TEMA B

Primer parcial de Matemática DiscretaII-26 de abril de 2024. Escriba su nombre EN CADA HOJA y numere cada hoja de la forma n/N donde n es el número de la hoja y N el número total de hojas que entrega (sin contar esta).

1): (3,5 puntos) En el siguiente network, x es igual a la cifra de las unidades de su DNI. Hallar un flujo maximal en el, usando Dinitz en cualquiera de sus versiones. Dar tambien un corte minimal y mostrar que el valor del flujo maximal es igual a la capacidad del corte minimal.

(si ud. no aprendió Dinitz, puede hacerlo usando Edmonds-Karp, pero a) va a demorar mas y b) tiene un punto de descuento, es decir el ejercicio vale 2,5 puntos en ese caso).

sA:71+x	CD: 100	It:x	PM: 100
sB:100	DM:71+x	IF: 100	PQ: 100
sC:100	EF:70	JK: 100	QR: 100
sE:70	EG:71	KI:10	RU: 100
sP: 11 + x	Ft:70	KL:100	UX: 100
AI:100	GN:100	LI:100	XY: 100
AM:71	Ht:x	Mt: 82 + x	Yt:100
BH:100	HJ:100	Nt: 100	

2):

a) (2,5 puntos) A partir del siguiente network y comenzando con el flujo 0, construir el

primer NA y hallar un flujo bloqueante en el usando WAVE.

b) (0,5 puntos) Luego de haber hecho a), a partir del flujo obtenido, continuar con Edmonds-Karp hasta hallar un flujo maximal y un corte minimal en el network. (nota: ud debe hacer la parte a) para poder hacer la parte b). Si Ud. hace la parte a) usando un algoritmo distinto a Wave, el ejercicio entero vale 0 puntos).

sA 15 sB 10	BC 10 BD 5	DE 10	Ft 8
AC 15	CE 20	DG 9	Gt 7
AD 5	CF 9	Et 9	

3): (3,5 puntos) Dado un grafo G con vertices $\{v_1, ..., v_n\}$, sean $x_1, ..., x_n, z$ vértices que no estén en G y sea H el grafo con vértices $\{v_1, ..., v_n, x_1, ..., x_n, z\}$ y lados:

$$E(H) = E(G) \cup \{x_i v_j : v_i v_j \in E(G)\} \cup \{x_i z : i = 1, ..., n\}$$

Probar que $\chi(H) = \chi(G) + 1$.

Nota: es casi obvio que $\chi(H) \leq \chi(G) + 1$ asi que probar unicamente esta desigualdad vale

solo 0,1 puntos.

(ayuda: una forma de hacerlo es suponer por contradicción que $\chi(H) = \chi(G)$ y usar el coloreo de H para crear un coloreo de G con $\chi(G) - 1$ colores. Nota: el coloreo de H no va a dar automaticamente un coloreo de G con $\chi(G) - 1$ colores. Dado el coloreo de H, que en particular colorea a G como subgrafo, hay que cambiar inteligentemente este ultimo coloreo para que queden $\chi(G) - 1$ colores).