

AGH

Algorytmy Macierzowe

Sprawozdanie z laboratorium nr.3

Władysław Jerzy Nieć, Paweł Surdyka

Zadania

Proszę napisać algorytmy permutacji macierzy

- Minimum degree (10 punktów) [dla dużej macierzy można zmodyfikować do AMD]
- Cuthill-McKee (10 punktów)
- Reversed Cuthill-McKee [odwrócona permutacja Cuthill-McKee (fajny algorytm)] (5 punktów)

Algorytm Minimum degree

```
def minimum_degree(matrix):
 # Pobranie wymiarów macierzy
m, n = matrix.shape
# Inicjalizacja pustej permutacji
permutation = []
 # Utworzenie słownika sąsiedztwa na podstawie macierzy
 adjacency = neighborhood_dict(matrix)
 # Iteracja po wszystkich wierzchołkach grafu
 for i in range(n):
    # Znalezienie wierzchołka o najmniejszym stopniu
    min degree, best vertex = min(((len(adjacent), v) for v, adjacent in adjacency.items()), key=lambda x: x[0])
    # Usunięcie wierzchołka o najmniejszym stopniu z listy sąsiedztwa pozostałych wierzchołków
    for vertex in adjacency:
         adjacency[vertex].discard(best_vertex)
    # Aktualizacja listy sąsiedztwa sąsiadów wierzchołka o najmniejszym stopniu
    for neighbor in adjacency[best_vertex]:
         adjacency[neighbor].update(adjacency[best_vertex].difference(set([neighbor])))
    # Usunięcie wierzchołka o najmniejszym stopniu z listy sąsiedztwa
    del adjacency[best_vertex]
    # Dodanie wierzchołka o najmniejszym stopniu do permutacji
    permutation.append(best_vertex)
 # Zastosowanie permutacji do macierzy sąsiedztwa i zwrócenie wyniku
 return apply_permutation(matrix, permutation)
```

Znajdowanie sąsiadów

```
def neighborhood_dict(matrix):#Zwraca słownik par wierzchołek -> zbiór jego sąsiadów
 m, n = matrix.shape
 return {i: set(j for j in range(n) if matrix[i][j] > 0 and i != j) for i in range(m)}
```

Permutowanie

```
def apply_permutation(matrix, permutation):
 matrix = np.array([matrix[i, :] for i in permutation])
 return np.array([matrix[:, i] for i in permutation])
```

Algorytm Cuthill-McKee (zwykły i odwrócony)

BFS

```
def cuthill mckee bfs(adjacency, visited, vertex, permutation):
 # Kolejka do przechowywania wierzchołków
 q = SimpleQueue()
 # Rozpoczęcie BFS od danego wierzchołka
 q.put(vertex)
 while not q.empty():
    vertex = q.get()
     # Jeśli wierzchołek nie został odwiedzony
     if not visited[vertex]:
         visited[vertex] = True
         # Dodanie wierzchołka do permutacji
         permutation.append(vertex)
         # Sąsiedzi posortowani rosnąco według stopnia
         for neighbor in sorted(list(adjacency[vertex]), key=lambda x: len(adjacency[x])):
             # Jeśli sąsiad nie został jeszcze odwiedzony, dodaj go do kolejki
             if not visited[neighbor]:
                 q.put(neighbor)
```

Znalezienie permutacji

```
def cuthill_mckee_permutation(matrix):
m, n = matrix.shape
# Utworzenie słownika sąsiedztwa na podstawie macierzy
adjacency = neighborhood_dict(matrix)
# Posortowanie wierzchołków według stopnia
 sorted_vertices = sorted([(vertex, len(neighbors)) for vertex, neighbors in adjacency.items()], key=lambda x: x[1])
# Inicjalizacja pustej permutacji
permutation = []
# Lista odwiedzonych wierzchołków
visited = [False for i in range(m)]
 # Iteracja po posortowanych wierzchołkach
for vertex, _ in sorted_vertices:
     # Jeśli wierzchołek nie został odwiedzony, wykonaj BFS
    if not visited[vertex]:
        cuthill_mckee_bfs(adjacency, visited, vertex, permutation)
 # Zwrócenie permutacji
 return permutation
```

```
def cuthill_mckee(matrix):
 # Zastosowanie permutacji do macierzy sąsiedztwa i zwrócenie wyniku
 return apply_permutation(matrix, cuthill_mckee_permutation(matrix))
```

W wersji odwróconej

```
def reversed_cuthill_mckee(matrix):
 return apply_permutation(matrix, cuthill_mckee_permutation(matrix)[::-1])
```

Pomiary i wizualizacja

Dla k = 2 (tj. rozmiaru macierzy 2^6), δ = size/2, b = 2

Rozmiar oryginalny: 32768B

Rozmiar macierzy rzadkiej: 3716B

Rozmiar macierzy hierarchicznej bez permutacji: 17760B

Rozmiar macierzy hierarchicznej z permutacją minimum_degree: 19872B Rozmiar macierzy hierarchicznej z permutacją cuthill_mckee: 22936B

Rozmiar macierzy hierarchicznej z permutacją reversed_cuthill_mckee: 22936B

Dla k = 3 (tj. rozmiaru macierzy 2^9)

Rozmiar oryginalny: 2097152B

Rozmiar macierzy rzadkiej: 34308B

Rozmiar macierzy hierarchicznej bez permutacji: 125256B

Rozmiar macierzy hierarchicznej z permutacją minimum_degree: 182920B Rozmiar macierzy hierarchicznej z permutacją cuthill_mckee: 219872B

Rozmiar macierzy hierarchicznej z permutacją reversed_cuthill_mckee: 219872B

Dla k = 4 (tj. rozmiaru macierzy 2^12)

Rozmiar oryginalny: 134217728B

Rozmiar macierzy rzadkiej: 292868B

Rozmiar macierzy hierarchicznej bez permutacji: 612616B

Rozmiar macierzy hierarchicznej z permutacją minimum_degree: 1942216B Rozmiar macierzy hierarchicznej z permutacją cuthill_mckee: 1521296B

Rozmiar macierzy hierarchicznej z permutacją reversed_cuthill_mckee: 1521296B

Rozmiar oryginalny: 32768B

Rozmiar macierzy rzadkiej: 3716B

Rozmiar macierzy hierarchicznej bez permutacji: 5832B

Rozmiar macierzy hierarchicznej z permutacją minimum_degree: 6160B Rozmiar macierzy hierarchicznej z permutacją cuthill_mckee: 7440B

Rozmiar macierzy hierarchicznej z permutacją reversed_cuthill_mckee: 7440B

Rozmiar oryginalny: 2097152B

Rozmiar macierzy rzadkiej: 34308B

Rozmiar macierzy hierarchicznej bez permutacji: 42568B

Rozmiar macierzy hierarchicznej z permutacją minimum_degree: 76224B Rozmiar macierzy hierarchicznej z permutacją cuthill_mckee: 75264B

Rozmiar macierzy hierarchicznej z permutacją reversed_cuthill_mckee: 75264B

Rozmiar oryginalny: 134217728B

Rozmiar macierzy rzadkiej: 292868B

Rozmiar macierzy hierarchicznej bez permutacji: 238576B

Rozmiar macierzy hierarchicznej z permutacją minimum_degree: 1113144B Rozmiar macierzy hierarchicznej z permutacją cuthill_mckee: 622264B

Rozmiar macierzy hierarchicznej z permutacją reversed_cuthill_mckee: 622264B

$\delta = \text{size}/2$, b = 2

Rozmiar\parametry	k = 2	k = 3	k = 4
orginalny	32768B	2097152B	134217728B
macierzy rzadkiej	3716B	34308B	292868B
macierzy hierarchicznej	17760B	125256B	612616B
bez permutacji			
macierzy hierarchicznej	19872B	182920B	1942216B
z permutacją			
minimum_degree			
macierzy hierarchicznej	22936B	219872B	1521296B
z permutacją			
cuthill_mckee			
macierzy hierarchicznej	22936B	219872B	1521296B
z permutacją			
reversed_cuthill_mckee			

δ = size/3 , b = 4

Rozmiar\parametry	k = 2	k = 3	k = 4
orginalny	32768B	2097152B	134217728B
macierzy rzadkiej	3716B	34308B	292868B
macierzy hierarchicznej bez permutacji	5832B	42568B	238576B
macierzy hierarchicznej z permutacją minimum_degree	6160B	76224B	1113144B
macierzy hierarchicznej z permutacją cuthill_mckee	7440B	75264B	622264B
macierzy hierarchicznej z permutacją reversed_cuthill_mckee	7440B	75264B	622264B

Wnioski

- Niema różnicy w jakości kompresji pomiędzy permutacją cuthill_mckee a reversed_cuthill_mckee.
- Im mniej wartości osobliwych tym lepsza kompresja.
- Dla mniejszych macierzy permutacja minimum_degree daje lepsze efekty a dla większych cuthill_mckee.