

Large-Scale Hybrid
Neuromorphic HPC
Simulations, Algorithms
and Applications

Christopher Carothers, Noah Wolfe, Prasanna Date, Mark Plagge, Jim Hendler Rensselaer Polytechnic Institute

Outline

- Neuromorphic Simulation
- Large-Scale HPC Network Simulation
- HPC Applications and Workloads
- Machine Intelligence Algorithms
- Conclusion and Future Work

Neuromorphic Computation

- Neuromorphic Computing Model
 - Based on spiking neural networks
 - Designed to simulate biological functions
 - Not for general computation
- Neuromorphic Hardware
 - Non "Von Neumann" architecture
 - Power efficient (~70mW)
 - Great at visual classification

HPC Systems

- Heterogenous Systems
 - CPU + GPU
 - Titan (Opteron + Kepler)
 - Summit (Power9 + Volta)

- Homogeneous Systems
 - CPU or Intel Phi
 - Mira (Blue Gene/Q)
 - Aurora (Phi)
- Why not incorporate Neuromorphic hardware?
 - Excels at pattern recognition
 - Potential for <u>managing power</u>, <u>predicting errors</u>, and <u>monitoring performance</u>.
- Need a model to simulate various hardware designs
- Goal: Simulate neuromorphic hardware operating within a supercomputer

IBM TrueNorth Processor

Hardware:

- 4,096 neurosynaptic cores
 - I million neurons
 - 256 million synapses
 - Low power (~70mW)

Programming Concepts:

- A TrueNorth "program" is a complete specification of the neurosynaptic network, including inputs and outputs
- Neural networks can be implemented and trained in Caffe or MatConvNet

NeMo Simulator

- The NeuroMorphic (NeMo) simulator is a hardware agnostic neuromorphic processor simulator.
- Implemented using ROSS (Rensselaer's Optimistic Simulation System)
 - ROSS provides optimistic and conservative parallel discrete event simulation
- Key Terms:
 - LP: Logical Process A simulated entity (neurons, synapses, axons)
 - PE: Processing Element A running process (MPI rank)
 - Event: Communication between LPs. Events drive the simulation

NeMo Simulator

 The NeuroMorphic (NeMo) simulator is a hardware agnostic neuromorphic processor simulator.

• Features:

- Tested to simulate over 65K neurosynaptic cores (16 chips)
- Supports simulation of IBM and non-IBM hardware
- Provides open framework for simulation of new designs
- One neuron per core to thousands of neurons per core
- Weighted synapses
- Different spiking neuron models

Nemo Validation

- Application: Izhikevich's Biological Tonic Bursting Neuron
- Comparison: IBM Compass Simulator [1]
 - One-to-one simulator with TrueNorth hardware
 - IBM Compass Simulator

NeMo Simulator

[1] A.C. Cassidy, P.A. Merolla, J.V. Arthur, et al (2013). "Cognitive Computing Building Block: A Versatile and Efficient Digital Neuron Model for Neurosynaptic Cores". Neural Networks (IJCNN), International Joint Conference on

Nemo Validation

- Application: Izhikevich's Biological Phasic Spiking Neuron
- Comparison: IBM Compass Simulator [1]
 - One-to-one simulator with TrueNorth hardware
 - IBM Compass Simulator

NeMo Simulator

[1] A.C. Cassidy, P.A. Merolla, J.V. Arthur, et al (2013). "Cognitive Computing Building Block: A Versatile and Efficient Digital Neuron Model for Neurosynaptic Cores". Neural Networks (IJCNN), International Joint Conference on

Nemo Performance Results Rensselaer

• Evaluation System:

- Center for Computational Innovations (CCI) IBM Blue Gene/Q
 - 64 hardware threads / node
 - 16 GB Memory / node

Application:

- Randomized network with 80% remote (off-core) probability
- Identity matrix neuron connection configuration
- Neurons spike to random axon when receiving spike

Weak Scaling

Large-Scale HPC Networks

HPC Network Simulation

- Co-Design of Exascale Storage (CODES)
 - Storage systems
 - HPC network systems
- Traffic Workloads
 - Synthetic
 - Application Traces (Dumpi, TraceR)
 - MPI Collectives
- Neuromorphic Applications
 - Routing Algorithms
 - Static
 - Dynamic
 - Verified
 - Booksim and/or published results

HPC Network Topologies

- Torus (k-ary n-cube)
 - High near-neighbor throughput
 - High hop count
- Fat Tree
 - Full bisection bandwidth
 - High Cost
- Dragonfly
 - High-radix routers
 - Low Cost
- Slim Fly
 - Max diameter of 2
 - Complex connectivity

Scaling Analysis

74K Node Model:

- 43 million events per second
- 543 million events processed

• 1M Node Model:

- 36 million events per second
- 7 billion events processed

Applications

- HPC Failure Detection and Resilience
 - Streaming failure sensor data coupled with HPC application hardware performance data to provide a self-aware capability
- Performance Monitoring and Improvement
 - Mining of performance pattern data from live running HPC applications to help improve application execution time and lower overall power consumption.
- Application Failure Detection and Resilience
 - Monitoring application "snapshots" to classify and detect possible application failures for improved efficiency of HPC resources.

Machine Intelligence Algorithms Rensselaer

- Deep Neural Networks (DNN) Design Index
 - An index tuple assisting with the design of DNNs
- Automated/Semi-Automated Network Design
 - Using the Design Index as the performance metric to facilitate automated/semi-automated network design
 - Leveraging heuristic/memetic algorithms to tune the modelspecific parameters (also called model hyper-parameters)
- Real-Time On-Board Network Training
 - The IBM TrueNorth chip only executes/deploys trained networks
 - Investigating the feasibility of continuing the training process on the chip during deployment

Moving Forward

- Simulation Integration
 - Pull the three individual parts (NeMo simulator, HPC networks simulator, and Applications) together to create one complete hybrid neuromorphic HPC system simulation
- Investigate on-chip network training/learning

Thanks!

