Интеллектуальные информационные технологии и системы

Практическое занятие 1

Нечёткая аппроксимация нелинейных зависимостей с использованием пакета Fuzzy Logic Toolbox в интерактивном режиме

Цель: Изучение особенностей нечёткого моделирования в вычислительной среде MatLab. Приобретение навыков разработки систем нечёткого вывода в интерактивном режиме с использованием пакета расширения Fuzzy Logic Toolbox.

Задание:

- **1.** Ознакомиться с порядком проектирования и исследования нечётких систем в среде MatLab по учебно-методическому пособию *FuzzyLogicToolbox.pdf*.
- **2.** При помощи пакета расширения Fuzzy Logic Toolbox разработать системы нечёткого вывода типов Мамдани и Сугено для аппроксимации нелинейной зависимости согласно варианту, приведенному в табл. 1 на основе трёхмерного изображения указанной зависимости.

Таблица 1. Варианты нелинейных зависимостей

	Таолица 1. Барианты нелинейных зависимостей			
Вари-	Нелинейная зависимость	Трёхмерное изображение		
ант	для нечёткой аппроксимации	нелинейной зависимости		
1	$y = -\sin(x_1) \cdot \sin\left(\frac{x_1^2}{\pi}\right) - \sin(x_2) \cdot \sin\left(\frac{x_2^2}{\pi}\right),$ $x_1 \in [-3, 0]; \qquad x_2 \in [-2, 2].$	1.5 1.5 0.5 0 -0.5 2 0 -2 -3 x ₁		
2	$y = x_1 \cdot \sin(4 \cdot x_1) + 1, 1 \cdot x_2 \cdot \sin(2 \cdot x_2),$ $x_1 \in [0, 2]; \qquad x_2 \in [0, 2].$	2		
3	$y = 50 - x_1^2 \cdot (\cos(x_2) + 1),$ $x_1 \in [-4, 2]; \qquad x_2 \in [-5, 3].$	30 20 20 20 20 20 20 20 20 20 20 20 20 20		

Продолжение табл. 1

	пжение таол. 1	T
4	$y = x_1^2 \cdot (\sin(x_2) + 1),$ $x_1 \in [-4, 2]; x_2 \in [-4, 3].$	30 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20
5	$y = x_1^2 + x_2^2,$ $x_1 \in [-5, 5]; x_2 \in [-5, 5].$	40 > 20 0 5 0 x ₂ -5 -5 x ₁
6	$y = x_1^2 - x_2^2$, $x_1 \in [-6, 6]; x_2 \in [-6, 6]$.	20 -20 5 0 -5 -5 x ₁
7	$y = -x_1^2 - x_2^2$, $x_1 \in [-8, 8]; x_2 \in [-8, 8].$	-100 -100 5 0 -5 -5 -5 -5 -5 -5 -5
8	$y = -x_1^2 + 3 \cdot x_2^2,$ $x_1 \in [-5, 10]; \qquad x_2 \in [-5, 10].$	200 > 100 0 10 5 0 -5 -5 -5 x ₁

Π_1	noi	олжени	- табп	1
TI	DO_{\perp}	иолжени	c raon.	_1

	лжение таол. 1	1
9	$y = -x_1^2 \cdot \sin(x_2 - 1),$ $x_1 \in [-7, 3]; \qquad x_2 \in [-4, 4, 1, 7].$	40 20 -20 -40 0 -2 4 -6 4 x ₁
10	$y = \sin(0, 5 \cdot x_1) \cdot x_2^2$, $x_1 \in [-5, 5]; \qquad x_2 \in [-5, 5].$	20 20 20 5 0 0 0 0 0 0 0 0 0 0 0 0 0
11	$y = \sin(x_1) \cdot e^{-3 \cdot x_2},$ $x_1 \in [0, 2\pi]; \qquad x_2 \in [0, 1]$	0.5 > 0 -0.5 1 0.5 x ₂ 0 0 x ₁
12	$y = \sin^{2}(x_{1}) \cdot \ln(x_{2}),$ $x_{1} \in [0, \pi]; \qquad x_{2} \in [0.1, 5]$	$\begin{array}{c} 1 \\ 0 \\ -1 \\ -2 \\ 4 \\ 2 \\ 0 \\ X_2 \\ \end{array}$
13	$y = \sin^{2}(x_{1} - 2 \cdot x_{2}) \cdot e^{- x_{2} },$ $x_{1} \in [0, \pi]; \qquad x_{2} \in [-1, 1]$	2 3 X ₂ -1 0 X ₁

Продолжение табл. 1

	пжение таол. 1	1
14	$y = \frac{x_1^2 \cdot x_2^2 + 2 \cdot x_1 \cdot x_2 - 3}{x_1^2 + x_2^2 + 1},$ $x_1 \in [-2, 2]; \qquad x_2 \in [-1, 1]$	0 -1 -2 -3 1 0 0 0 x ₂ -1 -2 x ₁
15	$y = \frac{\sin(x_1 \cdot x_2)}{x_1},$ $x_1 \in [-0.1, 1.5]; \qquad x_2 \in [-\pi, \pi]$	2 > 0 -2 0 -2 0 0.5 1 1.5 x ₂ x ₁
16	$y = (1 + x_1 \cdot x_2) \cdot (3 - x_1) \cdot (4 - x_2),$ $x_1 \in [0, 4]; \qquad x_2 \in [0, 4]$	10 2 10 4 2 2 x ₂ 0 0 x ₁
17	$y = e^{- x_1 } \cdot (x_1^5 + x_2^4) \cdot \sin^2(x_1 \cdot x_2),$ $x_1 \in [-1.5, 1.5]; \qquad x_2 \in [-2.2, 2.2]$	10 > 0 -10 2 0 -2 -1 x ₁
18	$y = \left(x_2^2 - 3\right) \cdot \sin\left(\frac{x_1}{ x_2 + 1}\right),$ $x_1 \in \left[-\pi, \ \pi\right]; \qquad x_2 \in \left[-3, \ 3\right]$	4 2

- **3.** Для количественной оценки качества аппроксимации при помощи систем нечёткого вывода типов Мамдани и Сугено заданной нелинейной зависимости определить соответствующие значения среднеквадратической ошибки.
- **4.** Исследовать изменение качества аппроксимации при изменении типа функций принадлежности термов входных и выходной (для системы Мамдани) переменных;
- **5.** Исследовать изменение качества аппроксимации при изменении количества термов в описании входных переменных;
 - 6. Сделать выводы из проделанной работы в которых отразить:
 - область возможного применения пакета Fuzzy Logic Toolbox в интерактивном режиме для решения прикладных задач;
 - особенности систем нечёткого вывода типов Мамдани и Сугено с точки зрения их практического использования;
 - влияние на качество аппроксимации нелинейной зависимости количества и типа функций принадлежности термов входных переменных;
 - 7. Подготовить отчёт по лабораторной работе в виде pdf-файла с именем:

LR1_Календарный Γ од Φ амилия Mсполнителя.pdf

(Фамилия исполнителя в имени файла отчёта приводится в латинской транскрипции).

Содержание отчёта:

- 1. Фамилия, имя и отчество студента, выполнившего работу;
- 2. Номер учебной группы;
- 3. Дата выполнения работы;
- 4. Название работы;
- 5. Цель работы;
- **6.** Математическое выражение и область определения исходной зависимости согласно варианту задания;
 - 7. График исходной зависимости;
- **8.** Графики функций принадлежности термов входных и выходной (для системы Мамдани) переменных;
- **9.** Базы правил нечётких продукций для систем нечёткого вывода типов Мамдани и Сугено;
 - 10. Поверхности «входы-выход» для систем нечёткого вывода типов Мамдани и Сугено;
- **11.** Полученные значения среднеквадратических ошибок аппроксимации для исследованных вариантов систем нечёткого вывода;
 - 12. Выводы по работе.