

# Open the Black Box Introduction to Model Interpretability





# Model Interpretability - Outline

- 1. Introduction Why do we need it?
- 2. Eli5 and Permutation Importance
- 3. LIME Local Interpretable Model-agnostic Explanations
- 4. SHAP **SH**apley **A**dditive ex**P**lanation



Model Interpretability:

Why do we need it?



#### Job Done!

- ✓ Cleaned and preprocessed messy data
- ✓ Engineered fancy new features
- ✓ Selected the **best model** and tuned hyperparameters
- ✓ Trained your final model
- ✓ Got great performance on the test set



#### Job Done ... or not ...





#### Job Done ... or not ...

Can you explain how your model works?





#### Why is Interpretability important?

Algorithms are everywhere, sometimes automating important decisions that have an impact on people.

- **Insurance**: "predict the optimal price to charge a client"
- Bank: "predict who to give a loan to or not"
- Police: "predict who is more likely to commit a crime"
- Social media: "predict who is most likely to click on an ad"
- [...]



#### Build Trust in the Model

**Goal**: Predict employees' performance for a large organisation

**Data**: Performance reviews of individual employees for the last 10 years

What if that company tends to promote men more than women?

The model will **learn the bias**, and predict that male employees are more likely to perform better...

"Models are opinions embedded in mathematics" - Cathy O'Neil



#### Help Decision Maker

**Goal**: Predict the likelihood of a patient to develop a disease X

**Data**: Symptoms and information about past patients and whether they had X.

Here our model is meant to be used to inform doctors and help them with diagnosis.

Doctors need to understand exactly **why** the model thinks a patient has X before treating them.



# Debugging the Model

**Goal**: Classify images - Wolves vs Huskies

**Data**: Pictures of wolves and huskies

What if pictures of wolves show something different in the background?



(a) Husky classified as wolf



(b) Explanation



"Why Should I Trust You?": Explaining the Predictions of Any Classifier Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

# Some models are easy to interpret

#### **Linear/Logistic regression**

- Weight on each feature
- Know the exact contribution of each feature, negative or positive

$$Y = 3 * X1 - 2 * X2$$

Increasing X1 by 1 unit increases Y by 3 units

#### **Single Decision Tree**

 Easy to understand how a decision was made by reading from top to bottom





# Some models are harder to interpret

#### **Ensemble models** (random forest, boosting, etc...)

- Hard to understand the role of each feature
- Usually comes with **feature importance**
- Doesn't tell us if feature affects decision positively or negatively

#### **Random Forest Simplified**





# Some are really hard to interpret

#### **Deep Neural Networks**

- No straightforward way to relate output to input layer
- "Black-box"

#### Deep neural network





# Does it mean we can only use simple models?

- Sticking to **simple models** is the best way to ensure interpretability
  - o Trade off Interpretability vs Performance
- Model agnostic techniques allow usage of complex models whilst maintaining interpretability



#### Different kinds of interpretation

- Local: Explain how and why a specific prediction was made
  - Why did our model predict that patient X has disease Y
- Global: Explain how our model works overall
  - What symptoms are generally important for our model and how do they impact the outcome?
  - Feature Importance is a global interpretation with amplitude only, no direction



# ELI5 and Permutation Importance

"Explain Like I'm 5"



#### ELI5

- Can be used to interpret **sklearn**-like models
- Create nice visualisations for white-box models
  - Can be used for local and global interpretation
- Implements **Permutation Importance** for black-box models
  - Only global interpretation



#### ELI5 - for white-box models

Explain model **globally** (feature importance):

> eli5.show\_weights(model)

| Weight? | Feature                 |
|---------|-------------------------|
| +2.117  | mean radius             |
| +1.276  | texture error           |
| +1.266  | worst radius            |
| +0.397  | <bias></bias>           |
| +0.108  | mean texture            |
|         | 3 more positive         |
|         | 8 more negative         |
| -0.071  | mean perimeter          |
| -0.095  | area error              |
| -0.117  | worst fractal dimension |
| -0.119  | worst perimeter         |
| -0.155  | mean smoothness         |
| -0.227  | mean symmetry           |
| -0.287  | worst smoothness        |
| -0.337  | worst texture           |
| -0.342  | mean concave points     |
| -0.407  | mean compactness        |
| -0.649  | mean concavity          |
| -0.659  | worst concave points    |
| -0.697  | worst symmetry          |
| -1.159  | worst compactness       |
| -1.603  | worst concavity         |



#### ELI5 - for white-box models

Explain model **locally**:

> eli5.show\_prediction(model, observation)

y=0 (probability 0.797, score -1.371) top features

|               | 20                      |
|---------------|-------------------------|
| Contribution? | Feature                 |
| +17.212       | worst area              |
| +12.967       | worst perimeter         |
| +10.803       | worst texture           |
| +6.671        | mean perimeter          |
| +1.828        | area error              |
| +1.538        | mean area               |
| +1.113        | worst concavity         |
| +0.895        | worst compactness       |
| +0.251        | worst symmetry          |
| +0.146        | worst concave points    |
| +0.138        | mean concavity          |
| +0.093        | mean compactness        |
| +0.047        | worst smoothness        |
| +0.047        | mean symmetry           |
| +0.027        | mean concave points     |
| +0.018        | mean smoothness         |
| +0.017        | worst fractal dimension |
| +0.005        | radius error            |
| +0.003        | concavity error         |
| +0.002        | mean fractal dimension  |
| +0.001        | symmetry error          |
| +0.001        | concave points error    |
| +0.000        | smoothness error        |
| -0.000        | fractal dimension error |
| -0.000        | compactness error       |
| -0.035        | perimeter error         |
| -0.397        | <bias></bias>           |
| -1.491        | texture error           |
| -2.432        | mean texture            |
| -19.026       | worst radius            |
| -29.072       | mean radius             |
|               |                         |



## ELI5 - Permutation Importance

- Model Agnostic
- Provides global interpretation
  - Only amplitude, do not specify in what way it impacts the outcome



#### ELI5 - Permutation Importance

#### For each feature:

- 1. **Shuffle** values in the provided dataset
- 2. Generate **predictions** using the model on the modified dataset
- 3. Compute the decrease in **accuracy** vs before shuffling

We can compare the **impact on accuracy** of shuffling each feature individually.



## ELI5 - Permutation Importance

- > perm = PermutationImportance(model)
- > perm.fit(X, y)
- > eli5.show\_weights(perm)

| Weight              | Feature                |
|---------------------|------------------------|
| 0.4815 ± 0.0400     | worst area             |
| 0.1779 ± 0.0318     | worst perimeter        |
| 0.0931 ± 0.0214     | mean radius            |
| $0.0903 \pm 0.0148$ | area error             |
| 0.0707 ± 0.0134     | worst radius           |
| 0.0615 ± 0.0157     | worst texture          |
| $0.0450 \pm 0.0108$ | mean perimeter         |
| $0.0102 \pm 0.0060$ | mean area              |
| $0.0067 \pm 0.0052$ | worst concavity        |
| $0.0053 \pm 0.0039$ | worst compactness      |
| $0.0039 \pm 0.0068$ | texture error          |
| $0.0021 \pm 0.0026$ | worst symmetry         |
| $0.0004 \pm 0.0014$ | worst concave points   |
| $0.0004 \pm 0.0014$ | mean concave points    |
| $0.0004 \pm 0.0014$ | mean concavity         |
| $0 \pm 0.0000$      | mean symmetry          |
| $0 \pm 0.0000$      | mean smoothness        |
| $0 \pm 0.0000$      | mean compactness       |
| $0 \pm 0.0000$      | mean fractal dimension |
| $0 \pm 0.0000$      | radius error           |
|                     | 10 more                |





Hands-on session





Interpretability - LIME



# LIME - Local Interpretable Model-Agnostic Explanations

**Local**: Explains why a single data point was classified as a specific class

Model-agnostic: Treats the model as a black-box. Doesn't need to know how it makes predictions

Paper "Why should I trust you?" published in August 2016.







# LIME - How does it work? (simplified version)













Pick an **observation** to explain and a number **m** of features to use, then:

- 1. Create **new dataset** around observation by sampling from distribution learnt on training data
- 2. Calculate distances between points and **observation**, that's our measure of similarity
- 3. Use model to predict **probability** on new points, that's our new **y**
- 4. Uses **feature selection** to find the **m** features that have the strongest relationship with our target
- 5. Fit a linear model on data in **m** dimensions weighted by similarity
- 6. **Weights** of linear model are used as explanation of decision



#### LIME - Explanation

- Central plot shows **importance** of the top features for this prediction
  - Value corresponds to the weight of the linear model
  - Direction corresponds to whether it pushes in one way or the other
- Numerical features are discretized into bins
  - Easier to interpret: weight == contribution / sign of weight == direction



**E SPARK** 

# LIME - Can be used on images too









"Why Should I Trust You?": Explaining the Predictions of Any Classifier Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin



#### LIME - Some drawbacks

- Depends on the **random sampling** of new points, so it can be unstable
- Fit of linear model can be inaccurate
  - O But we can check the r-squared score to know if that's the case
- Relatively slow for a single observation, in particular with images



# LIME - Available "Explainers"

#### Lime supports many types of data:

- Tabular Explainer
- Recurrent Tabular Explainer
- Image Explainer
- Text Explainer



#### LIME - API

Create a new explainer from dataset > my explainer = Explainer(data) Select an observation and create an explanation for it > observation = np.array([...]) my explanation = explainer.explain\_instance(observation, predict function, num features=5) Use methods on explanation to visualise results

my explanation.show in notebook()

my explanation.get image and mask()

> [...]



Hands-on session





Interpretability - SHAP



An explanation model is a simpler model that is a good approximation of our complex model.



- An explanation model is a simpler model that is a good approximation of our complex model.
- "Additive feature attribution methods": the local explanation is a linear combination of the features.
  - Weights are the SHAP values



For a given observation, we compute a **SHAP value** per feature, such that:

sum(SHAP\_values\_for\_obs) = prediction\_for\_obs - model\_expected\_value

- **SHAP values** are in same unit as prediction/model expected value (probability, log odds, etc...)
- Model's expected value is the average prediction made by our model



For a given observation, we compute a **SHAP value** per feature, such that:

sum(SHAP\_values\_for\_obs) = prediction\_for\_obs - model\_expected\_value

**Interpretation:** SHAP values correspond to the contribution of each feature towards "pushing" the prediction away from the expected value



For the **model agnostic** explainer, SHAP leverages Shapley values from Game Theory.

To get the importance of feature **X{i}**:

- Get all subsets of features **S** that do not contain **X**{**i**}
- Compute the effect on our predictions of adding X(i) to all those subsets
- Aggregate all contributions to compute **marginal contribution** of the feature



- To estimate **expected\_value**, we need to provide some training data
- "Missing feature" is approximated by setting its value to the expected value of the feature learnt on the training data

Simulating all combinations of features, for each individual feature is **computationally expensive**.

Optimised versions for specific classes of models (trees, linear, neural networks, ...)



#### With the Tree Explainer:

- No need to provide a background dataset
- The model's expected\_value is known from the trained model
- Contributions of each individual features can be computed directly from the structure of the tree



### TreeExplainer

- For tree based models
- Works with scikit-learn, xgboost, lightgbm, catboost

### DeepExplainer

For Deep Learning models

#### KernelExplainer

Model agnostic explainer



## SHAP - Local Interpretation

- Base value is the expected value of your model
- Output value is what your model predicted for this observation
- In red are the positive SHAP values, the features that contribute positively to the outcome
- In blue the negative SHAP values, features that contribute negatively to the outcome





# SHAP - Global Interpretation

• Although SHAP values are local, by plotting all of them at once we can learn a lot about our model globally





### SHAP - Tree Explainer API

- 1. Create a new explainer, with our model as argument
  - > explainer = TreeExplainer(my tree model)
- 2. Calculate shap\_values from our model using some observations
  - > shap\_values = explainer.shap\_values(observations)
- 3. Use SHAP visualisation functions with our shap\_values
  - > shap.force\_plot(base\_value, shap\_values[0]) # local explanation
  - > shap.summary\_plot(shap\_values) # Global features importance





>>> SHAP



### Conclusion

- Gives trust that our complex model predicts the right thing
- Can help debugging our model and spot biases in our data
- Can explain to others why a prediction was made
- Regulations make it mandatory (finance, GDPR, ...)

