1425. Можно ли утверждать, что если функция f(x) в точке x_0 имеет максимум, то в некоторой достаточно малой окрестности этой точки слева от точки x_0 функция f(x) возрастает, а справа от нее убывает?

Рассмотреть пример:

$$f(x) = 2 - x^2 \left(2 + \sin \frac{1}{x}\right)$$
, если $x \neq 0$ и $f(0) = 2$.

1426 (н). Доказать, что функция

$$f(x) = e^{-1/x^2}$$
, если $x \neq 0$, и $f(0) = 0$,

имеет в точке x = 0 минимум, а функция

$$g(x) = xe^{-1/x^2}$$
, если $x \neq 0$, и $g(0) = 0$

не имеет в точке x = 0 экстремума, хотя

$$f^{(n)}(0) = 0$$
, $g^{(n)}(0) = 0$ $(n = 1, 2, ...)$.

Построить графики этих функций. 1427. Исследовать на экстремум функции:

a)
$$f(x) = e^{-1/(x)} \left(\sqrt{2} + \sin \frac{1}{x} \right)$$
 при $x \neq 0$ и $f(0) = 0$;

6)
$$f(x) = e^{-1/|x|} \left(\sqrt{2} + \cos \frac{1}{x} \right)$$
 при $x \neq 0$ и $f(0) = 0$.

Построить графики этих функций.

1428. Исследовать на экстремум в точке x = 0 функцию

$$f(x) = |x| \left(2 + \cos\frac{1}{x}\right), \quad \text{если } x \neq 0 \text{ и } f(0) = 0.$$

Построить график этой функции.

Найти экстремумы следующих функций:

1429.
$$y = x^3 - 6x^3 + 9x - 4$$
. 1430. $y = 2x^3 - x^4$.

1431.
$$y = x(x-1)^3(x-2)^3$$
. 1432. $y = x + \frac{1}{x}$.

1433.
$$y = \frac{2x}{1+x^2}$$
. 1434. $y = \frac{x^2-3x+2}{x^2+2x+1}$.

1435.
$$y = \sqrt{2x - x^3}$$
 1436. $y = x\sqrt[3]{x - 1}$.

1437.
$$y = xe^{-x}$$
. 1438. $y = \sqrt{x} \ln x$.