

The wind of the series and the series Mir Stay UNITO in MI Town Mr Policy Swilling iteration Tor stay Stay - Stay - (1)= [T(3,70,8)[R(3,70,5)+Y (3) 70 V(n)=1x(1+0.55(n)) L'alle Policy JUNO $7_{1}(1) = \max_{\alpha} \left(1(1+0.5\times2), 1(0+0.5\times2)\right)$ 7,(1) -> Stay 1 Foul State vintour of sou Stay of KKEN Side MI(K) 3) C (50) 22) vision 5 = me

2

7*(8) = arg max [T(8,a,8) [R(8,a,8) + 1 + (8)] (0 = 100)

- 7*(atti) = max (1x(ri+1xr*(cityi), Pi(0+1xr*(cityin)))+ (1-Pi)(0+1xr*(cityin))) Pi (0+1xv (cityi+1)) + (1-Pi) (0+1xv (cityii)) = max (vi + v (cityi), v (cityi)+ -P; v* (aty(in)) -P; v* (atyi), v* (atyi) + P; v* (city(i-1)) -P; v* (city(i)) == max (K; + V* (atdin)) V* (atdin) + Pi (V* (atdin)) - V* (atdin)) , v* (city(i)) + Pi (v* (city(i-1)) - v* (city(i)) to 3 minut of -ma The of (aty(i)) to into one C who ise Tri, Pi(v*(atgiti)) - v* (atgii)), Pi(v*(atgii))-v*(atgii)) In out 5 gras In 18-10 met star out of + 3ample = R(8,0,8) + Y max (8,0) - Tujer vyrasia repetivis Y=0.51 - 0 = 0.5 Q(S,a) + (1-x)Q(S,a) + & [Sample] Bample 1: (1,8tay, 4,1) 3ample 1 = 4 + Y max Q(1, a) = 4, Q(1, 3tay) + (1-0.5)Q(1,8tay)+q(4) - Q(1, Stay) = 2 /, Q(1, east) = 0, Q(2, west) = 0, Q(2, stay)=0 8 ample 2: (1, East, 0,2) Q(2,east)=(-x)Q(1,eat)+x3ample2=0 Sample 2 = 0 + Y max (2,a) = 9 - Q(1, Stay)=2, Q(1,east) =0, Q(2,west)=0, Q(2,8tay)=0

Sample 3.
$$(2,8tay,6,2)$$
 $\Rightarrow 2anple 3. = 6 + Y max $\alpha(2, a) = 6$
 $Q(2,8tay) \leftarrow (1-x) Q(5,8tay) + \alpha(2axple 3) = 3$
 $Q(1 tay) = 2$, $Q(1,8a5t) = 0$, $Q(2,8a5t) = 0$, $Q(2,8tay) = 3$

Sample 4. $Q(3,a,5) + YmQ(3,a) = 0 + Y max $Q(4,a) = 1$
 $Q(2,8ax) = (1-x) Q(2,8a5t) + Q(2,8ax) = 0.5 \times 0 + 4 \times 1 = 0.5$
 $Q(1,8tay) = 2$, $Q(1,8a5t) = 0$, $Q(2,8ax) = 0.5 \times 0 + 4 \times 1 = 0.5$
 $Q(1,8tay) = 2$, $Q(1,8a5t) = 0$, $Q(2,8ax) = 0.5 \times 0 + 4 \times 1 = 0.5$
 $Q(1,8tay) = 2$, $Q(1,8a5t) = 0$, $Q(2,8ax) = 3$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$
 $Q(1,8tay) \leftarrow (1-x) Q(1,8tay) + X 3ample 5 = 0.5 \times 2 + 0.5 \times 5 = 3.5$$$

(4)

Max start (= = world Max [ri, Pi (v (attivial)) - v (attivial)), Pi (v (attivial)).v (attivial) ent Pi, vi de - an ib manx da ~ ivid de fait de 321 min so see 1 1/ 1 (attin) - It (attin) -wither the said rein the control of cation) and I se it is start