Diabetes Prediction Using Machine Learning Models

Objective of the Analysis

My project aims to predict whether a person has diabetes based on medical attributes. The primary goal is to evaluate different machine learning models to determine the most accurate and interpretable model for this prediction task.

Business Benefits

- Helps healthcare professionals detect diabetes early.
- Assists in preventive healthcare measures by identifying key risk factors.
- Provides insights into the most influential medical attributes affecting diabetes.

Dataset Description

The dataset was downloaded from Kaggle and contains multiple health-related features.

Data Preprocessing & Feature Engineering

Data Exploration Findings

Missing Values: Checked and filled using median values.

Since two features were objects, they were encoded while the numeric features were standard scaled.

- Categorical Features:
 - gender and smoking_history were converted to numerical values using One-Hot Encoding.
- Feature Scaling:
 - o StandardScaler was applied to all numeric features for better model performance

Model Training & Evaluation

Models Used

- 1. Logistic Regression
- 2. Random Forest
- 3. Support Vector Machine (SVM)

Training Setup

• 80% training, 20% testing split using train_test_split().

```
from sklearn.model_selection import train_test_split
X = df.drop(columns=["diabetes"])
y = df["diabetes"]
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
```

• Used accuracy, precision, recall, and F1-score for evaluation.

Logistic Regression Results:

```
→ Accurancy: 0.95895
                precision recall f1-score support
                  0.97 0.99
0.86 0.62
                                             18292
                                       0.98
              1
                                       0.72
                                                1708
                                                20000
                                       0.96
       accuracy
   macro avg 0.91 0.80
weighted avg 0.96 0.96
                                       0.85
                                                20000
                                       0.96
                                                20000
```

Random Forest Results:

₹ Accurancy:	0.97015 precision	recall	f1-score	support
	0 0.97	1.00	0.98	18292
	1 0.94	0.69	0.80	1708
accuracy		0.84	0.97	20000
macro avg 0.96			0.89	20000
weighted a	•	0.97	0.97	20000

SVM Results:

Accurancy:	0.9651 precis	sion r	ecall f1	-score s	upport
		0.96 0.99	1.00 0.59	0.98 0.74	18292 1708
accurac macro av weighted av	g (0.98 0.97	0.80 0.97	0.97 0.86 0.96	20000 20000 20000

Best Model Recommendation

The Random Forest Classifier was selected as the best model because:

- Random Forest had the highest accuracy with 97 percent .
- It provided feature importance, making it easier to understand key health factors affecting diabetes.
- It handled non-linearity well.

The confusion matrix analysis for Random Forest

True Positives (TP) = 1,175 \rightarrow Correctly predicted diabetes cases

True Negatives (TN) = 18,227 \rightarrow Correctly predicted non-diabetes cases

False Positives (FP) = $65 \rightarrow$ Incorrectly predicted diabetes when it's not

False Negatives (FN) = $533 \rightarrow$ Incorrectly predicted non-diabetes when it is diabetes

Conclusion:

Among the three models I used, Random Forest achieved the highest accuracy. However, its performance can be further improved by Hyperparameter tuning with GridSearchCV to optimize model parameters.