<u>Projekt 2.</u> Zaimplementuj algorytm falkowy odszumiania. Rozważ obrazy bądź dźwięki zaszumione w różnym stopniu (oblicz współczynnik PSNR). Wykonaj odszumianie standardowego progu. Porównaj wyniki dla innych progów. Oceń wyniki.

Informacje wstępne

Będziemy pracować w programie matlab na obrazie Mandrill.gif o wymiarach 512×512 przedstawiony na obrazku obok. Dokonamy zaszumienia obrazu oryginalnego, a następnie spróbujemy zredukować szum przy użyciu różnych metod i porównamy wyniki.

Zaszumianie i współczynnik PSNR

Pierwszym krokiem jest **zaszumienie** obrazu. Wykorzystano do tego tzw. szum biały (dodanie do każdego piksela liczby losowej z rozkładu normalnego o średniej 0). Funkcja *randn(512)* zwraca macierz 512×512 losowych liczb z rozkładu normalnego N(0,1). Aby uzyskać większe zaszumienie - z rozkładu N(0,s), należy napisać *s*randn(512)*. Poniżej przedstawiono obraz zaszumiony dla wartości s=20, 50, 100.

Współczynnik **PSNR** (Szczytowy stosunek sygnału do szumu) to stosunek maksymalnej mocy sygnału do mocy szumu zakłócającego ten sygnał wyrażany w decybelach. Do wyznaczenia tej wartości konieczne jest obliczenie współczynnika **MSE** (średniego błędu kwadratowego) zadanego wzorem:

$$\frac{1}{N \cdot M} \sum_{i=1}^{N} \sum_{j=1}^{M} ([A(i,j) - B(i,j)]^{2})$$

Gdzie:

N, M – wymiary obrazu w pikselach (w naszym przypadku N=M=512)

A(i,j) - wartość piksela o współrzędnych (i,j) oryginalnego obrazka

B(i,j) - wartość piksela o współrzędnych (i,j) zaszumionego obrazka

Wartość współczynnika PSNR obliczamy ze wzoru:

$$PSNR = 10 \cdot \log_{10} \left(\frac{\left[\max A (i, j) \right]^2}{MSE} \right)$$

Gdzie max[A(i,j)] jest maksymalną wartością piksela obrazu oryginalnego.

Współczynnik ten wynosi w przybliżeniu:

- 21 dla s=20,
- 13 dla s=50,
- 7 dla s=100.

Odszumianie filtrem Gaussa

Jednym ze sposobów odszumiania jest **rozmycie** polegające na wykonaniu splotu tablicy współczynników obrazu z maską - filtrem Gaussa 3×3 lub 5×5. Rozmycie powoduje zmniejszenie ostrości obrazu i redukcję szumu białego. W praktyce rozmycie polega na przyporządkowanie każdemu pikselowi obrazu - średniej ważonej z wartości sąsiednich pikseli (z wagami zadanymi poprzez filtr Gaussa). W poniższej tabeli przedstawiono efekty redukcji szumu białego za pomocą rozmycia. W przypadkach obu masek poziom zaszumienia się zmniejszył. Zauważmy że przy odszumianiu maską o wymiarach 3×3 dostaniemy obraz ostrzejszy niż w przypadku filtra o wymiarach 5 × 5, który z jednej strony bardziej zmiękcza obrazek, lecz z drugiej lepiej redukuje szum.

	Szum s=20	Szum s=50	Szum s=100
zaszumione	50 50 50 50 50 50 50 50 50 50	50 100 150 100 150 200 250 300 250 400 450 500	150 150 150 250 250 250 450 453 500
Maska 3 × 3	59 100 100 100 200 210 200 350 400 400 500	50 100 100 100 200 200 300 400 400 500	50 100 100 200 200 200 400 400 500
Maska 5 × 5	100 100 200 200 200 400 400 400 400 400 400 4	150 160 260 260 260 460 460 460 150 150 150 250 250 360 350 440 455 100	100 1100 200 200 200 400 400 400 500 1100 1100 200 270 200 2100 410 410 410 510

Odszumianie falkowe

Do odszumienia obrazu można wykorzystać również 2-wymiarową transformatę falkową, którą należy wywołać poleceniem <u>dwt2</u>, podając w parametrach macierz współczynników obrazu oraz rodzaj falki. Funkcja *dwt2* zwraca 4 macierze:

- CA macierz współczynników skompresowanego obrazu
- CH macierz współczynników poziomych
- CV macierz współczynników pionowych
- CD macierz współczynników skośnych

Odszumianie polega na falkowym przeprowadzeniu progowania macierzy szczegółów CH, CV, CD i ponownym "sklejeniu" czterech macierzy w jeden obrazek, czyli wykonaniu falkowej transformaty odwrotnej.

Przy progowaniu używa się zazwyczaj tzw. progu standardowego przyjmującego wartość $T = \sqrt{2 \cdot s^2 \cdot \ln(n)}$ dla $n = 512^2$. My użyjemy również progów wartości 2T i 0.5T.

W projekcie wykorzystamy 3 rodzaje falek:

- Falki Daubechies (w tym przypadku 'db8')
- Falki splajnowe biortogonalne ('bior2.4')
- Falki symlet (w tym przypadku 'sym4')

W poniższych tabelach umieszczono zestawienia efektów odszumiania daną falką przy podanej wartości progu. Każda tabela dotyczy obrazka na innym stopniu zaszumienia.

Szum s=20	db8	bior2.4	sym4
0.5 T	50 100 190 200 250 250 400 450 500	50 50 50 50 50 50 50 50 50 50	100 100 200 200 200 200 200 200 200 200
Т	50 100 150 200 250 300 300 450 450 500	50 100 100 100 100 100 100 100 1	50 100 100 100 200 200 200 300 400 400 500
2 T	50 109 109 209 209 401 460 500 100 110 110 200 280 310 240 440 450 110	50 50 50 100 100 200 200 300 300 400 401 500	51 129 139 201 200 200 200 400 400 500

Szum s=50	db8	bior2.4	sym4
0.5 T	131 131 131 131 131 131 131 141 141 141	13	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Т	70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		13
2 T	11 12 13 14 20 20 30 30 30 40 48 11	100 100 100 100 100 100 100 100 100 100	70 100 114 201 210 400 400 400 400 400

Szum s=100	db8	bior2.4	sym4
0.5 T	13 13 13 13 13 13 13 13	50 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	70 70 70 70 70 70 70 70 70 70 70 70 70 7
Т	11 11 11 11 11 11 11 11 11 11 11 11 11		
2 T	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 13 13 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	

Wnioski

- Transformata falkowa oraz rozmycie dobrze sprawdzają się jako narzędzia redukcji szumu białego
- Transformata falkowa zwraca obrazy odszumione, lecz mniej wygładzone (a przez to ostrzejsze) niż w przypadku rozmycia
- W przypadku szum na poziomie s=20 jest zbyt mały by zasadnicze różnice między obrazkami powstałymi w wyniku odszumiania różnymi falkami były widoczne
- Różnice efektów przy wyborze progów odszumiania 0.5T, T, 2T są nieznaczne (zapewne ze względu na zbyt małe różnice tych wartości lub specyfikę obrazka)