MATH 7752 Homework 3

James Harbour

February 6, 2022

Problem 1

Let R be a commutative domain, and let M be a free R-module with basis $X = \{e_1, \ldots, e_k\}$, with $k \geq 2$. Prove that the element $e_1 \otimes e_2 + e_2 \otimes e_1$ cannot be written as simple tensor $m \otimes n$, for some $m, n \in M$.

Proof. Suppose, for the sake of contradiction, that there exist $m, n \in M$ such that $m \otimes n = e_1 \otimes e_2 + e_2 \otimes e_1$. Write $m = \sum_{i=1}^n r_i e_i$ and $n = \sum_{j=1}^n s_j e_j$ for some $r_i, s_j \in R$. Then

$$e_1 \otimes e_2 + e_2 \otimes e_1 = \left(\sum_{i=1}^n r_i e_i\right) \otimes \left(\sum_{j=1}^n s_j e_j\right) = \sum_{i,j} r_i s_j e_i \otimes e_j$$

Under this isomorphism $M \cong \mathbb{R}^n$ induced by the basis X, we have that

$$M \otimes M \cong R^n \otimes R^n \cong (R^n \otimes R)^n \cong (R \otimes R)^{n^2} \cong R^{n^2}$$

as R-modules. By the previous homework, as R is commutative, it follows that $M \otimes M$ has well defined rank given by $rank(M) = n^2$.

Problem 2

Problem 3

- (a) Let V be a finite-dimensional \mathbb{C} -vector space. Then V can be considered as a vector over \mathbb{R} (by restriction of scalars), and it holds $\dim_{\mathbb{R}} V = 2\dim_{\mathbb{C}} V$. Prove that $V \otimes_{\mathbb{C}} V$ is not isomorphic to $V \otimes_{\mathbb{R}} V$ as \mathbb{R} -vector spaces, and compute their dimensions over \mathbb{R} .
- (b) Let R be an integral domain (commutative), and let K be its fraction field. Prove that there is an isomorphism of F-modules, $F \otimes_R F \simeq F \otimes_F F \simeq F$, where the F-module structure on $F \otimes_R F$ is given by extension of scalars (i.e. tensor product of Type I).

Problem 4

The purpose of this problem is to classify all 2-dimensional \mathbb{R} -algebras (where \mathbb{R} are the real numbers). That means, to classify (up to algebra isomorphism) those \mathbb{R} -algebras that are 2-dimensional \mathbb{R} vector spaces. Let A be a 2-dimensional \mathbb{R} -algebra (with 1).

- (a) Let $u \in A$ be any element that is \mathbb{R} -linearly independent from 1. Prove that
 - (i) u generates A as an \mathbb{R} -algebra. That is, the minimal \mathbb{R} -subalgebra of A containing u and 1 is A itself.
- (ii) The element u satisfies a quadratic equation $au^2 + bu + c = 0$, for some $a, b, c \in \mathbb{R}$ with $a \neq 0$. Conclude that A is necessarily commutative.

Proof. Noting that the subalgebra generated by u contains $\operatorname{span}_{\mathbb{R}}(\{1,u\})$ which has dimension 2 as an \mathbb{R} -vector space, it follows that the subalgebra generated by u is in fact A.

Since the subalgebra generated by u is A, it follows that there exist $a, b \in \mathbb{R}$ such that $u^2 = au + b1$, whence $u^2 - au - b = 0$. This implies the algebra A is commutative as multiplication is hence defined by the relations $u \cdot 1 = u = 1 \cdot u$ and $1 = 1 \cdot 1$, which are all commutative.

- (b) Show that there exists some $v \in A$ which is \mathbb{R} -linearly independent from 1 and is such that $v^2 = -1$, or $v^2 = 1$, or $v^2 = 0$.
- (c) Deduce from part (b) that A is isomorphic as an \mathbb{R} -algebra to one of the following: $\mathbb{R}[x]/(x^2+1)$, or $\mathbb{R}[x]/(x^2-1)$, or $\mathbb{R}[x]/(x^2)$.
- (d) Prove that the algebras $\mathbb{R}[x]/(x^2+1)$, $\mathbb{R}[x]/(x^2-1)$, and $\mathbb{R}[x]/(x^2)$ are pairwise non-isomorphic. Hint: This can be shown with almost no computation.

Problem 5

The purpose of this problem is to prove the following theorem: Let D be a finite dimensional division algebra over \mathbb{R} . Then D is isomorphic to \mathbb{R} , \mathbb{C} or \mathbb{H} (the quaternions). One way to proceed is to use the following steps:

- (a) Let $\alpha \in D$ be an element \mathbb{R} -linearly independent from 1. Show that α satisfies a quadratic irreducible polynomial $p_{\alpha}(x) = x^2 + ax + b \in \mathbb{R}[x]$.
- (b) Let $V = \{ \alpha \in D : \alpha^2 \in \mathbb{R}_{<0} \}$. Show that V is an \mathbb{R} -linear subspace of D. Hint: Show there is an \mathbb{R} -linear map $f: D \to \mathbb{R}$ with kernel V.
- (c) Define $B: V \times V \to \mathbb{R}$, $B(\alpha, \beta) := -\frac{\alpha\beta + \beta\alpha}{2}$. Show that B defines an inner product on V (i.e. B is a symmetric, positive definite bilinear form on V).
- (d) Let W be a linear subspace of V that generates D as an \mathbb{R} -algebra. Let $n = \dim_{\mathbb{R}} W$. Choose an orthonormal basis of W, i.e. a basis $\{e_i\}$ of W such that $B(e_i, e_i) = 1$ for all i and $B(e_i, e_j) = 0$ for all $i \neq j$ (such a basis always exists). Using this orthonormal basis show that if $n \geq 2$, then D has a subalgebra isomorphic to \mathbb{H} .
- (e) Bonus: Suppose $n \ge 2$. Prove that A = H. Hint: One way to proceed is to show that if n > 2, then the multiplication in D cannot be associative.