SOFT COMPUTING

B.Tech(CSE), Winter 2015
Worked Out Examples (SET-1)

B.K.Tripathy
Senior Professor
School of Computer Science and Engineering
VIT University, Vellore-632014
Tamil Nadu, India

EXAMPLE-1

- Q. Implement ANDNOT function using McCullah-Pitts neuron (Using binary data representation)
- A. An ANDNOT function, the response is true (1) if the first input is true(1) and the second input is false (0)

Table:

x1	x2	У
0	0	0
0	1	0
1	0	1
1	1	0

EXAMPLE-1 CONTD...

- Case-1: Assume that both weights w1 and w2 are excitatory
- That is we take w1 = w2 = 1
- Using this the formula for the input is
- yin = x1w1+x2w2
- So,

Input	Input Computation	Input Value
(1,1)	Yin = 1x1+1x1	2
(1,0)	Yin = 1x1+0x1	1
(0,1)	Yin=0x1+1x1	1
(0,0)	Yin=0x1+0x1	0

EXAMPLE-1 CONTD...

- From the net inputs it is not possible to fire the neuron for input (1,0) only
- Case-2: Assume that one weight is excitatory and the other one is inhibitory, i.e. w1 = 1 and w2 = -1.
- Using the same formula

Input	Input Computation	Input Value
(1,1)	Yin=1x1+1x-1	0
(1,0)	Yin=1x1+0x-1	1
(0,1)	Yin=0x1+1x-1	-1
(0,0)	Yin=0x1+0x-1	0

EXAMPLE-1 CONTD...

- From the computed net input it is now possible to fire (1,0) alone. We have to fix the threshold value t=1
- So, w1=1, w2 = -1 and t = 1
- The value of 't' can be computed from t >= n.w p
- i.e. t>= 2x1-1 or t>= 1
- Note that for inhibitory 'p' only the magnitude only is considered
- The output of neuron 'y' can be written as
- y = f(yin) = 1 if yin >= 1 and
- = 0 if yin < 1

EXAMPLE-2

- Implement XOR function using M-P neuron
- The truth table for the XOR is given by

x1	x2	У
0	0	0
0	1	1
1	0	1
1	1	0

The output is "ON" only for odd number of 1's

EXAMPLE-2 CONTD...

The XOR function can be represented as

- y = x1. x2+x1.x2 or y = z1 + z2; where
- z1 = x1.x2 (function 1)
- z2 = x1.x2 (function 2)
- y = z1 (OR) z2 (function 3)
- NOTE: In this case we have to use an intermediate layer to compute (function 1) and (function 2).
- The final output is (function 3)

FIRST FUNCTION

- First Function($z_1 = x_1 \overline{x_2}$)
- The truth table for this function is

x1	x2	z1
0	0	0
0	1	0
1	0	1
1	1	0

COMPUTATIONS FOR Z1

- Case 1: Assume both weights are excitatory $(w_{11} = w_{21} = 1)$
- Computation of net inputs

inputs	Zin computations	Zin values
(0, 0)	Z1in = 0x1 + 0x1	0
(0, 1)	$\mathbf{Z1in} = \mathbf{0x1} + \mathbf{1x1}$	1
(1, 0)	$\mathbf{Z1in} = \mathbf{1x1} + \mathbf{0x1}$	1
(1, 1)	Z1in = 1x1 + 1x1	2

• It is not possible to obtain function z1 using these weights

COMPUTATIONS FOR Z1

- Case 2: Assume that one of the weights is excitatory and the other one is inhibitory $(w_{11} = 1; w_{21} = -1)$
- The computation of inputs is

inputs	Zin computations	Zin values
(0, 0)	Z1in = 0x1 + 0x-1	0
(0, 1)	Z1in = 0x1 + 1x-1	-1
(1, 0)	Z1in = 1x1 + 0x-1	1
(1, 1)	Z1in = 1x1 + 1x-1	0

 On the basis of this calculated net input it is possible to get the required output is

$$w_{11} = 1; w_{21} = -1; \theta \ge 1$$

NET FOR Z1

• The nets corresponding to z_1 is

SECOND FUNCTION

- Second Function: ($z_2 = \overline{x_1}x_2$)
- The truth table for z2 is

x1	x2	z2
0	0	0
0	1	1
1	0	0
1	1	0

COMPUTATIONS FOR Z2

- Case 1: Assume both weights are excitatory $(w_{12} = w_{22} = 1)$
- Computation of net inputs

inputs	Zin computations	Zin values
(0, 0)	Z2in = 0x1 + 0x1	0
(0, 1)	Z2in = 0x1 + 1x1	1
(1, 0)	Z2in = 1x1 + 0x1	1
(1, 1)	Z2in = 1x1 + 1x1	2

Hence it is not possible to obtain function z2 using these weights

COMPUTATIONS FOR Z2

- Case 2: Assume that one of the weights is excitatory and the other one is inhibitory $(w_{12} = -1; w_{22} = 1)$
- Computation of net inputs

inputs	Zin computations	Zin values
(0, 0)	Z2in = 0x-1 + 0x1	0
(0, 1)	Z2in = 0x-1 + 1x1	1
(1, 0)	Z2in = 1x-1 + 0x1	-1
(1, 1)	Z2in = 1x-1 + 1x1	0

- Thus with these weights it is possible to get the output
- Hence
- $w_{12} = -1$; $w_{22} = 1 \& \theta \ge 1$

NET FOR Z2

• The 2 nets corresponding to z_2 is

THIRD FUNCTION

- The third function is $y = z_1 OR z_2$
- The truth table for this function is

x1	x2	z1	z2	у
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	0	0	0

The net input can be computed by using

$$y_{in} = z_1 v_1 + z_2 v_2, v_1 \& v_2$$
 are weights

COMPUTATIONS FOR Y

Case 1: Assume that both the functions are excitatory

$$v_1 = v_2 = 1$$

Computations for net input are

inputs	z1	z2	yin computations	yin values
(0, 0)	0	0	yin = 0x1 + 0x1	0
(0, 1)	0	1	yin = 0x1 + 1x1	1
(1, 0)	1	0	yin = 1x1 + 0x1	1
(1, 1)	0	0	yin = 0x1 + 0x1	0

FINAL ANALYSIS

- Setting a threshold value $\theta \ge 1$ and $v_1 = v_2 = 1$, the net is recognized
- So, the weights for the XOR function using M-P neuron are

```
w_{11} = 1; w_{12} = -1;

w_{21} = -1; w_{22} = 1;

v_1 = 1; v_2 = 1.
```

NET REPRESENTATION FOR EXAMPLE-2

EXAMPLE-3

- Using the linear separability concept obtain the response for OR function (Take bipolar inputs and bipolar targets)
- The truth table for 'OR' function with bipolar inputs and targets is

x1	x2	У
1	1	1
1	-1	1
-1	1	1
-1	-1	-1

GRAPHICAL REPRESENTATION

- Let us take the line of separation as the line joining the points (-1, 0) and (0, -1)
- We get the slope of the line of separation as

$$m = \frac{y_2 - y_1}{x_2 - x_1} = -1$$

- The value of 'c' is obtained as c = y m.x = 0 (-1)(-1) = -1
- So, the equation of the line is y = -x -1
- Since the axes used are X_1 and X_2 the equation is written as

$$x_2 = -x_1 - 1$$

COMPUTATIONS CONTD...

• The above equation can be written as $x_2 = \frac{-w_1}{w_2}x_1 - \frac{b}{w_2}$

• Comparing the two equations
$$\frac{w_1}{w_2} = 1$$
 and $\frac{b}{w_2} = 1$

- So, $w_1 = w_2 = b = 1$
- Computing the net input and output of OR function on the basis of these weights and bias we get

x1	x2	b	Yin=b+x1w1+x2w2	у
1	1	1	3	1
1	-1	1	1	1
-1	1	1	1	1
-1	-1	1	-1	-1

FINAL ANALYSIS

From the table the output of Y can be written as

$$y = f(y_{in}) = \begin{cases} 1, & \text{if } y_{in} \ge 1; \\ 0, & \text{if } y_{in} < 1. \end{cases}$$

Here, the threshold is taken to be '1'.

EXAMPLE-4

- Implement AND function using perceptron networks for bipolar inputs and targets
- The truth table for the AND function using bipolar inputs and targets is

x1	x2	У
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

PERCEPTRON NETWORK FOR AND FUNCTION

- All the inputs are to be presented to the network one after another to complete one epoch
- Let us set the initial weights and bias as $w_1 = w_2 = 0 = b$
- The net input for the first input is $y_{in} = b + w_1x_1 + w_2x_2 = 0$
- The output 'y' is computed by applying activation function over the net input. So, taking the threshold $\theta = 0$.

$$y = \begin{cases} 1, & if \ y_{in} > 0; \\ 0, & if \ y_{in} = 0; \\ -1, & if \ y_{in} < 0. \end{cases}$$

• As t = 1 and y = 0, we have $t \neq y$. So, weight updation takes place

Using

$$w_i(new) = w_i(old) + \alpha.t.x_i$$

 $w_1(new) = w_1(old) + 1.1.1 = 1$
 $w_2(new) = w_2(old) + 1.1.1 = 1$
 $b(new) = b(old) + 1.1 = 1$

These values are used for the next input

In	put	b	Target	input	Output	Updtd	Weig	hts
x1	x2	1	t	yin	У	w1	w2	b
EPOCH 1								
1	1	1	1	0	0	1	1	1
1	-1	1	-1	1	1	0	2	0
-1	1	1	-1	1	1	1	1	-1
-1	-1	1	-1	-3	-1	1	1	-1
EPOCH 2								
1	1	1	1	1	1	1	1	-1
1	-1	1	-1	-1	-1	1	1	-1
-1	1	1	-1	-1	-1	1	1	-1
-1	-1	1	-1	-1	-1	1	1	-1

- The stopping conditions are:
- All the calculated outputs are equal to the target outputs
- When a separating line is obtained using the final weights for separating the positive responses from the negative responses
- After the second epoch the target outputs are equal to the computed outputs
- The weights after the second epoch are $w_1 = w_2 = 1$ and b = -1
- Since the threshold value is '0' the separating line is

$$x_2 = \frac{-w_1}{w_2} x_1 - \frac{b}{w_2}$$

• So,
$$x_2 = -\frac{1}{1}x_1 - \frac{-1}{1}$$
 or $x_2 = -x_1 + 1$

EXAMPLE-5

- Find the weights using perceptron network for ANDNOT function when all the inputs are presented only one time.
 Use bipolar inputs and targets
- The truth table for the ANDNOT function using bipolar inputs and targets is

x1	x2	t
1	1	-1
1	-1	1
-1	1	-1
-1	-1	-1

NETWORK STRUCTURE

S

 w_1 x_1 X_1 w_2 x_2 X_2

- Let us take $w_1 = w_2 = 0$; $\alpha = 1, \theta = 0$
- First input: (1, 1, -1)

$$y_{in} = b + x_1 w_1 + x_2 w_2 = 0 + 1 \times 0 + 1 \times 0 = 0$$

The output using activation function is

$$y = f(y_{in}) = \begin{cases} 1, & \text{if } y_{in} > 0; \\ 0, & \text{if } y_{in} = 0; \\ -1, & \text{if } y_{in} < 0. \end{cases}$$

- So, output $(y = 0) \neq (t = -1)$
- So weight updation is necessary

$$w_{1}(new) = w_{1}(old) + \alpha.t.x_{1}$$

$$= 0 + 1 \times (-1) \times 1$$

$$= -1$$

$$w_{2}(new) = w_{2}(old) + \alpha.t.x_{1}$$

$$= 0 + 1 \times (-1) \times 1$$

$$= -1$$

$$b(new) = -1$$

The new weights are (-1, -1, -1)

Second input: (1,-1,1)

$$y_{in} = b + x_1 w_1 + x_2 w_2 = -1 + 1 \times (-1) + (-1 \times -1) = -1$$
$$(y = f(y_{in}) = -1) \neq (t = 1)$$

So, new weights are to be computed

$$w_1(new) = w_1(old) + \alpha t \cdot x_1$$
 $w_2(new) = w_2(old) + \alpha t \cdot x_1$
= $(-1) + 1 \times 1 \times 1$ = $-1 + 1 \times 1 \times (-1)$
= 0 = -2

The new weights are (0, -2, 0)

• Third input: (-1,1,-1)

$$y_{in} = b + x_1 w_1 + x_2 w_2 = 0 + (-1) \times 0 + (1 \times -2) = -2$$
$$(y = f(y_{in}) = -1) = (t = -1)$$

- Weight updation is not necessary
- So, new weights are not to be computed
- Fourth input: (-1, -1, -1)

$$y_{in} = b + x_1 w_1 + x_2 w_2 = 0 + (-1) \times 0 + (-1 \times -2) = 2$$
$$(y = f(y_{in}) = 1) \neq (t = -1)$$

So, new weights are to be computed

$$w_1(new) = w_1(old) + \alpha .t. x_1$$

= 0+1×(-1)×(-1)
= 1
 $w_2(new) = w_2(old) + \alpha .t. x_1$
= -2+1×(-1)×(-1)
= -1
 $b(new) = -1$

• The new weights are (-1, -1, -1)

FINAL ANALYSIS

	Input		Target	Net Input	Calculated output	Upda ted	weights	
x1	x2	b	t	yin	У	w1	w2	b
1	1	1	-1	0	0	-1	-1	-1
1	-1	1	1	-1	-1	0	-2	0
-1	1	1	-1	-2	-1	0	-2	0
-1	-1	1	-1	2	1	1	-1	-1

EXAMPLE-6

- Find the weights required to perform classification using perceptron network.
- The vectors (1, 1, 1, 1) and (-1, 1, -1, -1) are belonging to the class (so have target value 1),
- vectors (1, 1, 1,-1) and (1, -1, -1, 1) are not belonging to the class (so we have target value -1).
- Assume learning rate as 1 and initial weight as 0.

INITIAL TABLE

• The truth table is given by

x1	x2	х3	х4	b	t
1	1	1	1	1	1
-1	1	-1	-1	1	1
1	1	1	-1	1	-1
1	-1	-1	1	1	-1

- Here we take $w_1 = w_2 = w_3 = w_4 = 1, \theta = 0$. Also, $\alpha = 1$
- The activation function is given by

$$y = \begin{cases} 1, & \text{if } y_{in} > 0; \\ 0, & \text{if } y_{in} = 0; \\ -1, & \text{if } y_{in} < 0. \end{cases}$$

The net input is given by

$$y_{in} = b + x_1 w_1 + x_2 w_2 + x_3 w_3 + x_4 w_4$$

 The next table reflects the training performed with weights computed

	Input				Target	Net Input	Out put	Up	da	ted	Weig	hts
x1	EPOCH-1 x2	х 3	х4	b	t	Y in	У	w1	w2	w3	w4	b
1	1	1	1	1	1	0	0	1	1	1	1	1
-1	1	-1	1	1	1	-1	-1	0	2	0	0	2
1	1	1	-1	1	-1	4	1	-1	1	-1	1	1
1	-1	-1	1	1	-1	1	1	-2	2	0	0	0

	Input				Target	Net Input	Out put	Up	da	ted	Weig	hts
x1	EPOCH-2 x2	х 3	х4	b	t	Y in	У	w1	w2	w3	w4	b
1	1	1	1	1	1	0	0	-1	3	1	1	1
-1	1	-1	1	1	1	3	1	-1	3	1	1	1
1	1	1	-1	1	-1	4	1	-2	2	0	2	0
1	-1	-1	1	1	-1	-2	-1	-2	2	0	2	0

	Input				Target	Net Input	Out put	Up	da	ted	Weig	hts
x1	EPOCH-3 x2	х 3	х4	b	t	Y in	У	w1	w2	w3	w4	b
1	1	1	1	1	1	2	1	-2	2	0	2	0
-1	1	-1	1	1	1	2	1	-2	2	0	2	0
1	1	1	-1	1	-1	-2	-1	-2	2	0	2	0
1	-1	-1	1	1	-1	-2	-1	-2	2	0	2	0

Here the target outputs are equal to the actual outputs. So, we stop.

THE FINAL NET

