State Side: Income, the Heart, & Covid

By: Eddy Salgado, Jack Farnsworth, Nikki Ransom and Carla Lorente

Problem:

How does the current makeup of the United States affect heart disease rates, covid cases, and covid deaths?

Questions:

- What region of the country has the highest rate of covid cases, covid deaths and heart disease?
- How did covid cases and covid deaths progress over time?
- How does political affiliation affect vaccination, covid deaths, and heart disease?
- What is the correlation between median income, vaccination rates and covid deaths?
- How did heart disease rates in the years previous to COVID affect the number of covid deaths in 2020?

Steps:

Data:

First we needed to gather our data sources and merge into a useable data frame.

Merge

Once our analyses were ran we needed to merge to GitHub.

Analysis

Using our data we began working through the analyses we wanted to perform to answer our question.

Finalize

As a team run through our notebook and code to see where we might have made mistakes and checked out everyone's analyses.

Data Gathering and Cleaning

Data Gathering

Combined 6 datasets, all by county

- COVID-19 cases and deaths (NY Times)
 - Cumulative over time
- Census data (CDC)
 - Population
 - Household Income
- Heart disease rate (CDC)
- Stroke rate (CDC)
- Vaccination rates (CDC)
 - Only considered two doses
- Election results (Harvard)
 - Assigned political party based on 2020 election

Census Dataframe

		Population	Median Age	Household Income
0 173 Sedgwick Cou	nty, Kansas	512064.0	35.2	54974.0
1 157 Republic Cou	nty, Kansas	4686.0	51.1	48022.0
2 065 Graham Cou	nty, Kansas	2545.0	51.9	40769.0
3 045 Douglas Cou	nty, Kansas	119319.0	29.5	55832.0
4 179 Sheridan Cou	nty, Kansas	2506.0	44.3	56071.0

3215 003 Adams Co	ounty, Idaho	4019.0	54.2	45319.0
3216 053 Jerome Co	ounty, Idaho	23431.0	32.7	49306.0
3217 061 Lewis Co	ounty, Idaho	3845.0	48.3	41326.0
3218 073 Owyhee Co	ounty, Idaho	11455.0	38.4	40430.0
3219 021 Boundary Co	ounty, Idaho	11549.0	43.5	43507.0

3220 rows × 5 columns

Data Cleaning

- One of the challenges was figuring out how to merge the datasets into a single, clean one.
- We needed to make a county name column that was consistent across our datasets.

```
# Defining function for cleaning up data from chronicdata.cdc.gov
def makehealthcsv(x, colname):
   # Filter
   x = x[(x['Stratification1'] == 'Overall') & (x['Stratification2'] == 'Overall')]
   # Use state abbreviation dictionary and create county name column to be consistent with other dataframes
   x = x[x["LocationAbbr"].isin(us state abbrev)]
   x['county'] = x['LocationDesc'] + ', ' + x['LocationAbbr'].apply(lambda x: us state abbrev[x])
   x['county'] = x['county'].str.replace(' County', '').str.replace(' Parish', '')
   # Drop missing data, duplicates, and rename column of interest
   x = x[['county', 'Data Value']].dropna()
   x.rename(columns = {'Data_Value' : colname}, inplace=True)
   x.drop duplicates('county', inplace=True)
   x.set index('county', inplace=True)
    return x
```

Final Merge and Clean

```
# Concatenate above dataframes
merged df = pd.concat([covid total, vaccine, census, heart disease, stroke, party df], join='inner', axis=1)
merged_df.dropna(inplace=True)
merged df.reset index(inplace=True)
# Split county and state name into separate columns for future analysis
merged_df[['County','State']] = merged_df.county.str.split(", ",expand=True)
merged df.drop(columns=['county'], inplace=True)
# New columns for cases and death by capita
merged_df['Cases per Capita'] = merged_df['cases']/merged_df['Population']
merged_df['Deaths per Capita'] = merged_df['deaths']/merged df['Population']
# Rename columns and save to csv
merged_df.rename(columns = {'cases' : 'Cases', 'deaths' : 'Deaths', 'party': 'Party'}, inplace=True)
merged df.to csv('resources/full data.csv', index=False)
# Filtering out very small and large counties by population and save in separate csv
merged_df.drop(merged_df.loc[merged_df['Population'] < 20000].index, inplace = True)</pre>
merged_df.drop(merged_df.loc[merged df['Population'] > 2000000].index, inplace = True)
merged df.to csv('resources/data.csv', index=False)
merged df
```

Final Dataframe

	Cases	Deaths	Vaccination Rate	Population	Median Age	Household Income	Heart Disease	Stroke	Party	County	State	Cases per Capita	Deaths per Capita
0	6104	57.0	39.2	24657.0	43.8	36685.0	321.0	78.6	REPUBLICAN	Abbeville	South Carolina	0.247556	0.002312
1	14951	269.0	51.8	62568.0	36.2	41177.0	476.2	93.6	REPUBLICAN	Acadia	Louisiana	0.238956	0.004299
2	6569	90.0	70.7	32742.0	45.9	43210.0	411.2	92.1	REPUBLICAN	Accomack	Virginia	0.200629	0.002749
6	5535	56.0	44.0	25325.0	27.7	40046.0	335.1	80.7	REPUBLICAN	Adair	Missouri	0.218559	0.002211
7	6678	65.0	34.8	22113.0	37.6	32986.0	575.0	62.7	REPUBLICAN	Adair	Oklahoma	0.301994	0.002939
		•••		••••	(***)	•••							
2983	7537	95.0	47.5	27974.0	35.7	31402.0	368.6	119.6	DEMOCRAT	Yazoo	Mississippi	0.269429	0.003396
2984	6386	94.0	47.6	21573.0	39.3	42361.0	472.9	86.2	REPUBLICAN	Yell	Arkansas	0.296018	0.004357
2986	38255	486.0	50.5	157816.0	38.2	59117.0	322.4	70.9	REPUBLICAN	Yellowstone	Montana	0.242403	0.003080
2993	9037	88.0	65.3	67587.0	39.5	90367.0	233.0	72.0	REPUBLICAN	York	Virginia	0.133709	0.001302
2995	15811	104.0	51.1	75493.0	32.5	52624.0	370.1	87.2	REPUBLICAN	Yuba	California	0.209437	0.001378

Main Correlations

Correlation Matrix

	Cases	Deaths	Vaccination Rate	Population	Median Age	Household Income	Heart Disease	Stroke	Cases per Capita	Deaths per Capita
Cases	1.000000	0.822636	0.207994	0.950363	-0.238787	0.270933	-0.155044	-0.065259	0.257009	-0.104763
Deaths	0.822636	1.000000	0.049213	0.799732	-0.084372	0.026746	0.073631	0.085283	0.175210	0.317244
Vaccination Rate	0.207994	0.049213	1.000000	0.258447	0.140084	0.348115	-0.449743	-0.346423	-0.124366	-0.399787
Population	0.950363	0.799732	0.258447	1.000000	-0.172629	0.332495	-0.207696	-0.108684	0.003292	-0.198430
Median Age	-0.238787	-0.084372	0.140084	-0.172629	1.000000	-0.027420	-0.075867	-0.104189	-0.299938	0.079298
Household Income	0.270933	0.026746	0.348115	0.332495	-0.027420	1.000000	-0.534294	-0.439737	-0.135538	-0.519665
Heart Disease	-0.155044	0.073631	-0.449743	-0.207696	-0.075867	-0.534294	1.000000	0.516215	0.197634	0.544322
Stroke	-0.065259	0.085283	-0.346423	-0.108684	-0.104189	-0.439737	0.516215	1.000000	0.144171	0.400362
Cases per Capita	0.257009	0.175210	-0.124366	0.003292	-0.299938	-0.135538	0.197634	0.144171	1.000000	0.335218
Deaths per Capita	-0.104763	0.317244	-0.399787	-0.198430	0.079298	-0.519665	0.544322	0.400362	0.335218	1.000000

Effects of Income and Health

Household income and heart disease rates are two of the strongest factors related to COVID-19 deaths per capita.

Data Analysis by Region within US

Covid Cases by Region

```
#Sorting through states and relegating to correct region
#West Region
West df = merged df.loc[(merged df["State"]=="Washington") | (merged df["State"]=="Oregon")
                       (merged df["State"]=="California") | (merged df["State"]=="Idaho")
                        (merged_df["State"]=="Nevada") | (merged_df["State"]=="Utah")
                        (merged df["State"]=="Arizona") | (merged df["State"]=="Alaska")
                        (merged_df["State"]=="Hawaii"),:]
#Plains Region
Plains df = merged df.loc[(merged df["State"]=="Montana") | (merged df["State"]=="North Dakota")
                       (merged df["State"]=="South Dakota") | (merged df["State"]=="Wyoming")
                        (merged df["State"]=="Nebraska") | (merged df["State"]=="Colorado")
                        (merged df["State"]=="Oklahoma") | (merged df["State"]=="Kansas")
                        (merged df["State"]=="Texas") | (merged df["State"]=="New Mexico"),:]
#Midwest Region
Midwest df = merged df.loc[(merged df["State"]=="Minnesota") | (merged df["State"]=="Wisconsin")
                       (merged df["State"]=="Michigan") | (merged df["State"]=="Iowa")
                        (merged df["State"]=="Illinois") | (merged df["State"]=="Indiana")
                         (merged df["State"]=="Ohio") | (merged df["State"]=="Missouri")
                        (merged df["State"]=="Kentucky"),:]
#Southeast Region
Southeast df = merged_df.loc[(merged_df["State"]=="Arkansas") | (merged_df["State"]=="Louisiana")
                          (merged df["State"]=="Tennessee") | (merged df["State"]=="Mississippi")
                            (merged df["State"]=="Alabama") | (merged df["State"]=="Georgia")
                            (merged df["State"]=="Florida") | (merged df["State"]=="North Carolina")
                            (merged df["State"]=="South Carolina").:]
#Northeast Region of US
Northeast df = merged df.loc[(merged df["State"]=="Maine") | (merged df["State"]=="New Hampshire")
                          |(merged df["State"]=="Vermont") | (merged df["State"]=="New York")
                            (merged df["State"]=="Massachusetts") | (merged df["State"]=="Connecticut")
                            (merged df["State"]=="Rhode Island") | (merged df["State"]=="New Jersey")
                            (merged_df["State"]=="Pennsylvania") | (merged_df["State"]=="Delaware")
                            (merged df["State"]=="West Virginia") | (merged df["State"]=="Virginia")
                            (merged df["State"]=="Maryland"),:]
```

Covid Cases by Region

```
| title = ["West", "Plains", "Midwest", "Southeast", "Northeast"]
 State list = [West df,Plains df,Midwest df,Southeast df,Northeast df]
 labels = [West, Plains, Midwest, Southeast, Northeast]
 holder = 0
 for index in range(len(State list)):
     plt.figure(figsize=(8,6))
     plt.xlabel("Cases of Covid")
     plt.vlabel("Deaths per Capita")
     (slope, intercept, rvalue, pvalue, stderr) = linregress(State list[index]["Cases"], State list[index
     regress values = State list[index]["Cases"] * slope + intercept
     line eq = "y = " + str(round(slope,8)) + "x + " + str(round(intercept,5))
     Scatter2 = plt.scatter(State list[index]["Cases"], State list[index]["Deaths per Capita"], s=State li
             c=State list[index].State.astype('category').cat.codes)
     plt.plot(State list[index]["Cases"],regress values,color = "purple")
     plt.annotate(line eq.(10000,.006),fontsize=15,color = "purple")
     plt.annotate(f"The r-squared is: {rvalue**2}",(10000,.0057),fontsize=10,color = "purple")
     #Hover Event
     mplcursors.cursor(Scatter2, hover=True)
     plt.legend(loc="upper right", ncol= 2, handles=Scatter2.legend_elements()[0],
            labels=labels[index].
            title="State")
     plt.title (f"Region: {title[holder]} | Deaths per Capita versus Covid Cases in Relation to Heart [
     plt.savefig(f'output images/cases vs death-{title[holder]}.png')
     holder = holder + 1
```

Regional Correlation

 Little to no correlation between counties, cases of covid, and the deaths per capita

Data Analysis by Counties and States

COVID Deaths per Capita By State

East coast states
 have higher
 average deaths
 per capita that
 Mid East coast

states

COVID Cases per Capita By State

Heatmap

- API Interaction with Gmaps to create heatmap based on Heart Disease
- Max intensity = 600 out of 100,000 population (0.6% of population)
- Similarity to heatmaps of COVID
 Deaths per Capita and COVID cases
 per capita

Black Dots - Top 5 Counties with COVID Deaths per Capita

0096
0090
0706
1277
3087
8490

Pins - Top 5 Counties with COVID Cases per Capita

	County	State	Cases per Capita
0	Uvalde	Texas	0.366804
1	Pickens	South Carolina	0.346113
2	Vermilion	Illinois	0.337878
3	Tom Green	Texas	0.335867
4	Dorchester	South Carolina	0.335265

Heatmap

```
def create_map(weights, max_intensity, locations_for_marker_layer, info_box_for_marker_layer, locations_for_symbol_layer, info_box_for_symbol_layer):
    figure = gmaps.figure()
    locations = merged_df[["Y_Latitude", "X_Longitude"]]
    heat_layer = gmaps.heatmap_layer(locations, weights = weights, dissipating = False, max_intensity = max_intensity, point_radius = 0.3)
    figure.add_layer(heat_layer)

# Add marker Layer ontop of heat map
    markers = gmaps.marker_layer(locations_sorted_df_by_cases, info_box_content = info_box_for_marker_layer)
    figure.add_layer(markers)
    symbol_layer = gmaps.symbol_layer(locations_for_symbol_layer, info_box_content=info_box_for_symbol_layer)
    figure.add_layer(symbol_layer)

return figure
```

COVID Trend Across Time

COVID Cases Across Time

- Observation: Different spikes of covid cases vs covid deaths
- Possible Explanations:
 - 1. Vaccination started in early 2021 (even though cases continued to increase, covid deaths remained stable)
 - 2. Type of Variant

Political Affiliation Correlations

Red vs. Blue

	t-statistic	p-value
Deaths per Capita	11.988907	4.341622e-30
Household Income	-6.971634	9.006186e-12
Heart Disease	10.603520	2.649415e-24
Vaccination Rate	-20.152412	6.060113e-69

Correlation between Median Income, COVID deaths, and vaccination rates

Anova Tests for Vaccination Rates & Median Income

- Binned Data

Deaths	Vaccination Rate	Population	Median Age	Household Income	Heart Disease	Stroke	Party	County	State	Cases per Capita	Deaths per Capita	Median Income Range	Vaccination Rate Range
57.0	39.2	24657.0	43.8	36685.0	321.0	78.6	REPUBLICAN	Abbeville	South Carolina	0.247556	0.002312	<\$50,000	20%-40%
269.0	51.8	62568.0	36.2	41177.0	476.2	93.6	REPUBLICAN	Acadia	Louisiana	0.238956	0.004299	<\$50,000	40%-60%
90.0	70.7	32742.0	45.9	43210.0	411.2	92.1	REPUBLICAN	Accomack	Virginia	0.200629	0.002749	<\$50,000	60%-80%
56.0	44.0	25325.0	27.7	40046.0	335.1	80.7	REPUBLICAN	Adair	Missouri	0.218559	0.002211	<\$50,000	40%-60%
65.0	34.8	22113.0	37.6	32986.0	575.0	62.7	REPUBLICAN	Adair	Oklahoma	0.301994	0.002939	<\$50,000	20%-40%
(555)													***
95.0	47.5	27974.0	35.7	31402.0	368.6	119.6	DEMOCRAT	Yazoo	Mississippi	0.269429	0.003396	<\$50,000	40%-60%
94.0	47.6	21573.0	39.3	42361.0	472.9	86.2	REPUBLICAN	Yell	Arkansas	0.296018	0.004357	<\$50,000	40%-60%
486.0	50.5	157816.0	38.2	59117.0	322.4	70.9	REPUBLICAN	Yellowstone	Montana	0.242403	0.003080	\$50,000-\$70,000	40%-60%
88.0	65.3	67587.0	39.5	90367.0	233.0	72.0	REPUBLICAN	York	Virginia	0.133709	0.001302	>\$75,000	60%-80%
104.0	51.1	75493.0	32.5	52624.0	370.1	87.2	REPUBLICAN	Yuba	California	0.209437	0.001378	\$50,000-\$70,000	40%-60%

```
#Binning income ranges to do anova analysis

bins = [-float('inf'), 50000, 70000, float('inf')]
income_ranges = ['<$50,000', "\$50,000-\$70,000", ">$75,000"]
data["Median Income Range"] = pd.cut(data["Household Income"], bins, labels=income_ranges, include_lowest=True)
data
```

Binned Income Boxplot

- ANOVA test returned strongly rejects null hypothesis
- P-value for deaths is $\sim 2.05^*e^{-90}$
- P-value for deaths is ~.0005


```
# Extract individual groups and perform ANOVA test
income_groups = []
for i in income_ranges:
    income_groups.append(data[data["Median Income Range"] == i]["Deaths per Capita"])
    _, p = stats.f_oneway(*income_groups)
print(f"The null hypothesis' pvalue for income ranges vs deaths per capita is {p}")
income_groups = []
for i in income_ranges:
    income_groups.append(data[data["Median Income Range"] == i]["Cases per Capita"])
    _, p = stats.f_oneway(*income_groups)
print(f"The null hypothesis' pvalue for income ranges vs cases per capita is {p}")
```

The null hypothesis' pvalue for income ranges vs deaths per capita is 2.053183505933904e-90 The null hypothesis' pvalue for income ranges vs cases per capita is 0.0005751076241736748

Scatter Plots and R² Value

Analysis of Outlier Counties

- Data normalization
- Understanding error bars
- A good indicator that income and heart disease in particular are account for many early deaths

	Vaccination Rate	Household Income	Heart Disease	Stroke	County	State	Deaths per Capita	Median Income Range	Vaccination Rate Range
163	35.9	49348.0	301.8	57.2	Caledonia	Vermont	0.000723	<\$50,000	20%-40%
604	64.3	45528.0	308.4	166.6	Humboldt	California	0.000950	<\$50,000	60%-80%
1034	52.3	44315.0	321.5	103.6	Pitt	North Carolina	0.000823	<\$50,000	40%-60%
1099	38.2	49910.0	269.8	66.5	Riley	Kansas	0.000996	<\$50,000	20%-40%
1371	54.3	45268.0	260.2	54.7	Watauga	North Carolina	0.000887	<\$50,000	40%-60%

Binned Vaccination Boxplot

Vaccination Rates also reject the null Hypothesis but not as

strongly


```
In [8]: #Performing ANOVA test for vaccination rates
  vax_groups = []
  for i in vaccination_rates:
      vax_groups.append(data[data["Vaccination Rate Range"] == i]["Deaths per Capita"])
      _, p = stats.f_oneway(*vax_groups)
    print(f"The null hypothesis' pvalue for vaccination rates is {p}")
```

The null hypothesis' pvalue for vaccination rates is 9.010006665976374e-50

Issues with Vaccination Rate Data

- Vaccination Rates correlate
 highly with Household Income as
 well as Heart Disease.
- In fact, Heart Disease itself is highly correlated with household income
- Vaccination Rates are taken at the end of covid, this data measures deaths from before a vaccine was created!
- Better to measure deaths from a given time point until now.
- So does this mean the data has nothing to say about vaccination?

	Cases	Deaths	Vaccination Rate	Population	Median Age	Household Income	Heart Disease	Stroke	Cases per Capita	Deaths per Capita
Cases	1.000000	0.822636	0.207994	0.950363	-0.238787	0.270933	-0.155044	-0.065259	0.257009	-0.104763
Deaths	0.822636	1.000000	0.049213	0.799732	-0.084372	0.026746	0.073631	0.085283	0.175210	0.317244
Vaccination Rate	0.207994	0.049213	1.000000	0.258447	0.140084	0.348115	-0.449743	-0.346423	-0.124366	-0.399787
Population	0.950363	0.799732	0.258447	1.000000	-0.172629	0.332495	-0.207696	-0.108684	0.003292	-0.198430
Median Age	-0.238787	-0.084372	0.140084	-0.172629	1.000000	-0.027420	-0.075867	-0.104189	-0.299938	0.079298
Household Income	0.270933	0.026746	0.348115	0.332495	-0.027420	1.000000	-0.534294	-0.439737	-0.135538	-0.519665
Heart Disease	-0.155044	0.073631	-0.449743	-0.207696	-0.075867	-0.534294	1.000000	0.516215	0.197634	0.544322
Stroke	-0.065259	0.085283	-0.346423	-0.108684	-0.104189	-0.439737	0.516215	1.000000	0.144171	0.400362
Cases per Capita	0.257009	0.175210	-0.124366	0.003292	-0.299938	-0.135538	0.197634	0.144171	1.000000	0.335218
Deaths per Capita	-0.104763	0.317244	-0.399787	-0.198430	0.079298	-0.519665	0.544322	0.400362	0.335218	1.000000

Broad Visualisation of Incomes and

Vaccination Rate

- This chart certainly disagrees!
- Primary driver is still income

Median Income Range Vaccination Rate Range

- What are broader implications?

Deaths per Capita

Median income Range	vaccination Rate Range	
<\$50,000	20%-40%	0.004063
	40%-60%	0.003690
	60%-80%	0.003298
\$50,000-\$70,000	20%-40%	0.003262
	40%-60%	0.002910
	60%-80%	0.001927
>\$75,000	20%-40%	0.001982
	40%-60%	0.002085
	60%-80%	0.001920

Vaccination Rates Broken into Finer Income Groups

Deaths per Capita grouped by Income and Vaccination Rates

Summary and Next Steps

Summary of Findings

- What region of the country has the highest rate of covid cases, covid deaths and heart disease?
 - East coast states had higher previous heart disease problems prior to the pandemic, and thus higher number of covid cases and covid deaths in 2020-2022 (possible limitation of
 - data points in the west coast affecting the results)
- How did covid cases and covid deaths progressed over time?
 - Proportion of deaths to covid cases has decreased since the introduction of the vaccine early 2021
- How does political affiliation affect vaccination, covid deaths, and heart disease?
 - Republican counties have significantly lower vaccination rates, higher rates of heart disease,
 lower income, and higher COVID death rates
- What is the correlation between Median Income, Vaccination Rates and Covid Deaths?
 - States with disparate incomes had similar rates of infection, but vastly different rates of death by covid
- How did heart disease rates in the years previous to COVID affect the number of covid deaths in 2020?
 - When accounting for income, high rates of heart disease made you significantly more likely to have an abnormally high rate of death

Post Mortem

DIFFICULTIES

- Limitation of columns on selected datasets -> Need to include additional datasets
- Limitation of data in states in the Midwest (most states have less than 20 counties)
- Division of the states in groups (west vs midwest vs east states; red vs blue states)
- Accounting for total deaths made vaccination data less reliable
- High cross correlations can make it difficult to understand root causes

NEXT STEPS

Study more in depth how vaccination affected covid deaths