Aula 7

Geometria Euclidiana

Semelhança de Triângulos

17 de junho de 2018

lgor Oliveira
igoroliveira@imd.ufrn.br

Instituto Metrópole Digital Universidade Federal do Rio Grande do Norte Natal-RN

Índice

Semelhança de Triângulos

Triângulos Retângulos

Exercícios

Bibliografia

IMD1003 Geometria Euclidiana Igor Oliveira

Semelhança de Triângulos Triângulos Retângulos

Exercícios

Semelhança de Triângulos - Definição

Definição

Diremos que dois triângulos são **semelhantes** se for possível estabelecer uma correspondência biunívoca entre seus vértices, de modo que ângulos correspondentes sejam congruentes e lados correspondentes sejam proporcionais.

IMD1003 Geometria Euclidiana Igor Oliveira

Semelhança de Triângulos

Triângulos Retângulos

Exercícios

Semelhança de Triângulos - Definição

Definição

Diremos que dois triângulos são **semelhantes** se for possível estabelecer uma correspondência biunívoca entre seus vértices, de modo que ângulos correspondentes sejam congruentes e lados correspondentes sejam proporcionais.

Em outras palavras, se ABC e EFG são dois triângulos semelhantes com $A \to E$, $B \to F$ e $C \to G$, então valem:

$$\widehat{A} = \widehat{E}, \quad \widehat{B} = \widehat{F}, \quad \widehat{C} = \widehat{G} \quad e$$

$$\frac{\overline{AB}}{\overline{EF}} = \frac{\overline{BC}}{\overline{FG}} = \frac{\overline{CA}}{\overline{GE}}.$$

O quociente comum entre as medidas dos lados correspondentes é chamado de **razão de proporcionalidade** entre os dois triângulos.

IMD1003 Geometria Euclidiana Igor Oliveira

Semelhança de

Triângulos Retângulos

Exercícios Bibliografia

> UFRN Natal-RN

Segundo Caso de Semelhança

IMD1003 Geometria Euclidiana Igor Oliveira

Semelhança de Triângulos

Triângulos Retângulos

Exercícios Bibliografia

Teorema 7.1 (Caso AA)

Dados dois triângulos *ABC* e *EFG*, se $\widehat{A} = \widehat{E}$ e $\widehat{B} = \widehat{F}$, então, os triângulos são semelhantes.

Segundo Caso de Semelhança

IMD1003 Geometria Euclidiana Igor Oliveira

Semelhança de Triângulos

Triângulos Retângulos

Exercícios Bibliografia

Teorema 7.1 (Caso AA)

Dados dois triângulos *ABC* e *EFG*, se $\widehat{A} = \widehat{E}$ e $\widehat{B} = \widehat{F}$, então, os triângulos são semelhantes.

Este Teorema nos permite construir exemplos de triângulos semelhantes fazendo-se uso de régua e transferidor. Veja no quadro.

Primeiro Caso de Semelhança

IMD1003 Geometria Euclidiana Igor Oliveira

Semelhança de Triângulos

Triângulos Retângulos

Exercícios Bibliografia

Teorema 7.2 (Caso LAL)

Se, em dois triângulos *ABC* e *EFG* tem-se $\widehat{A} = \widehat{E}$ e $\frac{\overline{AB}}{\overline{EF}} = \frac{\overline{CA}}{\overline{GE}}$, então, os triângulos são semelhantes.

Terceiro Caso de Semelhança

IMD1003 Geometria Euclidiana Igor Oliveira

Semelhança de Triângulos

Triângulos Retângulos

Exercícios Bibliografia

Teorema 7.3 (Caso LLL)

Se, em dois triângulos ABC e EFG, tem-se

$$\frac{\overline{AB}}{\overline{EF}} = \frac{\overline{BC}}{\overline{FG}} = \frac{\overline{CA}}{\overline{GE}},$$

então, os dois triângulos são semelhantes.

Altura e projeções dos catetos

Seja ABC um triângulo retângulo com ângulo reto em A. Trace a altura AD do vértice A ao lado BC. A partir de agora denotaremos $a = \overline{BC}$, $b = \overline{AC}$, $c = \overline{AB}$, $h = \overline{AD}$, $m = \overline{BD}$ e $n = \overline{DC}$.

É consequência imediata que $\widehat{\mathit{BAD}} = \widehat{\mathit{C}}$ e $\widehat{\mathit{DAC}} = \widehat{\mathit{B}}$ (Exercício)

Proposição 7.4

Em todo triângulo retângulo, a altura do vértice do ângulo reto é a média geométrica entre as projeções dos catetos sobre a hipotenusa.

IMD1003 Geometria Euclidiana

Semelhanca de

Triângulos Retângulos

Exercícios Bibliografia

Triângulos

UFRN

Teorema de Pitágoras

Teorema 7.5 (Teorema de Pitágoras)

Em todo triângulo retângulo, o quadrado da hipotenusa é igual a soma dos quadrados dos comprimentos dos catetos.

IMD1003 Geometria Euclidiana Igor Oliveira

Semelhança de Triângulos

Exercícios

Teorema de Pitágoras

IMD1003 Geometria Euclidiana Igor Oliveira

Semelhança de Triângulos Triângulos Retângulos

Exercícios

Bibliografia

Teorema 7.5 (Teorema de Pitágoras)

Em todo triângulo retângulo, o quadrado da hipotenusa é igual a soma dos quadrados dos comprimentos dos catetos.

A recíproca do Teorema de Pitágoras também é válida, como traz a Proposição a seguir:

Proposição 6.6

Um triângulo possui lados medindo a, b e c. Se $a^2 = b^2 + c^2$, então, o triângulo é retângulo e sua hipotenusa é o lado que mede a

Exercícios

- Mostre que dois triângulos equiláteros são sempre semelhantes.
- 2. Mostre que são semelhantes dois triângulos isósceles que têm iguais os ângulos opostos à base.
- 3. Em um triângulo *ABC*, tome *D* como o ponto médio de *AB* e *E* como o ponto médio de *AC*. Mostre que os triângulos *ABC* e *ADE* são semelhantes.
- **4**. Prove que alturas correspondentes em triângulos semelhantes estão na mesma razão que os lados correspondentes.
- 5. Um conjunto de três inteiros, que são comprimentos dos lados de um triângulo retângulo, é chamado de **tripla pitagórica**. A mais simples delas é $\{3,4,5\}$. Prove, sem argumentos algébricos, que, se $\{a,b,c\}$ é uma tripla pitagórica, então, para qualquer número real n positivo, $\{na,nb,nc\}$ é também uma tripla pitagórica.

IMD1003 Geometria Euclidiana

Igor Oliveira Semelhança de

Triângulos
Triângulos Retângulos

Exercícios

Exercícios

6. Um farol fica em uma ilha à vista da costa. Um nadador. querendo saber a distância da praia até o farol, fez o seguinte: Marcou dois pontos A e B na praia, distantes 100m um do outro. Colocou uma folha de papel no ponto A e marcou sobre ela um segmento na direção do ponto B e outro na direção do farol. Mediu o ângulo entre os dois segmentos, com um transferidor, e anotou o resultado: 90°. Foi então para o outro ponto e repetiu o processo marcando, desta vez. 60°. Desenhou então um triângulo retângulo numa folha de papel em que um dos ângulos agudos era 60°, verificando que a hipotenusa neste triângulo media o dobro do lado menor. Concluiu, então, que a distância da praia ao farol era de 200m. Ele está certo ou errado? Justifique o procedimento caso ele esteja certo ou explique porque ele está errado e proponha outro procedimento.

IMD1003 Geometria Euclidiana Igor Oliveira

Semelhança de Triângulos

Triângulos Retângulos

Exercícios

Bibliografia

IMD1003 Geometria Euclidiana

Igor Oliveira Semelhança de

Triângulos Retângulos

Exercícios

Bibliografia

Triângulos

[1] BARBOSA, João L M.Geometria Euclidiana Plana.11. ed. Rio de Janeiro: SBM, 2012.