Math 621 HW 1, due Thursday, Sept. 1

Please work out on scrap paper, download these pages, and after editing your work, write yours proofs, answers, on them. Put your name somewhere. Thanks.

- 1. Let S be a non-empty set, and let * be a binary operation on S. Suppose * is associative, and suppose that $e \in S$ is an identity element of (S,*), an element e such that for all $s \in S$ e*s=s=s*e.
 - (a) (2 points) Prove that the identity of (S, *) is unique. That is, show that if f is also an identity element of (S, *), then e = f.

(b) (2 points) Suppose that s has an inverse v in (S,*). (So s*v=e=v*s.) Prove the inverse of an element of (S,*), if it exists, is unique.

(c) (2 points) If s has an inverse, denote it by s^{-1} . Suppose that u and v are both contained in S, and both u and v have inverses in (S,*). Show that u*v has an inverse in (S,*).

(d) (2 points) Suppose that every element of (S, *) has an inverse. Show that if s, t, u are in S, and s * u = t * u, then s = t.

(e) (6 points) Suppose that every element s in (S,*) has an inverse s^{-1} .

Let b be an element of S. Define a binary operation \circ on S as follows: For all $s,t \in S$, let $s \circ t = s * b * t$. (There's no need to parenthesize "s * b * t" since * is associative.)

i. (2 out of 6 points) Show that \circ is associative.

ii. Short answer. (2 out of 6 points) (S, \circ) has an identity element. What is it?

- iii. **Short answer.** (2 out of 6 points) Every element $s \in S$ has an inverse \overline{s} in (S, \circ) . What is \overline{s} , the inverse of s, in (S, \circ) ?
- iv. **Optional**: +1 point, and perhaps the chance for you to write your solution on the board.

Find a bijection $\Gamma: S \to S$ such that for all $s, t \in S$, $\Gamma(s*t) = \Gamma(s) \circ \Gamma(t)$. Verify that Γ satisfies the equation of the previous sentence, and that Γ is a bijection.

(f) **Optional**, +1 point, and perhaps the chance for you to write your solution on the board.

Recall that if \mathbb{Z} is partitioned into a collection of non-empty subsets S_1, \ldots, S_k , the partition is said to be *compatible with addition* if whenever a, b, c are in \mathbb{Z} , and a and b are same subset, then a + c and b + c are in the same subset. More formally, if there exists $i \in \{1, \ldots, k\}$ such that $\{a, b\} \subseteq S_i$, then there exists $j \in \{1, \ldots, k\}$ such that $\{a + c, b + c\} \subseteq S_j$.

Show that if \mathbb{Z} is partitioned into two sets S and T, with $0 \in S$, and with $1 \in T$, and the partition is compatible with addition in \mathbb{Z} , then $S = 2\mathbb{Z}$ (the even integers) and $T = 1 + 2\mathbb{Z}$ (the odd integers). Suggestion: You could begin by showing that $0 \in S$ and the partition is compatible with addition implies that S is closed under addition and that $\{s+1: s \in S\} = S+1 \subseteq T$.