Методы поиска ассоциативных правил

K.B.Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

ШАД Яндекс
● 8 мая 2014

Содержание

- 1 Задачи поиска ассоциативных правил
 - Определения и обозначения
 - Прикладные задачи
 - Связь с логическими закономерностями
- 2 Алгоритм APriory
 - Этап 1: поиск частых наборов
 - Этап 2: выделение ассоциативных правил
 - Развитие алгоритмов индукции ассоциативных правил
- 3 Алгоритм FP-Growth
 - Этап 1: построение префиксного FP-дерева
 - Этап 2: поиск частых наборов по FP-дереву

Определения и обозначения

X — пространство объектов;

$$\mathscr{F}=\{f_1,\dots,f_n\},\ f_j\colon X o\{0,1\}$$
 — бинарные признаки (items); $X^\ell=\{x_1,\dots,x_\ell\}\subset X$ — обучающая выборка.

Каждому подмножеству $\varphi\subseteq\mathscr{F}$ соответствует конъюнкция

$$\varphi(x) = \bigwedge_{f \in \varphi} f(x), \quad x \in X.$$

Если $\varphi(x)=1$, то «признаки из φ совместно встречаются у x».

Частота встречаемости (поддержка, support) φ в выборке X^ℓ

$$\nu(\varphi) = \frac{1}{\ell} \sum_{i=1}^{\ell} \varphi(x_i).$$

Если $\nu(\varphi)\geqslant \delta$, то «набор φ частый» (frequent itemset). Параметр δ — минимальная поддержка, MinSupp.

Определения и обозначения

Определение

Ассоциативное правило (association rule) $\varphi \to y - \exists \tau o$ пара непересекающихся наборов $\varphi, y \subseteq \mathscr{F}$ таких, что: 1) наборы φ и у совместно часто встречаются,

$$\nu(\varphi \cup y) \geqslant \delta;$$

2) если встречается φ , то часто встречается также и y,

$$\nu(y|\varphi) \equiv \frac{\nu(\varphi \cup y)}{\nu(\varphi)} \geqslant \varkappa.$$

 $\nu(y|\varphi)$ — значимость (confidence) правила.

Параметр δ — минимальная поддержка, MinSupp.

Параметр \varkappa — минимальная значимость, MinConf.

Классический пример

Анализ рыночных корзин (market basket analysis) [1993]

признаки — товары (предметы, items) объекты — чеки (транзакции)

 $f_j(x_i)=1$ — в i-м чеке зафиксирована покупка j-го товара.

Пример: «если куплен хлеб φ , то будет куплено и молоко y с вероятностью $\nu(y|\varphi)=60\%$; причём оба товара покупаются совместно с вероятностью $\nu(\varphi\cup y)=2\%$ ».

Цели анализа:

- оптимизировать размещение товаров на полках,
- формировать персональные рекомендации,
- планировать рекламные кампании (промо-акции),
- более эффективно управлять ценами и ассортиментом.

Пример 2

Выявление тематики в коллекциях текстовых документов признаки — термины (отдельные слова или выражения) объекты — текстовые документы

$$f_{j}(x_{i})=1$$
 — в i -м тексте (часто) употребляется j -й термин.

Тема — это совокупность терминов, совместно встречающихся в узком подмножестве документов, то есть *частый набор*.

Недостаток: слишком жёсткое требование, чтобы в тексте встречались **все** слова темы. Вероятностные модели адекватнее.

Цели анализа:

- получение признаков для выделения терминов;
- выделение наиболее чётких тем;
- формирование начальных приближений для Topic Models.

Ассоциативные правила — это логические закономерности

Определение

Предикат $\varphi(x)$ — логическая ε, δ -закономерность класса $c \in Y$

$$D_c(\varphi, X^{\ell}) = \frac{p_c(\varphi)}{\ell} \geqslant \delta; \qquad E_c(\varphi, X^{\ell}) = \frac{n_c(\varphi)}{p_c(\varphi) + n_c(\varphi)} \leqslant \varepsilon,$$

$$p_c(\varphi) = \# \big\{ x_i \colon \varphi(x_i) = 1 \text{ и } y(x_i) = c \big\} +$$
примеры класса $c;$ $n_c(\varphi) = \# \big\{ x_i \colon \varphi(x_i) = 1 \text{ и } y(x_i) \neq c \big\} -$ примеры класса $c.$

Для «arphi o y» возьмём целевой признак $y(x) = \bigwedge_{f \in y} f(x)$. Тогда

$$u(\varphi \cup y) \equiv D_1(\varphi) \geqslant \delta; \quad \frac{\nu(\varphi \cup y)}{\nu(\varphi)} \equiv 1 - E_1(\varphi) \geqslant 1 - \varepsilon \equiv \varkappa.$$

Вывод: различия двух определений — чисто терминологические.

Этап 1: поиск частых наборов
Этап 2: выделение ассоциативных п

Этап 2: выделение ассоциативных правил Розвитие элгоритмов индукции эссоциативных прав

Два этапа построения правил. Свойство антимонотонности

Поскольку $\varphi(x) = \bigwedge_{f \in \varphi} f(x)$ — конъюнкция, имеет место

Свойство антимонотонности:

для любых $\psi, \varphi \subset \mathscr{F}$ из $\varphi \subset \psi$ следует $\nu(\varphi) \geqslant \nu(\psi)$.

Следствия:

- lacktriangle если ψ частый, то все его подмножества $\varphi \subset \psi$ частые.
- $oldsymbol{Q}$ если φ не частый, то все наборы $\psi\supset \varphi$ также не частые.

Два этапа поиска ассоциативных правил:

- поиск частых наборов (многократный просмотр транзакционной базы данных).
- выделение ассоциативных правил (простая эффективная процедура в оперативной памяти).

Этап 1: поиск частых наборов Этап 2: выделение ассоциативных правил

Алгоритм APriory (основная идея — поиск в ширину)

```
Вход: X^{\ell} — обучающая выборка; минимальная поддержка \delta; минимальная значимость \varkappa; Выход: R = \big\{ (\varphi, y) \big\} — список ассоциативных правил;
```

```
1: множество всех частых исходных признаков: G_1 := \big\{ f \in \mathscr{F} \ \big| \ \nu(f) \geqslant \delta \big\};
2: для всех j = 2, \ldots, n
3: множество всех частых наборов мощности j: G_j := \big\{ \varphi \cup \{f\} \ \big| \ \varphi \in G_{j-1}, \ f \in G_1 \backslash \varphi, \ \nu(\varphi \cup \{f\}) \geqslant \delta \big\};
4: если G_j = \varnothing то
5: выход из цикла по j;
6: R := \varnothing;
7: для всех \psi \in G_j, \ j = 2, \ldots, n
8: AssocRules (R, \psi, \varnothing);
```

Этап 1: поиск частых наборов Этап 2: выделение ассоциативных правил

Развитие алгоритмов индукции ассоциативных правил

Выделение ассоциативных правил

Этап 2. Простой алгоритм, выполняемый быстро, как правило, полностью в оперативной памяти.

Вход и Выход: R — список ассоциативных правил; (φ, y) — ассоциативное правило;

```
1: ПРОЦЕДУРА AssocRules (R, \varphi, y);
```

- 2: для всех $f \in \varphi$: $\mathrm{id}_f > \max_{g \in \mathcal{V}} \mathrm{id}_g$ (чтобы избежать повторов y)
- 3: $\varphi' := \varphi \setminus \{f\}; \quad y' := y \cup \{f\};$
- 4: если $\nu(y'|\varphi') \geqslant \varkappa$ то
- 5: добавить ассоциативное правило (φ', y') в список R;
- 6: если $|\varphi'| > 1$ то
- 7: AssocRules (R, φ', y') ;

 id_f — порядковый номер признака f в $\mathscr{F} = \{f_1, \dots, f_n\}$

Модификации алгоритмов индукции ассоциативных правил

- Более эффективные структуры данных для быстрого поиска частых наборов.
- Самплинг с последующей проверкой правил на полной выборке.
- Иерархические алгоритмы, учитывающие иерархию признаков (например, товарное дерево).
- Учёт времени: инкрементные и декрементные алгоритмы.
- Учёт времени: поиск последовательных шаблонов (sequential pattern).
- Учёт информации о клиентах.

Префиксное FP-дерево (FP — frequent pattern)

В каждой вершине v дерева T задаются:

- признак $f_v \in \mathscr{F}$;
- ullet множество дочерних вершин $S_{
 u}\subset T$;
- поддержка $c_v = \nu(\varphi_v)$ набора признаков $\varphi_v = \{f_u : u \in [v_0, v]\}$, где $[v_0, v]$ путь от корня дерева v_0 до вершины v.

Обозначения:

$$V(T,f) = \{v \in T : f_v = f\}$$
 — все вершины признака f . $C(T,f) = \sum_{v \in V(T,f)} c_v$ — суммарная поддержка признака f .

Свойства FP-дерева T, построенного по всей выборке X^{ℓ} :

- **①** T содержит полную информацию о всех $\nu(\varphi)$, $\varphi \subseteq \mathscr{F}$.
- **2** $C(T,f) = \nu(f)$ для всех $f \in \mathcal{F}$.

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

ма	атр	иі	ца	слова			
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	Ъс
a	b	-	d	-	-	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	ъсе
-	-	С	d	-	f	-	d c
a	b	-	d	-	-	-	dba

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

ма	атр	ис	ιа		слова		
a	-	-	d	-	f	-	d a
а	-	С	d	е	-	-	d c a e
-	b	-	d	-	-	-	d b
-	b	С	d	_	_	_	d b c
-	b	С	_	_	_	-	Ъс
a.	b	_	d	_	_	-	d b a
-	b	-	d	е	-	-	d b e
-	b	С	_	е	_	g	ъсе
-	_	С	d	_	f	-	d c
а	b	-	d	-	-	_	d b a

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

ма	атр	ис	ιа	слова			
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	_	d	_	_	-	d b
-	b	С	d	-	-	_	d b c
-	b	С	-	-	-	_	bс
a.	b	_	d	_	_	-	d b a
-	b	_	d	е	_	-	d b e
-	b	С	_	е	_	g	ъсе
-	_	С	d	_	f	_	d c
а	b	-	d	-	-	-	d b a

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

ма	т	иі	ца	слова			
а	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	_	_	-	d b c
-	b	С	_	_	_	-	b c
а	b	-	d	-	-	-	d b a
-	b	-	d	е	-	-	d b e
-	b	С	_	е	_	g	b c e
-	_	С	d	-	f	-	d c
а	b	-	d	-	-	_	d b a

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

ма	т	иі	ца	слова			
а	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	_	_	-	d b c
-	b	С	-	-	-	-	b c
а	b	_	d	_	_	-	d b a
-	b	_	d	е	_	-	d b e
-	b	С	_	е	_	g	b c e
-	_	С	d	_	f	-	d c
а	b	-	d	-	-	-	d b a

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Тогда каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

ма	атр	INC	ιа	слова			
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	_	_	-	_	ъс
а	b	-	d	-	-	-	d b a
-	b	-	d	е	-	-	d b e
-	b	С	_	е	_	g	ъсе
-	_	С	d	_	f	-	d c
а	b	-	d	-	-	-	d b a

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Тогда каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

Ма	атр	иі	ца	слова			
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	ъс
a	b	-	d	-	-	-	d b a
-	b	-	d	е	-	-	d b e
_	b	С	_	е	_	g	ъсе
-	-	С	d	-	f	-	d c
а	b	-	d	-	-	_	d b a

(корень v_0 не показан) $\frac{d:8}{b:7} - \frac{d:5}{b:1}$ $\frac{d:5}{c:5} - \frac{b:1}{c:1}$ $\frac{a:1}{e:3} - \frac{a:1}{e:1}$ при $\delta=3$ признаки f, g не частые

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

ма	атр	иі	слова				
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	dbc
-	b	С	-	-	-	-	ъс
a	b	-	d	-	-	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	b c e
-	-	С	d	-	f	-	d c
а	b	_	d	_	-	-	d b a

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

ı							1
Ma	TI	иі	ιа	слова			
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	ъс
a	b	-	d	-	-	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	ъсе
-	-	С	d	-	f	-	d c
a	Ъ	_	d	_	_	_	d b a

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

ма	атр	иі	ца	слова			
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	ъс
a	b	-	d	-	-	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	ъсе
-	_	С	d	_	f	-	d c
a	b	_	d	_	_	_	d b a

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Тогда каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

ма	атр	ис	слова				
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	dbc
-	b	С	-	-	-	-	bс
a	b	-	d	-	-	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	ъсе
-	-	С	d	-	f	-	d c
a	b	-	d	_	-	_	d b a

при $\delta=3$ признаки f, g не частые

Алгоритм FP-growth

```
Вход: X^{\ell} — обучающая выборка;
Выход: FP-дерево T, \langle f_v, c_v, S_v \rangle_{v \in T};
 1: упорядочить признаки f \in \mathscr{F}: \nu(f) \geqslant \delta по убыванию \nu(f);
    ЭТАП 1: построение FP-дерева T по выборке X^{\ell}
 2: для всех x_i \in X^{\ell}
 3:
      v := v_0:
      для всех f \in \mathscr{F} таких, что f(x_i) \neq 0
 4.
          если нет дочерней вершины u \in S_v: f_u = f то
 5:
             создать новую вершину u; S_v := S_v \cup \{u\};
 6:
             f_{ii} := f: c_{ii} := 0: S_{ii} := \emptyset:
          c_{u} := c_{u} + 1/\ell; \quad v := u;
 7:
 8: ЭТАП 2: рекурсивный поиск частых наборов по FP-дереву Т
    \mathsf{FP}-find (T, \varnothing, \varnothing):
```

Этап 2: рекурсивный поиск частых наборов по FP-дереву

```
Вход: FP-дерево T, набор \varphi \subset \mathscr{F}, список правил R; Выход: добавить в R все частые наборы, содержащие \varphi;
```

- 1: ПРОЦЕДУРА FP-find (T, φ, R) ;
- 2: для всех $f \in \mathscr{F}$: $V(T,f) \neq \varnothing$ по уровням снизу вверх
- 3: если $C(T,f)\geqslant \delta$ то
- 4: добавить частый набор $\varphi \cup \{f\}$ в список R: $R := R \cup \{\varphi \wedge f\};$
- 5: построить условное FP-дерево T' := T | f, а именно: T' := FP-дерево по подвыборке $\{ x_i \in X^\ell \colon f(x_i) = 1 \};$
- 6: найти по T' все частые наборы, включающие φ и f: FP-find $(T', \varphi \cup \{f\}, R)$;

Условное FP-дерево T' := T|f можно построить быстро, используя только FP-дерево T и не заглядывая в выборку.

Условное FP-дерево

Пусть FP-дерево T построено по выборке X^{ℓ} .

Опр. Условное FP-дерево (conditional FP-tree) — это FP-дерево T':=T|f, построенное по подвыборке $\left\{x_i\in X^\ell\colon f(x_i)=1\right\}$, из которого удалены все вершины $v\in V(T',f)$ и все их потомки.

Продолжение примера: CFP-дерево T | "e"

Быстрое построение условного FP-дерева T' = T|f|

Вход: FP-дерево T, признак $f \in \mathscr{F}$; **Выход:** условное FP-дерево T' = T|f;

1: оставить в дереве только вершины на путях из вершин v признака f снизу вверх до корня v_0 :

$$T':=\bigcup_{v\in V(T,f)}[v,v_0];$$

2: поднять значения счётчиков c_v от вершин $v \in V(T',f)$ снизу вверх по правилу

$$c_u := \sum_{w \in S_u} c_w$$
 для всех $u \in T'$;

3: удалить из T' все вершины признака f; их поддеревья также не нужны и даже не создаются, т.к. в момент вызова FP-find все наборы, содержащие признаки ниже f, уже просмотрены.

Эффективность алгоритма FPGrowth

Одна из типичных зависимостей log времени работы алгоритма от MinSupp (на выборке данных census).

Нижние кривые — две разные реализации FP-growth.

Christian Borgelt. An Implementation of the FPgrowth Algorithm. 2005.

Резюме в конце лекции

- Поиск ассоциативных правил обучение без учителя.
- Ассоциативное правило (по определению) почти то же самое, что логическая ε , δ -закономерность.
- Простые алгоритмы типа APriory вычислительно неэффективны на больших данных.
- FP-growth один из самых эффективных алгоритмов поиска ассоциативных правил.
- Для практических приложений часто используются его инкрементные и/или иерархические обобщения.