Aufgabe (10 Punkte)

- a) Was versteht man unter dem CAP-Theorem? Erklären Sie auch kurz was ein "Theorem" ist. (5 Punkte)
- b) Diskutieren Sie dazu folgende Aussage: (5 Punkte)

"Zu behaupten, ein Datenhaltungssystem sei konsistent und verfügbar, nicht aber partitionstolerant, ergibt überhaupt keinen Sinn."

Aufgabe (11 Punkte)

- a) Beschreiben Sie stichwortartig das Map/Reduce Verfahren oder definieren Sie es per Formel. (3 Punkte)
- b) Wenden Sie anschließend das Verfahren Map/Reduce auf die untere Datentabelle (Passagieraufkommen Januar 2017 bis Dezember 2017) an, indem Sie das Map/Reduce Verfahren Schritt für Schritt dokumentieren (Input bis Final Result). Beantworten Sie über dieses Verfahren die Frage, welche Flugverbindung* die meisten Passagiere im Zeitraum Januar 2017 bis einschließlich Dezember 2017 transportiert hat. Wieviel Passagiere ware es genau? (8 Punkte)

^{*}Eine Flugverbindung bedeutet gleicher Abflug-Flughafen und gleicher Ankunft-Flughafen. Aufgrund unterschiedlicher Ablug-bzw. Ankunftszeiten oder Kapazitäten kann eine Flugverbindung unterschiedliche Flug-IDs haben.

			Anzahl		
Abflug	Ankunft	Flug-ID	Passagiere/Flug-ID		
DUS	SFO	347	411		
DUS	MUC	943	204		
HAM	RDM	666	322		
DUS	SFO	348	222		
LAS	NYC	147	221		
STG	LCY	369	298		
AMS	LHR	258	228		

Tabelle: Passagieraufkommen Januar 2017 bis Dezember 2017

Aufgabe (9 Punkte)

Betrachten Sie das aus der Vorlesung bekannte Beispiel eines Zählerstandes:

- a) Erklären Sie die Graphik mithilfe der aufgeführten Schritte 1, 2 und 3 (Reihenfolge). (5 Punkte)
- b) Welches Problem ergibt sich (Problembeschreibung) ? (2 Punkte)
- c) Welche Lösung schlagen Sie vor? (2 Punkte)

Aufgabe (6 Punkte)

R produziert untere Ausgabe. Der Datensatz tips sollte aus der Vorlesung bekannt sein.

favstats (total_bill ~ 1, data = tips) ## 1 min Q1 median Q3 max mean sd n missing ## 1 3.07 13.3475 17.795 24.1275 50.81 19.78594 8.902412 244 0

- a) Wie berechnen Sie die Quadratische Abweichung aller Rechnungen aus der obigen Ausgabe? (4 Punkte)
- b) Berechnen Sie die Quadratische Abweichung aus den obigen Daten. (2 Punkte)

Aufgabe (9 Punkte)

Der Befehl favstats unter R wird im Folgenden modifiziert (im Vergleich zu Aufgabe 3):

R erzeugt dazu folgende Ausgabe:

##	size	min	Q1	median	Q3	max	mean	sd	n	missing
## 1	1	3.07	6.2050	7.915	8.9525	10.07	7.24250	3.010729	4	0
## 2	2	5.75	12.4525	15.370	19.6900	40.55	16.44801	6.043729	156	0
## 3	3	10.33	16.9400	20.365	27.7750	50.81	23.27763	9.407065	38	0
## 4	4	16.49	21.5000	25.890	34.8100	48.33	28.61351	8.608603	37	0
## 5	5	20.69	28.1500	29.850	30.4600	41.19	30.06800	7.340396	5	0
## 6	6	27.05	29.1125	32.050	37.7675	48.17	34.83000	9.382000	4	0

Die graphische Ausgabe dazu ist hier angegeben. Das rechte Bild zeigt das Beispiel von 1-Person und 6-Personen Tischen.

- a) Was ist der Unterschied in der Bedeutung der Befehle (siehe Aufgabe 3 and 4)? (2 Punkte)
- b) Berechnen Sie die Quadratische Abweichung der Tische mit 1-Person Größe und 6-Personen Größe. (3 Punkte)
- c) Interpretieren Sie die graphische Ausgabe. (3 Punkte)

 d) Was denken Sie: Ist die Summe der Quadratischen Abweichung über alle Rechnungen mit Tischgrößen-Kategorisierung höher oder niedriger als ohne Tischgrößen-Kategorisierung? Begründen Sie. (1 Punkt)

Aufgabe (7 Punkte)

Er wird folgende Ausgabe bei einer lineraren Regression unter R erzeugt:

- a) Wie lautet die geschätzte Gleichung für die Tringeldhöhe \widehat{tip} ? (3 Punkte)
- b) Wie lautet die Prognose für das Trinkgeld bei einer Rechnungshöhe (total_bill) von 10\$? (2 Punkte)
- c) Für welchen Fall stimmt die Aussage, dass das prognostizierte Trinkgeld mit dem tatsächlich gezahlten Trinkgeld übereinstimmt? (2 Punkte)

Aufgabe (5 Punkte)

a) Erklären Sie das untere R Programm Zeile für Zeile . Die Code-Zeilen sollten aus der Vorlesung bekannt sein. (3 Punkte)

```
set.seed(1896)
Sarah_Raet <- do(1000) * rflip(n = 8)
prop( ~ heads, success = 8, data = Sarah_Raet)</pre>
```

b) Erklären Sie untere Ausgabe in R? (2 Punkte)

```
## prop_8
## 0.001
```