Université Paris-Sud - Topologie et Calcul Différentiel Année 2021-2022

Examen du mardi 7 Juin 2021

Début 8h30 Durée : 3 heures

Les téléphones portables doivent obligatoirement être rangés <u>éteints</u>. Documents et appareils électroniques interdits.

Dans tout cet énoncé, \mathbb{R}^n est muni de la norme euclidienne, notée || ||, et de la distance euclidienne. Donc $||x|| = \left\{ \sum_{j=1}^n x_j^2 \right\}^{1/2}$. On notera $\langle x, y \rangle$ le produit scalaire euclidien entre $x \in \mathbb{R}^n$ et $y \in \mathbb{R}^n$. On note (e_1, e_2, \ldots, e_n) la base canonique de \mathbb{R}^n .

Exercice 1. On définit une fonction $f: \mathbb{R}^3 \to \mathbb{R}$ par

$$f(x, y, z) = (a + \cos(x))^{2} + (a + \cos(y))^{2} + \sin^{2}(z)$$

pour $(x, y, z) \in \mathbb{R}^3$, où $a \in \mathbb{R}$ est un paramètre.

- 1. Expliquer pourquoi f est différentiable sur \mathbb{R}^3 et calculer ses dérivées partielles en (x, y, z).
- 2. Dites (précisément) qui est la différentielle Df(x,y,z) de f au point $(\frac{\pi}{2},\frac{\pi}{2},0)$.
- 3. Vérifier que 0 = (0, 0, 0) est un point critique pour f, et expliquer pourquoi, rien qu'en regardant la variable z, on peut dire que f n'a pas de maximum local en 0.
- 4. Calculer (en fonction de a) les dérivées partielles secondes de f en (x, y, z).
- 5. Ecrire (en fonction de a) la matrice Hessienne de f en 0 = (0, 0, 0).
- 6. Déterminer, dans chacun des trois cas suivant, si f a un minimum local en 0:
 - (a) Quand a > -1
 - (b) Quand a < -1
 - (c) Quand a = -1.

Exercice 2. On considère la fonction $F: \mathbb{R}^2 \to \mathbb{R}^2$ définie par ses coordonnées

$$F_1(x,y) = \cos(x) + 4\sin(y) + \frac{1}{1+x^2+y^2}$$

$$F_2(x,y) = 2x + 3y - \sin(x+y).$$

- 1. Démontrer que F est différentiable et calculer ses dérivées partielles.
- 2. Calculer F(0,0). Vérifier que DF(0,0) est inversible.
- 3. Démontrer, en utilisant la question précédente, qu'il existe $r_0 > 0$ tel que pour tout choix de $h \in \mathbb{R}$ tels que $h^2 + k^2 \le r_0$, le système d'équations

$$\begin{cases}
F_1(x,y) = 2+h \\
F_2(x,y) = k
\end{cases}$$
(1)

a au moins une solution $(x,y) \in \mathbb{R}^2$. Dites rapidement pourquoi je n'ai pas dit une solution unique (mais n'essayez pas de chercher un couple (h,k) tel que (1) ait deux solutions).

- 4. Vérifier que $|2x| \le 1 + x^2$ pour tout $x \in \mathbb{R}$, puis que $\left|\frac{\partial F_1}{\partial x}(x,y)\right| \le 2$, $\left|\frac{\partial F_1}{\partial y}(x,y)\right| \le 5$, $\left|\frac{\partial F_2}{\partial x}(x,y)\right| \le 3$, et $\left|\frac{\partial F_2}{\partial y}(x,y)\right| \le 4$ pour $(x,y) \in \mathbb{R}^2$.
- 5. En déduire que pour tout $x \in \mathbb{R}^2$, $||\nabla F_1(x,y)|| \leq \sqrt{29}$ et $||\nabla F_2(x,y)|| \leq 5$ (on note $||\cdot||$ la norme euclidienne).
- 6. En déduire que F_1 est $\sqrt{29}$ -Lipschitzienne et F_2 est 5-Lipschitzienne.

- 7. En déduire que F est $\sqrt{54}$ -Lipschitzienne.
- 8. Utiliser un théorème important du cours pour montrer qu'il existe un unique $(x,y) \in \mathbb{R}^2$ tel que $\frac{F(x,y)}{100} = (x,y)$.

Exercice 3. On considère la fonction $g: \mathbb{R}^2 \to \mathbb{R}$ définie par $g(x,y) = 3x^2 + 3y^2 - 2xy + 16x$.

- 1. Déterminer les points critiques de g.
- 2. Démontrer que $|2xy| \le x^2 + y^2$ pour $(x,y) \in \mathbb{R}^2$ et $|16x| \le 16\sqrt{x^2 + y^2} \le x^2 + y^2$, pour tout (x,y) tel que $\sqrt{x^2 + y^2} \ge 16$.

On pose $K = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 16^2\}$, puis

$$m_1 = \inf \{ g(x,y) ; (x,y) \in K \} \text{ et } m_2 = \inf \{ g(x,y) ; (x,y) \in \mathbb{R}^2 \}.$$

- 3. Montrer qu'il existe $(x_0, y_0) \in K$ tel que $g(x_0, y_0) = m_1$.
- 4. Vérifier que $m_2 \leq m_1 \leq 0$.
- 5. Vérifier que $m_2 = m_1$.
- 6. En déduire que g atteint son minimum sur \mathbb{R}^2 , déterminer (x_0, y_0) , et calculer m_2 .

Exercice 4. On considère des fonctions $f: \mathbb{R}^2 \to \mathbb{R}$. Pour f différentiable (sur \mathbb{R}^2), on définit $L_+(f)$ par $L_+(f)(x,y) = \frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y)$ pour $(x,y) \in \mathbb{R}^2$ et $L_-(f)(x,y) = \frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y)$ pour $(x,y) \in \mathbb{R}^2$. Lorsque f a des dérivées partielles d'ordre 2 (en tout point de \mathbb{R}^2), on définit H(f) par $H(f)(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) - \frac{\partial^2 f}{\partial y^2}(x,y)$ pour $(x,y) \in \mathbb{R}^2$.

- 1. Démontrer que pour f de classe C^2 sur \mathbb{R}^2 , $L_+(L_-(f))$ et $L_-(L_+(f))$ sont bien définies, et que $L_+(L_-(f)) = L_-(L_+(f)) = H(f)$. Pourquoi (en une ligne) ai-je demandé que f soit de classe C^2 ?
- 2. On se donne $g: \mathbb{R} \to \mathbb{R}$ de classe C^2 . Démontrer que la fonction f définie par f(x,y) = g(x-y) est de classe C^2 sur \mathbb{R}^2 , calculer $L_+(f)$, et en déduire que H(f) = 0. Démontrer de même que la fonction φ définie par $\varphi(x,y) = g(x+y)$ est de classe C^2 et vérifie l'équation $H(\varphi) = 0$.
- 3. Utiliser les questions précédentes pour trouver deux fonction F et $G: \mathbb{R}^2 \to \mathbb{R}^2$ de classe C^2 telle que H(F) = H(G) = 0 et $F(x,0) = G(x,0) = 12x^7 + 44$ pour $x \in \mathbb{R}$.

Exercice 5. (un peu de compacité dans \mathbb{R}^n).

1. On se donne une suite $\{x_k\}$, $k \geq 0$, de points de \mathbb{R}^n , et on suppose que la suite converge vers une limite $x \in \mathbb{R}^n$. On se donne également une suite $\{y_k\}$, $k \geq 0$, de points de \mathbb{R}^n , et on suppose que la suite converge vers une limite $y \in \mathbb{R}^n$. Démontrer (à la main!) que la suite $\{x_k + y_k\}$ converge vers x + y. On pourra commencer par le cas où n = 1.

On se donne maintenant deux parties compactes E et F de \mathbb{R}^n , et on considère l'ensemble $S = \{x + y \; ; \; x \in E \text{ et } y \in F\}$. On veut démontrer que S est compact, et pour ceci on se donne une suite $\{z_n\}$ à valeurs dans S.

- 2. Vérifier que pour tout $n \ge 0$ on peut trouver $x_n \in E$ et $y_n \in F$ tels que $z_n = x_n + y_n$.
- 3. Démontrer qu'il existe une application strictement croissante $\varphi : \mathbb{N} \to \mathbb{N}$ telle que la suite extraite $\{x_{\varphi(k)}\}, k \in \mathbb{N}$, converge vers une limite x.
- 4. Démontrer qu'il existe une application strictement croissante $\psi : \mathbb{N} \to \mathbb{N}$ telle que la suite extraite $\{y_{\varphi(\psi(j))}\}, j \in \mathbb{N}$, converge vers une limite y.
- 5. Expliquer pourquoi $\{x_{\varphi(\psi(j))}\}, j \in \mathbb{N}$, converge vers x.
- 6. Vérifier que $x \in E, y \in F$, et $x + y \in S$.
- 7. En déduire que S est compact.