Equações Diferenciais Ordinárias

Definição

Definição 2.1

Chama-se **equação diferencial ordinária** (EDO) a toda a equação da forma

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

ou, equivalentemente,

$$F\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^ny}{dx^n}\right) = 0$$

onde x é uma variável independente e $y \equiv y(x)$ é uma função desconhecida que depende de x.

Observação 2.1

São exemplos de equações diferenciais

$$xy' + y = 0$$
; $\frac{d^2y}{dx^2} + 2xy = x^2 sen(x)$; $(y')^2 + y = cos(x)$.

Conceitos básicos

Ordem e forma normal

Definição 2.2

Chama-se **ordem** de uma EDO, à maior ordem de derivada existente na equação.

Exercício 2.1

Indique a ordem das seguintes EDOs:

$$xy' + y = 0$$
; $\frac{d^2y}{dx^2} + 2xy = x^2 \text{sen}(x)$; $(y')^2 + y = \cos(x)$

Definição 2.3

Dizemos que uma EDO está na **forma normal** quando está escrita na forma

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

ou seja, em relação à derivada de maior ordem.

Conceitos básicos

Solução de uma EDO

Definição 2.4

Chama-se **solução** da EDO $F(x,y,y',y'',\ldots,y^{(n)})=0$ num intervalo $I\subseteq\mathbb{R}$ a toda a função $\varphi:I\to\mathbb{R}$ que admite derivadas finitas até à ordem n em I e tal que

$$F(x, \varphi(x), \varphi'(x), \varphi''(x), \ldots, \varphi^{(n)}(x)) = 0, \quad \forall x \in I.$$

Observação 2.2 Terminologia

Integral geral: família de soluções dependente de n constantes arbitrárias obtida através de técnicas de integração adequadas

Solução particular: solução obtida do integral geral por concretização das constantes arbitrárias

Solução singular: solução da EDO que não se obtém do integral geral

Solução geral: conjunto de todas as soluções de uma EDO

Conceitos básicos

Exemplos

Observação 2.3

1 Determine-se a solução geral da EDO $y'' - \cos(x) = 0, x \in \mathbb{R}$. Esta equação pode ser escrita na forma $y'' = \cos(x)$. Por integração obtemos que

$$y' = \int \cos(x) \, dx = \sin(x) + C_1$$

Integrando novamente, temos,

$$y = \int \sin(x) + C_1 dx = -\cos(x) + C_1 x + C_2$$

onde C_1 e C_2 são constantes reais arbitrárias.

Esta família de funções é o integral geral da equação diferencial.

Exemplos

Observação 2.3(cont.)

- 2 Considere a EDO de primeira ordem $(y')^2 4y = 0$.
 - A família de funções $y = (x + C)^2$, $C \in \mathbb{R}$ é solução da EDO (veremos que se trata do seu integral geral)
 - $y = x^2$ é uma solução particular da EDO (com C = 0)
 - A função y = 0 é solução da EDO, mas não se obtém da família de funções $y = (x + C)^2$. É uma solução singular da equação diferencial.

26

EDOs de 1ª Ordem

Observação 2.4

As EDOs de 1ª ordem tomam a forma (normal)

$$y' = f(x, y)$$

Se f não depender de y então a equação anterior simplifica para

$$y' = f(x)$$

cujo tratamento já foi estudado no âmbito do Cálculo 1. De facto, neste caso,

$$y(x) = F(x) + C, C \in \mathbb{R}$$

onde F é uma primitiva para f. E se depender de y?

EDOs de 1^a ordem

EDOs de 1^a ordem: variáveis separáveis

Definição 2.5

Uma EDO de 1ª ordem diz-se de **variáveis separáveis** se puder ser escrita na forma

$$y' = f(x, y) = \frac{p(x)}{q(y)}$$

onde p e q são funções contínuas e $q(y) \neq 0$.

Observação 2.5

Esta equação é equivalente a

$$q(y)y' = p(x)$$

que se designa de EDO de **variáveis separadas**, ou, na sua forma diferencial a

$$q(y)dy = p(x)dx$$

EDOs de 1^a ordem: variáveis separáveis

Observação 2.5(cont.)

O integral geral deste tipo de EDOs obtém-se integrando ambos os membros da equação anterior obtendo

$$\int q(y)dy = \int p(x)dx.$$

Exercício 2.2

1 Determine o integral geral das EDOs:

(a)
$$y + y' \operatorname{cosec}(x) = 0$$

(c)
$$v' sen(x) + v cos(x) = 0$$

(b)
$$v^2 + v = (x^2 - x)v'$$

(a)
$$y + y' \csc(x) = 0$$

 (b) $y^2 + y = (x^2 - x)y'$
 (c) $y' \sec(x) + y \cos(x) = 0$
 (d) $(1 + y^2)dx + (1 + x^2)dy = 0$

2 Determine a solução do problema

$$y' \cot g(x) + y = 2$$
, $y(\pi/4) = -1$

EDOs de 1^a ordem

EDOs de 1^a ordem: homogéneas

Definição 2.6

Uma EDO de 1ª ordem y' = f(x, y) diz-se **homogénea** se

$$f(\lambda x, \lambda y) = f(x, y),$$

 $\forall (x,y) \in D, \ \lambda \in \mathbb{R}, \text{ tais que } (\lambda x, \lambda y) \in D.$

Observação 2.6

- (a) Quando uma função f(x, y) satisfaz uma tal propriedade diz-se que é homogénea de grau zero.
- (b) Neste caso é possível escrever a EDO na forma

$$y' = f(1, y/x) = g(y/x)$$

em que g é uma função de uma só variável.

EDOs de 1^a ordem: homogéneas

Observação 2.7 Como obter o integral geral

- Considerar a substituição y = zx e y' = z'x + z. $(z \equiv z(x))$
- 2 Substituir na EDO original, obtendo uma nova EDO nas variáveis x e z. Esta é de variáveis separáveis.
- 3 Obter o integral geral desta EDO usando a técnica anterior.
- 4 Obter o integral geral da EDO original aplicando a subtituição inversa z=y/x.

Exercício 2.3

Verifique que cada uma das seguinte EDOs é homogénea e determine o seu integral geral:

(a)
$$xe^{y/x}y' = ye^{y/x} + x$$

(b)
$$(x^3 + y^3)dx - 3y^2xdy = 0$$
;

(c)
$$(x + y)dx + (y - x)dy = 0$$
;

EDOs de 1^a ordem

EDOs de 1^a ordem: lineares

Definição 2.7

Uma **EDO linear de 1**^a ordem é uma equação do tipo

$$a_0(x)y' + a_1(x)y = b(x),$$

onde a_0, a_1, b são funções definidas num intervalo I com $a_0(x) \neq 0$, para todo o $x \in I$. Equivalentemente,

$$y'+p(x)y=q(x),$$

com
$$p(x) = a_1(x)/a_0(x)$$
 e $q(x) = b(x)/a_0(x)$.

Observação 2.8

Se b(x) = 0 a EDO diz-se **linear homogénea ou incompleta** (não confundir com as EDOs homogéneas já estudadas).

Se $b(x) \neq 0$ a EDO diz-se linear não-homogénea ou completa.

EDOs de 1^a ordem: lineares

Observação 2.9

Para obter a solução de uma EDO linear de 1ª ordem:

- **1** Escreve-se a EDO na forma y' + p(x)y = q(x).
- **2** Determina-se o **fator integrante** $\mu(x) = e^{\int p(x)dx}$.
- 3 Multiplica-se a EDO por $\mu(x)$

$$\mu(x)y' + \mu(x)p(x)y = \mu(x)q(x) \Leftrightarrow (\mu(x)y)' = \mu(x)q(x)$$

4 Integra-se a equação obtida em ordem a x

$$\mu(x)y = \int \mu(x)q(x)dx \Leftrightarrow y = \frac{1}{\mu(x)}\int \mu(x)q(x)dx$$

EDOs de 1^a ordem

EDOs de 1^a ordem: lineares

Observação 2.10

Notar que uma EDO linear de 1ª ordem homogénea

$$y'+p(x)y=0$$

isto é, onde q(x)=0, é uma EDO de variáveis separáveis pois pode ser escrita na forma $\frac{1}{y}y'=-p(x)$.

Exercício 2.4

Resolva as seguintes EDOs

(a)
$$xy' - y = x - 1$$
, $x > 0$

(b)
$$xy' + y - e^x = 0$$
, $x > 0$

(c)
$$y' - y = -e^x$$

EDOs de 1^a ordem

EDOs de 1^a ordem: redutíveis a homogéneas

Observação 2.11

As equações da forma

$$y' = h\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$

onde h é uma função real de variável real e a_i,b_i,c_i são constantes realis tais que $a_1b_2-a_2b_1\neq 0$, são redutíveis a EDOs homogéneas realizando a mudança de variáveis

$$\begin{cases} x = u + \alpha \\ y = z + \beta \end{cases}$$

onde $z\equiv z(u)$ e α e β são constantes que se determinam a partir de

$$\begin{cases} a_1\alpha + b_1\beta + c_1 = 0 \\ a_2\alpha + b_2\beta + c_2 = 0 \end{cases}$$

EDOs de 1ª ordem: Bernoulli

Definição 2.8

Uma equação diferencial de Bernoulli é uma equação do tipo

$$y' + a(x)y = b(x)y^{\alpha},$$

onde $\alpha \in \mathbb{R}$.

Observação 2.12

Notar que se $\alpha=0$ ou $\alpha=1$ a EDO é linear. Para outros valores, a resolução passa por:

1 Considerar a EDO escrita na forma

$$y^{-\alpha}y' + a(x)y^{1-\alpha} = b(x), y \neq 0$$

2 Considerar a mudança de variável $z = y^{1-\alpha}$ e, consequentemente, $z' = (1 - \alpha)y^{-\alpha}y'$.

EDOs de 1ª ordem: Bernoulli

Observação 2.12(cont.)

3 Substituir para obter a EDO linear

$$z' + (1 - \alpha)a(x)z = (1 - \alpha)b(x)$$

4 Usar a técnica do fator integrante para obter a solução da EDO anterior e realizar, no final, a transformação inversa.

Exercício 2.5

Resolva as seguintes EDOs:

(a)
$$y' + \frac{1}{x}y = xy^2$$

(b)
$$\begin{cases} x^2y' - 2xy = 3y^4 \\ y(1) = 1/2 \end{cases}$$

Trajectórias Ortogonais

Definição 2.9

Uma trajectória ortogonal é uma curva que intersecta ortogonalmente uma família de curvas.

Observação 2.13 Como obter a família de trajetórias ortogonais?

- **I** Escrever a EDO associada à família de curvas: y' = f(x, y)
- **2** Escrever a EDO das trajectórias ortogonais: $y' = -\frac{1}{f(x,y)}$
- 3 Integrar a EDO anterior

Exercício 2.6

Determine a família de trajectórias ortogonais das seguintes famílias de curvas:

- (a) família das rectas y = kx
- (b) família de parábolas $y = kx^2$

EDOs lineares de ordem n: definição

Definição 2.10

Chama-se equação diferencial linear de ordem n a uma equação do tipo

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = b(x),$$

onde $a_j(x)$, com $j \in \{0, 1, ..., n\}$ e b(x) são funções contínuas num intervalo I e $a_0(x) \neq 0$, para todo o $x \in I$.

Exercício 2.7

Indique quais das seguintes EDOs são lineares:

(a)
$$y'' + \frac{1}{x}y' + 3y = 1$$

(b)
$$y'''y + 2xy'' + \log(x)y = 0$$

(c)
$$y^{(5)} + y = 0$$

EDOs lineares de ordem n

Observação 2.14

Se b(x) = 0 a EDO diz-se linear homogénea ou incompleta.

Se $b(x) \neq 0$ a EDO diz-se linear não homogénea ou completa.

Se $a_j(x) = \alpha_j \in \mathbb{R}$, isto é, são constantes, então a EDO diz-se linear de coeficientes constantes.

Exercício 2.8

Indique quais das seguintes EDOs são homogéneas e quais são de coeficientes constantes:

(a)
$$y'' + \frac{1}{x}y' + 3y = 1$$

(b)
$$y'''y + 2xy'' + \log(x)y = 0$$

(c)
$$y^{(5)} + y = 0$$

EDOs lineares de ordem n: solução geral

Teorema 2.1 Solução geral de uma EDO linear completa

A solução geral de uma EDO linear completa é igual à soma de uma sua qualquer solução particular com a solução geral da EDO homogénea que lhe está associada.

Observação 2.15

O Teorema anterior diz-nos que a solução geral y de uma EDO linear completa é dada por

$$y = y_H + y_P$$

onde y_H é a solução geral da EDO homogénea associada e y_P é uma solução particular da EDO completa.

Em busca de y_H : caso geral

Observação 2.16

Como vimos atrás y_H não é mais do que a solução geral da EDO homogénea associada à EDO completa. O Teorema seguinte diz-nos qual a forma de tal solução.

Teorema 2.2

Uma EDO linear homogénea de ordem n

$$a_0(x)y^{(n)}+\ldots+a_n(x)y=0$$

admite um **sistema fundamental de soluções** (SFS) $\{\varphi_1, \varphi_2, \dots, \varphi_n\}$ linearmente independentes. Qualquer outra solução φ da EDO é combinação linear destas, isto é,

$$\varphi = C_1 \varphi_1 + C_2 \varphi_2 + \ldots + C_n \varphi_n$$

com $C_1, \ldots, C_n \in \mathbb{R}$.

Em busca de y_H : caso geral

Observação 2.17

A independência linear de um conjunto de funções pode ser analisada usando o Wronskiano.

Exercício 2.9

- Considere-se a EDO y'' + y = 0. Esta é uma EDO linear homogénea. Mostre que sen(x) e cos(x) formam um SFS para esta EDO e determine a sua solução geral.
- 2 Considere a EDO y''' + 4y'' 5y' = 0.
 - (a) Será que $\{1, e^x\}$ constitui um SFS para esta EDO?
 - (b) Será que $\{1, e^x, 2e^x\}$ constitui um SFS para esta EDO?
 - (c) Será que $\{1, e^x, e^{-5x}\}$ constitui um SFS para esta EDO?

Observação 2.18

Uma EDO linear homogénea de ordem n com coeficientes constantes é da forma

$$a_0y^{(n)} + a_1y^{(n-1)} + \ldots + a_{n-1}y' + a_ny = 0$$

com a_i são constantes reais onde $a_0 \neq 0$. Para obter um SFS (e posteriormente construir a solução geral) é necessário resolver a seguinte **equação característica** da EDO:

$$\underbrace{a_0r^n + a_1r^{n-1} + \ldots + a_{n-1}r + a_n}_{polinómio\ característico} = 0$$

Da resolução desta equação resultam n raízes (entre reais e complexas) que vão definir o sistema fundamental de soluções.

Observação 2.18(cont.)

■ Caso 1: raízes reais simples

Seja r uma raiz real simples obtida da equação característica. Então, do sistema fundamental de soluções faz parte a função

 e^{rx}

■ Caso 2: raízes reais múltiplas

Seja r uma raiz real com multiplicidade k>1 obtida da equação característica. Então, do sistema fundamental de soluções fazem parte as funções

$$e^{rx}$$
, xe^{rx} , x^2e^{rx} , ..., $x^{k-1}e^{rx}$

Observação 2.18(cont.)

■ Caso 3: raízes complexas simples

Seja $r=\alpha\pm i\beta$ um par de raízes complexas simples obtidas da equação característica. Então, do sistema fundamental de soluções fazem parte as funções

$$e^{\alpha x}\cos(\beta x)$$
 e $e^{\alpha x}\sin(\beta x)$

■ Caso 4: raízes complexas múltiplas

Seja $r=\alpha\pm i\beta$ um par de raízes complexas com multiplicidade k>1 obtidas da equação característica. Então, do sistema fundamental de soluções fazem parte as funções

$$e^{\alpha x}\cos(\beta x), xe^{\alpha x}\cos(\beta x), \dots, x^{k-1}e^{\alpha x}\cos(\beta x)$$

 $e^{\alpha x}\sin(\beta x), xe^{\alpha x}\sin(\beta x), \dots, x^{k-1}e^{\alpha x}\sin(\beta x)$

Exercício 2.10

Determine a solução geral das EDOs lineares homogéneas seguintes

(a)
$$y'' + 4y' + 3y = 0$$

(b)
$$y^{(4)} + y'' = 0$$

(c)
$$y^{(4)} - 3y''' - y'' + 3y' = 0$$

(d)
$$y'' + 2y' + 5y = 0$$

(e)
$$2y^{(5)} - 8y^{(4)} + 8y''' = 0$$

Observação 2.19

Dada uma EDO linear de coeficientes constantes completa, o processo que vimos acima permite determinar y_H a partir da EDO homogénea associada. Se a EDO não for de coeficientes constantes, com exceção do caso n=1, o SFS tem de ser fornecido pelo enunciado do problema.

Em busca de y_P : MCI

Observação 2.20 Método dos coeficientes indeterminados

Condições de aplicabilidade:

- EDO de coeficientes constantes;
- \bullet b(x) tem de ser da forma:

$$b(x) = P_m(x)e^{\alpha x}\cos(\beta x)$$
 ou $b(x) = P_m(x)e^{\alpha x}\sin(\beta x)$

onde $P_m(x)$ é um polinómio de grau $m \in \mathbb{N}_0$ e $\alpha, \beta \in \mathbb{R}$.

Prova-se então que existe uma solução particular y_P do tipo

$$y_P(x) = x^k e^{\alpha x} [P(x) \cos(\beta x) + Q(x) \sin(\beta x)]$$

Em busca de y_P : MCI

Observação 2.20(cont.)

- $k \in \mathbb{N}$ é a multiplicidade de $r = \alpha + i\beta$ se esta for raiz do polinómio característico, caso contrário, k = 0
- P(x), Q(x) são polinómios de grau m genéricos cujos coeficientes são posteriormente determinados.

Em jeito de algoritmo, temos:

- **1** Analisar b(x) e determinar m, α e β
- 2 Verificar se $r=\alpha+i\beta$ é raiz do polinómio característico da EDO homogénea associada e determinar a sua multiplicidade k (k=0 se $r=\alpha+i\beta$ não é raiz)
- 3 Escrever a fórmula genérica para $y_P(x)$ tendo em atenção os valores de m, k, α e β
- 4 Substituir y_P na EDO completa para determinar os coeficientes dos polinómios P(x) e Q(x)

Em busca de y_P : MCI

Observação 2.21

Como analisar b(x)? Vejamos os seguintes exemplos:

(a)
$$b(x) = e^{2x}$$
: $P_m(x) = P_0(x) = 1$, $\alpha = 2$ e $\beta = 0$;

(b)
$$b(x) = (x^2 + 1)\cos(3x)$$
: $P_m(x) = P_2(x) = x^2 + 1$, $\alpha = 0$ e $\beta = 3$;

(c)
$$b(x) = x$$
: $P_m(x) = P_1(x) = x$, $\alpha = 0$ e $\beta = 0$;

Exercício 2.11

Determine a solução geral das EDOs seguintes:

- (a) y''' + y' = sen(x)
- (b) $2y'' 4y' 6y = 3e^{2x}$
- (c) $y' + y = (x+1)e^{2x}$

Em busca de y_P : MVC

Observação 2.22 Método da variação das constantes

Recordando que

$$y_H(x) = C_1\varphi_1(x) + C_2\varphi_2(x) + \ldots + C_n\varphi_n(x)$$

o método da variação das constantes assume que

$$y_P(x) = C_1(x)\varphi_1(x) + C_2(x)\varphi_2(x) + \ldots + C_n(x)\varphi_n(x)$$

onde as funções $C_i(x)$, $i=1,\ldots,n$ se obtêm do sistema

$$\begin{cases} C'_{1}(x)\varphi_{1}(x) + C'_{2}(x)\varphi_{2}(x) + \dots + C'_{n}(x)\varphi_{n}(x) &= 0 \\ C'_{1}(x)\varphi'_{1}(x) + C'_{2}(x)\varphi'_{2}(x) + \dots + C'_{n}(x)\varphi'_{n}(x) &= 0 \\ \vdots &\vdots \\ C'_{1}(x)\varphi_{1}^{(n-1)}(x) + C'_{2}(x)\varphi_{2}^{(n-1)}(x) + \dots + C'_{n}(x)\varphi_{n}^{(n-1)}(x) &= \frac{b(x)}{a_{0}(x)} \end{cases}$$

Em busca de y_P : MVC

Observação 2.22(cont.)

Note-se que do sistema anterior obtemos as funções $C'_i(x)$ para $i=1,\ldots,n$. As funções $C_i(x)$ são depois obtidas por primitivação (escolhe-se uma primitiva, p.ex., de constante nula) .

Como casos particulares podemos considerar

■ EDO linear de ordem n = 2

$$\begin{cases} C'_1(x)\varphi_1(x) + C'_2(x)\varphi_2(x) &= 0\\ C'_1(x)\varphi'_1(x) + C'_2(x)\varphi'_2(x) &= \frac{b(x)}{a_0(x)} \end{cases}$$

■ EDO linear de ordem n = 3

$$\begin{cases} C_1'(x)\varphi_1(x) + C_2'(x)\varphi_2(x) + C_3'(x)\varphi_3(x) &= 0 \\ C_1'(x)\varphi_1'(x) + C_2'(x)\varphi_2'(x) + C_3'(x)\varphi_3'(x) &= 0 \\ C_1'(x)\varphi_1''(x) + C_2'(x)\varphi_2''(x) + C_3'(x)\varphi_3''(x) &= \frac{b(x)}{a_0(x)} \end{cases}$$

Em busca de y_P : MVC

Exercício 2.12

- **1** Considere a EDO y'' + y = sen(x).
 - (a) Sabendo que $\{sen(x), cos(x)\}$ é um SFS para a EDO homogénea associada, determine y_H .
 - (b) Use o método da variação das constantes para determinar y_P . Escreva a solução geral da EDO dada.
- 2 Considere a EDO $y''' y'' 4y' + 4y = e^{-2x}$ da qual se sabe que $y_H = C_1 e^x + C_2 e^{2x} + C_3 e^{-2x}$, C_1 , C_2 , $C_3 \in \mathbb{R}$. Determine, usando o método da variação das constantes, uma solução particular y_P da EDO dada e escreva a sua solução geral.

Princípio da Sobreposição dos Efeitos

Observação 2.23

No caso em que $b(x) = b_1(x) + b_2(x)$ o **Princípio da Sobreposição dos Efeitos** torna-se muito útil.

Princípio da Sobreposição dos Efeitos

■ Determinar uma solução particular y_{P_k} para o sub-problema

$$a_0(x)y^{(n)} + \ldots + a_n(x)y = b_k(x)$$

para k = 1, 2.

■ A solução particular para a EDO completa

$$a_0(x)y^{(n)} + \ldots + a_n(x)y = b_1(x) + b_2(x)$$

é dada por

$$y_P = y_{P_1} + y_{P_2}$$

Exercícios

Exercício 2.13

Escolha o método mais adequado para determinar a solução geral das EDOs seguintes:

(a)
$$y'' + 2y' = 4sen(2x)$$

(b)
$$y''' + 4y' = x$$

(c)
$$y''' + y'' + y' + y = 4x$$

(d)
$$y''' - y = 2\operatorname{sen}(x)$$

(e)
$$y^{(4)} - y'' = x^2 + e^x$$

$$(f) y'' = y - 2\cos x$$

(g)
$$y'' - 2y' + y = \frac{e^x}{x}$$

(h)
$$y'' + y = \operatorname{cosec}(x)$$

(i)
$$y'' - 3y' + 2y = \frac{e^{2x}}{e^x + 1}$$

Problemas de Cauchy

Definição 2.11

Chamamos Problema de Cauchy ou problema de valores iniciais ao sistema

$$\begin{cases} F(x, y, y', y'', \dots, y^{(n)}) = 0 \\ y(x_0) = y_0 \\ y'(x_0) = y_1 \\ \vdots \\ y^{(n-1)}(x_0) = y_{n-1} \end{cases}$$

Observação 2.24

Às n condições $y(x_0) = y_0, \dots, y^{(n-1)}(x_0) = y_{n-1}$ chamamos **condições iniciais**. Se estas condições respeitarem a pontos diferentes, designam-se **condições de fronteira** e ao problema chamamos **problema de valores de fronteira**.

Problemas de Cauchy

Observação 2.25

Em exercícios anteriores já resolvemos problemas de Cauchy ainda que sem lhe atribuir tal nome. No que se segue estudamos em particular problemas de Cauchy com EDO linear. A solução do problema pode ser obtida com as técnicas habituais, ou, quando aplicável, com a transformada de Laplace.

Exercício 2.14

Resolva os seguintes problemas de Cauchy:

(a)
$$\begin{cases} y' - y = -e^x \\ y(0) = 0 \end{cases}$$
(b)
$$\begin{cases} 3y' - 4y = x \\ y(0) = 1/3 \end{cases}$$

(b)
$$\begin{cases} 3y' - 4y = x \\ y(0) = 1/3 \end{cases}$$

Problemas de Cauchy

Teorema 2.3

Se a_0, a_1, \ldots, a_n e b são funções contínuas num intervalo I, $a_0(x) \neq 0, \ \forall x \in I, \ x_0 \in I$ e $\beta_i \in \mathbb{R}, \ i = 0, \ldots, n-1$, então o problema de Cauchy

$$\begin{cases} a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = b(x) \\ y(x_0) = \beta_0, y'(x_0) = \beta_1, \dots, y^{(n-1)}(x_0) = \beta_{n-1} \end{cases}$$

tem nesse intervalo uma e uma só solução.

Teorema 2.4

Se p e q são funções contínuas num intervalo I, então o problema de Cauchy

$$\begin{cases} y' + p(x)y = q(x) \\ y(x_0) = y_0 \end{cases}$$

tem nesse intervalo uma e uma só solução.

Exercícios

Exercício 2.15

Determine a solução dos seguintes problemas de Cauchy:

(a)
$$\begin{cases} y' - e^{ax} = 0, a \in \mathbb{R} \setminus \{0\} \\ y(0) = 0 \end{cases}$$

(b)
$$\begin{cases} y'' + 2y' - 8y = 12e^{2x} \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$$

(c)
$$\begin{cases} y'' + y' = \cos(t) \\ y(0) = 2 \\ y'(0) = 0 \end{cases}$$