Statistical Inference Course Project - Part 1

Aaron Cole

8 February 2016

Contents

1	Syn	iopsis	1
2	Sim	lations	
	2.1	Load libraries	2
	2.2	Setup variables	2
	2.3	Generate the means	2
3	Sample mean versus theoretical mean		3
	3.1	Calculate the sample mean to 3 decimals	3
	3.2	Calculate the theoretical mean	3
	3.3	Plot	3
	3.4	Summary	4
4	Sample variance versus theoretical variance		
	4.1	Calculate the theoretical variance to 3 decimals	4
	4.2	Calculate the sample variance to 3 decimals	4
	4.3	Calculate the theoretical standard deviation to 3 decimals	5
	4.4	Calculate the sample standard deviation to 3 decimals	5
	4.5	Summary	5
5	Distribution		5
	5.1	Create a normal distribution for comparison	5
	5.2	Density plot of the means with comparison line for the normal distribution	5
	5.3	Summary	6

1 Synopsis

The following text is quoted from the assignment information page on Coursera.

In this project you will investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with $\operatorname{rexp}(n, \operatorname{lambda})$ where lambda is the rate parameter. The mean of exponential distribution is $1/\operatorname{lambda}$ and the standard deviation is also $1/\operatorname{lambda}$. Set $\operatorname{lambda} = 0.2$ for all of the simulations. You will investigate the distribution of averages of 40 exponentials. Note that you will need to do a thousand simulations. Illustrate via simulation and associated explanatory text the properties of the distribution of the mean of 40 exponentials.

- Show the sample mean and compare it to the theoretical mean of the distribution.
- Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.
- Show that the distribution is approximately normal.

In point 3, focus on the difference between the distribution of a large collection of random exponentials and the distribution of a large collection of averages of 40 exponentials.

2 Simulations

2.1 Load libraries

```
library(ggplot2)
```

Warning: package 'ggplot2' was built under R version 3.2.3

2.2 Setup variables

```
# Number of simulations to perform.
simulations <- 1000

# Number of exponentials to generate.
exponentials <- 40

# Lambda value to use for generation.
lambda <- 0.2</pre>
```

2.3 Generate the means

```
# Create a vector to hold the means.
means <- as.numeric()

# Iterate for our number of simulations, setting the seed for each iteration.
for (i in 1:simulations) {
    set.seed(i)
    means <- c(means, mean(rexp(exponentials, lambda)))
}

# Convert to a data.frame.
means <- as.data.frame(means)</pre>
```

3 Sample mean versus theoretical mean

3.1 Calculate the sample mean to 3 decimals

```
sampleMean <- round(mean(means$means), 3)
print(sampleMean)
## [1] 5.002</pre>
```

3.2 Calculate the theoretical mean

We can calculate the theoretical mean using the formula 1/lambda.

```
theoreticalMean <- 1/lambda
print(theoreticalMean)</pre>
```

[1] 5

3.3 Plot

- Red line marks the sample mean value of 5.002.
- Yellow line marks the theoretical mean value of 5.000.

3.4 Summary

• The theoretical and sample mean calcultions both closely coincide, with a difference of only 0.002.

4 Sample variance versus theoretical variance

4.1 Calculate the theoretical variance to 3 decimals

We can calculate the theoretical variance using the formula (1/(lambda^2))/exponentials.

```
theoreticalVariance <- round((1/(lambda^2))/exponentials, 3)
print(theoreticalVariance)</pre>
```

[1] 0.625

4.2 Calculate the sample variance to 3 decimals

```
sampleVariance <- round(var(means$means), 3)
print(sampleVariance)</pre>
```

[1] 0.631

4.3 Calculate the theoretical standard deviation to 3 decimals

We can calculate the theoretical standard deviation using the formula (1/lambda)/sqrt(exponentials).

```
theoreticalSD <- round((1/lambda)/sqrt(exponentials), 3)
print(theoreticalSD)</pre>
```

[1] 0.791

4.4 Calculate the sample standard deviation to 3 decimals

```
sampleSD <- round(sd(means$means), 3)
print(sampleSD)</pre>
```

[1] 0.794

4.5 Summary

- The theoretical and sample variance is close, with a difference of only 0.006 (sample 0.631 theoretical 0.625).
- The theoretical and sample standard deviation is close, with a difference of only 0.003 (sample 0.794 theoretical 0.791).

5 Distribution

5.1 Create a normal distribution for comparison

5.2 Density plot of the means with comparison line for the normal distribution

5.3 Summary

The plot shows that the sample means have a distribution similiar to a normal distribution. This is due to the Central Limit Theorem.