Chemistry is a Physical Science

Chemistry studies matter, its properties, and interactions through physical principles.

Chemistry: The study of different material(ions, atoms, etc)

- <u>Is the study of the substances matter is made from</u>, their properties and uses, ant how and why is different substances interact with each other

Types of Data measures:

- 1. Qualitative Data: numbers, measured by tools
- are made with <u>instruments</u>, such as rulers, cylinders, and etc.
- Ex: The balance measured 121.43g
- 2. Qualitative Data: observation
- <u>Using your senses</u> to observe to get the results.
- Ex: The fizz of a soda can

Types of Research(methods):-

- 1. Basic Research: seek/gain_{new} knowledge
- seeks to gain (new) knowledge.
- 2. Applied Research: use your knowledge
- is carrier out to solve a problem

Properties of Matter

Physical Property:- *no alternating of properties

- is a characteristic that can be observed or measured <u>without changing the</u> <u>identity of the substance</u>.
- the property will remain the same

Chemical Property:- changing the identity's properties

- relates to a substance's ability to undergo changes that <u>transforms it into</u> <u>different substances.</u>
- new substance (could be) \rightarrow not the object that changes
- "Substances that affect the identity's properties, but not the chemical change"

Examples:

Physical Property	Chemical Property	
 blue color solubility (no mixing) melting paint sour taste(lemon) density(Intensive) 	 When iron rusts, it changes from elemental iron to iron oxide, altering its chemical identity and properties, such as strength and color. But it's still literal metal, but with different substances. More: flammability, *reactants, etc. 	

Physical Properties types:

• Think of it as Independent(intensive), and Dependent(extensive) variable

Extensive: moss amount, volume, length

- depend on the amount of matter that is present.
- property varies with amount
- It varies accordingly to the amount of substance(inputted)

Intensive:- temperature, concentration

- the property that does <u>substance that does not change</u>.
- always remains the same
- do not depend on the amount of matter present -> factors don't affect it

From intensive to extensive:

- Density (intensive) = multiplied by volume (extensive) gives mass (extensive).

Classification of Matter

Atom:-

- is the <u>smallest unit of an element</u> that maintains the chemical identity of that element.
 - Building black of matter
 - doesn't change into another element

Types of Pure Substances:

Element:- one type of atom

- is only made up of <u>one type of atom</u>.
- it could have more than one atom -> 1 type only
- Ex : He, O₂

Compound: - more than 2 types of atoms together

- substance that can be broken down into simple stable substances.
- Ex: $H_2O =>$ water, HO

Substances:

- 1. PureSubstances: a fixed composition
 - cannot be created → (from Allah)
- ightarrow has exactly the same characteristic properties and exactly the same composition(تكوين).
 - meaning that every sample of a pure substance will have the same characteristics regardless of where it is taken from.
 - Ex: Pure: water, gold, copper, and etc.
- 2. Mixture: a blend, of two or more kinds of matter, each of which rertains it's own identity.
 - All matters can be identified individually

2 Kinds of Mixture/s:-

Homogeneous Mixture	Heterogeneous Mixture	
 Uniform in composition Cannot be seperated, and mixed really well. Ex: Air 	 Not unitorm throughout can be separated Ex: blood -> (plasma, cell) 	

The Periodic Table

	Number of elements :
Groups : vertical columns	18
Periods : horizontal columns	7

• Group number and no. of valence electrons in the outer-most layer (shells no.) are the same.

1st shell - 2 electrons 2nd shell - 8 electrons 3rd shell - 18 electrons

• Perion no. == No. of shells

valence electrons

Metals and Non-metals

• it's all about their position in the periodic table

1. Metals: iron, gold

- is an element that is a good conductor of heat and electricity.

2. Non-Metals: CO₂, O, N

- is an element that is a poor conductor of heat and electricity.

3. Metalloids: Silicon, Boron

 is an element that has some characteristics of metals and some characteristics of nonmetals.

Scientific Method

6 main steps of an Scientific Method:

- 1. **Identify the Problem**: Recognize and define a specific question or issue.
- 2. **Gather Information**: Collect background data and existing knowledge related to the problem.
- 3. Formulate a **Hypothesis**: Develop a testable prediction based on observations.
- 4. Conduct an **Experiment**: Design and perform tests to gather new data.
- 5. Analyze Data: Examine the results for patterns or insights.
- 6. **Conclusion**: Determine if the data supports or refutes the hypothesis.

A **hypothesis** is a testable prediction for a specific phenomenon, serving as the starting point for experimentation, and it could be considered as an educated guess. While, a **theory** is a well-supported explanation developed after extensive research and evidence, covering a broad range of phenomena.

Model and Theory

Model: *more or less it's a physical object

- A model in science is more than a physical object of an explanation of how a phenomena occur and how events are related.
- A simplified representation of reality, illustrating key aspects or systems

Theory: *mostly made after an experiment

- is a broad generalization that explains a body of facts or phenomena.
- Explanation of phenomena, predicting relationships and underlying principles(how it works).

SI Units of Measurement

Base(SI) Units: - *complete the blanks

Quantity	Name of Unit.	Abbreviation	
Length	meter	m	
Mass	kilogram	kg	
Temperature	kelvin	К	
Time	second	s	
Substance	mole	mol	
Current	ampere	А	
Intensity	candela	cd	

Conversion Factors: used to change one unit into another

1L = 1000mL
 1km = 1000m
 1kg = 1000g

• 1kg = 1000 g

• 1m = 100 cm $1m^3 = 10^6 \text{cm}^3 \Rightarrow \text{(could be considered as) mL -> L}$

Derived SI Units: *collection of them(units) into one(unit)

- SI Base units combined into one

> Volume = $m3 \rightarrow length x height x width$

Accuracy and Precision

Accuracy: *closer to target

- refers to the closeness of measurement to the correct or accepted value of the quantity measured.

Precision : *closer(points) to one another

- refers to the closeness of a set of measurements of the same quantity made in the same way.

Percentage Error/Formula:

$$\% \text{ error} = \left| \frac{\text{\#experimental} - \text{\#actual}}{\text{\#actual}} \right| \times 100$$

Significant Figures

Significant Figures(SF):

- in a measurement consists of all the digits known with certainty plus one (+ 1) final digit, which is somewhat uncertain or is <u>estimated</u>.
- There's an additional decimal or decimal digit —> 3.68

Rules for determining SF:

- 1. $\underline{40.5} \rightarrow 3$ SF Figs, •it's between non-zeros
- 2. $0.000\underline{56} \rightarrow$ 2 SF Figs, Zeros in front of all non-zeros
- 3. $89.00 \rightarrow 4 \text{ SF Figs}$, Zeros after non-z will be could
- 4. $\underline{7}000 \rightarrow 1$ SF Figs, Has no decimal point, nor zeros after(.)

Scientific Notation

Scientific Notation:

- Used to express very large or very small numbers.
- written in the form $\rightarrow Mx10^n$

Example + SF:

- 1. $0.012 \times 10^8 \rightarrow 2 \text{ SF(igures)}$
- You always go on what's write in scientific notation form, and not in integers form

The Atom: From Philosophical Idea to Scientific Theory

3 Laws:

1. Law of conservation of mass:

- mass is neither created nor destroyed during ordinary chemical reactions or physical changes.
- Example(in an experiment): masses will remain the same before and after
 like the popcorn lab activity
- 2. Law of definite proportions: *intensive(physical property) in terms of compound ratio
- a chemical compound contains the same elements in exactly the same proportions by mass regardless of the size of the sample or source of the compound.

3. Law of multiple proportions:

- if two or more different compounds are composed of the same two elements, then the ratio of the masses of the second element combined with a certain mass of the first element is always a ratio of small whole numbers.

Dalton's Atomic Theory:

- All matter is composed of extremely small particles called atoms.
- Atoms of a given element are identical in size, mass, and other properties; atoms of different elements differ in size, mass, and other properties.
- Atoms cannot be subdivided, created, or destroyed.
- Atoms of different elements combine in simple whole-number ratios to form chemical compounds.
- In chemical reactions, atoms are combined, separated, or rearranged

^{*}Not all aspects of Dalton's atomic theory have proven to be correct*

The Structure of The Atom

• The subatomic particles of an atom are: proton, neutron, and electron

SubatomicParticle	Relative Mass	Relative Charge	Location
Proton	1	+1	in nucleus
Neutron	1	0	in nucleus
Electron	1/1840	-1	outside the nucleus

Neutral atom:

- an atom that has equal numbers of protons and electrons

The Atom:

VIP: Don't forget to know Rutherford's Gold Foil experiment

vii i boni i lorger la know kameria a cola i on experiment

Counting Atoms

Atomic Number: *also == no. of protons

- the number of protons of each atom of an element; it's always a whole number.

Mass Number: *also called: atomic mass/weight

- the total number of protons and neutrons that make up the nucleus of an atom.
- It is mostly not a whole number
- The bigger number is the (atomic)mass number
- The smaller number is the atomic number in the element card.

Element card

Isotopes: *when has element can have multiple masses

- are atoms of some element that have the atomic number, but have different masses.

Formula:

No. of neutrons = mass number - atomic number

Mole, Avogadro's Number and Molar Mass

Mole:

- A quantity of substance containing as many particles as atoms in 12 grams of carbon-12

Avogadro's Number:

- The number of particles in 1 mole of a pure substance \rightarrow (6.022x10²³)

Molar mass:

- The mass of one mole of a substance (g/mole)
 - It's the atomic mass number of an element

Relationship: *between all 3

• 1 mole = $6.022x10^{23}$ -> = 12 grams of C-12

Formula:

n (moles) =
$$\frac{\text{m (mass)}}{\text{M (molar mass)}}$$