

MCHINE LEARNING & VISUALISATION DE DONNÉES

Vincent Guigue vincent.guigue@agroparistech.fr

VISUALISATION

■ InfoVis = Information Visualization

The use of computer-supported interactive, visual representation of abstract data to amplify cognition Card, Mackinlay & Shneiderman

- DataVis = Data Visualization
- Deux problèmes extrêmement importants dans la data science
- Deux problèmes peu abordés...

Référence utile : Cours de F. Rossi http://apiacoa.org/teaching/visualization/index.fr.html

⇒ Lien avec l'apprentissage statistique : Quelles mèthodes permettent de trouver automatiquement de bonnes visualisations des données?

Humain = machine visuelle très perfectionnée

- Extraction de caractéristiques de base en 200ms
- Possibilités d'analyse de densité / détection d'anomalie très rapide

https://www.csc2.ncsu.edu/faculty/healey/PP/index.html

Visualiser une population (1D)

- Focus sur une dimension X_j
 - N Observations x_{ij}
- Solution pour la visualisation du contenu : l'histogramme

Visualiser une population (2D)

Donnèes orgininales = Iris, 4D : comment visualiser? \Rightarrow Scatter plot

Visualiser une population (2D)

Donnèes orgininales = Iris, 4D : comment visualiser? \Rightarrow Scatter plot

Avec les informations de classes

Transformations avancées

Visualisation 0000

Limites humaines

Please write down your estimation of the ratio of the areas of those disks.

Limites humaines

Please write down your estimation of the ratio of the lengths of those bars.

Limites humaines

Another visual abstraction Using the same counting data, replace the ${\cal Q}$ pie slices by ${\cal Q}$ bars with length/height proportional to N_q

And the views are

Visualisation OOOO Limites humaines

Steve Jobs' keynote at Macworld 2008, source:

Limites humaines

0000

Steve Jobs' keynote at Macworld 2008, source:

Transformations Avancées

ACP : analyse en composantes principales

ACP(PCA) = outil de base pour

- La visualisation de données en grande dimension
- 2 La réduction de la dimension et du bruit

ACP : analyse en composantes principales

ldée : trouver des axes qui maximise la variance ⇒ projeter sur ces axes

- Transformation non supervisée
- Transformation applicable sur de nouveaux points
 - 1 $X \in \mathbb{R}^{N \times d}$
 - **2** ACP sur $X^TX \in \mathbb{R}^{d \times d}$
 - Rècupètation de $\{V_i \in \mathbb{R}^d, \lambda_i \in \mathbb{R}_+\}_{i=1,...,d}$
 - 4 d Axes de projection V_i ... associès è leur force d'explication λ_i
 - 5 Utilisation des V_i sur les données de test

2 La réduction de la dimension et du bruit

_

Limite de la sélection de variables

Limite de la sélection de variables

LLE: local linear embedding

LLE: local linear embedding

Idée : Les données sont organisées selon une variété

_

LLE: local linear embedding

X -

MDS: multi-dimensional scaling

	Atlanta (1)	Boston (2)	Cincinnati (3)	Columbus (4)	Dallas (5)	Indianapolis (6)	Little Rock (7)	Los Angeles (8)	Memphis (9)	St. Louis (10)	Spokane (11)	Tampa (12)
(1)	0											
(2)	1068	0										
(3)	461	867	0									
(4)	549	769	107	0								
(5)	805	1819	943	1050	0							
(6)	508	941	108	172	882	0						
(7)	505	1494	618	725	325	562	0					
(8)	2197	3052	2186	2245	1403	2080	1701	0				
(9)	366	1355	502	586	464	436	137	1831	0			
(10)	558	1178	338	409	645	234	353	1848	294	0		
(11)	2467	2747	2067	2131	1891	1959	1988	1227	2042	1820	0	
(12)	467	1379	928	985	1077	975	912	2480	779	1016	2821	0

/_

MDS: multi-dimensional scaling

Two dimensional clustering of UK Members of Parliament

- Se déplacer dans le graphe des plus proches voisins
- Reconstruire les distances dans le graphe (plutôt que dans l'espace d'origine)

Step		
1	Construct neighborhood graph	Define the graph G over all data points by connecting points i and j if [as measured by $d_X(i,j)$] they are closer than ϵ (ϵ -Isomap), or if i is one of the K nearest neighbors of j (K -Isomap). Set edge lengths equal to $d_X(i,j)$.
2	Compute shortest paths	Initialize $d_G(i,j) = d_X(i,j)$ if i,j are linked by an edge; $d_G(i,j) = \infty$ otherwise. Then for each value of $k = 1, 2, \ldots, N$ in turn, replace all entries $d_G(i,j)$ by $\min\{d_G(i,j), d_G(i,k) + d_G(k,j)\}$. The matrix of final values $D_G = \{d_G(i,j)\}$ will contain the shortest path distances between all pairs of points in G (16, 19).
3	Construct <i>d</i> -dimensional embedding	Let λ_p be the p -th eigenvalue (in decreasing order) of the matrix $\tau(D_G)$ (17), and v_p^i be the i -th component of the p -th eigenvector. Then set the p -th component of the d -dimensional coordinate vector \mathbf{y}_i equal to $\sqrt{\lambda_p}v_p^i$.

Que se passe-t-il sur des données USPS ou MNIST? 256/384 dimensions $\Rightarrow 2D!$

Sur USPS

Que se passe-t-il sur des données USPS ou MNIST? 256/384 dimensions $\Rightarrow 2D$!

ACP/PCA

 \Rightarrow Pas de miracle... Mais pas si mal!

Sur USPS

Que se passe-t-il sur des données USPS ou MNIST? 256/384 dimensions $\Rightarrow 2D$!

Projection non linéaire

Visualizing MNIST with MDS

Visualizing MNIST as a Graph

Visualisation Sur USPS

Que se passe-t-il sur des données USPS ou MNIST? 256/384 dim

T-SNE

A t-SNE plot of MNIST

- Un outil pour comprendre les données
 - Identifier les classes avec plusieurs modes
 - Les points abbérants
 - Anticiper les difficultés (ou les facilités)
- Un outil pour analyser les erreurs des modèles... Puis améliorer les modèles
 - Présenter les résultats
 - Comprendre les erreurs