COMP 1201 Algorithmics Graphs

Hikmat Farhat

Introduction

- Note Most Figures are from Cormen et. al.
- A graph G = (V, E) is a set of vertices V and a set of edges E.
- Each element in E is a pair (v, w) with $v, w \in V$.
- If the pairs are ordered then the graph is directed (sometimes called digraph).
- if $(v, w) \in E$ then we say w is **adjacent** to v
- Usually we associate a weight (or cost) with each edge.
- A **path** is a sequence of vertices w_1, \ldots, w_n such that $(w_i, w_{i+1}) \in E$.
- the length of a path is the number of edges in it

- A path is said to be simple if all vertices, except possibly the first and last, are distinct.
- A **cycle** is a path such that $w_1 = w_n$.
- in an undirected graph we require that the edges be distinct to have a cycle.
- for example v, w, v should not be considered a cycle since (v, w) and (w, v) are the same edge.
- A graph is said to be acyclic if it contains no cycles.
- A graph in which from every vertex there is path to every other vertex is called **connected**.

Graph representation

- There are essentially two ways to represent a graph
 - Adjacency matrix.
 - Adjacency list.
- Most of the time adjacency list is better since it is O(|E| + |V|) in memory requirement.
- This is the preferred representation when the graph is sparse, $|E| \ll |V^2|$.
- The adjacency matrix is $O(|V^2|)$ in memory requirement and it is preferred when the graph is **dense**, $|E| \approx |V^2|$.
- In the adjacency matrix representation it is much faster to check whether two vertices are adjacent.

Examples

Matrix

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	0 1 1 0 1	0

Southampton

Breadth First Search

- As we will see later many algorithms depend on breadth first search (BFS).
- Given a graph G = (V, E) and a **source** node s, BFS systematically "discovers" all vertices that can be reached from s.
- It is breadth first because all vertices at distance k from s are discovered **before** any vertex at distance k + 1 is discovered.
- BFS works by coloring nodes with two different colors: white and black.
- A white node means it has not been discovered. Black means it has been discovered.

Breadth First Search

- The algorithm starts by coloring all nodes white except the source s is colored black.
- It then proceed with the discovery of all of s neighbors.
- Given a node v
 - v.d is the distance (number of links) from s to v.
 - adj[v] is the list of v's neighbors.
 - v.p is the predecessor of v in the path from s to v.

BFS Initialization

Given a graph G and source node s, BFS is initilised as follows:

Algorithm 1: BFS Initialization

function BFSinit(G,s)

| foreach
$$v \in V - \{s\}$$
 do
| $v.color \leftarrow WHITE$
| $v.d \leftarrow 0$
| $v.p \leftarrow NULL$
| $s.color \leftarrow BLACK$
| $s.d \leftarrow 0$
| $s.p \leftarrow NULL$
| $Q \leftarrow \emptyset$
| ENQUEUE(Q,s)

Southampton

BFS Pseudo Code

```
Algorithm 2: BFS main algorithm
input: A graph G = (V, E) and a source node s
Result: All nodes reachable from s are visited in BES order.
         v.d is the number of hops from s to v
function BFS(G.s)
    BFSinit(G,s)
    while Q \neq \emptyset do
        u \leftarrow \text{DEQUEUE}(Q)
        foreach v \in Adj[u] do
            if v.color = WHITE then
                v.color \leftarrow BLACK
                v.d \leftarrow u.d + 1
                v.p \leftarrow u
```

Southampton

ENQUEUE(Q.v)

Southampton

Complexity of BFS

- To analyze the complexity of BFS first we note that after initialization no vertex color is set to white.
- The above implies that each vertex is enqueued (and dequeued) only once.
- Since the enqueue/dequeue operations are O(1) then for all nodes it is O(|V|).
- When a vertex is dequeued we scan the adjacency list and the sum of all adjacency list is just |E|
- Therefore the total cost of BFS is O(|V| + |E|).

Shortest path length (number of hops)

- Given a graph G = (V, E) and a source node $s \in V$. We define the **shortest-length** distance $\delta(s, v)$ from s to $v \in V$ to be the minimum **number of edges** in any path from s to v.
- When BFS terminates, it discovers every vertex $v \in V$ reachable from a source s and $v.d = \delta(s, v)$,
- Note that the shortest length path from s to v is composed of the shortest length path from s to v.p followed by the edge (v.p, v).
- The above observation allows us to determine not only the length $\delta(s, v)$ but also the exact path by iterating backwards over v.p.

Graphs/COMP 1201 Algorithmics

Bipartite Graphs

- A graph $G = \langle V, E \rangle$ is a bipartite graph if V can be partitioned into two sets V_1 and V_2 such that
- $(u, v) \in E \Rightarrow u \in V_1$ and $v \in V_2$ or $u \in V_2$ and $v \in V_1$.
- A bipartite graph can be 2-colored. In other words,
- Using only two colors, one can assign a color to each vertex
- such that no two adjacent vertices have the same color.

Example bipartite graphs

Southampton

Detecting bipartite graphs using BFS

- One can detect if a graph is bipartite using a small modification of BFS
- Instead of coloring a node black when it is "discovered" we either color it red or blue.
- The algorithm starts by coloring the source node red and all other nodes white exactly as it was done in BFS.
- While discovering the neighbors of a node *u* we color them with the opposite color of *u*.
- Let $\neg Blue = Red$ and $\neg Red = Blue$.

Detecting bipartite graphs using BFS

```
function IsBipartite(G,s)
    while Q \neq \emptyset do
        u \leftarrow \text{DEQUEUE}(Q)
        foreach v \in Adj[u] do
            if v.color = WHITE then
                 v.color \leftarrow \neg u.color
                 v.d \leftarrow u.d + 1
                 v.p \leftarrow u
                 ENQUEUE(Q,v)
             else if u.color = v.color then
                 return false
    return true
```

Depth First Search

- In a depth first search DFS edges are explored out of the most recently discovered node.
- As the name implies we go "deeper" whenever it is possible.
- When all the neighbors of a node v are discovered we "backtrack" to the predecessor of v and explore other nodes.
- When we are done discovering the descendants of some source s and some nodes remain undiscovered then one of them is selected as source and the process is repeated.
- When the algorithm is done with a certain node, it records the discovery time and finishing time

DFS Pseudo Code

Algorithm 3: DFS Algorithm

input: G = (V, E) with adjacency list adj **Result:** All nodes are visited in DFS order

```
foreach v \in V do
    v.color \leftarrow WHITE
    v.p \leftarrow NULL
time \leftarrow 0
foreach v \in V do
    if v.color = WHITE then
        DFS-VISIT(adi, v)
```


DFS-VISIT Pseudo Code

Algorithm 4: DFS-VISIT Algorithm

input: Adjacency list adj, node u

Result: All nodes reachable from u are visited in DFS order

```
function DFS-VISIT(adj, u)
    u.color \leftarrow GRAY
    time \leftarrow time + 1
    u.d \leftarrow time
    foreach v \in adj[u] do
        if v.color = WHITE then
             v.p \leftarrow u
             DFS-VISIT(v)
    u.color \leftarrow BLACK
    times \leftarrow time + 1
    u.f \leftarrow time
```

"Pending"

"Pending"

b a

"Pending"

b

a

"Pending"

d

c b

a

"Pending"

d

c b

а

"Pending"

b

a

"Pending"

"Pending"

"Pending"

"Pending"

Complexity

- The initialization to WHITE is O(|V|)
- Then DFS is called O(|V|) times.
- Each time DFS-VISIT is called only once for each node because it is called on WHITE nodes only.
- The cost of DFS-VISIT(v) is O(|adj[v]|).
- Thus the cost of all calls to DFS-VISIT is

$$\sum_{v \in V} |adj[v]| = O(|E|)$$

Therefore the total cost is

$$O(|E| + |V|)$$

Topological Sorting (ordering)

- Topological sorting is a linear ordering of the nodes of a directed graph G = (V, E) such that for every edge (u, v) from node u to node v, u comes before v in the ordering.
- An example is the scheduling of tasks based on their dependencies.
- Say a task p must be scheduled after a task q if p "depends on" q. This would be represented by an edge (q, p).
- We can implement an efficient topological sort using DFS as follows
 - Call DFS on the graph.
 - 2 Every time a node is finished add it to the front of a linked list
 - **3** When done the resulting list is the topological sort.

"Linked List"

Detecting Cycles in graphs

- One can detect a cycle in a graph using a small modification of DFS
- A graph contains a cycle iff it contains a back edge
- An edge (u, v) is said to be a back edge if v is an ancestor of u.
- \bullet v is an ancestor of u iff v has a gray color.

Detecting cycles in graphs

```
function DFS-VISIT(adj, u)
    u.color \leftarrow GRAY
    time \leftarrow time + 1
    u.d \leftarrow time
    foreach v \in adj[u] do
         if v.color = WHITE then
             v.p \leftarrow u
             DFS-VISIT(adj, v)
         else if v.color = GRAY \land v \neq u.p then
             cycle \leftarrow true
    u.color \leftarrow BLACK
    times \leftarrow time + 1
    u.f \leftarrow time
```

Strongly Connected Components

The following algorithm computes the strongly connected components of a graph in O(n + m) time

- call DFS to compute finishing time for all nodes.
- \bigcirc create G^T .
- 3 call DFS in order of decreasing finishing time.

Kosaraju Algorithm