第1章b: 极限

数学系 梁卓滨

2019-2020 学年 I

Outline

- 1. 数列极限
- 2. 函数极限
- 3. 极限运算
- 4. 极限性质
- 5. 两个重要极限
- 6. 无穷大,无穷小

We are here now...

- 1. 数列极限
- 2. 函数极限
- 3. 极限运算
- 4. 极限性质
- 5. 两个重要极限
- 6. 无穷大,无穷小

$$x_1, x_2, x_3, \cdots, x_n, \cdots$$

$$X_1, X_2, X_3, \cdots, X_n, \cdots$$

如果 n 无限增大时, x_n 无限接近一个数 a,则称 $\{x_n\}$ 的 "极限"为 a

$$X_1, X_2, X_3, \cdots, X_n, \cdots$$

如果 n 无限增大时, x_n 无限接近一个数 a,则称 $\{x_n\}$ 的 "极限" 为 a

$$X_1, X_2, X_3, \cdots, X_n, \cdots$$

如果
$$n$$
 无限增大时, x_n 无限接近一个数 α ,则称 $\{x_n\}$ 的"极限"为 α

定义 任意给定 $\varepsilon > 0$,存在正整数 N,使得 n > N 时,有 $|x_n - \alpha| < \varepsilon$,则称 α 是 $\{x_n\}$ 的 极限

$$x_1, x_2, x_3, \cdots, x_n, \cdots$$

如果
$$n$$
 无限增大时, x_n 无限接近一个数 a ,则称 $\{x_n\}$ 的"极限"为 a

$$x_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$$

定义 任意给定
$$\varepsilon > 0$$
,存在正整数 N ,使得 $n > N$ 时,有 $|x_n - \alpha| < \varepsilon$,则称 $\alpha \in \{x_n\}$ 的极限

● 整商大學

$$X_1, X_2, X_3, \cdots, X_n, \cdots$$

如果
$$n$$
 无限增大时, x_n 无限接近一个数 a ,则称 $\{x_n\}$ 的"极限"为 a

$$x_n \in (a - \varepsilon, a + \varepsilon)$$

定义 任意给定
$$\varepsilon > 0$$
,存在正整数 N ,使得 $n > N$ 时,有 $|x_n - \alpha| < \varepsilon$,则称 $\alpha \in \{x_n\}$ 的极限

$$x_1, x_2, x_3, \cdots, x_n, \cdots$$

如果 n 无限增大时, x_n 无限接近一个数 a,则称 $\{x_n\}$ 的"极限"为 a

$$x_n \in (a - \varepsilon, a + \varepsilon)$$

定义 任意给定
$$\varepsilon > 0$$
,存在正整数 N ,使得 $n > N$ 时,有 $|x_n - \alpha| < \varepsilon$,则称 $\alpha \in \{x_n\}$ 的 极限

動 暨南大學

$$x_1, x_2, x_3, \cdots, x_n, \cdots$$

如果 n 无限增大时, x_n 无限接近一个数 a,则称 $\{x_n\}$ 的"极限"为 a

$$x_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$$

定义 任意给定
$$\varepsilon > 0$$
,存在正整数 N ,使得 $n > N$ 时,有 $|x_n - \alpha| < \varepsilon$,则称 $\alpha \in \{x_n\}$ 的 极限

整め大学
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は
 は

$$x_1, x_2, x_3, \cdots, x_n, \cdots$$

如果 n 无限增大时, x_n 无限接近一个数 a,则称 $\{x_n\}$ 的"极限"为 a

$$x_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$$

定义 任意给定
$$\varepsilon > 0$$
,存在正整数 N ,使得 $n > N$ 时,有 $|x_n - \alpha| < \varepsilon$,则称 α 是 $\{x_n\}$ 的极限,或称 $\{x_n\}$ **收敛于** α ,

暨南大學
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □

$$x_1, x_2, x_3, \cdots, x_n, \cdots$$

如果 n 无限增大时, x_n 无限接近一个数 a,则称 $\{x_n\}$ 的"极限"为 a

$$x_n \in (a - \varepsilon, a + \varepsilon)$$

定义 任意给定 $\varepsilon > 0$,存在正整数 N,使得 n > N 时,有 $|x_n - \alpha| < \varepsilon$,则称 $\alpha \in \{x_n\}$ 的极限,或称 $\{x_n\}$ 收敛于 α ,记为

$$\lim_{n\to\infty} x_n = a \qquad \text{if} \qquad x_n \to a \quad (n\to\infty)$$

$$x_1, x_2, x_3, \cdots, x_n, \cdots$$

如果 n 无限增大时, x_n 无限接近一个数 a,则称 $\{x_n\}$ 的"极限"为 a

$$x_n \in (a - \varepsilon, a + \varepsilon)$$

定义 任意给定 $\varepsilon > 0$,存在正整数 N,使得 n > N 时,有 $|x_n - \alpha| < \varepsilon$,则称 $\alpha \in \{x_n\}$ 的极限,或称 $\{x_n\}$ 收敛于 α ,记为

$$\lim_{n\to\infty} x_n = a \qquad \text{in} \qquad x_n \to a \quad (n\to\infty)$$

若不存在这样的数 α ,称为 $\{x_n\}$ 发散,或 $\lim_{n\to\infty} x_n$ 不存在

$$X_1, X_2, X_3, \cdots, X_n, \cdots$$

如果 n 无限增大时, x_n 无限接近一个数 α ,则称 $\{x_n\}$ 的"极限"为 α

定义 任意给定
$$\varepsilon > 0$$
,存在正整数 N ,使得 $n > N$ 时,有 $|x_n - \alpha| < \varepsilon$,则称 $\alpha \in \{x_n\}$ 的极限,或称 $\{x_n\}$ 收敛于 α ,记为

$$\lim_{n\to\infty} x_n = a \qquad \text{ii} \qquad x_n \to a \quad (n\to\infty)$$

若不存在这样的数 α ,称为 $\{x_n\}$ 发散,或 $\lim_{n \to \infty} x_n$ 不存在

$$X_1, X_2, X_3, \cdots, X_n, \cdots$$

如果 n 无限增大时, x_n 无限接近一个数 a,则称 $\{x_n\}$ 的"极限"为 a

定义 任意给定 $\varepsilon > 0$,存在正整数 N,使得 n > N 时,有 $|x_n - \alpha| < \varepsilon$,则称 $\alpha \in \{x_n\}$ 的极限,或称 $\{x_n\}$ 收敛于 α ,记为

$$\lim_{n\to\infty} x_n = a \qquad \text{in} \qquad x_n \to a \quad (n\to\infty)$$

若不存在这样的数 α ,称为 $\{x_n\}$ 发散,或 $\lim_{n \to \infty} x_n$ 不存在

$$x_1, x_2, x_3, \cdots, x_n, \cdots$$

如果 n 无限增大时, x_n 无限接近一个数 a,则称 $\{x_n\}$ 的"极限"为 a

定义 任意给定 $\varepsilon > 0$,存在正整数 N,使得 n > N 时,有 $|x_n - \alpha| < \varepsilon$,则称 $\alpha \in \{x_n\}$ 的极限,或称 $\{x_n\}$ 收敛于 α ,记为

$$\lim_{n\to\infty} x_n = a \qquad \text{in} \qquad x_n \to a \quad (n\to\infty)$$

若不存在这样的数 a,称为 $\{x_n\}$ 发散 ,或 $\lim_{n \to \infty} x_n$ 不存在

$$x_1, x_2, x_3, \cdots, x_n, \cdots$$

如果 n 无限增大时, x_n 无限接近一个数 a,则称 $\{x_n\}$ 的"极限"为 a

定义 任意给定 $\varepsilon > 0$,存在正整数 N,使得 n > N 时,有 $|x_n - \alpha| < \varepsilon$,则称 $\alpha \in \{x_n\}$ 的极限,或称 $\{x_n\}$ 收敛于 α ,记为

$$\lim_{n\to\infty} x_n = a \qquad \text{if} \qquad x_n \to a \quad (n\to\infty)$$

若不存在这样的数 a,称为 $\{x_n\}$ 发散 ,或 $\lim_{n \to \infty} x_n$ 不存在

例1 证明 $\lim_{n\to\infty}\frac{1}{n}=0$

例1 证明
$$\lim_{n\to\infty}\frac{1}{n}=0$$

证明
$$\forall \varepsilon > 0$$
,取 $N =$

$$|x_n - 0|$$
 < ε

例1 证明
$$\lim_{n\to\infty}\frac{1}{n}=0$$

证明
$$\forall \varepsilon > 0$$
,取 $N =$

$$|x_n - 0| = \left| \frac{1}{n} - 0 \right|$$

例1 证明
$$\lim_{n\to\infty}\frac{1}{n}=0$$

证明
$$\forall \varepsilon > 0$$
,取 $N =$

,则当
$$n > N$$
时,有

$$|x_n - 0| = \left| \frac{1}{n} - 0 \right| = \frac{1}{n}$$

例1 证明
$$\lim_{n\to\infty}\frac{1}{n}=0$$

证明
$$\forall \varepsilon > 0$$
,取 $N =$

,则当
$$n > N$$
时,有

$$|x_n-0|=\left|\frac{1}{n}-0\right|=\frac{1}{n}<\frac{1}{N}<\varepsilon$$

例1 证明 $\lim_{n\to\infty}\frac{1}{n}=0$

证明
$$\forall \varepsilon > 0$$
,取 $N = (- \uparrow + \uparrow \uparrow)$ 的正整数),则当 $n > N$ 时,有

$$|x_n-0|=\left|\frac{1}{n}-0\right|=\frac{1}{n}<\frac{1}{N}<\varepsilon$$

例1 证明
$$\lim_{n\to\infty}\frac{1}{n}=0$$

$$|x_n-0|=\left|\frac{1}{n}-0\right|=\frac{1}{n}<\frac{1}{N}<\varepsilon$$

所以
$$\lim_{n\to\infty}\frac{1}{n}=0$$
.

例1 证明
$$\lim_{n\to\infty}\frac{1}{n}=0$$

证明 $\forall \varepsilon > 0$,取 $N = (- \uparrow + \uparrow \uparrow)$ 的正整数),则当 n > N 时,有

$$|x_n - 0| = \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \frac{1}{N} < \varepsilon$$

所以
$$\lim_{n\to\infty}\frac{1}{n}=0$$
.

例 2 证明数列 2, $\frac{1}{2}$, $\frac{4}{3}$, $\frac{3}{4}$, ..., $\frac{n+(-1)^{n-1}}{n}$, ... 的极限是 1

例1 证明
$$\lim_{n\to\infty}\frac{1}{n}=0$$

$$|x_n - 0| = \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \frac{1}{N} < \varepsilon$$

所以 $\lim_{n\to\infty}\frac{1}{n}=0$.

例 2 证明数列 2,
$$\frac{1}{2}$$
, $\frac{4}{3}$, $\frac{3}{4}$, ..., $\frac{n+(-1)^{n-1}}{n}$, ... 的极限是 1

证明
$$\forall \varepsilon > 0$$
,取 $N =$

,则当n > N时,有

$$|x_{n}-1|$$

< ε

例1 证明
$$\lim_{n\to\infty}\frac{1}{n}=0$$

证明
$$\forall \varepsilon > 0$$
,取 $N = (- \uparrow + \uparrow + \downarrow f)$ 的正整数),则当 $n > N$ 时,有

$$|x_n - 0| = \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \frac{1}{N} < \varepsilon$$

所以 $\lim_{n\to\infty}\frac{1}{n}=0$.

例 2 证明数列 2,
$$\frac{1}{2}$$
, $\frac{4}{3}$, $\frac{3}{4}$, ..., $\frac{n+(-1)^{n-1}}{n}$, ... 的极限是 1

证明
$$\forall \varepsilon > 0$$
,取 $N =$

$$|x_n - 1| = \left| \frac{n + (-1)^{n-1}}{n} - 1 \right| < \varepsilon$$

例1 证明
$$\lim_{n\to\infty}\frac{1}{n}=0$$

证明 $\forall \varepsilon > 0$,取 $N = (- \uparrow + \uparrow \uparrow)$ 的正整数),则当 n > N 时,有

$$|x_n - 0| = \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \frac{1}{N} < \varepsilon$$

所以 $\lim_{n\to\infty}\frac{1}{n}=0$.

例 2 证明数列 2,
$$\frac{1}{2}$$
, $\frac{4}{3}$, $\frac{3}{4}$, ..., $\frac{n+(-1)^{n-1}}{n}$, ... 的极限是 1

证明
$$\forall \varepsilon > 0$$
,取 $N =$

$$|x_n - 1| = \left| \frac{n + (-1)^{n-1}}{n} - 1 \right| = \frac{1}{n}$$
 < \varepsilon

例1 证明
$$\lim_{n\to\infty}\frac{1}{n}=0$$

$$|x_n - 0| = \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \frac{1}{N} < \varepsilon$$

所以 $\lim_{n\to\infty}\frac{1}{n}=0$.

例 2 证明数列 2,
$$\frac{1}{2}$$
, $\frac{4}{3}$, $\frac{3}{4}$, ..., $\frac{n+(-1)^{n-1}}{n}$, ... 的极限是 1

证明
$$\forall \varepsilon > 0$$
,取 $N =$

$$|x_n - 1| = \left| \frac{n + (-1)^{n-1}}{n} - 1 \right| = \frac{1}{n} < \frac{1}{N} < \varepsilon$$

例1 证明
$$\lim_{n\to\infty}\frac{1}{n}=0$$

证明 $\forall \varepsilon > 0$,取 $N = (- \uparrow + \uparrow \uparrow)$ 的正整数),则当 n > N 时,有

$$|x_n - 0| = \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \frac{1}{N} < \varepsilon$$

所以 $\lim_{n\to\infty}\frac{1}{n}=0$.

例 2 证明数列 2,
$$\frac{1}{2}$$
, $\frac{4}{3}$, $\frac{3}{4}$, ..., $\frac{n+(-1)^{n-1}}{n}$, ... 的极限是 1

$$|x_n - 1| = \left| \frac{n + (-1)^{n-1}}{n} - 1 \right| = \frac{1}{n} < \frac{1}{N} < \varepsilon$$

例1 证明
$$\lim_{n\to\infty}\frac{1}{n}=0$$

证明 $\forall \varepsilon > 0$,取 $N = (- \uparrow + \uparrow f)$ 的正整数),则当 n > N 时,有

$$|x_n-0|=\left|\frac{1}{n}-0\right|=\frac{1}{n}<\frac{1}{N}<\varepsilon$$

所以 $\lim_{n\to\infty}\frac{1}{n}=0$.

例 2 证明数列 2,
$$\frac{1}{2}$$
, $\frac{4}{3}$, $\frac{3}{4}$, ..., $\frac{n+(-1)^{n-1}}{n}$, ... 的极限是 1

$$|x_n - 1| = \left| \frac{n + (-1)^{n-1}}{n} - 1 \right| = \frac{1}{n} < \frac{1}{N} < \varepsilon$$

所以
$$\lim_{n\to\infty} \frac{n+(-1)^{n-1}}{n} = 1.$$

例3 设 |q| < 1,证明等比数列 $1, q, q^2, \dots, q^{n-1}, \dots$ 的极限是 0

例 3 设 |q| < 1,证明等比数列 $1, q, q^2, \dots, q^{n-1}, \dots$ 的极限是 0

证明
$$\forall \varepsilon > 0$$
,取 $N =$,则当 $n > N$ 时,有

$$|x_n - 0|$$
 < ε

例 3 设 |q| < 1,证明等比数列 $1, q, q^2, \dots, q^{n-1}, \dots$ 的极限是 0

证明
$$\forall \varepsilon > 0$$
,取 $N =$,则当 $n > N$ 时,有

$$|x_n - 0| = |q^{n-1}| < \varepsilon$$

例 3 设 |q| < 1,证明等比数列 $1, q, q^2, \dots, q^{n-1}, \dots$ 的极限是 0

证明
$$\forall \varepsilon > 0$$
,取 $N =$,则当 $n > N$ 时,有

$$|x_n - 0| = |q^{n-1}| \le |q|^{n-1} < \varepsilon$$

证明
$$\forall \varepsilon > 0$$
,取 $N =$,则当 $n > N$ 时,有

$$|x_n - 0| = \left| q^{n-1} \right| \le |q|^{n-1} \le |q|^N < \varepsilon$$

证明
$$\forall \varepsilon > 0$$
,取 $N =$,则当 $n > N$ 时,有

$$|x_n - 0| = \left| q^{n-1} \right| \le |q|^{n-1} \le |q|^N < \varepsilon$$

证明
$$\forall \varepsilon > 0$$
,取 $N =$

,则当 *n > N* 时,有

$$|x_n - 0| = \left| q^{n-1} \right| \le |q|^{n-1} \le |q|^N < \varepsilon$$

 $\Leftrightarrow N \ln |q| < \ln \varepsilon$

证明
$$\forall \varepsilon > 0$$
,取 $N =$

,则当 *n > N* 时,有

$$|x_n - 0| = |q^{n-1}| \le |q|^{n-1} \le |q|^N < \varepsilon$$

$$\Leftrightarrow N \ln |q| < \ln \varepsilon$$

$$\Leftrightarrow N > \frac{\ln \varepsilon}{\ln |q|}$$

证明
$$\forall \varepsilon > 0$$
,取 $N = (- \uparrow)$ 的正整数),则当 $n > N$ 时,有

$$|x_n - 0| = |q^{n-1}| \le |q|^{n-1} \le |q|^N < \varepsilon$$

$$\Leftrightarrow N \ln |q| < \ln \varepsilon$$

$$\Leftrightarrow N > \frac{\ln \varepsilon}{\ln |q|}$$

证明
$$\forall \varepsilon > 0$$
,取 $N = (- \uparrow + \frac{\ln \varepsilon}{\ln |a|})$ 的正整数),则当 $n > N$ 时,有

$$|x_n - 0| = \left| q^{n-1} \right| \le |q|^{n-1} \le |q|^N < \varepsilon$$

所以
$$\lim_{n\to\infty} q^{n-1} = 0$$
.

$$\Leftrightarrow N \ln |q| < \ln \varepsilon$$

$$\Leftrightarrow N > \frac{\ln \varepsilon}{\ln |q|}$$

证明 $\forall \varepsilon > 0$,取 $N = (- \uparrow + \frac{\ln \varepsilon}{\ln |a|})$ 的正整数),则当 n > N 时,有

$$|x_n - 0| = \left| q^{n-1} \right| \le |q|^{n-1} \le |q|^N < \varepsilon$$

所以
$$\lim_{n\to\infty} q^{n-1} = 0$$
.

$$\Leftrightarrow N \ln |q| < \ln \varepsilon$$

$$\Leftrightarrow N > \frac{\ln \varepsilon}{\ln |q|}$$

例 4 设
$$x_n = 0.33\cdots 3$$
,证明 $\lim_{n\to\infty} x_n = \frac{1}{3}$

证明 $\forall \varepsilon > 0$,取 $N = (- \uparrow + \frac{\ln \varepsilon}{\ln |a|})$ 的正整数),则当 n > N 时,有

$$|x_n - 0| = |q^{n-1}| \le |q|^{n-1} \le |q|^N < \varepsilon$$

所以
$$\lim_{n\to\infty}q^{n-1}=0$$
.

$$\Leftrightarrow N \ln |q| < \ln \varepsilon$$

$$\Leftrightarrow N > \frac{\ln \varepsilon}{\ln |q|}$$

例 4 设
$$x_n = 0.33\cdots 3$$
,证明 $\lim_{n\to\infty} x_n = \frac{1}{3}$

提示
$$|x_n - \frac{1}{3}| = \frac{1}{3}|3x_n - 1| = \frac{1}{3} \times 10^{-n}$$

证明 $\forall \varepsilon > 0$,取 $N = (- \uparrow + \frac{\ln \varepsilon}{\ln |a|})$ 的正整数),则当 n > N 时,有

$$|x_n-0|=\left|q^{n-1}\right|\leq |q|^{n-1}\leq \left|q|^N<\varepsilon\right|$$

所以 $\lim_{n\to\infty}q^{n-1}=0$.

$$\Leftrightarrow N \ln |q| < \ln \varepsilon$$

$$\Leftrightarrow N > \frac{\ln \varepsilon}{\ln |q|}$$

例 4 设
$$x_n = 0.33\cdots 3$$
,证明 $\lim_{n\to\infty} x_n = \frac{1}{3}$

提示
$$|x_n - \frac{1}{3}| = \frac{1}{3}|3x_n - 1| = \frac{1}{3} \times 10^{-n}$$

例 5 证明数列 $1,-1,1,-1,\cdots,(-1)^{n-1},\cdots$ 是发散

1b 极限

证明 反证法. 假设数列收敛,极限为 a.

证明 反证法. 假设数列收敛,极限为 α .则对 $\varepsilon = \frac{1}{2}$,存在正整数 N,当 n > N 时

$$|x_n - a| < \varepsilon = \frac{1}{2}$$

证明 反证法. 假设数列收敛,极限为 α .则对 $\varepsilon = \frac{1}{2}$,存在正整数 N,当 n > N 时

$$|x_n - a| < \varepsilon = \frac{1}{2}$$

从而有

$$|1-a| < \frac{1}{2}$$
 #\(\frac{1}{2}\) | -1-a| < \(\frac{1}{2}\)

证明 反证法. 假设数列收敛,极限为 α .则对 $\varepsilon = \frac{1}{2}$,存在正整数 N,当 n > N 时

$$|x_n - a| < \varepsilon = \frac{1}{2}$$

从而有

$$|1-a| < \frac{1}{2}$$
 #\(\frac{1}{2}\) | -1-a| < \(\frac{1}{2}\)

但上述两式不可能同时成立,

证明 反证法. 假设数列收敛,极限为 α .则对 $\varepsilon = \frac{1}{2}$,存在正整数 N,当 n > N 时

$$|x_n - a| < \varepsilon = \frac{1}{2}$$

从而有

$$|1-a| < \frac{1}{2}$$
 #\(\frac{1}{2}\) | -1-a| < \(\frac{1}{2}\)

但上述两式不可能同时成立,

证明 反证法. 假设数列收敛,极限为 α .则对 $\varepsilon = \frac{1}{2}$,存在正整数 N,当 n > N 时

$$|x_n - a| < \varepsilon = \frac{1}{2}$$

从而有

$$|1-a| < \frac{1}{2}$$
 #\(\frac{1}{2}\) | -1-a| < \(\frac{1}{2}\)

$$2 = (1 - a) + (1 + a)$$

证明 反证法. 假设数列收敛,极限为 α .则对 $\varepsilon = \frac{1}{2}$,存在正整数 N,当 n > N 时

$$|x_n - a| < \varepsilon = \frac{1}{2}$$

从而有

$$|1-a| < \frac{1}{2}$$
 #\(\frac{1}{2}\) | -1-a| < \(\frac{1}{2}\)

$$2 = (1-a) + (1+a) \le |1-a| + |1+a|$$

证明 反证法. 假设数列收敛,极限为 α .则对 $\varepsilon = \frac{1}{2}$,存在正整数 N,当 n > N 时

$$|x_n - a| < \varepsilon = \frac{1}{2}$$

从而有

$$|1-a| < \frac{1}{2}$$
 #\(\frac{1}{2}\) | -1-a| < \(\frac{1}{2}\)

$$2 = (1-a) + (1+a) \le |1-a| + |1+a| < \frac{1}{2} + \frac{1}{2}$$

证明 反证法. 假设数列收敛,极限为 α .则对 $\varepsilon = \frac{1}{2}$,存在正整数 N,当 n > N 时

$$|x_n - a| < \varepsilon = \frac{1}{2}$$

从而有

$$|1-a| < \frac{1}{2}$$
 #\(\frac{1}{2}\) | -1-a| < \(\frac{1}{2}\)

$$2 = (1-a) + (1+a) \le |1-a| + |1+a| < \frac{1}{2} + \frac{1}{2} = 1$$

证明 反证法. 假设数列收敛,极限为 α .则对 $\varepsilon = \frac{1}{2}$,存在正整数 N,当 n > N 时

$$|x_n - a| < \varepsilon = \frac{1}{2}$$

从而有

$$|1-a| < \frac{1}{2}$$
 #\(\frac{1}{2}\) | -1-a| < \(\frac{1}{2}\)

但上述两式不可能同时成立,否则:

$$2 = (1-a) + (1+a) \le |1-a| + |1+a| < \frac{1}{2} + \frac{1}{2} = 1$$

矛盾. 所以数列发散.

性质1 收敛数列的极限唯一.

性质1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 a , b .

性质1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 a, b.

性质 1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 a , b .

性质 1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 a , b .

性质 1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 a, b. 取 $\varepsilon = \frac{1}{4}|a-b| > 0$.

性质 1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 α , b. 取 $\varepsilon = \frac{1}{4}|\alpha - b| > 0$.

• α 是 $\{x_n\}$ 极限 $\Rightarrow \exists N_1$,当 $n > N_1$ 时, $|x_n - \alpha| < \varepsilon$.

性质 1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 α ,b. 取 $\varepsilon = \frac{1}{4}|\alpha - b| > 0$.

- α 是 $\{x_n\}$ 极限 ⇒ $\exists N_1$,当 $n > N_1$ 时, $|x_n \alpha| < \varepsilon$.
- b 是 { x_n } 极限 \Rightarrow $∃N_2$,当 $n > N_2$ 时, $|x_n b| < ε$.

性质 1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 a, b. 取 $\varepsilon = \frac{1}{4}|a-b| > 0$.

- α 是 $\{x_n\}$ 极限 $\Rightarrow \exists N_1$,当 $n > N_1$ 时, $|x_n \alpha| < \varepsilon$.
- b 是 $\{x_n\}$ 极限 \Rightarrow $\exists N_2$,当 $n > N_2$ 时, $|x_n b| < ε$.

性质 1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 a, b. 取 $\varepsilon = \frac{1}{4}|a-b| > 0$.

- α 是 $\{x_n\}$ 极限 $\Rightarrow \exists N_1$,当 $n > N_1$ 时, $|x_n \alpha| < \varepsilon$.
- b 是 { x_n } 极限 \Rightarrow $∃N_2$,当 $n > N_2$ 时, $|x_n b| < ε$.

$$|a-b| = |a-x_n + x_n - b|$$

性质 1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 a, b. 取 $\varepsilon = \frac{1}{4}|a-b| > 0$.

- α 是 $\{x_n\}$ 极限 $\Rightarrow \exists N_1$,当 $n > N_1$ 时, $|x_n \alpha| < \varepsilon$.
- b 是 { x_n } 极限 \Rightarrow $∃N_2$,当 $n > N_2$ 时, $|x_n b| < ε$.

$$|a-b| = |a-x_n + x_n - b| \le |a-x_n| + |x_n - b|$$

性质 1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 a, b. 取 $\varepsilon = \frac{1}{4}|a-b| > 0$.

- α 是 {x_n} 极限 ⇒ ∃N₁, 当 n > N₁ 时, |x_n − α| < ε.
- b 是 $\{x_n\}$ 极限 \Rightarrow $\exists N_2$,当 $n > N_2$ 时, $|x_n b| < ε$.

$$|a-b| = |a-x_n + x_n - b| \le |a-x_n| + |x_n - b| < 2\varepsilon$$

性质 1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 a,b. 取 $\varepsilon = \frac{1}{4}|a-b| > 0$.

- $\alpha \in \{x_n\}$ 极限 $\Rightarrow \exists N_1$, $\exists n > N_1$ 时, $|x_n \alpha| < \varepsilon$.
- b 是 { x_n } 极限 \Rightarrow $∃N_2$,当 $n > N_2$ 时, $|x_n b| < ε$.

$$|a-b| = |a-x_n + x_n - b| \le |a-x_n| + |x_n - b| < 2\varepsilon = \frac{1}{2}|a-b|$$

性质 1 收敛数列的极限唯一.

证明 反证法. 设 $\{x_n\}$ 有两个不同的极限 a,b. 取 $\varepsilon = \frac{1}{4}|a-b| > 0$.

- α 是 $\{x_n\}$ 极限 $\Rightarrow \exists N_1$,当 $n > N_1$ 时, $|x_n \alpha| < \varepsilon$.
- $b \in \{x_n\}$ 极限 $\Rightarrow \exists N_2$,当 $n > N_2$ 时, $|x_n b| < \varepsilon$.

当 $n > \max\{N_1, N_2\}$ 时,上述两个不等式同时成立,从而

$$|a-b| = |a-x_n + x_n - b| \le |a-x_n| + |x_n - b| < 2\varepsilon = \frac{1}{2}|a-b|$$

所以|a-b| < 0,不可能.

性质 2 收敛数列一定有界.

性质 2 收敛数列一定有界.

证明 设
$$\lim_{n\to\infty} x_n = a$$
. 取 $\varepsilon = 1$,∃ 正整数 N ,当 $n > N$ 时,有 $|x_n - a| < \varepsilon = 1$.

证明 设 $\lim_{n\to\infty} x_n = a$. 取 $\varepsilon = 1$,3 正整数 N,当 n > N 时,有

$$|x_n - a| < \varepsilon = 1.$$

从而 $|x_n| \leq |a| + 1$.

证明 设 $\lim_{n\to\infty} x_n = a$. 取 $\varepsilon = 1$,3 正整数 N,当 n > N 时,有

$$|x_n - a| < \varepsilon = 1.$$

从而 $|x_n| \leq |a| + 1.$ 取

$$M = \max\{|x_1|, \dots, |x_N|, |a| + 1\}$$

则对所有n,成立

$$|x_n| \leq M$$
.

证明 设
$$a > 0$$
,取 $\varepsilon = \frac{1}{2}a > 0$, $\exists N$,当 $n > N$ 时,成立

$$|x_n - a| < \varepsilon$$

证明 设
$$a > 0$$
,取 $\varepsilon = \frac{1}{2}a > 0$, $\exists N$,当 $n > N$ 时,成立

$$|x_n - a| < \varepsilon = \frac{1}{2}a$$

证明 设
$$\alpha > 0$$
,取 $\varepsilon = \frac{1}{2}\alpha > 0$, $\exists N$,当 $n > N$ 时,成立

$$|x_n - \alpha| < \varepsilon = \frac{1}{2}\alpha$$
 \Rightarrow $x_n > \alpha - \frac{1}{2}\alpha = \frac{1}{2}\alpha > 0$

- 若 α > 0,则∃正整数 N,当 n > N 时,都有 x_n > 0.
- 若 α < 0,则 ∃ 正整数 N,当 n > N 时,都有 x_n < 0.

证明 设 $\alpha > 0$,取 $\varepsilon = \frac{1}{2}\alpha > 0$, $\exists N$,当 n > N 时,成立

$$|x_n - a| < \varepsilon = \frac{1}{2}a$$
 \Rightarrow $x_n > a - \frac{1}{2}a = \frac{1}{2}a > 0$

- 若 α > 0,则∃正整数 N,当 n > N 时,都有 x_n > 0.
- 若 α < 0,则∃正整数N,当n > N 时,都有 x_n < 0.

证明 设
$$\alpha > 0$$
,取 $\varepsilon = \frac{1}{2}\alpha > 0$, $\exists N$,当 $n > N$ 时,成立

$$|x_n - \alpha| < \varepsilon = \frac{1}{2}\alpha$$
 \Rightarrow $x_n > \alpha - \frac{1}{2}\alpha = \frac{1}{2}\alpha > 0$

推论 设
$$\lim_{n\to\infty} x_n = a$$
.

• 若从某一项开始 $x_n \ge 0$,则 $a \ge 0$.

• 若 a > 0,则∃正整数 N,当 n > N 时,都有 $x_n > 0$.

若 α < 0,则∃正整数 N,当 n > N 时,都有 x_n < 0.

证明 设 $\alpha > 0$,取 $\varepsilon = \frac{1}{2}\alpha > 0$, $\exists N$,当 n > N 时,成立

$$|x_n - a| < \varepsilon = \frac{1}{2}a$$
 \Rightarrow $x_n > a - \frac{1}{2}a = \frac{1}{2}a > 0$

- 推论 设 $\lim_{n\to\infty} x_n = a$.
 - 若从某一项开始 $x_n \ge 0$,则 $a \ge 0$.
 - 若从某一项开始 $x_n \le 0$,则 $a \le 0$.

所得到的 $\{x_{n_k}\}$ 称为 $\{x_n\}$ 的一个子列.

所得到的 $\{x_{n_k}\}$ 称为 $\{x_n\}$ 的一个子列.

定理 " $\{x_n\}$ 收敛于 a" \iff "任意子列 $\{x_{n_k}\}$ 都收敛于同一个 a".

所得到的 $\{x_{n_k}\}$ 称为 $\{x_n\}$ 的一个子列.

定理 " $\{x_n\}$ 收敛于 a" \leftrightarrow "任意子列 $\{x_{n_k}\}$ 都收敛于同一个 a".

所得到的 $\{x_{n_k}\}$ 称为 $\{x_n\}$ 的一个子列.

定理 " $\{x_n\}$ 收敛于 a" \leftrightarrow "任意子列 $\{x_{n_k}\}$ 都收敛于同一个 a".

例 数列 $1,-1,1,-1,\cdots,(-1)^{n-1},\cdots$ 发散.

例 数列 $1,-1,1,-1,\cdots,(-1)^{n-1},\cdots$ 发散.

证明 偶数项构成子列

奇数项构成子列

$$-1,-1,\cdots,-1,\cdots$$

这两个子列的极限显然不等,所以原数列发散.

We are here now...

- 1. 数列极限
- 2. 函数极限
- 3. 极限运算
- 4. 极限性质
- 5. 两个重要极限
- 6. 无穷大,无穷小

函数极限,简单说就是,当自变量无限"趋近"某个量时,函数值是否"趋于"一致.

函数极限,简单说就是,当自变量无限"趋近"某个量时,函数值是否"趋于"一致.

下面将介绍以下的极限过程:

$$\lim_{x \to x_0} f(x), \quad \lim_{x \to x_0^+} f(x), \quad \lim_{x \to x_0^-} f(x)$$

$$\lim_{x \to \infty} f(x), \quad \lim_{x \to +\infty} f(x), \quad \lim_{x \to -\infty} f(x)$$

" $\lim_{x \to x_0} f(x) = A$ ":如果 x 无限接近 x_0 时,f(x) 无限接近一个数 A,则

称f(x) 在 $x \to x_0$ 时的"极限"为A.

" $\lim_{x \to x_0} f(x) = A$ ":如果 x 无限接近 x_0 时,f(x) 无限接近一个数 A,则称 f(x) 在 $x \to x_0$ 时的"极限"为 A

称 f(x) 在 $x \to x_0$ 时的"极限"为 A.

定义
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$,使得 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$,

" $\lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) = A$ ":如果 x 无限接近 x_0 时,f(x) 无限接近一个数 A,则

称
$$f(x)$$
 在 $x \to x_0$ 时的"极限"为 A .

定义
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$,使得 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $x \to x_0$ 时的 极限 ,记作

$$\lim_{x \to x_0} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to x_0)$$

" $\lim_{x\to x_0} f(x) = A$ ":如果 x 无限接近 x_0 时,f(x) 无限接近一个数 A,则 称 f(x) 在 $x \to x_0$ 时的"极限"为 A.

定义
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$,使得 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$,则称 A 是 $f(x)$ 在 $x \to x_0$ 时的 极限 ,记作

$$\lim_{x \to x_0} f(x) = A \qquad \vec{\mathfrak{g}} \qquad f(x) \to A \quad (x \to x_0)$$

" $\lim_{x \to x_0} f(x) = A$ ":如果 x 无限接近 x_0 时,f(x) 无限接近一个数 A,则 称 f(x) 在 $x \to x_0$ 时的"极限"为 A.

$$\varepsilon - \delta$$
语言

定义
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$,使得 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$,则称 $A = f(x)$ 东 $x > x_0$ 时的 极限 记作

则称 $A \in f(x)$ 在 $x \to x_0$ 时的 极限 ,记作

$$\lim_{x \to x_0} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to x_0)$$

" $\lim_{x\to x_0} f(x) = A$ ":如果 x 无限接近 x_0 时,f(x) 无限接近一个数 A,则

称
$$f(x)$$
在 $x \to x_0$ 时的"极限"为 A .

$$\varepsilon - \delta$$
语言 而不必在 x_0 处有定义 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$,

f 在 x_0 去心邻域有定义,

则称 $A \in f(x)$ 在 $x \to x_0$ 时的 极限 ,记作

$$\lim_{x \to x_0} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to x_0)$$

" $\lim_{x\to x_0} f(x) = A$ ":如果 x 无限接近 x_0 时,f(x) 无限接近一个数 A,则

称f(x)在 $x \to x_0$ 时的"极限"为A.

$$\varepsilon - \delta$$
语言

$$f \propto x_0$$
 去心邻域有定义,
而不必在 x_0 处有定义

定义
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, 使得 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$,则称 $A = f(x)$ 有 $x = x$, 时的 打阻 。 记作

则称
$$A \in f(x)$$
 在 $x \to x_0$ 时的 极限,记作

$$\lim_{x \to x_0} f(x) = A \qquad \vec{\mathfrak{g}} \qquad f(x) \to A \quad (x \to x_0)$$

" $\lim_{x \to x_0} f(x) = A$ ":如果 x 无限接近 x_0 时,f(x) 无限接近一个数 A,则 称 f(x) 在 $x \to x_0$ 时的"极限"为 A.

 $f \propto x_0$ 去心邻域有定义, 而不必在 x_0 处有定义

定义 $\forall \varepsilon > 0$, $\exists \delta > 0$,使得 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $x \to x_0$ 时的 极限,记作

$$\lim_{x \to x_0} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to x_0)$$

若不存在这样的数 A,称 $\lim_{x \to \infty} f(x)$ 不存在

" $\lim_{x \to x_0} f(x) = A$ ":如果 x 无限接近 x_0 时,f(x) 无限接近一个数 A,则 称 f(x) 在 $x \to x_0$ 时的"极限"为 A.

$$\varepsilon - \delta$$
语言

 $f \propto x_0$ 去心邻域有定义, 而不必在 x_0 处有定义

定义
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$,使得 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $x \to x_0$ 时的 极限 ,记作

$$\lim_{x \to x_0} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to x_0)$$

若不存在这样的数 A,称 $\lim_{x \to \infty} f(x)$ 不存在

" $\lim_{x\to x_0} f(x) = A$ ":如果 x 无限接近 x_0 时,f(x) 无限接近一个数 A,则 称 f(x) 在 $x \to x_0$ 时的"极限"为 A.

f 在 x_0 去心邻域有定义, 而不必在 xn 处有定义

定义
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$,使得 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $x \to x_0$ 时的 极限 ,记作

$$\lim_{x \to x_0} f(x) = A \qquad \vec{\mathfrak{g}} \qquad f(x) \to A \quad (x \to x_0)$$

若不存在这样的数 A,称 $\lim_{x \to \infty} f(x)$ 不存在

例1 验证
$$\lim_{x\to x_0} c = c$$
.

例 2 验证 $\lim_{x\to x_0} x = x_0$.

$$x \rightarrow x_0$$

1b 极限

例1 验证 $\lim_{x\to x_0} c = c$.

证明 这里 $f(x) \equiv c$ 是常值函数.

例 2 验证
$$\lim_{x\to x_0} x = x_0$$
.

例1验证
$$\lim_{x\to x_0} c = c$$
.

证明 这里
$$f(x) \equiv c$$
 是常值函数. $\forall \epsilon > 0$,取 $\delta =$,则当 $0 < |x - x_0| < \delta$ 时,有

< ε.

|f(x)-c|

例2验证
$$\lim x = x_0$$
.

$$x \rightarrow x_0$$

1b 极限

例1 验证 $\lim c = c$.

证明 这里 $f(x) \equiv c$ 是常值函数. $\forall \epsilon > 0$,取 $\delta =$,则当 $0 < |x - x_0| < \delta$ 时,有

$$|f(x)-c|=|c-c|=0<\varepsilon.$$

例 2 验证 $\lim x = x_0$.

例1 验证 $\lim c = c$.

证明 这里 $f(x) \equiv c$ 是常值函数. $\forall \epsilon > 0$,取 $\delta = 1$,则当 $0 < |x - x_0| < \delta$ 时,有

$$|f(x) - c| = |c - c| = 0 < \varepsilon.$$

例 2 验证
$$\lim_{x\to x_0} x = x_0$$
.

例3 验证 $\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$.

1b 极限

例1 验证
$$\lim_{x\to x_0} c = c$$
.

$$|f(x)-c|=|c-c|=0<\varepsilon.$$

所以
$$\lim_{x\to x_0} c = c$$
.

例 2 验证
$$\lim_{x\to x_0} x = x_0$$
.

例1 验证
$$\lim_{x\to x_0} c = c$$
.

$$|f(x)-c|=|c-c|=0<\varepsilon.$$

所以
$$\lim_{x\to x_0} c = c$$
.

例 2 验证
$$\lim_{x\to x_0} x = x_0$$
.

证明 这里 f(x) = x.

例1 验证
$$\lim_{t\to\infty} c = c$$
.

$$|f(x)-c|=|c-c|=0<\varepsilon.$$

所以
$$\lim_{x\to x_0} c = c$$
.

例 2 验证 $\lim_{x\to x_0} x = x_0$.

证明 这里
$$f(x) = x$$
. $\forall \varepsilon > 0$,取 $\delta =$,则当 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - x_0|$ ε .

例1 验证
$$\lim_{t\to\infty} c = c$$
.

$$|f(x)-c|=|c-c|=0<\varepsilon.$$

所以 $\lim_{x\to x_0} c = c$.

例 2 验证 $\lim_{x\to x_0} x = x_0$.

证明 这里 f(x) = x. $\forall \varepsilon > 0$,取 $\delta =$,则当 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - x_0| = |x - x_0| \qquad \varepsilon.$

例3 验证
$$\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$$
.

例1 验证
$$\lim_{t\to\infty} c = c$$
.

$$|f(x)-c|=|c-c|=0<\varepsilon.$$

所以
$$\lim_{x\to x_0} c = c$$
.

例 2 验证 $\lim_{x\to x_0} x = x_0$.

证明 这里f(x) = x. $\forall \varepsilon > 0$,取 $\delta =$,则当 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - x_0| = |x - x_0| < \delta \quad \varepsilon.$

例3 验证
$$\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$$
.

例1 验证
$$\lim_{n \to \infty} c = c$$
.

$$|f(x)-c|=|c-c|=0<\varepsilon.$$

所以
$$\lim_{x\to x_0} c = c$$
.

例 2 验证 $\lim_{x\to x_0} x = x_0$.

证明 这里 f(x) = x. $\forall \varepsilon > 0$,取 $\delta = \varepsilon$,则当 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - x_0| = |x - x_0| < \delta = \varepsilon.$

例3 验证
$$\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$$
.

例1验证
$$\lim_{x\to x_0} c = c$$
.

$$|f(x)-c|=|c-c|=0<\varepsilon.$$

所以 $\lim_{x\to x_0} c = c$.

例 2 验证 $\lim_{x\to x_0} x = x_0$.

证明 这里
$$f(x) = x$$
. $\forall \varepsilon > 0$,取 $\delta = \varepsilon$,则当 $0 < |x - x_0| < \delta$ 时,有
$$|f(x) - x_0| = |x - x_0| < \delta = \varepsilon.$$

所以 $\lim_{x\to x_0} x = x_0$.

例3 验证
$$\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$$
.

例 3 验证 $\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$

证明 在 $x \to 1$ 过程中, $x \ne 1$, 所以 $\frac{2x^2-2}{x-1}$ 有意义, 并且

例3 验证 $\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$

证明 在 $x \to 1$ 过程中, $x \ne 1$,所以 $\frac{2x^2-2}{x-1}$ 有意义,并且

$$\frac{2x^2-2}{x-1} = \frac{2(x-1)(x+1)}{x-1}$$

例3 验证 $\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$

证明 在 $x \to 1$ 过程中, $x \ne 1$,所以 $\frac{2x^2-2}{x-1}$ 有意义,并且

$$\frac{2x^2-2}{x-1}=\frac{2(x-1)(x+1)}{x-1}=2x+2.$$

例 3 验证
$$\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$$

证明 在
$$x \to 1$$
 过程中, $x \ne 1$,所以 $\frac{2x^2-2}{x-1}$ 有意义,并且

$$\frac{2x^2-2}{x-1}=\frac{2(x-1)(x+1)}{x-1}=2x+2.$$

所以

$$\lim_{x \to 1} \frac{2x^2 - 2}{x - 1} = \lim_{x \to 1} 2x + 2$$

例3 验证
$$\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$$

证明 在
$$x \to 1$$
 过程中, $x \ne 1$,所以 $\frac{2x^2-2}{x-1}$ 有意义,并且

$$\frac{2x^2-2}{x-1}=\frac{2(x-1)(x+1)}{x-1}=2x+2.$$

所以

$$\lim_{x \to 1} \frac{2x^2 - 2}{x - 1} = \lim_{x \to 1} 2x + 2$$

所以只需证明

$$\lim_{x\to 1} 2x + 2 = 4$$
?

证明 在 $x \to 1$ 过程中, $x \ne 1$,所以 $\frac{2x^2-2}{x-1}$ 有意义,并且

$$\frac{2x^2-2}{x-1}=\frac{2(x-1)(x+1)}{x-1}=2x+2.$$

所以

$$\lim_{x \to 1} \frac{2x^2 - 2}{x - 1} = \lim_{x \to 1} 2x + 2$$

所以只需证明

例3 验证 $\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$

$$\forall \varepsilon > 0$$
,取 $\delta =$,则当 $0 < |x-2| < \delta$ 时,有

12x + 2 - 41

所以极限为 2. 14/45 < ▷ △ ▽

 $\lim 2x + 2 = 4$?

证明 在 $x \to 1$ 过程中, $x \ne 1$,所以 $\frac{2x^2-2}{x-1}$ 有意义,并且

$$\frac{2x^2-2}{x-1}=\frac{2(x-1)(x+1)}{x-1}=2x+2.$$

所以

$$\lim_{x \to 1} \frac{2x^2 - 2}{x - 1} = \lim_{x \to 1} 2x + 2$$

所以只需证明

例3 验证 $\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$

$$\lim_{x \to 1} 2x + 2 = 4 ?$$

 $\forall \varepsilon > 0, \ \mathbb{D} \delta =$,则当 $0 < |x-2| < \delta$ 时,有 $|2x + 2 - 4| = 2|x - 2| < 2\delta$

证明 在 $x \to 1$ 过程中, $x \ne 1$,所以 $\frac{2x^2-2}{x-1}$ 有意义,并且

$$\frac{2x^2 - 2}{x - 1} = \frac{2(x - 1)(x + 1)}{x - 1} = 2x + 2.$$

所以

$$\lim_{x \to 1} \frac{2x^2 - 2}{x - 1} = \lim_{x \to 1} 2x + 2$$

所以只需证明

例3 验证 $\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$

$$\forall \varepsilon > 0$$
,取 $\delta =$,则当 $0 < |x-2| < \delta$ 时,有

 $|2x + 2 - 4| = 2|x - 2| < 2\delta = \varepsilon$.

 $\lim 2x + 2 = 4$?

例3 验证 $\lim_{x\to 1} \frac{2x^2-2}{x-1} = 4$

证明 在
$$x \to 1$$
 过程中, $x \ne 1$,所以 $\frac{2x^2-2}{x-1}$ 有意义,并且
$$\frac{2x^2-2}{x-1} = \frac{2(x-1)(x+1)}{x-1} = 2x+2.$$

所以

$$\lim_{x \to 1} \frac{2x^2 - 2}{x - 1} = \lim_{x \to 1} 2x + 2$$

所以只需证明

$$\lim_{x \to 1} 2x + 2 = 4?$$

 $\forall \varepsilon > 0$,取 $\delta = \frac{1}{2}\varepsilon > 0$,则当 $0 < |x-2| < \delta$ 时,有 $|2x + 2 - 4| = 2|x - 2| < 2\delta = \varepsilon$.

14/45 < ▷ △ ▽

• " $\lim_{x \to x_0^-} f(x) = A$ ":

• " $\lim_{x \to x_0^+} f(x) = B$ ":

• " $\lim_{x \to x^-} f(x) = A$ ": 当 x 从左边无限接近 x_0 时,f(x) 无限接近数 A,

• "
$$\lim_{x \to x_0^+} f(x) = B$$
":

- " $\lim_{x \to x_0^-} f(x) = A$ ": 当 x 从左边无限接近 x_0 时,f(x) 无限接近数 A,
 - 则称f(x)在 $x \to x_0^-$ 时的"左极限"为A. 也记为 $f(x_0^-) = A$.
- " $\lim_{x \to x_0^+} f(x) = B$ ":

- " $\lim_{x \to x_0^-} f(x) = A$ ": 当 x 从左边无限接近 x_0 时,f(x) 无限接近数 A,
 - 则称 f(x) 在 $x \to x_0^-$ 时的 "左极限" 为 A. 也记为 $f(x_0^-) = A$.
- " $\lim_{x \to x_0^+} f(x) = B$ ": 当 x 从右边无限接近 x_0 时,f(x) 无限接近数 B,

- " $\lim_{x \to x_0^-} f(x) = A$ ":当 x 从左边</u>无限接近 x_0 时,f(x) 无限接近数 A,则称 f(x) 在 $x \to x_0^-$ 时的"左极限"为 A. 也记为 $f(x_0^-) = A$.
- " $\lim_{x \to a} f(x) = B$ ": 当 x 从右边无限接近 x_0 时,f(x) 无限接近数 B,

则称 f(x) 在 $x \to x_0^+$ 时的 "右极限" 为 B. 也记为 $f(x_0^+) = B$.

• " $\lim_{x \to x_0^-} f(x) = A$ ": 当 x 从左边</u>无限接近 x_0 时,f(x) 无限接近数 A,

则称 f(x) 在 $x \to x_0^-$ 时的 "左极限" 为 A. 也记为 $f(x_0^-) = A$.

• " $\lim_{x \to x_0^+} f(x) = B$ ":当 x 从右边无限接近 x_0 时,f(x) 无限接近数 B,

则称 f(x) 在 $x \to x_0^+$ 时的 "右极限" 为 B. 也记为 $f(x_0^+) = B$.

• " $\lim_{x \to x_0^-} f(x) = A$ ": 当 x 从左边</u>无限接近 x_0 时,f(x) 无限接近数 A,则称 f(x) 在 $x \to x_0^-$ 时的"左极限"为 A. 也记为 $f(x_0^-) = A$.

• " $\lim_{x \to a} f(x) = B$ ":当 $x \, \text{从右边}$ 无限接近 $x_0 \, \text{时,} f(x) \, \text{无限接近数} \, B$,

 $x \to x_0^+$ 则称 f(x) 在 $x \to x_0^+$ 时的 "右极限" 为 B. 也记为 $f(x_0^+) = B$.

• " $\lim_{x \to x_0^-} f(x) = A$ ": 当 x 从左边无限接近 x_0 时,f(x) 无限接近数 A,

则称 f(x) 在 $x \to x_0^-$ 时的 "左极限" 为 A. 也记为 $f(x_0^-) = A$.

• " $\lim_{x \to x_0^+} f(x) = B$ ":当 x 从右边无限接近 x_0 时,f(x) 无限接近数 B,

则称 f(x) 在 $x \to x_0^+$ 时的 "右极限" 为 B. 也记为 $f(x_0^+) = B$.

• " $\lim_{x \to x_0^-} f(x) = A$ ":当 x 从左边</u>无限接近 x_0 时,f(x) 无限接近数 A,则称 f(x) 在 $x \to x_0^-$ 时的"左极限"为 A. 也记为 $f(x_0^-) = A$.

• " $\lim_{x \to a} f(x) = B$ ": 当x从右边无限接近 x_0 时,f(x)无限接近数B,

则称f(x) 在 $x \to x_0^+$ 时的"右极限"为B. 也记为 $f(x_0^+) = B$.

• " $\lim_{x \to x_0^-} f(x) = A$ ":当 x 从左边</u>无限接近 x_0 时,f(x) 无限接近数 A,则称 f(x) 在 $x \to x_0^-$ 时的"左极限"为 A. 也记为 $f(x_0^-) = A$.

• " $\lim_{x \to a} f(x) = B$ ": 当x 从右边无限接近 x_0 时,f(x) 无限接近数 B,

则称 f(x) 在 $x \to x_0^+$ 时的 "右极限" 为 B. 也记为 $f(x_0^+) = B$.

性质 $\lim_{x \to x_0} f(x)$ 存在 \iff $\lim_{x \to x_0^-} f(x)$ 与 $\lim_{x \to x_0^+} f(x)$ 均存在并相等. 此时,这

三个极限相等.

性质 $\lim_{x \to x_0} f(x)$ 存在 $\Leftrightarrow \lim_{x \to x_0^-} f(x)$ 与 $\lim_{x \to x_0^+} f(x)$ 均存在并相等. 此时,这

三个极限相等.

例 设

$$f(x) = \begin{cases} x - 1, & x < 0, \\ 0, & x = 0, \\ x + 1, & x > 0. \end{cases}$$

求出 $f(0^+)$ 和 $f(0^-)$,并证明 $\lim_{x\to 0} f(x)$ 不存在.

性质 $\lim_{x \to x_0} f(x)$ 存在 $\iff \lim_{x \to x_0^-} f(x)$ 与 $\lim_{x \to x_0^+} f(x)$ 均存在并相等. 此时,这

三个极限相等.

例 设

$$f(x) = \begin{cases} x-1, & x < 0, \\ 0, & x = 0, \\ x+1, & x > 0. \end{cases}$$

求出 $f(0^+)$ 和 $f(0^-)$,并证明 $\lim_{x\to 0} f(x)$ 不存在.

性质 $\lim_{x \to x_0} f(x)$ 存在 $\Leftrightarrow \lim_{x \to x_0^+} f(x)$ 与 $\lim_{x \to x_0^+} f(x)$ 均存在并相等. 此时,这

$$f(x) = \begin{cases} x - 1, & x < 0, \\ 0, & x = 0, \\ x + 1, & x > 0. \end{cases}$$

求出 $f(0^+)$ 和 $f(0^-)$,并证明 $\lim_{x\to 0} f(x)$ 不存在.

解由

$$f(0^{-}) =$$

$$f(0^+) =$$

性质 $\lim_{x \to x_0} f(x)$ 存在 $\iff \lim_{x \to x_0^-} f(x)$ 与 $\lim_{x \to x_0^+} f(x)$ 均存在并相等. 此时,这

$$f(x) = \begin{cases} x-1, & x < 0, \\ 0, & x = 0, \\ x+1, & x > 0. \end{cases}$$

求出 $f(0^+)$ 和 $f(0^-)$,并证明 $\lim_{x \to 0} f(x)$ 不存在.

Απ ⊒

解由

$$f(0^{-}) = \lim_{x \to 0^{-}} f(x)$$
$$f(0^{+}) =$$

性质 $\lim_{x\to x_0} f(x)$ 存在 $\Leftrightarrow \lim_{x\to x_0^-} f(x)$ 与 $\lim_{x\to x_0^+} f(x)$ 均存在并相等. 此时,这

$$f(x) = \begin{cases} x - 1, & x < 0, \\ 0, & x = 0, \\ x + 1, & x > 0. \end{cases}$$

求出 $f(0^+)$ 和 $f(0^-)$,并证明 $\lim_{x \to 0} f(x)$ 不存在.

解由
$$f(0^{-}) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x - 1)$$

 $f(0^+) =$

性质 $\lim_{x \to x_0} f(x)$ 存在 $\iff \lim_{x \to x_0^+} f(x)$ 与 $\lim_{x \to x_0^+} f(x)$ 均存在并相等. 此时,这

三个极限相等.

$$f(x) = \begin{cases} x-1, & x < 0, \\ 0, & x = 0, \\ x+1, & x > 0. \end{cases}$$

求出 $f(0^+)$ 和 $f(0^-)$,并证明 $\lim_{x \to 0} f(x)$ 不存在.

解由

$$f(0^{-}) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x - 1) \xrightarrow{\text{£ixth}} \lim_{x \to 0} (x - 1)$$
$$f(0^{+}) =$$

性质 $\lim_{x \to x_0} f(x)$ 存在 $\iff \lim_{x \to x_0^+} f(x)$ 与 $\lim_{x \to x_0^+} f(x)$ 均存在并相等. 此时,这

$$f(x) = \begin{cases} x - 1, & x < 0, \\ 0, & x = 0, \\ x + 1, & x > 0. \end{cases}$$

求出
$$f(0^+)$$
和 $f(0^-)$,并证明 $\lim_{x\to 0} f(x)$ 不存在.

$$f(0^+) =$$

 $f(0^{-}) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x - 1) = \lim_{x \to 0} (x - 1) = -1$

性质 $\lim_{x \to x_0} f(x)$ 存在 $\iff \lim_{x \to x_0^-} f(x)$ 与 $\lim_{x \to x_0^+} f(x)$ 均存在并相等. 此时,这

三个极限相等.

$$f(x) = \begin{cases} x - 1, & x < 0, \\ 0, & x = 0, \\ x + 1, & x > 0. \end{cases}$$

求出
$$f(0^+)$$
 和 $f(0^-)$,并证明 $\lim_{x\to 0} f(x)$ 不存在.

$$f(0^{-}) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x - 1) = \frac{\text{Lixten}}{x} \lim_{x \to 0} (x - 1) = -1$$

$$f(0^+) = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+1) = \frac{\text{Lixten}}{\text{Lim}} \lim_{x \to 0} (x+1) = 1$$

性质 $\lim_{x\to x_0} f(x)$ 存在 $\Leftrightarrow \lim_{x\to x_0^-} f(x)$ 与 $\lim_{x\to x_0^+} f(x)$ 均存在并相等. 此时,这 三个极限相等.

 $f(0^-) = \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x-1) = \frac{\text{Lixten}}{\text{Lim}} \lim_{x \to 0} (x-1) = -1$

 $f(0^+) = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+1) = \lim_{x \to 0} (x+1) = 1$

16/45 < ▷ △ ▽

 $f(x) = \begin{cases} x - 1, & x < 0, \\ 0, & x = 0, \\ x + 1, & x > 0. \end{cases}$ 求出 $f(0^+)$ 和 $f(0^-)$,并证明 $\lim_{x\to 0} f(x)$ 不存在.

知
$$f(0^-) \neq f(0^+)$$
,所以 $\lim_{x\to 0} f(x)$ 不存在.

定义 任意给定 $\varepsilon > 0$,存在正数 X,使得 |x| > X 时,有 $|f(x) - A| < \varepsilon$,

$$x\in (-\infty,-X)\cup (X,\infty)$$

定义 任意给定 $\varepsilon > 0$,存在正数 X,使得 |x| > X 时,有 $|f(x) - A| < \varepsilon$,

$$X \in (-\infty, -X) \cup (X, \infty)$$

定义 任意给定 $\varepsilon > 0$,存在正数 X,使得 |x| > X 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $x \to \infty$ 时的 极限,记作

$$(x) \times x \to \infty$$
 by by $(x) \times x$, Lie

$$\lim_{x \to \infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to \infty)$$

$$X \in (-\infty, -X) \cup (X, \infty)$$

定义 任意给定 $\varepsilon > 0$,存在正数 X,使得 |x| > X 时,有 $|f(x) - A| < \varepsilon$,则称 A = f(x) 在 $x \to \infty$ 时的 极限,记作

$$\lim_{x \to \infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to \infty)$$

$$X \in (-\infty, -X) \cup (X, \infty)$$

定义 任意给定 $\varepsilon > 0$,存在正数 X,使得 |x| > X 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $x \to \infty$ 时的 极限,记作

$$\lim_{x \to \infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to \infty)$$

例
$$\lim_{x\to\infty}\frac{1}{x}=0$$
.

$$X \in (-\infty, -X) \cup (X, \infty)$$

定义 任意给定 $\varepsilon > 0$,存在正数 X,使得 |x| > X 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $x \to \infty$ 时的 极限,记作

$$\lim_{x \to \infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to \infty)$$

$$X \in (-\infty, -X) \cup (X, \infty)$$

定义 任意给定 $\varepsilon > 0$,存在正数 X,使得 |x| > X 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $x \to \infty$ 时的 极限,记作

$$\lim_{x \to \infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to \infty)$$

例1 证明 $\lim_{x\to\infty} \frac{1}{x} = 0$

例1 证明
$$\lim_{x\to\infty} \frac{1}{x} = 0$$

证明
$$\forall \varepsilon > 0$$
,取 $X =$

 $\left|\frac{1}{x}-0\right|$

例1 证明
$$\lim_{x\to\infty} \frac{1}{x} = 0$$

证明
$$\forall \varepsilon > 0$$
,取 $X =$

 $\left|\frac{1}{x} - 0\right| = \frac{1}{|x|}$

例1 证明
$$\lim_{x\to\infty} \frac{1}{x} = 0$$

证明
$$\forall \varepsilon > 0$$
,取 $X =$

$$\left|\frac{1}{x} - 0\right| = \frac{1}{|x|} < \frac{1}{X}$$

例1 证明
$$\lim_{x\to\infty} \frac{1}{x} = 0$$

证明
$$\forall \varepsilon > 0$$
,取 $X = \frac{1}{\varepsilon} > 0$,当 $|x| > X$ 时,都有
$$\left| \frac{1}{x} - 0 \right| = \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

例1 证明
$$\lim_{x\to\infty}\frac{1}{x}=0$$

证明
$$\forall \varepsilon > 0$$
,取 $X = \frac{1}{\varepsilon} > 0$,当 $|x| > X$ 时,都有
$$\left| \frac{1}{x} - 0 \right| = \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

例2 证明
$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$

例1 证明
$$\lim_{x\to\infty}\frac{1}{x}=0$$

证明
$$\forall \varepsilon > 0$$
,取 $X = \frac{1}{\varepsilon} > 0$,当 $|x| > X$ 时,都有
$$\left| \frac{1}{x} - 0 \right| = \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

例2 证明
$$\lim_{x\to\infty} \frac{\sin x}{x} = 0$$

证明
$$\forall \varepsilon > 0$$
,取 $X = > 0$,当 $|x| > X$ 时,都有

$$\left| \frac{\sin x}{x} - 0 \right|$$

例1 证明
$$\lim_{x\to\infty}\frac{1}{x}=0$$

证明
$$\forall \varepsilon > 0$$
,取 $X = \frac{1}{\varepsilon} > 0$,当 $|x| > X$ 时,都有
$$\left| \frac{1}{x} - 0 \right| = \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

例2 证明
$$\lim_{x\to\infty} \frac{\sin x}{x} = 0$$

证明
$$\forall \varepsilon > 0$$
,取 $X = > 0$,当 $|x| > X$ 时,都有

$$\left| \frac{\sin x}{x} - 0 \right| \le \frac{1}{|x|}$$

例1 证明
$$\lim_{x\to\infty} \frac{1}{x} = 0$$

证明
$$\forall \varepsilon > 0$$
,取 $X = \frac{1}{\varepsilon} > 0$,当 $|x| > X$ 时,都有
$$\left| \frac{1}{x} - 0 \right| = \frac{1}{|x|} < \frac{1}{x} = \varepsilon.$$

例2 证明
$$\lim_{x\to\infty} \frac{\sin x}{x} = 0$$

证明
$$\forall \varepsilon > 0$$
,取 $X = > 0$,当 $|x| > X$ 时,都有

$$\left|\frac{\sin x}{x} - 0\right| \le \frac{1}{|x|} < \frac{1}{X}$$

例1 证明
$$\lim_{x\to\infty}\frac{1}{x}=0$$

证明
$$\forall \varepsilon > 0$$
,取 $X = \frac{1}{\varepsilon} > 0$,当 $|x| > X$ 时,都有
$$\left| \frac{1}{x} - 0 \right| = \frac{1}{|x|} < \frac{1}{x} = \varepsilon.$$

例2 证明
$$\lim_{x\to\infty} \frac{\sin x}{x} = 0$$

证明
$$\forall \varepsilon > 0$$
,取 $X = \frac{1}{\varepsilon} > 0$,当 $|x| > X$ 时,都有

$$\left|\frac{\sin x}{x} - 0\right| \le \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

" $\lim_{x \to +\infty} f(x) = A$ ":如果 x 无限增大时,f(x) 无限接近一个数 A,则称

f(x) 在 $x \to +\infty$ 时的"极限"为 A.

定义 任意给定
$$\varepsilon > 0$$
,存在正数 X ,使得 $X > X$ 时,有 $|f(x) - A| < \varepsilon$,

● 整角大

定义 任意给定
$$\varepsilon > 0$$
,存在正数 X ,使得 $X > X$ 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $X \to +\infty$ 时的 极限 ,记作

$$\lim_{x \to +\infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to +\infty)$$

定义 任意给定
$$\varepsilon > 0$$
,存在正数 X ,使得 $x > X$ 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $x \to +\infty$ 时的 极限,记作

$$\lim_{x \to +\infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to +\infty)$$

若不存在这样的数 A,称 f(x) 在 $x \to +\infty$ 时发散,或 $\lim_{x \to +\infty} f(x)$ 不存在

● 壁南大學

定义 任意给定 $\varepsilon > 0$,存在正数 X,使得 x > X 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $x \to +\infty$ 时的 **极限** ,记作

$$\lim_{x \to +\infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to +\infty)$$

定义 任意给定 $\varepsilon > 0$,存在正数 X,使得 x > X 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in E$ f(x) 在 $x \to +\infty$ 时的 **极限** ,记作

$$\lim_{x \to +\infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to +\infty)$$

若不存在这样的数 A,称 f(x) 在 $x \to +\infty$ 时 发散,或 $\lim_{x \to +\infty} f(x)$ 不存在

定义 任意给定 $\varepsilon > 0$,存在正数 X,使得 X > X 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in \mathcal{L}(x)$ 在 $X \to +\infty$ 时的 极限 ,记作

$$\lim_{x \to +\infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to +\infty)$$

若不存在这样的数 A,称 f(x) 在 $x \to +\infty$ 时 发散,或 $\lim_{x \to +\infty} f(x)$ 不存在

定义 任意给定 $\varepsilon > 0$,存在正数 X,使得 x > X 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in E$ f(x) 在 $x \to +\infty$ 时的 **极限** ,记作

$$\lim_{x \to +\infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to +\infty)$$

若不存在这样的数 A,称 f(x) 在 $x \to +\infty$ 时 发散,或 $\lim_{x \to +\infty} f(x)$ 不存在

例 验证

1.
$$a > 1$$
 时,
$$\lim_{x \to +\infty} \frac{1}{a^x} = 0.$$

2.
$$0 < b < 1$$
 时, $\lim_{x \to +\infty} b^x = 0$.

例 验证

- 1. a > 1 时, $\lim_{x \to +\infty} \frac{1}{a^x} = 0$.
- 2. 0 < b < 1 时, $\lim_{x \to +\infty} b^x = 0$.

证明 1.
$$\forall \varepsilon \in (0, 1)$$
, 取 $X =$
$$\left| \frac{1}{a^{\chi}} - 0 \right| =$$

例 验证

- 1. a > 1 时, $\lim_{x \to +\infty} \frac{1}{a^x} = 0$.
- 2. 0 < b < 1 时, $\lim_{x \to +\infty} b^x = 0$.

证明 1.
$$\forall \varepsilon \in (0, 1)$$
, 取 $X =$
$$\left| \frac{1}{a^{x}} - 0 \right| = a^{-x}$$

1.
$$a > 1$$
 时, $\lim_{x \to +\infty} \frac{1}{a^x} = 0$.

2.
$$0 < b < 1$$
 时, $\lim_{x \to +\infty} b^x = 0$.

证明 1.
$$\forall \varepsilon \in (0,1)$$
, $X =$

$$\left| \frac{1}{a^{x}} - 0 \right| = a^{-x} = e^{\ln a^{-x}}$$

, 当 *x > X* 时,都有

1.
$$a > 1$$
 时, $\lim_{x \to +\infty} \frac{1}{a^x} = 0$.

2.
$$0 < b < 1$$
 时, $\lim_{x \to +\infty} b^x = 0$.

证明 1.
$$\forall \varepsilon \in (0,1)$$
, $X =$

$$\left| \frac{1}{a^{x}} - 0 \right| = a^{-x} = e^{\ln a^{-x}}$$

, 当 *x > X* 时,都有

1.
$$a > 1$$
 时, $\lim_{x \to +\infty} \frac{1}{a^x} = 0$.

2.
$$0 < b < 1$$
 时, $\lim_{x \to +\infty} b^x = 0$.

证明 1.
$$\forall \varepsilon \in (0,1)$$
,取 $X =$,当 $X > X$ 时,都有

$$\left| \frac{1}{a^x} - 0 \right| = a^{-x} = e^{\ln a^{-x}} = e^{-x \ln a}$$

- 1. a > 1 时, $\lim_{x \to +\infty} \frac{1}{a^x} = 0$.
- 2. 0 < b < 1 时, $\lim_{x \to +\infty} b^x = 0$.

$$\left| \frac{1}{a^{x}} - 0 \right| = a^{-x} = e^{\ln a^{-x}} = e^{-x \ln a} < e^{-x \ln a}$$

1.
$$a > 1$$
 时, $\lim_{x \to +\infty} \frac{1}{a^x} = 0$.

2.
$$0 < b < 1$$
 时, $\lim_{x \to +\infty} b^x = 0$.

证明 1.
$$\forall \varepsilon \in (0,1)$$
,取 $X = -\frac{\ln \varepsilon}{\ln a} > 0$,当 $x > X$ 时,都有
$$\left| \frac{1}{a^x} - 0 \right| = a^{-x} = e^{\ln a^{-x}} = e^{-x \ln a} < e^{-X \ln a} = e^{\ln \varepsilon}$$

1.
$$a > 1$$
 时, $\lim_{x \to +\infty} \frac{1}{a^x} = 0$.

2.
$$0 < b < 1$$
 时, $\lim_{x \to +\infty} b^x = 0$.

证明 1.
$$\forall \varepsilon \in (0,1)$$
,取 $X = -\frac{\ln \varepsilon}{\ln a} > 0$,当 $X > X$ 时,都有

$$\left|\frac{1}{a^x} - 0\right| = a^{-x} = e^{\ln a^{-x}} = e^{-x \ln a} < e^{-x \ln a} = e^{\ln \varepsilon} = \varepsilon.$$

1.
$$a > 1$$
 时, $\lim_{x \to +\infty} \frac{1}{a^x} = 0$.

2.
$$0 < b < 1$$
 时, $\lim_{x \to +\infty} b^x = 0$.

证明 1.
$$\forall \varepsilon \in (0,1)$$
,取 $X = -\frac{\ln \varepsilon}{\ln a} > 0$,当 $x > X$ 时,都有
$$\left| \frac{1}{a^x} - 0 \right| = a^{-x} = e^{\ln a^{-x}} = e^{-x \ln a} < e^{-X \ln a} = e^{\ln \varepsilon} = \varepsilon.$$

2.

$$\lim_{x \to +\infty} b^x = \frac{a = \frac{1}{b} > 1}{=}$$

1.
$$a > 1$$
 时, $\lim_{x \to +\infty} \frac{1}{a^x} = 0$.

2.
$$0 < b < 1$$
 时, $\lim_{x \to +\infty} b^x = 0$.

证明 1.
$$\forall \varepsilon \in (0,1)$$
,取 $X = -\frac{\ln \varepsilon}{\ln a} > 0$,当 $x > X$ 时,都有
$$\left| \frac{1}{a^x} - 0 \right| = a^{-x} = e^{\ln a^{-x}} = e^{-x \ln a} < e^{-x \ln a} = e^{\ln \varepsilon} = \varepsilon.$$

2.

$$\lim_{x \to +\infty} b^x = \lim_{x \to +\infty} (\frac{1}{a})^x$$

1.
$$a > 1$$
 时, $\lim_{x \to +\infty} \frac{1}{a^x} = 0$.

2.
$$0 < b < 1$$
 时, $\lim_{x \to +\infty} b^x = 0$.

证明 1.
$$\forall \varepsilon \in (0,1)$$
,取 $X = -\frac{\ln \varepsilon}{\ln a} > 0$,当 $x > X$ 时,都有
$$\left| \frac{1}{a^x} - 0 \right| = a^{-x} = e^{\ln a^{-x}} = e^{-x \ln a} < e^{-x \ln a} = e^{\ln \varepsilon} = \varepsilon.$$

2.

$$\lim_{x \to +\infty} b^x \xrightarrow{\alpha = \frac{1}{b} > 1} \lim_{x \to +\infty} (\frac{1}{a})^x = 0.$$

1.
$$a > 1$$
 时, $\lim_{x \to +\infty} \frac{1}{a^x} = 0$.

2.
$$0 < b < 1$$
 时, $\lim_{x \to +\infty} b^x = 0$.

证明 1.
$$\forall \varepsilon \in (0,1)$$
,取 $X = -\frac{\ln \varepsilon}{\ln a} > 0$,当 $x > X$ 时,都有
$$\left| \frac{1}{a^x} - 0 \right| = a^{-x} = e^{\ln a^{-x}} = e^{-x \ln a} < e^{-x \ln a} = e^{\ln \varepsilon} = \varepsilon.$$

2.

$$\lim_{X \to +\infty} b^X \xrightarrow{a = \frac{1}{b} > 1} \lim_{X \to +\infty} (\frac{1}{a})^X = 0.$$

$$f(n) = a_n$$
,则

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}f(x).$$

" $\lim_{x\to -\infty} f(x) = A$ ":如果 x 无限减少时,f(x) 无限接近一个数 A,则称

f(x) 在 $x \to -\infty$ 时的"极限"为 A.

定义 任意给定
$$\varepsilon > 0$$
,存在正数 X ,当 $X < -X$ 时,有 $|f(x) - A| < \varepsilon$,

定义 任意给定
$$\varepsilon > 0$$
,存在正数 X ,当 $X < -X$ 时,有 $|f(x) - A| < \varepsilon$,则称 $A = f(x)$ 在 $X \to -\infty$ 时的 极限,记作

$$\lim_{x \to -\infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to -\infty)$$

定义 任意给定
$$\varepsilon > 0$$
,存在正数 X ,当 $X < -X$ 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $X \to -\infty$ 时的 **极限** ,记作

$$\lim_{x \to -\infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to -\infty)$$

若不存在这样的数 A,称 f(x) 在 $x \to -\infty$ 时发散,或 $\lim_{x \to -\infty} f(x)$ 不存在

" $\lim_{x\to -\infty} f(x) = A$ ":如果 x 无限减少时,f(x) 无限接近一个数 A,则称

f(x) 在 $x \to -\infty$ 时的"极限"为 A.

定义 任意给定
$$\varepsilon > 0$$
,存在正数 X ,当 $X < -X$ 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in \mathcal{L}(x)$ 在 $X \to -\infty$ 时的 极限 ,记作

$$\lim_{x \to -\infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to -\infty)$$

若不存在这样的数 A,称 f(x) 在 $x \to -\infty$ 时 发散,或 $\lim_{x \to -\infty} f(x)$ 不存在

" $\lim_{x\to-\infty} f(x) = A$ ":如果 x 无限减少时,f(x) 无限接近一个数 A,则称

定义 任意给定 $\varepsilon > 0$,存在正数 X,当 X < -X 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in \mathcal{L}(x)$ 在 $X \to -\infty$ 时的 极限 ,记作

$$\lim_{x \to -\infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to -\infty)$$

若不存在这样的数 A,称 f(x) 在 $x \to -\infty$ 时发散,或 $\lim_{x \to -\infty} f(x)$ 不存在

1b 极限 21/45 ◁ ▷ △ ▽

定义 任意给定 $\varepsilon > 0$,存在正数 X,当 X < -X 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in f(x)$ 在 $X \to -\infty$ 时的 极限 ,记作

$$\lim_{x \to -\infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to -\infty)$$

若不存在这样的数 A,称 f(x) 在 $x \to -\infty$ 时 发散,或 $\lim_{x \to -\infty} f(x)$ 不存在

1b 极限 21/45 < ▶ △ ▼

定义 任意给定 $\varepsilon > 0$,存在正数 X,当 X < -X 时,有 $|f(x) - A| < \varepsilon$,则称 $A \in \mathcal{L}(x)$ 在 $X \to -\infty$ 时的 极限 ,记作

$$\lim_{x \to -\infty} f(x) = A \qquad \text{if} \qquad f(x) \to A \quad (x \to -\infty)$$

若不存在这样的数 A,称 f(x) 在 $x \to -\infty$ 时 发散,或 $\lim_{x \to -\infty} f(x)$ 不存在

1b 极限

性质 $\lim_{x \to \infty} f(x)$ 存在 $\iff \lim_{x \to -\infty} f(x)$ 与 $\lim_{x \to +\infty} f(x)$ 均存在并相等. 此时,这三个极限相等.

We are here now...

- 1. 数列极限
- 2. 函数极限
- 3. 极限运算
- 4. 极限性质
- 5. 两个重要极限
- 6. 无穷大,无穷小

前面我们已经验证了一些特殊的极限,例如:

$$\lim_{x\to x_0}c=c,\quad \lim_{x\to x_0}x=x_0,$$

$$\lim_{x \to \infty} \frac{1}{x} = 0, \quad \lim_{x \to +\infty} a^{x} = 0 \ (0 < a < 1), \quad \lim_{x \to +\infty} \frac{1}{a^{x}} = 0 \ (a > 1)$$

前面我们已经**验证**了一些特殊的极限,例如:

$$\lim_{x \to x_0} c = c, \quad \lim_{x \to x_0} x = x_0,$$

$$\lim_{x \to \infty} \frac{1}{x} = 0, \quad \lim_{x \to +\infty} a^x = 0 \ (0 < a < 1), \quad \lim_{x \to +\infty} \frac{1}{a^x} = 0 \ (a > 1)$$

但实际中,我们需要的是**计算**极限,例如:

$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 9}$$

为了计算一般式子的极限,我们需要知道极限的 **运算性质**。

前面我们已经验证了一些特殊的极限,例如:

$$\lim_{x \to x_0} c = c, \quad \lim_{x \to x_0} x = x_0,$$

$$\lim_{x \to \infty} \frac{1}{x} = 0, \quad \lim_{x \to +\infty} a^x = 0 \ (0 < a < 1), \quad \lim_{x \to +\infty} \frac{1}{a^x} = 0 \ (a > 1)$$

但实际中,我们需要的是**计算**极限,例如:

$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 9}$$

为了计算一般式子的极限,我们需要知道极限的 <mark>运算性质</mark> 。

这些运算性质一般与具体的极限过程无关:

$$\lim_{x \to +\infty} f(x), \lim_{x \to -\infty} f(x), \lim_{x \to \infty} f(x), \lim_{x \to x_0} f(x), \lim_{x \to x_0^+} f(x), \lim_{x \to x_0^-} f(x)$$

因此叙述相关性质时,简单地用" $\lim_{t \to \infty} f(x)$ "表示上述任意的极限过程。

1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$

1.
$$\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$$

(特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)

- 1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$ (特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)
- 2. $\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$

- 1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$ (特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)
- 2. $\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$ (特别地, $\lim[f(x)^n] = [\lim f(x)]^n$)

- 1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$ (特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)
- 2. $\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$ (特别地, $\lim[f(x)^n] = [\lim f(x)]^n$)
- 3. 若 $\lim g(x) \neq 0$,则 $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)}$

- 1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$ (特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)
- 2. $\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$ (特别地, $\lim[f(x)^n] = [\lim f(x)]^n$)
- 3. 若 $\lim g(x) \neq 0$,则 $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)}$

例1 计算
$$\lim_{x\to 1} (3x^2 - 2x + 1)$$

- 1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$ (特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)
- 2. $\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$ (特别地, $\lim[f(x)^n] = [\lim f(x)]^n$)
- 3. 若 $\lim g(x) \neq 0$,则 $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)}$

例1 计算
$$\lim_{x\to 1} (3x^2 - 2x + 1)$$

解 原式 =
$$3 \lim_{x \to 1} x^2 - 2 \lim_{x \to 1} x + \lim_{x \to 1} 1 =$$

- 1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$ (特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)
- 2. $\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$ (特别地, $\lim[f(x)^n] = [\lim f(x)]^n$)
- 3. 若 $\lim g(x) \neq 0$,则 $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)}$

例 1 计算
$$\lim_{x \to 1} (3x^2 - 2x + 1)$$

解 原式 = $3 \lim_{x \to 1} x^2 - 2 \lim_{x \to 1} x + \lim_{x \to 1} 1 = \lim_{x \to 1} x$

- 1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$ (特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)
- 2. $\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$ (特别地, $\lim[f(x)^n] = [\lim f(x)]^n$)
- 3. 若 $\lim g(x) \neq 0$,则 $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)}$

例 1 计算
$$\lim_{x \to 1} (3x^2 - 2x + 1)$$

解 原式 = $3 \lim_{x \to 1} x^2 - 2 \lim_{x \to 1} x + \lim_{x \to 1} 1 =$
= $[\lim_{x \to 1} x]^2 \lim_{x \to x_0} x = x_0$

- 1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$ (特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)
- 2. $\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$ (特别地, $\lim[f(x)^n] = [\lim f(x)]^n$)
- 3. 若 $\lim g(x) \neq 0$,则 $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)}$

例1 计算
$$\lim_{x\to 1} (3x^2 - 2x + 1)$$

解 原式 =
$$3\lim_{x\to 1} x^2 - 2\lim_{x\to 1} x + \lim_{x\to 1} 1 =$$

= $[\lim_{x\to 1} x]^2 \lim_{x\to x_0} x = x_0 \lim_{x\to x_0} c = c$

- 1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$ (特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)
- 2. $\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$ (特别地, $\lim[f(x)^n] = [\lim f(x)]^n$)
- 3. 若 $\lim g(x) \neq 0$,则 $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)}$

例1 计算
$$\lim_{x\to 1} (3x^2 - 2x + 1)$$

解 原式 =
$$3 \lim_{x \to 1} x^2 - 2 \lim_{x \to 1} x + \lim_{x \to 1} 1 = 3 \cdot 1^2 - 2 \cdot 1 + 1 = 2$$

= $[\lim_{x \to 1} x]^2 \lim_{x \to x_0} x = x_0 \lim_{x \to x_0} c = c$

- 1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$ (特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)
- 2. $\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$ (特别地, $\lim[f(x)^n] = [\lim f(x)]^n$)
- 3. 若 $\lim g(x) \neq 0$,则 $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)}$

例1 计算
$$\lim_{x\to 1} (3x^2 - 2x + 1)$$

解 原式 =
$$3 \lim_{x \to 1} x^2 - 2 \lim_{x \to 1} x + \lim_{x \to 1} 1 = \underbrace{3 \cdot 1^2 - 2 \cdot 1 + 1}_{x \to x} = 2$$

$$= [\lim_{x \to 1} x]^2 \lim_{x \to x_0} x = x_0 \lim_{x \to x_0} c = c$$

- 1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$ (特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)
- 2. $\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$ (特别地, $\lim[f(x)^n] = [\lim f(x)]^n$)
- 3. 若 $\lim g(x) \neq 0$,则 $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)}$

例1 计算
$$\lim_{x\to 1} (3x^2 - 2x + 1)$$

解 原式 =
$$3 \lim_{x \to 1} x^2 - 2 \lim_{x \to 1} x + \lim_{x \to 1} 1 = \underbrace{3 \cdot 1^2 - 2 \cdot 1 + 1}_{f(1)} = 2$$

$$= [\lim_{x \to 1} x]^2 \lim_{x \to x_0} x = x_0 \lim_{x \to x_0} c = c$$

定理(极限的四则运算) 设 $\lim f(x)$, $\lim g(x)$ 存在, $a,b \in \mathbb{R}$,则

- 1. $\lim[af(x) + bg(x)] = a\lim f(x) + b\lim g(x)$ (特别地, $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$)
- 2. $\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$ (特别地, $\lim[f(x)^n] = [\lim f(x)]^n$)
- 3. 若 $\lim g(x) \neq 0$,则 $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)}$

例1 计算
$$\lim_{x\to 1} (3x^2 - 2x + 1)$$

解 原式 =
$$3\lim_{x\to 1} x^2 - 2\lim_{x\to 1} x + \lim_{x\to 1} 1 = \underbrace{3\cdot 1^2 - 2\cdot 1 + 1}_{f(1)} = 2$$

$$= [\lim_{x\to 1} x]^2 \lim_{x\to x_0} x = x_0 \lim_{x\to x_0} c = c$$

注一般地,对任意多项式 <math>f(x),均成立 $\lim_{x \to x_0} f(x) = f(x_0)$

例2 计算
$$\lim_{x\to 3} \frac{x^2-2x+3}{x^2+9}$$

例3 计算
$$\lim_{x\to 3} \frac{x^2-2x-3}{x^2-9}$$

例 4 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^2-9}$$

1b 极限

例2 计算
$$\lim_{x\to 3} \frac{x^2-2x+3}{x^2+9}$$

1b 极限

解原式 =
$$\frac{\lim_{x \to 3} x^2 - 2x + 3}{\lim_{x \to 3} x^2 + 9}$$

例3 计算
$$\lim_{x\to 3} \frac{x^2-2x-3}{x^2-9}$$

例2 计算
$$\lim_{x\to 3} \frac{x^2-2x+3}{x^2+9}$$

解原式 =
$$\frac{\lim_{x\to 3} x^2 - 2x + 3}{\lim_{x\to 3} x^2 + 9}$$
 = $\frac{3^2 - 2\cdot 3 + 3}{3^2 + 9}$

例 3 计算
$$\lim_{x\to 3} \frac{x^2-2x-3}{x^2-9}$$

例2 计算
$$\lim_{x\to 3} \frac{x^2-2x+3}{x^2+9}$$

解原式 =
$$\frac{\lim_{x\to 3} x^2 - 2x + 3}{\lim_{x\to 3} x^2 + 9}$$
 = $\frac{3^2 - 2 \cdot 3 + 3}{3^2 + 9}$ = $\frac{1}{3}$

例3 计算
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 9}$$

例2 计算
$$\lim_{x\to 3} \frac{x^2-2x+3}{x^2+9}$$

解原式 =
$$\frac{\lim_{x \to 3} x^2 - 2x + 3}{\lim_{x \to 3} x^2 + 9} = \frac{3^2 - 2 \cdot 3 + 3}{3^2 + 9} = \frac{1}{3}$$

例 3 计算
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 9}$$
 $\lim_{x \to 3} x^2 - 2x - 3$

解原式 =
$$\frac{\lim_{x \to 3} x^2 - 2x - 3}{\lim_{x \to 3} x^2 - 9}$$

例2 计算
$$\lim_{x \to 3} \frac{x^2 - 2x + 3}{x^2 + 9}$$

解原式 =
$$\frac{\lim_{x \to 3} x^2 - 2x + 3}{\lim_{x \to 3} x^2 + 9} = \frac{3^2 - 2 \cdot 3 + 3}{3^2 + 9} = \frac{1}{3}$$

例 3 计算
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 9}$$

解原式 =
$$\frac{\lim_{x \to 3} x^2 - 2x - 3}{\lim_{x \to 3} x^2 - 9}$$

错误!

例2 计算
$$\lim_{x\to 3} \frac{x^2-2x+3}{x^2+9}$$

解 原式 =
$$\frac{\lim_{x \to 3} x^2 - 2x + 3}{\lim_{x \to 3} x^2 + 9} = \frac{3^2 - 2 \cdot 3 + 3}{3^2 + 9} = \frac{1}{3}$$

例3 计算
$$\lim_{x\to 3} \frac{x^2-2x-3}{x^2-9}$$

解原式 =
$$\frac{\lim_{x\to 3} x^2 - 2x - 3}{\lim_{x\to 2} x^2 - 9} = \frac{3^2 - 2 \cdot 3 - 3}{3^2 - 9} = \frac{0}{0}$$

例 4 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^2-9}$$

解原式 =
$$\frac{\lim_{x \to 3} x^2 - 2x + 3}{\lim_{x \to 3} x^2 + 9} = \frac{3^2 - 2 \cdot 3 + 3}{3^2 + 9} = \frac{1}{3}$$

例 3 计算 $\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 9}$

例2 计算 $\lim_{x\to 3} \frac{x^2-2x+3}{x^2+9}$

解原式 = $\frac{\lim_{x\to 3} x^2 - 2x - 3}{\lim_{x\to 9} x^2 - 9} = \frac{3^2 - 2 \cdot 3 - 3}{3^2 - 9} = \frac{0}{0}$ 错误! 正解:原式

$$= \lim_{x \to 3} \frac{(x-3)(x+1)}{(x+3)(x-3)}$$

例 4 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^2-9}$$

解原式 =
$$\frac{\lim_{x\to 3} x^2 - 2x + 3}{\lim_{x\to 3} x^2 + 9} = \frac{3^2 - 2 \cdot 3 + 3}{3^2 + 9} = \frac{1}{3}$$

例3 计算
$$\lim_{x\to 3} \frac{x^2-2x-3}{x^2-9}$$

例2 计算 $\lim_{x\to 3} \frac{x^2-2x+3}{x^2+9}$

解原式 =
$$\frac{\lim_{x\to 3} x^2 - 2x - 3}{\lim_{x\to 3} x^2 - 9} = \frac{3^2 - 2 \cdot 3 - 3}{3^2 - 9} = \frac{0}{0}$$

正解: 原式
$$= \lim_{x \to 3} \frac{(x-3)(x+1)}{(x+3)(x-3)} = \lim_{x \to 3} \frac{x+1}{x+3}$$

例4 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^2-9}$$

错误!

例 2 计算
$$\lim_{x \to 3} \frac{x^2 - 2x + 3}{x^2 + 9}$$
 $\lim_{x \to 3} x^2 - 2x + 3$

解原式 =
$$\frac{\lim_{x \to 3} x^2 - 2x + 3}{\lim_{x \to 3} x^2 + 9} = \frac{3^2 - 2 \cdot 3 + 3}{3^2 + 9} = \frac{1}{3}$$

例 3 计算 $\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 9}$

解原式 =
$$\frac{\lim_{x \to 3} x^2 - 2x - 3}{\lim_{x \to 3} x^2 - 9} = \frac{3^2 - 2 \cdot 3 - 3}{3^2 - 9} = \frac{0}{0}$$

$$= \lim_{x \to 3} \frac{(x-3)(x+1)}{(x+3)(x-3)} = \lim_{x \to 3} \frac{x+1}{x+3} = \frac{\lim_{x \to 3} x+1}{\lim_{x \to 3} x+3}$$

例 4 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^2-9}$$

错误!

解原式 =
$$\frac{\lim_{x \to 3} x^2 - 2x + 3}{\lim_{x \to 3} x^2 + 9} = \frac{3^2 - 2 \cdot 3 + 3}{3^2 + 9} = \frac{1}{3}$$

例3 计算
$$\lim_{x\to 3} \frac{x^2-2x-3}{x^2-9}$$

例2 计算 $\lim_{x\to 3} \frac{x^2-2x+3}{x^2+9}$

解原式 =
$$\frac{\lim_{x \to 3} x^2 - 2x - 3}{\lim_{x \to 3} x^2 - 9} = \frac{3^2 - 2 \cdot 3 - 3}{3^2 - 9} = \frac{0}{0}$$

正解:原式 $= \lim_{x \to 3} \frac{(x-3)(x+1)}{(x+3)(x-3)} = \lim_{x \to 3} \frac{x+1}{x+3} = \frac{\lim_{x \to 3} x+1}{\lim_{x \to 3} x+3} = \frac{4}{6} = \frac{2}{3}$

$$x^2 - 2x - 1$$

例 5 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^3-9}$$

例4 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^2-9}$$

解原式 =
$$\lim_{x \to \infty} \frac{3 - 2 \cdot \frac{1}{x} - \frac{1}{x^2}}{2 - 9 \cdot \frac{1}{x^2}}$$

例 5 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^3-9}$$

解原式 =
$$\lim_{x \to \infty} \frac{3 - 2 \cdot \frac{1}{x} - \frac{1}{x^2}}{2 - 9 \cdot \frac{1}{x^2}} = \frac{\lim_{x \to \infty} 3 - 2 \cdot \frac{1}{x} - \frac{1}{x^2}}{\lim_{x \to \infty} 2 - 9 \cdot \frac{1}{x^2}}$$

例 5 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^3-9}$$

解原式 =
$$\lim_{x \to \infty} \frac{3 - 2 \cdot \frac{1}{x} - \frac{1}{x^2}}{2 - 9 \cdot \frac{1}{x^2}} = \frac{\lim_{x \to \infty} 3 - 2 \cdot \frac{1}{x} - \frac{1}{x^2}}{\lim_{x \to \infty} 2 - 9 \cdot \frac{1}{x^2}} = \frac{3}{2}$$

例5 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^3-9}$$

解原式 =
$$\lim_{x \to \infty} \frac{3 - 2 \cdot \frac{1}{x} - \frac{1}{x^2}}{2 - 9 \cdot \frac{1}{x^2}} = \frac{\lim_{x \to \infty} 3 - 2 \cdot \frac{1}{x} - \frac{1}{x^2}}{\lim_{x \to \infty} 2 - 9 \cdot \frac{1}{x^2}} = \frac{3}{2}$$

例 5 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^3-9}$$

解 原式 =
$$\lim_{x \to \infty} \frac{3 \cdot \frac{1}{x} - 2 \cdot \frac{1}{x^2} - \frac{1}{x^3}}{2 - 9 \cdot \frac{1}{x^3}}$$

解原式 =
$$\lim_{x \to \infty} \frac{3 - 2 \cdot \frac{1}{x} - \frac{1}{x^2}}{2 - 9 \cdot \frac{1}{x^2}} = \frac{\lim_{x \to \infty} 3 - 2 \cdot \frac{1}{x} - \frac{1}{x^2}}{\lim_{x \to \infty} 2 - 9 \cdot \frac{1}{x^2}} = \frac{3}{2}$$

例 5 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^3-9}$$

解原式 =
$$\lim_{x \to \infty} \frac{3 \cdot \frac{1}{x} - 2 \cdot \frac{1}{x^2} - \frac{1}{x^3}}{2 - 9 \cdot \frac{1}{x^3}} = \frac{\lim_{x \to \infty} 3 \cdot \frac{1}{x} - 2 \cdot \frac{1}{x^2} - \frac{1}{x^3}}{\lim_{x \to \infty} 2 - 9 \cdot \frac{1}{x^3}}$$

解原式 =
$$\lim_{x \to \infty} \frac{3 - 2 \cdot \frac{1}{x} - \frac{1}{x^2}}{2 - 9 \cdot \frac{1}{x^2}} = \frac{\lim_{x \to \infty} 3 - 2 \cdot \frac{1}{x} - \frac{1}{x^2}}{\lim_{x \to \infty} 2 - 9 \cdot \frac{1}{x^2}} = \frac{3}{2}$$

例 5 计算
$$\lim_{x\to\infty} \frac{3x^2-2x-1}{2x^3-9}$$

解原式 =
$$\lim_{x \to \infty} \frac{3 \cdot \frac{1}{x} - 2 \cdot \frac{1}{x^2} - \frac{1}{x^3}}{2 - 9 \cdot \frac{1}{x^3}} = \frac{\lim_{x \to \infty} 3 \cdot \frac{1}{x} - 2 \cdot \frac{1}{x^2} - \frac{1}{x^3}}{\lim_{x \to \infty} 2 - 9 \cdot \frac{1}{x^3}} = \frac{0}{2} = 0$$

1b 极限

(证明作为练习)

(证明作为练习)

例6 计算 $\lim_{x\to\infty} \frac{\sin x}{x}$

(证明作为练习)

例 6 计算
$$\lim_{x\to\infty} \frac{\sin x}{x}$$

错误解法
$$\lim_{x \to \infty} \frac{\sin x}{x} = \frac{\lim_{x \to \infty} \sin x}{\lim_{x \to \infty} x}$$

(证明作为练习)

例 6 计算
$$\lim_{x\to\infty} \frac{\sin x}{x}$$

错误解法
$$\lim_{x \to \infty} \frac{\sin x}{x} = \frac{\lim_{x \to \infty} \sin x}{\lim_{x \to \infty} x}$$

正解 因为 $\lim_{x \to \infty} \frac{1}{x} = 0$,而 $\sin x$ 是有界函数($|\sin x| \le 1$),所以

$$\lim_{x\to\infty}\frac{\sin x}{x}=0.$$

例 6 计算
$$\lim_{x \to \infty} \frac{\sin x}{x}$$

错误解法
$$\lim_{x \to \infty} \frac{\sin x}{x} = \frac{\lim_{x \to \infty} \sin x}{\lim_{x \to \infty} x}$$

正解 因为 $\lim_{x\to\infty}\frac{1}{x}=0$,而 $\sin x$ 是有界函数($|\sin x|\leq 1$),所以 $\lim_{x\to\infty}\frac{\sin x}{x}=0$.

注 若 $\lim_{x \to \infty} f(x) = 0$,则称在该极限过程下,f 是 **无穷小**量. 上述性质就是说,无穷小量与有界量的乘积仍然是无穷小量.

$$\lim_{x\to x_0} f(x)$$

$$\lim_{x\to x_0} f(x) \xrightarrow{x=x_0+t}$$

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim f(x_0 + t)$$

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

则前后两个极限是否相等?

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

$$\lim_{x\to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

$$\lim_{x\to x_0} f(x) \xrightarrow{\text{ @ig } x=g(t)}$$

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

$$\lim_{x \to x_0} f(x) \xrightarrow{\text{@ightarpoonup} x = g(t)} \text{Im} f[g(t)]$$

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

则前后两个极限是否相等?或者更复杂地,考虑

事实上,上述"一般"情况都成立,称为 复合函数的极限运算法则

问题 是否可以通过 变量代换 求极限?例如:

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

则前后两个极限是否相等?或者更复杂地,考虑

事实上,上述"一般"情况都成立,称为 **复合函数的极限运算法则**

例 假设已知
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
,求 $\lim_{x\to 0} \frac{\arcsin x}{x}$

问题 是否可以通过变量代换 求极限?例如:

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

则前后两个极限是否相等?或者更复杂地,考虑

$$\lim_{x \to x_0} f(x) \xrightarrow{\text{\mathbb{R}} \exists x \to x_0 \ (t \to t_0)$} \lim_{t \to t_0} f[g(t)]$$

事实上,上述"一般"情况都成立,称为 **复合函数的极限运算法则**

例 假设已知
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
,求 $\lim_{x\to 0} \frac{\arcsin x}{x}$

$$\lim_{x\to 0} \frac{\arcsin x}{x} = \frac{x=\sin t}{x}$$

问题 是否可以通过变量代换 求极限?例如:

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

则前后两个极限是否相等?或者更复杂地,考虑

事实上,上述"一般"情况都成立,称为 **复合函数的极限运算法则**

例 假设已知
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
,求 $\lim_{x\to 0} \frac{\arcsin x}{x}$

$$\lim_{x \to 0} \frac{\arcsin x}{x} \stackrel{\underline{x = \sin t}}{=} \lim \frac{t}{\sin t}$$

问题 是否可以通过 变量代换 求极限?例如:

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

则前后两个极限是否相等?或者更复杂地,考虑

事实上,上述"一般"情况都成立,称为 复合函数的极限运算法则

例 假设已知
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
,求 $\lim_{x\to 0} \frac{\arcsin x}{x}$

$$\lim_{x \to 0} \frac{\arcsin x}{x} \xrightarrow{\underline{x = \sin t}} \lim_{t \to 0} \frac{t}{\sin t}$$

问题 是否可以通过 变量代换 求极限?例如:

$$\lim_{x \to x_0} f(x) \xrightarrow{x = x_0 + t} \lim_{t \to 0} f(x_0 + t)$$

则前后两个极限是否相等?或者更复杂地,考虑

$$\lim_{x \to x_0} f(x) \xrightarrow{\text{\mathbb{R}} \exists x = g(t)$} \lim_{t \to t_0} f[g(t)]$$

事实上,上述"一般"情况都成立,称为 复合函数的极限运算法则

例 假设已知
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
,求 $\lim_{x\to 0} \frac{\arcsin x}{x}$

$$\lim_{x \to 0} \frac{\arcsin x}{x} \stackrel{x=\sin t}{===} \lim_{t \to 0} \frac{t}{\sin t} = 1$$

We are here now...

- 1. 数列极限
- 2. 函数极限
- 3. 极限运算
- 4. 极限性质
- 5. 两个重要极限
- 6. 无穷大,无穷小

函数极限的性质

定理 1 (唯一性) 如果 $\lim_{x\to x_0} f(x)$ 存在,那么这极限唯一.

函数极限的性质

定理 1(唯一性) 如果 $\lim_{x\to x_0} f(x)$ 存在,那么这极限唯一.

定理 2(有界性) 如果 $\lim_{x\to x_0} f(x) = A$ 存在,那么 f 在 x_0 附近是有界

函数极限的性质

定理 1(唯一性) 如果 $\lim_{x\to x_0} f(x)$ 存在,那么这极限唯一.

定理 2(有界性) 如果 $\lim_{x\to x_0} f(x) = A$ 存在,那么 f 在 x_0 附近是有界:

存在常数 M > 0 和 $\delta > 0$,当 $0 < |x - x_0| < \delta$ 时,有 $|f(x)| \le M$.

• 若 A > 0,则 $\exists \delta > 0$,当 $0 < |x - x_0| < \delta$ 时,都有 f(x) > 0.

定理 3(保号性) 如果
$$\lim_{x\to x_0} f(x) = A$$
,

• 若 A > 0,则 $\exists \delta > 0$,当 $0 < |x - x_0| < \delta$ 时,都有 f(x) > 0.

- 若 A > 0,则 $\exists \delta > 0$,当 $0 < |x x_0| < \delta$ 时,都有 f(x) > 0.
- 若 A < 0,则 $\exists \delta > 0$,当 $0 < |x x_0| < \delta$ 时,都有 f(x) < 0.

- 若 A > 0,则 $\exists \delta > 0$,当 $0 < |x x_0| < \delta$ 时,都有 f(x) > 0.
- 若 A < 0,则 ∃δ > 0,当 0 < |x x₀| < δ 时,都有 f(x) < 0.

推论 设 $\lim_{x\to x_0} f(x) = A$,

• 若在 x_0 附近都有 $f(x) \ge 0$,则 $A \ge 0$.

- 若 A > 0,则 $\exists \delta > 0$,当 $0 < |x x_0| < \delta$ 时,都有 f(x) > 0.
- 若 A < 0,则 ∃δ > 0,当 0 < |x x₀| < δ 时,都有 f(x) < 0.

推论 设 $\lim_{x\to x_0} f(x) = A$,

- 若在 x_0 附近都有 $f(x) \ge 0$,则 $A \ge 0$.
- 若在 x_0 附近都有 $f(x) \le 0$,则 $A \le 0$.

We are here now...

- 1. 数列极限
- 2. 函数极限
- 3. 极限运算
- 4. 极限性质
- 5. 两个重要极限
- 6. 无穷大,无穷小

两个重要极限

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

重要极限
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (也就是, $\lim_{x\to 0} \frac{x}{\sin x} = 1$)

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$.

重要极限
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (也就是, $\lim_{x\to 0} \frac{x}{\sin x} = 1$)

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

重要极限
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (也就是, $\lim_{x\to 0} \frac{x}{\sin x} = 1$)

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

重要极限
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (也就是, $\lim_{x\to 0} \frac{x}{\sin x} = 1$)

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

重要极限
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (也就是, $\lim_{x\to 0} \frac{x}{\sin x} = 1$)

证明 只需证明 $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$,所以假设 x > 0. 如图

证明 只需证明 $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$,所以假设 x > 0. 如图

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

重要极限
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (也就是, $\lim_{x\to 0} \frac{x}{\sin x} = 1$)

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

$$\frac{1}{2} \cdot 1 \cdot \sin x$$

重要极限
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (也就是, $\lim_{x\to 0} \frac{x}{\sin x} = 1$)

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

$$\frac{1}{2} \cdot 1 \cdot \sin x$$

$$\frac{1}{2} \cdot 1 \cdot \tan x$$

重要极限
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (也就是, $\lim_{x\to 0} \frac{x}{\sin x} = 1$)

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

$$\frac{1}{2} \cdot 1 \cdot \sin x$$
 $\frac{x}{2\pi} \cdot \pi$ $\frac{1}{2} \cdot 1 \cdot \tan x$

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

$$\Rightarrow \frac{1}{2} \cdot 1 \cdot \sin x < \frac{x}{2\pi} \cdot \pi < \frac{1}{2} \cdot 1 \cdot \tan x$$

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

$$\Rightarrow \frac{1}{2} \cdot 1 \cdot \sin x < \frac{x}{2\pi} \cdot \pi < \frac{1}{2} \cdot 1 \cdot \tan x$$

$$\Rightarrow \sin x < x < \tan x$$

重要极限
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (也就是, $\lim_{x\to 0} \frac{x}{\sin x} = 1$)

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

$$\Rightarrow \frac{1}{2} \cdot 1 \cdot \sin x < \frac{x}{2\pi} \cdot \pi < \frac{1}{2} \cdot 1 \cdot \tan x$$

$$\Rightarrow \sin x < x < \tan x$$

$$\Rightarrow \cos x < \frac{\sin x}{x} < 1$$

$$\Rightarrow \cos x < \frac{1}{x} < 1$$

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

$$\Rightarrow \frac{1}{2} \cdot 1 \cdot \sin x < \frac{x}{2\pi} \cdot \pi < \frac{1}{2} \cdot 1 \cdot \tan x$$

$$\Rightarrow \sin x < x < \tan x$$

$$\Rightarrow \cos x < \frac{\sin x}{y} < 1$$

$$\Rightarrow 0 < 1 - \frac{\sin x}{x} < 1 - \cos x$$

重要极限
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (也就是, $\lim_{x\to 0} \frac{x}{\sin x} = 1$)

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

$$\Rightarrow \frac{1}{2} \cdot 1 \cdot \sin x < \frac{x}{2\pi} \cdot \pi < \frac{1}{2} \cdot 1 \cdot \tan x$$

$$\Rightarrow \sin x < x < \tan x$$

$$\Rightarrow \cos x < \frac{\sin x}{x} < 1$$

$$\Rightarrow 0 < 1 - \frac{\sin x}{x} < 1 - \cos x = 2\sin^2 \frac{x}{2}$$

$$\Rightarrow 0 < 1 - \frac{\sin x}{x} < 1 - \cos x = 2\sin^2 \frac{x}{2}$$

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

$$\Rightarrow \frac{1}{2} \cdot 1 \cdot \sin x < \frac{x}{2\pi} \cdot \pi < \frac{1}{2} \cdot 1 \cdot \tan x$$

$$\Rightarrow \sin x < x < \tan x$$

$$\Rightarrow \cos x < \frac{\sin x}{y} < 1$$

$$\Rightarrow \cos x < \frac{1}{x} < \frac{1}{x}$$

$$\Rightarrow 0 < 1 - \frac{\sin x}{x} < 1 - \cos x = 2\sin^2 \frac{x}{2}$$

$$\Rightarrow 0 < 1 - \frac{\sin x}{x} < 1 - \cos x = 2\sin^2 \frac{1}{x}$$

重要极限 I
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (也就是, $\lim_{x\to 0} \frac{x}{\sin x} = 1$)

证明 只需证明
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
,所以假设 $x > 0$. 如图

$$\Rightarrow \frac{1}{2} \cdot 1 \cdot \sin x < \frac{x}{2\pi} \cdot \pi < \frac{1}{2} \cdot 1 \cdot \tan x$$

$$\Rightarrow \sin x < x < \tan x$$

$$\Rightarrow \cos x < \frac{\sin x}{1} < 1$$

$$\rightarrow \cos x < \frac{1}{x}$$

$$\Rightarrow 0 < 1 - \frac{\sin x}{x} < 1 - \cos x = 2 \sin^2 \frac{x}{2} < \frac{x^2}{2}$$

$$\Rightarrow 0 < 1 - \frac{\sin x}{x} < 1 - \cos x = 2\sin^2 \frac{x}{2} < \frac{x}{2}$$

证明 只需证明 $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$,所以假设 x > 0. 如图

(利用 $\sin \frac{x}{2} < \frac{x}{2}$)

 $\triangle AOB$ 面积 < 扇形AOB面积 < $\triangle AOD$ 面积

$$\Rightarrow \frac{1}{2} \cdot 1 \cdot \sin x < \frac{x}{2\pi} \cdot \pi < \frac{1}{2} \cdot 1 \cdot \tan x$$

$$\Rightarrow \sin x < x < \tan x$$

$$\Rightarrow \cos x < \frac{\sin x}{-} < 1$$

$$\Rightarrow$$
 cos $x < \frac{}{x} <$

$$\Rightarrow 0 < 1 - \frac{\sin x}{x} < 1 - \cos x = 2\sin^2 \frac{x}{2} < \frac{x^2}{2}$$

可见
$$\lim_{x \to \infty} \frac{\sin x}{x} = 1$$

可见
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
.

tan x sin x

证明 只需证明 $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$,所以假设 x > 0. 如图

$$\triangle AOB$$
面积 < 扇形 AOB 面积 < $\triangle AOD$ 面积

$$\Rightarrow \frac{1}{2} \cdot 1 \cdot \sin x < \frac{x}{2\pi} \cdot \pi < \frac{1}{2} \cdot 1 \cdot \tan x$$

$$\Rightarrow \sin x < x < \tan x$$

$$\Rightarrow \cos x < \frac{\sin x}{x} < 1$$

$$\Rightarrow 0 < 1 - \frac{\sin x}{x} < 1 - \cos x = 2\sin^2 \frac{x}{2} < \frac{x^2}{2}$$

可见
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
.

$$x \to 0$$
 $x \to 1$

注 1 重要不等式: x > 0 时,成立 $x < \sin x < \tan x$

重要极限
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (也就是, $\lim_{x\to 0} \frac{x}{\sin x} = 1$)
证明 日票证明 $\lim_{x\to 0} \frac{\sin x}{x} = 1$ 所以假设 $x > 0$ 加图

证明 只需证明 $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$,所以假设 x > 0. 如图

$$\Rightarrow \frac{1}{2} \cdot 1 \cdot \sin x < \frac{x}{2\pi} \cdot \pi < \frac{1}{2} \cdot 1 \cdot \tan x$$

$$\Rightarrow \frac{\sin x}{\sin x}$$

注1 重要不等式: x > 0 时,成立 $x < \sin x < \tan x$

 ± 2 由证明可知: $\lim \cos x = 1$

可见 $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

1b 极限

例2 计算
$$\lim_{x\to 0} \frac{\sin x}{\sin 4x}$$

例3 计算
$$\lim_{x\to 0} \frac{\tan x}{x}$$

例1 计算
$$\lim_{x\to 0} \frac{\sin 3x}{x}$$

解 原式 =
$$3 \lim_{x \to 0} \frac{\sin 3x}{3x}$$

例2 计算
$$\lim_{x\to 0} \frac{\sin x}{\sin 4x}$$

例3 计算
$$\lim_{x\to 0} \frac{\tan x}{x}$$

解 原式 =
$$3 \lim_{x \to 0} \frac{\sin 3x}{3x} \stackrel{t=3x}{=\!=\!=\!=} 3 \lim \frac{\sin t}{t}$$

例3 计算
$$\lim_{x\to 0} \frac{\tan x}{x}$$

解原式=
$$3\lim_{x\to 0} \frac{\sin 3x}{3x} \stackrel{t=3x}{===} 3\lim_{t\to 0} \frac{\sin t}{t}$$

例3 计算
$$\lim_{x\to 0} \frac{\tan x}{x}$$

解 原式 =
$$3 \lim_{x \to 0} \frac{\sin 3x}{3x} \stackrel{t=3x}{===} 3 \lim_{t \to 0} \frac{\sin t}{t} = 3$$

例3 计算
$$\lim_{x\to 0} \frac{\tan x}{x}$$

解 原式 =
$$3 \lim_{x \to 0} \frac{\sin 3x}{3x} \xrightarrow{t=3x} 3 \lim_{t \to 0} \frac{\sin t}{t} = 3$$

解 原式 =
$$\lim_{x \to 0} \frac{1}{4} \cdot \frac{\sin x}{x} \cdot \frac{4x}{\sin 4x}$$

例 3 计算
$$\lim_{x\to 0} \frac{\tan x}{x}$$

解 原式 =
$$3 \lim_{x \to 0} \frac{\sin 3x}{3x} \stackrel{t=3x}{===} 3 \lim_{t \to 0} \frac{\sin t}{t} = 3$$

解 原式 =
$$\lim_{x \to 0} \frac{1}{4} \cdot \frac{\sin x}{x} \cdot \frac{4x}{\sin 4x} = \frac{1}{4} \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{4x}{\sin 4x}$$

例3 计算
$$\lim_{x\to 0} \frac{\tan x}{x}$$

解 原式 =
$$3 \lim_{x \to 0} \frac{\sin 3x}{3x} \stackrel{t=3x}{===} 3 \lim_{t \to 0} \frac{\sin t}{t} = 3$$

解原式 =
$$\lim_{x \to 0} \frac{1}{4} \cdot \frac{\sin x}{x} \cdot \frac{4x}{\sin 4x} = \frac{1}{4} \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{4x}{\sin 4x} = \frac{1}{4} \cdot 1 \cdot 1 = \frac{1}{4}$$

例3 计算
$$\lim_{x\to 0} \frac{\tan x}{x}$$

解 原式 =
$$3 \lim_{x \to 0} \frac{\sin 3x}{3x} \stackrel{t=3x}{===} 3 \lim_{t \to 0} \frac{\sin t}{t} = 3$$

解 原式 =
$$\lim_{x\to 0} \frac{1}{4} \cdot \frac{\sin x}{x} \cdot \frac{4x}{\sin 4x} = \frac{1}{4} \lim_{x\to 0} \frac{\sin x}{x} \cdot \lim_{x\to 0} \frac{4x}{\sin 4x} = \frac{1}{4} \cdot 1 \cdot 1 = \frac{1}{4}$$

例3 计算
$$\lim_{x\to 0} \frac{\tan x}{x}$$

解 原式 =
$$\lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x}$$

解 原式 =
$$3 \lim_{x \to 0} \frac{\sin 3x}{3x} \stackrel{t=3x}{===} 3 \lim_{t \to 0} \frac{\sin t}{t} = 3$$

解 原式 =
$$\lim_{x \to 0} \frac{1}{4} \cdot \frac{\sin x}{x} \cdot \frac{4x}{\sin 4x} = \frac{1}{4} \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{4x}{\sin 4x} = \frac{1}{4} \cdot 1 \cdot 1 = \frac{1}{4}$$

例3 计算
$$\lim_{x\to 0} \frac{\tan x}{x}$$

解原式 =
$$\lim_{x\to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = \lim_{x\to 0} \frac{\sin x}{x} \cdot \lim_{x\to 0} \frac{1}{\cos x}$$

解 原式 =
$$3 \lim_{x \to 0} \frac{\sin 3x}{3x} \stackrel{t=3x}{===} 3 \lim_{t \to 0} \frac{\sin t}{t} = 3$$

解 原式 =
$$\lim_{x \to 0} \frac{1}{4} \cdot \frac{\sin x}{x} \cdot \frac{4x}{\sin 4x} = \frac{1}{4} \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{4x}{\sin 4x} = \frac{1}{4} \cdot 1 \cdot 1 = \frac{1}{4}$$

例3 计算
$$\lim_{x\to 0} \frac{\tan x}{x}$$

解原式 =
$$\lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot 1 = 1$$

例1 计算
$$\lim_{x\to 0} \frac{\sin 3x}{x}$$

解 原式 =
$$3 \lim_{x \to 0} \frac{\sin 3x}{3x} \stackrel{t=3x}{===} 3 \lim_{t \to 0} \frac{\sin t}{t} = 3$$

例2 计算
$$\lim_{x\to 0} \frac{\sin x}{\sin 4x}$$

解 原式 =
$$\lim_{x \to 0} \frac{1}{4} \cdot \frac{\sin x}{x} \cdot \frac{4x}{\sin 4x} = \frac{1}{4} \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{4x}{\sin 4x} = \frac{1}{4} \cdot 1 \cdot 1 = \frac{1}{4}$$

例3 计算
$$\lim_{x\to 0} \frac{\tan x}{x}$$

解原式 =
$$\lim_{x\to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = \lim_{x\to 0} \frac{\sin x}{x} \cdot \lim_{x\to 0} \frac{1}{\cos x} = 1 \cdot 1 = 1$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

1b 极限

例 4 计算 $\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

例 4 计算 $\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

例 4 计算 $\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t}$$

$$=\frac{2}{3}$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x}$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} = \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x\to 0^+}\frac{\sin\sqrt{x}\tan\sqrt{x}}{x}\,\underline{\underline{t=\sqrt{x}}}$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x \to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x} \xrightarrow{t = \sqrt{x}} \lim \frac{\sin t \tan t}{t^2}$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x\to 0^+}\frac{\sin\sqrt{x}\tan\sqrt{x}}{x}\xrightarrow{\underline{t=\sqrt{x}}}\lim_{t\to 0^+}\frac{\sin t\tan t}{t^2}$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{\underline{t} = x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x \to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x} \xrightarrow{t = \sqrt{x}} \lim_{t \to 0^+} \frac{\sin t \tan t}{t^2} = \lim_{t \to 0^+} \frac{\sin t}{t} \cdot \lim_{t \to 0^+} \frac{\tan t}{t}$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x\to 0^+}\frac{\sin\sqrt{x}\tan\sqrt{x}}{x}\xrightarrow[t\to 0^+]{}\lim_{t\to 0^+}\frac{\sin t\tan t}{t^2}=\lim_{t\to 0^+}\frac{\sin t}{t}\cdot\lim_{t\to 0^+}\frac{\tan t}{t}=1$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x\to 0^+}\frac{\sin\sqrt{x}\tan\sqrt{x}}{x}\xrightarrow{\underline{t=\sqrt{x}}}\lim_{t\to 0^+}\frac{\sin t\tan t}{t^2}=\lim_{t\to 0^+}\frac{\sin t}{t}\cdot\lim_{t\to 0^+}\frac{\tan t}{t}=1$$

例5 计算
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
, $\lim_{x\to 0} \frac{\arctan x}{x}$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x\to 0^+}\frac{\sin\sqrt{x}\tan\sqrt{x}}{x}\xrightarrow{\underline{t=\sqrt{x}}}\lim_{t\to 0^+}\frac{\sin t\tan t}{t^2}=\lim_{t\to 0^+}\frac{\sin t}{t}\cdot\lim_{t\to 0^+}\frac{\tan t}{t}=1$$

例5 计算
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
, $\lim_{x\to 0} \frac{\arctan x}{x}$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \frac{x = \sin t}{x}$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x\to 0^+}\frac{\sin\sqrt{x}\tan\sqrt{x}}{x}\xrightarrow[t\to 0^+]{}\lim_{t\to 0^+}\frac{\sin t\tan t}{t^2}=\lim_{t\to 0^+}\frac{\sin t}{t}\cdot\lim_{t\to 0^+}\frac{\tan t}{t}=1$$

例 5 计算
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
, $\lim_{x\to 0} \frac{\arctan x}{x}$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \frac{1}{\sinh t} \lim_{x \to 0} \frac{t}{\sin t}$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x\to 0^+}\frac{\sin\sqrt{x}\tan\sqrt{x}}{x}\xrightarrow[t\to 0^+]{}\lim_{t\to 0^+}\frac{\sin t\tan t}{t^2}=\lim_{t\to 0^+}\frac{\sin t}{t}\cdot\lim_{t\to 0^+}\frac{\tan t}{t}=1$$

例 5 计算
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
, $\lim_{x\to 0} \frac{\arctan x}{x}$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \frac{x = \sin t}{t \to 0} \lim_{t \to 0} \frac{t}{\sin t}$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x\to 0^+}\frac{\sin\sqrt{x}\tan\sqrt{x}}{x}\xrightarrow[t\to 0^+]{}\lim_{t\to 0^+}\frac{\sin t\tan t}{t^2}=\lim_{t\to 0^+}\frac{\sin t}{t}\cdot\lim_{t\to 0^+}\frac{\tan t}{t}=1$$

例 5 计算
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
, $\lim_{x\to 0} \frac{\arctan x}{x}$

$$\lim_{x \to 0} \frac{\arcsin x}{x} \xrightarrow{x = \sin t} \lim_{t \to 0} \frac{t}{\sin t} = 1,$$

例 4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x\to 0^+}\frac{\sin\sqrt{x}\tan\sqrt{x}}{x}\xrightarrow[t\to 0^+]{}\lim_{t\to 0^+}\frac{\sin t\tan t}{t^2}=\lim_{t\to 0^+}\frac{\sin t}{t}\cdot\lim_{t\to 0^+}\frac{\tan t}{t}=1$$

例 5 计算
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
, $\lim_{x\to 0} \frac{\arctan x}{x}$

$$\lim_{x \to 0} \frac{\arcsin x}{x} \xrightarrow{\frac{x = \sin t}{x}} \lim_{t \to 0} \frac{t}{\sin t} = 1, \quad \lim_{x \to 0} \frac{\arctan x}{x} \xrightarrow{\frac{x = \tan t}{x}}$$

例4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x\to 0^+} \frac{\sin\sqrt{x}\tan\sqrt{x}}{x} \xrightarrow{\underline{t=\sqrt{x}}} \lim_{t\to 0^+} \frac{\sin t \tan t}{t^2} = \lim_{t\to 0^+} \frac{\sin t}{t} \cdot \lim_{t\to 0^+} \frac{\tan t}{t} = 1$$

例 5 计算
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
, $\lim_{x\to 0} \frac{\arctan x}{x}$

例4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x\to 0^+}\frac{\sin\sqrt{x}\tan\sqrt{x}}{x}\xrightarrow{\underline{t=\sqrt{x}}}\lim_{t\to 0^+}\frac{\sin t\tan t}{t^2}=\lim_{t\to 0^+}\frac{\sin t}{t}\cdot\lim_{t\to 0^+}\frac{\tan t}{t}=1$$

例5 计算
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
, $\lim_{x\to 0} \frac{\arctan x}{x}$

▲ 暨南大學

例4 计算
$$\lim_{x\to 0} \frac{\sin(2x^2)}{3x^2}$$
, $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$, $\lim_{x\to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x}$

$$\lim_{x \to 0} \frac{\sin(2x^2)}{3x^2} \xrightarrow{t=x^2} \lim_{t \to 0} \frac{\sin 2t}{3t} = \lim_{t \to 0} \frac{\sin 2t}{2t} \cdot \frac{2}{3} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{3}{5} \cdot \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} = \frac{3}{5} \cdot 1 \cdot 1 = \frac{3}{5}$$

$$\lim_{x \to 0^+} \frac{\sin \sqrt{x} \tan \sqrt{x}}{x} \xrightarrow{t = \sqrt{x}} \lim_{t \to 0^+} \frac{\sin t \tan t}{t^2} = \lim_{t \to 0^+} \frac{\sin t}{t} \cdot \lim_{t \to 0^+} \frac{\tan t}{t} = 1$$

例5 计算
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
, $\lim_{x\to 0} \frac{\arctan x}{x}$

小结

我们已经得到了以下常用极限:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$\lim_{x \to 0} \cos x = 1$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

重要极限 II $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x$$

$$\lim_{x\to\infty} \left(1-\frac{2}{x}\right)^x$$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{x=2t}$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x$$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{x=2t} \lim \left(1 + \frac{1}{t} \right)^{2t}$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x$$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\underline{x} = 2t} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t}$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x$$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x$$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{x=2t} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x$$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x=2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x=-2t}{t}}$$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x = -2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t}$$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x = -2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t}$$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x = -2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2}$$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x = -2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2} = e^{-2}$$

重要极限 II
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$
 $\stackrel{t=1/x}{\Longrightarrow}$ $\lim_{t \to 0} (1+t)^{1/t} = e$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x=2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x=-2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2} = e^{-2}$$

$$\lim_{x\to 0} \left(1+\frac{x}{2}\right)^{\frac{1}{x}}$$

$$\lim_{x\to 0} \left(1-\frac{x}{2}\right)^{\frac{1}{x}}$$

重要极限 II
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$
 $\stackrel{t=1/x}{\Longrightarrow}$ $\lim_{t \to 0} \left(1 + t\right)^{1/t} = e$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x=2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x=-2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2} = e^{-2}$$

$$\lim_{x\to 0} \left(1+\frac{x}{2}\right)^{\frac{1}{x}} = \frac{t=x/2}{1}$$

$$\lim_{x\to 0} \left(1-\frac{x}{2}\right)^{\frac{1}{x}}$$

重要极限 II
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$
 $\stackrel{t=1/x}{\Longrightarrow}$ $\lim_{t \to 0} \left(1 + t\right)^{1/t} = e$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x = -2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2} = e^{-2}$$

$$\lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\frac{1}{x}} \stackrel{t = x/2}{=} \lim \left(1 + t \right)^{\frac{1}{2t}}$$

$$\lim_{x\to 0} \left(1-\frac{x}{2}\right)^{\frac{1}{x}}$$

重要极限 II
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$
 $\stackrel{t=1/x}{\Longrightarrow}$ $\lim_{t \to 0} (1+t)^{1/t} = e$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x = -2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2} = e^{-2}$$

$$\lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\frac{1}{x}} \xrightarrow{t = x/2} \lim_{t \to 0} (1 + t)^{\frac{1}{2t}}$$

$$\lim_{x\to 0} \left(1-\frac{x}{2}\right)^{\frac{1}{x}}$$

重要极限 II
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$$
 \Longrightarrow $\lim_{t\to0} \left(1+t\right)^{1/t} = e$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x = -2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2} = e^{-2}$$

$$\lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\frac{1}{x}} \xrightarrow{t = x/2} \lim_{t \to 0} \left(1 + t \right)^{\frac{1}{2t}} = \lim_{t \to 0} \left[(1 + t)^{1/t} \right]^{\frac{1}{2}}$$

$$\lim_{x \to 0} \left(1 - \frac{x}{2} \right)^{\frac{1}{x}}$$

重要极限 II
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$$
 \Longrightarrow $\lim_{t\to0} \left(1+t\right)^{1/t} = e$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x = -2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2} = e^{-2}$$

$$\lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\frac{1}{x}} \xrightarrow{t = x/2} \lim_{t \to 0} (1 + t)^{\frac{1}{2t}} = \lim_{t \to 0} \left[(1 + t)^{1/t} \right]^{\frac{1}{2}} = e^{1/2}$$

$$\lim_{x \to 0} \left(1 - \frac{x}{2} \right)^{\frac{1}{x}}$$

例1 计算

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x = -2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2} = e^{-2}$$

例2计算

$$\lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\frac{1}{x}} \xrightarrow{t = x/2} \lim_{t \to 0} (1 + t)^{\frac{1}{2t}} = \lim_{t \to 0} \left[(1 + t)^{1/t} \right]^{\frac{1}{2}} = e^{1/2}$$

$$\lim_{x\to 0} \left(1-\frac{x}{2}\right)^{\frac{1}{x}} \stackrel{t=-x/2}{===}$$

重要极限 II $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$ \Longrightarrow $\lim_{t\to0} \left(1+t\right)^{1/t} = e$

例1 计算

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x=2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x=-2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2} = e^{-2}$$

$$\lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\frac{1}{x}} \xrightarrow{t = x/2} \lim_{t \to 0} (1 + t)^{\frac{1}{2t}} = \lim_{t \to 0} \left[(1 + t)^{1/t} \right]^{\frac{1}{2}} = e^{1/2}$$

$$\lim_{x \to 0} \left(1 - \frac{x}{2}\right)^{\frac{1}{x}} \stackrel{t = -x/2}{====} \lim (1 + t)^{-\frac{1}{2t}}$$

重要极限 II $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$ \Longrightarrow $\lim_{t\to0} \left(1+t\right)^{1/t} = e$

例1 计算

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x = -2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2} = e^{-2}$$

$$\lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\frac{1}{x}} \xrightarrow{t = x/2} \lim_{t \to 0} (1 + t)^{\frac{1}{2t}} = \lim_{t \to 0} \left[(1 + t)^{1/t} \right]^{\frac{1}{2}} = e^{1/2}$$

$$\lim_{x \to 0} \left(1 - \frac{x}{2} \right)^{\frac{1}{x}} \xrightarrow{t = -x/2} \lim_{t \to 0} (1 + t)^{-\frac{1}{2t}}$$

重要极限 II
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$$
 \Longrightarrow $\lim_{t\to0} \left(1+t\right)^{1/t} = e$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x = -2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2} = e^{-2}$$

例2 计算
$$\lim_{x \to 0} \left(1 + \frac{x}{2}\right)^{\frac{1}{x}} \xrightarrow{t = x/2} \lim_{t \to 0} \left(1 + t\right)^{\frac{1}{2t}} = \lim_{t \to 0} \left[(1 + t)^{1/t} \right]^{\frac{1}{2}} = e^{1/2}$$

$$\lim_{x \to 0} \left(1 - \frac{x}{2} \right)^{\frac{1}{x}} \xrightarrow{\underline{t} = -x/2} \lim_{t \to 0} (1 + t)^{-\frac{1}{2t}} = \lim_{t \to 0} \left[\left(1 + \frac{1}{t} \right)^{\frac{1}{t}} \right]^{-\frac{x}{2}}$$

重要极限 II
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$
 $\stackrel{t=1/x}{\Longrightarrow}$ $\lim_{t \to 0} (1+t)^{1/t} = e$

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \xrightarrow{\frac{x = 2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^2 = e^2$$

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x \xrightarrow{\frac{x = -2t}{t}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-2t} = \lim_{t \to \infty} \left[\left(1 + \frac{1}{t} \right)^t \right]^{-2} = e^{-2}$$

$$\lim_{x\to 0} \left(\frac{1}{x} \right)$$

 $\lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\frac{1}{x}} \xrightarrow{t = x/2} \lim_{t \to 0} (1 + t)^{\frac{1}{2t}} = \lim_{t \to 0} \left[(1 + t)^{1/t} \right]^{\frac{1}{2}} = e^{1/2}$

$$\lim_{x \to 0} \left(1 - \frac{x}{2} \right)^{\frac{1}{x}} \stackrel{t = -x/2}{=} \lim_{t \to 0} (1 + t)^{-\frac{1}{2t}} = \lim_{t \to 0} \left[\left(1 + \frac{1}{t} \right)^{\frac{1}{t}} \right]^{-\frac{1}{2}} = e^{-1/2}$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^x$$

$$\lim_{x \to \infty} \left(\frac{x - 1}{x} \right)^{x + 1}$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^x = \lim_{x \to \infty} \left(1 + \frac{2}{x-1}\right)^x$$

$$\lim_{x\to\infty} \left(\frac{x-1}{x}\right)^{x+1}$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^x = \lim_{x \to \infty} \left(1 + \frac{2}{x-1}\right)^x$$

$$\underline{\underline{t = \frac{x-1}{2}}}$$

$$\lim_{x \to \infty} \left(\frac{x-1}{x} \right)^{x+1}$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^x = \lim_{x \to \infty} \left(1 + \frac{2}{x-1}\right)^x$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{x-1}\right)^{x-1} = \lim_{x \to \infty} \left(1 + \frac{1}{t}\right)^{x-1}$$

$$\lim_{x \to \infty} \left(\frac{x-1}{x} \right)^{x+1}$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^{x} = \lim_{x \to \infty} \left(1 + \frac{2}{x-1}\right)^{x}$$

$$\frac{t = \frac{x-1}{2}}{2} \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t+1}$$

$$\lim_{x \to \infty} \left(\frac{x-1}{x} \right)^{x+1}$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^x = \lim_{x \to \infty} \left(1 + \frac{2}{x-1}\right)^x$$

$$\frac{t = \frac{x-1}{2}}{1 + \frac{x-1}{2}} \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t} \cdot \left(1 + \frac{1}{t}\right)$$

$$\lim_{x \to \infty} \left(\frac{x-1}{x} \right)^{x+1}$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^x = \lim_{x \to \infty} \left(1 + \frac{2}{x-1} \right)^x$$

$$= \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} \cdot \left(1 + \frac{1}{t} \right) = e^2$$

$$\lim_{x \to \infty} \left(\frac{x-1}{x} \right)^{x+1}$$

暨南大 18608 (1980)(18

$$\begin{split} \lim_{X \to \infty} \left(\frac{x+1}{x-1}\right)^x &= \lim_{X \to \infty} \left(1 + \frac{2}{x-1}\right)^x \\ &= \underbrace{\frac{t = \frac{x-1}{2}}{2}}_{t \to \infty} \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t} \cdot \left(1 + \frac{1}{t}\right) = e^2 \\ \lim_{X \to \infty} \left(\frac{x-1}{x}\right)^{x+1} &= \lim_{X \to \infty} \left(1 - \frac{1}{x}\right)^{x+1} \end{split}$$

型 高大!

$$\begin{split} \lim_{X \to \infty} \left(\frac{x+1}{x-1}\right)^x &= \lim_{X \to \infty} \left(1 + \frac{2}{x-1}\right)^x \\ &= \underbrace{\frac{t = \frac{x-1}{2}}{2}}_{t \to \infty} \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t} \cdot \left(1 + \frac{1}{t}\right) = e^2 \\ \lim_{X \to \infty} \left(\frac{x-1}{x}\right)^{x+1} &= \lim_{X \to \infty} \left(1 - \frac{1}{x}\right)^{x+1} \end{split}$$

$$t=-x$$

例3 计算

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^{x} = \lim_{x \to \infty} \left(1 + \frac{2}{x-1}\right)^{x}$$

$$\frac{t = \frac{x-1}{2}}{t} \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t} \cdot \left(1 + \frac{1}{t}\right) = e^{2}$$

$$(x-1)^{x+1} \qquad (x-1)^{x+1}$$

$$\lim_{x \to \infty} \left(\frac{x-1}{x} \right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{x+1}$$

$$= \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{x+1}$$

$$= \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{x+1}$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^{x} = \lim_{x \to \infty} \left(1 + \frac{2}{x-1} \right)^{x}$$

$$\frac{t = \frac{x-1}{2}}{t} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} \cdot \left(1 + \frac{1}{t} \right) = e^{2}$$

$$(x-1)^{x+1}$$

$$\lim_{x \to \infty} \left(\frac{x-1}{x} \right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{x+1}$$

$$\xrightarrow{t = -x} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-t+1}$$

例3 计算

$$\begin{split} \lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^x &= \lim_{x \to \infty} \left(1 + \frac{2}{x-1}\right)^x \\ &= \underbrace{\frac{t = \frac{x-1}{2}}{2}}_{t \to \infty} \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t} \cdot \left(1 + \frac{1}{t}\right) = e^2 \\ \lim_{x \to \infty} \left(\frac{x-1}{x}\right)^{x+1} &= \lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^{x+1} \end{split}$$

$$\frac{\lim_{x \to \infty} \left(\begin{array}{c} x \end{array} \right) - \lim_{x \to \infty} \left(\begin{array}{c} 1 \\ x \end{array} \right) }{\lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-t+1}} = \lim_{t \to \infty} \frac{1}{\left(1 + \frac{1}{t} \right)^t} \cdot \left(1 + \frac{1}{t} \right)$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^x = \lim_{x \to \infty} \left(1 + \frac{2}{x-1} \right)^x$$

$$= \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} \cdot \left(1 + \frac{1}{t} \right) = e^2$$

$$\lim_{t \to \infty} \left(\frac{x-1}{t} \right)^{x+1} = \lim_{t \to \infty} \left(1 - \frac{1}{t} \right)^{x+1}$$

$$\lim_{t \to \infty} \left(1 + \frac{1}{t} \right) = \lim_{t \to \infty} \left(1 + \frac{1}{t} \right) \cdot \left(1 + \frac{1}{t} \right) = e^{2}$$

$$\lim_{x \to \infty} \left(\frac{x - 1}{x} \right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{x+1}$$

$$= \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-t+1} = \lim_{t \to \infty} \frac{1}{\left(1 + \frac{1}{t} \right)^{t}} \cdot \left(1 + \frac{1}{t} \right) = e^{-1}$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^x = \lim_{x \to \infty} \left(1 + \frac{2}{x-1} \right)^x$$

$$\lim_{x \to \infty} \left(\frac{x+2}{x-1} \right) = \lim_{x \to \infty} \left(1 + \frac{1}{x-1} \right)$$

$$= \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} \cdot \left(1 + \frac{1}{t} \right) = e^2$$

$$(x-1)^{x+1} = (x-1)^{x+1}$$

$$\begin{split} \lim_{x \to \infty} \left(\frac{x-1}{x}\right)^{x+1} &= \lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^{x+1} \\ &= \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{-t+1} = \lim_{t \to \infty} \frac{1}{\left(1 + \frac{1}{t}\right)^t} \cdot \left(1 + \frac{1}{t}\right) = e^{-1} \end{split}$$

例 4 计算 $\lim x^{\frac{1}{x-1}}$

$$1 x^{\frac{1}{x-1}}$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^x = \lim_{x \to \infty} \left(1 + \frac{2}{x-1}\right)^x$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{x-1}\right)^{2t+1} = \lim_{x \to \infty} \left(1 + \frac{1}{x-1}\right)^{2t} \cdot \left(1 + \frac{1}{x-1}\right)^{2t}$$

$$\frac{t = \frac{x-1}{2}}{\lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t+1}} = \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t} \cdot \left(1 + \frac{1}{t}\right) = e^2$$

$$\lim_{x \to \infty} \left(\frac{x-1}{x}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^{x+1}$$

$$\lim_{x \to \infty} \left(\frac{x-1}{x} \right) = \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)$$

$$= \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-t+1} = \lim_{t \to \infty} \frac{1}{\left(1 + \frac{1}{t} \right)^t} \cdot \left(1 + \frac{1}{t} \right) = e^{-1}$$

例 4 计算

$$\lim x^{\frac{1}{x-1}} \stackrel{t=x-1}{====}$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^x = \lim_{x \to \infty} \left(1 + \frac{2}{x-1}\right)^x$$

$$\frac{t = \frac{x-1}{2}}{t \to \infty} \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{2t} \cdot \left(1 + \frac{1}{t}\right) = e^2$$

$$\lim_{x \to \infty} \left(\frac{x-1}{x} \right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{x+1}$$

$$= \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-t+1} = \lim_{t \to \infty} \frac{1}{\left(1 + \frac{1}{t} \right)^t} \cdot \left(1 + \frac{1}{t} \right) = e^{-1}$$

例 4 计算 $\lim_{t \to \infty} x^{\frac{1}{x-1}} \stackrel{t=x-1}{===} \lim_{t \to \infty} (t+1)^{\frac{1}{t}}$

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^{x} = \lim_{x \to \infty} \left(1 + \frac{2}{x-1} \right)^{x}$$

$$\frac{t = \frac{x-1}{2}}{1 + \frac{x-1}{2}} \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} \cdot \left(1 + \frac{1}{t} \right) = e^{2}$$

 $\lim_{x \to 1} x^{\frac{1}{x-1}} \stackrel{t=x-1}{===} \lim_{t \to 0} (t+1)^{\frac{1}{t}}$

$$\underbrace{\frac{t=-x}{t\to\infty}} \lim_{t\to\infty} \left(1+\frac{1}{t}\right)^{-t+1} = \lim_{t\to\infty} \frac{1}{\left(1+\frac{1}{t}\right)^t} \cdot \left(1+\frac{1}{t}\right) = e^{-1}$$
 例 4 计算

 $\lim_{x \to \infty} \left(\frac{x-1}{x} \right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{x+1}$

暨南大學

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^x = \lim_{x \to \infty} \left(1 + \frac{2}{x-1} \right)^x$$

$$= \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{2t} \cdot \left(1 + \frac{1}{t} \right) = e^2$$

$$\lim_{x \to \infty} \left(\frac{x-1}{x} \right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{x+1}$$

$$= \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{-t+1} = \lim_{t \to \infty} \frac{1}{\left(1 + \frac{1}{t} \right)^t} \cdot \left(1 + \frac{1}{t} \right) = e^{-1}$$

例4计算

$$\lim_{x \to 1} x^{\frac{1}{x-1}} \stackrel{t=x-1}{===} \lim_{t \to 0} (t+1)^{\frac{1}{t}} = e$$

例 5 计算

$$\lim_{x\to 0}(1+3x)^{\frac{1}{\sin x}}$$

$$\lim_{x\to 0} (1-\sin x)^{\frac{1}{4x}}$$

例5 计算

$$\lim_{x \to 0} (1 + 3x)^{\frac{1}{\sin x}} = \lim_{x \to 0} (1 + 3x)^{\frac{1}{3x} \cdot \frac{3x}{\sin x}}$$
$$\lim_{x \to 0} (1 - \sin x)^{\frac{1}{4x}}$$

例 5 计算

$$\lim_{x \to 0} (1 + 3x)^{\frac{1}{\sin x}} = \lim_{x \to 0} (1 + 3x)^{\frac{1}{3x} \cdot \frac{3x}{\sin x}} = \lim_{x \to 0} \left[(1 + 3x)^{\frac{1}{3x}} \right]^{\frac{3x}{\sin x}}$$

$$\lim_{x \to 0} (1 - \sin x)^{\frac{1}{4x}}$$

例 5 计算

$$\lim_{x \to 0} (1+3x)^{\frac{1}{\sin x}} = \lim_{x \to 0} (1+3x)^{\frac{1}{3x} \cdot \frac{3x}{\sin x}} = \lim_{x \to 0} \left[(1+3x)^{\frac{1}{3x}} \right]^{\frac{3x}{\sin x}} = e^3$$

$$\lim_{x\to 0} (1-\sin x)^{\frac{1}{4x}}$$

例5计算

$$\lim_{x \to 0} (1 + 3x)^{\frac{1}{\sin x}} = \lim_{x \to 0} (1 + 3x)^{\frac{1}{3x} \cdot \frac{3x}{\sin x}} = \lim_{x \to 0} \left[(1 + 3x)^{\frac{1}{3x}} \right]^{\frac{3x}{\sin x}} = e^3$$

$$\lim_{x \to 0} (1 - \sin x)^{\frac{1}{4x}} = \lim_{x \to 0} (1 - \sin x)^{\frac{1}{\sin x} \cdot \frac{\sin x}{4x}}$$

$$\lim_{x \to 0} (1 - \sin x)^{\frac{1}{4x}} = \lim_{x \to 0} (1 - \sin x)^{\frac{1}{\sin x} \cdot \frac{\sin x}{4x}}$$

1b 极限

例 5 计算

$$\lim_{x \to 0} (1+3x)^{\frac{1}{\sin x}} = \lim_{x \to 0} (1+3x)^{\frac{1}{3x} \cdot \frac{3x}{\sin x}} = \lim_{x \to 0} \left[(1+3x)^{\frac{1}{3x}} \right]^{\frac{3x}{\sin x}} = e^3$$

$$\lim_{x \to 0} (1-\sin x)^{\frac{1}{4x}} = \lim_{x \to 0} (1-\sin x)^{\frac{1}{\sin x} \cdot \frac{\sin x}{4x}}$$

$$= \lim_{x \to 0} \left[(1-\sin x)^{\frac{1}{\sin x}} \right]^{\frac{\sin x}{4x}}$$

例5计算

$$\lim_{x \to 0} (1+3x)^{\frac{1}{\sin x}} = \lim_{x \to 0} (1+3x)^{\frac{1}{3x} \cdot \frac{3x}{\sin x}} = \lim_{x \to 0} \left[(1+3x)^{\frac{1}{3x}} \right]^{\frac{3x}{\sin x}} = e^{3}$$

$$\lim_{x \to 0} (1-\sin x)^{\frac{1}{4x}} = \lim_{x \to 0} (1-\sin x)^{\frac{1}{\sin x} \cdot \frac{\sin x}{4x}}$$

$$= \lim_{x \to 0} \left[(1-\sin x)^{\frac{1}{\sin x}} \right]^{\frac{\sin x}{4x}}$$

$$(\text{All } \lim_{t \to \infty} (1-t)^{\frac{1}{t}} = e^{-1})$$

1b 极限

例5计算

$$\lim_{x \to 0} (1+3x)^{\frac{1}{\sin x}} = \lim_{x \to 0} (1+3x)^{\frac{1}{3x} \cdot \frac{3x}{\sin x}} = \lim_{x \to 0} \left[(1+3x)^{\frac{1}{3x}} \right]^{\frac{3x}{\sin x}} = e^3$$

$$\lim_{x \to 0} (1-\sin x)^{\frac{1}{4x}} = \lim_{x \to 0} (1-\sin x)^{\frac{1}{\sin x} \cdot \frac{\sin x}{4x}}$$

$$= \lim_{x \to 0} \left[(1-\sin x)^{\frac{1}{\sin x}} \right]^{\frac{\sin x}{4x}} = e^{-\frac{1}{4}}$$

(利用
$$\lim_{t\to\infty}(1-t)^{\frac{1}{t}}=e^{-1})$$

1b 极限

小结

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{t \to 0} (1 + t)^{\frac{1}{t}} = e$$

$$\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x = e^{-1}$$

$$\lim_{t \to 0} (1 - t)^{\frac{1}{t}} = e^{-1}$$

We are here now...

- 1. 数列极限
- 2. 函数极限
- 3. 极限运算
- 4. 极限性质
- 5. 两个重要极限
- 6. 无穷大,无穷小

定义 如果 $\lim_{x \to x_0} f(x) = 0$ (或 $\lim_{x \to \infty} f(x) = 0$),则称 f(x) 为当 $x \to x_0$

(或 $x \to \infty$) 时的无穷小.

定义 如果 $\lim_{x \to x_0} f(x) = 0$ (或 $\lim_{x \to \infty} f(x) = 0$),则称 f(x) 为当 $x \to x_0$

(或 $x \to \infty)$ 时的**无穷小**.

例 因为 $\lim_{x\to\infty} \frac{1}{x} = 0$,所以说 $\frac{1}{x}$ 为当 $x\to\infty$ 时的无穷小.

定义 如果
$$\lim_{x \to x_0} f(x) = 0$$
 (或 $\lim_{x \to \infty} f(x) = 0$),则称 $f(x)$ 为当 $x \to x_0$

(或 $x \to \infty)$ 时的无穷小.

例 因为 $\lim_{x\to\infty} \frac{1}{x} = 0$,所以说 $\frac{1}{x}$ 为当 $x\to\infty$ 时的无穷小.

性质 $\lim_{x\to x_0} f(x) = A \Leftrightarrow f(x) = A + \alpha$,其中 α 为当 $x\to x_0$ 时的无穷小.

定义 如果
$$\lim_{x \to x_0} f(x) = 0$$
 (或 $\lim_{x \to \infty} f(x) = 0$),则称 $f(x)$ 为当 $x \to x_0$ (或 $x \to \infty$)时的无穷小.

性质
$$\lim_{x\to x_0} f(x) = A \Leftrightarrow f(x) = A + \alpha$$
,其中 α 为当 $x\to x_0$ 时的无穷小.

证明

$$\lim_{x \to x_0} f(x) = A \quad \Leftrightarrow \quad \lim_{x \to x_0} [f(x) - A] = 0$$

定义 如果
$$\lim_{x \to x_0} f(x) = 0$$
 (或 $\lim_{x \to \infty} f(x) = 0$),则称 $f(x)$ 为当 $x \to x_0$ (或 $x \to \infty$)时的无穷小.

性质
$$\lim_{x\to x_0} f(x) = A \Leftrightarrow f(x) = A + \alpha$$
,其中 α 为当 $x\to x_0$ 时的无穷小.

证明

$$\lim_{x \to x_0} f(x) = A \quad \Leftrightarrow \quad \lim_{x \to x_0} [f(x) - A] = 0$$

$$\Leftrightarrow \qquad f(x) - A 是无穷小$$

暨南大學
 MANUSHINE

定义 如果
$$\lim_{x \to x_0} f(x) = 0$$
 (或 $\lim_{x \to \infty} f(x) = 0$),则称 $f(x)$ 为当 $x \to x_0$ (或 $x \to \infty$)时的无穷小.

性质
$$\lim_{x\to x_0} f(x) = A \Leftrightarrow f(x) = A + \alpha$$
,其中 α 为当 $x\to x_0$ 时的无穷小.

证明

$$\lim_{x \to x_0} f(x) = A \quad \Leftrightarrow \quad \lim_{x \to x_0} [f(x) - A] = 0$$

$$\Leftrightarrow \quad \alpha := f(x) - A$$
 是无穷小

定义 如果
$$\lim_{x \to x_0} f(x) = 0$$
 (或 $\lim_{x \to \infty} f(x) = 0$),则称 $f(x)$ 为当 $x \to x_0$ (或 $x \to \infty$)时的无穷小,

性质 $\lim_{x\to x_0} f(x) = A \Leftrightarrow f(x) = A + \alpha$,其中 α 为当 $x\to x_0$ 时的无穷小.

$$(把 x \rightarrow x_0$$
 换成 $x \rightarrow \infty$,上述结论仍成立)

证明

$$\lim_{x \to x_0} f(x) = A \quad \Leftrightarrow \quad \lim_{x \to x_0} [f(x) - A] = 0$$

$$\Leftrightarrow \quad \alpha := f(x) - A$$
 是无穷小

定义 如果
$$\lim_{x \to x_0} f(x) = \infty$$
 (或 $\lim_{x \to \infty} f(x) = \infty$),则称 $f(x)$ 为当 $x \to x_0$ (或 $x \to \infty$)时的无穷大.

定义 如果 $\lim_{x \to x_0} f(x) = \infty$ (或 $\lim_{x \to \infty} f(x) = \infty$),则称 f(x) 为当

 $x \to x_0$ (或 $x \to \infty$) 时的无穷大.

$$\mathbf{\dot{z}}\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=\infty$$
 指: $\forall M>0$, $\exists \delta>0$,使得 $0<|\mathbf{x}-\mathbf{x}_0|<\delta$ 时,

有 |f(x)| > M.

定义 如果 $\lim_{x \to x_0} f(x) = \infty$ (或 $\lim_{x \to \infty} f(x) = \infty$),则称 f(x) 为当

$$x \to x_0$$
 (或 $x \to \infty$) 时的无穷大.

$$\lim_{x \to x_0} f(x) = \infty$$
 指: $\forall M > 0$, $\exists \delta > 0$, 使得 $0 < |x - x_0| < \delta$ 时,

有
$$|f(x)| > M$$
.

同理可定义
$$\lim_{x\to\infty} f(x) = \infty$$
.

定义 如果 $\lim_{x \to x_0} f(x) = \infty$ (或 $\lim_{x \to \infty} f(x) = \infty$),则称 f(x) 为当

$$x \to x_0$$
 (或 $x \to \infty$) 时的无穷大.

$$\lim_{x \to x_0} f(x) = \infty$$
 指: $\forall M > 0$, $\exists \delta > 0$, 使得 $0 < |x - x_0| < \delta$ 时, 有 $|f(x)| > M$.

同理可定义
$$\lim_{x \to \infty} f(x) = \infty$$
.

例 验证
$$\lim_{x\to 0} \frac{1}{x} = \infty$$
,所以说 $\frac{1}{x}$ 为当 $x\to 0$ 时的无穷大。

定义 如果
$$\lim_{x \to x_0} f(x) = \infty$$
 (或 $\lim_{x \to \infty} f(x) = \infty$),则称 $f(x)$ 为当

$$x \to x_0$$
 (或 $x \to \infty$) 时的无穷大.

同理可定义
$$\lim_{x\to\infty} f(x) = \infty$$
.

例 验证
$$\lim_{x\to 0} \frac{1}{x} = \infty$$
,所以说 $\frac{1}{x}$ 为当 $x\to 0$ 时的无穷大。

性质 假设
$$f(x) \neq 0$$
,则 $\lim f(x) = 0 \Leftrightarrow \lim \frac{1}{f(x)} = \infty$.

$$\lim \frac{\beta}{\alpha} = 0$$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$.

$$\lim \frac{\beta}{\alpha} = 0$$

称 β 是比 α 高阶的无穷小, 记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷小.

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\pm\delta\theta\$, $\lim \frac{\alpha}{\beta} = \infty$$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷小。

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\pm\delta\theta\$, $\lim \frac{\alpha}{\beta} = \infty$$

称 β 是比 α **高阶的无穷小**,记作 $\beta = o(\alpha)$. 也称 α 是比 β **低阶的无穷小**.

例 当 $x \to 0$ 时,成立

•
$$x^2 = o(x)$$
;

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\frac{\pm\delta}{\pm\delta} = \infty\$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷小.

例 当
$$x \rightarrow 0$$
 时,成立

•
$$x^2 = o(x)$$
;

证明 (1)
$$\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x$$

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\frac{\pm\delta}{\pm\delta} = \infty\$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷小.

例 当
$$x \rightarrow 0$$
 时,成立

•
$$x^2 = o(x)$$
;

证明 (1)
$$\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0$$

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\frac{\pm\delta}{\pm\delta} = \infty\$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷小.

例 当
$$x \rightarrow 0$$
 时,成立

•
$$x^2 = o(x)$$
;

$$\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0 \quad \Rightarrow \quad x^2 = o(x).$$

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\pm\delta\theta\$, $\lim \frac{\alpha}{\beta} = \infty$$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷小.

例 当 $x \to 0$ 时,成立

•
$$x^2 = o(x)$$
;

$$\bullet x^3 \sin \frac{1}{x} = o(x^2),$$

$$\lim_{x\to 0} \frac{x^2}{x} = \lim_{x\to 0} x = 0 \quad \Rightarrow \quad x^2 = o(x).$$

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\pm\delta\theta\$, $\lim \frac{\alpha}{\beta} = \infty$$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷小.

例 当 $x \to 0$ 时,成立

•
$$x^2 = o(x)$$
;

•
$$x^3 \sin \frac{1}{x} = o(x^2)$$
,

证明 (1)
$$\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0 \quad \Rightarrow \quad x^2 = o(x).$$

(2)
$$\lim_{x\to 0} \frac{x^3 \sin \frac{1}{x}}{x^2} =$$

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\frac{\pm\delta}{\pm\delta} = \infty\$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷小.

例 当 $x \to 0$ 时,成立

•
$$x^2 = o(x)$$
;

•
$$x^3 \sin \frac{1}{x} = o(x^2)$$
,

$$\sqrt{X} \sin \frac{1}{X} = O(X)$$

证明 (1)
$$\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0 \quad \Rightarrow \quad x^2 = o(x).$$

(2)
$$\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^2} = \lim_{x \to 0} x \sin \frac{1}{x}$$

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\frac{\pm\delta}{\pm\delta} = \infty\$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷小.

例 当 $x \to 0$ 时,成立

•
$$x^2 = o(x)$$
;

•
$$x^3 \sin \frac{1}{x} = o(x^2)$$
,

证明 (1)
$$\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0 \quad \Rightarrow \quad x^2 = o(x).$$

(2)
$$\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^2} = \lim_{x \to 0} x \sin \frac{1}{x} = 0$$

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\frac{\pi}{\text{\$\phi\$}} = \infty\$

称 β 是比 α 高阶的无穷小 ,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷 小.

例 当 $x \to 0$ 时,成立

•
$$x^2 = o(x)$$
;

•
$$x^3 \sin \frac{1}{x} = o(x^2)$$
,

$$\bullet x^3 \sin \frac{\pi}{x} = o(x^2),$$

证明 (1)
$$\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0 \implies x^2 = o(x).$$

(2)
$$\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^2} = \lim_{x \to 0} x \sin \frac{1}{x} = 0 \implies x^3 \sin \frac{1}{x} = o(x^2)$$

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\frac{\pi}{\text{\$\phi\$}} = \infty\$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷小.

例 当 $x \to 0$ 时,成立

•
$$x^2 = o(x)$$
;

•
$$x^3 \sin \frac{1}{x} = o(x^2)$$
,特别地也成立 $x^3 \sin \frac{1}{x} = o(x)$,

证明 (1)
$$\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0 \implies x^2 = o(x).$$

(2)
$$\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^2} = \lim_{x \to 0} x \sin \frac{1}{x} = 0 \implies x^3 \sin \frac{1}{x} = o(x^2)$$

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\frac{\pi}{\text{\$\phi\$}} = \infty\$

称 β 是比 α **高阶的无穷小**,记作 $\beta = o(\alpha)$. 也称 α 是比 β **低阶的无穷小**.

例 当 $x \to 0$ 时,成立

•
$$x^2 = o(x)$$
;

•
$$x^3 \sin \frac{1}{x} = o(x^2)$$
,特别地也成立 $x^3 \sin \frac{1}{x} = o(x)$,但不是 $o(x^3)$.

证明 (1)
$$\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0 \quad \Rightarrow \quad x^2 = o(x).$$

(2)
$$\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^2} = \lim_{x \to 0} x \sin \frac{1}{x} = 0 \implies x^3 \sin \frac{1}{x} = o(x^2)$$

● 整角大型

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\frac{\pi}{\text{\$\phi\$}} = \infty\$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷 小.

例 当 $x \to 0$ 时,成立

- $x^2 = o(x)$;
- $x^3 \sin \frac{1}{y} = o(x^2)$,特别地也成立 $x^3 \sin \frac{1}{y} = o(x)$,但不是 $o(x^3)$.

证明 (1) $\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0 \quad \Rightarrow \quad x^2 = o(x).$

- $\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^2} = \lim_{x \to 0} x \sin \frac{1}{x} = 0 \quad \Rightarrow \quad x^3 \sin \frac{1}{x} = o(x^2)$
- $\lim_{x\to 0} \frac{x^3 \sin \frac{1}{x}}{x^3}$

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\frac{\pi}{\text{\$\phi\$}} = \infty\$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷 小.

例 当 $x \to 0$ 时,成立

- $x^2 = o(x)$;

证明 (1)

1b 极限

$$\sin\frac{1}{x} = c$$

• $x^3 \sin \frac{1}{y} = o(x^2)$,特别地也成立 $x^3 \sin \frac{1}{y} = o(x)$,但不是 $o(x^3)$.

 $\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^3} = \lim_{x \to 0} \sin \frac{1}{x}$

 $\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^2} = \lim_{x \to 0} x \sin \frac{1}{x} = 0 \quad \Rightarrow \quad x^3 \sin \frac{1}{x} = o(x^2)$

 $\lim_{x\to 0} \frac{x^2}{x} = \lim_{x\to 0} x = 0 \quad \Rightarrow \quad x^2 = o(x).$

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\frac{\pi}{\text{\$\phi\$}} = \infty\$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷 小.

例 当 $x \to 0$ 时,成立

- $x^2 = o(x)$;
- $x^3 \sin \frac{1}{y} = o(x^2)$,特别地也成立 $x^3 \sin \frac{1}{y} = o(x)$,但不是 $o(x^3)$.

 $\lim_{x\to 0}\frac{x^2}{x}=\lim_{x\to 0}x=0\quad \Rightarrow\quad x^2=o(x).$

- 证明 (1)
 - $\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^2} = \lim_{x \to 0} x \sin \frac{1}{x} = 0 \quad \Rightarrow \quad x^3 \sin \frac{1}{x} = o(x^2)$ $\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^3} = \lim_{x \to 0} \sin \frac{1}{x} \neq 0$

$$\lim \frac{\beta}{\alpha} = 0$$
 \$\frac{\pi}{\text{\$\phi\$}} = \infty\$

称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$. 也称 α 是比 β 低阶的无穷 小.

例 当 $x \to 0$ 时,成立

- - $x^2 = o(x)$;

• $x^3 \sin \frac{1}{y} = o(x^2)$,特别地也成立 $x^3 \sin \frac{1}{y} = o(x)$,但不是 $o(x^3)$.

证明 (1) $\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0 \quad \Rightarrow \quad x^2 = o(x).$

(2) $\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^2} = \lim_{x \to 0} x \sin \frac{1}{x} = 0 \implies x^3 \sin \frac{1}{x} = o(x^2)$

 $\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^3} = \lim_{x \to 0} \sin \frac{1}{x} \neq 0 \quad \Rightarrow \quad x^3 \sin \frac{1}{x} \neq o(x^3)$

1b 极限

例 当 $x \to 0$ 时,

- $x^2 = o(x)$;
- $x^3 \sin \frac{1}{x} = o(x^2)$,特别地也成立 $x^3 \sin \frac{1}{x} = o(x)$,但不是 $o(x^3)$;

例 当 $x \to 0$ 时,

- $x^2 = o(x)$;
- $x^3 \sin \frac{1}{x} = o(x^2)$,特别地也成立 $x^3 \sin \frac{1}{x} = o(x)$,但不是 $o(x^3)$;
- $x^2 x^3 \sin \frac{1}{x} = o(x)$.

- $x^2 = o(x)$;
- $x^3 \sin \frac{1}{x} = o(x^2)$,特别地也成立 $x^3 \sin \frac{1}{x} = o(x)$,但不是 $o(x^3)$;
- $x^2 x^3 \sin \frac{1}{x} = o(x)$.

最后一点是

$$\lim_{x \to 0} \frac{x^2 - x^3 \sin \frac{1}{x}}{x} = 0.$$

- $x^2 = o(x)$;
- $x^3 \sin \frac{1}{x} = o(x^2)$,特别地也成立 $x^3 \sin \frac{1}{x} = o(x)$,但不是 $o(x^3)$;
- $x^2 x^3 \sin \frac{1}{x} = o(x)$.

最后一点是

$$\lim_{x \to 0} \frac{x^2 - x^3 \sin \frac{1}{x}}{x} = 0.$$

注 一般地,

•
$$x^2 = o(x)$$
;

•
$$x^3 \sin \frac{1}{x} = o(x^2)$$
,特别地也成立 $x^3 \sin \frac{1}{x} = o(x)$,但不是 $o(x^3)$;

•
$$x^2 - x^3 \sin \frac{1}{x} = o(x)$$
.

最后一点是

$$\lim_{x \to 0} \frac{x^2 - x^3 \sin \frac{1}{x}}{x} = 0.$$

注 一般地,

•
$$o(x) - o(x^2) = o(x)$$

- $x^2 = o(x)$;
- $x^3 \sin \frac{1}{x} = o(x^2)$,特别地也成立 $x^3 \sin \frac{1}{x} = o(x)$,但不是 $o(x^3)$;
- $x^2 x^3 \sin \frac{1}{x} = o(x)$.

最后一点是

$$\lim_{x \to 0} \frac{x^2 - x^3 \sin \frac{1}{x}}{x} = 0.$$

注 一般地、

- $o(x) o(x^2) = o(x)$
- o(x) o(x) = o(x)

•
$$x^2 = o(x)$$
;

•
$$x^3 \sin \frac{1}{x} = o(x^2)$$
,特别地也成立 $x^3 \sin \frac{1}{x} = o(x)$,但不是 $o(x^3)$;

•
$$x^2 - x^3 \sin \frac{1}{x} = o(x)$$
.

最后一点是

$$\lim_{x \to 0} \frac{x^2 - x^3 \sin \frac{1}{x}}{x} = 0.$$

注 一般地,

•
$$o(x) - o(x^2) = o(x)$$

•
$$o(x) - o(x) = o(x) \ (\neq 0)$$

• 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = c \neq 0$,那么称 $\beta = \alpha$ 是 同阶无穷小.

- 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = c \neq 0$,那么称 $\beta = \alpha$ 是 同阶无穷小.
- 如果 $\lim_{\alpha'} \frac{\beta}{\alpha'} = c \neq 0$,那么称 β 是关于 α 的 k **阶的无穷小**.

- 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = c \neq 0$,那么称 $\beta = \alpha$ 是 同阶无穷小.
- 如果 $\lim_{\alpha k} \frac{\beta}{\alpha k} = c \neq 0$,那么称 β 是关于 α 的 k **阶的无穷小**.
- 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = 1$,那么称 $\beta = \alpha$ 是 **等价无穷小**,记作 $\alpha \sim \beta$.

- 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = c \neq 0$,那么称 $\beta = \alpha$ 是 同阶无穷小.
- 如果 $\lim_{\alpha^k} = c \neq 0$,那么称 β 是关于 α 的 k **阶的无穷小**.
- 如果 $\lim \frac{\beta}{\alpha} = 1$,那么称 $\beta = \alpha$ 是 **等价无穷小**,记作 $\alpha \sim \beta$.

例 因为
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$
,

- 如果 $\lim \frac{\beta}{\alpha} = c \neq 0$,那么称 $\beta = \alpha$ 是 同阶无穷小.
- 如果 $\lim_{\alpha \neq 0} \frac{\beta}{\alpha'} = c \neq 0$,那么称 β 是关于 α 的 k **阶的无穷小**.
- 如果 $\lim \frac{\beta}{\alpha} = 1$,那么称 $\beta = \alpha$ 是 **等价无穷小**,记作 $\alpha \sim \beta$.

例 因为 $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$,所以当 $x\to 0$ 时,

● 1 – cos x 与 x² 是同阶无穷小,

- 如果 $\lim \frac{\beta}{\alpha} = c \neq 0$,那么称 $\beta = \alpha$ 是 同阶无穷小.
- 如果 $\lim_{\alpha^k} = c \neq 0$,那么称 β 是关于 α 的 k **阶的无穷小**.
- 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = 1$,那么称 $\beta = \alpha$ 是 **等价无穷小**,记作 $\alpha \sim \beta$.

例 因为
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$
,所以当 $x\to 0$ 时,

• $1 - \cos x = x^2$ 是同阶无穷小, $1 - \cos x$ 是 x 的 2 阶无穷小

- 如果 $\lim \frac{\beta}{\alpha} = c \neq 0$,那么称 $\beta = \alpha$ 是 同阶无穷小.
- 如果 $\lim_{\alpha k} \frac{\beta}{\alpha k} = c \neq 0$,那么称 β 是关于 α 的 k **阶的无穷小**.
- 如果 $\lim \frac{\beta}{\alpha} = 1$,那么称 $\beta = \alpha$ 是 等价无穷小,记作 $\alpha \sim \beta$.

例 因为
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$
,所以当 $x\to 0$ 时,

- $1 \cos x = x^2$ 是同阶无穷小, $1 \cos x$ 是 x 的 2 阶无穷小
- $1 \cos x 5 \frac{1}{2}x^2$ 是等价无穷小

- 如果 $\lim \frac{\beta}{\alpha} = c \neq 0$,那么称 $\beta = \alpha$ 是 同阶无穷小.
- 如果 $\lim_{\alpha \neq 0} \frac{\beta}{\alpha'} = c \neq 0$,那么称 β 是关于 α 的 k **阶的无穷小**.
- 如果 $\lim \frac{\beta}{\alpha} = 1$,那么称 $\beta = \alpha$ 是 **等价无穷小**,记作 $\alpha \sim \beta$.

例 因为
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$
,所以当 $x\to 0$ 时,

- $1 \cos x = x^2$ 是同阶无穷小, $1 \cos x$ 是 x 的 2 阶无穷小
- $1 \cos x = \frac{1}{2}x^2$ 是等价无穷小,也就 $1 \cos x \sim \frac{1}{2}x^2$.

- 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = c \neq 0$,那么称 $\beta = \alpha$ 是 同阶无穷小.
- 如果 $\lim_{\alpha^k} = c \neq 0$,那么称 β 是关于 α 的 k **阶的无穷小**.
- 如果 $\lim \frac{\beta}{\alpha} = 1$,那么称 $\beta = \alpha$ 是 **等价无穷小**,记作 $\alpha \sim \beta$.

例 因为
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$
,所以当 $x\to 0$ 时,

- $1 \cos x = x^2$ 是同阶无穷小, $1 \cos x$ 是 x 的 2 阶无穷小
- $1 \cos x = \frac{1}{2}x^2$ 是等价无穷小,也就 $1 \cos x \sim \frac{1}{2}x^2$.

性质 设
$$\alpha \sim \beta$$
,则 $\lim \frac{f(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)}$.

证明

$$\lim \frac{f(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \frac{\beta(x)}{\alpha(x)}$$

证明

$$\lim \frac{f(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \lim \frac{\beta(x)}{\alpha(x)}$$

证明

$$\lim \frac{f(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \lim \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)}.$$

证明

$$\lim \frac{f(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \lim \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)}.$$

注

$$\alpha \sim \beta \implies \lim \frac{f(x) - \alpha(x)}{g(x)} = \lim \frac{f(x) - \beta(x)}{g(x)}.$$

证明

$$\lim \frac{f(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \lim \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)}.$$

注

$$\alpha \sim \beta \implies \lim \frac{f(x) - \alpha(x)}{g(x)} = \lim \frac{f(x) - \beta(x)}{g(x)}.$$

证明

$$\lim \frac{f(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \lim \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)}.$$

注

$$\alpha \sim \beta \implies \lim \frac{f(x) - \alpha(x)}{g(x)} = \lim \frac{f(x) - \beta(x)}{g(x)}.$$

例 尽管 $\sin x \sim x$,但是

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} \neq \lim_{x \to 0} \frac{x - x}{x^3}$$

证明

$$\lim \frac{f(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \lim \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)}.$$

注

$$\alpha \sim \beta \implies \lim \frac{f(x) - \alpha(x)}{g(x)} = \lim \frac{f(x) - \beta(x)}{g(x)}.$$

例 尽管 sin x ~ x,但是

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} \neq \lim_{x \to 0} \frac{x - x}{x^3} = 0$$

证明

$$\lim \frac{f(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)} \cdot \lim \frac{\beta(x)}{\alpha(x)} = \lim \frac{f(x)}{\beta(x)}.$$

注

$$\alpha \sim \beta \implies \lim \frac{f(x) - \alpha(x)}{g(x)} = \lim \frac{f(x) - \beta(x)}{g(x)}.$$

例 尽管 $\sin x \sim x$,但是

$$\frac{1}{6} = \lim_{x \to 0} \frac{x - \sin x}{x^3} \neq \lim_{x \to 0} \frac{x - x}{x^3} = 0$$