数学与应用数学专业 运筹学实验

题目	运筹学实验一
班级	115010401
姓名	赵赞豪
学号	11501040136
日期	2017.12.18

运筹学实验 1:整数规划

一、实验目的

掌握分支定界法的原理及计算步骤。

二、实验内容:

整数规划求解分支定界法。整数规划如下:

$$\max z = 2x_1 + x_2$$

$$s.t.$$

$$\begin{cases} x_1 + x_2 \le 5 \\ -x_1 + x_2 \le 0 \\ 6x_1 + 2x_2 \le 21 \\ x_1, x_2 \ge 0, 且为整数 \end{cases}$$

三、实验原理

首先确定目标函数的一个初始上下界,然后通过逐步分支使上界变小,下界变大,直到两者相等时,即可求出最优值和最优解。

四、实验步骤

记整数规划问题为 IP,对应的松弛问题为 LP。则松弛问题如下:

$$\max z = 2x_1 + x_2$$

$$s.t. \begin{cases} x_1 + x_2 \le 5 \\ -x_1 + x_2 \le 0 \\ 6x_1 + 2x_2 \le 21 \\ x_1, x_2 \ge 0 \end{cases}$$

运用软件 lingo 求解该松弛问题,具体程序如下:

max = 2*x1+x2; x1+x2<=5; -x1+x2<=0; 6*x1+2*x2<=21; x1>=0;

具体结果如下:

x2>=0;

Global optimal solution found.

Objective value: 7.750000
Infeasibilities: 0.000000
Total solver iterations: 3

Variable	Value	Reduced Cost
X1	2.750000	0.00000
X2	2.250000	0.00000
Row	Slack or Surplus	Dual Price
1	7.750000	1.000000
2	0.00000	0.5000000
3	0.5000000	0.00000
4	0.000000	0.2500000
5	2.750000	0.000000
6	2.250000	0.000000

解出上述的松弛问题,最优解为: x_1 =2.75, x_2 =2.25。最优值为: 7.75。由于 LP 的最优解不符合整数要求,可以任选变量进行分支,不妨选 x_1 。由于最接近 2.75 的整数是 2 和 3,因此构造两个约束条件 x_1 >=3 和 x_1 <=2。得到后继问题 LP1 和 LP2,如下所示:

接下来,求解 LP1 和 LP2 的最优解和最优值。具体步骤如下:

求解 LP1:

程序代码如下:

max = 2*x1+x2; x1+x2<=5; -x1+x2<=0; 6*x1+2*x2<=21; x1>=3; x1>=0;

具体结果如下:

Global optimal solution found.

Objective value: 7.500000
Infeasibilities: 0.000000
Total solver iterations: 1

Variable	Value	Reduced Cost
X1	3.000000	0.000000
X2	1.500000	0.000000
Row	Slack or Surplus	Dual Price
1	7.500000	1.000000
2	0.5000000	0.000000
3	1.500000	0.000000
4	0.000000	0.5000000
5	0.000000	-1.000000
6	3.000000	0.000000
7	1.500000	0.000000

求解 LP1,最优解为 x_1 =3, x_2 =1.5,最优值为:7.5。

求解 LP2:

程序代码如下:

max = 2*x1+x2; x1+x2<=5; -x1+x2<=0; 6*x1+2*x2<=21; x1<=2; x1>=0; x2>=0;

具体结果如下:

Global optimal solution found.

Objective value: 6.000000
Infeasibilities: 0.000000
Total solver iterations: 1

X1	2.000000	0.00000
X2	2.000000	0.00000
Row	Slack or Surplus	Dual Price
1	6.000000	1.000000
2	1.000000	0.000000
3	0.000000	1.000000
4	5.000000	0.000000
5	0.000000	3.000000
6	2.000000	0.00000
7	2.000000	0.000000

求解 LP2,最优解为 $x_1=2$, $x_2=2$,最优值为: 6。

综上所述,求解 LP1,最优解为 x_1 =3, x_2 =1.5,最优值为: 7.5。求解 LP2,最优解为 x_1 =2, x_2 =2,最优值为: 6。

然后由于 7.5>6,优选 LP1 进行分支。因为 x_1 =3, x_2 =1.5,此点中 x_2 不符合整数 要求,构造条件 x_2 >=2, x_2 <=1。得到 LP11 和 LP12。

LP11:
$$\max z = 2x_1 + x_2$$

LP12:
$$\max z = 2x_1 + x_2$$

$$s.t.\begin{cases} x_1 + x_2 \le 5\\ -x_1 + x_2 \le 0\\ 6x_1 + 2x_2 \le 21\\ x_1 \ge 3\\ x_2 \ge 2\\ x_1, x_2 \ge 0 \end{cases}$$

$$s.t.\begin{cases} x_1 + x_2 \le 5 \\ -x_1 + x_2 \le 0 \\ 6x_1 + 2x_2 \le 21 \\ x_1 \ge 3 \\ x_2 \le 1 \\ x_1, x_2 \ge 0 \end{cases}$$

接下来,求解 LP11 和 LP12 的最优解和最优值。

求解 LP11:

程序代码如下:

max = 2*x1+x2; x1+x2<=5; -x1+x2<=0; 6*x1+2*x2<=21; x1>=3; x2>=2;

```
x1>=0;
x2>=0;
```

具体结果如下:

No feasible solution found.

Infeasibilities: 0.5000000
Total solver iterations: 4

Variable	Value	Reduced Cost
X1	3.000000	0.000000
Х2	1.500000	0.000000
Row	Slack or Surplus	Dual Price
1	0.5000000	1.000000
2	0.5000000	0.000000
3	1.500000	0.00000
4	0.000000	0.5000000
5	0.000000	-1.000000
6	-0.5000000	0.000000
7	3.000000	0.00000
8	1.500000	0.00000

求解 LP11, 无可行解。

求解 LP12:

程序代码如下:

max = 2*x1+x2; x1+x2<=5; -x1+x2<=0; 6*x1+2*x2<=21; x1>=3; x2<=1; x1>=0; x2>=0;

具体结果如下:

Global optimal solution found.

Objective value: 7.333333
Infeasibilities: 0.000000
Total solver iterations: 1

Variable Value Reduced Cost

X1	3.166667	0.000000
X2	1.000000	0.000000
Row	Slack or Surplus	Dual Price
1	7.333333	1.000000
2	0.8333333	0.000000
3	2.166667	0.00000
4	0.000000	0.3333333
5	0.1666667	0.000000
6	0.000000	0.3333333
7	3.166667	0.00000
8	1.000000	0.00000

求解 LP12,最优解为 x_1 =3.166667, x_2 =1,最优值为: 7.33333。

综上所述, 求解 LP11, 无最优解最优值。求解 LP12, 最优解为 x_1 =3.166667, x_2 =1, 最优值为: 7.33333。

接下来,类似又形成两个后继问题 LP121 和 LP122.

LP121:
$$\max z = 2x_1 + x_2$$

LP122:
$$\max z = 2x_1 + x_2$$

$$s.t. \begin{cases} x_1 + x_2 \le 5 \\ -x_1 + x_2 \le 0 \\ 6x_1 + 2x_2 \le 21 \\ x_1 \ge 4 \\ x_2 \le 1 \\ x_1, x_2 \ge 0 \end{cases}$$

$$s.t. \begin{cases} x_1 + x_2 \le 5 \\ -x_1 + x_2 \le 0 \\ 6x_1 + 2x_2 \le 21 \\ x_1 \le 3 \\ x_2 \le 1 \\ x_1, x_2 \ge 0 \end{cases}$$

求解 LP121 和 LP122.

求解 LP121:

程序代码如下:

 $\max = 2*x1+x2;$

x1+x2 <=5;

-x1+x2 <=0;

6*x1+2*x2 <= 21;

x1 > =4;

x2 <= 1;

x1 >= 0;

x2>=0;

具体结果如下:

No feasible solution found.

Infeasibilities: 1.500000

Total solver iterations:

Variable	Value	Reduced Cost
X1	4.000000	0.000000
X2	-1.500000	0.000000
Row	Slack or Surplus	Dual Price
1	3.000000	1.000000
2	2.500000	0.00000
3	5.500000	0.00000
4	0.000000	0.5000000
5	0.000000	-1.000000
6	2.500000	0.00000
7	4.000000	0.00000
8	-1.500000	0.00000

3

求解 LP121, 无可行解。

求解 LP122:

程序代码如下:

max = 2*x1+x2;

x1+x2 <=5;

-x1+x2 <=0;

6*x1+2*x2<=21;

x1 <= 3;

x2 <= 1;

x1>=0;

x2>=0;

具体结果为:

Global optimal solution found.

Objective value: 7.000000
Infeasibilities: 0.000000
Total solver iterations: 0

Variable	Value	Reduced Cost
X1	3.000000	0.000000
X2	1.000000	0.000000

Row Slack or Surplus Dual Price

1	7.000000	1.000000
2	1.000000	0.000000
3	2.000000	0.000000
4	1.000000	0.000000
5	0.000000	2.000000
6	0.000000	1.000000
7	3.000000	0.000000
8	1.000000	0.000000

求解 LP122, 最优解为 x1=3, x2=1, 最优值为: 7。

综上所述,求解 LP121,无最优解最优值。求解 LP122,最优解为 x1=3, x2=1,最优值为: 7。

LP122 再与 LP2 相比较。

LP122, 最优解为 $x_1=3$, $x_2=1$, 最优值为: 7。

LP2, 最优解为 $x_1 = 2$, $x_2 = 2$, 最优值为: 6。

得到整数规划的最优解为 $x_1=3$, $x_2=1$, 最优值为: 7。

五、验证设计

1. 用 lingo 进行验证设计:

具体程序:

```
max = 2*x1+x2;
x1+x2<=5;
-x1+x2<=0;
6*x1+2*x2<=21;
x1>=0;
x2>=0;
@gin(x1);
@gin(x2);
```

程序结果:

Global optimal solution found.

Objective value:	7.000000
Objective bound:	7.000000
Infeasibilities:	0.000000
Extended solver steps:	0
Total solver iterations:	0

Variable	Value	Reduced Cost
X1	3.000000	-2.000000
X2	1.000000	-1.000000
Row	Slack or Surplus	Dual Price
1	7.000000	1.000000
2	1.000000	0.000000
3	2.000000	0.00000
4	1.000000	0.000000
5	3.000000	0.00000
6	1.000000	0.000000

得到整数规划的最优解为 $x_1=3$, $x_2=1$, 最优值为: 7。

2. 用 SAS/OR 进行验证设计:

```
具体程序如下:
proc optmodel;
var x>=0<=3;
var y>=0;
con x+y<=5;
con -x+y<=0;
con 6*x+2*y<=21;
con x+y<=4;
max z=2*x+y;
solve;
print x y;
run;
```

quit;

具体结果如下:

图 1 SAS 进行整数规划的验证设计结果

从上述的结果,我们得知,整数规划的最优解为 $x_1=3$, $x_2=1$,最优值为: 7。

六、参考文献

- [1] 朱世武. SAS编程技术教程[M]. 北京:清华大学出版社, 2013.
- [2] 夏坤庄. 深入解析SAS: 数据处理、分析优化与商业应用[M]. 北京: 机械工业出版社, 2015.