МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники»

Институт микроприборов и систем управления имени Л.Н. Преснухина

Лабораторная работа

По дисциплине

«Электротехника»

По теме

«ИССЛЕДОВАНИЕ РЕЗОНАНСНЫХ ЦЕПЕЙ»

Вариант 5

Работу выполнил: Иванов Иван Иванович

Группа: ИБ-21

Дата выполнения: 25.11.2024

L, мГн	С, мкФ	R, Om
49	0.0075	2150

Резонансная частота –

 $Fp = 1 / 2pi * sqrt(LC) \sim 8302 \Gamma \mu$

Волновое сопротивление -

 $Ro = sqrt(L/C) \sim 2556 Om$

Частота, на которой действующее значение U_L достигает максимума — $F_L = Fp * sqrt(1 / [1 - R^2 / 2ro^2]) \sim 10327 \Gamma \mu$

Частота, на которой действующее значение U_{c} достигает максимума — F_{c} = $Fp^2 / F_{L} \sim 6647 \ \Gamma \mu$

Z – Общее сопротивление

Для подсчёта общего сопротивления цепи Z воспользуемся формулой:

 $Z=\sqrt{R^2+X^2}$, где $X=X_L-X_C$ — реактивное сопротивление колебательного контура

$$Z = \sqrt{R^2 + (\omega_L L - \frac{1}{\omega_C C})^2} \qquad \qquad \omega_L = 2\pi F \qquad \qquad \frac{1}{\omega_C} = \frac{1}{2\pi F}$$

```
f = 8302.0 Hz | w_1 = 52163 rad/sec | Z_1 = 2150 Ohms | I_1 = 4.651 milliAmps f = 830.2 Hz | w_2 = 5216 rad/sec | Z_2 = 25396 Ohms | I_2 = 0.394 milliAmps f = 2490.6 Hz | w_3 = 15649 rad/sec | Z_3 = 8046 Ohms | I_3 = 1.243 milliAmps f = 4151.0 Hz | w_4 = 26082 rad/sec | Z_4 = 4396 Ohms | I_4 = 2.275 milliAmps f = 5811.4 Hz | w_5 = 36514 rad/sec | Z_5 = 2844 Ohms | I_5 = 3.516 milliAmps f = 16604.0 Hz | w_6 = 104326 rad/sec | Z_6 = 4396 Ohms | I_6 = 2.275 milliAmps f = 24906.0 Hz | w_7 = 156489 rad/sec | Z_7 = 7147 Ohms | I_7 = 1.399 milliAmps f = 10327.0 Hz | w_8 = 64886 rad/sec | Z_8 = 2426 Ohms | I_8 = 4.121 milliAmps f = 6647.0 Hz | w_9 = 41764 rad/sec | Z_9 = 2436 Ohms | I_9 = 4.104 milliAmps
```

Рассчитаем напряжения на Резисторе, Конденсаторе и Катушке:

$$U_R = IR$$
 $U_C = I*X_C$, где $X_C = \frac{1}{2\pi FC}$ $U_L = I*X_L$, где $X_L = 2\pi FL$

```
f = 8302.0 Hz | U_R1 = 10.000 V | U_C1 = 11.889 V | U_L1 = 11.888 V | f = 830.2 Hz | U_R2 = 0.847 V | U_C2 = 10.065 V | U_L2 = 0.101 V | f = 2490.6 Hz | U_R3 = 2.672 V | U_C3 = 10.589 V | U_L3 = 0.953 V | f = 4151.0 Hz | U_R4 = 4.891 V | U_C4 = 11.630 V | U_L4 = 2.907 V | f = 5811.4 Hz | U_R5 = 7.559 V | U_C5 = 12.837 V | U_L5 = 6.290 V | f = 16604.0 Hz | U_R6 = 4.891 V | U_C6 = 2.908 V | U_L6 = 11.630 V | f = 24906.0 Hz | U_R7 = 3.008 V | U_C7 = 1.192 V | U_L7 = 10.729 V | f = 10327.0 Hz | U_R8 = 8.861 V | U_C8 = 8.469 V | U_L8 = 13.104 V | f = 6647.0 Hz | U_R9 = 8.825 V | U_C9 = 13.104 V | U_L9 = 8.400 V | U_L9 = 8.400 V | U_R9 = 8.825 V | U_C9 = 13.104 V | U_L9 = 8.400 V | U
```

 φ = arctan([X_L - X_C] / R) [рад] => * 180/ π = [град]

Параметры	Значения показаний									
Частота, Гц	Fp, Гц	0.1Fp,	0.3Fp,	0.5Fp,	0.7Fp,	2Fp,	3Fp,	F∟, Гц	F _C , Гц	
		Гц	Гц	Гц	Гц	Гц	Гц			
F, Гц, расч.	8302	830.2	2490.6	4156	5811.4	16604	24906	10327	6647	
I, мА, расч.	4.651	0.394	1.243	2.275	3.516	2.275	1.399	4.121	4.104	
I, мА, эксп.	4.649	0.394	1.245	2.294	3.564	2.238	1.379	4.067	4.157	
UR, В, расч.	10	0.847	2.672	4.891	7.559	4.891	3.008	8.861	8.825	
UR, В, эксп.	9.995	0.847	2.678	4.934	7.665	4.811	2.964	8.745	8.938	
UL, В, расч.	11.888	0.101	0.953	2.907	6.29	11.63	10.729	13.104	8.4	
UL, В, эксп.	12.038	0.101	0.957	2.953	6.45	11.589	10.71	13.1	8.619	
UC, В, расч.	11.889	10.065	10.589	11.63	12.837	2.908	1.192	8.469	13.104	
UC, В, эксп.	11.73	10.065	10.592	11.651	12.872	2.823	1.16	8.25	13.102	
Phi, град,	0	-85.1	-74.5	-60.7	-40.9	60.7	72.5	27.6	-28.1	
расч.										
Phi, град,	3	-85	-74	-61	-41	61	72	30	-28	
эксп.										

 $I(\pmb{\omega})$, MA

