	grafo D debilmente conexo.
1)	Construimos un nuevo digrafo pesado G con función de
•	Peso W: E(G) → IN
	V(G) = V(D)
	$\forall (u,v) \in E(D): (u,v) \in E(G) \land w(u,v) = 0$
	$(v,u) \notin E(D) \Longrightarrow (v,u) \in E(G) \land w(v,u) = I$
	G resulta una copia de D, donde todas las aristas originale
	en D tienen peso O. Y Además para toda arista en D, si no
	está la arista invertida, la agregamos en 6 con peso 1.
	O(n+m)
7)	Corremos Dijkstra sobre G desde s.
-,	O(Min { n², m la n })
	No tenemos mas información para preferir Dijkstra con
	vector o con cola de prioridad.
3)	d(s,t) es la contidad de aristas que hay que invertir.

Correctitud Las aristas originales en D tienen pero o. Si d(s,t)>0 entonces necesariamente el camino usa aristas invertidas, pues en alguna iteración de Dijkstra la única forma de avanzar hacia t fue usando alguna arista invertida, y estas Son las únicas con peso > 0. En particular tienen peso 1, entonces cada vez que el camino mínimo pasa por una arista invertida, suma 1 y asi d(s,t) es la cantidad de aristas invertidas en el camino mínimo. Como Des debilmente conexo, siempre existe camino entre syten 6.