Automne 2014

Modèles mathématiques pour l'Image

Raphaëlle Chaine

Master Professionnel Image

Université Claude Bernard - Lvon I

Approximation d'une fonction par une mixture de Gaussiennes

$$f(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \alpha_3 f_3(x) + \alpha_4 f_4(x)$$

$$(\alpha_i)_{1 \le i \le 4} \qquad \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 1$$

- Les paramètres des densités f_i sont inconnus ainsi que les coefficients α_i
- Utile pour modéliser un histogramme
 - Le nombre de densités est prédéterminé en fonction du nombre de modes de la fonction
- Egalement valable en dimension quelconque...

52

- Cas où chaque densité f_i est une variable γ_{m,σ^2} aléatoire de loi Gaussienne $\mathcal{N}(m,\sigma^2)$ (moyenne et variance inconnues)
- La densité du mélange s'écrit

$$\begin{split} \sum_{j=1}^{J} \alpha(j) \gamma_{m(j),\sigma(j)^2}(x) &= \sum_{j=1}^{J} \frac{\alpha(j)}{\sqrt{2\pi\sigma(j)^2}} \exp\left[-\frac{(x-m(j))^2}{2\sigma(j)^2}\right] \\ \alpha_j \geqslant 0, \quad \text{et} \quad \alpha_1 + \dots + \alpha_J = 1 \end{split}$$

• Possibilité de représenter les α_i les m_i et les σ_i de manière vectorielle (on notera θ l'ensemble de ces paramètres)

53

- Estimation de toutes ces quantités θ à la vue de n observations
 - Mesures x_1, \ldots, x_n
 - Réalisations de la variable aléatoire X de densité

$$f(x;\theta) = \sum_{j=1}^{J} \alpha(j) \gamma_{m(j),\sigma(j)^2}(x)$$

- On introduit également la variable Z, variable aléatoire discrète à valeur dans $\{1,\ldots,J\}$ désignant le mode j auquel est attaché chaque observation

$$\mathcal{L}(Z) = \sum_{j=1}^{J} \alpha(j) \delta_j$$

$$j = 1, \dots, J, \quad \mathcal{L}(X|Z = j) = \mathcal{N}(m(j), \sigma(j)^2)$$

 $g(z;\theta)$: densité au point z de la loi Z $h(x,z;\theta)$: densité au point (x,z) de la loi (X,Z)

 $h(x, j; \theta) = \alpha(j) \gamma_{m(j), \sigma(j)^2}(x) \mathbf{1}_{\{1, \dots, J\}}(j)$

 1er cas (irréaliste): Supposons que l'on observe simultanément la réalisation de X et de Z

- Estimation facile des paramètres inconnus
- Log-vraisemblance du système complet (ie des observations (X_1,Z_1,\ldots,X_n,Z_n))

$$\begin{split} L(\overline{X}, \overline{Z}, \theta) &= & \ln \prod_{i=1}^{n} h(X_{i}, Z_{i}; \theta) \\ &= & \sum_{i=1}^{n} \left[\ln \alpha(Z_{i}) + \ln \gamma_{m(Z_{i}), \sigma(Z_{i})^{2}}(X_{i}) \right] \\ &= & - \frac{n}{2} \ln(2\pi) + \frac{1}{2} \sum_{i=1}^{n} \left[\ln \alpha(Z_{i}) - \ln(\sigma(Z_{i})^{2}) - \frac{(X_{i} - m(Z_{i}))^{2}}{\sigma(Z_{i})^{2}} \right] \end{split}$$

elle doit être maximisée!

 1er cas (irréaliste): Supposons que l'on observe simultanément la réalisation de X et de Z

• En notant $A_j = \{i=1,\ldots,n,\ Z_i = j\}$ et $C_j = \operatorname{card}(A_j)$ on obtient

$$L(\overline{X}, \overline{Z}, \theta) = \sum_{j=1}^{J} C_j \ln \alpha(j) + \sum_{j=1}^{J} \sum_{i \in A_j} \ln \gamma_{m(j), \sigma(j)^2}(X_i)$$

- Résultat important
 - La log-vraisemblance est maximisée pour les paramètres suivants

$$\alpha(j) = \frac{C_j}{n}, \quad m(j) = \frac{1}{C_j} \sum_{i \in A_j} X_i \quad et \quad \sigma(j)^2 = \frac{1}{C_j} \sum_{i \in A_j} (X_i - m(j))^2_{\quad 56}$$

Algorithme EM

- Comment faire dans le cas pratique où on observe uniquement les x,?
 - On va faire des hypothèses θ_k sur la valeur des paramètres θ , et les raffiner petit à petit
 - On va remplacer la log-vraisemblance totale par sa moyenne (son espérance)
 - La moyenne est faite en utilisant $\theta_{\rm k}$ pour estimer la densité de probabilité de chacune des valeurs possibles des $z_{\rm i}$
- Log-vraisemblance conditionnelle des observations (sous la loi de paramètre θ_k)

$$\begin{split} L_c(\overline{X};\theta,\theta_k) &= \mathbb{E}(L(\overline{X},\overline{Z};\theta)|\overline{X};\theta_k) = \sum_{i=1}^n \int g(z|X=X_i;\theta_k) \ln h(X_i,z;\theta) \, dz \\ &\text{Etant donné la ième observation } x_y \\ &\text{on regarde la probabilité de chacun des } z_i \\ &\text{auquel il aurait du être associé...} \end{split}$$

Algorithme EM

- Répétition successive de deux étapes consécutives
 - E(xpectation) : étant donnée une valeur θ_k des paramètres, on calcule la log-vraisemblance conditionnelle des observations $L_c(\overline{X};\theta,\theta_k)$
 - M(aximization) : on choisit θ_{k+1} pour maximiser $L_c(\overline{X}; \theta, \theta_k)$
- Il ne manque plus que l'expression de la loi de Z sachant X

$$g(z|X=x;\theta) = \frac{h(x,z;\theta)}{f(x;\theta)} = \frac{\alpha(z)\gamma_{m(z),\sigma(z)^2}(x)}{\sum_{j=1}^J \alpha(j)\gamma_{m(j),\sigma(j)^2}(x)} \mathbf{1}_{\{1,\dots,J\}}(z)$$

58

Algorithme EM

- On obtient donc :

$$\begin{split} L_c(\overline{X};\theta,\theta_k) &= -\frac{n}{2}\ln(2\pi) + \sum_{j=1}^J \left(\sum_{i=1}^n g(j|X=X_i;\theta_k)\right) \ln \alpha(j) \\ &-\frac{1}{2}\sum_{i=1}^n \sum_{j=1}^J \left[\ln(\sigma(j)^2) + \frac{(X_i - m(j))^2}{\sigma(j)^2}\right] g(j|X=X_i;\theta_k) \end{split}$$

– Etape d'estimation de θ_{k+1} (Maximisation)

$$\alpha_{k+1}(j) = \frac{1}{n} \sum_{i=1}^{n} g(j|X = X_i; \theta_k)$$

$$m_{k+1}(j) = \frac{\sum_{i=1}^{n} X_i g(j|X = X_i; \theta_k)}{\sum_{i=1}^{n} g(j|X = X_i; \theta_k)}$$

$$\sigma_{k+1}(j)^2 = \frac{\sum_{i=1}^{n} (X_i - m_{k+1})^2 g(j|X = X_i; \theta_k)}{\sum_{i=1}^{n} g(j|X = X_i; \theta_k)}$$

Algorithme EM

- Pourquoi ca marche?
 - On peut montrer que la (log-)vraisemblance est croissante le long de l'algorithme ☺

$$L(\overline{X}; \theta_{k+1}) \geqslant L(\overline{X}; \theta_k)$$

- Attention!
 - Il peut exister des maximas locaux qui vont piéger l'algorithme

60

Algorithme EM

- Récapitulatif de l'algorithme :
 - Entrées : x_1, \dots, x_n et des valeurs initiales des paramètres
 - A l'étape k, on calcule :

- 3 vecteurs :
$$\alpha_k = (\alpha_k(1), \dots, \alpha_k(J))$$
 $m_k = (m_k(1), \dots, m_k(J))$ $v_k = (v_k(1), \dots, v_k(J))$ Variances

- 1 matrice H de taille n*J

$$H_{ij}^{(k)} = \frac{\alpha_k(j)\gamma_{m_k(j),v_k(j)}(X_i)}{\sum_{l=1}^J \alpha_k(l)\gamma_{m_k(l),v_k(l)}(X_i)}$$

61

Algorithme EM

- Passage à l'étape k+1

$$\begin{array}{rcl} \alpha_{k+1}(j) & = & \frac{1}{n} \sum_{i=1}^n H_{ij}^{(k)} \\ \\ m_{k+1}(j) & = & \frac{\sum_{i=1}^n X_i H_{ij}^{(k)}}{\sum_{i=1}^n H_{ij}^{(k)}} \\ \\ v_{k+1}(j) & = & \frac{\sum_{i=1}^n (X_i - m_j)^2 H_{ij}^{(k)}}{\sum_{i=1}^n H_{ij}^{(k)}} \end{array}$$

62

Filtre médian

• Corrige le niveau de gris d'un pixel si celui-ci est très différent des niveaux voisins

12	25	32
18	4	48
25	36	57

• Classe les valeurs des voisins d'un pixel dans l'ordre croissant puis choisit la valeur centrale (médiane)

- 4 remplacé par 25
- Efficace contre le bruit ponctuel (ex : bruit type « poivre et sel ») sans introduire un effet flou

63

Image débruitée par un filtre médian

64

Modèles statistiques du bruit

Peuvent être ajoutés à une image pour simuler un bruit additif

Bruit à distribution uniforme :

Les niveaux de gris de l'intervalle $[b_{min}, b_{max}]$ sont équiprobables $H(k) = \frac{1}{(b_{max} - b_{min})}$

Bruit à distribution gaussienne (loi normale)

$$H(k) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(k-m)^2}{2\sigma^2})$$

Bruit à distribution de Rayleigh

$$H(k) = \frac{2}{b}(k-a) \exp(-\frac{(k-a)^2}{b})$$
 pour $k > a$

3