MATH 10 — UNIT 2 QUICK CHECK

Mr. Merrick · October 9, 2025

A. Multiple Choice

Select one option.

1. Simplify $\frac{(3x^2y^{-1})^2}{(x^{-2}y^3)^2}$ and write with positive exponents.

(A) $\frac{9}{x^8 y^8}$ (B) $\frac{9 x^4}{v^2}$

(C) $\frac{9x^8}{y^8}$

(D) $9x^8y^8$

2. Which equals $\frac{1}{(a^{-3}b^2)^{-1}c^{-2}}$ for $a, b, c \neq 0$?

(A) $a^{-3}b^2c^{-2}$ (B) $\frac{a^3}{b^2c^2}$ (C) $\frac{b^{-2}}{a^3c^2}$

(D) $\frac{b^2c^2}{a^3}$

3. Compute $(3.20 \times 10^{-2})(4.50 \times 10^{5})$ in scientific notation.

(A) 14.40×10^3

(B) 14.40×10^4

(C) 1.44×10^3

(D) 1.44×10^4

4. Compute $\frac{0.45 \times 10^{-6}}{6.0 \times 10^2}$ in scientific notation.

(A) 0.75×10^{-9} (B) 7.5×10^{-8} (C) 7.5×10^{-10}

(D) 0.75×10^{-7}

5. $(32)^{\frac{3}{5}}$ equals

(A) 6

(B) 8

(C) 10

(D) 4

6. Simplify $\sqrt{72 x^5 y^4}$ for $x, y \ge 0$.

(A) $\sqrt{72 x^5 y^4}$ (B) $6xy^2 \sqrt{2x}$ (C) $6x^2 y^2 \sqrt{2y}$ (D) $6x^2 y^2 \sqrt{2x}$

7.	Write	$a^{3/4}b^{1/4}$	as	a	single	radical	(a, b	\geq	0).
----	-------	------------------	----	---	--------	---------	-------	--------	-----

- (A) $\sqrt[4]{a^3b}$
- (B) \sqrt{ab}
- (C) $\sqrt[3]{ab}$
- (D) $\sqrt[4]{ab}$

8. Which is *not* in proper scientific notation?

- (A) 12.0×10^{-4}
- (B) 1.01×10^9
- (C) 9.99×10^{0}
- (D) 6.2×10^{-3}

9. Simplify $\frac{x^{1/2}y^{-1}z^3}{x^{-3/2}y^2z^{-1}}$ and write with positive exponents.

- (A) $\frac{x^2}{uz^4}$ (B) $\frac{x^2z^4}{v^3}$
- (C) $\frac{xz^2}{u^3}$
- (D) $\frac{x^2y^3}{2^4}$

10. Simplify $(27 a^9 b^6)^{2/3}$ for a, b > 0.

- (A) $9a^6b^4$
- (B) $3a^6b^4$
- (C) $9a^3b^2$
- (D) $\sqrt[3]{27a^9b^6}$

11. Write $a^{2/5}b^{3/5}$ as a single radical $(a, b \ge 0)$.

- (A) \sqrt{ab}
- (B) $\sqrt[3]{ab}$
- (C) $\sqrt[5]{a^2b^3}$
- (D) $\sqrt[2]{a^5b^5}$

12. Convert to a *simplified* mixed radical: $\sqrt{200 \, x^3 y}$ for $x, y \ge 0$.

- (A) $10xy\sqrt{2x}$
- (B) $10x\sqrt{2xy}$
- (C) $5x\sqrt{8xy}$
- (D) $4xy\sqrt{50x}$

13. Evaluate $\sqrt[3]{-125 x^7}$ for $x \ge 0$ and write in simplest radical form.

- (A) $-5x^2\sqrt[3]{x}$ (B) $-5x^2\sqrt{x}$
- (C) $-5x^{7/3}$
- (D) $5x^{7/3}$

14. Choose the simplest equivalent form of $(a^4b^5)^{1/2}$ for $a, b \ge 0$.

- (A) $a^2 \sqrt{b^5}$
- (B) $a^2b^2\sqrt{b}$
- (C) $ab^2\sqrt{ab}$
- (D) $\sqrt{a^4b^5}$

15. Which is **improper** scientific notation?

- (A) 7.1×10^{-3}
- (B) 9.99×10^{0}
- (C) 1.0×10^{-9}
- (D) 0.91×10^7

16. Evaluate $(5.0 \times 10^3) (2.0 \times 10^{-3}) x^0, x > 0.$

(A) 0

(B) 10^{0}

(C) 10

(D) 1

C. Written Response

Show full reasoning; express final answers with positive exponents and/or radicals.

1. Evaluate $(64)^{\frac{3}{6}}$.

2. Evaluate $(81)^{-\frac{1}{4}}$.

3. Compute $(3.20 \times 10^6) + (4.50 \times 10^5)$ in scientific notation.

4. Compute $\frac{7.2 \times 10^3}{8.0 \times 10^{-2}}$ in scientific notation.

5. If $(2^{x-1})(2^{2x+5}) = 2^{25}$, find x.

6. Evaluate $\frac{(6 \times 10^{-1})^2}{3 \times 10^{-4}}$ in scientific notation.

7. Simplify completely:

$$\frac{18\,x^4y^{-2}}{9\,x^{-1}y^3}.$$

8. Write the product in scientific notation and name the exponent rule used:

$$(3.2 \times 10^3)(4.5 \times 10^2).$$

- **9.** Write $4\sqrt{6}$ as an *entire* radical.
- 10. Rewrite using radicals and simplify (assume $x, y \ge 0$):

$$x^{\frac{7}{3}}y^{\frac{5}{4}}$$
.

- **11.** Simplify $(144 x^{10} y^7)^{1/2}$ for $x, y \ge 0$.
- 12. Rationalize and simplify: $\frac{7}{3\sqrt{5}}$.

13. Order from least to greatest:

$$0.00034, \qquad 3.4 \times 10^{-4}, \qquad 5.0 \times 10^{-5}.$$

14. Solve for t > 0: $t^{3/2} = 16\sqrt{t}$.

15. A bacterium has diameter 2.8×10^{-6} m. Using $\pi \approx 3.14$, express the area of its circular cross-section in scientific notation.

16. Simplify

$$\frac{(27a^{-3}b^6)^{1/3}}{(3a^{-1}b^2)^2} \qquad (a, b \neq 0).$$

17. If $x^3y^2 = 2^73^6$ and $\frac{x}{y} = 2^{-1}3^2$, find x and y in prime-power form.

18. The power model $y = ax^r$ passes through (2, 12) and (5, 75). Find r.

19. Solve for integers x, y: $2^{x+1} + 2^x = 3^{y+1} - 3^y$.

20. Let $f(x) = 2^{4x-6}$. Compute f(x) f(3-x) and explain briefly.

21. Solve: $3^{x+1} + 2^{x+2} + 2^x = 2^{x+3} + 3^x$.

22. Evaluate the following expression:

$$\frac{3^9 + 3^8}{3^6 + 3^6 + 3^6}.$$

23. Arrange the numbers below in ascending order:

$$2^{30}$$
, 3^{24} , 6^{12} , 5^{18} .

24. Simplify the following expressions:

(a)
$$\left(\frac{\sqrt[3]{x^3y^6}}{16x^8y^{-2}}\right)^{-\frac{2}{5}}$$
, $x, y > 0$

(b)
$$\sqrt[3]{\frac{9a^2b}{4c^3} \left(\frac{4c^3}{9a^2b}\right)^4}$$
, $a \neq 0, b \neq 0, c \neq 0$

25. Simplify (assume $m \neq 0$).

(a)
$$y^5 \div y^{-2} \times y$$

(b)
$$\frac{42a^{-3}b^2c}{-14a^2b^{-1}c^{-2}}$$

(c)
$$\frac{m \cdot m \cdot m \cdot m}{m + m + m + m + m}$$