NSR Search Results Page 1 of 4

Visit the **Isotope Explorer** home page!

22 reference(s) found:

Keynumber: 1999ZHZM

Reference: INDC(CPR)-049/L, p.76 (1999)

Authors: C.Zhou

Title: Prompt γ-Ray Data Evaluation of Thermal-Neutron Capture for $A = 1 \vartheta 25$

Keyword abstract: NUCLEAR REACTIONS ¹, ²H, ⁶, ⁷Li, ⁹Be, ¹², ¹³C, ¹⁴N, ¹⁶, ¹⁷O, ¹⁹F, ²⁰, ²¹,

²²Ne, ²³Na, ²⁴, ²⁵Mg(n,γ),E=thermal; compiled, evaluated prompt γ-ray data.

Keynumber: 1999HE33

Reference: Phys.Rev. C60, 064614 (1999)

Authors: H.Herndl, R.Hofinger, J.Jank, H.Oberhummer, J.Gorres, M.Wiescher, F.-K.Thielemann,

B.A.Brown

Title: Reaction Rates for Neutron Capture Reactions to C, N, and O Isotopes to the Neutron Rich Side

of Stability

Keyword abstract: NUCLEAR REACTIONS ¹³, ¹⁴, ¹⁵, ¹⁶C, ¹⁵, ¹⁶, ¹⁷, ¹⁸N, ¹⁸, ¹⁹, ²⁰, ²¹O (n,γ) , E=stellar; analyzed data; deduced capture rates. Comparison with previous results.

Keynumber: 1997SH29

Reference: Nucl.Phys. A621, 231c (1997)

Authors: T.Shima, F.Okazaki, T.Kikuchi, T.Kobayashi, T.Kii, T.Baba, Y.Nagai, M.Igashira

Title: Measurement of the ${}^{13}C(n,\gamma){}^{14}C$ Cross Section at Stellar Energies

Keyword abstract: NUCLEAR REACTIONS ¹³C(n,γ),E=10-87 keV; measured Eγ,Ιγ; deduced

 σ , deviations from 1/v law.

Keynumber: 1993NAZU

Reference: Proc.2nd Intern.Symposium on Nuclear Astrophysics, Nuclei in the Cosmos, Karlsruhe, Germany, 6-10 July, 1992, F.Kappeler, K.Wisshak, Eds., IOP Publishing Ltd., Bristol, England, p.215 (1993)

Authors: Y.Nagai, T.Shima, K.Takeda, T.Ohsaki, T.Irie, S.Seino, M.Igashira, H.Kitazawa, S.Shibata,

K.Tanaka, T.Fukuda

Title: Neutron Capture Rates of Light Nuclei and Stellar Evolution

Keyword abstract: NUCLEAR REACTIONS 12 , 13 C(n, γ),E=10-250 keV; measured E γ , σ , reaction rates. Role of neutron capture reactions discussed.

Keynumber: 1992JUZZ

Reference: Bull.Am.Phys.Soc. 37, No.2, 902, C8 3 (1992) Authors: E.T.Jurney, J.W.Starner, J.E.Lynn, S.Raman

Title: Check of the Smith and Wapstra Mass Doublet Measurements

Keyword abstract: NUCLEAR REACTIONS ¹², ¹³C, ¹⁴N(n,γ),E=reactor; measured not given. ¹³, ¹⁴C,

¹⁵N deduced neutron separation energies. Capture γ-spectroscopy. Comparison with Wapstra predictions.

Keynumber: <u>1990RA03</u>

Reference: Phys.Rev. C41, 458 (1990)

Authors: S.Raman, M.Igashira, Y.Dozono, H.Kitazawa, M.Mizumoto, J.E.Lynn

Title: Valence Capture Mechanism in Resonance Neutron Capture by ¹³C

NSR Search Results Page 2 of 4

Keyword abstract: NUCLEAR REACTIONS 13 C(n,γ),E=resonance; measured Eγ,Iγ. 14 C levels deduced partial,total Γγ. Valence capture mechanism.

Keynumber: 1988RA10

Reference: J.Phys.(London) G14, Supplement S223 (1988)

Authors: S.Raman, S.Kahane, J.E.Lynn **Title:** Direct Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹², ¹³C, ²⁴, ²⁵, ²⁶Mg, ³², ³⁴, ³³S, ⁴⁰, ⁴⁴Ca

 (n,γ) , E=slow; calculated capture σ .

Keynumber: 1987LYZY

Reference: ORNL-6326, p.62 (1987) **Authors:** J.E.Lynn, S.Kahane, S.Raman

Title: Analysis of Slow Neutron Capture by ⁹Be, ¹²C, and ¹³C

Keyword abstract: NUCLEAR REACTIONS ¹², ¹³C, ⁹Be(n,γ),E=slow; analyzed data; deduced model

parameters, capture mechanism.

Keynumber: 1987LY01

Reference: Phys.Rev. C35, 26 (1987) **Authors:** J.E.Lynn, S.Kahane, S.Raman

Title: Analysis of Slow Neutron Capture by ⁹Be, ¹²C, and ¹³C

Keyword abstract: NUCLEAR REACTIONS 9 Be, 12 , 13 C(n, γ),E=thermal; calculated capture σ .

Optical model, Lane-Lynn-Raman method.

Keynumber: 1987HO23

Reference: Chin.J.Nucl.Phys. 9, 133 (1987)

Authors: Ho Yukun

Title: E2 and E1 Radiative Neutron Valence Width and Effective Charge in ¹³C

Keyword abstract: NUCLEAR REACTIONS 13 C(n, γ),E=0.1529 MeV; calculated valence widths.

Resonance valence capture model, effective charge.

Keynumber: <u>1985WR01</u>

Reference: Phys.Rev. C31, 1125 (1985)

Authors: M.C.Wright, H.Kitazawa, N.R.Roberson, H.R.Weller, M.Jensen, D.R.Tilley

Title: Polarized Neutron Capture on ¹³C

Keyword abstract: NUCLEAR REACTIONS ¹³C(polarized n, γ),E=5.6-17 MeV; measured $\sigma(\theta=90^{\circ})$

vs E,Eγ,Iγ,analyzing power vs E. ¹⁴C deduced narrow M1 resonances. Direct-semidirect

model, isovector dipole, isoscalar electric quadrupole components.

Variable 1005V

Keynumber: 1985WE06

Reference: Nucl.Phys. A439, 13 (1985) **Authors:** W.-M.Wendler, M.Micklinghoff

Title: Fast Neutron Capture by ¹³C

Keyword abstract: NUCLEAR REACTIONS 13 C(n, γ),E(cm) <15 MeV; calculated σ (E), σ (θ) vs E.

¹⁴C deduced levels. Perturbative continuum treatment.

Keynumber: 1985LAZX

Reference: Phys.Can. 41, No.3, 34, p.E1 (1985)

NSR Search Results Page 3 of 4

Authors: J.R.C.Lafontaine, J.W.Jury, J.Beland, N.R.Roberson, D.R.Tilley, H.R.Weller, J.G.Woodworth

Title: Radiative Neutron Capture Reactions on ¹²C, ¹³C and ¹⁴N

Keyword abstract: NUCLEAR REACTIONS ¹², ¹³C, ¹⁴N(n, γ),E not given; measured $\sigma(\theta)$.

Keynumber: 1984WRZZ

Reference: Diss.Abst.Int. 44B, 2472 (1984)

Authors: M.C.Wright

Title: Neutron Capture in the Giant Dipole Resonance Region of ¹⁴C

Keyword abstract: NUCLEAR REACTIONS 13 C(n, γ), (polarized n, γ),E=5.6-17 MeV; measured σ

 (θ) analyzing power vs θ . ¹⁴C deduced GDR fragmentation narrow M1 resonance evidence.

Keynumber: 1983WRZZ

Reference: Bull.Am.Phys.Soc. 28, No.4, 650, AG1 (1983)

Authors: M.C.Wright, H.Kitazawa, N.R.Roberson, H.R.Weller, M.J.Jensen, D.R.Tilley

Title: The 13 C(n(pol), γ_0) 14 C Reaction

Keyword abstract: NUCLEAR REACTIONS 13 C(polarized n, γ),E=7.75-17 MeV; measured σ

 (θ) , analyzing power vs θ , asymmetry. ¹⁴C deduced M1 resonances.

Keynumber: 1982MU14

Reference: Phys.Rev. C26, 2698 (1982)

Authors: S.F.Mughabghab, M.A.Lone, B.C.Robertson

Title: Quantitative Test of the Lane-Lynn Theory of Direct Radiative Capture of Thermal Neutrons by

 12 C and 13 C

Keyword abstract: NUCLEAR REACTIONS ¹², ¹³C(n, γ),E=thermal; measured σ (E γ),I γ ; deduced

capture mechanism. ¹², ¹³C levels deduced S.

Keynumber: 1982JEZZ

Reference: Diss.Abst.Int. 42B, 4468 (1982)

Authors: M.J.Jensen

Title: Fast Neutron Capture by ¹³C

Keyword abstract: NUCLEAR REACTIONS 13 C(n, γ),E=5.6-14 MeV; measured $\sigma(\theta)$,analyzing

power vs θ. ¹⁴C deduced T=0,E2 resonance. Direct-semidirect model.

Keynumber: 1981MUZU

Reference: Bull.Am.Phys.Soc. 26, No.8, 1138, CE2 (1981) Authors: S.F.Mughabghab, M.A.Lone, B.C.Robertson

Title: Reaction Mechanism of Thermal Neutron Capture in ^{12,13}C

Keyword abstract: NUCLEAR REACTIONS 12 , 13 C(n, γ),E=thermal; measured σ (capture),ratio. 14 C

level deduced spectroscopic factor. Lane-Lynn theory.

Keynumber: 1980JEZZ

Coden: JOUR BAPSA 25 603,KE11,Jensen

Keyword abstract: NUCLEAR REACTIONS 13 C(polarized n, γ), E=5.6-14 MeV; measured σ (E γ), γ

 (θ) analyzing power vs θ . ¹⁴C deduced E1/M1.E1/E2 interference effects.

Keynumber: 1975SM02

Reference: Phys.Rev. C11, 1392 (1975)

NSR Search Results Page 4 of 4

Authors: L.G.Smith, A.H.Wapstra

Title: Masses of Isotopes of H, He, C, N, O, and F

Keyword abstract: ATOMIC MASSES ³H, ³He, ¹³, ¹⁴C, ¹⁴, ¹⁵N, ¹⁶O, ¹⁹F; measured atomic mass. **Keyword abstract:** NUCLEAR REACTIONS ²H, ³He, ¹², ¹³C, ¹⁴N(n,γ); calculated quadrupole

moment.

Keynumber: 1973SEZC **Coden:** JOUR HPACA 46 52

Keyword abstract: NUCLEAR REACTIONS ¹³C, ¹⁹F(n,γ); measured DSA. ¹⁴C, ²⁰F levels deduced

 $T_{1/2}$.

Keynumber: 1971AL09

Reference: Phys.Rev. C3, 1737 (1971) **Authors:** B.J.Allen, R.L.Macklin

Title: Neutron Capture Cross Sections of ${}^{13}\mathrm{C}$ and ${}^{16}\mathrm{O}$

Keyword abstract: NUCLEAR REACTIONS 13 C, 16 O(n, γ),E=resonance; measured σ (E;E γ). 14 C, 17 O

resonances deduced level-width.
