ALGEBRA 2 - Zestaw 3

Pierścienie (powtórka + charakterystyka)

Zadanie 1 Wykaż, że w dowolnym pierścieniu P prawdziwy jest wzór

$$(mn)ab = (ma)(nb)$$

dla dowolnych $m, n \in \mathbb{Z}, a, b \in P$.

Zadanie 2 Wykaż, że jeśli P jest pierścieniem bez dzielników zera, wówczas albo jest bez charakterystyki (inaczej: jego charakterystyka jest równa zero) albo jego charakterystyka jest liczbą pierwszą.

Zadanie 3 Niech $a, b \in P$, gdzie P jest pierścieniem o charakterystyce $p \in \mathbb{P}$.

- (a) Udowodnij, że $(a+b)^p = a^p + b^p$.
- (b) Dla $n \in \mathbb{N}$ wykaż, że $(a+b)^{p^n} = a^{p^n} = b^{p^n}$.
- (c) Znajdź $(a+b)^4$ i a^4+b^4 dla wybranych elementów pierścienia \mathbb{Z}_4 (pierścień \mathbb{Z}_4 ma charakterystykę równą 4).

Zadanie 4 Niech P będzie pierścieniem całkowitym. Udowodnij, że $A = \{n \cdot 1_P : n \in \mathbb{Z}\}$ (przez 1_P oznaczamy tu jedynkę pierścienia P) jest podpierścieniem pierścienia P.

Zadanie 5 Czy dowolna liczba może być rządem pierścienia całkowitego? Wskazówka: czy 10 (20, 15, 16) może być charakterystyką pierścienia całkowitego?

Zadanie 6 Udowodnij, że każdy skończony pierścień całkowity jest ciałem.

Zadanie 7 Udowodnij, że charakterystyka pierścienia całkowitego rzędu 2^n jest równa 2.

Zadanie 8 Udowodnij, że każde ciało skończone (równoważnie: każdy pierścień całokowity skończony) jest rzędu p^n , dla pewnego $p \in \mathbb{P}$ i $n \in \mathbb{N}$.