

Fig. 1

Allele Calling for di-nucleotide marker in linkage mapping application Sample Data (2)

Figure 11

Allele Calling for di-nucleotide marker in linkage mapping application Sample Data (1)

Figure 12

Figure 13: Standard heterozygous allele signature. Circles denote user annotated allele calls. x-axis is in base pairs. y-axis is in A/D counts (voltage intensity)

01234567890101112131415161718191A

Figure 14: Steps in the allele calling routine. First the signal is simplified via sampling and its peaks are located. This forms the target signal that is to be approximated. The two interconnected boxes indicate the process of varying the parameters and testing how closely the resulting signal matches the sampled version of the original. The set of parameters that yield the closest match contain the allele calls.

Figure 16: Division of heterozygous signal into panels by the Envelope Caller algorithm. The panels are ranked according to signal energy and the three of interest are labeled p1, p2 and p3 with the two panels containing strong allele signatures being shaded in blue. Circles denote user annotated allele calls. x-axis is in base pairs. y-axis is in A/D counts (voltage intensity)