Feuille de TD 10 : Révisions

Exercice 1. Fonctions à plusieurs variables (décembre 2007)

On considère la fonction de deux variables f définie par :

$$f(x,y) = x^2 + xy + 2y^2 + \ln(2x - y)$$

- 1. Quel est le domaine de définition de la fonction f ? (faire une figure).
- 2. Calculer les dérivées partielles de f au point (1, 1).
- 3. Ecrire l'équation du plan tangent à la surface d'équation z = f(x, y) au point (1, 1, 4).

Exercice 2. Equation différentielle (mai 2008)

1. Calculer la dérivée de la fonction définie par :

$$\phi(x) = \ln\left(\frac{x-2}{x}\right), x \in]2, +\infty[.$$

2. Trouver la solution générale sur l'intervalle $x\in]2,+\infty[$ de l'équation différentielle :

$$y' = \frac{2}{x(x-2)}y + 2(x-2).$$

Exercice 3. Bijection (juin 2009)

Soit $g: \mathbb{R} \to \mathbb{R}$ la fonction définie par :

$$g(x) = (x-1)\arctan(x)$$

- 1. Calculer g'(x) et g''(x) pour tout $x \in \mathbb{R}$.
- 2. Etudier les variations de g' sur \mathbb{R} .
- 3. On pose : $J = g'(]-\infty, -1]$). Déterminer l'intervalle J.
- 4. Montrer que l'équation g'(x) = 0 possède une unique solution c dans \mathbb{R} et que l'on a $c \in]0,1[$.
- 5. Montrer que la fonction g admet un minimum en c.

Exercice 4. Fonctions réciproques (décembre 2008)

On considère la fonction réelle f définie sur $I =]-\frac{\pi}{2}, \frac{\pi}{2}[$ par :

$$f(x) = \frac{e^{\tan(x)} - e^{-\tan(x)}}{e^{\tan(x)} + e^{-\tan(x)}}.$$

- 1. Calculer f'(x) pour $x \in I$.
- 2. Déterminer l'image $J=f(]-\frac{\pi}{2},\frac{\pi}{2}[)$ de $]-\frac{\pi}{2},\frac{\pi}{2}[$ par f et montrer que f admet une application réciproque f^{-1} définie sur J.
- 3. Calculer $tan(f^{-1}(x))$ pour $x \in J$.
- 4. Déterminer la dérivée de la fonction f^{-1} .