Changing the steer consider the colorest of th

o) reply through an sun to sest usky on the shipton p) we some exidency rolled and of muses hebergues

WHEAT VOTE ASSIGNMENT

A) OFT ASSIGNMENT

m= 27+1+D> extra valore onoxolor

$$M_V = \sum V_1' = 2 \overline{VV} + 1$$
 $mox \# valo + wat our ise dismission in the system$

let 2 be # neglicos ne ossign mox to => Mu= dVmox + (m-d) Vmin UST VORS meed to be distributed such that Qu=Fv+1 gathroad, gustum almays every by at beast our connect replica.

$$F_1 = (D+\frac{1}{2}) / (m_1 m_2) = \frac{1}{2}$$

$$f_2 = (D+\frac{1}{2}) / (m_1 m_2) = \frac{1}{2}$$

$$f_3 = (D+\frac{1}{2}) / (m_1 m_2) = \frac{1}{2}$$

$$f_4 = (D+\frac{1}{2}) / (m_1 m_2$$

semperines to team

sofe minimality (ture exists at east one minimal quorum in the system) comox subst of a colorist that the to the to the comox of the tenth comox of => Smox + ou additional riplica finding Vimin= 1=> Que FU+1, the necessary voles

COHOR UP OBON TONH MUTERY WIT ME MUTERY A SHOULD SE STUDY PHORODICALLY

Scor not never bestown is neutron (1) to trains minuted accordant to the performance of t

consistency (all guouns tenot hold ar who intersect by at coost one ruplica) polition wimin and troug to c= offer up ariother muchy laminimal

B) OFT ASSIGNMENT

$$N_V = \Sigma U_i = 2FU+ \underline{V} = \sum_{i=1}^{N_V} V_i \max_{i=1}^{N_V} \sum_{j=1}^{N_V} d = 2f$$

MUJIPUE WEIGHTS CHALLENGE

A) OFT HODE

$$m=u$$
, $t=2$, $N=2$ = mojody= $\left[\frac{1}{1+2}\right]=3$

Fu= 4/max = (0+4) /m/m = 1.2=2 QL=3

$$M=0$$
, $A=2$, $V=1=3$ majority = $\left[\frac{5}{647}\right]=1$

weighted
$$\longrightarrow$$
 $V_{min} = 1 + \frac{1}{2} = 2.5$

While 1

回回回回

I med to remain 1 10 keep avoilablishing

C+b+1=4(=) a+b=3 Lowighted withing reach gots tolf

i) FIRST (DEA + odd) are more weight

NV = d1 V2 + d2 V2 + (n-d1-d2) V0

From neighbed voting

Fv=(0+f) Vmim = flower
(0+f) Vo do Vot de Ve = 0+f

$$d_1+d_2=f, d_1=d_2=f(2)$$

$$d_2+d_2=f, d_1=d_2=f(2)$$

$$d_1+d_2=f, d_1=f(2)$$

$$d_1+f, d_2=f, d_1=f(2)$$

$$d_1+f, d_2=f, d_1=f, d_2=f, d_$$

û) SECOND IDEA > multiple weights + some kind of nouncing

$$K$$
 neights to account to $2 + \sqrt{(K + 4)}$ $\sqrt{(K + 4)}$

Fv= (0+4) Vmi m =
$$4 \text{Vmox}$$
 $(D+4) \text{Vo} = D+4$
 $dk+-+de=4=) dk-e=-=de=[4/k]$
 $dk=4-[4/k](k-1)$

ii) I weight =
$$V+-+V+=$$
 = $V+-+V+=$ = V

1) Of to each replica (equal) =) V max more weighted voting

(r)
$$\frac{1}{m}(1+2+...+1)=1(-)$$
 $m=\frac{1}{4+1}$

thuck, we can do weighting by assigning each reperce $V_i = \frac{1 \cdot D}{m}$ weight,

population of 4 unights cool

in our of neighbor

of
$$dx = \frac{1}{4} - \frac{1}{4} = \frac{1}{4$$

$$= \frac{1}{4|k|} \frac{1}{k(k-1)}$$

$$= \frac{1}{4|k|} \frac{1}{k(k-1)}$$

$$= \frac{1}{4|k|} \frac{1}{k(k-1)} + \frac{1}{4-k} \frac{1}{4|k|}$$

$$= \frac{1}{4|k|} \frac{1}{k(k-1)} + \frac{1}{4-k} \frac{1}{4|k|}$$

$$= \frac{1}{4|k|} \frac{1}{k(k-1)} + \frac{1}{4-k} \frac{1}{4|k|} \frac{1}{k(k-1)} + \frac{1}{4|k|}$$

$$= \frac{1}{4|k|} \frac{1}{k(k-1)} + \frac{1}{4k-k} \frac{1}{k(k-1)} + \frac{1}{4|k|}$$

$$= \frac{1}{4|k|} \frac{1}{k(k-1)} + \frac{1}{4|k|} \frac{1}{k(k-1)} +$$

Heuch, we can do weighted verting by assigning to diaptices weight $V_i = \frac{i \cdot h}{m}$, $i = \frac{1}{h} k$.

B) OFT HOOSE

Ly we apply the same ideas but m=3f+1+1 and thunk we have f'=2f imstead ev=2f+1 and thunk we have f'=2f imstead above,