DEVOIR À LA MAISON N°9

Exercice 1.

On considère la fonction $f: x \in \mathbb{R}_+ \mapsto 1 - \sqrt{x}$ ainsi la suite $(u_n)_{n \in \mathbb{N}}$ telle que $u_0 = \frac{1}{4}$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.

- **1.** Montrer que pour tout $x \in [0, 1]$, $f(x) \in [0, 1]$.
- **2.** Montrer que $u_n \in [0, 1]$ pour tout $n \in \mathbb{N}$.
- **3.** Déterminer le sens de variation de f et de $f \circ f$ sur [0, 1].
- **4.** Montrer que f possède un unique point fixe α sur [0,1] et déterminer celui-ci.
- **5.** Montrer que $u_0 \leq \alpha$.
- **6.** Montrer que pour tout $n \in \mathbb{N}$, $u_{2n} \leq \alpha$.
- 7. Montrer que $u_0\leqslant u_2$. En déduire que la suite $(u_{2n})_{n\in\mathbb{N}}$ est croissante puis qu'elle converge.
- **8.** Montrer que les points fixes de $f \circ f$ sur [0, 1] sont $[0, \alpha]$ et [0, 1] sont $[0, \alpha]$ et $[0, \alpha]$.
- **9.** En déduire la limite de la suite $(u_{2n})_{n\in\mathbb{N}}$, puis la convergence et la limite de la suite $(u_{2n+1})_{n\in\mathbb{N}}$ et enfin la convergence et la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

EXERCICE 2.

Dans les questions 1, 2 et 3, la loi du groupe n'est pas précisée : le «produit» de deux éléments x et y du groupe sera noté par juxtaposition des éléments, c'est-à-dire xy. L'élément neutre sera noté e.

Dans la question 4, la loi est explicitement notée * : le «produit» de deux éléments du groupe sera donc noté à l'aide de ce symbole.

Un sous-groupe H d'un groupe G est dit distingué dans G si

$$\forall (x, h) \in G \times H, \ x^{-1}hx \in H$$

A tout sous-groupe H d'un groupe G, on associe l'ensemble

$$N_H = \{x \in G, \ \forall h \in H, \ x^{-1}hx \in H \ \text{et } xhx^{-1} \in H\}$$

Enfin, si G est un groupe, on pose

$$Z(G) = \{ \alpha \in G, \ \forall x \in G, \ \alpha x = x\alpha \}$$

- 1. Soient H et K deux sous-groupes d'un groupe G.
 - **a.** Montrer que $H \cap K$ est un sous-groupe de G.
 - **b.** On suppose H et K distingués dans G. Montrer que $H \cap K$ est distingué dans G.
- 2. Soit G un groupe.
 - **a.** Montrer que Z(G) est un sous-groupe de G.
 - **b.** Montrer que Z(G) est distingué dans G.
- 3. Soit H un sous-groupe d'un groupe G.
 - **a.** Montrer que N_H est un sous-groupe de G.
 - b. On suppose dans cette question H distingué dans G. Que vaut N_H?
 - c. Justifier que $H \subset N_H$. Il s'ensuit que N_H est un groupe et que H est un sous-groupe de N_H , ce qu'on ne demande pas de démontrer.
 - **d.** Montrer que H est distingué dans N_H.

4. Dans cette question, on considère $G=\mathbb{C}^* \times \mathbb{C}$ et on définit une loi * sur G en posant

$$(x,y) * (x',y') = (xx',xy'+y)$$

$$pour\left((x,y),(x',y')\right)\in G^2.$$

- a. Vérifier que (G,*) est un groupe.
- **b.** Déterminer Z(G).
- **c.** On pose $H=\mathbb{U}\times\mathbb{C}$. Montrer que H est un sous-groupe de G.
- **d.** Montrer que H est distingué dans G.