

Avant toutes choses

Nous aurons besoin du package ggplot2:

- Vérifier que le package ggplot2 est bien installé
- · Si non, l'installer, puis le charger

```
library (ggplot2)
```

Nous allons également avoir besoin des données fruits :

```
fruits <- readxl::read_excel("fruits.xlsx")</pre>
```

Bien choisir sa représentation graphique

From Data to Viz : https://www.data-to-viz.com/

Un échantillon de ce qu'il est possible de faire avec ggplot2

Diagramme en bâtons

Rappel: la fonction barplot

La fonction de base pour les diagrammes en bâtons est barplot :

barplot(table(fruits\$groupe))

La fonction geom_bar

```
ggplot(data = fruits, aes(x = groupe, fill = groupe)) +
  geom_bar()
```


Décomposition de la commande

- ggplot : création d'un canevas vide dans on va dessiner le(s) graphe(s)
- aes : déclaration des paramètres esthétiques du graphes (position horizontale, verticale, couleur épaisseur, forme, transparence etc...)
- · geom_bar: utilisation d'une géométrie

Les données

	V1	V2	Groups	
	1	1	Group 1	→ •
	2	2	Group 2	→ •
	3	5	Group 1	→ •
	4	10	Group 1	→ •
	5	17	Group 2	→ •
<u> </u>	6	9	Group 1	→ •
	7	11	Group 1	→ •
	8	13	Group 2	→ •

Les paramètres esthétiques

```
paramètres
ggplot(data = fruits,

aes(x = Sucres,

y = Energiel,

color = groupe))
```

Les géométries

L'image à retenir

[G]rammar of [G]raphics

- 1) DATA: a set of data operations that create variables from datasets,
- 2) TRANS: variable transformations (e.g., rank),
- 3) SCALE: scale transformations (e.g., log),
- 4) COORD: a coordinate system (e.g., polar),
- 5) ELEMENT: graphs (e.g., points) and their aesthetic attributes (e.g., color),
- 6) GUIDE: one or more guides (axes, legends, etc.).

The grammar of Graphics, Leland Wilkinson

Implémentation dans ggplot2

Données	data	Les données à représenter. Chaque ligne représente un élément à représenter graphiquement.
Géométries	geom_	Les formes à créer pour représenter les données. Cela peut être des points, des lignes, des surfaces etc.
Esthétiques	aes()	Les paramètres esthétiques de ces formes. Par exemple la position, la couleur, la taille, la forme, la transparence etc.
Échelles	scale_	Des fonctions permettant de paramétrer la transformation de données en formes ou en objets graphiques. Par exemple la fonction <code>scale_color_manual</code> permet de choisir soi-même les couleurs à utiliser dans un graphique.

A vous!

Comment corriger la commande suivante pour obtenir le graphe à droite ?

```
ggplot(***,
    aes(***,
    fill = Sucres > 10)) +
    geom_***()
```


Un peu d'histoire

- Il y a eu un ggplot"1" (voir ici)
- Développement commencé en 2005
- Hadley Wickham (Chief Scientist at RStudio + Adjunct Professor of Statistics)
- D'excellents cours, parfois avec sa soeur Charlotte

Hadley Wickham

Quelques géométries

Nous allons voir ensemble quelques géométries particulières qui permettent de créer des graphes classiques.

geom_bar	Diagramme en bâtons sur des données non-agrégées		
geom_col	Diagramme en bâtons (encore) sur des comptages existants		
geom_histogram	Histogramme d'une variable quantitative		
geom_boxplot	Diagramme de Tukey aka "boîte à moustache" aka <i>boxplot</i>		
geom_violin	Diagramme en "violons"		
geom_point	Nuage de points créé à partir de deux variables quantitatives		
geom_line	Ligne tracée à partir de deux variables quantitatives	17/65	

Diagrammes en bâtons

Avec geom_bar

On a déjà vu comment faire :

```
ggplot(fruits, aes(cut(Eau, c(0, 84.2, 100)))) +
  geom_bar(fill = "steelblue")
```


Avec geom_col

S'utilise quand on dispose déjà de comptages.

```
dat.count <- fruits %>%
  group_by(groupe) %>%
  summarize(Csup10 = sum(VitamineC >= 10))

ggplot(data = dat.count, aes(x = groupe, y = Csup10)) +
  geom_col()
```


A vous!

Comment modifier les deux commandes précédentes pour faire un diagramme en bâtons montrant des pourcentages plutôt que des comptages bruts ?

(PS: il y a plus d'une solution possible)

Histogrammes

Histogramme ou diagramme en bâtons?

Histogramme ou diagramme en bâtons?

Diagramme en bâtons

Représente des comptages de :

- · variables nominales
- variables ordinales
- variables discrètes

Histogramme

Représente des comptages ou des densités de :

- variables continues
- variables discrètes

Pour ce genre de graphe, il est important de choisir les intervalles sur lesquels les données seront énumérées.

L'histogramme par défaut

- · Axe des y : les comptages de l'intervalle donné
- · Axe des x :
 - des intervalles de même amplitude,
 - trente intervalles,
 - pas de séparation visuelle entre les intervalles (sauf ceux qui sont vides)
 - des rectangles gris foncé
 - un message

```
`stat_bin()` using `bins = 30`.
Pick better value with
`binwidth`.
```

```
ggplot(fruits, aes(Sucres)) +
  geom_histogram()
```


Exercice qui n'a (presque) rien à voir!

Dans un document R Markdown, comment faire pour ne pas afficher le message dans votre rapport ?

... il y a plusieurs solutions possibles...

Modification des intervalles


```
ggplot(fruits, aes(Sucres)) +
geom_histogram(breaks = seq(0, 75, 5))
```

Modification de la couleur

Modification de la couleur

Boxplot

Boxplot d'une variable

```
ggplot(data=fruits, aes(x = Sucres)) +
  geom_boxplot()
```


Boxplot : lien entre une variable catégorielle et une variable continue

```
ggplot(data=fruits, aes(x=groupe, y=Sucres)) +
  geom_boxplot()
```


Avec des violons

```
ggplot(data=fruits,
         aes(x = Sucres, y = 1)) +
   geom_violin()
```

```
ggplot(data=fruits,
          aes(x = groupe, y = Sucres)) +
          geom_violin()
```


A vous!

Complétez le code suivant pour obtenir la figure de droite :

```
ggplot(fruits,
    aes(x = Fibres > 1.5,
        y = Proteines,
        fill = ***)) +
geom_***()
```


Personnalisation

Thèmes

Les *thèmes* sont des fonctions qui permettent de modifier certains paramètres graphiques comme :

- · la couleur du fond,
- · la couleur des axes,
- la couleur des grilles majeures et mineures,
- · etc.

Exemple de fonctions thèmes (theme ***()):

- theme_bw(): pour un thème en noir et blanc,
- theme_minimal(): pour un thème minimaliste,
- theme void(): pour un thème dépouillé

Exemple sur un histogramme: theme_bw()

```
ggplot(fruits, aes(Fibres)) +
  geom_histogram() +
  theme_bw()
```


Exemple sur un histogramme:

theme_minimal()

```
ggplot(fruits, aes(Fibres)) +
  geom_histogram() +
  theme_minimal()
```


Exemple sur un histogramme: theme_void()

```
ggplot(fruits, aes(Fibres)) +
  geom_histogram() +
  theme_void()
```


A vous!

- 1. Consultez la page d'aide de la fonction theme_bw avec la commande ?theme_bw
- 2. Choisissez la thème permettant de réaiser le graphe à droite en complétant la commande suivante.

```
ggplot(fruits, aes(y = Fibres)) +
  geom_boxplot() +
  theme_***()
```


Autres personnalisations "simples"

- Titre: avec la fonction ggtitle
- Titre de l'axe des x : avec la fonction xlab
- Titre de l'axe des y : avec la fonction ylab

Mais je vous conseille d'utiliser la fonction labs qui permet de faire tout cela, et plus!

```
labs(
  title = "Titre du graphe",
  subtitle = "Sous-titre du graphe",
  x = "Titre de l'axe des x",
  y = "Titre de l'axe des y",
  color = "Titre de la légende des couleurs",
  shape = "Titre de la légende des formes"
)
```

Personnalisations avancées

Avec la fonction theme (), qui a une syntaxe bien particulière : chaque élément doit être spécifié selon sa nature.

- Pour changer la taille, la police, la couleur d'élément de type "texte", on utilise element_text(size=, colour = "", family = "")
- Pour changer la couleur et la taille d'une ligne, on utilise element line (colour="", size=)
- Pour personnaliser la couleur du fond, on utilise element_rect(fill = "")

Ce que l'on peut changer avec theme ()

```
· axis.title, axis.title.x, axis.title.y:taille, police, couleur, ...
· axis.text, axis.text.x, axis.text.y:taille, police, couleur, ...
axis.ticks, axis.ticks.x, axis.ticks.y
axis.line, axis.line.x, axis.line.y
panel.background:couleur
• panel.grid.major, panel.grid.minor: couleur, taille
· legend.text: taille, police, couleur
 legend.position

    plot.title:taille, police, couleur
```

Nuages de points

Avec geom_point

Cette géométrie nécessite des paramètres esthétiques de position (en x et y), et accepte optionnellement des paramètres esthétiques de taille, couleur et forme.

```
ggplot(fruits, aes(x = Phosphore, y = Calcium, size = Magnesium)) +
  geom_point()
```


Paramètres esthétiques

Lorsqu'ils sont spécifiés dans la fonction aes (), ces paramètres appliquent les valeurs d'une variable à une caractéristique des objets graphiques tracés par les géométries.

- · color ou colour : couleur du point
- fill: couleur de remplissage
- · size:taille
- shape:forme
- alpha:transparence
- · linetype:type de ligne
- · label:étiquettes

Lorsqu'ils sont appliqués en dehors de la fonction aes (), leur comportements est plus général!

Exemple

```
ggplot(fruits,
       aes (x = Phosphore, y = Calcium,
           color = Magnesium)) +
 geom point() +
  theme(legend.position = "bottom")
```



```
ggplot(fruits,
    aes(x = Phosphore, y = Calcium)) +
  geom point(color = "limegreen")
```


A vous!

Complétez la commande suivante pour obtenir le graphe ci-contre.

Au secours, mes points se superposent!

Pas de panique, on peut utiliser la transparence (aka alpha):

```
ggplot(fruits,
    aes(x = Phosphore,
        y = Calcium,
        color = groupe)) +
geom_point(alpha = 0.5,
        size = 2) +
theme_bw() +
theme(legend.position =
    "bottom")
```


Changer les échelles

Avec les fonctions scale ***

Ces fonctions vont vous permettre de personnaliser l'échelle, en x, en y, mais pas seulement ! Ce concept est généraliser dans ggplot2 à de nombreux paramètres esthétiques. Par exemple :

- · scale_x_log10 () permet de transformer l'échelle des x en échelle logarithmique,
- scale_y_log10 () permet de transformer l'échelle des y en échelle logarithmique,
- scale_color_manual() permet de personnaliser les couleurs,
- · scale_fill_manual() permet de personnaliser les couleurs de remplissage,
- scale_x_continuous() permet de personnaliser l'axe des x lorsque x est une variable "continue",
- · scale_y_discrete() permet de personnaliser l'axe des y lorsque y est une variable "discrète",
- \cdot scale_x_continuous () permet de personnaliser l'axe des x lorsque x est une variable "discrète",
- · scale_y_discrete() permet de personnaliser l'axe des y lorsque y est une variable "discrète".

A vous!

Complétez la commande suivante pour obtenir le graphe ci-contre.

Avec les fonctions coord_***

Pour modifier le système de coordonnées **après** avoir appliquer toutes les transformations spécifiées auparavant (par une fonction scale_*** par exemple). Par exemple :

- coord_fixed pour fixer le ratio des unités de l'axe des y sur les unités de l'axe des x,
- coord_equal quand ce ratio vaut 1,
- coord_flip pour échanger les axes,
- coord_polar pour passer d'un système de coordonnées cartésien à un système de coordonnées polaires

Pour s'amuser!

Transformez les coordonnées du graphe suivant en coordonnées polaires (coord polar (theta = "y")). Quel est le résultat?

```
ggplot(fruits, aes(x = 1, fill = groupe)) +
  geom_bar(width = 1) +
  theme_void()
```

Avec les fonctions *lim*

Change le minimum et le maximum d'un axe. Attention, toutes les valeurs en dehors des nouveaux axes sont **éliminées**!

- xlim, ylim ou lims pour spécifier l'étendue,
- · expand limits pour étendre l'étendue à certaines valeurs.

Pour faire un "zoom" sans perdre de points, il faut utiliser la fonction coord_cartesian ou une fonction du type scale_***

Créer des "facettes"

La fonction facet_wrap

S'uilise pour diviser le graphe en panneaux selon les modalités d'une variable catégorielle.

Attention à la syntaxe : elle est basée sur l'utilisation du terme vars, qui permet d'accéder aux variables du jeu de données spécifié.

Par exemple, pour diviser le graphe g en plusieurs panneaux selon les modalités d'un facteur fac, on écrira

```
g + facet_wrap(facets = vars(fac))
```

On peut également utiliser une "formule" :

```
g + facet wrap(~ fac)
```

Exemple

```
ggplot(fruits,
    aes(x = Phosphore,
        y = Calcium,
        color = groupe)) +
    geom_point() +
    facet_wrap(vars(Sucres > 10)) +
    theme_bw() +
    theme(legend.position =
        "bottom")
```


Avec la fonction facet_grid

S'utilise de la même façon que facet_wrap.

Par exemple, pour diviser le graphe g en plusieurs panneaux selon les modalités d'un facteur factorow pour les lignes et factocol pour les colonnes, on écrira

```
g + facet_grid(rows = vars(factorow), cols = vars(factocol))
```

On peut aussi utiliser une formule:

```
g + facet_grid(factorow ~ factocol)
```

CONSEIL : pour l'utilisation de facettes, faites attention à bien nommer les modalités de vos facteurs pour rendre le graphe plus clair.

Sauvegarder un graphe

Méthode conseillée: avec ggsave

Fonctionnement et exemple :

```
g <- ggplot(fruits, aes(groupe)) + geom_bar()
ggsave(filename = "mongraphe.png", plot = g)</pre>
```

L'extension donnée dans filename sera magiquement détectée pour sauvegarder le fichier au bon format!

Conclusion

En quelques mots

Nous avons vu un package de représentations graphiques très puissant ! ggplot2 fonctionne sur la base d'un canevas, de paramètres esthétiques comme la position en x, en y, les couleurs, la forme etc. A partir de ces paramètres, on va tracer les graphes à l'aides de *géométries*, qui peuvent se superposer !

Quelques remarques

- 1. ggplot2 est très complet... et très complexe
- 2. Il faut prendre son temps, et savoir travailler avec ses petits jeux de données préférés bien connus et **très très très propres** pour travailler sur son graphe,
- 3. Personnaliser un graphe prend du temps, il faut s'armer de patience...

Data Visualization with ggplot2 Cheat Sheet

R Studio

N'oubliez pas la feuille de triche!