Homework 8

1. (book #9.3)

Let $X = (X_1, ..., X_n)'$ denote an $(n \times 1)$ vector of independent random variables $X_i \sim N(0, 1)$, i = 1, ..., n. Let $A = [a_{ij}]$ denote an $(m \times n)$ matrix, and define a random vector $Y = (Y_1, ..., Y_m)$ as

$$Y = AX$$
.

Show that $Cov(Y_i, Y_j) = \sum_{k=1}^n a_{ik} a_{jk}$.

Which of the following lines is a valid argument? Let $RHS = \sum_{k=1}^{n} a_{ik} a_{jk}$.

- (a) $Cov(Y_i, Y_j) = Var(Y_i)Var(Y_j) = RHS$
- (b) $Cov(Y_i, Y_j) = \frac{Var(Y_i)Var(Y_j)}{Corr(Y_i, Y_j)} = RHS$
- (c) $Cov(Y_i, Y_j) = (\sum_k a_{ik})(\sum_{\ell} a_{j\ell}) = \sum_k a_{ik}^2 (\sum_k a_{ik})^2 = RHS$
- (d) $Cov(Y_i, Y_j) = E(Y_i Y_j) = \sum_k a_{ik} a_{jk} E(X_k^2) + 2 \sum_{k < \ell} a_{ik} a_{j\ell} E(X_k X_\ell) = RHS$
- (e) none of these
- 2. A person has n=100 light bulbs whose lifetimes X_i are independent exponential random variables with mean 5 hours, $X_i \sim \text{Exp}(\theta)$. If the bulbs are used one at a time, with a failed bulb being replaced immediately by a new one, using the CLT approximate the probability p that there is still a working bulb after 525 hours.

 $p \approx$

- **3**. Let X_i be n=20 independent r.v.'s with $E(X_i)=\operatorname{Var}(X_i)=1$.
 - **3a.** Use the Markov inequality to obtain a bound on $\Pr\left(\sum_{i=1}^{n} X_i \geq 30\right)$.

 $\Pr\left(\sum_{i=1}^{n} X_i \ge 30\right) \le$

 ${\bf 3b.}$ Use the CLT to approximate the same probability.

 $\Pr\left(\sum_{i=1}^{n} X_i \ge 30\right) \approx$

4. A die is continually rolled until the total sum of all rolls exceeds 300. Using the CLT approximate the probability *p* that the sum of the first 79 rolls is less than 300.

 $p \approx$