Hydrolysis resistant monofilament prepn. - comprises drawing soln. contg. polyester obtd. from 1,4-cyclohexane:di:methanol and phthalic acid or 1,4-cyclohexane di:carboxylic acid, stabiliser, and (co)polymer of ethylene] terephthalate,

Publication number: DE4307392 Publication date: 1994-04-21

Inventor: BLOCH KLAUS (DE); WEBER NORBERT (DE)

Applicant: BLOCH KLAUS (DE); MONOFIL TECHNIK GMBH (DE)

Classification:

- international: B01D39/16; C08K5/29; C08L67/02; D01F6/92;

C08L27/12; B01D39/16; C08K5/00; C08L67/00;

D01F6/92; C08L27/00; (IPC1-7): C08G63/18; C08K5/29;

D03D1/00; D03D15/00; D01F6/92; B01D39/16

- European: B01D39/16B4; C08K5/29; C08L67/02; D01F6/92

Application number: DE19934307392 19930310 **Priority number(s):** DE19934307392 19930310

Report a data error here

Abstract of DE4307392

A monofilament is prepd. by extruding and drawing a compsn. contg. (a) 100 pts. wt. of a polyester in which the glycol component comprises at least 50 mols % of cis- and/or trans-1,4-cyclohexane dimethanol and the acid component comprises at least 50% of tere-, and ortho- or iso-phthalic acid and/or 1,4-cyclohexane dicarboxylic acid, and with m.pt. at least 265 deg. C, (b) 1-6 pts. of polyester stabiliser based on a carbodiimide or ketenimide, and (c) 12-100 pts. of a (co)polymer of ethylene terephthalate, in which up to 40 mols % of the terephthalic acid is replaced by other aliphatic or aromatic dicarboxylic acids, esp. isophthalic acid or hexahydrophthalic acid, and with m.pt. about 255 deg.C. USE/ADVANTAGE - The monofilament is esp. for technical fabrics, esp. paper machine screens, filter fabric and conveyor belts (claimed). The monofilament has better resistance to hydrolysis and better strength and elongation, giving, improved loop strength, breaking strength and abrasion resistance.

Data supplied from the esp@cenet database - Worldwide

D 01 F 6/92

B 01 D 39/16 // C08K 5/29,C08G 63/18,D03D 1/00, 15/00

DEUTSCHLAND

DEUTSCHES PATENTAMT Aktenzeichen:

P 43 07 392.1-43

Anmeldetag:

10. 3.93

Offenlegungstag: Veröffentlichungstag

der Patenterteilung: 21. 4.94

Patentschrift

® DE 43 07 392 C 1

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Bloch, Klaus, 53757 Sankt Augustin, DE; Monofil-Technik Gesellschaft für Synthese Monofile mbH, 53773 Hennef, DE

(74) Vertreter:

Müller-Gerbes, M., Dipl.-Ing., Pat.-Anw., 53225 Bonn

(72) Erfinder:

Bloch, Klaus, 5205 Sankt Augustin, DE; Weber, Norbert, 5202 Hennef, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> 90 12 918 WO 83 01 253

- Monof I mit erhöhter Hydrolysebeständigkeit auf Basis Polyester für die Verwendung in technischen Geweben und Verfahren zu dessen Herstellung
- Die Erfindung betrifft ein Monofil mit erhöhter Hydrolysebeständigkeit für die Verwendung in technischen Geweben, wie Papiermaschinensieben, Filtergeweben, Transportbändern und dergleichen, hergestellt durch Extrusion mit nachfolgender Verstreckung einer Polymermischung auf Basis eines Foly-(1,4-cyclohexan-dimethylen-terephthalates), eines Stabilisators für den Polyester und eines Homo- oder Copolymers von Ethylenterephthalat.

Beschreibung

Die Erfindung betrifft ein Monofil mit erhöhter Hydrolyse beständigkeit für die Verwendung in technischen Gewelen, wie Papiermaschinensieben, Filtergeweben, Transportbandern und dergleichen, hergestellt durch Extrusion mit nachfolgender Verstreckung einer Polymermischung auf Basis eines Polyesters, eines Stabilisators für den Polyester und eines thermoplastischen Kunststoffes.

Technische Gewebe aus Monofilen, die beispielsweise bei der Papierberstellung als Papiermaschinensiebe oder als Filtergewebe in der chemischen Industrie oder als Transportbänder eingesetzt werden, sind hohen Beschen Angriffen ausgesetzt, die ihre Lebensdauer und Stabilität in erheblichem Maße beeinträchtigen. Für die Produktivität einer Papiermaschinenanlage ist es jedoch wesentlich, die Papiermaschinensiebe nicht zu häufig wechseln zu müssen und auch die Reinigungszei- 20 ten einzuschränken.

Es sind daher bereits eine Reihe von Monofilen für technische Gewebe für den vorgenannten Einsatz bekannt geworden, die die Lebensdauer der Gewebe bei den in der Praxis auftretenden Beanspruchungen erhöhen sollen. Insbesondere ist die Erhöhung der Hydrolysebeständigkeit und der Abriebbeständigkeit derartiger Gewebe und der hierfür eingesetzten Filamente erwünscht.

In der EP 0287297 wird ein Gewebe zur Verwendung 30 in eine: Papiermaschine beschrieben, das Fasern aus Polyamid-12 aufweist, ebenso wird in der WO 91/08340 ein Gewebe für Papiermaschinensiebe aus Fasern auf Basis von Polyamid-12,12 mit einer Intrinsic-Viskosität von nicht weniger als 0,65 bl/g vorgeschlagen.

Des weiteren werden seit langem Gewebe aus Polyesterfasern auf Basis Polyethylenterephthalat als Papiermaschinensiebe eingesetzt, wozu beispielsweise auf DE-OS 18 14 481, EP 0158710 A1 verwiesen wird. Eine satz von Monofilen mit niedrigem Carboxyl-Gruppengehalt ist aus der WO 83/01253 bekannt, bei dem ein Polymerblend aus Polyethylenterephthalat und einem thermo plastischen Material auf Basis von Polyurethan und Polyetheresterblock-Copolymer in Verbindung mit 45 einem Polyesterstabilisator auf Basis eines Polycarbodiimide: vorgeschlagen wird.

Verbesserte chemische Resistenz wird mit Papiermaschinensieben aus Fasern aus Polyetheretherketonen oder Polyphenylensulfid erreicht, die jedoch sehr teuer 50 sind und sich schwierig verarbeiten lassen, siehe EP 0473 430 und EP 0221 691 B1.

In der WO 90/12918 wird nun in Weiterbildung des Standes der Technik ein Gewebe für die Verwendung als Papiermaschinensieb vorgeschlagen, das aus Fasern 55 aus Poly(1,4-cyclohexandicarbinyltherephthalat) besteht, die einen Schmelzpunkt größer als 260°C, vorzugsweise über 280°C aufweisen. Die aus derartigen Fasern hergestellten Gewebe weisen zwar eine hohe der aus derartigen Fasern hergestellten Gewebe durch Abrieb begrenzt. Insbesondere läßt die Knotenfestigkeit und Knickfestigkeit des Gewebes zu wünschen

Der Erfindung liegt die Aufgabe zugrunde, Monofile für die Herstellung von technischen Geweben hoher Beanspruchung zu schaffen, die gegenüber bekannten Geweben auf Basis von Polyesterfasern eine verbesser-

te Hydrolysebeständigkeit aufweisen und deren Lebensdauer durch verbessertes Festigkeits- und Dehnungsverhalten der Fasern, die zur Erhöhung der Knotenfestigkeit und Knickfestigkeit und Abriebfestigkeit führen, sich auszeichnen.

Die Erfindung schlägt daher ein in bezug auf Hydrolysebeständigkeit und mechanische Festigkeiten verbessertes Monofil vor, das sich durch eine Zusammensetzung gemäß dem kennzeichnenden Merkmal des An-10 spruches 1 auszeichnet. Die Polyester der Komponente A werden abgekürzt üblicherweise mit PCT bezeichnet, die Polyester der Komponente C üblicherweise mit

Erfindungsgemäß wird eine Polyestermischung voranspruchungen in bezug auf Abrieb, Hydrolyse, chemi- 15 geschlagen, deren Komponente A auf Basis von Homound Copolymeren von 1,4-cyclohexandimethylen mit Säurekomponenten ausgewählter Dicarbonsäuren zu mindestens 50% in der Mischung vorhanden ist und eine hohe thermische Stabilität mit hoher Hydrolysebeständigkeit vermittelt und deren zweite Komponente ein Polyethylenterephthalat oder Polyethylenterephthalatcopolymer umfaßt, das überraschenderweise, ohne die Hydrolysebeständigkeit der Gesamtmischung in Frage zu stellen, eine Verbesserung der mechanischen Festigkeiten des Monofils und damit herstellbarer Gewebe bewirkt. Unter Gewebe werden hier auch Gewirke, Gelege, Filze verstanden, die aus Monofilen herstellbar sind.

> Polyester der Komponente A können beispielsweise nach dem in der DE-AS 12 22 205 beschriebenen Verfahren hergestellt werden.

Die Hydrolysebeständigkeit der als Komponente A eingesetzten Polyester kann durch Einbau sperriger Einheiten verbessert werden, insbesondere durch Ersatz 35 der Glykolkomponente bis zu 50 Molprozent durch verzweigte aliphatische Glykole, wie beispielsweise durch die im Anspruch 5 aufgeführten Glykole.

Der Schmelzpunkt des Polyesters gemäß Komponente A wird um so höher je höher der Anteil der Transkonweitere Verbesserung der Polyestergewebe durch Ein- 40 figuration von 1,4-cyclohexandimethanol im Polyester ist.

> Durch Zusatz eines Polvesterstabilisators auf Basis eines Carbodiimides oder Ketenimines wird die Hydrolysebeständigkeit des Monofils verbessert. Es können auch andere Polyesterstabilisatoren auf Basis von Glycidylether, Aziridinen und Isocyanaten eingesetzt werden, jedoch haben sich die Polymere und Copolymere von Benzol-2,4-disocyanat-1,3,5-tris(1-methylethyl) gut bewährt. Sie sind unter dem Handelsnamen "Stabaxol P" oder "Stabaxol P-100" von der Rhein-Chemie Rheinau GmbH, BRD, erhältlich.

Vorteilhafte Ausgestaltungen des erfindungsgemä-Ben Monofils sind den kennzeichnenden Merkmalen der Ansprüche 2 bis 11 entnehmbar.

Die erfindungsgemäßen Monofile zeichnen sich durch eine gegenüber den bekannten Monofilen sowohl aus Polyethylenterephthalaten oder aus Poly-(1,4-cyclohexan-dimethylenterephthalat) gemäß WO 90/12918 durch eine verbesserte Hydrolysebeständigkeit und Temperaturfestigkeit auf, jedoch ist die Lebensdauer 60 durch verbesserte Abrieb-, Knick- und Knotenfestigkeit der Monofile und hieraus hergestellter Gewebe aus. Dies ist um so überraschender, als durch den Zusatz von Polyestern mit niedrigem Schmelzpunkt gemäß Komponente C zu dem Polyester der Komponente A mit hohem Schmelzpunkt die Hydrolysebeständigkeit des Monofils nicht beeinträchtigt wird.

Eine erfindungsgemäße weitere Ausgestaltung erfährt das Monofil durch den Zusatz geringer Mengen

eines fluorhaltigen Polymeren, das dem Monofil schmutzabweisende Eigenschaften verleiht und gleichzeitig die Hydrolysebeständigkeit des Monofils verbessert. Auch die Festigkeit des Monofils wird durch den Zusatz geeigneter Fluorpolymere verbessert. Es ist überraschend, daß diese Fluorpolymere, die von Hause aus hydrophob sind, in kleinen Mengen zugegeben, sich gleichmäßig verteilen lassen und eine homogene Mischung bilden, die zu den Monofilen extrudiert werden kann. Jecoch ergibt sich überraschend, daß die Fluorpo- 10 lymere an die Oberfläche des Monofils migrieren oder ausbluten und dadurch das Monofil mit einer hydrophoben Oberflächenschicht umgeben, die dem Monofil au-Berorder tlich erwünschte schmutzabweisende Eigenschaften vermittelt. Mit derartigen Monofilen herge- 15 stellte Gewebe, beispielsweise als Papiermaschinensiebe, nehmen den Schmutz nicht so leicht an und haben damit eine längere Betriebszeit, ehe sie gereinigt werden müssen. Des weiteren wird durch den Zusatz von Fluorpolymeren die Geschmeidigkeit der Monofile er- 20 höht, was zu einer verbesserten Knickfestigkeit der Monofile und hieraus gefertigter Gewebe führt.

Bevorzugt werden als Fluorpolymere Ethylentetrafluorethylen-Copolymer oder Ethylen-Chlortrifluorethylen-Copolymer eingesetzt, die bei Temperaturen um 25 300°C noch gut durch Extrusion verarbeitbar sind.

Um die Polymermischung bei der Extrusion zu den Monofilen zu schonen, insbesondere thermische und thermooxidative Abbaureaktionen auszuschließen. auch den hydrolytischen Abbau einzuschränken, kann 30 der Polymermischung für die Extrusion ein Antioxidans in geringen Mengen zugegeben werden, gegebenenfalls ist es auch möglich, das Antioxidans bereits bei der Polykondensation der Polyester zuzugeben.

Insbesondere ist es möglich, durch den Zusatz von 35 Antioxidentien die thermooxidative Beständigkeit der Polyester während des Extrusionsvorganges zu erhöhen und beispielsweise durch Zusatz von geeigneten Antioxidantien bei der Polykondensation der Polyester die Carboxylgehalte zu verringern, wodurch die hydrolyti- 40 sind. sche Stabilität der Polyesterfasern erhöht wird. Geeignete Antioxidantien, die bei der Polykondensation der Polyester zugegeben werden können, sind beispielsweise Triphenylphosphat, Trimethylphosphat oder hochmolekulare Antioxidantien auf Basis von Hydroxyphe- 45 nylpropionat oder Hydroxybenzyl-Verbindungen, wie zum Beispiel

Pentaerythrityl-tetrakis-3-(3,5-di-tert.-butyl-4-hydroxyphenyl)-propionat. Zur Stabilisierung der Schmelze bei Basis von Hydroxyphenylpropionat oder Triphenylphosphit verwendet, 1,6-Hexamethylen-bis-3-(3-tert.-butyl-4-hydroxyphenyl)-propionat, Triethylenglykol-bis-3-(3-tert.-butyl-4-hydroxy-5-methylphenyl)-propionat,

Pentaerythrityl-tetrakis-3-(3,5-di-tert.-butyl-4-hydroxyphenyl)-propionat.

Die Erfindung betrifft auch ein Verfahren zum Herstellen von Monofilen mit erhöhter Hydrolysebeständigkeit auf Basis von Polyestern, bei dem gemäß den 60 homogene Polymermischung mit allen vorgenannten kennzeichnenden Merkmalen des Anspruches 12 verfahren wird. Mit dem erfindungsgemäßen Verfahren werden erhöht hydrolysebeständige Monofilamente mit Festigkeitseigenschaften erhalten, die sich zu hoch strapazierfähigen Geweben für den Einsatz als Papierma- 65 wird danach erst durch siedendes Wasser geführt und schinensiebe oder Filtergewebe oder Transportbänder verarbeiten lassen, wobei sie gegenüber bekannten Polyestergev/eben eine erhöhte Hydrolysebeständigkeit

und Lebensdauer in bezug auf mechanische Beanspruchungen aufweisen.

Je nach dem Verwendungszweck werden die extrudierten Monofile nachfolgend verstreckt und einer Thermobehandlung zur Thermofixierung unterworfen, durch die ihnen ein frei wählbarer Wärmeschrumpf im Bereich von 1 bis 20%, gemessen in Heißluft bei 200°C während 30 Minuten, inkorporiert wird. Beispielsweise werden für die Herstellung von dichtgewebten Geweben Monofile fit nur einem geringen freien Rest Wärmeschrumpf eingesetzt und gewünscht, während beispielsweise für spiralförmig gewebte Filtersiebe ein hoher Wärmeschrumpf der Monofile erwünscht ist, um diese Filtersiebe nach der Herstellung durch Schrumpfung zu verdichten. Je Höher die Temperatur und Verweilzeit des Monofils bei der Thermobehandlung ist, desto geringer ist der verbleibende freie Wärmeschrumpf. Erfindungsgemäß können nach den Verfahrensansprüchen Monofile mit unterschiedlichem freiem Wärmeschrumpf hergestellt werden. Ein geeignetes Verfahren zum Verstrecken und Fixieren von Monofilen, das für die extrudierten Monofile anwendbar ist, wird zum Beispiel in der DE 41 05 689 C1 beschrieben.

Bei der Verarbeitung der Polymermischung in einem Einschneckenextruder ist wegen der hohen thermischen Beanspruchung und Reibung der Polymermasse in dem Einschneckenextruder der Zusatz eines die thermische und thermooxidative Beständigkeit des polyestererhöhenden Antioxidans in geringen Mengen erwünscht. Dieses Antioxidans wird bevorzugt in Gestalt eines Batches mit anteiligen Polyestermengen vorgemischt und dann als Batch der übrigen Polymermischung zugegeben, um eine homogene Mischung und gleichmäßige Verteilung des Antioxidans zu erhalten.

Nach dem erfindungsgemäßen Verfahren werden verstreckte Monofile mit Enddurchmessern von 0,15 bis 2,0 mm hergestellt, die sich zu Geweben, Gewirken, Gelegen oder dergleichen verarbeiten lassen, die als Papiermaschinensiebe, Transportbänder, Filter einsetzbar

Die Erfindung wird nachfolgend an einem Ausführungsbeispiel erläutert.

Beispiel

Aus 100 kg eines Polyesters der Komponente A. der erhältlich ist unter dem Handelsnamen "Kodar THERMX Copolyester 13319" der Eastman Chemical International AG, Schweiz, und 5 kg des Polyesters mit der Extrusion werden beispielsweise Antioxidantien auf 50 dem Handelsnamen "Kodar THERMX Copolyester 13319 L0001", enthaltend ein Antioxidans, 18 kg eines Ethylenterephthalatisophthalat-Copolymers, erhältlich unter der Handelsbezeichnung "Arnite D04300 der DSM, Niederlande, und 2 kg "Stabaxol P 100" der Stabier Rhein-Chemie Rheinau GmbH, wird eine Polymermischung hergestellt, wobei zuerst das "Stabaxol" in das Polyethylenterephthalat-Copolymer eingearbeitet wird und anschließend mit den übrigen Mischungsbestandteilen eine homogene Mischung hergestellt wird. Diese Bestandteilen wird dann einem Einschneckenextruder zugeführt und in diesem bei einer Temperatur von 290 bis 330°C aufgeschmolzen und durch eine Düse mit Löchern zu Monofilen extrudiert. Das extrudierte Monofil danach durch eine Heißluftzone mit 280°C geführt und dabei um das 4fache verstreckt. Hierbei wird ein Monofil mit einem Enddurchmesser von 0,5 mm erhalten.

5

Anschließend werden einige Monofile bei einer Temperatur von 250°C während 5 Sekunden thermofixiert, d. h. bei Durchlaufen eines Heißluftofens von 250°C. Diese Monofile haben, gemessen bei 200°C während 30 Miruten, einen Wärmeschrumpf von 2,5%, während die nicht thermofixierten Monofile bei 200°C während 30 Miruten einen Wärmeschrumpf von 19% aufweisen. Die thermofixierten und die nicht thermofixierten Monofile werden dann der Hydrolyseprüfung unterzogen.

Die Ergebnisse der Hydrolyseprüfung sind in den beigefügten Figuren 1 und 2 dargestellt. Die Hydrolyseprüfung findet in einem mit Wasserdampf gefüllten Autoklaven von 120°C bei 1,5 bar statt, wobei die Monofile über einen längeren Zeitraum hin gelagert und in bestimmten Zeitabständen entnommen und ihre Deh- 15 nungsabnahme bzw. Festigkeitsabnahme gemessen wird. Hierbei handelt es sich bei dem Monofil V06 um das thermofixierte und bei V07 um das nicht thermofixierte Monofil gemäß Beispiel. Als Vergleich dazu ist ein Monofil aus Trevira 900 C (Handelsmarke der Firma 20 Hoechst) mit einem Durchmesser von 0,35 mm geprüft. In der Figur 1 ist die gemessene Dehnungsabnahme bei der Hydrolyseprüfung und in der Figur 2 die gemessene Festigkeitsabnahme bei der Hydrolyseprüfung, umgerechnet auf cN/tex dargestellt, gemessen in Zeitabstän- 25 den über einen Zeitraum von 800 h (33 Tagen).

Die erfindungsgemäßen Monofile V06 und V07 haben zwar eine geringere Anfangsdehnung als das Vergleichsmonofil Trevira, jedoch sind sie um die 3fache Zeit lär ger stabil und fallen erst nach einer Prüfzeit von 30 über 600 Stunden im Vergleich zu 200 Stunden des Trevirafadens auf einen unbrauchbaren Wert ab. Hierbei schneidet das nicht thermofixierte Monofil V07 etwas besser ab als das thermofixierte Monofil V06.

Auch die Festigkeitsabnahme gemäß Figur 2 zeigt die Überlegenheit der erfindungsgemäßen Monofile V06 und V07 gegenüber einem herkömmlichen Polyester-Monofil aus Trevira 900 C. Auch hier zeigt sich, daß die Hydrolysebeständigkeit sich auf den 3fachen Zeitraum verlängert und damit die Lebensdauer des Monofils erhöht, was mit herkömmlichen und bisher bekannten Monofilen auf Basis von Polyestern nicht erreichbar war. Auch hier zeigt das nicht thermofixierte Monofil V07 ein etwas besseres Verhalten als das thermofixierte Monofil V06.

Der als Komponente A in dem vorangehenden Beispiel eingesetzte Copolyester Kodar THERMX 13319 weist eine inhärente Viskosität von 0,96 auf bei einer Dichte 1,195 g/cm³ bei 23°C und einen kristallinen Schmelzpunkt von 285°C auf.

Die Monofile gemäß Beispiel haben einen Schmelzpunkt von 258,7°C, gemessen nach der DSC-Methode in Schritten von 10°C/min. von 50°C bis 280°C, siehe beigefügte Aufschmelzkurve der Monofile V06 und V07 gemäß Figur 3.

Die erfindungsgemäß hergestellten Monofile gemäß Beispiel 1 zeigen sich auch den aus der WO 90/12918 hergestellten Monofilen aus Poly-(1,4-cyclohexandimethylenterephthalat) in bezug auf die Hydrolysebeständigkeit, nämlich Dehnungsabnahme und Festigkeitsabnahme, durch ihre gegenüber diesen wesentlich erhöhte Lebensdauer überlegen.

Patentansprüche

 Monofil mit erhöhter Hydrolysebeständigkeit fuhr die Verwendung in technischen Geweben, insbesondere Papiermaschinensieben, Filtergeweben und Transportbändern, hergestellt durch Extrusion mit nachfolgender Verstreckung einer Polymermischung auf Basis eines Polyesters, eines Stabilisators für den Polyester und eines thermoplastischen Kunststoffes, gekennzeichnet durch eine Zusammensetzung, enthaltend

- a) als Komponente A 100 Gew.-Teile eines Polyesters, dessen Glykolkomponente mindestens zu 50 Molprozent aus cis- und/oder trans-1,4-Cyclohexandimethanol und dessen Säurekomponente zu mindestens 50 Molprozent aus Tere-, Ortho- oder Isophthalsäure oder 1,4-Cyclohexandicarbonsäure oder deren Mischung besteht und der einen Schmelzpunkt von mindestens 265°C aufweist,
- b) als Komponente B 1-6 Gew. Teile eines Polyesterstabilisators auf Basis eines Carbodiimides oder Ketenimines,
- c) als Komponente C 12—100 Gew.-Teile eines Homo- oder Copolymers von Ethylenterephthalat, bei dem bis zu 40 Molprozent der Terephthalsäure durch andere aliphatische oder aromatische Dicarbonsäuren, insbesondere Isophthalsäure, Hexahydroterephthalsäure ersetzt sind mit einem Schmelzpunkt im Bereich von 255°C.
- 2. Monofil nach Anspruch 1, dadurch gekennzeichnet, daß auf 100 Gew.-Teile der Komponente A bis zu höchstens 6 Gew.-Teile eines extrudierbaren fluorhaltigen Polymeren als Komponente B mit einer Kristallitschmelztemperatur von mindestens 260°C enthalten sind.
- 3. Monofil nach Anspruch 2, dadurch gekennzeichnet, daß als fluorhaltiges Polymer Ethylentetrafluorethylen-Copolymer oder Ethylen-Chlortrifluorethylen-Copolymer enthalten ist.
- 4. Monofil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Komponente A ein Homo- oder Copolymer von Poly-(1,4-cyclohexandimethylenterephthalat) mit einem Schmelzpunkt von mindestens 280°C eingesetzt ist, bei dem bis zu 50 Molprozent der Glykolkomponente durch einen verzweigten aliphatischen Glykol ersetzt ist.
- 5. Monofil nach Anspruch 4, dadurch gekennzeichnet, daß als verzweigtes Glykol 2,2-Dimethyl-1,3-propandiol, Trimethylolpropan, Trimethylolethan, Pentaerythrit oder Glycerin eingesetzt ist.
- 6. Monofil nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß geringe Mengen eines die thermische und thermooxidative Beständigkeit des Polyesters erhöhenden Antioxidans als Komponente E enthalten sind.
- 7. Monofil nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Stabilisator ein Copolymer von Benzol-2,4-Diisocyanat-1,3,5-tris(1-methylethyl) mit Benzol-2,6-Diisopropyl-diisocyanat eingesetzt ist.
- 8. Monofil nach einem der Ansprüche 1 bis 7, gekennzeichnet durch
- 100 Gew.-Teile eines Copolyesters von Poly-(1,4-cyclohexan-dimethylenterephthalat) mit einem Schmelzpunkt von 285°C,
- 1—2 Gew.-Teile Stabilisator aus Copolymer von Benzol-2,4-Diisocyanat-1,3,5-tris(1-methylethyl) mit Benzol-2,6-Diisopropyl-diisocyanat,
- 12—25 Gew.-Teile Ethylenterephthalat-isophthalat-Copolymer mit einem Schmelzpunkt von 255°C, wobei das Monofil einen Schmelzpunkt kleiner

6

260° C und größer 255° C aufweist.

9. Monofil nach Anspruch 8, gekennzeichnet durch einen Gehalt von bis zu 1 Gew.-%, vorzugsweise unte 0,5 Gew.-%, eines Antioxidans.

10. Monofil nach Anspruch 8 oder 9, gekennzeichnet curch einen Gehalt von 2-4 Gew.-% Ethylentetrafluorethylen-Copolymer oder Ethylen-Chlortrifluorethylen-Copolymer.

11. Monofil nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, daß ein Polyester der 10 Komponente A und/oder C eingesetzt ist, dem bei der Polykondensation geringe Mengen von weniger als 0,5, bevorzugt weniger als 0,3 Gew.-% eines toxikologisch unbedenklichen den Carboxyl-Gruppengehalt des Polyesters herabsetzenden Antioxidans zugegeben wurde.

12. Verfahren zum Herstellen von Monofilen mit erhönter Hydrolysebeständigkeit für die Herstellung von technischen Geweben, insbesondere für Papiermaschinensiebe, Filtergewebe, Transport- 20 bänder durch Extrusion mit nachfolgender Verstreckung einer Polymermischung auf Basis eines Polyesters, eines Stabilisators für den Polyester und eines thermoplastischen Kunststoffes, dadurch gekennzeichnet, daß 1-6 Gew.-Teile eines Stabilisa- 25 tors auf Basis eines Carbodiimides oder Ketenimines und 12-100 Gew.-Teile eines Homo- oder Copolymers eines Ethylenterephthalates mit einer aliphatischen oder aromatischen Dicarbonsäure zu einem Batch compoundiert und dieses Batch mit 30 100 Gew.-Teilen eines Polyesters, dessen Glykolkomponente mindestens zu 50 Molprozent aus cisund/oder trans-1,4-Cyclohexandimethanol und dessen Säurekomponente zu mindestens 50 Molprozenten aus Tere-, Ortho- oder Isophthalsäure oder 35 1,4-Cyclohexandicarbonsäure oder der Mischung besteht, und das einen Schmelzpunkt von mindestens 265°C aufweist, sowie gegebenenfalls bis zu höchstens 6 Gew.-Teilen eines extrudierbaren fluorhaltigen Polymeren mit einem Kristallitschmelz- 40 punkt von mindestens 260°C vermischt wird, diese Mischung in einen Schneckenextruder gegeben und bei einer Temperatur von 290 bis 330°C aufgeschmolzen und zu Monofilen extrudiert wird, die Monofile durch Abkühlung bis herunter auf 80 bis 45 120°C verfestigt werden, und nachfolgend um das 2- bis zu 7fache in Luft und/oder Wasser bei erhöhten Temperaturen, jedoch unterhalb des Schmelzpunktes der Monofile, verstreckt und gegebenenfalls danach thermisch fixiert werden.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die extrudierten Monofile erst durch siedendes Wasser einer Temperatur von 95 bis 100°C gezogen und anschließend durch Heißluft einer Temperatur von 240 bis 310°C hindurchgezogen und dabei verstreckt werden, anschließend eine Temperstrecke mit einer Temperatur zwischen 15°C und 270°C durchlaufen und dabei thermisch fixiert werden, wobei verstreckte Monofile mit Durchmessern von 0,15 mm bis 2,0 mm und einem freien Wärmeschrumpf von 1 bis 20%, gemessen in Heißluft bei 200°C während 30 min., erhalten werden

14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß bei Extrusion der Mischung mittels 65 eines Einschneckenextruders ein die thermische und 1hermooxidative Beständigkeit der Polyester erhöhendes Antioxidans in geringen Mengen von

nicht mehr als 0,5 Gew.-%, bezogen auf alle Polyesteranteile in Gestalt eines Batches aus anteiliger Komponente A, enthaltend das Antioxidans in einer Menge von 1 bis höchstens 20 Gew.-% der Polymermischung zugegeben wird.

Hierzu 3 Seite(n) Zeichnungen

Nummer: Int. Cl.⁵: DE 43 07 392 C1 D 01 F 6/92

FIG

Veröffentlichungstag: 21. April 1994

C 1,5 bar

120

Nummer: Int. Cl.⁵: DE 43 07 392 C1 D 01 F 6/92

 \sim

FIB.

800 Hydrolyse Prüfung Festigkeitsabnahme cN/tex 600 Monofil V07 Stunden 400 5 006 200 Monofil V06 Trevira * cN tex 35, 25 20 40 30 15 Q 10 F98キーgkgー+

C 1,5 bar

120

Nummer: DE 43 07 392 C1 Int. Cl.⁵: D 01 F 6/92

Veröffentlichungstag: 21. April 1994

