# Data Science Static data analysis

Stéphane Marchand-Maillet

Master en Sciences Informatiques - Semestre d'Automne

## Data modelling

- \* Up until now, we have studied data with an implicit model underlying the technique
  - Component models → Variance as a criterion on centered data (Normal distribution)
  - $\circ$  Discriminant models  $\to$  Variance of projected data in within- and between-class models
- $\Rightarrow$  The distribution is fixed (essentially normal) and we look for its parameters  $(\mu, \sigma)$ 
  - \* Alternatively we can search a model for data density
  - \* Let  $f(\mathbf{x}): \mathcal{F} \to \mathbb{R}$  be the data density

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 2/28

## Density estimation

- Nearest neighbor methods (knn)
- Parzen windows, RBF networks
- \* Histograms
- \* Mixture models

#### Density estimation: perspective plot



### Mixture models

#### **Definition**

\* The density f(x) is generated by c "basis" functions (components)

$$f(x) = \sum_{j=1}^{c} \pi_j \phi(x, \boldsymbol{\theta}_j)$$

- $\star \pi_i$  are the mixture parameters
- $\star$   $\phi(x, oldsymbol{ heta}_j)$  are functions controlled by parameters  $oldsymbol{ heta}_j$

### Hypotheses

- 1. The number of components (c) is known
- 2. The family of functions  $\phi$  is known
- 3. Labels (classes) are unknown

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 4/28

## Probabilist reading

\* Density f(x) represents a random process where x is drawn from a set of states  $\omega_i$  with prior probability  $P(\omega_i)$ 

$$f(x) = \sum_{j=1}^{c} \pi_j \phi(x, \boldsymbol{\theta}_j)$$

$$f(x) = p(x|\boldsymbol{\theta}) = \sum_{i=1}^{c} P(\omega_i) P(x|\omega_i, \boldsymbol{\theta}_i)$$

- \* We get  $\pi_i = P(\omega_i)$  and  $\sum_i \pi_i = 1$
- \*  $\phi(x, \theta_i)$  is the conditional probabilty that x is generated by  $\omega_i$

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 5/28

#### Gaussian mixture

 $\phi$  is a probability density function. Chosing the (agnostic) normal law as basis  $\mathcal{N}(\mu, \Sigma)$  seems reasonable:

$$f(x) = \sum_{i=1}^{c} \pi_{j} \mathcal{N}(\mu_{j}, \Sigma_{j})$$

- ★ Can approximate any density
- \* Enables a linear system of its parameters by maximising the log-likelihood

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 - 6/28

# Maximum log-likelihood (ML)

- \* Given  $\Omega = \{x_1, \dots, x_N\}$  unlabeled samples generated by the mixture  $f(x) = p(x|\theta)$ .
- $\star \theta = \{\pi_j, \mu_j, \Sigma_j\}$  atre the parameters to infer.
- \* Likelihood:

$$p(\Omega|\boldsymbol{\theta}) = \prod_{i}^{N} p(x_{i}|\boldsymbol{\theta})$$

- \* Estimation :  $\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} p(\Omega|\boldsymbol{\theta})$
- \* or maximimum log-likelihood

$$I(\boldsymbol{\theta}, \Omega) = \sum_{i=1}^{N} \log p(x_i | \boldsymbol{\theta}) = \sum_{i=1}^{N} \log \left[ \sum_{j=1}^{c} \pi_j \phi(x_i, \boldsymbol{\theta}_j) \right]$$

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 7/28

## Basic case : 1 component, c = 1

$$\star \boldsymbol{\theta} = \{\mu, \boldsymbol{\Sigma}\}$$



$$\max_{\boldsymbol{\theta}} \sum_{i} \log e^{-(x_i - \mu)^T \Sigma^{-1}(x_i - \mu)}$$



$$\min_{\boldsymbol{\theta}} \sum_{i} (x_i - \mu)^{\mathsf{T}} \Sigma^{-1} (x_i - \mu)$$

## Basic case : 1 component, c = 1

$$\star \ \boldsymbol{\theta} = \{\mu, \boldsymbol{\Sigma}\}$$



$$\max_{\boldsymbol{\theta}} \sum_{\cdot} \log e^{-(x_i - \mu)^\mathsf{T} \Sigma^{-1} (x_i - \mu)}$$

$$\longrightarrow$$

$$\min_{\boldsymbol{\theta}} \sum_{i} (x_i - \mu)^{\mathsf{T}} \Sigma^{-1} (x_i - \mu)$$

$$\star \hat{\mu} = \frac{1}{N} \sum_{i} x_{i}$$

\* 
$$\hat{\Sigma} = \frac{1}{N} \sum_{i} (x_i - \mu)(x_i - \mu)^{\mathsf{T}}$$

## A bit more complex: 2 components

$$\boldsymbol{\theta} = \{\pi, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2\}$$
$$= \{\pi_1, \pi_2, \mu_1, \Sigma_1, \mu_2, \Sigma_2\}$$



$$I(\boldsymbol{\theta}, \Omega) = \sum_{i=1}^{N} \log \left[ (1 - \pi) \phi(x_i, \boldsymbol{\theta}_1) + \pi \phi(x_i, \boldsymbol{\theta}_2) \right]$$

- ⇒ difficult to maximise because of the sum inside the log!
- ⇒ Solution : iteratif 2 steps (E-M) algorithm to maximise /
- → Expectation-Maximisation (EM) algorithm

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 10/28

# EM algorithm (2 components)

- \* The unknown here is the assignement  $x_i$  to one of the 2 components  $\phi_i$
- $\Rightarrow$  If we knew it, we would treat the problem as twice 1 component
  - \* The EM algorithm introduces unknown variables : the assignement  $\Delta_i \in \{0,1\}$  of every  $x_i$  to one component :

$$x_i \backsim \phi_1$$
 if  $\Delta_i = 0, x_i \backsim \phi_2$  if  $\Delta_i = 1$ 

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 11/28

## Expectation (E-step)

- $\star$  Assume we know an initial value for  $\theta^0$
- \* We can infer the contribution of every data  $x_i$  to every density (parameterized by  $\theta_i^0$ ):

$$\begin{aligned} \gamma_i(\boldsymbol{\theta}^0) &= E[\Delta_i | \boldsymbol{\theta}^0, \Omega] \\ &= \frac{\pi \phi(x_i, \boldsymbol{\theta}_2^0)}{(1 - \pi)\phi(x_i \boldsymbol{\theta}_1^0) + \pi \phi(x_i, \boldsymbol{\theta}_2^0)} \end{aligned}$$

- \*  $\gamma_i$  is the responsability.
- \* It is the expectation of  $\Delta_i$  over all components

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 12/28

## Responsability and soft-assignment

- $\gamma_i$  allows to determine  $\Delta_i \;\Rightarrow\; \mathit{x_i}$  can be assigned to either  $\phi_1$  or  $\phi_2$
- ⇒ K-means-type hard-assignement. Each data is assigned to one and only one cluster

EM is "softer". A data may contribute (via  $\gamma_i$ ) to several density modes (clusters). EM computes a soft-assignment (with  $\sum_i \gamma_i = 1$ )

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 13/28

# Maximisation (M-step)

\* Given every data responsibility  $(\gamma_i)$ , we can estimate the parameters by (weighted) maximum likelihood:

$$\hat{\mu}_{1} = \frac{\sum_{i=1}^{N} (1 - \gamma_{i}) x_{i}}{\sum_{i=1}^{N} 1 - \gamma_{i}} \qquad \hat{\Sigma}_{1} = \frac{\sum_{i=1}^{N} (1 - \gamma_{i}) (x_{i} - \mu_{1}) (x_{i} - \mu_{1})^{T}}{\sum_{i=1}^{N} 1 - \gamma_{i}}$$
$$\hat{\mu}_{2} = \frac{\sum_{i=1}^{N} \gamma_{i} x_{i}}{\sum_{i=1}^{N} \gamma_{i}} \qquad \hat{\Sigma}_{2} = \frac{\sum_{i=1}^{N} \gamma_{i} (x_{i} - \mu_{1}) (x_{i} - \mu_{1})^{T}}{\sum_{i=1}^{N} \gamma_{i}}$$

\* Proportion for mixture 1:  $\pi = \sum_{i=1}^{N} \gamma_i / N$ 

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 14/28























### Results

\* True parameters

| $\pi$ | $\mu_1$ | $\sigma_1$ | $\mu_2$ | $\sigma_2$ |
|-------|---------|------------|---------|------------|
| 0.75  | 2       | 2          | 8       | 1          |

\* Estimated parameters

| $\hat{\pi}$   | $\hat{\mu_1}$ | $\hat{\sigma_1}$ | $\hat{\mu_2}$ | $\hat{\sigma_2}$ |  |  |  |
|---------------|---------------|------------------|---------------|------------------|--|--|--|
| 10 iterations |               |                  |               |                  |  |  |  |
| 0.76          | 2.17          | 1.56             | 7.91          | 1.06             |  |  |  |
| 20 iterations |               |                  |               |                  |  |  |  |
| 0.76          | 2.15          | 1.98             | 8.01          | 0.98             |  |  |  |

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 - 26/28

#### **Iterations**

Alternate cycle Expectation-Maximisation → increases the likelihood of the data w.r.t mixture model



The process is iterated until convergence, ie when the likelihood of the data does not change (much)

#### Limitations

- ★ Hill-climbing ⇒ depends on initial parameters
- \* Potential slow convergence, depending on the distributions
- **★** Hill-climbing ⇒ sensitive to local maxima

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 28/28

## c-component mixtures

#### Generalisation with:

$$\Delta_{i1}, \Delta_{i2}, \ldots, \Delta_{ik}, \ldots, \Delta_{ic}$$

True (=1) if data  $x_i$  is generated by component  $\phi_k$ 

 $\Rightarrow$  Responsability  $\gamma_{ik}$ : expectation of  $\Delta_{ik}$  over all the components  $\{\pi_k, \mu_k, \Sigma_k\}_{k=1,\dots,c}$  unknown parameters (before:  $\pi_1 = \pi$ ,  $\pi_2 = 1 - \pi$ 

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 - 29/28

## EM algorithm, c components

- 1. Initial  $\boldsymbol{\theta}^0 = \{\pi_k^0, \mu_k^0, \Sigma_k^0\}_{k=1,...,c}$ 
  - In general  $\pi_k = 1/c$ ,  $\mu_k$  is chosen at random and  $\Sigma_k = \operatorname{Id}$
  - Alternative : use k-means as initialisation
- 2. E-step: compute responsabilities for every data  $i=1,\ldots,N$  and every component  $k=1,\ldots,c$

$$\gamma_{ik} = \frac{\pi_k \phi(x_i, \boldsymbol{\theta}_k)}{\sum_{j=1}^c \pi_j \phi(x_i, \boldsymbol{\theta}_j)}$$

3. M-step Estimations of mixture parameters

$$\mu_k = \frac{\sum_{i=1}^N \gamma_{ik} x_i}{\sum_i \gamma_{ik}}; \quad \Sigma_k = \frac{X_k \Gamma_k X_k^\mathsf{T}}{\mathsf{Tr}(\Gamma_k)}; \quad \pi_k = \frac{\sum_i \gamma_{ik}}{\mathsf{N}}$$

with  $\Gamma_k = \text{diag}[\gamma_{1k}, \dots, \gamma_{Nk}], X_k$  centered on  $\mu_k$ 

4. Iterate 2. and 3. until convergence

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 30/28

## Modeling

- \* The a priori parametrisation of the mixture changes the convergence
- Parameters
  - 1. c: number of components
  - 2.  $\Sigma_k$ : the shape of covariance matrices (diagonal, full, parameterised)
- \* Too flexible or too rigid models mean wrong or no convergence...
- \* Number of variables :  $p \times p \times c + 2 \times c$  : if N low, p large and c large  $\rightarrow$  over-parameterised

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 - 31/28

## Shape of the covariance matrix

### Over-parameterised problem

- $\star \Sigma \in \mathbb{R}^{p \times p}$
- \* Eg: character recognition  $\mathbf{x}_i \in \mathbb{R}^{256}$
- $\Rightarrow$  Needs to estimate  $256^2 \times c$  parameters for the covariance (given about 7000 data points)!

### Matrix parameterisation

- \* Spherical models  $\Sigma = \sigma * Id$ , 1 parameter
- \* Diagonal models  $\Sigma = \text{diag}[\sigma_1, \dots, \sigma_p]$ , p parameters
- \* Full models  $\Sigma \in \mathbb{R}^{p \times p}$ ,  $p^2$  parameters

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 32/28

## Character recognition



More complex models  $\rightarrow$  no convergence since p is too large

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 33/28

## Pre-processing: using PCA to reduce the dimension

Recall: 50 principal components reconstruct 90% of the signal EM within the space of the 50 first PC





















Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 - 34/28

## Pre-processing: using PCA to reduce the dimension

Recall: 50 principal components reconstruct 90% of the signal EM within the space of the 10 first PC





















Stéphane Marchand-Maillet

## Pre-processing: using PCA to reduce the dimension

Recall: 50 principal components reconstruct 90% of the signal EM within the space of the 2 first PC





















Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 - 36/28

## Number of components

### Parcimony

- ★ The larger c, the less points may be assigned to every component (in average)
- \* Search for parcimonious models, ie small number of parameters to estimate

## Bayesian Information Criterion (BIC)

- \* The larger c is, the better the estimate of I
- \* Trade likelihood against complexity

$$BIC = 2 * I(\theta) - |\theta| \cdot \log(N)$$

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 – 37/28



Modeling











# Example (cont'd)



- Need to test all models
- Depends on convergence
- \* Fine tuning by hand!

#### Conclusions

#### Gaussian mixtures

- \* The Gaussian mixture model generalises the underlying data hypothesis made by PCA and LDA
- \* Explicit density modeling and estimation
- \* Also classification (unsupervised): if components are classes, data point i is associated to class k for which  $p(k|x_i) \approx \pi_k \phi_k(x_i)$  is maximised amongst all classes

ATI05 - 45/28 Stéphane Marchand-Maillet Data Science: EM Algorithm

#### Conclusions

### EM algorithm

- Iterative algorithm to maximise the (log-)likelihood
- \* Principle used in many other scenarios
- \* Based on the definition of hidden (latent) variables
- \* Probabilistic Latent Semantic Analysis (pLSA)  $\rightarrow$  EM where the hidden variables are the latent concepts

Stéphane Marchand-Maillet Data Science: EM Algorithm ATI05 - 46/28