1 | Reading

1.1 | Definition of a Definite Integral

For each interval $[x_i, x_{i+1}]$, we choose x_i^* in the interval to be the position of the minimum (for lower bound) or maximum (upper bound) value.

2 | Problems

2.1 | exr1.3

Using the left edge: -8.4375

Summation notation for left edge approximation:

$$\sum_{i=0}^{n} \underbrace{\frac{b-a}{n}}_{\text{width}} \underbrace{f\left(a + \frac{b-a}{n}i\right)}_{\text{height}}$$

2.2 | exr1.4 (in class)

0.21875 using the left estimate

2.3 | exr1.5

2.3.1 | left estimate

34.7 feet (add all except last number and divide by two, because we are stopping at 3.0 seconds in.)

2.3.2 | right estimate

44.8 feet (add the last number and drop the zero from the beginning)

2.3.3 | middle estimate

Not enough information to do it for $\Delta x = 0.5$, so I will use n = 3 aka $\Delta x = 1$

$$6.2 + 14.9 + 19.4 = 40.5$$
 feet

2.4 | exr1.6

2.4.1
$$\int_0^1 \sqrt{x^2 + 1} dx$$

 $\sqrt{x^2+1}$ is the length the hypotenuse of a triangle with leg-lengths 1 and x. Because x is continuous, this is like the area of a right triangle with leg-lengths 1 and 1, which is $\begin{bmatrix} 1\\2 \end{bmatrix}$.

Exr0n · 2020-2021 Page 1 of 3

1. TODO Wolfram Alpha doesn't agree though

Probably because as you take approximations, there will be overlap, so the actual value is bigger than I think it is.

I also don't know how to take the anti-chain-rule, so I don't know how to integrate the function symbolically.

$$2.4.2 \mid \int_0^3 (x-1) dx$$

Not sure area wise, but the anti-derivative is guess-able:

$$\frac{d}{dx}\left(\frac{x^2}{2} - x\right) = x - 1$$

$$\frac{3^2}{2} - 3 = 1.5$$

- 2.5 | exr1.7
- 2.5.1 | right endpoint approx for $y = x^2$

$$\sum_{i=1}^{n+1} \Delta x f(i\Delta x) = \sum_{i=1}^{n+1} \frac{1}{n} \left(\frac{i}{n}\right)^2$$

where $\Delta x = \frac{1}{n}$

2.5.2 | general form for left-side riemann sum

See exr1.3

2.6 | exr1.11

$$\int_{\pi}^{2\pi} \cos(x) dx = \lim_{n \to \infty} \sum_{i=0}^{n} \frac{\pi}{n} \cos\left(\pi + \frac{i\pi}{n}\right)$$

- 2.7 | exr1.12
- 2.7.1 |**1**

$$\lim_{n \to \infty} \sum_{k=0}^n \Delta x \sqrt{4 + (1 + k \Delta x)^2} \text{ where } \Delta x = \frac{2}{n}$$

2.7.2 |2

$$\lim_{n\to\infty}\sum_{k=0}^n \Delta x (2+k\Delta x)^2 + \frac{1}{2+k\Delta x} \text{ where } \Delta x = \frac{3}{n}$$

2.8 | exr1.13

2.8.1 |1

$$\int_0^1 \frac{e^x}{1+x} dx$$

2.8.2 |2

$$\int_{2}^{5} x\sqrt{1+x^3} dx$$

2.8.3 |3

$$\int_{1}^{3} \frac{x}{x^2 + 4} dx$$

2.9 | exr1.14

Graphically, it's the right triangle from origin to B minus the one from origin to A. Algebraically,

$$\frac{d}{dx} \frac{1}{2}x^2 = x$$

$$\implies \int_a^b x dx = \frac{1}{2}b^2 + c - \left(\frac{1}{2}a^2 + c\right) = \frac{b^2 - a^2}{2}$$