LAPORAN PRAKTIKUM ALGORITMA DAN PEMROGRAMAN 1

MODUL 03

I/O, TIPE DATA DAN VARIABEL

Disusun oleh:

MANGGALA PATRA RADITYA 109082500179

S1IF-13-02

Asisten Praktikum

Adithana dharma putra

Alfin Ilham Berlianto

PROGRAM STUDI S1 INFORMATIKA

FAKULTAS INFORMATIKA

TELKOM UNIVERSITY PURWOKERTO

2025

LATIHAN KELAS – GUIDED

1. Guided 1 Source Code

```
package main
import "fmt"
func main() {
   var sisi, volume float64
   fmt.Scan(&sisi)
   volume = sisi * sisi * sisi
   fmt.Println(volume)
}
```

Screenshoot program

Deskripsi program

1. package main

Menandakan program utama yang bisa dijalankan langsung.

2. import "fmt"

Mengimpor paket untuk input dan output (seperti Scan dan Println).

3. func main()

Fungsi utama tempat program mulai dijalankan.

4. var sisi, volume float64

Deklarasi dua variabel bertipe desimal: sisi untuk panjang sisi, volume untuk hasil perhitungan.

5. fmt.Scan(&sisi)

Membaca input pengguna dan menyimpannya ke variabel sisi.

6. volume = sisi * sisi * sisi

Menghitung volume kubus dengan rumus sisi3sisi^3sisi3.

7. fmt.Println(volume)

Menampilkan hasil perhitungan volume ke layar. Guided 2

2. Guided 2 Source Code

```
package main
import "fmt"
func main() {
   var alas, tinggi, luas float64
   fmt.Scan(&alas, &tinggi)
   luas = 0.5 * alas * tinggi
   fmt.Println(luas)
}
```

Screenshoot program

Deskripsi program

1. ackage main

Menandakan bahwa file ini adalah program utama yang bisa langsung dijalankan.

2. import "fmt"

Mengimpor paket fmt yang digunakan untuk membaca input dan menampilkan output ke layar.

3. func main()

Fungsi utama tempat semua perintah program dijalankan.

4. var alas, tinggi, luas float64

Mendeklarasikan tiga variabel bertipe float64 (bilangan desimal):

- alas \rightarrow menyimpan nilai alas segitiga
- tinggi → menyimpan nilai tinggi segitiga
- luas → menyimpan hasil perhitungan luas segitiga

5. fmt.Scan(&alas, &tinggi)

Membaca dua input dari pengguna, yaitu nilai alas dan tinggi.

6. luas = 0.5 * alas * tinggi

Menghitung luas segitiga dengan rumus 12×alas×tinggi\frac{1}{2}\times alas \times tinggi21×alas×tinggi.

7. fmt.Println(luas)

Menampilkan hasil perhitungan luas segitiga ke layar.

3. Guided 3

Source Code

```
package main
import "fmt"
func main() {
    var rupiah, dolar int
    fmt.Scan(&rupiah)
    dolar = rupiah / 15000
    fmt.Println(dolar)
}
```

Screenshoot program

Deskripsi program

1. package main

Menunjukkan bahwa ini adalah program utama yang bisa dijalankan langsung.

2. import "fmt"

Mengimpor paket fmt untuk menangani input dan output (membaca dan menampilkan data).

3. func main()

Fungsi utama tempat semua perintah program dijalankan.

4. var rupiah, dolar int

Mendeklarasikan dua variabel bertipe integer:

- rupiah → untuk menyimpan jumlah uang dalam Rupiah
- dolar → untuk menyimpan hasil konversi dalam USD

5. fmt.Scan(&rupiah)

Membaca input nilai Rupiah yang dimasukkan oleh pengguna.

6. dolar = rupiah / 15000

Mengonversi Rupiah ke Dolar dengan cara membagi nilai Rupiah dengan 15.000 (kurs tetap).

7. fmt.Println(dolar)

Menampilkan hasil konversi dalam satuan Dolar ke layar.

TUGAS

1. Tugas 1

Source code

```
package main
import "fmt"
func main() {
   var x float64
   fmt.Print("Masukkan nilai x: ")
   fmt.Scanln(&x)
   fx := 2/(x+5) + 5
   fmt.Printf("Nilai f(x) adalah: %g\n", fx)
}
```

Screenshoot program

Deskripsi program

1. package main

Menandakan bahwa file ini adalah program utama yang dapat dijalankan langsung.

2. import "fmt"

Mengimpor paket fmt yang digunakan untuk menampilkan teks ke layar (Print, Printf) dan membaca input dari pengguna (Scanln).

3. var x float64

Mendeklarasikan variabel x bertipe **float64** untuk menyimpan nilai input (bilangan desimal).

4. fmt.Print("Masukkan nilai x: ")

Menampilkan pesan agar pengguna memasukkan nilai x.

5. fmt.Scanln(&x)

Membaca nilai yang diketik oleh pengguna dan menyimpannya ke variabel x.

6. fx := 2/(x+5) + 5

Melakukan perhitungan fungsi matematika dengan rumus:

$$f(x) = 2x+5+5f(x) = \frac{2}{x+5} + 5f(x) = x+52+5$$

Hasil perhitungan disimpan dalam variabel fx.

7. fmt.Printf("Nilai f(x) adalah: %g\n", fx)

Menampilkan hasil perhitungan fungsi f(x)f(x)f(x) ke layar dalam format angka desimal (%g).

2. Tugas 2

Source code

```
package main
import "fmt"

func main() {

var r int

const PI float64 = 3.1415926535

fmt.Print("Masukkan jari-jari bola: ")

fmt.Scan(&r)

volume := (4.0 / 3.0) * PI * float64(r) * float64(r)

*float64(r)

luas := 4 * PI * float64(r) * float64(r)
```

```
fmt.Printf("Bola dengan jari-jari %d memiliki volume %.4f dan
luas kulit %.4f\n", r, volume, luas)
}
```

Screenshoot program

Deskripsi program

1. package main

Menunjukkan bahwa ini adalah **program utama** yang dapat dijalankan langsung.

2. import "fmt"

Mengimpor paket **fmt** untuk menangani **input dan output** (seperti Print, Scan, dan Printf).

3. var r int

Mendeklarasikan variabel ${\bf r}$ bertipe integer untuk menyimpan nilai jari-jari bola.

4. const PI float64 = 3.1415926535

Mendefinisikan konstanta PI (π) dengan tipe data float64 agar bisa digunakan dalam perhitungan volume dan luas bola.

5. fmt.Print("Masukkan jari-jari bola: ")

Menampilkan pesan di layar agar pengguna memasukkan nilai jari-jari bola.

6. fmt.Scan(&r)

Membaca input jari-jari yang dimasukkan pengguna dan menyimpannya ke variabel r.

7. volume := (4.0 / 3.0) * PI * float64(r) * float64(r) * float64(r) Menghitung volume bola dengan rumus:

```
V=43\pi r3V = \frac{4}{3} \pi r^3V = 34\pi r^3
```

Tipe r dikonversi ke float64 agar dapat digunakan dalam operasi desimal.

8. luas := 4 * PI * float64(r) * float64(r)
Menghitung luas permukaan bola dengan rumus:

```
L=4\pi r2L = 4 \pi r^2L=4\pi r2
```

9. fmt.Printf("Bola dengan jari-jari %d memiliki volume %.4f dan luas kulit %.4f\n", r, volume, luas)

Menampilkan hasil perhitungan ke layar dengan format:

- %d → menampilkan bilangan bulat (untuk jari-jari)
- %.4f \rightarrow menampilkan bilangan desimal dengan 4 angka di belakang koma (untuk volume dan luas)

3. Tugas 3

Source code

```
package main
import "fmt"

func main() {
   var tahun int
   fmt.Print("Tahun: ")
   fmt.Scan(&tahun)
   kabisat := (tahun%400 == 0) || (tahun%4 == 0 &&
        tahun%100 != 0)
   fmt.Println("Kabisat:", kabisat)
}
```

Screenshoot program

Deskripsi program

1. package main

Menunjukkan bahwa file ini adalah **program utama** yang bisa dijalankan langsung.

2. import "fmt"

Mengimpor paket **fmt** yang digunakan untuk menampilkan teks ke layar (Print, Println) dan membaca input dari pengguna (Scan).

3. var tahun int

Mendeklarasikan variabel **tahun** dengan tipe data **integer** untuk menyimpan input tahun dari pengguna.

4. fmt.Print("Tahun: ")

Menampilkan pesan di layar agar pengguna memasukkan tahun yang ingin diperiksa.

5. fmt.Scan(&tahun)

Membaca input dari pengguna dan menyimpannya ke variabel tahun.

- 6. kabisat := (tahun%400 == 0) || (tahun%4 == 0 && tahun%100 != 0)
 Baris ini berisi logika penentuan tahun kabisat, dengan aturan:
 - Tahun kabisat terjadi jika habis dibagi 400, atau
 - Habis dibagi 4 tetapi tidak habis dibagi 100.

 Hasil logika ini (true atau false) disimpan dalam variabel kabisat.

7. fmt.Println("Kabisat:", kabisat)

Menampilkan hasil ke layar berupa nilai **true** (jika tahun kabisat) atau **false** (jika bukan kabisat).

4. Tugas 3

Source code

```
package main
import "fmt"

func main() {
    var celsius float64
    fmt.Print("Temperatur Celsius: ")
    fmt.Scan(&celsius)
    reamur := (4.0 / 5.0) * celsius
    fahrenheit := (9.0/5.0)*celsius + 32.0
    kelvin := celsius + 273.0
    fmt.Println("Derajat Reamur:", reamur)
    fmt.Println("Derajat Fahrenheit:", fahrenheit)
    fmt.Println("Derajat Kelvin:", kelvin)
}
```

Screenshoot program

Deskripsi program

1. package main

Menandakan bahwa ini adalah **program utama** yang dapat dijalankan langsung.

2. import "fmt"

Mengimpor paket **fmt** yang digunakan untuk menampilkan pesan ke layar dan membaca input dari pengguna.

3. var celsius float64

Mendeklarasikan variabel **celsius** bertipe **float64** untuk menyimpan suhu yang dimasukkan pengguna (bisa desimal).

4. fmt.Print("Temperatur Celsius: ")

Menampilkan pesan agar pengguna memasukkan nilai suhu dalam derajat Celsius.

5. fmt.Scan(&celsius)

Membaca input dari pengguna dan menyimpannya ke variabel celsius.

6. reamur := (4.0 / 5.0) * celsius

Mengonversi suhu dari Celsius ke Reamur dengan rumus:

 $R=45\times CR = \frac{4}{5} \times CR = 54\times C$

7. fahrenheit := (9.0/5.0)*celsius + 32.0

Mengonversi suhu dari Celsius ke Fahrenheit dengan rumus:

 $F=95\times C+32F = \frac{9}{5} \times C+32F=59\times C+32$

8. kelvin := celsius + 273.0

Mengonversi suhu dari Celsius ke Kelvin dengan rumus:

K=C+273K = C + 273K=C+273

9. fmt.Println("Derajat Reamur:", reamur)

Menampilkan hasil konversi ke Reamur.

10. fmt.Println("Derajat Fahrenheit:", fahrenheit)

Menampilkan hasil konversi ke Fahrenheit.

11. fmt.Println("Derajat Kelvin:", kelvin)

Menampilkan hasil konversi ke Kelvin.