# Tests of Hypotheses Based on a Single Sample

# 8.2 Tests About a Population Mean

# **Tests About a Population Mean**

Confidence intervals for a population mean  $\mu$  focused on three different cases.

We now develop test procedures for these cases.

Although the assumption that the value of  $\sigma$  is known is rarely met in practice, this case provides a good starting point because of the ease with which general procedures and their properties can be developed.

The null hypothesis in all three cases will state that  $\mu$  has a particular numerical value, the *null value*, which we will denote by  $\mu_0$ . Let  $X_1, ..., X_n$  represent a random sample of size n from the normal population.

Then the sample mean  $\overline{X}$  has a normal distribution with expected value  $\mu_{\overline{X}} = \mu$  and standard deviation  $\sigma_{\overline{X}} = \sigma/\sqrt{n}$ .

When  $H_0$  is true,  $\mu_{\overline{X}} = \mu_0$ . Consider now the statistic Z obtained by standardizing  $\overline{X}$  under the assumption that  $H_0$  is true:

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

Substitution of the computed sample mean  $\bar{x}$  gives z, the distance between  $\bar{x}$  and  $\mu_0$  expressed in "standard deviation units."

For example, if the null hypothesis is 
$$H_0$$
,  $\mu = 100$ ,  $\sigma_{\overline{X}} = \sigma/\sqrt{n} = 10/\sqrt{25} = 2.0$ , and  $\overline{x} = 103$ , then the test statistic value is  $z = (103 - 100)/2.0 = 1.5$ .

That is, the observed value of  $\overline{x}$  is 1.5 standard Deviations (of  $\overline{X}$ ) larger than what we expect it to be when  $H_0$  is true.

The statistic Z is a natural measure of the distance between  $\overline{X}$ , the estimator of  $\mu$ , and its expected value when  $H_0$  is true. If this distance is too great in a direction consistent with  $H_a$ , the null hypothesis should be rejected.

Suppose first that the alternative hypothesis has the form  $H_a$ :  $\mu > \mu_0$ . Then an  $\overline{\chi}$  value less than  $\mu_0$  certainly does not provide support for  $H_a$ .

Such an  $\bar{x}$  corresponds to a negative value of z (since  $\bar{x} - \mu_0$  is negative and the divisor  $\sigma/\sqrt{n}$  is positive).

Similarly, an  $\bar{x}$  value that exceeds  $\mu_0$  by only a small amount (corresponding to z, which is positive but small) does not suggest that  $H_0$  should be rejected in favor of  $H_a$ .

The rejection of  $H_0$  is appropriate only when  $\overline{\chi}$  considerably exceeds  $\mu_0$ —that is, when the z value is positive and large. In summary, the appropriate rejection region, based on the test statistic Z rather than  $\overline{\chi}$ , has the form  $z \geq c$ .

As we have discussed earlier, the cutoff value c should be chosen to control the probability of a type I error at the desired level  $\alpha$ .

This is easily accomplished because the distribution of the test statistic Z when  $H_0$  is true is the standard normal distribution (that's why  $\mu_0$  was subtracted in standardizing).

The required cutoff c is the z critical value that captures upper-tail area  $\alpha$  under the z curve.

As an example, let c = 1.645, the value that captures tail area  $.05(z_{.05} = 1.645)$ . Then,

```
\alpha = P(type I error)
= P(H_0 is rejected when H_0 is true)
=P(Z \ge 1.645 when Z \sim N(0,1))
= 1 - \Phi(1.645) = .05
```

More generally, the rejection region  $z \ge z_{\alpha}$  has type I error probability  $\alpha$ .

The test procedure is *upper-tailed* because the rejection region consists only of large values of the test statistic.

Analogous reasoning for the alternative hypothesis  $H_a$ :  $\mu < \mu_0$  suggests a rejection region of the form  $z \le c$ , where c is a suitably chosen negative number ( $\bar{x}$  is far below  $\mu_0$  if and only if z is quite negative).

Because Z has a standard normal distribution when  $H_0$  is true, taking  $c = -z_{\alpha}$  yields  $P(\text{type I error}) = \alpha$ .

This is a *lower-tailed* test. For example,  $z_{.10} = 1.28$  implies that the rejection region  $z \le -1.28$  specifies a test with significance level .10.

Finally, when the alternative hypothesis is  $H_a$ :  $\mu \neq \mu_0$ ,  $H_0$  should be rejected if  $\overline{x}$  is too far to either side of  $\mu_0$ . This is equivalent to rejecting  $H_0$  either if  $z \geq c$  or if  $z \leq -c$ . Suppose we desire  $\alpha = .05$ . Then,

.05 = 
$$P(Z \ge c \text{ or } Z \le -c$$
  
when Z has a standard normal distribution)

$$= \Phi(-c) + 1 - \Phi(c) = 2[1 - \Phi(c)]$$

Thus c is such that  $1 - \Phi(c)$ , the area under the z curve to the right of c, is .025 (and not .05!).

From Appendix Table A.3, c = 1.96, and the rejection region is  $z \ge 1.96$  or  $z \le -1.96$ .

For any  $\alpha$ , the *two-tailed* rejection region  $z \ge z_{\alpha/2}$  or  $z \le -z_{\alpha/2}$  has type I error probability  $\alpha$  (since area  $\alpha/2$  is captured under each of the two tails of the z curve).

Again, the key reason for using the standardized test statistic Z is that because Z has a known distribution when  $H_0$  is true (standard normal), a rejection region with desired type I error probability is easily obtained by using an appropriate critical value.

The test procedure for case I is summarized in the accompanying box, and the corresponding rejection regions are illustrated in Figure 8.2.



Rejection regions for z tests: (a) upper-tailed test; (b) lower-tailed test; (c) two-tailed test

Null hypothesis:  $H_0$ :  $\mu = \mu_0$ 

Test statistic value :  $z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$ 

#### **Alternative Hypothesis**

#### Rejection Region for Level $\alpha$ Test

$$H_{\rm a}$$
:  $\mu > \mu_0$ 

$$z \ge z_{\alpha}$$
 (upper-tailed test)

$$H_a$$
:  $\mu < \mu_0$ 

$$z \le -z_{\alpha}$$
 (lower-tailed test)



either 
$$z \ge z_{\alpha/2}$$
 or  $z \le -z_{\alpha/2}$  (two-tailed test)

Use of the following sequence of steps is recommended when testing hypotheses about a parameter.

- **1.** Identify the parameter of interest and describe it in the context of the problem situation.
- 2. Determine the null value and state the null hypothesis.
- 3. State the appropriate alternative hypothesis.

- **4.** Give the formula for the computed value of the test statistic (substituting the null value and the known values
  - of any other parameters, but *not* those of any samplebased quantities).
- **5.** State the rejection region for the selected significance level  $\alpha$ .
- **6.** Compute any necessary sample quantities, substitute into the formula for the test statistic value, and compute that value.

**7.** Decide whether  $H_0$  should be rejected, and state this conclusion in the problem context.

The formulation of hypotheses (Steps 2 and 3) should be done before examining the data.

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is 130°.

A sample of n = 9 systems, when tested, yields a sample average activation temperature of 131.08°F.

If the distribution of activation times is normal with standard deviation 1.5°F, does the data contradict the manufacturer's claim at significance level  $\alpha$  = .01?



- **1.** Parameter of interest:  $\mu$  = true average activation temperature.
- **2.** Null hypothesis:  $H_0$ :  $\mu = 130$  (null value =  $\mu_0 = 130$ ).
- **3.** Alternative hypothesis:  $H_a$ :  $\mu \neq 130$  (a departure from the claimed value in *either* direction is of concern).
- 4. Test statistic value:

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{\overline{x} - 130}{1.5 / \sqrt{n}}$$

- **5.** Rejection region: The form of  $H_a$  implies use of a two-tailed test with rejection region  $eithe_iz \ge z_{.005}$  or  $z \le -z_{.005}$ . From Appendix Table A. $z_{.005} = 2.58$ , so we reject  $H_0$  if either  $z \ge 2.58$  or  $z \le -2.58$ .
- **6.** Substituting n = 9 and  $\overline{x} = 131.08$ ,

$$z = \frac{131.08 - 130}{1.5/\sqrt{9}} = \frac{1.08}{.5} = 2.16$$

That is, the observed sample mean is a bit more than 2 standard deviations above what would have been expected were  $H_0$  true.

**7.** The computed value z = 2.16 does not fall in the rejection region (-2.58 < 2.16 < 2.58), so  $H_0$  cannot be rejected at significance level .01. The data does not give strong support to the claim that the true average differs from the design value of 130.



 $\beta$  and Sample Size Determination The z tests for case I are among the few in statistics for which there are simple formulas available for  $\beta$ , the probability of a type II error.

Consider first the upper-tailed test with rejection region  $z \ge z_{\alpha}$ .

This is equivalent to  $\bar{\chi} \ge \mu_0 + z_\alpha \cdot \sigma / \sqrt{n}$ , so  $H_0$  will not be rejected if  $\bar{\chi} < \mu_0 + z_\alpha \cdot \sigma / \sqrt{n}$ .

Now let  $\mu'$  denote a particular value of  $\mu$  that exceeds the null value  $\mu_0$ . Then,

$$\beta(\mu') = P(H_0 \text{ is not rejected when } \mu = \mu')$$

$$= P(\overline{X} < \mu_0 + z_\alpha \cdot \sigma / \sqrt{n} \text{ when } \mu = \mu')$$

$$= P\left(\frac{\overline{X} - \mu'}{\sigma / \sqrt{n}} < z_\alpha + \frac{\mu_0 - \mu'}{\sigma / \sqrt{n}} \text{ when } \mu = \mu'\right)$$

$$= \Phi\left(z_\alpha + \frac{\mu_0 - \mu'}{\sigma / \sqrt{n}}\right)$$

As  $\mu'$  increases,  $\mu_0 - \mu'$  becomes more negative, so  $\beta(\mu')$  will be small when  $\mu'$  greatly exceeds  $\mu_0$  (because the value at which  $\Phi$  is evaluated will then be quite negative).

Error probabilities for the lower-tailed and two-tailed tests are derived in an analogous manner.

If  $\sigma$  is large, the probability of a type II error can be large at an alternative value  $\mu'$  that is of particular concern to an investigator.

Suppose we fix  $\alpha$  and also specify  $\beta$  for such an alternative value. In the sprinkler example, company officials might view  $\mu' = 132$  as a very substantial departure from  $H_0$ :  $\mu = 130$  and therefore wish  $\beta(132) = .10$  in addition to  $\alpha = .01$ .

More generally, consider the two restrictions  $P(\text{type I error}) = \alpha$  and  $\beta(\mu') = \beta$  for specified  $\alpha$ ,  $\mu'$  and  $\beta$ .

Then for an upper-tailed test, the sample size *n* should be chosen to satisfy

$$\Phi\left(z_{\alpha} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}\right) = \beta$$

#### This implies that

$$-z_{\beta} = \frac{z \text{ critical value that}}{\text{captures lower-tail area } \beta} = z_{\alpha} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}$$

It is easy to solve this equation for the desired *n*. A parallel argument yields the necessary sample size for lower- and two-tailed tests as summarized in the next box.

#### **Alternative Hypothesis**

$$H_{\rm a}$$
:  $\mu > \mu_0$ 

$$H_{\rm a}$$
:  $\mu < \mu_0$ 

$$H_a$$
:  $\mu \neq \mu_0$ 

# Type II Error Probability for a Level a Test

$$\Phi\left(z_{\alpha} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}\right)$$

$$1 - \Phi\left(-z_{\alpha} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}\right)$$

$$\Phi\left(z_{\alpha/2} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}\right) - \Phi\left(-z_{\alpha/2} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}\right)$$

where  $\Phi(z)$  = the standard normal cdf.

The sample size n for which a level  $\alpha$  test also has  $\beta(\mu') = \beta$  at the alternative value  $\mu'$  is

$$n = \begin{cases} \left[ \frac{\sigma(z_{\alpha} + z_{\beta})}{\mu_{0} - \mu'} \right]^{2} & \text{for a one-tailed (upper or lower) test} \\ \left[ \frac{\sigma(z_{\alpha/2} + z_{\beta})}{\mu_{0} - \mu'} \right]^{2} & \text{for a two-tailed test (an approximate solution)} \end{cases}$$

Let  $\mu$  denote the true average tread life of a certain type of tire.

Consider testing  $H_0$ :  $\mu = 30,000$  versus  $H_a$ :  $\mu > 30,000$  based on a sample of size n = 16 from a normal population distribution with  $\sigma = 1500$ .

A test with  $\alpha$  = .01 requires  $z_{\alpha}$  =  $z_{.01}$  = 2.33.

The probability of making a type II error when  $\mu$  = 31,000 is

$$\beta(31,000) = \Phi\left(2.33 + \frac{30,000 - 31,000}{1500/\sqrt{16}}\right)$$

$$\beta(31,000) = \Phi\left(2.33 + \frac{30,000 - 31,000}{1500/\sqrt{16}}\right) = \Phi(-.34)$$

$$\beta(31,000) = \Phi\left(2.33 + \frac{30,000 - 31,000}{1500/\sqrt{16}}\right) = \Phi(-.34) = .3669$$

Since  $z_{.1}$  = 1.28, the requirement that the level .01 test also have  $\beta(31,000)$  = .1 necessitates

$$n = \left[ \frac{1500(2.33 + 1.28)}{30,000 - 31,000} \right]^{2}$$
$$= (-5.42)^{2}$$
$$= 29.32$$

The sample size must be an integer, so n = 30 tires should be used.