

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta053

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar, Specializarea: specializarea\ matematică-informatică al contract specializarea\ matematică al contract specializarea al contract specializarea$

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se determine aria unui triunghi cu vârfurile în punctele A(2,1), B(3,4), C(5,3).
- (4p) b) Să se calculeze aria unui pătrat cu diagonala $\sqrt{2}$.
- (4p) c) Să se determine partea reală a numărului complex $z = \frac{1}{3-4i}$.
- (4p) d) Să se calculeze $\sin^2 \frac{\pi}{3} + \cos^2 \frac{\pi}{6}$.
- (2p) e) Să se determine ecuația tangentei la cercul de ecuație $x^2 + y^2 = 25$ în punctul A(3, 4).
- (2p) f) Să se determine distanța de la punctul M(1, 2, 3) la planul de ecuație x + y + z = 7.

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze $\left\{\frac{1}{2}\right\} + \left\{\frac{2}{2}\right\} + \left\{\frac{3}{2}\right\}$, unde $\left\{x\right\}$ este partea fracționară a numărului real x.
- (3p) b) Să se determine cel mai mare număr natural n pentru care $2^n < 2007$.
- (3p) c) Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 5x + 6$. Să se calculeze $f(1) \cdot f(2) \cdot f(3) \cdot \dots \cdot f(10)$.
- (3p) d) Să se determine restul împărțirii polinomului $f = X^3 + 3X + 1$ la polinomul g = X 1.
- (3p) e) Să se determine probabilitatea ca un element din \mathbb{Z}_9 să fie inversabil față de înmulțire.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^{2007} + 1$
- (3p) a) Să se calculeze f(1).
- (3p) b) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) c) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$.
- (3p) d) Să se calculeze $\int_{-1}^{1} f(x) dx$.
- (3p) e) Să se calculeze $\lim_{x \to \infty} \frac{f(x)}{x \cdot f'(x)}$.

SUBIECTUL III (20p)

În mulțimea $M_2(\mathbf{C})$ se consideră matricele $A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$, $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și mulțimea $M = \{ X \in M_2(\mathbf{C}) \mid \exists k \in \mathbf{N}, k \ge 2, X^k = O_2 \}$

- (4p)a) Să se arate că $A \in M$.
- **b**) Să se arate că pentru orice matrice $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbf{C})$, avem (4p) $B^{2} - (a+d)B + (ad-bc)I_{2} = O_{2}.$ **c)** Să se verifice că $\det(X \cdot Y) = \det(X) \cdot \det(Y), \ \forall \ X, Y \in M_{2}(\mathbb{C})$
- (2p)**d)** Să se arate că dacă $X \in M$, atunci $X^2 = O_2$.
- (2p)e) Să se arate că pentru $n \in \mathbb{N}$, $n \ge 2$, ecuația $Z^n = A$ nu are soluție în $M_2(\mathbb{C})$
- **f**) Să se arate că funcția $f: M_2(\mathbf{C}) \to M_2(\mathbf{C})$, $f(X) = X^{2007}$ nu este surjectivă. (2p)
- g) Să se arate că dacă $B \in M$, atunci $\det(I_2 + B + B^2 + ... + B^{2007}) = 1$. (2p)

SUBIECTUL IV (20p)

Se consideră funcțiile $f:(0,\infty)\to \mathbf{R}$, $f(x)=\ln x$, $g:(0,1)\to \mathbf{R}$, g(x)=tg(x-x)și șirurile cu termenul general $\left(a_n\right)_{n\in\mathbb{N}^*}$, $\left(c_n\right)_{n\in\mathbb{N}^*}$, definite prin

$$c_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \;, \; \; n \in \mathbf{N}^* \;, \; a_n = tg \; \frac{1}{n+1} + tg \; \frac{1}{n+2} + \dots + tg \; \frac{1}{n+n} \;, \; \; n \in \mathbf{N}^* \;.$$

- a) Să se calculeze g'(x), $x \in (0,1)$. (4p)
- **b**) Să se arate că funcția g este strict crescătoare pe intervalul (0,1). (4p)

(4p) c) Să se arate că
$$tg \frac{1}{2n} - \frac{1}{2n} \le tg \frac{1}{n+k} - \frac{1}{n+k} \le tg \frac{1}{n+1} - \frac{1}{n+1}, k = \{1,2,...,n\}.$$

- (2p)**d**) Aplicând teorema lui *Lagrange* funcției f pe intervalul [k, k+1], $k \in \mathbb{N}^*$, să se arate $c\check{a} = \frac{1}{k+1} < \ln(k+1) - \ln k < \frac{1}{k}$
- e) Să se arate că șirul $(c_n)_{n \in \mathbb{N}^*}$ este monoton și mărginit. (2p)

(2p) **f**) Să se arate că
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2n} \right) = \ln 2$$
.

g) Să se arate că $\lim_{n \to \infty} a_n = \ln 2$.

2