

Artificial Neural Network

Ms. Swetha R.
Assistant Professor
Department of Electronics &
Communication Engg.

ARTIFICIAL NEURAL NETWORK

Class-1 Neural Network

Ms. Swetha R.

Department of Electronics and Communication Engineering

Artifical Neural Network Content

PES UNIVERSITY ONLINE

- 1. Neural Network: Human Nervous System
- 2. Artificial Neuron- McCulloch-Pitts Model of Neuron

Human Nervous System:

- The nervous system is the most complex and highly organized body system.
- It receives information from the sensory organs via nerves, transmits the information through the spinal cord, and processes it in the brain.
- Then, we perceive the information and we act/respond accordingly.

Human Nervous System:

• The human nervse sysem may be viewed as a three stage as depicted in the below block diagram:

Human Nervous System:

- Receptors: Rods and Cones of eyes, Pain, touch, hot and cold receptors of skin, Stretch receptors of muscles
- Effectors: Muscles and glands, speech generators
- All nervous tissue, from the brain to the spinal cord to the furthest nerve branch, includes cells called neurons.

- Neurons are charged cells: they conduct electrical signals to pass information through the body
- A typical neuron consists of a cell body, dendrites, and an axon with an axon terminal.

• Main part of the "Nervous System" is Network of Neurons.

- The dendrites receive signals from body tissues or other neurons and pass them into the cell body.
- If an outgoing signal is produced, it zips down the axon to the axon terminal and passes to the next neuron or target cell.
- This conductive capability sends information up and down nerve pathways and through the central nervous system at incredible speed.
- Some 100 billion neurons give the brain its awesome processing power.

Idealization of a neuron:

To build a network model we use the following features of the biological neuron:

- a. Inputs arive at a neuron of varying strengths
- b. The cell body acts as a summing device to obtain the net effect of various input signals
- c. When the threshold is exceeded the neuron fires.
- d. An active synape, which repeatedly triggers will grow in strength and other synapses weaken. Therefore the synaptic strength is modified continuously. This is called plasticity

THE ARTIFICIAL NEURON MODEL IS BUILT BASED ON THE ABOVE

- Model of the Artificial Neuron:
- A neuron is an information-processing unit that is fundamental to the operation of a neural network
- The diagram shows the model of neuron-"McCulloch-Pitts Model of Neuron".
- Three basic elements of neuronal model:
 - Connecting links/set of synapses
 - Adder: linear combiner
 - Activation function/Squashing functions

Artificial Neuron:

Let us take a look at the similarities based on the terminology between Biological and Artificial Neurons.

Biological Neuron	Artificial Neuron
Soma	Node
Dendrites	Input
Synapse	Weights or Interconnections
Axon	Output

Mathematically a neuron 'k' can be represented as:

signal and w_{k2}, \dots, w_{km}

Linear combiner output:

$$u_k = \sum_{j=1}^m w_{kj} x_j$$

Output of a neuron:

$$y_k = \varphi(u_k + b_k)$$

where, x_1, x_2, \dots, x_m are the input are the synaptic weights, bk is the bias

Activation potential /Induced Local field of neuron k:

$$v_k = u_k + b_k$$

$$v_k = \sum_{j=0}^m w_{kj} x_j$$

$$y_k = \varphi(v_k)$$

<u>Artificial Neural Network:</u>

- Neural Network is a network of artificial neurons, as found in human brains, for solving artificial intelligence problems such as image identification. They may be a physical device or mathematical constructs
- In other words, Artificial Neural Network is a parallel computational system consisting of many simple processing elements connected to perform a particular task.

The usage of bias has the effect of affine transformation

References

- Neural Networks: A Comprehensive Foundation S. Haykin, 2ndEdition, Prentice Hall of India, 2003.
- Google. com

THANK YOU

Swetha R.

Department of Electronics and Communication Engineering

swethar@pes.edu

+91 80 2672 1983 Extn 753