第2章导数与微分

2.1 异数概念

- 1. 函数 f(x) 在点 x_0 可导是 f(x) 在点 x_0 连续的() 条件.
 - A. 充分不必要

- B. 必要不充分 C. 充要 D. 既不充分也不必要
- 2. f(x)在点 x_0 可导是f(x)在点 x_0 可微的()条件.

- A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要
- 3. 设 $f'(x_0)$ 存在,则 $\lim_{h\to 0} \frac{f(x_0+3h)-f(x_0)}{h} = ($).
- A. $f'(x_0)$ B. $3f'(x_0)$ C. $-3f'(x_0)$ D. 3
- 4. 如果函数 f(x) 在点 x 处可导,则 f'(x) = ().
 - A. $\lim_{\Delta x \to 0} \frac{f(x \Delta x) f(x)}{\Delta x}$ B. $\lim_{\Delta x \to 0} \frac{f(x \Delta x) f(x)}{2\Delta x}$

 - C. $\lim_{\Delta x \to 0} \frac{f(x \Delta x) f(x)}{-\Delta x}$ D. $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) f(x \Delta x)}{\Delta x}$
- 5. 设 $f(x) = \begin{cases} \frac{2}{3}x^3, x \le 1 \\ \frac{2}{3}x^3, x \le 1 \end{cases}$, 则f(x)在x = 1处 ().
 - A. 左、右导数都存在
- B. 左导数存在, 但右导数不存在
- C. 左导数不存在,但右导数存在 D. 左.右导数都不存在
- 6. 己知 $f'(x_0) = 3$,则 $\lim_{\Delta x \to 0} \frac{f(x_0 \Delta x) f(x_0)}{\Delta x} = \underline{\hspace{1cm}}$

第2章 导数与微分

- 10. 曲线 $y = x^{\frac{3}{2}}$ 在点(4,8)处的切线方程为______.
- 11. 曲线 $y = \frac{1}{x}$ 在点 $\left(\frac{1}{2}, 2\right)$ 处的法线方程为______.
- 12. 曲线 $y = \cos x$ 在点 $\left(\frac{\pi}{3}, \frac{1}{2}\right)$ 处的法线方程为_______.
- 13. 曲线 $y = 2\sin x + x^2$ 上横坐标为 x = 0 的点处的法线方程为______.
- 14. 设函数 $f(x) = \begin{cases} \sin x, & x < 0 \\ x, & x \ge 0 \end{cases}$, 求 f'(x).

15. 设函数 $f(x) = \begin{cases} x^2, & x \le 1, \\ ax + b, x > 1. \end{cases}$ 为了使函数 f(x) 在 x = 1 处连续且可导, a、b 应取什么值?

2.2 函数的求导法则

1. 设
$$y = 2^{-x}$$
, 则 $y' = ($).

- A. 2^{-x} B. -2^{-x} C. $-2^{-x} \ln 2$ D. $2^{-x} \ln 2$

2. 设
$$y = \frac{\ln x}{x}$$
,则 $y' =$ _______.

3. 设
$$y = \sin^2 x$$
,则 $y' =$ ______.

4. 设
$$y = \sqrt{a^2 - x^2}$$
,则 $y' =$ _______.

5. 设
$$y = (\arcsin x)^2$$
,则 $y' =$ ______.

6. 设
$$y = \ln \cos \frac{1}{x}$$
,则 $y' =$ _______.

8. 已知物体的运动规律为
$$s=t^3(m)$$
,则该物体在 $t=2(s)$ 时的加速度 $a=$ _____m/ s^2 .

9. 设
$$y = e^{x^4}$$
,则 $y' = _____$

10. 设
$$y = x^2 \ln x$$
,则 $y' =$ ______.

12. 设
$$y = \cos(4-3x^2)$$
, 则 $y' =$ ______.

13. 设
$$y = \arcsin \sqrt{x}$$
,则 $y' =$ ______.

14. 设
$$y = \ln(x + \sqrt{a^2 + x^2})$$
,则 $y' =$ _______.

15. 设
$$y = \frac{1}{\sqrt{1+x^2}}$$
,则 $y' =$ _______.

2.3 高阶导数

1. 函数 $y = 2x^2 + \ln x$ 的二阶导数 y'' =______.

2. 函数 $y = e^{2x-1}$ 的二阶导数 $y'' = ______$.

3. 函数 $y = \tan x$ 的二阶导数 y'' =______.

4. 函数 $y = x \cos x$ 的二阶导数 y'' =______.

5. 函数 $y = \ln(1+x^2)$ 的二阶导数 y'' =______.

6. 函数 $y = xe^x$ 的二阶导数 y'' =

7. 函数 $y = e^{-x} \sin x$ 的二阶导数 $y'' = _____.$

9. 函数 $y = e^x$ 的 n 阶导数 $y^{(n)} = ______.$

10. 函数 $y = \sin x$ 的 n 阶导数 $y^{(n)} =$ ______.

2.4 隐函数及由参数方程所确定的函数的导数

- 1. 设函数 y = y(x) 是由方程 $y^2 2xy + 9 = 0$ 所确定的隐函数,求导数 $\frac{dy}{dx}$.
- 2. 设函数 y = y(x) 是由方程 $x^3 + y^3 3axy = 0$ 所确定的隐函数,求导数 $\frac{dy}{dx}$.
- 3. 设函数 y = y(x) 是由方程 $\sin y + e^x xy^2 = 0$ 所确定的隐函数,求导数 $\frac{dy}{dx}$.
- 4. 设函数 y = y(x) 是由方程 $e^x e^y = \sin(xy)$ 所确定的隐函数,求导数 $\frac{dy}{dx}$.
- 5. 设函数 y = y(x) 是由方程 $x y e^y = 0$ 所确定的隐函数,求导数 $\frac{dy}{dx}$.
- 6. 设函数 y = y(x) 是由方程 $y = 1 xe^y$ 所确定的隐函数,求导数 $\frac{dy}{dx}$.
- 7. 设函数 y = y(x) 是由方程 $xy + 1 = e^{x+y}$ 所确定的隐函数,求 $\frac{dy}{dx}\Big|_{x=0}$.

- 8. 设函数 y = y(x) 是由方程 $xy^2 + e^y = \cos(x + y^2)$ 所确定的隐函数,求导数 $\frac{dy}{dx}$.
- 9. 设函数 y = y(x) 是由方程 $e^{x+y} + \cos(xy) = 0$ 所确定的隐函数,求导数 $\frac{dy}{dx}$.
- 10. 求曲线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2^{\frac{2}{3}}$ 在 $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ 处的切线及法线方程.
- 11. 计算由参数方程 $\begin{cases} x = at^2 \\ y = bt^3 \end{cases}$ 确定的函数 y = y(x)的导数 $\frac{dy}{dx}$.
- 12. 计算由参数方程 $\begin{cases} x = \ln \cos t \\ y = \sin t t \cos t \end{cases}$ 确定的函数 y = y(x)的导数 $\frac{dy}{dx}$.
- 13. 计算由参数方程 $\begin{cases} x = 1 + e^t \\ y = t + e^{-t} \end{cases}$ 所确定的函数 y = y(x) 的导数 $\frac{dy}{dx}$.
- 14. 计算由参数方程 $\begin{cases} x = e^t \sin t \\ y = e^t \cos t \end{cases}$ 所确定的函数 y = y(x) 的导数 $\frac{dy}{dx}\Big|_{t=\frac{\pi}{4}}$.

第2章 导数与微分

- 15. 计算由参数方程 $\begin{cases} x = \frac{t^2}{2} & \text{ 所确定的函数 } y = y(x) \text{ 的导数 } \frac{dy}{dx}. \\ y = 1 t & \end{cases}$
- 16. 求由参数方程 $\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$ 所确定的函数 y = y(x) 的导数 $\frac{dy}{dx}$.
- 17. 求由参数方程 $\begin{cases} x = 3e^{-t} \\ y = 2e^{t} \end{cases}$ 所确定的函数 y = y(x)的导数 $\frac{dy}{dx}$.
- 18. 求曲线 $\begin{cases} x = 2e^{t} \\ y = e^{-t} \end{cases}$ 在 t = 0 相应的点处的切线方程及法线方程.
- 19. 求曲线 $\begin{cases} x = 1 + t^2 \\ y = t^3 \end{cases}$ 在 t = 2 相应的点处的切线方程及法线方程.
- 20. 求曲线 $\begin{cases} x = \sin t \\ y = \cos 2t \end{cases}$ 在 $t = \frac{\pi}{4}$ 相应的点处的切线方程及法线方程.

2.5 函数的微分

1. 设
$$y = e^{x^3}$$
,则 $dy = _____$

2. 设函数
$$y = \tan 3x$$
,则 $dy =$ ______.

3. 函数
$$y = x \sin 2x$$
 的微分 $dy =$ ______.

4. 设
$$y = \ln \sin x$$
,则 $dy =$ ______.

5. 设
$$y = e^x \cos x$$
,则 $dy =$ ______.

6. 函数
$$y = \ln \ln x$$
 则 $dy =$ ______.

7. 设
$$y = \ln^2(1-x)$$
,则 $dy =$ _______.

8. 设函数
$$y = x^2 e^{2x}$$
, 则 $dy = ______$.

9. 设函数
$$y = \frac{1}{x} + 3\sqrt{x}$$
,则 $dy =$ _______.

10. 设函数
$$y = \arcsin \sqrt{1-x}$$
 ,则 $dy = \underline{\hspace{1cm}}$