Variable Classes

Observables

Invariant masses
Production/Decay angles
CoM kinematics

Used to extract physics

Don't want to mess with these

Discriminatory

Exclusive Process
Missing Mass
Missing Energy
Missing Momentum
Decay Processes
+ Invariant masses

Used to remove backgrounds

They still need to be useable after any ML (or other) cuts

Particle Identification

Momentum, Position Time of Flight Delta Energy Cherenkov ...

Used to minimise backgrounds

Best candidate for ML algorithms?'?

Example from CLAS DTime PID

Other Input Variables

Exclusivity variables

Train with Simulation

Signal : Simulated 3π (Truth Matched) Background : All Experimental Data Events +(Simulated Non Truth)

Training variables + E_{γ} Particle(Δ Time, Δ Energy, P, Vz, θ , ϕ)

200k Training and Test data

Apply Simulated training

Real Experiment distributions shifted to background values compared to Simulation

Simulation must be very Realistic!

Small seperation between 2π and 3π - OK PID variables similar

Cuts still clean up data, but must use low BDT value

Mixed events training

Cut on region with high signal density

Signal = (Missing mass peak $\sim \pi^{\circ}$)

Background = sidebands inc 2π

Train with Mixed Events (III)

Signal : 0.1<MissMass<0.2

Background: -0.04<MissMass<0.1 and 0.2<MissMass<0.5

 $Variables + E_{v}$

Train with Mixed Events (IV)

Signal: 0.1<MissMass<0.2

Background: -0.04<MissMass<0.1 and 0.2<MissMass<0.5

Variables - E_v

Miss Mass V Responses

Example Reaction

Large background from Pions IDed as Kaons

ΔTime PID

Other Input Variables

Train BDT with sWeights

SPlot – technique for disentangling different event species using a discriminatory variable (generalised side-band subtraction)

M. Pivk, F.R. Le Diberder, Nucl. Inst. Meth. A 555, 356-369, 2005

Used RooStats implementation

Exclusive

Missing K-

In TMVA BDT accept negative event weights MLP does not

$$_{s}\mathcal{P}_{\mathrm{n}}(y_{e}) = rac{\sum_{j=1}^{\mathrm{N_{s}}} \mathbf{V}_{\mathrm{n}j} \mathbf{f}_{j}(y_{e})}{\sum_{k=1}^{\mathrm{N_{s}}} N_{k} \mathbf{f}_{k}(y_{e})}$$

Train BDT with sWeights

80k test and 20k train Exclusive

300k test and train Missing K-

300k test and train Missing K+

2 types of events
in Missing K+ signal
weights
Seperated by training

Exclusivity variables V BDT

Event exclusivity with BDT cut

CHANSER CLAS12 HIPO ANALYSER

https://chanser.readthedocs.io/en/latest/

HipoData

Actions

Masking particles

CHANSER analysis database

CLAS12 Standard Actions

Handling Simulated Data

Machine Learning interface: TMVA

* Welcome to chanser's documentation

Welcome to chanser's documentation!

- · Getting Started
 - Installation
 - · Creating your own final state class
 - · Configuring an analysis
 - · Running the analyse
- Combitorial Events
 - Combitorials of the first kind
 - · Combitorials of the second kind
 - · Combitorials of the third kind
 - · Combining Combitorials of different kinds
 - · Setting combitorial behaviour for configured FinalState objects
- HipoData
- Actions
 - StartTime Actions
 - Particle Data Actions
 - · Particle Cut Actions
 - Particle Correction Actions
 - Quick Usage
- Masking particles
 - Masking Calorimeter split-off clusters
 - Masking Radiated photons
- CHANSER analysis database
 - · Including Parameter Lookup in Code
 - · Defining Parameters in .db files

Standard Dun Croup A Actions

- CLAS12 Standard Actions

C Edit on GitHub

- 1. Be able to Automate everything
- 2. Automate everything
- 3. including ML

https://github.com/dglazier/chanser/wiki/TMVA

https://indico.jlab.org/event/472/ contributions/9070/attachments/7345/10144/ AnalysisToolsCppROOT.pdf

