My M&M OCD

Yoni

13 04, 2025

Intro

Objective of Simulation

The goal of this simulation is to test the statistics of M&M and other stacks even Chocolate lentils by color.

I wanted to know what is the chance of my finishing the package of M&M without mixing any color in one bite, eating them 2 by 2

In addition, here are some BI incite that needed to be checked:

- 1. What is the probability of M&M packages packaged fairly?
- 2. What is the probability of M&M packages packaged without one color?
- 3. How does the size of the package or number of colors affect this probability?

Method

I do not have an inner information of how does (M&M)[https://www.mms.com/en-us] make their delicious snacks nor we know how they make sure each package have fair amount of each color. Therefore, the method I chose is based of simulation of some M&M bags, according to the most common sizes of packages.

Each time we sample x lentils(units of M&M), name them by colors (V1,V2...), and see the results for many packages as a statistic data.

my hypothesis is that the probability of perfect package (aka a package with all colors number been even) is very small, at least for a standard 6 colors pack.

Parameters

Basic parameters:

[1] "The avarage number of lentils per color is 45.79"

Creating of the Sample

General Sample

In order to test the theoretical data, we need to simulate it using customize functions. here are there:

- Create_bag- function to create one snack package for chosen package size and number of colors.
- sample_MnM- function to create n bags from the Create_bag function.

```
## [1] "One bag:"
         1 2 3 4 5 6
##
## [1,] 18 15 17 25 12 14
## [1] "3 bags:"
##
         Red Blue Green Orange Yellow Brown
## Bag 1
                              0
## Bag_2
           2
                1
                      3
                              2
                                     1
                                           1
## Bag 3
           0
                3
                       1
                              1
                                     2
                                           3
```

Preview Graph

Now will be creating n bugs of M&M columns:

- 1. V1:V6- the number of lentils per color
- 2. even count- how many evens colors there are
- 3. even_evens- are the uneven colors even
- 4. Variance-variance of lentils per color
- 5. low_col- sum true if one color's count is lower than $\frac{2}{3}$ of expected value
- 6. min- the lowest color in each row

here are the first rows:

```
## # A tibble: 6 x 12
##
            Blue Green Orange Yellow Brown even_count even_evens low_col Variance
##
     <int> <int> <int>
                          <int>
                                 <int> <int>
                                                    <dbl> <lgl>
                                                                         <dbl>
                                                                                   <dbl>
                                                                                   55.4
## 1
        49
               41
                     43
                             53
                                     54
                                           35
                                                         1 FALSE
                                                                             0
## 2
        47
               46
                     49
                             48
                                     48
                                            36
                                                         4 TRUE
                                                                             0
                                                                                   23.5
## 3
        46
               45
                     51
                             44
                                     44
                                            45
                                                         3 FALSE
                                                                             0
                                                                                    6.97
## 4
        37
               40
                     34
                             53
                                     57
                                            53
                                                                             0
                                                                                   95.9
                                                         2 TRUE
## 5
        43
               50
                     47
                             46
                                     49
                                            40
                                                         3 FALSE
                                                                             0
                                                                                   14.2
        41
                                                                                   30.7
## 6
               54
                     42
                             48
                                     40
                                            49
                                                         4 TRUE
## # i 2 more variables: min <int>, all_even <lgl>
```

[1] "summary of all colors Distibution:"

##		Min.	1st	Qu.	Median	Mean	3rd	Qu.	Max.	Var
##	Red	26		42	46.0	46.29000		50	64	36.06348
##	Blue	27		41	46.0	45.47625		49	66	37.33360
##	Green	31		42	46.0	45.92500		50	66	36.37484
##	Orange	25		41	46.0	45.46250		49	70	39.83088
##	Yellow	28		42	45.0	45.57875		50	64	34.87740
##	Brown	29		41	45.5	45.74750		50	63	35.76345

Distibution of Eveness of Colors

Statisics Checking of the Simullation

Test Expected Value

to see is the μ of the lentils per color are fair, we will test it per column with t.test for each color. Here is the result, none of them bellow 5% P. value

```
## Red Blue Green Orange Yellow Brown ## "1.82%" "15.00%" "51.94%" "14.56%" "31.76%" "84.98%"
```

Now we will do the same checking for 2 samples, to see whether there is correlation between each 2 colors distribution.

for each row i and column j, 1) if i==j, this it the check from before of the expected value to n_unit/n_color 2) if i!=j, this is two samples test of same expected value hypothesis

Colors Correlation Map

Now here Is visualization of the actual data per color

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Variance Distribution Checking

We know that the distribution of variance is approximately Gamma distribution:

$$f(x) = \frac{1}{(\Gamma(\alpha)\theta^{\alpha})} x^{\alpha-1} e^{-x/\theta}$$

We can see that the variance distribution is Gamma like with shape and rate as seen below

[1] "The parameters of the gamma shaped variance is shape 2.62 and rate 0.059"

Density Plot with Gamma Distribution

Are All Even in the Sample?

n*m types of snacks

I will create a function that create sample for each number of colors and package size we want, and then calculate some interesting parameters

```
color_op<- 2:8
grams_op<- c(25,45,150,250,330,500,750,1000)
n_unit_op<- grams_op/gram
nn=800</pre>
```

We will make the multiple sample. Here is some random rows:

```
##
     n_unit n_color even_count even_evens
                                             var_col all_even low_color
## 1
     164.8
                     0.4881250 0.12343750
                                            41.13813
                                                      0.06750
                                                                 0.00625
     362.6
## 2
                     0.5054688 0.06328125
                                            43.35938
                                                       0.00625
                                                                 0.00625
                  8
## 3 1098.9
                  6
                     0.5095833 0.08041667 174.88875
                                                       0.02000
                                                                 0.00000
     164.8
                     0.4942500 0.10025000
                                            34.95687
## 4
                  5
                                                       0.03625
                                                                 0.01375
## 5
       49.5
                     0.4840000 0.09700000
                                           10.57250
                                                      0.01875
                                                                 0.21500
##
     smallest_col
## 1
               22
## 2
               28
## 3
              142
               17
## 4
## 5
                2
```

Deep Insight on the Data

here are some insights:

does the Uneven Colors Even

Here is probability of all even, and whether there is pattern.

<Guides[1] ggproto object>

##

colour : "none"

Were all Colors Evens

As we can see, only the small package (less than 50 lentils) have high probability of at least one color to appear severely lower.

Therefore, splitting package by color on the big ones should be relatively even.

using regression for correlation check

```
##
## Call:
## lm(formula = mega_snack_2$even_count ~ mega_snack_2$n_color +
       mega_snack_2$n_unit)
##
##
##
  Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
  -0.51776 -0.15963
                      0.00218
                               0.15624
                                        0.50835
##
##
##
  Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                         4.963e-01
                                    2.470e-02
                                                20.094
                                                         <2e-16 ***
##
                                                          0.754
## mega_snack_2$n_color -1.316e-03
                                    4.205e-03
                                                -0.313
## mega_snack_2$n_unit
                         2.191e-05
                                    2.353e-05
                                                 0.931
                                                          0.352
##
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
##
## Residual standard error: 0.2438 on 837 degrees of freedom
## Multiple R-squared: 0.001152,
                                    Adjusted R-squared: -0.001235
```

```
## F-statistic: 0.4826 on 2 and 837 DF, p-value: 0.6174
##
## Call:
## lm(formula = mega_snack_2$all_even ~ mega_snack_2$n_color + mega_snack_2$n_unit +
      mega_snack_2$color_No2)
##
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -0.16455 -0.06633 -0.03162 0.01858 0.85571
##
## Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                              1.552e-01 1.985e-02 7.823 1.56e-14 ***
## mega snack 2$n color
                             -2.946e-02 3.145e-03 -9.370 < 2e-16 ***
## mega_snack_2$n_unit
                             -1.891e-05 1.760e-05 -1.075
                                                              0.283
## mega_snack_2$color_No2TRUE 6.875e-02 1.271e-02
                                                    5.410 8.25e-08 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.1823 on 836 degrees of freedom
## Multiple R-squared: 0.1239, Adjusted R-squared: 0.1207
## F-statistic: 39.4 on 3 and 836 DF, p-value: < 2.2e-16
```

Conclusions

Data Structure

The simulation created

Main Q: Eating M&M by Two

Although there is no clear pattern to the right M&M package for all the colors to have even count, maybe different approach can find a clear reason for more or less couples of M&M.

The general probability of all colors to be even is 4% for small 50g package 2.8% for big 1000g package, and overall 2.8%, which is less than I expected.

Summery