



### **Archaic Introgression**





 the transfer of genetic information from one species to another as a result of hybridization and repeated backcrossing



#### Human family tree



Source: Nature









|                          | Denisovan                                                                                                                 | Neanderthal                                                                                                                                  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Era Alive                | Lower and Middle Paleolithic                                                                                              | Middle to Late Pleistocene                                                                                                                   |
| Appearance               | The widest and flattest skull shape; large<br>teeth and wide pelvises. Matured slower<br>than Neanderthals                | Wide skulls and pelvises, though more aligned with modern humans. Matured at a rate close to modern humans                                   |
| Geographical<br>Location | Eastern Asia                                                                                                              | Europe and Western Asia                                                                                                                      |
| Behavior                 | Very little is known, but it is suspected<br>that Denisovans bred frequently with<br>Neanderthals and lived similar lives | Complex and industrious lives with complicated social structures. Created Neanderthal and Denisovan offspring, but only in certain locations |
| Location<br>Discovered   | Denisova Cave in Russia; 2008                                                                                             | Belgium in the 19th century                                                                                                                  |



### Introduction and objective



- Goal: To find whether the genes responsible for aiding Elite
   Climbers have origins in archaic introgression(special interest in
   Denisovan introgression).
- Topics covered: Hypoxia resistance, climbing advantages, archaic introgression

#### Genes associated with climbing advantages

- Investigation and record of genes which are associated with hypoxia-resistance
  - Recorded over 56600 genes

Database

iHypoxia: An Integrative Database of Protein Expression Dynamics in Response to Hypoxia in Animals

Ze-Xian Liu <sup>1</sup>\*, Panqin Wang <sup>2</sup>\*, Qingfeng Zhang <sup>1</sup>\*, Shihua Li <sup>1</sup><sup>2</sup>, Yuxin Zhang <sup>2</sup>, Yutong Guo <sup>2</sup>, Chongchong Jia <sup>2</sup>, Tian Shao <sup>2</sup>, Lin Li <sup>1</sup>, Han Cheng <sup>2</sup> ⊘ ⊠, Zhenlong Wang <sup>2</sup> ⊘ ⊠

https://www.sciencedirect.com/science/article/pii/S1672022922001504

| #CHROM | TYPE | POS1   | POS2   | NAME        |
|--------|------|--------|--------|-------------|
| 1      | gene | 14404  | 29570  | WASH7P      |
| 1      | gene | 29554  | 31109  | MIR1302-2HG |
| 1      | gene | 34554  | 36081  | FAM138A     |
| 1      | gene | 52473  | 53312  | OR4G4P      |
| 1      | gene | 57598  | 64116  | OR4G11P     |
| 1      | gene | 65419  | 71585  | OR4F5       |
| 1      | gene | 89295  | 133723 | AL627309.1  |
| 1      | gene | 89551  | 91105  | AL627309.3  |
| 1      | gene | 131025 | 134836 | CICP27      |
| 1      | gene | 134901 | 139379 | AL627309.1  |

#### **Materials and Methods**

- Sequenced data for the Elite Climbers + controls in gzip—compressed VCF Format (22 autosomal)
  - Samples in VCF:
    - 20 Austrian controls
    - 10 Austrian Elite Climbers(picked because of their extreme abilities)
    - 13 other European Climbers
- 1000 Genomes Project sequenced data
- Sequenced data for Altai Denisovan and Vindija Neanderthal genome populations in gzip-compressed VCF format

| SPrime   | Brian Browning (Browning | https://github.com/browning-        |
|----------|--------------------------|-------------------------------------|
|          | etal. 2018)              | lab/sprime ∕                        |
| Bcftools | SAMtools                 | http://samtools.github.io/bcftools/ |
|          |                          | bcftools.html /                     |

#### **Variant Call Format Files**



| #CHROM | POS     | ID        | REF | ALT    | QUAL | FILTER | INFO                              | FORMAT      | NA00001        | NA00002        | NA00003      |
|--------|---------|-----------|-----|--------|------|--------|-----------------------------------|-------------|----------------|----------------|--------------|
| 20     | 14370   | rs6054257 | G   | A      | 29   | PASS   | NS=3;DP=14;AF=0.5;DB;H2           | GT:GQ:DP:HQ | 0 0:48:1:51,51 | 1 0:48:8:51,51 | 1/1:43:5:.,. |
| 20     | 17330   |           | T   | A      | 3    | q10    | NS=3;DP=11;AF=0.017               | GT:GQ:DP:HQ | 0 0:49:3:58,50 | 0 1:3:5:65,3   | 0/0:41:3     |
| 20     | 1110696 | rs6040355 | A   | G,T    | 67   | PASS   | NS=2;DP=10;AF=0.333,0.667;AA=T;DB | GT:GQ:DP:HQ | 1 2:21:6:23,27 | 2 1:2:0:18,2   | 2/2:35:4     |
| 20     | 1230237 |           | T   |        | 47   | PASS   | NS=3;DP=13;AA=T                   | GT:GQ:DP:HQ | 0 0:54:7:56,60 | 0 0:48:4:51,51 | 0/0:61:2     |
| 20     | 1234567 | microsat1 | GTC | G,GTCT | 50   | PASS   | NS=3;DP=9;AA=G                    | GT:GQ:DP    | 0/1:35:4       | 0/2:17:2       | 1/1:40:3     |

#### **Material and Methods: Data Pre-processing**

Elite Climbers VCF files

Phase Elite Climber files



Filter for variants
with <0.99 GP from
Elite Climber files

Outgroup (Yoruba)

Create file with all Yoruba sample names found in 1000 genome project site



from 1000 genome chromosome files

### **Data Pre-processing of 22 Merged VCF files**

Filter
merged files
for bi-allelic
variants

Concatenate the resulting 22 filtered merged VCF files

### **TOOL: Sprime**

- Method to detect introgressed archaic sequences without using a reference genome
  - optimized for detecting introgression from Neanderthals and Denisovans in modern humans
- SPRIME paramenters:
  - gt= VCF file with target samples + outgroup samples
  - outgroup=A text file with outgroup sample names
  - map=Plink format recombination map
    - SPrime will use linear interpolation to estimate genetic positions between map positions.
  - Out=Directory to store outputs







### **Sprime**

- java -Xmx50g -jar sprime.jar gt=[file path]outgroup=[file path] map=[file path] out=[file path]
- Cases used:
  - Case where Austrian Climbers are target samples
  - Case where other European Climbers are target samples
  - Case where the Austrian controls are target samples

#### Output

- The log file (.log) contains a summary of the analysis.
- The score file (.score) lists all introgressed variants with segment score greater than or equal to the minscore parameter(which is 100,000 by default).



| • •    | •       |             |     | out     | _file_1.: | score |          |
|--------|---------|-------------|-----|---------|-----------|-------|----------|
| ICHROM | POS     | ID REF      | ALT | SEGMENT | ALLELE    | SCORE |          |
| 1      | 807512  | rs10751454  | Ā   | G       | 137       | 0     | 107638   |
| 1      | 807761  | rs4951932   | C   | A       | 137       | 0     | 107638   |
| 1      | 812267  | rs7541694   | Ä   | G       | 137       | ø     | 107638   |
| ī      | 812284  | rs7545373   | ĉ   | Ğ       | 137       | ø     | 107638   |
| ī      | 821887  | rs6677354   | Ã   | Ğ       | 137       | ě     | 107638   |
| 1      | 830807  | rs6422669   | G   | č       | 137       | ē     | 107638   |
| 1      | 847250  | rs7416129   | G   | Ā       | 137       | ē     | 107638   |
| 1      | 866920  | rs2341361   | Ä   | G       | 137       | 0     | 107638   |
| 1      | 877831  | rs6672356   | Ť   | ċ       | 137       | ø     | 107638   |
| 1      | 883625  | rs4970378   | A   | Ğ       | 137       | 0     | 107638   |
| 1      | 901652  | rs2879814   | Α   | G       | 137       | 0     | 107638   |
| 1      | 989768  | rs2340593   | Α   | G       | 137       | 0     | 107638   |
| 1      | 921716  | rs13303278  | c   | Α       | 137       | 1     | 107638   |
| 1      | 924528  | rs34712273  | С   | Α       | 137       | 1     | 107638   |
| 1      | 935222  | rs2298214   | c   | Α       | 137       | 1     | 107638   |
| 1      | 953952  | rs9442612   | G   | Α       | 137       | 1     | 107638   |
| 1      | 954777  | rs61766299  | C   | Α       | 137       | 1     | 107638   |
| 1      | 960409  | rs4970392   | G   | С       | 137       | 1     | 107638   |
| 1      | 967658  | rs4970349   | С   | т       | 137       | 1     | 107638   |
| 1      | 1847576 | rs146157459 | Α   | G       | 110       | 1     | 123007   |
| 1      | 1059199 | rs537530630 | c   | Т       | 110       | 1     | 123007   |
| 1      | 1066898 | rs189892117 | G   | Α       | 110       | 1     | 123007   |
| 1      | 1869421 | rs554638733 | G   | Α       | 110       | 1     | 123007   |
| 1      | 1072880 | rs143580335 | G   | Α       | 110       | 1     | 123007   |
| 1      | 1085424 |             | т   | c       | 110       | 1     | 123007   |
| 1      | 1105299 | rs111997742 | G   | A       | 110       | 1     | 123007   |
| 1      | 1108951 |             | G   | Т       | 110       | 1     | 123007   |
| 1      | 1109193 |             | G   | A       | 110       | 1     | 123007   |
| 1      | 1111147 | rs112420268 | Α   | С       | 110       | 1     | 123007   |
|        |         |             |     |         |           |       | DD/-/ BB |

# **Sprime Results**

austrian\_control\_scores\_table

| CHROM | POS       | ID          | REF | ALT | SEGMENT | ALLELE | SCORE  | SPrime_Inference |
|-------|-----------|-------------|-----|-----|---------|--------|--------|------------------|
| 1     | 167332504 | rs534568998 | G   | Т   | 48      | 1      | 195103 | Т                |
| 1     | 205342450 | rs12122704  | Т   | G   | 94      | 1      | 137916 | G                |
| 1     | 205342652 | rs12122771  | Т   | G   | 94      | 1      | 137916 | G                |
| 1     | 205343478 | rs79344214  | Α   | G   | 94      | 1      | 137916 | G                |
| 1     | 205343628 | rs79345034  | Т   | С   | 94      | 1      | 137916 | С                |
| 1     | 205344061 | rs11240460  | Т   | С   | 94      | 1      | 137916 | С                |
| 1     | 205349507 | rs77453816  | G   | Т   | 94      | 1      | 137916 | Т                |
| 1     | 205353492 | rs2274702   | Α   | С   | 94      | 1      | 137916 | С                |
| 1     | 205354695 | rs7349182   | С   | Т   | 94      | 1      | 137916 | Т                |
| 1     | 205355903 | rs12135649  | С   | Т   | 94      | 1      | 137916 | Т                |
| 1     | 205360764 | rs12133217  | G   | Α   | 94      | 1      | 137916 | A                |
| 1     | 205360957 | rs12140919  | С   | Т   | 94      | 1      | 137916 | Т                |
| 1     | 205363898 | rs140566229 | С   | Т   | 94      | 1      | 137916 | Т                |
| 1     | 205363972 | rs138003490 | G   | Α   | 94      | 1      | 137916 | A                |
| 1     | 205366677 | rs12141590  | С   | G   | 94      | 1      | 137916 | G                |
| 1     | 205369097 | rs77594411  | G   | С   | 94      | 1      | 137916 | С                |
| 1     | 205370469 | rs143927182 | С   | Α   | 94      | 1      | 137916 | A                |
| 1     | 205378492 | rs55780799  | С   | Т   | 94      | 1      | 137916 | Т                |
| 1     | 205342351 | rs12125326  | G   | Α   | 94      | 1      | 137916 | A                |
| 1     | 205341383 | rs74398318  | С   | Т   | 94      | 1      | 137916 | Т                |
| 1     | 205340765 | rs144569305 | G   | Α   | 94      | 1      | 137916 | A                |
| 1     | 205339542 | rs56300017  | Α   | G   | 94      | 1      | 137916 | G                |
| 1     | 203136361 | rs200134555 | Т   | G   | 148     | 1      | 105088 | G                |
| 1     | 203139187 | rs139323917 | G   | Α   | 148     | 1      | 105088 | А                |

austrian climbers scores table

| #CHROM POS ID REF ALT SEGMENT ALLELE SCORE SPrime_Inference |           |             |     |     |         |        |        |                  |  |  |  |  |  |
|-------------------------------------------------------------|-----------|-------------|-----|-----|---------|--------|--------|------------------|--|--|--|--|--|
| #CHROM                                                      | POS       | ID          | REF | ALT | SEGMENT | ALLELE | SCORE  | SPrime_Inference |  |  |  |  |  |
| 1                                                           | 192116126 | rs80151391  | Α   | G   | 129     | 1      | 103303 | G                |  |  |  |  |  |
| 1                                                           | 225200110 | rs111862721 | G   | Α   | 7       | 1      | 394707 | A                |  |  |  |  |  |
| 1                                                           | 225191880 | rs78139584  | С   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
| 1                                                           | 225191264 | rs79257893  | G   | Т   | 7       | 1      | 394707 | Т                |  |  |  |  |  |
| 1                                                           | 225189138 | rs80016617  | G   | Α   | 7       | 1      | 394707 | A                |  |  |  |  |  |
| 1                                                           | 225188911 | rs80023439  | С   | Т   | 7       | 1      | 394707 | Т                |  |  |  |  |  |
| 1                                                           | 225183870 | rs79620384  | Α   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
| 1                                                           | 225182124 | rs78638349  | Α   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
| 1                                                           | 225181214 | rs75254122  | С   | Α   | 7       | 1      | 394707 | A                |  |  |  |  |  |
| 1                                                           | 225176961 | rs112489082 | Α   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
| 1                                                           | 225175625 | rs112286465 | G   | Α   | 7       | 1      | 394707 | A                |  |  |  |  |  |
| 1                                                           | 225175436 | rs113493760 | С   | Т   | 7       | 1      | 394707 | Т                |  |  |  |  |  |
| 1                                                           | 225172387 | rs111552187 | С   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
| 1                                                           | 225202436 | rs75044318  | Α   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
| 1                                                           | 225171163 | rs76032339  | Α   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
| 1                                                           | 225165811 | rs111669697 | С   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
| 1                                                           | 225165768 | rs78497820  | Α   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
| 1                                                           | 225164566 | rs111676659 | Α   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
| 1                                                           | 225164379 | rs541685284 | G   | Α   | 7       | 1      | 394707 | A                |  |  |  |  |  |
| 1                                                           | 225164171 | rs111896783 | Α   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
| 1                                                           | 225164150 | rs75625634  | С   | Т   | 7       | 1      | 394707 | Т                |  |  |  |  |  |
| 1                                                           | 225162613 | rs189673231 | Α   | С   | 7       | 1      | 394707 | С                |  |  |  |  |  |
| 1                                                           | 225161877 | rs72470459  | Α   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
| 1                                                           | 225160970 | rs74699857  | Α   | G   | 7       | 1      | 394707 | G                |  |  |  |  |  |
|                                                             |           |             |     |     |         |        |        |                  |  |  |  |  |  |

## More filtering



| #CHROM | POS      | ID         | REF | ALT_x | AUS1 | AUS2 | AUS3 | AUS4 | AUS5 | ••• | AUS8 | AUS9 | AUS10 | Nean_geno | Deni_geno | SEGMENT | match_nean | match_deni | samp_der_freq | GENE  |
|--------|----------|------------|-----|-------|------|------|------|------|------|-----|------|------|-------|-----------|-----------|---------|------------|------------|---------------|-------|
| 22     | 17810053 | rs17808489 | G   | Α     | 1 0  | 0 0  | 0 0  | 0 0  | 0 0  |     | 1 0  | 0 0  | 0 0   | 1/1       | 0/0       | 12      | 0.2        | 1.0        | 0.10          | CECR9 |
| 22     | 17815187 | rs78563168 | С   | Т     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0  |     | 1 0  | 0 0  | 0 0   | 1/1       | 0/0       | 12      | 0.1        | 1.0        | 0.05          | None  |
| 22     | 17817037 | rs4819575  | С   | Т     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0  |     | 1 0  | 0 0  | 0 0   | 1/1       | 0/0       | 12      | 0.1        | 1.0        | 0.05          | None  |
| 22     | 17819348 | rs2189076  | Т   | С     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0  |     | 1 0  | 0 0  | 0 0   | 1/1       | 0/0       | 12      | 0.1        | 1.0        | 0.05          | None  |
| 22     | 17834918 | rs5749051  | G   | С     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0  |     | 0 1  | 0 0  | 0 0   | 1/1       | 1/1       | 12      | 0.1        | 0.1        | 0.05          | None  |

#### Results and Figures

28 putatively introgressed region/ segments found that are unique to Austrian Climbers







Most segments unique to Austrian Climbers present high affinity to Neanderthal Genome



#### **Conclusions (for now)**

- There's some evidence of some of the hypoxia\_resistance genes being a result of archaic introgression
- There's some evidence of recent introgression with Denisivans
  - This could be as a result of direct interbreeding with Denisovans or interbreeding with Neanderthals who have some Denisovan DNA (since it is known that Neanderthal interbred with Denisovans
- Need to take more genes/genetic material into consideration
  - The areas of interest do not show overlap perhaps due to the limited amount of genes considered
- Further analysis need to be done to be more certain of results
  - The austrian climbers had less variants picked as introgressed compared to other European and the control so will need more analysis.
  - Look more into Chromosome 12

#### **Works Cited**

- Huerta-Sánchez E, Jin X, Asan, Bianba Z, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P, Wang B, Ou X, Huasang, Luosang J, Cuo ZX, Li K, Gao G, Yin Y, Wang W, Zhang X, Xu X, Yang H, Li Y, Wang J, Wang J, Nielsen R. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature. 2014 Aug 14;512(7513):194-7. doi: 10.1038/nature13408. Epub 2014 Jul 2. PMID: 25043035; PMCID: PMC4134395.
- Ze-Xian Liu, Panqin Wang, Qingfeng Zhang, Shihua Li, Yuxin Zhang, Yutong Guo, Chongchong Jia, Tian Shao, Lin Li, Han Cheng, Zhenlong Wang, iHypoxia: An Integrative Database of Protein Expression Dynamics in Response to Hypoxia in Animals, Genomics, Proteomics & Bioinformatics, 2022, https://doi.org/10.1016/j.gpb.2022.12.001.