2013-2014 学年第二学期高等数学期中测试及数学竞赛试卷(2013 级)

(参加竞赛的同学全做,其他同学只做一、二大题)

一、填空题(8×5分)

- 1. 设 $\vec{a} = (2,1,-2)$, $\vec{b} = (1,-1,-1)$, 则 $(\vec{a} \vec{b}) \cdot (\vec{a} + \vec{b}) = _____$, $(3\vec{a} 5\vec{b}) \times (5\vec{a} 8\vec{b}) =$
- 2. 过三点 A(0,4,-5), B(-1,-2,2), C(4,2,1)的平面方程为_____。
- 3. 直线 $L: \begin{cases} x-y-1=0 \\ y+z-1=0 \end{cases}$ 在平面 $\pi: x-y+2z-1=0$ 上的投影直线 L_0 的方程为______。
- 4. $\lim_{\substack{x \to \infty \\ y \to a}} \left(1 + \frac{1}{xy} \right)^{\frac{x^2}{x+y}} \left(a \neq 0 \right) = \underline{\qquad}$
- 5. 设 $z = (1 + xy)^y$,则 $\frac{\partial z}{\partial x}\Big|_{(1,1)} = \underline{\qquad}$, $\frac{\partial z}{\partial y}\Big|_{(1,1)} = \underline{\qquad}$
- 6. 曲面 $z = x^2 + y^2$ 与平面 2x + 4y z = 0 平行的切平面方程是_____。
- 7. 已知 f(x,y)可微,且 f(1,2)=2, $f'_x(1,2)=3$, $f'_y(1,2)=4$, 记 $\varphi(x)=f(x,f(x,2x))$, $\varphi'(1)=$
- 8. 由 $xyz + \sqrt{x^2 + y^2 + z^2} = \sqrt{2}$ 所确定的函数 z = z(x, y),则 $dz|_{(1,0,-1)} = \underline{\hspace{1cm}}$ 。

二、计算题(4×15分)

1. 设直线通过点 P(-3,5,-9),且和两直线 $L_1: \begin{cases} y=3x+5 \\ z=2x-3 \end{cases}$, $L_2: \begin{cases} y=4x-7 \\ z=5x+10 \end{cases}$ 相交,求此直线方程。

2. 设 f 具二阶导数, g 具二阶偏导, z = f(2x+3y) + g(xy, x+y), 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x^2}$ 。

3. 设在 xOy 面上,各点的温度 T 与点的关系为 $T=4x^2+9y^2$,点 $P_0ig(9,4ig)$,求 1) $gradTig|_{P_0}$; 2)在 点 P_0 处沿极角为 $\frac{7}{6}\pi$ 的方向 \bar{l} 的温度变化率; 3)在何方向上点 P_0 处的温度变化率取得最大值并求 之。

4. 求二元函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值 (需判定极大、极小)。

三、数学竞赛加题 (5×20 分)

1. 已知函数 $f(x) = \frac{1+x}{\sin x} - \frac{1}{x}$,记 $a = \lim_{x \to 0} f(x)$,1)求 a ; 2)当 $x \to 0$ 时, f(x) - a 与 x^k 是同阶无 穷小,求常数 k 。

2. 设 $F(x) = \begin{cases} \frac{f(x)}{x}, & x \neq 0 \\ f'(0), & x = 0 \end{cases}$, 其中f(x)具有连续导数且f(0) = 0, f''(0)存在,1) 求F'(x); 2)

F'(x)在x = 0处是否连续(要有过程)。

2) 计算
$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
,其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$

0

4. 设函数
$$f(x)$$
在 $[0,1]$ 上连续,在 $(0,1)$ 内可微,且 $f(0)=f(1)=0$, $f\left(\frac{1}{2}\right)=1$,求证: 1)在 $\left(\frac{1}{2},1\right)$ 内至少有一点 ξ ,使得 $f(\xi)=\xi$; 2)在 $(0,\xi)$ 内至少有一点 η ,使得 $f'(\eta)=f(\eta)-\eta+1$ 。

5. 1) 比较 $\int_0^1 |\ln t| [\ln(1+t)]^n dt = \int_0^1 t^n |\ln t| dt (n=1,2,\cdots)$ 的大小,说明理由;

2)
$$\exists u_n = \int_0^1 \left| \ln t \right| \left[\ln(1+t) \right]^n dt \left(n = 1, 2, \cdots \right), \quad \Re \lim_{n \to \infty} u_n$$

参考答案

—,

2.
$$11x - 17y - 13z + 3 = 0$$

3.
$$\begin{cases} x - 3y - 2z + 1 = 0 \\ x - y + 2z - 1 = 0 \end{cases}$$

4.
$$e^{\frac{1}{a}}$$

6.
$$2x + 4y - z - 5 = 0$$

8.
$$dx - \sqrt{2}dy$$

1.
$$\begin{cases} 2x - z - 3 = 0 \\ 34x - y - 6z + 53 = 0 \end{cases} \implies x + 3 = \frac{y - 5}{22} = \frac{z + 9}{2}$$

2.
$$\frac{\partial z}{\partial x} = 2f' + yg'_1 + g'_2$$
, $\frac{\partial z}{\partial y} = 3f' + xg'_1 + g'_2$, $\frac{\partial^2 z}{\partial x \partial y} = 6f'' + g'_1 + xyg''_{11} + yg''_{12} + xg''_{21} + g''_{22}$

3. 1)
$$(72,72)$$
 2) $-36(\sqrt{3}+1)$ 3) $gradT|_{P_0}$ 方向上有最大变化率 $72\sqrt{2}$

4. 极小值
$$f\left(0,\frac{1}{e}\right) = -\frac{1}{e}$$

三、

2. 1)
$$F'(x) = \begin{cases} \frac{xf'(x) - f(x)}{x^2}, & x \neq 0 \\ \frac{1}{2}f''(0), & x = 0 \end{cases}$$

3. 1)
$$\sec t$$
 2) $-4 \ln 2 + 8 - 2\pi$

5. 1)
$$\int_0^1 |\ln t| [\ln(1+t)]^n dt < \int_0^1 t^n |\ln t| dt (n=1,2,\cdots)$$
 2) 0