Visualización de Datos con Python: Técnicas y Ejemplos de Gráficos para Análisis de Datos

Elmer Achalma

Economía, Universidad Nacional de San Cristóbal de Huamanga

Este documento presenta una colección de ejemplos prácticos de visualización de datos utilizando Python y la biblioteca Matplotlib. Se incluyen gráficos de líneas, barras, histogramas, circulares, de caja y combinados, cada uno acompañado de código comentado y optimizado. El objetivo es proporcionar una guía educativa para estudiantes y profesionales interesados en representar datos de manera clara y efectiva, con énfasis en buenas prácticas de diseño y presentación

Palabras Claves: Visualización de datos, Python, Matplotlib, Gráficos estadísticos, Análisis de datos

5

Tabla de contenidos

Visualización de Datos con Python Grafico de lineas

1

Grafico de barras combinadas

Elmer Achalma

Graficos combinados

Grafico de cajas

Introduction

Los autores no tienen conflictos de intereses que revelar. Agradezco a mis maestros por su orientación en el aprendizaje de la programación y visualización de datos, a mis padres por su apoyo constante durante mi formación, y a Dios por la salud y fortaleza para perseguir mis metas. Me comprometo a seguir mejorando mis habilidades en la universidad y en todos los ámbitos, siempre con respeto. Los roles de autor se clasificaron utilizando la taxonomía de roles de colaborador (CRediT; https://credit.niso.org/) de la siguiente manera: Elmer Achalma: Investigación, Programación, Redacción

La correspondencia relativa a este artículo debe dirigirse a Elmer Achalma, Email: elmer.achalma.09@unsch.edu.pe

import numpy as np	
<pre>import matplotlib.pyplot as plt</pre>	
<pre># Configurar el tamaño de la figura para mejor plt.figure(figsize=(10, 8))</pre>	visual
# Datos de consumo de carne bovina (kg por habitonsumo_bovino = [22.1, 22.1, 23.1, 23.9, 24.6,	
anios_bovino = [2001, 2002, 2003, 2004, 2005, 2	

anios_porcino = [2001, 2002, 2003, 2004, 2005, 2006, 2
Graficar consumo de carne bovina con marcadores circ
plt.plot(anios_bovino, consumo_bovino, marker='o', lin

Datos de consumo de carne porcina (kg por habitante)

consumo_porcino = [17.9, 19.4, 19.1, 18.3, 19.3, 22.5,

Graficar consumo de carne porcina con marcadores de
plt.plot(anios_porcino, consumo_porcino, marker='d', l

Etiquetas de los ejes y título con formato adecuado

plt.xlabel('Año')
plt.ylabel('Consumo (kg por habitante)')
plt.title('Consumo Anual de Carne en Chile (2001-2011)

Añadir leyenda en la esquina inferior derecha
plt.legend(loc='lower right')

Configurar marcas en el eje x para mostrar cada año
plt.xticks(anios_bovino)

2 ACHALMA

```
# Añadir una cuadrícula para mejorar la legibilid # Crear un gráfico de barras con color personalizado y
plt.grid(True, linestyle='--', alpha=0.7)
                                                  plt.bar(tipos_legumbres, consumo_legumbres, color='gre
# Ajustar el diseño para evitar recortes de etiqu # Etiquetas de los ejes y título con formato adecuado
plt.tight_layout()
                                                  plt.xlabel('Tipos de Legumbres')
                                                  plt.ylabel('Consumo (kg por habitante)')
# Guardar la figura en un archivo (opcional, se p
                                                  plt.title('Consumo de Legumbres en Chile (2001)')
# plt.savefig('consumo_carne_chile.png')
                                                  # Añadir una cuadrícula en el eje y para facilitar la
# Mostrar el gráfico
                                                  plt.grid(True, axis='y', linestyle='--', alpha=0.7)
plt.show()
                                                  # Ajustar el diseño para evitar recortes de etiquetas
import matplotlib.pyplot as plt
                                                  plt.tight_layout()
import numpy as np
                                                  # Guardar la figura en un archivo (opcional, descoment
x = np.linspace(0, 2 * np.pi, 200)
                                                  # plt.savefig('consumo_legumbres_2001.png')
y = np.sin(x)
                                                  # Mostrar el gráfico
fig, ax = plt.subplots()
                                                  plt.show()
ax.plot(x, y)
plt.show()
                                                  vertical
```

hol Figura 1

```
import numpy as np
import matplotlib.pyplot as plt

r = np.arange(0, 2, 0.01)
theta = 2 * np.pi * r
fig, ax = plt.subplots(
    subplot_kw = {'projection': 'polar'}
)
ax.plot(theta, r)
ax.set_rticks([0.5, 1, 1.5, 2])
ax.grid(True)
plt.show()
```

Gráfico de barras

horizontal

```
# Configurar el tamaño de la figura para una mejo # Bordes de los intervalos para el histograma (bins)
plt.figure(figsize=(10, 8))

# Tipos de legumbres y sus respectivos consumos e # Crear el histograma con color personalizado y bordes
tipos_legumbres = ["Poroto", "Lenteja", "Garbanzo
consumo_legumbres = [2.1, 1.0, 0.3, 0.5]
```

```
plt.figure(figsize=[10,8])
#Consumo de legumbres en el 2001
legumbres=["Poroto","Lenteja","Garbanzo","Arveja"]
consumo=[2.1, 1.0, 0.3, 0.5]

plt.barh(legumbres,consumo)

plt.ylabel("Tipos de legumbre")
plt.xlabel("Consumo (kg/hab)")
plt.title("Consumo de Legumbres en el 2001")
plt.show()
```

Histograma

```
# Etiquetas de los ejes y título con formato adec plt.show()
plt.xlabel('Nivel de Glucosa (mg/dl)')
plt.ylabel('Número de Pacientes')
                                                                  Grafico de Donut
plt.title('Distribución de Niveles de Glucosa en Pacientes')
# Añadir una cuadrícula en el eje y para facilita import matplotlib.pyplot as plt
plt.grid(True, axis='y', linestyle='--', alpha=0.
                                                  # Configurar el tamaño de la figura para una mejor vis
# Ajustar el diseño para evitar recortes de etiqu plt.figure(figsize=(10, 8))
plt.tight_layout()
                                                  # Datos de marcas de autos y sus ventas (en alguna uni
# Guardar la figura en un archivo (opcional, desc marcas_autos = ["Kia", "Toyota", "Nissan", "Suzuki", "
                                                  ventas = [10.5, 15.3, 14.2, 16.1, 9.8]
# plt.savefig('distribucion_glucosa.png')
                                                  # Resaltar la primera marca (Kia) ligeramente
# Mostrar el gráfico
                                                  resaltar = [0.1, 0, 0, 0, 0]
plt.show()
                                                  # Aplicar un estilo visual predefinido (ggplot)
                                                  plt.style.use("ggplot")
                Grafico circular
                                                  # Crear el gráfico de pastel (donut chart)
import matplotlib.pyplot as plt
                                                  plt.pie(ventas, explode=resaltar, labels=marcas_autos,
# Configurar el tamaño de la figura para una mejo # Asegurar que el gráfico sea circular
plt.figure(figsize=(10, 8))
                                                  plt.axis=("equal")
# Datos de marcas de autos y sus ventas (en algun # Añadir un título descriptivo
marcas_autos = ["Kia", "Toyota", "Nissan", "Suzuk plt.title("Distribución de Ventas de Autos en EE.UU.")
ventas = [10.5, 15.3, 14.2, 16.1, 9.8]
# Resaltar la primera marca (Kia) ligeramente
                                                  # Añadir una leyenda en la esquina superior izquierda
resaltar = [0.1, 0, 0, 0, 0]
                                                  plt.legend(marcas_autos, loc="upper left")
# Aplicar un estilo visual predefinido (ggplot)
                                                  # Añadir un círculo central para crear el efecto de "d
plt.style.use("ggplot")
                                                  circulo_central = plt.Circle(xy=(0, 0), radius=0.75, f
                                                  plt.gca().add_artist(circulo_central)
# Crear el gráfico de pastel
plt.pie(x=ventas, explode=resaltar, labels=marcas # Ajustar el diseño para evitar recortes
                                                                                                 le=20)
                                                  plt.tight_layout()
# Asegurar que el gráfico sea circular
plt.axis=("equal")
                                                  # Guardar la figura en un archivo (opcional, descoment
                                                  # plt.savefig('ventas_autos_eeuu_donut.png')
# Añadir un título descriptivo
plt.title("Distribución de Ventas de Autos en EE. # Mostrar el gráfico
                                                  plt.show()
# Añadir una leyenda en la esquina superior izquierda
plt.legend(marcas_autos, loc="upper left")
                                                                   Grafico de cajas
# Ajustar el diseño para evitar recortes
plt.tight_layout()
                                                  import matplotlib.pyplot as plt
# Guardar la figura en un archivo (opcional, desc # Configurar el tamaño de la figura para una mejor vis
# plt.savefig('ventas_autos_eeuu.png')
                                                  plt.figure(figsize=(10, 8))
# Mostrar el gráfico
                                                  # Datos de las edades de los alumnos
```

4 ACHALMA

```
edades_alumnos = [12, 13, 12, 17, 16, 15, 14, 15, 15, 16, 14, Grafico de barras combinadas 17]
# Crear el diagrama de caja con un estilo persona import matplotlib.pyplot as plt
plt.boxplot(edades_alumnos, vert=True, patch_arti
            boxprops=dict(facecolor='lightblue', # Configurar el tamaño de la figura para una mejor vis
           medianprops=dict(color='red'), whiske plt.figure(figsize=(10, 8))
                                                                                                 =8))
            capprops=dict(color='black'), flierpr
                                                  # Datos de ventas de autos por día (en unidades)
# Etiquetas de los ejes y título con formato adec ventas_toyota = [10, 15, 19, 14, 9]
plt.ylabel('Edad (años)')
                                                  ventas_audi = [15, 25, 27, 24, 28]
plt.title('Distribución de Edades de Alumnos de S dias = [0, 1, 2, 3, 4] # Posiciones para los días
                                                  ancho_barras = 0.5 # Grosor de las barras
# Añadir una cuadrícula en el eje y para facilita
plt.grid(True, axis='y', linestyle='--', alpha=0. # Crear el gráfico de barras apiladas
                                                  barras_toyota = plt.bar(dias, ventas_toyota, ancho_bar
# Configurar las etiquetas del eje x (opcional, y barras_audi = plt.bar(dias, ventas_audi, ancho_barras,
plt.xticks([1], ['Alumnos'])
                                                  # Configurar las etiquetas del eje x con los días
# Ajustar el diseño para evitar recortes
                                                  plt.xticks(dias, ['Día 1', 'Día 2', 'Día 3', 'Día 4',
plt.tight_layout()
                                                  # Etiquetas de los ejes y título con formato adecuado
# Guardar la figura en un archivo (opcional, desc plt.xlabel('Días')
# plt.savefig('edades_alumnos_secundaria.png')
                                                  plt.ylabel('Unidades Vendidas')
                                                  plt.title('Ventas de Autos por Día (Toyota vs. Audi)')
# Mostrar el gráfico
plt.show()
```

Graficos combinados

```
import matplotlib.pyplot as plt
# Configurar el tamaño de la figura para una mejor visualización
plt.figure(figsize=(10, 8))
# Datos de vacunación proyectada (en número de pacientes)
vacunacion_proyectada = [250, 120, 270, 560, 450, 280, 550]
# Datos de vacunación real (en número de pacientes)
vacunacion_real = [150, 300, 120, 550, 500, 240, 600]
meses = ["Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio", "Julio"]
# Graficar la vacunación proyectada como una línea con marcadores
plt.plot(meses, vacunacion_proyectada, marker='d', linestyle='--', color='red', label='Vacunación Proyectada,
# Graficar la vacunación real como barras
plt.bar(meses, vacunacion_real, color='skyblue', edgecolor='black', alpha=0.7, label='Vacunación Real')
# Etiquetas de los ejes y título con formato adecuado
plt.xlabel('Meses')
plt.ylabel('Número de Pacientes Vacunados')
plt.title('Vacunación Real vs. Proyectada (Enero - Julio)')
# Añadir una leyenda
plt.legend()
# Añadir una cuadrícula en el eje y para facilitar la lectura
plt.grid(True, axis='y', linestyle='--', alpha=0.7)
# Ajustar el diseño para evitar recortes
plt.tight_layout()
# Guardar la figura en un archivo (opcional, descomentar para usar)
```