NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for materialteknologi

Faglig kontakt under eksamen: Dagfinn Bratland, tlf. 93976

EKSAMEN I EMNE TMT4110 KJEMI

Lørdag 12. august 2006 kl. 0900-1300

Hjelpemidler: C

Trykte hjelpemidler: Aylward & Findlay: "SI Chemical Data" Formelark (siste ark i oppgaveteksten).

Sensuren faller uke 36 2006.

Skriv kort! Angi fremgangsmåte og vesentlig mellomregning ved løsning av regneoppgaver. Nødvendige data hentes fra "SI Chemical Data" dersom annet ikke er angitt.

Oppgave 1 (Tilsvarer deleksamen 1)

- a) Et metall M (s) reagerer fullstendig med HCl (aq) og danner H₂ (g) og en løsning av MCl₂ (aq). Skriv reaksjonligningen
 - Bestem atomvekten til M (s) når 5,000×10⁻³ mol M (s) reagerer og danner 0,9165 g MCl₂ (aq).
 - Hvilket metall M (s) var det som reagerte?
- b) Konsentrasjonen av løsninger angis oftest i molaritet, molalitet, molbrøk (molprosent) eller vektprosent.
 - Definer hver av disse begrepene.
 - Når er det aktuelt å bruke molalitet fremfor molaritet?

Oppgave 2 (Tilsvarer deleksamen 2)

- a) Hvordan defineres pH og p K_a
 - 25,0 mL HCl (aq) av ukjent konsentrasjon titreres med 0,100 M NaOH. Ved ekvivalenspunktet er totalvolumet av syren og tilsatt base lik 40,0 mL. Hva var konsentrasjonen av syre i løsningen før tilsats av base?
 - Hvor mange mL av 0,100 M NaOH må tilsettes HCl-løsningen for at pH skal bli 2,0?
- b) Basekonstanten, K_b , for den organiske basen trimetylamin er 6.5×10^{-5} . Beregn syrekonstanten, K_a , for trietylammoniumionet, $(CH_3)_3NH^+$.
 - Slå opp K_a for HCN i SICD. Beregn K_b for cyanidionet CN.

Oppgave 3 (Tilsvarer deleksamen 3)

a) – Betrakt reaksjonen mellom jern(III)oksyd og aluminium metall:

$$Fe_2O_3(s) + 2 Al(s) \rightarrow 2 Fe(s) + Al_2O_3(s)$$
 (1)

- Hvor mye varme utvikles når 1 mol Fe₂O₃ reagerer?
- -Hvilken temperatur får produktet hvis all reaksjonsvarmen blir igjen i reaksjonsproduktet?

b) - Beregn ΔH° ved 25 °C for reaksjonen

$$H_2SO_4(1) = 2 H^+ + SO_4^{2-} (aq)$$

- Hva blir temperaturen i vannet når 1 mol $\rm H_2SO_4$ (l) løses i 1 L vann og utgangstemperaturen er 0 °C? Gå ut fra at varmekapasiteten i svovelsyreløsningen er den samme som for rent vann.

Oppgave 4 (Tilsvarer deleksamen 4)

- a) Komplettér og balansér følgende reaksjonsligninger:
 - I sur løsning

$$Cr_2O_7^{2-} + H_2SO_3 = Cr^{3+} + HSO_4^{-}$$

- I basisk løsning

$$Cr(OH)_3 + IO_3 = CrO_4^2 + I^2$$

- b) Bruk standard reduksjonspotensialer i SICD for å beregne standard cellepotensial ved 25 °C for reaksjonen
 - 6 Br (aq) + $Cr_2O_7^{2-}$ (aq) + 14 H⁺ (aq) \rightarrow 3 Br₂ (l) + 2 Cr³⁺ (aq) 7 H₂O (l)
 - beregn også likevektskonstanten

Oppgave 5

- a) Beregn løseligheten av sølvsulfat, Ag₂SO₄, i hver av de følgende:
 - vann
 - 0,10 M AgNO₃
 - 0,20 M K₂SO₄
- b) Hva er forutsetningen for at den relative løseligheten av to salt kan sammenlignes direkte ved å sammenligne verdien av løselighetsproduktene?
 - -Bestem for hvert av de følgende to par av faste stoff, hvilket stoff som har lavest molar løselighet:
 - $CaF_2(s)$ eller $BaF_2(s)$.
 - Ca₃(PO₄)₂ eller FePO₄.

Oppgave 6

a) - Etan kan spaltes til eten og hydrogen. Reaksjonsligningen er

$$C_2H_6(g) = C_2H_4(g) + H_2(g)$$
 (1)

- Beregn ΔH° og ΔG° for reaksjonen ved 25 °C. (Pass på benevning!)
- Er reaksjonen endoterm eller eksoterm?
- Hvordan vil likevekten forskyves når vi øker temperaturen?
- b) Beregn likevektskonstanten til reaksjon (1) ved 25 °C
 - Anta at ΔH° og ΔS° er uavhengige av temperaturen, og beregn ΔG° for reaksjonen ved 727 °C.
 - Nevn i stikkords form momenter som underbygger denne antagelsen.
 - Hvorfor kan du ikke benytte tabellverdien for ΔG° i denne beregningen?

Oppgave 7

- a) -- Hva betyr det at en kjemisk reaksjon er av 2. orden?
 - Den generelle kjemiske reaksjon

$$A \to B + C \tag{1}$$

er av 2. orden. Angi den differensielle hastighetsligning.

- Bruk dette uttrykket til å utlede den integrerte hastighetsligning
- Hvordan kan aktiveringsenergien for en reaksjon reduseres?
- Gi et eksempel på en reaksjon der aktiveringsenergien er redusert.
- b) Ved 25 °C er hastighetskonstanten til reaksjon (1) $k = 1,10 \times 10^{-2}$ (mol L⁻¹)⁻¹ s⁻¹. Begynnelseskonsentrasjonen til A er 3,20 mol L⁻¹. Hvor lang tid vil det ta før begynnelseskonsentrasjonen til reaktant A er halvert?
 - Ved 40 °C halveres begynnelseskonsentrasjonen av A (det vil si 3,20 mol L⁻¹) på 12 s. Beregn aktiveringsenergien til reaksjon (1).

Oppgave 8

- a) Den såkalte "oktettregelen" er et nyttig hjelpemiddel for å foreslå molekylstrukturer. Forklar kort hva regelen går ut på.
 - Ammoniakk og bortrifluorid reagerer og danner en forbindelse

$$NH_3 + BF_3 = H_3NBF_3$$

Gi en forklaring på reaksjonen ut fra molekylenes lewisstruktur.

- -Vis lewisstrukturen til følgende molekyler: H₂O, HCl, BF₃, PCl₃.
- b) Gjør kort rede for elektronparfrastøtningsmodellen for molekylstrukturer. (VSEPR.) (2-3 setninger.)
 - Foreslå molekylgeometri og bindingsvinkler for H₂O og BrF₃ ved hjelp av denne modellen.

Oppgave 9

- a) Beskriv kort de tre typer kjemisk binding: Kovalent binding, ionebinding og metallbinding.
 - For hver av bindingstypene nevn tre eksempler på forbindelser.
 - Hva mener vi med begrepet "elektronegativitet"?
 - Hvorledes kan verdiene for grunnstoffenes elektronegativitet benyttes til å forutsi bindingenes natur i en forbindelse?
- b) Forklar hva som menes med hydrogenbinding
 - Angi kokepunktet for følgende stoff: HF, HCl, HBr, HI. (Jf. SICD.)
 - Hvorledes kan du fortolke variasjonen i disse dataene ved hjelp av ideen om hvdrogenbinding.
 - Tettheten for vann er høyere enn for is. Prøv å gi en kort forklaring på denne kjennsgjerning

Oppgave 10

- a) Nevn de ulike typer alkoholer.
 - Hva er en eter?
 - Hvorledes fremstilles eterne?
- b) Gi rasjonale navn (IUPAC-navn) på følgende forbindelser:

FORMEL	KOMMENTAR
PV = nRT	Ideell gass
$P_i = n_i RT/V (P_T = \sum_i P_i)$	Partialtrykk av i
$C = q / \Delta T$	Varmekapasitet
$\Delta E = q + w$	Endring i indre energi
H = E + PV	Entalpi
$\Delta H = q_p$	Konstant <i>P</i> . Bare volumarb.
$\Delta H^{\circ} = \sum \Delta H_{\rm f}^{\circ}$ (produkter) - $\sum \Delta H_{\rm f}^{\circ}$ (reaktanter)	Husk støkiometriske koeffisienter
$\Delta H_T^{\circ} = \Delta H_{298}^{\circ} + \Delta C_P^{\circ} \times \Delta T$	ΔC_p^o konstant
$ \ln\left(\frac{K_2}{K_1}\right) = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) $	ΔH og ΔS konstant
$dS = \frac{\mathrm{d}q_{\mathrm{rev}}}{T}$	Entropiendring
$\Delta S_T^\circ = \Delta S_{298}^\circ + \Delta C_P^\circ \ln \left(\frac{T}{298,15} \right)$	ΔC_p^o konstant
G = H - TS	Gibbs energi. Fri energi.
$\Delta G = \Delta H - T \Delta S$	Endring i fri energi ved konstant <i>T</i>
$\Delta G_T^{\circ} = \Delta H_{298}^{\circ} - T \Delta S_{298}^{\circ}$	$\Delta C_p^o \approx 0$
$\Delta G = \Delta G^o + RT \ln Q$	Reaksjonskvotient, Q
$G = G^{\circ} + RT \ln a$	Aktivitet (relativ), a
$\Delta G^{\circ} = -RT \ln K$	Likevektskonstant, K
$\Delta G = -nFE$	Cellepotensial, E
$Q = It = n_{e}F$	Elektrisk ladning
$E = E^{o} - \frac{RT}{nF} \ln Q = E^{o} - \frac{0,0592}{n} \log Q, 25^{\circ} \text{ C}$	Nernsts ligning
$r = -\frac{1}{a} \frac{d[A]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = k[A]^{l} [B]^{m} [C]^{n} [D]^{p}$ $Total orden = l + m + n + p$	Reaksjonshastighet for $aA + bB \rightarrow cC + dD$
$k = A e^{-\frac{E_a}{RT}}$	Hastighetskonstant, k Aktiveringsenergi, E_a