Homotopie und einfacher Zusammenhang

Lemma 20.1

Sei $\emptyset \neq K \subseteq D \subseteq \mathbb{C}$, D offen und K kompakt. Dann existiert ein r > 0: $U_r(a) \subseteq D \ \forall a \in K$.

Beweis

$$\forall a \in K \ \exists r_a > 0 \colon U_{2r_a}(a) \subseteq D. \ \text{Dann:} \ K \subseteq \bigcup_{a \in K} U_{r_a}(a).$$

$$2.3 \implies \exists a_1, \dots, a_n \in K : K \subseteq \bigcup_{j=1}^n U_{r_{a_j}}(a_j).$$

 $r := \min\{r_{a_1}, \dots, r_{a_n}\}$. Sei $a \in K$ und $z \in U_r(a)$.

Zu zeigen: $z \in D$.

 $\exists j \in \{1, \dots, n\}: a \in U_{r_{a_j}}(a_j).$

$$\text{Dann: } |z-a_j| = |z-a+a-a_j| \overset{\Delta\text{-Ungl.}}{\leq} |z-a|+|a-a_j| < r+r_{a_j} \leq 2r_{a_j} \implies z \in U_{2r_{a_j}}(a_j) \subseteq D_{\blacksquare}$$

Lemma 20.2

Sei $D \subseteq \mathbb{C}$ offen und $\gamma : [a, b] \to \mathbb{C}$ ein Weg mit $\text{Tr}(\gamma) \subseteq D$. (γ also "nur" stetig) Dann existiert ein r > 0 und eine Zerlegung $Z = \{a_0, \ldots, a_n\}$ von [a, b] mit:

(1) für
$$z_j := \gamma(a_j)$$
 gilt: $U_r(z_j) \subseteq D$ $(j = 0, ..., n)$

(2)
$$\gamma([a_j, a_{j+1}]) \subseteq U_r(z_j) \cap U_r(z_{j+1}) \ (j = 0, \dots, n)$$

Beweis

$$20.1 \implies \exists r > 0: U_r(z) \subseteq D \ \forall z \in K := \text{Tr}(\gamma) \implies (1).$$

OBdA: [a,b] = [0,1]. γ ist auf [0,1] gleichmäßig stetig $\implies \exists \delta > 0$: $|\gamma(s) - \gamma(t)| < r \ \forall s,t \in [0,1]$ mit $|s-t| < \delta$.

Sei
$$n \in \mathbb{N}$$
 so, daß $\frac{1}{n} < \delta$. $a_j := \frac{j}{n}$ $(j = 0, ..., n)$ und $Z := \{a_0, ..., a_n\}$. Sei $t \in [a_j, a_{j+1}]$. $\Longrightarrow |t - a_j| < \delta$, $|t - a_{j+1}| < \delta$. $\Longrightarrow |\gamma(t) - \underbrace{\gamma(a_j)}_{=z_j}| < r$, $|\gamma(t) - \underbrace{\gamma(a_{j+1})}_{=z_{j+1}}| < r \Longrightarrow \gamma(t) \in \mathbb{N}$

$$U_r(z_j) \cap U_r(z_{j+1}).$$

In §8 haben wir $\int\limits_{\gamma} f(z)dz$ definiert für γ stückweise glatt und $f\in C(\text{Tr}(\gamma))$. Jetzt definieren wir $\int\limits_{\gamma} f(z)dz$ für γ "nur" stetig und f holomorph.

Definition

Sei $D \subseteq \mathbb{C}$ offen, $f \in H(D)$ und $\gamma:[a,b] \to \mathbb{C}$ ein Weg mit $\mathrm{Tr}(\gamma) \subseteq D$. Seien r, z_j, Z wie in 20.2. $z_0 = \gamma(a_0) = \gamma(a), z_n = \gamma(a_n) = \gamma(b)$ $\gamma_j(t) := z_j + t(z_{j+1} - z_j) \ (t \in [0,1]) \ (j = 0, \dots, n-1)$. $\Gamma := \gamma_0 \oplus \dots \oplus \gamma_{n-1}$ ist stückweise glatt. 20.2 $\Longrightarrow \mathrm{Tr}(\Gamma) \subseteq D$. Setze

$$(+)\int\limits_{\gamma}f(z)dz:=\int\limits_{\Gamma}f(z)dz$$

Lemma 20.3

Bezeichnungen wie in obiger Definition.

- (1) Ist γ stückweise glatt, so stimmt obige Definition (+) mit der Definition von $\int_{\gamma} f(z)dz$ aus §8 überein.
- (2) Die Definition (+) ist unabhängig von der Zerlegung Z, solange Z die Eigenschaft aus 20.2 hat.

(3)
$$\left| \int_{\gamma} f(z)dz \right| \leq \left(\max_{z \in \text{Tr}(\Gamma)} |f(z)| \right) L(\Gamma).$$

Beweis

(1) $\tilde{\gamma_j} := \gamma_{|[a_j, a_{j+1}]}$. Dann: $\gamma = \tilde{\gamma_0} \oplus \tilde{\gamma_1} \oplus \cdots \oplus \tilde{\gamma}_{n-1}$ Sei $j \in \{0, \dots, n-1\}$: $\tilde{\gamma_j} \oplus \gamma_j^-$ ist ein geschlossener, stückweise glatter Weg im Sterngebiet $U_r(z_j)$ (siehe 20.2). $\stackrel{9.2}{\Longrightarrow} \int\limits_{\tilde{\gamma_j} \oplus \gamma_j^-} f(z) dz = 0 \implies \int\limits_{\tilde{\gamma_j}} f(z) dz = \int\limits_{\gamma_j} f(z) dz.$ Summation $\int\limits_{\gamma} f(z) dz = \int\limits_{\Gamma} f(z) dz$.

(2) Übung. (Ist \tilde{Z} eine weitere Zerlegung von [a,b] mit den Eigenschaften aus 20.2, so betrachte die gemeinsame Verfeinerung $Z \cup \tilde{Z}$. Verfahre ähnlich wie in (1).)

Definition

 $D \subseteq \mathbb{C}$ sei offen.

(1) Seien $\gamma_0, \gamma_1 : [0, 1] \to \mathbb{C}$ Wege mit $\text{Tr}(\gamma_0), \text{Tr}(\gamma_1) \subseteq D, \gamma_0(0) = \gamma_1(0)$ und $\gamma_0(1) = \gamma_1(1)$. γ_0 und γ_1 heißen in **D homotop** : $\Leftrightarrow \exists H : [0, 1]^2 \to \mathbb{C}$: H ist stetig, $H([0, 1]^2) \subseteq D$ und

$$H(t,0) = \gamma_0(t), \ H(t,1) = \gamma_1(t) \quad \forall t \in [0,1]$$

$$H(0,s) = \gamma_0(0) = \gamma_1(0), \ H(1,s) = \gamma_0(1) = \gamma_1(1) \quad \forall s \in [0,1]$$

In diesem Fall heißt H eine **Homotopie von** γ_0 **nach** γ_1 **in D**.

Anschaulich: Sei $s \in [0, 1]$.

$$\Gamma_s(t) := H(t,s) \ (t \in [0,1]), \ \Gamma_s \text{ ist ein Weg mit } \text{Tr}(\Gamma_s) \subseteq D. \ \Gamma_s(0) = H(0,s) = \gamma_0(0) = \gamma_1(0), \Gamma_s(1) = H(1,s) = \gamma_0(1) = \gamma_1(1), \ \Gamma_0 = \gamma_0, \Gamma_1 = \gamma_1$$

" γ_0 kann in D stetig nach γ_1 deformiert werden."

- (2) $\gamma: [0,1] \to \mathbb{C}$ sei ein geschlossener Weg mit $\operatorname{Tr}(\gamma) \subseteq D$. $z_0: 0\gamma(0) = \gamma(1)$. $\gamma_{z_0}(t) := z_0 \ (t \in [0,1])$ heißt ein **Punktweg**.
 - γ heißt **nullhomotop in D** : $\Leftrightarrow \gamma$ und γ_{z_0} sind in D homotop. " γ lässt sich in D stetig auf einen Punkt zusammenziehen."
- (3) $G \subseteq \mathbb{C}$ sei ein Gebiet. G heißt **einfach zusammenhängend** : \Leftrightarrow jeder geschlossene Weg $\gamma: [0,1] \to \mathbb{C}$ mit $\mathrm{Tr}(\gamma) \subseteq G$ ist in G nullhomotop. "G hat keine Löcher."

Satz 20.4

Sei $G \subseteq \mathbb{C}$ ein konvexes Gebiet.

- (1) Sind $\gamma_0, \gamma_1 : [0,1] \to \mathbb{C}$ Wege mit $\gamma_0(0) = \gamma_1(0)$ und $\gamma_0(1) = \gamma_1(1)$ und $\operatorname{Tr}(\gamma_0), \operatorname{Tr}(\gamma_1) \subseteq G$, so sind γ_0 und γ_1 homotop in G.
- (2) G ist einfach zusammenhängend

Beweis

- (1) $H(s,t):=\gamma_0(t)+s(\gamma_1(t)-\gamma_0(t)), (s,t\in[0,1]).$ H ist eine Homotopie von γ_0 nach γ_1 in G
- (2) folgt aus (1)