Wiesenstr.



- - Peguy Rusty Kana
    Donwoung
  - Nkwanga Nkwanga Mansvell
  - Atoundem Sonfack Auguste
  - Nya Ken Ulrich



# Aufgabe 1:

#### **Ablauf:**

- Link zur Dokumentation:

https://rasbt.github.io/mlxtend/user\_guide/frequent\_patterns/apriori/

- **Geplanter Ablauf:** "Wir werden die Webseite über den obigen Link öffnen und durch das Beispiel führen, um die Code-Details und Konzepte zu erläutern."

UNIVERSITY OF APPLIED SCIENCES Name des Referenten

Seite



# Aufgabe2:

a)

# Importieren der Pandas-Bibliothek

import pandas as pd



b)

# Laden des Datensatzes

```
[122]: df = pd.read_csv(r"C:\Users\peguy\Downloads\shopping.csv")
```

UNIVERSITY OF APPLIED SCIENCES Name des Referenten

Seite

# c)

# Berechnen der relativen Häufigkeit der Produkte

```
59]: # Berechnung der Gesamtanzahl der Transaktionen im DataFrame
     total_transactions = len(df)
     # Zählen der Vorkommen jedes Produkts in allen Spalten
     product counts = df.stack().value counts()
     # Berechnung der relativen Häufigkeit jedes Produkts in Prozent
     relative_frequency = (product_counts / total_transactions) * 100
     # Erstellen eines DataFrames aus den Vorkommen und relativen Häufigkeiten
     df2 = pd.DataFrame({
         'Occurences': product_counts, # Hinzufügen der Vorkommen
         'Relative Frequency (%)': relative_frequency # Hinzufügen der relativen Häufigkeit
     }).reset index() # Zurücksetzen des Index, um ihn zu einer Spalte zu machen
     # Umbenennen der Spalten im DataFrame zur besseren Klarheit
     df2.columns = ['Product', 'Occurences', 'Relative Frequency']
     #Anzeige der DataFrame
     df2
```



| [69]: |     | Product               | Occurences | Relative Frequency |
|-------|-----|-----------------------|------------|--------------------|
|       | 0   | whole milk            | 2513       | 25.551601          |
|       | 1   | other vegetables      | 1903       | 19.349263          |
|       | 2   | rolls/buns            | 1809       | 18.393493          |
|       | 3   | soda                  | 1715       | 17.437722          |
|       | 4   | yogurt                | 1372       | 13.950178          |
|       |     |                       |            |                    |
|       | 164 | bags                  | 4          | 0.040671           |
|       | 165 | kitchen utensil       | 4          | 0.040671           |
|       | 166 | preservation products | 2          | 0.020336           |
|       | 167 | baby food             | 1          | 0.010168           |
|       | 168 | sound storage medium  | 1          | 0.010168           |

169 rows × 3 columns



### Kombinationen von Produkten am Häufigsten gekauft (Warenkörbe)

```
1: # Importiert den TransactionEncoder, um Transaktionsdaten zu transformieren.
   from mlxtend.preprocessing import TransactionEncoder
    # Importiert die apriori-Funktion, um häufige Artikelsets zu extrahieren.
   from mlxtend.frequent patterns import apriori
   # Konvertiert den DataFrame in eine Liste von Transaktionen, indem NaN-Werte entfernt werden.
   transactions = df.apply(lambda x: x.dropna().tolist(), axis=1).tolist()
   # Initialisiert den TransactionEncoder, um eine binäre Darstellung zu erstellen.
   te = TransactionEncoder()
   # Wandelt die Transaktionen in eine binäre Matrix um.
   te ary = te.fit(transactions).transform(transactions)
   # Erstellt einen DataFrame aus der binären Matrix, wobei die Spalten nach den Artikeln benannt werden.
   df = pd.DataFrame(te ary, columns=te.columns )
   # Wendet den Apriori-Algorithmus an, um häufige Artikelsets mit einem minimalen Support von 1% zu extrahieren.
   frequent itemsets = apriori(df, min support=0.01, use colnames=True)
   # Filtert die häufigen Artikelsets, um nur die Sets mit mehr als einem Artikel zu behalten.
   frequent itemsets = frequent itemsets[frequent itemsets['itemsets'].apply(len) > 1]
```



| freq | uent_item | sets                                          |
|------|-----------|-----------------------------------------------|
|      | support   | itemsets                                      |
| 88   | 0.019725  | (beef, other vegetables)                      |
| 89   | 0.013625  | (beef, rolls/buns)                            |
| 90   | 0.017387  | (beef, root vegetables)                       |
| 91   | 0.021251  | (beef, whole milk)                            |
| 92   | 0.011693  | (beef, yogurt)                                |
|      | •••       |                                               |
| 328  | 0.011998  | (tropical fruit, root vegetables, whole milk) |
| 329  | 0.014540  | (yogurt, root vegetables, whole milk)         |
| 330  | 0.010473  | (yogurt, whole milk, soda)                    |
| 331  | 0.015150  | (tropical fruit, yogurt, whole milk)          |
| 332  | 0.010880  | (yogurt, whipped/sour cream, whole milk)      |

245 rows × 2 columns

# Aufgabe3:

a)

```
import pandas as pd

# Laden Sie den Datensatz vehicles.csv
df = pd.read_csv('vehicles.csv')

# Filtern der Fahrzeuge mit Front-, Heck- oder Allradantrieb

filtered_df = df[df['drive'].isin(['Rear-Wheel Drive', 'Front-Wheel Drive', 'All-Wheel Drive'])]

# Ausgabe der gefilterten Daten
print(filtered_df)
```

UNIVERSITY OF APPLIED SCIENCES Name des Referenten

Seite

# b) Ergebnis

|       | barrels08 | barrelsAG  | 98 0 | harge  | 120 | chai | rge2 | 240 city | 08   | city08 | U cityA | 08  | 1 |
|-------|-----------|------------|------|--------|-----|------|------|----------|------|--------|---------|-----|---|
| 0     | 14.167143 | Θ.         | . Θ  |        | 0.0 |      | 0    | 0.0      | 19   | 0.0    | 0       | Θ   |   |
| 1     | 27.046364 | Θ.         | . Θ  |        | 0.0 |      | 0    | 0.0      | 9    | 0.0    | 9       | 0   |   |
| 2     | 11.018889 | Θ.         | . Θ  |        | 0.0 |      | 0    | 0.0      | 23   | 0.0    | 9       | 0   |   |
| 3     | 27.046364 | Θ.         | . Θ  |        | 0.0 |      | 0    | 0.0      | 10   | 0.0    | 9       | Θ   |   |
| 5     | 13.523182 | Θ.         | . Θ  |        | 0.0 |      | 0    | 0.0      | 21   | 0.0    | 9       | Θ   |   |
|       |           |            |      |        |     |      |      |          |      |        |         |     |   |
| 47515 | 12.396250 |            |      |        | 0.0 |      |      | 0.0      | 21   | 0.0    |         | Θ   |   |
| 47516 | 10.625357 |            |      |        | 0.0 |      |      | 0.0      | 24   | 0.0    |         | 0   |   |
| 47517 | 11.900400 |            |      |        | 0.0 |      |      | 0.0      | 21   | 0.0    |         | Θ   |   |
| 47518 | 13.523182 |            |      |        | 0.0 |      |      | 0.0      | 19   | 0.0    |         | Θ   |   |
| 47519 | 12.935217 | 0.         | . Θ  |        | 0.0 |      | G    | 0.0      | 20   | 0.0    | Ð       | 0   |   |
|       | cityA08U  | cityCD ci  | ityE |        | mfr | Code | CZ   | 240Dscr  | char | ge240b | c240bD  | scr | 1 |
| 0     | 0.0       | 0.0        | 0.0  |        |     | NaN  |      | NaN      |      | 0.0    |         | NaN |   |
| 1     | 0.0       | 0.0        | 0.0  | ****** |     | NaN  |      | NaN      |      | 0.0    |         | NaN |   |
| 2     | 0.0       | Θ.Θ        | 0.0  | ****   |     | NaN  |      | NaN      |      | 0.0    |         | NaN |   |
| 3     | 0.0       | Θ.Θ        | 0.0  | ****   |     | NaN  |      | NaN      |      | 0.0    |         | NaN |   |
| 5     | 0.0       | Θ.Θ        | 0.0  |        |     | NaN  |      | NaN      |      | 0.0    |         | NaN |   |
|       |           |            |      |        |     |      |      |          |      |        |         |     |   |
| 47515 | 0.0       | Θ.Θ        | 0.0  |        |     | NaN  |      | NaN      |      | 0.0    |         | NaN |   |
| 47516 | 0.0       | Θ.Θ        | 0.0  |        |     | NaN  |      | NaN      |      | 0.0    |         | NaN |   |
| 47517 | 0.0       | Θ.Θ        | 0.0  |        |     | NaN  |      | NaN      |      | 0.0    |         | NaN |   |
| 47518 | 0.0       | Θ.Θ        | 0.0  | ***    |     | NaN  |      | NaN      |      | 0.0    |         | NaN |   |
| 47519 | 0.0       | 0.0        | 0.0  | *****  |     | NaN  |      | NaN      |      | 0.0    |         | NaN |   |
|       |           |            | reat | ed0n   |     |      |      | m        | odif | ied0n  | startSt | QQ  | 1 |
| 0     | Tue Jan 0 | 1 00:00:00 | EST  | 2013   | Tue | Jan  | 01   | 00:00:00 |      |        |         | aN  |   |
| 1     | Tue Jan 6 | 1 00:00:00 | EST  | 2013   | Tue | Jan  | 01   | 00:00:00 | EST  | 2013   | N       | aN  |   |
| 2     | Tue Jan 6 | 1 00:00:00 | EST  | 2013   | Tue | Jan  | 01   | 00:00:00 | EST  | 2013   | N       | aN  |   |
| 3     |           | 1 00:00:00 |      |        |     |      |      | 00:00:00 |      |        |         | aN  |   |
| 5     |           | 1 00:00:00 |      |        |     |      |      | 00:00:00 |      |        |         | aN  |   |
|       |           |            |      | ****   |     |      |      |          |      |        |         |     |   |
| 47515 | Tue Jan 0 | 1 00:00:00 | EST  | 2013   | Tue | Jan  | 01   | 00:00:00 | EST  | 2013   |         | aN  |   |
| 47516 | Tue Jan 0 | 1 00:00:00 | EST  | 2013   | Tue | Jan  | 01   | 00:00:00 | EST  | 2013   | N       | aN  |   |
| 47517 | Tue Jan 0 | 1 00:00:00 | EST  | 2013   | Tue | Jan  | 01   | 00:00:00 | EST  | 2013   | N       | aN  |   |
| 47518 | Tue Jan 0 | 1 00:00:00 | EST  | 2013   | Tue | Jan  | 01   | 00:00:00 | EST  | 2013   | N       | aN  |   |
| 47519 | Tue Jan 0 | 1 00:00:00 | EST  | 2013   | Tue | Jan  | 01   | 00:00:00 | EST  | 2013   | N       | aN  |   |

UNIVERSITY OF APPLIED SCIENCES Name des Referenten Seite

10

## b)

```
# Filtern der Fahrzeuge nach Kraftstoffart
filtered_fuel_df = df[
    df['fuelType'].str.contains('diesel|cng|electricity', case=False, na=False) |
    df['fuelType1'].str.contains('diesel|natural gas|electricity', case=False, na=False) |
    df['fuelType2'].str.contains('natural gas|electricity', case=False, na=False)
]

# Ausgabe der gefilterten Daten
print(filtered_fuel_df.head())
print(f"Anzahl der gefilterten Fahrzeuge: {filtered_fuel_df.shape[0]}")
```

UNIVERSITY OF APPLIED SCIENCES Name des Referenten

Seite

|        | barrels08  | barrel   | sA08   | charg | e120   | chai | rge240 | city   | y08   | city08l | J cityA08 | ١ |
|--------|------------|----------|--------|-------|--------|------|--------|--------|-------|---------|-----------|---|
| 141    | 18.799737  |          | 0.0    |       | 0.0    |      | 0.0    |        | 18    | 0.0     | 0         |   |
| 213    | 19.844167  |          | 0.0    |       | 0.0    |      | 0.0    |        | 15    | 0.0     | 9         |   |
| 225    | 21.011471  |          | 0.0    |       | 0.0    |      | 0.0    |        | 16    | 0.0     | Θ         |   |
| 372    | 21.011471  |          | 0.0    |       | 0.0    |      | 0.0    |        | 15    | 0.0     | 9         |   |
| 382    | 21.011471  |          | 0.0    |       | 0.0    |      | 0.0    |        | 15    | 0.0     |           |   |
|        | cityA08U   | cityCD   | cityE  |       | mfr    | Code | c240   | Dscr   | char  | ge240b  | c240bDscr | ١ |
| 141    | 0.0        | 0.0      |        |       |        | NaN  |        | NaN    |       | 0.0     | NaN       |   |
| 213    | 0.0        | 0.0      | 0.0    | ***   |        | NaN  |        | NaN    |       | 0.0     | NaN       |   |
| 225    | 0.0        | 0.0      | 0.0    |       |        | NaN  |        | NaN    |       | 0.0     | NaN       |   |
| 372    | 0.0        | 0.0      | 0.0    |       |        | NaN  |        | NaN    |       | 0.0     | NaN       |   |
| 382    | 0.0        | 0.0      | 0.0    |       |        | NaN  |        | NaN    |       | 0.0     | NaN       |   |
|        |            |          |        |       |        |      |        |        |       |         |           |   |
|        |            |          | crea   | ted0n |        |      |        | r      | modif | ied0n   | startStop | 1 |
| 141    | Tue Jan 01 | 1 00:00: | 00 EST | 2013  | Tue    | Jan  | 01 00  | :00:00 | 0 EST | 2013    | NaN       |   |
| 213    | Tue Jan 01 | 1 00:00: | 00 EST | 2013  | Tue    | Jan  | 01 00  | :00:00 | 0 EST | 2013    | NaN       |   |
| 225    | Tue Jan 01 | 1 00:00: | 00 EST | 2013  | Tue    | Jan  | 01 00  | :00:00 | 0 EST | 2013    | NaN       |   |
| 372    | Tue Jan 01 | 1 00:00: | 00 EST | 2013  | Tue    | Jan  | 01 00  | :00:00 | 0 EST | 2013    | NaN       |   |
| 382    | Tue Jan 01 |          |        |       |        |      | 01 00  |        |       |         | NaN       |   |
| 200043 |            |          |        |       | 0 0000 |      |        |        |       |         | 33700     |   |
|        | phevCity   | phevHwy  | phev   | Comb  |        |      |        |        |       |         |           |   |
| 141    | 0          | 0        |        | 0     |        |      |        |        |       |         |           |   |
| 213    | 0          | 0        |        | 0     |        |      |        |        |       |         |           |   |
| 225    | Θ          | Θ        |        | 0     |        |      |        |        |       |         |           |   |
| 372    | 0          | 0        |        | 0     |        |      |        |        |       |         |           |   |
| 382    | 0          | 0        |        | 0     |        |      |        |        |       |         |           |   |
|        | 100        |          |        | 200   |        |      |        |        |       |         |           |   |

```
C)
```

```
# Filtern der Fahrzeuge, die keinen CVT verwenden
filtered_no_cvt_df = df[~df['trany'].str.contains('Automatic \(variable gear ratios\)', case=False, na=False)]
# Ausgabe der gefilterten Daten
print(filtered_no_cvt_df.head())
print(f"Anzahl der gefilterten Fahrzeuge ohne stufenloses Getriebe: {filtered_no_cvt_df.shape[0]}")
```

UNIVERSITY OF APPLIED SCIENCES Name des Referenten Seite

13

|   | barrels08  | barrelsA   | 08 cl  | harge | 120 | chai  | rae? | 240 cit | v08   | citv08U | cityA08   | 1 |
|---|------------|------------|--------|-------|-----|-------|------|---------|-------|---------|-----------|---|
| 0 | 14.167143  |            | .0     | 90    | 0.0 | 21101 | -    | 0.0     | 19    | 0.0     |           | , |
| 1 | 27.046364  |            | .0     |       | 0.0 |       |      | 0.0     | 9     | 0.0     |           |   |
| 2 | 11.018889  |            | .0     |       | 0.0 |       |      | 0.0     | 23    | 0.0     |           |   |
| 3 | 27.046364  |            | . 0    |       | 0.0 |       |      | 0.0     | 10    | 0.0     |           |   |
| 4 | 15.658421  | Θ          | .0     |       | 0.0 |       | 6    | 0.0     | 17    | 0.0     | 0         |   |
|   | cityA08U   | cityCD c   | ityE   |       | mfr | Code  | c2   | 240Dscr | char  | ge240b  | c240bDscr | \ |
| 0 | 0.0        | 0.0        | 0.0    |       |     | NaN   |      | NaN     |       | 0.0     | NaN       |   |
| 1 | 0.0        | 0.0        | 0.0    |       |     | NaN   |      | NaN     |       | 0.0     | NaN       |   |
| 2 | 0.0        | 0.0        | 0.0    |       |     | NaN   |      | NaN     |       | 0.0     | NaN       |   |
| 3 | 0.0        | 0.0        | 0.0    |       |     | NaN   |      | NaN     |       | 0.0     | NaN       |   |
| 4 | 0.0        | 0.0        | 0.0    |       |     | NaN   |      | NaN     |       | 0.0     | NaN       |   |
|   |            |            | create | ed0n  |     |       |      |         | modif | ied0n   | startStop | ١ |
| 0 | Tue Jan 0  | 1 00:00:00 | EST :  | 2013  | Tue | Jan   | 01   | 00:00:0 | 0 EST | 2013    | NaN       |   |
| 1 | Tue Jan 0: | 1 00:00:00 | EST 2  | 2013  | Tue | Jan   | 01   | 00:00:0 | 0 EST | 2013    | NaN       |   |
| 2 | Tue Jan 0  | 1 00:00:00 | EST :  | 2013  | Tue | Jan   | 01   | 00:00:0 | 0 EST | 2013    | NaN       |   |
| 3 | Tue Jan 0  | 1 00:00:00 | EST :  | 2013  | Tue | Jan   | 01   | 00:00:0 | 0 EST | 2013    | NaN       |   |
| 4 | Tue Jan 0  | 1 00:00:00 | EST 2  | 2013  | Tue | Jan   | 01   | 00:00:0 | 0 EST | 2013    | NaN       |   |
|   | phevCity   | phevHwy    | phevC  | omb   |     |       |      |         |       |         |           |   |
| 0 | Θ          | 0          |        | 0     |     |       |      |         |       |         |           |   |
| 1 | Θ          | Θ          |        | 0     |     |       |      |         |       |         |           |   |
| 2 | Θ          | 0          |        | 0     |     |       |      |         |       |         |           |   |
| 3 | Θ          | 0          |        | 0     |     |       |      |         |       |         |           |   |
| 4 | Θ          | Θ          |        | Θ     |     |       |      |         |       |         |           |   |

#### d) Extrahierung der Anzahl der Gänge:

```
import pandas as pd
# Angenommen, filtered no cvt_df ist dein gefilterter Datensatz ohne stufenloses Getriebe
#filtered no cvt df = pd.read csv('vehicles.csv', low memory=False) # Setze low memory=False für gemischte Datentypen
# Funktion zur Extraktion der Anzahl der Gänge und der Getriebeart
def extract transmission info(transmission):
   if pd.isna(transmission):
        return None, None # Umgang mit NaN-Werten
   elif 'Manual' in transmission:
        # Extrahieren der Anzahl der Gänge (z.B. "Manual 5-spd" => 5)
            gears = int(transmission.split()[1].replace('-spd', ''))
            return gears, 'Manual'
       except ValueError:
            return None, 'Manual' # Fehlerbehandlung
    elif 'Automatic' in transmission:
       # Extrahieren der Anzahl der Gänge (z.B. "Automatic 6-spd" => 6)
            gears = int(transmission.split()[1].replace('-spd', ''))
            return gears, 'Automatic'
        except ValueError:
            return None, 'Automatic' # Fehlerbehandlung
    return None, None # Falls keine passende Übertragung gefunden wird
# Anwendung der Funktion auf die 'trany'-Spalte
df[['Gears', 'Transmission Type']] = df['trany'].apply(extract transmission info).apply(pd.Series)
# Zeigen wir die ersten Zeilen des aktualisierten DataFrames an
print(df[['trany', 'Gears', 'Transmission Type']].head())
```

|   |           | trany | Gears | Transmission Type |
|---|-----------|-------|-------|-------------------|
| Θ | Manual    | 5-spd | 5.0   | Manual            |
| 1 | Manual    | 5-spd | 5.0   | Manual            |
| 2 | Manual    | 5-spd | 5.0   | Manual            |
| 3 | Automatic | 3-spd | 3.0   | Automatic         |
| 4 | Manual    | 5-spd | 5.0   | Manual            |

#### e) Gruppierung:

```
# Gruppieren des Datensatzes nach Jahr, Hersteller und Modell
grouped_df = df.groupby(['year', 'make', 'model']).agg(
    Average_Gears=('Gears', 'mean'), # Durchschnittliche Anzahl der Gänge
    Transmission_Type=('Transmission Type', 'first') # Übertragen des ersten Wertes
).reset_index()

# Zeigen der ersten Zeilen des gruppierten DataFrames an
print(grouped_df.head())
```

|   | year | make                        | model              | Average Gears | ١ |
|---|------|-----------------------------|--------------------|---------------|---|
| θ | 1984 | AM General                  | DJ Po Vehicle 2WD  |               |   |
| 1 | 1984 | AM General                  | FJ8c Post Office   | 3.000000      |   |
| 2 | 1984 | Alfa Romeo                  | GT V6 2.5          | 5.000000      |   |
| 3 | 1984 | Alfa Romeo                  | Spider Veloce 2000 | 5.000000      |   |
| 4 | 1984 | American Motors Corporation | Eagle 4WD          | 4.111111      |   |

# Transmission\_Type 0 Automatic 1 Automatic 2 Manual 3 Manual 4 Manual



#### f) Berechnung der Kennzahlen:

```
# Berechne die statistischen Kennzahlen für den gruppierten DataFrame
stats_df = grouped_df.describe(include='all')

# Ersetze NaN-Werte in den statistischen Kennzahlen durch 0
stats_df.fillna(0, inplace=True)

# Zeige die statistischen Kennzahlen an
print(stats_df)
```

|        | vear         | make  | model           | Average Gears | Transmission Type |  |
|--------|--------------|-------|-----------------|---------------|-------------------|--|
| count  | 23994.000000 | 23994 | 23994           | 15610.000000  | 23985             |  |
| unique | 0.000000     | 144   | 5064            | 0.000000      | 2                 |  |
| top    | 0.000000     | BMW   | F150 Pickup 2WD | 0.000000      | Automatic         |  |
| freq   | 0.000000     | 1785  | 47              | 0.000000      | 21259             |  |
| mean   | 2008.324414  | Θ     | 0               | 5.178350      | 0                 |  |
| std    | 11.654304    | 0     | 0               | 1.379541      | 0                 |  |
| min    | 1984.000000  | Θ     | 0               | 3.000000      | 0                 |  |
| 25%    | 2000.000000  | 0     | 0               | 4.000000      | 0                 |  |
| 50%    | 2011.000000  | 0     | 0               | 4.833333      | 0                 |  |
| 75%    | 2018.000000  | 0     | 0               | 6.000000      | 0                 |  |
| max    | 2025.000000  | 0     | 0               | 10.000000     | 0                 |  |

# Aufgabe 4:

# a) Extrahierung der CO2

```
# Aufgabe 4
import pandas as pd
import matplotlib.pyplot as plt
# Setz die Grenzen für die Co2 Klasse
bins = [0, 50, 100, 150, float('inf')] #Beispiele von Grenzen
labels = ['Kein Ausstoß', 'Geringer Ausstoß', 'Moderat', 'Hoher Ausstoß'] # 4 Labels für 5 Bins
# Dieskredizierung der CO2 Spalte
df['CO2 category'] = pd.cut(df['co2'], bins=bins, labels=labels, right=False)
# Die Farben definieren
colors = {
    'Kein Ausstoß': 'green',
    'Geringer Ausstoß': 'yellow',
    'Moderat': 'orange',
    'Hoher Ausstoß': 'red',
    'NaN': 'gray' # 'gray' p NaN
# Neue Spalte für dei Farben erstellen
df['CO2 category'] = df['CO2 category'].astype('category') # Neue Spalte für die Kategorie erstellen
df['CO2 category'] = df['CO2 category'].cat.add categories('gray') # 'gray' als Kategory
# Zuweisung der Farben abhängig von der Kategorien
df['color'] = df['CO2 category'].map(colors)
# NaN mit 'gray' ersetzen
df['color'] = df['color'].fillna('gray')
# scatter plot 3D
fig = plt.figure()
ax = fig.add subplot(111, projection='3d')
# Scatterplot erstellen, z.B. mit Jahr, Hubraum (displ) und PS (hpv)
ax.scatter(df['year'], df['displ'], df['hpv'], c=df['color'])
ax.set xlabel('Jahr')
ax.set ylabel('Hubraum (Displacement)')
ax.set_zlabel('PS (Horsepower)')
plt.title('3D-Scatterplot der Fahrzeuge nach CO2-Ausstoß')
plt.show()
```



#### 3D-Scatterplot der Fahrzeuge nach CO2-Ausstoß



UNIVERSITY OF APPLIED SCIENCES Name des Referenten Seite

22



#### b) Kmeans Algorithmus und Visualisierung des Kluster

```
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D
# Zuerst den kombinierten Verbrauch berechnen, bevor Zeilen mit NaN entfernt werden
df.loc[:, 'combined consumption'] = 235.215 / df['comb08'] # Umrechnung in L/100 km
# Entferne Zeilen mit fehlenden Werten in den wichtigen Spalten
df = df.dropna(subset=['Gears', 'combined consumption', 'cylinders'])
# Auswahl der Features für K-Means
features = df[['Gears', 'combined consumption', 'cylinders']]
# K-Means Clustering anwenden
kmeans = KMeans(n clusters=3, random state=42) # Wähle die Anzahl der Cluster nach Bedarf
df['cluster'] = kmeans.fit predict(features)
# 3D-Scatterplot erstellen, um die Cluster anzuzeigen
fig = plt.figure()
ax = fig.add subplot(111, projection='3d')
scatter = ax.scatter(df['Gears'], df['combined consumption'], df['cylinders'], c=df['cluster'], cmap='viridis')
ax.set xlabel('Anzahl der Gänge')
ax.set ylabel('Kombinierter Verbrauch (L/100 km)')
ax.set zlabel('Anzahl der Zylinder')
plt.title('K-Means Clustering der Fahrzeuge')
plt.colorbar(scatter, label='Cluster')
plt.show()
```



#### c) Berechnung der Accuracy:

```
from sklearn.metrics import accuracy score
from scipy, stats import mode
import numpy as np
# Konvertiere CO2-Kategorien in numerische Werte, falls dies noch nicht geschehen ist
category mapping = {'Kein Ausstoß': 0, 'Geringer Ausstoß': 1, 'Moderat': 2, 'Hoher Ausstoß': 3}
df['CO2 category numeric'] = df['CO2 category'].map(category mapping)
# Entferne Zeilen mit NaN-Werten in der CO2 category numeric-Spalte und im Cluster
df = df.dropna(subset=['CO2 category numeric', 'cluster'])
# Überprüfe, ob Cluster und CO2-Kategorien verfügbar sind
if 'CO2 category numeric' in df.columns and 'cluster' in df.columns:
    # Mappe die Cluster-Labels auf die am häufigsten vorkommenden CO2-Kategorien in jedem Cluster
    cluster labels = np.zeros like(df['cluster'])
   for i in range(3): # für 3 Cluster
        mask = df['cluster'] == i
        cluster labels[mask] = mode(df.loc[mask, 'CO2 category numeric'])[0]
   # Berechne die Accuracy zwischen den neu zugewiesenen Cluster-Labels und den CO2-Kategorien
    accuracy = accuracy score(df['CO2 category numeric'], cluster labels)
   print(f'Accuracy: {accuracy:.2f}')
   print("Stelle sicher, dass die Spalten 'CO2 category numeric' und 'cluster' vorhanden sind.")
```

Accuracy: 1.00



Accuracy: 1.00



MNI Mathematik, Naturwissenschaften und Informatik

