1

UNIVERSITY OF BUEA

FACULTY OF ENGINEERING AND TECHNOLOGY

ENTRANCE EXAMINATION

September 2017

MATHEMATICS

Time: 3 Hours

Answer all Questions

1. Given that
$$f(x) = \frac{x-1}{x-2}$$
, $x \ne 2$, the range of f(x) is

A
$$(x \in R, x \neq 2)$$

B
$$(x \in R, x \neq -1)$$

C
$$(x \in R, x \neq 1)$$

$$D \qquad (x \in R, x \neq -2)$$

2. The functions f and g are real valued functions. Given that
$$g(x) = \frac{x-1}{x+2}$$
 and $g \circ f(x) = \frac{7}{3x-5}$ then $f(x) = \frac{x}{x+3}$

B $\frac{x-3}{x-4}$

C $\frac{x+3}{x+4}$

D $\frac{x-3}{x+4}$

$$g \circ f(x) = \frac{7}{3x - 5}$$
 then $f(x) =$

A
$$\frac{x+3}{x+4}$$

B
$$\frac{x-3}{x-4}$$

$$C = \frac{x+3}{x-4}$$

D
$$\frac{x-3}{x+4}$$

3. The values of x that so is y the equation
$$3^{2x} - 10(3^{x+1}) + 3^4 = 0$$
 is

A
$$x=2$$
 $\lambda = 1$

B
$$x = 3$$
 or $x = -1$

C
$$x=1$$
 or $x=-3$

D
$$x=1$$
 or $x=3$

4. The solution of the differential equation
$$y \frac{dy}{dx} = 2x$$
, given that y=1 and x=1 is

A
$$x^2 = y^2 - 2$$

$$8 \qquad 2x^2 = y^2 - 1$$

$$C \qquad x = 2y^2 - 1$$

$$0 \qquad y^2 = 2x^2 - 1$$

5. The line segment PQ, where P is the point(7,7) and Q the point(-1,3), is the diameter of a circle. The equation of the circle is

- A (x-7)(x+1)+(y-7)(y-3)=0
- B (x-7)(x-1)+(y-7)(y-3)=0
- C (x+7)(x-1)+(y+7)(y+3)=0
- D (x+7)(x+1)+(y-7)(y+3)=0
- 6. When $f(x) = 2x^3 + x^2 13x + 6$ is divided by 2x 1, the remainder is
 - A 13
 - B 52
 - $C \qquad \frac{1}{2}$
 - D 0
- 7. The range of values of x for which $|x-4| \le 2$ is
 - A $x \le 6$
 - B $x \le 2 \text{ or } x \ge 6$
- C 2≤x≤6
 - D $x \ge 2$
- 8. Which of the following statements is TRUE?
 - A If $x^2 = y^2$, then x = y
 - B If f(a)=0 then x+a is a factor of f(x)
 - If f(x) has a maximum value at x=a then f''(a) > 0
 - D Let $m, n \in \mathbb{Z}$, the set of integers. If γ and n are both odd, then m+n is even

Sec.10)

- 9. Given that $f(x) = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \end{vmatrix}$, $f'(x) = \begin{pmatrix} x & x^2 & x^3 \\ 0 & 2 & 6x \end{pmatrix}$
 - A 12
 - $6x^2$
 - C 6x
 - D 42x2
- 10. Given that x is a periodic function of period 4 and that $f(x) = \{x, 0 \le x < 2; x+2, 2 \le x < 4 \text{ then } f(9) = 1\}$
 - Α ...
 - B 81
 - C 11
 - D 7

11. The volume generated when the area of the finite region enclosed by the x-axis and the curve $y = x - x^2$ is rotated completely about the x-axis is

- $A \qquad \pi \int_0^1 (x-x^2)^2 dx$
- $B \qquad \pi \int_0^2 (x-x^2)^2 dx$
- $C = 2\pi \int_{-1}^{1} (x-x^2)^2 dx$
- D $2\pi \int_{-1}^{0} (x-x^2)^2 dx$

12. Two consecutive integers between which a root of the equation $x^3 + x - 16 = 10$ lies are

- A 1 and 2
- B 2 and 3
- C 3 and 4
- D 4 and 5

13. The vectors a and b are such that |a| = 3, |b| = 5, and a.b = -14 then |a-b| = -14

- A 62
- B √62
- C 44
- D √44

14. The sum of the first n terms of a series is given by $S = 5n^2 + 2n$. The nth term of the

- series is
- A 10n + 7 B 10n - 3
- B 10n 3 C 10n + 3
- D 10n 7

15. The expansion of $(2+3x)^{-1}$ is valid when

- A $-\frac{2}{3} < x < \frac{2}{3}$
- $B \qquad -\frac{1}{3} \le x \le \frac{1}{3}$
- $C -\frac{1}{3} < x < \frac{1}{3}$
- $D \qquad -\frac{3}{2} < x < \frac{3}{2}$

- The Cartesian equation of the curve with parametric equation $x = 1 + t^2$, y = 2t, where t is a parameter, is
- $y^2 = 4(x-4)$ Α
- $y^2 = 4(x-1)$ 5 B
 - $y^2 = 4(x+4)$ C
 - $y^2 = 4(I x)$
 - $\lim_{x \to \pi} \frac{\sin 2x}{\sin x} =$ 17.
 - A -1
 - В 2
 - C 0
 - D -2
 - $1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + =$ 18.

 - В
 - C
 - D 2
 - M. edilisectorit The asymptotes of the Turve $y = \frac{(x-5)^2}{(x+5)(x-3)}$
 - A x=3, x=-5, y=5
 - x=-3, x=-5, v=-5
 - C x=3 x= -5, v=1
- 20. The values of y corresponding to the values of x are given in the table below.

X	6	9	12	15	18	21
Υ	0.3	0.8	1.4	2.1	3.0	4.3

- Using the trapezoid rule, the approximate value for $\int_{6}^{21} y dx$ is
- 9.6 A
- 35.7 В
- 28.9
- 28.8

21. The gradient of the implicit function to the curve $x^2 + y^2 = 13$ at the point(2,-3) is

- D
- 22. $\sin 50'' + \sin 40'' =$
- $\sqrt{2}\cos 5^{\circ}$
- 2 cos 10° В
- 2 cos 5" C
- $\sqrt{2}\cos 10^{\circ}$ D
- 23. The value of the constant λ , for which the plane

$$\lambda x - 3y + 4z = 5$$
 and the line $r = i - 2j - 3k + t(2i + 6j + 3k)$ are parallel is

6

3

4

5

$$\int \frac{x}{1 + x^2} dx = \ln(1 + x^2) + c$$

$$\frac{1}{2} \ln(1 + x^2) + c$$

$$\tan^{-1} x + c$$

- A
- В

$$24. \int \frac{x}{1+x^2} dx =$$

A
$$\ln(1+x^2)+c$$

B
$$\frac{1}{2}\ln(1+x^2)+c$$

$$C \qquad \frac{1}{2} \tan^{-1} x + c$$

D
$$\tan^{-1} x + c$$

25. The general solution of the equation
$$\tan(2x + \frac{\pi}{3}) = \frac{1}{\sqrt{3}}$$
 is

A
$$2x = n\lambda - \frac{\pi}{6}$$

B
$$2x = n\pi + \frac{\pi}{3}$$

$$C 2x = n\pi + \frac{\pi}{6}$$

$$D 2x = n\pi - \frac{\pi}{3}$$

26. Given the vectors \mathbf{a} and \mathbf{b} , where $\mathbf{a} = 2\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ are coplanar

vectors, $\mathbf{a} \times \mathbf{b} =$

- A -2i-2j+4k
- B -2i+2j-4k
- C -2i+2j+4k
- D 2i-2j-4k
- 27. Given $n \in N^*$ such that $u_n = 1 \frac{1}{n}$, the sequence (u_n) is
- A Strictly monotonic increasing
- B not bounded below
- C Strictly monotonic decreasing
- D tends to infinity as $n \to \infty$
- 28. The function $f: R \to R$, where $f: x \to x \frac{1}{3}x^3$ accepts the following ranges of

values of x

- A decreases for $x \le -1$, increases for -1 < x < 1, decreases for $x \ge 1$
- B increases for $x \le 1$, decreases for -1 < x < 1, increases for $x \ge 1$
- C increases for $x \le 1$, decreases for x > 1
- D decreases for $x \le 1$, increases for x > 1
- 29. The complex number $1 + \sqrt{3}i$ can be expressed in exponential form
- A 2e 6
- B 2e 6
- c 2e^{-x}
- D $2e^{\frac{\pi}{3}}$
- 30. $(\cos 4\theta + i \sin 4\theta) (\cos 3\theta + i \sin 3\theta) =$
- A ccs to train 50
- B $\cos 1.9 + i \sin 11\theta$
- C $\cos 3\theta + i \sin 3\theta$
- D $\cos 19\theta + i \sin 19\theta$
- 31. An iterative formula is given by $X_{n+1} = \frac{X_n^3 + 1}{5}$. Given that $X_1 = 0$, $X_3 = 0$
- A 0.2
- B 0.2016
- C 0.208
- D 2.016

32. Given the matrix A, where
$$A = \begin{pmatrix} 2 & 8 & 9 \\ 0 & -1 & -3 \\ 0 & 2 & 1 \end{pmatrix}$$
. The Determinant of A^T ,

the transpose of A, is

- A -14
- В 14
- C -10
- D 10
- 33. The image of the line y=2x under the transformation matrix $\begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$ is the line
- 7x 4y = 0Α
- В 7x + 4y = 0
- 4x 7y = 0-C
- 4x + 7y = 0
- 34. The equations

$$2x - 3y + 4z = 1$$

$$3x - y = 2$$

$$x + 2y - 4z = 1$$

- are linearly independent
- are straight lines В
- are linearly dependent C
- have a unique solution
- 35. $\lim_{x\to 3} \left(\frac{x^2-9}{x-3}\right)$
- A
- B -3
- C
- D 6
- M.edusec.bil 36. Given that y_*^{34}

$$37. \qquad \int \frac{x+2}{x+3} \, dx =$$

$$A \quad 2x - \ln(x+3) + K$$

B
$$x - \ln(x+3) + K$$

$$C \qquad \ln(x+3) - x + K$$

$$D \quad x + \ln(x+3) + K$$

38. Given that (1+i)z - 3 + i = 0, the value of z in the form a + bi, where a and $b \in \mathbb{R}$, is

A
$$-1 - 2i$$

B
$$-1 + 2i$$

$$D = 1-2i$$

 $\cos\frac{\pi}{2} - i\sin\frac{\pi}{2}$ $B \qquad -\cos\frac{\pi}{2} - i\sin\frac{\pi}{2}$ $C \qquad \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$ $D \qquad \frac{1}{2}[\cos(-\pi) \cdot is. \tau]$ The set

A
$$z=1+\gamma$$

B
$$z = \sqrt{3} - i$$

C
$$z = \sqrt{3} + i$$

D
$$z=1-\sqrt{3}i$$

40.
$$e^{-\frac{\pi}{2}i} =$$

A
$$\cos \frac{\pi}{2} - i \sin \frac{\pi}{2}$$

B
$$-\cos\frac{\pi}{2} - i\sin\frac{\pi}{2}$$

$$C \qquad \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$

$$D \qquad \frac{1}{2}[\cos(-\pi) i \sin(-\pi)]$$

41. The solution of the differential equation $(1+x^2)\frac{dy}{dx} = 1$ is

A
$$\tan^{-1}(\frac{x}{2}) + k$$

B
$$\tan^{-1}(x) + k$$

$$C = \cot^{-1}(\frac{x}{2}) + k$$

D
$$\cot^{-1}(x) + k$$

42. Given that $r_1 = i + 2j + 3k + \lambda(4i - j + mk)$ and $r_2 = 3i + 2j - k + \mu(i + j - k)$ are two perpendicular lines, the value of m is

- A 3
- В -3
- C 1
- D -1

43. Given that $\sqrt{3}\cos x + \sin x \equiv R\cos(x-\theta)$, where R>0 and $0 < \theta < \frac{\pi}{2}$, the values of R and $\tan \theta$ respectively are :

, edusec. Ó

- A $\sqrt{3}$, $\sqrt{3}$
- B 4, $-\frac{1}{\sqrt{3}}$
- $\frac{1}{\sqrt{3}}$ C 2, $\frac{1}{\sqrt{3}}$
 - D 3, $-\sqrt{3}$

44.
$$\cos 7\theta + i \sin 7\theta =$$

- A $7(\cos\theta + i\sin\theta)$
- B $7(\cos\theta i\sin\theta)$
- C $(\cos\theta + i\sin\theta)^{7}$
- D $\cos 2\theta \cos 5\theta + i \sin 2\theta \sin 5\theta$

45. The sum of the roots of the equation $3x^2 + kx - 15 = 0$ is 2. The value of the constant K is

- A 6
- -B -6
- C 30
- D 30

46. Which of the following binary relations defined on Z, the set of integers, is not transitive?

- A $aRb \Leftrightarrow a \text{ is a factor of } b$
- B $aRb \Leftrightarrow a \text{ is a greater than } b$
- C $aRb \Leftrightarrow a + b is odd$
- D $aRb \Leftrightarrow a + b$ is even

47. The functions f and g are defined on R by $f: x \to 2x-1$ and $fg: x \to x-2$

$$A \qquad g: x \to \frac{x-2}{2}$$

$$\mathsf{B} \qquad \not - \mathsf{g} : \mathsf{x} \to \frac{\mathsf{x} - \mathsf{1}}{2}$$

$$C \qquad g: x \to \frac{2x-1}{2}$$

$$D \qquad g: x \to \frac{x+1}{2}$$

48. A linear relationship involving the variables x and y is $\ln y = nx + \ln a$, where a and n are constants. The relationship between x and y is also

A
$$y = an^x$$

$$\angle B$$
 $y = ae^{nx}$

C
$$y = ax^n$$

$$D y = ne^{ax}$$

49. The gradient of the tangent to the curve $y = 2e^{2x} - 3e^{-x}$ a the point where x=0 is

© 50. The function f is defined on the set of real numbers R by
$$f(x) = \frac{k+3x}{2+x}$$
, $x \ne -2$, 0. The

value of the constant K for which fire neven function is

51. A point P divides the line segment joining the points M(4, 1) and N(7, 7) internally in the ratio 2:1. The co irdinates of P are

52. If $4\log_{10} x - \log_{10} y = \log_{10} 13$ then

A
$$x^4y = 13$$

$$B \qquad 4x = 13y$$

$$C \qquad x^4 = 13y$$

$$D \qquad 4^x = 13v$$

- Α 11
- 23 В 11
- 11
- D

54. Given the complex number z, where
$$z = -\sqrt{3} - i$$
, the modulus-argument form for z is

- $2(\cos\frac{\pi}{6} i\sin\frac{\pi}{6})$
- $2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$
- $2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$
- $2(\cos\frac{5\pi}{6} i\sin\frac{5\pi}{6})$

C
$$2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$$

D $2(\cos\frac{5\pi}{6} - i\sin\frac{5\pi}{6})$
55. Given that $\sqrt{3}\cos x = \cos(\frac{\pi}{6} - x)$, $\tan x = \frac{A}{\sqrt{3}}$
B $\frac{1}{\sqrt{3}}$
C 1
D $\frac{\sqrt{3}}{2}$
56. $\int e^{3x} dx = \frac{1}{3x+1} e^{3x+1} + k$
B $3e^{3x} + k$
C $e^{3x} + k$

$$56. \int e^{3x} dx =$$

57. Given the parametric equations

$$x = 2t + \sin 2t$$
 and $y = 1 - \cos 2t$, where t is a parameter, $\frac{dy}{dx} = \frac{1}{2}$

- tan t
- B cot !
- sin 21 $1 + \cos 2t$
- sin 2t $1 + \cos 2t$

- 58. The curve $y = (x+2)^2$ has a minimum point at
 - (0, 4)
 - (4, 0)
 - C (0, -2)
 - D (-2, 0)
- 59. The number of selections of 3 students from a class of 7 students for a party in which the class prefect must attend is
 - $1x^{6}C_{3}$
 - В $1 + {}^{6}C_{3}$
 - C $1x \, {}^{6}C_{2}$
- 60. Given that x-c is a factor of f(x), where $f(x) = 2x^3 cx^2 + c(1-c)x (6+c)$, the value of the constant c is
 - 2 or -3
 - B -2 or 3
 - C -2 or -3
 - 2 or 3
- en C 61. Given the differential equation $\cos x \frac{dy}{dx} = y \sin x$, then
 - $y = \ln(\sec x) + K$
 - $\ln y = \ln(\sec x) + K$
 - C $y = \sec x + K$
 - $\ln y = \sec x + K$
- - B C D
- 64. Given that $\frac{d}{dx}(3x^3e^{2x}) = 3x^2(a+bx)e^{2x}$
 - a=9, b=6 A
 - В a=6, b=9
 - C a=2, b=3
 - a=3, b=2

- 2!3!
- 7!x3!x2!B
- C 7!

66. If
$$\frac{2}{x-2} + \frac{3}{x+1} = \frac{ax+b}{(x-2)(x+1)}$$
 then the values of the real constants a and b are respectively

- 5, -4 C
- M.ediliseC. 67. The roots of the quadratic equation $cx^2 - 3x - c = 0$ are
 - $3\pm\sqrt{9-4c^2}$ A 2c $3\pm\sqrt{9+4c}$ В
 - C
 - $3\pm\sqrt{9-4c}$ D

68. Given that
$$x \in R$$
 and that $x > 0$, the root of the equation $\log 2 + \log(2x^2 + 2x - 1) = 0$ is

- Α

- 16π
- 64π B
- C 4π

70. The parametric equations of a curve are $1 - x = \tan \theta$, $y = \sec \theta$.

The Cartesian equation of this curve is

$$A x^2 - y^2 + 2x + 2 = 0$$

$$B x^2 - y^2 + 2x - 2 = 0$$

C
$$x^2 - y^2 - 2x + 2 = 0$$

$$D x + y^2 - 2x + 2 = 0$$

71.
$$n!+(n-1)!+(n-2)!=$$

A
$$n^2(n-1)!$$

B
$$n^2(n-2)!$$

C
$$n(n-2)!$$

D
$$n(n-1)!$$

JSec.bill 72. The center of the circle $x^2 + y^2 - x + \frac{1}{2}y - \frac{1}{4} = 0$ is

$$A \qquad (\frac{1}{2}, \frac{1}{4})$$

A
$$(\frac{1}{2}, \frac{1}{4})$$

B $(2, -1)$
C $(-\frac{1}{2}, -\frac{1}{4})$

D
$$(\frac{1}{2}, -\frac{1}{4})$$

73. The general solution of the equation $s(2) = \frac{\sqrt{3}}{2}$ is

$$A \qquad \frac{\pi}{6}[3n+(-1)^n]$$

B
$$\frac{\pi}{2}[6n+(-1)^n]$$

A
$$\frac{\pi}{6}[3n + (-1)^n]$$

B $\frac{\pi}{2}[6n + (-1)^n]$
C $\frac{\pi}{6}[2n - (-1)^n]$

D
$$\frac{\pi}{3} [3i + (-1)^n]$$

A
$$\frac{2x}{1+x}$$

$$B = \frac{1}{x+1} - \frac{1}{x}$$

$$C = \frac{1}{x+1} + \frac{1}{2x}$$

$$D = \frac{1}{x+1} - \frac{1}{2x}$$

$$75. \int_{1}^{2} 3e^{\ln x^{2}} dx =$$

76. The general solution of the differential equation $(x-3)\frac{dy}{dx} = y$ is

- $y = \frac{x^2}{2} 3x + K$
- $y = K e^{x-3}$
- y=K(x-3) y=(x-3)+K

15ec.bil 77. The statement $x-3 > \frac{x-4}{x}$, $x \in R$ is equivalent to

- $\frac{x^2-4x+4}{x}>0$
- B $x^2 4x + 4 > 0$ C $\frac{x^2 4x 4}{x} > 0$

D $x^2 - 2x - 4 > 0$ 78. Given that -2, K, 5 are three consecutive terms of an arithmetic progression, then the common difference is

79. The set of value, of the three geometric series $\sum_{r=0}^{\infty} (x-1)^r$ is convergent is

- A B
- C

80. The partial fractions corresponding to $\frac{2x+7}{x^2+5x+6}$ are