

Ценеров диод

Ценеровият диод е оптимизиран да работи в областта на електрически пробив.

При настъпване на пробив, напрежението U_Z върху ценеровия диод остава почти постоянно независимо от промяната на тока през диода.

Приложения

Стабилизатор на напрежение.

Защита от пренапрежение.

При право включване ценеровият диод се отпушва при 0.7 V, точно като Si диод с p-n преход. При обратно включване обратният ток преди пробива е много малък.

В областта на пробив се наблюдава рязко нарастване на тока при оставащо почти постоянно напрежение.

Ценеровият диод поддържа постоянно напрежение при значителна промяна на входното напрежение и тока през дода.

В областта на пробив ценеровият диод действа като източник на постоянно напрежение с големина U_Z .

Прагов модел

1. Като използвате прагов модел на ценеров диод, определете токовете, падовете на напрежение и разсейваните мощности върху резистора и диода.

$$Uz = 8V$$
, $U1 = 10V$, $R1 = 2k\Omega$

- 1) Източникът на напрежение U1, диодът D1 и резисторът R1 са свързани последователно => през тях тече еднакъв ток I.
- 2) Диодът е включен в обратна посока и U1 > Uz => диодът е в режим на пробив и Ud = Uz.
- 3) От законът на Кирхоф за напреженията => U1 = Ur + Ud; Ur = U1 Ud = 10V 8V = 2V
- 4) От законът на Ом => I = Ur / R1 = 2V / 1kOhm = 2mA
- 5) Мощността, разсейвана върху резистора е Pr = Ur . I = 2V . 2mA = 4mW
- 6) Мощността, разсейвана върху диода е Pd = Ud . I = 8V . 2mA = 16mW

Елемент	U	I	Р	
D1	8V	2mA	16mW	
R1	2V	2mA	4mW	

2. Като използвате прагов модел на ценеров диод, определете токовете, падовете на напрежение и разсейваните мощности върху резистора и диода.

$$Uz = 10V$$
, $U1 = 8V$, $R1 = 2k\Omega$

- 1) Източникът на напрежение U1, диодът D1 и резисторът R1 са свързани последователно => през тях тече еднакъв ток I.
- 2) Диодът е включен в обратна посока и U1 < Uz => диодът е запушен и през него не тече ток, т.е. I = 0A.
- 3) От законът на Ом => Ur = R1 . I = 1kOhm . 0 = 0V
- 4) От законът на Кирхоф за напреженията => U1 = Ur + Ud; Ud = U1 Ur = 8V 0V = 8V
- 5) Мощността, разсейвана върху резистора е Pr = Ur . I = 0W
- 6) Мощността, разсейвана върху диода е Pd = Ud . I = 0W

Елемент	U	I	Р	
D1	8V	0	0	
R1	0	0	0	

Какво ще покава волтметъра, ако U1=10V, R1=100Ohm, а D1 е ценеров диод с Uz=8V.

○ 10V

○ 8V

○ 2V

OV

Какво ще покава волтметъра, ако U1=8V, R1=100Ohm, а D1 е ценеров диод с Uz=10V.

- 10V
- 8V
- 2V
- OV

Параметри – напрежение на пробив

Ценеровите диоди се характеризират с напрежение на пробив U_Z , което се задава за конкретен ток I_Z .

Пробивното напрежение U_Z е от порядъка на няколко волта до няколко стотици волта. За всеки ценеров диод се задават и толерансите за ценеровото напрежение.

• Characteristic $(T_a = 25^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Zener Voltage	V_Z	$I_Z = 2mA$	34.00	-	38.00	V
Reverse Current	l _R	V _R = 25.0V	-	-	0.1	μA
Dynamic Impedance	Z_{Z}	$I_Z = 2mA$	-	-	90	Ω
Temperature Coefficient	YZ	$I_Z = 2mA$	28.5	-	34.0	mV/°C

Динамично съпротивление r_z

$$r = \frac{dU_Z}{dI_Z} \approx \frac{U_{Z2} - U_{Z1}}{I_{Z2} - I_{Z1}}$$

Динамичното (променливотоково) съпротивление r_Z се дефинира като отношение на нарастъка на напрежението и нарастъка на тока около дадена работна точка.

Колкото по-малко е динамичното съпротивление, толкова характеристиката е по-стръмна и диодът е по-добър като стабилизатор на напрежение.

Температурен коефициент

$$TKU_{z}[V/^{\circ}C] = \frac{U_{Z2} - U_{Z1}}{T_{2} - T_{1}}$$

$$TKU_{z}[\%/^{\circ}C] = \frac{U_{Z2} - U_{Z1}}{(T_{2} - T_{1})U_{z}}$$

$$I_Z$$
= const

Температурният коефициент на напрежението на пробив TKU_Z отчита влиянието на температурата върху стойността на пробивното напрежение в mV/°C или %/ °C.

Той може се дефинира и с процентното изменение на напрежението U_Z спрямо промяната на температурата.

Влияние на температурата

Figure 4. Typical Breakdown Diode Characteristics. Note Effects of Temperature for Each Mechanism

Максимална мощност

● Absolute Maximum Rating (T_a = 25°C)

Parameter	Symbol	Limits	Unit
Power dissipation	P_{D}	150	mW
Junction temperature	Tj	150	°C
Storage temperature	T _{stg}	- 55 ∼ 150	°C

Мощността, отделена в ценеровия диод, работещ в режим на пробив е $P_Z = U_z I_z$.

Максимално допустимата мощност P_{Zmax} е най-голямата мощност, разсейвана от p-n прехода, при която не възниква топлинен пробив.

Докато отделената мощност P_Z не надвиши максимално допустимата мощност $P_{Z\max}$ ценеровият диод работи в областта на електрически пробив без да се разруши.

Максимална мощност

Приложения – стабилизатор на напрежение

Товарът R_{LOAD} се свързва паралелно на ценеровия диод. Ценеровият диод поддържа **постоянно напрежение** върху товара $U_{LOAD} = U_Z$ независимо от промените в захранващия токоизточник или в товарното съпротивление.

Съпротивлението *R1* е токоограничаващо съпротивление.

Ограничител на напрежение

Ограничителят на напрежение отрязва напреженията на сигнала над и под специфицирано ниво.

По време на положителния полупериод, когато входното напрежение надвиши напрежението на пробив U_Z на ценеровия диод, диодът D1 работи в режим на пробив и ограничава изходния сигнал на нивото на ценерово напрежение U_Z .

За напрежения по-малки от U_Z диодът е в обратно включване, действа като отворен ключ и изходното напрежение следва входното.

По време на отрицателния полупериод, ценеровият диод е в право включване, действа като нормален диод и ограничава изходното напрежение до обичайната стойност -0,7 V.

Ограничител на напрежение

През положителния полупериод D2 е в пробив, а диодът D1 е в право включване. Изходното напрежение се ограничава до $U_{Z1} + U_o = 10 + 0.7 = +10.7$ V.

По време на отрицателния полупериод D1 е в пробив, D2 – в право включване и изходното напрежението се ограничава до -10.7V

Когато входното напрежение е по-малко от напрежението на пробив, съответният ценеров диод е в обратно включване, действа като отворен ключ и и изходното напрежение следва входното.

