

Fusion V5 (On-Target count)

Bioinformatics Development

Sandy

2025.03.24

QC metrics overview

Ref. issue:

https://actg.atlassian.net/browse/ABIE-971

413 target exons:

/mnt/RD_Develop/sandyteng/ACTFusionV5/code/fusionv4_annoloci2bed_test/targetexonbed/fusionv4.MANE.v0.95.
 GENCODE.r38.candidate.exons.transcript.bed

• Tools & fusion workflows

	STAR (arriba's workflow: STAR + arriba)	Fusion v4 (bwa-based)
Alignment analysis	STAR (to genome)	bwa-mem (to preferred transcriptome, MANE, GENCODE-r38)
	samtools flagstats	samtools flagstats
(I) # of primary mapped reads	(~81.7% from Twist NextSeq data)	(~88.6% from Twist NextSeq data)
	calculate_probe_reads.sh (in-house utility: samtools + bedtools)	calculate_probe_reads.sh (in-house utility: samtools + bedtools)
	(~54% On-Target reads, Twist NextSeq data)	(~71.85% On-Target reads, Twist NextSeq data)
		=> Remark: The reads are merged and went through isoform filtering. The value
		is calculated using merged single-end reads, while Arriba-STAR used paired-end
		<mark>reads.</mark>
(II) % of on-target/probe-	=> May over-estimate	=> Convert probe region to preferred exon regions
anchored reads	=> count the same read twice	=> 413 preferred exons as target regions
Read trimming	NA	trimadap
		quantify_preferred_exons.v2.py
		1. (transcript-level) via "htseq-count" => Need gtf file for preferred transcripts
		=> Some arguments are not applicable for bwa (no 'NH' tag)
		2. (transcript-level) obtain alignments from *callingresult.txt file for each sample
Counting (expression	HTseq ("htseq-count"),	=> Use "WILDTYPE" reads produced by the caller to quantify gene expression
quantification)	FeatureCounts ("featureCounts")	
		fastp (insert size → peak, source file: *.fastp.merge.json)
Fragmentation size	NA	(129-153 bp insertion size, Twist NextSeq data)
		fastp (duplication → rate, source file: *.fastp.merge.json)
Copication rate	NA	(29%-34% duplication rate, Twist NextSeq data)

On-Target %

- Tools
 - samtools flagstats
 - calculate_probe_reads.sh
- Example
 - AANB02_202_AD02_AA-23-08153

NextSeq, Twist 8 RNA data

Generated by "get probe reads.sh"

<input.aligned.bam>"

("get flagstats.sh")

Generated by "samtools flagstats

% Covered region anchored reads

% On-Target reads = % of Primary mapped reads * % Covered region anchored reads

uuid	% of Primary mapped reads	% Covered region anchored reads	% On-Target reads
AANB02_202_AA02_AA-23-08153	83.64	66.64	55.74%
AANB02_202_AB02_AA-24-00324	81.09	67.42	54.67%
AANB02_202_AC02_AA-24-00324	82.33	64.01	52.70%
AANB02_202_AD02_AA-23-08153	80.89	68.06	55.05%
AANB02_202_AE02_AA-23-08153	83.37	66.53	55.47%
AANB02_202_AF02_AA-24-00324	79.86	66.53	53.13%
AANB02_202_AG02_AA-24-00324	81.7	63.54	51.91%
AANB02_202_AH01_AA-23-08153	80.48	67.46	54.29%

AANB02_202_AH01_AA-23-08153_probe_report.txt Total Primary Alignments: 5651046

Probe-Anchored Primary Alignments: 3812418

Percentage: 67.46%

AANB02_202_AH01_AA-23-08153.flagstats.txt

10880521 + 0 in total (QC-passed reads + QC-failed reads)

5651046 + 0 primary 5019766 + 0 secondary 209709 + 0 supplementary

0 + 0 duplicates

0 + 0 primary duplicates

9777437 + 0 mapped (89.86% : N/A)

4547962 + 0 primary mapped (80.48% : N/A)

5651046 + 0 paired in sequencing

2825523 + 0 read1

2825523 + 0 read2

4535110 + 0 properly paired (80.25%: N/A)

4547962 + 0 with itself and mate mapped

0 + 0 singletons (0.00%: N/A)

3164 + 0 with mate mapped to a different chr

1854 + 0 with mate mapped to a different chr (mapQ>=5)

Ref. issue:

https://actg.atlassian.net/browse/ABIE-971

/mnt/RD Develop/sandyteng/workdir/bed intersect/Probe analysis.NextSeg/STAR-arriba/

Source files:

- /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Probe_analysis.NextSeq/STAR-arriba/<uuid>.flagstats.txt
- /mnt/RD Develop/sandyteng/workdir/bed intersect/Probe analysis.NextSeg/STAR-arriba/<uuid> probe report.txt
- /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Probe_analysis.NextSeq/STAR-arriba/get_flagstats.sh
- /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Probe_analysis.NextSeq/STAR-arriba/get_probe_reads.sh

On-target rate (bwa, preferred exons as target regions)

- % Covered region anchored reads
- % On-Target reads = % of Primary mapped reads * % Covered region anchored reads

uuid	% of Primary mapped reads	% Covered region anchored reads	% On-Target reads	
AANB02_202_AA02_AA-23-08153	87.74	80.37	70.52%	
AANB02_202_AB02_AA-24-00324	89.96	82.31	74.05%	
AANB02_202_AC02_AA-24-00324	85.68	79.16	67.82%	
AANB02_202_AD02_AA-23-08153	91.28	82.93	75.70%	91.28%*82.93%
AANB02_202_AE02_AA-23-08153	87.82	80.44	70.64%	
AANB02_202_AF02_AA-24-00324	89.81	82.06	73.70%	
AANB02_202_AG02_AA-24-00324	85.41	78.77	67.28%	
AANB02_202_AH01_AA-23-08153	90.95	82.57	75.10%	

Ref. issue:

• https://actg.atlassian.net/browse/ABIE-971

Ref. directory

- /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Probe_analysis.NextSeq/bwa-fusionv4/ (=> % of Primary mapped reads)
- /mnt/RD_Develop/sandyteng/ACTFusionV5/code/fusionv4_calculate_probe_reads_test/ (=> % Covered region anchored reads)

samtools flagstats

- % of Primary mapped reads
 - samtools flagstats aligned.bam

uuid	% of Primary mapped reads	% Covered region anchored reads	% On-Target reads
AANB02_202_AA02_AA-23-08153	87.74	80.37	70.52%
AANB02_202_AB02_AA-24-00324	89.96	82.31	74.05%
AANB02_202_AC02_AA-24-00324	85.68	79.16	67.82%
AANB02_202_AD02_AA-23-08153	<mark>91.28</mark>	82.93	75.70%
AANB02_202_AE02_AA-23-08153	87.82	80.44	70.64%
AANB02_202_AF02_AA-24-00324	89.81	82.06	73.70%
AANB02_202_AG02_AA-24-00324	85.41	78.77	67.28%
AANB02_202_AH01_AA-23-08153	90.95	82.57	75.10%

0 + 0 paired in sequencing

0 + 0 read1

0 + 0 read2

0 + 0 properly paired (N/A : N/A)

0 + 0 with itself and mate mapped

0 + 0 singletons (N/A: N/A)

0 + 0 with mate mapped to a different chr

0 + 0 with mate mapped to a different chr (mapQ>=5)

calculate_probe_reads.sh

- A tool for % Covered region anchored reads calculation (Probe covered reads percentage)
- Steps
 - Filter out secondary and supplementary alignments from the input BAM
 - Count total primary alignments
 - Extract probe-anchored primary alignments using bedtools intersect
 - Count primary alignments in probe-anchored BAM
 - Calculate probe-anchored read percentage

uuid	% of Primary mapped reads	% Covered region anchored reads	% On-Target reads
AANB02_202_AA02_AA-23-08153	87.74	80.37	70.52%
AANB02_202_AB02_AA-24-00324	89.96	82.31	74.05%
AANB02_202_AC02_AA-24-00324	85.68	79.16	67.82%
AANB02_202_AD02_AA-23-08153	91.28	82.93	75.70%
AANB02_202_AE02_AA-23-08153	87.82	80.44	70.64%
AANB02_202_AF02_AA-24-00324	89.81	82.06	73.70%
AANB02_202_AG02_AA-24-00324	85.41	78.77	67.28%
AANB02_202_AH01_AA-23-08153	90.95	82.57	75.10%

samtools view -b -F 0x900

AANB02 202 AD02 AA-23-08153 (fusion v4 (bwa bam))

Filter out secondary and supplementary alignments from the input BAM

- AANB02 202 AD02 AA-23-08153 primary.bam => 2,121,990
- AANB02 202 AD02 AA-23-08153 probed.bam => 1,759,749

bedtools intersect -a

primary.bam -b probe.bed

2121990 + 0 in total (QC-passed reads + QC-failed reads)

2121990 + 0 primary

0 + 0 secondary

0 + 0 supplementary

0 + 0 duplicates

0 + 0 primary duplicates

1937018 + 0 mapped (91.28% : N/A)

1937018 + 0 primary mapped (91.28%: N/A)

0 + 0 paired in sequencing

0 + 0 read 1

0 + 0 read 2

0 + 0 properly paired (N/A: N/A)

0 + 0 with itself and mate mapped

0 + 0 singletons (N/A : N/A)

0 + 0 with mate mapped to a different chr

0 + 0 with mate mapped to a different chr (mapQ>=5)

Primary.bam

0 + 0 paired in sequencing

0 + 0 with mate mapped to a different chr

Probed.ban

1759749 + 0 in total (QC-passed reads + QC-failed reads) 0 + 0 singletons (N/A : N/A)

1759749 + 0 primary

0 + 0 secondary

0 + 0 supplementary

0 + 0 duplicates

0 + 0 primary duplicates

1759749 + 0 mapped (100.00%: N/A)

1759749 + 0 primary mapped (100.00% : N/A)

0 + 0 read 1

0 + 0 read 2

0 + 0 properly paired (N/A : N/A)

0 + 0 with itself and mate mapped

0 + 0 singletons (N/A: N/A)

0 + 0 with mate mapped to a different chr (mapQ>=5)

Remark:

3 reports are generated via "samtools flagstats"

/2,121,990 (probe anchored reads)

2327266 + 0 in total (QC-passed reads + QC-failed reads)

Aligned.bam

2121990 + 0 primary

205276 + 0 supplementary

2142294 + 0 mapped (92.05%: N/A)

1937018 + 0 primary mapped (91.28%: N/A)

0 + 0 with mate mapped to a different chr

0 + 0 with mate mapped to a different chr (mapQ>=5)

Probe-Anchored Primary Alignments 1759749

Probe_report.txt

Total Primary Alignments: 2121990

0 + 0 primary duplicates

0 + 0 paired in sequencing

0 + 0 properly paired (N/A: N/A) 0 + 0 with itself and mate mapped

Percentage: 82.93%

1,759,749 (primary reads)

0 + 0 secondary

0 + 0 duplicates

0 + 0 read 10 + 0 read 2

- Aligned.bam
- Primary.bam
- · Probed.bam

1 report is generated via "calculate probe reads.sh"

% Covered region anchored reads calulation workflows

- fusion v4
- arriba

% Covered region anchored reads calculation (fusionv4)

- Preferred exons to bed regions conversion (fusionv4_annoloci2bed.py)
 - Input files: preferred.genome.exons.annotation, preferred.transcriptome.exons.annotation
 - Output files: preferred.genome.exons.annotation.bed, preferred.transcriptome.exons.annotation.bed
- Bed coordinates sorting (sort-bed)
 - Input files: preferred.transcriptome.exons.annotation.bed, probe.bed
 - Output files: sorted.preferred.transcriptome.exons.annotation.bed, sorted.probe.bed
- Bed files intersection (bedtools intersect)
 - Input files: sorted.preferred.transcriptome.exons.annotation.bed, sorted.probe.bed
 - Output files: candidate.exons.bed
- Extract target exon list (uniq, awk)
 - Input file: candidate.exons.bed
 - Output file: target.exons.namelist.txt
- Extract transcript loci bed (grep -wf)
 - Input files: preferred.transcriptome.exons.annotation.bed, target.exons.namelist.txt
 - Output files: candidate.exons.transcript.bed
- % Covered region anchored reads calculation (calculate probe reads.sh: samtools + bedtools)
 - Input files / string: aligned.fusionv4.bam, candidate.exons.transcript.bed, sample.id (uuid string)
 - Output files: sample.id_primary.bam (&.bai), sample.id_probed.bam (& .bai), sample.id_probe_report.txt

% Covered region anchored reads calculation (arriba)

- Preferred exons to bed regions conversion (fusionv4_annoloci2bed.py)
 - Input files: preferred.genome.exons.annotation, preferred.transcriptome.exons.annotation
 - Output files: preferred.genome.exons.annotation.bed, preferred.transcriptome.exons.annotation.bed
- Bed coordinates sorting (sort-bed)
 - Input files: preferred.transcriptome.exons.annotation.bed, probe.bed
 - Output files: sorted.preferred.transcriptome.exons.annotation.bed, sorted.probe.bed
- Bed files intersection (bedtools intersect)
 - Input files: sorted.preferred.transcriptome.exons.annotation.bed, sorted.probe.bed
 - Output files: candidate.exons.bed
- Extract target exon list (uniq, awk)
 - Input file: candidate.exons.bed
 - Output file: target.exons.namelist.txt
- Extract transcript loci bed (grep -wf)
 - Input files: preferred.transcriptome.exons.annotation.bed, target.exons.namelist.txt
 - Output files: candidate.exons.transcript.bed
- % Covered region anchored reads calculation (calculate probe reads.sh: samtools + bedtools)
 - Input files / string: aligned.arriba.bam, probe.bed, sample.id (uuid string)
 - Output files: sample.id_primary.bam (&.bai), sample.id_probed.bam (& .bai), sample.id_probe_report.txt

Workflow

• Fusion v4 (full)

```
graph TD;
%% Initial Inputs
I1[/preferred.genome.exons.annotation/]
12[/preferred.transcriptome.exons.annotation/]
[/probe.bed/]
I4[/aligned.fusionv4.bam/]
16[/sample.id/]
%% FusionV4 Workflow
I1 --> A1["Preferred Exons to BED (fusionv4_annoloci2bed.py)"]
A1 --> | preferred.genome.exons.annotation.bed | B1["BED Sorting (sort-bed)"]
A1 --> | preferred.transcriptome.exons.annotation.bed | E1
13 --> B1
B1 -->|sorted.preferred.genome.exons.annotation.bed, sorted.probe.bed| C1|"Bed Intersection (bedtools
intersect)"]
C1 --> | candidate.exons.bed | D1["Extract Target Exons (uniq, awk)"]
D1 --> | target.exons.namelist.txt | E1["Extract Transcript Loci (grep -wf)"]
E1 --> | candidate.exons.transcript.bed | F1["% Covered Region Anchored Reads (calculate_probe_reads.sh)"]
14 --> F1
16 --> F1
F1 --> O1[\sample.id probe report.txt\]
```


Workflow

• Fusion v4

graph TD;
 %% Initial Inputs
 I3[/candidate.exons.transcript.bed/]
I5[/aligned.fusionv4.bam/]
I6[/sample.id/]
 %% FusionV4 Workflow
 I6 --> F1["% Covered Region Anchored Reads (calculate_probe_reads.sh)"]
I5 --> F1
F1 --> O1[\sample.id probe report.txt\]

Workflow

Arriba

```
graph TD;
%% Initial Inputs
13[/probe.bed/]
15[/aligned.arriba.bam/]
16[/sample.id/]
%% Arriba Workflow
16 --> F1["% Covered Region Anchored Reads (calculate_probe_reads.sh)"]
15 --> F1
F1 --> O1[\sample.id probe report.txt\]
```


