– sign because the *outward* pointing normal is in the -z direction for this face. The 2^{nd} equation arises from a Taylor expansion of the 1^{st} , and becomes exact in the limit $\delta z \rightarrow 0$.

Flux from the blue face at $z + \delta z/2$ is

Flux =
$$\left[a_{z}(x, y, z + \frac{\delta z}{2})\right] \times \delta x \delta y$$

$$\approx \left[a_{z}(x, y, z) + \frac{\delta z}{2} \frac{\partial a_{z}}{\partial z}(x, y, z)\right] \times \delta x \delta y.$$
(2)

The total flux from the two faces is (1) + (2):

Net flux =
$$\frac{\partial a_z}{\partial z} \delta z \times \delta x \delta y = \frac{\partial a_z}{\partial z} \times \delta V$$
. (3)

Now do the same thing to the other two pairs of faces to give (for whole box):

Net flux =
$$\left(\frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}\right) \times \delta V = \nabla \cdot \mathbf{a} \times \delta V.$$
 (4)

This shows that the divergence of a vector field **a** is very closely related to the local flux of the vector field.

For many important vector fields in Nature the net flux from a region of space must be *zero* unless there are *sources* (or *sinks*) of the field within the region. eg, for some fluids $\nabla \cdot \mathbf{v} = 0$ away from sources or sinks of fluid. For electrostatic fields $\nabla \cdot \mathbf{E} = 0$ unless there are charges at that point of space, which act as sources of electric field. For magnetic fields $\nabla \cdot \mathbf{B} = 0$ *everywhere in space*, because we know of no isolated magnetic charge.

Such fields, with the property $\nabla \cdot \mathbf{a} = 0$ are called *solenoidal* fields.

Example

Which of these fields could represent a physical magnetic field?

$$\mathbf{B}_1 = x^2 y \mathbf{i} - x y^2 \mathbf{j}$$

$$\mathbf{B}_2 = x y \mathbf{i} + y z \mathbf{j} + x z \mathbf{k}$$

 $\nabla \cdot \mathbf{B}_1 = 2xy - 2xy = 0$ everywhere in space. Therefore \mathbf{B}_1 could, in principle, be a magnetic field.

 $\nabla \cdot \mathbf{B}_2 = y + z + x$. This is NOT zero everywhere, so \mathbf{B}_2 cannot be a magnetic field.

2.2.2 Interpretation of curl

Concentrate on the *z*-component of $\nabla \times \mathbf{a}$ given by

$$(\nabla \times \mathbf{a})_z = \frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}.$$

Other components will follow by analogy. We look at a small rectangular loop of area $\delta A = \delta x \times \delta y$ centred at position (x, y, z), as shown below.

A vector field $\mathbf{a}(\mathbf{r})$ is assumed to thread this loop. We define the *circulation* of $\mathbf{a}(\mathbf{r})$ around the loop as:

Circulation = Component of $\mathbf{a}(\mathbf{r})$ along loop \mathbf{x} Distance along loop going *anti-clockwise* around loop

The total circulation is built up from the contributions from the four branches of the loop as follows:

Circulation =
$$a_x(x, y - \frac{\delta y}{2}, z)\delta x + a_y(x + \frac{\delta x}{2}, y, z)\delta y$$

 $-a_x(x, y + \frac{\delta y}{2}, z)\delta x - a_y(x - \frac{\delta x}{2}, y, z)\delta y.$

As we saw earlier in the interpretation of $\nabla \cdot \mathbf{a}$, these expressions can be Taylor-expanded to give

Circulation =
$$\left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \delta x \delta y = (\nabla \times \mathbf{a})_z \delta A.$$

The circulation around a loop in the plane normal to z can therefore be seen to be proportional to the z component of $\nabla \times \mathbf{a}$, and similar results can be obtained for the x and y components.

For a vector field to have a non-zero circulation (and hence a non-zero curl) it must possess a local *rotational* element. One way to think about this for a fluid flow $\mathbf{v}(\mathbf{r})$, for example, is to ask whether a small paddle placed in the flow would rotate. If it does, $\mathbf{v}(\mathbf{r})$ has a non-zero curl; if not $\nabla \times \mathbf{v} = \mathbf{0}$. In this respect, the paddle wheel can be thought of as a "curl-meter".

Several important vector fields in Nature are said to be *irrotational*, which means that their curl is zero everywhere in space. This is true of some fluid flows, all electric fields in electrostatics, and some magnetic fields.

To summarise:

 $\nabla \cdot \mathbf{a}$ measures local flux in a vector field $\mathbf{a}(\mathbf{r})$

 $\nabla \times \mathbf{a}$ measures local **circulation** in $\mathbf{a}(\mathbf{r})$

Example

Fluid flowing along a narrow channel tends to adopt the following velocity profile:

The velocity of the fluid $\mathbf{v}(\mathbf{r})$ is a vector field, given by

$$\mathbf{v} = c[y(a-y)\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}]$$

where c is a constant (>0). Calculate $\nabla \cdot \mathbf{v}$ and $\nabla \times \mathbf{v}$ and interpret your results.

2.3 Triple Products involving ∇

grad (ie ∇) acts on a **scalar** field ϕ and produces a **vector** field $\nabla \phi$.

div (ie $\nabla \cdot$) acts on a **vector** field \mathbf{a} and produces a **scalar** field $\nabla \cdot \mathbf{a}$.

curl (ie $\nabla \times$) acts on a **vector** field **a** and produces a **vector** field $\nabla \times \mathbf{a}$.

There are lots of ways in which grad, div and curl can be combined to form triple products.

Some of these are useful!

1. Consider div(grad ϕ) = $\nabla \cdot \nabla \phi$

$$\operatorname{div}(\operatorname{grad}\phi) = \operatorname{div}\left(\frac{\partial \phi}{\partial x}\mathbf{i} + \frac{\partial \phi}{\partial y}\mathbf{j} + \frac{\partial \phi}{\partial z}\mathbf{k}\right)$$
$$= \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} \equiv \nabla^2 \phi$$

 $abla^2$ is a new operator called the **Laplacian operator** (or "del squared")

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

 $abla^2$ is important; it turns up in many of the major (3d) equations of science, as we shall see later in the unit.

2. $\operatorname{curl}(\operatorname{grad}\phi) = \nabla \times \nabla \phi$

$$\nabla \times \nabla \phi = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z} \end{vmatrix} = \mathbf{0} \text{ always}$$

This is a very handy "vector identity" – we will use it very soon. It tells us that the curl of the gradient of **any** scalar field is zero.

3. div(curl \mathbf{a}) = $\nabla \cdot (\nabla \times \mathbf{a})$

This is another handy vector identity – see if you can prove for yourself that

$$\nabla \cdot (\nabla \times \mathbf{a}) = 0$$
 always

4. For lots more examples, see p18 of

"Basic Formulae and Statistical Tables"