Superfaces: Polyhedral Mesh Simplification with Bounded Error

Alan D. Kalvin Russell H. Taylor

Problems with Polyhedra

- Common 3D image to surface boundary reconstruction algorithms produce many small faces
- Shapes are complex
- Voxel-based methods cannot span > 1 voxel
- Contour tiling methods cannot span > 2 slices

Problems with Polyhedra

- Common 3D image to surface boundary reconstruction algorithms produce many small faces
- Shapes are complex
- Voxel-based methods cannot span > 1 voxel
- Contour tiling methods cannot span > 2 slices

Superfaces Algorithm: Summary

Automatic simplification of complex polyhedral models with bounded error:

- Applied to biomedical models derived from CT
- Useful on other models with similar characteristics
- Typical performance on 350K triangle skull model and 1 voxel diameter error bound:
 - 4:1 reduction in triangle count
 - 7:1 reduction data structure size
 - 6 minutes on (slow) RS/6000

Superfaces Algorithm: Summary

Automatic simplification of complex polyhedral models with bounded error:

- Applied to biomedical models derived from CT
- Useful on other models with similar characteristics
- Typical performance on 350K triangle skull model and 0.5 pixel units error bound:
 - 3:1 to 6:1 reduction in triangle count
 - Mean approx. error 0.05-0.09 pixel units
 - Run time 8.5 to 9.5 minutes on (slow) RS/6000

Copyright © R. H. Taylor

12 Simplified skull (a) mesh and (b) color-coded approximation errors in pixel units: ε = 0.5 (36.60 percent of original triangles).

13 Simplified skull (a) mesh and (b) colorcoded approximation errors in pixel units-with aggressive border straightening: E = 0.5 (15.58)percent of original triangles).

Algorithm Properties

- Fast, "greedy" method
- Preserves geometric error bound
- Preserves topology
- Simplified model is imbedded in original
- Applicable to any polyhedral model
- No a priori knowledge of surface required

Related Work

- Schmidt, Barsky, Du (1986)
 - top-down refinement of surface of bicubic patches
 - for objects z=f(x,y)
- Kalvin (1991)
 - adaptive merging of redundant faces
- Schroeder, Zarge, Lorensen (1992)
 - "triangle decimation" to reduce size by given percentage
- Turk (1992)
 - retiling surface by triangulating new set of vertices
- Rossignac & Borel (1993)
 - multi-resolution 3D approximations

Related work

- Cutting, et. al (1991)
 - Registration to anatomical atlas
- Bloomenthal (1988)
- Hall and Warren (1990)
- Ning and Hasselink (1991)
- Gueziec (1996)
- Cohen (1997?)
- many more

Algorithm Outline

- Phase 1: Merge faces into superfaces
 - Greedy, bottom-up algorithm
 - Runs in O(n) time, where n=number of faces
- Phase 2: Straighten borders
 - Create "superedges"
 - Several variations with different degrees of agressiveness
- Phase 3: Pick triangulation points
 - Usually, triangulation is not done explicitly

Algorithm outline

Phase 1: Greedy Merging

- 1. Pick a seed face to start a new superface
 - Options include random choice, pincushion search, etc.
- Keep adding adjacent faces to the superface as long as can find a feasible approximating plane & meet some other technicalities
- 3. Repeat steps 1 & 2 as long as there are faces not assigned to superfaces

Phase 1: Quasi-planar merging

Consider the approximating plane *P* of a superface:

$$P = \mathbf{K}(x, y, z)|ax + by + z = d\mathbf{D}$$

in some local coordinate system of the face. The parameters (a,b,d) thus represent P.

Note the duality: (a,b,d) constrains (x,y,z), but (x,y,z) also constrains (a,b,d).

In general, (a,b,d) will obey the bounded approximation constraints $-\varepsilon - z \le ax + by - d \le \varepsilon - z$

and some other (linear) constraints to be discussed later

Approximating Plane

Set of feasible approximating planes

The set of feasible planes is described by a polytope

$$E = \mathbf{M}(a,b,d) | C \bullet (a,b,d)^{\mathrm{T}} \leq \overline{g} \mathbf{I}$$

Set of feasible approximating planes

Conservatively approximate E by an ellipsoid

Ellipsoidal approximation

Growing a Superface

- 1. Select f_b face on current perimeter $\Rightarrow f_b \text{ generates new linear constraints } \{C_i\}$
- 2. Compute $\Sigma' =$ linear-time adjustment of ellipsoid Σ based on $\{C_i\}$

Growing a Superface

- 3. if $\Sigma' \neq \{\}$ then f_b satisfies merging criteria
 - merge f_b into superface
 - $\sum \leftarrow \sum'$
- 4. Iterate above until:
 - no more acceptable faces to merge
 - bad aspect ratio

Merging Rules

1. Planarity rule:

- All vertices of f_b must be within bounded distance of approximating plane p
 - 2 constraints: $||(a,b,1,-d).(v_x, v_y, v_z, 1)|| \le \Delta_{\max}$

2. Face-axis rule:

- orientation $f_b \approx$ orientation p
 - constraint: $an_x + bn_y \ge \cos(\theta_{\text{max}}) n_z$
 - (n_x, n_y, n_z) = outward-facing normal of f_b

3. No-foldover rule:

- f_b cannot "tuck-under" superface F
- $\forall v \in f_b$, v outside F_p (projection of perim F into p)
 - constraint: $aK_1 + bK_2 \le K_3$

Gerrymandering check

Optional constraint

- to prevent "irregular" shaped superfaces
- stop growing if $Irreg(F) > Irreg_{max}$
- simple estimate: $Irreg(F) = perim^2/area$

Polyhedra from Alligator algorithm

- perim \approx no. edges
- area ≈ no. faces
- Irreg(F) needs 3 floating point ops.

Phase 1 output

600. 445 Fall 1999 Copyright © R. H. Taylor

Phase 2 Strategy

- 1. Replace edges between adjacent superfaces with single superedge
- Recursively split the big superedge into smaller edges until every boundary vertex in any edge merged into superedge is within a bounded distance of one of adjacent superfaces
- 3. Repeat until done

Alternative: Merge agressively and check all subsumed vertices. Only split if boundedness condition is violated.

Phase 2

Figure 5: Superface borders (a) before straightening, (b) after edge merging, (c) after edge splitting.

Phase 3: Triangulation

- 1. Project superface perimeter into the nominal approximating plane
- 2. Decompose 2D polygon into star polygons
- 3. (Implicitly) triangulate star polygons

Star Polygon Decomposition

Method 1 (fast, try first):

- 1. Determine conservative approximation for the polygon kernel of projection of superface onto its approximating plane.
- 2. Pick point in polytope.

Method 2 (if that fails)

- 1. Decompose superface into monotone polygons.
- 2. Determine triangulation point for each monotone polygon.

Star Polygon Decomposition

- Avis & Toussaint (1981) O(n log n)
 - efficient
 - does not attempt to limit number of star polygons
 - does not handle polygons with holes
- Keil (1985) O(n⁵k²log n)
 - minimizes number of star polygons
 - does not handle polygons with holes
- What we did O(n²)
 - Attempts to limit number of star polygons
 - Can handle polygons with holes
 - First step is decomposition into monotone polygons
 - Second step is conversion of monotone polygons to star polygons

Monotone polygons & Star Decomp.

Figure 6: Monotone polygon P.

Figure 7: Creating internal diagonal [B, C].

Results for skull

error	approx	error	tria	running	
bound				% of	time
€	mean	max.	count	original	(m:ss)
0.5	0.0544	0.4723	128,040	36.60	9:52
1.0	0.1289	0.9231	78,002	22.30	8:03
1.5	0.2017	1.4387	50,442	14.42	7:34
2.0	0.2559	1.8690	37,438	10.70	6:41
3.0	0.3088	2.6119	28,388	8.12	6:26
4.0	0.3358	2.7684	24,170	6.91	6:00

Table 1: Results of simplifying the skull mesh of 349,792 triangles.

error approx. error		triangles		running	vertices	superfaces	
bound				% of	time	above	to adjust /
e	mean	max.	count	original	(m:ss)	€ limit	total superfaces
0.5	0.0947	1.4240	53,790	15.38	8:49	31	18 / 14,403
1.0	0.2187	1.3973	23,704	6.78	7:12	36	9 / 5,626
1.5	0.3402	2.3713	15,470	4.42	6:28	56	7 / 3,606
2.0	0.4523	5.8117	11,994	3.43	6:20	184	5 / 2,738
3.0	0.5984	3.3584	9,820	2.81	6:03	19	1 / 2,299
4.0	0.6714	3.6544	8,934	2.55	5:52	0	· · -

Table 2: Results of simplifying the skull mesh of 349,792 triangles – with aggressive border straightening).

600. 445 Fall 15 Copyright © R. H. Taylor

17 Simplified femur (a) mesh and (b) color-coded approximation errors in pixel units: ε = 4.0 (12.14 percent of original triangles).

18 Simplified femur (a) mesh and (b) colorcoded approximation errors in pixel units-with aggressive border straightening: E = 4.0 (4.41)percent of original triangles).

Results for femur

error	approx	. error	tria	running	
bound				% of	time
€	mean	max.	count	original	(m:ss)
0.5	0.0378	0.4826	97,010	53.92	4:54
1.0	0.1060	0.8821	66,318	36.86	3:31
1.5	0.1708	1.3265	46,748	25.98	3:10
2.0	0.2263	1.7860	36,018	20.02	2:54
2.5	0.2745	2.2530	30,766	17.10	2:45
3.0	0.3196	2.7049	26,832	14.91	2:36
4.0	0.3921	3.5481	21,840	12.14	2:28

Table 3: Results of simplifying the femur mesh of 179,916 triangles.

error	approx	approx. error		triangles		vertices	superfaces
bound				% of	time	above	to adjust /
ć	mean	max.	count	original	(m:ss)	€ limit	total superfaces
0.5	0.0733	0.9509	56,294	31.29	4:22	12	10 / 18,792
1.0	0.1797	2.1814	28,216	15.68	3:07	17	8 / 7,599
1.5	0.2778	1.6823	19,348	10.75	2:46	2	2 / 4,908
2.0	0.4000	2.3609	12,762	7.09	2:33	42	4 / 3,016
3.0	0.5516	3.7760	9,046	5.03	2:21	59	2 / 2,152
4.0	0.6797	4.1972	7,942	4.41	2:17	4	1 / 1,885

Table 4: Results of simplifying the femur mesh of 179,916 triangles – with aggressive border straightening).

19 Map of topographic data of the earth.

20 Simplified map of topographic data of the earth: $\varepsilon = 32.0$ meters.

600. 445 Fall 1999 Copyright © R. H. Taylor

Some published comparisons

Algorithm	trian	running	
Hardware Configuration	original	reduced	times
	mesh	mesh	(seconds)
Superfaces	30,876	2,038	27
IBM RS/6000 (model 550)	179,916	21,840	148
·	349,792	24,170	360
Triangle Decimation [13]	38,394	17,799	8
SGI Onyx Reality Engine	186,630	71,485	43
2-processor model	334,643	84,342	90
	1,049,476	29,507	322
Geometric Optimization [10]	315,812	295,636	96
(hardware not specified)	1,019,373	642,204	538
Mesh Optimization [7]	3,832	432	600
DEC Alpha	18,272	1,348	2820
Multi-resolution Approximation [9]	349,792	N/A	80
IBM RS/6000 (model 560)			

Table 5: Running times of different mesh simplification algorithms.

21 3D hard copy of a simplified skull (9,820 triangles).

