

基于展开分解的无配对低光视频增强

汇报人: 朱凌玉

香港城市大学在读博士生(导师:王诗淇)

新加坡南洋理工访问生 (导师: 林维斯)

汇报提纲

口汇报人简介

口低光视频增强

口研究总结与展望

汇报人简介

姓名: 朱凌玉 1996-01-01

研究兴趣:

恶劣天气场景智能增强;人机协同图像视频编码压缩; 基于大模型图像视频质量评估

教育经历:

2014.09 - 2018.06,本科,武汉理工大学,武汉 2018.09 - 2019.06,硕士,香港科技大学,香港 2021.01 - 2025.01,博士,香港城市大学,香港

工作及交换经历:

2019.08 – 2021.01,香港城市大学,香港 2021.10 – 2022.10,鹏城实验室,深圳 2023.06 – 2024.01,北大信研院,杭州 2024.10 – 目前,新加坡南洋理工大学,新加坡

研究背景

研究场景需求

国土监控

通过提供全域智能化监控服务,帮助自然资源执法部门解决违章违建、非法资源采挖,及时综合执法等行业痛点,助力监...

森林防火监控

中国铁塔依托林区的铁塔站址,采用远距离+热成像监控摄像机,配合智能图像识别、GIS、热成像等技术可自动捕捉高温..

秸秆禁烧监控

依托涉农区域周边的铁塔站址,采用远距离可见光+热成像视频监控摄像机,通过人工智能、机器学习技术实现秸秆禁烧...

水利监控

在水利设施周边依托铁塔站址布设摄像机,利用智能分析技术,实现对各级河湖、水利工程的智能监管。

研究场景挑战

边端: 恶劣气候影响

• 挑战1: 如何对抗天气影响?

大雨、大雪

数据采集

数据传输

暗光夜景

雾霾、沙尘暴

- 妨碍人类的视觉体验

- 降低机器识别的性能

云端: 存储、压缩、传输

• 挑战2: 如何实现智能编码? 提升效率

视觉 信号

任务驱动的 自适应码率分配

人机协同导向 适配优化

1. https://www.china-tower.com/Index/lists/catid/22.html

研究背景

研究场景需求

口智能感知与分析 □大量图像/视频数据 → 智能应用. 例如检测,分割,追踪等 口实际不可控环境: 夜间

中国交通事故: 10% 与雨天/雾霾 /夜间相关

研究场景挑战

边端:恶劣气候影响

• 挑战1: 如何对抗天气影响?

大雨、大雪

数据采集

数据传输

暗光夜景

雾霾、沙尘暴

- 降低机器识别的性能

云端: 存储、压缩、传输

• 挑战2: 如何更高效智能编码?

视觉

人机协同导向 5 适配优化

2. http://www.gxkp.net/zhfy/dw/202103/t20210317 2967602.html

研究瓶颈

汇报提纲

口汇报人简介

口低光视频增强

口研究总结与展望

非配对视频增强优化

Unrolled Decomposed Unpaired Learning for Controllable Low-Light Video Enhancement

Lingyu Zhu, Wenhan Yang, Baoliang Chen, Hanwei Zhu, Zhangkai Ni, Qi Mao, and Shiqi Wang ECCV 2024

StableLLVE* SDSDNet* Ours

研究内容与创新点

研究难点: 时域空域的降质因素错综复杂。空域噪声、亮度和对比度等因素的交错, 以及时域一致性的需求高

创新点

-不需要配对数据训练

Α

采用无参考策略,消除了对配对数据的 需求。

-引入质量评估模型优化

В

基于质量反馈进行监督,引入可控的 人类感知反馈,以抑制过曝和欠曝。

-引充分利用时间线索

В

利用光流信息运动线索,以便时域间 线索中学习估计当前帧纹理细节。

整体框架

□ 非配对空域亮度信号优化

□ 时域信号优化

□ 人眼感知可控空域优化

□ 时域信号优化

实验结果

Method	Outdoor				Indoor			
	PSNR↑	SSIM↑	$warp \downarrow$	MABD ↓	PSNR↑	SSIM ↑	$warp \downarrow$	MABD↓
BIMEF [48]	18.51	0.5572	3.15	1.54	17.91	0.6468	3.15	1.89
Dong [11]	13.86	0.3575	10.16	4.93	20.55	0.4965	8.77	5.27
LIME [16]	9.75	0.2783	16.83	8.35	14.92	0.4252	16.45	10.55
MF [13]	14.99	0.4113	8.06	3.89	20.65	0.5620	6.63	3.98
MR [19]	8.10	0.2805	20.12	8.93	10.25	0.4244	22.05	11.26
NPE [42]	12.08	0.3399	14.90	6.69	16.72	0.4664	12.65	6.34
SRIE [14]	21.89	0.6288	2.74	1.42	15.78	0.6294	2.75	1.81
EnlightenGAN [18]	18.63	0.5399	4.49	2.52	19.59	0.5874	3.37	2.48
RUAS [29]	11.83	0.4000	3.42	2.14	20.54	0.6071	2.31	3.13
SCI [31]	17.35	0.4651	3.53	1.87	13.69	0.6189	0.77	0.84
ZeroDCE [15]	6.54	0.2081	20.80	9.05	13.27	0.4631	16.41	8.68
CLIP-LIT [27]	20.88	0.5872	3.36	1.85	19.08	0.4582	11.75	6.72
SGZSL [51]	6.09	0.1899	19.47	8.48	14.38	0.4793	12.34	6.89
MBLLVEN* [30]	16.38	0.5573	4.76	2.03	23.78	0.7845	0.79	1.90
DRVNet* [7]	17.39	0.6656	1.41	0.57	26.11	0.8518	0.45	1.20
StableLLVE* [50]	20.10	0.7510	4.84	1.73	24.76	0.8369	1.63	1.73
SDSDNet* [41]	24.30	0.7445	0.95	0.47	27.03	0.7788	1.74	2.03
PSENet** [37]	11.75	0.3541	10.00	4.81	17.79	0.5459	7.84	5.10
-SALVE**[2]	18.72	0.5888 -	1.09	0.48	47.09	- 0.7215	0.94	0.64
Ours	23.94	0.7446	0.24	0.21	22.41	0.7368	0.41	1.05

传统

深度 学习 无监督

有监督、

自监督

实验结果

实验结果

汇报提纲

口汇报人简介

口低光视频增强

口研究总结与展望

研究总结及未来展望

研究总结

在低光视频增强过程中,空域与时域的信号降质因素复杂交错,带来了新的挑战。 通过探索帧内帧间数据驱动的视觉感知模型,提供个性化解决方案的同时,开发出 更为通用的数据建模方法,实现技术模块化,提升了低光视频的增强效果。

未来展望

- 新方法的尝试: 生成式方法结合提升感知质量, 大语言视觉模型指令增强
- 新数据的扩展: 多模态数据融合互补提升性能, 光场, 点云, 事件相机等
- 新思路的探索: 极端恶劣场景下编码压缩与增强结合, 显著提升检测、分割和追踪等

学术主页

项目主页

谢谢!

邮箱: lingyzhu-c@my.cityu.edu.hk

附录

- 1 Lingyu Zhu, Wenhan Yang, Baoliang Chen, Hanwei Zhu, Zhangkai Ni, Qi Mao, Shiqi Wang: Unrolled Decomposed Unpaired Learning for Controllable Low-Light Video Enhancement, ECCV, 2024.
- ② Lingyu Zhu, Binzhe Li, Riyu Lu, Peilin Chen, Qi Mao, Zhao Wang, Wenhan Yang, Shiqi Wang: Learned Image Compression for Both Humans and Machines via Dynamic Adaptation, ICIP, 2024.
- (3) Lingyu Zhu, Wenhan Yang, Baoliang Chen, Hanwei Zhu, Xiandong Meng Shiqi Wang: Temporally Consistent Enhancement of Low-light Videos via Spatial-Temporal Compatible Learning, IJCV, 2024.
- 4 Baoliang Chen*, **Lingyu Zhu***, Hanwei Zhu, Wenhan Yang, Linqi Song, Shiqi Wang: Gap-Closing Matters: Perceptual Quality Evaluation and Optimization of Low-Light Image Enhancement, TMM, 2023. (*Co-first Author)
- **5 Lingyu Zhu**, Wenhan Yang, Baoliang Chen, Fangbo Lu, Shiqi Wang: Enlightening Low-light Images with Dynamic Guidance for Context Enrichment, <u>TCSVT</u>, 2022