Матлог. Основные записи

Мастера конспектов 22 января 2020 г.

к содержанию	к списку объектов	2

Основные	моменты.

Содержание	
------------	--

1	Лекция 1.	3
2	Лекция 2.	4

1 Лекция 1.

Определение 1. *Конкатенация* - записали подряд два слова. (A - алфавит, A^* - слова).

Определение 2. *Подслово* - как есть, *вхождение* - учитываем, где начинается подслово. Если подслово стоит в начале, то мы его и называем *начало*, а обозначаем как $\psi \sqsubseteq \varphi$.

Определение 3. w[w'/u, k] - замена подслова w' на u, начинающегося в позиции k.

Определение 4. Фиксированное счётное множество Prop - *пропозициональные переменные*. Язык \mathscr{L} классической пропозициональной логики состоит из переменных, а также символов \to , \lor , \land , \neg и круглых скобочек.

Определение 5. Form (формулы) - наименьшее множество слов в алфавите, замкнутое относительно следующих порождающих правил:

- если $p \in \text{Prop}$, то $p \in \text{Form}$;
- если $\{\varphi, \psi\} \subseteq$ Form, то $(\varphi * \psi) \in$ Form, где * любая из операций в определении выше (если отрицание, то отсительно одногой формулы, конечно).

Лемма 1. Пусть $\{\varphi,\psi\}\subseteq \text{Form } makoeы, что <math>\psi\sqsubseteq\varphi$. Тогда $\psi=\varphi$.

Доказательство. По индукции по мощности большей формулы. База - переменная, очевидно. Иначе ψ представляется в виде "композиции" единственным образом, тогда возьмём первую часть этой композиции и сравним с первой частью того, как φ представляется в виде "композиции". По предположению индукции они должны совпасть, продолжение тривиально.

Лемма 2. Каждую $\varphi \in \text{Form} \setminus \text{Prop}$ можно единственным способом представить в виде $(\theta \to \chi)$, $(\theta \lor \chi)$, $(\theta \land \chi)$ или $\neg \theta$, где $\{\theta, \chi\} \subseteq \text{Form}$ (это я везде безграмотно называю композицией).

 \Box

Доказательство. От противного по лемме 2.

Определение 6. Для каждой $\varphi \in$ Form определим $\mathrm{Sub}(\varphi) := \{ \psi \in$ Form $|\psi \preccurlyeq \varphi \}$ - $nod \phi op-$ мулы.

Лемма 3. Пусть $\varphi \in \text{Form.}$ Тогда каждое вхождение \neq или (является началом вхождения некоторой подформулы.

Доказательство. Возвратная индукция по длине формулы.

Пемма 4. Множество подслов φ - объединение множеств подслов элементов его композиции и его самого.

Доказательство. Из лемм выше.

Определение 7. *Оценка* (v) - произвольная функция из Prop в $\{0,1\}$, которую можно расширить и до Form (v^*) посредством применения операций к переменным. Если $v^*(\varphi)=1$, то порой пишут $v \Vdash \varphi$.

Определение 8. Формулу называют *выполнимой*, если $v \Vdash \varphi$ для некоторой оценки, и *общезначимой* (тождественно истинной или тавтологией), если $v \Vdash \varphi$ для всех оценок.

Определение 9. Формула семантически следует из множества формул и записывается $\Gamma \vDash \varphi$, если для любой оценки v, любоя формула из множества истина, то φ истина. Формулы называют семантически эквивалентны, и пишут $\varphi \equiv \psi$, если $\vDash \varphi \leftrightarrow \psi$.

2 Лекция 2.

В Гильбертовском исчислении для классической пропозициональной логики используются следующие схемы аксиом (implication, conjunction, disjunction, negotiation):

- (I1). $\varphi \to (\psi \to \varphi)$;
- (I2). $\varphi \to (\psi \to \chi) \to ((\varphi \to \psi) \to (\varphi \to \chi));$
- (C1). $\varphi \wedge \psi \rightarrow \varphi$;
- (C2). $\varphi \wedge \psi \rightarrow \psi$;
- (D1). $\varphi \to \varphi \lor \psi$;
- (D2). $\psi \to \varphi \lor \psi$;
- (D3). $(\varphi \to \chi) \to ((\psi \to \chi) \to (\varphi \lor \psi \to \chi));$
- (N1). $(\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi)$;
- (N2). $\neg \varphi \rightarrow (\varphi \rightarrow \psi)$;
- (N3). $\varphi \vee \neg \varphi$,

а также, одно npaвило вывода, которое называется modus ponents:

$$\begin{array}{cccc} \varphi & \varphi & \rightarrow & \psi \\ \hline & \psi & \end{array}$$