CS/B.TECH(IT)/SEM-5/CS-512/07/(08)

3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2007 FORMAL LANGUAGE AND AUTOMATA THEORY SEMESTER - 5

Time: 3 Hours]

| Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct answer from the given alternatives:

 $10\times1=10$

i) Consider

	Next		
PS	X = 0	X = 1	O/P
qo	q ²	q ³	0
q1	\mathbf{q}^{1}	$\mathbf{q^2}$	1
q^2	q ³	$\mathbf{q^2}$	1
q ³	q¹	$\mathbf{q}^{\mathbf{o}}$. 0

PS = present state.

Considering the following Moore M/C, find out the o/p string for the i/p string 1010. (where q0 is the initial state).

a) 10011

b) 00110

c) 10111

d) 01111.

±1) S → a ABC | a

 $A \rightarrow a A \mid B$

 $B \rightarrow a BA \mid C$

 $C \rightarrow \lambda \mid aC$

The null-able variables for the above grammar are

a) S, A, B, C,

b) A, B

c) S, A, C

d) A, B, C.

5

ix)	The set $A = \{a^n b^n c^n \mid n = 1, 2, 3,\}$ is an example of a grammar that		r that is		
	a)	regular	b)	context free	
	c)	context sensitive	d)	none of these.	
x)	The	intersection of CFL and R	egular langu	age	
	a)	is always regular	b)	is always context free	

d)

need not be regular.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Draw the transition diagram of a finite state automaton A that accepts the given set of strings over { a, b }.
 - a) even number of as and

both (a) and (b) above

b) exactly one b.

c)

3. Consider the following machine:

PS		NS, z	
•	x <u>= 0</u>	<u> </u>	x = 1
· A	в, о		D, 0
В	C, 0		C, 0
C	D, 0		A, 0
D	D, 0		A, 1

	D D; 0	
a)	Draw the testing table.	1
ъ)	Draw the testing graph.	1
c)	Use connection matrix to determine whether or not it has a finite memory.	2
d)	If it does, find the order of finite memory with justification.	1
Defin	ne parse tree. What is zero equivalent state?	3 + 2
a)	Prove that $(a^*ab + ba)^*a^* = (a + ab + ba)^*$	
b)	Show that $L = \{ w^p / p \text{ is prime } \}$ is not regular.	3 + 2
Desig	gn a CFG for the language $L = \{ a^n b^{2n} / n \ge 0 \}$.	5
	b) c) d) Defin a) b)	 a) Draw the testing table. b) Draw the testing graph. c) Use connection matrix to determine whether or not it has a finite memory. d) If it does, find the order of finite memory with justification. Define parse tree. What is zero equivalent state? a) Prove that (a* ab + ba)* a* = (a + ab + ba)*

6

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- 7. i) Test whether the following machine is definite or not:
 - a) By using synchronizing tree.

2

b) By using repeated derivation of contraction tables.

2

c) If the machine is definite, what is the order of definiteness? Justifity.

PS		NS	
	x = 0	· 	x = 1
A	A		В
В	c		В
С	A		D
_	١٥		

ii) Consider the following machine:

PS		1	vs	
	I ₁	I ₂	I ₃	I ₄
A	-	· 	E, 1	_
В	C, 0	A, 1 ,	B, 0	_
C	C, 0	D, 1		A, 0
D	 -	E, 1 ·	B, - ·	_
E	B, 0		C, -	В, О

a) Draw the merger graph.

2

b) Draw the merger table.

2

c) Draw the compatibility graph.

2

find the minimal closed covering with justification.

3

8. a) Design the NFA for the language $L = (ab \cup aba)^*$.

5

- b) Let $G = \{V_N, V_T S, P\}$ be a phase-structure grammar, where $V_N = \{S, B\}$,
 - $V_T = \{ a, b \}, P = \{ S \rightarrow aBa, B \rightarrow aBa, B \rightarrow b \}, Find L (G).$

5

c) State the difference between DFA and NFA. Find the transition diagram of the NFA with the state table shown below:

$$A = \{ 0, 1 \}, S = \{ s_0, s_1, s_2 \}, F = \{ s_0 \}.$$

5

N		
s		
80	ф	{ s ₁ , s ₂ }
s ₁	{ s ₂ }	{ s ₀ , s ₁ }
s ₂	{ s _o }	ф

9. Consider the machine given below:

	1	is	
PS	x = 0	x = 1	z
A	D	G	o
В	С	E	0
С	н	F	0
D.	F.	F	0
E	В .	В	0
F	G	D .	0
G	A	В	0
Н	E	c	1

a) Derive the closed partitions. Construct a π -lattice for it.

5

- b) Find the state tables for the parallel components after decomposing the machine into parallel components.

 5
- c) Draw a schematic diagram of the machine with these parallel components. 5
- 10. Design a two-input, two-output sequence detector, which produces an output of1 every time the sequence 0101 is detected and an output of 0 at all other times.Draw the circuit diagram using gates.

5902

11. a)

PS		NS	
	x = 0		x = 1
A	B, 1		H, 1
В	F, 1	•	D, 1
C _.	D, 0		E, 1
D	с, о		F, 1
E	D, 1		C, 1
F	C, 1		C, 1
G	C, 1		D, 1
н	C, 0		A, 1

Find the equivalence partitions for the machine above. Also find a standard form of the corresponding reduced machine. What is the minimum length sequence that distinguishes state A from State B?

b)

PS		NS	-
	x = 0		x = 1
A	F, 0		B, 1
В	G, 0		A, 1
С	В, 0		C, 1
D	C, 0		B, 1
E	D, 0		· A, 1
F	E, 1		F , 1
G	E, 1		G, 1

Find the equivalence partitions for the machine above. Also find a standard form of the corresponding reduced machine: 8 + 7

END