# Secret Sharing and Secure Multiparty Computation

# Secret sharing

#### Motivation

- Secret information secret (for example, safe code, password, key, treasure map, rocket launch code,...).
- Not secure if it is stored in one device/person
- Solution Distribute the secret into shares: The shares are stored independently, and the secret can be reconstructed if needed.

# Secret sharing

#### Motivation

- Secret information secret (for example, safe code, password, key, treasure map, rocket launch code,...).
- Not secure if it is stored in one device/person
- Solution Distribute the secret into shares: The shares are stored independently, and the secret can be reconstructed if needed.
  - Bad way: Cut it into pieces, e.g.  $35749134 \rightarrow 35,74,91,34$

## Secret sharing

#### Motivation

- Secret information secret (for example, safe code, password, key, treasure map, rocket launch code,...).
- Not secure if it is stored in one device/person
- Solution Distribute the secret into shares: The shares are stored independently, and the secret can be reconstructed if needed.
  - $\bullet$  Bad way: Cut it into pieces, e.g. 35749134  $\rightarrow$  35,74,91,34
  - Good way: secret  $s \in \mathbb{F}$  and shares  $a, b, c, s a b c \in \mathbb{F}$ .



## Shamir secret sharing (SSS)

Shamir secret sharing (*k*-threshold) scheme:

- P: set of participants, D: dealer
- s secret
- $A \subseteq P$  can recover the secret if  $|A| \ge k$

# Shamir secret sharing (SSS)

#### Shamir secret sharing (*k*-threshold) scheme:

- P: set of participants, D: dealer
- s secret
- $A \subseteq P$  can recover the secret if  $|A| \ge k$

#### Construction (Shamir)

- F finite field (e.g.,  $\mathbb{F}_p$ ) such that  $|\mathbb{F}| > |P|$ .  $\mathbb{F}$  is public.
- ② D chooses randomly  $p \in \mathbb{F}[x]$ , with  $\deg p \le k-1$  and p(0) = s.
- **3** D sends  $s_i = p(i)$  to  $P_i$ .
- If  $A \subseteq P$ ,  $|A| \ge k$ : Lagrange-interpolation
- ② If  $A \subseteq P$ ,  $|A| < k \Rightarrow$  cannot compute anything about p



## Lagrange-interpolation

## Lagrange-interpolation

- $\mathbb{F}$  field,  $p \in \mathbb{F}[x]$  polynomial,  $\deg p \leq k-1$
- $y_i = p(x_i)$  is known for i = 1, ..., k
- Determine the polynomial p

## Lagrange-interpolation

#### Lagrange-interpolation

- $\mathbb{F}$  field,  $p \in \mathbb{F}[x]$  polynomial,  $\deg p \leq k-1$
- $y_i = p(x_i)$  is known for i = 1, ..., k
- Determine the polynomial p
- Onstruct basis polynomials:  $\ell_i(x_i) = 1$  and  $\ell_i(x_j) = 0$ , if  $i \neq j$ .

$$\ell_i(x) = \prod_{\substack{1 \leq j \leq k \\ j \neq i}} \frac{x - x_j}{x_i - x_j}$$

Construct p:

$$p(x) = \sum_{i=1}^{K} p(i)\ell_i(x)$$

#### Remark

To reconstruct the secret, it is enough to compute p(0).

# Example - Lagrange-interpolation

#### Example

Compute the polynomial  $p \in \mathbb{F}_7$  such that  $deg(p) \le 2$  and p(1) = 2, p(3) = 6 and p(4) = 1.

Compute the base polynomials:

$$\ell_1(x) = \frac{(x-3)(x-4)}{(1-3)(1-4)} = \frac{x^2 - 7x + 12}{6} = 6x^2 + 2$$

$$\ell_3(x) = \frac{(x-1)(x-4)}{(3-1)(3-4)} = \frac{x^2 - 5x + 4}{-2} = 3x^2 + 6x + 5$$

$$\ell_3(x) = \frac{(x-1)(x-3)}{(4-1)(4-3)} = \frac{x^2 - 4x + 3}{3} = 5x^2 + x + 1$$

Compute p:

$$2\ell_1(x) + 6\ell_3(x) + 4\ell_4(x) = 50x^2 + 40x + 38 = x^2 + 5x + 3$$



## Example

Suppose that we want to generate a 3-out-of-4 secret sharing.

## Secret generation

- Setup:  $P = \{P_1, P_2, P_3, P_4\}, k = 3, \mathbb{F} = \mathbb{F}_7, s = 3$
- Polynomial:  $p(x) = x^2 + 5x + 3$
- Shares:  $P_1$ : 2,  $P_2$ : 3,  $P_3$ : 6  $P_4$ : 4

## Example

Suppose that we want to generate a 3-out-of-4 secret sharing.

## Secret generation

- Setup:  $P = \{P_1, P_2, P_3, P_4\}, k = 3, \mathbb{F} = \mathbb{F}_7, s = 3$
- Polynomial:  $p(x) = x^2 + 5x + 3$
- Shares:  $P_1$ : 2,  $P_2$ : 3,  $P_3$ : 6  $P_4$ : 4

Suppose  $P_1$ ,  $P_3$ , and  $P_4$  want to reconstruct the secret from their shares.

#### Secret reconstruction

They collect their shares (2, 6, 4) and compute

$$2\frac{(0-3)(0-4)}{(1-3)(1-4)} + 6\frac{(0-1)(0-4)}{(3-1)(3-4)} + 4\frac{(0-1)(0-3)}{(4-1)(4-3)} =$$
$$= 2 \cdot 2 + 6 \cdot (-2) + 1 \cdot 4 = 3$$



# Shamir Secret sharing - Properties

#### **Notation**

[s]: s is a value shared with SSS. The share of  $P_i$  is  $s_i$ .

- k-out-of-n secret sharing: SS with n parties and threshold
   k.
- The size of the share is  $log_2 |F|$ .
- |F| > |P| is important, as all participants must receive a different value of the polynomial.

#### Remark

Every polynomial  $p \in \mathbb{F}[x]$ ,  $\deg p < k$ , p(0) = s determines a valid SSS of the secret s.



# MPC motivation - Private Dating

#### Private dating

Alice and Bob meet at a bar.

- If both of them want to date together they will find out
- If Alice doesn't want to date she won't learn his intentions
- If Bob doesn't want to date he won't learn her intentions

# MPC motivation - Private Dating

#### Private dating

Alice and Bob meet at a bar.

- If both of them want to date together they will find out
- If Alice doesn't want to date she won't learn his intentions
- If Bob doesn't want to date he won't learn her intentions
- Solution with trusted third party: Both Alice and Bob tell their intention to a trusted third party (bartender, dating app, friend)
- What if a trusted third party is not available?

## MPC motivation - Private Auction

#### **Private Auction**

Many parties wish to execute a private auction

- The highest bid wins
- Only the highest bid (and bidder) is revealed
- Solution with trusted third party: Every bidder shares their bidding with a trusted third party (auctioneer, computer).
- What if a trusted third party is not available?

## MPC motivation - Private Set Intersection

#### Private Set Intersection (PSI)

Intelligence agencies hold lists of potential terrorists (MI5, FBI)

- They would like to compute the intersection
- Any other information must remain secret
- The solution with a trusted third party is unacceptable. Is there any other way?

# MPC motivation - Secure shuffling

#### Secure shuffling

- Clients: hold sensitive data.
- Shuffler: collects, shuffles, and sends client data to the analyzer.
- Analyzer: analyzes the data.

How do we protect client data if there is a small probability that the shuffler and analyzer collide?

## **Trusted Third Party**

- All the previous challenges can be solved with the help of a trusted third party.
- Trusting a third party is a powerful assumption (in most cases, it is not available).
- Can we do this without any trusted party?

### MPC - definition

## MPC (Secure Multiparty Computation)

- Parties:  $P_1, \ldots, P_N \in \mathcal{P}$ .
- Private inputs:  $x_1, \ldots, x_N$ .  $(x_i \rightarrow P_i)$
- Function: f (N variable)
- Goal: jointly compute  $(y_1, \ldots, y_N) = f(x_1, \ldots, x_N)$  where  $y_i$  is only known to  $P_i$  (in some cases  $y_1 = \ldots y_N$ ).

## MPC - definition

## MPC (Secure Multiparty Computation)

- Parties:  $P_1, \ldots, P_N \in \mathcal{P}$ .
- Private inputs:  $x_1, \ldots, x_N$ .  $(x_i \rightarrow P_i)$
- Function: f (N variable)
- Goal: jointly compute  $(y_1, \ldots, y_N) = f(x_1, \ldots, x_N)$  where  $y_i$  is only known to  $P_i$  (in some cases  $y_1 = \ldots y_N$ ).

#### Examples

- Private dating: Inputs: 0 (no),1 (yes). Function: ∧ (logical AND)
- Private auction: Inputs: whole number. Function: maximum
- Terrorist Inputs: sets. Function: Intersection



## Requirements'

- Correctness: parties obtain correct output (even if some parties misbehave. It is possible that the protocol halts with no outputs)
- Privacy: Only the output is learned
- Independence of inputs: parties cannot choose their inputs as a function of other parties' inputs
- Fairness: if one party learns the output, then all parties learn the output

## Sum

## Example

The input of  $P_i$  is  $x_i$ , compute  $\sum_{i=1}^{N} x_i \mod M$ .

## Sum

## Example

The input of  $P_i$  is  $x_i$ , compute  $\sum_{i=1}^{N} x_i \mod M$ .

- **1** P<sub>1</sub>: choose  $r \in_R \mathbb{F}_M$  and send  $m_1 = x_1 + r$  to  $P_2$ ,
- ②  $P_2$ : send  $m_2 = x_2 + m_1$  to  $P_3$ ;

• • •

- **3**  $P_i$ : send  $m_i = x_i + m_{i-1}$  to  $P_{i+1}$ ; ...
- **1**  $P_N$  send  $m_N = x_N + m_{N-1}$  to  $P_1$

$$m_i = r + \sum_{j=1}^{i} x_j \Rightarrow y = m_N - r = \sum_{j=1}^{N} x_j$$



## Adversary

Adversaries (inner and outer) might attack the protocol (corrupt parties) by trying to recover private input information. Based on the attack, the parties can be:

- Honest: Follows the protocol, does not compute anything else.
- Semi-honest: Follows the protocol but tries to learn as much as possible.
- Fail stop: Semi-honest, but can halt at any moment.
- Malicious: Can deviate from the protocol in any way.

The adversary can corrupt more participants at the same time.

# Attacks against SUM

- Semi-honest participants:
  - $P_i$  (with  $m_{i-1}$ ,  $x_i$  and y) unable to compute anything vulnerable.
  - $P_i$  and  $P_{i+2}$  together:

$$m_{i+1} - m_i = \left(\sum_{j=1}^{i+1} x_j + r\right) - \left(\sum_{j=1}^{i} x_j + r\right) = x_{i+1}$$

- Fail stop: Halts the protocol.
- Malicious: Wrong result (unable to detect)

## SUM with SSS

#### Construction

$$f(x_1,\ldots,x_n)=\sum_{i=1}^n x_i$$

- $\forall i \ P_i$  shares its input as a dealer with others, sending  $p_i(j)$  to  $P_i$ .
- ②  $\forall i \ P_i \ locally \ computes \sum_{j=1}^n p_j(i)$
- **1** k parties (using Lagrange-interpolation) jointly compute  $\sum_{j=1}^{n} p_{j}(0)$ .

#### Remark

- If  $x_i = 0 \ \forall i \Rightarrow$  the parties can jointly generate [0].
- If x<sub>i</sub> is random ∀i ⇒, the parties can jointly generate a shared random (unknown to them).
- If  $x_1 = t$  és  $x_i = 0$   $\forall i, i \neq 1 \Rightarrow$  parties can jointly generate [t] for any t.

## Operations with shared secrets

#### Lemma

Given [a], [b] (SSS of a and b) and a constant c, participants can locally calculate an Shamir secret sharing of a + b and ca.

If the shares of  $P_i$  in [a] and [b] are  $a_i$  and  $b_i$  respectively, then

- [a] + [b]: secret sharing s.t. the shares of  $P_i$  is  $a_i + b_i$ .
- c[a]: secret sharing s.t. the shares of P<sub>i</sub> is ca<sub>i</sub>
- $[a] \rightarrow p, [b] \rightarrow q,$
- [a] + [b] is a SSS of a + b: r = p + q.  $r(i) = p(i) + q(i) = a_i + b_i \ \forall i = 0, 1, ..., n$ .
- c[a] is a SSS of ca:  $r' = c \cdot p$ .  $r'(i) = c \cdot p(i) = c \cdot a_i$  $\forall i = 0, 1, \dots, n$ .



# SUM with SSS example

#### Example

A 2-out of-3 SSS over  $\mathbb{F}_{11}$ .

| Name                 | Alice (1) | Bob (2) | Cloe (3)     |
|----------------------|-----------|---------|--------------|
| Input                | 5         | 2       | 7            |
| Polynomial           | 3x + 5    | 9x + 2  | <i>x</i> + 7 |
| Alice's shared input | 8         | 0       | 3            |
| Bob's shared input   | 0         | 9       | 7            |
| Cloe's shared input  | 8         | 9       | 10           |
| Sum of shared values | 5         | 7       | 9            |

Reconstruction of the Secret (Alice and Cloe):

$$s = 5\frac{0-3}{1-3} + 9\frac{0-1}{3-1} = 2+1 = 3.$$



# SUM against attacks

#### Security:

- Semi-honest: if at most k − 1 parties collude ⇒ cannot compute anything vulnerable
- Halting: If at least k parties remain, they can compute SUM.
- Malicious: Suppose that every party is honest in step 1 and the number of malicious parties is at most  $t \le k 1$ .
  - Attack is detectable if at least k + t parties participate in the interpolation.
  - The correct result can be computed if at least k + 2t parties participate in the interpolation.

# Multiplication

- Multiplication: Given [a] and [b], compute [ab].
- If r = pq, then  $r(0) = p(0)q(0) = a \cdot b$ .
- $P_i$  locally computes  $a_i \dot{b}_i$ .

# Multiplication

- Multiplication: Given [a] and [b], compute [ab].
- If r = pq, then  $r(0) = p(0)q(0) = a \cdot b$ .
- $P_i$  locally computes  $a_i \dot{b}_i$ .

#### **Problems**

- Problem 1: The degree of r can be  $2k 2 \Rightarrow 2k 1$  parties needed to restore the secret
- Problem 2: r not random
- Degree reduction algorithm It takes extra communication.
- Randomize r with [0].

