PROBLÈME: Suites convexes et quasi-convexes (d'après CENTRALE 1979)

À toute suite de nombres complexes $a = (a_n)_{n \in \mathbb{N}}$ on associe les suites définie sur \mathbb{N}^* par les relations

$$b_n = a_{n-1} - a_n$$
 $c_n = \frac{a_1 + a_2 + \dots + a_n}{n}$ $d_n = a_{n-1} + a_{n+1} - 2a_n$.

- On dit que (a_n) est <u>à variations bornées</u> si la série $\sum b_n$ est absolument convergente.
- On dit que (a_n) est quasi-convexe si la série $\sum nd_n$ est absolument convergente.
- On dit que (a_n) est $\overline{\text{convexe}}$ si elle est à valeurs réelles et si le réel d_n est positif ou nul pour tout $n \ge 1$.

On admettra (sans démonstration), que la série $\sum \frac{1}{n \ln n}$ est une série divergente (série de Bertrand).

PRÉLIMINAIRES

- **0.1** Montrer que, si (a_n) est à variations bornées alors (a_n) est convergente.
- **0.2** Prouver l'égalité, valable pour tout entier N :

$$\sum_{n=1}^{N} n d_n = \sum_{n=1}^{N} b_n - N b_{N+1}.$$

PARTIE I

Dans cette partie, (a_n) est une suite réelle.

- **I.1** Donner une condition nécessaire et suffisante, portant sur la suite (b_n) , pour que la suite (a_n) soit convexe.
- **I.2** On suppose dans cette question, qu'il existe une fonction réelle f, de classe \mathscr{C}^2 sur \mathbb{R}_+ , à dérivée seconde positive ou nulle sur \mathbb{R}_+^* , telle que $a_n = f(n)$ pour tout n. Démontrer que (a_n) est convexe.
- **I.3** Déterminer toutes les suites convexes (a_n) telles que la suite a' définie par les relations $a'_n = -a_n$ soient également convexes.
- **I.4** Déterminer les valeurs du réel strictement positif α telles que la suite de terme général $a_n = n^{\alpha}$ soit convexe.
- **I.5** Pour tout réel x, on note $\lfloor x \rfloor$ la partie entière de x, c'est à dire l'unique entier relatif tel que $\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1$. On adopte, dans cette question, $a_n = \lfloor n^\alpha \rfloor$ où α est un réel strictement positif.
 - a) La suite (a_n) est-elle convexe pour $\alpha = \frac{3}{2}$?

 (On pourra examiner le cas n = 9 en s'aidant d'une calculatrice; toutefois, le raisonnement figurant sur la copie devra exclure toute valeur approchée et ne s'appuyer que sur des inégalités entre entiers.)
 - **b)** Démontrer que la suite (a_n) est convexe pour $\alpha \ge 2$.

PARTIE II

Dans cette partie, (a_n) est une suite réelle, convexe et bornée. On notera A un majorant des réels $|a_n|$.

- **II.1** Démontrer que la suite (b_n) est convergente. Déterminer sa limite.
- **II.2** Démontrer que la suite (a_n) est convergente.
- **II.3** Soient n et p deux entiers de \mathbb{N}^* tels que $n \ge 2p$; démontrer les relations

$$0 \leq n b_n \leq 2(a_p - a_n).$$

En déduire les limites des suites $(n b_n)_{n \in \mathbb{N}}$ et $(n b_{n+1})_{n \in \mathbb{N}}$.

II.4 Démontrer l'existence et l'égalité des deux membres de la relation

$$\sum_{n=1}^{+\infty} n \, d_n = \sum_{n=1}^{+\infty} b_n.$$

PARTIE III

Dans cette partie, (a_n) est une suite quasi-convexe et bornée. On notera A un majorant des réels $|a_n|$.

III.1 Démontrer, pour tout entier $N \ge 2$, la relation

$$\sum_{n=1}^{N} |b_n| \le |a_0 - a_N| + 2 \sum_{n=1}^{N-1} n |d_n|.$$

En déduire que (a_n) est à variations bornées.

Indication:

On remarquera qu'on a la relation suivante (qui se démontre en développant simplement le second membre), valable pour tout $n \in [1, N]$:

$$b_n = \frac{1}{N}(b_1 + \dots + b_N) - \sum_{p=1}^{n-1} \frac{p}{N}(b_p - b_{p+1}) + \sum_{p=n}^{N-1} \frac{N-p}{N}(b_p - b_{p+1}),$$

et on montrera que l'on peut en déduire la formule suivante :

$$\sum_{n=1}^{N} |b_n| \le \left| \sum_{n=1}^{N} b_n \right| + 2 \sum_{n=1}^{N-1} n |b_n - b_{n+1}|.$$

III.2 Démontrer (en justifiant l'existence des sommes des séries concernées) les relations suivantes

$$\left|\sum_{n=1}^{+\infty} b_n\right| \leqslant \sum_{n=1}^{+\infty} |b_n| \leqslant \left|\sum_{n=1}^{+\infty} b_n\right| + 2\sum_{n=1}^{+\infty} n |d_n|.$$

III.3 Démontrer l'existence et l'égalité des deux membres de la relation

$$\sum_{n=1}^{+\infty} n d_n = \sum_{n=1}^{+\infty} b_n.$$

PARTIE IV

Dans cette partie, (a_n) est une suite complexe.

IV.1 Démontrer, pour n et N entiers supérieurs ou égaux à 1, les relations

$$c_n - c_{n+1} = \left(\frac{1}{n} - \frac{1}{n+1}\right) \cdot \sum_{m=1}^n m(a_m - a_{m+1})$$

et

$$\sum_{n=1}^{N} |c_n - c_{n+1}| \leq \sum_{m=1}^{N} |a_m - a_{m+1}|.$$

IV.2 On suppose, dans cette question, que (a_n) est à variations bornées. Calculer, pour n entier supérieur ou égal à 2, le nombre $c_{n-1} + c_{n+1} - 2c_n$ en fonction de $c_{n-1} - c_n$ et $a_{n+1} - a_n$.

En déduire que (c_n) est quasi-convexe et que l'on a la relation

$$\sum_{n=2}^{+\infty} n |c_{n-1} + c_{n+1} - 2c_n| \le 3 \sum_{n=1}^{+\infty} |a_{n+1} - a_n|.$$

- **IV.3** On suppose, dans cette question, que (a_n) est bornée et que (c_n) est quasi-convexe. Démontrer, en utilisant le résultat de la question III.1, que (a_n) est à variations bornées et convergente.
- **IV.4** On pose, dans cette question, $a_0 = 0$, $b_n = \frac{1}{n^2}$ si n n'est pas une puissance de 2, $b_n = \frac{1}{n}$ si n est une puissance de 2.

Démontrer que ceci définit une suite (a_n) vérifiant les propriétés supposées en IV.2 et IV.3.

Peut-on écrire encore, dans ce cas, la relation

$$\sum_{n=1}^{+\infty} n d_n = \sum_{n=1}^{+\infty} b_n ?$$

- **IV.5** On suppose, dans cette question, que (a_n) est à variations bornées. Démontrer que les propriétés suivantes sont équivalentes :
 - (i) la série $\sum \frac{a_{n+1}}{n+1}$ est absolument convergente;
 - (ii) la série $\sum \frac{c_n}{n+1}$ est absolument convergente.

PARTIE V

Dans cette partie, (a_n) est une suite complexe.

V.1 Démontrer, pour tout entier $p \ge 1$, les relations

$$\sum_{m=1}^{p} \frac{1}{m} \le 1 + \ln p$$

et

$$\left| |a_p \ln p - a_{p+1} \ln(p+1)| - |a_p - a_{p+1}| \ln p \right| \leqslant \frac{|a_{p+1}|}{p}.$$

- V.2 Démontrer que les propriétés suivantes sont équivalentes :
 - (i) la suite $(a_n \ln n)_{n \in \mathbb{N}}$ converge vers 0 et la série $\sum (a_n a_{n+1}) \ln n$ est absolument convergente;
 - (ii) les séries $\sum \frac{a_n}{n}$ et $\sum (a_n \ln n a_{n+1} \ln(n+1))$ sont absolument convergentes.
- **V.3** Donner un exemple simple de suite non nulle (a_n) satisfaisant aux deux conditions ci-dessus.

