Лабораторная работа №2

Доре Стевенсон Эдгар

РУДН, 19 мая 2022 Москва, Россия

Прагматика выполнения работы

- Изучение основ построения математических моделей на примере задачи о погоне.
- Умение строить графики траекторий движения.

Цель выполнения работы

• Научиться строить математические модели для выбора правильной стратегии при решении задач поиска, рассмотрев задачу преследования браконьеров береговой охраной(задачу о погоне).

Задание лабораторной работы

- 1. Записать уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Найти точку пересечения траектории катера и лодки.

Результаты выполнения лабораторной работы

- 1. Вывод уравнения, описывающее движение катера:
 - 1. Принимаем за \$t_0=0\$, \$x_{л0}\$ место нахождения лодки браконьеров в момент обнаружения, а за \$x_{к0}=к\$ место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.
 - 2. Введем полярные координаты. Полюс это точка обнаружения лодки $x_{n0} (\theta = x_{n0} = 0)$, а полярная ось r проходит через точку нахождения катера.

{ #fig:001 width=70% }

3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса \$0\$, только в этом случае траектория катера пересечется с траекторией лодки.

Поэтому катер должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка. После этого катер должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка.

4. Пусть через время \$t\$ катер и лодка окажутся на одном расстоянии \$x\$ от полюса. За это время лодка пройдет \$x\$, а катер \$k-x\$ (или \$k+x\$ в зависимости от начального положения катера). Время, за которое они пройдут это расстояние, вычисляется как \$x/v\$ или \$k-x/nv\$ (во втором случае \$k+x/nv\$). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние \$x\$ можно найти из следующего уравнения:

 $\frac{x}{v}=\frac{k-x}{nv}$ в первом случае или

 $\frac{x}{v}=\frac{k+x}{nv}$ во втором.

Отсюда мы найдем два значения $x_1=\frac{k}{n+1}=\frac{16.3}{5.1}$ и $x_2=\frac{k}{n-1}=\frac{16.3}{3.1}$, задачу будем решать для двух случаев.

5. После того, как катер окажется на том же расстоянии от полюса, что и лодка, он должен сменить траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки \$v\$.

Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и v_{λ} - тангенциальная скорость.

{ #fig:002 width=70% }

 $v_r=\frac{dr}{dt}$. Нам нужно, чтобы радиальная скорость была равна скорости лодки, поэтому полагаем $\frac{dr}{dt}=v$;

Тангенциальная скорость равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус r, v_{τ}

Из рисунка видно: $v_{\tau}=\sqrt{n^2v^2-v^2}=\sqrt{15.81}v$ (учитывая, что радиальная скорость равна v). Тогда получаем: $r^{r}(d\theta){dt}=\sqrt{15.81}v$

6. Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений:

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:

 $\frac{d\theta}=\frac{r}{d\theta}$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах.

2. Построение траектории движения катера и лодки:

{ #fig:003

width=70% }

- 3. Нахождение точек пересечения траектории катера и лодки:
 - Первый случай:

• Второй случай:

Спасибо за внимание!