

Exact Solutions > Ordinary Differential Equations > Second-Order Nonlinear Ordinary Differential Equations > Emden-Fowler Equation

 $2. \quad y_{xx}^{\prime\prime} = Ax^n y^m.$

Emden-Fowler equation.

1°. With $m \neq 1$, the Emden–Fowler equation has a particular solution:

$$y = \lambda x^{\frac{n+2}{1-m}}$$
, where $\lambda = \left[\frac{(n+2)(n+m+1)}{A(m-1)^2}\right]^{\frac{1}{m-1}}$.

 2° . The transformation $z=x^{n+2}y^{m-1}$, $w=xy'_x/y$ leads to a first-order (Abel) equation:

$$z[(m-1)w + n + 2]w'_z = -w^2 + w + Az.$$

- 3° . The transformation y=w/t, x=1/t leads to the Emden–Fowler equation with the independent variable raised to a different power: $w_{tt}''=At^{-n-m-3}w^m$.
- 4° . Table 1 presents all solvable Emden–Fowler equations whose solutions are outlined in *Handbook of Exact Solutions for Ordinary Differential Equations* by Polyanin & Zaitsev. The one-parameter families (in the space of the parameters n and m) and isolated points are presented in a consecutive fashion. Equations are arranged in order of increasing m and increasing n (for identical m). The number of the equation sought is indicated in the last column.

TABLE 1 Solvable cases of the Emden–Fowler equation $y''_{xx} = Ax^ny^m$

No	m	n	Equation		No	m	n	Equation
1 2 3 4 5	One-pa. arbitrary arbitrary arbitrary 0	rameter familie $ \begin{array}{c c} 0 \\ -m-3 \\ -\frac{1}{2}(m+3) \\ \text{arbitrary} \\ \text{arbitrary} \end{array} $	2.3.1.2 2.3.1.3 2.3.1.4 2.3.1.1 2.3.1.5		13 14 15 16 17 18	-5/3 -5/3 -5/3 -5/3 -7/5 -7/5	-5/6 -1/2 1 2 -13/5	2.3.1.23 2.3.1.24 2.3.1.7 2.3.1.9 2.3.1.14 2.3.1.13
Isolated points					19 20 21	$ \begin{array}{c c} -1/2 \\ -1/2 \\ -1/2 \end{array} $	$ \begin{array}{r} -7/2 \\ -5/2 \\ -2 \end{array} $	2.3.1.12 2.3.1.6 2.3.1.26
6 7 8 9 10 11 12	$ \begin{array}{c c} -7 \\ -7 \\ -5/2 \\ -2 \\ -2 \\ -5/3 \\ -5/3 \end{array} $	$ \begin{array}{c c} 1 & 3 \\ -1/2 & -2 \\ 1 & -10/3 \\ -7/3 & \end{array} $	2.3.1.15 2.3.1.16 2.3.1.22 2.3.1.28 2.3.1.27 2.3.1.10 2.3.1.8		22 23 24 25 26 27 28	$ \begin{array}{c} -1/2 \\ -1/2 \\ -1/2 \\ -1/2 \\ 2 \\ 2 \\ 2 \end{array} $	-4/3 $-7/6$ $-1/2$ 1 -5 $-20/7$ $-15/7$	2.3.1.17 2.3.1.18 2.3.1.25 2.3.1.11 2.3.1.19 2.3.1.21 2.3.1.20

References

Kamke, E., Differentialgleichungen: Lösungsmethoden und Lösungen, I, Gewöhnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977.

Zaitsev, V. F. and Polyanin, A. D., Discrete-Group Methods for Integrating Equations of Nonlinear Mechanics , CRC Press, Boca Raton, 1994.

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition*, Chapman & Hall/CRC, Boca Raton, 2003.

Emden-Fowler Equation

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ode/ode0302.pdf