OT_R_IP_Data_Analysis.R

telly

2022-03-23

```
# 1. Statement of the Problem
#A Kenyan entrepreneur has created an online cryptography course and would want to advertise it on her
#She currently targets audiences originating from various countries.
#In the past, she ran ads to advertise a related course on the same
#blog and collected data in the process.
#She would now like to employ your services as a Data Science Consultant
#to help her identify which individuals are most likely to click on her ads.
#Metric for Success
#Experimental Design
#1. Data Cleaning
#2. Data Exploration
#3. Recommendations & Conclusions
#Downloading the relevant Packages
#install.packages("Hmisc")
#install.packages("qqthemes")
#install.packages("moments")
#install.packages("corrplot")
#install.packages("DataExplorer")
#Loading the relevant libraries
library(data.table)
## Warning: package 'data.table' was built under R version 4.0.5
library(tidyverse)
```

Warning: package 'tidyverse' was built under R version 4.0.5

```
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.5
                     v purrr
                               0.3.4
## v tibble 3.1.6
                               1.0.8
                     v dplyr
                     v stringr 1.4.0
## v tidyr
           1.2.0
## v readr
                     v forcats 0.5.1
           2.1.2
## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## Warning: package 'purrr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'stringr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::between()
                      masks data.table::between()
## x dplyr::filter()
                      masks stats::filter()
## x dplyr::first()
                      masks data.table::first()
## x dplyr::lag()
                      masks stats::lag()
## x dplyr::last()
                      masks data.table::last()
## x purrr::transpose() masks data.table::transpose()
library(ggplot2)
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 4.0.5
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
##
      src, summarize
## The following objects are masked from 'package:base':
##
##
      format.pval, units
```

```
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 4.0.5
library(moments)
library(corrplot)
## corrplot 0.92 loaded
library(DataExplorer)
## Warning: package 'DataExplorer' was built under R version 4.0.5
#Loading the Dataset
advert <- fread('http://bit.ly/IPAdvertisingData')</pre>
#Data Exploration
#Checking the first 6 rows
head(advert)
     Daily Time Spent on Site Age Area Income Daily Internet Usage
##
## 1:
                        68.95 35
                                     61833.90
                                                             256.09
## 2:
                        80.23 31
                                      68441.85
                                                             193.77
                        69.47 26
## 3:
                                     59785.94
                                                             236.50
## 4:
                        74.15 29
                                     54806.18
                                                             245.89
## 5:
                         68.37 35
                                     73889.99
                                                             225.58
                         59.99 23
## 6:
                                      59761.56
                                                             226.74
                                                                   Country
##
                              Ad Topic Line
                                                      City Male
## 1:
         Cloned 5thgeneration orchestration
                                              Wrightburgh
                                                                   Tunisia
        Monitored national standardization
## 2:
                                                 West Jodi
                                                                     Nauru
                                                             1
## 3:
          Organic bottom-line service-desk
                                                  Davidton
                                                             O San Marino
## 4: Triple-buffered reciprocal time-frame West Terrifurt 1
                                                                    Italy
## 5:
             Robust logistical utilization
                                              South Manuel 0
                                                                   Iceland
## 6:
                                                 Jamieberg 1
           Sharable client-driven software
                                                                    Norway
##
                Timestamp Clicked on Ad
## 1: 2016-03-27 00:53:11
## 2: 2016-04-04 01:39:02
## 3: 2016-03-13 20:35:42
                                     0
## 4: 2016-01-10 02:31:19
## 5: 2016-06-03 03:36:18
                                     0
## 6: 2016-05-19 14:30:17
#Checking the last 6 rows
tail(advert)
```

Daily Time Spent on Site Age Area Income Daily Internet Usage

```
## 1:
                        43.70 28
                                     63126.96
                                                            173.01
## 2:
                        72.97 30
                                     71384.57
                                                            208.58
## 3:
                        51.30 45
                                     67782.17
                                                            134.42
                        51.63 51
## 4:
                                     42415.72
                                                            120.37
## 5:
                        55.55 19
                                     41920.79
                                                            187.95
## 6:
                        45.01 26
                                     29875.80
                                                            178.35
##
                            Ad Topic Line
                                                   City Male
## 1:
            Front-line bifurcated ability Nicholasland
## 2:
            Fundamental modular algorithm
                                              Duffystad
## 3:
          Grass-roots cohesive monitoring
                                            New Darlene
             Expanded intangible solution South Jessica
                                                           1
## 5: Proactive bandwidth-monitored policy West Steven
                                                           0
          Virtual 5thgeneration emulation
                                            Ronniemouth
##
                    Country
                                      Timestamp Clicked on Ad
## 1:
                    Mayotte 2016-04-04 03:57:48
## 2:
                    Lebanon 2016-02-11 21:49:00
## 3: Bosnia and Herzegovina 2016-04-22 02:07:01
                                                            1
                  Mongolia 2016-02-01 17:24:57
## 5:
                  Guatemala 2016-03-24 02:35:54
                                                            0
                     Brazil 2016-06-03 21:43:21
## 6:
                                                            1
#Data Structure
str(advert)
## Classes 'data.table' and 'data.frame': 1000 obs. of 10 variables:
## $ Daily Time Spent on Site: num 69 80.2 69.5 74.2 68.4 ...
## $ Age
                             : int 35 31 26 29 35 23 33 48 30 20 ...
                             : num 61834 68442 59786 54806 73890 ...
## $ Area Income
## $ Daily Internet Usage
                             : num 256 194 236 246 226 ...
## $ Ad Topic Line
                             : chr "Cloned 5thgeneration orchestration" "Monitored national standardi
## $ City
                                    "Wrightburgh" "West Jodi" "Davidton" "West Terrifurt" ...
                             : chr
                             : int 0 1 0 1 0 1 0 1 1 1 ...
## $ Male
                             : chr "Tunisia" "Nauru" "San Marino" "Italy" ...
## $ Country
                           : POSIXct, format: "2016-03-27 00:53:11" "2016-04-04 01:39:02" ...
## $ Timestamp
                            : int 0000000100...
## $ Clicked on Ad
## - attr(*, ".internal.selfref")=<externalptr>
#Dimension of Dataset
dim(advert)
## [1] 1000
             10
#We have 1000 rows and 10 columns in the dataset
#Checking the Data Types of the columns
sapply(advert, class)
## $'Daily Time Spent on Site'
## [1] "numeric"
##
## $Age
## [1] "integer"
```

```
##
## $'Area Income'
## [1] "numeric"
##
## $'Daily Internet Usage'
## [1] "numeric"
## $'Ad Topic Line'
## [1] "character"
##
## $City
## [1] "character"
## $Male
## [1] "integer"
##
## $Country
## [1] "character"
##
## $Timestamp
## [1] "POSIXct" "POSIXt"
## $'Clicked on Ad'
## [1] "integer"
#3. Data Cleaning
# Standardize column names by using upper case and replacing the
#spaces with underscores using qsub() function
names(advert) <- gsub(" ","_", names(advert))</pre>
# lower the case of the column names using toupper() function
names(advert) <- toupper(names(advert))</pre>
# Confirming the changes
colnames(advert)
  [1] "DAILY_TIME_SPENT_ON_SITE" "AGE"
## [3] "AREA_INCOME"
                                    "DAILY_INTERNET_USAGE"
## [5] "AD_TOPIC_LINE"
                                    "CITY"
                                    "COUNTRY"
## [7] "MALE"
## [9] "TIMESTAMP"
                                    "CLICKED_ON_AD"
#Checking for Missing Data in columns using the colSums & is.na
colSums(is.na(advert))
## DAILY_TIME_SPENT_ON_SITE
                                                  AGE
                                                                    AREA_INCOME
##
##
       DAILY_INTERNET_USAGE
                                        AD_TOPIC_LINE
                                                                           CITY
##
                                              COUNTRY
                                                                      TIMESTAMP
##
                       MALE
```

```
##
                                                    0
                                                                               0
##
              CLICKED_ON_AD
##
#There are no missing entries in the dataset
#Checking for Duplicates in the Dataset
anyDuplicated((advert))
## [1] 0
#There are no duplicated records in the Dataset
#Renaming the Columns to make them precise
names(advert)[1] <- "BROWSE_TIME"</pre>
names(advert)[4] <- "NET_USAGE"</pre>
names(advert)[10] <- "CLICKS"</pre>
names(advert)[5] <- "TOPIC"</pre>
names(advert)[3] <- "INCOME"</pre>
names(advert)[7] <- 'GENDER'</pre>
#Preview Dataset
head(advert, 3)
##
      BROWSE_TIME AGE INCOME NET_USAGE
                                                                        TOPIC
## 1:
                                   256.09 Cloned 5thgeneration orchestration
            68.95 35 61833.90
## 2:
            80.23 31 68441.85
                                   193.77 Monitored national standardization
            69.47 26 59785.94
## 3:
                                   236.50
                                            Organic bottom-line service-desk
             CITY GENDER
##
                             COUNTRY
                                               TIMESTAMP CLICKS
## 1: Wrightburgh
                       0
                            Tunisia 2016-03-27 00:53:11
## 2:
        West Jodi
                               Nauru 2016-04-04 01:39:02
                                                               0
                       1
                       0 San Marino 2016-03-13 20:35:42
## 3:
         Davidton
#Checking for Unique Values in the Gender Column to ensure
#alignment with expectations
distinct(select(advert, GENDER ))
      GENDER
## 1:
           0
## 2:
#Gender column consists of expected values 0 & 1
#Checking for unique values in the Number of Clicks per Ad
distinct(select(advert, CLICKS))
```

```
CLICKS
##
## 1:
## 2:
           1
#Clicks column has expected values of 0 for NO and 1 for Yes
#Gender and Clicks are erroneously classed as integers
#They are categorical features. Therefore we convert them
#to factors
advert$GENDER <- factor(advert$GENDER)</pre>
advert$CLICKS <- factor(advert$CLICKS)</pre>
#Checking Structure of Data
str(advert)
## Classes 'data.table' and 'data.frame': 1000 obs. of 10 variables:
## $ BROWSE_TIME: num 69 80.2 69.5 74.2 68.4 ...
## $ AGE
                 : int 35 31 26 29 35 23 33 48 30 20 ...
                 : num 61834 68442 59786 54806 73890 ...
## $ INCOME
## $ NET_USAGE : num 256 194 236 246 226 ...
## $ TOPIC : chr "Cloned 5thgeneration orchestration" "Monitored national standardization" "Orga
## $ CITY
                 : chr "Wrightburgh" "West Jodi" "Davidton" "West Terrifurt" ...
## $ GENDER
                 : Factor w/ 2 levels "0","1": 1 2 1 2 1 2 1 2 2 2 ...
## $ GENDER : Factor w/ 2 levels "0","1": 1 2 1 2 1 2 1 2 2 2 ## $ COUNTRY : chr "Tunisia" "Nauru" "San Marino" "Italy" ...
## $ TIMESTAMP : POSIXct, format: "2016-03-27 00:53:11" "2016-04-04 01:39:02" ...
## $ CLICKS : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
## - attr(*, ".internal.selfref")=<externalptr>
#Outlier Detection
#Checking for Outliers in the Income Column
advert %>%
  ggplot(aes(x= 1, y=INCOME)) +
  geom_boxplot(fill = "grey", color= 'blue') +
  ggtitle("Outlier Detection in the Income Column") +
  theme(axis.text = element_text(size=18),
        axis.title = element_text(size = 18),
        plot.title = element_text(hjust = 0.5, size = 20))
```

Outlier Detection in the Income Column

Outlier Detection in the Age Column

Boxplot for Internet Usage

Daily Internet Usage

```
#With the exception of the Individual Income Level which had circa eight
#outliers on the higher side, the rest of the columns had no outliers. Given that
#the outlier values are valid data points, we make the decision to retain them
#in the dataset.

#Leveraging power of Regular Expressions to check for non-charnumeric values
sum(grepl(':', advert))
```

[1] 0

```
#There are no non-charnumeric values

#FEATURE ENGINEERING

#Additional Feature Engineering to get the Gender factors to easily comprehensible
#types

# replace the ones and zeros in 'gender' column with 'male' and 'female' using
#the ifelse() function

advert$GENDER <- ifelse(advert$GENDER == 1, "Male", "Female")
advert$CLICKS <- ifelse(advert$CLICKS == 1, "Yes", "No")</pre>
```

```
#Grouping Countries by Continent
AFRICA <- advert %>%
  mutate(AFRICA = COUNTRY %in% c("Lesotho", "Mozambique", "Namibia", "Cape Verde",
                                 "Comoros", "Ethiopia", "Mali", "Djibouti", "Sudan",
                                 "Cameroon", "Egypt", "Burundi", "Ghana", "Tunisia"))
EUROPE <- advert %>%
  mutate(EUROPE = COUNTRY %in% c("Slovakia (Slovak Republic)", "Andorra",
                                 "Denmark", "Slovenia", "Romania", "Isle of Man",
                                 "Greece", "Monaco", "Russian Federation", "Spain",
                                 "Bosnia and Herzegovina", "Norway", "Iceland",
                                 "Italy", "San Marino"))
ASIA <- advert %>%
  mutate(ASIA = COUNTRY %in% c("Armenia", "Kiribati", "Marshall Islands",
                               "India", "Nepal", "Vanuatu", "Macao", "Tuvalu",
                               "Tokelau" , "Korea",
                               "British Indian Ocean Territory (Chagos Archipelago)",
                               "Australia", "Myanmar", "Nauru"))
AMERICA <- advert %>%
  mutate(AMERICA = COUNTRY %in% c("South Georgia and the South Sandwich Islands",
                                  "Uruguay", "Cayman Islands", "United States Virgin Islands",
                                  "Aruba", "Peru", "British Virgin Islands",
                                  "Bouvet Island (Bouvetoya)", "Barbados", "Grenada"))
MID_EAST <- advert %>%
  mutate(MID_EAST = COUNTRY %in% c("Syrian Arab Republic", "Yemen", "Afghanistan",
                                   "Palestinian Territory", "Qatar"))
#Creating Region Column in Our Dataset
advert <- mutate (advert, REGION = ifelse(COUNTRY %in% c("Congo", "Uganda", "Sierra Leone", "Angola", "
                                          ifelse(COUNTRY %in% c("Saint Barthelemy", "Germany", "Pitcair
                                                 ifelse(COUNTRY %in% c("Saint Martin", "Panama", "Guam"
                                                        ifelse(COUNTRY %in% c("Niue", "Mauritius", "Fij
                                                               ifelse(COUNTRY %in% c("Kuwait", "Jordan"
#Subsetting the Other Region Sub-classification to ensure we have all the countries
#in the Region Column
OTHER <- subset(advert, advert$REGION == "OTHER_REGION")
OTHER.
## Empty data.table (0 rows and 11 cols): BROWSE TIME, AGE, INCOME, NET USAGE, TOPIC, CITY...
#Previewing the dataset
tail(advert)
      BROWSE_TIME AGE INCOME NET_USAGE
                                                                        TOPIC
##
## 1:
           43.70 28 63126.96 173.01
                                                Front-line bifurcated ability
## 2:
           72.97 30 71384.57
                                  208.58
                                                Fundamental modular algorithm
           51.30 45 67782.17
## 3:
                                  134.42
                                              Grass-roots cohesive monitoring
## 4:
           51.63 51 42415.72
                                 120.37
                                                 Expanded intangible solution
```

```
## 5:
            55.55 19 41920.79
                                  187.95 Proactive bandwidth-monitored policy
## 6:
            45.01 26 29875.80
                                  178.35
                                               Virtual 5thgeneration emulation
                                                             TIMESTAMP CLICKS
##
               CITY GENDER
                                           COUNTRY
      Nicholasland Female
## 1:
                                           Mayotte 2016-04-04 03:57:48
                                                                           Yes
## 2:
          Duffystad
                                           Lebanon 2016-02-11 21:49:00
                                                                           Yes
## 3:
       New Darlene
                      Male Bosnia and Herzegovina 2016-04-22 02:07:01
                                                                          Yes
## 4: South Jessica
                                         Mongolia 2016-02-01 17:24:57
                                                                          Yes
        West Steven Female
## 5:
                                        Guatemala 2016-03-24 02:35:54
                                                                           No
## 6:
        Ronniemouth Female
                                            Brazil 2016-06-03 21:43:21
                                                                           Yes
##
        REGION
## 1:
        AFRICA
## 2: MID_EAST
## 3:
       EUROPE
## 4:
          ASIA
## 5: AMERICA
## 6: AMERICA
#We will Split Date and Time from Timestamp in order to carry out further analysis
advert$DATE <- as.Date(advert$TIMESTAMP)</pre>
advert$TIME <- format(as.POSIXct(advert$TIMESTAMP), format = "%H:%M:%S")
#Extracting time from the date/time stamp
advert <- advert %>% separate(TIME, c("HOUR", "MINUTE", "SECONDS"))
#Apportioning the Hour Column into features that can be analyzed
advert$HOUR = ifelse(advert$HOUR >= "00" & advert$HOUR <= "06", "Wee Hours",
                     ifelse(advert$HOUR >= "07" & advert$HOUR <= "12", "Morning Hours",</pre>
                            ifelse(advert$HOUR >= "13" & advert$HOUR <= "18",
                                    "Afternoon Hours", "Night")))
#Previewing the dataset
head(advert)
##
      BROWSE TIME AGE
                        INCOME NET USAGE
                                                                           TOPIC
## 1:
            68.95 35 61833.90
                                  256.09
                                             Cloned 5thgeneration orchestration
## 2:
            80.23 31 68441.85
                                  193.77
                                             Monitored national standardization
## 3:
            69.47 26 59785.94
                                  236.50
                                               Organic bottom-line service-desk
## 4:
            74.15 29 54806.18
                                  245.89 Triple-buffered reciprocal time-frame
## 5:
            68.37 35 73889.99
                                  225.58
                                                  Robust logistical utilization
## 6:
            59.99 23 59761.56
                                  226.74
                                                Sharable client-driven software
                CITY GENDER
                               COUNTRY
                                                  TIMESTAMP CLICKS REGION
##
## 1:
         Wrightburgh Female
                               Tunisia 2016-03-27 00:53:11
                                                                No AFRICA
## 2:
           West Jodi
                       Male
                                 Nauru 2016-04-04 01:39:02
                                                                     ASIA
## 3:
            Davidton Female San Marino 2016-03-13 20:35:42
                                                                No EUROPE
## 4: West Terrifurt
                       Male
                                  Italy 2016-01-10 02:31:19
                                                                No EUROPE
## 5:
        South Manuel Female
                               Iceland 2016-06-03 03:36:18
                                                                No EUROPE
## 6:
                                Norway 2016-05-19 14:30:17
                                                                No EUROPE
           Jamieberg
                            HOUR MINUTE SECONDS
##
            DATE
## 1: 2016-03-27
                       Wee Hours
                                      53
                                              11
                                      39
## 2: 2016-04-04
                       Wee Hours
                                              02
## 3: 2016-03-13
                           Night
                                      35
                                              42
## 4: 2016-01-10
                       Wee Hours
                                      31
                                              19
```

```
## 5: 2016-06-03
                 Wee Hours
## 6: 2016-05-19 Afternoon Hours
                                30
                                         17
#Dropping Columns we don't need for analysis
advert <- select(advert, -c(TOPIC, CITY, TIMESTAMP, MINUTE, DATE, SECONDS))</pre>
numeric <- select(advert, c(BROWSE_TIME, AGE, INCOME, NET_USAGE) )</pre>
non.numeric <- select(advert, c(GENDER, COUNTRY, CLICKS, REGION, HOUR))
#EXPLORATORY DATA ANALYSIS
#UNIVARIATE ANALYSIS
#Measures of Central Tendency
#Summary of the numeric values using the function summary
summary(numeric)
   BROWSE_TIME
                    AGE
##
                                   INCOME
                                               NET_USAGE
## Min. :32.60 Min. :19.00 Min. :13996 Min. :104.8
## 1st Qu.:51.36 1st Qu.:29.00 1st Qu.:47032 1st Qu.:138.8
## Median:68.22 Median:35.00 Median:57012 Median:183.1
## Mean :65.00 Mean :36.01 Mean :55000 Mean :180.0
## 3rd Qu.:78.55 3rd Qu.:42.00
                                3rd Qu.:65471
                                               3rd Qu.:218.8
## Max. :91.43 Max. :61.00 Max. :79485 Max. :270.0
#The average Browse time was 65, average age of users 36 years, average region income
#being 55000 and the average network usage 180.
#The maximum time spent online was 91.43 while the least was 32.60
#The oldest person online was age 61 whilst the youngest was only 19
#The highest area income was around 79000 whilst the least was around 14000
#The highest internet usage per day was 270 whilst the least was 105
#Description of the entire Dataset using the Describe function
describe(advert)
## advert
##
## 9 Variables 1000 Observations
## BROWSE_TIME
                                              Gmd .05
##
        n missing distinct Info Mean
                                                            .10
                                     65 18.11 37.58 41.34
                             1
.90
      1000 0 900
##
##
     . 25
              .50
                      .75
                                       .95
   51.36 68.22 78.55 83.89 86.20
##
```

```
##
## lowest : 32.60 32.84 32.91 32.99 33.21, highest: 90.97 91.10 91.15 91.37 91.43
## -----
## AGE
                     Info
                           Mean
     n missing distinct
                                 Gmd
                                       .05
                                             .10
##
    1000 0 43
                    0.999 36.01 9.943 23.95 26.00
    . 25
         .50
               .75
                     .90 .95
                         52.00
   29.00
         35.00
              42.00
                     49.00
##
##
## lowest : 19 20 21 22 23, highest: 57 58 59 60 61
## INCOME
                           Mean
                                 Gmd
    n missing distinct Info
                                       .05
                                             .10
                     1
                           55000 15037 28275 35223
##
    1000 0 1000
                     .90
##
    .25
         .50 .75
                           .95
   47032 57012
##
               65471
                     70506
                           73601
##
## lowest : 13996.50 14548.06 14775.50 15598.29 15879.10
## highest: 78092.95 78119.50 78520.99 79332.33 79484.80
## -----
## NET_USAGE
     n missing distinct
                     Info Mean
                                 Gmd .05
                     1
.90
        0 966
                           180 50.63 113.5 120.5
##
    1000
                          .95
##
    . 25
          .50
               .75
##
   138.8 183.1 218.8
                     236.2
                           246.7
## lowest : 104.78 105.00 105.04 105.15 105.22, highest: 259.76 261.02 261.52 267.01 269.96
## GENDER
 n missing distinct
##
    1000 0
##
## Value Female Male
## Frequency 519 481
## Proportion 0.519 0.481
## ------
## COUNTRY
##
   n missing distinct
##
    1000 0 237
##
                          Algeria
## lowest : Afghanistan Albania
                                          American Samoa Andorra
## highest: Wallis and Futuna Western Sahara Yemen
                                          Zambia
                                                       Zimbabwe
## -----
## CLICKS
  n missing distinct
    1000 0 2
##
##
## Value
        No Yes
## Frequency 500 500
## Proportion 0.5 0.5
## -----
## REGION
## n missing distinct
##
   1000 0 5
```

```
##
## lowest : AFRICA AMERICA ASIA EUROPE MID_EAST
## highest: AFRICA AMERICA ASIA EUROPE MID_EAST
##
                             ASIA EUROPE MID_EAST
## Value
             AFRICA AMERICA
## Frequency
              205 224
                               236
                                         273
## Proportion 0.205
                       0.224 0.236
                                     0.273 0.062
## HOUR
##
        n missing distinct
      1000 0
##
          Afternoon Hours Morning Hours
                                             Night
                                                           Wee Hours
## Value
## Frequency
                             255
                                                                  280
              241
                                                  224
## Proportion
             0.241
                              0.255
                                                  0.224
                                                                0.280
# Pie-chart displaying the distribution of the countries in the Dataset
region_perc <- advert %>%
 filter(REGION != "NA") %>%
 group_by(REGION) %>%
 count() %>%
 ungroup() %>%
 arrange(desc(REGION)) %>%
 mutate( percentage = round(n/sum(n), 1)*100, lab.pos = cumsum(percentage) - 0.5 * percentage)
ggplot(region_perc, aes(x = "", y= percentage, fill = REGION)) +
 geom_bar(stat = "identity")+
 coord_polar("y", start = 200) +
 geom_text(aes(y = lab.pos, label = paste(percentage, "%", sep = "")), col = "black") +
 theme_void() + scale_fill_brewer(palette = "Set1") + labs(title= "Distribution of Countries in 2016 D
 theme(plot.title = element_text(hjust = 0.4, size = 20))
```

Distribution of Countries in 2016 Dataset


```
#Europe was the most represented region in the dataset whilst the Mid_East was
#the least represented
#Display of the most active hours
hour_perc <- advert %>%
  filter(HOUR != "NA") %>%
  group_by(HOUR) %>%
  count() %>%
  ungroup() %>%
  arrange(desc(HOUR)) %>%
  mutate( percentage = round(n/sum(n), 1)*100, lab.pos = cumsum(percentage) - 0.5 * percentage)
ggplot(hour_perc, aes(x = "", y= percentage, fill = HOUR)) +
  geom_bar(stat = "identity")+
  coord_polar("y", start = 200) +
  geom_text(aes(y = lab.pos, label = paste(percentage,"%", sep = "")), col = "black") +
  theme_void() + scale_fill_brewer(palette = "PRGn") + labs(title= "Distribution of Activity by Hour in
  theme(plot.title = element_text(hjust = 0.4, size = 20))
```

Distribution of Activity by Hour in the 2016 Data


```
#Most browsing activity took place in the wee Hours of the night and the morning
#hours
#Display of whether an advert was clicked or not
click_perc <- advert %>%
 filter(CLICKS != "NA") %>%
  group_by(CLICKS) %>%
 count() %>%
 ungroup() %>%
  arrange(desc(CLICKS)) %>%
  mutate( percentage = round(n/sum(n), 1)*100, lab.pos = cumsum(percentage) - 0.5 * percentage)
ggplot(click\_perc, aes(x = "", y= percentage, fill = CLICKS)) +
  geom_bar(stat = "identity")+
  coord_polar("y", start = 200) +
  geom_text(aes(y = lab.pos, label = paste(percentage,"%", sep = "")), col = "black") +
  theme_void() + scale_fill_brewer(palette = "Set1") + labs(title= "Distribution of Site Clicks in 2016
  theme(plot.title = element_text(hjust = 0.4, size = 20))
```

Distribution of Site Clicks in 2016


```
# There was no split on whether an advert was clicked or not. There was always
#a 50% chance that a user would click on an advert
#Plotting Pie Chart for Gender Distribution
#Filtering the gender df
pie_gender <- advert %>%
  filter(GENDER != "NA") %>%
  group_by(GENDER) %>%
  count() %>%
  ungroup() %>%
  arrange(desc(GENDER)) %>%
  mutate( percentage = round(n/sum(n), 2)*100, lab.pos = cumsum(percentage) - 0.5 * percentage)
ggplot(pie_gender, aes(x = "", y= percentage, fill = GENDER)) +
  geom_bar(stat = "identity")+
  coord_polar("y", start = 200) +
  geom_text(aes(y = lab.pos, label = paste(percentage,"%", sep = "")), col = "black") +
  theme_void() + scale_fill_brewer(palette = "Spectral") + labs(title= "Gender Distribution in 2016") +
  theme(plot.title = element_text(hjust = 0.4, size = 20))
```

Gender Distribution in 2016

Density Plot of Age


```
# Skewness and kurtosis of Daily Browsing cat('The skewness and kurtosis of daily browsing', '\n')
```

The skewness and kurtosis of daily browsing

```
cat("Skewness: ", skewness(advert$BROWSE_TIME), '\n')
```

Skewness: -0.3712026

```
cat("Kurtosis: ", kurtosis(advert$BROWSE_TIME), '\n')
```

Kurtosis: 1.903942

```
cat("Variance: ", var(advert$BROWSE_TIME), '\n')
```

Variance: 251.3371

```
cat("Standard Deviation: ", sd(advert$BROWSE_TIME), '\n')
```

Standard Deviation: 15.85361

```
#Skewness, variance, standard deviation and Kurtosis of Income
cat('The skewness and kurtosis of Area Income', '\n')
## The skewness and kurtosis of Area Income
cat("Skewness: ", skewness(advert$INCOME), '\n')
## Skewness: -0.6493967
cat("Kurtosis: ", kurtosis(advert$INCOME), '\n')
## Kurtosis: 2.894694
cat("Variance: ", var(advert$INCOME), '\n')
## Variance: 179952406
cat("Standard Deviation: ", sd(advert$INCOME), '\n')
## Standard Deviation: 13414.63
#Skewness and Kurtosis of Age
cat('The skewness and kurtosis of Age', '\n')
## The skewness and kurtosis of Age
cat("Skewness: ", skewness(advert$AGE), '\n')
## Skewness: 0.4784227
cat("Kurtosis: ", kurtosis(advert$AGE), '\n')
## Kurtosis: 2.595482
cat("Variance: ", var(advert$AGE), '\n')
## Variance: 77.18611
cat("Standard Deviation: ", sd(advert$AGE), '\n')
## Standard Deviation: 8.785562
```

```
#The values are fairly symmetrical, very slightly skewed to the right and platykurtic

#Bivariate Analysis

#Correlation Plot

options(repr.plot.width = 18, repr.plot.height = 18)

plot_correlation(advert, type = 'c',cor_args = list( 'use' = 'complete.obs'))
```


Correlation Meter -1.0 -0.5 0.0 0.5 1.0

Faceted Histogram of Age Distribution by Gende

Faceted Histogram of Income across Clicks

Scatterplot of Age Vs Income in 2016


```
#Highest income levels registered by people under the age of 40 but greater than 20.

#Scatterplot of Age Vs Daily time on the Internet
b2 <- ggplot(advert, aes(x=BROWSE_TIME, y=AGE))

b3 <- b2 + geom_point(aes(color=AGE), size=5) + scale_color_gradient(low='green', high = 'red')
print(b3 + ggtitle("Scatterplot of Age Vs Browse Time in 2016") + theme(axis.text = element_text(size= axis.title = element_text(size= plot.title = element_text(hjus))
```

Scatterplot of Age Vs Browse Time in 2016

Side-Barchart of Clicks by Gender

Barchart of Clicks by Hours

Barchart of Region by Hours

Barchart of Region according to Gender

Proportional Barchart of Clicks by Region

Trend of Age Vs Income by Region

Trend of Age Vs Browse Time by Region

Trend of Browse Time Vs Net Usage by Region

 ${\it \#Net\ usage\ increases\ as\ the\ Browse\ time\ increases.}$

#FOLLOW UP QUESTIONS

#Reflecting on whether we have achieved the objectives we set out

#1. Did we have the right data? Yes, we did

#2. Do we need other Data top answer our question? Yes, it would go along way in #explaining and validating certain observations in the current dataset e.g #why they is a 50% chance of CLicking or not clicking an add $\mathfrak G$ a fair representation #of countries in the Mid_East

#3. Did we have the right Question? Yes, we did.

#COnclusions & Recommendations

#In conclusion, women are the least likely to click on a link.
#Perhaps focus should be placed on items or topics likely to get women interested in clicking a link.

#Men are most likely to click a link. We recommend that the be targeted the most. #A lot of traffic be directed to men.

#Clearly the afternoons are the worst possible times to advertise online.
#It appears the wee hours of the night are the best times to advertise Crypto topics.

Asia is clearly a key focus area as most of the clicks were registered there