CS754 Assignment 3 Report

Arpon Basu Shashwat Garg

Spring 2022

Contents

1	Problem 1	2
2	Problem 2	2
3	Problem 3	2
4	Problem 4 4.1 Introduction and Aim	2 2 2
5	Problem 5	2
6	Problem 6	3

Introduction

Welcome to our report on CS754 Assignment 3. We have tried to make this report comprehensive and self-contained. We hope reading this would give you a proper flowing description of our work, methods used and the results obtained.

Hope you enjoy reading the report. Here we go!

- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4

Paper Details		
Title of the Paper	Coastal Acoustic Tomography System and	
	Its Field Application	
Link of the paper	Click Here	
Author List	Haruhiko Yamoaka, Arata Kaneko, Jae-Hun Park, Hong	
	Zheng, Noriaki Gohda, Tadashi Takano, Xiao-Hua Zhu	
	and Yoshio Takasugi	
Publication Date	August 2002	
Publication Venue	IEEE Journal of Oceanic Engineering, Volume 27, Issue 2	

4.1 Introduction and Aim

This paper aims to map the structure of the "strongly nonlinear tidal currents in the coastal sea" by using multiple synchronised coastal acoustic tomography system (CATS). Using GPS clock signals and separate codes to distinguish between signals of individual systems, reconstruction of tidal process behaviour is done through an inverse analysis of the acoustic signals obtained by the sensors.

4.2 Mathematical Formulation

5 Problem 5

We know that Radon Transform is given by-

$$R_{\theta}(f) = g(\rho, \theta) = \int_{-\infty}^{+\infty} f(\rho \cos\theta - z \sin\theta, \rho \sin\theta + z \cos\theta) dz$$

We can write the same as-

$$R_{\theta}(f) = g(\rho, \theta) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \delta(x \cos \theta + y \sin \theta - \rho) dx dy$$

Let the scaled image be denoted by h(x.y) = f(ax, ay). This is the same image as original, but scaled by a factor of a, in both x and y directions.

We can write the same Radon Transform as-

$$R_{\theta}(h) = g'(\rho, \theta) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x, y) \delta(x \cos\theta + y \sin\theta - \rho) dx dy$$

$$R_{\theta}(h) = g'(\rho, \theta) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(ax, ay) \delta(x \cos\theta + y \sin\theta - \rho) dx dy$$

$$R_{\theta}(h) = g'(\rho, \theta) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x', y') \delta\left(\frac{x' \cos\theta + y' \sin\theta - a\rho}{a}\right) \frac{dx'}{a} \frac{dy'}{a}$$

Since $\delta(ax) = \delta(x)/a$, we get-

$$R_{\theta}(h) = g'(\rho, \theta) = \frac{1}{a} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x', y') \delta(x' \cos \theta + y' \sin \theta - a\rho) dx' dy'$$
$$R_{\theta}(h) = g'(\rho, \theta) = \frac{1}{a} g(a\rho, \theta)$$

Thus, we can see that the Radon transform of the scaled image is also scaled by a factor of a in the size of projection, but the intensity of each projection has reduced by a as well.

6 Problem 6