Délka humeru podle přežití vrabců

Vojtěch Tóth, Cuphead, Mugman

2022-12-08

```
K = 4
L = 4
M = ((K+L)*47)\%11+1.
```

[1] 3

Úloha 1

(1) Načtěte datový soubor a rozdělte sledovanou proměnnou na příslušné dvě pozorované skupiny. Stručně popište data a zkoumaný problém. Pro každu skupinu zvlášť odhadněte střední hodnotu, rozptyl a medián příslušného rozdělení.

Dataset, který budeme v tomto úkolu zpracovávat, je case
0201. Tento dataset obsahuje 59 záznamů dvou proměnných

- Humerus délka kosti pažní vrabců (v mili-palcích)
- Status zda vrabec přežil ("survived"), či zahynul ("Perished")

Data nasbíral H. Bumpus. Zkoumal, zda uhynulí vrabci postrádají některé fyzické vlastnosti oproti těm, kteří přežili a tím chtěl podpořit teorii přirozeného výběru.

Proměnnou Humerus rozdělíme do dvou skupin podle stavu.

```
library(Sleuth2)
perished <- subset(case0201, Status=="Perished")$Humerus
survived <- subset(case0201, Status=="Survived")$Humerus</pre>
```

Ve skupině Uhynulích máme 24 hodnot, ve skupině přeživších 35.

num [1:35] 687 703 709 715 728 721 729 723 728 723 ...

```
str(perished)

## num [1:24] 659 689 703 702 709 713 720 729 726 726 ...

str(survived)
```

Vzorce pro výběrový průměr, rozptyl a pro medián jsou popořadě

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

,

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

,

$$\operatorname{med}(X) = \begin{cases} a_{\lfloor \frac{n}{2} \rfloor} & \text{pokud } n\%2 = 1\\ \frac{a_{\lfloor \frac{n}{2} \rfloor} + a_{\lceil \frac{n}{2} \rceil}}{2} & \text{pokud } n\%2 = 0 \end{cases}$$

,

my použijeme následující funkce.

```
mean_per <- mean(perished)
var_per <- var(perished)
med_per <- median(perished)

mean_sur <- mean(survived)
var_sur <- var(survived)
med_sur <- median(survived)</pre>
```

Výsledné hodnoty jsou v této tabulce.

	Přeživší	Uhynulí
Výběrový průměr	727.9166667	738
Výběrový rozptyl	554.2536232	393.5882353
Medián	733.5	736

Úloha 2

(1b) Pro každou skupinu zvlášť odhadněte hustotu a distribuční funkci pomocí histogramu a empirické distribuční funkce.

Empirická distribuční funkce je definována jako

$$F_n(x) = F_n(x, X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i \le x\}}$$

Tedy pro reálnou proměnnou x zjistíme počet hodnot x_i , které jsou menší nebo rovny x a podělíme je počtem všech záznamů n dané skupiny. V jazyce R se pro výpočet hodnot používá funkce ecdf, výstup vykreslí funkce plot.

Histogram je sloupcový graf, kde každý sloupec má zvolenou nějakou vhodnou šířku. Výška daných sloupců se získá ze vztahu

$$\frac{m_i}{n \cdot h} = \frac{\text{počet hodnot uvnitř sloupce}}{\text{počet všech hodnot} \cdot \text{šířka sloupce}}$$

Funkce hist z daných hodnot zvládne odhadnout nejlepší šířku sloupce a rovnou histogram vykreslí.

plot(ecdf(perished), main = "Empirická distribuční funkce délky humeru uhynulích vrabců")

Empirická distribucní funkce délky humeru uhynulích vrabcu

hist(perished, freq = FALSE, main = "Histogram délky humeru uhynulých vrabců")

Histogram délky humeru uhynulých vrabcu

Lze tvrdit, že délka humeru uhynulých vrabců se řídí normálním rozdělením.

Empirická distribuční funkce a histogram skupiny přeživších

plot(ecdf(survived), main = "Empirická distribuční funkce délky humeru přeživších vrabců")

Empirická distribucní funkce délky humeru preživších vrabcu

hist(survived, freq = FALSE, main = "Histogram délky humeru přeživších vrabců")

Histogram délky humeru preživších vrabcu

Lze tvrdit, že i délka humeru přeživších vrabců se řídí normálním rozdělením.

Úloha 3

(3b) Pro každou skupinu zvlášť najděte nejbližší rozdělení: Odhadněte parametry normálního, exponenciálního a rovnoměrného rozdělení. Zaneste příslušné hustoty s odhadnutými parametry do grafů histogramu. Diskutujte, které z rozdělení odpovídá pozorovaným datům nejlépe.

Pro odhad parametrů lze použít balíček EnvStats.

Normální rozdělení

Exponenciální rozdělení

Exponenciální rozdělení je takové rozdělení, při kterém události mají nezávislé exponenciální časy mezi sebou. Pro hustotu platí

$$f_n(x) = \begin{cases} \lambda e^{-\lambda x} & \text{pro } x \in (0, \infty) \\ 0 & \text{jinde} \end{cases}$$

Hledáme tedy odhad parametru λ . Použijeme funkce eexp, u které zvolíme momentovou metodu a metodu maximální věrohodnosti. Získané parametry jsou prvky pole parameters, λ na indexu 1.

```
exp_perished <- eexp(perished, method="mle/mme")$parameters
exp_survived <- eexp(survived, method="mle/mme")$parameters

lambda_per <- exp_perished[1]
lambda_sur <- exp_survived[1]</pre>
```

Výsledné odhady:

	Přeživší	Uhynulí
λ	0.001355	0.0013738

Rovnoměrné rozdělení

Rovnoměrné rozdělení je takové rozdělení, které má v nějakém intervalu (a, b) konstatní pravděpodobnost, mimo něj je pravděpodobnost rovna 0. Pro hustotu platí

$$f_n(x) = \begin{cases} \frac{1}{b-a} & \text{pro } x \in (a,b) \\ 0 & \text{pro } x \notin (a,b) \end{cases}$$

Hledáme tedy odhad parametrů a a b. Použijeme funkci eunif u které zvolíme momentovou metodu. Získané parametry jsou prvky pole parameters, a na indexu 1, b na indexu 2.

```
unif_perished <- eunif( perished, method="mme")$parameters
unif_survived <- eunif( survived, method="mme")$parameters

a_per <- unif_perished[1]
b_per <- unif_perished[2]

a_sur <- unif_survived[1]
b_sur <- unif_survived[2]</pre>
```

Výsledné odhady:

	Přeživší	Uhynulí
a	704.1321897	687.9982603
b	771.8678103	767.835073

```
hist(survived, freq = FALSE, main = "Histogram a odhady (survived)")
min <- min(survived)
max <- max(survived)
x <- c( min, a_sur, a_sur, b_sur, b_sur, max )
p <- dunif(a_sur, min=a_sur, max=b_sur)
y <- c( 0, 0, p, p, 0, 0)
lines(x, y, col="red", lwd=3)

x <- survived
curve(dexp(x, rate = lambda_sur), lwd= 3, col = "blue", add = TRUE)

curve(dnorm(x, mean = mean_sur, sd = sqrt(var_sur)), col="green", add = TRUE, lwd=3)</pre>
```

Histogram a odhady (survived)


```
min <- min(perished)
max <- max(perished)
hist(perished, freq = FALSE, main = "Histogram a odhady (perished)")
x <- c( min , a_per, a_per, b_per, b_per, max )
p <- dunif(a_per, min=a_per, max=b_per)
y <- c(0, 0, p, p, 0, 0 )
lines(x, y, col="red", lwd=3)

x <- perished
curve(dexp(x, rate = lambda_per), lwd= 3, col = "blue", add = TRUE)

curve(dnorm(x, mean = mean_per, sd = sqrt(var_per)), col="green", add = TRUE, lwd=3)</pre>
```

Histogram a odhady (perished)

Úloha 4

(1b) Pro každou skupinu zvlášť vygenerujte náhodný výběr o 100 hodnotách z rozdělení, které jste zvolili jako nejbližší, s parametry odhadnutými v předchozím bodě. Porovnejte histogram simulovaných hodnot s pozorovanými daty.

```
data <- rnorm( 100, mean = mean_sur, sd=sqrt(var_sur))
hist(survived, freq = FALSE, main = "Histogram skutečných a generovaných hodnot(survived)")
hist(data, freq=FALSE, add=TRUE, col = rgb( 1, 0, 0, 0.4))</pre>
```

Histogram skutecných a generovaných hodnot(survived)


```
data <- rnorm( 100, mean = mean_per, sd=sqrt(var_per))
hist(perished, freq = FALSE, main = "Histogram skutečných a generovaných hodnot (perished)")
hist(data, freq=FALSE, add=TRUE, col = rgb( 0, 0, 1, 0.4))</pre>
```

Histogram skutecných a generovaných hodnot (perished)

Úloha 5

(1b) Pro každou skupinu zvlášť spočítejte oboustranný 95% konfidenční interval pro střední hodnotu.

```
model <- lm(survived ~ 1)
interval <- confint(model, level=0.95)

L_bound_sur = interval[1]
U_bound_sur = interval[2]

model <- lm(perished ~ 1)
interval <- confint(model, level=0.95)

L_bound_per = interval[1]
U_bound_per = interval[2]</pre>
```

	dolní mez	horní mez
Přeživší	731.185045	744.814955
Uhynulí	717.9755021	737.8578313

Úloha 6

(1b) Pro každou skupinu zvlášť otestujte na hladině významnosti 5 % hypotézu, zda je střední hodnota rovná hodnotě K (parametr úlohy), proti oboustranné alternativě. Můžete použít buď výsledek z předešlého bodu, nebo výstup z příslušné vestavěné funkce vašeho softwaru.

```
t.test( survived, mu = K, conf.level = 0.95, alternative = "two.sided" )
##
##
    One Sample t-test
##
## data: survived
## t = 218.88, df = 34, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 4
## 95 percent confidence interval:
  731.185 744.815
## sample estimates:
## mean of x
         738
##
t.test( perished, mu = K, conf.level = 0.95, alternative = "two.sided" )
##
##
    One Sample t-test
##
## data: perished
## t = 150.64, df = 23, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 4
## 95 percent confidence interval:
## 717.9755 737.8578
## sample estimates:
## mean of x
## 727.9167
```

Úloha 7

(2b) Na hladině významnosti 5 % otestujte, jestli mají pozorované skupiny stejnou střední hodnotu. Typ testu a alternativy stanovte tak, aby vaše volba nejlépe korespondovala s povahou zkoumaného problému.

Použijeme oboustranný dvouvýběrový t-test.

```
## 95 percent confidence interval:
## -1.279386 21.446053
## sample estimates:
## mean of x mean of y
## 738.0000 727.9167
```

Z výstupu funkce vidíme, že 95% konfidenční interval rozdílu středních hodnot obou skupin je (-1.279386, 21.446053) a p-hodnota (Minimální hladina významnosti, na které lze hypotézu H_0 při dané realizaci náhodného výběru zamítnout) rovná 0.0809 (8%). Hladina významnosti byla stanovena na 5%, rovnost středních hodnot tedy nezamítáme.