

UNIVERSITÉ PARIS - CERGY

CY Tech. Département Mathématiques

Option INGÉNIERIE FINANCIÈRE. Option ACTUARIAT.

MODEL CALIBRATION AND SIMULATION

TP1Calibration de volatilité implicite dans le modèle de Black et Scholes. Smile de volatilité

Partie I

 $\sigma^{implicite}(K,T)$ est une volatilité qui introduite dans la formule de BS donne comme prix celui du Call observé sur le marché.

Calibrer signifie de trouver $\sigma^{implicite}$ telle que

$$V^{BS}(S_0, t_0; K_i, T_i, r, \sigma^{implicite}) = V_i^{marche}(T_i, K_i)$$

A chaque couple (T_i, K_i) correspond une volatilité implicite $\sigma_i^{implicite}$ Pour calculer $\sigma_i^{implicite}$ on applique l'algorithme de Newton: on cherche le zero d'une fonction

$$F = V^{BS}(T_i, K_i, \sigma_i^{implicite}) - V_i^{marche}(T_i, K_i)$$

On simplifie les notations:

$$F(\sigma) = V^{BS}(\sigma) - V^{marche}$$

 $V^{BS}(\sigma)$ est le prix le l'option Call en t=0.

$$V^{BS}(S_0, 0) = S_0 N(d_1(S_0, 0)) - Ke^{-rT} N(d_2(S_0, 0))$$

$$d_1(S_0, 0) = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}} \qquad d_2(S_0, 0) = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}}$$

L'algorithme de Newton est iteratif:

$$\sigma_{n+1} = \sigma_n - \frac{F(\sigma_n)}{F'(\sigma_n)}$$

$$F'(\sigma) = \frac{\partial V^{BS}}{\partial \sigma} = S_0 \sqrt{\frac{T}{2\pi}} e^{\frac{-d_1^2}{2}}$$

Avant de commencer le calcul, vérifiez que le prix tombe bien dans lintervalle défini par les contraintes d'arbitrage:

$$max(S_0 - Ke^{-rT}, 0) < V^{marche} < S_0.$$

Pour le point du départ utiliser

$$\sigma_0 = \sqrt{2\left|\frac{\ln(S_0/K) + rT}{T}\right|}$$

Pour chaque strike K_i calculer la volatilité implicite $\sigma_i^{implicite}$.

Utiliser les donnes pour les options cotées en London Internetional Financial Futures and Option Exchange (LIFFE) le 22 Aout 2001.

i	1	2	3	4	5	6	7	8
Strike K_i	5125	5225	5325	5425	5525	5625	5725	5825
Prix d'option	475	405	340	280.5	226	179.5	139	105

Utiliser aussi

$$S_0 = 5430.3, \quad T = 4/12, \quad r = 0.05$$