Introduction and Background to Multilevel **Analysis**

Dr. J. Kyle Roberts

Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning

Background and History of Multilevel Analysis

- Robinson (1950) and the problem of contextual effects
- The "Frog-Pond" Theory

History, cont.

- Statistical models that are not hierarchical sometimes ignore nesting structure and therefore report underestimated standard errors.
- Multilevel techniques are more efficient than other typical OLS techniques
- Multilevel techniques assume a General Linear Model framework and can thus perform all types of analyses.
- Multilevel techniques can go beyond questions of "Do schools differ?" to ask questions of "Why do schools differ?"

Types of Multilevel Structures

- Students nested in classrooms
- Students nested in schools
- Students nested in classrooms nested in schools.
- Measurement occasions nested inside individuals
- Students cross-classified by middle and high school

Do We Really Need Multilevel Analysis?

- "All data are multilevel!"
- The problem of independence of observations
 - GPA and the SAT in different high schools
 - SES as it relates to school achievement
- The inefficiency of OLS techniques

Differences Between Multilevel and OLS Methods

- MLA is based on maximum likelihood and empirical Bayesian techniques
- 1+1=1.5

Notating the Multilevel ANOVA

 Recall from Analysis of Variance (ANOVA) that we may notate a model testing for differences between groups as:

$$Y_{ij} = \mu + \alpha_j + \epsilon_{ij}, \ \epsilon_{ij} \sim \mathcal{N}(0, \sigma^2), \ j = 1, \dots, k, \ i = 1, \dots, n_j$$

We can further notate the above model as:

$$Y_{ij} = \gamma_{00} + u_{0j} + e_{ij}$$

which may be decomposed as a Level-1 model

$$Y_{ij} = \beta_{0j} + e_{ij}$$

and Level-2 model

$$\beta_{0j} = \gamma_{00} + u_{0j}$$

Notating the Multilevel ANOVA (cont.)

 This means that any individual score within each group may be thought of as

$$Y_{ij} = \beta_j + e_{ij} \begin{cases} Y_{11} = \beta_1 + e_{11} \\ Y_{21} = \beta_1 + e_{21} \\ Y_{31} = \beta_1 + e_{31} \\ & \cdots \\ Y_{ij} = \beta_j + e_{ij} \end{cases}$$

And any group score may be modeled as:

$$\beta_{j} = \gamma_{00} + u_{0j} \begin{cases} \beta_{1} = \gamma_{00} + u_{01} \\ \beta_{2} = \gamma_{00} + u_{02} \\ \beta_{3} = \gamma_{00} + u_{03} \\ \dots \\ \beta_{j} = \gamma_{00} + u_{0j} \end{cases}$$

Graphical Example of Multilevel ANOVA

Understanding Errors

Heuristic Example of Multilevel ANOVA

- Suppose that we have a dataset in which we have scores from 160 students nested inside 16 different schools.
- The dataset may be found at http: //faculty.smu.edu/kyler/courses/7309/sciach.txt

```
> str(sciach)
'data.frame': 160 obs. of 10 variables:
$ TD
              : int 1 2 3 4 5 6 7 8 9 10 ...
              : int 1 1 1 1 1 1 1 1 1 1 ...
$ GROUP
 $ SCIENCE
              : int 1 1 2 2 3 3 4 4 5 5 ...
$ URBAN
              : int 8776655532...
 $ GENDER.
              : int 1 1 1 1 1 2 2 2 2 2 2 ...
$ CONS
              : int 1 1 1 1 1 1 1 1 1 ...
              : nim -6.43 - 7.43 - 7.43 - 8.43 - 8.43 \dots
 $ URB.MEAN
$ SCH.RES
              : num 5555555555...
 $ SCH.RES.MEAN: nim -4.97 -4.97 -4.97 -4.97 ...
 $ GEND.FAC
              : Factor w/ 2 levels "Female", "Male": 2 2 2 2 2 1 1 1 1
```

> sciach\$GROUP <- factor(sciach\$GROUP)

> sciach <- read.table("sciach.txt", header = T)</pre>

GROUP

Residuals 144 285.0 1.979

ANOVA of Science Achievement Data

 We can run a simple ANOVA on the science achievement data comparing the means of the 16 schools.

```
> mean(sciach$SCIENCE)
[1] 10.6875
> with(sciach, tapply(SCIENCE, GROUP, mean))
    2 3 4 5 6 7 8 9 10 11 12
3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
 13 14 15 16
15.0 16.0 18.5 19.5
> anova(aov(SCIENCE ~ GROUP, sciach))
Analysis of Variance Table
Response: SCIENCE
         Df Sum Sq Mean Sq F value Pr(>F)
```

15 3859.4 257.292 130 < 2.2e-16

Running the Same Model as a Multilevel ANOVA

 Recall from the multilevel ANOVA notation that we want to test:

```
Y_{ij} = \gamma_{00} + u_{0j} + e_{ij}
> m0 <- lme(SCIENCE ~ 1, random = ~1 | GROUP, sciach)
> summary(m0)
Linear mixed-effects model fit by REML
Data: sciach
       AIC BIC logLik
  643.8561 653.0628 -318.9281
Random effects:
Formula: ~1 | GROUP
        (Intercept) Residual
        5.052846 1.406829
StdDev:
Fixed effects: SCIENCE ~ 1
              Value Std.Error DF t-value p-value
(Intercept) 10.6875 1.268098 144 8.427975
```

Comparing OLS and MLA Estimates

> cbind(means = with(sciach, tapply(SCIENCE, GROUP,

```
mean)), coef(m0))
+
   means (Intercept)
     3.0
            3.059135
2
     4.0
            4.051442
3
     5.0
         5.043750
4
     6.0
         6.036058
5
     7.0
         7.028365
6
     8.0
         8.020673
7
     9.0
            9.012981
8
    10.0
           10.005288
9
    11.0
           10.997596
10
    12.0
           11.989904
11
    13.0
           12.982212
12
    14.0
           13.974519
13
    15.0
           14.966827
14
    16.0
           15.959135
15
    18.5
           18.439904
16
    19.5
           19.432212
```

Checking Assumptions

- > par(mfrow = c(1, 2))
- > boxplot(resid(m0) ~ GROUP, sciach, horizontal = T,
- + main = "Homogeneity of Variance")
- > qqnorm(resid(m0), main = "QQplot for Null Model")

Homogeneity of Variance

QQplot for Null Model

Model Fit Indices

• Chi-square or χ^2

$$\chi^2 = -2 * \ell$$

• Akaike Information Criteria (AIC)

$$AIC = -2 * \ell + 2K$$

• Bayesian Information Criteria (BIC)

$$BIC = -2 * \ell + K * Ln(N)$$

Fixed and Random Effects

(a) No Random Effects

(b) Random Intercepts

Fixed and Random Effects

3.0

Acting Out Prescription Level

(c) Random Slopes

(d) Random Intercepts and Slopes

Recalling the OLS Linear Model

• Consider the following 1-level regression equation:

$$y = a + bx + \epsilon$$

where:

- y the response variable
- a the y-intercept or the expected value when the covariate is 0
- b the expected change in the response variable (y) for every one unit change in the covariate
- x the covariate
- \bullet ϵ the residual term
- This model may also be written as:

$$y = \beta_0 + \beta_1 x + \epsilon$$

Adding a Random Effect for the Intercept

 We may further modify this equation to allow for variation among the intercepts for each pre-identified group such that:

$$y = \beta_0 + \beta_1 x + \epsilon$$

now becomes:

$$y_{ij} = \gamma_{00} + \gamma_{10}x_{ij} + u_{0j} + \epsilon_{ij}$$

where:

- y_{ij} is the response variable for individual i in group j
- γ_{00} the y-intercept or the expected value when the covariate is 0
- γ_{10} the expected change in the response variable (y) for every one unit change in the covariate
- x_{ij} the covariate term for each individual; the subscripts i and j mean that this variable is measured at the first level
- u_{0i} the residual term defining the random variation of each of the group intercepts around the grand intercept γ_{00}
- ϵ_{ij} the residual term defining the random variation of each person around their predicted group regression equation

Breaking Down the Mixed Effects Model into Levels

• From the previous slide, our mixed effects model:

$$y_{ij} = \gamma_{00} + \gamma_{10}x_{ij} + u_{0j} + \epsilon_{ij}$$

may be thought of as a 2-level model where:

• Level 1:

$$y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + \epsilon_{ij}$$

• Level 2:

$$\beta_{0j} = \gamma_{00} + u_{0j}$$
$$\beta_{1j} = \gamma_{10}$$

• where:

$$u_{0j} \sim \mathcal{N}(0, \sigma_{u_{0j}}^2)$$

 $\epsilon_{ij} \sim \mathcal{N}(0, \sigma_{\epsilon_{ij}}^2)$

Understanding Errors Again

Running the Linear Model in R

```
> m.lm <- lm(SCIENCE ~ URBAN, sciach)
> summary(m.lm)
Call:
lm(formula = SCIENCE ~ URBAN, data = sciach)
Residuals:
   Min
           1Q Median 3Q
                                  Max
-5.3358 -2.1292 0.4919 2.0432 5.0090
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.25108  0.59371 -2.107  0.0367
URBAN
           0.82763 0.03863 21.425 <2e-16
Residual standard error: 2.592 on 158 degrees of freedom
Multiple R-squared: 0.7439, Adjusted R-squared: 0.7423
F-statistic: 459 on 1 and 158 DF, p-value: < 2.2e-16
```

Running the Linear Model in R (cont.) > plot(SCIENCE ~ URBAN, sciach)

- > abline(lm(SCIENCE ~ URBAN, sciach))


```
Running the Multilevel Model in R
> m1 <- lme(SCIENCE ~ URBAN, random = ~1 | GROUP,
      sciach)
> summary(m1)
Linear mixed-effects model fit by REML
Data: sciach
          BIC logLik
     AIC
 508.094 520.3444 -250.047
Random effects:
Formula: ~1 | GROUP
       (Intercept) Residual
StdDev: 9.29817 0.809449
Fixed effects: SCIENCE ~ URBAN
               Value Std.Error DF t-value p-value
(Intercept) 22.302911 2.4263101 143 9.192111
           -0.805228 0.0479985 143 -16.776087
URBAN
Correlation:
     (Intr)
URBAN -0.285
```

< .0001

m1

Comparing Models

```
> anova(m0, m1)
   Model df    AIC    BIC    logLik    Test L.Ratio
m0     1    3 643.8561 653.0628 -318.9281
m1     2    4 508.0940 520.3444 -250.0470 1 vs 2 137.7621
   p-value
m0
```

• So we can see that by the addition of a single fixed effect to our model, we reduced the AIC by \sim 135 and the BIC by \sim 133.