Follow on Research for Multi-Utility Technology Test-bed Aircraft at NASA Dryden Flight Research Center

(FY13 Progress Report)

Structural Dynamics Group, Aerostructures Branch (RS)
NASA Dryden Flight Research Center

Follow on Research for MUTT Aircraft

- ☐ Adaptive/Active Flexible Motion Control with Aeroservoelastic Uncertainties
 - Structural Dynamic Finite Element Model Tuning for Flexible Wing Configuration
 - Unsteady Aerodynamic Model Tuning
 - Computation of Wing Shape (deflection and slope) from Measured Strain

- ☐ Multidisciplinary Design Optimization
 - ❖ Flutter Optimization Study for MUTT Aircraft with Flexible Wing Configuration
 - Aeroelastically Tailored Wing Designs

Adaptive/Active Flexible Motion Controls with Aeroservoelastic System Uncertainties

Chan-gi Pak, Ph.D.

Structural Dynamics Group, Aerostructures Branch (RS)
NASA Dryden Flight Research Center

Adaptive/Active Flexible Motion Controls with Aeroservoelastic System Uncertainties

Problem

- ☐ The increased flexibility, due to weight reduction, creates an aircraft that is more susceptible to aeroelastic phenomena such as flutter, divergence, buzz, buffet, and gust response.
- ☐ Uncertainties are existed in aeroservoelastic system even with the test validated aeroservoelastic model due to
 - time-varying uncertain flight conditions,
 - transient and nonlinear unsteady aerodynamics and aeroelastic dynamic environments.

Objective

Implementation of an adaptive delta control methodology during real flight test.

Approach

- ☐ An adaptive "delta control" methodology is proposed.
 - On-line parameter estimation will be applied to the prediction error, uncertainties in the validated aeroservoelastic model.
- ☐ The online update for the delta control gain is determined on the basis of a test-validated aircraft model whose predicted output response is compared with the actual aircraft measurements.
- ☐ The delta control scheme will act in addition to a nominal control law developed solely from the test-validated model so has to help offset some of the model's inaccuracies and uncertainties.

- ☐ Assumptions and Limitations:
 - Dynamically linear assumption will be used for the prediction error model.
 - On-board computer should be powerful enough to perform on-line estimation and control law updates.

Creating a Test Validated Structural Dynamic Finite Element Model of Multi Utility Technology Test-bed Aircraft

Objectives

- The primary objective of this study is to reduce uncertainties in the structural dynamic finite element model of an aircraft to increase the safety of flight.
- This model tuning technique is applied to improve the flutter prediction of the MUTT aircraft.
- This work is supported by the Aeronautics Research Mission Directorate (ARMD) Aero-Science Project (ASP) under Fundamental Aeronautics (FA) program.

- * Two Center Bodies
- One Rigid Wing
- ❖ Three Flexible Wings
- Ground Control Station

Flutter Analysis Procedure @ NASA Dryden

- Everyone believes the test data except for the experimentalist, and no one believes the finite element model except for the analyst.
 - Some of the discrepancies come from analytical Finite Element modeling uncertainties, noise in the test results, and/or inadequate sensor and actuator locations. Not the same orientation for each sensor.

inertia, & GVT data

Weight, C.G., Moment of

- Flutter Analysis
 - Uncertainties in the structural dynamic model are minimized through the use of "model tuning technique"
 - Based on analytical modes
- Validate Structural Dynamic Finite Element Model using Test Data and Update if needed
 - Use MDAO (Multidisciplinary Design, Analysis, and Optimization) tool with Model Tuning Capability or Standalone Model Tuning Code
 - Model tuning is based on optimization.
 - **Design Variables**
 - Structural sizing information: Thickness, cross sectional area, area moment of inertia, etc.
 - Point properties: lumped mass, spring constant, etc.
 - Material properties: density, Young's modulus, etc.
 - Constraints

Structural Dynamic Model Tuning using Object Oriented Optimization Tool

Optimizer

Optimization

Tool

Design

Variables

❖ Minimize "objective functions" using object oriented optimization (O³) tool which leverages existing tools and practices, and allows the easy integration and adoption of new state-of-the-art

Objective

Function J &

Constraints

G(x)

software.

Optimization Problem Statements

Minimize $J = \sum w_i J_i$ Such that $J_k \leq \varepsilon_k$

➤ *I*: Objective function

 \triangleright w_i : Weighting factor for the performance index i

 \triangleright I_i : Performance index iselected for objective function

Update **NASTRAN** Nastran_temp.bdf input deck

NASTRAN Modal Analysis

Weight Module

Mass Orthogonality Module

DVPREL

Nastran 103.bdf

Nastran_103.f06

Measure Weight,

C.G., Moment of

& Mode Shapes

Taurus XL Launch Vehicle

Structural Dynamic Finite Element Model

- ☐ Based on MSC/NASTRAN code
 - Assembled configuration
 - **❖** 8249 nodes

Frequencies of MUTT Aircraft: EFEW case

Table 1. The first 24 flexible modes of the MUTT aircraft with empty fuel empty water before model tuning

1 4010	GVT data	r Hexibic inoc		11 aircran w NΔ	STRAN Res		1 octore mode	or tunning
			Final I	Design	<u> </u>	Baseline		Target
Mode Number	Mode Shape	Frequency	Frequency	Error (%)	Mode Number	Frequency	Error (%)	error (%)
7	SW1B	1.067	1.035	-3.0	7	1.090	2.1	3
8	AW1B	1.543	1.534	-0.5	8	1.540	-0.2	3
9	SW1T	3.223	2.781	-13.7	9	3.159	-2.0	3
10	SWFA	3.607	3.068	-14.9	10	3.607	0.0	5~10
11	AW1T	3.839	3.522	-8.3	11	3.636	-5.3	3
12	SW2B	4.440	4.127	-7.1	12	4.514	1.7	3
13	AMLGL	4.466	4.262	-4.6	13	4.567	2.3	3
14	SMLGL	4.666	4.467	-4.3	14	4.961	6.3	3
15	BoomH	5.273	4.530	-14.1	15	5.223	-0.9	5~10
16	AWL	5.305	4.569	-13.9	16	5.294	-0.2	10
17	BoomV	5.399	5.159	-4.4	17	5.349	-0.9	10
18	AW2B	6.026	5.404	-10.3	18	6.061	0.6	5~10
19	SWL	6.264	5.815	-7.2	19	6.189	-1.2	5~10
20	SEngL	7.067	N/A	N/A	20	7.283	3.0	10
21	AEngL	7.238	N/A	N/A	21	7.381	2.0	10
22	AWFA	8.484	8.133	-4.1	22	8.574	1.1	10
23	NLGL	8.490	8.812	3.8	23	8.085	-4.8	10
24	NLGFA	9.217	9.433	2.3	24	9.205	-0.1	10
25	SW3B	9.346	9.798	4.8	25	9.416	0.8	5~10
26	AW3B	10.598	9.889	-6.7	27	11.048	4.2	10
27	SW2T	11.370	10.186	-10.4	28	11.462	0.8	5~10
28	AMLGFA	11.930	10.969	-8.1	26	10.035	-15.9	5~10
29	SMLGFA	12.235	11.355	-7.2	29	11.835	-3.3	10
ctural 30 hamics	GroupW2T	12.405	11.986	-3.4	30	12.811	3.3	5 _{Ch} 10-gi Pal

ructural Dynamics GroupW 21 12.405 11.986 -3.4 30 12.811 3.3 3_{Chall-gi Pa}

Frequencies of MUTT Aircraft: FFFW Case

Table 2. The first 24 flexible modes of the MUTT aircraft with full fuel full water before model tuning

140	GVT data	24 HCXIOIC II			STRAN Res			
3.6.1			Final 1	Design		Baseline		Target
Mode Number	Mode Shape	Frequency	Frequency	Error (%)	Mode Number	Frequency	Error (%)	error (%)
7	SW1B	1.000	0.937	-6.3	7	1.001	0.1	3
8	AW1B	1.411	1.392	-1.3	8	1.398	-0.9	3
9	SW1T	2.938	2.608	-11.2	9	2.912	-0.9	3
10	SWFA	3.569	3.374	-5.5	10	3.445	-3.5	10
11	AW1T	3.651	2.932	-19.7	11	3.454	-5.4	3
12	SW2B	4.346	3.898	-10.3	12	4.285	-1.4	3
13	AMLGL	4.408	5.393	22.4	13	4.446	0.9	3
14	SMLGL	4.601	4.159	-9.6	14	4.944	7.4	3
15	AWL	5.065	4.339	-14.3	15	5.067	0.0	10
16	BoomH	5.276	4.476	-15.2	16	5.217	-1.1	5~10
17	BoomV	5.390	4.555	-15.5	17	5.336	-1.0	10
18	AW2B	5.795	5.015	-13.5	18	5.694	-1.7	10
19	SWL	6.144	5.251	-14.5	19	6.018	-2.0	5~10
20	SEngL	7.085	N/A	N/A	20	7.220	1.9	10
21	AEngL	7.270	N/A	N/A	21	7.283	0.2	10
22	AWFA	8.240	7.350	-10.8	22	7.848	-4.8	10
23	NLGL	8.490	9.788	15.3	23	8.071	-4.9	10
24	SW3B	8.657	8.161	-5.7	24	8.673	0.2	5~10
25	NLGFA	9.129	9.816	7.5	25	9.186	0.6	5~10
26	AW3B	9.965	9.112	-8.6	26	9.766	-2.0	10
27	SW2T	11.053	9.714	-12.1	28	11.148	0.9	10
28	AW2T	11.540	10.076	-12.7	30	11.704	1.4	5~10
29	AMLGFA	11.862	11.562	-2.5	27	10.576	-10.84	10
uctural 39 namic	SMLGFA	11.977	11.130	-7.1	29	11.566	-3.4	c ${ m h}{ m Q}$ n-gi Pak

Unsteady Aerodynamic Model

- ☐ Based on ZAERO code
 - 416 elements
 - Select 16 reduced frequencies between 0 & 1
 - **❖** Mach = .130, .195, and .284
 - Linear Theory
 - Use Matched Flutter Analysis

Modal Participation Factor for EFEW Case

Table 9. Modal participation factors (%) of the MUTT aircraft with empty fuel empty water (EFEW)

	010 7. 1	viouai participe	illoii iuc	7015 (70	<i>)</i> 01 the	1110 1 1	unciunt	W 1 C11	ipty rac	Tompty	water ($\mathcal{L}_{\mathbf{L}}$	<u> </u>							
(GVT	Mode				Fi	nal Desi	gn							Bas	eline M	odel			
N	Aode	Shape	ľ	M=0.130	0	l	M=0.19	5	N	M=0.284	4	N	M=0.130	0	ľ	M=0.19	5	N	M=0.284	4
Nι	umber	Snape	1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd
	1-6	Rigid	31.6	30.7	40.3	27.5	32.6	33.0	25.0	34.3	25.2	33.7	33.3	42.8	27.9	35.7	40.5	24.6	39.0	40.2
	7	SW1B	15.0	9.5	0.0	12.1	8.8	0.0	9.7	8.1	0.0	17.0	10.0	0.0	14.9	9.2	0.0	13.0	8.6	0.0
se	8	AW1B	0.0	0.0	27.3	0.0	0.0	31.1	0.0	0.0	35.1	0.0	0.0	8.3	0.0	0.0	12.5	0.0	0.0	28.1
odes	9	SW1T	44.3	54.6	0.0	51.1	54.4	0.0	56.1	54.1	0.0	38.6	43.0	0.0	47.8	41.5	0.0	53.7	39.7	0.0
M	11	AW1T	0.0	0.0	27.3	0.0	0.0	31.1	0.0	0.0	35.1	1.9	2.8	0.0	1.8	2.5	0.0	1.7	22	0.0
Primary	Sum	of first five	90.9	94.8	94.9	90.7	95.8	95.2	90.8	96.5	95.4	287.4	77.5	36.9	85.7	76.3	35.7	84.7	76.4	33.6
rim l	12	AMLGL	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42.1	0.0	0.0	40.9	0.0	0.0	28.1
P	13	SW2B	1.5	1.3	0.0	1.3	0.9	0.0	1.2	0.7	0.0	0.0	0.0	4.5	0.0	0.0	4.2	0.0	0.0	2.5
	14	SMLGL	1.3	0.7	0.0	1.2	0.6	0.0	1.2	0.6	0.0	2.6	7.1	0.0	1.7	7.6	0.0	1.2	7.5	0.0
		Total	93.7	96.8	95.0	93.2	97.3	95.2	93.2	97.8	95.4	93.8	96.2	97.7	94.1	96.5	98.1	94.2	97.0	98.9
	10	SWFA	1.2	1.5	0.0	1.2	1.2	0.0	1.2	1.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.0
SS	15	BoomH	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.7	1.6	0.0	0.7	1.7	0.0	0.6	1.7	0.0
Modes	18	AW2B	0.0	0.0	1.0	0.0	0.0	0.7	0.0	0.0	0.5	0.0	0.0	0.5	0.0	0.0	0.4	0.0	0.0	0.5
M	19	SWL	1.0	0.3	0.0	1.0	0.2	0.0	1.1	0.1	0.0	0.0	0.0	1.0	0.0	0.0	0.7	0.0	0.0	0.1
ary	25	SW3B	1.1	0.5	0.0	1.2	0.4	0.0	1.3	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
puo	26	AMLGFA	0.0	0.0	1.6	0.0	0.0	1.6	0.0	0.0	1.7	0.0	0.0	0.4	0.0	0.0	0.4	0.0	0.0	0.4
Secondary	28	SW2T	2.9	1.1	0.0	3.1	0.9	0.0	3.2	0.8	0.0	2.6	1.0	0.0	2.5	0.8	0.0	2.5	0.6	0.0
$ \infty $	30	AW2T	0.0	0.0	1.6	0.0	0.0	1.9	0.0	0.0	1.9	1.8	0.5	0.0	1.7	0.4	0.0	1.7	0.3	0.0
II T		Total	6.2	3.4	4.3	6.5	2.7	4.2	6.8	2.2	4.1	5.1	3.2	1.9	4.9	3.0	1.5	4.8	2.7	1.0
			0.2	· · ·		0.0			0.0		101	J.1	J.2	107	107		1.0	110		1.0

1st: First Flutter Mode

2nd: Second Flutter Mode

3rd: Third Flutter Mode

Modal Participation Factor for FFFW Case

Table 10. Modal participation factors (%) of the MUTT aircraft with full fuel full water (FFFW)

G	iVT	N/ 1			/	Fi ⁻	nal Desi	ıgn							Bas	eline Mo	odel			
M	lode	Mode Shape	1	M=0.130	0		M=0.195		N	M=0.284	4	ľ	M=0.130	0	1	M=0.195	5	1	M=0.284	4
Nu	mber	Shape	1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd
	1-6	Rigid	42.4	32.3	44.7	38.5	36.2	38.4	34.8	40.5	39.0	42.1	29.2	35.3	36.8	32.0	34.4	32.6	36.0	32.4
	7	SW1B	12.9	11.5	0.0	11.8	10.9	0.0	11.1	10.3	0.0	14.9	10.4	0.0	12.8	9.5	0.0	10.7	8.9	0.0
es	8	AW1B	0.0	0.0	5.2	0.0	0.0	27.2	0.0	0.0	25.0	0.0	0.0	1.6	0.0	0.0	1.3	0.0	0.0	1.2
Modes	9	SW1T	38.0	46.3	0.0	42.0	42.9	0.0	45.9	39.5	0.0	29.7	37.1	0.0	35.4	34.1	0.0	40.6	30.8	0.0
	11/	AW1T	0.0	0.0	44.0	0.0	0.0	27.2	0.0	0.0	25.0	0.7	0.8	0.0	0.7	0.7	0.0	0.8	0.7	0.0
Primary	Sum	of first five	93.3	90.1	93.9	92.3	90.0	92.8	91.8	90.3	89.	91.2	89.1	51.1	92.4	88.9	53.0	93.0	89.5	68.3
rim	12	SW2B	0.1	0.1	0.0	0.1	0.1	0.0	0.1	0.1	0.0	0.0	0.0	50.2	0.0	0.0	50.1	0.0	0.0	50.7
P	13	AMLGL	0.0	0.0	2.5	0.0	0.0	1.3	0.0	0.0	1.4	7.6	20.3	0.0	8.2	21.9	0.0	8.6	22.2	0.0
<i>i</i> l	14	SMLGL	1.9	6.8	0.0	1.6	7.4	0.0	1.3	7.5	0.0	0.0	0.0	7.3	0.0	0.0	8.4	0.0	0.0	9.5
		Total	95.3	97.0	96.4	94.0	97.5	94.1	93.2	97.9	90.4	95.0	97.8	94.4	93.9	98.2	94.2	93.3	98.6	93.8
	16	BoomH	0.0	0.0	1.1	0.0	0.0	1.2	0.0	0.0	1.4	0.0	0.0	1.8	0.0	0.0	1.9	0.0	0.0	2.1
LY N	19	SWL	0.5	0.7	0.0	0.7	0.6	0.0	0.8	0.5	0.0	0.0	0.0	2.3	0.0	0.0	2.3	0.0	0.0	2.4
nda	24	SW3B	1.3	0.5	0.0	1.6	0.5	0.0	1.9	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
econdary Modes	25	NLGFA	2.0	0.9	0.0	2.5	0.7	0.0	2.9	0.6	0.0	3.1	1.2	0.0	3.8	0.9	0.0	4.3	0.8	0.0
Se	30	AW2T	0.0	0.0	1.1	0.0	0.0	3.0	0.0	0.0	5.6	0.9	0.2	0.0	1.1	0.2	0.0	1.2	0.2	0.0
	,	Total	3.8	2.1	2.2	4.8	1.8	4.2	5.6	1.6	7.0	4.0	1.4	4.1	4.9	1.1	4.2	5.5	1.0	4.5

1st: First Flutter Mode

2nd: Second Flutter Mode

3rd: Third Flutter Mode

Flutter Boundaries

Optimization Run #1, #2, #3, & #4

- Optimizer: DOT
- ☐ Run #1, #2, & #3: Improve Frequency Correlations
 - Design Variables
 - > Sectional properties of the main Landing Gear Beams
 - > Young's Modulus E
 - Shear Modulus G
 - Design Variable Linking: Right = Left
- ☐ Run #4: Improve Orthonomalized Mass Matrix
 - Design Variables
 - ➤ Lumped mass properties of accelerometer cables

Optimization Run #1: EFEW Case

	GVT data	l		jective Fu	nction -		Results	Со	nstraints		Target
Mode #	Mode	Freq	Final I			Baseline			DOT1		Error
	Shape	1109	Freq	Error	Mode #	Freq	Error	Mode #	Freq	Error	(%)
7	SW1B	1.067	1.035	-3.0	7	1.090	2.1	7	1.098	2.9	3
8	AW1B	1.543	1.534	-0.5	8	1.540	-0.2	8	1.555	0.8	3
9	SW1T	3.223	2.781	-13.7	9	3.159	-2.0	9	3.233	0.3	3
10	SWFA	3.607	3.068	-14.9	10	3.607	0.0	10	3.637	0.8	5~10
11	AW1T	3.839	3.522	-8.3	11	3.636	-5.3	11	3.747	-2.4	3
12	SW2B	4.440	4.127	-7.1	12	4.514	1.7	12	4.451	0.2	3
13	AMLGL	4.466	4.262	-4.6	13	4.567	2.3	13	4.600	3.0	3
14	SMLGL	4.666	4.467	-4.3	14	4.961	6.3	14	4.703	0.8	3
15	BoomH	5.273	4.530	-14.1	15	5.223	-0.9	15	5.215	-1.1	5~10
16	AWL	5.305	4.569	-13.9	16	5.294	-0.2	16	5.236	-1.3	10
17	BoomV	5.399	5.159	-4.4	17	5.349	-0.9	17	5.350	-0.9	10
18	AW2B	6.026	5.404	-10.3	18	6.061	0.6	18	6.105	1.3	5~10
19	SWL	6.264	5.815	-7.2	19	6.189	-1.2	19	6.218	-0.7	5~10
20	SEngL	7.067	N/A	N/A	20	7.283	3.0	20	7.283	3.0	10
21	AEngL	7.238	N/A	N/A	21	7.381	2.0	21	7.392	2.1	10
22	AWFA	8.484	8.133	-4.1	22	8.574	1.1	22	8.625	1.7	10
23	NLGL	8.490	8.812	3.8	23	8.085	-4.8	23	8.068	-5.0	10
24	NLGFA	9.217	9.433	2.3	24	9.205	-0.1	24	9.206	-0.1	10
25	SW3B	9.346	9.798	4.8	25	9.416	0.8	25	9.487	1.5	5~10
26	AW3B	10.598	9.889	-6.7	27	11.048	4.2	27	11.086	4.6	10
27	SW2T	11.370	10.186	-10.4	28	11.462	0.8	28	11.537	1.5	5~10
28	AMLGFA	11.930	10.969	-8.1	26	10.035	-15.9	26	10.034	-15.9	15.9
29	SMLGFA	12.235	11.355	-7.2	29	11.835	-3.3	29	11.897	-2.8	10
30	AW2T	12.405	11.986	-3.4	30	12.811	3.3	30	13.008	4.9	5~10

Structural Dynamics Group

Optimization Run #1: FFFW Case

	GVT data	l		jective Fu	nction -		Results	Со	nstraints		Target
Mode #	Mode	Freq	Final I	Design \		Baseline			DOT1		Error
1νίοας π	Shape	Treq	Freq	Error	Mode #	Freq	Error	Mode #	Freq	Error	(%)
7	SW1B	1.000	0.937	-6.3	7	1.001	0.1	7	1.008	0.8	3
8	AW1B	1.411	1.392	-1.3	8	1.398	-0.9	8	1.412	0.1	3
9	SW1T	2.938	2.608	-11.2	9	2.912	-0.9	9	2.972	1.1	3
10	SWFA	3.569	3.374	-5.5	10	3.445	-3.5	10	3.474	-2.7	10
11	AW1T	3.651	2.932	-19.7	11	3.454	-5.4	11	3.553	-2.7	3
12	SW2B	4.346	3.898	-10.3	12	4.285	-1.4	12	4.387	0.9	3
13	AMLGL	4.408	5.393	22.4	13	4.446	0.9	13	4.390	-0.4	3
14	SMLGL	4.601	4.159	-9.6	14	4.944	7.4	14	4.679	1.7	3
15	AWL	5.065	4.339	-14.3	15	5.067	0.0	15	4.952	-2.2	10
16	BoomH	5.276	4.476	-15.2	16	5.217	-1.1	16	5.219	-1.1	5~10
17	BoomV	5.390	4.555	-15.5	17	5.336	-1.0	17	5.336	-1.0	10
18	AW2B	5.795	5.015	-13.5	18	5.694	-1.7	18	5.738	-1.0	10
19	SWL	6.144	5.251	-14.5	19	6.018	-2.0	19	6.042	-1.6	5~10
20	SEngL	7.085	N/A	N/A	20	7.220	1.9	20	7.238	2.2	10
21	AEngL	7.270	N/A	N/A	21	7.283	0.2	21	7.283	0.2	10
22	AWFA	8.240	7.350	-10.8	22	7.848	-4.8	22	7.875	-4.4	10
23	NLGL	8.490	9.788	15.3	23	8.071	-4.9	23	8.081	-4.8	10
24	SW3B	8.657	8.161	-5.7	24	8.673	0.2	24	8.750	1.1	5~10
25	NLGFA	9.129	9.816	7.5	25	9.186	0.6	25	9.187	0.6	5~10
26	AW3B	9.965	9.112	-8.6	26	9.766	-2.0	26	9.791	-1.7	10
27	SW2T	11.053	9.714	-12.1	28	11.148	0.9	28	11.215	1.5	10
28	AW2T	11.540	10.076	-12.7	30	11.704	1.4	30	11.854	2.7	5~10
29	AMLGFA	11.862	11.562	-2.5	27	10.576	-10.84	27	10.610	-10.6	10
30	SMLGFA	11.977	11.130	-7.1	29	11.566	-3.4	29	11.618	-3.0	10

Structural Dynamics Group

Optimization Run #2: EFEW Case

	GVT data		Objective l		Nastran	Results	– Constra	ints —	Target
Mode #	Mode	Freq		DOT1			DOT2		Error
111040 11	Shape	1109	Mode #	Freq	Error	Mode #	Freq	Error	(%)
7	SW1B	1.067	7	1.098	2.9	7	1.099	3.0	3
8	AW1B	1.543	8	1.555	0.8	8	1.554	0.8	3
9	SW1T	3.223	9	3.233	0.3	9	3.229	0.2	3
10	SWFA	3.607	10	3.637	0.8	10	3.634	0.8	5~10
11	AW1T	3.839	11	3.747	-2.4	11	3.747	-2.4	3
12	SW2B	4.440	12	4.451	0.2	13	4.600	3.6	3
13	AMLGL	4.466	13	4,600	3.0	12	4.498	0.7	3
14	SMLGL	4.666	14	4.703	0.8	14	4.758	2.0	3
15	BoomH	5.273	15	5.215	-1.1	15	5.219	-1.0	5~10
16	AWL	5.305	16	5.236	-1.3	16	5.240	-1.2	10
17	BoomV	5.399	17	5.350	-0.9	17	5.351	-0.9	10
18	AW2B	6.026	18	6.105	1.3	18	6.104	1.3	5~10
19	SWL	6.264	19	6.218	-0.7	19	6.216	-0.8	5~10
20	SEngL	7.067	20	7.283	3.0	20	7.283	3.0	10
21	AEngL	7.238	21	7.392	2.1	21	7.391	2.1	10
22	AWFA	8.484	22	8.625	1.7	22	8.627	1.7	10
23	NLGL	8.490	23	8.068	-5.0	23	8.068	-5.0	10
24	NLGFA	9.217	24	9.206	-0.1	24	9.214	0.0	10
25	SW3B	9.346	25	9.487	1.5	25	9.483	1.5	5~10
26	AW3B	10.598	27	11.086	4.6	27	11.195	5.6	10
27	SW2T	11.370	28	11.537	1.5	28	11.532	1.4	5~10
28	AMLGFA	11.930	26	10.034	-15.9	26	10.345	-13.3	5~10
29	SMLGFA	12.235	29	11.897	-2.8	29	12.395	1.3	10
30	AW2T	12.405	30	13.008	4.9	30	13.014	4.9	5~10

Structural Dynamics Group

Optimization Run #2: FFFW Case

	GVT data		Objective l		Nastran	Results	– Constra	ints ——	Target
Mode #	Mode	Freq		DOT1			DO12		Error
Wiouc #	Shape	rrcq	Mode #	Freq	Error	Mode #	Freq	Error	(%)
7	SW1B	1.000	7	1.008	0.8	7/	1.009	0.9	3
8	AW1B	1.411	8	1.412	0.1	8	1.411	0.0	3
9	SW1T	2.938	9	2.972	1.1	9	2.968	1.0	3
10	SWFA	3.569	10	3.474	-2.7	10	3.471	-2.7	10
11	AW1T	3.651	11	3.553	-2.7	11	3.552	-2.7	3
12	SW2B	4.346	12	4.387	0.9	12	4.385	0.9	3
13	AMLGL	4.408	13	4.390	-0.4	13	4.425	0.4	3
14	SMLGL	4.601	14	4.679	1.7	14	4.739	3.0	3
15	AWL	5.065	15	4.952	-2.2	15	4.972	-1.8	10
16	BoomH	5.276	16	5.219	-1.1	16	5.218	-1.1	5~10
17	BoomV	5.390	17	5.336	-1.0	17	5.336	-1.0	10
18	AW2B	5.795	18	5.738	-1.0	18	5.736	-1.0	10
19	SWL	6.144	19	6.042	-1.6	19	6.040	-1.7	5~10
20	SEngL	7.085	20	7.238	2.2	20	7.236	2.1	10
21	AEngL	7.270	21	7.283	0.2	21	7.283	0.2	10
22	AWFA	8.240	22	7.875	-4.4	22	7.874	-4.5	10
23	NLGL	8.490	23	8.081	-4.8	23	8.081	-4.8	10
24	SW3B	8.657	24	8.750	1.1	24	8.743	1.0	5~10
25	NLGFA	9.129	25	9.187	0.6	25	9.192	0.7	5~10
26	AW3B	9.965	26	9.791	-1.7	26	9.943	-0.2	10
27	SW2T	11.053	28	11.215	1.5	28	11.213	1.5	10
28	AW2T	11.540	30	11.854	2.7	29	11.860	2.8	5~10
29	AMLGFA	11.862	27	10.610	-10.6	27	10.885	-8.2	10
30	SMLGFA	11.977	29	11.618	-3.0	30	12.117	1.2	10

Structural Dynamics Group

Optimization Run #3: EFEW Case

	GVT data		Objective l		Nastran	Results	- Constra	ints —	Target
Mode #	Mode	Freq	^	DOT2			DOT3		Error
Wiode II	Shape	1109	Mode #	Freq	Error	Mode #	Freq	Error	(%)
7	SW1B	1.067	7	1.099	3.0	7	1.097	2.7	3
8	AW1B	1.543	8	1.554	0.8	8	1.550	0.5	3
9	SW1T	3.223	9	3.229	0.2	9	3.220	-0.1	3
10	SWFA	3.607	10	3.634	0.8	10	3.627	0.6	5~10
11	AW1T	3.839	11	3.747	-2.4	11	3.735	-2.7	3
12	SW2B	4.440	13	4.600	3.6	13	4.590	3.4	3~5
13	AMLGL	4.466	12	4.498	0.7	12	4.495	0.6	3
14	SMLGL	4.666	14	4.758	2.0	14	4.758	2.0	3
15	BoomH	5.273	15	5.219	-1.0	15	5.217	-1.1	5~10
16	AWL	5.305	16	5.240	-1.2	16	5.237	-1.3	10
17	BoomV	5.399	17	5.351	-0.9	17	5.351	-0.9	10
18	AW2B	6.026	18	6.104	1.3	18	6.093	1.1	5~10
19	SWL	6.264	19	6.216	-0.8	19	6.211	-0.8	5~10
20	SEngL	7.067	20	7.283	3.0	20	7.283	3.0	10
21	AEngL	7.238	21	7.391	2.1	21	7.388	2.1	10
22	AWFA	8.484	22	8.627	1.7	22	8.614	1.5	10
23	NLGL	8.490	23	8.068	-5.0	23	8.067	-5.0	10
24	NLGFA	9.217	24	9.214	0.0	24	9.214	0.0	10
25	SW3B	9.346	25	9.483	1.5	25	9.466	1.3	5~10
26	AW3B	10.598	27	11.195	5.6	27	11.192	5.6	10
27	SW2T	11.370	28	11.532	1.4	28	11.522	1.3	5~10
28	AMLGFA	11.930	26	10.345	-13.3	26	10.344	-13.3	13.3
29	SMLGFA	12.235	29	12.395	1.3	29	12.407	1.4	10
30	AW2T	12.405	30	13.014	4.9	30	12.989	4.7	5~10

Structural Dynamics Group

Optimization Run #3: FFFW Case

	GVT data				Nastran	Results	- Constra	ints ——	Target
Mode #	Mode	Freq		DOT2			DOT3		Error
141040 //	Shape	1109	Mode #	Freq	Error	Mode #	Freq	Error	(%)
7	SW1B	1.000	7	1.009	0.9	7	1.006	0.6	3
8	AW1B	1.411	8	1.411	0.0	8	1.407	-0.3	3
9	SW1T	2.938	9	2.968	1.0	9	2.960	0.7	3
10	SWFA	3.569	10	3.471	-2.7	10	3.464	-2.9	10
11	AW1T	3.651	11	3.552	-2.7	11	3.541	-3.0	3
12	SW2B	4.346	12	4.385	0.9	12	4.372	0.6	3
13	AMLGL	4.408	13	4.425	0.4	13	4.420	0.3	3
14	SMLGL	4.601	14	4.739	3.0	14	4.739	3.0	3
15	AWL	5.065	15	4.972	-1.8	15	4.967	-1.9	10
16	BoomH	5.276	16	5.218	-1.1	16	5.218	-1.1	5~10
17	BoomV	5.390	17	5.336	-1.0	17	5.336	-1.0	10
18	AW2B	5.795	18	5.736	-1.0	18	5.727	-1.2	10
19	SWL	6.144	19	6.040	-1.7	19	6.036	-1.8	5~10
20	SEngL	7.085	20	7.236	2.1	20	7.232	2.1	10
21	AEngL	7.270	21	7.283	0.2	21	7.283	0.2	10
22	AWFA	8.240	22	7.874	-4.5	22	7.867	-4.5	10
23	NLGL	8.490	23	8.081	-4.8	23	8.078	-4.8	10
24	SW3B	8.657	24	8.743	1.0	24	8.725	0.8	5~10
25	NLGFA	9.129	25	9.192	0.7	25	9.192	0.7	5~10
26	AW3B	9.965	26	9.943	-0.2	26	9.932	-0.3	10
27	SW2T	11.053	28	11.213	1.5	28	11.205	1.4	10
28	AW2T	11.540	29	11.860	2.8	29	11.843	2.6	5~10
29	AMLGFA	11.862	27	10.885	-8.2	27	10.888	-8.2	10
30	SMLGFA	11.977	30	12.117	1.2	30	12.128	1.3	10

Structural Dynamics Group

Orthonormalized Mass Matrices After #3

Table 15. Or	rthonormalized	mass ma	trix of th	e MUTT	aircraft a	after the t	hird mod	el tuning	procedui	re (with e	mpty_ C	Constra	aints	o Correl	ation)	
Mode Shape	GVT Mode Number	7	8	9	10	11	12	13	14	15	18	19	25	27	28	30
SW1B	7	1.00	-0.02	-0.05	-0.04	-0.01	0.03	0.02	-0.03	-0.02	-0.02	-0.01	0.03	-0.02	0.01	0.02
AW1B	8	-0.02	1.00	0.01	0.03	0.00	0.00	0.05	0.00	0.01	-0.03	0.00	0.00	0.02	-0.03	0.01
SW1T	9	-0.05	0.01	1.00	-0.07	0.00	0.03	-0.01	-0.02	0.01	0.02	0.05	-0.02	0.02	0.01	-0.02
SWFA	10	-0.04	0.03	-0.07	1.00	0.05	-0.06	-0.08	-0.08	0.00	0.04	0.07	0.07	-0.10	-0.02	-0.02
AW1T	11	-0.01	0.00	0.00	0.05	1.00	0.02	-0.10	0.00	-0.01	0.05	-0.01	-0.02	0.02	0.02	-0.09
SW2B	12	0.03	0.00	0.03	-0.06	0.02	1.00	-0.14	0.18	0.01	0.03	-0.03	-0.05	-0.07	-0.01	-0.09
AMLGL	13	0.02	0.05	-0.01	-0.08	-0.10	-0.14	1.00	0.01	-0.04	-0/11	0.04	0.01	-0.03	-0.08	0.16
SMLGL	14	-0.03	0.00	-0.02	-0.08	0.00	0.18	0.01	1.00	0.01	Ø .01	-0.04	0.00	-0.01	0.02	0.04
BoomH	15	-0.02	0.01	0.01	0.00	-0.01	0.01	-0.04	0.01	1.00	0.08	-0.03	0.00	-0.01	-0.02	0.04
AW2B	18	-0.02	-0.03	0.02	0.04	0.05	0.03	-0.11	0.01	0.08	1.00	-0.05	-0.01	0.00	0.04	0.02
SWL	19	-0.01	0.00	0.05	0.07	-0.01	-0.03	0.04	-0.04	-0.03	-0.05	1.00	-0.05	0.03	0.00	0.00
SW3B	25	0.03	0.00	-0.02	0.07	-0.02	-0.05	0.01	0.00	0.00	-0.01	-0.05	1.00	0.06	0.06	-0.01
SW2T	27	-0.02	0.02	0.02	-0.10	0.02	-0.07	-0.03	-0.01	-0.01	0.00	0.03	0.06	1.00	-0.01	0.00
AMLGFA	28	0.01	-0.03	0.01	-0.02	0.02	-0.01	-0.08	0.02	-0.02	0.04	0.00	0.06	-0.01	1.00	0.17
AW2T	30	0.02	Λ Λ1	0.02	A 0.00	0.00	-0.09	0.16	0.04	0.04	0.02	0.00	-0.01	0.00	0.17	1.00
			Oh	octive	Fund	ion _										

Table 16. (<i>Irthonormalize</i>	d mass mat	rix of the iv	IUII ager	tne tnira mo	odel tuning	procedure (with full fu	el full wate	r; Auto Cor	relation)		
Mode Shape	GVT Mode Number	7	8	9	¥	12	13	14	16	19	24	25	28
SW1B	7	1.00	0.01	-0.05	0.01	0.02	0.01	-0.07	-0.01	-0.02	0.03	0.00	0.00
AW1B	8	0.01	1.00	-0.01	0.01	0.00	-0.06	-0.01	0.00	0.00	0.01	0.02	-0.04
SW1T	9	-0.05	-0.01	1.00	-0.02	0.01	-0.01	-0.03	0.00	0.05	0.00	-0.01	-0.01
AW1T	11	0.01	0.01	-0.02	1.00	-0.03	0.10	0.02	-0.01	0.01	0.02	0.01	0.07
SW2B	12	0.02	0.00	0.01	-0.03	1.00	0.01	0.18	0.00	-0.01	-0.05	0.01	-0.01
AMLGL	13	0.01	-0.06	-0.01	0.10	0.01	1.00	-0.88	-0.01	0.02	0.00	-0.05	0.10
SMLGL	14	-0.07	-0.01	-0.03	0.02	0.18	0.08	1.00	0.01	-0.02	0.02	0.01	-0.03
BoomH	16	-0.01	0.00	0.00	-0.01	0.00	-0.01	0.01	1.00	-0.02	0.00	0.00	0.02
SWL	19	-0.02	0.00	0.05	0.01	-0.01	0.02	-0.02	-0.02	1.00	-0.04	-0.01	0.00
SW3B	24	0.03	0.01	0.00	0.02	-0.05	0.00	0.02	0.00	-0.04	1.00	0.01	0.00
NLGFA	25	0.00	0.02	-0.01	0.01	0.01	-0.05	0.01	0.00	-0.01	0.01	1.00	-0.05
AW2T	28	0.00	-0.04	-0.01	0.07	-0.01	0.10	-0.03	0.02	0.00	0.00	-0.05	1.00

Chan-gi Pak-23 Structural Dynamics Group

Optimization Run #4: EFEW Case

	GVT data		Nastran Results Constraints								
Mode #	Mode	Freq		DOT3			DO74		Target Error		
Widde #	Shape	rieq	Mode #	Freq	Error	Mode #	Freq	Error	(%)		
7	SW1B	1.067	7	1.097	2.7	7	1.091	2.2	3		
8	AW1B	1.543	8	1.550	0.5	18	1.553	0.7	3		
9	SW1T	3.223	9	3.220	-0.1	9	3.220	-0.1	3		
10	SWFA	3.607	10	3.627	0.6	10	3.628	0.6	5~10		
11	AW1T	3.839	11	3.735	-2.7	11	3.742	-2.5	3		
12	SW2B	4.440	13	4.590	3.4	13	4.591	3.4	3.4		
13	AMLGL	4.466	12	4.495	0.6	12	4.492	0.6	3		
14	SMLGL	4.666	14	4.758	2.0	14	4.757	2.0	3		
15	BoomH	5.273	15	5.217	-1.1	15	5.218	-1.0	5~10		
16	AWL	5.305	16	5.237	-1.3	16	5.240	-1.2	10		
17	BoomV	5.399	17	5.351	-0.9	17	5.350	-0.9	10		
18	AW2B	6.026	18	6.093	1.1	18	6.089	1.0	5~10		
19	SWL	6.264	19	6.211	-0.8	19	6.222	-0.7	5~10		
20	SEngL	7.067	20	7.283	3.0	20	7.283	3.0	10		
21	AEngL	7.238	21	7.388	2.1	21	7.392	2.1	10		
22	AWFA	8.484	22	8.614	1.5	22	8.615	1.5	10		
23	NLGL	8.490	23	8.067	-5.0	23	8.068	-5.0	10		
24	NLGFA	9.217	24	9.214	0.0	24	9.214	0.0	10		
25	SW3B	9.346	25	9.466	1.3	25	9.477	1.4	5~10		
26	AW3B	10.598	27	11.192	5.6	27	11.198	5.7	10		
27	SW2T	11.370	28	11.522	1.3	28	11.533	1.4	5~10		
28	AMLGFA	11.930	26	10.344	-13.3	26	10.344	-13.3	13.3		
29	SMLGFA	12.235	29	12.407	1.4	29	12.393	1.3	10		
30	AW2T	12.405	30	12.989	4.7	30	12.993	4.7	5~10		

Structural Dynamics Group

Optimization Run #4: FFFW Case

	GVT data		Nastran Results Constraints									
Mode #	Mode Freq			DOT3			DOT4	DOT4				
Wioue #	Shape	rieq	Mode #	Freq	Error	Mode #	Freq	Error	(%)			
7	SW1B	1.000	7	1.006	0.6	7	1.003	0.3	3			
8	AW1B	1.411	8	1.407	-0.3	8	1.409	-0.1	3			
9	SW1T	2.938	9	2.960	0.7	9	2.961	0.8	3			
10	SWFA	3.569	10	3.464	-2.9	10	3.465	-2.9	10			
11	AW1T	3.651	11	3.541	-3.0	11	3.547	-2.9	3			
12	SW2B	4.346	12	4.372	0.6	12	4.365	0.4	3			
13	AMLGL	4.408	13	4.420	0.3	13	4.429	0.5	3			
14	SMLGL	4.601	14	4.739	3.0	14	4.739	3.0	3			
15	AWL	5.065	15	4.967	-1.9	15	4.970	-1.9	10			
16	BoomH	5.276	16	5.218	-1.1	16	5.218	-1.1	5~10			
17	BoomV	5.390	17	5.336	-1.0	17	5.336	-1.0	10			
18	AW2B	5.795	18	5.727	-1.2	18	5.723	-1.2	10			
19	SWL	6.144	19	6.036	-1.8	19	6.045	-1.6	5~10			
20	SEngL	7.085	20	7.232	2.1	20	7.237	2.1	10			
21	AEngL	7.270	21	7.283	0.2	21	7.283	0.2	10			
22	AWFA	8.240	22	7.867	-4.5	22	7.867	-4.5	10			
23	NLGL	8.490	23	8.078	-4.8	23	8.080	-4.8	10			
24	SW3B	8.657	24	8.725	0.8	24	8.736	0.9	5~10			
25	NLGFA	9.129	25	9.192	0.7	25	9.191	0.7	5~10			
26	AW3B	9.965	26	9.932	-0.3	26	9.933	-0.3	10			
27	SW2T	11.053	28	11.205	1.4	28	11.212	1.4	10			
28	AW2T	11.540	29	11.843	2.6	29	11.847	2.7	5~10			
29	AMLGFA	11.862	27	10.888	-8.2	27	10.892	-8.2	10			
30	SMLGFA	11.977	30	12.128	1.3	30	12.122	1.2	10			

Structural Dynamics Group

Orthonormalized Mass Matrices After #4

Table 17. Orthonormalized mass matrix of the MUTT aircraft after the fourth model tuning procedure (with empty fuel empty water; Auto Correlation)

Mode Shape	GVT Mode Number	7	8	9	10	11	12	13	14	15	18	19	25	27	28	30
SW1B	7	1.00	-0.01	-0.05	-0.03	0.00	0.03	0.02	-0.04	-0.02	-0.02	-0.01	0.03	-0.01	0.00	0.02
AW1B	8	-0.01	1.00	0.00	0.03	0.00	0.00	0.04	0.00	0.01	-0.03	-0.01	0.00	0.02	-0.03	0.01
SW1T	9	-0.05	0.00	1.00	-0.08	-0.01	0.03	0.00	-0.03	0.01	0.02	0.05	-0.02	0.02	0.01	-0.02
SWFA	10	-0.03	0.03	-0.08	1.00	0.06	-0.06	-0.09	-0.08	0.00	0.05	0.07	0.07	-0.10	-0.02	-0.02
AW1T	11	0.00	0.00	-0.01	0.06	1.00	0.01	-0.10	0.00	-0.01	0.05	-0.01	-0.01	0.02	0.03	-0.09
SW2B	12	0.03	0.00	0.03	-0.06	0.01	1.00	-0.13	0.17	0.01	0.02	-0.03	-0.05	-0.07	-0.01	-0.08
AMLGL	13	0.02	0.04	0.00	-0.09	-0.10	-0.13	1.00	0.02	-0.04	-0.11	0.03	0.01	-0.04	-0.08	0.16
SMLGL	14	-0.04	0.00	-0.03	-0.08	0.00	0.17	0.02	1.00	0.00	0.00	-0.04	0.00	-0.01	0.02	0.04
BoomH	15	-0.02	0.01	0.01	0.00	-0.01	0.01	-0.04	0.00	1.00	0.08	-0.02	0.00	-0.01	-0.02	0.05
AW2B	18	-0.02	-0.03	0.02	0.05	0.05	0.02	-0.11	0.00	0.08	1.00	-0.04	-0.01	0.00	0.04	0.02
SWL	19	-0.01	-0.01	0.05	0.07	-0.01	-0.03	0.03	-0.04	-0.02	-0.04	1.00	-0.04	0.03	0.01	-0.01
SW3B	25	0.03	0.00	-0.02	0.07	-0.01	-0.05	0.01	0.00	0.00	-0.01	-0.04	1.00	0.06	0.06	-0.02
SW2T	27	-0.01	0.02	0.02	-0.10	0.02	-0.07	-0.04	-0.01	-0.01	0.00	0.03	0.06	1.00	-0.01	-0.01
AMLGFA	28	0.00	-0.03	0.01	-0.02	0.03	-0.01	-0.08	0.02	-0.02	0.04	0.01	0.06	-0.01	1.00	0.16
AW2T	30	0.02	0.01	-0.02	-0.02	-0.09	-0.08	0.16	0.04	0.05	0.02	-0.01	-0.02	-0.01	0.16	1.00

Table 18. Orthonormalized mass matrix of the MUTT after the fourth model tuning procedure (with full fuel full water; Auto Correlation)

Table 16. C	Tulonormanize	u mass mai	IIX OI LIIC IV	IOII and	inc rourin n	iouci tuiiii	g procedure	(with full i	luci luli wai	ci, Auto Ci	off Clation)		
Mode Shape	GVT Mode Number	7	8	9	11	12	13	14	16	19	24	25	28
SW1B	7	1.00	0.01	-0.05	0.01	0.02	0.01	-0.07	-0.01	-0.02	0.03	0.00	-0.01
AW1B	8	0.01	1.00	0.00	0.01	0.00	-0.06	-0.01	0.00	0.01	0.00	0.02	-0.04
SW1T	9	-0.05	0.00	1.00	-0.01	0.01	-0.01	-0.03	0.00	0.05	0.00	-0.01	0.00
AW1T	11	0.01	0.01	-0.01	1.00	-0.02	0.10	0.02	-0.01	0.01	0.01	0.01	0.07
SW2B	12	0.02	0.00	0.01	-0.02	1.00	0.02	0.18	0.00	-0.01	-0.04	0.01	-0.01
AMLGL	13	0.01	-0.06	-0.01	0.10	0.02	1.00	-0.07	-0.01	0.01	0.00	-0.05	0.10
SMLGL	14	-0.07	-0.01	-0.03	0.02	0.18	-0.07	1.00	0.01	-0.02	0.02	0.01	-0.03
BoomH	16	-0.01	0.00	0.00	-0.01	0.00	-0.01	0.01	1.00	-0.02	0.00	0.00	0.02
SWL	19	-0.02	0.01	0.05	0.01	-0.01	0.01	-0.02	-0.02	1.00	-0.04	-0.01	-0.01
SW3B	24	0.03	0.00	0.00	0.01	-0.04	0.00	0.02	0.00	-0.04	1.00	0.01	0.00
NLGFA	25	0.00	0.02	-0.01	0.01	0.01	-0.05	0.01	0.00	-0.01	0.01	1.00	-0.05
AW2T	28	-0.01	-0.04	0.00	0.07	-0.01	0.10	-0.03	0.02	-0.01	0.00	-0.05	1.00

Summary: EFEW Case

	GVT data	l				Nastran	Results				Target
Mode #	Mode Shape	Freq	Final Design			Baseline			DOT4		Error
IVIOGE #	Shape	rieq	Freq	Error	Mode #	Freq	Error	Mode #	Freq	Error	(%)
7	SW1B	1.067	1.035	-3.0	7	1.090	2.1	7	1.091	2.2	3
8	AW1B	1.543	1.534	-0.5	8	1.540	-0.2	8	1.553	0.7	3
9	SW1T	3.223	2.781	-13.7	9	3.159	-2.0	9	3.220	-0.1	3
10	SWFA	3.607	3.068	-14.9	10	3.607	0.0	10	3.628	0.6	5~10
11	AW1T	3.839	3.522	-8.3	11	3.636	-5.3	11	3.742	-2.5	3
12	SW2B	4.440	4.127	-7.1	12	4.514	1.7	13	4.591	3.4	3.4
13	AMLGL	4.466	4.262	-4.6	13	4.567	2.3	12	4.492	0.6	3
14	SMLGL	4.666	4.467	-4.3	14	4.961	6.3	14	4.757	2.0	3
15	BoomH	5.273	4.530	-14.1	15	5.223	-0.9	15	5.218	-1.0	5~10
16	AWL	5.305	4.569	-13.9	16	5.294	-0.2	16	5.240	-1.2	10
17	BoomV	5.399	5.159	-4.4	17	5.349	-0.9	17	5.350	-0.9	10
18	AW2B	6.026	5.404	-10.3	18	6.061	0.6	18	6.089	1.0	5~10
19	SWL	6.264	5.815	-7.2	19	6.189	-1.2	19	6.222	-0.7	5~10
20	SEngL	7.067	N/A	N/A	20	7.283	3.0	20	7.283	3.0	10
21	AEngL	7.238	N/A	N/A	21	7.381	2.0	21	7.392	2.1	10
22	AWFA	8.484	8.133	-4.1	22	8.574	1.1	22	8.615	1.5	10
23	NLGL	8.490	8.812	3.8	23	8.085	-4.8	23	8.068	-5.0	10
24	NLGFA	9.217	9.433	2.3	24	9.205	-0.1	24	9.214	0.0	10
25	SW3B	9.346	9.798	4.8	25	9.416	0.8	25	9.477	1.4	5~10
26	AW3B	10.598	9.889	-6.7	27	11.048	4.2	27	11.198	5.7	10
27	SW2T	11.370	10.186	-10.4	28	11.462	0.8	28	11.533	1.4	5~10
28	AMLGFA	11.930	10.969	-8.1	26	10.035	-15.9	26	10.344	-13.3	13.3
29	SMLGFA	12.235	11.355	-7.2	29	11.835	-3.3	29	12.393	1.3	10
30	AW2T	12.405	11.986	-3.4	30	12.811	3.3	30	12.993	4.7	5~10

Summary: FFFW Case

	GVT data	ļ				Nastran	Results				Target
Mode #	Mode	Erag	Final I	Final Design		Baseline			DOT4		Error
Wiode #	Mode Shape	Freq	Freq	Error	Mode #	Freq	Error	Mode #	Freq	Error	(%)
7	SW1B	1.000	0.937	-6.3	7	1.001	0.1	7	1.003	0.3	3
8	AW1B	1.411	1.392	-1.3	8	1.398	-0.9	8	1.409	-0.1	3
9	SW1T	2.938	2.608	-11.2	9	2.912	-0.9	9	2.961	0.8	3
10	SWFA	3.569	3.374	-5.5	10	3.445	-3.5	10	3.465	-2.9	10
11	AW1T	3.651	2.932	-19.7	11	3.454	-5.4	11	3.547	-2.9	3
12	SW2B	4.346	3.898	-10.3	12	4.285	-1.4	12	4.365	0.4	3
13	AMLGL	4.408	5.393	22.4	13	4.446	0.9	13	4.429	0.5	3
14	SMLGL	4.601	4.159	-9.6	14	4.944	7.4	14	4.739	3.0	3
15	AWL	5.065	4.339	-14.3	15	5.067	0.0	15	4.970	-1.9	10
16	BoomH	5.276	4.476	-15.2	16	5.217	-1.1	16	5.218	-1.1	5~10
17	BoomV	5.390	4.555	-15.5	17	5.336	-1.0	17	5.336	-1.0	10
18	AW2B	5.795	5.015	-13.5	18	5.694	-1.7	18	5.723	-1.2	10
19	SWL	6.144	5.251	-14.5	19	6.018	-2.0	19	6.045	-1.6	5~10
20	SEngL	7.085	N/A	N/A	20	7.220	1.9	20	7.237	2.1	10
21	AEngL	7.270	N/A	N/A	21	7.283	0.2	21	7.283	0.2	10
22	AWFA	8.240	7.350	-10.8	22	7.848	-4.8	22	7.867	-4.5	10
23	NLGL	8.490	9.788	15.3	23	8.071	-4.9	23	8.080	-4.8	10
24	SW3B	8.657	8.161	-5.7	24	8.673	0.2	24	8.736	0.9	5~10
25	NLGFA	9.129	9.816	7.5	25	9.186	0.6	25	9.191	0.7	5~10
26	AW3B	9.965	9.112	-8.6	26	9.766	-2.0	26	9.933	-0.3	10
27	SW2T	11.053	9.714	-12.1	28	11.148	0.9	28	11.212	1.4	10
28	AW2T	11.540	10.076	-12.7	30	11.704	1.4	29	11.847	2.7	5~10
29	AMLGFA	11.862	11.562	-2.5	27	10.576	-10.84	27	10.892	-8.2	10
30	SMLGFA	11.977	11.130	-7.1	29	11.566	-3.4	30	12.122	1.2	10

Optimization Run #5 ~

- Design Variables
 - PCOMP elements for Wings
 - Ply Angles and Thicknesses

- Optimizer: Big-Bang Big-Crunch + DOT
- ☐ Objective Functions
 - Off-diagonal Terms of Orthonormalized Mass Matrices, Mode Shape Matrices (cross-correlation Matrices), and MAC Matrices
- Constraints
 - Frequency errors
 - Off-diagonal Terms of Orthonormalized Mass Matrices, Mode Shape Matrices (cross-correlation Matrices), and MAC Matrices not selected as objective functions

Development of unsteady aerodynamic model tuning tool

Unsteady aerodynamic model tuning tool using MDAO and test data

Problem

- ☐ To use the 15% flutter margin requirement in Mil Spec, unsteady aerodynamic model might be validated with respect to flight test data.
- ☐ If needed, then model should be tuned.

Objective

Minimize uncertainty in an aerodynamic model.

In-direct Method

Approach

- ☐ Direct Method (already developed)
 - Faster than in-direct method
 - Update AIC matrices
 - Design Variables
 - Scaling factor for each element of AIC matrices
- ☐ In-direct Method (current development)
 - Physics based approach
 - Update AIC matrices through the change of aerodynamic panel geometry
 - Design Variables
 - Aerodynamic mesh geometries

Computation of wing deflection and slope from measured strain

What the technology does

Problem Statement

- Wing deflection and slope (complete degrees of freedom) are essential quantities for load computations during flight.
 - ❖ Loads can be computed from the following governing equations of motion.

$$\mathbf{M}\ddot{q}(t) + \mathbf{G}\dot{q}(t) + \mathbf{K}q(t) = \mathbf{F}_{a}(\mathbf{Mach}, q(t))$$

- ➤ Internal Loads: using finite element structure model
 - \checkmark **M** $\ddot{q}(t)$: Inertia Force
 - \checkmark **G** $\dot{q}(t)$: Damping Force
 - \checkmark **K**q(t) : Elastic Force
- > External Load: using unsteady aerodynamic model
 - $\checkmark F_a$: Aerodynamic Force

Complete degrees of freedom

- ☐ Real-time measurement of deflection and slope in flight is a valuable tool.
- Several methods predict deflection and slope at discrete locations, but few predict deflection or <u>slope</u> of "entire structures".
- Wing slope is not easy to measure during flight.

Technical features of new technology

Proposed solutions:

- The new method for obtaining the deflection over a flexible full 3D aircraft structure is based on the following two steps.
 - First Step: Compute wing deflection along fibers using measure strain data (Black Box #1)
 - Wing deflection will be computed along the fiber optic sensor line.
 - ➤ This is a finite element model independent method.
 - Second Step: Compute wing slope and deflection of entire structures (Black Box #2)
 - Slope computation will be based on a model dependent technique.
 - Wing deflection and slope will be computed at all the finite element grid points.

Sample Results: Cantilevered Swept Back Wing

- Computational Validation
 - Strain and deflection at sensor point are computed using MSC/NASTRAN code.
 - Strain: use as if measured values
 - ➤ Deflection: use as an exact solutions (target deflections)
 - ❖ A total of 22 sensor configurations were tested
 - Deflections are computed from the strain values and compared with target deflections.

Sample Results: Cantilevered Swept Back Wing (continued)

Experimental Testing

- Experimental results were compared to photogrammetry data and to deflection results computed by Bakalyar and Jutte for the same test data
- Strain at the root of each fiber was extrapolated using a fifth-order polynomial

Curvature measurements from each pair of upper and lower fibers were averaged to eliminate the effect of any axial load
 Deflection and angle are available everywhere

Future Work

- Nominal Control Law Design using Validated Aeroservoelastic Model
- On-line Parameter Estimator for a MIMO System
- Delta Control Law Design
- Flexible Motion Control in Subsonic, Transonic, and Supersonic Flight Regimes
 - ❖ Subsonic Regime: use MUTT
 - ❖ Subsonic, Transonic, and Supersonic Regimes: use N+2 Low Boom Supersonic Aircraft
 - Use CFD code (CFL3D and/or CAPTSDv)
- Team Members
 - Chan-gi Pak: PI
 - Samson Truong
 - Create Validated Aeroservoelastic model
 - Ashante Jordan
 - ➤ Testing Shape Sensing codes
 - Work with Internship Students
 - ❖ Alex Chin & Marty Brenner: Supported by Fixed Wing Project
 - Nominal Control Law Design
 - > On-line Parameter Estimator for a MIMO System
 - Delta Control Law Design

- Kelley Hutchins (Fellowship Student)
 - > Ph.D. Candidate at University of Texas, Austin
 - ✓ Dissertation Topic
 - ✓ Advisor: Prof. Maruthi R. Akella

Questions?

Design of an Aeroservoelastically Tailored Wings and Aircraft for AeroScience, Fixed Wing, and High Speed Projects

Structural Dynamics Group, Aerostructures Branch (RS) NASA Dryden Flight Research Center

Design of an Aeroservoelastically Tailored Wings and Aircraft for AeroScience, Fixed Wing, and High Speed Projects

Problem

Design innovations are needed to further down the weight of an aircraft which current design technologies can take care of.

Objective

- ☐ Use aeroelastic tailoring theory and active flexible motion control technique to satisfy the overall strain, aeroelastic, and aeroservoelastic instability requirements within given flight envelopes
- ☐ Use curvilinear sparib concept as well as composite ply angles for aeroelastic tailoring

Approach

- ☐ Simultaneously update structural as well as control design variables during early design phase
 - Perform topology optimization with curvilinear sparibs

 - ❖ Use aeroelastic tailoring up to V_{omax} line
 ❖ Use aeroservoelastic tailoring between V_{omax} and $1.15 \, V_{L}$

Applications

☐ Support Fixed Wing Project

- ❖ Optimization of MUTT aircraft: Aeroelastic tailoring and mass balancing studies
- Optimization of Common Research Model (CRM): use B-777 type of wing

☐ Support High Speed Project

Optimization of a low-boom supersonic aircraft: Use LM's concept aircraft

supersonic aircraft **HWB**

Applications (continue)

☐ Support AeroScience Project

Optimization of an unconventional aircraft: Use N3-X HWB aircraft with turbo-electric distributed propulsion system

Design of an Aeroservoelastically Tailored Wings and Aircraft for AeroScience, Fixed Wing, and High Speed Projects (continued)

RESULTS

- ☐ Support Fixed Wing Project
 - ❖ Flutter speeds of the current MUTT aircraft is too high for the active flutter suppression study. (some flutter speeds are outside the flight envelope where aircraft can't reach with current propulsion systems.)
 - ➤ Keep working on a critical optimization study with MUTT aircraft. Through the use of lumped masses together with our MDAO tool, flutter speeds will be tuned within the flight envelope.
 - Generated a finite element model (FEM) of full-scale CRM for aeroelastic tailoring optimization.
 - Creating wing skins using laminated composites is underway.
- ☐ Support High Speed Project
- Preparing for optimization using baseline configuration
- Create unsteady aerodynamic model and perform modal & flutter analyses
- ☐ Support AeroScience Project
 - ❖ Keep working on for creating a finite element model

N+2 Low Boom Supersonic Aircraft

Put Electric Remove Engines

Motors

Put Turbo
generator

Curvilinear sparibs

HWB-TeDP

Use → existing Grids

Structure and control systems are simultaneously improved.

Flutter Optimization Study for MUTT Aircraft with Flexible Wing Configuration

Flutter Speed and Frequency Constraints

- Design requirement (non-dimensional)
 - \bullet 1st flutter (body freedom): \sim 0.78 to 0.93
 - **❖** 2nd and 3rd flutter: ~0.98 to 1.18

Flutter mode	Flutter Constraints*								
	Spe	eed	Frequency						
	Lower Bounds	Upper Bounds	Lower Bounds	Upper Bounds					
1 st	0.79	0.98	0.53	1.76					
2 nd	0.98	1.18	1.17	2.35					
3 rd	0.98	1.30	1.50	3.52					

^{*}Note: optimization constraints for Aft Wing Tip Boom Optimization

- ☐ Baseline flutter model
 - ❖ Based on GVT correlated flexible wing model from Lockheed Martin
 - Two weight configuration was used: EFEW and FFFW

	Baseline flutter points at Mach = 0.16								
Flutter		Speed	(Keas)		Frequency (Hz)				
mode	Lower Bounds			Upper Bounds	Lower Bounds	EFEW	FFFW	Upper Bounds	
1 st	0.79	1.13*	1.16	0.98	0.53	0.68	0.53	1.76	
2 nd	0.98	1.48	1.48	1.18	1.17	2.34	2.25	2.35	
3 rd	0.98	1.68	1.68	1.30	1.50	1.52	2.43	3.52	

^{*}Note: Baseline flutter speeds violate flutter speed constraints

Flutter Boundaries

Optimization Problem Statement

- $\Box \quad \text{Find design variables } \mathbf{X} = \left\{ \begin{matrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{matrix} \right\} \quad \text{which minimizes (or maximizes)}$
 - \diamond Objective function $f(\mathbf{X}) = total$ structural weight or flutter speed
 - > such that:
 - ✓ Flutter speed constraints

$$V_{Lj} \le V_{EFEWj}(\mathbf{X}) \le V_{Uj} \& V_{Lj} \le V_{FFFWj}(\mathbf{X}) \le V_{Uj} \quad j = 1, 2, \& 3$$

✓ Flutter frequency constraints

$$f_{Lj} \le f_{EFEWj}(\mathbf{X}) \le f_{Uj} \& f_{Lj} \le f_{FFFWj}(\mathbf{X}) \le f_{Uj} j = 1, 2, \& 3$$

- $0 \le x_j \le x_{Uj}$: Side constraints
- ❖ When j-th flutter speed is selected for an objective function, then j-th flutter speed is not included as a constraint function.
- ☐ Flutter speed and frequency constraints will be computed using two different weight configurations, i.e. empty fuel empty water (EFEW) and full fuel full water (FFFW) configurations
 - ❖ Two different weight configurations will be taken into account in a **single** optimization run.

Structural Dynamics Group

Summary of Optimization Approach

- ☐ Based on DOT, a gradient-based optimization
- \square Lumped mass design variables (0 to 5 lbs. each = side constraints)
 - Use design variable linking for wing symmetric masses
 - Wing leading and trailing edge (12 design variables)
 - 25" long aft wing tip boom (5 design variables)
- Nose ballast (up to 20.0 lbs.)

Optimization Run #1

- ☐ Make masses install symmetrically
 - ♦ 6 design variables
 - Wing lumped masses (0 to 5 lbs.)
 - Use design variable linking for these symmetric masses.
 - Optimization results: two 5 lbs. masses were added at aft wing tip location, node 27723 and 27571.

Optimization Run #2

- Make masses install symmetrically
 - ❖ 12 wing and 1 nose design variables
 - Wing lumped mass (0 to 5 lbs.)
 - Nose ballast (0 to 20 lbs.)
 - Use design variable linking for wing symmetric masses.
 - Optimization results: two 5 lbs. masses were added at aft wing tip location, node 27723 and 27571. Also a 20 lbs. mass at the nose, node 10022.

Optimization Run #3

- Nose ballast (0 to 20 lbs.)
- ☐ Add a 25" long aft wing tip boom with lumped masses (0 to 5 lbs.)

Optimization results: two 5 lbs. masses were added to the tip of the aft wing tip boom. Also a 20 lbs. mass at the room node 10033

Optimization Run #3 (continued)

- \Box Objective: Min 1st flutter speed (0.79< f_1 <1.18)
- Constraints: 2^{nd} and 3^{rd} flutter speed (0.98< f_2 <1.18, 0.98< f_3 <1.3)
- ☐ Several optimization runs with different initial condition were performed
- Results: the 2nd and 3rd flutter speed are reduced mainly. Not the body freedom flutter. Nose ballasts change the Body freedom flutter speed.

		EF	EW	FF	FFFW					
Case	Flutter	Flutter Speed	Flutter Frequency	Flutter Speed	Flutter Frequency					
Baseline										
	1 st	1.13	0.68	1.16	0.53					
	2 nd 1.48		2.34	1.48	2.25					
	3 rd	1.68	1.52	1.68	2.43					
With Wing Tip Boom Optimization										
	1 st	1.13	0.72	1.14	0.58					
201	Text Speed Speed	1.11	1.07	1.07 1.18						
		1.57	1.26	1.55						
			0.72	1.14	0.58					
202	2 nd	1.12	1.07	1.18	1.03					
	3rd	1.29	1.57	1.26	1.55					
	2 nd	1.06	0.99	1.10	0.95					
203	1st	1.14	0.71	1.14	0.57					
	3rd	1.30	1.44	1.26	1.42					

Final Design Variables												
DESVAR	Case 201	Case 202	Case 203									
	Nose Lumped Mass											
1	20.0	20.0	20.0									
Win	g Tip Boon	ı Lumped I	Mass									
2	0.00	0.00	0.00									
3	0.00	0.00	0.04									
4	0.00	0.00	0.04									
5	0.00	0.34	2.44									
6	5.00	4.74	5.00									
Wing	Wing Tip Mass Grid X Location											
7	216.0	212.0	215.0									
8	221.0	221.0	221.0									
9	226.0	226.0	226.0									
10	231.0	231.0	231.0									
11	236.0	236.0	236.0									

Case 201 is the best design

Too Low!!

Symmetric flutter first and then BBF

Optimization Results

- ☐ Several optimization runs with different initial condition were performed.
- ☐ Objective: Min flutter speeds (1st, 2nd, or 3rd)
 - ❖ With or without constraints: 2nd and 3rd flutter speed
- \Box The 2nd and 3rd flutter speed can be reduced by adding aft wing tip boom mass.
- ☐ The Body freedom flutter speed can be reduced by Nose ballast.

		Flutter Speeds							
Flutter mode	Lower Bounds	Baseline		Run #	1 & #2	Rur	Upper		
		EFEW	FFFW	EFEW	FFFW	EFEW	FFFW	Bounds	
1 st	0.79	1.13 1.16		1.12	1.12	1.13	1.14	0.98	
2 nd	0.98	1.48	1.48	1.55	1.49	1.11	1.18	1.18	
3 rd	0.98	1.68 1.68		1.67	1.56	1.29	1.26	1.30	
77	Flutter Frequency								
Flutter mode	Lower	Base	eline	Run #	£1 & #2 Run #3			Upper	
mode	Bounds	EFEW	FFFW	EFEW	FFFW	EFEW	FFFW	Bounds	
1 st	0.53	0.68 0.53		0.58	0.71	0.72	0.58	1.76	
2 nd	1.17	2.34	2.25	2.01	1.28	1.07	1.03	2.35	
3 rd	1.50	1.52	2.43	1.25	2.07	1.57	1.55	3.52	

Flutter Boundaries

Optimization Observation

- Body freedom flutter can be reduced by adding nose ballasts.
 - But not that much
- \square 2nd and 3rd flutter can be reduced by adding ballasts at aft wing tip.
 - ❖ Aft wing tip boom is added.
- Recommendation
 - ❖ 20 lb & 4 lb configuration looks the best choice
 - ➤ At least 0.04 (non-dimensional) speed separation for the first and second flutter modes

	1 st E	FEW	2 nd E	FEW	3 rd E	EFEW 1st FFFW		2 nd FFFW		3 rd FFFW		
Configuration	Speed	Freq.	Speed	Freq.	Speed	Freq.	Speed	Freq.	Speed	Freq.	Speed	Freq.
Baseline	1.13	0.68	1.48	2.34	1.68	1.52	1.16	0.53	1.48	2.25	1.68	2.43
20* & 1**	1.11	0.73	1.39	1.30	1.38	2.02	1.12	0.59	1.60	1.29	1.37	1.96
20 & 2	1.12	0.73	1.28	1.23	1.34	1.87	1.13	0.59	1.43	1.19	1.32	1.82
20 & 3	1.12	0.72	1.21	1.17	1.31	1.75	1.13	0.58	1.32	1.12	1.29	1.72
20 & 4	1.12	0.72	1.16	1.11	1.30	1.65	1.13	0.58	1.24	1.07	1.28	1.62
20 & 5	1.13	0.72	1.11	1.07	1.29	1.57	1.14	0.58	1.18	1.03	1.26	1.55
0 & 5	1.17	0.65	1.11	1.07	1.32	0.65	1.20	0.51	1.18	1.03	1.28	1.56

* : Nose Mass (lb)

** : Wing tip mass (lb)

Too low

Future Work

Questions?

Big Bang Big Crunch Algorithm

- ☐ A global optimizer
 - First step: Big Bang step
 - ➤ Selection of the N (number of population) random design variable vectors **X**_i (i=2, 3,..., N) using <u>uniform</u> random number generator such that
 - \checkmark $\mathbf{XL}_{i} \leq \mathbf{X}_{i} \leq \mathbf{XU}_{i}$
 - \triangleright Current design configuration is saved in the design variable vector \mathbf{X}_1 .
 - Second step: Big Crunch step
 - Shrink design variable vectors to a single representative design point via a center of gravity (CG) $_{N}$ $_{\mathbf{v}}$

$$\mathbf{X}_{CG} = \frac{\sum\limits_{i=1}^{N} \frac{\mathbf{X}_i}{J_i}}{\sum\limits_{i=1}^{N} \frac{1}{J_i}}$$

- Third step: Big Bang step
 - Compute new candidate design variable vectors around the CG location using the <u>standard normal</u> random number generator

$$\mathbf{X}_{i}^{n} = \beta \mathbf{X}_{CG} + (1 - \beta)\mathbf{X}_{GO} + \frac{r\alpha(\mathbf{X}\mathbf{U}_{i} - \mathbf{X}\mathbf{L}_{i})}{NBB}$$

- where, r is the standard normal random number; α is the parameter limiting the size of the design space; NBB is the number of current big bang iteration; and β is the parameter controlling the influence of the global optimum solution \mathbf{X}_{GO} .
- ✓ Parameters α and β for the best performance was α=1 and β=0.2 for the truss design problems and α=1 and β=0.7 for the parameter estimation problems.
- Go to the second step until converge

