Nonlinear Optimization

Least Squares Problems — The Gauss-Newton method

Niclas Börlin

Department of Computing Science

Umeå University niclas.borlin@cs.umu.se

November 22, 2007

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems

The Gauss-Newton method Pertubation sensitivity Statistical interpretation Orthogonal regression

Problem formulation

Parameter estimation
Geometric interpretation
Gradient and Hessian structure

Problem formulation

 A nonlinear least-squares problem is an unconstrained optimization problem of the form

$$\min_{x \in \Re^n} f(x) = \frac{1}{2} \sum_{i=1}^m r_i(x)^2,$$

where *n* is the number of variables.

- ▶ The objective function f(x) is defined by m auxiliary residual functions $\{r_i(x)\}$. We will assume that $m \ge n$.
- ► The problem is called least-squares since we are minimizing the sum of squares of the residual functions.

Nonlinear least-squares parameter estimation

- ▶ A large class of optimization problems are the *non-linear least* squares parameter estimation problems.
- ▶ In a parameter estimation problem, the functions $r_i(x)$ represent the difference (residual) between a model function and a measured value. Study e.g. the data set

$$t_i$$
: 1 2 4 5 8 v_i : 3 4 6 11 20

where t_i is the time in years and y_i is the size of antelope population (in hundreds).

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems The Gauss-Newton method Pertubation sensitivity Statistical interpretation Orthogonal regression

Problem formulation Parameter estimation Geometric interpretation Gradient and Hessian structure

If we assume that the development of the population is exponential, the model function might be

$$g(t) = x_1 e^{x_2 t}$$

and the residuals

$$r_i(x) = g(t_i) - y_i = x_1 e^{x_2 t_i} - y_i.$$

▶ In standard least squares problems, the *vertical distance* (squared) between observations and a model function are minimized.

Geometric interpretation

We will write the optimization problem as

$$\min_{x} f(x)$$
,

where

$$f(x) = \frac{1}{2} \sum_{i=1}^{m} r_i(x)^2 \equiv \frac{1}{2} r(x)^T r(x) \equiv \frac{1}{2} ||r(x)||^2,$$

and r is a vector-valued function

$$r(x) = [r_1(x) \ r_2(x) \ \dots \ r_m(x)]^T$$
.

- For each value of x, the residual function value r(x) may be interpreted as a point in "observation space" \Re^m .
- ▶ The residual function describes a (usually n-dimensional) surface in \Re^m .

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems

The Gauss-Newton method Pertubation sensitivity Statistical interpretation Orthogonal regression Problem formulation
Parameter estimation
Geometric interpretation
Gradient and Hessian structure

For the antelope data and model

$$f(x) = \frac{1}{2} \sum_{i=1}^{5} (x_1 e^{x_2 t_i} - y_i)^2 = \frac{1}{2} r(x)^T r(x),$$

$$r(x) = \begin{bmatrix} x_1 e^{x_2 t_1} - y_1 \\ x_1 e^{x_2 t_2} - y_2 \\ x_1 e^{x_2 t_3} - y_3 \\ x_1 e^{x_2 t_4} - y_4 \\ x_1 e^{x_2 t_5} - y_5 \end{bmatrix} = \begin{bmatrix} x_1 e^{1x_2} - 3 \\ x_1 e^{2x_2} - 4 \\ x_1 e^{4x_2} - 6 \\ x_1 e^{5x_2} - 11 \\ x_1 e^{8x_2} - 20 \end{bmatrix},$$

Observe that

$$\min_{x} \frac{1}{2} ||r(x)||^2$$

may be interpreted as

$$\min_{x} \frac{1}{2} ||r(x) - 0||^2.$$

▶ Thus, a least squares problem may be interpreted as trying to find the point x^* in parameter space \Re^n that corresponds to the point $r(x^*)$ in observation space \Re^m that is *closest to the origin*.

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems

The Gauss-Newton method Pertubation sensitivity Statistical interpretation Orthogonal regression Problem formulation
Parameter estimation
Geometric interpretation
Gradient and Hessian structure

Non-linear least squares problems
The Gauss-Newton method
Pertubation sensitivity
Statistical interpretation
Orthogonal regression

Problem formulation
Parameter estimation
Geometric interpretation
Gradient and Hessian structure

Gradient and Hessian structure

▶ The gradient $\nabla f(x)$ may be derived from the chain rule

$$\nabla f(\mathbf{x}) = \nabla r(\mathbf{x}) r(\mathbf{x}) = J(\mathbf{x})^T r(\mathbf{x}),$$

where $J(x) = \nabla r(x)^T$ is the *Jacobian* of r(x), i.e.

$$J(x) = \begin{bmatrix} \frac{\partial r_1(x)}{\partial x_1} & \cdots & \frac{\partial r_1(x)}{\partial x_n} \\ \frac{\partial r_2(x)}{\partial x_1} & \cdots & \frac{\partial r_2(x)}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial r_m(x)}{\partial x_1} & \cdots & \frac{\partial r_m(x)}{\partial x_n} \end{bmatrix}.$$

Gradient and Hessian structure

Using the chain rule again, the Hessian is

$$\nabla^2 f(x) = \nabla r(x) \nabla r(x)^T + \sum_{i=1}^m r_i(x) \nabla^2 r_i(x),$$

= $J(x)^T J(x) + Q(x).$

▶ Thus, the Hessian of a least-squares objective function is a sum of two terms; $J(x)^T J(x)$ with only first-order derivatives, and Q(x) with second-order derivatives.

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems

The Gauss-Newton method Pertubation sensitivity Statistical interpretation Orthogonal regression Problem formulation
Parameter estimation
Geometric interpretation
Gradient and Hessian structure

Gradient, Jacobian, and Hessian

For the antelope data and model

$$f(x) = \frac{1}{2} \sum_{i=1}^{5} (x_{1} e^{x_{2}t_{i}} - y_{i})^{2} = \frac{1}{2} r(x)^{T} r(x), \quad r(x) = \begin{bmatrix} x_{1} e^{x_{2}t_{1}} - y_{1} \\ x_{1} e^{x_{2}t_{2}} - y_{2} \\ x_{1} e^{x_{2}t_{3}} - y_{3} \\ x_{1} e^{x_{2}t_{4}} - y_{4} \\ x_{1} e^{x_{2}t_{5}} - y_{5} \end{bmatrix} = \begin{bmatrix} x_{1} e^{1x_{2}} - 3 \\ x_{1} e^{2x_{2}} - 4 \\ x_{1} e^{4x_{2}} - 6 \\ x_{1} e^{5x_{2}} - 11 \\ x_{1} e^{8x_{2}} - 20 \end{bmatrix},$$

$$\nabla f(x) = J(x)^{T} r(x), \qquad J(x) = \begin{bmatrix} e^{x_{2}t_{1}} & t_{1}x_{1} e^{x_{2}t_{1}} \\ e^{x_{2}t_{2}} & t_{2}x_{1} e^{x_{2}t_{2}} \\ e^{x_{2}t_{3}} & t_{3}x_{1} e^{x_{2}t_{3}} \\ e^{x_{2}t_{4}} & t_{4}x_{1} e^{x_{2}t_{5}} \\ e^{x_{2}t_{5}} & t_{5}x_{1} e^{x_{2}t_{5}} \end{bmatrix} = \begin{bmatrix} e^{1x_{2}} & 1x_{1} e^{1x_{2}} \\ e^{2x_{2}} & 2x_{1} e^{2x_{2}} \\ e^{2x_{2}} & 2x_{1} e^{2x_{2}} \\ e^{4x_{2}} & 4x_{1} e^{4x_{2}} \\ e^{5x_{2}} & 5x_{1} e^{5x_{2}} \\ e^{8x_{2}} & 8x_{1} e^{8x_{2}} \end{bmatrix}$$

$$\nabla^{2} f(x) = J(x)^{T} J(x) + Q(x), \qquad Q(x) = \sum_{i=1}^{5} (x_{1} e^{x_{2}t_{i}} - y_{i}) \begin{bmatrix} 0 & t_{i} e^{x_{2}t_{i}} \\ t_{i} e^{x_{2}t_{i}} & x_{1} t_{i}^{2} e^{x_{2}t_{i}} \end{bmatrix}$$

The Newton formulation

The linear least squares formulation Geometrical interpretation Convergence

The Gauss-Newton method; the Newton formulation

▶ The Hessian is a sum of two components

$$\nabla^2 f(x) = \nabla r(x) \nabla r(x)^T + \sum_{i=1}^m r_i(x) \nabla^2 r_i(x)$$

= $J(x)^T J(x) + Q(x)$.

- ▶ If the problem has a zero residual, i.e. $r_i(x^*) = 0$, the term Q(x) will be small close to the solution.
- A method that uses the approximation Q(x) = 0 is called the Gauss-Newton method and determines the search direction as the solution of the Newton equation

$$\nabla^2 f(x) p^N = -\nabla f(x)$$

with the Hessian approximated by $J(x)^T J(x)$, i.e.

$$J(x)^{\mathsf{T}}J(x)p^{\mathsf{GN}} = -J(x)^{\mathsf{T}}r(x).$$

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems
The Gauss-Newton method
Pertubation sensitivity
Statistical interpretation
Orthogonal regression

The Newton formulation

The linear least squares formulation Geometrical interpretation Convergence

▶ If we assume that J(x) has full rank, the Hessian approximation

$$J(x)^T J(x)$$

is positive definite and the Gauss-Newton search direction p^{GN} is a descent direction.

▶ Otherwise, $J(x)^T J(x)$ is non-invertible and the equation

$$J(x)^T J(x) p^{GN} = -J(x)^T r(x)$$

does not have a unique solution. In this case, the problem is said to be *under-determined* or *over-parameterized*.

The linear least squares formulation

Assume we approximate the residual function r(x) with a *linear* Taylor function, i.e. a plane

$$r(x_k + p) \approx r_k + J_k p$$
.

► The minimizer on the plane is found by solving the linear least squares problem

$$\min_{p} \frac{1}{2} \|J_k p + r_k\|^2 = \min_{p} \frac{1}{2} \|J_k p - (-r_k)\|^2.$$

The solution is given by the normal equations

$$J_k^T J_k p = -J_k^T r_k$$

or

$$p = (J_k^T J_k)^{-1} J_k^T (-r_k).$$

► Thus, the minimizer on the plane corresponds to the Gauss-Newton search direction!

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems
The Gauss-Newton method
Pertubation sensitivity
Statistical interpretation
Orthogonal regression

The Newton formulation
The linear least squares formulation
Geometrical interpretation
Convergence

Geometrical interpretation of the search direction

- The linear approximation corresponds to a tangent plane to the surface r(x) at $r_k = r(x_k)$.
- ▶ The point on the tangent plane closest to the origin is given by the projection of $-r_k$ onto the range space of J_k , since

$$J_k p^{GN} = \underbrace{J_k (J_k^T J_k)^{-1} J_k^T}_{P_{\mathcal{R}(J_k)}} (-r).$$

Geometric interpretation of the first order condition

- ► The first order condition $\nabla f(x^*) = 0$ corresponds to when $J(x^*)^T r(x^*) = 0$, i.e. $r(x^*)$ is orthogonal to the tangent plane spanned by the columns of $J(x^*)$.
- A special case is when $r(x^*) = 0 \Rightarrow f(x^*) = 0$.
- ▶ In this case the problem is said to have zero residual and the surface r(x) intersects the origin.

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems
The Gauss-Newton method
Pertubation sensitivity
Statistical interpretation
Orthogonal regression

The Newton formulation
The linear least squares formulation
Geometrical interpretation
Convergence

Convergence for the Gauss-Newton method

- ▶ If $r(x^*) = 0$, then the approximation $Q(x) \approx 0$ is good and the Gauss-Newton method will behave like the Newton method close to the solution, i.e. converge quadratically if $J(x^*)$ has full rank.
- ▶ The advantage over the Newton method is that we do not need to calculate the second-order derivatives $\nabla^2 r_i(x)$.
- ▶ However, if any residual component $r_i(x^*)$ and/or the corresponding curvature $\nabla^2 r_i(x)$ is large, the approximation $Q(x) \approx 0$ will be poor, and the Gauss-Newton method will converge slower than the Newton method.
- ► For such problems, the Gauss-Newton method may not even be locally convergent, i.e. without a global strategy such as the line search, it wouldn't converge no matter how close to the solution we start.

Pertubation sensitivity

▶ If $J(x^*) = USV^T$ is the singular value decomposition of $J(x^*)$ with

$$U^TU = I_m, V^TV = I_n, S = \begin{bmatrix} S_0 \\ 0 \end{bmatrix}, S_0 = \begin{bmatrix} s_1 \\ & \ddots \\ & & s_n \end{bmatrix}, s_1 \geq s_2 \geq \ldots \geq s_n \geq 0,$$

the first order approximation $r(x^* + p) \approx r(x^*) + J(x^*)p$ becomes

$$r(x^*) + USV^T p = r(x^*) + u_1 s_1 v_1^T p + \ldots + u_n s_n v_n^T p.$$

- For small regions around x^* , the residual function $r(x^*)$ will change the most in the direction of v_1 , and the change will be proportional to s_1u_1 , i.e. the residual values are most sensitive to changes in the v_1 direction.
- Similarly, the residual function will change the least in the direction of v_n , with the change proportional to $s_n u_n$. In the extreme case of $s_n = 0$, the residual will be constant in the direction of v_n and the solution x^* will not be unique.

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems
The Gauss-Newton method
Pertubation sensitivity
Statistical interpretation
Orthogonal regression

Since the search direction is calculated as

$$\rho = (J^{T}J)^{-1}(J^{T}(-r)) = (VS^{T}U^{T}USV^{T})^{-1}VS^{T}U^{T}(-r)
= (VS_{0}^{2}V^{T})^{-1}VS^{T}U^{T}(-r) = VS_{0}^{-2}V^{T}VS^{T}U^{T}(-r)
= V\begin{bmatrix} S_{0}^{-1} \\ 0 \end{bmatrix}U^{T}(-r) = \frac{v_{1}u_{1}^{T}(-r)}{s_{1}} + \dots + \frac{v_{n}u_{n}^{T}(-r)}{s_{n}},$$

the opposite is true for the sensitivity of x^* as a function of r.

► The solution x^* is the most sensitive to pertubations of r in the direction of u_n and the change in x^* will be proportional to $\frac{1}{s_n}v_n$.

For the antelope problem,

$$J(x^*) = \begin{bmatrix} 1.25 & 3.11 \\ 1.56 & 7.75 \\ 2.42 & 24.1 \end{bmatrix}, U = \begin{bmatrix} 0.13 & 0.76 & -0.63 \\ 0.31 & 0.58 & 0.76 \\ 0.94 & -0.29 & -0.16 \end{bmatrix},$$
$$V = \begin{bmatrix} 0.11 & -0.99 \\ 0.99 & 0.11 \end{bmatrix}, S_0 = \begin{bmatrix} 25 \\ 1.2 \end{bmatrix}.$$

- ▶ The solution is most sensitive to pertubation of the observations in the direction of $\begin{bmatrix} 0.76 & 0.58 & -0.29 \end{bmatrix}^T$, which will perturb the solution in the $\begin{bmatrix} -0.99 & 0.11 \end{bmatrix}^T$ direction.
- \triangleright x_1 is the most sensitive variable, and it the most sensitive to the y_3 observation. Similarly, x_2 is the least sensitive variable, and the y_3 observation has the least effect on it.

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems
The Gauss-Newton method
Pertubation sensitivity
Statistical interpretation
Orthogonal regression

The error model Variance of estimated parameters Weighted least squares

Statistical interpretation

▶ If the residuals are interpreted statistically, i.e. we have a model

$$y_i = x_1 e^{x_2 t_i} + \varepsilon_i$$

and the errors ε_i are assumed to be independent and normally distributed $N(0, \sigma^2)$, our least squares estimation of the parameters will be the *maximum likelihood* estimators given our measurement y_i .

Variance of estimated parameters

► The variance for the estimated parameters are calculated from the *variance-covariance matrix*

$$D = \sigma^2(\nabla^2 f(\mathbf{x}^*))^{-1},$$

where each diagonal element d_{ij} correspond to the variance of the parameter x_i , and the off-diagonal element d_{ij} correspond to the covariance between parameters x_i and x_j .

▶ If σ^2 is unknown, it may be estimated by

$$\hat{\sigma}^2 = \frac{r(\mathbf{x}^*)^T r(\mathbf{x}^*)}{m - n},$$

where m is the number of observations, and n is the number of parameters.

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems
The Gauss-Newton method
Pertubation sensitivity
Statistical interpretation
Orthogonal regression

The error model Variance of estimated parameters Weighted least squares

A high variance means a high degree of uncertainty about a parameter. In this context, the inverse matrix

$$K = D^{-1} = \frac{1}{\sigma^2} \nabla^2 f(x^*),$$

is sometimes called the *information matrix*, since the higher the diagonal value k_{ii} , the more information we have about the parameter x_i .

Since the information matrix is proportional to the hessian $H(x^*) = \nabla^2 f(x^*)$, strong curvature corresponds to high information, i.e. good localization of the parameter.

- Thus, $\hat{\sigma} = \sqrt{r(x^*)^T r(x^*)/(3-2)} = 0.17$ (hecto-antelopes) and the standard deviation of x_1 is $\sqrt{0.73}\sigma = 0.14$ (hecto-antelopes) and of x_2 is $\sqrt{0.011}\sigma = 0.017$ (hecto-antelopes/year). With these units, the maximum uncertainty is in the direction of $0.99x_1 0.11x_2$.
- Note that the interpretation of the standard deviations is context-dependent, since it depends on e.g. the measurement units of each parameter.

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems
The Gauss-Newton method
Pertubation sensitivity
Statistical interpretation
Orthogonal regression

The error model
Variance of estimated parameters
Weighted least squares

- ► The approximations of the parameters and the covariances makes it possible to derive confidence limits, do hypothesis testing, etc.
- ► For linear problems, the covariance estimations are exact. For non-linear problems, the covariances are still exact, but the confidence limits are not, since the confidence regions are not ellipses.

Furthermore, if the hessian is approximated by

$$\nabla^2 f(\mathbf{x}^*) \approx J(\mathbf{x}^*)^T J(\mathbf{x}^*),$$

the covariances will only be first order approximations of the true covariances.

Weighted least squares

► If the observations errors are dependent and/or with different variances, weighted least squares should be used, i.e. the problem

$$\min_{x} r(x)^{T} Wr(x),$$

should be solved.

If the matrix Σ with elements σ_{ij}^2 contain the covariances between observations i and j, the optimal choice of W is

$$W=\Sigma^{-1}$$

and the solution of the weighted least squares problem is again the maximum likelyhood solution.

- ▶ The distance measure $r(x)^T \Sigma^{-1} r(x)$ is sometimes called the *Mahalanobis distance*.
- If the observations are independent, Σ and W will be diagonal matrices, and $w_i = 1/\sigma_i^2$. Thus the solution will rely more on "good" observations, since residuals with a corresponding small observation error will be weighted more heavily in the objective function.

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems
The Gauss-Newton method
Pertubation sensitivity
Statistical interpretation
Orthogonal regression

The error model Variance of estimated parameters Weighted least squares

- ▶ If we want to solve a weighted least squares problem, there are two equivalent solutions: Change the algorithm or change the residual and Jacobian function.
- ▶ A modified algorithm would solve the following equation

$$J^T W J p = -J^T W r.$$

A modified residual/Jacobian would be

$$r_{s}(x) = Rr(x), J_{s}(x) = RJ(x),$$

where $R^TR = W$ is the Cholesky factorization of W. Such a factor R will always exist if W is positive semidefinite.

Ortogonal regression

When we solve the problem

$$\min_{x} \frac{1}{2} \sum_{i=1}^{m} r_{i}(x)^{2} = \frac{1}{2} \min_{x} r(x)^{T} r(x)$$

where $r_i(x) = g(t_i) - y_i$ is the difference between our model and our measured values, we minimize the square of the *vertical* distance.

- In other contexts, e.g. if we can assume that we have errors also in the independent variable t_i , it may be appropriate to minimize the *orthogonal* distance between the model and the measurements instead.
- This may be formulated as that we solve the problem

$$\min_{x,\delta} f(x) = \sum_{i=1}^{m} r_i(x; t_i + \delta_i)^2 + \|\delta\|^2,$$

where δ_i is the error in t_i and $r_i(x; t_i + \delta_i) = g_i(t_i + \delta_i) - y_i$.

Problem minimizing the orthogonal distance between model and measurements are sometimes referred to as orthogonal regression problems.

© 2007 Niclas Börlin, CS, UmU

Least Squares Problems — The Gauss-Newton method

Non-linear least squares problems
The Gauss-Newton method
Pertubation sensitivity
Statistical interpretation
Orthogonal regression

- By reformulating the objective function, we may use algorithms for "conventional" non-linear least squares to solve orthogonal regression problems.
- ► For our example

$$y = g(t) = x_1 e^{x_2 t}$$

we may introduce one point $(s_i, g(s_i))$ on the curve for each measurement (t_i, y_i) .

▶ Defining the component function $r_i(x)$

$$r_i(x) = \begin{bmatrix} g(t_i) - y_i \\ s_i - t_i \end{bmatrix}$$
, and $r(x) = \begin{bmatrix} r_1(x) \\ \vdots \\ r_m(x) \end{bmatrix}$,

the least squares problem takes the following, standard, form:

$$\min_{x} r(x)^{T} r(x).$$