Centroiding Point-Objects with Event Cameras

Dr. Scott McCloskey

Presentation Outline: EBS-base Centroiding

- Problem definition
- Motivating applications of EBS-based centroiding
- Analytical model and theoretical bounds
- Dataset collection
- LSTM-based Centroiding approach
- Experimental results
- Summary & conclusions

Technology: **Event-Based Sensors**

Advantages

- Low latency (<100us)
- Low power consumption/less wasted energy
- High dynamic range

Image Frame

Event "Frame"

Intensity

Challenges:

- Sparse/few events in small time batches
- Non-Gaussian spatial event distribution
- Event distribution depends on object brightness and velocity

Events Negative

Events

[1] Benson et al. "Simulation and analysis of event camera data for non-resolved objects." The Journal of the Astronautical Sciences 71.1 (2023): 3. [2] Hu et al. "v2e: From video frames to realistic DVS events." Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition. 2021.

Technology: **Event-Based Sensors**

- Advantages
 - Low latency (<100us)
 - **Approach**: Estimate an unresolved object's *centroid and velocity* in <20ms by leveraging the spatial cues in the event distribution
 - Develop an analytical model of event distributions
 - Create centroiding dataset from a high-speed monitor
 - Train a SOTA centroiding model for 5ms and 20ms time batches
 - Compare performance against theoretical bounds

and velocity

Intensity

[1] Benson et al. "Simulation and analysis of event camera data for non-resolved objects." The Journal of the Astronautical Sciences 71.1 (2023): 3. [2] Hu et al. "v2e: From video frames to realistic DVS events." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.

Kitware's EBS Work & Motivating Applications

Event-based star tracking Poster #108, Friday afternoon

Meteor detection and classification [1]

Closed-Form Event Distribution Model

In low-light, each EBS pixel acts as a low-pass filter (LPF) [3]:

 With some simple assumptions, we can achieve a closed-form solution that facilitates advanced analysis

Event Distribution Comparisons

Unresolved Object

Conventional Models

- Speed, position, and intensity are all spatially coupled
- Therefore, spatial cues lend important information
- Analytical results align with captured dataset

Cramér-Rao Bounds (CRB)

[4] Shah, Sachin, et al. "Codedevents: optimal point-spread-function engineering for 3d-tracking with event cameras." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024.

Sample-normalized CRB can be analytically calculated with the closed-form model

Object Centroid Sample-Normalized CRB

Object Speed Sample-Normalized CRB

(lower CRB = more accurate estimator)

Two main takeaways:

<u>Temporal</u> information is **not as important** for small time batches

Cramér-Rao Bounds (CRB)

[4] Shah, Sachin, et al. "Codedevents: optimal point-spread-function engineering for 3d-tracking with event cameras." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024.

Sample-normalized CRB can be analytically calculated with the closed-form model

Object Centroid Sample-Normalized CRB

Object Speed Sample-Normalized CRB

(lower CRB = more accurate estimator)

Two large takeaways:

- <u>Temporal</u> information is **not as important** for small time batches
- Negative events are useful in estimating velocity

Centroiding Dataset

To train a model to leverage these spatial cues, we collect a point-object centroiding dataset

Centroiding Dataset

To train a model to leverage these spatial cues, we collect a point-object centroiding dataset

Camera	Length	# Unique	# Unique 5ms
Resolution	(time)	Objects	Event Streams
1280x720	3 hours	10,588	2,117,600

Calibration	Obj Event	Obj Inten	Obj Size	Obj Vel
Error	Rates	Range	Range	Range
\sim 0.2 pixels	2 to 20kHz	8 to 300 μ lux	1 to 8 pixels	15 to 350 pix/s

Examples of Dataset Capture

Monitor Video Resulting Events

LSTM-based EBS Centroiding Approach

- Model: 3-layer LSTM, 500k total parameters
- Feed each event in one at a time, observe the output after the last event

Centroiding Results

Centroiding Results

Tested on 85,000 5ms and 20ms event streams Best results **bolded**, second-best <u>underlined</u>

- Centroiding Results:Compared to previous
 - methods, the proposed model has...
 - ~2x location accuracy
 - ~5x speed accuracy

			(a) 5ms time	batch	
	Method	Events	Location	SMAPE Speed	Angular
	Method	Used	Error (pix)	Error (%)	Error (deg)
	Mean Cent.	Pos	1.74 ± 1.45	112.30 ± 56.60	72.42 ± 48.89
	Mean Cent.	Pos, Neg	6.60 ± 3.00	136.82 ± 51.08	15.91 ± 36.80
	Inten. Recon.	Pos, Neg	1.76 ± 1.47	111.27 ± 56.31	72.23 ± 48.76
	Gauss MLE	Pos	2.34 ± 2.00	102.34 ± 57.13	67.93 ± 48.74
-	LSTM Model	Pos, Neg	$\textbf{0.95} \pm \textbf{0.70}$	17.75 ± 17.10	$\textbf{15.54} \pm \textbf{30.60}$

/ \ F (1 1 1

(b) 20ms time batch 28.59 ± 35.87 Mean Cent. Pos 2.19 ± 1.36 42.04 + 44.62 64.47 ± 48.53 12.94 + 35.25Mean Cent. Pos, Neg 7.51 ± 2.68 41.77 + 44.34 28.56 ± 35.91 Inten. Recon. Pos, Neg 1.68 ± 1.33 Gauss MLE 1.76 ± 1.38 36.79 ± 41.38 26.01 ± 34.80 Pos

 10.66 ± 10.35

 0.76 ± 0.54

LSTM Model

Pos, Neg

 6.27 ± 10.48

5ms Time-Batch Centroiding Ablation Study

Event Information			Metrics		
Pos	Neg	Event	Loc	Speed	Angular
Events	Events	Order	Err (pix)	Err (%)	Err (deg)
✓	√	✓	0.95	17.7	15.5
\checkmark	\checkmark	X	0.95	17.4	15.5
√	X	\checkmark	1.08	37.3	45.4
X	\checkmark	\checkmark	2.81	25.9	17.8

- Removing timestamps/event order does not affect model accuracy
 - Majority of information is in the spatial distribution for small time batches
- Positive events are important for location estimation
- Negative events are important for velocity estimation

5ms Time-Batch Centroiding Ablation Study

Object Pr	iors		Metrics	
Size +	Vel	Loc	Speed	Angular
Inten Info	Info	Err (pix)	Err (%)	Err (deg)
√	√	0.81	NA	NA
\checkmark	X	0.88	16.0	16.3
X	X	0.95	17.7	15.5

- Priors (size, intensity, and velocity) only offer minor improvement
- This suggests that the network can successfully decorrelate these effects

Cramér-Rao Bounds (CRB)

- We can compare the model's accuracy to CRB limitations
- Unlike previous analytical CRB, this is empirically calculated via the dataset
- Our model's accuracy approaches that limit or at least adopts a similar shape

Objective: leverage the spatiotemporal distribution of events to better localize unresolved objects in <20ms

- <u>Objective</u>: leverage the spatiotemporal distribution of events to better localize unresolved objects in <20ms
- Analytical model demonstrates that the spatial distribution is dependent on the object speed, intensity, and location

- <u>Objective</u>: leverage the spatiotemporal distribution of events to better localize unresolved objects in <20ms
- Analytical model demonstrates that the spatial distribution is dependent on the object speed, intensity, and location
- Proposed lightweight LSTM model can localize an object within a pixel and estimate velocity within 17% with just 5ms of events

- Objective: leverage the spatiotemporal distribution of events to better localize unresolved objects in <20ms
- Analytical model demonstrates that the spatial distribution is dependent on the object speed, intensity, and location
- Proposed lightweight LSTM model can localize an object within a pixel and estimate velocity within 17% with just 5ms of events
- Our model's performance can be compared to the Cramér-Rao Bounds (CRB)

- <u>Objective</u>: leverage the spatiotemporal distribution of events to better localize unresolved objects in <20ms
- Analytical model demonstrates that the spatial distribution is dependent on the object speed, intensity, and location
- Proposed lightweight LSTM model can localize an object within a pixel and estimate velocity within 17% with just 5ms of events
- Our model's performance can be compared to the Cramér-Rao Bounds (CRB)
- Additional results include more ablation studies, additional analysis, and performance on star tracking
- Dataset/code: https://gitlab.kitware.com/nest-public/ebs-datadriven-centroiding

