# ENSC 2113 Engineering Mechanics: Statics

Lecture 12 Sections 4.7 – 4.8



## 4.7: Equivalent System

Replacing a series of forces with a single force: equivalent force



Find the magnitude and location of the equivalent force:

Resultant Force:

$$+\uparrow \sum F_y = 10 + 10 = 20 \text{ kips} \uparrow$$

let's look at the moments at points A, B, C and D:



So, we replace the two 10 k forces with a single 20 k force.



Locating the equivalent force from the moment:

Measured from A:

$$M_A = 60 k - ft \circlearrowleft$$

Solving for location: M = F d:

$$60 \circlearrowleft = 20 d$$
  $d = \frac{60}{20} = 3 ft$ 

The equivalent force is 20 kips at a distance of 3 ft measured from point **A**:



Verify this answer by summing moments at points **B**, **C** & **D**:

$$+ccw \sum M_B = 20(1) = 20 \ kip - ft \ (ccw)$$
  
 $+ccw \sum M_C = -20(1) = -20 = 20 \ kip - ft \ (cw)$   
 $+ccw \sum M_D = -20(2) = -40 = 40 \ kip - ft \ (ccw)$ 

## 4.8: Resultants of a Force and Couple System

### Concurrent force system:



### Coplanar force system:



### Parallel force system:



# ENSC 2113 Engineering Mechanics: Statics

Lecture 12 Sections 4.7 – 4.8

