Multiple Linear Equation Models (Take 2)

Ethan Ligon

March 12, 2024

The Fundamental Linear Regression Model

Start with

$$y = X\beta + u.$$

- Allowing (y, X, u) to all be random.
- X has full column rank.
- Key identification assumption: $\mathbb{E}(X^{\top}u) = 0$.

Compare Classical Approach

E.g., R.A. Fisher; (Fisher Box, 1980)

$$y = X\beta + u$$
.

A J AX	K OF	NITHSOALE	GREAT.	PUKE OF
GREAT SCOTT	DUKE OF YORK	ARRAN	I RON DUKE	EPICURE
IRON DUKE	EPICURE	À J AX	K OF	NITHSDALE
K OF	NITHSDALE	GREAT SCOTT	DUKE OF	ARRAN
	UP TO	KERR'S	UP TO	BRITISH
	BRITISH QUEEN	TINWALD.	EPIÇVRE	KERR'S PINK
	KERRS	UP TO	I RON	ÄJAX :
,	TÌN WALD PERFECTION	AR RAN	BRITISH QUEEN	TINWALD PERFECTION
S = 5		OW B = BASAL	C= CHLORID	EROW

Figure: "Triplicate Chessboard": Diagram I from Fisher and Mackenzie (1923)

Classical Interpretation

The "dependent" variable y is determined by some random variables X with observations realized, and some random unobserved u. Critically, u and X are orthogonal; i.e., $\mathbb{E}(X^\top u) = 0$.

- The orthogonality of X and u is not testable, since u isn't observed.
- In general the causal diagram above imposes needed structure for interpreting regression.
- With this structure, β is "effect of variation in X on y."

Classical Regression in python

See classical_regression.ipynb on datahub.

Compare Bayes

Figure: https://xkcd.com/1132/

Bayesian Interpretation

The disturbance ${\boldsymbol u}$ is independently distributed $Q(u|\sigma)$, and there's a "prior" $\Pr({\boldsymbol \beta}=\beta,{\boldsymbol \sigma}=\sigma)=\Pr(\beta,\sigma)$ over these unknown vectors. In addition the variables $({\boldsymbol \beta},{\boldsymbol \sigma})$ are ordinarily assumed to be distributed independently of ${\boldsymbol X}$.

Some Linear Estimation Problems with Multiple Equations

Let us develop some results for a broad class of linear estimators. We've seen special cases of this before, so should look familiar. Suppose we have an random vector T.

Linear Model

$$y = X\beta + u$$
.

Premultiply by T

$$\boldsymbol{T}^{\top} y = \boldsymbol{T}^{\top} \boldsymbol{X} \beta + \boldsymbol{T}^{\top} u.$$

We want to solve this equation for β . How should we proceed?

DISCUSS

Pretend you don't know any econometrics or statistics. What are issues? What if *T* is just a column of ones?

Aside on Moore-Penrose Inverse

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse For any real matrix \boldsymbol{A} (need not be square!), let \boldsymbol{A}^+ satisfy:

- $oldsymbol{0} AA^+A=A$; (generalizes idea that $AA^+=I$)
- $A^+AA^+=A^+;$
- $(A^+A)^\top = AA^+;$ (form of symmetry)
- $(AA^+)^{\top} = A^+A.$

Any such ${\cal A}^+$ satisfying these conditions is called the "Moore-Penrose Inverse" (or sometimes the pseudo-inverse). Facts about the Moore-Penrose Inverse:

- $oldsymbol{0}$ A^+ exists and is unique.
- ② If the columns of A are linearly independent, then $A^+ = (A^\top A)^{-1} A^\top$ (this is sometimes called the "left inverse), and $A^+ A = I$.
- $oldsymbol{3}$ If the rows of $oldsymbol{A}$ are linearly independent, then $oldsymbol{A}^+ = oldsymbol{A}^ op (oldsymbol{A} oldsymbol{A}^ op)^{-1}$, and $oldsymbol{A} oldsymbol{A}^+ = oldsymbol{I}$.

Linear Weighted Regression

 $A_1 \mathbb{E}^{\mathbf{T}^{\top}} u = \mathbf{0}$ (Orthogonality)

A₂ Some kind of full rank condition on $T^T X$ (e.g., full column rank with probability one).

- The orthogonality of T and u is not testable, since u isn't observed.
- In general the causal diagram above imposes needed structure for interpreting regression.
- With this structure, β is "effect of variation in X on y."

Least Squares Estimator

Now:

$$\mathbf{T}^{\top} y = \mathbf{T}^{\top} \mathbf{X} \beta + \mathbf{T}^{\top} u$$
$$\Rightarrow \mathbf{T}^{\top} y - \mathbf{T}^{\top} u = (\mathbf{T}^{\top} \mathbf{X}) \beta.$$

Now, using A2:

$$(\boldsymbol{T}^{\top}\boldsymbol{X})^{+}(\boldsymbol{T}^{\top}\boldsymbol{y}) - (\boldsymbol{T}^{\top}\boldsymbol{X})^{+}(\boldsymbol{T}^{\top}\boldsymbol{u}) = \beta.$$

We only get a sample of realizations (y, X), and never even observe realizations of u. So to make further progress we take expectations and exploit A_1 :

$$\mathbb{E}(\boldsymbol{T}^{\top}\boldsymbol{X})^{+}(\boldsymbol{T}^{\top}\boldsymbol{y}) = \beta.$$

Analogy Principle (or Monte Carlo integration)

We have

$$\mathbb{E}(\mathbf{T}^{\top}\mathbf{X})^{+}(\mathbf{T}^{\top}y) = \beta.$$

We then apply the analogy principal, which allows us to substitute the mean of a sample for the expected value, yielding

$$b^* = (\boldsymbol{T}^{\top} \boldsymbol{X})^+ (\boldsymbol{T}^{\top} \boldsymbol{Y}),$$

Then let we have $\mathbb{E}b^* = \beta$; i.e., this procedure results in an unbiased estimator of β for any T satisfying $A_1 \& A_2$.

Linear Weighted Regression in python

See weighted_regression.ipynb on datahub.