### Advancing Action-Level Soccer Analytics:

A Comparative Study of VAEP Model Enhancements Using Division 1 Women's Collegiate Soccer Event Data

**Benjamin Thorpe** 

Advisor: Dr. Jerry Reiter

# Acknowledgements

My advisor: Dr. Reiter

Leo Biral and Coach Kieran Hall

My committee members: Dr. Tackett and Dr. Rundel

• Dr. Durso

My parents, especially my mom

# How can event-level soccer data best be utilized by a data scientist to provide actionable insights to a coaching staff?

My research looks to answer two main questions as potential solutions to the above:

- 1. Will a more detailed dataset improve our ability to assign quantitative values to actions?
- 2. Can the variables used in quantifying actions provide insights that can help soccer teams win games?

### Data

| Match Period | Minute | Second | Action Type                                                                               | Action Location    |
|--------------|--------|--------|-------------------------------------------------------------------------------------------|--------------------|
| 1H           | 6      | 51     | {'primary': 'duel', 'secondary': ['aerial_duel', 'recovery', 'counterpressing_recovery']} | {'x': 61, 'y': 23} |
| 1H           | 6      | 54     | {'primary': 'interception', 'secondary': ['progressive_run', 'carry']}                    | {'x': 77, 'y': 10} |
| 1H           | 6      | 54     | {'primary': 'duel', 'secondary': ['defensive_duel', 'ground_duel']}                       | {'x': 18, 'y': 89} |

{'bodyPart': 'right\_foot', 'isGoal': True, 'onTarget': True, 'goalZone': 'gt', 'xg': 0.05795, 'postShotXg': 0.07749, 'goalkeeperActionId': 1830086339, 'goalkeeper': {'id': 688133, 'name': 'H. Mackiewicz'}}

#### **Pass**

#### Shot

- Each observation is one action
- From all ACC women's soccer games over the last two seasons (151 total games)
- Used first 80% of games as the training data and latter 20% for model evaluation

# VAEP Model Framework

- VAEP Valuing Actions by Estimating Probabilities
- Assigns a numerical value to each action based on its impact on the likelihood of scoring or conceding a goal
- Provides a more objective and comprehensive measure of a player's contribution to the team's success

Tom Decroos. 2018. Actions Speak Louder than Goals: Valuing Player Actions in Soccer.

|   | - 1 | TIME   | 1 | PL | AYER     | ١ | ACTION  | 1 | P <sub>scores</sub> | 1 | ٧ | ALUE |
|---|-----|--------|---|----|----------|---|---------|---|---------------------|---|---|------|
|   |     |        |   |    |          |   |         |   |                     |   |   |      |
| 0 | 1   | 92m4s  | 1 | S. | Busquets | 1 | pass    | 1 | 0.03                | 1 |   | 0.00 |
|   | 2   | 92m6s  | 1 | L. | Messi    | 1 | pass    | 1 | 0.02                | 1 | - | 0.01 |
|   | 3   | 92m8s  | 1 | S. | Busquets | 1 | pass    | 1 | 0.03                | 1 | + | 0.01 |
|   | 4   | 92m11s | 1 | L. | Messi    | 1 | take on | 1 | 0.08                | 1 | + | 0.05 |
|   | 5   | 92m12s | 1 | L. | Messi    | 1 | pass    | 1 | 0.17                | 1 | + | 0.09 |
|   | 6   | 92m14s | 1 | Α. | Vidal    | 1 | shot    | 1 | 1.00                | 1 | + | 0.83 |



Figure 1: The attack leading up to Barcelona's final goal in their 3-0 win against Real Madrid on December 23, 2017.

## VAEP Model

- Consists of two distinct models: one for scoring and another for conceding
- Considers the type of action, the action's location on the pitch, the game context, etc.
- XGBoost selected as the underlying classification model

Relevant variables:

- S The game state which is a set of actions
- t The team with possession during S
- a An action
- **k** the number of actions to look back to in defining the outcome variable

Value for the *i*th game state in a given soccer match

$$V(S_i) = P_{score}(S_i, t) - P_{concede}(S_i, t)$$

VAEP score for the *i*th action in a given soccer match

$$\Delta P_{\text{score}}(a_i, t) = P_{\text{score}}^k(S_i, t) - P_{\text{score}}^k(S_{i-1}, t)$$

#### **Data Comparison**

- Wyscout Version 2 vs. Version 3
- Model parameters: j and k
- Decision on using AUROC or Brier Score for model evaluation

Will the more detailed model perform better?

#### Variable Importance Analysis

- Why it is important?
- Shapley values and "beeswarm" plots
- Three groups of modeling experiments:
  - Base Scoring and Conceding
  - Passing and Crossing
  - Random Results for Scoring and Conceding

Are there any trends in which variables are important and how they are correlated with the response variable? If so, how can a team use these to improve their overall strategy?

### Jvalues

j - a set number of actions which define a game state

| j | Model Type | V2 AUROC | V3 AUROC | V3 AUROC Improvement |
|---|------------|----------|----------|----------------------|
| 3 | concedes   | 0.741794 | 0.793788 | 0.051994             |
| 3 | scores     | 0.785398 | 0.777370 | -0.008028            |
| 6 | concedes   | 0.739896 | 0.793511 | 0.053615             |
| 6 | scores     | 0.785585 | 0.779724 | -0.005861            |
| 9 | concedes   | 0.738152 | 0.793884 | 0.055731             |
| 9 | scores     | 0.783248 | 0.776421 | -0.006827            |

Ex: For j=3, game state 20 is defined as S20 = {a18, a19, a20} where a20 is the 20th action that occurs in a game

### Kvalues

k - determines the number of actions to look back to in defining the outcome variable

| k  | Model Type | V2 AUROC | V3 AUROC | V3 AUROC Improvement |
|----|------------|----------|----------|----------------------|
| 3  | concedes   | 0.930162 | 0.951997 | 0.021836             |
| 3  | scores     | 0.957101 | 0.968783 | 0.011682             |
| 6  | concedes   | 0.837349 | 0.886612 | 0.049262             |
| 6  | scores     | 0.853636 | 0.856935 | 0.003298             |
| 10 | concedes   | 0.741794 | 0.793788 | 0.051994             |
| 10 | scores     | 0.785398 | 0.777370 | -0.008028            |
| 13 | concedes   | 0.712236 | 0.745270 | 0.033034             |
| 13 | scores     | 0.752618 | 0.744161 | -0.008457            |

Ex: For *k*=10, if a goal is scored in any action between a20 and a30 then S20 would be assigned a positive label in the scoring model

# Comparing Data Versions

- AUROC is chosen since it measures the ability of a model to distinguish between classes
- Results show V3 improves
   the conceding model
   significantly
- Difference in scoring model fairly negligible
- V3 model with *j*=3 and *k*=6 chosen for use in analysis

| k  | Model Type | V2 AUROC | V3 AUROC | V3 AUROC Improvement |
|----|------------|----------|----------|----------------------|
| 3  | concedes   | 0.930162 | 0.951997 | 0.021836             |
| 3  | scores     | 0.957101 | 0.968783 | 0.011682             |
| 6  | concedes   | 0.837349 | 0.886612 | 0.049262             |
| 6  | scores     | 0.853636 | 0.856935 | 0.003298             |
| 10 | concedes   | 0.741794 | 0.793788 | 0.051994             |
| 10 | scores     | 0.785398 | 0.777370 | -0.008028            |
| 13 | concedes   | 0.712236 | 0.745270 | 0.033034             |
| 13 | scores     | 0.752618 | 0.744161 | -0.008457            |
|    |            |          |          |                      |

# Variable Analysis Reasoning

Bridges gap between statistical models and practical insights

 Can provide further detail on player and team style and tendencies

Contributes to interpretability in machine learning

# Shapley (and SHAP) Values

- Shapley values aim to attribute the contribution of each variable to the prediction of a model
- SHAP values Shapley values applied to a conditional expectation function of a model
- Are a good fit due to their clarity and interpretability



### Beeswarm Plots

- Effectively displays the distribution and impact of Shapley values
- Each dot represents one observation for a given feature
- The color gradient helps to correlate the feature's observed value with its effect on the output



### Base Models



Figure 10: j=3 and k=6 Conceding Model Beeswarm Plot

### Key Findings:

- Goals are more likely to come later in games
- Quick
   counterattacks look
   to be effective

# Passing and Crossing Models



### Key Findings:

- Central play is valuable in creating opportunities
- Crosses most successful going from wide-tocenter

### Random Results Models



### Key Findings:

Movement in actions becomes relevant

Losing possession
 off a dribble
 correlates with
 concessions

# Main Takeaways

- V3 VAEP model outperforms the V2 one underscoring the role of enhanced data quality
- SHAP values in conjunction with the VAEP model can generate actionable insights into soccer gameplay
- Game context (time and score) is an important determinant of the scoring probability of an action
- Quick counterattacks seem to be particularly effective in ACC women's soccer, with evidence appearing in each experiment

#### Limitations

- Dataset sample size and overall scope
- Lack of generalizability findings only directly applicable to ACC women's soccer
- Not a causal analysis

#### **Future Work**

- Using the same approach on new datasets (reproducible code)
- Hyperparameter tuning of the VAEP models
- Using VAEP to simulate game sequences

Overall, this thesis contributes to the growing body of soccer analytics research by offering a strong mechanism for evaluating player performance and shaping game strategies through the VAEP model.

### References

- Tom Decroos, Jan Van Haaren, Lotte Branson, and Jesse Davis. 2018. Actions Speak Louder than Goals: Valuing Player Actions in Soccer.
- SoccerAction. 2020.
- Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System.
   University of Washington
- Scott Lundberg. 2018. An introduction to explainable AI with Shapley values.
- Emily K Marsh. 2023. Calculating XGBoost Feature Importance.

# Thank You!