Corso di Logica 6.3 – Conseguenza Logica, Validità e Soddisfacibilità

Docenti: Alessandro Andretta, Luca Motto Ros, Matteo Viale

Dipartimento di Matematica Università di Torino

Andretta, Motto Ros, Viale (Torino)

Conseguenza Logica

AA 2021-2022

1/21

Alcune nozioni logiche

1 enchanto

Sia φ un L-enunciato.

- Se \mathcal{A} è una L-struttura tale che $\mathcal{A} \models \varphi$ diciamo che φ è **vero** nella struttura \mathcal{A} , o che \mathcal{A} è un **modello** di φ , o che \mathcal{A} **soddisfa** φ .
- Se esiste almeno una L-struttura \mathcal{A} tale che $\mathcal{A} \models \varphi$, allora si dice che φ è **soddisfacibile** o **coerente**.
- Se non esiste alcun modello di φ , si dice che φ è **insoddisfacibile**, o **incoerente**, o **contradditorio**, o una **contraddizione**.
- Se per ogni L-struttura A si ha che $A \models \phi$, si dice che ϕ è (**logicamente**) valido, o **logicamente** vero, e si scrive

 $\models \varphi$.

Andretta, Motto Ros, Viale (Torino)

Conseguenza Logica

for.

Queste nozioni si possono estendere anche ad insiemi di L-enunciati.

Sia Γ un insieme (finito o infinito) di L-enunciati.

f 4 • Una L-struttura A è un **modello** di Γ , in simboli

$$\mathcal{A} \models \Gamma$$
,

se $\mathcal{A} \models \varphi$ per ogni $\varphi \in \Gamma$. In questo caso diciamo che Γ è soddisfatto da \mathcal{A} , o che \mathcal{A} soddisfa Γ .

- Γ si dice **soddisfacibile** (o **coerente**) se $\mathcal{A} \models \Gamma$ per qualche L-struttura \mathcal{A} ; in caso contrario, ovvero se $\mathcal{A} \not\models \Gamma$ per ogni
- $\stackrel{\mathbf{2}}{\longrightarrow}$ L-struttura \mathcal{A} , si dice che Γ è **insoddisfacibile** (o **incoerente**).
- Γ si dice **valido** se $A \models \Gamma$ per ogni L-struttura A. In questo caso scriviamo $\models \Gamma$.

Si verifica facilmente che se $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ è un insieme finito di L-enunciati, allora Γ è soddisfacibile/insoddisfacibile/valido se e solo l'enunciato $\varphi_1 \wedge \dots \wedge \varphi_n$ è soddisfacibile/insoddisfacibile/valido.

Andretta, Motto Ros, Viale (Torino)

Conseguenza Logica

AA 2021-2022

3/21

Osservazione. Il numero di interpretazioni di una formula proposizionale è finito (ci sono 2^n possibili interpretazioni se la proposizione contiene n lettere proposizionali): dunque si può controllare se essa è una tautologia, o se è insoddisfacibile considerando esplicitamente tutte le possibilità.

Di contro, non c'è limite al numero di L-strutture che possono soddisfare o meno un dato L-enunciato φ : dunque sarà in generale più facile dimostrare che φ è soddisfacibile (basta trovare una struttura \mathcal{A} tale che $\mathcal{A} \models \varphi$) piuttosto che dimostrare la sua validità o insoddisfacibilità (bisognerebbe controllare se tutte le L-strutture soddisfano o meno φ).

mo

Conseguenza logica

Sia L un linguaggio, sia Γ un insieme di L-enunciati e sia φ un L-enunciato. Diremo che φ è conseguenza logica di Γ , in simboli

$$\Gamma \models \varphi$$

se:

per ogni L-struttura \mathcal{A} , se $\mathcal{A} \models \Gamma$ allora $\mathcal{A} \models \varphi$.

Scriveremo $\Gamma \not\models \varphi$ per dire che φ NON è conseguenza logica di Γ .

Quando $\Gamma = \{\psi_1, \dots, \psi_n\}$ è un insieme finito scriveremo

$$\psi_1,\ldots,\psi_n\models\varphi$$

invece di $\{\psi_1,\ldots,\psi_n\}\models \phi$, e se $\Gamma=\{\psi\}$ scriveremo semplicemente $\psi \models \varphi$.

Inoltre si verifica facilmente che

$$\psi_1, \dots, \psi_n \models \varphi$$
 se e solo se

$$\models (\psi_1 \wedge \ldots \wedge \psi_n) \rightarrow \varphi.$$

Andretta, Motto Ros, Viale (Torino)

Conseguenza Logica

AA 2021-2022

5/21

Attenzione!

Il simbolo ⊨ ha tre significati distinti:

- $\mathcal{A} \models \varphi$ (o $\mathcal{A} \models \varphi[x_1/a_1, \dots, x_n/a_n]$), significa che \mathcal{A} soddisfa φ (mediante l'assegnazione $x_1/a_1, \ldots, x_n/a_n$); quindi \models denota una relazione tra *strutture* e enunciati/formule (**relazione di** soddisfazione).
- $\models \varphi$ significa che φ è un **enunciato valido**; quindi in questo caso \models denota una proprietà che gli enunciati possono o non possono avere (quella di essere validi).
- $\Gamma \models \varphi$ significa che l'enunciato φ è vero in ogni struttura in cui tutti gli enunciati in Γ sono veri; quindi in questo caso \models denota una relazione tra insiemi di enunciati e singoli enunciati (relazione di conseguenza logica).

Ragionando esattamente come nel caso della logica proposizionale, si dimostra il teorema seguente.

Teorema

- $\textbf{0} \ \phi \ \grave{e} \ \textit{valido se e solo se} \ \neg \phi \ \grave{e} \ \textit{insoddisfacibile}.$
- $oldsymbol{Q}$ ϕ è soddisfacibile se e solo se $\neg \phi$ non è valido,
- **3** $\Gamma \models \varphi$ se e solo se $\Gamma \cup \{\neg \varphi\}$ è insoddisfacibile.

Dimostrazione.

1 e 2 sono ovvie.

Dimostriamo che vale anche 3. Se $\Gamma \models \varphi$ e per assurdo $\mathcal{A} \models \Gamma \cup \{\neg \varphi\}$ per qualche \mathcal{A} , allora si avrebbe che, in particolare, $\mathcal{A} \models \neg \varphi$ e $\mathcal{A} \models \varphi$ (poiché $\mathcal{A} \models \Gamma$ e $\Gamma \models \varphi$), contraddizione.

Viceversa, supponiamo $\mathcal{A} \models \Gamma$. Se $\Gamma \cup \{\neg \phi\}$ è insoddisfacibile, allora $\mathcal{A} \not\models \neg \phi$, cioè $\mathcal{A} \models \phi$. Poiché \mathcal{A} è arbitrario, segue che $\Gamma \models \phi$.

Andretta, Motto Ros, Viale (Torino)

Conseguenza Logica

AA 2021-2022

7/21

Equivalenza logica

Sia L un linguaggio. Due L-enunciati φ e ψ sono **logicamente** equivalenti, in simboli $\varphi \equiv \psi$, se

$$\mathcal{A} \models \phi$$
 se e solo se $\mathcal{A} \models \psi$

per ogni struttura A.

Scriveremo $\phi \not\equiv \psi$ per dire che ϕ e ψ NON sono logicamente equivalenti.

Come nel caso della logica proposizionale, si ha che

$$\phi \equiv \psi$$
 se e solo se $\phi \models \psi$ e $\psi \models \phi$

$$\phi \equiv \psi$$
 se e solo se $\models \phi \leftrightarrow \psi$

Esempio

Sia $L=\{f\}$ con f simbolo di funzione unario, e sia ϕ l'enunciato

$$\forall y \exists x (f(x) = y).$$

Per mostrare che φ è soddisfacibile, bisogna trovare una L-struttura \mathcal{A} tale che $\mathcal{A} \models \varphi$.

Per fare in modo che φ sia vero in \mathcal{A} , bisogna allora "scegliere" una funzione $f^{\mathcal{A}}$ tale che ogni elemento y del dominio della struttura sia immagine mediante $f^{\mathcal{A}}$ di qualche elemento x.

Quindi si può considerare, ad esempio, la struttura $\mathcal{A}=\langle\mathbb{Z},f^{\mathcal{A}}\rangle$ dove

$$f^{\mathcal{A}} \colon \mathbb{Z} \to \mathbb{Z}, \qquad x \mapsto x + 1.$$

Infatti, in \mathcal{A} è vero che per ogni intero y esiste un intero x tale che x+1=y: basta prendere x=y-1. Dunque $\mathcal{A}\models \phi$ e abbiamo mostrato che ϕ è soddisfacibile.

Andretta, Motto Ros, Viale (Torino)

Conseguenza Logica

AA 2021-2022

9 / 21

Esempio (continua)

Se si fosse considerata al posto di \mathcal{A} la struttura $\mathcal{B} = \langle \mathbb{N}, f^{\mathcal{B}} \rangle$, dove $f^{\mathcal{B}} \colon \mathbb{N} \to \mathbb{N}$ è nuovamente definita da $x \mapsto x + 1$, l'enunciato φ

$$\forall y \exists x (f(x) = y)$$

non sarebbe risultato vero in \mathcal{B} , poiché se si considera y=0 non esiste nessun numero naturale x tale che x+1=y. Dunque $\mathcal{B}\not\models \phi$. Le due strutture \mathcal{A} e \mathcal{B} dimostrano in particolare che ϕ è soddisfacibile ma non valido.

Più in generale, si può osservare che per ogni L-struttura \mathcal{M} ,

 $\mathcal{M} \models \varphi$ se e solo se $f^{\mathcal{M}}$ è una funzione suriettiva.

Esempio 👃

Consideriamo ora il linguaggio $L=\{R\}$, dove R è un simbolo di relazione binario, e sia ϕ l'enunciato

$$\forall x \forall y (R(x,y) \to \exists z (\neg(z=x) \land \neg(z=y) \land (R(x,z) \land R(z,y)))).$$

Consideriamo la L-struttura $\mathcal{A} = \langle \mathbb{R}, < \rangle$ (ovvero la relazione binaria $R^{\mathcal{A}}$ su \mathbb{R} è <). Allora l'"interpretazione" di φ in \mathcal{A} è: "per ogni coppia di numeri reali x e y tali che x < y esiste una altro reale z diverso da x e da y tale che x < z < y" (ovvero i numeri reali sono densi rispetto a <). Tale affermazione è vera in \mathbb{R} : dati x e y tali che x < y, basta prendere ad esempio $z = \frac{x+y}{2}$. Quindi $\mathcal{A} \models \varphi$.

Invece φ è falsa nella L-struttura $\mathcal{B} = \langle \mathbb{Z}, < \rangle$, poiché se si considera y = x + 1 si ha che x < y ma non esiste nessun intero tra x e y che sia diverso da entrambi. Dunque φ è nuovamente soddisfacibile ma non valido.

Andretta, Motto Ros, Viale (Torino)

Conseguenza Logica

AA 2021-2022

11 / 21

Esempio

Sia ora $L = \{+, \cdot, 0, 1\}$ un linguaggio dove + e \cdot sono simboli di funzione binari e 0 e 1 sono simboli di costante. Sia $\mathcal{A} = \langle \mathbb{R}, +, \cdot, 0, 1 \rangle$ una L-struttura (ovvero si interpreti il simbolo + come l'usuale somma tra numeri reali, \cdot come il prodotto, 0 come il numero reale 0 e 1 come il numero reale 1). Per comodità, utilizzeremo la notazione *infissa*, ovvero scriveremo x + y al posto di +(x, y) e $x \cdot y$ al posto di $\cdot (x, y)$.

Sia
$$\varphi$$
 l'enunciato $\times^{\downarrow} \bot = \Im$ $\forall x \exists y (1 + x \cdot x = y).$

L'"interpretazione" di φ in \mathcal{A} dice che per ogni reale x deve esistere un reale y tale che $x^2+1=y$: questo è vero in \mathbb{R} , dunque $\mathcal{A}\models\varphi$.

Sia ora ψ l'enunciato

$$\forall y \exists x (1 + x \cdot x = y).$$

In questo caso, ψ è falsa in \mathcal{A} poiché se si considera y=0 allora non esiste nessun x tale che $x^2+1=y$. Dunque $\mathcal{A} \not\models \psi$.

Esempio

Consideriamo il linguaggio $L=\{R\}$ con R simbolo di relazione binario. Consideriamo i seguenti enunciati:

$$\varphi_1: \quad \forall x R(x,x)$$

$$\varphi_2: \quad \forall x \forall y (R(x,y) \to R(y,x))$$

$$\varphi_3: \quad \forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z).$$

Allora per ogni L-struttura A si ha che

$$\mathcal{A} \models \varphi_1$$
 se e solo se $R^{\mathcal{A}}$ è una relazione riflessiva;

$$\mathcal{A} \models \varphi_2$$
 se e solo se $R^{\mathcal{A}}$ è una relazione simmetrica;

$$\mathcal{A} \models \varphi_3$$
 se e solo se $R^{\mathcal{A}}$ è una relazione transitiva.

Quindi $\mathcal{A} \models \varphi_1 \land \varphi_2 \land \varphi_3$ se e solo se $R^{\mathcal{A}}$ è una relazione di equivalenza. ...continua

Andretta, Motto Ros, Viale (Torino)

Conseguenza Logica

AA 2021–2022

13 / 21

Esempio (continua)

Siano L e $\varphi_1, \varphi_2, \varphi_3$ come nella slide precedente. Dimostriamo che nessuna delle φ_i è conseguenza logica delle rimanenti due, ovvero

$$\{\varphi_2,\varphi_3\}\not\models\varphi_1$$

$$\{\varphi_1,\varphi_3\} \not\models \varphi_2$$

$$\{\phi_1,\phi_2\}\not\models\phi_3$$

dif

Dobbiamo trovare per ogni $1 \le i \le 3$ una L-struttura A_i tale che $A_i \models \phi_j$ per ogni $j \ne i$ ma $A_i \not\models \phi_i$. Allora basta considerare:

- $A_1 = \langle A, \emptyset \rangle$, ovvero una struttura con dominio un insieme non vuoto e R^{A_1} la relazione vuota;
 - ullet $\mathcal{A}_2=\langle \mathbb{N},\leq
 angle$ o più in generale, un qualunque ordine (non banale);
 - $\mathcal{A}_3=\langle\mathbb{Z},R^{\mathcal{A}_3}\rangle$ dove per ogni $k,l\in\mathbb{Z}$ $R^{\mathcal{A}_3}(k,l)\quad \text{se e solo se}\quad |k-l|\leq 1.$

ullet Per dimostrare che un enunciato ϕ è **soddisfacibile** bisogna trovare una struttura \mathcal{A} tale che $\mathcal{A} \models \varphi$.

- Per dimostrare che un enunciato φ **NON** è valido bisogna trovare una struttura \mathcal{A} tale che $\mathcal{A} \not\models \varphi$ (equivalentemente, $\mathcal{A} \models \neg \varphi$).
- Per dimostrare che un enunciato φ **NON** è conseguenza logica di un insieme di enunciati Γ bisogna trovare una struttura $\mathcal A$ tale che $\mathcal{A} \models \Gamma$ ma $\mathcal{A} \not\models \varphi$. In particolare, per dimostrare che

$$\psi_1,\ldots,\psi_n\not\models\varphi$$

bisogna trovare una struttura ${\cal A}$ tale che

$$\mathcal{A} \models \psi_1 \wedge \ldots \wedge \psi_n \wedge \neg \varphi.$$

• Per dimostrare che due enunciati φ e ψ **NON sono logicamente equivalenti**, ovvero che $\varphi \not\equiv \psi$, bisogna trovare una struttura \mathcal{A} tale che $\mathcal{A} \models \varphi \land \neg \psi$ oppure $\mathcal{A} \models \psi \land \neg \varphi$.

Andretta, Motto Ros, Viale (Torino)

Conseguenza Logica

15 / 21

dran= do fire

Esercizio $\text{Sia } L = \{f\} \text{ con } f \text{ simbolo di funzione binario e } \phi \text{ l'enunciato }$

$$\forall x \exists y \forall z (f(f(x,y),z) = z).$$

Dimostrare che φ è soddisfacibile ma non è valido.

Basta osservare che $\langle \mathbb{Z}, + \rangle \models \phi$ ma $\langle \mathbb{N}, + \rangle \not\models \phi$.

Esercizio per casa È vero che $\langle \mathbb{Q}, \cdot \rangle \models \phi$?

Esercizio

Sia $L=\{R\}$ con R simbolo di relazione binario. Dimostrare che

$$\forall x \exists y R(x,y) \not\models \exists y \forall x R(x,y).$$

Bisogna dimostrare che esiste una L-struttura A tale che

 $\mathcal{A} \models \forall x \exists y R(x,y) \text{ ma } \mathcal{A} \not\models \exists y \forall x R(x,y), \text{ ovvero } \mathcal{A} \models \neg \exists y \forall x R(x,y).$

 $A \models \forall x \exists y \kappa(x,y) \text{ massive} \quad \neg \Rightarrow$ Basta allora considerare $A = \langle \mathbb{N}, \leq \rangle.$ $d_1 \text{ costs} \quad folso$

Andretta, Motto Ros, Viale (Torino)

Conseguenza Logica

AA 2021-2022

17 / 21

Esercizio

Sia $L=\{P,Q\}$ con P e Q simboli di relazione unari. Dimostrare che

$$\exists x (P(x) \to Q(x)) \not\models \exists x P(x) \to \exists x Q(x).$$

Bisogna trovare una L-struttura A tale che

$$\mathcal{A} \models \exists x (P(x) \to Q(x)) \quad \text{ma} \quad \mathcal{A} \not\models \exists x P(x) \to \exists x Q(x).$$

La condizione $\mathcal{A} \models \exists x (P(x) \to Q(x))$ equivale a $\mathcal{A} \models \exists x (\neg P(x) \lor Q(x))$, mentre la condizione $\mathcal{A} \not\models \exists x P(x) \to \exists x Q(x)$ equivale a $\mathcal{A} \models \exists x P(x)$ ma $\mathcal{A} \models \neg \exists x Q(x)$. Per l'ultima condizione, nessun x deve avere la proprietà Q. Quindi se si deve avere $\mathcal{A} \models \exists x (\neg P(x) \lor Q(x))$ bisogna che ci sia qualche x per cui non vale P. D'altra parte se deve essere vero che $\mathcal{A} \models \exists x P(x)$, vuol dire che ci deve essere qualche x per cui vale P. Quindi $\mathcal{A} = \langle A, P^{\mathcal{A}}, Q^{\mathcal{A}} \rangle$ deve essere tale che

$$Q^{\mathcal{A}} = \emptyset \qquad P^{\mathcal{A}} \neq A \qquad P^{\mathcal{A}} \neq \emptyset.$$

Basta allora porre $\mathcal{A} = \langle A, P^{\mathcal{A}}, Q^{\mathcal{A}} \rangle$ con

$$A = \mathbb{N}$$
 $P^{\mathcal{A}} = \mathbb{N} \setminus \{0\}$ $Q^{\mathcal{A}} = \emptyset$.

Esercizio

Sia $L = \{f, c\}$ con f simbolo di funzione binario e c simbolo di costante.

Trovare un
$$L$$
-enunciato φ tale che
$$\langle \mathbb{N},\cdot,17\rangle \models \varphi \quad \text{ma} \quad \langle \mathbb{N},\cdot,12\rangle \not\models \varphi.$$

Osserviamo subito che 17 è un numero primo mentre 12 è scomponibile, ad esempio, in $4\cdot 3$. Bisogna allora cercare di trovare un L-enunciato che dica c ha solo divisori banali.

ovvero

per ogni
$$x$$
 e y , se $x \cdot y = c$ allora $x = 1$ oppure $y = 1$.

L'espressione "x=1" può essere resa, nel linguaggio dato, con

$$\forall z (f(x,z) = z),$$

e similmente per "y=1". Allora φ può essere l'enunciato

$$\forall x \forall y \Big(f(x,y) = c \to \forall z (f(x,z) = z) \lor \forall z (f(y,z) = z) \Big).$$

Andretta, Motto Ros, Viale (Torino)

Conseguenza Logica

19 / 21

N > + 0 7 2x 20 vero sizio > + 0 7 xeV zx>0 folso 7(0.270)

Sia $L=\{R,f,c\}$ con R simbolo di relazione binario, f simbolo di funzione binario e c simbolo di costante. Dimostrare che l'enunciato ϕ

$$\forall x R(f(x,x),c)$$

è soddisfacibile ma non valido.

Si ha

$$\begin{array}{cccc}
\times^2 & & & & \\
\langle \mathbb{R}, \geq, \cdot, 0 \rangle & \models \varphi & & & & \\
\times^2 & & & & & & & \\
\times^2 & & & & & & & \\
\times^2 & & & & & & & \\
& & & & & & & \\
\langle \mathbb{R}, <, \cdot, 0 \rangle & \not\models \varphi.
\end{array}$$

Esercizio

Sia $L=\{R\}$ con R simbolo di relazione binario. Determinare per quali $1 \leq k \leq 10$ si ha che

$$\langle \mathrm{Div}(k), | \rangle \models \forall x \forall y (R(x, y) \lor R(y, x)).$$

Si ha che $\langle \operatorname{Div}(k), | \rangle \models \forall x \forall y (R(x,y) \lor R(y,x))$ se e solo se | è un ordine lineare su $\operatorname{Div}(k)$. Questo è vero se solo se nella scomposizione in fattori primi di k compare un solo numero primo, ovvero se e solo se $k=p^n$ con p primo e $n \in \mathbb{N}$.

Quindi $\langle \text{Div}(k), | \rangle \models \forall x \forall y (R(x,y) \lor R(y,x)) \text{ per } k \in \{1,2,3,4,5,7,8,9\}.$

Andretta, Motto Ros, Viale (Torino)

Conseguenza Logica

AA 2021–2022

21 / 21