Исследование и построение многомерных моделей рядов ключевой ставки РФ, США и курса доллар-рубль.

Егор Дранов ФПМИ, МФТИ г. Долгопрудный, Россия dranov.em@phystech.edu

І. Введение

Монетарная политика отдельных стран определяет многие процессы во многих экономических сферах страны. Помимо этого, результаты действий центробанков сторонних стран так же влияют на многие показатели государства. В качестве примера, в данной работе рассматривается связь между ключевой ставкой США и РФ, а так же влияние обеих на курс долларрубль.

Основной идеей работы является исследование трех рядов, представленных выше, а именно проверка на стационарность, проверка причинности по Гренджеру, а так же проверка на коинтеграцию. Последнее является наиболее интересным аспектом в изучении свойств этих трех рядов, поскольку существует интерпритация возможного наличия данного свойства.

Поскольку конвертация валюты, покупка облигаций и обратная конвертация может приводить к арбитражу, то связь между этими тремя рядами должна быть достаточно четкой, чтобы этого не происходило(в рамках предположения, мы считаем, что арбитраж невозможен на рынках, поскольку быстро схлопывается). Более конкретное описание будет приведено далее.

Помимо исследования свойств рядов, так же проводится построение моделей VAR и VECM, с данными на разных промежутках. Например, с января 2018 по июль 2023 ряды не коинтегрированы, поэтому делая их стационарными, можно посроить VAR модель. Однако на других участках у рядов появляется коинтеграция, которая вынуждает пользоваться моделью VECM.

II. Модель VAR

Рассмотрим модель VAR для наших данных. Для начала построим графики рядов ключевой ставки в России, в США, а также курс доллар-рубль(данные рассматриваются с января 2018 по июль 2023), график представлен на рис. 1.

Теперь исследуем, как влияют друг на друга ряды, для этого воспользуемся тестом Гренджера. Напомним, что нулевая гипотеза этого теста — равенство нулю коэффициентов в модели. Если значение p-value < 0.05,

Pис. 1. Time series.

гипотеза отвергается. Для этой проверки воспользуемся библиотекой Python:

	rate_rus_x	dollar_x	rate_us_x
rate_rus_y	1.0000	0.3906	0.8669
dollar_y	0.0000	1.0000	0.0843
rate_us_y	0.0001	0.0329	1.0000

Рис. 2. Granger test.

Как можно видеть, ключевая ставка РФ зависит от курса доллара и от ставки США (p-value принимает значения 0.000 и 0.0001), курс доллара не зависит от ставки РФ, но зависит от ставки США, а ставка США не зависит ни от ставки РФ (p-value принимает значения 0.3906 и 0.0329), ни от курса доллар-рубль (p-value принимает значения 0.8669 и 0.0843). Поэтому порядок следующий, в порядке уменьшения экзогенности: ставка США, курс доллара, ставка РФ.

Теперь сделаем ряды стационарнымы, для этого будем проводить тест Дики-Фуллера, а так же брать разности значений ряда. Изначально ряды курса и ставки США не стационарны. Возьмем первые раз-

ности рядов. Как можно видеть, это делает все ряды стационарными (Рис. 3).

Augmented Dickey-Fuller Test on "rate_rus" Null Hypothesis: Data has unit root. Non-Stationary. Significance Level = 0.05 = -5.8795 Test Statistic = 2 No. Lags Chosen Critical value 1% = -3.546Critical value 5% = -2.912Critical value 10% = -2.594=> P-Value = 0.0. Rejecting Null Hypothesis. => Series is Stationary. Augmented Dickey-Fuller Test on "dollar" Null Hypothesis: Data has unit root. Non-Stationary. Significance Level = 0.05 = -7.3886Test Statistic No. Lags Chosen = 0 Critical value 1% = -3.542Critical value 5% = -2.91Critical value 10% = -2.593=> P-Value = 0.0. Rejecting Null Hypothesis. => Series is Stationary. Augmented Dickey-Fuller Test on "rate_us" Null Hypothesis: Data has unit root. Non-Stationary. Significance Level = 0.05Test Statistic = -3.5392No. Lags Chosen = 1 = -3.544 Critical value 1% Critical value 5% = -2.911Critical value 10% = -2.593=> P-Value = 0.007. Rejecting Null Hypothesis. => Series is Stationary.

Рис. 3. ADF test.

На временном участке с января 2018 по июль 2023 тест на коинтеграцию показывает, что ряды не коинтегрированы (критическое значение p-value бралось 0.05), поэтому можем брать стационарный ряд из разностей и построить VAR. Для этого необходимо определить число лагов в модели с помощью информационных критериев. В качестве основного показателя выберем AIC. На рис. 4 видно, что изначально он падает с ростом числа лагов, однако начиная с 4 опять растет, поэтому оптимальной моделью будем считать модель с тремя лагами.

Обучим модель VAR с тремя лагами на наших данных, получаем следующие результаты (рис. 5):

Сделаем предсказание на четыре шага вперед с помощью нашей модели, построим графики реальных данных и предсказания (рис. 6)

Можно наблюдать, что в целом модель угадала направление движения ряда, а так же определила переломы (например, в случае rate-rus). Полученные метрики предсказаний для каждого ряда:

	AIC	BIC	FPE	HQIC
0	2.174	2.289	8.796	2.218
1	1.788	2.247*	5.983	1.963*
2	1.926	2.729	6.900	2.232
3	1.728	2.875	5.721*	2.165
4	1.893	3.384	6.884	2.460
5	1.872	3.708	6.973	2.571
6	2.004	4.184	8.371	2.834
7	2.073	4.597	9.647	3.034

Рис. 4. Information criterion of model.

	uation rate_rus			-
	coefficient	std. error	t-stat	prob
const	0.002382	0.240837	0.010	0.992
L1.rate_rus	0.164458	0.142208	1.156	0.247
L1.dollar	-0.020612	0.075279	-0.274	0.784
L1.rate_us	-0.528399	0.931874	-0.567	0.571
L2.rate_rus	-0.059477	0.183258	-0.325	0.746
L2.dollar	0.095526	0.076548	1.248	0.212
L2.rate_us	0.521586	0.914648	0.570	0.569
L3.rate_rus	-0.475434	0.178853	-2.658	0.008
L3.dollar	0.014047	0.060539	0.232	0.817
L3.rate_us	-0.454673	0.969736	-0.469	0.639
Results for ed				
	coefficient	std. error	t–stat	prob
const	0.038653	0.495434	0.078	0.938
L1.rate rus	1.653435	0.292541	5.652	0.000
L1.dollar	-0.108541	0.154858	-0.701	0.483
L1.rate_us	3.199065	1.916985	1.669	0.095
L2.rate rus	-0.362412	0.376984	-0.961	0.336
L2.dollar	0.254477	0.157469	1.616	0.106
L2.rate us	1.531659	1.881549	0.814	0.416
L3.rate rus	-1.062172	0.367924	-2.887	0.004
L3.dollar	0.107344	0.124537	0.862	0.389
L3.rate_us	-0.776794	1.994871	-0.389	0.697
Results for ed	uation rate_us			
	coefficient	std. error	t-stat	prob
const	0.035765	0.037706	0.949	0.343
L1.rate_rus	-0.008056	0.022264	-0.362	0.717
L1.dollar	-0.027535	0.011786	-2.336	0.019
L1.rate_us	-0.028989	0.145895	-0.199	0.842
L2.rate_rus	0.038055	0.028691	1.326	0.185
L2.dollar	-0.004185	0.011984	-0.349	0.727
L2.rate_us	0.296459	0.143198	2.070	0.038
L3.rate_rus	-0.038452	0.028001	-1.373	0.170
L3.dollar	-0.003068	0.009478	-0.324	0.746
L3.rate_us	0.215436	0.151823	1.419	0.156

Рис. 5. VAR model.

Рис. 6. Forecasting of time series.

```
Forecast Accuracy of: rate_rus
mape : 0.0286
me : -0.136
mae : 0.2242
               -0.0169
0.2409
mpe
rmse
corr
               0.8892
minmax :
               0.0285
Forecast Accuracy of: dollar mape : 0.112
me : 9.3384
mape
me
mae
                9.3384
mpe
                0.112
               10.5624
0.9407
0.0984
rmse
corr
minmax :
Forecast Accuracy of: rate_us mape : 0.0684 me : 0.3396
mape
                0.3466
               0.067
0.4288
0.8932
mpe
rmse
corr :
               0.0621
```

Рис. 7. Metrics.