

PARTIALLY DIRECTED GRAPHS

Why

We can embed the undirected graphs as certain garphs directed graphs.

Definition

Suppose that G = (V, E) is a directed graph. If $(v, w) \in E$ and $(w, v) \in E$ we call (v, w) (and (w, v)) and bidirected edge (or undirected edge). In other words, an edge $(v, w) \in E$ is undirected if (v, w) is also in E.

If every edge of a directed graph is undirected, then we call the graph undirected. If some edges are an some are not, we call G a partially directed graph.

Notation

Suppose (V, E) is a directed graph. It is common to write $v \to w$ for

$$(v, w) \in E$$
 and $(w, v) \notin E$.

It is common to write $a \sim \beta$ if

$$(v, w) \in E$$
 and $(w, v) \in E$

Similarly, we write $v \not\to w$ if $(v, w) \not\in E$ and $v \not\sim w$ if

$$(v,w) \not\in E$$
 and $(w,v) \not\in E$

Undirected version

As before, the undirected version (or skeleton) of G is the undirected partially directed graph defined satisfying $u \sim v$ if $u \to v$ or $u \sim v$.

Subgraphs

Given a graph G = (V, E) and a set $A \subset V$, the subgraph of G = (V, E) corresponding to A is the graph denoted G_A defined by $(A, E \cap (A \times A))$.

Completeness

Suppose (V, E) is a partially directed graph. In the context of partially directed graphs, the graph is *complete* if $(u, v) \in E$ or $(v, u) \in E$ for any two vertices u and v. A subset A is *complete* if the subgraph G_A is complete. A complete subset that is maximal $(w.r.t. \subseteq)$ is called a *clique*.

