

Cálculo Avanzado - CONJ. CONEXOS 2

Primer cuatrimestre de 2020

Daniel Carando

Dto. de Matemática - FCEN - UBA

Seguimos con temas del capítulo 10 del apunte.

Un espacio métrico (E,d) es conexo cuando los únicos subconjuntos de E que son a la vez abiertos y cerrados son E y \emptyset .

Un espacio métrico (E,d) es conexo cuando los únicos subconjuntos de E que son a la vez abiertos y cerrados son E y \emptyset .

Observación

E es conexo si y sólo si no existen *U* y *V* abiertos no vacíos tales que $E = U \cup V$ y que $U \cap V = \emptyset$.

Cálculo Avanzado Daniel Carando DM-FCEN-UBA

Un espacio métrico (E,d) es conexo cuando los únicos subconjuntos de E que son a la vez abiertos y cerrados son E y \emptyset .

Observación

E es conexo si y sólo si no existen *U* y *V* abiertos no vacíos tales que $E = U \cup V$ y que $U \cap V = \emptyset$.

Definición

Un subconjunto $A \subset E$ es conexo si es conexo cuando lo pensamos como espacio métrico con la métrica inducida.

Cálculo Avanzado Daniel Carando DM-FCEN-UBA

Un espacio métrico (E,d) es conexo cuando los únicos subconjuntos de E que son a la vez abiertos y cerrados son E y \emptyset .

Observación

E es conexo si y sólo si no existen *U* y *V* abiertos no vacíos tales que $E = U \cup V$ y que $U \cap V = \emptyset$.

Definición

Un subconjunto $A \subset E$ es conexo si es conexo cuando lo pensamos como espacio métrico con la métrica inducida.

Ejercicio

Un subconjunto $A \subset E$ es conexo si y sólo si no <u>existen U y V abiertos de E tales que $A \cap U \neq \emptyset$, $A \cap V \neq \emptyset$, $A \subset U \cup V$ y $A \cap U \cap V = \emptyset$.</u>

Eiercicio Hallar todos los subconjuntos conexos de Q. 1 ACE Teorema Si A es conexo, y $A \subset B \subset \overline{A}$, entonces B es conexo. A CONEXO => A° CONEXO !) DEM: Sup B NO CONEXO -73 U, Vab- ORE/ BCUNV, BNU + \$, BNV + \$ ()1 V1B=0. ACBCA ACBCA AB-A Si Siebou => bie AOU => AOU + >> Son by & BAV = be FANV = FANV + FANV + ACBCUUV , UNVACUOVOBED UnVARTO

Cálculo Avanzado Daniel Carando DM-FCEN-UBA 2

10.1.12 **Teorema** Si $\{A_i\}_{i\in I}$ es una familia de conjuntos conexos con intersección no vacía, entonces $A = \bigcup_{i \in I} A_i$ es conexo. 4 NAitp $A_1 \cap A_2 = \emptyset$ $A_1 \vee A_2 \quad \text{no as conexo.}$ AINAZNAE ID AIUAZUAZ CONEXO NO ENTRA EN EL

DEM; A: conemo Vi. AAi + A = U Ai (Emp A No commo) => 3U, V al en E/ AnUto ACUUV, (ANUNV=) San X+ MAi CACUUV Sup NEU (niest-en V, Com VAAto, FineI/VAA, to. ALONVEP. ME (MAi) OU CA: OU = A: OU #P Aio CA CUUV

Aio NUNVCANUNV=

Ai Baniel Carando S CONEXO ASSENTECEN-UBA

4

Cálculo Avanzado

Peine

Componentes conexas

Componentes conexas

Definición

Para cada $x \in E$, la componente conexa de x,

$$C(x) = \bigcup_{\substack{A \text{ conexo} \\ x \in A}} A$$

Componentes conexas

Definición

Para cada $x \in E$, la componente conexa de x,

$$C(x) = \bigcup_{\substack{A \text{ conexo} \\ x \in A}} A \longrightarrow \omega \text{ NOF } O$$

$$(x \text{ TW}).$$

Observación
$$C(x)$$
 a el major subvoy conesso de E

que contiene a X .

Sur $C(x)$ $A(x)$ $A(x)$

ETEMPLOS;
$$E = |R|$$
, $C(x) = |R|$. $\forall x$.

Observación

Si $z \in C(x)$ y $z \in C(y)$, entonces C(x) = C(y)

Observación

Si $z \in C(x)$ y $z \in C(y)$, entonces C(x) = C(y) = C(z).

Observación

Si $z \in C(x)$ y $z \in C(y)$, entonces C(x) = C(y) = C(z).

Definición

Definimos la siguiente relación en E:

$$x \sim y \Leftrightarrow C(x) = C(y)$$
.

Observación

Si $z \in C(x)$ y $z \in C(y)$, entonces C(x) = C(y) = C(z).

Definición

Definimos la siguiente relación en E:

$$x \sim y \Leftrightarrow C(x) = C(y)$$
.

Ejercicio

Probar que \sim es una relación de equivalencia.

Para todo $x \in E$, C(x) es cerrado.

DEM: dado
$$X \in E_1$$
 $C(x)$ es coneno $=$ $C(x)$ coneno Pero $C(x)$ e el major comeno que contiene a $X = X$ $C(x) \subset C(x) \subset C(x)$ $C(x)$ $C(x) \subset C(x)$

$$(x) = \overline{(x)}$$
 $(x) = \overline{(x)}$

"LAS COMPONENTES CONEXAS SON CERRADAS"

Para todo $x \in E$, C(x) es cerrado.

Pregunta

¿Son necesariamente abiertas?

(les comp. conesus.)

9 . Si & tiene FINITAS components conesces

· SI E 11 INFINITAS (1 11

E=Z, E=Q

Para todo $x \in E$, C(x) es cerrado.

Pregunta

¿Son necesariamente abiertas?

Observación

Las funciones continuas mandan conexos en conexos.

Para todo $x \in E$, C(x) es cerrado.

Pregunta

¿Son necesariamente abiertas?

Observación

Las funciones continuas mandan conexos en conexos. En particular, mandan componentes conexas en conexos.

f: E -> Z CONTINUA.

La los munos coversos son los pentos.

G: C C E os una comp conosco, f(C) es un conj

f es constante e caba componente Conesca.

Definición

Un espacio se dice totalmente disconexo si los únicos conexos son los conjuntos formados por un punto.

Definición

Un espacio se dice totalmente disconexo si los únicos conexos son los conjuntos formados por un punto. Equivalentemente, si $C(x) = \{x\}$ para todo $x \in E$.

Definición

Un espacio se dice totalmente disconexo si los únicos conexos son los conjuntos formados por un punto. Equivalentemente, si $C(x) = \{x\}$ para todo $x \in E$.

Definición

Definición

Un espacio se dice totalmente disconexo si los únicos conexos son los conjuntos formados por un punto. Equivalentemente, si $C(x) = \{x\}$ para todo $x \in E$.

Definición

Definición

Un espacio se dice totalmente disconexo si los únicos conexos son los conjuntos formados por un punto. Equivalentemente, si $C(x) = \{x\}$ para todo $x \in E$.

Definición

Definición

Un espacio se dice totalmente disconexo si los únicos conexos son los conjuntos formados por un punto. Equivalentemente, si $C(x) = \{x\}$ para todo $x \in E$.

Definición

Definición

Un espacio se dice totalmente disconexo si los únicos conexos son los conjuntos formados por un punto. Equivalentemente, si $C(x) = \{x\}$ para todo $x \in E$.

Definición

Un espacio E se dice localmente conexo si para todo $x \in E$, y para todo entorno V de x, existe U abierto conexo tal que $x \in U \subset V$.

Observación

E es localmente conexo si y sólo si tiene una base de abiertos formado por conjuntos conexos.

Teorema 10.1, 20 Un espacio E es localmente conexo si y sólo si para todo $A \subset E$ abierto, las componentes conexas de A son abiertas en =) ACEd. C comp. coner le A. . Jeons N.C. A. U al comer /xcUCA SUBC. WALKO DE A Ces el major sulconj

Cálculo Avanzado Daniel Carando DM-FCEN-UBA 10

(=) New V entour de M (q Nf 7 V alr. con)

(de E / XEUCV.) 7 NEVO. Pousamos A=V° com suleys met aliento Sen CA(N) la comp conera de N en A.

Por lip, C₄(x) & al, J & coneno (por ser " une comp. conesa. U or al coneso.

 $\chi \in U = C_A(x) \subset A = V^{\circ} \subset V$ Le al. where

i. E loc. conesso.

Daniel Carando

DM-FCEN-UBA

Cálculo Avanzado