ENS1161 Computer Fundamentals

Lecture 07 Bases and Number Representation

Dr Włodzimierz Górnisiewicz – School of Engineering

Outline

- 01. The decimal number system
- 02. Use of subscripts
- 03. The octal number system
- 04. Counting in octal
- 05. Conversion from decimal to octal
- 06. Conversion of octal to decimal
- 07. The binary number system
- 08. Counting in binary
- 09. Conversion from decimal to binary
- 10. Conversion from binary to decimal
- 11. The hexadecimal number system
- 12. Counting in hexadecimal
- 13. Conversion of hexadecimal numbers to binary
- 14. Conversion of binary numbers to hexadecimal
- 15. Conversion between hexadecimal and decimal
- 16. Representation of binary fractions
- 17. Converting decimal fractions to binary
- 18. Converting binary fractions to decimal
- 19. Summary of Number Conversion
- 20. Arithmetic using other number systems
- 21. Addition in octal
- 22. Addition in binary
- 23. Addition in hexadecimal
- 24. Binary Coded Decimal code (BCD)
- 25. Addition of BCD numbers

Lecture's Major Objectives

After completing this section, students should be able to:

- count in each of the decimal, octal, binary and hexadecimal number systems
- convert integers between the number systems
- convert fractions between binary and decimal number systems
- add integers in each of the number systems
- find the BCD code for a decimal number
- perform addition in each of the number systems
- convert a BCD number to its decimal equivalent
- perform BCD additions, making any necessary decimal adjustments

The decimal number system

We are familiar with the decimal number system, which is based on the number 10 (probably because we have 10 fingers).

The decimal system uses positional notation.

For example

"354" represents $3 \times 100 + 5 \times 10 + 4 \times 1 = 3 \times 10^2 + 5 \times 10 + 4 \times 1$ whereas

"435" represents $4 \times 100 + 3 \times 10 + 5 \times 1$

In the decimal system we use 10 different symbols to represent numbers.

These symbols are: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9

Use of subscripts

In the following notes, different subscripts may be used to indicate the number system and hence avoid ambiguity.

For example

354 ₁₀	represents a decimal number
354 ₈	represents an octal number
10010102	represents a binary number
354 ₁₆	represents a hexadecimal number

The octal number system

In the octal system, which is also positional,

```
"354" means 3 \times 8^2 + 5 \times 8 + 4 \times 1 which is equal to 236_{10} and "435" means 4 \times 8^2 + 3 \times 8 + 5 \times 1 which is equal to 285_{10}
```

Octal uses only the 8 symbols 0, 1, 2, 3, 4, 5, 6 and 7. Here are some octal numbers and their decimal equivalents:

Octal number	Meaning	Dec. equivalent
35	3x8 + 5x1	29
54	5x8 + 4x1	44
77	7x8 + 7x1	63
261	$2x8^2 + 6x8 + 1x1$	177

Counting in octal

64	8	1	Dec. Equiv
		0	0
		0 1 2	1 2
		 7	 7
	1	7 0	8
	1	1	9
	1	7 0	15 16
	2 2	1	17
	 7	 7	 63
1	0	7 0 1	64 65
1 2	7 0	7 0	127 128

Conversion from decimal to octal

The algorithm is:

"Divide by 8 until the answer is 0, then read the remainders in reverse order"

Example: Convert 171₁₀ to octal

When we divide 171 repeatedly by 8, we get:

Conversion from decimal to octal

Example: Convert 278₁₀ to octal

So
$$278_{10} = 426_8$$

[Check:
$$426_8 = 4 \times 64 + 2 \times 8 + 6 \times 1 = 278_{10}$$
]

Conversion of octal to decimal

To convert from octal to decimal, we simply recall that each octal digit represents a particular power of 8.

Example 1: Convert 213₈ to decimal 213₈ =
$$2 \times 8^2 + 1 \times 8 + 3 \times 1$$
 = $2 \times 64 + 1 \times 8 + 3 \times 1 = 139_{10}$ Example 2: Convert 467_8 to decimal $467_8 = 4 \times 8^2 + 6 \times 8 + 7 \times 1$ = $4 \times 64 + 6 \times 8 + 7 \times 1 = 311_{10}$

Conversion of octal to decimal

Example 3: Convert 4276₈ to decimal

$$4276_8 = 4 \times 8^3 + 2 \times 8^2 + 7 \times 8 + 6 \times 1$$
$$= 4 \times 512 + 2 \times 64 + 7 \times 8 + 6 \times 1$$
$$= 2238_{10}$$

In fact there is a more convenient way to evaluate longer expressions such as in Example 3, especially if you are using a calculator:

$$4276_8 = (((4 \times 8) + 2) \times 8 + 7) \times 8 + 6 = 2238_{10}$$

The binary number system

The binary number system is based on the number 2. It also uses positional notation. In this system there are only two symbols, 0 and 1.

```
So, for example, the binary number 101 represents 1 \times 2^2 + 0 \times 2 + 1 \times 1 = 5 in decimal and the binary number 1101 represents 1 \times 2^3 + 1 \times 2^2 + 0 \times 2 + 1 \times 1 = 13 in decimal
```

Here are some binary numbers and their decimal equivalents:

Binary number	Meaning	Dec. equivalent
111	4+2+1	7
1001	8+0+0+1	9
110011	32+16+0+0+2+1	51
1000000	128+0++0	128

Counting in binary

16	8	4	2	1	Dec. equiv
0	0	0	0	0	0
	0	0	Λ		1
		_		1 0	
0		0	1	1	2 3
l .			0	0	4
0	<u>۱</u>		<u>۱</u>	1	4 5 6 7 8 9
0	0	1	1	0	6
0			4		7
0	1	0	0	0	8
_	1	0	0	1	9
0	ⁱ 1	0	1	0	10
_		١ ۾	۱ .	1	11
0	1 1			0	12
0					13
0			1 1	1 0	14
_	l	1	1	1	15
1			0	0	16
_	' -	1		1	17
4	Λ .	^	4	0	18
1	0	0	1	1	19
4	0	1	0	0	20
1	0	1	0	1	21
		1	1	0	22
1	0	1			23
1		0	0	1 0	24
		0	0	1	25
1				0	26
1		0	1	1	27
1	ı 1	ı 1	ı 0	0	28
1	ı •	1	0	1	29
1	1	l 1	l 1	0	30
1	1	1	1	1	31

Method 1:

Divide by 2 until the answer is 0, then read the remainders in reverse order.

Example 1: Convert 58₁₀ to binary.

	1	
2	58	
2	29 + rem 0	- - A
2	14 + rem 1	
2	7 + rem 0	
2	3 + rem 1	
2	1 + rem 1	
	0 + rem 1	-
	1	- 1

The remainders, in reverse order, are 1, 1, 1, 0, 1 and 0.

Therefore $58_{10} = 111010_2$

[Check: $111010_2 = 32 + 16 + 8 + 0 + 2 + 0 = 58_{10}$]

An alternative (and much quicker!) method is to use octal.

First you need to know the binary equivalents of the numbers 0, 1, 2, ..., 7.

These are:

```
0
1
001
2
010
3
011
4
100
5
101
6
110
7
111
```

Method 2:

First convert the decimal number to octal, and then replace each octal digit by its binary equivalent.

Example 1 (again): Convert 58₁₀ to binary

First convert to octal:

Reading the remainders in reverse order, we find $58_{10} = 72_8$ Now replace each octal digit with the corresponding binary equivalent. (In this case replace 7 by 111 and replace 2 by 010)

So
$$58_{10} = 72_8 = 111010_2$$

Example 2: Convert 370₁₀ to binary.

First convert to octal:

Now replace each octal digit with the corresponding binary equivalent.

So
$$370_{10} = 562_8 = 101110010_2$$

Conversion from binary to decimal

Method 1:

Add up the powers of 2

```
Example 1: Convert 10111001_2 to decimal 10111001_2 = 2^7 + 2^5 + 2^4 + 2^3 + 1
= 128 + 32 + 16 + 8 + 1 = 185_{10}
```

Example 2: Convert 101111011_2 to decimal $101111011_2 = 2^8 + 2^6 + 2^5 + 2^4 + 2^3 + 2 + 1$ $= 256 + 64 + 32 + 16 + 8 + 2 + 1 = 379_{10}$

Example 3: Convert
$$111100_2$$
 to decimal $111100_2 = 2^5 + 2^4 + 2^3 + 2^2$
= $32 + 16 + 8 + 4 = 60_{10}$

Conversion from binary to decimal

Method 2

Convert to octal first, then to decimal.

Separate groups of three binary digits, starting at the units digit. Then replace each group of three binary digits by its octal equivalent.

0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Conversion from binary to decimal

```
Example 1 (again): Convert 10111001<sub>2</sub> to decimal
10 \mid 111 \mid 001 = 271_8 = 2 \times 64 + 7 \times 8 + 1 = 185_{10}
Example 2 (again): Convert 101111011<sub>2</sub> to decimal
101\ 111\ 011\ =\ 573_8\ =\ 5\times64\ +\ 7\times8\ +\ 3\ =\ 379_{10}
Example 3 (again): Convert 111100<sub>2</sub> to decimal
111\ 100 = 74_8 = 7 \times 8 + 4 = 60_{10}
```

The hexadecimal number system

This system is based on the number 16. Its main purpose is to help us to cope with long strings of binary digits. For example suppose we had to remember the binary number:

00101101111100111000110001001011

We would find it much easier to work with its hexadecimal equivalent 2DF38C4B

16 ³	16 ²	16	1	Dec. equiv.
1	1	1 0 5 0 4	5 3 7 0 6	21 259 87 4096 70

The hexadecimal number system

```
Hexadecimal uses 16 symbols. The symbols 0, 1, 2, ..., 9 have the
same meaning as in decimal, and we need six extra symbols to
represent these six numbers.
We use A, B, C, D, E and F:
A represents the decimal number 10,
B represents the decimal number 11,
C represents the decimal number 12,
D represents the decimal number 13,
E represents the decimal number 14, and
F represents the decimal number 15.
"5C" in hex represents 5 \times 16 + 12 = 92 in decimal
"1AF" in hex represents 1\times16^2 + 10\times16 + 15\times1 = 431 in decimal
345_{16} = 837_{10} and 1AF_{16} = 431_{10}
```

The hexadecimal number system

Here are some more hexadecimal numbers and their decimal equivalents:

(Note: $16^2 = 256$ and $16^3 = 4096$)

Hex. number	Meaning	Dec. equiv.
2B7	2x256 + 11x16 + 7x1	695
496	4x256 + 9x16 + 6x1	1174
FE	15x16 + 14x1	254
CB4D	12x4096 + 11x256 + 4x16 +13x1	52045

Counting in hexadecimal

16 ³	16 ²	16	1	Dec. equiv.
0	0	0	0	0
0	0	0	1	1
0	0	0	2	2
	•••		•••	•••
0	0	0	9	9
0	0	0	Α	10
			·	···
0	0	0	F	15
0	0	1	0	16
0	0	1	1	17
			•••	•••
0	0	1	D	29
0	0	1	Ε	30
0	0	1	F	31
0	0	2	0	32
0	0	9	F	159
0	0	Α	0	160
		<u></u>	<u></u>	
0	0	F	F	255
0	1	0	0	256
				 CEE2E
F	F	F	F	65535

Conversion of hexadecimal numbers to binary

First we need to be familiar with the binary equivalents of the hexadecimal numbers 0, ..., F. These are:

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Then it is simply a matter of replacing each hexadecimal digit by the corresponding four binary digits.

Conversion of binary numbers to hexadecimal

To convert a binary integer to hexadecimal, separate binary digits into groups of four, starting at the units digit, and then replace each group by its hexadecimal equivalent.

Example 1:

Convert 101111101010110011₂ to hexadecimal.

10 1111 1010 1011 $0011_2 = 2FAB3_{16}$

Example 2:

Convert 1111100001011101101₂ to hexadecimal.

111 1100 0010 1110 $1101_2 = 7C2ED_{16}$

Conversion between hexadecimal and decimal

Sometimes it is convenient to be able to convert from simple hexadecimal numbers to decimal, or vice versa.

For conversions such as these it helps to know, or at least be familiar with, the multiples of 16.

Examples:

- 1. The hex number 3C means $3\times16 + 12 = 60$ in decimal.
- 2. The hex number 54 means $5 \times 16 + 4 = 84$ in decimal.
- 3. The hex number F6 means $15 \times 16 + 6 = 246$ in decimal.

Conversion between hexadecimal and decimal

4. To convert the decimal number 43 to hexadecimal:

```
43 divided by 16?

2\times16 = 32, so

43 divided by 16 gives 2 with 11 remainder

So 43 = 2\times16 + 11
```

Therefore 43 in decimal becomes 2B in hex.

5. To convert the decimal number 77 to hexadecimal:

```
77 divided by 16?

4\times16 = 64, so

77 divided by 16 gives 4 with 13 remainder

So 77 = 4\times16 + 13
```

Therefore 77 in decimal becomes 4D in hex.

Conversion between hexadecimal and decimal

6. To convert the decimal number 103 to hexadecimal:

```
103 divided by 16?

6\times16 = 96, so

103 divided by 16 gives 6 with 7 remainder

So 103 = 6\times16 + 7
```

Therefore 103 in decimal becomes 67 in hex.

Now we consider fractions in binary. The concepts are analogous to those in the decimal system.

In the decimal system, the columns to the right of the decimal point represent

Here are some decimal numbers with both integer parts and fractional parts:

 100	10	1	1 10	1 100	1 1000	 Meaning
9	8	3 6 5 0	2 0 3 9 3	5 7 0 9 2	1 2 0 4	43.25 6.071 985.302 0.99 0.324

In decimal, for example

0.324 means
$$3x \frac{1}{10} + 2x \frac{1}{100} + 4x \frac{1}{1000}$$
 or $\frac{324}{1000}$

Notice that the fraction 0.324 has 3 places, and so the last place

represents
$$\frac{1}{10^3}$$

In the binary system, the columns to the right of the point represent

$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, ... and so on.

Here are some binary numbers with both integer parts and fractional parts:

 4	2	1	1 2	1 4	1 8	1 16	 Binary meaning	Decimal meaning
1	1 0	1 0 1 1 0	1 1 0 1 1	1 1 1	1 0	1	1.1 0.11 11.01 101.111 0.1101	1.5 0.75 3.25 5.875 0.8125

In the binary system, for example

0.1101₂ means
$$\frac{1}{2} + \frac{1}{4} + \frac{0}{8} + \frac{1}{16}$$
 or $\frac{13}{16} = 0.8125$ in decimal

Here the fraction 0.1101 has 4 places, and so the last place represents or

As another example

$$0.10011_2$$
 means $\frac{1}{2} + \frac{1}{16} + \frac{1}{32}$ or $\frac{19}{32}$ or 0.59375

Converting decimal fractions to binary

The usual method is:

Repeatedly multiply the digits to the right of the decimal point by 2, until only zeros remain. Then read the integer parts of the successive answers.

Example 1: Convert the decimal fraction 0.34375 to binary

Converting decimal fractions to binary

Example 2: Convert the decimal fraction 0.453125 to binary

Converting decimal fractions to binary

Example 3: Convert the decimal fraction 0.65625 to binary

Converting binary fractions to decimal

A simple method is:

Ignore the point and convert the fractional part to decimal number. Then divide this by the appropriate power of 2 as given by the number of places in the fractional part.

Example 1: Convert 0.110011₂ to decimal.

Ignoring the point, 110011 in binary is 51 in decimal. Now the fraction has 6 places, so we must divide by $2^6 = 64$

Therefore
$$0.110011_2 = \frac{51}{64} = 0.796875_{10}$$

Converting binary fractions to decimal

Example 2: Convert 0.11101₂ to decimal.

Ignoring the point, 11101 in binary is 29 in decimal. Now the fraction has 5 places, so we must divide by $2^5 = 32$

Therefore
$$0.11101_2 = \frac{29}{32} = 0.90625_{10}$$

Example 3: Convert 0.001010101₂ to decimal.

1010101 in binary is 85 in decimal The fraction has 9 places, so we must divide by $2^9 = 512$

Therefore
$$0.001010101_2 = \frac{85}{512} = 0.166015625_{10}$$

Converting binary fractions to decimal

Example 4: Convert 0.00000101₂ to decimal.

101 in binary is 5 in decimal

The fraction has 8 places, so we must divide by $2^8 = 256$

Therefore
$$0.00000101_2 = \frac{5}{256} = 0.01953125_{10}$$

Summary of number conversion

Conversion	Method	Example
Binary to		
Octal	Substitution	10111011001 ₂ = 10 111 011 001 ₂ = 2731 ₈
Hexadecimal	Substitution	10111011001 ₂ = 101 1101 1001 ₂ = 5D9 ₁₆
Decimal	Summation	10111011001 $_2$ = 1x1024 + 0x512 + 1x256 + 1x128 + 1x64 + 0x32 + 1x16 + 1x8 + 0x4 + 0x2 + 1x1 = 1497 $_{10}$
Octal to		
Binary	Substitution	1234 ₈ = 001 010 011 100 ₂
Hexadecimal	Substitution	1234 ₈ = 001 010 011 100 ₂ = 0010 1001 1100 ₂ = 29C ₁₆
Decimal	Summation	$1234_8 = 1x512 + 2x64 + 3x8 + 4x1 = 668_{10}$

Summary of number conversion

Conversion	Method	Example
Hexadecimal to		
Binary	Substitution	C0DE ₁₆ = 1100 0000 1101 1110 ₂
Octal	Substitution	C0DE ₁₆ = 1100 0000 1101 1110 ₂ = 1 100 000 011 011 110 ₂ = 140336 ₈
Decimal	Summation	$C0DE_{16} = 12x4096 + 0x256 + 13x16 + 14x1 = 49374_{10}$

Summary of number conversion

Conversion	Method	Example
Decimal to		
Binary	Division	108 ₁₀ $\frac{1}{3}$ 2 = 54 reminder 0 (LSB) $\frac{1}{3}$ 2 = 27 reminder 0 $\frac{1}{3}$ 2 = 13 reminder 1 $\frac{1}{3}$ 2 = 6 reminder 1 $\frac{1}{3}$ 2 = 3 reminder 0 $\frac{1}{3}$ 2 = 1 reminder 1 $\frac{1}{3}$ 2 = 0 reminder 1 (MSB) 108 ₁₀ = 1101100 ₂
Octal	Division	108 ₁₀ ÷ 8 = 13 reminder 4 (LSB) ÷8 = 1 reminder 5 ÷8 = 0 reminder 1 (MSB)
		108 ₁₀ = 154 ₈
Hexadecimal	Division	108 ₁₀ ÷ 16 = 6 reminder 12 (LSB) ÷16 = 0 reminder 6 (MSB)
		$108_{10} = 6C_{16}$

Arithmetic using other number systems

We are mainly concerned with the addition of two numbers. An example in the decimal system:

In 1st column, 8 + 5 = 13, so we "put down 3 and carry is 1" In 2nd column, 3 + 8 + 1 = 12, we "put down 2 and carry is 1"

Addition in octal

Remember that in octal the digits represent 1, 8, 8², 8³, and so on. So, if the sum of the two digits in the 1's column is 8 or more, there will be a carry of 1 into the next column, and so on.

Example 1:

In 1st column, $7_8 + 5_8 = 14_8$, so the carry is 1 In 2nd column, $6_8 + 7_8 + 1_8 = 16_8$, so the carry is 1

Addition in octal

Example 2:

In 1st column, $6_8 + 5_8 = 13_8$, so the carry is 1 In 2nd column, $4_8 + 3_8 + 1_8 = 10_8$, so the carry is 1 In 3rd column, $2_8 + 5_8 + 1_8 = 8_8$, so the carry is 1

Addition in binary

Example 1:


```
In 1st column, 1 + 1 = 10, so the carry is 1
In 2nd column, 0 + 1 + 1 = 10, so the carry is 1
In 3rd column, 1 + 0 + 1 = 10, so the carry is 1
In 4th column, 1 + 1 = 10, so the carry is 1
```

Addition in binary

Example 2:


```
In 1st column, 1 + 1 = 10, so the carry is 1
In 2nd column, 1 + 0 + 1 = 10, so the carry is 1
In 3rd column, 1 + 1 + 1 = 11, so the carry is 1
In 4th column, 0 + 1 + 1 = 10, so the carry is 1
In 5th column, 1 + 1 + 1 = 11, so the carry is 1
```

Addition in binary

Example 3:

Addition in hexadecimal

In hexadecimal the digits represent 1, 16, 16², 163, and so on. So, if the sum of the two digits in the 1's column is 16 or more, there will be a carry of 1 into the next column, and so on.

In BCD code, each digit of a decimal number is represented by a 4-bit binary "code group." Compare the binary and BCD representations of some decimal numbers.

Example 1:

For the decimal number 37,

the binary representation is 100101

the BCD representation is $\begin{array}{ccc} 0011 & 0111 \\ \downarrow & \downarrow \\ 3 & 7 \end{array}$

```
Example 2:
For the decimal number 65,
the binary representation is
                              1000001
the BCD representation is
                             0110 0101
Example 3:
For the decimal number 123,
the binary representation is
                             1111011
the BCD representation is
                             0001
                                   0010 0011
```

Since there are 10 decimal digits, the 4-bit binary numbers for 0, 1, ..., 9 are used for BCD representation, as shown in the table.

decimal	BCD	
digit	code	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	

The remaining 4-bit binary numbers 1010, 1011, 1100, 1101, 1110 and 1111, which represent A, B C, D, E and F in hexadecimal, do not correspond to any decimal digit, and are called "invalid BCD code groups".

So conversion from decimal to BCD, is simply a matter of replacing each decimal digit by the appropriate its 4-bit binary code group. Some further examples follow.

Example 5:

Consider the decimal number 478. Each of its digits is changed to its binary equivalent as shown:

Example 6:

Consider the decimal number 345602. Its BCD representation is as shown:

Conversion from BCD code to the equivalent decimal number is simply a matter of separating the BCD number into groups of 4 bits and then replacing each group by the corresponding decimal digit.

Example 7:

Convert the BCD number 0101011100000001 into its decimal equivalent

0101	0111	0000	0001
\downarrow	\downarrow	\downarrow	\downarrow
5	7	0	1

Example 8:

The binary sequence 0100 1011 0011 is in fact NOT a valid BCD representation, because when we try to convert it into its decimal equivalent, we find

$$0100 1011 0011$$
 $\downarrow \downarrow \downarrow$
 $4 ? 3$

1011 is an invalid BCD code group.

In the following discussion about addition of BCD numbers it is much easier to use hexadecimal rather than binary representation.

So valid BCD code groups are represented by the hex numbers 0, 1, 2, ..., 9, while the hex numbers A, B, C, D, E and F represent invalid BCD code groups.

When a microprocessor adds BCD numbers, it is really adding binary (or hex) numbers, but the final output must look like the result of decimal addition.

Binary (or hex) additions may or may not look like decimal additions.

These three hex additions can be interpreted as correct decimal additions:

However the following three hex additions do not give correct decimal answers:

When two BCD code groups are added, there are three possible types of outcomes as illustrated by the following three cases. Remember the additions are all hex:

(i) (ii) (iii)
$$\frac{3}{4+} \frac{6}{7} \frac{9}{D} \frac{8+}{11}$$

In case (i), if the result is interpreted as decimal, a correct answer is obtained.

In case (ii) an invalid BCD code group is produced so the result cannot be interpreted as decimal.

In case (iii), the result, if interpreted as decimal, gives a wrong answer.

Such decimal adjustments are usually not seen by the user. In the case of a calculator, for example, the user sees only the two numbers that are input and the final output.

The hexadecimal addition of the inputs and the decimal adjustments occur inside the machine and are therefore hidden from the user. Although all the calculations are in hex (or binary), as far as the user can see the operation is simply decimal addition.

The steps involved in BCD addition are shown in the following box. Notice that the first addition and then the decimal adjustment on each column are completed before moving to the next column.

The procedure for BCD addition

Start at the right hand column:

- add the two digits and transfer any carry to the next column;
- make the decimal adjustment by adding 6 or 0, according to the rule:
 - If the sum of the two digits is more than 9, add 6 and transfer any carry to the next column; otherwise add 0.
- Move to the next column and repeat the above operations, until all columns have been processed.

Note that a carry may come from the first addition or from the second addition.

Example 1

Example 2

Some further examples:

Some further examples:

The End