Uitwerkingen van opgaven 6 a en d bij paragraaf 5.2 van Huth&Ryan

(a)	We moeten laten zien dat $\models \Box(\phi \land \psi) \leftrightarrow (\Box \phi \land \Box \psi)$ geldt.	Dat wil zeggen, dat deze
	formule waar is in iedere wereld in ieder model. We bekijken	daarvoor een willekeurige
	wereld x in een willekeurig model $\mathcal{M} = (W, R, L)$.	

Volgens definitie 5.4 geldt $\mathcal{M}, x \Vdash \Box(\phi \land \psi) \leftrightarrow (\Box \phi \land \Box \psi)$ dan en slechts dan als $\mathcal{M}, x \Vdash \Box(\phi \land \psi) \Leftrightarrow \mathcal{M}, x \Vdash (\Box \phi \land \Box \psi)$. We beschouwen beide richtingen:

- ⇒ Wegens $\mathcal{M}, x \Vdash \Box(\phi \land \psi)$ geldt $\mathcal{M}, y \Vdash \phi \land \psi$ voor alle werelden $y \in W$ met R(x, y) (naar de betekenis van \Box , zie steeds definitie 5.4). De betekenis van conjunctie zegt ons dat dan ook $\mathcal{M}, y \Vdash \phi$ voor alle $y \in W$ met R(x, y) en $\mathcal{M}, y \Vdash \psi$ voor alle $y \in W$ met R(x, y). Dit geeft samen $\mathcal{M}, x \Vdash \Box \phi$ en $\mathcal{M}, x \Vdash \Box \psi$ en dus $\mathcal{M}, x \Vdash (\Box \phi \land \Box \psi)$.
- \Leftarrow Gegeven is nu dat $\mathcal{M}, x \Vdash (\Box \phi \land \Box \psi)$ en dus hebben we $\mathcal{M}, x \Vdash \Box \phi$ en $\mathcal{M}, x \Vdash \Box \psi$ volgens de betekenis van conjunctie. Maar dan geldt ook dat $\mathcal{M}, y \Vdash \phi$ voor alle werelden $y \in W$ met R(x,y) en $\mathcal{M}, y \Vdash \psi$ voor alle werelden $y \in W$ met R(x,y). Samen geeft dat $\mathcal{M}, y \Vdash \phi \land \psi$ voor alle $y \in W$ met R(x,y) en dat maakt precies dat $\mathcal{M}, x \Vdash \Box (\phi \land \psi)$.
- (b) We moeten laten zien dat ◊ ⊥↔⊥ geldig is, dus dat dezelfde werelden ◊ ⊥ en ⊥ waar maken. Op de eerste plaats is er geen enkele wereld die ⊥ waar maakt (zie wederom steeds definitie 5.4). Kijken we naar ◊ ⊥, dan zien we dat deze formule waar gemaakt wordt door precies de werelden van waaruit een wereld toegankelijk is die ⊥ waar maakt. Zoals al opgemerkt bestaat een dergelijke wereld niet, dus is er ook geen enkele wereld die ◊ ⊥ waar maakt. Hieruit volgt dat ◊ ⊥↔⊥ geldig is.