算法与数据结构 liuyubobobo

带权图 Weighted Graph

带权图 Weighted Graph

邻接矩阵 (Adjacency Matrix)

邻接表 (Adjacency Lists)

邻接矩阵 (Adjacency Matrix)

邻接表 (Adjacency Lists)

操作:带权图的实现版权所有

切分定理:

给定任意切分,横切边中权值

切分定理:

给定任意切分,横切边中全值

切分定理:

给定任意切分,横切边中全值

切分定理:

给定任意切分,横切边中全值

切分定理:

给定任意切分,横切边中全值

源·课网 《算·法与数排制 Lazy Prim

Lazy Prim

Lazy Prim

操作:实现 Lazy Prim 版权所有,是权业人

Lazy Prim 的时间复杂度 O(ElogE)

Primo(Elogy) 版权所有

Prima

Prima

Prime

0 - 2 : 0.26	2 - 3 : 0.17

IndexMinHeap

0	1	2	3	4	5	6	7
_	_	0.26	_	0.38	-	0.58	0.16

0 - 6:0.58 2 - 7:0.34

0 - 7:0.16 3 - 6:0.52

1 - 2 : 0.36 4 - 5 : 0.35

1 - 3 : 0.29 4 - 6 : 0.93

1 - 5 : 0.32 4 - 7 : 0.37

-7:0.19 5-7:0.28

 0
 1
 2
 3
 4
 5
 6
 7

 0.26
 0.38
 0.58
 0.16

0 - 2 : 0.26	2 - 3 : 0.17
0 - 4 : 0.38	2 - 6 : 0.40

IndexMinHeap

0	1	2	3	4	5	6	7
_	_	0.26	_	0.38	_	0.58	0 16

2 - 3:0.17

2 - 6:0.40

2 - 7:0.34

3 - 6:0.52

4 - 5 : 0.35

4 - 6:0.93

4 - 7:0.37

5 - 7:0.28

0.38

0.58 0.16

0.58 0.16

2 - 3:0.17

2 - 6:0.40

2 - 7:0.34

3 - 6:0.52

4 - 5 : 0.35

4 - 6:0.93

4 - 7:0.37

5 - 7:0.28

0.38

0.58 0.16

0 - 2 : 0.26	2 - 3 : 0.17
0 - 4 : 0.38	2 - 6:0.40

IndexMinHeap

0	1	2	3	4	5	6	7
_	0.19	0.26	_	0.38	_	0.58	0.16

Prim

0 - 6:0.58 2 - 7:0.34

0 - 7:0.16 3 - 6:0.52

1 - 2 : 0.36 4 - 5 : 0.35

1 - 3 : 0.29 4 - 6 : 0.93

1 - 5 : 0.32 4 - 7 : 0.37

-7:0.19 5-7:0.28

 0
 1
 2
 3
 4
 5
 6
 7

 0.19
 0.26
 0.37
 0.58
 0.16

Prim

0.58 0.16

- 2 3:0.17 0 - 2 : 0.26 2 - 6:0.40 0 - 4 : 0.38
- 0 6:0.58 2 - 7:0.34
- 0 7 : 0.163 - 6:0.52
- 2:0.36 4 - 5 : 0.35
- -3:0.29 4 - 6:0.93
- 1 5 : 0.32 4 - 7:0.37
- 1 7:0.19 5 - 7:0.28

IndexMinHeap

3 0.19 0.26 0.37 0.28 0.58 0.16

Prima

0 - 2 : 0.26	2 - 3 : 0.17
0 - 4 : 0.38	2 - 6:0.40

IndexMinHeap

0	1	2	3	4	5	6	7
_	0 19	0.26	_	0.37	0.28	0.58	0.16

Prim

0 - 2 : 0.26	2 - 3 : 0.17
0 - 4 : 0.38	2 - 6:0.40

IndexMinHeap

0	1	2	3	4	5	6	7
_	0 19	0.26	_	0.37	0.28	0.58	0.16

2 - 3:0.17 0 - 2 : 0.26

2 - 6:0.40 0 - 4 : 0.38

0 - 6:0.58 2 - 7:0.34

0 - 7 : 0.163 - 6:0.52

- 2:0.36 4 - 5 : 0.35

-3:0.29 4 - 6:0.93

1 - 5 : 0.32 4 - 7:0.37

1 - 7:0.19 5 - 7:0.28

IndexMinHeap

3 0.37 0.28 0.58 0.16

0 - 2 : 0.26	2 - 3 : 0.17
0 - 4 : 0.38	2 - 6:0.40

IndexMinHeap

0	1	2	3	4	5	6	7
_	0 19	0.26	_	0.37	0.28	0.58	0.16

Prima

Prima

2 - 3:0.17 2 - 6:0.40 2 - 7:0.34 3 - 6:0.52 4 - 5 : 0.35 4 - 6:0.93 4 - 7:0.37 5 - 7:0.28

0.19 0.26 0.29 0.37 0.28 0.58 0.16

Prim

2 - 3:0.17 0 - 2 : 0.26 2 - 6:0.40 0 - 4 : 0.380 - 6:0.58 2 - 7:0.34 0 - 7 : 0.163 - 6:0.52 -2:0.36 4 - 5 : 0.35 -3:0.29 4 - 6:0.93 1 - 5 : 0.32 4 - 7:0.37

IndexMinHeap

0.19 0.26 0.17 0.37 0.28 0.58 0.16

5 - 7:0.28

- 0 2 : 0.26 2 3 : 0.17
- 0 4:0.38 2 6:0.40
- 0 6:0.58 2 7:0.34
- 0 7:0.16 3 6:0.52
- 1 2 : 0.36 4 5 : 0.35
- 1 3 : 0.29 4 6 : 0.93
- 1 5:0.32 4 7:0.37
- 1 7:0.19 5 7:0.28

IndexMinHeap

 0
 1
 2
 3
 4
 5
 6
 7

 0.19
 0.26
 0.17
 0.37
 0.28
 0.58
 0.16

Prim

Prima

2 - 3:0.17 0 - 2 : 0.26

2 - 6:0.40 0 - 4 : 0.38

0 - 6:0.58 2 - 7:0.34

0 - 7 : 0.163 - 6:0.52

- 2:0.36 4 - 5 : 0.35

-3:0.29 4 - 6:0.93

1 - 5 : 0.32 4 - 7:0.37

1 - 7:0.19 5 - 7:0.28

IndexMinHeap

0.19 0.26 0.17 0.37 0.28 0.40 0.16

2 - 3:0.17 0 - 2 : 0.26

2 - 6:0.40 0 - 4 : 0.38

0 - 6:0.58 2 - 7:0.34

0 - 7 : 0.163 - 6:0.52

- 2:0.36 4 - 5 : 0.35

-3:0.29 4 - 6:0.93

1 - 5 : 0.32 4 - 7:0.37

1 - 7:0.19 5 - 7:0.28

IndexMinHeap

0.19 0.26 0.17 0.37 0.28 0.40 0.16

- 0 6:0.58 2 7:0.34
- 0 7:0.16 3 6:0.52
- 1 2 : 0.36 4 5 : 0.35
- 1 3 : 0.29 4 6 : 0.93
- 1 5:0.32 4 7:0.37
- 1 7:0.19 5 7:0.28

IndexMinHeap

- 0 1 2 3 4 5 6 7
- 0.19 0.26 0.17 0.37 0.28 0.40 0.16

0 - 2 : 0.26	2 - 3 : 0.17
0 - 4:0.38	2 - 6:0.40
0 - 6:0.58	2 - 7 : 0.34
0 - 7 : 0.16	3 - 6:0.52
1 - 2 : 0.36	4 - 5 : 0.35
1 - 3 : 0.29	4 - 6:0.93
1 - 5 : 0.32	4 - 7 : 0.37

IndexMinHeap

1 - 7:0.19

 0
 1
 2
 3
 4
 5
 6
 7

 0.19
 0.26
 0.17
 0.37
 0.28
 0.40
 0.16

5 - 7:0.28

- 0 2:0.26 2 3:0.17
- 0 4:0.38 2 6:0.40
- 0 6:0.58 2 7:0.34
- 0 7:0.16 3 6:0.52
- 1 2 : 0.36 4 5 : 0.35
- 1 3 : 0.29 4 6 : 0.93
- 1 5:0.32 4 7:0.37
- 1 7:0.19 5 7:0.28

IndexMinHeap

- 0 1 2 3 4 5 6 7
 - 0.19 0.26 0.17 0.37 0.28 0.40 0.16

0 - 2 : 0.26 2 - 3 : 0.17

0 - 4:0.38 2 - 6:0.40

0 - 6:0.58 2 - 7:0.34

0 - 7:0.16 3 - 6:0.52

1 - 2 : 0.36 4 - 5 : 0.35

1 - 3 : 0.29 4 - 6 : 0.93

1 - 5 : 0.32 4 - 7 : 0.37

1 - 7:0.19 5 - 7:0.28

IndexMinHeap

0 1 2 3 4 5 6 7

- 0.19 0.26 0.17 0.35 0.28 0.40 0.16

Prim

0 - 2 : 0.26 2 - 3 : 0.17

0 - 4:0.38 2 - 6:0.40

0 - 6:0.58 2 - 7:0.34

0 - 7:0.16 3 - 6:0.52

1 - 2 : 0.36 4 - 5 : 0.35

1 - 3 : 0.29 4 - 6 : 0.93

1 - 5 : 0.32 4 - 7 : 0.37

1 - 7:0.19 5 - 7:0.28

IndexMinHeap

0 1 2 3 4 5 6 7

- 0.19 0.26 0.17 0.35 0.28 0.40 0.16

0 - 2 : 0.26 2 - 3 : 0.17

0 - 4:0.38 2 - 6:0.40

0 - 6:0.58 2 - 7:0.34

0 - 7:0.16 3 - 6:0.52

1 - 2 : 0.36 4 - 5 : 0.35

1 - 3 : 0.29 4 - 6 : 0.93

1 - 5 : 0.32 4 - 7 : 0.37

1 - 7:0.19 5 - 7:0.28

IndexMinHeap

0 1 2 3 4 5 6 7

- 0.19 0.26 0.17 0.35 0.28 0.40 0.16

2 - 3:0.17 0 - 2 : 0.26

2 - 6:0.40 0 - 4 : 0.38

0 - 6:0.58 2 - 7:0.34

0 - 7 : 0.163 - 6:0.52

- 2:0.36 4 - 5 : 0.35

-3:0.29 4 - 6:0.93

1 - 5 : 0.32 4 - 7:0.37

1 - 7:0.19 5 - 7:0.28

IndexMinHeap

0.19 0.26 0.17 0.35 0.28 0.40 0.16

- 0 2 : 0.26 2 3 : 0.17
- 0 4:0.38 2 6:0.40
- 0 6:0.58 2 7:0.34
- 0 7:0.16 3 6:0.52
- 1 2 : 0.36 4 5 : 0.35
- 1 3 : 0.29 4 6 : 0.93
- 1 5:0.32 4 7:0.37
- 1 7:0.19 5 7:0.28

IndexMinHeap

- 0 1 2 3 4 5 6 7
 - 0.19 0.26 0.17 0.35 0.28 0.40 0.16

2 - 3:0.17 0 - 2 : 0.26

2 - 6:0.40 0 - 4 : 0.38

0 - 6:0.58 2 - 7:0.34

0 - 7 : 0.163 - 6:0.52

- 2:0.36 4 - 5 : 0.35

-3:0.29 4 - 6:0.93

1 - 5 : 0.32 4 - 7:0.37

1 - 7:0.19 5 - 7:0.28

IndexMinHeap

0.19 0.26 0.17 0.35 0.28 0.40 0.16

Prima

Prim 的时间复杂度O(ElogV)

操作: 实现Prim算法

操作:比较 Lazy Prim 和 Prim 版权所有,是权业

Kruskal 算法 版权所有

Kruskal

操作:实现Kruskal算法

Kruskal算法的时间复杂度 O(ElogE)

最小生成树问题 Minimum Span Tree

```
Lazy Prim O( ElogE )
Prim O( ElogV)
                       ElogE )
   Kruskal
```

如果横切边有相等的边

根据算法的具体实现,每次选择一个边

此时,图存在多个最小生成树

Vyssotsky's Algorithm

将边逐渐地添加到生成树中

一旦形成环,删除环中权值最大的边

最小生成树问题 Minimum Span Tree

```
O(ElogE)
O(ElogV)
Kruskal
```

其他。

欢迎大家关注我的个人公众号:是不是很酷

法与数据结构 洪州 法与数据结构 liuyubobobo