Exercice 1

Montrer d'abord que $\frac{1}{2} < \cos(\frac{\pi}{4+x^2}) \le 2$ est un ouvert. $\cos(\frac{\pi}{4+x^2})$ est une fonction continue. On a $\forall xin\mathbb{R}, -1 \le \cos(\frac{\pi}{4+x^2}) \le 1$. Prenons r = 0.5, on a $\forall x \in \mathbb{R},]\cos(\frac{\pi}{4+x^2}) - r, \cos(\frac{\pi}{4+x^2}) + r[\subset] - \infty, 2]$, donc ouvert a droite. Soit $x \in \mathbb{R}, \frac{1}{2} < \cos(\frac{\pi}{4+x^2})$, prenons $r = \frac{\cos(\frac{\pi}{4+x^2}) - \frac{1}{2}}{2}$. r est positif et $]\cos(\frac{\pi}{4+x^2}) - r, \cos(\frac{\pi}{4+x^2}) + r[\subset] \frac{1}{2}, \infty]$, donc ouvert à gauche. Par conséquent, $\frac{1}{2} < \cos(\frac{\pi}{4+x^2}) \le 2$ est un ouvert.

Montrer que $1 \leq e^{\sqrt{1+x^2}} < 3$ est un ouvert. On a $\forall x \in \mathbb{R}, \sqrt{1+x^2} \geq 1$, donc $\forall x \in \mathbb{R}, e^{\sqrt{1+x^2}} \geq e$. Prenons Prenons r = 0.5, on a $\forall x \in \mathbb{R}, |e^{\sqrt{1+x^2}} - r, e^{\sqrt{1+x^2}} + r[\subset [1, \infty]]$, donc ouvert à gauche. Soit $x \in \mathbb{R}, e^{\sqrt{1+x^2}} < 3$. prenons $r = \frac{3-e^{\sqrt{1+x^2}}}{2}$. r est positif et on a $|e^{\sqrt{1+x^2}} - r, e^{\sqrt{1+x^2}} + r[\subset] - \infty, 3[$, donc ouvert droite.

L'union de 2 ouverts est un ouvert donc \mathscr{O} est un ouvert.

Exercice 2

Exercice 2.1

$$F = [0^2, 0^2 + 1] \cup [1^2, 1^2 + 1] \cup [2^2, 2^2 + 1] \cup [3^2, 3^2 + 1] \cup \ldots = [0, 1] \cup [1, 2] \cup [4, 5] \cup [9, 10] \cup \ldots$$

Exercice 2.2

L'union d'un ensemble fini de fermés est un fermé. On a $\forall k \in \mathbb{N}, [a_k, a_k + 1]$ qui est un fermé. U_p est une union finie de fermé donc c'est un fermé.

Exercice 2.3

k et p sont des entiers et k > p donc $k - p \ge 1$, On a $p \ge x$ donc $k - x \ge 1$. Comme $a_k \ge k$, on a $a_k - x \ge 1$ ou $a_k \ge x + 1$.

$$y \in]x - r, x + r[\Leftrightarrow x - r < y < x + r \text{ comme } r \in]0,1] \text{ on a } x - 1 < y < x + 1.$$

Donc
$$y < a_k$$
, donc $|x - r, x + r[\cap [a_k, a_k + 1] = \emptyset$

Exercice 2.4

F est l'union infinie de fermés. F est un fermé dans \mathbb{R} si $\mathbb{R} \setminus F$ est un ouvert. Deux cas:

- $F = [0, \infty[$ aucun "trou", F est un fermé
- $F \neq [0, \infty[$, donc $\exists x \in \mathbb{R}, xnot \in F$, donc $\exists k, a_k + 1 < x < a_{k+1}$. donc $x \in]a_k + 1, a_{k+1}[$ donc $\mathbb{R} \setminus F$ est un ouvert (car union d'ouvert), donc F est un fermé.

Exercice 3

Exercice 3.1

on a $f(x) \ge x^2$ donc $x \le \sqrt{f(x)}$ car f(x) > 0. De plus, $\sqrt{f(x)} < f(x)$ et $f(x) \le M$ et x < M donc $\forall x \in F_M, x < M$. Donc F_M est bornée par M.

Exercice 3.2

puisque $(t_n)_n$ converge vers l, on a $\forall \epsilon > 0, \exists N, \forall n > N, |l - t_n| < \epsilon$ ou $l - \epsilon < t_n < l + \epsilon$. donc $l - \epsilon < f(x_n) < l + \epsilon$ et $x_n^2 \le f(x_n) < l + \epsilon$ donc $x_n < \sqrt{l + \epsilon}$. Donc $(x_n)_n$ est bornée.

Exercice 4

Soit $F = \{v, \forall u \in E, d(u, v) leq 1\}$, on a $diam(F) \leq diam(E) + 2$ car si on prends deux points $a, b \in E$ tel que d(a, b) = diam(E) et 2 points $v_1, v_2 \in F$, alors $d(v_1, u_2) \leq d(v_1, u_1) + d(u_1, u_2) \leq 1 + diam(E)$ et $d(v_1, v_2) \leq d(v_1, u_2) + (u_2, v_2) \leq 1 + diam(E) + 1 = diam(E) + 2$. On a $E' \subset F$, car $\forall u' \in E', \exists u \in E, d(u, u') < 1$. Donc $diam(E) \leq diam(F) \leq diam(E) + 2$.

Exercice 5

Exercice 5.1

$$N(u) = |x| + |y| + \max(|x|, |y|) = ||u||_1 + ||u||_{\infty}$$

Exercice 5.2.a

 $N(u) = ||u||_1 + ||u||_{\infty} \text{ et } ||u||_1 \le 2||u||_{\infty} \text{ donc}$

$$||u||_1 \le KN(u) = K(||u||_1 + ||u||_{\infty}) \le K(||u||_1 + \frac{1}{2}||u||_1) = K\frac{3}{2}||u||_1$$

Donc $K = \frac{2}{3}$

Exercice 5.2.b

 $N(u) = ||u||_1 + ||u||_{\infty} \text{ et } ||u||_1 \le 2||u||_{\infty} \text{ donc}$

$$N(u) = ||u||_1 + ||u||_{\infty} \le (2||u||_{\infty} + ||u||_{\infty}) = 3||u||_{\infty}$$

Donc L=3

Exercice 5.3.a

$$N(A) = |x_a| + |y_a| + \max(|x_a|, |y_a|) = 1 + 0 + 1 = 2 \text{ et } N(B) = |x_b| + |y_b| + \max(|x_b|, |y_b|) = \frac{2}{3} + \frac{2}{3} + \frac{2}{3} = 2$$

Exercice 5.3.b

$$u = ((1-t)x_a + tx_b, (1-t)y_a + ty_b) = (1 - \frac{1}{3}t, \frac{2}{3}t)$$

$$N(u) = |1 - \frac{1}{3}t| + |\frac{2}{3}t| + \max(|1 - \frac{1}{3}t|, |\frac{2}{3}t|) = 1 - \frac{1}{3}t + \frac{2}{3}t + \max(1 - \frac{1}{3}t, \frac{2}{3}t) = 1 + \frac{1}{3}t + \max(1 - \frac{1}{3}t, \frac{2}{3}t)$$

car $t \in [0, 1]$.

2 cas:

- $1 \frac{1}{3}t > \frac{2}{3}t$, donc $N(U) = 1 + \frac{1}{3}t + 1 \frac{1}{3}t = 2$
- $1 \frac{1}{3}t \le \frac{2}{3}t$ donc $N(u) = 1 + \frac{1}{3}t + \frac{2}{3}t = 2$

Exercice 6

Exercice 6.1

2 cas :

- $X \cap B = \emptyset$, et \emptyset est un ouvert.
- $X \cap B \neq \emptyset$ donc $\exists x \in X \cap B$, comme $x \in X, \exists r,]x r, x + r[\subset X \text{ car } X \text{ est un ouvert. de même, } x \in B, \exists r',]x r', x + r'[\subset B, \text{ prenons } r'' = \min(r, r'), \text{ on a }]x r'', x + r''[\subset X \cap B, \text{ donc } X \cap B \text{ est un ouvert.}]$

Exercice 6.2

 $u \in X$ donc $X \cap B \neq \emptyset$. On a $\forall u \in X, \exists r, B(u,r), X \cap B(u,r)$ est un ouvert. Comme $X \cap B(u,r)$ est un ouvert $\exists r', \forall x \in X \cap B(u,r),]x - r', x + r'[\subset X \cap B(u,r).$ Donc $\forall u \in X, \exists r,]x - r', x + r'[\subset X \cap B \subset X.$ Donc X est un ouvert.

Exercice 6.3

2 cas:

- $X \cap B = \emptyset$, et \emptyset est un fermé.
- $X \cap B \neq \emptyset$ donc $\exists x \in X \cap B$, comme X est un fermé, $\mathbb{R} \setminus X$ est un ouvert et de même $\mathbb{R} \setminus B$ est un ouvert. L'union de 2 ouverts est un ouvert. Donc $(\mathbb{R} \setminus X) \cup (\mathbb{R} \setminus B)$ est un ouvert. et $R \setminus ((\mathbb{R} \setminus X) \cup (\mathbb{R} \setminus B))$ est un fermé mais $R \setminus (\mathbb{R} \setminus X \cup \mathbb{R} \setminus B) = X \cap B$ donc $X \cap B$ est un fermé.

Exercice 6.4

QED