

LAB REPORT COVER PAGE

Lab No:	04
Student ID:	23081055
Student Name:	Sudip Bhomian
Initial Submission Date:	***************************************
Final Submission Date:	
Course Name:	Microprocessor
Course Code:	CSC167
Semester:	2 nd
Instructor/Examiner/Lecture:	Bhuwan Acharya
Evaluator's Comment:	
Evaluator's Signature:	***************************************

- LAB 4:- Familiarization with ADD, ADI, SUB, SUI, RLC, RRC, RAR, CMA Instructions
- Objectives!
- -) To demonstrate the basic understanding of arithmetic group instructions, logically comparing toup instructions and logical rotate instructions
- -> To add or subtract the contents of register/ mememory to the contents of the accumulator.
- > To complement the contents of the accumulator.
- -> to rotate the accumulator data lettror right.

Introduction !-

Arithmetic group Instructions:

The 8085 microprocessor perform various arithmetic operations such as addition, Subtraction, increment and decrement. The arithmetic operation add and subtract are performed in relation to the contents of accumulator. Arithmetic group Instructions modify all the flags according to the data conditions of the result and also place the result in the accumulator.

ADD, ADI, SUB, SUI etc

a. ADD :-

-> It is I by te add instruction which adds the contents of register/memory to the contents of the allumulator and stores the result in accumulator.

Eg:- Add B; A = A+B

- b. ADI 8 bit data!
- adds the 8 bit data with the contents of accumulator and stores result in accumulator.

 E.g. ADJ 98H', A = A+98H

C. SUBRIM

-> It is 1 byte subtract instruction which subtracts the contents of specified register/m with the contents of accumulator and stores the result in accumulator.

E.g., SUB D., ALA-D

d. SUI 8 bit data

which subtracts the 8 bit data from the contents of accumulator stores result in accumulator.

E.g; SUI D3H;

logical Group Instructions:

microprocessor can perform all the logic functions of the hardwired logic through its instruction set. The 8085 instruction set include such logic functions as AND, OR, XOR and NOT.

The instructions implicitly assume that the allumulator is one of the operands. All instructions resetlclearl carry flag except for complement where flag remain unchanged. They modify 2 if and 5 flags according to the data conditions of the result. They also place or soult in the accumulator. They do not affect the contents of the operand register. Some instructions are ANA, ANT, I MA etc.

CMA (complement accumulator):

the contents of the accumulator. It does not affect flag.

Logical Rotate instructions :-

A) RLC: Rotate allumulator left
Here, each bit is shifted to the adjacent left
Position. Bit pt becomes po. The carry flag is
modified allording to pt

 $(x = D_{7}, D_{7} = 0_{6}, D_{6} = D_{5}, D_{7} = 0_{6}, D_{6} = D_{5}, D_{7} = D_{7}, D_{7} =$

b) RRC: rotate accumulator right
there, each bit is shifted right to the adjacent
position. Bit po becomes pr. The carry flag is
modified according to po.

modified according to Do.

(y = Do, P_2 = Do, ...,

Do = D_1

c) RAR: Rotate accumulator right through carry there, each bit is shifted right to the adjacent position. Bit po becomes the carry bit and the carry bit is shifted into Dq.

wap to add number from 1 to 5 and finally add the sum with 03 H.

Instruction	Description
MVI A, OOH	ice A 600H
MVI B, OSH	loads data OSH to specified HL
UP: ADDB	Pair address i.e [HL] 605 H
DIR B	adds the data of B register with accumulator and store result in accumulator. i. e At AtB decrease the data of register B by 1 i.e B = B-1
JNZ UP	Jumps it no zero (it z=0)
ADI O3 H	adds immediate with accumulator
STA 2200H	stores the contents of accumulator
HLT	to 2200H

memory view:.

i,	-	U		
		0	1	2
	220	12	00	00
	:			

Assembler outpul-			
3 1=	00	MVI A,00H	
06	05	MVI B, OSH	
80		UPLOOP: ADDB	
05		DCRB	
62	04 08	JNZ UP	
6	03	AD1 03 H	
	00 22	STA 2200H	
76		HLT	

Registers

AIPSW	0x 1216
B (0 x 00 00
DE	0 1 00 00
H L SP	0 x 00 00
PI	OXFFFF
	6 x 08 00

Flags

2	
5	
P	V
C	
AC	V

Program to	illustrate the use of RL(, RR(
instruction	pescription
MVI A107 H	loads data off to the specified
RIC	Shifts each bit to the adiquent left position
MOV B, A	0000 1110 =054
RLL	CY=0 Upon
RL(ADD B	CY = 0 0001 1100 = 1 (H) CY = 0 0011 1000 = 38H
1 5 13	accumulator and store register with
RRI	Shifts each bit right to the
HLT	(y=0 0010 0011=23H

Assembler output		
3E 07	MVI A, 07H	
07	RLC	
47	MOV B, A	
07	RIL	
07	RLL	
80	ADD B	
OF	RRC	
76	HLT	

Registers

AIPSW	O x 23 12
BL	DX OE DO
DE	OX 00 00
HL	00 00 00
SP	OX FFFF
P(0 x 0809

Flags

Z	
5	
P	
(
AL	V

of accumulator result

Instruction	Description
MVI B, 33H	loads data 33 H to the specified B
ADI 78H	register adds imeediate data to 784 with
CMA	complements the contents of the
STA 2200 H	stores the contents of accumulator in 2200H address
HLT	

output

memory view:

	0	1	2	
220	87			+
221				+
1				-

Assembler of	utput
06 33	MVI B,33H
(6 78	ADI 78H
2F	CMA
32 00 22	STA 2200H
76	HLT

Registers

AIPSW	0x 87 06		
B (6 x 33 00		
DE	0x 00 00		
HL	0 x 00 00		
SP	6x FF FF		
PC	01 08 08		

Flags

Z

S

P

C

AC

Find the output of following program MVI A, 07 H 86 07 RLC MOV B, A 07 RAR 47 RL(1 F SUB B 07 90 RAR 1 F HLT 76 Here, Accumulator is loaded with immediate data 074 RLC: Rotate left accumulator where D7 = D6, D6 = D5, Do = D7 , carry = D7. 07H = 00000111 000001110 there, OEH i.e 00001110 is stored in register B. RAR Rotate accumulator right through carry where, Do = carry and carry bit shift into Dy. 0011 After RAR instructions, accumulator is loaded with 00000111H data. RUC CX=0 00001

0

50,

is later subtracted to register Bi.e of H resulting of as final result.

Legisters:

AIPSW	00	56
30	OE	00
SP	FF	££
P(08	09

Flags:

Z	5	P	(A(
~		V		V