Álgebra Linear I

Professora Kelly Karina

Isomorfismo

Consideremos o espaço vetorial

$$V = P_3 = \{at^3 + bt^2 + ct + d/a, b, c, d \in \mathbb{R}\}\$$

e seja $B = \{v_1, v_2, v_3, v_4\}$ uma base de P_3 .

Fixada uma base, para cada vetor $v \in P_3$ existe uma só quádrupla $(a_1, a_2, a_3, a_4) \in \mathbb{R}^4$ tal que

$$v = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$$

Reciprocamente, dada uma quádrupla $(a_1, a_2, a_3, a_4) \in \mathbb{R}^4$ existe um só vetor em P_3 da forma

$$a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$$

Dessa forma, a base $B = \{v_1, \dots, v_4\}$ determina uma correspondência biunívoca entre os vetores de P_3 e as quádruplas do \mathbb{R}^4 .

Observação:

a) Se
$$v=a_1v_1+\cdots a_4v_4\in P_3$$
 corresponde a $(a_1,\cdots,a_4)\in\mathbb{R}^4$ e $w=b_1v_1+\cdots b_4v_4\in P_3$ corresponde a $(b_1,\cdots,b_4)\in\mathbb{R}^4$ então: $v+w=(a_1+b_1)v_1+\cdots+(a_4+b_4)v_4\in P_3$ corresponde a (a_1+b_1,\cdots,a_4+b_4)

b) Para
$$k \in \mathbb{R}$$
, $kv = (ka_1)v_1 + \cdots + (ka_4)v_4 \in P_3$ corresponde a $(ka_1, \cdots, ka_4) \in \mathbb{R}^4$

Ou seja, a correspondência biunívoca entre P_3 e \mathbb{R}^4 preserva as operações de adição de vetores e multiplicação por escalar.

Neste caso dizemos que P_3 e \mathbb{R}^4 são isomorfos.

- M(2,2) e \mathbb{R}^4 são isomorfos;
- P_2 e \mathbb{R}^3 são isomorfos;
- M(3,1) e \mathbb{R}^3 são isomorfos;
- M(2,1) e \mathbb{R}^2 são isomorfos.

De forma geral temos:

"Se V é um espaço vetorial sobre $\mathbb R$ e $\dim V=n$ então V e $\mathbb R^n$ são isomorfos."

Operadores Inversíveis

Um operador $T: V \to V$ associa a cada vetor $v \in V$ um vetor $T(v) \in V$. Se por meio de outro operador S for possível inverter essa correspondência, de tal modo que a cada vetor transformado T(v) se associe o vetor de partida v, diz-se qque S é operador inverso de T, e se indica T^{-1} .

Propriedades:

Seja $T: V \rightarrow V$ um operador linear.

- Se T é inversível e T^{-1} é a sua inversa, então $T \circ T^{-1} = T^{-1} \circ T = I$ (identidade);
- T é inversível se e somente se $N(T) = \{0\}$;
- Se T é inversível, T transforma base em base;
- De T é inversível e B uma base de V, então $T^{-1}:V\to V$ é linear e $[T^{-1}]_B=([T]_B)^{-1}$.

Em particular, se B é a base canônica temos $[T^{-1}] = [T]^{-1}$ e assim $[T][T^{-1}] = [T \circ T^{-1}] = [I]$. Portanto T é inversível se, e somente se, $det [T] \neq 0$.

1) Seja o operador linear em \mathbb{R}^2 definido por

$$T(x, y) = (4x - 3y, -2x + 2y)$$

- a) Mostrar que T é inversível.
- b) Encontrar uma regra para T^{-1} como a que define T.

Solução:

a) A matriz canônica de T é $[T] = \begin{bmatrix} 4 & -3 \\ -2 & 2 \end{bmatrix}$. Como $det [T] = 2 \neq 0$, T é inversível.

→□ → →□ → → □ → ○○○

b)
$$[T^{-1}] = [T]^{-1} = \begin{bmatrix} 4 & -3 \\ -2 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & \frac{3}{2} \\ 1 & 2 \end{bmatrix}$$

Logo:

$$[T^{-1}(x,y)] = [T^{-1}] \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & \frac{3}{2} \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + \frac{3}{2}y \\ x + 2y \end{bmatrix}$$

ou seja

$$T^{-1}(x,y) = (x + \frac{3}{2}y, x + 2y)$$

2) Verificar se o operador $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por $T(1,1,1)=(1,0,0),\ T(-2,1,0)=(0,-1,0)$ e T(-1,-3,-2)=(0,1,-1) é inversível e, em caso afirmativo, determinar $T^{-1}(x,y,z)$.

Solução:

Note que $\{(1,1,1),(-2,1,0),(-1,-3,-2)\}$ é base do \mathbb{R}^3 e T está bem definido, pois conhecemos as imagens dos vetores dessa base. Para resolver, é possível encontrar T(x,y,z) e proceder da mesma forma que no exemplo 1. No entanto, resolveremos aqui de outra forma.

Pela definição de T temos:

$$T^{-1}(1,0,0) = (1,1,1)$$

 $T^{-1}(0,-1,0) = (-2,1,0)$
 $T^{-1}(0,1,-1) = (-1,-3,-2)$

Observando que $\{(1,0,0,(0,-1,0),(0,1,-1)\}$ é também base do \mathbb{R}^3 e que as imagens desses vetores é conhecida, o operador T^{-1} está definido. Portanto T é inversível (pois T^{-1} existe!). Encontremos a expressão de $T^{-1}(x,y,z)$:

Primeiramente, expressemos (x, y, z) em relação a esta base:

$$(x, y, z) = x(1, 0, 0) + (-y - z)(0, -1, 0) + (-z)(0, 1, -1)$$
 logo:

$$T^{-1}(x, y, z) = xT^{-1}(1, 0, 0) + (-y - z)T^{-1}(0, -1, 0) + (-z)T^{-1}(0, 1, -1)$$

$$T^{-1}(x, y, z) = x(1, 1, 1) + (-y - z)(-2, 1, 0) + (-z)(-1, -3, -2)$$

$$T^{-1}(x, y, z) = (x, x, x) + (2y + 2z, -y - z, 0) + (z, 3z, 2z)$$

$$I^{-1}(x, y, z) = (x, x, x) + (2y + 2z, -y - z, 0) + (z, 3z, 2z)$$

$$T^{-1}(x, y, z) = (x + 2y + 3z, x - y + 2z, x + 2z)$$

Produto Interno

Definição:

Seja V um espaço vetorial. Um produto interno sobre V é uma função que a cada par de vetores v_1 e v_2 associa um número real, denotado $\langle v_1, v_2 \rangle$, satisfazendo as propriedades:

i)
$$\langle v, v \rangle \geq 0$$
 para todo vetor v ;

$$\langle v, v \rangle = 0$$
 se e somente se $v = 0$;

ii)
$$\langle \alpha \mathbf{v}_1, \mathbf{v}_2 \rangle = \alpha \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$$
 para todo real α ;

$$(v_1 + v_2, v_3) = \langle v_1, v_3 \rangle + \langle v_2, v_3 \rangle;$$

$$(v_1, v_2) = \langle v_2, v_1 \rangle.$$

1) O produto escalar de vetores do espaço \mathbb{R}^3 .

Para
$$v_1 = (x_1, y_1, z_1)$$
 e $v_2 = (x_2, y_2, z_2)$

$$\langle v_1, v_2 \rangle = x_1 x_2 + y_1 y_2 + z_1 z_2.$$

De modo análogo, definimos o produto interno usual para o espaço \mathbb{R}^n :

Dados
$$v_1 = (a_1, a_2, \cdots, a_n)$$
 e $v_2 = (b_1, b_2, \cdots, b_n)$ $\langle v_1, v_2 \rangle = a_1b_1 + a_2b_2 + \cdots + a_nb_n.$

2)
$$V = \mathbb{R}^2$$
, $v_1 = (x_1, y_1)$ e $v_2 = (x_2, y_2)$

$$\langle v_1, v_2 \rangle = 2x_1x_2 - x_1y_2 - x_2y_1 + y_1y_2$$

3) Se V é o espaço das funções contínuas no intervalo [0,1], dadas $f_1,f_2\in V$, definimos

$$\langle f_1, f_2 \rangle = \int_0^1 f_1(t) f_2(t) dt$$

Definição:

Seja V um espaço vetorial com produto interno \langle,\rangle . Diz-se que dois vetores v e w de V são ortogonais (em relação a este produto interno) se $\langle v,w\rangle=0$. No caso em que v,w são ortogonais, escrevemos $v\perp w$.

Propriedades:

- i) $0 \perp v$ para todo $v \in V$;
- ii) $v \perp w \Rightarrow w \perp v$;
- iii) Se $v \perp w$ para todo $w \in V$ então v = 0;
- iv) Se $v_1 \perp w$ e $v_2 \perp w$, então $v_1 + v_2 \perp w$;
- v) Sev $\perp w$ e λ é um escalar, $\lambda v \perp w$.

Definição:

Base Ortogonal

Dizemos que uma base $\{v_1, \dots, v_n\}$ de V é **base ortogonal** se $\langle v_i, v_j \rangle = 0$ para $i \neq j$, isto é, os vetores da base são dois a dois ortogonais.

Seja V um espaço vetorial com produto interno \langle , \rangle e $B = \{v_1, \cdots, v_n\}$ uma base ortogonal de V e w um vetor qualquer de V. Calculemos as coordenadas do vetor w em relação à base B.

Se $w = x_1v_1 + x_2v_2 + \cdots + x_nv_n$ e queremos determinar a i – esima coordenada x_i então devemos fazer o produto interno dos 2 membros da igualdade acima com v_i :

$$\langle w, v_i \rangle = \langle x_1 v_1 + x_2 v_2 + \dots + x_n v_n, v_i \rangle = x_i \langle v_i, v_i \rangle \text{Segue que } x_i = \frac{\langle w, v_i \rangle}{\langle v_i, v_i \rangle}.$$

Seja $V = \mathbb{R}^2$ com produto interno usual e $B = \{(1,1), (-1,1)\}$. Note que B é base ortogonal. Calculemos $[(2,3)]_B$.

$$(2,3) = a(1,1) + b(-1,1)$$

$$x_1 = \frac{\langle (2,3), (1,1) \rangle}{\langle (1,1), (1,1) \rangle} = \frac{5}{2}$$

$$x_2 = \frac{\langle (2,3), (-1,1) \rangle}{\langle (-1,1), (-1,1) \rangle} = \frac{1}{2}$$

Segue que
$$[(2,3)]_B = \begin{bmatrix} \frac{5}{2} \\ \frac{1}{2} \end{bmatrix}$$