ГУАП

ФАКУЛЬТЕТ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ОТЧЕТ	οŭ		
ЗАЩИЩЕН С ОЦЕНК ПРЕПОДАВАТЕЛЬ	ОИ		
преподаватель			М. Ю. Кафтан
должность, уч. степень, звание	е подпис	ь, дата	инициалы, фамилия
ОТЧЕ	ТЫ О ЛАБОРА	ТОРНЫХ РАБОТ	ΓΑΧ
По дисциплин	е: МДК 01.04 С	Системное програ	иммирование
РАБОТУ ВЫПОЛНИЛ СТУДЕНТ ГР. №	021к		Панков Вася
		подпись, дата	инициалы, фамилия

СОДЕРЖАНИЕ

1 Лабораторная работа № 4	 2
1.1 Определение времени, затраченного на выполнение программы	4

1 Лабораторная работа № 4

Тема: Анализ работы микропроцессора при выполнении линейной программы.

Цель работы:

• освоить приемы программирования на языке Ассемблера (Ass) по моделированию

работы микропроцессорной системы при выполнении линейных программ.

Индивидуальное задание:

Разработать линейную программу на языке Ассемблера МП КР580 для нахождения значения функции и определить время, затрачиваемое на выполнение программы (составить алгоритм, определить области размещения программы и данных, написать программу в мнемонических кодах с комментариями, проверить правильность выполнения алгоритма).

$$Z = (X1 + \neg Y1) + (\neg X2 + Y2)$$

Начальный адрес программы: 0109Н

Начальный адрес памяти: 0209Н

Адрес ячейки	Содержимое	Комментарий
памяти	ячейки памя-	
	ти	
0209H	0005H	Y1
020AH	000CH	X1
020BH	0017H	X2
020CH	0055H	Y2
020DH	0043H	Результат
		выполнения
		программы

```
LXI H,0209;
MOV A,M;
CMA;
INX H;
```

```
ADD M;
MOV D, A;
INX H;
MOV A, M;
CMA;
INX H;
ADD M;
ADD D;
INX H;
MOV M, A;
RST 07;
```

В эмуляторе:

```
#A0109
0109 LXI H,0209
010C MOV A,M
010D CMA
010E
     INX H
010F
     ADD M
0110 MOV D,A
0111 INX H
0112 MOV A,M
0113 CMA
0114 INX H
0115 ADD M
0116 ADD D
0117 INX H
0118 MOV M,A
0119 RST 07
011A
```

Рисунок 1 – Ввод программы в эмулятор

```
#S0209
0209 C3 5
020A 24 C
020B 05 17
020C 2B 55
020D 71 S_
```

Рисунок 2 – Ввод данных

Рисунок 3 – Результат выполнения

```
#T15
      A=00 B=0000 D=0000 H=0000 S=0100 P=0109 LXI
                                                    H,0209
      A=00 B=0000 D=0000 H=0209 S=0100 P=010C MOV
                                                    A,M
      A=05 B=0000 D=0000 H=0209 S=0100 P=010D CMA
      A=FA B=0000 D=0000 H=0209 S=0100 P=010E INX
                                                    Н
      A=FA B=0000 D=0000 H=020A S=0100 P=010F ADD
                                                    M=0C
C--EI A=06 B=0000 D=0000 H=020A S=0100 P=0110 MDV
                                                    D,A
C--EI A=06 B=0000 D=0600 H=020A S=0100 P=0111 INX
                                                    Н
C--EI A=06 B=0000 D=0600 H=020B S=0100 P=0112 MOV
                                                    A,M
   -EI A=17 B=0000 D=0600 H=020B S=0100 P=0113 CMA
C--EI A=E8 B=0000 D=0600 H=020B S=0100 P=0114 INX
C--EI A=E8 B=0000 D=0600 H=020C S=0100 P=0115 ADD
                                                    M=55
      A=3D B=0000 D=0600 H=020C S=0100 P=0116 ADD
    I A=43 B=0000 D=0600 H=020C S=0100 P=0117 INX
                                                    Н
    I A=43 B=0000 D=0600 H=020D S=0100 P=0118 MOV
                                                    M,A
```

Рисунок 4 – Пошаговое выполнение

1.1 Определение времени, затраченного на выполнение программы

Количество тактов для каждой команды:

Команда	Такты	Всего тактов
LXI H,0209	10	10
MOV A,M	7	7
CMA	4	4
INX H	6	6
ADD M	7	7
MOV D,A	5	5
INX H	6	6
MOV A,M	7	7
CMA	4	4
INX H	6	6
ADD M	7	7
ADD D	4	4
INX H	6	6
MOV M,A	7	7
RST 07	11	11
		84

Время выполнения программы можно вычислить по формуле:

$$T = \cdot$$

- общее количество тактов, затраченных на выполнение программы, - время одного такта.

Учитывая, что тактовая частота $f=5{\rm M}\Gamma$ ц, а время одного такта =1/f = 0,2 мкс, получаем:

$$T = 1 \cdot 84 \cdot 0, 2 = 16, 8$$

Таким образом, время выполнения данной программы составляет 16,8 мкс.