What can it mean if X is correlated (associated) with Y in a sample? Maybe

1) $X \Rightarrow Y$ i.e. $\Delta \uparrow X \Rightarrow \uparrow E(Y)$ a) Directly X=> Y b) Through mediating factor (5) χ) $\lambda \Rightarrow \chi$

3) Z X Confounding factor(a)

a) Z known & measurable

b) Z " but hard to measure

c) Zunknown

d) There are clusters in which Z is constant

4) Chance

5) Selection

-To conclude that $X \Rightarrow Y$ we need to be. willing to reject the other possibilities.

- Ordinary statistical analysis only helps with #4 via p-value.

What can it mean if X is correlated (associated) with Y in a sample?

$$) \times \Rightarrow \times$$

$$\lambda$$
) $\gamma \Rightarrow x$

- a) Z known & measurable b) Z " but hard to measure
- c) Zunknown d) There are clusters in which Z is constant

What can it mean if X is correlated (associated) with Y in a sample? OBSERVATIONAL DATA λ) $\gamma \Rightarrow x$ a) Z known & measurable b) Z " but hard to measure c) 2 unknown d) There are clusters in which 2 is constant 4) Chance 5) Solection

What can it mean if X is correlated (associated) with Y in a sample? OBSERVATIONAL DATA λ) $\gamma \Rightarrow x$ a) Z known & measurable
b) Z " but hard to measure c) 2 unknown d) There are clusters in which 2 is constant 4) Chance 5) Solection

EXPERIMENTAL DATA

What can it mean if X is correlated (associated) with Y in a sample? OBSERVATIONAL DATA EXPERIMENTAL DATA λ) $\gamma \Rightarrow x$ a) Z known & measurable b) Z " but hard to measure c) 2 unknown d) There are clusters in which 2 is constant 4) Chance 5) Solection

What can it mean if X is correlated (associated) with Y in a sample? OBSERVATIONAL DATA EXPERIMENTAL DATA λ) $\gamma \Rightarrow x$ a) Z known & measurable b) Z " but hard to measure c) 2 unknown d) There are clusters in which 2 is constant 4) Chance 5) Solection

What can it mean if X is correlated (associated) with Y in a sample? OBSERVATIONAL DATA EXPERIMENTAL DATA λ) $\gamma \Rightarrow x$ a) Z known & measurable b) Z " but hard to measure c) 2 unknown d) There are clusters in which 2 is constant 4) Chance 5) Solection

What can it mean if X is correlated (associated) with Y in a sample? OBSERVATIONAL DATA EXPERIMENTAL DATA λ) $\gamma \Rightarrow x$ a) Z known & measurable b) Z " but hard to measure c) 2 unknown d) There are clusters in which 2 is constant 4) Chance 5) Selection

What can it mean if X is correlated (associated) with Y in a sample? OBSERVATIONAL DATA EXPERIMENTAL DATA $) \times \Rightarrow \vee$ 2) X "caused" by com λ) $\gamma \Rightarrow x$ a) Z known & measurable
b) Z " but hard to measure c) Zunknown d) There are clusters in which Z is constant 4) Chance 5) Selection

What can it mean if X is correlated (associated) with Y in a sample? OBSERVATIONAL DATA EXPERIMENTAL DATA X "caused" by com λ) $\gamma \Rightarrow x$ a) Z known & measurable b) Z " but hard to measure c) Zunknown d) There are clusters in which Z is constant 4) Chance 5) Selection

What can it mean if X is correlated (associated) with Y in a sample? OBSERVATIONAL DATA EXPERIMENTAL DATA "Caused" by com λ) $\gamma \Rightarrow x$ a) Z known & measurable b) Z " but hard to measure c) Zunknown d) There are clusters in which Z is constant 4) Chance) Selection

What can it mean if X is correlated (associated) with Y in a sample? OBSERVATIONAL DATA EXPERIMENTAL DATA "Caused" by com λ) $Y \Rightarrow X$ a) Z known & measmable b) Z " but hard to me asure c) Zunknown d) There are clusters in which Z is constant 4) Chance 5) Selection

What can it mean if X is correlated (associated) with Y in a sample? OBSERVATIONAL DATA EXPERIMENTAL DATA "Caused" by com λ) $Y \Rightarrow X$ a) Z known & measmable b) Z " but hard to measure c) Zunknown d) There are clusters in which Z is constant 4) Chance 5) Selection

What can it mean if X is correlated (associated) with Y in a sample? OBSERVATIONAL DATA EXPERIMENTAL DATA $) \times \Rightarrow \lambda$ "Caused" by com λ) $\gamma \Rightarrow x$ a) Z known & measmable b) Z " but hard to measure c) Zunknown d) There are clusters in which Z is constant 4) Chance 5) Selection