27 Гидравлический пресс

Гидравлический пресс — это устройство, состоящее из двух сосудов, закрытых поршнями и соединенных трубкой. В сосудах между поршнями находится жидкость (рис. 1).

Рис. 1. Гидравлический пресс

Пусть гидравлический пресс установлен на горизонтальной опоре, а высоты столбов жидкости в сосудах одинаковы. Если, например, к левому поршню площадью S_{π} приложена некоторая сила \vec{F}_{π} , направленная вниз, то под ним в жидкости возникнет давление P_{π} . Это давление будет передано согласно закону Паскаля в любую точку жидкости, в том числе — под правый поршень (давление P_{π}). Для равновесия всей системы необходимо, чтобы и на правый поршень площадью S_{π} действовала некоторая сила \vec{F}_{π} , направленная так же вниз. Вот связь давлений в гидравлическом прессе:

$$P_{\pi} = P_{\pi}, \tag{1}$$

где $P_{\rm n}$ и $P_{\rm n}$ — давления под левым и правым поршнем соответственно.

Так, в примере на рис. 1, если считать площади поршней неодинаковыми $(S_{\pi} > S_{\pi})$, с учетом определения давления и формулы (1) силы F_{π} и F_{π} связаны следующим соотношением: $F_{\pi} > F_{\pi}$.

Формулу (1) используют при решении многих стандартных задач этой темы.

Задача. Два сообщающихся сосуда с различными поперечными сечениями (рис. 2) наполнены водой. Площадь поперечного сечения у узкого сосуда в 100 раз меньше, чем у широкого. На поршень A поставили гирю весом 10 Н. Какой груз надо положить на поршень B, чтобы оба груза находились в равновесии? (Весом поршней и трением пренебречь.)

Рис. 2. К задаче

Решение. Удобно (на первых порах — обязательно) начать с «уравнения гидравлического пресса» (1): в данном случае $P_A = P_B$. Далее можно опираться на это уравнение: с учетом определения давления $\frac{F_A}{S_A} = \frac{F_B}{S_B}$. Ясно, что в последнем равенстве известна сила $F_A = 10$ Н, известно и соотношение площадей $\frac{S_B}{S_A} = 100$ (поршень A узкий). Значит из этого уравнения можно выражать и вычислять силу F_B , требуемую для покоя жидкости: $F_B = \frac{S_B}{S_A} \cdot F_A = 100 \cdot 10 = 1000$ Н. Теперь осталось вычислить массу на поршне B (интуитивно понимая, что сила обусловлена тяжестью груза): $m_B = \frac{F_B}{a} = \frac{1000}{10} = 100$ кг.