УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

1 Теоретическая часть

1.1 Линейные уравнения с частными производными первого порядка. Уравнения характеристик. Первый интеграл. Квазилинейные уравнения. Задача Коши.

Определение 1.

Уравнением в частных производных первого порядка называется уравнение вида

$$F\left(x_1, \dots, x_n, u, \frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right) = 0, \tag{1}$$

где $x_1 \dots, x_n$ — независимые переменные, $u = u(x_1, \dots, x_n)$ — неизвестная функция, $F(x_1, \dots, x_n, p_1, \dots, p_n)$ — заданная непрерывно дифференцируемая функция (здесь p_i обозначают частные производные $u'_{x_i} = \frac{\partial u}{\partial x_i}, i = \overline{1, n}$) в некоторой области $G \subset \mathbb{R}^{2n+1}$, причем в каждой точке области G

$$\sum_{i=1}^{n} \left(\frac{\partial F}{\partial p_i} \right)^2 \neq 0.$$

Уравнение (1) сокращенно можно записать в виде

$$F(x, u, \nabla u) = 0, (1')$$

где $x = (x_1, \dots, x_n)$ и $\nabla u = \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right)$.

В зависимости от того, как неизвестная функция u и ее частные производные входят в уравнение (1), различают линейные и нелинейные уравнения.

Определение 2. (Линейные уравнения с частными производными первого порядка) Уравнение вида

$$a_1(x_1, \dots, x_n) \frac{\partial u}{\partial x_1} + \dots + a_n(x_1, \dots, x_n) \frac{\partial u}{\partial x_n} = b(x_1, \dots, x_n),$$
(2)

где $a_1, \ldots, a_n, b \in C^1(D), D \subset \mathbb{R}^n$, называется линейным неоднородным уравнением с частными производными первого порядка. Если $b(x_1, \ldots, x_n) = 0$, то уравнение называется линейным однородным.

Определение 3. (Квазилинейные уравнения)

Уравнение вида

$$a_1(x_1, \dots, x_n, u) \frac{\partial u}{\partial x_1} + \dots + a_n(x_1, \dots, x_n, u) \frac{\partial u}{\partial x_n} = b(x_1, \dots, x_n, u),$$
(3)

где $a_1, \ldots, a_n, b \in C^1(D), D \subset \mathbb{R}^n$, называется квазилинейным неоднородным уравнением с частными производными первого порядка. Если $b(x_1, \ldots, x_n, u) = 0$, то уравнение называется квазилинейным однородным.

Определение 4. (Первый интеграл)

Первым интегралом нормальной системы

$$\begin{cases} \dot{x}_1 = f_1(t, x_1, \dots, x_n), \\ \dots \\ \dot{x}_n = f_n(t, x_1, \dots, x_n), \end{cases}$$

$$(4)$$

называется такая функция $v(t, x_1, ..., x_n)$, что она постоянна вдоль любого решения этой системы. Выражение $v(t, x_1, ..., x_n) = 0$ называется общим интегралом системы.

Замечание: Если $v(t, x_1, \ldots, x_n)$ — первый интеграл системы (4), то его производная вдоль решения равняется нулю, то есть

$$\frac{dv}{dt} = \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x_1}\dot{x}_1 + \ldots + \frac{\partial v}{\partial x_n}\dot{x}_n = \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x_1}f_1(x_1, \ldots, x_n) + \ldots + \frac{\partial v}{\partial x_n}f_n(x_1, \ldots, x_n) = 0.$$

Справедливо и обратное, то есть функция, удовлетворяющая такому условию, является первым интегралом системы.

Определение 5. (Задача Коши)

Задачей Коши называется задача нахождения решения уравнения

$$a_1(x, y, z) \frac{\partial z}{\partial x} + a_2(x, y, z) \frac{\partial z}{\partial y} = b(x, y, z),$$

проходящего через кривую

$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \\ z = \eta(t). \end{cases}$$

Рассмотрим уравнение

$$a_1(x_1, \dots, x_n, u) \frac{\partial u}{\partial x_1} + \dots + a_n(x_1, \dots, x_n, u) \frac{\partial u}{\partial x_n} = 0$$

сопоставленная ему система обыкновенныъ дифференциальных уравнений называется *систе*мой уравнений характеристик

$$\frac{dx_1}{a_1(x_1,\dots,x_n)} = \frac{dx_2}{a_2(x_1,\dots,x_n)} = \dots = \frac{dx_n}{a_n(x_1,\dots,x_n)}.$$
 (5)

Также систему можно записать в виде:

$$\begin{cases} \dot{x}_1 = a_1(x_1, \dots, x_2), \\ \dots \\ \dot{x}_n = a_n(x_1, \dots, x_n). \end{cases}$$

$$(5')$$

Замечание: функция $u(x_1, ..., x_n)$ является решением линейного однородного уравнения в частных проихводных первого порядка тогда и только тогда, когда является независящим от времени первым интегралом системы (5').

1.2 Классификация линейных уравнений с частными производными 2-го порядка. Характеристическое уравнение. Приведение уравнения с частными производными к каноническому виду.

Уравнением с частными производными 2-го порядка с двумя независимыми переменными x,y называетс соотношение между неизвестной функцией u(x,y) и ее частными производными до 2-го порядка включительно:

$$F(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}) = 0. (6)$$

Уравнение называется линейным относительно старших производных, если оно имеет вид

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}y_{yy} + F_1(x, y, u, u_x, u_y) = 0, (7)$$

где a_{11}, a_{12}, a_{22} являются функциями x и y.

Уравнение называется линейным, если оно линейно как относительно старших производных u_{xx}, u_{xy}, u_{yy} , так и относительно функции u и ее первых производных u_x, u_y :

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22} + b_1u_x + b_2u_y + cu + f = 0. (8)$$

где $a_{11}, a_{12}, a_{22}, b_1, b_2, c, f$ — функции от x и y. Уравнение называется однородным, если f(x, y) = 0

Аналогично линейным уравнениям с частными производными 1-го порядка, линейные уравнения с частными производными 2-го порядка называются κ вазилинейными, если коэффициенты a_{11}, a_{12}, a_{22} подобно F_1 зависят от x, y, y, u_x, u_y .

С помощью преобразования переменных

$$\xi = \varphi(x, y), \quad \eta = \psi(x, y),$$

допускающего обратное преобразование, мы получаем новое уравнение, эквиввалентное исходному. Как выбрать ξ и η так, тчобы получить наиболее простой вид?

Получим ответ на поставленный вопрос для (7). Преобразуя производные к новым переменным, получаем

$$u_{x} = u_{\xi}\xi_{x} + u_{\eta}\eta_{x},
 u_{y} = u_{\xi}\xi_{y} + u_{\eta}\eta_{y},
 u_{xx} = u_{\xi\xi}\xi_{x}^{2} + 2u_{\xi\eta}\xi_{x}\eta_{x} + u_{\eta\eta}\eta_{x}^{2} + u_{\xi}\xi_{xx} + u_{\eta}\eta_{xx},
 u_{xy} = u_{\xi\xi}\xi_{x}\xi_{y} + u_{\xi\eta}(\xi_{x}\eta_{y} + \xi_{y}\eta_{x}) + u_{\eta\eta}\eta_{x}\eta_{y} + u_{\xi}\xi_{xy} + u_{\eta}\eta_{xy},
 u_{yy} = u_{\xi\xi}\xi_{y}^{2} + 2u_{\xi\eta}\xi_{y}\eta_{y} + u_{\eta\eta}\eta_{y}^{2} + u_{\xi}\xi_{yy} + u_{\eta}\eta_{yy},$$

$$(9)$$

Подставляя значения производных из (9) в уравнение (7), будем иметь

$$\bar{a}_{11}u_{\xi\xi} + 2\bar{a}_{12}u_{\xi\eta} + \bar{a}_{22}u_{\eta\eta} + \bar{F} = 0, \tag{10}$$

где

$$\bar{a}_{11} = a_{11}\xi_x^2 + 2a_{12}\xi_x\xi_y + a_{22}\xi_y^2,$$

$$\bar{a}_{12} = a_{11}\xi_x\eta_x + a_{12}(\xi_x\eta_y + \eta_x\xi_y) + a_{22}\xi_y\eta_y,$$

$$\bar{a}_{22} = a_{11}\eta_x^2 + 2a_{12}\eta_x\eta_y + a_{22}\eta_y^2,$$

а функция \bar{F} не зависит от вторых производных. Заметим, что если исходное уравнение линейно, т.е.

$$F(x, y, u, u_x, u_y) = b_1 u_x + b_2 u_y + cu + f,$$

то \bar{F} имеет вид

$$\bar{F}(\xi, \eta, u, u_{\xi}, u_{\eta}) = \beta_1 u_{\xi} + \beta_2 u_{\eta} + \gamma u + \delta,$$

т.е. уравнение остается линейным.

Выберем переменные ξ и η так, чтобы коэффициент \bar{a}_{11} был равен нулю. Рассмотрим уравнение с частными производными 1-го порядка

$$a_1 1 z_x^2 + 2a_{12} z_x z_y + a_{22} z_y^2 = 0. (11)$$

Пусть $z = \varphi(x, y)$ — какое-нибудь частное решение этого уравнения. Если положить $\xi = \varphi(x, y)$, то коэффициент \bar{a}_{11} , очевидно, будет равен нулю Таким образом, упомянутая выше задача о выборе новых независимых переменных связана с решением уравнения (11).

Если $z = \varphi(x, y)$ является частным решением уравнения (11), то соотношение $\varphi(x, y) = C$ представляет собой общий интеграл обыкновенного дифференциального уравнения

$$a_{11}dy^2 - 2a_{12}dxdy + a_{22}dx^2 = 0. (12)$$

Если $\varphi(x,y) = C$ представляет собой общий интеграл обыкновенного дифференциального уравнения (12), то функция $z = \varphi(x, y)$ удовлетворяет уравнению (11).

Уравнение (12) называется xарактеристическим для уравнения (7), а его интегралы - xaрактеристиками.

Пологая $\xi = \varphi(x,y)$, где $\varphi(x,y) = const$ есть общий интеграл уравнения (12), мы обращаем в нуль коэффициент при $u_{\xi\xi}$. Если $\psi(x,y)=const$ является другим общим интегралом уравнения (12), независимым от $\varphi(x,y)$, то, пологая $\eta=\psi(x,y)$, мы обратим в нуль также и коэффициент при $u_{\eta\eta}$.

Уравнение (12) распадается на два уравнения:

$$\frac{dy}{dx} = \frac{a_{12} + \sqrt{a_{12}^2 - a_{11}a_{22}}}{a_{11}},$$

$$\frac{dy}{dx} = \frac{a_{12} - \sqrt{a_{12}^2 - a_{11}a_{22}}}{a_{11}}.$$
(13)

$$\frac{dy}{dx} = \frac{a_{12} - \sqrt{a_{12}^2 - a_{11}a_{22}}}{a_{11}}. (14)$$

Знак подкоренного выражения определяет тип уравнения (7)

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + F = 0.$$

Это уравнение мы будем называть в точке M уравнением:

гиперболического типа, если в точке $M a_{12}^2 - a_{11}a_{22} > 0$, параболического типа, если в точке $M a_{12}^2 - a_{11}a_{22} = 0$, эллиптического типа, если в точке $M a_{12}^2 - a_{11}a_{22} < 0$.

Нетрудно убедиться в правильности соотношения

$$\bar{a}_{12}^2 - \bar{a}_{11}\bar{a}_{22} = (a_{12}^2 - a_{11}a_{22})D^2, \quad D = \xi_x \eta_y - \eta_x \xi_y,$$

из которого следует инвариантность типа уравнения при преобразовании переменных, так как функциональный определитель (якобиан) D преобразования переменных отличен от нуля. Вразличных точках области определения уравнение может принадлежать различным типам.

Рассмотрим область G, во всех точках которой уравнение имеет один и тот же тип. Через каждую точку области G проходят две характеристики, причем для уравнений гиперболического типа характеристики действительны и различны, для уравнений эллиптического типа комплексны и различны, а для уравнений параболического типа обе характеристики действительны и совпадают между собой.

Для каждого из типов можно вывести каноническую форму уравнения.

1. Каноническая форма уравнений гиперболического типа $(a_{12}^2 - a_{11}a_{22} > 0)$

$$u_{xx} - u_{yy} = \Phi \text{ или } u_{xy} = \Phi. \tag{15}$$

2. Для уравнений параболического типа $(a_{12}^2 - a_{11}a_{22} = 0)$

$$u_{xx} = \Phi. (16)$$

3. Для уравнений эллиптического типа $(a_{12}^2 - a_{11}a_{22} < 0)$

$$u_{xx} + u_{yy} = \Phi. (17)$$

Во всех случаях $\Phi = -rac{ar{F}}{ar{a}_{22}}.$

.4	Уравнение колебаний по отражений.	лубесконечной стр	уны (стержня).	Метод
	•			
		-		
		7		

1.5	Энергия колебаний ограниченной струны. Теорема единственности для смешанной краевой задачи для уравнения колебаний стру-							
	ны.							
	8							

1.6	Метод резке.	разделения	переменных	для	уравнения	колебаний	на	OT-
			9					

1.1	ны. Метод разделения переменных.	<i>,</i> –
	10	

1.8	вой задачи.	тепла в	стержне.	Постановка	смешаннои	крае-
			11			

1.9	9 Принцип максимального значения для параболического уравнения и теорема единственности смешанной краевой задачи в ограниченной области.							

1.12	Задача без начального условия для уравнения теплопроводности.

1.13	Функции, гармонические в области. Теорема о среднем значении для гармонических функций. Принцип максимума.					
	16					

1.14	цилиндрических, сферических) координатах.					
	17					

1.15 Собственные значения и собственные функции задачи Штурма-Лиувилля в прямоугольнике. Краевые задачи для уравнений Лапласа и Пуассона в прямоугольнике. 1.16 Метод разделения переменных решения первой краевой задачи для уравнения Лапласа внутри круга и вне круга. Интеграл Пуассона.

1.17	Функция Грина уравнения Лапласа первой краевой задачи в круге, на полуплоскости в полупространстве. Метод отражений.					
	20					

1.18	Единственность решения к ней) для уравнения Лаплас	раевой а.	задачи	(внутренней	И	внеш-
		21				

1.20 Собственные значения и собственные функции задачи Штурма-Лиувилля в круге, в круговом кольце и во внешности круга. Краевые задачи для уравнения Лапласа в указанных областях. 1.21 Собственные значения и собственные функции задачи Штурма-Лиувилля в круговом секторе и в кольцевом секторе. Краевая задача для уравнения Лапласа в указанных областях.

1.23 Собственные значения и собственные функции задачи Штурма-Лиувилля для цилиндра. Краевые задачи для уравнений Лапласа и Пуассона в ограниченном цилиндре. 1.24 Полиномы Лежандра, их свойства. Формула Родриго. Рекуррентные соотношения. Задача Штурма — Лиувилля на сфере. Присоединенные функции Лежандра.

1.25	Краевые слое.	задачи	для	уравнений	Лапласа	и Пуассона	в шаровом
				28			

1.26 Основные функции и обобщенные функции, сходимость в пространстве основных функций. Регулярная обобщённая функция. Носитель обобщённой функции.

1.27	Регуляризация степенных особенностей. ная функция \mathcal{P}^{1}_{x} . Формула Сохоцкого.	Сингулярная	обобщён-

1.28	Фундаментальное решение дифференциального оператора. Обо щённое решение задачи Коши.		

1.29	Классическая свёртка. Свертка обобщённых функций. Обобщённое решение дифференциального уравнения.				
	32				

1.30 Пространство быстроубывающих функций и пространство функций медленного роста. Обобщённое преобразование Фурье. Обобщённое преобразование Фурье свертки и обобщённое равенство Парсеваля.

34

Фундаментальное решение оператора Лапласа.

1.31

ция	влияния	мгновенного	точечного	источника.	
			25		

Фундаментальное решение оператора теплопроводности. Функ-

1.32

1.00	волны.
	36