PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 99/52271 A1 H04N 1/32 (43) International Publication Date: 14 October 1999 (14.10.99) (21) International Application Number: PCT/US99/07262 (81) Designated States: JP, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). (22) International Filing Date: 2 April 1999 (02.04.99) Published With international search report. (30) Priority Data: 2 April 1998 (02.04.98) US 09/053,628 (71)(72) Applicant and Inventor: MOSKOWITZ, Scott, [US/US]; 16711 Collins Avenue #2505, Miami, FL 33160 (US). (74) Agents: CHAPMAN, Floyd, B. et al.; Baker & Botts, L.L.P., The Warner, 1299 Pennsylvania Avenue, N.W., Washington, DC 20004 (US).

(54) Title: MULTIPLE TRANSFORM UTILIZATION AND APPLICATIONS FOR SECURE DIGITAL WATERMARKING

(57) Abstract

Multiple transform utilization and applications for secure digital water-marking. In one embodiment of the present invention, digital blocks in digital information to be protected are transformed into the frequency domain using a fast Fourier transform. A plurality of frequencies and associated amplitudes are identified for each of the transformed digital blocks and a subset of the identified amplitudes is selected for each of the digital blocks using a primary mask from a key. Message information is selected from a message using a transformation table generated with a convolution mask. The chosen message information is encoded into each of the transformed digital blocks by altering the selected amplitudes based on the selected message information.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
- BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

ŧ

MULTIPLE TRANSFORM UTILIZATION AND APPLICATIONS FOR SECURE DIGITAL WATERMARKING

BACKGROUND

5 Field of the Invention

10

15

20

25

30

The invention relates to the protection of digital information. More particularly, the invention relates to multiple transform utilization and applications for secure digital watermarking.

Cross-Reference To Related Applications

This application claims the benefit of U.S. patent application Serial No. 08/587,943, filed January 17, 1996, entitled "Method for Stega-Cipher Protection of Computer Code," the entire disclosure of which is hereby incorporated by reference. Description of the Background

Increasingly, commercially valuable information is being created and stored in "digital" form. For example, music, photographs and video can all be stored and transmitted as a series of numbers, such as 1's and 0's. Digital techniques let the original information be recreated in a very accurate manner. Unfortunately, digital techniques also let the information be easily copied without the owner's permission.

Digital watermarks exist at a convergence point where creators and publishers of digitized multimedia content demand local, secure identification and authentication of content. Because piracy discourages the distribution of valuable digital information, establishing responsibility for copies and derivative copies of such works is important. The goal of a digital watermark system is to insert a given information signal or signals in such a manner as to leave little or no artifacts, with one standard being perceptibility, in the underlying content signal, while maximizing its encoding level and "location sensitivity" in the signal to force damage to the content signal when removal is attempted. In considering the various forms of multimedia content, whether "master," stereo, National Television Standards Committee (NTSC) video, audio tape or compact disc, tolerance of quality will vary with individuals and affect the underlying commercial and aesthetic value of the content. It is desirable to tie copyrights, ownership rights, purchaser information or some combination of these and related data into the content in such a manner that the content undergoes damage, and therefore

20

25

30

reduction of its value, with subsequent unauthorized distribution, commercial or otherwise. Digital watermarks address many of these concerns and research in the field has provided a rich basis for extremely robust and secure implementations.

Of particular concern is the balance between the value of a digitized "piece" of content and the cost of providing worthwhile "protection" of that content. In a parallel to real world economic behavior, the perceived security of a commercial bank does not cause people to immediately deposit cash because of the expense and time required to perform a bank deposit. For most individuals, possession of a US\$100 bill does not require any protection beyond putting it into a wallet. The existence of the World Wide Web, or "Web," does not implicitly indicate that value has been created for media which can be digitized, such as audio, still images and other media. The Web is simply a medium for information exchange, not a determinant for the commercial value of content. The Web's use to exchange media does, however, provide information that helps determine this value, which is why responsibility over digitized content is desirable. Note that digital watermarks are a tool in this process, but they no not replace other mechanisms for establishing more public issues of ownership, such as copyrights. Digital watermarks, for example, do not replace the "historical average" approach to value content. That is, a market of individuals willing to make a purchase based solely on the perceived value of the content. By way of example, a picture distributed over the Internet, or any other electronic exchange, does not necessarily increase the underlying value of the picture, but the opportunity to reach a greater audience by this form of "broadcast" may be a desirable mechanism to create "potentially" greater market-based valuations. That decision rests solely with the rights holder in question.

Indeed, in many cases, depending on the time value of the content, value may actually be reduced if access is not properly controlled. With a magazine sold on a monthly basis, it is difficult to assess the value of pictures in the magazine beyond the time the magazine is sold. Compact disc valuations similarly have time-based variables, as well as tangible variables such as packaging versus the package-less electronic exchange of the digitized audio signals. The Internet only provides a means to more quickly reach consumers and does not replace the otherwise "market-based"

10

15

20

25

30

value. Digital watermarks, properly implemented, add a necessary layer of ownership determination which will greatly assist in determining and assessing value when they are "provably secure." The present invention improves digital watermarking technology while offering a means to properly "tamper proof" digitized content in a manner analogous to methods for establishing authenticity of real world goods.

A general weakness in digital watermark technology relates directly to the way watermarks are implemented. Too many approaches leave detection and decode control with the implementing party of the digital watermark, not the creator of the work to be protected. This fundamental aspect of various watermark technologies removes proper economic incentives for improvement of the technology when third parties successfully exploit the implementation. One specific form of exploitation obscures subsequent watermark detection. Others regard successful over encoding using the same watermarking process at a subsequent time.

A set of secure digital watermark implementations address this fundamental control issue, forming the basis of "key-based" approaches. These are covered by the following patents and pending applications, the entire disclosures of which are hereby incorporated by reference: US Patent No. 5,613, 004 entitled "Steganographic Method and Device" and its derivative US patent application Serial No. 08/775,216, US patent application Serial No. 08/587,944 entitled "Human Assisted Random Key Generation and Application for Digital Watermark System," US Patent Application Serial No. 08/587,943 entitled "Method for Stega-Cipher Protection of Computer Code," US patent application Serial No. 08/677,435 entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digitized Data," and US Patent Application Serial No. 08/772,222 entitled "Z-Transform Implementation of Digital Watermarks." Public key crypto-systems are described in US Patents No. 4,200,770, 4,218,582, 4,405,829 and 4,424,414, the entire disclosures of which are also hereby incorporated by reference.

By way of improving these digital watermark security methods, utilization of multiple transforms, manipulation of signal characteristics and the requisite relationship to the mask set or "key" used for encoding and decoding operations are envisioned, as

4

are optimized combinations of these methods. While encoding a watermark may ultimately differ only slightly in terms of the transforms used in the encoding algorithm, the greater issues of an open, distributed architecture requires more robust approaches to survive attempts at erasure, or even means for making detection of the watermark impossible. These "attacks," when computationally compared, may be diametrically related. For instance, cropping and scaling differ in signal processing orientation, and can result in the weakening of a particular watermarking approach but not all watermarking approaches.

Currently available approaches that encode using either a block-based or entire data set transform necessarily encode data in either the spatial or frequency domains, but never both domains. A simultaneous crop and scale affects the spatial and frequency domains enough to obscure most available watermark systems. The ability to survive multiple manipulations is an obvious benefit to those seeking to ensure the security of their watermarked media. The present invention seeks to improve on keybased approaches to watermarking previously disclosed, while offering greater control of the subsequently watermarked content to rights owners and content creators.

10

15

20

25

30

Many currently available still image watermarking applications are fundamentally different from the key-based implementations. Such products include products offered by Digimarc and Signum, which seek to provide a robust watermark by encoding watermark messages that rely entirely on comparisons with the original image for decode operations. The subsequent result of the transform, a discrete cosine transform performed in blocks, is digital signed. The embedded watermarks lack any relationship to the perceptual qualities of the image, making inverse application of the publicly available decoders a very good first line of attack. Similarly, the encoding process may be applied by third parties, as demonstrated by some robustness tests, using one process to encode over the result of an image watermarked with another process. Nonrepudiation of the watermark is not possible, because Digimarc and Signum act as the repository of all registrations of the image's ownership.

Another line of attack is a low pass filter that removes some of the high frequency noise that has been added, making error-free detection difficult or impossible.

15

20

30

Finally, many tests of a simple JPEG transform indicate the watermarks may not survive as JPEG is based on the same transforms as the encoding transforms used by the watermarking process. Other notable implementations, such as that offered by Signafy (developed by NEC researchers), appear to encode watermark messages by performing a transform of the entire image. The goal of this process is to more consistently identify "candidate" watermark bits or regions of the image to encode in perceptually significant regions of the signal. Even so, Signafy relies on the original unwatermarked image to accomplish decoding.

All of these methods still rely on the original unwatermarked image to ensure relatively error-free detection of the watermarks. The steganographic method seeks to provide watermark security without an original unwatermarked copy of the media for decode operations, as well as providing users cryptographic security with ciphered symmetric keys. That is, the same key is used for encode and decode operations. Public key pairs, where each user has a public/private key pair to perform asymmetric encode and decode operations, can also be used. Discussions of public key encryption and the benefits related to encryption are well documented. The growing availability of a public key infrastructure also indicates recognition of provable security. With such key-based implementations of watermarking, security can be off-loaded to the key, providing for a layered approach to security and authentication of the watermark message as well as the watermarked content.

It is known that attacks on the survivability of other implementations are readily available. Interesting network-based attacks on the watermark message are also known which fool the central registration server into assuming an image is owned by someone other than the registered owner. This also substantiates the concern that centralized watermarking technologies are not robust enough to provide proper assurances as to the ownership of a given digitized copy of an multimedia work.

Because the computational requirements of performing multiple transforms may not be prohibitive for certain media types, such as still images and audio, the present invention seeks to provide a means to securely watermark media without the need for an original unwatermarked copy to perform decoding. These transforms may be

6

performed in a manner not plainly evident to observers or the owner of the content, who may assume the watermark is still detectable. Additionally, where a particular media type is commonly compressed (JPEG, MPEG, etc.), multiple transforms may be used to properly set the mask sets, prior to the watermarking process, to alert a user to survivability prior to the release of a watermarked, and thus perceived, "safe" copy to unknown parties. The result of the present invention is a more realistic approach to watermarking taking the media type, as well as the provable security of the keys into consideration. A more trusted model for electronic commerce is therefore possible.

The creation of an optimized "envelope" for insertion of watermarks to establish secured responsibility for digitally-sampled content provides the basis of much watermark security but is also a complementary goal of the present invention. The predetermined or random key that is generated is not only an essential map to access the hidden information signal, but is also the a subset of the original signal making direct comparisons with the original signal unnecessary. This increases the overall security of the digital watermark.

10

15

20

25

30

Survival of simultaneous cropping and scaling is a difficult task with image and audio watermarking, where such transformations are common with the inadvertent use of images and audio, and with intentional attacks on the watermark. The corresponding effects in audio are far more obvious, although watermarks which are strictly "frequency-based," such as variations of spread spectrum, suffer from alignment issues in audio samples which have been "cropped," or clipped from the original length of the piece. Scaling is far more noticeable to the human auditory system, though slight changes may affect frequency-only-type watermarks while not being apparent to a consumer. The far greater threat to available audio watermark applications, most of which are variations of frequency-based embedded signaling, are generally time-based transformations, including time-based compression and expansion of the audio signal. Signafy is an example of spread spectrum-based watermarking, as are applications by Solana Technology, CRL, BBN, MIT, etc. "Spatial domain" approaches are more appropriate designations for the technologies deployed by Digimarc, Signum, ARIS, Arbitron, etc. Interestingly, a time-based approached when considered for images is

basically a "spatial-based" approach. The pixels are "convolutional." The difference being that the "spread spectrum-ed" area of the frequencies is "too" well-defined and thus susceptible to over-encoding of random noise at the same sub-bands as that of the embedded signal.

Giovanni uses a block-based approach for the actual watermark. However, it is accompanied by image-recognition capable of restoring a scaled image to its original scale. This "de-scaling" is applied before the image is decoded. Other systems used a "differencing" of the original image with the watermarked image to "de-scale." It is clear that de-scaling is inherently important to the survival of any image, audio or video watermark. What is not clear is that the differencing operation is acceptable from a security standpoint. Moreover, differencing that must be carried out by the watermarking "authority," instead of the user or creator of the image, causes the rights owner to lose control over the original unwatermarked content. Aside from utilizing the mask set within the encoding/decoding key/key pair, the original signal must be used. The original is necessary to perform detection and decoding, although with the attacks described above it is not possible to clearly establish ownership over the watermarked content.

In view of the foregoing, it can be appreciated that a substantial need exists for multiple transform utilization and applications for secure digital watermarking that solve the problems discussed above.

Summary of the Invention

5

10

15

20

25

The disadvantages of the art are alleviated to a great extent by multiple transform utilization and applications for secure digital watermarking. In one embodiment of the present invention, digital blocks in digital information to be protected are transformed into the frequency domain using a fast Fourier transform. A plurality of frequencies and associated amplitudes are identified for each of the transformed digital blocks and a subset of the identified amplitudes is selected for each of the digital blocks using a primary mask from a key. Message information is selected from a message using a transformation table generated with a convolution mask. The

chosen message information is encoded into each of the transformed digital blocks by altering the selected amplitudes based on the selected message information.

With these and other advantages and features of the invention that will become hereinafter apparent, the nature of the invention may be more clearly understood by reference to the following detailed description of the invention, the appended claims and to the several drawings attached herein.

Brief Description of the Drawings

- FIG. 1 is a block flow diagram of a method for encoding digital information according to an embodiment of the present invention.
- FIG. 2 is a block flow diagram of a method for descaling digital information according to an embodiment of the present invention.
 - FIG. 3 is a block flow diagram of a method for decoding digital information according to an embodiment of the present invention.

Detailed Description

10

15

20

25

30

In accordance with an embodiment of the present invention, multiple transforms are used with respect to secure digital watermarking. There are two approaches to watermarking using frequency-domain or spatial domain transformations: using small blocks or using the entire data-set. For time-based media, such as audio or video, it is only practical to work in small pieces, since the entire file can be many megabytes in size. For still images, however, the files are usually much smaller and can be transformed in a single operation. The two approaches each have their own strengths. Block-based methods are resistant to cropping. Cropping is the cutting out or removal of portions of the signal. Since the data is stored in small pieces, a crop merely means the loss of a few pieces. As long as enough blocks remain to decode a single, complete watermark, the crop does not remove the mark. Block-based systems, however, are susceptible to scaling. Scaling, such as affine scaling or "shrinking," leads to a loss of the high frequencies of the signal. If the block size is 32 samples and the data is scaled by 200%, the relevant data now covers 64 samples. However, the decoder still thinks that the data is in 32 samples, and therefore only uses half the space necessary to properly read the watermark. Whole-set approaches have the opposite behavior. They

10

. 15

20

25

are very good at surviving scaling, since they approach the data as a whole, and generally scale the data to a particular size before encoding. Even a small crop, however, can throw off the alignment of the transform and obscure the watermark.

With the present invention, and by incorporation of previously disclosed material, it is now possible to authenticate an image or song or video with the encoding key/key pair, eliminating false positive matches with cryptography and providing for the communication of a copyright through registration with third party authorities, instead of the original unwatermarked copy.

The present invention provides an obvious improvement over the prior art while improving on previous disclosures by offsetting coordinate values of the original signal onto the key, which are then subsequently used to perform decode or detection operations by the user or authorized "key-holder." This offsetting is necessary with content which may have a watermark "payload," the amount of data that may successfully be encoded, based on Shannon's noisy channel coding theorem, that prevents enough invisible "saturation" of the signal with watermark messages to afford the owner the ability to detect a single message. An example, it is entirely possible that some images may only have enough of a payload to carry a single 100 bit message, or 12 ASCII characters. In audio implementations tested by the present inventor, 1000 bits per second are inaudibly encoded in a 16 bit 44.1 kHz audio signal. Most electronically available images do not have enough data to afford similar "payload" rates. Thus the premise that simultaneous cropping and scaling survival is more difficult for images than a comparable commercially available audio or video track. The added security benefit is that the more limited randomizer of a watermarking system based on spread spectrum or frequency-only applications, the random value of the watermark data "hopping "over a limited signaling band, is that the key is also an independent source of ciphered or random data used to more effectively encode in a random manner. The key may actually have random values larger than the watermark message itself, measured in bits. The watermark decoder is assured that the image is in its original scale, and can decide whether it has been cropped based on its "de-scaled" dimensions.

10

The benefits of a system requiring keys for watermarking content and validating the distribution of said content is obvious. Different keys may be used to encode different information while secure one way hash functions, digital signatures, or even one-time pads may be incorporated in the key to secure the embedded signal and afford nonrepudiation and validation of the watermarked image and "its" key/key pair. Subsequently, these same keys may be used to later validate the embedded digital signature only, or fully decode the digital watermark message. Publishers can easily stipulate that content not only be digitally watermarked, but that distributors must check the validity of the watermarks by performing digital signature checks with keys that lack any other functionality.

10

15

20

25

30

Some discussion of secure digital watermarking has begun to appear. Leighton describes a means to prevent collusion attacks in digital watermarks in US Patent No. 5,664,018. Leighton, however, may not actually provide the security described. For example, in particularly instances where the watermarking technique is linear, the "insertion envelope" or "watermarking space" is well-defined and thus susceptible to attacks less sophisticated than collusion by unauthorized parties. Over encoding at the watermarking encoding level is but one simple attack in such linear implementations. Another consideration ignored by Leighton is that commercially-valuable content in many cases may already exist in a unwatermarked form somewhere, easily accessible to potential pirates, gutting the need for any type of collusive activity. Such examples as compact disc or digitally broadcast video abound. Digitally signing the embedded signal with preprocessing of watermark data is more likely to prevent successful collusion. Depending on the media to be watermarked, highly granular watermarking algorithms are far more likely to successfully encode at a level below anything observable given quantization artifacts, common in all digitally-sampled media, than expectations that a baseline watermark has any functionality.

Furthermore, a "baseline" watermark as disclosed is quite subjective. It is simply described elsewhere in the art as the "perceptually significant" regions of a signal: so making a watermarking function less linear or inverting the insertion of watermarks would seem to provide the same benefit without the additional work

15

20

required to create a "baseline" watermark. Indeed, watermarking algorithms should already be capable of defining a target insertion envelope or region without additional steps. Further, earlier disclosed applications by the present invention's inventor describe watermarking techniques that can be set to encode fewer bits than the available watermarking region's "bit-space" or encoding unrelated random noise in addition to watermark data to confuse possible collusive or other attempts at erasure. The region of "candidate bits" can be defined by any number of compression schemes or transformations, and the need to encode all of the bits is simply unnecessary. What is evident is that Leighton does not allow for initial prevention of attacks on an embedded watermark as the content is visibly or audibly unchanged. Moreover, encoding all of the bits may actually act as a security weakness to those who can replicate the regions with a knowledge of the encoding scheme. Again, security must also be offset outside of the actual watermark message to provide a truly robust and secure watermark implementation.

In contrast, the present invention may be implemented with a variety of cryptographic protocols to increase both confidence and security in the underlying system. A predetermined key is described as a set of masks. These masks may include primary, convolution and message delimiters but may extend into additional domains such as digital signatures of the message. In previous disclosures, the functionality of these masks is defined solely for mapping. Public and private keys may be used as key pairs to further increase the unlikeliness that a key may be compromised. Prior to encoding, the masks described above are generated by a cryptographically secure random generation process. A block cipher, such as DES, in combination with a sufficiently random seed value emulates a cryptographically secure random bit generator. These keys will be saved along with information matching them to the sample stream in question in a database for use in descrambling and subsequent detection or decode operation.

These same cryptographic protocols can be combined with embodiments of the present invention in administering streamed content that requires authorized keys to correctly display or play said streamed content in an unscrambled manner. As with

digital watermarking, symmetric or asymmetric public key pairs may be used in a variety of implementations. Additionally, the need for certification authorities to maintain authentic key-pairs becomes a consideration for greater security beyond symmetric key implementations, where transmission security is a concern.

5

10

15

20

The following describes a sample embodiment of a system that protects digital information according to the present invention. Referring now in detail to the drawings wherein like parts are designated by like reference numerals throughout, there is illustrated in FIG. 1 a block flow diagram of a method for encoding digital information according to an embodiment of the present invention. An image is processed by "blocks," each block being, for example, a 32 x 32 pixel region in a single color channel. At step 110, each block is transformed into the frequency domain using a spectral transform or a Fast Fourier Transform (FFT). The largest 32 amplitudes are identified and a subset of these 32 are selected using the primary mask from the key at steps 120 and 130. One message bit is then encoded into each block at steps 140 and 150. The bit is chosen from the message using a transformation table generated using the convolution mask. If the bit is true, the selected amplitudes are reduced by a user defined strength fraction. If the bit is false, the amplitudes are unchanged.

Each of the selected amplitudes and frequencies are stored in the key. After all of the image has been processed, a diagonal stripe of pixels is saved in the key. This stripe can, for example, start in the upper left corner and proceed at a 45 degree angle through the image. The original dimensions of the image are also stored in the key.

FIG. 2 is a block flow diagram of a method for descaling digital information according to an embodiment of the present invention. When an image is chosen to be decoded, it first is checked to determine if it has been cropped and/or scaled. If so, the image is scaled to the original dimensions at step 210. The resulting "stripe," or diagonal line of pixels, is fit against the stripe stored in the key at step 220. If the fit is better than the previous best fit, the scale is saved at steps 230 and 240. If desired, the image can be padded with, for example, a single row or column of zero pixels at step 260 and the process can be repeated to see if the fit improves.

13

If a perfect fit is found at step 250, the process concludes. If no perfect fit is found, the process continues up to a crop "radius" set by the user. For example, if the crop radius is 4 the image can be padded up to 4 rows and/or 4 columns. The best fit is chosen and the image is restored to its original dimension, with any cropped area replaced by zeroes.

5

10

15

20

Once the in formation has been descaled, it can be decoded according to an embodiment of the present invention shown in FIG. 3. Decoding is the inverse process of encoding. The decoded amplitudes are compared with the ones stored in the key in order to determine the position of the encoded bit at steps 310 and 320. The message is assembled using the reverse transformation table at step 330. At step 340, the message is then hashed and the hash is compared with the hash of the original message. The original hash had been stored in the key during encoding. If the hashes match, the message is declared valid and presented to the user at step 350.

Although various embodiments are specifically illustrated and described herein, it will be appreciated that modifications and variations of the present invention are covered by the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention. Moreover, similar operations have been applied to audio and video content for time-based manipulations of the signal as well as amplitude and pitch operations. The ability to descale or otherwise quickly determine differencing without use of the unwatermarked original is inherently important for secure digital watermarking. It is also necessary to ensure nonrepudiation and third part authentication as digitized content is exchanged over networks.

10

20

30

What is claimed is:

1. A method for encoding a message into digital information, the digital information including a plurality of digital blocks, comprising the steps of:

transforming each of the digital blocks into the frequency domain using a spectral transform;

identifying a plurality of frequencies and associated amplitudes for each of the transformed digital blocks;

selecting a subset of the identified amplitudes for each of the digital blocks using a primary mask from a key;

choosing message information from the message using a transformation table generated with a convolution mask; and

encoding the chosen message information into each of said transformed digital blocks by altering the selected amplitudes based on the chosen message information.

- The method of claim 1 wherein the transforming step comprises: transforming each of the digital blocks into the frequency domain using a fast Fourier transform.
 - 3. The method of claim 2, wherein the digital information contains pixels in a plurality of color channels forming an image, and each of the digital blocks represents a pixel region in one of the color channels.
 - 4. The method of claim 1, wherein the digital information contains audio information.
- 5. The method of claim 2, wherein said step of identifying comprises:
 identifying a predetermined number of amplitudes having the largest values
 for each of the transformed digital blocks.
 - 6. The method of claim 2, wherein the chosen message information is a message bit and wherein said step of encoding comprises the step of:

encoding the chosen message bit into each of said transformed digital blocks by reducing the selected amplitudes using a strength fraction if the message bit is true, and not reducing the selected amplitudes if the message bit is false.

30

- 7. The method of claim 6, wherein the strength fraction is user defined.
- 8. The method of claim 2, further comprising the step of storing each of the selected amplitudes and associated frequencies in the key.
- 9. The method of claim 2, further comprising the step of storing a referencesubset of the digital information into the key.
 - 10. The method of claim 2, wherein the digital information contains pixels forming an image, further comprising the steps of:

saving a reference subset of the pixels in the key; and storing original dimensions of the image in the key.

10 11. The method of claim 1, wherein the digital information contains audio information, further comprising the steps of:

saving a reference subset of audio information in the key; and storing original dimensions of the audio signal in the key.

- 12. The method of claim 10, wherein the reference subset of pixels form a15 line of pixels in the image.
 - 13. The method of claim 11, wherein the reference subset of audio information includes an amplitude setting.
 - 14. The method of claim 8, wherein the image is a rectangle and the reference subset of pixels form a diagonal of the rectangle.
- 20 15. The method of claim 2, further comprising the step of: requiring a predetermined key to decode the encoded message information.
 - 16. The method of claim 2, further comprising the step of: requiring a public key pair to decode the encoded message information.
 - 17. The method of claim 2, further comprising the steps of:
 - calculating an original hash value for the message; and storing the original hash value in the key.
 - 18. A method for descaling digital information using a key, comprising the steps of:

determining original dimensions of the digital information from the key; scaling the digital information to the original dimensions;

15

25

obtaining a reference subset of information from the key; and comparing the reference subset with corresponding information in the scaled digital information.

- 19. The method of claim 18 wherein the digital information being descaled is a digital image and the step of obtaining a reference subset of information from the key comprises obtaining a reference subset of pixels from the key.
 - 20. The method of claim 18 wherein the digital information being descaled is audio digital information and the step of obtaining a reference subset of information from the key comprises obtaining a reference subset of audio information from the key.
 - 21. The method of claim 19, wherein said step of comparing determines a first fit value based on the comparison, and wherein the method further comprises the steps of:

padding the scaled digital image with an area of pad pixels; and re-comparing the reference subset of pixels with corresponding pixels in the padded image to determine a second fit value.

- 22. The method of claim 20, wherein the area of pad pixels is a row of single pixels.
- 23. The method of claim 20, wherein the area of pad pixels is a column of20 single pixels.
 - 24. The method of claim 20, wherein said steps of padding and re-comparing are performed a plurality of times.
 - 25. The method of claim 20, further comprising the step of choosing a best fit value among the determined fit values and restoring the digital image to the original size, including any pad pixels associated with the best fit value.
 - 26. A method of extracting a message from encoded digital information using a predetermined key, comprising the steps of:

decoding the encoded digital information into digital information, including a plurality of digital blocks, using the predetermined key;

10

25

transforming each of the digital blocks into the frequency domain using a spectral transform;

identifying a plurality of frequencies and associated amplitudes for each of the transformed digital blocks;

selecting a subset of the identified amplitudes for each of the transformed digital blocks using a primary mask from the key;

comparing the selected amplitudes with original amplitudes stored in the predetermined key to determine the position of encoded message information; and assembling the message using the encoded message information and a reverse transformation table.

- 27. The method of claim 26 wherein the step of transforming comprises: transforming each of the digital blocks into the frequency domain using a fast Fourier transform.
- 28. The method of claim 27, further comprising the steps of:
 calculating a hash value for the assembled message; and
 comparing the calculated hash value with an original hash value in the
 predetermined key.
 - 29. A method for descaling a digital signal using a key, comprising the steps of:
- determining original dimensions of the digital signal from the key; scaling the digital signal to the original dimensions; obtaining a reference signal portion from the key; and comparing the reference signal portion with a corresponding signal portion in the scaled signal.
 - 30. A method for protecting a digital signal comprising the step of: creating a predetermined key comprised of a transfer function-based mask set and offset coordinate values of the original digital signal; and encoding the digital signal using the predetermined key.
- 31. The method of claim 30, wherein the digital signal represents a continuous analog waveform.

- 32. The method of claim 30, wherein the predetermined key comprises a plurality of mask sets.
- 33. The method of claim 30, wherein the mask set is ciphered by a key pair comprising a public key and a private key.
- 34. The method of claim 30, further comprising the step of:
 using a digital watermarking technique to encode information that identifies
 ownership, use, or other information about the digital signal, into the digital signal.
- 35. The method of claim 30, wherein the digital signal represents a still image, audio or video.
- 36. The method of claim 30, further comprising the steps of:
 selecting the mask set, including one or more masks having random or
 pseudo-random series of bits; and

validating the mask set at the start of the transfer function-based mask set.

37. The method of claim 36, wherein said step of validating comprises the step of:

comparing a hash value computed at the start of the transfer function-based mask set with a determined transfer function of the hash value.

- 38. The method of claim 36, wherein said step of validating comprises the step of:
- comparing a digital signature at the start of the transfer function-based mask set with a determined transfer function of the digital signature.
 - 39. The method of claim 36, further comprising the step of:

using a digital watermarking technique to embed information that identifies ownership, use, or other information about the digital signal, into the digital signal;

25 and

5

wherein said step of validating is dependent on validation of the embedded information.

40. The method of claim 30, further comprising the step of:

15

20

computing a secure one way hash function of carrier signal data in the digital signal, wherein the hash function is insensitive to changes introduced into the carrier signal for the purpose of carrying the transfer function-based mask set.

41. A method for protecting a digital signal, comprising the steps of:

creating a predetermined key comprised of a transfer function-based mask set and offset coordinate values of the original digital signal;

authenticating the predetermined key containing the correct transfer function-based mask set during playback of the data; and

metering the playback of the data to monitor content to determine if the digital signal has been altered.

42. The method of claim 30, wherein the digital signal is a bit stream and further comprising the steps of:

generating a plurality of masks to be used for encoding, including a random primary mask, a random convolution mask and a random start of message delimiter;

generating a message bit stream to be encoded;

loading the message bit stream, a stega-cipher map truth table, the primary mask, the convolution mask and the start of message delimiter into memory;

initializing the state of a primary mask index, a convolution mask index, and a message bit index; and

setting a message size equal to the total number of bits in the message bit stream.

43. The method of claim 42 wherein the digital information has a plurality of windows, further comprising the steps of:

calculating over which windows in the sample stream the message will be encoded;

computing a secure one way hash function of the information in the calculated windows, the hash function generating hash values insensitive to changes in the samples induced by a stega-cipher; and

encoding the computed hash values in an encoded stream of data.

44. The method of claim 40, wherein said step of selecting comprises the steps of:

collecting a series of random bits derived from keyboard latency intervals in random typing;

processing the initial series of random bits through an MD5 algorithm; using the results of the MD5 processing to seed a triple-DES encryption loop; cycling through the triple-DES encryption loop, extracting the least significant bit of each result after each cycle; and

concatenating the triple-DES output bits into the random series of bits.

5

INTERNATIONAL SEARCH REPORT

inte onal Application No PCT/US 99/07262

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 H04N1/32 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) HO4N HO4L IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. US 5 613 004 A (MOSKOWITZ SCOTT A ET AL) 1,2, 15-17, 18 March 1997 (1997-03-18) 26-28, 30-38,42 abstract column 6, line 30 - column 9, line 49 column 16, line 8 - line 64 DELAIGLE J -F ET AL: "DIGITAL 1,5,6 A WATERMARKING" PROCEEDINGS OF THE SPIE. vol. 2659, 1 February 1996 (1996-02-01), pages 99-110, XP000604065 the whole document -/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. X * Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means *P* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 12 July 1999 21/07/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Hubeau, R

2

INTERNATIONAL SEARCH REPORT

Inte onel Application No PCT/US 99/07262

C (Cartin	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *		Relevant to claim No.
A	SCHNEIDER M ET AL: "ROBUST CONTENT BASED DIGITAL SIGNATURE FOR IMAGE AUTHENTICATION" PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (IC, LAUSANNE, SEPT. 16 - 19, 1996, vol. 3, 16 September 1996 (1996-09-16), pages 227-230, XP002090178 INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERSISBN: 0-7803-3259-8 the whole document	1,17,18, 26-28
A	COX I J ET AL: "SECURE SPREAD SPECTRUM WATERMARKING FOR MULTIMEDIA" IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 6, no. 12, 1 December 1997 (1997-12-01), pages 1673-1686, XP000724633 ISSN: 1057-7149 the whole document	1-3,5,6, 26,27
A,P	PING WAH WONG: "A Public Key Watermark for Image Verification and Authentication" IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, vol. 1, 4 - 7 October 1998, pages 455-459, XP002108799 Los Alamitos, CA, USA the whole document	1-4

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte onal Application No PCT/US 99/07262

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 5613004	Α	18-03-1997	EP WO	0872073 A 9642151 A	21-10-1998 27-12-1996
			US	5687236 A	11-11-1997

Form PCT/ISA/210 (patent family ennex) (July 1992)