Homework 3

April 12, 2022

1. Consider two ordered bases $E = \{v_1, v_2, v_3\}$ and $F = \{w_1, w_2, w_3\}$ for a vector space V, and suppose

$$v_1 = 4w_1 - w_2$$
, $v_2 = -w_1 + w_2 + w_3$, $v_3 = w_2 - 2w_3$

- (a) Find the transition matrix S from E to F.
- (b) Compute the coordinate vector $[v]_F$ for $v = 3v_1 + 4v_2 + v_3$.
- 2. Consider two ordered bases $E = \{v_1, v_2, v_3\}$ and $F = \{w_1, w_2, w_3\}$ for \mathbb{R}^3 , where

$$v_1 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 2\\-1\\1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$$
$$w_1 = \begin{bmatrix} 3\\1\\-5 \end{bmatrix}, \quad w_2 = \begin{bmatrix} 1\\1\\-3 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -1\\0\\2 \end{bmatrix}$$

- (a) Find the transition matrix S_1 from F to E.
- (b) Find the transition matrix S_2 from E to F.
- (c) Verify that $S_1S_2 = S_2S_1 = I_3$.
- (d) Compute the coordinate vector $[v]_E$, where $v=\begin{bmatrix} -5\\8\\-5 \end{bmatrix}$, and use S_1 or S_2 (decide by yourself) to compute $[v]_F$.
- (e) Check your work by computing $[v]_F$ directly.
- 3. Let $A \in \mathbb{R}^{4 \times 6}$ be

$$A = \left[\begin{array}{cccccc} 1 & 2 & 4 & 2 & 3 & 1 \\ 2 & 5 & 9 & 4 & 5 & 4 \\ 3 & 7 & 9 & 6 & 8 & 5 \\ 1 & 3 & 5 & 2 & 2 & 3 \end{array} \right].$$

1

- (a) Find the four subspaces of the matrix $(C(A), C(A^T), N(A), \text{ and } N(A^T), \text{ determine their bases and dimensions)}.$
- (b) Write down the fundamental theorem of linear algebra: Part 1 and Part 2. And verify them by the answers in (a).
- 4. Let $A \in \mathbb{R}^{4 \times 5}$ and let R be the reduced row echelon form of A. If the first and second columns of A are

$$a_1 = \begin{bmatrix} 2 \\ 1 \\ -3 \\ -2 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$$

and

$$R = \left[\begin{array}{ccccc} 1 & 0 & 2 & 0 & -1 \\ 0 & 1 & 3 & 0 & -2 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right],$$

- (a) find a basis for N(A).
- (b) given that x_0 is a solution to Ax = b, where

$$b = \begin{bmatrix} 0 \\ 5 \\ 3 \\ 4 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 3 \\ 2 \\ 0 \\ 2 \\ 0 \end{bmatrix},$$

determine the remaining column vectors of A.

5. Let x and y be linearly independent vectors in \mathbb{R}^n and let $S = \operatorname{Span}(x, y)$. We can use x and y to define a matrix A be setting

2

$$A = xy^T + yx^T$$

- (a) Show that $N(A) = S^{\perp}$.
- (b) Show that $\dim C(A) = 2$ (the rank of A must be 2).