Vector Algebra: Basic Definitions and Linear Operations

Definition 1. A vector is a displacement in the plane or in 3-D space; geometrically vectors are denoted and defined as directed segments. A vector has both length and direction (as opposed to a scalar – a number - which has only a magnitude).

<u>Definition 2.</u> The length of a vector is called its *modulus* or *magnitude*.

The starting point of the vector is called the *initial* point, and the endpoint is called the *terminal* point.

Vectors are denoted by small letters of the Latin alphabet or by the initial (first) and terminal (second) points; when in print, **bold** font may be used to distinguish a vector from a number or an unoriented segment: **a, r, AB**; or an arrow above the vector name: \overrightarrow{AB} ; \overrightarrow{a} , \overrightarrow{v} , \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} ; when writing by hand, the arrow is used.

A vector can be **free** (a vector that can be moved to any position in the space), **sliding** (can only be moved along the line that contains it) or **fixed** (cannot be moved at all) – the type of the vector depends on its application, e.g, in physics. In this course only free vectors will be considered.

<u>Definition 3.</u> Two vectors are called *collinear* if the lines containing them are parallel or coincident. If the vectors have the same direction they are called *parallel* $(\vec{a} \uparrow \uparrow \vec{b})$; if their directions are opposite they are called *antiparallel* $(\vec{a} \uparrow \downarrow \vec{b})$.

<u>Definition 4.</u> Two vectors are called *equal* if they have *the same magnitude and are parallel*, and *opposite* if they have *the same magnitude and are antiparallel*.

<u>Definition 5.</u> Three vectors are called *coplanar* if they lie in the same plane or in parallel planes.

Definition 6. A vector whose length is 1 is called a *unit vector*.

Definition 7. A vector whose starting point and endpoint is the same is called the **zero vector**; it corresponds to **zero displacement** and is denoted $\vec{0}$.

Vector Algebra: The Linear Operations

1. Scalar multiples: The product of a vector \vec{a} and a scalar k is a vector $\vec{k} \cdot \vec{a} = \vec{b}$ such that

(1) its magnitude is $|\vec{b}| = |k| \cdot |\vec{a}|$

(2) $\vec{a} \uparrow \uparrow \vec{b}$ if k > 0, and $\vec{a} \uparrow \downarrow \vec{b}$ if k < 0.

If k = 0 then the product is the zero vector: $0 \cdot \vec{a} = \vec{0}$

Theorem. Two vectors \vec{a} and \vec{b} are collinear if and only if there exists a scalar $k \neq 0$ such that $k \cdot \vec{a} = \vec{b}$.

2. The sum of two vectors

A. The *Triangle Rule*: If the initial point of the second vector coincides with the terminal point of the first vector, then the sum of the two vectors is a vector whose initial point is the same as the first vector's and the terminal point the same as the second vector's: $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

B. The *Parallelogram Rule* is applied if the initial points of both vectors coincide. Complete the parallelogram whose sides are the given vectors; the sum of the two vectors is the diagonal vector with the same initial point: $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$ (see below).

2.1 Page 1

3. The difference of two vectors:

The difference of two vectors \vec{a} and \vec{b} is defined as such a vector \vec{d} that must be added to \vec{b} to obtain \vec{a} : if $\vec{b} + \vec{d} = \vec{a}$ then $\vec{a} - \vec{b} = \vec{d}$.

A. Applying the Triangle Rule, add vectors \vec{a} and $-\vec{b}$: $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$

B. In general, if $\overrightarrow{OB} + \overrightarrow{BA} = \overrightarrow{OA}$, then $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$. Therefore, the difference is the vector of the second diagonal of the parallelogram, starting from the terminal point of the **second** vector and ending at the initial point of the **first** vector.

4. The projection of a vector on the axis (or vector).

Let the projections of the points A and B on the axis u be the points A' and B' respectively. Then the projection of the vector \overrightarrow{AB} on the axis u is the length of the segment A'B' used with the (+) sign: $proj_u \overrightarrow{AB} = |A'B'|$ if $\overrightarrow{A'B'} \uparrow \uparrow \overrightarrow{u}$ and with the (-) sign $proj_u \overrightarrow{AB} = -|A'B'|$ if $\overrightarrow{A'B'} \uparrow \downarrow \overrightarrow{u}$; geometrically this means $proj_u \overrightarrow{AB} = |\overrightarrow{AB}| \cdot \cos \alpha$ where α is the angle between \overrightarrow{AB} and the axis.

Exercise 1.

- 1. Given a parallelogram ABCD, express the vectors \overrightarrow{AB} and \overrightarrow{AD} in terms of $\overrightarrow{a} = \overrightarrow{AC}$ and $\overrightarrow{b} = \overrightarrow{BD}$.
- 2. $|\vec{a}| = 6, |\vec{b}| = 8$ and $\vec{a} \perp \vec{b}$. Find $|\vec{a} + \vec{b}|$ and $|\vec{a} \vec{b}|$.
- 3. The medians of the triangle ABC are AD, BE and CF. Prove that $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \overrightarrow{0}$.
- 4. The mass centre of the triangle ABC is O. Express the vector \overrightarrow{BO} using the vectors $\overrightarrow{a} = \overrightarrow{AB}$ and $\overrightarrow{b} = \overrightarrow{AC}$.
- 5. The point M lies on the segment AB so that the ratio (a) $\frac{AM}{AB} = \frac{2}{5}$ (b) $\frac{AM}{MB} = \frac{a}{b}$. The point P is outside the line AB. Express the vector \overrightarrow{PM} using the vectors $\overrightarrow{p} = \overrightarrow{PA}$ and $\overrightarrow{q} = \overrightarrow{PB}$.

ANSWERS

