Intervals, Transformations, and Slope Solution (version 88)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-10, -6) \cup (3, 7)$
Negative	$(-6,3) \cup (7,10)$
Increasing	$(-10, -7) \cup (-5, 6)$
Decreasing	$(-7, -5) \cup (6, 10)$
Domain	(-10, 10)
Range	(-9,8)

Intervals, Transformations, and Slope Solution (version 88)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=17$ and $x_2=27$. Express your answer as a reduced fraction.

$$\frac{g(27) - g(17)}{27 - 17} = \frac{83 - 71}{27 - 17} = \frac{12}{10}$$

The greatest common factor of 12 and 10 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{6}{5}$$

2