Конспект по геометрии

Коченюк Анатолий

Оглавление

1	Мн	огогранники	į
	1.1	Многогранники и его элементы	,
	1.2	Пирамиды и её элементы	(
	1.3	Выпуклые многогранники	7
2	Век	сторы и координаты	ę
	2.1	Векторы	Ć
	2.2	Линейные операции на векторах	1(
	2.3	Разложение вектора на составляющие. Базис	11
	2.4	Координатный метод в пространстве	14
		Задание фигур уравнениями и неравенствами	

ОГЛАВЛЕНИЕ

Глава 1

Многогранники

1.1 Многогранники и его элементы

Определение 1.1. *Многогранник* – *ограниченное тело*, *поверхность которого состоит из конечного числа многоугольников*

Рис. 1.1: куб и многоугольник

Определение 1.2. Ограниченная замкнутая область, граница которой состоит из конечного числа отрезков

Многоугольники — это грани их стороны — это рёбра вершины — вершины

Определение 1.3. Многоугольная поверхности – фигуры. которые составлены из многоугольников, которые прикладываются друг к другу сторонами

называется замкнутой, если нет свободных сторон

Утверждение 1.1. Замкнутая многоугольная поверхность, которая не пересекает сама себя – многогранник

Определение 1.4. Развёрткой многогранника называется совокупность многоугольников, для которых указано как их надо склеивать

Рис. 1.2: развёртка

Определение 1.5. Призма – многогранник, у которого две грани равны, их соответственные стороны параллельны, а остальные грани – параллелограммы

Отрезки, соединяющие соответствующие точки на основаниях равны и парамлельны

Определение 1.6. Параллелограмм – призма, у которой в основании лежит параллелограмм Параллелограмм называется прямоугольным, если все его грани – прямоугольники

Определение 1.7. *Многоугольник* – ограниченная часть плоскости, граница которой состоит из конечного числа отрезков

Определение 1.8. Многогранник вписан в сферу, если каждая его вершина лежит на сферу

Определение 1.9. Многогранник называется описанным около сферы, если каждая его грань касается сферы

Теорема 1.1. Призма – цилиндр, в основании которого лежит многоугольник

Доказательство. \Longrightarrow Пусть дана призма

Пусть $AA' \mid BB'$ и AA' = BB', так как боковые грани параллельны

Пусть точка C: AC = A'C', тогда ACA'C' – параллелограмм

C – проекция D на AB, C' – проекция D' на A'B'

CC'DD' – параллелограмм, т.к. $CD = C'D'; CD \parallel C'D'$ (т.к. $AB \parallel A'B'; CD \perp; C'D' \perp A'B'$)

 \Leftarrow Пусть дан цилиндр с основанием многоугольником. Ранее доказано, что верхнее основание параллельно и равно нижнему $AD \mid A'D'; AD = A'D'$

1.2 Пирамиды и её элементы

Определение 1.10. Пирамидой называется многогранник, у которого одна грань – многоугольник, а остальные – треугольники с общей вершиной

треугольники – грани, многоугольник (в случае тетраэдра – треугольник) – основание Общая точка треугольников – вершина пирамиды

Высота – перпендикуляр, опущенный из вершины на основание

Определение 1.11. Пирамида называется правильной, если у неё в основании лежит правильный многоугольник

Задача 1.1. Боковые рёбра правильной пирамиды равны

Задача 1.2. Боковые грани правильной пирамиды равны и являются равнобедренными

Определение 1.12. Правильная призма - прямая призма с правильными основаниями.

Замечание 1.1. Любой тетраэдр можно изобразить на плоскости четырёхугольником с диагоналями

Рис. 1.3: изображение тетраэдра

Теорема 1.2. Если увидеть в произвольной фигуре тетраэдр, то можно по нему построить тетраэдр

Доказательство. ABCD — выделенный тетраэдр, тогда A'B'C'D' — его изображение X — какая-то точка фигуры. Если X не в тетраэдре, то прямая XA, XB, XC или XD пересекает с нашим тетраэдром

Отрезок XD перейдёт в отрезок $X^{\prime}D^{\prime},$ точка K перейдёт в точку K^{\prime}

$$\frac{|K'X'|}{C'K'} = \frac{KX}{CK}$$

Задача 1.3. Сечение пирамиды плоскостью параллельной основанию есть многоугольник, подобный основанию, коэффициент подобия будет равен отношению расстояния от вершины до плоскости сечения к длине высоты пирамиды.

Определение 1.13. Усеченная пирамида – усечённый конус, в основании которого лежит многоугольник

Замечание 1.2. Боковые грани - трапеции

1.3 Выпуклые многогранники

Определение 1.14. Выпуклый многогранник – многогранник у которого отрезок, соединяющий любые его точки лежит внутри него

Теорема 1.3. Плоскость каждой грани выпуклого многогранника является его опорной плоскостью

Доказательство. P — многогранник, Q — его грань и плоскость проходящая через Q не является опорной Тогда в P существуют точки A, B, который лежат по обе стороны от опорной плоскости α Построим две пирамиды с основанием Q и вершинами A и B. $P_1, P_2 \subset P$

Точки, лежащие внутри грани Q лежат внутри нашей фигуры P, но точки на грани лежат на границе?! $\ \Box$

Рис. 1.4: mnog

Лемма 1.1 (Об отделимости). Пусть многогранник лежит по одну стороны от каждой плоскости, проходящей через его грани, тогда любую точку, которая не принадлежит многограннику можно отделить от многогранника плоскостью, так чтобы многогранник и точка лежали по разные стороны от этой плоскостью

Доказательство. Пусть нельзя отделить $A \in P$

 $\forall B \in P$, отрезок AB пересекает какую-то грань Q в точке C. Так как отделить нельзя, то отрезок AC имеет с нашим многогранником хотя бы ещё одну точку пересечения

 \overline{C} Тогда относительно плоскости проходящей через Q многогранник не лежит с одной стороны

Теорема 1.4. Если многогранник лежит по одну стороны от каждой своей грани, то он выпуклый

Доказательство. Пусть многогранник P не выпуклый, тогда $\exists A, B \in P : AB \notin P \implies \exists C \in AB : C \notin P$ Согласно предыдущей лемме эту точку можно отделить плоскостью α

A,B лежат по одну сторону от α , т.е. отрезок $AB \cap \alpha = \emptyset$

С другой стороны точки A и C лежат по разные стороны, а значит $AC \cap \alpha \neq \emptyset$ и $BC \cap \alpha \neq \emptyset$ и $C \notin \alpha \implies AB$ имеет две общие точки с α и $AB \not\subseteq \alpha$?!!

Теорема 1.5. Каждая грань выпуклого многогранника является выпуклым многоугольником

Доказательство. Упражнение

Рис. 1.5: 1-1

Рис. 1.6: otr

Теорема 1.6. Плоскость проходящая через внутреннюю точку пересекает его по выпуклому многоугольнику

Доказательство. Упражнение

Теорема 1.7. Любое сечение выпуклого многогранника – выпуклый многогранник

Доказательство. пересечение выпуклых фигур – выпуклая фигура плоскость – выпуклая фигура сечение многогранника – фигура, ограниченная отрезками на плоскости выпуклая фигура, ограниченная отрезками – выпуклый многоугольник

Глава 2

Векторы и координаты

2.1 Векторы

Определение 2.1. Направленный отрезок – отрезок, у которого один конец называется концом, а другой – началом

Замечание 2.1. Направленный отрезки параллельны/перпендикулярны отрезкам/прямым/плоскостям, если соответствующий отрезок параллелен/перпендикулярен соответствующему отрезку/прямой/плоскости

Определение 2.2. \overrightarrow{AB} сонаправлен \overrightarrow{CD} , если лучи AB и CD параллельны

Лемма 2.1. Два отрезка, сонаправленные третьему – сонаправлены

Доказательство. Упражнение – найти и вспомнить доказательство соответствующего факта про лучи

Определение 2.3. Будем говорить, что два направленных отрезка равны $\overrightarrow{AB} = \overrightarrow{CD} \stackrel{def}{\Longleftrightarrow} |AB| = |CD| \& \overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD}$

Замечание 2.2. $\overrightarrow{AB} = \overrightarrow{CD}$ $\overrightarrow{CD} = \overrightarrow{MN} \implies \overrightarrow{AB} = \overrightarrow{MN}$

Лемма 2.2. От любой точки пространства можно отложить направленный отрезок, равный данному, и при том только один

 $\begin{subarray}{ll} $\mathcal{A}\emph{okasame.ncm60}.$ $O-$$ точка пространства $\begin{subarray}{ll} \overrightarrow{AB}- направленный отрезок \end{subarray}$

Отложим от точки O луч сонаправленный с AB и отложим на этом луче отрезок равный AB

Пусть
$$\overrightarrow{OC} = \overrightarrow{AB} = \overrightarrow{OD}$$

 $\Longrightarrow \overrightarrow{OC} \uparrow \uparrow \overrightarrow{OD} \Longrightarrow$ луч OC сонаправлен OD, но в пространстве существует только один луч сонаправленный AB с началом O \Longrightarrow лучи совпали

Кроме того
$$|OC| = |OD|$$
 \implies отрезки OC и OD совпали $\implies \overrightarrow{OC}$ и \overrightarrow{OD} совпали \square

Лемма 2.3.
$$\overrightarrow{AB} = \overrightarrow{CD} \Longleftrightarrow \overrightarrow{BA} = \overrightarrow{DC} \Longleftrightarrow \overrightarrow{AC} = \overrightarrow{BD}$$

Доказательство. Упражнение

Определение 2.4. Вектор или векторная величина – имеет скалярную величину и направление

Определение 2.5. Вектор - класс эквивалентности по отношению равенства направленных отрезков

Замечание 2.3. Направленный отрезок – изображение вектора

Определение 2.6. Два вектора называются параллельными, если изображающие их отрезки параллельны или лежат на одной прямой

2.2 Линейные операции на векторах

Определение 2.7. $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

Это называется правилом треугольника

Определение 2.8. $\vec{a} + \vec{b}$

Возьмём точку A, отложим \vec{a} , получается направленный отрезок AB

Откладываем от точки B вектор \vec{b} , получаем точку C

получается направленный отрезок \overrightarrow{AC} , ему соответствует некоторый вектор \vec{c} и мы будем считать, что $\vec{a} + \vec{b} = \vec{c}$

Определение 2.9 (Правило параллелограмма). $\vec{a} \not\parallel \vec{b}$

Отложим оба вектора от точки A, тогда их суммой будет \overrightarrow{AD}

Рис. 2.1: Правило параллелограмма

Свойства:

1.
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

2.
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

3.
$$\vec{a} + \vec{0} = \vec{a} \left(\vec{0} = \overrightarrow{AA} \right)$$

4.
$$\forall \vec{a} \exists ! (-\vec{a}) : \vec{a} + (-\vec{a}) = \vec{0}$$

Определение 2.10. $\vec{a} - \vec{b} = \vec{a} + (\overrightarrow{-b})$

Определение 2.11. $\vec{a} \uparrow \downarrow \vec{b}$, если $\vec{a} \not \uparrow \uparrow \vec{b}$ & $\vec{a} || \vec{b}$

Замечание 2.4. $\vec{a} \uparrow \downarrow (-a)$

Определение 2.12. $|\vec{a}|=|\overrightarrow{AB}|$

Определение 2.13. $x \in \mathbb{R}$ \vec{a} – вектор, тогда $x \cdot \vec{a}$ – это вектор $|x \cdot \vec{a}| = |x| \cdot |\vec{a}|$ u

1.
$$x \cdot \vec{a} = \vec{0}$$
, если $\vec{a} = \vec{0} \lor x = 0$

2.
$$x \cdot \vec{a} \uparrow \uparrow \vec{a}$$
, если $x > 0$

3.
$$x \cdot \vec{a} \uparrow \downarrow \vec{a}$$
, echu $x < 0$

Свойства:

$$0. \ (-a) = (-1) \cdot \vec{a}$$

1.
$$1 \cdot \vec{a} = \vec{a}$$

2.
$$(xy)\vec{a} = x(y\vec{a})$$

3. Если
$$x\vec{a} = y\vec{a}$$
 и $x\vec{a} \neq 0$, то $x = y$

4.
$$(x+y)\vec{a} = x\vec{a} + y\vec{a}$$

5.
$$x(\vec{a} + \vec{b}) = x\vec{a} + x\vec{b}$$

Теорема 2.1. $\vec{a}||\vec{b} \Longleftrightarrow \exists x : \vec{b} = x \cdot \vec{a} \quad \vec{a} \neq \vec{0} \& \vec{b} \neq \vec{0}$

1.
$$a \uparrow \uparrow b$$
 $k = \frac{|\vec{a}|}{|\vec{b}|}$

2.
$$\vec{a} \uparrow \downarrow \vec{b}$$
 $k = -\frac{|\vec{a}|}{|\vec{b}|}$

2.3 Разложение вектора на составляющие. Базис

На плоскости любой вектор раскладывается по двум не параллельным прямым

Рис. 2.2: pryam

Мы проводим
$$AA_a$$
 и $AA_b||a$ Тогда $\overrightarrow{OA} = \overrightarrow{OA}_a + \overrightarrow{OA}_b$ $\vec{v}_a = \overrightarrow{OA}_a$ $\vec{v}_b = \overrightarrow{OA}_b$

Утверждение 2.1. Такое разложение единственно

Доказательство.
$$\vec{v}=\vec{v}_a+\vec{v}_b$$
 $\vec{v}=\vec{v}_a'+\vec{v}_b'$ $\vec{v}_a+\vec{v}_b-\vec{v}_a'-\vec{v}_b'=\vec{0}$ и $\vec{v}_a=x\vec{v}_a'$ и $\vec{v}_b=y\vec{v}_b'$ $(1-x)\vec{v}_a=(y-1)\vec{v}_b\Longrightarrow 1-x=0\Longrightarrow x=1\Longrightarrow \vec{v}_a=\vec{v}_a'$ аналогично $\vec{v}_b=\vec{v}_b'$

В пространстве каждый вектор можно разложить по прямой и пересекающей её плоскости

Рис. 2.3: plosk

Возьмём \vec{v} и отложим его от точки A

Если
$$\vec{v} \parallel \vec{v} + \vec{0}$$

Если $\vec{v} \parallel \alpha \vec{0} + \vec{v}$

Построим проекции AB на α вдоль a

Получили отрезок AB_{α}

Построим
$$B_a B \parallel A B_o$$

Построим
$$B_aB \parallel AB_{\alpha}$$
 $\Longrightarrow \overrightarrow{AB} = \overrightarrow{AB_a} + \overrightarrow{AB_{\alpha}} \quad v_a = \overrightarrow{AB_a} \quad v_{\alpha} = \overrightarrow{AB_{\alpha}}$

$$\vec{v} = \vec{v}_a + \vec{v}_\alpha$$

Утверждение 2.2. Такое разложение единственно

Доказательство. Упражнение

Утверждение 2.3. В пространстве любой вектор \vec{v} можно разложить по трём прямым, пересекающимся в одной точке и не лежащим в одной плоскости

Доказательство. O – точка пересечения a, b, c

 α проходит через b и c

Тогда
$$\vec{v} = \vec{v}_a + \vec{v}_\alpha$$
, v_α в плокости

Тогда
$$\vec{v} = \vec{v}_a + \vec{v}_b + \vec{v}_c$$

Теорема 2.2. При сложении векторов их соответствующие составляющие складываются

Доказательство.

2. По прямой и плоскости

$$\vec{v}$$
 и \vec{w} $\vec{v} = \vec{v}_a + \vec{v}_\alpha$ $\vec{w} = \vec{w}_a + \vec{w}_\alpha$

$$\vec{v} + \vec{w} = \vec{u}$$

 $\vec{u} = \vec{c} + \vec{w} = (\vec{v}_a + \vec{w}_a) + (\vec{v}_\alpha + \vec{w}_\alpha) = \vec{u}_a + \vec{u}_\alpha$ Сумма векторов на прямой – вектор на прямой, сумма векторов на плоскости - вектор на плоскости.

мы получили какое-то разложение, оно единственное, по ранее доказанному, значит $ec{u}_a=ec{v}_a+ec{w}_a \quad ec{u}_lpha=ec{u}_a+ec{u}_a$ $\vec{v}_{\alpha} + \vec{w}_{\alpha}$

Утверждение 2.4. Три попарно не параллельных одной плоскости вектора в пространстве являются базисом

Доказательство. Пусть у нас есть два неколлинеарных вектора $\vec{a} \not \! \mid \vec{b} = \alpha$ – параллельна этим векторам Отложим \vec{a} и \vec{b} от некоторой точки O

Тогда получаются \overrightarrow{OA} и \overrightarrow{OB} они задают плоскость

Возьмём направленный отрезок $OC \perp \alpha \ni OA$ и OB

$$\overrightarrow{OC} \neq x \cdot \vec{a} + y \cdot \vec{b}$$

 \vec{a}, \vec{b} и \vec{c} – не параллельны одной плоскости

Отложим все три вектора от одной точки O $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$ они задают три прямые a, b, c

$$\vec{v} = \vec{v}_a + \vec{v}_b + \vec{v}_c$$

$$\vec{v}_a \parallel \vec{a} \implies \vec{v}_a = x\vec{a}$$

$$\vec{v}_b \parallel \vec{b} \implies \vec{v}_b = y\vec{b}$$

$$\vec{v}_c \parallel \vec{c} \implies \vec{v}_c = z\vec{c}$$

$$\vec{v} = \vec{v}_a + \vec{v}_b + \vec{v}_c = x\vec{a} + y\vec{b} + a\vec{z}$$

Числа x, y, z будут называться координатами

Замечание 2.5. O – mочка, mогда $\forall X$ – mочки $X \longleftrightarrow \overrightarrow{OX}$ – paduyc вектор

$$Ka\kappa$$
 определить прямую $\vec{m} \| a$

$$\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{AX}, \ m.e. \ \overrightarrow{m} \| \overrightarrow{AX}, \ \overrightarrow{AX} = t \cdot \overrightarrow{m}$$

$$m.e. \ OX = OA + t \cdot \vec{m}$$

Как определить плоскость:

$$A \in \alpha, \vec{m}, \vec{n} \| \alpha$$

$$\forall X \in \alpha \quad \overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{AX}$$

$$\overrightarrow{OX} = \overrightarrow{OA} + t \cdot \overrightarrow{m} + s \cdot \overrightarrow{n}$$

<...>

Лемма 2.4. $\vec{a} \cdot \vec{b} = |a| \cdot Pr_{\vec{a}}\vec{b}$

Лемма 2.5.
$$Pr_{\vec{a}}(\vec{b}+\vec{c})=Pr_{\vec{a}}(\vec{b})+Pr_{\vec{a}}(\vec{c})$$

Доказательство. Построим
$$\overrightarrow{OB} = \vec{b}$$
 $\overrightarrow{OC} = \vec{c}$ $\overrightarrow{OA} = \vec{a}$

Спроектируем \overrightarrow{OB} \overrightarrow{BC} \overrightarrow{OC} на прямую (OA)

и получим
$$\overrightarrow{OB'}$$
 $\overrightarrow{B'C'}$ $\overrightarrow{OC'}$

$$\vec{e}_a = \frac{\vec{a}}{|\vec{a}|}$$

$$\overrightarrow{OB'} = (Pr_{\vec{a}}\vec{b}) \cdot \vec{e_a}$$

$$B'\dot{C}' = (Pr_{\vec{a}}\vec{c}) \cdot \vec{e}_a$$

$$\overrightarrow{OC'} = (Pr_{\vec{a}}(\vec{b} + \vec{c}) \cdot \vec{e_a})$$

$$\overrightarrow{OB'} + \overrightarrow{B'C'} = \overrightarrow{OC}$$

$$(Pr_{\vec{a}}\vec{b}) \cdot \vec{e_a} + (Pr_{\vec{a}}\vec{c}) \cdot \vec{e_a} = (Pr_{\vec{a}}(\vec{b} + \vec{c})) \cdot \vec{e_a}$$

Свойства:

1.
$$\vec{c}a \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

2.
$$\forall x \in \mathbb{R} \quad x(\vec{a} \cdot \vec{b}) = (x\vec{a})\vec{b}$$

3.
$$\vec{a}(\vec{b} + \vec{c}) = \vec{a}\vec{b} + \vec{a}\vec{c}$$

$$\vec{a} \cdot \vec{b} = |\vec{a}| P r_{\vec{a}} \vec{b}$$

$$\vec{a} \cdot \vec{c} = |\vec{a}| Pr\vec{a}\vec{c}$$

$$\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = |\vec{a}|(Pr_{\vec{a}}\vec{b} + Pr_{\vec{a}}\vec{c}) = |\vec{a}|(Pr_{\vec{a}}(\vec{b} + \vec{c})) = \vec{a} \cdot (\vec{b} + \vec{c})$$

Следствие:

$$(\vec{a} + \vec{b})^2 = (\vec{a} + \vec{b})(\vec{a} + \vec{b}) = (\vec{a} + \vec{b})\vec{a} + (\vec{a} + \vec{b}) \cdot \vec{b} = \vec{a}^2 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{b} + \vec{b}^2 = \vec{a}^2 + 2\vec{a} \cdot \vec{b} + \vec{b}^2$$

$$(\vec{a} - \vec{b})^2 = \vec{a}^2 - 2\vec{a} \cdot \vec{b} + \vec{b}^2$$

Полезные формулы:

$$1. |\vec{a}| = \sqrt{\vec{a}^2}$$

2.
$$\cos(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

3. Пусть $\vec{i}, \vec{j}, \vec{k}$ – ортонормированный базис

$$\vec{a} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$$

$$\vec{b} = x_2\vec{i} + y_2\vec{j} + z_2\vec{k}$$

$$\vec{a}\cdot |vecb=x_1x_2+y_1y_2+z_1z_2$$
 Доказательство – упражнения

Упражнения (доказать с использованием скалярного произведения):

1. Теорема косинусов

- 2. в параллелограмме $ABCD AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + DA^2$
- 3. Вывести формулы для длины медианы треугольника
- 4. в параллелепипеде сумма квадратов диагоналей равна сумме квадратов всех рёбер

Теорема 2.3. Признак перпендикулярности прямой и плоскости

$$a \perp b, a \perp c \quad b, c \subseteq \alpha \implies a \perp \alpha, b \cap c \neq \emptyset$$

Доказательство. \vec{b}, \vec{c} фиксируем прямую $d \subset \alpha$ \vec{d}

т.к.
$$b \cap c \neq \emptyset$$
 $\vec{b}\vec{c}$ – не коллинеарные

Тогда
$$\vec{d} = x\vec{b} + y\vec{d}$$

$$a \cdot d = x \cdot \vec{a} \cdot \vec{b} + y \cdot \vec{a} \cdot \vec{c} = x \cdot 0 + y \cdot 0 = 0 \implies \vec{\perp} \vec{d} \implies a \perp d$$

Теорема 2.4. Теорема о трёх перпендикулярах

$$a$$
 – $npямая$ a' – $npoekuus$ на $nnockocmb$ α

$$b \in \alpha \quad b \perp a' \implies b \perp a$$

 $ec{\mathcal{A}}$ оказательство. $ec{a}, ec{a'}$ – проекция $ec{a}$ на прямую a'

$$\vec{b} \cdot \vec{a'} = 0$$

$$\vec{b} \cdot \vec{a'} = 0$$

$$(\vec{a} - \vec{a'}) \perp \vec{a'}$$

$$(\vec{a} - a') \perp a'$$

$$\vec{a} \cdot \vec{a'} - \vec{a'}^2 = 0 = \vec{b} \cdot \vec{a'}$$

$$\vec{a} - \vec{a'} -$$

$$\vec{a} - \vec{a'} -$$

2.4 Координатный метод в пространстве

Определение 2.14. O – точка, $\vec{i}, \vec{j}, \vec{k}$ – ортонормированный базис

Отложим эти вектора от точки О

М – произвольная точка в пространстве.

$$\overrightarrow{OM} = x\vec{i} + y\vec{j} + z\vec{k}$$

(x,y,z) называются декартовыми координатами точки M или радиус-вектора OMТочка О - начало координат.

 O_x – ось абсиисс

 O_y – ось ординат

 O_z – ocь annликат

 O_{xy}, O_{xz}, Oyz – координатные плоскости

$$\vec{a} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}
\vec{b} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$$

$$\vec{b} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$$

$$\vec{a} + \vec{b} = (x_1 + x_2)\vec{i} + (y_1 + y_2)\vec{j} + (z_1 + z_2)\vec{k}$$

$$\alpha \in \mathbb{R}$$
 $\alpha \vec{a} = \alpha x_1 \vec{i} + \alpha y_1 \vec{j} + \alpha z_2 \vec{k}$

$$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

$$\alpha \in \mathbb{R} \quad \alpha \vec{a} = \alpha x_1 \vec{i} + \alpha y_1 \vec{j} + \alpha z_2 \vec{k}$$

$$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2$$
 Компланарность $\vec{a} || \vec{b} \iff \begin{cases} x_1 = t x_2 \\ y_1 = t y_2 \\ z_1 = t z_2 \end{cases}$

$$\vec{c} = x_3 \vec{i} + y_3 \vec{j} + z_3 \vec{k}$$

$$\vec{a}, \vec{b}, \vec{c}$$
 – компланарны $\iff \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} \neq 0 (\alpha^2 + \beta^2 + \gamma^2 = 0) \iff \begin{cases} \alpha x_1 + \beta x_2 + \gamma x_3 = 0 \\ \alpha y_1 + \beta y_2 + \gamma y_3 = 0 \\ \alpha z_1 + \beta z_2 + \gamma z_3 = 0 \end{cases}$

Ортогональность
$$\vec{a} \perp \vec{b} \iff x_1 x_2 + y_1 y_2 + z_1 z_2 = 0$$
 $|\vec{a}| = \sqrt{x_1^2 + y_1^2 + z_1^2} \cos(\vec{a}, \vec{b}) = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}$

$$\cos(\vec{a}, \vec{b}) = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}$$

Утверждение 2.5. $\vec{a} = x\vec{i} + y\vec{j} + z\vec{k}$

$$x = Pr_{\vec{i}}\vec{a} \quad y = Pr_{\vec{j}}\vec{a} \quad z = Pr_{\vec{k}}\vec{a}$$

Доказательство.
$$x = \vec{i} \cdot \vec{a} = |\vec{i}| \cdot Pr_{\vec{i}}\vec{a} = Pr_{\vec{i}}\vec{a}$$

Замечание 2.6. $\vec{i} = 1 \cdot \vec{i} + 0 \cdot \vec{j} + 0 \cdot \vec{k}$

Замечание 2.7. Мы построили соответствие между \mathbb{R}^3 и пространством

Задача 2.1.
$$A(x_1,y_1,z_1)$$
 $B(x_2,y_2,z_2)$ $Haŭmu\ |AB|$

Доказательство.
$$|AB| = |\overrightarrow{AB}| = |\overrightarrow{OB} - \overrightarrow{OA}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Задача 2.2. Точка C делит отрезок AB в отношении α

$$\overrightarrow{AC} = \alpha \overrightarrow{CB} \quad \alpha \in \mathbb{R}$$

Доказательство.
$$A(x_1, y_1, z_1) \quad B(x_2, y_2, z_1)$$

$$C(x, y, z) - -?$$

$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$$

$$\overrightarrow{CB} = \overrightarrow{OB} - \overrightarrow{OC}$$

$$\overrightarrow{OC} - \overrightarrow{OA} = \alpha \overrightarrow{OB} - \alpha \overrightarrow{OC}$$

$$(1 + \alpha)\overrightarrow{OC} = \alpha \overrightarrow{OB} - \overrightarrow{OA}$$

$$\begin{cases} x = \frac{\alpha x_2 + x_1}{1 + \alpha} \\ y = \frac{\alpha y_2 + y_1}{1 + \alpha} \\ z = \frac{\alpha z_2 + z_1}{1 + \alpha} \end{cases}$$

ДЗ:

- 1. 7.016
- 2. 7.019
- 3. 7.024
- 4. 7.034
- 5. 7.037

Упражнения:

- 1. 7.026
- 2. 7.027
- 3. 7.042
- 4. 7.043

2.5 Задание фигур уравнениями и неравенствами

Определение 2.15. Задана система координат (произвольная) O_{xyz}

Уравнение f(x, y, z) = 0

Фигура F задана данным уравнением, если координаты её точек удовлетворяют данному уравнению $g(x,y,z)\geqslant 0$

 Φ игура F задана данным неравенством, если все её координаты удовлетворяют данному неравенству.

Пример 2.1 (Сфера). Центр $M(x_0, y_0, z_0)$, $r - pa\partial uyc$

$$\forall X(x,y,z) \ \text{ na cobere} \ |MX| = r \\ |MX| = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2} = r \\ r^2 = (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2$$

Пример 2.2 (Шар).
$$r^2 \ge (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2$$

Пример 2.3 (Плоскость).
$$M_0(x_0,y_0,z_0) \in \alpha$$
 $\vec{n}(A,B,C)$ – вектор $\alpha \perp \vec{n}$ $A^2 + B^2 + C^2 \neq 0$ $\forall M(x,y,z) \in \alpha M_0 M \perp n$ $M_0 M(x-x_0,y-y_0,z-z_0)$ $M_0 M \cap \vec{n} = 0$ $M_0 M \cap \vec{n} = 0$ $M_0 M \cap \vec{n} = 0$ $A^2 + B^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C^2 + C^2 \neq 0$ $A^2 + B^2 + C^2 + C$

Пример 2.4 (Задание прямой). $M_0(x_0, y_0, z_0) \in l$

$$ec{P}(a,b,c)$$
 — направляющая $\forall M(x,y,z) \in l \quad \overrightarrow{M_0M} = t ec{P}, t \in \mathbb{R}$ $\overrightarrow{M_0M} = \overrightarrow{OM} - \overrightarrow{OM_0} = t \cdot \overrightarrow{P}$ $\begin{cases} x = x_0 + ta \\ y = y_0 + tb \end{cases}$, $t \in \mathbb{R}$ $\begin{cases} z = z_0 + tc \end{cases}$ $\begin{cases} \frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c} - K$ аноническая запись прямой

Пример 2.5 (Точка пересечения двух прямых). Есть две прямые: собирается общая система из двух систем уравнений

$$\begin{split} \cos(l_1, l_2) &= |\cos\left(\vec{P}_1, \vec{P}_2\right)| = \frac{|a_1 a_2 + b_1 b_2 + c_1 c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}} \\ l_1 \perp l_2 &\iff \vec{P}_1 \parallel \vec{P}_2 &\iff \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \\ l_1 \parallel l_2 &\iff \vec{P}_1 \parallel \vec{P}_2 &\iff \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \end{split}$$

Пример 2.6 (Уравенение прямой, проходящей через 2 точки). $M_1(x_1,y_1,z_1), M_2(x_2,y_2,z_2) \in b$

$$M_1(x_1,y_1,z_1)$$
 — начальная точка, $\overrightarrow{M_1M_2}$ — направляющая
$$\begin{cases} x=x_1+t(x-2-x_1) \\ y=y_1+t(y_2-y_1) \end{cases}, t \in \mathbb{R}$$
 $z=z_1+t(z_2-z_1)$ $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}$

Пример 2.7 (Прямая, как пересечение двух плоскостей).
$$\begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{cases}$$

Теорема 2.5. Взаимное расположение прямой и плоскости

$$\begin{aligned} Ax + By + Cz + D &= 0 \quad A^2 + B^2 + C^2 \neq 0 \quad \alpha \\ x &= x_0 + ta \\ y &= y_0 + tb \quad , t \in] mathds R \quad a^2 + b^2 + c^2 \neq 0 \\ z &= z_0 + tc \\ a \parallel l &\iff l \perp \vec{n} \iff aA + bB + cC = 0 \\ a \perp l &\iff \vec{P} \parallel \vec{n}, \ P - \text{handbelte} n$$

$$\sin(l, \alpha) = |\cdot (\vec{P}, \vec{n})| = \frac{|aA + bB + cC|}{\sqrt{a^2 + b^2 + c^2} \cdot \sqrt{A^2 + Bsr + C^2}} \end{aligned}$$

Теорема 2.6 (Расстояние от точки до плоскости). Ax + By + Cz + D = 0 $A^2 + B^2 + C^2 \neq 0$

$$ec{n}(A,B,C)$$
 – вектор нормали

 $\sqsupset M$ – точка в пространстве и M' – $e\ddot{e}$ проекция на плоскость

$$\begin{split} |\overrightarrow{M'M}| &= \rho(M,\alpha) \\ M(x_0,y_0,z_0); M'(x_1,y_1,z_1) \\ |\overrightarrow{n}\cdot \overrightarrow{M'M}| &= |\overrightarrow{n}|\cdot |\overrightarrow{M'M}| \\ |\overrightarrow{M'M}| &= \frac{|\overrightarrow{n}\cdot \overrightarrow{M'M}|}{|\overrightarrow{n}|} \\ |\overrightarrow{n}\cdot \overrightarrow{M'M}| &= |(x-x_0)\cdot A + (y_0-y_1)\cdot B + (z_0-z_1)\cdot C| = |(Ax_0+By_0+zC_0-(-D))| \\ |\overrightarrow{n}| &= \sqrt{A^2+B^2+C^2} \\ |\overrightarrow{M'M}| &= \frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} \end{split}$$