1 Understanding Machine Learning Algorithms

1.1 Basic ML Concepts and Terminology

• Domain \mathbb{R} (possible values), instance space \mathbb{R}^l (feature vector space), dataset in $\mathbb{R}^{n \times l}$

Unsupervised Learning	detect patterns	clustering
Reinforcement Learning	find actions maximizing reward	
Supervised Learning	learn function from examples	classification/regression
Semi-Supervised Learning	sparse/faulty data	data completion

- Batch Learning (all examples at once) vs. Online Learning (improve hypothesis over time)
- Passive Learning (no influence on choice of examples) vs. Active Learning (actively choose specific data points)
- Hypothesis space \mathcal{H} : Set of functions the algorithm can return
 - Problem is realizable, if target function $f \in \mathcal{H}$
 - Hypothesis h is consistent with training sequence $S = ((\mathbf{x}_i, y_i))_{1 \le i \le m}$, if $h(\mathbf{x}_i) = y_i$ for all i
- Occam's Razor: Simpler hypotheses tend to generalize better

1.2 The Nearest Neighbor Algorithm

- Metric space: (X, d), with distance measure $d : X \to \mathbb{R}$ s.t.
 - Nonnegativity: $d(x,y) \ge 0 \land [d(x,y) = 0 \Leftrightarrow x = y]$
 - Symmetry: d(x,y) = d(y,x)
 - Triangle inequality: $d(x, z) \le d(x, y) + d(y, z)$
- Metric examples: Manhattan (l_1) , Euclidean (l_2) , Chebychev (l_{∞}) , Hamming
- k-NN Algorithm
 - For $x \in \mathbb{X}$ find k nearest neighbors, majority vote on labels.
 - Use appropriate data structure or hashing to reduce $\mathcal{O}(n)$ search time.

1.3 Learning Decision Trees

- **Decision Tree** (DT): Finite-valued function on feature vectors, nodes labeled by input features, edges labeled by value or range of values for feature, leafs labeled with output feature
- DT Training: **ID3 Algorithm** (choose feature that discriminates best, create node with feature; iterate)
- Boolean function representation with DT: Features are variables X_i , feature values are $\{0,1\}$
 - $-f:\{0,1\}^n\to\{0,1\}$ represented by height $\leq n$ with $\leq 2^{n+1}-1$ nodes

Decision Tree (NP-complete, \geq_n Vertex Cover)

Given examples $(\mathbf{x}_i, y_i) \in \{0, 1\}^n \times \{0, 1\}, k \in \mathbb{N}_{>0}$.

Decide, if DT exists with at most k nodes consistent with examples.

1.4 Linear Classifiers

- Chauchy-Schwarz Inequality: $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| \cdot ||\mathbf{y}||$
- Hyperplane: Affine subspace $P = \{ \mathbf{x} \mid \langle \mathbf{a}, \mathbf{x} \rangle b = 0 \}$ (a orthogonal to hyperplane; b y-intercept)
- Halfspace: One side of hyperplane $H = \{ \mathbf{x} \mid \langle \mathbf{a}, \mathbf{x} \rangle b \ge 0 \}$
- H or P homogeneous, if b = 0 (or $\mathbf{0} \in P$)
- Linear Boolean Classification $f: \mathbb{R}^l \to \{-1, +1\}$
 - $-\mathcal{H} = \{h(\mathbf{x}) = \operatorname{sgn}(\langle \mathbf{w}, \mathbf{x} \rangle b)\}\$
 - $-\hat{\mathbf{x}} \mapsto \operatorname{sgn}(\langle \hat{\mathbf{w}}, \hat{\mathbf{x}} \rangle)$ with $\hat{\mathbf{x}} = (\mathbf{x}, 1)^T$, $\hat{\mathbf{w}} = (\mathbf{w}, -b)^T$ is consistent homogeneous linear separator

Empirical Risk Minimization (ERM)

Given training data $S = ((\mathbf{x}_i, y_i))_{1 \le i \le m} \in (\mathbb{R}^l \times \{-1, 1\})^m$.

Compute $\mathbf{w} \in \mathbb{R}^l$ s.t. homogeneous linear separator $\mathbf{x} \mapsto \operatorname{sgn}(\langle \mathbf{w}, \mathbf{x}_i \rangle)$ minimizes number of wrong predictions.

- Linear Programming (LP): Compute \mathbf{x} minimizing $\langle \mathbf{c}, \mathbf{x} \rangle$ subject to $A\mathbf{x} \geq \mathbf{b}$ (solvable in polynomial time)
 - $-(y_i\langle \mathbf{w}, \mathbf{x}_i\rangle > 0 \Leftrightarrow y_i\langle \mathbf{w}, \mathbf{x}_i\rangle \geq 1 \Leftrightarrow) \langle \mathbf{w}, y_i\mathbf{x}_i\rangle \geq 1 \text{ solvable with LP } (\min_{\mathbf{w}}\langle \mathbf{0}, \mathbf{w}\rangle \text{ subject to}$
- Perceptron Algorithm: Init $\mathbf{w} = 0$, increment by $y_i \mathbf{x}_i$ for all wrongly classified $(\mathbf{x}_i, y_i) \in S$ as long as they exist
 - Margin of separator consistent with S: $\min_{(\mathbf{x},y)\in S} \frac{|\langle \mathbf{w},\mathbf{x}\rangle|}{||\mathbf{w}||}$
 - With margin γ and $\lambda := \max_{(\mathbf{x},y) \in S} ||\mathbf{x}||$, the number of updates on \mathbf{w} in the perceptron algorithm is bounded by $\left(\frac{\lambda}{\gamma}\right)^2$.

SVM

Given training data $S \in (\mathbb{R}^l \times \{-1, 1\})^m$.

Compute $\mathbf{w}^* \in \mathbb{R}^l$, minimizing $||\mathbf{w}||^2$ subject to $y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1, i \in [m]$.

- $-||\mathbf{w}||^2$ maximizes w.r.t. S. Since quadratic, problem is no longer solvable with LP, use, e.g., gradient descent.
- Only in realizable case. Soft margin SVM required in general case.
- Logistic Regression
 - Return confidence: likely $-1 \mapsto 0$, likely $+1 \mapsto 1$ using sigmoid $sig(z) = 1/(1 + e^{-z})$

$$\operatorname{sig}(y_i\langle \mathbf{w}, \mathbf{x}_i \rangle) = \begin{cases} \operatorname{sig}(\langle \mathbf{w}, \mathbf{x}_i \rangle) & \text{if } y_i = +1\\ 1 - \operatorname{sig}(\langle \mathbf{w}, \mathbf{x}_i \rangle) & \text{if } y_i = -1 \end{cases}$$

- Maximization of confidence product over all examples is minimization of the logarithmic sum (when taking $-\ln(...)$ of product); convex minimization problem solvable with gradient descent

Logistic Regression

Given training data $S \in (\mathbb{R}^l \times \{-1, 1\})^m$. Compute $\mathbf{w}^* \in \mathbb{R}^l$, minimizing $\sum_i \ln(1 + \exp(-y_i \langle \mathbf{w}, \mathbf{x}_i \rangle))$

- Non-Linear Problems: Map data to higher-dimensional space, where nonlinear functions may be transformed to linear ones
 - Example: $\tau(x_1, x_2) = (x_1^2, x_1 x_2, x_2^2, x_1, x_2)$

1.5 k-Means Clustering

- Algorithm: Random init of centroids. Iteratively assign points to the cluster with the closest centroid (tie-breaking: cluster with smallest index), then update centroids as mean of assigned points. Repeat until no change in cluster.
- Always converges (local minimum), solution may depend on choice of initial centroids

Centroid Clustering (NP-complete)

Given points $\mathbf{x}_i \in \mathbb{R}^l, i \in [m], k \in \mathbb{N}$. Find $\mathbf{z}^1, \dots, \mathbf{z}^k$ and partition C^1, \dots, C^k of $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$ minimizing $\sum_j \sum_{x \in C^j} ||\mathbf{x} - \mathbf{z}^j||^2$

2 Information and Compression

2.1 Background from Probability Theory

- Probability spaces
 - Finite sample space Ω , event space $\mathcal{E} = 2^{\Omega}$, prob. distr. $\mathcal{P} : \mathcal{E} \to [0, 1]$
 - Sufficient to specify $p: \Omega \to [0,1]$ with $\sum_{\omega \in \Omega} p(\omega) = 1$ and $\mathcal{P}(A) := \sum_{\omega \in A} p(\omega)$ for $A \subseteq \Omega$ (discrete case)
- Random variables

Random variable $X: \Omega \to \mathbb{R}$ Probability mass function of X $f_X: \mathbb{R} \to [0,1], x \mapsto \Pr(X=x)$ Cumulative distribution of X $F_X: \mathbb{R} \to [0,1], F_X(x) = \Pr(X \le x) = \sum_{y \le x} f_x(y)$ Probability distribution of X $\mathcal{P}_X(A) := \sum_{x \in A} \Pr(X=x)$ Random vector $\mathbf{X} = (X_1, \dots, X_k)$ Joint distribution of X_1, \dots, X_k $\mathcal{P}_{\mathbf{X}}(\{\mathbf{x}\}) := \Pr(\mathbf{X} = \mathbf{x})$ Marginal distribution of X $\Pr(X=x) = \sum_y \Pr((X,Y) = (x,y))$

- Independence of events: $\mathcal{P}(E_1,\ldots,E_k) = \mathcal{P}(E_1)\cdots\mathcal{P}(E_k)$
- Independence of random variables (X): If for all $A_1, \ldots, A_k \subseteq \mathbb{R}$, $\Pr(X_1 \in A_1, \ldots, X_k \in A_k) = \Pr(X_1 \in A_1) \cdots \Pr(X_k \in A_k)$
- Expectation: $E(X) = \sum_{x \in \mathbb{R}} x \cdot Pr(X = x)$
- Variance: $Var(X) = E((X E(X))^2) = E(X^2) E(X)^2$
 - E is linear: $E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y)$
 - If independent: E(XY) = E(X)E(Y), Var(X + Y) = Var(X) + Var(Y)
 - If pairwise independent: $Var(\sum_{i=0}^{n} X_i) = \sum_{i=0}^{n} Var(X_i)$
- Limits *loosely* bounding deviations of X from E(X):

 $\begin{array}{ll} \textit{Markov's Inequality} & (X \stackrel{!}{\geq} 0, \forall a > 0) & \Pr(X \geq a) \leq \frac{\operatorname{E}(X)}{a} \\ \textit{Chebychev's Inequality} & (\forall b > 0) & \Pr(|X - \operatorname{E}(X)| \geq b) \leq \frac{\operatorname{Var}(X)}{b^2} \end{array}$

2.2 Concentration Inequalities

- Concentration Inequality: For $X = \sum_{i=1}^{n} X_i$ of pairwise independent X_i and $\mu = E(X)$, we want to show concentration inequality $\Pr(|X \mu| \ge \text{big}) \le \text{small}$
 - Weak Law of Large Numbers: $\lim_{n\to\infty} \Pr\left(\frac{X}{n} \mu \ge \varepsilon\right) = 0 \ \forall \varepsilon > 0$ $X/n \approx \mu \text{ for } n \to \infty, \text{ can be shown using Chebychev's inequality}$
- Limits *tightly* bounding deviation of X from μ :

Chernoff Bounds
$$(X_i \in \{0,1\} \text{ ind.}, 0 \le c \le 1)$$
 $\Pr(X \ge (1+c)\mu) \le \exp\left(-\frac{\mu c^2}{3}\right)$ $\Pr(X \ge (1-c)\mu) \le \exp\left(-\frac{\mu c^2}{2}\right)$ $\Pr(|X-\mu| \ge c\mu) \le 2\exp\left(-\frac{\mu c^2}{2}\right)$ Hoeffding Bounds $(X_i \in \{0,1\} \text{ i.i.d.}, 0 \le d \le 1)$ $\Pr(X \ge \mu + dn) \le \exp(-2nd^2)$ $\Pr(X \ge \mu - dn) \le \exp(-2nd^2)$ $\Pr(|X-\mu| \ge dn) \le 2\exp(-2nd^2)$

2.3 Entropy

- Entropy: Expected value of "information content" (expected number of bits) of the elementary event $\{\omega\}$, or measure of disarray
 - Entropy of prob. distr. \mathcal{P} : $H(\mathcal{P}) := \sum_{\omega \in \Omega} \mathcal{P}(\{\omega\}) \cdot \log_2 \frac{1}{\mathcal{P}(\{\omega\})}$
 - Entropy of X with finite range: $H(X) := \sum_{x \in rg(X)} Pr(X = x) \cdot \log_2 \frac{1}{Pr(X = x)}$
- Jensen's Inequality: If $f: D \to \mathbb{R}$ convex function with $\operatorname{rg}(X) \subseteq D$, then $f(E(X)) \leq E(f(X))$
- Log Sum Inequality: $\sum_i p_i \log(p_i/q_i) \ge (\sum_i p_i) \log(\sum_i p_i/\sum_i q_i)$
- Decision Trees: Training data S over attributes $A \in \mathcal{A}, y \in \mathbb{Y}$ target value
 - Define $\mathcal{P}(\{y\})$ and $\mathcal{P}_{A=x}(\{y\})$ on \mathbb{Y} .
 - Information Gain: $G(S, A) := H(\mathcal{P}) \sum_{x \in \mathbb{D}_A} \frac{|S_{A=x}|}{|S|} \cdot H(\mathcal{P}_{A=x})$ (\mathbb{D}_A : domain of attribute A)
 - Pick attribute maximizing information gain and apply recursively.

2.4 Compression

- Let \mathcal{P} prob. distr. over source alphabet Σ . Assume x_i in $\mathbf{x} \in \Sigma^n$ (denoted by \mathcal{P}^n) to be *i.i.d.*
- Compression scheme: $\Gamma = (\text{com}_{\Gamma}, \text{dec}_{\Gamma})$ with $\text{com}_{\Gamma} : \Sigma^* \to \{0, 1\}^*, \text{dec}_{\Gamma} : \{0, 1\}^* \to \Sigma^*$
 - Lossless, if $dec(com(\mathbf{x})) = \mathbf{x}$
- Compression rate (of Γ): $\rho_{\Gamma}(n) := \max_{\mathbf{x} \in \Sigma^n} |\operatorname{com}(\mathbf{x})|/|\mathbf{x}|$
- Loss rate: $\lambda_{\Gamma,\mathcal{P}}(n) := \Pr_{\mathbf{x} \sim \mathcal{P}^n}(\mathbf{x} \neq \operatorname{dec}(\operatorname{com}(\mathbf{x})))$ (prob. of lossy compression)
- There is no lossless compression with $\rho_{\Gamma}(n) < \log |\Sigma|$. (compromise between losslessness and compression rate needed)
- Shannon's Source Coding Theorem: For both lossy and lossless compression, optimal $\rho = H(\mathcal{P})$
 - 1. $\forall \varepsilon > 0$ ex. Γ_{ε} s.t $\lambda_{\Gamma_{\varepsilon}, \mathcal{P}}(n) \leq \varepsilon$ and $\lim_{n \to \infty} \rho_{\Gamma_{\varepsilon}}(n) = H(\mathcal{P})$.

- *Idea*: Define subsets of alphabet, such they have a high coverage of all words (length n) appearing, and for which compression is lossless. Then, overall compression is almost lossless, and the compression rate converges to the optimal compression rate $H(\mathcal{P})$.
- For every n choose $S_{\varepsilon}(n) \subseteq \Sigma^n$ s.t. $\mathcal{P}^n(S_{\varepsilon}(n)) \geq 1 \varepsilon$
- Define $com_{\varepsilon}(\Sigma^n) \subseteq \{0,1\}^{s_{\varepsilon}(n)}$ with $s_{\varepsilon}(n) := \lceil \log |S_{\varepsilon}(n)| \rceil$
- Define dec s.t. $dec(com(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in S_{\varepsilon}(n)$.
- 2. There is no Γ s.t. for infinitely many $n \in \mathbb{N}$ holds that $\lambda_{\Gamma,\mathcal{P}}(n) \leq 1-\alpha$ and $\rho_{\Gamma}(n) \leq H(\mathcal{P})-\beta$ for some $\alpha, \beta > 0$.

3 Statistical Learning Theory

We aim to give statistical estimates on the generalization capabilities of an ML model.

3.1 The PAC Learning Framework

- Boolen Classification:
 - \mathbb{X} instance space. Learn target function $f^*: \mathbb{X} \to \{0,1\}$
 - Data i.i.d. for unkown data generating distr. \mathcal{D} on \mathbb{X}

Boolean Classification

Given training data $T = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)) \in (\mathbb{X} \times \{0, 1\})^m$ with $y_i = f^*(\mathbf{x}_i)$. Algorithm produces hyp. $h_T : \mathbb{X} \to \{0, 1\}$ from hyp. space \mathcal{H} .

• Generalization error/risk of hyp. h:

- $\operatorname{err}_{\mathcal{D}}(h) := \operatorname{Pr}_{\mathbf{x} \sim \mathcal{D}}(h(\mathbf{x}) \neq f^*(\mathbf{x}))$
- Empirical risk/training error of hyp. h w.r.t. T:
- $\operatorname{err}_T(h) := \frac{1}{m} |\{i \in [m] | h(\mathbf{x}_i) \neq y_i\}|$

-h consistent with T iff $err_T(h) = 0$

Probably Approximately Correct (PAC) Learning

Learning algorithm generating hyp. h is a PAC learning algorithm, if for all $\varepsilon, \delta > 0$ ex. $m = m(\varepsilon, \delta)$ s.t. for every \mathcal{D} on \mathbb{X} $(T \sim \mathcal{D}^m \ i.i.d.)$

$$\Pr_{T \sim \mathcal{D}^m}(\operatorname{err}_{\mathcal{D}}(h_T) \le \varepsilon) > 1 - \delta$$

With sufficiently big training data, one can be arbitrarily certain, that the generalization error is arbitrarily small.

- ERM: An ERM algorithm returns h_T such that $\operatorname{err}_T(h_T) = \min_{h \in \mathcal{H}} \operatorname{err}_T(h)$
 - If problem is realizable, then ERM always returns a consistent hypothesis
 - Risk of overfitting, especially for high capacity \mathcal{H}
- Regularization: Counteract overfitting by considering "complexity cost" cost(h), weighted by monotone (linear) function ρ
 - $-h_T := \arg\min_{h \in \mathcal{H}} (\operatorname{err}_T(h) + \rho(\operatorname{cost}(h)))$

3.2 Sample Size Bounds

• An ERM algorithm tries to minimize generalization error by minimizing training error. Thus, ERM is good if *empirical risk is close to generalization error*.

• Assume agnostic learning: Target function isn't necessarily in \mathcal{H} (realizable), therefore, find best possible hypothesis in \mathcal{H} .

Different Bounds

• Simple Sample Size Bound: \mathcal{H} finite: Limit generalization error of hyp. consistent with T.

• Uniform Convergence: \mathcal{H} finite: Limit difference of empirical risk and generalization error.

• Agnostic PAC Learning SSB: \mathcal{H} finite: Limit ERM generalization error's deviation from optimum $h^* = \arg\min_{h \in \mathcal{H}} \operatorname{err}_{\mathcal{D}}(h)$.

- Occam's Razor: SSB depending on encoding length of hyp.
 - $-\mathcal{H}$ not necessarily finite
 - Scheme Δ for describing h by strings in Σ^*
 - $-|h|_{\Delta}$ length of the shortest description of h, used as measure of the "simplicity" of h

How to read: If bound for samples holds, then $\Pr_{T \sim \mathcal{D}^m}(\dots) > 1 - \delta$ holds too.

	Req. sample size bound	$\Pr_{T \sim \mathcal{D}^m}(\dots) > 1 - \delta$
Simple SSB	$m \ge \frac{1}{\varepsilon} \cdot \ln\left(\frac{ \mathcal{H} }{\delta}\right)$	$\forall h \in \mathcal{H} : h \text{ cons. } w/T \Rightarrow \operatorname{err}_{\mathcal{D}}(h) \leq \varepsilon$
Uniform Convergence	$m \ge \frac{1}{2\varepsilon^2} \cdot \log_2\left(\frac{2 \mathcal{H} }{\delta}\right)$	$\forall h \in \mathcal{H} : \operatorname{err}_T(h) - \operatorname{err}_D(h) \leq \varepsilon$
Agnostic PACL SSB		$ \operatorname{err}_{\mathcal{D}}(h_T) - \operatorname{err}_{\mathcal{D}}(h^*) \le \varepsilon$
Occam's Razor	$m \ge \frac{1}{\varepsilon} \left(n \cdot \ln \Sigma + \ln \left(\frac{2}{\delta} \right) \right)$	$\forall h: (h _{\Delta} \le n \land \operatorname{err}_T(h) = 0) \Rightarrow \operatorname{err}_{\mathcal{D}}(h) \le \varepsilon$

• Example: 10d linear separator, \mathbf{w}, b as 64-bit floats: $|\mathcal{H}| = 2^{11.64}$; with $\text{err}_{\mathcal{D}}$ bound $\varepsilon := 0.1$ and confidence $\delta := 0.05$ (with prob. > 95% generalization error is $\geq 10\%$):

$$m \ge \frac{1}{\varepsilon = 0.1} \cdot \ln\left(\frac{|\mathcal{H}| = 2^{11 \cdot 64}}{\delta = 0.05}\right) = 10 \cdot \ln(20 \cdot 2^{704}) \approx 4910$$

- VC dimension: Quantify "complexity" of \mathcal{H}
 - $-Y\subseteq\mathbb{X}$ is shattered by \mathcal{H} , if for every function $g:Y\to\{0,1\}$ there is $g=h|_Y$ for some $h\in\mathcal{H}$
 - $VC(\mathcal{H})$: size of largest set shattered by \mathcal{H} (might be ∞)
 - * Recipe for proof:
 - 1) Show $VC(\mathcal{H}) \geq d$, by demonstrating, that every function $g: Y \to \{0,1\}$ with some chosen $Y \subseteq \mathbb{X}$ and |Y| = d is representable.
 - 2) Show $VC(\mathcal{H}) < d+1$: Assume otherwise and argument, that for any $Y \subseteq \mathbb{X}$ with |Y| = d+1, there is no suitable $h \in \mathcal{H}$.
- Uniform Convergence for VC dimension: If $d = VC(\mathcal{H})$ finite, uniform convergence condition is fulfilled for some c > 0 by

$$m \ge \frac{c}{\varepsilon^2} \cdot \left(d + \log_2\left(\frac{1}{\delta}\right)\right)$$

4 Multiplicative Weight Updates

4.1 The MWU Algorithm

 \bullet Setup:

-I = [n] : set of **experts**

- J : set of **events**

 $-L \in \mathbb{R}^{I \times J}$: loss matrix $(L_{i,j} \in [0,1])$ is loss when following expert i while event j happened)

• Randomized Strategy: Draw expert $i^{(t)}$ from prob. distr. $\mathcal{D}^{(t)}$. If event $j^{(t)}$ happens, loss will be $L_{i,j}$. $L^{(t)}$ is expected loss in round t.

$$\mathcal{D}^{(t)}(\{i\}) := p_i^{(t)} := \frac{w_i^{(t)}}{\sum_{i' \in I} w_{i'}^{(t)}}, \qquad L^{(t)} = \sum_{i \in I} p_i^{(t)} L_{i,j^{(t)}}$$

- Algorithm: Init $w_i^{(1)} := 1$, and update $w_i^{(t+1)} := (1 \alpha)^{L_{i,j}(t)} w_i^{(t)}$.
- Randomized strategy in weighted majority setting beats naive one by almost a factor of 2 in expectation.
- Example: Weighted Majority (naive)

- Setup:

* $p^{(t)}$: event in round t (in $\{0,1\}$)

* $a_i^{(t)}$: advice of expert $i \in I$ (in $\{0,1\}$)

* $d^{(t)}$: our decision (in $\{0,1\}$)

* $l^{(t)} \,$: our cumulated loss after t rounds with $l^{(t)} := \sum_{s=1}^t |d^{(s)} - p^{(s)}|$

* $J = \{0, 1\}^n \times \{0, 1\}, L[i, (\mathbf{a}, p)] := |a_i - p| (L \in \{0, 1\}^{n \times 2^{n+1}})$

- Algorithm: Base our decision on weighted majority of experts. For every i, decrease weight w_i of expert i by factor (1α) , if expert was wrong.
- Guarantees our losses to be just a bit more than twice the losses of the best expert.

4.2 Boosting Weak Learning Algorithms

- Strong Learner (= PAC): $\forall \varepsilon, \delta > 0$ ex. $m = m(\varepsilon, \delta)$ s.t. $\forall \mathcal{D} : \Pr_{T \sim \mathcal{D}^m}(\text{err}_{\mathcal{D}}(h_T) \leq \varepsilon) > 1 \delta$
- γ -Weak Learner $(0 \le \gamma < 0.5)$: $\forall \delta > 0$ ex. $m = m(\delta)$ s.t. $\forall \mathcal{D}$: $\Pr_{T \sim \mathcal{D}^m}(\operatorname{err}_{\mathcal{D}}(h_T) \le \gamma) > 1 \delta$
- Goal: Reduce error of a weak learner, turning it into a strong learner.

Boosting Problem

Given γ -Weak Learner \mathcal{L} , training data $T := ((x_1, y_1), \dots, (x_n, y_n)) \in (\mathbb{X} \times \{0, 1\}^n)$, and error parameter $\varepsilon > 0$.

Compute hypothesis h with $err_T(h) < \varepsilon$.

- Choosing $\varepsilon < \frac{1}{n}$ forces h to be consistent with T.
- Algorithm:
 - Apply weak learner \mathcal{L} repeatedly to examples drawn from different distributions $\mathcal{D}^{(t)}$ on $X := \{x_1, \ldots, x_n\}$. Adapt distributions, reducing weight of correctly classified examples using MWU.

7

- Run \mathcal{L} on \mathcal{D} , until it returns a good hypothesis (generalization error less that γ). Prob. for that is $1 \delta_0 = 1 \frac{1}{10}$.
- Setup:
 - * Number of examples \mathcal{L} needs for error bound γ : $m_0 = m(\delta_0) = m(\frac{1}{10})$
 - * Training data as experts: I := [n]
 - * Hypotheses as events: $J = \{h \mid h \text{ returned by } \mathcal{L}\}$
 - * Loss matrix: $L_{i,j} = 1$, if $j(x_i) = y_i$, 0 otherwise $(\alpha := 0.5 \gamma)$
- Iterate for $t := \frac{2}{\alpha^2} \ln \frac{1}{\varepsilon}$ rounds. Final hypothesis returns 0 or 1 by majority vote over all hypotheses:

$$h(x) := \begin{cases} 1 & \text{if } |\{s \le t \mid j^{(s)}(x) = 1\}| \ge t/2 \\ 0 & \text{otherwise} \end{cases}$$

Then, $\operatorname{err}_T(h) < \varepsilon$.

4.3 Bandit Learning

- Choose slot machine $i \in [n]$, minimizing regret (difference between cumulative payoffs of our strategy and the best machine). We cannot observe the reward, that the other actions would have given.
- Adversarial Setting: Payoff of each machine in each round is manipulated to maximize our regret
- Setup:

- γ : tradeoff between **exploration** ($\gamma = 1$) and **exploitation** ($\gamma = 0$)

 $-0 \le q_a^{(s)} \le 1$: reward for choosing action a in round s

 $-Q := (q_a^{(s)})_{a \in [n], s > 1} : payoff matrix$

 $\begin{array}{l} - \ r(\mathbf{a}) \coloneqq q_{max}^{(t)} - q(\mathbf{a}) \ : \ regret \ \text{of sequence of actions } \mathbf{a} \ \text{with cumulative reward} \\ q(\mathbf{a}) \coloneqq \sum_{s=1}^t q_{a^{(s)}}^{(s)}, \ \text{and maximal single-action reward after} \ t \\ \text{rounds} \ q_{max}^{(t)} \coloneqq \max_a \sum_{s=1}^t q_a^{(s)} \end{array}$

8

• *Idea*: Pick in each round t an action $a^{(t)}$ only depending on previous $a^{(s)}$ and $q_{a^{(s)}}^{(s)}$.

• EXP3

1. Update distribution:

$$\mathcal{D}(\{a\}) := p_a := (1 - \gamma) \cdot \frac{w_a}{\sum_{a'} w_{a'}} + \gamma \cdot \frac{1}{n}$$

- 2. Draw a randomly from \mathcal{D} , observe reward $q \leftarrow q_a$.
- 3. Update weight $w_a \leftarrow w_a \cdot \exp(\frac{\gamma q}{np_a})$.

5 High-Dimensional Data

5.1 The Strange Geometry of High-Dimensional Spaces

Let $X \subseteq \mathbb{R}^l$ measurable set, $B^l := \{ \mathbf{x} \in \mathbb{R}^l \, | \, ||\mathbf{x}|| \leq 1 \}$ unit ball.

• Volume equations:

$$-\operatorname{vol}(cX) = c^l \operatorname{vol}(X)$$

- $\operatorname{vol}((1 \varepsilon)X)/\operatorname{vol}(X) \le e^{-\varepsilon l} \stackrel{l \to \infty}{\longrightarrow} 0$ (volume is near the surface)
- $-\lim_{l\to\infty}\operatorname{vol}(B^l)=0$
- At least $(1 \frac{2}{c}e^{-c^2/2})$ of the volume of B^l has distance $\leq c/\sqrt{l-1}$ from the equator $x_1 = 0$ (volume is concentrated near the equator)
- Choose **x** from cube $Q^l = [0,1]^l$: $E(||\mathbf{x}||^2) = l/3$ and $\Pr(||\mathbf{x}||^2 \le 1) = o(2^{-l})$ (prob. that vector lies in B^l)

5.2 Dimension Reduction by Random Projections

We aim to map \mathbb{R}^l to \mathbb{R}^k with $k \approx \log n$.

- Spherical Gaussian Distribution: $p(\mathbf{x}) = \frac{1}{(2\pi)^{l/2} \cdot \sigma^l} \cdot \exp\left(-\frac{||\mathbf{x} \boldsymbol{\mu}||^2}{2\sigma^2}\right)$
 - Same as choosing coordinates x_i independently from 1d $\mathcal{N}(\mu_i, \sigma)$
- Gaussian Annulus Theorem: For $b \leq \sqrt{l}$ and \mathbf{x} distributed spherically with $\boldsymbol{\mu} = \mathbf{0}, \sigma^2 = 1$:

$$\Pr\left(\sqrt{l} - b < ||\mathbf{x}|| < \sqrt{l} + b\right) \ge 1 - 3e^{-cb^2}$$

- \rightarrow "Probability mass of high-dim. spherical Gaussians is concentrated in a thin annulus of radius $\sigma\sqrt{l}$ around the mean"
- Random Projection: For $k \leq l$, draw vectors $\mathbf{u}_i \in \mathbb{R}^l$ independently from spherical Gaussian distr. $\mathcal{N}(\mathbf{0}, 1)$. Apply basis change $\mathbf{x} \to U\mathbf{x}$ ("random projection") with

$$U := \frac{1}{\sqrt{k}} \begin{pmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_k^T \end{pmatrix} \in \mathbb{R}^{k \times l}$$

- Random Projection Theorem: For all $\varepsilon > 0, \mathbf{x} \in \mathbb{R}^l$:

$$\Pr\left(\left|\left|\left|U\mathbf{x}\right|\right| - \left|\left|\mathbf{x}\right|\right|\right| > \varepsilon |\left|\mathbf{x}\right|\right|\right) \le 3e^{-c\varepsilon^2 k}$$

- \rightarrow "With low prob. the length of the projection deviates from the original vector length by more than an insignificant amount."
- **Johnson-Lindenstrauss Lemma**: Bound for quality preservation w.r.t. pairwise distance of points in set $X \subseteq \mathbb{R}^l$:

$$\Pr(\forall \mathbf{x}, \mathbf{y} \in X : (1 - \varepsilon)||\mathbf{x} - \mathbf{y}|| \le ||U\mathbf{x} - U\mathbf{y}|| \le (1 + \varepsilon)||\mathbf{x} - \mathbf{y}||) \ge 1 - \frac{3}{2n}$$

with k depending on |X| = n, and ε .

- \rightarrow "With high. prob. distances between points and distances between their projections are similar."
- \rightarrow "Randomly chosen linear mapping will work with high prob."

5.3 Background from LA: Eigenvalues and Eigenvectors

- λ eigenvalue of A, \mathbf{u} eigenvector associated with λ : $A\mathbf{u} = \lambda \mathbf{u}$
 - $-\det(A-xI) = \prod_{i=1}^{n} (\lambda_i x)$ (*) resulting in *spectrum* $\{\lambda_i, \ldots, \lambda_n\}$, where the λ_i are the zeroes of the polynomial
 - Algebraic Multiplicity: amount of times λ_i appears in product (*)
 - Spectral Radius $\rho(A)$: max. absolute value of eigenvalues
- Matrix properties:

- $A \in \mathbb{C}^{n \times n}$ diagonalizable, if there are nonsingular (invertible) matrix U and diagonal matrix Λ s.t. $U^{-1}AU = \Lambda$
- Orthonormal basis: $\mathbf{u}_1, \dots, \mathbf{u}_n \in \mathbb{R}^n$ with $||\mathbf{u}_i|| = 1$ and $\langle \mathbf{u}_i, \mathbf{u}_i \rangle = 0$
- $-A \in \mathbb{R}^{m \times n}$ orthonormal: $A^T A = I$
- $-A \in \mathbb{R}^{nxn}$ orthogonal: orthonormal + square OR columns of A form orthonormal basis of \mathbb{R}^n
- $-A \in \mathbb{R}^{n\times n}$ irreducible if directed graph $G_A = ([n], \{(i,j) \mid A_{i,j} \neq 0\})$ is strongly connected
- Spectral Decomposition Theorem: Let $A \in \mathbb{R}^{nxn}$ symmetric, then ex. U (matrix of eigenvectors) s.t.

$$A = U\Lambda U^T \Leftrightarrow U^T A U = \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_m)$$

Let $A \in \mathbb{R}^{n \times n}$ irreducible and non-negative.

• **Perron-Frobenius Theorem**: $\rho(A) = \lambda_1$ is eigenvalue with algMult 1, and there are unique all-positive right/left unit eigenvectors \mathbf{u}, \mathbf{v} (*Perron vectors* of A)

$$A\mathbf{u} = \rho \mathbf{u} \qquad \qquad \mathbf{v}^T A = \rho \mathbf{v}^T (\Leftrightarrow A^T \mathbf{v} = \rho \mathbf{v})$$

• Limit Theorem for Non-Negative Matrices: Let u, v, right/left Perron vectors of A:

$$\lim_{k \to \infty} \frac{1}{k} \sum_{i=1}^{k} \frac{A^i}{\rho(A)^i} = \frac{1}{\langle \mathbf{u}, \mathbf{v} \rangle} \cdot \mathbf{u} \mathbf{v}^T$$

5.4 Power Iteration

- Let A diagonalizable with spectrum $|\lambda_1| \ge \cdots \ge |\lambda_n|$, $\lambda_1 = \rho(A) \ge 0$ and $\lambda_1 > |\lambda_2|$.
 - $\rightarrow \lambda_1$ has to be positive and unique, otherwise, PI doesn't converge
- If $\langle \mathbf{x}, \mathbf{u}_1 \rangle \neq 0$, then $A^k \mathbf{x}$ converges to $c \cdot \mathbf{u}_1$.
- Algorithm: Pick x randomly, repeatedly set $x \leftarrow Ax/||Ax||$ until convergence.

5.5 Principal Component Analysis

We aim to achieve dimensionality reduction via feature selection or feature extraction by minimizing error or maximizing variance.

- Centering data $A(\mathbf{a}'_i = \mathbf{a}_i \boldsymbol{\mu})$, then variance is $\sum_i ||\mathbf{a}'_i||^2$
- PCA Transformation of A is orthogonal $U = (\mathbf{u}_1 \cdots \mathbf{u}_l) \in \mathbb{R}^{l \times l}$ s.t.

$$\mathbf{u}_{j} = \underset{\substack{\mathbf{x} \in \mathbb{R}^{l}, ||\mathbf{x}||=1\\\mathbf{x} \perp \mathbf{u}_{1}, \dots, \mathbf{u}_{i-1}}}{\arg \max} \sum_{i=1}^{n} \langle \mathbf{a}_{i}, \mathbf{x} \rangle^{2} = ||A\mathbf{x}||^{2}$$

- \rightarrow Maximizes variance $\sum_{i=1}^{n} \langle \mathbf{a}_i, \mathbf{x} \rangle^2$
- Recipe: Iteratively choose orthonormal basis vectors \mathbf{u}_j maximizing projection lengths $\langle \mathbf{a}_i, \mathbf{u}_j \rangle$
- Lines $\mathbb{P}_i := \operatorname{span}(\mathbf{u_i})$ are principal components of A
- $-\mathbb{U}_k = \operatorname{span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$ is best-fit k-dim. subspace w.r.t. A (= max. variance)
- PCA via Spectral Decomposition of Covariance Matrix
 - Covariance Matrix: $C := A^T A$ with $A \in \mathbb{R}^{n \times l}$ centered. C is symm. pos. semi-definite
 - \rightarrow Eigenvalues of C are nonneg. real numbers
 - If $\lambda_1 \geq \cdots \geq \lambda_l$ eigenvalues of C, then the matrix of the corresponding eigenvectors $U = (\mathbf{u}_1 \cdots \mathbf{u}_l)$ is a PCA transformation of A.

5.6 Spectral Clustering

- Goal: Maximize dissimilarity between clusters
- With similarity matrix $S \in \mathbb{R}^{n \times n}$ defined by $S_{ij} := s(i,j)$, where $s: X \times X \to \mathbb{R}_{\geq 0}$ similarity measure:

$$\operatorname{mincut}(C^1, \dots, C^k) := \sum_{p=1}^k \sum_{\substack{i \in C^p \\ j \notin C^p}} S_{ij} \qquad \operatorname{balcut}(C^1, \dots, C^k) := \sum_{p=1}^k \frac{1}{|C^p|} \sum_{\substack{i \in C^p \\ j \notin C^p}} S_{ij}$$

- \rightarrow mincut favors very small/large clusters; balcut computationally hard to minimize
- Algorithm:
 - Input: $k \in \mathbb{N}$, symm. similarity matrix $S \in \mathbb{R}_{>0}^{m \times m}$
 - Compute Laplacian L = D S with $D = \operatorname{diag}\left(\left(\sum_{j=1}^{m} S_{ij}\right)_{i=1}^{m}\right)$.
 - Find k smallest eigenvalues of L with eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_k$.
 - Perform k-Means on rows of $U = (\mathbf{u}_1 \cdots \mathbf{u}_k)$, yielding clusters C^1, \dots, C^k .
 - Return $D_1, ..., D_k$ with $D_i := \{x_j | (u_{j1}, ..., u_{jk}) \in C^i\}.$
- Properties:
 - For $\mathbf{v} \in \mathbb{R}^m$: $\mathbf{v}^T L \mathbf{v} = \frac{1}{2} \sum_{i,j} S_{ij} (v_i v_j)^2$
 - L is symm. pos. semi-definite ($\Rightarrow U^T L U = \Lambda$)
 - $-U \in \mathbb{R}^{n \times k}$ is partition matrix, if it has k distinct rows. For an orthonormal partition matrix U with

$$U_{ip} = \begin{cases} 1/\sqrt{|C^p|} & i \in C^p \\ 0 & \text{else} \end{cases}$$

then balcut $(C^1, \ldots, C^k) = \operatorname{trace}(U^T L U)$. (trace: sum of diagonal entries)

- Finding such U is hard; Instead, find eigenvector matrix to k smallest eigenvalues of L.

6 Random Walks and Markov Chains

Monte Carlo (MC) methods aim to estimate values through sampling.

6.1 Estimation Through Sampling

- Basic MC: Estimate μ through $\hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} f(\omega_i)$ with $m = m(\varepsilon, \delta)$ for independent samples $\omega_i \in \Omega$
 - For $b := \max\{|f(\omega)| | \omega \in \Omega\}, m \ge \frac{b \ln(\frac{2}{\delta})}{\varepsilon^2}$: $\Pr(|\hat{\mu} \mu| \le \varepsilon) \ge 1 \delta$
 - → Estimation is good with high probability
- Rejection Sampling: We want to sample from (Ω, \mathcal{P}) with $\mathcal{P}(\omega) = \mathcal{D}(\omega)/Z$, known up to Z.
 - Assume known function of upper bounds $\Delta: \Omega \to \mathbb{R}$ with $\mathcal{D}(\omega) \leq \Delta(\omega)$. Assume we sample from Ω with *proposal distribution* $\Pi(\omega) = \Delta(\omega) / \sum_{\omega' \in \Omega} \Delta(\omega')$. Π is uniform distr., if Δ const.
 - Recipe: Sample $\omega \in \Omega$ from Π . With prob. $\mathcal{D}(\omega)/\Delta(\omega)$, accept and return ω , otherwise reject.
 - Accepts in any iteration with prob. $a = Z/\sum_{\omega \in \Omega} \Delta(\omega)$

- RS eventually accepts with prob. 1, and accepts at $\leq k$ iterations with prob. $1 (1-a)^k (\geq 1 e^{-ak})$
- If accepts, ω is returned with prob. $\mathcal{P}(\omega)$
- Example Graph Matchings (set of edges where no edges share (end-)vertices): $\Omega := 2^E, \mathcal{D} := \mathbb{1}_{\mathcal{M}}$ (\mathcal{M} set of all matchings on graph), $\Delta = \mathbb{1}_{2^E}$
- Karp-Luby Algorithm: Ex. randomized polynomial time alg. that given a satisfiable Boolean formula ϕ in DNF ($\bigvee \bigwedge$), returns satisfying assignment sampled uniformly at random from the set of all satisfying assignments
 - \rightarrow RS: Let $\phi := \bigvee_i \gamma_i$. Choose $i \in [m]$ uniformly at random. Choose $\alpha \in \{0,1\}^n$ that satisfies γ_i uniformly at random. Reject α iff α satisfies any γ_j with j < i.

6.2 Random Walks and Markov Chains

- Random walk: Sequence of vertices on directed graph, where at each step, next edge is chosen randomly starting from initial vertex
- Markov Chain (MC): Next state in sequence in randomly chosen based on current state
 - n-state MC represented by Q represented by (stochastic) transition matrix $Q \in [0,1]^{n \times n}$ with row sums = 1, or by directed weighted graph G_Q with $w(i,j) = Q_{ij}$
 - MC is connected if G_Q is strongly connected / iff Q is irreducible
 - MC is aperiodic if the greatest common divisor of the cycle lengths on G_Q is 1.
 - MC is *ergodic* if it is connected and aperiodic.
- Probability Vector (PV): $\mathbf{p} \in \mathbb{R}^{1 \times n}$, non-negative, sum = 1; $\mathbf{p}_t = \mathbf{p}_0 Q^t$
- Depending on initial PV \mathbf{p}_0 : Average distribution $\mathbf{a}_t := \frac{1}{t} \sum_{i=0}^t \mathbf{p}_i$

Stationary Distribution (SD): Let Q connected.

- Fundamental Theorem of MC: Ex. unique PV π s.t. $\pi Q = \pi$. Also, $\pi = \lim_{t \to \infty} \mathbf{a}_t$.
 - $-\pi$ is left Perron vector of Q with $\rho = 1$; computation of SD is then essentially power iteration
- If $p_i Q_{ij} = p_j Q_{ji}$ for $\forall i, j \in [n]$, then $\mathbf{p} = \boldsymbol{\pi}$
- If \mathcal{Q} ergodic, then $\lim_{t\to\infty} \mathbf{p}_t = \boldsymbol{\pi}$ for every initial \mathbf{p}_0 .
- For 0 < a < 1, $Q_{\alpha} := \alpha Q + (1 \alpha)I$ is ergodic, and has the same stationary distr. as \mathcal{Q}
 - aperiodic, since Q_{α} introduces loops at every vertex of length 1

6.3 Markov Chain Monte Carlo

- Problem Description: Estimate $\mu = E(f)$ of random var. f defined on prob. space (Ω, \mathcal{P}) by sampling ω_i through $\hat{\mu} = \frac{1}{m} \sum_{i=0}^m f(\omega_i)$. Difficult from large (Ω, \mathcal{P}) .
- MCMC: Set up ergodic \mathcal{Q} with state space Ω and stationary distr. \mathcal{P} (known up to Z). Simulate MC, until close to stationary distr. Take current state as sample from (Ω, \mathcal{P}) . Now, we want to approximate \mathcal{P} .
 - We define $\mathcal{Q}_{\mathcal{P}_0,t}(\omega_t)$ to be the sum of probabilities over all possible paths leading to ω_t , starting from ω_0 :

$$Q_{\mathcal{P}_0,t}(\omega_t) = \sum_{\omega_0,\dots,\omega_{t-1}\in\Omega} \mathcal{P}_0(\omega_0) \prod_{i=1}^t Q(\omega_{i-1},\omega_i)$$

 $\mathcal{Q}_{\mathcal{P}_0,t}$: distr. of \mathcal{Q} after t steps with initial distr. \mathcal{P}_0 ; $\mathcal{Q}(\omega_{i-1},\omega_i)$: transition prob. from ω_{i-1} to ω_i

- Total variation distance for prob. distr. $\mathcal{P}, \mathcal{P}'$: dist $_{TV}(\mathcal{P}, \mathcal{P}') = \frac{1}{2} \sum_{\omega \in \Omega} |\mathcal{P}(\omega) \mathcal{P}'(\omega)|$
- $-\mathcal{Q}_{\omega_0,t}$ eventually approximates \mathcal{P} well: $\lim_{t\to\infty} \operatorname{dist}_{\mathrm{TV}}(\mathcal{Q}_{\omega_0,t},\mathcal{P}) = 0$

$$Q_{\omega_0,t}$$
: $Q_{\mathcal{P}_0,t}$ with 1-point distr. $\mathcal{P}_0(\omega_0) = 1$

- Mixing Time: $T_{\mathcal{Q}}(\varepsilon) = \min_{t \in \mathbb{N}} \{ t \in \mathbb{N} \mid \forall \omega_0 \in \Omega : \operatorname{dist}_{\mathrm{TV}}(\mathcal{Q}_{\omega_0,t},\mathcal{P}) \leq \varepsilon \}$
- Approximation of mean is upper bounded by accuracy of estimated \mathcal{P} :

$$\left| \sum_{\omega \in \Omega} f(\omega) \mathcal{Q}_{\omega_0, t}(\omega) - \mu \right| \leq 2b \cdot \operatorname{dist}_{\mathrm{TV}}(\mathcal{Q}_{\omega_0, t}, \mathcal{P})$$

- MCMC Theorem: Assuming some suitable $\varepsilon, \delta, m, t$ and $|f(\omega)| < b$, then $\Pr(|\hat{\mu} \mu| \le \varepsilon) \ge 1 \delta$.
- Metropolis-Hastings Sampling: Create undirected connected graph $G = (\Omega, E)$ with vertices having max. degree of Δ

$$q_{\omega,\omega'} := \begin{cases} \frac{1}{\Delta+1} & \omega\omega' \in E(G) \land \mathcal{D}(\omega') \ge \mathcal{D}(\omega) \\ \frac{1}{\Delta+1} \cdot \frac{\mathcal{D}(\omega')}{\mathcal{D}(\omega)} & \omega\omega' \in E(G) \land \mathcal{D}(\omega') < \mathcal{D}(\omega) \\ 1 - \sum_{\omega'' \in N_G(\omega)} q_{\omega,\omega''} & \omega = \omega' \\ 0 & \text{otherwise} \end{cases}$$

results from transition algorithm on current state ω :

- With prob. $1 |N(\omega)|/(\Delta + 1)$, stay in ω . Otherwise, choose $\omega' \in N_G(\omega)$ randomly. If $\mathcal{D}(\omega') \geq \mathcal{D}(\omega)$ move to ω' , or if $\mathcal{D}(\omega') < \mathcal{D}(\omega)$ with prob $\mathcal{D}(\omega')/\mathcal{D}(\omega)$ move to ω' , else stay in ω .
- \rightarrow Essentially RS on neighbors of ω
- $\rightarrow \mathcal{Q}$ is ergodic with stationary distr. \mathcal{P}
- Sketch for graph matchings: Graph with $V(G) = \mathcal{M} \subseteq 2^{E(G)}$, connected through \subset relation

6.4 Coupling of Markov Chains

- Coupling: Run MCs $\mathcal{C} := (\mathcal{Q}_1, \mathcal{Q}_2)$ simultaneously on $\Omega \times \Omega$. Coupling of MCs is a general technique for bounding the mixing time of an MC.
 - Coupling conditions state, that Q_1, Q_2 are copies of Q, but are not independent

$$\sum_{\omega'} \mathcal{C}((\omega_1, \omega_2), (\omega_1', \omega')) = \mathcal{Q}(\omega_1, \omega_1') \qquad \qquad \sum_{\omega'} \mathcal{C}((\omega_1, \omega_2), (\omega', \omega_2')) = \mathcal{Q}(\omega_2, \omega_2')$$

- Coupling Lemma: If Q_1, Q_2 are coupled s.t. with high prob. they are in the same state, they must be close to the stationary distr.

7 Highly Distributed Systems

7.1 Distributed Systems and Map-Reduce Environment

Basic setup:

- Computing clusters consisting of cluster nodes, that are arranged in racks of 16-24 nodes.
- Challenges: Distribute computation, write distributed programs, handle hardware failure.

- Principles: Data stored close to computation, data stored multiple times (for reliability)
 - Files split into chunks of 64 MB, replicated 3 times, stored in different racks.
- Master node: Stores metadata about chunks

Map-Reduce: User provides MAP and REDUCE functions (for data analysis tasks on DFS)

- MAP: Takes as input single key-value pair, and emits set of key-value pairs.
- Shuffle: Group key-value pairs by key.
- Reduce: Aggregate groups of same key, emitting set of key-value pairs.
- Environment handles data partitioning and task assignment to nodes, executing shuffle, handling communication and failures.
- Master node handles task scheduling and failure detection.
- Might pre-aggregate values in Map to save communication cost

7.2 Map-Reduce Algorithms

```
Matrix-Vector Multiplication Av (A as (i, j, a_{ij}), v as (i, v_i))

MAP on (i, j, a_{ij}) emit (i, a_{ij}v_j)

REDUCE on (i, vals) emit (i, \sum_{v \in vals} v)
```

• If \mathbf{v} is big: Split \mathbf{v} into segments, split A into vertical stripes accordingly.

Relational Data: Store row (tuple) t of schema $R(A_1, ..., A_k)$ of a relation \mathcal{R} with attributes A_i as (R, t)

```
Projection \mathcal{Q} = \pi_{A,C}(\mathcal{R}) (tuple t in R(A,B,C) as (R,t))

MAP on (R,(a,b,c)) emit ((a,c),1)

REDUCE on ((a,c),vals) emit (Q,(a,c)) (removes duplicates)
```

```
Intersection Q = \mathcal{R} \cap \mathcal{S} (tuple t in R/S as (R/S,t))

MAP on (X,t) emit (t,X) (X=R \lor X=S)
```

```
Map on (X,t) emit (t,X) (X=R\vee X=S)
Reduce on (t,vals) emit (Q,t) if R,S\in vals
```

```
Grouping & Aggregation (scheme R(A,B,C), group by A, avg. by C)

MAP on (R,(a,b,c)) emit (a,c)

REDUCE on (a,vals), compute average c^* of c \in vals and emit (Q,(a,c^*))
```

Matrix Multiplication $C = A \cdot B$ (A as $(A, (i, j, A_{ij}), B$ as $(B, (j, k, B_{jk}))$)

```
\begin{array}{ll} \text{Map 1} & \text{on } (A,(i,j,a)) \text{ emit } (j,(A,i,a)) \\ & \text{on } (B,(j,k,b)) \text{ emit } (j,(B,k,b)) \\ \text{Reduce 1} & \text{on } (j,vals) \text{ emit } ((i,k),ab) \text{ for all } (A,i,a),(B,k,b) \in vals \text{ with } ab \neq 0 \\ \text{Map 2} & \text{on } ((i,k),x) \text{ emit identity} \\ \text{Reduce 2} & \text{on } ((i,k),vals) \text{ emit } (C,(i,k,\sum vals)) \end{array}
```

Matrix Multiplication $C = A \cdot B$ (one round)

```
\begin{array}{ll} \text{Map} & \text{ on } (A,(i,j,a)) \text{ emit } ((i,k),(A,j,a)) \ \forall k \in [n] \\ & \text{ on } (B,(j,k,b)) \text{ emit } ((i,k),(B,j,b)) \ \forall i \in [l] \\ \text{Reduce} & \text{ on } ((i,k),vals) \text{ compute } x = \sum_{j} ab \text{ for } (A,j,a), (B,j,b) \in vals \text{ and emit } (C,(i,k,x)) \end{array}
```

7.3 Analysis of Map-Reduce Algorithms

Cost measures:

• Wall-clock time: total computation time; too complicated to analyze (system-dependent)

• Number of rounds: important, but not sufficient

• Communication cost: sum of all input sizes; comm. time dominates comp. time in nodes

• Replication rate: number of all key-value pairs divided by input size; only relevant for

one-round MR-processes

• Maximum load: max length of values list in Reduce input ("Reducer Size")

7.4 Analysis of Matrix Multiplication

• Assume (small) prob. p, q for an entry of $A \in \mathbb{R}^{l \times m}, B \in \mathbb{R}^{m \times n}$ to be non-zero.

	Communication cost	Maximum load
Two-round	2plm + 2qmn + 2pqlmn	1. $(pl + qn)$, 2. pqm
	Map, Reduce 1 Map, Reduce 2	
One-round	plm + qmn + (p+q)lmn	(p+q)m
		(2 2)
	Map Reduce	

- \rightarrow For sparse matrices, the communication cost of the two-round algorithm is likely to be much lower. The maximal load is comparable.
- Generalized single-round algorithm: Split matrices into s stripes (vertical in A, horizontal in B), and use pairs of indices of the stripes as keys for the reducer; Reduces replication rate and communication cost.
- Assume $h:[n] \to [n]$ assigns each row/column index its stripe index.

$\begin{aligned} & \text{Matrix Multiplication } C = A \cdot B \text{ (generalized one round)} \\ & \text{Map} & \text{on } (A,(i,j,a)) \text{ emit } ((h(i),u),(A,i,j,a)) \text{ for } u \in [s] \\ & \text{on } (B,(j,k,b)) \text{ emit } ((t,h(k)),(B,j,k,b)) \text{ for } t \in [s] \\ & \text{Reduce} & \text{on } ((t,u),vals) \text{ compute } c_{ik} = \sum_{(A,i,j,a),(B,j,k,b) \in vals} ab \ \forall i \in h^{-1}(t), k \in h^{-1}(u), \\ & \text{and emit } (C,(i,k,c_{ik})) \end{aligned}$

	Communication cost	Maximum load
_	$\mathcal{O}(sn^2)$	$2n^2/s$
$\overline{\text{given } p, q}$	$\mathcal{O}(s(p+q)n^2)$	$(p+q)n^2/s$

7.5 Multiway Joins in Map-Reduce

• Hypercube Algorithm: Correctly computes multi-natural join $Q = R_1 \bowtie ... \bowtie R_l$

```
Hypercube Algorithm \mathcal{Q} = \mathcal{R}_1 \bowtie \ldots \bowtie \mathcal{R}_l

MAP on (R_i, (a_i, \ldots, a_{k_i})) emit ((p_1, \ldots, p_k), (R_i, (a_1, \ldots, a_{k_i})))

- s_i share of attribute A_i

- \prod_i^k s_i = s number of reducers

- h_i : V_i \to [s_i] hash function on domain of attribute A_i

- p_j = h_j(a_j') for all j \in [k], j' \in [k_i] s.t. A_{ij'} = A_j

- for A_j not appearing in (a_i, \ldots, a_{k_i}): choose all possible vals for p_j

REDUCE on (\bar{p}, vals) compute \mathcal{Q}(\bar{p}) = \mathcal{R}_1(\bar{p}) \bowtie \ldots \bowtie \mathcal{R}_l(\bar{p}), emit all (Q, t) for t \in \mathcal{Q}(\bar{p})

- \mathcal{R}_i(\bar{p}) := \{t \mid (R_i, t) \in vals\}
```

- * Example:
 - On $(R_1, (67, 48))$ with $R_1(A_1, A_2)$ MAP emits $((3, 3, 1), (R_1, (67, 48)))$ and $((3, 3, 2), (R_1, (67, 48)))$ (having $h_1(67) = 3, h_2(48) = 3, \text{rg}(h_3) = \{1, 2\}$)
 - On $(R_1, x, y), (R_2, y, z), (R_3, z, x)$ in vals, Reducer emits (Q, (x, y, z))
- Assume Idx(i) set of indices of attributes of \mathcal{R}_i , $m_i := |\mathcal{R}_i|$, which are large compared to number of reducers, and hash functions chosen randomly.
 - Replication rate: $\frac{\sum_{i \in [l]} \left(m_i \cdot \prod_{j \in [k] \setminus Idx(i)} s_j \right)}{\sum_{i \in [l]} m_i}$ Expected load: $\sum_{i \in [l]} \frac{m_i}{\prod_{j \in Idx(i)} s_j}$ Max. load: $\mathcal{O}\left(\sum_{i \in [l]} \frac{m_i}{\min_{j \in Idx(i)} s_j}\right)$
 - \rightarrow depend on choice of shares, and therefore require tradeoff
- If relation is skew-free, max. load is close to expected load with high prob.: $\mathcal{O}\left(\sum_{i \in [l]} \frac{m_i}{\prod_{j \in Idx(i)} s_j} \log^k(s)\right)$
- In general, we want to choose shares s.t. we minimize max. load, which is a difficult optimization problem.

8 Streaming Algorithms

8.1 Basics

- Given universe \mathbb{U} with $|\mathbb{U}| = N$, stream $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{U}^n$, n not known in advance.
- We aim to find algorithms using space $\operatorname{polylog}(n+N) = \bigcup_{k \in \mathbb{N}} \log(n+N)^k$. $(\mathcal{O}(\operatorname{polylog}(n)) = \mathcal{O}((\log n)^k))$
- SIMPLESAMPLE: Save each element a_i as sample with prob. 1/i.
 - Resulting item index distributed uniformly.
 - Returns $a \in \mathbb{U}$ with prob. $|\{i \mid a_i = a\}|/n$

- RESERVOIRSAMPLE: Save first k elements. For i > k with prob. k/i replace random element with a_i .
 - Resulting index set $\{i_1, \ldots, i_k\} \in {n \choose k}$ distributed uniformly with prob. $1/{n \choose k}$.
 - \rightarrow Space: $\mathcal{O}(\log n + k \log N)$

8.2 Hashing

- Idea: Fix small family of hash functions \mathcal{H} from \mathbb{U} to \mathbb{T} and consider uniform distribution on this family
 - Truly random hash functions (uniformly sampled from family \$\mathcal{H}\$ of all possible functions) are not practical, since for very large universe, the space requirement is prohibitive.

Family \mathcal{H} is

• universal, if for all distinct $x, x' \in \mathbb{U}$:

$$\Pr_{h \in \mathcal{H}}(h(x) = h(x')) \le \frac{1}{|\mathbb{T}|}$$

- Application: Assign k-bit signatures to $S \subseteq \mathbb{U}$ using a universal hash function family. Then, for suitable $k = k(|S|, \delta)$, probability of no collisions (two elements with same signature) is high (1δ) .
- k-universal, if $\forall x_1 \neq \cdots \neq x_k \in \mathbb{U}$:

$$\Pr_{h \in \mathcal{H}}(h(x_1) = \dots = h(x_k)) \le \frac{1}{|\mathbb{T}|^{k-1}}$$

- $-\mathcal{H}$ 2-universal $\Leftrightarrow \mathcal{H}$ universal
- strongly k-universal, if $\forall x_1 \neq \cdots \neq x_k \in \mathbb{U}$ and $\forall y_1 \neq \cdots \neq y_k \in \mathbb{T}$:

$$\Pr_{h \in \mathcal{H}} (\bigwedge_{i \in [k]} h(x_i) = y_i) = \frac{1}{|\mathbb{T}|^k}$$

iff k-independent and uniform:

$$\Pr_{h \in \mathcal{H}} \left(\bigwedge_{i} h(x_i) = y_i \right) = \prod_{i} \Pr_{h \in \mathcal{H}} (h(x_i) = y_i) \qquad \Pr_{h \in \mathcal{H}} (h(x) = y) = \frac{1}{|\mathbb{T}|}$$

 $-\mathcal{H}$ strongly k-universal $\Rightarrow \mathcal{H}$ k-universal

Constructing strongly k-universal hash families:

- Let $q \geq N$ prime power, $g_1 : \mathbb{U} \to \mathbb{F}_q$ injective, $g_2 : \mathbb{F}_q \to \{0, \dots, q-1\}$ bijective.
 - Prime power: number expressed as a prime number raised to a pos. integer exponent (e.g. $2^3, 5^2$)
 - Field \mathbb{F}_q : Körper
- For $\mathbf{a} \in \mathbb{F}_q^k$, let $p_{\mathbf{a}} : \mathbb{F}_q \to \mathbb{F}_q$ of degree k-1 the corresponding polynomial. Then we get hash func. $h : \mathbb{U} \to \{0, \dots, q-1\}$

$$\begin{array}{ll} \mathcal{H}^k_q & := \{x \mapsto g_2(p_{\mathbf{a}}(g_1(x))) \, | \, \mathbf{a} \in \mathbb{F}^k_q \} & \text{is strongly k-universal} \\ \mathcal{H}^k_{q,M} & := \{x \mapsto g_2(p_{\mathbf{a}}(g_1(x))) \mod M \, | \, \mathbf{a} \in \mathbb{F}^k_q \} & \text{is strongly k-universal, if M divides q} \end{array}$$

– $\mathcal{H}_{q,M}^k$ is close to strongly k-universal, as long $M \ll q$ (assumes independence and almost uniformity)

8.3 Counting Distinct Elements

- Problem cannot be solved (exactly) in space $< \min\{N, n\}$, approximation often sufficient anyway
- Use $\frac{N}{\min S}$ as estimator for |S| = m of subset $S \subseteq \mathbb{U}$
- COUNT(ε): Let $M \geq 12N^2$, \mathcal{H} strongly 2-universal from \mathbb{U} to [M], $t := \lceil \frac{24}{\varepsilon^2} \rceil$. Determine t-th smallest element of [M] to compute estimator $\frac{tM}{x_t}$.
 - Init list L of t elements $x_i := M + 1$. INSERT hash value h(a) of upcoming stream element a in sorted L, if it is smaller than the largest element in the list (discard last element in L)
 - When stream ended, return $\frac{tM}{x_t}$ if $x_t \leq M$, else return index of maximal not initial value in L.
 - \rightarrow Space: $\mathcal{O}(t \log M) = \mathcal{O}(\frac{1}{\varepsilon^2} \log N)$
 - \rightarrow Depending on ε , prob., that estimator is close enough to true count is only $\frac{3}{4}$.
- MCOUNT(ε , k): Run COUNT(ε) on independently drawn 2k-1 hash functions from \mathcal{H} . Return median of all resulting estimators.
 - \rightarrow Space: $\mathcal{O}(k \cdot \frac{1}{\varepsilon^2} \log N)$
 - \rightarrow Depending on ε , prob., that estimator is close enough to true count is *arbitrarily large* with $k = k(\delta)$. (considerable improvement to COUNT)

8.4 Frequency Moments

- Frequency of $u \in \mathbb{U}$ in stream \mathbf{a} : $f_u(\mathbf{a}) := |\{i \in [n] \mid a_i = u\}|$
- Frequency vector $\mathbf{f} = (f_u)_{u \in \mathbb{U}}$
- p-th Frequency Moment of a: $F_p(\mathbf{a}) := \sum_{\substack{u \in \mathbb{U} \\ f_u(\mathbf{a}) > 0}} (f_u(\mathbf{a}))^p$
 - F_0 = distinct elements; $F_1 = n$; $F_2 = ||\mathbf{f}||_2^2$
 - $\sqrt[p]{F_p} = ||\mathbf{f}||_p \stackrel{p \to \infty}{\longrightarrow} \max_u \{f_u\}$

Estimate frequency moments, since direct computation is difficult.

- Pick random $i \in [n]$, let $r := |\{j \mid j \ge i, a_j = a_i\}|$.
 - $-A_k := n(r^k (r-1)^k) \text{ (for } k \ge 2)$
 - $\rightarrow E(A_k) = F_k$
- AMS-ESTIMATOR: While stream is running, sample a_i with prob. 1/i ("reservoir sampling"). Count further occurrences (r) of a_i (reset, if sample overwritten). Return $A_k = n(r^k (r-1)^k)$.
 - $\rightarrow A_k$ has high variance
- TUG-OF-WAR: Let $\mathcal{H}: \mathbb{U} \to \{-1, +1\}$ strongly 4-universal. Draw h. Compute $B = \left(\sum_i h(a_i)\right)^2$. $\to E(B) = F_2, \operatorname{Var}(B) \le 2F_2^2$
- AVG-ToW: Draw $h_1, \ldots, h_k \in \mathcal{H}$. Compute average of ToW results: $B = \frac{1}{k} \sum_{i=1}^k \left(\sum_j h_i(a_j) \right)^2$

18

8.5 Sketching

Turnstile Model: Universe \mathbb{U} of size N. Stream of updates $(a_1, c_1), \ldots, (a_n, c_n) \in \mathbb{U} \times \mathbb{Z}$.

- Implicitly: data vector $\mathbf{d}(i) = (d_u(i))_{u \in \mathbb{U}} \in \mathbb{Z}^{\mathbb{U}}$, init $\mathbf{d}(0) = \mathbf{0}$, incremented by update entry c_i at "time step" i for $u = a_i$.
- Restrictions:
 - Strict turnstile model: all $d_u(i) > 0$
 - Cash register model: all $c_i > 0$
 - "Normal" stream model: all $c_i = 1, \mathbf{d} = \mathbf{f}$

Instead of storing $\mathbf{d} := \mathbf{d}(n)$, let h map the entries of \mathbf{d} to a much smaller vector of length k called **sketch**. Assume for all algorithms universal family of hash functions $\mathcal{H} : \mathbb{U} \to [k]$.

- SIMPLE SKETCH(k): Draw $h \in \mathcal{H}$. Init $\mathbf{0} =: S \in \mathbb{Z}^k$ and update $S[h(a_i)] += c_i$.
 - Estimator for data value d_u : $d_u^* := S[h(u)]$
 - \rightarrow Assuming strict turnstile model: d_u^* overestimates and $\Pr(d_u^* d_u \geq \varepsilon ||\mathbf{d}||_1) \leq \frac{1}{2}$ for $k = k(\varepsilon)$.
- COUNT MIN SKETCH(k, l): Draw $h_1, \ldots, h_l \in \mathcal{H}$. Update $S[h_j(a), j] += c$ for all j.
 - Estimator for data value d_u : $d_u^* := \min_{j \in [l]} S[h_j(u), j]$
 - Assuming strict turnstile model: d_u^* still overapproximates, but now large deviation from ground truth is less likely: $\Pr(d_u^* d_u \ge \varepsilon ||\mathbf{d}||_1) \le \delta$ for $l = l(\delta)$.
- Heavy hitter $u \in \mathbb{U}$ with $\tau > 0$: $d_u \ge \tau ||\mathbf{d}||_1$ for data vector \mathbf{d} (data item "appears very often")
- CM HEAVY HITTERS (k, l, τ) : Compute CM sketch S with params k, l. Maintain set H of heavy hitters $u \in \mathbb{U}$ from estimator d_u^* . Remove $u \in \mathbb{U}$ from H, when not heavy hitter anymore $(d_u^* < \tau ||\mathbf{d}||_1)$. Return all heavy hitters in H.
 - \rightarrow Assuming cash register model: With high prob., algorithm returns no u, which is barely a heavy hitter