Agenda item: 9.3.2

Source: Huawei

Title: Summary of calibration results for IMT-2020 self evaluation

Document for: Approval

1 Introduction

At 3GPP TSG RAN#77 meeting, the general work plan of self evaluation is approved [1]. The three step work plan is proposed according to the agreed IMT-2020 submission timeplan as endorsed in [2]. As the first step, 3GPP agreed to conduct the calibration activity for IMT-2020 self evaluation through an email discussion in RAN ITU-R Ad-Hoc as follows

→ The following email discussions are proposed for Step 1 after RAN#77

- Plan an email discussion in RAN ITU-R Ad-Hoc on calibration for self evaluation Lead by Huawei (Rapporteur)
 - Including calibration detailed plan, calibration metrics, baseline parameter for calibration, test environments and evaluation configurations for calibration as defined in Report ITU-R M.[IMT-2020. EVAL], etc.
- ITU-R Ad-Hoc contact person will kick off the scope and timing of the E-mail discussion in the ITU-R Ad-Hoc mailing list

Based on the above agreement, ITU-R Ad-Hoc contact person set up an email discussion "[ITU-R AH 01] Calibration for self-evaluation". This document provides the summary of the calibration activities and the calibration results derived by this email discussion.

2 Scope of the discussion

The scope of this email discussion is set as follows.

• Goal: To calibrate simulations assumptions in view of self-evaluation, and provide the calibration results according to the baseline calibration parameters.

Based on the above scope, the calibration metrics and baseline parameters are discussed and captured as shown in Section 3 and 4, respectively.

3 Calibration metrics for self evaluation

The following metrics are selected for calibration of self evaluation:

- DL Geometry (wideband SINR)
- Coupling gain

The above metrics are used with the cell association mechanism as defined in calibration assumptions in Section 4.

4 Calibration parameters for self evaluation

This section provides baseline calibration parameters and models for the five test environments defined in Report ITU-R M.2412 (see [3]). It should be noted that these parameters are used for calibration purpose only.

4.1 Indoor Hotspot - eMBB

The baseline parameters are provided in Table 1.

Table 1 Baseline parameter for Indoor Hotspot – eMBB

Indoor Hotspot - eMBB	Config. A	Config. B	Config. C
Carrier frequency for evaluation	4 GHz	30GHz	70GHz
BS antenna height	3 m	3 m	3 m
Total transmit power per TRxP	Baseline: 21 dBm for 10MHz bandwdith	Baseline: 20 dBm for 40 MHz bandwidth	Baseline: 18 dBm for 40 MHz bandwidth
UE power class	23 dBm	23 dBm	21 dBm
Inter-site distance	20m	20 m	20 m
Number of antenna elements per TRxP	32Tx/Rx, (M,N,P,Mg,Ng) = (4,4,2,1,1), (dH,dV) = (0.5, 0.5)λ +45°, -45° polarization	64Tx/Rx, (M,N,P,Mg,Ng) = (4,8,2,1,1), (dH,dV) = (0.5, 0.5)λ +45°, -45° polarization	256Tx/Rx, (M,N,P,Mg,Ng) = (8,16,2,1,1), (dH,dV) = (0.5, 0.5)λ +45°, -45° polarization
Number of TXRU per TRxP	32TXRU, (Mp,Np,P,Mg,Ng) = (4,4,2,1,1) (1-to-1 mapping)	8TXRU, (Mp,Np,P,Mg,Ng) =(2,2,2,1,1)	8TXRU, (Mp,Np,P,Mg,Ng)=(2,2,2,1,1)
Number of UE antenna elements	4Tx/Rx, (M,N,P,Mg,Ng) = (1,2,2,1,1), (dH,dV) = (0.5, N/A)λ 0°,90° polarization	$32Tx/Rx$, (M,N,P,Mg,Ng) = (2,4,2,1,2), (dH,dV) = (0.5, 0.5) λ (dg,V,dg,H) = (0,0) λ . Δ	32Tx/Rx , (M,N,P,Mg,Ng) = (2,4,2,1,2), (dH,dV) = (0.5, 0.5) λ (dg,V,dg,H) = (0, 0) λ . Omg,ng=90; Ω 0,1= Ω 0,0+180;
		0°,90° polarization	0°,90° polarization
Number of TXRU per UE	4TXRU, (Mp,Np,P,Mg,Ng) = (1,2,2,1,1) (1-to-1 mapping)	4TXRU, (Mp,Np,P,Mg,Ng)=(1,1,2,1,2)	4TXRU, (Mp,Np,P,Mg,Ng)=(1,1,2,1,2)
Device deployment	100% indoor Randomly and uniformly distributed over the area	100% indoor Randomly and uniformly distributed over the area	100% indoor Randomly and uniformly distributed over the area
UE mobility model	Fixed and identical speed v of all UEs, randomly and uniformly distributed direction	Fixed and identical speed v of all UEs, randomly and uniformly distributed direction	Fixed and identical speed v of all UEs, randomly and uniformly distributed direction
UE speeds of interest	3 km/h	3 km/h	3 km/h
Inter-site interference modeling	Explicitly modelled	Explicitly modelled	Explicitly modelled
BS noise	5 dB	7dB	7dB

figure						
UE noise			10		40.15	
figure	7 d	В	100	IB	10di	3
BS antenna	5dBi		rap:		5dBi	
element gain	501	51	5dBi		Sub	ı
BS antenna						
element	See Table 7 ir	Section 4.6	See Table 7 ir	Section 4.6	See Table 7 in	Section 4.6
pattern						
UE antenna	0 dl	Ri	5dl	₽i	5dB	i
element gain	O ui	<u> </u>	301	J1	3 u D	
UE antenna						
element	Omni-dire	ectional	See Table 8 ir	Section 4.6	See Table 8 in	Section 4.6
pattern						
Thermal noise	-174 dE	Bm/Hz	-174 dE	Bm/Hz	-174 dBi	m/Hz
level						
Traffic model	Full bi	utter	Full b	uffer	Full bu	ffer
Simulation	10M	Hz	40M	Hz	40MF	·lz
bandwidth	40::-		40		10::-	- TD - D
UE density	10 UEs pe	er I RxP	10 UEs po	er IRXP	10 UEs pe	r irxp
UE antenna	1.5	m	1.5	m	1.5n	า
height						
Channel	Alt. 1: Chann		(Channel mode		(Channel model	
model variant	Alt. 2: Chann	iel model B	sam	ie)	same	e)
TRxP number	1	3	1	3	1	3
per site		Ŭ.	-	Ŭ		
	180° in GCS		180° in GCS		180° in GCS	
	(pointing to the		(pointing to the		(pointing to the	
Mechanic tilt	ground)	[110°] in	ground)	[110°] in	ground)	[110°] in
Wechanic till	Top view:	GCS	Top view:	GCS	Top view:	GCS
	N-4 • • • • • • • • • • • • • • • • • • •		S-1		No.	
					· · · · · · · · · · · · · · · · · · ·	
			(0	(According	(0	(According
			(According to	to Zenith	(According to Zenith angle in	to Zenith
Electronic tilt	90° in LCS	90° in LCS	Zenith angle in "Beam set at	angle in	"Beam set at	angle in
			TRxP")	"Beam set at	TRxP")	"Beam set at
			TIXXI)	TRxP")	TIXI)	TRxP")
	0 (i.e., the	0 (i.e., the	0 (i.e., the	0 (i.e., the	0 (i.e., the	0 (i.e., the
Handover	strongest cell	strongest	strongest cell	strongest	strongest cell is	strongest
margin (dB)	is selected)	cell is	is selected)	cell is	selected)	cell is
	,	selected)		selected)		selected)
		30 / 150 /		30 / 150 /		30 / 150 /
TRxP	_	270 degrees	_	270 degrees	_	270 degrees
boresight						
		Edite		Edite		Foot
UT attachment	Based on	Based on	Based on	Based on	Based on RSRP	Based on
	RSRP (formula	RSRP	RSRP	RSRP	(formula as	RSRP
	(8.1-1) in	(formula	(formula as	(formula as	shown in	(formula as
	TR36.873)	(8.1-1) in	shown in	shown in	Appendix 3)	shown in
	from port 0	TR36.873)	Appendix 3)	Appendix 3)	from port 0	Appendix 3)
		from port 0	from port 0	from port 0		from port 0
					The UE panel	
			The UE panel	The UE	with the best	The UE
			with the best	panel with	receive SNR is	panel with
			receive SNR is	the best	chosen. i.e. no	the best
			chosen. i.e. no	receive SNR	combining is	receive SNR
			combining is	is chosen.	done between	is chosen.
			done between	i.e. no	panels.	i.e. no

			panels.	combining is done between panels.		combining is done between panels.
Wrapping around method	No wrapping around	No wrapping around	No wrapping around	No wrapping around	No wrapping around	No wrapping around
Minimum distance of TRxP and UE	d _{2D_min} =0m	d _{2D_min} =0m	d _{2D_min} =0m	d _{2D_min} =0m	d _{2D_min} =0m	d _{2D_min} =0m
Polarized antenna model	Model-2 in TR36.873	Model-2 in TR36.873	Model-2 in TR36.873	Model-2 in TR36.873	Model-2 in TR36.873	Model-2 in TR36.873
Beam set at TRxP (Constraints for the range of selective analog beams per TRxP)	-	-	For direction of beam steerir Azimuth angle 1*pi/8, 1*pi Zenith angle θ _j NOTE: (azimut pi/2) is the perpendicular Precoder for be theta_j) is given in Appendix 1 (2	$\phi_i = [-3*pi/8, -6]$ $\phi_i = [-3*pi/8, -6]$ $\phi_i = [-3*pi/8, -6]$ $\phi_i = [-3*pi/8]$	For direction of beam steering Azimuth angle of 5*pi/16, -3*pi/11*pi/16, 3*pi/16, 5 Zenith angle the 3*pi/8 5*pi/16 NOTE: (azimuth pi/2) is the perpendicular precoder for beat theta_j) is given be Appendix 1 (2D	g (in LCS): i = [-7*pi/16, - 16, -1*pi/16, *pi/16, 7*pi/16] eta_j = [pi/8 8 7*pi/8] n, zenith)=(0, direction to the array. am at (phai_i, y equation 1 in
Beam set at UE (Constraints for the range of selective analog beams for UE)	-	-	For direction of beam steering Azimuth angle pi/8, pi/8, Zenith angle θ _j : NOTE: (azimut pi/2) is the perpendicular Precoder for beau given by eq Appendix 1 (21)	$\begin{aligned} &\text{ng (in LCS):} \\ &\phi_i = [-3*\text{pi/8}, -3*\text{pi/8}]; \\ &= [\text{pi/4}, 3*\text{pi/4}]; \\ &\text{th, zenith}) = (0, \\ &\text{direction} \\ &\text{to the array.} \\ &\text{am at } (\phi_i, \theta_j) \text{ is} \\ &\text{uation 1 in} \end{aligned}$	For direction of UI steering (ii Azimuth angle ϕ_i : pi/8, 3* Zenith angle θ_j = NOTE: (azimuth pi/2) is the perpendicular Precoder for beaution 1 (2D DFT	n LCS): = [-3*pi/8, -pi/8, pi/8]; = [pi/4, 3*pi/4]; n, zenith)=(0, direction to the array. Im at (ϕ_i, θ_j) is a 1 in Appendix
Criteria for selection for serving TRxP	-	-	Maximizing RS analog beam p digital beamfo consid	air, where the orming is not	Maximizing RS analog beam pa digital beamfo conside	air, where the rming is not
Criteria for analog beam selection for serving TRxP	-	-	Select the bear among the set of based on the maximizing re after bean	of DFT beams, e criteria of ceive power	Select the bes among the set o based on the maximizing recei beamfor	f DFT beams, criteria of ve power after
Criteria for analog beam selection for interfering TRxP	-	-	Random selecti beams for non-	-	Random selectir beams for non-s	-

4.2 Dense urban - eMBB

The baseline parameters are provided in Table 2.

Table 2 Baseline parameter for Dense Urban – eMBB

	_	
Dense Urban - eMBB	Config. A	Config. B
Carrier frequency for evaluation	1 layer (Macro) with 4 GHz	1 layer (Macro) with 30 GHz
BS antenna height	25 m	25 m
Total transmit power per TRxP	41 dBm for 10 MHz bandwidth	37 dBm for 40 MHz bandwidth
UE power class	23 dBm	23 dBm
Percentage of high loss and low loss building type	20% high loss, 80% low loss (applies to Channel model B)	20% high loss, 80% low loss
Inter-site distance	200 m	200 m
Number of antenna elements per TRxP	$128Tx/Rx$, $(M,N,P,Mg,Ng) = (8,8,2,1,1)$, $(dH,dV) = (0.5, 0.8)\lambda$	256Tx/Rx, (M,N,P,Mg,Ng) = (4,8,2,2,2), (dH,dV) = (0.5, 0.5)λ. (dg,H,dg,V) = (4.0, 2.0)λ
	+45°, -45° polarization	+45°, -45° polarization
Number of TXRU per TRxP	4TXRU, (Mp,Np,P,Mg,Ng) = (2,1,2,1,1)	8TXRU, (Mp,Np,P,Mg,Ng) =(1,1,2,2,2)
Number of UE antenna elements	4Tx/Rx, (M,N,P,Mg,Ng) = (1,2,2,1,1), (dH,dV) = (0.5, N/A)λ 0°,90° polarization	32Tx/Rx , $(M,N,P,Mg,Ng) = (2,4,2,1,2)$, $(dH,dV) = (0.5, 0.5)\lambda$ $(dg,V,dg,H) = (0,0)\lambda$. $\Theta mg,ng=90$; $\Omega 0,1=\Omega 0,0+180$;
	o joo polanzadion	0°,90° polarization
Number of TXRU per UE	4TXRU, (Mp,Np,P,Mg,Ng) = (1,2,2,1,1) (1-to-1 mapping)	4TXRU, (Mp,Np,P,Mg,Ng)=(1,1,2,1,2)
Device deployment	80% indoor, 20% outdoor (in car) Randomly and uniformly distributed over the area under Macro layer	80% indoor, 20% outdoor (in car) Randomly and uniformly distributed over the area under Macro layer
UE mobility model	Fixed and identical speed v of all UEs of the same mobility class, randomly and uniformly distributed direction	Fixed and identical speed v of all UEs of the same mobility class, randomly and uniformly distributed direction
UE speeds of interest	Indoor users: 3km/h Outdoor users (in-car): 30 km/h	Indoor users: 3km/h Outdoor users (in-car): 30 km/h
Inter-site interference modeling	Explicitly modelled	Explicitly modelled
BS noise figure	5 dB	7 dB
UE noise figure	7 dB	10 dB
BS antenna element gain	8 dBi	8 dBi
BS antenna element pattern	See Table 6 in Section 4.6	See Table 6 in Section 4.6
UE antenna element gain UE antenna element	0 dBi Omni-directional	5 dBi See Table 8 in Section 4.6
pattern Thormal poise level	174 dDm/U-	174 dDm/U~
Thermal noise level	-174 dBm/Hz	-174 dBm/Hz
Traffic model Simulation bandwidth	Full buffer 10 MHz	Full buffer 40 MHz
UE density	10 MHZ 10 UEs per TRxP	10 UEs per TRxP
OE UCHOILY	Outdoor UEs: 1.5 m	Outdoor UEs: 1.5 m
UE antenna height	Indoor UTs: 3(nfl – 1) + 1.5; nfl ~ uniform(1,Nfl) where Nfl ~ uniform(4,8)	Indoor UTs: 3(nfl – 1) + 1.5; nfl ~ uniform(1,Nfl) where Nfl ~ uniform(4,8)
Channel model variant	Alt. 1: Channel model A Alt. 2: Channel model B	(Channel model A or B is the same)
TRxP number per site	3	3
Mechanic tilt	90° in GCS (pointing to horizontal direction)	90° in GCS (pointing to horizontal direction)
	· · · · · · · · · · · · · · · · · · ·	

Electronic tilt	(According to Zenith angle in "Beam set at TRxP")	(According to Zenith angle in "Beam set at TRxP")
Handover margin (dB)	0 (i.e., the strongest cell is selected)	0 (i.e., the strongest cell is selected)
TRxP boresight	30 / 150 / 270 degrees	30 / 150 / 270 degrees
UT attachment	Based on RSRP (formula (8.1-1) in TR36.873) from port 0	Based on RSRP (formula as shown in Appendix 3) from port 0 The UE panel with the best receive SNR is chosen. i.e. no combining is done between panels.
Wrapping around method	Geographical distance based wrapping	Geographical distance based wrapping
Minimum distance of TRxP and UE	d_{2D_min} =10m	d _{2D_min} =10m
Polarized antenna model	Model-2 in TR36.873	Model-2 in TR36.873
	For direction of TRxP analog beam steering (in LCS):	For direction of TRxP analog beam steering (in LCS):
Beam set at TRxP (Constraints for the range of	Azimuth angle ϕ_i = [-5*pi/16, -3*pi/16, - pi/16, pi/16, 3*pi/16, 5*pi/16] Zenith angle θ_j = [5*pi/8, 7*pi/8]	Azimuth angle ϕ_i = [-5*pi/16, -3*pi/16, -pi/16, pi/16, 3*pi/16, 5*pi/16] Zenith angle θ_i = [5*pi/8, 7*pi/8]
selective analog beams per TRxP)	NOTE: (azimuth, zenith)=(0, pi/2) is the direction perpendicular to the array.	NOTE: (azimuth, zenith)=(0, pi/2) is the direction perpendicular to the array.
	Precoder for beam at (ϕ_i, θ_j) is given by equation 1 in Appendix 1 (2D DFT beam)	Precoder for beam at (ϕ_i, θ_j) is given by equation 1 in Appendix 1 (2D DFT beam)
Beam set at UE (Constraints for the range of selective analog beams for UE)	-	For direction of UE analog beam steering (in LCS): Azimuth angle ϕ_i = [-3*pi/8, -pi/8, pi/8, $3*pi/8$]; Zenith angle θ_j = [pi/4, 3*pi/4]; NOTE: (azimuth, zenith)=(0, pi/2) is the direction perpendicular to the array. Precoder for beam at (ϕ_i, θ_j) is given by equation 1 in Appendix 1 (2D DFT beam)
Criteria for selection for serving TRxP	Maximizing RSRP with best analog beam pair, where the digital beamforming is not considered	Maximizing RSRP with best analog beam pair, where the digital beamforming is not considered
Criteria for analog beam selection for serving TRxP	Select the best beam pair among the limited set of DFT analog beams, based on the criteria of maximizing receive power after beamforming.	Select the best beam pair among the limited set of DFT analog beams, based on the criteria of maximizing receive power after beamforming.
Criteria for analog beam selection for interfering TRxP	Random selecting the random beams for non-serving TRxP	Random selecting the random beams for non-serving TRxP

4.3 Rural – eMBB

The baseline parameters are provided in Table 3.

Table 3 Baseline parameter for Rural – eMBB

Rural - eMBB	Config. A	Config. B	Config. C (LMLC)
Carrier frequency for evaluation	700 MHz	4 GHz	700 MHz

BS antenna height	35 m	35 m	35 m
Total transmit			46 dBm for 10 MHz
power per TRxP	46 dBm for 10 MHz bandwidth	46 dBm for 10 MHz bandwidth	bandwidth
UE power class	23 dBm	23 dBm	23 dBm
Percentage of high loss and low loss building type	100% low loss (applies to Channel model B)	100% low loss (applies to Channel model B)	100% low loss (applies to Channel model B)
Inter-site distance	1732 m	1732 m	6000 m
Number of antenna elements per TRxP	64 Tx/Rx, (M,N,P,Mg,Ng) = (8,4,2,1,1), (dH,dV) = (0.5, 0.8)λ	128Tx/Rx, (M,N,P,Mg,Ng) = (8,8,2,1,1), (dH,dV) = (0.5, 0.8)λ	64 Tx/Rx, (M,N,P,Mg,Ng) = (8,4,2,1,1), (dH,dV) = (0.5, 0.8)λ
	+45°, -45° polarization	+45°, -45° polarization	+45°, -45° polarization
Number of TXRU per TRxP	8TXRU, (Mp,Np,P,Mg,Ng) = (1,4,2,1,1)	16TXRU, (Mp,Np,P,Mg,Ng) = (1,8,2,1,1)	8TXRU, (Mp,Np,P,Mg,Ng) = (1,4,2,1,1)
Number of UE antenna elements	2Tx/Rx, (M,N,P,Mg,Ng) = (1,1,2,1,1)	4Tx/Rx, (M,N,P,Mg,Ng) = (1,2,2,1,1), (dH,dV) = (0.5, N/A)λ	4Tx/Rx, (M,N,P,Mg,Ng) = (1,2,2,1,1), (dH,dV) = (0.5, N/A)λ
	0°,90° polarization	0°,90° polarization	0°,90° polarization
Number of TXRU per UE	2TXRU (1-to-1 mapping)	4TXRU (1-to-1 mapping)	4TXRU (1-to-1 mapping)
Device deployment	50% indoor, 50% outdoor (in car) Randomly and uniformly distributed over the area	50% indoor, 50% outdoor (in car) Randomly and uniformly distributed over the area	40% indoor, 40% outdoor (pedestrian), 20% outdoor (in-car) Randomly and uniformly distributed over the area
UE mobility model	Fixed and identical speed v of all UEs of the same mobility class, randomly and uniformly distributed direction	Fixed and identical speed v of all UEs of the same mobility class, randomly and uniformly distributed direction	Fixed and identical speed v of all UEs of the same mobility class, randomly and uniformly distributed direction
UE speeds of interest	Indoor users: 3 km/h; Outdoor users (in-car): 120 km/h;	Indoor users: 3 km/h; Outdoor users (in-car): 120 km/h;	Indoor users: 3 km/h; Outdoor users (pedestrian): 3 km/h; Outdoor users (in-car): 30 km/h
Inter-site interference modeling	Explicitly modelled	Explicitly modelled	Explicitly modelled
BS noise figure	5 dB	5 dB	5 dB
UE noise figure	7 dB	7 dB	7 dB
BS antenna element gain	8 dBi	8 dBi	8 dBi
BS antenna element pattern	See Table 6 in Section 4.6	See Table 6 in Section 4.6	See Table 6 in Section 4.6
UE antenna element gain	0 dBi	0 dBi	0 dBi
UE antenna element pattern	Omni-directional	Omni-directional	Omni-directional
Thermal noise level	-174 dBm/Hz	-174 dBm/Hz	-174 dBm/Hz
Traffic model	Full buffer	Full buffer	Full buffer
Simulation bandwidth	10 MHz	10 MHz	10 MHz
UE density	10 UEs per TRxP	10 UEs per TRxP	10 UEs per TRxP
UE antenna	1.5 m	1.5 m	1.5 m
	l	l	l .

height			
Channel model variant	Alt. 1: Channel model A Alt. 2: Channel model B	Alt. 1: Channel model A Alt. 2: Channel model B	Alt. 1: Channel model A Alt. 2: Channel model B
TRxP number per site	3	3	3
Mechanic tilt	90° in GCS (pointing to horizontal direction)	90° in GCS (pointing to horizontal direction)	90° in GCS (pointing to horizontal direction)
Electronic tilt	[100°] in LCS	[100°] in LCS	[96°] in LCS
Handover margin (dB)	0 (i.e., the strongest cell is selected)	0 (i.e., the strongest cell is selected)	0 (i.e., the strongest cell is selected)
TRxP boresight	30 / 150 / 270 degrees	30 / 150 / 270 degrees	30 / 150 / 270 degrees
UT attachment	Based on RSRP (formula (8.1-1) in TR36.873) from port 0	Based on RSRP (formula (8.1-1) in TR36.873) from port 0	Based on RSRP (formula (8.1-1) in TR36.873) from port 0
Wrapping around method	Geographical distance based wrapping	Geographical distance based wrapping	Geographical distance based wrapping
Minimum distance of TRxP and UE	d _{2D_min} =10m	d _{2D_min} =10m	d _{2D_min} =10m
Polarized antenna model	Model-2 in TR36.873	Model-2 in TR36.873	Model-2 in TR36.873

4.4 Urban Macro - mMTC

The baseline parameters are provided in Table 4.

 $Table\ 4\ Baseline\ parameter\ for\ Urban\ Macro-mMTC$

Urban Macro - mMTC	Config. A	Config. B
Carrier frequency for evaluation	700 MHz	700 MHz
BS antenna height	25 m	25 m
Total transmit power per TRxP¹	46 dBm for 10 MHz bandwidth	46 dBm for 10 MHz bandwidth
UE power class	23 dBm	23 dBm
Percentage of high loss and low loss building type	20% high loss, 80% low loss (applies to Channel model B)	20% high loss, 80% low loss (applies to Channel model B)
Inter-site distance	500 m	1732 m
Number of antenna elements per TRxP	16 Tx/Rx, (M,N,P,Mg,Ng) = (8,1,2,1,1), (dH,dV) = (N/A, 0.8)λ +45°, -45° polarization	16 Tx/Rx, (M,N,P,Mg,Ng) = (8,1,2,1,1), (dH,dV) = (N/A, 0.8)λ +45°, -45° polarization
Number of TXRU per TRxP	2TXRU, (Mp,Np,P,Mg,Ng) = (1,1,2,1,1)	2TXRU, (Mp,Np,P,Mg,Ng) = (1,1,2,1,1)
Number of UE antenna elements	1Tx/Rx 0° polarization	1Tx/Rx 0° polarization
Number of TXRU per UE	1TXRU	1TXRU
Device deployment	80% indoor, 20% outdoor Randomly and uniformly distributed over the area	80% indoor, 20% outdoor Randomly and uniformly distributed over the area
UE mobility model	Fixed and identical speed v of all UEs of the same mobility class, randomly and uniformly distributed direction.	Fixed and identical speed v of all UEs of the same mobility class, randomly and uniformly distributed direction.

¹ This parameter(s) is/are used for cell association

-

UE speeds of interest	3 km/h for indoor and outdoor	3 km/h for indoor and outdoor
Inter-site interference modeling	Explicitly modelled	Explicitly modelled
BS noise figure	5 dB	5 dB
UE noise figure	7 dB	7 dB
BS antenna element gain	8 dBi	8 dBi
BS antenna element pattern	See Table 6 in Section 4.6	See Table 6 in Section 4.6
UE antenna element gain	0 dBi	0 dBi
UE antenna element pattern	Omni-directional	Omni-directional
Thermal noise level	-174 dBm/Hz	-174 dBm/Hz
Traffic model	Full buffer	Full buffer
Simulation bandwidth	10 MHz	10 MHz
UE density	10 UEs per TRxP	10 UEs per TRxP
UE antenna height	1.5 m	1.5 m
Channel model variant	Alt. 1: Channel model A Alt. 2: Channel model B	Alt. 1: Channel model A Alt. 2: Channel model B
TRxP number per site	3	3
Mechanic tilt	90° in GCS (pointing to horizontal direction)	90° in GCS (pointing to horizontal direction)
Electronic tilt	[99°] in LCS	[93°] in LCS
Handover margin (dB)	0 (i.e., the strongest cell is selected)	0 (i.e., the strongest cell is selected)
TRxP boresight	30 / 150 / 270 degrees	30 / 150 / 270 degrees
UT attachment	Based on RSRP (formula (8.1-1) in TR36.873) from port 0	Based on RSRP (formula (8.1-1) in TR36.873) from port 0
Wrapping around method	Geographical distance based wrapping	Geographical distance based wrapping
Minimum distance of TRxP and UE	d _{2D_min} =10m	d _{2D_min} =10m
Polarized antenna model	Model-2 in TR36.873	Model-2 in TR36.873

4.5 Urban Macro - URLLC

The baseline parameters are provided in Table 5.

Table 5 Baseline parameter for Urban Macro – URLLC

Urban Macro - URLLC	Config. A	Config. B
Carrier frequency for evaluation	4 GHz	700 MHz
BS antenna height	25 m	25 m
Total transmit power per TRxP	46 dBm for 10 MHz bandwidth	46 dBm for 10 MHz bandwidth
UE power class	23 dBm	23 dBm
Percentage of high loss and low loss building type	100% low loss (applies to Channel model B)	100% low loss (applies to Channel model B)
Inter-site distance	500 m	500 m
Number of antenna elements per TRxP	64 Tx/Rx, (M,N,P,Mg,Ng) = (8,4,2,1,1), (dH,dV) = (0.5, 0.8)λ +45°, -45° polarization	16 Tx/Rx, (M,N,P,Mg,Ng) = (8,1,2,1,1), (dH,dV) = (N/A, 0.8)λ +45°, -45° polarization
Number of TXRU per TRxP	8TXRU, (Mp,Np,P,Mg,Ng) = (1,4,2,1,1)	2TXRU, (Mp,Np,P,Mg,Ng) = (1,1,2,1,1)

Number of UE antenna	$4Tx/Rx$, $(M,N,P,Mg,Ng) = (1,2,2,1,1)$, $(dH,dV) = (0.5, N/A)\lambda$	2Tx/Rx, (M,N,P,Mg,Ng) = (1,1,2,1,1)
elements	0°, 90° polarization	0°, 90° polarization
Number of TXRU per UE	4TXRU (1-to-1 mapping)	2TXRU (1-to-1 mapping)
Device deployment	80% outdoor, 20% indoor Randomly and uniformly distributed over the area	80% outdoor, 20% indoor Randomly and uniformly distributed over the area
UE mobility model	Fixed and identical speed v of all UEs of the same mobility class, randomly and uniformly distributed direction	Fixed and identical speed v of all UEs of the same mobility class, randomly and uniformly distributed direction
UE speeds of interest	3 km/h for indoor and 30 km/h for outdoor	3 km/h for indoor and 30 km/h for outdoor
Inter-site interference modeling	Explicitly modelled	Explicitly modelled
BS noise figure	5 dB	5 dB
UE noise figure	7 dB	7 dB
BS antenna element gain	8 dBi	8 dBi
BS antenna element pattern	See Table 6 in Section 4.6	See Table 6 in Section 4.6
UE antenna element gain	0 dBi	0 dBi
UE antenna element pattern	Omni-directional	Omni-directional
Thermal noise level	-174 dBm/Hz	-174 dBm/Hz
Traffic model	Full buffer	Full buffer
Simulation bandwidth	10 MHz	10 MHz
UE density	10 UEs per TRxP	10 UEs per TRxP
UE antenna height	1.5 m	1.5 m
Channel model variant	Alt. 1: Channel model A Alt. 2: Channel model B	Alt. 1: Channel model A Alt. 2: Channel model B
TRxP number per site	3	3
Mechanic tilt	90° in GCS (pointing to horizontal direction)	90° in GCS (pointing to horizontal direction)
Electronic tilt	[99°] in LCS	[99°] in LCS
Handover margin (dB)	0 (i.e., the strongest cell is selected)	0 (i.e., the strongest cell is selected)
TRxP boresight	30 / 150 / 270 degrees	30 / 150 / 270 degrees
		In
UT attachment	Based on RSRP (formula (8.1-1) in TR36.873) from port 0	Based on RSRP (formula (8.1-1) in TR36.873) from port 0
Wrapping around method	Geographical distance based wrapping	Geographical distance based wrapping
Minimum distance of TRxP and UE	d _{2D_min} =10m	d _{2D_min} =10m
Polarized antenna model	Model-2 in TR36.873	Model-2 in TR36.873

4.6 Antenna element pattern

The antenna element pattern is defined in Report ITU-R M.2412.

For BS side, the TRxP antenna element pattern is defined in Table 8-6 in Report ITU-R M.2412 for Dense Urban – eMBB, Rural – eMBB, Urban Macro – mMTC, and Urban macro – URLLC test environments. For Indoor Hotspot, the TRxP antenna element pattern is defined in Table 8-7 in Report ITU-R M.2412. They are copied in Table 6 and Table 7 for reference.

Table 6*

BS antenna element radiation pattern for

Dense Urban – eMBB, Rural – eMBB, Urban Macro – mMTC, and Urban Macro - URLLC

Parameters	Values				
Antenna element vertical radiation pattern (dB)	$A_{E,V}(\theta'') = -\min\left[12\left(\frac{\theta'' - 90^0}{\theta_{3dB}}\right)^2, SLA_V\right], \theta_{3dB} = 65^0, SLA_V = 30$				
Antenna element horizontal radiation pattern (dB)	$A_{E,H}(\phi'') = -\min\left[12\left(\frac{\phi''}{\phi_{3dB}}\right)^2, A_m\right], \phi_{3dB} = 65^0, A_m = 30$				
Combining method for 3D antenna element pattern (dB)	$A''(\theta'',\phi'') = -\min\left[-\left[A_{E,V}(\theta'') + A_{E,H}(\phi'')\right], A_m\right]$				
Maximum directional gain of an antenna element $G_{E,max}$	8 dBi				

^{*} Note: This is a copy of Table 8-6 in Report ITU-R M.2412

Table 7*
BS antenna element radiation pattern for Indoor Hotspot - eMBB

Parameters	Values		
Antenna element vertical radiation pattern (dB)	$A_{E,V}(\theta'') = -\min\left[12\left(\frac{\theta'' - 90^0}{\theta_{3dB}}\right)^2, SLA_V\right], \theta_{3dB} = 90^0, SLA_V = 25$		
Antenna element horizontal radiation pattern (dB)	$A_{E,H}(\phi'') = -\min\left[12\left(\frac{\phi''}{\phi_{3dB}}\right)^2, A_m\right], \phi_{3dB} = 90^0, A_m = 25$		
Combining method for 3D antenna element pattern (dB)	$A''(\theta'', \phi'') = -\min \left[-\left[A_{E,V}(\theta'') + A_{E,H}(\phi'') \right], A_m \right]$		
Maximum directional gain of an antenna element $G_{E,max}$	5 dBi		

^{*} Note: This is a copy of Table 8-7 in Report ITU-R M.2412

For UE side, the UE antenna element pattern is Omni-directional for 4 GHz and 700 MHz; while for 30 GHz and 70 GHz, it is defined in Table 8-8 in Report ITU-R M.2412, which is copied to Table 8 for reference.

Table 8*

UE antenna element radiation pattern for 30 GHz and 70 GHz

Parameters	Values			
Antenna element radiation pattern in $ heta$ ' ' dim (dB)	$A_{E,V}(\theta'') = -\min\left[12\left(\frac{\theta'' - 90^0}{\theta_{3dB}}\right)^2, SLA_V\right], \theta_{3dB} = 90^0, SLA_V = 25$			
Antenna element radiation pattern in φ ' ' dim (dB)	$A_{E,H}(\phi'') = -\min\left[12\left(\frac{\phi''}{\phi_{3dB}}\right)^2, A_m\right], \phi_{3dB} = 90^0, A_m = 25$			

Combining method for 3D antenna element pattern (dB)	$A^{''}(\theta^{''},\phi^{''}) = -\min\left[-\left[A_{E,V}(\theta^{''}) + A_{E,H}(\phi^{''})\right],A_m\right]$
Maximum directional gain of an antenna element $G_{E,max}$	5 dBi

^{*} Note: This is a copy of Table 8-8 in Report ITU-R M.2412

5 Calibration results

The calibration results are provided in the attachment. Twenty-one 3GPP members provided the calibration results, including CATR, CATT, CEWiT, China Telecom, CMCC, Ericsson, Huawei, Intel, ITRI, LG Electronics, MediaTek, Motorola Mobility/Lenovo, NEC, Nokia, NTT DOCOMO, OPPO, Qualcomm, Samsung, Sharp, vivo and ZTE.

It is observed that most of the calibration results are well aligned according to the results collected. The results of DL geometry (wideband SINR) from the independent samples are typically within 1~2 dB of the average SINR. A summary on samples collected of each test environment and evaluation configuration is shown in Appendix 2.

Attachment: Calibration results for IMT-2020 submission.

6 Summary

In the email discussion "[ITU-R AH 01] Calibration for self-evaluation", the calibration metrics and calibration parameters are discussed and captured in section 3 and 4. The calibration results are provided in section 5. It is observed that the calibration results are well aligned according to the results collected. The results of DL geometry (wideband SINR) from the independent samples are typically within 1~2 dB of the average SINR.

References

- [1] RP-172101, "WF on Work plan of Self Evaluation SI", Huawei, Ericsson, Telecom Italia, September 2017.
- [2] RP-172098, "3GPP submission towards IMT-2020", ITU-R Ad-Hoc Contact person, September 2017.
- [3] Report ITU-R M.2412, "Guidelines for evaluation of radio interface technologies for IMT-2020", ITU-R WP 5D, June 2017, available in RP-171559.
- [4] RP-172536, "Consideration on IMT-2020 self evaluation: mobility", Huawei, HiSilicon, December 2017.
- [5] R1-1802446, "Discussion on the RSRP calculation", China Telecom, Feb 2018.

Appendix 1: 2D DFT precoder

The TRxP planar array (or linear array) is illustrated in Figure 5.4.4.1.3-1 in TR37.840. In this plot, the steering azimuth angle is φ , and the steering zenith angle is θ .

Figure 5.4.4.1.3-1: Geometry distribution of AAS with multiple columns array

The 2D DFT beam precoder (virtualization weight vector) is used for the calibration purpose. The 2D sub-array partition model is assumed for generating the virtualization weight vector. And one TXRU is only connected to antenna elements with the same polarization. In this case, the weight vector for the TXRU mapping to KxL antenna elements at the direction of (ϕ_i, ϕ_j) is given by equation 1 as follows

$$\mathbf{g}(\varphi_i,\,\theta_j) = \mathbf{v}_s \otimes \mathbf{w_0} \tag{1}$$

- The length of $\mathbf{w_0}$ is given by $K = M/M_p$, M_p is the number of TXRU in vertical domain, M is the number of antenna elements in one polarization in vertical domain;
- The length of \mathbf{v}_i is given by $L = N/N_p$, N_p is the number of TXRU in horizontal domain, N is the number of antenna elements in one polarization in horizontal domain.
- w_{o} (vertical virtualization weight vector) for 0 =1,...,M $_{\text{p}}$ is given by

$$W_{k,o} = \frac{1}{\sqrt{K}} exp\left[-j\frac{2\pi}{\lambda}(k-1)d_v\cos\theta_j\right]$$
 for $k=1,...,K$

- \mathbf{v}_{s} (horizontal virtualization weight vector) for S =1,..., N is given by

$$v_{l,s} = \frac{1}{\sqrt{L}} exp\left(-j\frac{2\pi}{\lambda}(l-1)d_H \sin(\theta_j)\sin(\varphi_i)\right)$$
 for $l=1,...,L$

Appendix 2: Collected samples

Twenty-one 3GPP members provided the calibration results, including CATR, CATT, CEWiT, China Telecom, CMCC, Ericsson, Huawei, Intel, ITRI, LG Electronics, MediaTek, Motorola Mobility/Lenovo, NEC, Nokia, NTT DOCOMO, OPPO, Qualcomm, Samsung, Sharp, vivo and ZTE. A summary of the collected samples of each test environment and evaluation configuration is shown in Table 9Error: Reference source not found.

Table 9 Sample statistics for ITU-R test environments

Test environment	Evaluation configuration	Channel model / Topology		Number of samples	DL wideband SINR difference compared to average SINR (at 50%- tile CDF point)
Indoor Hotspot -	Config. A (4 GHz)	Channel	12TRxP	16	<0.8 dB
eMBB		model A	36TRxP	15	<0.5 dB
		Channel	12TRxP	18	<0.9 dB
		model B	36TRxP	16	<0.4 dB
	Config. B (30 GHz)	Channel	12TRxP	17	<2.2 dB
		model A/B	36TRxP	14	<2.2 dB
	Config. C (70 GHz)	Channel	12TRxP	16	<1.6 dB
		model A/B	36TRxP	12	<1.9 dB
Dense Urban -	Config. A (4 GHz)	Channel mod	Channel model A		<1.3 dB
eMBB		Channel model B		18	<1.3 dB
	Config. B (30 GHz)	Channel model A/B		18	<2.4 dB
Rural - eMBB	Config. A (1732 m, 700 MHz)	Channel model A		18	<0.8 dB
		Channel model B		20	<0.9 dB
	Config. B (1732 m, 4 GHz)	Channel model A		18	<0.9 dB
		Channel model B		20	<1.2 dB
	Config. C (LMLC, 6000 m, 700	Channel model A		15	<0.9 dB
	MHz)	Channel model B		16	<1.0 dB
Urban Macro - mMTC	Config. A (500 m, 700 MHz)	Channel model A		15	<0.9 dB
		Channel model B		16	<0.6 dB
	Config. B (1732 m, 700 MHz)	Channel model A		15	<1.2 dB
		Channel model B		16	<0.6 dB
Urban Macro -	an Macro - Config. A (4 GHz) Channel model A		15	<0.9 dB	
URLLC		Channel model B		17	<1.0 dB
	Config. B (700 MHz)	Channel model A		15	<0.9 dB
		Channel model B		16	<1.3 dB

Appendix 3: RSRP calculation for UE with analog beamforming

The RSRP calculation for UE with analog beamforming is given by formula (8.1-1) in TR36.873, with U being the number of receive TXRU, and the zenith and azimuth field components of the u-th receiving port,

$$F_{_{r_{X,M,B}}}(\theta_{_{n,m,ZOA}},\phi_{_{n,m,AOA}})$$
 and $F_{_{r_{X,M,g}}}(\theta_{_{n,m,ZOA}},\phi_{_{n,m,AOA}})$, replaced by the following (see also, e.g., [4][5])

$$F_{r_{x,u,\theta}}\left(\,\theta_{_{n,m,ZOA}},\phi_{_{n,m,AOA}}\right) = \sum\nolimits_{_{I=1}}^{_{N_{R}}}g_{_{I}}\exp\left(\,j\,2\pi\lambda_{_{0}}^{_{-1}}\left(\,\hat{r}_{r_{x,n,m}}^{_{I}}.\overline{d}_{_{r_{X,I}}}\right)\right)F_{_{r_{X,I},\theta}}\left(\,\theta_{_{n,m,ZOA}},\phi_{_{n,m,AOA}}\right)$$

$$F_{r_{x,u,\varphi}}(\theta_{n,m,ZOA},\phi_{n,m,AOA}) = \sum\nolimits_{t=1}^{N_R} g_t \exp\left(j2\pi\lambda_0^{-1}\left(\hat{r}_{r_{x,n,m}}^T.\overline{d}_{r_{x,l}}\right)\right)F_{r_{x,l},\varphi}(\theta_{n,m,ZOA},\phi_{n,m,AOA})$$

where $F_{rx,l,\theta}(\theta_{n,m,ZOA},\phi_{n,m,AOA})$ and $F_{rx,l,q}(\theta_{n,m,ZOA},\phi_{n,m,AOA})$ are the zenith and azimuth field pattern of the l-th receive

antenna element, $N_{\rm R}$ is the number of receive antenna elements that forms the virtualization of receive port u; $\hat{r}_{rx,n,m}$

is the spherical unit vector at receiver side with azimuth arrival angle $\phi_{n,m,AOA}$ and elevation arrival angle $\theta_{n,m,ZOA}$, $d_{rx,l}$ is the location vector of receive antenna element l, and $\mathbf{g} = [g_1, ..., g_l, ...g_{NR}]^T$ is the analog beamformer vector which is given by equation (1) in Appendix 1, at pre-defined analog beam direction of (azimuth, zenith)= (ϕ_i, θ_j) at UE side as given in Section 4.1 and 4.2.