M-H

PRV

PATENT- OCH REGISTRERINGSVERKET

Patentavdelningen

REC'D 1 7 NOV 1999
WIPO PCT

Intyg Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

- (71) Sökande Amersham Pharmacia Biotech AB, Uppsala SE Applicant (s)
- (21) Patentansökningsnummer 9802882-2 Patent application number
- (86) Ingivningsdatum
 Date of filing

1998-08-28

Stockholm, 1999-11-08

För Patent- och registreringsverket For the Patent- and Registration Office

Sodurall

Anita Södervall

Avgift Fee PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

KOMPOSITMATERIAL OCH DESS ANVÄNDNING.

Teknikområde

Uppfinningen handlar om kompositmaterial i vilka ingår superporösa polysackaridmaterial av den typ som tidigare 5 beskrivits i WO-A-9319115 (US-A-5,723,601).

Superporösa polysackaridmaterial innehåller två typer av porer. Dels porer med liten diameter (oftast mindre än 0,05 mikrometer, mikroporer), där masstransporten sker med diffusion. Dels stora porer - superporer - i vilka

10 masstransport kan ske genom ett konvektivt flöde när porerna är öppna. Den del av materialet som ligger utanför superporerna kallas gelfasen och innehåller således mikroporerna.

I en serie av artiklar har vi beskrivet superporösa 15 agarosmatriser. Se Gustavsson et al., J. Chromatog. A 734 (1996) 231-240, Gustavsson et al., J. Chromatog. A 776 (1997) 197-203, Gustavsson et al., J. Chromatog. A 795 (1998) 199-210.

Tidigare känt är att placera superporös agaros i porerna 20 av högporöst elektriskt ledande material (reticulated vitrous carbon, RVC) för att öka materialets kapacitet för att binda affinitetsbindande ligander. Se Khayyami, Thesis "Biosensors and chromatographic supports based on new combinations of conductive material", Lund University, Lund

- 25 (1996). Användningsområdena har varit som biosensorer eller som kromatografiadsorbenter som skall kunna elektroelueras. Agaros ensamt är oanvändbar vid den aktuella typen av biosensorer och elektroeluering. Med elektroeluering avses att en bindande ligand på elektrokemisk väg
- 30 oxideras/reduceras till att bli icke-bindande så att eluering möjliggöres.

Tyvärr har man ännu inte till fullo kunnat utnyttja superporösa polysackaridmaterial på det sätt som vore önskvärt. Sålunda önskar man ofta att matrisernas

35 egenskaper skall vara bättre med avseende på fysisk stabilitet (trycktåliga), separationsegenskaper vad gäller att diskriminera mellan substanser med olika molvikt och Slutversion 1998-08-24 geometrisk form, stabilitet hos affinitetsligander som bundits till en superporös matris etc. Speciellt kan nämnas att vissa applikationer, speciellt de som fodrar matris i partikulär form, skall ha en densitet som mer eller mindre 5 kraftigt avviker från 1 g/cm³.

Vi har nu upptäckt att man mycket lätt kan tillverka kompositmaterial i vilka en superporös polysackaridmatris ingår som materialets huvudkomponent och att detta kan erbjuda fördelar med avseende på ovan nämnda brister hos 10 tidigare kända superporösa polysackaridmaterial.

Uppfinningen

En första aspekt av uppfinningen är en komposit som

15 består av två eller flera komponenter som känntecknas av
att det superporösa polysackaridmaterialet ingår som en av
komponenterna (huvudkomponent). Övriga komponenter kallas
bikomponenter (bikomponent 1, 2, 3 etc). I denna aspekt av
uppfinningen ingår inte att uppfinningens komposit

20 innehåller en elektriskt ledande monolitisk bikomponent som avses kopplas eller som är kopplad mellan två elektroder.

En andra aspekt av uppfinningen är kompositens användning vid separationer, odling av celler, kemisk syntes på fast fas, och genomförande av enzymatiska/katalytiska reaktioner

25 där enzymet är bundet till kompositen enligt uppfinningen (uppfinningens förfarandeaspekt).

Kompositen kan vara i form av fibrer, kulor (pärlor, partiklar), eller en monolit. Som exempel på monolit kan nämnas membran eller en gjuten kontinuerlig

30 kromatografibädd. Vid matriser i form av kulor talar man vanligen om storlekar i intervallet 0,1-1000 μm , såsom 1-1000 μm eller 5-500 μm .

Huvudkomponenten (superporöst polysackaridmaterial)

35 Typiska superporösa polysackaridmaterial är ofta tillverkade utgående från agar, agaros, alginat, dextran, Slutversion 1998-08-24 carageenan, chitosan, cellulosa och stärkelse. Vilket material som väljes i varje aktuellt fall bestäms ofta av de egenskaper man vill att slutprodukten skall ha med avseende på porstorlek, laddning, stabilitet i olika media, 5 kostnader etc. Superporösa polysackaridmaterial för användning i uppfinningen kan framställas på samma sätt som anges i WO-A-9319115.

Benämningen superporer avser att ett flöde som ger konvektiv masstransport skall kunna appliceras genom 10 porerna. Detta betyder som regel att det skall finnas porer med diametrarna som är i intervallet 0,5-1000 μm, med ett föredraget intervall på 1-100 μm. För matriser i form av partiklar som packats till en bädd gäller dessutom villkoret att förhållandet mellan superpordiameter och 15 partikeldiametern är i intervallet 0,01-0,3, med företräde för 0,05-0,2.

Andelen huvudkompont i uppfinningens komposit kan variera inom mycket vida gränser. Baserat på torrvikt kan således andelen huvudkomponent variera från strax över 0% till 20 strax under 100%, såsom 0,01-99,99% (w/w). Baserat på volym och mätt på komposit mättad med vatten kan huvudkomponenten

utgöra 5-99,99%, såsom 50-99% (v/v).

25 Bikomponenter

Kompositens bikomponenter kan vara a) partiklar som är i inneslutna i huvudkomponentens gelfas och/eller i superporerna, eller b) en kontinuerlig fas i superporerna, eller c) polymera kedjor som är homogent blandade i

- 30 gelfasen med huvudkomponentens polysackariden. I varianten a) ingår partiklar som belagts med superporöst polysackaridmaterial. I varianten b) ingår att en makroporös bikomponent helt omsluter det superporösa polysackaridmaterialet.
- 35 Bikomponenter skiljer sig från huvudkomponenten med avseende på minst en egenskap. Bikomponenterna kan vara valda bland olika organiska och oorganiska material. De kan

Slutversion 1998-08-24
vara polymera med rent syntetiskt ursprung eller vara
baserade på s.k. biopolymerer, exempelvis polysackarid av
samma eller olika slag som de som är aktuella som
huvudkomponent. De kan vara derivatiserade till att uppvisa

- olika grupper som utnyttjas vid användningen av uppfinningens kompositmaterial. En bikomponent kan i uppfinningens komposit föreligga som fast substans eller vätska och är som regel olöslig i vatten (utan tillsatser som förändrar lösligheten).
- 10 En bikomponent kan vara porös. Om en bikomponent är porös kan dess medelpordiameter (i kompositen) vara större eller mindre än eller densamma som medelpordiametern hos mikroporerna i huvudkomponentens gelfas.

Bikomponenter kan ha en densitet som mer eller mindre 15 starkt avviker från 1 g/cm^3 .

Som exempel på den stora variabilitet som gäller bikomponenter kan hänvisas till WO-A-9200799. Man kan också nämna följande funktioner som kan tillföras kompositen via en bikomponent:

20 • Densitet, t ex partiklar med hög eller låg täthet.

25

- Magnetiskt påverkbara, t ex partiklar av magnetit.
- Affinitetsfunktion, beskrives närmare i nästa avsnitt.
- Mekanisk stabilitet, tex polymerer, partiklar eller kontinuerliga strukturer som reticulated vitreous carbon (RVC).
- Termisk stabilitet, t ex polymerer eller andra reagens som stabiliserar huvudkomponent 1:s smältpunkt
- Fotokemisk stabilitet, t ex tillförsel av kraftigt färgade partiklar
- 30 Mikrobiell stabilitet, t ex polymerer som förhindrar tillträde av mikroorganismer/hydrolytiska enzymer.
 - Elektrisk ledningsförmåga, t ex elektriskt ledande polymerer, i partikulär eller monolitisk form. Speciellt det fall att en elektriskt ledande bikomponent är
- 35 monolitisk och kopplad mellan två elektroder ingår ej i uppfinningens komposit.

5

10

- Porstorleksmodifiering, t ex polymera n\u00e4tverk som minskar storleken av superporerna i huvudkomponenten.
- Värmeledningsförmåga, t ex partiklar eller värmeledande strukturer som reticulated vitreous carbon som snabbt kan föra bort eller tillföra värme.
- Variabla kompositegenskaper, tex via så kallade smart polymers. Smart polymers är polymerer som dramatiskt kan ändra sina egenskaper som resultat av ett yttre stimuli. Ett exempel är att till införa en termoresponsiv smart polymer i superporerna och därmed göra dessa variabelt permeabla via små temperaturförändringar.

Derivatiserade former av uppfinningens kompositmaterial

Uppfinningens komposit kan vara försedd med s.k.

- 15 affinitetsligander vilka är bundna till huvudkomponenten och/eller till en eller flera av kompositens bikomponenter. Som exempel på affinitetsligander kan nämnas anjon- eller katjonbytande grupp, amfotär grupp, kelaterande grupp, bioaffin grupp, grupp som kan utnyttjas vid kovalent
- 20 kromatografi, grupp som ger π - π -interaktion, grupp som kan utnyttjas vid hydrofob interaktionskromatografi, grupp som ger tiofila interaktioner, affinitetsbindande oorganiskt material exempelvis hydroxyapatit, etc.

De olika komponenterna i uppfinningens komposit kan, när 25 de är baserade på polymerer, vara tvärbundna på i och för sig känt sätt.

Tvärbindning och införande av affinitetsligander kan ske i den färdiga kompositen eller i respektive huvudkomponent innan kompositen bildas.

- Det framgår ovan att tvärbindande strukturer, införda ligander och andra bindande strukturer som uppkommit genom kemisk derivatisering av ett basmaterial inte kallas bikomponent i samband med uppfinningen.
- 35 Framställning av uppfinningens kompositmaterial

Kompositen enligt uppfinningen kan framställas genom att man först gör en lösning av den polysackarid som skall utgöra huvudkomponenten i den färdiga kompositen samt suspenderar ner partiklar av bikomponent 1, 2, 3, etc i

5 lösningen och därefter förfar som är känt vid framställning av superporöst polysackaridmaterial enligt WO-A-9319115. Det är väsentligt att man tillser så att bikomponenterna 1, 2, 3 etc ej sedimenterar ut under tillverkningsprocessen.

En komposit enligt uppfinningen kan även framställas

- 10 genom att man a) utgår från superporöst polysackaridmaterial (huvudkomponent) framställt enligt WO-A-9319115 samt inför bikomponenterna 1, 2, 3 etc i superporerna, eller b) utgår från en makroporös bikomponent och tillverkar det superporösa polysackaridmaterialet
- 15 (huvudkomponent) i porerna till den makroporösa bikomponenten.

Uppfinningens användningsområden

Uppfinningens komposit har potentiellt samma

20 användningsområden som andra tidigare kända porösa
material. Några aktuella områden är bland annat i samband
med separationer, cellodling, bioreaktorer och kemisk
syntes. Exempel på aktuella bioreaktorer är bl.a.
enzymreaktorer och andra reaktorer där katalysatorn är

25 bunden till en matris. Exempel på aktuella kemisk synteser är syntes av polymerer på fast fas, såsom av oligopeptider och oligonukleotider. Vid cellodling kan cellerna få växa på uppfinningens komposit.

Med separationer avses främst separationer baserade på 30 affinitet mellan den substans som skall frånsepareras och en struktur (ligand) i uppfinningens matris eller baserade på olikheter i geometrisk form och molvikt mellan olika substanser. Dessa separationer kan ske i form av kromatografiska eller satsvisa förfaranden eller

35 förfaranden som bygger på membranteknologi. Enligt den första varianten får en lösning innehållande substanser som skall separeras från varandra passera en bädd som

innehåller uppfinningens komposit. Bädden kan vara i form av en porös monolitisk matris, packade partiklar eller en s.k. expanderad bädd (se WO-A-9218237). Vid satsvisa förfaranden är uppfinningens komposit i form av partiklar

- 5 som är suspenderade i den lösning som innehåller de substanser som skall separeras från varandra.
 - Eluering/desorption/frisättning av bunden substans kan sedan bl.a. genom tillsats av lösningar som stör bindningen mellan ligand och bunden substans. Beroende på typ av
- 10 ligand kan lösningen innehålla desorberande agens som ger förhöjd jonstyrka, förändrat pH, eller som direkt konkurerrar med bindning mellan ligand och bunden substans. Elektroeluering som utnyttjar en komposit med en monolitisk elektriskt ledande bikomponent, som är kopplad mellan två
- 15 elektroder, i kombination med elektroeluering ingår ej i uppfinningens förfarandeaspekt.

I princip kan bäddar uppbyggda på liknande sätt användas vid odling av celler, kemisk syntes och i bioreaktorer.

20 Uppfinningen definieras ytterligare av bifogade patentkrav och skall nu åskådliggöras med ett antal ickebegränsande exempel.

25 EXPERIMENTELL DEL

I dessa försök har vi utgått från de exempel som ges i den internationella patentansökan WO-A-9319115.

Exempel 1. Monolitisk komposit. Kontinuerliga superporösa 30 membraner med fyllmaterial i gelfasen.

- 10 ml av en 6 % agaros lösning framställdes enligt exempel 1 i WO-A-9319115 (lösning A).
- 10 ml cyklohexan + 1 ml Tween-80 framställdes enligt exempel 1 i WO-A-9319115 (lösning B)
- 35 10 ml fyllmaterial värmdes till 60°C (lösning C).

PRV 95-up-up-ii

Slutversion 1998-08-24

Lösning A och lösning C blandades under omrörning vid 60°C. Därefter tillsattes lösning B under omrörning (1000 rpm) vid 60°C för att få emulsion 1 på samma sätt som beskrivs i WO-A-9319115. Av emulsion 1 framställdes sedan 5 superporösa kontinuerliga kompositmembraner enligt exempel 4 i WO-A-9319115.

Följande alternativa fyllmaterial användes:

- a.Anjonbytare, AG 1X-8 minus 400 mesh (Bio-Rad
- 10 Laboratories, U.S.A.). Den resulterande kompositen visades fungera genom bestämning av genomgrottskurva för ATP.
 - b.Silikamaterialet LiChroprep Si 100, 40-63 μm (E. Merck Darmstadt, Tyskland).
- 15 c.Agaroskulor (6% agarose 25-75 μm) derivatiserade med Cibacron-blue. Dessa agaroskulor tillverkades enligt Gustavsson and Larsson, J. Chromatography A, 734 (1996) 231-240, men med en omrörningshastighet på 1500 rpm.
- d.Graphite, powder synthetic, 1-2 μm (Aldrich, U.S.A.). I detta fallet användes 20 ml 6 % agaroslösning och 2,5 ml grafitpulver.

Exempel 2. Komposit i form av kulor/pårlor. Superporösa agaroskulor i vars superporer en lågprocentig agaroslösning 25 gjutits.

Följande superporösa agaroskulor tillverkade enligt WO-A-9319115 användes som utgångsmaterial:

- 1. Agaroshalt 6 %, Partikelstorlek 300-500 μm ,
- 30 superporvolym 40 %, superpordiameter 30 μ m.
 - 2. Agaroshalt 6 %, Partikelstorlek 106-180 $\mu\text{m},$ superporvolym 40 %, superpordiameter 30 $\mu\text{m}.$

Dessa superporösa agaroskulor användes för att tillverka kompositmaterial genom att fylla superporerna med 0,5%

35 agarose enligt följande:

- Det interstitiella vattnet hos 20 ml sedimenterade superporösa agaroskulor avfiltrerades på büchnertratt och de superporösa agaroskulorna överfördes till en E-kolv. Ekolven värmdes till 50°C i ett termostaterat vattenbad (gel A).
- 0,5 g agaros (low gelling temperature, Sigma A-4018) adderades till 100 ml destillerat vatten och värmdes till 95-100°C i en mikrovågsugn. Agaroslösningen tempererades ner till 50°C i ett termostaterat vattenbad (lösning B).
- 10 Lösning B adderades till gel A och sattes i ett skakvattenbad (50°C) under 22 timmar (suspension C).
 - 200 ml cyklohexan + 5,6 g Span-85 (Fluka, Buchs, Schweiz) tempererades till 50°C i en omrörd tankreaktor. Suspension C adderades till tankreaktorn (50°C) under
- omrörning (1500 rpm). Efter 1 minut sänktes temperaturen i tankreaktorn till 5°C under fortsatt omrörning (1500 rpm).

I slutsteget bildades det önskade kompositmaterialet, dvs superporösa agaroskulor med 0.5 % agaros i superporerna

20 samt vanliga agaroskulor med agaroshalt 0.5 %. De senare kunde lätt avskiljas genom sedimentering.

Funktionstest av agaroskompositkulor (6% - 0,5 % agaros):

De ovan tillverkade kompositkulorna packades i

- 25 kromatografikolonner och användes för gelfiltrering. Dessa kompositkulor kunde separera latexpartiklar (0.5 μ m) och Blue Dextran MW 2 000 000, som elueras samtidigt vid gelfiltreringsförsök med kolonner packade med vanliga agaroskulor eller superporösa agaroskulor. Förklaringen är
- 30 att Blue Dextran 2 000 000 har tillgång till superporvolymen medan latexpartiklarna ej har tillgång till den volymen p.g.a. att den är exluderad från 0.5 % agarosporer. Denna typ av kompositkulor kan användas för att utöka separationsområdet för DNA vid gelfiltrering.

Phy Wollows II

Slutversion 1998-08-24
Exempel 3. Komposit i form av kulor. Superporösa
agaros/polyakrylamidkulor.

Kommentar. I denna komposit består själva gelfasen av tvärbunden polyakrylamid + agaros.

5

- 0,0625 g N,N'-methylene-bis-akrylamid löstes i 25 ml 10 % akrylamid. Lösningen vakuumavgasades och tempererades till 60°C (lösning A).
- 2,4 g agaros löstes i 30 ml vakuumavgasat vatten, och upphettades i mikrovågsugn till 95-100°C. Agaroslösningen tempererades till 60°C i en omrörd tankreaktor (lösning B).
 - 25 ml cyklohexan med 1,5 ml Tween-80 avgasades med kvävgas och tempererades till 60°C (lösning C).
- 15 150 ml cyklohexan med 8,4 g Span 85 avgasades med kvävgas och tempererades till 60°C (lösning D).

Lösning A blandades ner i lösning B under omrörning (500 rpm, 15 min) vid 60°C (lösning E). 0,05 ml TEMED och 30 mg ammoniumpersulfat, separat lösta i en liten mängd avgasat

20 vatten, adderades till lösning E under omrörning (500 rpm, 2 min). Lösning C adderades till lösning E och emulgering vid 1000 rpm i 0,5 min. Lösning D adderades till lösning E och emulgering vid 500 rpm i 1 minut, därefter kylning till 25°C. Fortsatt omrörning vid 500 rpm i 30 min.

25

De erhållna gelkulorna tvättades som beskrivs i WO-A-9319115.

30 Exempel 4. Monolitisk komposit baserad på monolitisk mekanisk stödmatris och superporös polysackaridmatris.

Som mekanisk stödmatris användes reticulated vitreous carbon (RVC; Duocell, Energy Research and Generation, 35 Oakland, CA, USA).

Emulsion 1 enligt Exempel 1 i WO-A-9319115 hälldes ner i en termostatterad glaskolonn (50°C) i vilken en matris av RVC placerats. Kolonnen sänktes ner i ett kylbad varvid 5 agarosfasen stelnade. Det erhållna kompositmaterialet trimmades i ändarna och tvättades fritt från organsikt lösningsmedel.

Funktionen hos materialet testades i jämförande kromatografistudier med BSA som kromatograferad molekyl.

10

35

Exempel 5. Monolitisk komposit baserad på superporös agaros och jästceller.

En komposit framställdes enligt exempel 1. Som bikomponent användes 10 ml 50 %-ig jästsuspension (bagerijäst). Den 15 färdiga kompositen undersöktes och befanns ha enzymatisk aktivitet (alkoholdehydrogenasaktivitet).

Exempel 6. Komposit i form av kulor. Jonbytesmatris.

- 10 ml 2-6 % agaroslösning framställdes (60°C). Till 20 lösningen adderades en natriumalginatlösning (4% w/v) till en slutkoncentration av 0.25 - 1 % (w/v) (Lösning A).
 - 10 ml cyklohexan + 0.6 ml Tween-80 värmdes till 60°C(lösning B).
- 25 50 ml cyklohexan + 2 g Span 85 värmdes till 60°C (lösning C.
 - Lösning B adderades till lösning A och omrördes vid 1000 rpm i 2 minuter vid 60°C, (lösning D).

Superporösa alginat-agaroskulor tillverkades enligt 30 följande två metoder:

Metod 1: Lösning D adderades till lösning C i en omrörd tankreaktor (600 rpm, 60°C). Agarosen tilläts stelna efter 1 minut genom kylning av tankreaktorn till 25°C.Alginatet i agarosfasen polymeriserades genom att en CaCl₂-vatten lösning (liten volym) adderades till

tankreaktorn under omrörningen precis innan eller precis efter kylningen.

Metod 2: Lösning D adderades droppvis med en pasteur pipett ner i en uppvärmd bägare (60°C). Bägaren innehöll två faser. Toppfasen bestod av lösning C. Bottenfasen bestod av 1.5 % CaCl₂ i vatten. Bägaren omrördes med en magnetomrörare utan att faserna blandades.

Det framställda kompositmaterialet tvättades med vatten, etanol-vatten (1:1) och vatten

10

5

Exempel 7. Monolitisk agaros-hydroxyapatit komposit.

25 ml sedimenterad hydroxyapatit i 1 mM natriumfosfatbuffert underkastades en serie sedimenteringar 15 under vilka de minsta partiklarna (totalt 9 ml av den

- sedimenterade hydroxyapatiten) avlägsnades. 5 ml sedimenterade hydroxyapatiten) avlägsnades. 5 ml sedimenterad volym av den hydroxyapatit som fanns kvar (1 mM natriumfosfatbuffert pH 6,8) termostatterades till 60°C. 20 ml av en agaroslösning (8% w/v) framställdes genom
- värmning under en minut av en suspension agaros i vatten till 95-100°C i en mikrovågsugn. Under uppvärmningen hölls agarospulvret välsuspenderat genom tillfälliga skakningar. Agaroslösningen termostatterades sedan till 60°C, varefter 15 ml sattes till den termostatterade hydroxyapatiten.
- 25 Lösningen med agaros-hydroxyapatit omrördes sedan vid 1000 varv per minut i ett termostatterat vattenbad (60°C). Efter 5 minuter tillsattes en blandning av 0,75 ml Tween-80 och 10 ml cyklohexan (60°C). Blandningen emulgerades genom omrörning vid 1000 varv per minut under två minuter.
- 30 Emulsionen hälldes i glaskolonner (16 mm ID) som hölls termostatterad till 60°C i ett vattenbad. Efter 30 sekunder överfördes glaskolonnerna till ett isbad för att kylas. De olösliga kontinuerliga bäddarna (innehållande hydroxyapatit) som erhölls trimmades till en längd på 1,4

cm och placerades i glaskolonner (16 mm ID) som var utrustade med flödesadaptorer. Den organiska fasen i superporerna avlägsnades genom att pumpa natriumfosfatbuffert pH 6,8, etanol-1 mM

5 natriumfosfatbuffert pH 6,8 (50:50 $\rm v/v$) och slutligen natriumfosfatbuffert pH 6,8 genom kolonnen. Kompositbädden lagrades vid 4°C till dess att den användes.

Kolonnerna anslöts sedan till ett HPLC-system (Amersham Pharmacia Biotech AB, Uppsala, Sverige) inkluderande

10 pumpar, injektionsventiler, UV-Vis detektor och skrivare.

Separation av tre modellproteiner (lysozym, cytokrom c
och bovint serumalbumin) studerades sedan med tre olika
flödeshastigheter (15 cm/h, 30 cm/h och 60 cm/h).

Kompositbädden hade en superpor/interstitiell porositet på 15 33% (definierad av framställningsmetoden) och en

superpor/interstitiell medelpordiameter på 30 μm (mätt genom observation i mikroskop.

25

30

PATENTKRAV

- 5 1. Superporöst polysackaridmaterial, kännetecknat av att det ingår i en komposit som består av två eller flera komponenter av vilka en är superporös polysackarid (huvudkomponent) med undantag av det fall att kompositen innehåller en elektriskt ledande monolitisk bikomponent som avses eller är kopplad mellan två elektroder.
- Superporöst polysackaridmaterial enligt krav 1
 kännetecknat av att huvudkomponenten är i form av
 diskreta partiklar eller kontinuerliga strukturer.
- Superporöst polysackaridmaterial enligt något av kraven 1-2, kännetecknat av att minst en av kompositens bikomponenter finns utanför superporerna men inuti den första huvudkomponentens gelfas.
 - 4. Superporöst polysackaridmaterial enligt något av kraven 1-2, kännetecknat av att minst en av kompositens bikomponenter finns i superporerna.
 - 5. Superporöst polysackaridmaterial enligt något av kraven 1-2, kännetecknat av att minst en av kompositens bikomponenter finns i såväl superporerna som i huvudkomponentens gelfas.
 - 6. Superporöst polysackaridmaterial enligt något av kraven 1-5, kännetecknat av att kompositen uppvisar minst en affinitetsligand.
- 35 7. Superporöst polysackaridmaterial enligt krav 6, kännetecknat av att respektive affinitetsligand är bunden

till huvudkomponenten och/eller en eller flera bikomponenter.

- 8. Superporöst polysackaridmaterial enligt krav 6,
 5 kännetecknat av att minst en av affinitetsliganderna är bunden till huvudkomponenten.
- 9. Superporöst polysackaridmaterial enligt krav 6,
 kännetecknat av att minst en av affinitetsliganderna är
 10 bunden till någon av bikomponenterna.
 - 10. Superporöst polysackaridmaterial enligt något av kraven 4-7, kännetecknat av att minst en av affinitetsliganderna är en jonbytande grupp, amfotär grupp, kelaterande grupp,
- bioaffin grupp, grupp som kan utnyttjas vid kovalent kromatografi, grupp som ger π-π-interaktion, grupp som kan utnyttjas vid hydrofob interaktionskromatografi, grupp som ger tiofila interaktioner, affinitetsbindande oorganiskt material såsom hydroxyapatit, etc.

20

11. Superporöst polysackaridmaterial enligt något av kraven 1-10, kännetecknat av att bikomponenten är porös med medelpordiametrar som är större än medelpordiametrarna i huvudkomponentens gelfas.

25

- 12. Superporöst polysackaridmaterial enligt något av kraven 1-11, kännetecknat av att det är i form av fibrer, kulor, eller en monolit, såsom ett membran eller en bädd.
- 30 13. Användning av det superporösa polysackaridmaterialet enligt något av kraven 1-11 vid separationer, odling av celler, kemisk syntes, enzymatiska/katalytiska reaktioner.

SAMMANDRAG

Superporöst polysackaridmaterial aom känntecknas av att det ingår i en komposit som består av två eller flera

- 5 komponenter av vilka en är superporös polysackarid (huvudkomponent) med undantag av det fall att kompositen innehåller en elektriskt ledande monolitisk bikomponent som avses eller är kopplad mellan två elektroder.
- 10 Användning av det superporösa polysackaridmaterialet enligt ovan vid separationer, odling av celler, kemisk syntes, enzymatiska/katalytiska reaktioner.

