Binary Square Matrix Combinatorics

by Sven Nilsen, 2020

In this paper I formalize binary square matrix combinatorics using Directional Set Algebra.

For all `n: nat`, there is an associated binary square matrix combinatorics:

0	Empty matrix set
I	Identity matrix set
U	Upper triangle matrix
L	Lower triangle matrix
1	All matrices

The following law holds with Directional Set Algebra:

$$I + U + L = 1$$

Sizes of sets:

$$|0| = 0$$

 $|I| = 1$
 $|1| = 2^{n} (n \cdot n)$
 $|U| = |L| = 2^{n} (n \cdot (n-1) / 2)$

Sub-types of binary matrix sets can be constructed using elements `0`, `1` and `?`. The following laws holds with Directional Set Algebra, where `?` is top and there is no bottom:

$$0 + 1 = ?$$

Upper triangle matrix:

0??

 $0 \ 0 \ 0$

Lower triangle matrix:

000

?00

??0

All matrices:

???

???

???