

STRENG VERTRUWELUK

Alleen voor Philips
Service Handelaren
Auteursrechten voorbehouden

**UITLEENBIBLIOTHEEK
PHILIPS NEDERLAND N.V.
Technische Dienst**

Uitgave van de
CENTRALE SERVICE AFDELING
N. V. Philips' Gloeilampenfabrieken
Eindhoven

PHILIPS

SERVICE DOCUMENTATIE

van de electronische Volt-Ohm
en mA-meter

GM7635-01

1952

DOEL

Het meten van gelijkspanning, L.F. en H.F. wisselspanning, gelijkstroom en weerstanden.

FIGUREN

- Fig.1. Volledig principeschema.
- Fig.2. Principeschema stroomgebieden (gelijkstroom).
- Fig.3. "Spanningsgebieden (gelijk- en wisselspanning).
- Fig.4. "Spanningsgebied 0-1000V gelijkspanning.
- Fig.5. Principeschema brugschakeling.
- Fig.6. "Weerstandsgebieden $\times 10^2$ Ohm; $\times 10^3$ Ohm; $\times 10^4$ Ohm.
- Fig.7. "Weerstandsgebied 1 M Ω .
- Fig.8. Voorbeeld van het apparaat.
- Fig.9. Rechter zijaanzicht van het apparaat (zonder kast).
- Fig.10 Linker zijaanzicht van het apparaat (zonder kast).
- Fig.11 Bovenanzicht van unit D.
- Fig.12 Boven en onderaanzicht unit E.
- Fig.13 Voedingstransformator.
- Fig.14 Schakelsegmenten schakelaar SK1, SK2.
- Fig.15 Samenstelling meetkop.

ALGEMEEN

Meetgebieden

Gelijkspanning: 0-3; 0-10; 0-30; 0-100; 0-300; en 0-1000 V.

Wisselspanning: 0-3; 0-10; 0-30; 0-100 en 0-300V.

Gelijkstroom : 0-3; 0-30 en 0-300 mA.

Weerstanden : 0-1000 Ω ; en 0-10.000 Ω ; 0-0,1 M Ω en 0-10 M Ω .

FREQUENTIE

De nauwkeurigheid voor het wisselspanningsgebied wordt gegarandeerd voor frequenties van 50 Hz-50 MHz. Van 50 MHz - 100 MHz zijn echter ook nog bruikbare metingen mogelijk.

- 2 -

GM7635/01

MEETNAUWKEURIGHEID

De meetnauwkeurigheid voldoet, uitgedrukt in % van de volle meteruitslag, aan de volgende toleranties:

Gelijkspanning (behalve 1000 V)	$\pm 3,5 \%$
Gelijkspanning 1000 V gebied	$\pm 5 \%$
Wisselspanning	$\pm 3,5 \%$
Gelijkstroom	$\pm 3,5 \%$
Weerstand	$\pm 5 \%$

GEVOELIGHEID VOOR NETSPANNINGSVARIATIES

Bij 5% netspanningsvariatie bedraagt de extra miewijzing bij spanningmeting $\pm 3,5 \%$, zonder nulpuntoorrectie met R3, en $\pm 1\%$ van de volle schaaluitslag met hernieuwde nulpuntoorrectie. (Bij weerstandsmeting zijn deze bedragen respectievelijk $\pm 4\%$ en $\pm 2\%$.

INGANGSDEMPING

Voor stand = ca. 9 MΩ

Voor stand \sim ca. 3,5 MΩ bij 1000 Hz
 ca. 0,7 MΩ bij 1 MHz
 ca. 130 kΩ bij 10 MHz
 ca. 20 kΩ bij 40 MHz

INGANGSCAPACITEIT

De ingangscapaciteit van de meetkop is op stand ca. 11 pF.

SPANNINGSGRENS

De spanning op de pen van de meetkop (eventueel dus de gelijkspanning + de topwaarde van de wisselspanning) mag ten hoogste 500 V bedragen.

VOEDING

Het apparaat is omschakelbaar voor netspanningen van 110; 125; 145; 200; 220 en 245 V (40-100 Hz).

Het opgenomen vermogen is ca. 20 W.

AFMETINGEN

Breedte 170 mm.

Hoogte 250 mm.

Diepte 220 mm.

GEWICHT

5,2 kg (met meetkop).

BESCHRIJVINGa. Stroomgebieden (gelijkstroom) (zie fig.2)

Voor deze metingen behoeft het apparaat niet aan het net te worden aangesloten. De meter M1 wordt in de te meten keten opgenomen via de aansluitklemmen Bu5 en Bu6. Indien de meter verkeerd om uitslaat, schakelaar SK1 omschakelen (zie fig.1). In fig.2 is SK1 weggeslagen.

De omschakeling voor de verschillende meetgebieden vindt plaats met de schakelaar SK2.

b. Spanningsgebieden (gelijk- en wisselspanning tot 300 V) (zie fig.3)

De te meten spanning wordt aangesloten tussen de meetpen Bu8 en de aardklem Bu9 van de meetkop. De meetkop moet voor gelijk- of wisselspanning worden omgeschakeld met schakelaar SK3 op de meetkop. In de stand \sim wordt de te meten spanning gelijkgericht door B3.

GM7635/01

- 3 -

Na afvlakking door R5+R6+R7-C2 wordt de verkregen gelijkspanning via R8, SK2 (sectie C), R24 aan het stuurrooster van B1 toegevoerd, R24-C3 vormen een tweede afvlakfilter.

In de stand gelijkspanning en SK2 op 3V, wordt de te meten spanning direct via R7, R8 en R24 aan het rooster van de versterkerbuis B1 toegevoerd. In rust heeft het rooster van B1 een spanning van ca.-2,5 V. Deze spanning is het verschil van de spanning over R32-R33 en R49.

In de standen 10V; 30V; 100 V en 300 V wordt gebruik gemaakt van de verzwaker R9 t/m R15.

De verschillende meetbereiken worden met de schakelaar SK2 ingesteld. De meter M1 in serie met R2 en R58 is in een brugschakeling opgenomen, waarvan de takken bestaan uit R34 + een deel van R3; R35 + het andere deel van R3; R36; en R33 + R32 + de gelijkstroomweerstand van de buis B1 (zie fig.5).

Met R3 wordt de brug in evenwicht gebracht zodat de stroom door M1 nul is. Bij variatie van de roosterspanning verandert de gelijkstroomweerstand van B1; en wordt het elektrisch evenwicht verbroken. M1 geeft hierdoor een uitslag welke afhankelijk is van de spanning tussen Bu8 en Bu9. Met R2 wordt de weerstand van het meter-circuit op de juiste waarde ingesteld, zie gebruiksaanwijzing hoofdstuk "ijken".

c. Spanningsgebied 0-1000 V gelijkspanning (zie fig.4)

De te meten spanning sluit men aan tussen de klemmen Bu1 en Bu2. De pen Bu8 (pen van de meetkop) steekt men in een der klemmen Bu5 of Bu6. De meetkop is op = geschakeld en de schakelaar SK2 in stand 100 V. De spanning tussen de klemmen Bu8 en Bu9 wordt door de potentiometerschakeling R17, R18, R19 en R20 het tiende deel van de spanning die tussen Bu1 en Bu2 staat. Verder verloopt de meting zoals omschreven is onder "b" (zie boven).

d. Weerstandsgebieden $\times 10^2 \Omega$; $\times 10^3 \Omega$ en $\times 10^4 \Omega$ (zie fig.6)

De te meten weerstand wordt aangesloten tussen de punten Bu3 en Bu4. Door het insteken van een stekerpen in Bu4, wordt R33 parallel geschakeld aan R49 en de onderkant van R32 geaard. Hierdoor groter versterking van B1.

In bovengenoemde bereiken is de stroom door de te meten weerstand, per bereik, praktisch onafhankelijk van de waarde van de te meten weerstand. Hierdoor is de spanningsvariatie van het stuurrooster van B1 recht evenredig met de te meten weerstandwaarde. Dit geeft een lineaire weerstandschaal. Om de meter te beveiligen tegen een te grote overbelasting, als bij weerstandsmeting de klemmen Bu3 en Bu4 open zijn (geen weerstand aangesloten) is de seleencel Gr1 in het roostercircuit van B1 opgenomen. Zijn de meetsnoeren wel aangesloten aan Bu3 en Bu4, doch geen weerstand, dan zou het stuurrooster van B1 ca. 66V positief worden via knooppunt R47-R48. Bij deze spanning is Gr1 een goede geleider, zodat deze positieve spanning sterk verzwakt op het stuurrooster komt. De stroom door M1 wordt hierdoor tot een veilige waarde (ca.2,5 maal normaal) beperkt.

e. Weerstandsgebied $\times 1 M\Omega$ (fig.7)

In dit gebied is de stroom door de te meten weerstand niet meer onafhankelijk van de waarde daarvan. Daardoor wordt in dit gebied gebruik gemaakt van een niet-lineaire afleesschaal van de meter. De seleencel Gr1 is nu uitgeschakeld. De methode van meten berust op weerstandsbeperking door parallel schakelen van de onbekende weerstand aan R41+R42.

(klemmen Bi3 en Bi4). Met R1 wordt de meter op oneindig ingesteld als de meetstoeren in de bussen Bi3-Bi4 zitten en geen weerstand is aangesloten. Vóór het afregelen van R1 op nul instellen met R3. Hierbij de meetstoeren kortsluiten.

f. Voeding (fig. 1)

De voedingsspanning wordt gestabiliseerd door de neonstabiliseerbuis La1. Deze spanning dient voor de anode- en achtermroostervoeding van de versterkerbuis B1 en wordt verder gebruikt voor de weerstandsmetingen en de ijking van het meetapparaat.

INSTELLINGEN VOOR HET METEN EN BEDIENING

Zie hiervoor de gebruiksaanwijzing.

DEMONTAGE

Algemeen

Na losdraaien van de 2 kartelmoeren aan de achterzijde van de kast, is de kast te verwijderen. De meeste onderdelen zijn dan bereikbaar.

Berekschakelaar fig. 9

Voor reparaties aan de berekschakelaar gaat men als volgt te werk. De buis B2 verwijderen, de 2 aansluitingen aan de meter losdraaien. De meter van de frontplaat verwijderen door losachroeven van de 2 bevestigingsachroeven.

De 2 verbindingen aan de lamphouder op de meter loszolderen. Het apparaat op de linker zijkant zetten. Buis B1 (EF6) verwijderen. De verbindingen aan het te repareren schakelsegment van SK2 loszolderen. Via het gat in de isolatieplaat aan de onderzijde is de schroef A, waarmee de veer B bevestigd is, bereikbaar. Na losdraaien kan de veer B verwijderd worden. Door de opening waar de meter gezeten heeft, is nu de schroef C bereikbaar.

Trek de platte as uit de schakelaar. Het betreffende schakelsegment is nu te verwijderen.

Meetkop

Voor demontage van de meetkop gaat men als volgt te werk.

Verwijder de kartelmoer "A" (fig. 15) en het sluitringetje. Draai schroef "B" los. Draai de 2 schroeven "C" los en schuif de bus van de meetkop. Alle onderdelen in de meetkop zijn nu gemakkelijk te bereiken.

Spanningen

Bij een netspanning van 220 V en SK2 op stand 3 V worden de volgende spanningen gemeten.

Buis	Type	Va	Vg2	Vg1*	Vf	
B1	EF6	80	90	2,5	6,3	V
B2	EZ40	2x150			6,3	V
B3	EA50				6,3	V
La1	4687	88				V
La2	6844				5,1	V

* t.o.v. kathods.

Deze spanningen zijn gemeten met de GM 4257, behalve Vg1, welke met de GM 6004 is gemeten.

De volgende spanningen zijn alle gemeten ten opzichte van aarde met de GM 6004.

Knooppunt R50-R51	1 V
Knooppunt R47-R48	66 V
Knooppunt R46-R47	-0,3 V
Knooppunt R49-R45	- 3 V

Opmerking

Indien het apparaat is aangesloten op een netspanning van 220 V en de spanningsomschakelaar aan de achterzijde van het apparaat staat ingesteld op 245 V, moet de neonstabiliseerbuis B4 ontsteken.

Spanningen aan de voedingstransformator.

SF	SE	SD	SC	SB	SA	S2	S2'	S3	S4	S4'	
25	20	55	20	15	110	152	152	6,8	5,8	1,16	Volt

Gemeten in onbelaste toestand.

Controle van de begrenzingsoel Gr1

1. Meetsnoeren in bussen Bu3 en Bu4 aanbrengen, doch niets aansluiten.
2. M1 schudden met 2000 Ohm. De aansluitpunten van de meter vindt men bij "A" en "B" op schakelssr SK1 (zie fig. 11).
3. SK2 in stand $\times 10^4$ Ohm.
4. M1 mag nu maximaal vol uitslaan.

Uitwisseling van buizen

Bij vernieuwing van de buizen EF6N (B1) en EA50 (B3), moeten deze gedurende 24 uur worden voorgebrand.

Het voorbranden van de EF6N kan, onder normale condities, in het apparaat zelf gebeuren. De EA50 moet gedurende 24 uur op een gloeispanning van 7 Volt worden aangesloten.

Bovengenoemde handeling is noodzakelijk om eventuele gasresten in de buis te verwijderen. Voldoet een buis, na het voorbranden, niet aan onderstaande eisen, dan is deze buis voor dit apparaat ongeschikt.

Controle van de buizen op de aanwezigheid van gas.

EA50 Aangesloten op 6,3 V gloeispanning met een GM 6004 of GM 7635 de spanning meten tussen kathode en anode. Meetbereik 3 V gelijkspanning. De gemeten spanning mag niet meer dan 1 - à 1,2 V bedragen. De anode van de EA50 is hierbij negatief.

EF6N Indien deze buis onder normale condities in het apparaat zit, mag bij omechakelen van het gelijkspanningsmeetgebied van 3 V op 300 V, zonder bijregelen met R3, de nulluitslag hoogstens 1 V op de 30 V schaal veranderen. Is dit verschil groter, dan heeft deze buis te veel roosterstroom.

CONTROLE DER MEETBEREIKEN

GELIJKSPANNING

Voor de controle van deze gelijkspanningengegebieden dient gebruik te wor-

- 6 -

GM 7635/01

den gemaakt van nauwkeurig bekende gelijkspanningen. Met behulp van een spanning van 3 V wordt, met SK2 in de stand "3 V", R2 zodanig ingesteld dat de meteraanwijzing nauwkeurig 3 V bedraagt. Vervolgens worden de overige bereiken gecontroleerd, waarna aan de hand van eventuele afwijkingen (toelaatbare afwijking $\pm 3,5\%$ van de volle schaaluitslag) andere waarden voor R10 of R11 kunnen worden aangebracht. Daarna alle bereiken opnieuw controleren.

De instelling van R2 bij de volgende metingen onveranderd laten!

IJKSPANNING

Meet, door de pen van de meetkop in Bu10 te steeken, de gelijkspanning aan Bu10. SK2 in stand "100 V".

Noteer de meteraanwijzing.

Verbindt vervolgens een der bussen Bu5 of Bu6 ("mA") met Bu10 en verbindt de andere bus met Bu2. SK2 in stand "3 mA".

De meteraanwijzing, afgelezen op de 100 V schaal, dient nu dezelfde te zijn als de zojuist genoteerde waarde.

Indien zulke niet het geval is een andere waarde voor R57 aanbrengen tot dat de juiste aanwijzing wordt verkregen.

GELIJKSPANNING 1000 V.

Plaats SK2 in stand "100 V" en steek de pen van de meetkop in Bu5 of Bu6 ("mA").

Sluit tussen Bu1 en Bu2 ("1000 V") een nauwkeurig bekende gelijkspanning aan (minstens 300 V).

Indien de aanwijzing meer dan 5% (van de volle schaaluitslag) afwijkt dan kan dit gecorrigeerd worden door het kiezen van een andere waarde voor R19.

WISSELSPANNING

Nulpuntcorrectie.

SK3 (meetkop) op SK2 op 3V. Met R3 op nul instellen. Nu SK3 op Eventueel met R4 nulpunt corrigeren. Bij omechakeling op de bereiken 10; 30; 100 en 300 V mag nu het nulpunt hoogstens 1 V op de 30 V schaal verlopen. Bij groter afwijking B1 vervangen.

Meetbereiken.

Afwijkingen op de wisselspanningsbereiken niet met de spanningsdeler R9 t/m R15 corrigeren. Hier voor de waarde van R53 en eventueel R54 wijzigen.

Attentie: Het is noodzakelijk dat de meetspanning zo goed mogelijk vervormingsvrij is.

WEERSTANDSBEREIKEN

x 1 Mohm

Sluit de meetsneeren aan op Bu3 en Bu4.

De meetpennen kortsluiten en de wijzer met behulp van R3 nauwkeurig op nul instellen. Daarna de kortsluiting opheffen en met behulp van R1 de wijzer instellen op ∞ .

De weerstand van 1 Mohm 1% aansluiten tussen de meetpennen. Indien de meteraanwijzing meer dan 5% afwijkt de waarde van R42 en/of R43 veranderen.

x 10⁴ ohm

Bekende weerstand (bijv. 82.000 Ω 1%) aansluiten. Indien de aanwijzing te klein is R25 verkleinen en omgekeerd.

GM7635-01

II

GM7635-01

I 21695

GM7635-01

Fig.6

Fig.7

I21694

IV

GM7635-01

Fig. 8

GM7635-01

Fig.11

GM7635-01

I21690

Fig.12

I21691

GM7635-01

T21688

VII

GM7635/01

R1	10	K ohm	49 472 20.0	R37	100	ohm	48 556 10/100E
R2	5	K ohm	49 472 38.0	R38	5,6	Kohm	48 557 10/5K6
R3	2	K ohm	49 472 25.0	R39	5,6	Kohm	48 557 10/5K6
R4	20	K ohm	49 472 24.0	R40	5,6	Kohm	48 557 10/5K6
R5	2,4	M ohm	48 367 02/2M4	R41	0,91	Mohm	48 552 01/910K
R6	0,12	M ohm	48 556 10/120K	R42	56	Kohm	48 556 10/56K
	0,15-0,22-0,27-				58K-82Kohm		
	0,33-0,39-0,47-				0,1-0,12	Mohm	48 556 10/120K
	0,56	Mohm	48 556 10/560K	R43	68	Kohm	48 556 05/68K
R7	3,6	M ohm	48 368 02/3M6		82	Kohm	
R8	0,15	M ohm	48 555 05/150K	R44	0,1-0,12	Mohm	48 556 05/120K
R9	3,3	M ohm	48 368 02/3M3	R45	1,2	Mohm	48 552 01/1M2
R10	0,18	M ohm	48 556 10/180K	R46	47	ohm	48 556 05/47E
	0,22-0,27-0,33-			R47	680	ohm	48 551 01/680E
	0,39	Mohm	48 556 10/390K	R48	22	Kohm	48 552 01/22K
R11	68	Kohm	48 556 10/68K	R49	2,7	Kohm	48 551 01/2K7
	82Kohm, 0,1-0,12-			R50	1,2	Kohm	48 551 01/1K2
	0,15	Mohm	48 556 10/150K	R51	390	ohm	48 551 01/390E
R12	0,91	Mohm	48 553 01/910K	R52	33	Kohm	48 552 01/33K
R13	0,36	Mohm	48 551 01/360K	R53	56	Kohm	48 556 10/56K
R14	0,1	Mohm	48 551 01/100K		4,7	Mohm	DK 612 10/4M7
R15	51	Kohm	48 551 01/51K		8,2-12-15-18-22		DK 612 10/22M
R16	56	Kohm	48 555 10/56K		Mohm		
R17	4,7	Mohm	48 558 05/4M7	R54	15	Mohm	DK 612 10/15M
R18	4,7	Mohm	48 558 05/4M7		18	Mohm, 22	DK 612 10/22M
R19	0,56	Mohm	48 556 10/560K	R55	22	Mohm	DK 612 10/22M
	0,68-0,82-1-1,2			R56	30	Kohm	48 552 01/30K
	Mohm			R57	820	ohm	48 556 10/820E
R20	1,2	Mohm	48 552 02/1M2		1K, 1,2K, 1,5K,		48 556 10/2K2
R21	93,42	ohm	48 761 01/93E		1,8K, 2,2	Kohm	
			42	C1	22000	pF	B1 518 54.1
R22	9,03	ohm	48 761 01/9E03	C2	10000	pF	48 105 10/V10K
R23	1	ohm	48 760 01/1E	C3	33000	pF	48 105 10/T3K
R24	4,7	Mohm	48 557 10/4M7	C4	12,5	+ {	48 317 09/
R25	0,15	Mohm	48 556 10/150K	C5	12,5	μF {	12,5+12,5
	0,18-0,22-0,27-			P1			E3 210 83.0
	0,33-0,39-0,47-			V1	1		08 100 97.0
	0,56	Mohm	48 556 10/560K	A1			P 800 01.0
R26	3,3	Mohm	48 368 02/3M3	S1			E6 219 10.0
R27	3,3	Mohm	48 368 02/3M3				
R28	15	Kohm	48 556 10/15K	Gr1			B1 600 12.0
	18K-22K-27K-33K-						
	39K-47K-56Kohm						
R29	0,62	Mohm	48 551 01/62K				
R30	3,9	Kohm	48 555 05/3K9				
R31	62	Kohm	48 551 01/62K				
R32	1,8	Kohm	48 551 01/1K8				
R33	2,2	Kohm	48 551 01/2K2				
R34	6,8	Kohm	48 551 01/6K8				
R35	6,8	Kohm	48 551 01/6K8				
R36	75	Kohm	48 551 01/75K				

x 10³ ohm

Bekende weerstand (bijv. 8000 ohm 1%) aansluiten. Corrigeren met behulp van R28.

x 10² ohm

Bekende weerstand (bijv. 800 ohm 1%) aansluiten. Corrigeren met behulp van R30.

Fig.	Pos.	Omschrijving	Codenummer
8	1	Handgreep	M7 076 02.0
8	2	Beugel	E2 742 67.0
8	3	Knop voor R3	E2 440 47.0
8	4	Dopje voor pos.3	23 653 40.0
8	5	Aansluitklem (1000V-mA)	08 925 34.0
8	6	Knop (SK2)	E2 440 67.0
8	7	Dopje voor pos.6	23 653 38.0
8	8	Verzonken schroef voor pos.6	07 810 06.1
8	9	Pijlpunt (kort) voor pos.6	23 680 53.0
8	10	Contactbus	E2 555 55.0
8	11	Meter	P 850 01.0
8	12	Draaispoel-systeem	E6 219 10.0
8	13	Tekstplaat (Internationaal)	E3 053 63.0
9	14	Sluitring	E1 581 22.0
9	15	Felasbus	M7 043 05.0
9	16	Tulle	M7 210 50.2
15	17	Tekstplaat (~~~)	E3 053 20.2
15	18	Schijf	E3 928 96.1
15	19	Sohijf	23 686 97.2
15	20	Contactveer	M7 213 79.0
15	21	Bus	E2 227 29.0
15	22	Pen	E2 265 90.0
15	23	Schroef	E2 466 54.0
15	24	Keramische steun	M7 751 08.0
15	25	Bus	E2 112 08.3
15	26	Driepolige steker	M7 603 17.0
15	27	P.A. Snoer	34 012 21/2
		Soldeerlip voor C4/C5	M7 315 50.0
		Buishouder voor E240	E1 505 45.0

ERRATA

In de mechanische stuklijst gelieve U te wijzigen:

Meter P 850 01.0 in P 800 01.0

In de hierna volgende lijst van electrische onderdelen gelieve U te wijzigen:

A1 in M1

S1 in T1

Toevoegen:

R58

2,2 kΩ

DK 612 05/2K2

*

I.V. PHILIPS' HOEILAMPENFABRIEKEN EINDHOVEN	GM 7635	M 92
S E R V I C E		17.5.51

In den Apparaten der neueren Fabrikationsserie sind folgende Änderungen angebracht worden:

1. Die neuen Apparate haben einen Handgriff von anderem Modell. Das alte Handgriffmodell wird künftig nicht mehr geliefert.
Zur Anbringung des neuen Modells müssen im Oberteil des Gehäuses 4 Löcher vorgebohrt werden, wie in Fig.1 angegeben.
2. Die neuen Apparate haben auch andere Bedienungsknöpfe. Im Zusammenhang damit sind für SK2 und R3 kürzere Achsen verwendet.
3. Die Segmente von SK2 sind geändert. Die neuen Segmente sind in Fig.3 abgebildet; beifolgend auch das neue Prinzipschaltschema. In elektrischer Hinsicht ist die Schaltung nicht verändert.
4. Die Diode EA50 ist bei einigen Apparaten durch die Diode EY51 ersetzt worden.
5. C2 ist fortgefallen, andererseits ist C4 mit dem Knotenpunkt R49-R50 verbunden, statt mit der Kathode von B1. Ferner wurden die Werte der Potentiometer R2 und R3 geändert.
Mit Rücksicht auf die geänderten Kodenummern der einzelnen elektrischen Zubehörteile ist dieser Mitteilung eine neue Stückliste der elektrischen Teile beigefügt.
Für die verschiedenen Widerstände enthält diese Liste mehrere Werte zur Auswahl. In diesem Zusammenhang seien hier nachfolgend einige Richtlinien für die richtige Widerstandsauswahl gegeben, die sich in Reparaturfällen unter Umständen als sehr nützlich erweisen können.

GLEICHSPANNUNG

Nach Auswechseln von R14 oder R16 kann sich die Notwendigkeit der Wahl eines anderen Wertes für R15 oder R17 ergeben.

Zur Kontrolle der zugehörigen Gleichspannungsbereiche bediene man sich genau bekannter Gleichspannungen (z.B. gemessen mit einem GM 6004).

In Stellung "3 V" von SK2 wird mit einer Spannung von 3 V der Widerstand R2 so eingestellt, dass das Messinstrument genau 3 V anzeigt. Alsdann werden die übrigen Bereiche nachgeprüft, woraufhin man an Hand eventueller Abweichungen (bis zu $\pm 5\%$ von dem Vollausschlag) andere Werte für R15 oder R17 anbringen kann. Hiernach alle Bereiche aufs neue durchprüfen.

Die Einstellung von R2 muss bei den nachfolgenden Messungen unverändert gelassen werden!

EICHSPANNUNG

Durch Einsticken des Messkopfstiftes in Bu10 messe man die Gleichspannung an dieser Buchse. SK2 in Stellung "100 V".

Die Meesanzeige notieren.

Sodann verbinde man eine der Buchsen Bu5 und Bu6 ("mA") mit Bu10, die andere mit Bu2. SK2 in Stellung "3 mA".

GM 7635

M92

- 2 -

17.5.51

Die auf der 100 V-Skala des Messinstruments abgelesene Anzeige muss nun denselben Wert ergeben wie vorhin.

Ist das nicht der Fall, so muss ein anderer Wert für R55 gewählt werden, bis man die verlangte Anzeige erhält.

GLEICHSPANNUNG 1000 V

SK2 in Stellung "100 V" bringen und den Messkopfstift in Buchse Bu5 oder Bu6 einführen ("mA").

Zwischen Bu1 und Bu2 ("1000 V") eine genau bekannte Gleichspannung (etwa 300 V, gemessen mit GM 6004) anschliessen.

Falls die Anzeige auf der Mess-Skala um mehr als 5% von dem Vollausschlag abweicht, nehme man durch Wahl eines anderen Wertes für R56 die nötige Korrektion vor.

WECHSELSPANNUNGSBEREICHE

Die Eichung für diese Bereiche kann mit R5 nachgebessert werden. Hierbei ist eine genau bekannte Wechselspannung von 3 V erforderlich.

WIDERSTANDSBEREICHE

$\times 1$ Megohm

Die Messchnüre an Bu3 und Bu4 anschliessen.

Messstifte kurzschliessen und den Zeiger mit Hilfe von R3 genau auf Null einstellen. Hiernach den Kurzschluss beseitigen und mit R1 den Zeiger auf einstellen.

Zwischen den Messstiften einen Widerstand von 1 Megohm 1% anschliessen.

Zeigt die Messanzeige eine Abweichung von mehr als 5%, so muss der Wert von R43 geändert werden (bei zu niedriger Messanzeige R43 vergrössern) und ist erneute Kontrolle erforderlich.

$\times 10^5$ Ohm

Bekannten Widerstand (etwa 0,1 Megohm 1%) anschliessen. Ist die Messanzeige zu niedrig, so R27 verkleinern, und umgekehrt.

$\times 10^4$ Ohm

Bekannten Widerstand (etwa 10000 Ohm 1%) anschliessen. Korrektion mittels R29.

$\times 10^3$ Ohm

Bekannten Widerstand anschliessen (etwa 1000 Ohm 1%). Korrektion mittels R31.

GM 7635

M92

- 3 -

17.5.51

Alt		Neu			
Bezeichnung	Kodenummer	Pos.	Fig.	Bezeichnung	Kodenummer
Handgriff	A1 379 50.0	1	1	Handgriff	I7 076 02.0
Bügel	A1 490 00.0	2	1	Bügel	E2 742 67.0
Knopf (R3)	23 610 58.1	3	1	Schraube	07 659 37.0
Knopf (SK2)	23 722 44.0			Knopf 22 ø (R3)	E2 440 47.0
				Knopf 30 ø mit Pfeil (SK2)	E2 440 74.0
		4	2	{ Verschluss für { Knopf 22 ø	23 653 40.0
		5	2	{ Verschluss für { Knopf 30 ø	23 653 38.0
		6	3	Ring mit Pfeilspitze für Knopf 30 ø	23 680 53.0
				Schraube	07 810 06.1

Zentrale Service Abteilung

Ph. Gijverda

WPS/GJ.

No.	Waarde/Value/Valeur/Valor/Vert	Codenummer Code number Nou de code Kodenummer
T1		E3 210 83.0
M1	100 uA ± 2%; 3000 ohm ± 2%	P 800 01.0
C1	22000 pF	B1 518 54.1
C3	10000 pF	48 769 10/V10K
C4	33000 pF	48 770 10/V33K
C5/C6	12,5 uF + 12,5 uF, 355 V	48 317 09/12,5+12,5
R1	10000 ohm	49 470 14.2
R2	5000 ohm	49 472 38.0
R3	2000 ohm	49 472 48.0
R4	2,7Mohm	48 367 02/2W7
R5	0,12 - 0,27 Mohm	48 426 05/120K-27K
R6	3,6 Mohm	48 553 01/3M6
R7	0,15Mohm	48 425 05/150K
R8	9,1 Mohm	48 554 01/9M1
R9	1,2 Mohm	48 553 01/1M2
R10	56000 ohm	48 425 05/56K
R11	93,42 ohm	48 761 01/93E42
R12	9,03 ohm	48 761 01/9E03
R13	1 ohm	48 760 01/1E
R14	3,3Mohm	48 553 01/3M3
R15	0,18 - 0,36 Mohm	48 426 05/180K-360K
R16	0,91 Mohm	48 553 01/910K
R17	75000 ohm - 0,13 Mohm	48 426 05/75K-130K
R18	0,36 Mohm	48 551 01/360K
R19	0,1 Mohm	48 551 01/100K
R24	5000 ohm	48 551 01/51K
R26	6,8Mohm	48 553 01/6M8
R27	0,15 - 0,56 Mohm	48 426 05/150K-560K
R28	0,62 Mohm	48 551 01/620K
R29	15000 - 56000 ohm	48 426 05/15K-56K
R30	62000 ohm	48 551 01/62K
R31	3900 ohm	48 425 05/3K9
R32	1000 ohm	48 551 01/1K8
R33	2200 ohm	48 551 01/2K2
R35	6800 ohm	48 551 01/6K8
R36	6800 ohm	48 551 01/6K8
R38	75000 ohm	48 552 01/75K
R39	100 ohm	48 426 05/100E
R40	5600 ohm (2 par.)	48 427 05/5K6
R41	5600 ohm	48 427 05/5K6
R42	0,91Mohm	48 552 01/910K
R43	56000 ohm - 0,11 Mohm	48 426 05/56K-110K
R44	1,2Mohm	48 552 01/1M2
R45	75000 ohm - 0,13 Mohm	48 426 05/75K-130K
R46	680 ohm	48 551 01/680E
R47	22000 ohm	48 552 01/22K
R48	2700 ohm	48 552 01/2K7
R49	1200 ohm	48 551 01/1K2
R50	390 ohm	48 551 01/390E

GL 7635

M 92

No.	Waarde/Value/Valeur/Valor/Vert -	Codenummer Codenumber No.de code Kodenummer
R51	33000 ohm	48 553 01/33K
R54	30000 ohm	48 552 01/30K
R55	820 - 2200 ohm	48 426 05/820E-2K2
R56	0,56 - 1,1 Mohm	48 426 05/560K-11.1
R58	4,7 Mohm	48 427 05/4M7
R59	47 ohm	48 426 05/47E
Gr1		48 B1 600 12.0

M92

Fig.1

120923

Fig 2

Fig 3

M92

194

N.V. PHILIPS
GLOEILAMPEN-
FABRIEKEN
EINDHOVEN

Service Information

No Cd70

DATE 26-10-55

CENTRAL
SERVICE
DIVISION

GROUP: P.I.T. - E.M.A.
ARTICLE: Universal meter
TYPE: GM 7635-01

SJS/SR

RE: Stabilizing of the calibration voltage

The consequence of mounting R60, see Cd 43 point 5a-d, is that it is difficult to calibrate the meter.

If during the calibration SK2 is in position 3 mA, C3 gets the opportunity to charge slowly. As a result of this the rest current in B1 is modified and so is the screen grid current. A voltage drop now develops across R 60, which influences the calibration voltage on Bu10 (used in position 100V).

An additional contact spring on SK2c, which in position 3 mA puts the control grid of B1 via R24 to earth, will remove the above stated, undesired effect.

The fitting of the contact spring on SK2c can easily be done after the removal of potentiometer R3 (see enclosed drawing).

- - - - -

Betr.: Constant houden van de ijkspanning

Het aanbrengen van R 60, zie Cd43 punt 5a-d, heeft tot gevolg dat de meter moeilijk te iijken is.

Wanneer tijdens het iijken SK2 in de stand 3 mA staat, krijgt C3 gelegenheid zich langzaam op te laden. Hierdoor wordt de ruststroom in B1 gewijzigd en dus tevens de schermroosterstroom.

Er treedt nu een spanningsval op over R60, die de ijkspanning op Bu10 (gebruikt in de stand 100 V) beïnvloedt.

Een extra contactveer op SK2c, die in de stand 3 mA het stuurrooster van B1 via R24 aan aarde legt, kan bovengenoemd ongewenst verschijnsel opheffen.

Het aanbrengen van de contactveer op SK2c kan gemakkelijk geschieden na verwijdering van potentiometer R3 (zie bijgaande tekening).

- - - - -

Conc.: Stabilisation de la tension d'étalementage

L'application de R 60, voir C43 point 5a-d, entraîne qu'il est difficile d'étalementer l'instrument.

Si durant l'étalementage SK2 se trouve en position 3 mA, C3 aura l'occasion de se charger lentement. Par là le courant de repos en B1 est modifié et donc aussi le courant de grille-écran. Il se produit alors une chute de tension sur R 60, qui influence la tension d'étalementage sur Bu10 (utilisée en position 100V).

Un ressort de contact supplémentaire sur SK2c, qui en position 3 mA met la grille de commande de B1 à la terre, à travers R24, peut remédier à l'effet indésirable mentionné ci-dessus.

L'application du ressort de contact sur SK2c peut se faire facilement après l'enlèvement du potentiomètre R3 (voir croquis annexe).

- - - - -

-2-

Cd70

26-10-55

SJS/SR

Betr.: Stabilisierung der Eichspannung

Das Anbringen von R60, siehe Cd43 Punkt 5a-d, hat zur Folge das das Messgerät schwer zu eichen ist.

Wenn während der Eichung SK2 in Stellung 3 mA steht, erhält C3 die Gelegenheit auch langsam aufzuladen. Dadurch ändert sich der Ruhestrom in B1 und also der Schirmgitterstrom. Es tritt nun ein Spannungsabfall über R 60. auf, der die Eichspannung auf Bu10 (benutzt in Stellung 100 V) beeinflusst. Eine zusätzliche Kontaktfeder auf SK2c, die in Stellung 3 mA das Steuergitter von B1 über R24 an Erde legt, kann obenerwähnte unerwünschte Erscheinung aufheben.

Das Anbringen der Kontaktfeder auf SK2c kann leicht erfolgen nach Entfernung des Potentiometers R3 (siehe beigegebene Zeichnung).

- - - - -

Aeros de: Stabilización de la tensión de calibrado

La inserción de R 60, véase Cd43 punto 5 a-d, tiene por consecuencia que el aparato de medida es difícil de calibrar. Cuando durante el calibrado SK2 se halla en la posición 3 mA, C3 tendrá la oportunidad de cargarse lentamente. Así, la corriente de reposo en B1 es modificada y por lo tanto también la corriente de rejilla pantalla. Se produce ahora una caída de tensión sobre R60 que influencia la tensión de calibrado sobre Bu10, (usado en posición 100 V).

Un muelle de contacto supletorio sobre SK2c, que en posición 3 mA pone la rejilla de mando de B1 a tierra a través de R24 puede suprimir el efecto indeseado mencionado arriba.

La inserción del muelle de contacto sobre SK2c puede hacerse fácilmente después de haber quitado el potenciómetro R2, (véase el dibujo anexo).

CENTRAL SERVICE DEPARTMENT

Ph. E. Salverda.

GM 7635-01

Cd 70

