

Системное и прикладное программное обеспечение. Программная инженерия.

Лабораторная работа №6.

Дисциплина: Вычислительная математика.

Преподаватель: Малышева Татьяна Алексеевна.

Выполнил: Бусыгин Иван.

Группа: Р3212.

Вариант: 4.

Санкт-Петербург 2022 год

Цель работы.

Решить задачу Коши численными методами: усовершенствованным методом Эйлера и методом Адамса.

Программная реализация.

```
Реализация метода Эйлера:
```

```
eulerNextY = lambda x, y, h: y + h / 2 * (f(x, y) + f(x + h, y + h * f(x, y)))
eulerN = 3; eulerH = nToH(eulerN)
eulerOrderOfAccuracy = 2
while abs(eulerNextY(a + eulerH, eulerNextY(a, y0, eulerH), eulerH) -
eulerNextY(a, y0, 2 * eulerH)) / (2**eulerOrderOfAccuracy - 1) > accuracy:
  eulerN *= 2; eulerH = nToH(eulerN)
eulerX = np.linspace(a, b, eulerN)
eulerY = [y0]
for i in range(1, eulerN):
  eulerY.append(eulerNextY(eulerX[i - 1], eulerY[i - 1], eulerH))
Реализация метода Адамса:
```

```
def adamsNextY(x0, y0, y1, y2, y3, h):
  f0 = f(x0, y0)
                       ; f1 = f(x0 + h, y1)
  f2 = f(x0 + 2 * h, y2); f3 = f(x0 + 3 * h, y3)
  return y3 + h / 24 * (-9 * f0 + 37 * f1 - 59 * f2 + 55 * f3)
adamsN = 5; adamsH = nToH(adamsN)
adamsOrderOfAccuracy = 4
while abs(eulerNextY(a + adamsH, eulerNextY(a, y0, adamsH), adamsH) -
eulerNextY(a, y0, 2 * adamsH)) / (2**adamsOrderOfAccuracy - 1) > accuracy:
  adamsN *= 2; adamsH = nToH(adamsN)
adamsX = np.linspace(a, b, adamsN)
adamsY = [y0]
for i in range (1, 4):
 adamsY.append(eulerNextY(adamsX[i - 1], adamsY[i - 1], adamsH))
for i in range (4, adamsN):
 adamsY.append(adamsNextY(adamsX[i - 4], adamsY[i - 4], adamsY[i - 3], adamsY[i
- 2], adamsY[i - 1], adamsH))
```

Пример работы программы.

Это программа для решения дифференциального уравнения у' = х + у точными и приближёнными методами.

Введите координату х левой границы интервала дифференцирования: 1

Введите координату х правой границы интервала дифференцирования: 5

Введите значение интеграла дифференциального уравнения в левой границе интервала дифференцирования: 1

Задайте точность вычислений приближёнными методами (положительное число): 0.3

Для достижения заданной точности в методе Эйлера будет использоваться интервал разбиения 0.363636363636365

i	X	Метод Эйлера	Точное решение
0	1.00000	1.00000	1.00000
1	1.36364	1.92562	1.95202
2	1.72727	3.40530	3.48101
3	2.09091	5.67715	5.84003
4	2.45455	9.08160	9.39306
5	2.81818	14.10540	14.66376
6	3.18182	21.44447	22.40540
7	3.54545	32.09378	33.70161
8	3.90909	47.47593	50.11126
9	4.27273	69.62486	73.87686
10	4.63636	101.44862	108.22435
11	5.00000	147.10498	157.79445

Метод Адамса имеет смысл при четырёх интервалах в разбиении и более, в данном случае нужная точность достигается уже при четырёх интервалах, так что один интервал разбиения будет равен 1.0

i	X	Метод Адамса	Точное решение
0	1.00000	1.00000	1.00000
1	2.00000	4.50000	5.15485
2	3.00000	14.75000	18.16717
3	4.00000	41.87500	55.25661
4	5.00000	112.64062	157.79445

Программа завершила работу.

Вывод.

Приближённые методы вычисления диффуров – это круто.