Performance and Locality Tradeoff in BitTorrent-like P2P File-Sharing Systems

Wei Huang, Chuan Wu and Francis C.M. Lau Department of Computer Science,
The University of Hong Kong

P2P Traffic Problem

Global Consumer Internet Traffic (PB per Month)

Data from: Cisco Visual Networking Index – Forecast and Methodology, 2008–2013

P2P Traffic Problem

• Large Volumes of Cross-ISP Traffic Has Been Incurred!

ISP vs. P2P

- Passive Strategy:
 - Packet filtering and blocking

- Positive Approaches: Localization
 - ISP deploy caches/proxies
 - P2P adopts localized peer selection
 - ISP collaborates with P2P

- One question remains:
 - To what extend should P2P traffic be localized, such that the benefits of both P2P users and ISPs are respected?

Our Contributions

- Characterize **tradeoff** between Performance and Locality
 - Starting from a generic maximum-weight b-matching model
 - => model BitTorrent-like peer selection
 - Introducing multiple objectives for both goals of download rate maximization and inter-ISP traffic minimization
 - => model the tradeoff
 - => derive Pareto-optimal peer selection solution
- Design fully **distributed algorithm** to achieve any desired Pareto-optimal peer selection

Modeling BitTorrent-like peer selection

A maximum-weight b-matching model

^{*} Note: a simplified model ignoring seeding and opportunistic unchoking

Modeling BitTorrent-like Peer Selection

- Maximum-weight b-matching Model
 - Optimal peer selection at peer i:

$$\max \sum_{j \in N_i} q_{ji}(x_{ji})$$

Subject to:

$$\sum_{j \in N_i} x_{ji} \le b,$$

$$x_{ji} = x_{ij}, \forall j \in N_i,$$

$$x_{ji} \in \{0,1\}, \forall j \in N_i.$$

 q_{ji} : generic preference function $[0,1] \rightarrow [0,+\infty)$

 N_i : neighborhood of peer i

 x_{ji} : peer i downloads from peer j, or not

b: maximum number of download connections

Modeling BitTorrent-like Peer Selection

- Maximum-weight b-matching Model
 - Global optimal peer selection:

$$\max \sum_{i \in V} \sum_{j \in N_i} q_{ji}(x_{ji}) \text{ weight We on edge e} \max \sum_{e \in E} w_e x_e$$
 Subject to:
$$\sum_{j \in N_i} x_{ji} \leq b, \forall i \in V, \qquad \sum_{e \in E} x_{e} \leq b, \quad \forall i \in V, \qquad \sum_{e \in E$$

Characterizing Performance and Locality Tradeoff

Introducing multiple objectives

At Peer i:

Global:

$$\begin{cases} \max \sum_{j \in N_i} r_{ji} x_{ji} \\ \min \sum_{j \in N_i} c_{ji} x_{ji} \end{cases} \qquad \begin{cases} \max \sum_{i \in V} \sum_{j \in N_i} r_{ji} x_{ji} \\ \min \sum_{i \in V} \sum_{j \in N_i} c_{ji} x_{ji} \end{cases}$$
 subject to:
$$\sum_{j \in N_i} x_{ji} \leq b, \quad \text{Subject to:} \qquad \sum_{j \in N_i} x_{ji} \leq b, \forall i \in V, \\ x_{ji} = x_{ij}, \forall j \in N_i, \\ x_{ji} \in \{0, 1\}, \forall j \in N_i. \end{cases}$$

$$x_{ji} \in \{0, 1\}, \forall i \in V, j \in N_i.$$

 r_{ji} : downloading rate from j to i, c_{ji} : network cost from j to i,

downloading performance neighbor locality

Characterizing Performance and Locality Tradeoff

- Definition of Solution at Pareto optimal
 - feasible x* is Pareto optimal if no other solution performs better for both objects, i.e., no x such that

$$\sum_{i \in V} \sum_{j \in N_i} r_{ji} x_{ji} > \sum_{i \in V} \sum_{j \in N_i} r_{ji} x_{ji}^* \quad \text{and} \quad \sum_{i \in V} \sum_{j \in N_i} c_{ji} x_{ji} < \sum_{i \in V} \sum_{j \in N_i} c_{ji} x_{ji}^*$$

- How to achieve Pareto optimal?
 - Centralized: Calculation
 - Distributed: Our algorithm

Distributed Multi-objective Peer Selection

Algorithm sketch

- each peer ranks all known neighbors according to preference
- sends requests to download to b peers in the order of preference
- downloads from matched peers and dynamically adjusts to better matching choices

• Example:

Trace-driven Evaluations

- A P2P swarm with up to 2000 peers, in 10 ISPs
- Download a file of 128 MB
- Upload capacity: heavy-tailed Pareto distribution [256 Kbps, 10 Mbps]
- Traffic-relay cost matrix among the ISPs from the traces

Trace-driven Evaluations

• A Convergence of distributed peer selection (matching) algorithm

- According to the settings, it takes about 40-50 minutes to download the entire file for a peer
 - The convergence time is tolerable

Trace-driven Evaluations

• Optimality of resulting peer selection (matching) : 2000 peers, b=6

• Compared to the centralized algorithm on global optimal, the distributed algorithm approximately achieves optimal

Thank You!

- Wei Huang
 - whuang@cs.hku.hk
- Chuan Wu
 - <u>cwu@cs.hku.hk</u>
- Francis C.M. Lau
 - fcmlau@cs.hku.hk