Schaltungstechnik 2

Reaktive Netzwerkelemente

Kapazität

Induktivität

All gemein

$$[C] = \frac{As}{V} = F$$

$$[L] = \frac{Vs}{A} = H$$

Ladung
$$q:[q]=As=C$$

Fluss
$$\Phi : [\Phi] = Vs = Wb$$

$$i(t) = \frac{dq(t)}{dt} = \dot{q}(t)$$

$$u(t) = \frac{d\Phi(t)}{dt} = \dot{\Phi}(t)$$

$$q(t) = q_0 + \int_{t_0}^t i(\tau)d\tau$$

$$\Phi(t) = \Phi_0 + \int_{t_0}^t u(\tau)d\tau$$

$$C = \frac{dq}{du}$$

$$L = \frac{d\Phi}{di}$$

Lineare Reaktanz

$$q(t) = C \cdot u(t)$$

$$\Phi(t) = L \cdot i(t)$$

$$i(t) = C \cdot \dot{u}(t)$$

$$u(t) = L \cdot \dot{i}(t)$$

Blindwider stand

$$X_C = \frac{1}{\omega C}$$

$$X_L = \omega L$$

Zusammenschaltung reaktiver Eintore

Kapazität

Reihenschaltung:

$$\frac{1}{C_{aesamt}} = \frac{1}{C_1} + \dots + \frac{1}{C_i}$$

Parallelschaltung:

$$C_{qesamt} = C_1 + \dots + C_i$$

Induktivit "at

Reihenschaltung:

$$L_{aesamt} = L_1 + ... + L_i$$

Parallelschaltung:

$$\frac{1}{L_{gesamt}} = \frac{1}{L_1} + \dots + \frac{1}{L_i}$$

Dualität

$$(u,q) \in F \Leftrightarrow (\frac{u}{R_d}, R_d q) = (i, \Phi) \in F^d$$

$$(i, \Phi) \in F \Leftrightarrow (R_d i, \frac{\Phi}{R_d}) = (u, q) \in F^d$$

$$C = \frac{L}{R_{\perp}^2}; \qquad L = C \cdot R_d^2$$

Eigenschaften

F ist...

- kapazitiv
- induktiv
- ungepolt
- spannungsgesteuert
- stromgesteuert
- stronigestedert
- ladungsgesteuert
- flussgesteuert
- streng linear
- linear
- stückweise linear
- verlustfrei

- Kennlinie von F...
- \exists Beziehung zwischen q und u
- \exists Beziehung zwischen Φ und i
- ... ist punktsymmetrisch zu (0,0)
- \exists Darstellung q = c(u)
- \exists Darstellung $\Phi = l(i)$
- \exists Darstellung $u = c^{-1}(q)$
- \exists Darstellung $i = l^{-1}(\Phi)$
- ... ist Ursprungsgerade, Ursprung oder ganze u-q- bzw. i- Φ -Ebene
- ... ist eine beliebige Gerade
- ... besteht aus Geradenstücken
- ... liegt vollständig auf den Achsen der u-i. Ebene $\forall t.p(t) = u(t)i(t) = 0$

Netzwerkelemente mit Mehrfachcharakter

- Nullator, Norator, Leerlauf und Kurzschluss sind resistiv, kapazitiv, induktiv und memristiv
- Spannungsquellen sind resistiv und kapazitiv
- Stromquellen sind resistiv und induktiv

Energie

Ideale Reaktanzen sind verlustlos, falls die Kennlinie keine geschlossenen Schleifen enthält.

Kapazität

$$W_C = \int_{t_1}^{t_2} u(t) \cdot i(t) dt = \int_{t_1}^{t_2} u(t) \cdot \frac{dq(t)}{dt} dt = \int_{q_1}^{q_2} u(q) dq$$

Falls linear: $W_C = \frac{C}{2} \cdot u^2 = \frac{1}{2C} \cdot q^2$

$Induktivit \ddot{a}t$

$$W_L = \int\limits_{t_1}^{t_2} u(t) \cdot i(t) dt = \int\limits_{t_1}^{t_2} i(t) \cdot \frac{d\Phi(t)}{dt} dt = \int\limits_{\Phi_1}^{\Phi_2} i(\Phi) d\Phi$$

Falls linear: $W_L = \frac{L}{2} \cdot i^2 = \frac{1}{2L} \cdot \Phi^2$

Relaxation spunkte

Relaxationspunkte (=Ruhepunkte):

Betriebspunkt, in dem die in einer Reaktanz gespeicherte Energie minimal ist.

Um zu einem anderen Punkt zu gelangen, muss stets Energie aufgenommen werden.

Kandidaten:

Extremwerte, Wendepunkte, Knicke, Schnittpunkte mit Achsen

Energie steigt falls:

 $u > 0 \land q$ steigt <u>oder</u> $u < 0 \land q$ fällt.

 $i > 0 \land \Phi$ steigt <u>oder</u> $i < 0 \land \Phi$ fällt.

Schaltungen ersten Grades

1. Ersatzschaltbild erstellen

Kapazität

Helmholz / Thevenin

Induktivität

Mayer / Norton

Zustandsgröße: $u_c(t)$

Zustandsgröße: $i_L(t)$

Zeitkonstante: $\tau = R \cdot C$

Zeitkonstante: $\tau = G \cdot L$

2. Differentialgleichung aufstellen

$$i_c(t) = C \cdot \dot{u}_c(t)$$

$$u_L(t) = L \cdot \dot{i}_L(t)$$

$$i(t) = \frac{u_c - U_0}{R}$$

$$u(t) = \frac{i_L - I_0}{G}$$

$$C \cdot \dot{u}_c(t) = -\frac{u_c - U_0}{R}$$

$$L \cdot \dot{i}_L(t) = -\frac{i_L - I_0}{C}$$

$$\dot{u}_c = -\frac{1}{RC} \cdot u_c + \frac{1}{RC} \cdot U_0$$

$$\dot{u}_c = -\tfrac{1}{RC} \cdot u_c + \tfrac{1}{RC} \cdot U_0 \qquad \ \dot{i}_L = -\tfrac{1}{GL} \cdot i_L + \tfrac{1}{GL} \cdot I_0$$

3. Lösung der Differentialgleichung

Konstante Erregung

Kapazität:

$$u_c(t) = u_C(t_\infty) + [u_C(t_0) - u_C(t_\infty)] \cdot e^{\frac{t_0 - t}{\tau}}$$

$$i_C(t) = -\frac{C}{\tau} [u_C(t_0) - u_C(t_\infty)] \cdot e^{\frac{t_0 - t}{\tau}}$$

 $u_C(t_\infty) = U_0 \quad (\dot{u}_C \stackrel{!}{=} 0)$ Gleichgewichtszustand

Induktivität:

$$i_L(t) = i_L(t_\infty) + [i_L(t_0) - i_L(t_\infty)] \cdot e^{\frac{t_0 - t}{\tau}}$$

$$u_L(t) = -\frac{L}{\tau} [i_L(t_0) - i_L(t_\infty)] \cdot e^{\frac{t_0 - t}{\tau}}$$

 $i_L(t_\infty) = I_0 \quad (\dot{i}_L \stackrel{!}{=} 0)$ Gleichgewichtszustand

Abschnittsweise konstante Erregung

Vorgehensweise wie zuvor, jedoch muss die Berechnung in Intervalle aufgeteilt werden.

Für jedes Intervall muss der Startwert berechnet werden.

Allgemeine Erregung

$$u_C(t) = \underbrace{u_C(t_0) \cdot e^{\frac{t_0 - t}{\tau}}}_{zero\ input\ response} + \underbrace{\int_{t_0}^{t} \frac{1}{\tau} \cdot u_0(t') \cdot e^{\frac{t' - t}{\tau}} dt'}_{zero\ state\ response} \ \forall t \ge t_0$$

$$i_L(t) = i_L(t_0) \cdot e^{\frac{t_0 - t}{\tau}} + \int_{t_0}^{t} \frac{1}{\tau} \cdot i_0(t') \cdot e^{\frac{t' - t}{\tau}} dt'$$

Kurvenverlauf

- Kapazität: u_C ist stetig; i_C kann springen
- Induktivität: i_L ist stetig; u_L kann springen

Stabiler Fall: $\tau > 0$

- Tangente an Kurve in (t_0, x_0) verläuft durch $(t_0 + \tau, x_\infty)$
- Kurve hat sich nach 1τ um $0,63 \cdot |x_0 x_\infty|$ in Richtung
- Nach 7τ ist x_{∞} praktisch erreicht

Instabiler Fall: $\tau < 0$

- Tangente an Kurve in (t_0, x_0) verläuft durch $(t_0 + \tau, x_0 \pm$ $|x_0-x_\infty|$) bzw. durch $(t_0-|\tau|,x_\infty)$
- Kurve hat sich nach 1τ um $1,72 \cdot |x_0 x_\infty|$ entgegen der Richtung x_{∞} bewegt
- Kurve geht gegen $\pm \infty$
- $-\lim_{t\to-\infty}x(t)=x_{\infty}$
- Für eine negativ ablaufende Zeit wird x_{∞} praktisch nach $|7\tau|$ erreicht

Abschnittsweise lineare Schaltungen

Kapazitiv

Induktiv

$$i = -C \cdot \dot{u}$$

$$u = -L \cdot i$$

Dynamischer Pfad

Anfangspunkt entspricht $u_C(t_0)$ bzw. $i_L(t_0)$

Pfadverlauf (Richtung):

$$\underline{i > 0} \Rightarrow \dot{u} < 0$$
 $\underline{u > 0} \Rightarrow \dot{i} < 0$ $\Rightarrow u$ muss abnehmen $\Rightarrow i$ muss abnehmen

Gleichgewichtspunkt (GGP):

$$\dot{u}_C = 0 \Rightarrow i = 0$$
 $\dot{i}_L = 0 \Rightarrow u = 0$

Bei stabilen RC-Schaltungen endet der dynamische Pfad stets auf der u-Achse $(i_C = 0)$, bei stabilen RL-Schaltungen stets auf der *i*-Achse $(u_L = 0)$

Tote Punkte:

= Punkte, die keine Gleichgewichtspunkte sind und an denen der Pfad nicht entlang der Kennlinie fortgesetzt werden kann (⇒ Sprungphänomen)

$Sprungph\"{a}nomene$

Dauerhafte Sprungphänomene treten nur auf, falls der Gleichgewichtszustand nicht erreicht werden kann (⇒ Relaxationsoszillator, astabiler Multivibrator)

Vertauscht man bei der astabilen Multivibratorschaltung die "+" und "-" Klemmen des Op-Amp-Eingangstores, so erhält man eine bistabile Kippstufe (Flip-Flop), die durch eine Strom- bzw. Spannungsquelle getriggert werden kann

Lineare Schaltungen zweiten Grades

Zustandsgleichung

$$\dot{x} = \mathbf{A} \cdot x + \mathbf{B} \cdot v$$

Zustandsvektor $\underline{x} \in \mathbb{R}^2$; Zustandsmatrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ Einkoppelmatrix $\mathbf{B} \in \mathbb{R}^{2 \times k}$; Erregunsvektor $v \in \mathbb{R}^k$ k: Anzahl der Erregungssignale

Ausgangsgleichung

$$y = \mathbf{C} \cdot \underline{x} + \mathbf{D} \cdot \underline{v}$$

 $y \in \mathbb{R}^j$; Auskoppelmatrix $\mathbf{C} \in \mathbb{R}^{j \times 2}$; Durchgriff der Erregung $\mathbf{D} \in \mathbb{R}^{j \times k}$; j: Anzahl der Ausgangssignale

1. ESB erstellen + Zweitorbeschreibung ermitteln

Leitwertsbeschreibung

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \mathbf{G} \cdot \underbrace{\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}}_{r} + \underbrace{\begin{bmatrix} i_{01} \\ i_{02} \end{bmatrix}}_{r}$$

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \mathbf{R} \cdot \underbrace{\begin{bmatrix} i_1 \\ i_2 \end{bmatrix}}_x + \underbrace{\begin{bmatrix} u_{01} \\ u_{02} \end{bmatrix}}_x$$

Hybridbeschreibung

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \mathbf{H} \cdot \underbrace{\begin{bmatrix} i_1 \\ u_2 \end{bmatrix}}_{\underline{x}} + \underbrace{\begin{bmatrix} u_{01} \\ i_{02} \end{bmatrix}}_{\underline{u_{01}}}$$
 $= \mathbf{H} \cdot \underbrace{\begin{bmatrix} u_1 \\ i_2 \end{bmatrix}}_{\underline{x}} + \underbrace{\begin{bmatrix} u_{01} \\ u_{02} \end{bmatrix}}_{\underline{x}}$

2. Differentialgleichung aufstellen

Leitwertsbeschreibung

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} -C_1 \cdot \dot{u}_1 \\ -C_2 \cdot \dot{u}_2 \end{bmatrix}$$

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} -C_1 & 0 \\ 0 & -C_2 \end{bmatrix} \cdot \underbrace{\begin{array}{c} \dot{u}_1 \\ \dot{u}_2 \end{bmatrix}}_{\dot{x}}$$

Wider stands beschreibung

$$\begin{aligned} i_1 \\ i_2 \end{bmatrix} &= \begin{array}{c} -C_1 \cdot \dot{u}_1 \\ -C_2 \cdot \dot{u}_2 \end{bmatrix} & u_1 \\ u_2 \end{bmatrix} &= \begin{array}{c} -L_1 \cdot \dot{i}_1 \\ -L_2 \cdot \dot{i}_2 \end{bmatrix} \\ i_1 \\ i_2 \end{bmatrix} &= \begin{bmatrix} -C_1 & 0 \\ 0 & -C_2 \end{bmatrix} \cdot \underbrace{ \begin{array}{c} \dot{u}_1 \\ \dot{u}_2 \end{bmatrix}}_{\underline{\dot{x}}} & u_1 \\ u_2 \end{bmatrix} &= \begin{bmatrix} -L_1 & 0 \\ 0 & -L_2 \end{bmatrix} \cdot \underbrace{ \begin{array}{c} \dot{i}_1 \\ \dot{i}_2 \end{bmatrix}}_{\underline{\dot{x}}} \end{aligned}$$

Hybridbeschreibung

$$\begin{bmatrix} u_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} -L_1 \cdot \dot{i}_1 \\ -C_2 \cdot \dot{u}_2 \end{bmatrix}$$
$$\begin{bmatrix} u_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} -L_1 & 0 \\ 0 & -C_2 \end{bmatrix} \cdot \underbrace{\dot{i}_1}_{\underline{\dot{x}}}$$

Inverse Hybridbeschreibung

3. Gleichsetzen und Umformen

Leitwertsbeschreibung

$$\begin{bmatrix} -C_1 & 0 \\ 0 & -C_2 \end{bmatrix} \cdot \underbrace{\begin{array}{c} \dot{u}_1 \\ \dot{u}_2 \end{bmatrix}}_{\underline{\dot{x}}} = \mathbf{G} \cdot \underbrace{\begin{array}{c} u_1 \\ u_2 \end{bmatrix}}_{\underline{x}} + \underbrace{\begin{array}{c} i_{01} \\ i_{02} \end{bmatrix}}$$

$$\underbrace{ \begin{array}{c} \dot{u}_1 \\ \dot{u}_2 \\ \underline{\dot{x}} \end{array}}_{\underline{\dot{x}}} = \underbrace{ \begin{bmatrix} -\frac{1}{C_1} & 0 \\ 0 & -\frac{1}{C_2} \end{bmatrix} \cdot \mathbf{G}}_{\mathbf{A}} \cdot \underbrace{ \begin{array}{c} u_1 \\ u_2 \\ \underline{u}_2 \\ \underline{x} \end{array}}_{\underline{x}} + \underbrace{ \begin{bmatrix} -\frac{1}{C_1} & 0 \\ 0 & -\frac{1}{C_2} \end{bmatrix} \cdot \overbrace{i_{01}}_{\underline{i_{02}}}$$

Widerstandsbeschreibung

$$\begin{bmatrix} -L_1 & 0 \\ 0 & -L_2 \end{bmatrix} \cdot \underbrace{\begin{matrix} i_1 \\ i_2 \end{matrix}}_{\underline{i}} = \mathbf{R} \cdot \underbrace{\begin{matrix} i_1 \\ i_2 \end{matrix}}_{\underline{x}} + \underbrace{\begin{matrix} u_{01} \\ u_{02} \end{matrix}}_{\underline{u_{02}}}$$

$$\underbrace{\begin{bmatrix} \dot{i}_1 \\ \dot{i}_2 \end{bmatrix}}_{\underline{\dot{x}}} = \underbrace{\begin{bmatrix} -\frac{1}{L_1} & 0 \\ 0 & -\frac{1}{L_2} \end{bmatrix} \cdot \mathbf{R}}_{\mathbf{A}} \cdot \underbrace{\begin{bmatrix} i_1 \\ i_2 \end{bmatrix}}_{\underline{x}} + \underbrace{\begin{bmatrix} -\frac{1}{L_1} & 0 \\ 0 & -\frac{1}{L_2} \end{bmatrix} \cdot \underbrace{u_{01}}_{u_{02}} \end{bmatrix}}_{\mathbf{B} \cdot \underline{v}}$$

Hybridbeschreibung

$$\begin{bmatrix} -L_1 & 0 \\ 0 & -C_2 \end{bmatrix} \cdot \underbrace{\begin{matrix} i_1 \\ u_2 \end{matrix}}_{\underline{i}} = \mathbf{H} \cdot \underbrace{\begin{matrix} i_1 \\ u_2 \end{matrix}}_{\underline{x}} + \underbrace{\begin{matrix} u_{01} \\ i_{02} \end{matrix}}_{\underline{t_{02}}}$$

$$\underbrace{\begin{matrix} i_1 \\ u_2 \end{matrix}}_{\underline{x}} = \underbrace{\begin{bmatrix} -\frac{1}{L_1} & 0 \\ 0 & -\frac{1}{C_2} \end{bmatrix}}_{\underline{t_{02}}} \cdot \mathbf{H} \cdot \underbrace{\begin{matrix} i_1 \\ u_2 \end{matrix}}_{\underline{t_{02}}} + \underbrace{\begin{bmatrix} -\frac{1}{L_1} & 0 \\ 0 & -\frac{1}{C_2} \end{bmatrix}}_{\underline{t_{02}}}$$

Inverse Hybridbeschreibung

$$\begin{bmatrix} -C_1 & 0 \\ 0 & -L_2 \end{bmatrix} \cdot \underbrace{\begin{matrix} \dot{u}_1 \\ \dot{i}_2 \end{matrix}}_{\dot{x}} = \mathbf{H'} \cdot \underbrace{\begin{matrix} u_1 \\ i_2 \end{matrix}}_{x} + \underbrace{\begin{matrix} i_{01} \\ u_{02} \end{matrix}}_{x}$$

$$\underbrace{\frac{\dot{u}_1}{\dot{i}_2}}_{\underline{\dot{x}}} = \underbrace{\begin{bmatrix} -\frac{1}{C_1} & 0\\ 0 & -\frac{1}{L_2} \end{bmatrix} \cdot \mathbf{H'}}_{\mathbf{A}} \cdot \underbrace{\frac{u_1}{\dot{i}_2}}_{\underline{x}} + \underbrace{\begin{bmatrix} -\frac{1}{C_1} & 0\\ 0 & -\frac{1}{L_2} \end{bmatrix} \cdot \underbrace{i_{01}}_{u_{02}}}_{\mathbf{B} \cdot \underline{v}}$$

Lösen der Zustandsgleichung

1. Eigenwerte berechnen

$$det(\mathbf{A} - \lambda \mathbf{1}) \stackrel{!}{=} \mathbf{0}$$

$$\Rightarrow$$
 Eigenwerte $\lambda_{1,2} = \frac{T}{2} \pm \sqrt{\frac{T^2}{4} - \Delta}$

$$T = a_{11} + a_{22} = tr(\mathbf{A}); \quad \Delta = \det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21}$$

Indizes so wählen, dass gilt: $|\lambda_1| < |\lambda_2|$

 $\Rightarrow \lambda_1$ ist langsamer und λ_2 ist schneller Eigenwert!

Falls EW konjugiert komplex: $\lambda_1 = \alpha + j\beta$

Falls
$$\frac{T^2}{4} \ge \Delta \Rightarrow$$
 reelle Lösungen

Falls $\frac{T^2}{4} \leq \Delta \Rightarrow$ konjugiert komplexe Lösungen

Ein System ist stabil, wenn für alle λ_i gilt: $Re(\lambda_i) < 0$

2. Eigenvektoren berechnen

$$(\mathbf{A} - \lambda \mathbf{1}) \cdot q \stackrel{!}{=} \underline{0}$$

$$a_{12} \neq 0: \Rightarrow \underline{q}_1 = \begin{bmatrix} -a_{12} \\ a_{11} - \lambda_1 \end{bmatrix}; \ \underline{q}_2 = \begin{bmatrix} -a_{12} \\ a_{11} - \lambda_2 \end{bmatrix}$$

$$a_{21} \neq 0: \ \Rightarrow \underline{q}_1 = \begin{bmatrix} a_{22} - \lambda_1 \\ -a_{21} \end{bmatrix}; \ \ \underline{q}_2 = \begin{bmatrix} a_{22} - \lambda_2 \\ -a_{21} \end{bmatrix}$$

$$a_{12} = a_{21} = 0: \Rightarrow \underline{q}_1 = \frac{1}{0}; \ \underline{q}_2 = \frac{0}{1}$$

Achtung:

Bei diesen Lösungsformeln stimmen die Einheiten nicht! Die Eigenvektoren besitzen die gleiche Einheit wie der Vektor \underline{x} (Eingangsvektor).

Alle Vielfachen dieser Lösungen sind ebenso Eigenvektoren!

Falls Eigenvektoren konjugiert komplex:

$$\underline{q}_r = Re(\underline{q}_1); \quad q_i = Im(\underline{q}_1)$$

3. Lösung

Homogene Zustandsgleichung (ohne Erregung)

$$\dot{x}(t) = \mathbf{A}x(t)$$

1. Fall: $\lambda_1 \neq \lambda_2$; $\lambda_1, \lambda_2 \in \mathbb{R}$

$$\underline{x}_0 = c_1 q_1 + c_2 q_2$$

$$\underline{x}(t) = c_1 e^{\lambda_1 t} \underline{q}_1 + c_2 e^{\lambda_2 t} \underline{q}_2$$

2. Fall:
$$\lambda_1 = \lambda_2 = \lambda$$
; $\lambda_1, \lambda_2 \in \mathbb{R}$

$$c_1 = x_{01}; \qquad c_2 = x_{02}$$

$$\underline{x}(t) = e^{\lambda t} [\mathbf{1} + (\mathbf{A} - \lambda \mathbf{1})t] \cdot \frac{c_1}{c_2}$$

3. Fall:
$$\lambda_1 = \overline{\lambda_2} = \lambda = \alpha \pm j\beta$$
; $\lambda_{1,2} \in \mathbb{C}$

$$\underline{x}_0 = c_1 q_r + c_2 q_i$$

$$\underline{x}(t) = c_1 \cdot Re(e^{\lambda t}q) + c_2 \cdot Im(e^{\lambda t}q)$$

$$\underline{x}(t) = c_1 e^{\alpha t} [\cos(\beta t) \underline{q}_r - \sin(\beta t) \underline{q}_i] +$$

$$c_2 e^{\alpha t} [\sin(\beta t) q_r + \cos(\beta t) q_i]$$

Alternativ: Transformation auf Normalform

= Zerlegen einer Schaltung zweiten Grades in zwei Schaltungen ersten Grades (=Entkopplung).

1. Fall:
$$\lambda_1 \neq \lambda_2$$
; $\lambda_1, \lambda_2 \in \mathbb{R}$

$$\underline{\dot{x}} = \mathbf{A}\underline{x} \quad |\mathbf{A} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{-1}$$

$$\rightarrow \dot{x} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1} x \quad |x = \mathbf{Q} \xi$$

$$\rightarrow \mathbf{Q}\dot{\xi} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{-1}\mathbf{Q}\xi$$

$$\Rightarrow$$
 Normalform: $\dot{\xi}(t) = \Lambda \xi(t)$

$$\mathbf{Q} = \begin{bmatrix} \underline{q}_1 & \underline{q}_2 \end{bmatrix}; \quad \mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$\underline{\xi} = \mathbf{Q}^{-1}\underline{x}; \quad \underline{\xi}_0 = \mathbf{Q}^{-1}\underline{x}_0;$$

Lösung:
$$\underline{\xi}(t) = \frac{e^{\lambda_1(t-t_0)}\xi_{01}}{e^{\lambda_2(t-t_0)}\xi_{02}}$$

Rücktransformation:
$$\underline{x}(t) = \mathbf{Q}\underline{\xi}(t)$$

 $\Rightarrow \underline{x}(t) = \mathbf{q}_1 e^{\lambda_1(t-t_0)} \xi_{01} + \mathbf{q}_2 e^{\overline{\lambda_2}(t-t_0)} \xi_{02}$

2. Fall:
$$\lambda_1 = \lambda_2 = \lambda; \quad \lambda_1, \lambda_2 \in \mathbb{R}$$
 und $\mathbf{A} \neq \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$

Problem: $\mathbf{Q} = \begin{bmatrix} \underline{q}_1 & \underline{q}_2 \end{bmatrix}$ nicht invertierbar! (wg. Jordan Form)

$$\dot{x} = \mathbf{A}x \quad |\mathbf{A} = \mathbf{Q'JQ'^{-1}}$$

$$\rightarrow \dot{\underline{x}} = \mathbf{Q'JQ'^{-1}}\underline{x} \quad |\underline{x} = \mathbf{Q'}\xi$$

$$\rightarrow \mathbf{Q'}\dot{\xi} = \mathbf{Q'JQ'}^{-1}\mathbf{Q'}\xi$$

 \Rightarrow Jordan-Normalform: $\dot{\xi} = \mathbf{J} \cdot \boldsymbol{\xi}$

$$a_{12} \neq 0: \Rightarrow \mathbf{Q'} = \begin{bmatrix} -a_{12} & -a_{12} \\ \frac{a_{11} - a_{22}}{2} & \frac{a_{11} - a_{22}}{2} - 1 \end{bmatrix}$$

$$\mathbf{Q'}^{-1} = \begin{bmatrix} \frac{a_{11} - a_{22} - 2}{2a_{12}} & 1\\ \frac{a_{22} - a_{11}}{2a_{12}} & -1 \end{bmatrix}$$

$$a_{21} \neq 0: \Rightarrow \mathbf{Q'} = \begin{bmatrix} \frac{a_{22} - a_{11}}{2} & \frac{a_{22} - a_{11}}{2} - 1\\ -a_{21} & -a_{21} \end{bmatrix}$$
$$\mathbf{Q'}^{-1} = \begin{bmatrix} 1 & \frac{a_{22} - a_{11} - 2}{2a_{21}}\\ -1 & \frac{a_{11} - a_{22}}{2a_{21}} \end{bmatrix}$$

$$\mathbf{J} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}; \quad \underline{\xi}_0 = \mathbf{Q}^{,-1}\underline{x}_0;$$
Lösung:
$$\underline{\xi}(t) = \begin{bmatrix} e^{\lambda t}(\xi_{01} + t\xi_{02}) \\ e^{\lambda t}\xi_{02} \end{bmatrix}$$

Rücktransformation:
$$\underline{x}(t) = \mathbf{Q}'\underline{\xi}(t)$$

 $\Rightarrow \underline{x}(t) = \mathbf{q}_1(e^{\lambda(t-t_0)}\xi'_{01} + (t-t_0)e^{\lambda(t-t_0)}\xi'_{02}) + \mathbf{q}'_2e^{\lambda(t-t_0)}\xi'_02$

3. Fall:
$$\lambda_{1,2} = \alpha \pm j\beta$$
; $(\lambda = \lambda^*) \lambda_{1,2} \in \mathbb{C}$ (reellwertige NF)

Die reellwertige Normalform (ξ') wird für eine zweidimensionale Darstellung des Phasenportraits benötigt.

$$\begin{split} \mathbf{Q} &= \begin{bmatrix} \underline{q} & \underline{q} * \end{bmatrix}; \quad \mathbf{Q}_{reell} = \begin{bmatrix} \underline{q}_r & -\underline{q}_i \end{bmatrix} \\ \mathbf{\Lambda} &= \begin{bmatrix} \alpha + j\beta & 0 \\ 0 & \alpha - j\beta \end{bmatrix}; \quad \mathbf{\Lambda}_{reell} = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \end{split}$$

Für ξ siehe 1.Fall mit $\lambda_1 = \alpha + j\beta$ und $\lambda_2 = \alpha - j\beta$

$$\begin{split} &\underline{\boldsymbol{\xi}}_{reell} = \mathbf{Q}_{reell}^{-1}\underline{\boldsymbol{x}}; \qquad \underline{\boldsymbol{\xi}}_{reell0} = \mathbf{Q}_{reell}^{-1}\underline{\boldsymbol{x}}\underline{\boldsymbol{0}} \\ &\underline{\boldsymbol{\xi}}_{reell} \ = \ \mathbf{Q}_{reell}^{-1}\mathbf{Q}\underline{\boldsymbol{\xi}} \ = \ \begin{bmatrix} 1 & 1 \\ -j & j \end{bmatrix}\underline{\boldsymbol{\xi}} \ = \ \frac{2Re(\boldsymbol{\xi}_1)}{2Im(\boldsymbol{\xi}_1)} \end{bmatrix} \ = \ \begin{bmatrix} 2\gamma \\ 2\delta \end{bmatrix} \\ &(\underline{\boldsymbol{\xi}}_0 = \begin{bmatrix} \boldsymbol{\xi}_0 \\ \boldsymbol{\xi}_0^* \end{bmatrix} = \begin{bmatrix} \gamma + j\delta \\ \gamma - j\delta \end{bmatrix} \ \boldsymbol{\gamma}, \boldsymbol{\delta} \in \mathbb{R}) \end{split}$$

Autonome Zustandsgleichung (konstante Erregung) $\underline{\dot{x}}(t) = \mathbf{A}\underline{x}(t) + \mathbf{\underline{B}}\underline{v_0}$

Falls **A** invertierbar:

Koordinatentransformation:

$$\underline{x}' = \underline{x} + \underbrace{\mathbf{A}^{-1} \mathbf{B} \underline{v}_0}_{-\underline{x}_{\infty}}; \quad \underline{\dot{x}'} = \underline{\dot{x}} \quad \underline{x}_{\infty} = -\mathbf{A}^{-1} \mathbf{B} \underline{v}_0$$

 \Rightarrow homogene DGL: $\underline{\dot{x'}} = \mathbf{A}\underline{x'} \longrightarrow \text{siehe oben}$

Rücktransformation:
$$\underline{x} = \underline{x}' \underbrace{-\mathbf{A}^{-1} \mathbf{B} \underline{v}_0}_{\underline{x}_{\infty}} = \underline{x}' - \underline{x}_{\infty}$$

Graphisch: Verschiebung des Ursprungs in \underline{x}_{∞}

Zustandsgleichung mit allgemeiner Erregung

Falls
$$\lambda_1 \neq \lambda_2$$
; $\lambda_1, \lambda_2 \in \mathbb{R}$

$$\dot{\underline{x}}(t) = \mathbf{A}\underline{x}(t) + \mathbf{B}\underline{v}(t); \quad |\mathbf{A} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{-1}|$$

$$\rightarrow \dot{\underline{x}} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{-1}\underline{x} + \mathbf{B}\underline{v}; \quad |\underline{x} = \mathbf{Q}\underline{\xi}|$$

$$\rightarrow \mathbf{Q}\dot{\underline{\xi}} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{-1}\mathbf{Q}\underline{\xi} + \mathbf{B}\underline{v}|$$

$$\Rightarrow \text{Transformation: } \underline{\dot{\xi}} = \mathbf{\Lambda}\underline{\xi} + \underbrace{\mathbf{Q}^{-1}\mathbf{B}\underline{v}}_{\underline{\nu'}}$$

$$\mathbf{Q} = \begin{bmatrix} \underline{q}_1 & \underline{q}_2 \end{bmatrix}; \qquad \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$\underline{\xi} = \mathbf{Q}^{-1}\underline{x}; \qquad \underline{\xi}_0 = \mathbf{Q}^{-1}\underline{x}_0$$

$$e^{\lambda_1 t} \xi_{01} + \int_{t_0}^{t} e^{\lambda_1 (t - t')} \nu_1'(t')$$

Lösung:
$$\underline{\xi}(t) = \begin{bmatrix} e^{\lambda_1 t} \xi_{01} + \int_{t_0}^{t} e^{\lambda_1 (t - t')} \nu_1'(t') dt' \\ e^{\lambda_2 t} \xi_{02} + \int_{t_0}^{t} e^{\lambda_2 (t - t')} \nu_2'(t') dt' \end{bmatrix}$$

Rücktransformation: $\underline{x} = \mathbf{Q}\xi$

4. Phasenportraits

\rightarrow siehe letzte Seite

Falls das Phasenportrait in der x_1/x_2 -Ebene dargestellt werden soll, dann müssen zuerst die Eigenvektoren eingezeichnet werden, die ein gedachtes Koordinatensystem $(\xi_1/\xi_2$ -Ebene) aufspannen.

Das resultierende Phasenportrait der x_1/x_2 -Ebene ist ein verzerrtes Bild der ξ_1/ξ_2 -Ebene.

Def. Es gelte: $|\lambda_1| < |\lambda_2|$, die Eigenfrequenz $|\lambda_1|$ ist dann niedrig (langsam) und $|\lambda_2|$ hoch (schnell). $\Rightarrow \lambda_1$ langsamer EW und λ_2 schneller EW.

Konjugiert komplexe Eigenwerte

Der Drehsinn der Trajektorie ist in der ξ' -Ebene immer im Gegenuhrzeigersinn!

In der x_1/x_2 -Ebene muss der Drehsinn so gewählt werden, dass die Trajektorie von \underline{q}_r zu $-\underline{q}_i$ (über den kleineren Winkel) läuft.

5. Zeitverlauf

Im Folgenden wird lediglich ξ_1 betrachtet.

Ungedämpfte Schwingung (ZV1)

Bei rein imaginären Eigenwerten $\lambda_{1,2} = \pm j\beta$

$$\xi_1(t) = k\cos(\beta t + \Theta); \qquad \beta^2 = \omega_0^2 = \Delta$$

Schwach gedämpfte Schwingung (ZV2) $\lim_{t\to\infty} \xi_1(t) = 0$ Bei komplex konjugierten EW $\lambda_{1,2} = \alpha \pm j\beta$; $\alpha < 0$

$$\xi_1(t) = ke^{\alpha t}cos(\beta t + \Theta); \qquad \beta = \sqrt{\omega_0^2 - \alpha^2}; \quad \alpha < 0$$

Stark gedämpfte Schwingung (ZV3) $\lim_{t\to\infty} \xi_1(t) = 0$ Bei rein reellen und unterschiedlichen Eigenwerten.

$$\xi_1(t) = \xi_{01} e^{\lambda t}; \qquad \lambda < 0$$

Da die Lösung für die Zustandsgrößen in der \underline{x} -Ebene eine Überlagerung von zwei Exponentialfunktionen ist, kann der Zeitverlauf dieser Zustandsgrößen jedoch Nulldurchgänge besitzen.

Aperiodisch gedämpfte Schwingung (ZV4) $\lim_{t\to\infty} \xi_1(t) = 0$ Falls beide Eigenwerte identisch sind.

$$\xi_1(t) = (\xi_{01} + \xi_{02}t)e^{\lambda t}; \quad \lambda < 0$$

Nichtlineare dyn. Schaltungen

${\bf 1.} \ {\bf Zust} {\bf and} {\bf sbeschreibung} \ {\bf auf} {\bf stellen}$

Zustandsgröße:

Kapazität: u_C (bzw. q); Induktivität: i_L (bzw. Φ)

$$\underline{\dot{x}} = \frac{\dot{x}_1}{\dot{x}_2} = \underline{f}(\underline{x}) = \frac{f_1(x_1; x_2)}{f_2(x_1; x_2)}$$

Zustandsgleichung mittels KCL, KVL, $i_c = C\dot{u}$ und $u_L = L\dot{i}$ aufstellen.

2. Alle Gleichgewichtspunkte bestimmen

 $\dot{x}_1 = \dot{x}_2 \stackrel{!}{=} 0 \Rightarrow \text{nach } x_1 \text{ und } x_2 \text{ auflösen.}$

Alternativ:

Direkt aus Schaltung bestimmen: $C \to LL$; $L \to KS$

3. Linearisierung in allen Gleichgewichtspunkten

Jacobi-Matrix aufstellen:
$$\mathbf{J}_{GGP_i} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} \bigg|_{x = GGP_i}$$

In $P_i = GGP_i$ linearisierte Beschreibung:

$$\underline{\dot{x}} = f(\underline{x}) \approx f(\underline{P}_i) + \mathbf{J}_{\underline{P}_i} \cdot (\underline{x} - \underline{P}_i); \quad \Delta \dot{x} \approx \mathbf{J}_{\underline{P}_i} \Delta x$$

4. Eigenwerte / Eigenvektoren bestimmen

Für alle \mathbf{J}_{GGP_i} die Eigenwerte / Eigenvektoren bestimmen.

⇒ Phasenportrait in der Umgebung des GGP

5. Prüfen, ob Satz von Hartmann gilt

Satz von Hartmann:

Linearisierung gültig $\Leftrightarrow \forall \lambda_i \text{ von } \mathbf{J}_{GGP_i} \text{ gilt: } Re(\lambda_i) \neq 0$

Ist der Realteil eines Eigenwertes null, so kann man keine Aussage über das Stabilitätsverhalten treffen (Ausnahme: stückweise lineare Systeme)

6. Einzel-Phasenportraits zusammenfügen

Wenn alle Bauelemente der Schaltung ungepolt sind, so ist das Phasenportrait punktsymmetrisch zum Ursprung.

Konservative Schaltungen

(Jede verlustlose Schaltung ist konservativ, hinreichend genaue Modelle realer Schaltungen sind niemals konservativ!)

Bedingung:
$$\dot{E} = 0$$
; $\frac{\partial E}{\partial x_1} f_1 + \frac{\partial E}{\partial x_2} f_2 = 0$

- nur Sattel- und Wirbelpunkte sind als Arten von Gleichgewichtspunkten möglich
- Trajektorien sind Äquipotentiallinien der Energiefunktion

Gespeicherte Energie: $E = \frac{1}{2}(Cu_C^2 + Li_L^2)$

Scheitelwerte:
$$\hat{u}_C = \sqrt{\frac{2E}{C}}; \quad \hat{i}_L = \sqrt{\frac{2E}{L}}$$

Dauer eine Umlaufes: $T_0 = 2\pi\sqrt{LC}$

$$u_C = \hat{u}_C cos(\omega t - \Phi_0); \qquad i_L = \hat{i}_L sin(\omega t - \Phi_0)$$

Ergänzung zum Satz von Hartmann:

Ein GGP einer nichtlinearen dynamischen Schaltung ist genau dann ein Wirbelpunkt, wenn seine Jacobi-Matrix rein imaginäre Eigenwerte hat und das System in einer offenen Umgebung U des GGP konservativ ist.

Oszillatoren

Eine stabile Oszillation kann sich nur in einem nichtlinearen System einstellen.

- Phasenportrait ist stabiler Grenzzyklus

- autonomes, dynamisches System zweiten Grades
- Es darf nur ein Gleichgewichtspunkt existieren und dieser muss instabil sein.
- Trajektorien müssen zu allen Anfangswerten aus Umgebung U beschränkt sein
- Zustandsgrößen müssen beschränkt sein (bei positiven, linearen C, L und R immer der Fall)

Fast harmonischer Oszillator

- Frequenz abhängig von den Werten der Reaktanzen
- Amplitude abhängig von Nichtlinearität der Bauteile

Resonanz frequenz: $\omega_0 = \frac{1}{\sqrt{LC}}$

Relaxations oszillator

Frequenz und Amplitude werden wesentlich von Nichtlinearität der Bauteile bestimmt

$$\omega_0 = \frac{\pi}{\ln(3)} \cdot \frac{1}{RC}; \quad 2\sqrt{\frac{L}{C}} << R$$

Komplexe Wechselstromrechnung

Voraussetzungen

- lineares, zeitinvariantes, stabiles System mit periodischer Erregung.

Bei sinusförmiger Erregung mit der Kreisfrequenz ω sind alle Signale in der Schaltung sinusförmig mit der gleichen Kreisfrequenz.

Es entstehen keine neuen Frequenzen!

Zeigerdarstellung

Zum reellen Signal $x(t) = A_m cos(\omega t + \alpha)$ wird der Zeiger $A = A_m e^{j\alpha}$ assoziiert. Mit der Amplitude A_m und Phase α .

Es gilt:

$$x(t) = A_m cos(\omega t + \alpha) = Re(A_m e^{j(\omega t + \alpha)})$$

$$x(t) = Re(A_m e^{j\alpha} e^{j\omega t}) = Re(Ae^{j\omega t})$$

$$\begin{array}{ll} \textit{Kapazit\"{a}t} & \textit{Induktivit\"{a}t} \\ I_C = j\omega C U_C; \ \ U_C = \frac{1}{j\omega C} I_C & I_L = \frac{1}{j\omega L} U_L; \ \ U_L = j\omega L I_L \end{array}$$

Hilfssätze

Lemma 1: Eindeutigkeit

 $a(t) = b(t) \Leftrightarrow A = B;$ Signale gleich ⇔ Zeiger gleich

Lemma 2: Linearität

$$\alpha a(t) + \beta b(t) = c(t) \Leftrightarrow \alpha A + \beta B = C$$

Lemma 3: Differentiation

$$b(t) = \frac{d}{dt}a(t) \Leftrightarrow B = j\omega A$$

Netzwerkfunktionen

Zweipolfunktionen

= Verhältnis von Zeigern des gleichen Tores (Immittanzen)

Impedanz (komplexer Widerstand, Scheinwiderstand):

$$Z = \frac{U}{I};$$
 $Z_G = \frac{1}{G};$ $Z_L = j\omega L;$ $Z_C = \frac{1}{j\omega C};$ $Z = R + jX$

Z: Impedanz(Scheinkomponente)

R: Resistanz (Wirkkomponente)

X: Reaktanz (Blindkomponente)

Admittanz (komplexer Leitwert, Scheinleitwert):

$$Y = \frac{I}{U}; \quad Y_R = \frac{1}{R}; \quad Y_L = \frac{1}{i\omega L}; \quad Y_C = j\omega C; \quad Y = G + jB$$

Y: Admittanz (Scheinkomponente)

G: Konduktanz (Wirkkomponente)

B: Suszeptanz (Blindkomponente)

$\ddot{U}bertragung funktion$

= Verhältnis von Zeigern unterschiedlicher Tore

Allgemein:
$$H(j\omega) = \frac{OUTPUT}{INPUT}$$

Knotenspannungsanalyse:

$$\underline{U}_K = \mathbf{Y}_K^{-1}(j\omega)\underline{I}_a; \qquad \underline{I}_a = (0, ..., 0, I_n, 0, ...0)^T$$

$$H(j\omega) = \frac{U_{Km}}{I_n} = \frac{(-1)^{n+m} det \mathbf{Y}_{nm}(j\omega)}{det \mathbf{Y}_K(j\omega)}$$

 $det \mathbf{Y}_{nm}(j\omega)$ ist die Unterdeterminante von \mathbf{Y}_K , die nach streichen der n-ten Zeile und m-ten Spalte entsteht.

Cramer'sche Regel:

$$U_{K_i} = \frac{\det \mathbf{Y}_{K_i}}{\det \mathbf{Y}_K}$$

 $det \mathbf{Y}_{K_i}$ entsteht durch Ersetzen der *i*-ten Spalte in \mathbf{Y}_K durch \underline{I}_q

Eigenfrequenzen:

Substitution $j\omega \to p$

Die Nullstellen des Nenner-Polynoms von H(p) entsprechen genau den Eigenfrequenzen des Systems (sofern sie nicht durch Nullstellen des Zähler-Polynoms herauskürzbar sind)

Das System ist stabil, wenn der Realteil aller Nullstellen des Nenners < 0 ist.

Darstellung des Frequenzgangs

1. Ortskurve

Die Ortskurve von $H(j\omega)$ ist die Kurve, die der komplexe Zeiger $H(j\omega)$ für $\omega = 0$ bis $\omega \to \infty$ durchläuft.

Die Ortskurve ist die Zusammenfassung des Amplitudenund Phasenverlaufs des Bodediagramms.

Dabei ist die Frequenzabhängigkeit nur mehr über Markierungen auf der Kurve darstellbar.

1) Aufteilen von $H(j\omega)$ in Re() und Im()

- 2) Werte für $\omega = 0, \omega = \omega_0$ (Resonanzfrequenz) und $\omega \to \infty$ bestimmen
- 3) Komplexe Ebene: Punkte für einzelne Werte einzeichnen. Die Verbindungslinie entspricht der Ortkurve

Anmerkung:

Komplexer Widerstand Z ist:

- in Widerstandsebene: Gerade

- in Leitwertsebene: Kreis

Komplexer Leitwert Y ist:

- in Widerstandsebene: Kreis

- in Leitwertsebene: Gerade

2. Bode-Diagramm

$$v(\omega) = 20 lg \left| \frac{H(j\omega)}{H(j\omega_0)} \right| [dB]; \quad v(\omega) = ln \left| \frac{H(j\omega)}{H(j\omega_0)} \right| [Np]$$

 $1Np = \frac{20}{ln(10)}dB \approx 8,686dB; \quad 1dB \approx 0,115Np$

$$\varphi(\omega) = \begin{cases} \arctan\frac{Im(H(j\omega))}{Re(H(j\omega))} & Re(H(j\omega)) \geq 0 \\ \arctan\frac{Im(H(j\omega))}{Re(H(j\omega))} + \pi & Re(H(j\omega)) < 0 \end{cases}$$

Rechenregeln:

$$v(H_1H_2) = v(H_1) + v(H_2); \quad v(\frac{H_1}{H_2}) = v(H_1) - v(H_2)$$

$$\varphi(H_1H_2) = \varphi(H_1) + \varphi(H_2); \quad \varphi(\frac{H_1}{H_2}) = \varphi(H_1) - \varphi(H_2)$$

Beispiele:

$$H(j\omega) = k = konst. \Rightarrow v(\omega) = 20lq|k|$$

(1):
$$H(j\omega) = \frac{j\omega}{\alpha};$$
 (2): $H(j\omega) = \frac{\alpha}{j\omega}$

$$H(j\omega) = 1 + \frac{j\omega}{\alpha}$$

Typische Übertragungsfunktionen:

Komplexe Leistung

Scheinleistung: $P_S = \frac{1}{2}\hat{U}\hat{I}^* = \frac{1}{2}|\hat{U}|^2Y^* = P_W + jP_B$

Wirkleistung: $P_W = \frac{1}{T} \cdot \int_0^T u(t)i(t)dt = Re(P_S)$

Blindleistung: $P_B = Im(P_S)$

Sonstiges

Resonanz frequenz $\omega_0 = \frac{1}{\sqrt{LC}}; \quad f_0 = \frac{1}{2\pi\sqrt{LC}}$

Grenzfrequenz (Grenzen der Bandbreite) $|Re(Y)| = |Im(Y)|; \quad |Re(Z)| = |Im(Z)|$

 $f_g = \frac{R}{2\pi L}; \quad f_g = \frac{1}{2\pi RC}$

$$Q = \frac{\omega_0 C}{G} = \frac{1}{\omega_0 L G} = \frac{1}{G} \sqrt{\frac{C}{L}}$$

Matrix Invertieren

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Komplexe Zahlen

 $z_1 = a + jb; \ z_2 = c + jd; \ z_1, z_2 \in \mathbb{C}$ Addition: $z_1 + z_2 = (a + c) + (b + d)j$

Multiplikation: $z_1 \cdot z_2 = (ac - bd) + j(ad + bc)$ Division: $\frac{z_1}{z_2} = \frac{(a+jb)(c-jd)}{(c+jd)(c-jd)} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}j$ Betrag: $|z| = \sqrt{a^2 + b^2}$

Komplexe Konjugation: $\overline{y+z} = \overline{y} + \overline{z}$; $\overline{y\cdot z} = \overline{y} \cdot \overline{z}$.

$$z \cdot \bar{z} = (a + jb)(a - jb) = a^2 + b^2 = |z|^2$$

$$z + \bar{z} = (a + jb) + (a - jb) = 2a = 2Re(z)$$

$$z - \bar{z} = (a + jb) - (a - jb) = j2b = 2jIm(z)$$

Lizenz: CC BY-NC-SA 3.0

http://creativecommons.org/licenses/by-nc-sa/3.0/de/

