Solving economic problems with MATLAB

Antonio Mele

University of Surrey

▶ Many economic problems are VERY complicated

- Many economic problems are VERY complicated
- No analytical solution

- Many economic problems are VERY complicated
- No analytical solution
- ▶ Often, even if we can describe some QUALITATIVE features, we need numerical methods for QUANTITATIVE results

- Many economic problems are VERY complicated
- No analytical solution
- Often, even if we can describe some QUALITATIVE features, we need numerical methods for QUANTITATIVE results
- Mostly: solving non-linear equations and optimisation problems

The toolbox includes:

linear programming

- linear programming
- quadratic programming

- linear programming
- quadratic programming
- binary integer programming

- ► linear programming
- quadratic programming
- binary integer programming
- nonlinear optimization

- ► linear programming
- quadratic programming
- binary integer programming
- nonlinear optimization
- nonlinear least squares

- ▶ linear programming
- quadratic programming
- binary integer programming
- nonlinear optimization
- nonlinear least squares
- systems of nonlinear equations

- linear programming
- quadratic programming
- binary integer programming
- nonlinear optimization
- nonlinear least squares
- systems of nonlinear equations
- multiobjective optimization

Solvers are minimizers!

Solvers are minimizers! If you perform a **maximization**: define your objective as -f(x) and remember to change sign to the value obtained.

Solvers are minimizers!

If you perform a **maximization**: define your objective as -f(x) and remember to change sign to the value obtained.

All the functions are **function functions**: they take other functions as inputs. In particular:

- the objective function is a function file
- nonlinear constraints must be set in a function file

Solvers are minimizers!

If you perform a **maximization**: define your objective as -f(x) and remember to change sign to the value obtained.

All the functions are **function functions**: they take other functions as inputs. In particular:

- the objective function is a function file
- nonlinear constraints must be set in a function file

Options: set with optimset

REMINDER: what is a function?

```
function z = olscoefficient(X,Y)
   z = inv(X'*X)*(X'*Y);
end
```

Nonlinear equations in one variable

Use the function fzero: finds roots of continuous functions Syntax:

```
[x, fval] = fzero('objfun',x0);
```

x: optimum

fval: value of the objective function calculated in the optimum objfun: function file where we have stored the objective function

x0: initial condition from which fzero looks for a solution

Nonlinear equations in more than one variable

If you have n nonlinear equations $F_i(x) = 0$, with $x \in \mathbb{R}^n$, use fsolve. Syntax:

```
[x, fval] = fsolve('objfun',x0, options, ...
    [additional parameters]);
```

x: optimum

fval: value of the objective function calculated in the optimum objfun: function file where we have stored the objective function x0: initial condition from which fsolve looks for a solution options: options for the solver (see later) [additional parameters]: if objfun has more than one argument, the

additional ones are added here

Solve the following system of equations:

$$c_1^{-\sigma} = \beta(1+r)c_2^{-\sigma}$$
 $c_1 + \frac{c_2}{1+r} = y_1 + \frac{y_2}{1+r}$

where r = 0.05, $\sigma = 2$, $\beta = .99$, and $y_1 = y_2 = 1$.

Same as before, but with an initial amount of savings s_0 :

$$c_1^{-\sigma} = \beta(1+r)c_2^{-\sigma}$$

$$c_1 + \frac{c_2}{1+r} = y_1 + \frac{y_2}{1+r} + s_0$$

where r = 0.05, $\sigma = 2$, $\beta = .99$, and $y_1 = y_2 = 1$.

Solve for the optimal allocation for different values of the initial savings.

Types of constraints:

1. Bound Constraints: $x \ge l$, $x \le u$

- 1. Bound Constraints: $x \ge l$, $x \le u$
- 2. Linear Inequality Constraints: $A \cdot x \le b$, where A is an m by n matrix, which represents m constraints for an n dimensional vector x, and b is m dimensional

- 1. Bound Constraints: $x \ge l$, $x \le u$
- 2. Linear Inequality Constraints: $A \cdot x \leq b$, where A is an m by n matrix, which represents m constraints for an n dimensional vector x, and b is m dimensional
- 3. Linear Equality Constraints: $Aeq \cdot x = beq$, same dimensionality of linear inequality constraints

- 1. Bound Constraints: $x \ge l$, $x \le u$
- 2. Linear Inequality Constraints: $A \cdot x \le b$, where A is an m by n matrix, which represents m constraints for an n dimensional vector x, and b is m dimensional
- 3. Linear Equality Constraints: $Aeq \cdot x = beq$, same dimensionality of linear inequality constraints
- 4. Nonlinear Constraints: $c(x) \le 0$ and ceq(x) = 0. Both c and ceq are scalars or vectors representing several constraints

Setting options

Each algorithm has many options on the type of algorithm to use, on the output to show in command window, the convergence criterion, etc.

Setting options

Each algorithm has many options on the type of algorithm to use, on the output to show in command window, the convergence criterion, etc. To set them: use optimset

```
options = optimset('param1', value1, 'param2', value2,...)
```

Setting options

Each algorithm has many options on the type of algorithm to use, on the output to show in command window, the convergence criterion, etc. To set them: use optimset

```
options = optimset('param1', value1, 'param2', value2,...)
```

IMPORTANT: some parameter values are strings, therefore you have to enter them between ' '. Example:

```
options = optimset('Display','iter');
```

Unconstrained Minimization

No constraints

$$\min_{x} f(x)$$

Unconstrained Minimization

No constraints

$$\min_{x} f(x)$$

Use fminunc:

```
[x, fval] = fminunc('objfun', x0, options, ...
[additional parameters])
```

Constrained Minimization

$$\min_{x} f(x)$$
s.t. $x \ge LB$, $x \le UB$

$$A \cdot x \le B$$
, $Aeq \cdot x = Beq$

$$c(x) \le 0$$
, $ceq(x) = 0$

Constrained Minimization

$$\min_{x} f(x)$$
s.t. $x \ge LB$, $x \le UB$

$$A \cdot x \le B$$
, $Aeq \cdot x = Beq$

$$c(x) \le 0$$
, $ceq(x) = 0$

Use fmincon:

```
[x, fval] = fmincon('objfun', x0, A, B, Aeq, Beq,...
LB, UB, nonlcon, options, [additional parameters])
```

When one or more constraints absent: use \(\sigma \)

Writing a nonlinear constraint function

Writing a nonlinear constraint function

It must have a particular structure

```
function [c, ceq] = nonlinconst(input1,input2,...)

c(1) = ...
c(2) = ...
...
ceq(1) = ...
ceq(2) = ...
...
```

Writing a nonlinear constraint function

It must have a particular structure

```
function [c, ceq] = nonlinconst(input1,input2,...)
c(1) = ...
c(2) = ...
...
ceq(1) = ...
ceq(2) = ...
...
```

If no constraints of one type: use ceq = [];

Use fmincon to maximize the utility function $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$ under the constraints:

$$c \ge 0$$

$$c \leq y$$

where $\sigma = 2$ and y = 1.

Take again a two-periods economy with an initial amount of savings s_0 . Your problem is

$$\max_{c_1, c_2} \frac{c_1^{1-\sigma}}{1-\sigma} + \beta \frac{c_2^{1-\sigma}}{1-\sigma}$$

$$s.t. \quad c_1 + \frac{c_2}{1+r} \le y_1 + \frac{y_2}{1+r} + s_0$$

where r=0.05, $\sigma=2$, $\beta=.99$, and $y_1=y_2=1$. Solve for the optimal allocation for different values of the initial savings. (Hint: vectorizing the procedure is not possible here, therefore you need to use a for loop).

Maximize the utility function $u(c_1,...,c_{10})=\sum_{i=1}^{10}\frac{c_i^{1-\sigma}}{1-\sigma}$ under the constraints:

$$c_i \ge 0$$
 for all i

$$\sum_{i=1}^{10} c_i \le y$$

$$2c_3 + c_1 = 12$$

$$0.5(c_5 - c_4)^2 = 4$$

where $\sigma = 2$ and y = 100.