Using EO to Monitor Air Quality and Address Uncertainties in Atmospheric Composition

Eloise Marais

<u>e.a.marais@bham.ac.uk</u> / <u>maraisresearchgroup.co.uk</u>

Edinburgh EO ATOM-BIO Meeting

30 May 2018

Upper troposphere NO_x

New satellite products of upper tropospheric NO₂

APPROACH

Use cloud height variability to derive pseudoprofiles

[Choi et al., 2014]

NO₂ volume mixing ratio (VMR) between clouds at p1 and p2

$$NO_2 VMR = \frac{\Delta VCD}{\Delta p} \times \frac{k_B g}{R_{air}}$$

Upper troposphere NO_x

New satellite products of upper tropospheric NO₂

With D. J. Jacob, S. Choi, J. Joiner, M. Belmonte-Rivas, R. C. Cohen, S. Beirle, L. T. Murray, L. Schiferl, V. Shah, L. Jaeglé

Upper troposphere NO_x

Use aircraft observations to arbitrate

TD-LIF UT NO₂ during spring-summer NASA DC8 campaigns

Arbitration with Aircraft Observations

New satellite products of upper tropospheric NO₂

Upper troposphere NO_x sources

New satellite products of upper tropospheric NO₂

Variability in upper troposphere NO₂ dominated by lightning

OMI-derived lightning **NO**_x production rates

Improved constraints on lightning NO_x

OMI-derived seasonal mean lightning NO_x production rates

Global mean lightning NO_x production rate: 280 mol N per flash

Global lightning NO_x emissions: 5.6 Tg N a⁻¹ (2006)

Air Pollution and Green Space Monitoring in Cities

Tool for Recording and Assessing the City Environment

With **K.Vohra** (**PhD student**), P. Porter, W. J. Bloss, Defra, Ricardo

Long record of diverse observations

I 2+ years of air pollutants and vegetation dynamics from NASA and ESA satellites

- Air pollutants regulated by EU
 - Constraints on regulated air pollutants
 - **Vegetation extent/cover**
 - **Vegetation greenness**

Product Validation

EO versus surface NO₂ observations

Consistent month-to-month variability

City-Wide Air Pollution Trends

City-wide decrease in NO₂ of 39%

EU annual mean NO₂ standard 40 μ g m⁻³ \equiv 6 × 10¹⁵ molecules cm⁻²

City-Wide vegetation greenness trends

Significant seasonal trends: 1.1% per year (winter), 0.61% per year (autumn)

Implications for health of green spaces and ability to sequester carbon (climate change)

Shameless Plug(s)

NCEO Conference, Birmingham 2018. Chairing a session on EO Application to City Sustainability (abstract deadline: 8 June)

AGU meeting, Washington DC. Chairing a session on Emerging Air Quality Issues in Africa (co-chairs: Guy Brasseur, Christine Wiedinmyer)