

# 数字逻辑 12 时序线路设计

状态化简与编码

杨永全

计算机科学与技术学院

# <u>目录</u>

- 1. 课程目标
- 2. 课程内容
- 3. 课堂练习
- 4. 课堂讨论
- 5. 课堂总结
- 6. 作业

# 1.课程目标

# 1. 目标

- 1. 掌握原始状态表化简方法(K 次划分法)
- 2. 掌握次佳编码法

# 2.课程内容

### 1. 原始状态表化简方法 1.化简原理

#### 化简原理: 找出等价状态并将它们合并

#### 等价状态:

- 1、必要条件:在同样的输入作用下,有相同的输出
- 2、同样的输入条件下,相应的次态彼此等价

#### 等价次态:

- 1. 对应的次态相同
- 2、次态为两个现态本身或交错
- 3. 两个次态为状态对封闭链中的一对
- 4. 两个次态的某一后续状态对可以合并

等价状态具有可传递性:AB 等价、AC 等价 = >BC 等价、则 A、B、C 为等价类

等价类: 彼此等价的状态的集合

**最大等价类**:一个等价类不包含在任何其他等价类中

化简原始状态表 = > 寻找最大等价类

# 1. 原始状态表化简方法 1.化简原理

#### 举例说明



## 1. 原始状态表化简方法 1.化简原理

#### 举例说明

| S X | 0   | 1   |
|-----|-----|-----|
| а   | e,0 | d,0 |
| b   | a,1 | f,O |
| С   | c,0 | a,1 |
| d   | b,0 | a,0 |
| е   | d,1 | c,0 |
| f   | c,0 | d,1 |
| g   | h,1 | g,1 |
| h   | c,1 | b,1 |





#### 1. 原始状态表化简方法 2.k 次划分法

先找出输出相同的状态集合,为一次划分,再找第二次输入下输出也相同的集合,依此类推,直到 k + 1 次不能再划分,找到最大等价类集合。

#### 步骤:

- 1. 找出输出相同的状态集合进行划分。
- 2. 将次态所在的集合做为下标, 更新在集合中。
- 3. 若下标不同,则拆分等价状态类。
- 4. 直到所有的下标都保持一致。

# 1. 原始状态表化简方法 2.k 次划分法

#### 例子

| S X | 0   | 1   |
|-----|-----|-----|
| а   | c,0 | b,1 |
| b   | f,O | a,1 |
| С   | d,0 | g,0 |
| d   | d,1 | e,0 |
| е   | c,0 | e,1 |
| f   | d,0 | g,0 |
| g   | c,1 | d,0 |

• 1. 一次划分

$$- q_1 = \{ a_{21}, b_{21}, e_{21} \}$$

$$- q_2 = \{ c_{33}, f_{33} \}$$

$$- q_3 = \{ d_{31}, g_{23} \}$$

• 2、二次划分(把一次划分中下标不同的分出来)

$$- q_1 = \{ a_{21}, b_{21}, e_{21} \}$$

$$q_2 = \{ c_{33}, f_{33} \} = \{ c_{34}, f_{34} \}$$

$$- q_3 = \{ d_{31} \}$$

$$- q_4 = \{ g_{23} \}$$

• 3、所有下标都相同,划分结束。

隐含表:是一种直角三角形表格,表中每一个小格表示一个状态对的等价或不等价关系。

| x <sub>1</sub> x <sub>2</sub> | 00  | 01  | 11  | 10  |
|-------------------------------|-----|-----|-----|-----|
| а                             | d,0 | d,0 | f,O | a,0 |
| b                             | c,1 | d,0 | e,1 | f,O |
| С                             | c,1 | d,0 | e,1 | a,0 |
| d                             | d,0 | b,0 | a,0 | f,O |
| е                             | c,1 | f,O | e,1 | a,0 |
| f                             | d,0 | d,0 | a,0 | f,O |
| g                             | g,0 | g,0 | a,0 | a,0 |
| h                             | b,1 | d,0 | e,1 | a,0 |



关连比较。继续检查填有隐含条件的那些方格。若检查发现所填的隐含条件肯定不能满足、就在该方格内打"×"

| x <sub>1</sub> x <sub>2</sub> | 00  | 01  | 11  | 10  |
|-------------------------------|-----|-----|-----|-----|
| а                             | d,0 | d,0 | f,O | a,0 |
| b                             | c,1 | d,0 | e,1 | f,O |
| С                             | c,1 | d,0 | e,1 | a,0 |
| d                             | d,0 | b,0 | a,0 | f,O |
| е                             | c,1 | f,O | e,1 | a,0 |
| f                             | d,0 | d,0 | a,0 | f,O |
| g                             | g,0 | g,0 | a,0 | a,0 |
| h                             | b,1 | d,0 | e,1 | a,0 |



#### 寻找最大等价类

未打"×"的方格,都代表一个等价 状态对 由此得到全部等价对: [a, f]、[b, h]、[b, c]、[c, h] 部最大等价类: [a, f]、[b, c, h]、[d]、[e]、[g] 最后、状态合并、得最简状态表



#### 隐含表法总结

- 1. 构作隐含表、分情况讨论: A 等价 √B 不等价 × C 条件
- 2. 顺序比较追踪、找出所有等价状态
- 3. 形成最大等价类集合
- 4. 构成最简状态表

### 2. 状态编码

#### 次佳编码法

确定需要几位二进制码  $k [log_0N]$  向上取整

#### 编码规则

- 1) 次态相同, 现态相邻
- 2) 现态相同, 次态相邻
- 3) 输出相同, 现态相邻
- 优先顺序 1>2>3

### 2. 状态编码

| S X | 0   | 1   |
|-----|-----|-----|
| a   | c,0 | d,0 |
| b   | c,0 | a,0 |
| С   | b,0 | d,0 |
| d   | a,1 | b,1 |

 $\log_2 4 = 2$  所以需两位二进制码 1) 次态相同,现态相邻 ab 相邻,ac 相邻 2) 现态相同,次态相邻 cd,ca,bd,ab 相邻 3) 输出相同,现态相邻 abc 相邻

#### 用 JK 触发器及与非门设计一个同步二进制串行加法器



#### 状态编码 a=0 b=1

| x <sub>1</sub> x <sub>2</sub> | 00  | 01  | 10  | 11  |
|-------------------------------|-----|-----|-----|-----|
| а                             | 0,0 | 0,1 | 0,1 | 1,0 |
| b                             | 0,1 | 1,0 | 1,0 | 1,1 |

## 状态转移表

| Q Qn+1 | J | K |
|--------|---|---|
| 0 0    | 0 | Φ |
| 0 1    | 1 | Φ |
| 1 0    | Φ | 1 |
| 1 1    | Φ | 0 |

| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у | y <sup>n+1</sup> | J | K | z |
|-----------------------|----------------|---|------------------|---|---|---|
| 0                     | 0              | 0 | 0                | 0 | Φ | 0 |
| 0                     | 0              | 1 | 0                | Φ | 1 | 1 |
| 0                     | 1              | 0 | 0                | 0 | Φ | 1 |
| 0                     | 1              | 1 | 1                | Φ | 0 | 0 |
| 1                     | 0              | 0 | 0                | 0 | Φ | 1 |
| 1                     | 0              | 1 | 1                | Φ | 0 | 0 |
| 1                     | 1              | 0 | 1                | 1 | Φ | 0 |
| 1                     | 1              | 1 | 1                | Φ | 0 | 1 |

#### 列控制、输出函数表达式

$$z = x_1 \overline{x_2} y + \overline{x_1} x_2 \overline{y} + x_1 \overline{x_2} \overline{y} + x_1 x_2 y$$

$$J = x_1 y$$

$$K = \overline{x_1} \overline{y}$$

# 3.课堂练习

# 使用 k 次划分法化简:

| x<br>s | 0   | 1   |
|--------|-----|-----|
| а      | c,1 | d,1 |
| b      | b,0 | c,1 |
| С      | c,1 | a,0 |
| d      | d,0 | с,0 |
| е      | e,0 | с,0 |
| f      | f,0 | c,1 |

# 使用 k 次划分法化简:

| x<br>s | 0   | 1   |
|--------|-----|-----|
| а      | a,0 | g,1 |
| b      | b,0 | d,0 |
| С      | d,1 | e,0 |
| d      | g,1 | e,1 |
| е      | e,0 | g,1 |
| f      | f,0 | d,0 |
| g      | с,0 | f,1 |

#### 用与非门,与或非门及 JK 触发器,设计串行 8421 码检测器。

检测前, x 总是会输入一个 1, 表示后面的 4 位数字, 为要检测的编码, 先出现的是最低位。



# 4.课堂讨论

时序线路学完了,到底应该如何理解时序线路的状态?

# 5.课堂总结

## 1. 课堂总结

□ 笔记

现在可以总结自己的笔记,提炼大纲,回顾课程。

● 总结

还可以将课程的总结、心得记录在总结区。

# 6.作业

#### 1. 题目

#### 试用与非门和 JK 触发器设计一个同步模 5 计数器, 其计数规律为:





# 问答环节