# Analiza 2b

Luka Horjak (lukahorjak@student.uni-lj.si)

21. februar 2022

Kazalo Luka Horjak

# Kazalo

| Uvod           |     |                              | 3 |
|----------------|-----|------------------------------|---|
| 1              | Pod | nogoterosti v $\mathbb{R}^n$ | 1 |
|                | 1.1 | Definicija                   | 4 |
|                | 1.2 | angentni prostor             | ĵ |
|                | 1.3 | Crivulje v $\mathbb{R}^3$    | 3 |
|                | 1.4 | Tkrivljenost krivulj         | J |
| <b>~</b> .     |     | kazalo 11                    |   |
| Stvarno kazalo |     |                              | L |

Uvod Luka Horjak

## $\mathbf{U}\mathbf{vod}$

V tem dokumentu so zbrani moji zapiski s predavanj predmeta Analiza 2b v letu 2021/22. Predavatelj v tem letu je bil prof. dr. Miran Černe.

Zapiski niso popolni. Manjka večina zgledov, ki pomagajo pri razumevanju definicij in izrekov. Poleg tega nisem dokazoval čisto vsakega izreka, pogosto sem kakšnega označil kot očitnega ali pa le nakazal pomembnejše korake v dokazu.

Zelo verjetno se mi je pri pregledu zapiskov izmuznila kakšna napaka – popravki so vselej dobrodošli.

## 1 Podmnogoterosti v $\mathbb{R}^n$

#### 1.1 Definicija

**Definicija 1.1.1.** Neprazna podmnožica  $M \subseteq \mathbb{R}^{n+m}$  je gladka podmnogoterost dimenzije n in kodimenzije m, če za vsako točko  $a \in M$  obstaja odprta okolica U točke a v  $\mathbb{R}^{n+m}$  in take funkcije

$$F_1,\ldots,F_m\in\mathcal{C}^1(U),$$

da ima preslikava  $F = (F_1, \dots, F_m)$  rang m na U in velja

$$M \cap U = \{x \in U \mid F(x) = 0\}.$$

**Opomba 1.1.1.1.** Preslikavi F pravimo definicijska funkcija.

**Opomba 1.1.1.2.** Dovolj je že, da ima F rang m v točki a.

**Trditev 1.1.2.** Neprazna podmnožica  $M \subseteq \mathbb{R}^{n+m}$  je podmnogoterost dimenzije n natanko tedaj, ko za vsako točko  $a \in M$  obstaja njena odprta okolica U v  $\mathbb{R}^{n+m}$  in taka permutacija  $\sigma$  njenih koordinat, da je  $M \cap U$  graf neke  $\mathcal{C}^1$  preslikave  $\varphi \colon D \to \mathbb{R}^m$ , kjer je  $D \subset \mathbb{R}^n$  odprta, oziroma

$$M \cap U = \left\{ x_{\sigma(1)}, \dots, x_{\sigma(n)}, \varphi \left( x_{\sigma(n+1)}, \dots, x_{\sigma(n+m)} \right) \mid \left( x_{\sigma(1)}, \dots, x_{\sigma(n)} \right) \in D \right\}.$$

Dokaz. Če je M podm<br/>nogoterost, preprosto uporabimo izrek o implicitni preslikavi. Če velja pred<br/>postavka iz trditve, pa definiramo

$$F_j(x_1, \dots, x_{n+m}) = x_{n+j} - \varphi_j(x_1, \dots, x_n).$$

Sledi, da velja

$$F = 0 \iff (x_1, \dots, x_{n+m}) = (x_1, \dots, x_n, \varphi(x_1, \dots, x_n))$$

in

$$\frac{\partial F_i}{x_{n+j}} = \delta_{i,j},$$

zato je rang DF = m.

**Trditev 1.1.3.** Naj bo  $M \subseteq \mathbb{R}^{n+m}$  podmnogoterost dimenzije n. Potem za vsak  $a \in M$  obstaja okolica U točke a v  $\mathbb{R}^{n+m}$  in preslikava  $\Phi \in \mathcal{C}^1(D)$  ranga n, kjer je  $D \subseteq \mathbb{R}^n$  odprta, da je  $\Phi(D) = M \cap U$ .

Dokaz. Vzamemo

$$\Phi = (x_1, \dots, x_n, \varphi(x_1, \dots, x_n)). \qquad \Box$$

**Trditev 1.1.4.** Naj bo  $\Phi: D \to \mathbb{R}^{n+m}$   $\mathcal{C}^1$  preslikava ranga n. Potem za vsak  $t_0 \in D$  obstaja njegova okolica V, da je  $\Phi(V)$  podmnogoterost dimenzije n v  $\mathbb{R}^{n+m}$ .

Dokaz. Obstaja  $n \times n$  poddeterminanta  $D\Phi(t_0)$ , različna od 0. Sledi, da lahko s permutacijo koordinat zapišemo  $\Phi = (\Phi_1, \Phi_2)$ , kjer je  $\Phi_1 \colon V \to \Phi(V)$  difeomorfizem. Sedaj si oglejmo preslikavo

$$(x_1,\ldots,x_n)\in\Phi(V)\mapsto\Phi\circ\Phi_1^{-1}.$$

Opazimo, da za  $\varphi = \Phi_2 \circ \Phi_1^{-1}$ velja

$$\Phi(V) = \left(\Phi \circ \Phi_1^{-1}\right)(x_1, \dots, x_n) = \left\{x_1, \dots, x_n, \varphi\left(x_1, \dots, x_n\right) \mid (x_1, \dots, x_n) \in \Phi(V)\right\}. \quad \Box$$

**Trditev 1.1.5.** Naj bo  $M \subseteq \mathbb{R}^{n+m}$  podmnogoterost dimenzije n. Potem za vsako točko  $a \in M$  obstaja njena okolica  $U \subseteq \mathbb{R}^{n+m}$  in difeomorfizem  $\Phi \colon U \to V$ , za katera je<sup>1</sup>

$$\Phi(U \cap M) = V \cap (\mathbb{R}^n \times \{0\}^m).$$

Dokaz. Lokalno je M graf nad enem izmed n dimenzionalnih podprostorov. Za

$$\Phi(x,y) = (x, y - \varphi(x))$$

je tako

$$\Phi^{-1}(x,z) = (x, z + \varphi(x)),$$

ki je diferennciabilna. Sledi, da je

$$\Phi(M \cap U) = D \times \{0\}^m.$$

 $<sup>^1\,</sup>M$  lahko »izravnamo«.

#### 1.2 Tangentni prostor

**Definicija 1.2.1.** Naj bo  $M \subseteq \mathbb{R}^n$  podmnogoterost in  $a \in M$ . Tangentni prostor na M v točki a je množica

$$T_a M = \left\{ \dot{\gamma}(t_0) \mid \gamma \colon (\alpha, \beta) \to M \land \gamma \in \mathcal{C}^1 \land t_0 \in (\alpha, \beta) \land \gamma(t_0) = a \right\}.$$

**Trditev 1.2.2.** Naj bo  $M \subseteq \mathbb{R}^{n+m}$  n-dimenzionalna podmnogoterost in  $a \in M$ . Potem je  $T_aM$  n-dimenzionalni vektorski podprostor prostora  $\mathbb{R}^{n+m}$ .

Dokaz. Obstaja okolica U točke a, za katero je  $M \cap U$  graf nad enim izmed n-dimenzionalnih koordinatnih podprostorov. Vsaka krivulja na  $M \cap U$  je oblike

$$t \mapsto (x(t), \varphi(x(t))).$$

Naj bo pri tem  $x(t_0) = x_0$  in  $a = (x_0, \varphi(x_0))$ .

Odvod zgornje preslikave je enak

$$\begin{bmatrix} \dot{x}(t) \\ D\varphi(x(t)) \cdot \dot{x}(t) \end{bmatrix},$$

kar je v a enako

$$\begin{bmatrix} I \\ D\varphi(x_0) \end{bmatrix} \cdot \dot{x}(t_0).$$

Ker pa je  $\dot{x}(t_0)$  poljuben<sup>2</sup> vektor v  $\mathbb{R}^n$ , je tangentni prostor kar

$$\operatorname{Im} \begin{bmatrix} I \\ D\varphi(x_0) \end{bmatrix}. \qquad \Box$$

**Opomba 1.2.2.1.** Običajno si tangentni prostor predstavljamo kot afin podprostor  $a + T_a M$ .

**Posledica 1.2.2.2.** Naj bo  $M \subseteq \mathbb{R}^{n+m}$  podmnogoterost, v okolici U točke  $a \in M$  podana z definicijskimi funkcijami  $F_i$ . Tedaj je

$$T_a M = \ker(DF)(a).$$

Dokaz. Lokalno je  $M \cap U$  graf oblike

$$M \cap U = \{(x, \varphi(x)) \mid x \in D \subseteq \mathbb{R}^n \land \varphi \colon D \to \mathbb{R}^m\} \,.$$

Vemo, da je

$$T_a M = \operatorname{Im} \begin{bmatrix} I \\ D\varphi(x_0) \end{bmatrix}$$

<sup>&</sup>lt;sup>2</sup> Vzamemo  $t \mapsto x_0 + t \cdot v$ .

in

$$F(x, \varphi(x)) = 0$$

na D. Sedaj z odvajanjem dobimo

$$F_x \cdot I + F_y \cdot D\varphi = 0,$$

oziroma

$$(DF)(a) \cdot \begin{bmatrix} I \\ D\varphi \end{bmatrix},$$

torej

$$T_a M \le \ker(DF)(a).$$

Ker sta dimenziji enaki, sta to enaka podprostora.

**Opomba 1.2.2.3.** Gradienti definicijskih funkcij so pravokotni na  $T_aM$ .

**Posledica 1.2.2.4.** Naj bo  $\Phi: D \to \mathbb{R}^{n+m}$ , kjer je  $D \subseteq \mathbb{R}^n$ ,  $C^1$  preslikava ranga n. Naj bo  $t_0 \in D$  in  $M \subseteq \mathbb{R}^{n+m}$  podmnogoterost, za katera je

$$M \cap U = \Phi(V),$$

kjer je V okolica  $t_0$  in U okolica  $\Phi(t_0)$ . Tedaj je

$$T_{\Phi(t_0)}M = \operatorname{Im}(D\Phi)(t_0).$$

Dokaz. Lokalno v oklici  $a = \Phi(t_0)$  je  $M \cap U = F^{-1}(\{0\})$ , kjer je rang(DF)(a) = m. Velja, da je

$$T_a M = \ker(DF)(a)$$
 in  $F(\Phi(t)) = 0$ .

Sledi, da je

$$DF(a) \cdot D\Phi(t_0) = 0,$$

oziroma

$$\operatorname{Im}(D\Phi)(t_0) \le \ker(DF)(a).$$

S primerjanjem dimenzij vidimo, da sta podprostora enaka.

**Opomba 1.2.2.5.** Podmnogoterostim, katerim dodamo robne točke, pravimo *mnogoterosti z robom*.

### 1.3 Krivulje v $\mathbb{R}^3$

**Definicija 1.3.1.** Krivulja je enodimenzionalna podmnogoterost.

Trditev 1.3.2. Povezane krivulje lahko parametriziramo globalno.

Opomba 1.3.2.1. Vsaka krivulja ima neskončno mnogo regularnih parametrizacij. Velja

$$\vec{\rho}' = \dot{\vec{r}}(h) \cdot h'.$$

**Definicija 1.3.3.** Naj bo Γ krivulja v  $\mathbb{R}^3$  in  $\overrightarrow{r}$ :  $[\alpha, \beta] \to \Gamma$  njena regularna parametrizacija. Naj bo D delitev intervala  $[\alpha, \beta]$ . Naj bo

$$\ell(D) = \sum_{i=1}^{n} d(\vec{r}(t_{i-1}), \vec{r}(t_i)).$$

Dolžina krivulje je limita

$$\lim_{\max \Delta t \to 0} \ell(D).$$

Trditev 1.3.4. Naj bosta  $\overrightarrow{r}$ :  $[a,b] \to \mathbb{R}^3$  in  $\overrightarrow{\rho}$ :  $[\alpha,\beta] \to \mathbb{R}^3$  regularni parametrizaciji poti Γ. Potem je

$$\int_{a}^{b} \left\| \dot{\vec{r}}(t) \right\| dt = \int_{\alpha}^{\beta} \left\| \dot{\vec{\rho}}(t) \right\| dt$$

Dokaz. Uporabimo izrek o vpeljavi nove spremenljivke.

**Trditev 1.3.5.** Naj bo  $\overrightarrow{r} \in \mathcal{C}^1([\alpha, \beta])$ . Tedaj je dolžina krivulje enaka

$$\int_{\alpha}^{\beta} \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} dt = \int_{\alpha}^{\beta} \left\| \overrightarrow{r}(t) \right\| dt.$$

Dokaz. Dokaz je enak dokazu izreka 5.4.6. v zapiskih Analize 1 prvega letnika.

**Definicija 1.3.6.** Naj bo  $\overrightarrow{r}$ :  $[\alpha, \beta] \to \Gamma$  regularna parametrizacija krivulje  $\Gamma$ . Naj bo

$$S(t) = \int_{0}^{t} \left\| \overrightarrow{r}(\tau) \right\| d\tau.$$

Za inverzno preslikavo<br/>3 ${\cal T}=S^{-1}$  parametrizacijo

$$s \mapsto \overrightarrow{r}(T(s))$$

imenujemo naravna parametrizacija.

Trditev 1.3.7. Odvod naravne parametrizacije je normiran.

Dokaz. Velja

$$\frac{d}{ds}(\vec{r}(T(s))) = \dot{\vec{r}}(T(s)) \cdot T'(s) = \frac{\dot{\vec{r}}(T(s))}{\dot{S}(T(s))} = \frac{\dot{\vec{r}}(T(s))}{\|\dot{\vec{r}}(T(s))\|}.$$

<sup>&</sup>lt;sup>3</sup> Ta obstaja, saj je S' > 0.

**Definicija 1.3.8.** *Normalna ravnina* krivulje  $\vec{r}$  v točki t je ravnina skozi  $\vec{r}(t)$  in normalo  $\dot{\vec{r}}(t)$ .

**Definicija 1.3.9.** Naj bo $\overrightarrow{r}$ naravna  $\mathcal{C}^2$  parametrizacija. Spremljajoči triederv točki t so vektorji $^4$ 

$$\vec{T} = \dot{\vec{r}}(t), \quad \vec{N} = \frac{\vec{T}'}{\|\vec{T}'\|} \quad \text{in} \quad \vec{B} = \vec{T} \times \vec{N}.$$

**Opomba 1.3.9.1.** Vektorju  $\overrightarrow{N}$  pravimo *vektor glavne normale*, vektorju  $\overrightarrow{B}$  pa vektor *binormale*.

**Definicija 1.3.10.** *Pritisnjena ravnina* v točki s je ravnina, ki jo razpenjata tangentni in normalni vektor ter gre skozi  $\overrightarrow{r}(s)$ .

**Trditev 1.3.11.** Pritisnjena ravnina v točki s je ravnina, ki se najbolje prilega krivulji v okolici  $\overrightarrow{r}(s)$ .

Dokaz. Velja

$$\vec{n} \cdot (\vec{r}(s+h) - \vec{r}(s)) = \vec{n} \cdot \vec{r}'(s) \cdot h + \vec{n} \cdot \vec{r}''(s) \cdot \frac{h^2}{2} + \vec{n} \cdot \vec{o}(h^3).$$

Ta izraz bo najmanjši, ko bo  $\overrightarrow{n} \parallel \overrightarrow{B}(s)$ .

Trditev 1.3.12. Za regularno  $C^2$  parametrizacijo  $\vec{r}$  krivulje  $\Gamma$  velja

$$\overrightarrow{T} = \frac{\overrightarrow{r}(t)}{\left\|\overrightarrow{r}(t)\right\|}, \quad \text{in} \quad \overrightarrow{N} = \frac{\overrightarrow{r} \times \left(\overrightarrow{r} \times \overrightarrow{r}\right)}{\left\|\overrightarrow{r}\right\| \cdot \left\|\overrightarrow{r} \times \overrightarrow{r}\right\|}.$$

Dokaz. Uporabimo verižno pravilo.

<sup>&</sup>lt;sup>4</sup> To ni nujno dobra definicija.

#### 1.4 Ukrivljenost krivulj

Definicija 1.4.1. Fleksijska ukrivljenost je definirana kot

$$\kappa(s) = \|\overrightarrow{r}''(s)\| = \|\overrightarrow{T}'(s)\|.$$

Opomba 1.4.1.1. Velja

$$\kappa = \frac{\left\| \dot{\overrightarrow{r}} \times \ddot{\overrightarrow{r}} \right\|}{\left\| \dot{\overrightarrow{r}} \right\|^3}.$$

Definicija 1.4.2. Pritisnjena krožnica je krožnica z radijem

$$\rho(s) = \frac{1}{\kappa(s)}$$

in središčem v točki

$$\vec{r}(s) + \rho(s) \cdot \vec{N}(s),$$

ki leži v pritisnjeni ravnini.

Opomba 1.4.2.1. Pritisnjena krožnica je parametrizirana s

$$\varphi \mapsto \overrightarrow{r} + \rho \cdot \overrightarrow{N} + \rho \cdot \left( \overrightarrow{T} \cdot \cos \varphi + \overrightarrow{N} \cdot \sin \varphi \right).$$

**Definicija 1.4.3.** Torzijska ukrivljenost<sup>5</sup> krivulje  $\overrightarrow{r} \in \mathcal{C}^3$  je definirana kot

$$\omega(s) = \left\| \overrightarrow{B}'(s) \right\|.$$

Opomba 1.4.3.1. Velja

$$\omega = \frac{\left[\vec{r}, \ddot{r}, \ddot{r}\right]}{\left\|\vec{r} \times \ddot{r}\right\|^2}.$$

Trditev 1.4.4. Velja

$$\vec{N}' = -\kappa \cdot \vec{T} + \omega \cdot \vec{B}.$$

Dokaz. Opazimo, da velja  $\overrightarrow{N}' \perp \overrightarrow{N},$ saj je  $\overrightarrow{N}=1.$  Sedaj preprosto odvajamo zvezi

$$\vec{N} \cdot \vec{T} = 0 \quad \text{in} \quad \vec{N} \cdot \vec{B} = 0.$$

Izrek 1.4.5 (Frenet-Serretov sistem). Velja

$$\begin{bmatrix} \vec{T} \\ \vec{N} \\ \vec{B} \end{bmatrix}' = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \omega \\ 0 & -\omega & 0 \end{bmatrix} \cdot \begin{bmatrix} \vec{T} \\ \vec{N} \\ \vec{B} \end{bmatrix}.$$

<sup>&</sup>lt;sup>5</sup> Tudi *zvitost*.

### Stvarno kazalo

```
I
Izrek
Frenet-Serretov sistem, 10

K
Krivulja, 8
Dolžina, 8
Fleksijska, torzijska ukrivljenost, 10
Naravna parametrizacija, 8
Normalna, pritisnjena ravnina, 9
Pritisnjena krožnica, 10

P
Podmnogoterost, 4
Definicijska funkcija, 4
Tangentni prostor, 6
```