Homework 2

Due: January 27, 2021

- 1. Consider the nonhomogeneous problems of Problem 1 and 2: $\vec{x}' = \mathbf{A}\vec{x} + \vec{g}(t)$.
- (a) Let $\vec{x} = \mathbf{M}\vec{y}$ where the columns of \mathbf{M} are the eigenvectors of the above problems.
- (b) Write the equations in terms of \vec{y} and multiply through by \mathbf{M}^{-1} .
- (c) Show the resulting equation is

$$\vec{y}' = \mathbf{D}\vec{y} + \vec{h}(t)$$

where $\mathbf{D} = \mathbf{M}^{-1}\mathbf{A}\mathbf{M}$ is a diagonal matrix whose diagonal elements are the eigenvalues of the problem considered and $\vec{h}(t) = \mathbf{M}^{-1}\vec{g}(t)$

(d) Show that this system is now decoupled so that each component of \vec{y} can be solved independently of the other components.

Solution. Substituting $\vec{x} = \mathbf{M}\vec{y}$ into the equation

$$\mathbf{M}\vec{y}' = \mathbf{A}\mathbf{M}\vec{y} + \vec{g}(t)$$

$$\mathbf{M}^{-1}\mathbf{M}\vec{y}' = \mathbf{M}^{-1}\mathbf{A}\mathbf{M}\vec{y} + \mathbf{M}^{-1}\vec{g}(t)$$

$$\vec{y}' = \mathbf{D}\vec{y} + \vec{h}(t)$$

Since **D** is diagonal, we have a set of independent equations $y'_i = d_{ii}y_i + h_i$ where d_{ii} is the diagonal entry.

2. Given $L = -d^2/dx^2$ find the eigenfunction expansion solution of

$$\frac{d^2y}{dx^2} + 2y = -10\exp(x) \quad y(0) = 0, y'(1) = 0$$

Solution. First rearranging the equation into Sturm-Liouville problem

$$Ly = 2y + 10e^x$$

Thus $\mu = 2, f(x) = 10e^x$. The eigenvalue problem associated with this problem is

$$y'' + \lambda_n y = 0$$

which has a general solution

$$y = c_1 \sin(\sqrt{\lambda_n}x) + c_2 \cos(\sqrt{\lambda_n}x)$$

Since y(0) = 0, $c_2 = 0$. Since y'(1) = 0, $\cos(\sqrt{\lambda_n}) = 0 \to \sqrt{\lambda_n} = (n - 1/2)\pi$. Then $y_n = N\sin((n - 1/2)\pi x)$. Consider the normalization

$$\langle y_n, y_n \rangle = N^2 \int_0^1 \sin^2((n - 1/2)\pi x) dx$$

$$= \frac{N^2}{2} \int_0^1 1 - \cos((2n - 1)\pi x) dx$$

$$= \frac{N^2}{2} \left[x - \frac{\sin((2n - 1)\pi x)}{(2n - 1)\pi} \right]_0^1$$

$$= \frac{N^2}{2} = 1$$

Then $N = \sqrt{2}$ and $y_n = \sqrt{2}\sin((n-1/2)\pi x)$. Writing the solution as series

$$y = \sum_{n=1}^{\infty} \frac{b_n}{(n-1/2)^2 \pi^2 - 2} \sqrt{2} \sin((n-1/2)\pi x)$$

where $b_n = \langle f, y_n \rangle$. Evaluating b_n with Mathematica

$$b_n = 10\sqrt{2} \frac{(n-1/2)\pi + (-1)^{n+1}e}{(n-1/2)^2\pi^2 + 1}$$

Thus the eigenfunction expansion is

$$y = 20 \sum_{n=1}^{\infty} \frac{\left[(n-1/2)\pi + (-1)^{n+1}e \right] \sin((n-1/2)\pi x)}{((n-1/2)^2\pi^2 + 1)((n-1/2)^2\pi^2 - 2)}$$

3. Given $L = -d^2/dx^2$ find the eigenfunction expansion solution of

$$\frac{d^2y}{dx^2} + 2y = -x \quad y(0) = 0, y(1) + y'(1) = 0$$

Solution. First rearranging the equation into Sturm-Liouville problem

$$Ly = 2y + x$$

Thus $\mu = 2, f(x) = x$. The eigenvalue problem associated with this problem is

$$y'' + \lambda_n y = 0$$

which has a general solution

$$y = c_1 \sin(\sqrt{\lambda_n}x) + c_2 \cos(\sqrt{\lambda_n}x)$$

Since y(0) = 0, $c_2 = 0$. Since y(1) + y'(1) = 0, $c_1 \sin(\sqrt{\lambda_n}) + c_1 \sqrt{\lambda_n} \cos(\sqrt{\lambda_n}) = 0 \rightarrow \sin(\sqrt{\lambda_n}) = -\sqrt{\lambda_n} \cos(\sqrt{\lambda_n})$. Then $y_n = N \sin(\sqrt{\lambda_n}x)$. Consider the normalization

$$\langle y_n, y_n \rangle = N^2 \int_0^1 \sin^2(\sqrt{\lambda_n} x) dx$$

$$= \frac{N^2}{2} \int_0^1 1 - \cos(2\sqrt{\lambda_n} x) dx$$

$$= \frac{N^2}{2} \left[x - \frac{\sin(2\sqrt{\lambda_n} x)}{2\sqrt{\lambda_n}} \right]_0^1$$

$$= \frac{N^2}{2} \left(1 - \frac{\sin(2\sqrt{\lambda_n})}{2\sqrt{\lambda_n}} \right)$$

$$= \frac{N^2}{2} \left(1 - \frac{\sin(\sqrt{\lambda_n})\cos(\sqrt{\lambda_n})}{\sqrt{\lambda_n}} \right)$$

$$= \frac{N^2}{2} (1 + \cos^2(\sqrt{\lambda_n})) = 1$$

Then $N=(\frac{2}{1+\cos^2(\lambda_n)})^{1/2}$ and $y_n=(\frac{2}{1+\cos^2(\lambda_n)})^{1/2}\sin(\sqrt{\lambda_n}x)$. Writing the solution as series

$$y = \sum_{n=1}^{\infty} \frac{b_n}{\lambda_n - 2} \left(\frac{2}{1 + \cos^2(\sqrt{\lambda_n})} \right)^{1/2} \sin(\sqrt{\lambda_n} x)$$

where $b_n = \langle f, y_n \rangle$. Evaluating b_n with Mathematica

$$b_n = \left(\frac{2}{1 + \cos^2(\lambda_n)}\right)^{1/2} \left(\frac{2\sin(\sqrt{\lambda_n})}{\lambda_n}\right)$$

Thus the eigenfunction expansion is

$$y = 4\sum_{n=1}^{\infty} \frac{\sin(\sqrt{\lambda_n})\sin(\sqrt{\lambda_n}x)}{\lambda_n(\lambda_n - 2)(1 + \cos^2(\lambda_n))}$$

4. Consider the Sturm-Liouville eigenvalue problem:

$$Lu = -\frac{d}{dx} \left[p(x) \frac{du}{dx} \right] + q(x)u = \lambda \rho(x)u \quad 0 < x < L$$

with the boundary conditions

$$\alpha_1 u(0) - \beta_1 u'(0) = 0$$

 $\alpha_2 u(L) - \beta_2 u'(L) = 0$

and with p(x) > 0, $\rho(x) > 0$, and $q(x) \ge 0$ and with p(x), $\rho(x)$, q(x) and p'(x) continuous over 0 < x < L. With the inner product $(\phi, \psi) = \int_0^L \rho(x)\phi(x)\psi^*(x)dx$, show the following: (a) L is a self-adjoint operator.

- (b) Eigenfunctions corresponding to different eigenvalues are orthogonal, i.e. $(u_n, u_m) = 0$.
- (c) Eigenvalues are real, non-negative and eigenfunctions may be chosen to be real valued.
- (d) Each eigenvalue is simple, i.e. it only has one eigenfunction. (Hint: recall that for each eigenvalue, there can be at most two linearly independent solutions calculate the Wronskian of these two solutions and see what it implies.)

Solution. (a) We can find the adjoint by the relation $\langle v, Lu \rangle = \langle L^{\dagger}v, u \rangle$. To compute the inner product we use integration by parts twice

$$\langle v, Lu \rangle = \int_0^L -\frac{d}{dx} \left[p(x) \frac{du}{dx} v \right] + q(x) uv$$

$$= \left[-p(x) \frac{du}{dx} v \right]_0^L + \int_0^L p(x) \frac{du}{dx} \frac{dv}{dx} + q(x) uv dx$$

$$= \left[-p(x) \left(\frac{du}{dx} v + \frac{dv}{dx} u \right) \right]_0^L + \int_0^L -\frac{d}{dx} \left[p(x) \frac{dv}{dx} u \right] + q(x) uv$$

The first term is 0 due to the boundary conditions, thus $L = L^{\dagger}$.

Solution. (b) Suppose u_n and u_m are eigenfunctions with distinct eigenvalues λ_n and λ_m . They both are solutions to the SL problem

$$Lu_n = \lambda_n \rho(x) u_n$$
 $Lu_m = \lambda_m \rho(x) u_m$

Multiplying the first equation by u_m and the second equation by u_n

$$\lambda_n \langle u_n, u_m \rangle_{\rho} = \lambda_m \langle u_m, u_n \rangle_{\rho}$$
$$(\lambda_n - \lambda_m) \langle u_n, u_m \rangle_{\rho} = 0$$

Since $\lambda_n - \lambda_m \neq 0$ and $\rho(x) > 0$, $\langle u_n, u_m \rangle = 0$.

Solution. (c) Suppose u_n is an eigenfunction with eigenvalue λ_n

$$\langle Lu_n, u_n \rangle = \lambda_n \langle u_n, u_n \rangle$$

$$\langle Lu_n, u_n \rangle = \langle u_n, Lu_n \rangle = \langle Lu_n, u_n \rangle^* = \lambda_n^* \langle u_n, u_n \rangle$$

Since $\langle u_n, u_n \rangle \neq 0$, $\lambda_n = \lambda_n^*$, thus λ_n is real. For λ_n to be nonnegative, we need to assume that L is positive semi-definite, i.e. $u_n^* L u_n \geq 0$. Since $u_n^* L u_n = \lambda_n \rho(x) u_n^* u_n$, $\rho(x) > 0$ and $u_n^* u_n > 0$, then $\lambda_n \geq 0$.

Since the SL problem is second order, it has at most two linearly independent eigenfunctions u_1 and u_2 , which are complex conjugates. We can write

$$u_1 = u + iv$$
 $u_2 = u - iv$

Then we can always choose the eigenfunction as $u_1 + u_2 = 2u$, which is real.

Solution. (d) Suppose u_1 and u_2 are two linearly independent eigenfunctions with the same eigenvalue λ . Then the Wronskian can be computed as

$$W[u_1, u_2] = u_1 u_2' - u_1' u_2$$

Consider the Wronskian at x = 0, then we have the boundary conditions

$$\alpha u_1(0) - \beta u_1'(0) = 0 \to u_1(0) = \frac{\beta}{\alpha} u_1'(0)$$

$$\alpha u_2(0) - \beta u_2'(0) = 0 \rightarrow u_2(0) = \frac{\beta}{\alpha} u_2'(0)$$

Substituting back to W

$$W[u_1(0), u_2(0)] = \frac{\beta}{\alpha} u_1'(0) u_2'(0) - \frac{\beta}{\alpha} u_1'(0) u_2'(0) = 0$$

This implies that u_1 and u_2 are linearly dependent, which contradicts our assumption. Thus each eigenvalue has only one eigenfunction.