WRITE A PROGRAM TO IMPLEMENT K-NEAREST NEIGHBOUR ALGORITHM TO CLASSIFY THE IRIS DATA SET. PRINT BOTH CORRECT AND WRONG PREDICTIONS. JAVA/PYTHON ML LIBRARY CLASSES CAN BE USED FOR THIS PROBLEM.

```
import numpy as np
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics

names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Class']

# Read dataset to pandas dataframe
dataset = pd.read_csv("8-dataset.csv", names=names)
X = dataset.iloc[:, :-1]
y = dataset.iloc[:, -1]
print(X.head())
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.10)
```

Output

	sepal-length	sepal-width	petal-length	petal-width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

```
classifier = KNeighborsClassifier(n_neighbors=5).fit(Xtrain, ytrain)
ypred = classifier.predict(Xtest)
i = 0
print ("\n----")
print ('%-25s %-25s %-25s' % ('Original Label', 'Predicted Label', 'Correct/Wrong'))
print ("-----")
for label in ytest:
 print ('%-25s %-25s' % (label, ypred[i]), end="")
 if (label == ypred[i]):
   print (' %-25s' % ('Correct'))
 else:
   print (' %-25s' % ('Wrong'))
 i = i + 1
print ("-----")
print("\nConfusion Matrix:\n",metrics.confusion_matrix(ytest, ypred))
print ("-----")
print("\nClassification Report:\n",metrics.classification_report(ytest, ypred))
print ("-----")
print('Accuracy of the classifer is %0.2f' % metrics.accuracy score(ytest,ypred))
print ("-----")
```

output:

Original Label	Pre	Predicted Label		Correct/Wrong	
Iris-virginica	Iri	Iris-virginica			
Iris-versicolor	Iris-versicolor			Correct	
Iris-versicolor	Iris-versicolor			Correct	
Iris-virginica	Iris-virginica			Correct	
Iris-setosa	Iris-setosa			Correct	
Iris-virginica	Iris-virginica			Correct	
Iris-virginica	Iris-virginica			Correct	
Iris-virginica	Iris-virginica			Correct	
Iris-setosa	Iris-setosa			Correct	
Iris-setosa	Iri	Iris-setosa		Correct	
Iris-virginica	Iri	Iris-virginica		Correct	
Iris-versicolor	Iri	Iris-versicolor		Correct	
Iris-setosa	Iri	Iris-setosa		Correct	
Iris-versicolor	Iri	Iris-versicolor		Correct	
Iris-virginica	Iris-virginica			Correct	
	precision	recall	f1-score	support	
Iris-setosa	1.00	1.00	1.00	4	
Iris-versicolor	1.00	1.00	1.00	4	
Iris-virginica	1.00	1.00	1.00	7	
accuracy			1.00	15	
macro avg	1.00	1.00	1.00	15	
weighted avg	1.00	1.00	1.00	15	

Accuracy of the classifer is 1.00
