Разберем пример поверхностного интеграла:

$$Ex. \ S_1: \ x^2+y^2=1, \quad S_2: z=0, \quad S_3: z=1$$

$$S=\bigcup_{i=1}^3 S_i - \text{ цилиндр}$$

$$\overrightarrow{F}=(P,Q,R)=(x,y,z)$$

$$\iint_{S_{\text{Виешин.}}} x dy dz + y dx dz + z dx dy = \iint_{S_1} + \iint_{S_2} + \iint_{S_3}$$
 Так как проекции S_2 на Oxz и Oyz - отрезки, то $dx dz=0$, $dy dz=0$
$$\iint_{S_2} x dy dz + y dx dz + z dx dy = \iint_{S_2} z dx dy = 0$$

$$\iint_{S_3} z dx dy \stackrel{z|_{S_3}=1}{=} \iint_{S_3} dx dy \stackrel{c}{=} \text{Tak kak } \text{ns for } x \text{ds} \text{$$

5.7. Связь поверхностных интегралов с другими

Тh. Гаусса-Остроградского

$$S_1: z=z_1(x,y), \ S_3: z=z_3(x,y), \ S_2: f(x,y)=0$$
 (проекция на Oxy - кривая) $S=\bigcup_{i=1}^3 S_i$ - замкнута! и ограничивает тело T (S_2 - цилиндр, S_1 - шапочка, S_3 - шапочка снизу) $P=P(x,y,z), Q=Q(x,y,z), R=R(x,y,z)$ - непр. дифф., действуют в области $\Omega\supset T$ Тогда $\iint_{S_{\mathrm{BHellih}}} Pdydz+Qdxdz+Rdxdy=\iiint_{T} \left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)dxdydz$

Мет. Формула Грина

$$\oint_{K} Pdx + Qdy = \iint_{D_{xy}} \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y} \right) dxdy$$
Вычислим почленно
$$\iint_{T} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv$$

$$\iint_{T} \left(\frac{\partial R(x, y, z)}{\partial z} dz \right) dxdy = \iint_{D_{xy}} R(x, y, z) \Big|_{z=z_{1}(x,y)}^{z=z_{3}(x,y)} dxdy = \iint_{D_{xy}} \left(R(x, y, z_{3}(x, y)) - R(x, y, z_{1}(x, y)) \right) dxdy = \iint_{D_{xy}} R(x, y, z_{3}) dxdy - \iint_{D_{xy}} R(x, y, z_{1}(x, y)) dxdy = \iint_{S_{3}} R(x, y, z) dxdy + \iint_{S_{1}} R(x, y, z) dxdy + \iint_{S_{2}} R(x, y, z) dxdy = \lim_{D_{2}} \lim$$

Аналогично остальные члены:
$$\iiint_T \frac{\partial Q}{\partial y} dx dy dz = \iint_{S_{\text{внешн}}} Q dx dz, \iiint_T \frac{\partial P}{\partial y} dx dy dz = \iint_{S_{\text{внешн}}} P dx dz$$

$$Nota.$$
 Если $\iint_{S_{\text{внутр}}}$, то $\iint_{S} = - \iiint_{T}$

Nota. С учетом связи поверхностных интегралов $\iiint_T \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv = \iint_S (P\cos\alpha + Q\cos\beta + R\cos\gamma) dv$

Th. Стокса

Пусть S: z = z(x,y) - незамкнутая поверхность, L - контур, на которую она опирается пр $_{Oxy}L = K_{xy}, \quad$ пр $_{Oxy}S = D_{xy}$

В области $\Omega\supset S$ действуют функции P,Q,R - непр. дифф.

Тогда
$$\oint_{L^+} P dx + Q dy + R dz = \iint_{S^+} \left(\left(\frac{\partial R}{\partial y} - \frac{\partial \widetilde{Q}}{\partial z} \right) \cos \alpha + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \beta + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \right) d\sigma$$

Найдем слагаемое $\oint_L P(x,y,z)dx \stackrel{\text{на }L \ : \ z=z(x,y)}{=\!=\!=\!=} \oint_{K_{xy}} \tilde{P}(x,y,z(x,y))dx = \oint_{K_{xy}} \tilde{P}dx + \tilde{Q}dy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{Q}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{Q}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{Q}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{Q}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{Q}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{Q}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{Q}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{Q}}{\partial y}\right) dxdy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{Q}}{\partial y}\right) dxdy$

$$-\iint_{D_{xy}} \frac{\partial P(x,y)}{\partial y} dx dy = -\iint_{S^{+}} \frac{\partial P(x,y,z)}{\partial y} dx dy = -\iint_{S^{+}} \left(\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}\right) dx dy = -\iint_{S^{+}} \left(\frac{\partial P}{\partial y} \cos \gamma + \frac{\partial P}{\partial z} (-\cos \beta)\right) d\sigma$$

$$\overrightarrow{n} = \left(\frac{-\frac{\partial z}{\partial x}}{\sqrt{1 + z_{x}'^{2} + z_{y}'^{2}}}\right)$$

$$\cos \gamma = \frac{1}{\sqrt{1 + z_x'^2 + z_y'^2}}$$

Аналогично $\oint_L Q dy = \iint_{S^+} \left(\frac{\partial Q}{\partial x} \cos \gamma - \frac{\partial Q}{\partial z} \cos \alpha \right) d\sigma, \oint_L R dz = \iint_{S^+} \left(\frac{\partial R}{\partial y} \cos \alpha - \frac{\partial R}{\partial x} \cos \beta \right) d\sigma$

Ex. 1.
$$(P, Q, R) = (x, y, z)$$

В Ех. пункте 5.6. (вычисление поверхностного):

$$\iint_{S_{\text{BHeIIIH}}} x dy dz + y dx dz + z dx dy = \iiint_{T} \left(\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} \right) dv = 3V_{\text{Цил.}}$$

 $Ex. \ 2. \ {\rm Te} \ {\rm жe} \ P, Q, R$

$$\oint_{L} Pdx + Qdy + Rdz = \iint_{S} \left(\frac{\frac{=0}{\left(\frac{\partial z}{\partial y} - \frac{\partial y}{\partial z} \right)} \cos \alpha + 0 + 0 \right) d\sigma$$

6. Теория поля

6.1. Определения

Def. 1. $\Omega \supset \mathbb{R}^n$ Функция $u:\Omega \to \mathbb{R}$ называется скалярным полем в Ω

Def. 2. Функция $\overrightarrow{F} = (F_1(\overrightarrow{x}), \dots, F_n(\overrightarrow{x})) : \Omega \to \mathbb{R}^n$ называется векторным полем

Nota. Далее будем рассматривать функции в \mathbb{R}^3 , то есть u=u(x,y,z) и $\overrightarrow{F}=(P(x,y,z),Q(x,y,z),R(x,y,z))$

Nota. Функции u и \overrightarrow{F} могут зависеть от вренмени t. Тогда эти поля называются нестационарными. В противном случае стационарными

6.2. Геометрические характеристики полей

u=u(x,y,z): l - линии уровня u=const $\overrightarrow{F}=(P,Q,R)$: w - векторная линия, в каждой точке w вектор \overrightarrow{F} - касательная к w Векторная трубка - совокупность непересекающихся векторных линий

Nota. Отыскание векторных линий

Возьмем $\overrightarrow{\tau}$ - элементарный касательный вектор, $\overrightarrow{\tau}=(dx,dy,dz)$ Определение векторной линии: $\overrightarrow{\tau}||\overrightarrow{F} \quad \frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}$ - система ДУ

 $Ex. \overrightarrow{F} = y\overrightarrow{i} - x\overrightarrow{j}, M_0(1,0)$ - ищем векторную линию $w \ni M_0$

Задача Коши:

$$\begin{cases} \frac{dx}{y} = -\frac{dy}{x} \\ y(1) = 0 \end{cases} \iff \begin{cases} xdx = -ydy \\ y(1) = 0 \end{cases} \iff \begin{cases} x^2 = -y^2 + C \\ y(1) = 0 \Longrightarrow C = +1 \end{cases} \iff x^2 + y^2 = 1$$

6.3. Дифференциальные характеристики

Mem. $\overrightarrow{\forall} u = \overrightarrow{grad}u = \left(\frac{\partial u}{\partial x}; \frac{\partial u}{\partial y}; \frac{\partial u}{\partial z}\right)$ - градиент скалярного поля $\overrightarrow{\nabla} = \left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z}\right)$ - набла-оператор

Nota. Для $\overrightarrow{\nabla}$ определены действия: $\overrightarrow{\nabla} \cdot \overrightarrow{a} = \frac{\partial a_1}{\partial x} + \frac{\partial a_2}{\partial y} + \frac{\partial a_3}{\partial z}$

$$\overrightarrow{\nabla} \times \overrightarrow{a} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{j} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_1 & a_2 & a_3 \end{vmatrix}$$

Причем $\overrightarrow{\nabla} \cdot \overrightarrow{\nabla} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \Delta$ - лапласиан

$$\overrightarrow{\nabla} \times \overrightarrow{\nabla} = 0$$

Nota. $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} + \frac{\partial^2 u}{\partial z^2} = 0$ – уравнение, определяющее гармоническую

часть волнового уравнения матфизики

функцию u(x, y, z), уравнение Лапласа

Def. 1. Дивергенция поля (divergence - расхождение) $div\overrightarrow{F} \stackrel{def}{=} \overrightarrow{\nabla} \cdot \overrightarrow{F}$

Def. 2. Вихрь (ротор) поля $rot \overrightarrow{F} \stackrel{def}{=} \overrightarrow{\nabla} \times \overrightarrow{F}$

Def. 3. Если $rot \overrightarrow{F} = 0$, то \overrightarrow{F} называется безвихревым полем

Def. 4. Если $\overrightarrow{divF} = 0$, то \overrightarrow{F} называется соленоидальным

Nota. Безвихревое поле имеет незамкнутые векторные линии, а вихревое - замкнутые

Тh. 1. Свойство безвихревого поля

$$\overrightarrow{rotF} = 0 \Longleftrightarrow \exists u(x,y,z) \mid \overrightarrow{\triangledown} u = \overrightarrow{F}$$

Рассмотрим $u=u(x,y,z)\mid \frac{\partial u}{\partial x}=P, \frac{\partial u}{\partial y}=Q, \frac{\partial u}{\partial z}=R$ - удовлетворяет системе равенств

$$\overrightarrow{F} = (P, Q, R) = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right) = \overrightarrow{\nabla} u$$

$$\overrightarrow{F} = \overrightarrow{\nabla} u$$
 - дана $rot \overrightarrow{F} = \overrightarrow{\nabla} \times \overrightarrow{F} = \overrightarrow{\nabla} \times (\overrightarrow{\nabla} u) = (\overrightarrow{\nabla} \times \overrightarrow{\nabla}) u = 0$

Nota. Доказали, что если векторное поле является градиентом какого-то скалярного, то его вихрь равен нулю: rot qradu = 0

Поле u(x,y,z) называется потенциалом поля \overrightarrow{F} Таким образом, доказано, что безвихревое поле потенциально

Th. 2. Свойство соленоидального поля

$$div(rot\overrightarrow{F}) = 0$$

$$div(rot\overrightarrow{F}) = div\overrightarrow{a} = \overrightarrow{\nabla}\overrightarrow{a} = \overrightarrow{\nabla}(\overrightarrow{\nabla}\times\overrightarrow{F}) = (\overrightarrow{\nabla}\times\overrightarrow{\nabla})\cdot\overrightarrow{F} = 0$$

6.4. Интегральные характеристики. Теоремы теории поля

$$Mem.\ 1)\ \Pi$$
оток поля $\overrightarrow{F}:\Pi=\iint_S \overrightarrow{F}\,d\overrightarrow{\sigma}$

$$\mathbf{Def.}$$
 2) Циркуляция поля $\overrightarrow{F}:\Gamma=\oint_{L}Pdx+Qdy+Rdz$

Nota. Запишем **Th.** на векторном языке

1* Гаусса-Остроградского

$$\begin{split} &\iint_{S} P dy dz + Q dx dz + R dx dy = \iiint_{T} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz \\ &\iint_{S} (P, Q, R) (dy dz, dx dz, dx dy) = \iint_{S} (P, Q, R) (\cos \alpha d\sigma, \cos \beta d\sigma, \cos \gamma d\sigma) = \iint_{S} \overrightarrow{F} \overrightarrow{n} d\sigma = \iint_{S} \overrightarrow{F} \overrightarrow{n} d\sigma = \iint_{S} \overrightarrow{F} \overrightarrow{n} d\sigma = \iint_{T} \overrightarrow{dv} \overrightarrow{F} \\ &\iiint_{S} \overrightarrow{F} d\overrightarrow{\sigma} = \iiint_{T} div \overrightarrow{F} \end{split}$$

2* Стокса

$$Pdx + Qdy + Rdz = \overrightarrow{F} d\overrightarrow{l}$$

$$\oint_{L} \overrightarrow{F} d\overrightarrow{l} = \iint_{S} rot \overrightarrow{F} \overrightarrow{n} d\sigma = \iint_{S} rot \overrightarrow{F} d\overrightarrow{\sigma}$$

3* Th. о потенциале

$$\forall L \oint_{L} \overrightarrow{F} d\overrightarrow{l} = 0 \iff rot\overrightarrow{F} = 0 \iff \exists u(x, y, z) \mid \overrightarrow{\nabla} = \overrightarrow{F}$$
 (см. **Th.** интеграла НЗП)

$$Ex. \overrightarrow{F} = x\overrightarrow{i} + xy\overrightarrow{j}, L: x = y, x = -y, x = 1$$

По формуле Грина (Стокса)
$$\oint_{L} \overrightarrow{F} d\overrightarrow{l} = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_{D} y dx dy \quad rot \overrightarrow{F} \neq 0$$

$$\oint_{L} x dx + xy dy = \int_{L_{1}} + \int_{L_{2}} + \int_{L_{3}} = \int_{0}^{1} (x + x^{2}) dx + \int_{-1}^{1} y dy - \int_{0}^{1} (x + x^{2}) dx = \int_{-1}^{1} y dy = 0$$

6.5. Механический смысл

1* Дивергенция

Гаусс-Остроградский:
$$\iiint_T div \overrightarrow{F} dv = \Pi$$

Th. о среднем:
$$\exists M_1 \in T \mid \iiint_T div \overrightarrow{F} dv = div \overrightarrow{F} \Big|_{M_1} \cdot V_T = \Pi$$

$$div\overrightarrow{F}\Big|_{M_1} = \frac{\Pi}{V_T}$$
, точка M_0, S и T выбраны произвольно

 $\exists V_T \to 0$, тогда $div \overrightarrow{F}\Big|_{M_1 \to M_0} = \lim_{V_T \to 0} \frac{\Pi}{V_T}$ - поток через границу бесконечно малого объема с центром M_0 , отнесенный к V_T - мощность источника в M_0

Таким образом, дивергенция поля - мощность источников

Nota. Смысл утверждения $div(rot\overrightarrow{F}) = 0$ - поле вихря свободно от источников

Nota. Утверждение $rot(\overrightarrow{gradu}) = 0$ - поле потенциалов свободно от вихрей

2* Ротор
Стокс
$$\iint_{S} rot \overrightarrow{F} d\overrightarrow{\sigma} = \Gamma$$

Th. о среднем:
$$\exists M_1: \iint_S rot \overrightarrow{F} d\overrightarrow{\sigma} = rot \overrightarrow{F}\Big|_{M_1} \cdot S = \Gamma$$

 $rot\overrightarrow{F}\Big|_{M_1}=rac{\Gamma}{S},$ будем стягивать S к точке $M_0\Longrightarrow rot\overrightarrow{F}\Big|_{M_0}=\lim_{S\to 0}rac{\Gamma}{S}$ - циркуляция по б.м. контуру с центром M_0