National University of Sciences & Technology School of Electrical Engineering and Computer Science

Department of Humanities and Sciences

MATH-232: Complex Variables and Transforms (3+0): BEE2k20-12ABC Spring 2022

Assignment – 1			
CLO-1 (Describe Complex functions, derivatives, contour integrals)			
Maximum Marks: 10	Instructor: Mr. Saeed Afzal		
Announcement Date: 18 th March 2022	Due Date: 25 th March 2022		

Instructions:

- Understanding the question is part of the assignment and copying is not allowed.
- Express your answer in the most simplified form. Direct calculations using calculator are not allowed, you need to show the detail of your work to get the maximum marks.
- This is an individual assignment.
- Assignment must be handwritten and properly arranged with page numbers These two pages must be part of every assignment.
- Assignment is not acceptable after deadline.

Tasks: Attempt all questions.

Stude	ents Name	NUST/Qalam ID	Section
Muhan	nmad Umer	345834	BEE 12C

Total Marks	Marks Obtained
10 Marks	

Q - 1: Find a suitable linear fractional transformation to study the steady state heat distribution for a circular plate of radius 1 ($|z| \le 1$) for which the upper edge (y > 0, |z| = 1) is held at constant temperature $\emptyset = -1$ and the lower edge (y < 0, |z| = 1) is held at constant temperature $\emptyset = 1$.

Q - 2: Find a suitable linear fractional transformation to study potential for a region (in the form of lens) common between two circles of radius 1 centered at 1 and i kept at constant potential $\mathbf{0} = \mathbf{1}$ and $\mathbf{0} = \mathbf{0}$, respectively.