DNA00

August 2, 2016

1 Table of Contents

1 Introduction

- 1.1 Dynamic Network Analysis of Enron Email Network Data
- 1.2 Data Preprocessing
- 1.3 Key Assumption
- 2 Import Libraries
- 3 Import Data
- 4 Data Partition
- 4.1 Break data into years
- 4.2 Create networks at different timesteps
- 4.2.1 t = 0
- 4.2.2 t = 1
- 4.2.3 t = 2
- 4.2.4 t = 3
- 4.2.5 t = 4
- 4.2.6 t = 5
- 5 Network Statistics
- 5.1 Centrality analysis without averaging
- 5.1.1 Calculate all centralities in one go
- 5.1.2 Degree Centrality
- 5.1.3 Eigenvector Centrality Histograms
- 5.1.4 Closeness Centrality Histograms
- 5.1.5 Betweenness Centrality Histogram
- 5.1.6 Communicability Centrality Histograms
- 5.1.7 Katz Centrality Histograms
- 5.1.8 Load Centrality
- 5.2 Centrality Analysis with averaging
- 5.2.1 Calculate Centrality Statistics at different time steps
- 6 Assortativity Analysis

2 Introduction

2.1 Dynamic Network Analysis of Enron Email Network Data

I use the Enron email network data from John Hopkins which has time, sender and receiver pair format data.

2.2 Data Preprocessing

From the JHU data, I have done the following in Excel: - The first column represents seconds elapsed since 1 January 1970, so I convert this in to days - I then add these days to the date to get time stamps for all nodes - From the timestamps, I extract the year field - The network can be partitioned by year in a cumulative manner for DNA

2.3 Key Assumption

The key assumptio in this analysis is that the nodes can be appended to the original network at time, t0 with the new nodes from time, t+1.

3 Import Libraries

```
In [1]: import pandas as pd
        import numpy as np
        import networkx as nx
        import seaborn as sns
        import matplotlib.pyplot as plt
        import scipy as sc
        %matplotlib inline
        sns.set(style="whitegrid", color_codes=True, context='paper')
        import random
        random.seed(1111111111111)
        plt.rc('axes', grid=False, titlesize='large', labelsize='medium', labelweigh
        plt.rc('lines', linewidth=4)
        plt.rc('font', family='serif', size=12, serif='Georgia')
        plt.rc('figure', figsize = (15,6),titlesize='large',titleweight='heavy')
        plt.rc('grid', linewidth=3)
        sns.set_palette('cubehelix')
        from scipy.signal import *
        from numpy.linalg import *
```

4 Import Data

```
In [2]: data = pd.read_excel("../Data/execs.email.linesnum.xlsx")
In [3]: data.head()
Out [3]:
                      to
                            from
                                                date
                 sec
                                                       year
           315522000
                                                       1979
        0
                       24
                            153 1979-12-31 21:00:00
        1 315522000
                       24
                             153 1979-12-31 21:00:00
                                                      1979
                              29 1979-12-31 21:00:00
        2 315522000
                       29
                                                       1979
           315522000
                       29
                              29 1979-12-31 21:00:00
                                                       1979
           315522000
                       29
                              29 1979-12-31 21:00:00
                                                      1979
In [4]: data.min()
```

```
Out[4]: sec
                           315522000
        to
                                    0
        from
                                    0
        date
                1979-12-31 21:00:00
                                 1979
        year
        dtype: object
In [5]: data.max()
Out[5]: sec
                          1024688419
        to
                                  183
        from
                                  183
        date
                2002-06-21 19:40:19
        year
                                 2002
        dtype: object
```

5 Data Partition

```
In [6]: #year = data['year'].unique()
        year = sorted(set(data['year']))
        year
Out[6]: [1979, 1998, 1999, 2000, 2001, 2002]
In [7]: sorted(set(data['year']))
Out[7]: [1979, 1998, 1999, 2000, 2001, 2002]
In [8]: data.drop(["sec", "date"], axis=1,inplace=True)
In [9]: data.head()
Out [9]:
           to
                from
                     year
            24
                 153
                      1979
        1
            2.4
                 153
                     1979
            29
        2
                  29
                     1979
        3
            29
                  29
                     1979
            29
                  29
                      1979
```

5.1 Break data into years

```
In [10]: G0 = data[data["year"]==year[0]]
        G1 = data[data["year"]==year[1]]
        G2 = data[data["year"]==year[2]]
        G3 = data[data["year"]==year[3]]
        G4 = data[data["year"]==year[4]]
        G5 = data[data["year"]==year[5]]
In [11]: G1.size,G1.shape
```

```
Out[11]: (246, (82, 3))
In [12]: G2.size, G1.shape
Out[12]: (11145, (82, 3))
In [13]: G3.size, G1.shape
Out[13]: (132177, (82, 3))
In [14]: G3.size, G1.shape
Out[14]: (132177, (82, 3))
In [15]: G4.size, G1.shape
Out[15]: (206664, (82, 3))
In [16]: G5.size,G1.shape
Out[16]: (25473, (82, 3))
In [17]: G1.head()
Out [17]:
              to
                    from
                          year
         174
              114
                     169
                          1998
         175
              114
                     169
                          1998
         176
              114
                     123
                          1998
         177
              114
                     123
                          1998
         178
              114
                     123
                          1998
In [18]: G1.tail()
Out [18]:
              to
                    from
                          year
         251
              112
                      65
                          1998
         252
              112
                     114
                          1998
         253
              112
                     114
                          1998
         254
              112
                     145
                          1998
         255
              112
                     145
                          1998
In [19]: G2.head()
Out[19]:
                    from
              to
                          year
         256
              114
                      65
                          1999
         257
              114
                      65
                          1999
         258
              114
                     169
                          1999
         259
              114
                     169
                          1999
         260
              114
                     112
                          1999
In [20]: G3.head()
Out [20]:
               to
                     from year
         3971
                       51
                 82
                           2000
         3972
                 82
                       51
                           2000
         3973
                 82
                       51
                           2000
         3974
                 82
                       51
                           2000
         3975
                 82
                           2000
                       51
```

5.2 Create networks at different timesteps

```
5.2.1 t = 0
In [21]: GO_{-} = np.asarray(GO.ix[:,:2])
         Gt0 = nx.Graph()
         Gt0= nx.from_edgelist(G0_)
5.2.2 t = 1
In [22]: G1_ = G1.ix[:,:2]
         G1_ = np.concatenate((G1_,G0_), axis=0)
         Gt1 = nx.Graph()
         Gt1= nx.from_edgelist(G1_)
5.2.3 \quad t = 2
In [23]: G2_ = G2.ix[:,:2]
         G2_ = np.concatenate((G2_,G1_), axis=0)
         Gt2 = nx.Graph()
         Gt2= nx.from_edgelist(G2_)
5.2.4 t = 3
In [24]: G3_ = G3.ix[:,:2]
         G3_ = np.concatenate((G3_,G2_), axis=0)
         Gt3 = nx.Graph()
         Gt3= nx.from_edgelist(G3_)
5.2.5 t = 4
In [25]: G4_ = G4.ix[:,:2]
         G4_ = np.concatenate((G4_,G3_), axis=0)
         Gt4 = nx.Graph()
         Gt4= nx.from_edgelist(G4_)
5.2.6 \quad t = 5
In [26]: G5_ = G5.ix[:,:2]
         G5_{-} = np.concatenate((G5_{-}, G4_{-}), axis=0)
         Gt5 = nx.Graph()
         Gt5= nx.from_edgelist(G5_)
In [27]: #Plot graphs together
         plt.figure(figsize=(18,18))
         plt.suptitle('Enron Email Dynamic Network', fontsize=24)
         plt.subplot(321)
```

plt.title("Graph at time, t = 0", fontsize=18)

nx.draw_spring(Gt0, cmap=plt.cm.inferno, node_color='#FFA500')

```
plt.subplot(322)
nx.draw_spring(Gt1, cmap=plt.cm.inferno, node_color='#FFA500')
plt.title("Graph at time, t = 1", fontsize=18)
plt.subplot(323)
nx.draw_spring(Gt2, cmap=plt.cm.inferno, node_color='#FFA500')
plt.title("Graph at time, t = 2", fontsize=18)
plt.subplot(324)
nx.draw_spring(Gt3, cmap=plt.cm.inferno, node_color='#FFA500')
plt.title("Graph at time, t = 3", fontsize=18)
plt.subplot(324)
nx.draw_spring(Gt4, cmap=plt.cm.inferno, node_color='#FFA500')
plt.title("Graph at time, t = 4", fontsize=18)
plt.subplot(325)
nx.draw_spring(Gt5, cmap=plt.cm.inferno, node_color='#FFA500')
plt.title("Graph at time, t = 5", fontsize=18)
plt.show()
```

Enron Email Dynamic Network

6 Network Statistics

6.1 Centrality analysis without averaging

Define some helper functions here

```
eigC = nx.eigenvector_centrality_numpy(net)
             commCC = nx.communicability_centrality(net)
             katzC = nx.katz_centrality_numpy(net)
             loadC = nx.load_centrality(net)
             return [degC, cloC, betC, eigC, commCC, katzC, loadC]
In [29]: def get_val(val):
             return sorted(set(val.values()))
In [30]: def get_top_keys(dictionary, top):
             items = dictionary.items()
             items.sort(reverse=True, key=lambda x: x[1])
             return map(lambda x: x[0], items[:top])
In [31]: def fft_sig(att):
             return sc.fft(get_val(att))
         def hilbert_sig(att):
             return hilbert(get_val(att))
In [32]: def rms(a, axis=None):
             from numpy import mean, sqrt, square
             rms = sqrt(mean(square(a), axis=axis))
             return rms
         def nrms(a,b):
             nrms = rms(a-b) / (rms(a) + rms(b))
             return nrms
In [33]: def cossim(x,y):
             from numpy import dot, sqrt
             csim = dot(x,y) / sqrt(dot(x,x)) * sqrt(dot(y,y))
             return csim
In [34]: def pairwise_calc(df, func):
             val = []
             for x,y in df.iteritems():
                 for z,y in df.iteritems():
                     i = 0
                     #print(y[i], y[i+1])
                     val.append(func(y[i], y[i+1]))
                     i=i+1
             return val[:df.shape[0]]
In [35]: def avg_cent(cent):
             avg = sum(set(cent.values()))/len(cent)
             return avg
```

6.1.1 Calculate all centralities in one go

6.1.2 Degree Centrality

```
In [38]: plt.title("Degree Frequency Distribution over time", fontsize=18)
    plt.plot(nx.degree_histogram(Gt0), label='t=0')
    plt.plot(nx.degree_histogram(Gt1), label='t=1')
    plt.plot(nx.degree_histogram(Gt2), label='t=2')
    plt.plot(nx.degree_histogram(Gt3), label='t=3')
    plt.plot(nx.degree_histogram(Gt4), label='t=4')
    plt.plot(nx.degree_histogram(Gt5), label='t=5')

    plt.yticks(fontsize=16)
    plt.xticks(fontsize=16)
    plt.legend(loc=1, fontsize=15)
Out[38]: <matplotlib.legend.Legend at 0x21c1c6c8a20>
```



```
In [39]: plt.suptitle('Degree Centrality Distribution over time', fontsize=18)
    sns.distplot(get_val(degC0), hist=False, label='t0')
    sns.distplot(get_val(degC1), hist=False, label='t1')
    sns.distplot(get_val(degC2), hist=False, label='t2')
    sns.distplot(get_val(degC3), hist=False, label='t3')
    sns.distplot(get_val(degC4), hist=False, label='t4')
    sns.distplot(get_val(degC5), hist=False, label='t5')

plt.yticks(fontsize=16)
    plt.xticks(fontsize=16)
    plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\statsmodels\nonparametric\kdetools.p

Out[39]: <matplotlib.legend.Legend at 0x21c1c8dba20>

 $y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j$

_ _

C:\Users\arsha_000\Anaconda3\lib\site-packages\statsmodels\nonparametric\kdetools.py = $X[:m/2+1] + np.r_[0, X[m/2+1:], 0]*1j$

Out[40]: <matplotlib.legend.Legend at 0x21c1c95cb00>

In [41]: plt.suptitle('Log Log Plot of Degree Centrality over time', fontsize=18)

 plt.loglog(get_val(degC0), label='t0')
 plt.loglog(get_val(degC1), label='t1')
 plt.loglog(get_val(degC2), label='t2')
 plt.loglog(get_val(degC3), label='t3')
 plt.loglog(get_val(degC4), label='t4')
 plt.loglog(get_val(degC5), label='t5')

 plt.yticks(fontsize=16)

```
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

Out [41]: <matplotlib.legend.Legend at 0x21c1c62bdd8>

Log Log Plot of Degree Centrality over time

In [42]: plt.suptitle('Adjacent Trace Degree Centrality correlation plot', fontsize

```
plt.plot(np.correlate(get_val(degC0),get_val(degC1)),label='t0-1')
plt.plot(np.correlate(get_val(degC1),get_val(degC2)),label='t1-2')
plt.plot(np.correlate(get_val(degC2),get_val(degC3)),label='t2-3')
plt.plot(np.correlate(get_val(degC3),get_val(degC3)),label='t3-4')
plt.plot(np.correlate(get_val(degC4),get_val(degC5)),label='t4-5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

Out [42]: <matplotlib.legend.Legend at 0x21c1ca23b38>

In [43]: plt.suptitle('Adjacent trace Degree Centrality Fourier Domain convolution

```
plt.plot(fftconvolve(get_val(degC0), get_val(degC1)), label='t0-1')
plt.plot(fftconvolve(get_val(degC1), get_val(degC2)), label='t1-2')
plt.plot(fftconvolve(get_val(degC2), get_val(degC3)), label='t2-3')
plt.plot(fftconvolve(get_val(degC3), get_val(degC4)), label='t3-4')
plt.plot(fftconvolve(get_val(degC4), get_val(degC5)), label='t4-5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

Out [43]: <matplotlib.legend.Legend at 0x21c1c243978>

In [44]: plt.suptitle('Adjacent trace Fourier Transform of Degree Centrality convolutions)

```
plt.plot(np.convolve(fft_sig(degC0), fft_sig(degC1)), label='t0-1')
plt.plot(np.convolve(fft_sig(degC1), fft_sig(degC2)), label='t1-2')
plt.plot(np.convolve(fft_sig(degC2), fft_sig(degC3)), label='t2-3')
plt.plot(np.convolve(fft_sig(degC3), fft_sig(degC4)), label='t3-4')
plt.plot(np.convolve(fft_sig(degC4), fft_sig(degC5)), label='t4-5')
plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out[44]: <matplotlib.legend.Legend at 0x21c1c554828>

40

-20

20

60

In [45]: plt.suptitle('Adjacent trace Degree Centrality Hilbert Domain convolution

```
plt.plot(np.convolve(hilbert(get_val(degC0)), hilbert(get_val(degC1))),
plt.plot(np.convolve(hilbert(get_val(degC1)), hilbert(get_val(degC2))),
plt.plot(np.convolve(hilbert(get_val(degC2)), hilbert(get_val(degC3))), la
plt.plot(np.convolve(hilbert(get_val(degC3)), hilbert(get_val(degC4))), la
plt.plot(np.convolve(hilbert(get_val(degC3)), hilbert(get_val(degC4))),
plt.plot(np.convolve(hilbert(get_val(degC4)), hilbert(get_val(degC5))),
plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

100

120

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out [45]: <matplotlib.legend.Legend at 0x21c1c587b38>

6.1.3 Eigenvector Centrality Histograms

Plotting the Eigenvector Centrality for the different timesteps here. For the first plot it is difficult to discern the trends when all the 6 distributions are plotted together. So in the next series of plots I look at a few a time and its easier to see the change over time. The signal essentially becomes more spiked and squashed over time.

C:\Users\arsha_000\Anaconda3\lib\site-packages\statsmodels\nonparametric\kdetools.py = $X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j$

Out [46]: <matplotlib.legend.Legend at 0x21c1c117978>

Eigenvector Centrality Distribution over time

In [47]: plt.suptitle('Log Log Plot of Eigenvector Centrality over time', fontsize=

```
plt.loglog(get_val(eigC0), label='t0')
plt.loglog(get_val(eigC1), label='t1')
plt.loglog(get_val(eigC2), label='t2')
plt.loglog(get_val(eigC3), label='t3')
plt.loglog(get_val(eigC4), label='t4')
plt.loglog(get_val(eigC5), label='t5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

Out [47]: <matplotlib.legend.Legend at 0x21c1cab2438>


```
In [48]: eigCO_a = np.asarray(get_val(eigCO))
        eigC1_a = np.asarray(get_val(eigC1))

In [49]: plt.suptitle('Adjacent Trace Eigenvector Centrality correlation plot', for
        plt.plot(np.correlate(eigCO_a,eigC1_a))
        plt.plot(np.correlate(get_val(eigC1),get_val(eigC2)))
        plt.plot(np.correlate(get_val(eigC3),get_val(eigC4)))
        plt.plot(np.correlate(get_val(eigC4),get_val(eigC5)))

        plt.yticks(fontsize=16)
        plt.xticks(fontsize=16)
        plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:519: UserWa
warnings.warn("No labelled objects found. "

In [50]: plt.suptitle('Adjacent trace Eigenvector Centrality Fourier Domain convolu

```
plt.plot(fftconvolve(get_val(eigC0),get_val(eigC1)), label='t0-1')
plt.plot(fftconvolve(get_val(eigC1),get_val(eigC2)), label='t1-2')
plt.plot(fftconvolve(get_val(eigC2),get_val(eigC3)), label='t2-3')
plt.plot(fftconvolve(get_val(eigC3),get_val(eigC4)), label='t3-4')
plt.plot(fftconvolve(get_val(eigC4),get_val(eigC5)), label='t4-5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

Out[50]: <matplotlib.legend.Legend at 0x21c1e797518>

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out [51]: <matplotlib.legend.Legend at 0x21c1f20ee48>

Adjacent trace Fourier Transform of Eigenvector Centrality convolution plot

In [52]: plt.suptitle('Adjacent trace Eigenvector Centrality Hilbert Domain convolu

```
plt.plot(np.convolve(hilbert(get_val(eigC0)), hilbert(get_val(eigC1))),
plt.plot(np.convolve(hilbert(get_val(eigC1)), hilbert(get_val(eigC2))),
plt.plot(np.convolve(hilbert(get_val(eigC2)), hilbert(get_val(eigC3))), la
plt.plot(np.convolve(hilbert(get_val(eigC3)), hilbert(get_val(eigC4))), la
plt.plot(np.convolve(hilbert(get_val(eigC3)), hilbert(get_val(eigC4))),
plt.plot(np.convolve(hilbert(get_val(eigC4)), hilbert(get_val(eigC5)))),
plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out[52]: <matplotlib.legend.Legend at 0x21c1c1a87f0>

6.1.4 Closeness Centrality Histograms

The Closeness Centrality shows a much better evolution over time than the Eigenvector Centrality Histograms

C:\Users\arsha_000\Anaconda3\lib\site-packages\statsmodels\nonparametric\kdetools.py = $X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j$

Out[54]: <matplotlib.legend.Legend at 0x21c1c382a58>


```
In [55]: plt.suptitle('Log Log Plot of Closeness Centrality', fontsize=18)

    plt.loglog(get_val(cloC0), label='t0')
    plt.loglog(get_val(cloC1), label='t1')
    plt.loglog(get_val(cloC2), label='t2')
    plt.loglog(get_val(cloC3), label='t3')
    plt.loglog(get_val(cloC4), label='t4')
    plt.loglog(get_val(cloC5), label='t5')

    plt.yticks(fontsize=16)
    plt.xticks(fontsize=16)
    plt.legend(loc=1, fontsize=15)
```

Out[55]: <matplotlib.legend.Legend at 0x21c1e670be0>

Adjacent Trace Closeness Centrality correlation plot

In [57]: plt.suptitle('Adjacent trace Closeness Centrality Fourier Domain convolut:

```
plt.plot(fftconvolve(get_val(cloC0), get_val(cloC1)), label='t0-1')
plt.plot(fftconvolve(get_val(cloC1), get_val(cloC2)), label='t1-2')
plt.plot(fftconvolve(get_val(cloC2), get_val(cloC3)), label='t2-3')
plt.plot(fftconvolve(get_val(cloC3), get_val(cloC4)), label='t3-4')
plt.plot(fftconvolve(get_val(cloC3), get_val(cloC5)), label='t4-5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

Out [57]: <matplotlib.legend.Legend at 0x21c1f38c6a0>

Adjacent trace Closeness Centrality Fourier Domain convolution plot

In [58]: plt.suptitle('Adjacent trace Fourier Transform of Closeness Centrality con

```
plt.plot(np.convolve(fft_sig(cloC0), fft_sig(cloC1)), label='t0-1')
plt.plot(np.convolve(fft_sig(cloC1), fft_sig(cloC2)), label='t1-2')
plt.plot(np.convolve(fft_sig(cloC2), fft_sig(cloC3)), label='t2-3')
plt.plot(np.convolve(fft_sig(cloC3), fft_sig(cloC3)), label='t3-4')
plt.plot(np.convolve(fft_sig(cloC3), fft_sig(cloC4)), label='t4-5')
plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out[58]: <matplotlib.legend.Legend at 0x21c215b4c18>

In [59]: plt.suptitle('Adjacent trace Hilbert transform of Closeness Centrality con

```
plt.plot(np.convolve(hilbert_sig(cloC0), hilbert_sig(cloC1)), label='t0-1
plt.plot(np.convolve(hilbert_sig(cloC1), hilbert_sig(cloC2)), label='t1-2
plt.plot(np.convolve(hilbert_sig(cloC2), hilbert_sig(cloC3)), label='t2-3')
plt.plot(np.convolve(hilbert_sig(cloC3), hilbert_sig(cloC4)), label='t3-4
plt.plot(np.convolve(hilbert_sig(cloC3), hilbert_sig(cloC5)), label='t4-5

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out[59]: <matplotlib.legend.Legend at 0x21c21aece80>

6.1.5 Betweenness Centrality Histogram

C:\Users\arsha_000\Anaconda3\lib\site-packages\statsmodels\nonparametric\kdetools.py = $X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1$

Out[60]: <matplotlib.legend.Legend at 0x21c21d411d0>

Betweenness Centrality over time

In [61]: plt.suptitle('Log Log Plot of Betweenness Centrality over time', fontsize=

```
plt.loglog(get_val(betC0), label='t0')
plt.loglog(get_val(betC1), label='t1')
plt.loglog(get_val(betC2), label='t2')
plt.loglog(get_val(betC3), label='t3')
plt.loglog(get_val(betC4), label='t4')
plt.loglog(get_val(betC5), label='t5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

Out [61]: <matplotlib.legend.Legend at 0x21c21f1ce48>


```
In [62]: plt.suptitle('Adjacent Trace Betweenness Centrality correlation plot', for
    plt.plot(np.correlate(get_val(betC0), get_val(betC1)), label='t0-1')
    plt.plot(np.correlate(get_val(betC1), get_val(betC2)), label='t1-2')
    plt.plot(np.correlate(get_val(betC2), get_val(betC3)), label='t2-3')
    plt.plot(np.correlate(get_val(betC3), get_val(betC3)), label='t3-4')
    plt.plot(np.correlate(get_val(betC4), get_val(betC5)), label='t4-5')

    plt.yticks(fontsize=16)
    plt.xticks(fontsize=16)
    plt.legend(loc=1, fontsize=15)
```

Out [62]: <matplotlib.legend.Legend at 0x21c221e6fd0>

In [63]: plt.suptitle('Adjacent trace Betweenness Centrality Fourier Domain convolution
 plt.plot(fftconvolve(get_val(betC0), get_val(betC1)), label='t0-1')
 plt.plot(fftconvolve(get_val(betC1), get_val(betC2)), label='t1-2')
 plt.plot(fftconvolve(get_val(betC2), get_val(betC3)), label='t2-3')
 plt.plot(fftconvolve(get_val(betC3), get_val(betC4)), label='t3-4')
 plt.plot(fftconvolve(get_val(betC4), get_val(betC5)), label='t4-5')

 plt.yticks(fontsize=16)
 plt.xticks(fontsize=16)
 plt.legend(loc=1, fontsize=15)
Out[63]: <matplotlib.legend.Legend at 0x21c1c3ce2b0>

Adjacent trace Betweenness Centrality Fourier Domain convolution plot

In [64]: plt.suptitle('Adjacent trace Fourier Transform of Betweenness Centrality of

```
plt.plot(np.convolve(fft_sig(betC0), fft_sig(betC1)), label='t0-1')
plt.plot(np.convolve(fft_sig(betC1), fft_sig(betC2)), label='t1-2')
plt.plot(np.convolve(fft_sig(betC2), fft_sig(betC3)), label='t2-3')
plt.plot(np.convolve(fft_sig(betC3), fft_sig(betC4)), label='t3-4')
plt.plot(np.convolve(fft_sig(betC4), fft_sig(betC5)), label='t4-5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out [64]: <matplotlib.legend.Legend at 0x21c2223ecc0>


```
In [65]: plt.suptitle('Adjacent trace Hilbert transform of Betweenness Centrality of
    plt.plot(np.convolve(hilbert_sig(betC0), hilbert_sig(betC1)), label='t0-1
    plt.plot(np.convolve(hilbert_sig(betC1), hilbert_sig(betC2)), label='t1-2
    plt.plot(np.convolve(hilbert_sig(betC2), hilbert_sig(betC3)), label='t2-3')
    plt.plot(np.convolve(hilbert_sig(betC3), hilbert_sig(betC4)), label='t3-4
    plt.plot(np.convolve(hilbert_sig(betC4), hilbert_sig(betC5)), label='t4-5

    plt.yticks(fontsize=16)
    plt.xticks(fontsize=16)
    plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out [65]: <matplotlib.legend.Legend at 0x21c203d6b00>

6.1.6 Communicability Centrality Histograms

```
plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\statsmodels\nonparametric\kdetools.py = $X[:m/2+1] + np.r_[0, X[m/2+1:], 0]*1j$

Out [66]: <matplotlib.legend.Legend at 0x21c22590d68>

In [67]: plt.suptitle('Log Log Plot of Communicability Centrality over time', fonts

```
plt.loglog(get_val(commuC0), label='t0')
plt.loglog(get_val(commuC1), label='t1')
plt.loglog(get_val(commuC2), label='t2')
plt.loglog(get_val(commuC3), label='t3')
plt.loglog(get_val(commuC4), label='t4')
plt.loglog(get_val(commuC5), label='t5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

Out[67]: <matplotlib.legend.Legend at 0x21c225c5128>

Out[68]: <matplotlib.legend.Legend at 0x21c242ffd68>

plt.legend(loc=1, fontsize=15)

Adjacent Trace Communicability Centrality correlation plot

In [69]: plt.suptitle('Adjacent trace Communicability Centrality Fourier Domain communicability Centrality Fourier Centrality Fourier Domain communicability Centrality Fourier C

```
plt.plot(fftconvolve(get_val(commuC0), get_val(commuC1)), label='t0-1')
plt.plot(fftconvolve(get_val(commuC1), get_val(commuC2)), label='t1-2')
plt.plot(fftconvolve(get_val(commuC2), get_val(commuC3)), label='t2-3')
plt.plot(fftconvolve(get_val(commuC3), get_val(commuC4)), label='t3-4')
plt.plot(fftconvolve(get_val(commuC4), get_val(commuC5)), label='t4-5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=2, fontsize=15)
```

Out [69]: <matplotlib.legend.Legend at 0x21c244f2a90>

Adjacent trace Communicability Centrality Fourier Domain convolution plot

In [70]: plt.suptitle('Adjacent trace Fourier Transform of Communicability Central:

```
plt.plot(np.convolve(fft_sig(commuC0), fft_sig(commuC1)), label='t0-1')
plt.plot(np.convolve(fft_sig(commuC1), fft_sig(commuC2)), label='t1-2')
plt.plot(np.convolve(fft_sig(commuC2), fft_sig(commuC3)), label='t2-3')
plt.plot(np.convolve(fft_sig(commuC3), fft_sig(commuC4)), label='t3-4')
plt.plot(np.convolve(fft_sig(commuC4), fft_sig(commuC5)), label='t4-5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out[70]: <matplotlib.legend.Legend at 0x21c246fbb38>

Adjacent trace Fourier Transform of Communicability Centrality convolution plot

In [71]: plt.suptitle('Adjacent trace Hilbert transform of Communicability Central:

```
plt.plot(np.convolve(hilbert_sig(commuC0), hilbert_sig(commuC1)), label='t
plt.plot(np.convolve(hilbert_sig(commuC1), hilbert_sig(commuC2)), label='t
plt.plot(np.convolve(hilbert_sig(commuC2), hilbert_sig(commuC3)), label='t
plt.plot(np.convolve(hilbert_sig(commuC3), hilbert_sig(commuC4)), label='t
plt.plot(np.convolve(hilbert_sig(commuC4), hilbert_sig(commuC5)), label='t
plt.yticks(fontsize=16)
```

plt.xticks(fontsize=16) plt.legend(loc=2, fontsize=15)

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out[71]: <matplotlib.legend.Legend at 0x21c248f4550>

6.1.7 Katz Centrality Histograms

C:\Users\arsha_000\Anaconda3\lib\site-packages\statsmodels\nonparametric\kdetools.py = $X[:m/2+1] + np.r_[0, X[m/2+1:], 0]*1j$

Out[72]: <matplotlib.legend.Legend at 0x21c221734a8>


```
In [73]: plt.suptitle('Log Log Plot of Katz Centrality over time', fontsize=18)
    plt.loglog(get_val(katzC0), label='t0')
    plt.loglog(get_val(katzC1), label='t1')
    plt.loglog(get_val(katzC2), label='t2')
    plt.loglog(get_val(katzC3), label='t3')
    plt.loglog(get_val(katzC4), label='t4')
```

```
plt.loglog(get_val(katzC5), label='t5')
plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

Out[73]: <matplotlib.legend.Legend at 0x21c2429c438>

Out [74]: <matplotlib.legend.Legend at 0x21c25062358>

Log Log Plot of Katz Centrality over time

In [74]: plt.suptitle('Adjacent Trace Katz Centrality correlation plot', fontsize=1)
 plt.plot(np.correlate(get_val(katzC0), get_val(katzC1)), label='t0-1')
 plt.plot(np.correlate(get_val(katzC1), get_val(katzC2)), label='t1-2')
 plt.plot(np.correlate(get_val(katzC2), get_val(katzC3)), label='t2-3')
 plt.plot(np.correlate(get_val(katzC3), get_val(katzC3)), label='t3-4')
 plt.plot(np.correlate(get_val(katzC4), get_val(katzC5)), label='t4-5')

 plt.yticks(fontsize=16)
 plt.xticks(fontsize=16)
 plt.legend(loc=1, fontsize=15)

Adjacent Trace Katz Centrality correlation plot

In [75]: plt.suptitle('Adjacent trace Katz Centrality Fourier Domain convolution pl

```
plt.plot(fftconvolve(get_val(katzC0), get_val(katzC1)), label='t0-1')
plt.plot(fftconvolve(get_val(katzC1), get_val(katzC2)), label='t1-2')
plt.plot(fftconvolve(get_val(katzC2), get_val(katzC3)), label='t2-3')
plt.plot(fftconvolve(get_val(katzC3), get_val(katzC4)), label='t3-4')
plt.plot(fftconvolve(get_val(katzC4), get_val(katzC5)), label='t4-5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

Out[75]: <matplotlib.legend.Legend at 0x21c2521d4e0>

In [76]: plt.suptitle('Adjacent trace Fourier Transform of Katz Centrality convolut

```
plt.plot(np.convolve(fft_sig(katzC0), fft_sig(katzC1)), label='t0-1')
plt.plot(np.convolve(fft_sig(katzC1), fft_sig(katzC2)), label='t1-2')
plt.plot(np.convolve(fft_sig(katzC2), fft_sig(katzC3)), label='t2-3')
plt.plot(np.convolve(fft_sig(katzC3), fft_sig(katzC4)), label='t3-4')
plt.plot(np.convolve(fft_sig(katzC4), fft_sig(katzC5)), label='t4-5')
plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out[76]: <matplotlib.legend.Legend at 0x21c22110be0>

In [77]: plt.suptitle('Adjacent trace Hilbert transform of Katz Centrality convolut

```
plt.plot(np.convolve(hilbert_sig(katzC0), hilbert_sig(katzC1)), label='t0-
plt.plot(np.convolve(hilbert_sig(katzC1), hilbert_sig(katzC2)), label='t1-
plt.plot(np.convolve(hilbert_sig(katzC2), hilbert_sig(katzC3)), label='t2-3
plt.plot(np.convolve(hilbert_sig(katzC3), hilbert_sig(katzC4)), label='t3-
plt.plot(np.convolve(hilbert_sig(katzC4), hilbert_sig(katzC5)), label='t4-
plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out[77]: <matplotlib.legend.Legend at 0x21c24276d30>

6.1.8 Load Centrality

```
In [78]: plt.suptitle('Load Centrality over time', fontsize=18)

sns.distplot(get_val(loadC0), hist=False, label='t0')
sns.distplot(get_val(loadC1), hist=False, label='t1')
sns.distplot(get_val(loadC2), hist=False, label='t2')
sns.distplot(get_val(loadC3), hist=False, label='t3')
sns.distplot(get_val(loadC4), hist=False, label='t4')
sns.distplot(get_val(loadC5), hist=False, label='t5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\statsmodels\nonparametric\kdetools.p
y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j

Out[78]: <matplotlib.legend.Legend at 0x21c24af4630>

In [79]: plt.suptitle('Log Log Plot of Load Centrality over time', fontsize=18)

```
plt.loglog(get_val(loadC0), label='t0')
plt.loglog(get_val(loadC1), label='t1')
plt.loglog(get_val(loadC2), label='t2')
plt.loglog(get_val(loadC3), label='t3')
plt.loglog(get_val(loadC4), label='t4')
plt.loglog(get_val(loadC5), label='t5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

Out [79]: <matplotlib.legend.Legend at 0x21c22e35358>


```
In [80]: plt.suptitle('Adjacent Trace Load Centrality correlation plot', fontsize=1

plt.plot(np.correlate(get_val(loadC0), get_val(loadC1)), label='t0-1')

plt.plot(np.correlate(get_val(loadC1), get_val(loadC2)), label='t1-2')

plt.plot(np.correlate(get_val(loadC2), get_val(loadC3)), label='t2-3')

plt.plot(np.correlate(get_val(loadC3), get_val(loadC3)), label='t3-4')

plt.plot(np.correlate(get_val(loadC4), get_val(loadC5)), label='t4-5')

plt.yticks(fontsize=16)

plt.xticks(fontsize=16)

plt.legend(loc=1, fontsize=15)
```

Out[80]: <matplotlib.legend.Legend at 0x21c2500bef0>

In [81]: plt.suptitle('Adjacent trace Load Centrality Fourier Domain convolution pit.plot(fftconvolve(get_val(loadC0), get_val(loadC1)), label='t0-1')
 plt.plot(fftconvolve(get_val(loadC1), get_val(loadC2)), label='t1-2')
 plt.plot(fftconvolve(get_val(loadC2), get_val(loadC3)), label='t2-3')
 plt.plot(fftconvolve(get_val(loadC3), get_val(loadC4)), label='t3-4')
 plt.plot(fftconvolve(get_val(loadC4), get_val(loadC5)), label='t4-5')

plt.yticks(fontsize=16)
 plt.xticks(fontsize=16)
 plt.legend(loc=1, fontsize=15)

Out[81]: <matplotlib.legend.Legend at 0x21c2552fcc0>

Adjacent trace Load Centrality Fourier Domain convolution plot

In [82]: plt.suptitle('Adjacent trace Fourier Transform of Load Centrality convolut

```
plt.plot(np.convolve(fft_sig(loadC0), fft_sig(loadC1)), label='t0-1')
plt.plot(np.convolve(fft_sig(loadC1), fft_sig(loadC2)), label='t1-2')
plt.plot(np.convolve(fft_sig(loadC2), fft_sig(loadC3)), label='t2-3')
plt.plot(np.convolve(fft_sig(loadC3), fft_sig(loadC4)), label='t3-4')
plt.plot(np.convolve(fft_sig(loadC4), fft_sig(loadC5)), label='t4-5')

plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out[82]: <matplotlib.legend.Legend at 0x21c25416b70>

In [83]: plt.suptitle('Adjacent trace Hilbert transform of Load Centrality convolut

```
plt.plot(np.convolve(hilbert_sig(loadC0), hilbert_sig(loadC1)), label='t0-
plt.plot(np.convolve(hilbert_sig(loadC1), hilbert_sig(loadC2)), label='t1-
plt.plot(np.convolve(hilbert_sig(loadC2), hilbert_sig(loadC3)), label='t2-3
plt.plot(np.convolve(hilbert_sig(loadC3), hilbert_sig(loadC4)), label='t3-
plt.plot(np.convolve(hilbert_sig(loadC4), hilbert_sig(loadC5)), label='t4-
plt.yticks(fontsize=16)
plt.xticks(fontsize=16)
plt.legend(loc=1, fontsize=15)
```

C:\Users\arsha_000\Anaconda3\lib\site-packages\numpy\core\numeric.py:482: ComplexWa
return array(a, dtype, copy=False, order=order)

Out[83]: <matplotlib.legend.Legend at 0x21c22f9ac18>

6.2 Centrality Analysis with averaging

6.2.1 Calculate Centrality Statistics at different time steps

```
In [84]: deg0, clo0, bet0, eig0, alg0, clust0, commC0, katz0,load0 = cal_stat(Gt0)
    deg1, clo1, bet1, eig1, alg1, clust1, commC1, katz1,load1 = cal_stat(Gt1)
    deg2, clo2, bet2, eig2, alg2, clust2, commC2, katz2, load2 = cal_stat(Gt2)
    deg3, clo3, bet3, eig3, alg3, clust3, commC3, katz3,load3 = cal_stat(Gt3)
    deg4, clo4, bet4, eig4, alg4, clust4, commC4, katz4,load4 = cal_stat(Gt4)
    deg5, clo5, bet5, eig5, alg5, clust5, commC5, katz5, load5 = cal_stat(Gt5)
```

```
In [85]: stat_df = pd.DataFrame([deg0,deg1,deg2,deg3,deg4,deg5])
In [86]: #calculate density
        den0 = nx.density(Gt0)
        den1 = nx.density(Gt1)
        den2 = nx.density(Gt2)
        den3 = nx.density(Gt3)
        den4 = nx.density(Gt4)
        den5 = nx.density(Gt5)
In [87]: stat_df['Closeness'] = pd.DataFrame([clo0,clo1,clo2,clo3,clo4,clo5])
        stat_df['Betweeness'] = pd.DataFrame([bet0,bet1,bet2,bet3,bet4,bet5])
        stat_df['Eig'] = pd.DataFrame([eig0,eig1,eig2,eig3,eig4,eig5])
        stat_df['AlgConnect'] = pd.DataFrame([alg0,alg1,alg2,alg3,alg4,alg5])
        stat_df['ClustCoeff'] = pd.DataFrame([clust0,clust1,clust2,clust3,clust4,c
        stat_df['Communicability'] = pd.DataFrame([commC0,commC1,commC2,commC3,com
        stat_df['Katz'] = pd.DataFrame([katz0,katz1,katz2,katz3,katz4,katz5])
        stat_df['Load']=pd.DataFrame([load0,load1,load2,load3,load4,load5])
        stat_df['Density'] = pd.DataFrame([den0,den1,den2,den3,den4,den5])
In [88]: stat_df.columns.values[0]='Deg'
In [89]: stat_df.head()
Out[89]:
                Deg Closeness Betweeness
                                                 Eig AlgConnect ClustCoeff \
        0 0.018826
                     0.104661
                                  0.025984 0.077739
                                                        0.000000
                                                                    0.026004
        1 0.021720 0.165501
                                  0.054367 0.089506
                                                        0.000000
                                                                    0.087087
        2 0.020570
                      0.223937
                                  0.025495 0.066241
                                                        0.000000
                                                                    0.185696
                                 0.012739 0.056478
        3 0.031813
                      0.253585
                                                        0.121915
                                                                    0.462544
        4 0.047889
                      0.276022
                                  0.006152 0.058781
                                                        0.000000
                                                                    0.493717
           Communicability
                                Katz
                                          Load
                                                 Density
        0
              3.980933e+00 0.125240 0.025984 0.057586
        1
              5.874870e+00 0.116543 0.054367 0.057624
        2
              1.206113e+02 0.076152 0.025495
                                                0.054430
        3
              6.140791e+06 0.011703 0.012739 0.081651
              1.009380e+12 0.003815 0.006151 0.123401
In [90]: plt.figure(figsize=(18,8))
        sns.heatmap(stat_df.corr(), cmap='seismic', center=True, robust=True, fmt=
        plt.title('Heatmap of Correlation Matrix of Network Statistics', fontsize=
        plt.xticks(fontsize=16)
        plt.yticks(fontsize=16)
Out[90]: (array([ 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5]),
         <a list of 10 Text yticklabel objects>)
```


7 Assortativity Analysis