

# **COMP0130: Robotic Vision and Navigation**

Lecture 04: Covariance Matrices (Optional / Supplemental)

Simon Julier





#### Structure

- Motivation
- Scalar Case
- Multi-dimensional Case
- Covariance Ellipses and Confidence Bounds
- Limitations of Covariances







## The Need for Uncertainty

Estimators often return a point-estimate of a quantity of interest

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \hat{\mathbf{x}}$$

 However, we often need to know how accurate this estimate is







#### The Need for Uncertainty







# The Need for Uncertainty







# **Quantifying Uncertainty**

 The way we quantify uncertainty is to accompany every estimated state with a covariance matrix



 But what does it <u>actually mean and why do we</u> use it?







Consider the noisy time-dependent series

$$\rightarrow x_t, y_t \leftarrow$$

Which one is more uncertain?

























Cumulative sum



Cumulative average







# **Squaring the Error**

















#### **Covariance vs the Standard Deviation**

Formally, the covariance is given by

$$\underline{\operatorname{cov}(x_t)} = \underline{\mathbb{E}}\left[\left(\underline{x_t} - \underline{\mathbb{E}}\left[x_t\right]\right)^2\right]$$

The standard deviation is the square root of this,

$$\operatorname{std}(x_t) = \underbrace{\sqrt{\operatorname{cov}(x_t)}} \sqrt{\mathbb{E}\left[\left(x_t - \mathbb{E}\left[x_t\right]\right)^2\right]}$$





#### **Units and Standard Deviation and Covariance**

- Standard deviation and covariance both have units
- Therefore, any operation with them has to preserve unit consistency

$$X_{6} \rightarrow pos$$
  $m$ 

$$m+m^{2}$$

$$X_{6}+cos(c_{0})$$





# Other Things about Mean Squared Error

- It relates to actual physical quantities such as energy consumed
- It can be related to maximum entropy estimators
- It can be related to Central Limit Theorem
- It is differentiable\_
- It does not depend upon or assume Gaussians in any way, shape or form







# **Multi-Dimensional Uncertainty**

- So far we've seen the case in 1D but all interesting cases are multi-dimensional
- We can compute the covariances on each state separately

$$\rightarrow \operatorname{cov}(x_t) = P_{xx} = \mathbb{E}\left[\left(x_t - \mathbb{E}\left[x_t\right]\right)^2\right]$$

$$\rightarrow \operatorname{cov}(y_t) = P_{yy} = \mathbb{E}\left[\left(y_t - \mathbb{E}\left[y_t\right]\right)^2\right]$$







## **Multi-Dimensional Uncertainty**



$$P_{xx} = \mathbb{E}\left[\left(x_t - \mathbb{E}\left[x_t\right]\right)^2\right]$$

$$P_{yy} = \mathbb{E}\left[\left(y_t - \mathbb{E}\left[y_t\right]\right)^2\right]$$





# **Interacting States**

However, different states can interact with one another

• For example, suppose that  $x_k + \Delta T y_k + \frac{\Delta T^2}{2} a_k$   $y_{k+1} = y_k + \Delta T a_k$ 





# **Example of Interacting States**

$$x_{k+1} = x_k + \Delta T y_k + \frac{\Delta T^2}{2} a_k$$
$$y_{k+1} = y_k + \Delta T a_k$$







#### **Cross-Correlation**

The cross correlation is computed from

$$P_{xy} = \mathbb{E}\left[\left(x_t - \mathbb{E}\left[x_t\right]\right)\left(y_t - \mathbb{E}\left[y_t\right]\right)\right]$$

$$P_{xyz} \leftarrow Shew$$

$$P_{xyz} \leftarrow \left(\left(x_t - \left(y_t\right)\right)\right)$$





#### **What do Cross Correlations Mean?**

We'll consider two cases:

- When the random variables are independent of one another
- When the random variables are not independent of one another







## **Independent Random Variables**

 When variables are independent of one another, the joint probability functions become the product of functions,

$$\frac{f(x,y)}{f(x,y)} = \int f(x)f(y)$$





# **Independence and Cross Correlation**

· Therefore, when they are independent,

$$P_{xy} = \mathbb{E}\left[\left(x_t - \mathbb{E}\left[x_t\right]\right) \left(y_t - \mathbb{E}\left[y_t\right]\right)\right]$$

$$= \mathbb{E}\left[\left(x_t - \mathbb{E}\left[x_t\right]\right)\right] \times \mathbb{E}\left[\left(y_t - \mathbb{E}\left[y_t\right]\right)\right]$$







# **Interpreting the Cross-Correlation**

 There are several ways we can interpret what it is representing for us

 Here we'll just look at it as a linear model which describes the relationship between two random variables







# Interpretation 1: Linear Models

 Suppose that we can write one random variable as a linear function of the other,

Tunction of the other,
$$y_t = \alpha x_t + \beta = 3 - 4 (-)$$

The covariance and cross correlation are







**Deriving the Quantities** 





#### **Deriving the Quantities**

$$P_{xy} = \alpha P_{xx}$$

$$(x - E(x-1)(y - L(y))$$

$$= (x - L(x)) + (x - L(x)) + (x - L(y))$$

$$= (x - L(x))^{2} + (x - L(y))$$

$$= x (x - L(x))^{2} + (x - L(y))$$

$$= x (x - L(x))^{2} + (x - L(y))$$

$$= x - x - x$$

$$= x - x - x$$





#### **Example Covariance Matrix**





# **UCL**

#### **Example Covariance Matrix**

$$\begin{array}{cccc}
\times & 1 & -3 \\
3 & -3 & 9
\end{array}$$



$$P_{yy} = \alpha^2 P_{xx} + P_{\beta\beta}$$
$$P_{xy} = \alpha P_{xx}$$



## **Example Covariance Matrix**

$$\begin{bmatrix} 1 & \boxed{3} \\ 3 & 10 \end{bmatrix} \longleftarrow$$

$$P_{yy} = \alpha^2 P_{xx} + P_{\beta\beta}$$

$$P_{xy} = \alpha P_{xx}$$





# **Quantifying the Linear Dependency**

- We often like to have a sense of how independent the two random variables are from one another
- However, simply looking at the cross correlation directly doesn't tell us what the situation is









# **Simply Comparing Covariance Matrices**







#### **Normalized Cross Correlations**

A way to eliminate these scaling effects is to use the normalized cross correlation or correlation coefficient

$$\frac{c_{xy}}{T} = \frac{P_{xy}}{\sqrt{P_{xx}P_{yy}}}$$
untlesquantity
$$\frac{r}{r} = \frac{r}{\sqrt{P_{xx}P_{yy}}}$$

$$\frac{r}{r} = \frac{r}{\sqrt{P_{xx}P_{yy}}}$$

$$\frac{r}{r} = \frac{r}{r}$$







#### **Normalized Cross Correlations**

Substituting for the values,

$$c_{xy} = \alpha \frac{P_{xx}}{\sqrt{\alpha^2 P_{xx}^2 + P_{xx} P_{\beta\beta}}}$$





# **UCL**

### Case when $\alpha = 0$

$$Gy = X Rx$$

$$X = 0$$

$$X = 0$$

$$c_{xy} = \alpha \frac{P_{xx}}{\sqrt{\alpha^2 P_{xx}^2 + P_{xx} P_{\beta\beta}}}$$





# **UCL**

Case when 
$$P_{\beta\beta}=0$$

$$Gy = A \frac{P_{XX}}{\sqrt{2R_{X}^{2} + P_{XX}} \cdot 6}$$

$$c_{xy} = \alpha \frac{P_{xx}}{\sqrt{\alpha^2 P_{xx}^2 + P_{xx} P_{\beta\beta}}}$$







# **Covariance Ellipses**

- We are often interested in providing a compact way to draw covariance information
- A common way to do this is to draw the covariance ellipse
- This is the locus of points given by







# **Covariance Ellipses**



- There are two interpretations of this:
  - If your distribution is Gaussian, it is a contour of constant probability
  - If your distribution isn't Gaussian, it's a <u>level set</u> of points whose <u>Mahalanobis Distance</u> is the same value













# **UCL**







# **UCL**

















#### **Limitations of Covariance Matrices**

 People often use the word correlations to denote any form of dependency

However, correlations only store linear relationships







# **Counter Example for Correlations**

Consider the system

$$\frac{x_t}{y_t} = \frac{\cos \theta_t}{\sin \theta_t}$$

$$\frac{\theta_t}{\varphi} \mathcal{G}\left(\theta; \hat{\theta}, P_{\theta\theta}\right)$$

$$\frac{\partial}{\partial \theta} = \mathcal{G}^{\circ}$$





#### **Small Error Case**











# POG-(180)

# **Large Error Case**









# **Summary**

- Mean squared error gives you a sense of how noisy your signal is
- Correlation coefficients give you a measure of dependency
- You can visualize them using covariance ellipses
- However, correlations are limited in the types of information they can capture



