→ Health Insurance Premium Prediction using Python

```
import numpy as np
import pandas as pd
data = pd.read_csv("/content/Health_insurance.csv")
data.head()
```

	age	sex	bmi	children	smoker	region	charges	
0	19	female	27.900	0	yes	southwest	16884.92400	ılı
1	18	male	33.770	1	no	southeast	1725.55230	
2	28	male	33.000	3	no	southeast	4449.46200	
3	33	male	22.705	0	no	northwest	21984.47061	
4	32	male	28.880	0	no	northwest	3866.85520	

Before moving forward, let's have a look at whether this dataset contains any null values or not:

```
data.isnull().sum()

age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64
```

The dataset is therefore ready to be used. After getting the first impressions of this data, I noticed the "smoker" column, which indicates whether the person smokes or not. This is an important feature of this dataset because a person who smokes is more likely to have major health problems compared to a person who does not smoke. So let's look at the distribution of people who smoke and who do not:

```
import plotly.express as px
data = data
figure = px.histogram(data, x = "sex", color = "smoker", title= "Number of Smokers")
figure.show()
```

Number of Smokers

According to the above visualisation, 547 females, 517 males don't smoke, and 115 females, 159 males do smoke. It is important to use this feature while training a machine learning model, so now I will replace the values of the "sex" and "smoker" columns with 0 and 1 as both these columns contain string values:

```
data["sex"] = data["sex"].map({"female": 0, "male": 1})
data["smoker"] = data["smoker"].map({"no": 0, "yes": 1})
print(data.head())
                  bmi children smoker
                                          region
                                                     charges
    0
             0 27.900
                        0
                                 1 southwest 16884.92400
             1 33.770
       18
                                     0 southeast 1725.55230
    1
                             1
        28
             1 33.000
                                    0 southeast
                                                  4449.46200
                                   0 northwest 21984.47061
    3
        33
             1 22.705
    4
             1 28.880
                             0
                                    0 northwest 3866.85520
        32
```

Now let's have a look at the distribution of the regions where people are living according to the dataset:

```
import plotly.express as px
pie = data["region"].value_counts()
regions = pie.index
population = pie.values
fig = px.pie(data, values=population, names=regions)
fig.show()
```


Now let's have a look at the correlation between the features of this dataset:

```
print(data.corr())
```

```
        age
        sex
        bmi
        children
        smoker
        charges

        age
        1.000000
        -0.020856
        0.109272
        0.042469
        -0.025019
        0.299008

        sex
        -0.020856
        1.000000
        0.046371
        0.017163
        0.076185
        0.057292

        bmi
        0.109272
        0.046371
        1.00000
        0.012759
        0.003750
        0.198341

        children
        0.042469
        0.017163
        0.012759
        1.000000
        0.007673
        0.0067998

        smoker
        -0.025019
        0.057292
        0.198341
        0.067998
        0.787251
        1.000000

        cipython-input-6-40835dlef585>:1:
        Futur-Warning:
        1.000000
        0.00000
        0.00000
        0.00000
```

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid

Health Insurance Premium Prediction Model

Now let's move on to training a machine learning model for the task of predicting health insurance premiums. First, I'll split the data into training and test sets:

```
x = np.array(data[["age", "sex", "bmi", "smoker"]])
y = np.array(data["charges"])
from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.2, random_state=42)
```

After using different machine learning algorithms, I found the random forest algorithm as the best performing algorithm for this task. So here I will train the model by using the random forest regression algorithm:

```
from sklearn.ensemble import RandomForestRegressor
forest = RandomForestRegressor()
forest.fit(xtrain, ytrain)

* RandomForestRegressor
RandomForestRegressor()
```

Now let's have a look at the predicted values of the model:

So this is how you can train a machine learning model for the task of health insurance premium prediction using Python.

→ Summary

The premium amount of a health insurance policy depends on person to person as many factors affect the premium amount of a health insurance policy. I hope you liked this article on health insurance premium prediction with machine learning using Python.