Manipulator Kinematics in 3D

Open link manipulator

Only study thee manipulators in this course

Closed link manipulator

dosed chain
e.g. Stenart
Platform.

$$H_{j}^{i} = \begin{cases} H_{i+1}^{i} & H_{i+2}^{j-1} & i < j \\ I & i = j \\ (H_{i}^{i})^{-1} & i > j \end{cases}$$

$$Homogeneus transformation I = 4x4 identity watrix$$

Deravit - Harrtenberg convention (DH)

$$H_{i}^{i+} = H_{z}(o_{i}) H_{z}(d_{i}) H_{x}(a_{i}) H_{x}(x_{i})$$

$$= \begin{bmatrix} co_{i} - so_{i} & o & o \\ so_{i} & co_{i} & o & o \\ o & o & 1 & 6 \\ o & o & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & o & o & o \\ 0 & 1 & o & o \\ 0 & 0 & o & 1 \end{bmatrix} \begin{bmatrix} 1 & o & o & o \\ 0 & 1 & o & o \\ 0 & 0 & o & 1 \end{bmatrix} \begin{bmatrix} 1 & o & o & o \\ 0 & 1 & o & o \\ 0 & 0 & o & 1 \end{bmatrix}$$

CO, = coso; so; = sino; cx; = (osx;) sx; = sinx;

Qi, di, Xi, ai - DM parameters

4 numbers to describe each link. Nowever, we know that it takes 6 number (x, y, t, 0, 0, 4) to describle position) orientation of each link We get away with only 4 number (as opposed to 6) because DN uses a special way of defining the axis of each link

1. a_i is the distance between z_i and z_{i-1} along x_i .

- α_i is the angle between z_i and z_{i-1} along x_i.
 d_i is the distance between x_{i-1} and x_i along z_{i-1}.
 θ_i is the angle between x_{i-1} and x_i along z_{i-1}.

intersection book by

(1) Spong

- 90 (2)

Lec28 Page 3

Algorithm for using DH for forward kinematics There are three steps.

1. Assign coordinate frames:

- (a) Assign z_i along the axis of actuation for each link, where i = 0, 1, 2, ...(n − 1).
- (b) Assign the base frame o₀ x₀ y₀ z₀. The z₀ has already been assigned. Assign x₀ arbitrarily. Assign y₀ based on x₀ and z₀ using right hand rule.
- (c) Now assign coordinate frames o_i − x_i − y_i − z_i for i = 1, 2, ..., n − 1. z_i is already attached in first step. Next we assign x_i using these rules.
 - z_{i-1} and z_i are not coplanar: In this case, there is a unique shorted distance segment that is perpendicular to z_{i-1} and z_i. Choose this as x_i axis. The origin o_i is where x_i intersects z_i. The y_i is found from right hand rules.
 - ii. z_{i-1} and z_i parallel: In this case, there infinitely many perpendiculars. Choose any of these perpendiculars for x_i. Furthermore, where x_i intersects z_i we draw the origin x_i. Finally, y_i is found from the right hand rule. To make equations simpler, choose x_i such that is passes through o_{i-1}. This will make d_i = 0. Also, since z_{i-1} is parallel to z_i, α_i = 0.
 - iii. z_{i-1} and z_i intersect: In this case, x_i is chosen to be normal to the plane formed by z_{i-1} and z_i. There will be two possible directions for x_i, one of them is chosen arbitrarily and o_i is obtained by the intersection of z − i and x_i. Finally y_i is obtained from right hand rule. Also, since z_{i-1} intersects z_i, a_i = 0.
- (d) Finally we need to attach an end effector frame, o_n x_n y_n z_n. Attach z_n to be the same direction as z_{n-1}. Now depending on the relation between z_n and z_{n-1}, attach frame x_n. Finally, attach y_n using the right hand rule.

2. Generate a table for DH parameter: Now generate the DH table as follows.

	Link	a_i	α_i	d_i	θ_i
ーナ	1				
4	2				
_ _	n				

 Apply DH transformation to evaluate forward kinematics: Finally, use the DH formulate to link two adjacent frames

$$\mathbf{H}_{i}^{i-1} = \begin{bmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{i} & s\theta_{i}s\alpha_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -c\theta_{i}s\alpha_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{H}(\bigotimes_{\iota}) \mathbf{H}_{2}(d_{\iota}) \cdot \dots$$

The position and orientation of the end-effector is found using the formula

$$\underbrace{\mathbf{H}_{n}^{0}}_{n} = \underbrace{\mathbf{H}_{1}^{0}\mathbf{H}_{2}^{1}\mathbf{H}_{3}^{2}...\mathbf{H}_{n}^{n-1}}_{n} = \begin{bmatrix} \mathbf{R}_{n}^{0} & \mathbf{d}_{n}^{0} \\ \mathbf{0} & 1 \end{bmatrix} \quad 4X4$$

The position of the end-effector is \mathbf{d}_n^0 and the orientation is \mathbf{R}_n^0 . From \mathbf{R}_n^0 , we can recover the Euler angles for the end-effector frame.

1, John Line and-effects

orientation

Ry

position d'n