# DATABASE PROFILING

Marketing Analytics Term Project Group 1

Inès ODDO, Binxiang XIANG Emilie LEBLANC, Hippolyte JACOMET

# What is database profiling?

Can we find valuable insights on our donors' database from external sources?

#### A way to:

- find key customer drivers
- personalise marketing campaigns

#### Our project:

Infer political partisanship based on contact's geographical codes.



## Naive Approach: Method

#### **Step 1: Pre-processing the data**

- Correct geographic codes to fit external database best
- Fill missing values

#### Our method:

SQL script that duplicates our contacts table so as to safely perform changes

Load town name - geo code correspondence table from INSEE

Update rows accordingly

#### **Step 2: Estimating probabilities with proportion**

Here we simply infer political partisanship based on the election results by geographical code (INSEE):

The probability of a donor's partisanship to a given candidate is the candidate's proportion of votes in their respective towns.

Then, for a given donor, we attribute the candidate with the biggest probability considering its living town. we estimate the candidate for which

# Naive Approach: Results

Percentages of votes for candidates Targeted Population with Naive Count



# Assessing the bias

Do donors constitute a representative sample of France's voting population?





### Maximum Likelihood Estimator: Method

Key idea: weight the election's results to take into account distribution bias.

#### Step 1: Same pre-processing step as naive method

#### **Step 2: Weighting probabilities**

Assign a relative weight to each candidate (the weight of abstention is set to 1 for reference).

Optimize the weight to maximize the likelihood of the geographical distribution of our donors.

Compute the probability of partisanship to a given candidate as the weighted proportion of the election's results.

## Maximum Likelihood Estimator: Results - Weights

#### Weights obtained per candidate:

We note that the weights obtained by candidate are highly in favor of Eva Joly. Sarkozy and Mélenchon are second and third place.

#### **Conclusion:**

Our database appears to be highly biased in favor of Eva Joly. Could it be an environmental-friendly charity?

#### Warning:

In this methods, the weights are set relatively to each-other. So we fixed the weight of abstention to 1 at the initialisation.

|                      | Weights    |
|----------------------|------------|
| Blancs et nuls       | 1,71699254 |
| Abstentions          | 0          |
| JOLY                 | 11,388862  |
| LE PEN               | -38,915561 |
| SARKOZY              | 8,58325025 |
| MÉLENCHON            | 7,96326506 |
| POUTOU               | 4,84774052 |
| CHEMINADE            | 1,99430041 |
| <b>DUPONT-AIGNAN</b> | 2,57241261 |
| BAYROU               | 0,93068011 |
| HOLLANDE             | 0,09033638 |
| ARTHAUD              | 1,72388605 |

## Maximum Likelihood Estimator: Results - Nationwide



## Maximum Likelihood Estimator: Results - Per department





## Conclusion

The naive approach can suffer from a biased distribution.

We find that the MLE methods yield significantly different results.

#### Limitations of the model:

There are no means to evaluate the veracity of our inferred information.

Database profiling should be used with caution.