xxii DETAILED CONTENTS

Glycolysis Illustrates How Enzymes Couple Oxidation to Energy		The Regulation of the Src Protein Kinase Reveals How a Protein	
Storage Organisma Stora Food Molecules in Special Recognicies	76 78	Can Function as a Microprocessor	155
Organisms Store Food Molecules in Special Reservoirs Most Animal Cells Derive Their Energy from Fatty Acids Between	10	Proteins That Bind and Hydrolyze GTP Are Ubiquitous Cell Regulators	156
Meals	81	Regulatory Proteins GAP and GEF Control the Activity of GTP-	100
Sugars and Fats Are Both Degraded to Acetyl CoA in Mitochondria		Binding Proteins by Determining Whether GTP or GDP	
The Citric Acid Cycle Generates NADH by Oxidizing Acetyl		Is Bound	157
Groups to CO ₂	82	→ Proteins Can Be Regulated by the Covalent Addition of Other	
Electron Transport Drives the Synthesis of the Majority of the ATP		Proteins	157
in Most Cells	84	An Elaborate Ubiquitin-Conjugating System Is Used to Mark	
Amino Acids and Nucleotides Are Part of the Nitrogen Cycle	85	Proteins	158
Metabolism Is Highly Organized and Regulated	87	Protein Complexes with Interchangeable Parts Make Efficient	450
Summary Problems	88 88	Use of Genetic Information	159
References	108	A GTP-Binding Protein Shows How Large Protein Movements	160
Holorolog	100	Can Be Generated Motor Proteins Produce Large Movements in Cells	161
Chapter 2 Drateins	109	Membrane-Bound Transporters Harness Energy to Pump	101
Chapter 3 Proteins	109	Molecules Through Membranes	163
→ THE SHAPE AND STRUCTURE OF PROTEINS	109	Proteins Often Form Large Complexes That Function as Protein	
The Shape of a Protein Is Specified by Its Amino Acid Sequence	109	Machines	164
Proteins Fold into a Conformation of Lowest Energy	114	Scaffolds Concentrate Sets of Interacting Proteins	164
The α Helix and the β Sheet Are Common Folding Patterns	115	→ Many Proteins Are Controlled by Covalent Modifications That	
Protein Domains Are Modular Units from Which Larger Proteins	447	Direct Them to Specific Sites Inside the Cell	165
Are Built	117	A Complex Network of Protein Interactions Underlies Cell Function	
Few of the Many Possible Polypeptide Chains Will Be Useful	440	→ Summary	169
to Cells Proteins Can Be Classified into Many Families	118	Problems	170
Some Protein Domains Are Found in Many Different Proteins	119 121	References	172
Certain Pairs of Domains Are Found Together in Many Proteins	122		
The Human Genome Encodes a Complex Set of Proteins.	122	Chapter 4 DNA, Chromosomes, and Genomes	173
Revealing That Much Remains Unknown	122	THE CTRUCTURE AND FUNCTION OF DAIA	170
Larger Protein Molecules Often Contain More Than One	122	THE STRUCTURE AND FUNCTION OF DNA	173
Polypeptide Chain	123	A DNA Molecule Consists of Two Complementary Chains of	470
Some Globular Proteins Form Long Helical Filaments	123	Nucleotides The Structure of DNA Provides a Machanian for Llavadity	175
Many Protein Molecules Have Elongated, Fibrous Shapes	124	The Structure of DNA Provides a Mechanism for Heredity	177
Proteins Contain a Surprisingly Large Amount of Intrinsically		In Eukaryotes, DNA Is Enclosed in a Cell Nucleus Summary	178 179
Disordered Polypeptide Chain	125		173
Covalent Cross-Linkages Stabilize Extracellular Proteins	127	CHROMOSOMAL DNA AND ITS PACKAGING IN THE	
Protein Molecules Often Serve as Subunits for the Assembly		CHROMATIN FIBER	179
of Large Structures	127	Eukaryotic DNA Is Packaged into a Set of Chromosomes	180
Many Structures in Cells Are Capable of Self-Assembly	128	Chromosomes Contain Long Strings of Genes	182
Assembly Factors Often Aid the Formation of Complex Biological		The Nucleotide Sequence of the Human Genome Shows How	4.00
Structures	130	Our Genes Are Arranged	183
Amyloid Fibrils Can Form from Many Proteins Amyloid Structures Can Perform Useful Functions in Cells	130 132	Each DNA Molecule That Forms a Linear Chromosome Must Contain a Centromere, Two Telomeres, and Replication	
Many Proteins Contain Low-complexity Domains that Can Form	132	Origins	185
"Reversible Amyloids"	132	DNA Molecules Are Highly Condensed in Chromosomes	187
Summary	134	Nucleosomes Are a Basic Unit of Eukaryotic Chromosome	101
•		Structure	187
PROTEIN FUNCTION All Proteins Bind to Other Molecules	134 134	The Structure of the Nucleosome Core Particle Reveals How	101
The Surface Conformation of a Protein Determines Its Chemistry	135	DNA Is Packaged	188
Sequence Comparisons Between Protein Family Members	133	Nucleosomes Have a Dynamic Structure, and Are Frequently	
Highlight Crucial Ligand-Binding Sites	136	Subjected to Changes Catalyzed by ATP-Dependent	
Proteins Bind to Other Proteins Through Several Types of	100	Chromatin Remodeling Complexes	190
Interfaces	137	Nucleosomes Are Usually Packed Together into a Compact	
Antibody Binding Sites Are Especially Versatile	138	Chromatin Fiber	191
The Equilibrium Constant Measures Binding Strength	138	Summary	193
Enzymes Are Powerful and Highly Specific Catalysts	140	CHROMATIN STRUCTURE AND FUNCTION	194
Substrate Binding Is the First Step in Enzyme Catalysis	141	Heterochromatin Is Highly Organized and Restricts Gene	134
Enzymes Speed Reactions by Selectively Stabilizing Transition		Expression	194
States	141	The Heterochromatic State Is Self-Propagating	194
Enzymes Can Use Simultaneous Acid and Base Catalysis	144	The Core Histones Are Covalently Modified at Many Different Sites	196
Lysozyme Illustrates How an Enzyme Works	144	Chromatin Acquires Additional Variety Through the Site-Specific	
Tightly Bound Small Molecules Add Extra Functions to Proteins	146	Insertion of a Small Set of Histone Variants	198
Multienzyme Complexes Help to Increase the Rate of Cell	1/0	Covalent Modifications and Histone Variants Act in Concert to	
Metabolism → The Cell Regulates the Catalytic Activities of Its Enzymes	148 149	Control Chromosome Functions	198
Allosteric Enzymes Have Two or More Binding Sites That Interact	151	A Complex of Reader and Writer Proteins Can Spread Specific	
Two Ligands Whose Binding Sites Are Coupled Must Reciprocally	101	Chromatin Modifications Along a Chromosome	199
Affect Each Other's Binding	151	Barrier DNA Sequences Block the Spread of Reader-Writer	
Symmetric Protein Assemblies Produce Cooperative Allosteric		Complexes and thereby Separate Neighboring Chromatin	
Transitions	152	Domains	202
→ Many Changes in Proteins Are Driven by Protein Phosphorylation	153	The Chromatin in Centromeres Reveals How Histone Variants	
→ A Eukaryotic Cell Contains a Large Collection of Protein Kinases		Can Create Special Structures	203
and Protein Phosphatases	154	Some Chromatin Structures Can Be Directly Inherited	204