US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

B2
Date of Patent

August 12, 2025

Inventor(s)

Pinkelman; Brian J. et al.

Chair with shape memory material-based movement synchronized with visual content

Abstract

A chair can be configured for synchronized movement with visual content, such as a video game or movie, presented on a display. The chair can include a seat portion. A plurality of actuators can be operatively positioned to cause a movement of the seat portion. The actuators can include one or more shape memory material members. Each of the actuators being configured such that, when an activation input is provided to the one or more shape memory material members, the one or more shape memory material members change from a first configuration to a second configuration and cause the actuator to morph into an activated configuration. One or more processors operatively connected to selectively activate one or more of the actuators by causing the activation input to be provided to the one or more shape memory material members of at least one of the actuators.

Inventors: Pinkelman; Brian J. (Ann Arbor, MI), Rowe; Michael Paul (Pinckney, MI),

Tsuruta; Ryohei (Ann Arbor, MI)

Applicant: Toyota Motor Engineering & Manufacturing North America, Inc. (Plano, TX)

Family ID: 1000008750810

Assignee: Toyota Motor Engineering & Manufacturing North America, Inc. (Plano, TX);

Toyota Jidosha Kabushiki Kaisha (Toyota, JP)

Appl. No.: 17/729522

Filed: April 26, 2022

Prior Publication Data

Document IdentifierUS 20230337827 A1

Publication Date
Oct. 26, 2023

Int. Cl.: A47C7/14 (20060101); A47C15/00 (20060101); A63F13/285 (20140101)

U.S. Cl.:

CPC **A47C7/144** (20180801); **A47C15/004** (20130101); **A63F13/285** (20140902);

Field of Classification Search

USPC: None

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
1658669	12/1927	Cohn et al.	N/A	N/A
2322755	12/1942	Voorhies	N/A	N/A
2588706	12/1951	Davis	N/A	N/A
3394631	12/1967	Thompson	N/A	N/A
3706102	12/1971	Grenier	N/A	N/A
4063826	12/1976	Riepe	N/A	N/A
4244140	12/1980	Kim	N/A	N/A
4396220	12/1982	Dieckmann et al.	N/A	N/A
4498851	12/1984	Kolm et al.	N/A	N/A
4522447	12/1984	Snyder et al.	N/A	N/A
4541885	12/1984	Caudill, Jr.	N/A	N/A
4544988	12/1984	Hochstein	N/A	N/A
4553393	12/1984	Ruoff	N/A	N/A
4595338	12/1985	Kolm et al.	N/A	N/A
4779852	12/1987	Wassell	N/A	N/A
4780062	12/1987	Yamada et al.	N/A	N/A
4806815	12/1988	Homma	N/A	N/A
4811564	12/1988	Palmer	N/A	N/A
4834619	12/1988	Walton	N/A	N/A
4898426	12/1989	Schulz et al.	N/A	N/A
4923000	12/1989	Nelson	N/A	N/A
4944755	12/1989	Hennequin et al.	N/A	N/A
4955196	12/1989	Lin et al.	N/A	N/A
4964402	12/1989	Grim et al.	N/A	N/A
5069219	12/1990	Knoblich	N/A	N/A
5088115	12/1991	Napolitano	N/A	N/A
5129753	12/1991	Wesley et al.	N/A	N/A
5250167	12/1992	Adolf et al.	N/A	N/A
5255390	12/1992	Gross et al.	N/A	N/A
5279123	12/1993	Wechsler et al.	N/A	N/A
5482351	12/1995	Young et al.	N/A	N/A
5488255	12/1995	Sato et al.	N/A	N/A
5522712	12/1995	Winn	N/A	N/A
5583844	12/1995	Wolf et al.	N/A	N/A
5619177	12/1996	Johnson et al.	N/A	N/A
5622482	12/1996	Lee	N/A	N/A

5662376	12/1996	Breuer et al.	N/A	N/A
5678247	12/1996	Vickers	N/A	N/A
5686003	12/1996	Ingram et al.	N/A	N/A
5747140	12/1997	Heerklotz	N/A	N/A
5771742	12/1997	Bokaie et al.	N/A	N/A
5846629	12/1997	Gwinn	N/A	N/A
5853005	12/1997	Scanlon	N/A	N/A
5861703	12/1998	Losinski	N/A	N/A
6043978	12/1999	Mody et al.	N/A	N/A
6053553	12/1999	Hespelt	N/A	N/A
6093910	12/1999	McClintock et al.	N/A	N/A
6116257	12/1999	Yokota et al.	N/A	N/A
6142563	12/1999	Townsend et al.	N/A	N/A
6155716	12/1999	Okamura et al.	N/A	N/A
6186047	12/2000	Baruffaldi	N/A	N/A
6227515	12/2000	Broyles	N/A	N/A
6379393	12/2001	Mavroidis et al.	N/A	N/A
6394001	12/2001	Giesey et al.	N/A	N/A
6404098	12/2001	Kayama et al.	N/A	N/A
6422010	12/2001	Julien	N/A	N/A
6443524	12/2001	Yu	N/A	N/A
6481799	12/2001	Whalen	N/A	N/A
6508437	12/2002	Davis et al.	N/A	N/A
6530217	12/2002	Yokota et al.	N/A	N/A
6546806	12/2002	Varma	N/A	N/A
6591188	12/2002	Ohler	N/A	N/A
6628522	12/2002	Trautman et al.	N/A	N/A
6664718	12/2002	Perline et al.	N/A	N/A
6719694	12/2003	Weng et al.	N/A	N/A
6740994	12/2003	Lee et al.	N/A	N/A
6773535	12/2003	Wetzel	N/A	N/A
6809462	12/2003	Pelrine et al.	N/A	N/A
6896324	12/2004	Kull et al.	N/A	N/A
6910714	12/2004	Browne et al.	N/A	N/A
6912748	12/2004	VanSickle	N/A	N/A
6943653	12/2004	Hanke et al.	N/A	N/A
6972659	12/2004	von Behrens et al.	N/A	N/A
6998546	12/2005	Schmidt et al.	N/A	N/A
7017345 7086322	12/2005	Von Behrens et al. Schulz	N/A N/A	N/A N/A
7000322	12/2005 12/2005	O'Connor et al.	N/A N/A	N/A N/A
7093903	12/2005	Kimura et al.	N/A N/A	N/A N/A
7100330	12/2005	Barvosa-Carter et al.	N/A N/A	N/A
7100510	12/2005	Szilagyi	N/A	N/A
7117073	12/2005	Frank	N/A	N/A
7204472	12/2006	Jones et al.	N/A	N/A
7237847	12/2006	Hancock et al.	N/A	N/A
7256518	12/2006	Gummin	N/A	N/A
7293836	12/2006	Browne et al.	N/A	N/A
7306187	12/2006	Lavan	N/A	N/A
. 555157				11/11

7309104	12/2006	Browne et al.	N/A	N/A
7331616	12/2007	Brei et al.	N/A	N/A
7336486	12/2007	Mongia	N/A	N/A
7350851	12/2007	Barvosa-Carter et al.	N/A	N/A
7364211	12/2007	Niskanen et al.	N/A	N/A
7371052	12/2007	Koeneman	N/A	N/A
7446450	12/2007	Boland et al.	N/A	N/A
7448678	12/2007	Browne et al.	N/A	N/A
7476224	12/2008	Petrakis	N/A	N/A
7478845	12/2008	Mankame et al.	N/A	N/A
7484735	12/2008	Verbrugge et al.	N/A	N/A
7501607	12/2008	Camm et al.	N/A	N/A
7506937	12/2008	Bequet	N/A	N/A
7511402	12/2008	Ito et al.	N/A	N/A
7527312	12/2008	Cucknell et al.	N/A	N/A
7556313	12/2008	Browne et al.	N/A	N/A
7578661	12/2008	Koeneman	N/A	N/A
7594697	12/2008	Browne et al.	N/A	N/A
7619894	12/2008	Wang et al.	N/A	N/A
7661764	12/2009	Ali et al.	N/A	N/A
7709995	12/2009	Hanlon et al.	N/A	N/A
7717520	12/2009	Boren et al.	N/A	N/A
7729828	12/2009	Gandhi	N/A	N/A
7731279	12/2009	Asada et al.	N/A	N/A
7735940	12/2009	Chiu	N/A	N/A
7756246	12/2009	Mikami et al.	N/A	N/A
7758121	12/2009	Browne et al.	N/A	N/A
7766423	12/2009	Alexander et al.	N/A	N/A
7770391	12/2009	Melz	N/A	N/A
7814810	12/2009	Mitteer	N/A	N/A
7823382	12/2009	Ukpai et al.	N/A	N/A
7823972	12/2009	Browne et al.	N/A	N/A
7834527	12/2009	Rivera et al.	N/A	N/A
7878459	12/2010	Mabe et al.	N/A	N/A
7883148	12/2010	Alexander et al.	N/A	N/A
7892630	12/2010	McKnight et al.	N/A	N/A
7901524	12/2010	McKnight et al.	N/A	N/A
7905538	12/2010	Ukpai et al.	N/A	N/A
7905547	12/2010	Lawall et al.	N/A	N/A
7909403	12/2010	Lawall et al.	N/A	N/A
7964290	12/2010	Mullner et al.	N/A	N/A
7965509	12/2010	Campbell et al.	N/A	N/A
7971296	12/2010	Jansen	N/A	N/A
7971939	12/2010	Fujita et al.	N/A	N/A
8016952	12/2010	Ishida et al.	N/A	N/A
8038215	12/2010	Di Giusto et al.	N/A	N/A
8052112	12/2010	Lawall et al.	N/A	N/A
8056335	12/2010	Brown	N/A	N/A
8100471	12/2011	Lawall et al.	N/A	N/A
8109567	12/2011	Alexander et al.	N/A	N/A

8126615	12/2011	McMillen et al.	N/A	N/A
8172458	12/2011	Petrakis	N/A	N/A
8240677	12/2011	Browne et al.	N/A	N/A
8313108	12/2011	Ac et al.	N/A	N/A
8362882	12/2012	Heubel et al.	N/A	N/A
8366057	12/2012	Vos et al.	N/A	N/A
8414366	12/2012	Browne et al.	N/A	N/A
8446475	12/2012	Topliss et al.	N/A	N/A
8448435	12/2012	Gregory et al.	N/A	N/A
8510924	12/2012	Mankame et al.	N/A	N/A
8584456	12/2012	McKnight	N/A	N/A
8585456	12/2012	Canon	N/A	N/A
8593568	12/2012	Topliss et al.	N/A	N/A
8649242	12/2013	Martin et al.	N/A	N/A
8681496	12/2013	Dede	N/A	N/A
8695334	12/2013	Lewis et al.	N/A	N/A
8702120	12/2013	Kalisz et al.	N/A	N/A
8721557	12/2013	Chen et al.	N/A	N/A
8741076	12/2013	Gao et al.	N/A	N/A
8756933	12/2013	Topliss et al.	N/A	N/A
8793821	12/2013	Fowkes et al.	N/A	N/A
8827709	12/2013	Gurule et al.	N/A	N/A
8830335	12/2013	Topliss et al.	N/A	N/A
8853916	12/2013	Browne et al.	N/A	N/A
8880141	12/2013	Chen	N/A	N/A
8881347	12/2013	Feinstein	N/A	N/A
8894142	12/2013	Alexander et al.	N/A	N/A
8912709	12/2013	Pollock et al.	N/A	N/A
8991769	12/2014	Gandhi	N/A	N/A
8998320	12/2014	Mankame et al.	N/A	N/A
9068561	12/2014	Gondo	N/A	N/A
9086069	12/2014	Dede	N/A	N/A
9140243	12/2014	Gandhi et al.	N/A	N/A
9168814	12/2014	Gandhi	N/A	N/A
9171686	12/2014	Alacqua et al. Park et al.	N/A	N/A
9180525 9267495	12/2014 12/2015		N/A N/A	N/A N/A
9207493	12/2015	Kopfer et al. Li	N/A N/A	N/A N/A
9347609	12/2015	Pinto, IV et al.	N/A N/A	N/A N/A
9428088	12/2015	Rajasingham	N/A	N/A
9457813	12/2015	Hoerwick et al.	N/A	N/A
9457887	12/2015	Roe et al.	N/A	N/A
9495875	12/2015	Dowdall et al.	N/A	N/A
9512829	12/2015	Alacqua et al.	N/A	N/A
9550466	12/2016	Gandhi	N/A	N/A
9588020	12/2016	Browne et al.	N/A	N/A
9662197	12/2016	Yun et al.	N/A	N/A
9664182	12/2016	Nicolini et al.	N/A	N/A
9664210	12/2016	Ou et al.	N/A	N/A
9684183	12/2016	Brown et al.	N/A	N/A
	. ====		. 	., _ -

9696175	12/2016	Hansen et al.	N/A	N/A
9697708	12/2016	Adrezin et al.	N/A	N/A
9714460	12/2016	Merideth	N/A	N/A
9719534	12/2016	Shevchenko et al.	N/A	N/A
9731828	12/2016	Lichota	N/A	N/A
9764220	12/2016	Keating et al.	N/A	N/A
9784249	12/2016	Li et al.	N/A	N/A
9784590	12/2016	Englehardt et al.	N/A	N/A
9827888	12/2016	Patrick et al.	N/A	N/A
9848814	12/2016	Benson et al.	N/A	N/A
9943437	12/2017	Lowe et al.	N/A	N/A
9945490	12/2017	Dankbaar et al.	N/A	N/A
9981421	12/2017	Macroe et al.	N/A	N/A
9994136	12/2017	Nakada	N/A	N/A
10007263	12/2017	Fields et al.	N/A	N/A
10029618	12/2017	Perez Astudillo et al.	N/A	N/A
10059334	12/2017	Zhu et al.	N/A	N/A
10061350	12/2017	Magi	N/A	N/A
10066829	12/2017	Wong et al.	N/A	N/A
10168782	12/2018	Tchon et al.	N/A	N/A
10191550	12/2018	Nussbaum et al.	N/A	N/A
10208823	12/2018	Kashani	N/A	N/A
10299520	12/2018	Shaffer et al.	N/A	N/A
10302586	12/2018	Sun et al.	N/A	N/A
10315771	12/2018	Rao et al.	N/A	N/A
10330144	12/2018	Alqasimi et al.	N/A	N/A
10330400	12/2018	Dede	N/A	N/A
10335044	12/2018	Banet et al.	N/A	N/A
10349543	12/2018	Sreetharan et al.	N/A	N/A
10355624	12/2018	Majdi et al.	N/A	N/A
10371229	12/2018	Gandhi et al.	N/A	N/A
10371299	12/2018	Leffler	N/A	N/A
10377278	12/2018	Ketels et al.	N/A	N/A
10427634	12/2018	Gandhi et al.	N/A	N/A
10434973	12/2018	Gandhi et al.	N/A	N/A
10441491	12/2018	Wyatt et al.	N/A	N/A
10459475	12/2018	Gandhi et al.	N/A	N/A
10479246	12/2018	Meingast et al.	N/A	N/A
10532672 10583757	12/2019 12/2019	Pinkelman et al. Ketels et al.	N/A N/A	N/A N/A
10591078	12/2019	Oehler et al.	N/A N/A	N/A N/A
10647237	12/2019	Song	N/A	N/A N/A
10647237	12/2019	Gandhi et al.	N/A N/A	N/A N/A
10677310	12/2019	Rowe et al.	N/A	N/A
10759320	12/2019	Mochizuki	N/A	N/A
10733320	12/2019	Frigerio et al.	N/A	N/A
107/3407	12/2019	Brown et al.	N/A	N/A
10701000	12/2019	Aihara	N/A	N/A
10843611	12/2019	Caruss et al.	N/A	N/A
10933974	12/2019	Tsuruta et al.	N/A	N/A
		Long the Ct all		11/11

10960793	12/2020	Gandhi et al.	N/A	N/A
10965172	12/2020	Dede et al.	N/A	N/A
10993526	12/2020	Vandewall et al.	N/A	N/A
10995779	12/2020	Keplinger et al.	N/A	N/A
11048329	12/2020	Lee et al.	N/A	N/A
11091060	12/2020	Pinkelman et al.	N/A	N/A
11125248	12/2020	Joshi et al.	N/A	N/A
11137045	12/2020	Gandhi et al.	N/A	N/A
11180052	12/2020	Severgnini et al.	N/A	N/A
11241842	12/2021	Gandhi et al.	N/A	N/A
11247584	12/2021	Breitweg et al.	N/A	N/A
11248592	12/2021	Tsuruta et al.	N/A	N/A
11269891	12/2021	Frank et al.	N/A	N/A
11285844	12/2021	Gandhi et al.	N/A	N/A
11353009	12/2021	Rowe et al.	N/A	N/A
11356255	12/2021	Emelyanov et al.	N/A	N/A
11370330	12/2021	Gandhi et al.	N/A	N/A
11372481	12/2021	Leroy et al.	N/A	N/A
11377007	12/2021	Samain et al.	N/A	N/A
11458874	12/2021	Nagai et al.	N/A	N/A
11460009	12/2021	Tsuruta et al.	N/A	N/A
11460010	12/2021	Tsuruta et al.	N/A	N/A
11467669	12/2021	Liu et al.	N/A	N/A
11472325	12/2021	Tsuruta et al.	N/A	N/A
11486421	12/2021	Keplinger et al.	N/A	N/A
11536255	12/2021	Rowe	N/A	N/A
11542925	12/2022	Rowe et al.	N/A	N/A
11577471	12/2022	Gandhi et al.	N/A	N/A
11591076	12/2022	Song et al.	N/A	N/A
11592010	12/2022	Panwar et al.	N/A	N/A
11592037	12/2022	Rowe et al.	N/A	N/A
11603153	12/2022	Trager et al.	N/A	N/A
11603828	12/2022	Gummin et al.	N/A	N/A
11624376	12/2022	Rowe et al.	N/A	N/A
11628898	12/2022	Trager et al.	N/A	N/A
11642083	12/2022	Severgnini et al.	N/A	N/A
11649808	12/2022	Tsuruta et al.	N/A	N/A
11668287	12/2022	Naly et al.	N/A	N/A
11702015	12/2022	Pinkelman et al.	N/A	N/A
11732735	12/2022	Song et al.	N/A	N/A
11750115	12/2022	Saneyoshi et al.	N/A	N/A
11752901	12/2022	Gandhi et al.	N/A	N/A
11795924	12/2022	Rowe	N/A	N/A
11840161	12/2022	Schmalenberg et al.	N/A	N/A
11841008	12/2022	Panwar et al.	N/A	N/A
11885428	12/2023	Panwar et al.	N/A	N/A
11897379	12/2023	Tsuruta et al.	N/A	N/A
11913436	12/2023	Easton et al.	N/A	N/A
11927206	12/2023	Rowe et al.	N/A	N/A
2002/0130754	12/2001	Alacqua et al.	N/A	N/A

	2002/0179663	12/2001	Moore et al.	N/A	N/A
	2003/0000605	12/2002	Homma	N/A	N/A
	2003/0182041	12/2002	Watson	N/A	N/A
	2004/0035108	12/2003	Szilagyi	N/A	N/A
	2004/0041998	12/2003	Haddad	N/A	N/A
	2004/0104580	12/2003	Spiessl et al.	N/A	N/A
	2004/0118854	12/2003	Kutun	N/A	N/A
	2004/0145230	12/2003	Fujita et al.	N/A	N/A
	2004/0195888	12/2003	Frye	N/A	N/A
	2004/0256920	12/2003	Gummin et al.	N/A	N/A
	2004/0261411	12/2003	MacGregor	N/A	N/A
	2005/0023086	12/2004	Szilagyi	N/A	N/A
	2005/0066810	12/2004	Schulz	N/A	N/A
	2005/0082897	12/2004	Ropp et al.	N/A	N/A
	2005/0111177	12/2004	Kwitek	N/A	N/A
	2005/0146147	12/2004	Niskanen et al.	N/A	N/A
	2005/0198904	12/2004	Browne et al.	N/A	N/A
	2005/0199455	12/2004	Browne et al.	N/A	N/A
	2005/0199845	12/2004	Jones et al.	N/A	N/A
	2005/0206096	12/2004	Browne et al.	N/A	N/A
	2005/0210874	12/2004	Browne et al.	N/A	N/A
	2005/0211198	12/2004	Froeschle et al.	N/A	N/A
	2005/0227607	12/2004	Stevenson et al.	N/A	N/A
	2005/0253425	12/2004	Asada et al.	N/A	N/A
	2006/0033312	12/2005	Barvosa-Carter et al.	N/A	N/A
	2006/0038643	12/2005	Xu et al.	N/A	N/A
	2006/0038745	12/2005	Naksen et al.	N/A	N/A
	2006/0074325	12/2005	Karo et al.	N/A	N/A
	2006/0201149	12/2005	Biggs et al.	N/A	N/A
	2006/0223637	12/2005	Rosenberg	N/A	N/A
	2006/0226013	12/2005	Decre et al.	N/A	N/A
	2006/0244293	12/2005	Buffa	N/A	N/A
	2006/0265965	12/2005	Butera et al.	N/A	N/A
	2007/0025575	12/2006	Oser et al.	N/A	N/A
	2007/0046074	12/2006	Satta et al.	N/A	N/A
	2007/0063566	12/2006	Browne et al.	N/A	N/A
	2007/0084220	12/2006	Asada et al.	N/A	N/A
	2007/0188004 2007/0205853	12/2006	Browne et al.	N/A	N/A
	2007/0205653	12/2006 12/2006	Taya et al.	N/A N/A	N/A N/A
	2007/0236071	12/2006	Fujita et al. Browne et al.	N/A N/A	N/A N/A
	2007/0246263	12/2006	Keefe et al.	N/A N/A	N/A
	2007/0246898	12/2006	Browne et al.	N/A N/A	N/A
	2007/0240373	12/2006	Ichigaya	N/A	N/A
	2007/0271939	12/2006	Ghorbal et al.	N/A N/A	N/A
	2008/0006353	12/2007	Elzey et al.	N/A	N/A
	2008/0018198	12/2007	Sohn et al.	N/A N/A	N/A
	2008/0085436	12/2007	Langan et al.	N/A	N/A
	2008/0100118	12/2007	Young et al.	N/A	N/A
	2008/0114218	12/2007	Suyama et al.	N/A	N/A
	2000,011 1210	12,200,	oujuma et un.	T 1/ T T	T 1/ T T
_					

2008/0219501	12/2007	Matsumoto	N/A	N/A
2008/0267770	12/2007	Webster et al.	N/A	N/A
2008/0271559	12/2007	Garscha et al.	N/A	N/A
2008/0272259	12/2007	Zavattieri et al.	N/A	N/A
2008/0307786	12/2007	Hafez et al.	N/A	N/A
2009/0008973	12/2008	Browne	N/A	N/A
2009/0009656	12/2008	Honda et al.	N/A	N/A
2009/0030576	12/2008	Periot et al.	N/A	N/A
2009/0041085	12/2008	Petrakis	N/A	N/A
2009/0108607	12/2008	Browne et al.	N/A	N/A
2009/0115284	12/2008	Liang et al.	N/A	N/A
2009/0131752	12/2008	Park	N/A	N/A
2009/0143730	12/2008	De Polo et al.	N/A	N/A
2009/0173305	12/2008	Alexander et al.	N/A	N/A
2009/0212158	12/2008	Mabe et al.	N/A	N/A
2009/0218858	12/2008	Lawall et al.	N/A	N/A
2009/0218859	12/2008	Lawall	297/284.1	B60N 2/42763
2009/0224584	12/2008	Lawall et al.	N/A	N/A
2009/0224587	12/2008	Lawall et al.	N/A	N/A
2009/0241537	12/2008	Browne et al.	N/A	N/A
2009/0242285	12/2008	Whetstone, Jr.	N/A	N/A
2009/0283643	12/2008	Sar et al.	N/A	N/A
2009/0284059	12/2008	Gupta et al.	N/A	N/A
2010/0001568	12/2009	Trybus et al.	N/A	N/A
2010/0027119	12/2009	Kollar et al.	N/A	N/A
2010/0031525	12/2009	Allezy et al.	N/A	N/A
2010/0036567	12/2009	Gandhi	N/A	N/A
2010/0066142	12/2009	Gross et al.	N/A	N/A
2010/0117663	12/2009	Herrera et al.	N/A	N/A
2010/0192567	12/2009	Butera	N/A	N/A
2010/0212312	12/2009	Rudduck	60/527	F03G 7/06143
2010/0221124	12/2009	Ikushima et al.	N/A	N/A
2010/0244505	12/2009	Demick et al.	N/A	N/A
2010/0275592	12/2009	Topliss et al.	N/A	N/A
2010/0282902	12/2009	Rajasingham	N/A	N/A
2010/0287965	12/2009	Bryant	N/A	N/A
2010/0294476	12/2009	Gomi et al.	N/A	N/A
2010/0308689	12/2009	Rahman et al.	N/A	N/A
2010/0326070	12/2009	Hao et al.	N/A	N/A
2011/0021932	12/2010	Kim et al.	N/A	N/A
2011/0030380	12/2010	Widdle, Jr. et al.	N/A	N/A
2011/0038727	12/2010	Vos et al.	N/A	N/A
2011/0111839	12/2010	Lesley et al.	N/A	N/A
2011/0120119	12/2010	Alexander et al.	N/A	N/A
2011/0150669	12/2010	Frayne et al.	N/A	N/A
2011/0179790 2011/0217031	12/2010 12/2010	Pretorius Eromaki	N/A N/A	N/A N/A
2011/021/031		Eromaki Blohowiak et al.	N/A N/A	N/A N/A
2012/0019216	12/2010 12/2011	Lewis et al.	N/A N/A	N/A N/A
2012/0019210	12/2011	Yamasaki	N/A	N/A N/A
2012/00 1 3033	14/4011	Taillasani	1 1 / <i>[</i>]	1 V / / 1

2012/0056459 12/2011 Harden N/A N/A	A
2012/0081337 12/2011 Camp, Jr. et al. N/A N/A	
2012/0109025 12/2011 Weinberg et al. N/A N/A	
2012/0136126 12/2011 Rousseau N/A N/A	
2012/0181896 12/2011 Kornbluh et al. N/A N/A	A
2012/0232783 12/2011 Calkins et al. N/A N/A	A
2012/0237309 12/2011 Park et al. N/A N/A	A
2012/0239183 12/2011 Mankame et al. N/A N/A	A
2012/0267928 12/2011 Mankame et al. N/A N/A	A
2012/0276807 12/2011 Cabrera N/A N/A	A
2012/0292155 12/2011 Gunter N/A N/A	A
2012/0297763 12/2011 Mankame et al. N/A N/A	A
2012/0319445 12/2011 Zolno et al. N/A N/A	A
2013/0005442 12/2012 Erickson et al. N/A N/A	A
2013/0011806 12/2012 Gao et al. N/A N/A	A
2013/0043354 12/2012 Shome et al. N/A N/A	A
2013/0075210 12/2012 Langbein et al. N/A N/A	A
2013/0098029 12/2012 Pinto, IV et al. N/A N/A	A
2013/0188313 12/2012 Dede N/A N/A	A
2013/0205770 12/2012 Browne et al. N/A N/A	A
2013/0227943 12/2012 Mance et al. N/A N/A	A
2014/0130491 12/2013 Gandhi et al. N/A N/A	A
2014/0168894 12/2013 Dede N/A N/A	A
2014/0196633 12/2013 Shaw N/A N/A	A
2014/0207333 12/2013 Vandivier et al. N/A N/A	Α
2014/0217792 12/2013 Meyer N/A N/A	A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6/4	A 64D 11/0626
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6/2 2014/0250881 12/2013 Yamamoto N/A N/A	A 64D 11/0626 A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6-A 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A	A 64D 11/0626 A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6/A 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A	A 64D 11/0626 A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6-A 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A	A 64D 11/0626 A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6/A 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A	A 64D 11/0626 A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6-A 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Niiyama et al. N/A N/A	A 64D 11/0626 A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6A 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Niiyama et al. N/A N/A 2014/0316269 12/2013 Zhang et al. N/A N/A	A 54D 11/0626 A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6/2 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Niiyama et al. N/A N/A 2014/03333088 12/2013 Zhang et al. N/A N/A 2014/03333088 12/2013 Lang et al. N/A N/A	A 64D 11/0626 A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6-2014/0250881 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Zhang et al. N/A N/A 2014/0333088 12/2013 Lang et al. N/A N/A 2014/0338324 12/2013 Jasklowski N/A N/A	A 54D 11/0626 A A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6-2014/0250881 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Niiyama et al. N/A N/A 2014/03333088 12/2013 Zhang et al. N/A N/A 2014/0338324 12/2013 Jasklowski N/A N/A 2015/0016968 12/2014 Grabowska et al. N/A N/A	A 64D 11/0626 A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6-2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Niiyama et al. N/A N/A 2014/0333088 12/2013 Zhang et al. N/A N/A 2014/0338324 12/2013 Jasklowski N/A N/A 2015/0016968 12/2014 Grabowska et al. N/A N/A 2015/0130220 12/2014 Preisler et al. N/A N/A	A 54D 11/0626 A A A A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Niiyama et al. N/A N/A 2014/0333088 12/2013 Zhang et al. N/A N/A 2014/0338324 12/2013 Jasklowski N/A N/A 2015/0016968 12/2014 Grabowska et al. N/A N/A 2015/0130220 12/2014 Preisler et al. N/A N/A 2015/0185764 12/2014 Magi N/A N/A	A 54D 11/0626 A A A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6-2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Niiyama et al. N/A N/A 2014/0336269 12/2013 Zhang et al. N/A N/A 2014/0333088 12/2013 Lang et al. N/A N/A 2015/0016968 12/2014 Grabowska et al. N/A N/A 2015/0185764 12/2014 Preisler et al. N/A N/A 2015/0197173 12/2014 Hulway N/A N/A	A 54D 11/0626 A A A A A A A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6-2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Zhang et al. N/A N/A 2014/0336269 12/2013 Lang et al. N/A N/A 2014/0333088 12/2013 Lang et al. N/A N/A 2015/0016968 12/2014 Grabowska et al. N/A N/A 2015/0130220 12/2014 Preisler et al. N/A N/A 2015/0197173 12/2014 Hulway N/A N/A 2015/0202993 12/2014 Mankame et al. N/A N/A	A 54D 11/0626 A A A A A A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Zhang et al. N/A N/A 2014/0333088 12/2013 Zhang et al. N/A N/A 2014/0338324 12/2013 Jasklowski N/A N/A 2015/016968 12/2014 Grabowska et al. N/A N/A 2015/0185764 12/2014 Magi N/A N/A 2015/0202993 12/2014 Mankame et al. N/A N/A 2015/0274078 12/2014 Alacqua et al. N/A N/A <td>A 54D 11/0626 A A A A A A A A A A A A A A A A A A</td>	A 54D 11/0626 A A A A A A A A A A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0314976 12/2013 Flaschentrager et al. N/A N/A 2014/0316269 12/2013 Zhang et al. N/A N/A 2014/0333088 12/2013 Lang et al. N/A N/A 2015/0016968 12/2014 Grabowska et al. N/A N/A 2015/0185764 12/2014 Preisler et al. N/A N/A 2015/0202993 12/2014 Mankame et al. N/A N/A 2015/0289994 12/2014 Engeberg et al. N/A N/A 2015/0289994 12/2014 Engeberg et al. N/A N/A	A 54D 11/0626 A A A A A A A A A A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6-2014/0250881 2014/0265881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0298794 12/2013 Kornbluh et al. N/A N/A 2014/0314976 12/2013 Flaschentrager et al. N/A N/A 2014/0333088 12/2013 Zhang et al. N/A N/A 2014/03333088 12/2013 Lang et al. N/A N/A 2015/0016968 12/2014 Grabowska et al. N/A N/A 2015/0185764 12/2014 Magi N/A N/A 2015/0202993 12/2014 Hulway N/A N/A 2015/0289994 12/2014 Alacqua et al. N/A N/A 2015/0290015 12/2014 Engeberg et al. N/A N/A <	A 54D 11/0626 A A A A A A A A A A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Zhang et al. N/A N/A 2014/0333088 12/2013 Lang et al. N/A N/A 2014/0333088 12/2013 Jasklowski N/A N/A 2015/0016968 12/2014 Grabowska et al. N/A N/A 2015/0185764 12/2014 Magi N/A N/A 2015/0202993 12/2014 Mankame et al. N/A N/A 2015/0289994 12/2014 Alacqua et al. N/A N/A <t< td=""><td>A 54D 11/0626 A A A A A A A A A A A A A A A A A A</td></t<>	A 54D 11/0626 A A A A A A A A A A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Zhang et al. N/A N/A 2014/033669 12/2013 Lang et al. N/A N/A 2014/0338324 12/2013 Jasklowski N/A N/A 2015/0016968 12/2014 Grabowska et al. N/A N/A 2015/0130220 12/2014 Magi N/A N/A 2015/02993 12/2014 Hulway N/A N/A 2015/0299015 12/2014 Engeberg et al. N/A N/A	A 54D 11/0626 A A A A A A A A A A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6-2014/0250881 2014/0265468 12/2013 Yamamoto N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Niiyama et al. N/A N/A 2014/0316269 12/2013 Zhang et al. N/A N/A 2014/0333088 12/2013 Lang et al. N/A N/A 2015/0016968 12/2014 Grabowska et al. N/A N/A 2015/0185764 12/2014 Magi N/A N/A 2015/0202993 12/2014 Hulway N/A N/A 2015/0234078 12/2014 Engeberg et al. N/A N/A 2015/0331488 12/2014 Elahinia et al. N/A N/A <td>A 54D 11/0626 A A A A A A A A A A A A A A A A A A</td>	A 54D 11/0626 A A A A A A A A A A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6- 2014/0250881 12/2013 Yamamoto N/A N/A 2014/0265468 12/2013 Greenhill et al. N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Zhang et al. N/A N/A 2014/0333088 12/2013 Zhang et al. N/A N/A 2014/0338324 12/2013 Jasklowski N/A N/A 2015/0016968 12/2014 Grabowska et al. N/A N/A 2015/0130220 12/2014 Preisler et al. N/A N/A 2015/0197173 12/2014 Hulway N/A N/A 2015/022993 12/2014 Alacqua et al. N/A N/A 2015/023994 12/2014 Engeberg et al. N/A N/A	A 54D 11/0626 A A A A A A A A A A A A A A A A A A
2014/0217792 12/2013 Meyer N/A N/A 2014/0239677 12/2013 Laib 297/180.1 B6-2014/0250881 2014/0265468 12/2013 Yamamoto N/A N/A 2014/0265479 12/2013 Bennett N/A N/A 2014/0277739 12/2013 Kornbluh et al. N/A N/A 2014/0298794 12/2013 Flaschentrager et al. N/A N/A 2014/0314976 12/2013 Niiyama et al. N/A N/A 2014/0316269 12/2013 Zhang et al. N/A N/A 2014/0333088 12/2013 Lang et al. N/A N/A 2015/0016968 12/2014 Grabowska et al. N/A N/A 2015/0185764 12/2014 Magi N/A N/A 2015/0202993 12/2014 Hulway N/A N/A 2015/0234078 12/2014 Engeberg et al. N/A N/A 2015/0331488 12/2014 Elahinia et al. N/A N/A <td>A 54D 11/0626 A A A A A A A A A A A A A A A A A A</td>	A 54D 11/0626 A A A A A A A A A A A A A A A A A A

2016/0084665	12/2015	Englehardt et al.	N/A	N/A
2016/0123793	12/2015	Kollich et al.	N/A	N/A
2016/0221475	12/2015	Sugiyama	N/A	N/A
2016/0246374	12/2015	Carter et al.	N/A	N/A
2016/0278459	12/2015	Hilty	N/A	N/A
2016/0325837	12/2015	Erhel et al.	N/A	N/A
2016/0345088	12/2015	Vilermo et al.	N/A	N/A
2016/0375835	12/2015	Murray et al.	N/A	N/A
2017/0116792	12/2016	Jelinek et al.	N/A	N/A
2017/0121068	12/2016	Foshansky et al.	N/A	N/A
2017/0123499	12/2016	Eid	N/A	N/A
2017/0148102	12/2016	Franke et al.	N/A	N/A
2017/0153707	12/2016	Subramanian et al.	N/A	N/A
2017/0158104	12/2016	Le et al.	N/A	N/A
2017/0166222	12/2016	James	N/A	N/A
2017/0174236	12/2016	Worden et al.	N/A	N/A
2017/0203432	12/2016	Andrianesis	N/A	N/A
2017/0240075	12/2016	McCoy et al.	N/A	N/A
2017/0252260	12/2016	Gummin et al.	N/A	N/A
2017/0328384	12/2016	Goto et al.	N/A	N/A
2017/0355288	12/2016	Barbat et al.	N/A	N/A
2018/0001113	12/2017	Streeter	N/A	N/A
2018/0012433	12/2017	Ricci	N/A	N/A
2018/0036198	12/2017	Mergl et al.	N/A	N/A
2018/0073491	12/2017	Gissen et al.	N/A	N/A
2018/0084915	12/2017	Norman	N/A	A47C 5/04
2018/0115260	12/2017	Chiba et al.	N/A	N/A
2018/0130347	12/2017	Ricci et al.	N/A	N/A
2018/0132825	12/2017	Tachibana	N/A	N/A
2018/0134191	12/2017	Ketels et al.	N/A	N/A
2018/0141562	12/2017	Singhal	N/A	N/A
2018/0149141	12/2017	Cullen et al.	N/A	N/A
2018/0151035	12/2017	Maalouf et al.	N/A	N/A
2018/0178808	12/2017	Zhao et al.	N/A	N/A
2018/0249772	12/2017	Koo et al.	N/A	N/A
2018/0251234	12/2017	Wang	N/A	N/A
2018/0264975	12/2017	Bonk et al.	N/A	N/A
2018/0281621	12/2017	Kaku	N/A	B60N 2/914
2018/0286189	12/2017	Motamedi et al.	N/A	N/A
2018/0321703	12/2017	Gandhi et al.	N/A	N/A
2018/0345841	12/2017	Prokhorov et al.	N/A	N/A
2018/0348759	12/2017	Freeman et al.	N/A	N/A
2018/0355991	12/2017	Pfahler	N/A	B60N 2/914
2019/0005272	12/2018	Gault et al.	N/A	N/A
2019/0023161 2019/0039525	12/2018 12/2018	Sullivan et al. Hu	N/A N/A	N/A B60R 7/005
2019/0039325	12/2018	Rihn et al.	N/A N/A	N/A
2019/0041966	12/2018	Endo et al.	N/A N/A	N/A N/A
2019/0042657	12/2018	Yan et al.	N/A N/A	N/A N/A
2019/0059006	12/2018	Chen et al.	N/A N/A	N/A
201 <i>3</i> /000130/	14/4010	Ghen et al.	1 1/ / 1	1 1/ 1 1

2019/0083022	12/2018	Huang	N/A	N/A
2019/0135150	12/2018	Gao et al.	N/A	N/A
2019/0143869	12/2018	Sequi et al.	N/A	N/A
2019/0154122	12/2018	Lima et al.	N/A	N/A
2019/0197842	12/2018	Long et al.	N/A	N/A
2019/0232842	12/2018	Boccuccia et al.	N/A	N/A
2019/0291649	12/2018	Ito	N/A	N/A
2020/0010001	12/2019	Pinkelman et al.	N/A	N/A
2020/0015493	12/2019	Ergun et al.	N/A	N/A
2020/0015593	12/2019	Norman et al.	N/A	N/A
2020/0032822	12/2019	Keplinger et al.	N/A	N/A
2020/0088175	12/2019	Li et al.	N/A	N/A
2020/0112269	12/2019	Taghavi et al.	N/A	N/A
2020/0179168	12/2019	Kelleher et al.	N/A	N/A
2020/0197250	12/2019	Wyatt et al.	N/A	N/A
2020/0223325	12/2019	Pinkelman et al.	N/A	N/A
2020/0238854	12/2019	Gandhi et al.	N/A	N/A
2020/0247274	12/2019	Gandhi et al.	N/A	N/A
2020/0276971	12/2019	Takeda et al.	N/A	N/A
2020/0282878	12/2019	Gandhi et al.	N/A	N/A
2020/0298732	12/2019	Gandhi et al.	N/A	N/A
2020/0307416	12/2019	Gandhi	N/A	B60N 2/68
2020/0309102	12/2019	Henderson et al.	N/A	N/A
2020/0339242	12/2019	Tsuruta et al.	N/A	N/A
2020/0377036	12/2019	Lee et al.	N/A	N/A
2020/0378370	12/2019	Kopfer et al.	N/A	N/A
2021/0095646	12/2020	Blecha et al.	N/A	N/A
2021/0118597	12/2020	Pinkelman et al.	N/A	N/A
2021/0132396	12/2020	Shin et al.	N/A	N/A
2021/0153754	12/2020	Ozawa et al.	N/A	N/A
2021/0162457	12/2020	Eberfors	N/A	N/A
2021/0221269	12/2020	Baranowski	N/A	B60N 2/76
2021/0236061	12/2020	Severgnini et al.	N/A	N/A
2021/0237809	12/2020	Rowe et al.	N/A	N/A
2021/0265922	12/2020	Nakagawa	N/A	N/A
2022/0001530	12/2021	Sameoto et al.	N/A	N/A
2022/0012458	12/2021	Uetabira	N/A	N/A
2022/0031178	12/2021	Brulet et al.	N/A	N/A
2022/0106941	12/2021	Easton	N/A	N/A
2022/0119202	12/2021	Morrissey et al.	N/A	N/A
2022/0154703	12/2021	Shin et al.	N/A	N/A
2022/0164079	12/2021	Severgnini et al.	N/A	N/A
2022/0196109	12/2021	Gandhi et al.	N/A	N/A
2022/0242328	12/2021	Pinkelman et al.	N/A	N/A
2022/0258656	12/2021	Little	N/A	N/A
2022/0289077	12/2021	Schmalenberg	N/A	G06Q 10/02
2022/0299016	12/2021	Tsuruta et al.	N/A	N/A
2022/0307485	12/2021	Gummin et al.	N/A	N/A
2022/0314857	12/2021	Tsuruta et al.	N/A	N/A
2022/0316458	12/2021	Tsuruta et al.	N/A	N/A

2022/0412325	12/2021	Köpfer et al.	N/A	N/A
2023/0078040	12/2022	Rowe et al.	N/A	N/A
2023/0088911	12/2022	Song et al.	N/A	N/A
2023/0119407	12/2022	Sugiyama et al.	N/A	N/A
2023/0120436	12/2022	Tsuruta et al.	N/A	N/A
2023/0124526	12/2022	Tsuruta et al.	N/A	N/A
2023/0136197	12/2022	Gilmore et al.	N/A	N/A
2023/0179122	12/2022	Palaniswamy et al.	N/A	N/A
2023/0191953	12/2022	Panwar et al.	N/A	N/A
2023/0193929	12/2022	Rowe et al.	N/A	N/A
2023/0287871	12/2022	Rowe	N/A	N/A
2023/0312109	12/2022	Joshi et al.	N/A	N/A
2023/0331371	12/2022	Gupta et al.	N/A	N/A
2023/0331372	12/2022	Gupta et al.	N/A	N/A
2023/0337827	12/2022	Pinkelman et al.	N/A	N/A
2024/0060480	12/2023	Panwar et al.	N/A	N/A

FOREIGN PATENT DOCUMENTS					
Patent No.	Application Date	Country	CPC		
201037277	12/2007	CN	N/A		
101367433	12/2008	CN	N/A		
101417152	12/2008	CN	N/A		
102333504	12/2011	CN	N/A		
102152309	12/2011	CN	N/A		
103038094	12/2012	CN	N/A		
103147511	12/2012	CN	N/A		
103147511	12/2012	CN	N/A		
102026842	12/2012	CN	N/A		
103935495	12/2013	CN	N/A		
102765354	12/2013	CN	N/A		
104290617	12/2014	CN	N/A		
204774820	12/2014	CN	N/A		
105517664	12/2015	CN	N/A		
106168523	12/2015	CN	N/A		
206029888	12/2016	CN	N/A		
107111473	12/2016	CN	N/A		
105946515	12/2017	CN	N/A		
108100228	12/2017	CN	N/A		
108819806	12/2017	CN	N/A		
106014897	12/2017	CN	N/A		
106956254	12/2018	CN	N/A		
109572966	12/2018	CN	N/A		
209010975	12/2018	CN	N/A		
105003405	12/2018	CN	N/A		
107485536	12/2019	CN	N/A		
112411375	12/2020	CN	N/A		
115706489	12/2022	CN	N/A		
10155119	12/2002	DE	N/A		
20309196	12/2002	DE	N/A		
10222022	12/2002	DE	N/A		
102010021902	12/2010	DE	N/A		

	102016210214	12/2016	DE	N/A
	102019204866	12/2019	DE	N/A
	102008021679	12/2020	DE	N/A
	1420094	12/2003	EP	N/A
	1519055	12/2004	EP	N/A
	1904337	12/2009	EP	N/A
	2723069	12/2013	EP	N/A
	3196484	12/2016	EP	N/A
	3058108	12/2017	FR	N/A
	S5870892	12/1982	JP	N/A
	S61277898	12/1985	JP	N/A
	H03276698	12/1990	JP	N/A
	H06033895	12/1993	JP	N/A
	09-133069	12/1996	JP	N/A
	H09168285	12/1996	JP	N/A
	H10337061	12/1997	JP	N/A
	2003276698	12/2002	JP	N/A
	3706899	12/2004	JP	N/A
	2006000347	12/2005	JP	N/A
	2006006581	12/2005	JP	N/A
	2006248456	12/2005	JP	N/A
	2008014470	12/2007	JP	N/A
	2008138558	12/2007	JP	N/A
	2008154447	12/2007	JP	N/A
	4273902	12/2008	JP	N/A
	2009162233	12/2008	JP	N/A
	2010117457	12/2009	JP	N/A
	4576281	12/2009	JP	N/A
	5760241	12/2014	JP	N/A
	2017175155	12/2016	JP	N/A
	2018188035	12/2017	JP	N/A
	2019094789	12/2018	JP	N/A
	2019101988	12/2018	JP	N/A
	2020090181	12/2019	JP	N/A
	2021107221	12/2020	JP	N/A
	19980044089	12/1997	KR	N/A
	20050056526	12/2004	KR	N/A
	1020130005989	12/2012	KR	N/A
	101395364	12/2013	KR	N/A
	101861620	12/2017	KR	N/A
	1020180074003 101931791	12/2017	KR KR	N/A N/A
	20210052091	12/2017 12/2020	KR	N/A N/A
	20210032091	12/2020	KR	N/A
	102298464	12/2020	KR	N/A
	02011648			
	2005004321	12/2001 12/2004	WO WO	N/A N/A
	2009079668	12/2004	WO	N/A
	20090/9666	12/2008	WO	N/A N/A
	2009111302	12/2008	WO	N/A
	201101/0/1	12/2010	110	1 1/11
_				

2011111769	12/2010	WO	N/A
2014145018	12/2013	WO	N/A
2014172320	12/2013	WO	N/A
2015037600	12/2014	WO	N/A
2016017057	12/2015	WO	N/A
2016130719	12/2015	WO	N/A
2017077541	12/2016	WO	N/A
2019043599	12/2018	WO	N/A
2019097437	12/2018	WO	N/A
2019173227	12/2018	WO	N/A
2020110091	12/2019	WO	N/A
2020183360	12/2019	WO	N/A
2021118185	12/2020	WO	N/A

OTHER PUBLICATIONS

International Searching Authority, International Search Report and Written Opinion for International Patent Application No. PCT/US2023/019798, dated Aug. 9, 2023 (11 pages). cited by applicant Ou et al., "jamSheets: Thin Interfaces with Tunable Stiffness Enabled by Layer Jamming," Proceedings of the 8th International Conference on Tangible, Embedded, and Embodied Interaction, 2014 (8 pages). cited by applicant

Ou et al., "aeroMorph—Heat-sealing Inflatable Shape-change Materials for Interaction Design," Proceedings of the 29th Annual Symposium on User Interface Software and Technology (2016) pp. 121-132 (10 pages). cited by applicant

Rowe et al., U.S. Appl. No. 18/468,029, filed Sep. 15, 2023. cited by applicant

Jani et al., "A review of shape memory alloy research, applications, and opportunities", Elsevier, 2014, pp. 1078-1113 (36 pages). cited by applicant

Tiseo et al., "A Shape Memory Alloy Based Tuneable Dynamic Vibration Absorber for Vibration Tonal Control", Journal of Theoretical and Applied Mechanics, 2010, pp. 135-153 (19 pages). cited by applicant Williams et al., "Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber", Elsevier, Journal of Vibration and Sound, 2005, pp. 211-234 (24 pages). cited by applicant Araki et al., "Integrated mechanical and material design of quasi-zero-stiffness vibration isolator with superelastic Cu—Al—Mn shape memory alloy bars", Journal of Sound and Vibration, 2015 (34 pages). cited by applicant

Casciati et al., "Performance of a base isolator with shape memory alloy bars", Earthquake Engineering and Engineering Vibration, Dec. 2007 (8 pages). cited by applicant

Miga Motor Company, "Miga AdrenaLine—A Space Age Wire," retrieved from the Internet:

https://migamotors.com/index.php?main_page=product_info&cPath=1&products_id=37, [retrieved Mar. 26, 2021] (1 page). cited by applicant

Furukawa Techno Material, "Shape Memory Alloys & Super-elastic Alloys," retrieved from the Internet: https://www.furukawa-ftm.com/english/nt-e/product.htm, [retrieved Mar. 26, 2021] (3 pages). cited by applicant

Gilmore et al., U.S. Appl. No. 17/514,075, filed Oct. 29, 2021. cited by applicant

Song et al., "Resistance Modelling of SMA Wire Actuators", Canadian Institute for NDE, International Workshop: Smart Materials, Structures & NDT in Aerospace Conference, Nov. 2011 (10 pages). cited by applicant

Rowe et al., U.S. Appl. No. 18/452,602, filed Aug. 21, 2023. cited by applicant

Motzki, "Efficient SMA Actuation—Design and Control Concepts", Proceedings, vol. 64, No. 1, MDPI, 2020 (9 pages). cited by applicant

Arduino Documentation, "Secrets of Arduino PWM", last revision May 27, 2024, retrieved from the Internet: https://docs.arduino.cc/tutorials/generic/secrets-of-arduino-pwm/, [retrieved Jun. 1, 2024] (13 pages). cited by applicant

```
Barbarino et al., "A review on shape memory alloys with applications to morphing aircraft", Smart Materials and Structures, Apr. 2014 (19 pages). cited by applicant
```

- "HapWRAP: Soft Growing Wearable Haptic Device", retrieved from the Internet:
- https://smartdevicess.createdsites.com, dated May 27, 2019 (18 pages). cited by applicant
- Yilmaz et al., "Detecting Vital Signs with Wearable Wireless Sensors", Sensors, Dec. 2010 (26 pages). cited by applicant

Choi et al. "Highly conductive, stretchable, and biocompatible Ag—Au core-sheath nanowire composite for wearable and implantable bioelectronics", Nature Nanotechnology 13, No. 11, 2018 (36 pages). cited by applicant

Gao et al., "Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring", Advanced Materials, Oct. 2017 (15 pages). cited by applicant

Kweon et al., "Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers", NPG Asia Materials 2018 (12 pages). cited by applicant

Wang et al. "Monitoring of the central blood pressure waveform via a conformal ultrasonic device", Nat Biomed Eng, Sep. 2018 (22 pages). cited by applicant

Agharese et al. "hapWRAP: Soft Growing Wearable Haptic Device", 2018 IEEE International Conference on Robotics and Automation (ICRA), May 2018 (7 pages). cited by applicant

Gao et al., "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis", Nature, Jan. 2016 (30 pages). cited by applicant

Jitosho et al. "Exploiting Bistability for High Force Density Reflexive Gripping", 2019 International Conference on Robotics and Automation (ICRA), May 2019 (7 pages). cited by applicant

Wikipedia, "Slap bracelet", retrieved from the Internet: https://en.wikipedia.org/wiki/Slap_bracelet, [retrieved Mar. 12, 2021] (2 pages). cited by applicant

Maffiodo et al. "Three-Fingered Gripper with Flexure Hinges Actuated by Shape Memory Alloy Wires", Int. J. of AutomationTechnology, vol. 11, No. 3, pp. 355-360, 2017 (6 pages). cited by applicant Buckner et al. "Roboticizing fabric by integrating functional fibers", Proceedings of the National Academy of Sciences, Oct. 2020 (10 pages). cited by applicant

Blain, "Refrigerants not required: Flexible metal cooling prototype demonstrates extreme efficiency", retrieved from the Internet: https://newatlas.com/shape-memory-alloy-nitinol-heating-cooling/58837/ [retrieved Apr. 1, 2024], dated Mar. 13, 2019 (13 pages). cited by applicant

Taniguchi, "Flexible Artificial Muscle Actuator Using Coiled Shape Memory Alloy Wires", APCBEE Procedia 7, pp. 54-59, May 2013 (6 pages). cited by applicant

Acome et al., "Hydraulically amplified self-healing electrostatic actuators with muscle-like performance", Science 359, pp. 61-65, 2018 (5 pages). cited by applicant

Wang et al., "Recent Progress in Artificial Muscles for Interactive Soft Robotics", Advanced Materials, vol. 33, Issue 19, published Oct. 27, 2020 (48 pages). cited by applicant

Liang et al., "Comparative study of robotic artificial actuators and biological muscle", Advances in Mechanical Engineering, 2020 (25 pages). cited by applicant

El-Atab et al., "Soft Actuators for Soft Robotic Applications: A Review", Advanced Intelligent Systems 2020 (37 pages). cited by applicant

Pagoli et al., "Review of soft fluidic actuators: classification and materials modeling analysis", Smart Materials and Structures, vol. 31, 2021 (31 pages). cited by applicant

Park et al., "A Novel Fabric Muscle Based on Shape Memory Alloy Springs", Soft Robotics, vol. 7, No. 3, 2020 (11 pages). cited by applicant

Ebay, "Cardboard Dividers 5 Sets 7.5" X 10.5" X 4" High 12 cell", retrieved from the Internet:

https://www.ebay.comitm/175101454003var=0&mkevt=1&mkcid=1&mkrid=711-53200-19255-

0&campid=5337076261&toolid=10049&customid=ACF63RFK9J675c23041e8b13f9c32042ed51988cf3> [retrieved Jan. 20, 2022](1 page). cited by applicant

Cazottes et al., "Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations", Journal of Mechanical Design, 2009 (10 pages). cited by applicant

```
Cazottes et al., "Design of Actuation for Bistable Structures Using Smart Materials," Advances in Science
and Technology, vol. 54, pp. 287-292, 2008 (1st Page/Abstract only). cited by applicant
Cazottes et al, "Actuation of bistable buckled beams with Macro-Fiber Composites," IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 564-569, 2008 (7 pages). cited by
applicant
Haines et al., "New Twist on Artificial Muscles," Proceedings of the National Academy of Sciences, vol.
113, No. 42, pp. 11709-11716, Oct. 18, 2016 (9 pages). cited by applicant
Inoue et al., "High-performance structure of a coil-shaped soft-actuator consisting of polymer threads and
carbon nanotube yarns," AIP Advances 8, 2018, (8 pages). cited by applicant
Abbas et al., "A Physics Based Model for Twisted and Coiled Actuator" 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6121-6126, 2017 (6 pages). cited by applicant
```

Haines et al., "Artificial Muscles from Fishing Line and Sewing Thread" (Supplementary Materials) Science 343, 868, 2014 (36 pages). cited by applicant

Yip et al., "On the Control and Properties of Supercoiled Polymer Artificial Muscles," IEEE Transactions on Robotics 2017 (11 pages), cited by applicant

alibaba.com, "Hangzhou Phase Change Technology Co., Ltd", Retrieved from the Internet: https://hzfeijie.en.alibaba.com/product/1448845650-

220286736/phase_change_material_PCM_balls.html#!>, [Retrieved May 2, 2017] (3 pages). cited by applicant

Goodfellow Corporation, "New to Our Range: A Magnetic Shape Memory Alloy that Converts Magnetic Field Energy into Kinetic Energy," <retrieved from the Internet:

http://www.goodfellowusa.com/corporate/news/US/June-2011/us.htm> [retrieved Jan. 23, 2012] (2 pages). cited by applicant

Goodfellow Corporation, "Magnetic Shape Memory Material", <retrieved from the Internet: http://www.goodfellowusa.com/larger-quantities/alloys/magnetic-shape-memory-material/> [retrieved Jan. 23, 2012] (3 pages). cited by applicant

Sherrit et al., "Planar Rotary Motor using Ultrasonic Horns", Proc. SPIE 7981, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011, 79810O, Apr. 13, 2011 (8 pages). cited by applicant

Henry, "Dynamic Actuation Properties of Ni-Mn-Ga Ferromagnetic Shape Memory Alloys", submitted to the Massachusetts Institute of Technology Department of Materials Science and Engineering on May 22, 2002, images on pp. 64-66 (202 pages). cited by applicant

Zhu et al., U.S. Appl. No. 18/433,896, filed Feb. 6, 2024. cited by applicant

Zhu et al., U.S. Appl. No. 18/399,075, filed Dec. 28, 2023. cited by applicant

Rowe et al., U.S. Appl. No. 18/178,302, filed Mar. 3, 2023. cited by applicant

Rowe et al., U.S. Appl. No. 18/399,026, filed Dec. 28, 2023. cited by applicant

Rowe et al., U.S. Appl. No. 18/453,395, filed Aug. 22, 2023. cited by applicant

Zhu et al., U.S. Appl. No. 18/172,637, filed Feb. 22, 2023. cited by applicant

Pinkelman et al., U.S. Appl. No. 18/452,343, filed Aug. 18, 2023. cited by applicant

Pinkelman et al., U.S. Appl. No. 18/452,376, filed Aug. 18, 2023. cited by applicant

Rowe et al., U.S. Appl. No. 18/452,734, filed Aug. 21, 2023. cited by applicant

Correa et al., "Mechanical Design of Negative Stiffness Honeycomb Materials", Integrating Materials and Manufacturing Innovation, 4:10, pp. 1-11, 2015 (11 pages). cited by applicant

Ferguson-Pell, "Seat Cushion Selection", J. Rehab. Res. Dev., Special Supplement #2, 23(3), pp. 49-73, 1986 (25 pages). cited by applicant

Endragon Technology Corporation, "What is Electrostatic Chuck?" retrieved from the Internet:

https://edragoncorp.weebly.com/what-is-electrostatic-chuck.html>, 2014 (8 pages). cited by applicant Strittmatter et al., "Intelligent materials in modern production—Current trends for thermal shape memory alloys," Procedia Manufacturing, vol. 30, pp. 347-356, 2019 (10 pages). cited by applicant

Shunk, "GM awarded DOE money to research Shape Memory Alloy heat engines," dated Nov. 2, 2009,

retrieved from the Internet: https://www.autoblog.com/2009/11/02/gm-awarded-doe-money-to-research-shape-memory-alloy-heat-engines/, [retrieved Mar. 26, 2021] (2 pages). cited by applicant Gummin, "Shape Memory Alloy Massage for Seating Surfaces," dated Jun. 15, 2018, retrieved from the Internet: https://contest.techbriefs.com/2018/entries/consumer-products/8871 (3 pages). cited by applicant

Stoeckel, "Shape Memory Actuators for Automotive Applications," Materials & Design. vol. 11, No. 6, pp. 302-307, Dec. 1990 (6 pages). cited by applicant

Katayama et al., "Shape Memory Alloy Wire Actuated Hinge Mechanism for Deploying Segmented Plates," Bulletin of Osaka Prefecture University, Series A, vol. 45, No. 2, 1996, pp. 119-124 (8 pages). cited by applicant

Rowe et al., U.S. Appl. No. 63/485,398, filed Feb. 16, 2023. cited by applicant Rowe et al., U.S. Appl. No. 18/329,217, filed Jun. 5, 2023. cited by applicant

Spiess, "#321 7 Sensors tested: Measuring Current with Microcontrollers (Arduino, ESP32, ESP8266)", uploaded on Apr. 5, 2020 by user "Andreas Spiess" accessible via the Internet:

https://www.youtube.com/watch?v=cG8moaufmQs [screenshots captured Nov. 21, 2024] (15 pages). cited by applicant

Primary Examiner: Brindley; Timothy J

Attorney, Agent or Firm: Darrow Mustafa PC

Background/Summary

FIELD

(1) The subject matter herein relates in general to chairs and, more particularly, to chairs with adjustable portions.

BACKGROUND

(2) A chair is a common piece of furniture. It has a seat and a back attached to the seat. Chairs can be used for various purposes and can have various designs. Chairs can be configured to provide support and comfort to a person. Some chairs can include ergonomic features to enhance user comfort. Some chairs are powered and allow a user to adjust one or more aspects of the seat.

SUMMARY

(3) In one respect, the present disclosure is directed to a chair. The chair includes a seat portion and a plurality of actuators. The actuators are located below the seat portion. Each of the actuators can include one or more shape memory material members. Each of the actuators can be configured such that, when an activation input is provided to the one or more shape memory material members, the one or more shape memory material members change from a first configuration to a second configuration and cause the actuator to morph into an activated configuration a height of the actuator increases. The actuators can be operatively positioned to cause a movement of the seat portion. (4) In another respect, the present disclosure is directed to a system. The system includes a chair with a seat portion. The system includes a plurality of actuators. The actuators can be located below the seat portion. Each of the actuators can include one or more shape memory material members. Each of the actuators can be configured such that, when an activation input is provided to the one or more shape memory material members, the one or more shape memory material members change from a first configuration to a second configuration and cause the actuator to morph into an activated configuration. The actuators can be selectively actuatable. The actuators can be operatively positioned to cause a movement of the seat portion. The system can include one or more processors. The one or more processors can be operatively connected to selectively activate one or more of the

plurality of actuators by causing the activation input to be provided to the one or more shape memory material members of at least one of the plurality of actuators.

(5) In still another respect, the present disclosure is directed to a method of moving a portion of a chair synchronized with visual content. The chair can include a seat portion and a plurality of actuators located below the seat portion. Each of the actuators can include one or more shape memory material members. Each of the actuators can be configured such that, when an activation input is provided to the one or more shape memory material members, the one or more shape memory material members change from a first configuration to a second configuration and cause the actuator to morph into an activated configuration. The actuators can be selectively actuatable and operatively positioned to cause a movement of the seat portion. One or more processors can be operatively connected to selectively activate one or more of the actuators by causing the activation input to be provided to the one or more shape memory material members of at least one of the actuators. The method can include analyzing visual content to determine a corresponding chair movement. The corresponding chair movement can be synchronized with at least a portion of the visual content. The method can include selecting one or more of the actuators to achieve the corresponding chair movement. The method can include causing an activation input to be provided to the selected one or more of the actuators. Thus, the selected one or more actuators can be activated to cause the seat to move according to the corresponding chair movement.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) FIG. **1** is an example of a chair.
- (2) FIG. **2** is a view of the chair with a cut-away portion, showing a plurality of actuators.
- (3) FIG. **3** is an example of a first arrangement of the plurality of actuators.
- (4) FIG. **4** is an example of a second arrangement of the plurality of actuators.
- (5) FIG. **5** is an example of a third arrangement of the plurality of actuators.
- (6) FIG. **6** is a view of a portion of the chair, showing a platform on top of the plurality of actuators.
- (7) FIG. **7** is an example of an actuator in a non-activated condition.
- (8) FIG. ${\bf 8}$ is an example of the actuator in an activated condition.
- (9) FIG. **9** is a view of the chair, showing a tilting of the chair due to the actuator of a subset of the plurality of actuators.
- (10) FIG. **10** is an example of a method.
- (11) FIG. **11** is an example of a system.

DETAILED DESCRIPTION

- (12) Arrangements described here are directed to the use of shape memory material-based actuators in connection with a chair used for viewing visual content, such as a gaming chair, a movie chair, a theater chair, or any other similar seat structure, now known or later developed. The chair can be configured for synchronized movement with visual content presented to an occupant of the chair. The chair can include a plurality of actuators operatively positioned with respect to the seat portion of the chair. The actuators can include one or more shape memory material members. Selected actuators can be activated to cause the seat portion to move in a synchronized manner with the visual content.
- (13) Detailed embodiments are disclosed herein; however, it is to be understood that the disclosed embodiments are intended only as examples. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the aspects herein in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting but rather to provide an understandable description of possible implementations. Various embodiments are shown in FIGS. **1-11**, but the embodiments are not

limited to the illustrated structure or application.

- (14) It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details.
- (15) Referring to FIG. **1**, an example of a chair **100** is shown. The chair **100** can be any type of seat, now known or later developed. The chair **100** can have any suitable configuration. For instance, the chair **100** can include a back portion **102** and a seat portion **104**. In some arrangements, the chair **100** can include a headrest **106** and/or arm rests **108**. In some arrangements, the chair **100** can be an office chair, a gaming chair, a movie theater chair, a recliner, or any other type of seat or chair, now known or later developed.
- (16) The chair **100** can include a base portion **110** located below the seat portion **104**. The seat portion **104** can include a cushion. The base portion **110** can include an upper platform **112** and a lower platform **114**. In a non-activated condition, the upper platform **112** and the lower platform **114** can be substantially parallel to each other.
- (17) In some arrangements, the base portion **110** can include one or more side walls **116**. The side wall(s) **116** can be operatively connected to the lower platform **114**. In some arrangements, the side wall(s) **116** can be a rigid structure. In such case, the side wall(s) **116** may not be attached to the upper platform 112. When one or more of the actuators 200 are activated, a portion of the upper platform 112 may separate from the side wall(s) 116. In some arrangements, the side wall(s) 116 can be configured to expand and contract, such as in an accordion-like configuration. In such case, the side wall(s) **116** can be operatively connected to the upper platform **112**. Thus, when one or more of the actuators **200** are activated, the upper platform **112** can remain connected to the side wall(s) **116**. (18) FIG. **2** is a view of the chair **100** with a cut-away of the base portion **110**. A plurality of actuators **200** can be located within the base portion **110**. The plurality of actuators **200** can be operatively positioned between the upper platform 112 and the lower platform 114. When not activated, the upper platform **112** and the lower platform **114** can be substantially parallel to each other. It will be understood that the terms "upper" and "lower" are used for convenience to note the relative position of structures when used in its intended operational position and that these terms are not intended to be limiting. The actuators **200** can be operatively connected to one or both of the upper platform **112** and the lower platform **114**.
- (19) The lower platform **114** can be substantially fixed. As a result, the activation and deactivation of the actuators **200** does not essentially affect the orientation or position of the lower platform **114**. (20) On the other hand, the upper platform **112** can be configured to be movable in response to activation or deactivation of the actuators **200**. As a result, the actuators **200** can cause a movement of the seat portion **104** or the rest of the chair **100** located above the upper platform **112**. The seat portion **104** can be supported on the upper platform **112**.
- (21) The plurality of actuators **200** can be arranged in any of a number of ways. Some example arrangements are shown in FIGS. **3-5**. Referring to FIG. **3**, an example of a first arrangement **300** of the plurality of actuators **200** is shown. In this example, the actuators **200** can be arranged in a substantially rectangular pattern. Each actuator **200** can be oriented at substantially 90 degrees relative to its neighboring actuator **200**.
- (22) Referring to FIG. **4**, an example of a second arrangement **400** of the plurality of actuators **200** is shown. In this example, the plurality of actuators **200** can be arranged in an offsetting substantially parallel pattern. As is shown, there can be two groups of actuators **200**. In each group, the actuators **200** can be offset from each other. Also, the actuators **200** can be substantially parallel to each other. (23) FIG. **5** is an example of a third arrangement **500** of the plurality of actuators **200**. In this example, the actuators **200** can be arranged in a radial pattern about a central point or area. The

- actuators **200** can be substantially equally spaced, or one or more of the actuators **200** can be non-equally spaced from the other actuators **200**.
- (24) While the above examples show various arrangements in which there are four actuators, it will be appreciated that arrangements described herein are not limited to there being four actuators. Indeed, there can be more than four actuators, or there can be fewer than four actuators.
- (25) FIGS. **7-8** show an example of an actuator **200**. FIG. **7** shows an example of the actuator **200** in a non-activated condition, and FIG. **8** shows an example of the actuator **200** in an activated condition.
- (26) The actuator **200** can include a first endcap **210** and a second endcap **220**. The first endcap **210** and the second endcap **220** can be spaced apart. The first endcap **210** and the second endcap **220** can face toward each other.
- (27) The first endcap **210** and the second endcap **220** can have any suitable size, shape, and/or configuration. In one or more arrangements, the first endcap **210** and the second endcap **220** can be substantially mirror images of each other. In one or more arrangements, the first endcap **210** can have three prongs, including an upper prong **212**, a middle prong **214**, and a lower prong **226**. Similarly, the second endcap **220** can have three prongs, including an upper prong **222**, a middle prong **224**, and a lower prong **226**.
- (28) The first endcap **210** and the second endcap **220** can be made of any suitable material. The first endcap **210** and the second endcap **220** can be substantially rigid structures. In some arrangements, the upper prongs **212**, **222** and the lower prongs **216**, **226** of the first and second endcaps **210**, **220** can be flexible to accommodate changes to the actuator **200** when activated and deactivated. The first and second endcaps **210**, **220** can be oriented such that the middle prong **214** of the first endcap **210** is substantially aligned with the middle prong **224** of the second endcap **220**.
- (29) The actuator **200** can include a first outer member **240**. The first outer member **240** can have a bowed shape. The first outer member **240** can have a convex side **242** and a concave side **244**. In some arrangements, the first outer member **240** can be made of a single piece of material. In other arrangements, the first outer member **240** can be made of a plurality of pieces of material. In some arrangements, the first outer member **240** can be made of a plurality of layers. The first endcap **210** and the second endcap **220** can be made of any suitable material. In some arrangements, the first outer member **240** can be made of a flexible to accommodate changes to the actuator **200** when activated and deactivated.
- (30) The first outer member **240** can include one or more protrusions **246**. The protrusion(s) **246** can be used to properly locate another structure on the plurality of actuators **200**. In some arrangements, the protrusion(s) **246** can be substantially centrally located on the convex side **242** of the first outer member **240**. In some arrangements, the protrusion(s) **246** can be formed separately and operatively connected to the convex side **242** of the first outer member **240**. Any suitable manner of operative connection can be provided, such as one or more fasteners, one or more adhesives, one or more welds, one or more brazes, one or more forms of mechanical engagement, or any combination thereof. In other arrangements, the protrusion(s) **246** and the first outer member **240** can be formed together as a unitary structure.
- (31) The first outer member **240** can be operatively connected to the first endcap **210** and the second endcap **220**. For instance, the first outer member **240** can be operatively connected to the upper prong **212** of the first endcap **210** and to the upper prong **222** of the second endcap **220**. Any suitable manner of operative connection can be provided, such as one or more fasteners, one or more adhesives, one or more welds, one or more brazes, one or more forms of mechanical engagement, or any combination thereof. In some arrangements, one or more portions of the first outer member **240**, such as the ends, can be operatively connected to the middle prong **214** of the first endcap **210** and the middle prong **224** of the second endcap **220**.
- (32) The actuator **200** can include a second outer member **250**. The second outer member **250** can have a bowed shape. The second outer member **250** can have a convex side **252** and a concave side

- **254**. In some arrangements, the second outer member **250** can be made of a single piece of material. In other arrangements, the second outer member **250** can be made of a plurality of pieces of material. In some arrangements, the second outer member **250** can be made of a plurality of layers. The first endcap **210** and the second endcap **220** can be made of any suitable material. In some arrangements, the second outer member **250** can be made of a flexible to accommodate changes to the actuator **200** when activated and deactivated.
- (33) The actuator **200** can include a base **260**. The base **260** can provide stability to the actuator **200**. In some arrangements, the base **260** can be operatively connected to the convex side **252** of the second outer member **250**. Any suitable manner of operative connection can be provided, such as one or more fasteners, one or more adhesives, one or more welds, one or more brazes, one or more forms of mechanical engagement, or any combination thereof. In other arrangements, the base **260** and the second outer member **250** can be formed together as a unitary structure. The base **260** can have any suitable size, shape, and/or configuration. The base **260** can be a substantially flat structure. In one or more arrangements, the base **260** can be substantially rectangular. The base **260** can be made of any suitable material. The base **260** can be made of the same material as the second outer member **250**, or the base **260** can be made of a different material.
- (34) The actuator **200** can include one or more ribs **256**. The rib(s) **256** can prevent the first outer member **240** from bottoming out. In some arrangements, the rib(s) **256** can be operatively connected to the concave side **254** of the second outer member **250**. Any suitable manner of operative connection can be provided, such as one or more fasteners, one or more adhesives, one or more welds, one or more brazes, one or more forms of mechanical engagement, or any combination thereof. In other arrangements, the rib(s) **256** and the second outer member **250** can be formed together as a unitary structure. The rib(s) **256** can have any suitable size, shape, and/or configuration. In one or more arrangements, the rib(s) **256** can be substantially rectangular. The rib(s) **256** can be made of any suitable material. The rib(s) **256** can be made of the same material as the second outer member **250**, or the rib(s) **256** can be made of a different material.
- (35) The second outer member **250** can be operatively connected to the first endcap **210** and the second endcap **220**. For instance, the second outer member **250** can be operatively connected to the lower prong **216** of the first endcap **210** and to the lower prong **226** of the second endcap **220**. Any suitable manner of operative connection can be provided, such as one or more fasteners, one or more adhesives, one or more welds, one or more brazes, one or more forms of mechanical engagement, or any combination thereof. In some arrangements, one or more portions of the second outer member **250**, such as the ends, can be operatively connected to the middle prong **214** of the first endcap **210** and the middle prong **224** of the second endcap **220**.
- (36) The first outer member 240 and the second outer member 250 can be composed of or include a substantially flexible material. The first outer member 240 and the second outer member 250 can be reversibly deformed, such that the first outer member 240 and the second outer member 250 will not be damaged during the deformation. Damage can include cracking, breaking, fracturing, or other forms of inelastic deformation. In some implementations, the flexible material is a flexible polymer. Specific examples of flexible polymers which can be used various implementations include rubber (including natural rubber, styrene-butadiene, polybutadiene, neoprene, ethylene-propylene, butyl, nitrile, silicone), polycarbonates, acrylic, polyesters, polyethylenes, polypropylenes, nylon, polyvinyl chlorides, polystyrenes, elastomers, polyolefins, and others flexible polymers known to persons skilled in the art. In some implementations, the flexible material can be exposed to a degree of stretch selected in the range of about 1% to about 1300%, such as about 10% to about 1300%, or about 100% to about 1300% without resulting in mechanical failure (e.g., tearing, cracking, or inelastic deformation). In further implementations, the flexible material can be deformed to a radius of curvature selected in the range of 100 micrometers (μ m) to 3 meters (m) without mechanical failure.
- (37) The first outer member **240** and the second outer member **250** can be oriented such that their

concave sides **244**, **254** face each other. The first outer member **240** and the second outer member **250** can define a cavity **270**.

- (38) The actuator **200** can include one or more shape memory material members **280**. The shape memory material members **280** can be operatively connected to the first endcap **210** and the second endcap **220**. More particularly, the shape memory material member **280** can be operatively connected to the middle prong **214** of the first endcap **210** and the middle prong **224** of the second endcap **220**. Any suitable manner of operative connection can be provided, such as one or more fasteners, one or more adhesives, one or more welds, one or more brazes, one or more forms of mechanical engagement, or any combination thereof. The shape memory material member(s) **280** can be located within the cavity **270**.
- (39) In some arrangements, there can be a single shape memory material member **280**. In such case, the shape memory material member **280** can, for example, extend straight across the cavity from the first endcap **210** and the second endcap **220**. In another example, the shape memory material member **280** can extend in a zig zag or serpentine pattern between the first endcap **210** and the second endcap **220**.
- (40) In some arrangements, there can be a plurality of shape memory material members **280**. In such case, the shape memory material members **280** can be distributed, arranged, and/or oriented in any suitable manner. For instance, the shape memory material members **280** can extend substantially parallel to each other. In other arrangements, one or more of the shape memory material members **280** can extend non-parallel to the other shape memory material members **280**. In some instances, some of the plurality of shape memory material members **280** may cross over each other.
- (41) The phrase "shape memory material" includes materials that changes shape when an activation input is provided to the shape memory material and, when the activation input is discontinued, the material substantially returns to its original shape. Examples of shape memory materials include shape memory alloys (SMA) and shape memory polymers (SMP).
- (42) In one or more arrangements, the shape memory material members **280** can be shape memory material wires. As an example, the shape memory material members **280** can be shape memory alloy wires. Thus, when an activation input (i.e., heat) is provided to the shape memory alloy wire(s), the wire(s) can contract. Shape memory alloy wire(s) can be heated in any suitable manner, now known or later developed. For instance, shape memory alloy wire(s) can be heated by the Joule effect by passing electrical current through the wires. In some instances, arrangements can provide for cooling of the shape memory alloy wire(s), if desired, to facilitate the return of the wire(s) to a non-activated configuration.
- (43) The wire(s) can have any suitable characteristics. For instance, the wire(s) can be high temperature wires with austenite finish temperatures from about 80 degrees Celsius to about 110 degrees Celsius. The wire(s) can have any suitable diameter. For instance, the wire(s) can be from about 0.2 millimeters (mm) to about 0.7 mm, from about 0.3 mm to about 0.5 mm, or from about 0.375 millimeters to about 0.5 millimeters in diameter. In some arrangements, the wire(s) can have a stiffness of up to about 70 gigapascals. The pulling force of SMA wire(s) can be from about 250 MPA to about 400 MPa. The wire(s) can be configured to provide an initial moment from about 300 to about 600 N.Math.mm, or greater than about 500 N.Math.mm, where the unit of newton millimeter (N.Math.mm) is a unit of torque (also called moment) in the SI system. One newton meter is equal to the torque resulting from a force of one newton applied perpendicularly to the end of a moment arm that is one meter long. In various aspects, the wire(s) can be configured to transform in phase, causing the shape memory material members 280 to be moved from non-activated position to an activated position in about 3 seconds or less, about 2 seconds or less, about 1 second or less, or about 0.5 second or less.
- (44) The wire(s) can be made of any suitable shape memory material, now known or later developed. Different materials can be used to achieve various balances, characteristics, properties, and/or qualities. As an example, an SMA wire can include nickel-titanium (Ni—Ti, or nitinol). One

- example of a nickel-titanium shape memory alloy is FLEXINOL, which is available from Dynaolloy, Inc., Irvine, California. As a further example, the SMA wires can be made of Cu—Al—Ni, Fe—Mn—Si, or Cu—Zn—Al.
- (45) The SMA wire can be configured to increase or decrease in length upon changing phase, for example, by being heated to a phase transition temperature T.sub.SMA. Utilization of the intrinsic property of SMA wires can be accomplished by using heat, for example, via the passing of an electric current through the SMA wire in order provide heat generated by electrical resistance, in order to change a phase or crystal structure transformation (i.e., twinned martensite, detwinned martensite, and austentite) resulting in a lengthening or shortening the SMA wire. In some implementations, during the phase change, the SMA wire can experience a decrease in length of from about 2 to about 8 percent, or from about 3 percent to about 6 percent, and in certain aspects, about 3.5 percent, when heated from a temperature less than the T.sub.SMA to a temperature greater than the T.sub.SMA.
- (46) Other active materials may be used in connection with the arrangements described herein. For example, other shape memory materials may be employed. Shape memory materials, a class of active materials, also sometimes referred to as smart materials, include materials or compositions that have the ability to remember their original shape, which can subsequently be recalled by applying an external stimulus, such as an activation signal.
- (47) While the shape memory material members **280** are described, in some implementations, as being wires, it will be understood that the shape memory material members **280** are not limited to being wires. Indeed, it is envisioned that suitable shape memory materials may be employed in a variety of other forms, such as sheets, plates, panels, strips, cables, tubes, or combinations thereof. In some arrangements, the shape memory material members **280** may include an insulating coating. (48) The actuator **200** can include a first dimension **290** and the second dimension **295**. The first dimension **290** can describe a width of the actuator **200**, and the second dimension **295** can describe a height of the actuator **200**. The first dimension **290** and the second dimension **295** can be substantially perpendicular to each other.
- (49) As noted above, FIG. **8** is an example of the actuator **200** in an activated condition. When an activation input (e.g., electrical energy) is provided to the shape memory material member(s) **280**, the shape memory material member(s) **280** can contract. This contraction causes the shape memory material member(s) **280** to pull the first endcap **210** and the second endcap **220** toward each other in a direction that corresponds to the first dimension **290**.
- (50) Consequently, the ends of the first outer member **240** can be drawn toward each other in a direction that corresponds to the first dimension **290**, and the ends of the second outer member **250** can be drawn toward each other in a direction that corresponds to the first dimension **290**. As a result, the first outer member **240** and the second outer member **250** can bow outward and away from each other in a direction that corresponds to the second dimension **295**. It will be appreciated that the first dimension **290** (i.e., the width) of the actuator **200** can decrease, and the second dimension **295** (i.e., the height) of the actuator **200** can increase.
- (51) It will be appreciated that the actuator **200** shown in FIGS. **7-8** is merely one example of an actuator that can be used in connection with arrangements described herein. Other actuator configurations are possible. Additional non-limiting examples of actuators with shape memory material members are described in U.S. Pat. Nos. 10,960,793; 11,285,844; and U.S. Patent Application Publ. No. 2020/0298732, which are incorporated herein by reference in their entirety. (52) FIG. **6** is a view of a portion of the chair **100**, showing the upper platform **112** on top of the plurality of actuators **200**. As noted above, the upper platform **112** can be supported by the actuators **200**. In some arrangements, the upper platform **112** can be a plate-like structure. The upper platform **112** can be made of any suitable material, including, for example, metals, alloys, plastics, polymers, acrylic, or wood, just to name a few possibilities. The upper platform **112** can have any suitable size, shape, and/or configuration. In one or more arrangements, the upper platform **112** can be

substantially rectangular.

- (53) The upper platform **112** can be operatively connected to the plurality of actuators **200**. Any suitable form of operative connection can be provided. For instance, the upper platform **112** can include a plurality of apertures **113**. Each of the apertures **113** can receive a respective one of the protrusions **246** on the actuators **200**. In this way, the upper platform **112** can be properly located on the actuators **200**. It will be appreciated that, when the actuators **200** are not activated, the upper platform **112** can be substantially horizontal. When the actuators **200** are activated, the upper platform **112** can become non-horizontal. When the actuators **200** are activated, the protrusions **246** can remain within the apertures **113** in the upper platform **112**.
- (54) Alternatively or additionally, other forms of operative connection between the upper platform **112** and the actuators **200** can be provided. For instance, the upper platform **112** can be operatively connected to the actuators **200** by one or more fasteners, one or more adhesives, one or more forms of mechanical engagement, or any combination thereof.
- (55) FIG. **11** shows an example of a system **1100**. The system **1100** can include various elements. Some of the possible elements of the system **1100** are shown in FIG. **11** and will now be described. It will be understood that it is not necessary for the system **1100** to have all of the elements shown in FIG. **11** or described herein. The system **1100** can have any combination of the various elements shown in FIG. **11**. Further, the system **1100** can have additional elements to those shown in FIG. **11**. In some arrangements, the system **1100** may not include one or more of the elements shown in FIG. **11**. Further, while the various elements may be located on or within a chair, it will be understood that one or more of these elements can be located external to the chair. Further, the elements shown may be physically separated by large distances.
- (56) The system **1100** can include the chair **100**, one or more processors **1110**, one or more data stores **1120**, one or more sensors **1130**, one or more power sources **1140**, one or more input interfaces **1150**, one or more output interfaces **1155**, one or more visual content devices **1160**, one or more displays **1165**, one or more content analysis modules **1170**, and one or more chair control modules **1180**. Each of these elements will be described in turn below.
- (57) As noted above, the system **1100** can include one or more processors **1110**. "Processor" means any component or group of components that are configured to execute any of the processes described herein or any form of instructions to carry out such processes or cause such processes to be performed. The processor(s) **1110** may be implemented with one or more general-purpose and/or one or more special-purpose processors. Examples of suitable processors include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Further examples of suitable processors include, but are not limited to, a central processing unit (CPU), an array processor, a vector processor, a digital signal processor (DSP), a field-programmable gate array (FPGA), a programmable logic array (PLA), an application specific integrated circuit (ASIC), programmable logic circuitry, and a controller. The processor(s) **1110** can include at least one hardware circuit (e.g., an integrated circuit) configured to carry out instructions contained in program code. In arrangements in which there is a plurality of processors **1110**, such processors can work independently from each other, or one or more processors can work in combination with each other.
- (58) The system **1100** can include one or more data stores **1120** for storing one or more types of data. The data store(s) **1120** can include volatile and/or non-volatile memory. Examples of suitable data stores **1120** include RAM (Random Access Memory), flash memory, ROM (Read Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory), registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The data store(s) **1120** can be a component of the processor(s) **1110**, or the data store(s) **1120** can be operatively connected to the processor(s) **1110** for use thereby. The term "operatively connected," as used throughout this description, can include direct or indirect connections, including connections

without direct physical contact.

- (59) In some arrangements, the data stores **1120** can include one or more actuation profiles **1122**. The actuation profile(s) **1122** can be predefined patterns of activation and deactivation of one or more of the actuators **200** to achieve a desired movement of the chair **100**. Examples of the actuation profile(s) **1122** can include tilting forward, tilting backward, tilting right, tilting left, a front-back rocking, a left-right rocking, up, down, vibration, or any combination thereof. The actuation profile(s) **1122** can be for any period of time. In some instances, the actuation profile(s) **1122** can be for a brief moment.
- (60) The system **1100** can use the actuation profile(s) **1122** to actuate the actuators **200** without having to determine in real-time which of the actuators **200** would achieve a desired movement of the chair **100**. It should be noted that the actuation profile(s) **1122** can take into account one or more characteristics of an occupant of the chair **100**. For instance, the activation and deactivation of the actuators **200** can be varied based on one or more characteristics of an occupant of the chair **100**, such as a weight of the chair occupant. If the person is heavier than a predefined base weight or weight range, then the activation and deactivation of the actuators **200** can be performed with a greater degree of force. In contrast, if the chair occupant is lighter than a predefined weight level or weight range, then the activation and deactivation of the actuators **200** can be performed with a lesser degree of force.
- (61) The system **1100** can include one or more sensors **1130**. "Sensor" means any device, component and/or system that can detect, determine, assess, monitor, measure, quantify, acquire, and/or sense something. The one or more sensors can detect, determine, assess, monitor, measure, quantify, acquire, and/or sense in real-time. As used herein, the term "real-time" means a level of processing responsiveness that a user or system senses as sufficiently immediate for a particular process or determination to be made, or that enables the processor to keep up with some external process. (62) In arrangements in which the system **1100** includes a plurality of sensors **1130**, the sensors can work independently from each other. Alternatively, two or more of the sensors can work in combination with each other. In such case, the two or more sensors can form a sensor network. The sensor(s) **1130** can be operatively connected to the processor(s) **1110**, the data store(s) **1120**, and/or other elements of the system **1100** (including any of the elements shown in FIG. **1**).
- (63) The sensor(s) **1130** can include any suitable type of sensor. Various examples of different types of sensors will be described herein. However, it will be understood that the embodiments are not limited to the particular sensors described.
- (64) The sensor(s) **1130** can include one or more chair occupant sensors **1132**. In some arrangements, the chair occupant sensor(s) **1132** can include weight sensors. The weight sensors can be any suitable sensor, now known or later developed.
- (65) In some arrangements, the chair occupant sensor(s) 1132 can include one or more gaze sensors. The gaze sensor(s) can be any suitable sensor, now known or later developed. In one or more arrangements, the gaze sensor(s) can include one or cameras, one or more eye sensors, one or more head sensors, one or more face sensors, one or more eye movement sensors, one or more eye tracking sensors, one or more eye position sensors, one or more eye orientation sensors, one or more head movement sensors, one or more head tracking sensors, one or more head position sensors, one or more head orientation sensors, and/or one or more gaze tracking sensors, just to name a few possibilities. The gaze sensor(s) and/or the processor(s) 1110 can be configured to determine the line of sight of the chair occupant, for example, the direction in which the chair occupant is looking. In some arrangements, the gaze sensor(s) can be integrated into the display(s) 1165 and/or the device in which the display(s) 1165 are integrated. In some arrangements, the gaze sensor(s) can contain optical components that can move (e.g., rotate and/or translate) to discern eye angles, head angles, eye position, head position, and/or eyelid position.
- (66) As noted above, the system **1100** can include one or more power sources **1140**. The power source(s) **1140** can be any power source capable of and/or configured to energize the shape memory

- material members **280** of the actuators **200**. For example, the power source(s) **1140** can include one or more batteries, one or more fuel cells, one or more generators, one or more alternators, one or more solar cells, and combinations thereof.
- (67) The system **1100** can include one or more input interfaces **1150**. An "input interface" includes any device, component, system, element or arrangement or groups thereof that enable information/data to be entered into a machine. The input interface(s) **1150** can receive an input from a chair occupant. Any suitable input interface **1150** can be used, including, for example, a keypad, display, touch screen, multi-touch screen, button, joystick, mouse, trackball, microphone and/or combinations thereof.
- (68) The system **1100** can include one or more output interfaces **1155**. An "output interface" includes any device, component, system, element or arrangement or groups thereof that enable information/data to be presented to a chair occupant. The output interface(s) **1155** can present information/data to a chair occupant. The output interface(s) **1155** can include a display, an earphone, and/or speaker. Some components of the system **1100** may serve as both a component of the input interface(s) **1150** and a component of the output interface(s) **1155**.
- (69) The system **1100** can include one or more displays **1165**. The display(s) **1165** can be any suitable type of display, now known or later developed. The display(s) **1165** can be configured to present visual content thereon. In some arrangements, the display can be a monitor, a television, a laptop, a tablet computer, a smartphone, or other device that includes a display. In some arrangements, the display(s) **1165** can be formed by a projector projecting visual content onto a surface. In some arrangements, the display(s) **1165** can be part of a head mounted display. As an example, the head mounted display can be an extended reality (XR) headset. The XR headset can be any type of XR headset, now known or later developed. Examples of XR headsets include augmented reality (AR), mixed reality (MR), and virtual reality (VR) headsets.
- (70) The system **1100** can include one or more visual content devices **1160**. The visual content devices **1160** can be any suitable device that can present or cause to be presented visual content. The visual content device(s) **1160** can be any type of visual content device, now known or later developed. In some arrangements, the visual content devices 1160 can be a separate device operatively connected to the display(s) **1165**. Non-limiting examples of such visual content devices can include gaming systems, Blu ray players, DVD players, an online or cloud streaming service, or plug and play devices, just to name a few possibilities. In some arrangements, the visual content device(s) **1160** and the display(s) **1165** can be integrated into the same device, such as a laptop. (71) The visual content presented by the visual content device(s) **1160** can be interactive, such as in a video game. One or more input devices can be operatively connected to the visual content device(s) **1160** to allow a user to interact with the visual content. Examples of the input device(s) can include any types of joystick(s), button(s), keyboard(s), keypad(s), switch(es), pedal(s), foot pedal(s), steering wheel(s), speech recognition, gesture recognition, movement recognition, or eye tracking, now known or later developed. The input device(s) can include any of the input interface(s) 1150 described above. In such case, the visual content device(s) **1160** can be responsive to inputs from the player or content watcher provided by the input devices. In some instances, the visual content presented by the visual content device(s) **1160** can be non-interactive, such as a movie. In such case, the user is not able to provide inputs to affect the movement, point of view, and/or action in the visual content. However, basic visual controls (e.g., on/off, color, brightness, contrast, sharpness, tint, etc.) may be available to the user. In some instances, the visual content device(s) 1160 can be configured to send signals to one or more elements of the system 1100 (e.g., the content analysis module(s) 1170).
- (72) The system **1100** can include one or more modules, at least some of which will be described herein. The modules can be implemented as computer readable program code that, when executed by a processor, implement one or more of the various processes described herein. One or more of the modules can be a component of the processor(s) **1110**, or one or more of the modules can be

- executed on and/or distributed among other processing systems to which the processor(s) **1110** is operatively connected. The modules can include instructions (e.g., program logic) executable by one or more processor(s) **1110**. Alternatively or in addition, one or more data stores **1120** may contain such instructions.
- (73) In one or more arrangements, the modules described herein can include artificial or computational intelligence elements, e.g., neural network, fuzzy logic, or other machine learning algorithms. Further, in one or more arrangements, the modules can be distributed among a plurality of modules. In one or more arrangements, two or more of the modules described herein can be combined into a single module.
- (74) The system **1100** can include one or more content analysis modules **1170**. The content analysis module(s) **1170** can be configured to receive visual content, signals, information, and/or data from the visual content device(s) **1160**. The content analysis module(s) **1170** can be configured to analyze the received visual content, signals, information, and/or data from the visual content device(s) **1160**. In particular, the content analysis module(s) **1170** can be configured to analyze the received visual content, signals, information, and/or data to identify movement within the visual content. The content analysis module(s) **1170** can do so in any suitable manner, now known or later developed. The content analysis module(s) **1170** can incorporate any type of ride simulator or motion simulator technology, now known or later developed.
- (75) For instance, the content analysis module(s) **1170** can be configured to analyze the movement of the visual content overall or based on the movement of one or more objects or items in the visual content. In some arrangements, the content analysis module(s) **1170** can be configured to analyze signals, information, or data associated with the visual content indicative of movement. The content analysis module(s) **1170** can include any suitable hardware and/or software to receive and process signals from the visual content device(s) **1160**.
- (76) The content analysis module(s) **1170** can be configured to determine a corresponding chair movement. Such determining can be performed in real-time based on the visual content presented on the display(s) **1165**. The corresponding chair movement can be a movement of the seat portion **104**, or the rest of the chair **100** located above the upper platform **112**. The corresponding chair movement can be synchronized with at least a portion of the visual content. For example, if the content analysis module(s) **1170** determines that the visual content includes movement that corresponds to a rightward titling of the chair **100**. As another example, if the content analysis module(s) **1170** determines that the visual content includes moving over rough terrain or train tracks, the content analysis module(s) **1170** can determine that a vibration movement of the chair **100** is the corresponding chair movement.
- (77) The content analysis module(s) **1170** can be configured to take into account the point of view of the visual content presented on the display(s) **1165**. For instance, the content analysis module(s) **1170** can assess whether the visual content is presented point of view (POV) style. In such case, the content analysis module(s) **1170** can determine corresponding movements that align with the movement presented on the display(s) **1165**. The content analysis module(s) **1170** can assess whether the visual content is presented from some other point of view. In some instances, the corresponding chair movements may not necessarily align (e.g., be in the same direction or side) as the movement presented on the display(s) **1165**. The content analysis module(s) **1170** can be configured to take into account human physiology processes and responses to motion.
- (78) The system **1100** can include one or more chair control modules **1180**. The chair control module(s) **1180** can be configured to receive signals, data, information, and/or other inputs from the content analysis module(s) **1170**. The chair control module(s) **1180** can be configured to analyze these signals, data, information, and/or other inputs. The chair control module(s) **1180** can be configured to select one or more of the plurality of actuators **200** to be activated or deactivated to achieve the corresponding chair movement. In some arrangements, the chair control module(s) **1180** can be configured to select an appropriate one of the actuation profiles **1122** in the data store(s) **1120**

to effectuate the corresponding chair movement. Alternatively or additionally, the chair control module(s) **1180** can be configured to detect user inputs (e.g., commands) provided on the input interface(s) **1150**.

- (79) The chair control module(s) **1180** can be configured to cause the selected one or actuators to be activated or deactivated by activating or deactivating the respective shape memory material member(s) **280** associated with the selected actuator(s) **200**. As used herein, "cause" or "causing" means to make, force, compel, direct, command, instruct, and/or enable an event or action to occur or at least be in a state where such event or action may occur, either in a direct or indirect manner. The chair control module(s) **1180** can selectively provide an activation input to the actuator(s) **200** or, more particularly, to the shape memory material member(s) **280** associated with the selected actuator(s) **200**. The chair control module(s) **1180** can selectively permit or prevent the flow of electrical energy from the power source(s) **1140**. The chair control module(s) **1180** can be configured to send control signals or commands over a communication network **1190** to the shape memory material member(s) **280**.
- (80) The chair control module(s) **1180** can selectively activate or deactivate the shape memory material member(s) **280** timed to substantially coincide with the visual content. For instance, when the visual content is a car racing game, the chair control module(s) **1180** can selectively activate or deactivate the shape memory material member(s) **280** to coincide with an in-game event like the car turning.
- (81) The actuators **200** can be operatively positioned to cause a movement of the chair **100** or any portion thereof. In some arrangements, the actuators 200 can respond to signals received from the visual content device(s) **1160**, to signals from an input device operatively connected to the visual content device(s) 1160, and/or to signals provided on the input interface(s) 1150. The actuators 200 can expand and contract in a sequence or manner that supports, for example, the desired simulated motion presented in the visual content during game play or movie or otherwise requested by the chair occupant. The actuators **200** can provide various types of movement, including, but not limited to, upward and downward movement, forward and backward tilting, and or left and right tilting. In some arrangements, the actuators **200** can be configured to provide other movements, including rectilinear forward and rearward movement, rectilinear left and right movement, and/or rotation about a vertical axis. In some arrangements, the actuators 200 can be configured to provide six degrees of freedom (e.g., surge, sway, heave, roll, pitch, and yaw motion). Further, the chair 100 can be configured to provide other tactile motions, such as vibrations, shaking, pulsations, etc. (82) The various elements of the system **1100** can be communicatively linked to one another or one or more other elements through one or more communication networks **1190**. As used herein, the term "communicatively linked" can include direct or indirect connections through a communication channel, bus, pathway or another component or system. A "communication network" means one or more components designed to transmit and/or receive information from one source to another. The data store(s) **1120** and/or one or more other elements of the system **1100** can include and/or execute suitable communication software, which enables the various elements to communicate with each other through the communication network and perform the functions disclosed herein. (83) The one or more communication networks **1190** can be implemented as, or include, without limitation, a wide area network (WAN), a local area network (LAN), the Public Switched Telephone Network (PSTN), a wireless network, a mobile network, a Virtual Private Network (VPN), the Internet, a hardwired communication bus, and/or one or more intranets. The communication network further can be implemented as or include one or more wireless networks, whether short range (e.g., a local wireless network built using a Bluetooth or one of the IEEE 802 wireless communication protocols, e.g., 802.11a/b/g/i, 802.15, 802.16, 802.20, Wi-Fi Protected Access (WPA), or WPA2) or long range (e.g., a mobile, cellular, and/or satellite-based wireless network; GSM, TDMA, CDMA, WCDMA networks or the like). The communication network can include wired communication links and/or wireless communication links. The communication network can include any

combination of the above networks and/or other types of networks.

- (84) Now that the various potential systems, devices, elements and/or components of the chair **100** and the system **1100** have been described, an example of a method of moving a portion of a chair synchronized with visual content will now be described. The method described may be applicable to the arrangements described above, but it is understood that the methods can be carried out with other suitable systems and arrangements. Moreover, the methods may include other steps that are not shown here, and in fact, the methods are not limited to including every step shown. The blocks that are illustrated here as part of the methods are not limited to the particular chronological order. Indeed, some of the blocks may be performed in a different order than what is shown and/or at least some of the blocks shown can occur simultaneously.
- (85) Turning to FIG. **10**, an example of a method **1000** is shown. At block **1010**, visual content can be analyzed to determine a corresponding chair movement. The corresponding chair movement can be synchronized with at least a portion of the visual content. The analyzing can be performed by the content analysis module(s) **1170** and/or the processor(s) **1110**.
- (86) The analysis of the visual content can be performed continuously, periodically, or at any suitable point. If the visual content does not include a corresponding chair movement, then the method **1000** can return to block **1010** or to some other block. If a corresponding chair movement is determined, the method **1000** can continue to block **1020**.
- (87) At block **1020**, one or more of the plurality of actuators can be selected to achieve the corresponding chair movement. Such selection can be performed by the chair control module(s) **1180** and/or the processors **1110**. The method can continue to block **1030**.
- (88) At block **1030**, the selected actuator(s) can be caused to be activated. For instance, an activation input can be caused to be provided to the selected actuator(s). As a result, the selected actuator(s) can be activated, which, in turn, can cause the chair to move according to the corresponding chair movement. Causing the activation input to be provided can be performed by the chair control module(s) **1180** and/or the processor(s) **1110**. For instance, the chair control module(s) **1180** and/or the processor(s) **1110** can cause or allow the flow of electrical energy from the power sources(s) **1140** to the shape memory material member(s) of the selected actuator(s).
- (89) The method **1000** can end. Alternatively, the method **1000** can return to block **1010** or some other block.
- (90) A non-limiting example of the operation of the arrangements described herein will now be presented in connection to FIGS. **2** and **9**. FIG. **2** shows an example of the chair in a non-activated condition, and FIG. **9** shows an example of the chair in an activated condition. While a person would normally be sitting in the chair, the person is not shown in these drawings for clarity. For purposes of this example, the actuators can be arranged in a substantially rectangular configuration, such as is shown in FIG. **3**.
- (91) An occupant of the chair can be playing a video game. The video game can be in the nature of a flight simulator, presented from the viewpoint of the player. As the person plays the game, the aircraft may be operated by the player to tilt to the left. As a result, in the game, the aircraft can tilt to the left and the corresponding view of the display will show such motion. Such motion in the game play can be detected by the content analysis module(s) and/or the processor(s). As a result, the content analysis module(s) and/or the processor(s) can determine that there should be a corresponding chair movement to synchronize with the displayed visual content.
- (92) The content analysis module(s) **1170** and/or the processor(s) **1110** can select the appropriate actuator(s) **200** to achieve the corresponding chair movement. In this instance, the content analysis module(s) **1170** and/or the processor(s) **1110** can select the actuator **201** for activation.
- (93) The content analysis module(s) **1170** can alert the chair control module(s) **1180** of the selected actuator **201**. The chair control module(s) **1180** can cause an activation input to be provided to the selected actuator **201**. Here, the chair control module(s) **1180** can allow electrical energy from the power source(s) **1140** to be supplied to the shape memory material member(s) **280** of the selected

actuator **201**. As a result, the actuator **201** can morph into the activated configuration, as shown in FIG. **9** (see also FIG. **8**). The second dimension **295**, corresponding to the height, of the actuator **201** will be greater than the height of the other actuators **200**. Thus, the chair **100** can be tilted to the left, as is shown in FIG. 9. The chair control module(s) 1180 can cause such tilting to occur in a synchronized manner with the video game. Thus, the tilting can occur substantially simultaneously with the tilting in the video game. Further, the degree and/or the duration of the tilting can correspond to the degree and/or duration of the tilting in the video game. In some arrangements, the actuator(s) **200** can be configured to provide a lift force of more than 38 Newton (N). (94) It will be appreciated that arrangements described herein can provide numerous benefits, including one or more of the benefits mentioned herein. For example, arrangements described herein can provide an enhanced visual content experience. Arrangements described herein can provide a haptic '4-dimensional experience' to a chair occupant. Arrangements described herein can provide chair movements that are timed with motion in visual content being presented to the person. Arrangements described herein can cause chair movements triggered by a video game or movie being watched. Arrangements described herein can allow for a simpler product. Arrangements described herein do not require electric motors with gears or a pneumatic compressor system. (95) The flowcharts and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments. In this regard, each block in the flowcharts or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.

- (96) The systems, components and/or processes described above can be realized in hardware or a combination of hardware and software and can be realized in a centralized fashion in one processing system or in a distributed fashion where different elements are spread across several interconnected processing systems. Any kind of processing system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware and software can be a processing system with computer-usable program code that, when being loaded and executed, controls the processing system such that it carries out the methods described herein. The systems, components and/or processes also can be embedded in a computer-readable storage, such as a computer program product or other data programs storage device, readable by a machine, tangibly embodying a program of instructions executable by the machine to perform methods and processes described herein. These elements also can be embedded in an application product which comprises all the features enabling the implementation of the methods described herein and, which when loaded in a processing system, is able to carry out these methods.
- (97) The terms "a" and "an," as used herein, are defined as one or more than one. The term "plurality," as used herein, is defined as two or more than two. The term "another," as used herein, is defined as at least a second or more. The terms "including" and/or "having," as used herein, are defined as comprising (i.e., open language). The term "or" is intended to mean an inclusive "or" rather than an exclusive "or." The phrase "at least one of . . . and . . . " as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. As an example, the phrase "at least one of A, B and C" includes A only, B only, C only, or any combination thereof (e.g., AB, AC, BC, or ABC). As used herein, the term "substantially" or "about" includes exactly the term it modifies and slight variations therefrom. Thus, the term "substantially parallel" means exactly parallel and slight variations therefrom. "Slight variations therefrom" can include within 15 degrees/percent/units or less, within 14 degrees/percent/units or less, within 13 degrees/percent/units or less, within 12 degrees/percent/units or less, within 11 degrees/percent/units

or less, within 10 degrees/percent/units or less, within 9 degrees/percent/units or less, within 8 degrees/percent/units or less, within 7 degrees/percent/units or less, within 6 degrees/percent/units or less, within 5 degrees/percent/units or less, within 4 degrees/percent/units or less, within 3 degrees/percent/units or less, within 2 degrees/percent/units or less, or within 1 degree/percent/unit or less. In some instances, "substantially" can include being within normal manufacturing tolerances. (98) Aspects herein can be embodied in other forms without departing from the spirit or essential attributes thereof. Accordingly, reference should be made to the following claims, rather than to the foregoing specification, as indicating the scope hereof.

Claims

- 1. A chair, comprising: a platform; a seat portion supported on the platform; and actuators operatively connected to the platform, each actuator including a shape memory material member, each actuator being configured such that, when an activation input is provided to the shape memory material member, the shape memory material member contracts to cause the actuator to morph into an activated configuration in which a height of the actuator increases, the actuators being operatively positioned to cause a movement of the entire seat portion by engaging the platform when selectively activated, each actuator including a rib on an inner side thereof.
- 2. The chair of claim 1, wherein the actuators are arranged in a substantially rectangular pattern.
- 3. The chair of claim 1, wherein the actuators are arranged in an offsetting substantially parallel pattern.
- 4. The chair of claim 1, wherein the actuators are arranged in a substantially radial pattern.
- 5. The chair of claim 1, wherein the shape memory material member is a shape memory alloy wire.
- 6. The chair of claim 1, wherein each actuator includes: a first endcap; a second endcap positioned opposite the first endcap, wherein the shape memory material member is operatively connected to the first endcap and the second endcap; a first outer member, the first outer member being bowed, the first outer member including a first end and a second end, the first end being operatively connected to the second endcap; and a second outer member, the second outer member being bowed, the second outer member including a first end and a second end, the first end being operatively connected to the first endcap and the second end being operatively connected to the first endcap and the second end being operatively connected to the second outer members are made of a flexible material and are arranged on opposite sides of the shape memory material member, the first outer member is located above the second outer member.
- 7. The chair of claim 6, wherein the platform is supported on the actuators, wherein the platform includes apertures, wherein each of the apertures receives a protrusion of a respective one of the actuators, and wherein the protrusion extends from the first outer member.
- 8. The chair of claim 6, wherein the actuator includes a base, and wherein the base is operatively connected to the second outer member.
- 9. The chair of claim 1, wherein the chair is a gaming chair.
- 10. A system, comprising: a chair including a platform and a seat portion supported on the platform; actuators operatively connected to the platform, each actuator including a shape memory material member, each actuator being configured such that, when an activation input is provided to the shape memory material member, the shape memory material contracts to cause the actuator to morph into an activated configuration in which a height of the actuator increases, the actuators being selectively actuatable and operatively positioned to cause a movement of the entire seat portion by engaging the platform, each actuator including a rib on an inner side thereof; and a processor configured to selectively activate one or more of the actuators by causing the activation input to be provided to the shape memory material member of at least one of the actuators.
- 11. The system of claim 10, further including: a display operatively connected to the processor, the display being configured to present visual content thereon.

- 12. The system of claim 11, wherein the processor is further configured to: analyze visual content to determine a corresponding chair movement, the corresponding chair movement being synchronized with at least a portion of the visual content; select one or more of the actuators to achieve the corresponding chair movement; and causing an activation input to be provided to the selected one or more of the actuators, whereby the selected one or more of the actuators are activated to cause the seat portion to move according to the corresponding chair movement.
- 13. The system of claim 10, further including: a power source operatively connected to supply electrical energy to the shape memory material member of each actuator, wherein the processor is operatively connected to the power source, wherein the processor is configured to selectively control a supply of electrical energy to the shape memory material member.
- 14. The system of claim 10, wherein the actuators are arranged in one of: a substantially rectangular pattern, an offsetting substantially parallel pattern, and a substantially radial pattern.
- 15. The system of claim 10, wherein the shape memory material member is a shape memory alloy wire.
- 16. The system of claim 10, wherein each actuator includes: a first endcap; a second endcap positioned opposite the first endcap, wherein the shape memory material member is operatively connected to the first endcap and the second endcap; a first outer member, the first outer member being bowed, the first outer member including a first end and a second end, the first end being operatively connected to the first endcap and the second end being operatively connected to the second endcap; and a second outer member, the second outer member being bowed, the second outer member including a first end and a second end, the first end being operatively connected to the first endcap and the second end being operatively connected to the second endcap, wherein the first and second outer members are made of a flexible material and are arranged on opposite sides of the shape memory material member, the first outer member is located above the second outer member.
- 17. The system of claim 10, wherein the chair is a gaming chair.
- 18. A method of moving a portion of a chair synchronized with visual content, the chair including a platform, a seat portion supported on the platform, and actuators operatively connected to the platform, the method comprising: analyzing visual content to determine a corresponding chair movement, the corresponding chair movement being synchronized with at least a portion of the visual content; selecting one or more of the actuators to achieve the corresponding chair movement; and causing an activation input to be provided to the selected one or more of the actuators, whereby the selected one or more of the actuators are activated to cause the entire seat portion to move according to the corresponding chair movement, each actuator including a shape memory material member, each actuator being configured such that, when an activation input is provided to the shape memory material member, the shape memory material member contracts to cause the actuator to morph into an activated configuration in which a height of the actuator increases, the actuators being operatively positioned to cause a movement of the entire seat portion by engaging the platform when selectively activated, each actuator including a rib on an inner side thereof.
- 19. The method of claim 18, wherein causing the activation input to be provided to the selected one or more of the actuators includes causing electrical energy from a power source to be supplied to the shape memory material member.
- 20. The method of claim 18, further including: discontinuing the activation input to the selected one or more of the actuators.
- 21. A system, comprising: a chair including a platform including apertures and a seat portion supported on the platform; actuators operatively connected to the platform, each actuator including a shape memory material member configured such that, responsive to receiving an activation input, the shape memory material contracts to cause the actuator to morph into an activated configuration in which a height of the actuator increases, the actuators being selectively actuatable and operatively positioned to cause a movement of the entire seat portion by engaging the platform, a protrusion extending from an outer surface of each actuator, each protrusion being received in a respective one

of the apertures; and a processor configured to: analyze visual content on a display to determine a corresponding chair movement synchronized with at least a portion of the visual content; select one or more of the actuators to achieve the corresponding chair movement; and causing an activation input to be provided to the selected one or more of the actuators to cause the seat portion to move according to the corresponding chair movement including tilting, rocking, moving up, or moving down.

- 22. The method of claim 18, wherein the corresponding chair movement includes tilting, rocking, moving up, or moving down.
- 23. The system of claim 12, wherein the corresponding chair movement includes tilting, rocking, moving up, or moving down.
- 24. The system of claim 10, wherein the platform includes apertures, wherein each of the apertures receives a protrusion of a respective one of the actuators, and wherein the protrusion extends from an outer surface of the actuator.