Dummit & Foote Ch. 1.2: Dihedral Groups

Scott Donaldson

Jan. 2023

1. (1/23/23)

Compute the order of each of the elements in the following groups:

- (a) D_6
 - r, r^2 : 3
 - s, sr, sr^2 : 2
- (b) D_8
 - r: 4
 - r^2 : 2
 - r^3 : 4
 - s, sr, sr^2, sr^3 : 2
- (c) D_{10}
 - r, r^2, r^3, r^4 : 5
 - s, sr, sr^2, sr^3, sr^4 : 2

2. (1/23/23)

Use the generators and relations of $D_{2n} = \langle r, s | r^n = s^2 = 1, rs = sr^{-1} \rangle$ to show that if x is any element of D_{2n} which is not a power of r, then $rx = xr^{-1}$.

Proof. Let $x \in D_{2n}$ such that $x \neq r^k$ for all $k \in \mathbb{Z}$. Then, since all elements of D_{2n} can be written as a product of generators s and r, we must have $x = sr^k$ for some $k \in \{1, 2, ..., n-1\}$. Therefore:

$$rx = rsr^k = sr^{-1}r^k = sr^{k-1} = sr^kr^{-1} = xr^{-1}$$
,

as desired. \Box

3. (1/25/23)

Use the generators and relations above to show that every element of D_{2n} which is not a power of r has order 2. Deduce that D_{2n} is generated by the two elements s and sr, both of which have order 2.

Proof. Let $sr^k \in D_{2n}$. $(sr^k)(sr^k) = s(r^ks)r^k = s(sr^{-k})r^k = ssr^{-k}r^k = 1 \cdot 1 = 1$. Thus the order of elements of the form sr^k , that is, every element which is not a power of r, has order 2.

To show that D_{2n} is generated by s and sr, let $r^k, sr^k \in D_{2n}$. Now $s \cdot sr = r$, so $(s \cdot sr)^k = r^k$. To obtain sr^k , we simply left-multiply the previous by s: $s(s \cdot sr)^k = sr^k$. Thus every element of D_{2n} can be written as a product of s and sr, and so $\langle s, sr \rangle$ is a generator for D_{2n} .

4. (1/25/23)

If n = 2k is even and $n \ge 4$, show that $z = r^k$ is an element of order 2 which commutes with all elements of D_{2n} . Show also that z is the only nonidentity element of D_{2n} which commutes with all elements of D_{2n} .

Proof. Let $n=2k, n \geq 4$, and let $z=r^k \in D_{2n}$. $z \cdot z=r^k r^k=r^{2k}=r^n=1$, so z has order 2.

Since $r^k r^k = 1$, it follows that $r^k = r^{-k}$ (equivalently, $z = z^{-1}$). Elements of the form r^m obviously commute with each other, so we only need to show that $z = r^k$ commutes with elements of the form sr^m . Now:

$$r^k s r^m = r^k r^{-m} s = r^{-k} r^{-m} s = r^{-k-m} s = (r^{k+m})^{-1} s = s r^{k+m} = s r^{m+k} = s r^m r^k,$$

which shows that $z = r^k$ commutes with elements of the form sr^m .

Finally, to show that z is the only nonidentity element which commutes with all elements, we will consider the possible separate cases of the forms of arbitrary elements of D_{2n} . Let $a, b \in D_{2n}$.

- Let $a = r^m$. From above, a commutes with all elements of the form r^p . Does a commute with elements of the form sr^p ? $r^m sr^p = r^m r^{-p}s = r^{m-p}s$. On the other hand, we have $sr^p r^m = sr^{p+m} = r^{-p-m}s$. These two are equal when m p = -p m, that is, when m = -m (in $\mathbb{Z}/n\mathbb{Z}$). This only occurs when m = n/2 = k, and so $z = r^k$ is the only element of the form r^m which commutes with all elements of D_{2n} .
- Let $a = sr^m$. As a counterexample, it suffices to show that there is at least one element of D_{2n} which a does not commute with: r. $sr^m r = sr^{m+1}$, while $rsr^m = rr^{-m}s = r^{1-m}s = sr^{m-1}$. Because $n \ge 4$, there are no values of $m \in \mathbb{Z}/n\mathbb{Z}$ for which m+1=m-1. Thus elements of the form sr^m do not commute in D_{2n} .

This completes the proof that $z = r^k$ is the only nonidentity element of D_{2n} which commutes with all other elements.

5. (1/26/23)

If n is odd and $n \geq 3$, show that the identity is the only element of D_{2n} which commutes with all elements of D_{2n} .

Proof. This proof is nearly identical to that of Exercise 4. above, only with n odd instead of even. The proof that elements of the form sr^m is the same as above. To show that elements of the form r^m do not commute, we again consider $r^m sr^p$ and $sr^p r^m$ and see that we must have m = -m (in $\mathbb{Z}/n\mathbb{Z}$). Adding m to both sides, we must have $2m = 0 \Rightarrow 2m = n$. However, because n is odd, this does not occur, and so there are no nonidentity elements of D_{2n} which commute with all elements of D_{2n} .

6. (1/26/23)

Let x, y be elements of order 2 in any group G. Prove that if t = xy then $tx = xt^{-1}$ (so that if $n = |xy| < \infty$ then x, t satisfy the same relations in G as s, r do in D_{2n}).

Proof. Let $x,y\in G, |x|=|y|=2$ and let t=xy. From $x^2=y^2=1$, we have $x=x^{-1}$ and $y=y^{-1}$. Then:

$$t = xy \Rightarrow tx = xyx = x(y^{-1}x^{-1}) = x(xy)^{-1} = xt^{-1},$$

as desired.

If $|xy| = |t| = n < \infty$, then we have $t^n = x^2 = 1, tx = xt^{-1}$. These are the same relations in G for x, t as s, r do in D_{2n} .