_{P/B} + \vec{v}_{B/A}$$

18 Résistance des fluides et vitesse terminale

18.1 A petite vitesse

$$F_f = kv$$
$$v_t = \frac{mg}{k}$$

18.2 A grande vitesse

$$F_f = Dv^2$$
$$v_t = \sqrt{\frac{mg}{D}}$$

19 Energie potentielle et cinétique

19.1 Travail

$$W = \int_{x_1}^{x_2} \vec{F} d\vec{l}$$

19.2 Energie

$$K_{cin\acute{e}tique} = \frac{mv^2}{2}$$

 $U_{potentielle\ gravitationnelle} = mgy$

$$U_{potentielle\ \acute{e}lastique} = \frac{1}{2}kx^2$$

K et U sont définis à une constante près.

19.3 Forces conservatrices

Lorsqu'il n'y aucune perte d'énergie.

$$E = K_1 + U_1 = K_2 + U_2 = cste$$

19.4 Forces non-conservatrices

Lorsque des forces extérieurs agissent sur le corps.

$$K_1 + U_1 + W_{ext} = K_2 + U_2$$

 $W_{ext} = (K_2 - K_1) + (U_2 - U_1) = F(x_2 - x_1)$

19.5 Energie potentielle élastique

$$F_{ressort} = kx$$

$$U_{élastique} = \frac{kx^2}{2}$$

k dépend de l'élasticité.

20 Gravitation

20.1 Force d'attraction d'un corps

$$F_g = \frac{Gm_1m_2}{r^2}$$

$$G = 6.67 \times 10^{-11} N.m^2/kg^2$$

Le poids d'un corps est la somme des forces gravitationnelles exercées sur celui-ci par tous les autres corps de l'univers.

$$W_{grav} = \int_{r_1}^{r_2} F_r dr$$

$$GMm$$

$$U=-\frac{GMm}{r}$$

20.2 Satellite en orbite circulaire

$$\frac{GMm}{r^2} = \frac{mv^2}{r} \Leftrightarrow v_{orbitale} = \sqrt{\frac{GM}{r}}$$
$$T = \frac{2\pi r}{v} = 2\pi r \sqrt{\frac{r}{GM}} = \frac{2\pi r^{3/2}}{\sqrt{GM}}$$

20.3 Vitesse de libération

$$\begin{split} E_{totale} &= E_{potentielle} + E_{cin\acute{e}tique} \Leftrightarrow 0 = -\frac{GMm}{r} + \frac{mv^2}{2} \\ &\frac{GMm}{r} = \frac{mv^2}{2} \Leftrightarrow v_{lib\acute{e}ration} \geq \sqrt{\frac{2GM}{r}} \\ &v_{lib\acute{e}ration} \geq \sqrt{2}v_{orbitale} \end{split}$$

21 Momentum

21.1 Définition par la deuxième loi de Newton

On peut définir le momentum comme étant la quantité de mouvement d'un corps.

$$\vec{p} = m\vec{v}$$

$$\sum \vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt} = \frac{d\vec{p}}{dt}$$

$$\vec{J} = \int_{t_1}^{t_2} \sum \vec{F} dt = \int_{t_1}^{t_2} \frac{d\vec{p}}{dt} dt = \int_{\vec{p_1}}^{\vec{p_2}} d\vec{p} = \vec{p_2} - \vec{p_1}$$

21.2 Momentum et énergie cinétique

- * L'énergie cinétique correspond au travail total effectué sur un corps pour accélérer celui-ci de l'état d'équilibre à sa vitesse actuelle.
- $\star\,$ Le momentum équivaut à l'impulsion pour accélérer un corps de l'état d'équilibre à sa vitesse présente.

21.2.1 Conservation de la quantité de mouvement

Si la somme des forces extérieurs est nulle, alors la quantité totale de mouvement du système est contante.

$$\vec{P} = \vec{p_1} + \vec{p_2} + \dots$$

22 Collisions

22.1 Types de collisions

- * Collision élastique : Les forces en les corps sont conservatrices et l'énergie totale du système reste la même avant et après la collision.
- \star Collision in'elastique : L'énergie totale du système est moindre après la collision.
- \star Collision totalement inélastique : Après la collision, les deux corps collent ensemble pour ne former qu'un.

22.2 Collisions complètement inélastiques

Considérons un corps A en mouvement et un corps B au repos.

$$m_A v_{A1} + m_B v_{B1}^2 = (m_A + m_B) v_2^2$$

$$\downarrow \downarrow$$

$$v_{2x} = \frac{m_A}{m_A + m_B} v_{A1x}$$

22.3 Collisions élastiques

Considérons un corps A en mouvement et un corps B au repos.

23 Mouvement périodique

23.1 Formules

$$x = A\cos\left(\omega t + \phi\right)$$

- $\star~A$: l'amplitude du mouvement.
- $\star~\omega$: La vitesse angulaire donnée par

$$\omega = \frac{V}{R}$$

 $\star~\phi$:
le déphasage du mouvement.

23.2 Fréquence, période et vitesse angulaire

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

23.3 Oscillation d'un ressort

Soit:

$$F = ma = m\frac{d^2x}{dt} = -kx$$

En résolvant l'équation différentielle on trouve :

$$x(t) = A\sin(\omega t)$$

On peut ensuite trouver ω en injectant la solution dans l'équation :

$$m(A\sin(\omega t))'' = -kA\sin(\omega t)$$

$$-mA\omega^2\sin(\omega t) = -kA\sin(\omega t)$$

$$m\omega^2 = k$$

On trouve alors:

$$\omega = \sqrt{\frac{k}{m}}$$

23.4 Pendule simple

Soit:

$$F=ma=m\frac{d^{2}x}{dt}=m\frac{Ld^{2}\theta}{dt}=-mg\sin\left(\theta\right)$$

Pour des angles de faible amplitude on va pouvoir considérer :

$$\sin(\theta) \cong \theta$$

On a obtient donc :

$$\frac{Ld^2\theta}{dt} = -g\theta$$

En résolvant l'équation différentielle on trouve :

$$\theta(t) = \theta_0 \sin\left(\omega t\right)$$

On peut ensuite trouver ω en injectant la solution dans l'équation :

$$\begin{array}{rcl} L(\theta_0 \sin{(\omega t)})'' & = & -g\theta(t) \\ -L\theta_0 \omega^2 \sin{(\omega t)} & = & -g\theta_0 \sin{(\omega t)} \\ L\omega^2 & = & g \end{array}$$

On trouve alors:

$$\omega = \sqrt{\frac{g}{L}}$$

Similitude avec le ressort :

$$F_{\theta} = -mg\sin\theta \cong -mg\theta = -mg\frac{x}{L}$$
$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{mg/L}{m}} = \sqrt{\frac{g}{L}}$$

23.5 Energie dans un mouvement harmonique

$$E = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2 = cste$$

Sixième partie

Electricité

24 Electrostatique

24.1 Loi de Coulomb

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

$$K \cong 9.10^9 \frac{Nm^2}{C^2}$$

24.2 Champs électriques

$$\overrightarrow{E} = \frac{\overrightarrow{F}}{Q}$$

Champ d'un point de charge :

$$\frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

Champ à l'extérieur d'une sphère :

$$\frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$

Champ à l'intérieur d'une sphère :

$$\frac{1}{4\pi\epsilon_0} \frac{Qr}{R^3}$$

Champ d'une plaque infinie:

$$\frac{\sigma}{2\epsilon_0}$$

Champ entre deux plaques:

$$\frac{\sigma}{\epsilon_0}$$

24.3 Dipôles

$$\overrightarrow{\tau} = \overrightarrow{p} \times \overrightarrow{E} = pE \sin \phi$$

24.4 Flux électrique (Gauss)

$$\Phi_E = \oint E \cos \phi dA = \oint E_\perp dA = \oint \overrightarrow{E}.d\overrightarrow{A} = \frac{Q_{encl}}{\epsilon_0}$$

Pour les conducteurs :

$$E_{\perp} = \frac{\sigma}{\epsilon_0}$$

24.5 Energie électrique

$$W_{a\to b} = U_a - U_b = -\delta U = \int_a^b F dr$$
$$\int_a^b F dr = \int_a^b \frac{1}{4\pi\epsilon_0} \frac{Qq_0}{r^2} dr = \frac{Qq_0}{4\pi\epsilon_0} \left(\frac{1}{a} - \frac{1}{b}\right)$$

24.6 Potentiel électrique

$$V = \frac{U}{Q_0} = \frac{Q}{4\pi\epsilon_0 r}$$

$$V_a - V_b = \int_a^b \overrightarrow{E} . d\overrightarrow{l} = \int_a^b E \cos\phi dl$$

24.7 Capacités et diélectriques

$$C = \frac{Q}{V_{ab}} = \frac{\epsilon_0 A}{d}$$

$$U = \frac{CV^2}{2} = \frac{Q^2}{2C} = \frac{QV}{2}$$

$$K = \frac{C}{C_0}$$

$$K = \frac{V_0}{V}$$

$$K\epsilon_0 = \epsilon$$

$$u = \frac{1}{2}K\epsilon_0 E^2 = \frac{\epsilon E^2}{2}$$

$$\oint K\overrightarrow{E}.d\overrightarrow{A} = \frac{Q_{encl}}{\epsilon_0}$$

25 Courant continu

25.1 Courant électrique (DC)

$$I = \frac{dq}{dt} \qquad \qquad \rho = \frac{E}{J} \qquad \qquad q(t) = \int_{t_0}^{t} i(t)dt + qt_0$$

25.2 Résistance et résistivité

$$R = \frac{\rho L}{A} \qquad \qquad V = IR$$

25.3 Force électromotrice et puissance

$$P = VI = I^2 R$$

$$V_{ab} = \varepsilon - IR_{interne} \qquad \qquad w = \int_{t_1}^{t_2} p(t) dt$$

25.4 Lois de Kirchoff's

$$\sum I = 0 \qquad \qquad \sum V = 0$$

25.5 Capacités & Inductances

Capacité	Inductance
$I(t) = \frac{CdV}{dt}$	$V(t) = \frac{LdI}{dt}$
$\tau = RC$	$\tau = \frac{L}{R}$
$U = \frac{CV^2}{2} = \frac{Q^2}{2C}$	$U = \frac{LI^2}{2}$

25.6 Circuit R-L-C

$$\frac{Q^2}{2C} + \frac{LI^2}{2} = \frac{Q_{max}^2}{2C}$$

$$I = \pm \sqrt{\frac{Q_{max}^2 - q^2}{LC}}$$

$$w = \sqrt{\frac{1}{LC}}$$

$$w' = \sqrt{\frac{1}{LC} - \frac{R^2}{4C^2}}$$

26 Courant alternatif

26.1 Courant électrique (AC)

$$i = I\cos\omega t$$

$$v = V\cos\left(\omega t + \phi\right)$$

$$X(t) = A + Be^{-\frac{t}{\tau}}$$

26.2 Valeurs efficaces

$$I_{eff} = \frac{I}{\sqrt{2}}$$

$$V_{eff} = \frac{V}{\sqrt{2}}$$

$$P_{eff} = V_{eff}I_{eff}\cos\theta$$

26.3 Capacités & Inductances

Capacité	Inductance
$I_C = \frac{CdV}{dt}$	$V_L = \frac{LdI}{dt}$
$i = \frac{dq}{dt} \Rightarrow q = \frac{I_0 \sin \omega t}{\omega}$	
$V_C = \frac{I_0 \sin \omega t}{\omega C}$	$V_L = -L\omega I_0 \sin \omega t$
$X_C = \frac{1}{\omega C}$	$X_L = L\omega$

26.4 Circuit R-L-C

$$Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
$$\tan \phi = \frac{\omega L - \frac{1}{\omega C}}{R}$$

26.5 Transformateur

$$\frac{V_1}{V_2} = \frac{N_1}{N_2} \qquad V_1 I_1 = V_2 I_2$$