Learning Weighted Automata over Principal Ideal Domains

Gerco van Heerdt Clemens Kupke Jurriaan Rot Alexandra Silva

April 29, 2020

L* setup for DFAs

Finite alphabet A

System behaviour captured by a **regular language** $\mathcal{L} \subseteq A^*$

 L^{\star} learns *minimal* DFA for \mathcal{L}

L* setup for DFAs

Finite alphabet A

System behaviour captured by a **regular language** $\mathcal{L} \subseteq A^*$

 \mathtt{L}^{\star} learns minimal DFA for $\mathcal L$ assuming an oracle that answers

Membership queries

$$w \in \mathcal{L}$$
?

L* setup for DFAs

Finite alphabet A

System behaviour captured by a **regular language** $\mathcal{L} \subseteq A^*$

 \mathtt{L}^{\star} learns minimal DFA for $\mathcal L$ assuming an oracle that answers

Membership queries

$$w \in \mathcal{L}$$
?

Equivalence queries

$$\mathcal{L}(H) = \mathcal{L}$$
?

Negative result ⇒ counterexample

L* algorithm (variation) for DFAs

 $S, E \subseteq A^*$ induce a table

L* algorithm (variation) for DFAs

 $S, E \subseteq A^*$ induce a table

$$S \left\{ \begin{array}{c|ccc} & \varepsilon & \mathbf{a} \\ \hline & \varepsilon & 1 & 0 \\ \hline & a & 0 & 1 \\ \hline & aa & 1 & 0 \\ \hline & aaa & 0 & 1 \end{array} \right. \quad \mathcal{L} = \left\{ a^n \mid n \text{ is even} \right\}$$

Initially
$$S = E = \{\varepsilon\}$$

Repeat until no more counterexamples:

- 1. Close table
- 2. Query equivalence for corresponding hypothesis
- 3. Add suffixes of counterexample to *E*

$$a^n \in \mathcal{L} \iff n \equiv 0 \pmod{3}$$

	ε	a	aa	aaa	
ε	1	0	0	1	$-\sqrt{1}$
a	0	0	1	0	
aa	0	1	0	0	

	ε	a	aa	aaa
ε	1	0	0	1
a	0	0	1	0
aa	0	1	0	0
aaa	1	0	0	1

DFAs vs WFAs

 ${\cal S}$ semiring, ${\it FQ}$ free semimodule over ${\it Q}$

DFA	WFA
initial state in Q	initial state in FQ
$Q \downarrow \ 2 imes Q^A$	$Q \downarrow \ \mathcal{S} imes (\mathit{FQ})^A$

DFAs vs WFAs

 ${\cal S}$ semiring, ${\it FQ}$ free semimodule over ${\it Q}$

Interpretation: weighted language $A^* o \mathcal{S}$

- multiply weights along paths and with final output
- sum over paths

Membership queries:

return output value associated with word

Membership queries:

return output value associated with word

Equivalence queries:

submit hypothesis WFA, counterexample = word on which outputs differ

Membership queries:

return output value associated with word

Equivalence queries:

submit hypothesis WFA, counterexample = word on which outputs differ

Cells:

output values in ${\cal S}$ instead of 0,1

Membership queries:

return output value associated with word

Equivalence queries:

submit hypothesis WFA, counterexample = word on which outputs differ

Cells:

output values in ${\cal S}$ instead of 0,1

Closedness:

each lower row a linear combination of upper rows

General (weighted) L*

Initially
$$S = E = \{\varepsilon\}$$

Repeat until no more counterexamples:

- 1. Close table
- 2. Query equivalence for corresponding hypothesis
- 3. Add suffixes of counterexample to *E*

Example over $\mathbb Q$

$$\mathcal{L}(a^n) = 2^n - 1$$

$$\mathcal{L}(a^n) = 2^n - 1$$

$$\begin{array}{c} 1a & 2a \\ \hline 0 & 1a \\ \hline \varepsilon & 0 \\ \hline a & 1 \\ \end{array}$$

Example over $\mathbb Q$

$$\mathcal{L}(a^n)=2^n-1$$

	ε	a	aa	aaa
ε	0	1	3	7
a	1	3	7	15
aa	3	7	15	31

$$\mathcal{L}(a^n)=2^n-1$$

	ε	a	aa	aaa
ε	0	1	3	7
a	1	3	7	15
aa	3	7	15	31

Termination of the general algorithm

Algorithm terminates assuming

progress measure with bound

Number, increases when rows separate via extra column

Termination of the general algorithm

Algorithm terminates assuming

- progress measure with bound
 - Number, increases when rows separate via extra column
- **ascending chain condition** on Hankel matrix (table (A^*, A^*))

Subsemimodule chains converge: if

$$S_1 \subseteq S_2 \subseteq \cdots \subseteq H$$

are subsemimodules, then there exists $n \in \mathbb{N}$ s.t.

$$S_n = S_{n+1} = S_{n+2} = \cdots$$

Assume

- progress measure with bound
- ascending chain condition on Hankel matrix

Assume

- progress measure with bound
- ascending chain condition on Hankel matrix

Modules generated by (S_n, A^*) form chain below Hankel matrix

Converges, from that point on closedness guaranteed

Assume

- progress measure with bound
- ascending chain condition on Hankel matrix

Modules generated by (S_n, A^*) form chain below Hankel matrix

Converges, from that point on closedness guaranteed

Abstract result \implies counterexample leads to either

- closedness defect or
- rows distinguished by new column

Assume

- progress measure with bound
- ascending chain condition on Hankel matrix

Modules generated by (S_n, A^*) form chain below Hankel matrix

Converges, from that point on closedness guaranteed

Abstract result ⇒ counterexample leads to either

- closedness defect or
- rows distinguished by new column

Bounded progress measure \implies finitely many counterexamples

Main ingredients for effective terminating algorithm

- 1. Progress measure with bound
- 2. Ascending chain condition on Hankel matrix
- 3. Procedure to determine/fix closedness: solvability of finite system of linear equations

WFAs over field: no problem

- 1. Progress measure and bound
 - ▶ Dimension of vector space spanned by table
 - ▶ ≤ minimal WFA size

WFAs over field: no problem

- 1. Progress measure and bound
 - Dimension of vector space spanned by table
 - < minimal WFA size</p>
- 2. Ascending chain condition
 - ▶ Vector space dimension increases with strict inclusion
 - ► Minimal WFA size = Hankel matrix dimension

WFAs over field: no problem

- 1. Progress measure and bound
 - Dimension of vector space spanned by table
 - < minimal WFA size</p>
- 2. Ascending chain condition
 - Vector space dimension increases with strict inclusion
 - Minimal WFA size = Hankel matrix dimension
- 3. Procedure to determine/fix closedness
 - Gaussian elimination

WFAs over finite semiring: naive algorithm

- 1. Progress measure and bound
 - ► Set size of semimodule spanned by table
 - ▶ ≤ determinisation of correct automaton

WFAs over finite semiring: naive algorithm

- 1. Progress measure and bound
 - ► Set size of semimodule spanned by table
 - ▶ ≤ determinisation of correct automaton
- 2. Ascending chain condition
 - ► Hankel matrix size < determinisation of correct automaton

WFAs over finite semiring: naive algorithm

- 1. Progress measure and bound
 - ► Set size of semimodule spanned by table
 - determinisation of correct automaton
- 2. Ascending chain condition
 - ► Hankel matrix size < determinisation of correct automaton
- 3. Procedure to determine/fix closedness
 - Try all linear combinations of rows

WFAs over \mathbb{N} : termination issue

$$\mathcal{L}(a^n) = 2^n - 1$$

WFAs over N: termination issue

WFAs over N: termination issue

WFAs over N: termination issue

Analysis: overweight finite automaton

Infinite chain of strict semimodule embeddings

- Ascending chain condition fails
- Hankel matrix not even finitely generated

Contribution: WFAs over PID

Principal ideal domain = integral domain with all ideals principal

Integral domain: commutative ring,

$$ab = 0 \implies a = 0 \lor b = 0$$

Contribution: WFAs over PID

Principal ideal domain = integral domain with all ideals principal

Integral domain: commutative ring, $ab = 0 \implies a = 0 \lor b = 0$

All ideals principal: generated by one element

Contribution: WFAs over PID

Principal ideal domain = integral domain with all ideals principal

Integral domain: commutative ring, $ab = 0 \implies a = 0 \lor b = 0$

All ideals principal: generated by one element

Examples: \mathbb{Z} , $\mathbb{Z}[i]$, K[x] for K a field

PID free module properties

A module is free if and only if it is **torsion free**: $pm = 0 \implies p = 0 \lor m = 0$

PID free module properties

A module is free if and only if it is **torsion free**:

$$pm = 0 \implies p = 0 \lor m = 0$$

A submodule of a finitely generated free module is

- free and finitely generated
- with smaller (or equal) rank

PID free module properties

A module is free if and only if it is **torsion free**:

$$pm = 0 \implies p = 0 \lor m = 0$$

A submodule of a finitely generated free module is

- free and finitely generated
- with smaller (or equal) rank

If a finitely generated free module is a quotient of another, its rank is smaller or equal

Progress measure for PIDs

Table modules are torsion free and thus free

Measure: rank of table module

Progress measure for PIDs

Table modules are torsion free and thus free

Measure: rank of table module

Bound: Hankel matrix rank

Progress measure for PIDs

Table modules are torsion free and thus free

Measure: rank of table module

Bound: Hankel matrix rank

Progress (general fact): for X, Y finite sets and

- $ightharpoonup FX \xrightarrow{f} FY$ a surjective homomorphism
- that identifies some elements

we have |X| > |Y|

Learning WFAs over PIDs

- 1. Progress measure and bound
 - Rank of the module spanned by the table
 - ► ≤ rank of the Hankel matrix

Learning WFAs over PIDs

- 1. Progress measure and bound
 - Rank of the module spanned by the table
 - ► ≤ rank of the Hankel matrix
- 2. Ascending chain condition
 - Yes:) (basis of the union of the chain included in a chain element)

Learning WFAs over PIDs

- 1. Progress measure and bound
 - ▶ Rank of the module spanned by the table
 - < rank of the Hankel matrix</p>
- 2. Ascending chain condition
 - Yes:) (basis of the union of the chain included in a chain element)
- 3. Procedure to determine/fix closedness
 - Solve equations via Smith normal form (exists for PIDs)

Future work

Even bigger classes of semirings

Future work

Even bigger classes of semirings

Stronger negative results

Future work

Even bigger classes of semirings

Stronger negative results

Conditions on the monad