

PROYECTO 1 - ETAPA 2 INTELIGENCIA DE NEGOCIOS

Hecho por:

Juan Manuel Ramírez Tamayo

Santiago Celis Rengifo

Luis Alfredo Borbón Holguín

GRUPO 22

Agenda

Contexto

Métricas

Automatización del proceso de preparación de datos

Desarrollo de la aplicación

Resultados Conclusión

Contexto

Noticias falsas en política

Modelo predictivo

Árbol de desición

Herramienta de automatización Pipeline

Página web

Fast API

Métricas

Implementación

Precisión

Calcula el porcentaje de veces que la aplicación logró acertar correctamente la clasificación de noticias.

Recall

Categoriza el pocenaje de noticias correcto que realmente hace parte de los verdaderos positivos y falsos negativos.

Puntuación F1

Muestra el desempeño que tiene la aplicación

Automatización

del proceso de preparación de datos

La creación de la API se realizó utilizando FastAPI

Enpoinds principales

/predict

Se encarga de predecir cuáles noticias son falsas y verdaderas sin la variable "labesl".

Los resultados se retornan mediante las variables que predice el modelo.

/retrain

Se encarga de reentrenar el modelo con los datos dados por el usuario.

Se retornan todos los resultados de la base de datos de todas las noticias.

Desarrollo de la aplicación

Mediante una API

Se implementó FRONTEND

Para el apartado visual de la aplicación

Se implementó BACKEND

Para el apartado técnico de la aplicación

```
back_end > @ app.py > 🕥 load_model
       Santiago, 35 minutes ago | 2 authors (Santiago and one other)
       from flask import Flask, request, render_template, jsonify
       from werkzeug.utils import secure filename
       import os
       import traceback
       import joblib
       import pandas as pd
       from sklearn.pipeline import Pipeline
       from sklearn.feature_extraction.text import TfidfVectorizer
       from sklearn.ensemble import RandomForestClassifier
       from sklearn.metrics import precision score, recall score, f1 score
       app = Flask( name ,
                   template folder='../front end/templates',
                   static folder='../front end/static')
 15
      MODEL PATH = 'model/model.pkl'
      ALLOWED EXTENSIONS = {'xlsx', 'csv'}
       app.config['UPLOAD_FOLDER'] = 'temp'
```

Resultados

Se apreciaron los siguientes resultados

Modelo cargado exitosamente

Probabilidades coherentes que suman 1

Métricas modelo reentrenado:

F1_Score = 0,876

Precisión = 0,881

Recall = 0,878

Conclusiones

De la aplicación

Modelo funcional

La aplicación acepta la carga del modelo

Métricas con valores

cercanos

Las métricas de reentrenamiendo presentaron valores con una brecha de de 0,5 unidades entre sí.

GRACIAS

