

Review of unit content

Shoba Ranganathan

Applied Biosciences

T: 02 9850 6262; E: shoba.ranganathan@mq.edu.au

1. Proteins and Enzymes

Protein structure and enzyme function

basic Michaelis-Menton type enzyme kinetics.

Key points covered include:

- Structure and properties of amino acids found in proteins including some "non-standard" amino acids, and chirality of amino acids.
- Definition and properties of a peptide bond
- Definition of primary, secondary, tertiary and quaternary structure of proteins, including protein structural domains

1. Proteins and Enzymes

- Protein analysis
 - Stability e.g. salting-in
 - Protein folding and denaturation
 - Protein purification
 - Sequencing methods such as Edman degradation, MS-MS
 - Chromatography
 - Salting out
 - □ UV-Vis
 - Overview of structural determination methods: electron microscopy, NMR, X-ray crystallography
 - Gel electrophoresis
 - pl based on pK values

1. Proteins and Enzymes

- Enzyme activity and models of enzyme activity
 - Catalytic site and enzyme mechanisms
 - □ The six primary classes of enzymes
 - Enzyme inhibition
 - Competitive
 - Noncompetitive
 - Uncompetitive
 - Allosteric regulation
- Review of basic thermodynamics and chemical equilibria (refer to Lecture 1)

2. Biochemical signalling

- Biological membranes
- Signal transduction basics
- Hormones and Endocrine Signalling
 - Pancreatic hormones insulin and glucagon
 - Adrenal medulla hormines epinephrine (adrenalin)
 and norepinephrine (noradrenalin)
 - Effect of hormones on cellular regulation
- Kinases and phosphatases for adding and removing phosphate groups
- RTKs and GPCRs

3. Metabolism

- Principles of metabolism and how cell structure may influence metabolism within cells
- Types of metabolic strategies that mammals utilize
 - Energy source
 - Reducing agnets
 - Carbon source
- The link between catabolism and biosynthesis
 - Reducing equivalents (NADH/NADPH)
 - Coupling reactions to make them favourable (ATP)
 - Carbon and nitrogen sources and other nutrients

3. Metabolism

- Compartmentation of enzymes and pathways
 - Also see integration of mammalian metabolism
- Clustering of enzyme activities
- Regulation of multi-step pathways

4. Energy metabolism

- Glycolysis and gluconeogenesis
 - Emphasis is on the key regulatory steps, mechanism of these enzymes and compartmentation of sections of the gluconeogenesis pathway in mammals
- Glycogen metabolism
- Pentose phosphate pathway
 - □ links to other metabolic pathways
- CAC
 - > Regulation of enzymes within the CAC
 - Acetyl-CoA (link to lipid synthesis)
 - > Importance of succinate dehydrogenase link to ETC/OxPhos.
- Glyoxalate cycle

4. Energy metabolism

- Electron Transport Chain and Oxidative Phosphorylation
 - mitochondrial structure and electron carriers,
 - what is E^o
 - □ Flow of electrons from "high" to "low" –E° values.
 - P/O ratio for different substrates
 - Complexes involved and their exact role
 - Role of uncouplers
 - Chemiosmotic theory: charge, pH and concentration
 - ATP synthase 2 roles: synthase and proton pump
- Links between glycolysis, CAC and OxPhos

5. Amino acid metabolism

Amino acid metabolism

- Catabolism
 - Removal of nitrogen: Urea cycle & links to other metabolic pathways
 - Recycling of C chain: glucogenic and ketogenic amino acids
 - Diseases of defective aa catabolism
- Biosynthesis
 - Essential and non-essential aas
 - Transamination reaction
 - Nitrogen cycle and Nitrogen fixation
 - Families of amino acids
 - Regulation

6. Lipid metabolism

- Fatty acid degradation and synthesis
 - Energy output from fats
 - Transport of fatty acids
 - Involvement of hormones (cAMP)
 - Transport of fatty acids to mitochondria for oxidation
 - 4 systems involved and products formed
 - Link to TCA and OxPhos
 - Requirements of fatty acid synthase (FAS)
 - acetyl-CoA carboxylase
 - Steps involved in fatty acid synthesis

7. Nucleic Acid metabolism

Nucleic acid bases

- Bases: Purines, pyrimidines, Sugars: ribose, deoxyribose
- Nucleoside, nucleotide
- Structure of RNA
- Structure of DNA: complementary base pairing
- Chargaff's rules

Metabolism

- Purines, pyrimidines: de novo and salvage biosynthetic pathways and catabolism
- Diseases associated with nucleic acid metabolism

8. Integration of mammalian fuel metabolism

- Overview of different organs and their fuel needs
- Effect of the same hormones on different energy sources:
 - sugar (glucose and glycogen)
 - amino acids
 - lipids (fatty acids and adipose tissue stores)
- Links between nutrient imbalance and metabolic diseases

