

CS/IS F214 Logic in Computer Science

MODULE: PROPOSITIONAL LOGIC

Semantics - Introduction

Propositional Logic - Semantics

- The semantics of propositional logic i.e. meaning of sentences in propositional logic - has been discussed informally:
 - Truth Tables!
- Truth Tables (notation invented by Wittgenstien) define what a boolean (or propositional logic) operation means.
- Exercise:
 - Read and understand section 1.4.1 (The meaning of logical connectives).
 - Most of the section has been covered in tutorials and used in lectures and tutorials. So this should just be a quick review.

Soundness (of Proofs and Proof Rules)

- We saw proofs using ND rules.
 - Are all such proofs correct?
 - Is each proof rule correct?
 - Correctness relates to the meaning of the logical operations as given in truth tables
 - Does each proof rule (in ND) <u>preserve the meaning of</u> <u>the connectives</u> (i.e. operations) as given by the respective truth tables?
 - Recall the arguments given using truth tables when the rules were discussed.

Semantics of Formulas and Semantic Entailment

- To understand this, we define a notion of correctness of meaning (referred to as semantic entailment):
 - If for all valuations in which
 - all ϕ_1 , ϕ_2 , ..., ϕ_n evaluate to TRUE, ψ also evaluates to TRUE
 - then we say that
 - $\phi_1, \phi_2, ..., \phi_n = \psi$
- |= denotes the *semantic entailment* relation.
- Example:
 - Verify: p --> q |= !q --> !p

Soundness (of Proof System.)

- Soundness (of ND):
 - If $\phi_1, \phi_2, ..., \phi_n \mid -_{ND} \psi$ then $\phi_1, \phi_2, ..., \phi_n \mid = \psi$
 - or informally: <u>Anything provable in ND is TRUE</u>.
- [Note:
 - This is a claim that <u>ND</u> is sound. At this point this is used to illustrate the concept of Soundness.
 - We will in subsequent lectures prove this claim.

End of Note.]

- More generally,
 - a proof system **D** is said to be sound, if anything provable in **D** is TRUE i.e. semantically obtainable.

Completeness – Natural Deduction and Propositional Logic

- Can <u>everything that is true</u> (of statements in propositional logic) <u>be proved using Natural Deduction</u>?
 - i.e. <u>is there a proof system</u> for propositional logic in which <u>every thing that is true can be proved</u>?
- This notion is referred to as the completeness of the proof system
 - and therefore the *completeness of propositional logic*.

Completeness of Propositional Logic

- Completeness (of Natural Deduction):
 - If $\phi_1, \phi_2, ..., \phi_n \models \psi$ then $\phi_1, \phi_2, ..., \phi_n \models_{ND} \psi$
 - Or informally:
 - Everything TRUE is provable in ND
- Completeness (of Propositional Logic):
 - There is a proof system D such that
 - if $\phi_1, \phi_2, ..., \phi_n \models \psi$ then $\phi_1, \phi_2, ..., \phi_n \models_D \psi$
 - for propositional formulas φ_1 , φ_2 , ..., φ_{n_1} and ψ

CS/IS F214 Logic in Computer Science

MODULE: PROPOSITIONAL LOGIC

Semantic Equivalence and Normal Forms

08-09-2017 Sundar B. CS&IS, BITS Pilani 7

Semantic Equivalence

- Two formulas ψ and φ are equivalent if:
 - ψ |= ϕ and ϕ |= ψ
 - and we denote it as $\varphi = | = \psi$
- Prove the following equivalence:

•
$$p --> q = |= \neg q --> \neg p$$

- Sometimes the notation
 - $\varphi \equiv \psi$

is used in place of

•
$$\varphi = |= \psi$$

Semantic Equivalence vs. Syntactic Equivalence

- Note that syntactic equivalence and semantic equivalence are two different notions:
- Two formulas ϕ and ψ are syntactically equivalent if

$$\psi$$
 | -- ϕ and ϕ | -- ψ

and we denote it as

- Prove the following (syntactic) equivalence:
 - p -->q -- | -- ¬q --> ¬p

Double Implication

- Note that one can define a double implication operator:
 - <--> φ
 - to denote
 - $(\psi \longrightarrow \phi) \wedge (\phi \longrightarrow \psi)$
- Question:

How does $\psi < --> \phi$ differ from $\psi --|-- \phi$ and from $\psi = |= \phi$?

Normal Forms

- As seen in the example (for semantic equivalence)
 - there can be two or more <u>(syntactically) different</u> <u>formulae</u> that are <u>semantically equivalent</u>.
- Is there a standardized notation so that
 - all equivalent formulae can be expressed using the (one) syntactic form?
- Such forms do exist they are referred to as canonical forms or normal forms:
 - in particular, there are two commonly used forms:
 - Conjunctive Normal Form (CNF)
 - Disjunctive Normal Form (DNF)

Conjunctive Normal Form (CNF)

• A propositional logic formula φ is said to be in **CNF** if the formula is <u>a conjunction of sub-formulas</u> (or **clauses**):

i.e. it is of the form $C_1 \wedge C_2 \wedge ... \wedge C_n$ where each clause C_i is a <u>disjunction of literals</u>: i.e. it is of the form $L_{i1} \vee L_{i2} \vee ... \vee L_{im}$

- where each literal L_{ii} is
 - either <u>an atomic proposition</u> (\mathbf{p}) or the negation of <u>an</u> <u>atomic proposition</u> ($\neg \mathbf{p}$).
- In Boolean logic, the CNF is referred to as the *Product-of-Sums* (*POS*) form.

Conjunctive Normal Form - Example

- We saw that:
 - p -->q = | = ¬q --> ¬p
- We can write both these formulas in CNF:
 - p --> q can be written as:
 - $\neg p \lor q \text{ (why?)}$
 - which is in CNF (of just one clause).
 - $\neg q \longrightarrow \neg p$ can be written as:
 - ¬¬q∨¬p
 - which can be rewritten as
 - q∨¬p
 - which is in CNF as well.
- Note that these two formulas i.e. $\mathbf{p} \rightarrow \mathbf{q}$ and $\mathbf{q} \rightarrow \mathbf{p}$ have been rewritten as the same formula ($\underline{modulo\ commutativity}$):
 - i.e. **q** ∨ ¬**p**

Disjunctive Normal Form (DNF)

 A propositional logic formula is said to be in **DNF** if the formula is a <u>disjunction of clauses</u>

i.e. it is of the form $C_1 \lor C_2 \lor ... \lor C_n$

where each clause C_i is <u>a conjunction of literals</u>:

i.e. . it is of the form $L_{i1} \wedge L_{i2} \wedge ... \wedge L_{im}$

where each literal L_{ij} is either <u>an atomic proposition</u> (p) or the <u>negation of an atomic proposition</u> ($\neg p$).

 In Boolean logic, the DNF is referred to as the Sum-of-Products (SOP) form.

