Lecture Three - Infinite Sequences and Series

Section 3.1 – Sequences

A sequence is a list of numbers

$$a_1, a_2, a_3, \dots, a_n, \dots$$

1

An *infinite sequence* of numbers is a function whose domain is the set of positive integers. These are the *terms* of the sequence. The integer n is called the *index* of a_n .

Sequences can be described by writing rules that specify their terms such as

$$a_n = \sqrt{n} \implies \left\{ a_n \right\} = \left\{ \sqrt{1}, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n}, \dots \right\}$$

$$a_n = (-1)^{n+1} \frac{1}{n} \implies \{a_n\} = \{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots, (-1)^{n+1} \frac{1}{n}, \dots \}$$

$$a_n = \frac{1}{n} \implies \{a_n\} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\}$$

Also, we can write: $\{a_n\} = \{\sqrt{n}\}_{n=1}^{\infty}$

Convergence and Divergence

$$\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, 1 - \frac{1}{n}, \dots\right\}$$
 Terms approach 1.

$$\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\right\}$$
 Terms approach 0.

Definition

The sequence $\{a_n\}$ converges to the number L if for every positive number ε there corresponds an integer N such that for all n,

$$n > N \implies \left| a_n - L \right| < \varepsilon$$

If no such number L exists, we say $\{a_n\}$ diverges.

The $\{a_n\}$ converges to L, we write $\lim_{n\to\infty} a_n = L$, or simply $a_n \to L$, and call L the **limit** of the sequence.

Example

Show that $\lim_{n\to\infty} \frac{1}{n} = 0$

Solution

Let $\varepsilon > 0$ be given. We must show that there exists an integer N such that for all n,

$$n > N \quad \Rightarrow \quad \left| \frac{1}{n} - 0 \right| < \varepsilon$$

This implication will hold if $\frac{1}{n} < \varepsilon$ or $n > \frac{1}{\varepsilon}$. If N is any integer greater than $\frac{1}{\varepsilon}$, the implication will hold for all n > N. This proves that $\lim_{n \to \infty} \frac{1}{n} = 0$

2

Example

Show that $\lim_{n\to\infty} k = k$ (any constant k)

Solution

Let $\varepsilon > 0$ be given. We must show that there exists an integer N such that for all n,

$$n > N \implies |k - k| < \varepsilon$$

Since k-k=0, we can use any positive integer for N and the implication will hold for all n>N. This proves that $\lim_{n\to\infty} k=k$

Definition

The sequence $\{a_n\}$ *diverges* to infinity if for every number M there is an integer N such that for all n larger than N, $a_n > M$. If this condition holds we write

$$\lim_{n\to\infty} a_n = \infty \quad or \quad a_n \to \infty$$

Similarly, if for every number m there is an integer N such that for all n > N we have $a_n < m$, then we say $\left\{a_n\right\}$ diverges to negative infinity and write

$$\lim_{n \to \infty} a_n = -\infty \quad or \quad a_n \to -\infty$$

Theorem

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers, and let A and B real numbers. The following rules hold if $\lim_{n\to\infty}a_n=A$ and $\lim_{n\to\infty}b_n=B$

Sum Rule:
$$\lim_{n\to\infty} \left(a_n + b_n\right) = A + B$$

Difference Rule:
$$\lim_{n\to\infty} \left(a_n - b_n \right) = A - B$$

Constant Multiple Rule:
$$\lim_{n\to\infty} (ka_n) = kA$$

Product Rule:
$$\lim_{n\to\infty} \left(a_n \cdot b_n \right) = A \cdot B$$

Quotient Rule:
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B} \quad if \quad B \neq 0$$

Example

a)
$$\lim_{n\to\infty} \left(-\frac{1}{n}\right) = -1 \cdot \lim_{n\to\infty} \left(\frac{1}{n}\right) = -1(0) = 0$$

b)
$$\lim_{n \to \infty} \left(\frac{n-1}{n} \right) = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n} = 1 - 0 = 1$$

c)
$$\lim_{n\to\infty} \left(\frac{5}{n^2}\right) = 5 \cdot \lim_{n\to\infty} \left(\frac{1}{n^2}\right) = 5 \cdot \lim_{n\to\infty} \left(\frac{1}{n}\right) \cdot \lim_{n\to\infty} \left(\frac{1}{n}\right) = -1 \cdot 0 \cdot 0 = 0$$

d)
$$\lim_{n \to \infty} \left(\frac{4 - 7n^6}{n^6 + 3} \right) = \lim_{n \to \infty} \left(\frac{\frac{4}{n^6} - 7}{1 + \frac{3}{n^6}} \right) = \frac{0 - 7}{1 + 0} = -7$$

Theorem – The Sandwich Theorem for Sequences

Let $\left\{a_n\right\}$, $\left\{b_n\right\}$ and $\left\{c_n\right\}$ be sequences of real numbers. If $a_n \leq b_n \leq c_n$ holds for all n beyond some index N, and if $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$ also.

Example

Since $\frac{1}{n} \to 0$, we know that

a)
$$\frac{\cos n}{n} \to 0$$
 because $-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$

b)
$$\frac{1}{2^n} \to 0$$
 because $0 \le \frac{1}{2^n} \le \frac{1}{n}$

c)
$$(-1)^n \frac{1}{n} \to 0$$
 because $-\frac{1}{n} \le (-1)^n \le \frac{1}{n}$

Theorem – The Continuous Function Theorem for Sequences

Let $\left\{a_n\right\}$ be a sequence of real numbers. If $a_n \to L$ and if f is a function that is continuous at L and defined at all a_n , then $f\left(a_n\right) \to f\left(L\right)$.

Example

Show that
$$\sqrt{\frac{n+1}{n}} \to 1$$

Solution

We know that
$$\frac{n+1}{n} \to 1$$
. Taking $f(x) = \sqrt{x}$ and $L = 1$ that gives $\sqrt{\frac{n+1}{n}} \to \sqrt{1} = 1$

Example

The sequence $\left\{\frac{1}{n}\right\}$ converges to 0.

By taking $a_n = \frac{1}{n}$, $f(x) = 2^x$, and L = 0.

We see that $2^{1/n} = f\left(\frac{1}{n}\right) \rightarrow f(L) = 2^0 = 1$.

The sequence $\{2^{1/n}\}$ converges to 1.

Using L'Hôpital's Rule

Theorem

Suppose that f(x) is a function for all $x \ge n_0$ and that $\{a_n\}$ is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then

$$\lim_{x \to \infty} f(x) = L \implies \lim_{n \to \infty} a_n = L$$

Example

Show that $\lim_{n\to\infty} \frac{\ln n}{n} = 0$

Solution

The function $\frac{\ln x}{x}$ is defined for all $x \ge 1$ and agrees with the given sequence at positive integers.

Therefore;

$$\lim_{n \to \infty} \frac{\ln n}{n} = \lim_{x \to \infty} \frac{\ln x}{x}$$

$$= \lim_{x \to \infty} \frac{\frac{1}{x}}{1}$$

$$= 0$$

Example

Does the sequence whose *n*th term is $a_n = \left(\frac{n+1}{n-1}\right)^n$ converge? If so, find $\lim_{n \to \infty} a_n$

Solution

The limit leads to the indeterminate form 1^{∞} .

$$\ln a_n = \ln \left(\frac{n+1}{n-1}\right)^n$$

$$= n \ln \left(\frac{n+1}{n-1}\right) \qquad \infty.0 \text{ form}$$

$$= \frac{\ln \left(\frac{n+1}{n-1}\right)}{\frac{1}{n}} \qquad 0.0 \text{ form}$$

$$\lim_{n \to \infty} \ln a_n = \lim_{n \to \infty} \frac{\ln \left(\frac{n+1}{n-1}\right)}{\frac{1}{n}} \qquad \left(\ln \frac{n+1}{n-1}\right)' = \frac{\frac{n-1-(n+1)}{(n-1)^2}}{\frac{n+1}{n-1}} = \frac{-2}{(n+1)(n-1)}$$

$$= \lim_{n \to \infty} \frac{\frac{-2}{n^2 - 1}}{\frac{-1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{2n^2}{n^2 - 1}$$

$$= 2$$

$$\lim_{n \to \infty} a_n = e^2$$

Theorem

The following six sequences converge to the limits listed below:

$$1. \quad \lim_{n \to \infty} \frac{\ln n}{n} = 0$$

$$2. \quad \lim_{n \to \infty} \sqrt[n]{n} = 1$$

3.
$$\lim_{n \to \infty} x^{1/n} = 1$$
 $x > 0$

$$4. \quad \lim_{n \to \infty} x^n = 1 \quad |x| < 1$$

5.
$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x \quad (any \ x)$$

6.
$$\lim_{n \to \infty} \frac{x^n}{n!} = 0 \quad (any \ x)$$

Bounded Monotonic Sequences

Definitions

A sequence $\left\{a_n\right\}$ is **bounded from above** if there exists a number M such that $a_n \leq M$ for all n. The number M is an **upper bound** for $\left\{a_n\right\}$ but no number less than M is an upper bound for $\left\{a_n\right\}$, then M is the **least upper bound** for $\left\{a_n\right\}$.

A sequence $\left\{a_n\right\}$ is **bounded from below** if there exists a number m such that $a_n \geq m$ for all n. The number m is an **lower bound** for $\left\{a_n\right\}$. If m is a lower bound for $\left\{a_n\right\}$ but no number greater than m is a lower bound for $\left\{a_n\right\}$, then m is the **greatest lower bound** for $\left\{a_n\right\}$.

If $\{a_n\}$ is bounded from above and below, the $\{a_n\}$ is **bounded**.

If $\left\{a_n^{}\right\}$ is not bounded, then $\left\{a_n^{}\right\}$ is an $\emph{unbounded}$ sequence.

Definition

A sequence $\{a_n\}$ is **nondecreasing** if $a_n \le a_{n+1}$ for all n. That is $a_1 \le a_2 \le a_3 \le \dots$

Which each term is greater than or equal to its predecessor $\left(a_{n+1} \ge a_n\right)$

Example:
$$\left\{1 - \frac{1}{n}\right\}_{n=1}^{\infty} = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\}$$

A sequence $\left\{a_n\right\}$ is *nonincreasing* if $a_n \ge a_{n+1}$ for all n, which each term is less than or equal to its predecessor $\left(a_{n+1} \le a_n\right)$

Example:
$$\left\{1 + \frac{1}{n}\right\}_{n=1}^{\infty} = \left\{2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \ldots\right\}$$

The sequence $\{a_n\}$ is **monotonic** if it is either nondecreasing or nonincreasing.

9

Theorem

If a sequence $\{a_n\}$ is both *bounded* and *monotonic*, then the sequence converges.

Example

The sequence $\{1, 2, 3, ..., n, ...\}$ is nondecreasing

The sequence $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\right\}$ is nondecreasing

The sequence $\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{2^n}, \dots\right\}$ is nonincreasing

Exercises Section 3.1 – Sequences

- 1. Find the values of a_1 , a_2 , a_3 , and a_4 for $a_n = \frac{1-n}{n^2}$
- 2. Find the values of a_1 , a_2 , a_3 , and a_4 for $a_n = \frac{1}{n!}$
- 3. Find the values of a_1 , a_2 , a_3 , and a_4 for $a_n = \frac{(-1)^{n+1}}{2n-1}$
- **4.** Find the values of a_1 , a_2 , a_3 , and a_4 for $a_n = 2 + (-1)^n$
- 5. Find the values of a_1 , a_2 , a_3 , and a_4 for $a_n = \frac{2^n 1}{2^n}$
- **6.** Write the first ten terms of the sequence $a_1 = 1$, $a_{n+1} = a_n + \frac{1}{2^n}$
- 7. Write the first ten terms of the sequence $a_1 = 1$, $a_{n+1} = \frac{a_n}{n+1}$
- **8.** Write the first ten terms of the sequence $a_1 = 2$, $a_2 = -1$, $a_{n+2} = \frac{a_{n+1}}{a_n}$
- **9.** Find a formula for the *n*th term of the sequence -1, 1, -1, 1, -1, \cdots
- **10.** Find a formula for the *n*th term of the sequence 1, $-\frac{1}{4}$, $\frac{1}{9}$, $-\frac{1}{16}$, $\frac{1}{25}$,...
- 11. Find a formula for the *n*th term of the sequence $\frac{1}{9}$, $\frac{2}{12}$, $\frac{2^2}{15}$, $\frac{2^3}{18}$, $\frac{2^4}{21}$,...
- **12.** Find a formula for the *n*th term of the sequence -3, -2, -1, 0, 1, \cdots
- **13.** Find a formula for the *n*th term of the sequence $\frac{1}{25}$, $\frac{8}{125}$, $\frac{27}{625}$, $\frac{64}{3125}$, $\frac{125}{15,625}$,...
- **14.** Find a formula for the *n*th term of the sequence $0, 1, 1, 2, 2, 3, 3, 4, \cdots$
- (15-43) Determine if the sequence converge or diverge? Then find the limit of each convergent sequence.

15.
$$a_n = \frac{n + (-1)^n}{n}$$

18.
$$a_n = \left(2 - \frac{1}{2^n}\right) \left(3 + \frac{1}{2^n}\right)$$
 22. $a_n = \frac{\sin^2 n}{2^n}$

16.
$$a_n = \frac{1-2n}{1+2n}$$

19.
$$a_n = n\pi \cos(n\pi)$$
 23. $a_n = \frac{\ln n}{\ln 2n}$

17.
$$a_n = \frac{1-n^3}{70-4n^2}$$

20.
$$a_n = n - \sqrt{n^2 - n}$$
 24. $a_n = \frac{3^n \cdot 6^n}{2^{-n} \cdot n!}$

21.
$$a_n = \sqrt{\frac{2n}{n+1}}$$

$$25. \quad a_n = \sqrt{n} \sin \frac{1}{\sqrt{n}}$$

26.
$$a_n = \frac{n^2}{2^n - 1}$$

27.
$$\left\{c_{n}\right\} = \left\{\left(-1\right)^{n} \frac{1}{n!}\right\}$$

28.
$$a_n = \frac{5}{n+2}$$

29.
$$a_n = 8 + \frac{5}{n}$$

30.
$$a_n = (-1)^n \left(\frac{n}{n+1}\right)$$

31.
$$a_n = \frac{1 + (-1)^n}{n^2}$$

$$32. \quad a_n = \frac{10n^2 + 3n + 7}{2n^2 - 6}$$

33.
$$a_n = \frac{\sqrt[3]{n}}{\sqrt[3]{n+1}}$$

$$34. \quad a_n = \frac{\ln(n^3)}{2n}$$

35.
$$a_n = \frac{5^n}{3^n}$$

36.
$$a_n = \frac{(n+1)!}{n!}$$

37.
$$a_n = \frac{(n-2)!}{n!}$$

38.
$$a_n = \frac{n^p}{e^n}, p > 0$$

39.
$$a_n = n \sin \frac{1}{n}$$

40.
$$a_n = 2^{1/n}$$

41.
$$a_n = -3^{-n}$$

$$42. \quad a_n = \frac{\sin n}{n}$$

$$43. \quad a_n = \frac{\cos \pi n}{n^2}$$