MA374 Financial Engineering lab: 04

Name: Naman Goyal Roll No. 180123029

Ques.1

To execute my .py file
 Run \$python3 180123029_NamanGoyal_q1.py on the terminal. The snapshot is given below

```
Solution (a): See Graph

Solution (b)
Value of portfolio for 10 different values of efficient frontier
Return: 0.005 Risk: 0.248337 Wl: 2.478899 W2: -0.421101 W3: -1.057798
Return: 0.046257 Risk: 0.16269 Wl: 1.888434 W2: -0.186429 W3: -0.702005
Return: 0.087514 Risk: 0.080579 Wl: 1.297968 W2: 0.048243 W3: -0.346212
Return: 0.128771 Risk: 0.041793 Wl: 0.707503 W2: 0.282916 W3: 0.009582
Return: 0.170028 Risk: 0.110585 Wl: 0.117038 W2: 0.517588 W3: 0.365375
Return: 0.211284 Risk: 0.194781 Wl: -0.473428 W2: 0.75226 W3: 0.721168
Return: 0.252541 Risk: 0.280855 Wl: -1.063893 W2: 0.986932 W3: 1.076961
Return: 0.293798 Risk: 0.367488 W1: -1.654359 W2: 1.221604 W3: 1.432755
Return: 0.335055 Risk: 0.454361 W1: -2.244824 W2: 1.456276 W3: 1.788548
Return: 0.376312 Risk: 0.541359 W1: -2.835289 W2: 1.690948 W3: 2.144341

Solution (c)
At 15 percent Risk, Max and Min Portfolios:
Return: 0.052445 Risk: 0.150003 W1: 1.799864 W2: -0.151228 W3: -0.648636
Return: 0.189583 Risk: 0.150058 W1: -0.162843 W2: 0.628822 W3: 0.534021
```

```
Solution (d)
Portfolio (Without Riskfree Assets) at 18 percent
Return: 0.18 Risk: 0.130568 W1: -0.025688 W2: 0.574312 W3: 0.451376

Solution (e)
Risk Free Return 10% Market Portfolio
Return: 0.050811 Risk: 0.136719 W1: 0.59375 W2: 0.328125 W3: 0.078125

Solution (f)
Portfolio(with risky and riskfree assets) at 0.1 percent risk:
Risk Free asset Weightage: -0.968067
Risky asset Weightge: 1.16854 0.645772 0.153755
Portfolio (Including Risky and Riskfree Assets) at 0.25 percent risk:
Risk Free asset Weightage: -3.920166
Risky asset Weightage: 2.921349 0.384388 0.384388
```

• The plots for Markowitz Efficient Frontier && Frontier v/s CAPM is shown:

 My answers to this question are given in the snapshot of my terminal on the previous page.

Ques.2

To execute my .py file
 Run \$python3 180123029_NamanGoyal_q2.py on the terminal. The snapshot is given below

• The plots obtained are shown below for the Minimum Variance Line:

- The equations for the relationships between different weights are shown below:
 - \circ W1 = -0.40*W2 + 0.56
 - \circ W3 = -0.60*W1 + 0.44
 - o W3 = 1.52*W2 0.42
- The plot showing the variation between assets weights for the Minimum Variance Line :

Ques.3

To execute my .py file
 Run \$python3 180123029_NamanGoyal_q3.py on the terminal. The snapshot is given below

• The plots for Markowitz Efficient Frontier && Frontier v/s CAPM is shown:

- Here is the list of 10 companies stocks I take:
 - o APPLE
 - AMAZON
 - o TESLA
 - o FACEBOOK
 - o ALPHABET
 - o IBM
 - NIKE
 - o State Bank of India
 - Tata Motors
 - SAMSUNG
- Plot for Security Market line for all these 10 assets is shown:

