COMP90054 - Week 11 tutorial

Prepared by Zijie Xu. Last updated: 18 October 2023

Policy iteration

Idea

- A policy-based method that learns a policy directly (c.f. value-based methods)
- Perform policy updates by iterating on the policy

Steps

- Policy evaluation: Given a policy π , for all $s \in S$, evaluate $\pi(s)$ to find an action chosen by the policy in state s in the current iteration
- Solve a system of |S| equations for $V^{\pi}(s) = Q^{\pi}(s, \pi(s))$
 - For each $s \in S$:

$$V^{\pi}(s) = \sum_{s' \in S} P_{\pi(s)}(s'|s) [r(s, a, s') + \gamma V^{\pi}(s')]$$

- o For terminal states, $V^{\pi}(s) = 0$
- Unlike in Bellman equations, treat all $V^{\pi}(s)$ as variables to solve, do not swap for values from previous iteration
- Policy update: Improve the policy $\pi(s)$

$$o \quad \pi(s) = \operatorname*{argmax}_{a \in A(s)} Q^{\pi}(s, \pi(s))$$

• Repeat the evaluation and update steps until $\pi(s)$ has no more updates

Reward shaping

Idea

- Give an additional reward to algorithm to help it converge more quickly
- The additional reward F(s, s') is given to agent whenever it transitions from s to s'
 - F provides heuristic domain knowledge to the problem that is typically manually programmed.
 - o F(s,s') > 0 incentivises actions that transitions agent from s to s'
- r + F(s, s') is the shaped reward

Potential-based reward shaping

- A particular type of reward shaping
- $F(s,s') = \gamma \Phi(s') \Phi(s)$
 - $\circ \quad \Phi$ is the potential function
 - \circ $\Phi(s)$ provides the potential of state s
- e.g. Normalised Manhattan distance as a potential function in GridWorld

- $\circ \quad x_g, y_g$: coordinates of goal cell
- o x_s , y_s : coordinates of the agent in state s
- \circ -2 to account for zero indexing of coordinates in normalisation