COMP3211 Tutorial 5: Satisfiability

Fengming ZHU

Mar. 11&14, 2024

Department of $\ensuremath{\mathsf{CSE}}$

HKUST

© 2024 Fengming Zhu. All rights reserved.

Outline

Boolean Satisfiability Problems (SAT)

Preliminaries

Solving SAT as Search

Constraint Satisfiability Problems (CSP)

Formulation

Constraint Propagation

Example: Sudoku as CSP

Boolean Satisfiability Problems

(SAT)

Preliminaries

Boolean Satisfiability Problem (SAT):

$$\neg X_1 \wedge X_2 \vee (X_3 \wedge X_4) \wedge \neg X_3 \vee \cdots$$

Conjunctive normal form (CNF):

Reduce to SEARCH formulation:

 \bullet States: any partial assignment of the variables in $\mathcal{X}.$

- ullet States: any partial assignment of the variables in ${\cal X}.$
- Initial state: empty assignment {}.

- States: any partial assignment of the variables in \mathcal{X} .
- Initial state: empty assignment {}.
- Operators: let(x, v) that assigns variable x value v (1/0).
 This operator is applicable in state s if and only if the variable x does not have a value in s.

- States: any partial assignment of the variables in \mathcal{X} .
- Initial state: empty assignment {}.
- Operators: let(x, v) that assigns variable x value v (1/0).
 This operator is applicable in state s if and only if the variable x does not have a value in s.
- Operator cost: 1 for each operator.

- States: any partial assignment of the variables in \mathcal{X} .
- Initial state: empty assignment {}.
- Operators: let(x, v) that assigns variable x value v (1/0).
 This operator is applicable in state s if and only if the variable x does not have a value in s.
- Operator cost: 1 for each operator.
- ullet Goal states: those that make all clauses in ${\mathcal C}$ true.

Constraint Satisfiability Problems

(CSP)

Formulation

Notations:

- ullet A set of Variables ${\mathcal X}$
- Each variable $x_i \in \mathcal{X}$ is associated with a set of domain values \mathcal{V}_i
- A set of constraints (conditions) on variables, could be unitary, binary or else.
- A solution is an assignment where all variables get assigned and all constraints are satisfied.

Constraints Propagation

How to do search:

• Naive way: backtracking search (depth-first search)

Constraints Propagation

How to do search:

- Naive way: backtracking search (depth-first search)
- Make use of constraints constraints propagation

Constraints Propagation

How to do search:

- Naive way: backtracking search (depth-first search)
- Make use of constraints constraints propagation

• Furthermore: arc consistency

Example: Sudoku as CSP

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6	5			
	4		9	7				

As a CSP:

• Variables: X_{ij} , for ungiven $i, j \in [1..9]$

Example: Sudoku as CSP

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6	5			
	4		9	7				

As a CSP:

- Variables: X_{ij} , for ungiven $i, j \in [1..9]$
- Domain values: $X_{ij} \in [1..9]$ for all ungiven $i, j \in [1..9]$

Example: Sudoku as CSP

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6	5			
	4		9	7				

As a CSP:

- Variables: X_{ij} , for ungiven $i, j \in [1..9]$
- Domain values: $X_{ij} \in [1..9]$ for all ungiven $i, j \in [1..9]$
- Constraints: each row, column and square has DISTICNT [1..9]

Example 2: Sudoku as CSP (cont'd)

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6	5			
	4		9	7				

Example 2: Sudoku as CSP (cont'd)

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6 7	5			
	4		9	7				

```
[[7, 1, 5, 8, 9, 4, 6, 3, 2], [2, 3, 4, 5, 1, 6, 8, 9, 7], [6, 8, 9, 7, 2, 3, 1, 4, 5], [4, 9, 3, 6, 5, 7, 2, 1, 8], [8, 6, 7, 2, 3, 1, 9, 5, 4], [1, 5, 2, 4, 8, 9, 7, 6, 3], [3, 7, 6, 1, 4, 8, 5, 2, 9], [9, 2, 8, 3, 6, 5, 4, 7, 1], [5, 4, 1, 9, 7, 2, 3, 8, 6]]
```

More applications:

- Course scheduling
- Bin packing
- Housing allocation

Thanks!