6.4 反常(广义)积分

- 一、无穷区间的反常积分
- 二、无界函数的反常积分

I、两类反常积分的定义

1. 无穷积分

定义1 设函数 f(x) 定义在无穷区间 $[a, +\infty)$ 上,

且在任何有限区间 [a,u]上可积. 如果存在极限

$$\lim_{u \to +\infty} \int_a^u f(x) dx = J,$$
 (1)

则称此极限J为函数 f(x)在 $[a, +\infty)$ 上的无穷限反常积分 (简称无穷积分),记作

$$J = \int_{a}^{+\infty} f(x) dx,$$

并称 $\int_{a}^{+\infty} f(x)dx$, 收敛.

如果极限(1)不存在, $\pi \int_{a}^{+\infty} f(x)dx$ 发散.

III:
$$\int_{a}^{+\infty} f(x)dx = \lim_{u \to +\infty} \int_{a}^{u} f(x)dx$$

易知,对任何a < b, $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 与 $\int_b^{+\infty} f(x) \, \mathrm{d}x$ 同敛态(同时收敛或同时发散)且

$$\int_{a}^{+\infty} f(x) \, \mathrm{d}x = \int_{a}^{b} f(x) \, \mathrm{d}x + \int_{b}^{+\infty} f(x) \, \mathrm{d}x$$

类似地,可定义:

f(x) 在 $(-\infty,b]$ 的无穷积分:

$$\int_{-\infty}^{b} f(x)dx = \lim_{u \to -\infty} \int_{u}^{b} f(x)dx.$$

f(x) 在 $(-\infty, +\infty)$ 上的无穷积分,则定义为:

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

$$= \lim_{a \to -\infty} \int_{a}^{c} f(x)dx + \lim_{b \to +\infty} \int_{c}^{b} f(x)dx$$

$$(c 为任意取定的常数)$$

只要有一个极限不存在,就称 $\int_{-\infty}^{+\infty} f(x) dx$ 发散.

无穷限的反常积分也称为第一类反常积分.

$$\int_{a}^{+\infty} f(x)dx = J$$
 收敛的几何意义是:

若 f(x) 在 $[a,+\infty)$ 上为非负连续函数,

则曲线 y = f(x) 与直线 x = a

以及x轴之间那一块向右无限延伸的阴影区域的面积为J.

$$\int_{a}^{+\infty} f(x)dx = \lim_{u \to +\infty} \int_{a}^{u} f(x)dx.$$

例2. 证明第一类 p 积分 $\int_a^{+\infty} \frac{dx}{x^p}$ 当 p > 1 时收敛; $p \le 1$ 时发散, 其中 a > 0.

证: 当 p = 1 时有

$$\int_{a}^{+\infty} \frac{\mathrm{d}x}{x} = \lim_{u \to +\infty} \int_{a}^{u} \frac{\mathrm{d}x}{x} = \lim_{u \to +\infty} \ln \frac{u}{a} = +\infty$$

当 $p \neq 1$ 时有

$$\int_{a}^{+\infty} \frac{\mathrm{d}x}{x^{p}} = \lim_{u \to +\infty} \int_{a}^{u} \frac{\mathrm{d}x}{x^{p}} = \lim_{u \to +\infty} \frac{1}{1 - p} \left(\frac{1}{u^{p-1}} - \frac{1}{a^{p-1}} \right) = \begin{cases} \frac{1}{(p-1)a^{p-1}}, & p > 1, \\ +\infty, & p < 1. \end{cases}$$

因此,当 p > 1 时,广义积分收敛,其值为 $\frac{a^{1-p}}{p-1}$; 当 $p \le 1$ 时,广义积分发散.

例3. 讨论下列无穷积分的收敛性: $\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$.

解: 任取实数 a, 讨论如下两个无穷积分:

$$\int_{-\infty}^{a} \frac{dx}{1+x^2} \; \prod_{a=0}^{+\infty} \frac{dx}{1+x^2}.$$

由于
$$\lim_{u \to -\infty} \int_{u}^{a} \frac{dx}{1+x^{2}} = \lim_{u \to -\infty} (\arctan a - \arctan u) = \arctan a + \frac{\pi}{2},$$

$$\lim_{u \to +\infty} \int_{a}^{+\infty} \frac{dx}{1+x^{2}} = \lim_{u \to +\infty} (\arctan u - \arctan a) = \frac{\pi}{2} - \arctan a,$$

因此这两个无穷积分都收敛.

b
$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = \int_{-\infty}^{a} \frac{dx}{1+x^2} + \int_{a}^{+\infty} \frac{dx}{1+x^2} = \pi.$$

注: 上述结果与 a 无关,因此若取 a = 0,则可使计算过程更简洁些.

若F(x)是f(x)的原函数,引入记号

$$F(+\infty) = \lim_{x \to +\infty} F(x); \qquad F(-\infty) = \lim_{x \to -\infty} F(x)$$

则有类似牛 – 莱公式的计算表达式:

$$\int_{a}^{+\infty} f(x) dx = F(x) \Big|_{a}^{+\infty} = F(+\infty) - F(a)$$

$$\int_{-\infty}^{b} f(x) dx = F(x) \begin{vmatrix} b \\ -\infty \end{vmatrix} = F(b) - F(-\infty)$$

$$\int_{-\infty}^{+\infty} f(x) dx = F(x) \Big|_{-\infty}^{+\infty} = F(+\infty) - F(-\infty)$$

例4. 计算广义积分 $\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}.$

解:
$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{1+x^2} = \left[\arctan x\right]_{-\infty}^{+\infty}$$
$$= \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi$$

$$y = \frac{1}{1+x^2}$$

思考:
$$\int_{-\infty}^{+\infty} \frac{x \, \mathrm{d}x}{1 + v^2} \times 0 \, \text{对吗?}$$

分析:
$$\int_0^{+\infty} \frac{x \, dx}{1+x^2} = \frac{1}{2} \ln(1+x^2) \Big|_0^{+\infty} = +\infty \quad 原积分发散!$$

注意:对广义积分,只有在收敛的条件下才能使用"偶倍奇零"的性质,否则会出现错误.

性质:三大公式的统一表述

设
$$f(x)$$
在 (a,b) 内连续, $F'(x) = f(x)$,且
$$-\infty \le a < b \le +\infty, -\infty \le \alpha < \beta \le +\infty$$
,则

1.N-L公式:

$$\int_{a}^{b} f(x)dx = F(x) \Big|_{a}^{b} = \lim_{\substack{x \to b^{-} \\ (+\infty)}} F(x) - \lim_{\substack{x \to a^{+} \\ (-\infty)}} F(x)$$

2.换元公式:
$$\int_a^b f(x)dx = \int_\alpha^\beta f(\varphi(t))\varphi'(t)dt$$

$$(\lim_{t\to\alpha^+}\varphi(t)=a,\lim_{t\to\beta^-}\varphi(t)=b)$$

3.分部积分公式:
$$\int_a^b u dv = uv \Big|_a^b - \int_a^b v du$$

$$|uv|_a^b = \lim_{\substack{x \to b^- \ (+\infty)}} u(x)v(x) - \lim_{\substack{x \to a^+ \ (-\infty)}} u(x)v(x)$$

例6. 计算
$$I = \int_0^{+\infty} xe^{-px} dx \ (p > 0)$$

解:
$$I = -\frac{1}{p} \int_0^{+\infty} x de^{-px} = -\frac{1}{p} x e^{-px} \Big|_0^{+\infty} + \frac{1}{p} \int_0^{+\infty} e^{-px} dx$$

$$= -\frac{1}{p} \lim_{x \to +\infty} \frac{x}{e^{px}} - \frac{1}{p^2} e^{-px} \Big|_0^{+\infty}$$

$$= -\frac{1}{p} \lim_{x \to +\infty} \frac{1}{p e^{px}} - \frac{1}{p^2} \lim_{x \to +\infty} (e^{-px} - 1)$$

$$=\frac{1}{p^2}$$

2. 无界函数的反常积分

引例:曲线 $y = \frac{1}{\sqrt{x}}$ 与 x 轴, y 轴和直线 x = 1 所围成的

开口曲边梯形的面积可记作

$$A = \int_0^1 \frac{\mathrm{d}x}{\sqrt{x}}$$

其含义可理解为

$$A = \lim_{\varepsilon \to 0^{+}} \int_{\varepsilon}^{1} \frac{dx}{\sqrt{x}} = \lim_{\varepsilon \to 0^{+}} 2\sqrt{x} \left| \frac{1}{\varepsilon} \right|$$
$$= \lim_{\varepsilon \to 0^{+}} 2(1 - \sqrt{\varepsilon}) = 2$$

定义2. 设f(x), $x \in (a,b]$, 而在点 a 的任何右邻域内无界,

取
$$\varepsilon > 0$$
,若极限 $\lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) dx$ 存在,则称此极限为函

数f(x) 在 [a,b] 上的反常积分,记作

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f(x) dx$$

这时称反常积分 $\int_a^b f(x) dx$ 收敛; 如果上述极限不存在,

就称反常积分 $\int_a^b f(x) dx$ 发散.

类似地,若 $f(x), x \in [a,b)$, 而在 b 的任何左邻域内无界,

则定义
$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{b-\varepsilon} f(x) dx$$

若 f(x) 在 [a,b] 上除点c(a < c < b) 外连续,而在点 c 的任何邻域内无界,则定义

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
$$= \lim_{\varepsilon_{1} \to 0^{+}} \int_{a}^{c - \varepsilon_{1}} f(x) dx + \lim_{\varepsilon_{2} \to 0^{+}} \int_{c + \varepsilon_{2}}^{b} f(x) dx$$

无界函数的积分又称作第二类反常积分, 无界点常称

为瑕点(奇点).当且仅当上式右端两个反常积分都收敛时,原积分才收敛

注: 若被积函数在积分区间上仅存在有限个第一类间断点,则本质上是常义积分,而不是反常积分.

例如,
$$\int_{-1}^{1} \frac{x^2 - 1}{x - 1} dx = \int_{-1}^{1} (x + 1) dx$$

设F(x)是f(x)的原函数,则也有类似牛—莱公式的的计算表达式:

若
$$b$$
 为瑕点,则 $\int_a^b f(x) dx = F(b^-) - F(a)$ 若 a 为瑕点,则 $\int_a^b f(x) dx = F(b) - F(a^+)$ 若 a , b 都为瑕点,则
$$\int_a^b f(x) dx = F(b^-) - F(a^+)$$

例7. 计算反常积分
$$\int_0^a \frac{\mathrm{d}x}{\sqrt{a^2-x^2}}$$
 $(a>0)$.

解: 显然瑕点为a, 所以

原式 =
$$\left[\arcsin \frac{x}{a} \right]_0^{a^-} = \arcsin 1 = \frac{\pi}{2}$$

例8. 讨论反常积分 $\int_{-1}^{1} \frac{dx}{x^2}$ 的收敛性.

Primary:
$$\int_{-1}^{1} \frac{\mathrm{d}x}{x^2} = \int_{-1}^{0} \frac{\mathrm{d}x}{x^2} + \int_{0}^{1} \frac{\mathrm{d}x}{x^2} = \left[-\frac{1}{x} \right]_{-1}^{0^{-}} + \left[-\frac{1}{x} \right]_{0^{+}}^{1} = \infty$$

所以反常积分 $\int_{-1}^{1} \frac{\mathrm{d}x}{x^2}$ 发散.

例9. 证明反常积分 $\int_a^b \frac{dx}{(x-a)^q}$ 当 q < 1 时收敛; $q \ge 1$ 时发散.

所以当 q < 1 时, 该反常积分收敛, 其值为 $\frac{(b-a)^{1-q}}{1-q}$; 当 $q \ge 1$ 时, 该反常积分发散.

例10. 设
$$f(x) = \frac{(x+1)^2(x-1)}{x^3(x-2)}$$
, 求 $I = \int_{-1}^3 \frac{f'(x)}{1+f^2(x)} dx$.

解: $:: x = 0 = 2 \Rightarrow f(x)$ 的奇点, 故 I 为广义积分.

$$I = \int_{-1}^{0} \frac{f'(x)}{1 + f^{2}(x)} dx + \int_{0}^{2} \frac{f'(x)}{1 + f^{2}(x)} dx + \int_{2}^{3} \frac{f'(x)}{1 + f^{2}(x)} dx$$

$$\left| \int_{-1}^{1} \frac{f'(x)}{1 + f^{2}(x)} dx \right| = \int_{-1}^{1} \frac{df(x)}{1 + f^{2}(x)} = \arctan f(x) + C$$

$$= \left[\arctan f(x)\right]_{-1}^{0^{-}} + \left[\arctan f(x)\right]_{0^{+}}^{2^{-}} + \left[\arctan f(x)\right]_{2^{+}}^{3}$$

$$= -\frac{\pi}{2} + \left[-\frac{\pi}{2} - \frac{\pi}{2}\right] + \left[\arctan \frac{32}{27} - \frac{\pi}{2}\right] = \arctan \frac{32}{27} - 2\pi$$

内容小结

- 1.反常积分 { 积分区间无限 } 常义积分的极限
- 2. 两个重要的反常积分

$$\int_{a}^{+\infty} \frac{dx}{x^{p}} = \begin{cases}
+\infty, & p \le 1 \\
\frac{1}{(p-1)a^{p-1}}, & p > 1
\end{cases} (a > 0)$$

$$\int_{a}^{b} \frac{dx}{(x-a)^{q}} = \int_{a}^{b} \frac{dx}{(b-x)^{q}} = \begin{cases}
\frac{(b-a)^{1-q}}{1-q}, & q < 1 \\
+\infty, & q \ge 1
\end{cases}$$

说明: (1) 有时通过换元,反常积分和常义积分可以互相转化.

例如,
$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \int_0^{\frac{\pi}{2}} \mathrm{d}t \quad (\diamondsuit x = \sin t)$$

$$\int_0^1 \frac{x^2+1}{x^4+1} \mathrm{d}x = \int_0^1 \frac{1+\frac{1}{x^2}}{x^2+\frac{1}{x^2}} \mathrm{d}t = \int_0^1 \frac{\mathrm{d}(x-\frac{1}{x})}{(x-\frac{1}{x})^2+2}$$

$$= \int_{-\infty}^0 \frac{\mathrm{d}t}{2+t^2} \quad (\diamondsuit t = x - \frac{1}{x})$$

(2) 当一题同时含两类反常积分时, 应划分积分区间, 分别讨论每一区间上的反常积分.

(3) 有时需考虑主值意义下的反常积分. 其定义为

$$v.p. \int_{-\infty}^{+\infty} f(x) dx = \lim_{a \to +\infty} \int_{-a}^{a} f(x) dx$$

$$v.p. \int_{a}^{b} f(x) dx \quad (c 为 瑕 点, a < c < b)$$

$$= \lim_{\varepsilon \to 0^{+}} \left[\int_{a}^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^{b} f(x) dx \right]$$

注意: 主值意义下反常积分存在不等于一般意义下 反常积分收敛.

极限的求和运算: 若 $\lim_{x\to x_0} (f(x) + g(x))$ 存在,不一定有 $\lim_{x\to x_0} f(x)$ 或者 $\lim_{x\to x_0} g(x)$ 存在,

例题 试证
$$\int_0^{+\infty} \frac{\mathrm{d} x}{1+x^4} = \int_0^{+\infty} \frac{x^2}{1+x^4} \, \mathrm{d} x \, , \, \hat{H} \, \bar{x} \, \hat{\mu} \, dx \, .$$

$$\int_0^{+\infty} \frac{\mathrm{d}x}{1+x^4} \stackrel{\text{deg}}{=} t = \frac{1}{x} \int_{+\infty}^0 \frac{1}{1+\frac{1}{t^4}} \left(-\frac{1}{t^2}\right) \mathrm{d}t$$

$$= \int_0^{+\infty} \frac{t^2}{1+t^4} dt = \int_0^{+\infty} \frac{x^2}{1+x^4} dx$$

$$\therefore \int_0^{+\infty} \frac{\mathrm{d} x}{1 + x^4} = \frac{1}{2} \left[\int_0^{+\infty} \frac{\mathrm{d} x}{1 + x^4} + \int_0^{+\infty} \frac{x^2}{1 + x^4} \, \mathrm{d} x \right]$$

$$= \frac{1}{2} \int_0^{+\infty} \frac{1+x^2}{1+x^4} dx = \frac{1}{2} \int_0^{+\infty} \frac{\frac{1}{x^2}+1}{\frac{1}{x^2}+x^2} dx$$

$$= \frac{1}{2} \int_0^{+\infty} \frac{\frac{1}{x^2} + 1}{\frac{1}{x^2} + x^2} \, \mathrm{d} x$$

$$= \frac{1}{2} \int_0^{+\infty} \frac{1}{(x - \frac{1}{x})^2 + 2} d(x - \frac{1}{x})$$

$$= \frac{1}{2\sqrt{2}} \arctan \frac{x - \frac{1}{x}}{\sqrt{2}} \Big|_{0^+}^{+\infty}$$

$$=\frac{\pi}{2\sqrt{2}}$$

II. 无穷积分的性质与收敛判别法

性质1(线性性质) 若
$$\int_a^{+\infty} f_1(x)dx$$
 和 $\int_a^{+\infty} f_2(x)dx$ 都收敛,

$$k_1, k_2$$
 为常数,则 $\int_a^{+\infty} [k_1 f_1(x) + k_2 f_2(x)] dx$ 也收敛,且

$$\int_{a}^{+\infty} [k_1 f_1(x) + k_2 f_2(x)] dx = k_1 \int_{a}^{+\infty} f_1(x) dx + k_2 \int_{a}^{+\infty} f_2(x) dx.$$

性质2(路径性质,可加性)

若 f(x) 在任何有限区间 [a,u]上可积, a < b,

则
$$\int_{a}^{+\infty} f(x)dx$$
 与 $\int_{b}^{+\infty} f(x)dx$ 同时收敛或同时发散,

且有
$$\int_{a}^{+\infty} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{+\infty} f(x)dx.$$

性质3 (绝对收敛性) 若 f(x) 在任何有限区间 [a,u] 上可积, 且有 $\int_a^{+\infty} |f(x)| dx$ 收敛,则 $\int_a^{+\infty} f(x) dx$ 亦必收敛,并有 $|\int_a^{+\infty} f(x) dx| \le \int_a^{+\infty} |f(x)| dx$.

例2 判别
$$\int_{1}^{+\infty} \frac{\sin x dx}{\sqrt[5]{x^6+1}}$$
 的收敛性.

解 显然
$$\left| \frac{\sin x}{\sqrt[5]{x^6 + 1}} \right| \leq \frac{1}{x^{6/5}}$$
. 又 $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{6/5}}$ 收敛,

所以
$$\int_{1}^{+\infty} \frac{\sin x dx}{\sqrt[5]{x^6+1}}$$
 收敛.

定理2 (比较判别法) 设定义在 $[a,+\infty)$ 上的两个非负函数 f , g 在任何有限区间 [a,u]上可积,且存在 G > a ,满足: $0 \le f(x) \le g(x)$, $x \in [G,+\infty)$, 则当 $\int_a^{+\infty} g(x) dx$ 收敛时, $\int_a^{+\infty} f(x) dx$ 亦收敛; 当 $\int_a^{+\infty} f(x) dx$ 发散时, $\int_a^{+\infty} g(x) dx$ 亦发散.

证明见教材P185

例3 判别
$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{\sqrt{x^3 + 1}}$$
 的收敛性.

解 显然 $\frac{1}{\sqrt{x^3 + 1}} \le \frac{1}{x^{3/2}} \cdot \text{由于} \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{3/2}}$ 收敛,因此 $\int_{1}^{+\infty} \frac{\mathrm{d}x}{\sqrt{x^3 + 1}}$ 收敛.

推论1 设非负函数 f 和 g 在任何 [a,u] 上可积, 且 $\lim_{x\to +\infty} \frac{f(x)}{g(x)} = c.$

- (i) 若 $0 < c < +\infty$, 则 $\int_a^{+\infty} f(x) dx$ 与 $\int_a^{+\infty} g(x) dx$ 收敛性相同;
- (ii) 若c = 0,则由 $\int_a^{+\infty} g(x) dx$ 收敛可得 $\int_a^{+\infty} f(x) dx$ 收敛;
- (iii) 若 $c = +\infty$,则由 $\int_a^{+\infty} g(x) dx$ 发散可得 $\int_a^{+\infty} f(x) dx$ 发散.

推论2 设 f 是定义在 $[a,+\infty)$ 上的非负函数,在任何

有限区间[a,u]上可积.

(i) 若
$$f(x) \le \frac{1}{x^p} (p > 1)$$
, 则 $\int_a^{+\infty} f(x) dx$ 收敛;

(ii) 若
$$f(x) > \frac{1}{x^p} (p \le 1)$$
, 则 $\int_a^{+\infty} f(x) dx$ 发散.

选用 $\int_{1}^{+\infty} \frac{dx}{x^{p}}$ 作为比较对象

推论3 (比阶判别法)

设 f(x) 定义于 $[a, +\infty)$ 的非负函数且在任何有限区间 [a, u] 上可积,且 $\lim_{x\to +\infty} x^p f(x) = \lambda$.

则有:

(i)当
$$p > 1, 0 \le \lambda < +\infty$$
 时, $\int_{a}^{+\infty} f(x) dx$ 收敛;

(ii)当
$$p \le 1, 0 < \lambda \le +\infty$$
 时, $\int_a^{+\infty} f(x) dx$ 发散.

例4 讨论下列无穷限积分的收敛性:

1)
$$\int_{1}^{+\infty} x^{\alpha} e^{-x} dx$$
; 2) $\int_{0}^{+\infty} \frac{x^{2}}{\sqrt{x^{5}+1}} dx$.

解: 1) 由于对任何实数 α , 都有

$$\lim_{x \to +\infty} x^2 \cdot x^{\alpha} e^{-x} = \lim_{x \to +\infty} \frac{x^{\alpha+2}}{e^x} = 0, \quad (p = 2, \lambda = 0)$$
故 $\int_1^{+\infty} x^{\alpha} e^{-x} dx$; 对任何实数 α 都是收敛的.

2) 由于
$$\lim_{x \to +\infty} x^{\frac{1}{2}} \cdot \frac{x^2}{\sqrt{x^5 + 1}} = 1, \quad (p = \frac{1}{2}, \lambda = 1)$$

故
$$\int_0^{+\infty} \frac{x^2}{\sqrt{x^5+1}} dx$$
. 发散.

例5 讨论
$$\int_{1}^{+\infty} \frac{\ln^{k} x}{x^{p}} dx$$
 的收敛性 $(k > 0)$.

解 (i)
$$p > 1$$
 时, $\lim_{x \to +\infty} x^{\frac{1+p}{2}} \cdot \frac{\ln^k x}{x^p} = \lim_{x \to +\infty} \frac{\ln^k x}{x^{\frac{p-1}{2}}} = 0.$

因此由推论3知道 $\int_1^{+\infty} \frac{\ln^k x}{x^p} dx$ 收敛.

(ii)
$$p \le 1$$
时, $\lim_{x \to +\infty} x \cdot \frac{\ln^k x}{x^p} = \lim_{x \to +\infty} x^{1-p} \ln^k x = +\infty$.

因此同理知道
$$\int_{1}^{+\infty} \frac{\ln^{k} x}{x^{p}} dx$$
 发散.

例6 判别无穷积分 $\int_{1}^{+\infty} \frac{\arctan x}{x} dx$ 的敛散性.

解: 因为
$$\lim_{x \to +\infty} x \cdot \frac{\arctan x}{x} = \lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$
, 故无穷积分 $\int_{1}^{+\infty} \frac{\arctan x}{x} dx$ 是发散的.

例7 判别无穷积分 $\int_{1}^{+\infty} \frac{\sqrt{x^3} \, dx}{1+x^2}$ 的敛散性.

解: 因为
$$\lim_{x \to +\infty} x \cdot \frac{\sqrt{x^3}}{1 + x^2} = \lim_{x \to +\infty} \frac{x^2 \sqrt{x}}{1 + x^2} = +\infty$$
, 故无穷积分 $\int_1^{+\infty} \frac{\sqrt{x^3} dx}{1 + x^2}$ 是发散的.

例 9 设
$$p,q>0$$
. 讨论无穷积分 $\int_{1}^{+\infty} \sin\left(\frac{1}{x^{p}}\right) \ln\left(1+\frac{1}{x^{q}}\right) dx$ 的敛散性.

解 首先注意被积函数是正的 因为

$$\sin y \sim y$$
 $\exists \ln(1+y) \sim y$, $\exists y \to 0$,

从而

$$\sin\left(\frac{1}{x^p}\right) \sim \frac{1}{x^p} \quad \text{I.} \quad \ln\left(1 + \frac{1}{x^q}\right) \sim \frac{1}{x^q}, \qquad \stackrel{\text{def}}{=} x \to +\infty,$$

进而

$$\lim_{x \to +\infty} x^{p+q} \sin\left(\frac{1}{x^p}\right) \ln\left(1 + \frac{1}{x^q}\right) = \lim_{x \to +\infty} x^p \sin\left(\frac{1}{x^p}\right) \lim_{x \to +\infty} x^q \ln\left(1 + \frac{1}{x^q}\right) = 1.$$

所以根据 p 幂比较判别法知, 无穷积分 $\int_1^{+\infty} \sin\left(\frac{1}{x^p}\right) \ln\left(1 + \frac{1}{x^q}\right) dx$ 当 p+q>1 时 收敛, 当 $p+q\leqslant 1$ 时发散.

III. 瑕积分的性质与收敛判别法

瑕积分的性质与收敛判别,与无穷积分的性质与收敛判别相类似.因此本节内容大都是罗列出一些基本结论,并举例加以应用,而不再进行重复论证.

一、瑕积分的性质

$$\int_{a}^{b} f(x)dx = \lim_{u \to a^{+}} \int_{u}^{b} f(x)dx$$

假设x = a 为函数f(x) 的瑕点.

两种广义积分之间存在着密切的联系:

设 $\int_a^b f(x)dx$ 中x = a为f(x)的瑕点,作变换

$$y = \frac{1}{x - a}$$

则有
$$\int_a^b f(x)dx = \int_{\frac{1}{b-a}}^{+\infty} \frac{f(a+\frac{1}{y})}{y^2} dy$$

性质2 若 f(x) 在任何有限区间 [a,u] 上可积, a < b,

则
$$\int_{a}^{+\infty} f(x)dx$$
 与 $\int_{b}^{+\infty} f(x)dx$ 同时收敛或同时发散,

且有
$$\int_a^{+\infty} f(x)dx = \int_a^b f(x)dx + \int_b^{+\infty} f(x)dx$$
.

性质2 若
$$x = a$$
为 $f(x)$ 的瑕点, $c \in (a,b)$,

则
$$\int_a^b f(x)dx$$
 与 $\int_a^c f(x)dx$ 同时收敛或同时发散,

且有
$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$$

性质3 若 f(x) 在任何有限区间[a,u] 上可积,且有 $\int_a^{+\infty} |f(x)| dx$ 收敛,则 $\int_a^{+\infty} f(x) dx$ 亦必收敛,并有

$$|\int_{a}^{+\infty} f(x)dx| \le \int_{a}^{+\infty} |f(x)| dx.$$

性质3 若 f(x) 在任何有限区间 [u,b] 上可积,且有 $\int_a^b |f(x)|dx$ 收敛,则 $\int_a^b f(x)dx$ 亦必收敛,并有

$$|\int_a^b f(x)dx| \le \int_a^b |f(x)| dx.$$

绝对收敛的瑕积分,它自身也一定收敛. 但是它的逆命题一般不成立.

二 比较判别法

定理2(比较判别法) 设 x = a 同为两个函数 f(x) 和 g(x)

的瑕点,且在任何区间 $[u,b] \subset (a,b]$ 上可积,且满足

$$0 \le f(x) \le g(x), x \in U^0_+(a),$$

则当
$$\int_a^b g(x)dx$$
 收敛时 $\int_a^b f(x)dx$ 收敛.

(或者,当
$$\int_a^b f(x)dx$$
 发散时, $\int_a^b g(x)dx$ 必发散).

推论1 设 f(x) 定义于(a,b](a) 瑕点),且在任区间

 $[u,b] \subset (a,b]$ 上可积,则有:

(i) 当
$$0 \le f(x) \le \frac{1}{(x-a)^p}$$
 且 $p < 1$ 时, $\int_a^b f(x) dx$ 收敛;

(ii) 当
$$f(x) \ge \frac{1}{(x-a)^p}$$
 且 $p \ge 1$ 时, $\int_a^b f(x) dx$ 发散.

(i) 当
$$0 < c < +\infty$$
 时, $\int_{a}^{b} f(x) dx$ 与 $\int_{a}^{b} g(x) dx$ 同敛态;

(ii) 当
$$c = 0$$
 时,由 $\int_a^b g(x)dx$ 收敛可推知 $\int_a^b f(x)dx$ 也收敛; (iii) 当 $c = +\infty$ 时,由 $\int_a^b g(x)dx$ 发散可推知 $\int_a^b f(x)dx$ 也发散.

(iii) 当
$$c = +\infty$$
 时,由 $\int_a^b g(x)dx$ 发散可推知 $\int_a^b f(x)dx$ 也发散.

比阶判别法 选用 $\int_a^b \frac{dx}{(x-a)^q}$ 作为比较对象

推论3 设 f(x) 是定义于 (a,b](a) 瑕点) 的非负函数且在任何区间 $[u,b] \subset (a,b]$ 上可积,且 $\lim_{x \to +\infty} (x-a)^q f(x) = \lambda$. 则有: (i)当 $q < 1,0 \le \lambda < +\infty$ 时, $\int_a^b f(x) dx$ 收敛; (ii)当 $q \ge 1,0 < \lambda \le +\infty$ 时, $\int_a^b f(x) dx$ 发散.

例1 讨论下列瑕积分的收敛性:

1)
$$\int_0^1 \frac{-\ln x}{\sqrt{x}} dx$$
; 2) $\int_1^2 \frac{\sqrt{x}}{\ln x} dx$.

解: 1) 瑕点为
$$x = 0$$
. 又
$$\lim_{x \to 0^{+}} x^{\frac{3}{4}} \cdot \left(-\frac{\ln x}{\sqrt{x}}\right) = \lim_{x \to 0^{+}} \frac{-\ln x}{\frac{-1}{4}} = \lim_{x \to 0^{+}} (4x^{\frac{1}{4}}) = 0,$$

$$(p = \frac{3}{4}, \lambda = 0)$$
 故 $\int_0^1 \frac{-\ln x}{\sqrt{x}} dx$ 收敛.

2) 瑕点为 x = 1. 又

$$\lim_{x \to 1^{+}} (x-1) \cdot \frac{\sqrt{x}}{\ln x} = \lim_{x \to 1^{+}} \frac{x-1}{\ln x} = 1,$$

$$(p=1,\lambda=1)$$
 故 $\int_1^2 \frac{\sqrt{x}}{\ln x} dx$ 发散.

例2 判别瑕积分 $\int_{1}^{2} \frac{\sin x}{\sqrt[3]{x^3-1 \ln x}} dx$ 的收敛性.

解 瑕点为 x=1,

$$\frac{\sin x}{\sqrt[3]{x^3-1}}\frac{1}{\ln x}=\frac{\sin x}{(x-1)^{1/3}(x^2+x+1)^{1/3}\ln(1+x-1)}.$$

曲于
$$\frac{\sin x}{(x^2+x+1)^{1/3}} \to \frac{\sin 1}{\sqrt[3]{3}} \neq 0$$
 $(x\to 1)$, 而

$$\frac{1}{(x-1)^{1/3}\ln(1+x-1)} \sim \frac{1}{(x-1)^{1/3}(x-1)} = \frac{1}{(x-1)^{4/3}},$$

因此由
$$\int_{1}^{2} \frac{dx}{(x-1)^{4/3}}$$
 发散知 $\int_{1}^{2} \frac{\sin x}{\sqrt[3]{x^3-1} \ln x} dx$ 发散.

例3 判定 $\int_0^{+\infty} x^{s-1} e^{-x} dx$ 的敛散性.

解 当s < 1时x = 0是瑕点,故分别考虑积分 $\int_0^1 x^{s-1}e^{-x} dx$ 与 $\int_1^{+\infty} x^{s-1}e^{-x} dx$ 的敛散性,当且仅当两积分都收敛时原积分收敛。因

$$\lim_{x \to 0^+} x^{1-s} x^{s-1} e^{-x} = 1$$

故当且仅当1-s < 1,即s > 0时 $\int_0^1 x^{s-1} e^{-x} dx$ 收敛.因 $\lim_{x \to 0^+} x^2 x^{s-1} e^{-x} = 0,$

故积分 $\int_1^{+\infty} x^{s-1} e^{-x} dx$ 恒收敛. 因此原积分在s > 0时收敛,在 $s \leq 0$ 时发散.

例4 研究积分 $\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ 的敛散性.

 \mathbf{p} 因 $\mathbf{x} = \mathbf{0}$, 1都可能为瑕点(奇点),故应该分别考虑积分

 $\int_0^c x^{\alpha-1} (1-x)^{\beta-1} dx \, \pi \int_c^1 x^{\alpha-1} (1-x)^{\beta-1} dx \, \text{的 敛散性,}$ 其中 $c \in (0,1)$.因

$$\lim_{x\to 0^+} x^{1-\alpha} x^{\alpha-1} (1-x)^{\beta-1} = 1,$$

故当且仅当 $1-\alpha < 1$ 即 $\alpha > 0$ 时 $\int_0^c x^{\alpha-1} (1-x)^{\beta-1} dx$ 收敛. 向理,当且仅当 $\beta > 0$ 时 $\int_c^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ 收敛. 因此原积分当且仅当 $\alpha, \beta > 0$ 时收敛.

三、Euler积分 (含参变量的广义积分)

1.
$$\Gamma$$
函数: $\Gamma(s) = \int_0^{+\infty} x^{s-1} e^{-x} dx \quad (s > 0)$

2. B - 函数:

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx \ (\alpha > 0, \ \beta > 0)$$

转换公式:
$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

$$B(\alpha, \beta) = B(\beta, \alpha)$$

$$\Gamma$$
- 函数的几个重要性质: $\Gamma(s) = \int_0^{+\infty} x^{s-1} e^{-x} dx \ (s>0)$

1. 递推公式
$$\Gamma(s+1) = s\Gamma(s)$$
 $(s>0)$.

$$\Gamma(n+1) = n!$$
 (n为自然数)

2. 当
$$s \rightarrow +0$$
时, $\Gamma(s) \rightarrow +\infty$.

3. 余元公式
$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}$$
 (0 < s < 1).

$$\mathbb{R} s = \frac{1}{2} \Rightarrow \Gamma(\frac{1}{2}) = \sqrt{\pi}$$

4. 在
$$\Gamma(s) = \int_0^{+\infty} x^{s-1} e^{-x} dx$$
中,作代换 $x = u^2$,

有
$$\Gamma(s) = 2\int_0^{+\infty} u^{2s-1}e^{-u^2}du$$
.

(4) $\Gamma(s)$ 的其他形式

$$\Gamma(s) = \int_0^{+\infty} x^{s-1} e^{-x} dx \qquad (s > 0)$$

$$\Gamma(s) = 2 \int_0^{+\infty} e^{-u^2} u^{2s-1} du \quad (s > 0)$$

再令2s-1=t, 即 $s=\frac{1+t}{2}$, 得应用中常见的积分

$$\int_0^{+\infty} u^t e^{-u^2} du = \frac{1}{2} \Gamma(\frac{1+t}{2}) \qquad (t > -1)$$

这表明左端的积分可用 Γ 函数来计算. 例如,

$$\int_0^{+\infty} e^{-u^2} du = \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$$

例1 求
$$I = \int_0^{+\infty} e^{-x^4} dx \int_0^{+\infty} x^2 e^{-x^4} dx$$
.

解 对两积分同时作代换 $t = x^4$,则有 $x = t^{\frac{1}{4}}$, $dx = \frac{1}{4}t^{-\frac{3}{4}}$,

故
$$I = \int_0^{+\infty} e^{-t} \frac{1}{4} t^{-\frac{3}{4}} dt \int_0^{+\infty} t^{\frac{1}{2}} e^{-t} \frac{1}{4} t^{-\frac{3}{4}} dt$$

$$= \frac{1}{16} \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) = \frac{\pi}{16 \sin\frac{\pi}{4}} = \frac{\pi}{8\sqrt{2}}. \quad (余元公式)$$

例2 求
$$I = \int_0^1 \frac{1}{\sqrt{1-x^{1/3}}} dx$$
.

解作代换 $t = x^{1/3}$,则由转换公式和递推公式得

$$I = \int_0^1 (1-t)^{-\frac{1}{2}} 3t^2 dt = 3B(3,\frac{1}{2}) = \frac{3\Gamma(3)\Gamma(\frac{1}{2})}{\Gamma(\frac{7}{2})} = \frac{3\cdot 2!\Gamma(\frac{1}{2})}{\frac{5}{2}\cdot\frac{3}{2}\cdot\frac{1}{2}\Gamma(\frac{1}{2})} = \frac{16}{5}.$$

例3 求
$$I = \int_0^{+\infty} \frac{1}{1+x^4} dx$$
.

解令1+x⁴ =
$$\frac{1}{t}$$
, 则dx = $\frac{1}{4} \left(\frac{1}{t} - 1\right)^{-\frac{3}{4}} \left(-\frac{dt}{t^2}\right)$.于是
$$I = \int_1^0 t \frac{1}{4} \left(\frac{1}{t} - 1\right)^{-\frac{3}{4}} \left(-\frac{dt}{t^2}\right)$$

$$= \frac{1}{4} \int_0^1 t^{-\frac{1}{4}} (1 - t)^{-\frac{3}{4}} dt$$

$$= \frac{1}{4} B\left(\frac{3}{4}, \frac{1}{4}\right) = \frac{\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{1}{4}\right)}{4\Gamma(1)} = \frac{\pi}{4\sin\frac{\pi}{4}} = \frac{\pi}{2\sqrt{2}}.$$

(余元公式)

例4 求
$$I=\int_0^{\frac{\pi}{2}}\sin^4 x\cos^2 x\,\mathrm{d}x$$
.

$$\mathbf{M}$$
 令 $t = \sin 2t$, 则 $x = \arcsin \sqrt{t}$.故

$$I = \int_0^1 t^2 (1-t) \frac{dt}{\sqrt[2]{t(1-t)}} = \frac{1}{2} B\left(\frac{5}{2}, \frac{3}{2}\right)$$

$$=\frac{\Gamma\left(\frac{5}{2}\right)\Gamma\left(\frac{3}{2}\right)}{2\Gamma(4)}=\frac{\pi}{32}.$$

$$\Gamma(s+1) = s\Gamma(s), \Gamma(n+1) = n!, \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$