Phase Transition in TSNE : Critical sample size for learning

Laura Bonde Holst S173953 Pranjal Garg s210242 Virgile Ulrik Blanchet-Møhl s163927

Who does what

____ Virgile

Introduction

Models

____ Laura

Experiment

Results

Pranjal

Discussion

Future Work

Conclusion

Introduction

 Dimensionality reduction is an important tool for visualization of high-dimensional data

Multiple embedding algorithms have been proposed and see use

- Our work studies the impact on learning of:
 - Missing data
 - Noise level
 - Class imbalance

DR Models

PCA	t-SNE	UMAP	Trimap
Linear dimensionality reduction based on finding direction that maximize variance	Stochastic neighbor embedding using t-distribution	Produces high-dimensional graph of data optimized into a low-dimensional representation	Constrained triplet neighbor embedding using added random neighbors
PCA performance is depending on noise and sample size	Focuses on local structure by weighing nearest neighbors increasingly	Decreasing likelihood of neighbor connection with distance to preserve local and global structure	Preserves local structure with constrained neighbors

PCA

t-SNE

UMAP

TriMap

Experiment

DR Techniques	Datasets	Noise levels	Class distribution	Sample size
PCA t-SNE UMAP TriMap	MNIST (8x8) (0+1) Fashion-MNIST (28x28) (Trousers + sneakers)	$\mu = 0, \sigma^{2} = 0$ $\mu = 0, \sigma^{2} = 0.2$ $\mu = 0, \sigma^{2} = 0.5$ $\mu = 0, \sigma^{2} = 0.7$ $\mu = 0, \sigma^{2} = 1$	Stratified at 50/50 Stratified at 25/75	4 datapoints 90 datapoints

Experiment: Noise levels

Experiment

DR Techniques	Datasets	Noise levels	Class distribution	Sample size
PCA t-SNE UMAP TriMap	MNIST (8x8) Fashion-MNIST (28x28)	$\mu = 0, \sigma^{2} = 0$ $\mu = 0, \sigma^{2} = 0.2$ $\mu = 0, \sigma^{2} = 0.5$ $\mu = 0, \sigma^{2} = 0.7$ $\mu = 0, \sigma^{2} = 1$	Stratified at 50/50 Stratified at 25/75	4 datapoints 90 datapoints

Experiment: Accuracy

- K-Means clustering
- 2. Calculate accuracy

$$accuracy = 1 - \frac{number\ of\ false\ classifications}{total\ number\ of\ classifications}$$

Experiment: Experiment flow

Dataset	Noise levels	Class distribution
MNIST	σ^2 =0	50/50

MNIST natural distribution

Dataset	Noise levels	Class distribution
MNIST	Varying	50/50

MNIST natural distribution

MNIST natural distribution

MNIST natural distribution

Dataset	Noise levels	Class distribution
Fashion-MNIST	Varying	50/50

Fashion natural distribution

Fashion natural distribution

Fashion natural distribution

Dataset	Noise levels	Class distribution
Fashion-MNIST	Varying (high)	50/50

Fashion natural distribution

Fashion natural distribution

Fashion natural distribution

Dataset	Noise levels	Class distribution
MNIST	$\sigma^2=0$	Varying

MNIST natural distribution

MNIST stratified distribution

Dataset	Noise levels	Class distribution
Fashion-MNIST	$\sigma^2=0$	Varying

Fashion natural distribution

Fashion stratified distribution

Dataset	Noise levels	Class distribution
Fashion-MNIST	σ^2 =0	25/75

Fashion-MNIST data stratified distribution

Discussion: Phase transition in t-SNE

Fashion natural distribution

Discussion: Effects of noise

Discussion: More noise

Fashion stratified distribution

Others showing steeper learning till 40 points too

Slope of learning curve reduced

Decreased accuracy

Discussion: Very noisy data

Fashion natural distribution

Discussion: Imbalanced classes

Fashion stratified distribution

Similar effects to noise

More profound effect on accuracy

More consistent learning for other techniques till 40?

Discussion: Class imbalance with noise

Fashion stratified distribution

Higher learning rates till 40 for others and phase transition after 30 in t-SNE

Discussion: Dimensionality effects

MNIST natural distribution

Fashion natural distribution

- Higher dimensional dataset more robust to noise but do degrade with even higher noise levels
- Need Signal to Noise ratio measure to better understand effects of dimensions.

Discussion Summary

• In our experiments, we consistently see a phase transition in TSNE between 30 and 40 data points.

Only with strong noise signals the phase transition disappears which is due to the original signal being nullified

• The other models perform decently from beginning with step wise improvement in their learnings.

• With stratification, you do see slight phase transitions in the other models which could potentially indicate a need of minimum data points for their learnings as well.

Future Work

- Simulated data with extremely high and low dimensions.
- Signal-to-noise ratio.
- Test on other DR techniques like LargeVis, Kernel PCA, Laplacian Eigenfolds. and PAC-MAP

Missing data.

Conclusions

- A critical number of points are needed for learning to start from t-SNE.
- No other DR methods that we tested showed such a phase transition.
- Learning speed is affected by noise in the signal and class imbalance.

• A constant phase transition around 30-40 for t-SNE in our experiments.

• Future work needed to reaffirm experiment results without using k-means.

Appendix

Appendix: Noise levels

Appendix

Dataset	Noise levels	Class distribution
MNIST	Varying	25/75

MNIST stratified distribution

MNIST stratified distribution

MNIST stratified distribution

Appendix

Dataset	Noise levels	Class distribution
Fashion-MNIST	Varying	25/75

Fashion stratified distribution

Fashion stratified distribution

Fashion stratified distribution

