Contents

Ι	Mult	tivariable Calculus	1
11	Paran	netric Equations and Polar Coordinates	2
	11.1	Curves Defined by Parametric Equations	2
	11.2	Calculus with Parametric Curves	3
	11.3	Polar Coordinates	6
	11.4	Areas and Lengths in Polar Coordinates	6
	11.5	Conic Sections	6
	11.6	Conic Sections in Polar Coordinates	6
12	Infinit	te Sequences and Series	7
	12.1	Sequences	8
	12.2	Series	8
	12.3	The Integral Test and Estimates of Sums	8
	12.4	The Comparison Tests	8
	12.5	Alternating Series	8
	12.6	Absolute Convergence and the Ratio and Root Tests	8
	12.7	Strategy for Testing Series	8
	12.8	Power Series	8
	12.9	Representation of Functions as Power Series	8
	12.10	Taylor and Maclaurin Series	8
	12.11	The Binomial Series	8
	12.12	Applications of Taylor Polynomials	8
13	Vector	rs and the Geometry of Space	9
	13.1	Three-Dimensional Coordinate Systems	9
	13.2	Vectors	9
	13.3	The Dot Product	9
	13.4	The Cross Product	9
	13.5	Equations of Lines and Planes	9
	13.6	Cylinders and Quadric Surfaces	9
	13.7	Cylindrical and Spherical Coordinates	9
14	Vector	r Functions	10
	14.1	Vector Functions and Space Curves	10
	14.2	Derivatives and Integrals of Vector Functions	10

CONTENTS ii

	14.3	Arc Length and Curvature	10
	14.4	Motion in Space: Velocity and Acceleration	10
۔ ۔	D	15.1.4	
15		l Derivatives	11
	15.1	Functions of Several Variables	11
	15.2	Limits and Continuity	11
	15.3	Partial Derivatives	11
	15.4	Tangent Planes and Linear Approximations	11
	15.5	The Chain Rule	11
	15.6	Directional Derivatives and the Gradient Vector	11
	15.7	Maximum and Minimum Values	11
	15.8	Lagrange Multipliers	11
16	Multir	ole Integrals	12
	16.1	Double Integrals over Rectangles	12
	16.2	Iterated Integrals	12
	16.3	Double Integrals over General Regions	12
	16.4	Double Integrals in Polar Coordinates	12
	16.5	Applications of Double Integrals	12
	16.6	Surface Area	12
	16.7	Triple Integrals	12
	16.8	Triple Integrals in Cylindrical and Spherical Coordinates	12
	16.9	Change of Variables in Multiple Integrals	12
17	Voctor	· Calculus	13
Ι,	17.1	Vector Fields	13
	17.1	Line Integrals	13
	17.3	THe Fundamental Theorem for Line Integrals	13
	17.3 17.4	Green's Theorem	13
	$17.4 \\ 17.5$	Curl and Divergence	13
	17.6	Parametric Surfaces and Their Areas	13
	17.7	Surface Integrals	13
	17.8	Stokes' Theorem	13
	17.9	The Divergence Theorem	13
	17.10	Summary	13
	17.10	Summary	10
18		d-Order Differential Equations	14
	18.1	Second-Order Linear Equations	14
	18.2	Nonhomogenous Linear Equations	14
	18.3	Applications of Second-Order Differential Equations	14
	18.4	Series Solutions	14

Part I Multivariable Calculus

Parametric Equations and Polar Coordinates

11.1 Curves Defined by Parametric Equations

Suppose that x and y are both given as functions of a third variable t (called a **parameter** by the equations)

$$x = f(t)$$
 $y = g(t)$

(called **parametric equations**). Each value of t determines a point (x,y). As t changes, (x,y) = (f(t),g(t)) changes and traces out a curve C, which is called a **parametric curve**. The direction of the arrows on curve C show the change in the position of the equation as t increases.

We can also restrict t to a finite interval. In general, the curve with parametric equations

$$x = f(t)$$
 $y = g(t)$ $a \le t \le b$

has initial point (f(a), g(a)) and terminal point (f(b), g(b)).

The Cycloid

Example 11.1.1. A circle with radius r rolls along the x-axis. The curve traced out by a point P on the circumference of the circle is called a **cycloid**. Find parametric equations for the cycloid.

Solution. We will use the angle of rotation θ as the parameter ($\theta = 0$ when P is at the origin).

Suppose the circle has rotated θ radians. Using the figure, the distance it has rolled from the origin is

$$|OT| = arc \ PT = r\theta$$

because P starts at the origin. Therefore, the center of the circle is $C(r\theta, r)$. Let the coordinates of P be (x, y). Then from the figure,

$$x = |OT| - |PQ| = r\theta - r\sin\theta = r(\theta - \sin\theta)$$
$$y = |TC| - |QC| = r - r\cos\theta = r(1 - \cos\theta)$$

Definition 11.1.1. Paremetric equations of the cycloid are

$$x = r(\theta - \sin \theta)$$
 $y = r(1 - \cos \theta)$

11.2 Calculus with Parametric Curves

We will mainly solve problems involving tangents, area, arc length, and surface area.

Tangents

In the previous section, we saw that some curves defined by parametric equations x = f(t) and y = g(t) can also be expressed, by eliminating the parameter, in the form y = F(x). If we substitute x = f(t) and y = g(t) in the equation y = F(x), we get

$$g(t) = F(f(t))$$

If g, f, and F are differentiable, the Chain Rule gives

$$g'(t) = F'(f(t))f'(t) = F'(x)f'(t)$$

If $f'(t) \neq 0$, we can solve for F'(x):

CHAPTER 11. PARAMETRIC EQUATIONS AND POLAR COORDINATES4

Definition 11.2.1. The slope of the tangent to the parametric curve y = F(x) is F'(x).

$$F'(x) = \frac{g'(t)}{f'(t)}$$

This enables us to find tangents to parametric curves without having to eliminate the parameter. We can rewrite the previous equation in an easily remembered form.

Definition 11.2.2. We can use this to find tangents to parametric curves without having to eliminate the parameter.

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \quad \text{if} \quad \frac{dx}{dt} \neq 0$$

The curve has a

- horizontal tangent when $\frac{dy}{dt} = 0$ (provided that $\frac{dx}{dt} \neq 0$)
- vertical tangent when $\frac{dx}{dt} = 0$ (provided that $\frac{dy}{dt} \neq 0$)

This is useful when sketching parametric curves.

Definition 11.2.3. We can also find $\frac{d^2y}{dx^2}$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

Example 11.2.1. A curve C is defined by the parametric equations $x = t^2$, $y = t^3 - 3t$.

- 1. Show that C has two tangents at the point (3,0) and find their equations.
- 2. Find the points on C where the tangent is horizontal or vertical.
- 3. Determine where the curve is concave upward or downward.

Solution. A curve C is defined by the parametric equations $x = t^2$, $y = t^3 - 3t$.

1. Rewrite $y = t^3 - 3t = t(t^2 - 3) = 0$ when t = 0 or $t = \pm \sqrt{3}$. This indicates that C intersects itself at (3.0).

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2 - 3}{2t} = \frac{3}{2} \left(t - \frac{1}{t} \right)$$
$$t = \pm \sqrt{3} \rightarrow dy/dx = \pm 6/(2\sqrt{3})$$

so the equations of the tangents at (3,0) are

$$y = \sqrt{3}(x-3)$$
 and $y = -\sqrt{3}(x-3)$

CHAPTER 11. PARAMETRIC EQUATIONS AND POLAR COORDINATES5

- 2. C has a horizontal tangent when dy/dx = 0. In other words, when dy/dt = 0 and $dx/dt \neq 0$. $dy/dt = 3t^2 3 = 0$ when $t^2 = 1$ so $t = \pm 1$. This means there are horizontal tangents on C at (1,-2) and (1,2). C has a vertical tangent when dx/dt = 2t = 0, so t = 0. This means C has a vertical tangent at (0,0).
- 3. To determine concavity we calculate the second derivative:

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{3}{2}\left(1 + \frac{1}{t^2}\right)}{2t} = \frac{3(t^2 + 1)}{4t^3}$$

The curve is concave upward when t > 0 and concave downward when t < 0.

Area

We already know that area under a curve y = F(x) from a to b is $A = \int_a^b F(x) dx$. We can apply this to parametric equations using the Substitution Rule for Definite Integrals.

Definition 11.2.4. If the curve C is given by parametric equations x = f(t) and y = g(t) and t increases from α to β ,

$$A = \int_{a}^{b} y dx = \int_{\alpha}^{\beta} g(t) f'(t) dt$$

(Switch α to β if the point on C at β is more left than α .

Example 11.2.2. Find the area under one arch of the cycloid $x = r(\theta - \sin \theta)$, $y = r(1 - \cos \theta)$.

Solution. One arch of the cycloid is given by $0 \le \theta \le 2\pi$. Using the Substitution Rule with $y = r(1 - \cos \theta)$ and $dx = r(1 - \cos \theta)d\theta$, we have

$$A = \int_0^{2\pi} y dx = A = \int_0^{2\pi} r(1 - \cos \theta) r(1 - \cos \theta) d\theta$$

$$= r^2 \int_0^{2\pi} (1 - \cos \theta)^2 d\theta = r^2 \int_0^{2\pi} (1 - 2\cos \theta + \cos^2 \theta) d\theta$$

$$= r^2 \int_0^{2\pi} \left[1 - 2\cos \theta + \frac{1}{2} (1 + \cos 2\theta) \right] d\theta$$

$$= r^2 \left[\frac{3}{2} \theta - 2\sin \theta + \frac{1}{4} \sin 2\theta \right]_0^{2\pi}$$

$$= r^2 \left(\frac{3}{2} \cdot 2\pi \right) = 3\pi r^2$$

$CHAPTER\ 11.\ PARAMETRIC\ EQUATIONS\ AND\ POLAR\ COORDINATES 6$

Arc Length

Surface Area

- 11.3 Polar Coordinates
- 11.4 Areas and Lengths in Polar Coordinates
- 11.5 Conic Sections
- 11.6 Conic Sections in Polar Coordinates

Infinite Sequences and Series

- 12.1 Sequences
- 12.2 Series
- 12.3 The Integral Test and Estimates of Sums
- 12.4 The Comparison Tests
- 12.5 Alternating Series
- 12.6 Absolute Convergence and the Ratio and Root Tests
- 12.7 Strategy for Testing Series
- 12.8 Power Series
- 12.9 Representation of Functions as Power Series
- 12.10 Taylor and Maclaurin Series
- 12.11 The Binomial Series
- 12.12 Applications of Taylor Polynomials

Vectors and the Geometry of Space

- 13.1 Three-Dimensional Coordinate Systems
- 13.2 Vectors
- 13.3 The Dot Product
- 13.4 The Cross Product
- 13.5 Equations of Lines and Planes
- 13.6 Cylinders and Quadric Surfaces
- 13.7 Cylindrical and Spherical Coordinates

Vector Functions

- 14.1 Vector Functions and Space Curves
- 14.2 Derivatives and Integrals of Vector Functions
- 14.3 Arc Length and Curvature
- 14.4 Motion in Space: Velocity and Acceleration

Partial Derivatives

15.1	Functions	of Several	Variables
TO.T	I GIICUICIIC	or poverar	v allabios

- 15.2 Limits and Continuity
- 15.3 Partial Derivatives
- 15.4 Tangent Planes and Linear Approximations
- 15.5 The Chain Rule
- 15.6 Directional Derivatives and the Gradient Vector
- 15.7 Maximum and Minimum Values
- 15.8 Lagrange Multipliers

Multiple Integrals

16.1	Double Integrals over Rectangles
16.2	Iterated Integrals
16.3	Double Integrals over General Regions
16.4	Double Integrals in Polar Coordinates
16.5	Applications of Double Integrals
16.6	Surface Area
16.7	Triple Integrals
16.8	Triple Integrals in Cylindrical and Spherical Coordinates
16.9	Change of Variables in Multiple Integrals

Vector Calculus

- 17.1 Vector Fields
- 17.2 Line Integrals
- 17.3 THe Fundamental Theorem for Line Integrals
- 17.4 Green's Theorem
- 17.5 Curl and Divergence
- 17.6 Parametric Surfaces and Their Areas
- 17.7 Surface Integrals
- 17.8 Stokes' Theorem
- 17.9 The Divergence Theorem
- **17.10** Summary

Second-Order Differential Equations

- 18.1 Second-Order Linear Equations
- 18.2 Nonhomogenous Linear Equations
- 18.3 Applications of Second-Order Differential Equations
- 18.4 Series Solutions