

Agenda

- 1 Motivation
- 2 Dataset Overview & Extraction
- 3 Fatality Analysis
- 4 Police Response Analysis
- 5 Interactive Data Visualization
- 6 Conclusion

Motivation

Gun violence is on the rise - at an alarming rate.

- In the US:
 - ~2x spike in mass-shooting incidents & mass-shooting deaths in the last 5 years.
 - Over the last decade ~ 3x spike

Directions to explore:

- How fatal are these incidents?
- Which states/cities suffer the most?
- How well has the police responded to them?
- How can we leverage publicly available data to analyze this issue?

Total Mass-Shooting Incidents [2014-2023]

Total Mass-Shooting Deaths [2014-2023]

Dataset Overview

Data Collection Sorting and Merging Cleaning

- Mass-shooting incident reports from the <u>gun</u> <u>violence archives</u>
- Search database for specific type of incidents
- Take CSVs and convert to Pandas dataframes

- Sorted data by
 - Year/Month/Day
 - State
 - City/County
- Merge CSVs together and store

- Took out Null data points with no location
- Filtered Incidents by keywords
- Examined Outlier possibilities

Incident ID	Incident Date	State	City Or County	Address	Victims Killed	Victims Injured	Suspects Killed	Suspects Injured	Suspects Arrested	Operations	Year
2790854	December 31, 2023	California	Hawthorne	14125 Crenshaw Blvd	1	5	0	0	0		2023
2793000	December 31, 2023	Louisiana	New Roads		1	3	0	0	1		2023
2791696	December 31, 2023	South Carolina	Little River	3389 Hwy 9 E	2	2	0	0	0		2023

Fatality Analysis

Normalised Fatality Index (NFI)

FatalityIndex_{State} = (# of Total Deaths)_{State}² / (# of Total Incidents)_{State}

 $NFI_{State} = FatalityIndex_{State} / \Sigma(FatalityIndex_i)$

- More weightage to absolute number of deaths in a state.
- Neutralises outliers with very few incidents to accurately judge fatality.
- Interactive USA heatmap reflects geographical NFI trends - Texas, California & Florida being the most fatal.

Top 5 States in US by NFI [2014-2023]

- Top 5 states together contribute to
 40% of the national fatality.
- → Do states with higher number of incidents always have a higher fatality? NO
- **Nevada** Historically fewer incidents, yet extremely fatal 2.5 victims killed per incident.
- → Who is better prepared states with historically higher or lower incidents? Let's analyze the police response.

A deeper dive into California

Police Response Analysis

Police Action Index (PAI)

 $PAI_{incident} = \sum [(Suspects Status_i) \times (Weight_i)] + \sum [(Victims Status_i) \times (Victims Status_i)] + \sum [(Victim$ (Weight_i)]

Normalized PAI = PAI / Σ PAI incidents

• 2019 Fresno shooting, California: 4 deaths, 6 injuries, all 7 suspects captured by police

 2022 Uvalde School Shooting, Texas: 21 deaths, 17 injuries, 1 suspect killed by law enforcement

Status	Weight			
Suspect Captured	1.0			
Suspect Surrender	0.8			
Suspect Killed	0.6			
Suspect Suicide	0.3			
Suspect at Large	0.0			
Victim Killed	-0.2			
Victim Injured	-0.05			

PAI Trends

Relatively lower PAI for states with lesser incidents

Generally higher PAI observed for states with higher incidents

Have these trends been followed in the last decade?

PAI Trends

Analyzing PAI for Illinois

Cumulative Police Action Index and Incidents Count in Illinois (2014-2023)

PAI Trends

Interactive Data Visualization

Geospatial Data Map

Interactive Gun Violence Visualization Using Folium and GeoJSON

- Incorporate state population data to calculate:
 - Incidents per Million
 - Severity ratio
 - Response ratio
- Helps in identifying concentrated regions of gun violence in the US.
- Factors Varying gun laws, socioeconomic factors (high poverty, unemployment, literacy rates)

Incidents per million = (Total # of incidents)*10⁶/ (State population)
Severity Ratio = (# of victims killed) / (# of victims injured)
Response Ratio = (# of suspects arrested) / (# of victims injured)

[*to be replaced by NFI]

[*to be replaced by PAI]

Interactive Dashboard - Temporal Trends

Features:

- Dropdown menu for each state.
- Dynamic plots for temporal trends of total incidents by Year/Month/Day

Potential Use Cases:

- Spikes in summer months, dip in extreme weather.
- Special occasions/holidays during the year.

- *Features to be added:
 - Extend analysis to victim/suspect statistics.
 - Line graphs for time-series analysis

Potential Use Cases

Monthly Patterns

- Spikes in summer months, dips in extreme weather.
- Peak holiday seasons, breaks.
- Special events, occasions

Daily Patterns

- Social Routine and Weekend Behavior
- Work Stress and Release Mechanisms
- Circadian Rhythms and Risky Behavior

Conclusion

- Gun violence in the US The numbers are alarming, and the data never lies! Something needs to change!
- Huge surge in gun violence incidents post COVID-19 pandemic, as well as in the last 5 years.
- Bolstering police response and resilience against such incidents.
- Urgent need for effective policy interventions.
- Leveraging this analysis to address both immediate and long-term concerns in curbing gun violence.

Questions?

Please direct them to our amazing team who put it all together:

Dhylan - The Data Scientist Hariram - The Justice Vigilante Peiyuan - The Geospatial Pro Zihan - The Dashboard Maestro Aryan - The Fatal Presenter