

A12002 — ARTIFICIAL INTELLIGENCE SPRING 2024 - LECTURE 37-39

Presented By: Mr. Sandesh Kumar Slides are taken from University of Pennsylvania

What is Machine Learning?

"Learning is any process by which a system improves performance from experience."

- Herbert Simon

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E.

A well-defined learning task is given by $\langle P, T, E \rangle$.

Traditional Programming

Machine Learning

When Do We Use Machine Learning?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

Learning isn't always useful:

There is no need to "learn" to calculate payroll

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

(

Some more examples of tasks that are best solved by using a learning algorithm

- Recognizing patterns:
 - Facial identities or facial expressions
 - Handwritten or spoken words
 - Medical images
- Generating patterns:
 - Generating images or motion sequences
- Recognizing anomalies:
 - Unusual credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- Prediction:
 - Future stock prices or currency exchange rates

Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging software
- [Your favorite area]

Samuel's Checkers-Player

"Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed." -Arthur Samuel (1959)

Defining the Learning Task

Improve on task T, with respect to performance metric P, based on experience E

- T: Playing checkers
- P: Percentage of games won against an arbitrary opponent
- E: Playing practice games against itself
- T: Recognizing hand-written words
- P: Percentage of words correctly classified
- E: Database of human-labeled images of handwritten words
- T: Driving on four-lane highways using vision sensors
- P: Average distance traveled before a human-judged error
- E: A sequence of images and steering commands recorded while observing a human driver.
- T: Categorize email messages as spam or legitimate.
- P: Percentage of email messages correctly classified.
- E: Database of emails, some with human-given labels

Types of Learning

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised Learning: Regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression

Supervised Learning: Classification

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

. .

- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

Genomics application: group individuals by genetic similarity

[Source: Daphne Koller]

Organize computing clusters

Market segmentation

Social network analysis

Astronomical data analysis

 Independent component analysis – separate a combined signal into its original sources

 Independent component analysis – separate a combined signal into its original sources

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states → actions that tells you what to do in a given state
- Examples:
 - Credit assignment problem
 - Game playing
 - Robot in a maze
 - Balance a pole on your hand

The Agent-Environment Interface

Agent and environment interact at discrete time steps : t = 0, 1, 2, K

Agent observes state at step t: $s_t \in S$

produces action at step t: $a_t \in A(s_t)$

gets resulting reward: $r_{t+1} \in \Re$

and resulting next state : S_{t+1}

37

Reinforcement Learning

https://www.youtube.com/watch?v=4cgWya-wjgY

Inverse Reinforcement Learning

Learn policy from user demonstrations

Stanford Autonomous Helicopter

http://heli.stanford.edu/

https://www.youtube.com/watch?v=VCdxqn0fcnE

Framing a Learning Problem

Designing a Learning System

- Choose the training experience
- Choose exactly what is to be learned
 - i.e. the target function
- Choose how to represent the target function
- Choose a learning algorithm to infer the target function from the experience

Training vs. Test Distribution

- We generally assume that the training and test examples are independently drawn from the same overall distribution of data
 - We call this "i.i.d" which stands for "independent and identically distributed"
- If examples are not independent, requires collective classification
- If test distribution is different, requires
 transfer learning

ML in a Nutshell

- Tens of thousands of machine learning algorithms
 - Hundreds new every year

- Every ML algorithm has three components:
 - Representation
 - Optimization
 - Evaluation

Various Function Representations

- Numerical functions
 - Linear regression
 - Neural networks
 - Support vector machines
- Symbolic functions
 - Decision trees
 - Rules in propositional logic
 - Rules in first-order predicate logic
- Instance-based functions
 - Nearest-neighbor
 - Case-based
- Probabilistic Graphical Models
 - Naïve Bayes
 - Bayesian networks
 - Hidden-Markov Models (HMMs)
 - Probabilistic Context Free Grammars (PCFGs)
 - Markov networks

Various Search/Optimization Algorithms

- Gradient descent
 - Perceptron
 - Backpropagation
- Dynamic Programming
 - HMM Learning
 - PCFG Learning
- Divide and Conquer
 - Decision tree induction
 - Rule learning
- Evolutionary Computation
 - Genetic Algorithms (GAs)
 - Genetic Programming (GP)
 - Neuro-evolution

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- etc.

ML in Practice

- Understand domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learn models
- Interpret results
- Consolidate and deploy discovered knowledge

Lessons Learned about Learning

 Learning can be viewed as using direct or indirect experience to approximate a chosen target function.

- Function approximation can be viewed as a search through a space of hypotheses (representations of functions) for one that best fits a set of training data.
- Different learning methods assume different hypothesis spaces (representation languages) and/or employ different search techniques.