Teoría de Autómatas y Lenguajes Formales

Practice 1: LATEX, Grammars and Regular Expressions

Pablo Fazio Arrabal

Ejercicio 1. Find the power set R^3 of $R = \{(1,1), (1,2), (2,3), (3,4)\}$. Check your answer with the script *powerrelation.m* and write a LATEX document with the solution step by step.

Cálculo de R³

En este ejercicio, debemos hallar R^3 dada la relación binaria R siguiente:

$$R = \{(1,1), (1,2), (2,3), (3,4)\}$$

Para ello, aplicamos la definición de potencia de una relación.

Definición. Potencia de una relación R^n . Dado $R \subseteq A \times A$,

$$R^{n} = \begin{cases} R & n = 1\\ \{(a,b) : \exists x \in A, (a,x) \in R^{n-1} \land (x,b) \in R\} & n > 1 \end{cases}$$

Luego, dado R empecemos calculando, por definición, que elementos pertenecen a R^2 . Los elementos serán de la forma $(x,y) \in A \times A$, donde $A = \{1,2,3,4\}$.

- \bigstar (1,1): debido a que $\exists x = 1 \in A \text{ tal que } (1,1) \in R \land (1,1) \in R$.
- \bigstar (1,2): debido a que $\exists x = 1 \in A \text{ tal que } (1,1) \in R \land (1,2) \in R$.
- ★ (1,3): debido a que $\exists x = 2 \in A$ tal que $(1,2) \in R \land (2,3) \in R$.
- ★ (2,4): debido a que $\exists x = 3 \in A$ tal que (2,3) $\in R \land (3,4) \in R$.

No hay más duplas que cumplan estas condiciones en $A \times A$, por tanto:

$$R^2 = \{(1,1), (1,2), (1,3), (2,4)\}$$

Una vez conocido el conjunto R^2 , volvemos a aplicar la definición de potencia de una relación para el cálculo de R^3 .

- \bigstar (1,1): debido a que $\exists x = 1 \in A$ tal que (1,1) $\in R^2 \land (1,1) \in R$.
- \bigstar (1,2): debido a que $\exists x = 1 \in A$ tal que (1,1) $\in R^2 \land (1,2) \in R$.
- \bigstar (1,3): debido a que $\exists x = 2 \in A$ tal que (1,2) $\in R^2 \land (2,3) \in R$.
- \bigstar (1,4): debido a que $\exists x = 3 \in A$ tal que (1,3) $\in R^2 \land (3,4) \in R$.

No hay más duplas que cumplan estas condiciones en $A \times A$, por tanto:

$$R^3 = \{(1,1), (1,2), (1,3), (1,4)\}$$

Octave

Una vez calculado teóricamente, lo demostramos en la aplicación Octave mediante el archivo powerrelation.m,

```
octave:1> powerrelation({['1', '1'], ['1', '2'], ['2', '3'], ['3', '4']}, 3)
ans =
{
    [1,1] = 11
    [1,2] = 12
    [1,3] = 13
    [1,4] = 14
}
```