Texas State University

MATH 3323: Differential Equations Instructor: Nestor Guillen

Problem Set 9

(1) For the differential equation and pairs of numbers λ_1 and λ_2 given in each case bellow, find numbers A and B such that the function

$$Ae^{\lambda_1 t} + Be^{\lambda_2 t}$$

is a solution to the inhomogeneous equation.

(a)
$$\ddot{x} + \dot{x} = e^{2t} + e^{-2t}$$
, $\lambda_1 = 2$, $\lambda_2 = -2$

(b)
$$\ddot{x} + x = 3e^{2t} - e^{3t}$$
, $\lambda_1 = 2$, $\lambda_2 = 3$

(c)
$$\ddot{x} + 2\dot{x} + 6x = \sqrt{5}e^{-t} + 1$$
, $\lambda_1 = -1$, $\lambda_2 = 0$.

(2) For the differential equation and frequency ω given in each case bellow, find numbers A and B such that the function

$$A\cos(\omega t) + B\sin(\omega t)$$

is a solution to the inhomogeneous equation.

(a)
$$3\ddot{x} - \dot{x} + 2x = 3\cos(2t), \ \omega = 2$$

(b)
$$5\ddot{x} + 2\dot{x} + 7x = \sin(3t) + \cos(3t)$$
, $\omega = 3$

(c)
$$\ddot{x} + 2\dot{x} + 6x = -11\cos(4t) + 3\sin(4t)$$
, $\omega = 4$.

(3) Use variation of parameters to find the solution to each IVP

(a)
$$\ddot{x} - 2x = 3t$$
, $x(0) = 0$, $\dot{x}(0) = 1$

(b)
$$\ddot{x} - 2\dot{x} - x = 2e^{-5t} - e^{-7t}$$
, $x(0) = 3, \dot{x}(0) = -1$.

(c)
$$\ddot{x} - 2\dot{x} - x = 2t - 1$$
, $x(0) = -3$, $\dot{x}(0) = 1$

(4) (BONUS) For each equation bellow, find the solution to the problem with initial conditions x(0) = 0 and $\dot{x}(0) = 0$,

(a)
$$\ddot{x} + \dot{x} + x = e^t$$

(b)
$$\ddot{x} + \dot{x} + x = e^{2t}$$

(c)
$$\ddot{x} + \dot{x} + x = e^{3t}$$

(d)
$$\ddot{x} + \dot{x} = e^{3t} + e^{2t} + e^t$$

(e)
$$\ddot{x} + \dot{x} = 7e^{3t} - 2e^{2t} + 3e^{t}$$

(5) (BONUS) For each equation bellow, find the solution to the problem with initial conditions x(0) = 0 and $\dot{x}(0) = 0$,

(a)
$$\ddot{x} + \dot{x} + x = \cos(t)$$

(b)
$$\ddot{x} + \dot{x} + x = \sin(t)$$

(c)
$$\ddot{x} + \dot{x} + x = \cos(2t)$$

(d)
$$\ddot{x} + \dot{x} = 2\cos(t)^2 + 4\sin(t) - 1$$

(e)
$$\ddot{x} + \dot{x} = 4\cos(t) + 7\sin(t)$$