1

Assignment 14

Rubeena Aafreen

Download the latex-tikz codes from

https://github.com/rubeenaafreen20/EE5609/tree/master/Assignment14

1 Problem

Let **A** be the 4×4 real matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix} \tag{1.0.1}$$

Show that the characteristic polynomial for **A** is $x^2(x-1)^2$ and that it is also the minimal polynomial

2 **Definitions**

Characteristic Polynomial	For an $n \times n$ matrix A , characteristic polynomial is defined by, $p(x) = x\mathbf{I} - \mathbf{A} $
Minimal Polynomial	Minimal polynomial $m(x)$ is he smallest factor of characteristic polynomial $p(x)$ such that,
	$m\left(\mathbf{A}\right) = 0$
Algebraic Multiplicity (A_M)	No. Of times an Eigen value appears in a characteristic equation.

TABLE 1: Definitions

3 Solution

Characteristic polynomial
$$p(x) = |x\mathbf{I} - \mathbf{A}|$$

 $= \begin{vmatrix} x - 1 & -1 \\ 1 & x + 1 \end{vmatrix} \begin{vmatrix} x - 2 & -1 \\ 1 & x \end{vmatrix}$
 $= ((x - 1)(x + 1) + 1)((x - 2)x + 1)$
 $= x^2(x^2 - 2x + 1)$
 $= x^2(x - 1)^2$

A_M	For $\lambda = 0$, $A_M = 2$ For $\lambda = 1$, $A_M = 2$
Minimal Polynomial	$p(x) = x^{a} (x - 1)^{b}, a \le 2, b \le 2$
a = 1, b = 1	$m(x) = x(x-1)$ $\implies m(\mathbf{A}) = \mathbf{A} \cdot (\mathbf{A} - \mathbf{I})$ $= \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 \\ -2 & -2 & 1 & 1 \\ 1 & 1 & -1 & -1 \end{pmatrix}$ $= \begin{pmatrix} -1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 1 \\ 1 & 1 & -2 & -2 \end{pmatrix} \neq 0$
	$\implies x(x-1)$ is not a minimal polynomial
a = 2, b = 1	$m(x) = x^{2}(x-1)$ $\implies m(\mathbf{A}) = \mathbf{A}^{2}(\mathbf{A} - \mathbf{I})$ $= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -3 & -3 & 3 & 2 \\ 2 & 2 & -2 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 \\ -2 & -2 & 1 & 1 \\ 1 & 1 & -1 & -1 \end{pmatrix}$ $= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & -1 \end{pmatrix} \neq 0$ $\implies x^{2}(x-1) \text{ is not a minimal polynomial}$
a = 1, b = 2	$m(x) = x(x-1)^{2}$ $\implies m(\mathbf{A}) = \mathbf{A} (\mathbf{A} - \mathbf{I})^{2}$ $= \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

a = 2, b = 2	$m(x) = x^{2} (x - 1)^{2}$ $\implies m(\mathbf{A}) = \mathbf{A}^{2} (\mathbf{A} - \mathbf{I})^{2}$ $= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -3 & -3 & 3 & 2 \\ 2 & 2 & -2 & -1 \end{pmatrix} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
Conclusion	For the given matrix A , $x^2(x-1)^2$ is the characteristic polynomial as well as minimal polynomial.

TABLE 2: Proving that the given characteristic polynomial is also minimal polynomial