6 Emulating Principal Components

This section is incomplete, and the PCA software is not yet fully tested.

6.1 Summary

Rather than emulating all observables, it can be more efficient to emulate a handful of principal components. After generating the training-point data, one can run the pca program included with the distribution. This will create files that shadow those used to emulate the observables. This will create a file Info/pca_info.txt alongside Info/observable_info.txt. The difference is that the observables will be named z1,z2... In each run directory, alongside the obs.txt files, there will be a obs_pca.txt file. Finally, there will be a file PCA_Info/tranformation_info.txt file that contains all the information and matrices required to perform the basis transformation. If the parameter Use_PCA is set to true, the emulator will use the PCA files above instead of the observable files. The emulator will then store the Taylor coefficients in the directory coefficients_pca/ rather than in coefficients/.

To get an idea of the capabilities and functionality of the PCA elements of the Smooth Emulator Distribution, one can view the sample main program,

GITHOME_MSU/smooth/local/main_programs/pca_main.cc.

6.2 PCA Parameters (not model parameters!)

The PCA programs uses parameter that are prefixed with **SmoothEmulator**. One would typically use the same parameter file as used for running Smooth Emulator. The relevant parameters are:

1. SmoothEmultor_UsePCA

If one wishes to emulate the PCA observables, i.e. those that are linear combinations of the real observables, this should be set to true. One must then be sure to have run the PCA decomposition programs first.

2. SmoothEmulator_ModelRunDirName and SmoothEmulator_TrainingPts should be set the same as used by Smooth Emulator.

6.3 Running the PCA programs

The first sample program is pca_calctransformation, which reads the training information from the full model runs and calculates the principal component information. Quantities such as the PCA eigenvalues and eigenvectors are stored. This provides the User knowledge of which linear combination of observables carry significant resolving power. By storing the eigenvectors, the information may be retrieved later. This allows the User to easily transform from the observable, y_a , to the PCA components z_a .

One should first to GITHOME_MSU/local/build and compile/install the program GITHOME_MSU/local/bin/pca_calctransformation.

.../local/build % cmake .

.../local/build % make pca_calctransformation

Next, from the project directory (assuming the training point information has already been collected) one can enter the command (assuming the path includes GITHOME_MSU/local/bin)

../my_project/ % pca_calctransformation PARAMETER_FILENAME

Here, PARAMETER_FILENAME is likely parameters/emulator_parameters.txt. At this point, all the information about observables from the training has equivalent representation for the PCA components.

In order to emulate the PCA components, one must set the parameter SmoothEmulator_UsePCA to true. Then, running the program smoothy_tune as described above will build and tune an emulator for the PCA components. It will store the Taylor coefficients in the directory coefficients_pca/.

The second sample program reads the transformation information written by $pca_calctransformation$. This program gives an example of transforming a vector of principal components, z_a , to a vector of observables y_a . To compile the programs, change into the build directory as above and enter:

- .../local/build % cmake .
- .../local/build % make pca_readtransformation