CIS 520 – Operating Systems I

Lecture 26: Cloud Computing

Instructor: Mitch Neilsen

Office: N219D

Two Technologies for Agility

Virtualization:

The ability to run multiple operating systems on a single physical system and share the underlying hardware resources*

Cloud Computing:

"The provisioning of services in a timely (near on instant), on-demand manner, to allow the scaling up and down of resources"**

- * VMware white paper, Virtualization Overview
- ** Alan Williamson, quoted in Cloud BootCamp March 2009

Web Server
Windows
IIS

App Server
Linux
Glassfish

DB Server
Linux
MySQL

EMail
Windows
Exchange

And if something goes wrong ...

Web Server
Windows
IIS

App Server DOWN!

DB Server Linux MySQL EMail
Windows
Exchange

- System Administrators often talk about servers as a whole unit that includes the hardware, the OS, the storage, and the applications.
- Servers are often referred to by their function; e.g., the SQL database server, the file server, etc.
- If the file server fills up, or the database server becomes overtaxed, then the System Administrators must add a new server.

- Unless there are multiple servers, if a service experiences a hardware failure, then the service is down.
- System Administrators can implement clusters of redundant servers to make them more fault tolerant. However, even clusters have limits on their scalability, and not all applications work in a clustered environment.

Pros

- Easy to conceptualize
- Fairly easy to deploy
- Easy to backup
- Virtually any application/service can be run from this type of setup

Cons

- Expensive to acquire and maintain hardware
- Not very scalable
- Difficult to replicate
- Redundancy is difficult to implement
- Vulnerable to hardware outages
- In many cases, processor is under-utilized

Virtual Machine Monitor (VMM) layer between *Guest OS* and hardware

Close-up*

* adapted from a diagram in VMware white paper, Virtualization Overview

- Virtual servers seek to encapsulate the server software away from the hardware. This includes the OS, the applications, and the storage for that server.
- Servers end up as mere files stored on a physical box, or in enterprise storage.
- A virtual server can be serviced by one or more hosts, and one host may house more than one virtual server.

- Virtual servers can still be referred to by their function i.e. email server, database server, etc.
- If the environment is built correctly, virtual servers will not be affected by the loss of a host.
- Hosts may be removed and introduced easily to accommodate maintenance.

- Virtual servers can be scaled out easily. If the administrators find that the resources supporting a virtual server are being taxed too much, they can adjust the amount of resources allocated to that virtual server.
- Server templates can be created in a virtual environment to be used to create multiple, identical virtual servers.
- Virtual servers themselves can be easily migrated from host to host.

Pros

- Resource pooling
- Highly redundant
- Highly available
- Rapidly deploy new servers
- Easy to deploy
- Reconfigurable while services are running
- Optimizes physical resources by doing more with less

Cons

- Slightly harder to conceptualize
- Slightly more costly (must buy hardware, OS, Apps, and the abstraction layer)

Virtualization Status

Offerings from many companies

• e.g. VMware, Microsoft, Sun, ...

Hardware support

- Fits well with the move to 64 bit (very large memories) multi-core (concurrency) processors.
- Intel VT (Virtualization Technology) provides hardware to support the Virtual Machine Monitor layer

Virtualization is now a well-established technology

So what about Cloud Computing?

Suppose you are Forbes.com

You offer on-line real time stock market data

Why pay for capacity weekends, overnight?

Rate of Server Accesses

Forbes' Solution

Host the web site in Amazon's EC2 Elastic Compute Cloud

Provision new servers every day, and deprovision them every night

Pay just \$0.10* per server per hour

* more for higher capacity servers

Let Amazon worry about the hardware!

Cloud computing takes virtualization to the next step

You don't have to own the hardware

You "rent" it as needed from a cloud

There are public clouds

• e.g. Amazon EC2, and now many others (Microsoft, IBM, Sun, and others ...)

A company can create a private one

• With more control over security, etc.

Goal 1 – Cost Control

Cost

Many systems have variable demands

Batch processing (e.g. New York Times)

Web sites with peaks (e.g. Forbes)

Startups with unknown demand (e.g. the *Cash for Clunkers* program)

Reduce risk

Don't need to buy hardware until you need it

Goal 2 - Business Agility

More than scalability - elasticity!

- Ely Lilly in rapidly changing health care business
 Used to take 3 4 months to give a department a server cluster,
 then they would hoard it!
- Using EC2, about 5 minutes!

 And they give it back when they are done!

Scaling back is as important as scaling up

Goal 3 - Stick to Our Business

Most companies don't WANT to do system administration

• Forbes says:

We are is a publishing company, not a software company

But beware:

- Do you really save much on sys admin?
- You don't have the hardware, but you still need to manage the OS!

How Cloud Computing Works

Various providers let you create virtual servers

• Set up an account, perhaps just with a credit card

You create virtual servers ("virtualization")

- Choose the OS and software each "instance" will have
- It will run on a large server farm located somewhere
- You can instantiate more on a few minutes' notice
- You can shut down instances in a minute or so

They send you a bill for what you use

Any Nasty Details? (loads of them!)

How do I pick a provider?

Am I locked in to a provider?

Where do I put my data?

What happens to my data when I shut down?

How do I log in to my server?

How do I keep others from logging in (security)?

How do I get an IP address?

Etc.

And One Really Important Caveat*

* Cloud BootCamp March 2009

(footnote) How come Amazon?

Grew out of efforts to manage Amazon's own services

- (Each time you get a page from Amazon, over a hundred servers are involved)
- See reference *Amazon Architecture* on their service design concepts

They got so good at it that they launched Amazon Web Services (AWS) as a product

Cloud Computing Status

Seems to be rapidly becoming a mainstream practice Numerous providers

- Amazon EC2 imitators ...
- Just about every major industry name IBM, Sun, Microsoft, ...

Major buzz at industry meetings

References

(links are current as of September, 2009)

VMware Inc., Virtualization Overview, http://www.vmware.com/pdf/virtualization.pdf

Todd Hoff, *Amazon Architecture*, http://highscalability.com/amazon-architecture, Sept. 18, 2007

Intel Corp., *Technology brief: Understanding Intel® Virtualization Technology*, http://download.intel.com/technology/virtualization/320426.pdf

aw2.0 Ltd, Cloud BootCamp March 2009,

http://www.aw20.co.uk/help/cloudbootcamp_march2009.cfm

also online: CloudBootCamp2009.ppt