

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61F 2/24		A1	(11) International Publication Number: WO 95/16407 (43) International Publication Date: 22 June 1995 (22.06.95)
(21) International Application Number: PCT/US94/14010 (22) International Filing Date: 5 December 1994 (05.12.94)		(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 08/166,446 13 December 1993 (13.12.93) US		Published <i>With international search report.</i> <i>With amended claims.</i>	
(71) Applicant: BRIGHAM AND WOMEN'S HOSPITAL [US/US]; 75 Francis Street, Boston, MA 02115 (US).			
(72) Inventors: REIMOLD, Sharon, C.; 27 Goldsmith Street, No. 2, Boston, MA 02130 (US). LEE, Richard, T.; 4 Country Drive, Weston, MA 02193 (US). SOLOMON, Scott, D.; 26 Medfield Street, No. 4, Boston, MA 02215 (US).			
(74) Agents: WISE, Richard, A. et al.; Hamilton, Brook, Smith & Reynolds, Two Militia Drive, Lexington, MA 02173 (US).			
(54) Title: AORTIC VALVE SUPPORTING DEVICE			
(57) Abstract			
<p>An aortic valve supporting device having an annular portion located around a central axis with stenting arms extending axially from the annular portion. A hiatus is formed in the annular portion to permit the annular portion and the stenting arms to be positioned around the aorta with the stenting arms in position to apply a supporting force to the aortic valve.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

AORTIC VALVE SUPPORTING DEVICEBackground of the Invention

The heart is basically a hollow, muscular, organ which is, in effect, a pump. It is divided into four chambers, the left and right ventricle, and the left and right atrium. The main pumping chamber of the heart is the left ventricle. It pumps blood through the aortic valve in the aorta to the various arteries and hence, to the rest of the body. The aortic valve is a one-way valve which permits blood to flow from the left ventricle but when functioning properly, closes to prevent blood from flowing in the opposite direction, i.e. back to the left ventricle.

The aortic valve comprises three leaflets or cusps, which during systole, i.e. the time the heart is contracting, open to permit the outward flow. During diastole, i.e. when the heart is relaxed, the aortic valve normally closes to prevent the reverse flow of blood, i.e. regurgitation from the aorta into the left ventricle. Patients which experience aortic regurgitation have, for any number of reasons, incompetence or partial malfunction of the aortic valve. As a result, during diastole, when the heart is itself in its most relaxed condition and the interior pressure is at the lowest, blood from the then pressurized arteries flows backward from the aorta through the aortic valve into the heart. This is because the leaflets are not in closed position leaving an open orifice in the aortic valve. Failure of the leaflets or cusps to close can be due to anatomic disruption of the leaflets or due to dilation of the aortic annulus.

It is an object of the present invention to prevent or reduce regurgitation of blood by improving the

-2-

coaptation of the aortic valve leaflets during diastole without causing significant restriction during the systole, in other words restricting the inward flow of blood to the left ventricle by stenting or supporting the
5 aortic valve without impeding outflow.

Summary of the Invention

- The invention resides in an aortic valve supporting device which comprises an annular portion located around a central axis. A plurality of stenting arms are
10 cantilevered on the annular portion and extend axially from the annular portion. There is a hiatus formed in the annular portion to permit it and the stenting arms to be positioned by a surgeon around the aorta above the coronary ostia with the stenting arms located around the
15 aortic annulus to apply a supporting force to the leaflets of the aortic valve. Were it not for the hiatus in the annular portion, the surgeon would have to sever the aorta, place one end through the annular portion, join the ends, and then suture the severed portion.
20 The device is made of a biocompatible plastic such as stainless steel or lexan acrylic plastic. The annular portion may be covered with fabric such as a cloth ring of biocompatible material to facilitate its being sutured in place. Collagen may also be employed.
25 In one embodiment of the invention, the stenting arms, which are cantilevered axially from the annular portion, have free ends which are formed closer to the central axis than the annular portion itself such that the arms without any external force applying member may apply
30 a supporting force to the aortic valve when the device is in place.

There are means provided near the free ends of the cantilevered stenting arms to receive a force applying

-3-

member to squeeze the stenting arms inwardly or in a direction toward the central axis.

Force applying means such as a cable tie or a simple knotted strand of suture material or the like may be 5 employed to bias the stenting arms inwardly toward the central axis.

In accordance with another embodiment of the invention, the annular member is in the form of a flange extending away from the axis. The flange may be 10 surrounded by a rotatable cap. The cap also has a hiatus to align with the hiatus in the annular portion or flange when the device is being placed in position around the aorta. In this embodiment, rotation of the cap will move its hiatus out of alignment with that of the annular 15 member or flange to completely close the annular member. Either or both of the flange or the cap may include apertures to facilitate suturing of the device in place.

The above and other features of the invention including various and novel details of construction and 20 combination of parts will now be more particularly described with reference to the accompanying drawings and pointed out in the claims. It will be understood that the particular aortic valve supporting device embodying the invention is shown by way of illustration only and not as 25 a limitation of the invention. The principles and features of this invention may be employed in varied and numerous embodiments without departing from the scope of the invention.

Brief Description of the Drawings

30 Figure 1 is a perspective view of a heart with an aortic valve supporting device made in accordance with the invention sutured in place.

-4-

Figure 2 is a section of a malfunctioning aortic valve showing its three leaflets or cusps not fully closed.

Figure 3 is a view similar to Figure 2 wherein the 5 leaflets are shown in substantially closed position when the supporting device is in place.

Figure 4 is a perspective view of one embodiment of the present invention.

Figure 5 is a front view of another embodiment of the 10 invention.

Figure 6 is a plan view of the embodiment shown in Figure 5.

Figure 7 is a bottom view of the embodiment shown in Figure 5.

15 Figure 8 is a perspective view on enlarged scale of the device shown in Figure 5 sutured in position around the aorta.

Figure 9 is an exploded perspective view of another embodiment of the invention.

20 Figure 10 is a top plan view of the embodiment shown in Figure 9.

Detailed Description of the Invention

In Figure 1, there will be seen a perspective view of a heart generally designated 2, the aorta is designated 4, 25 the pulmonary artery 6, the area of the left ventricle 7, the area of the left auricle 8, and the area of the right auricle 10.

One embodiment of an aortic valve supporting device 30 12 is shown sutured in place around the aorta 4 above the coronary ostia. It includes an annular portion 16 and a plurality of stenting arms 18 cantilevered from the annular portion with their lower ends around the outside of the aortic annulus. Various embodiments of the

-5-

supporting device will be described in greater detail hereinafter.

Referring next to Figures 2 and 3, there will be seen sectional views through a malfunctioning aortic valve 5 generally designated 20. The valve includes three leaflets or cusps 20 defining between them the aortic annulus or orifice 24. Figure 2 shows the leaflets 22 not in closed position leaving a rather large orifice 24 open to regurgitation during diastole.

10 Figure 3 shows the aortic valve 20 being stented or supported by the stenting arms 18 of the supporting device 12 and biased into closed position. It will be understood that the orifice or annulus 24 may not necessarily be stented into fully closed position but a small orifice may 15 exist even after the valve supporting device has been sutured into position. Any reduction in the size of the orifice 24 is beneficial in reducing regurgitation.

Referring next to Figure 4, there will be seen one embodiment of the aortic valve supporting device 12. It 20 includes an annular portion 30 located around a central axis α . A plurality of stenting arms, and in this case three, to correspond with the three leaflets of the aortic valve are cantilevered from the annular portion and extend axially of the central axis α . There may be more than 25 three stenting arms but three has been found satisfactory since they correspond to the number of leaflets in the aortic valve.

The annular portion 30 of the supporting device may include a fabric covering 32 such as a biocompatible cloth 30 ring to facilitate suturing. The device itself is made from a biocompatible material such as lexan or stainless steel.

A hiatus is formed in the annular portion to permit the annular portion 12 and the stenting arms 18 to be 35 positioned around the aorta as seen in Figures 1 and 8

-6-

with a minimum of surgery, the aorta being slid through the hiatus 34 prior to the device being sutured to the aorta.

The annular portion 30 is positioned downstream from 5 the left ventricle above the coronary ostia such that the free ends 36 of the stenting arms will engage the outside of the aorta at the location of the aortic annulus such that the stenting arms apply a supporting force to the aortic leaflets or cusps to urge them inwardly as seen in 10 Figure 3 and reduce the size and close the annulus 24.

It will be understood that with the supporting device sutured into position, the supporting or stenting force is at all times applied to the valve but during systole, i.e. when the heart is contracting, the increasing left 15 ventricular pressure causes the leaflets or cusps 22 to open to permit the normal outflow of blood. Then in diastole, when the heart is relaxed, the pressure of the stenting arms causes the leaflets or cusps to return to the Figure 3 position preventing or substantially reducing 20 regurgitation.

Referring next to Figure 5, another embodiment of the aortic valve supporting device 12 will be seen. The annular portion includes an annular flange 40 extending outwardly away from the central axis α . It too includes a 25 hiatus 34 and the flange may be provided with a plurality of apertures 42 to facilitate suturing. As seen in Figure 5, the stenting arms 18 curve inwardly and have free ends 44 positioned closer to the central axis α than the annular portion or flange 40. In the Figure 5 embodiment 30 when sutured in place as seen in Figure 8 by sutures 46, the free ends 44 or the stenting arms 18, being closer to the central axis α , are in position to apply a stenting or supporting force to the aortic valve without additional force being applied to them.

-7-

Optionally, force applying means may be applied to the stenting arms 18 to further urge them inwardly toward the central axis α and into the stenting or supporting position.

5 The force applying means may be a simple knotted strand of suture material 50 or any convenient equivalent such as a cable tie. The stenting arms 18 may also be provided with retaining means 52 in the form of a lip or shelf to detain the force applying means 50 in position.

10 Yet another embodiment of the invention will be seen in Figures 9 and 10. An annular cap 56 having an internal groove 58, which is slightly larger than the diameter of the flange 40, is positioned over and surrounds the flange 40. The annular rotatable cap 56 also has a hiatus 34' of 15 the same size as the hiatus 34 in the annular portion or flange 40.

When assembled, the surgeon aligns both hiatuses and slides the device over the aorta as seen in Figures 1 and 8 in the manner described above. The rotatable cap is 20 also provided with apertures 58 corresponding to the apertures 42 in the flange 40 to facilitate suturing. Upon assembling the device, the rotatable cap 56 is rotated relative to the flange 40 to offset the hiatus 34' in the cap from the hiatus 34 in the flange, thus the 25 annular member completely encircles the aorta. The surgeon will then align the apertures 58 with the apertures 42 in the flange 40 and suture the device through the aligned apertures to the aorta by sutures 46.

-8-

CLAIMS

1. An aortic valve supporting device comprising:
an annular portion located around a central
axis,
5 a plurality of stenting arms extending axially
from the annular portion, and
a hiatus formed in the annular portion to permit
the annular portion and the stenting arms to be
positioned around the aorta with the stenting arms
10 located to apply a supporting force to the aortic
valve.

-9-

2. A device according to Claim 1 wherein the device is made of a biocompatible plastic.
3. A device according to Claim 1 wherein the annular portion includes fabric to facilitate suturing.
4. A device according to Claim 1 wherein the annular portion includes a flange extending away from the axis and is surrounded by a rotatable cap having a mating hiatus such that rotation of the cap will close the hiatus in the annular valve.
5. A device according to Claim 1 wherein the annular portion includes apertures to facilitate suturing.

-10-

6. An aortic valve supporting device comprising:
an annular portion located around a central
axis,
a plurality of stenting arms cantilevered
axially from the annular portion,
the free ends of the stenting arms being closer
to the central axis than the annular portion, and
a hiatus formed in the annular portion to permit
the annular portion to be positioned around the aorta
with the free ends of the cantilevered arms located
to apply a supporting force to the aortic valve.

-11-

7. A device according to Claim 6 wherein the device is made of a biocompatible plastic.
8. A device according to Claim 6 wherein the annular portion includes fabric to facilitate suturing.
9. A device according to Claim 6 wherein the annular portion includes a flange extending away from the axis and is surrounded by a rotatable cap having a mating hiatus such that rotation of the cap will close the hiatus in the annular valve.
10
10. A device according to Claim 6 wherein the annular portion includes apertures to facilitate suturing.

-12-

11. An aortic valve supporting device comprising:
an annular portion located around a central
axis,
a plurality of stenting arms cantilevered
axially from the annular portion,
5 a hiatus formed in the annular portion to permit
the annular portion to be positioned around the aorta
with the free ends of the cantilevered arms located
to apply a supporting force to the aortic valve, and
10 force applying means engagable with the arms to
bias them toward the central axis.

-13-

12. A device according to Claim 11 wherein the device is made of a biocompatible plastic.
13. A device according to Claim 11 wherein the force applying means is a cable tie.
- 5 14. A device according to Claim 11 wherein the force applying means is a knotted strand.
15. A device according to Claim 11 wherein there are retaining means on the arms to receive and position the force applying means.
- 10 16. A device according to Claim 11 wherein the annular portion includes a flange extending away from the axis and is surrounded by a rotatable cap having a mating hiatus such that rotation of the cap will close the hiatus in the annular valve.
- 15 17. A device according to Claim 16 wherein the flange includes apertures to facilitate suturing.
18. A device according to Claim 16 wherein the flange and the cap include apertures to facilitate suturing.
- 20 19. A device according to Claim 11 wherein the annular member includes fabric to facilitate suturing.

AMENDED CLAIMS

[received by the International Bureau on 20 April 1995 (20.04.95);
original claims 1-19 replaced by amended claims 1-19 (6 pages)]

1. An aortic valve supporting device comprising:
an annular portion located around a central
axis,
a plurality of stenting arms extending axially
5 from the annular portion,
a hiatus formed in the annular portion to permit
the annular portion and the stenting arms to be
positioned around an aorta with the stenting arms
located to apply a supporting force to the aortic
10 valve, and
means for closing the hiatus after the
supporting device has been positioned around the
aorta.

AMENDED SHEET (ARTICLE 19)

2. A device according to Claim 1 wherein the device is made of a biocompatible plastic.
3. A device according to Claim 1 wherein the annular portion includes fabric to facilitate 5 suturing.
4. A device according to Claim 1 wherein the means for closing the hiatus comprises a flange on the annular portion extending away from the axis and which flange is surrounded by a rotatable cap having 10 a mating hiatus such that rotation of the cap will close the hiatus in the aortic valve.
5. A device according to Claim 1 wherein the annular portion includes apertures to facilitate suturing.

AMENDED SHEET (ARTICLE 19)

6. An aortic valve supporting device comprising:
an annular portion located around a central
axis,
a plurality of stenting arms cantilevered
5 axially from the annular portion,
the free ends of the stenting arms being closer
to the central axis than the annular portion,
a hiatus formed in the annular portion to permit
the annular portion to be positioned around an aorta
10 with the free ends of the cantilevered arms located
to apply a supporting force to the aortic valve, and
means for closing the hiatus after the
supporting device has been positioned around the
aorta.

AMENDED SHEET (ARTICLE 19)

7. A device according to Claim 6 wherein the device is made of a biocompatible plastic.
8. A device according to Claim 6 wherein the annular portion includes fabric to facilitate suturing.
5
9. A device according to Claim 6 wherein the means for closing the hiatus comprises a flange on the annular portion extending away from the axis and which flange is surrounded by a rotatable cap having a mating hiatus such that rotation of the cap will close the hiatus in the aortic valve.
10
10. A device according to Claim 6 wherein the annular portion includes apertures to facilitate suturing.

AMENDED SHEET (ARTICLE 19)

11. An aortic valve supporting device comprising:
 - an annular portion located around a central axis,
 - a plurality of stenting arms cantilevered axially from the annular portion,
 - 5 a hiatus formed in the annular portion to permit the annular portion to be positioned around an aorta with the free ends of the cantilevered arms located to apply a supporting force to the aortic valve,
 - 10 means for closing the hiatus after the supporting device has been positioned around the aorta, and
 - force applying means engagable with the arms to bias them toward the central axis.

AMENDED SHEET (ARTICLE 19)

12. A device according to Claim 11 wherein the device is made of a biocompatible plastic.
13. A device according to Claim 11 wherein the force applying means is a cable tie.
- 5 14. A device according to Claim 11 wherein the force applying means is a knotted strand.
15. A device according to Claim 11 wherein there are retaining means on the arms to receive and position the force applying means.
- 10 16. A device according to Claim 11 wherein the means for closing the hiatus comprises a flange on the annular portion extending away from the axis and which flange is surrounded by a rotatable cap having a mating hiatus such that rotation of the cap will close the hiatus in the aortic valve.
- 15 17. A device according to Claim 16 wherein the flange includes apertures to facilitate suturing.
18. A device according to Claim 16 wherein the flange and the cap include apertures to facilitate suturing.
- 20 19. A device according to Claim 11 wherein the annular portion includes fabric to facilitate suturing.

1 / 3

FIG. 1

FIG. 2

FIG. 3

2 / 3

FIG. 5

FIG. 8

FIG. 7

FIG. 4

3 / 3

FIG. 10

INTERNATIONAL SEARCH REPORT

Int'l. Appl. No.

PCT/US 94/14010

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 A61F2/24

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 A61F A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	FR,A,2 688 692 (SEGUIN) 24 September 1993 see page 4, line 96 - page 5, line 3; figures 3,4,5 ---	1-3,5-8, 10-15,19
A	US,A,3 726 279 (BAREFOOT ET AL.) 10 April 1973 see abstract; figures ---	1,6,11
A	GB,A,2 254 254 (KUSUARA) 7 October 1992 -----	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

'&' document member of the same patent family

1

Date of the actual completion of the international search

20 March 1995

Date of mailing of the international search report

28.03.95

Name and mailing address of the ISA

European Patent Office, P.O. 5818 Patentaan 2
NL - 2280 LIV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 cpo nl.
Fax (+31-70) 340-3016

Authorized officer

Sánchez y Sánchez, J

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte onal Application No
PCT/US 94/14010

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
FR-A-2688692	24-09-93	NONE		
US-A-3726279	10-04-73	NONE		
GB-A-2254254	07-10-92	JP-A-	5184611	27-07-93
		US-A-	5360444	01-11-94