Math 4000/6000 - Homework #5

posted March 2, 2018; due at the start of class on March 9, 2018

Algebra is nothing more than geometry, in words; geometry is nothing more than algebra, in pictures.

- Sophie Germain (1776–1831)

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

- 1. (de Moivre's theorem)
 - (a) Our rule from class for multiplying complex numbers implies that if we write z in polar form, say $z = r(\cos \theta + i \sin \theta)$, then

$$z^n = r^n(\cos(n\theta) + i\sin(n\theta))$$

for every positive integer n. Show that the same formula holds when n = 0 and when n is a negative integer.

- (b) By expanding $(\cos(\theta) + i\sin(\theta))^4$, find formulas for $\cos(4\theta)$ and $\sin(4\theta)$ in terms of $\cos(\theta)$ and $\sin(\theta)$.
- 2. Let $n \in \mathbb{Z}^+$. We say that the complex number z is a primitive nth root of 1 if
 - (i) $z^n = 1$, and
 - (ii) there is no positive integer m < n with $z^m = 1$.

For example, -1 is a primitive 2nd root of 1, since $(-1)^2 = 1$ but $(-1)^1 \neq 1$.

Show that a primitive nth root of 1 exists for every n. How many primitive nth roots of 1 are there for n = 1, 2, 3, 4?

- 3. Let $n \in \mathbb{Z}^+$. In this problem, we assume that z is a primitive nth root of 1.
 - (a) Show that the elements of the list

$$1, z, z^2, \dots, z^{n-1}$$

are distinct.

- (b) Prove that every element on the $1, z, z^2, \ldots, z^{n-1}$ is an nth root of 1, and that, conversely, every nth root of 1 is on this list.
- (c) Show that if m is an integer, then $z^m = 1$ if and only if n divides m.
- (d) Show that if m is an integer, then z^m is a primitive nth root of 1 if and only if gcd(m,n)=1.
- (e) How many primitive 10th roots of 1 are there?

4. Given a polynomial $f(z) = z^3 + pz + q$ (with p, q complex numbers), we set

$$\Delta = \frac{q^2}{4} + \frac{p^3}{27}.$$

As shown in class, as long as $p \neq 0$, the complex roots of f are the numbers

$$v - \frac{p}{3v}$$
, where $v^3 = A$, for $A := -\frac{q}{2} + \sqrt{\Delta}$, (1st set of roots)

along with the numbers

$$v' - \frac{p}{3v'}$$
, where $v'^3 = B$, for $B := -\frac{q}{2} - \sqrt{\Delta}$. (2nd set of roots)

The goal of this exercise is for you to show that the second set of roots is redundant; every root in the second set is already in the first. (We claimed this in class.)

- (a) Show that $B \neq 0$. Remember we are assuming $p \neq 0$.
- (b) It follows from part (a) that B has three distinct (and nonzero) complex cube roots v'. Show that for each of these roots v', the number $-\frac{p}{3v'}$ is a cube root of A. Then show that if we let $v = -\frac{p}{3v'}$, then $v \frac{p}{3v} = v' \frac{p}{3v'}$. [Hence, every root in the second set is already in the first.]
- 5. Let $\omega = \cos(2\pi/5) + i\sin(2\pi/5)$. Here we describe how to express ω in terms of square roots.
 - (a) Show that ω is a root of the polynomial $z^4 + z^3 + z^2 + z + 1$. Hint: $z^5 1 = (z 1)(z^4 + z^3 + z^2 + z + 1)$.
 - (b) Show that $\omega + 1/\omega$ is a root of the polynomial $u^2 + u 1$.
 - (c) Show that $\omega + 1/\omega = \frac{-1+\sqrt{5}}{2}$, where $\sqrt{5}$ means the positive square root of 5. Hint: Figure out the sign of $\omega + 1/\omega$ by adding the polar forms of ω and $1/\omega$.
 - (d) Put $\beta = \frac{-1+\sqrt{5}}{2}$. So in part (c), you showed $\omega + 1/\omega = \beta$. Now show that

$$\omega = \frac{\beta + i\sqrt{4 - \beta^2}}{2},$$

where $\sqrt{4-\beta^2}$ means the positive square root of $4-\beta^2$.

- (e) Deduce from (d) that $\cos(2\pi/5) = \frac{\beta}{2}$ and $\sin(2\pi/5) = \frac{1}{2}\sqrt{4-\beta^2}$.
- 6. Exercise 2.4.6(a,b).
- 7. 3.1.2(a), and then $f(x) = x^2 + 2x + 2$, $g(x) = x^2 + 1$, $F = \mathbb{Z}_3$
- 8. 3.1.6.
- 9. (*) Exercise 2.2.16. Hint: First, figure out what f does to rational numbers.