Оглавление

0.1. Корни из единицы

Определение 1. K -поле, $\varepsilon \in K$, ε называется корнем n-й степени из единицы, если $\varepsilon^n=1.$ ε — примитивный корень степени n, если $\varepsilon^n = 1$, $\varepsilon^k \neq 1$ при $1 \leq k < n$

Пример. $K = \mathbb{Z}_5(\alpha), \quad \alpha^2 - 3 = 0$ $lpha^8=3^4=81=1\implies lpha$ — корень 8-й степени из единицы

Свойства.

1. Корни *n*-й степени из 1 образуют абелеву группу по умножению

Доказательство. Пусть U- множество корней n-й степени.

•
$$\varepsilon_1, \varepsilon_2 \in U \implies (\varepsilon_1 \varepsilon_2)^n = \varepsilon_1^n \varepsilon_2^n = 1 \cdot 1 = 1 \implies \varepsilon_1 \varepsilon_2 \in U$$

•
$$\varepsilon_1, \varepsilon_2 \in U \implies (\varepsilon_1 \varepsilon_2)^n = \varepsilon_1^n \varepsilon_2^n = 1 \cdot 1 = 1 \implies \varepsilon_1 \varepsilon_2 \in U$$

• $\varepsilon \in U \implies \left(\frac{1}{\varepsilon}\right)^n = \frac{1}{\varepsilon^n} = \frac{1}{1} = 1 \implies \varepsilon^{-1} \in U$

2. char $k=p\in\mathbb{P}\neq 0$, $n=p^mh$, $h\not\mid p$, ε —корень n-й степени из 1. Тогда ε — корень h-й степени из 1.

Докажем, что если $\varepsilon^{ps} = 1$, то $\varepsilon^s = 1$:

$$C_p^i = rac{p!}{(p-i)! \cdot i!}$$
 $: p$ при $1 \leq i \leq p-1$ в $\mathbb Z$

$$\operatorname{char} K = p \implies C_p^i = 0$$
 при $1 \le i \le p$

$$(\mathsf{T. \ K. \ } p! : p, \quad (p-i)! \cdot i! \quad \mathsf{I} \quad \mathsf{I} \quad \mathsf{I} \quad \mathsf{I} = \mathsf{I} \mathsf{I}$$

$$(\mathsf{T. \ K. \ } p! : p, \quad (p-i)! \cdot i! \not p)$$

$$\mathsf{char} \, K = p \implies C_p^i = 0 \, \mathsf{при} \, 1 \le i \le p$$

$$(\varepsilon^s - 1)^p = (\varepsilon^s)^p + 0 \cdot (\varepsilon^s)^{p-1} \cdot (-1) + \dots + 0 \cdot \varepsilon^s \cdot (-1)^{p-1} + (-1)^p = \varepsilon^{sp} - 1 = 1 - 1 = 0 \xrightarrow[\mathsf{oбл. \ цел.}]{\mathsf{cofn. \ цел.}} \varepsilon^s - 1$$

Пример. $K + \mathbb{Z}_5(\alpha), \quad \alpha^2 - 3 = 0$

Проверим, что α — примитивный корень 8-й степени:

$$\alpha^8 = 1 \implies 8 : \operatorname{ord} \alpha \implies \operatorname{ord} \alpha = \begin{bmatrix} 8 \\ 4 \\ 2 \\ 1 \end{bmatrix}$$

Если ord
$$\alpha = \left[\begin{array}{c} 4 \\ 2 \\ 1 \end{array} \right.$$
 , то $\alpha^4 = 1$

$$\alpha^4 = 3^2 = 9 = 4 \neq 1$$

Теорема 1 (существование примитивного корня). K- поле, $h \in \mathbb{N}$ x^h-1 раскладывается в K на линейные множители, $h \not$ char K Тогла

- 1. в K есть h различных корней n-й степени из единицы;
- 2. существует примитивный корень h-й степени из единицы;
- 3. группа корней h-й степени является циклической и порождается любым примитивным корнем.

Доказательство.

- 1. $p(x) = x^h 1$ имеет h корней с учётом кратности $p'(x) = hx^{h-1}$ единственный корень 0 не является корнем p(x)
- 2. U-группа корней h-й степени из единицы, |U|=h

Нужно доказать, что $\exists \, \varepsilon \in U : \quad \operatorname{ord} \varepsilon = h$

Пусть $h = p_1^{a_1} \cdot \dots \cdot p_k^{a_k}, \quad p_i \in \mathbb{P}$

Докажем, что $\exists x_1, \dots, x_k \in U : \operatorname{ord}(x_i) = p_i^{a_i}$:

Докажем для i=1 (остальное — аналогично):

$$x_1 : \text{ord } x_1 \stackrel{?}{=} p_1^{a_1}$$

Докажем, что $\exists y : \text{ ord } y \\\vdots \\ p_1^{a_1}$:

Пусть $\forall y \in U \quad \text{ord } y \not : p_1^{a_1}$

$$\begin{vmatrix}
p_1^{a_1} p_2^{a_2} \dots p_k^{a_k} & \vdots & \text{ord } y \\
\text{ord } y \not \mid p_1^{a_1}
\end{vmatrix} \implies \underbrace{p_1^{a_1 - 1} p_2^{a_2} \dots p_k^{a_k}}_{b'} & \vdots & \text{ord } y$$

$$h' : \operatorname{ord} y \implies y^{h'} = 1 \quad \forall y \in U$$

y — корень кногочлена $x^{h'}-1 \quad \forall y \in U$

У него h > h' корней — $\frac{1}{2}$

$$\operatorname{ord} y = p_1^{a_1} \cdot t \implies \operatorname{ord}(y^t) = p_1^{a_1}$$

Подойдёт $x_1 = y^t$. Аналогично x_i

Докажем, что для $\varepsilon = x_1 x_2 \dots x_k$ выполнено ord $\varepsilon = h$:

Положими $b_i\coloneqq rac{h}{p_i},$ т. е. $b_i=p_1^{a_1}\dots p_i^{a_i-1}\dots p_k^{a_k}$

 $x_i^{b_i} \neq 1$ т. к. b_i / ord x_i

$$x_i^{b_i} - 1, \qquad j \neq i$$

 $x_j^{b_i}=1$ при i
eq j

$$\varepsilon^{b_i} = \underbrace{x_1^{b_i}}_{1} \dots \underbrace{x_i^{b_i}}_{\neq 1} \dots \underbrace{x_k^{b_i}}_{1} \neq 1$$

 $h : \operatorname{ord} \varepsilon, \qquad b_i \not \mid \varepsilon \quad \forall i \implies \operatorname{ord} \varepsilon = h$

 $3. \ \varepsilon$ — примитивный

 $1, \varepsilon, \varepsilon^2, \dots, \varepsilon^{h-1}$ различны $\implies 1, \varepsilon, \dots, \varepsilon^{h-1}$ — все элементы $U\left(\varepsilon^i = \varepsilon^j \implies \varepsilon^{i-j} = 1\right)$

Лемма 1 (количество примитивных корней). K- поле, $h\in \mathbb{N}, \quad h\not$ char K x^h-1 раскладывается на линейные множители

Тогда в K есть $\varphi(h)$ примитивных корней из единицы.

Доказательство. ε — примитивный корень Все корни: $\varepsilon^0=1,\quad \varepsilon^1=\varepsilon,\quad \varepsilon^2,\quad \dots,\quad \varepsilon^{n-1}$ Докажем, что ε^s примитивный \Longleftrightarrow НОД(s,h)=1:

• Пусть НОД $(s,h)=1, \quad (\varepsilon^s)^k=1 \implies \varepsilon^{sk}=1 \implies sk : h \implies k : h$

$$\operatorname{ord} \varepsilon^s = h$$

• Пусть НОД $(s,h)=d\neq 1$

$$(\varepsilon^s)^{rac{h}{d}}=arepsilon^{rac{sh}{d}}=(arepsilon^h)^{rac{s}{d}}=1\implies \mathrm{ord}\, arepsilon^s=rac{h}{d}\implies arepsilon^s$$
 не примитивный

 $h \in \mathbb{N}, \quad h \not : \operatorname{char} K$ **Определение 2.** K — поле,

 x^h-1 раскладывается на линейные множители

 $\varepsilon_1,\dots,\varepsilon_{arphi(h)}$ — все примитивные корни степени h

Многочлен деления круга (круговой многочлен) — это

$$\Phi_h(x) = (x - \varepsilon_1)(x - \varepsilon_2) \dots (x - \varepsilon_{\varphi(h)})$$