PROBLET 3.1

(a) TRUE_ Take square matrix
$$A = \begin{pmatrix} 1 & 1 & 0 \\ c_1 & c_2 & \cdots & 0 \\ 1 & 1 & 0 \end{pmatrix} \in \mathbb{R}^{h \times n}$$

rank
$$(A) = dim (Span(c1,---, cn-1)) < n-1$$

(b) TRUE _ Because then
$$A = \begin{pmatrix} -\Lambda_1 & - \\ -\Lambda_2 & - \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Vector with only one

(d) FAISE -
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
 to see .

(e) TRUE A is the inverse of
$$A^{-1}$$
 and $A^{-1}A^{-1}$ the inverse of $A^{-1}A^{1}A^{-1$

problem 3.2

(a)
$$A = \begin{cases} 5a-2 & 3a & 3a-3 \\ -4a+2 & -3a+1 & -2a+2 \\ -4a+2 & -3a & -2a+3 \end{cases}$$

rank (A) as a function of A.

•
$$a=0: A=\begin{pmatrix} -2 & 0 & -3 \\ +2 & 1 & +2 \\ +2 & 0 & +3 \end{pmatrix}$$
 nank $(Alo)=2$

 $c_3 \leftarrow c_3 - \frac{3}{2}c_1 + c_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Using operations on rows

Nauk
$$A = nauk$$
 $\begin{cases} 5a - 2 & 3a & 3a - 8 \\ 0 & 1 & -1 \end{cases}$ R1
 $-4a + 2 - 3a - 2a + 3 \end{cases}$

-> R1 and R2 are linearly indep. -> rank A>2

raule A = 2 if R3 is a linear combinaison of R1 and R2 Does there exist I and B such that $\alpha R1 + \beta R2 = R3$?

$$\begin{vmatrix} \lambda a = -4a + 2 \\ \beta = -3a \end{vmatrix} = \begin{vmatrix} \lambda = -4a + 2 \\ \beta = -3a \end{vmatrix}$$

$$| \alpha - \beta = -2a + 3$$

$$| \alpha = \frac{-3a}{a}$$

$$-4a + 2 = -5a + 3$$

Concusion:
$$A = 0$$
 => $Aauk A = 0$
 $A = 0$ => $Aauk A = 0$
 $A = 0$ => $Aauk A = 0$
 $A = 0$ => $Aauk A = 0$

(b)
$$a = 0$$
 $A = \begin{pmatrix} -2 & 0 & -3 \\ 2 & 1 & 2 \\ 2 & 0 & 3 \end{pmatrix}$

$$A = \begin{pmatrix} -3/2 \\ +4 \end{pmatrix} = \begin{pmatrix} -3/2 & +0 & -3 \\ -3 & +4 & +2 \\ -3 & +0 & +3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

and since raink
$$(A) = 2$$
, dimker $A = 1$.

Ca basés is $((-3/2, 1, 1))$

To build a ban's of In A it is enough to take two of its linearly indep conlumns.

show that
$$((1,2); (0,3))$$
 is linearly indep.
 $(2,2) + (3,2) = (0,3)$

$$(=) \begin{cases} x + 0 = 0 \\ 2x + 3\beta = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ \beta = 0 \end{cases}$$

$$dc_1 + \beta c_2 + \delta c_3 = 0$$
 can be verified
for $d=0$, $\beta = 0$
and $\delta \neq 0$

Similarly rue and show rank
$$C = 5$$
, rank $D = 4$

(b)
$$\left(\begin{array}{c} \Pi_{11} \\ \Pi_{12} \end{array} \right) = \left(\begin{array}{c} C_1 - C_1 \\ C_2 \end{array} \right)$$

Building on the intention above we will show that It is invertible of all the diagonal entres are \$0.

Assume
$$\pi_{ii} \neq 0$$
 for all i

Then $d_1 C_1 + d_2 C_2 + \cdots + d_n C_n = 0$

$$= \int d_1 \pi_{ii} = 0$$

$$= \lambda \int dA \Pi_{11} = 0$$

$$dA \Pi_{21} + AZ\Pi_{22} = 0$$

$$dA \Pi_{n1} + --- + An \Pi_{nn} = 0$$

$$=) \qquad \int d_1 = 0$$

$$0 + \alpha_2 \Pi_{22} = 0$$

$$\frac{1}{2} \int d^{2} d^{2} = 0$$

$$=$$
) $|\alpha_1| = |\alpha_2| = |---| = |\alpha_3| = |0|$

- (c) Now if there exists one position at which $T_{ii} = 0$ Ly one can show that $C_i \in Span(c_{i+1}, ---, c_n)$
 - =) columns are not linearly indep. => 17 not invertible.

(d) rouk (M) = rouk (M) _ so the condition is the same as for lower triangular matrices.
Problem 3.4
(a) rank (A) = dim Im (A)
rank (AB) = Lim Im (AB)
yet Im(AB) CIm(A) => rank(AB) < rank A
(b) & trivial to show ker (L) C ker (LTL)
thow for any x E ker (ITL) LTLX = 0
$x^{T}l^{T}Lx = 0$ $= > Lx = 0$
$\vdots \qquad \vdots \qquad$
=> x t ker (L) So ker (LT) Cher L
Conclusion: ker (ITL) = ker L.
(c) rank (LTL) & rank(LT)
=> m - dinker (CL) (now k (LT)) raik millity theorem
=> m - dimber(l) < rau k(LT)
=> rank(L) (rank(LT)
Dapply the same inequality to LT:

(rank(L) = rank(L).

PROBLEM 3.5

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$Aij = \begin{cases} 1 & i = n-j+1 \\ 0 & \text{otherwise} \end{cases}$$

$$(A^{2})_{ij} = \sum_{k} A_{ik} A_{kj} = A_{in-i+1} A_{n-j+ij} S_{ij}$$

$$\downarrow^{\dagger 0} \qquad \downarrow^{\dagger 0$$

$$= \lambda A^2 = I$$

=)
$$\int A^{2n} = I$$
 even powers.
 $A^{2n+1} = A$ odd powers