Machine Learning Large Scale Data Annotation

Mostafa S. Ibrahim
Teaching, Training and Coaching for more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

Large Scale Data Annotation

- So far, we learned when we collect data in computer vision for HOW task, we have 2 scenarios
- 1) Fine-grained data collection
 - Specify a huge list of scenarios with wide variance of variables (e.g gender)
 - Start to collect the data in static parking area
 - Pros: We know the scenarios, hence the ground truth is known
 - We can also has more seniors to help annotation
 - Cons: lack actual street driving behaviour
- 2) Free driving
 - Drive and monitor the driver
 - Cons: lack the ground truth

Large Scale Data Annotation

- Assume we collected the following data
- Fine-grained data
 - 125 hours of collection coming from 500 drivers
 - Each driver recording session is 15 minutes for 180 well-defined scenarios
- Free driving
 - 160 hours free driving sessions from 20 driviners
- Question: How many frames in total?

Frame-Filtering Task (CV)

- 285 hours under 30 FPS = 285 * 60 * 60 * 30 = 30,780000 frames
- This is a huge amount of data for
 - Annotation [our goal for now] ... we can't ask annotators to annotate 30M frames!
 - Training
- Practically speaking, we may not be able to process all such data
- So we do a process called 'Frame-Filtering': Filter (keep) amount of data that you can use and drop the remaining
 - Data you keep may be:
 - some are good from auto-labeling to be used as it is
 - some will be sent to manual annotators
- Given 30M frames, propose an efficient plan to use the data!

Consider

- We have some sub-optimal algorithm that helps us find the hands
 - But 15% of the time, these boxes are in wrong locations
- We already trained our POC model and it has 80% accuracy on test set
- we can utilize some SOTA for helping us

Possible SOTA

Given image, find persons pose

Given image, detect persons and hands

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."