Funktory logiczne

Funktory logiczne to przedstawienie relacji zachodzących pomiędzy prawdą a fałszem, jako działań na cyfrach 0 (fałsz) oraz 1 (prawda).

Zaprzeczenie(NOT) - Negacja danego twierdzenia.

Α	Υ
0	1
1	0

Suma(OR) - Potwierdzenie danego twierdzenia za pomocą przynajmniej jednej prawdziwej informacji.

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

Zaprzeczenie sumy(NOR) - Potwierdzenie danego twierdzenia za pomocą obu nieprawdziwych informacji.

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

Iloczyn(AND) - potwierdzenie danego twierdzenia za pomocą dwóch prawdziwych informacji.

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

Zaprzeczenie iloczynu(NAND) - potwierdzenie danego twierdzenia za pomocą obu pełnego fałszu, albo tylko jednej prawdziwej informacji.

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

Suma modulo 2(XOR) - Potwierdzenie danego twierdzenia zawsze za pomocą jednej prawdziwej i jednej błędnej informacji.

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Zaprzeczenie sumy modulo 2(XNOR) - Potwierdzenie danego twierdzenia za pomocą obu prawdziwych lub obu fałszywych informacji.

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

1. Sprawdzenie podzielności liczby binarnej przez 2, za pomocą funktorów logicznych.

W tym przypadku wystarczy zanegować najmłodszy bit liczby i w wyniku otrzymamy (1 - podzielna, 0 - niepodzielna).

2. Sprawdzenie podzielności liczby binarnej przez 3, za pomocą funktorów logicznych.

Liczba binarna jest podzielna przez 3, gdy różnica jedynek na bitach parzystych i bitach nieparzystych jest podzielna przez 3. Podany przykład odnosi się do 4 bitów, czyli liczby podzielne przez 3 w tym przypadku będa miały różnicę wynoszącą 0.

4 bramki XNOR, 2 bramki AND i 1 bramka OR. Układ zwraca 1 przy liczbie podzielnej przez 3.