

## Reducción de Dimensionalidad: Desbloquear Insights de Datos Complejos

Una técnica fundamental para transformar datos complejos en información comprensible y procesable

Teo Ramos, María Dunaeva

## ¿Por Qué Importa la Reducción de Dimensionalidad?

#### Maldición de la Dimensionalidad

A medida que aumentan las dimensiones, los datos se vuelven dispersos. Dos consecuencias directas:

- Las distancias pierden significado (todos los puntos están "lejos" entre sí)
- Los algoritmos de ML necesitan exponencialmente más datos para funcionar bien

#### Overfitting (sobreajuste)

Demasiadas características pueden llevar a modelos que memorizan en lugar de generalizar

#### Velocidad de Cómputo

Reducir dimensiones acelera significativamente el procesamiento y análisis



Reducir las dimensiones revela patrones ocultos y hace que los datos complejos sean más manejables y comprensibles



## ¿Qué es la Reducción de Dimensionalidad?

Es el proceso de transformar datos de alta dimensión a un espacio de menor dimensión, preservando la estructura y varianza más significativas. Es como tomar una fotografía (2D) de un objeto tridimensional: perdemos información, pero mantenemos lo esencial.

#### **Beneficios prácticos:**

- Visualización de datos complejos en 2D o 3D
- Reducción de ruido y overfitting
- Aceleración de algoritmos (menos features = menos cómputo)
- Identificación de patrones ocultos



### Procedimiento

01

#### Análisis del Espacio Original

Identificar las características más relevantes en los datos de alta dimensión

02

#### Transformación Matemática

Aplicar técnicas para proyectar los datos a un espacio de menor dimensión

03

#### Preservación de Información

Mantener la estructura y patrones más importantes de los datos originales

## Dos Enfoques Principales



#### Selección de Características

Elegir las características originales más relevantes y descartar las redundantes o irrelevantes

- Filtrado por correlación
- Selección univariante
- Métodos wrapper



#### Extracción de Características

Crear nuevas características que resuman y capturen la información esencial de los datos originales

- Combinaciones lineales
- Proyecciones no lineales
- Embeddings aprendidos

Ambos enfoques buscan reducir la redundancia y mejorar la interpretabilidad de los datos complejos.

## Análisis de Componentes Principales (PCA)

Método lineal que encuentra las direcciones (ejes ortogonales) que capturan la máxima varianza en los datos.

#### Características:

- Método lineal (combinaciones lineales de features originales)
- Los componentes son ortogonales entre sí
- Ordena los componentes por varianza explicada
- Interpretable: cada componente es una combinación de variables originales

#### Cuándo usarlo:

- Datos con correlaciones lineales fuertes
- Necesitas interpretabilidad
- Quieres eliminar multicolinealidad
- Visualización exploratoria rápida



#### **PCA**



#### Velocidad

Computacionalmente eficiente para grandes conjuntos de datos



#### Interpretabilidad

Los componentes principales tienen interpretación matemática clara



#### Estructura Global

Preserva relaciones lineales y estructura global de los datos

#### Limitación:

- Asume relaciones lineales
- Sensible a escala (requiere normalización)
- No preserva distancias locales complejas

## Técnicas No Lineales: t-SNE y UMAP





#### t-SNE

Preserva vecindarios locales, excelente para visualizar clusters y estructuras complejas

#### **UMAP**

Más rápido que t-SNE, preserva tanto estructura local como global de manera equilibrada

Ambas técnicas sobresalen en la visualización de manifolds de datos complejos y no lineales

## t-SNE (t-Distributed Stochastic Neighbor Embedding)

Preserva las relaciones de vecindad local. Puntos cercanos en el espacio original permanecen cercanos en el espacio reducido. Usa probabilidades para modelar similitudes.

#### Características:

- Método no lineal
- Excelente para visualización (especialmente 2D/3D)
- Preserva estructura local, no global
- No es determinista (diferentes ejecuciones dan resultados distintos)

#### Cuándo usarlo:

- Visualización de clusters y patrones
- Datos con estructura no lineal compleja
- Exploración inicial de datasets complejos (imágenes, texto embeddings)
- Cuando las distancias globales no importan tanto



#### t-SNE



#### **Exploración Visual**

Ideal para visualizar datos de alta dimensión en 2D o 3D, revelando patrones ocultos



#### Agrupamiento Local

Preserva relaciones locales entre puntos para identificar clústeres y similitudes con gran precisión



#### Separación No Lineal

Captura estructuras no lineales, útil para datos complejos como imágenes o texto



#### Intuición de Clases

Facilita la interpretación visual de clases o etiquetas en tareas de clasificación, incluso cuando no están explícitas

#### Limitación:

- No sirve para nuevos datos (no es un modelo que puedas aplicar a test set)
- Computacionalmente costoso con muchos datos
- Los hiperparámetros (perplexity) impactan mucho el resultado
- Las distancias en el output no son interpretables

# UMAP (Uniform Manifold Approximation and Projection)

Similar a t-SNE pero con fundamentos matemáticos diferentes (topología). Preserva mejor la estructura global mientras mantiene la local.

#### Características:

- Método no lineal más moderno
- Más rápido que t-SNE
- Preserva estructura local Y global razonablemente
- Puede transformar datos nuevos (a diferencia de t-SNE)
- Mejor conservación de distancias

#### Cuándo usarlo:

- Necesitas velocidad con grandes volúmenes
- Quieres mantener estructura global
- Necesitas aplicar la transformación a datos nuevos
- Proyectos en producción



#### **UMAP**



#### Velocidad

Rápido en entrenamiento y proyección, incluso con grandes volúmenes de datos



#### Estructura Local y Global

Preserva tanto la estructura local (vecindades) como la estructura global del conjunto de datos



#### Versatilidad

Funciona bien como técnica de visualización, pero también como preprocesamiento para modelos de machine learning.



#### Parametrizable

Ofrece control sobre el equilibrio entre estructura local y global mediante parámetros como n\_neighbors y min\_dist.

#### Limitación:

- Menos años de investigación que PCA/t-SNE
- Hiperparámetros también requieren tuning (n\_neighbors, min\_dist)
- Menor adoptación (aunque creciendo rápidamente)



## Comparando PCA, t-SNE y UMAP



#### **PCA**

**Mejor para:** Varianza lineal global, análisis de componentes

Limitado en: Visualización de

clusters complejos



#### t-SNE

Excelente para: Separación

local de clusters

#### **Puede distorsionar:**

Distancias globales entre

grupos

भूद

#### **UMAP**

**Equilibra:** Estructura local y global

**Ventajas:** Escalable y versátil para diversos tipos de datos

#### **Errores comunes**

- X Aplicar reducción antes de train-test split (data leakage)
- X No escalar los datos con PCA
- ★ Sobre-interpretar distancias
  en t-SNF
- X Usar t-SNE para datos nuevos
- X No experimentar con hiperparámetros
- Fit solo en training, transform en test
- ✓ Normalizar primero
- ✓ Entender las limitaciones de cada técnica
- ✓ Probar múltiples configuraciones

## Buenas prácticas

#### **Preprocesamiento**

- Escala tus datos: PCA
   especialmente lo requiere.
   StandardScaler o MinMaxScaler.
- Maneja valores faltantes:
   Imputación antes de reducir dimensionalidad.
- 3. **Elimina outliers extremos**: Pueden dominar los componentes principales.

#### Evaluación

- PCA: Gráfico de varianza explicada acumulada (elegir componentes que expliquen 80-95%)
- t-SNE/UMAP: Evaluación visual principalmente. ¿Se separan los clusters conocidos?
- Validación: Usa los datos reducidos en tu tarea objetivo (clasificación, clustering) y mide performance

## Más técnicas

#### **Autoencoders (Deep Learning):**

- Redes neuronales que comprimen y reconstruyen datos
- El cuello de botella actúa como representación reducida
- Muy potentes para datos complejos (imágenes, audio)
- Requieren más datos y cómputo

#### **Linear Discriminant Analysis (LDA)**:

- Similar a PCA pero supervisado (usa las etiquetas)
- Maximiza separación entre clases
- Útil para clasificación
- Limitado a C-1 dimensiones (C = número de clases)

#### **Factor Analysis:**

- Busca variables latentes que explican correlaciones
- Más enfocado en interpretabilidad que PCA
- Común en ciencias sociales y psicometría





## Aplicaciones del Mundo Real





Compresión y visualización de embeddings de modelos como ResNet y CLIP para reconocimiento de patrones visuales



Datos de Texto

Reducción de dimensiones en embeddings de palabras y documentos para clustering y búsqueda semántica



Bioinformática

Visualización de datos de expresión génica y reducción de ruido en análisis genómicos

Estas aplicaciones demuestran la versatilidad y el poder de la reducción de dimensionalidad en diversos dominios científicos y tecnológicos.

## Aprovechando la Reducción de Dimensionalidad

#### Herramienta Esencial

Indispensable para dar sentido a datos complejos de alta dimensión

#### Elección Estratégica

Seleccionar la técnica basándose en la estructura de datos y objetivos del análisis

#### **Resultados Transformadores**

Desbloquear insights ocultos, mejorar modelos y crear visualizaciones impactantes

La reducción de dimensionalidad es el puente entre la complejidad de los datos modernos y la comprensión humana.





## Visualizando la Reducción de Dimensionalidad con CIFAR-10

#### **Proyecciones PCA**

Los embeddings de imágenes reducidos a 2D revelan clusters claros de clases

#### Mapas t-SNE

Muestran direcciones de varianza pero menor separación de clusters

#### **UMAP**

Destacan agrupaciones locales pero pueden distorsionar la forma general

Cada técnica ofrece una perspectiva única de los mismos datos, revelando diferentes aspectos de su estructura subyacente.