— Untethered Hydraulic Artificial Muscle Elbow Exoskeleton

By Mahnoor Azim **Sponsor: Dr. Hao Su**

Introduction

- Elbow exoskeleton for hydraulic artificial muscle (HAM)
- Inspired by the McKibben artificial muscle, developed by H.F. Schulte
- Goal is to design exoskeleton that is compatible with the HAM's specifics

Introduction (cont.)

- Exoskeleton can eliminate limitations in human performance
- New technologies allow for advancements
- Development of "soft robotics"
 - Better alternative to traditional rigid body prosthetics

Objectives

- To help workers in the construction field carry or lift heavy objects
- Prevents muscle fatigue from repetitive lifting
- To rehabilitate patients in hospitals or nursing homes that have suffered damage to muscles in their arms, and require physical therapy to regain mobility

Product Design Specifications

Categories Considered:

- Special Features
- Design Problem
- Customer Requirements
- Geometric Limitations
- Functional performance
- Operating Environment
- Economics

- Reliability and Robustness
- Safety
- Ease of Use
- Appearance
- Human Factors
- Maintenance, Repair, and Retirement

Design Problems & Customer Requirements

- Problems include selecting a material that is elastic, durable, and lightweight.
- Mass of the exoskeleton can not exceed 2.5 kg.
- Design must be suitable for various arm sizes without compromising secure fit.
- Exoskeleton must have a range of motion from 0° to 150°

Geometric Limitation, Functional Performance, Operating Environment

- Elbow contraction frequency of 0.5 Hz (about 2 seconds from start to end)
- Mimic natural human elbow flexion
- Adjustability is key in ensuring a secure fit on varying arm sizes while optimizing performance.
- Suitable for medical, vigorous along with everyday use.

Economics, Maintenance and Repair, Reliability and Robustness

- The product should have an economic life of five to ten years.
- Minor maintenance: cleaning, checking for wear and tear
- Major maintenance: Tubing, straps, pressure valves, instrumentation
- Retirement should be done every 5 to 10 years, some parts could be recycled
- Product must withstand high amount of cycles within 5-10 year lifespan (average 224,000 cycles/week)

Ease of Use, Safety, Human Factors

- While in use and on standby, the product should not cause any abrasions and/or bruises to the user
- Hydraulic muscle must curl arm without cramping the user's limbs
- The user should be able to wear, use and take off the exoskeleton with ease
- Device should not interfere with any natural arm movements

Gantt Chart

Functional Schematic

Wearable Structure Design Concept #1

- Shoulder harness
- Forearm strap
- 1 muscle
 - Bicep

Wearable Structure Design Concept #2

- Shoulder harness
- Forearm strap
- 2 Muscles
 - Bicep
 - Tricep

Wearable Structure Design Concept #3

- Shoulder harness
- Forearm strap
- Multiple smaller muscles going around the arm
 - Bicep

Concepts		One Muscle	Two Muscles	Multiple Muscles
Criteria	Weight			
Cost	1	+	-	-
Technical Difficulty	2	+	-	0
Range of Motion (0-150)	3	+	+	+
Weight (< 2.5 kg)	2	+	-	+
Flexion Ability	3	+	+	+
Extension Ability	1	-	+	-
Universal	2	+	+	+
Ease of Use	2	+	+	+
Appearance	1	0	-	-
Portable	3	+	0	-
Overall Total		7	1	1
Weighted (+)		18	11	12
Weighted (-)		1	6	6
Weighted Total		17	5	6

Concept Selected

Design concept 1 had the best evaluation score

Portable Pumping System Design

Proof of Concept

Proof of Concept

D-Rings

H.A.M

- → Rubber tubing inside
- → Kevlar sleeve outside

Forearm Strap-

- → Soft nylon mesh for bottom
- → Nylon fabric for top
- → Neoprene padding inside
- → Velcro strapping

Shoulder Harness

→ 4.0 mm Neoprene with lining

Metal Clasps

Results

- Finalized design is simplified model
 - Improvements to be made after initial prototype is completed
- Design is determined by sponsor's requirements
- Limited options due to:
 - Weight
 - Usability
 - Budget
- Assembly process and testing will influence final product

Conclusions & Future Work

- Dealing with challenges
 - Sponsor's requirements
 - Making the muscle work
 - Writing the code
- Future Work
 - Practicality
 - Pressure control

Thank You!