In [158]:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

import re

%matplotlib inline

In [159]: training_data = pd.read_csv('train.csv') test_data = pd.read_csv('test.csv') datasets=[training_data,test_data]

In [160]:

training_data.head()

Out[160]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Nal
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Nal
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C12
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Nal

In [161]: training_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): PassengerId 891 non-null int64 Survived 891 non-null int64 Pclass 891 non-null int64 Name 891 non-null object Sex 891 non-null object 714 non-null float64 Age SibSp 891 non-null int64 Parch 891 non-null int64 891 non-null object Ticket Fare 891 non-null float64 Cabin 204 non-null object 889 non-null object Embarked dtypes: float64(2), int64(5), object(5)

memory usage: 83.6+ KB

In [162]: test_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 418 entries, 0 to 417 Data columns (total 11 columns): PassengerId 418 non-null int64 Pclass 418 non-null int64 Name 418 non-null object 418 non-null object Sex Age 332 non-null float64 418 non-null int64 SibSp 418 non-null int64 Parch Ticket 418 non-null object 417 non-null float64 Fare Cabin 91 non-null object Embarked 418 non-null object dtypes: float64(2), int64(4), object(5) memory usage: 36.0+ KB

In [163]: training_data.describe()

Out[163]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [164]: training_data[['Pclass','Survived']].groupby(['Pclass']).mean()

Out[164]:

Survived

Pclass

- **1** 0.629630
- 2 0.472826
- **3** 0.242363

In [165]: training_data[['Sex','Survived']].groupby(['Sex']).mean()

Out[165]:

Survived

Sex

female 0.742038

male 0.188908

```
In [166]: def get_title(name):
    title_search = re.search(' ([A-Za-z]+)\.', name)
    # If the title exists, extract and return it.
    if title_search:
```

return title_search.group(1)
return ""

```
In [167]: for dataset in datasets:
              # Mapping Sex to binary
              dataset['Sex'] = dataset['Sex'].map( {'female': 0, 'male': 1} ).astype(int)
              # Fill Embarked missing data to Mode
              dataset['Embarked'] = dataset['Embarked'].fillna(dataset['Embarked'].mode().i
              # Mapping Embarked
              dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).ast
              # Fill Fare missing data to Mean
              dataset['Fare'] = dataset['Fare'].fillna(dataset['Fare'].mean())
              # Get avg std and null count of age
              age_avg = dataset['Age'].mean()
              age std = dataset['Age'].std()
              age_null_count = dataset['Age'].isnull().sum()
              # Generate random age within 95% confidence interval
              age null random list = np.random.randint(age avg - 1.96*age std/(age null cou
              dataset['Age'][np.isnan(dataset['Age'])] = age_null_random_list
              dataset['Age'] = dataset['Age'].astype(int)
              # Extract Title from Name, replace french title to uniform title, replace ran
              dataset['Title'] = dataset['Name'].apply(get title)
              dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col'
              'Don', 'Dr', 'Major', 'Rev', 'Si dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
              dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
              dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
              # Mapping titles
              title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
              dataset['Title'] = dataset['Title'].map(title_mapping)
              dataset['Title'] = dataset['Title'].fillna(0)
          C:\ProgramData\Anaconda3\lib\site-packages\ipykernel launcher.py:22: SettingWit
```

```
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:22: SettingWit
hCopyWarning:
```

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

```
In [168]: drop_elements = ['Cabin','Ticket','PassengerId','Name']
    training_data = training_data.drop(drop_elements, axis = 1)
    test_data = test_data.drop(drop_elements, axis=1)
```

```
In [173]: test data.head()
Out[173]:
              Pclass Sex Age
                              SibSp Parch
                                             Fare Embarked Title
           0
                  3
                       1
                           34
                                  0
                                            7.8292
                                                         2
                                                               1
           1
                  3
                       0
                           47
                                  1
                                        0
                                            7.0000
                                                         0
                                                               3
           2
                  2
                       1
                                            9.6875
                                                         2
                                                               1
                           62
                                  0
           3
                  3
                           27
                                  0
                                                         0
                       1
                                            8.6625
                                                               1
                  3
                       0
                           22
                                  1
                                        1 12.2875
                                                         0
                                                               3
In [170]: test data.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 418 entries, 0 to 417
          Data columns (total 8 columns):
                       418 non-null int64
          Pclass
          Sex
                       418 non-null int32
          Age
                       418 non-null int32
                       418 non-null int64
          SibSp
          Parch
                       418 non-null int64
                       418 non-null float64
           Fare
                       418 non-null int32
           Embarked
          Title
                       418 non-null int64
          dtypes: float64(1), int32(3), int64(4)
          memory usage: 21.3 KB
In [171]: train=training_data.values
           X = train[0::, 1::]
           Y = train[0::, 0]
           X_train, X_test, Y_train, Y_test=train_test_split(X,Y,random_state=1)
In [189]: from sklearn.neighbors import KNeighborsClassifier
           knn=KNeighborsClassifier(3)
           fitted knn=knn.fit(X train,Y train)
           fitted_knn.score(X_test,Y_test)
Out[189]: 0.73991031390134532
In [190]: from sklearn.tree import DecisionTreeClassifier
           dtc=DecisionTreeClassifier()
           fitted dtc=dtc.fit(X train,Y train)
           fitted_dtc.score(X_test,Y_test)
```

Out[190]: 0.7488789237668162

In [191]:	<pre>from sklearn.svm import SVC svc=SVC(probability=True) fitted_svc=svc.fit(X_train,Y_train) fitted_svc.score(X_test,Y_test)</pre>
Out[191]:	0.69506726457399104
In []:	