linear Transform preserves vector addition & scalar mutiplication

$$f(x) + f(y) = f(x+y)$$

 $kf(x) \cdot = f(kx)$

 $\triangle f(x) = x + (a,b,c)$ is not linear, as

$$f(x+y) = x+y+2(a,b,c)$$

Affine Transform performs a scalar transform & translation, by a 4x4 modrix.

flomogeneous Notation direction $V = (Y_x, Y_y, V_{\overline{x}}, 0)$ point = $(Y_x, Y_y, V_{\overline{x}}, 1)$

Orthogonal Matrix Inverse = transpose

[a +][x. x.] = [0] . Total columns

Rotation Matrix X = T cp> R=cp> Tc-p>

: The can also be done by manipulating this

scaling on any arrise. F.= (fx.fy.fz.0).

any	.UY	019	·Ŧ		(.fx	ty o	′.f² 0
		·X		F	Šu	· 7	Ť

Notation	Name	Characteristics
T(t)	translation matrix	Moves a point. Affine.
$\mathbf{R}_{x}(\rho)$	rotation matrix	Rotates ρ radians around
		the x-axis. Similar notation
		for the y - and z -axes.
		Orthogonal & affine.
R	rotation matrix	Any rotation matrix.
		Orthogonal & affine.
S(s)	scaling matrix	Scales along all x-, y-, and
		z-axes according to s. Affine
$\mathbf{H}_{ij}(s)$	shear matrix	Shears component i by a
		factor s , with respect to
		component j .
		$i, j \in \{x, y, z\}$. Affine.
$\mathbf{E}(h, p, r)$	Euler transform	Orientation matrix given
		by the Euler angles
		head (yaw), pitch, roll.
		Orthogonal & affine.
$P_o(s)$	orthographic projection	Parallel projects onto some
		plane or to a volume. Affine.
$P_p(s)$	perspective projection	Projects with perspective
		onto a plane or to a volume.
$slerp(\hat{\mathbf{q}}, \hat{\mathbf{r}}, t)$	slerp transform	Creates an interpolated
		quaternion with respect to
		the quaternions $\hat{\mathbf{q}}$ and $\hat{\mathbf{r}}$,
		and the parameter t .

Shewing Matrix.

 $H_{x\bar{z}}(\varsigma) = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$

Modrix Concodencetion TRS

Rigid body Transform consists of only translation & rotation

$$X = T(t) R = \begin{cases} t_{00} & t_{01} \cdot t_{02} & t_{\infty} \\ t_{10} & t_{11} \cdot t_{12} & t_{y} \\ t_{20} & t_{12} \cdot t_{13} & t_{\infty} \end{cases}$$

$$X^{-1} = (T(t)R)^{-1} = R^{T}T(-t)$$

 \triangle Orienting the camera

$$V = \frac{(c-1)}{\|c-1\|} \quad V = \frac{-(v \times 4)}{\|v \times u'\|} \quad V = V \times V$$

$$\mathbf{M} = \underbrace{\begin{pmatrix} r_x & r_y & r_z & 0 \\ u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{change of basis}} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -t_x \\ 0 & 1 & 0 & -t_y \\ 0 & 0 & 1 & -t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{translation}} = \begin{pmatrix} r_x & r_y & r_z & -\mathbf{t} \cdot \mathbf{r} \\ u_x & u_y & u_z & -\mathbf{t} \cdot \mathbf{u} \\ v_x & v_y & v_z & -\mathbf{t} \cdot \mathbf{v} \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{translation}}$$

V → <0.0.0>

Normal Transformation surface normal cannot use the same matrix as points. Lines....

