	-1 1					
Reg. No.						

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Sixth Semester

18EIC305T – POWER ELECTRONICS AND DRIVES

(For the candidates admitted from the academic year 2020-2021 to 2021-2022)

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed

(ii)		over Part	to hall invigilator at the end of 40 th m - B & Part - C should be answered in	inute n ans	wer booklet.				
Time	: 3 ł	nours				Max. I	A arl	cs: 1	00
						Marks	BL	со	РО
			$PART - A (20 \times 1 =$						
			Answer ALL Qu	est10	ns	1	1	1	1
	1_{*}	Ident	ify the reverse recovery time for	gene	ral purpose diode				
		(A)	20 μs	` ′	25 μs				
		(C)	30 μs	(D)	5 μs				
						1	1	1	1
	2.		SFET is said to beswitch		a 11 1	•	-	_	
			Uncontrolled		Semi controlled				
		(C)	Fully controlled	(D)	Semi uncontrolled				
				. 11	1 4.1 1	1	1	1	1
	3.	Thyı	ristor is considered to be semi cor	itroll	ed switch because	£			
		(A)	It can be turned off but not on	(B)	It conducts only during one-nar.	L -			
			with a gate pulse		cycle of an alternating current	L			
		(~)	To a look and aff	(D)	wave It can be turned on only during	y			
		(C)	It can be turned on but not off	(D)	one half cycle of an alternating				
			with a gate pulse		voltage wave	>			
					voltage wave				
	A	The	controlling parameter in IGBT is	the		1	1	1	1
	4.			(B)	$V_{\sf GE}$				
		(A)	·		VCE				
		(C)	IC	(1)	, CE				
	5	Idan	tify the other name of class A co	mmu	tation	1	- 1	2	2
	٥.	(A)	Self commutation	(B)	Resonant commutation				
		(C)	Natural commutation	(D)					
		(0)	Tyatara Communica	(-)	1				
	6	The	thyristor turn-off requires that th	e and	ode current	1	1	2	2
	0.	(Δ)	Falls below the holding current	(B)	Falls below the latching current	t			
		(C)	Rises above the holding current	(D)	Rises above the latching curren	.t			
		(0)	14005 400 10 441 441 7	,					_
	7.	Tris	ggering the circuit is called as			1	1	2	2
	- 1	(A)		(B)	Turn-on method				
*		(C)		(D)					
		(-)							

Note:

(i)

8.		pulse gating is not suitable of			1	1	2	2
	1 1	R loads		RC loads				
	(C)	RL loads	(D)	It is suitable of every type of load				
9.	AC-	DC conversion is called as			1	1	3	1
	(A)	Chopper	(B)	Inverter				
	(C)	Rectifier		Cyclo converter				
10.	brid	ge rectifier depends on	out vo	ltage of a three phase controlled	1	1	3	1
	(A)	Firing angle	(B)	Load inductance				
	(C)	Load resistance	(D)	Supply frequency				
1·1.	A dı	al converters has			1	1	3	2
	(A)	Two full converters in series	(B)	Two half converters in series				
	(C)			Two half converters in anti-				
		parallel		parallel				
12.		o converters concerts			1	1	3	2
	. ,	DC-DC	(B)	DC-AC				
	(C)	AC-AC	(D)	AC-DC				
13.	In D as	C choppers, the waveforms for ir	iput ai	nd output voltages are represented	1	1	4	1
		Discontinuous, continuous		Both continuous				
	(C)	Both discontinuous	(D)	Continuous, discontinuous				
14.	A st	ep-up chopper has Vs as the so	urce v	voltage and α as the duty cycle.	1	1	4	1
	expr	ess the output voltage for this ch	opper	is given by				
	(A)	$V_s(1+\alpha)$	(B)	$V_s/(1-\alpha)$				
	(C)	$V_s(1-\alpha)$		$V_s/(1+\alpha)$				
15.	VSI	will have better performance if i	ts		1	1	- 4	2
	(A)	Load inductance is small and source inductance is large	(B)	Both load inductance and source inductance are small				
	(C)		(D)	Load inductance is large and				
	` '	source inductance are large	(D)	source inductance is small			9	
16.	In car	se of the 120° mode of operation,		destruction of the second	1	1	4	2
	(A)	2.	(B)	devices conduct at a time.	1	1	4	2
	(C)		(D)					
17	SMP	S are based on thep	win ain	1.	,	1	_	
* *	(A)	Phase control	_		1	1	5	3
		Chopper		Integral control MOSFET				
	\-)	KL	(D)	MOSET				
		UPS requires	d=		1	1	5	3
		Only rectifier		Only inverter				
	(U)	Both inverter and rectifier	(1)	None of the mentioned				

19.	An offline UPS requires			1	1	5	3
	(A) Resistor	(B)	Capacitor				
		(D)	Inductor				
20.	component makes an onli	ne U	PS different from offline UPS	1	1	5	3
20.	(A) Charge controller	(B)	Battery				
	(12)	` /	AC/DC converter				
	(C) State Switch	(-)					
	$PART - B (5 \times$	4 = 1	20 Marks)		***	-	DO.
	Answer ANY F	IVE	Questions	Marks	BL	co	PO
21.	Summarize MOSFET and BJT switch			4	2	1	1
				4	1	. 2	2
22.	Define the term commutation and list	its cl	assification.				b.
22	Define controlled rectifier with its cla	asific	eation	4	1	3	2
23.	Define controlled rectifier with its cla	331110	auon.				
24	Summarize the operation of PWM inv	erte		4	2	4	2
21.	Summarize the operation of the second						
25.	Show the block diagram for open loop	p and	close loop control of drives.	4	1	5	3
				4	2	1	1
26.	Describe the snubber circuit with its d	liagra	am.	-	_		•
0.7	D. Consideration was modulation w	rith it	a wayeform	4	1	4	1
27.	Define sinusoidal pulse modulation w	(1111 11	is wavelorm.				
	$PART - C (5 \times 12 =$	= 60 I	Marks)				
	Answer ALL Qu			Marks	BL	CO	PO
28. a.	Explain different modes of thyristor	opei	ration with its V-I characteristics	12	2	1	1
20. 4.	and derive its two-transistors analogy						
•							
	(OR)	1	11 d	12	2	1	1
b.	Discuss any one fully controlled swite	ch w	ith the operation and its switching	12	_	•	
	characteristics.						
20. 0	Demonstrate the class C commutation	n wit	h its circuits and waveform.	12	3	2	2
29. a.	Demonstrate the class C commutation	(1 44 10	ii its onotitis and wavelering				
	(OR)						
Ъ.	Examine the class D commutation wi	ith its	s circuits and waveform.	12	3	2	2
	*			12	4	3	1
30. a.	Illustrate the operation of single ph	ase	fully controlled RL load with its	12	4	J	1
	waveform.						
	(OR)						
1	Analyze the operation of single-phase	e ster	oup and step down cyclo converter	12	4	3	2
D	for RL load with the waveform.	o occ	, up una step de vix eyere cerri sirii				
	101 KL 10dd Willi die Waveleim						
31. a	Examine the 180 degree mode VSI c	ircuit	with its necessary circuits and the	12	3	4	1
	waveform.						
	a						
	(OR)		laviore the content valtage	12	3	4	2
b	. Illustrate the boost converter circuit	and c	ierive the output voltage.				

32. a. Analyze the operation of battery-operated vehicle and the design of charging 12 4 5 and discharging of battery.

(OR)

b. Illustrate the uninterruptible power supply with its different mode of 12 4 5 coperation.

* * * * *