CS 154

Lecture 12:
Foundations of Math and
Kolmogorov Complexity

Computability and the Foundations of Mathematics

The Foundations of Mathematics

A formal system describes a formal language for

- writing (finite) mathematical statements,
- has a definition of what statements are "true"
- has a definition of a proof of a statement

Example: Every TM M defines some formal system **F**

- {Mathematical statements in \mathcal{F} } = Σ^* String w represents the statement "M accepts w"
- {True statements in F} = L(M)
- A proof that "M accepts w" can be defined to be an accepting computation history for M on w

Consistency and Completeness

A formal system **F** is **consistent** or **sound** if no false statement has a valid proof in **F** (Proof in **F** implies Truth in **F**)

A formal system F is complete if every true statement has a valid proof in F (Truth in F implies Proof in F)

Interesting Formal Systems

Define a formal system F to be interesting if:

- 1. Any mathematical statement about computation can be (computably) described as a statement of \mathcal{F} . Given (M, w), there is a (computable) $S_{M,w}$ in \mathcal{F} such that $S_{M,w}$ is true in \mathcal{F} if and only if M accepts w.
- 2. Proofs are "convincing" a TM can check that a proof of a theorem is correct

 This set is decidable: {(S, P) | P a proof of S in F}
- 3. If S is in \mathcal{F} and there is a proof of S describable as a computation, then there's a proof of S in \mathcal{F} .

 If M accepts w, then there is a proof P in \mathcal{F} of $S_{M,w}$

Limitations on Mathematics

For every consistent and interesting F,

Theorem 1. (Gödel 1931) F is incomplete:

There are mathematical statements in **F** that are true but cannot be proved in **F**.

Theorem 2. (Gödel 1931) The consistency of \mathcal{F} cannot be proved in \mathcal{F} .

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in F has a proof is undecidable.

Unprovable Truths in Mathematics

(Gödel) Every consistent interesting F is incomplete: there are true statements that cannot be proved.

Let S_{M, w} in F be true if and only if M accepts w

Proof: Define Turing machine **G**(x):

- 1. Obtain own description **G** [Recursion Theorem]
- 2. Construct statement $S' = \neg S_{G, \epsilon}$
- 3. Search for a proof of S' in F over all finite length strings. Accept if a proof is found.

Claim: S' is *true* in \mathcal{F} , but has no proof in \mathcal{F} S' basically says "There is no proof of S' in \mathcal{F} "

(Gödel 1931) The consistency of F cannot be proved within any interesting consistent F

Proof: Suppose we can prove " \mathcal{F} is consistent" in \mathcal{F} We constructed $\neg S_{G, \epsilon} =$ "G does not accept ϵ "
which we showed is *true*, but *has no proof* in \mathcal{F} G does not accept $\epsilon \Leftrightarrow \Gamma$ There is no proof of $\neg S_{G, \epsilon}$ in \mathcal{F}

But if there's a proof in \mathcal{F} of " \mathcal{F} is consistent" then there is a proof in \mathcal{F} of $\neg S_{G, \varepsilon}$ (here's the proof):

"If $S_{G,\epsilon}$ is true, then there is a proof in \mathcal{F} of $\neg S_{G,\epsilon}$. \mathcal{F} is consistent, therefore $\neg S_{G,\epsilon}$ is true. But $S_{G,\epsilon}$ and $\neg S_{G,\epsilon}$ cannot both be true. Therefore, $\neg S_{G,\epsilon}$ is true"

This contradicts the previous theorem.

Undecidability in Mathematics

PROVABLE_F = {S | there's a proof in \mathcal{F} of S, or there's a proof in \mathcal{F} of \neg S}

(Church-Turing 1936) For every interesting consistent \mathcal{F} , PROVABLE, is undecidable

Proof: Suppose PROVABLE $_{\sigma}$ is decidable with TM P.

Then we can decide A_{TM} using the following procedure:

On input (M, w), run the TM P on input S_{M,w}

If P accepts, examine all possible proofs in F

If a proof of $S_{M,w}$ is found then accept If a proof of $-S_{M,w}$ is found then reject

If P rejects, then reject.

Why does this work?

Kolmogorov Complexity: A Universal Theory of Data Compression

The Church-Turing Thesis:

Everyone's
Intuitive Notion = Turing Machines
of Algorithms

This is not a theorem — it is a falsifiable scientific hypothesis.

A Universal Theory of Computation

Is there a Universal Theory of *Information*?

Can we quantify how much *information* is contained in a string?

A = 010101010101010101010101010101

B = 110010011101110101101001011001011

Idea: The more we can "compress" a string, the less "information" it contains....

Information as Description

Thesis: The amount of information in a string

= Shortest way of describing that string

How should we "describe" strings?

Use Turing machines with inputs!

Let $x \in \{0,1\}^*$

Definition: The shortest description of x, denoted as d(x), is the lexicographically shortest string <M,w> such that M(w) halts with only x on its tape.

A Specific Pairing Function

Theorem. There is a 1-1 computable function $<,>: \Sigma^* \times \Sigma^* \to \Sigma^*$ and computable functions π_1 and $\pi_2: \Sigma^* \to \Sigma^*$ such that:

$$z = \langle M, w \rangle$$
 iff $\pi_1(z) = M$ and $\pi_2(z) = w$

For $x_i \in \Sigma$, let $Z(x_1 x_2 ... x_k) = 0 x_1 0 x_2 ... 0 x_k 1$ Then we can define:

$$:=Z(M)w$$

(Example: <10110,101> = 01000101001101)

Note that
$$|| = 2|M| + |w| + 1$$

Kolmogorov Complexity (1960's)

Definition: The shortest description of x, denoted as d(x), is the lexicographically shortest string <M,w> such that M(w) halts with only x on its tape.

Definition: The Kolmogorov complexity of x, denoted as K(x), is |d(x)|.

EXAMPLES??

Let's first determine some properties of K. Examples will fall out of this.

Kolmogorov Complexity

Theorem: There is a fixed c so that for all x in $\{0,1\}^*$ $K(x) \le |x| + c$

"The amount of information in x isn't much more than |x|"

Proof: Define a TM M = "On input w, halt."On any string x, M(x) halts with x on its tape. Let c = 2|M|+1Then $K(x) \le |\langle M, x \rangle| \le 2|M| + |x| + 1 \le |x| + c$

Repetitive Strings have Low Information

Theorem: There is a fixed c so that for all $x \in \{0,1\}^*$ $K(xx) \le K(x) + c$

"The information in xx isn't much more than that in x"

Proof: Let N = "On < M, w>, let s = M(w). Print ss."

Suppose <M,w> is the shortest description of x.

Then <N,<M,w>> is a description of xx

Therefore

$$K(xx) \le |\langle N, \langle M, w \rangle \rangle| \le 2|N| + |\langle M, w \rangle| + 1$$

 $\le 2|N| + K(x) + 1 \le c + K(x)$

Repetitive Strings have Low Information

```
Corollary: There is a fixed c so that for all n \ge 2, and all x \in \{0,1\}^*, K(x^n) \le K(x) + c \log n
```

"The information in x" isn't much more than that in x"

```
Proof: Define the TM

N = "On input <n,M,w>,

Let x = M(w). Print x for n times."
```

Let <M,w> be the shortest description of x. Then $K(x^n) \le K(<N,<n,M,w>>) \le 2|N| + d log n + K(x)$ $\le c log n + K(x)$ for some constant c and d

Repetitive Strings have Low Information

Corollary: There is a fixed c so that for all $n \ge 2$, and all $x \in \{0,1\}^*$, $K(x^n) \le K(x) + c \log n$

"The information in x" isn't much more than that in x"

Recall:

A = 010101010101010101010101010101

For $w = (01)^n$, $K(w) \le K(01) + c \log_2 n$

So for all n, $K((01)^n) \le d + c \log_2 n$ for a fixed c, d

Does The Computational Model Matter?

Turing machines are one "programming language." If we use other programming languages, could we get significantly shorter descriptions?

An interpreter is a "semi-computable" function

$$p: \Sigma^* \to \Sigma^*$$

Takes programs as input, and (may) print their outputs

Definition: Let $x \in \{0,1\}^*$. The shortest description of x under p, called $d_p(x)$, is the lexicographically shortest string w for which p(w) = x.

Definition: The K_p complexity of x is $K_p(x) := |d_p(x)|$.

Does The Computational Model Matter?

Theorem: For every interpreter p, there is a integer c so that for all $x \in \{0,1\}^*$, $K(x) \le K_p(x) + c$

Moral: Using another programming language would only change K(x) by some additive constant

Proof: Define M = "On w, simulate p(w) and write its output to tape"

Then $< M, d_p(x) > is$ a description of x, and

$$K(x) \le |\langle M, d_p(x) \rangle|$$

 $\le 2|M| + K_p(x) + 1 \le c + K_p(x)$

There Exist Incompressible Strings

Theorem: For all n, there is an $x \in \{0,1\}^n$ such that $K(x) \ge n$

"There are incompressible strings of every length"

Proof: (Number of binary strings of length n) = 2ⁿ but (Number of descriptions of length < n) ≤ (Number of binary strings of length < n) = 1 + 2 + 4 + ··· + 2ⁿ⁻¹ = 2ⁿ - 1

Therefore there is at least one n-bit string x that does not have a description of length < n

Random Strings Are Incompressible!

```
Theorem: For all n and c \ge 1,
\Pr_{x \in \{0,1\}^n}[K(x) \ge n-c] \ge 1 - 1/2^c
```

"Most strings are highly incompressible"

Proof: (Number of binary strings of length n) = 2ⁿ but (Number of descriptions of length < n-c) ≤ (Number of binary strings of length < n-c) = 2^{n-c} - 1

Hence the probability that a $random \times satisfies$ K(x) < n-c

is at most $(2^{n-c}-1)/2^n < 1/2^c$.

Give short algorithms for generating the strings:

- 1. 01000110110000010100111001011101110000
- 2. 123581321345589144233377610987
- 3. 126241207205040403203628803628800

Give short algorithms for generating the strings:

- 1. 01000110110000010100111001011101110000
- 2. 123581321345589144233377610987
- 3. 126241207205040403203628803628800

Give short algorithms for generating the strings:

- 1. 01000110110000010100111001011101110000
- 2. 123581321345589144233377610987
- 3. 126241207205040403203628803628800

Give short algorithms for generating the strings:

- 1. 01000110110000010100111001011101110000
- **2.** 123581321345589144233377610987
- 3. 126241207205040403203628803628800

This seems hard to determine in general. Why? We'll give a formal answer in just one moment...

KOLMOGOROV DIRECTIONS

WHEN PEOPLE ASK FOR STEP-BY-STEP DIRECTIONS, I WORRY THAT THERE WILL BE TOO MANY STEPS TO REMEMBER, SO I TRY TO PUT THEM IN MINIMAL FORM.

Determining Compressibility

Can an algorithm perform optimal compression? Can algorithms tell us if a given string is compressible?

COMPRESS = $\{(x,c) \mid K(x) \le c\}$

Theorem: COMPRESS is undecidable!

Intuition: If decidable, we could design an algorithm that prints the **shortest incompressible string of length n**

But such a string could then be succinctly described, by providing the algorithm code and n in binary!

Berry Paradox: "The smallest integer that cannot be defined in less than thirteen words."

Determining Compressibility $COMPRESS = \{(x,c) \mid K(x) \le c\}$

Theorem: COMPRESS is undecidable!

Proof: Suppose it's decidable. Consider the TM:

M = "On input $x \in \{0,1\}^*$, interpret x as a number N. For all $y \in \{0,1\}^*$ in lexicographical order, If $(y,N) \notin COMPRESS$ then print y and halt."

M(x) prints the shortest string y' with K(y') > N.

But $< M, x > describes y', and <math>|< M, x > | \le d + log N$

So N < $K(y') \le d + 2 \log N$. CONTRADICTION!