

UAS Semester Genap 2015/2016

DIG1G3 (IMPLEMENTASI STRUKTUR DATA)

Jumat, 13 Mei 2016 Pukul 09.00 – 11.00 (120 menit)

Dosen: RIM, CAH, IZM

= On-Site Test, Close Book, Perorangan =							
Nama Mahasiswa:	NIM:	Kelas:	Ruang:	Nilai:			
				(Diisi Dosen)			
Salinlah pernyataan berik	ut:	Tanda Tangan Mahasiswa:					
Saya mengerjakan ujian ini dengan jujur dan mandiri. Jika							
saya melakukan pelanggaran, maka saya bersedia							
menerima sanksi.							
		•••••					

Kompetensi Dasar

Kompetensi Dasar yang akan dicapai oleh mahasiswa dengan mengikuti ujian ini:

- 1. KD1: Mahasiswa mampu memahami konsep singly linked list, doubly linked list, circular dan multi linked list serta stack
- 2. KD2: Mahasiswa mampu melakukan tracing (penelusuran) dengan baik dari potongan program yang diberikan
- 3. KD3: Mahasiswa mampu merancang solusi dari permasalahan yang diberikan dengan menggunakan komponen-komponen struktur data yang telah dipelajari

Peraturan Khusus Ujian

- 1. Anda harus menjawab **SENDIRI** semua pertanyaan di bawah. **DILARANG KERAS** untuk berkomunikasi, bekerjasama, dan meminta bantuan siapapun, melalui media apapun.
- 2. Gunakan lembar jawaban yang tersedia mulai dari awal s.d halaman terakhir dokumen ini. Jika lembar jawab yang disediakan masih kurang, gunakan halaman kosong di balik setiap lembar soal. **Tidak ada kertas tambahan** untuk menuliskan jawaban Anda.
- 3. Sifat ujian adalah **tertutup** untuk **media apapun**, seperti buku, catatan, dan komputer/laptop. Semua **perangkat elektronik** juga **tidak boleh** digunakan, seperti kalkulator, handphone, dll. Setiap coretan untuk perhitungan dipersilakan dilakukan di lembar soal maupun jawaban.

I. Pilihan Ganda – Hitamkan pada Lembar Jawaban yang Telah Disediakan

Soal no 1-3. Diberikan sebuah queue seperti gambar berikut:

- 1. ADT yang tepat untuk queue diatas adalah...
 - A. Struct Mobil {
 String merk;
 Mobil *next;
 }
 B. Struct Merk {
 String merk;
 Mobil *next;

- 2. Apabila dilakukan dequeue(), dequeue(), enqueue(APV), enqueue(CRV), dequeue(), maka antrian yang tepat untuk menggambarkan queue diatas adalah...
 - A. JAZZ, BRV, FREED, APV, CRV
 - B. BRV, FREED, APV, CRV
 - C. FREED, APV, CRV
 - D. APV, CRV
- 3. Langkah yang tepat untuk melakukan proses dequeue() pada atrian diatas adalah...
 - A. Mobil *temp = rear; rear = rear->next; Delete rear;

- C. Mobil *temp = front;
 front = front->next;
 Delete front;
- B. Mobil *temp = *temp2 = front;
 While(temp->next != NULL)
 temp = temp->next;
 rear = temp;
 temp2 = temp->next
 delete temp;

D. Mobil *temp = *temp2 = front;
 While(temp->next != NULL)
 temp = temp->next;
 rear = temp;
 temp2 = temp->next
 delete temp2;

4. Hasil penelusuran pre-order untuk Biary Search Tree dibawah ini adalah...

- A. 62, 44, 32,31,75, 69, 66, 87, 83, 92
- B. 31, 32, 44, 62, 66, 69, 75, 83, 87, 92
- C. 62, 44, 32, 31, 75, 66, 69, 87, 83, 92
- D. 31, 32, 44, 66, 69, 83, 92, 87, 75, 62
- 5. Gambar yang tepat untuk menggambarkan Max-Heap tree yang terbentuk dari data 90, 50, 72, 10, 62, 58, 55, 70, 24 adalah...

A.

C.

6. Berdasarkan data diatas, apabila dilakukan deleting terhadap node 90 pada Max-heap tree, maka tree yang terbentuk adalah...

Soal untuk no 6, 7, 8, dan 9

Vertex	1	2	3	4	5	6
1	0	1	1	0	0	0
2	0	0	0	1	0	0
3	0	0	0	1	0	0
4	0	0	0	0	1	1
5	0	0	0	0	0	1
6	0	0	0	0	0	0

7. Berdasarkan matrix diatas, maka graph yang dibentuk adalah?

A.

C.

B.

D.

- 8. Hasil BFS untuk graph diatas adalah...
 - A. 0, 1, 2, 3, 4, 5, 6
 - B. 0, 1, 3, 4, 5, 6, 2
 - C. 6, 5, 4, 3, 1, 2, 0
 - D. 6, 4, 5, 3, 2, 1, 0
- 9. Hasil DFS untuk graph diatas adalah...
 - A. 0, 1, 2, 3, 4, 5, 6
 - B. 0, 1, 3, 4, 5, 6, 2
 - C. 6, 5, 4, 3, 1, 2, 0
 - D. 6, 4, 5, 3, 2, 1, 0
- 10. Topological sort dari graph diatas adalah....
 - A. 0, 1, 2, 3, 4, 5, 6
 - B. 0, 1, 3, 4, 5, 6, 2
 - C. 6, 5, 4, 3, 1, 2, 0
 - D. 6, 4, 5, 3, 2, 1, 0

Pohon berikut digunakan untuk soal No.11 – 14

- 11. Predecessor bagi node dengan key Luwu adalah
 - A. Depok
 - B. Cimahi
 - C. Medan, Jeddah, Cimahi
 - D. Medan, Tokyo, Atlanta
- 12. Internal *node* dari pohon tersebut adalah
 - A. Rio de Janairo, Luwu, Depok
 - B. Bone, Rio de Janairo, Palu, Luwu, Depok
 - C. Tokyo, Atlanta, Jeddah, Cimahi
 - D. Medan, Tokyo, Jeddah, Atlanta, Cimahi
- 13. Level dari *node* dengan *key* Cimahi adalah...
 - A. 2
 - B. 1

- C. 0
- D. 3
- 14. Hasil penelusuran inorder dari pohon tersebut adalah...
 - A. Medan Tokyo Bone Atlanta Rio de Janairo Palu Jeddah Cimahi Luwu Depok
 - B. Bone Tokyo Rio de Janairo Atlanta Palu Medan Jeddah Luwu Cimahi Depok
 - C. Bone Rio de Janairo Atlanta Palu Tokyo Luwu Depok Cimahi Jeddah Medan
 - D. Medan Tokyo Jeddah Bone Atlanta Palu Cimahi Rio de Janairo Luwu Depok
- 15. Heaptree dari tree berdasarkan array 1, 7, 16, 5, 18, 31, 32, 9, 16, 46 adalah
 - A. 46, 32, 31, 18, 16, 16, 9, 7, 5, 1
 - B. 46, 18, 32, 16, 7, 31, 16, 9, 5, 1
 - C. 46, 32, 31, 18, 16, 9, 7, 5, 1
 - D. 46, 18, 31, 16, 7, 32, 16, 9, 5, 1
- 16. Jika pada BST dengan masukan 11, 6, 19, 4, 8, 17, 43, 5, 10, 31 dilakukan penghapusan pada node dengan key 6, bentuk BST akan menjadi...

17. Jika sebuah pohon AVL memiliki masukan berikut: 25, 10, 30, 34, 33, 7, 6 hasil akhir dari pohon tersebut adalah

18. Topological sort dari graf berikut adalah:

6

30

- A. b g k d a e h f c
- B. abgkdcfhe
- C. bgkdcefha
- D. b g ak d e h f c
- 19. Hasil penelusuran BSF dari graf berikut jika dimulai dari node dengan key X adalah

- A. X, P, U, Q, R, Y, V, S, W, T
- B. X, Y, Q, V, P, U, T, S, R, W
- C. X, Q, Y, V, P, U, R, W, S, T
- D. X, Q, Y, V, U, P, S, R, W, T
- 20. Berikut merupakaan pernyataan yang tepat mengenai queue:
 - A. Queue bersifat LIFO, dengan enqueue merupakan primitif untuk memasukkan data dan dequeue merupakan primitif untuk menghapus data
 - B. Queue bersifat FIFO, dengan enqueue merupakan primitif untuk memasukkan data dan dequeue merupakan primitif untuk menghapus data serta data dimasukkan dari sisi depan (front) array
 - C. Queue bersifat FIFO, dengan enqueue merupakan primitif untuk memasukkan data dan dequeue merupakan primitif untuk menghapus data serta data dimasukkan dari sisi belakang (rear) array
 - D. Queue bersifat FIFO, dengan enqueue merupakan primitif untuk memasukkan data dan dequeue merupakan primitif untuk menghapus data serta data dihapus dari sisi belakang (rear) array

II. Essay

1. Perhatikan definisi queue berikut ini!

```
struct Node {
    char NIM[13];
    char Nama[30];
    Node *Rear;
    Node *Next;
};
```

Queue di atas diinisialisasi menggunakan prosedur inisialisasi sebagai berikut!

```
void inisialisasi(Queue *Q) {
   Q->Front = NULL;
   Q->Rear = NULL;
```

Tuliskan implementasi dari prosedur enqueue dan dequeue dari queue di atas. void enQueue (Queue *Q, char NIM[13], char Nama[30]);

```
void enQueue(Queue *Q, char NIM[13], char Nama[30]);
void deQueue(Queue *Q);
```

2. Buatlah AVL tree berdasarkan angka berikut secara berturut-turut: 8, 4, 9, 11, 10, 3, 2, 5, 6, 4. Tuliskan dalam langkah per langkah! Setelah AVL tree tersebut jadi, traversal tree tersebut secara pre-order, in-order dan post-order.

Untuk soal 3-5, perhatikan graph berikut!

Sumber: http://www.chegg.com/homework-help/questions-and-answers/suppose-dijkstra-s-algorithm-run-following-graph-starting-node--b-show-nal-shortest-path-t-q3684344

- 3. Tuliskan hasil traversal graph di atas secara DFS dan BFS, dimulai dari node A.
- 4. Buatlah topological sort dari graph di atas.
- 5. Hitunglah rute terpendek graph di atas menggunakan algoritma Dijkstra, dimulai dari node A.