Support Vector Machines – Final Parameter Tuning

Emanuel Zaymus

In this last report I am going to perform final parameter tuning for all 4 datasets we are dealing with.

Datasets:

- ADL Normal Activities (1 Kyoto)
- ADL Activities with Errors (2 Kyoto)
- ADL Interweaved Activities (3 Kyoto)
- Daily Life 2010-2011 (17 Aruba)

Features:

- 1. SECONDS FROM MIDNIGHT FIRST RECORD in the window
- 2. SECONDS FROM MIDNIGHT LAST RECORD in the window
- 3. DAY OF THE WEEK binary feature
- 4. SECONDS ELAPSED between the first and the last record of the window
- 5. SIMPLE COUNTS OF THE SENSORS

Scaling - preprocessing

```
sklearn.preprocessing.StandardScaler
sklearn.preprocessing.RobustScaler
```

Principal Component Analysis

```
sklearn.decomposition.PCA
```

Classifier

```
sklearn.svm.svc
```

Testing

```
KFold(n splits=5, shuffle=True, random state=0)
```

Tuning cycle

Every dataset is unique and needs separate tuning of its parameters. For that I used following tuning cycle:

- 1. Window size + Scaler
- 2. PCA (only for Daily Life 2010-2011 Aruba dataset)
- 3. Radial-basis function (RBF) kernel -> C (Regularization) + Gamma (Kernel coefficient)
- 4. Polynomial kernel -> C (Regularization) + Gamma (Kernel coefficient)

ADL Normal Activities (1 Kyoto)

Table 1 – ADL Normal Activities – Window size + Scaler tuning Accuracy scores (%)

Window size	Standard Scaler	Robust Scaler
5	76.1098	76.8366
7	80.9266	80.4650
10	84.6190	84.2324
12	87.2751	86.5446
15	89.8176	89.0786
17	91.2101	90.4652
19	92.3576	91.9238
22	93.0757	93.1939
25	93.8282	94.0676
27	94.1906	94.3113
30	94.3620	94.4842
32	94.6313	95.0360
35	94.8474	95.3824
37	95.0191	95.6125
40	95.0810	95.9738

I chose **Robust Scaler** with **Window size = 40** because it gained the best results.

Table 2 – ADL Normal Activities – RBF kernel -> C + Gamma tuning Accuracy scores (%)

С	Gamma	Accuracy	С	Gamma	Accuracy	С	Gamma	Accuracy
1	0.1	97.0850	13	0.1	98.1235	50	0.1	98.6701
1	0.15	97.4312	13	0.15	98.1964	50	0.15	98.6519
1	0.2	97.5769	13	0.2	98.2692	50	0.2	98.6337
1	0.25	97.8502	13	0.25	98.3239	50	0.25	98.5973
1	0.3	97.8684	13	0.3	98.3057	50	0.3	98.5608
1	0.35	97.8320	13	0.35	98.3239	50	0.35	98.5426
1	0.4	97.8138	13	0.4	98.2875	50	0.4	98.4515
1	0.45	97.8137	13	0.45	98.3057	50	0.45	98.3786
2	0.1	97.5223	15	0.1	98.1417	75	0.1	98.6337
2	0.15	97.7955	15	0.15	98.2875	75	0.15	98.6155
2	0.2	97.9413	15	0.2	98.3057	75	0.2	98.6519
2	0.25	98.0141	15	0.25	98.3421	75	0.25	98.6155
2	0.3	98.0506	15	0.3	98.3603	75	0.3	98.5790
2	0.35	97.9595	15	0.35	98.3057	75	0.35	98.5244
2	0.4	97.8684	15	0.4	98.3422	75	0.4	98.4879
2	0.45	97.9413	15	0.45	98.3422	75	0.45	98.4151
5	0.1	97.9595	17	0.1	98.1600	100	0.1	98.6337
5	0.15	98.1963	17	0.15	98.3057	100	0.15	98.6155
5	0.2	98.0506	17	0.2	98.3421	100	0.2	98.6883
5	0.25	98.1417	17	0.25	98.4332	100	0.25	98.6155
5	0.3	98.2146	17	0.3	98.3968	100	0.3	98.5790
5	0.35	98.1599	17	0.35	98.3604	100	0.35	98.5244
5	0.4	98.1781	17	0.4	98.3422	100	0.4	98.4879
5	0.45	98.2146	17	0.45	98.3239	100	0.45	98.4333
7	0.1	98.0506	20	0.1	98.2329	150	0.1	98.6155
7	0.15	98.1053	20	0.15	98.3968	150	0.15	98.6337
7	0.2	98.1964	20	0.2	98.5244	150	0.2	98.6519
7	0.25	98.1599	20	0.25	98.5061	150	0.25	98.5973
7	0.3	98.2146	20	0.3	98.4515	150	0.3	98.5790
7	0.35	98.1781	20	0.35	98.3786	150	0.35	98.5244
7	0.4	98.1781	20	0.4	98.3422	150	0.4	98.4697
7	0.45	98.1417	20	0.45	98.3239	150	0.45	98.4151
10	0.1	98.1417	30	0.1	98.4879	200	0.1	98.5973
10	0.15	98.1417	30	0.15	98.5244	200	0.15	98.6155
10	0.2	98.1781	30	0.2	98.6337	200	0.2	98.6337
10	0.25	98.2328	30	0.25	98.6337	200	0.25	98.6155
10	0.3	98.2328	30	0.3	98.5426	200	0.3	98.5972
10	0.35	98.1963	30	0.35	98.3968	200	0.35	98.5426
10	0.4	98.1964	30	0.4	98.3239	200	0.4	98.5062
10	0.45	98.1964	30	0.45	98.3240	200	0.45	98.4151

Table 3 – ADL Normal Activities – Polynomial kernel -> C + Gamma tuning Accuracy scores (%)

С	Gamma	Accuracy	С	Gamma	Accuracy	С	Gamma	Accuracy
1		97.5405	13	0.1	98.3422	50	0.1	98.3240
1	0.15	98.0325	13	0.15	98.3422	50	0.15	98.2694
1	0.2	98.1782	13	0.2	98.2329	50	0.2	98.2329
1	0.25	98.3786	13	0.25	98.1783	50	0.25	98.1418
1	0.3	98.4151	13	0.3	98.2876	50	0.3	98.1964
1	0.35	98.3422	13	0.35	98.1601	50	0.35	98.1964
1	0.4	98.2694	13	0.4	98.1418	50	0.4	98.1782
1	0.45	98.2330	13	0.45	98.1964	50	0.45	98.1964
2	0.1	97.8138	15	0.1	98.3604	75	0.1	98.2876
2	0.15	98.1965	15	0.15	98.2694	75	0.15	98.2694
2	0.2	98.3786	15	0.2	98.2512	75	0.2	98.1054
2	0.25	98.4151	15	0.25	98.1965	75	0.25	98.1964
2	0.3	98.2694	15	0.3	98.2512	75	0.3	98.1964
2	0.35	98.2330	15	0.35	98.1236	75	0.35	98.1964
2	0.4	98.2512	15	0.4	98.1964	75	0.4	98.1782
2	0.45	98.1965	15	0.45	98.1964	75	0.45	98.1964
5	0.1	98.2147	17	0.1	98.3604	100	0.1	98.2329
5	0.15	98.3968	17	0.15	98.2876	100	0.15	98.2512
5	0.2	98.3605	17	0.2	98.2694	100	0.2	98.1236
5	0.25	98.2694	17	0.25	98.2512	100	0.25	98.1964
5	0.3	98.2694	17	0.3	98.1783	100	0.3	98.1964
5	0.35	98.1601	17	0.35	98.1600	100	0.35	98.1964
5	0.4	98.2329	17	0.4	98.1782	100	0.4	98.1782
5	0.45	98.1783	17	0.45	98.1964	100	0.45	98.1964
7	0.1	98.2511	20	0.1	98.3604	150	0.1	98.2329
7	0.15	98.3787	20	0.15	98.2694	150	0.15	98.1783
7	0.2	98.2694	20	0.2	98.2694	150	0.2	98.1782
7		98.2512	20	0.25	98.2512	150	0.25	98.1964
7		98.1783	20	0.3	98.1601	150	0.3	98.1964
7		98.2512	20	0.35	98.1600	150	0.35	98.1964
7		98.1965	20	0.4	98.1782	150	0.4	98.1782
7		98.1236	20	0.45	98.1964	150	0.45	98.1964
10		98.2875	30	0.1	98.4151	200	0.1	98.1783
10		98.4151	30	0.15	98.2329	200	0.15	98.1236
10		98.2876	30	0.2	98.2329	200	0.2	98.1782
10		98.2512	30	0.25	98.1783	200	0.25	98.1964
10		98.2512	30	0.3	98.1418	200	0.3	98.1964
10		98.2329	30	0.35	98.1964	200	0.35	98.1964
10		98.1054	30	0.4	98.1782	200	0.4	98.1782
10	0.45	98.1600	30	0.45	98.1964	200	0.45	98.1964

From previous results we can see that best accuracy of 98.6883% gets SVMs with RBF kernel, C = 100 and Gamma = 0.2.

ADL Activities with Errors (2 Kyoto)

Table 4 – ADL Activities with Errors – Window size + Scaler tuning Accuracy scores (%)

Window size	Standard Scaler	Robust Scaler
5	82.1693	82.6022
7	85.0223	86.1729
10	89.6205	90.2427
12	91.3376	91.8031
15	93.4643	93.3618
17	93.7616	94.4021
19	94.2720	94.2092
22	94.3681	94.5368
25	94.6808	94.9798
27	94.4191	94.9146
30	94.7610	95.1539
32	94.7810	94.8912
35	94.6665	94.8897
37	94.5281	94.8661
40	94.6584	95.0010

Chosen parameters: Window size = 30 and Robust Scaler.

Table 5 – ADL Activities with Errors – **RBF kernel -> C + Gamma tuning** Accuracy scores (%)

С	Gamma	Accuracy	С	Gamma	Accuracy	С	Gamma	Accuracy
1	0.1	96.0926	13	0.1	98.1664	50	0.1	98.2973
1	0.15	96.5073	13	0.15	98.1445	50	0.15	98.4503
1	0.2	96.7037	13	0.2	98.1010	50	0.2	98.5158
1	0.25	96.8784	13	0.25	98.1447	50	0.25	98.5376
1	0.3	96.9875	13	0.3	98.1883	50	0.3	98.4284
1	0.35	97.1186	13	0.35	98.1447	50	0.35	98.3629
1	0.4	97.1623	13	0.4	98.1665	50	0.4	98.4066
1	0.45	97.1405	13	0.45	98.1228	50	0.45	98.3193
2	0.1	96.8566	15	0.1	98.2319	75	0.1	98.3847
2	0.15	97.1403	15	0.15	98.1664	75	0.15	98.4721
2	0.2	97.4242	15	0.2	98.0792	75	0.2	98.5813
2	0.25	97.4461	15	0.25	98.2101	75	0.25	98.5813
2	0.3	97.5771	15	0.3	98.1883	75	0.3	98.4284
2	0.35	97.5116	15	0.35	98.1447	75	0.35	98.4502
2	0.4	97.5770	15	0.4	98.2320	75	0.4	98.4066
2		97.6207	15	0.45	98.1228	75	0.45	98.3192
5		97.6424	17	0.1	98.2100	100	0.1	98.4502
5	0.15	97.9263	17	0.15	98.2755	100	0.15	98.4503
5		98.0355	17	0.2	98.2538	100	0.2	98.6468
5		98.0573	17	0.25	98.2538	100	0.25	98.5158
5		97.9263	17	0.3	98.2320	100	0.3	98.5157
5		98.0136	17	0.35	98.2102	100	0.35	98.4502
5		97.9263	17	0.4	98.2102	100	0.4	98.3847
5		97.8608	17	0.45	98.1446	100	0.45	98.2974
7		97.8826	20	0.1	98.1664	150	0.1	98.4066
7		98.1227	20	0.15	98.3410	150	0.15	98.5813
7		98.0791	20	0.2	98.2756	150	0.2	98.6468
7		98.0573	20	0.25	98.3193	150	0.25	98.6031
7		98.0136	20	0.3	98.2975	150	0.3	98.4939
7		98.0136	20	0.35	98.2757	150	0.35	98.4502
7		97.9918	20	0.4	98.2538	150	0.4	98.3629
7		97.8826	20	0.45	98.1883	150	0.45	98.3192
10		98.0572	30	0.1	98.3410	200	0.1	98.4285
10		98.1446	30	0.15	98.3847	200	0.15	98.6031
10		98.0573	30	0.2	98.4284	200	0.2	98.7123
10		98.0792	30	0.25	98.4503	200	0.25	98.5813
10		98.0355	30	0.3	98.3848	200	0.3	98.4939
10		98.0573	30	0.35	98.3629	200	0.35	98.4502
10		98.1447	30	0.4	98.3629	200	0.4	98.3629
10	0.45	98.0355	30	0.45	98.2101	200	0.45	98.3411

Table 6 – ADL Activities with Errors – Polynomial kernel -> C + Gamma tuning Accuracy scores (%)

С	Gamma	Accuracy	С	Gamma	Accuracy	С	Gamma	Accuracy
1	0.1	97.3369	13	0.1	98.1228	50	0.1	98.2101
1	0.15	98.0136	13	0.15	98.2101	50	0.15	98.2319
1	0.2	98.1009	13	0.2	98.2101	50	0.2	98.1882
1	0.25	98.2101	13	0.25	98.2101	50	0.25	98.1009
1	0.3	98.2974	13	0.3	98.2756	50	0.3	98.0136
1	0.35	98.2319	13	0.35	98.1446	50	0.35	98.0136
1	0.4	98.1883	13	0.4	98.0791	50	0.4	98.0791
1	0.45	98.1010	13	0.45	98.0791	50	0.45	98.1227
2	0.1	97.7735	15	0.1	98.1665	75	0.1	98.1664
2	0.15	98.1446	15	0.15	98.2101	75	0.15	98.2101
2	0.2	98.2101	15	0.2	98.1446	75	0.2	98.1882
2	0.25	98.2755	15	0.25	98.2319	75	0.25	98.0572
2	0.3	98.2101	15	0.3	98.1882	75	0.3	98.0136
2	0.35	98.1228	15	0.35	98.1882	75	0.35	98.0791
2	0.4	98.1446	15	0.4	98.0572	75	0.4	98.1009
2	0.45	98.2101	15	0.45	98.0136	75	0.45	98.1664
5	0.1	98.0136	17	0.1	98.1883	100	0.1	98.1446
5	0.15	98.1883	17	0.15	98.2319	100	0.15	98.2537
5	0.2	98.1882	17	0.2	98.1664	100	0.2	98.1009
5	0.25	98.1882	17	0.25	98.2101	100	0.25	98.0136
5	0.3	98.1664	17	0.3	98.1882	100	0.3	98.0791
5	0.35	98.2319	17	0.35	98.0572	100	0.35	98.0572
5	0.4	98.2101	17	0.4	98.0791	100	0.4	98.1227
5		98.1882	17	0.45	98.0354	100	0.45	98.1446
7	0.1	98.1446	20	0.1	98.2101	150	0.1	98.1664
7	0.15	98.3193	20	0.15	98.2319	150	0.15	98.1882
7	0.2	98.2101	20	0.2	98.2101	150	0.2	98.0354
7	0.25	98.0791	20	0.25	98.1883	150	0.25	98.1009
7	0.3	98.1883	20	0.3	98.1446	150	0.3	98.0572
7	0.35	98.1228	20	0.35	98.0791	150	0.35	98.1009
7			20		98.0136	150		
7		98.1882	20		98.0354	150		98.1009
10		98.1446	30		98.2755	200		
10	0.15	98.2319	30	0.15	98.1446	200	0.15	98.1882
10	0.2	98.1664	30	0.2	98.2319	200	0.2	
10		98.2101	30		98.1882	200		98.0791
10		98.2101	30	0.3	98.1009	200		98.1227
10		98.1882	30		98.0136	200		
10	0.4	98.1882	30		98.0572	200	0.4	98.0572
10	0.45	98.1009	30	0.45	98.1227	200	0.45	98.0136

The best score for "Kyoto 2" dataset was **98.7123**% with **RBF kernel**, **C = 200** and **Gamma = 0.2**.

ADL Interweaved Activities (3 Kyoto)

Table 7 – ADL Interweaved Activities – Window size + Scaler tuning Accuracy scores (%)

Window size	Standard Scaler	Robust Scaler
5	77.3508	77.6726
7	81.9491	82.9285
10	86.9517	87.3459
12	89.0252	88.7877
15	91.3563	90.7289
17	92.5400	90.9100
19	93.3520	91.6950
22	94.4517	93.1278
25	94.8536	93.5822
27	95.2707	93.5751
30	95.3532	93.8933
32	95.4879	94.4037
35	95.5935	94.9180
37	95.7516	94.8747
40	95.8285	94.8303

Chosen parameters: **Standard Scaler** and **Window size = 40.**

Table 8 – ADL Interweaved Activities – **RBF kernel -> C + Gamma tuning** Accuracy scores (%)

С	Gamma	Accuracy	С	Gamma	Accuracy	С	Gamma	Accuracy
1	0.1	97.5413	13	0.1	98.7286	50	0.1	98.7496
1	0.15	97.7514	13	0.15	98.7181	50	0.15	98.7076
1	0.2	97.7199	13	0.2	98.6236	50	0.2	98.6025
1	0.25	97.6148	13	0.25	98.3714	50	0.25	98.3503
1	0.3	97.4887	13	0.3	98.1297	50	0.3	98.0877
1	0.35	97.4257	13	0.35	97.9826	50	0.35	97.9406
1	0.4	97.3206	13	0.4	97.8565	50	0.4	97.8145
1	0.45	97.0684	13	0.45	97.6989	50	0.45	97.6884
2	0.1	98.0772	15	0.1	98.7286	75	0.1	98.7391
2	0.15	98.1717	15	0.15	98.7181	75	0.15	98.7076
2	0.2	98.2348	15	0.2	98.6130	75	0.2	98.6130
2	0.25	97.9931	15	0.25	98.3714	75	0.25	98.3609
2	0.3	97.7619	15	0.3	98.1297	75	0.3	98.0982
2	0.35	97.6148	15	0.35	97.9721	75	0.35	97.9406
2		97.6043	15	0.4	97.8355	75	0.4	97.8145
2		97.5203	15	0.45	97.6989	75	0.45	97.6884
5	0.1	98.3819	17	0.1	98.7391	100	0.1	98.7391
5		98.4975	17	0.15	98.7076	100	0.15	98.7076
5	0.2	98.5500	17	0.2	98.6341	100	0.2	98.6235
5	0.25	98.3609	17	0.25	98.3924	100	0.25	98.3609
5	0.3	98.1087	17	0.3	98.1297	100	0.3	98.0982
5	0.35	97.9616	17	0.35	97.9511	100	0.35	97.9406
5		97.7935	17	0.4	97.8250	100	0.4	97.8145
5		97.6569	17	0.45	97.6884	100	0.45	97.6884
7		98.5185	20	0.1	98.7602	150	0.1	98.7496
7	0.15	98.6761	20	0.15	98.7076	150	0.15	98.7181
7	0.2	98.6025	20	0.2	98.6446	150	0.2	98.6235
7		98.3714	20	0.25	98.3924	150	0.25	98.3609
7		98.0877	20	0.3	98.1087	150	0.3	98.0982
7	0.35	97.9406	20	0.35	97.9511	150	0.35	97.9406
7		97.8250	20	0.4	97.8145	150	0.4	97.8145
7		97.6674	20	0.45	97.6779	150	0.45	97.6884
10		98.6866	30	0.1	98.7496	200	0.1	98.7496
10		98.6971	30		98.7286	200	0.15	98.7181
10		98.6131	30	0.2	98.6341	200	0.2	98.6235
10		98.3609	30	0.25	98.3609	200	0.25	98.3609
10		98.0982	30	0.3	98.0877	200	0.3	98.0982
10		97.9511	30	0.35	97.9406	200	0.35	97.9406
10		97.8460	30	0.4	97.8145	200	0.4	97.8250
10	0.45	97.7199	30	0.45	97.6779	200	0.45	97.6989

Table 9 – ADL Interweaved Activities – **Polynomial kernel -> C + Gamma tuning** Accuracy scores (%)

С	Gamma	Accuracy	С	Gamma	Accuracy		С	Gamma	Accuracy
1	0.1	98.6866	13	0.1	98.7812		50	0.1	98.8022
1	0.15	98.7707	13	0.15	98.8022		50	0.15	98.8022
1	0.2	98.7707	13	0.2	98.7917		50	0.2	98.8127
1	0.25	98.7812	13	0.25	98.8127		50	0.25	98.7917
1	0.3	98.8022	13	0.3	98.8232		50	0.3	98.7496
1	0.35	98.8127	13	0.35	98.8022		50	0.35	98.6656
1	0.4	98.7917	13	0.4	98.7812		50	0.4	98.6235
1		98.7917	13	0.45	98.7812		50	0.45	98.5500
2	0.1	98.8022	15	0.1	98.7812		75	0.1	98.7917
2	0.15	98.7707	15	0.15	98.8022		75	0.15	98.8337
2	0.2	98.7812	15	0.2	98.7917		75	0.2	98.8022
2	0.25	98.8127	15	0.25	98.8232		75	0.25	98.7812
2	0.3	98.8022	15	0.3	98.8127		75	0.3	98.6656
2	0.35	98.7917	15	0.35	98.8022		75	0.35	98.6235
2		98.8022	15	0.4	98.7707		75	0.4	98.5185
2	0.45	98.8127	15	0.45	98.7496		75	0.45	98.4869
5	0.1	98.7707	17	0.1	98.7812		100	0.1	98.7917
5	0.15	98.7812	17	0.15	98.8022		100	0.15	98.8232
5	0.2	98.8232	17	0.2	98.8022	1	100	0.2	98.7917
5	0.25	98.7917	17	0.25	98.8337]	100	0.25	98.7076
5	0.3	98.8022	17	0.3	98.8022		100	0.3	98.6551
5	0.35	98.8127	17	0.35	98.7812		100	0.35	98.5710
5	0.4	98.8232	17	0.4	98.7812		100	0.4	98.4869
5	0.45	98.8022	17	0.45	98.7076		100	0.45	98.4554
7		98.7707	20	0.1	98.7707		150	0.1	98.8022
7		98.7812	20	0.15	98.7917		150	0.15	98.8022
7		98.8022	20	0.2	98.8022		150	0.2	98.7812
7		98.7917	20	0.25	98.8127		150	0.25	98.6551
7		98.8127	20	0.3	98.8022		150	0.3	98.5710
7		98.8127	20	0.35	98.7812		150		98.4869
7		98.8022	20	0.4	98.7707		150	0.4	98.4449
7	0.45	98.8022	20	0.45	98.6866		150	0.45	98.4029
10	0.1	98.7812	30	0.1	98.8127		200	0.1	98.8127
10	0.15	98.8022	30	0.15	98.7917		200	0.15	98.7917
10	0.2	98.7917	30	0.2	98.8232		200	0.2	98.7076
10	0.25	98.8022	30	0.25	98.8022		200	0.25	98.6130
10	0.3	98.8337	30	0.3	98.7917		200	0.3	98.5080
10	0.35	98.8022	30	0.35	98.7707		200	0.35	98.4659
10	0.4	98.8022	30	0.4	98.6866		200	0.4	98.4029
10	0.45	98.7812	30	0.45	98.6551		200	0.45	98.4134

Unexpectedly **Polynomial kernel** gave the best accuracy **98.8337%** for three cases: **C** = **10** and **Gamma** = **0.3**; **C** = **17** and **Gamma** = **0.25**; **C** = **75** and **Gamma** = **0.15**.

Daily Life 2010-2011 (17 Aruba)

Like the last time, I used only 5 days (35 624 sensor events) from this huge dataset.

This is the only one dataset for which I used PCA. Other datasets are too small for that.

Table 10 – Daily life 2010-2011 (5 days) – **Window size + Scaler tuning** Accuracy scores (%)

Window size	Standard Scaler	Test time (s)	Robust Scaler	Test time (s)
5	82.4756	167.6	77.2705	213.1
12	85.5049	161.9	80.7144	190.9
19	87.5832	142.8	81.7104	192.4
30	89.9112	132.0	83.0449	181.4
40	91.2461	122.2	84.3413	176.7

Chosen parameters: Standard Scaler and Window size = 40.

Table 11 – Daily life 2010-2011 (5 days) – **PCA tuning** Accuracy scores (%)

PCA	4	Accuracy (%)	Test time (s)
Variance retained	N components	Accuracy (70)	rest time (s)
No PCA used	46	91.2461	122.2
0.99	42	91.1871	120.7
0.95	34	89.7538	110.5
0.9	28	88.5538	99.6
0.85	24	87.7304	97.8
0.8	21	87.0869	94.2
0.75	18	85.9150	89.7
0.7	16	85.1282	87.8
0.6	12	82.1689	83.9
0.5	8	78.8332	84.1

I tested PCA with multiple options for <code>n_components</code> parameter. When <code>n_components<1</code>, e.g. 0.8, it means that minimum number of components will be chosen such that 80% variance is going to be retained.

More at: https://towardsdatascience.com/pca-using-python-scikit-learn-e653f8989e60

From the table above, I decided to use **PCA with 0.9 variance retained**.

Table 12 – Daily life 2010-2011 (5 days) – RBF kernel -> C + Gamma tuning Accuracy scores (%)

С	Gamma	Accuracy	Test time
1	0.1	95.3266	121.0
1	0.2	96.6867	266.0
1	0.3	97.2122	577.9
5	0.1	97.3134	82.4
5	0.2	97.9232	230.5
5	0.3	98.1256	531.0
10	0.1	97.6619	71.1
10	0.2	98.1818	219.6
10	0.3	98.3419	527.4
17	0.1	97.9710	70.3
17	0.2	98.3335	209.3
17	0.3	98.4712	527.1
50	0.1	98.3363	63.6
50	0.2	98.5190	197.0
50	0.3	98.5640	496.8
150	0.1	98.6398	59.5
150	0.2	98.5780	184.5
150	0.3	98.6033	511.2

Table 13 – Daily life 2010-2011 (5 days) – Polynomial kernel -> C + Gamma tuning Accuracy (%)

С	Gamma		Test time
1	0.1	96.5435	13.4
1	0.2	97.2741	12.9
1	0.3	97.5973	13.1
5	0.1	97.1196	12.4
5	0.2	97.6254	13.9
5	0.3	97.7378	15.6
10	0.1	97.3163	12.8
10	0.2	97.6395	17.3
10	0.3	97.7940	21.2
17	0.1	97.6254	13.5
17	0.2	97.7659	17.5
17	0.3	97.7659	19.1
50	0.1	97.7097	15.5
50	0.2	97.7659	20.4
50	0.3	97.6816	23.6
150	0.1	97.7659	15.7
150	0.2	97.6676	22.0
150	0.3	97.4146	27.9

(In this case I did not use 5-fold testing. That is way the Test time is so low.)

98.6398% is the highest accuracy score I was able to achieve. RBF kernel, C = 150 and Gamma = 0.1 were used.

Now when we have these tuned parameters for "Aruba" dataset, let's try to test SVMs again with a little bit bigger Aruba dataset:

- I used 2 months extracted from the whole set (456 285 sensor events)
- Window size = 40, Standard Scaler
- PCA = 0.9 variance retained, Number of components = 30
- RBF kernel, C = 105 and Gamma = 0.1

The final accuracy was: 97.0751%

Test time: 11 106.8s = 3 hours, 5 minutes, 6.8 seconds

Conclusion

Table 14 – Comparison of results for datasets

Dataset	Window size	Scaler	PCA	Kernel	С	Gamma	Accuracy (%)
ADL Normal Activities (1 Kyoto)	40	Robust	-	RBF	100	0.2	98.6883
ADL Activities with Errors (2 Kyoto)	30	Robust	-	RBF	200	0.2	98.7123
ADL Interweaved Activities (3 Kyoto)	40	Standard	-	Polynomial	10	0.3	98.8337
Daily Life 2010-2011 (Aruba) 5 days	40	Standard	0.9	RBF	150	0.1	98.6398
Daily Life 2010-2011 (Aruba) 2 months	40	Standard	0.9	RBF	150	0.1	97.0751

In the table above we can see the final results from this report. My guess is that by increasing window size we would achieve even higher accuracy. Another finding is that we cannot generalize what scaler is better or which kernel is better. It depends on the dataset itself. That is way I performed individual testing for every dataset.

Github

https://github.com/emanuelzaymus/ActivityRecognition