37233 Linear Algebra

Assignment 3 - Solutions

Question I

```
a = {{0.03, 58.9}, {5.31, -6.10}}
{{0.03, 58.9}, {5.31, -6.1}}
b = {59.2, 47.0}
{59.2, 47.}
LinearSolve[a, b]
{10., 1.}
```

Now carry out the row reduction step by step, arraying p significant figures at each step. First form the augmented matrix:

```
aug // MatrixForm
(0.03 58.9 59.2 5.31 -6.1 47.
```

Now row reduce

The solution should be the last column

```
solution = {10.0., 1.00}
```

In this case, three - digit precision is sufficient for the calculation

Question 2

Jacobi iterations

$$A = \{\{3, -1, 0, 3\}, \{-1, 3, 1, 2\}, \{0, 2, 4, 1\}, \{1, 0, 3, -3\}\};$$

 $b = \{1, 3, -2, 2\};$

	x1	x2	x3	x4
0	0.	0.	0.	0.
1	0.333333	1.	-0.5	-0.666667
2	1.33333	1.72222	-0.833333	-1.05556
3	1.96296	2.42593	-1.09722	-1.05556

Question 3

$$\begin{pmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ x_3^{(k+1)} \\ x_4^{(k+1)} \end{pmatrix} = \begin{pmatrix} 0 & 1/3 & 0 & -1 \\ 1/3 & 0 & -1/3 & -2/3 \\ 0 & -1/2 & 0 & -1/4 \\ 1/3 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \\ x_4^{(k)} \end{pmatrix} + \begin{pmatrix} 1/3 \\ 1 \\ -1/2 \\ -2/3 \end{pmatrix}$$

$$T = \begin{pmatrix} 0 & 1/3 & 0 & -1 \\ 1/3 & 0 & -1/3 & -2/3 \\ 0 & -1/2 & 0 & -1/4 \\ 1/3 & 0 & 1 & 0 \end{pmatrix}; c = \begin{pmatrix} 1/3 \\ 1 \\ -1/2 \\ -2/3 \end{pmatrix}$$

$$x^{(k+1)} = Tx^{(k)} + C$$

Question 4

Gauss-Seidel iterations

	x1	x2	x3	x4
0	0.	0.	0.	0.
1	0.333333	1.11111	-1.05556	-1.61111
2	2.31481	3.19753	-1.69599	-1.59105
3	2.99023	3.62277	-1.91362	-1.58355

Question 5

The Matrix is not diagonally dominant, so the iterations may converge or diverge.