

Pagina 1 din 2

Olimpiada de Fizică Etapa pe județ 2 februarie 2013 Subiecte

1. Subiectul 1 – Gâza şi... optica

Pe o suprafață orizontală plană se află o oglindă concavă foarte subțire cu axa optică principală verticală. La înălțimea de 100cm de vârful oglinzii se află tavanul camerei pe care se găsește o gâză (considerată punctiformă) situată pe axa optică principală a oglinzii (figura 1).

Considerați că dintre toate suprafețele doar suprafața din partea concavă a oglinzii sferice este lucioasă și reflectă lumina.

- a) Calculați raza de curbură a oglinzii sferice concave știind că distanța dintre gâză și imaginea sa reală în oglindă este *minimă*.
- b) Calculați mărirea liniară tranversală dată de oglindă în cazul de la punctul a).
- c) Considerați acum oglinda sferică concavă așezată pe o oglindă plană orizontală de suprafață mare. Pe suprafața oglinzii concave se toarnă puțin lichid transparent de indice de refracție $n\!=\!1,\!5$ astfel că suprafața liberă a lichidului este orizontală. Gâza se află tot pe tavan, la 100cm față de vârful oglinzii sferice, pe axa optică principală verticală a acesteia (figura 2). Calculați raportul dintre distanța minimă și distanța maximă dintre imaginile care se formează.

2. Subiectul 2 – Lentile

A. O lentilă compusă

În zona centrală a unei lentile convergente subțiri, cu diametrul 2R = 2cm, având distanța focală $f_1 = 10$ cm, există un orificiu circular, cu diametrul 2r = 1cm. Centrul orificiului este situat chiar pe axa optică principală a lentilei. În

acest orificiu se introduce o lentilă divergentă cu modulul distanței focale $f_2=20\,\mathrm{cm}$, astfel încât orificiul se astupă complet (figura 3). La distanța $b=20\,\mathrm{cm}$, în fața acestei "lentile compuse", pe axa optică principală, se află o sursă luminoasă punctiformă, S. În cealaltă parte, așezat perpendicular pe axa optică principală, se află un ecran E, care se poate deplasa longitudinal. Determinați valoarea minimă a diametrului petei luminoase de pe ecran, precum și poziția ecranului în acel moment fată de lentilă.

Figura 3

B. Lentilă convergentă încastrată într-un paravan opac

Într-un paravan opac există o deschidere circulară cu raza R=1.5 cm. Pe axa ce trece prin centrul deschiderii şi este perpendiculară pe paravan se află, la o anumită distanță, o sursă luminoasă punctiformă S. Dincolo de paravan, la distanța L=18 cm, se află un ecran plan, perpendicular pe axa ce trece prin S şi prin centrul deschiderii. Când în deschiderea circulară este introdusă o lentilă convergentă care o astupă perfect, pe ecran se observă o pată circulară cu raza $r_1=3$ cm. Păstrând sursa S şi ecranul în aceleași poziții, dar scoțând lentila din deschiderea paravanului, pata circulară de pe ecran se lărgește, raza sa devenind $r_2=4.5$ cm. Determinați distanța focală a lentilei precum şi distanța de la sursă la paravanul opac.

- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subject se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

Pagina 2 din 2

Olimpiada de Fizică Etapa pe județ 2 februarie 2013 Subiecte

3. Subiectul 3 – Măsurări refractometrice

Refractometrele sunt aparate optice utilizate pentru determinarea indicilor de refracție. O categorie de refractometre au la bază măsurători goniometrice. Acestea implică măsurarea unghiului format de direcțiile de propagare a două fascicule de lumină. Dispozitivul experimental este alcătuit dintr-un goniometru, un colimator fix C folosit pentru obținerea unui fascicul paralel și îngust de lumină monocromatică și o lunetă L, care se poate roti pe disc, cu ajutorul căreia se observă fasciculul emergent. Goniometrul este compus dintr-un disc gradat G cu marcaje în grade sexagesimale, în centrul căruia este plasată o măsută ce se poate

marcaje în grade sexagesimale, în centrul căruia este plasată o măsuță ce se poate roti în jurul axului său vertical.

A. Determinarea indicelui de refracție al unui solid.

i	δ	$sin \delta$
i_1	29°45'	0,496
i_2	27°30'	0,462
i_3	26°29'	0,446
i_4	25°32'	0,431
i_5	24°53'	0,421
i_6	24°27'	0,414
i_7	24°15'	0,411
i_8	24°11'	0,410
i_9	24°10'	0,409
i_{10}	24°11'	0,410
i_{11}	24°13'	0,410
i_{12}	24°25'	0,413
i_{13}	25°51'	0,436
i_{14}	29°26'	0,491
i_{15}	31°17'	0,519
i_{16}	33°27'	0,551
i_{17}	35°59'	0,588
i_{18}	39°35'	0,637
i_{19}	43°4'	0,683
i_{20}	45°52'	0,718

Mediul de studiat se consideră sub forma unei prisme optice P care se așează pe măsuță. Se fixează măsuța astfel încât fasciculul să fie incident pe prismă ca în figura 4. Prin plasarea convenabilă a lunetei (în pozițiile L_1 , respectiv L_2) se măsoară valoarea unghiului dintre razele reflectate pe cele două fețe ale prismei. Valoarea obținută este $\alpha=110^\circ$. Ulterior, măsuța se rotește astfel încât fasciculul cade pe una dintre fețele prismei (figura 5). Plasând corespunzător luneta, se măsoară, pentru fiecare poziție a prismei, valoarea unghiului de deviație. În tabelul alăturat sunt date valorile măsurate ale unghiurilor de deviație δ (și valoarea sinusului acestora) corespunzătoare unor unghiuri de incidență i ordonate crescător, dar a căror valoare nu a fost măsurată.

- a) Determinați valoarea unghiului refringent A al prismei.
- b) Deduceți relația cu ajutorul căreia se determină valoarea indicelui de refracție al materialului prismei și calculați această valoare cu trei cifre semnificative.

Figura 5

Câmpul Vizual al Iunctei

Figura 6

B. Determinarea indicelui de refracție al unui lichid

Discul goniometrului este așezat în plan vertical. În centrul său este plasată o prismă etalon având indicele de refracție n_0 =1,50 și unghiul A = 90° (figura 6). Peste prismă este plasată proba M din lichidul al cărui indice de refracție n dorim să-l determinăm. Proba M se iluminează cu un fascicul convergent, care ajunge aproape razant la suprafața de separație dintre cele două medii. Prin deplasarea convenabilă a lunetei L se observă, în câmpul vizual al acesteia, linia de demarcație a celor două zone, cea luminoasă și cea întunecată. Unghiul format de verticală cu linia de demarcație a celor două zone este β = 43°4′.

- a) Explicati aparitia celor două zone.
- b) Determinați valoarea indicelui de refracție n al probei, cu trei cifre semnificative.
- c) Explicați de ce, în cazul utilizării luminii albe, linia de separare dintre cele două zone este colorată.

Precizare: Dacă veți considera necesar, puteți folosi tabelul de la punctul A și pentru rezolvarea cerințelor de la punctul B.

Subiecte propuse de:

Florea Uliu — Departamentul de Fizică, Universitatea din Craiova

Seryl Talpalaru – Colegiul Național "Emil Racoviță", Iași

Florina Bărbulescu — Centrul Național de Evaluare și Examinare, București Liviu Blanariu — Centrul Național de Evaluare și Examinare, București

- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subject se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.