

To start with, let's discuss the theory of optimal stopping
Gives mathematical context for maximizing rewards or minimizing costs

Optimal stopping problems are by definition dynamic

Many economic problems involve some sort of optimal stopping:
• The Secretary Problem (when to hire from a sequence of job candidates)

Many	economic	problems	involve	some	sort o	f optimal	stopping:

• The Secretary Problem (when to hire from a sequence of job candidates)

• Search theory more generally (job search, spousal search, house search, ...)

Many economic problems involve some sort of optimal stopping:

- The Secretary Problem (when to hire from a sequence of job candidates)
- Search theory more generally (job search, spousal search, house search, ...)
- "Buy/sell/hold" problems (e.g. stock/options trading)

Many economic problems involve some sort of optimal stopping:

- The Secretary Problem (when to hire from a sequence of job candidates)
- Search theory more generally (job search, spousal search, house search, ...)
- "Buy/sell/hold" problems (e.g. stock/options trading)
- Replacement problems (e.g. machines, infrastructure)

Optimal stopping problems inherently have a tension between costs and benefits:

Optimal stopping problems inherently have a tension between costs and benefits:
• It is costly to interview job candidates

Optimal stopping problems	inherently	have a	tension	between	costs	and b	enefits:

It is costly to interview job candidates

• But it is also costly to miss out on the best candidate

In a discrete choice setting, dynamic programming is the best solution method
Within a discrete choice setting, time can be either continuous or discrete:

In a discrete choice setting, dynamic programming is the best solution method
Within a discrete choice setting, time can be either continuous or discrete:

• If continuous time: use Hamiltonians and Differential Equations

In a discrete choice setting, dynamic programming is the best solution method

Within a discrete choice setting, time can be either continuous or discrete:

- If continuous time: use Hamiltonians and Differential Equations
- If discrete time: use recursive methods

Solution method also depends on the time horizon:
• If the time horizon is finite: then we can use dynamic programming

Solution method also depends on the time horiz	Solution	method	also	depends	on th	ne time	horizo
--	----------	--------	------	---------	-------	---------	--------

• If the time horizon is finite: then we can use dynamic programming

• If the time horizon is infinite: then need to (also) solve for a fixed point

All four combinations represent viable solution approaches for discrete choice problems

	Finite Time Horizon	Infinite Time Horizon
Continuous Time	Hamiltonians & Diff. Eq., Finite Differences	Hamiltonians & Diff. Eq., Fin. Diff. & Fixed Point
Discrete Time	Dynamic Programming, Backwards Recursion	Dynamic Programming, Bkw. Recursion & Fixed Point

All four combinations represent viable solution approaches for discrete choice problems

	Finite Time Horizon	Infinite Time Horizon
Continuous Time		
Discrete Time	Dynamic Programming, Backwards Recursion	