EE910: Digital Communication Systems-I

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

April 25, 2022

Lecture #3B: Pulse Amplitude Modulation, Phase Shift Keying and Quadrature Amplitude Modulation

• In digital PAM, the signal waveforms may be represented as

$$s_m(t) = A_m p(t), 1 \le m \le M \tag{1}$$

where p(t) is a pulse of duration T and $\{A_m, 1 \leq m \leq M\}$ denotes the set of M possible amplitudes corresponding to $M = 2^k$ possible k-bit blocks of symbols.

- The signal amplitudes A_m take the discrete values $A_m = 2m 1 M$, m = 1, 2, ..., M i.e., the amplitudes are $\pm 1, \pm 3, \pm 5, ..., \pm (M 1)$.
- The waveform p(t) is a real-valued signal pulse whose shape influences the spectrum of the transmitted signal.

EE910: Digital Communication Systems-

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Pulse Amplitude Modulation (PAM)

• The energy in signal $s_m(t)$ is given by

$$\mathcal{E}_m = \int_{-\infty}^{\infty} A_m^2 \rho^2(t) dt = A_m^2 \mathcal{E}_p \tag{2}$$

where \mathcal{E}_p is the energy in p(t).

• From this,

$$\mathcal{E}_{avg} = \frac{\mathcal{E}_{p}}{M} \sum_{m=1}^{M} A_{m}^{2}$$

$$= \frac{2\mathcal{E}_{p}}{M} (1^{2} + 3^{2} + 5^{2} + \dots + (M-1)^{2})$$

$$= \frac{2\mathcal{E}_{p}}{M} \times \frac{M(M^{2} - 1)}{6}$$

$$= \frac{(M^{2} - 1)\mathcal{E}_{p}}{3}$$
(3)

EE910: Digital Communication Systems-I

• Average energy per bit is given by

$$\mathcal{E}_{bavg} = \frac{(M^2 - 1)\mathcal{E}_p}{3\log_2 M} \tag{4}$$

• Usually the PAM signals are carrier-modulated bandpass signals with lowpass equivalents of the form $A_mg(t)$, where A_m and g(t) are real. In this case

$$s_m(t)$$
 = $Re \left[s_{ml}(t)e^{j2\pi f_c t} \right]$
 = $Re \left[A_m g(t)e^{2\pi f_c t} \right] = A_m g(t)\cos(2\pi f_c t)$

where f_c is the carrier frequency.

• In the generic form of PAM signaling if we substitute

$$p(t) = g(t)\cos(2\pi f_c t) \tag{5}$$

then we obtain the bandpass PAM.

4 D > 4 A > 4 B > 4 B > B 900

FE910: Digital Communication Systems

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Pulse Amplitude Modulation (PAM)

• For bandpass PAM we have

$$\mathcal{E}_m = \frac{A_m^2 \mathcal{E}_g}{2} \tag{6}$$

where \mathcal{E}_g is the energy in g(t).

• From Equations (3) and (4) we conclude

$$\mathcal{E}_{avg} = \frac{(M^2 - 1)\mathcal{E}_g}{6}$$

$$\mathcal{E}_{bavg} = \frac{(M^2 - 1)\mathcal{E}_g}{6\log_2 M}$$
(7)

ullet Clearly, PAM signals are one-dimensional (N=1) since all are multiples of the same basic signals.

• We can use

$$\phi(t) = \frac{p(t)}{\sqrt{\mathcal{E}_p}} \tag{8}$$

as the basis for the general PAM signal of the form $s_m(t) = A_m p(t)$ and

$$\phi(t) = \sqrt{\frac{2}{\mathcal{E}_g}} g(t) \cos 2\pi f_c t \tag{9}$$

as the basis for the bandpass PAM signal given in Equation (5).

• Using these basis signals, we have

$$s_m(t) = A_m \sqrt{\mathcal{E}_p} \phi(t)$$
 for baseband PAM
$$s_m(t) = A_m \sqrt{\frac{\mathcal{E}_g}{2}} \phi(t)$$
 for bandpass PAM (10)

40) 4 A) 4 E) 4 E) 9 Q (

Adrish Banerjee
EE910: Digital Communication Systems-I

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Pulse Amplitude Modulation (PAM)

• The one-dimensional vector representations for these signals are of the form

$$s_m = A_m \sqrt{\mathcal{E}_p}, \quad A_m = \pm 1, \pm 3, \cdots, \pm (M-1)$$
 (11)

$$s_m = A_m \sqrt{\frac{\mathcal{E}_g}{2}}, \qquad A_m = \pm 1, \pm 3, \cdots, \pm (M-1)$$
 (12)

FE910: Digital Communication Syste

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Pulse Amplitude Modulation (PAM)

• We note that the Euclidean distance between any pair of signal points is

$$d_{mn} = \sqrt{\|s_m - s_n\|^2}$$

$$= |A_m - A_n| \sqrt{\mathcal{E}_p}$$

$$= |A_m - A_n| \sqrt{\frac{\mathcal{E}_g}{2}}$$
(13)

where the last relation corresponds to a bandpass PAM.

• For adjacent signal points $|A_m - A_n| = 2$, and hence the minimum distance of the constellation is given by

$$d_{min} = 2\sqrt{\mathcal{E}_p} = \sqrt{2\mathcal{E}_g} \tag{14}$$

• The resulting expression is

$$d_{min} = \sqrt{\frac{12\log_2 M}{M^2 - 1}} \mathcal{E}_{bavg} \tag{15}$$

Adrish Banerjee EE910: Digital Communication SystemsDepartment of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Amplitude Shift Keying (ASK)

- Can be viewed as a special case of PAM where g(t) is a sinusoid.
- Here amplitude of the carrier signal is varied according to the information sequence.
- Simplest form of ASK is on-off keying where either bursts of a carrier signal are transmitted or nothing is transmitted depending whether the input message signal is 1 or 0.

4 D > 4 B > 4 E > 4 E > 9 Q C

Amplitude Shift Keying (ASK)

Information Sequence: 0 1 0 1 1 1 0 0 1 0 1 1

EE910: Digital Communication Systems-

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Phase Modulation

• In digital phase modulation, the M signal waveforms are represented as

$$s_{m}(t) = Re \left[g(t)e^{j\frac{2\pi(m-1)}{M}}e^{j2\pi f_{c}t} \right], \quad m = 1, 2, \dots, M \quad (16)$$

$$= g(t)\cos \left[2\pi f_{c}t + \frac{2\pi}{M}(m-1) \right]$$

$$= g(t)\cos \left(\frac{2\pi}{M}(m-1) \right)\cos 2\pi f_{c}t$$

$$-g(t)\sin \left(\frac{2\pi}{M}(m-1) \right)\sin 2\pi f_{c}t$$

where g(t) is the signal pulse shape and $\theta_m = 2\pi \frac{(m-1)}{M}, \quad m=1,2,\cdots,M$ is the M possible phases of the carrier that convey the transmitted information.

Phase Modulation

- Digital phase modulation is usually called phase-shift keying (PSK).
- We note that these signal waveforms have equal energy.

$$\mathcal{E}_{avg} = \mathcal{E}_m = \frac{1}{2}\mathcal{E}_g \tag{17}$$

and therefore,

$$\mathcal{E}_{bavg} = \frac{\mathcal{E}_g}{2\log_2 M} \tag{18}$$

Adrish Banerjee EE910: Digital Communication Systems-I Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Phase Modulation

• We note that $g(t)\cos 2\pi f_c T$ and $g(t)\sin 2\pi f_c t$ are orthogonal, and therefore $\phi_1(t)$ and $\phi_2(t)$ given as

$$\phi_1(t) = \sqrt{\frac{2}{\mathcal{E}_g}} g(t) \cos 2\pi f_c t \tag{19}$$

$$\phi_2(t) = -\sqrt{\frac{2}{\mathcal{E}_g}}g(t)\sin 2\pi f_c t \tag{20}$$

ullet We can write $s_m(t), 1 \leq m \leq M$, as

$$s_{m}(t) = \sqrt{\frac{\mathcal{E}_{g}}{2}} \cos\left(\frac{2\pi}{M}(m-1)\right) \phi_{1}(t) + \sqrt{\frac{\mathcal{E}_{g}}{2}} \sin\left(\frac{2\pi}{M}(m-1)\right) \phi_{2}(t)$$
(21)

EE910: Digital Communication Systems-I

Phase Modulation

 \bullet The signal space dimensionality is ${\it N}=2$ and the resulting vector representations are

$$s_{m} = \left(\sqrt{\frac{\mathcal{E}_{g}}{2}}\cos\left(\frac{2\pi}{M}(m-1)\right), \sqrt{\frac{\mathcal{E}_{g}}{2}}\sin\left(\frac{2\pi}{M}(m-1)\right)\right), m = 1, 2, \cdots, M$$
(22)

BPSK

4 D > 4 A > 4 B > 4 B > B 900

EE910: Digital Communication Systems-

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Phase Modulation

4 D > 4 D > 4 E > 4 E > E 990

EE910: Digital Communication Systems-

Phase Modulation

• The Euclidean distance between signal points is

$$d_{mn} = \sqrt{\|s_m - s_n\|^2}$$

$$= \sqrt{\mathcal{E}_g \left[1 - \cos\left(\frac{2\pi}{M}(m - n)\right)\right]}$$
(23)

• The minimum distance corresponding to |m-n|=1 is

$$d_{min} = \sqrt{\mathcal{E}_g \left[1 - \cos\left(\frac{2\pi}{M}\right) \right]} = \sqrt{2\mathcal{E}_g \sin^2\frac{\pi}{M}}$$
 (24)

ullet Solving Equation (18) for \mathcal{E}_g and substituting the result in Equation (24) result in

$$d_{min} = 2\sqrt{\left(\log_2 M \times \sin^2 \frac{\pi}{M}\right)\mathcal{E}_b} \tag{25}$$

40144111111111

EE910: Digital Communication Systems-I

Phase Modulation

• For large values of M, we have $\sin \frac{\pi}{M} \approx \frac{\pi}{M}$, and d_{min} can be approximated by

$$d_{min} \approx 2\sqrt{\frac{\pi^2 \log_2 M}{M^2} \mathcal{E}_b} \tag{26}$$

- \bullet Variants of four-phase PSK (QPSK) include offset QPSK and $\pi/4$ QPSK.
- In Offset QPSK, the phase transitions are limited to 90 degrees, the transitions on the I and Q channels are staggered.
- In $\pi/4$ QPSK the set of constellation points are toggled each symbol, so transitions through zero cannot occur.

- The bandwidth efficiency of PAM can also be obtained by simultaneously impressing two separate k-bit symbols from the information sequence on two quadrature carriers $\cos 2\pi f_c t$ and $\sin 2\pi f_c t$.
- The resulting modulation technique is called quadrature PAM or QAM, and the corresponding signal waveforms may be expressed as

$$s_{m}(t) = Re \left[(A_{mi} + jA_{mq})g(t)e^{j2\pi f_{c}t} \right]$$

$$= A_{mi}g(t)\cos 2\pi f_{c}t - A_{mq}g(t)\sin 2\pi f_{c}t, \quad m = 1, 2, \dots, M$$
(27)

where A_{mi} and A_{mq} are the information-bearing signal amplitudes of the quadrature carriers and g(t) is the signal pulse.

(ロ) (日) (日) (日) (日)

Adrish Banerjee EE910: Digital Communication SystemsDepartment of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Quadrature Amplitude Modulation

• Alternatively, the QAM signal waveforms may be expressed as

$$s_m(t) = Re \left[r_m e^{j\theta_m} e^{j2\pi f_c t} \right]$$

= $r_m \cos(2\pi f_c t + \theta_m)$ (28)

where
$$r_m = \sqrt{A_{mi}^2 + A_{mq}^2}$$
 and $heta_m = tan^{-1}(A_{mi}/A_{mq})$

- Similar to the PSK case, $\phi_1(t)$ and $\phi_2(t)$ given in Equations (19) and (20) can be used as an orthonormal basis for expansion of QAM signals.
- The dimensionality of the signal space for QAM is N = 2.

• Using this basis, we have

$$s_m(t) = A_{mi} \sqrt{\frac{\mathcal{E}_g}{2}} \phi_1(t) + A_{mq} \sqrt{\frac{\mathcal{E}_g}{2}} \phi_2(t)$$
 (29)

which results in vector representations of the form

$$s_{m} = (s_{m1}, s_{m2})$$

$$= \left(A_{mi}\sqrt{\frac{\mathcal{E}_{g}}{2}}, A_{mq}\sqrt{\frac{\mathcal{E}_{g}}{2}}\right)$$
(30)

and

$$\mathcal{E}_{m} = \|s_{m}\|^{2} = \frac{\mathcal{E}_{g}}{2} (A_{mi}^{2} + A_{mq}^{2})$$
 (31)

40 > 4A > 4E > 4E > E 990

Adrish Banerjee EE910: Digital Communication Systems-I Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Quadrature Amplitude Modulation

• Examples of signal space diagrams for combined PAM-PSK.

4 D > 4 D > 4 E > 4 E > 9 Q

Adrish Banerjee EE910: Digital Communication Systems-I

• The Euclidean distance between any pair of signal vectors in QAM is

$$d_{mn} = \sqrt{\|s_m - s_n\|^2}$$

$$= \sqrt{\frac{\mathcal{E}_g}{2} \left[(A_{mi}^2 - A_{ni}^2) + (A_{mq}^2 - A_{nq}^2) \right]}$$
(32)

• In the special case where the signal amplitudes take the set of discrete values $\{(2m-1-M), m=1,2,\cdots,M\}$, the signal space diagram is rectangular.

drish Banerjee F910: Digital Communication Systems Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Quadrature Amplitude Modulation

• In this case, the Euclidean distance between adjacent points, i.e., the minimum distance, is

$$d_{min} = \sqrt{2\mathcal{E}_g} \tag{33}$$

which is the same result as for PAM.

EE910: Digital Communication Systems-I

• In the special case of a rectangular constellation with $M=2^{2k_1}$, i.e., $M=4,16,64,256,\cdots$, and with amplitudes of $\pm 1,\pm 3,\cdots,\pm (\sqrt{M}-1)$ on both directions, from equation (31) we have

$$\mathcal{E}_{avg} = \frac{1}{M} \frac{\mathcal{E}_g}{2} \sum_{m=1}^{\sqrt{M}} \sum_{n=1}^{\sqrt{M}} (A_m^2 + A_n^2)$$

$$= \frac{\mathcal{E}_g}{2M} \times \frac{2M(M-1)}{3} = \frac{(M-1)}{3} \mathcal{E}_g$$
(34)

Thus

$$\mathcal{E}_{bavg} = \frac{M-1}{3\log_2 M} \mathcal{E}_g \tag{35}$$

• Using equation (33), we have

$$d_{min} = \sqrt{\frac{6\log_2 M}{M - 1}\mathcal{E}_{bavg}} \tag{36}$$

Adrish Banerjee

EE910: Digital Communication Systems-

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Quadrature Amplitude Modulation

 From the discussion of bandpass PAM, PSK, and QAM, it is clear that all these signaling schemes are of the general form

$$s_m(t) = Re \left[A_m g(t) e^{j2\pi f_c t} \right], \quad m = 1, 2, \cdots, M$$
 (37)

where A_m is determined by the signaling scheme.

• The structure of the modulator for this general class of signaling schemes is shown below

EE910: Digital Communication Systems-