ELECTROMAGNETIC THEORY

2021

Homework #2

Deadline:

Problem 1:

Given $\mathbf{A} = xyz(x\mathbf{i}_x + y\mathbf{i}_y + z\mathbf{i}_z)$, evaluate $\oint_S \mathbf{A} \cdot d\mathbf{S}$, where S is the surface of the cubical box bounded by the planes x = 0, x = 2, y = 0, y = 2, z = 0, z = 2.

Problem 2:

A rigid rectangular loop of area A is situated in the xz-plane and symmetrically about the z-axis in a region of magnetic field $\mathbf{B} = B_0 [\cos(2\omega t) \mathbf{a}_x + \sin(2\omega t) \mathbf{a}_y] Wb/m^2$. Find the induced emf around the closed path C of the loop for the cases where:

- a) The loop is stationary
- b) The loop revolves around the z-axis in the sense of decreasing ϕ with uniform angular velocity of $\omega \, rad/s$

The position of the loop at t = 0 is described in Fig. 1

Figure 1

Problem 3:

A current density due to flow of charges is given by $\mathbf{J} = -(x\mathbf{a}_x + y\mathbf{a}_y + z^2\mathbf{a}_z) A/m^2$. Find the displacement current emanating from the closed surface of the cylindrical box bounded by the surfaces $\mathbf{r} = 1$, $\mathbf{z} = 0$ and $\mathbf{z} = 2$ as the figure 1.

Hint: Using the property: $r\mathbf{a_r} = x\mathbf{a_x} + y\mathbf{a_y}$

Figure 2

Problem 4:

Find the absolute value of the magnetic flux crossing that portion of the surface y=sinx bounded by x=0, $x=\pi$, z=0 and z=1 for $\mathbf{B}=B0(y\mathbf{a}_x-x\mathbf{a}y)$ Wb/m^2 .

Hint: Using the property that $\oint \mathbf{B} \cdot d\mathbf{S} = \mathbf{0}$, \mathbf{S} find $\int_{S1} \mathbf{B} \cdot d\mathbf{S} \mathbf{1}$ in the figure 3.

Figure 3