Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 344 820 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

- (43) Date of publication: 17.09.2003 Builetin 2003/38
- (21) Application number: 01997189.4
- (22) Date of filing: 21.11.2001

- (51) Int CI.7: **C12N 9/42**, C11D 3/386, D06M 16/00, C12R 1/645, C12N 1/15, D06M 101/06
- (86) International application number: PCT/JP01/10188
- (87) International publication number: WO 02/042474 (30.05.2002 Gazette 2002/22)
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE TR

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 21.11.2000 JP 2000354296
- (71) Applicant: Melji Selka Kaisha, Ltd. Tokyo 104-8002 (JP)
- (72) Inventors:
 - NAKANE, Akitaka, c/o Meiji Seika Kaisha, Ltd. Sakado-shi, Saltama 350-0289 (JP)

- BABA, Yuko, c/o Meiji Seika Kaisha, Ltd. Sakado-shi, Saitama 350-0289 (JP)
- KOGA, Jinichiro, c/o Meiji Selka Kaisha, Ltd.
 Sakado-shi, Saltama 350-0289 (JP)
- KUBOTA, Hidetoshi, c/o Meiji Seika Kaisha, Ltd. Sakado-shi, Saltama 350-0289 (JP)
- (74) Representative: Gillard, Richard Edward
 Elkington and Fife
 Prospect House
 8 Pembroke Road
 Sevenoaks
 Kent TN13 1XR (GB)

(54) ZYGOMYCETES-ORIGIN ENDOGLUCANASE LACKING CELLULOSE-BINDING DOMAIN

(57) This invention relates to a protein that is a Zy-gomycetes-derived endoglucanase lacking the cellulose-binding domain and exhibits endoglucanase activity, and a method for using the same. This invention can enhance effects of an endoglucanase enzyme on fabric treatment such as reduction of fuzzing, improvement in

feel and appearance, color clarification, partial color change, and softening of cellulose-containing fabrics and on performance improvement in the deinking of waste paper and drainage of paper pulp.

Description

Technical Field

[0001] The present invention relates to an endoglucanase enzyme, the cellulose-binding domain of which has been deleted, with enhanced effects in the treatment of cellulose-containing fabrics and with applications regarding detergents or paper pulp, a method for producing the same, and a cellulase preparation with enhanced effects.

Background Art

10

[0002] Treatment of cellulose-containing fabrics with cellulase is carried out to provide the fabrics with desired properties. For example, treatment with cellulase is carried out in the fabric industry in order to improve the feel and appearance of cellulose-containing fabrics or to give colored cellulose-containing fabrics an appearance of "stone-washed" material, i.e., partial color change (European Patent No. 307,564).

[0003] Colored cellulose-containing fabrics are known to become fuzzy after repeated washings and to lose their vividness. Incorporation of cellulase into a detergent can remove fuzz and make the color of fabrics vivid, i.e., clarify the color (European Patent No. 220,016). Thus, detergents containing cellulase are commercially available mainly in Europe and America.

[0004] In the aforementioned application, cellulases derived from *Trichoderma* or *Humicola* (both are wood-rotting fungi) are mainly used. Recently used cellulase preparations are produced by isolating endoglucanases, which are highly active in fabric treatment, from these cellulase components and enhancing their effects with genetic engineering in order to improve commercial efficiency. Examples of these highly active endoglucanases include: *Humicola insolens-derived* EG V (WO 91/17243) and NCE4 (WO 98/03640) that strongly act on cotton fabrics; and *Rhizopus oryzae*-derived RCE I, RCE II, and RCE III, *Mucor circinelloides*-derived MCE I and MCE II, and *Phycomyces* niters-derived PCE I (WO 00/24879) that strongly act on lyocell fabrics.

[0005] Among endoglucanases used in the aforementioned applications, EG V (WO 91/17243), NCE4 (WO 98/03640), and RCE I, RCE II, RCE III, MCE I, MCE I, and PCE I (WO 00/24879) are presumed to belong to the same family (family 45) because of their amino acid sequences, and these enzymes have common structural properties. Specifically, each of these endoglucanases comprises a cellulose-binding domain for binding to cellulose as its substrate (hereinafter referred to as "CBD"), a catalytic active domain as an active center (hereinafter referred to as "CAD"), and a linker domain with a high hydrophilic amino acid residue content for linking these two domains.

[0006] EG V, an endoglucanase belonging to family 45, was studied using an enzyme, the CBD domain of which had been deleted (JP Patent Publication (PCT Translation) No. 9-500667, Enzyme and Microbial Technology, 27 (2000), 325-329). However, no improvement has been reported regarding the activity of endoglucanase for removing fuzz from cellulose fabrics through the deletion of the cellulose-binding domain (CBD). There are still many unclarified matters concerning the role of the cellulose-binding domain of endoglucanase in the exhibition of endoglucanase activity, and research thereof is limited to cellulase derived from a specific fungus, namely, *Trichoderma (Kiovula, A. et al., Trichoderma Gliocladium, 2,* (1998), 3-23). There has been no detailed research on the cellulose-binding domain of the *Zygo-mycetes-derived* endoglucanase.

[0007] Up to the present, several contrivances have been made in order to improve the effect or performance of cellulase in the above applications. For example, mutation was applied to an enzyme for improvement thereof, or culture conditions were modified in order to improve the productivity of the enzyme. Due to the high cost of cellulase to be used, however, the effect of cellulase should be further improved in order to provide a cellulase preparation that is worth using at an industrially practical level. Recently used cellulase preparations are produced by reinforcing only endoglucanase, which is highly active in fabric treatment, with genetic engineering in order to improve commercial efficiency. Accordingly, it is desirable to further improve the activity of such highly active cellulase.

Disclosure of the Invention

[0008] An object of the present invention is to provide an endoglucanase with improved activity, a cellulase preparation comprising the same, and various methods for treating cellulose-containing fabrics using the same.

[0009] The present inventors have conducted concentrated studies on the *Zygomycetes*-derived endoglucanase concerning the role of a cellulose-binding domain when acting on cellulose-containing fabrics. As a result, they have found that an endoglucanase lacking the cellulose-binding domain has much higher activity of removing fuzz from cotton, lyocell, or the like compared to an endoglucanase having a cellulose-binding domain. This led to the completion of the present invention.

[0010] Specifically, the present invention relates to a Zygomycetes-derived endoglucanase that has enhanced effects for removing fuzz from cellulose-containing fabrics (e.g., an enzyme comprising amino acid sequences of RCE I, RCE

II, RCE III, MCE I, MCE II, and PCE I, which attained enhanced effects of removing fuzz from cellulose-containing fabrics through the deletion of the cellulose-binding domain, and exhibiting endoglucanase activity, a modified protein thereof exhibiting endoglucanase activity, or a homologue of the protein or the modified protein) and a cellulase preparation comprising such endoglucanase. The present invention also relates to an endoglucanase that was produced in a host cell transformed with a gene encoding such an endoglucanases, and further relates to a method for treating cellulose-containing fabrics using the endoglucanase, which attained improved activity through the deletion of the cellulose-binding domain, or the cellulase preparation.

- [0011] More specifically, the present invention includes the following.
- (1) A protein that is a Zygomycetes-derived endoglucanase lacking the cellulose-binding domain and exhibits endoglucanase activity.
 - (2) A protein that is a *Zygomycetes*-derived endoglucanase belonging to family 45 lacking the cellulose-binding domain and exhibits endoglucanase activity.
 - (3) The protein according to (1) or (2), wherein the Zygomycetes are microorganisms selected from the group consisting of those belonging to Rhizopus, Mucor, and Phycomyces.
 - (4) The protein according to (3), wherein the Zygomycetes are microorganisms belonging to Rhizopus.
 - (5) A protein comprising an amino acid sequence as shown in SEQ ID NO: 1, 3, 5, 7, 9, or 11, wherein the cellulosebinding domain has been deleted therefrom, and exhibiting endoglucanase activity, a modified protein thereof exhibiting endoglucanase activity, or a homologue of the protein or the modified protein exhibiting endoglucanase activity.
 - (6) A protein comprising an amino acid sequence as shown in SEQ ID NO: 1, 3, 5, 7, 9, or 11, wherein the cellulose-binding domain has been deleted therefrom, and exhibiting endoglucanese activity.
 - (7) A gene encoding the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6).
- 25 (8) An expression vector comprising the gene according to (7).

15

20

40

45

50

- (9) A host cell transformed with the expression vector according to (8).
- (10) The host cell according to (9), which is a filamentous fungus.
- (11) The host cell according to (10), which is a microorganism belonging to Humicola.
- (12) A method for producing a protein comprising steps of culturing the host cell according to any one of (9) to (11) and collecting from the host cell obtained by the step of culturing or its culture product the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6).
 - (13) A protein produced by the method according to (12).
 - (14) A cellulase preparation comprising the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6) and (13).
- (15) A method for treating cellulose-containing fabrics comprising a step of bringing cellulose-containing fabrics into contact with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6) and (13) or the cellulase preparation according to (14).
 - (16) A method for reducing the rate at which cellulose-containing fabrics become fuzzy or reducing fuzzing in cellulose-containing fabrics comprising a step of bringing cellulose-containing fabrics into contact with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6) and (13) or the cellulase preparation according to (14).
 - (17) A method of weight loss treatment of cellulose-containing fabrics to improve the feel and appearance thereof comprising a step of bringing cellulose-containing fabrics into contact with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6) and (13) or the cellulase preparation according to (14).
 - (18) A method of color clarification of colored cellulose-containing fabrics comprising a step of treating colored cellulose-containing fabrics with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6) and (13) or the cellulase preparation according to (14).
 - (19) A method of providing colored cellulose-containing fabrics with partial color change comprising a step of treating colored cellulose-containing fabrics with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6) and (13) or the cellulase preparation according to (14). (20) A method for reducing the rate at which cellulose-containing fabrics become stiff or reducing stiffness in cellulose-containing fabrics comprising a step of treating cellulose-containing fabrics with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6) and (13) or the cellulase preparation according to (14).
 - (21) The method according to any one of (15) to (20), wherein fabrics are treated through soaking, washing, or rinsing thereof.
 - (22) An additive to detergent comprising the protein, modified protein thereof, or homologue of the protein or the

modified protein according to any one of (1) to (6) and (13) or the cellulase preparation according to (14) in a non-dusting granular form or a stabilized liquid form.

- (23) A detergent composition comprising the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6) and (13) or the cellulase preparation according to (14).
- (24) A method of deinking waste paper using a deinking aagent wherein the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6) and (13) or the cellulase preparation according to (14) is used in a step of deinking waste paper.
- (25) A method for improving drainage of paper pulp comprising a step of treating paper pulp with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6) and (13) or the cellulase preparation according to (14).
- (26) A method for improving digestibility of animal feeds comprising a step of treating animal feeds with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of (1) to (6) and (13) or the cellulase preparation according to (14).

1. Endoglucanase lacking cellulose-binding domain

10

15

[0012] The present invention relates to a protein that is a *Zygomycetes*-derived endoglucanase lacking the cellulose-binding domain and exhibits endoglucanase activity.

[0013] In this description, "Zygomycetes" refer to microorganisms belonging to Zygomycota, i.e., fungi that generate zygospores through gametangial copulation upon gametogony. The Zygomycota includes Zygomycetes and Trichomycetes. The Zygomycetes used in the present invention are not particularly limited. Microorganisms belonging to the Zygomycetes are preferable, those belonging to the Mucorales are more preferable, those belonging to Rhizopus, Mucor, or Phycomyces are still more preferable, and those belonging to the Rhizopus are the most preferable.

[0014] In this description, "endoglucanase activity" refers to CMCase activity. Further, "CMCase activity" refers to an activity for hydrolyzing carboxymethylcellulose (CMC, Tokyo Kasei Kogyo, Japan), and one unit is defined as the amount of an enzyme which produces reducing sugars corresponding to 1 µmol of glucose per minute by measuring amounts of the reducing sugars released after incubation of a test protein with a CMC solution for a given period of time. [0015] Endoglucanase activity can be determined by, for example, a procedure as described below. At the outset, 0.5 ml of a solution containing a test protein is added to 0.5 ml of 50 mM acetic acid-sodium acetate buffer solution (pH 6.0) with 2% CMC dissolved therein, and the mixture is subjected to incubation at 50°C for 30 minutes. Subsequently, the concentration of the reducing sugars produced in the resulting reaction solution is quantified by the 3,5-dinitrosalicylic acid (DNS) method. Specifically, 3.0 ml of a DNS reagent is added to 1.0 ml of the reaction solution 30 minutes after the reaction, and the mixture is subjected to incubation in a boiling water bath for 5 minutes. Thereafter, the incubation product is diluted with 8.0 ml of distilled water, and the absorbance at 540 nm is measured. A calibration curve is prepared using a gradually diluted glucose solution, and the amount of the reducing sugars produced in the enzyme reaction solution is determined. Activity is determined using an amount of the enzyme that produces reducing sugars corresponding to 1 µmol glucose per minute as one unit. This DNS reagent can be prepared in accordance with publication such as Seibutsu Kagaku Jikkenhou 1 - Kangentou no Teiryouhou (Biochemical Experimentation 1-The method for quantifying reducing sugar) (p. 19-20, Sakuzo Fukui, Center for Academic Publications Japan), and can be prepared in the manner described below. At the outset, 880 ml of 1% 3,5-dinitrosalicylic acid solution and 255 g of Rochelle salt are added to 300 ml of an aqueous solution of 4.5% sodium hydroxide (solution A). Separately, 10 g of crystalline phenol is added to 22 ml of an aqueous solution of 10% sodium hydroxide, and water is further added and dissolved in the mixture to bring the amount thereof to 100 ml (solution B). Sodium bicarbonate (6.9 g) is added to 69 ml of solution B and dissolved therein, solution A is poured therein, and the mixture is stirred and mixed until the Rochelle salt is thoroughly dissolved. The mixture is allowed to stand for 2 days and then filtered.

[0016] The term "endoglucanase" used herein refers to an enzyme exhibiting endoglucanase activity, i.e., endo-1,4- β -glucanase (EC 3. 2. 1. 4). This enzyme hydrolyzes the β -1,4-glucopyranosyl bond of β -1,4-glucan.

[0017] Endoglucanases are classified into several families based on information such as their amino acid sequences. The endoglucanase according to the present invention may belong to any family, and it preferably belongs to family 45. The endoglucanase "belonging to family 45" refers to those types having a consensus sequence, (Ser, Thr, or Ala) -Thr-Arg-Tyr-(Trp, Tyr, or Phe)-Asp-Xaa-Xaa-Xaa-Xaa-Xaa-(Cys or Ala), in the catalytic active domain (CAD). *Humicola* insolens-derived EG V (JP Patent Publication (PCT Translation) No. 5-509223), NCE4 (WO 98/03640), and the like also belong to family 45.

[0018] A protein of endoglucanase belonging to family 45 is comprised a catalytic active domain (CAD), a cellulose-binding domain (CBD), and a linker domain for linking based on function. The cellulose-binding domain (CBD) is known to exist as a domain linking to cellulose as its name suggests, and the conservation of the following consensus sequence is confirmed as a feature of the sequence (Hoffren, A. -M. et al., Protein Engineering 8: 443-450, 1995).

CBD consensus sequence:

1

10

Xaa Xaa Xaa Xaa Xaa Xaa Gin Cys Gly Gly Xaa Xaa Xaa Xaa

20

Gly Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa

30

Xaa Xaa Xaa Asn Xaa Xaa Tyr Xaa Gln Cys Xaa (SEQ ID NO: 17)

[0019] In this sequence, Xaa is independently any amino acid; and Xaas at positions 20, 21, 22, 23, 24, 30 and 31 may be independently absent. Other Xaas are always present and are independently any amino acids. Amino acids other than Xaa are expressed in three-letter abbreviations. CBD is linked to either the N-terminal side or C terminal side of CAD through a linker domain. Also reported is *Humicola* insolens-derived NCE5 (amino acid sequence: SEQ ID NO: 38, cDNA sequence: SEQ ID NO. 39) such as a family 45 endoglucanase that does not originally have CBD. [0020] Although there is no definite recognition sequence for the linker domain, the sequence is rich in hydrophilic amino acid residues such as Ser or Thr, and its length varies depending on types of endoglucanases.

[0021] Examples of the *Zygomycetes*-derived endoglucanase according to the present invention include enzymes exhibiting endoglucanase activity derived from *Rhizopus, Phycomuyces*, or *Mucor* described in WO 00/24879, i.e., RCE I (SEQ ID NO: 1), RCE II (SEQ ID NO: 3), RCE III (SEQ ID NO: 5), MCE I (SEQ ID NO: 7), MCE II (SEQ ID NO: 9), and PCE I (SEQ ID NO: 11). Locations of each of the domains in the amino acid sequence of these enzymes are as shown in Table 1 below.

30

35

15

Table 1

	CBD	A portion in linker domain	CAD
SEQ ID NO: 1	3 to 38	99 to 108	109 to 315
SEQ ID NO:3	3 to 38	127 to 136	137 to 343
	50 to 85		
SEQ ID NO:5	3 to 40	122 to 131	132 to 337
SEQ ID NO:7	3 to 40	104 to 113	114 to 316
SEQ ID NO: 9	3 to 40	153 to 162	163 to 365
	52 to 89		
SEQ ID NO:11	3 to 40	115 to 124	125 to 327

40

[0022] Amino acid sequences at the N-terminuses of RCE I, MCE I, and PCE I are respectively identified as shown in SEQ ID Nos: 14, 15, and 16 (WO 00/24879).

[0023] The protein according to the present invention should not comprise a cellulose-binding domain in the aforementioned endoglucanase. As long as the protein has endoglucanase activity, there is no particular limitation on the structure of other domains. Accordingly, the protein of the present invention may or may not comprise a linker domain. The protein may alternatively comprise a portion of a linker domain, and it is preferable if the protein retains a fragment of a linker domain comprising about 10 amino acid residues.

[0024] The other aspect of the present invention relates to a protein comprising any of the amino acid sequences as shown in SEQ ID NO: 1 (RCE I), SEQ ID NO: 3 (RCE II), SEQ ID NO: 5 (RCE III), SEQ ID NO: 7 (MCE I), SEQ ID NO: 9 (MCE II), or SEQ ID NO: 11 (PCE I), wherein the cellulose-binding domain has been deleted therefrom, and exhibiting endoglucanase activity. The present invention further relates to a modified protein and a homologue of such protein exhibiting endoglucanase activity.

[0025] In this description, the term "modified protein" refers to a protein that comprises an amino acid sequence having modification such as addition, insertion, diminution, deletion, or substitution of one or several amino acids in the amino acid sequence of RCE I, RCE II, RCE III, MCE I, MCE II, or PCE I, which lacks the cellulose-binding domain. The number of the amino acids to be involved with such modification is not particularly limited as long as the modified

protein has endoglucanase activity. The number thereof is preferably 1 to about 50, more preferably 1 to about 30, and still more preferably 1 to 9.

[0026] The term "homologue" used herein refers to a polypeptide having an amino acid sequence coded by a gene encoding the amino acid sequences of RCE I, RCE II, RCE III, MCE I, MCE II, and PCE I lacking the cellulose-binding domain. One example would be a gene (nucleotide sequence) that hybridizes under stringent conditions with DNA having any nucleotide sequence as shown in SEQ ID NO: 2 or 13 (RCE I), SEQ ID NO: 4 (RCE II), SEQ ID NO: 6 (RCE III), SEQ ID NO: 8 (MCE I), SEQ ID NO: 10 (MCE II), or SEQ ID NO: 12 (PCE I), wherein a portion encoding a cellulose-binding domain has been removed and having endoglucanase activity. The term "stringent conditions" refers to conditions under which, while a probe that comprises the nucleotide sequence encoding a part or all of the amino acid sequences of RCE I, RCE II, RCE III, MCE I, MCE II, and PCE I lacking the cellulose-binding domain or an amino acid sequence of its modified protein hybridizes with a gene encoding a homologue, this probe is controlled to such an extent that it does not hybridize with the endoglucanase NCE4 gene (SEQ ID NO: 18) according to WO 98/03640 or the endoglucanase SCE3 gene (SEQ ID NO: 19) according to WO 98/54332 (wherein the amount of DNA used is equal to that of the gene encoding the NCE4 gene, SCE3 gene, or a homologue). A specific example of "stringent conditions" is as follows. A labeled probe having a full length DNA sequence encoding amino acid sequences such as RCE I, which lacks the cellulose-binding domain, is used. In accordance with the method of the ECL Direct DNA/RNA Labeling Detection System (Amersham), prehybridization is carried out at 42°C for 1 hour, the probe is added, and hybridization is then carried out at 42°C for 15 hours. Thereafter, 0.5x SSC (1x SSC; 15 mM trisodium citrate, 150 mM sodium chloride) comprising 0.4% SDS and 6M urea is used to perform washing twice at 42°C for 20 minutes. Subsequently, 5x SSC is used to perform washing twice at room temperature (about 25°C) for 10 minutes.

[0027] Examples of such modified proteins or homologue include a protein having an amino acid sequence that is preferably at least 70%, more preferably at least 80%, still more preferably at least 90%, even more preferably at least 95%, and most preferably at least 98% homologous to the amino acid sequence of RCE I, RCE II, RCE III, MCE I, MCE II, or PCE I, which lacks the cellulose-binding domain. The numerical values indicating homology may be determined using a program for searching for homology that is known to a person skilled in the art. Preferably, these numerical values are determined using default (initial setting) parameters at FASTA3 (Science, 227, 1435-1441 (1985); Proc. Natl. Acad. Sci. USA, 85, 2444-2448 (1988); http://www.ddbj.nig.ac.jp/E-mail/homology-j.html).

[0028] The protein of the present Invention does not comprise a cellulose-binding domain. Accordingly, the modified protein and the homologue should not comprise a cellulose-binding domain. This can be confirmed by investigating the amino acid sequence of the object protein and whether or not the consensus sequence (Hoffren, A. -M. et al., Protein Engineering 8: 443-450, 1995; SEQ ID NO: 17) is present therein.

[0029] Also, the protein of the present invention has endoglucanase activity. Accordingly, the modified protein and the homologue should also have endoglucanase activity. This can be confirmed by investigating endoglucanase activity of the object protein by the aforementioned method.

[0030] The protein of the present invention can be produced as a protein comprising an amino acid sequence that does not comprise a cellulose-binding domain by a method known to a person skilled in the art based on the amino acid sequence of a known endoglucanase derived from Zygomycetes. Examples of such a method include a method that is carried out by decomposing in a linker domain using protease during the culture of Zygomycetes producing endoglucanase to cause deletion of the cellulose-binding domain and a method that is carried out by artificially expressing endoglucanase that does not have a cellulose-binding domain due to genetic engineering techniques. Among the proteins of the present invention, in particular, the modified protein and the homologue can be prepared using DNA encoding their amino acid sequences by a genetic engineering technique that is known to a person skilled in the art. [0031] The protein of the present invention can yield a higher effect than the original endoglucanase having a cellulose-binding domain in fabric treatment or other applications to detergents or paper pulp. Particularly, a much higher effect can be attained in the activity of removing fuzz from reproduced cellulose fabric such as lyocell (per protein weight) and in the activity of removing fuzz from cotton fabric such as knitted cotton (per protein weight). The protein of the present invention is preferably twice or higher, more preferably 2.5 times or higher, and most preferably 3 times or higher in the activity of removing fuzz from reproduced cellulose fabric (such as lyocell) (per protein weight) as a purified endoglucanase having the cellulose-binding domain. Or, the protein is preferably 5 times or higher, more preferably 15 times or higher, and most preferably 20 times or higher in the activity of removing fuzz from cotton fabric such as knitted cotton (per protein weight) as a purified endoglucanase having the cellulose-binding domain.

2. Gene, expression vector, host cell transformed with the expression vector, and production of endoglucanase lacking the cellulose-binding domain using the host cell

[0032] The present invention relates to a gene encoding the protein of the present invention, a modified protein thereof, or a homologue of the protein or the modified protein and an expression vector comprising the gene.

[0033] The gene of the present invention may be any gene as long as it encodes the protein of the present invention,

a modified protein thereof, or a homologue of the protein or the modified protein. Specific details of their nucleotide sequences are not particularly limited. Examples of usable genes in order to express RCE I, RCE II, RCE III, MCE I, MCE II, or PCE I, which lacks the cellulose-binding domain, as the protein of the present invention include those comprising nucleotide sequences as shown in SEQ ID NO: 2 (RCE I), SEQ ID NO: 4 (RCE II, SEQ ID NO: 6 (RCE III), SEQ ID NO: 8 (MCE I), SEQ ID NO: 10 (MCE II), or SEQ ID NO: 12 (PCE I).

[0034] Specifically, the gene of the present invention comprises an amino acid sequence as shown in SEQ ID NO: 1, 3, 5, 7, 9, or 11, wherein the cellulose-binding domain has been deleted therefrom, and encodes a protein exhibiting endoglucanase activity, a modified protein thereof exhibiting endoglucanase activity, or a homologue of the protein or the modified protein exhibiting endoglucanase activity.

10 [0035] The gene of the present invention comprises DNA as described in the following (a) or (b).

15

35

55

- (a) DNA that has a nucleotide sequence as shown in SEQ ID NO: 2 or 13, 4, 6, 8, 10, or 12, wherein a portion encoding a cellulose-binding domain has been deleted therefrom.
- (b) DNA that hybridizes under stringent conditions with DNA that has a nucleotide sequence as shown in SEQ ID NO: 2 or 13, 4, 6, 8, 10, or 12, wherein a portion encoding a cellulose-binding domain has been deleted therefrom.

[0036] The term "stringent conditions" means the conditions described in the section 1. above.

[0037] The nucleotide sequences of the aforementioned genes can be optimized depending on the type of host cell used in the later transformation. These nucleotide sequences can be optimized with respect to, for example, the codon usage in a host cell or the intron recognition sequence in a host cell. The codon usage can be optimized by, for example, modifying nucleotide sequences so as to comprise as many codons used in a host cell at high frequency as possible without changing the amino acid sequence to be coded. This can improve the efficiency of translation from genes into proteins. The intron recognition sequence can be optimized by, for example, modifying nucleotide sequences so as to have no DNA sequence, which could be recognized as an intron in a host cell, or to have as few sequences as possible without changing the amino acid sequence to be coded. This can improve the stability of mRNA that is a transcript of an object gene. The intron recognition sequences vary depending on types of host cells. Examples of intron recognition sequences of filamentous fungi belonging to the Fungi Imperfecti include DNA sequences such as GTAGN, GTATN, GTAAN, GTACGN, GTGTN, GCACGN, and GTTCGN ("N" stands for A, T, C, or G in each sequence).

[0038] In this description, the term "codon optimized gene" refers to a gene that is obtained by optimizing the codon usage and/or the intron recognition sequence. Preferably, the codon optimized gene is a gene obtained by optimizing the codon usage, and more preferably a gene obtained by optimizing the codon usage and the intron recognition sequence. This codon optimized gene is preferably optimized for the expression in filamentous fungi belonging to the Fungi imperfecti. Examples of such codon optimized genes include a gene which lacks a portion encoding a cellulose-binding domain in the codon optimized endoglucanase RCE I gene (SEQ ID NO; 13) as disclosed in WO 00/24879.

[0039] The expression vector of the present invention comprises an object gene (a gene encoding the protein of the present invention, a modified protein thereof, or a homologue of the protein or the modified protein) in a state that is replicable in a host cell and expressible of the protein of the present invention, a modified protein thereof, or a homologue of the protein or the modified protein. This expression vector can be constructed based on a self-replicating vector, i. e., a vector that exists as an extrachromosomal entity and replicates independently of the chromosome, for example, a plasmid. Alternatively, the expression vector may be a vector that is integrated into the genome of the host cell upon introduction thereinto and replicated together with the chromosome into which it has been incorporated. For the construction of the vector of the present invention, conventional procedures and methods used in the field of genetic engineering can be used.

[0040] For the expression of the protein of the present invention, a modified protein thereof, or a homologue of the protein or the modified protein upon introduction into the host cell, it is desirable that the expression vector of the invention contains DNA sequences to regulate the expression and gene markers, etc. to select transformants, in addition to the gene encoding the protein of the present invention, a modified protein thereof, or a homologue of the protein or the modified protein. Examples of expression regulatory DNA sequences include promoters, terminators, and DNA sequences encoding signal peptides. The promoters and the terminators are not particularly limited as long as they show transcription activity in the host cell. They may be obtained as DNA sequences, which control the expression of a gene encoding a protein homogeneous or heterogeneous to the host cell. The signal peptides are not particularly limited as long as they contribute to the secretion of protein in the host cell. They may be obtained from DNA sequences derived from a gene encoding a protein homogeneous or heterogeneous to the host cell. The gene markers of the invention can be appropriately selected depending on the method for selecting transformants. For example, genes encoding drug resistance or genes complementing auxotrophy may be used. Each of these DNA sequences and gene markers is operably linked to the expression vector of the present invention.

[0041] Further, the present invention relates to a host cell that is transformed with the expression vector. The expression vector introduced into a host cell should be replicable therein. Thus, the host cell that is used herein varies

depending on the type of vector used in the production of the expression vector. Alternatively, in accordance with the type of a host cell to be used, an expression vector can be produced so as to be replicable therein. Specifically, in order to obtain a transformant that expresses the protein of the present invention, a modified protein thereof, or a homologue of the protein or the modified protein, a host cell and an expression vector should be adequately combined. Such a combination is referred to as a host-vector system. The host-vector system that is used in the present invention is not particularly limited. Examples thereof include systems using microorganisms such as *Escherichia coli, Actinomycetes*, yeast, and filamentous fungi as host cells, and a system using filamentous fungi is preferred. An expression system for a fusion protein with other protein can be also used.

[0042] When filamentous fungi are used as host cells, any type of filamentous fungi can be used, and preferred examples thereof include those belonging to *Humicola, Asperfillus, or Trichoderma*. Particularly preferred examples of these filamentous fungi include *Humicola insolens, Aspergillus niger or Aspergillus oryzae*, and *Trichoderma viride*.

[0043] A host cell can be transformed with the expression vector of the present invention in accordance with conventional methods used in the field of genetic engineering.

[0044] The thus obtained transformant (transformed host cell) is cultured in a suitable medium, and the protein of the present invention, a modified protein thereof, or a homologue of the protein or the modified protein can be isolated and obtained from the culture product. Accordingly, another aspect of the present invention relates to a method for producing a protein comprising steps of culturing the host cell of the present invention and collecting the protein of the present invention, a modified protein thereof, or a homologue of the protein or the modified protein from the host cell obtained by the step of culture or a culture product thereof. Culture methods and other conditions for transformants may be substantially the same as those for microorganisms to be used. The transformants can be cultured and the object protein can be then collected by a conventional method of this technical field.

3. Cellulase preparation

20

[0045] The present invention relates to a cellulase preparation that comprises the protein of the present invention, a modified protein thereof, a homologue of the protein or the modified protein, or a protein produced by the method for producing a protein according to the present invention.

[0046] In general, a cellulase preparation is powder, liquid, or the like that comprises, for example, an excipient (e. g., lactose, sodium chloride, or sorbitol), a preservative, or a nonionic surfactant, in addition to a cellulase enzyme. For example, it is formulated as a powdery, particulate, granular, non-dusting granular, or liquid preparation. The cellulase preparation of the present invention comprises, as the cellulase enzyme, the protein of the present invention, a modified protein thereof, a homologue of the protein or the modified protein, or a protein produced by the method for producing a protein of the present invention (hereinafter referred to as "the proteins of the present invention"). Further, the cellulase preparation of the present Invention may comprise, in addition to the proteins of the present invention, other cellulase enzymes, for example, cellobiohydrolase, β-glucosidase, or endoglucanase which are not involved in the present invention.

[0047] One type of cellulase preparation, a non-dusting granular preparation, may be prepared by a conventional dry granulating method. Specifically, the powdery proteins of the present invention are mixed with one or several of: neutral inorganic salts that do not affect endoglucanase activity represented by sodium sulfate, sodium chloride, or the like; minerals that do not affect endoglucanase activity represented by bentonite, montmorillonite, or the like; or neutral organic substances represented by starch, particulate cellulose, or the like. A powder or fine suspension of one or several nonionic surfactant is then added thereto, followed by thorough mixing or kneading. Depending on the situation, a synthetic polymer represented by polyethylene glycol for binding solid matter or a natural polymer such as starch is suitably added and further kneaded. Thereafter, extrusion granulation is carried out using, for example, Disc Pelleter, and the extruded granules are then shaped into spherical form using the Marumerizer, followed by drying. Thus, nondusting granules can be produced. The amount of one or several nonionic surfactants to be added is not particularly limited. The amount is preferably 0.1% to 50% by weight, more preferably 0.1% to 30% by weight, and still more preferably 1% to 20% by weight, based on the entire cellulase preparation according to the present invention. Oxygen permeation or water permeation can be regulated by coating the surfaces of granules with a polymer, etc.

[0048] In contrast, a liquid formulation can be prepared by incorporating a stabilizer for the endoglucanase enzyme such as a synthetic polymer, a natural polymer, or the like into a solution comprising the proteins of the present invention and adding inorganic salts or synthetic preservatives according to need. In this case, one or several nonionic surfactants can be also incorporated. The amount of one or several nonionic surfactants to be added is not particularly limited. The amount is preferably 0.1% to 50% by weight, more preferably 0.1% to 30% by weight, and still more preferably 1% to 20% by weight, based on the entire cellulase preparation according to the present invention.

4. Application of the proteins of the present invention and the cellulase preparation of the present invention

[0049] The present invention relates to a method for treating cellulose-containing fabrics. This method comprises a step of bringing cellulose-containing fabrics into contact with the proteins of the present invention or the cellulase preparation of the present invention. Conditions such as contact temperature or amounts of the proteins or the cellulase preparation can be suitably determined with respect to various other conditions.

[0050] The aforementioned method can be used to reduce the rate at which cellulose-containing fabrics become fuzzy or to reduce fuzzing in cellulose-containing fabrics. In this application, the proteins or the cellulase preparation at the protein concentration of 0.001 to 1 mg/l is preferably used at about 30°C to 60°C.

[0051] The aforementioned method can be used in weight loss treatment of cellulose-containing fabrics to improve the feel and appearance thereof. In this application, to improve the feel means to reduce the rate at which the feel is spoiled. In this application, the proteins or the cellulase preparation at the protein concentration of 0.001 to 100 mg/l is preferably used at about 30°C to 60°C.

[0052] The aforementioned method can be used for color clarification of colored cellulose-containing fabrics.

[0053] The aforementioned method can be used for providing colored cellulose-containing fabrics with partial color change. In this application, for example, colored cellulose-containing fabrics (e.g., denim) can be provided with an appearance of stone-washed material. In this application, the proteins or the cellulase preparation at the protein concentration of 0.01 to 100 mg/l is preferably used at about 40°C to 60°C.

[0054] The protein concentrations of various endoglucanases were calculated from the peak area at UV 280 nm of respective endoglucanase eluted with a linear gradient from 0% to 80% of acetonitrile concentration in 0.05% TFA (trifluoroacetic acid) at a flow rate of 1.0 ml/min in HPLC analysis using TSK gel TMS-250 column (4.6 mm l.D. x 7.5 cm, TOSOH Japan). The standard used was the purified NCE4, which was analyzed in HPLC under the same conditions, the protein concentration of which had been preliminarily measured by a protein assay kit (BioRad Laboratories). The purified NCE4 is purified from a culture product of *Humicola insolens* MN 200-1, which was deposited at the International Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology (Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan) under the accession number of FERM BP-5977 (initial deposition: FERM P-15736, date of initial deposition: July 15, 1996), in accordance with the method as described in WO 98/03640. The standard used to measure the protein concentration using the protein assay kit is the Albumin Standard (Bovine serum albumin, fraction V, PIERCE).

25

[0055] The aforementioned method can be used to reduce the rate at which cellulose-containing fabrics become stiff or to reduce stiffness in cellulose-containing fabrics. In this application, cellulose-containing fabrics can be softened. [0056] In the aforementioned applications, cellulose-containing fabrics can be treated through soaking, washing, or rinsing of the fabrics. Specifically, the aforementioned method of the present invention can be carried out by treating cellulose-containing fabrics during washing. On some occasions, however, the treatment of fabrics may be carried out during soaking or rinsing by adding the proteins or the cellulase preparation of the present invention into water where the fabrics are soaked or to be soaked.

[0057] The present invention relates to an additive to detergent comprising the proteins or the cellulase preparation of the present invention in a non-dusting granular form or a stabilized liquid form. The present invention further relates to a detergent composition comprising the proteins or the cellulase preparation of the present invention.

[0058] This detergent composition may also contain a surfactant (which may be anionic, nonionic, cationic, amphoteric, or zwitterionic surfactant, or a mixture thereof). Further, this detergent composition may contain other detergent components known in the art, such as builders, bleaching agents, bleaching activators, corrosion inhibitors, sequestering agents, soil-dissociating polymers, aromatics, other enzymes (e.g., protease, lipase, or amylase), enzyme stabilizers, formulation assistants, fluorescent brightening agents, foaming promoters, etc. Examples of representative anionic surfactants include linear alkyl benzene sulfonate (LAS), alkylsulfate (AS), α -olefin sulfonate (AOS), polyoxyethylene alkyl ether sulfate (AES), α -sulfonato fatty acid methyl ester (α -SFMe), and alkali metal salts of natural fatty acids. Examples of nonionic surfactants include polyoxyethylene alkyl ether (AE), alkyl polyethylene glycol ether, nonylphenol polyethylene glycol ether, fatty acid methyl ester ethoxylate, fatty acid esters of sucrose or glucose, and esters of alkyl glucoside and polyethoxylated alkylglucoside.

[0059] The use of the proteins or the cellulase preparation of the present invention in a detergent composition can improve performances regarding particulate soil removal, color clarification, fuzz prevention, depilling, and reduction of stiffness.

[0060] The present invention relates to a method of deinking waste paper using a deinking agent wherein the proteins or the cellulase preparation of the present invention is used in a step of deinking waste paper with a deinking agent. [0061] When the protein or the cellulase preparation of the present invention is acted on waste paper, the efficiency of deinking is enhanced, and thus, the protein or the cellulase preparation of the present invention is useful in the process of manufacturing recycled paper from waste paper. This deinking method can significantly decrease ink-remaining fibers. Therefore, the whiteness of the waste paper can be enhanced.

[0062] The aforementioned "deinking agent" is not particularly limited as long as it is a commonly used agent when deinking waste paper. Examples thereof include alkali such as NaOH or Na₂CO₃, sodium silicate, hydrogen peroxide, phosphates, anionic surfactants, nonionic surfactants, capturing agents such as oleic acid, and examples of aids include pH stabilizers, chelating agents, and dispersants.

[0063] Waste paper, which can be treated by the above deinking method, is not particularly limited as long as it can be generally referred to as waste paper. Examples of waste paper include: used printed paper containing mechanical pulp and chemical pulp such as used newspaper, used magazine paper and low-grade or middle-grade used printed paper, used wood-free paper composed of chemical pulp; and coated paper thereof. Further, the above deinking method can be applied to any paper on which ink has been deposited if the paper is not generally referred to as waste paper.

[0064] Further, the present invention relates to a method for improving drainage of paper pulp. This method comprises a step of treating the paper pulp with the proteins or the cellulase preparation of the present invention.

[0065] According to this method, drainage of paper pulp can be remarkably improved without significant deterioration in paper strength. Pulp, which can be treated by this method, is not particularly limited, and examples thereof include waste paper pulp, recycled board pulp, kraft pulp, sulfite pulp, processed or thermo-mechanical pulp, and other high-yield pulp.

[0066] The present invention further relates to a method for improving the digestibility of animal feeds. This method comprises a step of treating animal feeds with the proteins or the cellulase preparation of the present invention.

[0067] According to this method, molecular weights of glucans in animal feeds are suitably lowered. Thus, the digestibility of animal feeds can be improved.

5. Deposition of microorganisms

20

[0068] The *Rhizopus oryzae* CP96001 strain was deposited at the International Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology (Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan) under the accession number of FERM BP-6889 on April 21, 1997.

[0069] The Mucor circinelloides CP99001 strain was deposited at the International Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology (Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan) under the accession number of FERM BP-6890 on July 2, 1999.

[0070] The *Phycomyces nitens* CP99002 strain was deposited at the International Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology (Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan) under the accession number of FERM BP-6891 on July 2, 1999.

[0071] The Escherichia coli JM 109 strain that was transformed with the expression vector pMKD01 used in the present invention was deposited at the International Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology (Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan) under the accession number of FERM BP-5974 (initial deposition: PERM P-15730, date of initial deposition: July 12, 1996).

[0072] The Humicola insolens MN 200-1 strain that can be a host for the expression vector of the present invention was deposited at the International Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology (Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan) under the accession number of FERM BP-5977 (initial deposition: FERM P-15736, date of initial deposition: July 15, 1996).

[0073] This description includes part or all of the contents as disclosed in the description of Japanese Patent Application No. 2000-354296, which is a priority document of the present application.

Best Modes for Carrying out the Present Invention

45 [0074] The present invention is described in more detail with reference to the following examples and reference examples but is not limited thereto.

[0075] In the following description, "endoglucanase activity" refers to CMCase activity. Further, "CMCase activity" measured by the amount of the reducing sugars released after the incubation of a cellulase enzyme and a carboxymethylcellulose (CMC, Tokyo Kasei Kogyo, Japan) solution for a given period of time and one unit is defined as the amount of an enzyme that produces reducing sugars corresponding to 1 µmol of glucose per minute.

[0076] In implementing the following tests, examples disclosed in WO 98/03667 and WO 00/24879 were referred to.

[Reference Examples]

Reference Example 1: cDNA cloning of cellulase NCE5

5 (1) Isolation of cDNA and preparation of library

[0077] In the screening of the gene that encodes NCE5, the cellulase component, mRNA was prepared from *Humicola insolens* MN 200-1 (FERM BP-5977), and cDNA was synthesized by a reverse transcriptase to prepare a library.

(i) Preparation of total RNA

[0078] Humicola insolens MN 200-1 (FERM BP-5977) was cultured in medium (N) (5.0% Avicel, 2.0% yeast extract, 0.1% polypeptone, 0.03% calcium chloride, 0.03% magnesium chloride, pH 6.8) for 2 days, and cells were collected by centrifugation (3,500 rpm, 10 minutes). Among the collected cells, 3 g thereof was washed with sterilized water, frozen in liquid nitrogen, and then ground in liquid nitrogen using a mortar and a pestle. Total RNA was isolated from the ground cells using ISOGEN (Nippon Gene) in accordance with the manual attached thereto, and total RNA was confirmed by formaldehyde agarose gel electrophoresis as a chromatic figure.

(ii) Preparation of poly(A)tail+RNA (= mRNA)

[0079] Among the total RNA prepared in (i), 1 mg thereof was applied on the oligo (dT) cellulose column to elute and isolate mRNA using the mRNA Purification Kit (Amersham Pharmacia Biotech) in accordance with the attached manual. Further, mRNA was confirmed by formaldehyde agarose gel electrophoresis as a smear chromatic figure.

²⁵ (iii) Synthesis of cDNA

20

40

50

[0080] cDNA was synthesized from 5 μg of the mRNA prepared in (ii) using the Time Saver cDNA Synthesis Kit (Amersham Pharmacia Biotech) in accordance with the attached manual.

30 (iv) Preparation of cDNA library

[0081] The *Eco*RI-*Not*I adaptor contained in the Time Saver cDNA Synthesis Kit was ligated to the blunt end of the synthesized total cDNA in accordance with the attached manual. The total amount of this DNA fragment was ligated into the phage vector and the *Eco*RI arm of the λZAPII Cloning Kit (Stratagene) using the DNA Ligation Kit Ver. 2 (Takara Shuzo Co., Ltd.), followed by ethanol precipitation. Thereafter, the DNA fragment was dissolved in a TE (10 mM Tris hydrochloride, pH 8.0, 1 mM EDTA) buffer. The thus obtained recombinant phage vector was subjected to *in vitro* packaging using the Gigapack III Plus Packaging Extract (Stratagene) in accordance with the attached manual. Thereafter, this recombinant phage vector was infected with *Escherichia coli* XL1-Blue MRF and cultured on a plate for plaque formation. Thus, a phage library was obtained. With the use thereof, an object gene was cloned.

(2) Amplification and analysis of DNA by PCR

[0082] DNA was amplified by PCR using the cDNA prepared in (I)-(iii) as a template based on the information concerning partial amino acid sequences of the cellulase NCE5.

[0083] The following synthetic oligonucleotides were prepared as primers. N-terminal: 5'-TAY TGG GAY TGY TGY AAR CC-3' (20mer) (SEQ ID NO: 36) T-43.0:5'-TCI GCR TTI ARR AAC CAR TC-3' (20mer) (SEQ ID NO: 37)

(In these nucleotide sequences, R indicates G or A; Y indicates T or C; and I indicates inosine.)

[0084] PCR was carried out in $50\,\mu$ l of reaction solution using 1 μ g of cDNA as a template, 1.25 units of LA Taq DNA Polymerase (Takara Shuzo Co., Ltd.) and its attached buffer, 0.2 mM dNTP, 10% DMSO, and 1 μ M each of the above primers under the following condition: at 94°C for 1 minute, (at 94.0°C for 30 seconds, 55.0°C for 30 seconds, and 72.0°C for 5 minutes.

[0085] About 500 bp DNA was amplified by this reaction, and the amplified DNA was subjected to sequencing using the DYEnamic ET Terminator Cycle Sequencing Premix Kit (Amersham pharmacia Biotech) and the ABI PRISM 310 Genetic Analyzer (PE Applied Biosystems) in accordance with the attached protocols. As a result, the amino acid sequence, which was deduced from the determined nucleotide sequence, contained all the partial amino acid sequence.

Patent provided by Sughrue Mion, PLLC - http://www.sughrue.com

es of cellulase NCE5. Thus, the deduced amino acid sequence was used as a probe in the following screening process.

- (3) Cloning of the gene that encodes NCE5, the cellulase component
- (i) Screening by plaque hybridization

[0086] The 500 bp DNA fragment (100 ng) amplified by PCR was previously labeled with the ECL Direct DNA/RNA Labeling Detection System (Amersham Pharmacia Biotech).

[0087] The phage plaque prepared in (1)-(iv) was transferred to the Hybond-N+ nylon transfer membrane (Amersham Pharmacia Biotech) and subjected to alkali treatment with 0.4N sodium hydroxide. Recombinant phage DNA on the membrane was denatured into a single strand. Thereafter, the nylon membrane was washed with 5x SSC (1x SSC: 15 mM trisodium citrate, 150 mM sodium chloride) and then air dried to immobilize DNA thereon. Thereafter, the nylon membrane was hybridized in accordance with the manual of the kit, detected, and exposed to Fuji Medical X-ray film (Fuji Photo Film) to yield 6 positive clones.

(ii) Preparation of phage DNA

25

35

40

[0088] DNA was prepared from the positive clones as plasmid DNA in accordance with the manual attached to the kit. [0089] A plasmid in which a DNA fragment was cloned into pBluescript SK(-) was prepared from ampicillin-resistant Escherichia coli SOLRTM. Using this plasmid as a template, PCR was carried out using the N-terminal and T-43.0 primers used in (2) under the same conditions as described above. As a result, a 500 bp amplification product was obtained from one plasmid. Thus, it is deduced that the object DNA was cloned into this plasmid. This plasmid was digested with EcoRI and then subjected to agarose gel electrophoresis.

[0090] As a result, the plasmid was found to contain about 1 kbp EcoRI fragment.

(4) Determination of cDNA nucleotide sequence

[0091] A nucleotide sequence of the about 1 kbp *EcoR*I fragment that was inserted into a positive recombinant pBluescript SK(-) plasmid obtained in (3)-(ii) was determined in the same manner as described above using primers for sequencing T3 and T7. As a result, this nucleotide sequence was found to contain a 672 bp open reading frame (ORF). Amino acid sequences deduced from the nucleotide sequence and the ORF were shown in SEQ ID NO: 39 and SEQ ID NO: 38 in the Sequence Listings.

[0092] Further, 1 to 18 amino acid sequences in this ORF were considered to be signal sequences for secreting the protein extracellularly.

Reference Example 2: Expression of NCE5 gene in Humicola insolens

[0093] Plasmid pJD01 (see Example D1 (2) (b) in WO 00/24879) was used as an expression vector in *Humicola insolens* MN 200-1 (PERM BP-5977) and constructed in the following manner.

- (1) Construction of NCE5 expressing plasmid pJND-c5
- (i) Site-directed mutagenesis into NCE5 gene
- 45 [0094] In order to ligate the NCE5 gene to the BamHI site of plasmid pJD01, a primer was constructed so as to previously comprise BamHI site in a sequence immediately upstream of the initiation codon and that immediately downstream of the termination codon, and the NCE5 gene was amplified by PCR. Primers for mutagenesis were designed as shown below.
 NCE5-N-BamHI:

NCE5-N-BamHI

5'-GGGGATCCTGGGACAAGATGCAGCTCCCCCTGACCACG-3' (38mer) (SEQ ID NO: 40);

55 NCE5-C-BamHI:

5'-GGGGATCCTGCATTTAACGCGAGCAGCCGCTCTTGGCC-3' (38mer) (SEQ ID NO: 41).

[0095] PCR was carried out under the same conditions as described above using the positive recombinant pBlue-script SK(-) plasmid obtained in Reference Example 1 as a template. As a result, an about 670 bp amplification product of the DNA fragment was confirmed by 1.0% agarose gel electrophoresis. Unreacted matter was removed by the MicroSpin S-400 HR Columns (Amersham Pharmacia Biotech), precipitated with ethanol, and then digested with Barr-HI. Subsequently, a total amount was subjected to 1.0% agarose gel electrophoresis, a 670 bp DNA fragment was collected using the Sephaglas BandPrep Kit (Amersham Pharmacia Biotech) in accordance with the attached manual, and the Barr-HI fragment was subcloned into the Barr-HI site of plasmid pUC118 to yield plasmid pNCE5Bam. Further, the nucleotide sequence of this inserted fragment was determined and confirmed by the aforementioned method.

(ii) Preparation of plasmid pJND-c5

[0096] The above plasmid pJD01 was digested with <code>BamHI</code> and separated by 0.8% agarose gel electrophoresis. An about 8.0 kbp DNA fragment was collected by the Sephagias BandPrep Kit, and the collected DNA fragment was dephosphorylated using <code>Escherichia</code> coll-derived alkaline phosphatase (Takara Shuzo Co., Ltd.) in accordance with the attached manual. Similarly, the plasmid pNCE5Bam obtained in (i) was digested with BamHI, and 670 bp DNA fragments were collected and ligated to the above DNA fragment using the DNA Ligation Kit Ver. 2 to obtain expression plasmid pJND-c5.

(2) Transformation of Humicola insolens with plasmid pJND-c5

[0097] Humicola insolens MN 200-1 (FERM BP-5977) was cultured in medium (S) at 37°C for 24 hours, and then the cells were collected by centrifugation at 3,000 rpm for 10 minutes. Medium (S) is composed of medium (N) described in Reference Example 1 having glucose (3.0%) added thereto and Avicel removed therefrom. The collected cells were washed with 0.5M sucrose and suspended in 10 ml of enzyme solution for preparing protoplast (3 mg/ml β-glucuronidase, 1 mg/ml Chitinase, 1 mg/ml Zymolyase, and 0.5M sucrose) filtered through a 0.45 μm filter. The suspension was shaken at 30°C for 60 to 90 minutes to render fungal threads to be protoplasted. This suspension was filtered and then centrifuged at 2,500 rpm for 10 minutes, and the protoplast was collected and then washed with a SUTC buffer (0.5M sucrose, 10 mM calcium chloride, and 10 mM Tris hydrochloride (pH 7.5)).

[0098] The thus prepared protoplast was suspended in 1 mL of SUTC buffer, and 10 μ l of DNA (TE) solution was added to the suspension in amounts of 10 μ g per each 100 μ l of the suspension. The mixture was allowed to stand in ice for 5 minutes. Subsequently, 400 μ l of PEG solution (60% PEG 4000, 10 mM calcium chloride, 10 mM Tris hydrochloride (pH 7.5)) was added and the mixture was allowed to stand in ice for 20 minutes. Thereafter, 10 ml of SUTC buffer was added, and centrifugation was carried out at 2,500 rpm for 10 minutes. The collected protoplast was suspended in 1 ml of SUTC buffer, centrifuged at 4,000 rpm for 5 minutes, and finally suspended in 100 μ l of SUTC buffer. [0099] The protoplast treated as above was superposed on the hygromycin-added (200 μ g(ml) YMG medium (1% glucose, 0.4% yeast extract, 0.2% malt extract, 1% agar (pH 6.8)) together with YMG soft agar. Culture was incubated at 37°C for 5 days. Thereafter, the generated colony was determined to be a transformant.

[Example 1] Construction of gene expressing RCE I variant H43, which lacks the cellulose-binding domain

[0100] Plasmid p18-1 containing the codon optimized endoglucanase gene RCE I (see Example D3 (1) g) in WO 00/24879) was digested with the restriction enzyme *Bam*HI to prepare plasmid pR1H4 wherein a fragment containing the codon optimized endoglucanase gene has been cloned into the BamHI site of plasmid pUC118. This plasmid pR1H4 was used as a template to perform first-phase PCR using two synthetic DNAs, i.e., RC-43F and RC-43R, as primers and the TaKaRa LA PCR in vitro Mutagenesis Kit (Takara Shuzo Co., Ltd.). Reaction conditions were in accordance with the manual attached to the kit. A sample was separated after the reaction by agarose gel electrophoresis to obtain an about 650 bp gene fragment 43-X2.

[0101] Using plasmid pJND-c5 as a template, which comprises the NCE5 gene originally having no cellulose-binding domain and being a family 45 endoglucanase as described in Reference Example 2, first-phase PCR was similarly carried out using two synthetic DNAs, i.e., NX-43F and NX-43R, as primers and the TaKaRa LA PCR in vitro Mutagenesis Kit (Takara Shuzo Co., Ltd.). Reaction conditions were in accordance with the manual attached to the kit. A sample was separated after the reaction by agarose gel electrophoresis to obtain an about 120 bp gene fragment 43-X1.

RC-43F: CACCACGCGCTACTGGGACT (SEQ ID NO: 20);

40

RC-43R: GGATCCTGCGTTTACTTGC (SEQ ID NO: 21);

NX-43F: GGATCCTGGGACAAGATG (SEQ ID NO: 22):

NX-43R: GCACGACGGCTTGCAGC (SEQ ID NO: 23)

[0102] Annealing and second-phase PCR were carried out using PCR fragments 43-X1 and 43-X2 and the TaKaRa LA PCR in vitro Mutagenesis Kit. Two synthetic DNAs, i.e., NX-43F and RC-43R, were used as primers and reaction conditions were in accordance with the manual attached to the kit. A sample was separated after the reaction by agarose gel electrophoresis to obtain an about 700 bp gene fragment H43. This fragment was digested with the restriction enzyme BarnHI to prepare plasmid pR1H43 ligated to the BarnHI site of plasmid pUC118 using the TaKaRa DNA Ligation Kit Ver. 1. Reaction conditions, such as those regarding enzymes, were in accordance with the manual attached to the kit. The obtained plasmid pR1H43 was subjected to sequencing using the Cy5-Auto Read Sequencing Kit (Amersham Pharmacia), and the sequence was analyzed using the DNA Sequencer ALFred (Amersham Pharmacia). A primer used in the reaction was the M13 primer, which was attached to the kit. As a result, it was confirmed that the sequence was in the expected form, i.e., a secretion signal on the N-terminal side was derived from NCE5 and the remaining catalytic active domain (CAD) was a sequence derived from RCE I. The amino acid sequence of the RCE I variant H43 deduced from the nucleotide sequence is shown below.

25

30

5

10

H43: MQLPLTTLLTLLPALAAAQSGSGRTTRYWDCCKPSCSWPGKANVSSPVKSCNKDG VTALSDSNAQSGCNGGNSYMCNDNQPWAVNDNLAYGFAAAAISGGGESRWCCSCFELTF TSTSVAGKKMVVQVTNTGGDLGSSTGAHFDLQMPGGGVGIFNGCSSQWGAPNDGWGSR YGGISSASDCSSLPSALQAGCKWRFNWFKNADNPSMTYKEVTCPKEITAKTGCSRK (SEQ ID NO: 24)

35

[0103] In this amino acid sequence (SEQ ID NO: 24), amino acid residues 1 to 18 are signal peptides derived from NCE5, amino acid residues 19 to 24 are N-terminal sequences of LACE5, amino acid residues 25 to 36 are sequences derived from NCE5 or RCE I, and amino acid residue 37 and succeeding sequences are derived from the catalytic active domain of RCE I.

[0104] When the reaction is carried out in accordance with the above method, two types of sequences, i.e., the sequence as shown in SEQ ID NO: 24 and the sequence in which amino acid residue 34 is alanine, are obtained as amino acid sequences of the protein coded by the nucleotide sequence of the gene fragment H43. In the following procedure, a gene fragment used has a nucleotide sequence, which encodes the amino acid sequence as shown in SEQ ID NO: 24.

45

[Example 2] Construction of gene expressing RCE I variant H45 which lacks the cellulose-binding domain

[0105] pR1H4 obtained in Example 1 was used as a template to introduce amino acid substitution into the RCE I gene using synthetic DNA, RC-A121P, and the TaKaRa LA PCR in vitro Mutagenesis Kit (Takara Shuzo Co., Ltd.). Reaction conditions were in accordance with the manual attached to the kit. A sample was separated after the reaction by agarose gel electrophoresis to obtain an about 1-kbp gene fragment L9. This fragment was digested with the restriction enzyme BamHI and ligated to the BamHI site of plasmid pUC118 using the TaKaRa DNA Ligation Kit Ver. 1 to prepare plasmid pRIL9. Reaction conditions, such as those regarding enzymes, were in accordance with the manual attached to the kit. The obtained plasmid pR1L9 was subjected to sequencing reaction using the Cy5-Auto Read Sequencing Kit (Amersham Pharmacia), and the sequence was analyzed using the DNA Sequencer ALFred (Amersham Pharmacia). A synthetic DNA used as primer used in this reaction was H4-RI. As a result, it was confirmed that the sequence was in the expected form, i.e., one alanine was substituted with proline.

RC-A121P: GACTGCTGCAAGCCGTCGTGC (SEQ ID NO: 42);

H4-R1: GTTGCACATGTAGGAGTTGC (SEQ ID NO: 43)

[0106] Using this pR1L9 as a template, a gene encoding a portion of the secretion signal sequence in the RCE I gene was amplified. PCR was carried out using two synthetic DNAs, i.e., RC-451F and RC-451R, as primers, the TaKaRa Ex Taq Polymerase (Takara Shuzo Co., Ltd.), and attached buffers. The composition of the reaction solution was in accordance with the conditions specified in the attached manual. The temperature conditions for the Thermal Cycler (2400-R, Perkin Elmer) were 25 cycles of 94°C for 1 minute, 50°C for 2 minutes, and 72°C for 1 minute. A sample was separated after the reaction by agarose gel electrophoresis to obtain an about 100 bp gene fragment 45-X1. [0107] Similarly, a region encoding the catalytic active domain (CAD) of the RCE I gene was amplified using the pR1L9 as a template. PCR was carried out using two synthetic DNAs, i.e., RC-452F and RC452R, as primers, the TaKaRa Ex Taq Polymerase (Takara Shuzo Co., Ltd.), and attached buffers. The composition of the reaction solution was in accordance with the conditions specified in the attached manual. The temperature conditions for the Thermal Cycler (2400-R, Perkin Elmer) were 25 cycles of 94°C for 1 minute, 50°C for 2 minutes, and 72°C for 1 minute. A sample was separated after the reaction by agarose gel electrophoresis to obtain an about 630 bp gene fragment 45-X2.

RC-451F: GCGGATCCTGGGACAAGATG (SEQ ID NO: 25);

5

20

25

30

45

RC-451R: GCCTGCAGAGCGGCGGAGGCCATC (SEQ ID NO: 26);

RC-452F: GCCTGCAGGGAAAGTACAGCGCTGT (SEQ ID NO: 27);

RC-452R: GCGGATCCTGCGTTTACTTGC (SEQ ID NO: 28)

[0108] PCR fragments 45-X1 and 45-X2 were digested with the restriction enzyme *Pst*, ligated together using the TaKaRa DNA Ligation Kit Ver. 1, and then digested with the restriction enzyme *Bam*HI to obtain a DNA fragment 45-X3. PCR was carried out using 45-X3 as a template, two synthetic DNAs, i.e., RC-451F and RC-452R, as primers, the TaKaRa Ex Taq Polymerase (Takara Shuzo Co., Ltd.), and attached buffers. The composition of the reaction solution was in accordance with the conditions specified in the attached manual. The temperature conditions for the Thermal Cycler (2400-R, Perkin Elmer) were 25 cycles of 94°C for 1 minute, 50°C for 2 minutes, and 72°C for 1 minute. A sample was separated after the reaction by agarose gel electrophoresis to obtain an about 700 bp gene fragment H45. This fragment was digested with the restriction enzyme *Bam*HI and ligated to the *Bam*HI site of plasmid pUC118 using the TaKaRa DNA Ligation Kit Ver. 1 to prepare plasmid pR1H45. Reaction conditions were in accordance with the manual attached to the kit. The amino acid sequence of the RCE I variant H45 deduced from the nucleotide sequence is shown below.

H45: MKFTTIASSALLALALGTEMASAALQGKYSAVSGGASGNGVTTRYWDCCKPSCSW

PGKANVSSPVKSCNKDGVTALSDSNAQSGCNGGNSYMCNDNQPWAVNDNLAYGFAAA
AISGGGESRWCCSCFELTFTSTSVAGKKMVVQVTNTGGDLGSSTGAHFDLQMPGGGVGIP
NGCSSQWGAPNDGWGSRYGGISSASDCSSLPSALQAGCKWRFNWFKNADNPSMTYKEV
TCPKEITAKTGCSRK (SEQ ID NO: 29)

[0109] In this amino acid sequence (SEQ ID NO: 29), amino acid residues 1 to 23 are signal peptides derived from

RCE1, amino acid residue 24 is an N-terminal sequence of RCE I, amino acid residues 25 and 26 are sequences introduced by a primer used, and amino acid residue 27 and succeeding sequences are derived from the catalytic active domain of RCE I.

[Example 3] Expression of codon optimized endoglucanase RCE I gene and its variants RCE I-H43 and H45, which lack the celluloses-binding domains, in *Humicola insolens*

[0110] Plasmid pJD01 (see Example D1 (2) (b) in WO 00/24879) was digested with BamHI and dephosphorylated using *Escherichia coli*-derived alkaline phosphatase (Takara Shuzo Co., Ltd.) in accordance with the attached manual. Plasmids pR1H43 and pR1H45 obtained in Examples 1 and 2 respectively were also digested with *BamH*I to produce about 700 bp DNA fragments. The obtained fragments were ligated respectively with aforementioned plasmid pJD01 using the DNA Ligation Kit Ver. 1 to produce expression plasmids pJND-H43 and pJND-H45.

[0111] Humicola insolens MN 200-1 (FERM BP-5977) was transformed with pJND-H43, pJND-H45, or pJI4D01 comprising the codon optimized RCE I gene (plasmid comprising a codon optimized RCE I gene to express the Rhizopus-derived RCE I in Humicola, see Example D3 (3) in WO 00/24879). Specifically, Humicola insolens MN 200-1 (FERM BP-5977) was cultured in medium (S) (3.0% glucose, 2.0% yeast extract, 0.1% polypeptone, 0.03% calcium chloride, 0.03% magnesium chloride (pH 6.8)) at 37°C for 24 hours, and then the cells were collected by centrifugation at 3,000 rpm for 10 minutes. The collected cells were washed with 0.5M sucrose and suspended in 10 ml of enzyme solution for preparing protoplast (5 mg/ml Novozyme 234 (Novo), 5 mg/ml Cellulase Onozuka R-10 (Yakult), and 0.5M sucrose) filtered through a 0.45 μm filter. The suspension was shaken at 30°C for 60 to 90 minutes to render fungal threads to be protoplasted. This suspension was filtered and then centrifuged at 2,500 rpm for 10 minutes, and protoplast was collected and washed with a SUTC buffer (0.5M sucrose, 10 mM calcium chloride, and 10 mM Tris hydrochloride (pH 7.5)).

[0112] The thus prepared protoplast was suspended in 1 mL of SUTC buffer, and 10 μ l of DNA (TE) solution was added to the suspension in amounts of 10 μ g per each 100 μ l of the suspension. The mixture was allowed to stand in ice for 5 minutes. Subsequently, 400 μ l of PEG solution (60% PEG 4000, 10 mM calcium chloride, and 10 mM Tris hydrochloride (pH 7.5)) was added and the mixture was allowed to stand in ice for 20 minutes. Thereafter, 10 ml of SUTC buffer was added, and centrifugation was carried out at 2,500 pm for 10 minutes. The collected protoplast was suspended in 1 ml of SUTC buffer, centrifuged at 4,000 rpm for 5 minutes, and finally suspended in 100 μ l of SUTC buffer.

[0113] The protoplast treated as above was superposed on a 200 µg/ml hygromycin B-containing YMG medium (1% glucose, 0.4% yeast extract, 0.2% malt extract, 1% agar (pH 6.8)) together with YMG soft agar. Culture was incubated at 37°C for 5 days. Thereafter, the generated colony was determined to be a transformant.

[0114] The obtained transformant was cultured in medium (N) (5.0% Avicel, 2.0% yeast extract, 0.1% polypeptone, 0.03% calcium chloride, 0.03% magnesium chloride, pH 6.8) at 37°C. A culture supernatant from which solid matter has been removed by centrifugation was determined to be an enzyme sample.

[Example 4] Isolation and purification of RCE I variant from Humicola insolens transformant

40 [0115] Humicola insolens transformants were inoculated to medium (N) (5.0% Avicel, 2.0% yeast extract, 0.1% polypeptone, 0.03% calcium chloride, 0.03% magnesium chloride, (pH 6.8)) and subjected to shake culture at 37°C. Transformants into which plasmids pJND-H43 and pJND-H45 had been introduced were cultured for 5 to 6 days. Regarding transformants into which plasmid pJI4D01 had been introduced, a sample was cultured for 4 days for obtaining an RCE I enzyme, which was not degraded in its linker domain, and which sustained a cellulose-binding domain. In contrast, a sample was cultured longer than 4 days, i.e., for 5 to 6 days, for obtaining the RCE I enzyme, which was degraded in its linker domain and lacked the cellulose-binding domain. Each of the resulting culture solutions was centrifuged at 7,000 rpm for 20 minutes to remove cells, and the culture supernatant was determined to be a crude cellulase preparation.

[0116] An ammonium sulfate solution at a final concentration of 1.5 M was prepared from 100 ml of this crude cellulase preparation and then applied at a flow rate of 10.0 ml/min to Macro-Prep Methyl HIC Support hydrophobic chromatography (270 ml in gel volume, BioRad Laboratorles) which had been previously equilibrated with 1.5 M ammonium sulfate solution. It was then fractionated by eluting at a flow rate of 10.0 ml/min in a stepwise elution method in which the concentration of ammonium sulfate was decreased by 0.3 M each from 1.5 M. Fractions found to have strong activity of removing fuzz from lyocell were: a fraction obtained at an ammonium sulfate concentration of 1.2 M regarding a culture solution of the transformant into which plasmid pJND-H43 had been introduced (hereinafter referred to as an "H43 culture solution"); a fraction obtained at an ammonium sulfate concentration of 0.9 M regarding a culture solution of the transformant into which plasmid pJND-H45 had been introduced (hereinafter referred to as an "H45 culture solution"); a fraction obtained at an ammonium sulfate concentration of 0.6 M regarding a culture solution of the trans-

formant into which plasmid pJI4D01 had been introduced and cultured for 4 days (hereinafter referred to as an "H4 culture solution"); and a fraction obtained at an ammonium sulfate concentration of 0.9 M regarding a culture solution of the transformant into which plasmid pJI4D01 had been introduced and for which a culture period had been extended to accelerate its degradation (hereinafter referred to as an "H4 degradation product"). Therefore, 100 ml each of these fractions was fractionated.

[0117] An ammonium sulfate solution at a final concentration of 1.5 M was prepared from 100 ml of the obtained active fractions and then applied again at a flow rate of 10.0 ml/min to Macro-Prep Methyl HIC Support hydrophobic chromatography (270 ml in gel volume, BioRad Laboratories) which had been previously equilibrated with 1.5 M ammonium sulfate solution. It was then fractionated by eluting at a flow rate of 10.0 ml/min in a stepwise elution method in which the concentration of ammonium sulfate in deionized water was decreased by 0.15 M each from 1.5 M. Fractions found to have activities of removing fuzz from lyocell were: a fraction obtained at an ammonium sulfate concentration of 1.35 M regarding the H43 culture solution; a fraction obtained at an ammonium sulfate concentration of 1.05 M regarding the H45 culture solution; a fraction obtained at an ammonium sulfate concentration of 0.75 M regarding the H4 culture solution; and a fraction obtained at an ammonium sulfate concentration of 1.05 M regarding the H4 degradation product. Therefore, 40 ml each of these fractions was fractionated.

[0118] An ammonium sulfate solution at a final concentration of 1.5 M was prepared from 40 ml of the obtained active fractions and then applied at a flow rate of 4.0 ml/min to Macro-Prep Methyl HIC Support hydrophobic chromatography (25 ml in gel volume, BioRad Laboratories) which had been previously equilibrated with 1.5 M ammonium sulfate solution. It was then fractionated by eluting at a flow rate of 4.0 ml/min in deionized water. Among these fractions, 8 ml of fraction, which was found to have strong activity of removing fuzz from lyocell, was fractionated.

[0119] Acetate buffer (150 ml, 50 mM, pH 4.0) was prepared by diluting the obtained active fractions, and the resulting buffer was then applied at a flow rate of 2 ml/min to MonoS 10-/10-HR column (Amersham Pharmacia), which had been previously equilibrated with 50 mM acetate buffer (pH 4.0). It was then fractionated by eluting at a flow rate of 2 ml/min in a stepwise elution method in which the concentration of NaCl in 50 mM acetate buffer (pH 4.0) was increased by 0.1 M each to 1M NaCl in 50 mM acetate buffer (pH 5.0). Fractions that were obtained at a NaCl concentration of about 0.2 to 0.3M were found to have activity of removing fuzz from lyocell. Therefore, 6 ml of fraction found to have the strongest activity was fractionated. These fractions showed in SDS-PAGE a single band of about 25 KDa regarding proteins purified from the H43 culture solution, and the H4 degradation product and a single band of about 40 KDa regarding the protein purified from the H4 culture solution.

[0120] SDS-PAGE was carried out using the system of Tefco in which an electrophoresis tank (No. 03-101), a source (Model: 3540), 10% gel (01-015), and a buffer kit for SDS-PAGE (06-0301) were used. The condition for electrophoresis was 18 mA/10 min and then 20 mA/90 min. In protein detection after the electrophoresis, silver staining was carried out using a 2D-silver staining reagent IT "DAIICHI" (Daiichi Pure Chemicals Co., Ltd.) for electrophoresis. A standard protein used as a marker was the SDS-PAGE molecular weight standard protein, Low Range (161-0304, BioRad).

[0121] The activity of removing fuzz from lyocell was measured in accordance with the following method.

[0122] Color knitted fabric of lyocell (Toyoshima Japan) was fuzzed in a large washer together with a surfactant and rubber balls. Thereafter, the fuzzy knitted fabric of lyocell (Toyoshima Japan, 9 cm x 10 cm, about 2 g in weight) was cylindrically sewn and subjected to fuzz removal treatment with various enzymes under the conditions as set forth below. The protein concentrations required to completely remove fuzz existing in the cylindrical fabric by this treatment were calculated.

[0123] The protein concentrations of various endoglucanases were calculated from the peak area at UV 280 nm of respective endoglucanase eluted with a linear gradient from 0% to 80% of acetonitrile concentration in 0.05% TFA (trifluoroacetic acid) at a flow rate of 1.0 ml/min in HPLC analysis using TSK gel TMS-250 column (4.6 mm LD. x 7.5 cm, TOSOH Japan). The standard used was the purified NCE4, which was analyzed in HPLC under the same conditions, the protein concentration of which had been preliminarily measured by the protein assay kit (BioRad Laboratories). The standard used to measure the protein concentration for the protein assay kit was albumin standard (Bovine serum albumin, fraction V, PIERCE). The purified NCE4 (coded by nucleotides 118 to 1088 in SEQ ID NO: 18) was isolated and purified from a culture solution of *Humicola insolens* according to the method described in WO 98/03640. Test machine: Launder Meter L-12 (Daiei Kagaku Seiki MFG, Japan)

7 Temperature: 55°C Time: 60 minutes Reaction volume: 40 ml

55

Reaction pH: pH 5 (10 mM acetate buffer)

pH 6 (10 mM acetate buffer)

[0124] The treating liquid contained 4 rubber balls (about 16 g each) together with the endoglucanase solution.

[Example 5] Identification of N-terminal amino acid sequences of RCE I variant protein isolated and purified from Humicola insolens transformant

[0125] In order to determine the N-terminal amino acid sequences of the purified proteins obtained in Example 4, each of the fractions was subjected to SDS-PAGEmini (Tefco), electroblotted on a PVDF membrane, stained with Coomassie Brilliant Blue R-250 (Nacalai Tesque, Inc.), decolorized, washed with water, and then air dried. A portion on which the object protein had been blotted was cleaved out therefrom and subjected to a Protein Sequencer (Model 492, PE Applied Biosystems) to analyze the N-terminal amino acid sequence. The amino acid sequences were read from enzymes that were purified from the H45 culture solution, the H4 culture solution, and the H4 degradation product without any problem. Regarding the enzyme purified from the H43 culture solution, however, no signal was generated by Edman degradation and the N-terminal amino acid was found to be modified and protected. Thus, this enzyme was immersed in a solution of 0.5% polyvinyl pyrrolidone (molecular weight: 40,000, Sigma)/100 mM acetic acid at 37°C for 30 minutes, and, after a protein unbound portion on the membrane was blocked, this enzyme was treated with pfu Pyroglutamate Aminopeptidase (Takara Shuzo Co., Ltd.) at 50°C for 5 hours to remove the modified N-terminal residue. Thus, sequencing was carried out once more. The obtained sequences were as shown below.

The N-terminal amino acid sequence of RCE I-H43:

[0126]

20

Gin-Ser-Gly-Ser-Gly-Arg-Thr (7 residues) (SEQ ID NO: 30).

25 The N-terminal amino acid sequence of RCE I-H45:

[0127]

.

30

35

Lys-Tyr-Ser-Ala-Val-Ser-Gly (7 residues) (SEQ ID NO: 31);

and

Ala-Val-Ser-Gly-Gly-Ala-Ser (7 residues) (SEO ID NO: 32).

The N-terminal amino acid sequence of RCE I-H4(25KDa):

0 [0128]

Ser-Ala-Val-Ser-Gly-Gly-Ala (7 residues) (SEQ ID NO: 33);

45 and

Gly-Gly-Ala-Ser-Gly-Asn-Gly (7 residues) (SEQ ID NO: 34).

The N-terminal amino acid sequence of RCE I-H4 (40KDa):

[0129]

55

50

Ala-Glu-(Cys)-Ser-Lys-Leu-Tyr (7 residues) (SEQ ID NO: 35).

[0130] As a result of identification of N-terminal amino acid sequences, it was found that only the enzyme purified from the H4 culture solution (hereinafter referred to as "RCE I-H4 (40 KDa)") had a cellulose-binding domain (CBD) while any of the remaining enzyme purified from the H43 culture solution (hereinafter referred to as "RCE I-H43 (25 KDa)"), the enzyme purified from the H45 culture solution (hereinafter referred to as "RCE I-H45 (25 KDa)"), or the enzyme purified from the H4 degradation product (hereinafter referred to as "RCE I-H4 (25 KDa)") had no cellulosebinding domain (CBD) but had only the catalytic active domains (CAD).

[Example 6] Comparison of specific activity of removing fuzz from cotton fabric between RCE I, which lacks the cellulose-binding domain, and RCE L which has the cellulose-binding domain

[0131] Using the endoglucanase which was homogenously purified in Example 5, a knitted cotton fabric (a 6 cm x 8 cm fabric from cotton smooth knit No. 3900, Nitto Boseki Co., Ltd., dyed in brown by reactive dye at Tsuyatomo Senko), which has been fuzzed in a large washer, was subjected to fuzz removal under the following conditions. The amount of fuzz remaining unremoved was visually evaluated, and the amount of purified enzyme to be added so that the amount of remaining fuzz would reach 50% was determined. The amount of protein was determined using the BCA Protein Assay Reagent (PIERCE) in accordance with the conditions described in the attached manual. The estimated molecular weight of the 40 KDa purified RCE I protein (RCE I-H4 (40 KDa)) is about 1.5 times higher than those of the 25 KDa purified RCE I proteins (RCE I-H43 (25 KDa)), RCE I-H45 (25 KDa)), and RCE I-H4 (25 KDa)). Accordingly, even though the quantified amounts of proteins are the same, the number of enzyme molecules in the 40 KDa purified RCE I protein is only about two-thirds of that in the 25 KDa punified RCE I protein in terms of the number of enzyme molecules contained in the protein.

Test machine: Launder Meter L-20 (Daiei Kagaku Seiki MFG, Japan)

Temperature: 40°C or 55°C

Time: 120 minutes Reaction volume: 40 ml

Reaction pH: Reacted at pH 7 (1 mM phosphate buffer, prepared using deionized water).

[0132] The treating liquid contained 4 rubber balls (about 16 g each) together with the enzyme solution.

[0133] The results are as shown in Table 2 below.

30

35

10

Table 2

	The amount of enzyme added 40°C	The amount of enzyme added 55°C
Purified RCE I-H4 (40 KDa) Purified RCE I-H4 (25 KDa)	390 µg or more 18 µg	390 µg or more 53 µg

[0134] As is apparent from the results shown in Table 2, the 25 KDa protein, which lacks the cellulose-binding domain (CBD), exhibits much higher activity of removing fuzz from cotton fabrics than the 40 KDa protein, which has the cellulose-binding domain (CBD), even though both proteins are originated from the same Zygomycetes-derived endoglucanases RCE I.

[Example 7] Comparison of specific activity of removing fuzz from lyocell fabric between RCE I, which lacks the cellulose-binding domain, and RCE I, which has the cellulose-binding domain

[0135] Using the endoglucanase which was homogenously purified in Example 5, a lyocell fabric (6 cm x 8 cm, Toyoshima Japan) was subjected to fuzz removal under conditions improved from the method described in Example 4. The amount of fuzz remaining unremoved was visually evaluated, and the amount of purified enzyme required to completely remove fuzz was determined. The amount of protein was determined using the BCA Protein Assay Reagent (PIERCE) in accordance with the conditions described in the attached manual. The estimated molecular weight of the 40 KDa purified RCE I protein (RCE I-H4 (40 KDa)) is about 1.5 times higher than those of the 25 KDa purified RCE I proteins (RCE I-H43 (25 KDa)), RCE I-H45 (25 KDa)), and RCE I-H4 (25 KDa)). Accordingly, even though the quantified amounts of proteins are the same, the number of enzyme molecules in the 40 KDa purified RCE I protein is only about two-thirds of that in the 25 KDa purified RCE I protein in terms of the number of enzyme molecules contained in the protein. Test machine: Launder Meter L-20 (Daiei Kagaku Seiki MFG, Japan)

Temperature: 40°C

Time: 90 minutes

Reaction volume: 50 ml

Reaction pH: Reacted at pH 6 (10 mM acetate buffer, prepared using deionized water).

[0136] The treating liquid contained 4 rubber balls (about 16 g each) together with the enzyme solution.
[0137] The results are as shown in Table 3 below.

Table 3

	The amount of enzyme added
Purified RCE I-H4 (40 KDa)	32 μg
Purified RCE I-H4 (25 KDa)	11 µg

[0138] As is apparent from the results shown in Table 3, RCE I, which is Zygomycetes-derived endoglucanase, exhibits a higher specific activity of removing fuzz from lyocell fabrics as the 25 KDa protein, which lacks the cellulose-binding domain (CBD), than as the 40 KDa protein, which has the cellulose-binding domain (CBD).

[Example 8] Comparison of specific activity of removing fuzz from cotton fabric between RCE I, which lacks the cellulose-binding domain, and RCE I, which has the cellulose-binding domain, under alkaline, low-temperature, and surfactant-present conditions

[0139] Using the endoglucanase which was homogenously purified in Example 5, a knitted cotton fabric (a 6 cm x 8 cm fabric from cotton smooth knit No. 3900, Nitto Boseki Co., Ltd., dyed in brown by reactive dye at Tsuyatomo Senko), which had been fuzzed in a large washer, was subjected to fuzz removal under the following conditions. The amount of fuzz remaining unremoved was visually evaluated, and the amount of purified enzyme to be added so that the amount of remaining fuzz would reach 50% was determined. The amount of protein was determined using the BCA Protein Assay Reagent (PIERCE) in accordance with the conditions described in the attached manual. The estimated molecular weight of the 40 KDa purified RCE I protein (RCE I-H4 (40 KDa)) is about 1.5 times higher than those of the 25 KDa purified RCE I proteins (RCE I-H43 (25 KDa)), RCE I-H45 (25 KDa)), and RCE I-H4 (25 KDa)). Accordingly, even though the quantified amounts of proteins are the same, the number of enzyme molecules in the 40 KDa purified RCE I protein is only about two-thirds of that in the 25 KDa purified RCE I protein in terms of the number of enzyme molecules contained in the protein.

Test machine: Launder Meter L-20 (Daiei Kagaku Seiki MFG, Japan)

Temperature: 30°C

40

Time: 120 minutes
Reaction volume: 40 ml

Reaction pH: Reacted at pH 10 (5 mM sodium carbonate buffer, prepared using deionized water).

[0140] The treating liquid contained a nonionic surfactant Persoft NK-100 (NOF Corp.) at a final concentration of 100 ppm together with the enzyme solution and 4 rubber balls (about 16 g each).

[0141] The results are as shown in Table 4 below.

Table 4

Table 4										
	The amount of enzyme added									
Purified RCE I-H4 (40 KDa)	390 μg or more									
Purified RCE I-H4 (25 KDa)	52 μg									

[0142] As is apparent from the results shown in Table 4, given the low-temperature, alkaline, and surfactant-present conditions under which detergents are actually used, the 25 KDa protein, which lacks the cellulose-binding domain (CBD), exhibits much higher activity of removing fuzz from cotton fabrics than the 40 KDa protein, which has the cellulose-binding domain (CBD), even though both proteins are originated from the same Zygomycetes-derived endoglucanases RCE I.

[Example 9] Comparison of specific activity of removing fuzz from cotton fabric among various purified RCE I proteins, which lack the cellulose-binding domains

[0143] Using the endoglucanase which was homogenously purified in Example 5, a knitted cotton fabric (a 6 cm x 8 cm fabric from cotton smooth knit No. 3900, Nitto Boseki Co., Ltd., dyed in brown by reactive dye at Tsuyatomo Senko), which had been fuzzed in a large washer, was subjected to fuzz removal under the following conditions. The amount of fuzz remaining unremoved was visually evaluated, and the amount of purified enzyme to be added so that the amount of remaining fuzz would reach 50% was determined. The amount of protein was determined using the BCA Protein Assay Reagent (PIERCE) in accordance with the conditions described in the attached manual. The estimated

molecular weight of the 40 KDa purified RCE I protein (RCE I-H4 (40 KDa)) is about 1.5 times higher than those of the 25 KDa purified RCE I proteins (RCE I-H43 (25 KDa)), RCE I-H45 (25 KDa)), and RCE I-H4 (25 KDa)). Accordingly, even though the quantified amounts of proteins are the same, the number of enzyme molecules in the 40 KDa purified RCE I protein is only about two-thirds of that in the 25 KDa purified RCE I protein in terms of the number of enzyme molecules contained in the protein.

Test machine: Launch Meter L-20 (Daiei Kagaku Seiki MFG, Japan)

Temperature: 40°C Time: 120 minutes Reaction volume: 40 ml

15

20

25

30

Reaction pH: Reacted at pH 7 (1 mM phosphate buffer, prepared using deionized water).

[0144] The treating liquid contained 4 rubber balls (about 16 g each) together with the enzyme solution.

[0145] The results are as shown in Table 5 below.

Table 5

JIG J
The amount of enzyme added
390 µg or more 26 µg 18 µg 18 µg

[0146] As is apparent from the results shown in Table 5, various RCE I proteins such as RCE I-H43 (25 KDa), RCE I-H-45 (25 KDa), and RCE I-H4 (25 KDa), which lack the cellulose-binding domains, exhibit much higher activity of removing fuzz from cotton fabrics than the 40 KDa protein RCE I-H4 (40 KDa), which has the cellulose-binding domain (CBD). This indicates that the RCE I protein, which lacks the cellulose-binding domain (CBD), exhibits much higher activity of removing fuzz from cotton fabrics than the 40 KDa protein, which has the cellulose-binding domain (CBD), regardless the length of the linker domain remaining on the N-terminal side of the catalytic active domain. Also, whether or not it is an artificial or non-artificial deficiency, the RCE I protein, which lacks the cellulose-binding domain (CBD), exhibits much higher activity of removing fuzz from cotton fabrics than the 40 KDa protein RCE I-H4 (40 KDa), which has the cellulose-binding domain (CBD).

[Example 10] Comparison of specific activity of removing fuzz from lyocell fabric among various purified RCE I proteins, which lack the cellulose-binding domains

[0147] Using the endoglucanase which was homogenously purified in Example 5, a lyocell fabric (6 cm x 8 cm, Toyoshima Japan) was subjected to fuzz removal under conditions improved from the method described in Example 4. The amount of fuzz remaining unremoved was visually evaluated, and the amount of purified enzyme required to completely remove fuzz was determined. The amount of protein was determined using the BCA Protein Assay Reagent (PIERCE) in accordance with the conditions described in the attached manual. The estimated molecular weight of the 40 KDa purified RCE I protein (RCE I-H4 (40 KDa)) is about 1.5 times higher than those of the 25 KDa purified RCE I proteins (RCE I-H43 (25 KDa)), RCE I-H45 (25 KDa)), and RCE I-H4 (25 KDa)). Accordingly, even though the quantified amounts of proteins are the same, the number of enzyme molecules in the 40 KDa purified RCE I protein is only about two-thirds of that in the 25 KDa purified RCE I protein in terms of the number of enzyme molecules contained

Test machine: Launder Meter L-20 (Daiei Kagaku Seiki MFG, Japan)

Temperature: 40°C

Time: 90 minutes

Reaction volume: 40 ml

Reaction pH: Reacted at pH 6 (10 mM acetate buffer, prepared using deionized water).

[0148] The treating liquid contained 4 rubber balls (about 16 g each) together with the enzyme solution.

[0149] The results are as shown in Table 6 below.

Table 6

	The amount of enzyme added
Purified RCE I-H4 (40 KDa) Purified RCE I-H43 (25 KDa)	32 µg 12 µg

Table 6 (continued)

	The amount of enzyme added
Punfied RCE I-H45 (25 KDa)	11 µg
Purified RCE I-H4 (25 KDa)	11 µg

[0150] As is apparent from the results shown in Table 6, various RCE I proteins such as RCE I-H43 (25 KDa), RCE I-H-45 (25 KDa), and RCE I-H4 (25 KDa), which lack the cellulose-binding domains, exhibit higher activity of removing fuzz from lyocell fabrics than the 40 KDa protein RCE I-H4 (40 KDa), which has the cellulose-binding domain (CBD). This indicates that the RCE I protein, which lacks the cellulose-binding domain (CBD), exhibits higher activity of removing fuzz from lyocell fabrics than the 40 KDa protein, which has the cellulose-binding domain (CBD) regardless the length of the linker domain remaining on the N-terminal side of the catalytic active domain. Also, whether or not it is an artificial or non-artificial deficiency, the RCE I protein, which lacks the cellulose-binding domain (CBD), exhibits higher activity of removing fuzz from lyocell fabrics than the 40 KDa protein RCE I-H4 (40 KDa), which has the cellulose-binding domain (CBD).

[0151] All publications, patents, and patent applications cited herein are incorporated herein by reference in their entirety.

Industrial Applicability

[0152] When Zygomycetes-derived endoglucanase such as RCE I, RCE II, RCE III, MCE I, MCE II, or PCE I, which lacks the cellulose-binding domain, is allowed to act, the endoglucanase activity can be significantly enhanced in comparison with endoglucanase having a cellulose-binding domain. Accordingly, fabric treatment such as reduction of fuzzing, improvement in feel and appearance, color clarification, partial color change, and softening of cellulose-containing fabrics and improvement in deinking of waste paper and drainage of paper pulp can be effected with a smaller amount of enzymes. This can decrease necessary costs remarkably.

Free Text of Sequence Listings

³⁰ [0153]

5

20

SEQ ID NO: 13: codon optimized sequence corresponding to RCE I protein (SEQ ID NO: 2)

SEQ ID NO: 17: consensus amino acid sequence found in the cellulose-binding domain of family 45 endoglucanase

SEQ ID NO: 20 to 23: primers

SEQ ID NO: 24: recombinant protein

SEQ ID NO: 25 to 28: primers

SEQ ID NO: 29: recombinant protein

SEQ ID NO: 30 to 35: N-terminal amino acid sequence of recombinant protein

SEQ ID NO: 36 and 37: primers

SEQ ID NO: 38: NCE5 amino acid sequence

SEQ ID NO: 39: NCE5 cDNA sequence

SEQ ID NO: 40 to 43: primers

35

SEQUENCE LISTING

5	<110> MEIJI SEIKA KAISHA, LTD.
10	
	<120> Endoglucanase Enzyme from Zygomycetes Having Deletion of Cellulose Binding Domain
15	<130> PH-1443-PCT
20	<150> JP2000-354296
	<151> 2000-11-21
25	<160≻ 43
30	<170> PatentIn Ver. 2.0
	<210> 1
35	<211> 338
	<212> PRT
40	<213> Rhizopus oryzae CP96001
	⟨220⟩
45	<221> sig#peptide
	<222> (-23) (-1)
50	⟨220⟩

<221> mat#peptide
<222> (1)... (315)

	<40	0> 1														
5	Me t	Lys	Phe	Ile	Thr	He	Ala	Ser	Ser	Ala	Leu	Leu	Ala	Lei	ı Ala	Leu
				-20					-15	;				-10	}	
	Gly	Thr	Glu	Met	Ala	Ser	Ala	Ala	Glu	Cys	Ser	Lys	Leu	Туг	Gly	Gin
10			-5					1				5				
	Cys	Gly	Gly	Lys	Asn	Trp	Asn	Gly	Pro	Thr	Cys	Cys	Glu	Ser	Gly	Ser
15	10					15					20					25
15	Thr	Cys	Lys	Val	Ser	Asn	Asp	Tyr	Tyr	Ser	Gln	Cys	Leu	Pro	Ser	Gly
					30					35					40	
20	Ser	Ser	Gly	Asn	Lys	Ser	Ser	Glu	Ser	Ala	His	Lys	Lys	Thr	Thr	Thr
				45					50					55		
	Ala	Ala	His	Lys	Lys	Thr	Thr	Thr	Ala	Ala	His	Lys	Lys	Thr	Thr	Thr
25			60					65					70			
	Ala		Ala	Lys	Lys	Thr		Thr	Val	Ala	Lys	Ala	Ser	Thr	Pro	Ser
30		75	_				80					85				
		Ser	Ser	Ser	Ser		Ser	Gly	Lys	Tyr		Ala	Va]	Ser	Gly	Gly
	90	C	C1	•	01	95	T 1	mt L			100		_			105
35	Aia	561	GIY	ASI		Vai	inr	ınr	Arg	Tyr	Trp	Asp	Cys	Cys		Ala
	Sar	Care	Sa +	Ten	110 Pro	Clv	Ive	Ma	Ann	115 Val	°2	°	D	W - 1	120	•
	201	Cys	261	125	110	Uly	L y 3	піа	130	Val	361	ser	PTO		Lys	Ser
40	Cve	4 en	Ive		Glv	Val	Thr	Ala		Ser	400	°2	Ann	135	C1-	C
	0,3	non	140	nop	OIA	741	IMI	145	LCU	261	ush	261		АТА	GID	ser
45	Glv	Cvs		Glv	Glv	Asn	Ser		Met	Cys	4 en	A c n	150	C1n	D==	T
		155	110 H	013	UIJ	11011	160	1,1	BJC L	033	поп	165	usii	6111	PTO	1 F D
			Acn	Asn	Acn	וום [Tvr	Glv	Phe	412		A I o	43.	71.	c.
50	170	,	пол	пор	NO11	175	1114	1 7 1	017	1 11 C	180	NI a	nid	Ala	116	
		C I u	Glv	Glu	Sar		Trn	(ve	fve	Ser		Dha	۲1	1	TL	185
<i>EE</i>	013	ulj	OI,	O I U	190	ni 6	пр	oys	UYS		0 y 2	riie	UlU			rne
55					130					195					200	

	Thr Ser Thr Ser Val Ala Gly Lys Lys Met Val Val Gln Val Thr Asn
5	205 210 215
	Thr Gly Gly Asp Leu Gly Ser Ser Thr Gly Ala His Phe Asp Leu Gln
	220 225 230
10	Met Pro Gly Gly Gly Val Gly Ile Phe Asn Gly Cys Ser Ser Gin Trp
	235 240 245
15	Gly Ala Pro Asn Asp Gly Trp Gly Ser Arg Tyr Gly Gly Ile Ser Ser
	250 255 260 265
	Ala Ser Asp Cys Ser Ser Leu Pro Ser Ala Leu Gln Ala Gly Cys Lys
20	270 275 280
	Trp Arg Phe Asn Trp Phe Lys Asn Ala Asp Asn Pro Ser Met Thr Tyr
25	285 290 295
25	Lys Glu Val Thr Cys Pro Lys Glu Ile Thr Ala Lys Thr Gly Cys Ser
	300 305 310 Arg Lys
30	315
	⟨210⟩ 2
35	<211> 1017
	<212> DNA
40	<213> Rhizopus oryzae CP96001
	<220> ·
15	<221> sig#peptide
	<222> (1) (69)
50	
	<220>
	<221> mat#peptide
5	⟨222⟩ (70) (1017)

	<	400>	2														
5	a	ig aa	ag tt	t at	t ac	tati	t gc	c to	tc	c gc	t ct	c tt	g go	t c	ic go	c ctc	: 48
																a Leu	
10				-2					-1					~10		- 200	•
	gg	t ac	t ga	a at	g gcc	tel	gct	gct	gaa	a tg	t ag	c aa	a tt	g ta	t gg	t caa	96
																y Gln	
15			-!					1					5				
	. tg	t gg	t gg	t aag	g aac	tgg	aat	ggc	cct	aci	t tg	t tg	ga	a tc	t gg	a tcc	144
20																y Ser	
	1					15					20					25	
																gga	192
25	Th	г Су:	s Lys	Val	Ser	Asn	Asp	Tyr	Туг	Ser	Gin	Cys	Leu	Pro	Ser	Gly	
					30					35					40		
					aaa												240
30	Ser	. Sei	Gly		Lys	Ser	Ser	Glu		Ala	His	Lys	Lys	Thi	Thr	Thr	
	go t	ant		45					50					55			
35					aag												288
	VIG	, VIa	60	LYS	Lys	1111	101	65	Ala	Ala	His	Lys		Thr	Thr	Thr	
	ect	cct		220	220	ac f	202		a 1 1	700	•••		70				
40	Ala	Pro	Ala	Lve	aag Lys	Thr	Thr	The	Val	Al.	aaa	gci	CCC	acc	cct	tct	336
		75		2,0	2,5	****	80	****	141	nia	LYS		261	lhr	Pro	Ser	
45	aac		agc	tet	agc	tcc		ggr	222	tet	tee	85 70 t	a + =	4.4			.
	Asn	Ser	Ser	Ser	Ser	Ser	Ser	Glv	Lve	Tur	Sar	Ala	Va.	ici	ggţ	ggi	384
	90					95		,	. ,,,	1 7 1	100	MIA	vai	261	ыу		
50	gcc	tct	ggt	aac	ggt		act :	act (net	tat		an t	t no	tat		105	-
	Ala	Ser	Gly	Asn	Gly '	Val'	Thr '	Thr	Arg '	Tvr	rob Trn	den	rgu	וצנ	aag	gCC	432
			-		110					115	τιħ	voħ	∪yS	∟ y S		AIA	
55					- • •					110					120		

	IC	c ig	l age	ctg	3 CC	c gg	t aa	g gc	aa	t gt	c ag	it to	ct co	t g	tc a	ag to	c 480
5	Se	r Cy	s Se	r Trp	Pro	Gly	y Ly	s Ala	a Asi	a Va	1 Se	r Se	er Pi	o Va	al L	vs Se	r
				125	j				130)			•	13	35		
	tg	t aa	c aaa	a gat	ggt	gto	ac	t gcc	ct	ag	t ga	c ag	c aa	t go	c ca	ia ag	t 528
10	Cy	s Ası	n Lys	. Asp	Gly	/ Val	Th	r Ala	Let	ı Se	r As	p Se	r As	n Al	a G	n Se	r
			140)				145	i				15	0			
	gg	tgi	t aac	ggt	ggt	aac	agi	tac	ate	tg	t aa	c ga	c aa	сса	a co	t tg	g 576
15	Gly	Cys	s Asn	Gly	Gly	Asn	Sei	Tyr	Met	Cys	s As	n As	p As	n G1	n Pr	o Tr	D
		155	j				160)				16	5				
?0	gct	gta	aac	gac	aac	ctt	gcc	tat	ggt	tto	gc	t gc	t gc	t gc	c at	c ag	t 624
.•	Ala	Val	Asn	Asp	Asn	Leu	Ala	Tyr	Gly	Phe	Ala	A Ala	a Ala	a Al	a Il	e Se	г
	170	;				175					180)				18	5
?5	ggt	ggt	ggt	gaa	tct	cgc	tgg	tgc	tgt	tct	tgl	tto	gaa	ct	t ac	t tto	672
	Gly	Gly	Gly	Glu	Ser	Arg	Trp	Cys	Cys	Ser	Cys	Phe	Gli	Le	t Th	r Phe	:
					190					195					201		
80								aag									
	Thr	Ser	Thr		Val	Ala	Gly	Lys	Lys	Met	Val	Val	Gln	Va]	Thi	r Asn	ı
15				205					210					215			
5								tct									
	Thr	Gly		Asp	Leu	Gly	Ser	Ser	Thr	Gly	Ala	His	Phe	Asp	Leu	Gln	•
0			220					225					230				
								att									816
	met		Gly	GIŸ	Gly	Val		He	Phe	Asn	Gly	Cys	Ser	Ser	Gln	Trp	
5		235					240					245					•
								ggc									864
o		Ala	Pro	Asn			Trp	Gly -	Ser	Arg	Туг	Gly	Gly	lle	Ser	Ser	
	250					255					260					265	
								cct									912
5	Ala	Ser	Asp	Cys	Ser	Ser	Leu	Pro :	Ser.	Ala	Leu	Gln	Ala	Gly	Cys	Lvs	

270 275 280 tgg aga ttc aac tgg ttc aag aac gct gat aac cca agc atg act tac 960 Trp Arg Phe Asn Trp Phe Lys Asn Ala Asp Asn Pro Ser Met Thr Tyr 285 290 295 aag gaa git acc igi cci aag gaa atc acc gcc aag aca ggi igi tca 1008 10 Lys Glu Val Thr Cys Pro Lys Glu Ile Thr Ala Lys Thr Gly Cys Ser 300 305 310 15 aga aaa taa 1017 Arg Lys 315 20 <210> 3 <211> 366 25 <212> PRT <213> Rhizopus oryzae CP96001 30 <220> <221> sig#peptide 35 <222> (-23)...(-1) <220> 40 <221> mat#peptide ⟨222⟩ (1)... (343) 45 **<400> 3** Met Lys Phe Ile Thr lle Thr Ser Ser Ala Leu Leu Ala Leu 50 -20-15 -10 Gly Thr Glu Met Ala Ser Ala Ala Lys Cys Ser Lys Leu Tyr Gly Gln -5 1 5 55

	Су	's G	ly G1	y Ly	s As	p Tr	As:	n Gl	y Pr	o Th	r Cy	s Cy	s G1	u Se	r Gl	y Se
5		0				15					2					2
	Th	r Cy	s Ly	s Va	l Se	r Ası	A A S	р Ту	r Ty	r Se	r Gi	n Cy	s Le	u Al	a Pr	o Glu
10					3					3						0
,,,	Se	r As	n Gi	y As:	n Ly	s Sei	Se	r Gli	и Су	s Se	r Lys	s Le	u Ty	r Gl	y Gl	n Cys
				4					5					5		•
15	Gly	y Gl	y. Ly:	s As	p Tr	Asn	Gly	Pro) Th	r Cys	s Cys	Gli	u Se	r Gl	y Se	r Thr
			6					65					70			
	Cys	Ly	s Val	l Se	r Ası	a Asp	Tyı	Туг	Se	r Glr	Cys	Let	ı Ala	a Pro	Gli	ı Ser
20		7					80					85				
			y Asi	l Lys	Thi		Glu	Ser	Ala	a His	Lys	Thr	Thi	Thi	Thi	Thr
25	90					95					100					105
	Ala	Pro) Ala	Lys			Thr	Thr	Thi		Lys	Ala	Ser	Asn	Ser	Ser
	4	C	· C - ·	C1	110		•		•••	115		•			120	
30	ASD	Sei	261			Туг	Sei	116			Gly	Gly	Ala		Gly	Asn
	Clv	Val	ፕե-	125		T	Т	•	130					135		
	Oly	141	140	101	AIR	Tyr	1 T P		Lys	Cys	Lys	Ala		Cys	Ser	Trp
35	Pro	Glv		Ala	Aen	Val	Sar	145	D=0	V-1	T	0	150		_	
	110	155		ліц	usu	Val	160	261	rio	val	Lys		Cys	Asn	Lys	Asp
40	Glv			Ala	I e n	Sar		507	Acn	Val	C1=	165	C1	٥.		٥.
••	170	,	****		Deu	Ser 175	nop	JC1	nsu	141	180	361	ыу	Lys	ASD	
		Asn	Ser	Tv <i>r</i>	Met	Cys	Asn	Asn	1 cn	Cln		Trn	A 1 a	V-1	•	185
45				-,-	190	0,0		пор	иоп	195	110	111	Ala	vai		ASP
	Asn	Leu	Ala	Tvr		Phe .	Ala	Ala	Ala		Ila	Sa r	Clv	C1	200	٥.
				205	.,	- 110			210	ліц	116	361			GIY	GIU
50	Ser	Arg	Trp		Cvs	Ser	Cve			lon	ፖե -	Dha		215	ጥኒ	^
	501	0	220	5,0	0,0	201		225	oru	rcn	1111			ser	IUL	96 L
55	Val	Ala		lve	Ive	Mot 1			C1-	V. l	T L		230	•		
	Val	,,, 0	413	гìЭ	r)3	mc t	al	116	d I II	isv	IUL	asn	ıhr	Gly	Gly ,	Asp

		235					240					245					
5	Leu	Gly	Ser	Ser	Thr	Gly	Ala	His	Phe	Asp	Leu	Gln	Met	Pro	Gly	Gly	
	250					255					260					265	
	Gly	Vai	Gly	lle	Phe	Asn	Gly	Cys	Ser	Lys	Gln	Trp	Gly	Ala	Pro	Asn	
10					270					275					280		
	Asp	Gly	Trp	Gly	Ser	Arg	Tyr	Gly	Gly	He	Ser	Ser	Ala	Ser	Asp	Cys	
15				285					290					295			
15	Ser	Ser	Leu	Pro	Ser	Ala	Leu	Gln	Ala	Gly	Cys	Lys	Trp	Arg	Phe	Asn	
			300					305					310				
20	Trp	Phe	Lys	Asn	Ala	Asp	Asn	Pro	Ser	Met	Thr	Tyr	Lys	Glu	Val	Thr	
		315					320					325					
	Cys	Pro	Lys	Glu	Ile	Thr	Ala	Lys	Thr	Gly	Cys	Ser	Arg	Lys			
25	330					335					340						
30	<210																
		> 11															
		!> DN				ОТ	.000										
35	(213	57 KI	lizop	ous c	Jryza	ie cr	9000	/1									
	<220	15															
			g#pe	ntid	le												
10)														
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																
15	<220	>			٠.												
			t#pe	ptid	le												
	<222	> (7	0)	. (11	01)												
10																	
	<400	> 4															
5	atg	aag	ttt	att	act	att	acc	tct	tcc	gct	ctc	ttg	gct	ctc.	gcc (ctt	48
												-			'		40

	Me	llys	Phe	lle	Thr	· Ile	Thi	Sei	Se	r Al	a Lei	u Lei	u Al	a Le	u Al	a Leu	
5				-20					-18	5				-1	0		
	ggi	act	gaa	atg	gcc	tct	gct	gct	aaa	tg:	t ago	c aag	g ct	g ta	t gg	t caa	96
	Gly	Thr	Glu	Met	Ala	Ser	Ala	Ala	Lys	Су	s Sei	r Lys	s Le	ı Ty.	r Gl	y Gln	
10			-5					1				5	5				
	tgt	ggt	ggt	aag	gac	t gg	aat	ggc	cct	act	tgt	tgo	gaa	tc	gg	a tcc	144
	Cys	Gly	Gly	Lys	Asp	Trp	Asn	Gly	Pro	The	Cys	Cys	Gli	Se:	GI	y Ser	
15	10					15					20)				25	
	acc	tgt	aaa	gta	agc	aac	gat	tac	tac	tct	caa	tgt	ctt	gco	cci	gaa	192
20	Thr	Cys	Lys	Val	Ser	Asn	Asp	Tyr	Tyr	Ser	Gln	Cys	Leu	Ala	Pro	Glu	
					30					35					40)	
	agc	aac	ggc	aat	aag	tct	tct	gaa	tgt	agc	aag	ttg	tat	ggt	caa	tgt	240
25	Ser	Asn	Gly	Asn	Lys	Ser	Ser	Glu	Cys	Ser	Lys	Leu	Tyr	Gly	Gin	Cys	
				45					50					55			
						aat											288
30	Gly	Gly		Asp	Trp	Asn	Gly	Pro	Thr	Cys	Cys	Glu	Ser	Gly	Ser	Thr	
			60					65					70				
15						gat											336
	Cys		Val	Ser	Asn	Asp		Tyr	Ser	Gln	Cys	Leu	Ala	Pro	Glu	Ser	
		75					80					85					
0						tct											384
		Gly	Asn	Lys	Thr	Ser	Glu	Ser	Ala	His	Lys	Thr	Thr	Thr	Thr	Thr	
	90			•		95					100					105	
5						att											432
	Ala	Pro	Ała			Ile	Thr	Thr	Thr	Ala	Lys	Ala	Ser	Asn	Ser	Ser	
o					110					115					120		
						tac											480
	Asn	Ser	Ser	Gly	Lys	Tyr	Ser	He	Va I	Ser	Gly	Gly.	Ala	Ser	Gly	Asn	
5				125					130					135			

	gg	tgtc	act	act	cgt	tat	tgg	gat	t go	tgi	taag	gcc	tcc	tg	t ag	c tgg	528
5	Gly	/ Val	Thr	Thr	Arg	Tyr	Trp	Asp	Cys	Cys	Lys	Ala	Ser	Cys	s Se	r Trp	
			140	}				145		•			150				
	ccc	ggt	aag	gcc	aat	glc	agt	tct	cct	gto	aag	tcc	tgt	aac	aaa	a gat	576
10	Pro	Gly	Lys	Ala	Asn	Val	Ser	Ser	Pro	Val	Lys	Ser	Cys	Ası	Lys	S Asp	
		155					160					165					
15	ggt	gtc	act	gcc	ctt	agt	gac	agc	aat	gto	caa	agt	ggc	tgt	aac	ggt	624
,,,	Gly	Val	Thr	Ala	Leu	Ser	Asp	Ser	Asn	Val	Gln	Ser	Gly	Cys	Asn	Gly	
	170					175					180					185	
20	ggt	aac	agt	tac	atg	tgt	aac	gac	aac	cag	cct	tgg	gct	gta	aac	gat	672
	Gly	Asn	Ser	Tyr	Met	Cys	Asn	Asp	Asn	Gln	Pro	Trp	Ala	Val	Asn	Asp	
					190					195					200		
25	aat	ctt	gcc	tat	ggt	ttc	gc t	gc t	gc t	gcc	atc	agt	ggt	ggt	ggt	gaa	720
*	Asn	Leu	Ala		Gly	Phe	Ala	Ala	Ala	Ala	He	Ser	Gly	Gly	Gly	Glu	
30				205					210					215			
,,,		cgc															768
	Ser	Arg		Cys	Cys	Ser	Cys		Glu	Leu	Thr	Phe	Thr	Ser	Thr	Ser	•
35			220					225					230				
		gct															816
		Ala	Gly	Lys	Lys	Met		He	Gln	Val	Thr		Thr	Gly	Gly	Asp	
10		235		4.4	4		240					245					
		ggc															864
15		Gly	261	261	1111		AIA	HIS	rne	ASP		Gin	Met	Рго	Gly		
	250	~ • •	t	~ • •		255					260					265	
		gtt															912
io	GIY	Val	GIY	116		ASD	υгу	Cys			Gin	Trp	Gly .	Ala		Asn	
			.		270					275					280		
		ggt															960
5	ASP	Gly	ı ID	ыy	ser	Arg	lyr	GIY	uly	116	Ser	Ser .	Ala :	Ser	Asp	Cvs	

285 290 295 tot agt ett eet tee gea ete caa get ggt tgt aaa tgg aga tte aac 1008 Ser Ser Leu Pro Ser Ala Leu Gln Ala Gly Cys Lys Trp Arg Phe Asn 300 305 310 tgg ttc aag aac gct gat aac cca agc atg act tac aag gaa gtt acc 1056 10 Trp Phe Lys Asn Ala Asp Asn Pro Ser Met Thr Tyr Lys Glu Val Thr 315 320 325 15 tgt ccc aag gaa atc acc gcc aag aca ggt tgt tca aga aaa taa 1101 Cys Pro Lys Glu lle Thr Ala Lys Thr Gly Cys Ser Arg Lys 330 335 340 20 <210> 5 <211> 360 25 <212> PRT <213> Rhizopus oryzae CP96001 30 <220> <221> sig#peptide 35 <222> (-23)...(-1) <220> 40 <221> mat#peptide **<222>** (1)... (337) 45 <400> 5 Met Lys Phe Leu Thr Ile Ala Ser Ser Ala Ile Leu Ala Leu Ala Val 50 -20-15-10Gly Thr Glu Met Ala His Ala Ala Glu Cys Ser Lys Ala Tyr Tyr Gln

5

1

-5

	Су	's G	ly Gl	y Ly	's As	n Tr	p As	p Gly	y Pro	o Th	r Cy	's Cy	's Gl	u Se	er Gl	y Se	r
5	1	0				18	5				2	0				2	5
	Th	r Cy	's Va	l As	р Ту	r Pro	Asi	p Ası	ı Pro) Ph	e Ty	r Se	r Gl	n Cy	rs Va	l Pro	0
					3	0				3	5				4	0	
10	As	n Gl	u As	n Le	u Th	r Sei	Thi	r Asn	Lys	Se	r Se	r Hi	s Ly	s Th	r Th	r Thi	Γ
				4	5				50)				5	5		
15	Th	r Gl	u Se	r Al	a Lys	s Lys	Thi	Thr	Thr	Th	r Ly	s Gl	y Se	r Ly	s Ly	s Thr	•
5			6					65					7				
	Thi			r Gl	u Ala	s Ser	Lys	Lys	Thr	Th	r Thi	r Th	r Gli	ı Al	a Se	r Lys	
0	_	7					80					8					
			r Th	r Thi	r Thr		Ala	Ser	Lys	Lys	Thi	Thi	Thi	Th	r Thi	r Lys	
	90		•		•	95			_		100					105	
5	Lys	Ala	a Sei	Thi			Ser	Ser	Ser			Ser	Ala	Sei	Thi	Asn	
	Tur	Sar	- Ala	Val	110		C1v	410	C	115		01	۵.		120		
0	1 7 1	261	. Ala	125		GIY	GIA	Ala	130	GIY	ASD	Gly	Glu			Arg	
	Tvr	Tro	Asn			I.vs	Pro	Ser		Ser	Ten	Dro	C1+-	135			
		•	140		-,,	2,0	•••	145	0,5	UCI	117	110	150	rys	Ala	ASP	
5	Val	Thr	Ser	Pro	Val	Gly	Ser	Cys	Asn	Lys	Asp	Glv		The	Ĭ eu	Ala	
		155					160			•	•	165	2,0	141	Deu	nia	
0	Asp	Asn	Asn	Thr	Gln	Asn	Gly	Cys	Val	Gly	Gly		Ser	Туг	Thr	Cvs	
•	170					175					180			•		185	
	Asn	Asp	Asn	Glņ	Pro	Trp	Val	Vai	Ser	Asp	Asp	Leu	Ala	Tyr	Gly		
5					190					195					200		
	Ala	Ala	Ala	Ser	Ile	Ser	Gly	Gly	Ser	Glu	Ala	Thr	Trp	Cys	Cys	Ala	
				205					210					215			
)	Cys	Phe	Glu	Leu	Thr	Phe	Thr	Ser	Thr	Ala	Val	Lys	Gly	Lys	Lys	Met	
			220					225					230				
	Val	Val	Gin	Val	Thr	Asn '	Thr	Gly S	Ser 1	Asp	Leu	Glv	Ser	Asn	Thr	Clv	

		235					240					245					
5	Ala	His	Phe	Asp	Leu	Gln	Met	Pro	Gly	Gly	Gly	Val	Gly	Ile	Tyr	Asn	
	250					255					260					265	
	Gly	Cys	Ala	Thr	Gln	Trp	Gly	Ala	Pro	Thr	Asp	Gly	Trp	Gly	Ala	Arg	
10					270					275					280		
	Tyr	Gly	Gly	Val	Ser	Ser	Ala	Ser	Asp	Cys	Ser	Asn	Leu	Pro	Ser	Ala	
15				285					290					295			
.5	Leu	Gin	Ala	Gly	Cys	Lys	Trp	Arg	Phe	Gly	Trp	Phe	Lys	Asn	Ala	Asp	
			300					305					310				
20	Asn	Pro	Thr	Met	Thr	Tyr	Lys	Gln	Val	Thr	Cys	Pro	Lys	Ala	Ile	Thr	
		315					320					325					
		Lys	Ser	Gly	Cys		Arg	Lys									
?5	330					335											
	Z010	N C															
30	<210	> 10 > 0	102														
		> 10 > DN															
)> Rb		וופ ח	TV22	a ሮኮ	מבטו	1 1									
15	(210	, 10			1 J L u	.c vi	3000										
	<220	>															
		> si	g#pe	ptid	e												
0	<222									•							
5	<220	>															
	<221	> ma	t#pe	ptid	e												
	<222	> (7	0)	. (10	83)												
o																	
	<400	6 <															
	atg :	aag	ttc	ctt	acc .	att	gcc	tcc	tcc g	get a	itc t	tgg	ca c	tt g	CC g	tc	45

	Met	Lys	Phe	Leu	Thr	He	Ala	Ser	Ser	Ala	a Ile	Leu	Ala	Lei	Ala	a Val	
5				-20					-15					-10)	•	
	ggt	act	gaa	atg	gcc	cat	gc t	gc t	gaa	tgt	ago	aag	gct	t ac	t ac	caa	96
	Gly	Thr	Glu	Met	Ala	His	Ala	Ala	Glu	Cys	Ser	Lys	Ala	Туг	Ty	Gln	
10			-5					1				5					
	tgt	ggt	ggt	aag	aac	tgg	gat	gga	cct	acc	tgc	tgt	gaa	tct	ggo	tct	144
	Cys	Gly	Gly	Lys	Asn	Trp	Asp	Gly	Pro	Thi	Cys	Cys	Glu	Ser	Gly	Ser	
15	10					15					20					25	
	act	tgc	gtt	gat	tat	cct	gac	aat	cct	tto	tac	tcc	caa	tgt	gtt	ccc	192
20	Thr	Cys	Val	Asp	Tyr	Pro	Asp	Asn	Pro	Phe	Туг	Ser	Gln	Cys	Val	Pro	
					30					35					40		
	aat	gaa	aac	ctc	acc	tcc	ac t	aac	aaa	tct	tct	cac	aaa	acc	acc	ac t	240
25	Asn	Glu	Asn		Thr	Ser	Thr	Asn	Lys	Ser	Ser	His	Lys	Thr	Thr	Thr	
				45					50					55			
			agt														288
30	Thr	Glu	Ser	Ala	Lys	Lys	Thr		Thr	Thr	Lys	Gly		Lys	Lys	Thr	
			60					65			٥.		70				
35			act														336
	int	75	Thr	610	AIA	ser		Lys	inr	INI	IDT		Glu	Ala	Ser	Lys	
	224		200	an t	nat	422	80	tot				85	4				
40			acc Thr														384
	90	1111	1111	1111	1111	95	ΛIα	361	Lys	r A 2	100	141	1111	1111	1111		
		ect	tct	acc.	tcc		tcc	tet	tcc	tet		ict	act	tot	200	105	420
45			Ser														432
	D ,0		501	1111	110	1114	J C1	001	501	115	961	261	VIG	361	120	изп	
50	tac	tee	gct	øtr		oot	gat	σrr	tee		201	aat	600	222			
			Ala														480
	111	561		125	JUI	u i j	U1 J	11 I G	130	ЛÌ	N211	ΩΙΆ	U1U		THL	HIG	
55				100					100				•	135			

	lac	gg	gat	igi	lgi	t aag	3 CC	t tc	t te	sc ag	st te	g cc	c gg	t aag	gc	t gat	528
5																a Asp	
			140					148					150				
	gtc	acc	tcc	cct	gtt	ggo	tco	tgt:	aa	c aa	g ga	t gg	t aag	act	ctt	gct	576
10																Ala	
		155					160					165					
	gat	aac	aac	act	caa	aac	ggc	tgt	gt	t gg	t gg	t ago	agc	tac	acc	tgt	624
15	Asp	Asn	Asn	Thr	Gln	Asn	Gly	Cys	Va.	1 G1:	y G1:	y Ser	Ser	Tyr	Thr	Cvs	001
	170					175					180					185	
20	aat	gac	aat	caa	cct	tgg	gtt	gtt	ago	gad	gac	ctt	gCC	tac	ggt		672
	Asn	Asp	Asn	Gln	Pro	Trp	Val	Val	Ser	Ası	Asp	Leu	Ala	Туг	Gly	Phe	
					190					195	5				200		
25	gcc	gct	gct	tcc	att	tct	ggt	ggt	ago	gaa	gct	act	tgg	tgt	tgt	gcc	720
	Ala	Ala	Ala	Ser	Ile	Ser	Gjy	Gly	Ser	Glu	Ala	Thr	Trp	Cys	Cys	Ala	
				205					210					215			
30	tgt :	ttc s	gaa (ctc	aca	ttc	acc	tct	ac t	gcc	gtc	aag	ggt	aag	aag	atg.	768
	Cys I			Leu '	Thr	Phe	Thr		Thr	Ala	Val	Lys	Gly	Lys :	Lys .	Me t	
35	-44		220					225					230				
	gttg	get c	aa g	gtaa	acc	aac	act	ggt	tct	gac	ctt	ggc	tct	aac i	act	ggt	816
	Val V		in \	val 1	ihr .			Gly	Ser	Asp	Leu	Gly	Ser	Asn 1	Chr (Gly	
40		35	44 -				240					245					
	gct c	ac t	ii g	ac t	ig (caa	atg	ccc ;	ggt	ggt	ggt	gtt	ggt a	itc t	ac a	aat	864
	Ala H	15 P	пе н	sp L			wet 1	Pro (Gly	Gly		Val (Gly 1	le T	yr A	lsn	
45	250	a1 a		.4 .		255		٠.			260				2	65	
	ggt t	Rr B	cc a	ci c	aa t	gg g	ggtg	sct (cc	acc	gat	ggt	gg g	gt g	ca a	ga	912
50	Gly C	ys A	1a 1			rp (ily A	lla I			Asp	Gly 7	[rp G	ly A	la A	rg	
50					70					275					80		
	tac gg	ge gg	gig	11 10	ct t	ct g	cc t	ct g	ac	tgt	tet	aac c	tt c	ct to	ct g	cc	960
55	Tyr Gl	y Gi	y V;	ai Se	er S	er A	la S	er A	sp (Cys :	Ser /	Asn L	eu P	ro Se	er A	la	

285 290 295 ctt caa gct ggt tgt aag tgg aga ttc ggc tgg ttc aaa aac gct gat 1008 Leu Gln Ala Gly Cys Lys Trp Arg Phe Gly Trp Phe Lys Asn Ala Asp 300 305 310 aac cca acc atg acc tac aaa caa gtt acc tgt ccc aag gct atc act 1056 10 Asn Pro Thr Met Thr Tyr Lys Gln Val Thr Cys Pro Lys Ala Ile Thr 315 320 325 15 gcc aag tot ggc tgt tca aga aaa taa 1083 Ala Lys Ser Gly Cys Ser Arg Lys . 330 335 20 <210> 7 <211> 338 <212> PRT (213) Mucor circinelloides CP99001 30 <220> <221> sig#peptide 35 (222) (-22)...(-1) <220> 40 <221> mat#peptide (222) (1)... (316) 45 <400> 7 Met Lys Phe Thr Val Ala lle Thr Ser lle Ala Val Ala Leu Ala Leu 50 -15 Ser Ser Ser Ala Glu Ala Ala Ser Cys Ser Ser Val Tyr Gly Gin Cys

10

l

-5

	Gly	Gly	, Ile	Gly	Trp	Ser	Gly	Pro	Thr	Cys	Cys	Glu	ı Sei	r Gly	y Sei	r Thr
5	•				1	5				20					25	5
	Cys	Val	Ala	Gln	Glu	Gly	Asn	Lys	Tyr	Тул	Sei	Gli	ı Cys	Lei	Pro	Gly
				30					35	;				40	}	
10	Ser	His	Ser	Asn	Asn	Ala	Gly	Asn	Ala	Ser	Ser	Thr	Lys	Lys	Thi	Ser
			45					50					55	i		٠
15	Thr	Lys	Thr	Ser	Thr	Thr	Thr	Ala	Lys	Ala	Thr	Ala	Thr	Val	Thr	Thr
		60					65					70)			
	Lys	Thr	Va]	Thr	Lys	Thr	Thr	Thr	Lys	Thr	Thr	Thr	Lys	Thr	Ser	Thr
20	75		•			80					85					90
	Thr	Ala	Ala	Ala	Ser	Thr	Ser	Thr	Ser	Ser	Ser	Ala	Gly	Tyr	Lys	Val
					95					100					105	
25	Ile	Ser	Gly		Lys	Ser	Gly	Ser		Ser	Thr	Thr	Arg	Tyr	Trp	Asp
				110		_	_	_	115					120		
30	Cys	Cys	Lys	Ala	Ser	Cys	Ser		Pro	Gly	Lys	Ala			Thr	Gly
50		** 1	125	æt.	a	.1.	c .	130	a 1		•		135			
	Pro		Asp	ınr	Cys	Ala		ASD	Gly	116	Ser		Leu	Asp	Ala	Asn
35	410	140	S0=	Clar	Cwo	Acn	145	C1 v	Aan	C1**	Dha	150	C	A	4	
	155	GIU	Ser	Gry	Cys	160	оту	GIY	W211	GIY	165	met	Cys	ASI	ASI	
		Pro	Trp	Δla	Val		A e n	Clu	ī en	412		Clv	Dha	Ala	A 1 a	170
40	0111	110	110	AIG	175	nsu	пор	014		180	1 9 1	Uly	1 116	nia	185	HIA
	Ser	He	Ala	GIv		Asn	Glu	Ala			Cve	fve	Clv	Cve		C1
45	301		,	190					195		0,0	0,5	Ģ.,	200	1 7 1	UIU
40	Leu	Thr	Phe		Ser	Glv	Ala	Ala		Glv	I.vs	Lvs	Met		Va l	Cln
			205			,		210	•••	,	2,0	2,0	215		141	GIL
50	Val	Thr	Asn	Thr	Glv	Glv	Asp		Glv	Ser	Asn	His		Asn	i en	Cln
		220					225		,			230		,	Dou	0111
	Met		Glv	Glv	Glv	Val		[]e	Phe	Asn	Giv		Ala	Ala	Gin	Tro
			3	,	,		,				~ + J	J J J	** * * *	4110	1110	110

235 240 245 250 Gly Ala Pro Asn Asp Gly Trp Gly Ala Arg Tyr Gly Gly Val Ser Ser 255 260 265 Val Ser Asp Cys Ala Ser Leu Pro Ser Ala Leu Gln Ala Gly Cys Lys 10 270 275 280 Trp Arg Phe Asn Trp Phe Lys Asn Ser Asp Asn Pro Thr Met Thr Phe 285 290 295 15 Lys Glu Val Thr Cys Pro Ala Glu Leu Thr Thr Arg Ser Gly Cys Glu 300 305 310 Arg Lys 20 315 ⟨210⟩ 8 25 (211) 1017 <212> DNA 30 <213> Mucor circinelloides CP99001 <220> 35 <221> sig#peptide (222) (1)... (66) 40 <220> <221> mat#peptide **<222>** (67)... (1017) **<400> 8** 50 atg aag ttc acc gtt gct att act tca atc gct gtt gca ctc gct ctc 48 Met Lys Phe Thr Val Ala Ile Thr Ser Ile Ala Val Ala Leu Ala Leu -20-15 -10

	ago	tct	tct	gct	gaa	a gc	gct	tc	t tg	c ag	c to	ct gt	c t	at g	gt c	aa	tgt	96
5	Ser	Ser	Ser	Ala	ı Gli	ı Ala	a Ala	Sei	r Cy	s Se	r Se	er Va	il Ty	yr G	ly G	ln	Cys	
		-5					1					5					10	
	ggt	ggc	att	gga	tgg	agt	gga	ccl	acı	c tg	t tg	t ga	a ag	i g	gc t	ct	ac t	144
10		Gly																
					1	5				2	0					25		
	tgc	gtt	gct	caa	gaa	ggc	aac	aaa	tac	: tac	c tc	t ca	a tg	t ct	t c	cc (gga	192
15	Cys	Val	Ala	Gln	Glu	Gly	Asn	Lys	Tyr	Ty	s Se	r Gli	n Cy	s Le	u P	ro (Gly	
				30					35	· !				4	0			
20		cac																240
	Ser	His	Ser	Asn	Asn	Ala	Gly	Asn	Ala	Ser	Sea	r Thi	r Ly	s Ly	s Th	ır S	er	
			45					50					5					
25		aag																288
	Thr	Lys	Thr	Ser	Thr	Thr	Thr	Ala	Lys	Ala	Thr	Ala	Thi	ya.	l Th	r T	hr	
		60					65					70						
30		aca																336
	Lys 25	inr	Val	Thr	Lys		Thr	Thr	Lys	Thr			Lys	Thi	Se	r Ti	hr	
35	75	~~~	•	4	4-4	80					85						90	
	act (384
	Thr	nia i	ııa .	Ala	95	IRT	ser	inr	261		Ser	Ala	Gly	Tyr	Lys	s Va	al	
40	ate i	tot s		na t						100					108			
	atc i																	432
	Ile S	JCI U		110	r A 2	261	оту .			ser	inr	Thr	Arg		Trp	As	p	
45	tot t	ort 2	•		tet	tac	000		115					120				
	tgt t																	480
50	Cys C		25	ııa .	261 (CYS (710	ыу	Lys	Ala		Val	Thr	G1	у	
50	cet a				tat -	706		30		. 1			135					
	cct g		ac a	100 l	igi {	500 l	cc a	iat 8	gg(:	alc	cct -	t ta	tta	gat	gcc	aa	t	528
	Pro V	ai A	sp I	ar (ys F	na 3	er A	sn (ıl y	ile .	Ser .	Leu	Leu	Asp	Ala	Asi	1	

		140				145	i				15	0				
5	gct	caa a	igt gg	t tg	t aac	ggt	ggt	aa	t gg	t tt	c at	g tg	t aa	c aa	c aa	c 576
	Ala	Gln S	Ger Gl	у Су	s Asn	Gly	Gly	Ası	n G1	y Ph	e Me	t Cy.	s As:	n As:	n Asi	
	155				160					16					170	
10	caa	cct t	gg gc	t gt	c aat	gat	gag	cto	gc	t ta	c gg	t tte	c gc	l gc		
			rp Al													
				179					180					185		•
15	tet	att g	ct gg	c tco	aac	gaa	gct	gga	tge	tg:	t tgi	ggo	tgt:			672
			la Gl													
00			190					195				,	200		G I U	
20	ttg a	acc t	tc ac	tct	ggc	gc t	gct	tct	gga	aag	aag	atg			cas	720
			he Thi													120
25)5				210					215		,,,	OIR	
	git a	icc a	ac acc	ggt	ggc	gat	tta	ggc	tct	aac	cac		gat	ttg	caa	768
			n Thr													,00
30		20				225					230					
	atg c	cc gg	t ggt	ggc	gtt	ggt	atc	ttc	aat	ggc	tgt	gct	gct	caa	tgg	816
	Met P															010
35	235				240					245					250	
	ggc g	ct cc	c aat	gat	ggc	t gg	gga	gct	aga	tat	ggt	ggt	gtc	agc		864
	Gly A															001
40				255					260		,			265		
	gic to	ct ga	c tgt	gcc	tct	ctt	ccc	tct	gct	ctt	caa	gct			222	912
45	Val Se															314
			270					275					280	0,5	. ,,	
	tgg ag	ga tto	c aac	tgg	ttc a	aag a	ac 1	tct	gat	aac	cct			200	tta	960
50	Trp Ar															300
		285		-			90			41		295	uct.	rnî j	แย	
	aag ga			tgt	cct e			ta :	act	act .				l m.c		1005
55				-0.	~~. 6	,	,		401	401	UKU	ica (igi i	gc g	gaa	1008

Lys Glu Val Thr Cys Pro Ala Glu Leu Thr Thr Arg Ser Gly Cys Glu 300 305 310 aga aag taa 1017 Arg Lys 10 315 <210> 9 15 <211> 387 <212> PRT <213> Mucor circinelloides CP99001 <220> <221> sig#peptide 25 ⟨222⟩ (-22)... (-1) <220> 30 <221> mat#peptide <222> (1)... (365) 35 **<400>9** Met Lys Phe Thr Val Ala Ile Thr Ser Ile Ala Val Ala Leu Ala Leu -20 -15 -10 Ser Ser Ser Ala Glu Ala Ala Ser Cys Ser Ser Val Tyr Gly Gln Cys 1 5 45 10 Gly Gly Ile Gly Trp Thr Gly Pro Thr Cys Cys Asp Ala Gly Ser Thr 15 20 Cys Lys Ala Gln Lys Asp Asn Lys Tyr Tyr Ser Gln Cys Ile Pro Lys 50 30 35 Pro Lys Gly Ser Ser Ser Ser Ser Ser Cys Ser Ser Val Tyr Ser Glu 55

			45	į				50	1				5	5		
5	Cys	Gly	Gly	lle	Gly	Trp	Ser	Gly	Pro	Thr	Cys	Суз	s Glu	ı Se	r Gl	ý Sei
J		60					65					70)			
	Thr	Cys	Val	Ala	Gln	Glu	Gly	Asn	Lys	Tyr	Tyr	Sei	Gli	ı Cys	Lei	Pro
10	75					80					85					90
	Gly	Ser	His	Ser	Asn	Asn	Ala	Gly	Asn	Ala	Ser	Sei	Thr	Lys	Lys	. Thr
					95		•			100					105	i
15	Ser	Thr	Lys	Thr	Ser	Thr	Thr	Thr	Ala	Lys	Ala	Thr	Ala	Thr	Val	Thr
				110					115					120	ı	
20 .	Thr	Lys	Thr	Val	Thr	Lys	Thr	Thr	Thr	Lys	Thr	Thr	Thr	Lys	Thr	Ser
			125					130					135			
	Thr	Thr	Ala	Ala	Ala	Ser	Thr	Ser	Thr	Ser	Ser	Ser	Ala	Gly	Tyr	Lys
25		140					145					150				
		He	Ser	Gly	Gly	Lys	Ser	Gly	Ser	Gly	Ser	Thr	Thr	Arg	Tyr	Trp
	155	_				160	_				165					170
30	Asp	Cys	Cys	Lys	_	Ser	Cys	Ser	Trp		Gly	Lys	Ala	Ser		Thr
	C1	D	W - 1		175	0				180		_			185	
35	GIY	Pro	Val		ınr	Lys	AIA	ser		Gly	He	Ser	Leu		Asp	Ala
33	Agn	Ala	C1n	190	Clv	ر م	Aan	C1~	195	A	C1	n.		200		
	W2II	Ala	205	261	GIY	Cys	ASII		GIY	ASII	GIY	Phe		Cys	Asn	Asn
40	Acn			Trn	412	Vo 1	Aon	210	C1	I an	41.	т	215	D1		
		G1n 220	. 10	IIP	A I G	, 6.3	225	nop	Giu	Leu	VIG		GIY	rne	Ala	Ala
		Ser	l le	Δla	Clv	Spr		G1 n	Ala	Cly	T	230	Cons	C1		m
45	235	•••	•••			240	ASI	o, u	nia		245	Cys	CÀR	GIY	cys	
	Glu i	Leu '	Thr	Phe			Clv	Ala	Ala			1	1	W. b	W - 1	250
50	074				255	501	01,	J1 1 U	ли		шту	r y S	LAS	met		Val
50	Gin	Val 1	Thr			Glv	C.I v	1en	וים ו	260	۰،2	۸۵-	11:-	NL -	265	,
	O I II			270	1111	OIÀ	01J		275	OIÀ	JC1 .	usli			ASP	ren
55				. I V					נוט					280		

	Gln Met Pro Gly Gly Gly Val Gly Ile Phe Asn Gly Cys Ala Ala Gln
5	285 290 295
	Trp Gly Ala Pro Asm Asp Gly Trp Gly Ala Arg Tyr Gly Gly Val Ser
	300 305 310
10	Ser Val Ser Asp Cys Ala Ser Leu Pro Ser Ala Leu Gln Ala Gly Cys
	315 320 325 330
	Lys Trp Arg Phe Asn Trp Phe Lys Asn Ser Asp Asn Pro Thr Met Thr
15	335 340 345
	Phe Lys Glu Val Thr Cys Pro Ala Glu Leu Thr Thr Arg Ser Gly Cys
20	350 355 360
	Glu Arg Lys
	365
25	Z010\\ 10
	<210> 10 <211> 1164
	<212> DNA
30	<213> Mucor circinelloides CP99001
	(410) 11001 0110110110100 010001
35	<220>
	<221> sig#peptide
	⟨222⟩ (1) (66)
40	
	<220>
45	<221> mat#peptide
,,,	<222> (67) (1164)
50	<400> 10
	atg aag tic acc git gct att act ica atc gct git gca cic gci cic 48
	Met Lys Phe Thr Val Ala Ile Thr Ser Ile Ala Val Ala Leu Ala Leu
55	

			-20)				-15	5				-10)			
	ago	: tct	tct	gct	gaa	gct	gct	tet	tgo	ago	tc1	gto	: tat	gg	caa	a tgt	96
•	Sei	Sei	Ser	Ala	Glu	Ala	Ala	Ser	Cys	Sei	Sei	Val	Tyr	Gly	Gli	ı Cys	
		-5	;				1				5					10	
o	ggt	ggc	att	ggc	tgg	act	ggt	cct	aca	tgt	tgt	gat	gct	gga	tce	acc	144
	Gly	Gly	lle	Gly	Trp	Thr	Gly	Pro	Thr	Cys	Cys	Asp	Ala	Gly	Sei	Thr	
					15					20)				25	;	
5	tgt	aaa	gct	caa	aag	gat	aac	888	tat	tat	tct	caa	tgt	att	ccc	aaa	192
	Cys	Lys	Ala	Gln	Lys	Asp	Asn	Lys	Tyr	Tyr	Ser	Gln	Cys	He	Pro	Lys	
o				30					35					40			
U																caa	240
	Pro	Lys		Ser	Ser	Ser	Ser	Ser	Ser	Cys	Ser	Ser	Val	Tyr	Ser	Gln	
5			45					50					55				
													gaa				288
	Cys		Gly	He	Gly	Trp		Gly	Pro	Thr	Cys		Glu	Ser	Gly	Ser	
0	.	60					65					70					
													caa				336
		Cys	vai	Ala	Gin		Gly	Asn	Lys	Tyr		Ser	Gln	Cys	Leu	Pro	
5	75			1		80					85					90	
													acc				384
0	GIÀ	261	піѕ	Ser		ASI	Ala	GIY	ASN		Ser	Ser	Thr	Lys		Thr	
	101	200	224		95	201				100					105		
													gct				432
5	261	1111	LYS	110	361	1111	1111	101		Lys	Ala	Thr	Ala		Val	Thr	
									115					120			
													acc				480
0	HILL	LYS		val	IUL	L)S	ınr		Inr	Lys	Thr	Thr	Thr	Lys	Thr	Ser	
			125					130					135				
	act	act	gcc	gct	gct	tct	act	tcc	acc	tct	tct	tct	gct	ggt	tac	aag	528

	Thi	Th	r Ala	Ala	Ala	Ser	Thr	Ser	Thi	Sei	Sei	Sei	Ala	a Gly	y Ty	r Lys	
_		140)				145	;				150)				
5	gto	ato	: tct	ggc	ggt	aaa	tct	ggc	agt	ggt	tcc	aca	act	cgi	ta	t tgg	576
	Val	He	Ser	Gly	Gly	Lys	Ser	Gly	Ser	Gly	Ser	Thr	Thr	Are	у Ту	r Trp	
10	155	;				160					165					170	
	gat	tgt	tgt	aaa	gct	tct	tgc	agc	t gg	cct	gga	aaa	gct	tct	gto	act	624
	Asp	Cys	Cys	Lys	Ala	Ser	Cys	Ser	Trp	Pro	Gly	Lys	Ala	Ser	· Va	Thr	
15					175					180	ı				185	;	
	ggt	cct	gtt	gac	acc	tgt	gcc	tcc	aat	ggt	atc	tct	tta	tta	gat	gcc	672
20	Gly	Pro	Val	Asp	Thr	Cys	Ala	Ser	Asn	Gly	He	Ser	Leu	Leu	Asp	Ala	
20				190					195					200			
																aac	720
25	Asn	Ala		Ser	Gly	Cys	Asn	Gly	Gly	Asn	Gly	Phe	Met	Cys	Asn	Asn	
			205					210					215				
					gct												768
30	Asn		Pro	Trp	Ala	Val		Asp	Glu	Leu	Ala		Gly	Phe	Ala	Ala	
		220	- 4 4				225					230					
					ggc												816
35	235	261	116	Ala	Gly		ASII	GIU	Ala	GIY		Cys	Cys	Gly	Cys		
		tta	200	tto	act	240	aac	mo t	~~ t	+ - +	245			- 1		250	
40					act Thr												864
	010	DCU	1111	1 110	255	J. 1	uly	nia	n j q	260	GIY	L'A2	Lys	mei		Val	
	caa	øtt	acc	aac.	acc	σσt	gge	σat	tta		tot	220			265	A.A.	0.0
4 5					Thr											_	912
	0111	141	1111	270	1111	01)		пор	275	GIY	261	ASII			ASP	Leu	
	caa	atσ	ccc		ggt	gge	σtt	aat		* * * *	0 0 f			280			
50					Gly												960
	0111	MC L	285	ary	GIA	arà		290	116	rne	42II			ніа	Ala	GIN	
			200					UJU					295				

	tgg ggc gct ccc aat gat ggc tgg gga gct aga tat ggt ggt gtc agc 1008	ļ
5	Trp Gly Ala Pro Asn Asp Gly Trp Gly Ala Arg Tyr Gly Gly Val Ser	
	300 305 310	
	tct gtc tct gac tgt gcc tct ctt ccc tct gct ctt caa gct ggt tgt 1056	i
10	Ser Val Ser Asp Cys Ala Ser Leu Pro Ser Ala Leu Gln Ala Gly Cys	
	315 320 325 330	
	aaa tgg aga ttc aac tgg ttc aag aac tct gat aac cct acc atg acc 1104	ļ
15	Lys Trp Arg Phe Asn Trp Phe Lys Asn Ser Asp Asn Pro Thr Met Thr	
	335 340 345	
20	ttc aag gaa gtt acc tgt cct gct gaa tta act act cgc tca ggt tgc 1152	i
	Phe Lys Glu Val Thr Cys Pro Ala Glu Leu Thr Thr Arg Ser Gly Cys	
	350 355 360	
25	gaa aga aag taa 1164	
	Glu Arg Lys 365	
20	303	
30	<210> 11	
	<211> 346	
35	<212> PRT	
	<213> Phycomyces nitens CP99002	
	·	
40	<220>	
	<221> sig#peptide	
45	<222> (-19)(-1)	
	<220>	
50	<221> mat#peptide	
	<222> (1) (327)	

	<40	0> 11	l													
5	Met	Lys	Phe	Ser	He	He	Ala	Ser	Ala	Leu	Leu	Leu	Ala	Ala	Ser	Ser
					-15					-10					-5	
	Thr	Tyr	Ala	Ala	Glu	Cys	Ser	Gln	Gly	Tyr	Gly	Gln	Cys	Gly	Gly	Lys
10				1				5					10			
	Met	Trp	Thr	Gly	Pro	Thr	Cys	Cys	Thr	Ser	Gly	Phe	Thr	Cys	Val	Gly
		15					20					25				
15	Ala	Glu	Asn	Asn	Glu	Trp	Tyr	Ser	Gln	Cys	Ile	Pro	Asn	Asp	Gln	Val
	30					35					40					45
20	Gln	Gly	Asn	Pro	Lys	Thr	Thr	Thr	Thr	Thr	Thr	Thr	Lys	Ala	Ala	Thr
·					50					55					60	
	Thr	Thr	Lys	Ala	Pro	Val	Thr	Thr	Thr	Lys	Ala	Thr	Thr	Thr	Thr	Thr
25				65					70					75		
	Thr	Lys	Ala	Pro	Val	Thr	Thr	Thr	Lys	Ala	Thr	Thr	Thr	Thr	Thr	Thr
			80					85					90			
30	Lys	Thr	Thr	Thr	Lys	Thr	Thr	Thr	Thr	Lys	Ala	Ala	Thr	Thr	Thr	Ser
		9 5					100					105				
	Ser	Ser	Asn	Thr	Gly	Tyr	Ser	Pro	Ile	Ser		Gly	Phe	Ser	Gly	Asn
35	110					115					120					125
	Gly	Arg	Thr	Thr		Tyr	Trp	Asp	Cys		Lys	Pro	Ser	Cys	Ala	Trp
40					130			_		135					140	
,,,	Asp	Gly	Lys		Ser	Val	Thr	Lys		Val	Leu	Thr	Cys		Lys	Asp
				145			_		150					155		
1 5	Gly	y Val	Se	r Arg	g Lei	ı Gly	y Sei			Gli	ı Sei	Gly	Cys	Val	Gly	Gly
			160					165					170			
	Gln	Ala	Tyr	Met	Cys	Asn	Asp	Asn	Gln	Pro	Trp	Val	Val	Asn	Asp	Asp
50		175					180					185				
	Leu	Ala	Tyr	Gly	Phe	Ala	Ala	Ala	Ser	Leu	Gly	Ser	Ala	Gly	Ala	Ser
	190					195					200					205

	Ala Phe Cys Cys Gly Cys Tyr Glu Leu Thr Phe Thr Asn Thr Ala Ya	İ
5	210 215 220	
	Ala Gly Lys Lys Phe Val Val Gln Val Thr Asn Thr Gly Asp Asp Let	1
	225 230 235	
10	Ser Thr Asn His Phe Asp Leu Gln Met Pro Gly Gly Val Gly Tyr	ſ
	240 245 250	
	Phe Asn Gly Cys Gln Ser Gln Trp Asn Thr Asn Thr Asp Gly Trp Gly	7
15	255 260 265	
	Ala Arg Tyr Gly Gly Ile Ser Ser Ile Ser Glu Cys Asp Lys Leu Pro)
20	270 275 280 285	ŀ
20	Thr Gln Leu Gln Ala Gly Cys Lys Trp Arg Phe Gly Trp Phe Lys Asn	
	290 295 300	
25	Ala Asp Asn Pro Glu Val Thr Phe Lys Ala Val Thr Cys Pro Ala Glu	
	305 310 315	
	lle lle Ala Lys Thr Gly Cys Glu Arg Lys	
30	320 325	
	(0.10) 1.0	
05	(210) 12	
35	<211> 1041	
	<212> DNA	

5	<40	0> 13	2														
	atg	aag	ttc	tcc	atc	atc	gct	tcc	gcc	ctt	ctc	ctc	gct	gcc	agc	tcc	48
	Met	Lys	Phe	Ser	Ile	He	Ala	Ser	Ala	Leu	Leu	Leu	Ala	Ala	Ser	Ser	
10					-15					-10					-5		
	act	tac	gct	gc t	gaa	tgc	agc	caa	ggc	tat	ggc	cag	tgt	ggt	ggc	aag	96
	Thr	Tyr	Ala	Ala	Glu	Cys	Ser	Gln	Gly	Tyr	Gly	Gln	Cys	Gly	Gly	Lys	
15				1				5					10				
	atg	tgg	act	ggt	ccc	acc	tgc	tgc	acc	tcc	ggc	ttc	acc	tgt	gta	ggt	144
20	Met	Trp	Thr	Gly	Pro	Thr	Cys	Cys	Thr	Ser	Gly	Phe	Thr	Cys	Val	Gly	
20		15					20					25					
	gcc	gaa	aac	aac	gag	tgg	tac	tct	cag	lgt	atc	ccc	aac	gat	caạ	gtc	192
25	Ala	Glu	Asn	Asn	Glu	Trp	Tyr	Ser	Gln	Cys	He	Pro	Asn	Asp	Gln	Val	
	30					35					40					45	
	cag	ggt	aac	ccc	aag	acc	aag	gct	gcc	act	240						
30	Gln	Gly	Asn	Pro	Lys	Thr	Lys	Ala	Ala	Thr							
					50					55					60		
															acc		288
35	Thr	Thr	Lys		Pro	Val	Thr	Thr		Lys	Ala	Thr	Thr	Thr	Thr	Thr	
				65					70					75		•	
40															acc		336
40	Thr	Lys	Ala	Pro	Val	Thr	Thr	Thr	Lys	Ala	Thr	Thr	Thr	Thr	Thr	Thr	
			80					85					90				
45															acc		384
	Lys		Thr	Thr	Lys	Thr	Thr	Thr	Thr	Lys	Ala	Ala	Thr	Thr	Thr	Ser	
		95					100					105					
50	tct	tcc	aac	act	ggc	tac	agc	ccc	att	tct	ggt	ggc	ttc	tct	gga	aac	432
	Ser	Ser	Asn	Thr	Gly	Tyr	Ser	Pro	He	Ser	Gly	Gly	Phe	Ser	Gly	Asn	
	110					115					120					125	

	ggt	cgc	act	acc	cgc	tac	tgg	gat	tgc	tgc	aag	ccc	tct	t go	gco	tgg	480
5	Gly	Arg	Thr	Thr	Arg	Tyr	Trp	Asp	Cys	Cys	Lys	Pro	Ser	Cys	Ala	Trp	
•					130					135					140)	
	gac	gga	aag	gct	tct	gta	act	aag	cct	gta	ctc	acc	tgt	gcc	aag	gat	528
10	Asp	Gly	Lys	Ala	Ser	Yal	Thr	Lys	Pro	Val	Leu	Thr	Cys	Ala	Lys	Asp	
				145					150					155			
	ggt	gtc	agc	cgt	ctc	ggt	tcc	gat	gtc	cag	agc	ggt	tgc	gtc	ggc	ggc	576
15	Gly	Yal	Ser	Arg	Leu	Gly	Ser	Asp	Val	Gln	Ser	Gly	Cys	٧al	Gly	Gly	
			160		•			165					170				
00	cag	gcc	t ac	atg	tgc	aat	gac	aac	cag	ccc	tgg	gtt	gtc	aat	gac	gac	624
20	Gln	Ala	Tyr	Met	Cys	Asn	Asp	Asn	Gln	Pro	Trp	Val	Val	Asn	Asp	Asp	
		175					180					185					
25	ctt	gcc	tac	ggt	ttc	gct	gct	gcc	agt	ctc	ggt	agc	gcc	ggt	gcc	tct	672
	Leu	Ala	Tyr	Gly	Phe	Ala	Ala	Ala	Ser	Leu	Gly	Ser	Ala	Gly	Ala	Ser	
	190					195					200					205	
30	gca	ttc	tgc	tgc	ggc	tgt	tac	gag	ctt	acc	ttc	acc	aac	act	gc t	gtc	720
	Ala	Phe	Cys	Cys	Gly	Cys	Tyr	Glu	Leu	Thr	Phe	Thr	Asn	Thr	Ala	Val	
					210					215					220		
35		ggc															768
	Ala	Gly	Lys		Phe	Val	Val	Gln		Thr	Asn	Thr	Gly	Asp	Asp	Leu	
40				225					230					235			
40		acc															816
	Ser	Thr		HIS	Phe	Asp	Leu		Met	Pro	Gly	Gly		Val	Gly	Tyr	
45			240					245					250				
		aac															864
	Phe	Asn	Gly	Cys	Gln	Ser		Trp	Asn	Thr	Asn	Thr	Asp	Gly	Trp	Gly	
50		255					260					265					
		cgc															912
	Ala	Arg	Tyr	Gly	Głý	He	Ser	Ser	He	Ser	Glu	Cys	Asp	Lys	Leu	Pro	
55																	

270 275 280	285
acc cag tig cag gct ggt tgc aag tgg aga ttc gga tgg ttc ag	ag aac 960
Thr Gln Leu Gln Ala Gly Cys Lys Trp Arg Phe Gly Trp Phe Ly	s Asn
290 295 30)0
gct gac aac cca gag gtc acc ttc aag gct gtt act tgc cct gc	c gag 1008
Ala Asp Asn Pro Glu Val Thr Phe Lys Ala Val Thr Cys Pro Al	a Glu
305 310 315	
atc att gcc aag act ggt tgc gag cgc aag taa	1041
lle Ile Ala Lys Thr Gly Cys Glu Arg Lys	
320 325	
(010) 10	
<210> 13	
<211> 1043 <212> DNA	
<213> Artificial Sequence	
30	
<220>	
<223> Codon-optimized sequence corresponding to RCE I	
protein (SEQ. ID NO: 2)	
⟨220⟩	
<pre>40 <221> sig#peptide</pre>	
<222> (16) (84)	
45	
⟨220⟩	
<pre><221> mat#peptide</pre>	
so ⟨222⟩ (84) (1043)	
⟨400⟩ 13	
(41111) 13	

	gga	tcct	ggg	acaa	gate	g aag	g tto	ato	c ac	t at	C gc	c to	c tc	c gc	c ct	c ctt	51
5					Me	Lys	Phe	e Ile	e Th	r H	e Al	a Se	r Se	r Ał	a Le	u Leu	
								-20)				-1	5			
	gcc	ctc	gcc	ctt	ggc	act	gag	atg	gcc	tcc	gcc	gct	gag	tgc	tcc	aag	99
10	Ala	Leu	Ala	Leu	Gly	Thr	Glu	Met	Ala	Ser	Ala	Ala	Glu	Cys	Ser	Lys	
		-10					-5					1				5	
	ctc	tac	gga	cag	tgc	ggc	gga	aag	aac	tgg	aac	ggc	ccc	acc	tgc	tgc	147
	Leu	Tyr	Gly	Gln	Cys	Gly	Gly	Lys	Asn	Trp	Asn	Gly	Pro	Thr	Cys	Cys	
					10					15					20		
20	gag	agc	ggc	tcg	acc	tgc	aag	gtc	tcg	aat	gac	tac	tac	agc	cag	t gc	195
20	Glu	Ser	Gly	Ser	Thr	Cys	Lys	Val	Ser	Asn	Asp	Tyr	Tyr	Ser	Gln	Cys	
				25					30					35			
25	ctg	ccg	agc	ggc	tcc	tcg	gga	aac	aag	tcg	agc	gag	tcg	gcc	cac	aag	243
	Leu	Pro	Ser	Gly	Ser	Ser	Gly	Asn	Lys	Ser	Ser	Glu	Ser	Ala	His	Lys	
			40					45					50				
30	aag	acc	acg	acc	gct	gcc	cac	aag	aag	acc	acg	acc	gcc	gct	cac	aag	291
	Lys	Thr	Thr	Thr	Ala	Ala	His	Lys	Lys	Thr	Thr	Thr	Ala	Ala	His	Lys	
		55					60					65					
35	aag	act	acg	acc	gct	ccc	gcc	aag	aag	acc	acg	acc	gtc	gcc	aag	gct	339
	Lys	Thr	Thr	Thr	Ala	Pro	Ala	Lys	Lys	Thr	Thr	Thr	Val	Ala	Lys	Ala	
	70					75					80					85	
40	tcg	act	ccg	tcc	aac	tcg	agc	agc	tcg	tct	tcg	gga	aag	tac	agc	gc t	387
	Ser	Thr	Pro	Ser	Asn	Ser	Ser	Ser	Ser	Ser	Ser	Gly	Lys	Tyr	Ser	Ala	
45					90					95					100	•	
	gtc	agc	ggt	ggc	gct	agc	ggc	aac	ggc	gtc	act	acc	cgc	tac	tgg	gac	435
	Val	Ser	Gly	Gly	Ala	Ser	Gly	Asn	Gly	Val	Thr	Thr	Arg	Tyr	Trp	Asp	
50				105					110					115			
	tgc	tgc	aag	gct	tcg	tgc	tcg	tgg	ccc	ggc	aag	gct	aac	gtc	agc	tcg	483
	Cys	Cys	Lys	Ala	Se r	Cys	Ser	Trp	Pro	Gly	Lys	Ala	Asn	Val	Ser	Ser	
e e																	

			120)				125	i				13	0			
5	CC	t gtc	aag	tco	t go	aac	aag	gac	gg	gt	c ac	c gc	t ct	t ag	c ga	c tcc	531
	Pr	o Val	Lys	Ser	Cys	Asr	Lys	Asp	Gly	/ Va	l Th	r Ala	ı Lei	u Se	r As	p Ser	
		135					140	ı				145	5				
10	aa	c gcc	cag	tcc	ggc	tgo	aac	ggc	ggo	aa	c te	: tac	ata	g tg	c aa	c gac	579
	Ası	n Ala	Gln	Ser	Gly	Cys	Asn	Gly	Gly	Ası	ı Sei	Tyr	Met	Cy:	s Ası	n Asp	,
	150					155					160					165	
15	aad	cag	cca	tgg	gct	gtc	aac	gac	aac	ctt	gct	tac	ggt	tto	gc	gcc	627
	Asr	ı Gln	Pro	Trp	Ala	Val	Asn	Asp	Asn	Lev	ı Ala	Tyr	Gly	Phe	e Ala	a Ala	
20					170					175	j				180)	
	gc t	gcc	att	agc	ggc	ggt	ggc	gag	agc	cgo	tgg	tgc	t go	tcc	tgo	ttc	675
	Ala	Ala	He	Ser	Gly	Gly	Gly	Glu	Ser	Årg	Trp	Cys	Cys	Sei	Cys	Phe	
25	•			185					190					195			
	gag	ctc	acc	ttc	acc	tcc	acc	agc	gt t	gct	ggc	aag	aag	atg	gtc	gtc	723
	Glu	Leu	Thr	Phe	Thr	Ser	Thr	Ser	Val	Ala	Gly	Lys	Lys	Met	Val	Val	
30			200					205					210				
		gtc															771
	Gln	Val	Thr	Asn	Thr	Gly		Asp	Leu	Gly	Ser	Ser	Thr	Gly	Ala	His	
35		215					220					225					
		gat															819
40		Asp	Leu	Gln	Met		Gly	Gly	Gly	Val	Gly	Ile	Phe	Asn	Gly	Cys	
	230					235					240					245	
		tcc															867
45	261	Ser	Gin	irp		Ala	Pro	Asn	Asp		Trp	Gly	Ser	Arg	Tyr	Gly	
					250					255					260		
		atc															915
50	Gly	He			Ala	Ser	Asp			Ser	Leu	Pro	Ser	Ala	Leu	Gln	
				265					270					275			
55	gcc	ggc	tgc	aag	tgg	cgc	ttc	aac	tgg	ttc	aag	aac	gcc	gac	aac	ccg	963

Ala Gly Cys Lys Trp Arg Phe Asn Trp Phe Lys Asn Ala Asp Asn Pro 280 290 tcc atg acc tac aag gag gtc acc tgc ccc aag gag atc acc gct aag 1011 Ser Met Thr Tyr Lys Glu Val Thr Cys Pro Lys Glu Ile Thr Ala Lys 295 300 305 10 acc gga tgc tcg cgc aag taa acgcagg atcc 1043 Thr Gly Cys Ser Arg Lys 15 310 (210) 14 <211> 40 <212> PRT <213> Rhizopus oryzae CP96001 25 <400> 14 Ala Glu Cys Ser Lys Leu Tyr Gly Gln Cys Gly Gly Lys Asn Trp Asn 30 1 10 Gly Pro Thr Cys Cys Glu Ser Gly Ser Thr Cys Lys Val Ser Asn Asp 20 25 35 Tyr Tyr Ser Gln Cys Leu Pro Ser 35 40 40 (210) 15 (211) 22 <212> PRT <213> Mucor circinelloides CP99001 ⟨400⟩ 15 Ala Ser Cys Ser Ser Val Tyr Gly Gln Cys Gly Gly Ile Gly Trp Ser 55

1 10 15 Gly Pro Thr Cys Cys Glu 20 <210> 16 10 <211> 23 <212> PRT 15 <213> Phycomyces nitens CP99002 <400> 16 20 Ala Glu Cys Ser Gln Gly Tyr Gly Gln Cys Gly Gly Lys Met Trp Thr 1 5 10 15 Gly Pro Thr Cys Cys Thr Ser 25 20 <210> 17 30 <211> 39 <212> PRT <213> Artificial Sequence 35 <220> <223> Consensus amino acid sequence found in cellulose binding 40 domains of the family 45 endoglucanases 45 <220> <221> Xaa $\langle 222 \rangle$ (1).. (6), (11).. (14), (16).. (18), (20).. (25), (27).. (31), 50 (33).. (34), (36), (39) <223 Xaa is one of all amino acids

<300> (301) Hoffren, A. -M. et al. <303> Protein Engineering ⟨304⟩ 8 10 <306> 443-450 <307> 1995 15 ⟨400⟩ 17 Xaa Xaa Xaa Xaa Xaa Gln Cys Gly Gly Xaa Xaa Xaa Gly Xaa 5 10 15 1 Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Asn 20 25 30 25 Xaa Xaa Tyr Xaa Gln Cys Xaa 35 30 ⟨210⟩ 18 <211> 1257 <212> DNA <213> Humicola insolens <220> <221> intron <222> (453) .. (509) 45 ⟨400⟩ 18 aatgacgggg caacctcccg cccgggccca actcttgggt tiggttlgac aggccgtctg 60 tetetigegt cetettacta egectgeetg gaccetaegt etcaacteeg atteaagatg 120

cgttcctccc ctctcctccg ctccgccgtt gtggccgccc tgccggtgtt ggcccttgcc 180

gotgatggca agiccacccg clactgggac tgctgcaagc cttcgtgcgg ctgggccaag 240 aaggeteeeg tgaaccagee tgtettetee tgcaaegeea acttecageg teteaetgae 300 5 ticgacgcca agtccggctg cgagccgggc ggtgtcgcct actcgtgcgc cgaccagacc 360 ccatgggctg tgaacgacga cttcgcgttc ggttttgctg ccacctctat tgccggcagc 420 aatgaggegg getggtgetg egeetgetae gagtaagett tggtegegtg tgtaacaetg 480 10 tgcaggcata gcactaacca cctcccaggc tcaccttcac atccggtcct gttgctggca 540 agaagatggt cgtccagtcc accagcactg gcggtgatct tggcagcaac cacttcgatc 600 15 tcaacatccc cggcggcggc gtcggcatct tcgacggatg cactccccag ttcggcggtc 660 tgcccggcca gcgctacggc ggcatctcgt cccgcaacga gtgcgatcgg ttccccgacg 720 ccctcaagcc cggctgctac tggcgcttcg actggttcaa gaacgccgac aacccgagct 780 20 tcagcttccg tcaggtccaa tgcccagccg agctcgtcgc tcgcaccgga tgccgccgca 840 acgacgacgg caacttcct gccgtccaga tcccctccag cagcaccagc tctccggtcg 900 gccagcctac cagtaccage accaecteca ectecaceae etegageeeg ecegtecage 960 25 ctacgactee cageggetge actgetgaga ggtgggetea gtgeggegge aatggetgga 1020 geggetgeae cacetgegte getggeagea cetgeaegaa gattaatgae tggtaceate 1080 agtgcctgta aacgcagggc agcctgagaa ccttactggt tgcgcaacga aatgacactc 1140 30 ccaatcactg tattagttct tgtacataat ttcgtcatcc ctccagggat tgtcacatat 1200 atgeaatgat gaatactgaa cacaaacctg geegettgaa etggeegaag gaatgee 1257 35 <210> 19 (211) 1720 40 <212> DNA

<213> Trichoderma viride

<220>

<221> intron

50 (222) (500).. (682)

<400> 19

55

ggtgtgtcat ttctcctcaa catactgcct ttcaacaact ttcgcctcct ccctggcctg 60 atateceaat ateagtitit eccaaagtag caagteatea gtaaatetge teatetatea 120 ttaatcagtg cccatagtgt cigicigttg attgcctccc gccatacacg atgaacagga 180 ccatggctcc attgctgctt gcagcgtcga tactcttcgg gggcgctgct gcacaacaga 240 ctgtctgggg acagtgtgga ggtattggtt ggagcggacc tacgagttgt gctcctggat 300 cagcitigite tacteteaat cettattaig egeaatgeat teegggggee actagtatea 360 ccacctcgac ccgaccccc tcgggtccaa ccaccaccac cagagccacc tcaacgacct 420 catctccgcc accgaccage tetggagite gattigetgg egitaacate gegggettig 480 acticggatg taccacagag tatgictica igitgcatag igitgciggc igagiatici 540 gggcggatga titatagctg tgcgggctgc aaaacaccgc cggtctgcca ctatcaaggc 600 atagttgata ggcggcggtg ttttcttcaa tcccctgatt acactctcaa gaatctagtg 660 gctgatggat gtatgattac agtggcactt gcgttacatc gaaggtttat cctccgttga 720 agaacticac tggggcaaac aactacccgg acggtatcgg ccagatgcag cacticgtca 780 acgatgatgg gatgactatt ttccgcctac ccgtcggatg gcagtacctc gtaaacaaca 840 atotgggtgg aactotogat tocaccagta totogaagta tgatcagoto gttcaggggt 900 gcctgtctct cggtgtatac tgcatcatcg acatccacaa ttatgctcga tggaacggtg 960 gaalcattgg ccagggaggc cctacaaatg cccagtttac cagtctttgg tcgcagttgg 1020 categaagta egegteteag tegagggtgt ggtteggaat aatgaatgag eeccaegaeg 1080 tgaacatcaa cacttgggct gccacggttc aagaggtcgt cactgcaatc cgcaacgccg 1140 gigctacgic gcaatacatt tcictgcctg gaaatgatta tcaatctgcg gcagctttta 1200 titccgatgg cagtgcagcc gccctgtctc aggtaacgaa ccctgatgga tcaacaacga 1260 atctaatctt cgatgtccac aagtacttag actcggacaa ctccggtact cacgccgaat 1320 gcactacaaa caacatcgac ggcgcctttg ctcctctcgc cacttggctt cgacagaaca 1380 accgccagge tattetgacg gaaaccggcg gtggcaatgt teagteetge atecaagatt 1440 tgigccaaca gatccagtac cicaaccaga actcagaigi ciaiciiggc taigciggci 1500 ggggtgccgg ttcatttgat agcacttata ttctgacgga aacgcctact ggaagcggta 1560 actogtggac ggacacatoc ctagttaget egigiciege caggaagtaa cacegaggie 1620 gattgcagga gccttgtcaa tagcgatttc atcttgctgt acataattct tactctctga 1680 agccgcttgt tctgggtatg tgtcttgaca ggtttctaga 1720

10

15

20

25

30

35

40

45

	<210> 20	
5	<211> 20	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
15	<223> Description of Artificial Sequence:Primer	
	<400> 20	
20	caccacgcgc tactgggact	20
25	⟨210⟩ 21	
	<211> 19	
	<212> DNA	
30	<213> Artificial Sequence	
35	<220>	
33	(223) Description of Artificial Sequence:Primer	
40	<400> 21	
	ggatcctgcg titacttgc	19
45	<210> 22	
	(211) 18	
50	<212> DNA	
	<213> Artificial Sequence	

	<220>	
5	<223> Description of Artificial Sequence:Primer	
	<400> 22	
10	ggatcctggg acaagatg	3
15	<210> 23	
	<211> 17	
	<212> DNA	
20	<213> Artificial Sequence	
0.5	<220>	
25	<223> Description of Artificial Sequence:Primer	
	<400> 23	
30	gcacgacggc ttgcagc 17	
	8040440660 1180460	
	<210> 24	
35	<211> 228	
	<212> PRT	
40	<213> Artificial Sequence	
	<220>	
45	<223> Description of Artificial Sequence: Recombinant	
	protein .	
50		
	<400> 24	
	Met Gln Leu Pro Leu Thr Thr Leu Leu Thr Leu Leu Pro Ala Leu Ala	
55	1 5 10 15	

5	Ala	Ala	Gln	Ser 20	Gly	Ser	Gly	Arg	Thr 25	Thr	Arg	Tyr	Trp	Asp 30	Cys	Cys
10	Lys	Pro	Ser 35	Cys	Ser	Trp	Pro	Gly 40	Lys	Ala	Asn	Val	Ser 45	Ser	Pro	Val
15	Lys	Ser 50	Cys	Asn	Lys	Asp	Gly 55	Val	Thr	Ala	Leu	Ser 60		Ser	Asn	Ala
20	Gln 65	Ser	Gly	Cys	Asn	Gly 70	Gly	Asn	Ser	Tyr	Met 75	Cys	Asn	Asp	Asn	G1 n 80
25	Pro	Trp	Ala	Val	Asn 85	Asp	Asn	Leu	Ala	Tyr 90	Gly	Phe	Ala	Ala	Ala 95	Ala
30	Ile	Ser	Gly	Gly 100	Gly	Glu	Ser	Arg	Trp 105	Cys	Cys	Ser	Cys	Phe	Glu	Leu
40	Thr	Phe	Thr 115	Ser	Thr	Ser	Val	Ala 120	Gly	Lys	Lys	Met	Val 125	Val	Gln	Val
45	Thr	Asn 130	Thr	Gly	Gly	Asp	Leu 135	Gly	Ser	Ser	Thr	Gly 140	Ala	His	Phe	Asp
50	Leu 145	Gln	Met	Pro	Gly	Gly 150	Gly	Val	Gly	Ile	Phe 155	Asn	Gly	Cys	Ser	Ser 160
55	Gln	Trp	Gly	Ala	Рго	Asn	Asp	Gly	Trp	Gly	Ser	Arg	Tyr	Gly	Gly	Ile

165

170

175

Ser Ser Ala Ser Asp Cys Ser Ser Leu Pro Ser Ala Leu Gln Ala Gly 180 185 190 10 Cys Lys Trp Arg Phe Asn Trp Phe Lys Asn Ala Asp Asn Pro Ser Met 200 195 205 15 Thr Tyr Lys Glu Val Thr Cys Pro Lys Glu Ile Thr Ala Lys Thr Gly 210 215 220 20 Cys Ser Arg Lys 25 225 30 <210> 25 <211> 20 <212> DNA 35 <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer 45 **<400> 25** gcggatcctg ggacaagatg 20 50 ⟨210⟩ 26 <211> 24 <212> DNA

	<213> Artificial Sequence	
5	<220>	
	<pre><223> Description of Artificial Sequence:Primer</pre>	
0		
	<400> 26	
	gcctgcagag cggcggaggc catc	24
15		
	<210> 27	
20	<211> 25	
.•	<212> DNA	
	<213> Artificial Sequence	
25		
	<220>	
	<223> Description of Artificial Sequence:Primer	
30	Z400N 97	•
	<400> 27	0.5
35	gcctgcaggg aaagtacagc gctgt	25
	<210> 28	
	<211> 21	
40	<212> DNA	
	<213> Artificial Sequence	
45	·	
	<220>	
	<223> Description of Artificial Sequence:Primer	
50		
	<400> 28	
<i></i>	gcggatccig cgittactig c	21

	<21	10> 2	9													
5	<21	11> 2	45													
	<21	2> P	RT													
10	<21	3> A	rtif	icia	l Se	quen	ce									
	<22	<0>														
15	<22	:3> D	escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e:Re	comb	inan	t		
		p	rote	in											,	
20	<40	0> 2	9													
	Met	Lys	Phe	He	Thr	lle	Ala	Ser	Ser	Ala	Leu	Leu	Ala	Leu	Ala	Leu
25	1				5					10					15	
	Gly	Thr	Glu	Met	Ala	Ser	Ala	Ala	Leu	Gln	Gly	Lys	Tyr	Ser	Ala	Val
30				20					25					30		
	Ser	Gly	Gly	Ala	Ser	Gly	Asn	Gly	Val	Thr	Thr	Arg	Туг	Trp	Asp	Cys
35			35					40					45			
40	Cys	Lys	Pro	Ser	Cys	Ser	Trp	Pro	Gly	Lys	Ala	Asn	Val	Ser	Ser	Pro
		50					55					60				
45	Val	Lys	Ser	Cys	Asn	Lys	Asp.	Gly	Val	Thr	Ala	Leu	Ser	Asp	Ser	Asn
	65					70					75					80
50	Ala	Gin	Ser	GIV	Cvs	Asn	Gly	Glv	Asn	Ser	Tur	Met	Cve	4 en	Acn	Aen
					85					90	- 3' -		0,13	ASH	95	noll
55																

	Gl	n Pro	o Trp	Ala	Val	Asn	Asp	Asn	Leu	Ala	Tyr	Gly	/ Pho	e Ala	a Ala	a Ala
5				100					105					110)	
10	Ala	a Ile	Ser 115		Gly	Gly	Glu	Ser 120		Trp	Cys	Cys	Se : 125		Phe	e Glu
15	Lei	130		Thr	Ser	Thr	Ser 135	Val	Ala	Gly	Lys	Lys 140		Val	Val	Gln
20	Va l 145		Asn	Thr	Gly	Gly 150	Asp	Leu	Gly	Ser	Ser 155	Thr	Gly	Ala	His	Phe 160
25	Asp	Leu	Gln	Met	Pro 165	Gly	Gly	Gly	Val	Gly 170	He	Phe	Asn	Gly	Cys 175	Ser
30	Ser	Gln	Trp	Gly 180	Ala	Рго	Asn	Asp	Gly 185	Trp	Gly	Ser	Arg	Tyr 190	Gly	Gly
35 40	Ile	Ser	Ser 195	Ala	Ser	Asp	Cys	Ser 200	Ser	Leu	Рто	Ser	Ala 205	Leu	Gln	Ala
45	Gly	Cys 210	Lys	Trp	Arg	Phe	Asn 215	Trp	Phe	Lys		Ala 220	Asp	Asn	Pro	Ser
50	Met 225	Thr	Tyr	Lys		Val 230	Thr	Cys	Pro		Glu 235	Ile	Thr	Ala		Thr 240
55	Gly	Cys	Ser		Lys 245											

	<210> 30
5	⟨211⟩ 7
	<212> PRT
10	<213> Artificial Sequence
	⟨220⟩
15	<223> Description of Artificial Sequence:N-terminus
	sequence of recombinant protein
20	<400> 30
	Gln Ser Gly Ser Gly Arg Thr
25	1 5
30	<210> 31
	<211> 7
	<212> PRT
35	<213> Artificial Sequence
	⟨220⟩
40	<223> Description of Artificial Sequence:N-terminus
	sequence of recombinant protein
45	
	<400> 31
50	Lys Tyr Ser Ala Val Ser Gly
50 .	1 5

<210> 32 (211) 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:N-terminus 15 sequence of recombinant protein ⟨400⟩ 32 20 Ala Val Ser Gly Gly Ala Ser 25 ⟨210⟩ 33 ⟨211⟩ 7 <212> PRT <213> Artificial Sequence 35 <220> 40 <223> Description of Artificial Sequence:N-terminus sequence of recombinant protein ⟨400⟩ 33 Ser Ala Val Ser Gly Gly Ala 50 1

	<210> 34
5	<211> 7
	<212> PRT
	<213> Artificial Sequence
10	
	<220>
	<223> Description of Artificial Sequence:N-terminus
15	sequence of recombinant protein
20	<400> 34
	Gly Gly Ala Ser Gly Asn Gly
	1 . 5
25	
	<210> 35
30	<211> 7
	<212> PRT
35	<213> Artificial Sequence
	<220>
40	<223> Description of Artificial Sequence:N-terminus
	sequence of recombinant protein
45	<400> 35
	Ala Glu Cys Ser Lys Leu Tyr
50	5
55	<210> 36

```
<211> 20
         <212> DNA
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence:Primer
15
         <400> 36
         taytgggayt gytgyaarcc
                                                                              20
20
         ⟨210⟩ 37
         <211> 20
         <212> DNA
25
         <213> Artificial Sequence
30
         <220>
         <223> Description of Artificial Sequence:Primer
35
        <220>
        <221> modified#base
        ⟨222⟩ (3)
        <223> i
45
        <220>
        <221> modified#base
        (222) (9)
        ⟨223⟩ i
        <400> 37
```

5															
	<210>	38													
10	<211>	223						•							
	<212>	PRT													
	<213>	Humic	ola :	inso	lens										
15															
	<400>	38													
20	Met G	In Leu	Рго	Leu	Thr	Thr	Leu	Leu	Thr	Leu	Leu	Pro	Ala	Leu	Ala
	1			5					10					15	
			_												
25	Ala A	la Gln		Gly	Ser	Gly	Arg		Thr	Arg	Tyr	Trp		Cys	Cys
			20					25					30		
30	Lvs P	ro Ser	Cvs	Ala	Trp	Pro	Glv	Lvs	Glv	Pro	Ala	Pro	Val	4 + 0	Thr
	2,0 .	35	-,0		,		40	2,5	01,			45	141	1115	1111
															•
35	Cys A	sp Arg	Trp	Asp	Asn	Pro	Leu	Phe	Asp	Gly	Gly	Asn	Thr	Arg	Ser
	!	50				55					60				
40															
	Gly C	ys Asp	Ala	Gly	Gly	Gly	Ala	Туг	Met	Cys	Ser	Asp	Gln	Ser	Pro
	65				70					75					80
45															
	Trp A	la Val	Ser		Asp	Leu	Ala	Tyr		Trp	Ala	Ala	Val	Asn	He
50				85					90					95	
	.,			0 1		٥.	_								
	Ala G	ly Ser		Glu	Arg	Gln	Trp		Cys	Ala	Cys	Tyr		Leu	Thr
55			100					105					110		

5	Phe	Thr	Ser 115		Pro	Val	Ala	Gly 120	Lys	Arg	Met	Ιĺε	Val 125		Ala	Ser
10	Asn	Thr 130	Gly	Gly	Asp	Leu	Gly 135	Asn	Asn	His	Phe	Asp 140		Ala	Met	Pro
15	Gly 145	Gly	Gly	Val	Gly	Ile 150	Phe	Asn	Ala	Cys	Thr 155	Asp	Gln	Tyr	Gly	Ala 160
20	Pro	Pro	Asn	Gly	Trp 165	Gly	Gln	Arg	Tyr	Gly 170	Gly	Ile	Ser	Gln	Arg 175	His
25	Glu	Cys	Asp	Ala 180	Phe	Pro	Glu	Lys	Leu 185	Lys	Pro	Gly	Cys	Tyr 190	Trp	Arg
35	Phe	Asp	Trp 195	Phe	Leu	Asn	Ala	Asp 200	Asn	Pro	Ser	Val	Asn 205	Trp	Arg	Gln
40	Val	Ser 210	Cys	Рго	Ala	Glu	11e 215	Val	Ala	Lys	Ser	Gly 220	Cys	Ser	Arg	
45)> 39 > 67														
50		> DN > Hu		ola i	nsol	ens										
55	<400	> 39														

	atgcagetee ecctgace	ac gctcctcacc	ctcctccccg	ccctcgcggc	ggcccagtcc	60
5	ggcagcggcc gcaccacg	cg ctactgggac	tgctgcaagc	cgtcgtgcgc	gtggcccggc	120
3	aagggcccgg cgcccgtg	cg gacgtgcgac	cggtgggaca	acccgctgtt	cgacggcggc	180
	aacacgcgca gcgggtgo	ga cgcgggcggc	ggcgcctaca	tgtgctcgga	ccagagcccg	240
10	tgggcggtca gcgacgac	ct ggcgtacggc	tgggcggccg	tcaacattgc	cggctccaac	300
	gagaggcagt ggtgctgd	gc ctgctacgag	ctgaccttca	ccagcgggcc	ggtggcgggc	360
	aagaggatga tigigcag	gc gagcaacacg	ggaggcgatt	tggggaacaa	ccactttgat	420
15	attgctatgc ccggcggt	gg cgtcggtatc	ttcaacgcct	gcaccgacca	gtacggcgcg	480
	cccccaacg gctgggg	ca gcgctacggc	ggcatcagcc	aacgccacga	gtgcgacgcc	540
20	ttccccgaga agctcaag	cc cggctgctac	tggcgctttg	actggttcct	caacgccgac	600
	aacccgagcg tcaactgg	cg gcaggtcagc	tgcccggccg	agattgtggc	caagagcggc	660
	tgctcgcgit aa					672
25						
	<210> 40					
	<211> 38					
30	<212> DNA					
	<213> Artificial Se	quence		•		
35						
	<220>					
	<223> Description o	f Artificial S	Sequence:Pri	mer		
40						
	<400> 40					
	ggggatcctg ggacaaga	tg cageteece	tgaccacg		;	38
45		·				
	⟨210⟩ 41					

55

50

<211> 38

<212> DNA

<213> Artificial Sequence

	⟨220⟩	
5	<pre><223> Description of Artificial Sequence:Primer</pre>	
	<400> 41	
10	ggggatcctg catttaacgc gagcagccgc tcttggcc	38
	<210> 42	
15	<211> 21	
	. <212> DNA	
20	<213> Artificial Sequence	
	,	
	<220>	
25	<223> Description of Artificial Sequence:Primer	
	(400) 40	
30	<400> 42	
50	gactgctgca agccgtcgtg c	21
	<210> 43	
35	⟨211⟩ 20	
	<212> DNA	
40	<213> Artificial Sequence	
	<220>	
45	<223> Description of Artificial Sequence:Primer	•
	<400> 43	
50	gligcacatg taggagitgc	20

Claims

20

30

35

45

- A protein that is a Zygomycetes-derived endoglucanase lacking the cellulose-binding domain and exhibits endoglucanase activity.
- A protein that is a Zygomycetes-derived endoglucanase belonging to family 45 lacking the cellulose-binding domain and exhibits endoglucanase activity.
- The protein according to claim 1 or 2, wherein the Zygomycetes are microorganisms selected from the group consisting of those belonging to Rhizopus, Mucor, and Phycomyces.
 - 4. The protein according to claim 3, wherein the Zygomycetes are microorganisms belonging to Rhizopus.
- 5. A protein comprising an amino acid sequence as shown in SEQ ID NO: 1, 3, 5, 7, 9, or 11, wherein the cellulose-binding domain has been deleted therefrom, and exhibiting endoglucanase activity, a modified protein thereof exhibiting endoglucanase activity, or a homologue of the protein or the modified protein exhibiting endoglucanase activity.
 - A protein comprising an amino acid sequence as shown in SEQ ID NO: 1, 3, 5, 7, 9, or 11, wherein the cellulosebinding domain has been deleted therefrom, and exhibiting endoglucanase activity.
 - A gene encoding the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6.
- 25 8. An expression vector comprising the gene according to claim 7.
 - 9. A host cell transformed with the expression vector according to claim 8.
 - 10. The host cell according to claim 9, which is a filamentous fungus.
 - 11. The host cell according to claim 10, which is a microorganism belonging to Humicola.
 - 12. A method for producing a protein comprising steps of culturing the host cell according to any one of claims 9 to 11 and collecting from the host cell obtained by the step of culturing or its culture product the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6.
 - 13. A protein produced by the method according to claim 12.
- 14. A cellulase preparation comprising the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6 and 13.
 - 15. A method for treating cellulose-containing fabrics comprising a step of bringing cellulose-containing fabrics into contact with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6 and 13 or the cellulase preparation according to claim 14.
 - 16. A method for reducing the rate at which cellulose-containing fabrics become fuzzy or reducing fuzzing in cellulose-containing fabrics comprising a step of bringing cellulose-containing fabrics into contact with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6 and 13 or the cellulase preparation according to claim 14.
 - 17. A method of weight loss treatment of cellulose-containing fabrics to improve the feel and appearance thereof comprising a step of bringing cellulose-containing fabrics into contact with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6 and 13 or the cellulase preparation according to claim 14.
 - 18. A method of color clarification of colored cellulose-containing fabrics comprising a step of treating colored cellulose-containing fabrics with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6 and 13 or the cellulase preparation according to claim 14.

- 19. A method of providing colored cellulose-containing fabrics with partial color change comprising a step of treating colored cellulose-containing fabrics with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6 and 13 or the cellulase preparation according to claim 14.
- 20. A method for reducing the rate at which cellulose-containing fabrics become stiff or reducing stiffness in cellulose-containing fabrics comprising a step of treating cellulose-containing fabrics with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6 and 13 or the cellulase preparation according to claim 14.
- 21. The method according to any one of claims 15 to 20, wherein fabrics are treated through the soaking, washing, or rinsing thereof.

15

30

35

40

45

50

- 22. An additive to detergent comprising the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6 and 13 or the cellulase preparation according to claim 14 in a non-dusting granular form or a stabilized liquid form.
- 23. A detergent composition comprising the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6 and 13 or the cellulase preparation according to claim 14.
- 20 24. A method of deinking waste paper using a deinking agent wherein the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6 and 13 or the cellulase preparation according to claim 14 is used in a step of deinking waste paper.
- 25. A method for improving drainage of paper pulp comprising a step of treating paper pulp with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6 and 13 or the cellulase preparation according to claim 14.
 - 26. A method for improving digestibility of animal feeds comprising a step of treating animal feeds with the protein, modified protein thereof, or homologue of the protein or the modified protein according to any one of claims 1 to 6 and 13 or the cellulase preparation according to claim 14.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/10188

A. CLASS Int.	FICATION OF SUBJECT MATTER C1 ⁷ C12N 15/56, 1/15, 9/42, C1 C12R 1:845), (C12N 15/56, (C12N 1/15, C12R 1:645), (C12R 1:645), (C12N 15/5	6, Cl2R 1:785),						
According to	According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS	B. FIELDS SEARCHED								
Minimum do Int.	cumentation searched (classification system followed b C1 C12N 15/00-15/90, 9/42	y classification symbols)	·						
	on searched other than minimum documentation to the								
MEDL	ata base consulted during the international search (name INE (STM), WPI (DIALOG), BIOSIS lank/EMBL/DDBJ/GeneSeq, SwissProt	(DIALOG),	rch terms used)						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.						
Y	Y AZEVEDO, H. et al., "Effects of agitation level on the adsorption, desorption, and activities on cotton fabrics of full length and core domains of EGV (Humicola insolens) and CenA (Cellulomonas fimi).", Enzyme Microb. Technol., August, 2000, Vol.27, No.3-5, pages 325 to 329								
Y	WO 00/24879 Al (Meiji Seika Kai 04 May, 2000 (04.05.2000), & AU 9962300 A & EP 112397		1-26						
P,A	WO 01/90375 Al (Meiji Seika Kai 29 November, 2001 (29.11.2001), (Family: none)	sha, Ltd.),	1-26						
A	WO 94/21801 A2 (Genencor Intern 29 September, 1994 (29.09.1994) & FI 9504330 A & US 547510 & EP 689598 A1 & US 575348	,)1 A	1-26						
⊠ Furthe	er documents are listed in the continuation of Box C.	See patent family annex.							
*Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance of the document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot date. "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed. Date of the actual completion of the international search report									
07	February, 2002 (07.02.02)	26 February, 2002 (2							
	mailing address of the ISA/ anese Patent Office	Authorized officer							
Facsimile N	lo.	Telephone No.							

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP01/10188

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	TAKASHIMA, S. et al., "Comparison of gene structures and enzymatic properties between two endoglucanases from Humicolagrisea", J. Biotechnol., (1999), Vol.67, No.2-3, pages 85 to 97	1-26
		•
•		
	,	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)