Value-based approach for reinforcement learning

先端人工知能論2 2017年11月21日株式会社Preferred Networks前田 新一片岡 俊基

自己紹介

前田 新一

- 2004年 奈良先端科学技術大学院大学 博士号取得→助手 学習する機械に興味を持ち、ベイズ推定に基づく 機械学習全般 と 強化学習の理論研究
- 2008年 京都大学情報学研究科 助教 神経画像解析, X線CT, 深層学習と強化学習のアルゴリズム研究
- 2017年 Preferred Networks, Researcher

講義パート内容

- Q-learning 5min
- Deep Q Network (DQN) 10min
- Variants of DQN 4min x 5 = 20min
 Double DQN
 Dueling Networks
 Prioritized Experience Replay
 Multi-step learning
 Distributional RL
- Extension to Continuous action 10min (DDPG), NAF, input convex NN

価値ベース(DQN関連)の最近の 強化学習の研究について説明します

強化学習のおさらい

目的

方策πが定まったもとで 長期的な報酬(累積報酬)の予測

$$V^{\pi}(s_{t}) = E^{\pi} \left[r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} + \dots \mid s_{t} \right]$$

E[・]は期待値(expectation)の意味。

 $\prod_{k=t} (p(r_{k+1}|s_{k+1},s_k,a_k)p(s_{k+1}|s_k,a_k)p_{\pi}(a_k|s_k))$

 γ は $0 \le \gamma < 1$ を満たす定数

方策(行動則)

 $\pi: p_{\pi}(a_t \mid s_t)$ 行動 a_t

状態遷移確率

$$S_{t+1} \sim p(S_{t+1} \mid S_t, a_t)$$

報酬確率 (報酬関数)

$$r_{t+1} \sim p(r_{t+1} | s_t, a_t, s_{t+1})$$

観測される状態 S_{t+1} 観測される報酬 r_{t+1} (or 知覚する報酬)

強化学習のおさらい

目的

方策πが定まったもとで 長期的な報酬(累積報酬)の予測

$$V^{\pi}(s_{t}) = E^{\pi} \left[r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} + \dots \mid s_{t} \right]$$

累積報酬を最大にするための行動則の獲得

$$\pi^* = \arg\max_{\pi} V^{\pi}(s_t)$$

$$V^*(s) \coloneqq V^{\pi*}(s)$$

E[・]は期待値(expectation)の意味。

 $(p(r_{k+1}|s_{k+1},s_k,a_k)p(s_{k+1}|s_k,a_k)p_{\pi}(a_k|s_k))$

 γ は $0 \le \gamma < 1$ を満たす定数

方策(行動則)

$$\pi: p_{\pi}(a_t \mid s_t)$$

行動 a_t

状態遷移確率

$$S_{t+1} \sim p(S_{t+1} \mid S_t, a_t)$$

報酬確率 (報酬関数)

$$r_{t+1} \sim p(r_{t+1} | s_t, a_t, s_{t+1})$$

観測される状態 S_{t+1} 観測される報酬 r_{t+1} (or 知覚する報酬)

ベルマン方程式

価値関数に成り立つ再帰的な関係式

$$V^{\pi}(s_{t}) = E^{\pi} \left[r_{t+1} + \gamma V^{\pi}(s_{t+1}) \mid s_{t} \right]$$

$$Q^{\pi}(s_{t}, a_{t}) = E^{\pi} \left[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) \mid s_{t} \right]$$

最適ベルマン方程式 (Bellman Optimality Equation)

$$\begin{split} V^*(s_t) &= E^{\pi*}[r_{t+1} + \gamma V^*(s_{t+1})|s_t] \\ &= \int p_{\pi*}(a_t|s_t) E[r_{t+1} + \gamma V^*(s_{t+1})|s_t, a_t] da_t \\ &= \max_{a_t} E[r_{t+1} + \gamma V^*(s_{t+1})|s_t, a_t] \\ &= \max_{a_t} Q^*(s_t, a_t) \end{split}$$

$$Q^*(s_t, a_t) = E\left[r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1}) \mid s_t, a_t\right]$$

連続時間でのベルマン方程式 ハミルトン・ヤコビ・ベルマン方程式 Hamilton-Jacobi-Bellman equation (HJB equation)

$$V^{*}(s(t)) = \max_{a} \left\{ \int_{t}^{t+dt} r(s(k), a(k)) dk + V^{*}(s(t+dt)) \right\}$$

最適価値関数をどのようにして求めるか?

ベルマンオペレータはsupノルムに対して縮小写像なので ベルマン方程式を満たす価値関数は、唯一 したがって、最適ベルマン方程式を満たす価値関数は最適価値関数

$$f(s_t) = \max_{a_t} E\left[r_{t+1} + \gamma f(s_{t+1}) \mid s_t, a_t\right] \quad \forall s_t \in S$$

$$f(s_t) = V^*(s_t) \quad \forall s_t \in S$$

$$f(s_t, a_t) = E\left[r_{t+1} + \gamma \max_{a_{t+1}} f(s_{t+1}, a_{t+1}) \mid s_t, a_t\right] \quad \forall (s_t, a_t) \in S \times A$$

$$f(s_t, a_t) = Q^*(s_t, a_t) \quad \forall (s_t, a_t) \in S \times A$$

最適ベルマン方程式を満たす価値関数を求める

最適価値関数をどのようにして求めるか?

最適ベルマンオペレータによる更新を繰り返せばよい

しかし、すべての状態に対して、期待値を計算して更新するのは困難

$$V(s_{t}) = \max_{a_{t}} E[r_{t+1} + \gamma V(s_{t+1}) | s_{t}, a_{t}] \quad \forall s_{t} \in S$$

$$Q(s_{t}, a_{t}) = E\left[r_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) \mid s_{t}, a_{t}\right] \quad \forall (s_{t}, a_{t}) \in S \times A$$

サンプル平均による期待値の近似

深層学習を用いた強化学習

Coworker on RL research: "We were supposed to make Al do all the work and we play games but we do all the work and the Al is playing games!"

関数近似を用いたときの収束の有無

表 2.3 SARSA, Q 学習による行動価値関数 Q^{π}, Q^{*} の近似

手法	方策	関数近似器	収束の保証
SARSA	方策オン型	線形	滑らかな方策反復であり
SARSA	方策オン型	非線形	なし
Q 学習	方策オフ型	線形	方策固定であり
Q 学習	方策オフ型	非線形	なし

収束の保証がないことは以前から問題視されていた

NNを関数近似器に使っていた研究もあったが、安定性がなく 性能を発揮するためには特徴量の作り込みが重要と考えられた

Deep Q-Network (DQN) (Mnih+ 14, Mnih+ 15)

学習アルゴリズムの工夫した点

- Q 関数を表わすネットワーク構造
- Fitted Q (ターゲットを固定し安定性改善)
- 経験再生 (Experience Replay)(学習に用いるサンプルの偏り抑制)
- 報酬のクリッピング [-1,1]
- 探索方策ε-greedyのεを1.0から0.1に減衰

Space Invaders

ネットワーク構造

行動の数だけ出力Q(s,a)をもつネットワーク

OpenAlのgymのAtariとArcade Learning EnvironmentのAtariは別物

Neural Fitted Q (Riedmiller, 2005)

損失関数

$$J(\theta) = E\left[(y_t - Q(s_t, a_t; \theta))^2 \right]$$

$$y_{t} = r_{t+1} + \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}; \theta')$$

定期的にθ'を現在のθに置き換え (しばらくはターゲットを固定)

Space Invaders

教師あり学習的な損失関数に変更することで安定化

経験再生 (Experience replay) (Lin, 1993)

TD誤差を連続する時刻間で取得 → サンプル間の相関が高く、バイアス発生、収束性悪化

損失関数

$$J(\theta) = E\left[(y_t - Q(s_t, a_t; \theta))^2 \right]$$

$$y_{t} = r_{t+1} + \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}; \theta')$$

サンプルの再利用

$$\nabla J(\theta) = 2E[(y_t - Q(s_t, a_t; \theta))\nabla Q(s_t, a_t; \theta)]$$

(誤差 $[(y_t - Q(s_t, a_t; \theta))\nabla Q(s_t, a_t; \theta)]$ のクリッピングも安定化に寄与と報告)

状態遷移セット(s,a,s',r)を直近の過去のデータ(replay memory) からランダムに選択し、TD誤差 y_t – $Q(s_t,a_t;\theta)$ を計算

Replay memory 直近100万フレーム

ターゲットQの固定と経験再生の効果

WT:ターゲットQの固定あり

WoT:ターゲットQの固定なし

WR:経験再生あり

WoR:経験再生なし

wR-woTを1としたときの パフォーマンス

Variants of DQN

Double DQN (van Hasselt+ 16)
Dueling Networks (Wang+15)
Prioritized Experience Replay (Schaul+ 16)
Multi-step learning (Sutton 98)
Distributional RL (Bellemare+ 17, Dabney+ 17)

Double DQN (van Hasselt+ 16)

推定値の最大を選ぶことによるバイアス

$$Q(s, a = i; \theta_t) = Q^*(s, a = i) + \epsilon_i$$

推定誤差 ϵ_i が平均ゼロの確率変数とすると、

$$\max_i Q(s, a=i; \theta_t) = \max_i \left(Q^*(s, a=i) + \epsilon_i \right)$$

Qの推定値の最大を選ぶことによるバイアスが発生

Double DQN (van Hasselt+ 16)

Fitted Qのターゲットの変更

$$y_t = r_{t+1} + Q(s_{t+1}, \hat{a}_{t+1}; \theta_t)$$

where

$$\hat{a}_{t+1} = \arg\max_{a} Q(s_{t+1}, a; \theta_t)$$

$$\hat{a}_{t+1} = \arg\max_{a} Q(s_{t+1}, a; \theta_t^-)$$

 $\theta_t \ge \theta_t^-$ を入れ替えて交互に学習

Dueling Networks (Wang+15)

$$Q(s,a) = V(s) + \left(A(s,a) - \frac{1}{|A|} \sum_{a'} A(s,a')\right)$$

Vはどの行動を選択した場合でも学習 行動に依存しない状態価値を学習可能

Dueling Networks (Wang+15)

多くのゲーム で大きく性能向上

Prioritized Experience Replay (Schaul+ 16)

TD誤差δの選び方を変えてみる

Replay Memoryからの状態遷移セット(s,a,s',r)をTD誤差の大きいものから優先的に選択

間違いやすい項目を頻繁に出現させて覚える暗記法のような感じ

$$\delta_{t} = r_{t+1} + \max_{a_{t+1}} Q(s_{t+1}, \hat{a}_{t+1}; \theta') - Q(s_{t}, a_{t}; \theta)$$

$$\Delta\theta \propto E_p \left[\delta_t \nabla Q(s_t, a_t; \theta) \right]$$

p:Replay memory からの一様サンプル

$$\Delta\theta \propto E_{q} \left[\hat{w} \delta_{t} \nabla Q(s_{t}, a_{t}; \theta) \right]$$

$$q$$
:サンプラー $q_i \propto (|\delta_i| + c)^lpha$ $q_i \propto rac{1}{({
m rank}\; i)^lpha}$

$$w = \left(\frac{p}{q}\right)^{\beta} = \frac{1}{(Nq)^{\beta}} \qquad \hat{w}_i = \frac{w_i}{\max_j w_j}$$

Prioritize Experience Replay (Schaul+ 16)

Double DQN と比較した性能

多くのゲームで性能向上

Multi step Learning (Sutton 98)

価値関数に成り立つ再帰的な関係式

価値関数に成り立つ再帰的な関係式を書き換える

$$Q^{\pi}(s_{t}, a_{t}) = E^{\pi} \left[r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} + \cdots \mid s_{t}, a_{t} \right]$$

$$Q^{\pi}(s_{t}, a_{t}) = E^{\pi} \left[r_{t+1} + \gamma r_{t+2} + \cdots + \gamma^{n-1} r_{t+n} + \gamma^{n} \left(r_{t+n+1} + \gamma r_{t+n+2} + \cdots \right) \mid s_{t}, a_{t} \right]$$

$$Q^{\pi}(s_{t}, a_{t}) = E^{\pi} \left[r_{t+1} + \gamma r_{t+2} + \cdots + \gamma^{n-1} r_{t+n} + \gamma^{n} Q^{\pi}(s_{t+n+1}, a_{t+n+1}) \mid s_{t} \right]$$

誤差
$$r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \gamma^n Q^{\pi}(s_{t+n+1}, a_{t+n+1}) - Q^{\pi}(s_t, a_t)$$

n→∞でモンテカル口法(累積報酬は不偏推定) n→1で通常のTD学習(確率要素は1ステップ)

中間のnはMulti step Learning

nを調整することでBias-Varianceトレードオフを最適化できる

通常のベルマン方程式は累積報酬の期待値に関する再帰方程式

$$Q^{\pi}(s_{t}, a_{t}) = E^{\pi} \left[r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} + \dots \mid s_{t}, a_{t} \right]$$

累積報酬の期待値以外にも、累積報酬の分散、 ひいては累積報酬の分布に関する再帰方程式を定義可能

$$Z(s_{t}, a_{t}) = r_{t+1} + \gamma Z(s_{t+1}, a_{t+1})$$

$$TZ(s_{t+1}, a_{t+1})$$

分布ベルマンオペレーター TZを定義可能 Tは分布間のWasserstein距離のsupノルムに関して縮小写像

Wasserstein距離
$$d_p(X,Y) \equiv \inf_{q \in \Gamma(p_X,p_Y)} \int |x-y|^p \ q(x,y) dx dy$$

ここで、 $\Gamma(p_X, p_Y)$ は周辺分布が $p_X(x), p_Y(y)$ となる同時分布q(x,y)の集合

$$\overline{d}_p(TZ, Z) \equiv \sup_{s, a} d_p(TZ(s, a), Z(s, a))$$

↓10月27日

サンプルから計算するのは容易ではないが(Dabney+ 17)で解決法提示

通常のベルマン方程式は累積報酬の期待値に関する再帰方程式

$$Q^{\pi}(s_{t}, a_{t}) = E^{\pi} \left[r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} + \dots \mid s_{t}, a_{t} \right]$$

累積報酬の期待値以外にも、累積報酬の分散、 ひいては累積報酬の分布に関する再帰方程式を定義可能

$$Z(s_{t}, a_{t}) = r_{t+1} + \gamma Z(s_{t+1}, a_{t+1})$$

$$TZ(s_{t+1}, a_{t+1})$$

分布ベルマンオペレーター TZを定義可能 分布間のKL距離やtotal variation距離に対しては縮小写像にならない

が、サンプルから計算しやすいKL距離を最小化

$$\min_{\theta} D_{\mathit{KL}}(TZ, Z_{\theta})$$

Φ はモデル分布族(カテゴリカル分布)への射影

通常のDQN

カテゴリカル分布を表現するDQN

$$p_i(s,a)=p((i-1)x \leq R < ix|s,a)$$

Cはカテゴリ(短冊)の数

Bellemare+ 17

Double DQNと 比較した性能

Dabney+ 17

ヒトと比較した性能

↓10月6日

どの技術が重要なのか? ょ

比較実験(Hessel+, 17)

分布版への変更

Prioritized experience replay

$$\delta_t = KL[Tp'|p_t]$$

↑目盛り注意 Million

Dueling Network

$$p_i(s, a) \propto \exp(V_i(s) + A_i(s, a))$$

どの技術が重要なのか? 比較実験(Hessel+, 17)

1つずつ要素技術 を省いたときの性能

Prioritized experience replay Multi-step learning Distributional RL は特に重要そう

Double DQNと Dueling Networksは それほど重要でもない?

連続行動への拡張について

```
【 (DDPG) ←次回
NAF (Gu+16)
input convex NN (Amos+ 17)
```


Normalized Advantage Function (NAF) (Gu+16)

連続行動aでもQ関数の最大値を求めたい

$$y_{t} = r_{t+1} + \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}; \theta')$$

最大値を求めやすい形式に変更

$$Q(s,a;\theta) = -\frac{1}{2}(a - \mu_{\theta}(s))^{T} \Lambda_{\theta}(s)(a - \mu_{\theta}(s)) + V_{\theta}(s)$$
アドバンテージ関数

学習はDQNと同じ

Input Convex Neural Network (ICNN) (Amos+17)

連続行動aでもQ関数の最大値を求めたい

$$y_{t} = r_{t+1} + \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}; \theta')$$

最大値を求めやすい形式に変更

$$f(y) = z_k$$
 $z_{i+1} = g_i(W_i^{(z)}z_i + W_i^{(y)}y + b_i)$ $(z_0, W_0^{(z)} = 0)$

gが凸で非減少な活性化関数, $W_i^{(z)}$ が非負のとき fは入力yに関して凸関数

この凸な関数をQ関数に利用

Input Convex Neural Network (ICNN) (Amos+17)

連続行動aでもQ関数の最大値を求めたい

$$y_{t} = r_{t+1} + \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}; \theta')$$

最大値を求めやすい形式に変更

$$u_{i+1} = \tilde{g}_i(\tilde{W}_i u_i + \tilde{b}_i)$$

$$z_{i+1} = g_i \left(W_i^{(z)} \left(z_i \circ [W_i^{(zu)} u_i + b_i^{(z)}]_+ \right) + W_i^{(y)} \left(y \circ (W_i^{(yu)} u_i + b_i^{(y)}) \right) + W_i^{(u)} u_i + b_i \right)$$

$$f(x, y; \theta) = z_k, \ u_0 = x$$

入力yに関して凸関数, 最小値は勾配法で求める

学習はDQNと同じ

Input Convex Neural Network (ICNN) (Amos+17)

比較実験

Task	DDPG	NAF	ICNN
Ant	1000.00	999.03	1056.29
HalfCheetah	2909.77	2575.16	3822.99
Hopper	1501.33	1100.43	831.00
Humanoid	524.09	5000.68	433.38
HumanoidStandup	134265.96	116399.05	141217.38
InvDoubPend	9358.81	9359.59	9359.41
InvPend	1000.00	1000.00	1000.00
Reacher	-6.10	-6.31	-5.08
Swimmer	49.79	69.71	64.89
Walker2d	1604.18	1007.25	298.21

まとめ

DQNの基本(Target fixing & Experience Replay) は学習させるのに重要

推定分散を減らす試み、探索の効率化が盛んに試されている

学習時間はまだまだ膨大。 状態遷移確率を学習して良い シミュレーション環境を構築する試みも

