결정트리, 앙상블 학습, 랜덤 포레스 트 실제 사용 사례 조사

9조 - 김한결, 위다빈

1. 결정트리

결정트리(decision tree)란?

-사용하는 문제 : 분류와 회귀 문제

-학습방식:

데이터의 특성을 기반으로 분류나 예측을 위해 질문을 생성하며, 이를 통해 트리 구조를 형성하는 방식.

-요약

결정 트리를 학습 = 정답에 가장 빨리 도달하는 예/아니오 질문 목록을 학습

2. 실제 사례

대구시의 살피소

- 민원 : 민원인이 행정기관에 대하여 처분 등 특정한 행위를 요구
- 민원행정: 민원에 대응 행정에서 가장 기본적이지만 가장 해결하기 어려운 영역(문책, 민원인의 폭력등..)
- 현재 상황: 민원접수 건수가 매년 21% 이상 증가, 내용 또한 복잡 다양하게 진화
- → 양질의 민원서비스 제공을 위한 방안 마련이 절실.
- 대구시의 살피소 : 공무원이 시민 불편사항을 먼저 찾아 처리하는 사전 예방 중심의 시정 견문정보시스템 (선제적 민원 대응)
- → 문제 발생 : 처리건수가 매년 30% 이상 증가하는 등 양적 성장을 보이고 있지만 질적성장 (실질적으로 체감할 수 있는지)에 대한 확인필요
- → 해결방안 모색 : 관리원과 대구시 민원행정 프로세스 혁신을 위한 빅데이터 분석 실시

- \rightarrow 분석에 활용한 데이터 : 데이터로 2년간의 살피소 데이터, 시민이 직접 신청한 민원 현황, 유동인구 데이터 등 활용
- → 개발할 분석 모델 : 시민불편해소지수(시민불편 선제대응 지수) 개발, 취약지점 예측모델 (민원 빈발지점) 예측, 처리부서 자동지정
- → 취약지점 예측모델:

유동인구 및 업종 분포 등 외부 데이터와 지도학습 기반 앙상블 학습 방법으로 다수의 의사 결정트리로부터 예측치를 모아 평균 또는 예측하는 랜덤 포레스트 머신러닝 알고리즘을 활 용하여, 민원 취약지점을 96.2%의 높은 정확도로 예측하는 '취약지점 예측모델'을 개발,

모델 적용 결과 동구 안심공업단지 주변 등 27곳이 향후 민원이 빈번히 발생할 지역으로 예측되어 해당 지역의 순찰 강화 등 효과적인 선제 대응이 가능해짐

▼ 참고한 곳

2.3.5 결정 트리

2.3.4 나이브 베이즈 분류기 | 목차 | 2.3.6 결정 트리의 앙상블 – 결정 트리decision tree는 분류와 회귀 문제에 널리 사용하는 모델입니다. 기본적으로 결정 트리는 결정에 다다르기 위해 예/아니

🦚 https://tensorflow.blog/파이썬-머신러닝/2-3-5-결정-트리/

시민 불편, 인공지능으로 똑똑하게 살핀다

민원처리에 관한 법률(제2조 제1호)에 따르면, '민원'이란 '민원인이 행정기관에 대하여 처분 등 특정한 행위를 요구하는 것'이다. 이와 같이 간단히 정의되는 '민원'과 이에 대응하는 '민원행정'은

https://www.aitimes.kr/news/articleView.html?idxno=125

2. 앙상블 학습

1) 앙상블 학습(Ensemble Learning)이란 ?

-사용하는 문제 : 분류와 회귀 문제

-학습방식

1. 배깅 (Bagging):

- 동일한 알고리즘을 사용하지만 훈련 데이터의 서로 다른 서브셋에 대해 개별 모델을 훈련시킵니다.
- 중복을 허용한 무작위 샘플링 (부트스트래핑)을 통해 서브셋을 생성합니다.
- 모든 예측기의 예측을 평균내어 최종 예측을 생성합니다.
- 대표적인 예: 랜덤 포레스트

2. 부스팅 (Boosting):

- 순차적으로 여러 예측기를 훈련시키며, 이전 예측기의 오류를 다음 예측기가 수 정하도록 합니다.
- 대표적인 예: AdaBoost, Gradient Boosting Machine (GBM), XGBoost.

3. **스태킹 (Stacking)**:

 여러 가지 다른 모델들의 예측 결과를 새로운 '메타 모델'의 입력으로 사용하여 최종 예측을 생성합니다.

-요약

분류 문제에 대해서는 다수결로, 회귀 문제에 대해서는 평균값으로 예측

실제사례

삼다수에서는 지하수 관리 시스템을 위해 앙상블 기법을 사용하고있음을 언급하였다. 제주개발공사에 따르면 딥러닝 인공지능뿐 아니라 최적 인공신경망(ANN)과 인공지능 앙상블 모델도 개발해 취수원 지하수위 예측 및 관리에 활용하고 있다고 한다.

구체적인 사용방법 및 특징을 공개하지 않아, 기사 내용을 바탕으로 조사한 내용은 아래와 같다.

- 1. **예측 모델링**: 지하수의 레벨, 흐름, 품질 등의 변화를 예측하기 위해 다양한 모델을 앙상블로 결합할 수 있습니다. 단일 모델보다 앙상블 모델은 더욱 정확한 예측을 제 공할 수 있습니다.
- 2. **특성 중요도 분석**: 지하수의 특성 중 어떤 것이 가장 중요한지 판단하기 위해 랜덤 포 레스트와 같은 앙상블 기법을 사용하여 특성 중요도를 평가할 수 있습니다.
- 3. **결측치 대체**: 결측치가 있는 데이터는 앙상블 기법을 사용하여 다른 관련 특성을 기반으로 예측하고 결측치를 대체할 수 있습니다.

- 4. **지하수 오염원 탐지**: 앙상블 기법은 다양한 데이터 소스(예: 위성 이미지, 수질 측정 데이터 등)를 결합하여 지하수 오염 원인을 식별하는 데 활용될 수 있습니다.
- 5. **시나리오 분석**: 다양한 환경 및 사용 패턴에 따른 지하수 상태의 변화를 예측하기 위해 앙상블 기법을 활용할 수 있습니다.
- 6. **알림 및 경보 시스템**: 앙상블 모델을 사용하여 지하수 수준이나 품질에 관한 임계치를 초과할 가능성이 있는 시점을 예측하고, 관리자나 사용자에게 알림을 보낼 수 있습니다.

지하수 관리 시스템을 위한 특징은 지하수 수준, 수질, 기후, 토양 유형, 토지 이용, 추출량, 지하 구조, 지역 특성, 인구 밀도, 역사적 데이터 등이 될 수 있다.

▼ 참고한 곳

https://www.fnnews.com/news/202310111758565273

3. 랜덤 포레스트

1. 랜덤 포레스트 (Random forest)란?

-사용하는 문제 : 분류와 회귀 문제

- 학습방식 :

- 1. 부트스트랩 샘플링 (Bootstrap Sampling)
 - 원래 데이터셋에서 무작위로 중복 허용하여 샘플을 추출합니다. 이렇게 추출된 샘플로 각 결정 트리가 학습됩니다.
 - 이 방법으로 인해 각 트리는 조금씩 다른 데이터를 바탕으로 학습되며, 이는 랜 덤 포레스트의 다양성을 증가시킵니다.

2. 특성의 무작위 선택

- 각 결정 노드에서 모든 특성을 고려하는 것이 아니라, 무작위로 선택된 일부 특성만을 고려하여 최적의 분할을 찾습니다.
- 이 방법 또한 모델의 다양성을 증가시키며, 과적합을 방지하는 효과도 있습니다.

3. 결정 트리 학습

• 부트스트랩 샘플과 선택된 특성을 바탕으로 결정 트리를 학습합니다.

• 일반적으로 트리의 깊이에 제한을 두지 않거나, 가지치기를 수행하지 않습니다. 이는 각 트리가 과적합될 가능성이 있지만, 전체 랜덤 포레스트의 앙상블 방식으로 인해 과적합 문제가 완화됩니다.

4. 예측

- 회귀의 경우, 각 트리의 예측값의 평균을 결과로 합니다.
- 분류의 경우, 각 트리의 예측 클래스를 투표 방식으로 집계하고 가장 많은 투표 를 받은 클래스를 최종 예측 결과로 합니다.

5. 특성 중요도 평가

 랜덤 포레스트는 각 특성의 중요도를 계산할 수 있습니다. 일반적으로 특성 중요 도는 각 트리에서 특성을 사용하여 데이터를 분할할 때의 평균 감소량(불순도 감소 또는 평균제곱오차 감소)을 기반으로 합니다.

-요약 :

랜덤 포레스트는 여러 결정 트리를 조합해 데이터의 부분 집합과 특성을 무작위로 학습 하여 고정밀도와 일반화 성능을 제공하는 앙상블 기법입니다.

2. 실제 사례

정부에서 교차로 접근부 추돌사고 중 전치 3주 이상의 중상에 해당하는 심각사고의 요인을 찾기 위해 다양한 머신러닝 기법을 적용하였음.

이 중 랜덤 포레스트 또한 존재. 정부에서 구체적으로 어떻게 사용하였는지에 대한 내용은 존재하지 않지만, 기사에 나온 '인적 측면, 차량 측면, 도로환경적 측면에서 총 27개의다양한 변수를 수집해 분석'이라는 문장을 보아, 총 27개의 특징을 통해 아래 과정에서적절하게 활용하였을 것으로 예상됨.

아래는 사용사례를 찾으며 분석한 랜덤 포레스트의 실제 활용 방법임.

1. 데이터 수집 및 전처리

교통사고 데이터를 수(사고의 세부 정보, 운전자 정보, 환경 요인, 차량 정보 등) 타겟 변수를 정의(전치 3주 이상의 중상 사고는 1로, 그렇지 않은 사고는 0으로 레이블 링)

2. 특성 선택

사고 발생 시의 환경 (날씨, 도로 상태, 시간대 등) 운전자 정보 (나이, 성별, 경험 등) 차량 정보 (차량 유형, 연령, 속도 등) 교통량, 신호등 상태, 보행자 유무 등 교차로에 관한 정보

3. 랜덤 포레스트 모델 훈련

데이터를 훈련 세트와 테스트 세트로 분할 랜덤 포레스트 모델을 훈련 데이터로 학습

4. 특성 중요도 평가

랜덤 포레스트는 각 특성의 중요도를 평가하는 기능을 제공함. 따라서 이를 통해 심각사고와 가장 관련이 깊은 요인을 파악할 수 있음

5. 모델 평가

테스트 세트를 사용하여 모델의 성능을 평가합니다. 정확도, 정밀도, 재현율, F1 점수, ROC 곡선 등 다양한 메트릭을 사용하여 모델을 평가할 수 있음.

▼ 참고한 곳

https://www.moneys.co.kr/news/mwView.php?no=2023101616464474576