Intra-Site Spatial Data Recovery and Visualization

Historical Issues:

- 1. Locations of activities what happened where and why?
- 2. Locations of social groups who lived where and why? -class, gender, ethnicity, etc.

Sources of Data: Archaeological Spatial Structure

- 1. patterns in the location of features: *site structure*
 - -buildings
 - -pits
 - -fences
- 2. patterns in the horizontal distribution of artifacts

Patterns in the horizontal distribution of artifacts

1. The spatial data recovery process

- Model how we collect spatial data.

2. The analysis process

- Mapping raw data and statistical models of them.

Easting

Creamware Creamware 3890900 3890900 Predicted Northing Count 60 Northing 40 20 3890800 3890800 11498650 11498700 11498750 11498800 11498600 11498650 11498700 11498750 11498800 Easting

Recovery

The Point Process:

The Moving-Average Process:

(quadrat diameter=10)

Sample the M-A Process

(quadrat spacing =10)

Analysis

Estimate the M-A Process from the sample:

Interpolation

Many methods...

- 1. Inverse distance weighting (IDW)
- 2. Kriging
- 3. Others
- -TINs (triangulated irregular networks),
- -splines (radial basis functions)
- -polynomial regression (local, global)

1. and 2. both make estimates of value of the z variable at an unsampled point in (x,y) space, as a **weighted average of the values at nearby points**, where z values are known.

So....

$$\hat{Z}_j = \frac{\sum_{i=1}^n w_i Z_i}{\sum_{i=1}^n w_i}$$

15

Inverse Distance Weighting

$$w_i = \frac{1}{d_{ij}^{p}}$$

Point ID	northing	easting	Z	$Distance = d_{ij}$	$w_i=1/d_{ij}$	W_i^*Z	
1	11	5	4	4.47	0.22	0.89	
2	6	10	3	3.16	0.32	0.95	
3	8	10	2	3.16	0.32	0.63	
4	4	4	7	4.24	0.24	1.65	
Sum					1.09	4.13	

5 7 7

Inverse Distance Weighting

$$w_i = \frac{1}{d_{ij}^p}$$

Point ID	northing	easting	Z	$Distance = d_{ij}$	$w_i=1/d_{ij}$	W_i^*Z	
1	11	5	4	4.47	0.22	0.89	
2	6	10	3	3.16	0.32	0.95	
3	8	10	2	3.16	0.32	0.63	
4	4	4	7	4.24	0.24	1.65	
Sum					1.09	4.13	

5 7 7 4.13/1.09 = 3.8

Creamware

Pesky Questions about IDW

- what value for *p*?

Doing Better than IDW

- p should depend on the manner in which differences between z-values increase with distances between x,y coordinates....

"Spatial autocorrelation"

To what extent do quadrats that are farther apart in 2-d space (e.g. Easting and Northing) tend to have variable values (e.g. artifact counts) that are more different.

Kriging (after D.R Krige)

A weighted-averging interpolation method in which the **weights depend on the spatial autocorrelation structure of the data**, AND that produces estimates of Z that are designed to minimize mean-squared prediction error.

Variogram

The graphical tool we use to measure the autocorrelation structure of spatial data.

	9			Di	istance			Squared
					<u>From</u>	<u>To</u>	<u>d</u>	<u>Differences</u>
<u>Point</u>	<u>X</u>	¥	<u>Z</u>		1	1	0	0
1	11	5	4	<u> </u>	1	2	7.07	1
2	6	10	3		1	3	5.83	4
3	8	10	2	,	1	4	7.07	9
4	4	4	7		2	1	7.07	1
					2	2	0	0
					2	3	2	1
30 ¬					2	4	6.32	16
S 25				•	3	1	5.83	4
Half the Squared Differerence (y) - 10 - 12 - 25 - 20 - 20 - 20 - 20 - 20 - 20 - 2			•		3	2	2	1
alf the ifferer				•	3	3	0	0
≟ □ 5 - 0 ●	•		•		3	4	7.21	25
0	2	4	6	8	4	1	7.07	9
	[Distance	(h)		4	2	6.32	16
"The variogram cloud" – each graph					4	3	7.21	25
point reoresent a difference-distance pair.					r. 4	4	0	0

"The variogram" – each graph point represents the means of several difference-distance pairs.

- The mathematical model behind the variogram and kriging assumes that the spatially distbuted variable has a normal of Gaussian distribution.
- But artifact counts always have long right tails...

- Transforming the counts to a log scale helps.
- Because In(0) is undefined, we take logs of "started counts"
 - e.g. In(Creamware +.5)

- Transforming the counts to a log scale helps.
- Because In(0) is undefined, we take logs of "started counts"
 - e.g. In(Creamware +.5)

Variogram Lingo

- Sill: for larger values of h the variogram levels out, indicating that there no longer is any auto correlation between data points.
- If the data are "well behaved" (Gaussian and stationary) the sill should be equal to the variance (s²) of the z values.
- Range: is the value of h where the sill occurs (or 95% of the value of the sill).
 This is the distance beyond which pairs of values are no longer autocorrelated.
- Nugget variance: a non-zero value for gamma when h = 0. Produced by various sources of unexplained error (e.g. measurement error).

Variogram Models: Differently shaped curves, defined by different equations.

Variogram Models: Differently shaped curves, defined by different equations.

The variogram is a useful spatial data analysis tool !!

You can use it during and excavation to see if your spatial sampling stratrgy is sufficient to capture spatial pattering

- Quadrat size (too small?)
- Quadrat spacing (too far part?)
- Given quadrat size and spacing is interpolation reasonable?

