Point Pattern Analysis: Processes (2)

SERGIO REY

GPH 483/598
Geographic Information Analysis
School of Geographical Sciences
Arizona State University
Spring 2010

Outline

- Clustered Patterns
 - Neyman Scott
 - Inhomogeneous Poisson Process

- Regular Pattern
 - Inhibition: Matern Processes
 - Markov Point Processes

Clustered Pattern

More Grouped than CSR

- some higher densities, aggregated
- many points at shorter distances

Overdispersion

- variance > mean
- greater variation in densities than CSR

Sources of Clustering

Contagion

- presence of events at x affects probability of event at y
- correlated point processes

Heterogeneity

- intensity $\lambda(s)$ varies with s
- heterogeneous Poisson point process

4/33

Contagious Distributions

Two stages

- point pattern for parents
- point pattern for offspring centered on parent locations
- parents may or may not be included

Examples

- Poisson cluster process (Neyman-Scott)
- Matern cluster process

Poisson Cluster Process

Parent Events

ullet Poisson process with intensity λ

Number of Offspring Events S

- identical distribution for each parent
- $E[S] = \mu$

Location of Offspring Events

- independent and identically distributed
- following a bivariate density h

Example

Parent Process Poisson

ullet homogeneous, intensity λ constant

Child Process

- uniform points in circle centered on parent
- fixed number of points in circle centered on parent
- points outside window eliminated

Neyman Scott $\lambda = 10, S = 5$

Neyman Scott $\lambda = 5, S = 10$

10/33

Inhomogeneous Poisson Process

Implications

- Apparent clusters can occur solely due to heterogeneities in the intensity function $\lambda(s)$.
- Individual event locations still remain independent of one another.
- Process is not stationary due to intensity heterogeneity

HPP vs. IPP

HPP is a special case of IPP with a constant intensity

CSR vs. Constant Risk Hypotheses

CSR

- Intensity is spatially constant
- Population at risk assumed spatially uniform
- Useful null hypothesis if these conditions are met

Constant Risk Hypothesis

- Population density variable
- Individual risk constant
- Expected number of events should vary with population density
- Clusters due to deviation from CSR
- Clusters due to deviation from CSR and Constant Risk

Inhomogeneous Poisson Process

Non-Stationary

- spatially varying intensity $\lambda(s)$
- mean is $\int_A \lambda(s) ds$
- an integral of the location-specific intensities over the region

Properties

- $N(A) \sim Poi(\int_A \lambda(s) ds$
- N(A) = n, n events independent sample with pdf proportional to $\lambda(s)$

Sources of Variability

Deterministic

- function for variability of $\lambda(s)$
- introduce covariates: $\lambda(s) = f(z)$

Stochastic

- doubly stochastic process
- distribution for $\lambda(s) \sim \Lambda(s)$

Examples

Intensity Varies with a Covariate

- trend surface
- $\lambda(s) = exp(\alpha + \beta s)$

Intensity Varies with Distance to Focus

• $\lambda(s) = \lambda 0(s).f(||s - s_0||, \theta)$

Inhomogeneous Poisson Process:

$$\lambda(x,y) = 100 * exp(-3x)$$

Inhomogeneous Poisson: 100*exp(-3*x) 80 0 0 0 0 0

Inhomogeneous Poisson Process:

$$\lambda(x,y) = 100 * exp(-3x)$$

Inhomogeneous Poisson Process:

$$\lambda(x,y)=100*(x+y)$$

Inhomogeneous Poisson: 100*(y+x)

Thinning

From Homogeneous to Heterogeneous

remove points

Types

- p-thinning: constant probability
- p(s)-thinning: probability varies with s
- Π-thinning: thinning function is random

20 / 33

Simulation

Start with homogeneous Poisson

• $\lambda = max[\alpha(s)]$

Apply p(s) Thinning

- keep points with probability p(s)
- $p(s) = \alpha(s)/\lambda$
- e.g., keep if generated uniform random number < p(s)

Cox Process

Doubly Stochastic Process

- Λ(s) is stochastic process over A
- events inhomogeneous Poisson process with $\lambda(s) = \Lambda(s)$ (a realization)

Log-Gaussian Process

- $\Lambda(s) = exp[Z(s)]$ with $Z(s) \sim N(\mu, \sigma^w)$
- $E[\lambda] = exp(\mu + 0.5\sigma^2)$

Cox process

Identification

Inverse problem

identify process from pattern

True Contagion - Apparent Contagion

impossible to distinguish contagious process from heterogeneous process

Identification

Bartlett Equivalence

 Cox process (heterogeneity) and Poisson Cluster process (contagion) yield equivalent patterns

Identification Strategies

- repeated observation, covariates
- heterogeneous in same location, contagious not

Regular Pattern

Less Grouped than CSR

- fewer high densities, empty space
- dispersed
- repulsion, competition

Underdispersion

- variance < mean
- less variation in densities than CSR

Inhibition Process

Minimum Permissible Distance

- ullet no two points closer than δ
- packing intensity $\tau = \lambda \pi \delta^2/4$

Matern Process

- I: thinned Poisson process using δ
- II: sequential inhibition process, generates points conditional on previous points and distance (denser than I)

Matern I and II $\lambda = 100$

Matern I, lambda=100, radius=0.05

Matern II. lambda=100, radius=0.05

Matern I and II $\lambda = 500$

30 / 33

Markov Point Processes

Allow for Interaction

- neighbors $||x y|| < \delta$, range of process
- likelihood relative to Poisson with $\lambda = 1$
- f(x) = exp(-|A|)

Strauss Process

- $f(x) = \alpha \beta^n \gamma^s$
- β intensity, n number of points
- γ interactions, γ < 1 is inhibition, s pairs

Interaction Processes

Pairwise Interaction Point Processes

- $f(x) = \alpha \beta^n \prod_i \prod_{i \neq i} h(||x_i x_j||)$
- h = 0 for $\delta > 0$

Area Interaction Point Processes

- $f(x) = \alpha \beta^n \alpha^{-A(X,\delta)}$
- $\delta = 1$: Poisson
- δ < 1 : inhibition
- $\delta > 1$: aggregated