Obliczenia Naukowe lista 1

Mateusz Tofil 19 października 2021 1 ZADANIE 1 1

1 Zadanie 1

1.1 Opis zadania

W tym zadaniu należało wyznaczyć macheps czyli najmniejszą liczbę macheps, która spełnia następująca nierówność fl(1.0+macheps) > 1.0. Następnie trzeba było wyznaczyć liczę eta, czyli najmniejszą liczbę większą od 0 tj. eta > 0.0. Kolejnym zadaniem, było wyznaczenie największej liczby max. Każdą z tych liczb (czyli. macheps, eta, max) należało wyznaczyć itercyjnie dla wszystkich typów zmiennopozycyjnych.

1.2 Metoda rozwiązania

W pliku zad1.jl znajdują się programy, z których otrzymałem wyniki przeprowadzonych badań. W każdym z podproblemie zasada działania była bardzo podobna i polegała na dzieleniu lub mnożeniu liczby początkowej, aż do momentu kiedy nie zostało spełnione zdanie logiczne.

Badałem liczbę macheps w pętli, aż do momentu kiedy nie zaszedł warunek $1 + current/2 \neq 1$. W momencie spełnienia warunku, pętla kończyła swoją pracę i zwraca aktualna wartość dla której warunek zachodzi, czyli macheps.

Analogiczny algorytmy wykorzystałem do wyznaczenia liczby eta. W każdej iteracji dzieliłem liczbę do momentu kiedy nie zaszedł warunek $current/2 \neq 0$.

Licząc liczbę maksymalną zatrzymujemy się po osiągnięciu nieskończoności, która w rzeczywistości została przekroczona. Po wyjściu z pętli należy dodawać do liczby połowy przerwy między nieskończonością. Operacje powtarzać, aż do momentu gdy $\frac{x}{2^k} \geq 1$ dla pewnego k.

1.3 Otrzymane wyniki

W tabelach o numerach 1, 2, 3 zaprezenotwałem zestawienia wyników, które otrzymałem z przeprowadzonych przeze mnie badań. Porównuje je z budowanymi funkcjami w języku Julia, takimi jak np. eps() czy nextfloat()) Otrzymane wyniki są zgodnę z wbudowanymi funkcjami, co jednoznacznie stwierdza, że napisane przeze mnie funkcje są poprawnie napisane i zwracają poprawne wyniki.

typ	moja funkcja	funkcja $eps()$	float.h
Float16	0.000977	0.000977	b.d.
Float32	1.1920929e-7	1.1920929e-7	1.1920928955e-07
Float64	2.220446049250313e-16	2.220446049250313e-16	2.2204460493e-16

Tablica 1: Wartości epsilona maszynowego dla typów zmiennopozycyjnych

2 ZADANIE 2 2

typ	moja funkcja	funkcja $nextfloat(0.0)$
Float16	6.0e-8	6.0e-8
Float32	1.0e-45	1.0e-45
Float64	5.0e-324	5.0e-324

Tablica 2: Wartości eta dla typów zmiennopozycyjnych

typ	moja funkcja	funkcja $nextfloat(0.0)$
Float1	$6 \mid 6.55e4$	6.55e4
Float3	$2 \mid 3.4028235e38$	3.4028235e38
Float6	$4 \mid 1.7976931348623157e308$	1.7976931348623157e308

Tablica 3: Wartości max dla typów zmiennopozycyjnych

1.3.1 Macheps a precyzja arytmetyki

Z wykłądu wiemy, że precyzja arytmetyki to $\frac{1}{2}\beta^{t-1}$. Liczba bitów przeznaczona na zapisanie cześci ułamkowej to właśnie t-1. Dla typu pojedycznej prezycji przeznaczone jest 24-bity, natomiast dla podwójnej już 53-bity. Podstawiając, dane to wzoru wyżej, otrzymujemy:

DOKOŃCZYĆ----

1.3.2 eta a liczba MIN_{sub}

Liczba eta i liczba MIN_{sub} leżą w tym samym rzędzie, a różnica między nimi jest bardzo mała.

1.3.3 Związek między floatmin(), a liczbą MIN_{nor}

Podobnie jak liczby eta i MIN_{sub} , wartości zwracane przez funkcje floatmin() leżą w tym samym rzędzie co liczba MIN_{nor}

typ	$funkcja\ floatmin()$	MIN_{nor}
Float32	1.1754944e-38	1.2e-38
Float64	2.2250738585072014e-308	2.2e-308

Tablica 4: Porównanie wartości floatmin() i MIN_{nor}

1.4 Wnioski

2 Zadanie 2

2.1 Opis zadania

Zadanie to polegało na sprawdzeniu, czy jesteśmy w stanie obliczając wartość wyrażenia a) $3*(\frac43-1)-1$ otrzymać wartość epsilona maszynowego.

3 ZADANIE 3 3

2.2 Metoda rozwiązania

Napisałem 3 funkcję, dla każdego typu Float16, Float32, Float64 funckję, która obliczała wyżej wymienione wyrażenie.

2.3 Otrzymane wyniki

Otrzymane wyniki porównałem z wcześniejszymi wynikami z poprzednich zadań i zestawiłem w tabeli 5.

typ	wynik wyrażenia	eps
Float16	-0.000977	0.000977
Float32	1.1920929e-7	1.1920929e-7
Float64	-2.220446049250313e-16	2.220446049250313e-16

Tablica 5: Porównanie wartości z wyrażenia a) z eps

Jak widać część naszych wyników pokrywają się. W miejsach gdzie wyniki nie zgadzają się, można zauważyć, są to liczby przeciwne. Najprawdopodobniej spowodowane jest to tym że liczba $\frac{4}{3}$ w rozwinięciu binarnym ma nieskończone rozwinięcie. Rozwinięcie to prezentuje się następująco 1.(10). Liczba bitów znaczących dla typów danych wynosi:

- Float16 10 bitów
- Float32 23 bity
- Float64 52 bity

Więc dla typu Float
16 i Float
64 ostatnią cyfrą mantysy jest 0, w przeciwieństwie do typu Float
32, gdzie ostatnia cyfra mantysy to 1. To właśnie decyduje o znaku odej
mowania.

2.4 Wnioski

Żyjąc w świecie gdzie istnieje tylko skończona dokłądność reprezentacji, niektóre równania dające w matematyce tożsamości, w arytmetyce zmiennoprzecinkowej mogą dawać zupełnie różne wyniki.

3 Zadanie 3

3.1 Opis problemu

W tym zadaniu, problem z jakim musiałem się zmierzyć to było zbadanie rozmieszczenia liczb zmiennoprzecinkowych w arytmetyce IEEE 754 o podwójnej prezycji. Rozmieszczenie liczb należało przebadać na różnych przedziałach liczbowych.

3 ZADANIE 3 4

3.2 Rozwiązanie