1. Grundprobleme des namonishen ledmens

Viele physikalische Robleme sind nicht makkematisch exalet löskar, abar nur mit sehr großem Answard. Beispiel: QCD, Noviar-Stokes-Gleichung, usw.

Numerische Verfahren biefen sich off als Allemotive an. Im Allgemeinen vollziehen wir folgende Schrifte vom physikalischen Problem zudessen Lösung.

a) nathematische Beschrabung/Modellierung

Unter Umständen worden hier shon Amahman genacht, die bereits Näherungen darstellen.

Beispiel:

En Teildhen der Mosse in bewegt sich entlang der x-Achse unter einer Kraft F(x).

$$F = m \cdot a = m \frac{dv}{dt}$$

b) Realistering

Fix des Modell muss en Lösungsverfahren gefunden werden. Beispiel:

Teile Zeit in bleine Intervalle T = +,-+;

$$\Rightarrow V_{i} = \frac{\chi_{i+1} - \chi_{i}}{t_{i+1} - t_{i}} = \frac{\chi_{i+1} - \chi_{i}}{\tau} \tag{2}$$

$$\alpha_i = \frac{V_{i+1} - V_i}{\gamma_i} \tag{3}$$

Kombiniere 1,2 und 3

$$X_{i+1} = X_i + \nabla V_i$$

 $V_{i+1} = V_i + \frac{2}{m} F_i$ mif $F_i = F(x)$

Lösung rekursir von gegebenen Anfangsbedingungen (16, x.)

c) Validierang

Das Modell und das häsungsverlahren missen auf Zuverlässigkeit gelestet, tehlarquellen analysiert und die Stabilität des Verfahrens untersacht werden. Gef. mässen mehrere Verfahren verglichen werden. Beispiel

- variation was T
- andere Diskretisierung
- ...

Definition Algorithmus

En Algorithmus ist ene eindentige Vorschrift, eine mathematische Anfanbenstellung für jeden möglichen Safz von Eingabedaten durch eine endliche Folge algebraischer Grandrechen operationen mit vorgegebener Genauigkeit zu verlisieren.

Beizpiel: Biseletion fir y= 1x

Input:
$$x>0$$
, $\epsilon>0$

if $(x \ge 1)$ $L=0$, $r=x$

else $l=x$, $r=1$

while $(r-L>\epsilon)$
 $y=\frac{r+L}{2}$

if $(y^2 < x)$ $L=y$

else $r=y$

return y

Liefert dieser Algorithmus für olle Eingaben x an Ergebnis? Nen, für x<1 nicht, da $\sqrt{x}>x$ \forall 0< x<1

Klassifikation von Fellern

- a) Diskretisierungsfehler: Fehler, die durch die Diskretisierung eines Problems leammen $z.B. \longrightarrow \Sigma$
- b) <u>Datenfehler</u>: Fehler in den Eingangsdaten, Nessfehler
- c) Rundungsfehler: Fehler bedingt durch die endliche Anzahl von Stellen in der Zahlendarstellung auf ernem Rechner

1st & one Nöherung für x, so neant man

$$\Delta_{x} = \hat{x} - x$$
 den absoluten Fehler und für $x \neq 0$

$$\delta_{x} = \frac{\hat{x} - x}{x}$$
 den relativen Fehler

1.1 Maschinenzahlen

Ant dem Rechner ist nur eine Teilmenge, M, der reellen Zahlen darstellbar. Nach IEEE Standard gilt: $X = sign(x) \cdot \alpha \cdot E^e$

- -Basis EEN, E>1 (meist E=2)
- Exponente e, in Bereich emin (e (emax wobei emin, emax & Z
- Mantisse $a \in N_0$, $a = \alpha_1 E^{k-1} + \alpha_2 E^{k-2} + ... + a_n E^0$ webei k die Montissenlänge ist und a die Ziffern im Zahlensystem mit Basis E = 2

Bspl: "double" 64bit

Sign(x) Exponet Manhisse

1 11 11 57 =>
$$10^{-308}$$
 (x < 10^{308} mit 15-16 Stellen

⇒ Bei der Abbildung der reellen Zahlen auf die Mas din enzahlen muss fast immer eine Rundungs operation vorgenommen werden. Dabei geht Information verloven und eine Rücktransformation ist nicht möglich.

Beispiel:

- a) $0,1_{10} = 0,0001100110011...$ z \rightarrow unendlich periodischer Dualbruch
- b) Beim addieven zweier k-stelliger Zahlen ensteh- i. A.
 ein (k+1)-stelliger Ausdruck.

Als <u>Maschinengenauiqueit</u> bezeichnet man die kleinste positive Maschinenzahl Em EM für die 1+ Em > 1 gilt.

1.2 Fehlerfortpflanzung, Konditionisierung

Betrachte ernen Algorithmus in folgender Waise:

also y; = fi(x,,..., xn) mit i = 1,..., m

Für
$$n=m=1:$$
 $y=f(x)$

Set Δx der Absolute Patenfehler von x, dam gilt mit exakter Arithmetik in erster Näherung (Taylor) $\Delta y = \frac{\partial f}{\partial x} \Delta x$

und damit

$$\delta y = \frac{\Delta y}{y} = \frac{x}{y} \frac{\partial f}{\partial x} \frac{\Delta x}{x} = \frac{x}{y} \frac{\partial f}{\partial x} \delta x$$

wobei $K = \frac{x}{y} \frac{\partial f}{\partial x} = \frac{x}{f(x)} \frac{\partial f}{\partial x}$ Kondifionszahl genannt wird.

Fir n, m > 1 ist K offensichtlich eine Mahix:

$$K_{ij} = \frac{x_i}{y_i} \frac{\partial f_i}{\partial x_j}$$
 wobei $\delta y_i = \sum_{j=1}^{m} K_{ij} \delta x_j$

Die Kondifionszahlen sond die Verstärkungsfaktoren des relativen Engabe fehlers und hängen affensichtlich stade vom Algorithmus f ab.

typische Beispiele

Berechne Nullstellen von $x^2-60x+1=0$ mit 4-stelliger Arithmetik. Exakt $x_1=0,0.166713$ $x_2=59,9833$

$$\alpha = -\frac{\rho}{2} = 30.00$$
 $\beta = \alpha^2 = 300.0$
 $8 = \beta - 9 = 899.0$
 $5 = \sqrt{8} = 29,38$

=)
$$\tilde{\chi}_{\Lambda} = \lambda - \delta = 0.02000$$

 $\delta_{\kappa_{\Lambda}} = -0.1997$

$$\tilde{x}_2 = \alpha + \delta = 59,98$$

 $\delta x_2 = 0,00005502$

$$\times_{1/2} = -\frac{\rho}{2} \pm \sqrt{\left(\frac{\rho}{2}\right)^2 - q}$$

Problem: subtrahieren zweier fast gleich großer Zahlen.