Contents

1	Introduction			1
	1.1	Ultrav	violet & X-ray Radiation in Astrophysics	1
		1.1.1	Single Stars	4
		1.1.2	Compact Binary Systems	8
	1.2	The G	Galactic Bulge Survey (GBS)	16
2	The	e Gala	ctic Bulge Survey: a GALEX Ultraviolet Counter-	-
	par	t Cata	logue	18
	2.1	Introd	luction	19
		2.1.1	The Galactic Bulge Survey: Purpose & Progress	19
		2.1.2	SED Fitting the GBS via UV Counterparts	21
	2.2	UV C	ounterparts to the GBS	23
		2.2.1	GALEX : Photometry & Astrometry	24
		2.2.2	GALEX : Data Collection & Reduction	26
		2.2.3	GALEX/Chandra Counterpart Match Algorithm	27
		2.2.4	Quantifying the $\mathit{GALEX}/\mathit{Chandra}$ Chance-Match Prob-	
			ability	31
	2.3	Optica	al & Infrared Counterparts to the GBS	34
		2.3.1	Data: Optical Counterparts	35
		2.3.2	Data: Infrared Counterparts	39
		2.3.3	Complementary UV Data: Swift UVOT	41
	2.4	Identi	fication of Compact Binaries via the SED	42

\mathbf{A}	Full	Chan	dra/Galex Dataset	121
Appendices 12				12 0
3	The	esis Co	nclusions & Future Research Directions	96
	2.7	Summ	ary & Conclusions	94
		2.6.3	Individual Sources	66
		2.6.2	Poorly Fit, UV-Excess Systems	65
		2.6.1	Chromospherically Active Population	57
	2.6	Result	ss & Discussion	54
	2.5	UV &	X-ray Emission of Chromospherically Active Stars	48
		2.4.2	Multi-Component Modeling: A Bayesian Approach	47
		2.4.1	SED Modeling and Goodness-of-Fit	42

List of Tables

2.1	Specifications of the <i>GALEX</i> NUV detector	26
2.2	Expected numbers of $\mathit{GALEX}/\mathit{Chandra}$ positional chance matches.	34
2.3	Spectral type vs. expected X-ray and optical fluxes	54
2.4	Number of optical, infrared counterparts to $\mathit{GALEX/Chandra}$	
	systems in each survey used	55
2.5	Final list of UV excess sources	67
A.1	Full GALEX/Chandra dataset	130

List of Figures

1.1	Relation between Rossby Number (R_0), rotational period (P_{rot}),	
	X-ray luminosity (L_X) for coronally active stars	6
1.2	\mathcal{L}_X as a function of stellar mass M_\odot for coronally active stars	7
2.1	GALEX NUV filter transmission profile	25
2.2	GALEX NUV coverage of the Galactic Bulge Survey	28
2.3	Distribution of <i>Chandra</i> positional error	30
2.4	Distribution of positional offsets between $\mathit{GALEX/Chandra}$ matched	s. 33
2.5	VPHAS+ Galactic footprint	38
2.6	Example of stellar template fitting for a single source, using two	
	different values of $E(B-V)$	44
2.7	Synthetic observation of HD154712 from the BPGS spectral li-	
	brary, fitted with Pickles template spectra	46
2.8	MCMC model of CX93, showing fitted model and corner plot	
	for visualizing parameter degeneracy	49
2.9	Synthetic observations and modelling of active binaries RS CVn,	
	Algol and BY Dra	52
2.10	Effectiveness of $\mathit{GALEX}\text{-}matching$ algorithm (distribution of coun-	
	terpart numbers)	56
2.11	(J-H) vs. $(H-K)$ colour-colour diagram	58
2.12	(NUV-B) vs. $(B-V)$ colour-colour diagram	59
2.13	(J-H) vs. $(B-V)$ colour-colour diagram	60

2.14	Distribution of best-fit spectral classes for the single stellar pop-	
	ulation	62
2.15	Comparison of NUV excess levels for 5 systems to the M-dwarf	
	NUV relation from Stelzer et al. (2013)	63
2.16	SEDs of known compact binaries in our dataset	68
2.16	SEDs of 18 UV excess systems	70
2.17	SED model of CX93 with MCMC (large figure)	72
2.18	SED model of CX118 with MCMC	74
2.19	SED model of CX137 with MCMC	76
2.20	SED model and optical image of CX388	78
2.21	Optical image of CX398	79
2.22	SED model of CX417 with MCMC	81
2.23	IR and optical images of CX417	82
2.24	IR and optical images of CX645	85
2.25	IR and optical images of CX673	87
2.26	IR and optical images of CX886	88
2.27	3 different SED models for CX886	89
2.28	Optical image of CX1029	90
2.29	Optical image of CX1042	91
2.30	Optical image of CX1229	92
2.31	SED model of CXB208 with MCMC	93