Computing a Database of Belyi Maps

Michael Musty (Dartmouth College)
GSCAGT at Temple University
June 4, 2017

Acknowledgements

This is joint work with:

- Mike Klug
- Sam Schiavone
- Jeroen Sijsling
- John Voight

Find $\varphi \in \mathbb{Q}[x]$ of degree 3 such that $\varphi(x)$ and $\varphi(x)-1$ have a double root.

Find $\varphi \in \mathbb{Q}[x]$ of degree 3 such that $\varphi(x)$ and $\varphi(x)-1$ have a double root.

$$\varphi(x) = ax^{2}(x-1), \qquad \varphi(x) - 1 = a(x-b)^{2}(x-c)$$

implies

$$ax^3 - ax^2 - 1 = ax^3 - a(2b+c)x^2 + ab(b+2c)x - ab^2c$$

Find $\varphi \in \mathbb{Q}[x]$ of degree 3 such that $\varphi(x)$ and $\varphi(x) - 1$ have a double root.

$$\varphi(x) = ax^2(x-1), \qquad \varphi(x) - 1 = a(x-b)^2(x-c)$$

implies

$$ax^3 - ax^2 - 1 = ax^3 - a(2b+c)x^2 + ab(b+2c)x - ab^2c$$

which yields the solution a, b, c = -27/4, 2/3, -1/3.

Find $\varphi \in \mathbb{Q}[x]$ of degree 3 such that $\varphi(x)$ and $\varphi(x)-1$ have a double root.

$$\varphi(x) = ax^{2}(x-1), \qquad \varphi(x) - 1 = a(x-b)^{2}(x-c)$$

implies

$$ax^3 - ax^2 - 1 = ax^3 - a(2b+c)x^2 + ab(b+2c)x - ab^2c$$

which yields the solution a, b, c = -27/4, 2/3, -1/3. After a linear change of variables $(x \leftarrow -2x/3)$ we get

$$\varphi(x) = 2x^3 + 3x^2 = x^2(2x+3)$$

$$\varphi(x) - 1 = 2x^3 + 3x^2 - 1 = (2x-1)(x+1)^2.$$

Find $\varphi\in\mathbb{Q}[x]$ of degree 3 such that $\varphi(x)$ and $\varphi(x)-1$ have a double root.

$$\varphi(x) = ax^{2}(x-1), \qquad \varphi(x) - 1 = a(x-b)^{2}(x-c)$$

implies

$$ax^3 - ax^2 - 1 = ax^3 - a(2b+c)x^2 + ab(b+2c)x - ab^2c$$

which yields the solution a, b, c = -27/4, 2/3, -1/3. After a linear change of variables $(x \leftarrow -2x/3)$ we get

$$\varphi(x) = 2x^3 + 3x^2 = x^2(2x+3)$$

$$\varphi(x) - 1 = 2x^3 + 3x^2 - 1 = (2x-1)(x+1)^2.$$

We can view φ as a branched (ramified) covering map of Riemann surfaces. . .

Riemann's Existence Theorem

Let X be a compact connected Riemann surface.

Riemann's Existence Theorem

Let X be a compact connected Riemann surface.

Theorem (Riemann Existence)

There exists a non-constant meromorphic function on X that represents X as a branched cover of \mathbb{P}^1 (with branch locus a finite subset of \mathbb{P}^1) as in the previous slide.

Riemann's Existence Theorem

Let X be a compact connected Riemann surface.

Theorem (Riemann Existence)

There exists a non-constant meromorphic function on X that represents X as a branched cover of \mathbb{P}^1 (with branch locus a finite subset of \mathbb{P}^1) as in the previous slide.

A consequence of this theorem is the equivalence between Riemann surfaces and algebraic curves.

We say X is **defined over** a subfield L of $\mathbb C$ if there exists $f(z,w)\in L[z,w]$ such that the field of meromorphic functions on X is isomorphic to

$$\frac{\mathbb{C}(z)[w]}{(f(z,w))}.$$

We say X is **defined over** a subfield L of $\mathbb C$ if there exists $f(z,w)\in L[z,w]$ such that the field of meromorphic functions on X is isomorphic to

$$\frac{\mathbb{C}(z)[w]}{(f(z,w))}.$$

For example, \mathbb{P}^1 is defined over \mathbb{Q} :

We say X is **defined over** a subfield L of $\mathbb C$ if there exists $f(z,w)\in L[z,w]$ such that the field of meromorphic functions on X is isomorphic to

$$\frac{\mathbb{C}(z)[w]}{(f(z,w))}.$$

For example, \mathbb{P}^1 is defined over \mathbb{Q} : Let $f(z, w) = w \in \mathbb{Q}[z, w]$. Then

$$\frac{\mathbb{C}(z)[w]}{(w)}=\mathbb{C}(z)$$

which is the meromorphic functions on \mathbb{P}^1 .

We say X is **defined over** a subfield L of $\mathbb C$ if there exists $f(z,w)\in L[z,w]$ such that the field of meromorphic functions on X is isomorphic to

$$\frac{\mathbb{C}(z)[w]}{(f(z,w))}.$$

For example, \mathbb{P}^1 is defined over \mathbb{Q} : Let $f(z, w) = w \in \mathbb{Q}[z, w]$. Then

$$\frac{\mathbb{C}(z)[w]}{(w)} = \mathbb{C}(z)$$

which is the meromorphic functions on \mathbb{P}^1 .

Question: How do we know when X is defined over \mathbb{Q} ?

Theorem (G.V. Belyĭ 1979)

A curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Theorem (G.V. Belyĭ 1979)

A curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Such a map is called a **Belyī map**.

Theorem (G.V. Belyĭ 1979)

A curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Such a map is called a **Belyī map**. The **degree** of a Bely**ĭ** map is the number of sheets in the covering.

Theorem (G.V. Belyĭ 1979)

A curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Such a map is called a **Belyī map**. The **degree** of a Bely**ĭ** map is the number of sheets in the covering.

In the 1980s, Grothendieck spoke of Belyi's result saying: Never, without a doubt, was such a deep and disconcerting result proved in so few lines!

Theorem (G.V. Belyĭ 1979)

A curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Such a map is called a **Belyī map**. The **degree** of a Bely**ĭ** map is the number of sheets in the covering.

In the 1980s, Grothendieck spoke of Belyi's result saying: Never, without a doubt, was such a deep and disconcerting result proved in so few lines!

There is a zoo of objects in bijection with the set of Belyĭ maps.

A Zoo of Bijections

In his 1984 work *Esquisse d'un Programme*, Grothendieck describes an action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the set of dessins d'enfants.

In his 1984 work *Esquisse d'un Programme*, Grothendieck describes an action of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on the set of dessins d'enfants.

About this discovery, Grothendieck said: I do not believe that a mathematical fact has ever struck me quite so strongly as this one.

In his 1984 work *Esquisse d'un Programme*, Grothendieck describes an action of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on the set of dessins d'enfants.

About this discovery, Grothendieck said: I do not believe that a mathematical fact has ever struck me quite so strongly as this one.

This yields a Galois action on everything in the zoo.

Also in Grothendieck's Esquisse d'un Programme, he writes about the computation of specific examples of Belyĭ maps:

Exactly which are the conjugates of a given oriented map? (Visibly, there is only a finite number of these.) I considered some concrete cases (for coverings of low degree) by various methods, J. Malgoire considered some others—I doubt there is a uniform method for solving the problem by computer.

Also in Grothendieck's Esquisse d'un Programme, he writes about the computation of specific examples of Belyĭ maps:

Exactly which are the conjugates of a given oriented map? (Visibly, there is only a finite number of these.) I considered some concrete cases (for coverings of low degree) by various methods, J. Malgoire considered some others—I doubt there is a uniform method for solving the problem by computer.

In 2014, KMSV provide a general purpose numerical method for computing Belyĭ maps using power series expansions of modular forms.

We are currently tabulating a database of *all* Belyĭ maps in low degree to be included in the LMFDB www.lmfdb.org.

We are currently tabulating a database of *all* Belyĭ maps in low degree to be included in the LMFDB www.lmfdb.org.

Below is a table detailing how many Belyĭ maps (up to isomorphism) there are of given degree and genus.

d	g = 0	g = 1	g = 2	g = 3	g > 3	total
2	1	0	0	0	0	1
3	2	1	0	0	0	3
4	6	2	0	0	0	8
5	12	6	2	0	0	20
6	38	29	7	0	0	74
7	89	50	13	3	0	155
8	261	217	84	11	0	573
9	583	427	163	28	6	1207

$$\lambda = \left(\frac{1}{3087} \left(173\sqrt{7} + 343\right)\right)$$

$$\lambda = \left(\frac{1}{3087} \left(173\sqrt{7} + 343\right)\right)$$

$$\varphi = \lambda \cdot \frac{x^3 \left(x - \frac{1}{729} (68\sqrt{7} + 236) \right)^1 \left(x - \frac{1}{9} (20 - 4\sqrt{7}) \right)^3}{\left(x - \frac{4}{21} (\sqrt{7} + 3) \right)^2 \left(x - \frac{4}{21} (\sqrt{7} + 1) \right)^4}$$

$$\lambda = \left(\frac{1}{3087} \Big(173\sqrt{7} + 343\Big)\right)$$

$$\varphi = \lambda \cdot \frac{x^3 \left(x - \frac{1}{729} (68\sqrt{7} + 236) \right)^1 \left(x - \frac{1}{9} (20 - 4\sqrt{7}) \right)^3}{\left(x - \frac{4}{21} (\sqrt{7} + 3) \right)^2 \left(x - \frac{4}{21} (\sqrt{7} + 1) \right)^4}$$

$$\varphi - 1 = \lambda \cdot \frac{\left(x - \frac{1}{189}\left(44\sqrt{7} + 140\right)\right)^4 \left(x - \frac{1}{7}\left(12\sqrt{7} - 28\right)\right)^2 \left(x - \frac{1}{14}\left(3\sqrt{7} + 7\right)\right)^1}{\left(x - \frac{4}{21}\left(\sqrt{7} + 3\right)\right)^2 \left(x - \frac{4}{21}\left(\sqrt{7} + 1\right)\right)^4}$$

$$\sigma_0 = (137)(2)(456)$$
 $\sigma_0 = (137)(2)(456)$
 $\sigma_1 = (1453)(27)(6)$ $\xrightarrow{\tau}$ $\sigma_1 = (1632)(45)(7)$
 $\sigma_{\infty} = (1275)(3)(46)$ $\sigma_{\infty} = (1764)(23)(5)$

Thanks for listening!

