Diffraction gratings and photonic crystals: numerical analysis of waves

Grad Open House, Apr 2, 2011

Alex Barnett

Mathematics Department, Dartmouth College

Current research areas

- Numerical analysis: efficient computational methods for PDEs wave scattering, periodic problems, eigenvalue problems inventing new methods, coding them up, analyzing them (NSF Grant DMS-0811005)
- Mathematical physics: 'quantum chaos' high-frequency waves trapped in an ergodic dynamical system
- Other applied mathematics:

 mathematical ecology, animal movement models
 mathematics of music

Current research areas

 Numerical analysis: efficient computational methods for PDEs wave scattering, periodic problems, eigenvalue problems inventing new methods, coding them up, analyzing them (NSF Grant DMS-0811005)

- Mathematical physics: 'quantum chaos' high-frequency waves trapped in an ergodic dynamical system
- Other applied mathematics:
 mathematical ecology, animal movement models
 mathematics of music

Applied math: models + computation + theorems + applications = fun

Current research areas

- Numerical analysis: efficient computational methods for PDEs wave scattering, periodic problems, eigenvalue problems inventing new methods, coding them up, analyzing them (NSF Grant DMS-0811005)
- Mathematical physics: 'quantum chaos' high-frequency waves trapped in an ergodic dynamical system
- Other applied mathematics:

 mathematical ecology, animal movement models
 mathematics of music

Applied math: models + computation + theorems + applications = fun

Study it at grad school = versatile + interdisciplinary + employable

What is numerical analysis?

Theory, Experiment, Computation: third branch of science

• E.g. in computer, real numbers $\mathbb R$ approximated by a finite set F 'floating point' binary numbers: $e.g. \ 0.110101111001 \times 2^{-1101}$ rounding $\mathbb R \to F$ causes relative error of 10^{-16} ; how ensure not amplified?

What is numerical analysis?

Theory, Experiment, Computation: third branch of science

• E.g. in computer, real numbers \mathbb{R} approximated by a finite set F 'floating point' binary numbers: $e.g. \ 0.110101111001 \times 2^{-1101}$ rounding $\mathbb{R} \to F$ causes relative error of 10^{-16} ; how ensure not amplified?

Even if rounding errors vanished, 95% of numerical analysis remains:

e.g. solving PDEs: how does error scale with N = effort ?

different algorithms have different convergence rate

What is numerical analysis?

Theory, Experiment, Computation: third branch of science

• E.g. in computer, real numbers \mathbb{R} approximated by a finite set F 'floating point' binary numbers: $e.g. \ 0.110101111001 \times 2^{-1101}$ rounding $\mathbb{R} \to F$ causes relative error of 10^{-16} ; how ensure not amplified?

Even if rounding errors vanished, 95% of numerical analysis remains:

e.g. solving PDEs: how does error scale with N = effort ?

different algorithms have different convergence rate

 Engineering & technology relies on good computational algorithms: insensitive to rounding error, rapid convergence, robust, runs fast

Analysis: proving useful upper bounds on the error

Waves at constant frequency, in \mathbb{R}^2

Laplace operator
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

waves at constant frequency ω described by function $u:\mathbb{R}^2\to\mathbb{C}$

$$u$$
 satisfies the Helmholtz PDE $(\Delta + \omega^2)u = 0$

Waves at constant frequency, in \mathbb{R}^2

Laplace operator
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

waves at constant frequency ω described by function $u: \mathbb{R}^2 \to \mathbb{C}$

$$u$$
 satisfies the Helmholtz PDE $(\Delta + \omega^2)u = 0$

• E.g. plane wave solution

$$u(x,y) = e^{i(k_x x + k_y y)} = e^{i\mathbf{k}\cdot\mathbf{x}}$$

with
$$|\boldsymbol{k}| = \omega$$

traveling waves from distant source

What happens when these waves hit an obstacle? Applications:

- electromagnetics: radar, cellphones, communications
- optics: microscopic devices e.g. internet backbone switches
- acoustics: ultrasound imaging, architecture, instruments

Scattering of waves

 $u_{\rm inc}(x) = e^{i \boldsymbol{k} \cdot \boldsymbol{x}}$ hitting obstacle $\Omega \subset \mathbb{R}^2$?

Decompose total field into sum of incident and scattered...

Dirichlet boundary condition: u_{tot} must vanish on boundary $\partial \Omega$

Scattering of waves

 $u_{\rm inc}(x) = e^{i \mathbf{k} \cdot \mathbf{x}}$ hitting obstacle $\Omega \subset \mathbb{R}^2$?

Decompose total field into sum of incident and scattered...

Dirichlet boundary condition: u_{tot} must vanish on boundary $\partial\Omega$

PDE Boundary-value problem (BVP) for u:

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^2 \setminus \overline{\Omega}$
 $u = -u_{\text{inc}}$ on $\partial\Omega$
 u 'radiative' (outgoing towards ∞)

Scattering of waves

 $u_{\rm inc}(x) = e^{i \mathbf{k} \cdot \mathbf{x}}$ hitting obstacle $\Omega \subset \mathbb{R}^2$?

Decompose total field into sum of incident and scattered...

Dirichlet boundary condition: u_{tot} must vanish on boundary $\partial \Omega$

PDE Boundary-value problem (BVP) for u:

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^2 \setminus \overline{\Omega}$
$$u = -u_{\text{inc}} \text{ on } \partial\Omega$$

$$u \text{ 'radiative' (outgoing towards } \infty)$$

Note: Ω = square, is quite hard due to singularities at *corners*: research area!

Tools: potential theory

'charge' (source of waves) distributed along curve Γ w/ density func.

Single-, double-layer potentials, $\mathbf{x} \in \mathbb{R}^2$

$$v(\mathbf{x}) = \int_{\Gamma} \Phi_{\omega}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}} := (S\sigma)(\mathbf{x})$$

$$u(\mathbf{x}) = \int_{\Gamma} \frac{\partial \Phi_{\omega}}{\partial n_{\mathbf{y}}}(\mathbf{x}, \mathbf{y}) \tau(\mathbf{y}) ds_{\mathbf{y}} := (\mathcal{D}\tau)(\mathbf{x})$$

$$\Phi_{\omega}(\mathbf{x}, \mathbf{y}) := \Phi_{\omega}(\mathbf{x} - \mathbf{y}) = \frac{i}{4}H_0^{(1)}(\omega|\mathbf{x} - \mathbf{y}|)$$
kernel is fundamental solution to PDE:
$$(\Delta + \omega^2)\Phi_{\omega} = 0, \text{ except at origin}$$

Tools: potential theory

'charge' (source of waves) distributed along curve Γ w/ density func.

Single-, double-layer potentials, $\mathbf{x} \in \mathbb{R}^2$

$$v(\mathbf{x}) = \int_{\Gamma} \Phi_{\omega}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}} := (S\sigma)(\mathbf{x})$$

$$u(\mathbf{x}) = \int_{\Gamma} \frac{\partial \Phi_{\omega}}{\partial n_{\mathbf{y}}}(\mathbf{x}, \mathbf{y}) \tau(\mathbf{y}) ds_{\mathbf{y}} := (\mathcal{D}\tau)(\mathbf{x})$$

$$\Phi_{\omega}(\mathbf{x}, \mathbf{y}) := \Phi_{\omega}(\mathbf{x} - \mathbf{y}) = \frac{i}{4}H_0^{(1)}(\omega|\mathbf{x} - \mathbf{y}|)$$
 kernel is fundamental solution to PDE:
$$(\Delta + \omega^2)\Phi_{\omega} = 0, \text{ except at origin}$$

Jump relation: field limit as $\mathbf{x} \to \Gamma$ can depend on which side (\pm):

$$u^{\pm} = D\tau \pm \frac{1}{2}\tau$$

D is a linear integral operator mapping continuous functions $\tau \in C(\Gamma)$ to continuous functions $C(\Gamma)$

Solve BVP via boundary integral equations

Say represent scattered field by $u = \mathcal{D}\tau$ double-layer on $\partial\Omega$ ($=\Gamma$)

Jump relation (u^+) gives: $(D + \frac{1}{2})\tau = -u_{\text{inc}}|_{\partial\Omega}$

Is a Fredholm integral equation, operator D acts like

$$(D\tau)(s) = \int_0^{2\pi} k(s,t)\tau(t)dt$$
 $0 \le t \le 2\pi$ parametrizes $\partial\Omega$

Solve BVP via boundary integral equations

Say represent scattered field by $u = \mathcal{D}\tau$ double-layer on $\partial\Omega$ ($=\Gamma$)

Jump relation (u^+) gives: $(D + \frac{1}{2})\tau = -u_{\text{inc}}|_{\partial\Omega}$

Is a Fredholm integral equation, operator D acts like

$$(D\tau)(s) = \int_0^{2\pi} k(s,t)\tau(t)dt$$
 $0 \le t \le 2\pi$ parametrizes $\partial\Omega$

Numerical solution must restrict to finite set of N unknowns:

• use a quadrature rule $\int_0^{2\pi} f(t)dt \approx \sum_{j=1}^N w_j f(t_j)$

This gives an N-by-N linear system,

 $A \boldsymbol{\tau} = \boldsymbol{b}$ A matrix $\boldsymbol{\tau}$ samples of desired density

Solve BVP via boundary integral equations

Say represent scattered field by $u = \mathcal{D}\tau$ double-layer on $\partial\Omega$ ($=\Gamma$)

Jump relation (u^+) gives: $(D + \frac{1}{2})\tau = -u_{\text{inc}}|_{\partial\Omega}$

Is a Fredholm integral equation, operator D acts like

$$(D\tau)(s) = \int_0^{2\pi} k(s,t)\tau(t)dt$$
 $0 \le t \le 2\pi$ parametrizes $\partial\Omega$

Numerical solution must restrict to finite set of N unknowns:

• use a quadrature rule $\int_0^{2\pi} f(t)dt \approx \sum_{j=1}^N w_j f(t_j)$

This gives an N-by-N linear system,

 $A \boldsymbol{\tau} = \boldsymbol{b}$ A matrix $\boldsymbol{\tau}$ samples of desired density

How well does this discretized solution approx true solution?

• need analysis of quadrature: let me show you a cute proof...

Periodic numerical quadrature

The simplest rule to approximate $\int_0^{2\pi} f(t)dt$ is sometimes the best: sum N equally spaced samples of f!

Periodic numerical quadrature

The simplest rule to approximate $\int_0^{2\pi} f(t)dt$ is sometimes the best: sum N equally spaced samples of f!

Theorem (Davis '59): Let f be 2π -periodic, and real analytic, meaning f(z) is bounded and analytic in some strip $|\operatorname{Im} z| \leq a$ of half-width a > 0. Then there is a const C > 0 (indep. of N) such that the error is

$$\left| \frac{2\pi}{N} \sum_{j=1}^{N} f\left(\frac{2\pi}{N}j\right) - \int_{0}^{2\pi} f(t)dt \right| \leq Ce^{-aN}$$

• exponential convergence in N: doubling N squares your accuracy

very desirable: can get accuracies of 10^{-14} w/ little effort. Carries over to solving the PDE!

Residue Thm: $2\pi i \sum \text{residues} = \text{closed contour integral in } \mathbb{C}$

Residue Thm: $2\pi i \sum \text{residues} = \text{closed contour integral in } \mathbb{C}$

Beautiful cotangent function $\cot(z)$: poles at $\pi j, j \in \mathbb{Z}$, residues 1

Residue Thm: $2\pi i \sum$ residues = closed contour integral in \mathbb{C}

Beautiful cotangent function $\cot(z)$: poles at $\pi j, j \in \mathbb{Z}$, residues 1

f analytic

 $\frac{1}{2i}f(z)\cot(\frac{N}{2}z)$: poles at $\frac{2\pi}{N}j$, residues $\frac{1}{iN}f(\frac{2\pi}{N}j)$

 $2\pi i \sum$ residues = closed contour integral in \mathbb{C} Residue Thm:

Beautiful cotangent function $\cot(z)$: poles at $\pi j, j \in \mathbb{Z}$, residues 1

f analytic

 $\frac{1}{2i}f(z)\cot(\frac{N}{2}z)$: poles at $\frac{2\pi}{N}j$, residues $\frac{1}{iN}f(\frac{2\pi}{N}j)$

Res. Thm in strip: $\frac{2\pi}{N} \sum_{i=1}^{N} f\left(\frac{2\pi}{N}j\right) = \int_{\Gamma_1 + \Gamma_2} \frac{1}{2i} f(z) \cot\left(\frac{N}{2}z\right) dz$

Residue Thm: $2\pi i \sum$ residues = closed contour integral in \mathbb{C}

Beautiful cotangent function $\cot(z)$: poles at $\pi j, j \in \mathbb{Z}$, residues 1

f analytic

$$\frac{1}{2i}f(z)\cot(\frac{N}{2}z)$$
:

 $\frac{1}{2i}f(z)\cot(\frac{N}{2}z)$: poles at $\frac{2\pi}{N}j$, residues $\frac{1}{iN}f(\frac{2\pi}{N}j)$

Res. Thm in strip: $\frac{2\pi}{N} \sum_{i=1}^{N} f\left(\frac{2\pi}{N}j\right) = \int_{\Gamma_1 + \Gamma_2} \frac{1}{2i} f(z) \cot\left(\frac{N}{2}z\right) dz$

integrand pure Im on \mathbb{R} , so Re parts antisymmetric 1 add Im parts symmetric ↑ cancel

$$= \operatorname{Re} \int_{\Gamma_1} (-i) f(z) \cot \left(\frac{N}{2}z\right) dz$$

$$\frac{2\pi}{N} \sum_{j=1}^{N} f\left(\frac{2\pi}{N}j\right) = \operatorname{Re} \int_{\Gamma_1} (-i)f(z) \cot\left(\frac{N}{2}z\right) dz$$

$$\frac{2\pi}{N} \sum_{j=1}^{N} f\left(\frac{2\pi}{N}j\right) = \operatorname{Re} \int_{\Gamma_1} (-i)f(z) \cot\left(\frac{N}{2}z\right) dz$$

Cauchy integral formula in D_1 (since f analytic):

$$-\int_{\Gamma} f(z)dz = \int_{\Gamma_1} f(z)dz$$

$$\frac{2\pi}{N} \sum_{j=1}^{N} f\left(\frac{2\pi}{N}j\right) = \operatorname{Re} \int_{\Gamma_1} (-i)f(z) \cot\left(\frac{N}{2}z\right) dz$$

Cauchy integral formula in D_1 (since f analytic):

$$-\int_{\Gamma} f(z)dz = \int_{\Gamma_1} f(z)dz$$

add Re part of this to previous eqn:

$$\frac{2\pi}{N} \sum_{i=1}^{N} f\left(\frac{2\pi}{N}i\right) - \int_{\Gamma} f(z)dz = \operatorname{Re} \int_{\Gamma_{1}} \left[1 - i\cot\left(\frac{N}{2}z\right)\right] f(z)dz$$

$$\frac{2\pi}{N} \sum_{j=1}^{N} f\left(\frac{2\pi}{N}j\right) = \operatorname{Re} \int_{\Gamma_1} (-i)f(z) \cot\left(\frac{N}{2}z\right) dz$$

Cauchy integral formula in D_1 (since f analytic):

$$-\int_{\Gamma} f(z)dz = \int_{\Gamma_1} f(z)dz$$

add Re part of this to previous eqn:

$$\frac{2\pi}{N} \sum_{j=1}^{N} f\left(\frac{2\pi}{N}j\right) - \int_{\Gamma} f(z)dz = \operatorname{Re} \int_{\Gamma_{1}} \left[1 - i\cot\left(\frac{N}{2}z\right)\right] f(z)dz$$
error of our quadrature
$$\exp. \operatorname{small} \leq 2/(e^{aN} - 1) \quad \operatorname{bnded in } D_{1}$$

QED

• Research: good quadrature schemes for f's with singularities?

Scattering from periodic obstacle grating

lattice of obstacles (hint: you don't want to discretize an ∞ long boundary!)

Scattering from periodic obstacle grating

lattice of obstacles

(hint: you don't want to discretize an ∞ long boundary!)

 $u_{\rm inc}$ quasi-periodic, so u is too:

$$u(x+d,y) = \alpha u(x,y)$$
 Bloch phase α

Scattering from periodic obstacle grating

lattice of obstacles (hint: you don't want to discretize an ∞ long boundary!)

 u_{inc} quasi-periodic, so u is too:

$$u(x+d,y) = \alpha u(x,y)$$
 Bloch phase α

• Research: *robust* way to 'periodize' integral equations in 2D (3D?)

Applications of periodic scattering problems

Diffraction gratings, filters, antennae, meta-materials, solar energy...

Applications of periodic scattering problems

Diffraction gratings, filters, antennae, meta-materials, solar energy...

multi-layer dielectric diffraction grating, NIF lasers (LLNL) 2×10^6 periods! (Barty '04)

Applications of periodic scattering problems

Diffraction gratings, filters, antennae, meta-materials, solar energy...

multi-layer dielectric diffraction grating, NIF lasers (LLNL) 2×10^6 periods! (Barty '04)

plasmonic solar cell (Atwater '10)

aspect ratio

high

Si microwires absorber (Kelzenberg '10)

- Design optimization Simulation at $>10^3$ inc. angles, frequencies
- Related: photonic crystals which *trap* light inside periodic structures

Enjoy your visit!