81260824 Encrossing & whiches Commerce City, Colorado

INTERIM REPORT

DIKE STABILITY ANALYSIS BASIN F ROCKY MOUNTAIN ARSENAL DENVER, COLORADO

June 1978

Ьу

G. B. Mitchell, Yu-Shih Jeng

19980911 08

pastribution statement a

Approved for public releases
Distribution Unitediated

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1216 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Annigton, VA 222	02 4002, 414 to the office of the legal to the		
1. AGENCY USE ONLY (Leave blan	nk) 2. REPORT DATE 13 Jun 78	3. REPORT TYPE AND DATE Interim 9 Nov 77 - 23 M	
4. TITLE AND SUBTITLE Dike Stability Analysis, Basin F, Rocky Mountain Arsenal, Denver, Colorado			nding numbers
6. AUTHOR(S) G. B. Mitchell Yu-Shih Jeng			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Engineer Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180			RFORMING ORGANIZATION PORT NUMBER 266R44
9. SPONSORING / MONITORING A	GENCY NAME(S) AND ADDRESS(E	10. SF A	PONSORING / MONITORING GENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES		1	
12a. DISTRIBUTION / AVAILABILIT APPROVED FOR PUBLIC RI	ry statement ELEASE; DISTRIBUTION IS U		DISTRIBUTION CODE
appropriate portions of Task 1. Evaluation for Full Depth Cont	gs of the U. S. Army Engineer W. 05.62. The work to be performed tainment of Basin F, and states, it and "Assess the current physical states, it are the current physical states, it are the current physical states."	ed under Task 1.05.62 is defi in part, that "Any hazards to	ned as; Quantitative Feasibility the existing dikes due to age or
14. SUBJECT TERMS Treatment, Disposal, Liners	OTTO QUALITY IN	GPECTED 1	15. NUMBER OF PAGES 91 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION	N 20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL

INTERIM REPORT

DIKE STABILITY ANALYSIS

BASIN F

ROCKY MOUNTAIN ARSENAL

DENVER, COLORADO

June 1978

by

G. B. Mitchell, Yu-Shih Jeng

Rocky Mountain Arsenal Information Center Commerce City, Colorado

FILE COPY

U. S. Army Engineer
Waterways Experiment Station Water
13 June 1978

DIKE STABILITY ANALYSIS, BASIN F ROCKY MOUNTAIN ARSENAL DENVER, CO

- 1. This analysis was performed during the period 9 November 1977 23 May 1978. The study was authorized by Intra-Army Order for Reimbursable Services (IAO) No. RM 56-78 dated 9 November 1977. A Work Statement attached to that IAO defines the work to be performed under Task 1.05.62, Quantitative Feasibility Evaluation for Full-Depth Containment of Basin F, and states, in part, that "Any hazards to the existing dikes due to age or construction should be identified" and "Assess the current physical condition of the Basin for determination of need for immediate structural repair." This report presents the findings of the U. S. Army Engineer Waterways Experiment Station (WES) in compliance with the appropriate portions of Task 1.05.62.
- 2. A visual on-site inspection was made of the dike, and four boring locations were selected. A plan view of Basin F, along with the boring locations, is shown in Figure 1. The initial borings were made by a WES drill crew operating a drill rig belonging to Rocky Mountain Arsenal (RMA). The rig was not equipped to obtain satisfactory undisturbed samples, and in order to expedite the investigation, the borings were made utilizing Standard Penetration Tests (SPT). Jar samples were obtained and tested in the WES Soil Testing Facility for moisture content, Atterberg limits, grain-size distribution, and specific gravity. The laboratory test results are presented in Figures 2-41. The graphic boring logs and results of the SPT tests are presented in Figures 42-45.
- 3. From the SPT and laboratory test results, shear strength and unit weight parameters were estimated. The soils were considered to be either cohesive (in which case no angle of internal friction was assigned) or cohesionless (in which case no cohesion was assigned).

These estimated values are presented in Figures 42-45. Stability analyses were performed by using the Wedge Method in the WES Computer Program SSW028.

- 4. It appeared from the calculated factors of safety (0.87 to 1.25) that a critical condition existed in the outside, or downstream, slope when the reservoir was at full pool (2 ft below the crest) and when a steady seepage state with an assumed phreatic line occurred through the dike. Since the reservoir has been at full pool and the dike has: not failed, it was felt that either the estimated strength values were not valid or the asphaltic membrane liner on the upstream slope had been effective in preventing a steady seepage state from occurring and the conditions necessary to reduce strength to that for saturated drained conditions have not yet developed. (The laboratory tests indicate that the embankment zone below the assumed phreatic line is not saturated.) Since the possibility exists that the liner could become ineffective at some point at any time, and since the low factors of safety were calculated from estimated soil parameters, it was felt that additional borings to obtain undisturbed soil samples for more accurate laboratory testing were necessary.
- 5. Four additional borings were made within 5 ft of the initial borings by a WES drill crew using a WES drill rig. Undisturbed Shelby-tube samples, 5 in. in diameter, were obtained. Where the soil possessed sufficient cohesion, Q triaxial tests were performed; where the soil possessed low cohesion, S direct shear tests were performed. All test results are presented in Figures 46-79. A comparison of the initial estimated values and the measured laboratory values indicates that the estimated values were only slightly in error. Since several samples were tested from each zone, and since the values within a zone varied slightly, it was necessary to make statistical selections of values for use in the analyses. The selected soil parameters for respective zones are shown, along with the initial graphic borings logs and estimated values, in Figures 42-45. Stability analyses were performed

utilizing the selected values and the Modified Swedish Method in the CORPS Computer Program 10009. Only the downstream slope was evaluated. Again, pool level was assumed to be 2 ft below the crest. Analyses were also performed with a pseudo-seismic (earthquake) loading of 0.05 g. The analyses are presented in Figures 80-83.

- 6. The analyses revealed that the factors of safety are highly dependent upon the degree of cohesion. Figure 84 graphically depicts this sensitivity. Corps of Engineers (CE) criteria, however, dictate that the SS case be analyzed using the drained strength (S test), which in this case is without cohesion. On this basis, factors of safety of 0.79 to 1.11 were obtained. Because of the sensitivity of the factors of safety to cohesion, analyses were also performed using the undrained strength (Q test) which includes cohesion and represents the unsaturated "as is" condition of the dike. Factors of safety for this condition range from 4.43 to 9.80. A summary of all factors of safety is presented in Figure 85.
- 7. Because of the low factors of safety indicated for the SS case, further analyses were performed with the reservoir pool lowered by 2-ft increments to determine if a lower head would increase the factor of safety to 1.5 as required by CE criteria for the SS case. (We understand that the reservoir pool elevation is decreasing due to reduction and possible complete cessation of fluid discharge into the basin.) Boring 482 was selected as being representative and only this location was subjected to the additional analyses which were performed using both S and Q strengths and with and without earthquake loadings. The results are shown graphically in Figure 86. Increases in factors of safety were only slight.
- 8. A summary of all analyses indicates that in order to comply with current CE criteria of a factor of safety of 1.5 for the SS condition, the downstream dike slope must be altered from its present 1:1 to a flatter 1:2.5. It is estimated that the dike comprises approximately one-half of the total periphery of the basin; consequently,

approximately 3600 lin ft of dike must be altered. The alteration will require approximately 16,000 cu yd of soil. The operation should be fairly simple and can be accomplished by stripping soil from around the periphery with a bulldozer and shoving it up onto the existing slope. The absence of significant vegetation in the surrounding topsoil and on the dike slope should expedite the operation. The peripheral fence must be removed and replaced along the length of dike addressed.

Figure 1

ENG , KAY 63 2087

ENG , FORM, 2087

Figure 3

ENG , MAY 63 2087

Figure 4

Figure 5

ENG , MAY 63 2087

ENG , MAY 63 2087

Figure 6

ENG , FORM 2087

Figure 7

ENG LANT 43 2087

Figure 8

ENG , MAY 63 2087 Figure 9

Figure 10

ENG , MAY 63 2087

Figure 11

ENG FORM 2087

Figure 12

ENG FORM 2087

Figure 13

TRUE FORM 2087

ENG , MAY 63 2087 Figure 15

ENG , MAY 63 2087 Figure 16

Figure 17

ENG LANG 2087

Figure 18

ENG , MAY 63 2087

ENG FORM 2087

Figure 19

Figure 20

ENG , FORM 2087

Figure 21

ENG , MAY 63 2087

ENG FORM 2087

Figure 27

ENG FORM 2087

ENG , MAY 63 2087

ENG FORM 2087

Figure 30

Figure 31

ENG , MAY 63 2087

ENG , MAY 63 2087

ENG , MAY 63 2087

ENG , FORM 2087

ENG , MAY 63 2087

ENG , MAY 63 2087

ENG , MAY 63 2087

Figure 37

ENG , FORM 2087.

ENG , MAY 63 2087

ENG , FORM 2087

ENG , MAY 63 2087

INITIAL INVESTIGATION

	BLOWS	PER FO			WATE	ER CON		, %	EST MA	TED V	ALUES
0	20 40	60	80 1	00 0	10	20	30	40	Story PCE	Ø, DEG	C,PSF
			0			NATUR WATE CONTE	R		131	4 7	0
	9						QUID MIT				
	d					•			127	36	U
	9				9				134	32	0
						PLIA	ASTIC NIT		137	٥	4350
		9			0)			138	0	9930
		ं			••						

	Q TE	Te	S TEST			
έ _ω , PCF	Ø	С	φ.	C	$]_{-}$	0
132	32	<u>501</u> 900	<u>+</u> + 34	0		5
					1	10
115	15	<u>801</u> 840	<u>L[#]2</u> 32	0		20
					-	2 5

ERAPHIC BORING LOGS & STRENGTH VALUES

DIKE STABILITY ANALYSIS

BASIN F

ROCKY MOUNTAIN ARSENAL

DENVER, COLORADO

EST: MATED VALUES IS , PCF | Ø DEG | C, PSF \circ

40		ATED V !Ø,DEG.	
	135 /		0
	132	41	0
	134	32	0
-	137	0	5550
	0	0	15000

·					1
SELECT	ED LAB	ORATOR	Y VAL	UES	
	Q TE	ST	STE	ST	
tw,PCF	Ø	С	⊄	С	70
132	30	<u>5011</u>		0	OF DEPTH, FEET
115	15	<u>5011</u> 540	32	0	20
			<u> </u>		25

DIKE STABILITY AVALYSIS

BASIN F

ROCKY MOUNTAIN ARSENAL

DENVER, COLORADO

Figure 4.

3

INITIAL INVESTIGATION

TC			WATE	R CON	TENT	
80	100	٥	10	20	30	40
				W47	ER	
	^		9			
			•			
		1	PLAS	TIC L	IMIT	
			80 100 0	80 100 0 10	80 100 0 10 20 NAT W47 CON L10	NATURAL WATER CONTENT

ESTIMA Vur, PCF		
129	36	0
133	31	. 0
119	0	2760

SELECTED Yw, PCF 132 115

129 36 O 133 31 O	ESTIMATED VALUES							
133 31 0		المام رس	Ψ, DEG.	C, 151				
		129	36	0				
119 0 2760		133	31	0				
1 1		119	0	2760				

, , , , , , , , , , , , , , , , , , ,	-IMAL I	MACOL			1				
SELECTE	SELECTED LABORATORY VALUES								
	Q TEST		S TEST						
8w, PCF	Φ	ن	Φ	C	70				
132	31.3	<u>Ş</u> 01L 860	# <u>1</u> 34	0	5				
115	15	<u>501</u> L 840	#2	0	OO GI DEPTH, FEET				
]] 25				

NIC BORING LOGS & SERENGTH VALLES
DIKE STABILITY, ANALYSIS
BASIN F.
BICKY STEINTAIN ARSENAL
BENEX, CHERAD

7

Figure

3

FINA

		IN1	TIAL I	NVEST	IGATIO	N	
? FC	100	0		ER CC 20			ع اه
			0	WAT	URAL ER TENT		•
				PLAS	TIC		
			8	LIMI	7	-	
			ē /	LIMIT		5_	
			•••	•	0-1-	•	

TED VA	LUES C, PSF
39	0
35	0
31	0
0	2650
	ø, DEG. 39 35

SELECT	ED LA
	Q T
 y _ω ,PCF	Φ
132	31.3
115	15

GRAPHI

2

	ESTIMA		ALUES C, PSF
1	136	39	0
	129	35	0
	140	31	0
	116	0	2 650

THE THE STICK											
BELECT											
	Q TE	.ST	STE								
y _ω ,PCF	Ф.	С	Ø	C	_	. O					
132	31. 31.	01L #1 860	34	0		G G G C C DEPTH, FEET					
115	<u>5</u> 0	DIL #2 840	32	0		2 0					

DIKE STABILITY ANALYSIS

BASIN F

ROCKY MOUNTAIN ARSENAL

DEWER, COLORADO

Figure 48

	and the second											
	SHEAR STRESS, 7, T/SQ FT		STRENGTH & 1/50 FT		3		•					
8	0 0 -10		SHEAR			2	3 MAL STRESS,	, τ/SQ FT	5	6		
	×			TES	T NO.	. ,	1	2	5			
	<u>z</u>				WATER CONTENT	w.	15.5%	15.1%	15.0%	%		
	-20			INITIAL	VOID RATIO	e,	0.695	0.752	0.730			
	ORWA OC	-30 3 00		Ž	SATURATION	So	28 . 9 %	29 . 5 [%]	31.3%	%		
et a	VERTICAL DEFORMATION, IN				DRY DENSITY, LB/CU FT	γa	99.8	98.1	9 7. 8			
	-740				D RATIO AFTER NSOLIDATION	ec						
		0 0.1 0.2 0.3		TIME FOR 50 PERCENT CONSOLIDATION, MIN								
e e e e e e e e e e e e e e e e e e e		HORIZ. DEFORMATIO	ON, IN.		WATER CONTENT:	\mathbf{w}_{t}	15.9	15.1%	15.%	%		
			FINAL	VOID RATIO	er							
	SHEAR STRENGTH PARAMETERS				SATURATION	St	%	%	%	%		
	φ'	- X-		NORMAL STRESS, T/SQ FT		σ	1.0	2.0 3.0				
	TAN $\phi' =$				MAXIMUM SHEAR STRESS, T/SQ FT		0.67	1.35	2.05			
	٠		ACTUAL TIME TO FAILURE, MIN		1200	1260	1530					
	CONTROLL	ED STRESS	RAT	RATE OF STRAIN, IN./MIN		.00032	.00032	.00032				
	X CONTROLL	ULT	ULTIMATE SHEAR STRESS, T/SQ FT				-					
	TYPE OF SPECIME	N UNDI				3.00 IN. SQUARE		0.457 IN. THICK				
	CLASSIFICATION	SANDY CLAY	(CL), I	JIGI	IT BROWN							
	u 29 Pt 14				PI 15				c. 2.71			
•	REMARKS				PROJECT DIKE STABILITY							
	ALITO AND				ROCKY MOUNTAIN ARSENAL							
					- AREA							
			BORING NO. 1483-U SAMPLE NO. 7									
	l	•			DEPTH 16.1-17.3		DAT	e 02 A]	PR 7 8			
					RCH DIRECT SHEAR TEST REPORT							

2.0		2	111		+11111111		шш
	<u>.</u>						
g 1.5	3	· • • • • • • • • • • • • • • • • • • •	++++				
F-7/6-0-19 -					+11111141		
SHEAR STRESS, 7.		1					
	5						
SHEAL OF THE SHEAL	É		Ф				
0.1111111111111111111111111111111111111	5						
0		0					
	* 1	0	1		2		3
			NOR	MAL STRESS,	σ, T/SQ FT		
-20 - 20		<u>N</u> É		1	T :	<u> </u>	· · · · · · · · · · · · · · · · · · ·
× 34 3	TE	ST NO.		1	2	3	
		WATER CONTENT	w _o	8.1 %	7.8 %	7.7 %	%
-40 -40	INITIAL	VOID RATIO	e _o .	0.898	0.902	0.928	
ORWY	ĮΞ	SATURATION	Sø	1	23.6%	22.6 %	%
-60		DRY DENSITY, LB/CU FT	γa	89.8	89.6	88.4	
VERTICAL DEFORMATION, IN		ID RATIO AFTER	e _c				
0 0.1 0.2 0.3 0.4 0.5		LE FOR 50 PERCENT, INSOLIDATION, MIN	· t ₅₀				
HORIZ. DEFORMATION, IN.		WATER CONTENT	W _f	21.3%	20.0%	18.1%	~ %
SHEAR STRENGTH PARAMETERS	FINAL	VOID RATIO	eį				
SHEAR SIKENGIH PARAMEIERS		SATURATION	Sr	- %	%	%	%
φ' =	NC 1/3	RMAL STRESS, SQ FT	σ	1.0	2.0	3.0	
TAN ¢' =		XIMUM SHEAR IESS, T/SQ FT	max	0.60	1.24	1.77	
c' =	FAI	TUAL TIME TO LURE, MIN	tr	870	720	780	
CONTROLLED STRESS	RAT	E OF STRAIN, IN./MIN		.00036	.00036	.00036	
X CONTROLLED STRAIN		TMATE SHEAR FT 7	ult		Section 1995		
TYPE OF SPECIMEN UNDISTURBED				3.00	N. SQUARE	0.547	IN. THICK
CLASSIFICATION SANDY CLAY (CL), BR	(WO	,	- 				
u 40 Pt 15		PI 25				c. 2.7	3
REMARKS		PROJECT DIKE S	STAE	BILITY			
		ROCKY	MOU	NTAIN A	RSENAL		
VIII. 18 4 4 7 4 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1		AREA					
		BORING NO. 483_U		SAM	IPLE NO.	8	
		DEPTH 20.0-21.2		DAT		APR 78	
			IREC	SHEAR T	******		

the second second	•					2					
2.0	FI-FI-FF	ППП		П							
		HIIII	(B)					 			
)	A	,,,,,,		4 =							
1.5				1/50							
72, 17,				- E							
			1 10 1	Ψ ξ		1					
SHEAR STRESS.	4291			STRENGTH,							
AR S											
¥ ~ _				SHEAR			Φ				
0.5] °							
				1							
0						0					
. ' '				1		O	1		2		3
				1		g vindi	NOR	MAL STRESS,	σ, T/SQ FT		
0 -20 x	T a			1	TES	TNO.		1	2	3	
				1		WATER CONTENT	w.	8.3 %	8.2 %	8.3 %	%
Vertical deformation, in				ф А	INITIAL	VOID RATIO	е.	0.867	0.856	0.887	
-60				1	Ξ	SATURATION	S _o	26.1 %	26.3%	25.5%	%
Y						DRY DENSITY, LB/CU FT	74	91.3	91.8	90.3	
-80						D RATIO AFTER NSOLIDATION	e _c				
	0 0.1	0.2	0.3 0.4 (0.5		FOR 50 PERCENT VSOLIDATION, MIN	t ₅₀	3	<1	<1	
	HORIZ.	DEFORM	ATION, IN.			WATER CONTENT	wı	21.0%	18.0%	17.2%	%
SHEAR	STRENGTH	I PARAMI	FTERS		FINAL	VOID RATIO	er				
						SATURATION	Sr	%	%	%	%
φ.	=	· ·				RMAL STRESS, Q FT	σ	1.0	2.0	3.0	
TAN ø'	=					CIMUM SHEAR ESS, T/SQ FT	T _{max}	0.59	1.22	1.73	
e'	=		T/\$Q FT			UAL TIME TO URE, MIN	tr	645	960	1020	
CONTROLL	ED STRESS				RAT	OF STRAIN, IN./MIN	<u> </u>	.00033	.00033	.00033	
X CONTROLL	D STRAIN					MATE SHEAR SS, T/SQ FT	Tult				
TYPE OF SPECIME	N	UNI	DISTURB	ED				3.00	N. SQUARE	0.547	IN. THICK
CLASSIFICATION	SAN	DY CI	AY (CL)), L	IG	HT BROWN					
u 39		PL	17			PI 22				G. 2.7	73
REMARKS						PROJECT]	DIKE	STABILI	TY		
		·			_]	ROCK	Y MOUNTA	IN ARSE	NAL	÷
	*	······································]	AREA					
	***************************************						3 - U	SAN	PLE NO.	9	1
						DEOTH	_ ^	1		מים חוד	
	 	<u>-</u>				DEPTH 21.2-22	2.0	DAT	E 05 A	PR 7 8	<u> </u>

GPO : 1966 OF-214-945

		2.	0					2	HHI	нини			1111110
				4		. 4							
	-					H							
	1/SQ FT	1.	5 X			1/50							
	1, 1/					,							
		1.				507		1					
	SHEAR STRESS,					STRENGTH,							
	HEA			4		SHEAR	•		ψ				
		0.	%			S							
			0										
								0	I.	MAI STDECS	2 - T/SO ET	4	3
6) .	-10							NO	MAL STRESS,	σ, 1/3Q F1	,	
	읔	-10					TES	T NO.		1	2	3	
	× Ž							WATER CONTENT	w.	7.6 %	7.8%	7.5 %	%
	Š,	-20				`	¥F	VOID RATIO	e.	0.589	0.596	0.586	
	₩.					, ו	INITIAL	SATURATION	So	34.8 %	35•3 [%]	34.6%	%
	DEFO	-30			3)	7		DRY DENSITY,	Ya	106.1	105.6	106.3	
	VERTICAL DEFORMATION, IN							ID RATIO AFTER	ec			2000	
	>	-40				_		NSOLIDATION E FOR 50 PERCENT	+-				
			0 0.1	0.2 0.	.3 0.4 0	.э	co	NSOLIDATION, MIN	t ₅₀	ļ			
			HORIZ.	DEFORMA	TION, IN.	-		WATER CONTENT	Wr	13.8%	13.4%	13.9%	%
		SHEA	R STRENGTH	PARAMET	TERS		FINAL	VOID RATIO	e,			·	
								SATURATION	Sı	. %	%	%	%
		Ф			····		NO T/S	RMAL STRESS, Q FT	σ	1.0	2.0	3.0	
		TAN φ'	=		- :			XIMUM SHEAR ESS, T/SQ FT	τ _{max}	0.67	1.25	1.98	
		e ^r	=	· · · · · · · · · · · · · · · · · · ·	_T/SQ FT		ACI FAII	UAL TIME TO .URE, MIN	tf	1020	750	1230	
	ı	CONTROL	LED STRESS				RAT	E OF STRAIN, IN./MIN		.00039	.00039	.00039	
			LED STRAIN			·		MATE SHEAR ESS, T/SQ FT	Tuit				
	TYP	PE OF SPECIM	EN .	UN.	DISTURE	ED				3.00	N. SQUARE	0.547	IN, THICK
	CLA	ASSIFICATION	SII	JTY SA	ND (SM)	,	BRO	NWO					
	u	NP		PL	NP			PI NP				G. 2.7	70
	REM	AARKS						PROJECT DI	KE S	TABILITY			
							_	RO	CKY :	MOUNTAIN	ARSENA	L	
							_	AREA					
									4-U	SAA	IPLE NO.	5	
	-	··	······································	<u></u>				DEPTH 11.1-1		DAT		APR 78	
•					·			RCH	DIREC	T SHEAR T	EST REPOR	e T	

			-			···												·
	. 2	.0			,	· · · · · · · · · · · · · · · · · · ·		,		2	THIT	HH	HIIII	He	НПП			пп Р
1						13	11112	4					<u> </u>					
1.				1				F										
Ö F	. 1	•5.	/X			1-7 1 1		1/50										
7, 1/50			17		0-	O-		٠. د								Ψ		
55, 7		_	X o			2		GTH,		1								
STRE	1	.0	7					STRENGTH,			111111					i i		
SHEAR STRESS,			C:															
R	0	•5	1		0			SHEAR					 					
			P			1												
							+			0								
		0								0		1				2		3
												NO	MAL STR	ESS,	σ, T/\$G	FT		
7		-20								T NO.			T		r :			
Ĕ									153	1 NO.		т-	1-1	* *		2	3	
ž	. *						\widetilde{W}			WATER CONTEN	ſ	w _o	10.3	%	10.7	%	11.0%	%
NO N		-40				(3)		4	INITIAL	VOID RATIO		e.	0.79	5	0.79	93	0.803	1
ORWA									Ī	SATURATION		So	35•	5 %	37.0)%	37.5 %	%
VERTICAL DEFORMATION, IN. X		-60								DRY DENSITY, LB/CU FT		γa	95.		95.		94.9	
ERTIC		. 00								ID RATIO AFTER		e _c		<u></u>				
>		-80 0	0.	.1 0).2 (0.3	0.4 0	i).5		E FOR 50 PERCEN		ŧ50					- 1 NO.	
			HOE))	FOPM	ATION	ı IN		-	WATER CONTEN		W	16.	%	15.	1.%	15.0%	<u>%</u>
			.,				,		FINAL	VOID RATIO		e _t	10.		10.	4, *	15.0.	
	SI	HEAR	STREN	GTH P	ARAM	ETERS	•		É	SATURATION	·	St	 	%		%	%	%
		φ':	=						NO	RMAL STRESS,			-					70
	TAN	iφ':	=				•		T/S	Q FT			1.		2.		3.0	
		٠,				 T/\$0	\ FT		\$TR	ESS, T/SQ FT		τ _{max}	0.	63	1.	34	1.98	
										TUAL TIME TO		tı	900		.870		900	
	CON	FROLLE	D STRE	SS					RAT	E OF STRAIN, IN.	MIN		.000	39	.000	39	.00039	
	Х сом	ROLLE	D STRAI	iN.						IMATE SHEAR ESS, T/SQ FT		Tult				•		
TY	PE OF SPE	CIMEI	N L	INDI	STU:	RBED	I .						3.0	0 1	N. SQU	ARE	0.547	IN. THICK
CL	ASSIFICAT	ION	CLA	YEY	SAI	1D (sc),	B	ROW	N								
u		26			PL .		11			PI	15						G. 2.7	74
PL	MARKE			·····	*					PROJECT	DIKE	STA	BILIT	Y				
KE	MARKS	· ·									ROCK	Y MC	UNTAI	N A	RSEN	AL	· · · · · · · · · · · · · · · · · · ·	
										AREA								
_	<u> </u>			·····						BORING NO.	484	-U		SA	APLE NO.		6	I
_										DEBTH				DAT			APR 78	
											5.0-1							
1										RCH		DIRE	CT SHE	AR T	EST RE	:PO	CT .	

		4					
4			11111				
	* *						
L		3					
g 3							
08/1, 7, 1/80							
		2					
SHEAR STRESS, 7,							
			0	++1++++1+			111111
SHEAR 1							
			####				
0			ЩШ				
		0 4	2	3	4	. ک	6
			NOR/	MAL STRESS,	σ, T/SQ FT		
9 -10	TES	T NO.			0	2	
× (2)			Ι	1	2	3	
z oo		WATER CONTENT:	W ₀	10.1%	9.4 %	9.1 %	%
-20	INITIAL	VOID RATIO	e,	0.587	0.575	0.574	
Was a series of the series of	Ξ	SATURATION	So	46.5%	44.1%	19.3%	%
-30 -40		DRY DENSITY, LB/CU FT	γa	106.2	107.0	107.1	
-40		ID RATIO AFTER NSOLIDATION	e _c				
0 0.1 0.2 0.3 0.4 0.5		E FOR 50 PERCENT NSOLIDATION, MIN	t50				
HODIZ DEFORMATION IN		WATER CONTENT	W	351.06	3 = 5%	- 0%	%
HORIZ. DEFORMATION, IN.	FINAL	VOID RATIO	ėr	15.47	15.5%	14.5 %	
SHEAR STRENGTH PARAMETERS	童	SATURATION	St	%	%	%	%
, , , , , , , , , , , , , , , , , , ,			31	70	70	70	70
76 C		RMAL STRESS,	σ	1.0	2.0	3.0	
TAN φ' =		XIMUM SHEAR ESS, T/SQ FT	max	0.72	1.42	2.02	
c' =1/\$Q FT	FAI	TUAL TIME TO LURE, MIN	tf	420	1230	1380	
CONTROLLED STRESS	<u></u>	E OF STRAIN, IN./MIN		00035	.00035	.00035	
CONTROLLED STRAIN		IMATE SHEAR ESS, T/SQ FT	Fult		· .		
TYPE OF SPECIMEN UNDISTURBED				3.00	N. SQUARE	0.457	IN. THICK
CLASSIFICATION SILTY SAND (SM),	BRC	NW					
II 19 PI 15		PI 14				G. 2.	70
REMARKS		PROJECT I	TKE	STABIL	CTY		
		I	ROCK	Y MOUNTA	AIN ARSI	ENAL	
		AREA					
		BORING NO. 485-U		SAA	APLE NO.	1	
·		DEPTH 0.0-1.3		DAT	e 07	APR 78	
			IREC	T SHEAR T	EST REPOI	RT	

SHEAR STRESS + T/SO FF			3						SHEAR STRENGTH, s, 1/50 FT		2 1		Φ.	Φ			
.3			0 /				3				0 1		2 NOR	3 MAL STRESS,	σ, T/SQ FT	5	6
Di		-	フ				0		Þ	TES	T NO.			1	2	3	
2	<u>;</u>	· 	10		P	\mathfrak{I}					WATER CONTENT		w _o	13.0%	12.9 %	13.0%	%
ŽĮ.						Z				INITIAL	VOID RATIO		e,	0.497	0.500	0.504	
FP	5		15				X			=	SATURATION		S₀	70.6%	70.0%	69 . 6 %	%
NI NOITAMACTED IN NICES	Š									VO	DRY DENSITY, LB/CU FT D RATIO AFTER		γa	112.6	112.3	112.1	,
VFP		-	20						Þ	co	SOLIDATION FOR 50 PERCENT		e _c				
			. (9 % 0				0.4 0).5		NSOLIDATION, MIN		t ₅₀	. ~		~	
				HO	RIZ. DI	FORM	ATION	ł, IN.		Αľ	WATER CONTENT	-	w _t	14.9%	14.6%	15.0%	%
		SH	EAR	STREN	GTH P	ARAM	ETERS			FINAL	VOID RATIO		e _f	· ·	01	ov.	~
			φ' :	=				. •			SATURATION RMAL STRESS,		S _f	. %	%	%	%
		TAN	φ' =	=						MA	Q FT KIMUM SHEAR	-	max	1.0	2.0	3.0	
			c' :	=	,		T/S	Q FT		ACI	UAL TIME TO			0.70	1.38	2.11	
		_								\vdash	URE, MIN E OF STRAIN, IN./MIN		tı		630	360 .00040	
	L	CONTR								ULT	MATE SHEAR	7	ult	.00040	.00040	•00040	
-	TYPE O	OF SPEC			 	IST	IPRE	תי		STR	ESS, T/SQ FT			3.00 1	N. SQUARE	0.544	IN, THICK
-		IFICATION						M),	ססמ	זעניונ		-	•	3000			
	EL	2		DII		PL		16		70010	PI) ₄	<u>. </u>				G. 2.7	
.			<u> </u>)ŢK	E S	L LABILITY	<u> </u>		
	REMAS										······································			MOUNTAIN		L .	
-		<u> </u>	· · ·								AREA						
-	,										BORING NO. 485			SAA	APLE NO.	3	
-					·····						DEPTH 6.0-7.	.0		DAT	e 09	APR 78	
-											RCH	D	IREC	T SHEAR T	EST REPOR	e T	

F 00	J ₁						1/SQ FT	3						
SHEAR STRESS, r, T/SQ	2	<u>λ</u>	A	2	(2)		SHEAR STRENGTH, s,	2		9	Φ.			
F) .	0 - 20							0	0 i	2 NOR	3 MAL STRESS,	σ, T/SQ FT	5 5	6
× 10	-2.0							TEST	NO.	1	1	2	3	
<u>z</u>	-40						.		WATER CONTENT	₩°	7.3 %	7.1 %	7 . 3 %	%
VERTICAL DEFORMATION, IN.	-40				E			INITIAL	VOID RATIO	e,	0.630	0.614	0.599	
FORM	-60							Z.	SATURATION	So	31.2 %	31.2%	32.9%	%
N PE	-00,								DRY DENSITY, LB/CU FT	γa	103.4	104.4	105.4	
VERTIC	-80								RATIO AFTER SOLIDATION	ec				
		0	.1 0	.2 (0.3	0.4 0.	5		FOR 50 PERCENT SOLIDATION, MIN	t ₅₀				
		но	RIZ. DE	FORM	ATION	I, IN.			WATER CONTENT	w _f	16.9%	16.5%	14.8%	%
	A							FINAL	VOID RATIO	eı				
	SHEAR	SIXEN	IGIH P	AKAM!	EIEKS			- [SATURATION	Sı	. %	%	%	%
	φ'	=						NOR/ T/SG	MAL STRESS, FT	σ	1.0	2.0	3.0	
	TAN φ'	=			-				MUM SHEAR SS, T/SQ FT	max	0.71	1.39	2.12	
	c' .	=		- 11 A-11 - 1	T/\$0	⊋ FT	Ī		IAL TIME TO IRE, MIN	tf	1020	1020	1200	
_	CONTROLLI	n erer	**					RATE	OF STRAIN, IN./MIN		1	00032	.00032	
x	CONTROLLE								MATE SHEAR SS, T/SQ FT	ru) t			. !	
TYPE C	OF SPECIME	N	UN	DIS	TURI	BED	1				3.00 1	N. SQUARE	0.584	IN. THICK
CLASS	IFICATION	SI	LTY	SAN	D (S	SM),	REI)						
u	21		T	PL		17			PI 14				G. 2.7	70
REMAR	KS		·······						PROJECT DIKE	ST	ABILITY		· · · · · · · · · · · · · · · · · · ·	
	-							_	ROCE	Y M	OUNTAIN	ARSENAI		
								- [AREA					
								1	BORING NO. 485-			APLE NO.	5	
									EL TT+O-TT+C		DAT		APR 78	
1								_	BWG D	IREC	T SHEAR T	EST REPOR	RT .	

_				4				 	 	
	. 24			7						
			Ξ.							
E	. 3		7	. 3						
1/86			'n							
5	2		<u>5</u>	2				 		
STOF	2		V KE							
CHEAD STRESS + 1/SO			SHEAK	1		Φ				
ľ	1		,	т.						
				0						
	0			0	0 1	2	3	24	5 📜	6
~						NORA	MAL STRESS,	, T/SQ FT	1	1
þ	-20		-	rest	٧٥.		1	2	3	
×			+	Τ,	WATER CONTENT	wo	7.7 %	7.6 %	7.8 %	%
	<u>ż</u> -40			-						1 "
	VERTICAL DEFORMATION, IN.			Y L	/OID RATIO		0.614	0.611	0.625	%
	5 - 60			ľ	SATURATION	So	33.8 [%]	33.6 [%]	33.7 %	
	₹				DRY DENSITY, .B/CU FT	γa	104.4	104.6	103.7	
ľ	08- VERTIC				RATIO AFTER SOLIDATION	ec				
		0 0.1 0.2 0.3 0.4 0.5			FOR 50 PERCENT SOLIDATION, MIN	t50				
		HORIZ. DEFORMATION, IN.			WATER CONTENT	wi	17.4%	15.2%	15.6%	%
١			1	FINAL	VOID RATIO	er				
	SHEA	R STRENGTH PARAMETERS			SATURATION	Sı	%	%	%	%
	φ'	=			MAL STRESS,	σ	1.0	2.0	3,0	
	TAN ¢'	=	f	T/SC	IMUM SHEAR		 		<u> </u>	
	,		-		SS, T/SQ FT JAL TIME TO	1	0.64	1.37	2.04	
			-	FAIL	URE, MIN	tr	630	870	1140	
	CONTROL	LED STRESS			OF STRAIN, IN./MIN		.00037	.00037	.00037	
	X CONTROL	LED STRAIN			MATE CILLLING	fuit		<u>.</u>		
•	TYPE OF SPECIA	UNDISTURBED					3.00	IN. SQUARE	0.544	IN. THICK
	CLASSIFICATION	SILTY SAND (SM),	BI	ROV	N.					
	u 2:				PI 4		·		G. 2.	70
				-	PROJECT DIK	e si	TABILITY			
	REMARKS						OUNTAIN		L	
					AREA					
					BORING NO. 485	-U	SA	AMPLE NO.	6	
					DEPTH 15.7-17.0		D	ATE 12 A	PR 7 8	
						Dibe	CT SHEAR	TEST REPO	RT	
	1				RCH					

	14 _) comment of the					TITTE
			+									
_	F				E		3					
T/SO FI	3				1/SQ							
7, 1/					* 							
	2) [[]	ZGT.		2					
STR				31111	STREP							
SHEAR STRESS,			10	0 0	SHEAR STRENGTH,			+ Ø				
ģ	1			1	SHE		1					
i				0 0								
	0						0					
							O J.	2	3	14	5	6
								NOR	MAL STRESS,	σ, T/SQ FT		
10	-10					TES	T NO.					
×					ł		WATER CONTENT	w.	16.4%	2 16.7%	3 15.6%	%
VERTICAL DEFORMATION, IN.	-20						VOID RATIO	e _o				,
(ATIO						INITIAL		-	0.561	0.564	0.551	
O. S	-30			0) 7		_	SATURATION	So	79.5%	80.5%	77.0%	%
14 14							DRY DENSITY, LB/CU FT	γa	108.8	108.6	109.5	
/ERTIC	_40						D RATIO AFTER NSOLIDATION	ec				
	-401	∉0.1	0.2 0.	.3 0.4 0	.5		E FOR 50 PERCENT NSOLIDATION, MIN	¢50				٠.
		HORIZ. I	DEFORMA	TION, IN.	Ì	. =	WATER CONTENT	w _f	16.2%	14.5%	13.1%	%
						FINAL	VOID RATIO	e _f				
	SHEAR S	STRENGTH	PARAME	TERS		_	SATURATION	Sı	%	%	%	%
	φ' =	=		-			RMAL STRESS, Q FT	σ	1.0	2.0	3.0	
	TAN φ' =	· 		_		MA	AIMIIM CHEVD	r _{max}	0.69	1.39	2.02	
	c' =	=		_T/SQ FT	l	ACT	TUAL TIME TO	tr	1080	JL080	1080	
					ı		E OF STRAIN, IN./MIN		.00031	.00031	.00031	
1 -= -	CONTROLLE					ULT	IMATE CHEAR	Tult	.00032	00001	0005	
	SPECIMEN				l	STR	ESS, T/SQ FT		2.00	N. SQUARE	0.544	IN. THICK
CLASSIFI				TURBED					3.00		0.744	
CLASSITI	CATION	CLAY	[NDY GRA	VEI	٦ (GC), BROWN		T	· ·	1	
ιι	36		PL	14		-	PI 22				G. 2.72	
REMARKS	·						PROJECT DI	KE	STABILIT	Ϋ́		
<u> </u>	· · · · · · · · · · · · · · · · · · ·						RC	CKY	MOUNTAI	N ARSEN	AL	
	`						AREA					
1						-	BORING NO. 485				8	
						 ·	DEPTH 25.3-26.		DAT			
-							RCH I	DIREC	T SHEAR T	EST REPO	RT	

	SELECT	ED MEASURE	ED SC	IL PAF	RAMET	ERS
v 51 99.5	SOIL	DENSITY, PCF	Q T	EST	STE	ST.
Company distribution of the company			φ	С	Ø	Ŋ
	1 2	132 115	30 15	900 840	34 32	00

EL. 5190.5

EL. 5185.0

DIKE:STABILITY
BASIN F
ROCKY MOUNTAIN
DENVER, COLC

3

DISTANCE ! DOWNSTREAM 20 10 30 5205 FS=1.11,5 STRENGTH-5200 5195 FS=9.80,Q STRENGTH ELEYATION 51.90 5185 SAFETY FACTOR ARC CENTER (W/EARTHQUAKE) (X,Y)S TEST Q TEST 3.12 -17.5, 5207.5 5180 -15.0, 5207.5 1.31 12.53 -12.5, 5207.5 1.15 -15.0, 5205.0 1.12 21.34 -15.0, 5210.0 11.70 -12.5, 5210.0 5175 9.80* -10.0, 5210.0 11.13 -7.5, 5210.0 -5.0, 5210.0 14.84 -7.5, 5207.5 11.65 10.89 -7.5, 5212.5 MUMINIM

(2)

SELECT	ED MEASURED	SOIL	PARAM
SOIL	DENSITY, PCF	7 0	EST
3012	Delicott i, i ot	Ø	J
١	132	31.3	860
2	115	15.0	840

EL 5

[#] 2

COHESION SENSITIVITY
DIKE STABILITY ANALYSIS
BASIN F
ROCKY MOUNTAIN ARSENAL
DENVER, COLORADO

	Minimu	m Safety Fact	ors
Shear	Upstream Slope		
Source Source	Q-test	Q-test	S-test
Estimated	1.87	_	0.87
Measured	-	5.21*	0.83*
Estimated	1.97	-	1.02
Measured		5.09*	0.79*
Estimated	1.78	-	1.25
Measured	-	9.80*	1.11*
Estimated	1.79	71.713*	0.93
Measured		-	0.73*
	Strength Source Estimated Measured Estimated Measured Estimated Measured Estimated Estimated	Shear Slope Strength Source Estimated 1.87 Measured - Estimated 1.97 Measured 1.78 Measured 1.78 Estimated 1.78 Measured 1.79	Shear Slope Slope Slope Strength Q-test Q-test Estimated 1.87 - 5.21* Estimated 1.97 - 5.09* Estimated 1.78 - 9.80* Estimated 1.79

seismic coefficient - 0.05

SUMMARY OF FACTORS OF SAFETY DIKE STABILITY ANALYSIS BASIN F

ROCKY MOUNTAIN ARSENAL DENVER, COLORADO

