ORFE 524: Statistical Theory and Methods Homework 2

Zachary Hervieux-Moore

Friday 14th October, 2016

Exercise 1: Let T(X) be a sufficient statistic for \mathcal{P} . Consider the following experiment.

- Draw $X \sim P_{\theta}$, where $P_{\theta} \in \mathcal{P}$
- Compute T(X) = t
- Draw $X' \sim P_{X|t}$

Show that X' has the same (unconditional) distribution as X. For simplicity you can assume that all distributions are discrete.

Answer: We use the law of total probability,

$$P_{X'}(x') = \sum_{t \in T} P_{X'|t}(x'|T(X) = t)P_T(T(X) = t)$$

By assumption,

$$P_{X'|t}(x'|T(X) = t) = P_{X|t}(x'|T(X) = t)$$

Thus,

$$P_{X'}(x') = \sum_{t \in T} P_{X|t}(x'|T(X) = t) P_T(T(X) = t) = P_X(x')$$

Hence $P_{X'} = P_X$

Exercise 2: Suppose that $\Theta \subset \mathbb{R}^d$. Let $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$, where P_{θ} has a probability density function (with respect to Lebesgue measure)

$$f^{\theta}(x) = h(x)l(\theta)e^{\alpha(\theta)^T T(x)}, \quad x \in \mathbb{R}^d,$$

where T(x) is a r-vector. Show that \mathcal{P} has an equivalent representation $\mathcal{P} = \{P_{\alpha}, \alpha \in \mathcal{A}\}$ for some set $\mathcal{A} \subset \mathbb{R}^r$, where the density of P_{α} is

$$f^{\alpha}(x) = h'(x)l'(\alpha)e^{\alpha^T T(x)}, \quad x \in \mathbb{R}^d,$$

In other words, you need to verify that the following holds.

- For each $\theta \in \Theta$, there exists an $\alpha \in \mathcal{A}$ such that $P_{\theta} = P_{\alpha}$
- Parameter α uniquely determines P_{α} , that is, for any $\alpha \neq \alpha'$, P_{α} and $P_{\alpha'}$ are different

Answer: To satisfy the first condition, define the set A as follows:

$$\mathcal{A} = \{\alpha : \alpha = \alpha(\theta), \theta \in \Theta\}$$

Thus, for all $\theta \in \Theta$, then,

$$f^{\theta}(x) = h(x)l(\theta)e^{\alpha(\theta)^T T(x)} = h(x)l'(\alpha)e^{\alpha^T T(x)} = f^{\alpha}(x)$$

Where $l'(\alpha)$ is defined to be $l(\theta)$ such that $\alpha(\theta) = \alpha$ Now, since densities integrate to 1,

$$1 = \int_{\mathbb{R}^d} h(x)l(\theta)e^{\alpha(\theta)^T T(x)}$$

$$\implies l(\theta) = \frac{1}{\int_{\mathbb{R}^d} h(x)e^{\alpha(\theta)^T T(x)}}$$

That is, $l(\theta)$ is determined uniquely by $\alpha(\theta)$. Thus if $\alpha \neq \alpha'$,

$$\alpha \neq \alpha' \Longleftrightarrow \alpha(\theta) \neq \alpha(\theta') \implies \theta \neq \theta'$$

$$\iff P_{\theta} \neq P_{\theta'} \iff P_{\alpha(\theta)} \neq P_{\alpha(\theta')} \implies P_{\alpha} \neq P_{\alpha'}$$

As $P_{\theta} = P_{\alpha(\theta)}$

Exercise 3: Let \mathcal{P} be some family of distributions, and let $\mathcal{P}' \subseteq \mathcal{P}$ be a smaller family of distributions contained in \mathcal{P} . Suppose that T is sufficient for \mathcal{P} and minimal sufficient for \mathcal{P}' . Show that T must also be minimal sufficient for \mathcal{P} .

Answer: Let T' be sufficient for \mathcal{P} . Then, T' is sufficient for \mathcal{P}' since $\mathcal{P}' \subseteq \mathcal{P}$. However, T is minimal sufficient for \mathcal{P}' so,

$$T = f(T')$$

Thus, we have for all T' sufficient for \mathcal{P} , T = f(T'). Since T is also sufficient for \mathcal{P} , then this is precisely the definition of minimal sufficiency. Therefore, T is also minimal sufficient for \mathcal{P} .

Exercise 4: Let n random variables $X = \{X_i\}_1^n \sim \mathcal{N}^n(\mu, \mu)$, where μ is a positive real number. Here $\mathcal{N}(\mu, \mu)$ is the univariate Gaussian distribution with both mean and variance equal to μ and $\mathcal{N}^n(\mu, \mu)$ is its n-th product distribution. Consider the family distributions $\mathcal{P} = \{\mathcal{N}^n(\mu, \mu), \mu > 0\}$

- 1) Find a minimal sufficient statistic for \mathcal{P}
- 2) In the case of n = 1, consider another statistic $T_0(x) = x$. Is it sufficient? Is it minimal?

Answer: First, the distribution for $X \sim \mathcal{N}^n(\mu, \mu)$ is:

$$f_{\theta}(x^n) = \prod_{i=1}^n \frac{1}{\sqrt{2\mu\pi}} e^{\frac{-(x_i - \mu)^2}{2\mu}}$$

Thus we need $f_{\theta}(x^n)/f_{\theta}(y^n)$ to be independent of μ :

$$\frac{f_{\theta}(x^n)}{f_{\theta}(y^n)} = \frac{\prod_{i=1}^n \frac{1}{\sqrt{2\mu\pi}} e^{\frac{-(x_i - \mu)^2}{2\mu}}}{\prod_{i=1}^n \frac{1}{\sqrt{2\mu\pi}} e^{\frac{-(y_i - \mu)^2}{2\mu}}} = e^{-\frac{1}{2\mu} \sum_{i=1}^n (x_i - \mu)^2 - (y_i - \mu)^2}$$

Expanding the square,

$$= e^{-\frac{1}{2\mu} \sum_{i=1}^{n} x_i^2 - 2x_i \mu - y_i^2 - 2y_i \mu} = e^{-\sum_{i=1}^{n} \frac{x_i^2}{2\mu} - x_i - \frac{y_i^2}{2\mu} - y_i}$$

For this to be independent of μ , we need $\sum_{i=1}^n \frac{x_i^2}{2\mu} = \sum_{i=1}^n \frac{y_i^2}{2\mu}$, or:

$$\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i^2$$

Thus, $T(X) = \sum_{i=1}^{n} x_i^2$ is a minimal sufficient statistic.

If n = 1, and $T_0(x) = x$. Then, P(X = y | T = x) = 0 if $y \neq x$ and $y \neq x$ and y

$$P_{X|t} = \frac{P(X = x, T = x)}{P(T = x)} = \frac{P(X = x|T = x)P(T = x)}{P(T = x)} = \frac{\frac{1}{\sqrt{2\mu\pi}}e^{\frac{-(x-\mu)^2}{2\mu}}}{\frac{1}{\sqrt{2\mu\pi}}e^{\frac{-(x-\mu)^2}{2\mu}}} = 1$$

Which is independent of μ , so $T_0(x) = x$ is sufficient. But, $T(x) = x^2$ so $T_0(x) = \sqrt{T(x)}$ but $f(x) = \sqrt{x}$ is not one-to-one, so $T_0(x)$ is not minimal.

Exercise 5: Suppose X_1, \ldots, X_n are i.i.d. d-dimensional Gaussian random vectors with mean μ and covariance Σ . Argue that $(\hat{\mu}, \hat{\Sigma})$ is a minimal sufficient statistic for $\mathcal{P} = \{\mathcal{N}^n(\mu, \Sigma)\}$, the family of Gaussian distribution with unknown Σ and μ .

Answer: Using the same method as the previous question, we want to find a $T(X^n)$ that makes $\frac{f_{\theta}(x^n)}{f_{\theta}(y^n)}$ independent of θ . We know that

$$f_{\theta}(x^n) = \frac{1}{\left(\sqrt{(2\pi)^d |\Sigma|}\right)^n} \exp\left(-\frac{1}{2} \sum_{i=1}^n (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)\right)$$

So,

$$\frac{f_{\theta}(x^n)}{f_{\theta}(y^n)} = \exp\left(-\frac{1}{2}\sum_{i=1}^n (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) - (y_i - \mu)^T \Sigma^{-1} (y_i - \mu)\right)$$
$$= \exp\left(-\frac{1}{2}\sum_{i=1}^n x_i^T \Sigma^{-1} x_i - 2x_i^T \Sigma^{-1} \mu - y_i^T \Sigma^{-1} y_i - 2y_i^T \Sigma^{-1} \mu\right)$$

Note that $x_i^T \Sigma^{-1} x_i = \langle \text{vec}(\Sigma^{-1}), \text{vec}(x_i x_i^T) \rangle$ and $-2x_i^T \Sigma^{-1} \mu = \langle -2\Sigma^{-1} \mu, x_i \rangle$. Rewriting in these terms,

$$= \exp\left(-\frac{1}{2}\sum_{i=1}^{n} \langle \operatorname{vec}(\Sigma^{-1}), \operatorname{vec}(x_i x_i^T) - \operatorname{vec}(y_i y_i^T) \rangle + \langle -2\Sigma^{-1} \mu, x_i - y_i \rangle\right)$$

Thus, for this to be independent of Σ and μ , we need $\sum_{i=1}^{n} \operatorname{vec}(x_{i}x_{i}^{T}) = \sum_{i=1}^{n} \operatorname{vec}(y_{i}y_{i}^{T})$ and $\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}$ so that both inner products will be always 0. So $T = (\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} \operatorname{vec}(x_{i}x_{i}^{T}))$ is minimally sufficient. We'll now use a series of one-to-one transformations to get $(\hat{\mu}, \hat{\Sigma})$.

First, the $\text{vec}(\cdot)$ operator is clearly a one-to-one transformation. So, $T = (\sum_{i=1}^n x_i, \sum_{i=1}^n x_i x_i^T)$ is also minimally sufficient. Now we divide by n which is one-to-one. $T = (\frac{1}{n} \sum_{i=1}^n x_i, \frac{1}{n} \sum_{i=1}^n x_i x_i^T)$. Now we use the transformation $f(T(x,y)) = T(x,y-x^2)$ which is one-to-one since $f^{-1}(T(x,y)) = T(x,y+x^2)$ is the inverse. So the following T is minimal since it is a series of one-to-one transformations of a minimal statistic,

$$T = \left(\frac{1}{n}\sum_{i=1}^{n} x_i, \frac{1}{n}\sum_{i=1}^{n} x_i x_i^T - \left(\frac{1}{n}\sum_{i=1}^{n} x_i\right) \left(\frac{1}{n}\sum_{i=1}^{n} x_i\right)\right) = \left(\hat{\mu}, \hat{\Sigma}\right)$$

Exercise 6: Let $x = \{x_i\}_{i=1}^n$ be the realization of n i.i.d. Gaussian random variables $X = \{X_i\}_1^n \sim \mathcal{N}^n(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$, show that the maximum likelihood estimator for $\theta = (\mu, \sigma^2)$ is (\bar{x}, S_n^2) , where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ and } S_n^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Answer: We write out the likelihood maximization problem,

$$L(\theta; x^n) = \prod_{i=1}^n \frac{1}{\sqrt{2\sigma^2 \pi}} e^{\frac{-(x_i - \mu)^2}{2\sigma^2}} = \frac{1}{\left(\sqrt{2\sigma^2 \pi}\right)^n} e^{\sum_{i=1}^n \frac{-(x_i - \mu)^2}{2\sigma^2}}$$

Now taking the log,

$$L(\theta; x^n) = \log\left(\frac{1}{\left(\sqrt{2\sigma^2\pi}\right)^n}\right) + \sum_{i=1}^n \frac{-(x_i - \mu)^2}{2\sigma^2}$$

Taking the partial derivatives,

$$\begin{split} \frac{\partial L(\theta;x^n)}{\partial \mu} &= \sum_{i=1}^n \frac{x_i - \mu}{\sigma^2} \\ \frac{\partial L(\theta;x^n)}{\partial \sigma^2} &= -\frac{n}{\sigma^2} + \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^4} \end{split}$$

Setting these to 0 and solving for the parameters,

$$\sum_{i=1}^{n} \frac{x_i - \mu}{\sigma^2} = 0 \implies \mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$

$$-\frac{n}{2\sigma^2} + \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^4} = 0 \implies \sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{\sigma^4} = \frac{n}{\sigma^2}$$

$$\implies \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 = S_n^2$$

Which is a maximum since $L_{\mu\mu}L_{\sigma\sigma} > L_{\mu\sigma}^2$ and $L_{\mu\mu} < 0$ and hence satisfies Sylvester's criterion.

Exercise 7: Let $x = \{x_i\}_1^n$ be i.i.d. realizations of a random variable $\xi \sim \text{Uniform}([0,\theta])$, where $\theta > 0$. We have shown that the maximum likelihood estimator for θ is $\hat{\theta} = \max_{x_i} x_i$. Show that

- 1) $\hat{\theta}$ has a density with respect to Lebesgue measure
- 2) $\hat{\theta}$ is biased

Note: In question 1), you only need to show that the cumulative distribution function of $\hat{\theta}$ is absolutely continuous (easier than showing Lebesgue domination).

Answer: The density $\hat{\theta}$ is given as

$$\begin{split} P_{\hat{\theta}} &= P(\max(X_1, \dots, X_n) \in [x, x + \epsilon]) \\ &= \sum_{i=1}^n P(X_i \in [x, x + \epsilon]) P(\text{all others} < x) \\ &= n P(X_1 \in [x, x + \epsilon]) P(X_2 < x) \cdots P(X_n < x) \text{ since i.i.d.} \\ &= n f(x) F(x)^{n-1} = \frac{n}{\theta} \left(\frac{x}{\theta}\right)^{n-1} = \frac{n x^{n-1}}{\theta^n}, \quad x \in [0, \theta] \end{split}$$

Thus, the CDF is

$$\int_0^x \frac{nt^{n-1}}{\theta^n} dt = \frac{x^n}{\theta^n}$$

Which is a polynomial and hence continuous and therefore absolutely continuous. Now to show biasness,

$$E[\hat{\theta}] = \int_0^\theta \frac{nx^n}{\theta^n} dx = \frac{n}{n+1} \cdot \frac{\theta^{n+1}}{\theta^n} = \frac{n}{n+1} \theta \neq \theta$$

Thus, $\hat{\theta}$ is biased.

Exercise 8: This exercise is about the expectation-maximication (EM) algorithm. Derive an EM algorithm for a mixture of K Gaussians with diagonal covariance matrices. In other words, suppose that we observe n i.i.d. observations $\{x_i\}_{i=1}^n$ of d-dimensional random vectors

$$X \sim \sum_{\ell=1}^{K} \frac{1}{K} N(\mu_{\ell}, \Sigma_{\ell}), \text{ where } \Sigma_{\ell} = \operatorname{diag}(\sigma_{\ell, 1}^{2}, \dots, \sigma_{\ell, d}^{2})$$

Derive the EM algorithm that estimates the parameters $\{\mu_\ell, \Sigma_\ell\}_{\ell=1}^K$

Answer: We write the expectation step,

$$Q(\theta, \theta') = E_{Z|X}^{\theta'}[\log f_{\theta}(x, z)] = E_{Z|X}^{\theta'}[\log \frac{1}{K} N(\mu_{\ell}, \Sigma_{\ell})]$$

$$= \sum_{\ell=1}^{K} \sum_{i=1}^{n} \left[-\frac{1}{2} (x_{i} - \mu_{\ell})^{T} \Sigma_{\ell}^{-1} (x_{i} - \mu_{\ell}) - \log \left(\frac{1}{K \sqrt{(2\pi)^{d} |\Sigma_{\ell}|}} \right) \right] \cdot P_{Z|X}^{\theta'}$$

Taking the gradient with respect to μ to maximize it,

$$\nabla_{\mu_{\ell}} Q(\theta, \theta') = \nabla_{\mu_{\ell}} \sum_{\ell=1}^{K} \left[-\frac{1}{2} (x - \mu_{\ell})^{T} \Sigma_{\ell}^{-1} (x - \mu_{\ell}) \right] \cdot P_{\theta'}(z = \ell | x_{i})$$

$$= -\frac{1}{2} \sum_{\ell=1}^{K} \sum_{i=1}^{n} \nabla_{\mu_{\ell}} \left[x^{T} \Sigma_{\ell}^{-1} x - 2\mu_{\ell}^{T} \Sigma_{\ell}^{-1} x + \mu_{\ell}^{T} \Sigma_{\ell}^{-1} \mu_{\ell} \right] \cdot P_{\theta'}(z = \ell | x_{i})$$

$$= \sum_{i=1}^{n} \left[\Sigma_{\ell}^{-1} x - \Sigma_{\ell}^{-1} \mu_{\ell} \right] \cdot P_{\theta'}(z = \ell | x_{i})$$

Setting to 0 and solving for μ_{ℓ} yields

$$\mu_{\ell} = \frac{\sum_{i=1}^{n} P_{\theta'}(z = \ell | x_i) x_i}{\sum_{i=1}^{n} P_{\theta'}(z = \ell | x_i)}$$

Similarly for Σ_{ℓ} ,

$$\Sigma_{\ell} = \frac{\sum_{i=1}^{n} P_{\theta'}(z = \ell | x_i)(x_i - \mu_{\ell})^T (x_i - \mu_{\ell})}{\sum_{i=1}^{n} P_{\theta'}(z = \ell | x_i)}$$

Exercise 9: This exercise relates maximum likelihood estimation with information theory. Let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be a family of probability measures on \mathcal{X} with density f_{θ} w.r.t. to some measure σ . Assume for simplicity that all f_{θ} have the same support. Let $X = \{X_i\}_{i=1}^n$ be n i.i.d. random variables with $X_i \sim P_{\theta_0} \in \mathcal{P}$ for each i, where θ_0 is unknown. Let $x = \{x_i\}_{i=1}^n$ be the realization of X.

- 1) Let $L(\theta; x)$ be the likelihood function; express $\mathbb{E}[n^{-1} \log L(\theta; X)]$ in terms of information measures (entropy and/or K-L divergence)
- 2) For any fixed θ , give a simple unbiased estimator of $\mathbb{E}[n^{-1}\log L(\theta;X)]$. Suppose this estimate is close to $\mathbb{E}[n^{-1}\log L(\theta;X)]$ (for instance for sufficiently large n), explain in simple terms (nothing rigorous here), how MLE might be interpreted as minimizing some notion of distance between distributions.
- 3) Derive a simple form for the K-L divergence between two multivariate Gaussians $\mathcal{N}(\mu_1, \Sigma)$ and $\mathcal{N}(\mu_2, \Sigma)$. Here $\mu_1, \mu_2 \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ is positive definite.
- 4) Suppose now that $\mathcal{P} = \{\mathcal{N}(\mu, \Sigma), \mu \in \mathbb{R}^d\}, \Sigma$ fixed. Conclude that maximizing $\mathbb{E}[n^{-1}\log L(\theta; X)]$ is the same as minimizing some distance measure in parameter space.

Answer:

1) First note that, $L(\theta; x) = \prod_{i=1}^{n} P_{\theta}$. Thus, we have,

$$\mathbb{E}[n^{-1}\log L(\theta; X)] = \mathbb{E}[n^{-1}\sum_{i=1}^{n}\log P_{\theta}] = \mathbb{E}[\log P_{\theta}]$$
$$= \mathbb{E}[\log P_{\theta} - \log P_{\theta_0} + \log P_{\theta_0}] = \mathbb{E}[\log \frac{P_{\theta}}{P_{\theta_0}} + \log P_{\theta_0}]$$
$$= -D(P_{\theta_0}||P_{\theta}) - H(P_{\theta_0})$$

2) A simple unbiased estimator is $\frac{1}{n}\sum_{i=1}^{n}\log L(\theta;x_i)$. Unbiasedness is immediate from taking the expectation. Using this, we can see that MLE is equivalent to attempting to minimize $D(P_{\theta_0}||P_{\theta})+H(P_{\theta_0})$ which is again equivalent to minimizing $D(P_{\theta_0}||P_{\theta})$ since this is the only term dependent on θ . Divergence is a metric that measures the "distance" between distributions. So, MLE can be thought of minimizing the distance between distributions.

3) THe K-L divergence between these two distributions is:

$$\int_{\mathbb{R}} \frac{1}{\sqrt{(2\pi)^{k}|\Sigma|}} e^{-\frac{1}{2}(x-\mu_{1})^{T}\Sigma^{-1}(x-\mu_{1})} \log \frac{\frac{1}{\sqrt{(2\pi)^{k}|\Sigma|}} e^{-\frac{1}{2}(x-\mu_{1})^{T}\Sigma^{-1}(x-\mu_{1})}}{\frac{1}{\sqrt{(2\pi)^{k}|\Sigma|}}} e^{-\frac{1}{2}(x-\mu_{2})^{T}\Sigma^{-1}(x-\mu_{2})} dx$$

$$= \int_{\mathbb{R}} \frac{1}{\sqrt{(2\pi)^{k}|\Sigma|}} e^{-\frac{1}{2}(x-\mu_{1})^{T}\Sigma^{-1}(x-\mu_{1})} - \frac{1}{2} \left[(x-\mu_{1})^{T}\Sigma^{-1}(x-\mu_{1}) - (x-\mu_{2})^{T}\Sigma^{-1}(x-\mu_{1}) \right] dx$$

$$= -\frac{1}{2} \mathbb{E} \left[\operatorname{tr} \left((x-\mu_{1})^{T}\Sigma^{-1}(x-\mu_{1}) \right) - \left((x-\mu_{2})^{T}\Sigma^{-1}(x-\mu_{2}) \right) \right]$$

$$= -\frac{1}{2} \left(\operatorname{tr} \left(\mathbb{E} \left[(x-\mu_{1})^{T}(x-\mu_{1}) \right] \Sigma^{-1} \right) - \mathbb{E} \left[(x-\mu_{2})^{T}\Sigma^{-1}(x-\mu_{2}) \right] \right)$$

$$= -\frac{1}{2} \left(\operatorname{tr} (\Sigma\Sigma^{-1}) - \mathbb{E} \left[(x+\mu_{1}-\mu_{1}-\mu_{2})^{T}\Sigma^{-1}(x+\mu_{1}-\mu_{1}-\mu_{2}) \right] \right)$$

$$= -\frac{1}{2} \left(\operatorname{tr} \left((x-\mu_{2})^{T}\Sigma^{-1}(x-\mu_{2}) \right) \right]$$

$$= -\frac{1}{2} \left(\operatorname{tr} \left((x-\mu_{2})^{T}\Sigma^{-1}(x-\mu_{2}) \right) \right]$$

$$= -\frac{1}{2} \left(d - (\mu_{1}-\mu_{2})^{T}\Sigma^{-1}(\mu_{1}-\mu_{2}) - \operatorname{tr} \left(\Sigma\Sigma^{-1} \right) \right)$$

$$= \frac{1}{2} (\mu_{1}-\mu_{2})^{T}\Sigma^{-1}(\mu_{1}-\mu_{2})$$

4) Using parts 2) and 3), we can see that maximizing $\mathbb{E}[n^{-1}\log L(\theta;X)]$ is equivalent to minimizing the K-L divergence of the two. In this case, it comes down to minimizing $\frac{1}{2}(\mu_{\theta}-\mu_{\theta_0})^T\Sigma^{-1}(\mu_{\theta}-\mu_{\theta_0})$ and so you are trying to minimize the distance between parameters μ_{θ} and μ_{θ_0} .

Exercise 10: Suppose we have data $(x_i, y_i)_{i=1}^n$, where $x_i \in \mathbb{R}^d$. The Ridge estimator of the linear model $Y = X^T \beta + \epsilon, \mathbb{E}[\epsilon] = 0, \epsilon \perp X$, is defined as the minimizer of the following problem:

$$\min_{\beta \in \mathbb{R}^d} \sum_{i=1}^n (y_i - x_i^T \beta)^2 + \lambda \|\beta\|^2, \quad \lambda \ge 0,$$

where $\|\cdot\|$ is the Euclidean norm in \mathbb{R}^d .

- 1) Show that there exists some $\lambda \geq 0$, such that the above minimization problem has a unique minimizer.
- 2) Derive the minimizer when the unique minimizer exists.

Answer:

1) First write the Ridge regressor in matrix notation,

$$\min_{\beta \in \mathbb{R}^d} (y - X^T \beta)^T (y - X^T \beta) + \lambda \|\beta\|^2$$

We take the gradient of the above expression with respect to β ,

$$\nabla_{\beta} (y - X^T \beta)^T (y - X^T \beta) + \lambda \|\beta\|^2$$
$$= -2Xy + 2XX^T \beta + 2\lambda \beta$$

Convex in β , so set to 0 and minimize,

$$Xy = (XX^T + \lambda I)\beta$$

Note that we can invert $(XX^T + \lambda I)$ since XX^T is positive semi-definite and λI is positive definite. So their sum is positive definite and hence invertible,

$$\beta = (XX^T + \lambda I)^{-1}Xy$$

Note, $\lambda = 0$ can only happen if X is invertible. The minimizer is unique since it is a solution to a linear equation.

2) the minimizer β is shown above.

Exercise 11:

- 1) For Ridge regression, derive a MAP interpretation. That is come up with a proper Bayesian setting where the MAP estimator corresponds to the Ridge estimator. You can consider a fixed design setting.
- 2) Reduce the general polynomial model

$$Y = \text{poly}_k(X) + \epsilon, \quad \mathbb{E}[\epsilon] = 0, \quad \epsilon \perp X,$$

to the linear model and derive a solution. Note that $\operatorname{poly}_k(X), x \in \mathbb{R}^d$ is any polynomial of some degree $k(k \geq 1)$, i.e.

$$\operatorname{poly}_k(X) = \sum_{\ell \in \mathbb{N}^d : \sum \ell_i \le k} w_\ell x^\ell$$

Answer:

1) Let us assume we have $Y = X^T \beta + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$, $\epsilon \perp X$. This means that,

$$f_{y_i|\beta_i,x_i} \sim \mathcal{N}(x_i^T \beta, \sigma^2)$$

By the fortune of hindsight, we pick the priori distribution to be

$$f_{\beta|x} \sim \mathcal{N}(0, I \frac{\sigma^2}{\lambda})$$

Thus, we write the MAP problem,

$$\arg\max_{\beta} f_{\beta|y,x} = \frac{f_{y|\beta,x}f_{\beta|x}}{f_{y|x}} \propto f_{y|\beta,x}f_{\beta|x} \propto e^{\sum_{i=1}^{n} -\frac{(y_i - x_i^T\beta)^2}{2\sigma^2}} \cdot e^{-\frac{\lambda}{\sigma^2}\beta^T\beta}$$

Now, taking the log,

$$\arg\max_{\beta} \sum_{i=1}^{n} -\frac{(y_i - x_i^T \beta)^2}{2\sigma^2} - \frac{\lambda}{\sigma^2} \beta^T \beta$$

Which flipping the signs and taking the min instead,

$$\arg \min_{\beta} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 + \lambda \|\beta\|^2$$

Which is the Ridge regression problem as desired.

2) We can choose to write the polynomial as

$$Y = AX + \epsilon$$

$$A = \begin{bmatrix} w^{\ell_{(0,0,\dots,0)}} & w^{\ell_{(0,1,\dots,0)}} & \dots & w^{\ell_{(k,0,\dots,0)}} & \dots \end{bmatrix}$$

$$X^{T} = \begin{bmatrix} x^{\ell_{(0,0,\dots,0)}} & x^{\ell_{(0,1,\dots,0)}} & \dots & x^{\ell_{(k,0,\dots,0)}} & \dots \end{bmatrix}$$

You can think of these vectors as all the possible combinations of the terms in the polynomials and the A matrix as the coefficients.

Where the ℓ 's satisfy $\sum \ell_i \leq k$. Now we can use the same techniques shown in question 10 and Ridge regression to solve for the solution.