

Formação Inteligência Artificial

Introdução à Inteligência Artificial

Como representar fatos sobre o mundo?

A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence

August 31, 1955

John McCarthy, Marvin L. Minsky, Nathaniel Rochester, and Claude E. Shannon

Como fazer as máquinas compreenderem as coisas?

Questões Principais de um Sistema de IA:

Aquisição, Representação e Manipulação de Conhecimento

O que estudaremos neste capítulo?

- Definição de representação do conhecimento
- Engenharia Ontológica
- Categorias, objetos e eventos
- Sistemas de Raciocínio
- Quantificação da Incerteza
- A Regra de Bayes
- Semântica e Inferência Bayesianas
- Raciocínio Probabilístico
- Atividades Práticas em Python para Construção de Agentes Lógicos

Representação do Conhecimento Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Conhecimento

Para utilizar um corpo de conhecimento em uma máquina, é necessário escolher uma maneira de representá-lo

Representação do Conhecimento Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Conhecimento

Representação do Conhecimento Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Conhecimento

Como transmitir o conhecimento do mundo para um robô ou outro sistema computacional, dando-lhe uma capacidade adequada de raciocínio, de modo que este conhecimento possa ser utilizado para permitir ao sistema uma adaptação e exploração do seu ambiente?

- De que forma o conhecimento pode ser expresso?
- Como encontrar a linguagem adequada para a representação deste conhecimento?
- Como formar uma base de conhec<mark>imento suficientemente d</mark>etalhada e que represente a compreensão do domínio?
- Como realizar inferências automáticas, dando acesso tanto ao conhecimento implícito na base de conhecimento quanto aquele armazenado explicitamente (declarativo)?
- Como o sistema deve proceder na presença de informações incompletas, incorretas ou de senso comum?

Representação do Conhecimento

Representação do Conhecimento e Raciocínio

Engenharia Ontologica Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

A representação de conceitos abstratos é chamada de Engenharia Ontológica.

Engenharia Ontologica

Data Science
Academy

Data Science
Academy

Academy

Ontologia:

Descrição de conceitos e relacionamentos que devem ser considerados por um agente ou por uma comunidade de agentes.

Engenharia Ontologica

Data Science
Academy,
Data Science
Academy,
Data Science
Academy,
Data Science
Academy,
Data Science

Ontologia:

Indivíduos: os objetos básicos

Classes: conjuntos, coleções ou tipos de objetos

 Atributos: propriedades, características ou parâmetros que os objetos podem ter e compartilhar

Relacionamentos: as formas como os objetos podem se relacionar com outros objetos

Existem na literatura várias definições para o termo ontologia em Ciência da Computação.

Ontologia é definida como uma especificação formal e explícita de uma conceitualização compartilhada, onde:

especificação formal quer dizer algo que é legível para os computadores

Ontologia é definida como uma especificação formal e explícita de uma conceitualização compartilhada, onde:

explícita são os conceitos, propriedades, relações, funções, restrições e axiomas explicitamente definidos

Ontologia é definida como uma especificação formal e explícita de uma conceitualização compartilhada, onde:

conceitualização representa um modelo abstrato de algum fenômeno do mundo real e compartilhada significa conhecimento consensual.

Apesar de apresentarem diferentes definições, o principal propósito da construção de ontologias é permitir compartilhamento e reutilização de conhecimento.

Principais Usos, Benefícios e Problemas relacionados às Ontologias

Principais Usos, Benefícios e Problemas relacionados às Ontologias

- Escolha das Ontologias
- Criação e Evolução das Ontologias
- Bibliotecas de Ontologias
- Metodologia de Desenvolvimento

Engenharia Ontologica Data Science Academy Data Science Academy Academy

Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Academy Academy Control of Cont

Engenharia Ontologica Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

Engenharia Ontologica Data Science Academy, Data Science Academy,

Uma ontologia de uso geral deve ser aplicável em quase todo domínio de uso específico (com a inclusão de axiomas específicos do domínio).

Tipos de Ontologias

- Ontologias Genéricas
- Ontologias de Domínio
- 3 Ontologias de Tarefas
- 4 Ontologia de Aplicação

Representação de Ontologias

Basicamente existem duas maneiras de representar ontologias:

- Representação formal
- Representação gráfica

Representação de Ontologias

Basicamente existem duas maneiras de representar ontologias:

- Representação formal
 - RDF
 - OWL

Representação de Ontologias

Representação de Ontologias

```
<cowl:Class rdf:ID="Vehicle">
   <rdfs:label>Vehicle</rdfs:label>
   <rdfs:SubClassOf rdf:remounce="###/y" />
</owliClass>
<awl:Class rdf:ID="sport_cycle">
   <rdfs:label>sport_cycle</rdfs:label>
   crdfs:SubClassOf rdf:resources"#Utcycle** />
</out:Class>
cowl:Class rdf:20="city_cycle">
   <rdfs:label>city_cycle</rdfs:label>
   <rdfs:SubClassOf rdf:resource="###ayele" />
c/owl:Class>
cowl:Class rdf:IDe"bicycle">
   <rdfs:label>bicycle</rdfs:label>
   crdfs:SubClassOf rdf;resource="avehicle" />
   <rdfs:SubClassOf>
        cowl:Restriction>
            cowlicardinality rdf:datatype="http://www.wi.org/
            cowlineProperty rdf:resource="shan body_culor" />
        cowl:Restriction>
    </rdfs:SubClassOf>
   <rdfs:SubClassOf>
        cowl:Restriction>
            cowl:onProperty rdf:resource*"sham_body_color" />
           <owl:allValuesFrom rdf:resource="#Color" />
```

Web Ontology Language (OWL)

Figura 3.2 Representação da ontologia de bicicleta em OWL. Fonte: http://www.hozo.jp/>

Representação de Ontologias

Existem muitas maneiras de representar graficamente uma ontologia, uma vez que esta é composta principalmente por conceitos e suas relações.

Algumas formas comuns para representar graficamente ontologias são grafos, UML e estrutura de árvore.

Construção de Ontologias

A construção de ontologias de domínio envolve, primeiramente, a definição de seu domínio e escopo.

- Relações
- Axiomas
- Instâncias
- Funções

Construção de Ontologias

Percebeu a semelhança com linguagem de programação orientada a objetos?

Construção de Ontologias

Lembra como construímos os agentes em Python ao fim do capítulo anterior usando orientação a objetos?

Representação de Conhecimento

Predicados

Objetos

Elemento(b, BolasDeBasquete) para dizer que b é um elemento da categoria de bolas de basquete

Subconjunto(BolasDeBasquete, Bolas), para dizer que BolasDeBasquete é uma subcategoria de Bolas

* Transformar uma proposição em um objeto é chamado de **reificação**, da palavra latin<mark>a *res*, ou "coisa". JohnMcCarthy propôs o termo "coisificação", mas o termo nunca vingou.</mark>

Herança

Se dissermos que todas as instâncias da categoria *Alimento* são comestíveis e se afirmarmos que *Fruta* é uma subclasse de *Alimento* e que *Maçãs* é uma subclasse de *Fruta*, então saberemos que toda maçã é comestível.

- Um objeto é um elemento de uma categoria.
- Uma categoria é uma subclasse de outra categoria.
- Todos os elementos de uma categoria têm algumas propriedades.
- Os elementos de uma categoria podem ser reconhecidos por algumas propriedades.
- Uma categoria é um conjunto que tem algumas propriedades.

Disjuntos({Animais, Vegetais})
DecomposiçãoExaustiva({Americanos, Canadenses, Mexicanos}, NorteAmericanos)
Partição({Machos, Fêmeas}, Animais)

GrupoDe({Maçã1, Maçã2, Maçã3})

Categorias e Objetos Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

Algumas categorias têm definições estritas: um objeto é um triângulo se e somente se é um polígono com três lados.

Por outro lado, a maioria das categorias no mundo real não tem nenhuma definição clara; essas são as chamadas categorias de **espécies naturais**.

Sistemas de Raciocínio

Redes Semânticas

Oferecem auxílios gráficos para visualização de uma base de conhecimento e algoritmos eficientes para dedução de propriedades de um objeto, de acordo com sua pertinência a uma categoria.

Lógicas de Descrição

Fornecem uma linguagem formal para construção e combinação de definições de categorias e algoritmos eficientes para definir relacionamentos de subconjuntos e superconjuntos entre categorias.

As redes semânticas — pelo menos aquelas que têm semânticas bem definidas — são uma forma de lógica.

Existem muitas variantes de redes semânticas, mas todas são capazes de representar objetos individuais, categorias de objetos e relações entre objetos.

O conceito foi criado para uso em computadores por Richard H.
Richens em 1956 como uma língua internacional auxiliar para a tradução por máquina de linguagens naturais. Foram então desenvolvidas por Robert F.
Simmons no início da década de 1960 e posteriormente amplidas através do trabalho de M. Ross Quillian em 1966.

Mecanismo de raciocínio de redes semânticas

Redes Semânticas

Algoritmo: Herança de Atributos

- Para recuperar um valor V de um atributo A de uma instância O de um objeto:
- Encontre O na base de conhecimento.
- 2. Se houver ai um valor para o atributo A, retorne esse valor.
- Senão, verificar se há um valor para a relação instância.

Em caso negativo, retorne insucesso.

 Caso contrário, ir para o nó que corresponde àquele valor e procurar um valor para o atributo A.

Se encontrar, retorne o valor.

- Caso contrário, execute os passos a seguir até não haver mais valor para a relação é-um ou até encontrar uma resposta:
- (a) Encontrar o valor da relação é-um e ir para aquele nó.
- (b) Verificar se há um valor para o atributo A. Se houver, retorne-o.

A herança fica complicada quando um objeto pode pertencer a mais de uma categoria ou quando uma categoria pode ser um subconjunto de mais de uma outra categoria - isso se chama herança múltipla.

A semântica default é naturalmente imposta pelo algoritmo de herança porque segue arcos ascendentes desde o próprio objeto (João, nesse caso) e para tão logo encontra um valor.

As **lógicas de descrição** são notações projetadas para tornar mais fácil descrever definições e propriedades de categorias.

```
Conceito → Thing | NomeConceito
| And(Conceito,...)
| All(NomePapel, Conceito)
| AtLeast(Inteiro, NomePapel)
| AtMost(Inteiro, NomePapel)
| Fills(NomePapel, NomeIndividuo,...)
| Same As(Caminho, Caminho)
| One Of(NomeIndividuo,...)

Caminho → [NomePapel,...]
```


As principais tarefas de inferência para lógicas de descrição são a subordinação (verificar se uma categoria é um subconjunto de outra pela comparação de suas definições) e a classificação (verificar se um objeto pertence a uma categoria).

```
Conceito → Thing | NomeConceito
| And(Conceito,...)
| All(NomePapel, Conceito)
| AtLeast(Inteiro, NomePapel)
| AtMost(Inteiro, NomePapel)
| Fills(NomePapel, NomeIndividuo,...)
| Same As(Caminho, Caminho)
| One Of(NomeIndividuo,...)

Caminho → [NomePapel,...]
```


Linguagem Classic

Solteiro = And(NãoCasado, Adulto, Homem)

```
Conceito → Thing | NomeConceito
| And(Conceito,...)
| All(NomePapel, Conceito)
| AtLeast(Inteiro, NomePapel)
| AtMost(Inteiro, NomePapel)
| Fills(NomePapel, NomeIndividuo,...)
| SameAs(Caminho, Caminho)
| OneOf(NomeIndividuo,...)

Caminho → [NomePapel,...]
```


And (Homem, AtLeast (3, Filho), AtMost (2, Filha), All (Filho, And (Desempregado, Casado, All (Esposa, Médica))), All (Filha, And (Professora, Fills (Departamento, Física, Matemática))))

```
Conceito → Thing | NomeConceito
| And(Conceito,...)
| All(NomePapel, Conceito)
| AtLeast(Inteiro, NomePapel)
| AtMost(Inteiro, NomePapel)
| Fills(NomePapel, NomeIndividuo,...)
| SameAs(Caminho, Caminho)
| OneOf(NomeIndividuo,...)
| Caminho → [NomePapel,...]
```


O aspecto mais importante das lógicas de descrição seja sua ênfase na tratabilidade da inferência.

```
Conceito → Thing | NomeConceito
| And(Conceito,...)
| All(NomePapel, Conceito)
| AtLeast(Inteiro, NomePapel)
| AtMost(Inteiro, NomePapel)
| Fills(NomePapel, NomeIndividuo,...)
| Same As(Caminho, Caminho)
| One Of(NomeIndividuo,...)

Caminho → [NomePapel,...]
```


Os agentes podem precisar lidar com a incerteza, seja devido a um ambiente parcialmente observável, ao não determinismo ou a uma combinação dos dois.

Quantificando a incerteza

Um plano de contingência correto que lida com toda eventualidade pode crescer arbitrariamente e deve considerar as contingências arbitrariamente improváveis.

Às vezes, não há um plano garantido de alcançar o objetivo — mesmo assim o agente deve agir. Deve ter alguma maneira de comparar os méritos dos planos que não são garantidos.

Quantificando a incerteza Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

Plano: A90

Quantificando a incerteza Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

Plano: A90

Plano: A180

Quantificando a incerteza

Portanto, a alternativa correta — a decisão racional — depende tanto da importância relativa de várias metas quanto da probabilidade de que elas serão alcançadas e em que grau.

Quantificando a Incerteza

DorDeDente -> Cárie.

DorDeDente → Cárie ∨ Gengivite ∨ Abscessos...

Cárie → DorDeDente.

Tentar usar a lógica de primeira ordem para lidar com um domínio como diagnóstico médico é uma abordagem falha, por três razões principais:

- Preguiça
- Ignorância teórica
- Ignorância prática

DorDeDente -> Cárie.

DorDeDente → Cárie ∨ Gengivite ∨ Abscessos...

Cárie → DorDeDente.

Nossa principal ferramenta para lidar com graus de crença será a teoria da probabilidade.

Um agente lógico acredita que cada sentença seja verdadeira ou falsa ou não tem opinião, enquanto um agente probabilístico pode ter um grau de crença numérico entre 0 (para sentenças que são certamente falsas) e 1 (certamente verdadeiras).

Hummm... Está começando a fazer sentido!!!!!

A probabilidade proporciona um meio para resumir a incerteza que vem de nossa preguiça e ignorância, resolvendo assim o problema de qualificação.

Um ponto confuso é que, no momento do nosso diagnóstico, não há incerteza no mundo real: o paciente tem uma cárie ou não. Então, o que significa dizer que a probabilidade de uma cárie é de 0,8? Não deveria ser 0 ou 1?

Incerteza e decisões racionais

Plano: A90

Plano: A180

Plano: A1440

A teoria da utilidade diz que todo estado tem determinado grau de utilidade (ou seja, ele tem certa utilidade) para um agente e que o agente preferirá estados com utilidade mais alta.

Por exemplo, a utilidade de um estado em uma partida de xadrez em que a peça branca colocou a preta em xeque é obviamente alta para o agente que joga com a branca, mas baixa para o agente que joga com a preta.

Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Quantificando a incerteza

Teoria da decisão = teoria da probabilidade + teoria da utilidade

função AGENTE-TD(percepção) retorna uma ação

variáveis estáticas: estado_de_crença, crenças probabilísticas sobre o estado atual do mundo ação, a ação do agente

atualizar *estado_de_crença* com base em *ação* e *percepção* calcular probabilidades de resultados de ações, dadas descrições de ações e o *estado_de_crença* atual selecionar *ação* com utilidade esperada mais alta dadas as probabilidades de resultados e informações de utilidade **retornar** *ação*

Quantificando a incerteza Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

Na teoria da probabilidade, o conjunto de todos os mundos possíveis é chamado de espaço amostral

Por exemplo, se jogamos dois dados (distintos), existem 36 mundos possíveis a considerar: (1,1), (1,2),..., (6,6). A letra grega Ω (ômega maiúsculo) é usada para se referir ao espaço amostral, e ω (ômega minúsculo) refere-se aos elementos do espaço, isto é, aos mundos possíveis particulares.

$$0 \leq P(\omega) \leq 1$$
 para cada ω e $\sum_{\omega \in \Omega} P(\omega) = 1$

Se assumirmos que os dois dados não são "viciados" e um lançamento não interfere no outro, cada um dos mundos possíveis (1,1), (1,2),..., (6,6) tem probabilidade 1/36.

Em IA, os conjuntos são sempre descritos por **proposições** em uma linguagem formal. Para cada proposição, o conjunto correspondente contém apenas aqueles mundos possíveis onde a proposição é válida. A probabilidade associada a uma proposição é definida como sendo a soma das probabilidades dos mundos nos quais é válida:

Para qualquer proposição ϕ , $P\left(\phi\right) = \sum_{\omega \in \phi} P(\omega)$

Por exemplo, ao jogar dados que não são viciados, temos:

$$P(Total = 11) = P((5, 6)) + P((6, 5)) = 1/36 + 1/36 = 1/18$$

Probabilidades, tais como P(Total = 11) e P(duplas) são chamadas **probabilidades incondicionais** ou **anteriores**.

Da mesma forma, se eu estou indo ao dentista para um *check-up* regular, a probabilidade P(cárie) = 0,2 pode ser interessante, mas se estou indo ao dentista porque tenho uma dor de dente, é $P(cárie \mid dor de dente) = 0,6$ que importa.

É importante compreender que P(cárie) = 0,2 ainda é válido após a dor de dente ter sido observada;

Ela simplesmente não é especialmente útil.

Quantificando a Incerteza Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

Matematicamente falando, as probabilidades condicionais são definidas em termos de probabilidades incondicionais como segue:

para quaisquer proposições a e b, temos:

$$P(a \mid b) = \frac{P(a \land b)}{P(b)}$$

que é válido sempre que P(b) > 0. Por exemplo,

$$P(dupla \mid Dado_1 = 5) = \frac{P(dupla \land Dado_1 = 5)}{P(Dado_1 = 5)}$$

 $P(a \land b) = P(a \mid b) P(b)$

$$P(a \wedge b) = P(a \mid b)P(b)$$

e

$$P(a \wedge b) = P(b \mid a)P(a)$$
.

Em teoria da probabilidade o Teorema de Bayes mostra a relação entre uma probabilidade condicional e a sua inversa.

O primeiro a empregar o método bayesiano em problemas de física foi o matemático francês Pierre de Simon Laplace.

Graças ao grande aumento na capacidade de processamento dos computadores, a abordagem bayesiana tem renascido com grande força.

$$\Pr(A|B) = \frac{\Pr(B|A) \, \Pr(A)}{\Pr(B)}$$

- Pr(A) e Pr(B) são as probabilidades a priori de A e B.
- Pr(B|A) e Pr(A|B) são as probabilidades a posteriori de B condicional a A e de A condicional a B respectivamente.

A principal crítica à teoria bayesiana é que ela tem um fator que é *subjetivo*, a escolha do prior (prévio).

A principal crítica à teoria bayesiana é que ela tem um fator que é *subjetivo*, a escolha do prior.

Dados são inúteis se eles não estiverem contextualizados.

A regra de Bayes, muito além de um resultado matemático útil, dá origem a toda uma visão de mundo e quantifica o que é *ser racional*.

A expressão matemática do teorema de Bayes liga a inferência racional (probabilidade posterior) com a subjetividade das nossas visões prévias (prior) e as evidências empíricas.

O teorema de Bayes liga a razão humana ao universo físico.

Raciocínio Probabilístico Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

Raciocínio Probabilístico

Representação do Conhecimento em um Domínio Incerto

As redes bayesianas podem representar essencialmente qualquer distribuição de probabilidade conjunta completa.

Raciocínio Probabilístico

- Cada nó corresponde a uma variável aleatória, que pode ser discreta ou contínua.
- Um conjunto de vínculos orientados ou setas conecta pares de nós. Se houver uma seta do nó X até o nó Y, X será denominado pai de Y. O grafo não tem ciclos orientados (e, portanto, é um grafo acíclico orientado, ou GAO).
- 3. Cada nó *Xi* tem uma distribuição de probabilidade condicional **P**(*Xi* | *Pais*(*Xi*)) que quantifica o efeito dos pais sobre o nó.

Pata Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Raciocínio Probabilístico

Formalmente, a independência condicional de DorDeDente e Boticão dada Cárie é a ausência de um vínculo entre DorDeDente e Boticão. Intuitivamente, a rede representa o fato de que Cárie é uma causa direta de DorDeDente e Boticão, enquanto não existe nenhum relacionamento causal direto entre DorDeDente e Boticão.

Raciocínio Probabilístico Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

Raciocínio Probabilístico Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

Uma rede bayesiana típica, mostrando a topologia e também as tabelas de probabilidade condicional (TPCs).

Nas TPCs, as letras R, T, A, J e M representam Roubo, Terremoto, Alarme, JoãoLiga e MariaLiga, respectivamente.

Pata Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Raciocínio Probabilístico

Note que a rede não tem nós correspondentes ao fato de Maria estar ouvindo música em alto volume no momento ou ao fato de o telefone t<mark>ocar e c</mark>onfundir João. Esses fatores são resumidos na incerteza associada aos vínculos de Alarme para JoãoLiga e MariaLiga.

Data Science Academy

Tempo e Incerteza

- Variáveis de evidência:
 - AçúcarNoSangueMedidot
 - Pulsaçãot
- Variáveis de estado:
 - **A**çúcarNoSanguet
 - ConteúdoDoEstômagot

Xt pa<mark>ra</mark> indicar o conjunto de variáveis de estados no tempo t Et para indicar o conjunto de variáveis de evidência observáveis

Inferência em Modelos Temporais

- Filtragem
- Previsão
- Suavização
- Explicação Mais Provável
- Aprendizagem

Pata Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Raciocínio Probabilístico Temporal

O aprendizado exige a inferência de suavização total, e não a filtragem, porque a suavização fornece melhores estimativas dos estados do processo.

Obrigado

