Contents

1	Functional Dependency		
	1.1	Relation	3
	1.2	Functional Dependency	3
		Armstrong's Axioms	
	1.4	Closure	3
	1.5	Minimal Cover	
2	2.1 2.2 2.3	rmal Forms First Normal Form (1NF)	
	2.4	Boyce-Codd Normal Form (BCNF)	Ü
\mathbf{A}	Ent	tity Relational Diagrams	7

1.4 Closure

Definition 1.3. The *closure* of a set F of functional dependencies, denoted F+, is the set of all functional dependencies that can be inferred from those in F.

Chapter 1

Functional Dependency

1.5 Minimal Cover

Definition 1.4. The *minimal cover* G of a set F of functional dependencies, is the smallest set such that G+=F+.

1.1 Relation

Definition 1.1. A relation is an ordered pair (S,R), where S is an n-tuple of names of attributes, and R is a set of n-tuples with values for the attributes as described by S.

Given $T \in R$ and $S = (s_1, s_2, ... s_n)$, we denote the value for attribute s_1 in T as $T(s_1)$.

1.2 Functional Dependency

Definition 1.2. Given R and S = (X, Y), we say that X determines Y, denoted $X \to Y$, if $T_1(X) = T_2(X)$ implies $T_1(Y) = T_2(Y)$ for any $T_1, T_2 \in R$, and we call this a functional dependency.

1.3 Armstrong's Axioms

- 1. Reflexivity: if $Y \subseteq X$ then $X \to Y$
- 2. Augmentation: if $X \to Y$ then $XZ \to YZ$ for any Z
- 3. Transitivity: if $X \to Y$ and $Y \to Z$ then $X \to Z$

Chapter 2

Normal Forms

2.1 First Normal Form (1NF)

Definition 2.1. A superkey of a relation S, R is a set of attributes X such that $t_1(X) = t_2(X)$ if and only if $t_1 = t_2$. Such attributes are said to be *prime*.

A superkey is said to be *minimal* if it has the least number of attributes required to meet this condition. Such a minimal superkey is called a candidate key.

Definition 2.2. A set of relations is in *First Normal Form* if every relation has a minimal superkey.

2.2 Second Normal Form (2NF)

Definition 2.3. A partial dependency is a dependency of a non-prime attribute on a proper subset of a candidate key.

Definition 2.4. A set of relations is in *Second Normal Form* if it is in 1NF and it contains no partial dependencies.

2.3 Third Normal Form (3NF)

Definition 2.5. A trivial dependency is a dependency $X \to Y$ where $Y \subseteq X$.

Definition 2.6. A transitive dependency is a dependency inferred from the transitive axiom. If $X \to Y$

is a transitive dependency, we say Y is transitively dependent on X, otherwise Y is directly dependent on X.

Definition 2.7. A set of relations is in *Third Normal Form* if it is in 2NF and all functional dependencies $X \to Y$ are trivial, or X is a superkey, or all attributes $a \in (X - Y)$ are prime.

2.4 Boyce-Codd Normal Form (BCNF)

Definition 2.8. A set of relations is in *Boyce-Codd Normal Form* if it is in 2NF and all functional dependencies $X \to Y$ are trivial or X is a superkey.

Appendix A

Entity Relational Diagrams

Entity Relational Diagrams are a visual diagramming language for describing entities using relational vocabulary.