Given a continuous map $\phi: X \times Y \longrightarrow \mathbb{R}$, Say X is ϕ -achieved on Y if $\exists \alpha \in \mathbb{R}$ s.t. $\forall x \in X$, $\exists y \in Y$ s.t. $\phi(x, y) = \alpha$.

- Show that if X and Y are compact and connected 4 $\phi: X \times Y \longrightarrow R$ is continuous than either X is ϕ -achieved on Y

 or Y is ϕ -achieved on X.
- France of the PNT: $P_n \sim n \log n$).

 That $\frac{P_n}{n \log n}$ is bounded

 Erdős's Question / Conjecture: (OPEN!!!)

 If $E = \{n < n_2 < \dots \}$ and $\sum_{i=1}^{\infty} \frac{1}{n_i} = \infty$. is it true that E is AP-nich?
- $\frac{1}{2} \frac{1}{n \log n \log \log n} = \infty$
- Ex: 1s it true that P-1 is GP rich? (VB thinks yes)
- Ex: 1s (P-1) a Square-free infinite? (VB trinks Yes)
- Ex: Let $\varphi(x_1,...,x_n)$ be a polynomial which vanishes if $x_i = x_j$. $\forall i \neq j$. What is the minimum number of terms of P.
 - Ex. What is the maximal abelian subgroup of Sn
 - Ex showthat 3 (rn) < Q , (0,1) which is u.d. & s.t. {r,:nflN}=Q, n(0,1)

Ex. Show (X_n) is dense in [0,1) iff \exists bijection $f: \mathbb{N} \longrightarrow \mathbb{N}$ s.t. (X_{frm}) is n.d. (von Neumann's rearrangement theorem)

Sarközy's theorem. If ACN, J(A)>0, then A-A workains
(~1975) ~-many sur ares.

 $(A-A) \cap (B-B) \supset n^2 ??$

SANOV's group