

Práctica 3

2do cuatrimestre 2021 (virtual)

Algoritmos y Estructuras de Datos 1

Integrante	LU	Correo electrónico
Jonathan Bekenstein	348/11	jbekenstein@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires Ciudad Universitaria - (Pabellón I/Planta Baja)

Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

$$\label{eq:fax: problem} \begin{split} & \text{Tel/Fax: (++54 +11) 4576-3300} \\ & \text{http://www.exactas.uba.ar} \end{split}$$

${\rm \acute{I}ndice}$

3.	Práctica 3	2
	3.1. Ejercicio 1	2
	3.2. Ejercicio 2	2
	3.3. Ejercicio 3	3
	3.4. Ejercicio 4	3
	3.5. Ejercicio 5	4
	3.6. Ejercicio 6	4
	3.7. Ejercicio 7	5
	3.8. Ejercicio 8	5
	3.9. Ejercicio 9	6
	3.10. Eiercicio 10	7

3. Práctica 3

3.1. Ejercicio 1

3.1.A. Pregunta A

El problema es que la postcondición se puede indefinir si result está fuera del rango de la secuenca. Y eso no puede suceder nunca, las pre y post condiciones solo pueden ser verdaderas o falsas, nunca indefinidas.

```
proc buscar (in l: seq\langle\mathbb{R}\rangle, in elem: \mathbb{R}, out result: \mathbb{Z}) {  \text{Pre } \{elem \in l\}   \text{Post } \{0 \leq result < |l| \land_L l[result] = elem\}  }
```

3.1.B. Pregunta B

El problema es que se indefine al indexar l[i-1] cuando i=0. Como queremos verificar que el elemento en el índice i sea el doble que el elemento en el índice i-1, tenemos que arrancar a revisar desde i=1. Si la secuencia tiene un único elemento, entonces no hay que revisar nada pues el primer número de la progresión geométrica no va a ser el doble de nadie.

```
proc progresionGeometricaFactor2 (in l: seq\langle\mathbb{Z}\rangle, out result: Bool) { 
 Pre \{True\} 
 Post \{result = True \leftrightarrow ((\forall i: \mathbb{Z})(1 \leq i < |l| \longrightarrow_L l[i] = 2*l[i-1]))\} }
```

3.1.C. Pregunta C

El problema es que en la postcondición se pide $y \neq x$ pero en el contexto de esta especificación, x no está definido. En cambio, lo que habría que pedir es que $y \neq result$ o más simple aún, quitar esa condición y pedir $y \geq result$. A su vez, también falta especificar que $result \in l$ para garantizar que result realmente sea un elemento de la secuencia.

```
proc minimo (in l: seq\langle\mathbb{Z}\rangle, out result: \mathbb{Z}) { \operatorname{Pre}\ \{True\}  \operatorname{Post}\ \{result\in l\wedge (\forall y:\mathbb{Z})(y\in l\to y\geq result)\} }
```

3.2. Ejercicio 2

3.2.A. Pregunta A

Por ejemplo $l = \langle 1 \rangle$, suma = 2. Cumplen la precondición que es simplemente True (o sea, cualquiera cosa cumple la precondición). Pero no existe forma de cumplir con la postcondición ya que no hay suficientes elementos en l para que sumados den 2.

3.2.B. Pregunta B

Sigue siendo inválida porque solo restringe el valor máximo y mínimo que puede tener suma pero no garantiza que efectivamente existan elementos en l que sumados den suma. Por ejemplo $l = \langle 1, 3 \rangle$, suma = 2. Con estos valores se cumple la precondición: $min_suma(l) \le suma \le max_suma(l) \leftrightarrow 0 \le 2 \le 3$ pero no existen elementos en l que sumados den exactamente 2.

3.2.C. Pregunta C

```
(\exists s: seq\langle \mathbb{Z}\rangle)((\forall x: \mathbb{Z})(\#apariciones(x, s) \leq \#apariciones(x, l)) \land suma = \sum_{i=0}^{|s|-1} s[i])
```

3.3. Ejercicio 3

3.3.A. Pregunta A

- I) $x = 0 \rightarrow result \in \{0\}$
- II) $x = 1 \rightarrow result \in \{-1, 1\}$
- III) $x = 27 \rightarrow result \in \{-\sqrt{27}, \sqrt{27}\}$

3.3.B. Pregunta B

- I) $l = \langle 1, 2, 3, 4 \rangle \rightarrow result \in \{3\}$
- II) $l = \langle 15.5, -18, 4.215, 15.5, -1 \rangle \rightarrow result \in \{0, 3\}$
- III) $l = \langle 0, 0, 0, 0, 0, 0, 0 \rangle \rightarrow result \in \{0, 1, 2, 3, 4, 5\}$

3.3.C. Pregunta C

- I) $l = \langle 1, 2, 3, 4 \rangle \rightarrow result = 3$
- II) $l = \langle 15.5, -18, 4.215, 15.5, -1 \rangle \rightarrow result = 0$
- III) $l = (0, 0, 0, 0, 0, 0) \rightarrow result = 0$

3.3.D. Pregunta D

indiceDelPrimerMaximo y indiceDelMaximo tienen necesariamente la misma salida cuando no hay valores repetidos en la secuencia l. En estos casos, sería cuando $l = \langle 1, 2, 3, 4 \rangle$.

3.4. Ejercicio 4

3.4.A. Pregunta A

Incorrecta porque las 2 expresiones deberían estar unidas con un \vee , ya que sino es imposible que se cumplan ambas al mismo tiempo (pues piden a < 0 y también $a \ge 0$).

3.4.B. Pregunta B

Incorrecta porque la postcondición no contempla el caso cuando a = 0.

3.4.C. Pregunta C

Correcta.

3.4.D. Pregunta D

Correcta.

3.4.E. Pregunta E

Incorrecta porque cuando $a \ge 0$, la implicación $a < 0 \rightarrow result = 2 * b$ resulta True pues no se cumple el antecedente. Y luego como las 2 implicaciones están unidas con un \lor , este True ya hace que toda la postcondición sea True sin importar si efectivamente result = b - 1 como debería ser según la especificación. Pasa lo mismo de forma análoga cuando a < 0.

3.4.F. Pregunta F

Correcta.

3.5. Ejercicio 5

3.5.A. Pregunta A

Si recibe x=3 devuelve result=9, lo cual hace verdadera la postcondición pues 9>3.

3.5.B. Pregunta B

```
x = 0.5 \rightarrow result = 0.5^2 = 0.25 \not> 0.5

x = 1 \rightarrow result = 1^2 = 1 \not> 1

x = -0.2 \rightarrow result = (-0.2)^2 = 0.04 > -0.2

x = -7 \rightarrow result = (-7)^2 = 49 > -7
```

3.5.C. Pregunta C

```
proc unoMasGrande (in x: \mathbb{R}, out result: \mathbb{R}) { Pre \{x<0\lor x>1\} Post \{result>x\}
```

3.6. Ejercicio 6

3.6.A. Pregunta A

```
P3 > P1 > P2
```

3.6.B. Pregunta B

3.6.C. Pregunta C

```
Programa 1: r := x * x
Programa 2: r := x * x + 1
```

3.6.D. Pregunta D

- a) Cumple porque la nueva precondición (P3) es más fuerte que la precondición original (P1).
- b) No cumple porque la nueva precondición (P2) es más débil que la precondición original (P1).
- c) Cumple porque la nueva postcondición (Q2) es más débil que la postcondición original (Q1).
- d) No cumple porque la nueva postcondición (Q3) es más fuerte que la postcondición original (Q1).
- e) Cumple porque la nueva precondición (P3) es más fuerte que la precondición original (P1) y la nueva postcondición (Q2) es más débil que la postcondición original (Q1).
- f) No cumple porque la nueva precondición (P2) es más débil que la precondición original (P1).

- g) No cumple porque la nueva postcondición (Q3) es más fuerte que la postcondición original (Q1).
- h) No cumple porque la nueva precondición (P2) es más débil que la precondición original (P1) y además la nueva postcondición (Q3) es más fuerte que la postcondición original (Q1).

3.6.E. Pregunta E

Dado un algoritmo que cumple con una especificación, es posible reemplazar dicha especificación por otra y que el algoritmo siga cumpliendo si:

- 1) La nueva precondición es más fuerte que la original y la nueva postcondición es más débil que la original.
- 2) La nueva precondición es más fuerte que la original y la postcondición se mantiene igual
- 3) La precondición se mantiene igual y la nueva postcondición es más débil que la original.

3.7. Ejercicio 7

3.7.A. Pregunta A

Sabiendo que vale la precondición de p1 se puede afirmar que $x \neq 0$.

Luego, se puede dividir en 2 casos para ver cuándo vale la precondición de p2:

- 1) Si n>0 el antecedente de la implicación es falso y así la implicación resulta verdadera, sin importar el valor de x.
- 2) Si $n \le 0$ la implicación resulta verdadera si $x \ne 0$. Esto vale pues sabemos que se cumple la precondición de p1.

Por lo tanto vale la precondición de p2.

Nota: Me parece poco formal esta "demostración".

3.7.B. Pregunta B

En esencia lo que me piden es probar que $Post_{v2} \to Post_{v1} \equiv (result = [x^n] \to x^n - 1 < result \leq x^n)$.

Esto depende del algoritmo usado para calcular la parte entera de x^n . Si se usa la función techo, entonces la implicación vale pues $Post_{p2}$ es literalmente la definición de esa función. Pero si se usa otro algoritmo, por ejemplo la función piso, entonces la implicación no siempre vale.

3.7.C. Pregunta C

No necesariamente, depende del algoritmo usado para calcular la parte entera de x^n .

3.8. Ejercicio 8

Notar que $Pre_{n-esimo1}$ compara con <, lo cual significa que no pueden haber 2 elementos iguales en la secuencia l. Por lo tanto, vale que $Pre_{n-esimo1} \rightarrow Pre_{n-esimo2}$.

Por otro lado, $Post_{n-esimo1}$ nos dice que $result \in l$ y además que está en la posicón n. Debido a que $Pre_{n-esimo1}$ garantiza que la secuencia l está ordenada, la forma de obtener el índice de result definida en $Post_{n-esimo2}$ en efecto nos va a dar el valor correcto para n.

Al revés no funciona porque $Pre_{n-esimo2}$ solo garantiza que los elementos de la secuencia l sean distintos entre sí, pero eso no implica que la secuencia esté ordenada. Por ejemplo $\langle 1, 3, 2 \rangle$ satisface $Pre_{n-esimo2}$ pero no $Pre_{n-esimo1}$.

3.9. Ejercicio 9

3.9.A. Pregunta A

Dado un número entero, decidir si es par.

```
proc esPar (in n: \mathbb{Z}, out r: Bool) { 
 Pre \{True\} 
 Post \{r=True\leftrightarrow n \bmod 2=0\} }
```

3.9.B. Pregunta B

Dado un entero n y uno m, decidir si n es un múltiplo de m.

```
proc esMúltiplo (in n: \mathbb{Z}, in m: \mathbb{Z}, out r: Bool) {   Pre \{True\} Post \{r=True \leftrightarrow n \bmod m=0\} }
```

3.9.C. Pregunta C

Dado un número real, devolver su inverso multiplicativo.

```
proc inversoMultiplicativo (in x: \mathbb{R}, out r: \mathbb{R}) {  \text{Pre } \{x \neq 0\}   \text{Post } \{r = 1/x\}  }
```

3.9.D. Pregunta D

Dada una secuencia de caracteres, obtener de ella solo los que son numéricos (con todas sus apariciones sin importar el orden de aparición).

```
proc subseqDeNumeros (in s: seq\langle Char\rangle, out r: seq\langle Char\rangle) { 
 Pre \{True\} 
 Post \{(\forall c: Char)(\#apariciones(r,c)=\text{if '0'} \leq c \leq \text{'9' then } \#apariciones(s,c) \text{ else 0 fi)}\} }
```

3.9.E. Pregunta E

Dada una secuencia de reales, devolver la secuencia que resulta de duplicar sus valores en las posiciones impares.

```
proc duplicarPosicionesImpares (in s: seq\langle\mathbb{R}\rangle, out r: seq\langle\mathbb{R}\rangle) { 
  \text{Pre } \{True\}   \text{Post } \{|r|=|s| \wedge (\forall i:\mathbb{Z})(0\leq i<|r|\longrightarrow_L r[i]=\text{if } i \text{ m\'od } 2=0 \text{ then } s[i] \text{ else } s[i]*2 \text{ fi})\}  }
```

3.9.F. Pregunta F

Dado un número entero, listar todos sus divisores positivos (sin duplicados).

```
proc divisoresPositivos (in n: \mathbb{Z}, out r: seq\langle\mathbb{Z}\rangle) { 
 Pre \{True\} 
 Post \{(\forall k:\mathbb{Z})((k>0 \land n \bmod k=0 \leftrightarrow k \in r) \land (\#apariciones(r,k) \leq 1))\} }
```

3.10. Ejercicio 10

3.10.A. Pregunta A

Tiene sentido la pregunta y la respuesta es que no, 4 no es múltiplo de 0 pues $\nexists n \in \mathbb{Z} \mid 4 = 0 * n$.

3.10.B. Pregunta B

Sí, debería ser una entrada válida pero no lo es en la especificación dada, pues la precondición pide $m \neq 0$.

3.10.C. Pregunta C

```
proc esMultiplo] (in n, m: \mathbb{Z}, out result: Bool) {   Pre \{True\}   Post \{result= if m=0 then n=0 else n \mod m=0 fi} }
```

3.10.D. Pregunta D

La precondición original es más fuerte pues $m \neq 0 \rightarrow True$ es una tautología.