

PRESENTATION 2

BY VITALI BESTOLKAU AND IGNAS APSEGA

TABLE OF CONTENTS

- 1. What is DAO?
- 2. Overview of DAOs
- 3. DAO APPLICABILITY WITH GDPR
- 4. COMMON PRIVACY PROBLEMS IN DAOS
- 5. Summary of DAOs
- 6. Zero Knowledge Proofs
- 7. ZKP Types
- 8. Protocols
- 9. Protocol Comparison
- 10. Implementation
- 11. Implementation Justification
- 12. ZKP Summary
- 13. Q and A

WHAT IS A DAO?

A decentralized autonomous organization (DAO) - is an emerging form of legal structure with no central governing body and whose members share a common goal to act in the entity's best interest.

Source:

https://ecryptobulls.com/en/what-is-dao/

OVERVIEW OF DAOS

Source: https://ecryptobulls.com/en/what-is-dao/

COMMON CHALLENGES OF DAOS

DAO users are
pseudonymous using a fictitious
name

Policy-based challenges:

- Smart contracts
- Legality
- Privacy

Technical challenges:

- Security
- Networking
- Scalability

LEGAL PROBLEMS

DAO APPLICABILITY WITH GDPR

COMMON PRIVACY PROBLEMS IN DAOS

Page 05 of 15

DAO stakeholders are vulnerable to off-chain coercion.

The limited talent pool for hiring

Source

https://study.com/learn/lesson/coercion-overview-

Source:

https://medium.com/hr-blog-resources/talenthow-

DAOs risk
disincentivizing
innovation and
experimentation by
their developers

https://www.cio.com/article/236607/how-it-leaders-

POSSIBLE SOLUTIONS

BLOCKCHAIN-BASED REPORTING PROTOCOLS (BBRP)

 Used only for hiding reporting users who are detecting misbehaving nodes

DECENTRALIZED IDENTITIES

Could be used to identify the malicious person

ZERO-KNOWLEDGE PROOFS (ZKP)

Hides all the transactions on the blockchain:

- Private fundraising in DAOs
- Private issue of DAO assets (tokens or equivalent)
- Private management of DAO treasury

DAOS SUMMARY

- Around 4800 of DAOs and 700k active participants and still growing
- DAOs have to be aware of compliance with GDPR
- Privacy is expanding problem of DAOs
- Zero Knowledge Proofs looks like the most promising and sophisticated solution to the privacy problems

ZERO KNOWLEDGE PROOFS

ZKP TYPES (RECAP)

INTERACTIVE ZKP

NON-INTERACTIVE ZKP

Advantages

Easy to execute

- Scalable
- Transferable

Disadvantages

- Limited Transferability
- Not scalable

 Requires a lot of computational power

PROTOCOLS

Succinct Non-interactive ARgument of Knowledge **ZK-SNARKS ZCASH**

"Short like a bullet, with bulletproof security assumptions" **BULLETPROOFS MONERO**

Scalable Transparent ARgument of Knowledge **ZK-STARKS STARKWARE**

Page 11 of 15

byont

PROTOCOL COMPARISON

Comparison of the most	popular zkp systems		
	SNARKs	STARKs	Bulletproofs
Algorithmic complexity: prover	O(N * log(N))	O(N * poly-log(N))	O(N * log(N))
Algorithmic complexity: verifier	~O(1)	O(poly-log(N))	O(N)
Communication complexity (proof size)	~O(1)	O(poly-log(N))	O(log(N)
- size estimate for 1 TX	Tx: 200 bytes, Key: 50 MB	45 kB	1.5 kk
- size estimate for 10.000 TX	Tx: 200 bytes, Key: 500 GB	135 kb	2.5 kb
Ethereum/EVM verification gas cost	~600k (Groth16)	~2.5M (estimate, no impl.)	N/A
Trusted setup required?	YES ڃ	NO 😄	NO 😄
Post-quantum secure	NO 😒	YES 😄	NO 😟
Crypto assumptions	DLP + secure bilinear pairing 😔	Collision resistant hashes 😄	Discrete log

Source:

https://github.com/matter-labs/awesomezero-knowledge-proofs#comparison-of-themost-popular-zkp-systems

Source:

https://hackernoon.com/zero-knowledgeproofs-the-simplest-explanation-on-theinternet-yf6g37nq

IMPLEMENTATION

ZK-SNARKS

BULLETPROOFS

ZK-STARKS

GROTH16

HALO (2)

AURORA

PLONK

BULLETPROOFS

VIRGO

(SUPER) SONIC

ZK-STARKS

ZILCH

Page 13 of 15

byant IMPLEMENTATION JUSTIFICATION

Zero-knowledge proof (ZKP) systems								
ZKP System	Publication year	Protocol	Transparent	Universal	Plausibly Post-Quantum Secure	Programming Paradigm		
Pinocchio ^[32]	2013	zk-SNARK	No	No	No	Procedural		
Geppetto ^[33]	2015	zk-SNARK	No	No	No	Procedural		
TinyRAM ^[34]	2013	zk-SNARK	No	No	No	Procedural		
Buffet ^[35]	2015	zk-SNARK	No	No	No	Procedural		
ZoKrates ^[36]	2018	zk-SNARK	No	No	No	Procedural		
xJsnark ^[37]	2018	zk-SNARK	No	No	No	Procedural		
vRAM ^[38]	2018	zk-SNARG	No	Yes	No	Assembly		
vnTinyRAM ^[39]	2014	zk-SNARK	No	Yes	No	Procedural		
MIRAGE ^[40]	2020	zk-SNARK	No	Yes	No	Arithmetic Circuits		
Sonic ^[41]	2019	zk-SNARK	No	Yes	No	Arithmetic Circuits		
Marlin ^[42]	2020	zk-SNARK	No	Yes	No	Arithmetic Circuits		
PLONK ^[43]	2019	zk-SNARK	No	Yes	No	Arithmetic Circuits		
SuperSonic ^[44]	2020	zk-SNARK	Yes	Yes	No	Arithmetic Circuits		
Bulletproofs ^[45]	2018	Bulletproofs	Yes	Yes	No	Arithmetic Circuits		
Hyrax ^[46]	2018	zk-SNARK	Yes	Yes	No	Arithmetic Circuits		
Halo ^[47]	2019	zk-SNARK	Yes	Yes	No	Arithmetic Circuits		
Virgo ^[48]	2020	zk-SNARK	Yes	Yes	Yes	Arithmetic Circuits		
Ligero ^[49]	2017	zk-SNARK	Yes	Yes	Yes	Arithmetic Circuits		
Aurora ^[50]	2019	zk-SNARK	Yes	Yes	Yes	Arithmetic Circuits		
zk-STARK ^[51]	2019	zk-STARK	Yes	Yes	Yes	Assembly		
Zilch ^{[31][52]}	2021	zk-STARK	Yes	Yes	Yes	Object-Oriented		

Source:

https://en.wikipedia.org/wiki/Zero-knowledge_proof#Zero-Knowledge_Proof_protocols

Implementations Comparison Table									
	Proof size	Trustless	Scalable	Universal	Verification time	Languages for implementation			
Groth16	0.2 kB	No	No	No	10 <u>ms</u>	Rust			
PLONK	0.5 - 1 kB	No	Yes	Yes	~10 <u>ms</u>	Rust			
Halo 2	3.5 kB	Yes	Yes	Yes		Rust			
SuperSonic	10 kB	Yes	Yes	Yes	100 ms				
Bulletproofs	1 - 1.5 kB	Yes (?)	Yes	Yes		Rust			

Source:

ZKP SUMMARY

- SNARKs: fast, cheap, usually rely on a trusted setup.
- Bulletproofs: have moderate proof-size, verification time, are believed not to rely on a trusted setup, but use MPC.
- STARKs: relatively fast, post-quantum secure, too big proof size for blockchain.
- A lot of ZKP implementations, but most suitable for our case: Halo 2, SuperSonic and Bulletproofs.

Q & A