Statistical Learning and Machine Learning Lecture 18 - Kernel Methods 2

October 13, 2021

Course overview and where do we stand

Why kernel methods?

Main idea in kernel methods:

 The prediction of the model is based on a linear combination of dot-products between data points:

$$\kappa(\mathsf{x},\mathsf{x}') = \phi(\mathsf{x})^{\mathsf{T}}\phi(\mathsf{x}') \tag{1}$$

where $\phi(x)$ is an (a-priori defined) (non)linear transformation of the data points x.

- Observation: $\kappa(\cdot, \cdot)$ is a (scalar) value, and this is not depending on the dimensionality of x. $\kappa(\cdot, \cdot)$ is called *kernel function*.
- Whenever a method can be expressed using (only) dot-products between data points, a so-called *dual representation* of the method is defined using $\kappa(\cdot,\cdot)$
- The dot-product between the data points can be replaced by any nonlinear function (satisfying the properties of kernel functions).
- Using a nonlinear kernel function, the nonlinear counterpart of the linear method is defined.

We can define a kernel function by:

• using a nonlinear function $\phi(x)$ to calculate:

$$\kappa(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}') \tag{2}$$

• using a set of basis functions $\phi_j(x)$, j = 1, ..., M and calculate:

$$\kappa(\mathbf{x}, \mathbf{x}') = \sum_{j=1}^{M} \phi_j(\mathbf{x})^T \phi_j(\mathbf{x}')$$
 (3)

Top: Basis functions using polynomials, Gaussians and ligistic sigmoids Bottom: corresponding $\kappa(x, x')$ plotted as a function of x for x' = 0.

Alternatively we can construct a kernel function (expressing similarity) directly, like:

$$\kappa(\mathsf{x},\mathsf{z}) = \left(\mathsf{x}^\mathsf{T}\mathsf{z}\right)^2. \tag{4}$$

However, not any function is a kernel function. It needs to correspond to a dot-product:

$$\kappa(x,z) = (x^{T}z)^{2} = (x_{1}z_{1} + x_{2}z_{2})^{2}$$

$$= x_{1}^{2}z_{1}^{2} + 2x_{1}z_{1}x_{2}z_{2} + x_{2}^{2}z_{2}^{2}$$

$$= (x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2})(z_{1}^{2}, \sqrt{2}z_{1}z_{2}, z_{2}^{2})$$

$$= \phi(x)^{T}\phi(z)$$
(5)

A necessary and sufficient condition for a kernel function $\kappa(x,x')$ to be a valid kernel function is that the corresponding K is positive semi-definite for any choices of $x_n, n = 1, ..., N$.

Techniques for Constructing New Kernels.

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x}'$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

where c>0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot,\cdot)$ is a valid kernel in \mathbb{R}^M , \mathbf{A} is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x}=(\mathbf{x}_a,\mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

Commonly used kernel functions:

• Polynomial kernel of order *M*:

$$\kappa(\mathbf{x}, \mathbf{x}') = \left(\mathbf{x}^{\mathsf{T}} \mathbf{x}' + c\right)^{\mathsf{M}} \tag{6}$$

Gaussian kernel based on Euclidean distance:

$$\kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right) \tag{7}$$

• Gaussian kernel based on distance function $D(\cdot, \cdot)$:

$$\kappa(\mathsf{x},\mathsf{x}') = \exp\left(-\frac{D(\mathsf{x},\mathsf{x}')^2}{2\sigma^2}\right) \tag{8}$$

Radial Basis Function Networks

Given a set of data points $x_n \in \mathbb{R}^D$, n = 1, ..., N and targets $t_n \in \mathbb{R}^C$, n = 1, ..., N, RBF networks apply the following process:

- Select K prototype vectors $\mu_k \in \mathbb{R}^D, \ k=1,\ldots,K$
- Transform x_n , $n=1,\ldots,N$ to ϕ_n , $n=1,\ldots,N\in\mathbb{R}^K$ using a radial basis function $\phi(r)$, where $r=\|\mathbf{x}-\boldsymbol{\mu}\|$
- ullet Train a linear regression model from $ilde{\phi}_n$ to $exttt{t}_n$:

$$W = \left(\Phi\Phi^{T}\right)^{-1}\Phi\mathsf{T}^{T} \tag{9}$$

where $\Phi = [\tilde{\phi}_1, \dots, \tilde{\phi}_N] \in \mathbb{R}^{(K+1) imes N}$, $\tilde{\phi}_n = [1, \phi_n^T]^T$ and $\mathsf{T} \in \mathbb{R}^{C imes N}$

Radial Basis Function Networks

Example Radial Basis Functions

$$\phi(r) = \mathrm{e}^{-r^2/2\sigma^2}, \quad \text{Gaussian,}$$

$$\phi(r) = \frac{1}{(\sigma^2 + r^2)^\alpha}, \quad \alpha > 0,$$

$$\phi(r) = \left(\sigma^2 + r^2\right)^\beta, \quad 0 < \beta < 1,$$

$$\phi(r) = r, \quad \text{linear,}$$

$$\phi(r) = r^2 \ln(r), \quad \text{thin-plate spline,}$$

$$\phi(r) = \frac{1}{1 + \mathrm{e}^{(r/\sigma^2) - \theta}}, \quad \text{logistic function,}$$

Radial Basis Function Networks

The prototype vectors $\mu_k \in \mathbb{R}^D$, k = 1, ..., K can be:

- all training data points x_n , n = 1, ..., N. Then K = N
- randomly selected training data points x_n , n = 1, ..., N
- K mean vectors obtained by clustering the training data points, e.g. by applying the K-Means algorithm

Gaussian Processes

Let us consider the linear regression model:

$$y(x) = w^T \phi(x) \tag{10}$$

We treat w as a parameter vector drawn from the density function:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}|\mathbf{I}). \tag{11}$$

where α is the precision (inverse variance) of the distribution.

Note: The linear regression model is also a function of α :

$$y(\alpha, x) = w(\alpha)^{T} \phi(x)$$
 (12)

Gaussian Processes

Given a set of data points x_n , n = 1, ..., N, the joint distribution of the function values is $y = [y(x_1), ..., y(x_N)]^T$ and is calculated by:

$$y = \Phi w \tag{13}$$

where $\Phi = [\phi(x_1)^T, \dots, \phi(x_N)^T]^T$.

Since w is drawn from a Gaussian distribution, y is a Gaussian too:

$$\mathbb{E}[y] = \Phi \mathbb{E}[w] = 0 \tag{14}$$

$$cov[y] = \mathbb{E}[yy^T] = \Phi \mathbb{E}[ww^T] \Phi^T = \frac{1}{\alpha} \Phi \Phi^T = K$$
 (15)

where K is the Gram matrix:

$$K_{nm} = \kappa(\mathbf{x}_n, \mathbf{x}_m) = \frac{1}{\alpha} \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m)$$
 (16)

and $\kappa(\cdot,\cdot)$ is the kernel function.

We model the noise on the observed target values for data point x_n by:

$$t_n = y(x_n) + \epsilon_n \tag{17}$$

where ϵ is a random noise variable (independent for each data point).

For noise processes following a Gaussian distribution with precision β :

$$p(t_n|y(x_n)) = \mathcal{N}(t_n|y(x_n), \beta^{-1})$$
(18)

The joint distribution of $\mathbf{t} = [t_1, \dots, t_N]^T$ conditioned on $\mathbf{y} = [y_1, \dots, y_N]^T$ is:

$$p(t|y) = \mathcal{N}(t|y, \beta^{-1}|_{N}). \tag{19}$$

Using $p(y) = \mathcal{N}(y|0, K)$ we get:

$$p(t) = \int p(t|y)p(y)dy = \mathcal{N}(t|0,C)$$
 (20)

where the covariance matrix C has elements:

$$C(\mathbf{x}_n, \mathbf{x}_m) = \kappa(\mathbf{x}_n, \mathbf{x}_m) + \beta^{-1} \delta_{nm}. \tag{21}$$

 $\delta_{nm}=1$ for n=m, and $\delta_{nm}=0$ for $n\neq m$.

Since the two Gaussian sources of randomness (w.r.t. y(x) and ϵ) are independent, the joint covariance is equal to the summation of the two.

Given a new data point x_{N+1} , we want to evaluate the $p(t_{N+1}|t)$.

The joint distribution is:

$$p(t_{N+1}) = \mathcal{N}(t_{N+1}|0,C_{N+1})$$
(22)

where

$$C_{N+1} = \begin{bmatrix} C_N & k \\ k^T & c \end{bmatrix}$$
 (23)

with $k = [\kappa(x_1, x_{N+1}), \dots, \kappa(x_N, x_{N+1})^T]$ and $c = \kappa(x_{N+1}, x_{N+1}) + \beta^{-1}$.

The conditional distribution $p(t_{N+1}|t)$ is a Gaussian with:

$$m(\mathbf{x}_{N+1}) = \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{t} \tag{24}$$

$$\sigma^2(\mathsf{x}_{N+1}) = c - \mathsf{k}^T \mathsf{C}_N^{-1} \mathsf{t}. \tag{25}$$

Line: a sample function from the Gaussian process prior over functions Red points: the values of $y(x_n)$, n = 1, ..., NGreen points: targets t_n obtained by adding Gaussian noise to each $y(x_n)$

Green line: sinusoidal function generating data points (after adding noise) Red line: the mean of the Gaussian process predictive distribution Shaded region: plus and minus two standard deviations on the mean