Amendments to the Claims:

This listing of claims will replace all prior versions, and listing, of claims in the application:

Listing of Claims:

- 1 1. (original) An electrode material comprising a surface/chemically modified
- 2 positive electrode (cathode) material, wherein the surface/chemical modification is a
- 3 ceramic.
- 1 2. (currently amended) The composition of claim 1, wherein the surface/chemical
- 2 modification is selected from the group consisting of Li_xNi_{1-y}M_yO₂, where $0 \le x \le 1$, 0
- 3 $\leq y \leq 1$, and M = Mg, Al, Ti, V, Cr, Fe, Co, Cu, Zn, and Ga; Al₂O₃; Cr₂O₃; MgO; Al₂
- 4 $_{y}Mg_{y}\Theta_{3.0.5y}$ where $0 \le y \le 2$; $Li_{1,xy}Mn_{2.x.y}My\Theta_{4}$ where $0 \le x \le 0.33$, $0 \le y \le 2$ and M =
- 5 Mg, Al, Ti, V, Cr, Fo, Co, Ni, Cu and Zn; Zr, MyO2, where 0 ≤ y ≤ 1 and M = Mg,
- 6 Ca; Zr, MyO2.c., where 0 ≤ y ≤ 1 and M = So, Y; and a combinations thereof.
- 1 3. (currently amended) The composition of claim 1, wherein the positive electrode
- 2 (cathode) material is selected from the group consisting of LiCoO₂, LiMn₂O₄, LiNi₁.
- 3 yCoyO2-whore 0 ≤ y ≤ 1 and LiMn; MyO2-where M = Cr and Al and 0 ≤ y ≤ 1, and
- 4 Li_{1+x}Mm_{x y}M_yO_{4 xx8}X_x where $0 \le x \le 0.33$, $0 \le y \le 1$, $0 \le \delta \le 0.5$, M = Mg, Al, Ti, V,
- 5 Cr., Fe, Co, Ni, Cu and Zn, and X F and S.
- 1 4. (canceled)
- 1 5. (withdrawn) The composition of claim 1, wherein the positive electrode
- 2 (cathode) material is LiCoO₂.
- 1 6. (original) The composition of claim 1, wherein the surface/chemical
- 2 modification material is $\text{Li}_x \text{Ni}_{1,y} \text{Co}_y \text{O}_2$, where $0 \le x \le 1$; $0 \le y \le 1$.

- 1 7. (withdrawn) The composition of claim 1, wherein the surface/chemical
- 2 modification material is Al₂O₃.
- 1 8. (withdrawn) The composition of claim 1, wherein the surface/chemical
- 2 modification material is MgO.
- 1 9. (withdrawn) The composition of claim 1, wherein the surface/chemical
- 2 modification material is MgAl₂O₄.
- 1 10. (original) The composition of claim 1, wherein the surface/chemical
- 2 modification material is Li_{1,05}Mn_{1,9}Ni_{0,05}O₄.
- 1 11. (withdrawn) The composition of claim 1, wherein the surface/chemical
- 2 modification material is Cr₂O₃.
- 1 12. (currently amended) An electrode material comprising a LiMn₂O₄ spinel oxide
- 2 having been surface/chemically modified with a surface/chemical modification material
- 3 selected from the group consisting of $\text{Li}_x \text{Ni}_{1-y} \text{Co}_y \text{O}_2$, where $0 \le x \le 1$; $0 \le y \le 1$; AlgO3;
- 4 Cf₂O₃; MgO; MgAl₂O₄; and a combinations thereof.
- 1 13. (original) The composition of claim 11, wherein the surface/chemical
- 2 modification material is $\text{Li}_x \text{Ni}_{1-y} \text{Co}_y \text{O}_2$, where $0 \le x \le 1$; $0 \le y \le 1$.
- 1 14. (withdrawn) The composition of claim 11, wherein the surface/chemical
- 2 modification material is Al₂O₃.
- 1 15. (withdrawn) The composition of claim 11, wherein the surface/chemical
- 2 modification material is MgO.
- 1 16. (withdrawn) The composition of claim 11, wherein the surface/chemical
- 2 modification material is MgAl₂O₄.

- 1 17. (withdrawn) The composition of claim 11, wherein the surface/chemical
- 2 modification material is Cr₂O₃.
- 1 18. (original) An electrode material comprising a LiCoO2 layered oxide having
- 2 been surface/chemically modified with a surface/chemical modification material
- 3 selected from the group-consisting of Al₂O₃; Cr₂O₃; MgO, MgAl₂O₄; Li_{1+x}Mn_{2-x-y}M_yO₄
- 4 where $0 \le x \le 0.33$, $0 \le y \le 2$ and M = Ni or Co; and a combinations thereof.
- 1 19. (withdrawn) The composition of claim 17, wherein the surface modification
- 2 material is Al₂O₃.
- 1 20. (original) The composition of claim 17, wherein the surface modification
- 2 material is Li_{1.05}Mn_{1.9}Ni_{0.05}O₄
- 1 21. (withdrawn) An electrode material preparation method comprising:
- 2 supplying a LiMn₂O₄ spinel oxide electrode material;
- mixing the LiMn₂O₄ spinel oxide electrode material with a surface/chemical
- 4 modification material selected from a group consisting of $Li_xNi_{1-y}Co_yO_2$, where $0 \le x \le$
- 5 1; $0 \le y \le 1$; Al₂O₃; Cr₂O₃; MgO; MgAl₂O₄; and combinations thereof; and
- 6 heat-treating the mixture to prepare a surface/chemically modified LiMn₂O₄
- 7 electrode material.
- 1 22. (withdrawn) The method of claim 20, wherein the heat-treating is performed at
- 2 a temperature in the approximate range of 100°C to 1000°C.
- 1 23. (withdrawn) The method of claim 20 wherein the heat-treating is performed for
- 2 approximately 1 to 24 hours.
- 1 24. (withdrawn) The method of claim 20, wherein the surface/chemical
- 2 modification material is in the approximate range of 1 to 20 weight percent of the
- 3 surface/chemically modified LiMn₂O₄ electrode material.

- 1 25. (currently amended) An electrode material comprising a surface/chemically
- 2 modified LiMn₂O₄ spinel oxide said electrode material prepared by a process
- 3 comprising:
- a) refluxion of a precursor solution in glacial acetic acid, wherein the precursor
- 5 is selected from a group consisting of Li_xCoO₂₇ LiCo_{0.5}Ni_{0.5}O₂₇ and Al₂O₂;
- b) preparing a precursor solution in water, wherein the precursor is selected from a group consisting of Al₂O₃; Cr₂O₃; MgO, and MgAl₂O₄;
- 8 c) dispersing LiMn₂O₄ spinel oxide in the precursor solution; and
- d) heating the dispersed LiMn₂O₄ spinel oxide to approximately 100 to 500 degrees C; and
- e) firing the heated dispersed LiMπ₂O₄ spinel oxide at 500 to 900 degrees C.
- 1 26. (withdrawn) A method of preparing an electrode material for lithium-ion
- 2 batteries comprising:
- 3 supplying a LiCoO2 layered oxide electrode material;
- 4 mixing the LiCoO₂ layered oxide electrode material with a surface/chemical
- 5 modification material selected from a group consisting of Al₂O₃; Cr₂O₃; MgO,
- 6 MgAl₂O₄; Li_{1+x}Mn_{2-x-y}M_yO₄ where $0 \le x \le 0.33$, $0 \le y \le 2$ and M = Ni or Co; and
- 7 combinations thereof; and
- 8 heat-treating the mixture to prepare a surface/chemically modified LiCoO2
- 9 electrode material.
- 1 27. (withdrawn) The method of claim 23, wherein the heat-treating is performed at
- 2 a temperature in the approximate range of 100°C to 1000°C.
- 1 28. (withdrawn) The method of claim 23 wherein the heat-treating is performed for
- 2 approximately 1 to 24 hours.
- 1 29. (withdrawn) The method of claim 25, wherein the surface/chemical
- 2 modification material is in the approximate range of 1 to 20 weight percent of the
- 3 surface/chemically modified LiCoO₂ electrode material.

1	30. (currently amended) An electrode material comprising a surface/chemically
1	modified LiCoO ₂ layered oxide said electrode material prepared by a process comprising:
2	modified LiCoO2 layeren oxide said electrods interest properties
3	a) refluxion of a precursor solution in glacial acetic acid, wherein the precursor is
4	solected from a group consisting of Al ₂ O ₃ ; Cr ₂ O ₃ ; MgO, MgAl ₂ O ₄ ; Li _{1+x} Mn _{2-x-y} M _y O ₄
5	where $0 \le x \le 0.33$, $0 \le y \le 2$ and $M = Ni$ or Co;
6	b) preparing a precursor solution in water, wherein the precursor is selected from
7	a group consisting of Al ₂ O ₃ ; Cr ₂ O ₃ ; MgO, and MgAl ₂ O ₄ ;
8	c) dispersing LiCoO ₂ layered oxide in the precursor solution; and
9	d) heating the dispersed LiCoO2 layered oxide to approximately 100 to 500
10	degrees C; and
11	e) firing the heated dispersed LiCoO2 layered oxide at 500-900 degrees C