Aula 4 - Pré processamento de dados

AGENDA

- Motivação
- Tratando dados faltantes
- Variáveis categóricas
- Normalização

Motivação

- A etapa de pré-processamento dos dados é importante pois a qualidade do resultado obtido por meio dos algoritmos de ML dependerá da qualidade dos dados de entrada
- Na grande maioria dos casos os dados coletados contém certos problemas que podem prejudicar o resultado almejado
 - Diferença de escala entre os atributos numéricos
 - Exemplos atributos faltantes
 - Atributos textuais

Tratando dados faltantes

- Alguns dataset podem conter linhas dados com atributos sem valor
- Existem algumas técnicas que podem ser utilizadas para contornar esses defeitos
 - Excluir a coluna do atributo pode ocasionar grande perda de informações
 - Excluir as linhas com atributos faltantes perda de exemplos
 - Preencher os valores faltantes com a média

Tratando dados faltantes - Excluir coluna

- Recomenda-se a utilização dessa opção quando o atributo exercer pouca influência sobre o conjunto de dados.
- Para a execução desta opção basta se utilizar a função df.dropna(axis=1, inplace=True) da biblioteca Pandas

Tratando dados faltantes - Excluir coluna

No exemplo abaixo a coluna "property tax" do dataset foi removida

	•																
7] d	ataset.head	(5)															
	Unnamed:	0	Unnamed:	0.1	city	area	rooms	bathroom	parking spaces	floor	animal	furniture	hoa	rent amount	property tax	fire insurance	tota
	0	0		0	1	240	3	3	4	-	acept	furnished	R\$0	R\$8,000	NaN	R\$121	R\$9,12
	1	1		1	0	64	2	1	1	10	acept	not furnished	R\$540	R\$820	R\$122	R\$11	R\$1,49
	2	2		2	1	443	5	5	4	3	acept	furnished	R\$4,172	R\$7,000	NaN	R\$89	R\$12,68
	3	3		3	1	73	2	2	1	12	acept	not furnished	R\$700	R\$1,250	R\$150	R\$16	R\$2,11
	4	4		4	1	19	1	1	0	-	not acept	not furnished	R\$0	R\$1,200	R\$41	R\$16	R\$1,25
	ataset.drop		axis=1, i	nplac	e=Tru	e)											
•		**	Unnamed:	0.1	city	area	rooms	bathroom	parking spaces	floor	animal	furniture	hoa	rent amount	fire insurance	total	
	0	0		0	1	240	3	3	4	-	acept	furnished	R\$0	R\$8,000	R\$121	R\$9,121	
	1	1		1	0	64	2	1	1	10	acept	not furnished	R\$540	R\$820	R\$11	R\$1,493	
	2	2		2	1	443	5	5	4	3	acept	furnished	R\$4,172	R\$7,000	R\$89	R\$12,680	
	3	3		3	1	73	2	2	1	12	acept	not furnished	R\$700	R\$1,250	R\$16	R\$2,116	
	4	4		4	1	19	1	1	0	_	not acept	not furnished	R\$0	R\$1,200	R\$16	R\$1,257	

Tratando dados faltantes - Excluir linhas

- Recomenda-se a utilização dessa opção quando existem poucas linhas com dados faltantes no dataset
- Esta operação pode ser realizada utilizando-se a função df.dropna(axis=0, inplace=True)

Tratando dados faltantes - Excluir linhas

 No exemplo abaixo foram removidas as linhas que possuíam pelo menos um atributo com valor faltante

	Unnamed: 6	Unnamed:	0.1	city	area	rooms	bathroom	parking spaces	floor	animal	furniture	hoa	rent amount	property tax	fire insurance	tota
0	(0	1	240	3	3	4	-	acept	furnished	R\$0	R\$8,000	NaN	R\$121	R\$9,12
1	1		1	0	64	2	1	1	10	acept	not furnished	R\$540	R\$820	R\$122	R\$11	R\$1,49
2	2		2	1	443	5	5	4	3	acept	furnished	R\$4,172	R\$7,000	NaN	R\$89	R\$12,680
3	3		3	1	73	2	2	1	12	acept	not furnished	R\$700	R\$1,250	R\$150	R\$16	R\$2,116
4	4		4	1	19	1	1	0	-	not acept	not furnished	R\$0	R\$1,200	R\$41	R\$16	R\$1,25
dat	aset.dropn	a(axis=0,	inplac	e=True)											
	aset.dropn		inplac	e=True)											
	aset.head(To.	rooms	bathroom	parking spaces	floor	animal	furniture	hoa	rent amount	property tax	fire insurance	total
	aset.head(area			parking spaces			furniture		rent amount R\$820	property tax R\$122		total R\$1,493
data	aset.head(Unnamed:	0 Unnamed	: 0.1	city 0	area	2	1	1	10	acept		R\$540			R\$11	
data	aset.head(Unnamed:	0 Unnamed	: 0.1	city 0	area	2	1	1	10 12	acept	not furnished	R\$540 R\$700	R\$820	R\$122	R\$11 R\$16	R\$1,493
data	aset.head(Unnamed:	Ø Unnamed	: 0.1 1 3	city 0 1	area 64 73	2 2	1	1	10 12	acept acept not acept	not furnished	R\$540 R\$700 R\$0	R\$820 R\$1,250	R\$122 R\$150	R\$11 R\$16 R\$16	R\$1,493 R\$2,116

Tratando dados faltantes - Preenchendo com a média

 Nesta solução, menos drástica que as anteriores, os valores faltantes podem ser preenchidos com o valor médio do atributo no dataset

```
[27] dataset = pd.read_csv('houses_to_rent_v3.csv')
#calcula a média da coluna 'property tax'
property_tax_mean = dataset['property tax'].mean()
#atribui a média calculada para todos o NaN
dataset['property tax'].fillna(property_tax_mean,inplace = True)
```

Variáveis categóricas

- Determinados atributos podem ser do tipo nominal sendo necessário convertê-los para valores numéricos
- Isso pode ser feito alterando-se o tipo da coluna para category e utilizar o código das categorias

			o_rent_v3.csv')														
			imal"].astype('d ataset["animal"]														
latase	t																
	Unnamed: 0	Unnamed: 0.1	Unnamed: 0.1.1	city	area	rooms	bathroom	parking spaces	floor	animal	furniture	hoa	rent amount	property tax	fire insurance	total	animal_numeri
0	0	0	0	1	240	3	3	4	-	acept	furnished	0	8000	NaN	121	9121	
1	1	1	1	0	64	2	1	1	10	acept	not furnished	540	820	122.0	11	1493	
2	2	2	2	1	443	5	5	4	3	acept	furnished	4172	7000	NaN	89	12680	
3	3	3	3	1	73	2	2	1	12	acept	not furnished	700	1250	150.0	16	2116	
4	4	4	4	1	19	1	1	0	-	not acept	not furnished	0	1200	41.0	16	1257	
	***	144		***	100	***	***	***	100	(1404	500	***	[80	ww	(444)	***	
6075	6075	6075	6075	1	50	2	1	1	2	acept	not furnished	420	1150	0.0	15	1585	
6076	6076	6076	6076	1	84	2	2	1	16	not acept	furnished	768	2900	63.0	37	3768	
6077	6077	6077	6077	0	48	1	1	0	13	acept	not furnished	250	950	42.0	13	1255	
6078	6078	6078	6078	1	160	3	2	2	-	not acept	not furnished	0	3500	250.0	53	3803	
6079	6079	6079	6079	1	60	2	1	1	4	acept	furnished	489	1900	0.0	25	2414	

Normalização

- Alguns datasets possuem atributos numéricos que possuem diferentes escalas. Ex: idade, salário, altura, etc.
- Essa diferença de escala dificulta o treinamento dos modelos de ML, de modo que um atributo pode influenciar mais do que outro.
- Para solucionar esse problema aplica-se a normalização
- A biblioteca Scikit Learn fornece diferentes funções que podem ser aplicadas sobre os dados de acordo com suas características.
- MinMaxScaler, StandardScaler, RobustScaler

Normalização - MinMaxScaler

- Fórmula = (valor Min) / (Max Min)
- Reescala os valores para um intervalo entre 0 e 1 ou -1 e 1 caso existam valores negativos dentro do conjunto.
- É aplicada apenas dentro da coluna.
- Recomendada quando os dados não possuem distribuição normal e baixo desvio padrão.
- Sintaxe: x_normalizado = MinMaxScaler().fit_transform(x)

Normalização - MinMaxScaler

• Exemplo:

```
[53] rent amount = np.array(dataset['rent amount']).reshape(-1,1)
 from sklearn.preprocessing import MinMaxScaler
 rent amount normalizado = MinMaxScaler().fit transform(rent amount)
 print("Dados originais:")
 print(rent amount)
 print("Dados normalizados:")
 print(rent amount normalizado)
 Dados originais:
 [[8000]]
   820]
  [7000]
  . . .
  [ 950]
  [3500]
  [1900]]
 Dados normalizados:
 [[0.1700314]
  [0.00897263]
  [0.14759982]
  [0.01188874]
  [0.06908928]
  [0.03319874]]
```

Normalização - StandardScaler

- Fórmula: (valor média) / desvio padrão
- Mais recomendado para dados com distribuição normal
- O resultado é um conjunto de dados com desvio padrão e variância iguais à 1
- Sintaxe: x_normalizado = StandardScaler().fit_transform(x)

Normalização - StandardScaler

Exemplo:

```
[55] rent amount = np.array(dataset['rent amount']).reshape(-1,1)
 from sklearn.preprocessing import StandardScaler
 rent_amount_normalizado = StandardScaler().fit_transform(rent_amount)
 print("Dados originais:")
 print(rent amount)
 print("Dados normalizados:")
 print(rent_amount_normalizado)
 Dados originais:
 [[8000]
  [ 820]
  [7000]
  [ 950]
  [3500]
  [1900]]
 Dados normalizados:
 [[ 1.00776786]
  [-0.9998517
  [ 0.72815511]
  [-0.96350204]
  [-0.25048952]
  [-0.69786992]]
```

Normalização - RobustScaler

- Fórmula: (valor média) / (Amplitude Interquartil)
- Recomendada para dados que possuem valores outliers
- Mantém os outliers porém devido a mudança de escala sua influência negativa é atenuada
- Sintaxe: x_normalizado = RobustScaler().fit_transform(x)

Normalização - RobustScaler

• Exemplo:

```
[56] rent_amount = np.array(dataset['rent amount']).reshape(-1,1)
 from sklearn.preprocessing import RobustScaler
 rent amount normalizado = RobustScaler().fit transform(rent amount)
 print("Dados originais:")
 print(rent amount)
 print("Dados normalizados:")
 print(rent amount normalizado)
 Dados originais:
 [[8000]]
    820]
  [7000]
  [ 9501
  [3500]
  [1900]]
 Dados normalizados:
 [[ 1.17736303]
  [-0.55171583]
   0.93654425]
  [-0.52040939]
    0.09367851]
  [-0.29163155]]
```

GRATIDÃO!

