CC2 - lundi 21 mars 2022

Durée: 1 heure.

L'usage d'aides électroniques ou de documents n'est pas autorisé. Toute réponse doit être justifiée. Les deux exercices sont indépendants.

Exercice 1.

- 1. Expliciter \mathbb{F}_{16} comme corps de rupture d'un polynôme sur \mathbb{F}_2 .
- 2. Le corps \mathbb{F}_{16} contient-il \mathbb{F}_8 ?
- 3. Soit K le plus petit corps fini contenant \mathbb{F}_{16} et \mathbb{F}_{8} . Déterminer le cardinal de K et l'expliciter comme corps de rupture d'un polynôme sur \mathbb{F}_{16} .

Exercice 2.

On considère le polynôme $P(X) = X^3 - X - 1$ dans $\mathbb{Q}[X]$.

- 1. Démontrer que P(X) admet une unique racine réelle α et que celle-ci est irrationnelle. En déduire que P est irréductible sur \mathbb{Q} .
- 2. Soit β une racine complexe de P(X), distincte de α . Calculer le polynôme minimal B(X) de β sur $\mathbb{Q}(\alpha)$, ainsi que le discriminant $\Delta \in \mathbb{Q}(\alpha)$ de B.
- 3. Démontrer que $\mathbb{Q}(\alpha, \sqrt{\Delta})$ est un corps de décomposition de P sur \mathbb{Q} , et donner son degré sur \mathbb{Q} .
- 4. Expliciter la division euclidienne de $P'(X)^2(4-3X^2)$ par P(X). En déduire que $P'(\alpha)^2\Delta$ vaut -23.
- 5. À l'aide des questions 3 et 4, démontrer que $\mathbb{Q}(\alpha, \sqrt{-23})$ est un corps de décomposition pour P. Quel est le polynôme minimal de α sur $\mathbb{Q}(\sqrt{-23})$?