Title:

Physical (Layout) design of Complex Functions for Implementation in Various Target (Implementation) technologies – MPGAs, Full-Custom Chips and CBICs.

Abstraction:

In this experiment we are going to learn how to design Physical layout of complex Function in various technologies like Mask Programmable Gate Arrays, Cell Based Integrated Circuits, Full-Custom chips. We are going to learn how to prepare a transistor level schematic and design complex Boolean Function using complimentary CMOS logic and NAND-NOR network.

Theory and Methodology:

The complimentary CMOS logic implementation of Boolean Function $Y = ((A \cdot B) + (C \cdot D))^2$.

Logic Level View:

Figure 1: Logic Level Schematic of $Y = ((A \cdot B) + (C \cdot D))^{?}$.

Circuit (Transistor) Level View:

 $\mathbf{Y} = ((A \cdot B) + (C \cdot D))^{2}$ designed with 8 transistors—4 PMOS devices and 4 NMOS devices in Full-Custom Design Implementation Technology.

Modified Circuit Diagram:

.

Implementation of Half adder:

Logic Level View:

Half adder sum equation is
$$S = A$$
 $+B$.

$$= \overline{A + B} + A \cdot B$$

$$= \overline{A + B} + A \cdot B$$

$$= \overline{A + B} + Cout \qquad (2A1)$$

Cout =
$$\overline{A \bullet B}$$
 = $\overline{\overline{A + B}}$ (2B)

Circuit (Transistor) Level View :
Apparatus: • A Windows-based (XP or 7) PC with standard word processors (i.e. Microsoft Office) and PDF readers (i.e. Adobe Acrobat Reader/Writer, Foxit Reader/Phantom) installed.

Simulation And Measurement:

Complimentary CMOS Logic:

Fig: Complimentary CMOS implementation of $Y = ((A \cdot B) + (C \cdot D))^{*}$

Fig: OUTPUT of $Y = ((A \cdot B) + (C \cdot D))'$

Using NAND-NOR Network:

Fig: implementation of Y = ($(A \cdot B) + (C \cdot D)$)' using NAND-NOR Network.

Fig: OUTPUT of $Y = ((A \cdot B) + (C \cdot D))$

NAND-NOR Network implementation of Boolean Function $Y = ((A \cdot B) + (C \cdot D))^2$.

Implementing Half Adder Using NOR:

Fig: implementation of Half Adder using NOR.

Fig: Output of Half Adder.

Discussion And Conclusion:

In this experiment, we have learnt about how to design Full-custom Chip, implementing Function using complimentary CMOS logic, NAND-NOR network. We also introduced with different type of technologies like- Mask Programmable Gate Array, Cell Based Integrated Circuits.

Reference:

- 1. R. Jacob Baker, "CMOS Circuit Design, Layout, and Simulation", 3rd Edition, John Wiley & Sons, 2010.
- 2. John P. Uyemura, "CMOS Logic Circuit Design", Kluwer Academic Publishers, 2002.
- 3. Etienne Sicard and Sonia Delmas Bendhia, "Advanced CMOS Cell Design", McGraw-Hill, 2007.