Banking Prediction

Domain Description

A bank stores information about its: clients, accounts, credit cards, transactions and loans.

Goal

Predict if a loan request should be accepted or not.

Descriptive Analysis

Problem Definition

Goal: Understand what happened on the **past**.

How is data organized?

How to enhance data?

What statistics can be obtained?

Is there a pattern?

Data Analysis

Data Analysis

	Number of Attributes	Missing Values	Data Types
Client Table	3	0	Integer; Polynominal
Account Table	4	0	Integer; Polynominal
Card Table	4	0	Integer; Polynominal
Disponent Table	4	0	Integer; Polynominal
District Table	16	2	Integer; Polynominal; Real
Loan Table	7	0	Integer; Polynominal
Transaction Table	10	868969	Integer; Polynominal; Real

Data Preparation

Separate birth number information into gender and birthdate

Linear regression between the year of 95 and 96 for unemployment rate and crime rate Converted all date attributes to Rapidminer's date type and unemployment and number of crimes to numerical types Created three new attributes: average_credit_amount, avergare_withdrawal_amount, average_balance_per_month

Exploratory Analysis

Data Analysis

● Prague (0.707) ● south Bohemia (0.613) ● north Bohemia (0.933) ● south Moravia (0.765) ● central Bohemia (0.784) ● north Moravia (0.529) ● east Bohemia (0.850) ● west Bohemia (0.600)

Observations:

- North Bohemia has the biggest percentage of successful loans.
- The past loans starts at 1993 and end at 1996.

Data Analysis

Observations:

- Accounts with disponent always pay their loans.
- The bigger the loan amount the smallest the percentage of entry is.

Sociodemographic Data

Sociodemographic Data K-means algorithm with K = 5

Sociodemographic-Loan Data

Sociodemographic Data and Loan Information

K-means algorithm with K = 4.

Predictive Analysis

Problem Definition

Goal: Understand what will happen on the future.

Should a loan be granted or not?

Will the loan be successfully paid?

Data Preparation

Rename Attributes

So that attributes from different tables with the same name wouldn't be lost in the next process.

Join Tables

Join information across all tables into a single and final table.

Consider only transactions before loan.

This is done for the test and train data.

Pre select Attributes

Remove unnecessary information, such as, id's and attributes with a great percentage of missing values.

Data Preparation

Created attributes

More than 70 attributes were created in order to improve the prediction performance.

Removed Correlated Attributes

Rapid Miner's operator 'Remove Correlated Attributes' was used to remove redundant information.

Removed Outliers

The data was normalized for outlier detection and elimination. In the end, the data was de-normalized back to its original state.

New Attributes

Statistics about transactions:

- ▶ minimum, maximum, average, variance, standard deviation credit/withdrawal/balance
- difference between credit and withdrawal (estimated income)
- ▶ last balance (before loan)

Loan:

- age of owner when loan was requested
- age of disponent when loan was requested (if no disponent then = 0)
- has disponent (boolean)

Other:

- percentage of loan entry in bank (last_balance/loan_amount)
- percentage of loan payments covered based on average income per month (payments/diff_credit_withdrawal)
- money spent on debts on the month before (sum of remittance to another bank withdrawals)
- ratio between debts and income (sum(debts)/diff_credit_withdrawal)
- estimated balance at the end of the loan (last_balance + duration*diff_credit_withdrawal-(total_debts_last_month + payments)*duration)

Data Preparation

Decision Tree

Decision Tree

accuracy: 87.82% +/- 2.98% (micro average: 87.83%)

	true -1	true 1	class precision
pred1	18	9	66.67%
pred. 1	28	249	89.89%
class recall	39.13%	96.51%	

Gradient Boosted Trees

Gradient Boosted Trees

accuracy: 85.87% +/- 9.36% (micro average: 85.86%)

	true -1	true 1	class precision
pred1	20	17	54.05%
pred. 1	26	241	90.26%
class recall	43.48%	93.41%	

Random Forest

Random Forest

accuracy: 88.45% +/- 3.48% (micro average: 88.49%)

	true -1	true 1	class precision
pred1	15	4	78.95%
pred. 1	31	254	89.12%
class recall	32.61%	98.45%	

k-NN

Process

k-NN

accuracy: 90.15% +/- 4.35% (micro average: 90.13%)

	true -1	true 1	class precision
pred1	19	3	86.36%
pred. 1	27	255	90.43%
class recall	41.30%	98.84%	

Naive Bayes

accuracy: 88.47% +/- 3.43% (micro average: 88.49%)

	true -1	true 1	class precision
pred1	13	2	86.67%
pred. 1	33	256	88.58%
class recall	28.26%	99.22%	

SVM

SVM

accuracy: 87.81% +/- 1.99% (micro average: 87.79%)

	true -1	true 1	class precision
pred1	8	0	100.00%
pred. 1	37	258	87.46%
class recall	17.78%	100.00%	

Deep Learning

accuracy: 89.72% +/- 3.26% (micro average: 89.73%)

	true -1	true 1	class precision
pred1	235	30	88.68%
pred. 1	23	228	90.84%
class recall	91.09%	88.37%	

ROC Curves Comparison

Conclusion

Experimented algorithms: decision tree, deep learning, gradient boosted trees, k-nn, naive bayes, random forest, support vector machine.

Best score on kaggle: ~86% with Deep Learning

In the future:

- test different parameters configurations
- test other algorithms
- calculate more attributes