

予測AI & 生成AI ユースケース デモ

Agenda

デモ実行環境

ユースケース

- 与信判定
- ・映画の推薦(レコメンデーション)
- ・ ジョブマッチング/検索

デモ実施環境

与信判定

予測AIのローン申請者に対する与信判定結果を、生成AIが解釈

予測AI: 支払不履行確率とそのリーズンコード(Shapley)の予測

生成AI: 予測AIの推論結果の解釈

Project Page: https://github.com/yukismd/predAi and genAi/tree/main/creditcard default

Demo Notebook: https://github.com/yukismd/predAi and genAi/blob/main/creditcard default/CreditScoring.ipynb

流れ

<u>Input</u>

IDLIMIT_BALSEXEDUCATIONMARRIAGEAGEPAY_1PAY_2PAY_3PAY_4...120000Muniversitymarried2422-1-1...

ローン申請者情報(顧客属性、過去返済履歴)

<u>Output</u>

| 与信判定の目安に従って、与信可否の判定を行います。

「与信モデルの予測結果は0.6974739273081736で、これは予測精度が0.3~0.7の範囲にしまります。したがって、与信判定に問題ありの可能性があり、リーズンコードの確認が必要しです。

¦ リーズンコードの結果は以下の通りです: ['EDUCATION', 'MARRIAGE', 'AGE', 'PAY_1', ı 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'BILL_AMT1', 'BILL_AMT2', 'PAY_AMT1', ı 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6']

リーズンコードの基準によると、PAY_*, BILL_AMT*, PAY_AMT*が8個以上含まれています。これは過去の返済履歴に問題があることを示しています。

リ以上の情報に基づき、与信判定に問題ありの可能性があり、貸し出し不可と判断します。

ローン申請者への貸出判断

推論用データ: ローン申請者データ

推論結果: 支払不履行確率、リーズンコード(Shapley)

予測AI

- Driverless AI 分類モデル
- モデルファイル (MOJO Shapley Scoring Pipeline) をMLOpsヘデプロイ

予測AIの推論結果を含んだプロンプト (推論結果に対する指示を含める)

生成結果

• h2oGPTe上にOSS LLMをホスト

予測AI

学習

- Driverless Al
- 学習データ: https://h2oai-jp-public.s3.ap-northeast-1.amazonaws.com/sample_data/UCI_CreditCard/UCI_Credit_Card3.csv
- 分類モデル 支払不履行(default_payment_next_month)確率を顧客属性や過去の支払い履歴で予測

推論

- Driverless AIのモデルファイル(MOJO Shapley Scoring Pipeline)をMLOpsヘデプロイ
- Inputデータに対し、デフォルト確率とリーズンコード(Shapley)をOutput

<u>Output</u>

デフォルト確率: 0.697

	features	contributions
0	EDUCATION	0.096083
1	MARRIAGE	0.087222
2	AGE	0.080195
3	PAY_1	0.794107
4	PAY_2	0.323085
5	PAY_3	0.002936
6	PAY_4	0.059302
7	PAY_5	0.039223
8	PAY_6	-0.010183
9	BILL_AMT1	0.045825
10	BILL_AMT2	0.269943
11	BILL_AMT3	-0.057621
12	BILL_AMT4	-0.043051

19 DILL AMTE

0.000012

Shapley

※ 予測確率に対する各特徴量の寄与

<u>Input</u> (1オブザベーション)

ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	PAY_1	PAY_2	PAY_3	PAY_4	•••	BILL_AMT4	BILL_AMT5	BILL_AMT6	P
1	20000	М	university	married	24	2	2	-1	-1		0	0	0	
	ーン申請者		B (顧客属性	t、過去返ž	斉履歷									

生成AI

- h2oGPTe上にホストされたOSS LLMへAPIアクセス
- LLM microsoft/Phi-3-medium-128k-instruct: https://huggingface.co/microsoft/Phi-3-medium-128k-instruct

プロンプト

予測モデルの予測結果: 0.6974739273081736 予測モデルの予測結果を、以下の与信判断の目安の目安に従って、与信可否の判定をして下さい。

リーズンコードの結果: ['EDUCATION', 'MARRIAGE', 'AGE', 'PAY_1', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'BILL_AMT1', 'BILL_AMT2', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6'] 与信可否の判定において、リーズンコードの確認が必要な場合は、リーズンコードの結果に従い、以下のリーズンコードの基準に理由を述べて下さい。

与信判断の目安

予測精度が0.3以下: 与信判定に問題なし。貸し出し可能。 予測精度が0.3~0.7: 与信判定に問題ありの可能性。リーズンコードの確認が必要。 予測精度が0.7以上: 与信判定に問題あり。貸し出し不可。

リーズンコードの基準

PAY_*, BILL_AMT*, PAY_AMT*が8個以上含まれる場合は、過去の返済履歴に問題ありとなります。PAY_*, BILL_AMT*, PAY_AMT*が8個未満であれば含まれる場合は、返済履歴には問題がありません。

予測AIの推論結果

- デフォルト確率
- Shapley 正の値の特徴量名をプロンプトに含める

生成結果

与信判定の目安に従って、与信可否の判定を行います。

与信モデルの予測結果は0.6974739273081736で、これは予測精度が0.3~0.7の範囲にあります。したがって、与信判定に問題ありの可能性があり、リーズンコードの確認が必要です。

リーズンコードの結果は以下の通りです: ['EDUCATION', 'MARRIAGE', 'AGE', 'PAY_1', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'BILL_AMT1', 'BILL_AMT2', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT5', 'PAY_AMT6']

リーズンコードの基準によると、PAY_*, BILL_AMT*, PAY_AMT*が8個以上含まれています。これは過去の返済履歴に問題があることを示しています。

以上の情報に基づき、与信判定に問題ありの可能性があり、貸し出し不可と判断します。

映画の推薦(レコメンデーション)

予測AIが顧客の映画の評価予測を実施し、生成AIがお勧め映画の推薦文を作成

予測AI: 顧客属性と好みのジャンルに基づく映画の推薦

生成AI: 予測AIの推薦結果と、映画情報を知識DBとしてRAGを実施し、推薦文を作成

Project Page: https://github.com/yukismd/predAi and genAi/tree/main/movie recomendation

Demo Notebook: https://github.com/yukismd/predAi and genAi/blob/main/movie recomendation/MovieRecommendation.ipynb

流れ

<u>Input</u>

 userId
 user_gender
 user_generation
 genre_Action
 genre_Adventure
 genre_Animation
 genre_Children

 10006
 M
 Senior
 0
 0
 0

顧客情報と好みのジャンル

<u>Output</u>

「こんにちは!今日は素晴らしい映画をお勧めしたいと思います。

最初に、『トイ・ストーリー』(1995)という名作アニメをご紹介します。主人公は、おもちゃの」カウボーイであるウッディで、新しくやってきたおもちゃのバズと出会い、彼らとの冒険を経 ・験します。この映画は、子供たちから大人まで幅広い層に愛され、絵画の質と緻密なストー・リーテリングが魅力的です。

| 次に、『セブン』(1995)というミステリーとスリラーのジャンルを持つ名作をご紹介します。犯 | 罪捜査官のサマセットとミルズが、7 つの大罪に基づいた猟奇的な殺人事件を解決しようと | します。映画は、暗く陰鬱な雰囲気が漂う映像美と、ブラッド・ピットやモーガン・フリーマンの | 優れた演技が特徴的です。

□ これらの映画をお勧めする理由は、50~60代の男性にとって、熟練した演技や深いストーリ □ ーテリングが好まれると考えます。特に、『トイ・ストーリー』は、子供たちにも大人たちにも楽 □ しめる、心から笑えるコメディ要素と、絵画の質の高いアニメーションが魅力的です。一方、 □ 『セブン』は、犯罪と人間の心理を描いた深いストーリーが好まれる方にとっては、見逃せな □ いー品です

| 今回のお勧め映画を見て、心に残る感動を与えてくれることでしょう。ぜひ、家族や友人と | 一緒に楽しんでください。

顧客へのお勧め映画2本の推薦文

推論用データ: 顧客情報と好みのジャンル

推論結果: 各推薦対象の映画を顧客が好み そうなscore (評価予測)

予測AI

- Driverless AI 分類モデル
- モデルファイル (MOJO Shapley Scoring Pipeline) をMLOpsヘデプロイ

予測AIの推論結果を含んだプロンプト (推論結果に対しRAGを実施)

生成結果

• h2oGPTe上にOSS LLMをホスト

生成AI

RAG

知識DB

・ 映画の詳細内容

予測AI

学習

- Driverless Al
- 学習データ: https://github.com/yukismd/predAi and genAi/blob/main/movie recomendation/data/movie rating modelingdata.csv
- 分類モデル 映画に対する評価(rating_good)を、ユーザー情報(user_.)、映画にタグ付けされたジャンル情報(genre_.)で予測

推論

- Driverless AIのモデルファイル(MOJO Scoring Pipeline)をMLOpsヘデプロイ
- Inputデータに対し、推薦対象の映画(20本)の評価予測(score)をOutput

<u>Input</u> (1オブザベーション)

userId	user_gender	user_generation	genre_Action	genre_Adventure	genre_Animation	genre_Children	genre_Comedy ge
10006	М	Senior	0	0	0	0	0

顧客情報と好みのジャンル

Output

movield	title	score
2959	Fight Club (1999)	0.4479908206399705
4993	Lord of the Rings: The Fellowship of the Ring,	0.4367456918400951
2571	Matrix, The (1999)	0.4334245643699235
1196	Star Wars: Episode V - The Empire Strikes Back	0.42149340938190794
260	Star Wars: Episode IV - A New Hope (1977)	0.4033679403459303
50	Usual Suspects, The (1995)	0.40298541566227036
1198	Raiders of the Lost Ark (Indiana Jones and the	0.3843803993797101
318	Shawshank Redemption, The (1994)	0.3832757883085894
2858	American Beauty (1999)	0.38279121506913516
296	Pulp Fiction (1994)	0.3716957923137419
110	Braveheart (1995)	0.35955365977884557
527	Schindler's List (1993)	0.35731394426273444
47	Seven (a.k.a. Se7en) (1995)	0.34431120239484736
356	Forrest Gump (1994)	0.3385032982023266
593	Silence of the Lambs. The (1991)	0.3173852679913233

顧客の20本分の映画に対する評価予測(score)

生成AI

- h2oGPTe上にホストされたOSS LLMへAPIアクセス
- LLM mistralai/Mixtral-8x7B-Instruct-v0.1: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
- 映画詳細情報(<u>https://github.com/yukismd/predAi_and_genAi/blob/main/movie_recomendation/data/movies_sample_story.txt</u>)を知識DBとしたRAG

プロンプト(RAG)

Movie Title = Toy Story (1995)とMovie Title = Seven (a.k.a. Se7en) (1995)を50~60代の男性におすすめして下さい。

文章には以下の3点を含めてください。

- 50~60代の男性に対するフレンドリーなオープニングトーク。
- 映画の要約。100文字以内。
- Movie Title = Toy Story (1995)のMovie Detailを参考にした100文字以内の要約文。
- Movie Title = Seven (a.k.a. Se7en) (1995)のMovie Detailを参考にした100文字以内の要約文。
- なぜ50~60代の男性にそれらの映画がおすすめかを説明

予測AIの推論結果

• 映画の評価予測 (score) の上位2つの映画

顧客属性

• 推薦を実施する顧客の属性

生成結果

こんにちは!今日は素晴らしい映画をお勧めしたいと思います。

最初に、『トイ・ストーリー』(1995)という名作アニメをご紹介します。主人公は、おもちゃのカウボーイであるウッディで、新しくやってきたおもちゃのバズと出会い、彼らとの冒険を経験します。この映画は、子供たちから大人まで幅広い層に愛され、絵画の質と緻密なストーリーテリングが魅力的です。

次に、『セブン』(1995)というミステリーとスリラーのジャンルを持つ名作をご紹介します。犯罪捜査官のサマセットとミルズが、7つの大罪に基づいた猟奇的な殺人事件を解決しようとします。映画は、暗く陰鬱な雰囲気が漂う映像美と、ブラッド・ピットやモーガン・フリーマンの優れた演技が特徴的です。

これらの映画をお勧めする理由は、50~60代の男性にとって、熟練した演技や深いストーリーテリングが好まれると考えます。特に、『トイ・ストーリー』は、子供たちにも大人たちにも楽しめる、心から笑えるコメディ要素と、絵画の質の高いアニメーションが魅力的です。一方、『セブン』は、犯罪と人間の心理を描いた深いストーリーが好まれる方にとっては、見逃せない一品です。

今回のお勧め映画を見て、心に残る感動を与えてくれることでしょう。ぜひ、家族や友人と一緒に楽しんでください。

ジョブマッチング/検索

求職者と仕事をマッチング。生成AIを非構造化データからの情報抽出に活用

- 生成AI: 職務経歴書から、書かれているスキル(専門技術、マネジメント、経験等)を抽出
- 予測AI: 抽出したスキル一覧とマッチする仕事をリストアップ

Project Page: https://github.com/yukismd/predAi and genAi/tree/main/job_db_search

Demo Notebook: https://github.com/yukismd/predAi and genAi/blob/main/job db search.jobDb Search.joynb

流れ

<u>Input</u> (プロンプト送信前にドキュメントをインジェスト)

求職者の履歴書

<u>Output</u>

skill_sets	rank	role	industry	similarity	job_id
- 5年以上のプランニング経験\n- 広告・マーケティング戦略の立 案能力\n- データ分析の	シニア	プランナー	広告・マーケティング業	0.072274	360
- 顧客サポート経験: ミドルのカスタマーサポートとしては、顧客 サポートに関する経験が必要で	ミドル	カスタマーサポ ート	卸売業	0.071788	401
- 厳格な品質標準を実装する能力\n- 品質管理システムの設計と管理\n- 産業標準(ISO	シニア	品質管理	リサイクル業	0.071461	365
- 放送技術の基礎知識と実務能力\n- 録音、編集、配信技術の知識 と経験\n- デジタルテレ	ミドル	放送技術者	メディア・エンターテイ ンメント業	0.070987	404
- 顧客サポート経験: 少ない程度の顧客サポート経験があること。 \n- コミュニケーション能	ジュニ ア	カスタマーサポ ート	ITサービス業	0.070539	304
- 注文受付と確認の手続きに堪能な経験\n- 在庫管理と注文処理の	ジュー				

マッチしそうな仕事の一覧(Embeddingの類似度上位)

予測AI

• 仕事リスト(各仕事に必要なスキルセット情報を

予測AIを用いて事前にEmbedding化)

推論結果: 求職者のスキルセットの

Embedding

Embeddingを 用いた検索

H2O.ai Confidential

生成AI

- h2oGPTe上にホストされたOSS LLMへAPIアクセス
- LLM mistralai/Mixtral-8x7B-Instruct-v0.1: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
- 履歴書(<u>https://github.com/yukismd/predAi_and_genAi/blob/main/movie_recomendation/data/movies_sample_story.txt</u>)に対するRAG

プロンプト(RAG)

書かれているスキル(専門技術、マネジメント、経験等)を箇条描きで取り出して下さい。

RAG対象のドキュメント (.docx)

生成結果 (抽出結果)

{'skills': ['自動車販売', '自動車整備', '自動車保険の代理営業', '新車販売', '車検・点検', '自動車登録の書類作成', '指導員の業務指導や販売方法のアドバイス', '商談同席', 'Excel関数の使用やデータ表の作成', 'PowerPointの使用', '報告書、見積書、礼状などの文書作成', '会議資料、提案資料の作成', '普通自動車第一種運転免許', '損害保険募集人一般試験', 'TOEIC Listening & Reading Test 650点', '顧客とのコミュニケーション能力', 'Wordの使用']}

• json形式で取得

学習

- Hydrogen Torch
- 学習データ: https://github.com/yukismd/predAi and genAi/blob/main/job_db_search/data/job_database_wCategory.csv
- テキスト類似モデル(Metric Learning/Text Similarity) テキスト(skill_sets)に対し距離学習を実施(category_labelをターゲットに利用)

推論

- Hydrogen Torchのモデルファイル(ML Flow)をMLOpsヘデプロイ
- Inputデータに対し、マッチしそうな仕事リストをOutput

推論プロセス

<u>Input</u> (1オブザベーション)

['自動車販売, 自動車整備, 自動車保険の代理営業, 新車販売, 車検・点検, 自動車登録の書類作成, 指導員の業務指導や販売方法のアドバイス, 商談同席, Excel関数の使用やデータ表の作成, PowerPointの使用, 報告書、見積書、礼状などの文書作成, 会議資料、提案資料の作成, 普通自動車第一種運転免許, 損害保険募集人一般試験, TOEIC Listening & Reading Test 650点, 顧客とのコミュニケーション能力, Wordの使用']

[-0.14998503029346466, -0.0906902402639389, 0.31655681133270264, 0.35003647208213806, -0.40125352144241333, 0.40502312779426575, -0.09217745810747147, 0.21565495431423187, -0.04981619492173195, -0.15057465434074402,]

テキスト類似モデルの推論。テキストのEmbedding (256次元) 予測

job_id	0	1	2	3	4	5	
1	18.493658	-2.9056177	7.192411	5.7487535	2.9272718	-1.0605525	-2.4
2	18.61952	-2.7737942	7.310369	6.445345	3.0684423	-1.1027852	-2.5
3	19.062078	-2.7475924	7.4626546	6.694531	3.2923553	-1.0355324	-2.5
4	18.846693	-2.7988	6.965602	6.902364	3.1724663	-1.0421278	-2.
5	19.060589	-2.6976926	7.1494446	6.600138	2.7881427	-1.0526669	-2.4
6	18.481405	-2.688187	6.768119	6.395191	3.1129346	-1.19247	-2.5
7	18.487246	-2.6584218	6.7218103	6.3406897	3.3436236	-1.1486933	-2.
8	18.122164	-2.6822236	6.4769373	6.519028	3.072667	-1.1848462	-2.5
9	18.077633	-2.5971534	6.0230603	6.33885	3.0437508	-1.2077092	-2.5
10	18.997274	-2.6166642	6.1508255	6.5253944	3.1599083	-0.92524	-2.4
11	19.239693	-2.578036	6.137155	6.6527085	3.328963	-1.1363158	-2.4
12	18.575203	-2.7061048	6.1983643	6.418556	3.3575609	-1.027733	-2.4
13	18.73035	-2.7532792	6.5042014	6.932088	3.1111343	-1.1692586	-2.4
14	18.68813	-2.7597106	6.6369863	6.9353538	2.9042826	-1.1639992	-2.4
15	18.36485	-2.7430663	6.2360373	6.681555	2.746703	-1.1716776	-2.4
16	17.874535	-2.752476	6.165771	6.637122	2.9868526	-1.2444824	-2.4
17	18.686369	-2.7381694	6.101833	7.2415504	3.3132522	-1.1908772	-2.4
18	16.982185	-2.943033	5.813945	6.3865633	2.7369165	-1.2107325	-2.3
19	17.865427	-2.847496	5.814069	6.667044	3.1881928	-1.2274125	-2.4

事前に保存しておいたJob Embedding Table (仕事数 *Embedding次元数(256))

<u>Output</u>

skill_sets	rank	role	industry	similarity	job_id
- 5年以上のプランニング経験\n- 広告・マーケティング戦略の立 案能力\n- データ分析の	シニア	プランナー	広告・マーケティング業	0.072274	360
- 顧客サポート経験: ミドルのカスタマーサポートとしては、顧客 サポートに関する経験が必要で	ミドル	カスタマーサポ ート	卸売業	0.071788	401
- 厳格な品質標準を実装する能力\n- 品質管理システムの設計と管 理\n- 産業標準(ISO	シニア	品質管理	リサイクル業	0.071461	365
- 放送技術の基礎知識と実務能力\n- 録音、編集、配信技術の知識 と経験\n- デジタルテレ	ミドル	放送技術者	メディア・エンターテイ ンメント業	0.070987	404
- 顧客サポート経験: 少ない程度の顧客サポート経験があること。 \n- コミュニケーション能	ジュニ ア	カスタマーサポ ート	ITサービス業	0.070539	304
注文番付と確認の手続きに掛能な経験の 左庫管理と注文処理の	25_ —				

• InputテキストのEmbeddingとEmbedding Table間のコサイン類似度を計算。上位の仕事リストをOutput

