The mathematics of nuclear weapons

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe the mathematics of nuclear weapons. The paper ends with "The End"

Introduction

Knowledge has been demanded of me of the mathematics of nuclear weapons. In this paper, I describe the mathematics of nuclear weapons.

The mathematics of nuclear weapons

Let the number of **types** of nuclear weapons be T.

For
$$i \in \{1, 2, \dots, T - 1, T\}$$
,

For $i \in \{1, 2, \dots, T-1, T\}$, Let the **number** of i^{th} type of nuclear weapon be n_i . Let the **mass** of the i^{th} type of nuclear weapon be m_i . Let the **damage** by the i^{th} type of nuclear weapon be δ_i . Then the **yield** of the i^{th} type of nuclear weapon is

$$y_i = \frac{\delta_i}{m_i} - 1$$

Then we have the following equations of the mathematics of nuclear weapons:

$$N = \sum_{i=1}^{T} n_i$$

$$M = \sum_{i=1}^{T} n_i m_i$$

$$\Delta = \sum_{i=1}^{T} n_i \delta_i$$

$$\Psi = \sum_{i=1}^{T} n_i y_i$$

$$\frac{\Delta}{M} - 1 = \epsilon \frac{\Psi}{N}$$

$$d = 1 - \epsilon$$
where

N is the **total number** of nuclear weapons M is the **total mass** of nuclear weapons Δ is the **total damage** by nuclear weapons Ψ is the **total yield** of nuclear weapons ϵ is the **overall efficiency** of nuclear weapons d is the mass defect of nuclear weapons

The End