CS2302 - Data Structures Spring 2019

Lab # 8

Algorithm Design Techniques

Deadline: Thursday, May 9, 2019

- 1. (Randomized algorithms) Write a program to "discover" trigonometric identities. Your program should test all combinations of the trigonometric expressions shown below and use a randomized algorithm to detect the equalities. For your equality testing, generate random numbers in the $-\pi$ to π range.
 - (a) sin(t)
 - (b) cos(t)
 - (c) tan(t)
 - (d) sec(t)
 - (e) -sin(t)
 - (f) -cos(t)
 - (g) -tan(t)
 - (h) sin(-t)
 - (i) cos(-t)
 - (j) tan(-t)
 - (k) $\frac{\sin(t)}{\cos(t)}$
 - (1) $2 \sin(t/2) \cos(t/2)$
 - (m) $sin^2(t)$
 - (n) $1 \cos^2(t)$

 - $\begin{array}{ccc}
 \text{(o)} & \frac{1-\cos(2t)}{2} \\
 \text{(p)} & \frac{1}{\cos(t)}
 \end{array}$
- 2. (Backtracking) The partition problem consists of determining if there is a way to partition a set of integers S into two subsets S_1 and S_2 such that $\sum S_1 = \sum S_2$. Recall that S_1 and S_2 are a partition of S if and only if $S_1 \cup S_2 = S$ and $S_1 \cap S_2 = \{\}$. Write a function that solves the partition problem using backtracking. If a partition exists, your program should display it; otherwise it should indicate that no partition exists. For example, if $S = \{2, 4, 5, 9, 12\}$, your program should output the partition $S_1 = \{2, 5, 9\}$ and $S_2 = \{4, 12\}$ and if $S = \{2, 4, 5, 9, 13\}$ your program should indicate that no partition exists.

Given the little time available, a demo will not be required, thus it is very important that your report accurately describes your work.