MALWARE ANALYZER: A SAFE, INTERACTIVE SIMULATOR FOR VIRUSES, WORMS, AND TROJANS

ALA-2 (CNS)

Abstract

A safe, browser-based malware simulator (HTML/CSS/JS, deployed on Netlify) models viruses, worms, and trojans using an in-memory file system and virtual network graph without executing real malware. Adjustable attack/defense parameters and Python analytics produce infection curves, detection ratios, and R0-style estimates; results highlight how worms spread quickly in unsegmented networks, viruses rely on user/file activity, and trojans depend on user consent—reinforcing integrity, defense-in-depth, and monitoring.

Quantum Nexus Cyber — Detailed Case Study Report

1.Abstract

Quantum Nexus Cyber is an interactive, browser-based platform designed to simulate malware behavior and demonstrate cybersecurity defense strategies in a safe, conceptual quantum-secured environment. The project uses HTML, CSS, JavaScript, and Python to provide an intuitive, real-time simulation of viruses, worms, and trojans. It allows users to understand malware propagation, configure defense mechanisms, and visualize system health, all without executing real malware

2. Project Objectives

- 1. Create a safe, educational simulation of malware spread in a networked environment.
- 2. Provide configurable parameters for malware behavior and defense strategies.
- 3. Visualize infection propagation, network health, and analytics in real-time.
- 4. Introduce users to quantum-inspired security concepts in an accessible way.
- 5. Offer a terminal interface (NEXUS Terminal) for technical interaction.

3. Technology Stack

- Frontend: HTML5, CSS3, JavaScript (ES6+) for UI, interactivity, and simulation control.
- **Backend** / **Logic:** Python for handling simulation computations and optional server-side logging.
- Visualization: Canvas API and/or SVG for network graph and heatmap visualizations.
- **Hosting:** Netlify for fast, secure, browser-accessible deployment.
- **Simulation Engine:** Custom JS engine to model malware behavior and defense mechanisms.
- Analytics: Real-time charts and logs implemented via JS charting libraries.

4. Features

- **Malware Simulation:** Interactive modeling of three malware types: viruses, worms, and trojans.
- **NEXUS Terminal v4.0:** Command-line style interface for technical users.
- Configurable Parameters: Infection probability, network size, scan rates, patching speed, segmentation options.
- Real-Time Analytics: Infection timelines, heatmaps, and system health indicators.
- Educational Insights: Helps users learn about malware dynamics, defense strategies, and quantum-inspired security.
- Safe Environment: Entire simulation is client-side; no real malware is executed.

5. Working / Simulation Design

5.1 Simulation Model

- Uses discrete-time ticks to simulate network evolution.
- Each node in the network can be in one of several states: Healthy, Exposed, Infected, Dormant, or Removed.
- Malware spreads probabilistically based on its type and configured parameters.
- Defense mechanisms like antivirus scanning, patching, and network segmentation reduce infection likelihood.

5.2 Malware Types

- 1. **Virus:** Attaches to host files and spreads when files are shared.
- 2. Worm: Self-replicates and spreads across network nodes automatically.
- 3. **Trojan:** Appears as legitimate software but opens backdoors for malicious activity.

5.3 Prevention Strategies (Simulated & Real-World)

- Network Segmentation: Limits malware propagation paths.
- Regular Patching: Keeps systems updated to reduce vulnerabilities.
- Antivirus & Endpoint Protection: Detects and removes malware before it spreads.
- User Awareness: Training to avoid executing suspicious files or links.
- Backup & Recovery: Maintain offline backups to restore affected systems.

6. Pros

- **Highly Interactive:** Engaging visualizations and real-time analytics.
- Educational: Demonstrates malware behavior and defense strategies effectively.
- Safe: No execution of real malware.
- Quantum-Inspired Security Concept: Unique angle that adds depth and originality.
- Terminal Interface: Appeals to technical users and makes learning fun.
- Configurable: Users can experiment with different parameters and scenarios.

7. Cons

- Limited Advanced Malware Models: Could include ransomware or botnets in future updates.
- Browser-Based Performance: Large networks may run slower in some browsers.
- Quantum Security Implementation: Currently conceptual, not fully implemented (still educational).

8. Conclusion

Quantum Nexus Cyber is a robust educational platform combining interactive malware simulation, configurable defense strategies, and quantum-inspired security concepts. Using HTML, CSS, JavaScript, and Python, it offers real-time analytics, an engaging terminal interface, and safe experimentation. With minimal cons, this project is highly suitable for academic demonstrations, workshops, and cybersecurity training, providing both technical depth and originality

9. working and output:-

Fig 1 Dashboard

Fig 2 Threat Vector

Fig 3 Simulator Arena

Fig 4 System Damage Pop-Up

Fig 5 Activity Log

Fig 6 Real-Time Analytics

Fig 7 Analysis Report

Fig 8 Quantum Nexus Terminal