

GAMS code, modules & realizations

How do the magpie folder and code look like?

Presenter: Isabelle Weindl

weindl@pik-potsdam.de

June 16, 2025

Outline

- What is GAMS?
- General structure of the MAgPIE Model
- The magpie folder: Components of MAgPIE, the structure of modules and realizations, and the full.gms file
- Coding etiquette: Variable and parameter naming
- Brief exercise

What is GAMS?

MAgPIE is written in the General Algebraic Modeling System (GAMS) language

"GAMS is a high level modeling system for mathematical programming and optimization. It consists of a language compiler and a range of associated solvers."

Useful links:

GAMS at a glance: https://www.gams.com/products/gams/gams-language/

GAMS documentation: https://www.gams.com/latest/docs/

General structure of the MAgPIE Model

- Future **population** and **GDP** are the main drivers (different **scenarios**).
- Food consumption patterns lead to demand for primary agricultural products.
- Trade patterns lead to regional production.
- Production and biophysical yield and water availability data shape cropping patterns.
- Cropping patterns drive land use decisions.

These interactions and calculations are described in the modules of MAgPIE.

More info at: https://rse.pik-potsdam.de/doc/magpie/4.10.1/

The magpie folder: Components of MAgPIE

After you have cloned the magpie folder (git clone https://github.com/magpiemodel/magpie.git) from the repository, you will

find:

Each folder within the modules folder represents a component of the model and contains different realizations (approaches to that component).

main.gms

Makefile

output.R

README.md

15 Jun 2025 15:55

PNG File

GMS File

File

R File

R File

MD File

6 KB 16 KB

2 KB

8 KB

12 KB

4 KB

Structure of the modules

Each module (within the modules folder) has a similar structure:

New realizations can be added by keeping the same structure. In that sense, MAgPIE is easily extendable.

Structure of realizations

As with the modules folders, the realizations files (.gms) and folders are similarly constructed. The source code is distributed over several gms-files to ensure the correct order of calculations during the optimization:

MAgPIE Workshop 2025 > WS25 model version > magpie > modules > 38_factor_costs > sticky_feb18		
Name	Date modified	Туре
j input	15 Jun 2025 15:55	File folder
📝 declarations.gms	15 Jun 2025 15:55	GMS File
📝 equations.gms	15 Jun 2025 15:55	GMS File
📝 input.gms	15 Jun 2025 15:55	GMS File
📝 postsolve.gms	15 Jun 2025 15:55	GMS File
📝 preloop.gms	15 Jun 2025 15:55	GMS File
📝 presolve.gms	15 Jun 2025 15:55	GMS File
📝 realization.gms	15 Jun 2025 15:55	GMS File
📝 scaling.gms	15 Jun 2025 15:55	GMS File
📝 sets.gms	15 Jun 2025 15:55	GMS File

Note that not every gms-file is needed in every realization.

gms.file	function
declarations.gms	Declares all variables, equations, and parameters for the realization.
equations.gms	Contains functional relationships that have to be fulfilled within the optimization.
input.gms	Loads input from any_module/input or any_module/a_realization/input.
sets.gms	Lists sets that are used (mainly) within this realization or are needed for interfaces defined within this realization.
preloop.gms	Includes calculations to be executed before the time-step loop starts.
presolve.gms	Includes calculations to be executed for each time step before the optimization process.
postsolve.gms	Includes calculations to be executed for each time step after the optimization process and defines output.
nl_fix.gms	Fixes non-linear behaviour to linear behavior.
nl_release.gms	Releases restrictions imposed during non-linear fixes.
scaling.gms	Lists the expected order of magnitude of specific variables calculated in this realization to improve the efficiency of the run.
not_used.txt	Lists interfaces (declared in other modules) that are not used within this realization, but in other realizations of the same module.

Coding etiquette: Variable and parameter naming

Coding etiquette: Variable and parameter naming Magris

In other cases, the prefixes are extended with a second letter to indicate details such as:

- ?c_ current time step
- ?q_ parameter containing the values of an equation
- ?v_ parameter containing the values of a variable

pcm_land(j,land)

oq10_land(t,j,type)

ov_landreduction(t,j,land,type)

Suffixes indicate the level of aggregation of an object:

- (no suffix) Highest disaggregation available
- _setname aggregation over set
- reg regional aggregation
- _glo global aggregation

i42_wat_req_k(t,j,k)

vll_cost_reg(i)

i32_max_aff_area_glo

The full.gms file

GMS File

Once you have started a magpie run, you can find the full.gms file in the ouput folder.

full.gms 13 Jun 2025 18:15

Contains the final code used in the current MAgPIE run, based on the selected settings and on one realization per module (done automatically).

Brief exercise

(For online participants: Green tick when you are ready)

- 1. Within the magpie folder, find the 14_yield module.
- Open the declaration.gms file of the managementcalib_aug19 realization.
- 3. Find one example of:
 - A parameter used only within the current module
 - An equation
 - A processing parameter used in this module and the core code/another module
 - An output parameter

Thank you

weindl@pik-potsdam.de