Assignment 3 Report - KNN and Decision Trees

Helena Bales and Natalie Suderman

 $\mathrm{CS}343$ - Spring 2017

 $May\ 21,\ 2017$

Contents

1	Non-Hierarchical Clustering Implementing K-means algorithm		2
	1.1	Implementing K-means with K of 2	2
	1.2	Apply K means to different values of K \dots	2
2 Decision Tree		2	
	2.1	Implementing Top-Down Greedy Induction for Learning Decision Tree	2

1 Non-Hierarchical Clustering Implementing Kmeans algorithm

1.1 Implementing K-means with K of 2

The results of typical run of the kmeans algorithm when k is 2. I plotted multiple runs to show the trend.

Figure 1: A typical run. SSE of Kmeans with k of 2 over number of iterations.

1.2 Apply K means to different values of K

The algorithm was tested by using different values of K (3, 4, 10, etc) and the minimum SSE from 10 runs for each K was plotted to demonstrate a trend in the size of the SSE vs number of K.

Figure 2: Min SSE found over 10 runs of the algorithm for each k tested.

2 Hierarchical Agglomerative Clustering

- 2.1 Compute HAC Using Single Link
- 2.2 Compute HAC Using Complete Link