

DEVELOPMENT OF NOISECHECK TECHNOLOGY FOR MEASURING AIRCRAFT NOISE EXPOSURE

PETER E. RENTZ HARRY SEIDMAN BOLT BERANEK AND NEWMAN INC. P.O. BOX 633 CANOGA PARK, CALIFORNIA 91305

MAY 1980

19951120 078

Approved for public release; distribution unlimited.

AIR FORCE AEROSPACE MEDICAL RESEARCH LABORATORY AEROSPACE MEDICAL DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE 45433

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from Aerospace Medical Research Laboratory. Additional copies may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Documentation Center should direct requests for copies of this report to:

Defense Documentation Center Cameron Station Alexandria, Virginia 22314

TECHNICAL REVIEW AND APPROVAL

AMRL-TR-78-125

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

HENNING E. VON GIERKE

Director

Biodynamics and Bioengineering Division Aerospace Medical Research Laboratory

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM		
. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
AMRL-TR-78-125			
DEVELOPMENT OF NOISECHECK TE	CINOLOGY FOR	5. TYPE OF REPORT & PERIOD COVERED	
MEASURING AIRCRAFT NOISE EXP		Final	
		6. PERFORMING ORG. REPORT NUMBER BBN Report 3862	
· AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(*)	
Peter E. Rentz	r.		
Harry Seidman		F33615-77-C-0514	
PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Bolt Beranek and Newman Inc.		62202F	
P. O. Box 633		7231-07-02	
Canoga Park, CA. 91305	· · · · · · · · · · · · · · · · · · ·		
	D	12. REPORT DATE	
Air Force Aerospace Medical	Research Lab	May 1980	
Aerospace Medical Division	Theo :	13. NUMBER OF PAGES	
Wright-Patterson AFB, Ohio 4 MONITORING AGENCY NAME & ADDRESS(I different		140	
4. MONITORING AGENCY NAME & ADDRESS(II ditterent	from Controlling Office)	15. SECURITY CLASS. (of this report)	
		Unclassified	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
6. DISTRIBUTION STATEMENT (of this Report)			
Approved for public release;	distribution	unlimited.	
		-	

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Aircraft Noise Airport Planning Community Noise Exposure

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report describes a program to develop instrumentation for use by Air Force personnel to make spot checks of the noise exposure at locations in and about air bases. These instruments combined with standardized field measurement procedures form a technology, termed NOISECHECK, which provides a means for measuring the noise environment and checking daily average noise level values (DNL's) calculated by the Air Force NOISEMAP community-aircraft noise prediction program.

After analysis of measurement requirements and a survey of available equipment, four prototype portable noise level monitoring systems were acquired. The principle components were an electret type microphone and a microprocessor based noise level monitor unit with alpha-numeric printout suitable for use by minimally trained personnel. The systems were utilized in a field measurement demonstration test conducted at Barksdale AFB in June 1978. In this three-week field program, aircraft noise levels and operational data were acquired and analyzed in detail to develop and evaluate NOISECHECK procedures for test planning, test conduct, and data analysis.

The data analysis included determination of yearly average DNL values by several methods of varying complexity and assessment of statistical confidence intervals for the different methods. Differences between measurements and predictions were traced to incorrect inputs to NOISEMAP describing heavy aircraft operations at Barksdale AFB.

The detailed NOISECHECK procedures are provided in a separate document.

SUMMARY

This report describes a program to develop instrumentation for use by Air Force personnel to make spot checks of the noise exposure at locations in and about air bases. These instruments combined with standardized field measurement procedures form a technology, termed NOISECHECK, which provides a means for measuring the noise environment and checking daily average noise level values (DNL's) calculated by the Air Force NOISEMAP community-aircraft noise prediction program.

After analysis of measurement requirements and a survey of available equipment, four prototype portable noise level monitoring systems were acquired. The principle components were an electret type microphone and a microprocessor based noise level monitor unit with alpha-numeric printout suitable for use by minimally trained personnel. The systems were utilized in a field measurement demonstration test conducted at Barksdale AFB in June 1978. In this three-week field program, aircraft noise levels and operational data were acquired and analyzed in detail to develop and evaluate NOISECHECK procedures for test planning, test conduct, and data analysis.

The data analysis included determination of yearly average DNL values by several methods of varying complexity and assessment of statistical confidence intervals for the different methods. Differences between measurements and predictions were traced to incorrect inputs to NOISEMAP describing heavy aircraft operations at Barksdale AFB.

The detailed NOISECHECK procedures are provided in a separate document.

Access	ion Fo	ŗ	3	, j
NTIS			त	- - 5
DTIC 1				1
Unanno				,
Justin	catio) II_		
Ву				
Distr	ibutio	7/		
Avai	labili	t y	Codes	
	Aveil			
Dist	Spec	M E	<u></u>	
		į		•
0		1.	*/. J.	
		1		

PREFACE

This research program was performed for the Aerospace Medical Research Laboratory at Wright-Patterson Air Force Base, Ohio under Project/Task 723107, Technology to Define and Assess Environmental Quality of Noise From Air Force Operations. Technical monitor for this effort was Mr. Jerry Speakman of the Biodynamics Environment Branch, Biodynamics and Bioengineering Division, Aerospace Medical Research Laboratory.

The contributions of a number of individuals, in particular Dwight Bishop, David Conant and John Mills are gratefully acknowledged.

TABLE OF CONTENTS

SUMMARY		Page
PREFACE	•	2
	• •	2
TABLE OF CONTENTS	• •	3
INTRODUCTION		6
Purpose and Scope		6
Background		7 7
STATE-OF-THE-ART SURVEY AND EQUIPMENT SELECTION		7
Field Measurement Methods		8
Measurement Variability		10
Microphone Characteristics and Selection		12
Preamplifiers and Accessories	• •	16
Portable Noise Level Monitor Units	• •	16
SYSTEM SAFETY PROGRAM		29
Definitions		29
Hazard Level Categories		30
System Safety Precedence		30 30
System Safety Analyses		31
Ground Handling, Storage, Servicing and		J _
Transportation		33
FIELD MEASUREMENT DEMONSTRATION		39
Air Base Selection		39
Measurement Site Selection		40
Data Analysis Procedures		4ŏ
Test Results, Confidence Intervals, and Critique		43
	• •	1,5
CONCLUSIONS AND RECOMMENDATIONS		45
Instrumentation		45
Field Testing		46
Instrumentation		47
APPENDIX - FIELD MEASUREMENTS AT BARKSDALE AFB		49
REFERENCES		133

LIST OF TABLES

		Page
1.	FIELD MEASUREMENT PROGRAM CHARACTERISTICS SURVEY SUMMARY	• 9
2.	MEASUREMENTS AND STANDARD DEVIATIONS, + dB	. 11
3.	COMPARISON OF MICROPHONE CHARACTERISTICS FOR NOISECHECK	. 15
4.	COMPARISON OF PREAMPLIFIER CHARACTERISTICS FOR NOISECHECK	. 17
5.	COMPARISON OF ACCESSORIES CHARACTERISTICS FOR NOISECHECK	. 18
6.	ATTRIBUTES OF PORTABLE NOISE LEVEL MONITOR	. 19
7•	GENERAL SPECIFICATIONS FOR PORTABLE NOISE LEVEL MONITORS	. 20
8.	SPECIFICATION PARAMETER COMPARISON FOR PORTABLE STATISTICAL NOISE LEVEL MONITOR	. 22
9.	ANALYSIS OF PERSONNEL INJURY HAZARDS	• 35
10.	ANALYSIS OF INCORRECT DATA HAZARDS	. 36
11.	ANALYSIS OF EQUIPMENT DAMAGE HAZARDS	• 37
12.	ANALYSIS OF EQUIPMENT LOSS HAZARDS	• 39
13.	SUMMARY OF DATA ANALYSIS PROCEDURES FOR FIELD DEMONSTRATION TEST `	. 42
14.	BARKSDALE AFB YEARLY DNL ESTIMATES WITH REALISTIC CONFIDENCE INTERVALS BASED ON ALL SOURCES OF VARIABILITY	. <u>4</u> 4
	LIST OF FIGURES	
1.	RESPONSE OF AN ELECTRET RANDOM INCIDENCE MICROPHONE WITH A FOUR INCH DIAMETER NERF BALL WINDSCREEN	. 14
2.	PORTABLE NOISE LEVEL MONITOR	. 27
3.	DESCRIPTION OF PORTABLE NOISE LEVEL MONITOR RECORD LISTINGS	. 28

LIST OF FIGURES (CONTINUED)

4.	PORTABLE NOISE LEVEL MONITOR SYSTEM COMPONENTS AND TYPICAL SYSTEM INSTALLATION FOR SAFETY	Page
	ANALYSIS	• 32
5.	MONITOR SYSTEM EQUIPMENT USE FLOW CHART	. 34
6.	AIRCRAFT NOISE MEASUREMENT SITES AT BARKSDALE AIR FORCE BASE WITH NOISEMAP PREDICTED CONTOURS.	. 41

INTRODUCTION

PURPOSE AND SCOPE

The purpose of this project is to develop standardized noise measurement equipment and procedures for making spot checks of the noise exposure at ground locations in and about Air Force air bases. The equipment and procedures, termed NOISECHECK technology, is to be used by Air Force personnel to measure the noise environment and check the noise exposure values calculated by the Air Force NOISEMAP community-aircraft noise exposure prediction program.1

The scope of the project included the selection and procurement of four prototype portable noise level monitoring systems, and the development of detailed procedures for performing field measurements. The procedures involve test planning, data acquisition and use of measured data to make yearly average day-night noise level* (DNL) estimates of predictable accuracy. The procedures are presented as a separate document.²

The project consisted of the following tasks"

- . State-of-the-Art Survey
- . Equipment Selection
- . Field Test
- Data Analysis
- . Critique
- . Safety Study
- . Development of Measurement Procedures

^{*} Day-night noise level is defined as the A-weighted sound level averaged on a power basis over 24 hours with a plus 10 dB weighting applied between 2200 and 0700 hours.

BACKGROUND

The USAF has recognized that its airbases and adjacent civilian communities must co-exist. In order to protect these adjacent communities from the noise and safety hazards associated with aircraft operations and preserve the operational integrity of the airfields, the USAF has developed and implemented the Air Installation Compatible Use Zone (AICUZ) concept. An AICUZ for an airfield is generated from the composite application of accident potential zones (APZs) and Noise Zones The Noise Zones are based on predicted day/night aver-(NZs). age sound level (DNL) contours. These contours are estimated from airfield operational statistics, the noise generation characteristics of the aircraft involved, (NOISEFILE), and physical noise transmission relations embodied in NOISEMAP.

However, the contour estimates may be subject to error because of incorrect aircraft operational input data, incorrect aircraft noise data, or local acoustic phenomena not accurately represented in NOISEMAP. Often, to resolve controversy or as an aid in litigation, field measurements of a site DNL are desired.

REPORT ORGANIZATION

Section 2 presents the results of the state-of-the-art survey and equipment selection. The results of the system safety program are presented in Section 3. Section 4 summarizes the field test measurement program which was conducted at Barksdale AFB. Conclusions and recommendations are set forth in Section 5. A detailed description of the field measurement program and the analysis of field data is presented in the Appendix.

STATE-OF-THE-ART SURVEY AND EQUIPMENT SELECTION

Early in the program, a survey was performed to document the state-of-the-art in the measurement of aircraft generated noise levels. The survey was divided into two aspects, method-ologies employed and equipment available. The methodologies survey was based on experience of measurement programs performed at both military and civilian airports. The equipment survey was based mainly on manufacturer's specification data and interviews with users.

FIELD MEASUREMENT METHODS

Fourteen different measurement programs performed at either military or civil airports were reviewed. A summary of pertinent program characteristics is given in Table 1. In the category of information available, the types of aircraft, the yearly flight statistics, and the flight paths were known beforehand for all military airbase surveys. NOISEMAP predictions, previous site measurements, radar flight tracks, and performance profiles were available for approximately one-half of the military airbase surveys.

Again referring to Table 1, the type of aircraft operations producing the noise at the sites in question were equally divided between takeoffs and landings with some pattern flying and infrequent ground run-ups. The locations of the measurement sites were usually adjacent to the transition portions of the flight paths.

The categories of close-in, intermediate, and extended are generally related to the position of the aircraft from brake release or landing threshold. The definitions of the categories are as follows:

Takeoff Operations

- Close-in (0 to 2 miles from brake release)
- . Intermediate (1.5 to 4 miles from brake release)
- Extended (3 to 10+ miles from brake release)

Approach Operations

- Close-in (landing roll to 1 mile from landing threshold)
- Intermediate (1 to 4 miles from landing threshold)
- Extended (3 to 10 miles from landing threshold)

The average number of measurement locations for the programs reviewed was ten. On the large programs, especially at Miramar NAS3, the units were moved from site-to-site so that the maximum number of units in the field at any one time never exceeded six for any programs listed.

TABLE I - FIELD MEASUREMENT PROGRAM
CHARACTERISTICS SURVEY SUMMARY *

	T					3/1/2	7.24			Τ	~				m-4-3
	-					IVI	.110	ary		+	UI	vil	.ıar		Total
	76	. 9	92	22	. ~	_	7		7						or
	AFB	7	•			Toro NAS,71	Toro NAS,77	2	S 77	72	92	77	\sim	11	Avg.
	le le	ΔF	A FF	NAS	NAS	A	N	E,	Ä	ge,	ď	, 8º	77		
Field Measurement	sda	pud	ğ ψ	1 2	u c	oro	Oro Oro	h A	mar	ora	kto	Die	ark	şe	
Program Characteristic	Barksdale AFB.76	Fhaland AFR 76	Travis AFR	Lemore NAS.	Fallon NAS,	E	El T	March AFB,	Miramar NAS	Anchorage,	Stockton,	San Diego,	Burbank,	Roanoke,	
Information Avail. Beforehand															
NOISEMAP	х	Х	Х						x			х			5
Site Measurement							Х		х						2
Types of A/C	x	Х	X	х	х	х	х	х	х	х	X	х	X	х	14
Yearly Flight Statistics	x	Х	x	X	х	X	Х	х	x			X			10
Flight Paths	x	Х	X	X	х	х	x	x	x	х	Х	х	х	x	14
Radar Flight Tracks	x	Х	x				х		х	х	X	x	x	х	10
Alt. and Power Profiles	x	Х	X						х				х	х	6
Aircraft Operations										l					
Ground Run-Up				x					x						2
Takeoff-Close -In		х							x				х		3
Intermediate		x		х	. x	x	x	х	x	x	x	х	x	x	12
Extended									x						1
Pattern Flying	x			x	x			x	x						5
Landing-Close -In			х						x					x	3
Intermediate	1		х	х	х	х		x	x	х	х	х	х	x	11
Extended									х						1
Accuracy, 90% Confidence, + dB	1	1	1						2.5						
Instrument Used															
SLM	x	х	х			х		х	x						6
White box (BBN 704)	x	х	х	х	х		х		х	х	x	x	х	х	12
Silver box (BBN 614)							х		x		x	х	x	x	6
How many sites	3	3	4	12	6	5	7	4		6	13		10		10 Avg.
Stanchions at Sites	1	2	1	4	6	3	_ <u>-</u>	<u> </u>	2	3	3	0	0	2	0.3 Avg
Security Fences or Homes	2	1			0			_ ;	- 1	3		10			0.4 Avg
Measurements SEL	х	х	x	<u>x</u>	x	x	х	<u>x</u>	х	<u>x</u>	x	x	x	х	14
(Primary HNL	х	x		x	x	-	×	_	x		x		х	×	12
type underlined) DNL (CNEL)	x	_	x				٠		-				x		3
Duration Weeks	 			2	2	1	2	1	16	2	2	2	_	2	2+
Data Corrections	-								\dashv						
Number of A/C	x	x	x	х	х	х	х	х	x	х	х	х	х	х	14
Types of A/C	х	х	х							х	х		x	x	8
Flight Tracks	х	х	х											-	3
Temp/Humidity		uno													Bounds
Site Extrapolation			-				x		x				x	x	4
Contour Line				х	х	х	x	х	х	x	х	x	x	x	11
	Ь——														

^{*} References 3 - 14.

Protection of the portable noise level monitor systems from vandalism was a constant problem for most of the field measurement programs listed. One unit was stolen during the Miramar study3. Suitable stanchions for chaining the units to homes or fences were available approximately 30 percent and 40 percent of the time, respectively.

The average duration of the measurement programs was slightly in excess of two weeks with only one of long duration (16 weeks).

Portable noise level monitor units were employed on all but two of the field measurement programs listed in Table 1. The measurements performed on-site included DNL, HNL and individual aircraft SEL. Most of the measurement programs used the measured SEL values to arrive at the desired expression of daily noise level.

With regard to data analysis, corrections were applied to all measured values for the number of aircraft. One-half of the programs separated the aircraft by types to arrive at corrections. The only field measurement programs which did not result in noise contour line verification were those performed to validate aspects of NOISEMAP4.

Confidence intervals were computed for only the program at Miramar NAS3. The ±2.5 dB interval indicated is considered conservative in that instrumentation variability was added to measured HNL variability in the computation of confidence intervals. This method is conservative because some of the instrumentation variability is naturally included in the HNL variability. Generally, confidence intervals were not stated for the other 13 measurement programs either because a commonly accepted methodology for combining sources of uncertainty was not available or because there were no requirements for specifying the confidence intervals.

MEASUREMENT VARIABILITY

In order to plan efficient test programs a'priori estimates of the inherent variability in single events and daynight levels are desired. The results from various data sources, including the Barksdale AFB field test performed as part of this program, show that the variability of single events and day-night levels is essentially independent of

distance, Table 2. This trend was verified by the Barksdale AFB test results which showed similar SEL variability for all sites. However, the magnitude of the single site variability values was much greater at Barksdale than for previous programs, even though the SEL's were segregated by type of operation as well as type of aircraft.

Note that 6 dB is the average arithmetic standard deviation of sets SEL values. Some standard deviations were as small as 1.0 dB, usually for straight in approaches of heavy aircraft.

An explanation for the large average SEL variability at Barksdale is that the aircraft are flown with greater variety of flight profiles than previously experienced. This can be attributed to the preponderance of practice flying at Barksdale. Measurement of slant distances and normalization of measured SEL values would have provided a better understanding of the sources of variability but this is not a primary purpose of a site DNL verification field test.

Fortunately, the variability of SEL's is not critical to overall measurement accuracy because their contribution to overall uncertainty decreases as the square root of the number of samples (and numerous single event samples are easily obtainable).

TABLE 2
MEASUREMENT STANDARD DEVIATIONS, + dB

			Type I	Airport
Type Measurment	Aircraft	Civilian	Military	Barksdale*
Single Site SEL	Same	3.2	1.5	6
Single Site SEL	Different	3.4	5•3	12
Single Site DNL	Different	2.3	3.4	3.0

^{*} Measurements reported in the Appendix.

The DNL variability at civilian airfields was found to be less than for military airfields. The Barksdale DNL variability results matched previous experience.

MICROPHONE CHARACTERISTICS AND SELECTION

The important microphone characteristics were determined by combining a literature and users survey with the results of an analysis of the NOISECHECK scenarios*. These important characteristics are as follows:

Frequency response

Directivity

Humidity resistance

Sensitivity stability

Ruggedness

Power Consumption

Accurate measurement of signals between 5000 and 10,000 Hz was considered important since some aircraft radiate significant acoustic energy about 5000 Hz.

The frequency response of a microphone depends mainly on two factors, size and damping. As the diameter of the microphone approaches an acoustic wavelength, the average pressure of a grazing wave across the diaphragm goes to zero. For this reason, only one-half inch microphones were considered for NOISECHECK since the wavelength at 10,000 Hz is only slightly greater than one inch.

Damping controls the pressure-to-deflection frequency response function for a given microphone configuration. Damping may be chosen so as to compensate for the pressure increase effects for a normal incident sound wave. Microphones with

^{*} The analysis of the NOISECHECK scenarios was part of the system safety program.

this degree of damping are called normal incidence microphones. Other microphones with less damping have flat frequency response for sound waves arriving at approximately 60° from normal incidence. These are referred to as "random incidence" or "pressure" type microphones.

For aircraft noise measurements, it is usually possible to point the microphone at the aircraft. Therefore, normal incidence type microphones were seriously considered. aircraft noise measurements are also usually performed with windscreens over the microphone. The windscreen serves to prevent wind gusts from reaching the microphone diaphragm which cause low frequency pressure fluctuations (which are not The windscreen also serves to collect rain, keeping moisture from the microphone. For this second purpose, a dense, sponge-like windscreen is desirable. To satisfy this requirement, commercially available acoustic windscreens and four inch diameter Nerf balls were investigated and found to produce a high frequency roll-off which inversely matched the pressure increase effect of an incident wave giving a net flat frequency response, Figure 1. Unfortunately, the Nerf ball, and to a lesser extent, four inch diameter acoustic windscreens, exhibit a slight (1 dB) hump in the frequency response between 1,000 and 2,00 $\overline{0}$ Hz. This has been hypothesized to be due to a one-quarter wave resonance in the windscreen. the mid-frequency hump in mind, the flat pressure response type microphone along with a dense sponge-like windscreen was the combination selected for NOISECHECK.

The specification characteristics of specific microphones which are both commercially available and suitable for field measurements are presented in Table 3. Some of the microphones are known to have been used for field measurements, others are included for completeness. After eliminating one-inch microphones and 0° incidence microphones, the final choice was between the GEN/RAD Model 1962-9601 and the B&K Model 4166 microphones. The use of a quartz sealed diaphragm with a dessicant accessory was recommended in a National Bureau of Standards study 15.

However, the long term stability and humidity resistance of the air condenser microphone was not considered as important as the ruggedness and absence of polarization voltage of the

FIGURE 1. RESPONSE OF AN ELECTRET RANDOM INCIDENCE MICROPHONE WITH A FOUR INCH DIAMETER NERF BALL WINDSCREEN

		,								
VIB. SENS,	dB re 20uN/mg	83	88	80	88	85	80	S/N	120	N/S
EFFECT	SENS. dB/°C	<+0.02	0.01	0.001	0.01	-0.02	0.001	-0.01	-0.015	-0.005
TEMP.	CAP. Pf/°C	<+0.1	N/S	S/N	N/S	N/S	S/N	2.2	N/S	N/S
	CAPAC. Pf	35	18	19	18	14.5	20	385	βut	160
i i	FREQ. RESP.	5-19K	4-40K	3-20K	4-20K	7-6.3K	3-9K	5-10K	3-10K	20-12K
3	DYN** RANGE	26-	160	146	160	146	146	22 - 145	140	40- 170
ć	VOLT	i	200	200	200	28	200	!		
	SEN*	-41	-38	-26 -38	-38	04-	-26	04-	-50	99-
	CLASS	Н	Н	н	н		н	II	II	II
	SIZE	1/2	1/2	1/2	1/2	1/2	1/2	Н	1	0.63x1.5 +5/16x4.5
TYPE (RANDOM INCID	UNLESS NOTED)	Electret	Air Cap, Back Vent Anti Corros(0ºIncid	Air Cap, Back Vent Quartz(O°Incidence)	Air Cap Standard	Air Cap, Dosimeter (0° Incidence)	Air Cap, Back Vent Quartz	Piezoelectric	Piezoelectric	Hydrophone
	MODEL	1962- 9601	4149	4165	4134	4125	4166	1971- 9601	4117	379
	MFG	GEN/ RAD	B&K	B&K X	B&K	B&K	B&K	GEN/ RAD	B&K	BBN
	TEMP. EFFECT	TYPE (RANDOM INCID. SIZE CLASS SEN* VOLT RANGE RESP. Pr	7G MODEL UNLESS NOTED) SIZE CLASS SEN* VOLT RANGE RESP. P. P	TYPE (RANDOM INCID. SIZE CLASS SEN* VOLT RANGE RESP. Pred. CAPAC. CAPAC. CAP. SENS. Proc. Bectret 1/2 I -41 26- 5-19K 35 <+0.1 <+0.02	TYPE (RANDOM INCID. SIZE CLASS SEN* VOLT RANGE RESP. CAPAC. CAP. SENS.	Type (Random INCID) Size CLASS Sen* Volt Range Resp. CAPAC C	Model TYPE (Random INCID) SIZE CLASS SEN* VOLT RANGE RESP. CAPAC CAP CAP SENS CAPAC CAP CA	TYPE (RANDOM INCID. SIZE CLASS SEN* VOLT RANGE RESP. CAPAC. CAPAC.	Model Type (Random InCID) SIZE CLASS SEN* VOLT RANGE RESP. Proceeding Process Proces	MODEL TYPE (RANDOM INCID. SIZE CLASS SEN# FOLT RANGE RESP. CAPAC. CAP. SENS. CAPAC. CAP. CAPAC. CAP. CAPAC. CAPAC

electret microphone. The dominant factor is that for NOISECHECK, the units will be recalibrated frequently and long term environmental effects are, therefore, not important.

PREAMPLIFIERS AND ACCESSORIES

Commercially available preamplifiers and accessories suitable for NOISECHECK are listed in Tables 4 and 5, respectively. The main differences between the preamplifiers are the type of microphone fitting and whether or not polarization voltage is supplied. With the selection of an electret type microphone, the standard 0.46-60 microphone fitting was required, no polarization voltage was necessary, and the GR Model 1972-9600 preamplifier was selected. The power consumption for this unit is lower than for any other preamplifier listed, which is due in part to absence of polarization voltage.

Accessories chosen were the GEN/RAD Model 1567-9701 calibrator, Nerf ball windscreens, and commonly available tripods. For shipping cases, inexpensive suitcases were lined with polyurethane foam to the shape of the noise monitors. Accessory cases were similarly lined for carrying battery, tripod, microphones, preamplifier, cable, and locking chain.

PORTABLE NOISE LEVEL MONITOR UNITS

Fourteen prospective vendors were contacted in order to develop a definition of the state-of-the-art in portable noise level monitoring. As a result of their replies, in-house experience and a recognition of desirable attributes for NOISECHECK summarized in Table 6, general specifications were developed. These are listed in Table 7.

As a result of the cost specification and operational analyses, only the BBN Model 614 and DAI 607P are considered acceptable. Table 8 compares the two units in detail; the major areas of difference are as follows:

COMPARISON OF PREAMPLIFIER CHARACTERISTICS FOR NOTSECHECK TABLE 4.

		,	T	1			
	POWER	Ma	Н	1.5	†	0.5	
د	PO	VOLT	6	20	20	28	30
JISECHE	POL	VOLT	None	None	200	200	JPO406 Cary 2m thru Cable
L L L	CONNECTOR	OUTPUT	A3M*	A3M	cable, 10'BNC	Cable, 2m, B&K	JPO406 2m Cable
IEKISTIC	CONN	MIC	0.46-60	A3M	09-94.0	0.46-60	0.46-60
HAKAC		TUC	8 9	3.3	3.3		
ב א	NCE	OUTPUT	20	20	15	2	1.6 K
1 1	IMPEDENCE	1 1		9	9	Н	6
KEAMPL	IMI	INPUT	D L	500 K	2G	76	13
COMPAKISON OF PREAMPLIFIER CHARACIERISTICS FOR NOISECHECK	FREQ.RESP.	(+ 1 dB)	5 - 100K	5 - 500K	5 - 500K	2 - 200K	20 - 20K
COMPA	NI	LEN.	3.44	6.88	6.75	3.25	2.1
ABLE 4.	I HZIS	DIA.	1/2-3/4	1.56	1/2	1/2	1/2
		MODEL	1972-	1960- P40	1960- P42	2619	2642
		MFG.	GEN/ RAD	GEN/ RAD	GEN/ RAD	В&К	B&K

* For use with piezelectric type microphone

* Switchcraft

COMPARISON OF ACCESSORIES CHARACTERISTICS FOR NOISECHECK TABLE 5.

				SIZE			WEIGHT
	MFG.	MODEL	MIC	H H I	DIA	PERFORMANCE	LB
Dehumidifier	B&K	UA0308	1/2	2	1/2	1	
Calibrator	GEN/	1567-9701	1/2	ħ•ħ	2.4	1000 Hz, 114 dB	Н
, , ,	GEN/ RAD	1562-A	1/2	ľΩ	2.3	125,500,1K,2K,4K, 124 dB	М
-	B&K	4230	1/2	7.4	1.6	1000 Hz, 94 dB	0.57
	B&K	4220	1/2	8.7	7.4	250 Hz, 124 dB	1.5
Windscreen	B&K	UA0381	1/2	ı	7	Birdspikes	1
	B&K	UA0237	1/2	ı	7	ı	1
	B&K	UA0459	1/2	ı	2.5	ı	I
	GEN/ RAD	1560-9522	1/2	ı	7	I	1
Weatherproof System	GEN/ RAD	1945-9730	1/2	12	3.1	Birdspike,pre amp	ı
	BBN	802	ı		ı	ı	ı
	GEN/ RAD	1560-9590	ı		1	1	ì
	B&K	UA0049	ı		1	ı	1

TABLE 6

ATTRIBUTES OF PORTABLE NOISE LEVEL MONITOR

INPUT

- Uncomplicated command sequence designed for untrained or infrequent operator
- . Tactile feedback keyboard
- . Bright lighted digital display of command before entry

OUTPUT

- . Alpha-numeric paper tape record
- Bright lighted digital display presenting information for all three types of commands (set, read, and print) plus error codes
- . Machine status printout

MECHANICAL

- . Balanced about carrying handle
- . Accessable, quick disconnect batteries
- . Separate microphone and accessories connectors
- . Weatherproof connectors
- . Three switches (power, weighting, response) all normally to the right

TABLE 7

GENERAL SPECIFICATIONS FOR PORTABLE NOISE LEVEL MONITORS

•	Description	Specification
Mechanical		
	Weight with Batteries	≤ 50 lb
	Batteries	
	Removable	Yes
	Rechargeable	Desirable
	Life HNL Mode	3 Days
	SEL Mode	1 day,250 events
	Rain Proof	Yes
	Power for Preamplifier	15-25 VdC
	(Desirable)	5 Ma
	Security Lock	Yes
Function	Frequency Weighting	
	Linear	Desirable
	A	Yes
	D	Optional
	Detection	True RMS
•	Time Constant	Slow ANSI Sl.4-1971
	Sampling Period	< 0.5 sec.
	Clock Accuracy	<u>+</u> 10 sec/day
	Computations	
	LEQ (Selectable time	e) Desirable
	HNL	Yes
	SEL (Threshold adjustable)	Yes
	$\mathtt{L}_{ exttt{MAX}}$ for SEL	Yes

TABLE 7 (CONT)

GENERAL SPECIFICATIONS FOR PORTABLE NOISE LEVEL MONITORS

	Description	Specification
Input	Impedance Source Impedance Noise Floor "A"	> 10 KΩ < 70 Ω
	Weighting with Source Impendance	- 100 dBV
•	Dynamic Range Automatic Manual	80 dB 100 dB
Output		
	Integral Printer	Yes
	Sound Level Range	30 - 130 dB re: 20μ N/M ²
	Resolution	< 0.5 dB
	Time Printed with	
	LEQ	Yes
	HNL	Yes
	LDN	Yes
	SEL	Yes

Table 8 - Specification Parameter Comparison for Portable Statistical Noise Level Monitor

			Candidate Units	Units
Input		NOISECHECK	BBN	DAI
Parameter	Units	Requirement	614	607P
Input Impedance	KΩ	Greater than 10	121	09
Source Impedance	ប	No more than 70	NMT 4000	*S/N
Noise Floor, (A) WTD, with Source Impedance	dΒV	-100	-100	>-100
Dynamic Range Automatic Manual	d B d B	80 100	100 N/A	>100 N/A
Voltage Range	dBV	i	-110 to	-100 to
Crest Factor	dB	•	10	7

* N/S - Not Specified

- Specification Parameter Comparison for Portable Statistical Noise Level Monitor (Continued) Table 8

			Candida	Candidate Units
Function	(-1 -2 -1	NOISECHECK	BBN	DAI
רמ המודי	Units	Kequirement	614	607P
Frequency Weighting	LIN	Desirable Yes	Option Yes	۲ ۳ ۳ ۵ ۶ ۳ ۵ ۶
	0	Option	Not Yet	Option
Detection	Type	True rms	True rms	True rms
Time Constant	Туре	Slow ANSI SI.4-1971	Slow	Slow/ Fast
Sampling Period	sec	Less than 0.5	0.5	0.125
Clock Accuracy	sec	Less than +10 per day	×+10	×+10
Computations LEQ (select t) HNL Ldn	1	Desirable Yes Yes	Y es Y es Y es	/ Y Y Y P S S S S S S S S S S S S S S S S
SENEL LMAX for SENEL		Yes	Yes Yes	Yes Yes

- Specification Parameter Comparison for Portable Statistical Noise Level Monitor (Continued) ∞ Table

			Candidate	Units
Output		NOISECHECK	BBN	DAI
Parameter	Units	Requirement	614	607P
Integral Printer	t	Yes	Yes	Yes
lype Sound Level	Ω	30-130	1111pact 30-130	nerma 0-130
Range	20 µ N/m ²		ا م	
Resolution	dВ	Less than 0.5	0.2	0.1
Time Printed With LFO	•	, d y	\ Q	Y S S
T I I	1	Yes	Yes	Yes
LDN SENEL	• •	Yes Yes	Yes Yes	Yes Yes
LED Display	ı	Desirable	No	Yes
Battery Meter	1	Desirable	Yes	Print- Out
Printer Columns Characters Rows	- - no/in	1 1 1	21 16 5	20 64 6

- Specification Parameter Comparison for Portable Statistical Noise Level Monitor (Continued) ∞ Table

			Candidate	. Units
Mechanical Parameter	Units	NOISECHECK Requirement	BBN 614	DAI 607P
Weight Basic with Batteries Size	lbs lbs ft³	Less than 50	18 44 1.5	N/S <50 N/S
Batteries Removable Rechargeable Life, HNL mode SENEL mode	- Days Days Events	Yes Desirable 3 1 250	Yes Yes 7 >1 >250	Yes Yes Yes >>3 >>1
Battery A/C Power Temp. Basic	0°C	Desirable -10 to 55	18 Option -10 to	6 0ption -10 to
Limits Printer	၁့	0 to 45	55 -10 to 55	55 0 to 45
Rain Proof		Yes	Yes	Yes
Preamplifier Power	Vdc ma	$\left\{\begin{array}{c}15-25\\5\end{array}\right\}$ Desirable	17	Yes
Security Lock Paper Takeup	Bin Spool	Yes Minimum Desirable	Yes Yes Option	Yes Yes Option

Area of Difference	BBN 614	DAI 607P
Off-the-shelf availability	Standard Unit	Modification of recently developed unit plus new printer
Specification requirements	Acceptable	Acceptable
Extra Functions	Acceptable	Acceptable
Input Format	Acceptable	Excellent
Output Format	Slightly ambiguous	Excellent
Printer readability	Excellent	Acceptable

In summary, the comparison centers on the printer. It is felt that the human factors aspects of the DAI unit are superior to the BBN unit, and that this superiority outweighs the advantages of an off-the-shelf unit.

The DAI Model 607P unit is represented in Figure 2. The front panel control labels are self explanatory. The other accessible components are identified. The lid, which is not shown, is hinged at the back and protects the operating components during unattended noise level measurements.

Typical portable noise level monitor record listings are presented as Figure 3. The header presents operator entered parameter values along with the unit serial number. Noise level measurements include SEL, HNL, LEQ, and DNL. All of the record listings consist of an alpha-numeric identification and the parameter value. Further explanation of each parameter identification is presented in Figure 3 including initial values which are pre-programmed into the unit.

The performance characteristics and operating instruction for the portable noise level monitor are presented in the companion procedures document².

FIGURE 2. PORTABLE NOISE LEVEL MONITOR

Location number Portable Noise Level operator entry, monitor unit serial zero otherwise number HEADER Internal voltage. Day number operator entry, offset based zero otherwise on calibration increases automatically SER= 102 100= LEQ Interval duration, CAI = 20,60B DAY SEL threshold Operator entry, operator entry, THRESHOLDS: 1 hour otherwise. 60.0 dB otherwise SEL= 60.0DB HNL/CNEL= LEQ Interval beginning, Ø.ØDB HNL threshold INTERVAL DURATION= operator entry, operator entry (=SEL THR) 0 hour (midnight) 1H 9M 0 dB otherwise otherwise. CNEL/DNL BEG ØH. OM INTERVAL BEG OH ØM (DNL beginning Battery voltage BATTERY VOLTAGE= 6.0 operator entry, 6.4 maximum PRINT MODES: 1234-0 hour (midnight) otherwise 5.6 minimum. START AT 10H 27H 335 Functions printed Time print - zero 4-CNEL 1-SEL command was entered 5-LEQ 12-HNL and unit activated. 3-DNL operator entry 234 otherwise

NOISE LEVEL MEASUREMENTS

Day when SEL was Sound Exposure Level, dB-SEL= 88.8DB measured MAX= 81.1DB DAY Maximum A-weighted DURATION= 22.75 SEC sound level during event Total time 10H 49M 56S MAX AT A-weighted sound level Time at which maximum exceeded SEL threshold A-weighted sound level occured. Hour when HNL was measured, Hourly Noise Level, dB——HNL= 74.2DB HOUR 11-110-11 am Hour when HNL was measured, Hourly Noise Level, dB --- HNL= 49.2DB HOUR 24-11-12 pm Equivelent Noise Level, dB~LEQ = 66.5DB Day when LEQ was DAY 5~ INTERVAL MAX= 66.6DB day plus one. Maximum A-weighted OVER THR.24H OM 05 sound level START AT Total time A-weighted ØH OM sound level exceeded Time interval begun SEL threshold Day when DNL was Day-Night Level, dB —— DNL = 73.5DB DAY printed = measured day plus one.

The performance of portable noise level monitor units was evaluated under laboratory ambient and extreme environmental conditions. All specification parameters of Table 7 were checked (except crest factor) and were found to be in compliance. However, all units were found to exhibit a short term drift characteristic of \pm 0.2 dB which is disconcerting but not critical because of the average process inherent in field measurements.

The frequency response and print quality were evaluated at -10°C (14°F) and 50°C (122°F). The frequency response deviated less than + 1.0 dB from 20 to 15000 Hz. No discernable change in print quality occurred as a result of the extreme temperatures.

SYSTEM SAFETY PROGRAM

A system safety program was planned in accordance with MIL-STD-882¹⁵ and conducted in conjunction with the other tasks. As a result of the experience of the field measurements program, the system safety analysis has been updated as follows:

The purpose of the system safety program was to identify potential conditions which could cause injury to the operators of the instrumentation, or incorrect measurements, or loss of equipment, or damage to the instrumentation while setting up and making discrete spot checks of the ground locations in and about Air Force air bases and to plan preventive measures.

DEFINITIONS

The following definitions apply to this system safety program:

- Safety Freedom from those conditions that can cause injury or death to personnel, damage to or loss of equipment or property, or data.
- System Safety The optimum degree of safety within the constraints of operational effectiveness, time and cost, attained through specific application of system safety management and engineering principles throughout all phases of a system's life cycle.

- Hazard Any real or potential conditions such that personnel error, environment, design characteristics, procedural deficiencies, or subsystem or component failure or malfunction can cause injury or death to personnel, or damage to or loss of equipment or property.
- Accident Injury or death to personnel, or damage to or loss of equipment or property.

HAZARD LEVEL CATEGORIES

A hazard level is a qualitative measure of hazards stated in relative terms in accordance with MIL-STD-882 as follows:

Category I - Negligible

....will not result in personnel injury or system damage

Category II - Marginal

....can be counteracted or controlled without injury to personnel or major system damage

Category III - Critical

....will cause personnel injury or major system damage, or will require immediate corrective action for personnel or system survival

Category IV - Catastrophic

....will cause death or severe injury to personnel, or system loss.

SYSTEM SAFETY PRECEDENCE

The achievement of optimal system safety has been accomplished by a number of actions. Certain types of actions are preferable, in the following order:

Design - Protective design features for each identifiable hazard have been selected if feasible and reasonable.

Safety Devices - Safety devices have been added for known hazards which could not be reduced to an acceptable level through design selection.

<u>Procedures</u> - Where it is not possible to preclude the existance of an identified hazard, the operating procedures were structured to minimize the probability of occurrence.

Warning Devices - Where it is not possible to preclude or minimize the probability of occurrence of an identified hazard through design and procedures, passive warning decals are to be employed.

SYSTEM SAFETY ANALYSES

Three analysis techniques were employed. First, equipment use scenarios were constructed and evaluated, step-by-step, for potential hazards. Secondly, users of similar equipment listed any experience where a person was injured, equipment was damaged, or equipment was lost. Thirdly, the Barksdale AFB field test experiences with the prototype portable noise level monitor systems were compared with the preceding analyses.

In order to construct use scenarios, a baseline installation was established, Figure 4. This installation consists of the portable noise level monitor unit chained to a stanchion but with the microphone, preamplifier, and tripod unprotected.

The use of the portable noise level monitor systems will involve at least three different modes of operation.

- Unattended operation for up to three days, measuring average hourly levels (HNL) and computing the time weighted day-night level (DNL), followed by collection of the tabulated levels and replacement of the batteries with recharged units and recalibration.
- Unattended operation for up to 24 hours, measuring sound exposure levels (SEL), occurring at a rate up to 20 per hour, followed by a collection of the tabulated levels and replacement of the batteries with recharged units and recalibration.

SYSTEM BLOCK DIAGRAM

SYSTEM INSTALLATION

FIGURE 4. PORTABLE NOISE LEVEL MONITOR SYSTEM COMPONENTS AND TYPICAL SYSTEM INSTALLATION FOR SAFETY ANALYSIS

 Attended operation, measuring SEL's occurring at a rate up to 20 per hour, while continuously annotating the tabulated results.

Interrogation, battery recharging, and recalibration will be by minimally trained personnel. These personnel will transfer the tabulated monitor readings to data summary forms for subsequent analysis by either data technicians or the field test director.

The transportation and use of the equipment is represented in Figure 5. In this figure, three types of places are shown; the storage area, the roads between storage and measurement location, and the measurement location.

Due to the nature and operation of the noise level monitoring systems, four types of hazards were defined as follows:

- Personal injury
- . Incorrect data
- . Equipment damage
- Equipment loss

Identified hazards were classified by type and are listed in Table 9 through 12, along with the hazard category, identification method, and corrective action taken.

GROUND HANDLING, STORAGE, SERVICING AND TRANSPORTATION

The noise level monitoring systems are intended to be portable, to be used at a variety of locations, and to be relocated daily, if necessary. Therefore, ground handling, storage, servicing, and transportation were major considerations in the design of the systems.

The noise level monitor has transportation container lined with resilient foam material to protect it from damage in normal baggage and freight handling situations.

Similarly, the fragile accessories (microphones, preamplifier, and calibrator) are transported in resilient foam material lined cases.

TABLE 9 ANALYSIS OF PERSONNEL INJURY TYPE HAZARDS

	T				
	Warning	ı	1	ı	Decal
ive Action	Procedure	1	1	Work in pairs	ı
Corrective	Safety Devices	t	1	1	1
	Design Features	Terminal Covers	Light weight balanced unit	1	Avoid Sharp Edges, Make batteries
	Identifica- tion Method	Previous Experience	Previous Experience with larger units	Scenario	Scenario
p.	Category	Critical	Critical	Critical	Marginal
Hazard	Description	Shorting battery with metal tool and burning self	Straining back while lifting unit incor- rectly	Falling off of build- ing or ladders	Pinching fingers

TABLE 10 ANALYSIS OF INCORRECT DATA HAZARDS

	Warning	1	ı	1	ı	ı	ı	ı	1
ve Action	Procedure	Check Battery Voltage	Check Status Printout	1	•	1	Use log sheet printout status	Avoid extremes	1
Corrective	Safety Devices	ı	1	1	•	1	ı	•	Dessicant in monitor
	Design Features	Long Battery Life	Error codes	Status Header Printout	Status Header Printout	Clear printer format	1	ı	Humidity resistant microphone
	Identifica- tion Method	Previous Experience Barksdale	Previous Experience	Previous Experience	Previous Experience	Experience	Experience	Scenerios	Previous Experience
rd	Category	Marginal	Marginal	Marginal	Marginal	Marginal	Marginal	Marginal	Margina}
Hazard	Description	Low battery charge	Incorrect instruction to monitor	Incorrect time setting	Incorrect calibration	Incorrect readout of printer	Any of above	Temperature exceeds operating limits	Humidity exceeds operating limits

TABLE 11 ANALYSIS OF EQUIPMENT DAMAGE HAZARDS

Hazard				Corre	Corrective Action	
Description	Category	Identifica- tion Method	Design Features	Safety Devices	Procedure	Warning
Corrosion	Marginal	Scenerios	Similar metals	ı	Clean	. 1
Rain shorting microphone	Marginal	Previous Experience	Rain resistant microphone	l	1	
Bumping or dropping microphone	Critical	Previous Experience	Rugged microphone	Box mic- preamp- wind- screen	1	1
falling or knocked over	Marginal	Previous Experience, Barksdale Field Test	Wide sturdy tripod	Wind- screen	1	ı
Dropping monitor box	Marginal	Scenerios		1	Remove all cables, Transport w/o batterie	1 8
Vandalism Manual With instrument With gun	Critical Critical Critical	Previous Experience		Heavy box, chain	select location	US Govt. decal

TABLE 12 ANALYSIS OF EQUIPMENT LOSS HAZARDS

Hazard				Corrective	tive Action	
Description	Category	Identifica- tion Method	Desgin Features	Safety Devices	Procedure	Warning
Theft of monitor system . Cut handles	Critical*	Previous Experience	1	1	Chain Tightly	•
. Extract stanchion	Critical	Previous Experience	1	1	Use big stanchion	1
. Cut chain or lock	Critical	Previous Experience	1	Proper chain and lock	ı	ı
. Open case, take innards	Critical	Previous Experience	1	Chain security box closed	1	ı
. Any one of the above	Critical	Previous Experience	Small unit	ı	Select location .safe .hidden	US Govt. decal
Theft of microphone, preamplifier and/or tripod	Critical	Scenario	ı		Select location . safe . hidden	1

*The system is defined as four monitors, therefore the loss of one is not catastrophic.

FIELD MEASUREMENT DEMONSTRATION

A field test was conducted at Barksdale AFB, Shreveport, Louisiana from 5 to 22 June 1978 to demonstrate the portable noise level monitor system and to develop procedures for test planning, test conduct, data analysis, and critiqueing results. Details of the field measurement program and of the field data analysis are presented in the Appendix.

AIR BASE SELECTION

Barksdale AFB adjacent to Shreveport, Louisiana, was selected for the field measurements demonstration because of the following desirable characteristics:

- Types of missions Both training missions and operational missions are conducted.
- Aircraft mix Flight operations consist of both heavy aircraft (KC-135A and B-52G) and small fighter aircraft (A/T-37).
- Aircraft volume The volume of aircraft flight operations is substantial, averaging 174 takeoffs (departures plus pattern passes) daily.
- Takeoff direction variety The flying activity is regulated toward the southeast (Runway 14) approximately 40% of the time.
- Weather During the scheduled field test, the temperatures, precipitation, and wind were forecast (and were, in fact) moderate.
- Political sensitivity The NOISEMAP contours at Barksdale AFB were not under political challenge.
- Airbase cooperation A previous measurement program
 (4) at Barksdale AFB had experienced willing and knowledgeable airbase cooperations.
- Documentation NOISEMAP contours and chronicles were available.

MEASUREMENT SITES SELECTION

Three different types of site DNL problems were selected for evaluation. The types of problems are synonymous with the location of areas in relation to the flight tracks as follows:

- An area perpendicular to the flight track with a large DNL gradient (10 dB) and with the furthest point hypothetically in question because it is in the analytic model transition from air-to-ground and ground-to-ground propagation.
- . An area under the flight track from one to five miles from the end of the runway where the closures of the DNL contours were hypothetically in question.
- . An area under pattern flying where previous DNL measurements were hypothetically in question.

The location of the measurement sites in relation to the Barksdale AFB runway and the NOISEMAP contours are shown in Figure 6. Site 2 was used as a key site and measurements were made there during the entire field test. The conduct of the field test is described in detail in the Appendix.

DATA ANALYSIS PROCEDURES

For the purpose of this field demonstration, analysis of the data from the Barksdale AFB field test consisted of 16 separate procedures. These procedures, the type data used, and the results of the analysis are summarized in Table 13. The procedures are organized in order of increasing complexity and improved accuracy.

Before analyzing measured data, the frequencies of aircraft operations for an average day were summarized from the NOISEMAP chronicles for Barksdale AFB. This information was required for all estimates of average day DNL values. The procedure used is listed first in Table 13.

The least complex method of estimating average day DNL values from measured data was to adjust the measured DNL values for the frequency of appropriate aircraft operations. The procedures using measured DNL values are grouped together as the second listing in Table 13.

FIGURE 6. AIRCRAFT NOISE MEASUREMENT SITES AT BARKSDALE AIR FORCE BASE WITH NOISEMAP PREDICTED CONTOURS

Table 13 - Summary of Data Analysis Procedures for Field Demonstration Test

Data	Data Used		
Field Test	0ther	Data Analysis Procedure	Result
1	NOISEMAP Chrons	. Tabulate yearly average day frequencies of appropriate operations of aircraft	Average Busy Day Operations
Measured DNL Values; Tower Log	Average Day . Total Number of A/C Operations over Sites .	. Tabulate measured HNL and DNL values from portable noise level monitor records Sum appropriate flight operations from tower log Compute corrections based on sums of A/C Opps Apply corrections to measured (DNL) values; compute energy average and sample standard deviations Compare corrected measured and NOISEMAP DNL values	Yearly Average DNL Estimate
Measured SEL Values; Tower Log	Average Day A/C Frequency by Type Operation	Correlate SELs from portable noise level monitor records with tower log events. Compile measured SEL values by aircraft and type operation; calculate energy average and sample standard deviation. Synthesize DNL values from average measured SEL values and NOISEMAP average day aircraft frequencies. Compare synthesized and predicted DNL values.	Yearly Average DNL Estimate
Measured HNL Values; Key Site DNL Value	!	. Compute site-to-site energy differences using HNL values from portable noise level monitor records . Extrapolate satellite site DNL values from key site DNL values and site-to-site energy differences Compare measured and NOISEMAP DNL values.	Yearly Average DNL Estimate
Weather Logs	Yearly Temp/. Humidity Values	. Compare atmospheric absorption during field test with NOISEMAP. . Compare field test average temperature with NOISEMAP. Evaluate effect of differences.	Atmospheric Bias
Sample Statistics	Student t Dist.	. Compute statistical limits at the 90% level of confidence	Confidence Intervals

The most accurate method of estimating average day DNL values employed measured SEL values. The portable noise level monitor records were correlated with the tower log. Next, the SEL values for types of aircraft and operation were compiled and averaged.

Finally, average day DNL estimates were synthesized from the averaged SEL values and NOISEMAP average day aircraft operation frequencies. The procedures using measured SEL values are grouped together in the third listing in Table 13.

An alternate method of estimating average day DNL values consists of extrapolating from a key site to satellite sites on the basis of energy averaged HNL values. The method is usually efficient in that it requires less data analysis than synthesis from SEL values. In addition, all HNL values which are measured simultaneously at both sites may be utilized, including partial day records which do not contribute measured DNL values. The procedures using measured HNL values for extrapolation to satellite sites are grouped together in the fourth listing in Table 13.

Following the estimation of average day DNL values by one or more of the above methods, the effect of weather conditions and other bias errors was evaluated. These procedures are grouped together as the fifth listing in Table 13.

Variabilities in measured data, equipment inaccuracies, and uncorrected bias errors contribute to uncertainties in average day DNL estimates. These uncertainties were expressed in terms of statistical confidence intervals around the average day DNL estimates. The procedure for developing statistical confidence intervals is the final listing in Table 13.

TEST RESULTS, CONFIDENCE INTERVALS, AND CRITIQUE

The yearly average DNL values estimated from the field measurements are presented in Table 14. Three basically different analysis procedures were carried out, with resulting different confidence intervals.

The results show that the average day DNL estimates for all sites at Barksdale AFB are consistently lower than NOISEMAP predictions. In several instances, described in the Appendix,

Barksdale AFB Yearly DNL Estimates With Realistic Confidence Intervals Based on All Sources of Variability Table 14

	IO %06	ŧ	1	ı	1	i	1	1	+2.6	1
4	Avg	1	ı	1	1	1	1	1	66.7	0.69
	ID %06	1	ı	ı		ı	1	9.1-1	+2.5	ı
203	Avg	1	1	1	1	1	ı	73.2	71.1	73.7
	10 %06	1	1	t	1	l	1	41.6	+2.6	1
202	Avg	ı	· I	1	1	1	1	72.3	70.8	75.8
	10 %06	1	ŀ	1	1	1	1	9.1-1	+2.6	1
m	Avg	1	1	ı	1	ı	ı	68.0	66.3	4.69
	10 %06	+3.0	+2.4	+2.4	+2.2	+2.3	+2.6	+1.6	ı	1
2	Avg	72.0	72.7	72.6	73.5	73.2	72.4	75.3	1	76.4
	IO %06	i	i	1	1	1	1	+1.6	+2.5	1
_	Avg	1	ı	1	t	1		79.1	75.7	80.5
Data Source		All Days Measure- ments No Corrections	Corrected for total A/C	Corrected for heavy A/C	Week Days Measure- ments No Corrections	Corrected for total A/C	Corrected for heavy A/C	SEL Synthesis Measured Data	Extrapolation from Site 2 DNL	NOISEMAP (REF)
	1 2 3 202 203	1 2 3 202 203 4 Avg 90% CI Avg 90% CI Avg 90% CI Avg 90% CI Avg 90%	1 202 203 4 Avg 90% CI Avg 90% CI Avg 90% CI Avg 90% CI Avg 90% 72.0 ±3.0	1 2 3 202 203 4 Avg 90% CI Avg<	Avg 90% CI Avg Page Page	Avg 90% CI Avg 90% CI <t< td=""><td>Avg 90% CI Avg 90% CI <t< td=""><td>Avg 90% CI Avg 90% CI <t< td=""><td>Avg 90% CI Avg 90% CI <t< td=""><td>Avg 90% CI Avg 90% - - 72.0 ±3.0 - <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	Avg 90% CI Avg 90% CI <t< td=""><td>Avg 90% CI Avg 90% CI <t< td=""><td>Avg 90% CI Avg 90% CI <t< td=""><td>Avg 90% CI Avg 90% - - 72.0 ±3.0 - <t< td=""></t<></td></t<></td></t<></td></t<>	Avg 90% CI Avg 90% CI <t< td=""><td>Avg 90% CI Avg 90% CI <t< td=""><td>Avg 90% CI Avg 90% - - 72.0 ±3.0 - <t< td=""></t<></td></t<></td></t<>	Avg 90% CI Avg 90% CI <t< td=""><td>Avg 90% CI Avg 90% - - 72.0 ±3.0 - <t< td=""></t<></td></t<>	Avg 90% CI Avg 90% - - 72.0 ±3.0 - <t< td=""></t<>

the differences were traced through individual aircraft/ operation SEL differences to incorrect NOISEMAP input data. This procedure requires accurate reconstruction of aircraft flight profiles from NOISEMAP chronicles to arrive at a close approximation of NOISEMAP SEL values.

CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations are given below regarding NOISECHECK technology. These are based upon the experience gained in procuring and in utilizing the portable noise level monitor systems in the field, and in analyzing the resulting data, as described in detail in the Appendix.

INSTRUMENTATION

Field experience with the portable noise level monitoring systems showed that all components performed reasonably well. No identifiable problems occurred with the microphones, preamplifiers, and accessories. No major problems were encountered with the portable noise level monitor units, although several minor problems were experienced. These were:

- The paper supply roll jammed when the unit was installed up-side-down
- Extraneous SEL's were recorded when the calibrator was left on
- . The unit identifies DNL's with the following day's date.

Particular advantages of the Digital Acoustics Model 607P portable noise level monitor unit over previously available units include:

- Alpha-numeric identification of the printer output
- · Header printout of unit status
- Paper supply and takeup for approximately eight day's operation
- Presentation of commands on a brightly lit display before entry.

The types of microphones, preamplifiers, and accessories employed in the prototype evaluation are all recommended for future procurement for NOISECHECK. Similarly, portable noise level monitor units satisfying the attributes and detailed specifications of Tables 6 and 7 are recommended with the following additions, or modifications:

1. Items presently in NOISECHECK, Version 1.

Weight - 40 pounds

Battery Life - 5 days with 200 SEL's per day

Internal battery charger with unregulated 12 volt DC input.

2. Items for future consideration.

DNL identification corresponding to the day measured

Reactivation after calibration prohibited if calibrator is left on microphone.

FIELD TESTING

Much of the experience gained in undertaking the field measurements are reflected in the procedures². Therefore, extensive recommendations are not set forth in this report. However, the following recommendations are felt to be particularly pertinent.

Base cooperation is necessar for a successful field test. This cooperation can be insured by advance planning and being specific as possible about requirements. However, if the base resources don't match expectations, flexibility and replanning are recommended.

Equipment security is never totally satisfactory. The preferred methods for insuring against theft are to locate in a controlled area, preferrably a private residence, and/or to properly chain the monitor unit. In the field, hypothesizing of techniques for theft and improving methods to discourage theft are recommended.

Daily recalibration of the monitor units and tabulation of the recorded values is recommended.

Analysis of the data using only measured DNL values and those corrected for aircraft volume is recommended.

The correlations between measured and predicted yearly average DNL values are obtained with measured SEL values, by aircraft, and NOISEMAP yearly average flight statistics. This method also permits tracing of the differences between measured and predicted DNL values to the aircraft and operational errors input to NOISEMAP.

It is common to find differences between the predicted and measured DNL values for the various air bases. The differences normally result from inaccurate inputs to the NOISEMAP program. These errors may result from incorrect power settings, altitude profiles, flight tracks, etc. The NOISEMAP program also assumes meteorological conditions that can bias the results by up to 1 dB.

FUTURE STUDY NEEDS

In the analyses of the field data undertaken in this project, a detailed analysis of data variability was made, with subsequent calculation of statistical confidence intervals. Major sources of variability were humidity and temperature differences which were identified but not corrected for because of probable inaccuracies in the evaluation of these uncertainties. Further study into evaluating the effects of temperature and humidity on the noise generation from aircraft and transmission through the atmosphere is recommended to permit more accurate average day DNL estimates from measured data.

The variability analyses performed in this project have necessarily involved a number of assumptions regarding the root sum square addition of standard deviations, and consideration of alternate methods of calculating confidence limits. It is felt that the problem of determining accurate estimates of confidence limits needs further study, particularly taking into account the development of estimates of variability considering the period of sampling with respect to yearly variability in noise exposure.

Determining aircraft volume corrections for the measured data required summarizing the flight operational statistics from the NOISEMAP chronicles. Similarly, tracing differences between measurements and predictions required reconstructing individual aircraft/mission SEL values from the DATASCREEN chronicles. The DATASCREEN chronicles at present give the aircraft code number and mission number by runway and flight track. An additional cross reference of power profiles, delta SEL and altitude profiles would be beneficial.

Other studies that would improve the accuracy of the NOISEMAP would include an investigation of the transition model from air-to-ground versus ground-to-ground propagation. Also a study of the sound duration model as a function of distance would be beneficial.

APPENDIX

FIELD MEASUREMENTS AT BARKSDALE AFB

The field measurements program undertaken to demonstrate the portable noise level monitor system and to develop procedures for noise test planning, test conduct, and data analysis was conducted at Barksdale AFB, Shreveport, Louisiana, from 5 to 22 June 1978. Three different types of site DNL problems were selected for evaluation. The types of problems are synonymous with the location of areas in relation to the flight tracks as follows:

- 1. An area perpendicular to the flight track with a large DNL gradient (10 dB) and with the furthest point hypothetically in question because it is in the analytic model transition from air-to-ground and ground-to-ground propagation.
- 2. An area under the flight track from one to five miles from the end of the runway where the closures of the DNL contours were hypothetically in question.
- 3. An area under pattern flying where previous DNL measurements were hypothetically in question.

The location of the measurement sites in relation to the Barksdale AFB runway and the day-night level (DNL) contours are shown in Figure 6 of this report. This figure was developed by tracing the DNL contours* onto a 7.5 minute series (topographic) Geological Survey map.

TEST CONDUCT

Upon arrival at Barksdale AFB, a coordination meeting was arranged with the base commander by the base civil engineering personnel. The activities represented were as follows:

^{*}The DNL contours were computed and drawn by NOISEMAP.
NOISEMAP contours and chronicles were obtained from AFESC,
Tyndall AFB, Florida 32403 through Hq. SAC/DEV Offutt AFB,
Nebraska.

Activities Represented at Coordination Meeting Organization Activity

Barksdale AFB	Base Commander Assistant Base Commander Civil Engineering Weather Station
11	Tower Operations FAA Rapcon
n	Base Hospital (Environmental Health
WPAFB	AMRL/BBE
Brooks AFB BBN	OEHL/ECH Contractor

The specific measurement site selections were made after inspection of the areas. Only the pattern flying area was over air base property. Therefore, permission to install measurement systems had to be obtained from civilian property owners. The sites and methods for obtaining necessary permissions are as follows:

Type Area	Site Number	Site Description	Method of Obtaining Permission
Perpendicular to flight track	1 2 (key)	St. Jude Church Freeway/Creek	Telephone Visit Contruction Supervisor
	3	Freeway/Airport School	11
Parallel to flight track	2 (key)	Freeway/Creek	Visit Construction Supervisor
Tilght track	202 203	Wallace Utility Mt. Zion Church	Visit Mrs. Wallace Telephone Church Officials
Patterns	2 (key)	Freeway/Creek	Visit Construction Supervisor
	4 5	Ranger Tower FAA transmitter	Contact Base Ranger Contact Base FAA

Microphone installations at four of the six measurement sites are shown in Figure A-1. The terrain at all sites was essentially flat. Trees were present around all sites, but care was taken to ensure unobstructed line of sight to the aircraft at least at the point of closest approach. The noise monitor units, which are out of the fields of view in the installation pictures, were secured against theft. At Site 202, the monitor unit was locked inside the Wallace utility building. At all other sites, a chain was passed under the handle, around the unit, and snugly locked. This prevented opening of the unit. The rest of the chain was routed around a tree or fence post and locked with a second lock. A plastic bag was then draped over the unit to shield it from rain and to make the installation less visible.

The chronology of the field test is presented in Table A-1. Three noise level monitor units were used to perform measurements at five sites. During the course of the field test, a fourth unit was installed at the sixth site. However, the fourth unit was subsequently found to have a defect causing erratic data.

During the first week, BBN, OEHL/ECH, and AMRL/BBE personnel participated actively. During the second week, BBN was assisted by base personnel. These same base personnel performed the necessary recalibration, moving, and shipping of the instrumentation during the third week.

At the request of the field measurement team, aircraft operations logs and weather logs were maintained by the Barksdale AFB tower and weather personnel, respectively.

DATA COLLECTION

NOISE LEVEL DATA

The noise levels measured by the portable noise level monitors are automatically printed on paper tape records. The printer listings are described in Figure 3 of this report.

Data records from three monitor units were edited to synchronize the SEL, HNL, and DNL listings and are presented in Figure A-2.

(a) Site 2, Looking North

(b) Site 3, Looking Across Highway To Airport School, Calibrator on Microphone.

(c) Site 203, Mt. Zion Church (d) Looking South

(d) Site 202, Wallace Utility Building Looking East.

Figure A-1 Microphone Installations at Measurement Sites 2, 3, 202 and 203.

Table A-l
Chronology - Barksdale AFB Field Noise Level Measurements

			Si	te Numb	er	
Day	(June 78)	Activity	Unit 101	Unit 102	Unit 103	Unit 108
Mon	5	Meeting with base CMDR Surveyed sites	-	-	-	
Tues	6	Selected sites, installe units	d 1	2	3	-
Wed	7	Found paper jam	1	2	3	_
Thurs	8	Serviced units, extra SE	L 1	2	3	-
Fri.	9	Serviced units	1	2	3	_
Sat.	10	Serviced Units, Found 10 mic knocked over by cow	2	2	2	
Sun.	11	Moved 101	1/202	2	3	_
Mon.	12	Moved 101	202	2	3/203	_
Tue.	13	Serviced Units	202	2	203	_
Wed.	14	Serviced Units	202	2	203	_
Thur	15	Moved 101, Reset 103,				_
T7	7.6	Installed 108	202/4	2	203	5
Fri	16	108 data erratic	4	2	203	5
Sat	17	-	4	2	203	5
Sun	18	Serviced units	4	2	203	5
Mon	19	Serviced units	4	2	203	5
Tues	20	Tower stopped log	4	2	203	5
Wed	21	101, 108 packed up	-	2	203	_
Thur	22	102, 103 packed up	_ ?	. 2	203	_

SER= 101 LOC= 1.00 CAL= 21.4DB DAY 7 THRESHOLDS: B SEL= 60.0DB HNL/CNEL= 0.0DB [MTERVAL DURATION= 1H 0M CNEL/DNL BEG 0H 0M	SER= 102 LOC= 2.00 CAL= 20.6DB DAY 7 THRESHOLDS:	SER= 103 LOC= 3.00 CAL= 22.4DB DAY 7 THRESHOLDS:
INTERVAL BEG 0H 0M BATTERY VOLTAGE= 6.0 PRINT MODES: 1234 START AT 9H 30M	INTERVAL BEG 0H 0M BATTERY VOLTAGE= 6.0 PRINT MODES: 1234 START AT 10H 27M 295	INTERVAL BEG 0H 0M BATTERY VOLTAGE= 0.0 PRINT MODES: 1234 START AT 9H 55M 18S
Comparison of the comparison o	SEL=109.0DB B-52 . MAX= 98.6DB DAY 7 DURATION= 92.00 SEC MAX AT 10H 32M 23S	EL=101.7DB 8-52 X= 92.4DB DAY 7 .JRATION= 97.50 SEC MAX AT 10H 32M 36S
SEL= 81.4DB <i>C-130</i> max= 72.7DB Day / duration= 22.37 110 max at 10H 33M 365	SEL= 65.3DB C-/30 MAX= 62.2DB DAY 7 DURATION= 02.75 SEC MAX AT 10H 39M 53S	mix= 60.4DB DAY, 7 Diration= 03.50 SEC
SEL= 86.2DB c-(30 Max= 78.1DB Day 7 Duration= 22.75 Sec Max at 10H 49M 49S	SEL= 88.8DB	SEL= 79.2DB C-/30 MAX= 68.4DB DAY S DURATION= 20.75 SEC MAX AT 10H 50M 3S
HML= 80.5DB HOUR):	HNL= 74.2DB HOUR 11	HNL= 66.7DB HOUR (1
SEL= 86.1DB c-/30 MAX= 78.5DB DAY 7 DURATION= 20.62 SEC MAX AT 11H 2M 50S	SEL= 87.3DB C-130 MAX= 78.9DB DAY 7 DURATION= 21.87 SEC MAX AT 11H 3M 5S	MAX= 68.4DB DAY 7 DURATION= 21.25 SEC MAX AT 11H 3M 8S
SEL= 94.2DB T-39 MAX= 85.7DB DAY DURATION= 36.25 SEC MAX AT 11H 37M 24S	SEL= 95.5DB <i>T-39</i> MAX= 86.3DB DAY 7 DURATION= 39.50 SEC 4 MAX AT 11H 37M 27S	SEL= 86.8DB
HNL= 58.2DB HOUR 24	HML= 49.2DB HOUR 24	MML= 54.5DB HOUR 24
DNL = 77.9DB DAY 8	DNL = 73.5D8 DAY 8	DML = 66.1DB DAY 8
CNEL= 79.7DB DAY 8	CNEL= 74.6DB DAY 8	CHEL= 66.8DB DAY 8

FIGURE A-2 - TYPICAL PORTABLE NOISE LEVEL MONITOR DATA RECORDS

The data records in this figure show three different types of entries--status header, SEL's, and HNL's. The status header, which is printed on operator command, must be printed to initiate computation. The time period covered immediately follows the recalibration of unit S/N 102 at location 2.

CALIBRATION OFFSET

During calibration, the portable noise level monitor calculates the ratio of the incoming signal voltage to an internal reference of 1.16 vrms. This ratio, expressed in dB, is called the calibration offset. Variation in the calibration offset is a measure of the drift of part of the calibrator—microphone-pre-amplifier-monitor system. The calibration offset values from the field test are presented in Table A-2. The range of the values for each unit is greater than the +0.2 dB observed under ambient laboratory conditions. Possible sources of variation in calibration offset under field conditions are improper seating of the calibrator on the microphone and not allowing the calibrator to stabilize for at least 30 seconds before doing the calibration.

The calibration offset value is applied to calculated levels at the time the particular noise value is printed. Therefore, if the calibration offset changes during mid-day recalibration, the previous SEL and HNL values are based on the previous calibration offset and subsequent SEL and HNL values are based on the new calibration offset. In addition, the DNL value at the end of that day is based on the mid-day calibration offset even though the energy was accumulated throughout the entire day. This computation method will cause minor differences between measured DNL values and values calculated from HNL values.

Since the calibration offset variation appeared to be random in nature, no daily corrections were applied to the measured data. Instead, the variation was considered an uncertainty which was used, along with other uncertainties, to determine statistical confidence intervals.

AIRCRAFT TOWER LOGS

The flight control tower maintained log of aircraft operations during the field measurement program. A typical log sheet is presented as Table A-3*. This log sheet covers the

^{*}The tower log data sheet was redesigned after the test program. The data in Table A-3 were copied from the original to the new form.

PORTABLE NOISE MONITOR CALIBRATION OFFSET VALUE HISTORY	Unit Unit S/N S/N 103 108	22.2	- 55° th	23.0	22.6	- 22.6	22.7	- 22.6	22.8	23.0	22.8 23.9	22.2 23.9	1	22.6 23.3	22.6 24.2	22.7 24.5	24.8	
CALIBRAT	Unit S/N 102	20.0	20.2	20.7	20.7	21.5	21.5	20.4	20.4	20.7	20.6	20.6	1	20.7	20.7	20.9	ı	
E NOISE MONITOR	Unit S/N 101	21.5	21.4	21.6	21.4	21.4	21.5	22.2	21.6	21.6	21.5	21.5	1	22.0	1	22.0	ı	
PORTABI	Date	June 1978																
TABLE A-2	Da	e June	7	8	0	10	11	12	13	1.4	15	16	17	18	19	20	21	
TA	Day	. [-]	M	Th	ഥ	Ø	ಶ	M	H	M	Th	ഥ	W	Ø	М	H	M	

TABLE A-3

AIRCRAFT TOWER LOG AND NOISE MONITOR DATA TABULATION FORM

Installation BAFB 7 JUNE 178 Date Runway(s) 14 /32

_					1							Nu	nway(s		4 / 3
		Air	cra	ft	Тур	e		0per	ration	Ti	ime	Noise	Monit	or Dat	a
5A							Other	Apprch	T/0 ⁺	GMT	Local	Time	SEL, dB	Dur, sec	Max, dB
KC-135A	B-52G	A-37	T-37	T-38	T-39	C-130									
_	_	1				ļ.,		P	P	1358	0838				
						1		P	P	1359	0859				
_		1						ρ	P		0903				
L						√		P	P	1405	0905				
		2						-	SO (1)	1	0907				
L.		/						P	P	1408	0908				
		/							50	1410	0910				
							C-9		50	1410	0911				
		\checkmark						P	P	1412	0912				
						√		Ρ	P	1413	0913				
		√						P	P	1418	0918				
		✓						р	P	1425	0925				
						√		P	P	1417	720				
		1						P	P	1	0930				
							C131	SI			0932				
		2						P (2)	P (2)		0939				
						\checkmark		P	P	1441	0941				
			✓						50	1443	0943				
		√						_ ^	P	1445	0945				
		1						P	P	1448	0948				
		1						P	OUT	1450	0950				
					-0	HA	NGE	TO	32 -	,	->				
		2						P (2)	P (1)	1454	0954				
						\checkmark		P		1456	0956				
		1						SI		1459	0959				
		1						P	P	1501					
						/			OUT	1506					
	T	5						SI 61			1009				
		/						SĪ		1513	1				
		1		1		\top		SI			1014				

^{*}Approach - SI - Straight In +Takeoff P - Pattern

SO - Straight Out R - Right Turn Departure P - Pattern L - Left Turn Departure

time from 8:58 to 10:14 on 7 June 1978. During that period of time, the runway was changed from 14 (approaches over the measurement sites) to 32 (takeoffs over the measurement sites). Note that no heavy aircraft operations (B-52 or KC-135) took place. The heavy aircraft operations usually occurred early and late in the day.

WEATHER LOGS

Weather logs were maintained by the base weather office. The temperature and relative humidity were tabulated every three hours for the duration of the test program. A typical weather log sheet is presented as Table A-4. This particular log sheet covers the time period from 5 June through 9 June 1978.

PROBLEMS ENCOUNTERED

During the course of the field measurements, various problems were encountered and mistakes were made.

- On five occasions during the daily recalibration procedure, a monitor unit was reactivated before the calibrator was removed. This caused an extra SEL with significantly more energy than the rest of the daily aircraft operations. To rectify each of these mistakes, the affected HNL was reconstructed from SEL's, and the affected DNL was reconstructed form the corrected HNL's.
- During the initial installation, two monitor units were tipped back over against a nearby tree. This procedure caused the paper supply reel in the thermal printer to jam. Nevertheless, much usable data were obtained because the paper take-up mechanism partially overcame the jamming. The jam because more serious, the print height became smaller, and finally no data were printed. It should be noted that on any such occasion, the values for the last SEL, HNL, and most importantly the last DNL may be read on the monitor LED display.
- A microphone in it tripod was set on the pasture side of a fence to make it less visible. However, a number of cows visited the area, knocking over the tripod. Fortunately, no damage to the instruments was incurred. In addition, the cows were present at the time the monitor unit was inspected and the knocking over was assumed to have recently occurred, with no apparent loss of data.

			-	11.	1.1										K 14. 1.	8 155					
REL HUMIDITY	72%	88%	%89	%98	82%	84%	84%	64%	51%	49%	%09	78%	81%	86%	81%	59%	20%	44%	43%	80%	17 U, S, GPO:1976-0-765-034/13
TEMP (°F)	2.2	62	62	73	74	72	7.1	7.7	84	85	81	73		63	64	74	79	82	80	88	
WIND DIR/SPEED (*TRUE/KTS)	050/02	240/05	140/01	170/02	290/03	270/02	280/05	330/06	280/06616	330/12	060/04	CALM	340/05	350/04	020/04	040/08	330/09	070/04	030/06	090/05	E WORK SHEET
	07/1300CDT	1600	1900	2200	08/0100cpT	0070	0020	1000	1300	1600	1900	2200	09/0100CDT	0070	0700	1000	1300	1600	1900	2200	GENERAL PURPOSE WORK SHEET
TABLE A-4 WEATHER LOG REL HUMIDITY DATE/TIME(L)	84%	%06	%06	6.7%	51%	49%	56%	74%	76.%	78%	87%	, %29	82%	85%	76%	84%	87%	%9′2	84%	76%	
TEMP (°F)	7.1	69	67	79	85	98	84	76	73	72	73	84	76	7.5	77	74	72	72	71	73	THIS FORM ARE OBSC
WIND DIR/SPEED (°TRUE/KTS)	CALM	CALM	CALM	180/06	160/05	110/06	120/03	080/01	CALM	140/0,2	170/03	190/11617	150/05	150/08614	190/08	180/07	150/02	270/04	140/05	CALM	PREVIOUS EDITIONS OF THIS FORM ARE OBSOLETE
DATE/TIME(L)	05/010CCDT	00,00	0200	1000	1300	1600	1900	2200	06/0100CDT	00 [†] /0	00200	1000	1300	1600	1900	2200	07/0100CDT	0070	0,000	1000	MAC FORM 36c

- as originally instructed on Tuesday, June 20, while measurement program was extended until Thursday, June 22. The conduct of the test had been turned over to the base personnel the previous Thursday with mostly verbal instructions. Fortunately, the loss of information was not critical to the Barksdale AFB field test program. The event possibly could have been avoided by making explicit agreements with supporting personnel and/or reviewing the daily progress by telephone.
- The portable noise level monitor units sensed and recorded SEL events which could not be correlated with aircraft oper-The SEL values were generally low with short dura-While recalibrating unit 103 at site 3, extraneous tions. SEL events were attributed to a mowing tractor operating on the other side of the unopened freeway. Such extraneous SEL events could have been avoided by setting the SEL threshold to a value higher than the 60 dB pre-set level. Subsequently, the threshold level was raised to 65 dB which did reduce the number of extraneous SEL events, but they still outnum-The threshold was maintained bered aircraft-related events. at a level lower than necessary for heavy aircraft in order to measure the noise levels of the small aircraft. would have been unnecessary for a typical site validation. Virtually no significant SEL information would have been lost by setting the SEL threshold at 25 dB below the maximum A-weighted sound level which was 95 to 105 dB depending on the site.
- On one occasion, the paper became misaligned on the paper take-up reel and folded over on one edge. The problem was traced to factory alignment of the printer. By re-adjusting the printer in the factory, the misalignment problem was solved.
- on one occasion, the battery voltage dropped below that necessary to run the printer. This came about by using only one battery in the unit while the second battery was being recharged in the laboratory. On the occasion in question, the portable noise level monitor unit was left unattended for an extra day. Fortunately, even though the printer failed to document SEL's and HNL's, the unit was still calculating. With fresh batteries, the unit resumed printing. At the end of that day the unit listed the DNL value for the whole day.

NOISEMAP AIRCRAFT OPERATIONS

The frequencies of aircraft operations over the measurement sites for the six most frequently flow aircraft were determined from the NOISEMAP chronicles and listed in Table A-5. For synthesis of DNL values from measured SEL values, four different types of aircraft operation were considered as follows:

Straight-in Approach Pattern Approach Pattern Takeoff Straight-Out Takeoff

The number of each type of operation over the northern measurement sites for both daytime and nighttime were derived by summing of appropriate mission frequencies. For example, four different KC-135A pattern flying missions are listed as departing on Runway 32 with a total rate of 8.240 during the day and 1.780 during the night.

For each type of aircraft operation, the number of nighttime operations was multiplied by 10 and added to the number of daytime operations to arrive at equivalent number of daily operations shown in Table A-5. The sum of the equivalent daytime operations, 329, was subsequently used to correct measured DNL values. In addition, the number of equivalent daily operations for heavy aircraft (B-52G and KC-135A) was determined. This number, 174, was alternatively used to correct measured DNL values.

The numbers of practice operations were similarly derived for correcting measurements at the sites under the practice flight tracks in the east reservation. Noting that all pattern operations are routed over the measurement sites north of the runway, the number of pattern operations is simply the sum of practice approaches and takeoffs.

ANALYSIS USING MEASURED DNL VALUES

TABULATION OF MEASURED HNL AND DNL VALUES

The measured HNL and DNL values tabulated directly from the portable noise monitor unit records for each of the five sites are listed in Table A-6. For those situations during recalibration when the calibrator was not removed before the portable noise level monitor was reactivated, the HNL value was reconstructed from the valid SEL values as follows:

TABLE A-5 DAILY FREQUENCIES OF FLIGHT OPERATIONS OVER NORTHERN MEASUREMENT SITES FROM NOISEMAP CHRONICLES

	01	pera	tic	ons	Fre	equency	<i>'</i>
	Αŗ	эр	T	0/			Equiv.
Type A/C	SI	Patrn	Patrn	80	Day	Night	Day, N*
KC -	√				3.180	0.510	8.28
135A		V			12.412	2.670	39.11
			1		8.240	1.780	26.04
				V	2.871		
B52G	✓				2.910	0.960	
		1			9.750	3.600	45.75
			1		6.480	2.400	30.48
				1	2.436	0.225	4.68
A-37	√				14.430	0.092	15.35
		1			7.168	0.144	8.60
			1		4.770		5.76
				√	5.420	0.140	6.82
T-37	/				5.400	0	5.40
		1			19.260	0	19.26
			1		10.50	0.02	10.70
				1	3.580	0.02	3.78
T-38	/				1.780	0.102	2.80
		1			4.160	0.298	7.14
			✓		2.548	0.172	4.26
				1	1.190	0.07	1.89
T-39	√				2.540	1.220	14.74
. 03		✓			5.230		
			1		3.490		
				√	2.370		
Other	√				2.80	0.10	3.80
		/			5.875		11.57
			/		4.08	0.41	8.18
				✓	1.75	0.07	2.45
App.	A1	1 A	/C		156.6		329
and T/0		a vy			48.28		174
Pattrn		1 A			102.2		234
(REF)	He	a v	A	/C	36.9	10.45	1414

TABLE A-6 MEASURED HNL AND DNL VALUES**

Thursday, 6 June 1978 Mentesday, 7 June 1978 Thursday, 8 June 1978 4 2 3 202 203 4 1 2 3 202 203 4 1 2 3 202 203 4 1 2 3 202 203 4 1 2 3 202 203 4 1 2 3 202 203 4 1 2 3 202 203 4 1 2 3 202 203 4 1 2 3 202 203 4 2 2 2 2 2 2 2 2 2	r		1	7-	7		7	1	7		1		,							_	,					-	-	,
The first day, 6 June 1978	Well-brown and the same	4		1	,		(1	'	1	'	1	1	,						,	,			,		
Triesday, 6 June 1978	1978	203			,	1			1	1		1	,			,			1	,								
The sday, 6 June 1978	June	202	1	ı		,	2	ı	ı		ı	,	,				,		,		'	,	1	,		1		
Thresday, 6 June 1978		.]	11 0	63.1	52.9	50.1	47.7	49.3	54.7	71.0	64.2			54.8	59.0	58.4	58.7	9.09	51.4	54.8							0.89	1.99
Thussday, 6 June 1978 1	Thurs	2			-	T	5	5	2	7		2	5	6	*			0.						1		9.	4	5
Thursday, 6 June 1978 1		_				1	8	-	7	2		1			7	2	0.	4.		8	-				5	9	4.	
The soliday, 6 June 1978		4																										
Tuesday, 6 June 1978 Tuesday, 7 June 1979 Tuesday, 7 June 1979				,		1	1		ı			í	i	ı	•	ı	•			,		1	,			ı	1	1
Tuesday, 6 June 1978			1	1	ı			ı	1	1		ı	1	ı	î	ı	1	ı				,	1	,	1	,	ı	'
Tuesday, 6 June 1978 Tuesday, 6 June 1978 Tele 1 2 3 202 203 4 1 2 Tele 1 2 3 202 203 4 1 2 Tele 1 2 3 202 203 4 1 2 Tele 1 2 3 202 203 4 1 2 Tele 1 2 3 202 203 4 1 2 Tele 1 2 2 3 202 203 4 2 1 2 Tele 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 ,	m	ı	ı	ı	1	,	ı	1	ı	1	0.89	7.1	2.9	8.4	1.7		1.2			6.0	9.1						ı
te 1 Tuesday, 6 June 1978 4 1 te 1 2 3 202 203 4 1 te 1 2 3 202 203 4 1 te 1 2 3 202 203 4 1 te 1 2 2 2 2 66.9 7 1 2 2 2 2 2 6.9 73.13 1 2 2 2 2 2 2 33.1 1 2 2 2 2 2 33.1 1 2 2 2 2 33.2 1 2 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 4	dnesda	2	59.7	16.1	16.0	6.99		18.8	9.09	52.0	ı		9.	ω.	4	2				ε,		۳.	n	9.	2	9.	6.	3.5
Tuesday, 6 June 1978			6	.7		-	9.	6	.3		50.8	26.7		.5	6.	3						.3		.5	9.	9	3	6
Tuesday, 6 June 1978 te 1 2 3 202 20 202 202 202		4																										
Tuesday, 6 June 19 te 1 2 3 202	78	203	ı	ı	1	ı	ı	ı	ı		'	ı	ı	1	1	•	ı	ı	ı	ı			ı	ı	1	,	1	ŧ
Tuesday, 6 J tel 1 2 3 -	4		1	,	ı	ŧ	ı	,	1	1	-	1	í	,	,	ı	,	ı	-	ı	ı	ı	1	1		,	1	,
Tuesda te 1 2 · · 	9		,	1	,	1	1	,	•	1	-	1	1	-	1	1	,	1	1	6.70	8.2.8		1	ı	1	3	ı	
te 1 '	Tuesda	2		-	-					,	1	1	-	'	1	•		-	1		-	•	50.4	•	1.7	• 11	1	
		_		1	,	-	1		,	1	1		'	1	1	1	•	1	•		2.	-			-	7.	ı	
H	Day	r Site		2	- 1	4		9	7	80	6	10	=	12	13	14	15	16	17	18	19	20 7		22 5	23 5	24 6	ON	LEQ

*Reconstructed from valid SEL values

**Calibration correction applied

TABLE A-6 MEASURED HNL AND DNL VALUES**

		, ,	,																			r		, ,		, ,	
	4	ı	,	ı	-		•		1	ı	-	-	1	1			١	-	-	ı	-	ì	1	1	,	I	_
1978	203	•	•	•	•	1	'	'	1	-	ı	1	1	-	ı	,	1	i	_	ı	1	1	ı	1	•		1
June 1	202	1	•	1	1		•	ı	1	•		•	,	•	ı	1	62.2*	56.3	57.0	53.0	55.5	8.09	50.6	46.0	42.7	•	
ay, 11	3	53.7	55.9	56.7	54.7	49.4	50.5	47.2	47.5	52.4	54.1	54.4	52.7	52.2	48.2	26.7	58.9	57.6	53.5	58.0	53.0	54.6	57.9	61.2	59.9	62.6	55.7
Sunday,	2	43.7	43.1	45.6	46.4	46.4	43.1	43.1	44.6	52.1	53.7	48.1	49.4	54.4	44.1	64.2	65.8	56.2	57.1	43.0	9.09	43.8	46.1	45.9	46.0	56.5	48.9
	_	59.6	0.09	60.3	58.8	56.2	51.6	45.6	49.4	55.4	58.6	61.9	56.9	57.2	6.09	1,	1	1	-	1	ı	ı	ı	1	•	t	
	4	•	1	1		1		ı	1	1	1	ı	ı	•	1		1	1	-	-	-		ı	ı	1	-	
1978	203	ı	ı	ı	ı	ı	1	1	•	ı	ı	1	,	1	,	ı	,	,	1	-	•	1	ı	•	1	•	1
10 June		ı	1	•	•	•	t	•	1	1	ı	,	١	•	'			•	1	•	1	•	ı	1	1	1	1
-		53.9	47.8	44.7	41.5	42.9	49.3	51.6	49.2	53.5	50.5	50.2	47.1	51.1	54.5	51.1	57.6	56.5	52.0	50.3	48.5	52.5	57.8	54.7	53.3	57.8	52.6
Saturday,	2	42.0	44.9	37.3	34.3	40.5	39.3	48.3	43.5	50.2	48.8	54.5	49.3*	44.8	59.6	45.2	62.9	60.5	54.0	41.6	43.9	46.5	45.4	44.0	45.1	55.7	54.7
	,	47.6	54.5	43.6	38.5	43.7	39.5	50.5	48.0	50.1	52.6	61.3	58.0	54.7	60.7	55.6	74.7	70.1	59.7	56.5	51.2	54.4	59.9	59.5	59.0	64.6	63.1
	4	1	1	'	ı		1	•	,	1	1	'		ı		•	1	•	-	ı	•	,		r	1	1	
78	203	ı	ı	ı	ı	1	ı	-	1	1	ı	ı		ı	ı		ı	1	ı	ı	,	,	•	-	ı	•	-
June 19	1 1	1	ı	-	1	ı	•	1	ı	•	1	-	,	1	,	1	ı		1	ı	ı		-	-	ı	,	1
0		55.7	49.8	45.4	49.1	52.1	55.4	57.3	83.3	67.5	61.4	55.1	67.8	70.1	68.5	61.7	71.2	60.2	71.3	53.4	70.9	53.9	58.5	57.6	55.9	70.4	70.8
Friday.	2	40.2	44.1	42.4	37.2	39.8	58.1	41.9	85.5	75.1	63.0	57.8	79.4	73.2	76.5	70.2	79.1	9.79	82.2	55.8	72.5	58.8	62.7	43	43.8		75.4
	_	54.4	56.1	53.6	53.1	50.5	58.8	48.2	84.6	82.6	8.79	64.9	79.2	70.9	79.5	78.4	83.5	73.3	80.1	62.5	1.99	69.5	76.5	48.5	46.9	76.9	76.8
Day	Site	-	2	3	4	5	9	7	8	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	DNL	LEQ

*Reconstructed from valid SEL values

**Calibration correction applied

TABLE A-6 MEASURED HNL AND DNL VALUES**

	1	-11	T	T	T-		T	T		T-	Т	T-	Г	ī	ı		1			т		1		11	, —	ır	
3	7	ı			1	t			,		'			i			'	•	ı					-	ı	ı	
ne 1978	1	49.2			37.3	39.8	41.3	41.2	76.6	51.9	53.2	55.0	68.7	56.6	68.2	73.9	80.2	73.1	74.4	61.8	54.1	53.5	42.9	63.8	62.8	71.0	70.1
14 June	202	47.1	52.8	51.9	44.7	41.6	48.8	55.2	81.5	59.4	62.1	59.1	64.5	60.7	67.1	69.0	73.1	70.8	71.3	67.7	54.4	62.2	53.9	8.09	60.5	70.2	69.6
sday,	3	1		,	ı	ı	1			•	,		,									1			ı		1
Wednesday	2	58.1	50.5	61.5	60.4	46.7	56.6	56.7	82.7	64.4	65.8	56.8	65.6	68.2	64.5	73.6	74.5	9.69	67.3	65.3	50.8	45.8	46.6	60.1	59.2	71.4	70.6
AND DESCRIPTIONS OF SECURITIONS OF S		ı	1	,		1	1	,	,		1		1	,		1	,	'	,	-	1	- 4	-	9	ı	_ 7	- 7
	4		ŧ	,	1	,	,	1		,			1		ı	,	,	ı	ı	ı	1	,		ı	1	ı	,
1978	203	37.6	65.8	41.6	57.7	37.8	41.0	39.6	74.9	71.9	71.3	52.9	47.9	51.8	55.6	57.6	53.7	66.3	55.0	69.1	63.1	70.4	48.3	40.7	66.5	68.7	66.0
June	202	44.5	56.7	44.0	53.0	46.6	44.7	48.9	81.9	82.7	75.7	6.49	54.8	58.4	62.3	63.9	63.7	71.9	58.8	71.3	77.5	67.5	56.3	44.0	73.5	74.2	75.2
1	3	ı			,		1	ı	,		ı	1	ı	ı	•	•	1	1	ı	ı		1	•	1			•
Tuesday,	2	45.1	57.6	54.3	58.2	43.0	50.2	44.6	80.5	82.1	81.6	72.3	65.0	65.0	64.2	70.8	70.0	71.3	60.1	81.1	82.6	57.3	56.1	50.2	73.5	76.4	75.3
		,	,	J	ī	,	í	1	1	1	1	•	1	1	1	,	-	-	-	-		1	1			_	-
	4	1	1	,	ž	1	•	ı	1	1	1	,	1	,		ı	ı	ı	•	-	ı	'		1	•	•	
1978	203	ı	1	ı	nate.	,	1	1	•	í			,	64.5	46.4	50.6	47.5	68.2	43.5	70.5	71.7	50.5	43.5	42.5	39.4	,	
June	202	41.7	40.8	43.6	42.1	38.7	43.1	45.6	51.8	49.1	54.3	65.5	54.5	63.4	59.3	62.6	58.3	64.4	58.6	71.9*	72.6	63.6	51.5	46.8 4	44.4	63.4	63.0
lay, 12	3	54.4	54.6	54.2	55.4	57.1	52.7	54.3	58.7	57.7	58.1	62.7	•	1	-	•	-	'	'	'	-	-	1	7 -	7 -	-	
Monday,	2	47.4	46.5	45.5	43.8	42.1	48.7	47.6	52.1	1.99	63.0	•	61.0	62.2	2.09	70.7	72.2	71.1	55.5	78.9	74.0	47.5	47.5	50.0	46.1	68.4	
	-	'	ı	1			9	ı	•	'	•		,	•	1	1	1	'	1	•		7	7 -	1	7 -	-	1
Day	ir Site		2	3	4	5	9	7	80	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	DNL	LEO

^{*}Reconstructed from valid SEL values

**Calibration correction applied

TABLE A-6 MEASURED HNL AND DNL VALUES**

	Thursday	hursdav	>	15	June	1978			Friday	16	June 1	1978			Saturday	lay, 17	June	1978	
60.7 - 58.5 45.6 - 50.1 - 47.6 - 64.7 - - 71.9 46.6 - 49.0 - 42.7 - 64.7 - - 71.9 46.6 - 49.0 - - 42.7 - 60.7 - - 67.5 40.9 - 41.4 - 41.9 - 60.7 - - 67.5 40.9 - 41.4 - 41.8 - 60.7 - - 44.7 39.0 - 41.4 - 41.9 - 44.5 - - 44.7 39.0 - 41.8 - 41.8 - 44.5 - - 44.7 39.0 - 41.8 - 41.9 - 48.1 - 6.2 - 41.3 - 41.3 - 48.2 62.7 - <td>3 202</td> <td>3 202</td> <td>3 202</td> <td>202</td> <td>20</td> <td>2</td> <td>4</td> <td>-</td> <td>2</td> <td>3</td> <td>202</td> <td>203</td> <td>4</td> <td>-</td> <td>2</td> <td>3</td> <td>202</td> <td>203</td> <td>4</td>	3 202	3 202	3 202	202	20	2	4	-	2	3	202	203	4	-	2	3	202	203	4
- 64.7 - 71.9 46.6 - 49.0 - 42.0 - 71.3 - 65.9 41.8 - 45.9 - 41.7 - 60.7 - 65.9 41.8 - 45.9 - 41.1 - 60.7 - 67.5 40.9 - 41.4 - 41.9 - 44.5 - 44.7 39.0 - 41.4 - 41.9 - 44.5 - 44.7 39.0 - 41.3 - 41.9 - 44.5 - 44.7 39.0 - 41.9 - 41.9 - 48.1 - 41.3 - 41.3 - 41.9 - 48.1 - 41.2 - 41.3 - 41.9 - 48.1 - 42.6 44.4 - 41.3 - 41.7 - <t< td=""><td>- 64.4 - 64.8 71.</td><td>4 - 64.8</td><td>64.8</td><td>+</td><td>17</td><td></td><td></td><td>•</td><td>60.7</td><td></td><td>1</td><td>5</td><td>45.6</td><td>1</td><td>50.1</td><td>•</td><td>ı</td><td>47.6</td><td>45.2</td></t<>	- 64.4 - 64.8 71.	4 - 64.8	64.8	+	17			•	60.7		1	5	45.6	1	50.1	•	ı	47.6	45.2
- 71.3 - 65.9 41.8 - 45.9 - 45.9 - 41.9 - 41.4 - 41.8 - 60.7 - 67.5 40.9 - 41.4 - 41.5 - 44.5 - 44.7 39.0 - 41.4 - 41.5 - 48.1 - 48.9 52.7 - 41.4 - 41.5 - 48.1 - 48.9 52.7 - 41.1 - 41.5 - 48.1 - 48.9 52.7 - 41.1 - 41.5 - 48.1 - 48.9 52.7 - 49.1 - 41.7 - 48.1 - 49.1 - 41.3 - 41.7 - 48.1 - 40.1 41.2 - 41.7 - 48.2 - 42.6 44.4 -	- 4	- 47.7 47	47.7 47	47	47.9	_	1	1	64.7	ı	1	ο.	46.6		49.0	1	1	!	44.5
- 60.7 - 67.5 40.9 - 41.4 - 41.5 - 44.5 - - 44.7 39.0 - 41.3 - 42.4 - 48.1 - - 44.7 39.0 - 41.3 - 42.4 - 48.1 - 48.9 52.7 - 49.1 - 46.7 - 48.1 - 48.9 52.7 - 49.1 - 46.7 - 48.1 - 50.7 42.3 - 49.1 - 46.7 - 57.6 - 47.2 - 43.1 - 44.7 - 78.3 6.0 - 57.2 - 47.8 - 68.5 - 6.0 57.2 - 47.8 - 70.4 60.3 - 64.5 - 47.8 - 72.1 8.4 - 6	- 40.5 - 38.5 38.5	- 38.5	38.5	2	38.5	T	ı	ı		•	ı	6		٠,	45.9	'	'	41.9	43.5
- 44.5 - - 44.7 39.0 - 41.3 - 42.4 46.7 46.7 - 47.8 - 47.9 -	- 67.3	- 67.3	67.3	1	67.5		ŀ	1	60.7	ı	ı	5	40.9	,		ı	'	•	
- 48.1 - 48.9 52.7 - 49.1 - 46.7 - 57.6 - 50.7 42.3 - 51.5 - 47.3 - 78.3 - 50.7 42.3 - 51.5 - 47.3 - 78.3 - 42.6 44.4 - 59.1 - 44.7 - - 42.6 44.4 - 50.2 - 47.7 - - - 42.6 44.4 - 50.2 - 47.8 - - - 42.6 44.4 - 50.1 - 47.8 - - 42.6 44.4 - 50.7 - 47.8 - 68.5 - 70.4 56.9 - 54.8 - 47.9 - 72.9 - 77.7 58.4 - 65.2 - 47.9 - 66.1	- 64.3 - 64.8 68.0	- 64.8	64.8		68.0		,	1		1	•	7.	39.0	•	41.3	ı	'	42.4	38.2
57.6 60.7 42.3 51.5 47.5 78.3 77.7 41.2 59.1 44.6 78.3 42.6 44.4 59.1 44.7 42.6 44.4 59.1 44.7 42.6 44.4 57.2 47.7 56.3 48.4 57.2 47.8 68.5 54.8 52.9 52.3 70.4 50.3 64.5 64.5 70.4 50.9 64.5 64.5 70.4 60.3 65.2 72.3 72.1 72.9 65.2 -	- 46.8 - 44.1 42.9	- 44.1	44.1		42.9		1	1	48.1	1	1	48.9	52.7		49.1	1	'	• 1	46.6
- 78.3 - - 59.1 - 44.5 - - - 42.6 44.4 - 59.1 - 44.7 - - - 42.6 44.4 - 57.2 - 44.7 - - - 56.3 48.4 - 65.6 - 47.8 - - - 56.3 48.4 - 65.6 - 47.8 - 68.5 - 70.4 66.9 - 64.8 - 64.3 - 70.4 60.3 - 64.5 - 72.3 - 74.5 61.5 - 64.5 - 64.5 - 72.9 - 77.7 58.4 - 65.2 - 47.9 - 72.9 - 77.7 58.4 - 65.2 - 73.0 - 65.8 - 77.7 58.4 -	- 47.2 - 49.5 48.9	- 49.5	49.5		48.9		ı	1	9.75	1	ı		42.3	1	51.5	1	•	47.3	48.7
- - - 42.6 44.4 - 57.2 - 44.7 - - 56.3 48.4 - 65.6 - 47.8 - 68.5 - 56.3 48.4 - 65.6 - 47.8 - 68.5 - 70.4 56.9 - 64.8 - 52.3 - 70.4 - 77.5 51.5 - 64.5 - 72.3 - 74.5 - 77.5 51.5 - 64.5 - 72.3 - 74.5 - 77.7 58.4 - 65.2 - 64.5 - 72.1 - 77.7 58.4 - 65.2 - 65.2 - 72.1 - 77.7 58.4 - 65.2 - 73.0 - 66.8 - 77.7 58.4 - 65.1 73.0 - <t< td=""><td>- 81.9 - 80.5 61.5</td><td>.9 - 80.5 61.</td><td>80.5 61.</td><td>61.</td><td></td><td>[[~</td><td>ı</td><td>1</td><td>78.3</td><td>1</td><td>ı</td><td></td><td>41.2</td><td>1</td><td>59.1</td><td>ı</td><td>1</td><td>44.5</td><td>40.5</td></t<>	- 81.9 - 80.5 61.5	.9 - 80.5 61.	80.5 61.	61.		[[~	ı	1	78.3	1	ı		41.2	1	59.1	ı	1	44.5	40.5
- - - - - 65.3 48.4 - 65.6 - 47.8 - 68.5 - 70.4 56.9 - 54.8 - 72.3 - 70.4 - 73.2 50.9 - 64.5 - 72.3 - 70.4 - 73.2 50.9 - 64.5 - 72.3 - 74.5 60.3 - 64.5 - 64.5 - 72.9 - 77.7 58.4 - 65.2 - 64.5 - 72.9 - 77.7 58.4 - 65.2 - 64.6 - 72.9 - 77.7 58.4 - 65.2 - 65.6 - 72.9 - 77.7 58.4 - 65.2 - 73.0 - 68.1 - 78.3 50.7 - 55.1 57.6 <t< td=""><td>- 54.8 - 52.8 51.2</td><td>- 52.8</td><td>52.8</td><td>1</td><td>51.2</td><td>1</td><td>1</td><td>ı</td><td>ı</td><td>•</td><td>1</td><td>42.6</td><td>44.4</td><td>ı</td><td>57.2</td><td>1</td><td>1</td><td>44.7</td><td></td></t<>	- 54.8 - 52.8 51.2	- 52.8	52.8	1	51.2	1	1	ı	ı	•	1	42.6	44.4	ı	57.2	1	1	44.7	
- 68.5 - 70.4 56.9 - 54.8 - 72.3 - 70.4 - 73.2 50.9 - 64.5 - 72.3 - 70.4 - 77.5 51.5 - 64.5 - 64.5 - 74.5 - 77.5 51.5 - 65.2 - 64.5 - 72.9 - 77.7 58.4 - 65.2 - 64.5 - 72.1 - 77.7 58.4 - 65.2 - 61.1 - 72.1 - 77.7 58.4 - 65.2 - 61.0 - 72.1 - 77.7 58.4 - 65.2 - 61.6 - 65.8 - 66.9 - 65.2 - 50.1 - 51.6 - 64.1 45.0 - 67.5 - 67.6 -	- 57.7	- 57.7	57.7		63.0	1	l _y	1	,	1	1	56.3	48.4	•	65.6	ı	•	47.8	
- 70.4 - 73.2 50.9 - 64.5 - 72.3 - 74.5 - 77.5 51.5 - 64.5 - 64.5 - 74.5 - 77.7 58.4 - 65.2 - 64.5 - 72.9 - 77.7 58.4 - 65.2 - 61.1 - 72.9 - 77.7 58.4 - 65.2 - 61.1 - 72.1 - 77.7 58.4 - 65.2 - 51.1 - 72.1 - 77.7 58.4 - 65.2 - 51.1 - 66.1 - 77.2 52.5 - 69.2 - 51.6 - 68.1 - 67.5 47.8 - 52.1 - 52.1 - 68.6 - 65.2 - 52.5 - 52.5	- 65.8 64.8	1	1		64.8	1	ı	1	68.5	ı	1	70.4	56.9	1	54.8	'	1	52.3	46.2
- 74.5 - 77.5 51.5 - 57.6 - 64.5 - 69.1 - 74.0 60.3 - 65.2 - - 51.1 - 72.9 - 77.7 58.4 - 65.2 - 69.6 - 72.9 - 77.7 58.4 - 65.2 - 69.6 - 72.9 - 78.9 65.9 - 69.2 - 69.6 - 72.1 - 78.9 65.9 - 69.2 - 73.0 - 64.1 45.0 - 69.3 - 69.3 - 73.0 - 68.1 - - 64.1 45.0 - 59.1 - 59.1 - 68.4 - 64.1 45.0 - 52.1 - 54.9 - 65.8 - 56.8 - 57.5 - <t< td=""><td>- 66.8 68.4</td><td>1</td><td>1</td><td></td><td>68.4</td><td></td><td></td><td></td><td>70.4</td><td>ı</td><td>ı</td><td></td><td>50.9</td><td>ı</td><td>64.5</td><td>1</td><td>1</td><td>72.3</td><td>46.4</td></t<>	- 66.8 68.4	1	1		68.4				70.4	ı	ı		50.9	ı	64.5	1	1	72.3	46.4
- 69.1 - 74.0 60.3 - 65.2 - - 51.1 - 72.9 - 77.7 58.4 - 65.2 - - 69.6 - 72.9 - 77.7 58.4 - 65.2 - - 69.6 - 72.1 - 78.9 65.9 - 69.2 - 69.6 - 69.6 - 66.8 - - 68.3 50.7 - 69.1 - 73.0 - 64.1 - 64.1 45.0 - 69.1 - 56.4 - 68.1 - 64.1 45.0 - 52.1 - 54.9 - 68.6 - 67.5 47.8 - 52.1 - 45.5 - 68.6 - 65.1 51.1 - 52.5 - 45.5 - 62.8 - 6	- 56.2 49.5	1	'		49.5		43.0		74.5	1	1	77.5	51.5		57.6	ı	1	•	57.2
- 72.9 - 77.7 58.4 - 65.2 - - 69.6 - 72.1 - 78.9 65.9 - 69.2 - 73.0 - 65.8 - 68.3 50.7 - 69.2 - 73.0 - 65.8 - 68.3 - 69.3 - 56.4 - 64.1 45.0 - 63.1 - 56.4 - 68.1 - 64.1 45.0 - 59.1 - 54.9 - 68.1 - 73.2 52.5 - 55.1 - 56.7 - 65.4 - 67.5 47.8 - 50.5 - 56.7 - 68.6 - 67.5 47.8 - 57.5 - 45.5 - 62.8 - 65.2 48.6 - 51.9 - 43.9 - <t< td=""><td>- 60.0 64.2</td><td>1</td><td>1</td><td></td><td>64.2</td><td></td><td>46.5</td><td></td><td>1.69</td><td>1</td><td>ı</td><td>74.0</td><td>60.3</td><td>ı</td><td>65.2</td><td>1</td><td>1</td><td>51.1</td><td>47.4</td></t<>	- 60.0 64.2	1	1		64.2		46.5		1.69	1	ı	74.0	60.3	ı	65.2	1	1	51.1	47.4
- 72.1 - - 78.9 65.9 - 69.2 - 73.0 - 65.8 - - 68.3 50.7 - 63.3 - 56.4 - 64.1 - 64.1 45.0 - 59.1 - 56.4 - 68.1 - - 64.1 45.0 - 59.1 - 51.6 - 68.1 - - 57.6 - 52.5 - 52.1 - 54.9 - 65.4 - - 52.1 - 52.1 - 56.7 - 68.6 - - 55.1 51.1 - 51.7 - 55.6 - 62.8 - - 55.1 51.1 - 51.5 - 43.5 - 62.8 - - 52.5 - 57.6 - 43.5 - 51.1 - - 52.5 - 43.5 - 52.2 - 52.5 <t< td=""><td>- 55.5 55.4</td><td>1</td><td>,</td><td></td><td>55.4</td><td></td><td>41.1</td><td>'</td><td>72.9</td><td>1</td><td>1</td><td>77.7</td><td>58.4</td><td>ı</td><td>65.2</td><td>1</td><td>1</td><td>9.69</td><td></td></t<>	- 55.5 55.4	1	,		55.4		41.1	'	72.9	1	1	77.7	58.4	ı	65.2	1	1	9.69	
- 65.8 - - 68.3 50.7 - 63.3 - - 56.4 - 64.1 - 64.1 45.0 - 59.1 - 56.4 - 68.1 - 73.2 52.5 - 55.6 - 54.9 - 55.8 - 56.8 37.6 - 56.1 - 54.9 - 65.4 - - 67.5 47.8 - 50.5 - 56.7 - 65.4 - - 67.5 47.8 - 50.5 - 56.7 - 65.4 - - 51.7 - 57.6 - 62.8 - - 51.7 - 45.5 - 62.8 - - 52.5 - 45.5 - 51.1 - 43.4 - 51.9 - 43.5 - 51.1 -	- 65.4 73.0	1	1		73.0	l	69.3	1	72.1	1	1	78.9	62.9	-	69.2	ı	1	73.0	49.4
- 64.1 - - 64.1 45.0 - 59.1 - 51.6 - 68.1 - - 73.2 52.5 - 55.6 - 54.9 - 55.8 - - 52.1 - - 54.9 - 65.4 - - 57.1 - 52.1 - 56.7 - 68.6 - - 55.1 51.1 - 51.7 - 45.5 - 62.8 - - 65.2 48.6 - 52.5 - 43.5 - 51.1 - 43.4 6.2 - 52.5 - 43.5 - 51.1 - 43.4 6.2 - 52.5 - 43.5 - 72.2 - 74.3 56.8 - 61.7 - 63.6 - 69.3 - - 71.9 54.9 - 60.7 - - 63.3	- 68.5 74.7	1	1		74.7	(60.4	1	65.8	1	ß	68,3			63.3	ı	1	56.4	40.9
- 68.1 - 73.2 52.5 - 55.6 - 54.9 - 55.8 - 65.4 - 56.8 37.6 - 52.1 - 56.7 - 65.4 - 67.5 47.8 - 50.5 - 56.7 - 68.6 - 55.1 51.1 - 51.7 - 45.5 - 62.8 - 65.2 48.6 - 52.5 - 43.5 - 51.1 - 43.4 46.2 - 52.5 - 43.5 - 51.1 - 43.4 46.2 - 51.9 - 43.5 - 72.2 - 74.3 56.8 - 61.7 - 63.5 - 69.3 - 71.9 54.9 - 60.7 - 63.3	- 61.6 69.2	- 9.	1		69.2	1	41.9	'	64.1	ı	'	64.1	45.0	1	59.1	ı	1	51.6	39
- 55.8 - - 56.8 37.6 - 52.1 - 56.7 - 65.4 - - 67.5 47.8 - 50.5 - - 57.6 - 68.6 - - 55.1 51.1 - 51.7 - 45.5 - 62.8 - - 52.5 - - 45.5 - 51.1 - 65.2 48.6 - 52.5 - - 43.5 - 51.1 - - 43.4 46.2 - 51.9 - - 49.9 - 72.2 - - 74.3 56.8 - 61.7 - 63.6 - 69.3 - - 71.9 54.9 - 60.7 - 63.3	- 74.1 75.5	1	1		75.5	1	9.69	1	68.1	ı	1	73.2		1		1	1	54.9	44
- 65.4 - - 67.5 47.8 - 50.5 - - 57.6 - 68.6 - - 55.1 51.1 - 51.7 - 45.5 - 62.8 - - 65.2 48.6 - 52.5 - - 43.5 - 51.1 - - 43.4 46.2 - 51.9 - 49.9 - 72.2 - 74.3 56.8 - 61.7 - 63.6 - 69.3 - 71.9 54.9 - 60.7 - 63.3	- 50.2 62.4	1	1		62.4		63.0	ı	55.8	ı	ı	56.8	37	-	52.1	,		56.7	
- 68.6 - - 55.1 51.1 - 51.7 - 45.5 - 62.8 - - 65.2 48.6 - 52.5 - 43.5 - 51.1 - - 43.4 46.2 - 51.9 - 49.9 - 72.2 - 74.3 56.8 - 61.7 - 63.6 - 69.3 - 71.9 54.9 - 60.7 - 63.3	- 48.0 55.7	1	1		55.7		45.5	ı	65.4	ı	1	67.5	47.8	ı	50.5	,	1	57.6	48
.0 - 62.8 - 65.2 48.6 - 52.5 - 43.5 .5 - 51.1 - 43.4 46.2 - 51.9 - 49.9 - 72.2 - 74.3 56.8 - 61.7 - 63.6 - 69.3 - 71.9 54.9 - 60.7 - 63.3	- 68.7 66.8	1	1		9.99		57.7	I	9.89		,	55.1	51.1	1	51.7	,	•	45.5	
.5 - 51.1 - - 43.4 46.2 - 51.9 - 49.9 - 72.2 - 74.3 56.8 - 61.7 - 63.6 - 69.3 - 71.9 54.9 - 60.7 - - 63.3	- 65.2 69.	1	1		.69	_		1	62.8	1	1	65.2	II e≨	1		•	1	43.5	49
- 72.2 - - 74.3 56.8 - 61.7 - 63.6 - 69.3 - - 71.9 54.9 - 60.7 - - 63.3	- 68.6 71.	1	1		71.	7		1		,	'	43.4	46.2	1	• [-	1	49.9	
- 69.3 71.9 54.9 - 60.7 63.3	73.	73.	73.	73.		5	1	ı	72.2	ı	'		56.8	1		t	1	63.6	55
	- 69.9	1			68.	_	ı	'	69.3	1	1	71.9	54.	-	60.7	1	'	63.3	

**Calibration correction applied

TABLE A-6 MEASURED HNL AND DNL VALUES**

0.5.0		Company	C F	The second second	210	1		THE COLOR		בוב בוב	TIND DIAL VALORONS						Control of the Contro	No least the second
Udy	-	ga	20	June 13	19/8			Monday,	6	June 19	978			Tuesday	, 20	June 1	1978	
Hr Site	-	7		202	203	4	-	2	3	202	203	4	,	2	3	202	203	4
	'	44.7	ŀ	1	42.3	47.3	ı	43.5	i	1	42.0	49.5	1	65.2	,	1	66.7	49.8
2	1	43.4	•	•	44.7	46.7	1	45.4	•	ı	41.7	47.2		64.6		•	67.8	50.6
m	1	46.8	1	'	52.4	47.0	'	47.7	1	ı	45.4	50.9	ı	43.1	1		41.8	48.1
4	•	41.3	1	•	43.2	45.8	1	43.6	1	1	43.8	45.7	,	64.4			72.2	47.1
2	1	41.8	1	,	45.5	44.9	ı	41.3	1	ı	44.9	41.3		43.2		'		42.9
9		55.1	,	-	40.7	46.7	1	9.99	1	1	68.1	8.09	ı	41.8		'	43.5	49.6
7	1	52.7	1	1	40.2	46.6	•	70.2	ı	ı	72.2	0.79	,	47.2	ı	'	52.7	44.7
8	1	58.3	•	1	38.1	42.2		71.4	•	ı	70.9	68.5		52.9	ı	1	43.8	42.0
6	1	63.8	•	'	38.5	41.4	,	46.2	-	1	45.6	44.7	1	60.3	ı	ı	55.3	45.2
9	1	56.5		'	43.4	36.7	ı	52.7	-	1.	56.8	51.0		65.5	'	ı	0.99	58.7
=	'	54.8		-	53.4	45.2	,	58.5	1	ı	51.6	51.4		75.7	1		61.7	49.2
12	-	61.9	•	•	53.1	44.9	ı	65.1	ı	1	65.6	57.9		57.8*		,	56.4	44.5
13	•	53.1*	•	'	51.8	53.7	•	63.8	,	•	68.3	45.7		70.4		ı	71.6	56.9
14	1	52.5	1	'	54.2	45.0	'	58.5		1	49.5	44.9	1	63.4			67.0	50.6
15	•	53.7	1	-	58.6	42.9	1	68.3	-	1	75.7	70.4		8.99			72.0	50.4
16	•	48.6	,	'	43.7	43.5	-	66.4	ı	1	73.9	50.6	ı	58.0		1	55.6	54.1
17	•	60.2	'	•	59.8	40.2	,	53.7	ı	ı	58.4	46.1		57.9			55.9	47.9
8	١	57.3	-	1	48.8	47.8	-	53.4	1	ı	45.0	47.2	ı	55.1		•	56.3	38.5
19	1	59.0		'	48.6	51.8	1	61.9	ı	•	56.3 7	74.0	ı	58.3	,		59.4	60.09
20	1	61.9	,	•	55.5	42.3	ı	54.7	'	•	46.5	39.7	ı	46.0		•	46.9	42.9
21	1	56.4		•	49.1	52.4	,	50.2		•	53.5	47.7	ı	51.8	ı	'	52.8	53.7
22	'	46.9	1	ı	42.9	52.8	'	65.7	1	1	74.9	62.3		55.9		•	62.7	54.5
23	•	45.5	,	•	44.6	50.8		70.1	ı	ı	72.3	64.1	1	60.3	ı		64.9	61.6
24		43.8	ı	1	48.9	49.6	ı	63.9		1	68.5	50.4	ı	65.5		1	71.1	63.1
DNL		58.6	ı	1	54.8	54.7	1	71.2	,	ı	73.9 6	9.79	ı	69.2	,		73.0 62.5	62.5
LEQ	-	56.7	1	,	51.7	48.1	1	64.4	ı	ı	68.4	63.6	,	65.1			65.7	54.9
*0000	4 4			1					A COLUMN TWO IS NOT THE OWNER.			-		7	The second second	-		

*Reconstructed from valid SEL values

**Calibration correction applied

TABLE A-6 MEASURED HNL AND DNL VALUES**

	202 203 4																										_
	3																										
	2					_																					
	4	52.8	51.7	50.2	48.9	48.5	47.7	41.6	43.7	43.6		ı	1	ı	1	ı	1	1	1		ı	-	1	1	-	ı	-
1978		1	-	- 2	- 4	- 4	- 4	- 4	7 -	7 -	1	1	1	1	1	1	ı	ı	1	1	ı	ı	ı	1	1	ı	
enul, 99	202	1	1	1	1	ı	ı	1	1	•	'	ı	ı	i	1	1	ı	ı	ı	1	ı	1	1	ı	1	1	
Thursday	1			1	1	1		1	1	1			•	ı	1	1	•	1	t	1	1	1	,	1	ı	'	
Thu	2		,	1	-	1	1	ı	1	ł	1	1	1	1	1	1	1	-	-	-	-	1		-	1	1	
-	_	1	•	1	1	1	ı	-	1	1	1	- (-	1	- (- 3	-	-	10	- t	- t	- 6	2 -	_
α/	4	60.5	-	49.0	48.3	58.8	52.3	41.7	42.5	49.6	46.2	48.9	47.7	57.4	65.5	69.0	52.5	61.5	38.3	53.1	39.5	66.5	62.4	55.4	60.9	64.2	
71 June 197	203	70.5	74.9	44.3	45.6	46.5	71.1	54.4	49.0	53.3	53.1	47.9	58.3	61.4	74.8	70.8	ı	'	'	1	'	1	1	,	•	'	
21 1	202	ı		,	1	1	1	1		1	ı	'	1	ı	1	•	ı	'	'	1	•		1	'	•		
Vebac	Meuriesday,	•	'	'	1	1	'	1	1		•	ı	ı	1	1	'	•	'	1	•	'	1	'	1	1		
Loda	Neuri 2	68.2	64.4	55.9	43.9	43.8	61.5	48.8	61.9	59.6	62.4	63.0	64.2	63.4	67.9	68.7	57.6	-		1	'		1	ı	•		
				'	'	'	'	'	1	'	ı	ı	'	,	1	'	'	-	'	1	1	'	'			-	
,,,,	Ddy Hr Site	7	2	m	4	2	9	7	8	6	2	=	12	13	14	15	16	17	18	19	20	21	22	23	24	DNL	

**Calibration correction applied

$$L_{h} = 10 \log_{p} \sum_{p} 10^{\frac{L_{AE}}{10}} - 10 \log(3600)$$
 (1)

where

 L_h = hourly noise level (HNL), dB

 L_{AE} = A-Weighted Sound Exposure Level (SEL), dB

p = summation index for SEL values in particular hour.

The day-night noise levels for those situations were then calculated from the hourly noise levels as follows:

$$L_{dn} = 10 \log_{\frac{5}{1}} 10^{\frac{L_h}{10}} + 10 \log_{\frac{5}{1}} 10^{\frac{(L_h + 10)}{10}} - 10 \log(24)$$
 (2)

where

 L_{dn} = day-night noise level (DNL), dB

 L_h = hourly noise level (HNL), dB

i = summation index for daytime HNL's

j = summation index for nighttime HNL's.

In addition, the average sound levels were calculated from the HNL and DNL values for each complete day of data and are also listed. If all 24 HNL values were available, the particular LEQ value was calculated using Eq. (3).

$$L_{24} = 10 \log \left[\sum_{i=1}^{L_{h}} 10^{\frac{L_{h}}{10}} + \sum_{j=1}^{L_{h}} 10^{\frac{L_{h}}{10}} \right] - 10 \log(24)$$
 (3)

where

 L_{24} = twenty-four-hour average noise level (LEQ), dB

 L_h = hourly noise level (HNL), dB

i = summation index for daytime HNL's

j = summation index for nighttime HNL's.

If one or more daytime hourly noise levels were missing and all nighttime hourly noise levels were recorded, the LEQ was calculated using Eq. (4).

$$L_{24} = 10 \log \left[10^{\frac{L_{dn}}{10}} - \sum_{j} 10^{\frac{9(L_{h}+10)}{10}} \right]$$
 (4)

where

 L_{2h} = twenty-four-hour average noise level (LEQ), dB

 L_{dn} = day-night noise level (DNL), dB

 L_{h} = hourly noise level (HNL), dB

j = summation index for nighttime HNL's.

Inspection of the data in Table A-6 reveals missing HNL values. The missing HNL values at sites 2 and 3 on June 6-7 are due to the paper jam caused by installing the portable noise level monitor units over backwards against trees. On other occasions, HNL values were not printed because the unit was being recalibrated.

SUMMARY OF FIELD TEST DAILY FLIGHT OPERATIONS

Next, the daily flight operations statistics were summarized from the tower log sheets. The log sheet for the end of 7 June with totals of that day's operations over the measurement sites is presented as Table A-7. These totals of each day's operations were summarized in Tables A-8(a), (b), and (c) for approaches, takeoffs, and patterns, respectively. In each case, summaries were made for both heavy aircraft and all aircraft. Equivalent numbers of daytime operations were then computed by multiplying the numbers of nighttime operatons by 10 and adding to the numbers of daytime operations. In Tables A-8(c) and A-8(b), the reversing of the direction of flights from Runway 14 (approaches over the measurement sites) to Runway 32 (takeoffs over the measurement sites) is apparent.

CALCULATION OF DAILY CORRECTIONS FOR AIRCRAFT OPERATIONS

If the daily proportion of takeoffs and landings are similar to the annual average, it is possible to adjust the daily DNL values based on equation 5.

AIRCRAFT TOWER LOG AND NOISE MONITOR DATA TABULATION FORM

Installation_BAFB Date 7 JUNE Runway(s) 32

TARIE A-7

		1 /	48			A-	-7									
		Ai	rcr	aft	: Ту	pε	è		0per	ation	Ti	me	Noise	e Monit	or Dat	a
1354	յ և	1	A-3/	1-3/	T-38	T-39	C-130	Other	Apprch	T/0 ⁺	GMT	Local	Time	SEL, dB	Dur, sec	Max, dB
X	۵	9 <	+	-	<u>"</u>	-	_ ၂									
		_	_					C-150	IN		0020	1920				
/		_	-	\perp	1				IN		0035	1935				
$ \checkmark $	_	-	₋	1		4				OUT	00 56	1956				
	_	↓_		\perp	_			C-150		OUT	0105	ع005				
_	_	_	_			1		C-150		OUT	0112	2012				
_	_	<u> </u>	_	1	\perp	1		C-150	P	P	0150	2050				
								C-150	p	P	0135	2035				
			_			1		C-150	P	P	2020	2102				
		<u> </u>		_				C-150	IN		0203	2103				
		<u> </u>		_	\perp	1		C-150	1 N		0208	2108				
				_	1				1N		0328					
		ļ			1	1				007	0.00					
	0	11	2	0		+	11		25		DAY	APO	ROACH	DVE	R NOR	THEON
2	7	0	0	0	0	1	1	0	10		NI6HT		NORCH	į.		1
28	15	27	0	0	2	-	21	17		93	DAY	TA	EOFF	j	SUREA	DENT
0	0	0	0	0	1	1	0	0			NIGAT	1/4/	LE OF F	5 /	TE	
18,5	12	<		9	3 -	_		>	123	.5	DAY	00	TTERN	OVER	EAS	7
1	6.5	<u> </u>		1	6-	‡	_	\longrightarrow	23	, 5	NIGHT		IIZKN		ERVAT	1
					-		-		TOT.	415	į					
							\downarrow	_								
				-	-	+	-									
						T										
						T										
						T										
						T	7									
							\exists									
						T										
												`				

^{*}Approach - SI - Straight In P - Pattern +Takeoff SO - Straight Out P - Pattern +Takeoff P - Pattern P -

TABLE A-8(a) DAILY OPERATIONS SUMMARY, APPROACHES OVER THE NORTHERN MEASUREMENT SITES

	B-52G Total	A/C D	Equivalent Day Heavy	Other A/C	٤	Tota A/C	Total A/C	Equivalent Day
6 June 78* 0 1 5 0 5 7 0 2 0 7 0 8 - - - - - - 9 - - - - - - 10 9 0 0 0 9 11 7 0 0 0 9 12 11 0 0 0 11 13 - - - - - 14 30 1 52 1 52 15 17 21 11 50 19 16 39 20 13 11 70 18 0 0 0 0 0 19 18 26 14 4 32 20 * - - - - 19 - - - - - 19 8 26 14 4 32 20	Day Night	4	A/C	Day	Night	Day	Night	A/C
7 0 2 0 7 0 8 - - - - - - 9 - - - - - - 10 9 0 0 0 9 11 7 0 0 0 9 11 7 0 0 0 7 13 - - - - - 14 30 1 22 1 52 15 17 21 11 5 28 15 17 21 11 5 28 18 0 0 0 0 0 0 18 0 0 0 0 0 0 19 18 26 14 4 32 20 - - - - -	0		15	15 0		20	_	30
8 -	7	6	06	25 1		25	01	125
9 - 9 0 0 0 0 0 0 0 0 11 0 11 0 11 0 11 0 11 0 11 0 0 11 0<	II,	1	1	-		1	•	1
10 9 0 0 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	1	1	•		ı	1	1
11 7 0 0 7 12 11 0 0 11 13 - - - - - 14 30 1 22 1 52 15 17 21 11 52 28 16 39 20 31 11 70 17 6 0 13 0 19 18 0 0 0 0 0 19 18 26 14 4 32 20 * - - 14 - 21 1 1 1 1 1 21 1 1 2 1 1 1 21 1 1 4 3 2 21 1 4 2 1 1	0	0	6	64 2	2	73	. 2	93
12 11 0 0 11 13 - - - - - 14 30 1 22 1 52 1 15 17 21 11 52 28 16 39 20 31 11 70 17 6 0 13 0 19 18 0 0 0 0 0 19 18 26 14 4 32 20 * - - 14 - 21 1 1 1 1 1	0	0	7	30 (0	37	0	37
13 - - - - - - 14 30 1 22 1 52 15 17 21 11 52 28 16 39 20 31 11 70 17 6 0 13 0 19 18 0 0 0 0 0 19 18 26 14 4 32 20 * - - 14 - 21 1 - 14 -	0	0	11	35 2	2	46	2	99
14 30 1 22 1 52 28 1 52 28 1 52 28 1 52 28 20 31 11 70 20 13 20 13 20 19 19 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	t	1	•		-	-	-
15 17 21 11 5 28 16 39 20 31 11 70 17 6 0 13 0 19 19 18 0 0 0 0 0 0 19 18 26 14 4 32 20 * - - 14 - 21 1 - 14 -	-	2	72	120 (0	172	2	192
16 39 20 31 11 70 17 6 0 13 0 19 18 0 0 0 0 0 19 18 26 14 4 32 20 * - - 14 - 21 - - 14 -	2	56	288	116	0	144	56	404
17 6 0 13 0 19 18 0 0 0 0 0 19 18 26 14 4 32 20 * - - 14 - 21 - - 14 -	11	31	380	84 (0	154	31	464
18 0 0 0 0 0 19 18 26 14 4 32 20 * - - 14 - 21 - - 14 -	0	0	19	38 4	4	22	4	97
19 18 26 14 4 32 20 * 14 - 21 14 -	0	0	0	55	3	52	3	82
- 14	4	30	332	104 (0	136	30	436
21	14	14	140	-	2	ı	16	160
			-					
Th 22								

*Partial Day

TABLE A-8 (b) DAILY OPERATIONS SUMMARY, TAKEOFFS OVER THE NORTHERN MEASUREMENT SITES

Day	Date	KC-	KC-135A	B-8	B-52G	Total	Total Heavv A/C	Equivalent Day Heavy		Other A/C		Total	Equivalent
		Day	Night	Day	Night	Day	Night		Day	ay Night	Day	Night	A/C
⊢	6 June 78 *	•	ı	1		,	1	1			•	,	1
¥	7	28	0	15	0	43	0	43	48	-	93	L	103
Ę	8	Ξ	6	18	7	29	16	189	164	6	193	25	443
ட	6	29	0	25	m	54	8	84	112	8	166	9	226
S	10	0	0	0	0	0	0	0	0	-	0	-	10
S	11	ı	ı	•		1	,	1			•	1	1
Σ	12	7	က	18	0	25	3	55	75	-	100	4	140
⊢	13	14	9	23	11	37	17	207	134	18	171	35	521
3	14	2	2	က	12	2	17	175	6	2	14	19	204
Th	15	ı	1	1			1	1	1		1	1	
ĸ	16	•		'			1	1	,			ı	1
S	17	'	•			'		•			1		•
S)	18	•	ı	•	,	,	,	•	'			,	1
Σ	19	,			,			ı		1	1		
⊥	20*	ı				'	1	1			1	,	•
M	21												
Τh	22												

* Partial day

TABLE A-8 (c) DAILY OPERATIONS SUMMARY, PATTERNS OVER THE EAST RESERVATION MEASUREMENT SITES

Day	Date	KC-135A	35A	B-6	B-52G	Total Heavy	Total Heavy A/C	Equivalent Day Heavy	Ot A/	Other A/C	To A/	Total A/C	Equivalent Day
		Day	Night	Day	Night	Day	Night		Day	Night	Day	Night	A/C
F	6 June 78*	-	0	-	0	2	0	2	5	0	7	0	7
3	7	18.5	_	12	6.5	30.5	7.5	105.5	93	16	123.5	23.5	358.5
Th	8	7	0	=	0	18	0	18	06	7	108	7	178
LL	6	23	0	25	m	48	က	78	70	0	118	3	148
S	10	4	0	0	0	4	0	4	43	0	47	0	47
S	11	4	0	0	0	4	0	4	2	0	9	0	9
Σ	12	12	3	15	0	27	3	57	8	2	137	5	187
F	13	10	2	15	10	25	12	145	93	12	118	24	358
3	14	22	4	15	12	37	16	197	19	0	86	16	258
돈	15	2	23	8	7	10	30	310	37	=	47	41	457
LL	16	32	19	26	10	58	29	248	38	0	96	53	386
S	17	က	0	11	0	14	0	14	23	0	37	0	37
S	18	0	0	0	0	0	0	0	15	-	15	-	25
Σ	19	15	24	11	3	26	27	296	89	0	94	27	364
-	20 *	ı	0	-	12	ı	12	120	1	2	1	14	140
Μ	21												
Τh	22												

*Partial Day

Δ = 10 log Number NOISEMAP Equiv Average Day Operations (5)

Typically the ratio of takeoffs and landings vary from day to day. Measurement at the same location for an extended period of time will normally provide average operational data that has a ratio similar to the annual average operational data. During the field measurements at Barksdale, one location was measured throughout the study. This was site 2. Corrections for all aircraft and for heavy aircraft are shown in Table A-9.

APPLICATION OF AIRCRAFT OPERATIONS CORRECTIONS TO MEASURED DNL VALUES

The corrections for the number of aircraft operations were applied to the measured DNL values in Table A-10 for total aircraft volume and for heavy aircraft volume. The energy average and sample standard deviations were calculated. This calculation was performed on a hand calculator with statistical functions. In equation form, the energy average DNL value for a specific site is given by

$$\overline{L_{dn}} = 10 \log \frac{1}{n} \sum_{\ell} 10^{\frac{L_{dn}}{10}}$$
(6)

where

 $\overline{L_{dn}}$ = energy average day-night noise level (DNL), dB

n = number of DNL values measured at the specific site

L_{dn} = individual day-night noise level (DNL), dB

l = summation index for DNL values.

Note that in all subsequent calculations involving sets of data, the symbol "n" is used to represent the number of data values involved in the particular calculation.

Table A-9 Flight Operations Corrections

Day of			All Aircraft C Site 2	Over	Heavy	vy Aircraft Over Site 2	0ver
Week	Date	Арр	1/0	Total	Арр	1/0	Total
3	7 June 1978	125	103	228	06	43	133
Th	∞	0	443	443	0	189	189
1 L	6	θ	226	226	0	84	84
vo	10	93	10	103	6	0	6
ω	11	37	0	37	7	0	7
_	12	99	140	506	_	55	99
	13	0	521	521	0	207	207
	14	192	204	396	72	175	247
Ę	15	404	0	404	288	0	288
	16	464	0	464	380	0	380
	17	97	0	93	19	0	19
	18	82	0	82	0	0	0
	19	436	0	436	332	0	332
Average Daily	All Days	154	127	281	93	58	151
Flight	Week Days	174	182	356	130	84	224
NOISEMAP		197	132	329	104	70	174
Correction	A11 Days						9.
∆, dB	Week Days			٠.			

Table A-10 Application of Corrections to Measured DNL Values - Site 2

Day of Week	<u>Date</u>		Measured DNL Values
W Th F S M T W Th F S S M	7 June 199 8 9 10 11 12 13 14 15 16 17 18 19	78	73.9 74.4 75.8 55.7 56.5 68.4 76.4 71.4 72.5 72.2 61.7 58.6 71.2
Energy Average	All Days		72.0
DNL (dB)	Week Days		73.5
Energy Average	All Days		+2.8/-10.6
Standard Deviation	Week Days		+1.9/-3.4
		All Aircraft	Heavy Aircraft
Correction Δ , dB	All Days	.7	.6
	Week Days	3	-1.1
Corrected Energy	All Days	72.7	72.6
Average DNL	Week Days	73.2	72.4
NOISEMAP DNL (Ref)		76.4	76.4

The average DNL estimates based on both weekdays' and all-days' measurements are given in Table A-10 along with the corresponding NOISEMAP predictions. The estimates based on the field measurements are lower than the NOISEMAP predictions.

With only the use of measured DNL data, these differences in measurements and predictions cannot be resolved.

The DNL sample standard deviation values were calculated on the basis on energy at the same time the energy average values were determined (with the hand-held calculator) using the relationship

$$s^{2} = \frac{1}{n-1} \left[\sum_{k} \left(10^{\frac{L_{dn}}{10}} \right)^{2} - n \left(\frac{\overline{L_{dn}}}{10} \right)^{2} \right]$$
 (7)

where

s = sample standard deviation expressed as an antilog with 1.0 equal to the sound level reference of 20_μ N/n^2

n = number of DNL values in sample.

The energy standard deviation was first added to and then subtracted from the energy mean value. These values were then converted to dB, the mean DNL value was subtracted and the standard deviation in terms of dB was thus calculated.

ANALYSIS USING MEASURED SEL VALUES

CORRELATION OF RECORDED SEL'S WITH TOWER LOGS

A Noise Monitor Data Tabulation Form Extension was added to each page of the tower flight log. The SEL events recorded on the portable noise level monitor units were correlated with tower flight log events, and the recorded data were tabulated. A tabulation for one day, 7 June 1978, is presented as Table A-11. This tabulation is a laborious task which was facilitated by employing the following steps:

AIRCRAFT TOWER LOG AND NOISE MONITOR DATA TABULATION FORM

NOISE MONITOR DATA TABULATION FORM EXTENSION, THREE SITES TABLE A-11

7 June 78

BAFB Installation Date Runway(s)

1		Site			1	1	7		•	1	ı	1		1	1		i	!	1	1		1				-	-	1	,	,	1	!		
+ €	9		_		-	त	-		4	:	00	1	-	-	チ		1		,	1			· 					-			_	· ·	1	
MAX		Site			70.7		95.1		91		858		80.	5	41.4		71.9		70.5									74.2			65.3		1	
		Site	_		82.9	79.3	92.2		97.9		94.4	81.3	92.5	79.5	80.7		85.7		8.48	71.3								79.2			4.2		70.6	
Jes		Site	3		1	١	١	i	1		١	1	1	1	1		1		1	1								1		-	1		1	
ion	- 1	Site	2		7.74	25	43		25		7	9/	40	7	ナヤ		74		28	1						,	-	6			do		1	
Durat ion	מו מי	Site			R				53		52	+	_	-	_		4		25								, ;			_			Q	
	1	S			1	-	1		10		N	-	3	ı	1						_			-			-	2	<u> </u>	-	2		1	
					·	1	1	-) bo		_	-	1	1	4	_	-		1	,				- !	-	 		1	:		1			_
B B	,	- □	1-2		80	3	7:	_	4.9		•		=	13.6	4.7		0.		6.5	1	i			-				7	:		13.6		١	
SEL.		Site	е		-1	10-10	-		i	American			1	4 3453		1	* 175.5		1	000								į			1		1	
		Site	2		1.18	17.9	94.5		T.001		16.1	76.8	89.7	74.8	7.4		4.4		7.6	, • •								3.0			73.3		-	7
		Site	_		10.0 81.1	89.9 77.9	101.6 94.5		105.5 100.7		1.96 6 201	90.9	10.7	7.85			13.0		23.1	7.5							-	77.7 83.0			96.9		75.5	
		Site	_						= -	_	·	•	3	~	6	!			-	1				-	•			_			ŏ		7	-
	-	Si	m			1	[I		l		1	1	1																1		1	
Time		Site	2		8416	101100	001656		031310		324	844860	034558	5/20	035710		1404		530									143			018		,	
-	-				8	0		-			503	103	5 03	3 03			107		a 075	1	_	_						480			480		1	
		Site	~~		0502 0002 000201 000148	01110	401100		03/317		032525 03 Azuy	0334 0336 033507	08470347034615	035123 035/20	0P58 035 8 035716		14077 074041		075540 075530	080923								084148 084143	İ		1348 0848 084805 084810		15651	
T		000	0.0		200	2000		3		03(8	0 90	350	470		580	56		4.8			9	14	X	083	31	35			, v	1	0 85	0	80 65	20
;	i me	TWS			त्र व	05/6/00/0	0518	OSSI OSSI OSSI	0 61 80	0818	0824032L	36	4703	0851 0351	58 03	1056 0556	1410741	12450745	1256 0756	0180 0181	1316 0816	1317 0817	338 0828	1339 08	1 0831	5 0835	1337 0837	3420842	3450845	1947/0847	8	0380 038)	1354 0854 08533	9580 9
-					2	8	Ö	8	Ö	80	8	3	0	8	0		-	,	ત્ત્	131	13	3	133	5	133	(33,5	133	34	3	ř	134	(35	35	1396
	ation	1,5				0	i	S	0	٥	0	0	0	0		150	٥	50	Þ		000	SO	20	200	20	SS	}	2	2		a	20	9	20
	Operation	Anorchi			Ĥ	σ	H		σ	٥	0	٥	۵	0	0		d.	,	0	0						 	_	_	-	-	o		٥	
-		_ <u> </u>	Other 0		V.		V)		_				-		4				_		-	_			S			4	4	S	_		_	\dashv
				C-130	7			2		_					_		>		7	7	-				F-5	-	_	_		_	_			
	Aircraft Ivpe			86-1 96-1									_			2								_		7		7	_		7		7	
	rcraft			7£-T																	_				-		-		7	>		>		7
	Aji			S2 8 \\S-A			-		>	>	7	7	7	7	7			2			2		>	>		-	>				_			
L			ASE	KC 13		>	7															2				_					_	$\equiv $	_	\dashv

+Takeoff SO - Straight Out R - Right Turn Departure P - Pattern L - Left Turn Departure *Approach - SI - Straight In P - Pattern

79

AIRCRAFT TOWER LOG AND NOISE MONITOR DATA TABULATION FORM

Aircraft Type Aircraft Type Aircraft Type Approximately 100 of the residual		Time GMT Local 1358 0858 1359 0859 1405 0905 1405 0905	0000	Time STE STE	Site	Site	ORM EX	EXTENSION SEL, dB	4, THR	EE SITES	ES DA RO	Date Runway ion, sec.	Date Runway(s)		ĕ 💛	S CA
Nircraft Type 1-37 1-39 1-3	5 0000 8000 0000 0000 0000 0000 0000 00	Time GMT Loca 358 0855 1405 0905 1405 0905 1405 0906 1405 0906 1405 0906 1400 0906 0906 1400 0906 1400 0906 1400 0906 1400 0906 1400 0906 1400 090	Site 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Site 2	Site 3		SE				Durati		, c		9	
Aircraft 1ye 1-37 1-37 1-39 1-37 1-39 1-30 1-37 1-30 1-37 1-37 1-37 1-37 1-37 1-37 1-37 1-37 1-37 1-37 1-37 1-37 1-37 1-37 1-37 1-37 1-37 1-37 1-37	5 0000 0000	GMT Loca 358 0855 465 0465 465 0909 405 0909 400 0914	Site 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Site 2	Site 3		-		-			-		MAX, dB	3	
1-30 1-30 1-30 0thq 1-30 0thq 1-30 0thq 1-30 0thq 1-30 0thq 1-30 0thq 1-30	0000 0000	359 0855 359 0855 405 0905 405 0905 407 0907	0.85721 0.8524 0.9209 0.92090 0.92090	~ 1//1//	m	pro.	Site	Site	Δ	□ □	Site S	Site S	Site S	Site Si	Site S	Site
2000 0 000000 5 5 5 7 7		358 0855 359 0856 1403 0901 1407 0901 408 0908	0.85721 0.85854 0.90209 0.90209	1 1 1 1 1	1 1 1		2	m	1-2	3-2		2	т	-	2	е
200 0 000000		\$59 045 405 090 1407 0907 408 0907	040209	1111	3 1	92.5	1	1)	1	ナス	1	1	83.5	-	1
20 0 00000 5 5 7		405 090: 1407 090: 1408 0903	090209	1111	}	83.9	1	1	1	1	7 %	1		2.2	-	1
10 0 000000 5		465 090: 1407 090: 408 0903 410 0916	09 0 50/	1 1 1		6.40	1	1	1	1		1	- 6	92		1
a a aaaa		1407 0907 1408 0908 1410 0914		1 (١	9.68	i	1	1	١	23	1	80	82.2	_	1
9 9 9 9 9 9 9 9 9 9		8060 804	090627	1	1	8.16	1		J	1	d)	00	84.4		1
		110 0416	413060		١	79.2	1	1	1	1	2	•	1	67.5	i	1
5 > >												· ·			·	
> >	1	1160 1141					-					;	:			
> >	1	412 0912)	1	1	1	1	1	1	1	1	1	1	1	-	1
>	_	1413 0913	041335	1	1	7	1	1	1	1	٠ ٦	1	30	69.3	•	1
>			1091754	1	1	5.98	1	1	}	1	-	1	-	192 1	<u>'</u>	1
>		-	1	1	1	1	4		1	١	1	1	1	1	<u> </u>	
>	-		042719		1	688	1.	1	1	1	. לב	1	1	7.18	<u>.</u>	1
	a-		038760	1	1	88.1		1	1	}	77	i	7	19.5		1
C131 ST	_	H32 0932	693032	1	1	83.3	1	1	1	}	לל	1	1	73.4	*	1
	(f) d	1439 0939		1	1		1	1	1	1	30	· ·	00	898	1.	1.
>	-	1441 0941	094143	1	1	40.3	1	1	1	1	9	1	1	83.5	1	1
>	50	14 43 0943					+						!			!
2		1445 0945	094433		1	84.6	1	1	1	1	-	1	1	76.1	1	ì
<u>م</u>		1448 0948	LHLhbo &	5	1	86.7	1	1	1	1	29	1	1	18.4		1
>		1450 0950			-				-	-						
				ن ا	HANGE	10	RUNWA	× ×		37	+		+	+	+	٨
-	(x) d	HS4 0954	189360	1]	81.7	1	1	1	1	74	1	7	73.0	-	1
>	a	H56 0956	04544	1	1	. 1.88	1	,	1	{	54	1	<u>~</u>	74.5	<u>,</u>	1
SI		M59 0959														
	م	1001 1051	}			j	i	1	1	1	1	1	1	-	1	ì
>	OUT	1506 1006	1	1	008001	•	7	76.2	1	<u>,</u>	1	1	1	1:	7	76.7
(a) ISI		1509 1009						1	i i	<u> </u>						
		1513 1013		and a second second second				-	1	+			:			1
SI		1514 10H					-		-	-	-		_		_	

R - Right Turn Departure L - Left Turn Departure SO - Straight Out P - Pattern +Takeoff *Approach - SI - Straight In P - Pattern

AIRCRAFT TOWER LOG AND NOISE MONITOR DATA TABULATION FORM

TABLE A-11
NOISE MONITOR DATA TABULATION FORM EXTENSION, THREE SITES

Installation BAFB
Date 7 June 78.
Runway(s)

76-77 76-71 86-7 98-7 99 061-3	Ap	00000		_								-	, , , , , ,				
1-38 1-38 1-38	JA AD		+		Site	Site	Site	Site	Site	Site	<	<	Site	Site Si	Sita Sita	Cito	3
7	Other	Apprch T/0	- GMT	Local		2	e e			<u>,</u> ~							
-T -T - Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z)))			-	J	٥
														_			
		-	1516	9/0/	1	1	1	1	1	}	1	i	<u>'</u>	1	1		1
		0	15/8	\vdash	10/835	648 101	10/138	87.5	76.17	10.7	- 41	-5.4	7	rv.	7.62 6	4.67.6	65.1
			0551		103324	1	103320	80.1	1	57.3	<u>.</u>	1	- 21	2	5 71.5	i	17.0
	_	-	1521												_		
	C-180		7 1523		J	1	162534	1	1	74.0	<u> </u>	1	, 1	1	M	1	3
2 2 2	-	0	1524	• .	102618	1	102632	7.00/	90	85.6	١	j	100	5.2	2/6	7	74.7
2 2	- 4	0	1527		765 201	3		8.5	١	1	i	1	7	<u> </u>		8	1
7		04.)	7 1529	-	516801	103223	76550/		109.4	102.1	- 67	7.3	6 98	92 98	-	0.46 6.	82.8
2	7	<i>a</i>	153/	-	763336	١		90			•	-	1 46				
2	•	:	1533				_									1	!
	7		1534		103601	1	1	\$3.4	1	1	1	J	100	1	- 74.9	1	1
7	٥	0	1537		104003	١	١	8.8	1	•	_	-	20	1	73.9	1	I
'	-0		1540		104236	PERHOT TEXTOI			141	67.5	134 -	-6.62	2/ 13	7	-	5 66.3	62.3
2	م		1545	1045	067601	104643	E 4940/	15.3 7	7.1	13.9 11	11.2		7 2	7	2 78.2	265.5	643
7	9		1547	104	646401	956401	800501	26.63	19.27	72.6	-7.6-	-9.6 2		3 2	1 78.5	5 81.5	61.8
2	9		1600	90/2	11.6252	110305	110308	86.58	87.7 7	17.8	-12-	9.9 2					67.9
2	9		1629		1	1	1	1	•	1	•	,	1	1	ļ	ì	1
<u>x</u>	٥		1634	1134	-	113635	١	72.27	70.4		•	7	5 51	-	- 65.4	4 63.7	
2		047	1636	136	113724	-	113733	6 9 76	-	27.2	•	-9.7 36	9	0 * 0		1 86.7	77.7
		740	1637	1137	113854	113856	113857	115.1 11		106.7	1	(A)	70 84	4 35		6/105.5	96.1
2	7	۵	1645		1	1	١	1	1	1		1	1]	4	1	
	- i	OUT	8671	8+1	115136	115/45	115/4/	111.9 11	113.3 10	1 80/	7	-10,265	5 2	7	/69	162.4 103.2	40.6
2	م	<u> </u>	רודו		132003	_	13057		\$7.6 9	94.5	9	50 6.9	2 49	12		277.5	
7	() H)C	770	1718		i	ı	1	1			1	1	1	1		1	1
	Q	٥	6/1/		אספר/	J	J	74.3	•		1	1	N I	1	4.79	1	1
<u>ن</u>	C-150	047	6111		1	1	1)	1	1		1	1	1	1	1	١
7		Q	1723	_	١	1	1	<u>.</u> J	•	,	1	1	1	J	1	1	1
	0	٠ ا	725		132561	13 27510	122759 95.0		13.5	17.3 /	7-/-0	76 3.3	7 32	23	32	472.8	1.69
	4	٥	1728	826/	1	1		<u>'</u>			1	1	1	1	1	1	1
2	٥	<u>_</u>	1730		1	•	l	i	1	-	•	G.	1	<u> </u>	-)	1

skeoff SO - Straight Out R - Right Turn Departure P - Pattern L - Left Turn Departure

NOISE	FORM
AND	DATA TABULATION
R L0G	TABUL
TOWER	DATA
AIRCRAFT	MONITOR

		,		;		Time			S	SEL, dB			Durat	Duration, sec.	sec.	MAX	MAX, dB	
Aircraft Type	t Type	Oper	Operation	I nne		-	-	-				T	-			-	-	
Z 5 C		Apprch	1/0	GMT Local	cal Site	Site 2	Site 3	Site	Site 2	Site 3	1-2	3-2	Site 1	Site 2	Site 3	Site	Site 2	Site 3
£-A £-T	E-1 [-3																	
7		9	a	123/ IETI	1		1	1	l	1	J	1	١	1	1	1	١	1
	7	0	0	1733 /235	133611	11 123616	123609 87.3	\$ 87.3	77.4	70. /	6	-7.3	53	2	=	200	8.19	620
>		2	2	1734 12.3%	# 1237CB	(J	74.8	j	1	1		=	1	1		1	(
~			740	1741 1241	124254	4 124302	124304	93.00	92.3	9.98	5	5.7	7	7	S	-	8.18	2.96
		! !	Du T	1743 1242	134450	4545K1 05	124505	105.5	5.90/	103.1	3.0	2.0	63	58	55			96.0
7		!	Tac	345 1245	1347 43	12 124753	1	138	19.1	1	2.0			27			64.5	1
7		•	2	1746 1246	1	1	1	121	3	1	1	1		١	1	63	1	1
>			7 P 9	1751 1251	11254B	701581 10	1	34.6	18.7	1	6	ı	8	77	1	3	69.5	1
2		>	,	1754 1254	7.5											1		
	C-150			1758 1258	Do		-									:		i
7			0	1800 1300	1	1	130303	١	1	75.0	1	8	1	1	00	ı	1	1.59
7		٥	Q	1903 1303	1	1	1	1	1	1	1	•	1	j	1	١	1	1
>		Š	•	1805 1305	5				i					:				
	<i>'</i>		م	1807 1307	1	1	130938	١)	وم ک	1	1	1	1	43]	ı	2.8
`				1809 1309	60						1		-		:	i-	:	
`		2			0					-							:	;
<u>`</u>		>		318/ 3/8		,											:	i
4			50(2)	1517 1317		856161 456161		99.4 96.0		30.6		-5.4	-	_		89.5	0.18 1.9%	2/.0
ત			_	1830 1330		32130 13235	13237 99.2 96.7	99.3		\$6.6	3.5	-7.3	66	5	23	50.1	\$. 90 00	77.9
	6-14	3		1823 1323	8						i			-				!
		2		1826 1336	9	-							-!				-	1
>		8	0	1830 /330	1	1	1	,	1	1	•	1	1	1	i	١	1	1
	2	•		1634 1334	4 133550	1	1	79.3	1	ı	•	1	74	I	_	3.02	1	1
				1842 130	362 134658	8 134305	134312	107.7 113.8	+	0.501	-5.1	00.9		99	5		103.0	3.6
		م		1858 135	1353 134506	6 134515	134521	3.4	\$.90	923	60	80	00	.9	7	10 KJ 9	95.3	60
		ď	ø.		3 141429	9 141430	141438	16.31	43.6	87.9	67	50		و.	23		500	77.4
7	-	Ð	0	31616 2416	0 E7/1/1 9	1)	79.8	1	1	١	1				21.7	1	
			720		७ १५३१ ५६	143155	45KM	10%	5	848	0	Die P	28	-	-	\$ 15.35	87.6	30.8
<u></u>		ص		1421 1431														
_	-	Ç	_							-		-	-		-	:	i	1

+Takeoff SO - Straight Out R - Right Turn Departure P - Pattern L - Left Turn Departure *Approach - SI - Straight In P - Pattern

	THREE SITES
	FORM EXTENSION,
	TABULATION
A-1	
TABLE	MONITOR D
	NO I SE

T/0 GMT Local S T/0 GMT Local S T/0 GMT Local S 1931 1433 1932 1433 1932 1433 1933 1433 1934 1444 1444 1944 1444 1444 1947 1449 1947 1544 1564 156 1958 1458 156 1958 1459 156 1958 1459 156 1958 1459 156 1958 1459 156 1958 1459 156 1958 1459 156 1958 1659 156 1958 1659 156 1958 1659 166 1958 1659 166 1958 1659 166 1958 1659 166 1958 1659 166 1958 1659 166 1958 1659 166 1958 1659 166 1958 1659 166 1958 1659 166 1958 1659 166 1958 1659 1659 166 1958 1659 1659 166 1958 1659 1659 1659 1659 1659 1659 1659 1659	TABLE A-11 Installation BAFB NOISE MONITOR DATA TABULATION FORM EXTENSION, THREE SITES Runway(s)	e SEL, dB Duration, sec. MAX, dB	Site Site Site Δ Δ Δ Site Site Site Site Site Site	3 1 2 3 1-2 3-2 1 2 3 1 2		1 1 1			05 144547 97.2 83.7 85.5 8.5 -2.8 74 58 52 861 781	- 12,1743 - 3.7 - 20 13 - 67.6	150101 107.7 93.1 86.8 6.6 -6.3 71 51 36 98.7	15.0823 90.6 831 75.8 7.5 -7.3 48 40 21 8/.2	150954 95.1 25.974.8 9.3 -11 58 57 31	15#31 106.1 97.1	151501	- 19.5 74.3 - 13.2	153425 153405 84 8 80.4 74.1 4.4 -6.3 43 33 8 73.4 69.9	152861 95.5 80.5 77.1 15 -3.4 49 16 21 87.6	152954 91.7 26.3 94.1 6.6 7.8	- 6.12 7.51 -		84.5 82.0 12.2-2.5	7.1.1				160337 75.9 - 74.2 - 16 - 7 66.7 -		161644 161655 82.0 713 740 10.7 2.7 21 8 14 74.2 67.8 64.8			
70° Com 170°	TABLE NOISE MONITOR	Time	Site	-	Z.	}		7,0		153 145451 145455			_	_			152358	152807	152556	153639		154732	_	48	52		-	-	16/647	20	34	
00 to 10 to		Time			7			1440	1044					2009 1	2012 1	2018 1	2002	77 9200	2027 15	2033 15	3035 15		3047 15				2/ 9000		2115	4/ OFIE	2134 16	_
	AIRCRAFT TOWER LOG AND NOISE MONITOR DATA TABULATION FORM	Operation			٥	_	-	2	 	7 00							0	9	9	0)MT	1	-	-	- 7	20	דיוא	 	٩	3	-	

R - Right Turn Departure L - Left Turn Departure SO - Straight Out P - Pattern +Takeoff *Approach - SI - Straight In P - Pattern

AIRCRAFT TOWER 1.0G AND NOISE MONITOR DATA TABULATION FORM

NOISE MONITOR DATA TABULATION FORM EXTENSION, THREE SITES TABLE A-11

BAFB 7 June 78 lnstallation Date Runway(s)

			Operation	tion	Time	Ī	Time			SEL,	SEL, dB		Duration,		sec.	יואא	MAY, UD	
Airc	Aircraft Type		*			Site	Site	Site	Site S	Site Si	Site A	٧	Site	Site	Site	Site	Site	Site
9 8	- 8	0ther	Apprch	2	GMT Local		2	က	-	2 3		3-5	-	2	ю	_	2	3
V-33 B 25 KC J	76-T 36-T	: [- 3												li			- -	
			م	ø	E171 E14		K5111 815111	11535 112.9 163.5 93.0	113.91	63.5 93	-	9.4-10.5	22	46	2	9.90	250 84.8	5
		+	S		21/1 Sicc	9					+					-	-;-	:
	7		3		8/2/ 8/46						-		i	1		1	. (
7			9	٩	050 9550	_	17234 172239	1	93.8 86.8		- 13	1	33	22		83.7	7.7	
			0	Q	Cri cccc	OPPLI SEBETI SEPLTI CELLI CECC	172438	04461	128 6.86		85.310.4 -2.8	-2.8	74	20	3	87.2 77.5	1	77.3
		7.29		-	נקו אפכל	324 1734 172625 172634	172634	172639	77. 9 70.0		78.1 1.9	1	0	<u>_</u>	9	63.2 63.1	7	22.8
2			9		22.7 7.55	45747 17.2830 172834	172834	1	55.7 76.2		- 10.5	1	רב	٥	1	7.17	9.0	1
		c -150	I	1	3340 036	1	1	1	1	1		1	1	1)	1	1	1
,			9		25.00	1342	J	1	92.5	1	. !	j	33	1	1	83.2	1	T,
•			70	0	200	_	173310	8.18 0.88 9.75 218861	8 9.75	18.0 8	ر ان	-6.3		Z	3/	8.97.9		72.8
-			10	0	27.9 8.00	0406213261366	174049	174049 174053 113.3 14.11	113.31	4.191						4.301		52.4
		781-7	-	0	1000	1741 174139	1	,	7.5	1	1	-	22	1		1.4	1	ı,
		0-160	?	-	124 Jac	7									!		:	
1			1		27.6	3349 1749 175/46 175/57 175/50 88.9 81.4 76.1 7.5 -5.3	175157	175150	88.98	4.4	17.5	-5.3	3		7	28-8 71. 2 65.5	3	2
7			0	Q	ינו באבם	6-6- 3-8 3-39 12411 7.511 96 43 11 254311 01481 158 11 ERGE	224561	175429	11.7.11	76 130	9.9	c.6-	20	52	49	7.76 8.60	2	8.2
			0	٥	2255 175	2255 1755 175706 17575	W1271	1	58.17.6	7.6 -	- 10.5	1	39	6	1	78.3 68.5	5.69	
		C150		047	8511850	90	1	1	1	1	1	1	•	1	1	1	()
		873		1	P21 P24	1	1	641081	1	1 65	12.4	1	1	1	n	1:	1	8.9
_			Š			9						1		-	•			,
,			0	6	3307 180	3307 1807 180840 180856 1808 59 100.8 91.6 86.3	130156	180859	6 8.00	1.6 86		9.2-5.4 37	5	7	٠	42 64.5 30.4 76.8	}	بغ
		183	. <u>2</u>		2315 1815	2				-				-	1		•	
>				740			182018 182024 182082 115.9 113.2 104.1 2.7	187033	115.9 11	3.2 101	112.7	-9.1		-	00 10 10	78.5 1062 102.7 92.8	1.40	ż
7			0				Shh KEI	8552	104.07	2.3 57	104.0 72.3 57.3 11.7	•	4	ş.	37	98.382.4 77.4	2.4	Ė
7				720	2325 1825	5 1821/2	1828/2 1828/8 182824 116.0 113.8 102.3 2.2	hc828/	116.011	13.8 10	3 2.2	-11.5	3	-:		105.7 107.3 89.7	67.3	\$ \$
7			\$		2335 /135						-		i		-i-			
		C-150	<u> </u>		2338 1837	*				+	-					-		
		C-150	/M/		2343 1842									-		i		
		% >	5		2 358 /155	-									:			1
		7.5%		720	906/ 9000	٠				+					!		:	
4				7117	100	The The Mark 1913 59 191302 191300 1114 113.7 103.2	19,302	191300	17.4	12.7 1.02		7.7 -16.4		C.	C.30 5 1 6 106.7	404	7	90

+Takeoff SO - Straight Out R - Right Turn Departure P - Pattern L - Left Turn Departure *Approach - SI - Straight In P - Pattern

! ! !						00			_	- 1		<u> </u>	1						_			· · ·	,	_	,	_	_	_	_	,		_
ه کر لا		Site	en			8.65	1	ı	ı	(1		!		3				:		,	•	•	,				;	;	!	•	į
BAFB 7 June 78	MAX, dB	Site	2			8.16	1	ι	1	(1		i		70.362.1					,				,	-							T
, , ,	MAX	Site	-			0./0/	1	(1	(1	;			300	<u>;</u>	-i-			- ;	;		,		-							-
llati y(s)	-	Site						1	1	1		-			i	- !	-	:	-!		-		:	·	1		<u> </u>	:			•	1
Installation Date Runway(s)	, sec	_	m			78	L	l :	· I	-	1	-	-		7	- !	1	-		-			:			1	i -	;	!			-
	Duration, sec.	Site	2			7.5	(((ſ	1				29			!	į	i			1	j !		į		:				
TES	Dur	Site	-			\$5	1	ſ	ſ	1	1				39		į				-								!			
EE SI		٧	3-2			-5.9	ſ	Ĺ	((1				-1.7										 - 			 	!			1
YHH.		۵	1-2			2.5	(ſ	(ı)	1			9:0	2	-	+	T						i ;	-		1	-		İ	1
ENS 10A	, dB	Site	m			98.	ſ	(1	1	1				33.5	JUE	3		+	4	प्रका		-	! !	-		-	!		!		-
4 EXTE	SEL,				-		•	•	-	-	,	-	-			2	٤	-	+	\$	1		-	-	<u> </u>	-	! 	-	 			-
FOR		Site	2			10.5 108.6	1	1	l	-	1	-	-		<u>म</u> त	2	200	L	1	À	3		-	!	-		!		!			
AT10N		Site	_				1	1	1	(١	-			5	ď	200	~		R R	7											
TABLE A-11 NOISE MONITOR DATA TABULATION FORM EXTENSION, THREE SITES		Site	က			(२१५))	1	(L	١				330.W 91	OVE R NORTHERN	MEASUREMENT			OUER	9				1				1	!		1
TABLE A-11 E MONITOR DATA	Time	Site	2			192118	(((t	1	+			330.00	A PPROACH		F	1	N			-		-							
TABI				-			+		-		-	-	-		-	0	-	0		17			-		-			!	<u> </u>			7
NOIS		Site	_			195709	1	((ı	ĺ				1310EE 00E & 00HO	AP		一方があり		PATTERN								1				
	٥	100		2	625	F 56	2005	2/00	2	R	4	5	6	34	300	1	爿	7	H	7	7					1		1	:			4
	Time	CMT	i	258		35 H 3500	6/65 2003	Z/10/1	0150	255	C415 4040	FOK 500	Cold Facto	SECT MESO	200	DAY	MEHT	DAY	IRSIN	780	Nich 7			 	1	T	İ	+				+
		+				-	-	1	0					U	٢		1	6	1		3	S	1	-				+	Ī			1
NO 1 SE FORM	Operation	**				20	70	0		٩	~		-	1	0		-	9		23.2	23.5	TOTAL		:	!	-	-	<u> </u>	-			
TON FC	000	*		Ś					٩	0	٥	3	3	3	1	25	0/)	١		7	70	1	:		1			i			
AIRCRAFT TOWER LOG AND NOISE MONITOR DATA TABULATION FORM)		Other	Ç-1 S8			251-3	3	S 1.3	2-150	31.5	S-15	<u>د</u>	-		_	0	ב	0	1	1			-			 	T	+-			1
DWER I	1	a)	C-130					U	Ú	Ų	V	U	ن		- !	=	J	ī	0	\dagger	\dagger		+			-		+				-
T TO	,	lyp.	8£-T		<u> </u>									7	7	0	0	ત 0	_	6	7				1		1]
AIRCRAFT MONITOR D		Aircraft lype	1-37			<u> </u>			-	-	-				1	4	0000	0	0	-	-		-	<u> </u>	:-	;	-	-	-	!		4
AN P	2	11 LC	ZE-A	1	-	H				- !	-		+	-		=	3	28/5270	0	-	1		!-	!	1	-	-	+	+	-	:	-
1	'	4	B 25 G		-	-						_	+	_;		3	_	3	6	*	X	-	-	-	-	1	-	 	+	-		4
			KC 135A		2	7					- 		i	-	1	9	4	99	0	2	Ĭ	-	-	!	-		-	+	T	 	-	1

SO - Straight Out R - Right Turn Departure P - Pattern L - Left Turn Departure

+Takeoff

*Approach - SI - Straight In P - Pattern

85

- Checking for consistent time differences: The time delay between tower events and monitor unit events was approximately 2.5 minutes for takeoffs and approximately (-)1.0 minute for approaches. The difference in time delays is attributed to the logging procedure used in the tower. Takeoffs and approaches were listed in anticipation of passing in front of the tower. This relieved the tower personnel to concern themselves with the next operation instead of waiting after clearance to land or takeoff was given.
- On the first pass through the data, identifying only the loudest aircraft, in this case B-52G and KC-135A. The loudest aircraft are both the easiest to identify and the dominant contributors to average day DNL levels.
- · Verifying that the SEL level and duration are both consistent with other results from the same type operation.

TABULATION AND AVERAGING OF SEL VELUES

Next, the SEL values were summarized by aircraft as shown in Table A-12. For the heavy aircraft, the SEL events were divided into four categories:

Straight-in Approaches Pattern Approaches Pattern Takeoffs Straight-out Takeoffs.

For the smaller aircraft, the SEL events were divided into only two categories:

Approaches Takeoffs.

In Table A-12, the SEL values for each type of aircraft operation are correlated from site to site. For example, the first entry for site 1, 102.9, is for the same straight-in KC-135A approach as the first entry for site 2, 99.6 dB. At site 3, the portable noise level monitor unit was not operational at that time because of the aforementioned paper jam. This bookkeeping technique is helpful in critiquing the results. In Table A-12, dashes represent events which did not

TABLE A-12 MEASURED SEL TABULATION FORM, SITE

AC	- KC	135A	1	I A	C - B	52G		AC - A-	-37	AC - T-	37	AC - T-3	00
	proach		T/0	_	proac		T/0					1	
	Patt			SI	Pat	Pa	t so	Approach	T/0	Approach	T/0	Appreach	T/0
103	999.9	95.	115.1	105	0 105.	SVOL	1116.3	92.5	97.5	86.4	94.3	73.6	90.4
101.	6 75.7	113.	4 111.	9100	2 162.	195.	5 115.9	96.7	84.1	199.9	75.1		77.9
101.	1103.4	103	TION.	5/109.	P.09 la	: 94.	0.116.0	1 20.2	84.6	88.9	89.1	83.4 82.4	91.9
102.	1107.7	101	7 107.	7 105.	5 150.	113.	2 114.0	86.5	94.4		103.1	•	91.9
101.5	103.5	40.4	1 97.	1104.	7 88.4	1/2.	1115.9	88.1	93.9	<u> • </u>		·	90.5
			5 121.4				8 116.5		97.6	 			98.1
•			110.		+:		7115.3		95.5	<u> </u>	•	•	92.7
-			8 H3.4		+ :			86.7	84,0	•	•	•	81.9
•			117.8		+ :	113	1113.5	81.9	98.8	•	•	•	•
-	1		105.9		1.	112	7116.60	90.7	94.6	<u> </u>		•	
•	•		IM.I		•		118.0		12.6	 `. 	•		•
	•		100.		1.		0 •	90.3	93.8	1 :	•	-	
			1107.6		•	91.		90.7	87.8	1 :	•	•	
<u>-</u>	<u> </u>		113.7	•	•		•	82.4	98.9		•	•	
-	+ •		4 102.5		•	106.		85.9	96.6			•	
-	•		105.4	_	•	71.6		79.0	96.6	•		•	
-	<u> • </u>		114.		ļ	100.		81.3	42.8	•		,	
+	-	_	101.6	_	•	100.		84.9	106.1	•		•	
-	•		114 9		•	96.6		86.0	960	•			
<u> </u>	+		114.7		•	86.1		84.2	94.3	•		•	
-	+		109.6	-	•	96.4		79.8	86.4	<u> </u>		•	
-	+ -		105.1	-	:	88.5	-	86.0	93.2	•		•	
-	•	79.9		-	+:-	94.4		•	96.6	-		•	
	-	77.9		1		83.8		•	90.9	-:-		:	
·	•	78.8				82.8	_	•	91.2	1			
	•	75,9	•		•	81.6		•	95.0			•	
•	٠	97.1			•	79.9		•	97.0	•		•	
<u>.</u>	<u> • </u>	84.1			-	110.7		•	98.4	•		•	
<u> </u>	 •	89.0		ļ		109.2	_		95.9	•		•	
-	<u> </u>	97.1		<u> </u>	•	111.5		•	•	•		•	
-	•	80.5		<u> </u>	•	109.6		•	•	•		•	
1	•	103.5		-	<u>.</u>	111.2		•	•	· · · · ·		•	
-	-	108.5		-	-	111.1		-:	•	•		•	
		87.8			1:	_			•	•		•	
<u> </u>	1	89.2		 	•	103.3		-:	<u> </u>				
-	·	104.0		 	•	96.9			•			-:	
•	•	,				90.8		•	•	 		', +	
•		•			• '	104.7		•	,			•	
	1	•			٠	94.0		•	•				
	•	•			•	92.8		•	•				
	· ·	•			•	٠		•	•				
-		· ·			•	•		•	•				
-		·		 	-	•			··				
-	-					:		:	-				
	•				·	•		•••	· ·				
	·				•	·		•					
5	10	39		5	6	43	13	23	31	3	4	3	8
107.2		103.8	113.4	1065	100.7	1066	115.3	88.8	94.8	88.2	97.8	81.4	99.4
.47	1.8		32.3		1.4		13.0	-11	. 25	.02	. 96	101	.20

N E S

TABLE A-12 MEASURED SEL TABULATION FORM, SITE _

AC - KC 135A	AC - B52G	AC - A-	37	AC - T-3	17	AC - T-3	8
Approach T/O	Approach T/O						
SI Patt Pat SO	SI Pat Pat SO	Approach	1/0	Approach	T/0	Approach	T/0 -
99.6 77.9 83.9 115.0		-	76.1	81.1	91.1		89.6
94.5 77.9 106.6 113.3	97.8 96.1 80.5113.2		79.1	73.6		_	
94.0 99.3 93.4108.5		-	78.7	12.5	81.4	_	89.5
94.9 92.8 93.1 112.8			91.3	77.7	92.7	81.3	91.9
	96.5 74. 8 103.5 112.6	=	92.5	_	84.9	73.2	83.1
97.0 86.6 85.8 88.7			_	74.5	82.6	81.7	92.2
91.3 82.9 78.3 113.7			70.0	71.5		81.5	81.0
96.5 95.0 76.3 108.0	95.1 95.0 - 1/3.3		70.0	81.0	88.7	76.4	
	95.2 100.0 99.7 114.0	=	92.6		8.88	84.0	88.6
94.4 - 86.3 111.7	98.0 100.7 101.1 114.8		89.8	76.5	_	_	ĺ
88.9 85.0 82.0 108.0	97.6 96.7 106.1 118.512	86.9	91.1	79.8	_	78.8	
82.5 94.7 88.1 116.4			84.4	81.9	_	79.8	87.9
96.7 76.8 88.0 105.9			89.0	80.1	92.0	81.3	
72.6 88.5 86.7 108.8			79.7	80.1	96.7	69.5	
74.8 92. 7 81.0 114.7		_	79.7	78.6	90.0	78.3	
95.3 94. 2 88.8 %.6			90.2	_			
94. 4 93. 5 92.0 108.9	96.5 96.5 73.3 114.9	_	85.0	75.9		71.7	
	94.0 96.2 88.2400.8	_	85.2	78.4		79.3	
94. 4 71. 4 93.4 91.9			94.0			83.6	
96.9 75.5 113.2 100.4		80.6	91.4	76.4		86.5	
95.195.9 85.8117.9		-	90.2	86.1		82./	
73. 2 94. 6 75.5 104.5			_	77.9		81.0	
82.5 88.5 91.1 108.2		73.3	81.8			81.1	
94.484.1 - 105.9		68.6	93.1	74.7		80.0	
88.9 95.3 86.1 114.4		77.5	91.0	70.4		74.7	
89.5 87.1 88.9 109.7		82.9		78.0		1	
72.6 88.8 73.9 116.3	97.1 69.9 110.4	80.0	80.8	73.9		78.2	
74,8 93.1 - 105.8		79.1	87.6	-		79.8	
94. 4 88.2 88.1 106.6	96.8 66.0	77.9	97.1	73./		97.6	
96.9 82.4 - 114.0		84-0	97.4	81.2		77.3	
95.4108.1 78.0 109.0	95.2 11.5	78.6	94.0	72.8		85. 4	
89.2 98.4 - 108.8	94.8 105.5	87.9	94.5	73.4		84.8	
94.8 99.9 - 104.9	91.2 106.9	78.9	87.1	76.2		95.0	
88.4 100.7 94.2 108.8		78.5	87.4	73.9		85.4	
95.0 97.0 81.7 104.9		80. 8	98.0	71.2		99.4	
93.9 95.7 96.3	36.9 96.8	83.6	16.0	76-5		83.6	
94.4 76.0 77.9	96.0 106.2	85.9	94.9			92.1	
96.9 98.0 72.6	97.4 93.5	81.4	87.8				
95.1 84.4 96.8	98.4 87.2	78.4	95.5			86.0	
73.2 94-6 85.3	95.1 77.9	-	90.8			74.8	
82.5 95.8 85.5	97.2 95.0	83.8	75.6			86.8	
95.4 101.3	95.0 83.4	82.0	16./				
79.0 97.9	100.0 \$3.0	66.6	91.5				
96.9 87.0	100.7 85.9	78.6	72.8				
95.6 86.8	96.7 88.4	75.6	71.3				
18.2 99.6	100-6 1042	70.0	90.0				
94.8 92.6	95.6 87.1	70.2	86.8	 			
95.0 92.9	94. 2 70.7	88.8	75. •	-			
79.8	109-2 103.8	81.0	20.8				
	 						
	 						
				L	1		

TABLE A-12 MEASURED SEL TABULATION FORM, SITE 2 (continued)

AC	- KC	135A		AC	- B5	2G		AC - A-	37	AC - T-	37	AC - T-3	8
	roach		[/0	App	roach		/0	Approach	T/0	Approach		1	
12	Patt		t SO	SI	Pat	Pat	SO	Approaca	1/0	Whiteach	1/0	Approach	T/0
	199.6				16.5	163.8	7	86.9	71.5				
	87.0				16.2	87.4		82.5	-				
-		<u> </u>	ļ	ļ	99.2			75.0	101.5				
-	94.1	-	 	-	0.	-	-	87.5					
	86.4			┼	97.8	82.1		72.8	92.7		 		
	94.7			-	97.1			87.8	95.9			-	
	95.2		-	-	94.0	39,6		81.5	92.5				
_	37.4	-		-	8.28	875	-		92.0		 		
	93.6			-	96.6	74.0	2		82.8		 		
	95.7	_	_	┼─	95.2	16.			89.0		 		
	96.6			 	91.2	106 7		90.2			 		
	14.9	-	 	-	95.8	95 /						1	
	75.5	-	 	+	95 6	100 9		98.6 78.9			 	1	
	95.8			1	95.5	97.7		77.5			 	1	
	94.6				96.0	84.2		1			1	1	
	84.5				77.4	83.1					1	 	
	84.1				98.4						 	1	
	81.0			1	18.0						 		
	96 7				1.1.5	104.30					1	 	
	95. 3					98.9						1	
	87.1					85.7							
	88.8					76.C							
	93.1					81.6							
	88.2					85.4							
	82.4					75.9							
	108.1					84.8							
	98.4		ļ			70.5							
-	79.8	ļ	 			81.4	7						
	100.7	-		-		45.5 (3)					-	
	96.0	-		-		-						-	
-	95.7			<u> </u>									
-	76.0	-									ļ		
	88.0		 			-	-						
	94.4		-	-			-						
	95.8		-	-		-	-					1	
	45.4		 	-	-					 		 	
	79.0		 	-								 	
	79.9									 		 	
	99.0				,				·				
	99.6										<u> </u>		
	87.0							:				1	
	94.1												
	86.4												
	94.7		<u> </u>			L							
	95.2												
	92.1		-										
140	100	HO	35	21	69	81	28	CC	60	36	100	 ,,,	12
	95.9		AD >	9/1						36	15	41	
		3.1						84.0	91.3	77.5	89.2	87.7	87.5
23	.91	2.)	14.5	.23	,30	2.77	17.0	,09	.22	.007	.12	,16	.04

TABLE A-12 MEASURED SEL TABULATION FORM, SITE 3

AC	- KC '	135A		AC	- 85	2G		AC - A-	37	AC - T-3	37	AC - T-3	8
Apr	roach		/0		roach		/0	Approach		Approach	7	Appreach	
SI	Patt	Pat	SO	SI	Pat	Pat	SO	Approach	1/9	Approach	1/0	Appreach	1/0
•		77, 3	106.7	863	-	39.0	102.1		70.72	}	80.3	-	83.5
		97.3	103.1	28.1	-					turning.			_
70.9	19.5	879	102.1	86.5			102.3				72.6		87.1
	82.8	87.0	106.0	85.0			96.9		86.8		87.0	,	95.7
85.8	-	15 Y	91.3	_	_	193.0	103.8		91.0		•		75.5
	79.6				_		101.3		\$4.0	-	•	,	82.6
86.9	-	74.0	103.3	•	•		107.7	_	71.9	· · · ·		·	
	87.0				•	0/15	107,4				•		
72.5	82.0	74.	44.2			91.5	10,1		93.9				•
	86.4						115.8(2)	76.5	86.3		:		
1	86.4						103. 1	82.7	79.5		,	•	:
-			111.9			37.3		81.1	83.9				
	=		104.5			76.8		<u> </u>	~		,	-	
			162.8			97.5	•	-		•		•	
•	•	83.2	90.1	•		24.9	,			·		•	
•			105.8			71.4			94.1	•		•	
•	•	83.9	103.7	•		78.9			79.8	•		•	
·	•	87.0	186.9	•		83.0	•		89.7	•		•	
	•	99.0	92.6			766	•		87.7			•	
•	•	77-2	106.8				•		84.8			•	
	•	_	94.3			81.7				•		•	
<u> • </u>	•		106.6			65.1	•	~	72.8	· · · · ·		•	
<u>.</u>		64.4				31.5	•		86.3			•	
<u>.</u>		82.6				79.4	•		80.2				
<u> </u>		83.7				*****			79.8			-	
:-	-	82.7(2) 	•			10.8			83.4			•	
·	•	82.8				650		-:-	90.5			•	
		78.6				84.2		-	93.4				
•		69.8				98.6			85.3	•		•	
		80.3				88.1		•	,				
	•	-	•			93.4		.	•	•			
•		81.6				94.6				•		•	
•		70.8				80.9		•	•	•		•	
·		901				97.9		•		•		•	
·	•	-				90.0		•	•			•	
·		73.0				84.0		•	•			•	
•		84.2						•	•			•	
·	•	•				95.8°		•	•			•	
	•	•			,	73,2		•				•	
-	•	:				78.0							
-	•	•				:		•					
-		÷						-:-	-:-				
	-	-				•							
	•							•	· ·				
	•	•				•		•					
	•					,		•	•				
	•					•		·	•				
7	14	40	23	4	-	42		27	31	-	4		8
886	829	87.8	104.6	86.6	-		107.1	71.3	86.0	_	82.0		82.2
,05	,02	115	3.5	10,	-	119	4.25	.004	106		.02		105

TABLE A-12 MEASURED SEL TABULATION FORM, SITE _____ 202

	- KC				- B			AC - A-	-37	AC - T-3	37	AC - T-3	8
	roach	'	1/0	App	react	I	70	Approach		Approach			
IZ	Patt	Pat	법 S0	SI	Pat	Pat	SO	Approaca	1/9	Approach	170	Appreach	T/0
•	•	•		·	٠			•	ŧ	•		•	•
<u> </u>		•	+ -		•	·	٠	,	,	•	1	•	•
<u></u>		<u> • </u>	1	·		•	· ·	,		,		•	•
·		+ •	+	·-	· ·	1	•	•	'	-		80.10	•
-	 •	 :	+:-	•	<u> </u>	•	,	1	1	74.2		73.4	•
93.9		 :		97.3		 :	•		•		84.0	78.9	•
935			· ·	187.1	96.0	-					74:0	75.5	•
94.0		·		196.2	99.7	· ·	•			75.0	86.5	79.4	•,
96.3	· -	÷	1	-	97.6		•	<u> </u>	1		87.5	83.9	88.3
98.1	00.0	-			96.6		•		,	70.8	84.8	77.1	
=	93.8	<u> • </u>	ļ:-	-	100.6	1	•		•	81.3	87.2	•	72.0
	94.3				79.7		•	1	,	93.3	93.7	1	84.3
	_	-	•	94,7	95.1	•	•		'	78.2	89 . 8		
	82.2	•	:-	104.	95.1	:	107.8	-	1	80.7	85.8		
	91.4				92.7	1	116.1		:	•	71.5	*	
	72.0		· ·		94.3		108.6	•	•	-			
		-			94.5		113.1		,				
-	79.1	•	· ·		100.1		116.5		'			•	
		·	-	16.2			86.6			•		•	
	71.7		:		95.4		102.9			•			
		•	-		94.7	_	100.3			· · · · · · · · · · · · · · · · · · ·		•	
=		-			104.1		111.3		1	•		•	
		-	97.1		91.5		109.3	•	1	1			
99.1	100.2	•	107.4		101.5	1	114.3		•				
-	96.4		108.1		95.7								
-	87.7		109.7		101. 7		109.3	80.6				-:-	
_	93.3		95.9		101.		1081	71.2	-				
	88.6		91.2		98.1	•	108.11	69.6		- :			
	84.0		109.1		95.9			51.6	,	,		-	
•	101.0		109.0			•		73.5		•		-	
•	96.2		1089		97.9	•		81.3	89.1			•	
	102.2		101.2		72.8	•		74.2	71.2			3	
	94.7		108.9			•		78.4					
•	93.0	•	101.2			•		83.4	87.6				
•	85.1				84.8	•		70.8	81.5	-		-	
•	75.4				95.3			86.5	93.0				
•	90.3				_	•			87.7	-		-	
	96.3				97.1	•		78.2	90.7				
•	16.0				97.3			80.3	80.0			-	
•	932				96.0			74.4	74.1			•	
		89.2				•		1	84.7				
	79.1	73.8		1	77.6	-		1					
		-			96.6			•	_				
		-			100.6			1	87.0				
		-			78.7			•	84.9				
		-			95.1			•					
		=		-	95.1	_		•					
					92.7	011 4		-	77.9				
					13.3	4.1							
 													
													10

TABLE A-12 MEASURED SEL TABULATION FORM, SITE 202 (continued)

	- KC 1		10		- B5		10	AC - A-		AC - T-3		AC - T-38	
	roach			App	roach	I.	10	Approach	T/0	Approach	T/0	Approach	T/
	Patt	Pat	20	21	Pat	Pat	20						
	91.0				94.5	85.9						+	
				_	102.9					 			
	85.7				102.9	0.5		- :	89.8	 	 	1	
	80.3			-	95.4	41.8			86.2	 		-	
				_	101.7				86.6	 		1	
					-	_		•	89.4	 		1	
	_				98.1	007			87.3			·	
					95.9				74.3	-			
					1			•	\$7.9				
						105.1		•					
	_			-	,	-							
1					,	-							
	71.7				•	99.0		•					
					,	69.8		•					
	_				1	-		•				1	
					1	_				ļ		-	
	_				1					_			
					1					1			
	91.0					101.667				-			
	100.2											-	
	96.4											-	
	97.7			-		_							
	93.3			-		=				 		+	
	88,6											1	
	101.0					86.2				1			
-	96.2												
	10a.a												
	94.7		1										
	93.0												
-	85.1											1	
	75.4												
	90.3											1	
	96.3											-	
	96.0				-					 		-	
	93.a											1	
				-						-			
	79.1			-						1		 	
	•	-		-		-						1	
	-												
	,												
	,	<u> </u>				L				-		1	
	•	ļ	-							 		+	
		-				-	-					 	
-24		9	12	14	53	29	15	18	29	11	11	7	4
	92.7		106.8	912	91.7	910	111 5	78.9	85.5	77.4	85.3	79.6	93.
14.9	36		3.6			14.0	111.3	,01	,05	,01	,03	101	.0

TABLE A-12 MEASURED SEL TABULATION FORM, SITE __ 203

	- KC				- B			AC - A-	-37	AC - T-	37	AC - T-3	18
	proach		T/0	Apr	roac		70				1		
12	Patt	Pat	50	SI	Pat		SO	Approach	T/0	Approach	T/0	Approach	T/0
•	•		•				1	1					
•	1		\ .	1	1.	+-	1	 	•			'	•
,	1.	1.		1	†	+-	 	 - :		+-:	•	 	•
-	1	+ -	† ·	+	† ·	1	 		•	 	'	1	•
1	 	 •	1		 	+:	 			1	•	88.5	,
<u> </u>	 . 	+		1	-		-		1			81.3	,
- 	+	 :		125	1	<u> </u>		,	•	1	83.9	87.3	•
			 		99.5				•	23.0	-	85.6	•
	1	<u> • </u>		199.3	107.	11 •	1.	•	•	84.7	81.9	77.8	•
	•	•		105.0	102.5	•	. 1	•	,	70.7		82.4	80.5
101.1	,			104.9	107.7	-	,	,	•	1		89.9	74.3
	1	4		103.4	70.8	•	1	•	•	83.4			14.5
				104.9	105,7			1	,	80.9		87.1	
100.5		•	•	1064	104.6		107.2	1	-	00.			78.1
6.67		•	•		106.6		97.8	1		8.58		7/.3	
	99.6	•	•	101.8	106.	•	110.1		-		71.3	74.5	
	93.4			810	96.7	1 :	105.3	-	•		73.2	84.8	
	98.6		· ·		101.5		102.9	1				81.6	
93.4				07.2	101.5		02.7	•		88.1		81.1	
		 		86.0X	101.6	<u> </u>				72.5			
99.0					101.9		101.4	1	•	101.3		86.2	
<u> वेवे न</u>		•	•		103.2		81.0	•	•	~			
85.5	1-		•	103.4	106.7	'	18.3	•				81.0	
					102.7	'	108.1	1	1			74.6	
	85.5	٠	85.A		101.8	•	18.5	1	,	72.2		82.1	
101.1			106.0		86.9		109.D	•					······································
	99.6	•	889		84.5	•	109.1	1	1	-			
	88.4		94,2		100,2		98.5			-		85.2	
73.9	97.7	•	926		99.5		109.0		,			05.0	
10.1	96.4	٠	101.7			,	-		,	90.5		85.8	
	91.4		105.7		100.2	,		65.8		10.5		22.8	
	84.0		102.0		100.7	-		2:0					
	103.5		96.0		99.5			828					
	98.6		96.7		107.3	,		90.8	72.0				
	101.4	•	95.9		105.0				73.2	(2)			
	99.5					_		78.0		81.5 78.9			
		•	96.7		100.6	•		79.9		78.4		72.70	
1.3	1022	•			100.7			81.7	70.7			108,4	
27.04	105.7					•		84.4		75.5		82.5	
	\$2.4	•			100.9			80.8	76.4			1	
19.4		,			96.0			78.5	72.4			82.3	
	95.6	•			985	•		87.0	68.6			80.4	
_	100.1	•			105.2	•		81.2					***
	94.2				98.5	1		79.9					
		-			107.1	•		95.2					
	81.1	-			102.5	•		87.0					
		-			107.7			88.6					
	109.9				70.8			_					
1	9/1 /				105.7				855				
	93.2				105.7	_		_					
	99.3				106 6			-					
	~	•		- /	06.0	-							
	96.1	•			06.0 2.6	-	_						
													
				-+		\rightarrow	-						
											1		

TABLE A-12 MEASURED SEL TABULATION FORM, SITE 203 (continued)

AC - KC				- B5			AC - A-	37	AC - T-3	37	AC - T-3	8
Approach			App	roach Pat	I I	/0	Approach	T/0	Approach	T/0	Appreach	T/0
SI Patt		30	121	Pat	Pat	20		100				
93.8		-	+	101.5	-		86.3	68.7 75.3				
73.0	 	 	 	101.9		-	Xp.2	67.1		 	 	
98.2	 	 		103.2	101 2			91.1				
97.6			 	100.0	-		79.8	76.5				
98.0				99.5				-				
98.0				_	-		88.4	75.2				
95.3				99.2	17.0		90.2	84.4				
90.4				100.7	-		71.4					
92.7		ļ	-	99.5	_		72.9	68.7				
98.3	-		-	107.3	106.3		84.0 81.4					
99.4			-	(05.D	-		81.4					
95.6			-	100.6	-		93.9					
1=		-	-	100.7	17.3		109.6					
	 	 	 	100.9	=		78.1					
95.5	 			95.9			/ 0. /					
X3:3	 			90 E	-							
89.4				98.5	_							
100.5					101.5/2						 	
99.6					-	-						
88.4					-							
97.7					_							
96.4					_							
91.4												
84.0					70.6							
103.5					=							
98.6					=							
101.4												
102.2												
105.7												
85.4												
											-	
85.6												
102.1												
94.2												
-					·							
81.1												
				,								
96.1			\vdash									
73.0			\vdash									
77.0			 									
98.2												
197.6												
198.0												
88.0						-						
96.4												
			· ,,	/-	20	-,- 		20				-,,
38 86	_	12	16		38	16	39	29	30	11	37	4
98.3 97.7	-		1001	102.9	13.7	27(94.2	74.7	87.4	76.0	93.0	77.1
1.72 1.24		1.38	1.50	1.10	15	2.60	1.46	.01	. 25	10.	1.14	

N - Number of Measurements; E - Energy Avg., dB; S - Energy Standard Deviation, $x10^{10}$

2 E 5

exceed the SEL threshold at the particular site. Dots represent events which occurred when the portable noise level monitor was not operational at that site at the time.

Sample energy averages and standard deviations were computed from the tabulated data using Eqs. (8) and (9).

$$\overline{L}_{AE} = 10 \log \frac{1}{n} \sum_{q} 10^{\frac{L_{AE}}{10}}$$
 (8)

$$s^{2} = \frac{1}{n-1} \left[\sum_{q} \left(10^{\frac{L_{AE}}{10}} \right)^{2} - n \left(10^{\frac{\overline{L_{AE}}}{10}} \right)^{2} \right]$$
 (9)

where

 L_{AE} = individual A-weighted sound exposure level (SEL), dB

 $\overline{L_{AE}}$ = energy average A-weighted sound exposure level (SEL), dB

s = sample standard deviation for SEL values as an antilog with 1.0 equal to the sound level reference of 20μ N/m²

n = number of SEL values in the sample

q = summation index for SEL values for a specific aircraft/operation

Zero was used as the SEL level for events which did not register at a site (dashes in Table A-12).

SYNTHESIS OF AVERAGE DAY DNL VALUES

The individual aircraft average SEL values were used to synthesize average day DNL estimates as shown in Table A-13. In this table the measured SEL values are expressed in decibels. The equivalent day acoustic energy was derived by multiplying the individual energy average SEL antilog values by the

Table A-13 Summation of Mean and Variance of Measured SEL Contribution to Synthesized DNL Values Site $\frac{1}{2}$

	0p	era	tio	ns	Aver.	Day Fre	equency		
Type A/C	Ap	ىد	Patt ☐		Day, F _D	Night FN	1, , U	Average Measured SEL	Equivalent Day DNL Value
		Pa	Ра	S			+10F _N		
KC -	√					0.510		102.2	62.0
135A		√			12,412				67.7
			√		8.240	1.780	26.04	103.8	68.6
				√	2.871	0.426	7.131	113.4	72.5
B52G	1				2.910	0.960	12.51	106.5	68.1
		V			9.750	3.600	45.75	100.7	67.9
			7		6.480	2.400	30.48	106.6	72.0
				1	2.436	0.225	4.686	115.3	72.6
A-37	√				14.430	0.092	15.35	88.8	51.3
		1			7.168	0.144	8.608	88.8	48.7
			√		4.770	0.099	5.76	94.8	53.0
				1	5 420	0.140	6.820	94.8	53.7
T-37	1				5.400		5.40	88.2	46.1
		1			19.260		19.26	88.2	51.6
			1		10.50	0.02	10.70	97.8	58.7
				1	3.580	0.02	3.78	97.8	54.2
T-38	1				1.780	0.102	2.80	81.4	36.5
		1			4.160	0.298	7.14	81.4	40.5
			1		2.548	0.172	4.268	92.4	49.3
				1	1.190	0.07	1.890	92.4	45.8
T-39	1		,		2.540	1.220	14.74	92.3	54.6
1 00	<u> </u>	1				0.190	1	92.3	51.4
			1			0.820		92.3	53.6
			ŕ	1		0.130		92.3	48.5
Other	1				2.80	0.10	3.80	_	_
		1				0.57	11.575	_	-
			1		4.08	0.41	8.18	44	-
				✓	1.75	0.07	2.45	_	-
Total	s				156.62	17.238	329		
		vera	age	DNI	., L _{dn} ,	dB			79.1
					iction,		F)		80.5

Table A-13 Summation of Mean and Variance of Measured SEL Contribution to Synthesized DNL Values

Site 2

	0	per	atio	ons	Aver.	Day Fr	requency	/	
Туре	A	рр	T,	0/			Equiv		
A/C			1,	T	Day,	Night	Day F=F _D	Average Measured	Equivalent Day
	27	Patt	Patt	05		F _N	+10F _N	SEL	DNL Value
KC -	1		L		3.180	0.510	8.28	94.1	53.9
135A		1		_	12.412	2.670	39.112	95.9	62.4
		<u> </u>	V		8.240	1.780	26.04	98.3	63.1
	$oxed{}$			1	2.871	0.426	7.131	111.2	70.3
B52G	1	Ļ	<u> </u>		2.910	0.960	12.51	96.1	57.7
		1	_		9.750	3.600	45.75	96.1	63.3
			1		6.480	2.400	30.48	100.1	65.5
				1	2.436	0.225	4.686	113.4	70.7
A-37	1				14.430			84.0	46.5
	_	1				0.144	8.608	84.0	43.9
			✓		4.770	0.099	5.76	91.3	49.5
	_			✓	5.420	0.140	6.820	91.3	50.2
T-37	1				5.400	0	5.40	77.5	35.4
		✓			19.260	0	19.26	77.5	40.9
			/		10.50	0.02	10.70	89.2	50.1
				✓	3.580	0.02	3.78	89.2	45.6
T-38	✓				1.780	0.102	2.80	87.7	42.8
		V				0.298	7.14	87.7	46.8
			/			0.172	4.268	87.5	44.4
				/	1.190	0.07	1.890	87.5	40.9
T-39	/				2.540	1.220	14.74	88.1	50.4
		1	\perp	\dashv	5.230	0.190	7.13	88.1	47.2
	_	_	1			0.820	11.69	93.9	55.2
		\dashv	_	1	2.370	0.130	3.67	93.9	50.1
Other	1	_	_	4		0.10	3.80	-	_
-	\dashv	1	4	\perp	5.875		11.575	_	-
-		_	1	_	4.08		8.18	-	_
	\perp			1	1.75	0.07	2.45	-	-
Totals					56.62 1		329		
Energy	Av	era	ge [ONL	, L _{dn} , c	iB .			75.3
NOISEM	AP	DNL	Pre	edi	ction, d	B (REF)		75.3 76.4

Table A-13 Summation of Mean and Variance of Measured SEL Contribution to Synthesized DNL Values Site 3

	0р	era	tio	ns_	Aver.	Day Fre	equency		
Type A/C	Ap	t	Patt ☐	SO OS	Day, F _D	Night F _N	Equiv. Day F=F _D	Average Measured SEL	Equivalent Day DNL Value
	S	Ра	Pa	S			+10F _N		
KC -	✓					0.510		88.6	48.4
135A		✓					39.112	82.9	49.4
			√		8.240	1.780	26.04	87.6	52.4
				✓	2.871	0.426	7.131	104.6	63.7
B52G	1				2.910	0.960	12.51	86.6	48.2
		√			9.750	3.600	45.75	0	0
			7		6.480	2.400	30.48	90.4	55.8
				1	2.436	0.225	4.686	107.1	64.8
A-37	√				14.430	0.092	15.35	71.3	33.8
		1			7.168	0.144	8.608	71.3	30.2
			1		4.770	0.099	5.76	86.0	44.2
				1	5 420	0.140	6.820	86.0	44.9
T-37	1				5.400		5.40	0	0 .
1 37	,	1			19.260		19.26	0	0
		,	1		10.50	0.02	10.70	82.0	42.9
			Ė	1		0.02	3.78	82.0	38.4
T-38	1					0.102	2.80	0	0
		1			4.160	0.298	7.14	0	0
			√		2.548	0.172	4.268	82.2	39.1
				1	1.190	0.07	1.890	82.2	35.6
T-39	1				2.540	1.220	14.74	0	0
. 05	÷	1					7.13	0	0
			1		3.490		11.69	87.3	48.3
				1	2.370			87.3	43.5
Other	1				2.80	0.10	3.80	-	-
		1				0.57	11.575	-	-
			1		4.08	0.41	8.18	-	-
	-			1	1.75	0.07	2.45	-	-
Total	ς .				156.62	17.238	329		
		vera	age		L, L _{dn} ,				68.0
					iction,		F)		69.4

Table A-13 Summation of Mean and Variance of Measured SEL Contribution to Synthesized DNL Values Site 202

	0	pera	tio	ns	Aver.	Day Fr	equency	4	
Туре	A	оp	T/	0			Equiv.	Average	Equivalent Day
A/C		بدا	با		Day,	Night	Day F=F _D	Measured	
	SI	Patt	Patt	80	FD	FN	+10F _N	SEL	DNL Value
KC -	1				3.180	0.510	8.28	93.0	52.8
135A		1			12.412	2.670	39.112	92.7	59.2
			1		8.240	1.780	26.04	79.8	44.6
				✓	2.871	0.426	7.131	106.8	65.9
B52G	1				2.910	0.960	12.51	96.2	57.8
		1			9.750	3.600	45.75	97.2	64.4
			√		6.480	2.400	30.48	92.8	58.1
				√	2.436	0.225	4.686	111.5	68.8
A-37	1				14.430	0.092	15.35	78.9	41.4
		1			7.168	0.144	8.608	78.9	38.8
			1		4.770	0.099	5.76	85.5	43.7
				√	5.420	0.140	6.820	85.5	44.4
T-37	1				5.400	0	5.40	77.4	35.3
		✓			19.260	0	19.26	77.4	40.8
			√		10.50	0.02	10.70	85.3	46.2
				1	3.580	0.02	3.78	85.3	41.7
T-38	√				1.780	0.102	2.80	79.6	34.7
		1			4.160	0.298	7.14	79.6	38.7
			1		2.548	0.172	4.268	83.8	40.7
				1	1.190	0.07	1.890	83.8	37.2
T-39	1				2.540	1.220	14.74	87.0	49.3
		1			5.230	0.190	7.13	87.0	46.1
			1		3.490	0.820	11.69	87.8	49.1
				1	2.370	0.130	3.67	87.8	44.0
Other	1				2.80	0.10	3.80	_	-
	_	1			5.875	0.57	11.575	-	-
			1		4.08	0.41	8.18	-	-
				√	1.75	0.07	2.45	-	-
Totals].	156.62 1	7.238	329		
Energy	Av	era	ge [DNL	$, \overline{L_{dn}},$	dB			72.3
NOISEM	AP	DNL	Pre	edi	ction,	dB (RE	-)		75.8

Table A-13 Summation of Mean and Variance of Measured SEL Contribution to Synthesized DNL Values Site $\underline{203}$

	0p	era	tio	ns	Aver.	Day Fr	equency		
Type A/C	Ap IS		Patt ☐	0	Day, Fp	Night F _N	Equiv. Day F=F _D +10F _N	Average Measured SEL	Equivalent Day
KC -	1				3.180	0.510		98.5	58.3
135A		1			12,412	2.670	39.112	97.7	64.2
			√		8.240	1.780	26.04	0	0
				1	2.871	0.426	7.131	100.4	59.5
B52G	1.					0.960		102.7	64.3
		√				3.600		102.9	70.1
			7		6.480	2.400	30.48	93.5	58.9
				V	2.436	0.225	4.686	104.7	62.0
A-37	✓				14.430	0.092	15.35	94.2	56.7
		1			7.168	0.144	8.608	94.2	54.1
			√		4.770	0.099	5.76	74.7	32.9
				1	5.420	0.140	6.820	74.7	33.6
T-37	1				5.400		5.40	87.4	45.3
		1			19.260	0	19.26	87.4	50.8
			✓		10.50	0.02	10.70	76.0	36.9
				1	3.580	0.02	3.78	76.0	32.4
T-38	✓				1.780	0.102	2.80	93.0	48.1
		1			4.160	0.298	7.14	93.0	52.1
			✓		2.548	0.172	4.268	77.1	34.0
				√	1.190	0.07	1.890	77.1	30.5
T-39	√				2.540	1.220	14.74	89.7	52.0
		1				0.190		89.7	48.8
			1		3.490	0.820	11.69	79.7	41.0
				√	2.370	0.130	3.67	79.7	35,9
Other	√				2.80	0.10	3.80	-	-
		✓			5.875	0.57	11.575	-	_
			✓		4.08	0.41	8.18	-	<u>-</u>
			l	1	1.75	0.07	2.45	_	-
Totals	<u> </u>				156.62	17.238	329		
Energy	/ A\	era	ge	DNL	, L _{dn} ,	dB			73.2
					ction,		F)		73.7

NOISEMAP equivalent day frequency of occurrence F, summing, taking 10 times the logarithm of the sum and subtracting 49.4 dB for the number of seconds in a day. In equation form:

$$\overline{L_{dn}} = 10 \log(\sum_{k} \overline{E} \cdot F) - 49.4$$
 (10)

where

F = equivalent day average day aircraft frequency

 \overline{E} = energy average of SEL measurements for a specific aircraft/operation combination expressed as an antilog

k = summation index for different aircraft/operations.

Expressing the equivalent day DNL value for each type of aircraft operation in Table A-13 emphasizes the differences between the noise levels due to different aircraft. Summing the equivalent day energy values for the four smaller aircraft shows that they account for only 2.5 to 5 percent of the total energy. Excluding the four smaller aircraft decreases the DNL estimates by an average of only 0.2 dB, Table A-14.

Comparison of the SEL-based estimates from Table A-14 with the DNL-based estimates of Table A-10 shows that the SEL-based estimates are slightly higher. However, comparison with NOISEMAP values shows that SEL-based estimates are still consistently lower than predictions.

The use of SEL measurements to estimate average day DNL values has reduced the potential field test bias because the mix of operations during the field test is not a factor. In addition, the statistical uncertainty should be reduced because the number of data samples has been increased from the numbers of days to numbers of aircraft. Therefore, the most likely cause of the differences between measurements-based estimates and NOISEMAP predictions is incorrect NOISEMAP input data.

ANALYSIS BY EXTRAPOLATION FROM KEY SITE DNL ESTIMATE USING MEASURED HNL VALUES

COMPUTATION OF ENERGY AVERAGE HNL VALUES

To extrapolate from the key site (Site 2) to satellite sites (Sites 1, 3, 202, 203, and 4), energy average HNL values

TABLE A-14 AVERAGE DAY ESTIMATED DNL VALUES BASED ON SEL MEASUREMENTS, dB

NOISEMAP (Ref)	80.5	16.4	4.69	75.8	73.7
Difference All A/C(-) Heavy A/C	۲.	г.	0.1	0.1	0.3
Heavy** Aircraft	0.67	75.0	68.1	72.4	73.0
All* Aircraft	79.1	75.1	68.2	72.4	73.3
Site	٦	0	\sim	202	203

^{*} The six aircraft listed in Table A-13. These aircraft comprise 93% of Barksdale flight operations.

** B52G and KCl35A

were computed for all sites from the HNL values listed in Table A-6. The averages were taken only for data measured simultaneously at the key site and the particular satellite site. Therefore, five different energy average HNL values were computed for Site 2 because no satellite site was operational for exactly the same time period as any other satellite site. The computation of energy average HNL was facilitated by using LEQ values for complete days, Eq. (12).

$$\overline{L_{h}} = 10 \log \frac{1}{24d + h} \quad 24 \sum_{l} 10^{\frac{L_{24}}{10}} + \sum_{i} 10^{\frac{L_{h}}{10}}$$
 (12)

where

 $\overline{L_h}$ = energy average HNL value, dB

 L_{24} = twenty-four hour average noise level (LEQ), dB

 L_h = hourly noise level (HNL), dB

= summation index for complete measurement days at both key site and satellite site

i = summation index for hours from incomplete measurement
 days at both key site and satellite site

d = number of complete measurement days at both key site
 and satellite site

h = number of hourly noise level values from incomplete measurment days at both key site and satellite site.

In Table A-15 the energy average HNL values are presented, the site-to-site differences calculated, and the extrapolations from Site 2 to the satellite sites performed.

Extrapolations from two different Site 2 average day DNL estimates are presented, one based on DNL measurements and the other based on SEL measurements.

EXTRAPOLATION FROM KEY SITE TO SATELLITE SITE DNL VALUES USING ENERGY AVERAGE HNL VALUES TABLE A-15

	Ene	Energy Average	7 99 90 90		DI	DNL			Standa	Standard Deviation	ation
Satellite		HNL, dB		Key Sit	Site DNL	Key Si	Site DNL		of HNL	Differences	ences
Number	Sate	Кеч	A HNT.	From DNL's	ONL's	From	SEL's				
	00 00 00 00 00 00 00 00 00 00 00 00 00	Site (2)	Satel (-) Key	Key* Site (2)	Satel Site	Key Site (2)	Satel Site	NOISE- MAP (Ref)	s, dB	и	$\frac{s}{dB}$
Н	74.6	71.6	3.0	72.7	75.7	75.3	78.3	80.5	5.1	11.5	0.5
ю	65.3	71.7	-6.4	72.7	66.3	75.3	68.9	4.69	9.7	12.2	2.0
202	4.69	71.3	-1.9	72.7	70.8	75.3	73.4	75.8	0.9	9.1	9.0
203	67.8	4.69	-1.6	72.7	71.1	75.3	73.7	73.7	9.7	21.7	0.5
17	59.4	65.4	-6.0	72.7	2.99	75.3	69.3	0.69	8.9	14.6	2.0

* Corrected for number of operations.

POST TEST BIAS CORRECTIONS

Four types of post test overall corrections were considered. These were for atmospheric absorption bias, for temperature bias, for calibrator calibration bias, and for calibrator altitude correction.

An atmospheric absorption or humidity bias was evaluated by comparing the atmospheric absorption during the field test with average yearly atmospheric absorption. The atmospheric absorption values were determined by plotting temperature and relative humidity values on an absorption contour, For the field test, temperature and relative Figure A-3. humidity values taken every three hours were averaged separately, yielding 78.1° F and 73.5 percent relative humidity. Averaging the two parameters separately instead of plotting every point is valid because the points tend to lie on a straight line. This is evidenced by the monthly average data, also presented in Figure A-3. The atmospheric absorption difference between the field test and yearly average is 0.13 dB/1000 feet at 1000 Hz. An additional 0.1 dB/1000 feet at 1000 Hz exists between the Barksdale AFB yearly average and standard conditions (59° F, 70 percent relative humidity) which were used for the NOISEMAP computations.

The average temperature being greater than standard conditions also tends to decrease the noise levels because of decreased thrust and impedance changes. This is balanced somewhat by an increase in noise levels with decreased aircraft speed. Figure A-4 shows the combination of these temperature effects. For the Barksdale AFB field test, the estimated decrease in noise level due to increased temperature is 0.7 dB.

However, applying the corrections for these biases was considered unsound, especially for large slant distances (over 4000 feet) for two reasons:

- The higher than average temperature during the field test also affects the measured noise levels by lowering climb performance. Bias error corrections should include factors for this phenomena.
- For long slant distances, the peak in the frequency spectra tends to be shifted lower than 1000 Hz. Precise corrections should take the frequency spectra into consideration.

FIGURE A-3. 1000 Hz ABSORPTION VALUES (REF. 16)

CORRECTIONS FOR TEMPERATURE-THRUST VARIATIONS (REF. 17) A-4. FIGURE

Instead of applying corrections, the atmospheric absorption bias, 0.1 to 0.2 dB, has been used as a measure of uncertainty in computing confidence intervals. The temperature-thrust bias has also been used as another contributor to the uncertainty.

Calibrator calibration bias, on the other hand, has been identified and corrections applied. Before the field test program, the calibrators were checked against a B&K model 4220 pistonphone using a variety of microphones as transfer transducers. The results showed the calibrators consistently producing 114.4 dB. After the field test, this was confirmed by factory calibration by GEN/RAD. As a result of this well documented bias, the experimental results were increased by 0.4 dB. This correction was applied to all reported levels throughout this document.

The acoustic output of calibrators decreases with atmospheric pressure at a rate of approximately 0.2 dB per 1000 feet altitude. However, the altitude at Barksdale AFB is only 164 feet above sea level. Since the resulting error is less than 0.05 dB, no corrections were applied to the measured levels.

CONFIDENCE LIMITS

Statistical confidence limits were derived from the measured data for all estimates of yearly average DNL. The 90 percent level confidence coefficient was employed. The selection of this confidence coefficient was essentially arbitrary, but it is consistent with current practice. In addition to the variabilities in the measured data, other uncertainties were evaluated. These include uncorrected temperature-humidity absorption bias, uncorrected temperature-thrust bias, instrumentation errors which weren't averaged during the field test, and unrepresentative flight activity during the field test. The ariances from all sources of error were combined to arrive at overall confidence intervals.

CONFIDENCE LIMITS FOR DNL-BASED ESTIMATES

Statistical confidence limits for the estimated yearly average DNL values were derived from the measured data. For

estimates obtained from the measured DNL values, the Student t statistic with the number of degrees of freedom equal to one less than the sample size was utilized (see Table A-16).

The confidence limits were calculated from the DNL statistics of Table A-10 as follows.

Confidence limits = 10 log [Energy Avg. $\pm \frac{t}{\sqrt{n}}$ Energy Std Dev] (14) For example, from Table A-10, for Site 2 with corrections for total aircraft volume,

Confidence limits =
$$10 \log \left[10^{\frac{72.7}{10}} \pm \frac{1.78}{\sqrt{13}} (1.44 \times 10^7) \right]$$
 (15)
$$= \frac{74.1}{70.6} \text{ dB}$$
confidence interval is the difference between the upper and

The confidence interval is the difference between the upper and lower limit, in this case 74.1 (-) 70.6 = 3.5 dB or 1.4, - 2.1 dB in relation to the average 72.7 dB.

The average day DNL estimates and the associated confidence intervals are summarized in Table A-17.

CONFIDENCE LIMITS FOR SEL-BASED ESTIMATES

Statistical confidence limits for the SEL-based estimates of yearly average DNL values were derived from the measured data. With the large number of SEL samples contributing to the computation, the normal distribution statistic for the 90th percentile, 1.64, was used. (Note that this is the limiting value for the Student t distribution as the sample size becomes large, Table A-16.) Confidence limits were calculated as follows:

Confidence limits = 10 log
$$\left[\Sigma(\overline{E} \ F) + 1.64 \sqrt{F(\frac{S}{\sqrt{n}})^2} \right] - 49.4$$
 (16)

TABLE A-16 STUDENT t STATISTICAL DISTRIBUTION FACTORS
FOR 90% CONFIDENCE IN ESTIMATION OF MEAN

Number of Samples	Statistical Degrees of Freedom	Student t factor for 90% Confidence	t/\sqrt{n}
2 3 4 5 6	1 2 3 4 5	6.31 2.92 2.35 2.13 2.02	4.46 1.69 1.18 0.95 0.82
7 8 9 10 11	6 7 8 9	1.94 1.90 1.86 1.83 1.81	0.73 0.67 0.62 0.58 0.55
12 13 14 15 16	11 12 13 14 15	1.80 1.78 1.77 1.76 1.75	0.52 0.49 0.47 0.45 0.44
17 18 19 20 21	16 17 18 19 20	1.75 1.74 1.73 1.73	0.42 0.41 0.40 0.39 0.38
22 23 24 25 26	21 22 23 24 25	1.72 1.72 1.71 1.71	0.37 0.36 0.35 0.34 0.34
27 28 29 30 31	26 27 28 29 30	1.71 1.70 1.70 1.70 1.70	0.33 0.32 0.32 0.31 0.31
00	00	1.64	0

Barksdale AFB Yearly DNL Estimates With Confidence Intervals Based Only on Sample Statistics Table A-17

							ŞITE						
	Data Source		_	2		.,	3	2	202	2	203	4	
		Avg	IO %06	Avg	IO %06	Avg	IO %06	Avg	10 %06	Avg	IO %06	Avg	IO %06
	All Days Measure-												
	ments No Corrections		ľ	72.0	+2.5	ı	ı	1	1	1		1	ı
	Corrected for total A/C	r		72.7	+1.4	f		1	r	ı	1	1	1
11	Corrected for heavy A/C	r	ſ	72.6	+1.4	1	1	1	1	í	ı	ı	1
	Week Days Measure-												
	ments No Corrections	ı	ı	73.5	+1.3	ı	r		ı	ı	ı	ř	ı
	Corrected for total A/C		ı	73.2	0.6.	1	ı	1	ı	1	ľ	ı	ı
	Corrected for heavy A/C	t	ı	72.4	+1.6	r	1	ı	r	1	1	ı	1
	SEL Synthesis Measured Data	79.1	+.2	75.3	. 5	68.0	+.4	72.3	+.4	73.2	; ;	1	r
	Extrapolation from Site 2 DNL	75.7	41.9	1	ı	66.3	+2.1	70.8	+2.0	71.1	6.1-9	66.7	+2.1
	NOISEMAP (REF)	80.5		76.4		69.4	75.8		73.7		0.69		

where

F = equivalent day, average day aircraft frequency

 \overline{E} = energy average of SEL measurements for a specific air-craft/operation combination expresses as an antilog

s = standard deviation of energy of SEL measurements

k = summation index for different aircraft/operations

For example, from Table A-18 for Site 2

Confidence limits = 10 log
$$\left[296.49 \times 10^{10} \pm 1.64 \sqrt{99.85 \times 10^{20}}\right] - 49.4$$

= 75.6/75.1

The confidence interval is +0.3, -0.2 in relation to the average value of 75.3 dB. The average day DNL estimates with associated confidence intervals are summarized in Table A-17.

CONFIDENCE LIMITS FOR EXTRAPOLATIONS FROM KEY SITE

Statistical confidence limits for the yearly average DNL estimates based on extrapolations from the key site were determined by combining the key site variability and the variability of HNL differences

Confidence limits =
$$\overline{L}_{dn} + \Delta \pm 1.64 \sqrt{(\frac{CI}{2(1.64)})^2 + s_{\Delta}^2}$$
 (18)

where

 $\overline{L_{dn}}$ = key site yearly average DNL estimate, dB

 Δ = average energy HNL difference, satellite site (-) key site, dB

CI = confidence interval for the key site DNL estimate, dB

 S_{Δ} = standard deviation of the arithmetic differences in HNL values, satellite site (-) key site.

TABLE A-18 SUMMATION OF MEAN AND VARIANCE OF MEASURED SEL CONTRIBUTION TO SYNTHESIZED DNL VALUES.

Site 2

	Operations Frequency		γ		Meas	sured SI	ĘL		Equiv Day					
Туре	Ар	р	T/	0			Fouiv	Energy	Energy Mean	Energy Std	No. SEL	<u>s</u>	 Energy	Vari- ence,
A/C					Day,	Night	Day,	Ava.	Ē.	Dev. S	Samp.	√N	F·F	F[s/Mi]2
	SI	Patt	Patt	20	F _d	F _n	F*	dB	x10 ⁻¹⁰	x10 ⁻¹⁰	N	x10 ⁻¹⁰	x10 ⁻¹⁰	x10 ⁻²⁰
KC -	√.				3.180	0.510	8.28	94.1	.26	.23	40	.04	2.15	.01
135A		√			12.412	2.670	39.112	95.9	.39	.91	100	.09	15.25	.32
			√		8.240	1.780	26.04	98.3	.68	3.10	48	.45	17.71	5.27
				√	2.871	0.426	7.131	111.2	13.18	14.5	35	2.45	93.99	42.80
B52 G	√				2.910	0.960	12.51	96.1	.41	.23	21	.05	5.13	.03
		√			9.750	3.600	45.75	96.1	.41	.30	69	.04	18.76	.07
			V		6.480	2.400	30.48	100.1	1.02	2.77	81	.31	31.09	2.93
				√	2.436	0.225	4.686	113.4	21.88	17.0	28	3.21	102.53	48.29
A-37	1				14.430	0.092	15.35	84.0	.03	.09	66	.01	.46	.00
		√			7.168	0.144	8.608	84.0	.03	.09	66	.01	.26	.00
			√		4.770	0.099	5.76	91.3	.13	.22	60	.03	.75	.01
				√	5.420	0.140	6.820	91.3	.13	.22	60	.07	.89	.03
T-37	√				5.400	0	5.40	77.5	.01	.007	36	-	.05	.00
		√			19.260	0	19.26	77.5	.01	.007	36		.19	.00
			✓		10.50	0.02	10.70	89.2	.08	.12	15	.03	.86	.01
				√	3.580	0.02	3.78	89.2	.08	.12	15	.03	.30	.00
T-38	√				1.780	0.102	2.80	87.7	.06	.16	41	.02	.17	.00
		√			4.160	0.298	7.14	87.7	.06	.16	41	.02	.43	.00
			√		2.548	0.172	4.268	87.5	.06	.06	12	.02	.26	.00
				√	1.190	0.07	1.890	87.5	.06	.06	12	.02	.11	.00
T-39	✓				2.540	1.220	14.74	88.1	.06	.14	20	.03	.88	.01
		√			5.230	0.190	7.13	88.1	.06	.14	20	.03	.43	.01
			√		3.490	0.820	11.69	93.9	.25	.43	16	.11	2.92	.01
				√	2.370	0.130	3.67	93.9	.25	.43	16	.11	.92	.04
Other	√				2.80	0.10	3.80	-						
		√			5.875	0.57	11.575	-						
			√		4.08	0.41	8.18							
				√	1.75	0.07	2.45	_						
Т	ota	als			156.62	17.238	329						296.49	99.85

For example, from the example given as Eq. (14) (or from Table A-17), the confidence interval for the Site 2 DNL estimate based on all days DNL's corrected for total aircraft volume is +1.4, -2.1 dB. In addition, from Table A-15, the standard deviation for the average difference between Site 1 and Site 2 is 0.5 dB. Table A-15 also derives the nominal extrapolated DNL value for Site 1 which is 72.7 + 3 = 75.7 dB. Therefore, the confidence limits for the Site 1 DNL estimate is

Confidence limits =
$$75.\dot{7} + 1.64 \sqrt{\frac{1.4 + 2.1}{2(1.64)}} + (0.5)^2$$

= $77.6/73.8 \text{ dB}$

The confidence interval is \pm 1.9 dB. The extrapolated average day DNL estimates with associated confidence intervals for all satellite sites are summarized in Table A-17.

Unfortunately, this calculation procedure is not rigorously sound for two reasons. First, the confidence intervals for the key site DNL-based estimate was determined using the Student t distribution. Use of Eq. 19 assumes that the confidence interval has an equivalent normal distribution variance. However, the result tends to be conservative, producing a larger variance than the original sample mean variance. Second, using the arithmetic difference is inconsistent. However, computing the variance of the ratio of two random variables (in this case the average acoustic energy at two sites) is extremely difficult. An alternate approach, summing the variances of the estimates of sample averages, would be correct only if the standard deviations are relatively small. Suffice to say that the procedure used produces credible values.

OTHER ERROR SOURCES AND OVERALL CONFIDENCE INTERVALS

In addition to the variability within sets of measured data, other factors contribute to the uncertainty in the final result. The factors and the estimated values are as follows:

Factors	Type Error	Value, dB
Temperature-thrust Temperature-humidity	Uncorrected bias	0.7
absorption Instrumentation Field Test	Uncorrected bias Uncertainty Uncertainty	0.4 0.2 0.5
Root sum square	total	0.97

The temperature and humidity bias errors were identified, evaluated, but not corrected for in the section on Post Test Bias Corrections. These uncorrected bias errors are simply squared and added to the variance of the random errors.

The variability of instrumentation errors which vary day to day are already accounted for in the variability in the measured data. Instrumentation errors which do not average out (for example a nighttime sensitivity increase or decrease) add additional uncertainty. This error source is considered small, 0.2 dB.

Finally, aircraft operational factors which are under the pilot's control are usually assumed to be represented faithfully, on the average, during the field test. These factors are power settings, speeds/altitude profiles, and flight tracks. If these factors were indeed representative during the field test, no bias error results from extrapolation of measured noise levels to yearly average day DNL estimates. However, experience has shown that this is not exactly the case. Repeating field measurement programs under apparently identical conditions produces differences in results which are not accountable for by the measurement variability. Based on this somewhat qualitative experience, a value of 0.5 dB was chosen for this factor.

The overall standard deviation of the other error sources (0.97 dB) was combined with confidence intervals obtained from measurement variability (Table A-17), to arrive at "realistic" confidence intervals as follows:

Realistic Confidence Interval =
$$\pm 1.64$$
 $\sqrt{\frac{\text{CI}}{2(1.64)}^2 + (0.97)^2}$ (20)

where

CI = confidence interval from measurements.

The "realistic" confidence intervals are listed with the calibrator bias corrected DNL estimates in Table A-19. Inspection of the confidence intervals in Table A-19 shows that statistical accuracy of SEL-derived estimates is better than

Table A-19 Barksdale AFB Yearly DNL Estimates With Realistic Confidence Intervals Based on All Sources of Variability

	4	g 90% CI	1	1	1	1	1	1	1	.7 ±2.6	0.
		Avg	1	1	1	1	١	1	1	66.7	0.69
	က	10 %06	1	1	1	1	1	3	9.1-	+2.5	•
	203	Avg	•	1	1	•	ŧ	1	73.2	71.1	73.7
	01	10 %06	1	1	•	1	ı	1	9.1-	+2.6	ı
	202	Avg	1	1	1	1	1	1	72.3	70.8	75.8
		IO %06	1	1	1	1	1	1	9-1-9	+2.6	ı
SITE	က	Avg	1	1	1	1	1	1	68.0	66.3	69.4
		10 %06	+3.0	+2.4	+2.4	+2.2	+2.3	+2.6	+1.6	1	ı
	2	Avg	72.0	72.7	72.6	73.5	73.2	72.4	75.3	1	76.4
		IO %06		1	1		ı	ı	+1.6	+2.5	ı
		Avg	1	ı	ı	•	1	•	79.1	75.7	80.5
-	Data Source		All Days Measure- ments No Corrections	Corrected for total A/C	Corrected for heavy A/C	Week Days Measure- ments No Corrections	Corrected for total A/C	Corrected for heavy A/C	SEL Synthesis Measured Data	Extrapolation from Site 2 DNL	NOISEMAP (REE)
						1:	16				

for DNL-derived estimates but not by as great a margin as indicated in the previous table (which was based only on measurement variability). Another important observation is that the "realistic" confidence intervals do not account for the differences between measured and predicted DNL values.

CRITIQUE OF FIELD MEASUREMENT RESULTS

In the previous section, the average day DNL estimates for all sites at Barksdale AFB were found to be consistently lower than NOISEMAP predictions. In this section, the differences are traced through individual aircraft/operation SEL differences to incorrect NOISEMAP input data. This procedure requires accurate reconstruction of aircraft flight profiles from NOISEMAP chronicles to arrive at a close approximation of NOISEMAP SEL values.

NOISEFILE 1.0 SEL VALUES

Nominal SEL values for most military aircraft have been determined as a function of slant distance. The compilation of these data is called NOISEFILE 1.0. The data are available both in computer tape files and in report form, References 18-23. Listings are presented for takeoff power, cruise power, and approach power for each aircraft. Additional listings are presented for special power settings such as afterburner and water injection. Reference 18 also presents a method for adjusting the SEL values for power settings and speeds which are not identical to the nominal values.

The first step in computing NOISEMAP SEL's was to assemble the SEL listings from References 18-23 for the aircraft at Barksdale AFB as shown in Table A-20. This summary identifies the type of aircraft, the unique aircraft/operation code, the power setting expressed in RPM and/or EPR, and the aircraft speed. Both air-to-ground and ground-to-ground listings are presented.

NOISEMAP AIRCRAFT OPERATIONAL PARAMETERS

The information which is input to NOISEMAP to describe each individual aircraft mission is listed in the NOISEMAP chronicles. The mission frequencies are summarized, but other parameters appear in the order in which the input data package was assembled. The parameters used to reconstruct NOISEMAP SEL values are:

TABLE A-20 NOISEFILE 1.0 SEL SUMMARY (59°F, 70% R.H.)

Air-To-Ground P	ropagation.	Operation / Power	Setting:	Takeoff
-----------------	-------------	-------------------	----------	---------

A/C Type KC-135A KC-135A 8-52-6 A-37 T-37 T-38 T-38 T-39 C-136A ACC/OPC			3-2.0	,	1 4 6 1 0 11	7.011	00001	1.9			
RPM/EPR	A/C Type	KC-135A	KC+35A	B-52-6	A-37			T-38			
RPM/EPR	I SLACC/OPC I	026	026	043/	E04/	024	033/101	033	032	103	
Knots 200 200 170 300 170 300 300 180 170 300 300 180 170 30		96 2.85	96/2.45	94/2.37				-			
128.6 126.9 129.9 115.2 107.2 123.8 115.1 112.4 98.3 97.2 125.6 124.2 127.4 112.7 104.8 120.1 112.6 109.9 96.1 124.2 122.8 126.1 111.3 103.6 118.3 111.3 108.6 94.9 122.7 121.4 124.7 110.0 102.2 116.4 109.9 107.3 93.7 121.2 120.0 123.3 108.5 100.9 114.6 108.5 105.9 92.4 119.8 118.5 121.9 107.0 99.4 112.9 107.0 104.4 91.1 1000 118.2 117.0 120.4 105.4 97.9 111.2 105.4 102.9 89.8 1250 116.6 115.5 118.8 103.7 96.3 109.5 103.6 101.3 88.4 1600 115.0 113.8 117.1 101.9 94.6 107.8 101.8 99.6 86.9 2000 113.2 112.1 115.3 99.9 92.8 106.0 99.9 97.8 85.4 2500 111.4 110.3 113.4 97.8 88.9 102.0 95.6 93.8 82.1 4000 107.3 106.4 109.3 93.2 86.7 99.9 93.2 91.6 80.4 107.3 106.4 109.3 93.2 86.7 99.9 93.2 91.6 80.4 107.8 102.6 101.9 104.5 87.9 81.9 95.2 87.9 86.9 76.5 80.00 100.0 99.4 101.9 84.9 79.2 92.5 85.0 84.2 74.3 12500 94.1 93.8 96.0 78.4 79.2 92.5 85.0 84.2 74.3 12500 94.1 93.8 96.0 78.4 79.2 92.5 85.0 84.2 74.3 12500 94.1 93.8 96.0 78.4 79.6 78.4 78.3 69.8 16000 90.9 90.7 92.8 74.7 69.6 83.2 74.8 75.1 67.4 79.6 71.6 71.6 65.1 77.8 79.6 71.6	1 = 1		1		300	170	300	300	180	170	
127.1 125.6 128.6 113.9 106.0 122.0 113.9 111.1 97.2		128.6	126.9	129.9	115.2	107.2	123.8	115.1	112.4	98.3	
315 125.6 124.2 127.4 112.7 104.8 120.1 112.6 109.9 96.1 500 124.2 122.8 126.1 111.3 103.6 118.3 111.3 108.6 94.9 630 122.7 121.4 124.7 110.0 102.2 116.4 109.9 107.3 93.7 630 112.2 120.0 123.3 108.5 100.9 114.6 108.5 105.9 92.4 1000 118.2 117.0 120.4 105.4 97.9 111.2 105.4 91.1 1000 118.2 117.0 120.4 105.4 97.9 111.2 105.4 102.9 89.8 1250 116.6 115.5 118.8 103.7 96.3 109.5 103.6 101.3 88.4 1600 113.2 112.1 115.3 99.9 92.8 106.0 99.9 97.8 85.4 2500 111.4 110.3 113.4 97.8 90.9 104.0 97.8 95.8 83.8 3150 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>97.2</td> <td></td>										97.2	
124.2 122.8 126.1 111.3 103.6 118.3 111.3 108.6 94.9 122.7 121.4 124.7 110.0 102.2 116.4 109.9 107.3 93.7 121.2 120.0 123.3 108.5 100.9 114.6 108.5 105.9 92.4 112.9 107.0 104.4 91.1 1000 118.2 117.0 120.4 105.4 97.9 111.2 105.4 102.9 89.8 1250 116.6 115.5 118.8 103.7 96.3 109.5 103.6 101.3 88.4 1600 115.0 113.8 117.1 101.9 94.6 107.8 101.8 99.6 86.9 2000 113.2 112.1 115.3 99.9 92.8 106.0 99.9 97.8 85.4 110.3 113.4 110.3 113.4 97.8 90.9 104.0 97.8 95.8 83.8 3150 109.4 108.4 111.4 95.6 88.9 102.0 95.6 93.8 82.1 4000 107.3 106.4 109.3 93.2 86.7 99.9 93.2 91.6 80.4 105.0 104.2 107.0 90.6 84.4 97.6 90.6 89.3 75.5 6300 102.6 101.9 104.5 87.9 81.9 95.2 87.9 86.9 76.5 87.9 80.0 100.0 99.4 101.9 84.9 79.2 92.5 85.0 84.2 74.3 10000 97.2 96.7 99.8 76.2 89.6 81.8 81.4 72.1 78.3 69.8 76.5 78.4 78.3 69.8 78.4 78.3 69.8 78.4 78.3 69.8 78.4 78.3 69.8 78.4 78.3 69.8 78.4 78.3 69.8 78.4 78.3 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5	1]			104.8	120.1	112.6		96.1	
500 122.7 121.4 124.7 110.0 102.2 116.4 109.9 107.3 93.7 630 121.2 120.0 123.3 108.5 100.9 114.6 108.5 105.9 92.4 800 119.8 118.5 121.9 107.0 99.4 112.9 107.0 104.4 91.1 1000 118.2 117.0 129.4 105.4 97.9 111.2 105.4 102.9 89.8 1250 116.6 115.5 118.8 103.7 96.3 109.5 103.6 101.3 88.4 1600 115.0 113.8 117.1 101.9 94.6 107.8 101.8 99.6 86.9 2000 113.2 112.1 115.3 99.9 92.8 106.0 99.9 97.8 85.4 2500 111.4 110.3 113.4 97.8 90.9 104.0 97.8 95.8 83.8 3150 109.4 108.4 111.4 93.8 86.7 99.9 93.2 91.6 80.4	1					103.6	118.3	111.3		94.9	
630 121.2 120.0 123.3 108.5 100.9 114.6 108.5 105.9 92.4 119.8 118.5 121.9 107.0 99.4 112.9 107.0 104.4 91.1 1000 118.2 117.0 120.4 105.4 97.9 111.2 105.4 102.9 89.8 1250 116.6 115.5 118.8 103.7 96.3 109.5 103.6 101.3 88.4 1600 115.0 113.8 117.1 101.9 94.6 107.8 101.8 99.6 86.9 2000 113.2 112.1 115.3 99.9 92.8 106.0 99.9 97.8 85.4 2500 111.4 110.3 113.4 97.8 90.9 104.0 97.8 95.8 83.8 3150 109.4 108.4 111.4 95.6 88.9 102.0 95.6 93.8 82.1 4000 107.3 106.4 109.3 93.2 86.7 99.9 93.2 87.6 89.9 93.8 82.1				124.7	110.0			l .	107.3	1	
800 119.8 118.5 121.9 107.0 99.4 112.9 107.0 104.4 91.1 1000 118.2 117.0 120.4 105.4 97.9 111.2 105.4 102.9 89.8 1250 116.6 115.5 118.8 103.7 96.3 109.5 103.6 101.3 88.4 1600 115.0 113.8 117.1 101.9 94.6 107.8 101.8 99.6 86.9 2000 113.2 112.1 115.3 99.9 92.8 106.0 99.9 97.8 85.4 2500 111.4 110.3 113.4 97.8 90.9 104.0 97.8 95.8 83.8 3150 109.4 108.4 111.4 95.6 88.9 102.0 95.6 93.8 82.1 4000 107.3 106.4 109.3 93.2 86.7 99.9 93.2 91.6 80.4 5000 105.0 104.2 107.0 90.6 84.4 97.6 90.6 89.3 73.5										1	
1250 116.6 115.5 118.8 103.7 96.3 109.5 103.6 101.3 88.4 1600 115.0 113.8 117.1 101.9 94.6 107.8 101.8 99.6 86.9 2000 113.2 112.1 115.3 99.9 92.8 106.0 99.9 97.8 85.4 2500 111.4 110.3 113.4 97.8 90.9 104.0 97.8 95.8 83.8 3150 109.4 108.4 111.4 95.6 88.9 102.0 97.8 95.8 82.1 4000 107.3 106.4 109.3 93.2 86.7 99.9 93.2 91.6 80.4 5000 105.0 104.2 107.0 90.6 84.4 97.6 90.6 89.3 73.5 6300 102.6 101.9 84.9 79.2 85.2 87.9 86.9 76.5 8000 100.0 99.4 101.9 84.9 79.2 85.0 84.2 74.3 10000 97.2 96.7 <th></th> <th></th> <th></th> <th>121.9</th> <th>107.0</th> <th>99.4</th> <th>112.9</th> <th>107.0</th> <th>104.4</th> <th>91.1</th> <th></th>				121.9	107.0	99.4	112.9	107.0	104.4	91.1	
1250 116.6 115.5 118.8 103.7 96.3 109.5 103.6 101.3 88.4 1600 115.0 113.8 117.1 101.9 94.6 107.8 101.8 99.6 86.9 2000 113.2 112.1 115.3 99.9 92.8 106.0 99.9 97.8 85.4 2500 111.4 110.3 113.4 97.8 90.9 104.0 97.8 95.8 83.8 3150 109.4 108.4 111.4 95.6 88.9 102.0 97.8 95.8 82.1 4000 107.3 106.4 109.3 93.2 86.7 99.9 93.2 91.6 80.4 5000 105.0 104.2 107.0 90.6 84.4 97.6 90.6 89.3 73.5 6300 102.6 101.9 84.9 79.2 85.2 87.9 86.9 76.5 8000 100.0 99.4 101.9 84.9 79.2 85.0 84.2 74.3 10000 97.2 96.7 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>l</th> <th></th> <th></th> <th></th>								l			
1600	1		1			97.9	111.2				
2000										1	
2500	1		1								
3150			-								
4000 107.3 106.4 109.3 93.2 86.7 99.9 93.2 91.6 80.4 5000 105.0 104.2 107.0 90.6 84.4 97.6 90.6 89.3 73.5 6300 102.6 101.9 104.5 87.9 81.9 95.2 87.9 86.9 76.5 8000 100.0 99.4 101.9 84.9 79.2 92.5 85.0 84.2 74.3 10000 97.2 96.7 99.1 81.8 76.2 89.6 81.8 81.4 72.1 12500 94.1 93.8 96.0 78.4 73.0 86.5 78.4 78.3 69.8 16000 90.9 90.7 92.8 74.7 69.6 83.2 74.8 75.1 67.4 20000 87.4 87.3 89.2 70.9 65.7 79.6 71.0 71.6 65.1			1	i			1				
5000 105.0 104.2 107.0 90.6 84.4 97.6 90.6 89.3 73.5 6300 102.6 101.9 104.5 87.9 81.9 95.2 87.9 86.9 76.5 8000 100.0 99.4 101.9 84.9 79.2 92.5 85.0 84.2 74.3 10000 97.2 96.7 99.1 81.8 76.2 89.6 81.8 81.4 72.1 12500 94.1 93.8 96.0 78.4 73.0 86.5 78.4 78.3 69.8 16000 90.9 90.7 92.8 74.7 69.6 83.2 74.8 75.1 67.4 20000 87.4 87.3 89.2 70.9 65.7 79.6 71.0 /1.6 65.1		(
6300							1	1		1	
8000 100.0 99.4 101.9 84.9 79.2 92.5 85.0 84.2 74.3 10000 97.2 96.7 99.1 81.8 76.2 89.6 81.8 81.4 72.1 12500 94.1 93.8 96.0 78.4 73.0 86.5 78.4 78.3 69.8 16000 90.9 90.7 92.8 74.7 69.6 83.2 74.8 75.1 67.4 20000 87.4 87.3 89.2 70.9 65.7 79.6 71.0 /1.6 65.1 75.8 75.8 75.8 75.8 75.8 75.8 75.8 75.8 75.8							1				
10000 97.2 96.7 99.1 81.8 76.2 89.6 81.8 81.4 72.1 75.0 94.1 93.8 96.0 78.4 73.0 86.5 78.4 78.3 69.8 76.0 90.9 90.7 92.8 74.7 69.6 83.2 74.8 75.1 67.4 76.0 87.4 87.3 89.2 70.9 65.7 79.6 71.0 71.6 65.1 75.8 67.4 75.8 75.8 75.1 67.4	1			l .						1 !	
12500 94.1 93.8 96.0 78.4 73.0 86.5 78.4 78.3 69.8 16000 90.9 90.7 92.8 74.7 69.6 83.2 74.8 75.1 67.4 79.0 79.6	8000	100.0	99.4	101.9	84.9	1900	32.03	05.0	84.2	74.3	
12500 94.1 93.8 96.0 78.4 73.0 86.5 78.4 78.3 69.8 16000 90.9 90.7 92.8 74.7 69.6 83.2 74.8 75.1 67.4 79.0 79.6	10000	07.2	96.7	99.1	04 0	76.2	89.6	81.8	81.4	72.1	
16000 90.9 90.7 92.8 74.7 69.6 83.2 74.8 75.1 67.4 20000 87.4 87.3 89.2 70.9 65.7 79.6 71.0 71.6 65.1											
20000 87.4 87.3 89.2 70.9 65.7 79.6 71.0 /1.6 65.1	1 1										
20000 07 0 07 0 07 0 07 0 0 0 0 0 0 0 0	4				1		1		11.6		
25000 555 556 556 556 556						l .	75.8		57.B		
	25000		03.1		00.0			5517		02.1	

Ground-To-Ground Propagation, Operation/Power Setting:

£ A	/C Type	KC-135	KC-135	B-52G	A-37		7-38	T-38	T-39	C-130 A	
A St	CC/OPC	026	026/	043/103	504/103	024	0 33/101	033	032	103	
E R	RPM/EPR	96/285	96/2.45	94/2.37	100	99	100	100	100	16800	
S K	Cnots	200	200	170	300	170	300	300	180	170	
	200 250	123.6	121.9	124.9	110.2	102.2	118.8 117.0	110.1	107.4	93•3 92•2	
ı	315		120.6	122.4	108.9	99.8	117.0	107.6	104.9	91.1	
1	400	119.1	117.8	121.1	106.3	98.6	113.3	106.3	103.6	89.9	
1	500	117.7	116.4		105.0	97.2	111.4	104.9	102.2	88.7	
	630 800		114.9	118.3	103.5	94.4	107.9	103.5 102.0	99.4	86.1	
1	000	114.6	113.5	110.0	102.0				ĺ		
	1000	113.1	111.9		100.4	92.9	106.2		97.8		
1			110.3	113.7		91.2					
		1.	108.5	112.0	96 • 8 94 • 8	89.5		96 • 8	92.6		
			106.7	110.1	92.7	85.5		92.6		77.9	
	2500 3150		104.5	105.8		83.2	2040	90.2		75.6	
1	4000	99.4	99.2	103.1	87.6	80.4	93.5	87.6	85.3		
1	5000	95.7	95.8	100.0	84.5	77.2	,,,,,	84.4		1	
1	6300	91.5	92.0	96.5	81.0	73.6		81.0	_		
	8000	87.8	88.7	93.3	77.6	70.3	83.3	77.5	75.2	63.7	
	0000	83.7	85.0	89.7	73.7	66.6	79.6	73.7	71.4	60.4	
	0000	79.1	0 2 . 0	85.7		62.5		69.5		, , , , ,	
	.2500 .6000	73.9	76.2	81.3	64.7			64.7			
	2000	68.3	71.1	76.4	59.4	52.7		59.4	57.5	1	
	25000	62.3	65.4	70.8	53.4	46.9	59.5	53.5	51.8	44.2	

TABLE A-20 NOISEFILE 1.0 SEL SUMMARY (59°F, 70% R.H.)

Air-To-Ground Propagation, Operation/Power Setting: / RUISE

7111 TO GIOGII	u i i op	aga c . c	ii, opc	racion	/ 1 0 11 C 1	JELLI	19.	KUISE	
A/C Type	KC-/35A	B32-G	A-37	T-37	T-38	T-39			
I W ACCIONC I	104	043/04	504/	024/04	033/04	033/04			
RPM/EPR	86/1.50	a2.5/	90	90	90	89/1.66			
S Knots	300	250	300	225	300	250			
200	108.8	113.4	95.9	97.9	95.8	101.8			
250	107.5	112.2	94.8	96.7	94.6	100.7			
315		110.9	93.6	95.5	93.4	99.4			
400		109.6	92.3	94.2	92.2	98.2			
500	103.3	108.2	91.0	92.9	90.9	96.9			
630	101.8	106.8	89.7	91.5	89.6	95.5			
800	100.2	105.3	88.3	90.0	88.2	94.0			
1000		103.7	86.8	88.4	86.7	92.4			
1250		102.1	85.2	86.8	85.1	90.8			
1600		100.3	83.6	85.0	83.5	89.0			
2000	93.0		81.8	83.2	81.7	87.2			
2500	91.0		79.9	81.3	79.8	85.1			
3150	88.8		77.9	79.2	77.8	82.9			
4000	86.6		75.7	76.9	75.6	80.5			
5000	84.2		73.3	74.6	73.3	78.0			
6300	81.6		70.8	72.0	70.7	75.3			
8000	78.8	84.7	68.0	69.2	68.0	72.4			
	75.0								
10000	75.8	81.8	65.0	66.2	65.0	69.3			
12500	72.6	78.8	61.8	63.0	51.8	66.1			
16000	65.2	75.6	58.4	59.5	58.4	62.6			
20000	61.1	72.1	54.8	55.7	54.8	59.0			
25000	01.1	68.4	51.0	51.7	51.0	55.1			
								<u>' </u>	

Ground-To-Ground Propagation, Operation/Power Setting:

£ A/C Ty	ne KC/35A	B-52-6		7-37	T-38	7-39		
# ACC/OP	026/04	043/04	504/	104	033/	032/104		
E RPM/EPI	10 . 1	83.5/.48	90/	90/	90/104	89/1.66		
5 Knots	300	250	300	225	300	250		
500	103.8	108.4	90.9	92.9	90.8	96.8		
250	102.5	107.2	89.8	91.7	89.6	95.7		
315	101.2	105.9	88.6	90.5	88.4	94.4		
400	99.8	104.6	87.3	89.2	87.2	93.2		1 1
500	98.3	103.2	86.0	87.9	85.9	91.8		
630	96.8	101.8	84.7	86.5	84.6	90.5		
800	95.2	100.3	83.3	85.0	83.1	89.0		
1000	93.5	98.7	81.8	83.4	81.7	87.4		
1250	91.7	97.0	80.2	81.7	80.1	85.8		
1600	89.8	95.2	78.5	80.0	78.4	84.0		
2000	87.8	93.3	76.7	78.1	76.5	82.1		
2500	85.6	91.2	74.6	76.0	74.5	79.9		
3150	83.1	88.8	72.4	73.7	72.3	77.6		
4000	80.3	86.1	69.8	71.1	69.7	74.9		
5000	77.0	83.0	66.8	68.0	66.7	71.7		
6300	73.3		63.5	64.6	63.3	68.2		
8000	69.8	76.2	60.1	51.3	60.0	64.7		
	66.0	72.5	56.4	57.6	56.4	60.9		
10000	61.7	68.5	52.3	53.5	52.3	56.7		
12500	56.9	64.0	47.6	48.9	47.7	52.0		
16000	51.5	59.0	42.4	43.7	42.6	46.9		
20000 25000	45.4	53.5	36.7	37.9	36.9	41.2		

TABLE A-20 NOISEFILE 1.0 SEL SUMMARY (59°F, 70% R.H.)

Air-To-Groun	d Prop	agatio	n, Ope	ration	/Power	Setti	ng: <i>AP</i>	PROAC	. H	
A/C Type	KC-/35A	8-52 G	A-37	T-37	T-38	7-39	C-130A			
I WI ACCIDED I	105		504/05	105	033/05	033/	105			
F RPM/EPR	90/1.75	86/1.57	91 1	80	91	19.5/	4000±			
LS Knots	160	140	170	105	170	115	140			
200	115.2		100.4	103.0	100.3	100.7	96.8			
250	114.0	116.7	99.2	101.8	99.2	99.5	95.6			
315	112.8	115.5	98.0	100.6	98.0	98.3	94.4			
400	111.5		96.8	99.3	96.8	97.1	93.2			1
500		112.9		98.0	95.5	95.8	91.9			
630		111.5	94.3	96.7	94.2	94.5	90.6			1 1
800	107.4	110.1	92.9	95.2	92.9	93.1	89.2			1
				1						
1000	105.9	108.6	91.5	93.7	91.4	91.6	87.7			
1250	104.4	107.0	90.0	92.2	89.9	90.0	86.2			
1600		105.4	88.4	90.5	88.3	88.4	84.6			1 1
2000	101.1	103.7	86.7	88.8	86.6	86.6	82.8			
2500	99.3	101.9	84.9	87.0	84.8	84.7	81.0			
3150	97.4	100.0	82.9	85.0	82.9		79.1			1 1
4000	95.4		80.9	82.9	80.8	80.5	77.1			1
5000	93.2	95.7	78.6	80.7	78.5	78.2	75.0		İ	1
6300	90.9		76.2	78.3	76.1	75.7	72.7			1 1
8000	88.5	90.9	73.6	75.7	73.5	73.1	70.3			1
10000	85.8	88.3	70.8	72.9	70.7		67.8			
12500	83.0	85.4	67.8	69.8	67.8		65.2			
16000	79.9	82.4	64.7	66.5	64.6	64.1	62.5]	
20000	76.6	79.1	61.3	62.8	61.2		59.8			
25000	73.0	75.7	57.7	58.8	57.6	57.2	57.0			

	L			l						
Ground-To-Gr	round F	ropaga	tion,	Operat	ion/Po	wer Se	tting:	APPR	OACH	
€ A/C Type	KC-/35A	B52-G	A-37	T-37	T-38	T-39	C-130A			
# ACC/OPC	105	043/05	504/05	024/05	033/	032/5	906			
₽ RPM/EPR	90/1.75	86/1.57	91	30	91	79.5/37	4000/			
∑ Knots	160	140	170	105	170	115	140			
200	110.2	113.0	95.4	98.0	95.3	95.7	91.8			
250	109.0	111.7	94.2		94.2	94.5	90.6			
315	107.8	110.5	93.0	95.6	93.0	93.3	89.4			
400		109.2	91.8	94.3	91.8	92.1	88.2			
500		107.9	90.6	93.0	90.5	90.8	86.9			
630		106.5	89.3	91.6	89.2	89.5	85.5			
800	102.3	105.0	87.9	90.2	87.8	88.0	84.1		1	
1000	100.8	103.5	86.4	88.7	86.4	86.5	82.6			
1000 1250	99.3		84.9	87.1	84.8	84.9	81.0			
1600	97.6		83.2	85.4	83.2	83.2	79.3			
2000	95.8		81.5	83.5	81.4	81.4	77.5			
2500	93.8		79.5	81.4	79.4	79.3	75.5			
3150	91.5		77.3	79.0	77.2	77.0	73.2		}	
4000	88.9		74.7	76.3	74.6	74.3	70.6			
5000	85.8		71.7	73.0	71.6	71.2	67.5			
6300	82.4	85.0	68.4	69.4	68.2	67.7	54.1			
8000	79.3	81.8	65.2	66.1	65.0	64.4	61.0			
				62.4						
10000	75.9	78.3	61.6	58.4	61.4	60.7	57.4		1	
12500	72.1	74.3	57.6	53.8	57.5	56.6	53.6			
16000	67.8	70.0	53.1	48.7	53.0	52.1	49.2			
20000	63.1	65.2	48.1	42.9	48.1	47.2	44.5			.//
25000	57.8	59.8	42.6	7.03	42.6	41.7	39.4			,

Flight tracks Altitude profiles Delta SEL

Typically, this data will be taken directly from the NOISEMAP chronicles. However, the speed and power setting data used to develop the NOISEMAP inputs were found to be incorrect for the two major aircraft, KC-135A and B52-G. A telephone conversation with Barksdale AFB, Hq. SAC/DEV and AFETO/DEE resulted in the following revised power and airspeeds:

Table A-20 gives the nominal SEL values for the various aircraft. Tables A21-A26 give the equivalent NOISEMAP SEL's for the KC-135A and B-52G.

COMPARISON OF MEASURED AND PREDICTED SEL VALUES

In Tables A28-A32 the average measured SEL values, from Table A-12, are with the NOISEMAP SEL values from Tables A21-A27. All five measurement sites to the north of the runway were so evaluated. In Tables A28-A32 the significance of SEL difference is dependent on how much the particular mission contributes to the DNL.

The total DNL values calculated using measured data is within one dB of the calculated values using the NOISEMAP inputs. However, the difference in calculated values for individual procedures was often several dB. These differences are seen for both types of aircraft. The calculated values are consistently lower than the original NOISEMAP values. Up to .3 dB of this difference can be attributed to the fact that only the heavy aircraft were used in the calculations (see Table A-14). The remaining difference probably results from incorrect delta SEL values being used in the original NOISEMAP run.

TABLE A-21 AIRCRAFT OPERATIONAL INFORMATION STRAIGHT IN APPROACH

	NOISEMAP SEL	103.6	98.0 90.1	98.8	98.6		108.3	102.6	94.6	102.9	103.2
	DSEL	-3.9	-3.9 9.6-	-3.9	-3.9		-1.9	-1.9	-1.9	-1.9	-1.9
	Power Setting	1.5 EPR	1.5 EPR 1.5 EPR	1.5 EPR	1.5 EPR		1.5 EPR	1.5 EPR	1.5 EPR	1.5 EPR	1.5 EPR
KC-135-A	Speed	140 kts	140 kts 140 kts	140 kts	140 kts	B-52-G	140 kts	140 kts	140 kts	140 kts	140 kts
KC-1	NOISEFILE (1.0) SEL	107.5	94.0	102.7	102.5	B-5	110.2	104.5	96.5	104.8	105.1
	Slant Distance	790	1800 4600	1740	1650		790	1800	4600	1740	1650
	Noise Profile	026/105	026/105 026/105	026/105	026/105		043/105	043/105	043/105	043/105	043/105
	Site	- 0	N 60	202	203		,	2	3	202	203

TABLE A-22 AIRCRAFT OPERATIONAL INFORMATION PATTERN APPROACH

	NOISEMAP SEL	103.6	98.0	90.1	86.2	64.0		108.2	102.6	94.6	91.1	68.0
	DSEL	-3.9	-3.9	-3.9	-3.9	-3.9		-1.9	-1.9	-1.9	-1.9	-1.9
	Power Setting	1.5 EPR	1.5 EPR	1.5 EPR	1.5 EPR	1.5 EPR		1.5 EPR	1.5 EPR	1.5 EPR	1.5 EPR	1.5 EPR
ission 23	Speed	140 kts	140 kts	140 kts	140 kts	140 kts	ssion 22	140 kts	140 kts	140 kts	140 kts	140 kts
KC-135A Mission 23	NOISEFILE (1.0) SEL	107.5	101.9	94.0	90.5	67.9	B-52G Mission 22	110.2	104.5	96.5	93.0	6.69
	Slant Distance	790	1800	4600	0099	15550(4 ⁰)		790	1800	4600	0099	15550(4 ⁰)
	Noise Profile	026.105	026/105	026/105	026/105	026/105		043/105	043/105	043/105	043/105	043/105
	Site		2	က	202	203		-	2	က	202	203

TABLE A-23 AIRCRAFT OPERATIONAL INFORMATION PATTERN APPROACH

	NOISEMAP SEL	104.2	98.9	90.3	98.3	98.9		109.2	102.8	94.8	103.0	103.0
	DSEL	-3.9	-3.9	-3.9	-3.9	-3.9		-1.9	-1.9	-1.9	-1.9	-1.9
	Power Setting	1.5 EPR	1.5 EPR	1.5 EPR	1.5 EPR	1.5 EPR		1.5 EPR	1.5 EPR	1.5 EPR	1.5 EPR	1.5 EPR
sions 31-35	Speed	140 kts	140 kts	140 kts	140 kts	140 kts	ions 31-35	140 kts	140 kts	140 kts	140 kts	140 kts
KC-135A Missions 31-35	NOISEFILE (1.0) SEL	108.1	102.8	94.2	102.2	102.8	B-52G Missions 31-35	110.9	104.7	7.96	104.9	104.9
	Slant Distance	710	1600	4500	1720	1600		700	1750	4500	1700	1700
	Noise Profile	026/105	026/105	026/105	026/105	026/105		043/105	043/105	043/105	043/105	043/105
	Site		2	က	202	203			2	က	202	203

TABLE A-24 AIRCRAFT OPERATIONAL INFORMATIONAL PATTERN TAKEOFF

	NOISEMAP SEL	90.4	77.9	63.0	ı		91.7	82.8	7.77	ı	
	DSEL	-10.6	-10.6	-10.6	•		-9.3	-9.3	-9.3	ı	ı
	Power Setting	1.8 EPR	1.8 EPR	1.8 EPR	1		1.8 EPR	1.8 EPR	1.8 EPR	ı	ı
KC-135A Mission 23	Speed	180 kts 180 kts	180 kts	180 kts	ı	ssion 22	180 kts	180 kts	180 kts	ı	ı
KC-135A M	NOISEFILE (1.0) SEL	101.0	88.5	73.6	ı	B-52G Mission 22	101.0	92.1	87.0		
	Slant Distance	6900	12150(6 ⁰)	18000(4 ⁰)	1		8600	(%9)00601	13500(5%)	•	ı
	Noise Profile	026/103 026/103	026/103	026/103	026/103						
	Site	1 2	က	202	203		_	2	က	202	203

TABLE A-25 AIRCRAFT OPERATIONAL INFORMATIONAL PATTERN TAKEOFF

•	NOISEMAP SEL	102.6	100.4	95.1		81.9		106.0	101,5	62,3	88.4	65.0
	DSEL	-10.6	-10.6	-10.6	-10.6	-10.6		-9.3	-9.3	-9.3	-9.3	£.6 .
	Power Setting	1.8 EPR	1.8 EPR	1.8 EPR	1.8 EPR	1.8 EPR		1.8 EPR	1.8 EPR	1.8 EPR	1.8 EPR	1.8 EPR
KC-135A Missions 31-35	Speed	180 kts	180 kts	180 kts	180 kts	180 kts	B-52G Missions 31-35	180 kts	180 kts	180 kts	180 kts	180 kts
KC-135A Mi	NOISEFILE (1.0) SEL	113.2	111.0	105.7	103.7	92.5	B-52G Mis	115.3	110.8	104.6	7.76	74.3
	Slant Distance	1750	2300	4300	5300	14000		2000	3400	0009	11100	21500(4 ⁰)
	Noise Profile	026/103	026/103	026/103	026/103	026/103		43/103	43/103	43/103	43/103	43/103
	Site	_	2	က	202	203		_	2	က	202	203

TABLE A-26 AIRCRAFT OPERATIONAL INFORMATION STRAIGHT-OUT TAKEOFF

	NOISEMAP SEL	111.5	107.2	100.3	105.0	102.5		112.5	109.9	103.8	108.3	106.9
	DSEL	-4.6	-4.6	-4.6	-5.3	-5.8		-3.4	-3.4	-3.4	-4.4	-4.9
	Power Setting	2.2 EPR	2.2 EPR	2.2 EPR	2.2 EPR	2.2 EPR		2.2 EPR	2.2 EPR	2.2 EPR	2.2 EPR	2.2 EPR
lission 2	Speed	215	215	215	250	285	B-52G Mission 1	200	200	200	250	280
KC-135A Mission 2	NOISEFILE (1.0) SEL	116.1	111.8	104.9	110.3	108.3	B-52G M	115.9	113.3	107.2	112.7	111.8
	Slant Distance	1150	2070	4680	2510	3200		1860	2550	4900	2700	3000
	Noise Profile	26/103	26/103	26/103	26/103	26/103		213/103	213/103	213/103	213/103	213/103
	Site	_	2	က	202	203			2	က	202	203

TABLE A-27 AIRCRAFT OPERATIONAL INFORMATION STRAIGHT-OUT TAKEOFF

NOISEMAP SEL 106.9 111.9 107.6 100.5 107.4 DSEL -4.6 -4.6 -4.6 -5.3 -5.8 Power Setting 2.2 EPR 2.2 EPR 2.2 EPR 2.2 EPR 2.2 EPR Speed KC-135A Mission 3 215 215 215 250 285 NOISEFILE (1.0) SEL 116.5 112.2 112.7 112.7 105.1 Slant Distance 1075 1950 5600 1850 1850 Noise Profile 026.103 026.103 026/103 026/103 026/103 Site 202 203

TABLE A- 28 SYNTHESIS OF SITE DNL VALUES FROM MEASURED AND NOISEMAP SEL VALUES

	Ξ	Mission	1	No.	Fre	Frequency		SEL, c	dB	DNL,	dB	
	Арр	dc	1	0			Equiv.		ale fraga	Derived	Dertved	.b
Type A/C	IS	Patrn	Patrn	OS	Day	Night		Measured Values (Table 20)	NOISEMAP Values (Fig. 8)	from Measured SEL's	from NOISEMAP SEL's**	.269M -) Pre
	10			,,,	3.180	3.180 0.510	8.28	102.2	103.6	62.0	63.4	7 -
- XC-		23		(,,	3.81	1.32	17.01	101.2	103.6	1	L C	
HCC I		35		ω	8.602	1.35	22.1	101.2	104.2	/•/0	۲۵.5	2.2- 2.2-
			23	2	2.54	0.44	6.94	103.8	90.4	0 23	n G	C
			35	ധ	5.7	0.9	14.7	103.8	102.6	0./0	0.00	χ. ν
			2		2.461	0.36	90.9	113.4	111.5	7.9 E	20.02	,
			(*)		0.41	0.067	1.08	113.4	106.9	6.7/	7.07	, ,
	10			2	2.910	0.960	12.51	106.5	108.3	68.1	6.69	-1.8
8526		22		2	2 07		14.4	1.001	108.3	67.0	76.0	0
1		35-		7	7.68	2.37	31.4	100.7	109.0		0	· •
			22	_	1.38	0.820	9.6	106.6	91.7	72.0	60 0	2
			35	2	5.1	1.58	20.9	106.6	106.0	0.1	6.60	.7
			-	2	.436	2.436 0.225 4.686	4.686	115.3	112.5	72.6	8.69	2.8
DNL To	Total									78.9	79.8	9,
NOISEMAP (REF)	MAP	R.	EF)							80.5	80.5	

TABLE A-.29 SYNTHESIS OF SITE DNL VALUES FROM MEASURED AND NOISEMAP SEL VALUES

	.b9	Meas.	-3.9	-2		ı,		ი ი		-6.5	-6.7		~		3.5	-	
dB	D	from NOISEMAP SEL's**	57.8	, C 7		8.29		66.4		64.2	70.0		65.3)	67.2	75.0	76.4
DNL,	Derived	from Measured SEL's	53.9	62 4	•	62.3		70.3		57.7	63.3		65.5		70.7	75.1	76.4
dB		Values (Fig. 8)	98.0	98.0	98.9	87.3	100.4	107.2	107.6	102.6	102.6	102.8	82.8	101.5	109.9		
SEL, c		Measured Values (Table 20)	94.1	95.9	95.9	98.3	98.3	111.2	111.2	96.1	96.1	1.96	1.001	1.001	113.4		
	Equiv.	Day, N *	8.28	17.01	22.1	6.94	14.7	90.9	1.08	12.51	14.4	31.4	9.6	20.9	0.225 4.686		
Frequency		Night	0.510	1.32	1.35	0.44	0.9	0.36	0.067	2.910 0.960 12.51	1 23	2.37	0.820	1.58	0.225		
		Day	3.180	3.81	8.602 1.35	2.54	5.7	2.461	0.41	2.910	2 07	7.68	1.38	5.1	2.436		
No.	1/0	0\$					1	2	3	-				,	-		
ion	- -	Patrn	_	8	1,,	23	25		-	-	_	1.0	22				(RE
Mission N	Арр	S I Patrn	10	23	بر بر			-	-	10	2	31.	-	-		Total	MAP
	-	Type A/C		کر ار	135A	1		1			8526		I		1	DNL To	NOISEMAP (REF)

TABLE A-30 SYNTHESIS OF SITE DNL VALUES FROM MEASURED AND NOISEMAP SEL VALUES

	D:	e ve	(- Y	LC)		ا	α	5	~)	d				,	ന	T -	1
	-	° S	Mea. (-)	-1.5	7	;	α α	;	4	:	αþ		,	-3	,	3.3	•	
dB	Derived	from	NOISEMAP SEL's**	49.9	E6 7	20.1	57 A		59 5		56.2	62.0	9	59 1		61.1	67.8	69.4
DNL,	Derived	from	Measured SEL's	48.4	7 0 7	40.4	71 6	· •	63.7		48.2	_	o	7.7.00		64.4	67.7	69.4
3		NOISEMAP	Values (Fig. 8)	90.1	90.1	90.3	77.9	95.1	100.3	100.5	94.6	94.6	94.8	77.7	95.3	103.8		
SEL, dB		Measured	Values (Table 20)	88.6	82.9	82.9	87.6	87.6	104.6	104.6	96.6	•	1	90.4	90.4	107.1		
٧	Equiv.			8.28	17.01	22.1	6.94	14.7	90.9	1.08	12.51	14.4	31.4	9.6	20.9	4.686		
Frequency			Night	0.510	1.32	1.35	0.44	6.0	0.36	0.067	2.910 0.960 12.51	1 23	2.37	0.820	1.58	0.225 4.686		
		,	Day	3.180	3.81	8.602	2.54	5.7	2.461 0.36	0.41	2.910	2 07	7.68	1.38	5.1	2.436		
No.	1/0		0.5					1	2	3					4	_		
ion		 	Patr		3		23	, 50 25		<u> </u>			1	22	31.			REF
Mission	Арр	u.	Patr	0	23	35						22	35.				al) db
	L_	L	IS	10			L	L			19						Total	NOISEMAP (REF)
		Type	A/C		- S - S	1 35/						B52G					DNL	NOI

TABLE A-31 SYNTHESIS OF SITE DNL VALUES FROM MEASURED AND NOISEMAP SEL VALUES

П	.be	leas. Pre	-)	-6.0	77	;	-11		,) 	-6.7	7	·		Ψ	+3.2		
dB.			SEL'S**	58.6	2 2		55.4		9 19		64.5	7 09			52.2	65.6	73.0	75.8
DNI,	Derived	from Measured	SEL'S	52.6	79 2		43.8	<u>.</u>	65 0	6.	57.8	64.4	† •		58.2	68.8	72.2	75.8
~		NOISEMAP	(r:g. 0)	98.8	86.2	98.3	63.0	93.1	105.0	107.4	102.9	91.1	103.0	-	88.4	108.3		
SEL, dB		Measured Values	(1able 20)	92.8	92.7	92.7	79.8	79.8	106.8	106.8	96.2	97.2	97.2	92.8	92.8	111.5		
	Equiv.	Day,		8.28	17.01	22.1	6.94	14.7	90.9	1.08	12.51	14.4	31.4	9.6	20.9	4.686		
Frequency		Night		0.510	1.32	1.35	0.44	6.0	0.36	0.067	2.910 0.960 12.51	1 23	2.37	0.820	1.58	0.225 4.686		
		Day		3.180	3.81	8.602	2.54	5.7	2.461	0.41	2.910	2.07	7.68	1.38	5.1	2.436		
n No.	1/0	nria 0	S				23	-2	2	3				2		-		(F)
Mission		nnte	_		23	بر ج ج	-	mm				22	31-	22	mm		_	NOISEMAP (REF)
Σ.	Арр		S	10							10						Total	EMAF
		Type A/C			۲. ک ر	1 35A						8526					L JNG	SION

*N = Freq.(day)+10xFreq.(night) **DNL = SEL+10logN-49.4

TABLE A-32 SYNTHESIS OF SITE DNL VALUES FROM MEASURED AND NOISEMAP SEL VALUES

SEL, dB	SEL, dB	SEL, dB	SEL, dB	dB			ازا	dB	
Equiv.	Z C C C C C C C C C C C C C C C C C C C	Z C C C C C C C C C C C C C C C C C C C	Z C C C C C C C C C C C C C C C C C C C		NOTOR	41AP	Derived	Derived	
도 Day Night N* Values Values (Fig. 8)	Night N* Values (Table 20)	N* Values (Table 20)	reasured Values (Table 20)		Valu (Fig.	(8)	Measured SEL's	NOISEMAP SEL'S**	Meas.
3.180 0.510 8.28 98.3 98.6	0.510 8.28 98.3	8.28 98.3	98.3		98.6		58.1	58.4	3
3.81 1.32 17.01 97.7 64.0	1.32 17.01 97.7	17.01 97.7	97.7	-	64.0		6 NA	0 69	- ~
8.602 1.35 22.1 97.7 98.9	22.1 97.7	22.1 97.7	97.7		98.9		7.10	6.20	-
23 2.54 0.44 6.94	0.44 6.94 -	6.94	•	•	1				
35 5.7 0.9 14.7 - 81.9	0.9 14.7	14.7	1	6 [8	81.9			44.2	ı
2 2.461 0.36 6.06 100.4	0.36 6.06 100.4	6.06 100.4	100.4		102.5		59.5	62.6	-3]
3 0.41 0.067 1.08 100.4 106.9	0.067 1.08 100.4	1.08 100.4	100.4		106.9)	;
2.910 0.960 12.51 102.7 103.2	102.7	102.7	102.7		103.		64.3	64.8	- 5
2.07 1.23 14.4 102.9 68.0	1.23 14.4 102.9	14.4 102.9	4 102.9		68.		1 02	9 09	
7.68 2.37 31.4 102.9 103.0	2.37 31.4 102.9	31.4 102.9	102.9		103.	0	.07	0.00	-
1.38 0.820 9.6 93.5	0.820 9.6 93.5	9.6 93.5	93.5		1	_	58.0	8 86	
$\frac{31}{35}$ 5.1 1.58 20.9 93.5 65.0	1.58 20.9 93.5	20.9 93.5	93.5		65.)]	00.00	0.02	•
1 2.436 0.225 4.686 104.7 106.9	104.7	104.7	104.7		106.9		62.0	64.2	-2.2
							72.9	72.4	
NOISEMAP (REF)							73.7	73.7	

REFERENCES

- 1. Horonjeff, R. D., Kandukuri, R. R., Reddingius, N. H., "Community Noise Exposure Resulting from Aircraft Operations: Computer Program Description", Air Force Report AMRL TR-73-109, 1974. [AD A004821]
- 2. Rentz, Peter E., "NOISECHECK Procedures; Planning, Conducting and Analyzing Data from Noise Level Field Measurement Programs, BBN Report _____, November 1978.
- 3. Comprehensive Planning Organization of the San Diego Region (CPO) "Aircraft Noise Contours: NAS Miramar", January 1977.
- 4. Seidman, H., Horonjeff, R. D., Bishop, D. E., "Validation of Aircraft Noise Exposure Prediction Procedure", AMRL TR-76-111, 1976. [AD A041674]
- 5. Bolt Beranek and Newman Inc. Report 2225, "Noise from Air-craft Operations, U. S. Naval Air Station, Lemoore, California", August 1972.
- 6. Bolt Beranek and Newman Inc. Report 2425, "Noise from Aircraft Operations, U. S. Naval Air Station, Fallon, Nevada", submitted to United States Navy Western Division Naval Facilities Engineering Command, San Bruno, California 94066, March 1973.
- 7. Bolt Beranek and Newman Inc. Report 1952, "Noise from Air-craft Operations, Marine Corps Air Stations, El Toro, Santa Ana and Half Mile Square, California", submitted to: United States Navy, Commander Naval Facilities Engineering Command S. W., 1220 Pacific Highway, San Diego, California 92132, July 1970.
- 8. Bolt Beranek and Newman Inc. unpublished delta-SEL data, El Toro Marine Corps Air Station, 1977.
- 9. Bolt Beranek and Newman Inc., Report 1965 "Noise from Aircraft Operations, March Air Force Base, Riverside, California", submitted to: United States Navy, Commander, Naval Facilities Engineering Command S. W., 1220 Pacific Highway, San Diego, California 92132, November 1970.

- 10. Bolt Beranek and Newman Inc., Report 2223, "Noise Exposure Forecast for Aircraft Departures from Runways 6L and 6R at Anchorage International Airport", submitted to: State of Alaska, Division of Aviation, Department of Public Works, 4510 International Airport Road, Anchorage, Alaska, 99502, July 1972.
- 11. Bolt Beranek and Newman Inc. Report 3569, "Noise From Air-craft Operations at Stockton Metropolitan Airport", submitted to R. Dixon Speas Associates, Inc., October 1977.
- 12. Bolt Beranek and Newman Inc. unpublished data, San Diego International Airport, 1977.
- 13. Mills, J. F., and Bishop, D. E., "Quarterly Noise Monitoring at Hollywood-Burbank Airport, July-September 1977" prepared for: Lockheed Air Terminal, Inc., Burbank, California 91505. BBN Report 3691, 30 November 1977.
- 14. Mills, J. F., "Noise from Aircraft Operations at Woodrum Field Roanoke, Virginia", submitted to: Ralph Burke Associates, 1550 Northwest Highway, Suite 400, Park Ridge, Illinois 60068, BBN Report 3704, April 1978.
- 15. MIL-STD-882, System Safety Program for Systems and Associated Subsystems and Equipment: Requirements for, 15 July 1969.
- 16. Bishop, D. E., Dunderdale, T. C., Horonjeff, R. D., Mills, J. F., "Further Sensitivity Studies of Community-Aircraft Noise Exposure (NOISEMAP) Prediction Procedure", AMRL-TR-76-116, 1977. [AD AO41781]
- 17. Bishop, D. E., Dunderdale, T. C., Horonjeff, R. D., Mills, J. F., "Sensitivity Studies of Community Aircraft Noise Exposure (NOISEMAP) Prediction Procedure", AMRL-TR-75-115, March 1976. [AD A026535]
- 18. Speakman, J. D., Powell, R. G., Cole, J. N., "Community Noise Exposure Resulting From Aircraft Operations: Volume 1 Acoustic Data on Military Aircraft; AMRL-TR-73-110, November 1977. [AD A053699]

- 19. Speakman, J. D., Powell, R. G., Lee, R. A., "Community Noise Exposure Resulting From Aircraft Operations: Volume 2 Acoustic Data on Air Force Bomber/Cargo Aircraft", AMRL-TR-73-110, November 1977. [AD A053700]
- 20. Speakman, J. D., Powell, R. G., Lee, R. A., "Community Noise Exposure Resulting From Aircraft Operations: Volume 3 Acoustic Data on Air Force Attack/Fighter Aircraft", AMRL-TR-73-110, February 1978. [AD A053701]
- 21. Speakman, J. D., Powell, R. G., Lee, R. A., "Community Noise Exposure Resulting From Aircraft Operations: Volume 4 Acoustic Data on Air Force Trainer/Fighter Aircraft", AMRL-TR-73-110, February 1978. [AD A053702]
- 22. Speakman, J. D., Powell, R. G., Lee, R. A., "Community Noise Exposure Resulting From Aircraft Operations: Volume 5 Acoustic Data on Air Force Propeller Aircraft", AMRL-TR-73-110, February 1978. [AD A053709]
- 23. Speakman, J. D., Powell, R. G., Lee, R. A., "Community Noise Exposure Resulting From Aircraft Operations: Volume 6 Acoustic Data on Navy Aircraft", AMRL-TR-73-110, February 1978. [AD A056217]