CPSC 340: Machine Learning and Data Mining

Recommender Systems

Admin

Assignment 3:

Due yesterday, last possible day to submit is Wednesday night, solutions
 Thursday.

Assignment 5:

Is available.

Assignment 6:

- Will be very short (probably 1 question)
- You will only have one week to work on it

• Final exam:

April 25th at 8:30am in ESB 1013

Last 3 Lectures: Latent-Factor Models

We've been discussing latent-factor models of the form:

$$f(Z, w) = \sum_{i=1}^{n} ||W^{T}z_{i} - x_{i}||^{2}$$

- We get different models with under different conditions:
 - K-means: each z_i has one '1' and the rest are zero.
 - Least squares: we only have one variable (d=1) and the z_i are fixed.
 - PCA: the columns w_c are orthogonal.
 - NMF: all elements of W and Z are non-negative.

Last Time: Variations on Latent-Factor Models

We can use all our tricks for linear regression in this context:

$$f(w,z) = \sum_{i=1}^{n} \sum_{j=1}^{d} |w_{j}|^{2} - x_{ij}| + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{d} z_{ic}| + \frac{1}{2} \sum_{j=1}^{d} \sum_{j=1}^{d} |w_{ij}|$$

- Absolute loss gives robust PCA that is less sensitive to outliers.
- We can use L2-regularization.
 - Though only reduces overfitting if we regularize both 'W' and 'Z'.
- We can use L1-regularization to give sparse latent factors/features.
- We can use logistic/softmax/Poisson losses for discrete x_{ij}.
- Can use change of basis to learn non-linear latent-factor models.

Recommender System Motivation: Netflix Prize

Netflix Prize:

- 100M ratings from 0.5M users on 18k movies.
- Grand prize was \$1M for first team to reduce squared error by 10%.
- Started on October 2nd, 2006.
- Netflix's system was first beat October 8th.
- 1% error reduction achieved on October 15th.
- Steady improvement after that.
 - ML methods soon dominated.
- One obstacle was 'Napolean Dynamite' problem:
 - Some movie ratings seem very difficult to predict.
 - Should only be recommended to certain groups.

Lessons Learned from Netflix Prize

- Prize awarded in 2009:
 - Ensemble method that averaged 107 models.
 - Increasing diversity of models more important than improving models.

- Winning entry (and most entries) used collaborative filtering:
 - Method that only looks at ratings, not features of movies/users.
- A simple collaborative filtering method that does really well:
 - Regularized matrix factorization. Now adopted by many companies.

Motivation: Other Recommender Systems

- Recommender systems are now everywhere:
 - Music, news, books, jokes, experts, restaurants, friends, dates, etc.
- Main types of approaches:
 - 1. Content-based filtering.
 - Supervised learning:
 - Extract features x_i of users and items, building model to predict rating y_i given x_i .
 - Apply model to prediction for new users/items.
 - Example: G-mail's "important messages" (personalization with "local" features).
 - 2. Collaborative filtering.
 - "Unsupervised" learning (but have label matrix 'Y' but no features):
 - We only have labels y_{ii} (rating of user 'i' for movie 'j').
 - Example: Amazon recommendation algorithm.

Collaborative Filtering Problem

Collaborative filtering is 'filling in' the user-item matrix:

- We have some ratings available with values {1,2,3,4,5}.
- We want to predict ratings "?" by looking at available ratings.

Collaborative Filtering Problem

Collaborative filtering is 'filling in' the user-item matrix:

- What rating would "Ryan Reynolds" give to "Green Lantern"?
 - Why is this not completely crazy? We may have similar users and movies.

Matrix Factorization for Collaborative Filtering

Our standard latent-factor model for entries in matrix 'Y':

- User 'i' has latent features z_i. \
- Movie 'j' has latent features w_j. Twic could mean "has Nicholas (age"
- Our loss functions sums over available ratings 'R':

$$f(z,w) = \sum_{(i,j)\in R} (w_j^{7}z_i - y_{ij})^2 + \frac{1}{2}||z||_F^2 + \frac{1}{2}||w||_F^2$$

And we add L2-regularization to both types of features.

Adding Global/User/Movie Biases

Our standard latent-factor model for entries in matrix 'Y':

$$y_{ij} \approx w_j^T z_i$$

- Sometimes we don't assume the y_{ij} have a mean of zero:
 - We could add bias β reflecting average overall rating:

$$\gamma_{ij} \approx \beta + w_j^7 z_i$$

– We could also add a user-specific bias β_i and item-specific bias β_i .

$$y_{ij} \approx \beta + \beta_i + \beta_j + w_j^7 z_i$$

- Some users rate things higher on average, and movies are rated better on average.
- These might also be regularized.

Beyond Accuracy in Recommender Systems

- Winning system of Netflix Challenge was never adopted.
- Other issues important in recommender systems:
 - Diversity: how different are the recommendations?
 - If you like 'Battle of Five Armies Extended Edition', recommend Battle of Five Armies?
 - Even if you really really like Star Wars, you might want non-Star-Wars suggestions.
 - Persistence: how long should recommendations last?
 - If you keep not clicking on 'Hunger Games', should it remain a recommendation?
 - Trust: tell user why you made a recommendation.
 - Social recommendation: what did your friends watch?
 - Freshness: people tend to get more excited about new/surprising things.
 - ... but collaborative filtering does not predict well for new users/movies.
 - Because that new movie hasn't yet been rating by any/many people

Hybrid Approaches

- Collaborative filtering can't predict ratings for new users/movies.
- Hybrid approaches combine content-based/collaborative filtering:
 - SVDfeature (won "KDD Cup" in 2011 and 2012)

SVDfeature Updates

(pause)

Latent-Factor Models for Visualization

- PCA takes features x_i and gives k-dimensional approximation z_i .
- If k is small, we can use this to visualize high-dimensional data.

Motivation for Non-Linear Latent-Factor Models

- But PCA is a parametric linear model
- PCA may not find obvious low-dimensional structure.

 We could use change of basis or kernels: but still need to pick basis.

- PCA for visualization:
 - We're using PCA to get the location of the z_i values.
 - We then plot the z_i values as locations in a scatterplot.
- Multi-dimensional scaling (MDS) is a crazy idea:
 - Let's directly optimize the locations of the z_i values.
 - "Gradient descent on the points in a scatterplot".
 - Needs a "cost" function saying how "good" the z_i locations are.
 - Classic MDS cost function:

$$f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2$$
Distance between point in $e(k)$ dimensions

in original 'd' dimensions

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \sum_{i=1}^{2} \sum_{j=i+1}^{2} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \sum_{i=1}^{2} \sum_{j=i+1}^{2} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional "distances" between x_i.

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \sum_{i=1}^{2} \sum_{j=i+1}^{2} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \sum_{i=1}^{2} \sum_{j=i+1}^{2} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(z) = \sum_{i=1}^{2} \sum_{j=i+1}^{2} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.

MDS Optimization

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \sum_{i=1}^{2} \sum_{j=i+1}^{2} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Cannot use SVD to compute solution:
 - Gradient descent on z_i values.
 - You "learn" a scatterplot that tries to visualize high-dimensional data.
 - But not convex and sensitive to initialization.

MDS Method ("Sammon Mapping") in Action

Different MDS Cost Functions

MDS default objective: squared difference of Euclidean norm:

$$f(z) = \sum_{i=1}^{2} \sum_{j=i+1}^{2} (||z_i - z_j|| - ||x_i - x_j||)^2$$

• But we can make z_i match different distances/similarities:

$$f(2) = \sum_{j=1}^{n} \sum_{j=i+1}^{n} d_3(d_2(z_{i_1}z_{j_1}) - d_1(x_{i_2}x_{j_1}))$$

- $-d_1$ is the high-dimensional distance we want to match.
- $-d_2$ is the low-dimensional distance we can control.
- − d₃ controls how we compare high-/low-dimensional distances.
- the functions d_1 , d_2 , d_3 are not necessarily the same

Classic Multi-Dimensional Scaling (MDS)

MDS default objective function with general distances/similarities:

$$f(2) = \sum_{j=1}^{n} \sum_{j=i+1}^{n} d_3(d_2(z_{ij}z_{j}) - d_1(x_{ij}x_{j}))$$

- "Classic" MDS uses $d_1(x_i,x_j) = x_i^Tx_j$ and $d_2(z_i,z_j) = z_i^Tz_j$.
 - We obtain PCA in this special case (for centered x_i).
 - Not a great choice because it's a linear model.

Non-Euclidean Multi-Dimensional Scaling (MDS)

MDS default objective function with general distances/similarities:

$$f(2) = \sum_{j=1}^{n} \sum_{j=1}^{n} d_3(d_2(z_{ij}z_{j}) - d_1(x_{ij}x_{j}))$$

- Another possibility: $d_1(x_i, x_i) = ||x_i x_i||_1$ and $d_2(z_i, z_i) = ||z_i z_i||.$
 - The z_i approximate the high-dimensional L₁-norm distances.

28

Sammon's Mapping

- Challenge for most MDS models: they focus on large distances.
 - Leads to "crowding" effect like with PCA.
- Early attempt to address this is Sammon's mapping:
 - Weighted MDS so large/small distances more comparable.

$$f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left(\frac{d_2(z_{i,2j}) - d_1(x_{i,x_j})}{d_1(x_{i,x_j})} \right)^2$$

Denominator reduces focus on large distances.

Sammon's Mapping

- Challenge for most MDS models: they focus on large distances.
 - Leads to "crowding" effect like with PCA.
- Early attempt to address this is Sammon's mapping:
 - Weighted MDS so large/small distances more comparable.

Summary

- Recommender systems try to recommend products.
- Collaborative filtering tries to fill in missing values in a matrix.
 - Matrix factorization is a common approach.
- SVDfeature combines linear regression and matrix factorization.
- Multi-dimensional scaling is non-parametric latent-factor model.
- Different distances/losses/weights usually gives better results.

Next time: fixing MDS and discovering new types of Leukemia cells.

Bonus Slide: Tensor Factorization

• Tensors are higher-order generalizations of matrices:

Generalization of matrix factorization is tensor factorization:

- Useful if there are other relevant variables:
 - Instead of ratings based on {user,movie}, ratings based {user,movie,age}.
 - Useful if ratings change over time.

Bonus Slide: Multivariate Chain Rule

Recall the univariate chain rule:

$$\frac{d}{dw} \left[f(g(w)) \right] = f'(g(w)) g'(w)$$

• The multivariate chain rule:

$$\nabla \left[f'(g(w)) \right] = f'(g(w)) \nabla g(w)$$

Example:

$$\nabla \left(\frac{1}{2}(w^{2}x_{i}-y_{i})^{2}\right) \\
= \nabla \left[f(q(w))\right] \\
\text{with } q(w) = w^{2}x_{i} - y_{i}$$
and
$$f(r_{i}) = \frac{1}{2}r_{i}^{2} \longrightarrow f'(r_{i}) = r_{i}$$

$$= (w^{2}x_{i}-y_{i})x_{i}$$

Bonus Slide: Multivariate Chain Rule for MDS

General MDS formulation:

argmin
$$\sum_{j=i}^{n} \sum_{j=i+1}^{n} g(d_{i}(x_{i}, x_{j}), d_{i}(z_{i}, z_{j}))$$

$$Z \in \mathbb{R}^{n \times k} \sum_{j=i+1}^{n} g(d_{i}(x_{i}, x_{j}), d_{i}(z_{i}, z_{j}))$$

• Using multivariate chain rule we have:

$$\nabla_{z_i} g(d_i(x_i, x_j), d_2(z_i, z_j)) = g'(d_i(x_i, x_j), d_2(z_i, z_j)) \nabla_{z_i} d_2(z_i, z_j)$$

• Example: If $d_{1}(x_{i},x_{j}) = ||x_{i}-x_{j}||$ and $d_{1}(z_{i},z_{j}) = ||z_{i}-z_{j}||$ and $g(d_{1},d_{2}) = \frac{1}{2}(d_{1}-d_{2})$ $\nabla_{z_{i}} g(d_{1}(x_{i},x_{j}),d_{1}(z_{i},z_{j}) = -(d_{1}(x_{i},x_{j})-d_{2}(z_{i},z_{j})) \left[-\frac{(z_{i}-z_{j})}{2||z_{i}-z_{j}||}\right] = \nabla_{z_{i}} d_{2}(z_{i},z_{j})$ $= Assuming z_{i} \neq z_{j}$ (move distances closer) (how distance changes in z = spece)