Math	351 - Spring 2025
	351-Fall 2018

1/22/2015

Ch. 1 Combinatorial Analysis

For which we can count the number of possibilities or ways something an happen.

EX Flipa Coin

H is one of two outcomes T is one of two outcomes Dist A H Sent

two gardly-likely arturnes

EX Roll a die. Six quelly-likely outcomes

1, 7, 3, 4, 5, 6

EX (Roll Two Die) + Sum

How can we think about the outcome of the sum of both die? second die

3 4 5 6

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

26 possible outcomes that or all equally-likely.

e.g. · 2 equally-likely ways to get sum=3

21,23, 22,13

· 6 equally-likely ways to get sum=7

21,63, 27,53 \$3,43, 24,33, 25,23,26,13

50 ... roll a 7 then we are to roll a 3 %.

EX (Urn)

Suppose an urn conterns six (grands balls numbered 1-le, that are otherwise identical.

Traw one ball, note its number, then replace it.

Draw a second ball, note its number,

Here we have the same set of 36 egustly-likely outcomes as the previous example. This is sampling with replacement.

		1 F 9		- 30 - 31 - 31 - 31	a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	so 4 3	(n - E) 1.5	a S
虚	from 2018	Actual observations 2025			MaM - 25a	L35)	Cittem	Number of actual	2.1.1
4	E	(2)	2	<<					\rightarrow
[0]	6	£	co.	<<<					
[19]	9	(X)		~ <	550	111			
[2]	(7)	(2)	a	* C	1	1	145	,	
22	(Z)	(4)	6	~	16/1	<			
M	6		4	<< c	-12	1	<< <	1	El K
[3]	(2)	6	co	<<<	< < < <	544			
21)	6	<u> </u>	٥	1	<<<	111	111	E (6)	NSTR.
[4]	(3)	6	10	\ \ \<	7/				NSTRUCTIONS:
[0]	(1)	1	11	177				reporte 6	(B.H.)
	(9)	6	12	1	17			B 53	\$ ~
. 42.0		S cum	J	A STATE OF THE STA				ave V.C.	1×

gother 1.2-1.4 country presumly some arelap with Discrete Math (Math 1725) 1.2 By Country Principles: (see p.2) Generalized Besiz Principle of Country If r "experiments" are to be performed and are such that the first experiment can result in M, possible outcomes, the second experiment can result in No possible outcomes, etc. and the vt experiment can result in no possible outrones then there are a total of NINZ. UZ. Ur possible outcomes of the r "experiments" "experient" - roll die r=2 : Roll 2 dice le outcomes: die ous total possible = 6.6 = 36 outcomes "experient": drew i bell him was. 1-2: Drew two balls born un with replacement. EX (Sampling without replacement) Balls # 1-6 in ura Tran Elite a lebell hum the use . Do not replace

Down a second ball from the work.

4

First bell: Le outurnes 2055ible 5 outcomes passible Second ball: 30=6.5 possible autoures There we are One way to visualize this is the arest brail 3 4 5 (1,27 (1,35 (1,4) (1,5) (1,6) 30 pers equally-libely Crest (2,3) (2,4) (2,5) (2,6) (2,1) (3,1) (3,2) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (6,5) (6,1) (6,5) out comes (111, 12,2) etc. are not possible atomes. Urn with a balls. Choose reconstruct september ... with replacement: N. N. N = Nr rterns of #of possible outcomes ... without replacement: n. (n-1). (n-2).... (n-r+1) rteims

EX How many different betting orders (of 9 betters) can be made with Reaple a decease baseball team 12 players? Shoulestout 12 11 10 3 evente 30mg allite ABC 12-11-10-9-8-7-6-5-4= ACB BAC 31 (12-9) BCA CAB 79,833,600 CBA Permytetions | - order is important The number of arrangements of a different objects with no repetitions allowed, is n. (n-1). (n-2)..... 3.2.1 = n! Such arrangements are called permutations EX seating arrangements for a panel of 4students, 3 Reculty members, and 3 industry representatives. How many different seeting arrangements are there

Assume secting in a row

if the the each going must sit together?

Count in 4 steps: (1) Arrange the groups: 31 = 3-2-1 = 6 ways F-I-S S-I-F Arrange the BEDOTOP Students: - 41 = 4.3.21=24 Feculty = 3! = Ce industry reps = 3! = 6 (4) To by the basic principle of country 6.24.6.6 = 5184 ways Combinetius - orderis not important A subset of r elements out of a set of n elements is a combination of rout of the n elements

How many different teams of 9 players can be made from 12 total kids - (batting order, etc. is not important)?

Previously we said there were

17:

different betting orders for 9 players chosen from 12 But, if we do not core about the order we have 9.8.7...3.2.1 different arrangements of these players that we now are not distinguishing as different. So our people answer must be reduced by this factor. So

12! | 9!

core about batthy order, position, etc.)

feams = 12! 12.11.10 = 220

i.e. 220 different combinations of kids on the team

eg a with competition Lear where the order of the strater. Smaller example (Sometimes just try to auride How many different teams of 3 players can be made from 5 total kills (ABCDE) (3) -51 ABC (CDE) (BCD) 31.21. (ABD) (BCE) - 5.4 ABE BDE 10 (A CD) toki = 10 CACO ADE exclud A all possible exclude A wers with Ki + A 2181 - 10 21, 31 2! (order matters case) 5.4.3 .2.1 5! but he excuple this we consider gardent to the 6 pointoths "ABC", "ACB", "BAC", "CAB", and CBA"