Predicting Successful Shot Attempts in the NBA

By: Preethi Seshadri and Srinidhi Srinivasan

Motivation

- Predicting March Madness,
 Super Bowl, NBA finals, etc.
 are not trivial Machine
 Learning problems
- Sports Analytics in general can provide insights to both long-time fans and teams
- It would be interesting to analyze sports stats quantitatively

Problem

- We are predicting whether or not a basketball player will make a shot using NBA player shot log data from the 2014-2015 regular season.
- In addition to predicting whether or not a player will make a shot, we hope to determine which factors are most indicative of making a shot for the most well-known basketball players, and how these differ from player-to-player

Our Data

- Kaggle dataset collected from NBA api (from 2014-15 season)
- Original dataset: 128,069 instances and 21 features
- Features we used to predict:
 - SHOT_NUMBER
 - PERIOD
 - GAME_CLOCK
 - SHOT_CLOCK
 - o DRIBBLES
 - o TOUCH_TIME
 - o SHOT_DIST
 - o PTS_TYPE
 - CLOSE_DEF_DIST

FEATURES NOT USED FEATURES WE USED

GAME ID

MATCHUP

LOCATION

W (WIN OR LOSE)

FINAL MARGIN

CLOSEST DEFENDER

CLOSEST DEFENDER PLAYER ID

FGM

PTS

PLAYER NAME

PLAYER ID

SHOT NUMBER

PERIOD

GAME CLOCK

SHOT CLOCK

DRIBBLES

TOUCH TIME

SHOT DIST

PTS TYPE

CLOSE DEF DIST

RESPONSE

SHOT RESULT

- 1) Removed features that were redundant:
 - CLOSEST_DEFENDER, CLOSEST_DEFENDER_PLAYER_ID
- 2) Removed features that were not generalizable to all players:
 - GAME_ID, PLAYER, MATCHUP, and LOCATION

Dataset Information

- 116961 observations
- Close to having balanced classes
 - 45.6% of shots in the dataset are makes, and the remaining 54.5% are misses
 - o 54.5% will be our baseline performance
- We looked at accuracy, precision, and recall when evaluating model performance

Filtering Data

- 1. Entire Data set
- 2. Average or above on both:
 - a. number of shot attempts made
 - b. percentage of successful shot attempts
- 3. 75% or above on both:
 - a. number of shot attempts made
 - b. percentage of successful shot attempts
- 4. Split Data by Point Type (2 pointer or 3 pointer)
 - a. used all iterations of filtering (1-3 above)

Methods

Results: Entire Data set

Training performance

Testing performance

	Logistic Regression	SVM	Decision Trees
accuracy	0.6038	0.6155	0.6175
precision	0.5833	0.6389	0.6771
recall	0.4711	0.3680	0.3143
accuracy	0.6072	0.6170	0.6202
precision	0.5753	0.6248	0.6611
recall	0.4781	0.3680	0.3161

Problems:

- Low training/testing performance for all 3 classifiers
- Indicates a high bias and underfitting for our models

Results: Entire Data Set Feature Importance

Testing performance

NBA player	accuracy	precision	recall
LeBron James	0.6611	0.7436	0.4874
Klay Thompson	0.5799	0.4651	0.2247
Kawhi Leonard	0.5643	0.5102	0.4032
James Harden	0.5751	0.5	0.3780
Steph Curry	0.5381	0.5325	0.4020
Russell Westbrook	0.5672	0.6410	0.1969

Problems:

Similarly, we see low training/testing performance even on a player level

Results for Feature Importances using data set filtered by 2 pointers

Results for Feature Importances using data set filtered by 3 pointers

Conclusion

Insights gained from this project:

- All our models indicate underfitting, which highlights that we need more features in our dataset
- Predicting a successful shot attempt is not as clear-cut as we thought it would be
 - There is too much variation regarding the conditions in which players make and miss shots
- Sports analytics and sports betting are really challenging areas

Future Avenues

- Gather additional features
 - Height/weight of player and defender, angle and/or region of the court
- Explore unsupervised learning approaches
 - Clustering to group players and capture underlying structure in our data, and run our models on clustered data

Acknowledgements

We would like to thank Prof. Wu and all the grutors for their support and their helpful suggestions to our questions.

Thank You!

Questions?