1

signals and systems

Gate2021-ec-Q52

EE23BTECH11014- Devarakonda Guna vaishnavi

Ouestion:

A message signal having peak-to-peak value of 2 V, root mean square value of 0.1 V, and bandwidth of 5 kHz is sampled and fed to a pulse code modulation (PCM) system that uses a uniform quantizer. The PCM output is transmitted over a channel that can support a maximum transmission rate of 50 kbps. Assuming that the quantization error is uniformly distributed, calculate the maximum signal-to-quantization noise ratio (rounded off to two decimal places). solution:

Term	Description	Formula	Value
Peak-to-Peak	Peak-to-peak value of the message signal (in	$\sqrt{2} \times RMS$	1.414 V
	volts).		
RMS	Root mean square value of the message signal	$\frac{2}{2\sqrt{2}}$	0.707 V
	(in volts).	2 12	
Bandwidth	Bandwidth of the message signal (in kilohertz).	-	-
N	Number of bits per sample used in quantiza-	-	5
	tion.		
Quantization range	Range of values in which the quantized signal	2 × Peak-to-Peak	2.828 V
	falls (in volts).		
Step size	The size of each quantization interval (in	Quantization range	-
	volts).	2	
Sampling rate	Rate at which the message signal is sampled	-	10 kHz
	(in kilohertz).		
Maximum transmission rate	Maximum transmission rate supported by the	-	50 kbps
	channel (in kilobits per second).		
SQNR	Signal-to-quantization noise ratio.	$6.02 \times N + 1.76$	31.86

TABLE I Input Parameters

1) Calculate Peak and RMS values:

$$RMS = \frac{Peak-to-Peak}{2\sqrt{2}}$$
 (1)

2) Calculate Peak Value:

$$Peak = \sqrt{2} \times RMS \tag{2}$$

3) Calculate Quantization Range:

Quantization range =
$$2 \times Peak$$
 (3)

4) Determine Number of Bits (N):

$$N = \log_2(\text{quantization levels}) \tag{4}$$

5) Calculate Step Size:

Step size =
$$\frac{\text{Quantization range}}{2^N}$$
 (5)

6) Calculate SQNR:

$$SQNR = 6.02 \times N + 1.76 \tag{6}$$

$$\implies$$
 SQNR = 31.86