Chapitre

Fonctions de référence (1) : fonction carré et racine carrée

9

Dans l'étude d'une fonction ou d'une classe de fonctions on doit savoir :

- 1) calculer l'image/l'ordonnée y = f(x) d'une abscisse donnée.
- 2) connaître le sens de variation de f et dresser son tableau de variation.
- 3) Pour $k \in \mathbb{R}$, connaître le nombre de solutions de l'équation f(x) = k inconnue x, et la résoudre. En particulier résoudre f(x) = 0
- 4) Pour $k \in \mathbb{R}$, savoir résoudre l'inéquation $f(x) \ge k$ inconnue x. En particulier dresser son tableau de signe.
- 5) connaitre les propriétés de sa représentation graphique.

9.1 Fonction carré

Définition 9.1 La fonction carré est la fonction définie sur \mathbb{R} par $f(x) = x^2$

Un carré est toujours positif ou nul : pour tout $x \in \mathbb{R}$ on a $x^2 \geqslant 0$.

Proposition 9.1 — sens de variation. La fonction carré est strictement décroissante sur $]-\infty;0]$ et strictement croissante sur $[0;-\infty[$:

- Si $a < b \le 0$ alors $a^2 > b^2 \ge 0$
- Si $0 \leqslant a < b$ alors $0 \leqslant a^2 < b^2$

Figure 9.1 – Tableau de variation de la fonction carré

Démonstration. Exigible en fin de seconde

Figure 9.2 – La courbe représentative de la fonction carré est la **parabole** d'équation \mathscr{P} : $y=x^2$.

9.1 Fonction carré 3

Figure 9.3 – Les solutions de l'équation $x^2 = k$ inconnue x, selon les valeurs de k.

Figure 9.4 – Les solutions de l'inéquation $f(x) \leq k$ inconnue x.

Exemple 9.1 En isolant x^2 , résoudre dans \mathbb{R} les équations et inéquations suivantes d'inconnue x:

- a) $5x^2 = 15$
- | b) $x^2 5 < 11$ | c) $12 > 2x^2 2 > 7$ | d) $1 5x^2 \ge 2$

9.1.1 Exercices : fonction carré

Dans les exercices qui suivent, f est la fonction carré définie dans \mathbb{R} par $f(x) = x^2$

Exercice 1 — calculer les images et antécédents par une fonction carré.

L'image de $-\sqrt{6}$ par la fonction f est

$$f(10^{-3}) = \dots \qquad f\left(\frac{7}{13}\right) = \dots \qquad f(2\sqrt{3}) = \dots$$

Les antécédent de 10 par f sont

La valeur a un unique antécédent par la fonction f.

Lorsque alors l'équation f(x) = k n'a pas de solutions.

 $f(1-\sqrt{2}) = \dots$

■ Exemple 9.2 — Utiliser le sens de variation de la fonction carré.

Soit a un nombre réel. En s'aidant éventuellement de la courbe de la fonction carré ou de son tableau de variation, encadrer au mieux a^2 dans les cas suivants :

$$2\sqrt{3} < a \leqslant 4$$

$$-5 < a < 3$$

Exercice 2 Encadrer a^2 et b^2 au mieux dans les cas suivants :

Si $a > 3\sqrt{2}$ alors

$$\dots a^2 \dots$$
 Si $-5 \leqslant a \leqslant 2$ alors

 $\dots \dots a^2 \dots \dots$

Si
$$-2 < a \le 0$$
 alors

$$\dots a^2 \dots$$
 Si $-5 < a$ alors

$$Si -5 < a \text{ alors}$$

$$\dots \dots a^2 \dots \dots$$

Si
$$-5 \le a < -2$$
 alors

$$\dots a^2 \dots$$
 Si $0 \geqslant a > b$ alors

Si
$$0 \geqslant a > b$$
 alors

$$\dots \dots a^2 \dots b^2 \dots$$

Si
$$0 < a < 2\sqrt{7}$$
 alors

$$\dots a^2 \dots$$
Si $a < b < -2$ alors

Si
$$a < b < -2$$
 alors

$$\dots a^2 \dots b^2 \dots$$

Si
$$3\sqrt{2} < a < 2\sqrt{7}$$
 alors

$$\dots a^2 \dots$$
 Si $a < b < 10$ alors

Si
$$a < b < 10$$
 alors

$$\dots a^2 \dots b^2 \dots$$

Si
$$a < -5$$
 alors

$$\dots \dots a^2 \dots \dots$$

$$\dots a^2 \dots a^2$$
 Si $a < 0 < b\sqrt{7}$ alors

$$\dots a^2 \dots b^2 \dots$$

9.1 Fonction carré

■ Exemple 9.3 Soit les fonctions g et h définies sur \mathbb{R} par $g(x) = 3(x+8)^2 - 4$ et $h(x) = -2(x+2)^2 - 1$.

Encadrer g(x) lorsque $-7 \le x < 3$.

Encadrer
$$h(x)$$
 lorsque $-6 \le x < -3$.

$$-7 \le x < 3$$

$$x + 8$$

$$(x+8)^2$$

$$3(x+8)^2$$

$$3(x+8)^2-4$$

$$x+2$$

 $-6 \le x < -3$

$$(x+2)^2$$

$$-2(x+2)^2$$

$$-2(x+2)^2-1$$

Exercice 3 Pour chaque fonction h, donner un encadrement de h(x) dans les cas suivants.

1)
$$-6 \le x < -3$$
 et $h(x) = -2(x+9)^2 - 1$

2)
$$7 \le x < 12$$
 et $h(x) = 2(x-4)^2 - 1$

3)
$$-1 \le x < 7$$
 et $h(x) = 5(x+4)^2 + 2$

Exercice 4 — Résoudre des équations. Résoudre dans \mathbb{R} les équations suivantes en isolant x^2 :

$$(E_1) x^2 = 64$$

$$(E_3) x^2 + 5 = 0$$

$$(E_5) x^2 - 18 = 82$$

$$(E_7) 3x^2 - 4 = 71$$

$$(E_2) x^2 - 81 = 0$$

$$(E_4) 3 - x^2 = 0$$

$$(E_6)$$
 $46 = x^2 - 3$

$$\begin{vmatrix} (E_3) & x^2 + 5 = 0 \\ (E_4) & 3 - x^2 = 0 \end{vmatrix}$$

$$\begin{vmatrix} (E_5) & x^2 - 18 = 82 \\ (E_6) & 46 = x^2 - 3 \end{vmatrix}$$

$$\begin{vmatrix} (E_7) & 3x^2 - 4 = 71 \\ (E_8) & 2x^2 + 5 = 3x^2 - 13 \end{vmatrix}$$

Exercice 5 — Résoudre des inéquations. En s'aidant éventuellement de la courbe de la fonction carré, donner les solutions des inéquations suivantes d'inconnues x:

$$(I_1) \ x^2 \geqslant 9$$

$$(I_2) \ x^2 > 3$$

$$(I_3) -2 < x^2$$

$$(I_4) x^2 < -5$$

$$(I_4) \ x^2 < -5$$

 $(I_5) \ x^2 > -5$

$$(I_6)$$
 $5 \leqslant x^2 \leqslant 7$

$$(I_7)$$
 12 < x^2 < 18

$$(I_8) \ 0 \leqslant x^2 < 27$$

$$(I_6) \ 5 \leqslant x^2 \leqslant 7$$
 $|(I_9) \ -5 < x^2 \leqslant 2$

$$|(I_{10})| 3x^2 - 2 < 13$$

$$(I_{11})$$
 5 - $x^2 > -11$

$$|(I_{12})| 9-2x^2 < -16+3x^2$$

 $solutions \ de \ l'exercice \ 4. \ S_1 = \{-8,8\}; \ S_2 = \{-9,9\}; \ S_3 = \{\}; \ S_4 = \left\{-\sqrt{3},\sqrt{3}\right\}; \ S_5 = \{-10,10\}; \ S_6 = \{-7,7\}; \ S_7 = \{-5,5\}; \ S_8 = \{-10,10\}; \ S$ $S_8 = \left\{ -3\sqrt{2}, 3\sqrt{2} \right\};$

$$solutions \ de \ l'exercice \ 5. \ \mathscr{S}_1 \ = \]-\infty, -3] \cup [3,\infty[; \ \mathscr{S}_2 \ = \]-\infty, -\sqrt{3} \Big[\ \cup \]\sqrt{3},\infty\Big[; \ \mathscr{S}_3 \ = \ \mathbb{R}; \ \mathscr{S}_4 \ = \ \emptyset; \ \mathscr{S}_5 \ = \ \mathbb{R}; \ \mathscr{S}_6 \ = \ [5,7]; \ \mathscr{S}_7 \ = \ \Big[15-\sqrt{3},\sqrt{3}+15\Big]; \ \mathscr{S}_8 \ = \ \Big[-3\sqrt{3},3\sqrt{3}\Big]; \ \mathscr{S}_9 \ = \ \Big[-\sqrt{2},\sqrt{2}\Big]; \ \mathscr{S}_10 \ = \ \Big]-\sqrt{5},\sqrt{5}\Big[; \ \mathscr{S}_11 \ = \]-4,4[; \ \mathscr{S}_12 \ = \]-\sqrt{5},\sqrt{5}\Big[; \ \blacksquare$$

LG Jeanne d'Arc, 2nd Année 2022/2023

9.2 Fonction racine carrée

Définition 9.2 La fonction racine carrée est la fonction définie sur $[0; +\infty[$ par $f: [0; +\infty[$ $\to \mathbb{R}$

$$x \mapsto y = \sqrt{x}$$

Sa représentation graphique est la courbe « \mathscr{C} : $y = \sqrt{x}$ »

Proposition 9.2 — sens de variation. La fonction racine carrée est strictement croissante sur $[0; +\infty[$.

Si
$$0 \le a < b$$
 alors $0 \le \sqrt{a} < \sqrt{b}$

Démonstration. Exigible en fin de seconde

Figure 9.5 — Tableau de variation de la fonction racine carrée. https://www.desmos.com/calculator/om0ozhtyjw

x	$0 + \infty$
$f(x) = \sqrt{x}$	
Signe de $f(x)$	

9.2.1 Exercices : fonction racine carrée

■ Exemple 9.4 — Résoudre équations et inéquations en isolant \sqrt{x} .

$$-9\sqrt{x} - 15 = -69 \qquad \qquad \sqrt{x} \leqslant 2$$

$$\sqrt{x} \leqslant 2$$

$$4\sqrt{x} + 4 \leqslant 16$$

$$-5\sqrt{x} + 6 \geqslant 16$$

Exercice 6 Résoudre dans \mathbb{R} les équations suivantes en isolant \sqrt{x} .

$$(E_1) \ \sqrt{x} = 9$$

$$(E_2) \sqrt{x} = -6$$

$$(E_3) 7 - 4\sqrt{x} = -9$$

$$(E_2)$$
 $\sqrt{x} = -6$ (E_3) $7 - 4\sqrt{x} = -9$ (E_4) $-2\sqrt{x} - 15 = -21$

Exercice 7 Résoudre dans \mathbb{R} les inéquations suivantes en isolant \sqrt{x} .

$$(I_1) \sqrt{x} < -9$$

$$(I_2)$$
 $\sqrt{x} \geqslant 4$

$$|(I_3)| -5\sqrt{x} - 5 < -25$$
 $|(I_4)| 3\sqrt{x} - 6 > 0$

$$(I_4) \ 3\sqrt{x} - 6 > 0$$

Exercice 8 — Comparer x^2 x et \sqrt{x} pour différentes valeurs de x > 0.

Les courbes d'équation $y=x^2,\,y=x$ et $y=\sqrt{x}$ sont représentées ci-contre.

- 1) Associer chaque courbe avec l'équation donnée.
- 2) Sans aucun calcul ordonner les nombres suivants :

a) 1, 0,15,
$$\sqrt{0,15}$$
, 0,15²

b) 1, 2,5,
$$\sqrt{2,5}$$
, 2,5²

c) 1, 1,10,
$$\sqrt{1,10}$$
, 1,10²

d) 1, 0,95,
$$\sqrt{0,95}$$
, 0,95²

e) 1,
$$\sqrt{1}$$
, 1²

Exercice 9

1) Compléter pour démontrer que si 0 < x < 1 alors $0 < x^2 < x < \sqrt{x} < 1$.

$$0 < x < 1$$

$$xx$$

$$x^2$$

nontrer que si 0 < x < 1 $\int on \ multiplie \ par \ x > 0$ $\sqrt{x} \sqrt{x}$

2) En s'inspirant de la démarche précédente, montrer que si x>1 alors $1<\sqrt{x}< x< x^2$.

Exercice 10 — Révisions.

Après deux augmentations successives de taux t, le prix d'un produit a globalement augmenté de 17,75%. Montrer que $(1+t)^2 = 1.1775$ et en déduire t au dixième de %.

Exercice 11 — Révisions.

Après une augmentation de taux t suivie d'une baisse de taux t, le prix d'une chemise a diminué de 19%. Montrer que $0.81 = 1 - t^2$ et en déduire t au dixième de %.

solutions de l'exercice 6. $S_1 = \{81\}; S_2 = \{\}; S_3 = \{16\}; S_4 = \{9\};$

solutions de l'exercice 7.
$$\mathscr{S}_1 = \emptyset$$
; $\mathscr{S}_2 = [16, \infty[; \mathscr{S}_3 = [0, \infty[; \mathscr{S}_4 =]4, \infty[;$