ACSE-2 Exam Study Guide Nov. 2019

Notation:

Scalars – a or a

Vectors – \mathbf{v} or $\mathbf{\vec{v}}$ or $\mathbf{\vec{v}}$, vector length $|\mathbf{v}|$

Tensors – \mathbf{T} or (if rank 2) $\mathbf{\underline{T}}$

Unit vector along direction of v: $\hat{\mathbf{e}}_{v} = \frac{\mathbf{v}}{|\mathbf{v}|}$

Unit outward normal for a plane: $\hat{\mathbf{n}}$

Equations/concepts you are expected to know:

Examples given here all for 3-D, orthonormal Cartesian reference frame

- Taylor series expansion
- Vector norms
- Linear systems, solvability of systems, etc
- Eigenvalues, eigenvectors, matrix diagonalization, use in matrix exponential etc
- Index notation: vector or tensor components written as v_i or T_{ij} with i,j=1,2,3 or i,j=x,y,z
- <u>Einstein convention</u> implied summation of the same index repeated twice within a single term, e.g. $v_i w_i = \sum_{i=1}^3 v_i w_i$
- Vector and tensor products:
 - dot product: $\mathbf{v} \cdot \mathbf{w} = v_i w_i$ or $\mathbf{T} \cdot \mathbf{v} = T_{ij} v_i$
 - multiple contraction, e.g. $\sigma = \mathbf{C} \cdot \mathbf{\varepsilon} = C_{ijkl} \, \varepsilon_{kl}$
 - cross product: $\mathbf{v} \times \mathbf{w} = \varepsilon_{iik} \mathbf{v}_i \mathbf{w}_i \hat{\mathbf{e}}_k$
 - tensor product: **vw**=v_iw_i
- <u>Transpose</u>: $T_{ji}=T_{ij}^T$
- Tensor symmetry:
 - Symmetric in $i,j:T_{ji}=T_{ij}$,
 - Antisymmetric in $i,j:T_{ii}=-T_{ij}$
- <u>Tensor trace</u>: for rank 2 tensor $tr(T)=T_{11}+T_{22}+T_{33}=T_{ii}$.
- Kronecker delta $\delta_{ij} = 1$ if i = j, = 0 if $i \neq j$
- <u>Levi-Civita tensor</u> ε_{ijk} =1 for even permutations of 1,2,3, ε_{ijk} =-1 for odd permutations of 1,2,3, ε_{ijk} =0 if any i,j,k are equal
- Determinant rank 2 tensor:
 - $\det(\mathbf{T}) = \varepsilon_{ijk} T_{1i} T_{2j} T_{3k}$, where ε_{ijk} is the Levi-Civita tensor.

- $det(T)\neq 0$ means that the columns of T are linearly independent and the inverse operation T^{-1} exists
- To find eigenvalues λ of a symmetric tensor T, solve det(T- λ I)=0, where I is the unit tensor. Eigenvectors x satisfy $\mathbf{T} \cdot \mathbf{x} = \lambda \mathbf{x}$.
- Lagrangian or material description of motion following a 'particle', all fields described as a function of position ξ at a reference time t_0 and time t.
- Eulerian or spatial description of motion from a fixed observation point. All fields described as a function of position \mathbf{x} and time t.
- Material Derivative
 - in spatial description, the full time derivative of a field $P(\mathbf{x},t)$ becomes: $\frac{DP}{Dt} = \frac{\partial P}{\partial t} + \mathbf{v} \cdot \nabla P$, i.e., contains a time and advective term
 - in material description, the time derivative of the field P(ξ ,t) is $\frac{DP}{Dt} = \frac{\partial P}{\partial t}$
- <u>Divergence</u>: $\nabla \cdot \mathbf{v} = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3}$ represents source/sink of a **v** field

 - can also be applied to tensors, e.g. $(\nabla \cdot \mathbf{T})_i = \frac{\partial T_{1i}}{\partial x_1} + \frac{\partial T_{2i}}{\partial x_2} + \frac{\partial T_{3i}}{\partial x_2}$
- <u>Curl:</u> $\nabla \times \mathbf{v} = \left(\frac{\partial v_3}{\partial x_2} \frac{\partial v_2}{\partial x_3}, \frac{\partial v_1}{\partial x_3} \frac{\partial v_3}{\partial x_1}, \frac{\partial v_2}{\partial x_1} \frac{\partial v_1}{\partial x_2}\right)$
 - represents vorticity of a v fiel
- Gradient:
 - of a scalar $\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}\right)$
 - or of a vector $(\nabla \mathbf{v})_{ij} = \frac{\partial v_j}{\partial x_i}$
- <u>Laplacian:</u> $\nabla \cdot \nabla f = \nabla^2 f = \Delta f = \frac{\partial^2 f}{\partial x_i \partial x_j}$
- Cauchy Stress tensor:
 - stress tensor component σ_{ij} represents a force in $\hat{\mathbf{e}}_i$ direction on a plane with normal in $\hat{\mathbf{e}}_i$ direction. Positive normal stress corresponds to extension.
 - stress tensor is symmetric: $\sigma_{ij} = \sigma_{ji}$ (conservation of angular momentum)
 - traction t on a plane with normal $\hat{\mathbf{n}}$ is $\mathbf{t} = \boldsymbol{\sigma} \cdot \hat{\mathbf{n}}$
 - the stress tensor can be diagonalised, with principal components σ_1 , σ_2 , σ_3 which include maximum and minimum normal stress
 - Can be decomposed into isotropic stress (pressure $p = -\sigma_{kk}/3$) and deviatoric stress σ' such that $\sigma_{ij}=-p\delta_{ij}+\sigma'_{ij}$
- Conservation of linear momentum (per unit volume): $\rho \frac{D^2 \mathbf{u}}{Dt^2} = \mathbf{f} + \nabla \cdot \boldsymbol{\sigma}$, where ρ is density, **u** is displacement and **f** is body force.
- Infinitesimal strain tensor:

- Infinitesimal strain tensor component $\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right)$, where **u** is the displacement field. Applicable if $\nabla \mathbf{u} \ll 1$.
- An original line segment described by vector \mathbf{x} deforms to a new line segment \mathbf{x}' as: $\mathbf{x}' = \boldsymbol{\varepsilon} \cdot \mathbf{x}$
- Diagonal components of ε_{ij} represent fractional length changes, i.e., if \mathbf{x} is a vector in $\hat{\mathbf{e}}_1$ direction than $\varepsilon_{11} = \frac{|\mathbf{x}'| |\mathbf{x}|}{|\mathbf{x}|}$. Similarly, for a given vector \mathbf{s} , the product $\mathbf{s} \cdot \boldsymbol{\varepsilon} \cdot \mathbf{s}$ corresponds to the fractional change in $|\mathbf{s}|$ by the strain $\boldsymbol{\varepsilon}$.
- Off-diagonal components represent changes in angle (i.e., shape), such that 2ε₁₂ equals the change in angle between a line segment originally in ê₁ direction and one originally in ê₂ direction. Given two originally perpendicular vectors **s** and **p**, 2 x the product **p**·ε·**s** corresponds to the change in the angle between **s** and **p** by the strain ε.
- $tr(\mathbf{\varepsilon}) = \nabla \cdot \mathbf{u}$ and represents the fractional change in volume.
- ϵ_{ij} is symmetric and can be diagonalised, such that principal strain components ϵ_1 , ϵ_2 , ϵ_3 include the maximum and minimum fractional length changes in the strain field described by ϵ .
- Can be decomposed into isotropic and deviatoric strain, like the stress tensor

• Strain rate tensor

- Strain rate tensor **D**=D ε /Dt has same kind of properties as the infinitesimal strain tensor, but depends on the velocity field **v**: $D_{ij} = \frac{1}{2} \left(\frac{\partial v_j}{\partial x_i} + \frac{\partial v_i}{\partial x_j} \right)$.
- $tr(\mathbf{D}) = \nabla \cdot \mathbf{v} = 0$ means no change in volume, and is the conservation of mass equation for an incompressible material.
- <u>Energy equation</u> if given the equation, understand the different terms (conduction, advection, heat production, power dissipated by deformation) and be able to use (e.g., to solve for temperature for simple case)
- Rheology know difference between elastic and viscous rheology. Be able to use if equations are given.
 - Elasticity σ=C:ε, linear relationship between stress and infinitesimal strain. For an isotropic medium, only two independent parameters, e.g. Lamé parameters, bulk and shear moduli, or Young's modulus and Poisson's ratio.
 - Newtonian Viscosity linear relationship between deviatoric stress σ' and strain rate **D**. If isotropic => bulk and shear viscosity as the two material parameters.
- <u>Equations of motion</u> wave equation for elastic media and Navier Stokes for fluids, understand terms and derive simple solutions if equations given.