Sistema de detección y clasificación de residuos en plantas de selección de la fracción resto:

Detección de cartón y plástico

Patricia Lázaro Tello

Tutor: Raúl Parada Medina

Contenido

Motivación

- Frenar y revertir el cambio climático
- Aumentar la tasa de tratamiento de residuos en España

Situación actual

% de residuos tratados

La fracción resto

- En la mayor parte de España sólo se recicla papel, plástico y cristal.
- NO se tratan los restos orgánicos y otros residuos
- NO todos los hogares reciclan

Es la llamada Fracción resto

- Analizar los modelos de detección y clasificación de residuos basados en visión por computador y *Deep Learning*
- Estudiar los conjuntos de datos más populares en el área
- Desarrollar un framework y API de entrenamiento de modelos de detección de residuos urbanos
- Comparar los modelos Single Shot Detector y Faster R-CNN
- Comparar las cabezas de clasificación de ML tradicional y de *Deep Learning* mediante modelos híbridos

Metodología

Fases del proyecto

- 1. Definición del proyecto
- Obtención de datos
- 3. Diseño e implementación
- Memoria, preparación y defensa

Conjuntos de datos

ZeroWaste

Papel y cartón

Metal

Vidrio

Otros

En planta de tratamiento

ResortIT

Papel y cartón

Metal

Vidrio

Otros

En planta de tratamiento

TACO

Vidrio

(Otros

En planta de tratamiento

Drinking Waste

Cig Butts

Conjuntos de datos

Ciclo de entrenamiento

TLL *transfer learning level*Descongelamiento del modelo por capas

 $\downarrow\downarrow\downarrow$ tll=1 \rightarrow tll=5 $\nearrow\nearrow$ \rightarrow tll=0 $\uparrow\uparrow\uparrow$

Resultados

	Faster R-CNN	SSD	Modelos híbridos
mAP pre-entrenamiento	0.0012	0.0018	×
mAP entrenamiento	0.2701 🗸	0.0830	*
FPS modelo Pytorch	4	10 🗸	*
FPS modelo ONNX	4	14 🗳	*

- Los hiperparámetros propios de los modelos son clave para un rendimiento óptimo
- Se requiere gran **poder computacional** para llevar a cabo el entrenamiento

Validation mAP — ResortIT

Validation mAP — ZeroWaste

Single Shot Detector

Conclusiones

✓Auge de los modelos de DL en tareas de detección de residuos urbanos

DL: Faster R-CNN, SSD • ML tradicional: Nearest Neighbor, ANN, SVM

Pocos conjuntos de datos abiertos no sintéticos en plantas de tratamiento

Desarrollo un *framework* y API de entrenamiento de modelos de detección de residuos urbanos

Comparación de *Faster* R-CNN y SSD

Faster R-CNN se centra en el <u>rendimiento</u>
SSD se centra en la <u>velocidad de inferencia</u>

La falta de detecciones de calidad ha imposibilitado la creación y evaluación de modelos híbridos

Trabajo futuro

Desarrollo de un sistema robótico para segregar residuos

Inclusión de **nuevas categorías** de residuos

Análisis comparativo de **detectores de dos pasadas**

Análisis comparativo de **detectores de una pasada**

Investigación de **modelos híbridos**

Desarrollo de un sistema de seguimiento de residuos

Gracias

patricialazarotello@gmail.com

plazarotello@uoc.edu

in /plazarotello

@PLazaroTello

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

Patricia Lázaro Tello

Tutor: Raúl Parada Medina

