CS3243 : Introduction to Artificial Intelligence

Tutorial 3

NUS School of Computing

July 7, 2022

Admin

- Consultations
- ► Extra material for practice

Review

- Heuristics, more importantly on how do we come up with them
- ► Dominance and how it helps
- Relaxed problems, the recipe for obtaining heuristics

Review

Admissibility	h is admissible iff $\forall n: h(n) \leq h*(n)$ An admissible heuristic will never overestimate the cost to reach the goal
Consistency	h is consistent, iff for every node n and every successor n' of n generated by action a $h(n) \leq c(n,a,n') + h(n')$
Dominance	$h_1(n)$ dominates $h_2(n)$ iff $\forall n: h_1(n) \geq h_2(n)$

Review (8-puzzle)

Original Problem : A tile can move from square X to square Y if X is adjacent to Y and Y is blank

Review (8-puzzle)

- Original Problem : A tile can move from square X to square Y if X is adjacent to Y and Y is blank
- Relaxed Version 1 : A tile can move from square X to square Y if X is adjacent to Y and Y is blank

Review (8-puzzle)

- Original Problem : A tile can move from square X to square Y if X is adjacent to Y and Y is blank
- Relaxed Version 1 : A tile can move from square X to square Y if X is adjacent to Y and Y is blank
- Relaxed Version 2 : A tile can move from square X to square Y if X is adjacent to Y and Y is blank

- Design Admissible Heuristics for SameGame Puzzle
- Given information :
 - lnitial state : Grid with $n \times m$ tiles with c different colours
 - Neighbors: Directly adjacent tiles (Internal tiles: 4 neighbors, Edge tiles: 3 neighbors, Corner tiles: 2 neighbors)
 - Group : Set of ≥ 2 neighboring tiles of same color
 - Singleton : Tile not belonging to any group
 - ► Action/Move : Deleting a group (not singleton). Thereafter, vertical gravity and column shifting (right-to-left) applies (in transition model)
 - ► Goal state : Empty grid (assume solvable)
 - ▶ Transition cost : 1 (or ∞ if no groups exist)

► An example of the initial state :

▶ Top-left corner is (1,1), $1 \le ROW \le n$, and $1 \le COL \le m$

- ▶ Idea Admissible : $\forall n, \ h(n) \leq h^*(n)$
- ► We have two approaches

- ▶ Idea Admissible : $\forall n, \ h(n) \leq h^*(n)$
- ▶ We have two approaches
- Approach 1: By reasoning/inference (ie What information could I use at each state to get a estimate of the number of moves needed to reach the goal? Important: Must be an underestimate!)

- ▶ Idea Admissible : $\forall n, \ h(n) \leq h^*(n)$
- ► We have two approaches
- Approach 1: By reasoning/inference (ie What information could I use at each state to get a estimate of the number of moves needed to reach the goal? Important: Must be an underestimate!)
- ▶ Approach 2 (better approach): Relaxation of the game rules (ie. I now need less moves than what I originally need to reach the goal because the game has become "easier" = admissible. Important: We should be able to easily obtain the number of moves needed with the relaxed rules)

- ▶ Proof of admissibility : h(s) = Number of colours remaining.
- Each group contains exactly 1 colour
- Each remaining color has 1 or more groups
- ▶ Each move may reduce groups by more than 1 (example when groups of same color combine), but will never reduce remaining groups of same color below 1 (unless that color is removed by the move)
- ▶ Hence, each legal move will leave the number of colors remaining unchanged or reduce it by at most 1 if the color is removed by the move, ie. $h(s) \leq h^*(s)$

- ▶ Proof of admissibility : h(s) = Number of colours remaining.
- Each group contains exactly 1 colour
- Each remaining color has 1 or more groups
- ▶ Each move may reduce groups by more than 1 (example when groups of same color combine), but will never reduce remaining groups of same color below 1 (unless that color is removed by the move)
- ▶ Hence, each legal move will leave the number of colors remaining unchanged or reduce it by at most 1 if the color is removed by the move, ie. $h(s) \leq h^*(s)$
- Note: You may also prove admissibility by showing that heuristic was derived from a relaxed version of the game (Please refer to the forum post on LumiNUS for details)

- Given information :
 - State: Position of Pac-Man in the grid at any point in time and the positions of the remaining (i.e., uneaten) pellets.
 - ▶ Initial state: Grid entirely filled with pellets except at Pac-Man's starting position.
 - Action: Move up/down/left/right.
 - Transition model: Updating the position of Pac-Man given current grid and action, and eating (ie. removing) the pellet at this new position if a pellet exists. Returns updated grid.
 - ► Goal state: No (uneaten) pellets left in the grid.
 - ► Transition/Step cost: 1 for each action taken.

- ▶ Let's say admissible heuristics : h_1 , h_3 , h_4
- ▶ On to comparing the dominance of each on another

- $ightharpoonup h_1$ vs h_3
- ► What do you think?

- $ightharpoonup h_1$ vs h_3
- ► What do you think?
- Let's look at the counter-examples

- $ightharpoonup h_1$ vs h_4
- ► What do you think?

- $ightharpoonup h_1$ vs h_4
- ► What do you think?
- ▶ Let's look at the previous counter-examples

- $ightharpoonup h_3$ vs h_4
- ► What do you think?

- $ightharpoonup h_3$ vs h_4
- ► What do you think?
- Nerage \leq Maximum, and Euclidean distance \leq Manhattan distance; hence Average Euclidean distance $(h_4) \leq$ Maximum Manhattan distance (h_3) for all nodes ie h_3 dominates h_4

- ► Traveling Salesman Problem (TSP)
- Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once, and returns to the origin city?

- Traveling Salesman Problem (TSP)
- Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once, and returns to the origin city?
- Now, this is a hard problem. We haven't been able to find a polynomial time algorithm for it. But, we have heuristics to the rescue.

Tutorial Question 4(a)

How can MST heuristic be derived from a relaxed version of TSP?

Tutorial Question 4(a)

- How can MST heuristic be derived from a relaxed version of TSP?
- ► The TSP problem is to find a minimal length path through the cities, which forms a closed loop.
- ► MST is a relaxed version of the TSP problem because it only seeks for a minimal length graph that need not be a closed loop – it can be any fully-connected graph.

Tutorial Question 4(b)

▶ Is the MST heuristic admissible?

Tutorial Question 4(b)

- ▶ Is the MST heuristic admissible?
- Yes, because it is always shorter than or equal to the length of a closed loop through the cities.

Tutorial Question 4(c)

► Hill Climbing Approach to solve TSP?

Tutorial Question 4(c)

- ► Hill Climbing Approach to solve TSP?
- ► Algorithm:
 - ► Choose a random path that connects all the cities
 - Along that path, pick two cities at random
 - Partition the whole path across these two cities, which leaves us with 3 paths
 - ► Try all 6 possible permutations of arranging the partitions to obtain the least cost loop
 - Upon getting the best cost, repeat the steps to further improve
 - ▶ Halt when done with a certain k number of iterations

Thank you!

If you have any questions, please don't hesitate. Feel free to ask! We are here to learn together!