Digital Sommelier

Wine Quality Classification using Machine Learning Techniques

Executive Summary

- **Project Focus:** Predicting wine quality using machine learning models, with a strong emphasis on addressing the challenge of imbalanced classes within the dataset.
- Data Source: We used a publicly available wine dataset from the UC Irvine Machine Learning Repository [3].
- Models Employed: Support Vector Machine (SVM), Random Forest, XGBoost Gradient Boosting, and an Artificial Neural Network (ANN).
- **Key Findings:** XGBoost Gradient Boosting model emerged as the best performer, offering the highest prediction accuracy while maintaining excellent speed.
- Impact: Demonstrated the effectiveness of XGBoost as a tool for predicting wine quality and highlighted the importance of addressing data imbalance.

Problem Statement

- Wine quality prediction is crucial for the wine industry, affecting market pricing, consumer preference, and overall reputation.
- Traditional assessment methods are subjective and inconsistent, heavily reliant on personal taste and susceptible to external influences.
- Current predictive models struggle with handling high-dimensional data, capturing complex, non-linear relationships, resisting overfitting, and dealing with imbalanced classes.
- Goal: Develop an effective, objective prediction model addressing imbalanced classes and improving accuracy across all wine quality levels.

Related Works

Wine quality prediction has been explored using diverse machine learning algorithms:

- Initial approaches: Linear regression and Support Vector Machines [1].
- Recent focus: Ensemble methods, e.g., Random Forests [2], [6].
- Emerging trends: Deep learning methods; performance varies based on dataset size and quality [4], [5].

Reported accuracy of existing models ranges between 60%-75%. Studies using deep learning techniques (ANN, CNN) report higher accuracies > 80% but were computationally expensive [7].

Imbalanced class issue: Various methods proposed for improved classification accuracy.

• Common strategies: Over-sampling minority class, under-sampling majority class, synthetic data generation methods (**SMOTE**) [7].

Proposed Work

Dataset: Publicly available wine dataset from UC Irvine Machine Learning Repository [3], including physicochemical attributes and human-assigned quality score.

Tools: Comprehensive set of Python libraries.

- Data preprocessing and manipulation: Pandas and NumPy.
- Data visualization: Matplotlib and Seaborn.
- Handling imbalanced classes: SMOTE from imbalanced-learn library.
- Machine Learning algorithms: TensorFlow for Artificial Neural Network, Scikit-learn for SVM, Random Forest, and XGBoost Gradient Boosting.

Proposed Work

Primary Tasks in Our Approach

- 1. Data Preprocessing: Cleaning data, transforming variables, and splitting dataset.
- 2. Data Exploration and Visualization: Exploratory data analysis to understand variable relationships and dataset structure.
- 3. Solving Imbalanced Class Problem: Use of SMOTE for synthetic oversampling of minority classes.
- 4. Feature Scaling: Standardization of features for unbiased model performance.
- 5. Modeling: Implementation of SVM, Random Forest, XGBoost Gradient Boosting, and Artificial Neural Network.
- 6. Optimal Model Selection: Performance-based selection of the most efficient and accurate model.

Data Preprocessing

```
[ ] import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
[ ] import tensorflow as tf
    from sklearn.preprocessing import StandardScaler, LabelEncoder
[] import time
red_wine_data = pd.read_csv('/content/gdrive/MyDrive/winequality-red.csv', sep=';')
    white wine data = pd.read csv('/content/gdrive/MyDrive/winequality-white.csv', sep=';')
[ ] red wine data['color'] = 'red'
    white_wine_data['color'] = 'white'
[ ] combined data = pd.concat([red wine data, white wine data], ignore index=True)
```

[] combined_data.head(10)

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol	quality	color
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	rec
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5	rec
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5	rec
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6	rec
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	rec
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4	5	rec
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	9.4	5	rec
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	10.0	7	rec
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	9.5	7	rec
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5	5	rec
7.													

features labels

num_entries = combined_data.shape[0]
print("Number of entries:", num_entries)

Number of entries: 6497

Data Transformation

Data Exploration

1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

-0.2

-0.4

- -0.6

Data Exploration

Print the most impactful features print(correlations)

quality_group	1.000000
alcohol	0.360580
density	0.246116
volatile acidity	0.194906
chlorides	0.154945
citric acid	0.073082
fixed acidity	0.052052
free sulfur dioxide	0.048382
sulphates	0.043719
residual sugar	0.035250
total sulfur dioxide	0.029793
pH	0.016064

Data Splitting, Feature Scaling and Class Imbalance

```
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import SMOTE
# Split the data into training and testing sets
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=1)
# Apply feature scaling
scaler = StandardScaler()
X train scaled = scaler.fit transform(X train)
X_test_scaled = scaler.transform(X_test)
# Apply SMOTE to oversample the minority class
smote = SMOTE(random state=1)
X_train_resampled, y_train_resampled = smote.fit_resample(X_train_scaled, y_train)
```

runtime = time.time() - start_time

Model Training

```
xgb classifier = xgb.XGBClassifier(random state=1)
# Create an SVM classifier
                                                                               # Start the timer
svm_classifier = SVC(kernel='rbf', C=1.0, gamma='scale', random_state=1)
                                                                                start time = time.time()
# Start the timer
                                                                               # Train the XGBoost classifier
start time = time.time()
                                                                               xgb classifier.fit(X train resampled, y train resampled)
# Train the SVM classifier
                                                                                # Stop the timer and calculate the runtime
svm_classifier.fit(X_train_resampled, y_train_resampled)
                                                                                runtime = time.time() - start time
# Stop the timer and calculate the runtime
                                                              # Build the ANN model
runtime = time.time() - start_time
                                                              model = Sequential()
                                                              model.add(Dense(64, activation='relu', input dim=X train resampled.shape[1]))
                                                              model.add(Dense(64, activation='relu'))
# Create the Random Forest classifier
                                                              model.add(Dense(64, activation='relu'))
rf_classifier = RandomForestClassifier(random_state=1)
                                                              model.add(Dense(64, activation='relu'))
                                                              model.add(Dense(10, activation='softmax'))
# Start the timer
                                                              # Compile the model
start_time = time.time()
                                                              model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# Train the classifier on the resampled training data
                                                              # Start the timer
rf_classifier.fit(X_train_resampled, y_train_resampled)
                                                              start_time = time.time()
# Stop the timer and calculate the runtime
                                                              # Train the model
```

Stop the timer and calculate the runtime
runtime = time.time() - start_time

Create an XGBoost classifier

model.fit(X_train_resampled, y_train_resampled, epochs=100, batch_size=32, verbose=1)

Evaluation

Evaluation Metrics for Model Assessment:

- **Primary Metric: Accuracy** Represents the proportion of correct predictions made by the model.
 - F1-Score: Harmonic mean of Precision and Recall, providing a balance between them.
 - Precision and Recall: Detailed assessment of the model's performance across different classes.
- Training Time: Computational efficiency is crucial, especially for practical deployment. We will record and compare the total training time for each model.

Our aim is to ensure a comprehensive and efficient model selection process, offering the highest quality prediction for real-world applications.

Evaluation

SVM

```
# Make predictions on the test set
y pred = svm classifier.predict(X test scaled)
# Evaluate the model
accuracy = accuracy score(y test, y pred)
report = classification_report(y_test, y_pred)
print("Accuracy:", accuracy)
print("Classification Report:\n", report)
print("Runtime:", round(runtime, 2), "seconds")
```

Accuracy: 0.63

2

Runtime: 5.58 seconds

Classification Report: recall f1-score precision support 0.54 0.22

0.60

0.79

0.72

0.55

0.14

0.91

0.43

0.63 1300 accuracy 0.49 0.64 0.50 1300 macro avg 0.79 0.63 0.67 1300 weighted avg

Random Forest

```
# Make predictions on the test set
y_pred = rf_classifier.predict(X_test)
# Calculate accuracy and generate classification repor
accuracy = accuracy_score(y_test, y_pred)
report = classification report(v test, v pred)
# Print accuracy and classification report
print("Accuracy:", round(accuracy,4))
print("Classification Report:\n", report)
print("Runtime:", round(runtime, 2), "seconds")
```

Accuracy: 0.8162

52

1012

236

Classification Report: precision recall f1-score support 0.32 0.40 0.36 52 2 0.90 0.86 0.88 1012 0.63 0.72 0.67 236 0.82 1300 accuracy 0.62 0.66 0.64 1300 macro avo weighted avg 0.83 0.82 0.82 1300

Runtime: 3.69 seconds

Evaluation

Gradient Boosting XGBoost

```
# Make predictions on the test set
y_pred = xgb_classifier.predict(X_test_scaled)
# Evaluate the model
accuracy = accuracy score(y test, y pred)
report = classification_report(y_test, y_pred)
print("Accuracy:", round(accuracy,4))
print("Classification Report:\n", report)
print("Runtime:", round(runtime, 2), "seconds")
```

Accuracy: 0.8308

Runtime: 6.21 seconds

Classification	Report:			
	precision	recall	f1-score	support
0	0.40	0.27	0.32	52
1	0.89	0.89	0.89	1012
2	0.65	0.68	0.67	236
accuracy			0.83	1300
macro avg	0.65	0.62	0.63	1300
weighted avg	0.83	0.83	0.83	1300

Artificial Neural Network

```
# Evaluate the model
y_pred_prob = model.predict(X_test)
y_pred = y_pred_prob.argmax(axis=1)
accuracy = accuracy score(y test, y pred)
report = classification_report(y_test, y_pred)
print("Accuracy:", round(accuracy,4))
print("Classification Report:\n", report)
print("Runtime:", round(runtime, 2), "seconds")
```

Accuracy: 0.8062

Classification	Report: precision	recall	f1-score	support
	precision	recute	11 30010	Support
1	0.28	0.29	0.28	52
2	0.88	0.87	0.88	1012
3	0.61	0.66	0.64	236
accuracy			0.81	1300
	0 50	0 61		
macro avg	0.59	0.61	0.60	1300
weighted avg	0.81	0.81	0.81	1300

Runtime: 112.39 seconds

Model Selection

Model	Accuracy	acy Efficiency (Runtime)		
SVM	0.63	5.58 s		Eliminated
Random Forest	0.8162	3.69 s		
Gradient Boosting	0.8308	6.21 s		
Artificial Neural Network	0.8062	112.39 s		Eliminated

Model Selection

Random Forest	Gradient Boosting		
Train and run in parallel	Train and run sequentially		
Can be faster	More accurate		
Resistant to noise	Prone to overfitting		

→ For our project, let's prioritize accuracy and choose XGBoost

Further Validation for XGBoost

Accuracy: 0.83 Classification		recall	f1-score	support
0 1 2	0.40 0.89 0.65	0.27 0.89 0.68	0.32 0.89 0.67	52 1012 236
accuracy macro avg weighted avg	0.65 0.83	0.62 0.83	0.83 0.63 0.83	1300 1300 1300

Runtime: 6.21 seconds

Further Validation for XGBoost

Class: 0, ROC AUC Score: 0.8223157051282051 Class: 1, ROC AUC Score: 0.8436264822134387 Class: 2, ROC AUC Score: 0.9042309162737352

Timeline

Week 1	Week 2	Week 3	Week 4
Data Acquisition, Preprocessing, and Exploration	Handling Imbalanced Classes, Feature Scaling and Model Implementation	Model Evaluation and Selection	Finalizing the Report

References

- [1] Avula, 2019. Predicting Red Wine Quality Using Machine Learning Model. Medium.

 https://medium.com/analytics-vidhya/predicting-red-wine-quality-using-machine-learning-model-34e2b1b8d498
- [2] Chhikara et al., 2023. Wine Quality Prediction Using Machine Learning Technique. In Smart Trends in Computing and Communications. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-99-0769-4_14
- [3] Cortez et al., 2009. Wine Quality. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C56S3T
- [4] Di and Yang, 2022. Prediction of Red Wine Quality Using One-dimensional Convolutional Neural Networks. arXiv preprint arXiv:2208.14008.
- [5] El-din, 2021. Red Wine Quality Classifier Using a Neural Network. Kaggle. https://www.kaggle.com/code/omaryassersalaheldin/red-wine-quality-classifier-using-a-neural-network/comments
- [6] Fairbrother et al., 2021. Predicting Wine Quality from Physicochemical Features. University of British Columbia. https://ubc-mds.github.io/DSCI 522 group09 Wine Quality Predictor
- [7] Kothawade, 2021. Wine Quality Prediction Model Using Machine Learning Techniques. University of Skovde.