

Data sheet acquired from Harris Semiconductor SCHS047G

August 1998 - Revised October 2003

Features

- Wide Range of Digital and Analog Signal Levels
- Low ON Resistance, 125Ω (Typ) Over 15V_{P-P} Signal Input Range for V_{DD}-V_{EE} = 18V
- High OFF Resistance, Channel Leakage of ±100pA (Typ) at V_{DD}-V_{FF} = 18V
- Logic-Level Conversion for Digital Addressing Signals of 3V to 20V (V_{DD}-V_{SS} = 3V to 20V) to Switch Analog Signals to 20V_{P-P} (V_{DD}-V_{EE} = 20V)
- Matched Switch Characteristics, $r_{ON} = 5\Omega$ (Typ) for V_{DD} - $V_{EE} = 15V$
- Very Low Quiescent Power Dissipation Under All Digital-Control Input and Supply Conditions, 0.2μW (Typ) at V_{DD}-V_{SS} = V_{DD}-V_{EE} = 10V
- · Binary Address Decoding on Chip
- 5V, 10V, and 15V Parametric Ratings
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range, 100nA at 18V and 25°C
- Break-Before-Make Switching Eliminates Channel Overlap

Applications

- Analog and Digital Multiplexing and Demultiplexing
- · A/D and D/A Conversion
- · Signal Gating

CMOS Analog Multiplexers/Demultiplexers with Logic Level Conversion

The CD4051B, CD4052B, and CD4053B analog multiplexers are digitally-controlled analog switches having low ON impedance and very low OFF leakage current. Control of analog signals up to $20V_{P-P}$ can be achieved by digital signal amplitudes of 4.5V to 20V (if V_{DD} - V_{SS} = 3V, a V_{DD} - V_{EE} of up to 13V can be controlled; for V_{DD} - V_{EE} level differences above 13V, a V_{DD} - V_{SS} of at least 4.5V is required). For example, if V_{DD} = +4.5V, V_{SS} = 0V, and V_{EE} = -13.5V, analog signals from -13.5V to +4.5V can be controlled by digital inputs of 0V to 5V. These multiplexer circuits dissipate extremely low quiescent power over the full V_{DD} - V_{SS} and V_{DD} - V_{EE} supply-voltage ranges, independent of the logic state of the control signals. When a logic "1" is present at the inhibit input terminal, all channels are off.

The CD4051B is a single 8-Channel multiplexer having three binary control inputs, A, B, and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned on, and connect one of the 8 inputs to the output.

The CD4052B is a differential 4-Channel multiplexer having two binary control inputs, A and B, and an inhibit input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the analog inputs to the outputs.

The CD4053B is a triple 2-Channel multiplexer having three separate digital control inputs, A, B, and C, and an inhibit input. Each control input selects one of a pair of channels which are connected in a single-pole, double-throw configuration.

When these devices are used as demultiplexers, the "CHANNEL IN/OUT" terminals are the outputs and the "COMMON OUT/IN" terminals are the inputs.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD4051BF3A, CD4052BF3A, CD4053BF3A	-55 to 125	16 Ld CERAMIC DIP
CD4051BE, CD4052BE, CD4053BE	-55 to 125	16 Ld PDIP
CD4051BM, CD4051BMT, CD4051BM96 CD4052BM, CD4052BMT, CD4052BM96 CD4053BM, CD4053BMT, CD4053BM96	-55 to 125	16 Ld SOIC
CD4051BNSR, CD4052BNSR, CD4053BNSR	-55 to 125	16 Ld SOP
CD4051BPW, CD4051BPWR, CD4052BPW, CD4052BPWR CD4053BPW, CD4053BPWR	-55 to 125	16 Ld TSSOP

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250.

Pinouts

Functional Block Diagrams

 \dagger All inputs are protected by standard CMOS protection network.

Functional Block Diagrams (Continued)

CD4052B

CD4053B

TRUTH TABLES

I	NPUT ST	ATES		
INHIBIT	С	В	Α	"ON" CHANNEL(S)
CD4051B			•	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	Х	Х	Х	None
CD4052B				
INHIBIT	I	3	Α	
0	()	0	0x, 0y
0	()	1	1x, 1y
0		1	0	2x, 2y
0		1	1	3x, 3y
1		X	Х	None
CD4053B				
INHIBIT	A	OR B OF	R C	
0		0		ax or bx or cx
0		1		ay or by or cy
1		Χ		None

X = Don't Care

Absolute Maximum Ratings

Supply Voltage (V+ to V-) Voltages Referenced to V_{SS} Terminal-0.5V to 20V DC Input Voltage Range-0.5V to V_{DD} +0.5V DC Input Current, Any One Input±10mA

Operating Conditions

	Temperature Range		-55°C to 125°C
--	-------------------	--	----------------

Thermal Information

Package Thermal Impedance, θ_{JA} (see Note 1):
E (PDIP) package
M (SOIC) package
NS (SOP) package
PW (TSSOP) package
Maximum Junction Temperature (Ceramic Package)
Maximum Junction Temperature (Plastic Package)150°C
Maximum Storage Temperature Range65°C to 150°C
Maximum Lead Temperature (Soldering 10s)
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

Electrical Specifications Common Conditions Here: If Whole Table is For the Full Temp. Range, $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_L = 100\Omega$, Unless Otherwise Specified (Note 3)

		CONDIT	IONS			LIMITS	AT INDIC	ATED T	EMPERA	TURES (°C)	
									25			
PARAMETER	V _{IS} (V)	V _{EE} (V)	V _{SS} (V)	V _{DD} (V)	-55	-40	85	125	MIN	TYP	MAX	UNITS
SIGNAL INPUTS (V _{IS}) A	ND OUTPUT	s (v _{os})										
Quiescent Device	-	-	-	5	5	5	150	150	-	0.04	5	μА
Current, I _{DD} Max	-	-	-	10	10	10	300	300	-	0.04	10	μΑ
	-	-	-	15	20	20	600	600	-	0.04	20	μΑ
	-	-	-	20	100	100	3000	3000	-	0.08	100	μΑ
Drain to Source ON	-	0	0	5	800	850	1200	1300	-	470	1050	Ω
Resistance r_{ON} Max $0 \le V_{IS} \le V_{DD}$	-	0	0	10	310	330	520	550	-	180	400	Ω
10 00	-	0	0	15	200	210	300	320	-	125	240	Ω
Change in ON	-	0	0	5	-	-	-	-	-	15	-	Ω
Resistance (Between Any Two Channels),	-	0	0	10	-	-	-	-	-	10	-	Ω
$\Delta r_{\sf ON}$	-	0	0	15	-	-	-	-	-	5	-	Ω
OFF Channel Leakage Current: Any Channel OFF (Max) or ALL Channels OFF (Common OUT/IN) (Max)	-	0	0	18	±100 (Note 2)	±1000	(Note 2)	-	±0.01	±100 (Note 2)	nA
Capacitance:	-	-5	5-	5								
Input, C _{IS}					-	-	-	-	-	5	-	pF
Output, C _{OS} CD4051					-	-	-	-	-	30	-	pF
CD4052					-	-	-	-	-	18	-	pF
CD4053					-	-	-	-	-	9	-	pF
Feedthrough					_	_	_	-	_	0.2	_	n.E
C _{IOS}	V	D 200	 							0.2		pF
Propagation Delay Time (Signal Input to Output	V _{DD}	$R_L = 200$ $C_L = 50p$		5	-	-	-	-	-	30	60	ns
		$t_{\rm r}, t_{\rm f} = 20$	ns	10	-	-	-	-	-	15	30	ns
				15	-	-	-	-	-	10	20	ns

Electrical Specifications

Common Conditions Here: If Whole Table is For the Full Temp. Range, $V_{SUPPLY}=\pm5V$, $A_V=+1$, $R_L=100\Omega$, Unless Otherwise Specified **(Continued)** (Note 3)

		CONDIT	IONS			LIMITS	AT INDIC	CATED T	EMPER A	TURES ()C)						
										25							
PARAMETER	V _{IS} (V)	V _{EE} (V)	V _{SS} (V)	V _{DD} (V)	-55	-40	85	125	MIN	TYP	MAX	UNITS					
CONTROL (ADDRESS	OR INHIBIT),	V _C	•			•		•	•	'							
Input Low Voltage, V _{IL} ,	$V_{IL} = V_{DD}$	V _{EE} = V _S		5	1.5	1.5	1.5	1.5	-	-	1.5	V					
Max	through 1kΩ;	$I_{IS} < 2\mu A$ on All OFF Channels bugh		10	3	3	3	3	-	-	3	V					
	$V_{IH} = V_{DD}$			15	4	4	4	4	-	-	4	V					
Input High Voltage, VIH,	through 1kΩ			5	3.5	3.5	3.5	3.5	3.5	-	-	V					
Min				10	7	7	7	7	7	-	-	V					
				15	11	11	11	11	11	-	-	V					
Input Current, I _{IN} (Max)	V _{IN} = 0, 18			18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μА					
Propagation Delay Time:																	
Address-to-Signal OUT (Channels ON or OFF) See Figures 10, 11, 14 $t_{\Gamma}, \ t_{f} = 20 \text{ns}$ $C_{L} = 50 \text{pF},$ $R_{L} = 10 \text{k}\Omega$	$t_{\rm r}, t_{\rm f} = 20 {\rm ns},$	0	0	5	-	-	-	-	-	450	720	ns					
		0	0	10	-	-	-	-	-	160	320	ns					
	0	0	15	-	-	-	-	-	120	240	ns						
		-5	0	5	-	-	-	-	-	225	450	ns					
Propagation Delay Time:																	
Inhibit-to-Signal OUT (Channel Turning ON)	$t_{\rm r}, t_{\rm f} = 20 {\rm ns},$	0	0	5	-	-	-	-	-	400	720	ns					
See Figure 11	$C_L = 50pF,$ $R_L = 1k\Omega$	0	0	10	-	-	-	-	-	160	320	ns					
		0	0	15	-	-	-	-	-	120	240	ns					
		-10	0	5	-	-	-	-	-	200	400	ns					
Propagation Delay Time:																	
Inhibit-to-Signal OUT (Channel Turning	OUT t_{Γ} , $t_{f} = 20$ ns, $C_{L} = 50$ pF,	0	0	5	-	-	-	-	-	200	450	ns					
OFF) See Figure 15		$C_L = 50pF,$	$C_L = 50pF$,	$C_L = 50pF$,	$C_L = 50pF$,	$C_L = 50pF$,	$C_L = 50pF,$	0	0	10	-	-	-	-	-	90	210
		0	0	15	-	-	-	-	-	70	160	ns					
		-10	0	5	-	-	-	-	-	130	300	ns					
Input Capacitance, C _{IN} (Any Address or Inhibit Input)					-	-	-	-	-	5	7.5	pF					

NOTE:

Electrical Specifications

			TE	ST CONDITIONS		LIMITS	
PARAMETER	V _{IS} (V)	V _{DD} (V)	R_L (k Ω)			TYP	UNITS
Cutoff (-3dB) Frequency Chan-	5 (Note 3)	10	1	V _{OS} at Common OUT/IN	CD4053	30	MHz
nel ON (Sine Wave Input)	V _{EE} = V _{SS} ,				CD4052	25	MHz
	20Lc	V _{OS} 3	dB		CD4051	20	MHz
	2010	' ⁹ V _{IS} 0	,uD	V _{OS} at Any Channel		60	MHz

^{2.} Determined by minimum feasible leakage measurement for automatic testing.

Electrical Specifications

			TE	ST CONDITIONS			LIMITS	
PARAMETER	V _{IS} (V)	V _{DD} (V)	R_L (k Ω)				TYP	UNITS
Total Harmonic Distortion, THD	2 (Note 3)	5	10				0.3	%
	3 (Note 3)	10					0.2	%
	5 (Note 3)	15					0.12	%
	V _{EE} = V _{SS} ,	f _{IS} = 1kHz S	Sine Wave					%
-40dB Feedthrough Frequency	5 (Note 3)	10	1	V _{OS} at Common OUT	Γ/ΙΝ	CD4053	8	MHz
(All Channels OFF)	V _{EE} = V _{SS} ,					CD4052	10	MHz
	20L	$og \frac{V_{OS}}{V_{IS}} = -$	40dB			CD4051	12	MHz
		^v IS		V _{OS} at Any Channel			8	MHz
-40dB Signal Crosstalk	5 (Note 3)	10	1	Between Any 2 Chan	nels		3	MHz
Frequency	V _{EE} = V _{SS} ,			Between Sections,	Measured or	n Common	6	MHz
	20L	$og \frac{V_{OS}}{V_{IS}} = -$	40dB	CD4052 Only	Measured or nel	n Any Chan-	10	MHz
				Between Any Two	In Pin 2, Out	Pin 14	2.5	MHz
				Sections, CD4053 Only	In Pin 15, O	ut Pin 14	6	MHz
Address-or-Inhibit-to-Signal Crosstalk	-	10	10 (Note 4)				65	mV _{PEAK}
	V _{EE} = 0, V _S ; = V _{DD} - V _S ;						65	mV _{PEAK}

NOTES:

3. Peak-to-Peak voltage symmetrical about $\frac{V_{DD} - V_{EE}}{2}$

4. Both ends of channel.

Typical Performance Curves

FIGURE 1. CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES)

FIGURE 2. CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES)

Typical Performance Curves (Continued)

FIGURE 3. CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES)

FIGURE 5. ON CHARACTERISTICS FOR 1 OF 8 CHANNELS (CD4051B)

FIGURE 7. DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (CD4052B)

FIGURE 4. CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES)

FIGURE 6. DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (CD4051B)

FIGURE 8. DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (CD4053B)

Test Circuits and Waveforms

NOTE: The ADDRESS (digital-control inputs) and INHIBIT logic levels are: "0" = V_{SS} and "1" = V_{DD} . The analog signal (through the TG) may swing from V_{EE} to V_{DD} .

FIGURE 9. TYPICAL BIAS VOLTAGES

FIGURE 10. WAVEFORMS, CHANNEL BEING TURNED ON (RL = 1k Ω)

FIGURE 11. WAVEFORMS, CHANNEL BEING TURNED OFF ($R_L = 1 \text{k}\Omega$)

FIGURE 12. OFF CHANNEL LEAKAGE CURRENT - ANY CHANNEL OFF

Test Circuits and Waveforms (Continued)

FIGURE 13. OFF CHANNEL LEAKAGE CURRENT - ALL CHANNELS OFF

FIGURE 14. PROPAGATION DELAY - ADDRESS INPUT TO SIGNAL OUTPUT

FIGURE 15. PROPAGATION DELAY - INHIBIT INPUT TO SIGNAL OUTPUT

FIGURE 16. INPUT VOLTAGE TEST CIRCUITS (NOISE IMMUNITY)

Test Circuits and Waveforms (Continued)

FIGURE 17. QUIESCENT DEVICE CURRENT

FIGURE 18. CHANNEL ON RESISTANCE MEASUREMENT CIRCUIT

FIGURE 19. INPUT CURRENT

FIGURE 20. FEEDTHROUGH (ALL TYPES)

FIGURE 21. CROSSTALK BETWEEN ANY TWO CHANNELS (ALL TYPES)

FIGURE 22. CROSSTALK BETWEEN DUALS OR TRIPLETS (CD4052B, CD4053B)

Test Circuits and Waveforms (Continued)

FIGURE 23. TYPICAL TIME-DIVISION APPLICATION OF THE CD4052B

Special Considerations

In applications where separate power sources are used to drive V_{DD} and the signal inputs, the V_{DD} current capability should exceed V_{DD}/R_L (R_L = effective external load). This provision avoids permanent current flow or clamp action on the V_{DD} supply when power is applied or removed from the CD4051B, CD4052B or CD4053B.

FIGURE 24. 24-TO-1 MUX ADDRESSING

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Sample
7901502EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Call TI	-55 to 125	7901502EA CD4052BF3A	Sample
8101801EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Call TI	-55 to 125	8101801EA CD4053BF3A	Sample
CD4051BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4051BE	Sample
CD4051BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4051BE	Sample
CD4051BF	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD4051BF	Sample
CD4051BF3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD4051BF3A	Sample
CD4051BF3AS2283	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI			
CD4051BM	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4051BM	Sample
CD4051BM96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4051BM	Sample
CD4051BM96E4	ACTIVE	SOIC	D	16		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4051BM	Sample
CD4051BM96G3	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-55 to 125	CD4051BM	Sample
CD4051BM96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4051BM	Sample
CD4051BME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4051BM	Sample
CD4051BMG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4051BM	Sampl
CD4051BMT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4051BM	Sampl
CD4051BMTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4051BM	Sampl
CD4051BMTG4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4051BM	Sampl
CD4051BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4051B	Samp

www.ti.com

11-Apr-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
CD4051BNSRE4	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4051B	Samples
CD4051BNSRG4	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4051B	Samples
CD4051BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM051B	Samples
CD4051BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM051B	Samples
CD4051BPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM051B	Samples
CD4051BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM051B	Samples
CD4051BPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM051B	Samples
CD4051BPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM051B	Samples
CD4052BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4052BE	Samples
CD4052BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4052BE	Samples
CD4052BF	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD4052BF	Samples
CD4052BF3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7901502EA CD4052BF3A	Samples
CD4052BM	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4052BM	Samples
CD4052BM96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4052BM	Samples
CD4052BM96E4	ACTIVE	SOIC	D	16		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4052BM	Samples
CD4052BM96G3	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-55 to 125	CD4052BM	Samples
CD4052BM96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4052BM	Samples
CD4052BME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4052BM	Samples

www.ti.com

11-Apr-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
CD4052BMG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4052BM	Samples
CD4052BMT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4052BM	Samples
CD4052BMTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4052BM	Samples
CD4052BMTG4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4052BM	Samples
CD4052BNSR	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4052B	Samples
CD4052BNSRE4	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4052B	Samples
CD4052BNSRG4	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4052B	Samples
CD4052BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM052B	Samples
CD4052BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM052B	Samples
CD4052BPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM052B	Samples
CD4052BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM052B	Samples
CD4052BPWRE4	ACTIVE	TSSOP	PW	16		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM052B	Samples
CD4052BPWRG3	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-55 to 125	CM052B	Samples
CD4052BPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM052B	Samples
CD4053BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4053BE	Samples
CD4053BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4053BE	Samples
CD4053BF	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD4053BF	Samples
CD4053BF3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8101801EA CD4053BF3A	Samples

www.ti.com

11-Apr-2013

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
CD4053BF3AS2283	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI			
CD4053BM	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4053M	Samples
CD4053BM96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4053M	Samples
CD4053BM96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4053M	Samples
CD4053BM96G3	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-55 to 125	CD4053M	Samples
CD4053BM96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4053M	Samples
CD4053BME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4053M	Samples
CD4053BMG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4053M	Samples
CD4053BMT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4053M	Samples
CD4053BMTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4053M	Samples
CD4053BMTG4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4053M	Samples
CD4053BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4053B	Samples
CD4053BNSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4053B	Samples
CD4053BNSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4053B	Samples
CD4053BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM053B	Samples
CD4053BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM053B	Samples
CD4053BPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM053B	Samples
CD4053BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM053B	Samples

PACKAGE OPTION ADDENDUM

11-Apr-2013

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
CD4053BPWRE4	ACTIVE	TSSOP	PW	16		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM053B	Samples
CD4053BPWRG3	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-55 to 125	CM053B	Samples
CD4053BPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM053B	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD4051B, CD4051B-MIL, CD4052B, CD4052B-MIL, CD4053B, CD4053B-MIL:

11-Apr-2013

● Catalog: CD4051B, CD4052B, CD4053B

• Automotive: CD4051B-Q1, CD4051B-Q1, CD4053B-Q1, CD4053B-Q1

• Military: CD4051B-MIL, CD4052B-MIL, CD4053B-MIL

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jul-2013

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity A0

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD4051BM96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD4051BM96G4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD4051BM96G4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD4051BPWR	TSSOP	PW	16	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
CD4051BPWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD4052BM96G4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD4052BPWR	TSSOP	PW	16	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
CD4052BPWRG3	TSSOP	PW	16	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
CD4052BPWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD4053BM96G4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD4053BPWR	TSSOP	PW	16	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
CD4053BPWRG3	TSSOP	PW	16	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
CD4053BPWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 5-Jul-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4051BM96	CD4051BM96 SOIC		16	2500	333.2	345.9	28.6
CD4051BM96G4	SOIC	D	16	2500	367.0	367.0	38.0
CD4051BM96G4	SOIC	D	16	2500	333.2	345.9	28.6
CD4051BPWR	TSSOP	PW	16	2000	364.0	364.0	27.0
CD4051BPWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0
CD4052BM96G4	SOIC	D	16	2500	333.2	345.9	28.6
CD4052BPWR	TSSOP	PW	16	2000	364.0	364.0	27.0
CD4052BPWRG3	TSSOP	PW	16	2000	364.0	364.0	27.0
CD4052BPWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0
CD4053BM96G4	SOIC	D	16	2500	333.2	345.9	28.6
CD4053BPWR	CD4053BPWR TSSOP		16	2000	364.0	364.0	27.0
CD4053BPWRG3	CD4053BPWRG3 TSSOP		16	2000	364.0	364.0	27.0
CD4053BPWRG4 TSSOP		PW	16	2000	367.0	367.0	35.0

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>