Graphing Logarithms

Identify the domain and range of each. Then sketch the graph.

1)
$$y = \log_6(x - 1) - 5$$

2)
$$y = \log_5(x-1) + 3$$

3)
$$y = \log_6(x-3) - 5$$

4)
$$y = \log_2(x - 1) + 3$$

5)
$$y = \log_4(x+1) - 4$$

6)
$$y = \log_5(x+1) + 1$$

7) $y = \log_4(x+2) + 1$

8) $y = \log_6(x-2) + 1$

9) $y = \log_4 (3x + 11) - 5$

10) $y = \log_5 (2x + 2) + 5$

11) $y = \log_6 (3x + 14) + 1$

12) $y = \log_2 (4x - 11) - 2$

Graphing Logarithms

Identify the domain and range of each. Then sketch the graph.

1)
$$y = \log_6(x-1) - 5$$

2)
$$y = \log_5(x - 1) + 3$$

3)
$$y = \log_6(x-3) - 5$$

4)
$$y = \log_2(x - 1) + 3$$

5)
$$y = \log_4(x+1) - 4$$

6)
$$y = \log_5(x+1) + 1$$

7)
$$y = \log_4(x+2) + 1$$

8)
$$y = \log_6(x-2) + 1$$

9)
$$y = \log_4 (3x + 11) - 5$$

10)
$$y = \log_5 (2x + 2) + 5$$

11)
$$y = \log_6 (3x + 14) + 1$$

12)
$$y = \log_2 (4x - 11) - 2$$

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com