

Sequential Circuit Design

Dr. Bassam Jamil

Adopted from slides of the textbook

Outline

- □ Latch
 - Operation
 - Dynamic and Static Latches
- ☐ Flip-Flop
 - Operation
 - Dynamic and Static Flip Flops
- □ Adding (Enable/ Reset / Set) to Latch/Flip-Flop
- Timing

D Latch

- ☐ When CLK = 1, latch is *transparent*
 - D flows through to Q like a buffer
- \Box When CLK = 0, the latch is *opaque*
 - Q holds its old value independent of D
- □ a.k.a. transparent latch or level-sensitive latch

D Latch Design

■ Multiplexer chooses D or old Q

D Latch Operation

Write Data

Store Data

Dynamic Latch: Pass Transistor

- Pass Transistor Latch
- Pros
 - + Tiny
 - + Low clock load
- ☐ Cons
 - V_t drop
 - nonrestoring
 - backdriving
 - output noise sensitivity
 - diffusion input
 - Dynamic → Leakage

Used in 1970's

Dynamic Latch: Transmission Gate

- ☐ Transmission gate
 - + No V_t drop
 - Requires inverted clock
 - Dynamic → Leakage

Dynamic Latch: Transmission Gate

- □ Inverting buffer
 - + Restoring
 - + No backdriving
 - + Fixes either
 - Output noise sensitivity
 - Or diffusion input
 - Inverted output
 - Dynamic → Leakage

Static Latch Design

- ☐ Tristate feedback
 - + Static
 - Backdriving risk
- □ Static latches are now essential because of leakage

Static Latch Design

- Buffered input
 - + Fixes diffusion input
 - + Noninverting

Static Latch Design

- Buffered output
 - + No backdriving

- Widely used in standard cells
 - + Very robust (most important)
 - Rather large (extra inverter)
 - Rather slow (1.5 2 FO4 delays)
 - High clock loading

Latch Design

- Datapath latch
 - + smaller
 - + faster
 - unbuffered input

D Flip-flop

- ☐ When CLK rises, D is copied to Q
- ☐ At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

D Flip-flop Operation

Sequencing Elements

- □ Latch: Level sensitive
 - a.k.a. transparent latch, D latch
- ☐ Flip-flop: edge triggered
 - A.k.a. master-slave flip-flop, D flip-flop, D register
- ☐ Timing Diagrams
 - Transparent
 - Opaque
 - Edge-trigger

D Flip-flop Design

■ Built from master and slave D latches

Flip-Flop Design

☐ Flip-flop is built as pair of back-to-back latches

Dynamic FF

Static FF

Design of FF/Latch with Enable

- \Box Enable: ignore clock when en = 0
 - Mux: increase latch D-Q delay
 - Clock Gating: increase en setup time, skew

Design of FF/Latch with Reset

- □ Force output low when reset asserted
- ☐ Synchronous vs. asynchronous

Design of FF with Set / Reset

- □ Set forces output high when enabled
- ☐ Flip-flop with asynchronous set and reset

Sequencing Methods

- □ Flip-flops
- □ 2-Phase Latches
- Pulsed Latches

Timing Diagrams

Contamination and Propagation Delays

t _{pd}	Logic Prop. Delay	
t _{cd}	Logic Cont. Delay	
t _{pcq}	Latch/Flop Clk->Q Prop. Delay	
t _{ccq}	Latch/Flop Clk->Q Cont. Delay	
t _{pdq}	Latch D->Q Prop. Delay	
t _{cdq}	Latch D->Q Cont. Delay	
t _{setup}	Lataly/Elan Oaton Tlasa	
t _{hold}	Latch/Flop Hold Time	

Max-Delay: Flip-Flops

Max Delay: 2-Phase Latches (read)

Max Delay: Pulsed Latches (read)

$$t_{pd} \leq T_c - \underbrace{\max\left(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw}\right)}_{\text{sequencing overhead}} \\ \underbrace{\sum_{\substack{D1 \\ D2}} Combinational \ Logic}_{\text{Combinational Logic}} \\ \underbrace{\sum_{\substack{D2 \\ D2}} C_{pdq}}_{\text{Combinational Logic}} \\ \underbrace{\sum_{\substack{D2 \\ D2}} C_{pdq}}_{\text{Co$$

Min-Delay: Flip-Flops

$$t_{cd} \ge t_{\rm hold} - t_{ccq}$$

Min-Delay: 2-Phase Latches (read)

$$t_{cd1}$$
, $t_{cd2} \ge$

Hold time reduced by nonoverlap

Paradox: hold applies twice each cycle, vs. only once for flops.

But a flop is made of two latches!

Min-Delay: Pulsed Latches (read)

 $t_{cd} \ge$

Hold time increased by pulse width

Time Borrowing (read)

- ☐ In a flop-based system:
 - Data launches on one rising edge
 - Must setup before next rising edge
 - If it arrives late, system fails
 - If it arrives early, time is wasted
 - Flops have hard edges
- □ In a latch-based system
 - Data can pass through latch while transparent
 - Long cycle of logic can borrow time into next
 - As long as each loop completes in one cycle

Time Borrowing Example (read)

How Much Borrowing? (read)

2-Phase Latches

$$t_{\text{borrow}} \leq \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}}\right)$$

Pulsed Latches

$$t_{\rm borrow} \leq t_{pw} - t_{\rm setup}$$

Clock Skew

- We have assumed zero clock skew
- Clocks really have uncertainty in arrival time
 - Decreases maximum propagation delay
 - Increases minimum contamination delay
 - Decreases time borrowing

Skew: Flip-Flops

$$t_{pd} \leq T_c - \underbrace{\left(t_{pcq} + t_{\text{setup}} + t_{\text{skew}}\right)}_{\text{sequencing overhead}}$$

$$t_{cd} \ge t_{\rm hold} - t_{ccq} + t_{\rm skew}$$

Skew: Latches (read)

2-Phase Latches

$$t_{pd} \leq T_c - \underbrace{\left(2t_{pdq}\right)}_{\text{sequencing overhead}}$$

$$t_{cd1}, t_{cd2} \geq t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$$

$$t_{\rm borrow} \leq \frac{T_c}{2} - \left(t_{\rm setup} + t_{\rm nonoverlap} + t_{\rm skew}\right)$$

Pulsed Latches

$$t_{pd} \leq T_{c} - \underbrace{\max\left(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw} + t_{\text{skew}}\right)}_{\text{sequencing overhead}}$$

$$t_{cd} \ge t_{\text{hold}} + t_{pw} - t_{ccq} + t_{\text{skew}}$$

$$t_{\text{borrow}} \le t_{pw} - \left(t_{\text{setup}} + t_{\text{skew}}\right)$$

Two-Phase Clocking

- If setup times are violated, reduce clock speed
- If hold times are violated, chip fails at any speed
- ☐ In this class, working chips are most important
 - No tools to analyze clock skew
- An easy way to guarantee hold times is to use 2phase latches with big nonoverlap times
- \Box Call these clocks ϕ_1 , ϕ_2 (ph1, ph2)

Safe Flip-Flop

- ☐ Past years used flip-flop with nonoverlapping clocks
 - Slow nonoverlap adds to setup time
 - But no hold times
- In industry, use a better timing analyzer
 - Add buffers to slow signals if hold time is at risk

Adaptive Sequencing (read)

- □ Designers include timing margin
 - Voltage
 - Temperature
 - Process variation
 - Data dependency
 - Tool inaccuracies

- □ Alternative: run faster and check for near failures
 - Idea introduced as "Razor"
 - Increase frequency until at the verge of error
 - Can reduce cycle time by ~30%

Summary

- ☐ Flip-Flops:
 - Very easy to use, supported by all tools
- □ 2-Phase Transparent Latches:
 - Lots of skew tolerance and time borrowing
- □ Pulsed Latches:
 - Fast, some skew tol & borrow, hold time risk

	Sequencing overhead $(T_c - t_{pd})$	Minimum logic delay t_{cd}	Time borrowing t _{borrow}
Flip-Flops	$t_{pcq} + t_{\text{setup}} + t_{\text{skew}}$	$t_{\rm hold} - t_{ccq} + t_{\rm skew}$	0
Two-Phase Transparent Latches	2t _{pdq}	$t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$ in each half-cycle	$\frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}}\right)$
Pulsed Latches	$\max \Big(t_{pdq}, t_{peq} + t_{\text{setup}} - t_{pw} + t_{\text{skew}}\Big)$	$t_{\rm hold} - t_{ccq} + t_{pw} + t_{\rm skew}$	$t_{pw} - \left(t_{\text{setup}} + t_{\text{skew}}\right)$