Fibonačijev hip

Seminarski rad u okviru kursa Konstrukcija i analiza algoritama 2 Matematički fakultet

Ivan Ristović Milana Kovacević

januar 2019.

Sažetak

Fibonačijev hip je struktura podataka osmišljena sa ciljem da poboljša vreme potrebno za operacije nad hipovima. Pružaju bolje amortizovano vreme izvršavanja nego većina drugih prioritetnih redova, uključujući binarni i binomni hip. Fibonačijev hip je osmišljen 1984. godine i publikovan 1987. Ime je dobio po Fibonačijevim brojevima, koji se koriste u analizi složenosti operacija. Koristeći Fibonačijev hip, moguće je unaprediti vremena izvršavanja velikog broja poznatih algoritama kao što je Dijsktrin algoritam. Pružamo implementaciju Fibonačijevog hipa u programskom jeziku *Python*, sa interfejsom jednostavnim za upotrebu i testiranje. Takodje u ovom radu testiramo vreme izvršavanja operacije decrease-key kako bismo eksperimentalno pokazali konstantno amortizovano vreme izvršavanja ove operacije.

Sadržaj

1	Uvod	2
2	Opis strukture	2
3	Opis operacija 3.1 find_min 3.2 insert 3.3 extract_min 3.4 decreasekey	3 3 4 4
	3.5 merge	4
4	Zaključak	4
Li	teratura	4

1 Uvod

Binarni hip (eng. Binary heap) [1] je binarno stablo koje zadovoljava uslov da svaki čvor u stablu ima vrednost ključa veću (tj. manju) od oba svoja sina. Takav hip se često naziva max-hip (tj. min-hip). Jasno je da će se u hipu maksimum (tj. minimum) alaziti u korenu stabla, što garantuje konstantni upit. Svaki hip podržava sledeće operacije ¹:

- find_min vraća vrednost ključa korena hipa.
- extract_min uklanja koren hipa.
- \bullet insert(v) unosi novi čvor sa vrednošću ključa v.
- decrease_key(k,v) spušta vrednost ključa k na vrednost v.
- merge(h) unija sa novim hipom h.

Fibonačijev hip [2] je osmišljen 1984. od strane Fredman-a i Tarjan-a sa ciljem da se poboljša vreme izvršavanja Dijkstrinog algoritma za najkraći put. Originalni Dijsktrin algoritam koji koristi binarni hip radi u vremenskoj složenosti $O(|E|\log|V|)$. Korišćenjem Fibonačijevog hipa umesto binarnog hipa, vremensku složenost Dijsktrinog algoritma je moguće poboljšati do $O(|E|+|V|\log|V|)$. Poredjenje vremena izvršavanja u odnosu na binarni hip se može videti na sledećoj tabeli:

Operacija	Binarni hip	Fibonačijev hip
find_min	O(1)	O(1)
extract_min	$O(\log n)$	$O(\log n)$
insert(v)	$O(\log n)$	O(1)
decrease_key(k,v)	$O(\log n)$	$O(1)^{2}$
merge(h)	O(n)	O(1)

Tabela 1: Poredjenje vremena izvršavanja operacija izmedju Fibonačijevog i binarnog hipa.

U nastavku opisujemo detaljnije strukturu (odeljak 2) i operacije (odeljak 3). U daljem tekstu ćemo pretpostaviti da se radi o min-hipu, analogno važi i za max-hip.

2 Opis strukture

Fibonačijev hip je skup stabala uredjenih po uslovu hipa (videti sliku 1). Koreni tih hipova se čuvaju u dvostruko povezanoj listi radi lakšeg ubacivanja i izbacivanja. Takodje se čuva pokazivač na najmanji element, kako bi se upit mogao izvršiti u konstantnom vremenu.

Slika 1: Vizuelizacija strukture Fibonačijevog hipa.

¹Pretpostavlja se da se radi o min-hipu, analogno važi i za max-hip.

Dodatno, svaki čvor u sebi sadrži podatak da li je označen ili ne (razlog zašto će biti objašnjen kasnije). Pošto hipovi koji čine skup ne moraju biti binarni, potreban je neki mehanizam *ispravljanja* hipova [3].

Uvodimo sledeće pojmove:

- $\bullet \ n$ ukupan broj čvorova u Fibonačijevom hipu.
- rank(x) broj potomaka čvora x.
- $\bullet \ rank(H)$ maksimalni rank bilo kog čvora u Fibonačijevom hipu H.
- trees(H) broj hipova u Fibonačijevom hipu H.
- marks(H) broj označenih čvorova u Fibonačijevom hipu H.

Kako bismo analizirali složenosti operacija, potrebno je da prvo definišemo potencijal Fibonačijevog hipa:

Definicija 2.1. Potencijal Fibonačijevog hipa H, u oznaci $\Phi(H)$ se definiše kao:

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

3 Opis operacija

3.1 find_min

Pronalaženje vrednosti minimuma se trivijalno odvija jer imamo pokazivač na čvor koji sadrži minimalni element. Složenost ove operacije je, kao i kod običnog binarnog hipa, O(1).

3.2 insert

Operacija umetanja novog čvora se odvija u dva dela. Neka je x čvor koji želimo da ubacimo u hip. Prvo se kreira novo stablo sa x kao korenom. To stablo (koje se sastoji samo od čvora x) se ubacuje u listu korena Fibonačijevog hipa. Eventualno je potrebno ažurirati pokazivač na najmanji element ukoliko je ključ čvora x manji od minimuma hipa. Vizuelni prikaz operacije umetanja se može videti na slici x

Složenost operacije umetanja je stoga O(1), dok je promena u potencijalu +1.

Slika 2: Vizuelizacija operacije umetanja.

- 3.3 extract_min
- 3.4 decreasekey
- 3.5 merge

4 Zaključak

Literatura

- [1] aaa. Heaps. on-line at: https://www.cs.cmu.edu/~adamchik/15-121/lectures/Binary%20Heaps/heaps.html.
- [2] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan. The Pairing Heap: A new form of self-adjusting heap, 1986. on-line at: http://www.cs.cmu.edu/~sleator/papers/pairing-heaps.pdf.
- [3] Princeton. Fibonacci Heaps. on-line at: https://www.cs.princeton.edu/~wayne/teaching/fibonacci-heap.pdf.