

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Робототехника и комплексная автоматизация»

КАФЕДРА «Системы автоматизированного проектирования (РК-6)»

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине «Модели и методы анализа проектных решений»

Студент:	Шашко Олег Владимирович
Группа:	PK6-716
Тип задания:	Лабораторная работа
Название:	Метод конечных элементов
Вариант:	23

Студент	подпись, дата	$\underline{\underline{\mathrm{Шашко O. B.}}}_{\Phi_{\mathrm{амилия, U.O.}}}$
Преподаватель	подпись, дата	Трудоношин В. А.
Оценка:		

Содержание

Метод	конечных элементов	3
1	Цель выполнения лабораторной работы	3
2	Задание	3
3	Аналитическое решение	4
4	Получение локальных матрицы жесткости и вектора нагрузок	4
	Линейная функция-формы КЭ	4
	Кубическая функция-формы КЭ	5
5	Получение глобальных матрицы жесткости и вектора нагрузок	7
	Ансамблирование	7
	Учет граничных условий	8
6	Анализ результатов	8
	Линейная функция-формы	8
	Кубическая функция-формы	11
	Нахождение количества линейных КЭ, обеспечивающих ту же точность,	
	что и 20 кубических	14
7	Код	14
8	Вывод	20

Метод конечных элементов

1 Цель выполнения лабораторной работы

Цель выполнения лабораторной работы – решение дифференциального уравнения методом конечных элементов (МКЭ), используя линейную и кубическую функции формы, и анализ точности относительной аналитического способа решения

2 Задание

Решить с помощью МКЭ уравнение 1

$$1\frac{d^2u}{dx^2} - 15u + 4 = 0, (1)$$

при следующих граничных условиях (г. у.):

$$u(x=3) = 10, (2)$$

$$u'(x=14)=1. (3)$$

Количество конечных элементов

- \bullet для первого расчета 20,
- для второго 40.

Также необходимо:

- 1. Сравнить результаты с аналитическим решением. Оценить максимальную погрешность.
- 2. Определить количество линейных КЭ, обеспечивающих такую же точность как и кубические.

3 Аналитическое решение

На рисунке 1 представлено аналитическое решение поставленной задачи.

Рис. 1. Аналитическое решение

Таким образом, получаем:

$$u(x) = .$$

4 Получение локальных матрицы жесткости и вектора нагрузок

Составим локальные матрицу жесткости и вектор нагрузок для уравнения 1.

Линейная функция-формы КЭ

$$\mathbf{u} = \begin{bmatrix} (1 - \frac{x}{L}); & \frac{x}{L} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \mathbf{N_e} \mathbf{U},$$

где N_e — вектор функции формы конечного элемента (в данном случае линейной), его составляющие элементы - глобальные базисные функции, отличные от нуля в пределах этого элемента, L — длина KЭ.

В соответствии с методом Галеркина для уравнения 1:

$$\int_0^L \mathbf{W_e} \left(1 \frac{d^2 \mathbf{u}}{dx^2} \frac{d\mathbf{u}}{dx} + 4 \right) dx = 0, \tag{4}$$

где $\mathbf{W_e} = \mathbf{N_e}^T$.

$$\int_0^L \mathbf{W_e} \left(1 \frac{d^2 \mathbf{u}}{dx^2} \frac{du}{dx} + 4 \right) dx = 1 \int_0^L \mathbf{W_e} \frac{d^2 \mathbf{u}}{dx^2} dx \int_0^L \mathbf{W_e} \frac{d\mathbf{u}}{dx} dx + 4 \int_0^L \mathbf{W_e} dx = 0$$

Распишем каждое слагаемое отдельно:

$$1 \int_{0}^{L} \mathbf{W}_{\mathbf{e}} \frac{d^{2}\mathbf{u}}{dx^{2}} dx = 1 \int_{0}^{L} \left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix} \right] \frac{d^{2}\mathbf{u}}{dx^{2}} dx = 1 \left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix} \right] \frac{d\mathbf{u}}{dx} \Big|_{0}^{L} - 1 \int_{0}^{L} \frac{d}{dx} \left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix} \right] \frac{d}{dx} \left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix}; \quad \frac{x}{L} \right] \left[u_{i} \right] = \left[-1 \frac{d\mathbf{u}}{dx} \Big|_{i} \right] - 1 \left[\frac{1}{L}, \quad -\frac{1}{L} \right] \left[u_{i} \right]$$

$$\int_{0}^{L} \mathbf{W}_{\mathbf{e}} \frac{d\mathbf{u}}{dx} dx = \int_{0}^{L} \left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix} \right] \frac{d\mathbf{u}}{dx} \left[u_{i} \right] dx =$$

$$=$$

$$\int_{0}^{L} \begin{bmatrix} \left(1 - \frac{x}{L}\right) & \left(-1 + \frac{x}{L}\right) \\ -\frac{x}{L} & \frac{x}{L} \end{bmatrix} \begin{bmatrix} u_{i} \\ u_{j} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}, & \frac{1}{2} \\ -\frac{1}{2}, & \frac{1}{2} \end{bmatrix} \begin{bmatrix} u_{i} \\ u_{j} \end{bmatrix}$$

$$4\int_0^L \mathbf{W_e} dx = 4 \left[\frac{\frac{L}{2}}{\frac{L}{2}} \right]$$

Таким образом, для уравнения 4, при использовании линейной функции-формы, получаем (матмодель линейного КЭ):

$$\begin{bmatrix} 1\frac{1}{L}\frac{1}{2}, & -1\frac{1}{L}\frac{1}{2} \\ -1\frac{1}{L}\frac{1}{2}, & 1\frac{1}{L}\frac{1}{2} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \begin{bmatrix} -1\frac{du}{dx}|_i + 4\frac{L}{2} \\ 1\frac{du}{dx}|_j + 4\frac{L}{2} \end{bmatrix}$$

Кубическая функция-формы КЭ

$$\mathbf{u} = \left[-\frac{9x^3}{2L^3} + \frac{18x^2}{2L^2} - \frac{11x}{2L} + 1; \frac{27x^3}{2L^3} - \frac{45x^2}{2L^2} + \frac{9x}{L}; -\frac{27x^3}{2L^3} + \frac{36x^2}{2L^2} - \frac{9x}{2L}; \frac{9x^3}{2L^3} - \frac{9x^2}{2L^2} - \frac{x}{L}; \right] \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \mathbf{N_e} \mathbf{U},$$

Как и для линейной функции-формы применим метод Галеркина (см. уравнение 4) и рассмотрим каждое слагаемое отдельно.

$$\begin{bmatrix}
-\frac{57}{80} & 0 & \frac{81}{80} & -\frac{3}{10} \\
\frac{3}{10} & -\frac{81}{80} & 0 & -\frac{3}{10} \\
-\frac{7}{80} & \frac{3}{10} & -\frac{57}{80} & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
u_j \\ u_k \\ u_l
\end{bmatrix}$$

$$4\int_{0}^{L} \mathbf{W_{e}} dx = 4 \begin{bmatrix} \frac{L}{8} \\ \frac{3L}{8} \\ \frac{3L}{8} \end{bmatrix}$$

Таким образом, для уравнения 4, при использовании кубической функции-формы, получаем:

$$\begin{bmatrix} 1\frac{37}{10L}\frac{1}{2} & -1\frac{189}{40L}\frac{57}{80} & 1\frac{27}{20L}\frac{3}{10} & -1\frac{13}{40L}\frac{7}{80} \\ -1\frac{189}{40L}\frac{57}{80} & 1\frac{54}{5L} + 0 & -1\frac{297}{40L}\frac{81}{80} & 1\frac{27}{20L}\frac{3}{10} \\ 1\frac{27}{20L}\frac{3}{10} & -1\frac{297}{40L}\frac{81}{80} & 1\frac{54}{5L} + 0 & -1\frac{189}{40L}\frac{57}{80} \\ -1\frac{130}{40L}\frac{7}{80} & 1\frac{27}{20L}\frac{3}{10} & -1\frac{189}{40L}\frac{57}{80} & 1\frac{37}{10L}\frac{1}{2} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \begin{bmatrix} 4\frac{L}{8} - 1\frac{du}{dx}|_i \\ 4\frac{3L}{8} \\ 4\frac{3L}{8} \\ 4\frac{L}{8} + 1\frac{du}{dx}|_l \end{bmatrix}$$
 (5)

Локальные матрицу жесткости и вектор нагрузок из уравнения 5 с помощью матричных преобразований приведем к следующему виду:

$$\begin{bmatrix} a_{11} & 0 & 0 & a_{14} \\ a_{21} & a_{22} & 0 & a_{24} \\ a_{31} & 0 & a_{33} & a_{34} \\ a_{41} & 0 & 0 & a_{44} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \begin{bmatrix} b_1 - 1\frac{du}{dx}|_i \\ b_2 \\ b_3 \\ b_4 + 1\frac{du}{dx}|_l \end{bmatrix}$$

Для упрощения расчетов преобразуем систему выше, исключив внутренние узлы. Таким образом СЛАУ (математическая модель кубического КЭ):

$$\begin{bmatrix} a_{11} & a_{14} \\ a_{41} & a_{44} \end{bmatrix} \begin{bmatrix} u_i \\ u_l \end{bmatrix} = \begin{bmatrix} b_1 - 1\frac{du}{dx}|_i \\ b_4 + 1\frac{du}{dx}|_l \end{bmatrix}$$

5 Получение глобальных матрицы жесткости и вектора нагрузок

Проведем процедуры ансамблирования и учет граничных условий для формирования итоговой математической модели.

Ансамблирование

Пусть локальные матрица жесткости и вектор неизвестных заданы следующим образом

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \begin{bmatrix} b_1 - 1\frac{du}{dx}|_i \\ b_2 + 1\frac{du}{dx}|_l \end{bmatrix},$$

тогда, при разбитие области на n К Θ , глобальная матрица жесткости будет иметь размерность $(n+1)\cdot(n+1)$:

$$\begin{bmatrix} a_{11}^1 & a_{12}^1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ a_{21}^1 & a_{22}^1 + a_{11}^2 & a_{12}^2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & a_{21}^2 & a_{22}^2 + a_{11}^3 & a_{12}^3 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_{21}^3 & a_{22}^3 + \cdots & & & & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & & & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots + a_{11}^n & a_{12}^n \\ 0 & 0 & 0 & 0 & 0 & 0 & a_{21}^n & a_{22}^n \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} b_1^1 - 1 \frac{du}{dx}|_0 \\ b_2^1 + b_1^2 \\ b_2^2 + b_1^3 \\ b_2^3 + b_1^4 \\ \vdots \\ b_2^{n-1} + b_1^n \\ b_2^n + 1 \frac{du}{dx}|_L \end{bmatrix}$$

Учет граничных условий

Применим граничные условия первого (см. 3) и второго рода (см. 2) к выведенной выше системе.

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ a_{21}^1 & a_{22}^1 + a_{11}^2 & a_{12}^2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & a_{21}^2 & a_{22}^2 + a_{11}^3 & a_{12}^3 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_{21}^3 & a_{22}^3 + \cdots & & & & 0 \\ \vdots & \vdots & \vdots & \vdots & & & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots + a_{11}^n & a_{12}^n \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} 10 \\ b_2^1 + b_1^2 \\ b_2^2 + b_1^3 \\ b_2^3 + b_1^4 \\ \vdots \\ b_2^{n-1} + b_1^n \\ b_2^n + 1 \cdot 1 \end{bmatrix}$$

6 Анализ результатов

Проведем сравнение результатов согласно заданию.

Линейная функция-формы

На рисунках 2, 3 представлены графики полученные с помощью МКЭ (линейная функция-формы).

Рис. 2. Результат работы программы для 20 Рис. 3. Результат работы программы для 40 КЭ

X	Аналитическое	МКЭ-	Абсолютная
	решение	решение	погрешность
3.000000	10.000000	10.000000	0.000000
3.550000	1.423187	0.739922	0.683265
4.100000	0.404085	0.289677	0.114408
4.650000	0.282995	0.267785	0.015209
5.200000	0.268607	0.266721	0.001886
5.750000	0.266897	0.266669	0.000228
6.300000	0.266694	0.266667	0.000027
6.850000	0.266670	0.266667	0.000003
7.400000	0.266667	0.266667	0.000000
7.950000	0.266667	0.266667	0.000000
8.500000	0.266667	0.266667	0.000000
9.050000	0.266667	0.266667	0.000000
9.600000	0.266667	0.266667	0.000000
10.150000	0.266667	0.266667	0.000000
10.700000	0.266667	0.266667	0.000001
11.250000	0.266673	0.266667	0.000006
11.800000	0.266718	0.266668	0.000050
12.350000	0.267100	0.266692	0.000408
12.900000	0.270312	0.267187	0.003125
13.450000	0.297346	0.277361	0.019985
14.000000	0.524866	0.486610	0.038256

Таблица 1. 20 линейных КЭ

X	Аналитическое	МКЭ-	Абсолютная
21	решение	решение	погрешность
3.000000	10.000000	10.000000	0.000000
3.275000	3.621782	3.433544	0.188238
3.550000	1.423187	1.297055	0.126132
3.825000	0.665323	0.601918	0.063405
4.100000	0.404085	0.375745	0.028340
4.375000	0.314035	0.302157	0.011878
4.650000	0.282995	0.278214	0.004781
4.925000	0.272295	0.270424	0.001871
5.200000	0.268607	0.267889	0.000718
5.475000	0.267335	0.267064	0.000271
5.750000	0.266897	0.266796	0.000101
6.025000	0.266746	0.266709	0.000037
6.300000	0.266694	0.266680	0.000014
6.575000	0.266676	0.266671	0.000005
6.850000	0.266670	0.266668	0.000002
7.125000	0.266668	0.266667	0.000001
7.400000	0.266667	0.266667	0.000000
7.675000	0.266667	0.266667	0.000000
7.950000	0.266667	0.266667	0.000000
8.225000	0.266667	0.266667	0.000000
8.500000	0.266667	0.266667	0.000000
8.775000	0.266667	0.266667	0.000000
9.050000	0.266667	0.266667	0.000000
9.325000	0.266667	0.266667	0.000000
9.600000	0.266667	0.266667	0.000000
9.875000	0.266667	0.266667	0.000000
10.150000	0.266667	0.266667	0.000000
10.425000	0.266667	0.266667	0.000000
10.700000	0.266667	0.266667	0.000000
10.975000	0.266669	0.266668	0.000001
11.250000	0.266673	0.266670	0.000003
11.525000	0.266684	0.266677	0.000008
11.800000	0.266718	0.266698	0.000020
12.075000	0.266816	0.266762	0.000054
12.350000	0.267100	0.266959	0.000140
12.625000	0.267923	0.267567	0.000357
12.900000	0.270312	0.269432	0.000880
13.175000	0.277242	0.275167	0.002075
13.450000	0.297346	0.292793	0.004553
13.725000	0.355669	0.346966	0.008703
14.000000	0.524866	0.513464	0.011402

Таблица 2. 40 линейных КЭ 10

Максимальная абсолютная погрешность 6.832646e-01 и 1.882376e-01 соответственно.

Кубическая функция-формы

На рисунках 4,5 представлены графики полученные с помощью МКЭ (кубическая функция-формы).

Рис. 4. Результат работы программы для 20 $\,$ Рис. 5. Результат работы программы для 40 $\,$ КЭ $\,$ КЭ

X	Аналитическое	МКЭ-	Абсолютная
	решение	решение	погрешность
3.000000	10.000000	10.000000	0.000000
3.550000	1.423187	1.421854	0.001333
4.100000	0.404085	0.403768	0.000317
4.650000	0.282995	0.282938	0.000056
5.200000	0.268607	0.268598	0.000009
5.750000	0.266897	0.266896	0.000001
6.300000	0.266694	0.266694	0.000000
6.850000	0.266670	0.266670	0.000000
7.400000	0.266667	0.266667	0.000000
7.950000	0.266667	0.266667	0.000000
8.500000	0.266667	0.266667	0.000000
9.050000	0.266667	0.266667	0.000000
9.600000	0.266667	0.266667	0.000000
10.150000	0.266667	0.266667	0.000000
10.700000	0.266667	0.266667	0.000000
11.250000	0.266673	0.266673	0.000000
11.800000	0.266718	0.266718	0.000000
12.350000	0.267100	0.267098	0.000002
12.900000	0.270312	0.270303	0.000009
13.450000	0.297346	0.297302	0.000044
14.000000	0.524866	0.524791	0.000074

Таблица 3. 20 кубических КЭ

X	Аналитическое	МКЭ-	Абсолютная
21	решение	решение	погрешность
3.000000	10.000000	10.000000	0.000000
3.275000	3.621782	3.621755	0.000027
3.550000	1.423187	1.423168	0.000021
3.825000	0.665323	0.665314	0.000010
4.100000	0.404085	0.404081	0.000010
4.375000	0.314035	0.314033	0.000002
4.650000	0.282995	0.282994	0.000001
4.925000	0.272295	0.272295	0.000000
5.200000	0.268607	0.268607	0.000000
5.475000	0.267335	0.267335	0.000000
5.750000	0.266897	0.266897	0.000000
6.025000	0.266746	0.266746	0.000000
6.300000	0.266694	0.266694	0.000000
6.575000	0.266676	0.266676	0.000000
6.850000	0.266670	0.266670	0.000000
7.125000	0.266668	0.266668	0.000000
7.400000	0.266667	0.266667	0.000000
7.675000	0.266667	0.266667	0.000000
7.950000	0.266667	0.266667	0.000000
8.225000	0.266667	0.266667	0.000000
8.500000	0.266667	0.266667	0.000000
8.775000	0.266667	0.266667	0.000000
9.050000	0.266667	0.266667	0.000000
9.325000	0.266667	0.266667	0.000000
9.600000	0.266667	0.266667	0.000000
9.875000	0.266667	0.266667	0.000000
10.150000	0.266667	0.266667	0.000000
10.425000	0.266667	0.266667	0.000000
10.700000	0.266667	0.266667	0.000000
10.975000	0.266669	0.266669	0.000000
11.250000	0.266673	0.266673	0.000000
11.525000	0.266684	0.266684	0.000000
11.800000	0.266718	0.266718	0.000000
12.075000	0.266816	0.266816	0.000000
12.350000	0.267100	0.267100	0.000000
12.625000	0.267923	0.267923	0.000000
12.900000	0.270312	0.270312	0.000000
13.175000	0.277242	0.277242	0.000000
13.450000	0.297346	0.297345	0.000001
13.725000	0.355669	0.355667	0.000001
14.000000	0.524866	0.524864	0.000002

Таблица 4. 40 кубических К
Э13

Максимальная абсолютная погрешность 1.333048e-03 и 2.691318e-05 соответственно.

Нахождение количества линейных КЭ, обеспечивающих ту же точность, что и 20 кубических

Так как очевидно, что при увлечении числа КЭ точность растет, найдем искомое следуя алгоритму, представленному на рисунке 6.

Рис. 6. Алгоритм нахождения количества КЭ, заданную точность

Реализовав данный алгоритм с начальным количеством K9=20 и увеличивая счетчик всегда на 1 получаем необходимое количество K9, равное 45034.

7 Код

Листинг 1. Реализация МКЭ

```
#include <iostream>
#include <vector>
#include <vector>
duble EPS = 1e-16;
double X_BEGIN = 3.0;
double X_END = 14.0;
size t ELEMS NUM = 20;
```

```
10 double L = (X END - X BEGIN) / ELEMS NUM;
11
12 double a = 1.0, B = 0.0, C = -15.0, D = 4.0, usl left = 10.0, usl right = 1.0; //
                                  au''+Bu'+Cu+D=0
13
14 std::vector<double> solve_with_gauss(std::vector<std::vector<double>>& A,
                                std::vector<double>& b){
                                size t row size = A.size();
15
16
                                size t col size = A.back().size();
17
                                // Прямой ход Гаусса
18
19
                                double pivot = 0.;
20
                                for (size t i = 0; i < row size; i++) {
21
                                                    for (size t j = i + 1; j < col size; j++) {
                                                                      if (std::abs(A.at(j).at(i)) < EPS) {
22
                                                                                         continue;
23
24
25
                                                                      pivot = A.at(j).at(i) / A.at(i).at(i);
26
                                                                      b.at(j) = pivot * b.at(i);
                                                                      for (size t k = 0; k < row size; k++) {
27
                                                                                         A.at(i).at(k) = pivot * A.at(i).at(k);
28
29
                                                                      }
30
                                                    }
                                }
31
32
                                // Обратный ход Гаусса
33
                                std::vector<double> x(row size);
34
                                for (int i = row size -1.; i >= 0; i—) {
35
36
                                                   x.at(i) = b.at(i);
                                                   for (size t j = i + 1; j < row size; j++) {
37
                                                                      x.at(i) = x.at(j) * A.at(i).at(j);
38
39
                                                   x.at(i) /= A.at(i).at(i);
40
                                }
41
42
43
                                return x;
44 }
45
46 double analytical solution(double x) {
                                return (\exp(-\operatorname{sqrt}(15.) * (x + 3.)) * (146. * \exp(2. * \operatorname{sqrt}(15.) * x) + 4. * \exp(\operatorname{sqrt}(15.)) * (x + 3.)) * (146. * \exp(3. * \operatorname{sqrt}(15.) * x) + 4. * \exp(3. *
47
                                                    * (x + 3.) + 4. * exp(sqrt(15.) * (x + 25.)) + sqrt(15) * <math>exp(sqrt(15.) * (2. * x + 25.))
                                                    11.)) - sqrt(15.) * exp(17. * sqrt(15.)) + 146. * exp(28. * sqrt(15.)))) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15. * (1.)) / (15.
                                                    + \exp(22. * \operatorname{sqrt}(15.)));
48 }
50 std::vector<double> build_analytical_solution(std::vector<double>& x_vec) {
```

```
size t \times vec size = x vec.size();
51
       std::vector<double> y vec = std::vector<double>(x vec size);
52
53
       for (size t i = 0; i < x vec size; i++) {
           y vec.at(i) = analytical solution(x vec.at(i));
54
55
56
       return y_vec;
57 }
58
59 std::vector<double> build linear solution(size t elems num) {
       double L = (X END - X BEGIN) / elems num;
60
       size t \text{ size} = elems \text{ num} + 1;
61
       std::vector< std::vector<double> > A(size, std::vector<double>(size));
62
       std::vector<double> b(size);
63
64
       // Локальная матрица жесткости для линейного КЭ
65
66
       std::vector < std::vector < double > > local matrix = {
           \{a/L - C * L/3.0 + B*1.0/2.0, -a/L - C * L/6.0 - B*1.0/2.0\},\
67
           \{-a/L - C * L/6.0 + B*1.0/2.0, a/L - C*L/3.0 - B*1.0/2.0\},\
68
69
70
71
       // Ансамблирование и получение глобальной матрицы жесткости для линейного КЭ
       for (size t i = 0; i < elems num; i++) {
72
           for (size t j = 0; j < 2; j++) {
73
74
               for (size t k = 0; k < 2; k++) {
                   A.at(i + j).at(i + k) += local matrix.at(j).at(k);
75
76
           }
77
       }
78
79
       for (size t i = 0; i < size; i++) {
80
           b.at(i) = D * L;
81
       }
82
83
       // Учет ГУ
84
       if (0 == 1)
85
           b.at(0) = D * L /2. - a*usl left;
86
87
       } else {
           b.at(0) = usl left;
88
           A.at(0).at(0) = 1;
89
           A.at(0).at(1) = 0;
90
       }
91
92
93
       if (1 == 1) {
94
           b.at(size - 1) = D * L /2. + a*usl_right;
       } else {
95
           b.at(size - 1) = usl right;
96
```

```
97
                                     A.at(size -1).at(size -1) = 1;
                                     A.at(size -1).at(size -2) = 0;
  98
  99
                        }
100
                        // Решение полученной СЛАУ методом Гаусса
101
                        std::vector<double> res = solve with gauss(A, b);
102
103
                        return res:
104 }
105
106 std::vector<double> build cube solution(size t elems num) {
                         double L = (X END - X BEGIN) / elems num;
107
                        size t \text{ size} = elems \text{ num} + 1;
108
                        std::vector< std::vector<double> > A(size,std::vector<double>(size));
109
                        std::vector<double> b(size);
110
111
112
                        // Локальная матрица жесткости для кубического КЭ
                        std::vector< std::vector< double> > local matrix = {
113
                                     \{a*37.0/(10.0*L) - C*8*L/105.0 + B*1.0/2.0, -a*189.0/(40.0*L) - C*33*L/560.0\}
114
                                                   -B*57/80.0, a*27.0/(20.0*L) + C*3*L/140.0 + B*3.0/10.0.
                                                  -a*13.0/(40.0*L) - C*19.0*L/1680.0 - B*7/80.0
                                     \{-a*189.0/(40.0*L) - C*33*L/560.0 + B*57/80.0, a*54.0/(5.0*L) - C*27*L/70.0,
115
                                                  -a*297.0/(40*L) + C*27*L/560.0 - B*81.0/80.0, a*27.0/(20.0*L) +
                                                  C*3*L/140.0 + B*3.0/10.0
                                     \{a*27.0/(20.0*L) + C*3*L/140.0 - B*3.0/10.0, -a*297.0/(40.0*L) + C*3*L/140.0 - B*3.0/(40.0*L) + C*3*L/140.0 - B*3*L/140.0 - B*3*L/1
116
                                                  C*27*L/560.0 + B*81.0/80.0, a*54.0/(5.0*L) - C*27*L/70.0,
                                                  -a*189.0/(40.0*L) - C*33*L/560.0 - B*57/80.0
                                     \{-a*13.0/(40.0*L) - C*19.0*L/1680.0 + B*7/80.0, a*27.0/(20.0*L) + C*19.0*L/1680.0 + D*7/80.0, a*27.0/(20.0*L) + C*19.0*L/1680.0 + D*7/80.0 + D*7/80.
117
                                                  C*3*L/140.0 - B*3.0/10.0, -a*189.0/(40.0*L) - C*33*L/560.0 +
                                                  B*57/80.0, a*37.0/(10.0*L) - C*8*L/105.0 - B*1.0/2.0
118
                        };
119
120
121
122
                         // Локальный вектор нагрузок (дополнительные слагаемые для первого и последнего
                                      элементов учитываются далее)
                        std::vector<double> local b = { D * L / 8.0,
123
124
                                                                                                                              D * 3.0 * L / 8.0,
                                                                                                                              D * 3.0 * L / 8.0,
125
                                                                                                                              D * L / 8.0 };
126
127
128
                         // Производим матричные преобразования для обнуления элементов локальной
129
                                      матрицы жесткости, относящихся к внутренним узлам
                        for (size t i = 1; i < 3; i++) {
130
                                     for (size t i = 0; i < 4; i++) {
131
                                                  if (std::fabs(local matrix.at(j).at(i)) > EPS && i!= j) {
132
```

```
double val = local matrix.at(j).at(i) /local matrix.at(i).at(i);
133
                    local b.at(i) = val * local b.at(i);
134
                    for (size t k = 0; k < 4; k++) {
135
                         local matrix.at(j).at(k) -= val *local matrix.at(i).at(k);
136
                    }
137
                }
138
                continue;
139
140
            }
        }
141
142
143
144
        // Исключаем внутренние узлы из рассмотрения
        std::vector< std::vector<double> > local_matrix_mod = { { local_matrix.at(0).at(0),
145
            local_matrix.at(0).at(3) },
146
                                                                     { local matrix.at(3).at(0),
                                                                         local matrix.at(3).at(3)
                                                                         } };
        std::vector < double > local b mod = \{ local b.at(0), \}
147
                                             local_b.at(3)
148
149
150
        // Ансамблирование и получение глобальной матрицы жесткости для кубического КЭ
151
        for (size t i = 0; i < elems num; i++) {
152
            for (size_t j = 0; j < 2; j++) {
153
                for (size t k = 0; k < 2; k++) {
154
                    A.at(i + j).at(i + k) += local_matrix_mod.at(j).at(k);
155
                }
156
            }
157
158
        }
159
160
        for (size t i = 0; i < elems num; i++) {
            b.at(i) += local b mod.at(0);
161
            b.at(i+1) += local b mod.at(1);
162
        }
163
164
        // Учет ГУ
165
        if (0 == 1) {
166
            b.at(0) = local b mod.at(0) - a * usl left;
167
        } else {
168
            b.at(0) = usl left;
169
            A.at(0).at(0) = 1.;
170
            A.at(0).at(1) = 0.;
171
        }
172
173
174
        if (1 == 1) {
            b.at(size - 1) = local b mod.at(1) + a * usl right;
175
```

```
} else {
176
            b.at(size - 1) = usl right;
177
178
            A.at(size -1).at(size -1) = 1.;
            A.at(size -1).at(size -2) = 0.;
179
180
181
        // Решение полученной СЛАУ методом Гаусса
182
183
        std::vector<double> res = solve with gauss(A, b);
184
        return res;
185 }
186
187 double calc abs error(const std::vector<double>& y real, const std::vector<double>&
        double max_err = 0.0;
188
        for (size t i = 0; i < y real.size(); i++) {
189
190
            double err = std::fabs(y real.at(i) - y.at(i));
            if (err > max err) {
191
192
                max err = err;
            }
193
        }
194
195
        return max err;
196 }
197
198 int main() {
199
200
         std::vector < double > x(ELEMS NUM + 1);
         for (size_t i = 0; i < x.size(); i++) {
201
             x.at(i) = X BEGIN + i * L;
202
203
         size t \times size = x.size();
204
205
        std::vector<double> y;
206
207
        if (true) {
208
            y = build linear solution(ELEMS NUM);
        } else {
209
            y = build cube solution(ELEMS NUM);
210
211
         std::vector<double> y real = build analytical solution(x);
212
213
214
         FILE* gp;
215
         FILE* ab;
216
         FILE* pgr;
217
218
         FILE* tab;
219
         if (true) {
            if(ELEMS NUM == 20) {
220
```

```
221
                                          gp = fopen("res/labs/text/graph/lin 20.txt", "w");
                                          ab = fopen("res/labs/text/graph/abs.txt", "w");
222
223
                                          for (size t i = 0; i < x size; i++) {
                                                     fprintf(ab, "%lf %lf\n", x.at(i), y real.at(i));
224
225
                                          pgr = fopen("res/labs/text/pgr/lin 20.txt", "w");
226
                                          tab = fopen("res/labs/text/tab/lin 20.txt", "w");
227
228
                               if(ELEMS NUM == 40) {
229
                                          gp = fopen("res/labs/text/graph/lin 40.txt", "w");
230
                                          pgr = fopen("res/labs/text/pgr/lin 40.txt", "w");
231
                                          tab = fopen("res/labs/text/tab/lin 40.txt", "w");
232
233
                        } else {
234
                               if(ELEMS NUM == 20) {
235
236
                                          gp = fopen("res/labs/text/graph/cub 20.txt", "w");
                                          pgr = fopen("res/labs/text/pgr/cub 20.txt", "w");
237
                                          tab = fopen("res/labs/text/tab/cub 20.txt", "w");
238
239
                               if(ELEMS NUM == 40) {
240
                                          gp = fopen("res/labs/text/graph/cub 40.txt", "w");
241
                                          pgr = fopen("res/labs/text/pgr/cub 40.txt", "w");
242
                                          tab = fopen("res/labs/text/tab/cub 40.txt", "w");
243
244
                               }
                        }
245
246
247
                        for (size t i = 0; i < x.size()-1; i++) {
                               fprintf(tab, "%lf & %lf & %lf & %lf \\\\n", x.at(i), y_real.at(i), y.at(i),
248
                                          std::fabs(y real.at(i) - y.at(i)));
249
250
                       fprintf(tab, "% | \frac{8}{2} % | \frac{8}{2} | \frac{8}{2} % | \frac{8}{2} % | \frac{8}{2} | \frac{8}{2} % | 
                                  y.at(x.size()-1), std::fabs(y real.at(x.size()-1) - y.at(x.size()-1));
251
252
                        for (size t i = 0; i < x size; i++) {
                                  fprintf(gp, "%lf %lf\n", x.at(i), y.at(i));
253
                        }
254
255
                        fprintf(pgr, "%e", calc abs error(y real, y));
256
257
                        fclose(gp);
                        fclose(ab);
258
                        fclose(pgr);
259
                        fclose(tab);
260
261
262
                        return 0;
263 }
```

8 Вывод

В ходе выполнения лабораторной работы был реализован МКЭ для различных функций форм, а также найдено количество линейных КЭ обеспечивающих точность 20ти кубических КЭ.

Постановка: \bigcirc доцент кафедры PK-6, кандидат технических наук, до-

цент, Трудоношин В.А.

Решение и вёрстка: С студент группы РК6-716, Шашко О. В.

2023, осенний семестр