

Sistemas Operacionais

Introdução

Prof. Fernando Parente Garcia

Sistema Computacional

SBD	Browser WEB		Planilhas
Compiladores Edito		Editores	Interpretadores
Sistema Operacional			
Linguagem de máquina			
Microarquitetura			
Dispositivos físicos			

Programas de aplicação

Programas do sistema

Hardware

Softwares do Computador

- Programas de sistema
 - Gerenciam a operação do computador
 - Ex.: compiladores, interpretadores de comandos, sistema operacional
- Programas de aplicação
 - Resolvem problemas para seus usuários
 - Ex.: aplicativos comerciais, jogos, etc.

Sistema Operacional

- Controla todos os recursos da máquina (software + hardware)
- Esconde a complexidade da máquina, oferecendo ao programador um conjunto de instruções mais conveniente para o desenvolvimento de seu trabalho (máquina virtual).
 - Ex.: Read Block From File

Sistema Operacional

- É a parte do software que roda no modo kernel (supervisor), com o objetivo de proteger o hardware da ação direta dos usuários
- É um gerente de recursos
 - Processadores
 - Memória
 - Dispositivos I/O

Histórico

Hard/Soft - Primeira Geração

- 1943..1955 Válvulas
- Ausência de Sistemas Operacionais
- Um único grupo de pesquisadores projetava, construía, programava, operava e mantinha cada máquina
- Toda a programação era realizada usando-se fitas de papel ou cartões perfurados e era feita em linguagem de máquina, uma vez que não existiam linguagens de programação

Hard/Soft - Primeira Geração

- O controle da máquina e a monitoração da execução de programas era feita através de painéis de controle primitivos
- O computador tinha toda sua capacidade dedicada a um único programa

Hard/Soft - Primeira Geração

ENIAC

- John Mauchley, J Presper Eckert
- Possuia 18.000 válvulas, 1.500 relés e consumia 140 KW
- Pesava 30 toneladas
- Possuia 20 registradores com capacidade de armazenar até 10 dígitos decimais
- Programação feita através de cerca de 6.000 chaves multiposicionais e da interconexão de um grande número de soquetes via numerosos cabos

Hard/Soft - Segunda Geração

- 1955..1965 Transistores
- Tecnologia de mais confiabilidade (para que se pudesse vender computadores)
- Computadores ainda muito caros
- Separação clara entre projetistas, construtores, programadores, operadores e mantenedores
- Processamento em Lote (batch), para reduzir o tempo desperdiçado

Hard/Soft - Segunda Geração

- Sistemas operacionais típicos
 - FMS (Fortran Monitor System)
 - IBSYS, da IBM para o 7094

Hard/Soft - Segunda Geração

- CDC 6600
 - Muito poderoso
 - Arquitetura paralela até 10 instruções executadas simultaneamente
 - Possuía 128 KB de memória
 - Considerado como supercomputador, pelos padrões da época, foi a máquina transistorizada mais rápida

Hard/Soft - Terceira Geração

- 1965..1980 Circuitos Integrados
- Computadores menores, mais baratos e mais rápidos
- Sistemas operacionais de destaque surgidos no período
 - OS 360 (IBM)
 - CTSS (MIT/IBM)
 - Multics (Bell, MIT, GE-645)
 - Unix (Ken Thompson)

Hard/Soft - Terceira Geração

- Idéias surgidas no período e incorporada aos sistemas: multiprogramação e compartilhamento de tempo
- DEC PDP-11
 - Sucessor de 16 bits do PDP-8
 - Possuía registradores orientados para palavras e memória orientada para bytes
 - Minicomputador mais popular do período

Hard/Soft - Quarta Geração

- 1980..200? Computadores pessoais e VLSI
- Chips pastilhas de silício
- Circuito Integrado = chip + corpo plástico (cerâmico)
- Computadores trabalhando em rede com interface amigável
- Computadores pessoais principais: IBM PC, Apple II, Macintosh

Hard/Soft - Quarta Geração

- Sistemas Operacionais
 - CPM
 - DOS
 - Windows 2000
 - Windows NT
 - UNIX
 - LINUX
- Sistemas Operacionais de Rede
- Sistemas Operacionais Distribuídos

Tipos de sistemas operacionais

- SO's para computadores de grande porte (OS/390)
- SO's para Servidores (Unix, Linux, Windows 2000)
- SO's para máquinas com vários processadores (Unix, Windows 2000, Linux)
- SO's para computadores pessoais (Windows 2000, Linux)
- Sistemas operacionais distribuídos
- Sistemas operacionais embarcados (PalmOS, Windows CF)

Conceitos Básicos

Conceitos Básicos

Processo

- Programa em execução
- Espaço de endereçamento
- Registradores
- Tabela de processos
- Deadlock

Conceitos Básicos

Sistema de Arquivos

- Esconde os detalhes dos discos e outros dispositivos de E/S, apresentando um modelo abstrato e amigável de arquivos (independente de dispositivo)
- Diretório
 - Modelo em árvore
 - Raiz
 - Caminho (path)
 - Descritor de arquivos
 - pipe

Conceitos Básicos

Chamadas de sistema

- Interface entre o S.O. e os programas (processos) dos usuários
- Controle de processos
 - Halt, load, execute, create process, wait, alloc etc
- Manipulação de arquivos
 - Create file, open, read, set file attributes etc
- Manipulação de dispositivos
 - Request device, read, reposition, get device attibutes

Conceitos Básicos

- Manutenção de informação
 - Get date/time, get/set process attributes, get/set file attributes, get/set device attributes
- Comunicações
 - Send, receive, create connection, transfer status information, attach/detach remote devices

Funções básicas do S. O.

- Gerenciamento de processos
 - Criação e extinção de processos
 - Suspensão e reinício de processos
 - Sincronização de processos
 - Comunicação entre processos
 - Tratamento de deadlocks

Funções básicas do S. O.

- Gerenciamento de memória
 - Manter registro de que partes da memória estão sendo usadas e por quem
 - Decidir quais processos devem ser carregados na memória quando espaços de memória tornarem-se disponíveis
 - Alocar e liberar espaço de memória quando necessário

Funções básicas do S. O.

- Gerenciamento do sistema de arquivos
 - Criação e deleção de arquivos e de diretórios
 - Primitivas de manipução de arquivos (trava, permissão, abrir, ler etc)
 - Mapear arquivos (inclusive multivolumes) em dispositivos de armazenamento secundários
 - Mecanismo de backup

Funções básicas do S. O.

- Gerenciamento de dispositivos de E/S
 - Módulo de gerenciamento de memória (buffer, cache, spool)
 - Interface geral para os controladores de dispositivos
 - Driver para dispositivos específicos de hardware

Funções básicas do S. O.

- Gerenciamento de conexões de rede
- Proteção / Segurança

