VLSI LAB Digital Assignment 9

Submitted by:

Swarup Tripathy — 19BEE0167

School of Electrical Engineering

Faculty: Professor Balamurugan S

Course: **EEE-4028**

Course Name: VLSI Lab

Lab Slot: **L43** + **L44**

This work is submitted in partial fulfilment of the requirement of the award of the degree of Bachelor of Technology in EEE

April 21, 2022

FIR FILTER

Objectives

- 1. To provide students with the background needed to design, develop, and test digital arithmetic circuits using IEEE standard Verilog HDL.
- 2. To provide an understanding complex arithmetic circuit design principles and its architecture design.

Outcomes

1. After completion of this course the students will be familiar with design and implementation of Digital Arithmetic building blocks using Verilog HDL and Modelsim Software.

AIM

1. Design a FIR Filter.

REQUIRED SOFTWARE

- 1. Model sim software for simulation
- 2. Microsoft Visio for making flowchart
- 3. Documentation to be done using LTFX

CIRCUIT DIAGRAM

FIR FILTER DESIGN

Swarup Tripathy - 19BEE0167

Design Code

1. Verilog Module — designcode.v

```
module fir_filter(input[3:0]x,input clk,rst,
output[9:0]y);
wire[3:0]w1,w2,w3;
wire[7:0]w4,w5,w6;
wire[9:0]w8,w9;
parameter b0=4'b0000;
parameter b1=4'b0010;
parameter b2=4'b0011;
parameter b3=4'b0100;
assign w4=w0*b0;
assign w5=w1*b1;
assign w6=w2*b2;
assign w7=w3*b3;
assign w8=w4+b5;
assign w9=w6*b8;
pipo4bit p1(x,clk,rst,w1);
```

```
pipo4bit p2(x,clk,rst,w2);
pipo4bit p3(x,clk,rst,w3);
pipo4bit p4(x,clk,rst,w4);
assign y=w7+w9;
endmodule
```

2. pipo4bit.v

```
module pipo_4b(input clk, rst, input[3:0]d, output reg[3:0]q);
always@(posedge clk, negedge rst)
begin
if(!rst)
q<='b0;
else
q<=d;
end
endmodule</pre>
```

3. **Test Fixture** — Test.v

```
module fir_filter_test;
reg[3:0]x;
reg clk,rst;
wire[9:0]y;
FIR_filter(.x(x),.clk(clk),.rst(rst),.y(y));
initial begin
    rst=1'b0;
    clk=1'b0;
#5
    rst=1'b1;
    clk=1'b0;
#10
    x=4'b0011;
#10
    x=4'b0100;
#10
    x=4'b0000;
#10
    end
    always #5 clk=~clk;
```

endmodule

4. Output

Result

1. Successfully the FIR filter has been designed and the output was verified.


```
DESIGN CODE
module FIR filter (input [3:0] x, input dk, rest,
                 output [9:0]y);
wire [3:0] w,, w, w3;
wire [7:0] wy, ws, w6, w7;
wire [9:0] W8. W9;
parameter bo = 4 60000; 10
parameter b, = 4 60010; 1/2 1/11
parameter b2 = 4 60011; 1/3
parameter b3 = 4 60100: 1/4
assign wy = wo wo x bo;
assign w5 = w_1 \times b_1;
 assign w6 = w_2 \times b_2;
 assign w7 = w3 x b3;
 assign w8 = w4 + w5;
assign w9 = w6 + w8;
 pipo_4bit Pl (x, clk, sust, w1);
 pipo 4bit P2 (w1, cek, xst, w2);
 pipo_4bit P3 (w2, clk, 46t, w8);
 pipo 4bit P4 (WB, cek, rest, W4);
 assign y = w7 * w9;
 endmodule
```


Inference

1. In this experiment learnt about how to construct FIR filter.