Solution of economic dispatch problem for wind-thermal power systems by a modified hybrid optimization method

Mehmet Fatih Tefek^{1*}, Harun Uğuz²

- Department of Computer Technology, Kaman Vocational School, Kırşehir Ahi Evran University, Kaman/Kırşehir, 40300, Turkey
- ²Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, 42250, Turkey

Highlights:

Proposed a Modified Hybrid Gravitational Search Algorithm-Teaching-Learning Optimization Based Method

- Searching the solution quality in the proposed MHGT method compared to the standard GSA and TLBO methods
- Implementation of the proposed MHGT method to a new 19-bus Turkey wind-thermal power system for the solution of

Keywords:

- Hybrid optimization algorithm
- Gravitational search algorithm
- Teaching-learning based algorithm
- Economic dispatch problem
- Wind-thermal power system

Article Info:

Research Article Received: 15.03.2018 Accepted: 28.12.2018

DOI

10.17341/gazimmfd.571617

Correspondence:

Author: Mehmet Fatih Tefek e-mail: mftefek@gmail.com phone: +90 386 280 54 21

Graphical/Tabular Abstract

In this study, modified hybrid gravitational search algorithm (GSA)-teaching-learning based optimization (TLBO) algorithm (MHGT) method has been developed to solve the economic dispatch problem of wind-thermal power systems. The proposed MHGT method was developed by modifying the global search superiority in GSA and powerful local search specialty in TLBO for the solution of constrained optimization problem. With the MHGT method, it is aimed to reach the global minimum result with the least number of iterations and to get rid of the local minimum. Figure A shows the GSA in the first search space. The second search space is based on the optimal result of the GSA algorithm. Then, TLBO run in this second search space.

Figure A. Graphical representation of the MHGT method

Purpose:

The proposed MHGT method is aimed to solve the economic dispatch problem of 6 bus and Turkey-19 bus wind-thermal power system.

Theory and Methods:

In this study, firstly, equations of hybrid method were given and MHGT method was applied to benchmark test functions. Then the proposed MHGT method was applied to 6 bus and Turkey-19 bus wind-thermal power system.

Results

The success of the proposed MHGT method in benchmark functions was determined by Wilcoxon signed-rank test. The proposed MHGT method is wind-thermal power system of economic dispatch problem solving achievement is shown in the graphs and figures.

Conclusion:

It is concluded that the proposed MHGT method finds the solution in short execution time and less fuel cost with more reliably and more efficiently in terms of both fuel cost and execution time.

Modifiye hibrit optimizasyon yöntemi ile rüzgâr-termal güç sistemleri için ekonomik dağıtım probleminin çözümü

Mehmet Fatih Tefek¹*, Harun Uğuz²

¹Kırşehir Ahi Evran Üniversitesi, Kaman Meslek Yüksekokulu Bilgisayar Teknolojileri Bölümü, Kaman/ Kırşehir, 40300, Türkiye ²Konya Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü, Konya, 42250, Türkiye

ÖNEÇIKANLAR

- Modifiye Hibrit Yerçekimi Arama Algoritması-Öğretme-Öğrenme Temelli Optimizasyon yönteminin geliştirilmesi.
- Geliştirilen MHYÖ yönteminin YAA ve ÖÖTO'ye göre çözüm kalitesinin incelenmesi.
- Geliştirilen MHYÖ yönteminin yeni bir güç sistemi olan Türkiye 19 baralı rüzgâr-termal güç sisteminin ekonomik dağıtım problemi çözümüne uygulanması

Makale Bilgileri

Araştırma Makalesi Geliş: 15.03.2018 Kabul: 28.12.2018

DOI:

10.17341/gazimmfd.571617

Anahtar Kelimeler:

Hibrit optimizasyon algoritması, yerçekimsel arama algoritması, öğretmeöğrenme temelli optimizasyon algoritması, ekonomik dağıtım problemi, rüzgâr-termal güç sistemi

ÖZET

Ekonomik dağıtım problemi (EDP) karmaşık, sınırlamalı ve doğrusal olmayan bir optimizasyon problemidir. EDP'de talep edilen güç için, aktif güç baralarının minimum ve maksimum sınırları arasında sistemin yakıt maliyetini minimum yapmak amaçlanmaktadır. Bu çalışmada, Türkiye 19 baralı rüzgâr-termal güç sisteminin EDP çözümü amacıyla yerçekimsel arama algoritması (YAA) ile öğretme-öğrenme temelli optimizasyon (ÖÖTO) algoritmasının birleştirilmesi ile hızlı, etkili ve güvenilir bir hibrit optimizasyon algoritması olan modifiye hibrit yerçekimi arama-öğretme-öğrenme temelli optimizasyon yöntemi (MHYÖ) tasarlanmıştır. MHYÖ yöntemi, sınırlamalı optimizasyon problemi çözümü için YAA'nın güçlü global arama ve TLBO'nun yerel arama özelliği modifiye edilerek geliştirilmiştir. MHYÖ, literatürde iyi bilinen ve sık kullanılan on adet benchmark fonksiyonlarıyla deneysel amaçlı test edilmiştir. Geliştirilen MHYÖ yöntemi, EDP çözümü için ilk olarak 6-baralı rüzgâr-termal güç sisteminde talep edilen sırasıyla 400 MW, 450 MW ve 500 MW güç için uygulanmıştır. Daha sonra geliştirilen MHYÖ yöntemi, Türkiye 19 baralı rüzgâr-termal güç sisteminin EDP çözümü amacıyla sıstemdeki toplam planlanan gücün %25, %27,5 ve %30 talep edilen güç oranına göre üç farklı durumda uygulanmıştır. Elde edilen sonuçlar diğer çalışmaların sonuçları ile kıyaslanmıştır. Bu sonuçlara göre, MHYÖ yönteminin hem yakıt maliyeti hem de hesaplama zamanı ikilisi açısından, kısa çalışma zamanında, güvenilir, etkili ve minimum yakıt maliyeti ile sonuçları bulduğunu göstermektedir.

Solution of economic dispatch problem for wind-thermal power systems by a modified hybrid optimization method

HIGHLIGHTS

- · Proposing a Modified Hybrid Gravitational Search Algoritm Teaching-Learning Based Optimization method
- Searching the solution quality in the proposed MHGT method compared to the standard GSA and TLBO methods
- Implementation of the proposed MHGT method to a new 19-bus Turkey wind-thermal power system for the solution of Economic Dispatch Problem

Article Info

Research Article Received: 15.03.2018 Accepted: 28.12.2018

DOI:

10.17341/gazimmfd.571617

Keywords:

Hybrid optimization algorithm, gravitational search algorithm, teaching-learning based algorithm, economic dispatch problem, windthermal power system

ABSTRACT

Economic Dispatch Problem (EDP) is a complex, constrained and non-linear optimization problem. In the EDP, it is aimed to minimize the system fuel cost between minimum and maximum limits of the active power buses. In this study, a modified hybrid Gravitational Search-Teaching-Learning Based Optimization Algorithm (MHGT), a quick, efficient and reliable method is proposed by combining standard Gravitational Search Algorithm (GSA) and Teaching-Learning Based Optimization (TLBO). The proposed MHGT method was developed by modifying the global search superiority in GSA and powerful local search specialty in TLBO for the solution of constrained optimization problem. The MHGT was tested experimentally by well-known and mostly used ten benchmark function in the literature. The proposed method was first implemented on a 6 bus wind-thermal power system for 400, 450 and 500 MW powers. Then, it was implemented on Turkey 19 bus wind-thermal power system according to different ratios of the installed power as 25, 27.5 and 30 percent to solve the EDP problem. The obtained results were compared with the results of other studies. From the results, it is seen that the proposed MHGT method finds the solution in a short execution time and less fuel cost with more reliably and more efficiently in terms of both fuel cost and execution time.

^{*}Sorumlu Yazar/Corresponding Author: mftefek@gmail.com, harun_uguz@selcuk.edu.tr / Tel: +90 386 280 5421

1. GİRİŞ (INTRODUCTION)

Elektrik enerjisi günümüzde her yerde kullanılmakta ve buna bağlı olarak elektrik enerjisi tüketimi artmaktadır. Elektrik enerjisinin artan tüketimini dengeleyebilmek için güç santrallerinde elektrik enerjisi üretiminin de artması Bundan dolayı, günümüzde gerekmektedir. santrallerinin ekonomik olarak planlanması ve işletilmesi kritik bir görev haline gelmiştir [1]. Bu durum, güç sistemlerinin ekonomik dağıtımını ortaya çıkarmaktadır. Ekonomik dağıtım, güç sistemindeki talep edilen gücün, minimum maliyetle üretim birimleri tarafından karşılanması olarak bilinmektedir [2]. Ekonomik dağıtım problemi (EDP) ise güç sistemleri yönetimi ve planlaması için doğrusal olmayan, sınırlamalı, çoklu yerel optimum noktalı bir optimizasyon problemidir [3]. Bu problemin çözümü için geleneksel yöntemler olan Newton metot (NM) [4], Gauss-Seidel metot [5], doğrusal (linear) programlama (DP) ve karesel (quadratic) programlama (KP) teknikleri [6] kullanılmaktadır. Fakat bu geleneksel yöntemlerin çözümleri özellikle büyük sistemler için optimum sonuçtan çok uzak olmakta ve hesaplama süresi fazla olmaktadır [7]. Bundan dolayı ekonomik dağıtım problemlerinin optimum sonuca daha yakın, etkili ve hızlı çözümleri için yapay zekâ temelli sezgisel optimizasyon yöntemleri kullanılmaktadır [8]. EDP çözümünde kullanılan sezgisel optimizasyon yöntemlerinden bazıları sunlardır: Genetik algoritma (GA) [9], parcacık sürü optimizasyonu (PSO) [1], karınca koloni algoritması (KKA) [10], yapay arı koloni algoritması (YAK) [11], yerçekimsel arama algoritması (YAA) [12], öğretmeöğrenme tabanlı optimizasyon algoritması (ÖÖTO) [13]. Her ne kadar bu yöntemler EDP'yi çözse bile temel olarak, bu yöntemler uzun hesaplama süresinden ve yerel minimuma takılma probleminden kolayca kurtulamamaktadırlar [8, 14]. Bu yüzden sezgisel algoritmaların güçlü olduğu noktalarda birleştirilerek hibrit yöntemler elde edilmektedir ve EDP'ye uygulanmaktadır. Bu şekilde minimum yakıt maliyetine hızlı ve yerel minimum noktaya yakalanmadan çözümler bulunabilmektedir. Hibrit yöntemler ile yapılan çalışmalar ise şu şekildedir: GA ile aktif güç optimizasyon algoritmasının (GA-AGO) birleştirilmesi ve valf nokta etkili EDP çözümü [15], farklı evrimsel algoritmaların güçlü yanlarının birleştirilmesi ile elde edilen GA-diferansiyel gelişim algoritması ile dinamik EDP çözümü (GA-DGA) [16], karışık kurbağa sıçrayan algoritması ile tavla benzetim algoritmasının birleştirilmesi (KKSA-TB) yöntemi ile yasak işletme bölgeli ve valf nokta etkili EDP çözümü [17], GA ile lamda iterasyon metodunun birleştirilmesi ile zahmetsiz hibrit yöntem (ZHM) ve EDP çözümü [18], bulanık uyarlamalı PSO algoritması ile Nelder-Mead (NM) yönteminin birleştirilmesi (BUPSO-NM) yöntemi ile EDP çözümü [19], ateş böceği algoritması (ABA) ile mikro PSO birleştirilmesi (ABA-MPSO) yöntemi ve valf nokta etkili EDP çözümü [20], ABA ve KKA algoritması ile hibrit ABA-KKA yöntemi oluşturulması ve EDP çözümü [21], PSO ile YAA hız ve ivmelerinin birlikte güncellenmesi ile HPSO-YAA yöntemi ve çeşitli uygulama kısıtlamalı EDP çözümü [22].

Buraya kadar olan çalışmalar daha çok fosil yakıt kaynaklı geleneksel termal güç sistemlerinin EDP çözümü üzerine odaklanmıştır. Günümüzde termal güç sistemlerine alternatif olarak rüzgâr güç sistemlerinin de devreye girmesiyle bu güç sistemlerinin EDP çözümü önem arz etmektedir [23]. Literatürde rüzgâr-termal güç sistemlerinin EDP çözümü amacıyla şu çalışmalar bulunmaktadır: Hetzer vd. [23] tarafından rüzgâr çiftliklerinin geleneksel termal sistemlere eklenmesi ile bu sistemin matematik modelinin oluşturulması, rüzgâr enerjisi üretimi göz önünde bulundurularak rüzgâr ve termal üretim dağıtımını düzenlemek ve EDP çözümü için yeni bir doğrudan arama metodu (DAM) geliştirilmesi [24], yeni bir bulanık uyarlamalı yapay fizik optimizasyon (BU-YFO) algoritması ile rüzgâr ve termal güç jeneratörlerinin optimal güç akışının yapılması [25], rüzgâr-termik güç sistemi EDP çözümü için ortalama-alt yarı mutlak sapma (OAYMS) karar destek modeli oluşturulması ve içsel rekabet ve lévy yürüyüşü ile grup arama optimizasyon algoritmasının (İRLYGAO) uygulanması [26], Karadeniz vd. [27] tarafından rüzgâr ve termik santrallerden oluşan 6-baralı güç sisteminin ekonomik güç dağılımını büyük patlama- büyük çöküş (BP-BÇ), PSO ve iyon hareket optimizasyonu (IHO) algoritmaları ile irdelenmesi, Güçyetmez vd. [28] tarafından Türkiye 19 baralı rüzgâr-termal güç sisteminin tasarlanması ve hibrit genetik-öğretme-öğrenme tabanlı (GA-ÖÖTO) algoritmasının EDP çözümü için uygulanması.

Bu çalısmada, 6 baralı rüzgâr-termal güç sistemi ve Türkiye 19 baralı rüzgâr-termal güç sisteminin EDP çözümü amacıyla, Yerçekimsel Arama Algoritması (YAA) -Öğretme-Öğrenme Tabanlı Optimizasyon (ÖÖTO) Algoritmasının (HYÖ) [29] global arama ve yerel arama özelliklerinin modifiye edilerek birleştirilmesiyle modifiye hibrit yerçekimi arama-öğretme-öğrenme (MHYÖ) yöntemi geliştirilmiştir. Son yıllarda rüzgâr enerjisinin geleneksel güç sistemlerine eklenmesi nedeniyle rüzgâr-termal güç sistemlerinin EDP çözümü yapılması gereklilik haline gelmiştir. Bu yüzden bu çalışmada, 6-baralı rüzgâr-termal güç sisteminin ve Türkiye 19 baralı rüzgâr-termal güç sisteminin EDP çözümü irdelenmiştir. 6-baralı rüzgâr-termal güç sistemi toplam kapasitesi 580 MW olan 2'si termal 2'si de rüzgâr olmak üzere 4 adet jeneratör barasından oluşmaktadır [27]. Türkiye 19 baralı rüzgâr-termal güç sistemi ise toplam kapasitesi 7336 MW olan 8 adet geleneksel termal jeneratör baraları ile yenilenebilir rüzgâr enerjisi kaynaklı 11 adet jeneratör baralarından oluşmaktadır [28]. Geleneksel enerji üretim sistemine yenilenebilir enerji kaynaklarının yeni formları eklendiğinde, artan algoritma çalışma süresi, birbirine bağlı tüm güç sistemi için önemli bir sorundur. Bu nedenle, geleneksel ve yenilenebilir enerji üretim kaynaklarının güç sistemine eklenmesine bağlı olarak bu kaynakların sisteme etkisinin incelenebilmesi için spesifik enerji optimizasyon algoritmaları geliştirilmesi elzemdir [28]. Bu doğrultuda 6 baralı ve Türkiye 19 baralı rüzgâr-termal güç sisteminin EDP çözümü için geliştirilen modifiye hibrit MHYÖ yöntemi önem arz etmektedir. Hibrit algoritmalar tasarlanırken mevcut algoritmaların avantaj ve

dezavantajlarının belirlenmesi önemlidir. Bu şekilde algoritmalarda iyileştirme yapılarak kaliteli sonuçlar elde etmek amaçlanmaktadır. Bu bağlamda, YAA, Newton'un yerçekimsel ve hareket kanunlarını temel prensip olarak alan fizik temelli sezgisel optimizasyon algoritmasıdır [30]. YAA, global arama yapabilen ve kolayca icra edilebilen bir yapıya sahip olmasının yanında çözüm hassasiyetinde iyileştirme yapılması gerekmektedir [31]. ÖÖTO bir sınıftaki öğrencilerin ve öğretmenin etkileşiminden ilham almış sosyal tabanlı sezgisel optimizasyon algoritmasıdır [32]. ÖÖTO, büyük ölçekli optimizasyon problemlerinin çözümünde parametre içermeden, daha az hesaplama ile başarılı çözümler sunabilmektedir [31]. Geliştirilen MHYÖ yönteminde arama uzayı, global arama ve yerel arama olarak iki şekilde tanımlanmıştır. Global arama uzayında YAA'nın hesaplama yöntemine ek olarak basarılı hassasiyetinde iyileştirme yapmak amacıyla yerel arama uzayında ÖÖTO'nun etkili arama özelliği sınırlamalı optimizasyon problemi çözümü için formüle edilerek birleştirilmiştir. Bu şekilde geliştirilen yöntem global ve yerel arama yetenekleri diğer standart YAA ve ÖÖTO algoritmalarından daha kaliteli sonuçlar vermesi için dengelenmiştir. MHYÖ yöntemi, deneysel çalışma amaçlı literatürde sık kullanılan ve çok bilinen on adet benchmark fonksiyonu ile test edilmistir. Deneysel benchmark test çalışmalarında geliştirilen MHYÖ yöntemi ile standart YAA ve standart ÖÖTO algoritmaları istatiksel analizleri yapılmıştır. Daha sonra geliştirilen MHYÖ yöntemi iki farklı güç sisteminin EDP çözümü amacıyla, 6 baralı rüzgâr-termal güç sistemindeki talep edilen sırasıyla 400 MW, 450 MW, 500 MW güç ile Türkiye 19 baralı rüzgâr-termal güç sisteminin planlanan toplam gücün %25, %27,5 ve %30 talep edilen güç oranı için yakıt maliyeti ve zaman analizi bakımından incelenmiştir. Elde edilen sonuçlar diğer çalışmaların sonuçları ile karşılaştırmalı olarak verilmiştir.

2. YAA, ÖÖTO VE MHYÖ ALGORİTMALARINA GENEL BAKIŞ (GENERAL OVERVIEW OF GSA, TLBO AND MHGT)

2.1. Yerçekimsel Arama Algoritması (YAA) (Gravitational Search Algorithm (GSA))

Yerçekimsel Arama Algoritması (YAA), Newton'un yer çekimi ve hareket yasalarına bağlı olarak Rashedi vd. [30] tarafından tasarlanmış fizik temelli sezgisel optimizasyon algoritmasıdır. YAA'da arama uzayındaki her bir parçacık bir kütle olarak kabul edilir, bu sebeple YAA'yı suni bir kütle sistemi olarak tanımlamak mümkündür. Arama uzayındaki tüm kütleler Newton'un evrensel çekim kanununa göre birbirlerini çekerler ve yerçekimi kuvveti ile birbirlerine kuvvet uygularlar. Bu şekilde tüm kütleler birbirleri ile etkileşim sağlar. Yerçekimi kuvvetine maruz kalan kütleler arama uzayı içerisinde hareket ederek en uygun sonuca erişmeye çalışırlar [30]. Arama uzayında kütlesi büyük olan sonuç diğer sonuçları kendine çekerek etkilemektedir. Bu şekilde arama uzayı küresel minimuma doğru çekilmektedir ve en uygun çözüme ulaşılmaktadır.

YAA aşağıdaki adımlardan oluşmaktadır:

N kütleli bir sistem olduğu farz edilirse, ilk olarak kütlelerin konumu rastgele belirlenir. *i*. kütlenin konumu Eş. 1'deki gibi tanımlanır.

$$X_{i} = (x_{i}^{1}, \dots, x_{i}^{d}, \dots, x_{i}^{n}) i = 1, 2, \dots, N,$$
(1)

Burada, n problemin boyutunu, x_i^d d. boyut içinde i. kütlenin konumunu tanımlar. Belirli bir t zamanında j kütlesinden i kütlesi üzerindeki kuvvet etkisi Eş. 2'deki gibi tanımlanır.

$$F_{ij}^d(t) = G(t) \frac{M_{pi}(t) M_{aj}(t)}{R_{ij}(t) + \varepsilon} \left(x_j^d(t) - x_i^d(t) \right), \tag{2}$$

Burada, M_{aj} , j kütlesinin aktif yerçekimi kütlesini; M_{pi} , i kütlesinin pasif yerçekimi kütlesini; ε , kullanıcı tarafından tanımlanan sabit bir sayıyı $x_j^a(t)$ ve $x_i^a(t)$ belirli bir t zamanındaki i ve j kütlelerinin d. boyuttaki konumlarını; $R_{ij}(t)$, t zamandaki i ve j kütleleri arasındaki mesafeyi vermektedir. G(t), ise t zamanındaki yerçekimi sabitidir ve Eş. 3'te formülü verilmiştir.

$$G(t) = G_0 \exp(-\alpha \frac{t}{T}) \tag{3}$$

Burada, G_0 , rastgele seçilen yerçekimi sabitinin başlangıç değerini; α , kullanıcının belirlediği sabit bir değeri; t, o zamandaki iterasyon değerini ve T maksimum iterasyon sayısını göstermektedir. i kütlesine d. boyutta etki eden toplam kuvvet Eş. 4'teki gibi hesaplanmaktadır.

$$F_i^d(t) = \sum_{j=1, j \neq i}^{N} rand_j F_{ij}^d(t)$$
(4)

Burada, $rand_j$ [0, 1] aralığında değişen rastgele bir sayıdır. Newton'un ivme yasasına göre Eş. 4'teki toplam kuvvete bağlı olarak kütleyi harekete geçirecek olan d. boyuttaki i kütlesinin ivmesi Eş. 5'te verilmiştir.

$$a_i^d(t) = \frac{F_i^d(t)}{M_{ii}(t)}$$
 (5)

Burada, M_{ii} değeri i ajanının atalet kütlesini göstermektedir. İvme değerine bağlı olarak d. boyuttaki kütlenin, önce Eş. 6'daki gibi hızı güncellenir ve hıza bağlı olarak da Eş. 7'deki gibi konumu güncellenir.

$$v_i^d(t+1) = rand_i v_i^d(t) + a_i^d(t),$$
 (6)

$$x_i^d(t+1) = x_i^d(t) + v_i^d(t+1),$$
 (7)

Burada $rand_i$, [0, 1] arasında değişen rastgele bir değerdir. Algoritma durdurma kıstası sağlandığında amaç fonksiyonuna en uygun olan kütle çözüm için seçilir.

2.2. Öğretme-Öğrenme Tabanlı Optimizasyon Algoritması (ÖÖTO)

(Teaching-Learning Based Optimization (TLBO)Algorithm)

Öğretme-Öğrenme Tabanlı Optimizasyon Algoritması (ÖÖTO), Rao vd. [32] tarafından tasarlanmış, bir sınıftaki

öğrenci ve öğretmen davranışlarından esinlenmiş popülasyon temelli sezgisel optimizasyon algoritmasıdır. Bir sınıfta rastgele öğrencilerin oluşturulması ile başlayan algoritma öğrencilerin kendileri ve öğretmenleri ile etkileşime geçerek en iyi öğrenmenin sağlanmasını amaçlamaktadır. Bir sınıfta en iyi öğrenen, öğretmen kadar öğrenebilendir ve öğretmen ne kadar çok eğitirse o kadar başarılı öğrenme olacaktır. ÖÖTO algoritmasının öğretme ve öğrenme olmak üzere iki safhası vardır.

2.2.1. Öğretmen safhası (Teacher Phase)

Öğrencileri etkileşime geçirecek olan öğretmen safhasıdır. Tüm öğrenenler için en iyi çözüm öğretmen olarak kabul edilir. İyi öğretmene sahip öğrencilerin notlarında ve durumlarında gelişmeler olduğu gözlenmektedir. Bu yüzden iyi bir öğretmene sahip sınıfın öğrencilerinin başarısı da artacaktır. Öğretmen ve öğrenci etkileşimi Eş. 8'de olduğu gibi *Difference_Mean* ile hesaplanmaktadır:

$$Difference_Mean_i = r_i(M_{new.i} - T_F M_i), \tag{8}$$

Burada, $M_{new,i}$, her bir i iterasyonundaki en iyi öğrenen değeri olarak yeni öğretmenin ortalama değerini; M_i , her hangi bir i iterasyonundaki öğrencilerin ortalama sonuç değerini; r_i , [0,1] arasında rasgele bir değeri göstermektedir. T_F , öğretme faktörüdür. T_F , değerine Eş. 9'daki gibi eşit olasılık ile rastgele karar verilir.

$$T_F = round[1 + rand(0,1)],$$

 $(T_F \text{ değeri 1 veya 2 olabilir.})$ (9)

Öğretme safhasında mevcut çözüm Eş. 10'daki gibi $Difference_Mean_i$ 'ye bağlı olarak güncellenir.

$$X'_{new,i} = X'_{old,i} + Difference_Mean_i,$$
 (10)

Burada, $X'_{new,i}$ değeri, $X'_{old,i}$ değerinin güncellenmesidir ve öğretme safhası için kabul edilebilir en iyi sonuçtur. Öğretme safhasının en iyi sonuç değerleri öğrenme aşamasında girdi olarak bunları kullanmak için bir bellekte tutulur. Bundan sonraki aşama olan öğrenme safhasına geçilir.

2.2.2. Öğrenme safhası (Learner Phase)

Öğrenme safhasında öğrencilerin birbirleri ile etkileşimi ve öğretme safhasından gelen giriş verileri ile öğrenciler bilgilerini arttırmaktadır. Bir X_i öğrencisi X_j öğrencisinden daha bilgili ise X_j öğrencisi Eş. 11 ve Eş. 12'deki gibi etkileşerek kendini günceller.

$$X_{new,i}^{"} = X_{old,i}^{"} + r_i (X_i - X_j), e \check{g}er f(X_i) < f(X_j) ise (11)$$

$$X''_{new,i} = X''_{old,i} + r_i(X_i - X_i)$$
, eğer $f(X_i) < f(X_i)$ ise (12)

Öğrenci aşamasının sonunda, durdurma kıstası sağlandığında, $X''_{new,i}$ daha iyi bir fonksiyon değeri olarak kabul edilir ve en iyi çözüm için seçilir.

2.3. Geliştirilen MHYÖ Yöntemi (The Proposed MHGT Method)

Hibrit algoritmalar, özellikle büyük ölçekli karmaşık problemlerin çözümü amacıyla daha az iterasyon sayısında en iyi çözümü bulabilmek için en az iki sezgisel algoritmanın güçlü global arama ya da yerel arama özelliklerinin birleştirilmesi ile elde edilmektedir [33].

Bu çalışmada, Tefek vd. [29] tarafından tasarlanan HYÖ yöntemi sınırlamalı optimizasyon problemi çözümü için modifiye edilerek, modifiye yerçekimi arama-öğretmeöğrenme tabanlı optimizasyon (MHYÖ) yöntemi geliştirilmiştir. HYÖ yönteminde, YAA'nın global arama başarısına rağmen arama verimliliği ve çözüm hassasiyetinde iyileştirilme yapılması gerekmektedir [29, 31]. ÖÖTO ise büyük ölçekli optimizasyon problemlerinin çözümünde daha az hesaplama ile iyi performans sağlamaktadır [29, 31, 34]. HYÖ yönteminde, başlangıç parametre değerleri ile oluşturulan birinci arama uzayında en iyi çözüme ulaşabilmek amacıyla YAA ile global arama yaparak çözüm uzayını daraltmak ve buna bağlı olarak ikinci bir çözüm uzayını oluşturmak amaçlanmaktadır [29]. Oluşturulan bu ikinci arama uzayı içerisinde de etkili arama yapan ÖÖTÖ ile sonuca gitmektir. Bu şekilde HYÖ yöntemi, YAA'nın global arama uzayını taraması ve ÖÖTO algoritmasının yerel arama uzayında en iyi sonucu bulması ile olusturulmustur [29]. HYÖ yöntemi ile global minimum sonuca en az iterasyon sayısı ile ulasmak ve yerel minimuma takılmaktan kurtulmak amaçlanmıştır [29]. Bu gerçek hayatta iyi seçilmis basarılı öğretmen ve öğrencilerin oluşturduğu bir sınıfta başarının artması şeklinde düşünebilir. HYÖ yöntemi, çok fazla sayıda yerel minimum noktası bulunan ve bir tane global minimuma sahip olan bir fonksiyon için Şekil 1'deki grafikte gösterilmiştir.

Şekil 1. HYÖ yönteminin grafiksel gösterimi (Graphical representation of the HGT method)

Şekil 1'de standart YAA yöntemi, (X_{min}, X_{max}) başlangıç değerleri ile oluşturulan birinci arama uzayında amaç fonksiyonuna uygulanmaktadır. Bu aşama global arama

aşamasıdır. $X_{YAA}^{en\,iyi}$, YAA'dan elde edilen en iyi çözüm değeri olarak kabul edilen değerdir. Tefek vd. [29] çalışmasından farklı olarak Şekil 2'deki sözde kod, sınırlamalı global optimizasyon problemlerinin çözümü için modifiye edilerek MHYÖ yöntemi geliştirilmiştir. Şekil 2'deki sözde kodu kullanılarak ÖÖTO'nun başlangıç arama uzayı için $(X_{min}^{yeni}, X_{max}^{yeni})$ değerlerini oluşturmaktadır. Böylece ikinci arama uzayı belirlenmektedir. Bu aşama yerel arama aşamasıdır ve Şekil 2'deki sözde kodu kullanılarak iki algoritma birleştirilmektedir. MHYÖ yöntemi, durdurma kriterlerini sağladıktan sonra, bulduğu global minimum ya da global minimuma yakın değeri sonuç olarak vermektedir. Şekil 3'te geliştirilen MHYÖ yönteminin akış şeması verilmiştir.

for i = 1: byt // byt: boyut veya tasarım değişkenlerinin sayısı

$$\begin{split} X_{max}^{yeni}(i) &= X_{YAA}^{en\,iyi}(i) + (rand_i)(X_{max} - X_{YAA}^{en\,iyi}(i)) \ ; \\ X_{min}^{yeni}(i) &= X_{YAA}^{en\,iyi}(i) - |(rand_i)(X_{min} - X_{YAA}^{en\,iyi}(i))| \ ; \\ & \text{if } (X_{max}^{yeni}(i) > X_{max}) \\ & \qquad \qquad X_{max}^{yeni}(i) = X_{max} \ ; \\ & \text{end} \\ & \text{if } (X_{min}^{yeni}(i) < X_{min}) \\ & \qquad \qquad X_{min}^{yeni}(i) = X_{min} \ ; \\ & \text{end} \end{split}$$

end

Şekil 2. İkinci arama uzayının boyutlarına göre başlangıç değerini belirleyen sözde kodu (The pseudo-code that determines the initial value according to the dimensions of the second search space)

3. 6-BARALI VE TÜRKİYE 19 BARALI RÜZGÂR-TERMAL GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM PROBLEMİ

(ECONOMIC DISPATCH PROBLEM FOR THE 6-BUS AND 19-BUS TURKEY WIND-THERMAL POWER SYSTEM)

Elektrik enerjisi depolama işlemi maliyetli olduğundan dolayı elektrik enerjisi iletim ve dağıtımı süreklilik arz etmektedir. Günün her anında dinamik olan güç sistemlerine üretim birimleri eklenmekte veya çıkarılmaktadır. Bu yüzden her an üretilen, tüketilen veya sistem tarafından talep edilen güç değerleri doğrusal olarak değişmemektedir. Güç sistemlerinde, sistemden talep edilen güç için ileriye yönelik planlama yapılması önem arz etmektedir. Bu da ekonomik dağıtım ile yapılmaktadır. Ekonomik dağıtım, sistemden talep edilen gücün, jeneratörlerin çalışma sınırları gibi kısıtlar altında, minimum maliyetle karşılanmasının planlanmasını amaç edinmektedir [1, 2, 7, 8]. EDP ise doğrusal olmayan (non-lineer), eşitlik ve eşitsizlik kısıtlamaları altında, yakıt maliyetini minimum yapan bir optimizasyon problemidir [1-3, 7, 12]. Termal güç sistemlerinde, EDP'nin esas amacı olan yakıt maliyetini minimum yapan formül Eş. 13'de verilmiştir [35, 36]. Eşitlik

kısıtları Eş. 14 ve Eş. 15, eşitsizlik kısıtları ise Eş. 16'daki gibidir.

Amaç Fonksiyonu:

$$F_{termal}(maliyet) = \sum_{i=1}^{N_G} (a_i + b_i P_i + c_i P_i^2)$$
 (\$/h) (13)

Kısıtlar:

$$\sum_{i=1}^{N_G} P_i - P_D - P_L = 0 \tag{14}$$

$$P_L = \sum_{i=1}^{N_G} \sum_{j=1}^{N_G} P_i B_{ij} P_j + \sum_{i=1}^{N_G} P_i B_{0i} + B_{00}$$
 (15)

$$P_i^{min} \le P_i \le P_i^{mak} \ 1 \le i \le N_G \tag{16}$$

Eş. 13'te $F_{termal}(maliyet)$, termal güç sisteminin yakıt maliyeti fonksiyonu; N_G , termal jeneratör bara sayısı; P_i , i. aktif jeneratör barasının ürettiği gücü ve a_i , b_i , c_i ise i. aktif jeneratör barasının yakıt maliyet katsayılarıdır. Eş.14'te sistemin toplam güç ile talep edilen (P_D) ve kayıp (P_L) güçleri arasındaki eşitlik kısıtlamaları verilmiştir. Eş. 15'de B_{ij} , B_{0i} ve B_{00} kayıp katsayıları ile kayıp (P_L) güç hesaplanmaktadır. Eş. 16'da her bir aktif gücün minimum (P_i^{min}) ve maksimum (P_i^{mak}) eşitsizlik kısıtlamaları verilmiştir. Termal bir elektrik güç sistemine yenilenebilir enerji güç kaynağı olan rüzgâr güç baraları eklendiğinde yakıt maliyet fonksiyonu Eş. 17'deki gibi olmaktadır [23, 28].

$$\sum_{i=1}^{n_{ruzgar-termal}} F_{ruzgar-termal}(maliyet) = F_{termal}(maliyet) + (\sum_{i=1}^{n_{w}} C_{wi}(wi) + \sum_{i=1}^{n_{w}} C_{p,wi}(W_{i,av} - wi) + \sum_{i=1}^{n_{w}} C_{r,w,i}(wi - W_{i,av})) (\$/h)$$
(17)

Burada, n_w rüzgâr jeneratörlerinin sayısı; $W_{i,av}$, i. rüzgâr jeneratöründen elde edilen rüzgâr gücü; C_{w_i} , i. rüzgâr jeneratörünün maliyet fonksiyonu; C_{p,w_i} , i. rüzgâr jeneratöründen elde edilen gücün tamamının kullanılmaması durumundaki ceza maliyet fonksiyonu, $C_{r,w,i}$, rüzgâr gücündeki belirsizliklerle bağlantılı gerekli yedek maliyet fonksiyonudur. C_{p,w_i} ve $C_{r,w,i}$ maliyet değerleri rüzgâr türbinleri sistem işletmecileri tarafından sağlanmaktadır. Eğer rüzgâr türbinleri sistem işletmecisi tarafından satın alınmamışsa C_{p,w_i} ve $C_{r,w,i}$ ihmal edilebilir ve $F_{r\"uzgar-termal}(maliyet)$, Eş. 18 şeklinde tanımlanır [23, 28].

$$F_{r\ddot{u}zgar-termal}(maliyet) = (\sum_{i=1}^{N_G} (a_i + b_i P_i + c_i P_i^2 + \sum_{j=1}^{n_w} (d_j w_j)) \, (\$/h)$$
(18)

Burada, w_j , j. rüzgâr jeneratöründen elde edilmesi planlanan rüzgâr gücü ve d_j ise j. rüzgâr jeneratör için doğrudan maliyet katsayısıdır. Bu çalışmada analizi yapılan, 6-baralı rüzgâr-termal güç sistemi 2 tane termal güç jeneratörü ve 2 tane rüzgâr güç jeneratöründen oluşmaktadır.

Sekil 3. Geliştirilen MHYÖ yönteminin akış diyagramı (The flowchart of the improved MHGT method)

6-baralı güç sistemi minimum 100 MW ile maksimum 580 MW güç üretebilmektedir [27]. Karadeniz vd. [27] tarafından irdelenen 6-baralı rüzgâr-termal güç sisteminde sistem operatörü rüzgâr santralinin sahibi olmadığı ve bu yüzden rüzgâr gücünün düşük ve yüksek değerde olmasının ek bir maliyet getirmeyeceği belirtilmiştir. Türkiye 19 baralı rüzgâr-termal güç sistemi, Güçyetmez vd. [28] tarafından oluşturulmuştur. Bu güç sisteminde 8 tane termal güç jeneratörüne, 11 tane yeni rüzgâr güç jeneratörü eklenmiştir. Sistem minimum 1503 MW güç ile maksimum 7698,55 MW

arasında güç üretebilmektedir. Türkiye 19 baralı rüzgârtermal güç sisteminin tamamı Ege ve Marmara bölgesinde bulunmaktadır. Güçyetmez vd. [28]'nin, Karadeniz vd. [27]'nin çalışmasında ve bu çalışmada rüzgâr jeneratörlerinin sistem operatörüne ait olmadığı varsayılmıştır. Dolayısıyla, ceza maliyeti ve gerekli yedek maliyet değerleri ihmal edilmiş ve Eş.18'deki toplam yakıt maliyeti amaç fonksiyonu olarak alınmıştır [28]. Tablo 1'de 6-baralı rüzgâr-termal güç sisteminin ve Tablo 2'de Türkiye 19 baralı rüzgâr-termal güç sisteminin; bara sıraları, güç

Jen. Nu.	Güç Santrali	Yakıt Tipi	a _i (\$/h)	<i>b_i</i> (\$/MWh)	c _i (\$/MW ² h)	d _i (\$/h)	V _i (m/s)	P _i ^{min} (MW)	P _i ^{mak} (MW)	$P_{i_{mak}}^{plan}$ (MW)
1	P_{G1}	Termik	105	12	0,012	0	0	50	250	250
2	P_{G2}	Termik	96	9,6	0,0096	0	0	50	250	250
3	P_{G3}	Rüzgâr	0	8	0	1	5	0	40	40
4	P_{G4}	Rüzgâr	0	6	0	1	5	0	40	40
				Termal Top	olam Güç (M'		100	500	500	
				Rüzgâr Top	olam Güç (M'		0	80	80	
				Toplam (To	ermal+Rüzgâi	(WW)	Güc	100	580	580

Tablo 1. 6-baralı rüzgâr-termal güç sistemi üretim verileri (Generation data of 6-bus wind-thermal power system)

santral adı, güç santralinin yakıt türü, yakıt maliyet katsayıları (a_i, b_i, c_i, d_i) , ortalama rüzgâr hızı (V_i) , jeneratörlerin minimum (P_i^{min}) ve maksimum güç limitleri (P_i^{mak}) ve her bir güç santrali için planlanan güç değerleri $(P_{i_{mak}}^{plan})$ verilmiştir. $P_{i_{mak}}^{plan}$ değeri ortalama rüzgâr hızına göre rüzgâr jeneratörlerinin üretebileceği maksimum gücü göstermektedir [28].

Geliştirilen MHYÖ yönteminin 6-baralı ve Türkiye 19 baralı rüzgâr-termal güç sistemine uygulama adımları aşağıdaki gibi tanımlanmıştır:

- Adım 1. YAA ve ÖÖTO algoritmalarının başlangıç parametrelerini gir. Her bir jeneratör barasının minimum ve maksimum güç değerleri, kısıtlamaları ve talep edilen güç değerlerini gir.
- Adım 2. YAA başlangıcı için güç sınırları arasında rastgele kütleleri Eş. 1'deki gibi belirle.
- Adım 3. Her bir kütle değeri için amaç fonksiyonunu hesapla.
- Adım 4. YAA'da Eş. 3'teki gibi G(t) yi hesapla ve t anındaki popülasyon için güncelle (i = 1, 2, ..., N için G(t), ve $M_i(t)$ değerlerini güncelle).
- Adım 5. Eş. 4'teki gibi her bir kütle için toplam kuvveti (F(t)) hesapla
- Adım 6. Her bir kütle için Eş. 5'teki gibi ivme (a)'yi hesapla.
- Adım 7. Eş. 6 ve Eş. 7'deki gibi hız (v_i) ve konumu (x_i) güncelle.
- Adım 8. Durdurma kriteri sağlanıncaya kadar Adım 3'e git. Aksi takdirde Adım 9'a git.
- Adım 9. YAA'nın her bir i aktif güç barası için hesapladığı güç değerlerini Şekil 2'deki sözde kodunda olduğu gibi P_{min}(i) ve P_{max}(i) hesapla ve bu şekilde ÖÖTO için ikinci arama uzayını belirle.
- Adım 10. ÖÖTO'da $P_{min}^{new}(i)$ ve $P_{max}^{new}(i)$ arasında rastgele bir popülasyon oluştur.
- Adım 11. Her bir popülasyon için amaç fonksiyonunu hesapla.
- Adım 12. Öğretme safhasında Eş. 8'deki gibi Difference_Mean 'i hesapla.
- Adım 13. Eş. 10'daki gibi her bir sınıfın en iyi öğretmeni olan $P'_{new,i}$ oluştur.

- Adım 14. Öğrenci safhasında Eş. 11 ve Eş. 2'deki gibi $P_{new,i}^{\prime\prime}$ oluştur.
- Adım 15. Durdurma kriteri sağlanıncaya kadar Adım10'a git. Aksi takdirde Adım 16'ya git.
- Adım 16. En iyi çözüm olan $P''_{new,i}$ 'yi al ve çalışmayı sonlandır.

4. DENEYSEL ÇALIŞMALAR (EXPERIMENTAL STUDIES)

Geliştirilen hibrit yöntem deneysel çalışma amacıyla ilk önce literatürde sıklıkla kullanılan ve çok bilinen on adet benchmark test fonksiyonuna uygulanmıştır. Daha sonra 6-baralı sistem ve Türkiye 19 baralı rüzgâr-termal güç sistemine talep edilen farklı güç değerlerine göre EDP çözümü için uygulanmıştır. Tüm deneysel çalışmalar, i7-6700HQ 2,6 Ghz işlemcili, 8 GB hafızalı (RAM), Windows 10 işletim sistemli makinede ve MATLAB R-2015b programı kullanılarak yapılmıştır.

4.1. Benchmark Test Fonksiyonları Uygulamaları (Implementations on Benchmark Test Functions)

Bu çalışmada, PSO [37], YAK [38], YAA [30], ÖÖTO [32] algoritmaları ve geliştirilen MHYÖ yöntemi, Tablo 3'te verilen 10 adet benchmark fonksiyonuna uygulanmıştır. Tablo 3'te ilk beş fonksiyon (F_1 - F_5) tek optimum nokta içeren tek tepeli (unimodal) tipinde, sonraki beş fonksiyon (F_6 - F_{10}) birçok yerel optimum nokta içeren fakat bir tane global minimum nokta bulunan çok tepeli (multimodal) tipindedir. Tüm fonksiyonlar sırası ile 10 boyutlu (10-D) ve 30 boyutlu (30-D) olarak test edilmiştir. Her bir algoritma istatiksel analiz amaçlı 30 kez çalıştırılmıştır. Tablo 4'te PSO, YAK, YAA, ÖÖTO ve geliştirilen MHYÖ yönteminin benchmark testi için çalıştırma parametreleri verilmiştir.

4.1.1. Benchmark test fonksiyonları deneysel çalışma sonuçları

(Experimental results of the benchmark test functions)

Tablo 5'te 10 boyutlu (10-D) ve Tablo 6'da 30 boyutlu (30-D) benchmark test fonksiyonu ile deneysel çalışma istatistik sonuçları verilmiştir. En iyi, ortalama (Ort.), standart sapma (Std. S.) sonuçları her bir fonksiyon için optimum sonuca yakınlığına göre kalın yazı tipinde belirtilerek verilmiştir.

Tablo 2. Türkiye 19 baralı rüzgâr-termal güç sistemi üretim verileri (Generation data of Turkey 19-bus wind-thermal power system)

Jen. Nu.	Güç Santral	i Yakıt Tip	i a _i (\$/h)	b _i (\$/MWh)	c _i (\$/MW ² h)	d _i (\$/h)) V _i (m/s)	P _i ^{min} (MW)	P _i ^{mak} (MW)	P _{imak} (MW)
1	Hamitabat	D. Gaz	6595,5	7,0663	0,0168	0	0	190	1120	1120
2	Ambarlı	Fuel Oil	7290,6	7,2592	0,1270	0	0	245	1350	1350
3	Dgaz	D. Gaz	6780,5	5,6820	0,0106	0	0	318	1432	1432
4	Seyitömer	Kömür	1564,4	3,1288	0,0139	0	0	150	600	600
5	SomaB	Kömür	5134,1	6,2232	0,0168	0	0	210	990	990
6	Yeniköy	Kömür	1159,5	3,3128	0,0210	0	0	110	420	420
7	Kemerköy	Kömür	1697,0	3,2324	0,0137	0	0	140	630	630
8	Yatağan	Kömür	1822,8	3,4720	0,0147	0	0	140	630	630
9	Akres	Rüzgâr	0	0	0	1	8	0	45	14,4
10	Çanta	Rüzgâr	0	0	0	1	6	0	35	6,27
11	Çatalca	Rüzgâr	0	0	0	1	7	0	60	10,4
	Dares	Rüzgâr 28x0,8 MW	0	0	0	1,012	7	0	22,4	5,04
12	Datça	8x0,9 MW	0	0	0	1,011	7	0	7,2	1,248
		Toplam						0	29,6	6,288
13	Karakurt	Rüzgâr	0	0	0	1	8	0	10,8	6
14	K. Burgaz	Rüzgâr	0	0	0	1,025	7	0	24	6,384
		Rüzgâr 2 MW	0	0	0	1,025	8	0	24	9,78
15	Kuyucak	0,9 MW	0	0	0	1,012	8	0	1,8	0,476
		Toplam						0	25,8	10,256
		Rüzgâr 0,9 MW	0	0	0	1,011	8	0	34,2	9,044
16	Sayalar	2 MW	0	0	0	1,025	8	0	20	8,150
		Toplam						0	54,2	17,194
17	Soma	Rüzgâr 0,9 MW	0	0	0	1,011	8	0	80,1	21,182
		2 MW	0	0	0	1	8	0	160	65,2
		Toplam						0	240,1	86,382
18	Sunjüt	Rüzgâr	0	0	0	1	7	0	1,2	0,2716
19	Tepe	Rüzgâr	0	0	0	1	7	0	0,85	0,225
Ter	mal Toplam	Güç (MW))					1503	7172	7172
Rüz	gâr Toplam	Güç (MW))					0	526,55	164,1
Тор	lam Güç (Te	rmal+Rüz	gâr) (MW)				1503	7698,55	7336

Tablo 3. Benchmark test fonksiyonları D Boyut U Unimodal M Multimodal O Ozelli	gı
(Benchmark Test Functions D Dimension U Unimodal M Multimodal)	_

Fonksiyon	Formülü	Arama Uzayı	Ö	f_{min}
Sphere	$F_1(x) = \sum_{i=1}^{D} x_i^2$	[-100, 100]D	U	0
Schwefel 2.22	$F_2(x) = \sum_{i=1}^{D} x_i + \prod_{i=1}^{D} x_i $	[-10, 10]D	U	0
Schwefel 1.2	$F_3(x) = \sum_{i=1}^{D} (\sum_{j=1}^{l} x_j)^2$	[-100, 100]D	U	0
Schwefel 2.21	$F_4(x) = \max\{ x_i , 1 \le i \le D\}$	[-100, 100]D	U	0
Rosenbrock	$F_5(x) = \sum_{i=1}^{D-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$	[-30, 30]D	U	0
Schwefel	$F_6(x) = \sum_{i=1}^{D} -x_i \sin(\sqrt{ x_i })$	[-500, 500]D	M	-12569,5
Rastrigin	$F_7(x) = \sum_{i=1}^{D} [x_i^2 - 10\cos(2\pi x_i) + 10]$	[-5,12, 5,12]D	M	0
Ackley	$F_8(x) = -20 \exp\left(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} x_i^2}\right) - \exp\left(\frac{1}{D} \sum_{i=1}^{D} \cos(2\pi x_i)\right) + 20 + e$	[-32, 32]D	M	0
Griewank	$F_9 = \frac{1}{4000} \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos\left(\frac{x_i}{\sqrt{x_i}}\right) + 1$	[-600, 600]D	M	0
Penalized	$F_{10}(x) = \frac{\pi}{D} \left\{ 10 \sin^2(\pi y_1) + \sum_{i=1}^{D-1} (y_i - 1)^2 [1 + 10 \sin^2(\pi y_{i+1})] + (y_D - 1)^2 \right\} + \sum_{i=1}^{D} u(x_i, 10, 100, 4)$ $y_i = 1 + \frac{1}{4} (x_i + 1)$ $u(x_i, a, k, m) = \begin{cases} k(x_i - a)^m x_i > a \\ 0 - a < x_i < a \\ k(-x_i - a)^m x_i < -a \end{cases}$	[-50, 50]D	M	0

Tablo 5'te, 10-D benchmark test fonksiyonlarının en iyi sonuçlarına göre F_1 , fonksiyonunda PSO en iyi değeri hesaplamıştır. $F_2 - F_6$ fonksiyonlarında geliştirilen MHYÖ yöntemi diğer algoritmalara göre en iyi sonucu bulmuştur. F_7 , fonksiyonunda MHYÖ, ÖÖTO ve YAK optimum sonucu vermiştir. F_8 , fonksiyonunda MHYÖ ve ÖÖTO en iyi değeri bulmuştur. F_9 , fonksiyonunda MHYÖ, ÖÖTO, YAA ve YAK optimum sonucu vermiştir. F_{10} fonksiyonunda MHYÖ, ÖÖTO ve PSO en iyi değeri bulmuştur.

Tablo 6'da 30 boyutlu (30-D) benchmark test fonksiyonları için en iyi sonuçlara göre F_1-F_4 fonksiyonlarında MHYÖ yöntemi en iyi değerleri vermiştir. F_5 , fonksiyonunda PSO en iyi değeri bulmuştur. F_6 , F_8 , F_9 ve F_{10} fonksiyonlarında MHYÖ yöntemi en iyi değeri hesaplamıştır. F_7 , fonksiyonunda ÖÖTO optimum değeri vermiştir. Tablo 5 ve Tablo 6'da verilen benchmark test fonksiyonu hesaplama sonuçlarının anlamlılık analizi ve algoritmaların ikili performanslarının kıyaslanabilmesi için Wilcoxon işaretlisıralama testi [39] kullanılmıştır. Karşılaştırmalarda algoritmaların 30 bağımsız çalışma sonucunda elde ettikleri global minimumu yani en iyi sonuç değerleri kullanılmıştır. Geliştirilen MHYÖ yöntemi tüm karşılaştırmalarda birinci algoritma olarak alınmıştır. Her bir karşılaştırmada p-değerleri hesaplanmıştır. Tablo 7'de " + " işareti geliştirilen yöntemin %95 anlamlılık düzeyinde (α = 0,05) probleme

dayalı istatiksel kıyaslama testlerinde diğer algoritmalardan daha üstün performans gösterdiğini belirtir. "-" işareti geliştirilen yöntemin diğer algoritmalardan daha düşük bir performans sapladığını belirtir. " = " ise problemin çözümünde kıyaslanan iki algoritmanın başarısı arasında istatiksel olarak anlamlı bir farkın olmadığını gösterir. Benchmark test fonksiyonları deneysel çalışmaları performans ve anlamlılık analizi için Wilcoxon işaretlisıralama testi [39] null hipotezi H_0 şu şekilde kurulmuştur: "Geliştirilen MHYÖ yöntemi ile diğer standart algoritma sonuçları arasında anlamlılık yoktur.". Tablo 7'de pdeğerlerine bakıldığında kabul edilen α=0,05 değerinden küçük olduğundan H₀ hipotezi reddedilir. Bu yüzden geliştirilen yöntem sonuçlarının anlamlılık açısından diğer standart PSO, YAK, YAA ve ÖÖTO algoritmalarından daha üstün bir performans sergilediğini gösterir. Bu durumda geliştirilen hibrit yöntemin 10 boyutlu (10-D) ve 30 boyutlu (30-D) olarak test edilen tek tepeli (unimodal) ve çok tepeli (multimodal) benchmark problemlerinin çözümünde etkili olduğu tespit edilmiştir.

4.2. 6-Baralı Rüzgâr-Termal Güç Sistemi Uygulamaları (6-Bus Wind-Thermal Power System Applications)

MHYÖ yöntemi, 6-baralı rüzgâr-termal güç sisteminin EDP çözümü amacıyla sistemden talep edilen 400 MW, 450 MW

Tablo 4. Algoritma parametreleri (Parameters of the Algorithms)

Algoritma	Parametre	Değer
	Popülasyon Sayısı	50
	W	1
PSO	wdamp	0,99
PSO	c1	1,5
	c2	2
	İterasyon sayısı	1000
	Koloni Boyutu (D)	50
	Yiyecek Sayısı	D/2
YAK	Gözcü Arı Sayısı	D/2
YAK	İşçi Ari Sayısı	D/2
	Limit	100
	İterasyon sayısı	1000
	Popülasyon (Kütle) sayısı	50
YAA	G_0	20
IAA	α	100
	İterasyon sayısı	1000
	Popülasyon sayısı	50
ÖÖTO	Sınıf Sayısı	D (Boyut kadar)
	İterasyon sayısı	1000
	Popülasyon Sayısı	GSA: 25, TLBO:25
	G_0	20
MHYÖ	α	100
	Sınıf Sayısı	D (Boyut kadar)
	İterasyon sayısı	1000

ve 500 MW güç değerlerine göre üç farklı durumda uygulanmıştır. Algoritma parametreleri Tablo 4'teki gibi alınmıştır. Geleneksel ve iteratif yöntemlerden olan Newton metodu (NM) ve karesel (quadratic) programlama (KP) için hata değeri (λ =0,000001) olarak alınmıştır. Tüm algoritmalar 30 kez çalıştırılmıştır. Her bir durum çalışması için sonuçlar istatiksel ve grafiksel olarak gösterilmiştir.

4.2.1. Durum 1: Talep edilen 400 MW güç değerine göre EDP çözümü

(Case 1: EDP solution according to the 400 MW demanded power)

Tablo 1'de 6-baralı rüzgâr-termal güç sisteminden talep edilen 400 MW güce göre EDP çözümü için NM, KP, PSO, YAK, YAA, ÖÖTO ve geliştirilen MHYÖ yöntemleri Eş. 18'deki amaç fonksiyonuna uygulanmıştır. Karedeniz vd. [27] çalışması ile algoritmaların EDP çözümü için yakıt

maliyeti istatistikleri ve hesaplama zamanı Tablo 8'de verilmiştir. Tablo 8'e göre EDP analizinde birincil öncelik olan minimum yakıt maliyeti değeri geliştirilen MHYÖ yöntemi ile diğer standart algoritmalar ve geleneksel yöntemlerden daha iyi olduğu görülmektedir. 6-baralı rüzgâr-termal güç sistemi için talep edilen 400 MW güç değerli için sırasıyla Tablo 9'da NM, KP, PSO, YAK, YAA, ÖÖTO ve MHYÖ yöntemlerinin hesapladığı termal ve rüzgâr jeneratörlerinin aktif güç değerleri verilmiştir.

6-baralı rüzgâr-termal güç sisteminden talep edilen 400 MW güç için geliştirilen MHYÖ yöntemi ve diğer standart algoritmaların yakınsama eğrisi Şekil 4'de gösterilmiştir. Şekil 4'deki yakınsama eğrilerine bakıldığında geliştirilen MHYÖ yönteminin ilk 50 iterasyonda ÖÖTO ile birlikte daha önce yakınsadığı ve son 50 iterasyon da ise en iyi yakıt maliyetini verdiği görülmektedir.

Tablo 5. 10 Boyutlu (10-D) benchmark test fonksiyonları deneysel çalışma sonuçları (Experimental results of 10-dimensional benchmark test functions)

Fonks	siyon	PSO	YAK	YAA	ÖÖTO	MHYÖ
	En iyi	6,0326e-246	3,1165e-17	7,9501e-19	2,9502e-92	4,4641e-185
С	Ort.	2,8336e-210	1,0368e-16	1,6756e-18	8,5447e-91	6,6549e-182
F ₁	En kötü	8,5009e-209	2,1477e-16	4,0645e-18	4,0153e-90	6,3291e-181
	Std. S.	0,0000e+00	4,3038e-17	6,6632e-19	1,0855e-90	0,0000e+00
	En iyi	9,6643e-89	2,6982e-16	2,4344e-09	2,5935e-93	9,4987e-94
F_2	Ort.	3,4094e-09	4,0756e-16	3,7276e-09	1,5031e-91	6,2677e-92
1.5	En kötü	6,4584e-08	5,5383e-16	5,1801e-09	6,6853e-91	8,0940e-91
	Std. S.	1,3228e-08	1,0028e-16	8,3034e-10	1,6337e-91	1,4706e-91
	En iyi	1,0431e-49	8,9016e-08	1,0126e-18	9,5124e-92	5,0296e-93
F_3	Ort.	6,0876e-42	1,0289e-04	1,0932e-04	6,1758e-88	2,6597e-89
- 3	En kötü	1,6007e-40	8,7977e-04	3,2796e-03	7,5419e-87	2,4633e-88
	Std. S.	2,9189e-41	1,8673e-04	5,9877e-04	1,8149e-87	5,2418e-89
	En iyi	1,7535e-45	2,2879e-02	5,8928e-10	1,0433e-309	4,4356e-310
F_4	Ort.	2,7676e-39	2,5699e-01	9,1196e-10	1,7979e-300	9,3647e-301
4	En kötü	4,7815e-38	7,5495e-01	1,2902e-09	4,4864e-299	1,8415e-299
	Std. S.	9,3696e-39	1,8857e-01	1,8187e-10	0,0000e+00	0,0000e+00
	En iyi	1,2433e-03	2,1487e-01	5,2323e+00	7,9214e-05	7,3895e-05
F_5	Ort.	4,3902e+00	2,5457e+00	5,4293e+00	1,2077e-02	5,2658e-03
- 5	En kötü	6,6015e+01	6,2609e+00	5,7331e+00	2,7195e-01	4,1401e+00
	Std. S.	1,1778e+01	1,6598e+00	1,3089e-01	4,9936e-02	1,2195e+00
-	En iyi	-2,9067e+03	-3,5898e+03	-2,1062e+03	-3,5714e+03	-3,6174e+03
	Ort.	-2,2710e+03	-3,5898e+03	-1,6113e+03	-3,2587e+03	-3,0994e+03
F_6	En kötü	-1,9197e+03	-3,5898e+03	-1,2688e+03	-2,9213e+03	-2,4387e+03
	Std. S.	2,3208e+02	2,4543e-08	2,0062e+02	2,1197e+02	3,0167e+02
	En iyi	2,9849e+00	0,0000e+00	9,9496e-01	0,0000e+00	0,0000e+00
	Ort.	9,8501e+00	9,0002e-15	3,5819e+00	1,7412e+00	1,5879e+00
F_7	En kötü	2,9849e+01	5,6843e-14	7,9597e+00	6,9647e+00	4,9748e+00
	Std. S.	5,6908e+00	1,4685e-14	1,7644e+00	1,8127e+00	1,5554e+00
	En iyi	4,4409e-15	7,9936e-15	1,0720e-09	8,8818e-16	8,8818e-16
	Ort.	6,2113e-01	1,3678e-14	1,8376e-09	3,7303e-15	2,3225e-15
F_8	En kötü	2,3168e+00	2,2204e-14	2,8122e-09	4,4409e-15	4,4409e-15
	Std. S.	7,5850e-01	4,6275e-15	3,8808e-10	1,4454e-15	6,4863e-16
	En iyi	1,9678e-02	0,0000e+00	0,0000e+00	0,0000e+00	0,0000e+00
	•				-	
F_9	Ort.	9,8491e-02	4,8941e-03	3,8643e-02	3,8331e-03	3,8245e-03
	En kötü	2,9045e-01	2,2256e-02	3,2012e-01	3,4413e-02	3,6914e-02
	Std. S.	5,6033e-02	6,1478e-03	6,6510e-02	8,8792e-03	3,5823e-03
	En iyi	4,7116e-32	5,2048e-17	1,0774e-20	4,7116e-32	4,7116e-32
F ₁₀	Ort.	1,1410e-01	1,6066e-16	3,1882e-20	4,7165e-32	4,7124e-32
- 10	En kötü	2,4900e+00	3,1172e-16	7,3998e-20	4,7358e-32	4,7358e-32
	Std. S.	4,6584e-01	7,5507e-17	1,4147e-20	9,8463e-35	4,4187e-35

Tablo 6. 30 Boyutlu (30-D) benchmark test fonksiyonları deneysel çalışma sonuçları (Experimental results of 30-dimensional benchmark test functions)

Fonk	siyon	PSO	YAK	YAA	ÖÖTO	MHYÖ
	En iyi	2,0131e-56	2,1571e-12	1,2841e-17	1,1081e-91	1,3909e-185
E	Ort.	9,3383e-45	1,6677e-11	2,0264e-17	1,1008e-90	8,5598e-182
F_1	En kötü	2,1383e-43	1,1318e-10	4,0902e-17	5,5196e-90	1,5332e-180
	Std. S.	3,9431e-44	2,0730e-11	5,8176e-18	1,2269e-90	0,0000e+00
	En iyi	1,7263e-05	3,5399e-07	1,3965e-08	4,6296e-71	1,0985e-93
Б	Ort.	4,8407e-01	1,1206e-06	2,2775e-08	3,0750e-70	5,1601e-92
F_2	En kötü	1,9584e+00	2,5579e-06	3,5767e-08	1,2953e-69	4,7425e-91
	Std. S.	5,0558e-01	4,5277e-07	4,5408e-09	3,2383e-70	8,7902e-92
	En iyi	7,5247e-03	1,6082e-06	1,2825e+02	4,5926e-37	9,2449e-38
	Ort.	2,5877e-01	2,5347e-04	2,4653e+02	1,2622e-33	3,3269e-34
F_3	En kötü	1,4802e+00	3,9254e-03	3,9670e+02	1,3806e-32	9,9807e-33
	Std. S.	3,4049e-01	7,1426e-04	7,7071e+01	2,8912e-32	1,8222e-33
	En iyi	1,5338e-02	2,8504e+01	2,1612e-09	2,2833e-309	1,1795e-309
Б	Ort.	1,3760e-01	4,2561e+01	3,2926e-09	7,9143e-302	4,4258e-302
F_4	En kötü	3,4848e-01	5,3500e+01	4,6545e-09	1,9390e-300	2,7086e-299
	Std. S.	7,3660e-02	6,8047e+00	6,7236e-10	0,0000e+00	0,0000e+00
	En iyi	1,3219e+00	4,7543e+00	2,5784e+01	1,4548e+01	1,3454e+00
_	Ort.	3,7674e+01	2,9194e+01	2,8930e+01	1,7408e+01	1,7993e+01
F_5	En kötü	7,9907e+01	7,9073e+01	8,8553e+01	2,1658e+01	2,5389e+01
	Std. S.	2,7193e+01	1,9510e+01	1,1986e+01	1,5444e+00	2,6265e+00
	En iyi	-8,6806e+03	-1,2450e+03	-3,9608e+03	-8,5690e+03	-9,1436e+03
	Ort.	-6,0800e+03	-1,2189e+03	-2,8424e+03	-8,0681e+03	-8,8069e+03
F_6	En kötü	-4,6914e+03	-1,2030e+03	-2,0315e+03	-7,3723e+03	-8,1026e+03
	Std. S.	9,6165e+02	1,8231e+02	4,7395e+02	6,2408e+02	1,4129e+02
	En iyi	1,0945e+01	1,0841e-02	6,9647e+00	0,0000e+00	9,9496e-01
F_7	Ort.	3,0910e+01	2,4845e-01	1,5621e+01	1,1574e+01	1,5446e+01
1.4	En kötü	6,2682e+01	1,0022e+00	3,2834e+01	2,2884e+01	2,8564e+01
	Std. S.	1,1925e+01	4,1527e-01	5,5683e+00	5,2332e+00	6,7662e+00
	En iyi	1,1551e+00	6,6996e-06	2,8061e-09	4,9324e-15	4,4409e-15
F_8	Ort.	2,6862e+00	1,5944e-05	3,6185e-09	1,0743e-01	4,4409e-15
	En kötü Std. S.	4,5054e+00	3,4647e-05 6,5206e-06	4,7822e-09	3,2228e+00	4,4409e-15 0,0000e+00
	En iyi	7,0774e-01 6,2172e-15	1,7043e-10	4,5006e-10 1,5151e+00	5,8839e-01 1,4432e-01	0,0000e+00 0,0000e+00
	Ort.	6,0939e-02	1,3787e-03	4,3749e+00	3,1628e-01	0,0000e+00 0,0000e+00
F_9	En kötü	4,1369e-01	1,4924e-02	7,3591e+00	8,6079e-01	0,0000e+00 0,0000e+00
	Std. S.	•	3,7096e-03	1,3620e+00	-	
		8,0431e-02	•	ŕ	2,3904e-01	0,0000e+00
	En iyi	5,5470e-32	5,9591e-14	1,0517e-19	9,3942e-29	3,7568e-32
F_{10}	Ort.	2,7009e-01	2,5896e-12	2,6680e-02	1,0869e-25	3,0422e-26
	En kötü	2,0779e+00	4,0094e-11	1,0368e-01	2,3255e-24	9,1267e-25
	Std. S.	5,0811e-01	7,1979e-12	4,5281e-02	4,2675e-25	1,6663e-28

Tablo 7. Geliştirilen MHYÖ yönteminin PSO, YAK, YAA ve ÖÖTO algoritmalarına göre Wilcoxon işaretli-sıralama testi sonuçları (The Wilcoxon signed-rank test results of the proposed MHGT method according to the PSO, ABC, GSA and TLBO algorithms)

Fonksiyon	MHYÖ/I	PSO	MHYÖ/	YAK	MHYÖ/	YAA	MHYÖ/	ÖÖTO
	10-D	30-D	10-D	30-D	10-D	30-D	10-D	30-D
F_1	_	+	+	+	+	+	+	+
F_2	+	+	+	+	+	+	+	+
F_3	+	+	+	+	+	+	+	+
F_4	+	+	+	+	+	+	+	+
F_5	+	_	+	+	+	+	+	+
F_6	+	+	+	+	+	+	+	_
F_7	+	+	=	_	+	+	=	+
F_8	+	+	+	+	+	+	=	+
F_9	+	+	=	+	=	+	=	+
F_{10}	=	+	+	+	+	+	=	+
+/=/-	8/1/1	9/0/1	8/2/0	9/0/1	9/1/0	10/0/0	6/4/0	9/0/1
p – değeri	0,0078	0,0371	0,0078	0,0371	0,0039	0,0020	0,0313	0,0048

Tablo 8. 6-baralı sistemden talep edilen 400 MW güç için EDP analizi (EDP analysis from 6-bus system for demanded 400 MW power)

Yöntemler	Yakıt Maliyeti En iyi (\$/h)	Ort. (\$/h)	En kötü (\$/h)	Std. S.	Zaman (s)
DD DC [27]	4742,30		Lii κοτα (ψ/ii)	ota. o.	115,02
BP-BÇ [27]	4742,30	-	-	-	113,02
PSO [27]	4742,07	-	=	-	180,89
IHO [27]	4805,20	-	-	-	226,94
NM	4761,654	4761,654	4761,654	0	126,60
KP	4748,988	4748,988	4748,988	0	98,12
PSO	4747,284	4747,5	4747,6	0,149	34,56
YAK	4779,958	4873,012	4995,3	65,605	18,25
YAA	4747,576	4786,8	4878,7	31,949	3,9564
ÖÖTO	4735,5	4735,55	4735,53	0,0115	16,2492
MHYÖ	4728,224	4732,54	4736,12	0,807	9,155

Tablo 9. Talep edilen 400 MW güç için jeneratör bara değerleri (Generator bus values for demanded 400 MW power)

I N	Güç Santrali	Yöntem	ler					
Jen. Nu.	(MW)	NM	KP	PSO	YAK	YAA	ÖÖTO	MHYÖ
1	P_{G1}	74,02	91,33	88,29	98,03	95,17	86,59	86,48
2	P_{G2}	249,99	231,6	232,38	226,46	226,21	233,96	233,52
3	P_{G3}	37,44	37,07	39,85	37,28	39,19	39,82	40
4	P_{G4}	38,55	40	39,48	39,47	39,43	39,62	40

4.2.2. Durum 2: Talep edilen 450 MW güç değerine göre EDP çözümü

(Case 2: EDP solution according to the 450 MW demanded power)

Tablo 1'de 6-baralı rüzgâr-termal güç sisteminden talep edilen 450 MW güce göre EDP çözümü için NM, KP, PSO, YAK, YAA, ÖÖTO ve geliştirilen MHYÖ yöntemleri minimum yakıt maliyetini hesaplamak amacıyla Eş. 18'deki denkleme uygulanmıştır. Tablo 10'da diğer çalışmalar ve uygulanan yöntemlerin bulduğu sonuçlar istatiksel olarak verilmiştir. Tablo 10'a göre minimum yakıt maliyet değeri geliştirilen MHYÖ yönteminde diğer çalışmalardan daha düşük olduğu görülmektedir.

6-baralı rüzgâr-termal güç sistemi için talep edilen 450 MW güç değerli için sırasıyla Tablo 11'de NM, KP, PSO, YAK, YAA, ÖÖTO ve MHYÖ yöntemlerinin hesapladığı termal ve rüzgâr jeneratörlerinin aktif güç değerleri verilmiştir.

6-baralı rüzgâr-termal güç sisteminden talep edilen 450 MW güç için geliştirilen MHYÖ yöntemi ve diğer standart algoritmaların yakınsama eğrisi Şekil 5'te gösterilmiştir. Şekil 5'teki yakınsama eğrilerine bakıldığında geliştirilen MHYÖ yönteminin ilk 50 iterasyonda daha önce yakınsadığı ve son 50 iterasyon da ise en iyi yakıt maliyetini verdiği görülmektedir.

4.2.3. Durum 3: Talep edilen 500 MW güç değerine göre EDP cözümü

(Case 3: EDP solution according to the demanded 500 MW power)

Tablo 1'de 6-baralı rüzgâr-termal güç sisteminden talep edilen 500 MW güce göre EDP çözümü için NM, KP, PSO, YAK, YAA, ÖÖTO ve geliştirilen MHYÖ yöntemleri Eş. 18'deki denkleme uygulanmıştır. Tablo 12'da diğer çalışmalar ve uygulanan yöntemlerin bulduğu sonuçlar istatiksel olarak verilmiştir. Tablo 12'da geliştirilen MHYÖ

Şekil 4. PSO, YAK, YAA, ÖÖTO ve MHYÖ yöntemlerinin talep edilen 400 MW güce göre yakınsama eğrisi (Convergence curve according to the demanded 400 MW power of the PSO, ABC, GSA, TLBO and MHGT methods)

Tablo 10. 6-baralı sistemden talep edilen 450 MW güç için EDP analizi (EDP analysis from 6-bus system for demanded 450 MW power)

Yöntemler	Yakıt Maliyeti							
1 Officialica	En iyi (\$/h)	Ort. (\$/h)	En kötü (\$/h)	Std. S.	Zaman (s)			
BP-BÇ [27]	5466,39	-	-	-	116,02			
PSO [27]	5467,03	-	-	-	181,96			
IHO [27]	5514,81	-	-	-	228,82			
NM	5479,32	5479,32	5479,32	0	122,90			
KP	5463,6	5463,6	5463,6	0	101,20			
PSO	5467,79	5467,9	5468,0	0,126	36,16			
YAK	5456,15	5486,2	5521,2	32,789	19,12			
YAA	5469,75	5496,6	5543,0	22,453	4,464			
ÖÖTO	5458,76	5458,9	5459,9	0,986	16,025			
MHYÖ	5448,22	5449,25	5450,82	0,354	8,584			

Tablo 11. Talep edilen 450 MW güç için jeneratör bara değerleri (Generator bus values for demanded 450 MW power)

Jen.Nu.	Güç	Yöntemle	er					
Jen.Nu.	Santrali(MW)	NM	KP	PSO	YAK	YAA	ÖÖTO	MHYÖ
1	P_{G1}	123,60	128,33	120,67	123,30	121,55	120,759	120,01
2	P_{G2}	250,00	242,48	250,00	250,00	250,00	250,00	250,00
3	P_{G3}	38,50	39,18	39,85	39,70	39,45	39,28	40,00
4	P_{G4}	37,90	40,00	39,48	37,00	38,99	39,961	39,99

Şekil 5. PSO, YAK, YAA, ÖÖTO ve MHYÖ yöntemlerinin talep edilen 450 MW güce göre yakınsama eğrisi (Convergence curve according to the demanded 450 MW power of the PSO, ABC, GSA, TLBO and MHGT methods)

yöntemi ile PSO [27] yakıt maliyetini aynı hesaplamıştır. Çalışma süresi açısından geliştirilen MHYÖ yöntemi daha kısa sürede yakıt maliyetini bulmuştur. 6-baralı rüzgârtermal güç sistemi için talep edilen 500 MW güç değerli için

sırasıyla Tablo 13'te NM, KP, PSO, YAK, YAA, ÖÖTO ve MHYÖ yöntemlerinin hesapladığı termal ve rüzgâr jeneratörlerinin aktif güç değerleri verilmiştir. 6-baralı rüzgâr-termal güç sisteminden talep edilen 500 MW güç için

geliştirilen MHYÖ yöntemi ve diğer standart algoritmaların yakınsama eğrisi Şekil 6'da gösterilmiştir. Şekil 6'daki yakınsama eğrilerine bakıldığında geliştirilen MHYÖ yönteminin ilk 50 iterasyonda daha önce yakınsadığı ve son 50 iterasyon da ise en iyi yakıt maliyetini verdiği görülmektedir.

4.3. Türkiye 19 Baralı Rüzgâr-Termal Güç Sistemi Uygulamaları

(Turkey 19-Bus WindTthermal Power System Applications)

Geliştirilen MHYÖ yöntemi, Türkiye 19 baralı rüzgâr-termal güç sisteminin EDP çözümü amacıyla sistemdeki toplam gücün %25, %27,5 ve %30 talep edilen güç oranlarına göre üç farklı durumda uygulanmıştır. Algoritma parametreleri Tablo 4'teki gibi alınmıştır. Tüm algoritmalar 30 kez çalıştırılmıştır. Geleneksel ve iteratif yöntemlerden olan Newton metodu (NM) ve karesel (quadratic) programlama (KP) için hata değeri (λ =0,000001) olarak alınmıştır. Her bir durum çalışması için sonuçlar istatiksel ve grafiksel olarak gösterilmiştir.

4.3.1. Durum 1: Talep edilen %25 güç oranına göre EDP çözümü

(Case 1: EDP solution according to the demanded power ratio of 25%)

Tablo 2'de planlanan toplam gücün %25 oranında talep edilen 1834MW güce göre EDP için NM, KP, PSO, YAK, YAA, ÖÖTO ve geliştirilen MHYÖ yöntemleri Eş. 18'deki amaç fonksiyonuna uygulanmıştır. Algoritmaların EDP

çözümü için yakıt maliyeti istatistikleri ve hesaplama zamanı Tablo 14'te verilmiştir. Tablo 14'e göre geliştirilen MHYÖ yönteminin hesapladığı en iyi ve ortalama yakıt maliyeti değerleri diğer standart algoritmalardan ve geleneksel yöntemlerden daha iyi olduğu görülmektedir. Tablo 14'ta standart sapma değerlerine bakıldığında geliştirilen yöntemin diğer standart sezgisel yöntemlere göre her bir çalışmasındaki çözüm değerinin birbirine daha yakın olduğunu göstermektedir. Hesaplama zamanı açısından bakıldığında geliştirilen yöntemin çalışma süresinin YAA ve GA [28]'dan fazla diğer yöntemlerden az olduğu görülmektedir. YAA ve GA [28] daha kısa sürede çözüm elde etse bile yakıt maliyeti açısından dezavantajlıdır. Hem yakıt maliyetini hem de zaman ikilisi birlikte düşünüldüğünde geliştirilen MHYÖ yönteminin sonuçlarının daha iyi ve etkili olduğu Tablo 14'te görülmektedir. Geliştirilen MHYÖ yöntemi ile diğer standart algoritmaların yakınsama eğrisi Şekil 7'de gösterilmiştir. Şekil 7'deki yakınsama eğrilerine bakıldığında geliştirilen MHYÖ yönteminin ilk 50 iterasyonda daha önce yakınsadığı ve son 50 iterasyon da ise en iyi yakıt maliyetini verdiği görülmektedir.

Türkiye 19 baralı rüzgâr-termal güç sistemi için planlanan toplam gücün %25 talep oranına göre NM, KP, PSO, YAK, YAA, ÖÖTO ve HYÖ algoritmaları tarafından hesaplanan minimum yakıt maliyeti için termal ve rüzgâr jeneratörlerinin ürettikleri aktif güç değerleri Tablo 15'te verilmistir.

Tablo 12. 6-baralı sistemden talep edilen 500 MW güç için EDP analizi (EDP analysis from 6-bus system for demanded 500 MW power)

Yöntemler	Yakıt Maliyeti				
rontenner	En iyi (\$/h)	Ort. (\$/h)	En kötü (\$/h)	Std. S.	Zaman (s)
BP-BÇ [27]	6246,73	-	-	-	116,31
PSO [27]	6241,47	-	-	-	182,20
IHO [27]	6363,42	-	-	-	227,60
NM	6250,52	6250,52	6250,52	0	125,40
KP	6245,9	6245,9	6245,9	0	100,90
PSO	6243,31	6306,1	6349,3	57,528	37,65
YAK	6249,11	6269,3	6285,7	18,582	21,85
YAA	6247,95	6382,9	6396,49	49,13	4,43
ÖÖTO	6244,96	6245,01	6246,9	0,012	17,72
MHYÖ	6241,47	6241,70	6244,70	0,010	9,44

Tablo 13. Talep edilen 500 MW güç için jeneratör bara değerleri (Generator bus values for demanded 500 MW power)

I.m. Niv	Güç Santrali	Yöntemler							
Jen.Nu. (MW)	(MW)	NM	KP	PSO	YAK	YAA	ÖÖTO	MHYÖ	
1	P_{G1}	173,09	172,164	170,80	173,643	172,8897	170,8939	170,01	
2	P_{G2}	249,90	250,00	250	248,2929	248,6593	250	249,99	
3	P_{G3}	37,60	39,184	39,62	39,21326	39,452	39,98	40,00	
4	P_{G4}	39,40	38,652	39,58	39,17242	38,999	39,1261	40,00	

Şekil 6. PSO, YAK, YAA, ÖÖTO ve MHYÖ yöntemlerinin talep edilen 500 MW güce göre yakınsama eğrisi (Convergence curve according to the demanded 500 MW power of the PSO, ABC, GSA, TLBO and MHGT methods)

Tablo 14. Türkiye 19-baralı rüzgâr-termal güç sistemi için planlanan toplam gücün %25'i (1834 MW) için EDP analizi (EDP analysis for the demanded power rate of 25% (1834 MW) in Turkey 19-bus wind-thermal power system)

Yöntemler	Yakıt Maliyeti	Yakıt Maliyeti							
i ontenner	En iyi (\$/h)	Ort. (\$/h)	En kötü (\$/h)	Std. S.	Zaman (s)				
GA [28]	55593,51	-	-	-	11,77				
ÖÖTO [28]	52732,66	-	-	-	206,75				
GA-ÖÖTO [28]	52728,25	-	-	_	138,00				
NM	52769,958	52769,958	52769,958	0	360,202				
KP	52797,349	52797,349	52797,349	0	290,30				
PSO	52732,84	52744,24	52786,44	18,98	35,97				
YAK	53768,89	54179,01	54720,95	113,36	30,65				
YAA	53991,897	57295,064	61912,463	155,315	10,6368				
ÖÖTO	52731,86	52770,466	53060,338	71,2752	29,7669				
MHYÖ	52724,401	52735,016	52780,701	9,03966	18,2261				

4.3.2. Durum 2: Talep edilen %27,5 güç oranına göre EDP çözümü

(Case 2: EDP solution according to the demanded power ratio of 27.5%)

Tablo 2'de planlanan toplam gücün %27,5 oranında talep edilen 2017 MW güce göre EDP için geliştirilen MHYÖ yöntemi ve diğer yöntemler yakıt maliyetini minimum yapmak için uygulanmıştır. Algoritmaların EDP çözümü için yakıt maliyeti istatistikleri ve hesaplama zamanı Tablo 16'da verilmiştir. Tablo 16'ya göre geliştirilen MHYÖ yönteminin hesapladığı en iyi, ortalama ve en kötü yakıt maliyeti değerleri diğer standart algoritmalardan ve geleneksel yöntemlerden daha iyi olduğu görülmektedir. Standart sapma değerlerine bakıldığında geliştirilen yönteminin diğer standart sezgisel yöntemlere göre daha düşük değere sahiptir. Hem yakıt maliyeti hem de zaman açısından MHYÖ yöntemi diğer standart algoritmalardan daha iyi sonuçlar verdiği Tablo 16'da görülmektedir. MHYÖ YAA, Geliştirilen yöntemi ile

algoritmalarının yakınsama eğrisi Şekil 8'de gösterilmiştir. Şekil 8'deki yakınsama eğrilerine bakıldığında geliştirilen HYÖ yönteminin ilk 50 iterasyonda daha önce yakınsadığı ve son 50 iterasyon da ise en iyi yakıt maliyetini verdiği görülmektedir.

Türkiye 19 baralı rüzgâr-termal güç sistemi için planlanan toplam gücün %27,5 talep oranına göre NM, KP, PSO, YAK, YAA, ÖÖTO ve HYÖ algoritmaları tarafından hesaplanan minimum yakıt maliyeti için termal ve rüzgâr jeneratörlerinin ürettikleri aktif güç değerleri Tablo 17'de verilmiştir.

4.3.3. Durum 3: Talep edilen %30 güç oranına göre EDP çözümü

(Case 3: EDP solution based on the demanded power ratio of 30%)

Tablo 2'de planlanan toplam gücün %30 oranında talep edilen 2201 MW güce göre EDP için geliştirilen MHYÖ

Tablo 15. Talep edilen %25 güç oranı (1834 MW) için her bir baranın aktif güç d	leğerleri
(Active power values of each bus for the demanded power rate of 25%)	

Jen. Nu.	Yöntemler						
(MW)	NM	KP	PSO	YAK	YAA	ÖÖTO	MHYÖ
1	190,02	190	190	191,8322	190	190,004	190,001
2	245	245	245	245	245	245	245
3	318,05	318	318	318	322,5882	318	318
4	202,6432578 06540	203,2988039 85463	203,9783	290,4778	263,4513	200,807	200,2443
5	210	210	210	210	210	210	210
6	125,3686325 48138	130,1834940 66568	127,8721	110	157,3566	128,8805	128,5026
7	198,0395097 45321	202,4856478 39265	190,7947	142,6977	214,1361	200,3661	200,0805
8	186,68	180,5614541 08703	185,1845	261,2701	216,0564	177,8836	178,2613
9	14,23	12,39	14,4	0,60735080 0000000	4,445813	14,4	14,39838
10	6,27	6,07	6,2699	4,398123	1,605628	6,27	6,27
11	10,2	9,99	10,4	0,09013345 00000000	6,491789	10,39544	10,39456
12	5,04	5,04	5,0399	0,74832020 0000000	1,031739	5,04	5,039739
	1,248	1,248	1,247954	0	0,3113418 0,0093211	1,246689	1,248
13	6	6,00	5,999998	1,117792	29000000 00	6	5,999104
14	6,384	6,384	6,384	0,607631	5,8e-09	6,384	6,3828
	9,78	9,78	9,78	0	0,0108	9,78	9,78
15	0,476	0,476	0,475999	0,0031	0,2783	0,4724	0,4401
1.6	9,044	9,044	9,044	0,1138	2,7054	9,044	9,0429
16	8,15	8,15	8,14992	3,0175	6,9193	8,15	8,15
17	20,99	19,112	21,182	0	0,1891	21,181	21,182
17	59,89	60,29	65,2	60,67276	1,6973	65,199	65,20
18	0,2716	0,271599999 999999		0	0,0007784 94200000 000		0,1693632000 00000
19	0,225	0,225	0,225	0	0,0053	0,225	0,2235

Şekil 7. PSO, YAK, YAA, ÖÖTO ve MHYÖ yöntemlerinin talep edilen %25 güç oranına göre yakınsama eğrisi (Convergence curves of PSO, ABC, GSA, TLBO and MHGT methods according to the demanded 25% power ratio)

yöntemi ve diğer yöntemler yakıt maliyetini minimum yapmak için uygulanmıştır. Bu çalışmada EDP çözümü için deneysel çalışmaları yapılan algoritmaların yakıt maliyeti istatistikleri ve hesaplama zamanı Tablo 18'te verilmiştir.

Tablo 18'e göre için geliştirilen MHYÖ yönteminin hesapladığı en iyi ve ortalama yakıt maliyeti değerleri diğer standart algoritmalardan ve geleneksel yöntemlerden daha iyi olduğu görülmektedir. Standart sapma değerlerine

Tablo 16. Türkiye 19-baralı rüzgâr-termal güç sistemi için planlanan toplam gücün %27,5'i (2017 MW) için EDP analizi (EDP analysis for the demanded power rate of 27,5% (2017 MW) in Turkey 19-bus wind-thermal power system)

	Yakıt Maliyeti				
Yöntemler	En iyi (\$/h)	Ort. (\$/h)	En kötü (\$/h)	Std. S.	Zaman (s)
GA [28]	57850,98	-	-	-	12,37
ÖÖTO [28]	54473,89	-	-	-	211,95
GA-ÖÖTO [28]	54464,87	-	-	-	141,86
NM	54555,92	54555,920	54555,920	0	358,5
KP	54492,37	54492,374	54492,374	0	292,50
PSO	54463,54	54484,3	54492,43	25,145	34,48
YAK	55491,34	56315,4	56889,5	353,53	32,20
YAA	55214,169	57613,508	61658,787	180,129	9,728
ÖÖTO	54471,904	54496,479	54577,241	16,705	29,7191
MHYÖ	54452,013	54473,597	54486,512	3,752	20,6063

Tablo 17. Talep edilen %27,5 güç oranı (2017 MW) için her bir baranın aktif güç değerleri (Active power values of each bus for the demanded power rate of 27,5% (2017 MW))

Jen. Nu.	Yöntemler						
(MW)	NM	KP	PSO	YAK	YAA	ÖÖTO	MHYÖ
1	190	190,00	190	190	190	190,005	190,0253
2	245	245,00	245	245	245	245	245
3	318	318,00	318	318	397,065	318,01	318,02
4	259,962	252,608	244,65	270,303	247,105	253,05	249,66
5	210	210,00	210	210	210	210	210,019
6	163,308	162,821	148,24	121,806	112,01	162,38	165,89
7	256,19525 7512	⁷⁵ 252,514	256,29	321,996	247,21	251,38	248,81
8	222,467	227,187	241,73	273,116	254,52	225,76	226,17
9	14,197	14,089	14,4	1,86308	9,197	14,389	14,399
10	6,27	5,3699	6,27	1,09029	3,903	6,269	6,27
11	8,4	9,9899	10,4	1,25258	7,0971	10,389	10,395
12	5,04	5,0399	5,04	0,61734	5,04	5,039	5,039
12	1,248	1,2479	1,248	0,1	1,248	1,2378	1,246
13	6	5,999	6	0,1	6	5,9974	6
14	6,384	6,3839	6,384	1,189	6,384	6,384	6,384
15	9,78	9,7799	9,78	2,557	5,213	9,778	9,775
13	0,476	0,4759	0,476	0,289	0,476	0,476	0,476
16	9,044	7,0439	9,044	0,9425	8,0231	9,044	9,041
10	8,15	8,149	8,15	5,5197	6,2673	8,144	8,149
17	21,182	20,89	21,182	5,94757	11,484	21,179	21,182
	55,399	63,89	65,2	65,2	43,687	65,2	65,195
18	0,2716	0,27159	0,2716	0,10291	0,2716	0,2716	0,0464
19	0,225	0,225	0,225	0,1	0,225	0,225	0,225

bakıldığında MHYÖ yöntemi 9,587 ile diğer standart sezgisel yöntemlerden daha düşük standart sapma değerine sahiptir. Hem yakıt maliyeti hem de zaman ikilisi açısından MHYÖ yöntemi diğer yöntemlerden daha iyi sonuçlar verdiği Tablo 18'de görülmektedir. Geliştirilen MHYÖ yöntemi ile YAA, ÖÖTO algoritmalarının yakınsama eğrisi Şekil 9'da gösterilmiştir. Şekil 9'daki yakınsama eğrilerine bakıldığında geliştirilen MHYÖ yönteminin ilk 50 iterasyonda daha önce yakınsadığı ve son 50 iterasyon da ise en iyi yakıt maliyetini verdiği görülmektedir.

Türkiye 19 baralı rüzgâr-termal güç sistemi için planlanan toplam gücün %30 talep oranına göre NM, KP, PSO, YAK, YAA, ÖÖTO ve HYÖ algoritmaları tarafından hesaplanan

minimum yakıt maliyeti için termal ve rüzgâr jeneratörlerinin ürettikleri aktif güç değerleri Tablo 19'da verilmiştir.

4.4. 6 Baralı ve Türkiye 19 Baralı Rüzgâr-Termal Güç Sistemi Karşılaştırmalı Analizi

(Comparative Analysis of 6-bus and Turkey19-bus Wind-Thermal Power Systems)

6-baralı ve Türkiye 19 baralı rüzgâr-termal güç sistemlerinde talep edilen güç değerlerine göre en iyi yakıt maliyetini hesaplayan MHYÖ yöntemi ile yakıt maliyetini en kötü hesaplayan yöntemin termal ve rüzgâr jeneratörlerinin ürettikleri güç değerleri ile güç üretim oranları Tablo 20'da verilmiştir. 6-baralı ve Türkiye 19 baralı rüzgâr-termal güç

Şekil 8. PSO, YAK, YAA, ÖÖTO ve MHYÖ yöntemlerinin talep edilen %27,5 güç oranına göre yakınsama eğrisi (Convergence curves of PSO, ABC, GSA, TLBO and MHGT methods according to the demanded 27,5% power ratio)

Tablo 18. Türkiye 19-baralı rüzgâr-termal güç sistemi için planlanan toplam gücün %30'i (2201 MW) için EDP analizi

(EDP analysis for the demanded power rate of 30% (2201 MW) in Turkey 19-bus wind-thermal power system)

X7 1	Yakıt Maliyeti	Yakıt Maliyeti								
Yöntemler	En iyi (\$/h)	Ort. (\$/h)	En kötü (\$/h)	Std. S.	Zaman (s)					
GA [28]	61686,24	=	-	-	12,04					
ÖÖTO [28]	56447,31	-	-	-	211,12					
GA-ÖÖTO [28]	56446,31	-	-	-	138,38					
NM	56496,79	56496,79	56496,79	0	359,25					
KP	56519,84	56519,84	56519,84	0	294,58					
PSO	56464,57	56488,45	56504,7	15,487	35,18					
YAK	57584,54	57620,12	57700,5	201,48	33,35					
YAA	56620,834	56813,259	57061,051	128,118	9,38459					
ÖÖTO	56450,822	56482,772	56711,541	61,051	34,507					
MHYÖ	56434,279	56454,021	56503,949	9,587	18,452					

sistemlerinde optimum yakıt maliyeti için talep edilen gücün artışına bağlı olarak termal güç jeneratörlerinin üretimlerinin de arttığı ve buna bağlı olarak rüzgâr jeneratörlerinin maksimum değerlerde çalıştığı da Tablo 20'de görülmektedir. Tablo 20'de yakıt maliyeti optimum sonuçtan uzak olan yöntemlerin termal ve rüzgâr jeneratör üretim değerleri ve oranlarına bakıldığında, rüzgâr jeneratör üretimlerinin daha az değerde ve oranda olduğu görülmektedir. Bu bağlamda, yakıt maliyetini optimum yapabilmek için termal güç üretiminin düşük olması gerektiği ve buna bağlı olarak da rüzgâr güç üretiminin yüksek olması gerektiği Tablo 20'de görülmektedir.

Türkiye 19 baralı rüzgâr-termal güç sistemi EDP çözüm analizi için MHYÖ yöntemi, YAA, ÖÖTO ve Güçyetmez vd. [28] yakıt maliyeti ve zaman analizi karşılaştırması Tablo 21'de verilmiştir. Karşılaştırmalar algoritma çalışma zamanı, saatlik yakıt maliyeti kazancı ve 40 yıllık yakıt maliyeti kazancına göre yapılmıştır. EDP çözümü için

minimum yakıt maliyetini bulan algoritma baz değer olarak alınmış ve kazançlar buna göre belirlenmiştir. Tablo 21'de baz değer olarak alınan algoritma kalın yazı tipi stilinde gösterilmiştir. Geliştirilen MHYÖ yöntemi, tüm yöntemler içinde EDP çözümünde minimum yakıt maliyeti ile diğer algoritmalardan daha iyi sonuç bulmuştur. Çalışma zamanı analizinde ise standart YAA ve GA [28] diğer algoritmalardan daha kısa sürede hesaplama yapmasına rağmen yakıt maliyeti açısından oldukça dezavantajlıdırlar. Hem çalışma zamanı (s) hem de yakıt maliyeti (\$) ikilisi açısından bakıldığında MHYÖ yönteminin üstünlük sağladığı Tablo 21'de görülmektedir. Şekil 10'da talep edilen güç oran ve değerlerine göre algoritmaların hesapladığı minimum yakıt maliyeti (\$/h) analizi verilmiştir. MHYÖ yöntemi rüzgâr-termal güç sisteminin EDP çözümü için en düşük yakıt maliyetini hibrit GA-ÖÖTO ve diğer standart algoritmalardan daha iyi bulduğu Şekil 10'da görülmektedir. Tablo 21'de optimum yakıt maliyetini hesaplayan MHYÖ yöntemine göre saatlik (1h) ve 40 yıllık

Tablo 19. Talep edilen %30 güç oranı (2201 MW) id	için her bir baranın aktif güç değerleri
(Active power values of each bus for the demanded	d power rate of 30% (2201 MW))

Jen. Nu.	Yöntemler						
(MW)	NM	KP	PSO	YAK	YAA	ÖÖTO	MHYÖ
1	190	190,0	190	247,78870	190	190	190,005
2	245	245	245	245	245	245	245
3	318	318,0	319,85020	318	401,71	318	318,01
4	309,0281864 27894	304,183335 886852	309,28700	345,67180	273,35	304,046	302,84
5	210	210,0	210,03840	210	210	210	210
6	195,7853233 97511	196,959446 134631	210,25480	168,38650	190,36	195,744	195,019
7	305,9775030 18083	629726	269,82850	246,82370	259,65	303,48	303,75
8	268,8633871 66512	275,955671 348792	283,26050	335,21050	266,68	271,99	272,211
9	13,132000	14,40	14,40	8,6201360	14,40	14,399	14,4
10	6,270	6,170	6,270	1,2709830	6,27	6,269	6,2661
11	8,1440	9,990	10,40	7,2868740	10,40	10,399	10,368
12	5,040 1,2480	5,040 1,2480	4,9995830 1,2478010	0,17203390 0,12235310	,	5,039 1,247	5,039 1,241
13	6	6,000	5,9845040	2,4669450	6	5,999	5,998
14	6,384	6,3840	6,383978	4,915661	6,384	6,384	6,381
1.5	9,780	9,780	9,780	1,263119	9,78	9,778	9,778
15	0,4760	0,4759	0,07428	0,25126	0,476	0,475	0,476
16	9,0440	7,0440	9,044	1,125	9,044	9,0411	9,040
16	8,150	8,150	8,1499	3,2465	8,150	8,1478	8,15
17	21,182	19,990	21,182	3,1569	21,182	21,181	2,118
1 /	62,999	60,890	65,20	51,269	65,20	65,199	65,197
18	0,2716	0,27159999 9999999	0,27160	0,10801710	0,2716	0,2701	0,2596
19	0,225	0,2250	0,0928	0,1	0,225	0,2248	0,2224

Şekil 9. PSO, YAK, YAA, ÖÖTO ve MHYÖ yöntemlerinin talep edilen %30 güç oranına göre yakınsama eğrisi (Convergence curves of PSO, ABC, GSA, TLBO and MHGT methods according to the demanded 30% power ratio)

(350400h) maliyet kazanç (\$) analizi yapılmıştır. Geliştirilen MHYÖ yöntemi %25 talep edilen güç oranı için en yakın yakıt maliyetini hesaplayan hibrit GA-ÖÖTO [28] algoritması ile kıyaslandığında saatlik 3,849 \$, 40 yıllık ise 1348689,6 \$ kazanç sağlamaktadır. %27,5 talep edilen güç oranı için MHYÖ, algoritmasından saatlik 12,857 \$, 40 yıllık ise 4505092,8 \$ kazanç sağlamaktadır. Aynı şekilde %30

talep edilen güç oranına için geliştirilen MHYÖ yöntemi, hibrit GA-ÖÖTO [28] algoritmasına göre saatlik 12,031 \$ ve 40 yıllık 4215662,4 \$ kazanç sağlamaktadır. Şekil 11'de geliştirilen MHYÖ yönteminin diğer algoritmaların hesapladığı saatlik (h) yakıt kazancı (\$) karşılaştırması, Şekil 12'de da 40 yıllık (350400h) yakıt kazancı (\$) karşılaştırması verilmiştir.

Tablo 20. Jeneratör türlerine göre üretilen toplam güç ve oranları (Total power and ratios generated by generator types)

	Talep Edilen	Yöntemler	Jeneratör Türle	rine Göre	Jeneratör Türler	Jeneratör Türlerine Göre	
	Güç (MW)	1 Officialica	Üretilen Toplaı	n Güç (MW)	Üretilen Toplan	n Güç Oranı (%)	
			Termal	Rüzgâr	Termal	Rüzgâr	
	400 MW	YAK	324,49	76,75	80,871797	19,1282026	
=	400 M W	MHYÖ	320	80	80	20	
6-Baralı	450 MW	NM	373,6	76,4	83,022222	16,9777778	
-B	430 IVI W	MHYÖ	370,01	79,99	82,224444	17,7755556	
9	500 MW	NM	422,99	77	84,599692	15,400308	
	500 MW	MHYÖ	420	80	84	16	
	1834 MW	YAA	1818,5886	25,7011	98,60645	1,39355005	
19	1034 1/1 //	MHYÖ	1670,0982	163,9205	91,062223	8,93777692	
ye rah	2017 MW	YAK	1950,2237	86,8709889	95,735545	4,26445513	
rkiye Baralı	201 / IVI W	MHYÖ	1853,5957	163,8243	91,879514	8,12048557	
Türkiye Baralı	2201 MW	YAK	2116,8812	85,3747821	96,123303	3,87669657	
	2201 MW	MHYÖ	2036,8372	163,9982	92,548366	7,45163405	

Tablo 21. Algoritmaların karşılaştırmalı yakıt maliyeti kazanç analizi (Competitive fuel cost gain analysis of the algortihms)

Talep Edilen Oran	1 Alconitosolos	Yakıt Maliyeti	Çalışma	Saatlik (1h)	40 Yıllık (350400h)
(%), Güç (MW)	Algoritmalar	(\$/h)	Zamanı (s)	Kazanç (\$)	Kazanç (\$)
	GA[28]	55593,51	11,77	2869,109	1005335794
	YAA	53991,897	10,64	1267,496	444130598,4
%25, 1834 MW	ÖÖTO	52731,860	29,77	7,459	2613633,6
%23, 1834 IVI W	ÖÖTO [28]	52732,66	206,75	8,259	2893953,6
	GA-ÖÖTO [28]	52728,25	138,00	3,849	1348689,6
	HYÖ	52724,401	18,23	-	-
	GA[28]	57850,98	12,37	3398,967	1190998037
	YAA	55214,169	9,73	762,156	267059462,4
%27,5, 2017 MW	ÖÖTO	54471,904	29,72	19,891	6969806,4
7027,3, 2017 IVI VV	ÖÖTO [28]	54473,89	211,95	21,877	7665700,8
	GA-ÖÖTO [28]	54464,87	141,86	12,857	4505092,8
	HYÖ	54452,013	20,61	-	-
	GA[28]	61686,24	12,04	5251,961	1840287134
	YAA	56620,834	9,39	186,555	65368872
%30, 2201 MW	ÖÖTO	56450,822	34,51	16,543	5796667,2
7030, 2201 WW	ÖÖTO [28]	56447,31	211,12	13,031	4566062,4
	GA-ÖÖTÖ [28]	56446,31	138,38	12,031	4215662,4
	HYÖ	56434,279	18,452	-	

Şekil 10. Talep edilen güç oran ve değerlerine göre algoritmaların hesapladığı minimum yakıt maliyeti (\$/h) analizi (Analysis of the minimum fuel cost (\$/h) calculated by the algorithms according to the demanded power rating and values)

Şekil 11. Geliştirilen MHYÖ yönteminin diğer algoritmalara göre saatlik (1h) yakıt kazancı (\$) (Hourly (1h) fuel gain (\$) of the proposed HGT method according to other algorithms)

Şekil 12. Geliştirilen MHYÖ yönteminin diğer algoritmalara göre 40 yıllık (350400h) yakıt kazancı (\$) (40 years (350400h) fuel gain (\$) of the proposed HGT method according to other algorithms)

5. SONUÇLAR (CONCLUSIONS)

Yenilenebilir enerji kaynaklarından biri olan rüzgâr enerjisinin her geçen gün artarak güç sistemlerine eklenmesi sonucunda, bu kaynakların sisteme etkisinin incelenmesi yakıt maliyeti açısından önem arz etmektedir. Bu çalışmada, modifiye hibrit yerçekimsel arama algoritması-öğretme-öğrenme tabanlı optimizasyon algoritması (MHYÖ) geliştirilmiş ve rüzgâr-termal güç sistemlerinin ekonomik dağıtım problemi (EDP) çözümü için uygulanmıştır. Geliştirilen yöntemle 10 tane benchmark test fonksiyonu ile deneysel çalışmalar yapılmış ve istatiksel analizleri elde edilmiştir. İstatiksel performans ve anlamlılık analizine göre geliştirilen MHYÖ yöntemi diğer standart PSO, YAK, YAA ve ÖÖTO algoritmalarından daha iyi sonuçlar vermiştir. Bu

da geliştirilen yöntemin etkili, güvenilir ve uygulanabilir olduğu sonucunu ortaya koymaktadır. Başarılı benchmark test deney sonuçlarından sonra, rüzgâr enerjisi ile geleneksel enerji kaynakları olan termal güç sistemlerinden oluşan 6-baralı ve Türkiye 19 baralı rüzgâr-termal güç sistemi EDP çözümü için MHYÖ yöntemi uygulanmıştır. Geliştirilen MHYÖ yöntemi, 6-baralı rüzgâr-termal güç sisteminde talep edilen 400 MW, 450 MW ve 500 MW güçler için diğer standart algoritmalar ve geleneksel yöntemlerden daha düşük maliyetle EDP'yi çözmüştür. Aynı şekilde Türkiye 19 baralı rüzgâr-termal güç sistemi için planlanan toplam gücün %25, %27,5 ve %30 talep oranlarına göre yakıt maliyeti açısından diğer yöntemlerden daha düşük maliyetle EDP'yi çözmüştür. Hem yakıt maliyeti hem de çalışma zamanı birlikte göz önüne alındığında geliştirilen yöntemin

performansının literatürdeki diğer geleneksel yöntemlerden, hibrit ve standart algoritmalardan daha iyi olduğu görülmüştür. Yakıt maliyeti yakınsama eğrisi grafikleri ise incelendiğinde geliştirilen yöntemin algoritmalardan daha önce yakınsadığı görülebilmektedir. Bu da geliştirilen yöntemin yerel minimumda uzun süre yerel minimumdan ve takılmadığını kolaylıkla kurtulabildiğini göstermektedir. Dolayısıyla geliştirilen hibrit yöntemin yakınsama hızı ve çözüm kalitesi olarak diğer standart PSO, YAK, YAA ve ÖÖTO algoritmalarından daha iyi performansı olduğu gösterilmiştir.

Yenilenebilir bir enerji kaynağının mevcut termal güç sistemine eklenmesi ile elde edilen rüzgâr-termal güç sistemlerine uygulanan MHYÖ yöntemi EDP çözümünü hızlı, etkili ve güvenilir olarak yapması açısından bu çalışma önem arz etmektedir. Geliştirilen hibrit yöntem ile güç sistemine her an eklenebilecek bir enerji kaynağının yakıt maliyeti analizi yapılabilmektedir. Bu da geliştirilen yöntemin büyük ölçekli güç sistemlerine uygulanabileceğini göstermektedir. Ayrıca bu çalışmada geliştirilen yöntemde kullanılan standart YAA ve ÖÖTO algoritmaları yerine farklı algoritmalar kullanılarak yeni hibrit yöntemler oluşturulabilir ve bu yöntemlerin performans analizleri yapılabilir. Aynı zamanda bu çalısmada kullanılan güç sistemine eklenebilecek venilenebilir bir enerji kaynağı ile olusturulacak yeni bir rüzgâr-termal güç sistemin EDP analizi yapılabilir.

KAYNAKLAR (REFERENCES)

- 1. Mahor A., Prasad V., Rangnekar S., Economic dispatch using particle swarm optimization: A review, Renewable Sustainable Energy Rev., 13 (8), 2134-2141, 2009.
- 2. Chowdhury B.H., Rahman S., A review of recent advances in economic dispatch, IEEE Trans. Power Syst., 5 (4), 1248-1259, 1990.
- **3.** Nicholson H., Sterling M.J.H., Optimum Dispatch of Active and Reactive Generation by Quadratic Programming, IEEE Trans. Power App. Syst., PAS-92 (2), 644-654, 1973.
- **4.** Tinney W.F., Hart C.E., Power Flow Solution by Newton's Method, IEEE Trans. Power App. Syst., PAS-86 (11), 1449-1460, 1967.
- 5. Treece J.A., Bootstrap Gauss-Seidel load flow, Proc. Inst. Electr. Eng., 116 (5), 866-870, 1969.
- **6.** Momoh J.A., Adapa R., El-Hawary M.E., A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches, IEEE Trans. Power Syst., 14 (1), 96-104, 1999.
- Eke İ., Tezcan S.S., Çelik C., Solving economic load dispatch problem with valve-point effects using filled function Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 429-438, 2017.
- 8. Al-Betar M.A., Awadallah M.A., Khader A.T., Bolaji A.L.a., Almomani A., Economic load dispatch problems with valve-point loading using natural updated harmony search, Neural Comput. Appl., 1-15, 2016.

- 9. Bakirtzis A., Petridis V., Kazarlis S., Genetic algorithm solution to the economic dispatch problem, IEE Proc. Generat. Transm. Distrib., 141 (4), 377-382, 1994.
- **10.** Cai J., Ma X., Li L., Yang Y., Peng H., Wang X., Chaotic ant swarm optimization to economic dispatch, Electr. Power Syst. Res., 77 (10), 1373-1380, 2007.
- **11.** Hemamalini S., Simon S.P., Artificial Bee Colony Algorithm for Economic Load Dispatch Problem with Non-smooth Cost Functions, Electr. Power Compon. Syst., 38 (7), 786-803, 2010.
- 12. Duman S., Güvenç U., Yörükeren N., Gravitational Search Algorithm for Economic Dispatch with Valve-Point Effects Int. Rev. Electr. Eng., 5 (6), 2890-2895, 2010.
- **13.** Bhattacharjee K., Bhattacharya A., Dey S.H.N., Teaching-learning-based optimization for different economic dispatch problems, Sci. Iran. D: Comput. Sci. Eng. Electr. Eng., 21 (3), 870-884, 2014.
- **14.** Chen G., Ding X., Optimal economic dispatch with valve loading effect using self-adaptive firefly algorithm, Appl. Intell., 42 (2), 276-288, 2015.
- **15.** Nadeem Malik T., Ul Asar A., Wyne M.F., Akhtar S., A new hybrid approach for the solution of nonconvex economic dispatch problem with valve-point effects, Electr. Power Syst. Res., 80 (9), 1128-1136, 2010.
- **16.** Zaman F., Elsayed S.M., Ray T., Sarker R.A., Configuring two-algorithm-based evolutionary approach for solving dynamic economic dispatch problems, Eng. Appl. Artif. Intell., 53, 105-125, 2016.
- 17. Niknam T., Narimani M.R., Azizipanah-Abarghooee R., A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect, Energy Convers. Manage., 58, 197-206, 2012.
- **18.** Pourakbari-Kasmaei M., Rashidi-Nejad M., An effortless hybrid method to solve economic load dispatch problem in power systems, Energy Convers. Manage., 52 (8), 2854-2860, 2011.
- **19.** Niknam T., A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem, Appl. Energy, 87 (1), 327-339, 2010.
- **20.** Kherfane N., Younes M., Kherfane R.L., Khodja F., A hybrid FFA-MPSO algorithm for solving economic power dispatch problem with valve-point effect, J. Electr. Eng., 16 (3), 198-209, 2016.
- **21.** Younes M., A novel Hybrid FFA-ACO Algorithm for Economic Power Dispatch J. Control Eng. Appl. Inf., 15 (2), 67-77, 2013.
- **22.** Jiang S., Ji Z., Shen Y., A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints, Int. J. Electr. Power Energy Syst., 55, 628-644, 2014.
- **23.** Hetzer J., Yu D.C., Bhattarai K., An Economic Dispatch Model Incorporating Wind Power, IEEE Trans. Energy Convers., 23 (2), 603-611, 2008.
- **24.** Chen C.-L., Lee T.-Y., Jan R.-M., Optimal wind-thermal coordination dispatch in isolated power systems with large integration of wind capacity, 47 (18), 3456-3472, 2006.

- 25. Teeparthi K., Vinod Kumar D.M., Security-constrained optimal power flow with wind and thermal power generators using fuzzy adaptive artificial physics optimization algorithm, Neural Comput. Appl., 29 (3), 855-871, 2018.
- 26. Li Y.Z., Jiang L., Wu Q.H., Wang P., Gooi H.B., Li K.C., Liu Y.Q., Lu P., Cao M., Imura J., Wind-thermal power system dispatch using MLSAD model and GSOICLW algorithm, Knowledge Based Syst., 116, 94-101, 2017.
- **27.** Karadeniz A., Eker M.K., BB-BC, PSO and IMO Algorithms for Economic Dispatch Problem of Wind-Thermal Power Plants, J. Polytechnic, 19 (3), 261-268, 2016.
- **28.** Güçyetmez M., Çam E., A new hybrid algorithm with genetic-teaching learning optimization (G-TLBO) technique for optimizing of power flow in wind-thermal power systems, Electr. Eng., 98 (2), 145-157, 2016.
- **29.** Tefek M.F., Uğuz H., Güçyetmez M., A new hybrid gravitational search–teaching–learning-based optimization method for energy demand estimation of Turkey, Neural Comput. Appl., 1-16, 2017.
- **30.** Rashedi E., Nezamabadi-Pour H., Saryazdi S., GSA: A Gravitational Search Algorithm, Inf. Sci., 179 (13), 2232-2248, 2009.
- **31.** Cui Y., Geng Z., Zhu Q., Han Y., Review: Multiobjective optimization methods and application in energy saving, Energy, 125, 681-704, 2017.

- **32.** Rao R.V., Savsani V.J., Vakharia D.P., Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput.-Aided Des., 43 (3), 303-315, 2011.
- **33.** Malek M., Guruswamy M., Owens H., Pandya M., A Hybrid Algorithm Technique, Department of Computer Sciences Tech. Rep. 89-6, University of Texas at Austin, Texas.1989.
- **34.** Venkata Rao R., Kalyankar V.D., Multi-pass turning process parameter optimization using teaching—learning-based optimization algorithm, Sci. Iran., 20 (3), 967-974, 2013.
- **35.** Happ H.H., Optimal power dispatch; A comprehensive survey, IEEE Trans. Power App. Syst., 96 (3), 841-854, 1977.
- **36.** Alsac O., Stott B., Optimal Load Flow with Steady-State Security, IEEE Trans. Power App. Syst., PAS-93 (3), 745-751, 1974.
- 37. Kennedy J., Eberhart R., "Particle swarm optimization," in Neural Networks, 1995. Proceedings., IEEE International Conference on, 1995, vol. 4, pp. 1942-1948 vol.4.
- **38.** Karaboğa D., An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report-TR06, Department of Computer Engineering, Engineering Faculty, Ercives University 2005.
- **39.** Wilcoxon F., Individual Comparisons by Ranking Methods, Biometrics Bull., 1 (6), 80-83, 1945.