

GEL-4074 : Ingénierie de la compatibilité électromagnétique

Laboratoire 4 : Découplage des alimentations, Sonde de champ magnétique

Partie pré-laboratoire

Question 1:

a)

b)

```
mu = 4*pi*1e-7;
vp = 3e8;
r = 0.001;
a = 0.05;
b = 1;
L = (mu/pi) * (b*log(a/r) +a*log(b/r));
On trouve L = 1.7030e-06[H]
c)
On trouve C = 6.5246e-12[F]
```

d)

On trouve comme fréquence de résonnance :

F = 8.0418e+06 Hz

e)

Page: 4/12

Question 2

a)


```
b)  r = 0.001; \\ a1 = 0.05; \\ b1 = 0.03; \\ L1 = (mu/pi)*(b1*log(a/r)+a1*log(b1/r)); \\ On trouve L1 = 1.1497e-07 [H] \\ c) \\ On trouve comme capacité de parcours : Cp = 9.6645e-11 [F] \\ d) \\ fr1 = 1/(2*pi*sqrt(L1*C1))% Frquence de resonnance en [Hz] \\ On trouve comme fréquence de résonnance : <math>f = 4.7746e+07 Hz
```

e)

Page: 6/12

Question 3

a)

b)

On trouve comme capacité de parcours Cp = 4.4002e-06 [F]

c)

$$fr2 = 1/(2*pi*sqrt(L3*Ceq)) % Frquence de resonnance en [Hz]$$

On trouve comme fréquence de résonnance :

AUTEURS : GOHI CONSTANT TIE DJÈ BI, DENIZ SOYSAL, SALIM SEDDIKI

d)

Question 4:

Non, il n'y a pas de différences entre le front descendant de A1 et le front descendant de A2. On en déduit donc que :

F = 47MHz

Résumé des résultats par simulation :

	Front montant	Front descendant	
Mesures	Fréquence de résonnance calculée [MHz]	Fréquence de résonnance calculée [MHz]	
A1	8.04	47.74	
A2	23.99	47.74	
A3	23.99		
A4	8.04		

Partie laboratoire

Partie D:

1)

Pour A1:

Pour A2 :

Pour A3:

Pour A4:

Page: 10/12

2)

Pour la mesure des fréquences de résonnances, nous procédons à l'aide de curseurs comme ceci :

Exemple pour le front montant d' A1 :

Nous plaçons les curseurs afin de mesurer une période de l'oscillation. Il nous reste plus qu' à faire $1/\Delta x$ afin de trouver la fréquence de résonnance.

	Front montant		Front descendant	
Mesures	Fréquence de résonnance calculée [MHz]	Fréquence de résonnance mesurée [MHz]	Fréquence de résonnance calculée [MHZ]	Fréquence de résonnance mesurée [MHZ]
A1	8.04	10.42	47.74	62.56
A2	23.99	27.03	47.74	64.08
A3	23.99	29.41		
A4	8.04	10.42		

AUTEURS: GOHI CONSTANT TIE DJÈ BI, DENIZ SOYSAL, SALIM SEDDIKI

Partie E

A l'aide de la sonde magnétique, voici les résultats que nous avons obtenu pour le parcourt du courant :

Page: 11/12

Figure 9 Tracer le parcourt du courant pour les différents branchements en distinguant entre le front montant et le front descendant

Page: 12/12

Exemple de signal mesurée sur une portion où on avait un front montant et un front descendant :

