Математическая статистика

Практическое задание 2

В данном задании рассматриваются различные свойства оценок, методы получения оценок, способы сравнения оценок.

Правила:

- Выполненную работу нужно отправить на почту probability.diht@yandex.ru, указав тему письма "[номер группы] Фамилия Имя Задание 2". Квадратные скобки обязательны. Вместо Фамилия Имя нужно подставить свои фамилию и имя.
- Прислать нужно ноутбук и его pdf-версию. Названия файлов должны быть такими: 2.N.ipynb и 2.N.pdf, где N ваш номер из таблицы с оценками.
- Никакой код из данного задания при проверке запускаться не будет.
- Некоторые задачи отмечены символом *. Эти задачи являются дополнительными. Успешное выполнение большей части таких задач (за все задания) является необходимым условием получения бонусного балла за практическую часть курса.
- Баллы за каждую задачу указаны далее. Если сумма баллов за задание меньше 25% (без учета доп. задач), то все задание оценивается в 0 баллов.

Баллы за задание:

- Задача 1 3 балла
- Задача 2 3 балла
- Задача 3 3 балла
- Задача 4 2 балла
- Задача 5 2 балла
- Задача 6 3 балла
- Задача 7а 3 балла
- Задача 7b* 5 баллов
- Задача 8 4 балла
- Задача 9* 4 балла
- Задача 10* 5 баллов

При выполнении задания рекомендуется пользоваться библиотекой scipy.stats. Подробное описание есть в наших инструкциях.

Задача 1. В этой задаче нужно визуализировать свойство несмещенности.

Пусть X_1,\dots,X_n --- выборка из распределения $U[0,\theta]$. Известно, что в качестве оценки параметра θ можно использовать следующие оценки $X_{(n)},\frac{n+1}{n}X_{(n)},2\overline{X}$.

Вопрос: Какие из этих оценок являются несмещенными?

Ответ: 1. Найдем мат. ожидание $EX_{(n)}$. $X_{(n)}=max\{X_1,X_2,\dots,X_n\}$ =max По определению выборки X_i независимы. Поэтому:

$$F_{max}(X)=P(ext{max}{\leq X})=P(X_1\leq X,\ldots,X_n\leq X)=F^n(X)=rac{X^n}{ heta^n}$$

$$P_{max}(X) = nF^{n-1}(X)F'(x) = nF^{n-1}(x)p(x)$$

$$EX_{(n)}=\int_0^{ heta}xP_{max}(x)dx=\int_0^{ heta}xnrac{x^{n-1}}{ heta^{n-1}}rac{1}{ heta}dx=\int_0^{ heta}nx^nrac{1}{ heta^n}dx=rac{n heta}{n+1}
eq heta.$$
 Следовательно, оценка является смещенной.

$$2.Erac{n+1}{n}X_{(n)}=rac{n+1}{n}rac{n}{n+1} heta= heta$$
. Следовательно, оценка является несмещенной.

$$3.E2\overline{X}=rac{2}{n}E\sum_{i=1}^{n}x_{i}=rac{2}{n}nEX_{1}=2\int_{0}^{ heta}rac{1}{ heta}xdx=rac{2}{ heta}rac{ heta^{2}}{2}= heta$$
. Следовательно, оценка является несмещенной.

Вам нужно убедиться в этом, сгенерировав множество выборок и посчитав по каждой из них оценку параметра.

Сгенерируйте 500 выборок X_1^j,\dots,X_n^j из распределения U[0,1], по каждой из них посчитайте оценку $\hat{\theta}_j$, получив тем самым 500 независимых оценок параметра. Нанесите их на график с одинаковой *у*-координатой. Отметьте специальным символом среднее этих выборок (см. шаблон ниже). Выполните данную процедуру для $n\in\{10,100,500\}$.

Для нанесения точек на график используйте следующий шаблон. Для каждой оценки выставите разный уровень, чтобы реализации разных оценок не слипались. В качестве метки используйте latex-код этой оценки, который можно взять выше в условии этой задачи. Постарайтесь не размножать код, а сделать циклы по типам оценок и по размеру выборки. Естественно, все типы оценок должны быть на одном графике, но для разных n должны быть разные графики.

```
import numpy as np
import scipy.stats as sps
import matplotlib.pyplot as plt
%matplotlib inline
number = [10, 100, 500]
for n in number:
    sample = sps.uniform.rvs(size=(500, n), loc=0, scale=1)
    evaluation = np.max(sample, axis = 1)
    level = 5
    plt.scatter(evaluation, np.zeros_like(evaluation) + level,
                alpha=0.1, s=100, color='red', label='$X_{(n)}$')
    plt.scatter(evaluation.mean(), level, marker='*', s=200,
                color='w', edgecolors='black')
    evaluation = np.max(sample, axis = 1) * (n + 1) / n
    level = 4
    plt.scatter(evaluation, np.zeros_like(evaluation) + level,
                alpha=0.1, s=100, color='orange', label='\{n\}X_{(n)}
$')
   plt.scatter(evaluation.mean(), level, marker='*', s=200,
                color='w', edgecolors='black')
    evaluation = 2 * np.average(sample, axis = 1)
    level = 3
    plt.scatter(evaluation, np.zeros_like(evaluation) + level,
                alpha=0.1, s=100, color='blue', label='$2\overline{X}$')
   plt.scatter(evaluation.mean(), level, marker='*', s=200,
                color='w', edgecolors='black')
   plt.vlines(1, 7, np.average(sample, axis = 1), color='r')
   plt.title('sample size = %d' % n)
   plt.yticks([])
   plt.legend()
    plt.show()
```


sample size = 100

sample size = 500

Пусть теперь X_1,\dots,X_n --- выборка из распределения $\mathcal{N}(0,\sigma^2)$. Известно, что в качестве оценки параметра σ^2 можно использовать следующие оценки $S^2,\frac{n}{n-1}S^2$.

Вопрос: Какие из этих оценок являются несмещенными?

Ответ: Из домашнего задания нам известно, что оценка $\frac{n}{n-1}S^2$ является несмещенной, а оценка S^2 - смещенной.

Для данной модели выполните те же действия, что и с предыдущей.

In [2]:

```
for n in number:
    sample = sps.norm.rvs(size=(500, n), loc=0, scale=1)
   avg = np.average(sample, axis = 1)
   evaluation = 1 / n * np.sum((sample - np.hsplit(avg, 500))**2, axis = 1)
    level = 4
    plt.scatter(evaluation, np.zeros_like(evaluation) + level,
                alpha=0.1, s=100, color='red', label='$S^2$')
   plt.scatter(evaluation.mean(), level, marker='*', s=200,
               color='w', edgecolors='black')
   evaluation = 1 / (n - 1) * np.sum((sample - np.hsplit(avg, 500))**2, axis =
1)
   level = 3
    plt.scatter(evaluation, np.zeros_like(evaluation) + level,
                alpha=0.1, s=100, color='orange', label='\frac{n}{n-1}S^2')
    plt.scatter(evaluation.mean(), level, marker='*', s=200,
               color='w', edgecolors='black')
   plt.vlines(1, 6, np.average(sample, axis = 1), color='r')
    plt.title('sample size = %d' % n)
   plt.yticks([])
   plt.legend()
    plt.show()
```


Сделайте вывод о том, что такое свойство несмещенности. Подтверждают ли сделанные эксперименты свойство несмещенности данных оценок? Поясните, почему в лабораторных по физике при оценке погрешности иногда используют n-1 в знаменателе, а не n.

Вывод: Несмещённость означает отсутствие ошибки "в среднем". Ибо, как нам известно, если оценка θ^* является несмещенной, то $E\theta^*=\theta$. Из усиленного закона больших чисел следует, что истинное значение параметра θ почти наверное равно всреднему значению оценок. Это подтверждают графики проделанных нами экспериментов. Поэтому, в физике при вычислении погрешности(среднеквадратичного отклонения) используют n-1. Оно дает более близкое к истинному значение, чем S^2.

Задача 2. В этой задаче нужно визуализировать свойство состоятельности.

а). Пусть X_1,\ldots,X_n --- выборка из распределения $\mathcal{N}(\theta,1)$. Известно, что \overline{X} является состоятельной оценкой параметра θ . Вам нужно убедиться в этом, сгенерировав множество выборок и посчитав по каждой из них оценку параметра в зависимости от размера выборки.

Сгенерируйте 200 выборок X_1^j,\dots,X_{300}^j из распределения $\mathcal{N}(0,1)$. По каждой из них посчитайте оценки $\hat{\theta}_{jn}=\frac{1}{n}\sum_{i=1}^n X_i^j$ для $1\leqslant n\leqslant 300$, то есть оценка параметра по первым n наблюдениям j-й выборки. При написании кода может помочь вступительное задание.

Для каждого j нанесите на один график зависимость $\hat{\theta}_{jn}$ от n с помощью plt.plot. Каждая кривая должна быть нарисована *одним цветом* с прозрачностью alpha=0.2. Поскольку при малых n значения оценок могут быть большими, ограничьте область графика по оси y с помощью функции plt.ylim((min, max)).

In [4]:

```
n = 300
sample = sps.norm.rvs(size=(200, n), loc=0, scale=1)
evaluation = np.vsplit(np.cumsum(sample, axis = 1), 200) / np.arange(1, n + 1)
plt.figure()
i = 0
while (i < 200):
    plt.plot(np.arange(1, n + 1), evaluation[i].ravel(), color='orange', alpha=
0.2)
    i += 1
plt.ylim(-0.75, 0.75)
plt.show()</pre>
```


b). Пусть X_1,\dots,X_n --- выборка из распределения $U[0,\theta]$. Известно, что $X_{(n)}$ является состоятельной оценкой параметра θ . Выполните исследование, аналогичное пункту a), сгенерировав выборки из распределения U[0,1] и посчитав оценки $\hat{\theta}_{jn}=\max_{i=1...n}X_i^j$.

In [5]:

```
def get_evaluation(sample, n):
    evaluation = []
    j = 0
    for line in sample:
        i = 0
        cur_line = []
        while i < n:
            cur_line.append(np.max(sample[j][:i+1]))
            i += 1
        evaluation.append(cur_line)
        j += 1
    return evaluation
n = 300
sample = sps.uniform.rvs(size=(200, n), loc=0, scale=1)
evaluation = get_evaluation(sample, n)
plt.figure()
i = 0
while (i < 200):
    plt.plot(np.arange(1, n + 1), evaluation[i], color='orange', alpha=0.2)
    i += 1
plt.ylim(0.4, 1.05)
plt.xlim(-0.1, 150)
plt.show()
```


Сделайте вывод о том, что такое свойство состоятельности. Подтверждают ли сделанные эксперименты свойство состоятельности данных оценок? Как связаны результаты в пункте а) с законом больших чисел?

Вывод: Свойство состоятельности означает, что последовательность оценок сходится по вероятности к неизвестному параметру. Из результатов, полученных нами в пункте а) видно, что большинство оценок стремится к $\theta=1$. И это же следует из закона больших чисел, что при достаточно больших n и при любых θ верн, что $\theta_{jn}^*=\frac{1}{n}\sum_{i=1}^n X_1^j$ сходится почти наверное к $EX_1^j=\theta=1$. Полученные нами графики подтверждают истинность рассуждений.

Задача 3. В этой задаче нужно визуализировать свойство асимптотической нормальности.

а). Пусть X_1, \ldots, X_n --- выборка из распределения $\mathcal{N}(\theta, 1)$. Известно, что \overline{X} является асимптотически нормальной оценкой параметра θ . Вам нужно убедиться в этом, сгенерировав множество выборок и посчитав по каждой из них оценку параметра в зависимости от размера выборки.

Сгенерируйте 200 выборок X_1^j,\dots,X_{300}^j из распределения $\mathcal{N}(0,1)$. По каждой из них посчитайте оценки $\hat{\theta}_{jn}=\frac{1}{n}\sum_{i=1}^n X_i^j$ для $1\leqslant n\leqslant 300$, то есть оценка параметра по первым n наблюдениям j-й выборки. Для этой оценки посчитайте статистику $T_{jn}=\sqrt{n}\; \Big(\hat{\theta}_{jn}-\theta\Big)$, где $\theta=0$.

Для каждого j нанесите на один график зависимость T_{jn} от n с помощью plt.plot. Каждая кривая должна быть нарисована *одним цветом* с прозрачностью alpha=0.2. Сходятся ли значения T_{in} к какой-либо константе?

In [55]:

```
n = 300
sample = sps.norm.rvs(size=(200, n), loc=0, scale=1)
statistics = np.vsplit(np.cumsum(sample, axis = 1), 200) / np.sqrt(np.arange(1, n + 1))
plt.figure(figsize=(15, 4))
i = 0
while (i < 200):
    plt.plot(np.arange(1, n + 1), statistics[i].ravel(), color='orange', alpha=
0.2)
    i += 1
plt.title('Зависимость $T_{jn}$ от $n$')
plt.show()</pre>
```


Для n=300 по выборке $T_{1,300},\dots,T_{200,300}$ постройте гистограмму и ядерную оценку плотности. Хорошо ли они приближают плотность распределения $\mathcal{N}(0,1)$ (ее тоже постройте на том же графике)? Не забудьте сделать легенду.

b). Пусть X_1, \dots, X_n --- выборка из распределения $Pois(\theta)$. Известно, что \overline{X} является асимптотически нормальной оценкой параметра θ . Выполните исследование, аналогичное пункту a).

In [58]:

```
n = 300
sample = sps.poisson.rvs(mu=1, loc=0, size=(200, n))
evaluations = np.vsplit(np.cumsum(sample, axis = 1), 200) / np.arange(1, n + 1)
statistics = (evaluations - 1) * np.sqrt(np.arange(1, n + 1))
plt.figure(figsize=(10, 4))
i = 0
while (i < 200):
    plt.plot(np.arange(1, n + 1), statistics[i].ravel(), color='orange', alpha=
0.2)
    i += 1
plt.title('Зависимость $T_{jn}$ от $n$')
plt.show()
plt.figure()
grid = np.linspace(-3, 3, 200)
plt.hist((statistics.T)[-1].ravel(), bins=20,
        range=(grid.min(), grid.max()), color='orange',
        normed=True, label='statistics')
kernel_density = KDEUnivariate((statistics.T)[-1].ravel())
kernel_density.fit()
plt.plot(grid, kernel_density.evaluate(grid), color='blue', label='kde')
pdf = sps.norm(loc=0, scale=1).pdf
plt.plot(grid, pdf(grid), color='black', alpha=0.3, lw=2, label='true pdf')
plt.legend()
plt.show()
```


Сделайте вывод о том, что такое свойство асимптотической нормальности. Подтверждают ли сделанные эксперименты свойство асимптотической нормальности данных оценок? Как связаны результаты с центральной предельной теоремой?

Вывод: Асимптотическая нормальность означает, что для оценки θ^* параметра θ с коэффициентом $\sigma^2(\theta)$ выполняется сходимость по распределению $\sqrt{n}(\theta^*-\theta)$ к $N_{0,\sigma^2(\theta)}$. Этот же вывод мы получаем и из центральной предельной теоремы. Истинность рассуждений наглядно показывают полученные нами графики.

Задача 4. Пусть X_1,\dots,X_n --- выборка из распределения $U[0,\theta]$. Из домашнего задания известно, что $n\left(\theta-X_{(n)}\right)\stackrel{d_{\theta}}{\longrightarrow} Exp\left(1/\theta\right)$. Проведите исследование, аналогичное заданию 3 для $\theta=1$.

```
def get_evaluations(sample, n):
    evaluation = []
    j = 0
    for line in sample:
        i = 0
        cur_line = []
       while i < n:
            cur_line.append(np.max(sample[j][:i+1]))
            i += 1
        evaluation.append(cur line)
        j += 1
    return evaluation
n = 300
sample = sps.uniform.rvs(size=(200, n), loc=0, scale=1)
evaluations = np.array(get evaluations(sample, n))
statistics = np.arange(1, n + 1) * (1 - evaluations)
plt.figure(figsize=(10,4))
i = 0
while (i < 200):
    plt.plot(np.linspace(1, 300, 300), statistics[i], color='orange', alpha=0.2
)
    i += 1
plt.title('Зависимость $T_{jn}$ от $n$')
plt.show()
plt.figure()
grid = np.linspace(-1, 4, 1000)
plt.hist((statistics.T)[-1], bins=20,
        range=(grid.min(), grid.max()), color='orange',
        normed=True, label='statistics')
kernel density = KDEUnivariate((statistics.T)[-1].ravel())
kernel density.fit()
plt.plot(grid, kernel_density.evaluate(grid), color='blue', label='kde')
pdf = sps.expon(loc=0, scale=1).pdf
plt.plot(grid, pdf(grid), color='black', alpha=0.3, lw=2, label='expon pdf')
plt.legend()
plt.show()
```


Вывод: С помощью построенных графиков, мы убедились, что $n\left(\theta-X_{(n)}\right)\stackrel{d_{\theta}}{\longrightarrow} Exp\left(1/\theta\right)$.

Задача 5. Дана параметрическая модель и несколько выборок из двух или трех наблюдений (для удобства они даются в виде python-кода). Нужно для каждой выборки построить график функции правдоподобия.

- а). Параметрическая модель $\mathcal{N}(\theta,1)$, выборки: [-1, 1], [-5, 5], [-1, 5]
- b). Параметрическая модель $Exp(\theta)$, выборки: [1, 2], [0.1, 1], [1, 10]
- c). Параметрическая модель $U[0,\theta]$, выборки: [0.2, 0.8], [0.5, 1], [0.5, 1.3]
- *d*). Параметрическая модель $Bin(5,\theta)$, выборки: [0, 1], [5, 5], [0, 5]
- e). Параметрическая модель Pois(heta), выборки: [0, 1], [0, 10], [5, 10]
- f). Параметрическая модель С $auchy(\theta)$, где θ --- параметр сдвига, выборки: [-0.5, 0.5], [-2, 2], [-4, 0, 4]

Выполнить задание, не создавая много кода, поможет следующая функция.

In [88]:

```
def draw_likelihood(density_function, grid, samples, label):
    ''' density function --- функция, считающая плотность (обычную или дискретн
ую)
        grid --- сетка для построения графика
        samples --- три выборки
        label --- latex-код параметрической модели
    . . .
    plt.figure(figsize=(18, 5))
    for i, sample in enumerate(samples):
        sample = np.array(sample)[np.newaxis, :]
        likelihood = []
        for line in sample:
            likelihood.append(density_function(line[0]) * density_function(line
[1]))
        likelihood = np.array(likelihood).ravel().T
        plt.subplot(1, 3, i+1)
        plt.plot(grid, likelihood)
        plt.xlabel('$\\theta$', fontsize=16)
        plt.grid(ls=':')
        plt.title(label + ', sample=' + str(sample), fontsize=16)
    plt.show()
```

Первый пункт можно выполнить с помощью следующего кода

In [89]:

In [90]:

In [114]:

In [113]:

In [115]:

In [117]:

Сделайте вывод о том, как функция правдоподобия для каждой модели зависит от выборки. Является ли функция правдоподобия плотностью?

Вывод: Выборка является последовательностью независимых случайных величин. Следовательно, функция правдоподобия является произведением плотнойстей независимых случайных величин. Следовательно, она является плотностью совместного распределения.

Сгенерируем выборку большого размера из стандартного нормального распределения и посчитаем ее функцию правдоподобия в модели $\mathcal{N}(\theta,1)$. Выполните код ниже

In [118]:

```
sample = sps.norm.rvs(size=10**5)
likelihood = sps.norm.pdf(sample).prod()
print(likelihood)
```

0.0

Мы пытаемся перемножить очень большое количество чисел, стремящихся к нулю. Поэтому при округлении, в произведении получается ноль. Чтобы этого избежать, возьмем сумму по логарифмам этих чисел.

In [203]:

```
sample = sps.norm.rvs(size=10**5)
likelihood = sps.norm.logpdf(sample).sum()
print(likelihood)
```

-142094.088596

Задача 6. На высоте 1 метр от точки θ находится источник γ -излучения, причем направления траекторий γ -квантов случайны, т.е. равномерно распределены по полуокружности. Регистрируются координаты $X_i, i=1,\ldots,n$ точек пересечения γ -квантов с поверхностью детекторной плоскости. Известно, что X_i имеет распределение Коши.

а). На отрезке [-7,7] постройте плотность стандартного нормального распределения и стандартного распределения Коши. Не забудьте добавить легенду.

In [123]:

```
plt.figure()
grid = np.linspace(-7, 7, 1000)
plt.plot(grid, sps.norm(loc=0, scale=1).pdf(grid), color='orange', lw=2, label=
'norm pdf')
plt.plot(grid, sps.cauchy.pdf(grid), color='red', lw=2, label='cauchy pdf')
plt.legend()
plt.show()
```


b). Сгенерируйте выборку размера 100 из стандартного распределения Коши. Для всех $n\leqslant 100$ по первым n элементам выборки посчитайте значения \overline{X} и $\widehat{\mu}$ (выборочное среднее и выборочная медиана). На одном графике изобразите зависимость значений этих оценок от n. Сделайте вывод.

In [210]:

```
sample = sps.cauchy.rvs(size=100)
avarage = np.cumsum(sample) / np.arange(1, 101)
medians = []
i = 0
while i < 100:
    medians.append(np.median(sample[:i+1]))
    i += 1
medians = np.array(medians)
plt.figure()
plt.plot(np.arange(1, 101), avarage, color='red', label='avarage')
plt.plot(np.arange(1, 101), medians, color='orange', label='median')
plt.legend()
plt.show()</pre>
```


Вывод: По построенным графикам мы видим, что значения выборочной медианы и выборочного среднего довольно близки друг к другу. Но выборочная медиана дает оценку на x_0 в распределении, в отличии от выборочного среднего.

Задача 7. На сегодняшний день возобновляемые источники энергии становятся все более востребованными. К таким источникам относятся, например, ветрогенераторы. Однако, их мощность очень трудно прогнозировать. В частности, выработка энергии при помощи ветрогенераторы сильно зависит от скорости ветра. Поэтому предсказание скорости ветра является очень важной задачей. Скорость ветра часто моделируют с помощью распределения Вейбулла, которое имеет плотность

$$p_{ heta}(x) = rac{kx^{k-1}}{\lambda^k} e^{-(x/\lambda)^k},$$

где $\theta=(k,\lambda)$ --- двумерный параметр. К сожалению, найти точную оценку максимального правдоподобия на θ не получится. В данном задании нужно найти оценку максимального правдоподобия приближенно с помощью поиска по сетке.

Выборка. Создайте выборку по значению скорости ветра для некоторой местности для не менее чем 100 дней. Помочь в этом может <u>дневник погоды (https://www.gismeteo.ru/diary/)</u>. Однако, данные там округлены до целого, поэтому вы можете попробовать найти другие данные.

а). Найдите оценку максимального правдоподобия параметра $\theta=(k,\lambda)$ с точностью 10^{-5} при помощи поиска по двумерной сетке.

За распределение Вейбулла отвечает класс weibull_min из scipy.stats, которое задается так: weibull_min(c=k , scale= λ).

Двумерную сетку можно создать с помощью numpy.mgrid[from:to:step, from:to:step]. Если попробовать сразу создать сетку с шагом 10^{-5} , то может не хватить памяти. Поэтому найдите сначала максимум по сетке с большим шагом, а потом сделайте сетку с маленьким шагом в окрестности найденной точки. При вычислении без циклов, возможно, придется создавать четырехмерные объекты.

Функция numpy.argmax выдает не очень информативный индекс, поэтому пользуйтесь следующей функцией.

```
In [ ]:
```

```
def cool_argmax(array):
    return np.unravel_index(np.argmax(array), array.shape)
```

Нарисуйте график плотности с параметрами, соответствующим найденным ОМП, а так же нанесите на график гистограмму.

```
In [ ]:
```

```
•••
```

b). $\$ На самом деле, при помощи дифференцирования можно перейти к задаче поиска ОМП для параметра k. Выполните такое преобразование и найдите ОМП приближенно с помощью метода Ньютона, основываясь на параграфе 35 книги А.А. Боровкова "Математическая статистика", 2007.

Задача 8.

а). Пусть X_1,\dots,X_n --- выборка из распределения $U[0,\theta]$. Рассмотрим оценки $2\overline{X},(n+1)X_{(1)},X_{(1)}+X_{(n)},\frac{n+1}{n}X_{(n)}$ Вам необходимо сравнить эти оценки в равномерном подходе с квадратичной и линейной функциями потерь, построив графики функций риска при помощи моделирования.

Для каждого $\theta\in(0,2]$ с шагом 0.01 сгенерируйте 2000 выборок X_1^j,\dots,X_{100}^j из распределения $U[0,\theta]$. По каждой из этих выборок посчитайте значение всех четырех оценок. Тем самым для данного θ и оценки θ^* получится 2000 реализаций этой оценки $\theta_1^*,\dots,\theta_{2000}^*$, где значение θ_j^* посчитано по реализации выборки X_1^j,\dots,X_{100}^j . Теперь можно оценить функцию потерь этой оценки с помощью усреднения

$$\widehat{R}\left(heta^{*}, heta
ight)=rac{1}{2000}\sum_{j=1}^{2000}g\left(heta_{j}^{*}, heta
ight),$$

где
$$g(x,y)=(x-y)^2$$
 и $g(x,y)=|x-y|$.

Нанесите на один график все четыре функции риска. Для каждого типа функции потерь должен быть свой график. Пользуйтесь следующим шаблоном. Ограничение сверху по оси *у* ставьте таким, чтобы графики функции риска с малыми значениями четко различались.

In [162]:

```
q = 0.0
risk1 = [[], []]
risk2 = [[], []]
risk3 = [[], []]
risk4 = [[], []]
while q < 2:
    sample = sps.uniform.rvs(loc=0, scale=q, size=(2000, 100))
    evaluation = 2 * np.average(sample, axis=1)
    risk1[0].append(1/2000 * np.sum((evaluation - q)**2))
    risk1[1].append(1/2000 * np.sum(np.absolute(evaluation - q)))
    evaluation = 101 * np.min(sample, axis=1)
    risk2[0].append(1/2000 * np.sum((evaluation - q)**2))
    risk2[1].append(1/2000 * np.sum(np.absolute(evaluation - q)))
    evaluation = np.max(sample, axis=1) + np.min(sample, axis=1)
    risk3[0].append(1/2000 * np.sum((evaluation - q)**2))
    risk3[1].append(1/2000 * np.sum(np.absolute(evaluation - q)))
    evaluation = 101/100 * np.max(sample, axis=1)
    risk4[0].append(1/2000 * np.sum((evaluation - q)**2))
    risk4[1].append(1/2000 * np.sum(np.absolute(evaluation - q)))
    q += 0.01
```

In [202]:

```
plt.figure(figsize=(5,9))
plt.plot(np.arange(0.01, 2.01, 0.01),
                                       risk1[0], label='$2\\overline{X}$')
plt.plot(np.arange(0.01, 2.01, 0.01),
                                       risk2[0], label='(n+1)X_{(1)}')
plt.plot(np.arange(0.01, 2.01, 0.01),
                                       risk3[0], label='$X_{(1)}+X_{(n)}$')
plt.plot(np.arange(0.01, 2.01, 0.01),
                                       risk4[0], label='\frac{n+1}{n} X_{(n)}
$')
plt.grid(ls=':')
plt.xlabel('$\\theta$', fontsize=16)
plt.ylabel('$\\widehat{R}\\left(\\theta^*, \\theta\\right)$', fontsize=16)
plt.legend(fontsize=14)
plt.title('g(x, y)=(x-y)^2', fontsize=16)
plt.ylim((0, 0.005))
plt.show()
plt.figure(figsize=(5,9))
                                       risk1[1], label='$2\\overline{X}$')
plt.plot(np.arange(0.01, 2.01, 0.01),
plt.plot(np.arange(0.01, 2.01, 0.01),
                                       risk2[1], label='$(n+1)X {(1)}$')
                                       risk3[1], label='X_{(1)}+X_{(n)}')
plt.plot(np.arange(0.01, 2.01, 0.01),
plt.plot(np.arange(0.01, 2.01, 0.01),
                                       risk4[1], label='$\\frac{n+1}{n} X_{(n)}
$')
plt.grid(ls=':')
plt.xlabel('$\\theta$', fontsize=16)
plt.ylabel('$\\widehat{R}\\left(\\theta^*, \\theta\\right)$', fontsize=16)
plt.legend(fontsize=14)
plt.title('g(x, y)=\\left|x-y\right|', fontsize=16)
plt.ylim((0, 0.02))
plt.show()
```


Сделайте вывод о том, какая оценка лучше и в каком подходе.

Вывод: По графикам мы видим, что квадратичный подход дает более хорошие результаты, чем линейный. В обоих подходах наилучший результат дает оценка $\frac{n+1}{n}X_{(n)}$.

b). Пусть X_1,\dots,X_n — выборка из распределения $Exp(\theta)$. Для $1\leqslant k\leqslant 5$ рассмотрим оценки $\left(k!/\overline{X^k}\right)^{1/k}$, которые вы получили в домашнем задании. Проведите исследование, аналогичное пункту a). Используйте цикл по k, чтобы не размножать код. Факториалы есть гамма-функция, которая реализована в scipy.special.gamma.

Задача 9*. Пусть θ^* --- оценка параметра θ и $R\left(\theta^*,\theta\right)=\mathsf{E}_{\theta}(\theta^*-\theta)^2$ --- функция риска с квадратичной функцией потерь. Тогда справедливо bias-variance разложение

$$egin{aligned} R\left(heta^*, heta
ight) &= bias^2(heta^*, heta) + variance(heta^*, heta), \ bias(heta^*, heta) &= \mathsf{E}_{ heta} heta^* - heta, \ variance(heta^*, heta) &= \mathsf{D}_{ heta} heta^*. \end{aligned}$$

а). Пусть X_1,\dots,X_n --- выборка из распределения $U[0,\theta]$. Рассмотрим класс оценок $\mathscr{K}=\left\{cX_{(n)},c\in\mathbb{R}\right\}$. Выпишите bias-variance разложение для таких оценок.

...

Заметим, что каждая компонента bias-variance разложения пропорциональна θ^2 . Это означает, достаточно рассмотреть поведение компонент при изменении c только для одного значения θ .

Постройте график зависимости компонент bias-variance разложения от c для n=5 и $\theta=1$. С помощью функций plt.xlim и plt.ylim настройте видимую область графика так, чтобы четко была отобажена информативная часть графика (по оси x примерно от 0.9 до 1.3). Не забудьте добавить сетку и легенду, а так же подписать оси.

Сделайте выводы. Какая c дает минимум функции риска? Является ли соответствующая оценка смещеной? Что можно сказать про несмещенную оценку?

b). Пусть X_1,\ldots,X_n --- выборка из распределения $\mathcal{N}(0,\sigma^2)$. Рассмотрим класс оценок $\mathcal{K}=\left\{rac{1}{c}\sum_{i=1}^n\left(X_i-\overline{X}
ight)^2,c\in\mathbb{R}
ight\}$. Выпишите bias-variance разложение для таких оценок.

Можно использовать то, что величина $\frac{nS^2}{\sigma^2}$ имеет распределение хи-квадрат с n-1 степенью свободы (это будет доказано в нашем курсе позже) и ее дисперсия равна 2(n-1).

. . .

Повторите исследование, аналогичное пункту а) для $sigma^2=1$ и $n\in\{5,10\}$. Для экономии места нарисуйте два графика в строчку. Не забудьте сделать выводы.

Задача 10*. Разберитесь с теорией параграфа 4 главы 6 книжки М.Б. Лагутина "Наглядная математическая статистика", 2009. Проведите соответствующее исследование.