What is claimed is:

1	1. A method for managing information, comprising:
2	modeling a first plurality of information entities, including a first entity
3	and a second entity, using a first logical model;
4	converting said logical model into a first derived subject model;
5	converting said first derived subject model into a first physical model; and
6	mapping at least one relationship between said first entity and said second
7	entity of said first plurality of information entities based upon said first physical model.
1	2. The method of claim 1, said first logical model comprising at least
2	one of a central concept entity, a static attribute entity, a dynamic attribute entity, an
3	activities/events entity.
1	3. The method of claim 1, said first derived subject model comprising
2	at least one of a core component, and at least one of a plurality of customized group
3	components.
1	4. The method of claim 1, further comprising:
2	analyzing said first plurality of information entities using applications
3	based upon input of said first logical model.
	,
1	5. The method of claim 4, said applications comprising at least one of
2	statistics, a report generator, an On Line Analytical Processing (OLAP) package, and a
3	data mining application.
1	6. The method of claim 1, mapping at least one relationship between
2	said first entity and said second entity of said first plurality of information entities based
3	upon said first physical model comprises:
4	creating metadata information for said models; and
5	saving said metadata information in a repository.
1	7. The method of claim 1, further comprising:
2	modeling a second plurality of information entities, including a first entity
3	and a second entity, using a second logical model;
4	converting said second logical model into a second derived subject model;

5	5 converting said second derived subject mode	l into a second physical
6	6 model; and	
7	• • •	
8	8 entity of said second plurality of information entities based	upon said second physical
9	9 model.	
1	1 8. The method of claim 7, further compa	risino:
1		
2		
3	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4		
.5		second pluranty of
6	6 information entities.	
1	1 9. A system for managing data, compris	sing:
2	2 a computer;	
3	an information store, operable to contain sai	d data;
4	a database interface software process that m	aintains said data in said
5	5 information store;	
6	6 a metadata repository;	
7	7 a query/command generator software proces	ss that provides access to said
8	8 data;	
9	9 a repository interface software process that	provides access to said
10	10 metadata;	
11	a scheduler software process; and	
12	a user interface software process that control	ols input to and output from
13	said metadata repository, said database interface software p	process, said query/command
14	generator software process, and said scheduler.	
1	1 10. A computer program product for ma	anaging information, said
2		
3		ation entities, including a first
4		
5		first derived subject model;
6		
7		

8	code that maps at least one relationship among said first entity and said		
9	second entity of said first plurality of information entities based upon said first physical		
10	model; and		
11	a computer readable storage medium for holding the codes.		
1	11. The computer program product of claim 10, said first logical model		
2	comprising at least one of a central concept entity, a static attribute entity, a dynamic		
3	attribute entity, an activities/events entity.		
1	12. The computer program product of claim 10, said first derived		
2	subject model comprising at least one of a core component, and at least one of a plurality		
3	of customized group components.		
1	13. The computer program product of claim 10 further comprising:		
2	code that analyzes said first plurality of information entities using		
3	applications based upon input of said first logical model.		
1	14. The commutes are grown and dust of claims 12 coid condigations		
1	14. The computer program product of claim 13, said applications		
2	comprising at least one of statistics, a report generator, an On Line Analytical Processing		
3	(OLAP) package, and a data mining application.		
1	15. The computer program product of claim 10, wherein said code that		
2	maps at least one relationship between said first entity and said second entity of said first		
3	plurality of information entities based upon said first physical model comprises:		
4	code that creates metadata information for said models; and		
5	code that saves said metadata information in a repository.		
1	16. The computer program product of claim 10, further comprising:		
2	code that models a second plurality of information entities, including a		
3	first entity and a second entity, using a second logical model;		
4	code that converts said second logical model into a second derived subject		
5	model;		
6	code that converts said second derived subject model into a second		
7	physical model: and		

8	(code th	nat maps at least one relationship among said first entity and said
9	second entity of said second plurality of information entities based upon said second		
0	physical model	•	
1		17.	The computer program of claim 16, further comprising:
2	,	code tl	hat analyzes said first plurality of information entities and said
3	second plurality	y of in	formation entities using applications based upon input from said first
4	logical model a	nd sai	d second logical model, said applications deriving new relationships
5	between said fi	rst plu	rality of information entities and said second plurality of
6	information en	tities.	
1		18.	A computer memory, having stored thereon data, said data
2	comprising:		
3		a first	central concept entity;
4		a first	static attribute entity;
5		a first	dynamic attribute entity; and
6		a first	activities/events entity, wherein said first central concept entity, said
7	first static attri	bute ei	ntity, said first dynamic attribute entity, and said first
8	activities/even	ts entit	ty are related by a first subject model.
1		19.	The computer memory of claim 18, said data further comprising:
2		a seco	ond central concept entity;
.3		a seco	ond static attribute entity;
4		a seco	ond dynamic attribute entity; and
5			and activities/events entity, wherein said second central concept
6	-		atic attribute entity, said second dynamic attribute entity, and said
7	second activiti	es/eve	ents entity are related by a second subject model.
1		20.	An apparatus for managing information, comprising:
2		a proc	cessor; and
3		a mer	• •
4			ein said processor is operative to model a first plurality of information
5			first entity and a second entity, using a first logical model; said
6			operative to convert said logical model into a first derived subject
7	model; and to	conve	rt said first derived subject model into a first physical model; and

8	thereupon to map at least one relationship between said first entity and said second entity		
9	of said first plurality of information entities based upon said first physical model; wherein		
10	said first entity and said second entity are stored in said memory.		
1	21. The apparatus of claim 20, said first logical model comprising at		
2	least one of a central concept entity, a static attribute entity, a dynamic attribute entity, an		
3	activities/events entity.		
1	22. The apparatus of claim 20, said first derived subject model		
2	comprising at least one of a core component, and at least one of a plurality of customized		
3	group components.		
1	23. The apparatus of claim 20, wherein said processor is further		
2	operative to analyze said first plurality of information entities using applications based		
3	upon input of said first logical model.		
1	24. The apparatus of claim 23, said applications comprising at least		
2	one of statistics, a report generator, an On Line Analytical Processing (OLAP) package,		
3	and a data mining application.		
1	25. The apparatus of claim 20, wherein said processor is operative to:		
2	create metadata information for said models; and		
3	save said metadata information in a repository when said processor maps		
4	at least one relationship between said first entity and said second entity of said first		
5	plurality of information entities based upon said first physical model.		
1	26. The apparatus of claim 20, wherein said processor is further		
2	operative to:		
3	model a second plurality of information entities, including a first entity and		
4	a second entity, using a second logical model;		
5	convert said second logical model into a second derived subject model;		
6	convert said second derived subject model into a second physical model;		
7	and		
8	map at least one relationship among said first entity and said second entity		
9	of said second plurality of information entities based upon said second physical model.		

1	27. The apparatus of claim 26, wherein said processor is further		
2	operative to:		
3	analyze said first plurality of information entities and said second plural		
4	of information entities using applications based upon input from said first logical model		
5	and said second logical model, said applications deriving new relationships between said		
6	first plurality of information entities and said second plurality of information entities.		
1	28. A client apparatus, comprising:		
2	a processor;		
3	a memory; and		
4	a display; wherein said processor causes said display to:		
5	display a first logical model, said first logical model modeling a first		
6	plurality of information entities, including a first entity and a second entity;		
7	display a first derived subject model, said first derived subject model		
8	obtained from said logical model;		
9	display a first physical model, said first physical model obtained from sa		
0	first derived subject model; wherein at least one relationship between said first entity and		
1	said second entity of said first plurality of information entities exists based upon said first		
12	physical model.		
1	29. The apparatus of claim 28, said first logical model comprising at		
2	least one of a central concept entity, a static attribute entity, a dynamic attribute entity,		
3	activities/events entity.		
1	30. The apparatus of claim 28, said first derived subject model		
2	comprising at least one of a core component, and at least one of a plurality of customiz		
3	group components.		
1	31. The apparatus of claim 28, wherein said processor is further		
2	operative to display a result obtained from analyzing said first plurality of information		
3	entities using applications based upon input of said first logical model.		
1	32. The apparatus of claim 31, said applications comprising at least		
2	one of statistics, a report generator, an On Line Analytical Processing (OLAP) package		
3	and a data mining application.		

1	33. The apparatus of claim 28, wherein said processor is operative to:
2	display a result obtained from creating metadata information for said
3	models; and saving said metadata information in a repository when said processor maps
4	at least one relationship between said first entity and said second entity of said first
5	plurality of information entities based upon said first physical model.
1	34. The apparatus of claim 28, wherein said processor is further
2	operative to:
3	display a second logical model, said second logical model modeling a
4	second plurality of information entities, including a first entity and a second entity;
5	display a second derived subject model obtained from said second logical
6	model;
7	display a second physical model obtained from said second derived subject
8	model;
9	wherein at least one relationship among said first entity and said second
10	entity of said second plurality of information entities exists based upon said second
11	physical model.
1	35. The apparatus of claim 34, wherein said processor is further
2	operative to:
3	display a result obtained from analyzing said first plurality of information
4	entities and said second plurality of information entities using applications based upon
5	input from said first logical model and said second logical model, said applications
6	deriving new relationships between said first plurality of information entities and said
7	second plurality of information entities.
1	36. A method for managing information, comprising:
2	modeling a first plurality of information entities, including a first entity
3	and a second entity, using a first logical model;
4	converting said logical model into a first physical model; and
5	mapping at least one relationship between said first entity and said second
6	entity of said first plurality of information entities based upon said first physical model.

1	37. The method of claim 36, said first logical model comprising at least		
2	one of a central concept entity, a static attribute entity, a dynamic attribute entity, an		
3	activities/events entity.		
1	20 The western for their 20 forther commissions.		
1	38. The method of claim 36, further comprising:		
2	analyzing said first plurality of information entities using applications		
3	based upon input of said first logical model.		
1	39. The method of claim 38, said applications comprising at least one		
2	of statistics, a report generator, an On Line Analytical Processing (OLAP) package, and a		
3	data mining application.		
1	40. The apparatus of claim 36, wherein mapping at least one		
1	••		
2	relationship between said first entity and said second entity of said first plurality of		
3	information entities based upon said first physical model comprises:		
4	creating metadata information for said models; and		
5	saving said metadata information in a repository when said processor.		
1	41. The method of claim 36, further comprising:		
2	modeling a second plurality of information entities, including a first entity		
3	and a second entity, using a second logical model;		
4	converting said second logical model into a second physical model; and		
5	mapping at least one relationship among said first entity and said second		
6	entity of said second plurality of information entities based upon said second physical		
7	model.		
1	42. The method of claim 41, further comprising:		
1			
2	analyzing said first plurality of information entities and said second		
3	plurality of information entities using applications based upon input from said first logical		
4	model and said second logical model, said applications deriving new relationships		
5	between said first plurality of information entities and said second plurality of		
6	information entities.		
1	43. A computer program product for managing information, said		
2	computer program product comprising:		

3	code that models a first plurality of information entities, including a first		
4	entity and a second entity, using a first logical model;		
5	code that converts said logical model into a first physical model;		
6	code that maps at least one relationship among said first entity and said		
7	second entity of said first plurality of information entities based upon said first physical		
8	model; and		
9	a computer readable storage medium for holding the codes.		
1	44. An apparatus for managing information, comprising:		
2	a processor; and		
3	a memory;		
4	wherein said processor is operative to model a first plurality of information		
5	entities, including a first entity and a second entity, using a first logical model; said		
6	processor is further operative to convert said logical model into a first physical model;		
7	and thereupon to map at least one relationship between said first entity and said second		
8	entity of said first plurality of information entities based upon said first physical model;		
9	wherein said first entity and said second entity are stored in said memory.		
1	45. A client apparatus, comprising:		
2	a processor;		
3	a memory; and		
4	a display; wherein said processor causes said display to:		
5	display a first logical model, said first logical model modeling a first		
6	plurality of information entities, including a first entity and a second entity;		
7	display a first physical model, said first physical model obtained from said		
8	first logical model; wherein at least one relationship between said first entity and said		
9	second entity of said first plurality of information entities exists based upon said first		
10	physical model.		
1	46. A method for analyzing information, comprising:		
2	retrieving metadata information from a repository;		
3	creating at least one of a plurality of commands based upon said metadata		
4	information;		
5	sending said at least one of a plurality of commands to a database;		

6	providing information received from said database responsive to said at		
7	least one of a plurality of commands to at least one of a plurality of applications; and		
8	creating at least one of a plurality of reports from a result of said at least		
9	one of a plurality of applications.		
1	47. The method of claim 46, wherein said metadata information		
2	comprises at least one of a model, a mapping, a derived attributes definition, and a		
3	profiling definition.		
1	48. A computer program product for analyzing information,		
2	comprising:		
3	code that retrieves metadata information from a repository;		
4	code that creates at least one of a plurality of commands based upon said		
5	metadata information;		
6	code sends said at least one of a plurality of commands to a database;		
7	code that provides information received from said database responsive to		
8	said at least one of a plurality of commands to at least one of a plurality of applications;		
9	code that creates at least one of a plurality of reports from a result of said		
10	at least one of a plurality of applications; and		
11	a computer readable storage medium for storing the codes.		
1	49. An apparatus for analyzing information, comprising:		
2	a processor; and		
3	a memory;		
4	wherein said processor is operative to retrieve metadata information from a		
5	repository; create at least one of a plurality of commands based upon said metadata		
6	information; send said at least one of a plurality of commands to a database; provide		
7	information received from said database responsive to said at least one of a plurality of		
8	commands to at least one of a plurality of applications; and create at least one of a		
9	plurality of reports from a result of said at least one of a plurality of applications.		
1	50. A client apparatus, comprising:		
2	a processor;		
3	a memory; and		

- a display; wherein said processor causes said display to display at least one
- of a plurality of reports from a result of at least one of a plurality of applications acting
- 6 upon information received from a database responsive to at least one of a plurality of
- 7 commands created based upon a metadata information retrieved from a repository.