Data Visualization 2: Encoding data in graphs

Stat 133 with Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

Data Visualization is simply mapping data to geometric objects and their visual attributes

Gallery of Charts

(off-the-self examples)

Examples of charts in Google Sheets

Sample options (from Google Charts)

Sample options (from Google Charts)

Sample options (from Google Charts)

Table					
	Name	Salary	Full Time		
1	Marie	\$24,700	✓		
2	Albert	\$25,200	X		
3	Enrico	\$25,700	✓		
4	Lise	\$26,600	✓		

Examples of Charts in Excel

Column

Clustered Column Stacked Column 100% Stacked Column 3-D Clustered Column 3-D Stacked Column 3-D 100% Stacked Column 3-D Column

Line

Bar and Pie

Clustered Bar Stacked Bar 100% Stacked Bar 3-D Clustered Bar 3-D Stacked Bar 3-D 100% Stacked Bar

X Y scatter

Examples of "ggplot2" charts in R

One Variable

Continuous

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom_area(stat = "bin")

x, y, alpha, color, fill, linetype, size

c + geom_density(kernel = "gaussian")

x, y, alpha, color, fill, group, linetype, size, weight

c + geom_dotplot()

x, y, alpha, color, fill

c + geom_freqpoly()

x, y, alpha, color, group, linetype, size

c + geom_histogram(binwidth = 5)

x, y, alpha, color, fill, linetype, size, weight

c2 + geom_qq(aes(sample = hwy))

x, y, alpha, color, fill, linetype, size, weight

Discrete

d <- ggplot(mpg, aes(fl))

d + geom_bar()

x, alpha, color, fill, linetype, size, weight

Two Variables

Continuous X, Continuous Y e <- ggplot(mpg, aes(cty, hwy))</pre>

e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

e + geom_jitter(height = 2, width = 2)
x, y, alpha, color, fill, shape, size

e + geom_point() x, y, alpha, color, fill, shape, size, stroke

e + geom_quantile()
x, y, alpha, color, group, linetype, size, weight

e + geom_rug(sides = "bl")
x, y, alpha, color, linetype, size

e + geom_smooth(method = lm) x, y, alpha, color, fill, group, linetype, size, weight

e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE)
x y label alpha angle color family fontface

Continuous Bivariate Distribution h <- ggplot(diamonds, aes(carat, price))

h + geom_bin2d(binwidth = c(0.25, 500))
x, y, alpha, color, fill, linetype, size, weight

h + geom_density2d()
x, y, alpha, colour, group, linetype, size

h + geom_hex()
x, y, alpha, colour, fill, size

Continuous Function

i <- ggplot(economics, aes(date, unemploy))</pre>

i + geom_area() x, y, alpha, color, fill, linetype, size

+ geom_line() x, y, alpha, color, group, linetype, size

i + geom_step(direction = "hv")
x, y, alpha, color, group, linetype, size

So how do you approach graphing data?

"With computer technology, anyone can create graphics, but few of us know how to do it well."

Donna Wong

Approaching graphing data

With so many chart options, and various software tools, how can you determine what type of graph should you use?

In my opinion, there are a couple of aspects to always keep in mind:

- Data encoding (core idea)
- Common analytical tasks
- Visual perception basics
- Effective charts suggestions

Data Visualization is simply mapping data to geometric objects and their visual attributes

Geometric Objects and their Visual Attributes

Datavis core idea

Simply put, data visualization is nothing else than mapping/encoding data (e.g. quantitative & categorical values) into geometric objects and their visual attributes.

21

Fundamentals

Quantitative & Categorical

Data

Geometric Objects

Visual Attributes

Geometric Objects (primitives)

Points Lines

Bars

2D Areas / Polygons

Points: e.g. scatterplot

Lines: e.g. timeline

Bars: e.g. bar chart

2D-areas / Polygons: e.g. densities

Geometric Objects

Graphical objects (typically) used to encode quantitative values

- Points
- Lines
- Bars
- 2D areas & polygons

Visual Attributes

Position

Shape

Orientation (tilt)

Size Iength area volumne

Color Luminance Color Hue Color Saturation

Visual Attributes of Geometric objects

Used to encode both quantitative and categorical

- Position
- Color
- Size
- Shape
- Fill pattern
- Border
- Line style

Vertical position

Vertical position Horizontal position

Vertical position Horizontal position Color hue

Vertical position Horizontal position Color hue Size (area)

Example

name	gender	height	weight	jedi	species	weapon
Luke Skywalker	male	1.72	77	jedi	human	lightsaber
Leia Skywalker	female	1.5	49	no_jedi	human	blaster
Obi-Wan Kenobi	male	1.82	77	jedi	human	lightsaber
Han Solo	male	1.8	80	no_jedi	human	blaster
R2-D2	male	0.96	32	no_jedi	droid	unarmed
C-3PO	male	1.67	75	no_jedi	droid	unarmed
Yoda	male	0.66	17	jedi	yoda	lightsaber
Chewbacca	male	2.28	112	no_jedi	wookiee	bowcaster

Let's use these variables to make a scatterplot

How does it (conceptually) work?

1 Dataset

2 Which variables

A B C D E F

3 Which Geometric objects

points

text

Which visual attributes
 position (coordinates)
 color
 size
 shape

lines bars

abcd

Building a scatterplot

Dataset: starwars

Variables: height, weight, jedi

Geometric objects: points

Visual attributes:

- X-axis: height, Y-axis: weight
- Shape: dots
- Color: based on jedi categories

Mapping

data values

height	weight	jedi
1.72	77	jedi
1.50	49	no_jedi
1.82	77	jedi
1.80	80	no_jedi
0.96	32	no_jedi
1.67	75	no_jedi
0.66	17	jedi
2.28	112	no_jedi

These values are meaningful to us, but not to the computer

visual attributes

X	у	color
X ₁	y ₁	#F8766D
X ₂	y ₂	#00BFC4
X ₃	y ₃	#F8766D
X ₄	y ₄	#00BFC4
X ₅	y ₅	#00BFC4
X ₆	y ₆	#00BFC4
X ₇	y ₇	#F8766D
X ₈	y ₈	#00BFC4

They need to be converted from data units to physical units that the computer can display

Supporting elements

- Axis labels
- Legends (positions, labels, symbols)
- Choice of colors for points
- Background color (i.e. gray)
- Grid lines (major and minor)
- Axis tick marks

In summary

- Graphs consist of several components
- Some components represent quantitative values (e.g. lines, bars, etc.)
- Some represent categorical values (e.g. color, shape, orientation)
- Some play a supporting role (e.g. grid lines, legends, scales on axes)

40