MATH2701: Abstract Algebra and Fundamental Analysis Short Assignment 1

Name: Keegan Gyoery zID: z5197058

1. Let $GL_n(\mathbb{R}) := \{A \in M_n(\mathbb{R}) \mid A \text{ is invertible}\}$ be the general linear group. Show that

$$O_n(\mathbb{R}) = \{ Q \in GL_n(\mathbb{R}) \mid Q^T Q = I \}$$

is a subgroup.

By the subgroup lemma, we have to show that $O_n(\mathbb{R})$ is a non-empty subset of $GL_n(\mathbb{R})$, and it satisfies the closure conditions. Let $M \in O_n(\mathbb{R})$. By definition of $O_n(\mathbb{R})$, $M \in GL_n(\mathbb{R})$. Thus, $O_n(\mathbb{R}) \subseteq GL_n(\mathbb{R})$. Furthermore, clearly $I \in O_n(\mathbb{R})$, so $O_n(\mathbb{R})$ is a non-empty subset of $GL_n(\mathbb{R})$. Considering closure under composition, let $M_1, M_2 \in O_n(\mathbb{R})$, such that

$$M_1^T M_1 = I \dots (A)$$

$$M_2^T M_2 = I \dots (B).$$

Further, it is clear that $M_1M_2 \in GL_n(\mathbb{R})$. Consider now

$$(M_1 M_2)^T (M_1 M_2) = (M_2^T M_1^T) (M_1 M_2)$$

$$= M_2^T (M_1^T M_1) M_2$$

$$= M_2^T (I) M_2 \text{ by } (A)$$

$$= M_2^T M_2$$

$$\therefore (M_1 M_2)^T (M_1 M_2) = I \text{ by } (B)$$

and so $M_1M_2\in O_n(\mathbb{R})$, satisfying closure under composition. Examining closure under inverses, let $M\in O_n(\mathbb{R})$, we claim $M^{-1}=M^T$. As $M\in GL_n(\mathbb{R})$, clearly $M^T\in GL_n(\mathbb{R})$, and so $M^{-1}\in GL_n(\mathbb{R})$. As $M\in O_n(\mathbb{R})$, $M^TM=I\ldots (C)$. Now, consider

$$\begin{split} (M^{-1})^T (M^{-1}) &= (M^T)^{-1} (M^{-1}) \\ &= (MM^T)^{-1} \\ &= \left((M^T M)^T \right)^{-1} \\ &= \left((I)^T \right) - 1 \text{ by } (C) \\ &= (I)^{-1} \\ \therefore (M^{-1})^T (M^{-1}) &= I \end{split}$$

thus $M^{-1}=M^T\in O_n(\mathbb{R})$. It is now clear to see that $O_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$.

- 2. Let $\tau: \mathbb{R}^n \to \mathbb{R}^n$ be an isometry and assume that $\tau(\mathbf{0}) = \mathbf{0}$. Show that
 - (a) τ preserves the dot product on \mathbb{R}^n : $\tau(\mathbf{x}) \cdot \tau(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

As τ is an isometry, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have the result $\|\tau(\mathbf{x}) - \tau(\mathbf{y})\|^2 = \|\mathbf{x} - \mathbf{y}\|^2 \dots (A)$. Considering the case when $\mathbf{y} = \mathbf{0}$, coupled with $\tau(\mathbf{0}) = \mathbf{0}$, the above equation yields $\|\tau(\mathbf{x})\|^2 = \|\mathbf{x}\|^2 \dots (B)$. Returning to the equation labelled (A), we are able to deduce that τ preserves the dot product, with the aid of equation (B).

$$\|\tau(\mathbf{x}) - \tau(\mathbf{y})\|^2 = \|\mathbf{x} - \mathbf{y}\|^2$$

$$\therefore [\tau(\mathbf{x}) - \tau(\mathbf{y})][\tau(\mathbf{x}) - \tau(\mathbf{y})] = (\mathbf{x} - \mathbf{y})(\mathbf{x} - \mathbf{y})$$

$$\therefore \tau(\mathbf{x}) \cdot \tau(\mathbf{x}) - 2\tau(\mathbf{x}) \cdot \tau(\mathbf{y}) + \tau(\mathbf{y}) \cdot \tau(\mathbf{y}) = \mathbf{x} \cdot \mathbf{x} - 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y}$$

$$\therefore \|\tau(\mathbf{x})\|^2 - 2\tau(\mathbf{x}) \cdot \tau(\mathbf{y}) + \|\tau(\mathbf{y})\|^2 = \|\mathbf{x}\|^2 - 2\mathbf{x} \cdot \mathbf{y} + \|\mathbf{y}\|^2$$

$$\therefore \|\tau(\mathbf{x})\|^2 - 2\tau(\mathbf{x}) \cdot \tau(\mathbf{y}) + \|\tau(\mathbf{y})\|^2 = \|\tau(\mathbf{x})\|^2 - 2\mathbf{x} \cdot \mathbf{y} + \|\tau(\mathbf{y})\|^2 \text{ by } (B)$$

$$\therefore -2\tau(\mathbf{x}) \cdot \tau(\mathbf{y}) = -2\mathbf{x} \cdot \mathbf{y}$$

$$\therefore \tau(\mathbf{x}) \cdot \tau(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$$

(b) if $\{e_1, e_2, \dots, e_n\}$ is the standard basis for \mathbb{R}^n , then the matrix

$$Q = (\tau(\mathbf{e}_1), \tau(\mathbf{e}_2), \dots, \tau(\mathbf{e}_n))$$

is orthogonal.

Let $S = \{e_1, e_2, \dots, e_n\}$. As S is the standard basis, S is orthonormal, by definition

$$\mathbf{e}_i \cdot \mathbf{e}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{else} \end{cases} \dots (A).$$

For Q to be orthogonal, $Q^TQ = I$. This is equivalent to

$$\tau(\mathbf{e}_i) \cdot \tau(\mathbf{e}_j) = \begin{cases} 0 & \text{if } i \neq j \\ > 0 & \text{else} \end{cases}$$

As we know from the previous question, τ preserves the dot product, and so $\tau(\mathbf{e}_i) \cdot \tau(\mathbf{e}_j) = \mathbf{e}_i \cdot \mathbf{e}_j$ for all i, j. Thus, using result (A), we satisfy the above requirements for Q to be orthogonal, and thus $Q = (\tau(\mathbf{e}_1), \tau(\mathbf{e}_2), \dots, \tau(\mathbf{e}_n))$ is orthogonal.

(c) $\tau = T_{Q,0}$ is a linear isomorphism.

From the Theorem in the Lecture Notes, we can decompose any isometry on \mathbb{R}^n into a translation composed with multiplication by an orthogonal matrix. That is, $\tau(\mathbf{x}) = T_{A,\mathbf{b}}(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, where A is orthogonal, and \mathbf{b} is the vector of translation. By the construction of Q in the previous part, $Q(\mathbf{e}_i) = \tau(\mathbf{e}_i)$, for all i, and Q is orthogonal. Thus, let A = Q. Furthermore, as $\tau(\mathbf{0}) = \mathbf{0}$, we have $\tau(\mathbf{0}) = T_{Q,\mathbf{b}}(\mathbf{0}) = Q(\mathbf{0}) + \mathbf{b} = \mathbf{b} = \mathbf{0}$. As $\mathbf{b} = \mathbf{0}$, we get the result $\tau = T_{Q,\mathbf{0}} = Q$. As Q is a linear map, and invertible, $\tau = T_{Q,\mathbf{0}}$ is a linear isomorphism.

This assignment is completely my own work except where acknowledged signed: date: