

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

Instruction Division First Semester, 2016-2017 Course Handout (Part II)

Date: 02.08.2016

In addition to Part I(General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No : EEE G612

Course Title : Coding Theory & Practice
Instructor-in-charge : KARUNESH K GUPTA

1. Course Description: The course covers source coding, channel coding & encryption. The former deals with error correction in noisy channel, and the latter deals with secrecy of communication. Channel coding, which constitutes the major portion of the course, will introduce a number of important classes of error-detecting and error-correcting codes and their decoding. Finally the course will give an introduction to encryption & decryption of data for secret communications.

2. Text Books:

Information theory, Coding and Cryptography, Ranjan Bose, Tata McGraw Hill, 2010.

Reference Books:

- 1. Element of Information Theory, Thomas M Cover, John Wiley & Sons, 2004
- 2. Error Control Coding, Shu Lin & Daniel J. Costello Jr., Pearson, 2011

3. Course Plan:

Lecture	Learning Objectives	Topics to be covered	Reference to			
No.			Text Book			
1	To give a general	General Introduction	Notes			
	introduction to coding					
Source & Channel Coding						
2 - 3	To introduce the concept of	Data compression, Entropy	Ch. 1			
	Uncertainty, Entropy		Ch. 2 of ref 1			
4 - 5	To introduce the concepts	Unique and instantaneous	Ch. 5 of ref 1			
	of coding and decoding	codes, Kraft's inequality				
6 - 10	To introduce Universal	Huffman, Shannon-Fano-	Ch.1			
	Source coding	Elias, Arithmetic, L-z, Run				
		Length Coding, JPEG				
11	To introduce optimal	Rate distortion theorem,	Ch. 1			

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

भा परम 🛍			1		
	codes	Optimal code length	Ch. 10 of ref 1		
12 - 13	To introduce the concept of	Channel models, channel	Ch. 2		
	channel capacity and	capacity, Shannon limit			
	coding				
14 - 16	To introduce the concept of	Linear block codes,	Ch. 3		
	error correcting codes	generator & parity check			
		matrix			
17 - 18	To introduce the concept of	Syndrome decoding of linear	Ch. 3		
	syndrome and decoding	codes			
	through syndrome				
19	To study LDPC codes	Low density parity check	Ch. 3		
		codes			
20 - 21	To study Galois Field	Finite Algebra, Galois Field,	Ch. 4		
		and basic properties, block			
		code over a Finite field			
22 - 23	To study cyclic codes, their	Cyclic codes	Ch. 4		
	encoding & decoding				
24 - 25	To study certain well	Well-known block codes;	Ch. 4		
	known linear codes	Golay code, CRC codes			
26 - 28	To introduce the important	BCH codes, Reed-Solomon	Ch.5		
	class of BCH codes	codes			
29 - 35	To introduce the important	Convolutional codes, Viterby	Ch. 6		
	class of Convolutional	decoding, turbo codes			
	coder & decoder				
Encryption & Decryption					
36 - 37	To introduce the concept of	Models, goals and early	Ch.8		
	data encryption and	cipher systems			
	decryption				
38 - 40	To introduce Public Key	Public Key Crypto systems	Ch. 8		
	Cryptosystems	and some examples			

4. Evaluation Scheme:

Evaluation	Duration	Weightage	Date, Time	Remarks
Component				
Mid-semester	90 Minutes	25%		СВ
Test				
Lab		40%	To be announced in class	OB
Assignment /				
Project * /				
Term paper				

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

presentations			
Comprehensive	3 Hours	35%	Partly open
Examination			book

^{*} Individual project/ Term paper on the topic of your choosing, subject to approval of the instructor.

- **5. Chamber Consultation Hour:** To be announced in the class.
- **6. Notices:** Notices concerning the course will be put up on the EEE notice board only.

Instructor-in-Charge EEE G612

