CPE301 – SPRING 2019

MIDTERM 1

Student Name: Ricky Perez Student #: 5002297620

Student Email: perezr1@unlv.nevada.edu

Primary Github address: https://github.com/RickyPerez79/submission_da.git

Directory: Midterm1

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/Midterm, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

- Xplained mini
- Usb
- ESP32 chip

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
* Midterm_Project.c
* Created: 4/5/2019 1:46:32 PM
* Author : perezr1
#define F_CPU 16000000UL
#define BAUD_RATE 9600
#define My_UBRR F_CPU/16/BAUD_RATE-1
/******************************Include
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdio.h>
#include <stdlib.h>
****/
/************************************Prototype
Functions*******************************/
void read adc(void); //Read ADC
void USART tx string(char *data); //Print String USART
void USART init(unsigned int UBRR); // Set up the USART Baud Rate Register
****/
char results[256]; //array to hold my output
volatile unsigned int ADC_Temperature;
volatile char received_data;
// CALCULATIONS FOR TIMER1:
//TCNT1 = 65535 - (((16MHz/1024)*1)-1) = 49911
int main(void) {
     USART_init(My_UBRR); // calls function
     ADMUX = (0<<REFS1) | // Reference Selection Bits
     (1<<REFS0) // AVcc - external cap at AREF
     (0<<ADLAR) // ADC Left Adjust Result
     (1<<MUX2) // ANalog Channel Selection Bits
     (0<<MUX1) | // ADC5 (PC5, PIN28)
     (1<<MUX0);
```

```
ADCSRA = (1 < < ADEN) | // ADC ENable
      (0<<ADSC) | // ADC Start Conversion
      (0<<ADATE) | // ADC Auto Trigger Enable
      (0<<ADIF) | // ADC Interrupt Flag
      (0<<ADIE) | // ADC Interrupt Enable
      (0<<ADPS1)
      (1<<ADPS0);
      // Timer/Counter1 Interrupt Mask Register
      TIMSK1 |= (1<<TOIE1); // enable interrupt flag
      // Set Prescalar
      TCCR1B = 5; // setting the prescalar to 1024
      // Set timer
      TCNT1 = 49911; // set TCNT1
      <u>_delay_ms(1000);</u> // wait a bit
      sei(); //interrupt
      while(1)
      {
             // wait here
      }
}
/* calculates temperature */
void read_adc(void) {
      unsigned char i =4;
      ADC_Temperature = 0; //initialize to zero
      while (i--) {
            ADCSRA |= (1<<ADSC);
            while(ADCSRA & (1<<ADSC));</pre>
            ADC_Temperature+= ADC;
            _delay_ms(50);
      ADC_Temperature = ADC_Temperature /8; // gather a few samples
/******* Functions
void USART init( unsigned int ubrr ) {
      UBRROH = (unsigned char)(ubrr>>8); // set upper byte 0
      UBRROL = (unsigned char)ubrr; // set lower byte to the value of
F_CPU/16/BAUD_RATE-1
      UCSRØB = (1 << TXENØ) | (1 << RXENØ) | (1 << RXCIEØ); // Enable receiver,
transmitter & RX interrupt
      UCSR0C |= (1<<UCSZ01) | (1 << UCSZ00);
}
void USART_tx_string( char *data ) {
      while ((*data != '\0')) {
            while (!(UCSR0A & (1 <<UDRE0)));</pre>
```

```
UDR0 = *data;
             data++;
      }
}
/*******************************
**********************
ISR(TIMER1 OVF vect) //timer overflow interrupt to delay for 1 second
      char TEMP[256];
      unsigned char AT_COMMMANDS[] = "AT\r\n"; //AT Commands
      unsigned char CWMODE[] = "AT+CWMODE=1\r\n"; //Set the mode
      unsigned char CWJAP[] = "AT+CWJAP=\"Itsa_Me_Ricky\",\"xzft3981\"\r\n"; // WIFI
username and password
      unsigned char CIPMUX[] = "AT+CIPMUX=0\r\n";
      unsigned char CIPSTART[] = "AT+CIPSTART=\"TCP\",\"api.thingspeak.com\",80\r\n";
      unsigned char CIPSEND[] = "AT+CIPSEND=100\r\n";
      delay ms(2000);
      USART_tx_string(AT_COMMMANDS); //send commands
      delay ms(5000);
      USART tx string(CWMODE); //set mode
      delay ms(5000);
      USART_tx_string(CWJAP); //connect to Wifi
      delay ms(5000);
      USART_tx_string(CIPMUX); //select MUX
      _delay_ms(5000);
      USART_tx_string(CIPSTART);//connect TCP
      delay ms(5000);
      USART_tx_string(CIPSEND);//send size
      _delay_ms(5000);
      read_adc(); //read ADC
      snprintf(results, sizeof(results), "GET
https://api.thingspeak.com/update?api_key=PXJ5Q3YZQDNNE9FS&field1=%3d\r\n",
ADC Temperature);// print
      USART_tx_string(results);//send result of the data gathered
      _delay_ms(3000); // lets it give it some time
      TCNT1 = 49911; //resets timer
}
```

3. SCHEMATICS

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

6. VIDEO LINKS OF EACH DEMO https://youtu.be/p_E59KMaKls

7. GITHUB LINK OF THIS DA

https://github.com/RickyPerez79/submission_da.git

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work". $RICKY\ PEREZ$