

Document de Travail définitions des interfaces

version 1.9.3 05/02/2015

projet Insight

Auteur : Joël Voyé

Table des matières

présentationprésentation	3
évolutions entre versions	3
État actuel des définitions des Interfaces	8
L'interface superviseur SEIS	
L'interface Superviseur automates	
L'interface Supervision Énergie	
Plan des adresses IP	
adresse des principaux serveurs :	
protocole du SEIS	
Support et principe du protocole	
Format des Trames	
Trames de tests	
Trames de pilotage	
Commande d'approche	
Commande de nivellement	
Commande de repli des pieds (dite aussi 'de rangement')	
Trames liées aux mesures	
Commande de lancement des mesures de vibrations	
Commande d'arrêt des mesures	
Trame d'envoi de mesures	
Réponse du SEIS à une requête non identifiée	
Réponse du SEIS suite a un problmème ou Erreur détectée	
Vue du superviseur	
Échanges avec les automates et l'énergie	
Support et principe du protocole	
Dictionnaires des automates	
CCGX (color control GX)	
Variables à surveiller dès l'initialisation.	
Variables à surveiller durant la supervision	
Interprétation des alarmes	
Dictionnaires des AUTOMATES	
Registres de commandes de l'automate du bras	
Registres d'états de l'automate du bras	
Registre défauts Bras	
registre défauts bras Adresse 116	
registre défauts bras Adresse 117	
Registres de commande de l'automate des panneaux	
Registres d'états de l'automate des panneaux	
Registre défauts panneaux	
registre défauts panneaux Adresse 125	
registre défauts panneaux Adresse 126	
Gestion des modes dégradés	
Codage du mode	
Machine à états de la gestion des incidents et ARRU	
Diagrammes de séquences d'interfaces	
Liste des diagrammes et état de réalisation Diagrammes de séquences d'initialisation :	

Diagrammes de séquences des déploiement et replis :	25
Diagrammes de séquences des commandes de maintenance :	
Diagrammes autorisés en fonction du « Mode »	
DSI_TestLiaisions_4.0	
DSI_TestSEIS_1.0	
DSI_initialisationAutomates_3.0	
DSI_ouverture_Panneaux_3.0	31
DSI_fermeture_Panneaux_2.1	32
DSI_Dépose_HP3_2.0	
DSI_reprise_HP3_2.0	
DSI_Dépose_WTS_2.0	35
DSI_Reprise_WTS_2.0	36
DSI_dépose_SEIS_3.0	
DSI_reprise_SEIS_2.0	
DSI_ouverture_Pince_1.0	
DSI_fermeture_Pince_1.0	42
DSI_Surveillance_Energie_4.0	43
DSI_demandeARRU_2.0	44
DSI_SurveillanceARRU_1.0	44
DSI_ArretSysteme_2.0	45
Maquette de l'IHM principale	46
_ I I	

présentation

Les interfaces traitées dans ce document sont :

superviseur <-> SEIS

superviseur <-> automate du bras

superviseur <-> automate des panneaux

superviseur <-> Énergie

évolutions entre versions

Évolution v1.0 vers v1.1 date 12/10/2014 auteur Joël Voyé

Dans le protocole du SEIS, ajout du paragraphe « Réponse du SEIS à une requête non identifiée »

Évolution v1.1 vers v1.2 date 14/10/2014 auteur Joël Voyé

➤ Ajouts des Diagrammes de Séquences d'Interface de DSI_ initialisation et de DSI_testSEIS

Évolution v1.2 vers v1.3 date 15/10/2014 auteur Joël Voyé

Ajouts des Diagrammes de Séquences d'Interface des commandes moteurs

Évolution v1.3 vers v1.4 date 04/11/2014 auteur Joël Voyé

- Modification du protocole du SEIS entériné
- ➤ Choix du mode de communication Modbus/TCP avec le gestionnaire d'énergie (CCGX)
- Modification du diagramme de séquence d'initialisation
- Ajout du digramme de séquence d'interface DSI_TestsEnergie_1.0

Évolution v1.4 vers v1.4.1 date 07/11/2014 auteur Joël Voyé

- Positionnement clair de ce document en document de travail
- précision sur le d'initialisation le faisant passer de DSI_initialisations_2.0 à DSI_initialisations_2.1

Évolution v1.4 vers v1.5 date 13/11/2014 auteur Joël Voyé

- Dictionnaire des registres et variables de l'énergie
- nouvelle version du DSI_TestsEnergie passant à la version 2.0
- ➤ Ajout du digramme de séquence d'interface DSI SurveillanceEnergie 1.0

Évolution v1.5 vers v1.5.1 date 13/11/2014 auteur Joël Voyé

- Dictionnaire à remplir des registres de commande et états des automates
- ➤ Modification du digramme de séquence d'interface DSI_SurveillanceEnergieARRU_2.0

Évolution v1.5.1 vers v1.6 date 14/11/2014 auteur Joël Voyé

- enrichissement du dictionnaire à remplir des registres de commandes et états des automates avec proposition concernant les tests d'initialisations des automates
- ➤ Diagramme de séquence d'interface DSI_testsAutomates_1.0
- ➤ Modification du digramme de DSI_initialisations passage à une version 2.2
- ➤ Diagramme de séquence DSI DemandeARRU 1.0
- détermination de l'adresse réseau Insight et des adresses des principaux serveurs

Évolution v1.6 vers v1.6.1 date 17/11/2014 auteur Joël Voyé

➤ enrichissement du dictionnaire concernant la partie énergie, Gilles Roualdes a fourni une estimation des valeurs limites, tout en signalant qu'elles seront peut être à affiner dans le logiciel pour gérer des alarmes plus précises ou plus fines s'il y a besoin.

<u>Évolution v1.6.1 vers v1.6.2</u> <u>date 20/11/2014</u> <u>auteur Joël Voyé</u>

- correction 'DSI_Surveillance_EnergieARRU' qui passe en version 2.1
- correction d'erreur dans le dictionnaire des registres automates et remplissage partiel du tableau avec définition de certaines valeurs d'états et de commandes

Évolution v1.6.2 vers v1.7 date 23/11/2014 auteur Joël Voyé

- introduction des modes dégradés
- modification des diagrammes de séquences moteurs
- modification du diagramme de séquence Demande ARRU
- modification du diagramme de séquence surveillance EnergieARRU
- modification des DSI ouverture et fermeture panneaux
- création des DSI de fermeture et ouverture des pinces
- protocole SEIS proposition de modification de la commande « \$Cmesure; » par « \$Cme; » pour raison de cohérence
- modification du DSI_depose_HP3 et DSI_reprise_HP3 qui passent en version 2.0
- ➤ modification du DSI_depose_WTS et DSI_reprise_WTS qui passent en version 2.0
- > modification du DSI_depose_SEIS_et DSI_reprise_SEIS_qui passent en version 2.2 et 2.0

Évolution v1.7 vers v1.8 date 01/12/2014 auteur Joël Voyé

- > surveillance de l'énergie, "Starter battery voltage" n'est plus utilisé
- > séparation des DSI de gestion des ARRU avec celui de la surveillance de l'énergie
- Suppression des DSI commandes moteur et des registres associés (vitesse, sens et moteur)
- > attribution des adresses des registres des automates
- création de registres d'identification des défauts automates REG_DEFAUT_BRAS et REG_DEFAUT_PANNEAUX
- > modification des DSI ouverture panneaux et fermeture panneaux à la version 2.1
- modification de la liste des « états panneaux »
- DSI dépose SEIS passe en version 2.3
- > modification des DSI de tests et d'initialisation
- > machine a états de la gestion des incidents et ARRU

Évolution v1.8 vers v1.8.1 date 01/12/2014 auteur Joël Voyé

Mise à jour de la machine à états

Évolution v1.8.1 vers v1.8.2 date 03/12/2014 auteur Joël Voyé

- Mise à jour de la machine à états
- modification du DSI « test_LIAISON » qui passe a la version 2.0
- ajour du DSI « ArretSysteme »

Évolution v1.8.2 vers v1.8.3 date 03/12/2014 auteur Joël Voyé

- Complément d'information sur les registres REG_ETAT_TEST_BRAS ,REG_ETAT_TEST_PANNEAUX
- ajour d'adresses supplémentaires pour les registres REG_DEFAULS_BRAS et REG_DEFAULS_PANNEAUX
- modification du DSI testsLaisons passant a la version 2.1

Évolution v1.8.3 vers v1.8.4 date 09/12/2014 auteur Joël Voyé

- prise en compte des problèmes éventuels d'ouverture des panneaux solaires, le registre d'état REG_ETAT_PANNEAUX a des valeurs supplémentaires ainsi que le registre de commande REG_CMD_PANNEAUX
- > modification du DSI « ouverture_Panneaux » qui passe a la version 3.0

Évolution v1.8.4 vers v1.8.5 date 11/12/2014 auteur Joël Voyé

- prise en compte des problèmes éventuels fermeture des panneaux solaires, le registre d'état REG_ETAT_PANNEAUX a des valeurs supplémentaires ainsi que le registre de commande REG_CMD_PANNEAUX
- modification du DSI « ofermeture_Panneaux » qui passe a la version 3.0
- ➤ Maquette de l'IHM principale

Évolution v1.8.5 vers v1.8.6 date 12/12/2014 auteur Joël Voyé

rajout de deux cas d'état d'initialisation pour les panneaux solaires

Évolution v1.8.6 vers v1.8.7 date 19/12/2014 auteur Joël Voyé

- suppression des registres d'état test (115 por le bras et 123 pour les panneaux) qui s'avèrent ne pas avoir de sens
- Le DSI_testLiaisons est passé en version 3.0 il est à noter qu'il test les liaison mais aussi l'énergie qui n'a plus de phase d'initialisation

Évolution v1.8.7 vers v1.8.8 date 20/12/2014 auteur Joël Voyé

correction d'un incohérence dans les valeurs du registre REG_ETAT_ARRU du bras

Évolution v1.8.8 vers v1.8,9 date 30/12/2014 auteur Joël Voyé

- Le DSI_testLiaisons est passé en version 3.1 il est à noter qu'il teste les liaisons mais aussi l'énergie qui n'aura plus de phase d'initialisation
- ► le DSI_Initialisation qui passe en version 4.0
- ➤ le DSI_testSEIS_3.0 est renommé DSI_initSEIS_3.0

Évolution v1.8.9 vers v1.8.9-1 date 31/12/2014 auteur Joël Voyé

correction de coquille dans le protocole du SEIS page 9 sur les réponses aux tests de potentiomètres et d'accéléromètres : **SPOT003;* ne peut exister il faut lire **POT001;* il en est de même pour **ACC003;* qui doit se lire **ACC001;*

Évolution v1.8.9 vers v1.8.10 date 14/01/2015 auteur Joël Voyé

- ➤ LE DSI d'arrêt Système est passé en version 2.0
- ajout des codes d'incidents des panneaux (contenue de REG_DEFAUTS_PANNEAUX)

Évolution v1.8.10 vers v1.8.10-1 date 14/01/2015 auteur Joël Voyé

correction du diagramme de séquence Dépose SEIS qui passe en version 2.4

Évolution v1.8.10-1 vers v1.8,11 date 24/01/2015 auteur Joël Voyé

ajout des codes d'incidents du bras (contenue de REG_DEFAUTS_BRAS)

Évolution v1.8.1-1 vers v1.9.1 date 26/01/2015 auteur Joël Voyé

- ajout de 2 bits d'incident dans le registre 125 (défaut panneaux) spécifiant pour chaque panneau s'il est considéré Hors Service ou pas
- ➤ pour le registre ajout REG_CMD_ACTION_BRAS (@105) ajour de la valeur
 - 6 => LANCER_CHIEN_DE_GARDE_NIVELLEMENT qui va permettre de lancer le chien de garde du nivellement
- mise a jours des DSI de testLiaisons et testSeis
- mise à jour du DSI Dépose Seis qui passe en version 3.0
- Suppression de DSI obsolètes (init et initseis)

Évolution v1.9.1 vers v1.9.2 date 05/02/2015 auteur Joël Voyé

- Modification du protocole du SEIS : la fin de repliement devient porteuse d'un compte rendu d'exécution de la commande
- Modification du protocole du SEIS : ajout , dans le protocole, d'un trame spontanée de détection d'erreur du SEIS
- pour le registre ajout REG_CMD_ACTION_BRAS (@105) ajour des la valeur :
 7 => ARRET_CHIEN_DE_GARDE_NIVELLEMENT qui va permettre de d'areter le chien de garde du nivellement, puis de la valeur 8 => FINIT_SEQ_POSE_WTS conformément au diagramme de séquence
- DSI dépose SEIS passe en version 3.1

Évolution v1.9.2 vers v1.9.3 date 26/03/2015 auteur Joël Voyé

- ➤ Modification du protocole du SEIS : la commande d'arrêt des mesures de vient 'A' en lieu et place de '\$Cma', cette modification est due au fait que le micro-contrôleur étant très occupé avec les acquisitions et envoies , il a tendance à louper des caractères à la réception. Malgré cette simplification il est fortement conseiller d'écouter après quelques instants si le SEIS émet encore des mesures afin de renvoyer une commande d'arrêt et recommencer si nécessaire .
- ➤ Dans les valeur d'etat du bras (registre REG_ETAT_BRAS (108) une valeur a été ajoutée : 32 => INIT_BRAS_EN_COURS
- Disparition de la rubrique « valeur séquence en cours » qui était inutilisée car en contradiction avec les valeur seulement booléenne du registre REG_ETAT_SEQ_ENCOURS
- Ajout d'un défaut dans la liste des défauts panneaux

État actuel des définitions des Interfaces

L'interface superviseur SEIS

Elle est assurée par un protocole « maison » sur liaison TCP/IP.

Ce protocole est en cours d'écriture par Damien Galloy , il est déjà bien avancé, le modification proposées ont été acceptées par Damien Galloy qui va se charger de les mettre en œuvre sur le SEIS, (voir le paragraphe « protocole du SEIS »)

L'interface Superviseur automates

Pour les deux automates l'interface est assurée par le protocole Modbus/TCP.

Les registres et mots de commandes et d'états sont en cours de définition par Laurent Costes

pour plus de pertinence la supervision demande à ce que tous les registres d'état soient à des adresses registres qui se suivent de telle sorte qu'on puisse utiliser la fonction de lecture multiple du protocole Modbus/TCP (gain de temps et d'efficacité pour le traitement)

L'interface Supervision Énergie

Le contrôle de l'énergie va se faire à partir d'un composant de la société Victron-Energy.

C'est le « Color Control GX » il a l'avantage de pouvoir communiquer en suivant le protocole **Modbus/TCP** en temps que serveur , l'avantage est que ce protocole est éprouvé et que nous le mettons déjà en œuvre avec les deux automates.

Les registres sont multiples et imposés par le produit qui peut gérer plusieurs sources en même temps (ce qui n'est pas notre cas) Gilles Roualdes a précisé les registres que nous devons surveiller à l'initialisation et les registres supplémentaires à surveiller durant le fonctionnement du système. Il reste juste à définir les valeurs limites et sens précis de ces informations pour éclairer l'opérateur de maintenance voire le conférencier

Plan des adresses IP

l'adresse du **réseau Insight** sera **10.5.128.0**, **masque 255.255.240.0**. Étant sur une adresse public et avec une liaison wifi, même si la base devrait faire un filtrage d'accès, l'intérêt de ce masque est une (petite) protection supplémentaire contre les broadcast intempestifs et certains 'scanes' malicieux

adresse des principaux serveurs :

SEIS: Adresse **10.5.129.24**/20protocole TCP port 10001

Automate Bras: 10.5.129.100/20 protocole ModusTCP port 502

Automate Panneaux: 10.5.129.101/20 protocole ModusTCP port 502

serveur de l'énergie (carte CCGX) : 10.5.129.102/20 protocole ModusTCP port 502

le reste sera défini par les étudiants d'IRIS durant le projet

protocole du SEIS

Support et principe du protocole

Ce protocole s'appuie sur **TCP/IP**Le SEIS est en connexion passive (serveur) sur le port TCP **10001**

L'adresse du serveur est actuellement fixée à 10.5.129.24

Format des Trames

ATTENTION : sont signalés en rouge les modifications du protocole par rapport à celui proposé en juin 2014

Important : confirmer que toutes les trames d'émissions et de réceptions sans exception doivent se terminer par CR,LF c'est à dire les valeurs 0x0d,0x0a

Trames de tests

```
Tester la communication:
Trame Supervision vers SEIS:
                                         Seth:
Réponse SEIS:
                                         $EthOK;
Tester l'alimentation:
Trame Supervision vers SEIS:
                                         $tcon;
Réponse SEIS : si la batterie est bonne
                                         $BAT0;
            si batterie faible
                                         $BAT1;
Tester les capteurs ultra-son :
Trame Supervision vers SEIS:
                                         $tcapt;
                                          $CAPijk;
Réponse SEIS :
avec i = état du capteur 1,
    j = état du capteur 2,
    k = \text{état du capteur } 3,
ainsi si il n'y a aucun problème le retour est : $CAP000;
si erreur => $CAP100; ou $CAP010; ou $CAP001; ou $CAP101; etc suivant le ou
les capteurs en défaut.
```

Tester les moteurs :

Trame Supervision vers SEIS : **\$tmot**;

Réponse SEIS : \$MOT000;

erreur => **\$MOT100**; erreur moteur 1 en course de montée

\$MOT200; erreur moteur 1 en course de descente

\$MOT300; erreur moteur 1 en course de montée et descente

ainsi **\$MOT203**; permet de définir de suite le ou les problème sur chacun des moteurs ce qui peut être une indication supplémentaire.

Tester les potentiomètres :

Trame vers SEIS : **\$tpot**;

Réponse SEIS : **\$POT000**; En cas de problème remplacer le 0 par un 1 sur le

potentiomètre concerné par exemple :

\$POT001; si problème sur le potentiomètre 3

\$POT110; si problème sur les potentiomètres 1 et 2

Tester l'accéléromètre :

Trame Supervision vers SEIS : \$tacc;

Réponse SEIS : \$ACC000;

en cas d'erreur même principe que pour les potentiomètres

\$ACC001; si problème sur l'accéléromètre 3

\$ACC110; si problème sur les accéléromètres 1 et 2

Trames de pilotage

Commande d'approche

Commande du début de cycle d'approche : \$Capp;

Symbole de début de trame	\$
Symbole de commande	С
Mots clef Requête	арр
Symbole fin de trame	;

Réponse du SEIS au logiciel de Supervision de détection du sol : \$!fapp ;

Symbole de début de trame	\$
Symbole de réponse	!
Mots clef Requête	fapp
Symbole fin de trame	,

Commande de nivellement

Commande de nivellement du logiciel Supervision au SEIS : \$Cnivel;

Symbole de début de trame	\$
Symbole de commande	С
Mots clef Requête ou Commande	nivel
Symbole fin de trame	;

Réponse du SEIS à la fin du nivellement au logiciel de Supervision : **\$!finnivel**; **remplacée par \$!fniv0**;

Symbole de début de trame	\$
Symbole de réponse	!
Mots clef Requêt	fniv0
Symbole fin de trame	;

En cas d'atteinte d'une butée lors d'une phase de déploiement des pieds du seis :

Fin nivellement avec échec => envoi d'une trame d'échec : \$!fniv1;

Commande de repli des pieds (dite aussi 'de rangement')

Information de repliement du logiciel Supervision vers le SEIS : \$Crepli;

Symbole de début de trame	\$
Symbole de commande	С
Mots clef Requête	repli
Symbole fin de trame	;

Information des pieds repliés du SEIS au logiciel de Supervision : \$!finrepli;

Symbole de début de trame	\$
Symbole de réponse	!
Mots clef Requête	frep0
Symbole fin de trame	;

Repli des pieds puis envoi d'une trame d'échec : \$!frep1;

Trames liées aux mesures

Commande de lancement des mesures de vibrations

(sens: superviseur -> SEIS)

Symbole de début de trame	\$
Symbole de commande	С
Mots clef Requête	Mesure devient me
Symbole fin de trame	;

Synthèse de la commande : **\$Cme** ;

Commande d'arrêt des mesures

(sens: superviseur -> SEIS)

Pour des raisons de saturation du micro contrôleur lors de l'acquisition de mesures la reception de commande peut loupée, pour cette raison la commande d'arrêt des mesures a été réduite à sa plus simple expression :

commande d'arrêt de mesures : A

Il est cependant fortement conseillé après quelques instants (quelques centaines de millisecondes) de voir si des mesures sont encore envoyées, afin de réitérer la commande, et ainsi de suite jusqu'à ce que la commande soit prise en compte..

Trame d'envoi de mesures

(sens : SEIS -> superviseur) \$!mv,sXXXX,tYYYY,uZZZZ;

Symbole de début de trame	\$
Symbole de réponse	!
Mots clef Requête	mv (mesure vibration)
s : signe, valeur des vibrations en X	,sXXXX
t : signe, valeur des vibrations en Y	,tYYYY
u : signe, valeur des vibrations en Z	,uZZZZ
Symbole de fin de trame	;

Par exemple : \$!mv,+0012,-1023,+1245; correspond à une mesure de vibration de 12mg sur l'axe X, -1023mg sur l'axe Y et 1245mg sur l'axe Z.

Réponse du SEIS à une requête non identifiée

Il est possible pour des raisons diverses, modifications de versions de protocoles, erreurs de codage, etc.. que le SEIS reçoive une requête qu'il ne sait pas identifier, il serait bien qu'il sache en faire part au client avec une réponse de format spécifique et claire

la réponse du SEIS dans ce cas serait :

\$QUOI?

Réponse du SEIS suite a un problmème ou Erreur détectée

Si, en dehors de l'initialisation, le SEIS détecte des problèmes internes et se retrouve en situation « difficile », il peut alors nous envoyer un trame d'erreur contenant un code d'erreur le format de la trame sera

\$!ERRxx; xx allant de 01 à 99

Vue du superviseur

Pour le superviseur ce protocole est mis en œuvre par une classe nommée ProxySEIS dont les méthodes d'échanges de base seront

```
bool SeConnecter (string AdresselP, unsigned short port );
string EnvoiSyn (string cmd );
bool EnvoiAssyn (string cmd );
```

La connexion au SEIS ne sera faite et testée que dans la procédure d'initialisation du système. Toutes les commandes de tests seront à priori des envois synchrones comme les commandes de pilotages seules les commandes de mesures sont asynchrones , il y a une exception à cette remarque, il faut se référer aux diagrammes de séquences d'interface fournis dans un chapitre suivant.

Échanges avec les automates et l'énergie

Support et principe du protocole

Les échanges avec les batteries se feront avec le protocole Modbus/TCP comme pour les deux automates (bras et panneaux). Côté batteries la communication modbus/TCP est assurée par le module « *color control GX* » de chez « *Victron-Energy* " que nous nommerons « *CCGX* »

les ports des serveurs Modbus/TCP devraient être 502 (standard sur les serveurs Modbus/TCP utilisés)

les adresses des serveurs Modbus/TCP ne sont pas définies à ce jour

sur le superviseur l'objet de communication est la classe ProxyAutomate qui sera instanciée autant de fois qu'il y a de serveur.

Cette classe a deux méthodes d'échanges :

```
bool ecrireDansRegistre(int adrreg,uint16_t val);
int lireRegistres(int adrregDebut,int nbReg,uint16_t *tail);
```

la méthode de lecture offre la possibilité de lire n registres en une seule requête de lecture, d'où notre demande d'avoir tous les registres d'état à des adresses qui se suivent (pour les deux automates)

Dictionnaires des automates

CCGX (color control GX)

N.B.: les limites en vert ne sont que des approximations

Variables à surveiller dès l'initialisation

Tension batterie: REG_ETAT_TENSION_BATTERIES

Pourcentage de charge : REG_ETAT_CHARGES_BATTERIES

alarme: REG_ETAT_STATUS_ALARMES

Nom de la variable	Adr. registre	unité	Interprétation ou limites
REG_ETAT_TENSION_BATTERIES	259	V (volts)	Min=11V; max=13V
REG_ETAT_CHARGES_BATTERIES	266	%	Min= 15%
REG_ETAT_STATUS_ALARMES	267	booléen	0=bon ;2=Alarme

Variables à surveiller durant la supervision

Courant: REG_ETAT_COURANT_BATTERIES

charges consommée : REG_ETAT_CHARGE_CONSOMMEE

temps restant : **REG_ETAT_DUREE_RESTANTE**

Nom de la variable	Adr. registre	unité	Interprétation ou limites
REG_ETAT_COURANT_BATTERIES	261	Ampères	Max= 20A
REG_ETAT_CHARGE_CONSOMMEE	265	Ah	Valeur instantanée
REG_ETAT_DUREE_RESTANTE	301	secondes	Min= 1800 s

Interprétation des alarmes

Alarme sur la tension:

REG_ALARME_TENION_BASSE REG_ALARME_TENION_HAUTE

Alarme de température :

REG_ALARME_TEMPERATURE

État des relais :

REG_STATUS_RELAIS

Nom de la variable	Adr. registre	unité	Interprétation ou limites
REG_ALARME_TENTION_BASSE	268	booléen	0=bon ;2=Alarme
REG_ALARME_TENTION_HAUTE	269	booléen	0=bon ;2=Alarme
REG_ALARME_TEMPERATURE	274	booléen	0=bon ;2=Alarme
REG_STATUS_RELAIS	280	booléen	0=ouvert ;2=fermé

Dictionnaires des AUTOMATES

Registres de commandes de l'automate du bras

Nom de la variable	Adr. registre	unité	Interprétation ou limites
REG_CMD_ARRU	101		1 Si ARRU, sinon 0
REG_CMD_ACTION_BRAS	105	1	Voir « commandes Bras »
REG_CMD_SEQ	106	0	Voir « Commandes Séquences »
REG_CMD_ACTION_PINCE	107	1/2	Voir « Commandes Pinces »
REG_CMD_TESTS_INIT	102	Booléen	1= TESTER; 0 =RIEN

Commandes Séquences:

- $0 \Rightarrow RIEN$
- 1 => DEPOSE_SEIS
- 2 => REPRISE_SEIS
- 3 => DEPOSE_WTS
- 4 => REPRISE_WTS
- 5 => DEPOSE_HP3
- 6 => REPRISE_HP3
- 7 => PANORAMIQUE
- 8 => ARRET_SYSTEME

Commandes BRAS:

- 0 => AUCUNE
- 1 => ARRET_BRAS
- 2 => REMONTER_SEIS
- 3 => FINIR_SEQ_REPRISE_WTS
- 4 => RETOUR_POSITION_PANORAMIQUE
- 5 => FINIR_SE_POSE_HP3
- 6 => LANCER_CHIEN_DE_GARDE_NIVELLEMENT
- 7 => ARRET CHIEN DE GARDE NIVELLEMENT
- 8 => FINIR_SEQ_POSE_WTS

Commandes pince:

- 0 => AUCUNE
- 1 => OUVRIR_PINCE
- 2 => FERMER PINCE

Registres d'états de l'automate du bras

Nom de la variable	Adr. registre	unité	Interprétation ou limites
REG_ETAT_ARRU	103		1 Si ARRU, sinon 0
REG_ETAT_BRAS	108		Voir « valeur des états du bras »
REG_ETAT_SEQ_ENCOURS	109		1 si action en cours sinon 0
REG_ETAT_PINCE	110	12	voir « les états de la pince »
REG_ETAT_INIT_BRAS	111	do	Voir « les états d'init bras »
REG_DEFAUTS_BRAS	116,117	4/	7

Les états init bras :

valeur de l'octet de poids faible du registre

- 0 = NON_INIT => initialisation du bras non encore faite
- 1 = INIT_EN_COURS => initialisation du bras en cours
- 2 = INIT_BON => initialisation du bras terminée et aucun problème n'a été détecté
- 128 = INIT_PB => initialisation du bras terminée mais des problèmes ont été détectés. Le code du ou des problèmes détectés sera placé dans le registre REG_DEFAUT_BRAS

La liste et codes associés aux incidents est dans le paragraphe suivant « Registres défauts bras »

Valeurs des états du bras :

valeur de l'octet de poids faible du registre

- **0 => INDETERMINE**
- 1 => POSITION_PANORAMIQUE
- 2 => SEIS_HORS_PLATEAU
- 3 => PRET A SAISIR SEIS
- 4 => WTS_AU_SOL
- 5 => PRET_A_SAISIR_WTS
- 6 => PRET_DEPOSE_HP3_PLATEAU
- 7 => BRAS_POSITION_TRANSPORT
- 32 => INIT BRAS EN COURS
- 64 => ACTION_EN_COURS
- **128 => INCIDENT**

Dans le cas ou le drapeau « INCIDENT » est positionner, le code du ou des problèmes détectés est placé dans le registre REG_DEFAUT_BRAS par exemple pour dire que le bras est en butée il aura la valeur

EN BUTEE = 1

États de la pince :

valeur de l'octet de poids faible du registre

- 0 => PINCE_OUVERTE
- 1 => PINCE_EN_COURS_OUVERTURE

2 => PINCE_FERMEE

3 => PINCE_EN_COURS_FERMETURE

128 => incident détecté dans ce cas présent, l'octet de poids fort du registre indique la nature de l'incident

Précision : La pince est un élément du bras, lorsque le bras est en état « INDETERMINE » les valeurs d'état de la pince sont alors <u>sans sens</u>

<u>ATTENTION</u>: l'ARRU logiciel n'est accessible qu'à partir de la phase d' « **initialisation** » (voir le paragraphe de la machine à états) , c'est la phase dans laquelle le bras ou les panneaux peuvent générer des mouvements.

Registre défauts Bras

registre défauts bras Adresse 116

Valeur (en binaire)	défaut
00000000 00000001	défaut temps de cycle dépose seis
00000000 00000010	défaut temps de cycle reprise seis
00000000 00000100	défaut temps de cycle dépose bouclier
00000000 00001000	défaut temps de cycle reprise bouclier
00000000 00010000	défaut temps de cycle dépose hp3
00000000 00100000	défaut temps de cycle reprise hp3
00000000 01000000	défaut temps de cycle initialisation
00000000 10000000	défaut temps de cycle position attente
00000001 00000000	Défaut initialisation moteur 1
00000010 00000000	Défaut initialisation moteur 2
00000100 00000000	Défaut initialisation moteur 3
00001000 00000000	Automate pas en run
00010000 00000000	Erreur automate entrée/sortie
00100000 00000000	Dépassement du Chien de Garde automate
01000000 00000000	Défaut pile automate

registre défauts bras Adresse 117

Valeur (en binaire)	défaut
00000000 00000001	Défaut surcourse capteur bras
00000000 00000010	Défaut surcourse capteur épaule
00000000 00000100	Défaut surcourse capteur coude
00000000 00001000	Position minimale atteinte BRAS
00000000 00010000	Moteur 1: Défaut d'alimentation et/ou de communication CAN OPEN
00000000 00100000	Moteur 2: Défaut d'alimentation et/ou de communication CAN OPEN
00000000 01000000	Moteur 3: Défaut d'alimentation et/ou de communication CAN OPEN
00000000 10000000	Moteur 1 : Défaut Variateur
00000001 00000000	Moteur 2 : Défaut Variateur
00000010 00000000	Moteur 3 : Défaut Variateur

Registres de commande de l'automate des panneaux

REG_CMD_TESTS_INIT		102	Booléen	1= TESTER; 0 =RIEN
REG_CMD_PANNEAUX	V	120		voir « les commandes panneaux »
REG_CMD_ARRU	J.	101		1 Si ARRU, sinon 0
Nom de la variable	Adr.	. registre	unité	Interprétation ou limites

Les commandes panneaux :

valeur de l'octet de poids faible du registre

- 0 = RIEN => aucune action demandée
- 1 = OUVRIR_PANNEAUX => demande d'ouverture
- 2 = FERMER_PANNEAUX => demande de fermeture
- $3 = ARRET_SYSEME$
- 4 = REPLIER_PANNEAU_EN_PANNE
- 5 = REOUVRIR_PANNEAU_EN_PANNE

Registres d'états de l'automate des panneaux

Nom de la variable	Adr. registre	unité	Interprétation ou limites
REG_ETAT_ARRU	103		1 Si ARRU, sinon 0
REG_ETAT_PANNEAUX	121		voir « les états des panneaux »
REG_ETAT_INIT_PANNEAUX	122		Voir « les états d'init panneaux »
REG_DEFAUTS_PANNEAUX	125,126		

États des panneaux :

valeur de l'octet de poids faible du registre

- 0 = PANNEAUX_FERMES
- 1 = PANNEAUX_1_OUVERTURE_BRAS_EN_COURS
- 2 = PANNEAUX_1_OUVERTURE_VOLETS_EN_COURS
- 3 = PANNEAUX_2_OUVERTURE_BRAS_EN_COURS
- 4 = PANNEAUX_2_OUVERTURE_VOLETS_EN_COURS
- **8 = PANNEAUX OUVERTS**
- 9 = PANNEAUX_1_FERMETURE_VOLETS_EN_COURS
- 10= PANNEAUX 1 FERMETURE BRAS EN COURS
- 11= PANNEAUX_2_FERMETURE_VOLETS_EN_COURS
- 12 = PANNEAUX_2_FERMETURE_BRAS_EN_COURS
- 21 = INCIDENT_OUVERTURE_PANNEAU1
- 22 = REPLI_PANNEAU1_SUR_INCIDENT
- 41 = INCIDENT_OUVERTURE_PANNEAU2
- 42 = REPLI_PANNEAU2_SUR_INCIDENT
- 23 = INCIDENT_FERMETURE_PANNEAU1
- 24 = REOUVERTURE_PANNEAU1_SUR_INCIDENT
- **43 = INCIDENT FERMETURE PANNEAU2**
- 44 = REOUVERTURE_PANNEAU2_SUR_INCIDENT

128 = INCIDENT_PANNEAUX . Problèmes rédhibitoires détectés Le code du ou des problèmes détectés sera placé dans le registre REG_DEFAUT_PANNEAUX.

Les états init panneaux:

valeur de l'octet de poids faible du registre

- 0 = NON_INIT => initialisation des panneaux non encore faite
- 1 = INIT_EN_COURS => initialisation des panneaux en cours
- 2 = INIT_BON => initialisation des panneaux terminée et aucun problème n'a été détecté
 - 3 = PANNEAU1_SEUL => seul le panneau 1 a pu être initialisé
 - 4 = PANNEAU2_SEUL => seul le panneau 2 a pu être initialisé
- 128 = INIT_PB => Les panneaux sont considérés comme Hors Service suite à des problèmes rédhibitoires détectés. Le code du ou des problèmes détectés sera placé dans le registre REG_DEFAUT_PANNEAUX

Registre défauts panneaux

registre défauts panneaux Adresse 125

Valeur (en binaire)	DEFAUT
00000000 00000000	AUCUN
00000000 00000001	moteur BRAS 1 : Défaut d'alimentation et / oude communication CAN OPEN
00000000 00000010	moteur BRAS 1 : Défaut mécanique surcharge
00000000 00000100	moteur BRAS 1 : Défaut mécanique moteur bloqué
00000000 00001000	moteur BRAS 1 : arrêt moteur sur capteur sur-course position mini
00000000 00010000	Moteur BRAS 1 : arrêt moteur sur capteur sur-course position maxi
00000000 00100000	moteur BRAS 1 : autres défaut Moteur
00000000 01000000	X Y
00000000 10000000	Panneau 1 Hors Service (bit de synthèse des problèmes du Panneau 1)
00000001 00000000	moteur EVENTAIL 1 : Défaut d'alimentation et / oude communication CAN OPEN
00000010 00000000	moteur EVENTAIL 1 : Défaut mécanique surcharge
00000100 00000000	moteur EVANTAIL 1 : Défaut mécanique moteur bloqué
00001000 00000000	moteur EVENTAIL 1 : arrêt moteur sur capteur sur-course position mini
00010000 00000000	Moteur EVENTAIL 1 : arrêt moteur sur capteur sur-course position maxi
00100000 00000000	moteur EVENTAIL 1 : autres défauts du moteur
01000000 00000000	
10000000 00000000	Panneau 2 Hors Service (bit de synthèse des problèmes du Panneau 2)

registre défauts panneaux Adresse 126

Valeur (en binaire)	DEFAUT
00000000 00000000	AUCUN
00000000 00000001	moteur BRAS 2 : Défaut d'alimentation et / oude communication CAN OPEN
00000000 00000010	moteur BRAS 2 : Défaut mécanique surcharge
00000000 00000100	moteur BRAS 2: Défaut mécanique moteur bloqué
00000000 00001000	moteur BRAS 2 : arrêt moteur sur capteur sur-course position mini
00000000 00010000	Moteur BRAS 2 : arrêt moteur sur capteur sur-course position maxi
00000000 00100000	moteur BRAS 2: autres défaut Moteur
00000000 01000000	4 ,
00000000 10000000	
00000001 00000000	moteur EVENTAIL 2 : Défaut d'alimentation et / ou de communication CAN OPEN
00000010 00000000	moteur EVENTAIL 2 : Défaut mécanique surcharge
00000100 00000000	moteur EVANTAIL 2 : Défaut mécanique moteur bloqué
00001000 00000000	moteur EVENTAIL 2 : arrêt moteur sur capteur sur-course position mini
00010000 00000000	Moteur EVENTAIL 2 : arrêt moteur sur capteur sur-course position maxi
00100000 00000000	moteur EVENTAIL 2 : autres défauts du moteur
01000000 00000000	
10000000 00000000	Défaut PREVENTAT

Dans le dossier de maintenance il y aura des informations sur les causes potentielles et les vérifications à faire en cas d'incident détecté

Gestion des modes dégradés

Codage du mode

Le mode de fonctionnement sera résumé dans un attribut nommé tout simplement « **Mode** » qui sera déterminé en grande partie à l'initialisation .

Chaque bit de « Mode » aura un sens particulier. :

→ Énergie :

bit 0 = 1: le niveau de batterie est faible (confirmation IHM avant de commencer une nouvelle séquence)

bit 1 =1 : le système d'énergie n'est plus opérationnel , par exmple la connexion à la carteCCGX qui permet de superviser l'energie serait impossible

→ Automate panneaux :

bit 2 =1: les panneaux sont hors service

→ automate bras :

bit 3 =1: le bras est hors service

→ SEIS:

bit 4 =1: Le SEIS est hors service

Les constantes utilisées dans la suite du document :

M_ALARME_BATTERIES= 0x01 M_BATTERIES_HS = 0x02 M_PANNEAUX_HS = 0x4 M_BRAS_HS = 0x08 M_SEIS_HS = 0x16

Machine à états de la gestion des incidents et ARRU

Diagrammes de séquences d'interfaces

Liste des diagrammes et état de réalisation

Diagrammes de séquences d'initialisation :

DSI_TestsLiaisons: diagramme de séquence des tests d'établissement les liaisons avec les périphériques. Vis à vis des automates ce test fait plus que tester l'établissement de la liaison , entre autre, il vérifie aussi auprès du serveur Modbus que l'automate est bien en mode « run ». A la fin de cette séquence de tests, en cas de problème l'opérateur décidera soit de continuer pour faire l'initialisation du système, soit de relancer les tests.

DSI_initialisations: diagramme de séquence de initialisation il appelle les sous diagrammes suivants :

DSI_testEnergie: défini et présenté mais à vérifier

DSI_testsSEIS défini et présenté mais à vérifier

DSI_testsAutomates: défini pour ce qui est de la séquence , reste à définir les valeurs résultantes des initialisations.

Diagrammes de séquences des déploiement et replis :

DSI_ouverture_Panneaux : défini et présenté mais à vérifier

DSI_fermeture_Panneaux : défini et présenté mais à vérifier

DSI_DemandeARRU : défini et présenté mais à vérifier

ATTENTION: pour les 6 séquences suivantes l'automate du bras doit commencer par s'assurer qu'il est en positon dite « panoramique » avant de faire l'action demandée, si ce n'est pas le cas il doit commencer par s'y positionner

DSI_Dépose_SEIS : défini et présenté mais à vérifier

DSI_Depose_WTS : défini et présenté mais à vérifier

DSI_Depose_HP3 : défini et présenté mais à vérifier

DSI_Reprise_HP3 : défini et présenté mais à vérifier

DSI_Reprise_SEIS : défini et présenté mais à vérifier

DSI_Reprise_WTS : défini et présenté mais à vérifier

Diagrammes de séquences des commandes de maintenance :

DSI_Activer_Moteur : permet de faire bouger le moteur spécifié à une vitesse spécifiée et dans le sens lui aussi spécifié

DSI_Arrêt_Moteur: arrête le moteur en cours de mouvement

DSI_Bras_Position_Repos: fait repasser le bras en position dite « repos panoramique »

DSI_Ouverture_Pince : commande d'ouverture de la pince

DSI_Fermeture_Pince : commande de fermeture de la pince

DSI_Surveillance_Energie_ARRU : surveillance de l'énergie et de l'arrêt d'urgence

Diagrammes autorisés en fonction du « Mode »

Si Mode & M_PANNEAUX

les DSI **non autorisés** sont

DSI_fermeture_Panneaux

DSI_ouverture_Panneaux

Si Mode & M_BRAS

les DSI non autorisés sont

DSI_reprise_HP3

DSI_reprise_SEIS

DSI_Reprise_WTS

DSI_Depose_HP3

DSI_dépose_SEIS

DSI_Depose_WTS

DSI_Activer_Moteur

DSI_Arrêt_Moteur

DSI_Bras_Position_Repos

DSI_Ouverture_Pince

DSI_Fermetur_Pince

les DSI sur lequel il y aura une influence sont

DSI_Surveillance_Energie_ARRU

DSI_DemandeARRU

Si Mode & M_SEIS

les DSI non autorisés sont

DSI_reprise_SEIS

DSI_dépose_SEIS

M_ALARME_BATTERIES= 0x01

Si Mode & M_BATTERIES_HS

le DSI sur lequel il y aura une influences est

DSI_Surveillance_Energie_ARRU

le résultat de ce mode est soit un arrêt système ou une poursuite par alimentation secteur, le choix est laissé au conférencier

Si Mode & M_BATTERIE_FAIBLE (ce mode apparait en cours de fonctionnement)

l'opérateur peut choisir dene pas tenir compte de ce mode s'il peut alimenter le systeme par le secteur, si ce n'est pas le cas alors les DSI en cours peuvent se terminer mais aucun nouveau DSI ne pourra être lancé à l'exception des deux DSI suivants :

DSI_Surveillance_Energie_ARRU

DSI_DemandeARRU

DSI TestLiaisions 4.0

DSI_TestSEIS_1.0

DSI_initialisationAutomates_3.0

DSI_ouverture_Panneaux_3.0

DSI_fermeture_Panneaux_2.1

DSI_Dépose_HP3_2.0

DSI_reprise_HP3_2.0

DSI_Dépose_WTS_2.0

DSI_Reprise_WTS_2.0

DSI_dépose_SEIS_3.0

DSI_reprise_SEIS_2.0

DSI_ouverture_Pince_1.0

DSI_fermeture_Pince_1.0

DSI_Surveillance_Energie_4.0

DSI_demandeARRU_2.0

DSI_SurveillanceARRU_1.0

DSI_ArretSysteme_2.0

Maquette de l'IHM principale

