Enhancing Federated Learning with Robust Aggregation and Sequential Orchestration

Ayoub Saidane

UC Berkeley, SkyLab

Research Internship - April 2024 to August 2024

Introduction

Federated Learning of Gboard Language Models with Differential Privacy

Zheng Xu* Yanxiang Zhang* Galen Andrew Christopher A. Choquette-Choo Peter Kairouz H. Brendan McMahan Jesse Rosenstock Yuanbo Zhang Google

Introduction

Difficulties

- Clients can be malicious
- Data distribution is heterogeneous

Byzantine Machine Learning: A Primer

RACHID GUERRAOUI, NIRUPAM GUPTA, AND RAFAEL PINOT, École polytechnique fédérale de Lausanne, Switzerland

Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

ANDREA SILVI[©], ANDREA RIZZARDI, DEBORA CALDAROLA[©], BARBARA CAPUTO[®], AND MARCO CICCONE[®]
Dipartimento di Automatica e Informatica (DAUIN), Politecnico di Torino, 10129 Turin, Italy

Convergence Analysis of Sequential Federated Learning on Heterogeneous Data

Yipeng Li and Xinchen Lyu *

National Engineering Research Center for Mobile Network Technologies
Beijing University of Posts and Telecommunications
Beijing, 100876, China
{liyipeng, lvxinchen}@bupt.edu.cn

Contributions

Robust Aggregation

- Description of aggregation rules: CC, CGE, MeaMed, CwTM, CwMed.
- Experiments and performance comparision

Sequential Training

- Implementation of fully sequential and hybrid sequential-parallel algorithms.
- Experiments in homogeneous/heterogeneous settings.

Parallel training

Byzantine Attacks Tested

► Sign Flipping Attack

- Malicious clients invert the signs of their model updates.
- Goal: Disrupt model convergence by misleading the aggregation process.

► Label Flipping Attack

- Clients corrupt their training data by flipping labels (e.g., class 0 to class 1).
- ▶ Impact: Causes the global model to learn incorrect associations, degrading accuracy.

Gaussian Attack

- Clients add Gaussian noise to their model updates.
- Effect: Introduces randomness, slowing convergence or leading to suboptimal solutions.

Aggregation Rules Summary

- ► Centered Clipping (CC):
 - Clips model weights to a threshold c to limit the influence of extreme values.
 - ► Formula:

$$v_m \leftarrow v_{m-1} + \frac{1}{n} \sum_{i \in [n]} (w_i - v_{m-1}) \min \left\{ 1, \frac{c}{\|w_i - v_{m-1}\|} \right\}$$

- Comparative Gradient Elimination (CGE):
 - Sorts model weights by their norm, and outputs the average the top n-f weights, filtering out potential outliers.
 - Formula:

$$CGE(w_1, ..., w_n) = \frac{1}{n-f} \sum_{i=1}^{n-f} w_{p(i)}$$

- ▶ Mean around Median (MeaMed):
 - ightharpoonup Computes the average of the n-f closest elements to the median coordinate-wise, reducing the influence of outliers.
 - Formula:

$$[\mathsf{MeaMed}(w_1,\ldots,w_n)]_k = \frac{1}{n-f}\sum_{i\in\mathcal{C}_k}[w_i]_k$$

n: number of clients f: number of malicious clients

- Coordinate-wise Trimmed Mean (CwTM):
 - Sorts each coordinate of the model weights, then averages after trimming the top f values.
 - Formula:

$$[\mathsf{CwTM}(w_1,\ldots,w_n)]_k := \frac{1}{n-2f} \sum_{j=f+1}^{n-f} [w_{p_k(j)}]_k.$$

- ▶ Coordinate-wise Trimmed Median (CwMed):
 - Computes the median for each coordinate of the model weights, offering robustness to outliers.
 - Formula:

$$[\mathsf{CwMed}(w_1,\ldots,w_n)]_k := \mathsf{Median}([w_1]_k,\ldots,[w_n]_k).$$

Experimental Setup

- Framework: Implemented an extension of FedScale, an open-source FL framework.
- Dataset: FEMNIST
 - Federated version of MNIST with 62 classes (digits, uppercase, and lowercase letters).
 - Simulates a realistic FL scenario with non-IID data distribution across clients.
- Model Architecture: ResNet-18
 - Chosen for its balance between depth and computational efficiency.
- ► Training Configuration:
 - ▶ 100 rounds of training with evaluation every 5 rounds.
 - Each round involves 50 participants with local training using a batch size of 20 over 5 local steps.
 - Learning rate set to 0.05.

Fully sequential training

Sequential training

Experimental Setup

Dataset: FEMNIST

- Trained ResNet-18 on FEMNIST with homogenous and heterogeneous label distributions across clients.
- Labels allocated based on Gaussian distribution with mean μ_n and constant standard deviation σ .
- ▶ Three different σ values tested to compare training performance.

Training Settings

- 12 participating clients.
- Local training for 1 epoch with a learning rate of 0.01 over 100 rounds.

Performance Metrics

- Global Accuracy
- Individual Accuracy

Conclusion

Summary of Findings

- Robustness of CC
- ▶ Effectiveness of sequential training in heterogeneous data environments.

Recommendations

- Adoption of CC in Byzantine-prone environments.
- Further research on sequential training optimization.

individual

