

Conformal Prediction for Image Segmentation Using Morphological Prediction Sets

Luca Mossina, Corentin Friedrich

IRT Saint Exupéry. Toulouse, France DEEL Lab, www.deel.ai

Conformal Prediction

+ Mathematical Morphology

Morphological Conformal Prediction

Model-agnostic - Distribution-free - Finite-sample

Input image source: White Blood Cell (WBC) dataset.
Zheng, X., et al. Fast and robust segmentation of white blood cell images by self-supervised learning. *Micron 107* (2018), 55–71.

Prediction Set:
$$\mathcal{C}_{\lambda}(X) := \underbrace{(\delta_{B} \circ \delta_{B} \circ \cdots \circ \delta_{B})}_{\lambda \text{ dilations with kernel } B:} (\widehat{Y}) = \delta_{B}^{\lambda}(\widehat{Y})$$

$$B = \bigoplus$$
 (4-connectivity),

$$B = \bigoplus$$
 (8-connectivity), (...)

Acceptable error: $\alpha \in (0,1)$ Tolerance hyperparam.: $\tau \in (0,1)$

Calibration data: $((X_i, Y_i))_{i=1}^n$

Nonconformity score: $r(X_i,Y_i)=\inf\left\{\lambda\in\mathbb{N}\,:\, \frac{|Y_i\cap\mathcal{C}_\lambda(X_i)|}{|Y_i|}\geq \tau\right\}$

Estimation: $\hat{\lambda} = \lceil (n+1)(1-\alpha) \rceil$ -th largest score in $(r(X_i, Y_i))_{i=1}^n$

Results = it works

Theorem:
$$\mathbb{P}\left[\frac{|Y_{\text{test}} \cap \mathcal{C}_{\hat{\lambda}}(X_{\text{test}})|}{|Y_{\text{test}}|} \geq \tau\right] \geq 1 - \alpha$$

- ✓ Ensure statistically valid coverage
- ✓ Ensure fewer false negatives: margin captures false negatives
- \checkmark Can use any extensive morphological operator (dilation, etc.)
- \checkmark Margin size, smaller is better: can compare competing predictors, architectures, etc.

