File Edit View Insert Cell Kernel Widgets Help

Not Trusted

Python 3 O

- т. пазочение задачи на подзадачи меньшего размера.
- 2. Нахождение оптимального решения подзадач рекурсивно, проделывая такой же трехшаговый алгоритм.
- 3. Использование полученного решения подзадач для конструирования решения исходной задачи.

Часто многие из рассматриваемых подзадач одинаковы. Подход динамического программирования состоит в том, чтобы *решить каждую подзадачу только один раз*, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач экспоненциально велико.

- Метод динамического программирования **сверху-вниз** (top-down approach) это простое *запоминание результатов решения тех подзадач*, которые могут повторно встретиться в дальнейшем.
- Динамическое программирование **снизу-вверх** (bottom-up approach) включает в себя переформулирование сложной задачи в виде рекурсивной последовательности более простых подзадач.

Алгоритм Вагнера - Фишера

Используя рекурсивное определение расстояния Левинштайна D(i,j) через расстояния для слов меньшей длины: $D(i-1,j)\;,\;D(i,j-1)\;,\;D(i-1,j-1)\;$ мы применим принцип динамического программирования снизу-вверх, комбинируя решения подзадач, для решения более сложной задачи.

- 1. Для получения базового решения когда конечная строка длины 0 или исходная строка длинны 0:
 - D(i,0)=i используется i операций удаления (на схеме операция удаления обозначается, как: "↑")
 - D(0,j)=j используется j операций вставки (на схеме операция вставки обозначается, как: " \leftarrow ")
- 2. После расчета $\mathrm{D}(i,j)$ для малых i и j мы рассчитываем значения расстояния для бОльших i и j на основе рекурсивной формулы:

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1, \text{ операция удаления, на схеме обозначается как: } \uparrow \\ D(i,j-1) + 1, \text{ операция вставки, на схеме обозначается как: } \leftarrow \\ D(i-1,j-1) + m(S_1[i],S_2[j]), \text{ операция замены, на схеме обозначается как: } \nwarrow$$

	#	e	X	e	c	u	t	i	0	n
#	0	← 1	← 2	← 3	← 4	← 5	← 6	← 7	← 8	← 9
i	↑ 1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	₹ 6	← 7	← 8
n	↑ 2	₹ ←↑ 3	<u> </u>	↑ 7	<u> </u>	₹ 7				
t	↑3	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	₹ 7	← ↑ 8	<u> </u>	↑8