





### UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

### DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2011/2012 – 3<sup>rd</sup> Year Examination – Semester 5

# IT5304: Computer Systems II Structured Question Paper

4<sup>th</sup> March, 2012 (TWO HOUR)

| To be completed by the candidate |  |
|----------------------------------|--|
| BIT Examination Index No:        |  |

#### **Important Instructions:**

- The duration of the paper is 2 (two) hours.
- The medium of instructions and questions is English.
- This paper has 4 questions and 14 pages.
- Answer all questions. All questions carry equal marks.
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the examination hall by a candidate.
- Note that questions appear on both sides of the paper.
   If a page is not printed, please inform the supervisor immediately.

| O | ues | tion | s Ai | ารพ | ere    | d |
|---|-----|------|------|-----|--------|---|
| • | uvv |      |      |     | $\sim$ | v |

Indicate by a cross (x), (e.g | X) ) the numbers of the questions answered.

|                                                          | ( | Question | number | S |  |
|----------------------------------------------------------|---|----------|--------|---|--|
| To be completed by the candidate by marking a cross (x). | 1 | 2        | 3      | 4 |  |
| To be completed by the examiners:                        |   |          |        |   |  |
|                                                          |   |          |        |   |  |
|                                                          |   |          |        |   |  |

| Index No |  |
|----------|--|
|----------|--|

01) (a) Write down the truth table for a 4:1 binary multiplexer with inputs  $D_0$ - $D_3$ , select lines  $S_0$ ,  $S_1$ , and an output F.

(4 Marks)

| SWER  | IN TH | IIS BOX  |  |  |
|-------|-------|----------|--|--|
| $S_0$ | $S_1$ | <u>F</u> |  |  |
| 0     | 0     | $D_0$    |  |  |
| 0     | 1     | $D_1$    |  |  |
| 1     | 0     | $D_2$    |  |  |
| 1     | 1     | $D_3$    |  |  |
|       |       |          |  |  |
|       |       |          |  |  |

(b) For error detection in data communications and data storage, the 'parity bit' method is typically used. For example, in a three bit data word, the fourth bit as an odd parity bit is generated in such a way that the total number of 1's in the four bit word is odd. Write down the truth table showing the possible odd parity bit value p for all possible combinations of a 3 bit data words (a, b, c).

(7 Marks)

| ANS | WER IN | THIS BO | <u>X</u> |
|-----|--------|---------|----------|
| a   | b      | cin     | p        |
| 0   | 0      | 0       | 1        |
| 0   | 0      | 1       | 0        |
| 0   | 1      | 0       | 0        |
| 0   | 1      | 1       | 1        |
| 1   | 0      | 0       | 0        |
| 1   | 0      | 1       | 1        |
| 1   | 1      | 0       | 1        |
| 1   | 1      | 1       | 0        |

(c) Obtain the *most simplified* Boolean expression for p in terms of a, b and c.

(6 Marks)

|                                                 | (U IVIAI KS) |
|-------------------------------------------------|--------------|
| ANSWER IN THIS BOX                              |              |
| $P = \bar{a} b c + \bar{a} b c + a.b.c + a.b.c$ |              |
| $= C (\bar{a}b-a.b) + c(\bar{a}b+ab)$           |              |
| =c (a + b) + c (a + b)                          |              |
| = (a+b) + c                                     |              |
|                                                 |              |

(d) A multiplexer may be effectively used to replace the combinational logic in many instances. Show how the parity bit p can be generated for a 3 bit data word (a b c) using a 4:1 binary multiplexer and a minimum of extra logic.

02) (a) State whether each of the following statements is true or false.

(15 Marks)

(i) A 1.2 GHZ processor with a cycles per instruction ratio (CPI) of 0.4 will be able to deliver a maximum throughput of 3000 MIPS.

(ii) A 64 bit word can be handled by a 32bit processor by assigning a single register or by assigning 4 consecutive (contiguous) memory locations to hold the value.

| ANSWER IN THIS BOX |  |  |
|--------------------|--|--|
| False              |  |  |
|                    |  |  |
|                    |  |  |

|       | Index No                                                                                                                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (iii) | A register-memory (CISC) architecture is characterised by a small CPU register file and a micro programmed control unit.                                                                                   |
|       | ANSWER IN THIS BOX                                                                                                                                                                                         |
|       | True                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                            |
| (iv)  | Register-Register (RISC) instructions are of constant length and without complex addressing modes.                                                                                                         |
|       | ANSWER IN THIS BOX                                                                                                                                                                                         |
|       | True                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                            |
| (v)   | In an instruction pipelined processor, the need for a register argument at the ID stage of a current instruction which has not yet been written to the register file is classified as a structural hazard. |
| [     | ANSWER IN THIS BOX                                                                                                                                                                                         |
|       | False                                                                                                                                                                                                      |
|       |                                                                                                                                                                                                            |
| (vi)  | Cache hit rates which are usually high around 0.8 may drop if there is frequent context switching by the operating system.                                                                                 |
| 1     | ANSWER IN THIS BOX                                                                                                                                                                                         |
|       | True                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                            |
| (vii) | The objective of processor multithreading is to achieve reduced overhead in context switching in an instruction pipeline.                                                                                  |
| 4     | ANSWER IN THIS BOX                                                                                                                                                                                         |
|       | True                                                                                                                                                                                                       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANSWER IN THIS BOX                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | alse                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aisc                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               |
| (ix)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | There are many similarities between a fully associative hardware cache and table which is managed by the operating system: pages (or cache blocks) can be any where and page (or block) replacement is done by a LRU/LFU like algorithm.                                                                                                                                                      |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INSWER IN THIS BOX                                                                                                                                                                                                                                                                                                                                                                            |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | True                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               |
| (x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | According to Amdahl's law, a task with 30% inherent parallelism running of processor cluster is likely to have a maximum speed-up of around 1.4 against a processor.                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | processor cluster is likely to have a maximum speed-up of around 1.4 against a processor.                                                                                                                                                                                                                                                                                                     |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | processor cluster is likely to have a maximum speed-up of around 1.4 against a processor.  INSWER IN THIS BOX                                                                                                                                                                                                                                                                                 |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | processor cluster is likely to have a maximum speed-up of around 1.4 against a processor.  INSWER IN THIS BOX                                                                                                                                                                                                                                                                                 |
| <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | processor cluster is likely to have a maximum speed-up of around 1.4 against a processor.  INSWER IN THIS BOX                                                                                                                                                                                                                                                                                 |
| <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | processor cluster is likely to have a maximum speed-up of around 1.4 against a processor.  INSWER IN THIS BOX  True                                                                                                                                                                                                                                                                           |
| Write co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | processor cluster is likely to have a maximum speed-up of around 1.4 against a processor.  INSWER IN THIS BOX  True  down the following stack instruction in terms of generic RISC instructions.  PUSH 100  0x100 is a memory location and the contents of memory location 0x100 is to be put                                                                                                 |
| Write co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | processor cluster is likely to have a maximum speed-up of around 1.4 against a processor.  INSWER IN THIS BOX  True  In the following stack instruction in terms of generic RISC instructions.  PUSH 100  Ox100 is a memory location and the contents of memory location 0x100 is to be pushe stack. Assume stack pointer is referred to by register R31.                                     |
| Write of the control | processor cluster is likely to have a maximum speed-up of around 1.4 against a processor.  INSWER IN THIS BOX  True  down the following stack instruction in terms of generic RISC instructions.  PUSH 100  0x100 is a memory location and the contents of memory location 0x100 is to be put                                                                                                 |
| Write of the control | processor cluster is likely to have a maximum speed-up of around 1.4 against a processor.  INSWER IN THIS BOX  True  down the following stack instruction in terms of generic RISC instructions.  PUSH 100  0x100 is a memory location and the contents of memory location 0x100 is to be public stack. Assume stack pointer is referred to by register R31.  (5 I                            |
| Write of the control | processor cluster is likely to have a maximum speed-up of around 1.4 against a processor.  INSWER IN THIS BOX  True  down the following stack instruction in terms of generic RISC instructions.  PUSH 100  0x100 is a memory location and the contents of memory location 0x100 is to be pushe stack. Assume stack pointer is referred to by register R31.  (5 INSWER IN THIS BOX            |
| Write of the where on to the P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | processor cluster is likely to have a maximum speed-up of around 1.4 against a processor.  INSWER IN THIS BOX  True  down the following stack instruction in terms of generic RISC instructions.  PUSH 100  0x100 is a memory location and the contents of memory location 0x100 is to be pushe stack. Assume stack pointer is referred to by register R31.  (5)  INSWER IN THIS BOX  USH 100 |

Index No .....

| Index No |
|----------|
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |

(c) Consider the following RISC code fragment executing on a typical 5-stage RISC instruction pipeline with stages IF, ID, EX, MEM and WB. Identify all the data hazards and by the use of suitable techniques, show a stalling minimised space-time diagram for the code.

LD R1, 100[R2] ADD R4, R1, R3 ST 100[R2], R4 ADDI R2, R2, #4 SUB R5, R5, R2

(5 Marks)



O3) (a) The block diagram below shows the structure of a general purpose computer system emphasizing three levels of storage, namely, the cache (C), the main memory (M) and the secondary storage (S).



| (i) | Classify the three levels of storage in terms of their relative values of access time, cost |
|-----|---------------------------------------------------------------------------------------------|
|     | per bit and size. Use the one of the terms, low (small), medium and high (large).           |

(2 Marks)

| ANSWER | R IN THIS BOX | <u>(</u>     |        |
|--------|---------------|--------------|--------|
|        | access time   | cost per bit | size   |
| Cache  | Low           | high         | small  |
| M      | medium        | medium       | medium |
| S      | high          | low          | large  |
|        |               |              |        |

(ii) What is the order of access of the three levels by the CPU for an instruction or data fetch?

(2 Marks)

|                                        | (2 1/14/14) |
|----------------------------------------|-------------|
| ANSWER IN THIS BOX                     |             |
| First – cache, second – M, finally - S |             |
|                                        |             |
|                                        |             |
|                                        |             |

(iii) Assuming there is no secondary storage S, calculate the average access time as seen by the CPU for the two level memory system with a cache access time of 10 nsec, and a main memory access time of 100nsec, and a hit ratio of 0.95.

(2 Marks)

|                                                                        | (= 1:10:1115) |
|------------------------------------------------------------------------|---------------|
| ANSWER IN THIS BOX                                                     |               |
| $t_{avg} = 0.95 \times 10 + (1 - 0.95) \times (10 + 100) \text{ nsec}$ |               |
|                                                                        |               |
|                                                                        |               |
|                                                                        |               |
|                                                                        |               |

(iv) It is possible that a data element can reside simultaneously on cache, on memory and on secondary storage. Suppose the element in cache is updated by the CPU. What possible 'future' problems can occur due to this update?

ANGWED IN THIS DAY

(2 Marks)

| ANSWER IN THIS BOX                                                                           |
|----------------------------------------------------------------------------------------------|
| The data items on S and M are old values; if a page swap takes place, item the updated value |
| In C is not in M or S                                                                        |

| Ì    | Index No                                                                                                                                                                                                                                                                                   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (v)  | Which memory levels are under the operating systems control? What is this mechanism called?                                                                                                                                                                                                |
|      | ANSWER IN THIS BOX                                                                                                                                                                                                                                                                         |
|      | M & S are under OS; paging is the mechanism                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                            |
| 24 t | processor of a computer system generates a 32 bit virtual address which is translated into a bit real (physical) address. The virtual memory is paged with 16kbyte pages and the cache is kbytes and fully associative with a block size (cache line) of 64 bytes. CPU word length is its. |
| (i)  | In the page table, how many bits of the virtual address are mapped to how many bits of the physical address?                                                                                                                                                                               |
|      | ANSWER IN THIS BOX                                                                                                                                                                                                                                                                         |
|      | 18 bits to 10 bits                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                            |
| (ii) | If a 32 bit instruction is located at 0x34AB70, what is the address (in hexadecimal) of the next immediate memory location thereafter?                                                                                                                                                     |
|      | ANSWER IN THIS BOX (2 marks                                                                                                                                                                                                                                                                |
|      | 0×34AB74                                                                                                                                                                                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                            |

| í     | Index No                                                                                                                                                                                                                                                                                   |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (iii) | How many cache blocks are there in the cache?                                                                                                                                                                                                                                              |
|       | ANSWER IN THIS BOX                                                                                                                                                                                                                                                                         |
|       | 256111111111111111111111111111111111111                                                                                                                                                                                                                                                    |
|       | 256 k bytes = 4 × 1024 = 4096 cache blocks  64 bytes 64                                                                                                                                                                                                                                    |
|       |                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                                                                            |
| (iv)  | How many bits are there in the tag field of each cache block?                                                                                                                                                                                                                              |
|       | ANSWER IN THIS BOX                                                                                                                                                                                                                                                                         |
|       | tag field = (24 bit - 6 bits) = 18 bits                                                                                                                                                                                                                                                    |
|       |                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                                                                            |
| (i)   | One of the main objectives of computer architects has been to reduce the CPI of the processor thereby increasing the throughput (in MIPS or FLOPS). Given that simple instruction pipelining (ideally) attains a CPI of 1, how would instruction level parallelism help towards this goal? |
|       | (2 Marks)                                                                                                                                                                                                                                                                                  |
|       | ANSWER IN THIS BOX                                                                                                                                                                                                                                                                         |
|       | 1LP → CP1 < 1 by multiple issue pipelines                                                                                                                                                                                                                                                  |
|       |                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                                                                            |

|       | multithreaded processor.                                                                                                                                                                                                                                                               | (2 Mark                                                                                                                                                                                                                                |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _     | ANSWER IN THIS BOX                                                                                                                                                                                                                                                                     | (2 Mair                                                                                                                                                                                                                                |
|       | Multithreaded                                                                                                                                                                                                                                                                          | non m/t                                                                                                                                                                                                                                |
|       | Low context switch overhead                                                                                                                                                                                                                                                            | high context switch overhead                                                                                                                                                                                                           |
|       | Higher throughput                                                                                                                                                                                                                                                                      | lower throughput                                                                                                                                                                                                                       |
|       | More efficient                                                                                                                                                                                                                                                                         | less efficient                                                                                                                                                                                                                         |
| (iii) | The emerging multi-core processor this fact.                                                                                                                                                                                                                                           | rs are in fact shared memory multiprocessors. Explain                                                                                                                                                                                  |
|       | uns ract.                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                        |
| _     |                                                                                                                                                                                                                                                                                        | (2 Mari                                                                                                                                                                                                                                |
| _     | ANSWER IN THIS BOX                                                                                                                                                                                                                                                                     | sharing caches and may be main memory,                                                                                                                                                                                                 |
| Sugg  | ANSWER IN THIS BOX  Multi core means 2 or more cores  whereas multiprocessors usually                                                                                                                                                                                                  | sharing caches and may be main memory, share main memory only,                                                                                                                                                                         |
| Sugg  | ANSWER IN THIS BOX  Multi core means 2 or more cores  whereas multiprocessors usually  gest suitable words/phrases for the blan                                                                                                                                                        | sharing caches and may be main memory, share main memory only,  nks indicated. d, a small piece of code known as theA progra                                                                                                           |
|       | ANSWER IN THIS BOX  Multi core means 2 or more cores  whereas multiprocessors usually  est suitable words/phrases for the blace  When a computer systems is started locates theB, loads it into ma                                                                                     | sharing caches and may be main memory, share main memory only,  nks indicated. d, a small piece of code known as theA progratin memory and starts its execution.  rintf() statement, the C library intercepts this call a              |
| (i)   | ANSWER IN THIS BOX  Multi core means 2 or more cores  whereas multiprocessors usually  est suitable words/phrases for the blan  When a computer systems is started locates the                                                                                                         | sharing caches and may be main memory, share main memory only,  nks indicated. d, a small piece of code known as theA progratin memory and starts its execution.  rintf() statement, the C library intercepts this call a system call. |
| (i)   | ANSWER IN THIS BOX  Multi core means 2 or more cores  whereas multiprocessors usually  est suitable words/phrases for the blan  When a computer systems is started locates the                                                                                                         | share main memory only,  nks indicated.  d, a small piece of code known as theA progratin memory and starts its execution.  rintf() statement, the C library intercepts this call a                                                    |
| (i)   | ANSWER IN THIS BOX  Multi core means 2 or more cores whereas multiprocessors usually  est suitable words/phrases for the blan When a computer systems is started locates theB, loads it into ma When a C program invokes the prinvokes the operation system'sC  ANSWER IN THIS BOX  A. | sharing caches and may be main memory, share main memory only,  nks indicated. d, a small piece of code known as theA progratin memory and starts its execution.  rintf() statement, the C library intercepts this call a system call. |
| (i)   | ANSWER IN THIS BOX  Multi core means 2 or more cores  whereas multiprocessors usually  est suitable words/phrases for the blan  When a computer systems is started locates the                                                                                                         | sharing caches and may be main memory, share main memory only,  nks indicated. d, a small piece of code known as theA prograin memory and starts its execution.  rintf() statement, the C library intercepts this call a system call.  |

Index No .....

| Index No |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
|----------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

(b) (i) Consider the following code fragment.

```
int pid;

pid = fork();

if (pid<0) {
    fprintf(stderr, "Fork failed");
    return 1;
}

else if (pid==0) {
    printf("Child:\n");
    execlp("/bin/date","date",NULL);
}

else {
    printf("Parent:\n);
    wait(NULL);
    printf("Child complete");
}</pre>
```

(Note: The date commands prints the system date.)

Assuming a fork() system call was successful, state a possible output of the above code fragment:

(3 Marks)

## **ANSWER IN THIS BOX**

|       |                                              | Index No                                                                                                                                             | •••   |
|-------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (ii)  | Consider the following of                    | code fragment.                                                                                                                                       |       |
|       | for (i=0;i<2;i++)<br>pthread_create(&tid, &a | -                                                                                                                                                    |       |
|       | Assuming the code for <i>r</i> fragment:     | runner is available, state the outcome of the above C code                                                                                           |       |
|       |                                              | (3 M                                                                                                                                                 | arks) |
|       | ANSWER IN THIS BO                            | <u>)X</u>                                                                                                                                            |       |
|       |                                              |                                                                                                                                                      |       |
|       |                                              |                                                                                                                                                      |       |
|       |                                              |                                                                                                                                                      |       |
|       |                                              |                                                                                                                                                      |       |
|       |                                              |                                                                                                                                                      |       |
| (iii) | Under non-preemptive s                       | phrases for the blanks indicated. scheduling, once the CPU has been assigned to a process, the ntil that process A or, the processor is to a B state | ).    |
|       |                                              | (2 M                                                                                                                                                 | arks) |
|       | ANSWER IN THIS BO                            | <u>)X</u>                                                                                                                                            |       |
|       | A.                                           |                                                                                                                                                      |       |
|       | В.                                           |                                                                                                                                                      |       |
| (iv)  | State whether each of the                    | e following process scheduling algorithms result in starvation                                                                                       | ?     |
| A     | . First come, first served                   | (Yes/No)                                                                                                                                             |       |
| В     | S. Shortest job first                        | (Yes/No)                                                                                                                                             |       |
| C     | . Round robin                                | (Yes/No)                                                                                                                                             |       |
|       |                                              | (3 M                                                                                                                                                 | arks) |
|       | ANSWER IN THIS BO                            | <u>)X</u>                                                                                                                                            |       |
|       | A.                                           |                                                                                                                                                      |       |
|       | B.                                           |                                                                                                                                                      |       |
|       | C.                                           |                                                                                                                                                      |       |

| Suggest suitable words/phrases for the blanks indicated.  A memory address generated by the CPU is commonly referred to as the A address where an address seen by the main memory unit is commonly referred to as the B address.  (2 marks) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A memory address generated by the CPU is commonly referred to as the <u>A</u> address where an address seen by the main memory unit is commonly referred to as the <u>B</u> address.                                                        |
| where an address seen by the main memory unit is commonly referred to as the Barran address.                                                                                                                                                |
| ·                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                             |
| ANSWER IN THIS BOX                                                                                                                                                                                                                          |
| A.                                                                                                                                                                                                                                          |
| B.                                                                                                                                                                                                                                          |
| When allocating memory to a process, the first fit scheme allocates the first hole that is big enough. In the best fit scheme, theA hole that is big enough is allocated. In the worst fit scheme, theB hole is allocated.                  |
| (2 marks                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                             |
| ANSWER IN THIS BOX                                                                                                                                                                                                                          |
| A.                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                             |
| B.                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
| Consider the following page reference string:                                                                                                                                                                                               |
| 1,2,3,4,2                                                                                                                                                                                                                                   |
| Assuming a physical memory that consists of three frames and that all frames are initially empty, how would above pages occupy the memory for an LRU (least recently used) replacement scheme? How many page faults would occur?            |
| (4 marks)                                                                                                                                                                                                                                   |
| ANGWED IN THIS DOV                                                                                                                                                                                                                          |
| valance in 1815 Kill                                                                                                                                                                                                                        |
| ANSWER IN THIS BOX                                                                                                                                                                                                                          |
| ANSWER IN I TIIS BUX                                                                                                                                                                                                                        |
| ANSWER IN I FIIS BUX                                                                                                                                                                                                                        |
| ANSWER IN I TIIS BUX                                                                                                                                                                                                                        |
| ANSWER IN I TIIS BUX                                                                                                                                                                                                                        |
| ANSWER IN I TIIS BUX                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                             |

| igges<br>(i) | t suitable words/phrases for the blanks indicated.  The mount point is the location within the master file structure where another file system is to beA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANS          | (1 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (ii)         | The basic hardware interrupt mechanism works as follows. The CPU has a pin ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (ii)         | the interrupt-request line that the CPU senses after executing every <b>A</b> When CPU detects that a controller has asserted a signal on the interrupt request line CPU performs a state <b>B</b> and jumps to interrupt handling routine residing fixed location in memory. The interrupt handler determines the cause of the interrupt handler determines the c |
| (ii)         | the interrupt-request line that the CPU senses after executing every A When CPU detects that a controller has asserted a signal on the interrupt request line. CPU performs a state B and jumps to interrupt handling routine residing fixed location in memory. The interrupt handler determines the cause of the interperforms the necessary processing, performs a state restore and executes a return interrupt instruction to return the CPU to the execution state prior to the interrupt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| . ,          | the interrupt-request line that the CPU senses after executing every <u>A</u> When CPU detects that a controller has asserted a signal on the interrupt request line CPU performs a state <u>B</u> and jumps to interrupt handling routine residing fixed location in memory. The interrupt handler determines the cause of the interperforms the necessary processing, performs a state restore and executes a return to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . ,          | the interrupt-request line that the CPU senses after executing every A When CPU detects that a controller has asserted a signal on the interrupt request line CPU performs a state B and jumps to interrupt handling routine residing fixed location in memory. The interrupt handler determines the cause of the interperforms the necessary processing, performs a state restore and executes a return interrupt instruction to return the CPU to the execution state prior to the interrupt.  (2 ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

(d)

\*\*\*\*