(Axiom 1) There are operations + and \cdot defined on \mathbb{R} :

for all
$$p, q \in \mathbb{R}$$
, $p + q \in \mathbb{R}$ and $p \cdot q \in \mathbb{R}$.

(Axiom 2) Each of + and \cdot is a commutative operation:

for all
$$p, q \in \mathbb{R}$$
, $p + q = q + p$ and $p \cdot q = q \cdot p$.

(Axiom 3) Each of + and \cdot is an associative operation:

$$\text{for all } p,q,r \in \mathbb{R}, \ \ (p+q)+r=p+(q+r) \text{ and } (p\cdot q)\cdot r=p\cdot (q\cdot r).$$

(Axiom 4) The number 0 is an identity element for addition and the number $1 \neq 0$ is an identity element for multiplication:

for all
$$p \in \mathbb{R}$$
, $0 + p = p$ and $1 \cdot p = p$.

(Axiom 5) The distributive law holds:

for all
$$p, q, r \in \mathbb{R}$$
, $p \cdot (q + r) = p \cdot q + p \cdot r$.

(Axiom 6) Every number has an additive inverse:

for each
$$p \in \mathbb{R}$$
, there is some " $-p$ " $\in \mathbb{R}$ such that $p + (-p) = 0$.

(Axiom 7) Every nonzero number has a multiplicative inverse:

for each
$$p \in \mathbb{R}, p \neq 0$$
, there is some " p^{-1} " $\in \mathbb{R}$ such that $p \cdot p^{-1} = 1$.

(Axiom 8) There is a "total ordering" \leq on \mathbb{R} . This means that

- (a) for all $p, q \in \mathbb{R}$, either $p \leq q$ or $q \leq p$.
- (b) for all $p, q \in \mathbb{R}$, if $p \leq q$ and $q \leq p$, then p = q.
- (c) for all $p, q, r \in \mathbb{R}$, if $p \leq q$ and $q \leq r$, then $p \leq r$.

(Axiom 9) The total ordering \leq is compatible with addition:

for all
$$p, q, r \in \mathbb{R}$$
, if $p \leq q$ then $p + r \leq q + r$.

(Axiom 10) The total ordering \leq is compatible with multiplication by nonnegative numbers:

for all
$$p, q, r \in \mathbb{R}$$
, if $p \le q$ and $r \ge 0$ then $pr \le qr$.

(COMPLETENESS AXIOM) Every nonempty bounded below subset of \mathbb{R} has a supremum.