

(11)Publication number:

63-258022

(43)Date of publication of application: 25.10.1988

(51)Int.CI.

H01L 21/302

H01L 21/30

建合環境を続く

H01L 21/30

H01L 21/88

(21)Application number : 62-092678

378

(71)Applicant: ROHM CO LTD

(22)Date of filing:

15.04.1987

(72)Inventor: KANZAWA AKIRA

IKEMOTO EIJI

(54) MANUFACTURE OF SEMICONDUCTOR DEVICE

(57)Abstract:

PURPOSE: To improve the step coverage of a semiconductor device and to prevent an upper layer from cracking by conducting twice exposures when a layer to be etched is anisotropically etched, and executing one of the twice exposures on a pattern boundary of a photoresist layer.

CONSTITUTION: A photoresist layer 3 is formed on a layer 2 to be etched, the layer 3 is exposed with a photomask, then developed to be patterned, and the layer 2 is anisotropically etched. When a semiconductor device is manufactured in this manner, the exposure is conducted by dividing it twice, and the pattern boundary of the layer 3 is exposed only once of the twice. For example, when a contact hole 6 is formed on the SiO2 layer 2 formed on an Si substrate 1, the layer 3 is first exposed with an ultraviolet ray only by 50% by using a first photomask 4. Further, the remaining 50% ultraviolet exposure is conducted by using a second photomask 5 having a light transmission unit 5a formed smaller than the light transmission unit 4a of the photomask 4, and then developed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

THIS PAGE BLANK (USPTO)

⑲ 日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭63-258022

@Int_CI_4

() · -)

識別記号

庁内整理番号

母公開 昭和63年(1988)10月25日

H 01 L

21/302 21/30

M-8223-5F C-7376-5F V-7376-5F

301 361 21/88

F - 6708 - 5F

審査請求 未請求 発明の数 1 (全5頁)

図発明の名称

半導体装置の製造方法

願 昭62-92678 ②特

願 昭62(1987) 4月15日 23出

②発 眀 者

公

京都府京都市右京区西院溝崎町21番地 ローム株式会社内

明 者 ⑦発

30代 理

本 池

英

京都府京都市右京区西院溝崎町21番地 ローム株式会社内 京都府京都市右京区西院溝崎町21番地

ローム株式会社 ①出 顖 人

> 弁理士 中村 茂信

1. 発明の名称

半導体装置の製造方法

2. 特許請求の範囲

(1) 披エッチング層表面にホトレジスト層を形 成し、このホトレジスト層をホトマスクを使用し て露光し、この露光されたホトレジスト層を現像 し、これを部分的に除去してパターンづけし、被 エッチング層に異方性エッチングを施す半導体装 置の製造方法において、

前記露光は、2回に分けて行い、前記ホトレジ スト間のパターン境界部には、これら2回の郵光 の内の1回だけを行うことを特徴とする半導体装 置の製造方法。

(2)前記2回の露光には、互いにパターン境界 郎の異なる1対のホトマスクをそれぞれ使用する 特許請求の範囲第1項記載の半導体装置の製造方 法.

(3) 前記2回の露光は、いずれも同じホトマス クを使用し、2回目の露光時には、1回目の露光 時の位置よりホトマスクを微小距離ずらす特許請 求の範囲第1項記載の半導体装置の製造方法。

3. 発明の詳細な説明

(イ) 産業上の利用分野

この発明は、半導体装置の製造方法に関し、詳 しく言えば、エッチング処理の改良に関する。

(ロ) 従来の技術

エッチングは、被エッチング層より不要な部分 を除去する技術として、各種半導体装置の製造に おいて、大きな役割を果している。このエッチン グ技術としては、従来よりウエットエッチング、 プラズマエッチングが用いられている。しかし、 これらのエッチング技術は、等方性のエッチング であり、パターンの微細化(例えば1MBのメモ . リチップ)には追従できない。

そこで、微細加工を可能とするエッチング技術 として、反応性イオンエッチング(RIE: Rea ctive loa Biching)、イオンピームエッチング が開発された。これらのエッチング技術は、イオ ンの入射方向にエッチングが進む、いわゆる異方

特開昭63-258022 (2)

* · · · · · ·

性のエッチングであり、微細な加工を可能とする ものである。第3回及び第4回は、RIEを適用 したエッチング例を示している。

第3図は、シリコン (S1) 悲板 21上に形成された二酸化ケイ素 (SiO:) 絶縁層 22に、コンタクトホール 26を形成する場合を示している。

まず、SiO。絶縁暦22上に均一にホトレジスト23を塗布し、これをホトマスク(図示せず)を使用して露光・現像し、コンタクトホールに対応する部分23aのホトレジストを除去する(第3図(4参照)。

次に、RIEを施して、SIO。 絶縁層 2 2 にコンタクトホール 2 6 を形成する (第 3 図 0) 参照)。 コンタクトホール 2 6 は、RIEの異方性により、内面 2 6 a の垂直に切立ったシャープな形状となっている。

第4図は、絶縁層33上に配線34aをパター ニング形成する場合を示している。まず、絶縁層 33上に全面に亘りアルミニウム(A &)層34

第4図に示す場合には、配線34aの斯面形状が垂直に切立っているため、ステップカバレッジが問題になると共に、上層の挽縁層37を形成した時に配線34aのエッジeにより、上層絶縁層37にクラックcが生じる(第4図(ご参照)。クラックc生じると、洗浄の際に水が、このクラックcより浸入し、半導体装置の信頼性が低下する不都合があった。

この発明は、上記に鑑みなされたものであり、 ステップカバレッジの向上及び上層のクラックの 防止を可能とする半導体装置の製造方法の提供を 目的としている。

(二) 問題点を解決するための手段

この発明の半導体装置の製造方法は、被エッチング層表面にホトレジスト層を形成し、このホトレジスト層を水上で露光し、この露光されたホトレジスト層を現像して、これを部分的に除去してパターンづけし、被エッチング層に異方性エッチングを施す方法において、前記露光は2回に分けて行い、前記ホトレジスト層のパ

をスパタリングにより形成する。そして、A 2 暦 3 4 上にホトレジスト暦を形成し、これを先と同様ホトマスク(図示せず)を使用して露光・現像 し、配線 3 4 a を形成したい部分にのみホトレジ スト暦 3 5 を残す(第 4 図(3 参照)。

そして、RIEにより、配線34aを残してAL 層34を除去する(第4図(1)参照)。この場合も、 RIEの異力性のため、配線34aの断面形状は 側面の切立ったシャープなものとなる。

(ハ) 発明の解決しようとする問題点

異方性エッチングは、上述のようにシャープな 加工が行え、パターンの微細化を可能とすること ができる反面、加工のシャープさの故に以下のよ うな不都合が生じる。

第3図に示す、コンタクトホール26の場合には、配線27を形成した時に、コンククトホール26内面26aが垂直に切立つ段となっているため、この段で配線27が途切れる、すなわちステップカバレッジが低下する不都合があった〔第3図()参取〕。

ターン境界部には、前記2回の露光の内の1回だけを行うものである。

(ォ)作用

この発明の半導体装置の製造方法において、ホトレジスト層のパターン境界部は完全には露光していないから、ホトレジスト層を現像した時に完全に露光した部分(又は全く露光していない部分)とは反応速度が異なり、パターン境界部にはホトレジストの一部が残ることとなる。即ち、パターン境界部においては、ホトレジストの層厚が徐々に変化するテーパ状となる。

この状態で被エッチング層に異方性エッチングを施すと、パターン境界部においては、ホトレジストのテーパ形状に似ってエッチングされる。そして、被エッチング層のパターン境界部もテーパ形状となり、又そのエッジを鈍角にすることが可能となる。従って、ステップカパレッジの向上及び上層のクラック防止が可能となる。

(へ)実施例

<実施例1>

特開昭63-258022(3)

この発明の第1 実施例を第1 図に基づいて以下に説明する。

この第1実施例は、シリコン(Si)基板1衷 面に形成されたSiO。絶縁層(被エッチング 圏)2に、コンタクトホール6を本発明方法を適 用して形成する例を示している。このSiO。 題 緑層表面2aには、まずホトレジスト層3が形成 される。ホトレジストは、ポジ型、ネガ型のいず れでもよいが、本実施例では、ポジ型レジストを 使用している。

このホトレジスト層3は、まず第1のホトマスク4を使用して、50%だけ紫外線館光される(第1図回参照)。ホトマスク4は、SiO。 絶縁層2のコンタクトホール形成邸2b上に、透光郎4aを改過した紫外線は、コンタクトホール形成邸2b直上のホトレジスト層3の一部3aに、50%の感光反応を生じさせる。

さらに、ホトレジスト暦3は、第2のホトマス ク5を使用して、残りの50%紫外線露光される

ン (CHF。) 等が使用される。このコンタクトホール6の内面 6 a は、ホトレジストテーパ部 3 d に対応するテーパ状となる。

さらに第1図(のには、SiO。 絶縁層表面2aに形成される配線7を示している。この配線7は、アルミニウム(Ae)よりなり、スパッタリングにより形成される。コンタクトホール内面6aは、テーパ状であるので、この内面6aにもアルミニウム(Ae)がよく付着し、配線7が切れることはない。

< 実施例 2 >

この発明の第2の実施例を第2図に基づいて説 明する。

この第2実施例は、MOS-ICのゲート電極 形成(ポリシリコン配線)に本発明を適用したも のである。Si基板12表面には、SiO。膜1 3a,13b,13cが形成されており、またSi基板12表面の一部は、ソース拡散層12a、 ドレイン拡散層12bとされている(第2図(4)参 照)。 (第1図回参照)。ホトマスク5の透光部5aは、ホトマスク4の透光部4aよりも透光面積が小さくされる。透光部5aを透過した紫外線は、ホトレジスト暦3の一部3bに50%の感光反応を生じさせる。この3bの部分は、前記3aの部分の一部であり、3bの部分は100%露光されたことになる。また、3aの部分に属するが、3bの部分には属さない部分(パクーン境界部)3cは、50%だけ露光されたことになる。

2回の露光の終了したホトレジスト層3は、現像される。ホトレジスト層3の3b部分は、100%感光しているため、完全になくなり、SiO。 絶縁層表面2aが離出する〔第1図(ご参照〕。また、3c部分は、50%だけ露光しているため、3bの部分よりも現像反応速度が遅く、ホトレジストが残り、上方に拡がるテーパ3dが形成される。

続いて、RIEが施され、コンタクトホール 6 がSiO: 絶縁層 2 に形成される [第1図何参 限]。 RIEの反応ガスとしては、三フッ化メタ

上述のSi基板12には、CVD(chemical vapor deposition)により、表面全体に亘り、ポリシリコン層14が形成される。ポリシリコン層14上には、さらにポジ形ホトレジストよりなるホトレジスト層15が、塗布形成される。

このSi基板12上には、ホトマスク16が置かれて紫外線が照射され、ホトレジスト層15が50%露光される。ホトマスク16の遮光郎16aの幅W。より小さくされている。この遮光郎16aは、SiO。 膜13 b 上に位置するが、1回目の露光では第2図(a)紙面右寄りとされる。

続いて、2回目の露光が行われるが、これに先立ちホトマスク16を第2図的紙面左方向に動かし、遮光部16aが、SiO。層13b直上左寄りに位置するようにされる。そして、紫外線を照射して、ホトレジスト層15を残り50%露光させる

第2図(c)は、ホトレジスト層15を現像した後の状態を示す。ポリシリコン層14上で、SiO

特開昭63-258022 (4)

• • • >

・ 膜 1 3 b 直上には、ホトレジスト 1 5 a が残留する。ホトレジスト 1 5 a の中心部 1 5 a a は、全く露光されていないため、均一な厚さで残る。

しかし、ホトレジスト15 a の側部(パターン 境界部)15 a b、15 a b は、それぞれ1回露 光されており50%感光している。このため、側 郎15 a b、15 a b は現像反応の速度が遅く、 テーパ状となり、ホトレジスト15 a の断面形状 は、全体として上辺の短い台形となる。

第2図(C)に示す状態のSi基板12に、RIEを施すと、SIOa 層13bの上に、断面形状が上辺の短い台形状のポリシリコン配線14aが残される(第2図(d)参照)。Si基板12上には、リンガラス(PSC)層17が形成される。ポリシリコン配線14aの断面形状は、台形であり、PSG層17により側面14aaも十分に被置される。また、ポリシリコン配線14aのエッジe、eは鈍角となり、PSG層17にクラックのはいるおそれはない。

PSG層17上には、A & 配線18a, 18b.

のシリコン基板の要部断面図、第2図(a)、第2図(d)、第2図(c)及び第2図(d)は、それぞれこの発明の第2の実施例を説明するためのシリコン基板の要部断面図、第3図(a)、第3図(c)及び第3図(c)は、それぞれ従来技術を説明するためのシリコン基板の要部断面図、第4図(a)、第4図(b)及び第4図(c)は、それぞれ他の従来技術を説明するための要部断面図である。

2 : S i O a 絶縁層、3 · 1 5 : ホトレジスト層。 4 · 5 · 1 6 : ホトマスク。

6:コンタクトホール.

14 a:ポリシリコン配線。

特許出願人

ローム株式会社

代理人

弁理士 中村茂信

18 c が形成される。これらA & 配線 18 a . 18 b . 18 c は、それぞれソース拡散層 12 a 、ポリシリコン配線 14 a 、ドレイン拡散層 12 b にコンタクトしている。

なお、上記第1、第2の実施例では、異方性エッチングとして、RIEを行っているが、イオンビームエッチングを行ってもよい。

また、上記第1、第2の実施例では、ホトレジスト層の露光に、紫外線を使用しているが、遠紫外線やX線を使用してもよく、適宜変更可能である。

(ト) 発明の効果

以上説明したように、この発明の半導体装置の製造方法は、被エッチング層のパクーン境界部にテーパを形成するものであるから、ステップカバレッジを向上できると共に、上層絶縁層のクラックを防止できる利点を有している。

4. 図面の簡単な説明

第1図(a)、第1図(b)、第1図(c)及び第1図(d)は、 それぞれこの発明の第1の実施例を説明するため

THIS PAGE BLANK (USPTO)