ITSx: Policy Analysis Using Interrupted Time Series

Week 4 Slides

Michael Law, Ph.D.

The University of British Columbia

COURSE OVERVIEW

Layout of the weeks

- 1. Introduction, setup, data sources
- 2. Single series interrupted time series analysis
- 3. ITS with a control group
- 4. ITS Extensions
- 5. Regression discontinuities

INTRODUCTION TO THE EXAMPLES

Extensions to ITS

- 1. Model extensions
 - Wild points
 - Seasonal effects
 - Phase-in periods
- 2. Multiple interventions
- 3. Non-linear trends

EXAMPLE 1: WATER FLOW ON NILE

EXAMPLE 2: NEW HAMPSHIRE MEDICAID DRUG CAP

Pre-period Jan 80 – Aug 81 3 Drug Cap Sep 81 – Jul 82

\$1 Copayment Aug 82 – Dec 83

Source: Soumerai et al. NEJM 1987; 317(9):550-6

EXAMPLE 3: DIABETES TEST STRIP GUIDELINES

Pre-period Jan 07 – Jun 09 CERC Jul 09 – Aug 11

CDA Sep 11 – Dec 12

EXAMPLE 4: UNIVERSAL HEALTH COVERAGE IN THAILAND

Garabedian et al. 2012

• In 2001, Thailand implemented universal health coverage

- Studied the impact on drug use for chronic conditions
 - We will look at data on insulin sales per 1000 population

Original paper used a phase-in period & quadratic trend

Pre-period 1998Q2 – 2001Q1 Universal Coverage Scheme 2002Q1 – 2006Q3

EXAMPLE 5: MEDIA COVERAGE OF DRUG WARNINGS

Lu et al. 2014

- In 2003, the US FDA warned of an increased suicide risk from antidepressant use in young people
- Studied the impact on drug use, suicide attempts, and completed suicides
 - We will look at percent of young people receiving an antidepressant
- Original paper used a phase-in period & quadratic trend

Pre-period 2000Q1 – 2003Q3

Post Media Coverage 2005Q1 – 2010Q4

Extension 1, Part 1

WILD POINTS

"Wild" Points

- Can reflect:
 - Anticipatory effects
 - Data quality issues
 - Short-term history events
- Options:
 - Explicitly model them
 - Omit them out of your analysis

Overview of steps

- 1. Determine time periods
- 2. Select analytic cohorts
- 3. Determine outcomes of interest
- 4. Setup data
- 5. Visually inspect the data
- 6. Perform preliminary analysis
- 7. Check for and address autocorrelation
- 8. Run the final model
- 9. Plot the results
- 10. Predict relative and absolute effects

Step 4: Setup Data

year	time	flow	level	trend	drought
1871	1	3533.9	0	0	0
1897	27	3448.2	0	0	0
1898	28	3479.8	1	1	0
1913	43	1441.25	1	16	1
1930	60	2334.4	1	33	0

Step 6: Perform Preliminary Analysis

```
###################################
# Preliminary Analysis
#################################
# Fit the OLS regression model
model_ols <- lm(flow ~ time + level + trend + drought,</pre>
                   data=data)
summary(model_ols)
```

Preliminary Analysis Results

```
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3407.937
                     172.118 19.800 < 2e-16 ***
time
             5.417 10.743 0.504 0.61610
level -761.059 225.281 -3.378 0.00135 **
      -11.381 13.365 -0.852 0.39816
trend
drought -1256.478 441.627 -2.845 0.00622 **
```

Step 8: Run Final Model

```
################################
# Modeling
###############################
# Fit the GLS regression model with p=10 as in Week 2
model p10 <- gls(flow ~ time + level + trend + drought,
  data=data,
  correlation=corARMA(p=10,form=~time),
  method="ML")
summary(model p10)
```

Final Model Results

```
Coefficients:
              Value Std.Error t-value p-value
(Intercept) 3347.497 96.4774 34.69722
                                      0.0000
time
              6.252 6.2078 1.00714 0.3183
level -680.943 133.0340 -5.11856 0.0000
            -13.983 6.6479 -2.10333 0.0400
trend
drought -1004.553 344.8281 -2.91320
                                     0.0052
```

Step 9: Plot the Results

```
# Plot the first line segment
lines(data$time[1:27], fitted(model p10)[1:27],
col="red", lwd=2)
# Plot the second line segment - Note what happens!
lines(data$time[28:60], fitted(model_p10)[28:60],
col="red", lwd=2)
```

Step 9: Plot the Results (2)

```
# An alternative using model coefficients
segments (28,
         model_p10$coef[1] + model_p10$coef[2]*28 +
         model_p10$coef[3] + model_p10$coef[4],
         60,
         model_p10$coef[1] + model_p10$coef[2]*60 +
         model_p10$coef[3] + model_p10$coef[4]*33,
         lty=1,
         lwd=2,
         col='red')
```


Extension 1, Part 2

SEASONAL EFFECTS

Seasonal Effects

- Can reflect:
 - Natural patterns
 - Program design
- Options:
 - Model specific time periods
 - Add some type of function to model (sine, cosine, etc.)

Overview of steps

- 1. Determine time periods
- 2. Select analytic cohorts
- 3. Determine outcomes of interest
- 4. Setup data
- 5. Visually inspect the data
- 6. Perform preliminary analysis
- 7. Check for and address autocorrelation
- 8. Run the final model
- 9. Plot the results
- 10. Predict relative and absolute effects

year	time	flow	level	trend	elnino
1871	1	3533.9	0	0	0
1872	2	3664.3	0	0	0
					•••
1896	26	3856.0	0	0	1
1897	27	3248.2	0	0	1
1898	28	3479.8	1	1	0
1899	29	2453.0	1	2	1
1929	59	3241.1	1	32	0
1930	60	2334.4	1	33	1

Step 8: Run Final Model

```
#################################
# Modeling
###############################
# Fit the GLS regression model with p=10 as in Week 2
model_p10 <- gls(flow ~ time + level + trend + drought +</pre>
                   elnino,
                   data=data,
                   correlation=corARMA(p=10,form=~time),
                   method="ML")
summary(model p10)
```

Final Model Results

```
Coefficients:
              Value Std.Error t-value p-value
(Intercept) 3425.477 96.06013 35.65972
                                       0.0000
time
             10.723 6.24836 1.71617 0.0919
level -694.370 130.95377 -5.30240
                                       0.0000
             -18.302 6.70200 -2.73083
                                       0.0085
trend
drought
           -1033.575 313.88560 -3.29284
                                       0.0018
elnino
          -358.669 90.37531 -3.96866
                                       0.0002
```

Step 9: Plotting (1)

```
# Plot the first line segment
lines(data$time[1:27], fitted(model p10)[1:27],
col="red", lwd=2)
# Plot the second line segment
lines(data$time[28:60], fitted(model_p10)[28:60],
col="red", lwd=2)
```


Step 9: Plotting (2)

```
# Calculate the offset due to El Nino events
offset <- mean(data$elnino) * model p10$coef[6]
# Plot the first line segment
segments(1, model p10$coef[1] + model p10$coef[2] + offset,
         27, model p10$coef[1] + model p10$coef[2]*27 + offset,
         lty=1, lwd=2, col='red')
# Plot the second line segment
segments(28, model p10$coef[1] + model p10$coef[2]*28 +
           model p10$coef[3] + model p10$coef[4] + offset,
         60, model p10$coef[1] + model p10$coef[2]*60 +
           model p10$coef[3] + model p10$coef[4]*33 + offset,
         lty=1, lwd=2, col='red')
# Plot the counterfactual
segments(1, model p10$coef[1]+model p10$coef[2] + offset,
         60, model p10$coef[1]+model p10$coef[2]*60 + offset,
         lty=2, lwd=2, col='red')
```


Extension 1, Part 3

PHASE-IN PERIODS

Phase-in Periods

- In many instances, policy implementation is not instantaneous
 - This often leads to a "delay" in seeing the impact
- Modeling options:
 - Exclude the data from your time series analysis
 - Model it as a separate segment

Overview of steps

- 1. Determine time periods
- 2. Select analytic cohorts
- 3. Determine outcomes of interest
- 4. Setup data
- 5. Visually inspect the data
- 6. Perform preliminary analysis
- 7. Check for and address autocorrelation
- 8. Run the final model
- 9. Plot the results
- 10. Predict relative and absolute effects

Step 4: Setup Data

year	flow	flow	level	trend
1963	3097.17	14	0	0
1964	3681.42	15	1	1
1965	2920.67	16	1	2
1966	2355.08	17	1	
1967	2194.25	18	1	4
1968	1687.83	19	1	5
1969	1689.33	20	1	6

Step 4: Setup Data

```
# Create New Dataset
####################################
# Make a vector of the rows we want to include
include <- c(1:14,19:35)
# Duplicate these rows into a new dataset
data_pi <- data[include,]</pre>
```

Step 6: Perform Preliminary Analysis

```
##############################
# Modeling
###############################
# A preliminary OLS regression
model ols <- lm(flow ~ time + level + trend, data=data pi)</pre>
summary(model ols)
```

Step 8: Run the Final Model

```
#################################
# Modeling
###############################
# Fit the GLS regression model
model_p4 <- gls(flow ~ time + level + trend,</pre>
  data=data_pi,
  correlation=corARMA(p=4, form=~time),
  method="ML")
summary(model_p4)
```

Final Model Results

```
Coefficients:
               Value Std.Error t-value p-value
                    52.57030 50.82591
(Intercept) 2671.9331
                                       0.0000
time
             21.6551 6.40334 3.38184 0.0022
level -1376.9521 79.06977 -17.41439 0.0000
       -9.9335 7.98571 -1.24391 0.2242
trend
```

Step 9: Plot the Results

```
#################################
# Plot results
###################################
# Produce the plot, first plotting the raw data points
plot(data$time,data$flow,
     ylim=c(0,4500),
     ylab="Water Flow",
     xlab="Year",
     pch=20,
     col="pink",
     xaxt="n")
# Add x axis with dates
axis(1, at=1:35, labels=data$year)
```

Step 9: Plot the Results

```
# Add line indicating upstream dam
abline(v=14.5, lty=2)
# Plot the first line segment
lines(data$time[1:14], fitted(model p4)[1:14], col="red",lwd=2)
# Plot the second line segment
lines(data$time[19:39], fitted(model p4)[15:35], col="red", lwd=2)
# And the counterfactual
segments(19, model p4$coef[1]+model p4$coef[2]*19,
         35, model p4$coef[1]+model p4$coef[2]*35,
         lty=2, lwd=2, col='red')
# Add a box to show phase-in period
rect(14.5,-500,18.5,5000 , border = NA, col= '#00000011')
# END
```


Extension 2

MULTIPLE INTERVENTIONS

For intervention status *j* and *k*, at time *t*:

Pre-existing trend in the outcome of interest

Expected outcome at first time point

Change in the level between pre and post first policy

* First variable of interest

Change in the trend between pre and post first policy
* Second variable of interest

$$outcome_{jkt} = \beta_0 + \beta_1 \cdot time_t + \beta_2 \cdot level_j + \beta_3 \cdot level_j \cdot time_t$$
$$+ \beta_4 \cdot level_k + \beta_5 \cdot level_k \cdot time_t + \varepsilon_{jkt}$$

Change in the level between first policy and second policy

* Third variable of interest

Change in the trend between first policy and second policy * Fourth variable of interest

 $outcome_{jkt} = \beta_0 + \beta_1 \cdot time_t + \beta_2 \cdot level_j + \beta_3 \cdot level_j \cdot time_t$ $+\beta_4 \cdot level_k + \beta_5 \cdot level_k \cdot time_t + \varepsilon_{jkt}$

Overview of steps

- 1. Determine time periods
- 2. Select analytic cohorts
- 3. Determine outcomes of interest
- 4. Setup data
- 5. Visually inspect the data
- 6. Perform preliminary analysis
- 7. Check for and address autocorrelation
- 8. Run the final model
- 9. Plot the results
- 10. Predict relative and absolute effects

Step 4: Setup Data

month	strips_pt	time	cerc	cerc_trend	cda	cda_trend
2007, 1	219.673	1	0	0	0	0
2009, 6	239.812	30	0	0	0	0
2009, 7	242.302	31	1	1	0	0
2011, 8	234.123	56	1	26	0	0
2011, 9	226.553	57	1	27	1	1
2012, 12	207.973	72	1	42	1	16

Step 6: Perform Preliminary Analysis

```
#################################
# Modeling
###############################
# A preliminary OLS regression
model_ols <- lm(strips_pt ~ time + cerc + cerc_trend + cda +</pre>
cda trend, data=data)
summary(model_ols)
```

Preliminary Model Results

```
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 217.6591 2.6733 81.420 < 2e-16 ***
time 0.7374 0.1506 4.897 6.60e-06 ***
cerc 6.2255 3.8441 1.620 0.110
cerc trend -1.2769 0.2398 -5.324 1.31e-06 ***
cda -6.0932 4.6281 -1.317 0.193
cda trend -0.5858 0.4298 -1.363 0.178
```

Step 8: Run the Final Model

```
################################
# Run the final model
##############################
# Fit the GLS regression model
model p4 <- gls(strips pt ~ time + cerc + cerc trend + cda +
cda trend,
  data=data,
  correlation=corARMA(p=4, form=~time),
  method="ML")
summary(model p4)
```

Final Model Results

```
Coefficients:
              Value Std.Error t-value p-value
(Intercept) 217.38394 2.553315 85.13793
                                     0.0000
     0.75735 0.144097 5.25586 0.0000
time
      5.31180 3.689251 1.43980 0.1546
cerc
cerc_trend -1.24996 0.228423 -5.47213 0.0000
    -7.53190 4.476764 -1.68244 0.0972
cda
cda_trend -0.54965 0.416291 -1.32036 0.1913
```

Step 9: Plot the Results (1)

```
################################
# Plot results
###################################
# Produce the plot, first plotting the raw data points
plot(data$time,data$strips pt,
     ylab="Test Strips per 1,000 people",
     ylim=c(0,300),
     xlab="Month",
     pch=20,
     col="pink",
     xaxt="n")
# Add x axis with dates
axis(1, at=1:72, labels=data$yearmonth)
```

Step 9: Plot the Results (2)

```
# Add line indicating the policy changes
abline(v=30.5, lty=2)
abline(v=56.5, lty=2)
# Plot the first line segment
lines(data$time[1:30], fitted(model p4)[1:30], col="red",lwd=2)
# Plot the second line segment
lines(data$time[31:56], fitted(model p4)[31:56],
col="red", lwd=2)
# Plot the third line segment
lines(data$time[57:72], fitted(model p4)[57:72],
col="red", lwd=2)
```

Step 9: Plot the Results (3)

```
# And the first counterfactual
segments(31, model p4$coef[1]+model p4$coef[2]*31,
         56, model p4$coef[1]+model p4$coef[2]*56,
         lty=2, lwd=2, col='red')
# And the second counterfactual
segments(57, model_p4$coef[1] + model_p4$coef[2]*57 +
           model p4$coef[3] + model p4$coef[4]*27,
         72, model p4$coef[1] + model p4$coef[2]*72 +
           model p4$coef[3] + model p4$coef[4]*42,
         lty=2, lwd=2, col='red')
# END
```


Extension 3:

NON-LINEAR TRENDS

Addressing Non-linearity

- We will cover two different strategies:
 - Quadratic model terms
 - Differencing outcomes

QUADRATIC MODEL TERMS

Quadratic Time Trend

• For intervention status *j*, at time *t*:

$$outcome_{jt} = \beta_0 + \beta_1 \cdot time_t + \beta_2 \cdot level_j + \beta_3 \cdot trend_{jt} + \beta_4 \cdot trend_{jt}^2 + \varepsilon_{jt}$$

$$+ \beta_4 \cdot trend_{jt}^2 + \varepsilon_{jt}$$

$$outcome_{jt} = \beta_0 + \beta_1 \cdot time_t + \beta_2 \cdot level_j + \beta_3 \cdot trend_{jt} + \beta_4 \cdot trend_{jt}^2 + \varepsilon_{jt}$$

$$+ \beta_4 \cdot trend_{jt}^2 + \varepsilon_{jt}$$

Overview of steps

- 1. Determine time periods
- 2. Select analytic cohorts
- 3. Determine outcomes of interest
- 4. Setup data
- 5. Visually inspect the data
- 6. Perform preliminary analysis
- 7. Check for and address autocorrelation
- 8. Run the final model
- 9. Plot the results
- 10. Predict relative and absolute effects

Step 4: Setup Data

yearqtr	time	stdunits	level	trend	trendsq
1998, 2	1	1.572	0	0	0
1998, 3	2	1.839	0	0	0
2000, 4	11	2.502	0	0	0
2001, 1	12	2.713	0	0	0
2002, 1	13	3.686	1	1	1
2002, 2	14	3.974	1	2	4
2006, 2	33	11.754	1	32	1024
2006, 3	34	12.267	1	33	1089

Step 6: Perform Preliminary Analysis

```
# Modeling - with square term
# A preliminary OLS regression
model ols <- lm(stdunits ~ time + level + trend + trendsq,
data=data pi)
summary(model_ols)
```

Preliminary Model Results

```
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.693955 0.136137 12.443 1.87e-12 ***
time 0.084776 0.018497 4.583 0.000101 ***
level 0.374562 0.231034 1.621 0.117032
trend 0.002304 0.053536 0.043 0.966000
trendsq 0.015630 0.001899 8.230 1.03e-08 ***
```

Step 8: Run the Final Model

```
##################################
# Modeling
###############################
# Fit the GLS regression model with square term
model_sq <- gls(stdunits ~ time + level + trend + trendsq,</pre>
                  data=data_pi,
                  method="ML")
summary(model sq)
```

Final Model Results

```
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.693955 0.136137 12.443 1.87e-12 ***
time 0.084776 0.018497 4.583 0.000101 ***
level 0.374562 0.231034 1.621 0.117032
trend 0.002304 0.053536 0.043 0.966000
trendsq 0.015630 0.001899 8.230 1.03e-08 ***
```


Quadratic trends

- Advantages
 - Relatively easy to model and predict
 - Avoids transforming an outcome variable
- Disadvantages
 - Makes interpreting model output more difficult
 - Can lead to strange projections

DIFFERENCING OUTCOMES

Differencing

- An alternative tactic if you have a control group
- Simple to employ:
 - Difference the outcomes between your intervention and control group
 - Model this difference as a single ITS

Month	English	French	Difference
Sep-03	1.767	1.472	0.295
Oct-03	1.938	1.624	0.314
Nov-03	1.802	1.570	0.232
Dec-03	1.804	1.595	0.210
Jan-04	1.861	1.541	0.320
Feb-04	1.994	1.621	0.373