Mixture of balls with different volumes

The project will be emailed (to christophe.ambroise@genopole.cnrs.fr) as a Rmd file with possibility to build a pdf file. 'You will detail the calculations.

Context

Let us consider a vector of p random variables x^1, \ldots, x^p independent, normal, all with mean 0 and variance σ^2 . The the random vector $\mathbf{x} = (x^1, \ldots, x^p)'$ is normal with mean vector $(0, \cdots, 0)^t$, and covariance matrix $\sigma^2 I_p$. This distribution defines a gaussian ball with mean vector $(0, \cdots, 0)^t$, and covariance matrix $\sigma^2 I_p$. Let us consider a mixture of K gaussian balls

$$p(\boldsymbol{x}|\boldsymbol{\pi},\boldsymbol{\mu_1},\cdots,\boldsymbol{\mu_K},\sigma_1,\cdots,\sigma_K) = \sum_{k=1}^K \pi_k \mathcal{N}_p(\boldsymbol{x}|\boldsymbol{\mu_k},\boldsymbol{\Sigma_k} = \sigma_k^2 I_p),$$

where $\pi = {\pi_k}$ are the proportions of the mixture. In the following, we will consider

- a sample $X = \{x_1, \dots, x_n\}$ from the above ddefined mixture,
- latent variables $Z = \{z_1, \dots, z_n\}$ indicating from which component of the mixture each x_i originates.
- the vector of parameters is denoted

$$\boldsymbol{\theta} = \{ \boldsymbol{\pi}, \boldsymbol{\mu_1}, \cdots, \boldsymbol{\mu_K}, \sigma_1, \cdots, \sigma_K \}$$

Problem

Exercise 1 Simulation

- 1. Simulate sample of 1000 vectors from a 2 dimensional mixture with 2 components
 - mixed in proportion $\pi_1 = \pi_2 = \frac{1}{2}$.
 - with mean vectors $\mu_1 = \mu_2 = (1, 2)^t$.
 - with covariance matrices $\Sigma_1 = I$ and $\Sigma_2 = 4I$.
- 2. Display the sample.
- 3. Display the coutour plot of the two dimensional density.

Exercise 2 Mclust versus kmeans

- 1. Run Mclust on the simulated data from the first exercise and comment the result.
- 2. Estimate the parameters of the simulated data from the first exercise using mclust.
- 3. Find a partition of the simulated data into two classes using mclust.
- 4. Find a partition of the simulated data into two classes using kmeans.
- 5. Compare the two partitions (from kmeans and mclust). Comment your result.

Exercise 3 EM algorithm for a Mixture of balls

- 1. Detail the computation of the $t_{ik}^q = \mathbb{E}[Z_{ik}]$ with respect to $p_{\theta^q}(Z|X)$ where $Z_{ik} = \mathbb{I}_{(Z_i = k)}$.
- 2. Express $Q(\boldsymbol{\theta}^q | \boldsymbol{\theta})$ the expectation of the complete log-likelihood with respect to $p_{\theta^q}(Z|X)$.
- 3. Detail the computation of $\theta^{q+1} = argmax_{\theta} \ Q(\theta^{q}|\theta)$.
- 4. Write the pseudo-code of an EM algorithm for estimating θ .
- 5. Write a E-step function that produces the t_{ik} from θ . Check the results by injecting the real parameters of your simulation and comparing the t_{ik} estimated against the latent variables Z in your simulation.
- 6. Write a M-step function that produces $\boldsymbol{\theta}^{q+1}$ from the sample and the t_{ik}^q s.
- 7. Program the EM algorithm (you could check that each step increases the log-likelihood.)

Exercise 4 Data iris

- 1. Run your algorithm with the iris dataset and compare the results to the one obtained using the kmeans algorithm.
- 2. Comment.