CPSC 486/586: Probabilistic Machine Learning	January 30, 2023
Lecture 5	
Lecturer: Andre Wibisono	Scribe: Daniel Kim

1 Review

From last class, recall $\theta \sim p_0(\theta)$ as the prior distribution and $x \mid \theta \sim p(x \mid \theta)$ as the data likelihood. Then the posterior distribution is

$$\theta \mid x \sim p_1(\theta \mid x) = \frac{p_0(\theta) \cdot p(x \mid \theta)}{p(x)}$$

where p(x) is constant in θ .

Definition 1. A conjugate family consists of a prior $p_0 \in Q$, a "nice" class of distributions and a likelihood $p(x \mid \theta)$ such that the posterior $p(\theta \mid x) \in Q$ is also "nice."

Prior $p_0(\theta), \ \theta \in \Theta$	Likelihood $p(x \mid \theta), x \in \mathcal{X}$	Posterior $p(\theta \mid x)$
Gaussian, $\Theta = \mathbb{R}$	Gaussian $(x \in \mathbb{R}^d), \ \mathcal{X} = \mathbb{R}$	Gaussian
Beta, $\Theta = [0, 1]$	Bernoulli $(x \in \{0,1\}), \mathcal{X} = \{0,1\}$	Beta
Dirichlet	Categorical $(x \in \{1, \dots, k\}), \mathcal{X} = \{1, \dots, k\}$	Dirichlet
Exp. family	Exp. family	Exp. family
Beta	Geometric	Beta

2 Inference

Suppose $\theta^* \in \Theta$ unknown, observe $X_1, \ldots, X_n \mid \theta^* \sim p(x \mid \theta^*)$ iid. Take a prior $p_0(\theta)$. We want to compute the posterior $p_n(\theta) = p(\theta \mid x_1, \ldots, x_n)$.

We will see that $\lim_{n\to\infty} p_n = \delta_{\theta^*}$, where δ_{θ^*} is the infinite point mass at θ^* and zero everywhere else.

Example 1. Take $\Theta = \mathcal{X} = \mathbb{R}$, and $p_0 = \mathcal{N}(\mu_0, \sigma_0^2)$ and $p(x \mid \theta) = \mathcal{N}(\theta, \sigma_x^2)$ e.g. where $\mu_0 = 0$ and $\sigma_0^2 = \sigma_x^2 = 1$.

Then $p(\theta \mid x) = \mathcal{N}(\mu_1, \sigma_1^2)$ where we can compute

$$\frac{1}{\sigma_1^2} = \frac{1}{\sigma_0^2} + \frac{1}{\sigma_x^2} \implies \sigma_1^2 = \frac{\sigma_0^2 \cdot \sigma_x^2}{\sigma_0^2 + \sigma_x^2} \le \min\{\sigma_0^2, \sigma_x^2\},$$

$$\frac{1}{\sigma_1^2} \mu_1 = \frac{1}{\sigma_0^2} \mu_0 + \frac{1}{\sigma_x^2} x \implies \mu_1 = \frac{\sigma_x^2}{\sigma_0^2 + \sigma_x^2} \mu_0 + \frac{\sigma_0^2}{\sigma_0^2 + \sigma_x^2} x$$

using same techniques as last class, where $\mu_0 = 0$, $\sigma_0^2 = \sigma_x^2 = 1$, which implies $\mu_1 = \frac{1}{2}x$. This suggests $p_1(\theta \mid x) = \mathcal{N}(\frac{1}{2}x, \frac{1}{2})$.

Example 2. Observe $X_1, \ldots, X_n \sim p(x \mid \theta^*)$ iid where $p_0 = \mathcal{N}(\mu_0, \sigma_0^2)$, $p_n(\theta) = p_n(\theta \mid x_1, \ldots, x_n)$, and $p_n = \mathcal{N}(\mu_n, \sigma_n^2)$ and we can similarly compute

$$\frac{1}{\sigma_n^2} = \frac{1}{\sigma_0^2} + \frac{1}{\sigma_x^2} \implies \sigma_n^2 = \frac{\sigma_0^2 \cdot \sigma_x^2}{\sigma_x^2 + n\sigma_0^2} \le \min\left\{\sigma_0^2, \frac{\sigma_x^2}{n}\right\},$$

$$\mu_n = \frac{\sigma_x^2}{\sigma_x^2 + n\sigma_0^2} \mu_0 + \frac{n\sigma_0^2}{\sigma_x^2 + n\sigma_0^2} \left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{\sigma_x^2}{\sigma_x^2 + n\sigma_0^2} \mu_0 + \frac{n\sigma_0^2}{\sigma_x^2 + n\sigma_0^2} \overline{X}_n$$

Notice that

•
$$\frac{\sigma_x^2}{n} \to 0$$
 as $n \to \infty$

•
$$\overline{X}_n \to \mathbb{E}[X_1] = \theta^* \text{ as } n \to \infty$$

•
$$\frac{\sigma_x^2}{\sigma_x^2 + n\sigma_0^2} \to 0$$
 as $n \to \infty$

•
$$\frac{n\sigma_0^2}{\sigma_x^2 + n\sigma_0^2} \to 1 \text{ as } n \to \infty$$

which implies $\lim_{n\to\infty} \mu_n = \theta^*$ and $\lim_{n\to\infty} \sigma_n^2 = 0$. This means $\lim_{n\to\infty} p_n = \mathcal{N}(\theta^*, 0) = \delta_{\theta^*}$.

Definition 2. The Bernoulli distribution is denoted as Ber(p) on $\mathcal{X} = \{0,1\}$ for $0 \le p \le 1$. We say $X \sim Ber(p) \iff \mathbb{P}(X=1) = p$ and $\mathbb{P}(X=0) = 1 - p$.

Definition 3. The Bernoulli density is $\rho: \{0,1\} \to \mathbb{R}$ with

$$\rho(x) = p^x (1 - p)^{1 - x}$$

with the consequential properties

- $\rho(0) \ge 0$
- $\rho(1) \ge 0$
- $\rho(0) + \rho(1) = 1$

Example 3. The Bernoulli distribution is in an exponential family. We can write

$$\begin{split} \rho(x) &= p^x (1-p)^{1-x} \cdot \mathbf{1} \{ x \in \{0,1\} \} \\ &= \exp\left(x \log p + (1-x) \log(1-p) \right) \mathbf{1} \{ x \in \{0,1\} \} \\ &= \exp\left(x \log \left(\frac{p}{1-p} \right) + \log(1-p) \right) \mathbf{1} \{ x \in \{0,1\} \}, \end{split}$$

implying

$$\rho_{\theta}(x) = \exp(\langle T(x), \theta \rangle - A(\theta)) \cdot h(x)$$

so Ber(p) is in an exponential family with T(x) = x and $\theta = \log\left(\frac{p}{1-p}\right)$. The normalizing constant $A(\theta)$ will be $-\log(1-p) = \log(1+e^{\theta})$. The base measure h(x) is equal to $\mathbf{1}\{x \in \{0,1\}\}$.

Definition 4. The Beta distribution Beta (α, β) on $p \in [0, 1]$ for some parameters $\alpha, \beta > 0$ has the density

$$\rho(p) = \frac{p^{\alpha - 1}(1 - p)^{\beta - 1}}{B(\alpha, \beta)}$$

where we need to include the normalizing constant $B(\alpha,\beta) = \int_0^1 p^{\alpha-1} (1-p)^{\beta-1} dp = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+b)}$.

Recall that the Gamma function is defined $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$ and $\Gamma(n) = (n-1)!$ for $n \in \mathbb{N}$. Consider $\alpha = \beta = 1$. Then the density is shaped as

Consider $\alpha = \beta < 1$. Then the density is shaped as

Consider $\alpha = \beta > 1$. Then the density is shaped as

If $p \sim \text{Beta}(\alpha, \beta)$, then

$$\mathbb{E}[p] = \int_0^1 p\left(\frac{p^{\alpha - 1}(1 - p)^{\beta - 1}}{B(\alpha, \beta)}\right) dp = \frac{B(\alpha + 1, \beta)}{B(\alpha, \beta)} = \frac{\alpha}{\alpha + \beta}$$
$$\operatorname{Var}(p) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

Using the AM-GM inequality applied to $\alpha, \beta \geq 0$, we know $\alpha\beta \leq \frac{(\alpha+\beta)^2}{4}$, so it can be shown that $\operatorname{Var}(p) \leq \frac{1}{4(\alpha+\beta+1)}$. Then if $\alpha, \beta \gg 1$, then the density would be shaped as

Example 4 (Beta-Bernoulli). Consider a prior $p \sim \rho_0 = Beta(\alpha_0, \beta_0)$ and likelihood $x \mid p \sim \rho(x \mid p) = Ber(p)$. We observe $x_1, \ldots, x_n \sim \rho(x \mid p^*)$ iid where p^* is unknown.

By Bayes rule, the posterior can be computed as

$$p \mid x \sim \rho(p \mid x) \propto \rho_0(p)\rho(x \mid p)$$

$$\propto p^{\alpha_0 - 1} (1 - p)^{\beta_0 - 1} p^x (1 - p)^{1 - x}$$

$$\propto p^{\alpha_0 + x - 1} (1 - p)^{\beta_0 + (1 - x) - 1}$$

implying

$$\rho(p \mid x) = Beta(\alpha_0 + x, \beta_0 + 1 - x).$$

After observing x_1, \ldots, x_n , we have

$$\rho(p \mid x_1, \dots, x_n) = Beta\left(\alpha_0 + \sum_{i=1}^n x_i, \beta_0 + \sum_{i=1}^n (1 - x_i)\right)$$

so we can compute

$$\mathbb{E}\left[p \mid x_1, \dots, x_n\right] = \frac{\alpha_0 + \sum_{i=1}^n x_i}{\alpha_0 + \beta_0 + n} = \frac{\alpha_0 + n\overline{X}_n}{\alpha_0 + \beta_0 + n} \to \mathbb{E}[x_i] = p^*,$$

$$Var(p \mid x_1, \dots, x_n) \le \frac{1}{4(\alpha_0 + \beta_0 + n)} \to 0$$

as $n \to \infty$.

Definition 5. The sigmoid function is

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

mapping $\mathbb{R} \to [0,1]$.

Example 5 (Bayesian Logistic Regression). Consider $\theta \in \mathbb{R}^d$, $\theta \sim p_0 = \mathcal{N}(0, I)$ and $x \in \mathbb{R}^d$ covariates, with $y \in \{0, 1\}$ labels. Suppose

$$y \mid \theta, x \sim Ber\left(\frac{1}{1 + e^{-\theta^T x}}\right) = Ber(\sigma(\theta^T x)).$$

By Bayes rule,

$$p(\theta \mid y, x) \propto p_0(\theta) \cdot \underbrace{p(y \mid \theta, x)}_{Ber(\sigma(\theta^T x))(y)}$$

$$\propto \exp\left(-\frac{1}{2}\|\theta\|^2 + y\log\sigma(\theta^T x) + (1 - y)\log(1 - \sigma(x^T \theta))\right)$$

and left as an exercise, it turns out that

$$p(\theta \mid y, x) \propto_{\theta} \exp\left(-\frac{1}{2}\|\theta\|^2 + yx^T\theta - \log(1 + e^{\theta^T x})\right)$$

so

$$p(\theta \mid x, y) \propto \exp(-f(\theta))$$

but

$$f(\theta) = \frac{1}{2} \|\theta\|^2 + \log(1 + e^{\theta^T x}) - yx^T \theta$$

is not quadratic, so $p(\theta \mid x, y)$ is not a Gaussian. This is an example where the posterior is not in the same family of distributions as the prior.