

Fahrerassistenzsysteme im Kraftfahrzeug

Prof. Dr.-Ing. Markus Lienkamp

Vorlesungsübersicht

01 Einführung	01 Einführung	01 Übung Einführung
28.04.2022 – Prof. Lienkamp	28.04.2022 – Prof. Lienkamp	28.04.2022 – Hoffmann
02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I
05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp
03 Sensorik / Wahrnehmung II	03 Sensorik / Wahrnehmung II	03 Übung Sensorik / Wahrnehmung II
12.05.2022 – DrIng. Diermeyer	12.05.2022 – DrIng. Diermeyer	12.05.2022 – Schimpe
04 Sensorik / Wahrnehmung III	04 Sensorik / Wahrnehmung III	04 Übung Sensorik / Wahrnehmung III
19.05.2022 – Schimpe	19.05.2022 – Schimpe	19.05.2022 – Schimpe
05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler
06 Übung Funktionslogik / Regelung 09.06.2022 – DrIng. Winkler	06 Funktionale Systemarchitektur 09.06.2022 – Prof. Lienkamp	06 Aktorik 09.06.2022 – Prof. Lienkamp
07 Deep Learning	07 Deep Learning	07 Übung Deep Learning
23.06.2022 – Majstorovic	23.06.2022 – Majstorovic	23.06.2022 – Majstorovic
08 MMI 30.06.2022 – Prof. Bengler	08 MMI 30.06.2022 – Prof. Bengler	08 MMI Übung 30.06.2022 – Prof. Bengler
09 Controllability	09 Controllability	09 Übung Controllability
07.07.2022 – Prof. Bengler	07.07.2022 – Prof. Bengler	07.07.2022 – Winkle
10 Entwicklungsprozess	10 Entwicklungsprozess	10 Übung Entwicklungsprozess
14.07.2022 – DrIng. Diermeyer	14.07.2022 – DrIng. Diermeyer	14.07.2022 – Hoffmann
11 Analyse und Bewertung FAS	11 Analyse und Bewertung FAS	11 Übung Analyse und Bewertung FAS
21.07.2022 – DrIng. Feig	21.07.2022 – DrIng. Feig	21.07.2022 – DrIng. Feig
12 Aktuelle und künftige Systeme 28.07.2022 – Prof. Lienkamp	12 Aktuelle und künftige Systeme 28.07.2022 – Prof. Lienkamp	12 Aktuelle und künftige Systeme 28.07.2022 – Prof. Lienkamp

Übung Kalman Filter Andreas Schimpe, M.Sc.

Agenda

- Rekursiver Bayesschätzer
- Zustandsraummodell des Beispiels
- Normalverteilung
- Kalmanfilter
- Rechenbeispiel

Grundprinzip

Filterung einer zeitlichen Abfolge von Messwerten

Aktualisierung von gespeicherten Tracks mit neuen Messwerten

- Prädiktion des Objektzustands
- Assoziation von gemessenem und prädiziertem Zustand
- Innovation: Aktualisierung des Objektzustands

Kalmanfilter

- **Rekursiver Bayesfilter**
- Minimiert mittleren quadratischen Fehler
- Optimale Lösung für normalverteilte Zustandsgrößen unter den Annahmen:
 - **Lineare Modelle**
 - Prozess- und Mess-Störungen sind normalverteilt, mittelwertfrei und zeitlich unkorreliert

过程和测量干扰呈正态分布, 无均值, 时间上不相关

Schätztheorie als Grundlage des Trackings

Rekursiver Bayesfilter

- Bayes-Schätzung: stochastische Schätzung auf Basis des Satzes von Bayes: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$
- Gesucht ist die beste Schätzung der Wahrscheinlichkeitsverteilung eines Zustands x auf Basis von Beobachtungen z

$$P(x_t|z_{1:t}) = \frac{P(z_{1:t}|x_t) P(x_t)}{P(z_{1:t})}$$

- Rekursiver Bayesschätzer:
 - Prädiktion: $P(x_t)$ als geschätzter Wert
 - Innovation: Update mit gemessenem Wert $P(z_t|x_t)$
- Nomenklatur
 - Zustand zum Zeitpunkt t
 - Messwert vom Zeitpunkt t
 - Schätzwert

Grundlagen für objektbasiertes Tracking

Zustandsbeschreibung

- Für Tracking ist Modellierung der Objektbewegung notwendig (Prädiktion)
- Modellierung durch Zustandsraummodelle effizient möglich
- Markov-Eigenschaft 1. Ordnung: nächster Zustand hängt nur vom aktuellen Zustand ab

Aufgabe 1: Ein Fahrzeug mit einem im Frontbereich integrierten Laserscanner folgt einem Vorderfahrzeug. Welche Merkmale können gemessen werden?

Abetard Abmessurgen (Breite) Orientierung

Vereinfachend wird im Folgenden nur noch die eindimensionale Bewegung entlang der x-Achse betrachtet.

Abstund

Aufgabe 2: Mit welchem diskreten Zustandsraummodell kann die relative Bewegung des Vorderfahrzeugs unter der Annahme konstanter Relativgeschwindigkeit modelliert werden?

$$d_{1} = do + V_{Vel,0} \cdot ST$$

$$= U_{Vel,0} \cdot ST$$

Normalverteilte Prozess und Messgrößen

Eindimensionale Normalverteilung

$$y = f(x|\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Mehrdimensionale Normalverteilung

Schritte des Kalmanfilters

Ablauf des Kalman-Filters in einem Zeitschritt k→k+1

Winner 2015, S.454

Initialisierung

- Initialisie rung des Zustands $x_0 = \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}$ mit erstem Messwert $z_0 = d_0$
- v_0 : sinnvoller Initialwert
- Messunsicherheit v₀

Initialisierung

- Initialisierung des Zustands $x_0 = \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}$ mit erstem Messwert $z_0 = d_0$
- v_0 : sinnvoller Initialwert.
- Messunsicherheit v₀

Prädiktion

• Prädiktion des Zustands \hat{x}_1 auf Basis des Bewegungsmodells

$$\hat{x}_1 = \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}_k = \begin{bmatrix} 1 & \Delta T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}_{k-1}$$

Prädiktion

• Prädiktion des Zustands \hat{x}_1 auf Basis des Bewegungsmodells

$$\hat{x}_1 = \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}_k = \begin{bmatrix} 1 & \Delta T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}_{k-1}$$

Innovation

Korrektur mit aktuellem Messwert

Innovation

Korrektur mit aktuellem Messwert

Kalmanfilter – Rechenschritte (1)

Prozessrauschen

Diskretes dynamisches System

$$x_k = \phi_{k-1}x_{k-1} + w_{k-1}$$

$$z_k = H_kx_k + v_k$$
Messrauschen

- Prädiktion von Schätzwert und Kovarianzmatrix
- $\widehat{\boldsymbol{x}}_{k}(-) = \boldsymbol{\phi}_{k-1}\widehat{\boldsymbol{x}}_{k-1}(+)$ $\boldsymbol{P}_{k}(-) = \boldsymbol{\phi}_{k-1}\boldsymbol{P}_{k-1}(+)\boldsymbol{\phi}_{k-1}^{T} + \boldsymbol{Q}_{k-1}$

1) Zustandsprädiktion

Kovarianz Prozessrauschen

Anpassung Kalmanfaktor

- (–) Prädizierte Werte
- (+) Aktualisierte Werte

Kovarianz Messrauschen

$$\overline{\boldsymbol{K}}_{k} = \boldsymbol{P}_{k}(-)\boldsymbol{H}_{k}^{T} \left[\boldsymbol{H}_{k}\boldsymbol{P}_{k}(-)\boldsymbol{H}_{k}^{T} + \boldsymbol{R}_{k}^{T}\right]^{-1}$$

Innovationskovarianzmatrix: Vergleich Modellunsicherheit im Messraum und Messunsicherheit

Kalmanfilter – Rechenschritte (2)

Innovation

mit Kalmanfaktor (K) gewichtete
 Anpassung der Prädiktion:

Anpassung Kovarianzmatrix:

$$P_k(+) = [I - \overline{K}_k H_k] P_k(-)$$

Kalmanfilter Rechenbeispiel

Aufgabe 3: Der Laserscanner (mit einer angegebenen Messunsicherheit $\sigma = 0.1$ m) hat ein neues Objekt im Abstand 39,97 m detektiert. Initialisieren Sie den Kalmanfilter mit einem sinnvollen Anfangszustand und Kovarianzmatrix. Prädizieren Sie anschließend den erwarteten Zustand, Messwert sowie die Kovarianzmatrix beim nächsten Zeitschritt (1 s).

$$x_{0}(+) = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt$$

Kalmanfilter Rechenbeispiel

Aufgabe 4: Die nächste Messung des Laserscanners ergibt einen Abstand von 34,98 m. Berechnen Sie den Kalmanfaktor. Berücksichtigen Sie dabei die Messunsicherheit R mit $\sigma = 0,1$ m. Wie lautet die dafür notwendige Messmatrix H_k in $z_k = H_k x_k + v_k$?

Die prädizierte Kovarianzmatrix ist
$$P_1(-) = \begin{bmatrix} 1.01 & 1 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1.01 & 1 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1.01 & 1 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1.01 & 1 \\ 1 & 2 \end{bmatrix}$$

 $= \begin{bmatrix} 0.49 \\ 0.98 \end{bmatrix}$

Kalmanfilter Rechenbeispiel

Aufgabe 5: Berechnen Sie die Innovation des Kalmanfilters. (Korrektur des prädizierten Zustands mit der gewichteten Messwertabweichung)

$$\hat{\chi}_{1}(t) = \hat{\chi}_{1}(-) + \hat{\chi}_{1} \left[2_{1} - \hat{H}_{1} \hat{\chi}_{1}(-) \right]$$

$$= \begin{bmatrix} 3q.a7 \\ 0 \end{bmatrix} + \begin{bmatrix} 0.a8 \\ 0.a8 \end{bmatrix} \begin{bmatrix} 34.48 - \begin{bmatrix} 10 \\ 0 \end{bmatrix} \begin{bmatrix} 34.48 - \begin{bmatrix} 10 \\ 0 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 35.03 \\ -4.84 \end{bmatrix}$$

$$x_0 = [40m, -5\frac{m}{s}]$$
; $\frac{\mathrm{d}v}{\mathrm{d}t} = 0.4\frac{m}{s^2}$; Sensorrauschen; $\sigma = 0.1$; $t_\mathrm{s} = 0.1s$

$$x_0 = [40m, -5\frac{m}{s}]$$
; $\frac{\mathrm{d}v}{\mathrm{d}t} = 0.4\frac{m}{s^2}$; Sensorrauschen; $\sigma = 0.1$; $t_\mathrm{s} = 0.1s$

Zeitschritte Zeitschritte

$$x_0 = [40m, -5\frac{m}{s}]$$
; $\frac{\mathrm{d}v}{\mathrm{d}t} = 0.4\frac{m}{s^2}$; Sensorrauschen; $\sigma = 0.1$; $t_s = 0.1s$

