```
Hints 1.8
                                                               Lugica v. I.
  Opt 1. Steeds Loepassen van: A = B ddan als A = B (x & A => x & B vor
 alle x) en B = A (x \in B \Rightarrow x \in A voor alle x).
    Vb. Vour R, S ∈ A×B : (R-S)-1 = R-1-S-1
        Bewys (a, b) \in (R-S)^{-1} \Rightarrow (b,a) \in R-S
                                  \Rightarrow (b,a) \in \mathbb{R} maar (b,a) \notin S
                                  \Rightarrow (a,b) \in R^{-1} \text{ maar } (a,b) \notin S^{-1}
\Rightarrow (a,b) \in R^{-1} - S^{-1}
         en omgekeerd
  Opg Z. Q. (R.S) = (Q.R). S als boven.
         Q o R mogelyk & R o Q met by R= {(1,2)} en R = {(2,3)}
         Aerm 'commutative' light niet gedefinieerd in tekst dus zal
         gevraagd worden
 Ope 3. Ala ope 1
 Opg 4. Ro(SUT) = (ROS) v (ROT) als opg 1.
         Ro (SnT) = (RoS) n (RoT) woor REAXB, S,TEBXC
            stel (a,c) & Ro (SnT). Dan a Rb en b (SnT)c, dus
            a Rb en bSc en bTc, dus (a,c) & RoS en & RoT.
            \( \text{by met } R = \{ (1,2), (1,3) \}, \S = \{ (2,3), (2,4) \} en \( T = \{ (2,3), (3,4) \} \)
         R \circ (S-T) \supseteq (R \circ S) - (R \circ T)
            stel (a, c) ∈ (RoS) + (RoT). Dan a Rb en bSc maar voor geen
            d is a Rd en dTc. Dus a Rb en b Sc maar niet a Rb en
            bTc (reem d=b), ofwel a Rb en b (S-T) c.
            € met relfde R, S, T als leverer
Opg 5 Als opg 1
Upp 6. Uit de définitées.
Ope 7. (A most R zyn.) R reflexive > (a,a) & R > R n R' \neq (mits A \neq \beta),
        dus niet asymmetrisch. Dito omgeheerd: Rasymmetrisch, stel IAAR
        7 p, dan (a,a) ER voor een a. Etc.
        Meck op: R irreflexive en transitief => R asymmetrisch
```

Rirreflexive en antisymmetric => Rasymmetrisch

	Logica v. I.
Opg 8. Oefening in aftelling.	
(a) 1º manier: A, B affelb oneindig ⇒ AxB affelb one	india, met selfde
berija ala arma Nº Dan artan Nº Nº al	
z ^e manier: codeer (n,, n _k) als p ⁿ /p ⁿ /p ² -p ⁿ /k, eerste k priemgetaller. Dit geeft een injectie van M Dan M ^k = M.	met P P. de
eerste k priemzetaller. Dit geell een injectie van M	in M. dus MK & M.
Dan ME = H.	,
Dan ME = M. (b) In stop i : som op i de element (in de opsomming) v	an A she
element van Ai, voursever de elementen bertaan	
(c) Neem A: = "de rytjes van i natuurlyke getaller" = Ni	
Opg 9. Dit velet het diagonaal argument, steeds met a	•
(a) Stel r, r, r, is een aftelling van HW. Maak	
volgt: ide element van r = (ide element van r;)	
in de opsomming voorhomen, zeg r=rg. Dan contre	
(b) Stel r, rz, is een aftelling van de relatier = Mx	
$r \in \mathbb{N} \times \mathbb{N}$ met $(i, \kappa) \in r \iff (i, \kappa) \notin r$; (willek i, κ).	
de opsømming voorhomen, reg r=rg. Dan contradic	
(k,x).	
(c) Speciaal seval van (b).	