ĐỀ THI THỬ CHUẨN CẦU TRÚC ĐỀ THAM KHẢO ĐỀ 9

KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2021 Bài thi: TOÁN

Thời gian làm bài: 90 phút không kể thời gian phát đề

- Câu 1: Có bao nhiều cách xếp 4 học sinh thành một hàng dọc?
 - **A.** 4.

- **B.** C_4^4 .
- C. 4!.
- **D.** A_4^1 .
- **Câu 2:** Cho cấp số nhân (u_n) có $u_1 = -2$ và $u_2 = 6$. Giá trị của u_3 bằng
 - **A.** −18.
- **B.** 18.
- **C.** 12
- **D.** -12.

Câu 3: Cho hàm số y = f(x) có bảng biến thiên như sau:

Hàm số y = f(x) nghịch biến trên khoảng nào, trong các khoảng dưới đây?

- A. $(-\infty; -2)$.
- **B.** $(0; +\infty)$.
- $\mathbf{C}.(-2;0).$
- **D.** (-1;3).

Câu 4: Cho hàm số y = f(x) có bảng biến thiên như sau:

Hàm số y = f(x) có bao nhiều điểm cực trị?

A. 3.

- **B.** 2.
- **C.** 1.

- **D.** 4.
- **Câu 5:** Cho hàm số f(x) có đạo hàm $f'(x) = x(x-1)(x+2)^3$, $\forall x \in \mathbb{R}$. Số điểm cực trị của hàm số đã cho là
 - **A.** 1.

- **B.** 2.
- **C.** 3.
- **D.** 5.
- **Câu 6:** Tiệm cận ngang của đồ thị hàm số $y = \frac{3x+2}{x-1}$ là đường thẳng
 - **A.** y = 3.
- **B.** v = 1.
- **C.** x = 3.
- **D.** x = 1.
- Câu 7: Đồ thị của hàm số nào sau đây có dạng như đường cong trong hình bên dưới?

- **A.** $y = x^3 + x + 1$.
- **B.** $y = x^3 x + 1$.
- C. $y = x^3 x 1$.
- **D.** $y = x^3 + x 1$.
- **Câu 8:** Số giao điểm của đồ thị của hàm số $y = x^4 + 4x^2 3$ với trục hoành là
 - **A.** 2.

- **B.** 0.
- **C.** 4.
- **D.** 1.

- **Câu 9:** Với a là số thực dương tùy ý, $\log_2 \frac{4}{a}$ bằng
 - **A.** $\frac{1}{2} \log_2 a$.
- **B.** $2\log_2 a$.
- **C.** $2 \log_2 a$.
- **D.** $\log_2 a 1$.

- **Câu 10:** Đạo hàm của hàm số $y = 3^x$ là
 - **A.** $\frac{1}{2} \log_2 a$.
- **B.** $y' = 3^x \ln 3$.
- C. $y' = \frac{3^x}{\ln 3}$.
- **D.** ln 3.

- **Câu 11:** Với a là số thực dương tùy ý, $\sqrt[3]{a^2}$ bằng
 - A. a^3 .

- **B.** $a^{\frac{5}{3}}$
- $C_{1} a^{\frac{1}{3}}$
- **D.** $a^{\frac{2}{3}}$

- **Câu 12:** Nghiệm của phương trình $3^{4x-6} = 9$ là
 - **A.** x = -3.
- **B.** x = 3.
- **C.** x = 0.
- **D.** x = 2.

- **Câu 13:** Nghiệm của phương trình ln(7x) = 7 là
 - **A.** x = 1.
- **B.** $x = \frac{1}{7}$.
- C. $x = \frac{e^7}{7}$.
- **D.** $x = e^7$.
- **Câu 14:** Cho hàm số $f(x) = \frac{x^3 + 2x}{x}$. Trong các khẳng định sau, khẳng định nào đúng?
 - **A.** $\int f(x) dx = x^2 + 2 + C$.

B. $\int f(x) dx = \frac{x^3}{3} + 2x + C$.

C. $\int f(x) dx = x^3 + 2x + C$.

- **D.** $\int f(x) dx = \frac{x^3}{3} + \frac{x^2}{2} + C$.
- **Câu 15:** Cho hàm số $f(x) = \sin 4x$. Trong các khẳng định sau, khẳng định nào **đúng**?
 - $\mathbf{A.} \int f(x) \mathrm{d}x = -\frac{\cos 4x}{4} + C.$

B. $\int f(x) dx = \frac{\cos 4x}{4} + C.$

 $C. \int f(x) dx = 4\cos 4x + C.$

D. $\int f(x) dx = -4\cos 4x + C$.

	A. −1.	B. 8.	C. 1.	D. -8.
Câu 32:	Tập nghiệm của bất phu	$\text{rong trình } \log_{\frac{1}{2}} x \le \log_{\frac{1}{2}}$	(2x-1) là	
	$\mathbf{A.}\left(\frac{1}{2};1\right].$	B. (-∞;1).	C. (-∞;1].	$\mathbf{D.}\left(\frac{1}{2};1\right).$
Câu 33:	$\int_{0}^{\frac{\pi}{3}} \left[\sin x - 3f(x) \right] dx$ Nếu	$x = 6 \int_{0}^{\frac{\pi}{3}} f(x) dx$ thì bằn	g	
	A. $\frac{13}{2}$.	B. $-\frac{11}{2}$.	C. $-\frac{13}{4}$.	D. $-\frac{11}{6}$.
Câu 34:	Cho số phức $z = 5 - 3i$.	Môđun của số phức(1-	-2i)(z-1) bằng	
	A. 25.	B. 10.	C. $5\sqrt{2}$.	D. $5\sqrt{5}$.
Câu 35:	Cho khối lăng trụ đứng $AC = a\sqrt{3}$. Tính tan g			giác vuông cân tại B và
	A. 60° .	B. 90^{0} .	C. 45 ⁰ .	D. 30^{0} .
Câu 36:	Cho hình chóp đều S Khoảng cách từ S đến			o với đáy một góc 60°.
	A. $\frac{a\sqrt{6}}{2}$.	B. $\frac{a\sqrt{3}}{2}$.	C. $\frac{a\sqrt{3}}{3}$.	D. $\frac{a\sqrt{2}}{3}$.
Câu 37:	Trong không gian với h có phương trình là:	iệ tọa độ Oxyz , mặt cầ	u có tâm $I(-1; 2; 0)$ va	à đi qua điểm $M(2;6;0)$
	A. $(x+1)^2 + (y-2)^2 + x^2$	$z^2=100.$	B. $(x+1)^2 + (y-2)^2$	$+z^2=25.$
	C. $(x-1)^2 + (y+2)^2 + $	$z^2=25.$	D. $(x-1)^2 + (y+2)^2 - (y+2)^2 = (y+2)^2 + (y+2)^2 = (y+2)^2 + (y+2)^2 = (y+2)^2 + (y+2)^2 = (y+2)^2 =$	$+z^2=100.$
Câu 38:	Trong không gian Oxy. tham số là:	z, đường thẳng đi qua	hai điểm $A(2;3;-1),B$	(1;2;4) có phương trình
				Trang 4
				3

Câu 28: Trong không gian Oxyz, vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua

Câu 29: Chọn ngẫu nhiên một số trong 18 số nguyên dương đầu tiên. Xác suất để chọn được số lẻ

C. (6;10;14).

B. $\frac{8}{15}$. **C.** $\frac{7}{15}$. **D.** $\frac{1}{2}$.

B. $y = 2x^2 - 2021x$. **C.** $y = -6x^3 + 2x^2 - x$. **D.** $y = 2x^4 - 5x^2 - 7$.

D. (3;5;7).

B. (-3;5;7).

Câu 31: Giá trị nhỏ nhất của hàm số $f(x) = -x^4 + 2x^2$ trên đoạn [-2; 2].

gốc tọa độ O và điểm M(-3;5;-7)?

Câu 30: Hàm số nào dưới đây nghịch biến trên \mathbb{R} ?

A. (6;-10;14).

A. $y = \frac{x+1}{x-2}$.

bằng

A. $\frac{7}{8}$.

	$\int x = 2 - t$
A. <	y = 3 - t
	z = -1 + 5t

$$\mathbf{B.} \quad \begin{cases} x = 1 - t \\ y = 2 - t \\ z = 4 - 5t \end{cases}$$

$$\mathbf{C.} \quad \begin{cases} x = 1 + t \\ y = 2 + t \\ z = 4 + 5t \end{cases}$$

B.
$$\begin{cases} x = 1 - t \\ y = 2 - t \\ z = 4 - 5t \end{cases}$$
 C.
$$\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 4 + 5t \end{cases}$$
 D.
$$\begin{cases} x = 2 + t \\ y = 3 + t \\ z = -1 + 5t \end{cases}$$

Câu 39: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh $a\sqrt{3}$, $\widehat{BAD} = 60^{\circ}$, SAvuông góc với mặt phẳng đáy, SA = 3a. Khoảng cách giữa hai đường thẳng SO và AD bằng

A.
$$\frac{\sqrt{5}a}{5}$$
.

B.
$$\frac{3\sqrt{17}a}{17}$$
. **C.** $\frac{\sqrt{17}a}{17}$. **D.** $\frac{3\sqrt{5}a}{5}$.

C.
$$\frac{\sqrt{17}a}{17}$$

D.
$$\frac{3\sqrt{5}a}{5}$$

Câu 40: Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn

 $xf(x^2) - f(2x) = 2x^3 + 2x, \ \forall x \in \mathbb{R}$. Tính giá trị $I = \int_1^2 f(x) dx$.

A.
$$I = 25$$
.

B.
$$I = 21$$
.

C.
$$I = 27$$
.

D.
$$I = 23$$
.

Tìm tất cả các giá trị thực của tham số m để phương trình $\log_2^2 x + 2\log_2 x + m = 0$ có nghiệm Câu 41: $x \in (0;1)$.

A.
$$m > 1$$
.

B.
$$m \ge \frac{1}{4}$$
.

C.
$$m \le \frac{1}{4}$$
.

D.
$$m \le 1$$
.

Câu 42: Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Gọi S là tích các chữ số được chọn. Xác suất để S > 0 và chia hết cho 6 bằng

A.
$$\frac{23}{54}$$
.

B.
$$\frac{49}{108}$$
. **C.** $\frac{13}{27}$. **D.** $\frac{55}{108}$.

C.
$$\frac{13}{27}$$
.

D.
$$\frac{55}{108}$$

Câu 43: Tìm tất cả các giá trị thực của tham số m sao cho hàm số $y = \frac{-mx + 3m + 4}{x - m}$ nghịch biến trên khoảng $(2;+\infty)$.

A.
$$\begin{bmatrix} m < -1 \\ m > 4 \end{bmatrix}$$
. **B.** $2 < m < 4$. **C.** - $1 < m \notin 2$. **D.** $-1 < m < 4$.

B.
$$2 < m < 4$$
.

C. -
$$1 < m \pounds 2$$

D.
$$-1 < m < 4$$

Câu 44: Tìm tất cả các giá trị thực của tham số m để hàm số $y = mx^3 - (m^2 + 1)x^2 + 2x - 3$ đạt cực tiểu tại điểm x = 1.

A.
$$m = \frac{3}{2}$$
.

B.
$$m = 0$$
.

C.
$$m = -2$$
.

D. Không có giá trị nào của m.

Câu 45: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có đường chéo bằng

 $a\sqrt{2}$, cạnh SA có độ dài bằng 2a và vuông góc với mặt phẳng đáy. Tính đường kính mặt cầu ngoại tiếp hình chóp S.ABCD?

A.
$$\frac{2a\sqrt{6}}{3}$$
. **B.** $a\sqrt{6}$.

B.
$$a\sqrt{6}$$

C.
$$\frac{a\sqrt{6}}{12}$$
.

D.
$$\frac{a\sqrt{6}}{2}$$
.

Câu 46: Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên.

Có tất cả bao nhiều giá trị nguyên của tham số m để phương trình $f(x^3 - 3x^2 + m) - 4 = 0$ có nghiệm thuộc đoạn [-1;2]?

A. 10.

C. 8.

D. 5.

Câu 47: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, $\widehat{SAB} = \widehat{SCB} = 90^{\circ}$, góc giữa hai mặt phẳng (SAB) và (SCB) bằng 60°. Thể tích của khối chóp S.ABC bằng

- **A.** $\frac{\sqrt{3}a^3}{24}$. **B.** $\frac{\sqrt{2}a^3}{12}$. **C.** $\frac{\sqrt{2}a^3}{8}$. **D.** $\frac{\sqrt{2}a^3}{24}$.

Câu 48: Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Đồ thị hàm số y = f'(x) như hình bên. Đặt $g(x) = 2f(x) + x^2 + 3$. Khẳng định nào sau đây là đúng?

- **A.** Hàm số y = g(x) đạt cực tiểu tại x = 1.
- **B.** Hàm số y = g(x) đồng biến trên (-3;1).
- C. Hàm số y = g(x) nghịch biến trên (0;3).
- **D.** Hàm số y = g(x) đạt cực tiểu tại x = 3.

Câu 49: Cho phương trình $(\sqrt{3})^{3x^2-3mx+4} - (\sqrt{3})^{2x^2-mx+3m} = -x^2 + 2mx + 3m - 4$ (1). Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc khoảng (0;2020) sao cho phương trình (1) có hai nghiệm phân biệt. Số phần tử của tập S là

- **A.** 2020.
- **B.** 2018.
- **C.** 2019.
- **D.** 2021.

Câu 50: Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên dưới.

Tích tất cả các giá trị nguyên của tham số m để bất phương trình $36.12^{f(x)} + (m^2 - 5m).4^{f(x)} \le (f^2(x) - 4).36^{f(x)}$ nghiệm đúng với mọi số thực x là

A. 12.

B. 30

C. 6.

D. 24.

BẢNG ĐÁP ÁN

1.C	2.A	3.C	4.A	5. C	6.A	7.A	8.A	9.C	10.B
11.D	12.D	13.C	14.B	15.A	16.A	17.C	18.D	19.B	20. C
21.B	22.B	23.B	24.D	25.B	26.A	27.C	28.A	29.D	30.C
31.D	32.A	33.D	34.D	35.D	36.A	37.B	38.A	39.B	40.B
41.D	42.D	43.C	44.A	45.B	46.C	47.D	48.A	49.B	50.D

LÒI GIẢI CHI TIẾT

Câu 1: Có bao nhiều cách xếp 4 học sinh thành một hàng dọc?

A. 4.

B. C_4^4 .

<u>C</u>. 4!.

D. A_4^1 .

Lời giải

Mỗi cách xếp 4 học sinh thành một hàng dọc là một hoán vị của 4 phần tử.

Vậy số cách xếp 4 học sinh thành một hàng dọc là: 4!.

Câu 2: Cho cấp số nhân (u_n) có $u_1 = -2$ và $u_2 = 6$. Giá trị của u_3 bằng

A. -18.

B. 18.

C. 12.

D. −12.

Lời giải

Công bội của cấp số nhân đã cho là: $q = \frac{u_2}{u_1} = -3$.

Vậy $u_3 = u_2.q = -18$.

Câu 3: Cho hàm số y = f(x) có bảng biến thiên như sau:

x	$ -\infty $		-2		0		$+\infty$
f'(x)		+	0	-	0	+	
f(x)	$\left -\infty\right $	*	3		-1		$+\infty$

Hàm số y = f(x) nghịch biến trên khoảng nào, trong các khoảng dưới đây?

A.
$$(-\infty; -2)$$
.

B.
$$(0;+\infty)$$
.

$$\underline{\mathbf{C}}$$
. $(-2;0)$. $\underline{\mathbf{D}}$. $(-1;3)$.

D.
$$(-1;3)$$

Lời giải

Hàm số y = f(x) nghịch biến trên khoảng (-2,0).

Cho hàm số y = f(x) có bảng biến thiên như sau: Câu 4:

x	$-\infty$		-1		0		1		$+\infty$
y'		-	0	+	0	_	0	+	
17	+∞				-3	/			≠ +∞
У			_ ₄				~ -4		

Hàm số y = f(x) có bao nhiều điểm cực trị?

D. 4.

Lời giải

Hàm số y = f(x) có ba điểm cực trị là: x = -1, x = 0, x = 1.

Cho hàm số f(x) có đạo hàm $f'(x) = x(x-1)(x+2)^3$, $\forall x \in \mathbb{R}$. Số điểm cực trị của hàm số Câu 5: đã cho là

B. 2.

D. 5.

<u>C</u>. 3. Lời giải

+ Ta có:
$$f'(x) = x(x-1)(x+2)^3$$
; $f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1 \\ x = -2 \end{bmatrix}$.

+ Bảng xét dấu

+ Ta thấy f'(x) đổi dấu 3 lần nên hàm số đã cho có 3 điểm cực trị.

+ Cách trắc nghiệm: Ta nhẩm được phương trình f'(x) = 0 có 3 nghiệm bội lẻ nên hàm số f(x) có 3 điểm cực trị.

Tiệm cận ngang của đồ thị hàm số $y = \frac{3x+2}{x-1}$ là đường thẳng Câu 6:

A.
$$y = 3$$
.

B.
$$y = 1$$
.

C.
$$x = 3$$
.

D.
$$x = 1$$
.

Lời giải

Ta có: $\lim_{x\to +\infty} y = 3$; $\lim_{x\to -\infty} y = 3$ nên tiệm cận ngang của đồ thị hàm số là đường thẳng y = 3.

Câu 7: Đồ thị của hàm số nào sau đây có dạng như đường cong trong hình bên dưới?

A.
$$y = x^3 + x + 1$$
.

B.
$$y = x^3 - x + 1$$
.

C.
$$y = x^3 - x - 1$$
.

D.
$$y = x^3 + x - 1$$
.

Lời giải

Nhìn vào hình vẽ ta thấy đồ thị cắt trục tung tại điểm có tung độ dương nên loại các đáp án $y = x^3 - x - 1$ và $y = x^3 + x - 1$.

Ta thấy đồ thị hàm số không có cực trị nên chọn đáp án $y = x^3 + x + 1$ vì hàm số này có $y' = 3x^2 + 1 > 0, \forall x$.

Số giao điểm của đồ thị của hàm số $y = x^4 + 4x^2 - 3$ với trục hoành là Câu 8:

D. 1.

Lời giải

Ta có
$$y = x^4 + 4x^2 - 3 = 0 \Leftrightarrow \begin{bmatrix} x^2 = 1 \\ x^2 = -3(PTVN) \end{cases} \Leftrightarrow x = \pm 1.$$

Suy ra đồ thị hàm số có 2 giao điểm với trục hoành.

Với a là số thực dương tùy ý, $\log_2 \frac{4}{a}$ bằng Câu 9:

A.
$$\frac{1}{2} - \log_2 a$$
.

B.
$$2\log_2 a$$
.

B.
$$2\log_2 a$$
. **C.** $2-\log_2 a$.

D.
$$\log_2 a - 1$$
.

Lời giải

Ta có:
$$\log_2 \frac{4}{a} = \log_2 4 - \log_2 a = 2 - \log_2 a$$
.

Câu 10: Đạo hàm của hàm số $y = 3^x$ là

A.
$$\frac{1}{2} - \log_2 a$$
. **B.** $y' = 3^x \ln 3$. **C.** $y' = \frac{3^x}{\ln 3}$.

B.
$$y' = 3^x \ln 3$$

C.
$$y' = \frac{3^x}{\ln 3}$$
.

Dùng công thức $(a^x)' = a^x \ln a \Rightarrow (3^x)' = 3^x \ln 3$.

Câu 11: Với a là số thực dương tùy ý, $\sqrt[3]{a^2}$ bằng

A.
$$a^3$$
.

B.
$$a^{\frac{5}{3}}$$

B.
$$a^{\frac{5}{3}}$$
. **C.** $a^{\frac{1}{3}}$.

D.
$$a^{\frac{2}{3}}$$
.

Với a > 0 dùng công thức $\sqrt[n]{a^m} = a^{\frac{m}{n}} \Rightarrow \sqrt[3]{a^2} = a^{\frac{2}{3}}$.

Câu 12: Nghiệm của phương trình $3^{4x-6} = 9$ là

A.
$$x = -3$$
.

B.
$$x = 3$$

C.
$$x = 0$$
.

D.
$$x = 2$$
.

Ta có:
$$3^{4x-6} = 9 \Leftrightarrow 3^{4x-6} = 3^2 \Leftrightarrow 4x-6 = 2 \Leftrightarrow x = 2$$
.

Câu 13:	Nghiêm	của	nhương	trình	ln ((7x)	1 = 7	1à
Cau 15.	1 vgmçm	Cua	phuong	шшп	111	111	, — ,	14

A.
$$x = 1$$
.

B.
$$x = \frac{1}{7}$$
.

$$\underline{\mathbf{C}}$$
. $x = \frac{e^7}{7}$.

D.
$$x = e^7$$
.

Lời giải

Ta có
$$\ln(7x) = 7 \Leftrightarrow 7x = e^7 \Leftrightarrow x = \frac{e^7}{7}$$
.

Câu 14: Cho hàm số $f(x) = \frac{x^3 + 2x}{x}$. Trong các khẳng định sau, khẳng định nào đúng?

A.
$$\int f(x) dx = x^2 + 2 + C$$
.

B.
$$\int f(x) dx = \frac{x^3}{3} + 2x + C$$
.

C.
$$\int f(x) dx = x^3 + 2x + C$$
.

D.
$$\int f(x) dx = \frac{x^3}{3} + \frac{x^2}{2} + C$$
.

Lời giải

$$\int f(x) dx = \int \frac{x^3 + 2x}{x} dx = \int (x^2 + 2) dx = \frac{x^3}{3} + 2x + C.$$

Câu 15: Cho hàm số $f(x) = \sin 4x$. Trong các khẳng định sau, khẳng định nào **đúng**?

$$\underline{\mathbf{A}}. \int f(x) \mathrm{d}x = -\frac{\cos 4x}{4} + C.$$

B.
$$\int f(x) dx = \frac{\cos 4x}{4} + C.$$

$$\mathbf{C.} \int f(x) \mathrm{d}x = 4\cos 4x + C.$$

$$\mathbf{D.} \int f(x) \mathrm{d}x = -4\cos 4x + C.$$

Lời giải

$$\int f(x) dx = \int \sin 4x dx = -\frac{\cos 4x}{4} + C.$$

Câu 16: Cho hàm số f(x) thỏa mãn $\int_{1}^{2} f(x) dx = 1$ và $\int_{1}^{4} f(t) dt = -3$. Tính tích phân $I = \int_{2}^{4} f(u) du$

A.
$$I = -4$$
.

B.
$$I = 4$$
.

C.
$$I = -2$$
.

D.
$$I = 2$$
.

Lời giải

$$\int_{1}^{4} f(u) du = \int_{1}^{2} f(u) du + \int_{2}^{4} f(u) du \Leftrightarrow -3 = 1 + \int_{2}^{4} f(u) du \Leftrightarrow \int_{2}^{4} f(u) du = -4.$$

Câu 17: Với m là tham số thực, ta có $\int_{1}^{2} (2mx+1) dx = 4$. Khi đó m thuộc tập hợp nào sau đây?

A.
$$(-3;-1)$$
.

B.
$$[-1;0)$$
.

$$\mathbb{C}$$
. $[0;2)$.

Lời giải

Ta có
$$\int_{1}^{2} (2mx+1)dx = 4 \iff (mx^{2}+x)|_{1}^{2} = 4 \iff 4m+2-m-1=4 \iff m=1.$$

Vậy $m \in [0;2)$.

Câu 18: Số phức liên hợp của số phức z = i(1+3i) là

A.
$$3-i$$
.

B.
$$3+i$$
.

C.
$$-3+i$$
.

D.
$$-3-i$$
.

Lời giải

Ta có
$$z = i(1+3i) = -3+i$$
 nên $z = -3-i$.

Câu 19: Cho hai số phức $z_1 = 5 - 6i$ và $z_2 = 2 + 3i$. Số phức $3z_1 - 4z_2$ bằng

A.
$$26-15i$$
.

B.
$$7 - 30i$$
.

C.
$$23-6i$$
.

D.
$$-14 + 33i$$
.

Ta có
$$3z_1 - 4z_2 = 3(5-6i) - 4(2+3i) = 7-30i$$
.

Câu 20: Cho hai số phức $z_1 = 1 + i$ và $z_2 = 2 + i$. Trên mặt phẳng Oxy, điểm biểu diễn số phức $z_1 + 2z_2$ có toạ độ là:

A. (3;5).

B. (2;5).

<u>C</u>. (5;3).

D. (5;2).

Lời giải

Ta có số phức $z_1 + 2z_2 = 5 + 3i$ có điểm biểu diễn là (5;3).

Câu 21: Cho khối chóp S.ABC, có SA vuông góc với đáy, đáy là tam giác vuông tại B, SA = 2a, AB = 3a, BC = 4a. Thể tích khối chóp đã cho bằng

A. $8a^3$.

B. $4a^3$.

C. $12a^3$.

D. $24a^3$.

Lời giải

$$V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA = \frac{1}{3}.\left(\frac{1}{2}.AB.BC\right).SA = \frac{1}{6}.3a.4a.2a = 4a^3$$
.

Câu 22: Cho khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng $a\sqrt{3}$. Tính thể tích khối lăng trụ đó theo a.

A. $\frac{3a^3}{2}$.

 $\underline{\mathbf{B}}$. $\frac{3a^3}{4}$.

C. $\frac{4a^3}{3}$. D. $\frac{a^3}{4}$.

Lời giải

Ta có:
$$V_{ABC.A'B'C'} = S_{ABC}.AA' = \frac{a^2\sqrt{3}}{4}.a\sqrt{3} = \frac{3a^3}{4}.$$

Câu 23: Diện tích xung quanh của hình trụ có bán kính đáy R, chiều cao h là

A.
$$S_{xa} = \pi Rh$$
.

B.
$$S_{xa} = 2\pi Rh$$
.

C.
$$S_{xq} = 3\pi Rh$$
. D. $S_{xq} = 4\pi Rh$.

D.
$$S_{ya} = 4\pi Rh$$
.

Lời giải

Câu 24: Cho tam giác ABC vuông tại A có $AB = \sqrt{3}$ và AC = 3. Thể tích V của khối nón nhận được khi quay tam giác ABC quanh canh AC là

A.
$$V = 2\pi$$
.

B.
$$V = 5\pi$$
.

C.
$$V = 9\pi$$
.

$$\mathbf{D}$$
. $V = 3\pi$.

Lời giải

Khối nón tạo thành khi quay tam giác ABC quanh cạnh AC có chiều cao h = AC = 3 và bán kính đáy $r = AB = \sqrt{3} \Rightarrow V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi . (\sqrt{3})^2 . 3 = 3\pi$.

Câu 25: Trong không gian Oxyz, cho hai điểm A(3;4;2), B(-1;-2;2) và G(1;1;3) là trọng tâm của tam giác ABC. Tọa độ điểm C là?

A.
$$C(1;3;2)$$
.

B.
$$C(1;1;5)$$
.

C.
$$C(0;1;2)$$
. D. $C(0;0;2)$.

D.
$$C(0;0;2)$$
.

Lời giải

ChonB

Do G là trọng tâm của tam giác ABC nên ta có

$$\begin{cases} x_{G} = \frac{x_{A} + x_{B} + x_{C}}{3} \\ y_{G} = \frac{y_{A} + y_{B} + y_{C}}{3} \Leftrightarrow \begin{cases} x_{C} = 3x_{G} - x_{A} - x_{B} = 1 \\ y_{C} = 3y_{G} - y_{A} - y_{B} = 1 \Rightarrow C \text{ (1;1;5)}. \\ z_{C} = 3z_{G} - z_{A} - z_{B} = 5 \end{cases}$$

Câu 26: Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x + 4y + 4z + 5 = 0$. Tọa độ tâm I và bán kính R của (S) là

A.
$$I(1;-2;-2)$$
 và $R=2$.

B.
$$I(2; 4; 4)$$
 và $R = 2$.

C.
$$I(-1; 2; 2)$$
 và $R = 2$

D.
$$I(1;-2;-2)$$
 và $R = \sqrt{14}$.

Lời giải

ChonA

Phương trình mặt cầu có dạng: $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0 (a^2 + b^2 + c^2 > d)$

 $\Rightarrow a = 1, b = -2, c = -2, d = 5.$

Vậy tâm mặt cầu là I(1;-2;-2) và bán kính mặt cầu $R = \sqrt{1+4+4-5} = 2$.

Câu 27: Trong không gian Oxyz, điểm nào sau đây thuộc truc Oz?

A.
$$A(1;0;0)$$
.

B.
$$B(0;2;0)$$
.

$$C \cdot C(0;0;3)$$
.

D. D(1;2;3).

Lời giải

Điểm nằm trên truc Oz thì hoành đô và và tung đô bằng 0.

Câu 28: Trong không gian Oxyz, vecto nào dưới đây là một vecto chỉ phương của đường thẳng đi qua gốc tọa độ O và điểm M(-3;5;-7)?

$$A. (6;-10;14).$$

B.
$$(-3;5;7)$$
.

D. (3;5;7).

Lời giải

ChonA

Đường thẳng đi qua gốc tọa độ O và điểm M(-3;5;-7)

nhận $\overrightarrow{OM} = (-3;5;-7) \Rightarrow \overrightarrow{u} = -2\overrightarrow{OM} = (6;-10;14)$ là một vectơ chỉ phương của đường thẳng

Câu 29: Chọn ngẫu nhiên một số trong 18 số nguyên dương đầu tiên. Xác suất để chọn được số lẻ bằng

A.
$$\frac{7}{8}$$
.

B.
$$\frac{8}{15}$$
.

C.
$$\frac{7}{15}$$
.

D.
$$\frac{1}{2}$$
.

Lời giải

ChonD

Số phần tử của không gian mẫu: $n(\Omega) = 18$

Gọi A là biến cố chọn được số lẻ. $A = \{1; 3; 5; 7; 9; 11; 13; 15; 17\} \Rightarrow n(A) = 9$.

Vậy xác suất là $p(A) = \frac{n(A)}{n(O)} = \frac{9}{18} = \frac{1}{2}$.

Câu 30: Hàm số nào dưới đây nghich biến trên \mathbb{R} ?

A.
$$y = \frac{x+1}{x-2}$$
.

B.
$$y = 2x^2 - 2021x$$
.

B.
$$y = 2x^2 - 2021x$$
. **C.** $y = -6x^3 + 2x^2 - x$. **D.** $y = 2x^4 - 5x^2 - 7$.

Lời giải

ChonC

Xét các đáp án ta có

Đáp án A tập xác định $D = \mathbb{R} \setminus \{2\}$ nên loại

Đáp án B đồ thi là Parabol nên loại

Đáp án C có TXĐ: \mathbb{R}

 $y' = -18x^2 + 4x - 1 < 0, \forall x \in \mathbb{R}$ nên hàm số nghich biến trên \mathbb{R}

Đáp án D hàm số có 3 cực trị nên không thỏa mãn.

Câu 31: Giá trị nhỏ nhất của hàm số $f(x) = -x^4 + 2x^2$ trên đoạn [-2; 2].

A.
$$-1$$
.

Lời giải

Xét hàm số $f(x) = -x^4 + 2x^2$ trên đoạn [-2; 2].

Ta có
$$f'(x) = -4x^3 + 4x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \in [-2; 2] \\ x = 1 \in [-2; 2] \\ x = -1 \in [-2; 2] \end{bmatrix}$$

Ta có f(-2) = -8; f(-1) = 1; f(0) = 0; f(1) = 1; f(2) = -8. Vậy $\min_{[-2:2]} f(x) = -8$.

Tập nghiệm của bất phương trình $\log_{\frac{1}{2}} x \le \log_{\frac{1}{2}} (2x-1)$ là

$$\underline{\mathbf{A}} \cdot \left(\frac{1}{2};1\right].$$

B.
$$(-\infty;1)$$
. **C.** $(-\infty;1]$. **D.** $(\frac{1}{2};1)$.

Điều kiện xác định của bất phương trình là $\begin{cases} x > 0 \\ 2x - 1 > 0 \end{cases} \Leftrightarrow x > \frac{1}{2}.$

Ta có $\log_{\frac{1}{2}} x \le \log_{\frac{1}{2}} (2x-1) \Leftrightarrow x \ge 2x-1 \Leftrightarrow x \le 1$.

Kết hợp với điều kiện xác định ta có tập nghiệm là $(\frac{1}{2};1]$.

Câu 33: Nếu $\int_{0}^{\frac{\pi}{3}} \left[\sin x - 3f(x) \right] dx = 6$ $\int_{0}^{\frac{\pi}{3}} f(x) dx$ bằng A. $\frac{13}{2}$. B. $-\frac{11}{2}$. C. $-\frac{13}{4}$.

Nếu
$$\frac{1}{0}$$
A. $\frac{13}{2}$.

C.
$$-\frac{13}{4}$$

 $\underline{\mathbf{D}}$. $-\frac{11}{6}$.

Lời giải

Ta có $6 = \int_{3}^{\frac{\pi}{3}} \left[\sin x - 3f(x) \right] dx = \int_{3}^{\frac{\pi}{3}} \sin x dx - 3 \int_{3}^{\frac{\pi}{3}} f(x) dx = -\cos x \Big|_{0}^{\frac{\pi}{3}} - 3 \int_{3}^{\frac{\pi}{3}} f(x) dx = \frac{1}{2} - 3 \int_{3}^{\frac{\pi}{3}} f(x) dx$

Suy ra $3\int_{0}^{\frac{\pi}{3}} f(x) dx = \frac{1}{2} - 6 \Leftrightarrow \int_{0}^{\frac{\pi}{3}} f(x) dx = -\frac{11}{6}$.

Câu 34: Cho số phức z = 5 - 3i. Môđun của số phức (1 - 2i)(z - 1) bằng

A. 25.

B. 10.

C. $5\sqrt{2}$.

D. $5\sqrt{5}$.

Lời giải

Ta có (1-2i)(z-1) = (1-2i)(4+3i) = 10-5i.

Từ đó: $|(1-2i)(\bar{z}-1)| = \sqrt{10^2 + 5^2} = 5\sqrt{5}$.

Câu 35: Cho khối lăng trụ đứng ABC.A'B'C' có B'B = a, đáy ABC là tam giác vuông cân tại B và $AC = a\sqrt{3}$. Tính tan góc giữa C'A và mp (ABC)

A. 60^{0} .

B. 90^0 .

 $C. 45^0$.

D. 30^{0} .

Lời giải

Ta có
$$B'B = a \Rightarrow CC' = a$$

 $AC = a\sqrt{3}$

Góc giữa C'A và mp (ABC) bằng góc đường thẳng C'A và CA bằng góc $\widehat{C'AC}$

$$\tan \widehat{C'AC} = \frac{C'C}{AC} = \frac{a}{a\sqrt{3}} = \frac{\sqrt{3}}{3} \Rightarrow \widehat{C'AC} = 30^{\circ}$$

Câu 36: Cho hình chóp đều S.ABCD có cạnh đáy bằng a và cạnh bên tạo với đáy một góc 60° . Khoảng cách từ S đến mặt phẳng (ABCD) bằng

$$\underline{\mathbf{A}}.\ \frac{a\sqrt{6}}{2}.$$

B.
$$\frac{a\sqrt{3}}{2}$$
.

C.
$$\frac{a\sqrt{3}}{3}$$
. D. $\frac{a\sqrt{2}}{3}$.

D.
$$\frac{a\sqrt{2}}{3}$$

Lời giải

Gọi
$$O = AC \cap BD \Rightarrow SO \perp (ABCD)$$

$$\Rightarrow \widehat{SCO} = 60^{\circ} \Rightarrow \tan 60^{\circ} = \frac{SO}{OC} \Rightarrow SO = OC\sqrt{3} = \frac{a}{\sqrt{2}}.\sqrt{3} = \frac{a\sqrt{6}}{2}$$

Câu 37: Trong không gian với hệ tọa độ Oxyz, mặt cầu có tâm I(-1; 2; 0) và đi qua điểm M(2; 6; 0)có phương trình là:

A.
$$(x+1)^2 + (y-2)^2 + z^2 = 100$$
.

B.
$$(x+1)^2 + (y-2)^2 + z^2 = 25$$
.

C.
$$(x-1)^2 + (y+2)^2 + z^2 = 25$$
.

D.
$$(x-1)^2 + (y+2)^2 + z^2 = 100$$
.

Lời giải

Ta có bán kính $R = IM = \sqrt{3^2 + 4^2 + 0} = 5$.

Vậy phương trình mặt cầu tâm I(-1; 2; 0), bán kính R = 5 là $(x+1)^2 + (y-2)^2 + z^2 = 25$.

Câu 38: Trong không gian Oxyz, đường thẳng đi qua hai điểm A(2;3;-1), B(1;2;4) có phương trình tham số là:

A.
$$\begin{cases} x = 2 - t \\ y = 3 - t \\ z = -1 + 5t \end{cases}$$
B.
$$\begin{cases} x = 1 - t \\ y = 2 - t \\ z = 4 - 5t \end{cases}$$
C.
$$\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 4 + 5t \end{cases}$$
D.
$$\begin{cases} x = 2 + t \\ y = 3 + t \\ z = -1 + 5t \end{cases}$$

$$\mathbf{B.} \quad \begin{cases} x = 1 - t \\ y = 2 - t \\ z = 4 - 5t \end{cases}$$

C.
$$\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 4 + 5t \end{cases}$$

D.
$$\begin{cases} x = 2 + t \\ y = 3 + t \\ z = -1 + 5t \end{cases}$$

Lời giải

$$\overrightarrow{AB} = (-1; -1; 5).$$

Vậy phương trình chính tắc của đường thẳng AB đi qua điểm A và nhận $\overrightarrow{AB} = (-1, -1, 5)$ làm

vecto chỉ phương là:
$$\begin{cases} x = 2 - t \\ y = 3 - t \end{cases}$$
.
$$z = -1 + 5t$$

Câu 39: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh $a\sqrt{3}$, $\widehat{BAD} = 60^{\circ}$, SAvuông góc với mặt phẳng đáy, SA = 3a. Khoảng cách giữa hai đường thẳng SO và AD bằng

$$\mathbf{A.} \ \frac{\sqrt{5}a}{5}.$$

B.
$$\frac{3\sqrt{17}a}{17}$$
.

C.
$$\frac{\sqrt{17}a}{17}$$
.

D.
$$\frac{3\sqrt{5}a}{5}$$
.

Lời giải

Goi M là trung điểm canh AB.

Ta có OM //AD nên AD //(SOM). Suy ra d(SO, AD) = d(AD, (SOM)) = d(A, (SOM))(1).

Vẽ $AN \perp OM, N \in OM$ và $AH \perp SN(2), H \in SN$.

Do $SA \perp (ABCD) \Rightarrow SA \perp OM$. Mà $OM \perp AN$ nên $OM \perp (SAN) \Rightarrow OM \perp AH$ (3).

Từ (2) và (3) suy ra $AH \perp (SOM) \Rightarrow AH = d(A,(SOM))$ (4).

Do $AN \perp OM, OM // AD \Rightarrow AN \perp AD \Rightarrow \widehat{NAD} = 90^{\circ}$.

Lại có ABCD là hình thoi tâm O có $\widehat{BAD} = 60^{\circ}$ nên $\widehat{MAN} = 90^{\circ} - \widehat{BAD} = 30^{\circ}$.

Xét tam giác MAN vuông tại N có $AN = AM \cdot \cos \widehat{MAN} = \frac{a\sqrt{3}}{2} \cdot \cos 30^\circ = \frac{3a}{4}$.

Do tam giác SAN vuông tại A có AH là đường cao nên

$$\frac{1}{AH^2} = \frac{1}{AS^2} + \frac{1}{AN^2} \Leftrightarrow AH = \frac{AS.AN}{\sqrt{AS^2 + AN^2}} = \frac{3a.\frac{3a}{4}}{\sqrt{9a^2 + \frac{9a^2}{16}}} = \frac{3\sqrt{17}a}{17} (5).$$

Từ (1),(4) và (5) suy ra
$$d(SO, AD) = \frac{3\sqrt{17}a}{17}$$
.

Câu 40: Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn

$$xf(x^2) - f(2x) = 2x^3 + 2x, \ \forall x \in \mathbb{R}$$
. Tính giá trị $I = \int_1^2 f(x) dx$.

A.
$$I = 25$$
.

B.
$$I = 21$$
.

C.
$$I = 27$$
.

D. I = 23.

Lời giải

$$xf(x^{2}) - f(2x) = 2x^{3} + 2x \Rightarrow \int_{1}^{2} \left[xf(x^{2}) - f(2x)\right] dx = \int_{1}^{2} (2x^{3} + 2x) dx$$

$$\Leftrightarrow \int_{1}^{2} \left[xf\left(x^{2}\right) \right] dx - \int_{1}^{2} \left[f\left(2x\right) \right] dx = \left(\frac{x^{4}}{2} + x^{2}\right) \left| \frac{1}{2} \Leftrightarrow \int_{1}^{2} \left[xf\left(x^{2}\right) \right] dx - \int_{1}^{2} \left[f\left(2x\right) \right] dx = \frac{21}{2}.$$

+ Tính
$$\int_{1}^{2} \left[xf(x^2) \right] dx$$
:

Đặt
$$u = x^2 \Rightarrow du = 2xdx \Leftrightarrow xdx = \frac{du}{2}$$
.

$$x = 1 \Rightarrow u = 1$$
; $x = 2 \Rightarrow u = 4$.

Suy ra
$$\int_{1}^{2} \left[xf\left(x^{2}\right) \right] dx = \int_{1}^{4} \frac{f\left(u\right)}{2} du = \frac{1}{2} \int_{1}^{4} f\left(x\right) dx.$$

+ Tính
$$\int_{1}^{2} [f(2x)] dx$$
:

Đặt
$$t = 2x \Rightarrow dt = 2dx \Leftrightarrow dx = \frac{dt}{2}$$
.

$$x = 1 \Rightarrow t = 2$$
; $x = 2 \Rightarrow t = 4$.

Suy ra
$$\int_{1}^{2} [f(2x)] dx = \int_{2}^{4} \frac{f(t)}{2} dt = \frac{1}{2} \int_{2}^{4} f(x) dx$$
.

Thay vào ta được

$$\frac{1}{2} \int_{1}^{4} f(x) dx - \frac{1}{2} \int_{2}^{4} f(x) dx = \frac{21}{2} \Leftrightarrow \frac{1}{2} \int_{1}^{2} f(x) dx + \frac{1}{2} \int_{2}^{4} f(x) dx - \frac{1}{2} \int_{2}^{4} f(x) dx = \frac{21}{2}$$

$$\Leftrightarrow \frac{1}{2} \int_{1}^{2} f(x) dx = \frac{21}{2} \Leftrightarrow \int_{1}^{2} f(x) dx = 21$$
.

Câu 41: Tìm tất cả các giá trị thực của tham số m để phương trình $\log_2^2 x + 2\log_2 x + m = 0$ có nghiệm $x \in (0;1)$.

A. m > 1.

B. $m \ge \frac{1}{4}$.

C. $m \le \frac{1}{4}$.

 $\mathbf{\underline{D}}$. $m \leq 1$.

Lời giải

$$\log_2^2 x + 2\log_2 x + m = 0 \quad (1)$$

Điều kiện: x > 0.

Đặt $t = \log_2 x$. Vì $x \in (0;1)$ nên $t \in (-\infty;0)$.

Phương trình trở thành $t^2 + 2t + m = 0 \iff m = -t^2 - 2t$ (2).

Phương trình (1) có nghiệm $x \in (0;1)$ khi và chỉ khi phương trình (2) có nghiệm $t < 0 \Leftrightarrow$ đường thẳng y = m có điểm chung với đồ thị hàm số $y = f(t) = -t^2 - 2t$ trên khoảng $(-\infty;0)$.

Xét hàm số $y = f(t) = -t^2 - 2t$ trên khoảng $(-\infty; 0)$

$$f'(t) = -2t - 2$$
; $f'(t) = 0 \Leftrightarrow t = -1$.

Bảng biến thiên

Từ bảng biến thiên, suy ra $m \le 1$ thì đường thẳng y = m cắt đồ thị hàm số $y = f(t) = -t^2 - 2t$ trên khoảng $(-\infty; 0)$.

Vậy với $m \le 1$ thì phương trình $\log_2^2 x + 2\log_2 x + m = 0$ có nghiệm $x \in (0,1)$.

Câu 42: Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Gọi S là tích các chữ số được chọn. Xác suất để S > 0 và chia hết cho 6 bằng

A.
$$\frac{23}{54}$$

B. $\frac{49}{108}$.

C. $\frac{13}{27}$.

 $\underline{\mathbf{D}}$. $\frac{55}{108}$.

Lời giải

- +) Số tự nhiên có ba chữ số khác nhau có dạng \overline{abc} , $a \neq 0$.
- Số phần tử của không gian mẫu là $n(\Omega) = 9.9.8 = 648$.
- +) Gọi A là biến cố: "Chọn được số có S > 0 và S chia hết cho 6".

Ta có: S = a.b.c > 0 nên ba chữ số a,b,c khác 0.

Mặt khác S = a.b.c chia hết cho 6 nên xảy ra một trong các TH sau:

- +) TH1: Trong 3 chữ số a,b,c có chữ số 6.
- Chọn vị trí cho chữ số 6: có 3 cách.
- Chọn 2 chữ số trong tập $\{1;2;3;4;5;7;8;9\}$ và xếp vào 2 vị trí còn lại: có A_8^2 cách.
- \Rightarrow có $3.A_8^2 = 168$.
- +) TH2: Trong 3 chữ số a,b,c không có chữ số 6.

Khi đó để a.b.c chia hết cho 6 ta cần có ít nhất 1 chữ số chia hết cho 2 thuộc tập $\{2;4;8\}$ và ít nhất 1 chữ số chia hết cho 3 thuộc tập {3;9}. Có các khả năng sau:

- Trong 3 chữ số a,b,c có một chữ số chia hết cho 2, một chữ số chia hết cho 3 và một chữ số thuộc tập $\{1; 5; 7\}$: có $C_3^1.C_2^1.C_3^1.3! = 108$.
- Trong 3 chữ số a,b,c có 2 chữ số chia hết cho 2, một chữ số chia hết cho 3: có $C_3^2.2.3!=36$.
- Trong 3 chữ số a,b,c có 1 chữ số chia hết cho 2 và 2 chữ số chia hết cho 3: có $C_3^1.C_2^2.3!=18$. Suy ra n(A) = 168 + 108 + 36 + 18 = 330

Vậy
$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{330}{648} = \frac{55}{108}$$
.

Câu 43: Tìm tất cả các giá trị thực của tham số m sao cho hàm số $y = \frac{-mx + 3m + 4}{x - m}$ nghịch biến trên khoảng $(2;+\infty)$.

$$\mathbf{A.} \begin{bmatrix} m < -1 \\ m > 4 \end{bmatrix}.$$

B.
$$2 < m < 4$$
.

B.
$$2 < m < 4$$
. **C.** - $1 < m \pounds 2$. **D.** $-1 < m < 4$.

D.
$$-1 < m < 4$$

Lời giải

Tập xác định: $D = \mathbb{R} \setminus \{m\}$.

Ta có
$$y' = \frac{m^2 - 3m - 4}{(x - m)^2}$$
.

Hàm số đã cho nghịch biến trên khoảng $(2; +\infty)$ khi và chỉ khi $y' < 0, \forall x \in (2; +\infty)$

$$\Leftrightarrow \begin{cases} m^2 - 3m - 4 < 0 \\ m \notin (2; +\infty) \end{cases} \Leftrightarrow \begin{cases} -1 < m < 4 \\ m \le 2 \end{cases} \Leftrightarrow -1 < m \le 2.$$

Vậy với $-1 < m \le 2$ thì hàm số đã cho nghịch biến trên khoảng $(2; +\infty)$.

Câu 44: Tìm tất cả các giá trị thực của tham số m để hàm số $y = mx^3 - (m^2 + 1)x^2 + 2x - 3$ đạt cực tiểu tại điểm x = 1.

A.
$$m = \frac{3}{2}$$
.

B.
$$m = 0$$
.

C.
$$m = -2$$
.

D. Không có giá trị nào của m.

Lời giải

Tập xác định: D = i.

+
$$y' = 3mx^2 - 2(m^2 + 1)x + 2$$
.

+
$$y'' = 6mx - 2(m^2 + 1)$$
.

Hàm số đã cho là hàm đa thức có bậc nhỏ hơn hoặc bằng 3 nên ta có:

Hàm số đạt cực tiểu tại điểm
$$x = 1 \Leftrightarrow \begin{cases} y'(1) = 0 \\ y''(1) > 0 \end{cases} \Leftrightarrow \begin{cases} 3m - 2(m^2 + 1) + 2 = 0 \\ 6m - 2(m^2 + 1) > 0 \end{cases}$$

$$\hat{\mathbf{U}} \stackrel{?}{=} 2m^2 - 3m = 0 \\ \hat{\mathbf{E}} m^2 - 3m + 1 < 0 \qquad \hat{\mathbf{E}} m = 0 \\ \hat{\mathbf{E}} m = \frac{3}{2} \\ m^2 - 3m + 1 < 0$$

Ta thấy chỉ có $m = \frac{3}{2}$ thỏa mãn (*).

Vậy $m = \frac{3}{2}$ thỏa mãn yêu cầu bài toán.

Câu 45: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có đường chéo bằng $a\sqrt{2}$, cạnh SA có độ dài bằng 2a và vuông góc với mặt phẳng đáy. Tính đường kính mặt cầu ngoại tiếp hình chóp S.ABCD?

A.
$$\frac{2a\sqrt{6}}{3}$$
.

$$\underline{\mathbf{B}}$$
. $a\sqrt{6}$.

C.
$$\frac{a\sqrt{6}}{12}$$
.

D.
$$\frac{a\sqrt{6}}{2}$$
.

Lời giải

+ Ta có : $SA \perp (ABCD) \Rightarrow SA \perp AC \Rightarrow \Delta SAC$ vuông tại A (1).

+ Lại có :
$$\frac{DC \perp SA}{DC \perp AD}$$
 \Rightarrow $DC \perp SD \Rightarrow \Delta SDC$ vuông tại D (2).

+ Tương tự, $\triangle SBC$ vuông tại B (3).

+ Từ (1); (2); (3) suy ra S; A; B; C; D cùng thuộc một mặt cầu đường kính SC.

Xét ΔSAC vuông tại A có: $SC = \sqrt{SA^2 + AC^2} = \sqrt{4a^2 + 2a^2} = a\sqrt{6}$.

Đường kính của mặt cầu là $SC = a\sqrt{6}$.

Câu 46: Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên.

Có tất cả bao nhiều giá trị nguyên của tham số m để phương trình $f(x^3 - 3x^2 + m) - 4 = 0$ có nghiệm thuộc đoạn [-1; 2]?

A. 10.

B. 7.

<u>C</u>. 8. Lời giải **D.** 5.

+ Từ đồ thị hàm số y = f(x) ta có:

$$f(x^{3}-3x^{2}+m)-4=0 \iff f(x^{3}-3x^{2}+m)=4 \iff \begin{bmatrix} x^{3}-3x^{2}+m=0 \\ x^{3}-3x^{2}+m=3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^{3}-3x^{2}=-m & (1) \\ x^{3}-3x^{2}=3-m & (2) \end{bmatrix}.$$

+ Xét hàm số $y = x^3 - 3x^2$ trên đoạn [-1; 2].

*
$$y' = 3x^2 - 6x$$
, $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \in [-1; 2] \\ x = 2 \in [-1; 2] \end{bmatrix}$

* Bảng biến thiên

+ Phương trình $f(x^3 - 3x^2 + m) - 4 = 0$ có nghiệm thuộc đoạn [-1;2] khi và chỉ khi phương trình (1) hoặc phương trình (2) có nghiệm thuộc đoạn [-1;2].

Từ bảng biến thiên của hàm số $y = x^3 - 3x^2$ ta có:

- * Phương trình (1) có nghiệm $x \in [-1;2]$ khi và chỉ khi $-4 \le -m \le 0 \iff 0 \le m \le 4$ (3).
- * Phương trình (2) có nghiệm $x \in [-1;2]$ khi và chỉ khi $-4 \le 3 m \le 0 \Leftrightarrow 3 \le m \le 7$ (4).
- + Từ (3) và (4) suy ra phương trình $f(x^3 3x^2 + m) 4 = 0$ có nghiệm thuộc đoạn [-1;2] khi và chỉ khi $0 \le m \le 7$, mặt khác m nguyên nên có 8 giá trị m thỏa mãn bài toán.

Câu 47: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, $\widehat{SAB} = \widehat{SCB} = 90^{\circ}$, góc giữa hai mặt phẳng (SAB) và (SCB) bằng 60° . Thể tích của khối chóp S.ABC bằng

A.
$$\frac{\sqrt{3}a^3}{24}$$
.

B.
$$\frac{\sqrt{2}a^3}{12}$$
.

C.
$$\frac{\sqrt{2}a^3}{8}$$
.

D.
$$\frac{\sqrt{2}a^3}{24}$$
.

Lời giải

Xét ΔSAB và ΔSCB có: $SAB = SCB = 90^\circ; AB = BC$, canh SB chung nên $\Delta SAB = \Delta SCB$ Trong tam giác SAB kẻ đường cao $AE \perp SB$ khi đó $CE \perp SB$.

Khi đó
$$((\overline{SAB}),(SBC)) = (\overline{AE},CE) = 60^{\circ}$$
.

Trường hợp $AEC = (AE, CE) = 60^{\circ}$ thì AE = AC = AB = a điều này vô lí vì tam giác AEB vuông tại E suy ra $AEC = 180^{\circ} - (AE, CE) = 120^{\circ}$.

Trong tam giác AEC cân tại E kẻ đường cao EK, ta có $EAK = 30^{\circ}$.

Xét tam giác vuông AEK ta có: $AE = \frac{AK}{\cos 30^{\circ}} = \frac{\sqrt{3}}{3}a$.

Trong tam giác vuông ABE ta có $BE = \sqrt{AB^2 - AE^2} = \sqrt{a^2 - \frac{a^2}{3}} = \frac{\sqrt{6}}{3}a$.

Trong tam giác SAB có: $BS = \frac{AB^2}{BE} = \frac{a\sqrt{6}}{2}$.

$$V_{B.EAC} = \frac{1}{3}.BE.\frac{1}{2}.EA.EC.\sin 120^{\circ} = \frac{1}{3}.\frac{a\sqrt{6}}{3}.\frac{1}{2}.\left(\frac{a}{\sqrt{3}}\right)^{2}.\frac{\sqrt{3}}{2} = \frac{\sqrt{2}a^{3}}{36}.$$

$$\frac{V_{B.EAC}}{V_{B.SAC}} = \frac{BE}{BS} \cdot \frac{BA}{BA} \cdot \frac{BC}{BC} = \frac{BE}{BS} = \frac{\frac{a\sqrt{6}}{3}}{\frac{a\sqrt{6}}{2}} = \frac{2}{3}.$$

$$\Rightarrow V_{B.SAC} = \frac{3}{2}.V_{B.EAC} = \frac{3}{2}.\frac{\sqrt{2}}{36}a^3 = \frac{\sqrt{2}}{24}a^3.$$

Vậy
$$V_{S.ABC} = \frac{\sqrt{2}}{24} a^3$$
.

Câu 48: Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Đồ thị hàm số y = f'(x) như hình bên. Đặt $g(x) = 2f(x) + x^2 + 3$. Khẳng định nào sau đây là đúng?

- **A.** Hàm số y = g(x) đạt cực tiểu tại x = 1.
- **B.** Hàm số y = g(x) đồng biến trên (-3;1).
- C. Hàm số y = g(x) nghịch biến trên (0;3).
- **D.** Hàm số y = g(x) đạt cực tiểu tại x = 3.

Lời giải

Ta có
$$g'(x) = 2f'(x) + 2x$$
.

Phương trình
$$g'(x) = 0 \Leftrightarrow f'(x) = -x$$
.

Ta vẽ đồ thị y = f'(x) và đường thẳng y = -x trên cùng một hệ trục tọa độ.

Nghiệm của phương trình chính là hoành độ giao điểm của hai đồ thị trên.

Xét trên khoảng (-3;3) ta có:

$$g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = -3 \\ x = 1 \\ x = 3 \end{bmatrix}$$

Bảng biến thiên

x	-3		1		3
g'(x)	\3 \4	198	0	+	
g(x)	g(-3)	\	* a(1)		<i>y g</i> (3)

Dựa vào bảng biến thiên ta suy ra được hàm số y = g(x) đạt cực tiểu tại x = 1.

Câu 49: Cho phương trình $(\sqrt{3})^{3x^2-3mx+4} - (\sqrt{3})^{2x^2-mx+3m} = -x^2 + 2mx + 3m - 4$ (1). Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc khoảng (0;2020) sao cho phương trình (1) có hai nghiệm phân biệt. Số phần tử của tập S là **A.** 2020. **B.** 2018. **C.** 2019. **D.** 2021.

A. 2020. **B.** 2018.

Lời giải

$$\left(\sqrt{3}\right)^{3x^2-3mx+4} - \left(\sqrt{3}\right)^{2x^2-mx+3m} = -x^2 + 2mx + 3m - 4$$

$$\Leftrightarrow \left(\sqrt{3}\right)^{3x^2 - 3mx + 4} + 3x^2 - 3mx + 4 = \left(\sqrt{3}\right)^{2x^2 - mx + 3m} + 2x^2 - mx + 3m \quad (2).$$

Xét hàm số $f(t) = (\sqrt{3})^t + t$ trên tập \mathbb{R} . Ta có $f'(t) = (\sqrt{3})^t \ln \sqrt{3} + 1 > 0, \forall t \in \mathbb{R}$ suy ra hàm số y = f(t) đồng biến trên \mathbb{R} .

Khi đó, phương trình $(2) \Leftrightarrow f(3x^2 - 3mx + 4) = f(2x^2 - mx + 3m)$

$$\Leftrightarrow 3x^2 - 3mx + 4 = 2x^2 - mx + 3m \Leftrightarrow x^2 - 2mx - 3m + 4 = 0$$
 (3).

Phương trình (1) có hai nghiệm phân biệt khi và chỉ khi phương trình (3) có hai nghiệm phân

biệt
$$\Leftrightarrow \Delta' > 0 \Leftrightarrow m^2 + 3m - 4 > 0 \Leftrightarrow \begin{bmatrix} m > 1 \\ m < -4 \end{bmatrix}$$
.

Mà m nguyên và thuộc khoảng (0;2020) suy ra $S = \{2;3;4...;2019\}$.

Vậy tập S có 2018 phần tử.

Câu 50: Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên dưới.

Tích tất cả các giá trị nguyên của tham số m để bất phương trình $36.12^{f(x)} + \left(m^2 - 5m\right).4^{f(x)} \le \left(f^2(x) - 4\right).36^{f(x)}$ nghiệm đúng với mọi số thực x là

A. 12.

B. 30.

C. 6. Lời giải <u>D</u>. 24.

Từ đồ thị hàm số f(x) ta thấy miền giá trị của f(x) là $(-\infty; -2]$.

Đặt
$$t = f(x)$$
, với $t \le -2$.

Do đó bất phương trình $36.12^{f(x)} + (m^2 - 5m).4^{f(x)} \le (f^2(x) - 4).36^{f(x)}$ (1) nghiệm đúng với mọi $x \in \mathbb{R}$ khi và chỉ khi bất phương trình $36.12^t + (m^2 - 5m).4^t \le (t^2 - 4).36^t$ (2) nghiệm đúng với mọi $t \le -2$.

Ta có:
$$(2) \Leftrightarrow (m^2 - 5m) \cdot \left(\frac{1}{3}\right)^{2t} + 36 \cdot \left(\frac{1}{3}\right)^t \leq (t^2 - 4), \forall t \leq -2.$$

Do (2) đúng với t=-2 nên $81.(m^2-5m)+36.9 \le 0 \Leftrightarrow m^2-5m+4 \le 0 \Leftrightarrow 1 \le m \le 4$.

Ta thấy với $1 \le m \le 4$ thì $-\frac{25}{4} \le m^2 - 5m \le -4$.

Lại có:
$$t \le -2 \Rightarrow \left(\frac{1}{3}\right)^t \ge 9$$
. Suy ra $(m^2 - 5m) \cdot \left(\frac{1}{3}\right)^t \le -4.9 = -36$ do $d \circ (m^2 - 5m) \cdot \left(\frac{1}{3}\right)^{t} + 36 \cdot \left(\frac{1}{3}\right)^{t} = \left(\frac{1}{3}\right)^{t} \left((m^2 - 5m) \cdot \left(\frac{1}{3}\right)^{t} + 36\right) \le 0$, $\forall t \le -2$.

Mà $t^2 - 4 \ge 0, \forall t \le -2$.

Từ và suy ra đúng.

Với $m \in [1;4]$ thì (2) luôn đúng với mọi $t \le -2$ và $m \in \mathbb{Z}$ suy ra $m \in \{1;2;3;4\}$.

Vậy tích các giá trị bằng 24.

-----Hết-----