Data Driven 3D Voxel Patterns for Object Category Recognition

Yu Xiang^{1,2}, Wongun Choi³, Yuanqing Lin³, and Silvio Savarese¹

¹Stanford University, ²University of Michigan at Ann Arbor

³NEC Laboratories America, Inc.

CVPR 2015

The image is from the KITTI detection benchmark (Geiger et al. CVPR'12)

2D Object Detection

2D Object Segmentation

Occlusion Reasoning

3D Localization

Related Work: 2D Object Detection

Deformable part model Felzenszwalb et al., TPAMI'10

- Viola & Jones, IJCV'01
- Fergus et al., CVPR'03
- Leibe et al., ECCVW'04
- Hoiem et al., CVPR'06

- Vedaldi et al., ICCV'09
- Maji & Malik, CVPR'09
- Felzenszwalb et al., TPAMI'10
- Malisiewicz et al., ICCV'11

- ✓ 2D detection
- 3D pose
- Occlusion
- **×** 3D location

- Divvala et al., ECCVW'12
- Dolla'r et al., TPAMI'14

Etc.

Related Work: 3D Pose Estimation

3DDPM Pepik et al., CVPR'12

- ✓ 2D detection
- ✓ 3D pose
- Occlusion
- **★** 3D location

- Thomas et al., CVPR'06
- Savarese & Fei-Fei ICCV'07
- Yan et al., ICCV'07
- Hoiem et al., CVPR'07

- Kushal et al., CVPR'07
- Su et al., ICCV'09
- Sun et al., CVPR'10
- Liebelt et al., CVPR'08, 10

- Glasner et al. ICCV'11
- Pepik et al., CVPR'12
- Xiang & Savarese, CVPR'12
- Hejrati & Ramanan, NIPS'12

• Fidler et al., NIPS'12 Etc.

Related Work: Model Object Relationships

Geometric Phrases Choi et al., CVPR'13

- Desai et al., ICCV'09
- Yang et al., CVPR'10
- Gupta et al., ECCV'10
- Sadeghi & Farhadi, CVPR'11

- ✓ 2D detection
- ✓ 3D pose
- Occlusion
- **★** 3D location

- Li et al., CVPR'12
- Choi et al., CVPR'13

Etc.

Related Work: Handle Occlusion

Zia et al., CVPR'13

- ✓ 2D detection
- **★** 3D pose
- ✓ Occlusion
- **★** 3D location

- Wu and Nevatia, ICCV'05
- Wang et al., ICCV'09
- Gao et al., CVPR'11
- Meger et al., BMVC'11

- Wojek et al., CVPR'11
- Pepik et al., CVPR'13
- Xiang & Savarese, ICCVW'13
- Zia et al., CVPR'13, 14

Etc.

Our Contribution: Data-Driven 3D Voxel Patterns

Outline

Training Pipeline

Testing Pipeline

Experiments

Conclusion

Outline

Training Pipeline

Testing Pipeline

Experiments

Conclusion

Training Pipeline Overview

1. Align 2D images with 3D CAD models

4. Training 3D voxel pattern detectors

2. 3D voxel exemplars

3. 3D voxel patterns

1. Align 2D Images with 3D CAD Models

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In CVPR, 2012

2. Building 3D Voxel Exemplars

2. Building 3D Voxel Exemplars

4. Training 3D Voxel Pattern detectors

Train a ACF detector for each 3DVP.

Outline

Training Pipeline

Testing Pipeline

Experiments

Conclusion

Testing Pipeline Overview

Input 2D image

1. Apply 3DVP detectors

2D detection

- 2. Transfer meta-data
- 3. Occlusion reasoning

4. Backproject to 3D

2D segmentation

1. Apply 3DVP Detectors

1. Apply 3DVP Detectors

2. Transfer Meta-Data

2. Transfer Meta-Data

3. Occlusion Reasoning

Occlusion reasoning: find a set of visibility-compatible detections

$$E = \sum_{i} (\psi_{\text{detection_score}} + \psi_{\text{truncation}}) + \sum_{ij} \psi_{\text{occlusion}}$$

3. Occlusion Reasoning

3. Occlusion Reasoning

4. 3D Localization

Backprojection

Outline

Training Pipeline

Testing Pipeline

Experiments

Conclusion

Experiments: Datasets

- KITTI detection benchmark [1]
 - Autonomous driving scene
 - Test: 7,481 images for training (28,612 cars), 7,618 images for testing
 - Validation: 3,628 images for training, 3,799 images for testing

- Outdoor-scene dataset in [2]
 - Various scenarios: street, parking plot, free way, garage, etc.
 - 200 images for testing only
 - 659 cars with 235 occluded cars and 135 truncated cars

Car Detection and Orientation Estimation on KITTI

	Object Detection (AP)			Object Detection and Orientation estimation (AOS)		
Method	Easy	Moderate	Hard	Easy	Moderate	Hard
ACF [1]	55.89	54.77	42.98	N/A	N/A	N/A
DPM [2]	71.19	62.16	48.43	67.27	55.77	43.59
DPM-VOC+VP [3]	74.95	64.71	48.76	72.28	61.84	46.54
OC-DPM [4]	74.94	65.95	53.86	73.50	64.42	52.40
SubCat [5]	81.94	66.32	51.10	80.92	64.94	50.03
AOG [6]	84.36	71.88	59.27	43.81	38.21	31.53
SubCat [7]	84.14	75.46	59.71	83.41	74.42	58.83
Regionlets [8]	84.75	76.45	59.70	N/A	N/A	N/A
Ours NMS	84.81	73.02	63.22	84.31	71.99	62.11
Ours Occlusion	87.46	75.77	65.38	86.92	74.59	64.11

^[1] P. Dolla'r, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. TPAMI, 2014.

^[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.

^[3] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Multi-view and 3d deformable part models. TPAMI, 2015.

^[4] B. Pepikj, M. Stark, P. Gehler, and B. Schiele. Occlusion patterns for object class detection. In CVPR, 2013.

^[5] E. Ohn-Bar and M. M. Trivedi. Fast and robust object detection using visual subcategories. In CVPRW, 2014.

^[6] B. Li, T. Wu, and S.-C. Zhu. Integrating context and occlusion for car detection by hierarchical and-or model. In ECCV, 2014.

^[7] E. Ohn-Bar and M. M. Trivedi. Learning to detect vehicles by clustering appearance patterns. T-ITS, 2015.

^[8] X.Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013.

Joint Car Detection and Segmentation on KITTI

Method	Easy	Moderate	Hard
DPM [1] + box	38.09	29.42	22.65
Ours NMS + box	57.52	47.84	40.01
Ours Occlusion + box	59.21	49.74	41.71
Ours NMS + 3DVP	63.88	52.57	43.82
Ours Occlusion + 3DVP	65.73	54.60	45.62

Evaluation on validation set

Metric: Average Segmentation Accuracy (ASA)

Joint Car Detection and 3D Localization on KITTI

Method	Easy	Moderate	Hard
DPM [1] < 2m	40.21	29.02	22.36
Ours NMS < 2m	64.85	49.97	41.14
Ours Occlusion < 2m	66.56	51.52	42.39
DPM [1] < 1m	24.44	18.04	14.13
Ours NMS < 1m	44.47	33.25	26.93
Ours Occlusion < 1m	45.61	34.28	27.72

Evaluation on validation set

Metric: Average Localization Precision (ALP)

Car Detection on the Outdoor-Scene Dataset

% occlusion	< 0.3	0.3 – 0.6	> 0.6
#images	66	68	66
ALM [1]	72.3	42.9	35.5
DPM [2]	75.9	58.6	44.6
SLM [3]	80.2	63.3	52.9
Ours NMS	89.7	76.3	55.9
Ours Occlusion	90.0	76.5	62.1

^[1] Y. Xiang and S. Savarese. Estimating the aspect layout of object categories. In CVPR, 2012.

^[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.

^[3] Y. Xiang and S. Savarese. Object detection by 3d aspectlets and occlusion reasoning. In ICCVW, 2013.

Anecdotal Results on KITTI

Outline

Training Pipeline

Testing Pipeline

Experiments

Conclusion

Conclusion

• A novel 3D object representation: 3D Voxel Pattern (3DVP)

3DVP handles 3D pose, occlusion and truncation jointly

A contextual model to reason about occlusions between objects

The idea of 3DVP is applicable to generic rigid object categories

Acknowledgements

Thank you!

