IOWA STATE UNIVERSITY

Department of Economics, Department of Electrical & Computer Engineering

Report on:

ERCOT PNNL Contract 401882: *Start Date* 3/19/2018

Development of an Integrated Transmission and Distribution Test System to Evaluate Transactive Energy Systems

ISU Project Team:

PI Leigh Tesfatsion & Co-PI Zhaoyu Wang

Grad Research Assistant: Swathi Battula

PNNL/ISU Web Conference, 18 January 2019

ERCOT Contract: Presentation Outline

- Original Task/Milestone Schedule: M1-M3
- Updated Task/Milestone Schedule: M1-M3
- M3.2 Work to Date: Summary of AMES V5.0 Work to Date for Milestone M3.2
- M3.2 Work in Progress: Summary of AMES V5.0 Work in Progress for Milestone M3.2
- M3.2: Report on AMES V5.0 Verification Test Cases
 - Notes on AMES V5.0 Verification Test-Case Data Files
 - Summary of AMES V5.0 Verification Test Cases Conducted to Date
 - Brief Summary of Planned Future AMES V5.0 Verification Test Cases
 - Report on New AMES V5.0 Verification Test Case Results
 - VerTestCaseBaseCase: Input data and outcome verification for a base test case
 - VerTestCaseGenMinPowerLevel: Input data and outcome verification for various generator coding aspects
 - Reprise of Previously Reported AMES V5.0 Test Case Results
 - VerTestCaseMultiDayRun: Input data and outcome verification demonstrating correct refreshing of initial
 DAM/RTM conditions in multiple-day runs

Original Task & Milestone Schedule

Milestone	Date Due	Original Description
M1	May 31, 2018	5-zone model of the old ERCOT system, posted to a web repository.
M2	Sep 30, 2018	Nodal model of the new ERCOT system, posted to a web repository.
M3	Sep 30, 2018	Submitted conference or journal paper on this work.

Updated Task & Milestone Schedule

Milestone	Date Due	Date Delivered	Fuller Descriptions of Actual Work
M1* DONE	May 31, 2018	June 5, 2018	Development of 8-Bus ERCOT model (with nodal locational marginal pricing); grid/load/gen data posted at PNNL repository
M2.1 DONE	Sept 30, 2018	August 1, 2018	Basic 8-Bus ERCOT Test System, implemented via AMES V3.1, posted at https://github.com/ITDProject/ERCOTTestSystem
M2.2 DONE	Sept 30, 2018	August 24, 2018	8-Bus ERCOT Test System (with wind power), implemented via AMES V3.2, posted at https://github.com/ITDProject/ERCOTTestSystem
M3.1 DONE	Sept 30, 2018	August 31, 2018	200-Bus ERCOT Test System (with wind power), implemented via AMES V3.2, posted at https://github.com/ITDProject/ERCOTTestSystem/tree/master/ERCOT_Test_System
M3.2**	Feb 28, 2019		200-Bus ERCOT Test System (with wind power), implemented via AMES V5.0, to be posted at PNNL/ISU repositories.
M3.3**	Feb 28, 2019		Paper to be submitted that focuses on the development of the ERCOT Test Systems

^{• *} M1 Modification (Ok'd by PNNL): For M1 we have skipped the modeling of the old (zonal) ERCOT system and instead directly worked to develop an 8-bus model of the new (nodal) ERCOT system.

^{• **} M3 Modification: Contract extension through Feb 28, 2019 received from PNNL on Dec 21, 2018, for completion of task M3

Summary of AMES V5.0 Work to Date for M3.2

- ☐ Extension of AMES V5.0 Capabilities for Milestone M3.2
 - [DONE] Coding for Daily DAM SCUC optimization
 - [DONE] Coding for RTM SCED optimization every M minutes (M user specified).
 - [DONE] Coding for FNCS integration to enable network co-simulation.
 - [DONE] Detailed documentation for analytical DAM SCUC/SCED optimization in AMES V5.0
 - [DONE] Basic documentation for AMES V5.0, including a detailed list for all parameters/flags and initial state variables that need user configuration.

Summary of AMES V5.0 Work to Date for M3.2 ... Continued

[DONE]

Modified `PSST' Code

- ➤ To ensure correct refreshing of initial DAM/RTM conditions for multiple-day runs.
- > To report DAM LMPs and GenCo Commitments back to the user.
- > To read 'startup' and 'shutdown' cost components from AMES
- To produce output messages related to solver, e.g. status of the solver, termination condition of the solver
- ➤ To include the parameter 'Maximum Time Limit' to allow the solver to terminate after the prescribed time has elapsed

Verification Tests Done

- Verified 'DAM SCUC' outcomes for their correctness for simple test cases
- ➤ Verified 'RTM SCED' outcomes for their correctness for simple test cases with RTM running every five minutes (i.e., M=5)
- Verified that AMES V5.0 runs for multiple days
- Verified that all the cost components from AMES are read correctly into the SCUC formulation

Summary of Work in Progress for Milestone M3.2

[IN PROGRESS] Additional Verification Checks for AMES V5.0 Code

- ➤ Additional DAM/RTM verification test cases are being formulated and conducted.
 - Example: Formulation of test cases with varied generator production cost coefficients and minimum generating capacity that permit validation of production cost component modeling for the SCUC optimization
- Need to ensure outcomes are reported properly back to the user. Additional data that need to be written to '.out' file are: RTM LMPs, RTM GenCo commitment data, DAM/RTM power flow data, LMP true costs, and generator profit/propensity data.
- ➤ Detailed verification of PSST code for validating SCUC optimization formulation, including both objective function and constraints.

[IN PROGRESS] Further Cleaning Up of AMES V5.0 Code

Current code includes unused functions that need to be removed.

Report on AMES V5.0 Verification Test Cases

Notes on AMES V5.0 Test-Case Data Files

- Input data files for verification test cases are located in the following GitHub website directory: AMES-V5.0\DATA\VerificationTestCases\
- Intermediary output files:
 - Data files written by AMES V5.0
 - ✓ ReferenceModel.dat: This is an input file for PSST that contains input data required to solve SCUC.
 - ✓ RTReferenceModel.dat: This is an input file for PSST that contains input data required to solve SCUC.
 - rt-unitcommitments.dat: : This is an input file for PSST that contains the unit commitment status of each generator for each M-minute period.
 - SCUC output data files generated by PSST for Day-Ahead Market (DAM)
 - ✓ Xfertoames.dat: Contains DAM unit commitment status and dispatch schedule for each generator along with generator ID.
 - ✓ DAMLMP.dat : Contains DAM LMP at each bus for each hour of a 24-hour period
 - SCED output data files generated by PSST for the Real-Time Market (RTM)
 - ✓ RTSCED.dat: Contains RTM LMP at each bus for each M-minute period, power dispatch scheduled for each generator for the next M-minute period, and start-up and shut-down cost details for each minute of each M-minute period.

Summary of AMES V5.0 Verification Test Cases Conducted to Date

1. VerTestCaseBaseCase

- This test case produces SCUC/SCED outcomes under the following conditions:
 - i. Transmission congestion is absent
 - ii. Minimum power generation limits are taken to be zero
 - iii. Start up, shut down and no-load costs are taken to be zero
 - iv. Minimum up-time and down-time values are taken to be 0 (hr)
 - v. No ramping limits
 - vi. Day-ahead and real-time load forecasts are set equal
- This test case provides a base case for later comparison purposes.

VerTestCaseGenMinPowerLevel

- This test case verifies a generator's minimum power level is maintained when it is committed, given the above-stated conditions (i) and (iii)-(vi).
- 3. VerTestCaseMultiDayRun
 - This test case verifies DAM/RTM initial conditions are refreshed appropriately when AMES V5.0 is run for multiple successive days.

Brief Summary of Planned Future AMES V5.0 Verification Test Cases

VerTestCaseCostComponents

The purpose of this test case is to verify cost component aspects of the SCUC formulation under the above-stated conditions (i)-(ii) and (iv)-(vi) - i.e., to verify that the SCUC formulation correctly includes no-load, start-up, and shut-down cost components.

VerTestCaseUpTimeDownTime

The purpose of this test case is to verify that the minimum up-time and down-time constraints are correctly modeled in the SCUC formulation.

VerTestCaseRampUpRampDown

The purpose of this test case is to verify that ramping constraints are correctly modeled in the SCUC/SCED formulation.

Verification Test Case 1 - VerTestCaseBaseCase

Verification Test Case 1 - VerTestCaseBaseCase

VerTestCaseBaseCase: This test case provides a base case for later comparison purposes.

Some of the *input data* given in VerTestCaseBaseCase.dat are presented below.

#GenDataStart	t							
// Name	ID	atBus	FCost	а	b	capL	capU	InitMoney
GenCo1	1	1	0.0000	10.0000	0.0050	0	1000	1000000.0000
GenCo2	2	2	0.0000	11.0000	0.0050	0	1000	1000000.0000
GenCo3	3	3	0.0000	12.0000	0.0050	0	1000	1000000.0000
GenCo4	4	4	0.0000	13.0000	0.0050	0	1000	1000000.0000
GenCo5	5	5	0.0000	14.0000	0.0050	0	1000	1000000.0000
GenCo6	6	6	0.0000	20.0000	0.0091	0	1000	1000000.0000
GenCo7	7	7	0.0000	25.0000	0.0092	0	1000	1000000.0000
GenCo8	8	8	0.0000	30.0000	0.0093	0	1000	1000000.0000

#GenDataEnd

#ScucInputDataStart

// Name	PowerT0 U	nitOnT0	MinUpTime	MinDownTime No	ominalRampUp	NominalRampDown St	artupRampLim	ShutdownRampLim	Schedule	Schedule2
GenCo1	0.0000	0	0	0	0	0	0	0	1	1
GenCo2	1000.0000	1	0	0	0	0	0	0	1	1
GenCo3	0.0000	0	0	0	0	0	0	0	1	1
GenCo4	1000.0000	1	0	0	0	0	0	0	1	1
GenCo5	0.0000	0	0	0	0	0	0	0	1	1
GenCo6	1000.0000	1	0	0	0	0	0	0	1	1
GenCo7	0.0000	0	0	0	0	0	0	0	1	1
GenCo8	1000.0000	1	0	0	0	0	0	0	1	1

#ScucInputDataEnd

VerTestCaseBaseCase: This test case provides a base case for later comparison purposes.
Some of the *input data* given in VerTestCaseBaseCase.dat are presented below.

#LSEDataF	ixed	DemandS	tart								
/ Name		ID	atBus	H0	H1	H2	НЗ	H4	H5	H6	H7
LSE1	1	1		400	400	400	400	400	400	400	400
LSE2	2	2		400	400	400	400	400	400	400	400
LSE3	3	3		400	400	400	400	400	400	400	400
LSE4	4	4	•	400	400	400	400	400	400	400	400
LSE5	5	5		400	400	400	400	400	400	400	400
LSE6	6	6	i	400	400	400	400	400	400	400	400
LSE7	7	7	•	400	400	400	400	400	400	400	400
LSE8	8	8		400	400	400	400	400	400	400	400
/ Name		ID	atBus	H8	H9	H10	H11	H12	H13	H14	H15
LSE1	1	1		400	400	400	400	400	400	400	400
LSE2	2	2		400	400	400	400	400	400	400	400
LSE3	3	3		400	400	400	400	400	400	400	400
LSE4	4	4		400	400	400	400	400	400	400	400
LSE5	5	5		400	400	400	400	400	400	400	400
LSE6	6	6		400	400	400	400	400	400	400	400
LSE7	7	7		400	400	400	400	400	400	400	400
LSE8	8	8		400	400	400	400	400	400	400	400
/ Name		ID	atBus	H16	H17	H18	H19	H20	H21	H22	H23
LSE1	1	1		400	400	400	400	400	400	400	400
LSE2	2	2		400	400	400	400	400	400	400	400
LSE3	3	3		400	400	400	400	400	400	400	400
LSE4	4	4		400	400	400	400	400	400	400	400
LSE5	5	5		400	400	400	400	400	400	400	400
LSE6	6	6		400	400	400	400	400	400	400	400
LSE7	7	7	•	400	400	400	400	400	400	400	400
LSE8	8	8		400	400	400	400	400	400	400	400
#LSEDataF	ixed	DemandE	ind								

VerTestCaseBaseCase: This test case provides a base case for later comparison purposes.

Some of the **DAM output data** reported in the output files xfertoames.dat and ReferenceModel.dat are presented below.

Table 1: Generation ON/OFF Status

		GenCo1	GenCo2	GenCo3	GenCo4	GenCo5	GenCo6	GenCo7	GenCo8
	InitialCondition	0	1	0	1	0	0	0	0
D1	H1	1	1	1	1	0	0	0	0
D1	H2	1	1	1	1	0	0	0	0
D1	H3	1	1	1	1	0	0	0	0
D1	H4	1	1	1	1	0	0	0	0
D1	H5	1	1	1	1	0	0	0	0
D1		1	1	1	1	0	0	0	0
D1	H23	1	1	1	1	0	0	0	0
D1	H24	1	1	1	1	0	0	0	0

Table 2: Power Generation (p.u.)

		GenCo1	GenCo2	GenCo3	GenCo4	GenCo5	GenCo6	GenCo7	GenCo8
	InitialCondition	0	10	0	10	0	10	0	10
D1	H1	10	10	10	2	0	0	0	0
D1	H2	10	10	10	2	0	0	0	0
D1	H3	10	10	10	2	0	0	0	0
D1	H4	10	10	10	2	0	0	0	0
D1	H5	10	10	10	2	0	0	0	0
D1		10	10	10	2	0	0	0	0
D1	H23	10	10	10	2	0	0	0	0
D1	H24	10	10	10	2	0	0	0	0

VerTestCaseBaseCase: This test case provides a base case for later comparison purposes.

Some of the *RTM output data* reported in the output files rt-unitcommitments.dat, RTReferenceModel.dat, and RTSCED.dat are presented below.

Table 3: Generation ON/OFF Status

		GenCo1	GenCo2	GenCo3	GenCo4	GenCo5	GenCo6	GenCo7	GenCo8
D2	H1	1	1	1	1	0	0	0	0
D2	H2	1	1	1	1	0	0	0	0
D2	H3	1	1	1	1	0	0	0	0
D2	H4	1	1	1	1	0	0	0	0
D2	H5	1	1	1	1	0	0	0	0
D2		1	1	1	1	0	0	0	0
D2	H23	1	1	1	1	0	0	0	0
D2	H24	1	1	1	1	0	0	0	0

Table 4: Power Generation (p.u.)

		GenCo1	GenCo2	GenCo3	GenCo4	GenCo5	GenCo6	GenCo7	GenCo8
D2	H1	10	10	10	2	0	0	0	0
D2	H2	10	10	10	2	0	0	0	0
D2	H3	10	10	10	2	0	0	0	0
D2	H4	10	10	10	2	0	0	0	0
D2	H5	10	10	10	2	0	0	0	0
D2		10	10	10	2	0	0	0	0
D2	H23	10	10	10	2	0	0	0	0
D2	H24	10	10	10	2	0	0	0	0

Verification Test Case 1 – VerTestCaseBaseCase

Observations

- ✓ From Table 1 and 2's entries **D1: H1-H24**, it can be seen that the generators are indeed committed and scheduled for dispatch based on their merit order i.e. SCUC outcomes are verified (for conditions (i) (iv) stated earlier).
- ✓ From Table 3 and Table 4's entries **D1: H1-H24**, it can be seen that the SCED outcomes are consistent with those of SCUC given that the real-time load forecast is same as that of the day-ahead load forecast.

Conclusions

✓ Verified SCUC/SCED outcomes for a simple base case under conditions (i)-(vi).

Verification Test Case 2 - VerTestCaseGenMinPowerLevel

Verification Test Case 2 - VerTestCaseGenMinPowerLevel

➤ VerTestCaseGenMinPowerLevel: This test case verifies various generator coding aspects.

Some *input data* given in VerTestCaseGenMinPowerLevel.dat are presented below.

// Name	ID	atBus	FCost	a	b	capL	capU	InitMoney
GenCo1	1	1	0.0000	10.0000	0.0050	0	1000	1000000.0000
GenCo2	2	2	0.0000	11.0000	0.0050	0	1000	1000000.0000
GenCo3	3	3	0.0000	12.0000	0.0050	0	1000	1000000.0000
GenCo4	4	4	0.0000	13.0000	0.0050	400	1000	1000000.0000
GenCo5	5	5	0.0000	14.0000	0.0050	0	1000	1000000.0000
GenCo6	6	6	0.0000	20.0000	0.0091	0	1000	1000000.0000
GenCo7	7	7	0.0000	25.0000	0.0092	0	1000	1000000.0000
GenCo8	8	8	0.0000	30.0000	0.0093	0	1000	1000000.0000

#GenDataEnd

#GenDataStart

#ScucInputDataStart

// Name	PowerT0 U	nitOnT0	MinUpTime	MinDownTime N	ominalRampUp	NominalRampDown S	tartupRampLim	ShutdownRampLin	n Schedule	Schedule2
GenCo1	0.0000	0	0	0	0	0	0	0	1	1
GenCo2	1000.0000	1	0	0	0	0	0	0	1	1
GenCo3	0.0000	0	0	0	0	0	0	0	1	1
GenCo4	1000.0000	1	0	0	0	0	0	0	1	1
GenCo5	0.0000	0	0	0	0	0	0	0	1	1
GenCo6	1000.0000	1	0	0	0	0	0	0	1	1
GenCo7	0.0000	0	0	0	0	0	0	0	1	1
GenCo8 1#ScucInpu	1000.0000	1	0	0	0	0	0	0	1	

Verification Test Case 2 – VerTestCaseGenMinPowerLevel ... Cont'd

VerTestCaseGenMinPowerLevel: This test case verifies various generator coding aspects.
Some input data given in VerTestCaseGenMinPowerLevel.dat are presented below.

LSEDataF	ixedl	DemandSt	tart								
/ Name		ID	atBus	H0	H1	H2	H3	H4	H5	H6	H7
LSE1	1	1		400	400	400	400	400	400	400	400
LSE2	2	2		400	400	400	400	400	400	400	400
LSE3	3	3		400	400	400	400	400	400	400	400
LSE4	4	4		400	400	400	400	400	400	400	400
LSE5	5	5		400	400	400	400	400	400	400	400
LSE6	6	6		400	400	400	400	400	400	400	400
LSE7	7	7		400	400	400	400	400	400	400	400
LSE8	8	8		400	400	400	400	400	400	400	400
/ Name		ID	atBus	H8	H9	H10	H11	H12	H13	H14	H15
LSE1	1	1		400	400	400	400	400	400	400	400
LSE2	2	2		400	400	400	400	400	400	400	400
LSE3	3	3		400	400	400	400	400	400	400	400
LSE4	4	4		400	400	400	400	400	400	400	400
LSE5	5	5		400	400	400	400	400	400	400	400
LSE6	6	6		400	400	400	400	400	400	400	400
LSE7	7	7		400	400	400	400	400	400	400	400
LSE8	8	8		400	400	400	400	400	400	400	400
/ Name		ID	atBus	H16	H17	H18	H19	H20	H21	H22	H23
LSE1	1	1		400	400	400	400	400	400	400	400
LSE2	2	2		400	400	400	400	400	400	400	400
LSE3	3	3		400	400	400	400	400	400	400	400
LSE4	4	4		400	400	400	400	400	400	400	400
LSE5	5	5		400	400	400	400	400	400	400	400
LSE6	6	6		400	400	400	400	400	400	400	400
LSE7	7	7		400	400	400	400	400	400	400	400
LSE8	8	8		400	400	400	400	400	400	400	400
LSEDataF	ixedl	DemandE	nd								

Verification Test Case 2 – VerTestCaseGenMinPowerLevel ... Continued

VerTestCaseGenMinPowerLevel: This test case verifies various generator aspects. Some of the *DAM output data* reported in the output files xfertoames.dat and ReferenceModel.dat are presented below.

Table 5: Generation ON/OFF Status

		GenCo1	GenCo2	GenCo3	GenCo4	GenCo5	GenCo6	GenCo7	GenCo8
	InitialCondition	0	1	0	1	0	0	0	0
D1	H1	1	1	1	1	0	0	0	0
D1	H2	1	1	1	1	0	0	0	0
D1	H3	1	1	1	1	0	0	0	0
D1	H4	1	1	1	1	0	0	0	0
D1	H5	1	1	1	1	0	0	0	0
D1		1	1	1	1	0	0	0	0
D1	H23	1	1	1	1	0	0	0	0
D1	H24	1	1	1	1	0	0	0	0

Table 6: Power Generation (p.u.)

		GenCo1	GenCo2	GenCo3	GenCo4	GenCo5	GenCo6	GenCo7	GenCo8
	InitialCondition	0	10	0	10	0	10	0	10
D1	H1	10	10	8	4	0	0	0	0
D1	H2	10	10	8	4	0	0	0	0
D1	H3	10	10	8	4	0	0	0	0
D1	H4	10	10	8	4	0	0	0	0
D1	H5	10	10	8	4	0	0	0	0
D1		10	10	8	4	0	0	0	0
D1	H23	10	10	8	4	0	0	0	0
D1	H24	10	10	8	4	0	0	0	0

Verification Test Case 2 - VerTestCaseGenMinPowerLevel ... Continued

VerTestCaseGenMinPowerLevel: This test case verifies various generator coding aspects.

Some of the *RTM output data* reported in the output files rt-unitcommitments.dat, RTReferenceModel.dat, and RTSCED.dat are presented below.

Table 7: Generation ON/OFF Status

		GenCo1	GenCo2	GenCo3	GenCo4	GenCo5	GenCo6	GenCo7	GenCo8
D2	H1	1	1	1	1	0	0	0	0
D2	H2	1	1	1	1	0	0	0	0
D2	H3	1	1	1	1	0	0	0	0
D2	H4	1	1	1	1	0	0	0	0
D2	H5	1	1	1	1	0	0	0	0
D2		1	1	1	1	0	0	0	0
D2	H23	1	1	1	1	0	0	0	0
D2	H24	1	1	1	1	0	0	0	0

Table 8: Power Generation (p.u.)

		GenCo1	GenCo2	GenCo3	GenCo4	GenCo5	GenCo6	GenCo7	GenCo8
D2	H1	10	10	8	4	0	0	0	0
D2	H2	10	10	8	4	0	0	0	0
D2	H3	10	10	8	4	0	0	0	0
D2	H4	10	10	8	4	0	0	0	0
D2	H5	10	10	8	4	0	0	0	0
D2		10	10	8	4	0	0	0	0
D2	H23	10	10	8	4	0	0	0	0
D2	H24	10	10	8	4	0	0	0	0

Verification Test Case 2 – VerTestCaseGenMinPowerLevel ... Continued

Verification Test Case 2 – VerTestCaseGenMinPowerLevel

Observations

- ✓ From Table 2 and 6's entries **D1: H1-H24**, it can be seen that the GenCo4 is scheduled for its minimum output generator and GenCo3's generation is reduced to accommodate this change.
- ✓ From Table 6 and Table 8's entries, it can be seen that there is no change in RTM and DAM outcomes as assumption (vi) is maintained.

Conclusions

✓ Verified various generator coding aspects for a simple test case under conditions (i)-(vi).

Reprise of Previous Test-Case Work:

Verification Test Case 3 – VerTestCaseMultiDayRun

Previous work: Verification Test Case 3

VerTestCaseMultiDayRun: This test case verifies refreshing of initial DAM/RTM conditions.

Some of the *input data* given in VerTestCaseMultiDayRun.dat are presented below.

// Name ID atBus FCost a b capL capU InitMoney GenCo1 1 1 0.0000 10.0000 0.0050 100 1000 1000000.0000 GenCo2 2 2 0.0000 11.0000 0.0060 90 1000 1000000.0000 GenCo3 3 3 0.0000 12.0000 0.0070 80 1000 1000000.0000 GenCo4 4 4 50000 13.0000 0.0080 100 1000 1000000.0000 GenCo5 5 5 50000 14.0000 0.0090 100 1000 1000000.0000 GenCo6 6 6 50000 20.0000 0.0091 100 1000 1000000.0000 GenCo7 7 7 50000 20.0000 0.0093 100 1000 1000000.0000 GenCo8 8 8 50000 20.0000 0.0093 100 1000 10000000.0000	#GenDataStart									
GenCo2 2 2 0.0000 11.0000 0.0060 90 1000 1000000.0000 GenCo3 3 3 0.0000 12.0000 0.0070 80 1000 1000000.0000 GenCo4 4 4 50000 13.0000 0.0080 100 1000 1000000.0000 GenCo5 5 5 50000 14.0000 0.0090 100 1000 1000000.0000 GenCo6 6 6 50000 20.0000 0.0091 100 1000 1000000.0000 GenCo7 7 7 50000 20.0000 0.0092 100 1000 1000000.0000	// Name	ID	atBus	FCost	a	b	capL	capU	InitMoney	
GenCo3 3 3 0.0000 12.0000 0.0070 80 1000 1000000.0000 GenCo4 4 4 50000 13.0000 0.0080 100 1000 1000000.0000 GenCo5 5 5 50000 14.0000 0.0090 100 1000 1000000.0000 GenCo6 6 6 50000 20.0000 0.0091 100 1000 1000000.0000 GenCo7 7 7 50000 20.0000 0.0092 100 1000 1000000.0000	GenCo1	1	1	0.0000	10.0000	0.0050	100	1000	1000000.0000	
GenCo4 4 4 50000 13.0000 0.0080 100 1000 1000000.0000 GenCo5 5 5 50000 14.0000 0.0090 100 1000 1000000.0000 GenCo6 6 6 50000 20.0000 0.0091 100 1000 1000000.0000 GenCo7 7 7 50000 20.0000 0.0092 100 1000 1000000.0000	GenCo2	2	2	0.0000	11.0000	0.0060	90	1000	1000000.0000	
GenCo5 5 5 50000 14.0000 0.0090 100 1000 1000000.0000 GenCo6 6 6 50000 20.0000 0.0091 100 1000 1000000.0000 GenCo7 7 7 50000 20.0000 0.0092 100 1000 1000000.0000	GenCo3	3	3	0.0000	12.0000	0.0070	80	1000	1000000.0000	
GenCo6 6 50000 20.0000 0.0091 100 1000 1000000.0000 GenCo7 7 7 50000 20.0000 0.0092 100 1000 1000000.0000	GenCo4	4	4	50000	13.0000	0.0080	100	1000	1000000.0000	
GenCo7 7 7 50000 20.0000 0.0092 100 1000 100000.0000	GenCo5	5	5	50000	14.0000	0.0090	100	1000	1000000.0000	
	GenCo6	6	6	50000	20.0000	0.0091	100	1000	1000000.0000	
GenCo8 8 8 50000 20.0000 0.0093 100 1000 1000000.0000	GenCo7	7	7	50000	20.0000	0.0092	100	1000	1000000.0000	
	GenCo8	8	8	50000	20.0000	0.0093	100	1000	1000000.0000	

#GenDataEnd

#GenDataStart

#ScucInput	DataStart									
// Name	PowerT0 U	nitOnT0	MinUpTime	MinDownTime N	NominalRampUp	NominalRampDown	StartupRampLim	ShutdownRampL	im Schedule	Schedule2
GenCo1	1000.0000	1	0	0	0	0	0	0	1	1
GenCo2	1000.0000	1	0	0	0	0	0	0	1	1
GenCo3	1000.0000	1	0	0	0	0	0	0	1	1
GenCo4	1000.0000	1	0	0	0	0	0	0	1	1
GenCo5	1000.0000	1	0	0	0	0	0	0	1	1
GenCo6	1000.0000	1	0	0	0	0	0	0	1	1
GenCo7	1000.0000	1	0	0	0	0	0	0	1	1
GenCo8	1000.0000	1	0	0	0	0	0	0	1	¹ 25
#Scuclaput	DataEnd									23

VerTestCaseMultiDayRun: This test case verifies refreshing of initial DAM/RTM conditions.
Some of the input data given in VerTestCaseMultiDayRun.dat are presented below.

#L	SEDataF	ixed	Demano	dStart								
//	Name		ID	atBus	H0	H1	H2	H3	H4	H5	H6	H7
	LSE1	1		1	1200	2200	3200	4200	200	200	200	200
	LSE2	2		2	200	200	200	200	200	200	200	200
	LSE3	3		3	200	200	200	200	200	200	200	200
	LSE4	4		4	200	200	200	200	200	200	200	200
	LSE5	5		5	200	200	200	200	200	200	200	200
	LSE6	6		6	200	200	200	200	200	200	200	200
	LSE7	7		7	200	200	200	200	200	200	200	200
	LSE8	8		8	200	200	200	200	200	200	200	200
//	Name		ID	atBus	H8	H9	H10	H11	H12	H13	H14	H15
	LSE1	1		1	200	200	200	200	200	200	200	200
	LSE2	2		2	200	200	200	200	200	200	200	200
	LSE3	3		3	200	200	200	200	200	200	200	200
	LSE4	4		4	200	200	200	200	200	200	200	200
	LSE5	5		5	200	200	200	200	200	200	200	200
	LSE6	6		6	200	200	200	200	200	200	200	200
	LSE7	7		7	200	200	200	200	200	200	200	200
	LSE8	8		8	200	200	200	200	200	200	200	200
//	Name		ID	atBus	H16	H17	H18	H19	H20	H21	H22	H23
	LSE1	1		1	200	200	200	200	200	200	200	200
	LSE2	2		2	200	200	200	200	200	200	200	200
	LSE3	3		3	200	200	200	200	200	200	200	200
	LSE4	4		4	200	200	200	200	200	200	200	200
	LSE5	5		5	200	200	200	200	200	200	200	200
	LSE6	6		6	200	200	200	200	200	200	200	200
	LSE7	7		7	200	200	200	200	200	200	200	200
	LSE8	8		8	200	200	200	200	200	200	200	200
#L	SEDataF	ixed	Demand	dEnd								

VerTestCaseMultiDayRun: This test case verifies refreshing of initial DAM/RTM conditions.

Some of the **DAM output data** reported in the output files xfertoames.dat and ReferenceModel.dat are presented below.

Table 1: Generation ON/OFF Status

		GenCo1	GenCo2	GenCo3	GenCo4	GenCo5	GenCo6	GenCo7	GenCo8
	InitialCondition	1	1	1	1	1	1	1	1
D1	H1	1	1	1	0	0	0	0	0
D1	H2	1	1	1	1	0	0	0	0
D1	H3	1	1	1	1	1	0	0	0
D1	H4	1	1	1	1	1	1	0	0
D1	H5	1	1	0	0	0	0	0	0
D1		1	1	0	0	0	0	0	0
D1	H23	1	1	0	0	0	0	0	0
D1	H24	1	1	0	0	0	0	0	0
D2	InitialCondition	1	1	0	0	0	0	0	0

Table 2: Power Generation (p.u.)

		GenCo1	GenCo2	GenCo3	GenCo4	GenCo5	GenCo6	GenCo7	GenCo8
	InitialCondition	10	10	10	10	10	10	10	10
D1	H1	10	10	6	0	0	0	0	0
D1	H2	10	10	10	6	0	0	0	0
D1	H3	10	10	10	10	6	0	0	0
D1	H4	10	10	10	10	10	6	0	0
D1	H5	10	6	0	0	0	0	0	0
D1		10	6	0	0	0	0	0	0
D1	H23	10	6	0	0	0	0	0	0
D1	H24	10	6	0	0	0	0	0	0
D2	InitialCondition	10	6	0	0	0	0	0	0

VerTestCaseMultiDayRun: This test case verifies refreshing of initial DAM/RTM conditions.

Some of the *RTM output data* reported in the output files rt-unitcommitments.dat and RTReferenceModel.dat are presented below.

Table 3: Generation ON/OFF Status

		GenCo1	GenCo2	GenCo3	GenCo4	GenCo5	GenCo6	GenCo7	GenCo8
	InitialCondition	1	1	1	1	1	1	1	1
D2	H1	1	1	1	0	0	0	0	0
D2	H2	1	1	1	1	0	0	0	0
D2	H3	1	1	1	1	1	0	0	0
D2	H4	1	1	1	1	1	1	0	0
D2	H5	1	1	0	0	0	0	0	0
D2		1	1	0	0	0	0	0	0
D2	H23	1	1	0	0	0	0	0	0
D2	H24	1	1	0	0	0	0	0	0

Table 4: Power Generation (p.u.)

		GenCo1	GenCo2	GenCo3	GenCo4	GenCo5	GenCo6	GenCo7	GenCo8
	InitialCondition	10	10	10	10	10	10	10	10
D2	H1	10	4.2	8.0	1	0	0	0	0
D2	H2	10	4.2	8.0	1	0	0	0	0
D2	H3	10	3.8	8.0	1	1	0	0	0
D2	H4	10	2.2	8.0	1	1	1	0	0
D2	H5	10	6	0	0	0	0	0	0
D2		10	6	0	0	0	0	0	0
D2	H23	10	6	0	0	0	0	0	0
D2	H24	10	6	0	0	0	0	0	0

VerTestCaseMultiDayRun

Observations

- ✓ From Table 1's entries **D1-H24** and **D2-InitialCondition**, it can be seen that the refreshing of the initial ON/OFF status of each generator is done aptly.
- ✓ From Table 2's entries **D1-H24** and **D2-InitialCondition**, it can be seen that the refreshing of the initial power level for each GenCo is done aptly.
- ✓ From Table 1's entries **D1: H1-H24** and Table 3's **D2: H1-H24**, it can be seen that the GenCo ON/OFF commitment status levels determined on day **D1** are correctly carried over to the RTMs held on the following day (in this example **D2**).
- ✓ From Table 1's entries D1: H1-H24 and Table 4's entries D2: H1-H24, it can be seen that GenCo ON/OFF commitment status levels are maintained correctly, and that GenCo commitments determined on D1 for the balancing of net load on the next day D2 are determined in the most economical way (i.e. the more costly generators are dispatched at their minimum generation output levels).

Conclusions

✓ Verified the refreshing of initial DAM/RTM conditions for multiple-day runs.