תורת הקבוצות – תרגיל בית מס' 12 – פתרון חלקי

.1

- א. לא, כי בקבוצה $[0,\frac{1}{2})\cup(\frac{1}{2},1]$ אין סופרמום לתת-קבוצה ($[0,\frac{1}{2})\cup(\frac{1}{2},1]$ אין סופרמום לכל תת-קבוצה.
- ב. יש לקחת פונקציה f חח"ע ועל מ- $\mathbb{Z} \times \mathbb{Z}$ למשל הפונקציה של התקבלת בהוכחה של שקילות העצמה של הקבוצות האלה ב"שיטת . $A=\{f[\{1,2,\ldots,n\}]\}$ כאשר כאשר להגדיר שרשרת הפונקציה ב $A=\{A_n\}_{n\in\mathbb{N}}$
- ג. הפתרון דומה מאוד לפתרון של שאלה 6 סעיף ה' בתרגיל בית 9: בהינתן ג. הפתרון דומה מאוד לפתרון של מגדירים A כקבוצה של כל החסמים מלעיל של קבוצה A הוא חסם A; יש בה איבר ראשון A כי A סדורה היטב; מוכיחים של A ואח"כ שהוא גם סופרמום של A.
- ד. הטענה נכונה: אם ב- A אין איבר מקסימלי אז לכל איבר של A יש איבר של גדיר: חטענה שגדול ממנו \Rightarrow לכל איבר של A יש עוקב מיידי. נגדיר: a_1 איבר ראשון של a_{n+1} ; A של של a_{n+1} אינסופית עוקב מיידי של a_n עוקב מיידי של a_n אז הסדרה אינסופית ידי של a_n עולה.
- בכל ביפה שהיא שהיא ועל, יש להוכיח פונקציה פונקציה פונקציה לוון: $f:R\to R$ נתון: .2 נקודה של

 $.a\in\mathbb{R}$ יהי

יש להוכיח:

. |f(x)-f(a)|< ε יהיה 0<|x-a|< δ כך שלכל δ כך שלכל δ קיים δ

יהי 0<3 כלשהו.

הפונקציה f היא על,

 $f(a_2)=f(a)+\epsilon$ -ו $f(a_1)=f(a)-\epsilon$ -פרע כך a_1 -ו a_1 הפונקציה a_1 היא שומרת סדר וחח"ע, לכן a_1 ו- a_2

. $\delta = \min\{a - a_1, a_2 - a\}$ נבחר

. $0 < |x-a| < \delta$ יהי מספר כלשהו מספר מספר יהי

. $a < x < a + \delta$ או $a - \delta < x < a$ זה אומר:

- אם $a_1< x< a$ מתקיים , $\delta \le a-a_1$ ולכן , $a-\delta < x< a$ אם . $|f(x)-f(a)|< \varepsilon \Leftarrow f(a)-\varepsilon < f(x)< f(a) \Leftarrow f(a) < f(x)< f(a)$
- אם $a< x< a_2$ מתקיים , $\delta \le a_2-a$ שה האחר שי , $a< x< a+\delta$ אם האחר שי , $a< x< a+\delta$ אם האחר שי , $|f(x)-f(a)|< \epsilon \Leftarrow f(a)< f(x)< f(a)+\epsilon \Leftarrow f(a)< f(x)< f(a_2)$

כאשר $\{a_i\}_{i\in\mathbb{N}}$ לא סדורה היטב: נסתכל בקבוצה (X,\leq) .3

$$a_1$$
=(2, 2, 2, 2, 2, ...)

$$a_2$$
=(1, 2, 2, 2, 2, ...)

$$a_3=(1, 1, 2, 2, 2, 2, ...)$$

$$a_4$$
=(1, 1, 1, 2, 2, 2, ...)

$$a_5$$
=(1, 1, 1, 1, 2, 2, ...)

$$a_6$$
=(1, 1, 1, 1, 1, 2, ...)

.....

לקבוצה זאת אין איבר ראשון. (או: הסדרה הזאת היא אינסופית יורדת.)

- 4. נא לראות הדרכה בספר של שמרון (תרגיל 8 אחרי פרק 7; עמוד 211 במהדורה שניה משנת תשמ"ט).
- 5. לא: $1+\omega+1$ הוא רישא של $1+\omega+1+\omega+1$ (בצורה יותר מדויקת: בקבוצה מטיפוס סדר $1+\omega+1+\omega+1$ יש איבר שלרישא המוגדרת על ידיו טיפוס סדר $1+\omega+1+\omega+1$).

. $1 + \omega + 1 < 1 + \omega + 1 + \omega + 1$ לכן