Дубровских Никита 221-361

Вариант 7

Задание 15.

По заданной матрице весов графа найти величину минимального пути от вершины1x до кажедой из вершин по алгоритму Дейкстры (в матричном виде):

	x_1	x_2	x_3	x_4	x_5	x_6
x ₁	0	4	9	8	∞	∞
X_2	∞	0	2	∞	∞	∞
Х3	∞	∞	0	∞	∞	3
X4	8	2	4	0	6	∞
X5	∞	2	∞	∞	0	3
X6	∞	∞	∞	9	∞	0

Решение:

Построим строку $T_1=\{2,3,4,5,6\}$ - номера вершин до которых нужно вычислить длину пути и $D^{(1)}=(0,\underline{4},9,8,\infty,\infty)$ - расстояния от x_1 до этих вершин (первоначально совпадает с первой строкой матрицы весов). Находим минимальный элемент (подчеркнут) и удаляем его номер из строки Т. Пересчитываем D по правилу: $D^{(s)}=(d_1^{(s)},...d_n^{(s)})$, где $d_k^{(s+1)}=\min\{d_k^{(s)},d_j^{(s)}+w_{jk}\}$, (т.е., если мы считаем k-ый элемент в строк D, то мы выбираем минимальное значение среди того элемента, который занимал эту позицию в предыдущей строке D, а также среди всех сумм элементов столбца с номером k матрицы весов и соответствующих, по порядку следования, значений предыдущей строки D) если $a_k \in T_{s+1}$, и $d_k^{(s+1)}=d_k^{(s)}$, если $a_k \notin T_{s+1}$.

Получим:

$$T_2 = \{3, 4, 5, 6\}.$$

$$D^{(3)} = (0, 4, 6, 8, 14, 12).$$

$$T_3 = \{4, 5, 6\}.$$

$$D^{(4)} = (0, 4, 6, 8, 14, 9).$$

$$T_4 = \{5, 6\}.$$

$$D^{(5)} = (0, 4, 6, 8, 14, 9).$$

Строка $D^{(5)}$ не отличается от $D^{(4)}$, поэтому решение закончено даже несмотря на то, что в строке T остались элементы.

Ответ: минимальные расстояния от вершины 1 до всех остальных: (0.4,6,8,14,9).