Chemical Space Networks using Tanimoto Coefficient

Subarna Palit

M.Sc. Life Science Informatics

13.12.2016

Chemical Space

- Chemical space is of paramount importance in the field of Chemo-informatics and drug design
- To assess a set of target compounds for their molecular properties and associate chemical relationships with biological activities
- Distribution of all synthetically accessible molecules across a hypothetical multi-dimensional space
- Two major approaches

Coordinate-based Coordinate-free

Coordinate-based Chemical Space Representation

- + Traditionally molecular descriptors are used as coordinates
- + Increasing distance between molecules correlates with dissimilarity
- High-dimensional making it difficult to visualize; dimensionality reduction leading to loss of vital chemical information

Coordinate-free Chemical Space Network

- Network-based representation of biologically relevant chemical space
 - nodes represent molecules, edges represent pair-wise molecular similarity relationships
- CSN for a set of active compounds

Fingerprint-based similarity

- Fingerprints are a way of encoding the structure of a molecule
- Most common being a series of bits representing the presence (1) or absence (0) of particular substructures in the molecule
- Tanimoto coefficient is most widely used for binary fingerprints

Tanimoto Coefficient

Α	1	0	1	1	0	1
В	1	1	0	1	0	0
С	1	0	0	1	0	0

$$Tc = \frac{C}{A+B-C}$$

A = bits set to 1 in structure A, B = bits set to 1 in structure B, C = number of 1 bits common to both Range is 0 to 1

Tanimoto similarity threshold values (THR-CSN)

	А	В	С	D	Е
Α	1	T _{AB}	T _{AC}	T_{AD}	T _{AE}
В		1	T _{BC}	T _{BD}	T _{BE}
С			1	T _{CD}	T _{CE}
D				1	T _{DE}
Е					1

As threshold values are varied each value yields a different so-called threshold CSN (THR-CSN)

Edge Density

- Network density is defined as the ratio of actual edges in a network over all potential edges
- While a low density network with many singletons is not very informative, highly dense network get more difficult to interpret

Community Structure and Modularity

- Communities are groups of nodes in a network
 - more links between nodes within the same community
 - lesser links between nodes in different communities
- Network modularity generally correlates with community structures accounting for the nodes separated into well-

defined modules

THR-CSNs

Discussion

- Useful in SAR exploration community structures leading to differences between similarity relationships
- Display and analysis of only moderately sized and biologically relevant compound sets

THANK YOU!