Data Mining

 op een geautomatiseerde manier bruikbare patronen en relaties ontdekken in grote hoeveelheden gegevens (= grote datasets)

Toepassingen in:

- Medische wereld: kans op ziekte bepalen
- Economische wereld:
 - Wie zal ingaan op een aanbod?
 - Gemiddelde uitgave van die mensen?
 - Fraude, b.v. bij verzekeringen
- Informatica:
 - Classificatie spam non spam mails
 - Welke datapakketjes vormen aanval?

...

Op het grensvlak van:

- statistiek,
 - lineaire en logistische regressie,...
- machine learning, artificial intelligence
 - neural networks, decision trees,...
- data base management

Gevolg: meervoudige terminologie!

- Variabele, kenmerk, attribuut, "field"
 - → kolom in een dataset
- Observatie, "record"
 - \rightarrow rij in een dataset

- Output variabele, target variabele, afhankelijke variabele
- Input variabelen, predictor variabelen

Verschillen statistiek → data miningStatistiek:

- "kleine" hoeveelheid data (= steekproef)
- zelfde steekproef voor voorspelling en voor betrouwbaarheid van dat resultaat
- hypothesetoetsen, betrouwbaarheidsint.
 - → moeilijk
 - → veel beperkingen

Data mining

- "grote" hoeveelheid data
- een grote steekproef om model te "fitten"
- tweede steekproef voor performantie model
 - \rightarrow veel inzichtelijker
 - → minder beperkingen
- Gevaar! Overfitting !! (zie verder)

Data mining is statistics at scale, speed and simplicity!

Belangrijkste 'domeinen' data mining:

Classificiation

Klasse voorspellen

- Op basis van data met gekende klasse → model 'fitten'
- Toepassen op data met ongekende klasse
- Voorbeelden:
 - Spam non spam
 - Aanval netwerk geen aanval

Prediction

- Analoog als classificiation
- Geen klasse, maar waarde continue variabele voorspellen
- Voorbeelden:
 - Gemiddelde uitgave klant
 - Kijkcijfers voorspellen

Affinity Analysis – Association Rules

- Welke variabelen worden geassocieerd met elkaar?
- Voorbeelden:
 - Opstelling producten warenhuis
 - Amazon (Market Basket)

Clustering Analysis

- Groeperen van 'gelijkaardige' data
- Voorbeelden:
 - Marktsegmentatie-onderzoek
 - http://www.music-map.com

(Data Exploration – Data Visualization)

(Data Dimension Reduction)

Supervised ↔ Unsupervised learning Supervised

- Classification en Prediction
- "Training set" waarbij waarde target variabele gekend is
 - → gebruiken om model te "trainen"
 - → model leert van data in "training set"
- Model daarna 'tunen'
- Model gebruiken voor voorspelling target variabele bij nieuwe data
- Voorbeeld: lineaire regressie

Unsupervised

- Geen target variabele om te voorspellen
- Model kan niet leren van een "training set" met gekende target variabele
- Voorbeelden: clustering analysis

Stappen in het data mining proces

- 1. Doel van de analyse duidelijk omschrijven
- 2. Dataset voor de analyse 'samenstellen'
 - Random sampling uit grote database
 - Gegevens uit databases samenbrengen
 - Interne en externe data
- 3. Exploreren, 'opkuisen', voorbereiden data
 - Ontbrekende data (missing values)?
 - Outliers?
 - Verbanden tussen variabelen?
 - ...
- 4. Variabelen verwijderen, bijmaken, 'transformeren'
- 5. Data verdelen in training, validatie, test set
- 6. Welke data mining taak?
 - Association, Prediction, Clustering?
- 7. Welk data mining techniek?
 - Regressie, Naïve Bayes, Neural net?
- 1.Data mining algoritmes implementeren en uitvoeren
- 2. Beste algoritme/techniek kiezen
- 3. Model in productie brengen / omzetten in beslissingsregels

In Sas: **SEMMA**-methodologie:

Sample

Explore

Modify

Model Assess

Random Sampling

- data mining: veel variabelen en records
- beperkingen rekencapaciteit, software
 - → sampling, kleinere dataset

Oversampelen van zeldzame gebeurtenissen

- vaak in classificatie: veel '0', weinig '1'
- → eventueel random sample met weinig '1'
- → weinig informatie over records klasse '1'
- → moeilijk goed model te trainen voor classifcatie '0' en '1'
- oplossing: klasse '1' oversampelen
- kan belangrijk zijn:
- \rightarrow een '1' missen kan duur zijn! (cfr. aanval computernetwerk)
- → '0' foutief als '1' klasseren is minder erg!

Data voorbereiden Continue variabele

→ eventueel discrete variabele

Discrete variabele met n klassen

ightarrow n-1 binaire dummy variabelen

Outliers, uitschieters

- kan wijzen op fout gemeten/ingegeven
- kan groot effect hebben op het model

- eventueel verklaring vinden voor outlier
 - → inbreng domeinexpert belangrijk!

Ontbrekende data (missing values)

- indien weinig records met ontbrekende data
 → records verwijderen
- maar stel 30 variabalen, voor elke record, voor elke variabele 5% kans missing value
 - → kans missing value in gegeven record?
- eventueel vervangen door b.v. gemiddelde (= 'imputed value')
 - → nadeel: geen nieuwe informatie voor die variabele
 - → voordeel: informatie andere variabelen gaat niet verloren!

Data normaliseren

- records onderling vergelijken kan alleen op dezelfde schaal
- anders kan 1 variabele domineren
 - → normaliseren
 - → (waarde gemiddelde)/standaardafw.
 - → schaal: "aantal standaardafwijkingen van het gemiddelde"
- afhankelijk van techniek of dit nodig is

Hoeveel records nodig voor training model?

v.b. Delmater en Hancock voor classificatie
 aantal records = minstens 6*M*N

M = aantal klassen

N = aantal variabelen

→ liefst aantal variabelen minimaliseren

Overfitting

- training data gebruiken om model te fitten
- probleem: training data = signaal + ruis
- gevaar: ruis modelleren i.p.v. signaal

= overfitting

- altijd wel model dat past op training data
- maar: model moet niet alleen training data modelleren!
- gevolg: model niet toepasbaar op toekomstige data
- belangrijk: waar stop je met fitten?
- voorbeeld: lineaire regressie en regressie van hogere orde
- probleem kan ook ontstaan bij te veel 'predictor' variabelen
 - → model beter te fitten bij meer var.
- → maar: eventueel variabelen in model opgenomen die niet belangrijk zijn bij het toepassen van model op toekomstige data

Training Set - Validation Set - Test Set

"Partitioning"

Typisch voor data mining (grote datasets!)

- Training set
 - gebruiken om model te trainen
 - model aanpassen/fitten aan de data
 - gevaar: overfitting
- Validation set
 - performantie gevonden model onderzoeken
 - gevonden model verfijnen/tunen
 - gevaar: opnieuw overfitting
- Test Set
 - niet altijd aanwezig
 - performantie beste modellen per techniek met elkaar vergelijken

Partitioning at random of volgens een variabele

Typische verhoudingen:

- training/validation (60/40)
- training/validaton/test (50/30/20)