Probability basics problem and with solution

Exercise 4. Given the network below, calculate marginal and conditional probabilities $Pr(\neg p_3)$, $Pr(p_2|\neg p_3)$, $Pr(p_1|p_2, \neg p_3)$ a $Pr(p_1|\neg p_3, p_4)$. Apply the method of inference by enumeration.

Inference by enumeration sums the joint probabilities of atomic events. They are calculated from the network model: $Pr(P_1,\ldots,P_n) = Pr(P_1|parents(P_1)) \times \cdots \times Pr(P_n|parents(P_n))$. The method does not take advantage of conditional independence to further simplify inference. It is a routine and easily formalized algorithm, but computationally expensive. Its complexity is exponential in the number of variables.

$$\begin{split} Pr(\neg p_3) &= \sum_{P_1,P_2,P_4} Pr(P_1,P_2,\neg p_3,P_4) = \sum_{P_1,P_2,P_4} Pr(P_1)Pr(P_2|P_1)Pr(\neg p_3|P_2)Pr(P_4|P_2) = \\ &= Pr(p_1)Pr(p_2|p_1)Pr(\neg p_3|p_2)Pr(p_4|p_2) + Pr(p_1)Pr(p_2|p_1)Pr(\neg p_3|p_2)Pr(\neg p_4|p_2) + \\ &+ Pr(p_1)Pr(\neg p_2|p_1)Pr(\neg p_3|\neg p_2)Pr(p_4|\neg p_2) + Pr(p_1)Pr(\neg p_2|p_1)Pr(\neg p_3|\neg p_2)Pr(\neg p_4|\neg p_2) + \\ &+ Pr(\neg p_1)Pr(p_2|\neg p_1)Pr(\neg p_3|p_2)Pr(p_4|p_2) + Pr(\neg p_1)Pr(p_2|\neg p_1)Pr(\neg p_3|p_2)Pr(\neg p_4|p_2) + \\ &+ Pr(\neg p_1)Pr(\neg p_2|\neg p_1)Pr(\neg p_3|\neg p_2)Pr(p_4|\neg p_2) + Pr(\neg p_1)Pr(\neg p_2|\neg p_1)Pr(\neg p_3|\neg p_2)Pr(\neg p_4|\neg p_2) = \\ &= .4 \times .8 \times .8 \times .8 + .4 \times .8 \times .8 \times .2 + .4 \times .2 \times .7 \times .5 + .4 \times .2 \times .7 \times .5 + \\ &+ .6 \times .5 \times .8 \times .8 + .6 \times .5 \times .8 \times .2 + .6 \times .5 \times .7 \times .5 + .6 \times .5 \times .7 \times .5 = \\ &= .2048 + .0512 + .028 + .028 + .192 + .048 + .105 + .105 = .762 \end{split}$$

$$\begin{split} Pr(p_2|\neg p_3) &= \frac{Pr(p_2,\neg p_3)}{Pr(\neg p_3)} = \frac{.496}{.762} = .6509 \\ Pr(p_2,\neg p_3) &= \sum_{P_1,P_4} Pr(P_1,p_2,\neg p_3,P_4) = \sum_{P_1,P_4} Pr(P_1)Pr(p_2|P_1)Pr(\neg p_3|p_2)Pr(P_4|p_2) = \\ &= Pr(p_1)Pr(p_2|p_1)Pr(\neg p_3|p_2)Pr(p_4|p_2) + Pr(p_1)Pr(p_2|p_1)Pr(\neg p_3|p_2)Pr(\neg p_4|p_2) + \\ &+ Pr(\neg p_1)Pr(p_2|\neg p_1)Pr(\neg p_3|p_2)Pr(p_4|p_2) + Pr(\neg p_1)Pr(p_2|\neg p_1)Pr(\neg p_3|p_2)Pr(\neg p_4|p_2) = \\ &= .4 \times .8 \times .8 \times .8 + .4 \times .8 \times .8 \times .2 + .6 \times .5 \times .8 \times .8 + .6 \times .5 \times .8 \times .2 = \\ &= .2048 + .0512 + .192 + .048 = .496 \end{split}$$

$$\begin{split} Pr(p_1|p_2,\neg p_3) &= \frac{Pr(p_1,p_2,\neg p_3)}{Pr(p_2,\neg p_3)} = \frac{.256}{.496} = .5161 \\ Pr(p_1,p_2,\neg p_3) &= \sum_{P_4} Pr(p_1,p_2,\neg p_3,P_4) = \sum_{P_4} Pr(p_1)Pr(p_2|p_1)Pr(\neg p_3|p_2)Pr(P_4|p_2) = \\ &= Pr(p_1)Pr(p_2|p_1)Pr(\neg p_3|p_2)Pr(p_4|p_2) + Pr(p_1)Pr(p_2|p_1)Pr(\neg p_3|p_2)Pr(\neg p_4|p_2) = \\ &= .4 \times .8 \times .8 \times .8 + .4 \times .8 \times .8 \times .2 = .2048 + .0512 = .256 \\ Pr(p_2,\neg p_3) &= Pr(p_1,p_2,\neg p_3) + Pr(\neg p_1,p_2,\neg p_3) = .256 + .24 = .496 \\ Pr(\neg p_1,p_2,\neg p_3) &= \sum_{P_4} Pr(\neg p_1,p_2,\neg p_3,P_4) = \sum_{P_4} Pr(\neg p_1)Pr(p_2|\neg p_1)Pr(\neg p_3|P_2)Pr(p_4|P_2) = \\ &= Pr(\neg p_1)Pr(p_2|\neg p_1)Pr(\neg p_3|p_2)Pr(p_4|p_2) + Pr(\neg p_1)Pr(p_2|\neg p_1)Pr(\neg p_3|p_2)Pr(\neg p_4|p_2) = \\ &= .6 \times .5 \times .8 \times .8 + .6 \times .5 \times .7 \times .2 = .192 + .048 = .24 \end{split}$$

$$\begin{split} Pr(p_1|\neg p_3,p_4) &= \frac{Pr(p_1,\neg p_3,p_4)}{Pr(\neg p_3,p_4)} = \frac{.2328}{.5298} = .4394 \\ Pr(p_1,\neg p_3,p_4) &= \sum_{P_2} Pr(p_1,P_2,\neg p_3,p_4) = \sum_{P_2} Pr(p_1)Pr(P_2|p_1)Pr(\neg p_3|P_2)Pr(p_4|P_2) = \\ &= Pr(p_1)Pr(p_2|p_1)Pr(\neg p_3|p_2)Pr(p_4|p_2) + Pr(p_1)Pr(\neg p_2|p_1)Pr(\neg p_3|\neg p_2)Pr(p_4|\neg p_2) = \\ &= .4 \times .8 \times .8 \times .8 + .4 \times .2 \times .7 \times .5 = .2048 + .028 = .2328 \\ Pr(\neg p_3,p_4) &= Pr(p_1,\neg p_3,p_4) + Pr(\neg p_1,\neg p_3,p_4) = .2328 + .297 = .5298 \\ Pr(\neg p_1,\neg p_3,p_4) &= \sum_{P_2} Pr(\neg p_1,P_2,\neg p_3,p_4) = \sum_{P_2} Pr(\neg p_1)Pr(P_2|\neg p_1)Pr(\neg p_3|P_2)Pr(p_4|P_2) = \\ &= Pr(\neg p_1)Pr(p_2|\neg p_1)Pr(\neg p_3|p_2)Pr(p_4|p_2) + Pr(\neg p_1)Pr(\neg p_2|\neg p_1)Pr(\neg p_3|\neg p_2)Pr(p_4|\neg p_2) = \\ &= .6 \times .5 \times .8 \times .8 + .6 \times .5 \times .7 \times .5 = .192 + .105 = .297 \end{split}$$

Conclusion: $Pr(\neg p3) = 0.762$, $Pr(p2|\neg p3) = 0.6509$, $Pr(p_1|p_2, \neg p_3) = 0.5161$, $Pr(p1|\neg p3, p4) = 0.4394$.