

후판 공정 불량률 개선안 도출

- 분석 배경 및 목표
- 데이터 구성
- 그래프를 활용한 탐색적 분석
- 회귀, 분류모델을 이용한 분석
- Vital Few 선정
- Solution
- 기대효과

배경

OO공장에서 후판 공정상 Scale 불량 발생 증가

- 그래프를 이용한 탐색적 분석
- 로지스틱 회귀분석

분석 방향

- 의사결정나무
- 랜덤 포레스트
- 그래디언트 부스팅

Vital Few 선정

목표

Vital Few 조절을 통해 Scale 발생률 5% 개선

In [17]: df_raw = pd.read_csv("/home/piai/HW/Statistics3/SCALE불량.csv",engine='python', encoding='cp949') df_raw

Out [17]:

		PLATE_NO	ROLLING_DATE	SCALE	SPEC	STEEL_KIND	PT_THK	PT_WDTH	PT_LTH	PT_WGT	FUR_NO	 FUR_HZ_TEMP	FUR_HZ_TIME	FUR
	0	PB562774	2008-08- 01:00:00:15	양품	AB/EH32- TM	T1	32.25	3707	15109	14180	1호기	 1144	116	
	1	PB562775	2008-08- 01:00:00:16	양품	AB/EH32- TM	T1	32.25	3707	15109	14180	1호기	 1144	122	
	2	PB562776	2008-08- 01:00:00:59	양품	NV-E36- TM	Т8	33.27	3619	19181	18130	2호기	 1129	116	
	3	PB562777	2008-08- 01:00:01:24	양품	NV-E36- TM	Т8	33.27	3619	19181	18130	2호기	 1152	125	
	4	PB562778	2008-08- 01:00:01:44	양품	BV-EH36- TM	Т8	38.33	3098	13334	12430	3호기	 1140	134	
7	715	PB563502	2008-08- 02:13:35:36	불량	NK-KA	C0	20.14	3580	38639	21870	3호기	 1172	72	
7	716	PB563503	2008-08- 02:13:35:02	양품	NV-A32	C0	15.08	3212	48233	18340	2호기	 1150	61	
7	717	PB563504	2008-08- 02:14:40:00	양품	NV-A32	C0	16.60	3441	43688	19590	2호기	 1169	65	
1	718	PB563505	2008-08- 02:13:35:19	양품	LR-A	C0	15.59	3363	48740	80240	3호기	 1179	86	
7	719	PB563506	2008-08- 02:14:40:53	양품	GL-A32	C0	16.09	3400	54209	69840	3호기	 1186	82	

720 rows × 21 columns

목표변수

- PLATE NO Plate No
- ROLLING DATE 작업시각
- SCALE Scale불량
- SPEC 제품 규격
- STEEL KIND 강종
- PT THK Plate 두께
- PT WDTH Plate 폭
- PT LTH Plate 길이
- PT WGT Plate 중량
- FUR NO 가열로 호기
- FUR NO ROW 가열로 작업순번

- FUR HZ_TEMP 가열로 가열대 온도
- FUR HZ TIME 가열로 가열대 시간
- FUR SZ TEMP 가열로 균열대 온도
- FUR SZ_TIME 가열로 균열대 시간
- FUR TIME 가열로 시간
- FUR EXTEMP 추출은도
- ROLLING TEMP T5 압연은도
- HSB HSB적용(1-적용,0-미적용)
- ROLLING DESCALING 압연 중 Descaling 횟수
- WORK GR 작업조

Vital Few 제외 변수 : PLATE_NO , ROLLING_DATE

후판의 기계, 재료적 특성, 설비 문제, 제작 공정의 요인이 아님

```
In [8]: df_raw.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 720 entries, 0 to 719
        Data columns (total 21 columns):
             Column
                                 Non-Null Count
                                                  Dtype
             PLATE_NO
                                 720 non-null
                                                  object
             ROLLING_DATE
                                 720 non-null
                                                  object
             SCALE
                                 720 non-null
                                                  object
             SPEC
                                 720 non-null
                                                  object
             STEEL_KIND
                                 720 non-null
                                                  object
             PT_THK
                                 720 non-null
                                                  float64
             PT_WDTH
                                 720 non-null
                                                  int64
             PT_LTH
                                 720 non-null
                                                  int64
             PT_WGT
                                 720 non-null
                                                  int64
             FUR_NO
                                 720 non-null
                                                  object
             FUR_NO_ROW
                                 720 non-null
                                                  int64
             FUR_HZ_TEMP
                                 720 non-null
                                                  int64
            FUR_HZ_TIME
                                 720 non-null
                                                  int64
         13 FUR_SZ_TEMP
                                 720 non-null
                                                  int64
         14 FUR_SZ_TIME
                                 720 non-null
                                                  int64
         15 FUR_TIME
                                 720 non-null
                                                  int64
         16 FUR_EXTEMP
                                 720 non-null
                                                  int64
             ROLLING_TEMP_T5
                                 720 non-null
                                                  int64
         18 HSB
                                 720 non-null
                                                  object
         19 ROLLING_DESCALING
                                 720 non-null
                                                  int64
         20 WORK_GR
                                 720 non-null
                                                  obiect
        dtypes: float64(1), int64(12), object(8)
        memory usage: 118.2+ KB
```

```
In [9]: df_raw = df_raw.astype({'FUR_NO_ROW' : 'object'})
        df_raw.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 720 entries, 0 to 719
        Data columns (total 21 columns):
              Column
                                 Non-Null Count
                                                  Dtype
             PLATE_NO
                                                  object
                                  720 non-null
             ROLLING_DATE
                                  720 non-null
                                                  object
             SCALE
                                  720 non-null
                                                  object
             SPEC
                                  720 non-null
                                                  object
             STEEL_KIND
                                  720 non-null
                                                  object
             PT_THK
                                  720 non-null
                                                  float64
             PT_WDTH
                                  720 non-null
                                                  int64
             PT_LTH
                                  720 non-null
                                                  int64
             PT_WGT
                                  720 non-null
                                                  int64
             FUR_NO
                                  720 non-null
                                                  obiect
             FUR_NO_ROW
                                  720 non-null
                                                  object
             FUR_HZ_TEMP
                                  720 non-null
                                                  int64
             FUR_HZ_TIME
                                  720 non-null
                                                  int64
             FUR_SZ_TEMP
                                  720 non-null
                                                  int64
             FUR_SZ_TIME
                                  720 non-null
                                                  int64
             FUR_TIME
                                  720 non-null
                                                  int64
             FUR_EXTEMP
                                  720 non-null
                                                  int64
             ROLLING_TEMP_T5
                                  720 non-null
                                                  int64
             HSB
                                  720 non-null
                                                  obiect
             ROLLING_DESCALING
                                 720 non-null
                                                  int64
            ₩ORK_GR
                                  720 non-null
                                                  object
        dtypes: float64(1), int64(11), object(9)
        memory usage: 118.2+ KB
```

- 결측치가 없음
- 가열로 작업 순번은 범주형으로 분류

- ROLLING_TEMP_T5 에서 이상치 존재 가능성 발견
- Box_plot으로 확인 필요

- 이상치 존재
- 720개 중 6개의 이상치 데이터
- 이상치 처리 방법 : 삭제

이상치 제거된 모습 (표준화한 연속형 설명변수)

- 판의 두께, 길이, 폭에 따라 불량 발생의 변화가 있지만, 고객의 요구에 따라 지정되는 값
- 즉, Vital Few 로 선정하기 어려움
- 판의 무게에 따른 발생률의 변화가 미미함
- 가열로 가열대에서의 시간, 온도에서 불량률과의 약간의 상관관계가 발견

- 온도(추출, 압연, 균열대)가 높을 때, 높은 불량률
- 가열대에서의 온도가 짧으면 높은 확률로 불량 발생
- ▸ FUR_TIME, ROLLING_DESCALING에서는 비교적 적은 영향력

- SCALE 발생률 (목표변수와 범주형 설명변수의 관계를 설명할 지표)

```
In [82]: ## 독립변수에 따른 SCALE 불량들을 알기 위한 함수

def piecount(col):
    f, ax = plt.subplots(1, 2, figsize=(15, 6))
    df_raw[col].value_counts().plot.pie(explode=[0.1 for i in range(df_raw[col].nunique())], autopct='%1.1f%%', ax=ax[0], shadow=True)
    ax[0].set_title(col)
    ax[0].set_ylabel('')
    sns.countplot(col, data=df_raw, ax=ax[1])
    ax[1].set_title(col)
    plt.show()

piecount('SCALE')
```


- Scale 발생여부와 강종의 관계

- C0 강종의 생산량이 가장 많음
- CO 불량률 42.3%
- C1 불량률 100%, 하지만 1개의 데이터
- 나머지 강종 불량률 20% 미만
- 즉, 특히 CO 강종에서만 전체 불량률인
 32.4% 보다 불량이 많이 발생하기에
 강종은 불량률에 충분한 영향을 끼침
- 따라서, Vital Few에 포함

- Scale 발생여부와 작업순서의 관계

```
In [85]: aggregate('FUR_NO_ROW', 'SCALE', df_raw).plot(kind='bar', stacked=True)
```

Out[85]: <matplotlib.axes._subplots.AxesSubplot at 0x7fae13b9c370>

In [86]: fun_print_crosstab(df_raw, 'FUR_NO_ROW')

FUR_NO_ROW 1 2
SCALE
0 239 244
1 120 111
FUR_NO_ROW 1 2
SCALE
0 0.665738 0.687324
1 0.334262 0.312676

- 작업순서에 따른 불량률 = 약 32%
- 즉, 가열로 작업순서는 불량률에 영향을 끼치지 않음

- Scale 발생여부와 가열로 호기의 관계

FUR_NO 1호기 2호기 3호기 SCALE 0 166 166 151 1 73 70 88 FUR_NO 1호기 2호기 3호기 SCALE 0 0.694561 0.70339 0.631799

0.368201

0.305439 0.29661

- 가열로에 따른 불량률 = 약 32%
- 즉, 가열로는 불량률에 영향을 끼치지 않음

- Scale 발생여부와 HSB 적용 여부와의 관계

In [90]: fun_print_crosstab(df_raw, 'HSB')

HSB 미적용 적용
SCALE
0 0 483
1 33 198
HSB 미적용 적용
SCALE
0 0.0 0.709251
1 1.0 0.290749

- HSB 미적용 -> 무조건 불량
- HSB 적용 -> 약 30% 불량
- HSB가 미적용된 제품에서는 100%
 불량이 발생하고 적용하면 개선되기에
 불량 발생에 큰 영향을 끼침
- 불량이 발생한 이유가 무조건 HSB가 미적용되었기 때문이라고 단정지을 수 없음
- 즉, HSB 변수를 제외시키고 다른 중요 변수를 찾아 이들의 영향 때문에 HSB가 적용되어도 불량이 발생한다고 말할 수 없음
- 따라서, HSB가 적용되어도 불량률이 발생한는 이유를 분석하기 위해 HSB를 Vital Few에 포함

- Scale 발생여부와 rolling_descaling적용 여부와의 관계

In [91]: aggregate('ROLLING_DESCALING', 'SCALE', df_raw).plot(kind='bar', stacked=True)
Out[91]: <matplotlib.axes,_subplots.AxesSubplot at 0x7fae13af2340>

- ROLLING_DESCALING의 횟수가
 많을수록 불량률이 개선되는 경향
- 따라서 Vital Few에 포함

- Scale 발생여부와 작업조의 관계

In [93]: aggregate('WORK_GR', 'SCALE', df_raw).plot(kind='bar', stacked=True)

Out [93]: <matplotlib.axes._subplots.AxesSubplot at 0x7fae14040490>

- 작업조에 따른 불량률의 차이가 미미
- 각 작업조의 불량률이 32.4%와 근소한 차이를 보임
- 즉, 작업조는 불량률에 영향을 끼치지 않음

- Scale 발생여부와 SPEC의 관계

In [95]:	fun_pr	int_crosst	ab(d	f_raw,	'SPE	EC')										
	SPEC SCALE	A131-DH36	ГМ	A283-C	A51	6-60	Α7	'09–3E	6 4	AB/A	AB/AH	132	AB/B	AB/E	1 32-	-Th
	0		0 1	1 5		1		1 C		3 4		4 1	3 3			2
	SPEC	AB/EH36-TI	4 A	PI-2₩-5	OT		NV-	A32-T	М	NV-A	36-TM	NV-	-B N\	/-D32-	ГМ	₩
	SCALE 0 1	10	3 		2 0				2 1		2 0		1 2		3 0	
	SPEC SCALE	NV-D36-TM	NV	-E32-TM	N۱	/-E36-	-TM	PILA	С-Е	3T33	SA283	-C	V42JE	BN3		
	0 1	4 1		2 0	: !		5 0			36 2		11 10		3 1		
	[2 row SPEC SCALE	s x 66 colu A131–DH36] A283-	СИ	\516-6	60	A709-	-36		AB/A	AB,	/AH32	AB/B	#	
	0			0.16666 0.83333		0. 0.			.0 0.0		28571 71 429		0.8 0.2	0.5 0.5		
	SPEC SCALE	AB/EH32-TI	4 A	B/EH36-	TM	API-2	2₩-5			NV-	A32-TM	N\	/-A36-	-TM ₩		
	0 1	1.0 0.0		0.9411 0.0588				.0 .	::		666667 333333			.0).0		
	SPEC SCALE	NV-B	NV-	D32-TM	NV-	-D36-T	M	NV-E3	32-T	M N	V-E36-	TM	PILAC	C-BT33	₩	
	0 1	0.333333 0.666667		1.0 0.0		0. 0.			1 . O.			.0 I.0		947368 952632		
	SPEC SCALE	SA283-C '	/42J	BN3												
	0 1	0.52381 0.47619), 75), 25												
	[2 row	s x 66 colu	ımns]												

- 66개의 SPEC의 종류
- 1개의 데이터만 포함한 SPEC 다수
- 따라서 SPEC으로 불량률 판단 불가

Vital Few

- FUR_SZ_TIME
- FUR_EXTEMP
- ROLLING_TEMP_T5
- STEEL KIND
- HSB
- ROLLING_DESCALING

설명변수 20개

PLATE_NO
ROLLING_DATE
SPEC
PT_THK
PT_WGT
PT_LTH
PT_WDTH

분류모델 사용 변수

Dep. Variable:	SCALE	No. Observations:	499
Model:	Logit	Df Residuals:	478
Method:	MLE	Df Model:	20
Date:	Tue, 24 Nov 2020	Pseudo R-squ.:	0.5719
Time:	23:28:54	Log-Likelihood:	-134.02
converged:	False	LL-Null:	-313.05
Covariance Type:	nonrobust	LLR p-value:	9.715e-64

COVARTANCE Type:	110111	JDUSC EE	n p-value.		3.713e-04	·
	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-0.3864	27.515	-0.014	0.989	-54.315	53.542
C(STEEL_KIND)[T.C3]	0.6343	2.804	0.226	0.821	-4.861	6.130
C(STEEL_KIND)[T.TO]	-0.1377	1.383	-0.100	0.921	-2.848	2.573
C(STEEL_KIND)[T.T1]	-2.0077	1.376	-1.459	0.145	-4.705	0.689
C(STEEL_KIND)[T.T5]	-2.7106	1.841	-1.472	0.141	-6.320	0.898
C(STEEL_KIND)[T.T7]	1.5285	1.799	0.850	0.396	-1.998	5.055
C(STEEL_KIND)[T.T8]	-0.7971	1.715	-0.465	0.642	-4.158	2.564
C(FUR_NO)[T.2호기]	-0.1602	0.389		0.681	-0.923	0.60:
C(FUR_NO)[T.3호기]	0.1953	0.390		0.622	-0.581	0.97;
C(₩ORK_GR)[T.2조]	-1.4006	0.463		0.002	-2.307	-0.494
C(WORK_GR)[T.3조]	-1.8785	0.518	-3.629	0.000	-2.893	-0.864
C(₩ORK_GR)[T.4조]	-0.8318	0.446		0.062	-1.706	0.042
C(HSB)[T.적용]	-13.7805	9.11		0.130	-31 . 641	4.08
FUR_NO_ROW[T.2]	0.0772	0.330	0.234	0.815	-0.569	0.723
FUR_HZ_TEMP	0.0644	0.020	3.157	0.002	0.024	0.104
FUR_HZ_TIME	0.0020	0.005	0.412	0.680	-0.007	0.011
FUR_SZ_TEMP	-0.0425	7.11e+04	-5.98e-07	1.000	-1.39e+05	1.39e+05
FUR_SZ_TIME	-0.0274	0.011	-2.589	0.010	-0.048	-0.007
FUR_TIME	0.0027	0.004	0.623	0.534	-0.006	0.011
FUR_EXTEMP	-0.0425	7.11e+04	-5.98e-07	1.000	-1.39e+05	1.39e+05
ROLLING_TEMP_T5	0.0465	0.007	6.980	0.000	0.033	0.060
ROLLING_DESCALING	-0.7178 	0.171	-4.195 	0.000 	-1.053 	-0.382

- 표준화 후, 로지스틱 회귀분석을 통한 변수의 중요도
- 로지스틱 회귀분석은 목표, 설명변수간의 선형관계가 보장될 때 적절한 분석모델
- 또한, 계수들의 p-value 값들이 0.05가 넘는 변수가 다수 존재, 모델의 설명력도 높지 않음
- 따라서, 이 모델로만 판단하는 것은 무리가 있음

- 표준화 후, 의사결정나무 모델(default)을 이용한 변수의 중요도
- 첫번째 분석 결과, 중요 인자 3개 ROLLING_TEMP_T5, HSB, FUR_EXTEMP
- 3개의 변수 제외 후 두번째 분석 결과, FUR_SZ_TEMP, ROLLING_DESCALING, FUR_TIME

Vital Few

- FUR_EXTEMP
- FUR_SZ_TEMP
- ROLLING_TEMP_T5
- FUR_TIME
- HSB
- ROLLING_DESCALING

• 표준화 후, 랜덤 포레스트 모델(default)을 이용한 변수의 중요도

Vital Few

- FUR_EXTEMP
- FUR_SZ_TEMP
- ROLLING_TEMP_T5
- FUR_HZ_TEMP
- HSB
- ROLLING_DESCALING

• 표준화 후, 그래디언트 부스팅 모델(default)을 이용한 변수의 중요도

Vital Few

- ROLLING_TEMP_T5
- HSB
- ROLLING_DESCALING
- FUR_EXTEMP
- FUR_SZ_TEMP
- FUR_TIME

탐색적 분석

- FUR_SZ_TIME
- FUR_EXTEMP
- ROLLING_TEMP_T5
- STEEL KIND
- HSB
- ROLLING_DESCALING

랜덤 포레스트

- FUR_EXTEMP
- FUR_SZ_TEMP
- ROLLING_TEMP_T5
- FUR_HZ_TEMP
- HSB
- ROLLING_DESCALING

의사결정나무

- FUR_EXTEMP
- FUR_SZ_TEMP
- ROLLING_TEMP_T5
- FUR_TIME
- HSB
- ROLLING_DESCALING

그래디언트 부스팅

- ROLLING_TEMP_T5
- HSB
- ROLLING_DESCALING
- FUR_EXTEMP
- FUR_SZ_TEMP
- FUR_TIME

최종 Vital Few

- ROLLING_TEMP_T5
- ROLLING_DESCALING
- HSB
- FUR_EXTEMP

- 최종 Vital Few로 의사결정나무 모델 생성
- $Max_depth = 6$
- Min_samples_leaf = 7
- Min_samples_split 은 정확도에 영향을 주지 않음
- › 20개의 변수 중에서 4개만 사용했다는 점을 감안, 약 95%의 정확도는 양호하다고 생각
- 하지만, 71개의 불량품 중 7개를 잘못 판단

- 압연온도 1000도 이하, 추출온도 1130도 이하
 - -> 불량률 상당부분 개선될 것
- ROLLING_DESCALING 7회 이하
 - -> HSB 적용해도 불량품 발생확률 증가
- HSB를 적용, ROLLING_DESCALING 8회 이상
 - -> 불량률 현저히 낮아질 것

기대 효과

	Q	R	S	Т	U	V	W	X
Ξ	FUR_EXTE	ROLLING_	HSB	ROLLING_	WORK_GR			
!	1118	897	적용	8	2조		MIN, T5	750
1	1115	930	적용	8	2조		MAX, T5	1000
!	1126	971	적용	8	3조		MIN, EX	1110
j	1110	865	적용	8	3조		MAX, EX	1130
ļ	1123	928	적용	8	1조			
ļ	1124	790	적용	8	4조			
)	1129	934	적용	8	2조			
ļ	1127	870	적용	8	4조			
}	1125	801	적용	8	1조			
}	1114	842	적용	8	4조			
,	1127	975	적용	8	2조			
)	1128	800	적용	8	2조			

- 데이터 원본에서 압연온도 750~1000도, 추출온도 1110~1130도로 수정한 새로운 데이터 생성
- 다른 데이터 값은 수정하지 않음, 결측치 6개 제거
- 의사결정나무 모델(default)에 적용
- 716개의 데이터 중 80개의 불량품 발생
- 불량률 : 32.4% -> **12.6%**
- 즉, 기존의 20개의 변수 중 2개의 변수만 조절해준다면 20%의 불량률 개선 효과를 볼 수 있음