Parallel algorithm design

Jeremy Iverson

College of Saint Benedict & Saint John's University

Parallel algorithm design

- how do we identify concurrency in our algorithms?
- how do we assign work to processes?
- how do we distribute data to processes?

1. all of these things affect our analysis — potentially introducing parallel overhead and decreasing speedup

Problem decomposition

- the process of dividing the computation into smaller pieces of work, i.e., *tasks*
- tasks are programmer defined

1. answers questions of how do we identify concurrency in our algorithms

Example — dense matrix-multiplication

- 1. show this example on the board
- 2. just point out what we defined as tasks, and ask why? because it was the easiest / most natural?
- 3. are there any other ways that we could have decomposed the problem?

4

Example — query processing

	ID#	Model	Year	Color	Dealer	Price
_	4523	Civic	2002	Blue	MN	\$18,000
	3476	Corolla	1999	White	IL	\$15,000
	7623	Camry	2001	Green	NY	\$21,000
	9834	Prius	2001	Green	CA	\$18,000
	6734	Civic	2001	White	OR	\$17,000
	5342	Altima	2001	Green	FL	\$19,000
	3845	Maxima	2001	Blue	NY	\$22,000
	8354	Accord	2000	Green	VT	\$18,000
	4395	Civic	2001	Red	CA	\$17,000
	7352	Civic	2002	Red	WA	\$18,000

A database storing information about used vehicles.

MODEL="Civic" AND YEAR="2001" AND (COLOR="Green" OR COLOR="White")

- 1. relation database of vehicles
- 2. guery looks for all 2001 Civics whose color is either Green or White
- 3. in a relational database, this query could be processed by creating a number of intermediate tables
- 4. the intermediate tables are combined using set intersection / union

Example — query processing cont'd

The different tables and their dependencies in a query processing operation.

1. the task dependency graphs for a serialized way of organizing the computations

Example — query processing cont'd

The different tables and their dependencies in a query processing operation.

1. an organization that exposes more concurrency

Task-dependency graph

represented using a directed acyclic graph (DAG)

Task-dependency graphs and their mappings onto four processes for query processing.

useful metrics

- degree of concurrency
- critical path

- degree of concurrency the number of tasks that can be executed concurrently
- 2. critical path sum of the weights of nodes along the longest directed path between any pair of start and finish nodes
- 3. the ratio of critical path to total work is the average degree of concurrency in this example 63/27=2.33 and 64/34=1.88 respectively
- 4. what is the relationship between critical path and other metrics that we have studied?

Common decomposition methods

- data decomposition
- recursive decomposition
- exploratory decomposition
- speculative decomposition
- hybrid decomposition

- 1. up until now, our technique for identifying tasks was pretty adhoc, i.e., based on our expert experience, not a programmatic approach
- 2. we will focus mostly on data decomposition it is the most common

9

Data decomposition

- · derive the tasks by focusing on the multiplicity of the data
- · consists of two steps:
 - 1. partition the data
 - 2. derive tasks from the data partitioning
- · common data decompositions
 - input
 - output
 - intermediate
- · owner computes rule

- 1. how to derive tasks from data partitioning? owner computes rule
- 2. owner computes rule tasks are all computations associated with a partition of data

Example — query processing

The different tables and their dependencies in a query processing operation.

1. what sort of decomposition is this?

Intermediate decomposition

coming soon...

except where otherwise noted, this worked is licensed under creative commons attribution-sharealike 4.0 international license