Dataset

- 30분 지하철 30분 단위 이용 통계
- 서울시 지하철 시간대별 승객 수
- 우수중소기업 공간데이터
- 수도권지하철 공간데이터
- 서울시 주요시설과 집객 시설 공간데이터

주제

서울시 시민의 지하철, 대중교통 데이터, 30분 단위 이용 통계, 여러 서울시 공간데이터를 활용해 시간별 혼잡 상황을 파악하고, 혼잡도를 미리 예측한다.

그 후, 새로운 호선을 추가 배치하여 각 동네에 새로운 역을 개통했을 때, 해당 역의 지하철 승하차 인원 수는 과연 얼만큼 될지 예측한다.

STATN19

수도권 지하철 공간데이터(19년)

STATN19_572

TM_Y	TM_X	BB_RT	STN_NM	
553121.189900	183460.629400	5	방화	0
552562.267200	182879.188000	5	개화산	1
551457.329300	182425.217800	5	김포공항	2
551316.623600	183389.185800	5	송정	3
551203.240100	184579.398500	5	마곡	4
546102.029000	189636.922600	2	도림천	148
545894.398100	188138.364800	2	양천구청	149
546747.951900	186998.713800	2	신정네거리	150
552726.071500	203364.482800	2	용두	151
548041.014706	186448.617563	2	까치산	152

```
# 5호선만 뽑아보리기

STATN19_5 = STATN19[STATN19["BB_RT"].str.contains('5')].reset_index(drop = True)
STATN19_5.head()

# 7호선만 뽑기

STATN19_7 = STATN19[STATN19["BB_RT"].str.contains('7')].reset_index(drop = True)
STATN19_7.head()

# 2호선만 뽑기

STATN19_2 = STATN19[STATN19["BB_RT"].str.contains('2')].reset_index(drop = True)[:51]
STATN19_2.head()
```

5, 7, 2호선만 뽑아주었다.

지도 시각화

572선의 시각화

```
# TM좌표계를 위도/경도 좌표로 변환하기 위해 따로 뽑기
STATN19_{xy} = STATN19_572[["TM_X","TM_Y"]]
STATN19_xy
            TM_X
                          TM_Y
  0 183460.629400
                   553121.189900
  1 182879.188000 552562.267200
     182425.217800
                   551457.329300
  3 183389,185800
                   551316.623600
  4 184579.398500
                   551203.240100
    189636.922600 546102.029000
    188138.364800 545894.398100
     186998.713800
                   546747.951900
150
151 203364.482800
                   552726.071500
    186448.617563
                   548041.014706
```


위도, 경도 좌표계로 변경해주었다.

STAT	N19_572			
	STN_NM	BB_RT	위도	경도
0	방화	5	37.577491	126.812763
1	개화산	5	37.572445	126.806194
2	김포공항	5	37.562481	126.801082
3	송정	5	37.561231	126.811995
4	마곡	5	37.560230	126.825469
148	도림천	2	37.514339	126.882782
149	양천구청	2	37.512450	126.865835
150	신정네거리	2	37.520125	126.852930
151	용두	2	37.574074	127.038086
152	까치산	2	37.531768	126.846683

지도 시각화

572선의 시각화

TBVIATR데이터셋

서울시 주요시설, 집객시설 주요데이터(20년)

	LCLASDC	MLSFCDC	X_VALUE	Y_VALUE
0	교육/보건	교육시설	214388.672913	551205.841919
1	산업	서비스산업	214555.910095	550962.356812
2	교육/보건	교육시설	214224.118713	550979.324829
3	교육/보건	교육시설	214171.512024	550841.469116
4	산업	서비스산업	214481.776611	550819.438110
19456	교육/보건	교육시설	191061.555317	544289.967983
19457	교육/보건	교육시설	191005.451446	542730.985067
19458	산업	서비스산업	191354.443045	541322.297120
19459	교육/보건	보건시설	188687.329239	547251.976724
19460	교육/보건	보건시설	202925.205495	547526.724798

위도, 경도 좌표계로 변경해주었다.

	LCLASDC	MLSFCDC	위도	경도
0	교육/보건	교육시설	37.560270	127.162852
1	산업	서비스산업	37.558074	127.164740
2	교육/보건	교육시설	37.558232	127.160985
3	교육/보건	교육시설	37.556991	127.160387
4	산업	서비스산업	37.556787	127.163898
19456	교육/보건	교육시설	37.498027	126.898918
19457	교육/보건	교육시설	37.483980	126.898303
19458	산업	서비스산업	37.471291	126.902265
19459	교육/보건	보건시설	37.524689	126.872023
19460	교육/보건	보건시설	37.527229	127.033093

교육/보건

역별 교육/ 보건 시설의 개수

	LCLASDC	MLSFCDC	위도	경도
0	교육/보건	교육시설	37.560270	127.162852
1	교육/보건	교육시설	37.558232	127.160985
2	교육/보건	교육시설	37.556991	127.160387
3	교육/보건	교육시설	37.498516	127.102067
4	교육/보건	교육시설	37.497201	127.102680
13044	교육/보건	보건시설	37.450467	126.909474
13045	교육/보건	교육시설	37.498027	126.898918
13046	교육/보건	교육시설	37.483980	126.898303
13047	교육/보건	보건시설	37.524689	126.872023
13048	교육/보건	보건시설	37.527229	127.033093

```
# 역별로 교육/보건 시설의 개수
print("교육/보건\n")
sb3 = []
i = 0
for a, b in result_sub:
   lyon = (a, b) # 실제 지하철 역의 위도 경도값 설정
   count = 0
   for c, d in TBVIATR_edu_result_1:
      paris=(c, d) # 실제 시설의 위도 경도값 설정
     A = haversine(lyon, paris) < 1 # 지하철역의 위치값을 기준으로 반경 1km내에 포함된 시설 찾기
     if A is True:
        count += 1
   print(name[i], '->', count, '개')
   print("="*30)
   i += 1
   sb3.append(count)
교육/보건
['방화' '5'] -> 59 개
['개화산' '5'] -> 68 개
_____
['김포공항' '5'] -> 34 개
['송정' '5'] -> 75 개
_____
['마곡' '5'] -> 38 개
```

산업

역별 산업 시설의 개수

```
TBVIATR_edu_result_3 = np.array(TBVIATR_edu_3[['위도', '경도']])
TBVIATR_edu_result_3

array([[ 37.53804211, 127.12821378],
        [ 37.53833182, 127.12895978],
        [ 37.53820195, 127.12814859],
        ...,
        [ 37.50817955, 126.96237648],
        [ 37.50772692, 126.96191758],
        [ 37.47826728, 126.89486763]])
```

```
# 역별로 산업 시설의 개수
print("산업\n")
sb4 = []
i=0
for a, b in result_sub:
    lyon = (a, b)
    count = 0
    for c, d in TBVIATR_edu_result_2:
        paris=(c, d)
        A = haversine(lyon, paris) < 1
        if A is True:
           count += 1
    print(name[i], '->', count, '개')
    print("="*30)
    i += 1
    sb4.append(count)
```

숙박/음식

역별 숙박/음식 시설의 개수

```
TBVIATR_edu_result_4 = np.array(TBVIATR_edu_4[['위도', '경도']])
TBVIATR_edu_result_4

array([[ 37.49654608, 127.10993326],
        [ 37.59293371, 127.06575311],
        [ 37.58353155, 126.89368024],
        ...,
        [ 37.58693399, 126.98607813],
        [ 37.64067367, 127.01406449],
        [ 37.60264741, 126.92985768]])
```

```
# 역별로 숙박/음식 시설의 개수
print("숙박/음식\n")
sb5 = []
i=0
for a, b in result_sub:
    lyon = (a, b)
    count = 0
    for c, d in TBVIATR_edu_result_3:
        paris=(c, d)
        A = haversine(lyon, paris) < 1
       if A is True:
            count += 1
    print(name[i], '->', count, '개')
    print("="*30)
    i += 1
    sb5.append(count)
```

행정

역별 행정 시설의 개수

```
TBVIATR_edu_result_4 = np.array(TBVIATR_edu_4[['위도', '경도']])
TBVIATR_edu_result_4

array([[ 37.49654608, 127.10993326],
        [ 37.59293371, 127.06575311],
        [ 37.58353155, 126.89368024],
        ...,
        [ 37.58693399, 126.98607813],
        [ 37.64067367, 127.01406449],
        [ 37.60264741, 126.92985768]])
```

```
# 역별로 행정 시설의 개수
print("행정\n")
sb6 = []
i=0
for a, b in result_sub:
    lyon = (a, b)
    count = 0
    for c, d in TBVIATR_edu_result_4:
        paris=(c, d)
        A = haversine(lyon, paris) < 1
        if A is True:
            count += 1
    print(name[i], '->', count, '개')
    print("="*30)
    i += 1
    sb6.append(count)
```

레저/관광/예술

역별 레저/관광/예술 시설의 개수

```
TBVIATR_edu_result_5 = np.array(TBVIATR_edu_5[['위도', '경도']])
TBVIATR_edu_result_5[:5]

array([[ 37.49889341, 127.10445715],
        [ 37.57419305, 126.95891943],
        [ 37.46072539, 126.90504234],
        [ 37.47694521, 126.93793596],
        [ 37.4704393 , 126.91836431]])
```

```
#역별로 레저/관광/예술 시설의 개수
print("레저/관광/예술\n")
sb7 = []
i=0
for a, b in result_sub:
    lyon = (a, b)
    count = 0
    for c, d in TBVIATR edu result 5:
       paris=(c, d)
       A = haversine(lyon, paris) < 1
       if A is True:
           count += 1
    print(name[i], '->', count, '개')
   print("="*30)
   i += 1
    sb7.append(count)
```

공공/환경

역별 공공/환경 시설의 개수

```
TBVIATR_edu_result_6 = np.array(TBVIATR_edu_6[['위도', '경도']])
TBVIATR_edu_result_6[:5]

array([[ 37.46767352, 126.94480922],
        [ 37.51613554, 126.91214083],
        [ 37.50077829, 126.90856148],
        [ 37.48205824, 126.92792746],
        [ 37.51859504, 126.93167693]])
```

```
# 역별로 공공/환경 시설의 개수
print("공공/환경\n")
sb8 = []
i=0
for a, b in result sub:
    lyon = (a, b)
    count = 0
   for c, d in TBVIATR_edu_result_6:
        paris=(c, d)
        A = haversine(lyon, paris) < 1
       if A is True:
           count += 1
    print(name[i], '->', count, '개')
   print("="*30)
   i += 1
   sb8.append(count)
```

시설물

역별 시설물 시설의 개수

```
TBVIATR_edu_result_7 = np.array(TBVIATR_edu_7[['위도', '경도']])
TBVIATR_edu_result_7[:5]

array([[ 37.57708864, 127.04994455],
        [ 37.4852527 , 126.90160758],
        [ 37.48755509, 126.9132976 ],
        [ 37.51334765, 126.92648565],
        [ 37.50241793, 126.88151226]])
```

```
# 역별로 시설물 시설의 개수
print("시설물\n")
sb9 = []
i=0
for a, b in result_sub:
    lyon = (a, b)
    count = 0
    for c, d in TBVIATR_edu_result_7:
        paris=(c, d)
        A = haversine(lyon, paris) < 1
        if A is True:
            count += 1
    print(name[i], '->', count, '개')
    print("="*30)
    i += 1
    sb9.append(count)
시설물
```

우수중소기업 시각화

EXC ; 위경도 변환

4 하이브랜드서울기업

```
# 필요 컬럼 선택

EXC = EXC[['DEC_SE', 'ADDRES', 'TM_X', 'TM_Y']]

EXC.head()

DEC_SE ADDRES TM_X TM_Y

아 하이브랜드서울기업 서초구 효령로68길 92 (서초동) 201762.893208 542899.588742

가로구 경인로63길 21-6 189818.338312 545438.678543

가로구 경인로63길 21-6 189818.338312 545438.678543

하이브랜드서울기업 성동구 성수이로 7길 27, 701 (서울숲 코오롱디지털타워2차) 204724.207199 549119.988156

하이브랜드서울기업 금천구 가산 디지털 2로 98 롯데아이티 캐슬 2동 6층 189481.128053 541984.760645
```

마포구 매봉산로 37, 9층 905호 (DMC 산학협력연구센터) 190337.914065 552950.945367

TM -> 위경도

좌표 변환을 해주었다.

p1 = pyproj.Proj(init=p1_type)

p2 = pyproj.Proj(init=p2_type)

return np.dstack([fx, fy])[0]

fx, fy = pyproj.transform(p1, p2, coord[:, 0], coord[:, 1])

우수중소기업 시각화

역별 중소기업 시설 개수 확인

```
# 역별로 중소기업 시설의 개수
print("중소기업\n")
sb2 = []
i = 0
for a, b in result_sub:
   lyon = (a, b) # 실제 지하철 역의 위도 경도값 설정
   count = 0
   for c, d in EXC_result:
       paris=(c, d) # 실제 시설의 위도 경도값 설정
       A = haversine(lyon, paris) < 1 # haversine이용
       if A is True:
           count += 1
   print(name[i], '->', count, '개')
   print("="*30)
   i += 1
   sb2.append(count)
```

facilities count set index/!TINN!)

	우수중소기업	교육/보건	산업	숙박/음식	행정	레저/관광/예술	공공 / 환경	시설물
지하철								
[방화, 5]	1	59	7	3	2	1	0	2
[개화산, 5]	1	68	9	3	3	1	0	6
[김포공항, 5]	0	34	9	7	2	1	0	6
[송정, 5]	1	75	15	8	2	1	0	4
[마곡, 5]	3	38	12	2	0	2	0	0
[도림천, 2]	3	48	16	4	2	0	0	2
[양천구청, 2]	0	62	8	0	7	1	0	0
[신정네거리, 2]	3	124	14	9	3	1	0	0
[용두, 2]	1	155	31	44	5	4	0	1
[까치산, 2]	0	152	12	49	6	2	0	1

우수중소기업 시각화

각 시설의 수 합치기

```
# 각 시설의 수 합치기
sb10 = facilities count['우수중소기업'] + facilities count['교육/보건'] + facilities count['산업']\
+ facilities_count['숙박/음식'] + facilities_count['행정'] + facilities_count['레저/관광/예술'] + facilities_count['공공/환경']\
+ facilities_count['시설물']
facilities_count['총 합'] = sb10
# 앞서 구한 총 평균거리 넣기
facilities count['평균거리'] = final dist_mean
facilities_count.tail()
         지하철 우수중소기업 교육/보건 산업 숙박/음식 행정 레저/관광/예술 공공/환경 시설물 총합 평균거리
      [도림천, 2]
                          48
                              16
148
                                                                 75
                                                                       0.51
     [양천구청, 2]
                          62
                              8
                                                 1
                                                               0 78
149
                                     0 7
                                                                       0.31
                    3
                                                   1
150 [신정네거리, 2]
                          124 14
                                      9 3
                                                          0
                                                               0 154
                                                                       0.44
                         155 31
                                     44 5
       [용두, 2]
151
                    1
                                                               1 241
                                                                       0.61
152
      [까치산, 2]
                    0
                         152 12
                                     49 6
                                                               1 222
                                                                       0.45
```

지하철 역 별 시설 총합 시각화

facilities_count를 이용

```
from folium.plugins import MarkerCluster

# 위도
latitude = 37.394946
# 경도
longitude = 127.111104

m = g.Map(
    location=[latitude, longitude],
    zoom_start=15
)

coords = STATN19_572[['위도', '경도']]

marker_cluster = MarkerCluster().add_to(m)

for lat, long in zip(coords['위도'], coords['경도']):
    g.Marker([lat, long], icon = g.Icon(color="green")).add_to(marker_cluster)

m
```


지하철 역 별 시설

facilities_count를 이용

```
sub_list = [0] * 153
a = ''
n = 0
for i, v in facilities_count.지하철:
    a = i + '-' + v
    sub_list[n] = a
    n += 1
sub_list
```

```
['방화-5',
'개화산-5',
'김포공항-5',
'송정-5',
'마곡-5',
'발산-5',
'우장산-5',
'화곡-5',
'개치산-5',
'시정-5',
```

```
facilities_count['지하철-호선'] = sub_list
```

facilities_count = facilities_count.drop(['지하철'], axis = 1) facilities_count

	우수중소기업	교육/보건	산업	숙박/음식	행정	레저/관광/예술	공공/환경	시설물	총합	지하철-호선
0	1	59	7	3	2	1	0	2	75	방화-5
1	1	68	9	3	3	1	0	6	91	개화산-5
2	0	34	9	7	2	1	0	6	59	김포공항-5
3	1	75	15	8	2	1	0	4	106	송정-5
4	3	38	12	2	0	2	0	0	57	마곡-5
148	3	48	16	4	2	0	0	2	75	도림천-2
149	0	62	8	0	7	1	0	0	78	양천구청-2
150	3	124	14	9	3	1	0	0	154	신정네거리-2
151	1	155	31	44	5	4	0	1	241	용두-2
152	0	152	12	49	6	2	0	1	222	까치산-2

153 rows x 10 columns

```
df = facilities_count.set_index('지하철-호선')
#.groupby('지하철-호선')[['총 합']].sum().sort_values('총 합', ascending = False)
```

머신러닝 전 추가 전처리

역별 승하차 인원 확인

```
subway21 = pd.read_csv("data/subway21_df.csv", index_col = ['STATION_NM', 'LINE_NM'])

# 역별 승하차 인원 확인
subway21['GET_TOTAL'] = subway21['GETON_CNT'] + subway21['GETOFF_CNT']
subway21
subway21_sort = subway21.sort_values(ascending = False, by = 'GET_TOTAL')
subway21_sort = subway21.groupby(['STATION_NM', 'LINE_NM']).sum('GET_TOTAL')[['GET_TOTAL']].sort_values('GET_TOTAL', ascending = False)
subway21_sort = subway21_sort.reset_index(drop=False)
subway21_sort
```

	STATION_NM	LINE_NM	GET_TOTAL
0	강남	2호선	39321791
1	잠실(송파구청)	2호선	34859312
2	신림	2호선	31166581
3	구로디지털단지	2호선	27919882
4	홍대입구	2호선	24607291
330	남태령	4호선	512681
331	남위례	8호선	65574
332	연신내	6호선	227
333	충무로	3호선	184
334	신내	6호선	72

머신러닝 전 추가 전처리

STATION_NM의 괄호 + 괄호안 내용 없애기

```
# STATION_NM의 괄호 + 괄호안 내용 없애기

rmve_bracket = "\(.*\)|\s-\s.*"

name_list = []

for i in subway21_sort.STATION_NM:
    i = re.sub(rmve_bracket, '',i)
    name_list.append(i)

name_list
```

	STATION_NM	LINE_NM	GET_TOTAL
0	강남	2호선	39321791
1	잠실	2호선	34859312
2	신림	2호선	31166581
3	구로디지털단지	2호선	27919882
4	홍대입구	2호선	24607291
330	남태령	4호선	512681
331	남위례	8호선	65574
332	연신내	6호선	227
333	충무로	3호선	184
334	신내	6호선	72

	STATION_NM	LINE_NM	GET_TOTAL
0	강남	2호선	39321791
1	잠실	2호선	34859312
2	신림	2호선	31166581
3	구로디지털단지	2호선	27919882
4	홍대입구	2호선	24607291
152	용마산	7호선	3076887
153	반포	7호선	2873882
154	삼산체육관	7호선	2050929
155	부천종합운동장	7호선	2050168
156	장암	7호선	870210

머신러닝 전 추가 전처리

역이름 및 호선번호만 따로 뽑아 새로운 컬럼에 각각 넣기

```
# 역이름 및 호선번호만 따로 뽑아 새로운 컬럼에 각각 넣기
new2 = []
new3 = []
for i in range(153):
    a = facilities_count.loc[i,'지하철-호선']
   new2.append(a[:-2])
for i in range(153):
    b = facilities_count.loc[i, '지하철-호선']
    new3.append(b[-1])
facilities count['지하철'] = new2
facilities_count['호선'] = new3
subway21_572 = subway21_572.rename(columns = {'STATION_NM':'지하철'})
merge_df = pd.merge(facilities_count,subway21_572, on="지하철")
merge_df = merge_df.drop(['지하철-호선','호선'], axis = 1)
merge_df = merge_df.drop_duplicates(['지하철'])
merge_df = merge_df.rename(columns = {'LINE_NM':'호선', 'GET_TOTAL':'승하차인원'})
merge_df
```

	우수중소기업	교육/보건	산업	숙박/음식	행정	레저/관광/예술	공공/환경	시설물	총 합	평균거리	지하철	호선	승하차인원
0	1	59	7	3	2	1	0	2	75	0.53	방화	5호선	3148408
1	1	68	9	3	3	1	0	6	91	0.52	개화산	5호선	2506452
2	0	34	9	7	2	1	0	6	59	0.61	김포공항	5호선	3718314
3	1	75	15	8	2	1	0	4	106	0.37	송정	5호선	3297282
4	3	38	12	2	0	2	0	0	57	0.50	마곡	5호선	4570357
163	2	81	27	57	8	2	0	1	178	0.57	신설동	2호선	1568224
164	3	48	16	4	2	0	0	2	75	0.51	도림천	2호선	635911
165	0	62	8	0	7	1	0	0	78	0.31	양천구청	2호선	3162527
166	3	124	14	9	3	1	0	0	154	0.44	신정네거리	2호선	4709553
167	1	155	31	44	5	4	0	1	241	0.61	용두	2호선	1278391

선형회귀

```
merge df.호선 = merge df.호선.astype('category').cat.codes
merge_df.지하철 = merge_df.지하철.astype('category').cat.codes
merge_df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 143 entries, 0 to 167
Data columns (total 13 columns):
             Non-Null Count Dtype
    Column
    우수중소기업
                143 non-null
                               int64
    교육/보건
               143 non-null
                               int64
               143 non-null
                              int64
    숙박/음식
               143 non-null
                              int64
               143 non-null
                              int64
    레저/관광/예술 143 non-null
                              int64
    공공/환경
               143 non-null
                               int64
    시설물
               143 non-null
                              int64
    총 합
              143 non-null
                              int64
    평균거리
               143 non-null
                              float64
10 지하철
               143 non-null
                              int16
11 호선
               143 non-null
                              int8
12 승하차인원
               143 non-null
                               int64
dtypes: float64(1), int16(1), int64(10), int8(1)
memory usage: 13.8 KB
```

```
data = merge_df[['우수중소기업', '교육/보건', '산업', '숙박/음식', '행정', '레저/관광/예술', '공공/환경', '시설물', '총 합' ,'지하철', '호선', '평균거리']]
target = merge_df['승하차인원']
from sklearn.model_selection import train_test_split
train_input, test_input, train_target, test_target = train_test_split(
    data, target, test_size = 0.2
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(train input, train target)
print(lr.coef_, lr.intercept_)
[ 173690.64701195
                     78561.83696769
                                       81609,69723349
                                                         63146.15240513
  -297776.14967563
                    224073.90962631
                                       29941,45978666
                                                      -417105.040714
   -63857.48735833
                    -15987.56864703 -3741179.48016677 -5188497.27533707] 14391203.465684148
print(lr.score(train_input, train_target))
print(lr.score(test_input, test_target))
0.310978400710734
0.3454798046747295
```

다중회귀

다중회귀

```
# 변화기
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(include_bias = False)
poly.fit(train_input)
train_poly = poly.transform(train_input)
test_poly = poly.transform(test_input)
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(train_poly, train_target)
print(lr.score(train_poly, train_target))
print(lr.score(test_poly, test_target))
0.8580210640729422
-4.5596720162991
```

릿지

릿지

```
# 표준화
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
ss.fit(train_poly)
train_scaled = ss.transform(train_poly)
test_scaled = ss.transform(test_poly)
#그리드 서치 최적의 alpha 값 찾기
from sklearn.linear model import Ridge
from sklearn.model_selection import GridSearchCV
params = {'alpha': [0.001, 0.01, 0.1, 1, 10, 100]}
gs = GridSearchCV(Ridge(), params, n_jobs=-1)
gs.fit(train_scaled, train_target)
print(gs.best_params_)
{'alpha': 10}
from sklearn.linear_model import Ridge
ridge = Ridge(alpha = 10)
ridge.fit(train_scaled, train_target)
print(ridge.score(train_scaled, train_target))
print(ridge.score(test_scaled, test_target))
0.5065296207152367
0.5575167756444398
```

라쏘

```
라쏘
#그리드 서치 최적의 alpha 값 찾기
from sklearn.linear_model import Lasso
from sklearn.model_selection import GridSearchCV
params = {'alpha': [0.001, 0.01, 0.1, 1, 10, 100]}
gs = GridSearchCV(Ridge(), params, n_jobs=-1)
gs.fit(train_scaled, train_target)
print(gs.best params )
{'alpha': 10}
from sklearn.linear_model import Lasso
lasso = Lasso(alpha = 10)
lasso.fit(train_scaled, train_target)
print(lasso.score(train_scaled, train_target))
print(lasso.score(test_scaled, test_target))
0.8011452334132623
0.08852010221728834
```

결정트리

```
결정트리
data = merge_df[['우수중소기업', '교육/보건', '산업','행정', '숙박/음식', '레저/관광/예술', '총 합','지하철', '호선', '평균거리']].to_numpy()
target = merge_df['승하차인원'].to_numpy()
train_input, test_input, train_target, test_target = train_test_split(
   data, target, test_size = 0.2)
from sklearn.model_selection import cross_validate
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier(random_state = 42)
dt.fit(train_input, train_target)
print(dt.score(train_input, train_target))
print(dt.score(test_input, test_target))
1.0
0.0
from sklearn.model_selection import StratifiedKFold
scores = cross_validate(dt, train_input, train_target, cv = StratifiedKFold(n_splits = 3, shuffle = True, random_state = 42))
print(np.mean(scores['test_score']))
# n splits값 때문에 계속 오류가 뜨지만 해결 불가..
```