Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский государственный авиационный технический университет»

кафедра	Y11	<u>нф</u> (<u>рм</u>	ати	КИ								
	100	1	2	3	4	5	6	7	8	9	10	11	12
	90												
	80												
	70												
	60												
	50												
	40												
	30												
	20												
	10												
	0												
	ОТЧ	E 7	Γ										
	по лабораторно	ой ј	рабо	оте	Nº8	3							
<u>«</u>]	Расчет оперения на ст	гат	иче	ски	ен	агр	узкі	И»					
	<u> </u>												

по дисциплине Основы конструкции объектов ОТС

1306.558808.000 ПЗ

(обозначение документа)

Группа СТС-407	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Гараев. Д.Н.			
Консультант	Минасов Ш. М.			
Принял				

Содержание

ОТЧЕТ	7
Введение	3
1 Расчетные случаи нагружения горизонтального оперения	4
Уравновешивающие нагрузки.	4
Маневренные нагрузки.	6
Нагрузки при полёте в неспокойном воздухе	8
2 Построение эпюр сил и моментов вдоль размаха оперения	9
3 Расчет на прочность цельноповоротного стабилизатора	.10
4 Расчет на прочность оперения с трехшарнирной подвеской руля	.13
5 Построение эпюр крутящих моментов для руля	.15
Заключение	.16
Список литературы	.17

	_		_								
					1306.558808.000 ПЗ						
Изм.	Лист	№ докум	Подп	Дата							
Раз	раб	Гараев Д.Н.			7-5N00	Лит	Лист	Листов			
Прс	вер.	Минасов Ш. М.			Лабораторная работа №8		2	17			
					«Расчет оперения на статические						
Н. контр					нагрузки»	УГАТУ, СТС-407		C-407			
Уте	в						,				

Введение

В данной лабораторной работе необходимо ознакомиться с порядком расчёта оперения на примере горизонтального оперения (г.о.). При расчёте г.о. в нормах прочности рассматривают три основные расчётные группы нагружения: уравновешивающие нагрузки, маневренные нагрузки и нагрузки при полёте в неспокойном воздухе, а также различные комбинации вариантов основных расчётных групп.

L					
I					
	Изм.	Лист	№ докум	Подп	Дата

1 Расчетные случаи нагружения горизонтального оперения

Уравновешивающие нагрузки.

Основными силами, действующими на самолёт в прямолинейном горизонтальном полёте, являются подъёмная сила создаваемая крылом $Y_{\kappa p}$, сила аэродинамического сопротивления самолёта X, тяга силовой установки $P_{\partial B}$, полётный вес самолёта G. Большинство этих нагрузок не проходит через центр масс самолёта, создавая, в итоге, момент тангажа $M_{z\delta zo}$. Для компенсации этого момента необходимо к оперению приложить уравновешивающую нагрузку $Y^{\partial}_{yp.zo}$, которая на плече L_{zo} и даст требуемый момент (Рисунок 1).

Рисунок 1 – К расчету уравновешивающей нагрузки на г.о.

$$Y^{\mathfrak{I}}_{yp.zo} = \frac{M_{z6zo}}{L_{zo}} = \frac{m_{z6zo}qsb_{a}}{L_{zo}}$$

где m_{z6zo} — коэффициент продольного момента самолёта без г.о., определяемый для конкретного самолёта посредством модельных продувок в аэродинамической трубе или расчётом; L_{zo} — расстояние от ц.м. самолёта до ц.д. аэродинамических сил на г.о. (плечо г.о.).

В лётном диапазоне углов атаки коэффициент $m_{z\delta zo}$ обычно задают в виде линейной функции:

$$m_{z\delta zo} = m_{z0} + m^{cy} \cdot c_y = m_{z0} + m^{cy}_z \frac{n \cdot G}{q \cdot S}.$$

Подставим последнее уравнение в предпоследнее и получим:

Изм.	Лист	№ докум	Подп	Дата

$$Y^{\mathcal{I}}_{z\delta zo} = m_{z0} \cdot q \cdot \frac{S b_a}{L_{zo}} + m_z^{c_y} \frac{n \cdot G \cdot b_a}{L_{zo}}.$$

Из формулы, приведенной выше, видно, что величина уравновешивающей нагрузки зависит от скорости полёта (первое слагаемое) и от перегрузки при маневре (второе слагаемое).

Поскольку основных случаев нагружения крыла в полёте всего шесть (A, A', B, C, D и D'), то и вариантов уравновешивающих нагрузок на г.о. тоже шесть. Расчётная уравновешивающая нагрузка на г.о. определяется по формуле, приведенной ниже:

$$Y^p_{yp.zo} = Y^{\ni}_{yp.zo} \cdot f.$$

Коэффициент безопасности f задается расчетным случаем нагружения крыла.

Распределение уравновешивающей нагрузки по хорде оперения показано на рРисунок 2. Из него следует, что воздушные нагрузки на стабилизаторе и руле высоты (р.в.) направлены в противоположные стороны, поэтому данный случай является расчетным по кручению. Для практических расчётов нормы прочности рекомендуют использовать упрощённые эпюры воздушного давления (Рисунок 3).

Рисунок 2 – Реальное распределение уравновешивающей нагрузки по хорде г.о.

Рисунок 3 – Расчётное распределение уравновешивающей нагрузки по хорде г.о.

					130
Изм.	Лист	№ докум	Подп	Дата	

Пист

$$Y^{p}_{co} = Y^{p}_{cm} - Y^{p}_{pe} \Longrightarrow Y^{p}_{cm} = Y^{p}_{co} + Y^{p}_{pe};$$

$$Y^{p}_{pe} = Y^{p}_{co} \cdot \frac{S_{pe}}{S_{co}}; Y^{p}_{cm} = Y^{p}_{co} \cdot \frac{S_{co} + S_{pe}}{S_{co}}.$$

Здесь S_{ro} – площадь г.о.; S_{pB} – площадь р.в.; $S_{c\tau}$ – площадь стабилизатора.

Воздушная нагрузка всегда распределяется по размаху руля или стабилизатор пропорционально хордам агрегата, т.е.:

$$\begin{cases} q_{cm}^{\ \ p} = \frac{Y_{cm}^{\ \ p}}{S_{cm}} \cdot b_{ceu.cm} \\ q_{pe}^{\ \ p} = \frac{Y_{pe}^{\ \ p}}{S_{pe}} \cdot b_{ceu.pe} \end{cases}.$$

Зная q^{p}_{cr} , из эпюры, приведенной на р

Рисунок 3, найдем h:

$$q_{cm}^{\ \ p} = 2h \cdot (0, 1b_{ceu.cm}) + 0, 5h \cdot 0, 9b_{ceu.cm} \Rightarrow h = \frac{q_{cm}^{\ \ p}}{0,65b_{ceu.cm}}.$$
 (1)

Маневренные нагрузки.

Величину маневренной нагрузки можно определить из уравнения моментов самолёта относительно оси *z* (Рисунок 4):

$$Y_{_{\!MAH.2O}}\cdot L_{_{\!2O}} = J_z\cdot rac{d\,\omega_z}{dz} \Rightarrow rac{J_z}{L_{_{\!2O}}}\cdot rac{d\,\omega_z}{dz} = rac{J_z}{L_{_{\!2O}}}\cdot arepsilon_z.$$

Рисунок 4 – К расчёту маневренной нагрузки на г.о.

В нормах прочности рассматривают первую и вторую маневренные нагрузки. Первая маневренная нагрузка вычисляется по формуле, приведенной ниже:

Изм.	Лист	№ докум	Подп	Дата

$$Y^{\mathfrak{I}}_{_{MAH.PO}} = \pm k \cdot n^{\mathfrak{I}}_{_{max}} \cdot \frac{G}{S} \cdot S_{_{\mathcal{I}.o}}.$$

Она суммируется с уравновешивающей нагрузкой для случаев А', В, С.

$$Y^{\mathfrak{I}}_{o} = Y^{\mathfrak{I}}_{yp.o} \pm Y^{\mathfrak{I}}_{mah.o} ; Y^{p}_{o} = Y^{\mathfrak{I}}_{o} \cdot f.$$

Коэффициент k зависит от расчетного случая, а также от величины скоростного напора и приведен в нормах прочности в табличной форме. Для случая A' первая маневренная нагрузка берется только со знаком «+», т. е. направленной вверх.

Суммарная нагрузка на г. о. распределяется между стабилизатором и р. в. пропорционально площадям агрегатов.

$$Y_{ps}^p = Y_{co}^p \cdot \frac{S_{ps}}{S_{co}};$$

$$Y_{cm}^p = Y_{co}^p \cdot \frac{S_{cm}}{S_{co}}.$$

Действительное распределение маневренной нагрузки по хорде г. о. показано на Рисунок 5. Расчётное распределение маневренной нагрузки по хорде приведено на Рисунок 6.

Рисунок 5 – Реальное распределение маневренной нагрузки по хорде

Рисунок 6 – Расчётное распределение маневренной нагрузки по хорде

Вторую маневренную нагрузку рассчитывают по той же формуле, что и первую. Но здесь k=0.5 для самолетов с площадью крыла $S \le 80$ м 2 и k=0.4 для самолетов с площадью крыла $S \ge 100$ м 2 . Для самолётов, у которых 80

Изм.	Лист	№ докум	Подп	Дата

 $< S < 100 \, \mathrm{M}^2$ значение коэффициента k определяется линейной интерполяцией. Принимают коэффициент безопасности f = 2. Вторая маневренная нагрузка прикладывается отдельно от других видов нагрузки на г. о.

Нагрузки при полёте в неспокойном воздухе

Как и на крыле, эти нагрузки возникают при воздействии вертикальных воздушных порывов. Их можно вычислить по методике расчёта болтаночных перегрузок для крыла:

$$Y^{\ni}_{\text{\tiny H.B.}} = \frac{1}{2} c^a_{y.zo} \cdot \rho \cdot V \cdot W \cdot S_{zo}.$$

Полученная нагрузка суммируется с уравновешивающей нагрузкой, вычисленной для условий горизонтального полёта ($n_y = 1$) на высоте H = 0 с теми же скоростями

$$Y^p_{co} = (Y^{\mathfrak{I}}_{yp.co} \pm Y^{\mathfrak{I}}_{h.e.}) \cdot f.$$

Принимают коэффициент безопасности f = 1,5.

Распределение нагрузки по хорде оперения выполняют согласно Рисунок 7.

Рисунок 7 – Распределение нагрузки при полёте в неспокойном воздухе

Кроме трех основных расчетных групп нагружения г. о., нормы прочности также рассматривают случай *несимметричного нагружения* г.о. при полёте со скольжением, а также случаи *одновременного нагружения горизонтального и вертикального оперения* для самолетов с H- образным или Т-образным оперением.

Изм.	Лист	№ докум	Подп	Дата

2 Построение эпюр сил и моментов вдоль размаха оперения

При построении эпюр сил и моментов вдоль размаха оперения инерционными силами от массы оперения пренебрегают, а учитывают только погонные аэродинамические нагрузки.

Методика построения эпюр сил и моментов для крыла. Особенность заключается в определении шарнирного момента и усилия в тяге управления рулём (Рисунок 8).

Рисунок 8 – Определение усилия в проводке управления рулём

$$M_{ui} = Y^{p}_{ps} \cdot (x_{uo} - x_{os}) = T^{p}_{ynp} \cdot h_{\kappa} \Longrightarrow T^{p}_{ynp} = Y^{p}_{ps} \frac{(x_{uo} - x_{os})}{h}.$$

где h_{κ} – плечо кабанчика руля. По этому усилию проводят проверку прочности и жесткости механической проводки системы управления рулем.

Изм.	Лист	№ докум	Подп	Дата

3 Расчет на прочность цельноповоротного стабилизатора

Вариант расчета на прочности цельноповоротного стабилизатора зависит от его конструктивно-силовой схемы (КСС). Рассмотрим, к примеру, двухлонжеронный цельно-поворотный стабилизатор (Рисунок 9), КСС которого включает передний 1 и задний 2 лонжероны, усиленные нервюры 3 и 4, установленные по потоку, и трубчатый вал 5. Лонжероны опираются на усиленные нервюры, те, заделаны на трубу, которая имеет подшипниковые опоры в фюзеляже.

Точно также осуществляется сбор и передача аэродинамических нагрузок (с обшивки на лонжероны, далее на усиленные нервюры и трубчатый вал). Нагрузка с трубы передается на подшипники и на тягу управления стабилизатором. Для обеспечения плавного изменения жесткостей по размаху стабилизатора труда на участке между нервюрами обычно выполняется конической. На Рисунок 9 показаны эпюры поперечных сил и изгибающих моментов.

Рисунок 9 – Силовая схема цельно поворотного стабилизатора

Расчётным является поперечное сечение в районе нервюры 4. Полагают, что изгиб воспринимают только пояса лонжеронов, а общивка и стрингеры учитываются как присоединённые к соответствующим поясам при вычислении моментов инерции переднего и заднего лонжеронов. Момент M_0 в расчётном

Изм	Лист	№ докум	Подп	Дата

сечении распределяется между лонжеронами пропорционально их изгибным жесткостям:

$$\begin{cases} M_{0} = M_{n} + M_{3}; \\ \frac{M_{n}}{M_{3}} = \frac{(EJ)_{np.n}}{(EJ)_{np.3}}. \Rightarrow \begin{cases} M_{n} = M_{0} \cdot \frac{(EJ)_{np.n}}{(EJ)_{np.n} + (EJ)_{np.3}}; \\ M_{3} = M_{0} \cdot \frac{(EJ)_{np.n}}{(EJ)_{np.n} + (EJ)_{np.3}}. \end{cases}$$

Погонную аэродинамическую нагрузку, действующую между нервюрами 3 и 4, распределяют между лонжеронами пропорционально их изгибным жесткостям. Тогда участки лонжеронов между силовыми нервюрами нагружаются (Рисунок 10). Отсюда находят реакции опор нервюр и переносят их в расчетную схему нагружения усиленных нервюр (Рисунок 11).

Рисунок 10 – Нагружение переднего лонжерона на участке 3-4

Рисунок 11 – Нагружение нервюры 4

В общем случае R_{4n} и R_{43} различны и $a \neq b$, что, в итоге, приведёт к закручиванию трубы моментом $M_{\kappa p} = M_{4n} + M_{43}$.

ПКС от силы Q_0 справа от нервюры 4 определим из уравнений:

Изм	Лист	№ докум	Подп	Дата

$$\begin{split} q &= q_{Q} + q_{0}; \\ q_{Q} &= \frac{Q_{0} \cdot S^{omc}_{x}}{J_{np.n} + J_{np.3}}; \\ q_{0} &= \frac{\iint qQ \cdot \rho \cdot ds + Q_{0} \cdot r}{\Omega} \ , \end{split}$$

где r — расстояние от силы Q_0 до оси вращения стабилизатора; Ω — удвоенная площадь замкнутого контура, образованного стенками лонжеронов и обшивками стабилизатора.

В сечениях слева от нервюры 4 в работу включается труба, и задача вычисления ПКС становится статически неопределимой. Обычно распределение ПКС между замкнутым контуром стабилизатора и трубой проводят пропорционально их крутильным жесткостям

$$\left\{ egin{aligned} q = q_{o\delta} + q_{mp}; \ \dfrac{q_{o\delta}}{q_{mp}} = \dfrac{(GJ_{\kappa p})_{o\delta}}{\left(GJ_{\kappa p}
ight)_{mp}} \end{aligned}
ight. .$$

В приближенных расчетах пренебрегают работой трубы на участке *3-4* и полагают, что весь ПКС воспринимается замкнутым контуром стабилизатора и передается на трубу изгибом бортовой нервюры *3*.

Изм	Лист	№ докум	Подп	Дата

4 Расчет на прочность оперения с трехшарнирной подвеской руля

Пусть руль подвешен к стабилизатору на трех опорных кронштейнах. Изложенный далее метод можно также использовать при расчете рулей с большим количеством опор.

Полагаем, что нагрузки на стабилизатор и руль определены, кроме того, задано распределение этих нагрузок вдоль размаха и хорды каждого агрегата (Рисунок 12).

Рисунок 12 — Расчётная схема г.о. с шарнирной подвеской рулей В первоначальном варианте считаем руль высоты абсолютно жёстким на кручение. Опоры 1, 2, 3 перемещаются вертикально при деформации г.о. Перемещения шарниров будут зависеть от величины реакций R_1 , R_2 u R_3 , от нагрузки стабилизатора и от жесткостей обеих балок. Эти перемещения будут также зависеть от характеристик упругой заделки на фюзеляже (на Рисунок 12 она изображена в виде пружин).

Определение реакции или опорного момента в этой один раз статически неопределимой конструкции проводят с использованием метода сил в несколько приближений. В первом приближении нагрузку по размаху оперения и жёсткости агрегатов считают постоянными и равными их средним значениям. Тогда, приняв за лишнюю неизвестную реакцию R_3 в средней опоре, из канонического уравнения метода сил получим:

Изм.	Лист	№ докум	Подп	Дата

$$R_{3} = \frac{5}{8} \cdot \frac{1 + \frac{J_{pb}}{J_{cm}} \left(2, 4 + \frac{Y_{cm}}{Y_{pb}} \right)}{1 + \frac{J_{pb}}{J_{cm}} + 3 \cdot \left(\frac{b_{cm}}{l_{cm}} \right)^{2} \frac{EJ_{cm}}{GJ_{\kappa p.cm}}} \cdot Y_{pb},$$

где l_{cm} — размах консоли стабилизатора; b_{cm} — СГХ стабилизатора; J_{p_6} и J_{cm} — средние осевые моменты инерции руля высоты и стабилизатора; $GJ_{\kappa p.cm}$ — средняя крутильная жёсткость стабилизатора.

Найдя опорные реакции руля, строим эпюры сил и моментов по размаху руля и стабилизатора. Зная силы и моменты, находим нормальные напряжения и ПКС по сечениям руля высоты и стабилизатора – как в крыле.

Затем определяем вертикальное перемещение шарнира 3 от изгиба и кручения в стабилизаторе Δ_3 и в руле высоты δ_3 . Это перемещение удобно определять относительно оси вращения — прямой линии, проходящей через крайние шарниры 1 и 2.

В общем случае $\Delta_3 \neq \delta_1$. Во втором приближении дадим R_3 положительное приращение ΔR_3 и повторим расчёт. Если модуль разности ($\Delta_3 - \delta_3$)уменьшится, то в третьем приближении продолжаем двигаться в том же направлении, пока модуль разности ($\Delta_3 - \delta_3$) не станет меньше некоторой наперёд заданной величины. При этом для выбора величины ΔR_3 можно использовать, к примеру, метод половинного деления.

Если же по результатам расчётов второго приближения модуль разности $(\Delta_3 - \delta_3)$ увеличился, то в третьем приближении необходимо изменить знак приращения ΔR_3 и после этого продолжать расчёт по предыдущему варианту.

Изм.	Лист	№ докум	Подп	Дата

5 Построение эпюр крутящих моментов для руля

Эпюра крутящих моментов для руля строится относительно линии ц.и., которая практически совпадает со средней линией лонжерона руля (Рисунок 13).

Рисунок 13 – Построение эпюры крутящих моментов для руля

В і-й опоре на эпюре $M_{\kappa p}$ имеем скачок на величину $R_i \cdot (x_{uu} - x_{os})$. В сечении, где установлен кабанчик управления, наблюдаем самый большой скачок на величину шарнирного момента руля $M_{uu} = T_{ynp} \cdot h_{\kappa}$, при этом эпюра меняет знак. При определении крутильных деформаций руля считают, что в сечении, где установлен кабанчик управления, угол закручивания руля равен нулю. Анализ эпюры показывает, что рационально располагать кабанчик управления посередине руля, в этом случае получаются минимальные крутящие моменты и углы закручивания концевых сечений руля.

Изм	Лист	№ докум	Подп	Дата

Заключение

В ходе выполнения лабораторной работы №8 произошло ознакомление с порядком расчёта оперения на примере горизонтального оперения (г.о.). При расчёте г.о. в нормах прочности рассмотрены три основные расчётные группы нагружения: уравновешивающие нагрузки, маневренные нагрузки и нагрузки при полёте в неспокойном воздухе, а также различные комбинации вариантов основных расчётных групп.

Изм.	Лист	№ докум	Подп	Дата

Список литературы

1. Чепурных И.В. Прочность конструкций летательных аппаратов: учеб. пособие – Комсомольск-на-Амуре: ФГБОУ ВПО «КнАГТУ», 2013. – 137 с. (с. 54 – с. 62).

Изм.	Лист	№ докум	Подп	Дата