Credit Risk Scoring

Como estrategia en la banca masiva

Agenda

Banca Persona

Tradicional

Masivo

Crédito vehicular

Crédito Hipotecario

Tarjeta de Crédito

Préstamo personal

Compras

Disposición de le efectivo

Línea paralela

¿Cuál es la problemática?

523,000 peruanos tiene deudas mayores a seis veces su sueldo en tarjetas de crédito

Un reciente estudio de la consultora Experian detalla que de este grupo 130 mil peruanos adueda montos 50 veces mayores a sus ingresos.

24 de julio del 2018 - 1:00 PM Redacción

Más de medio millón de peruanos debe más de seis veces su sueldo, de acuerdo con la consultora. | Fuente: Andina

- No hay diferencias de condiciones de riesgos
- Decisiones subjetivas, mala gestión de riesgos

Identificar aquellos clientes con buen comportamiento crediticio.

Pilares de las estrategias de Riesgo de Crédito

¿Qué es Credit Scoring?

Son todas las técnicas y modelos estadísticos que ayudan a las instituciones financieras para el otorgamiento de un préstamo o una tarjeta de crédito.

VENTAJAS

Facilita las decisiones y estrategias al identificar al cliente por su grado de riesgo de impago

Permite conocer a la persona y su grado de exposición a créditos previo a la originación.

Disminuye el riesgo de las operaciones al dar crédito.

¿Cómo calculamos el puntaje?

Fase 1: Comprensión del Negocio

¿Cuál es la finalidad del estudio?

Objetivos

Discriminar a los clientes con alto y bajo riesgo de incumplimiento en el Sistema Financiero para la generación de nuevos prospectos.

Población

Persona Natural del RCC (4 meses del año 2017).

Fase 2: Comprensión de los datos

Filtramos clientes

Clientes Bancarizados

Antigüedad mayor a 3 meses

Clasificación del deudor (Normal, CPP, dudoso, deficiente y pérdida)

> Hábito de Pago (Morosidad)

> > Clasificación contable (castigo, refinanciado)

Definición del Target (PD):

Roll Rates Analysis

	Morosidad A 12 meses							
Morosidad T0	0.[0]	0.[1-8]	1.[9-30]	2.[31-60]	3.[61-120]	4.>120		
0.[0]	67%	7%	13%	4%	4%	6%		
0.[1-8]	12%	27%	19%	12%	10%	20%		
1.[9-30]	19%	2%	27%	18%	15%	18%		
2.[31-60]	13%	4%	7%	11%	27%	39%		
3.[61-120]	7%	1%	8%	2%	12%	71%		
4.>120	4%	0%	0%	0%	0%	95%		
Total	65%	7%	13%	4%	4%	7%		

Bueno: durante los 12 meses tuvo 0 días de atraso.

Indeterminado: clientes en la frontera de buenos y malos.

Malo : en alguno de los próximos 12 meses tuvo más de 60 días de atraso.

Con ello hemos definido nuestro grupo objetivo ...

Tenemos diversos grupos de variables...

30% Historial de Pagos

¿Con qué frecuencia paga sus cuentas a tiempo?

- Información de pagos de las deudas.

10% Nuevos créditos

¿Has abierto una nueva línea de crédito?

- Número de entidades.
- Línea de TC.

15% Créditos utilizados

¿Tienes más de un crédito?

- Número de entidades con saldo.
- Número de entidades en estado castigado, vencido o refinanciado.
- Tipo de crédito.
- Líneas no utilizadas.

30% Montos adeudados

¿Cuánto de tu crédito total has sado?

Deudas por tipo de crédito. Montos castigados, vencidos, refinaciados.

0.1% Demográficos

¿Cuál es tu edad?

- Edad.
- Estado Civil.
- Ubigeo.

15% Historial crediticio

¿Hace cuanto tiempo tienes un crédito bueno o malo?

- Antigüedad en el SS.FF.
- Días de mora.
- Clasificación crediticia (Normal, CPP, deficiente, dudoso, pérdida

Partición de la muestra

Testeo 25% PD: 13.14%

Código en R

```
##Base_Modelo: Base con los registros
##Base_Modelo$FLG_MALO: Columna del Target

library(caTools)
set.seed(100)
muestra=sample.split(Base_Modelo$FLG_MALO, SplitRatio=0.75)

data.train=subset(Base_Modelo, muestra==TRUE)
data.test=subset(Base_Modelo, muestra==FALSE)
```

¿Por qué particionamos la base de datos?

Fase 3: Preparación de los datos

Conociendo las Variables...

Análisis Univariado de Variables Continuas

Valores Perdidos

Valores Extremos

Codigo		Obs															
1	EDAD	364636	23941	20	99	44.94	24	25	25	26	26	71	73	74	77	80	99

Código en R

library(XLConnect)
library(lattice)
library(StatMeasures)
library(agricolae)
##Creación de un libro de Excel
LIBRO_DES <- loadWorkbook(file="D:/UNIVARIADO/Var_Continuo1.xlsx", create =
TRUE)
##Creación de las hojas en el libro creado
createSheet(LIBRO_DES, name = "Estadisticas")
createSheet(LIBRO_DES, name = "Graficos")
##Creación de las estadísticas descriptivas de las variables en la Hoja
"Estadisticas"
Cuanti_Gen2_1(Base_Modelo, Variables, LIBRO_DES, "Estadisticas"," Graficos")
##Creación de gráficos descriptivos de las variables en la Hoja "Graficos"
Cuanti_Gen2_2(Base_Modelo, Variables, LIBRO_DES, "Estadisticas"," Graficos")</pre>

¿Cómo se relacionan las variables con el target?

Poder Predictivo de la Categoría (WOE)

$$WOE = \ln\left(\frac{Prop\ Bueno}{Prop\ Malo}\right)\%$$

Poder Predictivo de la Variable (IV)

$$\sum_{i=1}^{n} (Prop \ Bueno_i - Prop \ Malo_i) * ln(\frac{Prop \ Bueno_i}{Prop \ Malo_i})$$

Tendencia

Tendencia Monotónica Creciente Tendencia Monotónica Decreciente

Categorias PD		WOE
1	21%	- 0.571551898
2	16%	- 0.216400846
3	13%	→ -0.028657016
4	10%	0.292313947
5	6%	0.861482203

Intervalo de IV	Nivel de Predicción				
< 2%	No Predictora				
[2%-10%>	Débil				
[10%-30%>	Medio				
[30%-50%>	Fuerte				
>= 50%	Posible Sobre Predictora				

Código en R

library(XLConnect)
library(lattice)
##Creación de un libro de Excel
LIBRO_DES <loadWorkbook(file="D:/BIVARIADO/
3.Variables_Bivariadas.xlsx", create =
TRUE)</pre>

##Crear la hoja "Variables" en el libro
creado
createSheet(LIBRO_DES, name =
"Variables")
saveWorkbook(LIBRO DES)

###Funciones
Calculo_Stat_Gen_Cuali
(Base_Modelo,FLG_MALO,variables,
LIBRO_DES,Variables,tipo)

...algunas opciones de transformación de variables...

Fase 4: Modelamiento

Selección de Variables

Regresión Logística

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

Donde

p: Probabilidad de que un evento suceda.

x: Variables predictoras.

 β_0 : Intercepto. β_i : Parámetros.

¿Qué es?

¿Por qué?

Técnica supervisada de clasificación que en base a un conjunto de variables predice la probabilidad de ocurrencia de un evento, siendo en este caso el default de un cliente.

- Técnica más utilizada en Credit Scoring.
- Mejor Interpretación de los resultados.
- De fácil implementación

Código en R

```
Modelo1=glm(FLG_MALO~Var1_WOE + Var2_WOE +
Var3_WOE + Var4_WOE + Var5_WOE + Var6_WOE +
Var7_WOE + Var8_WOE + Var9_WOE + Var10_WOE +
Var11_WOE, data =
data.train,family=binomial(link=logit))
summary(Modelo1)
```

¿Cómo calcular el puntaje?

Tabla de Puntuación - Scorecard

$$Score = Offset + Factor * ln(odds)$$

$$Score = -\left(\sum_{j,i}^{k,n} WOE_j * \beta_i + \frac{\beta_0}{n}\right) * factor + offset$$

$$Score = -\left(\sum_{j,i}^{k,n} WOE_j * \beta_i + \frac{\beta_0}{11}\right) * \frac{80}{\ln(2)} + 600$$

Convertir la probabilidad estimada del Modelo, a una escala de valores enteros (puntaje)

ODDS: Ventaja de N° Buenos respecto a N° Malos:

32:1

Factor: pdo/ln(m)pdo = 80 m = 2

EDAD	WOE	SCORE	PD
1	-0.5715519	-9	21%
2	-0.21640085	9	16%
3	-0.02865702	18	13%
4	0.29231395	35	10%
5	0.8614822	63	6%

Fase 5: Evaluación

Indicador de Discriminación

Kolgomorov - Smirnov (KS)

Diferencia Máxima entre la distribución de clientes buenos y malos

return(indicadores)

```
Val.train=Validacion(Modelo1, data.train, "FLG_MALO")
Val.test=Validacion(Modelo1, data.test, "FLG MALO")
```


Backtesting:

Se realizó la validación del modelo en una muestra "Out of time". Los resultados indican un adecuado nivel de predictibilidad del riesgo de incumplimiento.

...así se refleja la distribución por segmentos...

Distribución de PD por Ventiles

Segmentos de Riesgos

Segmento	% Total	PD
Excepcional	22%	3%
Muy bueno	27%	7%
Bueno	25%	12%
Regular	10%	19%
Bajo	4%	25%
Muy bajo	5%	29%
Crítico	7%	45%

¿Qué se logró?

 Incremento en la Base de Prospección de Clientes

	_			
Segmento	Antes	Nuevo		
Excepcional	3.6%	3.2%		
Muy Bueno	6.8%	6.5%		

 Disminución de Riesgo en los Mejores segmentos

 Incremento en los niveles de ROE y RORAC, en 22% y 14% respectivamente.

