

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Типовой расчет по дисциплине «Системы массового обслуживания»

ВАРИАНТ 90

Выполнил: Студент 4-го курса Демченко Г. Д.

Группа: КМБО-04-21

Задание

В рассматриваемых системах массового обслуживания (СМО) состояние в любой момент времени *t* характеризуется числом заявок, находящихся в СМО. События в развитии СМО связаны либо с поступлением в неё новых заявок, либо с окончанием обслуживания прибором заявки. В момент поступления в СМО очередной заявки определяется в соответствии с условием Задания время, через которое в СМО поступит следующая заявка. Время обслуживания прибором заявки определяется в соответствии с условием Задания в момент поступления заявки в прибор.

Задание 1. Одноканальная СМО с отказами (D|M|1|0) .

Дано:

- время между приходом заявок ΔT_3 (заданная постоянная величина);
- параметр μ_1 показательного распределения времени обслуживания заявки прибором.

СМО имеется 2 состояния:

- 0 в системе нет заявок (прибор свободен),
- 1 в системе одна заявка (прибор занят).

События могут быть трех типов:

- 1 появление в СМО новой заявки, которая сразу же принимается прибором на обслуживание (до этого прибор был свободен и СМО переходит из состояния 0 в состояние 1);
- 2 завершение обслуживания заявки прибором (при этом СМО переходит из состояния 1 в состояние 0);
- 3 появление в СМО новой заявки, которая получает отказ в обслуживании (прибор занят, при этом СМО остается в состоянии 1).

Предполагается, что в начальный момент времени $t\!=\!0$ в СМО нет заявок, т.е. состояние системы 0, и через заданное время $\Delta T_{_3}$ в СМО поступает первая заявка (произойдет событие с номером 1). Момент наступления первого события (типа 1) равен $t_{cof}(1)\!=\!\Delta T_{_3}$. После события 1 СМО находится в состоянии 1, в котором она будет оставаться время tобсл (1), определяемое в соответствии с показательным законом распределения с параметром μ_1 .

Требуется:

Провести моделирование первых 100 событий в развитии СМО и составить следующие таблицы.

Таблица 1.1 с данными о событиях:

- номер события l;
- момент наступления события $t_{cof}(l)$;
- тип события Type(l);
- состояние СМО C(l) после события l;
- оставшееся время $t_{\it ocm}(l)$ обслуживания прибором заявки после события l (если после события прибор свободен, то $t_{\it ocm}(l)$ = -1);
- время ожидания $t_{ows}(l)$, через которое после события l в СМО появится новая заявка;
- номер заявки j(l) , участвующей в событии l .

Таблица 1.2 с данными о заявках:

- номер заявки j;
- момент $t_{3}(j)$ появления заявки j в СМО;
- время $t_{\textit{обсл}}(j)$ обслуживания прибором заявки j ;
- момент $t_{\kappa o \delta}(j)$ окончания обслуживания заявки j и выхода её из СМО. Если в момент появления заявки j в СМО прибор был занят, и заявка получила отказ в обслуживании, то $t_{\kappa o \delta}(j) = 0$ и $t_{\kappa o \delta}(j) = t_3(j)$.

Таблица 1.3 с данными о состояниях следующего вида:

Состояние	$R_i(100)$	$v_i(100)$	$T_i(100)$	$\Delta_i(100)$
0	$R_0(100)$	$v_0(100)$	$T_0(100)$	$\Delta_0(100)$
1	$R_1(100)$	$v_1(100)$	T ₁ (100)	$\Delta_1(100)$
	$\sum_{i} R_{i}(100)$	$\sum_{i} v_{i}(100)$	$\sum_i T_i(100)$	$\sum_i \Delta_i(100)$

где

 $R_i(100)$ - число попаданий СМО в состояние і в событиях с 1-го по 100 ;

$$v_i(100) = \frac{R_i(100)}{100}$$
 — относительная частота попадания СМО в состояние і в событиях с 1-го по 100:-

 $T_i(100)$ - общее время пребывания СМО в состоянии і на интервале [0, $t_{coo}(100)$] ;

$$\Delta_i(100) = rac{T_i(100)}{t_{co6}(100)}$$
 - доля времени пребывания СМО в состоянии і на интервале [0, $t_{co6}(100)$].

А также найти:

- число заявок J(100) , поступивших в СМО на интервале [0, $t_{coo}(100)$] ;
- число JF(100) полностью обслуженных заявок на интервале $[0, t_{col}(100)]$;
- число JL(100) отклоненных заявок на интервале $[0,t_{col}(100)]$;
- общее время занятости прибора на интервале [0, $t_{coo}(100)$] ;
- общее время простоя прибора на интервале [0, $t_{coo}(100)$].

Краткие теоретические сведения