Embedded Systems

11. Architecture Synthesis

Lothar Thiele

Contents of Course

11-2

Contents

- ▶ Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling

Architecture Synthesis

Determine a hardware architecture that efficiently executes a given algorithm.

- Major tasks of architecture synthesis:
 - allocation (determine the necessary hardware resources)
 - scheduling (determine the timing of individual operations)
 - binding (determine relation between individual operations of the algorithm and hardware resources)
- Classification of synthesis algorithms:
 - heuristics or exact methods
- Synthesis methods can often be applied independently of granularity of algorithms, e.g. whether operation is a whole complex task or a single operation.

- Sequence graph $G_S = (V_S, E_S)$ where V_S denotes the operations of the algorithm and E_S the dependence relations.
- ▶ Resource graph $G_R = (V_R, E_R)$, $V_R = V_S \cup V_T$ where V_T denote the resource types of the architecture and G_R is a bipartite graph. An edge $(v_s, v_t) \in E_R$ represents the availability of a resource type v_t for an operation v_s .
- ▶ Cost function $c: V_T \to \mathbf{Z}$
- ▶ Execution times $w: E_R \to \mathbf{Z}^{\geq 0}$ are assigned to each edge $(v_s, v_t) \in E_R$ and denote the execution time of operation $v_s \in V_S$ on resource type $v_t \in V_T$.

- Example sequence graph:
 - Given algorithm (differential equation):

```
int diffeq(int x, int y, int u, int dx, int a) {
  int x1, u1, y1;
 while (x < a) {
   x1 = x + dx;
   u1 = u - (3 * x * u * dx) - (3 * y * dx);
   y1 = y + u * dx;
   x = x1;
   u = u1;
   y = y1;
 return y;
```

Sequence graph:

Resource graph:

Allocation and Binding

An allocation is a function $\alpha: V_T \to \mathbb{Z}^{\geq 0}$ that assigns to each resource type $v_t \in V_T$ the number $\alpha(v_t)$ of available instances.

A binding is defined by functions $\beta: V_S \to V_T$ and $\gamma: V_S \to \mathbf{Z}^{>0}$. Here, $\beta(v_s) = v_t$ and $\gamma(v_s) = r$ denote that operation $v_s \in V_S$ is implemented on the rth instance of resource type $v_t \in V_T$.

Scheduling

A schedule is a function $\tau:V_S\to {\bf Z}^{>0}$ that determines the starting times of operations. A schedule is feasible if the conditions

$$\tau(v_j) - \tau(v_i) \ge w(v_i) \quad \forall (v_i, v_j) \in E_S$$

are satisfied. $w(v_i) = w(v_i, \beta(v_i))$ denotes the execution time of operation v_i .

The latency L of a schedule is the time difference between start node v_0 and end node v_n :

$$L = \tau(v_n) - \tau(v_0) .$$

Scheduling

Example

$$L = \tau(v_{12}) - \tau(v_0) = 7$$

$$\tau(\mathsf{v}_0) = 1$$

$$\tau(v_1) = \tau(v_{10}) = 1$$

$$\tau(v_2) = \tau(v_{11}) = 2$$

$$\tau(\mathsf{V}_3) = 3$$

$$\tau(\mathsf{v}_6) = \tau(\mathsf{v}_4) = 4$$

$$\tau(\mathsf{V}_7) = 5$$

$$\tau(\mathsf{v}_8) = \tau(\mathsf{v}_5) = 6$$

$$\tau(\mathsf{v}_9) = 7$$

$$\tau(V_{12}) = 8$$

Binding

• Example $(\alpha(r_1) = 4, \alpha(r_2) = 2)$:

$$\beta(v_1) = r_1, \gamma(v_1) = 1,$$
 $\beta(v_2) = r_1, \gamma(v_2) = 2,$
 $\beta(v_3) = r_1, \gamma(v_3) = 2,$
 $\beta(v_4) = r_2, \gamma(v_4) = 1,$
 $\beta(v_5) = r_2, \gamma(v_5) = 1,$
 $\beta(v_6) = r_1, \gamma(v_6) = 3,$
 $\beta(v_7) = r_1, \gamma(v_7) = 3,$
 $\beta(v_8) = r_1, \gamma(v_8) = 4,$
 $\beta(v_9) = r_2, \gamma(v_9) = 1,$
 $\beta(v_{10}) = r_2, \gamma(v_{10}) = 2,$
 $\beta(v_{11}) = r_2, \gamma(v_{11}) = 2$

Multiobjective Optimization

- Architecture Synthesis is an optimization problem with more than one objective:
 - Latency of the algorithm that is implemented
 - Hardware cost (memory, communication, computing units, control)
 - Power and energy consumption
- Optimization problems with several objectives are called "multiobjective optimization problems".

Multiobjective Optimization

- Let us suppose, we would like to select a typewriting device. Criteria are
 - mobility (related to weight)
 - comfort (related to keyboard size and performance)

lcon	Device	weight (kg)	comfort rating
	PC of 2009	20.00	10
	PC of 1984	7.50	7
	Laptop	3.00	9
	Typewriter	9.00	5
	Touchscreen Smartphone	0.11	2
	PDA with large keyboard	0.09	3
	PDA with small keyboard	0.11	4
	Organizer with tiny keybo	ard o.o8	1

Multiobjective Optimization

Pareto-Dominance

Definition : A solution $a \in X$ weakly Pareto-dominates a solution $b \in X$, denoted as $a \leq b$, if it is as least as good in all objectives, i.e., $f_i(a) \leq f_i(b)$ for all $1 \leq i \leq n$. Solution a is better then b, denoted as $a \prec b$, iff $(a \leq b) \land (b \not\preceq a)$.

Swiss Federal Institute of Technology

Decision space

Objective space

Pareto-optimal Set

- A solution is named *Pareto-optimal*, if it is not Pareto-dominated by any other solution in X.
- The set of all Pareto-optimal solutions is denoted as the Pareto-optimal set and its image in objective space as the Pareto-optimal front.

objective space Z:

Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling

Scheduling Algorithms

Classification

- unlimited resources: no constraints in terms of the available resources are defined.
- limited resources: constrains are given in terms of the number a types of available resources.
- iterative algorithms: an initial solution to the architecture synthesis is improved step by step.
- constructive algorithms: the synthesis problem is solved in one step.
- transformative algorithms: the initial problem formulation is converted into a (classical) optimization problem.

Scheduling Without Resource Constraints

- The scheduling method can be used
 - as a preparatory step for the general synthesis problem
 - to determine bounds on feasible schedules in the general case
 - if there is a dedicated resource for each operation.

Given is a sequence graph $G_S=(V_S,E_S)$ and a resource graph $G_R=(V_R,E_R)$. Then the latency minimization without resource constraints is defined as

$$L = \min\{\tau(v_n) : \tau(v_j) - \tau(v_i) \ge w(v_i) \ \forall (v_i, v_j) \in E_S\}$$

Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling

The ASAP Algorithm

▶ ASAP = As Soon As Possible

```
\mathsf{ASAP}(G_S(V_S, E_S), w) {
   \tau(v_0) = 1;
   REPEAT {
       Determine v_i whose predec. are planed;
       \tau(v_i) = \max\{\tau(v_i) + w(v_i) \ \forall (v_i, v_i) \in E_S\}
    } UNTIL (v_n \text{ is planned});
   RETURN (\tau);
```

The ASAP Algorithm

▶ Example:

$$w(v_i) = 1$$

Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling

The ALAP Algorithm

► ALAP = As Late As Possible

```
ALAP(G_S(V_S, E_S), w, L_{max}) {
   \tau(v_n) = L_{max} + 1;
   REPEAT {
       Determine v_i whose succ. are planed;
      \tau(v_i) = \min\{\tau(v_i) \ \forall (v_i, v_i) \in E_S\} - w(v_i)
    } UNTIL (v_0) is planned);
   RETURN (\tau);
```

The ALAP Algorithm

Example:

$$L_{\text{max}} = 7$$
$$w(v_i) = 1$$

Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling

Scheduling with Timing Constraints

- Different classes of timing constraints:
 - deadline (latest finishing times of operations), for example

$$\tau(v_2) + w(v_2) \le 5$$

• release times (earliest starting times of operations), for example $\tau(v_3) > 4$

 relative constraints (differences between starting times of a pair of operations), for example

$$\tau(v_6) - \tau(v_7) \ge 4$$

 $\tau(v_4) - \tau(v_1) \le 2$

Scheduling with Timing Constraints

- We will model all timing constraints using *relative* constraints. Deadlines and release times are defined relative to the start node v_0 .
- Minimum, maximum and equality constraints can be converted into each other:
 - Minimum constraint.

$$\tau(v_j) \ge \tau(v_i) + l_{ij} \longrightarrow \tau(v_j) - \tau(v_i) \ge l_{ij}$$

Maximum constraint.

$$\tau(v_j) \le \tau(v_i) + l_{ij} \longrightarrow \tau(v_i) - \tau(v_j) \ge -l_{ij}$$

Equality constraint.

$$\tau(v_j) = \tau(v_i) + l_{ij} \longrightarrow \tau(v_j) - \tau(v_i) \le l_{ij} \land \tau(v_j) - \tau(v_i) \ge l_{ij}$$

Weighted Constraint Graph

Timing constraints can be represented in form of a weighted constraint graph:

A weighted constraint graph $G_C = (V_C, E_C, d)$ related to a sequence graph $G_S = (V_S, E_S)$ contains nodes $V_C = V_S$ and a weighted edge for each timing constraint. An edge $(v_i, v_j) \in E_C$ with weight $d(v_i, v_j)$ denotes the constraint $\tau(v_i) - \tau(v_i) \geq d(v_i, v_j)$.

Weighted Constraint Graph

In order to represent a feasible schedule, we have one edge corresponding to each precedence constraint with

$$d(v_i, v_j) = w(v_i)$$

where $w(v_i)$ denotes the execution time of v_i .

- A consistent assignment of starting times τ(v_i) to all operations can be done by solving a single source longest path problem.
- A possible algorithm (Bellman-Ford) has complexity O(|V_C| |E_C|):

Iteratively set
$$\tau(v_j) := \max\{\tau(v_j), \tau(v_i) + d(v_i, v_j) : (v_i, v_j) \in E_C\}$$
 for all $v_j \in V_C$ starting from $\tau(v_i) = -\infty$ for $v_i \in V_C \setminus \{v_0\}$ and $\tau(v_0) = 1$.

Weighted Constraint Graph

► Example: $w(v_1) = w(v_3) = 2$ $w(v_2) = w(v_4) = 1$ $\tau(v_0) = \tau(v_1) = \tau(v_3) = 1$, $\tau(v_2) = 3$, $\tau(v_4) = 5$, $\tau(v_n) = 6$, $L = \tau(v_n) - \tau(v_0) = 5$

Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling

Scheduling With Resource Constraints

Given is a sequence graph $G_S = (V_S, E_S)$, a resource graph $G_R = (V_R, E_R)$ and an associated allocation α and binding β .

Then the minimal latency is defined as

$$L = \min\{\tau(v_n) : \\ (\tau(v_j) - \tau(v_i) \ge w(v_i, \beta(v_i)) \ \forall (v_i, v_j) \in E_S) \land \\ (|\{v_s : \beta(v_s) = v_t \land \tau(v_s) \le t < \tau(v_s) + w(v_s, v_t)\}| \le \alpha(v_t) \\ \forall v_t \in V_T, \forall 1 \le t \le L_{max})\}$$

where L_{max} denotes an upper bound on the latency.

Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling

List Scheduling

```
LIST(G_S(V_S, E_S), G_R(V_R, E_R), \alpha, \beta, priorities){
 t = 1;
 REPEAT {
   FORALL v_k \in V_T {
     determine candidates to be scheduled U_k;
    determine running operations T_k;
    choose S_k \subseteq U_k with maximal priority
      and |S_k| + |T_k| < \alpha(v_k);
    \tau(v_i) = t \ \forall v_i \in S_k; \ \}
   t = t + 1:
 \} UNTIL (v_n \text{ planned})
 RETURN (\tau); }
```

One of the most widely used algorithms for scheduling under resource constraints.

Principles

- To each operation there is a *priority* assigned which denotes the urgency of being scheduled. This *priority is static*, i.e. determined before the List Scheduling.
- The algorithm schedules one time step after the other.
- U_k denotes the set of operations that (a) are mapped onto resource v_k and whose predecessors finished.
- T_k denotes the currently running operations mapped to resource v_k .

► Example: G_S

b) G_R

- Solution via *list scheduling*:
 - In the example, the solution is independent of priority.
 - Because of the greedy principle, all resources are directly occupied.
 - List scheduling is a heuristic algorithm.

In this example, it does not yield the minimal latency!

- Solution via an optimal method:
 - Latency is smaller than with list scheduling.
 - An example of an optimal algorithm is the transformation into an *integer linear program*.

Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling

▶ Principle:

- Yields optimal solution to synthesis problems as it is based on an exact mathematical description of the problem.
- Solves scheduling, binding and allocation simultaneously.
- Standard optimization approaches (and software) are available to solve integer linear programs:
 - in addition to linear programs (linear constraints, linear objective function) some variables are forced to be integers.
 - much more complex than solving linear program
 - efficient methods are based on (a) branch and bound methods and (b) determining additional hyperplanes (cuts).

- Many variants exist, depending on available information, constraints and objectives, e.g. minimize latency, minimize resources, minimize memory. Just an example is given here!!
- ▶ For the following example, we use the *assumptions*:
 - The **binding** is **determined** already, i.e. every operation v_i has a unique execution time $w(v_i)$.
 - We have determined the *earliest and latest starting times* of operations v_i as l_i and h_i , respectively. To this end, we can use the ASAP and ALAP algorithms that have been introduced earlier. The maximal latency L_{max} is chosen such that a feasible solution to the problem exists.

minimize:
$$\tau(v_n) - \tau(v_0)$$
 subject to $x_{i,t} \in \{0,1\} \quad \forall v_i \in V_S \ \forall t : l_i \leq t \leq h_i$ (1)

$$\sum_{t=l_i}^{h_i} x_{i,t} = 1 \quad \forall v_i \in V_S$$
 (2)

$$\sum_{t=l_i}^{h_i} t \cdot x_{i,t} = \tau(v_i) \quad \forall v_i \in V_S$$
 (3)

$$\tau(v_j) - \tau(v_i) \ge w(v_i) \quad \forall (v_i, v_j) \in E_S$$
 (4)

$$\sum_{\substack{\forall i: (v_i, v_k) \in E_R \\ \forall v_k \in V_T \ \forall t: 1 \leq t \leq \max\{h_i: v_i \in V_S\}}} \sum_{\substack{x_{i, t - p'} \leq \alpha(v_k) \\ x_{i, t - p'} \leq \alpha(v_k)}} x_{i, t - p'} \leq \alpha(v_k)$$

Explanations

- (1) declares variables x to be binary .
- (2) makes sure that exactly one variable $x_{i,t}$ for all t has the value 1, all others are 0.
- (3) determines the relation between variables x and starting times of operations τ . In particular, if $x_{i,t} = 1$ then the operation v_i starts at time t, i.e. $\tau(v_i) = t$.
- (4) guarantees, that all precedence constraints are satisfied.
- (5) makes sure, that the resource constraints are not violated. For all resource types $v_k \in V_T$ and for all time instances t it is guaranteed that the number of active operations does not increase the number of available resource instances.

Explanations

• (5) The first sum selects all operations that are mapped onto resource type v_k . The second sum considers all time instances where operation v_i is occupying resource type v_k :

$$\sum_{p'=0}^{w(v_i)-1} x_{i,t-p'} = \begin{cases} 1 & : \quad \forall t : \tau(v_i) \le t \le \tau(v_i) + w(v_i) - 1 \\ 0 & : \quad \text{sonst} \end{cases}$$

Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- **▶** Iterative Algorithms
- Dynamic Voltage Scaling

Iterative algorithms consist of a set of indexed equations that are evaluated for all values of an index variable I:

$$x_i[l] = \mathbf{F}_i[\dots, x_j[l-d_{ji}], \dots] \quad \forall l \ \forall i \in I$$

Here, x_i denote a set of indexed variables, F_i denote arbitrary functions and d_{ji} are constant index displacements.

Examples of well known representations are signal flow graphs (as used in signal and image processing and automatic control), marked graphs and special forms of loops.

- Several representations of the same iterative algorithm:
 - One indexed equation with constant index dependencies:

$$y[l] = au[l] + by[l-1] + cy[l-2] + dy[l-3] \quad \forall l$$

Equivalent set of indexed equations:

$$x_1[l] = au[l] \quad \forall l$$

 $x_2[l] = x_1[l] + dy[l - 3] \quad \forall l$
 $x_3[l] = x_2[l] + cy[l - 2] \quad \forall l$
 $y[l] = x_3[l] + by[l - 1] \quad \forall l$

■ Extended sequence graph $G_S = (V_S, E_S, d)$: To each edge $(v_i, v_j) \in E_S$ there is associated the index displacement d_{ij} . An edge $(v_i, v_j) \in E_S$ denotes that the variable corresponding to v_j depends on variable corresponding to v_j with displacement d_{ij} .

Equivalent marked graph:

Equivalent signal flow graph:

Equivalent loop program:

```
while(true) {
    t1 = read(u);
    t5 = a*t1 + d*t2 + c*t3 + b*t4;
    t2 = t3;
    t3 = t4;
    t4 = t5;
    write(y, t5);}
```


- An iteration is the set of all operations necessary to compute all variables x_i[/] for a fixed index /.
- ► The *iteration interval P* is the time distance between two successive iterations of an iterative algorithm. 1/P denotes the *throughput* of the implementation.
- ► The *latency L* is the maximal time distance between the starting and the finishing times of operations belonging to one iteration.
- ▶ In a pipelined implementation (functional pipelining), there exist time instances where the operations of different iterations I are executed simultaneously.
- In case of *loop folding*, starting and finishing times of an operation are in different physical iterations.

- Implementation principles
 - A simple possibility, the edges with d_{ij} > 0 are removed from the extended sequence graph. The resulting simple sequence graph is implemented using standard methods.

Example with unlimited resources:

- Implementation principles
 - Using functional pipelining: Successive iterations overlap and a higher throughput (1/P) is obtained.

P = 2

L = 7

- Solving the synthesis problem using integer linear programming:
 - Starting point is the ILP formulation given for simple sequence graphs.
 - Now, we use the extended sequence graph (including displacements d_{ii}.
 - **ASAP** and **ALAP** scheduling for upper and lower bounds h_i and l_i use only edges with $d_{ij} = 0$ (remove dependencies across iterations).
 - We suppose, that a suitable iteration interval P is chosen beforehand. If it is too small, no feasible solution to the ILP exists and P needs to be increased.

Eqn.(4) is replaced by:

$$\tau(v_j) - \tau(v_i) \ge w(v_i) - d_{ij} \cdot P \quad \forall (v_i, v_j) \in E_S$$

Proof of correctness:

Eqn. (5) is replaced by

$$\sum_{\forall i: (v_i, v_k) \in E_R} \sum_{p'=0}^{w(v_i)-1} \sum_{\forall p: l_i \le t-p'+p \cdot P \le h_i} x_{i,t-p'+p \cdot P} \le \alpha(v_k)$$

$$\forall i: (v_i, v_k) \in E_R \quad p'=0 \quad \forall p: l_i \le t-p'+p \cdot P \le h_i \quad \forall 1 \le t \le P, \ \forall v_k \in V_T$$

Sketch of **Proof**: An operation v_i starting at $\tau(v_i)$ uses the corresponding resource at time steps t with

$$t = \tau(v_i) + p' - p \cdot P$$

$$\forall p', p : 0 \le p' < w(v_i) \land l_i \le t - p' + p \cdot P \le h_i$$

Therefore, we obtain

$$\sum_{p'=0}^{w(v_i)-1} \sum_{\forall p: l_i \leq t-p'+p \cdot P \leq h_i} x_{i,t-p'+p \cdot P}$$

Contents

- Models
- Scheduling without resource constraints
 - ASAP
 - ALAP
 - Timing Constraints
- Scheduling with resource constraints
 - List Scheduling
 - Integer Linear Programming
- Iterative Algorithms
- Dynamic Voltage Scaling

Dynamic Voltage Scaling

- If we transform the DVS problem into an integer linear program optimization: we can optimize the energy in case of dynamic voltage scaling.
- As an example, let us model a set of tasks with dependency constraints.
 - We suppose that a task $v_i \in V_S$ can use one of the execution times $w_k(v_i) \forall k \in K$ and corresponding energy $e_k(v_i)$. There are |K| different voltage levels.
 - We suppose that there are **deadlines** $d(v_i)$ for each operation v_i .
 - We suppose that there are no resource constraints, i.e. all tasks can be executed in parallel.

Dynamic Voltage Scaling

minimize: $\sum_{k \in K} \sum_{v_i \in V_S} y_{ik} \cdot e_k(v_i)$

subject to:

$$y_{ik} \in \{0, 1\} \quad \forall v_i \in V_S, k \in K \tag{1}$$

$$\sum_{k \in K} y_{ik} = 1 \quad \forall v_i \in V_S \tag{2}$$

$$\tau(v_j) - \tau(v_i) \ge \sum_{k \in K} y_{ik} \cdot w_k(v_i) \quad \forall (v_i, v_j) \in E_S$$

(3)

$$\tau(v_i) + \sum_{k \in K} y_{ik} \cdot w_k(v_i) \le d(v_i) \quad \forall v_i \in V_S \quad (4)$$

Dynamic Voltage Scaling

Explanations:

- The objective functions just sums up all individual energies of operations.
- Eqn. (1) makes decision variables y_{ik} binary.
- Eqn. (2) guarantees that exactly one implementation (voltage) $k \in K$ is chosen for each operation v_i .
- Eqn. (3) implements the precedence constraints, where the actual execution time is selected from the set of all available ones.
- Eqn. (4) guarantees deadlines.