Verfahren zur magnetisch-induktiven Bestimmung der Durchflußrate eines Mediums

Die Erfindung bezieht sich auf ein Verfahren zur magnetisch-induktiven Bestimmung der Durchflußrate eines Mediums, das ein Meßrohr in Richtung der Meßrohrachse durchströmt, wobei das Meßrohr von einem Magnetfeld im wesentlichen senkrecht zur Meßrohrachse durchsetzt wird, wobei in zumindest eine im wesentlichen senkrecht zur Meßrohrachse angeordnete Meßelektrode eine Meßspannung induziert wird und wobei die induzierte Meßspannung Information über den Volumenstrom des Mediums in dem Meßrohr liefert. Desweiteren betrifft die Erfindung eine entsprechende Vorrichtung.

Magnetisch-induktive Durchflußmeßgeräte nutzen für die volumetrische Strömungsmessung das Prinzip der elektrodynamischen Induktion aus: Senkrecht zu einem Magnetfeld bewegte Ladungsträger des Mediums induzieren in gleichfalls im wesentlichen senkrecht zur Durchflußrichtung des Mediums angeordnete Meßelektroden eine Spannung. Diese in die Meßelektroden induzierte Spannung ist proportional zu der über den Querschnitt des Rohres gemittelten Strömungsgeschwindigkeit des Mediums; sie ist also proportional zum Volumenstrom.

Die Meßelektroden sind mit dem Medium entweder galvanisch oder kapazitiv gekoppelt. Kommen die Meßelektroden mit dem Medium in Kontakt, so bildet sich im Laufe der Zeit ein Belag an der Oberfläche der Meßelektroden. Folge der Belagsbildung ist eine Fehlfunktion des Durchflußmeßgerätes. Besteht der Belag aus einem nicht-leitfähigen Material, so liefert das Durchflußmeßgerät überhaupt keine Meßwerte mehr.

Obwohl nachfolgend als Ursache für die Fehlfunktion bzw. die Nichtfunktion des Durchflußmeßgerätes stets die Belagsbildung an der Meßelektrode beschrieben wird, ist die Erfindung generell auch zur Erkennung sonstiger

2

PCT/EP2004/007976

Fehlfunktionen, die an einem magnetisch-induktiven Durchflußmeßgerät auftreten können, verwendbar.

Um unerwünschte Beläge aus leitfähigem Material von den Meßelektroden zu entfernen, schlägt die EP 0 337 292 vor, in vorgegebenen Zeitabständen die Meßelektroden durch Anlegen einer elektrischen Gleich- oder Wechselspannung zu reinigen. Trotz der beachtlichen Vorteile, die eine automatische Reinigung der Meßelektroden gegenüber einer manuell durchgeführten Reinigung aufweist, hat die bekannte automatische Reinigung der Meßelektroden auch Nachteile: Sie läßt sich erstens nicht universell bei Belägen aus beliebigen Materialien einsetzen - sie funktioniert nur bei der Beseitigung von leitfähigen Belägen. Desweiteren erfolgt die automatische Reinigung präventiv in vorgegebenen Zeitabständen; es ist also nicht sichergestellt, daß die Reinigung zu einem Zeitpunkt erfolgt, wenn sie zwingend erforderlich ist.

Präventives Reinigen der Meßelektroden ist aus mehreren Gründen störend und unerwünscht: So ist innerhalb eines gewissen Zeitraumes nach dem Reinigungsvorgang keine volumetrische Durchflußmessung möglich, da sich die Meßspannung an den Meßelektroden erst wieder aufbauen muß. Weiterhin erfolgt die Stromzufuhr zwecks Reinigung der Meßelektroden während einer fest vorgegebenen Zeitdauer, da der Grad der Belagsbildung zum Zeitpunkt der Reinigung weitgehend unbekannt ist. Es ist also dem Zufall oder der entsprechenden Erfahrung des Bedienpersonals überlassen, ob nach erfolgter automatischer Reinigung der gewünschte optimale Zustand der Meßelektroden tatsächlich erreicht wird. Im Normalfall ist davon auszugehen, daß sich nach erfolgter automatischer Reinigung entweder noch ein Belag auf der Meßelektrode befindet oder daß die Meßelektrode durch zu langes Anlegen der Reinigungsspannung beschädigt worden ist.

Noch gravierender schlagen die Unterbrechungen des Meßvorgangs zu Buche, wenn die Meßelektroden vorsorglich von nicht-leitfähigen Belägen befreit werden müssen. Die Standzeiten des Durchflußmeßgerätes sind in diesem Fall noch größer, da das Entfernen von nicht-leitfähigen Belägen nur auf mechanischem Wege erfolgen kann, d. h. das Durchflußmeßgerät muß ausgebaut und die Meßelektroden müssen von Hand gereinigt werden.

Aus der EP 1 108 988 A1 ist eine Lösung bekannt geworden, wie eine Belagsbildung gezielt und automatisch erkannt werden kann, um dann bei Bedarf von der Meßelektrode entfernt zu werden. Hierzu wird ein definiertes Testsignal auf die Meßelektrode gegeben wird; anhand des Antwortsignals auf das definierte Testsignal und/oder anhand einer aus dem Antwortsignal auf das definierte Testsignal ermittelten Bezugsgröße wird festgestellt, ob die Meßelektrode korrekte Meßwerte liefert. Das Antwortsignal auf das definierte Testsignal bzw. die aus dem Antwortsignal auf das definierte Testsignal ermittelte Bezugsgröße wird im folgenden der Einfachheit halber als Istwert bezeichnet. Durch das erfindungsgemäße Verfahren wird eine sich schleichend einstellende Fehlfunktion des Durchflußmeßgerätes frühzeitig erkannt, so daß ihr nachfolgend gezielt entgegengewirkt werden kann. Insbesondere wird in dieser Offenlegungsschrift vorgeschlagen, den jeweiligen Istwert mit einem vorgegebenen Sollwert zu vergleichen und eine Fehlfunktion anzuzeigen, auszugeben und/oder abzuspeichern, wenn der Istwert von dem Sollwert abweicht.

Die bekannte Lösung bringt über weite Strecken den gewünschten Erfolg. Meßfehler und Fehlinterpretationen können jedoch dann auftreten, wenn die Relaxationszeit des Antwortsignals auf das Testsignal an einer Meßelektrode die Zeitdauer einer Meßperiode überschreitet. Infolge des Umschaltens des Magnetfeldes nach einer Meßperiode kann dann der Fall auftreten, daß die Regel-/Auswerteeinheit ein Erreichen des Sollwertes signalisiert; jedoch ist der vermeintliche Istwert kein Anzeichen für das Überschreiten einer tolerierbaren Belagsbildung, sondern wird durch die Überlagerung unterschiedlicher Spannungswerte an der Meßelektrode verursacht.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung vorzuschlagen, das sich durch eine zuverlässige Erkennung der Belagsbildung bei einem magnetisch induktiven Durchflußmeßgerät auszeichnet.

Die Aufgabe wird bezüglich des erfindungsgemäßen Verfahrens dadurch gelöst, daß ein Testimpuls mit einer definierten Pulsdauer auf die Meß-elektrode gegeben wird, daß zumindest ein Antwortsignal auf den Testimpuls zu zumindest zwei Meßzeitpunkt bestimmt wird, daß die Meßzeitpunkte in einem Zeitfenster liegt, das so gewählt wird, daß in diesem Zeitfenster keine vorhersehbaren Störsignale an der Meßelektrode auftreten, daß anhand des in den Meßzeitpunkten bestimmten Antwortsignals die Relaxationszeit bzw. die Zeitdauer bis zum Erreichen eines vorgegebenen Entladezustands der Meßelektrode bestimmt wird und daß anhand der ermittelten Relaxationszeit bzw. anhand der Zeitdauer bis zum Erreichen des definierten Entladezustands der Meßelektrode eine Fehlfunktion der Meßelektrode erkannt bzw. erkennbar wird.

Gemäß einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens ist vorgesehen, daß in einem Anfangszustand, der dadurch definiert ist, daß an der Meßelektrode keine Fehlfunktion aufgrund von Ablagerungen auftritt, die Relaxationszeit bzw. die Zeitdauer zum Erreichen des definierten Entladezustands der Meßelektrode ermittelt wird und daß die ermittelte Relaxationszeit bzw. die Zeitdauer zum Erreichen des definierten Entladezustands der Meßelektrode als Sollwert abgespeichert wird.

Eine vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, daß der Testimpuls mit einer vorgegebenen bzw. vorgebbaren Pulsdauer und/oder mit einer vorgegebenen bzw. vorgebbaren Pulswiederholfrequenz an die Meßelektrode angelegt wird. Insbesondere wird vorgeschlagen, daß die Pulsdauer des Testimpulses und/oder die Pulswiederholfrequenz der Testimpulse in Abhängigkeit von dem Bedingungen am Meßort, insbesondere in Abhängigkeit von dem Meßmedium vorgegeben oder bestimmt wird.

Weiterhin sieht eine günstige Ausgestaltung des erfindungsgemäßen Verfahrens vor, daß anhand einer zeitlichen Änderung der Relaxationszeit bzw. anhand einer Änderung der Zeitdauer bis zum Erreichen des definierten Entladezustands der Meßelektrode erkannt wird, ob die Meßelektrode korrekt arbeitet oder ob eine Fehlfunktion der Meßelektrode vorliegt.

Gemäß einer Ausführungsform des erfindungsgemäßen Verfahrens wird darüber hinaus vorgeschlagen, daß eine Fehlfunktion oder ein Hinweis auf eine sich anbahnende Fehlfunktion angezeigt und/oder ausgegeben wird, wenn die zeitliche Änderung der Relaxationszeit bzw. die Änderung der Zeitdauer bis zum Erreichen des definierten Entladezustands der Meßelektrode außerhalb eines Toleranzbereichs um den Sollwert liegt oder wenn sich die Relaxationszeit bzw. die Zeitdauer bis zum Erreichen des definierten Entladezustands der Meßelektrode tendenziell ändert.

Als besonders günstig hat es sich herausgestallt, wenn das Zeitfenster so gewählt wird, daß es nach dem Zeitpunkt liegt, an dem der Testimpuls an die zu überprüfende Meßelektrode angelegt wurde, und daß es vor dem Zeitpunkt, an dem das Magnetfeld an der zu überprüfenden Meßelektrode umgeschaltet wird. Innerhalb des zuvor beschriebenen Zeitfensters ist sichergestellt, daß keine Änderungen der Potentiale an den Meßelektroden aufgrund einer Umschaltung des Magnetfeldes der Magnetfeldanordnung auftritt.

In Verbindung mit dem erfindungsgemäßen Verfahren ist weiterhin vorgesehen, daß für den Fall, daß die Fehlfunktion infolge der Bildung eines leitfähigen Belags an der Meßelektrode auftritt, ein automatisches Reinigen der Meßelektrode aktiviert wird, sobald eine Fehlfunktion angezeigt und/oder ausgegeben wird. Für den Fall, daß die Fehlfunktion infolge der Bildung eines leitfähigen oder eines nicht leitfähigen Belags an der Meßelektrode auftritt, erfolgt beispielsweise eine entsprechende Anzeige und/oder Ausgabe, daß

die Meßelektrode zu reinigen ist. Insbesondere ist vorgesehen, daß die automatische Reinigung der Meßelektrode mittels Anlegen eines Gleich- oder eines Wechselstroms erfolgt.

Bezüglich der erfindungsgemäßen Vorrichtung wird die Aufgabe dadurch gelöst, daß die Auswerte-/Regeleinheit zumindest ein Antwortsignal auf den Testimpuls an zumindest zwei Meßzeitpunkten ermittelt, wobei die Meßzeitpunkte in einem definierten Zeitfenster liegen, wobei das Zeitfenster so gewählt ist, daß in diesem Zeitfenster keine vorhersehbaren Störsignale an der Meßelektrode auftreten, und daß die Regel-/Auswerteeinheit anhand des zu den vorgegebenen Meßzeitpunkten ermittelten Antwortsignals die Relaxationszeit bzw. die Zeitdauer bis zum Erreichen eines definierten Entladezustands der Meßelektrode bestimmt.

Als besonders günstig wird die Ausgestaltung angesehen, daß es sich bei dem Testimpuls um einen Rechteckpuls mit einer bestimmten und/oder vorgegebenen Pulsdauer handelt.

Die Erfindung wird anhand der nachfolgenden Zeichnungen näher erläutert. Es zeigt:

- Fig. 1: eine schematische Darstellung der erfindungsgemäßen Vorrichtung;
- Fig. 2: eine Darstellung des Relaxationsverhaltens der Elektrodenpotentiale an den Meßelektroden bei unterschiedlicher Belagsbildung; und
- Fig. 3: ein Flußdiagramm zur Ansteuerung der Regel-/Auswerteeinheit.

Fig. 1 zeigt eine schematische Darstellung der erfindungsgemäßen Vorrichtung 1. Das Meßrohr 2 eines in der Erfindung nicht gesondert dargestellten Durchflußmeßgerätes wird von einem gleichfalls nicht gesondert

dargestellten Medium in Richtung der Meßrohrachse 10 durchflossen. Das Medium ist zumindest in geringem Umfang elektrisch leitfähig. Das Meßrohr 2 selbst ist aus einem nicht leitfähigen Material gefertigt, oder es ist zumindest an seiner Innenseite mit einem nicht leitfähigen Material ausgekleidet. Infolge eines senkrecht zur Flußrichtung des Mediums ausgerichteten Magnetfeldes, das üblicherweise von zwei diametral angeordneten Elektromagneten erzeugt wird, die in der Zeichnung ebenfalls nicht zu sehen sind, wandern in dem Medium befindliche Ladungsträger zu der entgegengesetzt gepolten Meßelektrode 3; 4 ab. Die sich zwischen den beiden Meßelektroden 3, 4 aufbauende Spannung ist proportional zu der über den Querschnitt des Meßrohres 2 gemittelten Strömungsgeschwindigkeit des Mediums, d. h. sie ist ein Maß für den Volumenstrom des Mediums im Meßrohr 2. Das Meßrohr 2 ist übrigens über Verbindungselemente, die in der Zeichnung nicht gesondert dargestellt sind, mit einem Rohrsystem, durch das das Medium hindurchströmt, verbunden.

Im gezeigten Fall befinden sich die beiden Meßelektroden 3, 4 in direktem Kontakt mit dem Medium 2, wodurch sich im Laufe der Zeit ein Belag 11, 12, der aus Partikeln des Mediums besteht, an den Meßelektroden 3, 4 bildet. Diese Belagsbildung beeinflußt natürlich die Werte der an den Meßelektroden 3, 4 gemessenen induzierten Spannung. Ist der Belag aus einem nicht leitfähigen Material, so funktioniert das Durchflußmeßgerät überhaupt nicht mehr.

Um die Fehler bei der Messung des Volumenstroms in vorgegebenen Toleranzgrenzen zu halten, war es bislang üblich, die Meßelektroden 3, 4 des Durchflußmeßgerätes jeweils nach einer fest vorgegebenen Zeitdauer zu reinigen. Die Nachteile dieser auf empirischer Basis ermittelten Zeitabstände zwischen den einzelnen Reinigungsvorgängen haben – wie bereits an vorhergehender Stelle erwähnt – einige gravierende Nachteile.

Die Meßelektroden 3, 4 sind über Verbindungsleitungen 5, 6 mit der Regel-/Auswerteeinheit 7 verbunden. Erfindungsgemäß gibt die Regel-/Auswerteeinheit 7 über die Verbindungsleitungen 5, 6 einen Testimpuls U_p , im einfachsten Fall einen Rechteckpuls, auf die Meßelektroden 3, 4. Anhand einer fortwährenden Beobachtung des Relaxationsverhaltens des Antwortsignals läßt sich eine schleichende Belagsbildung an den Meßelektroden 3, 4 erkennen. Einer derartigen Belagsbildung läßt sich mit den bereits zuvorgenannten geeigneten Maßnahmen entgegenwirken. Bei der aus der EP 1 108 988 A1 bekannt gewordenen Lösung bedeutet Relaxationszeit τ stets die Zeitspanne, bis das Antwortsignal auf das Testsignal (z. B. den Rechteckpuls U_p) einen vorgegebenen Schwellenwert U_i erreicht hat. Wie bereits gesagt, ist der Nachteil dieser bekannten Methode darin zu sehen, daß das Ende der Relaxationszeit τ bereits in der nachfolgenden Meßperiode liegen kann, in der das Magnetfeld und damit auch die Spannung an der Meßelektrode 3, 4 ein umgekehrtes Vorzeichen aufweist. Hierdurch kann der Fall auftreten, daß eine außerhalb der Toleranzen liegenden Belagsbildung angezeigt wird, obwohl das Unterschreiten eines vorgegebenen Schwellenwertes U, hier die Folge einer entsprechenden Überlagerung von negativen und positiven Spannungen an der Meßelektrode 3, 4 ist.

Der Sollwert der Relaxationszeit τ wird übrigens in Abhängigkeit von den jeweils herrschenden System- und Prozeßbedingungen bei möglichst sauberen Meßelektroden 3, 4 bestimmt. Wegen der Abhängigkeit der Relaxationszeit τ von den jeweiligen Prozeß- und Systembedingungen ist es sehr vorteilhaft, wenn die 'Belagsbildungserkennung' im Prozeß selbst kalibriert wird. Diese Kalibrierung erfolgt z. B. durch wiederholtes Anlegen von Testimpulsen (z. B. Rechteckpulsen U_p) unterschiedlicher Länge t_p und anschließender vorzugsweise erfindungsgemäßer Bestimmung der Relaxationszeit τ . Die Pulsdauer t_p des Testimpulses U_p wird so lange

geändert, bis sich die Relaxationszeit τ innerhalb eines definierten Zeitfensters $t_{\it END}$ - $t_{\it BEGIN}$ befindet. Erfindungsgemäß ist dieses Zeitfenster $t_{\it END}$ - $t_{\it BEGIN}$ so ausgewählt, daß hier keine vorhersehbaren Störsignale auftreten, wie sie sich beispielsweise in unmittelbarer Nähe der Umschaltzeitpunkte des Magnetfeldes zeigen. Die ermittelte Pulsdauer $t_{\it P}$, eventuell die Amplitude des Testsignals $U_{\it P}$ und die zugehörige Relaxationszeit τ werden als Sollwerte abgespeichert.

Zwecks Durchführung des erfindungsgemäßen Verfahrens wird ein Testimpuls U_p , insbesondere ein Rechteckimpuls der zuvor bestimmten Pulsdauer t_P auf die Meßelektrode 3, 4 gegeben; anschließend wird ein Antwortsignal auf den Testimpuls U_{P} zu zumindest zwei Meßzeitpunkten t_{1} , t_2 bestimmt, wobei die Meßzeitpunkte t_1 , t_2 in einem Zeitfenster t_{END} - t_{BEGIN} liegen, das so gewählt wird, daß wie bereits mehrfach erwähnt - in diesem Zeitfenster $t_{\it END}$ - $t_{\it BEGIN}$ keine vorhersehbaren Störsignale an der Meßelektrode 3, 4 auftreten. Störsignale werden insbesondere durch das Umschalten des Magnetfeldes hervorgerufen. Insbesondere ist das Zeitfenster $t_{\it END}$ - $t_{\it BEGIN}$ so gewählt, daß es zwischen dem Erreichen des linearen Bereichs der Erfassung der Spannung U an den Meßelektroden 3, 4 und dem Meßzeitpunkt $t_{\it END}$ am Ende der Meßperiode liegt. Zur Bestimmung der Relaxationszeit τ ist die Kenntnis von zwei Spannungswerten U_1 , U_2 an der Meßelektrode 3, 4 notwendig. Einer kann beispielsweise mit dem Testimpuls U_{P} identisch sein , während der zweite durch Messung zu einer späteren Meßzeitpunkt t_2 , der innerhalb des Zeitfensters $t_{E\!N\!D}$ - $t_{B\!E\!G\!I\!N}$ liegt, gemessen wird. Anhand der bekannten und/oder ermittelten Spannungswerts zu unterschiedlichen Meßzeitpunkten t_1 , t_2 wird die Relaxationszeit τ bzw. die Zeitdauer bis zum Erreichen eines vorgegebenen Entladezustands U_i der Meßelektrode 3, 4 bestimmt; anhand der ermittelten Relaxationszeit τ bzw. anhand der Zeitdauer bis zum Erreichen des definierten Entladezustands U_i

der Meßelektrode 3, 4 wird eine Fehlfunktion der Meßelektrode 3, 4, wie sie insbesondere durch eine Belagsbildung hervorgerufen wird, erkannt bzw. erkennbar.

Für den Fall, daß es sich bei den beiden Meßzeitpunkte t_1 , t_2 um beliebige Meßzeitpunkte handelt, die innerhalb des Zeitfensters $t_{\it END}$ - $t_{\it BEGIN}$ liegen, läßt sich die Relaxationszeit τ nach folgender Formel berechnen – wobei bezüglich der Nomenklatur auf Fig. 2 verwiesen wird:

$$\tau \approx \frac{\ln\left(\frac{U_2 - U_i}{U_P}\right) - \ln\left(\frac{U_1 - U_i}{U_P}\right)}{t_2 - t_1}$$

Werden als Meßzeitpunkte $t_{\textit{BEGIN}}$, $t_{\textit{END}}$ die Ränder des Zeitfesters $t_{\textit{END}}$ - $t_{\textit{BEGIN}}$ genommen, so lautet die Formel:

$$\tau ~\approx \frac{\ln\!\!\left(\!\frac{U_{\mathit{END}}\!-\!U_{i}}{U_{\mathit{P}}}\!\right)\!\!-\!\ln\!\!\left(\!\frac{U_{\mathit{BEGIN}}\!-\!U_{i}}{U_{\mathit{P}}}\!\right)}{t_{\mathit{END}}\!-\!t_{\mathit{BEGIN}}}$$

Ergibt sich bei nachfolgenden periodischen Messungen zur Belagsbildungserkennung, daß der errechnete Istwert der Relaxationszeit τ auf den definierten Testimpuls außerhalb gewisser Toleranzgrenzen um den Sollwert der Relaxationszeit τ liegt, wird eine Fehlfunktion an der Anzeigeeinheit 8 des Durchflußmeßgerätes angezeigt; alternativ kann im Falle der Bildung leitfähiger Beläge 11 ein automatisches Reinigungsverfahren aktiviert werden.

Erfindungsgemäß kann die Reinigung der Meßelektroden 3, 4 bzw. die Anzeige, daß eine Reinigung der Meßelektroden 3, 4 erforderlich ist, stets dann erfolgen, wenn die an den Meßelektroden 3, 4 auftretende Belagsbildung derart stark wird, daß sie zu inakzeptablen Verfälschungen der

WO 2005/012842

Meßwerte an den Meßelektroden 3, 4 führt. Hierdurch ist es möglich, die Zeitdauer zwischen zwei Reinigungsvorgängen zu optimieren: So erfolgt einerseits die Reinigung, bevor das Durchflußmeßgerät fehlerhafte Meßwerte liefert bzw. im Falle nicht-leitfähiger Beläge 11, bevor es überhaupt keine Meßwerte mehr liefert; andererseits erfolgt die Reinigung nur dann, wenn sie tatsächlich erforderlich ist und nicht präventiv nach gewissen Zeitintervallen, die auf irgendwelchen empirischen Erfahrungen beruhen.

In Fig. 2 ist eine Darstellung des Relaxationsverhaltens der Elektrodenpotentiale an den Meßelektroden 3, 4 bei unterschiedlich starker Belagsbildung zu sehen. Ein Rechteckpuls U_P definierter Zeitdauer t_P wird auf die Meßelektrode 3; 4 gegeben. Die Regel-/Auswerteeinheit 7 errechnet die Relaxationszeit τ anhand von zu zwei unterschiedlichen Meßzeitpunkten t_1 , t_2 gemessenen Spannungswerten. Diese Meßzeitpunkte t_1 , t_2 liegen innerhalb eines definierten Zeitfensters t_{END} – t_{BEGIN} .

Bezugszeichenliste

1	erfindungsgemäße Vorrichtung
2	Meßrohr
3	Meßelektrode
4	Meßelektrode
5	Verbindungsleitung
6	Verbindungsleitung
7	Regel-/Auswerteeinheit
8	Anzeigeeinheit
9	Verbindungsleitung
10	Meßrohrachse
11	Belag

Patentansprüche

1. Verfahren zur magnetisch-induktiven Bestimmung der Durchflußrate eines Mediums, das ein Meßrohr (2) in Richtung der Meßrohrachse durchströmt, wobei das Meßrohr (2) von einem Magnetfeld im wesentlichen senkrecht zur Meßrohrachse durchsetzt wird, wobei in zumindest eine im wesentlichen senkrecht zur Meßrohrachse angeordnete Meßelektrode (3, 4) eine Meßspannung induziert wird und wobei die induzierte Meßspannung Information über den Volumenstrom des Mediums in dem Meßrohr (2) liefert, dadurch gekennzeichnet,

daß ein Testimpuls (U_p) mit einer definierten Pulsdauer (t_p) auf die Meßelektrode (3, 4) gegeben wird,

daß zumindest ein Antwortsignal auf den Testimpuls $(U_{\scriptscriptstyle P})$ zu zumindest zwei Meßzeitpunkten (t_1, t_2) bestimmt wird,

daß die Meßzeitpunkte (t_1 , t_2) in einem Zeitfenster ($t_{\it END}$ - $t_{\it BEGIN}$) liegen, das so gewählt wird, daß in diesem Zeitfenster (t_{END} - t_{BEGIN}) keine vorhersehbaren Störsignale an der Meßelektrode (3, 4) auftreten, daß anhand des in den Meßzeitpunkten (t_1 , t_2) bestimmten Antwortsignals die Relaxationszeit (τ) bzw. die Zeitdauer bis zum Erreichen eines vorgegebenen Entladezustands (U_i) der Meßelektrode (3, 4) bestimmt wird, und daß anhand der ermittelten Relaxationszeit bzw. anhand der Zeitdauer bis zum Erreichen des definierten Entladezustands (U_i) der Meßelektrode (3, 4) eine Fehlfunktion der Meßelektrode (3, 4) erkannt bzw. erkennbar wird.

2. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

daß in einem Anfangszustand, der dadurch definiert ist, daß an der Meßelektrode (3, 4) keine Fehlfunktion aufgrund von Ablagerungen auftritt, die Relaxationszeit bzw. die Zeitdauer zum Erreichen des definierten Entladezustands (U_i) der Meßelektrode (3, 4) ermittelt wird und

daß die ermittelte Relaxationszeit (τ) bzw. die Zeitdauer zum Erreichen des definierten Entladezustands (U_i) der Meßelektrode (3, 4) als Sollwert abgespeichert wird.

3. Verfahren nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

daß der Testimpuls (U_P) mit einer vorgegebenen bzw. vorgebbaren Pulsdauer (t_P) und/oder mit einer vorgegebenen bzw. vorgebbaren Pulswiederholfrequenz an die Meßelektrode (3, 4) angelegt wird.

4. Verfahren nach Anspruch 3,

dadurch gekennzeichnet,

daß die Pulsdauer (t_P) des Testimpulses (U_P) und/oder die Pulswiederholfrequenz der Testimpulse in Abhängigkeit von dem Bedingungen am Meßort, insbesondere in Abhängigkeit von dem Meßmedium vorgegeben oder bestimmt wird.

5. Verfahren nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

daß anhand einer zeitlichen Änderung der Relaxationszeit (τ) bzw. anhand einer Änderung der Zeitdauer bis zum Erreichen des definierten Entladezustands (U_i) der Meßelektrode (3, 4) erkannt wird, ob die Meßelektrode (3, 4) korrekt arbeitet oder ob eine Fehlfunktion der Meßelektrode (3, 4) vorliegt.

6. Verfahren nach Anspruch 2 oder 5,

dadurch gekennzeichnet,

daß eine Fehlfunktion oder ein Hinweis auf eine sich anbahnende Fehlfunktion angezeigt und/oder ausgegeben wird, wenn die zeitliche Änderung der Relaxationszeit bzw. die Änderung der Zeitdauer bis zum Erreichen des definierten Entladezustands (U_i) der Meßelektrode (3, 4) außerhalb eines Toleranzbereichs um den Sollwert liegt oder wenn sich die Relaxationszeit (τ)

bzw. die Zeitdauer bis zum Erreichen des definierten Entladezustands (U_i) der Meßelektrode (3, 4) tendenziell ändert.

7. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

daß das Zeitfenster (t_{END} - t_{BEGIN}) so gewählt wird, daß es nach dem Zeitpunkt (t_P) liegt, an dem der Testimpuls (U_P) an die zu überprüfende Meßelektrode (3, 4) angelegt wurde, und daß es vor dem Zeitpunkt, an dem das Magnetfeld an der zu überprüfenden Meßelektrode (3, 4) umgeschaltet wird.

8. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet,

daß für den Fall, daß die Fehlfunktion infolge der Bildung eines leitfähigen Belags (11, 12) an der Meßelektrode (3, 4) auftritt, ein automatisches Reinigen der Meßelektrode (3, 4) aktiviert wird, sobald eine Fehlfunktion angezeigt und/oder ausgegeben wird.

9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet,

daß für den Fall, daß die Fehlfunktion infolge der Bildung eines leitfähigen oder eines nicht leitfähigen Belags (11, 12) an der Meßelektrode (3, 4) auftritt, eine Anzeige und/oder Ausgabe erfolgt, daß die Meßelektrode (3, 4) zu reinigen ist.

10. Verfahren nach Anspruch 8 oder 9,

dadurch gekennzeichnet,

daß die automatische Reinigung der Meßelektrode (3, 4) mittels Anlegen eines Gleich- oder eines Wechselstroms erfolgt.

11. Vorrichtung zum Messen des Durchflusses eines Mediums, das ein Meßrohr (2) in Richtung der Meßrohrachse durchströmt, mit einer Magnetan-

ordnung, die ein das Meßrohr (2) durchsetzendes und im wesentlichen quer Meßrohrachse verlaufendes Magnetfeld erzeugt, mit einer Meßelektrodenanordnung, die einen von der Durchflußgeschwingkeit des Mediums durch das Meßrohr (2) abhängigen Meßwert liefert, und einer Regel-/Auswerteeinheit (7), die anhand des Meßwertes die Durchflußrate des Mediums in dem Meßrohr (2) bestimmt,

dadurch gekennzeichnet,

daß die Regel-/Auswerteeinheit zumindest ein Antwortsignal auf den Testimpuls (U_P) zu zumindest zwei Meßzeitpunkten (t_1, t_2) ermittelt, die in einem definierten Zeitfenster $(t_{END} - t_{BEGIN})$ liegen,

daß das Zeitfenster ($t_{\it END}$ - $t_{\it BEGIN}$) so gewählt ist, daß in diesem Zeitfenster ($t_{\it END}$ - $t_{\it BEGIN}$) keine vorhersehbaren Störsignale an der Meßelektrode (3, 4) auftreten, und

daß die Regel-/Auswerteeinheit (7) anhand des zu den vorgegebenen Meßzeitpunkten (t_1 , t_2) gemessenen Antwortsignal die Relaxationszeit (τ) bzw. die Zeitdauer bis zum Erreichen eines definierten Entladezustands (U_i) der Meßelektrode (3, 4) bestimmt.

12. Vorrichtung nach Anspruch 9,

dadurch gekennzeichnet,

daß es sich bei dem Testimpuls um einen Rechteckpuls (U_P) handelt.

Fig. 2

INTERNATIONAL SEARCH REPORT

al Application No Interna PCT/EP2004/007976

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01F1/60 G01F25/00

G01F1/58

G01N27/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 G01F G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Υ	EP 1 108 988 A (FLOWTEC AG) 20 June 2001 (2001-06-20)	1,11	
Α	cited in the application abstract	3,5,6, 8-10,12	
	paragraph '0030! – paragraph '0031! figure 2 		
Y	US 4 468 608 A (ROLFE NORMAN F) 28 August 1984 (1984-08-28) abstract figure 2	1,11	
	column 1, line 36 - line 47 column 2, line 1 - line 7 column 3, line 3 - line 19 column 3, line 56 - line 62		
	-/		

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international filing date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O* document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the International search 2 December 2004	Date of mailing of the International search report 14/12/2004
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Pisani, F

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/007976

	(Continuation) DOCLIMENTS CONSIDERED TO BE RELEVANT						
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT						
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.					
A	GB 2 348 011 A (ABB INSTRUMENTATION LTD) 20 September 2000 (2000-09-20) abstract figure 3 page 4, line 19 - page 5, line 10 page 7, line 9 - line 19	1,9,11					
A	page 4. line 19 - page 5, line 10						

INTERNATIONAL SEARCH REPORT

Internation No
PCT/EP2004/007976

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 1108988	A	20-06-2001	EP CN JP US	1108988 A1 1299961 A 2001174301 A 2001004214 A1	20-06-2001 20-06-2001 29-06-2001 21-06-2001
US 4468608	Α	28-08-1984	FR	2561167 A1	20-09-1985
GB 2348011	A	20-09-2000	GB GB US	2348012 A ,B 2309308 A ,B 6697742 B1	20-09-2000 23-07-1997 24-02-2004
US 5370000	A	06-12-1994	DE CA DE DK EP JP JP	4122225 A1 2073130 A1 59209654 D1 521448 T3 0521448 A2 3199460 B2 5187900 A	07-01-1993 05-01-1993 22-04-1999 11-10-1999 07-01-1993 20-08-2001 27-07-1993

INTERNATIONALER RECHERCHENBERICHT

Internal ales Aktenzeichen
PCT/EP2004/007976

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES G01F1/60 G01F25/00 G01F1/58 G01N27/38 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) GO1F IPK 7 GO1N Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie® 1,11 EP 1 108 988 A (FLOWTEC AG) 20. Juni 2001 (2001-06-20) in der Anmeldung erwähnt 3,5,6, A Zusammenfassung 8-10,12 Absatz '0030! - Absatz '0031! Abbildung 2 Y US 4 468 608 A (ROLFE NORMAN F) 1,11 28. August 1984 (1984-08-28) Zusammenfassung Abbildung 2 Spalte 1, Zeile 36 - Zeile 47 Spalte 2, Zeile 1 - Zeile 7 Spalte 3, Zeile 3 - Zeile 19 Spalte 3, Zeile 56 - Zeile 62 _/---Siehe Anhang Patentfamilie Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu X X entnehmen 'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht koliidiert, sondern nur zum Verständnis des der * Besondere Kategorlen von angegebenen Veröffentlichungen : "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist "E" ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkelt beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soil oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *& Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 14/12/2004 2. Dezember 2004 Bevollmächtigter Bediensteter Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Pisani, F

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/007976

		PCI/EFZU	2004/007976		
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	enden Telle	Betr. Anspruch Nr.		
A	GB 2 348 011 A (ABB INSTRUMENTATION LTD) 20. September 2000 (2000-09-20) Zusammenfassung Abbildung 3 Seite 4, Zeile 19 - Seite 5, Zeile 10 Seite 7, Zeile 9 - Zeile 19		1,9,11		
A	US 5 370 000 A (HERWIG JORG ET AL) 6. Dezember 1994 (1994-12-06) Spalte 2, Zeile 59 - Zeile 67		1		

INTERNATIONALER RECHERCHENBERICHT

Internation res Aktenzeichen
PCT/EP2004/007976

Im Recherchenbericht angeführtes Patentdokument		Datum der Mitglied(er) der Veröffentlichung Patentfamilie		Datum der Veröffentlichung		
EP	1108988	A	20-06-2001	EP CN JP US	1108988 A1 1299961 A 2001174301 A 2001004214 A1	20-06-2001 20-06-2001 29-06-2001 21-06-2001
US	4468608	Α	28-08-1984	FR	2561167 A1	20-09-1985
GB	2348011	A	20-09-2000	GB GB US	2348012 A , 2309308 A , 6697742 B1	
US	5370000	Α	06-12-1994	DE CA DE DK EP JP	4122225 A1 2073130 A1 59209654 D1 521448 T3 0521448 A2 3199460 B2 5187900 A	07-01-1993 05-01-1993 22-04-1999 11-10-1999 07-01-1993 20-08-2001 27-07-1993