

Task 1. A

For features A-H, identify the atom responsible, and its ionic state. Assume there is no close grouping of lines from different elements.

Answer

Feature Name	Atom	Sp. Name	Ground Shells	Ground Level
А	Oxygen	OII	$1s^22s^22p^3$	$^4S^{\circ}_{3/2}$
В	Carbon	CII	$1s2^2s^22p$	$^2P^{\circ}_{1/2}$
С	Hydrogen	НΙ	1s	$^2S_{1/2}$
D	Oxygen	ОΙ	$1s^22s^22p^4$	3P_2
E	Nitrogen	NII	$1s^22s^22p^2$	3P_0
F	Hydrogen	НΙ	1s	$^2S_{1/2}$
G	Oxygen	ОΙ	$1s^22s^22p^4$	3P_2
Н	Carbon	СІ	$1s2^2s^22p^2$	3P_0

Task 1. BHow are the lines in feature C related? And what causes the plunge near 900 Angstroms? You can explain in words, but reference an equation as well.

Answer

In the previous subtask we have detected feature C as hydrogen. If we want to find wavelengths of Hydrogen we need to apply Rydberg formula to Lyman Series. Rydberg Formula for hydrogen:

$$rac{1}{\lambda_{vac}} = R_h (rac{1}{n_1^2} - rac{1}{n_2^2})$$

 λ_{vac} is the wavelength of electromagnetic radiation emitted in vacuum.

 R_h is the Rydberg constant for hydrogen, approximately $1.09677583 imes 10^7 m^{-1}$.

 n_1 is the principal quantum number of an energy level.

 n_2 is the principal quantum number of an energy level for the atomic electron transition.

For using Lyman Series we need to set n_1 to 1 and because of $n_1 < n_2$ we can set $n_2 = 2, 3, 4, 5, \ldots \infty$. As a result we get Rydberg formula for hydrogen:

$$rac{1}{\lambda}_{vac} = R_h (1 - rac{1}{n^2})$$

When n gets closer to the infinity, there will be infinitely spectral lines. And at $n=\infty$ wavelength will be 911.753 angstrom. Also known as Lyman limit and because of that limit there is a plunge at 911.753 angstrom. Also we can say all lines in feature C are related because of all of them hydrogen.