

§1.3 平面点集的一般概念

- 一、平面点集
- 二、区域
- 三、平面曲线

1

一、平面点集

1. 邻域

定义 设 z_0 为复平面上的一点 $\delta > 0$,

心邻域。

一、平面点集

内点'(1) $z_0 \in G$; (2) $\exists \delta > 0$, $\forall z : |z - z_0| < \delta$, 有 $z \in G$.

外点 (1) $z_0 \notin G$; (2) $\exists \delta > 0$, $\forall z: |z-z_0| < \delta$, 有 $z \notin G$.

边界点 (1) z_0 不一定属于 G;

(2) $\forall \delta > 0$,在 $|z - z_0| < \delta$ 既有 $z \in G$, '又有 $z \notin G$.

边界 G 的边界点的全体称为 G 的边界

0

一、平面点集

3. 开集与闭集

4. 有界集与无界集

定义 若存在 $\delta > 0$,使得点集 G 包含在原底的 邻域 g G 称为<u>有界集</u>,否则称为<u>非有界集</u>或无界集。

二、区域

1. 区域与闭区域

区域 平面点集 D 称为一个区域,如果它满足下列两个条件D 是一个开集;

(2) D 是<mark>连通的,即 D 中任何两点都可以用完全属于的一条折线连接起来。</code></mark>

闭区域 区域 D 与它的边界一起构成 \overline{D} 区域或 \overline{D} 域,记作D。

二、区域

- 2. 有界区域与无界区域顾名思义)
- 3. 内区域与外区域

4. 单连通域与多连通域

● <u>多连通域</u>又可具体分为二连域、三连域、……。

二、区域

4. 单连通域与多连通域

例 (1) $z+\overline{z}>0$, $\Rightarrow x>0$;

(2)
$$|z+2-i| \ge 1$$
, $\Rightarrow |z-(-2+i)| \ge 1$;

(3) $0 < \arg z < \pi/3$.

1. 方程式

- 在直角平面上f(x,y)=0. (比较熟悉)
- 在复平面上 f(z)=0. (比较陌生)
- 如何相互转换?

(1)
$$f(x,y) = 0$$

$$\frac{x = (z + \overline{z})/2}{y = (z - \overline{z})/(2i)}$$
 $\tilde{f}(z) = 0$. (建立方程)

(2)
$$f(z) = 0$$
 $\xrightarrow{z = x + iy}$ $\widetilde{f}(x, y) = 0$. (理解方程)

第一章

复数与复变函数

- 例 (1) |z-i|=2, $\Rightarrow x^2+(y-1)^2=4$.
 - (2) $|z+i| = |z-i|, \implies y = 0.$
 - (3) |z-2i| = |z+2|, $\Rightarrow y = -x$.

(5) $\text{Re}(z^2) = 1$, $\Rightarrow x^2 - y^2 = 1$.

2. 参数式

• 在直角平面上
$$\begin{cases} x = x(t), \\ y = y(t), \end{cases} (\alpha \le t \le \beta).$$

• 在复平面上 $z = z(t) = x(t) + iy(t), (\alpha \le t \le \beta).$

例如 考察以原点为圆心、以 R 为半径的圆周的方程。

(1) 在直角平面上
$$\begin{cases} x = x(\theta) = R\cos\theta, \\ y = y(\theta) = R\sin\theta, \end{cases}$$
 $(0 \le \theta \le 2\pi).$

(2) 在复平面上
$$z = z(\theta) = x(\theta) + iy(\theta) = R(\cos\theta + i\sin\theta)$$
,

$$\Rightarrow z = R e^{i\theta}, (0 \le \theta \le 2\pi).$$

3. 曲线的分类

考虑曲线 $z = z(t) = x(t) + iy(t), (\alpha \le t \le \beta).$

简单曲线 $\forall t_1 \in (\alpha, \beta), t_2 \in [\alpha, \beta],$ 当 $t_1 \neq t_2$ 时次 $(t_1) \neq z(t_2).$

简单闭曲线 简单曲线且 $z(\alpha) = z(\beta)$.

光滑曲线 在区间[α,β] 上x'(t)和y'(t) 连续且 $(t)\neq 0$.

4. 有向曲线

- 4. 有向曲线
- 简单闭曲线的正向一般约定为:

当曲线上的点 P 顺此方向沿曲前进制,曲线所围成的有界区域始终位于 P 点的左边。

当边界上的点 P 顺此方向沿边前进的,所考察的区域始终位于 P 点的左边。注意区域可以是多连域。

轻松一下吧