is expressed in matrix form by

$$y_{\mathcal{V}} = M_{\mathcal{U},\mathcal{V}}(f) x_{\mathcal{U}}.$$

When $\mathcal{U} = \mathcal{V}$, we abbreviate $M_{\mathcal{U},\mathcal{V}}(f)$ as $M_{\mathcal{U}}(f)$.

The above notation seems reasonable, but it has the slight disadvantage that in the expression $M_{\mathcal{U},\mathcal{V}}(f)x_{\mathcal{U}}$, the input argument $x_{\mathcal{U}}$ which is fed to the matrix $M_{\mathcal{U},\mathcal{V}}(f)$ does not appear next to the subscript \mathcal{U} in $M_{\mathcal{U},\mathcal{V}}(f)$. We could have used the notation $M_{\mathcal{V},\mathcal{U}}(f)$, and some people do that. But then, we find a bit confusing that \mathcal{V} comes before \mathcal{U} when f maps from the space E with the basis \mathcal{U} to the space F with the basis \mathcal{V} . So, we prefer to use the notation $M_{\mathcal{U},\mathcal{V}}(f)$.

Be aware that other authors such as Meyer [125] use the notation $[f]_{\mathcal{U},\mathcal{V}}$, and others such as Dummit and Foote [54] use the notation $M_{\mathcal{U}}^{\mathcal{V}}(f)$, instead of $M_{\mathcal{U},\mathcal{V}}(f)$. This gets worse! You may find the notation $M_{\mathcal{U}}^{\mathcal{U}}(f)$ (as in Lang [109]), or $_{\mathcal{U}}[f]_{\mathcal{V}}$, or other strange notations.

Definition 4.2 shows that the function which associates to a linear map $f: E \to F$ the matrix M(f) w.r.t. the bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m) has the property that matrix multiplication corresponds to composition of linear maps. This allows us to transfer properties of linear maps to matrices. Here is an illustration of this technique:

Proposition 4.1. (1) Given any matrices $A \in M_{m,n}(K)$, $B \in M_{n,p}(K)$, and $C \in M_{p,q}(K)$, we have

$$(AB)C = A(BC);$$

that is, matrix multiplication is associative.

(2) Given any matrices $A, B \in \mathcal{M}_{m,n}(K)$, and $C, D \in \mathcal{M}_{n,p}(K)$, for all $\lambda \in K$, we have

$$(A+B)C = AC + BC$$
$$A(C+D) = AC + AD$$
$$(\lambda A)C = \lambda (AC)$$
$$A(\lambda C) = \lambda (AC),$$

so that matrix multiplication $: M_{m,n}(K) \times M_{n,p}(K) \to M_{m,p}(K)$ is bilinear.

Proof. (1) Every $m \times n$ matrix $A = (a_{ij})$ defines the function $f_A \colon K^n \to K^m$ given by

$$f_A(x) = Ax,$$

for all $x \in K^n$. It is immediately verified that f_A is linear and that the matrix $M(f_A)$ representing f_A over the canonical bases in K^n and K^m is equal to A. Then Formula (4) proves that

$$M(f_A \circ f_B) = M(f_A)M(f_B) = AB,$$

so we get

$$M((f_A \circ f_B) \circ f_C) = M(f_A \circ f_B)M(f_C) = (AB)C$$