Satopanopuea potoma NL

Точне та наближене розв'язування систем лінійних алгебраїчних рівнянь <u>Чостива</u> 1: Наближені методи розв'язування систем лінійних алгебраїчних рівнянь

Мета: ознайомлення студентів з основними поняттями та наближеними методами розв'язування СЛАР; набуття практичних навичок розв'язання таких задач (у тому числі - з використанням комп'ютера).

Завдання:

- 1. Опрацювати теоретичний матеріал
 - [1, сс. 49-59]+даний файл.
- **2.** Попередньо звівши задану СЛАР до нормального вигляду, знайти наближене значення її розв'язку наближеними методами з точністю до $\varepsilon = 0,001$:
 - ☑ методом простої ітерації (Якобі);
 - ☑ методом Зейделя

🖫 Tikopenururi biga ucemi ma pozbezarure munobex npukragib

Розглянемо деякі наближені методи розв'язування систем лінійних алгебричних рівнянь. Ці методи дають розв'язок у вигляді границі послідовності деяких векторів. Такі вектори будують шляхом виконання одноманітного процесу, який називають *процесом ітерацій*.

Важливою особливістю ітераційних методів є їхні *самоуточнення і простота реалізації на комп'ютерах*. Ітераційний метод для початку обчислень потребує задання одного або декількох початкових наближень. Умови і швидкість збіжності кожного ітераційного процесу суттєво залежать від властивостей матриці системи і вибору початкових наближень.

Загальна схема ітераційних процесів полягає у побудові для системи

$$Ax = b \tag{1}$$

з квадратною невиродженою матрицею n-го порядку A послідовності наближень

$$x^{(k)} = x^{(k-1)} + H^{(k)}(b - Ax^{(k-1)}),$$
(2)

де $H^{(1)}$, $H^{(2)}$,... - деяка послідовність матриць; $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)})^{\mathrm{T}}$ - початкове наближення. Вибір різних матриць $H^{(k)}$ приводить до різних ітераційних методів.

Ітераційні процеси (2) мають ту властивість, що для кожного з них точний розв'язок $x^* = (x_1^*, x_2^*, ..., x_n^*)^{\mathrm{T}}$ системи (1) є нерухомою точкою. Це означає наступне: якщо за початкове наближення $x^{(0)}$ взяти x^* , то всі наступні наближення теж дорівнюватимуть x^* .

Навпаки, якщо довільний ітераційний процес, для якого x^* є нерухомою точкою, реалізується за формулою

$$x^{(k)} = C^{(k)}x^{(k-1)} + d^{(k)}, k = 1, 2, ...$$
 (3)

де $C^{(k)}$ - послідовність матриць; $d^{(k)}$ - послідовність векторів, то його можна записати у вигляді (2).

Найпростіші ітераційні методи - стаціонарні ітераційні процеси, у яких матриці $H^{(k)}$ не залежать від номера кроку k. При $H^{(k)} = E$ отримуємо класичний процес послідовних наближень. Вибір матриці H для стаціонарного процесу і $H^{(k)}$ для нестаціонарного можна виконати багатьма різними способами.

2.1. Метод простих ітерацій (метод Якобі).

Застосування методу Гаусса для розв'язування системи лінійних рівнянь з великою кількістю невідомих досить громіздке. Крім того, кількість невідомих може бути така велика, що коефіцієнти системи не завжди можна розмістити в оперативній пам'яті ЕОМ. Тоді застосувати для її розв'язування метод Гаусса взагалі не можна. У цих випадках розв'язують систему ітераційними методами.

Розглянемо метод простої ітерації. Оскільки метод простих ітерацій є стаціонарним, то систему рівнянь (1) згідно з формулою (3), перетворимо до вигляду

$$x = Cx + d , (4)$$

який називається нормальним виглядом системи.

Розв'язок $x^* = (x_1^*, x_2^*, ..., x_n^*)^{\mathrm{T}}$ системи (4) (а значить, і системи (1)) знаходимо як (покоординатну) границю послідовності

$$x^{(k)} = Cx^{(k-1)} + d, \ k = 1, 2, ...$$
 (5)

тобто

$$x^* = \lim_{k \to \infty} x^{(k)} = \lim_{k \to \infty} x^{(k-1)}$$

 $x^* = \lim_{k \to \infty} x^{(k)} = \lim_{k \to \infty} x^{(k-1)}$. Рівності (5) у координатній формі записуються наступним чином

$$x_i^{(k)} = \sum_{i=1}^n c_{ij} x_j^{(k-1)} + d_i, \ (i \in \overline{1, n}; k = 1, 2, ...),$$
 (6)

тобто у вигляді системи

$$\begin{cases} x_1^{(k)} = c_{12}x_2^{(k-1)} + c_{13}x_3^{(k-1)} + \dots + c_{1n}x_n^{(k-1)} + d_1 \\ x_2^{(k)} = c_{21}x_1^{(k-1)} + c_{23}x_3^{(k-1)} + \dots + c_{2n}x_n^{(k-1)} + d_2 \\ \dots & , \quad k = 1, 2, \dots \end{cases}$$

$$x_n^{(k)} = c_{n1}x_1^{(k-1)} + c_{n2}x_2^{(k-1)} + \dots + c_{n,n-1}x_{n-1}^{(k-1)} + d_n$$

$$(7)$$

Теорема 2.1.1 (критерій збіжності МПІ). Для збіжності методу простих ітерацій з довільним початковим вектором $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)})^{\mathrm{T}}$ необхідно і досить, щоб усі власні числа матриці C (із системи (4)) були за модулем менші від 1, тобто всі корені характеристичного рівняння

$$\det(C - \lambda E) = 0 \tag{8}$$

були за модулем менші від одиниці.

Оскільки знаходження коренів рівняння (8) є непростою проблемою, то на практиці часто використовують достатню умову збіжності методу простих ітерацій. Для цього для квадратної матриці $A = (a_{ii})_{i,i=1}^n$ вводять поняття *норми матриці*, яка задається одним з трьох способів:

$$||A||_1 = \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|$$
 - максимум сум модулів елементів рядків;

$$\|A\|_2 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$
 - максимум сум модулів елементів стовпців;

<u>Теорема 2.1.2 (достатня ознака збіжності МПІ)</u>. Нехай хоча б для одного i=1,2,3 виконується нерівність

$$||C||_i \le q < 1. \tag{9}$$

Тоді

- \square система (4) (а значить, і система (1)) має єдиний розв'язок $x^* = (x_1^*, x_2^*, ..., x_n^*)^T$;
- \square при довільному виборі вектора початкового наближення $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)})^T$ ітераційний процес (5) збігається до розв'язку x^* зі швидкістю геометричної прогресії зі знаменником $q = \|C\|_{\cdot}$, тобто

$$x^* = \lim_{k \to \infty} x^{(k)} = \lim_{k \to \infty} x^{(k-1)}$$

і має місце наступна оцінка абсолютної похибки к-го наближення

$$\Delta = \left\| x^{(k)} - x^* \right\| \le \frac{q}{1 - q} \left\| x^{(k)} - x^{(k-1)} \right\| , \quad (k = 1, 2, ...)$$
 (10)

Метод простої ітерації слід закінчити, якщо стане справедливою нерівність

$$||x^{(k)} - x^{(k-1)}|| = \max_{1 \le i \le n} |x_i^{(k)} - x_i^{(k-1)}| \le \frac{1 - q}{q} \varepsilon, \quad (k = 1, 2, ...)$$
(11)

де ε — наперед задана точність наближень. При $q \le \frac{1}{2}$ умову (11) можна замінити на

$$||x^{(k)} - x^{(k-1)}|| = \max_{1 \le i \le n} |x_i^{(k)} - x_i^{(k-1)}| \le \varepsilon, \quad (k = 1, 2, \dots).$$
 (12)

Метод Якобі зведення системи до нормального вигляду

Припустимо, що усі діагональні елементи матриці A вихідної системи відмінні від нуля

$$a_{ii} \neq 0, i = 1, 2, ..., n$$

(або рівняння системи можна переставити так, щоб остання умова виконувалась).

Розв'яжемо перше рівняння системи (1) відносно x_1 , друге - відносно x_2 і т.д. Отримуємо систему у вигляді (4):

$$\begin{cases} x_{1} = c_{12}x_{2} + c_{13}x_{3} + \dots + c_{1n}x_{n} + d_{1} \\ x_{2} = c_{21}x_{1} + c_{23}x_{3} + \dots + c_{2n}x_{n} + d_{2} \\ \dots \\ x_{n} = c_{n1}x_{1} + c_{n2}x_{2} + \dots + c_{n,n-1}x_{n-1} + d_{n} \end{cases}$$

$$(13)$$

де

$$c_{ij} = \begin{cases} -\frac{a_{ij}}{a_{ii}}, & i \neq j \\ 0, & i = j \end{cases}, \quad d_i = \frac{b_i}{a_{ii}}, \quad i = 1, 2, ..., n$$
(14)

Метод, що ґрунтується на такому зведенні вихідної СЛАР до вигляду (4) (чи, те саме, що (13)), називають *методом Якобі*. Далі, задавши нульове наближення, за рекурентними співвідношеннями (5) можемо виконувати ітераційний процес.

Неважко переконатись, що сформульована вище *достатня умова збіжності МПІ* для методу Якобі рівносильна умові діагонального переважання матриці А вихідної системи, тобто умові

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|, \quad i = 1, 2, ..., n.$$
 (15)

(або
$$|a_{ii}| > \sum_{\substack{i=1\\i\neq j}}^{n} |a_{ij}|, \quad j = 1, 2, ..., n.$$
).

Рівності (15) означають, що модуль діагонального елемента кожного рядка строго більший від суми модулів інших елементів даного рядка.

Зауваження: умови теореми 2.1.2 (чи рівносильна умова діагонального переважання матриці вихідної системи) є лише достатніми для збіжності МПІ, тобто в разі їх невиконання про збіжність ітераційного процесу наперед нічого сказати неможна: процес може як збігатись до розв'язку системи, так і збігатись до деякого іншого вектора чи розбігатись взагалі.

Таким чином, приходимо до такого алгоритму МПІ для СЛАР.

- 1. Перевірити, чи матриця A вихідної системи має діагональне переважання (тобто, чи виконуються умови (15)). Якщо так, то перейти до n. 2, інакше звести початкову систему до вигляду з матрицею з діагональним переважанням.
 - 2. Перейти до системи вигляду (13), користуючись перетвореннями (14),
- 3. Взяти деяке початкове наближення $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)})^{\mathrm{T}}$ (за $x^{(0)}$ зазвичай беруть один з векторів $x^{(0)} = (0, 0, ..., 0)^{\mathrm{T}}$, $x^{(0)} = (1, 1, ..., 1)^{\mathrm{T}}$, $x^{(0)} = (b_1, b_2, ..., b_n)^{\mathrm{T}}$).
- **4.** Виконати крок ітерації згідно з формулами (3) (у координатній формі за формулами (7)), отримавши вектор $x^{(k)} = Cx^{(k-1)} + d$ (k = 1, 2, ...)
- **5.** Перевірити умову виходу з ітераційного процесу (11) (чи (12) при $q \le \frac{1}{2}$). В разі виконання умови ітераційний процес завершується, інакше повертаємось до n.4.
- **6.** Виконати перевірку знайденого наближеного значення розв'язку, підставивши його у задану (чи перетворену до вигляду з діагональним переважанням) СЛАР.

2.2. Метод Зейделя.

Метод Зейделя є різновидом методу простої ітерації і відрізняється від методу простих ітерацій лише тим, що під час обчислення k-го наближення i-ої компоненти x_i ; враховують уже визначене раніше (k-1)-ше наближення компонент $x_1, x_2, ..., x_{i-1}$, тобто обчислення виконують за формулами

$$x_i^{(k)} = d_i + \sum_{j=1}^{i-1} c_{ij} x_j^{(k)} + \sum_{j=i}^{n} c_{ij} x_j^{(k-1)}, (k=1,2,...; c_{ii} = 0, i = \overline{1,n})$$
(16)

або в матричному вигляді

$$x^{(k)} = Bx^{(k)} + Dx^{(k-1)} + d \quad (k = 1, 2, ...),$$
(17)

де B - нижньотрикутна матриця, а D - верхньотрикутна матриця

$$B = \begin{pmatrix} 0 & 0 & & 0 & & 0 \\ c_{21} & 0 & & & 0 & & 0 \\ c_{31} & c_{32} & & & 0 & & 0 \\ c_{n1} & c_{n2} & & & c_{n,n-1} & & 0 \end{pmatrix}, D = \begin{pmatrix} 0 & c_{12} & & c_{1,n-1} & c_{1,n} \\ 0 & 0 & & c_{2,n-1} & c_{2,n} \\ 0 & 0 & & & c_{3,n-1} & c_{3,n} \\ 0 & 0 & & & 0 & & 0 \end{pmatrix},$$

утворені з матриці C.

Рівність (17) можна переписати у вигляді

$$x^{(k)} = (E - B)^{-1} D x^{(k-1)} + (E - B)^{-1} d$$
(18)

У координатній формі ітераційний процес методу Зейделя виглядає наступним чином:

$$\begin{cases} x_1^{(k)} = d_1 + \sum_{j=1}^{n} c_{1j} x_j^{(k-1)} \\ x_2^{(k)} = d_2 + c_{21} x_1^{(k)} + \sum_{j=2}^{n} c_{2j} x_j^{(k-1)} \\ \dots \\ x_i^{(k)} = d_i + \sum_{j=1}^{i-1} c_{ij} x_j^{(k)} + \sum_{j=i}^{n} c_{ij} x_j^{(k-1)} \\ \dots \\ x_n^{(k)} = d_n + \sum_{i=1}^{n-1} c_{nj} x_j^{(k)} + c_{nn} x_n^{(k-1)} \end{cases}$$

$$(k = 1, 2, \dots; c_{ii} = 0, i = \overline{1, n})$$

$$(19)$$

3 рівності (18) випливає, що ітераційний процес Зейделя збігається, якщо виконується умова $\left|\lambda_i\right|<1$, де λ_i ($i\in\overline{1,n}$) - власні числа матриці $(E-B)^{-1}D$. Ці власні числа визначають із рівняння

$$\det\left(\left(E-B\right)^{-1}D-\lambda E\right)=0.$$

<u>Теорема 2.2.1 (критерій збіжності методу Зейделя)</u>. Для збіжності методу Зейделя з довільним початковим вектором $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)})^{\mathrm{T}}$ необхідно і достатньо, щоб усі власні числа матриці $(E-B)^{-1}D$ були за модулем менші від 1, тобто всі корені характеристичного рівняння

$$\det\left((E-B)^{-1}D - \lambda E\right) = 0 \tag{20}$$

були за модулем менші від одиниці

Зазвичай метод Зейделя дає кращу збіжність, ніж метод простої ітерації, але, взагалі кажучи, він призводить до більш громіздких обчислень. Процес Зейделя може збігатися навіть в тому випадку, якщо розбігається процес ітерації. Однак це буває не завжди. Можливі випадки, коли процес Зейделя збігається повільніше за МПІ. Більш того, можуть бути випадки, коли МПІ збігається, а процес Зейделя розбігається.

<u>Зауваження:</u> За умови діагонального переважання метод Зейделя збігається швидше за метод Якобі.

Зауваження: Збіжний ітераційний процес має важливу властивість самовиправлення, тобто окрема помилка в обчислення не відіб'ється на кінцевому результаті, адже помилкове наближення можна розглядати як новий початковий вектор.

Тулклад 1. Знайти наближений розв'язок СЛАР

$$\begin{cases} 21x_1 + x_2 + x_3 = 24, \\ 3x_1 + 23x_2 + 3x_3 = 52, \\ -x_1 - x_2 + 4x_3 = 1 \end{cases}$$

з точністю до $\varepsilon = 0.01$

- а) методом простої ітерації (Якобі);
- б) методом Зейделя.
- ▶ Розв'язання. Матриця даної системи, очевидно, задовольняє умовам діагонального переважання

$$A = \begin{pmatrix} 21 & 1 & 1 \\ 3 & 23 & 3 \\ -1 & -1 & 4 \end{pmatrix} \quad |a_{11}| = 21 > 1 + 1 = |a_{12}| + |a_{13}| \\ |a_{22}| = 23 > 3 + 3 = |a_{21}| + |a_{23}| \\ |a_{33}| = 4 > |-1| + |-1| = |a_{31}| + |a_{32}|$$

Таким чином, достатня умова збіжності виконується і для методу простої ітерації (МПІ), і для методу Зейделя (МЗ), причому МЗ збігатиметься до розв'язку швидше, ніж МПІ.

Зведемо дану систему до нормального вигляду (4). Для цього розв'яжемо перше рівняння відносно x_1 , друге — відносно x_2 , третє — відносно x_3 . Отримуємо систему

$$\begin{cases} x_1 = \frac{24}{21} - \frac{1}{21}x_2 - \frac{1}{21}x_3, \\ x_2 = \frac{52}{23} - \frac{3}{23}x_1 - \frac{3}{23}x_3, \\ x_3 = \frac{1}{4} + \frac{1}{4}x_1 + \frac{1}{4}x_2, \end{cases}$$
 (21)

нормального вигляду (4)

$$x = d + Cx$$

де

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ d = \begin{pmatrix} 24/21 \\ 52/23 \\ 1/4 \end{pmatrix} \approx \begin{pmatrix} 1,143 \\ 2,261 \\ 0,250 \end{pmatrix}, \ C = \begin{pmatrix} 0 & -1/21 & -1/21 \\ -3/23 & 0 & -3/23 \\ 1/4 & 1/4 & 0 \end{pmatrix} \approx \begin{pmatrix} 0 & -0,048 & -0,048 \\ -0,130 & 0 & -0,130 \\ 0,250 & 0,250 & 0 \end{pmatrix}.$$

У десятковому записі дробів беремо три знаки після коми, адже у запису $\varepsilon = 0.01$ маємо два знаки після коми, тому для проміжних обчислень беремо один «запасний» знак після коми.

Знайдемо норми матриці C:

$$lackbox{$lackbox{$lackbox{$ec U$}$}} \|C\|_1 = \max_{1 \leq i \leq n} \sum_{i=1}^n \left| c_{ij} \right|$$
 - максимум сум модулів елементів рядків

 $\|C\|_1 = \max_{1 \le i \le n} \sum_{j=1}^n |c_{ij}|$ - максимум сум модулів елементів рядків Позначимо: $c_i = \sum_{j=1}^3 |c_{ij}|$, i = 1, 2, 3 (сума модулів елементів i -го рядка).

Знаходимо:

$$c_{1} = \sum_{j=1}^{3} \left| c_{1j} \right| = 0 + \left| -\frac{1}{21} \right| + \left| -\frac{1}{21} \right| = \frac{2}{21},$$

$$c_{2} = \sum_{j=1}^{3} \left| c_{2j} \right| = \left| -\frac{3}{23} \right| + 0 + \left| -\frac{3}{23} \right| = \frac{6}{23},$$

$$c_{3} = \sum_{j=1}^{3} \left| c_{3j} \right| = \frac{1}{4} + \frac{1}{4} + 0 = \frac{1}{2}.$$

Тоді

$$||C||_1 = \max_{1 \le i \le n} \sum_{j=1}^n |c_{ij}| = \max\{c_1, c_2, c_3\} = \max\{\frac{2}{21}, \frac{6}{23}, \frac{1}{2}\} = \frac{1}{2} < 1.$$

$$\|C\|_2 = \max_{1 \le j \le n} \sum_{i=1}^n \left| c_{ij} \right|$$
 - максимум сум модулів елементів стовпців

Позначимо: $c^j = \sum_{i=1}^3 |c_{ij}|$, j = 1, 2, 3 (сума модулів елементів j-го стовпця).

Знаходимо:

$$c^{1} = \sum_{i=1}^{3} |c_{i1}| = 0 + \left| -\frac{3}{23} \right| + \frac{1}{4} = \frac{35}{92},$$

$$c^{2} = \sum_{i=1}^{3} |c_{i2}| = \left| -\frac{1}{21} \right| + 0 + \frac{1}{4} = \frac{25}{84},$$

$$c^{3} = \sum_{i=1}^{3} |c_{i3}| = \left| -\frac{1}{21} \right| + \left| -\frac{3}{23} \right| + 0 = \frac{86}{483}.$$

Тоді

$$||C||_2 = \max_{1 \le j \le n} \sum_{i=1}^n |c_{ij}| = \max\{c^1, c^2, c^3\} = \max\{\frac{35}{92}, \frac{25}{84}, \frac{86}{483}\} = \frac{35}{92} < 1.$$

елементів матриці.

Якщо піднести до квадрату кожен елемент матриці C, то отримуємо матрицю з елементами

$$\begin{pmatrix} 0^2 & (-1/21)^2 & (-1/21)^2 \\ (-3/23)^2 & 0^2 & (-3/23)^2 \\ (1/4)^2 & (1/4)^2 & 0^2 \end{pmatrix} = \begin{pmatrix} 0 & 1/441 & 1/441 \\ 9/529 & 0 & 9/529 \\ 1/16 & 1/16 & 0 \end{pmatrix}.$$

Тепер для обчислення норми $\|C\|_3$ усі елементи отриманої матриці треба додати та добути корінь квадратний з результату:

$$\left\|C\right\|_{3} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \left|c_{ij}\right|^{2}} = \sqrt{0 + \frac{1}{441} + \frac{1}{441} + \frac{9}{529} + 0 + \frac{9}{529} + \frac{1}{16} + \frac{1}{16} + 0} = \sqrt{\frac{79}{483}} < 1$$

Як бачимо, кожна з норм матриці C строго менша від одиниці. За теоремою 2.1.2 (достатньою умовою збіжності МПІ) досить, щоб хоч одна з норм була меншою від одиниці. Тому, якщо перша з обчислених норм, наприклад, $\|C\|_1$, строго менша від одиниці, то дві інші норми можна не обчислювати.

Нехай, наприклад, ми зупинились на обчисленні норми $\|C\|_1$. Тоді

$$q = \left\| C \right\|_1 = \max_{1 \le i \le n} \sum_{j=1}^n \left| c_{ij} \right| = \max \left\{ c_1, c_2, c_3 \right\} = \max \left\{ \frac{2}{21}, \frac{6}{23}, \frac{1}{2} \right\} = \frac{1}{2}.$$

Умова (11) зупинки ітераційного процесу

$$||x^{(k)} - x^{(k-1)}|| = \max_{1 \le i \le n} |x_i^{(k)} - x_i^{(k-1)}| \le \frac{1 - q}{q} \varepsilon$$

у випадку $q \le \frac{1}{2}$ заміняється на умову (12)

$$||x^{(k)} - x^{(k-1)}|| = \max_{1 \le i \le n} |x_i^{(k)} - x_i^{(k-1)}| \le \varepsilon$$
.

Позначимо через

$$e_i = x_i^{(k)} - x_i^{(k-1)}, i = \overline{1,n}$$

відхилення між i-ми координатами двох сусідніх ітераційних наближень $x^{(k)} = (x_1^{(k)}, x_2^{(k)}, ..., \underline{x_i^{(k)}}, ..., x_n^{(k)})^{\mathrm{T}}$ та $x^{(k-1)} = (x_1^{(k-1)}, x_2^{(k-1)}, ..., \underline{x_i^{(k-1)}}, ..., \underline{x_i^{(k-1)}}, ..., x_n^{(k-1)})^{\mathrm{T}}$. У нашому випадку

$$q = ||C||_1 = \frac{1}{2},$$

отже, умовою завершення ітераційного процесу і для МПІ, і для МЗ буде умова (12), яку можна записати так

$$\|x^{(k)} - x^{(k-1)}\| = \max_{1 \le i \le n} |x_i^{(k)} - x_i^{(k-1)}| = \max_{1 \le i \le n} |e_i| \le \varepsilon$$
 (22)

а) Метод простої ітерації. Попередньо ми вже звели систему до нормального вигляду – це система (21)

$$\begin{cases} x_1 = \frac{24}{21} - \frac{1}{21}x_2 - \frac{1}{21}x_3, \\ x_2 = \frac{52}{23} - \frac{3}{23}x_1 - \frac{3}{23}x_3, \\ x_3 = \frac{1}{4} + \frac{1}{4}x_1 + \frac{1}{4}x_2, \end{cases}$$

<u>**Нульова імерація.**</u> В якості початкового наближення візьмемо нульовий вектор $x^{(0)} = (0,0,0)^{\mathrm{T}}$. Оскільки попереднього наближення на цьому кроці немає, то і відхилень e_i (i=1,2,3) на цьому етапі немає.

Подальші ітерації виконуємо за формулами (6) чи (7) – ті самі формули (6), лише записані у координатній формі. У нашому випадку вони набудуть вигляду

$$\begin{cases} x_1^{(k)} = \frac{24}{21} - \frac{1}{21} x_2^{(k-1)} - \frac{1}{21} x_3^{(k-1)}, \\ x_2^{(k)} = \frac{52}{23} - \frac{3}{23} x_1^{(k-1)} - \frac{3}{23} x_3^{(k-1)}, \quad k = 1, 2, \dots \\ x_3^{(k)} = \frac{1}{4} + \frac{1}{4} x_1^{(k-1)} + \frac{1}{4} x_2^{(k-1)}, \end{cases}$$
(23)

Записавши звичайні дроби у вигляді десяткових (з трьома знаками після коми), систему (23) можна переписати у вигляді

$$\begin{cases} x_1^{(k)} = 1,143 - 0,048x_2^{(k-1)} - 0,048x_3^{(k-1)}, \\ x_2^{(k)} = 2,261 - 0,130x_1^{(k-1)} - 0,130x_3^{(k-1)}, & k = 1,2,... \\ x_3^{(k)} = 0,250 + 0,250x_1^{(k-1)} + 0,250x_2^{(k-1)}, \end{cases}$$
(24)

Перша імерація. Вектор першого наближення $x^{(1)} = (x_1^{(1)}, x_2^{(1)}, x_3^{(1)})^{\mathrm{T}}$ отримуємо, підставивши k = 1 і $x_1^{(0)} = x_2^{(0)} = x_3^{(0)} = 0$ у систему (24). Маємо:

$$\begin{cases} x_1^{(1)} = 1,143 - 0,048x_2^{(0)} - 0,048x_3^{(0)} = 1,143 - 0,048 \cdot 0 - 0,048 \cdot 0 = 1,143, \\ x_2^{(1)} = 2,261 - 0,130x_1^{(0)} - 0,130x_3^{(0)} = 2,261 - 0,130 \cdot 0 - 0,130 \cdot 0 = 2,261, \\ x_3^{(1)} = 0,250 + 0,250x_1^{(0)} + 0,250x_2^{(0)} = 0,250 + 0,250 \cdot 0 + 0,250 \cdot 0 = 0,250. \end{cases}$$

Отже, $x^{(1)} = (1,143;2,261;0,250)^{\mathrm{T}}$. Обчислимо відхилення

$$e_i = x_i^{(1)} - x_i^{(0)}, i = 1, 2, 3.$$

 $e_1 = x_1^{(1)} - x_1^{(0)} = 1,143 - 0 = 1,143,$
 $e_2 = x_2^{(1)} - x_2^{(0)} = 2,261 - 0 = 2,261,$
 $e_3 = x_3^{(1)} - x_3^{(0)} = 0,250 - 0 = 0,250.$

Перевіримо, чи не виконується на цьому кроці умова зупинки ітераційного процесу (22):

$$\left\|x^{(1)} - x^{(0)}\right\| = \max_{1 \le i \le 3} \left|x_i^{(1)} - x_i^{(0)}\right| = \max_{1 \le i \le n} \left|e_i\right| = \max\{1, 143; 2, 261; 0, 250\} = 2, 261 > \varepsilon = 0, 01.$$

Умова (22), очевидно, не виконується. Продовжуємо далі.

Друга імерація. Вектор другого наближення $x^{(2)} = (x_1^{(2)}, x_2^{(2)}, x_3^{(2)})^{\mathrm{T}}$ отримуємо, підставивши k = 2 і компоненти вектора $x^{(1)} = (1,143;2,261;0,250)^{\mathrm{T}}$ у систему (24)

$$\begin{cases} x_1^{(2)} = 1,143 - 0,048x_2^{(1)} - 0,048x_3^{(1)}, \\ x_2^{(2)} = 2,261 - 0,130x_1^{(1)} - 0,130x_3^{(1)}, \\ x_3^{(2)} = 0,250 + 0,250x_1^{(1)} + 0,250x_2^{(1)}. \end{cases}$$

Маємо:

$$\begin{cases} x_1^{(2)} = 1,143 - 0,048 \cdot 2,261 - 0,048 \cdot 0,250 = 1,023, \\ x_2^{(2)} = 2,261 - 0,130 \cdot 1,143 - 0,130 \cdot 0,250 = 2,079, \\ x_3^{(2)} = 0,250 + 0,250 \cdot 1,143 + 0,250 \cdot 2,261 = 1,101. \end{cases}$$

Отже, $x^{(2)} = (1,023;2,079;1,101)^{\mathrm{T}}$. Обчислимо відхилення

$$e_i = x_i^{(2)} - x_i^{(1)}, i = 1, 2, 3.$$

$$e_1 = x_1^{(2)} - x_1^{(1)} = 1,023 - 1,143 = -0,120,$$

$$e_2 = x_2^{(2)} - x_2^{(1)} = 2,079 - 2,261 = -0,182,$$

$$e_3 = x_3^{(2)} - x_3^{(1)} = 1,101 - 0,250 = 0,851.$$

Перевіримо, чи не виконується на цьому кроці умова зупинки ітераційного процесу (22): $\left\|x^{(2)}-x^{(1)}\right\|=\max_{1\leq i\leq 3}\left|x_i^{(2)}-x_i^{(1)}\right|=\max_{1\leq i\leq n}\left|e_i\right|=\max\{\left|-0,120\right|;\left|-0,182\right|;0,851\}=0,851>\varepsilon=0,01\,.$

Умова (22), очевидно, не виконується. Продовжуємо далі.

Тремя імерація. Вектор третього наближення $x^{(3)} = (x_1^{(3)}, x_2^{(3)}, x_3^{(3)})^{\mathrm{T}}$ отримуємо, підставивши k = 3 і компоненти вектора $x^{(2)} = (1,023;2,079;1,101)^{\mathrm{T}}$ у систему (24)

$$\begin{cases} x_1^{(3)} = 1,143 - 0,048x_2^{(2)} - 0,048x_3^{(2)}, \\ x_2^{(3)} = 2,261 - 0,130x_1^{(2)} - 0,130x_3^{(2)}, \\ x_3^{(3)} = 0,250 + 0,250x_1^{(2)} + 0,250x_2^{(2)} \end{cases}$$

і т.д. поки не виконається умова зупинки ітераційного процесу (22). Для зручності заносимо результати обчислень у таблицю:

№ imepaųii, k	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	$e_1 = x_1^{(k)} - x_1^{(k-1)}$	$e_1 = x_2^{(k)} - x_2^{(k-1)}$	$e_3 = x_3^{(k)} - x_3^{(k-1)}$	$\max_{i = 1, 2, 3} e_i $
0	0	0	0				
1	1,143	2,261	0,250	1,143	2,261	0,250	2,261 > ε
2	1,023	2,079	1,101	-0,120	-0,182	0,851	0,851 > ε
3	0,991	1,984	1,026	-0,032	-0,095	-0,075	0,095 > ε
4	1,000	1,998	0,994	0,008	0,014	-0,032	0,032 > ε
5	1,000	2,001	0,999	0,001	0,003	0,006	0,006 < ε

Таким чином, умова зупинки ітераційного процесу (22) виконується при k=5, тобто задана точність наближення досягається за k+1=5+1=6 кроків. При цьому наближене значення розв'язку системи знаходиться за формулою $x^* \approx x^{(k)}$, тобто у нашому прикладі $x_1 \approx x_1^{(5)} = 1,000$, $x_2 \approx x_2^{(5)} = 2,001$, $x_3 \approx x_3^{(5)} = 0,999$.

I, нарешті, заокруглимо отримані значення до двох знаків після коми (при проміжних наближених обчисленнях беремо на один знак після коми більше, ніж знаків після коми в запису числа ε , а наприкінці заокруглюємо до стількох знаків після коми, скільки їх ε у запису числа ε):

$$\begin{cases} x_1 \approx 1,000 \approx 1,00, \\ x_2 \approx 2,001 \approx 2,00, \\ x_3 \approx 0,999 \approx 1,00. \end{cases}$$

б) Метод Зейделя. МЗ, як і МПІ, застосовується до систем нормального вигляду x = d + Cx,

причому, умова завершення ітераційного процессу у МЗ така сама, як у МПІ. Отже, МЗ для даної системи ми розпочинаємо з її нормального вигляду (21)

$$\begin{cases} x_1 = \frac{24}{21} - \frac{1}{21}x_2 - \frac{1}{21}x_3, \\ x_2 = \frac{52}{23} - \frac{3}{23}x_1 - \frac{3}{23}x_3, \\ x_3 = \frac{1}{4} + \frac{1}{4}x_1 + \frac{1}{4}x_2, \end{cases}$$

який був отриманий раніше і, оскільки $q = \|C\|_1 = \frac{1}{2}$, то умова завершення ітераційного процесу у МЗ — це та сама умова (22)

$$||x^{(k)} - x^{(k-1)}|| = \max_{1 \le i \le n} |x_i^{(k)} - x_i^{(k-1)}| = \max_{1 \le i \le n} |e_i| \le \varepsilon$$
.

Нульова імерація. В якості початкового наближення візьмемо нульовий вектор $x^{(0)} = (0,0,0)^{\mathrm{T}}$. Оскільки попереднього наближення на цьому кроці немає, то і відхилень e_i (i=1,2,3) на цьому етапі немає.

Подальші ітерації для знаходження компонент вектора $x^{(k)} = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)})$ (k = 1, 2, ...) відбуваються за формулами (19), які для нашої системи набувають вигляду

$$\begin{cases} x_1^{(k)} = \frac{24}{21} - \frac{1}{21} x_2^{(k-1)} - \frac{1}{21} x_3^{(k-1)} \\ x_2^{(k)} = \frac{52}{23} - \frac{3}{23} x_1^{(k)} - \frac{3}{23} x_3^{(k-1)} & (k = 1, 2, ...), \\ x_3^{(k)} = \frac{1}{4} + \frac{1}{4} x_1^{(k)} + \frac{1}{4} x_2^{(k)} \end{cases}$$

тобто ми компоненту $x_1^{(k)}$ знаходимо, підставляючи у перше рівняння системи (21) замість x_2 та x_3 відповідно другу та третю компоненти $x_2^{(k-1)}$ та $x_3^{(k-1)}$ вектора $x^{(k-1)}=(x_1^{(k-1)},x_2^{(k-1)},x_3^{(k-1)})$, знайденого при попередній ітерації. Для знаходження компоненти $x_2^{(k)}$ ми у друге рівняння системи (21) замість x_1 підставляємо вже знайдену на цьому ітераційному кроці компоненту $x_1^{(k)}$, а замість x_3 - останню компоненту $x_3^{(k-1)}$ вектора $x^{(k-1)}=(x_1^{(k-1)},x_2^{(k-1)},x_3^{(k-1)})$. Для знаходження $x_3^{(k)}$ в останнє рівняння системи (21) замість x_2 та x_3 підставляємо $x_1^{(k)}$ та $x_2^{(k)}$, знайдені вже на цьому ітераційному кроці. Обчислення, як і у пункті а) будемо проводити у десяткових дробах. Тому для проміжних обчислень перетворюємо в останній системі звичайні дроби у десяткові, заокруглюючи їх, як і раніше, до трьох знаків після коми. Маємо:

$$\begin{cases} x_1^{(k)} = 1,143 - 0,048x_2^{(k-1)} - 0,048x_3^{(k-1)}, \\ x_2^{(k)} = 2,261 - 0,130x_1^{(k)} - 0,130x_3^{(k-1)}, & k = 1,2,... \\ x_3^{(k)} = 0,250 + 0,250x_1^{(k)} + 0,250x_2^{(k)}, \end{cases}$$
(25)

<u>Перша імерація.</u> Оскільки $x^{(0)} = (0,0,0)^{\mathrm{T}}$, то у перше рівняння системи (25) підставляємо k=1 і $x_2^{(0)} = x_3^{(0)} = 0$. Знаходимо:

$$x_1^{(1)} = 1,143 - 0,048 x_2^{(0)} - 0,048 x_3^{(0)} = 1,143 - 0,048 \cdot 0 - 0,048 \cdot 0 = 1,143$$
.

Для знаходження $x_2^{(1)}$ у друге рівняння системи (25) підставляємо k=1 та вже знайдене значення $x_1^{(1)}=1{,}143$ і попереднє значення $x_3^{(0)}=0$:

$$x_2^{(1)} = 2,261 - 0,130x_1^{(1)} - 0,130x_3^{(0)} = 2,261 - 0,130 \cdot 1,143 - 0,130 \cdot 0 = 2,112$$
.

Для з находження $x_3^{(1)}$ у третє рівняння системи (25) підставляємо k=1 та вже знайдені значення $x_1^{(1)}=1{,}143$, $x_2^{(1)}=2{,}112$:

$$x_3^{(1)} = 0,250 + 0,250x_1^{(1)} + 0,250x_2^{(1)} = 0,250 + 0,250 \cdot 1,143 + 0,250 \cdot 2,112 = 1,064.$$

Отримали вектор $x^{(1)} = (1,143;2,112;1,064)^{\mathrm{T}}$. Обчислимо відхилення

$$e_i = x_i^{(1)} - x_i^{(0)}, i = 1, 2, 3.$$

 $e_1 = x_1^{(1)} - x_1^{(0)} = 1,143 - 0 = 1,143,$
 $e_2 = x_2^{(1)} - x_2^{(0)} = 2,112 - 0 = 2,112,$
 $e_3 = x_3^{(1)} - x_3^{(0)} = 1,064 - 0 = 1,064.$

Перевіримо, чи не виконується на цьому кроці умова зупинки ітераційного процесу (22):

$$\left\|x^{(1)} - x^{(0)}\right\| = \max_{1 \le i \le 3} \left|x_i^{(1)} - x_i^{(0)}\right| = \max_{1 \le i \le n} \left|e_i\right| = \max\{1, 143; 2, 112; 1, 064\} = 2, 112 > \varepsilon = 0, 01.$$

Умова (22), очевидно, не виконується. Продовжуємо далі.

Друга імерація. Вектор другого наближення $x^{(2)} = (x_1^{(2)}, x_2^{(2)}, x_3^{(2)})^T$ отримуємо з системи (25), де k = 2:

$$\begin{cases} x_1^{(2)} = 1,143 - 0,048x_2^{(1)} - 0,048x_3^{(1)}, \\ x_2^{(2)} = 2,261 - 0,130x_1^{(2)} - 0,130x_3^{(1)}, \\ x_3^{(2)} = 0,250 + 0,250x_1^{(2)} + 0,250x_2^{(2)}. \end{cases}$$

Послідовно знаходимо:

$$x_1^{(2)} = 1,143 - 0,048x_2^{(1)} - 0,048x_3^{(1)} = 1,143 - 0,048 \cdot 2,112 - 0,048 \cdot 1,064 = 0,992,$$

$$x_2^{(2)} = 2,261 - 0,130x_1^{(2)} - 0,130x_3^{(1)} = 2,261 - 0,130 \cdot 0,992 - 0,130 \cdot 1,064 = 1,993,$$

$$x_3^{(2)} = 0,250 + 0,250x_1^{(2)} + 0,250x_2^{(2)} = 0,250 + 0,250 \cdot 0,992 + 0,250 \cdot 1,993 = 0,996.$$

Отже, $x^{(2)} = (0.992; 1.993; 0.996)^{\mathrm{T}}$. Обчислимо відхилення

$$e_i = x_i^{(2)} - x_i^{(1)}, i = 1, 2, 3.$$

 $e_1 = x_1^{(2)} - x_1^{(1)} = 0,992 - 1,143 = -0,151,$
 $e_2 = x_2^{(2)} - x_2^{(1)} = 1,993 - 2,112 = -0,119,$
 $e_3 = x_3^{(2)} - x_3^{(1)} = 0,996 - 1,064 = -0,068.$

Перевіримо, чи не виконується на цьому кроці умова зупинки ітераційного процесу (22):

$$\left\|x^{(2)} - x^{(1)}\right\| = \max_{1 \le i \le 3} \left|x_i^{(2)} - x_i^{(1)}\right| = \max_{1 \le i \le n} \left|e_i\right| = \max\left\{\left|-0,151\right|; \left|-0,119\right|; \left|-0,068\right|\right\} = 0,151 > \varepsilon = 0,01.$$

Умова (22), очевидно, не виконується. Продовжуємо далі поки не виконається умова зупинки ітераційного процесу (22).

Для зручності заносимо результати обчислень у таблицю:

Таблиця 2

№ imepaųii, k	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	$e_1 = x_1^{(k)} - x_1^{(k-1)}$	$e_1 = x_2^{(k)} - x_2^{(k-1)}$	$e_3 = x_3^{(k)} - x_3^{(k-1)}$	$\max_{(i=1,2,3)} e_i $
0	0	0	0				
1	1,143	2,112	1,064	1,143	2,112	1,064	2,112 > ε
2	0,992	1,993	0,996	-0,151	-0,119	-0,068	0,151 > ε
3	1,001	2,000	1,000	0,009	0,008	0,004	0,009 < ε

Таким чином, умова зупинки ітераційного процесу (22) у МЗ виконується при k=3, тобто задана точність наближення досягається за k+1=3+1=4 кроки. При цьому наближене значення розв'язку системи знаходиться за формулою $x^* \approx x^{(k)}$, тобто у нашому прикладі $x_1 \approx x_1^{(3)} = 1,001$, $x_2 \approx x_2^{(3)} = 2,000$, $x_3 \approx x_3^{(3)} = 1,000$.

I, нарешті, заокруглимо отримані значення до двох знаків після коми (при проміжних наближених обчисленнях беремо на один знак після коми більше, ніж знаків після коми в запису числа ε , а наприкінці заокруглюємо до стількох знаків після коми, скільки їх ε у запису числа ε):

$$\begin{cases} x_1 \approx 1,001 \approx 1,00, \\ x_2 \approx 2,000 \approx 2,00, \\ x_3 \approx 1,000 \approx 1,00. \end{cases}$$

Зробимо порівняльну таблицю:

$\mathcal{N}\!$	Метод	x_1	x_2	x_3	Кількість ітерацій
1	Точні методи (ЛР№2, ч.1)	1	2	1	
2	МПІ	1.00	2.00	1.00	6
3	M3	1.00	2.00	1.00	4

3. Зведення СЛАР до ітераційного вигляду.

3.1. Утворення лінійних комбінацій рівнянь системи.

Достатня умова збіжності МПІ накладає досить жорсткі умови на коефіцієнти вихідної лінійної системи (1)

$$Ax = b$$
,

а саме, умови діагонального переважання. На практиці рідко зустрічаються системи, в матрицях яких це діагональне переважання вже наявне одразу. Тому постає задача звести вихідну СЛАР до вигляду, де матриця системи матиме діагональне переважання. Ця задача розв'язується за умови, що матриця A вихідної системи є невиродженою (тобто $\det(A) \neq 0$).

Спосіб утворення лінійних комбінацій полягає у наступному:

- ☑ з виділених на першому кроці рівнянь та решти невикористаних рівнянь вихідної системи складають лінійно незалежні лінійні комбінації з таким розрахунком, щоб рівняння у новій системі були розташовані так, щоб переважаючі коефіцієнти були діагональними і всі вільні рядки виявилися заповненими; при цьому потрібно подбати, щоб кожне невикористане раніше рівняння потрапило хоча б в одну лінійну комбінацію, яка утворює рівняння нової системи.

Якщо вихідну СЛАР зведено до вигляду з матрицею, що задовольняє умову діагонального переважання, то така система зводиться до ітераційного вигляду (4)

$$x = Cx + d$$

шляхом розв'язання кожного рівняння системи відносно змінної, що має переважаючий коефіцієнт (перше рівняння розв'язується відносно x_1 , друге — відносно x_2 ,..., останнє рівняння системи — відносно x_n).

Пояснимо наведений алгоритм на прикладі.

Триклад L, Звести СЛАР

$$\begin{cases}
-x_1 + x_2 = 1, \\
2x_2 + x_3 = 5, \\
-x_1 + 5x_2 + 3x_3 = 12
\end{cases}$$

до нормального (ітераційного) вигляду (4) методом утворення лінійних комбінацій рівнянь системи.

► Розв'язання. Позначимо рівняння системи римськими цифрами

$$\begin{cases}
-x_1 + x_2 = 1, & \text{(I)} \\
2x_2 + x_3 = 5, & \text{(II)} \\
-x_1 + 5x_2 + 3x_3 = 12 & \text{(III)}
\end{cases}$$

для зручності запису лінійних комбінацій.

Проглядаємо рівняння системи і визначаємо, чи ϵ рівняння з переважаючими коефіцієнтами, тобто з коефіцієнтами, модулі яких більше суми модулів інших коефіцієнтів рівняння. Очевидно, що такими рівняннями у даній системі ϵ II та III, адже

$$2 > 0 + 1$$
 i $5 > |-1| + 3$,

причому в обох цих рівняннях переважаючим ϵ коефіцієнт біля змінної x_2 . Це означа ϵ , що у новій системі на другому місці ма ϵ або залишитись те рівняння, що було (II), або

на місце рівняння II маємо поставити рівняння III. Зупинимось на другому варіанті і поставимо рівняння III на друге місце нової системи

$$\begin{cases} \dots & (A) \\ -x_1 + 5x_2 + 3x_3 = 12, & (B) \\ \dots & (C) \end{cases}$$

Далі маємо заповнити позиції (A) та (C) нової системи, утворюючи лінійні комбінації рівнянь вихідної системи так, щоб переважав коефіцієнт біля змінної, номер якої співпадає з номером рівняння системи. При цьому ми обов'язково маємо використати хоча б в одній лінійній комбінації (а можна й у всіх) ще не використані рівняння I та II вихідної системи.

Утворимо комбінацію *III-6I*, тобто від третього рівняння вихідної системи віднімемо перше, помножене на 6:

$$-\frac{-x_1 + 5x_2 + 3x_3 = 12}{6(-x_1 + x_2) = 6 \cdot 1}$$
$$5x_1 - x_2 + 3x_3 = 6$$

Очевидно, що в отриманому рівнянні $5x_1 - x_2 + 3x_3 = 6$ переважаючим є коефіцієнт біля x_1 , оскільки

$$5 > |-1| + 3$$

тому у новій системі його слід поставити на позицію (A). Таким чином, приходимо до системи

$$\begin{cases} 5x_1 - x_2 + 3x_3 = 6, & (A) \\ -x_1 + 5x_2 + 3x_3 = 12, & (B), \\ \dots & (C) \end{cases}$$

де перше та друге рівняння вже ϵ такими, що забезпечать виконання умови діагонального переважання матриці системи. Залишається підібрати лінійну комбінацію, яку можна поставити на позицію (C).

Розглянемо комбінацію -4I-11II+5III, тобто перше рівняння вихідної системи множимо на -4, друге — на -11, третє на 5 і додаємо усі отримані рівняння:

$$-4(-x_1 + x_2) = -4 \cdot 1$$
+
$$-11(2x_2 + x_3) = -11 \cdot 5$$

$$5(-x_1 + 5x_2 + 3x_3) = 5 \cdot 12$$

$$-x_1 - x_2 + 4x_3 = 1$$

В отриманому рівнянні $-x_1-x_2+4x_3=1$, очевидно, переважаючим є коефіцієнт біля змінної x_3 , оскільки

$$4 > |-1| + |-1|$$

тому це рівняння у перетвореній системі має знаходитись на позиції (C).

Таким чином, утворенням лінійних комбінацій системи прийшли до еквівалентної системи

$$\begin{cases} 5x_1 - x_2 + 3x_3 = 6, & (A) \\ -x_1 + 5x_2 + 3x_3 = 12, & (B) \\ -x_1 - x_2 + 4x_3 = 1 & (C) \end{cases}$$

з матрицею

$$\widetilde{A} = \begin{pmatrix} 5 & -1 & 3 \\ -1 & 5 & 3 \\ -1 & -1 & 4 \end{pmatrix} \quad |a_{11}| = 5 > |-1| + 3 = |a_{12}| + |a_{13}| \\ |a_{22}| = 5 > |-1| + 3 = |a_{21}| + |a_{23}| \\ |a_{33}| = 4 > |-1| + |-1| = |a_{31}| + |a_{32}|$$

елементи якої, очевидно, задовольняють умовам діагонального переважання.

Далі розв'язуємо перше рівняння перетвореної системи відносно x_1 , друге — відносно x_2 , третє — відносно x_3 і отримуємо систему у нормальному (ітераційному) вигляді (4):

$$\begin{cases} x_1 = \frac{6}{5} + \frac{1}{5}x_2 - \frac{3}{5}x_3, \\ x_2 = \frac{12}{5} + \frac{1}{5}x_1 - \frac{3}{5}x_3, \\ x_3 = \frac{1}{4} + \frac{1}{4}x_1 + \frac{1}{4}x_2, \end{cases}$$

де

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ d = \begin{pmatrix} 6/5 \\ 12/5 \\ 1/4 \end{pmatrix}, \ C = \begin{pmatrix} 0 & 1/5 & -3/5 \\ 1/5 & 0 & -3/5 \\ 1/4 & 1/4 & 0 \end{pmatrix}. \blacksquare$$

3.2. Множення на матрицю $(A-\varepsilon)^{-1}$.

Якщо матриця A вихідної системи ϵ невиродженою (тобто $\det(A) \neq 0$), але не задовольня ϵ умову діагонального переважання, достатню для збіжності МПІ чи метода Зейделя, то досягнути виконання ці ϵ ї умови можна, взявши деяке маленьке додатне число ϵ ($0 < \epsilon < 1$) і помноживши вихідну систему зліва на матрицю $(A - \epsilon)^{-1}$, а значить, перейшовши від вихідної системи

$$Ax = b$$

до еквівалентної їй системи

$$\underbrace{(A-\varepsilon)^{-1}A}_{\alpha}x = \underbrace{(A-\varepsilon)^{-1}b}_{\beta}$$
 (26)

тобто

$$\alpha x = \beta \,, \tag{27}$$

де матриця $\alpha = (A - \varepsilon)^{-1}A$ вже задовольняє умову діагонального переважання.

Після вказаної процедури у системі (27) перше рівняння розв'язується відносно x_1 , друге — відносно x_2 ,..., останнє рівняння системи — відносно x_n і отримується система вигляду (4)

$$x = Cx + d$$
.

придатному для організації ітераційного процесу методу простої ітерації чи Зейделя.

Тулклад 3, Звести СЛАР

$$\begin{cases}
-x_1 + x_2 = 1, \\
2x_2 + x_3 = 5, \\
-x_1 + 5x_2 + 3x_3 = 12
\end{cases}$$

до нормального (ітераційного) вигляду (4) методом множення на матрицю $(A-\varepsilon)^{-1}$.

► <u>Розв'язання.</u> Матриця вихідної системи, очевидно, не задовольняє умовам діагонального переважання, адже

$$A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 2 & 1 \\ -1 & 5 & 3 \end{pmatrix} \quad |a_{11}| = 1 = 1 + 0 = |a_{12}| + |a_{13}| \\ |a_{22}| = 2 > 0 + 1 = |a_{21}| + |a_{23}| \\ |a_{33}| = 3 < |-1| + 3 = |a_{31}| + |a_{32}|$$

Матричний запис системи має вигляд

$$\begin{pmatrix} -1 & 1 & 0 \\ 0 & 2 & 1 \\ -1 & 5 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 12 \end{pmatrix}$$
 (28)

Матриця $A \in$ невиродженою, оскільки

$$\det(A) = \begin{vmatrix} -1 & 1 & 0 \\ 0 & 2 & 1 \\ -1 & 5 & 3 \end{vmatrix} = -2 \neq 0.$$

Візьмемо $\varepsilon = 0,1$ і побудуємо матрицю $(A - \varepsilon)^{-1}$. Матриця $A - \varepsilon$ має вигляд

$$A - \varepsilon = \begin{pmatrix} -1,1 & 0,9 & -0,1 \\ -0,1 & 1,9 & 0,9 \\ -1,1 & 4,9 & 2,9 \end{pmatrix}.$$

Тоді

$$(A - \varepsilon)^{-1} = \begin{pmatrix} -11/20 & 31/20 & -1/2 \\ 7/20 & 33/20 & -1/2 \\ -4/5 & -11/5 & 1 \end{pmatrix}$$

Помножимо матричний вигляд (28) запису вихідної системи на знайдену матрицю $(A-\varepsilon)^{-1}$ зліва:

$$\begin{pmatrix} -11/20 & 31/20 & -1/2 \\ 7/20 & 33/20 & -1/2 \\ -4/5 & -11/5 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 & 0 \\ 0 & 2 & 1 \\ -1 & 5 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -11/20 & 31/20 & -1/2 \\ 7/20 & 33/20 & -1/2 \\ -4/5 & -11/5 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 5 \\ 12 \end{pmatrix}.$$

Виконуючи множення матриць, отримуємо матричну рівність

$$\begin{pmatrix} 21x_1/20 + x_2/20 + x_3/20 \\ 3x_1/20 + 23x_2/20 + 3x_3/20 \\ -x_1/5 - x_2/5 + 4x_3/5 \end{pmatrix} = \begin{pmatrix} 6/5 \\ 13/5 \\ 1/5 \end{pmatrix},$$

що еквівалентна системі з матрицею, котра задовольняє умови діагонального переважання

$$\begin{cases} \frac{21}{20}x_1 + \frac{1}{20}x_2 + \frac{1}{20}x_3 = \frac{6}{5}, & |a_{11}| = \frac{21}{20} > \frac{1}{20} + \frac{1}{20} = |a_{12}| + |a_{13}| \\ \frac{3}{20}x_1 + \frac{23}{20}x_2 + \frac{3}{20}x_3 = \frac{13}{5}, & |a_{22}| = \frac{23}{20} > \frac{3}{20} + \frac{3}{20} = |a_{21}| + |a_{23}| \\ -\frac{1}{5}x_1 - \frac{1}{5}x_2 + \frac{4}{5}x_3 = \frac{1}{5} & |a_{33}| = \frac{4}{5} > \left| -\frac{1}{5} \right| + \left| -\frac{1}{5} \right| = |a_{31}| + |a_{32}| \end{cases}$$

Помноживши перші два рівняння системи на 20, а третє — на 5, отримаємо еквівалентну систему з цілими коефіцієнтами (діагональне переважання, очевидно, при цьому збережеться):

$$\begin{cases} 21x_1 + x_2 + x_3 = 24, \\ 3x_1 + 23x_2 + 3x_3 = 52, \\ -x_1 - x_2 + 4x_3 = 1 \end{cases}$$

Далі розв'язуємо перше рівняння перетвореної системи відносно x_1 , друге — відносно x_2 , третє — відносно x_3 і отримуємо систему у нормальному (ітераційному) вигляді (4):

$$\begin{cases} x_1 = \frac{24}{21} - \frac{1}{21}x_2 - \frac{1}{21}x_3, \\ x_2 = \frac{52}{23} - \frac{3}{23}x_1 - \frac{3}{23}x_3, \\ x_3 = \frac{1}{4} + \frac{1}{4}x_1 + \frac{1}{4}x_2, \end{cases}$$

де

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ d = \begin{pmatrix} 24/21 \\ 52/23 \\ 1/4 \end{pmatrix}, \ C = \begin{pmatrix} 0 & -1/21 & -1/21 \\ -3/23 & 0 & -3/23 \\ 1/4 & 1/4 & 0 \end{pmatrix}. \blacksquare$$

Попередньо звівши задану СЛАР до нормального вигляду, знайти наближене значення її розв'язку наближеними методами з точністю до $\varepsilon = 0,001$:

- ☑ методом простої ітерації (Якобі);
- ☑ методом Зейделя
- 1. Байрамов Алі Мірзабей-огли

$$\begin{cases} 4x_1 +3x_2 +2x_3 +x_4 = 12; \\ 3x_1 +6x_2 +4x_3 +2x_4 = 19; \\ 2x_1 +4x_2 +6x_3 +3x_4 = 21; \\ x_1 +2x_2 +3x_3 +4x_4 = 13 \end{cases}$$

2. Беленчуқ Олеқсій Ігорович

$$\begin{cases} x_{1} +5x_{2} +3x_{3} -4x_{4} = 5; \\ 3x_{1} +x_{2} -2x_{3} = 2; \\ 5x_{1} -7x_{2} +10x_{4} = 8; \\ 3x_{2} -5x_{3} = -2 \end{cases}$$

3. Березний Ігор Васильович

$$\begin{cases} x_1 +2x_2 +x_3 = 6; \\ -x_1 -2x_2 +2x_3 = -3; \\ 3x_1 +x_2 +x_3 = 6 \end{cases}$$

4. Бужақ Андрій Васильович

$$\begin{cases} x_1 + x_2 + 2x_3 + 3x_4 = 8; \\ 3x_1 - x_2 - x_3 - 2x_4 = 2; \\ 2x_1 + 3x_2 - x_3 - x_4 = 5; \\ x_1 + 2x_2 + 3x_3 - x_4 = 6 \end{cases}$$

5. Бурле Павло Марчелович

$$\begin{cases} 5x_1 & +8x_2 & -x_3 & = 16; \\ x_1 & +2x_2 & +3x_3 & = 10; \\ 2x_1 & -3x_2 & +2x_3 & = 5 \end{cases}$$

6. Волощуқ Назарій Васильович

$$\begin{cases} x_1 & -2x_2 & +3x_3 & +4x_4 & =11; \\ x_1 & -2x_3 & +3x_4 & =6; \\ 3x_1 & +2x_2 & -5x_4 & =-2; \\ 4x_1 & +3x_2 & -5x_3 & =6 \end{cases}$$

7. Георгіян Євген Геннадійович

$$\begin{cases} 2x_1 & -x_2 & -x_3 & =1; \\ 3x_1 & +4x_2 & -2x_3 & =12; \\ 3x_1 & -2x_2 & +4x_3 & =6 \end{cases}$$

8. Григорчуқ В'ячеслав Валерійович

$$\begin{cases} 4x_1 & -3x_2 & +2x_3 & = 9; \\ 2x_1 & +5x_2 & -3x_3 & = 3; \\ 5x_1 & +6x_2 & -2x_3 & = 12 \end{cases}$$

9. Фенис Фенис Русланович

$$\begin{cases} x_1 +2x_2 +4x_3 = 15; \\ 5x_1 +x_2 +2x_3 = 12; \\ 3x_1 -x_2 +x_1 = 2 \end{cases}$$

10. Фручук Роман Олександрович

$$\begin{cases} x_1 & +3x_2 & +5x_3 & +7x_4 & = 22; \\ 3x_1 & +5x_2 & +7x_3 & +x_4 & = 26; \\ 5x_1 & +7x_2 & +x_3 & +3x_4 & = 22; \\ 7x_1 & +x_2 & +3x_3 & +5x_4 & = 26 \end{cases}$$

11. Дубець Василь Русланович

$$\begin{cases} x_1 & +2x_2 & +3x_3 & +4x_4 & =10; \\ 2x_1 & +x_2 & +2x_3 & +3x_4 & =8; \\ 3x_1 & +2x_2 & +x_3 & +2x_4 & =8; \\ 4x_1 & +3x_2 & +2x_3 & +x_4 & =10 \end{cases}$$

12. Дуплава Олеқсандр Ігорович

$$\begin{cases} x_1 & +2x_2 & +3x_3 & -2x_4 & = 5; \\ x_1 & -x_2 & -2x_3 & -3x_4 & = -4; \\ 3x_1 & +2x_2 & -x_3 & +2x_4 & = 9; \\ 2x_1 & -3x_2 & +2x_3 & +x_4 & = 4 \end{cases}$$

13. Жупниқ Евеліна Михайлівна

$$\begin{cases} 2x_1 & -x_2 & +x_3 & -x_4 & = 0; \\ 2x_1 & -x_2 & -3x_4 & = -7; \\ 3x_1 & -x_3 & +x_4 & = 8; \\ 2x_1 & +2x_2 & -2x_3 & +5x_4 & = 21 \end{cases}$$

14. Івасюта Павло Сергійович

$$\begin{cases} 4x_1 + x_2 & -x_4 = 4; \\ x_1 - 3x_2 + 4x_3 & = -1; \\ 3x_2 - 2x_3 + 4x_4 = 12; \\ x_1 + 2x_2 - x_3 - 3x_4 = -2 \end{cases}$$

15. Қачуровський Станіслав Тарасович

$$\begin{cases} 3x_1 & +2x_2 & +x_3 & =10; \\ 2x_1 & +3x_2 & +x_3 & =11; \\ 2x_1 & +x_2 & +3x_3 & =13 \end{cases}$$

16. Клим Фмитро Іванович

$$\begin{cases} x_1 & +2x_2 & +x_3 & = 7; \\ 3x_1 & -5x_2 & +3x_3 & = -1; \\ 2x_1 & +7x_2 & -x_3 & = 17 \end{cases}$$

17. Қозуб Миқола Миқолайович

$$\begin{cases} 2x_1 + x_2 - x_3 = 2; \\ x_1 + x_2 + x_3 = 6; \\ 3x_1 - x_2 + x_3 = 8 \end{cases}$$

18. Копадзе Олександра Сергіївна

$$\begin{cases} x_1 + x_2 + x_3 = 6; \\ 2x_1 - x_2 - 6x_3 = -18; \\ 3x_1 - 2x_2 = -1 \end{cases}$$

19. Қостюқ Віталій Іванович

$$\begin{cases} x_1 & +2x_2 & -x_3 & +x_4 & = 6; \\ 2x_1 & +x_2 & +x_3 & +x_4 & = 9; \\ x_1 & -x_2 & +2x_3 & +x_4 & = 3; \\ x_1 & +x_2 & -x_3 & +3x_4 & = 4 \end{cases}$$

20. Кушніриқ Яна Олеқсандрівна

$$\begin{cases} 5x_1 & +3x_2 & -7x_3 & +3x_4 & = 1; \\ x_1 & -2x_2 & -3x_4 & = -2; \\ x_2 & -3x_3 & +4x_4 & = 1; \\ 4x_1 & +3x_2 & -5x_3 & = -1 \end{cases}$$

21. Луниқ Марія Михайлівна

$$\begin{cases} 2x_1 & -6x_2 & +2x_3 & +2x_4 & = 6; \\ x_1 & +3x_2 & +5x_3 & +7x_4 & = 13; \\ 3x_1 & +5x_2 & +7x_3 & +x_4 & = 11; \\ 5x_1 & +7x_2 & +x_3 & +3x_4 & = 9 \end{cases}$$

22. Мақсименқо Михайло Сергійович

$$\begin{cases} x_1 + x_2 - x_3 - x_4 = -2; \\ x_2 + 2x_3 - x_4 = 0; \\ x_1 - x_2 - x_4 = -1; \\ -x_1 + 3x_2 - 2x_3 = -3 \end{cases}$$

23. Мінтянський Андрій Петрович

$$\begin{cases} 3x_1 & -x_2 & +x_3 & = 7; \\ 2x_1 & -5x_2 & -3x_3 & = -7; \\ x_1 & -x_2 & -x_3 & = -1 \end{cases}$$

24. Паращук Олексій Іванович

$$\begin{cases} 2x_1 & -x_2 & +3x_3 & +2x_4 & =11; \\ 3x_1 & +3x_2 & +3x_3 & +2x_4 & =16; \\ 3x_1 & -x_2 & -x_3 & +2x_4 & =4; \\ 3x_1 & -x_2 & +3x_3 & -x_4 & =6 \end{cases}$$

25. Сарай Богдан Васильович

$$\begin{cases} 3x_1 & -x_2 & +4x_3 & = 5; \\ -2x_1 & +x_2 & +x_3 & = 1; \\ 2x_1 & -x_2 & +4x_3 & = 4 \end{cases}$$

26. Фецюк Фенис Мирославович

$$\begin{cases} 5x_1 + x_2 & -x_4 = 7; \\ 3x_1 - 3x_2 + x_3 + 4x_4 = -2; \\ 3x_1 - 2x_2 + x_3 + x_4 = 0; \\ x_1 - 4x_2 + x_4 = -7 \end{cases}$$

27. Хмелєвська Анастасія Олександрівна

$$\begin{cases} 2x_1 + x_2 -5x_3 + x_4 = 0; \\ x_1 -3x_2 + x_3 +6x_4 = 11; \\ 2x_1 + x_2 -x_3 +2x_4 = 6; \\ x_1 +4x_2 -7x_3 +6x_4 = 10 \end{cases}$$

28. Чайқовсьқий Станіслав Валерійович

$$\begin{cases} x_1 + x_2 + 2x_3 = 5; \\ 2x_1 - x_2 + 2x_3 = 5; \\ 4x_1 + x_2 + 4x_3 = 13 \end{cases}$$

Singanypa:

1. Практикум з чисельних методів : Навч. посібник / С.М. Шахно, А.Т. Дудикевич, С.М. Левицька – Львів : ЛНУ імені Івана Франка, 2013. – 432 с.