FICHE DE COURS 16

SUPERPOSITION D'ONDES

Ce que je dois être capable de faire après avoir appris mon cours

Énoncer et appliquer le principe de superposition
Représenter le vecteur de Fresnel associé à un signal sinusoïdal pur
Décrire l'évolution d'un vecteur de Fresnel au cours du temps
Démontrer géométriquement la relation de Fresnel
Utiliser le produit scalaire pour déterminer par le calcul direct la relation de Fresnel
Déduire de la relation de Fresnel les conditions d'interférences constructives et destructives en fonction du déphasage
Démontrer que la superposition de deux OPUS co-propageantes est une OPUS de même sens de propagation et de même fréquence
Établir par le calcul l'expression de l'amplitude de l'onde résultante en fonction du déphasage
Définir une onde stationnaire comme une onde dans laquelle les variables spatiale et temporelle sont découplées $s(x,t) = f(t)g(x)$
Donner l'expression la plus simple d'une onde stationnaire harmonique et en déduire les conditions d'obtention des noeuds et des ventres
Établir que deux noeuds successifs ou deux ventres successifs sont séparés de $\lambda/2$
Établir que la plus petite distance séparant un noeud et un ventre vaut $\lambda/4$
Utiliser des conditions aux limites pour déterminer les paramètres d'une onde progressive ou d'une stationnaire
Montrer que la réflexion d'une OPUS sur un obstacle netraine la formation d'une OPUS de sens contraire et en opposition de phase à $(t = 0, x = 0)$
Schématiser et décrire les phénomènes observés dans l'expérience de la corde de Melde
Retrouver par un argument d'accord de phase les fréquences des modes propres de la corde de Melde
Etablir par le calcul l'expression des modes propres qui peuvent exister sur la corde de Melde en tenant compte des conditions aux limites dans l'expérience
Décrire le fonctionnement et utiliser un stroboscope
Établir les fréquences propres d'une cavité de longueur finie et faire le lien entre confinement et quantification
Décomposer une onde quelconque dans une cavité en la somme de ses modes propres
Relier l'angle θ de la zone de l'espace où l'amplitude de l'onde diffractée est importante à la longueur d'onde de l'onde et à la taille de l'ouverture diffractante

Les relations sur lesquelles je m'appuie pour développer mes calculs

 $\hfill \square$ Principe de superposition :

$$s(M,t) = s_1(M,t) + s_2(M,t)$$

 $\hfill \square$ Relation de Fresnel :

$$A_r = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_{2/1})}$$

- ☐ Interférences constructives :
 - Conditions:

$$\delta_{2/1} = p \times \lambda$$
 ; $\left[\varphi_{2/1} = p' \times 2\pi \right]$; $\left[\tau_{2/1} = p'' \times T \right]$

• Amplitude :

$$A_r = A_1 + A_2$$

- $\hfill \square$ Interférences destructives :
 - Conditions:

$$\delta_{2/1} = \left(p + \frac{1}{2}\right) \times \lambda \qquad ; \qquad \varphi_{2/1} = \left(p' + \frac{1}{2}\right) \times 2\pi \qquad ; \qquad \tau_{2/1} = \left(p'' + \frac{1}{2}\right)' \times T$$

$$\tau_{2/1} = \left(p'' + \frac{1}{2}\right)' \times T$$

• Amplitude :

$$A_r = [A_2 - A_1]$$

 $\hfill \Box$ Onde stationnaire harmonique unid imensionnelle :

$$s(x,t) = 2A\cos(kx + \psi)\cos(\omega t + \varphi)$$
 avec $k = \frac{\omega}{c}$

 \square Modes propres et quantification :

$$\nu_p = p \times \frac{c}{2L}$$
 et $\lambda_p = \frac{2L}{p}$

 \square Diffraction par une ouverture de taille a:

$$\sin\theta \simeq \frac{\lambda}{a}$$