N3Presults

C. T. Kelley

October 10, 2023

Here is an example from [3], [4], [7], [5], [6], and [8]

This notebook reproduces the results from the paper

C. T. Kelley, Newton's Method in Three Precisions, 2023.

The example is the Chandrasekhar H-equation [2]

The computations were done in Julia [1]

We use the software from [7], [5], and [6]. Our nonlinear solvers from [6] work well with our data structures for iterative refinement. The Julia module with the data structures we use for IR is src/N3Presults.jl

The results are in Table 2 and Table 3.

The first computation generates Table 2. This is the ill-conditioned example from [4] and is the well conditioned example from the paper. The function that creates the examples is the Julia function htest1 from the file H_equation_examples.jl. We also put a plot in this notebook.

[2]: htest1(4096,.99);

Maximum iterations (maxit) of 10 exceeded
Convergence failure: residual norm too large 4.05010e-01
Try increasing maxit and checking your function and
Jacobian for bugs.

Give the history array a look to see what's happening.

\begin{tabular}{111111}

n8	Z.	F64&		F32&		F16&	IR	32-16&		IR-GM \\ \h	line
0		1.000e+00	&r.	1.000e+00	&r.	1.000e+00		1.000e+00	& r.	1.000e+00	\\
1		2.289e-01		2.289e-01		5.065e-01		2.289e-01		2.289e-01	//
_											
2	&	3.934e-02	&	3.934e-02	&	2.958e-01	&	3.934e-02	&	3.934e-02	//
3	&	2.737e-03	&	2.737e-03	&	1.890e-01	&	2.737e-03	&	2.737e-03	//
4	&	1.767e-05	&	1.767e-05	&	1.255e-01	&	1.767e-05	&	1.767e-05	\\
5	&	7.486e-10	&	7.536e-10	&	8.518e-02	&	7.538e-10	&	7.506e-10	\\
6	&		&		&	6.068e-02	&		&		\\
7	&		&		&	4.240e-02	&		&		\\
8	&		&		&	3.195e-02	&		&		\\
9	&		&		&	2.280e-02	&		&		\\
10	&		&		&	1.713e-02	&		&		\\
\hline											

\end{tabular}
[1.62595e-10 1.50632e-10 5.97601e-02]
[6 6 11 6 6]
1.75821e-06

Table 3 is a very ill-conditioned example.

[3]: htest1(4096,.9999);

Maximum iterations (maxit) of 10 exceeded Convergence failure: residual norm too large 7.07016e-01 Try increasing maxit and checking your function and Jacobian for bugs.

Give the history array a look to see what's happening.

Maximum iterations (maxit) of 10 exceeded
Convergence failure: residual norm too large 1.06833e-02
Try increasing maxit and checking your function and
Jacobian for bugs.

Give the history array a look to see what's happening.

\begin{tabular}{111111}

```
n&
           F64&
                       F32&
                                    F16&
                                            IR 32-16&
                                                           IR-GM \\ \hline
     1.000e+00 &
                                                            1.000e+00
 0 &
                   1.000e+00 &
                                 1.000e+00 &
                                              1.000e+00 &
      2.494e-01 &
                   2.494e-01 &
                                 5.182e-01 &
                                              2.494e-01 &
                                                            2.494e-01
                                                                        //
                                                            6.093e-02
     6.093e-02 &
                   6.093e-02 &
                                 3.123e-01 &
                                              6.093e-02 &
     1.480e-02 &
                   1.480e-02 &
                                 2.067e-01 &
                                              1.480e-02 &
                                                            1.480e-02
                                 1.421e-01 &
                                              3.455e-03 &
                                                            3.454e-03
      3.454e-03 &
                   3.454e-03 &
     6.762e-04 &
                   6.762e-04 &
                                 1.012e-01 &
                                              6.766e-04 &
                                                            6.762e-04
                                                                        //
     7.049e-05 &
                   7.049e-05 &
                                 7.552e-02 &
                                              6.360e-04 &
                                                            7.049e-05
                                                                        //
     1.223e-06 &
                   1.223e-06 &
                                 5.773e-02 &
                                              5.811e-04 &
                                                            1.223e-06
                                                                        //
      3.947e-10 &
                   3.957e-10 &
                                 4.543e-02 &
                                              5.312e-04 &
                                                            3.952e-10
                                                                        //
 9 &
                                                                        //
                &
                                 3.639e-02 &
                                              4.862e-04 &
                              &
10 &
                                 2.949e-02 & 4.456e-04 &
                                                                        //
                &
\hline
\end{tabular}
[1.07201e-02 1.58618e-10 2.82749e-01]
[9 9 11 11 9]
1.02072e-06
```


References

[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to

- numerical computing, SIAM Review, 59 (2017), pp. 65–98.
- [2] S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960.
- [3] C. T. Kelley, *Iterative Methods for Linear and Nonlinear Equations*, no. 16 in Frontiers in Applied Mathematics, SIAM, Philadelphia, 1995.
- [4] C. T. Kelley, Newton's method in mixed precision, SIAM Review, 64 (2022), pp. 191-211, https://doi.org/10.1137/20M1342902.
- [5] C. T. Kelley, Notebook for Solving Nonlinear Equations with Iterative Methods: Solvers and Examples in Julia. https://github.com/ctkelley/NotebookSIAMFANL, 2022, https://doi.org/10.5281/zenodo.4284687, https://github.com/ctkelley/NotebookSIAMFANL. IJulia Notebook.
- [6] C. T. Kelley, SIAMFANLEquations.jl. https://github.com/ctkelley/SIAMFANLEquations.jl, 2022, https://doi.org/10.5281/zenodo.4284807, https://github.com/ctkelley/ SIAMFANLEquations.jl. Julia Package.
- [7] C. T. Kelley, Solving Nonlinear Equations with Iterative Methods: Solvers and Examples in Julia, no. 20 in Fundamentals of Algorithms, SIAM, Philadelphia, 2022.
- [8] C. T. Kelley, Newton's method in three precisions, 2023, https://arxiv.org/abs/2307. 16051.