Pergunta 1 Respondida

Nota: 1,70 em 3,00 Marcar

$$\frac{d^2y}{dt^2} \, = \, A \, + \, t^2 \, + \, t \, \frac{dy}{dt}$$

Use a seguinte configuração:

A	h	to	Уо	У ₀
0.5	0.25	0	0	1

Calcule usando o Método de Euler:

n	t	у
0	0	0
1	0.25	0.25
2	0.5	0.5625

Calcule usando o Método de Runge-Kutta de 4º ordem:

n	t	у
0	0	0
1	0.25	0.13710
2	0.5	0.37424

As respostas são numéricas, em vírgula fixa com 5 casas decimais, sendo o (,) ponto o separador decimal.

Calcule dois passos de integração numérica da seguinte equação diferencial de 2ª ordem:

Faz a mudança de variável para reduzir a ordem da EDO, considera as duas variáveis dependentes, mas na implementação dos métodos trabalha só com uma função.

Pergunta 2 Respondida Nota: 0,30 em 3,00

Marcar

pergunta

O sistema:

foi resolvido usando uma máquina de calcular hipotética, com a representação especificada no formato numérico apresentado acima, e usando Método de Eliminação de Gauss.

Fizeram-se duas resoluções, uma usando o sistema tal qual, outra fazendo uma pivotagem parcial.

Os resultados obtidos foram os seguintes:

Sem pivotagem	Com pivotagem
$\begin{cases} x_1 = 3.00000 \\ x_2 = 73.33331 \\ x_3 = 10.66667 \end{cases}$	$\begin{cases} x_1 = 5.53846 \\ x_2 = 69.23076 \\ x_3 = 12.30769 \end{cases}$

Discuta os seguintes pontos (sempre que as suas afirmações se basearem em cálculos, apresente-os):

- 1. Qual a solução que considera correta.
- 2. Porque é que não se obtiveram resultados iguais.
- 3. Como é que eventuais erros nos dados (coeficientes das incógnitas e termos independentes) se refletem na solução do sistema.

A resposta é um (pequeno) texto, submetido abaixo, que será corrigido manualmente.

1. A solução mais correcta é com pivotagem, pois é utilizada uma técnica para minimizar os erros.

Pergunta 3 Respondida Nota: 1,90 em 2,00 Marcar pergunta

Considere a função não linear que se pretende minimizar, por aplicação do **Método do Gradiente**.

$$Z(x,y) = 3x^2 - xy + 11y + y^2 - 8x$$

Complete o quadro com os valores em falta, para um passo efectivo de minimização.

Nº Iteração	X_n	$Z(X_n)$	Gradiente	λ (Escolha o melhor valor)
0	2	18	2	0.5
1	-4.5	2.5	100	

Comentário:

Erro ao transcrever o valor do Excel para o Moodle. Escreveu o valor do gradiente em y (df/dy). Falta de atenção ...

Pergunta 4 Respondida Nota: 1,90 em 2,00 Marcar pergunta

Pretendemos testar a validade do erro relativo obtido a partir do cálculo do quociente de convergência. Para isso vamos calcular de várias maneiras o integral

$$\int_a^b e^{cx} dx$$

a) Integrar numericamente usando a regra de Simpson, com os seguintes valores dos parâmetros

a	ь	c	h inicial
1	1.5	1.5	0.125

Preencha a tabela:

	h		valor do integral
h	0.125	S	3.33739
h'	0.0625	S'	3.33737
h"	0.03125	S"	3.33736

Assim o valor do Quociente de convergência é QC = 15.94745
e o erro relativo pode ser estimado em err.rel. = 0.00000

- b) Integrar analiticamente sendo o valor calculado do integral I = 3.33736
- c) O erro relativo cometido no melhor cálculo numérico, usando como padrão o valor analítico, é 0.00000

ATENÇÃO: Todas as respostas são numéricas e apresentadas em vírgula fixa e devem ser rigorosas até à quinta casa da representação em vírgula flutuante normalizada.

Comentário:

Podia ter usado mais casas decimais ou a notação científica para os erros relativos.

Pergunta 5 Respondida Nota: 0,75 em 1,00 Marcar pergunta

Pretende-se calcular um zero da seguinte função:

$$f(x) = (x - 3, 7) + (\cos(x + 1, 2))^3$$

Usando o **Método de Newton** , e partindo de

×₀ = 3,8

Calcule o valor da primeira iteração \boldsymbol{x}_1 .

A resposta é um número em virgula fixa com pelo menos 4 casas decimais, sendo o separador decimal o . (ponto).

Resposta: 3.7285

Comentário:

Erro na derivada: escreveu "-" em vez de "*".