Quad SPST CMOS Analog Switches

Features

• Low On-Resistance: 50 Ω

• Low Leakage: 80 pA

• Low Power Consumption: 0.2 mW

• Fast Switching Action—t_{ON}: 150 ns

• Low Charge Injection—Q: −1 pC

• DG201A/DG202 Upgrades

• TTL/CMOS-Compatible Logic

• Single Supply Capability

Benefits

• Less Signal Errors and Distortion

 Reduced Power Supply Requirements

• Faster Throughput

Improved Reliability

• Reduced Pedestal Errors

Simplifies Retrofit

• Simple Interfacing

Applications

- Audio Switching
- Battery Powered Systems
- Data Acquisition
- Hi-Rel Systems
- Sample-and-Hold Circuits
- Communication Systems
- Automatic Test Equipment
- Medical Instruments

Description

The DG441/442 monolithic quad analog switches are designed to provide high speed, low error switching of analog and audio signals. The DG441 has a normally closed function. The DG442 has a normally open function. Combining low on-resistance (50 $\Omega,$ typ.) with high speed (toN 150 ns, typ.), the DG441/442 are ideally suited for upgrading DG201A/202 sockets. Charge injection has been minimized on the drain for use in sample-and-hold circuits.

To achieve high voltage ratings and superior switching performance, the DG441/442 are built on Siliconix's high-voltage silicon-gate process. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks input voltages to the supply levels when off.

Functional Block Diagram and Pin Configuration

Logic	DG441	DG442			
0	ON	OFF			
1	OFF	ON			

Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70053.

Ordering Information

Temp Range	Package	Part Number
–40 to 85°C	16-Pin Plastic DIP	DG441DJ
	16-Pin Plastic DIP	DG442DJ
	16-Pin Narrow SOIC	DG441DY
	10-FIII Namow SOIC	DG442DY
−55 to 125°C		DG441AK
		DG441AK/883
	16-Pin CerDIP	5962-9204101MEA
	10-1 iii CeiDii	DG442AK
		DG442AK/883
		5962-9204102MEA
	LCC-20	5962-9204101M2A
	LCC-20	5962-9204102M2A

Absolute Maximum Ratings

V+ to $V-$	44 V
GND to V $-\dots$	25 V
Digital Inputs a V_{S} , V_{D}	\dots (V–) –2 V to (V+) +2 V
	or 30 mA, whichever occurs first
Continuous Current (Any T	Terminal)
Current, S or D (Pulsed 1 n	ns, 10% duty cycle) 100 mA
Storage Temperature	(AK Suffix)65 to 150°C
	(DJ, DY Suffix)65 to 125°C

$450\;mW$
900 mW
$900\;\mathrm{mW}$

Notes

- Signals on S_X, D_X, or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC Board.
- c. Derate 6 mW/°C above 75°C
- d. Derate 12 mW/°C above 25°C

Schematic Diagram (Typical Channel)

2 Siliconix

Specifications^a for Dual Supplies

		Test Conditions Unless Specified			A Suffix –55 to 125°C		D Suffix -40 to 85°C		
Parameter	Symbol	V+ = 15 V, V- = -15 V $V_{IN} = 2.4 V, 0.8 V^f$	Temp ^b	Typ ^c	Min ^d	Max ^d	Min ^d	Max ^d	Unit
Analog Switch					•				
Analog Signal Range ^e	V _{ANALOG}		Full		-15	15	-15	15	V
Drain-Source On-Resistance	r _{DS(on)}	$I_S = -10 \text{ mA}, V_D = \pm 8.5 \text{ V}$ V+ = 13.5 V, V- = -13.5 V	Room Full	50		85 100		85 100	Ω
Switch Off	$I_{S(off)}$	V+ = 16.5, V- = -16.5 V	Room Full	±0.01	-0.5 -20	0.5 20	-0.5 -5	0.5 5	nA
Leakage Current	I _{D(off)}	$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V}$	Room Full	±0.01	-0.5 -20	0.5 20	-0.5 -5	0.5 5	
Channel On Leakage Current	I _{D(on)}	V+ = 16.5 V, V- = -16.5 V $V_S = V_D = \pm 15.5 \text{ V}$	Room Full	±0.08	-0.5 -40	0.5 40	-0.5 -10	0.5 10	
Digital Control	•								
Input Current V _{IN} Low	$I_{ m IL}$	V_{IN} under test = 0.8 V All Other = 2.4 V V_{IN} under test = 2.4 V All Other = 0.8 V	Full	-0.01	-500	500	-500	500	пA
Input Current V _{IN} High	I _{IH}		Full	0.01	-500	500	-500	500	
Dynamic Characteristic	s					•	•		
Turn-On Time	t _{ON}		Room	150		250		250	
Turn-Off Time DG441	t _{OFF}	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$ $V_S = \pm 10 \text{ V}$, See Figure 2	Room	90		120		120	ns
DG442	UFF		Room	110		210		210	1
Charge Injection ^e	Q	$C_L = 1 \text{ nF, } V_S = 0 \text{ V}$ $V_{gen} = 0 \text{ V, } R_{gen} = 0 \Omega$	Room	-1					рC
Off Isolation ^e	OIRR	D -50 O C -5 mE	Room	60					
Crosstalke (Channel-to-Channel)	X _{TALK}	$R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}$ $f = 1 \text{ MHz}$	Room	100					dB
Source Off Capacitance ^e	$C_{S(off)}$	f = 1 MHz	Room	4					
Drain Off Capacitance ^e	C _{D(off)}	I – I WITIZ	Room	4					pF
Channel On Capacitance ^e	C _{D(on)}	$V_{ANALOG} = 0 V$	Room	16					
Power Supplies									
Positive Supply Current	I+	V+ = 16.5 V, V- = -16.5 V $V_{IN} = 0 \text{ or } 5 \text{ V}$	Full	15		100		100	
Negative Supply Current	I–		Room Full	-0.0001	-1 -5		-1 -5		μΑ
Ground Current	$I_{ m GND}$		Full	-15	-100		-100		

- a. Refer to PROCESS OPTION FLOWCHART.
- b. Room = 25°C, Full = as determined by the operating temperature suffix.
 c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- Guaranteed by design, not subject to production test.
- V_{IN} = input voltage to perform proper function.

Specifications^a for Single Supply

		Test Conditions Unless Otherwise Specified			A Suffix –55 to 125°C		D Suffix -40 to 85°C		
Parameter	Symbol	V+ = 12 V, V- = 0 V $V_{IN} = 2.4 V, 0.8 V^{f}$	Temp ^b	Турс	Mind	Max ^d	Mind	Max ^d	Unit
Analog Switch		-	_						
Analog Signal Range ^e	V _{ANALOG}		Full		0	12	0	12	V
Drain-Source On-Resistance	r _{DS(on)}	$I_S = -10 \text{ mA}, V_D = 3 \text{ V}, 8 \text{ V}$ V+ = 10.8 V	Room Full	100		160 200		160 200	Ω
Dynamic Characteristics									
Turn-On Time	t _{ON}	$R_{L} = 1 \text{ k}\Omega, C_{L} = 35 \text{ pF}$	Room	300		450		450	
Turn-Off Time	t _{OFF}	$V_S = 8 \text{ V}, \text{ See Figure 2}$	Room	60		200		200	ns
Charge Injection	Q	$C_L = 1 \text{ nF } V_{gen} = 6 \text{ V}, R_{gen} = 0 \Omega$	Room	2					рC
Power Supplies									
Positive Supply Current	I+		Full	15		100		100	
Negative Supply Current	I–	V+ = 16.5 V, V- = -16.5 V $V_{IN} = 0 \text{ or } 5 \text{ V}$	Room Full	-0.0001	$-1 \\ -100$		$-1 \\ -100$		μΑ
Ground Current	I_{GND}		Full	-15	-100		-100		1

Notes:

- a. Refer to PROCESS OPTION FLOWCHART.
- b. Room = 25°C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.

Typical Characteristics

Typical Characteristics (Cont'd)

-30

-40 0

2

4

Typical Characteristics (Cont'd)

For I_D , $V_S = 0$

For I_S , $V_D = 0$

10

12

8

V+ (V)

Test Circuits

C_L (includes fixture and stray capacitance)

Logic input waveform is inverted for DG442.

Figure 2. Switching Time

Test Circuits (Cont'd)

Figure 3. Charge Injection

Figure 4. Crosstalk

Figure 5. Off Isolation

Figure 6. Source/Drain Capacitances

Applications

Figure 7. Power MOSFET Driver

Figure 8. Open Loop Sample-and-Hold

Figure 9. Precision-Weighted Resistor Programmable-Gain Amplifier

Siliconix