

Manipulation and Skill Learning and Generalizing

白云峰 Yunfeng Bai 山大全能队伍

School of Control Science and Engineering, Shandong University, Jinan, China Engineering Research Center of Intelligent Unmanned, Shandong University, Jinan, China

1015451198@qq.com Shandong University 山东大学 15098735962

Learning from Demonstration

Definition: Learning from demonstration (LfD) is the paradigm in which robots acquire new skills by learning to imitate an expert in the context of robotics and automation.

- □ Kinesthetic teaching
- □ Teleoperation
- Passive observation
- Active and Interactive Demonstrations

Learning from Demonstration

- **□** Dynamic Movement Primitive
 - Nonlinear Dynamic System:

$$\tau \begin{bmatrix} \ddot{z} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} \alpha_z (\beta_z (g-z) - \dot{z}) + f(x,g) \\ -\alpha_x x \end{bmatrix}$$

- Forcing Function:

$$f(x,g) = \left(\sum_{i=1}^{N} \psi_i \cdot \frac{\omega_i}{\sum_{i=1}^{N} \psi_i}\right) x(g - z_0)$$

- Basis Function Weight:

$$\omega_i = \frac{s\boldsymbol{\psi}_i \boldsymbol{f}_{target}}{s\boldsymbol{\psi}_i \boldsymbol{s}^T}.$$

- □ Gaussian Mixture Model and Gaussian Mixture Regression (GMM-GMR)
 - Joint Probability Distribution:

$$P(s,\xi) \sim \sum_{c=1}^{C} \pi_c N\left(\mu_c, \sum_{c}\right)$$

– Gaussian Component:

$$\mu_c = \left[\begin{matrix} \mu_{s,c} \\ \mu_{\xi,c} \end{matrix} \right]$$

$$\sum_{c} = \begin{bmatrix} \sum_{ss,c} & \sum_{s\xi,c} \\ \sum_{\xi s,c} & \sum_{\xi \xi,c} \end{bmatrix}$$

Overview

Task I: To accurately learn motor skills from human demonstrations and experiments data, data alignment is performed on the teaching data through Dynamic Time Warping (DTW).

Task II: Then, the data is analyzed using the statistical method Gaussian Mixture Model and Gaussian Mixture Regression (GMM-GMR). Ultimately, Dynamic Movement Primitives (DMPs) learn motor skills from human demonstrations and experiments data.

Thanks for your listening!

1015451198@qq.com