Ausgabe: 17.04.2023 Abgabe: 23.04.2023

Aufgabe 5

Es sind folgende Abbildungsmatrizen gegeben:

$$A_{\phi} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Durch Matrix A_{ϕ} wird ein Vektor im \mathbb{R}^2 um den Winkel ϕ gedreht, die Matrix B spiegelt selbigen an der x-Achse.

- a) Veranschaulichen Sie die Behauptungen am Beispiel des Vektors $x_0 = \binom{2}{1}$ und $\phi = \frac{\pi}{2}$, wobei $A = A_{\left(\frac{\pi}{2}\right)}$, in dem Sie den Vektor selber und dessen Abbildungen $f_A(x_0) = A \cdot x_0$ und $f_B(x_0) = B \cdot x_0$ in ein Koordinatensystem einzeichnen.
- b) Zeichnen Sie auch die hintereinander geschalteten Abbildungen $f_{AB}(x_0) = A \cdot B \cdot x_0$ und $f_{BA}(x_0) = B \cdot A \cdot x_0$ von x_0 .
- c) Wie sehen die Umkehrabbildungen zu $f_A(X)$ und $f_B(x)$ aus? Stellen Sie dazu die Abbildungsmatrizen A^{-1} und B^{-1} auf.
- d) Bestimmen Sie die zugehörigen Abbildungsmatrizen zu den Umkehrabbildungen f_{AB}^{-1} und f_{BA}^{-1} .
- e) Verifizieren Sie die Ergebnisse aus b) und d), indem Sie die Vektoren $f_{AB}(x_0)$ und $f_{BA}(x_0)$, die Sie zeichnerisch bei b) erhalten haben, mit den Matrizen aus d) multiplizieren.

Lösung 5a

Lösung 5b

Ausgabe: 17.04.2023 Abgabe: 23.04.2023

Aufgabe 6

Lösung 6