

Lahore University of Management Sciences

EE452 - Power Electronics

Fall 2013-14

Instructor	Nauman Ahmad Zaffar
Room No.	9-313A
Office Hours	WT 10-11am
Email	nauman.zaffar@lums.edu.pk
Telephone	X8311
TA	TBD
TA Office Hours	TBD
Course URL (if any)	

Course Basics				
Credit Hours	4			
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75 min each
Recitation (per week)	Nbr of Lec(s) Per Week	1	Duration	50 min
Lab (per week)	Nbr of Lec(s) Per Week	1	Duration	170 min

Course Distribution		
Core	N	
Elective	Υ	
Open for Student Category	Electrical Engineering, Computer Science, Physics	
Close for Student Category		

COURSE DESCRIPTION

This is the first course in Power Electronics. Students will learn about specific areas of application and the reasons Power Electronics is becoming popular in areas traditionally occupied by analog electronics. The course will cover applications in conversion and control of power using Power semiconductor devices, physics of their structure and operation and passive components in power circuits. Students will also learn the principles governing the operation of converters, different standard topologies, applications in power systems, motor drives, and applications in renewable energy sources.

COURSE PREREQUISITE(S)			
• EE340	Devices and Electronics		

COURSE OBJECTIVES			
1.	Understand large signal behavior of devices and applications in high power circuits		
2.	Get hands-on experience on development of components and circuits within reasonable power limits		
3.	Understand "form and function" of fundamental converter topologies and their application		
4.	Design of practical converters/circuits based on specific needs		

Learning Outcomes			
1.	Understand the need, use and limitations of Power Electronics		
2.	Appreciate the linkage of Power Electronics with electromagnetics, circuits, devices, electronics, feedback, control, power systems, machines and emerging application areas like renewables, smart grids and high frequency applications.		
3.	Understand the factors affecting choice of devices in power electronics		

Lahore University of Management Sciences

Learn various topologies that are prevalent and be able to extend the design to develop practical circuits based on application specifications

Grading Breakup and Policy

Assignment(s): N/A Home Work: 06 → 5% Quiz(s): 7-8 → 15% Class Participation: N/A Attendance: N/A Labs: 12 → 15%

Midterm Examination: 01 → 25%

Project: → 10%

Final Examination: Comprehensive → 35%

Examination D	Detail
Midterm Exam	Yes/No: Yes Combine/Separate: Combined Duration: 03 hrs Preferred Date: During Mid-week Exam Specifications: Closed book, closed notes, 1 A4 double sided, hand written help sheet, calculators
Final Exam	Yes/No: Yes Combine/Separate: Combined Duration: 03 hrs Exam Specifications: Closed book, closed notes, 1 A4 double sided, hand written help sheet, calculators

OURSE OVI	ERVIEW		
Week	Topics	Recommended Readings	Objectives/Application
	Introduction:	Mohan: Chapter 1	
	- Review of concepts	Erickson: Chapter 1	
1.	- Application examples		
	- Classification of Power processors		
	- Elements of Power Electronics		
	Switch Realization	Mohan: Chapter 2	
	- Types of switches	Erickson: Chapter 4	
	- Overview of Power semiconductor devices		
2.	- Comparison		
۷.	- Driver circuits	Mohan: Chapter 20	
	Power Diodes		
	- Structure		
	- Switching characteristics		
	Power Mosfets	Mohan: Chapter 22	
3.	- Switching characteristics		
	- Operating limitations and safe operating areas		
4.	Thyristors	Mohan: Chapter 23	
4.	- Basic Structure		

Lahore University of Management Sciences

	Lanore Oniversity of Ivial		
	- I-V characteristics and device operation		
	- Switching characteristics		
	IGBTs	Mohan: Chapter 25	
	- Basic Structure		
	- I-V characteristics and device operation		
	- Switching characteristics		
	Steady State Converter Analysis	Erickson: Chapter 2	
	- Inductor Volt-Sec Balance		
_	- Capacitor Amp-Sec Balance		
5.	- CCM Analysis		
	- Converter Analysis (Buck, Boost, Cuk, etc.)		
	- Ripple estimation and design		
	DCM Analysis of converters	Erickson: Chapter 5	
6.	- Conduction mode boundary	Mohan: Chapter 7	
0.	- Converter Examples: Boost, etc.	Monail. Chapter /	
	Converter Circuits: Form and Function	Erickson: Chapter 6	
7.	- Canonical cell model	Litexson. Chapter 0	
/.			
	- Circuit Manipulation		
	Midterm		
	Transformer Isolation	Erickson: Chapter 6	
	- Full Bridge, Half Bridge, Push-Pull and Flyback		
8.	converters		
	- Boost Derived converters		
	- Isolated SEPIC and Cuk converters		
	- Switch Stress and Utilization		
	AC-DC converters:	Mohan: Chapter 5	
9.	- Rectifiers		
]	- 1-φ and 3-φ rectifiers		
	- Inductive Load		
	Phase controlled rectifiers:	Mohan: Chapter 6	
10.	- Use of Thyristors		
	- 3-φ converters		
	Power and Signals in Non-Linear Circuits:	Mohan: Chapter 3	
	- Basic magnetic theory	Erickson: Chapter 16	
11.	- Electric Circuits	*	
	- Power and Harmonics in Non-sinusoidal systems		
	Magnetics:	Erickson: Chapter 13	
	- Magnetic Circuits		
12.	- Transformer modeling		
12.	- Loss Mechanisms		
	- Eddy Currents		
	Inductor Design	Erickson: Chapter 14	
13.	- Filter Inductor Design	Litekson. Chapter 14	
13.	- Multiple winding magnetics design		
		Enjalraani Chantar 15	
	Transformer Design	Erickson: Chapter 15	
14.	- Basic Constraints and design process		
	- Example designs		
	- AC Inductor Design		

Lahore University of Management Sciences

Textbook(s)/Supplementary Readings

Textbook:

Power Electronics Converters Applications and Design by Ned Mohan, Undeland, Robbins, 3rd Edition, John Wiley and Sons, 2003

Fundamentals of Power Electronics by Erickson and Maksimovic, 2nd Edition, Oxford University Press, 2005

Supplementary Reading:

Labs (1	Labs (1+n weeks → simulation + performance)			
1.	Switching characteristics of Devices – Power Diodes and Power Mosfets	1+1 weeks		
2.	AC – DC Conversion: SCRs and Phase Controlled Rectifiers – Characteristics, Half wave controlled rectification, R-L Load, Full Bridge Rectification	1+2 weeks		
3.	DC-DC Conversion: Buck Converter – Design, Simulation and Implementation of CCM and DCM operation. Effect of parasitics	1+1 weeks		
4.	DC – AC Conversion: Inverter – Design, Simulation and Implementation of Square wave with resonant filter and PWM inverter with LP filter	1+2 weeks		
5.	Course Project: Design, Simulation and Implementation of Application Specific PE converter	04 weeks		
6.	DC Motor Drive – Optional extra lab			