Aula 03

Fundamentos da Usinagem

- Geometria da Ferramenta Monocortante -

Aula 03

- → Geometria da cunha de corte
- → Influências da Geometria da Ferramenta
- → Solicitações na cunha de corte: mecânicas e térmicas

Cinemática Geral dos Processos de Usinagem

Os processos de usinagem necessitam de um movimento relativo entre peça e ferramenta.

Geometria da Cunha de Corte

Geometria da Cunha de Corte

→ Para cada par material de ferramenta / material de peça têm uma geometria de corte apropriada ou ótima

A geometria da ferramenta influência na:

- Formação do cavaco
- Saída do cavaco
- Forças de corte
- Desgaste da ferramenta
- Qualidade final do trabalho

Geometria da Cunha de Corte

Geometria da ferramenta de tornear

 α = ângulo de incidência

 β = ângulo de cunha

 γ = ângulo de saída

 ε = ângulo de quina

 χ = ângulo de direção

 λ = ângulo de inclinação

 r_{ε} = raio de quina

Ferramentas integrais

Ferramentas integrais

Influências da Geometria da Ferramenta

Influências da Geometria da Ferramenta

ângulo de saída - γ_n

- γ_n Relacionado com a superfície de saída (face) da ferramenta, sobre a qual escoa o material da peça (cavaco).
 - Trabalho de dobramento do cavaco.

Tipos de quinas

Cinemática do processo de torneamento

Planos da ferramenta de corte

Planos no sistema ferramenta na mão

Planos da ferramenta de corte

Planos no sistema ferramenta na máquina

Fatores a serem considerados na escolha da geometria da ferramenta:

- → Material da ferramenta
- → Material da peça
- → Condições de corte
- → Tipo de operação
- → Geometria da peça

Ferramentas com insertos intercambiáveis

Ferrametas inteiriças

Ferramenta reta

Ferramenta com ponta quadrada

Ferramenta com ângulo de direção

Ferramenta do tipo off-set

Ferramenta com ponta em ângulo

Ferramentas com insertos intercambiáveis

Forma dos insertos

- Formas comuns

Denominações para as ferramentas de furar

Broca helicoidal

Geometria das brocas helicoidais

Ferramenta de furar Relação com a ferramenta de tornear

Fresamento - Generalidades

O fresamento se diferencia do torneamento pela sua:

- cinemática
 - torneamento peça rotaciona e ferramenta translada
 - fresamento peça translada e ferramenta gira

Denominações para as ferramenta de fresar

Tipos de alagadores

Alargador de múltiplos gumes

Alargador de gume único

Classificação dos alargadores

Quanto ao tipo de dentes

Geometria dos alargadores

onde:

 γ_0 - Ângulo de saída ortogonal

 $\chi_{\boldsymbol{r}}\,$ - Ângulo de direção do gume

 γ'_{D} - Ângulo de saída passivo do gume secundário

γf - Ângulo de saída lateral (ângulo de hélice)

a₀- Ângulo de incidência ortogonal

a'p - Ângulo de incidência passivo do gume secundário

Solicitações na cunha de corte

Regiões da formação do cavaco

Onde:

- a) zona de cisalhamento
- **b)** região de separação do material para materias frágeis
- **c)** superfície do cavaco deformações devidas a esforços
- **d)** superfície de corte deformações devidas a esforços
- e) região de separação para materiais dúcteis

Consequência dos esforços na de Ferramenta

Consequência dos esforços na de Ferramenta

Geração de Calor

Distribuição de Temperaturas

Material: Aço 850N/mm²

Espess. do cavaco: 0,32 mm

Vel.de Corte :60 m/min F

Ferramenta: P 20

Forças de usinagem

Força de usinagem= f(condições de corte (f, v_c , a_p), geometria da ferramenta (χ , γ , λ), desgaste da ferramenta)

Onde:

F_C = Força de corte

F_f = Força de avanço

F_D = Força de avanço

 F_{c} e F_{f} ~ 250 a 400 N/mm 2 - aços de construção mecânica

F_C e F_f ~1100 N/mm² - materiais de difícil usinabilidade

