БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Лабораторная работа №3 Метод простых итераций. Метод Зейделя. Метод релаксации

Преподаватель: Полевиков Виктор Кузьмич

Студент: Шиляев Иван

2 курс 9 группа

Постановка задачи

Сгенерировать случайным образом вещественные элементы квадтарной матрицы A размера 9×9 с точностью до двух знаков после запятой. Задать вектор x и вычислить f = Ax. Далее:

- 1. Построить сходящийся алгоритм метода простых итераций, найти решение системы Ax=f при $\epsilon=10^{-7}$ и определить число итераций.
- 2. Найти решение, используя метод Зейделя (q=1).
- 3. Построить сходящийся алгоритм метода релаксации и вычислить решение при 0 < q < 2. Найти q-оптимальное с точностью до 0,01.
- 4. Изобразить график $N_{\epsilon(q)}$.

Краткая теория

Рассмотрим систему:

$$Ax = f, |A| \neq 0, A = \{a_{ij}\}_{n \times n}, x = \begin{pmatrix} x \\ \dots \\ x_n \end{pmatrix}, f = \begin{pmatrix} f_1 \\ \dots \\ f_n \end{pmatrix}$$
 (1)

Для нахождения решения системы по методу простых итераций её необходимо привести к следующему каноническому виду:

$$x = Bx + g, B = \{a_{ij}\}_{n \times n}, g = \{g_i\}$$
 (2)

По критерию сходимости (теорема 1) метод простых итераций сходится тогда и только тогда когда спектральный радиус матрицы B меньше 1. Поскольку матрица A выбирается произвольно, то необходимо сначала получить симметрическую и положительно определённую матрицу. Для этого (замечание 3) домножим обе части системы (1) слева на матрицу A^T . В результате получим следующую систему:

$$A^{T}Ax = A^{T}f, \widetilde{A}x = \widetilde{f}, \widetilde{A} = \widetilde{A}^{T} > 0$$
(3)

Систему (3) можно привести к виду:

$$x = \left(E - \frac{\widetilde{A}}{\|\widetilde{A}\|}\right) x + \frac{f}{\|\widetilde{A}\|} \tag{4}$$

Выполняя замену
$$B = \left(E - \frac{\tilde{A}}{\|\tilde{A}\|}\right), \rho(B) < 1, g = \frac{f}{\|\tilde{A}\|},$$
 получаем систему (2).

Далее выбираем вектор начального итерационного приближения: $x^{(0)} = g$. Строим итерационную последовательность по правилу: $x^{(k+1)} = Bx^{(k)} + g$, где $x^{(k)}$ - k-е итерационное приближение, а k - номер итерации.

Рассмотрим решение системы (1) по методу релаксации. Итерационная последовательность строится по следующему правилу:

$$x_i^{(k+1)} = (1-q)x_i^{(k)} + q\left(\sum_{j=1}^{i-1} b_{ij}x_j^{(k+1)} + \sum_{j=i}^n b_{ij}x_j^{(k)} + g_i\right), i = \overline{1, n}$$
 (5)

По теореме при положительно определённой и симметрической матрице A при 0 < q < 2 следующий метод релаксации сходится:

$$x_i^{(k+1)} = (1-q)x_i^{(k)} + q\left(-\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}}x_j^{(k+1)} - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}}x_j^{(k)} + \frac{f_i}{a_{ii}}\right), i = \overline{1, n}$$
 (6)

Листинг программы на языке Java

```
package com;
public class Solution {
     private static final int SIZE = 9;
     private static double[][] A = \text{new double}[SIZE][SIZE];
private static double[][] E = \text{new double}[SIZE][SIZE];
     public static double[][] A_INVERSE = new double[SIZE][SIZE];
private static double[][] A_TRANSPOSED = new double[SIZE][SIZE];
     private static double[] x = new double[SIZE];
     private static double[] myX = new double[SIZE];
private static double[] f = new double[SIZE];
     private static boolean isDetZero = false;
     private static final double EPS = 0.0000001;
     public static double round(double value, int places) {
   if (places < 0) throw new IllegalArgumentException();</pre>
           long factor = (long) Math.pow(10, places);
           value = value * factor;
           long tmp = Math.round(value);
           return (double) tmp / factor;
     public static void printMatrix4(double[][] A) {
           for (int i=0; i<SIZE; ++i) {
    for (int j=0; j<SIZE; ++j) {
                     System.out.printf("%13.4f ", A[i][j]);
                System.out.println();
           System.out.println();
     public static void printVector12(double[] x) {
   for (int i=0; i<SIZE; ++i) {
      System.out.printf("%17.12f\n", x[i]);</pre>
           System.out.println("\n");
     public static void generateMatrix(double[][] A) {
           for (int i=0; i<SIZE; ++i) {</pre>
                for (int j=i; j<SIZE; ++j) {
    A[i][j] = round( -99 + Math.random()*199, 2);</pre>
                      A[j][i] = A[i][j];
     public static void generateX(double[] x) {
           for (int i=0; i<SIZE; ++i) {
                x[i] = round(-99 + Math.random()*199, 10);
     public static void countF(double[][] A, double[] x) {
           for (int i=0; i<SIZE; ++i) {</pre>
                f[i]=0;
           for (int i=0; i<SIZE; ++i) {</pre>
                for (int j=0; j<SIZE; ++j) {
    f[i]+=A[i][j]*x[j];</pre>
           }
     }
     // решение по методу Гаусса без выбора главного элемента
     public static void solve(double[][] myA, double[] myX, double[] f) {
   double[][] A = new double[SIZE][SIZE];
           for (int i=0; i<SIZE; ++i) {</pre>
                System.arraycopy(myA[i], 0, A[i], 0, SIZE);
           for (int k=1; k<SIZE; ++k) {
   for (int i=k; i<SIZE; ++i) {
     f[i] -= f[k-1]*A[i][k-1]/A[k-1][k-1];</pre>
```

```
double tmp = A[i][k-1];
                for (int j = 0; j < SIZE; ++j) {
   A[i][j] -= A[k-1][j] * tmp / A[k-1][k-1];</pre>
           }
     }
     myX[SIZE-1] = f[SIZE-1]/A[SIZE-1][SIZE-1];
     for (int i=SIZE-2; i>=0; --i) {
           double sum = 0;
           for (int j=i+1; j<SIZE; ++j)
    sum += A[i][j]*myX[j];</pre>
           myX[i] = (f[i]-sum)/A[i][i];
}
public static double det(double[][] myA) {
     double det = 1;
double[][] A = new double[SIZE][SIZE];
      for (int i=0; i<SIZE; ++i) {</pre>
           System.arraycopy(myA[i], 0, A[i], 0, SIZE);
     for (int k=1; k<SIZE; ++k) {
    for (int i=k; i<SIZE; ++i) {</pre>
                double tmp = A[i][k-1];
                for (int j = 0; j < SIZE; ++j) {
    A[i][j] -= A[k-1][j] * tmp / A[k-1][k-1];</pre>
           }
     for (int i=0; i<SIZE; ++i) {</pre>
           det *= A[i][i];
     return det;
}
public static void countInverseMatrix(double[][] A, double[][] A_INVERSE) {
     if (det(A) == 0) {
           isDetZero = true;
           return;
     double[] myf = new double[SIZE];
     double[] myX = new double[SIZE];
for (int l=0; l<SIZE; ++l) {
    for (int i=0; i<SIZE; ++i)</pre>
           myf[i] = 0;
myf[l] = 1;
           solve(A, myX, myf);
for (int i=0; i<SIZE; ++i) {</pre>
                A_INVERSE[i][l] = myX[i];
     }
}
public static void countTransposedMatrix(double[][] A, double[][] A_TRANSPOSED) {
     for (int i=0; i<SIZE; ++i) {
    for (int j=0; j<SIZE; ++j)</pre>
                A_{TRANSPOSED[i][j] = A[j][i];
           }
     }
// сложение матриц
public static double[][] addMatrix(double[][] A, double[][] B) {
     double[][] C = new double[SIZE][SIZE];
     for (int i=0; i<SIZE; ++i) {
   for (int j=0; j<SIZE; ++j) {
      C[i][j] = A[i][j] + B[i][j];
}</pre>
           }
     return C;
// вычитание матриц
public static double[][] subtractMatrix(double[][] A, double[][] B) {
     double[][] C = new double[SIZE][SIZE];
for (int i=0; i<SIZE; ++i) {
    for (int j=0; j<SIZE; ++j) {
        C[i][j] = A[i][j] - B[i][j];
}</pre>
     }
```

```
return C;
   умножение матриц
public static double[][] multiplyMatrix(double[][] A, double[][] B) {
     double[][] C = new double[SIZE][SIZE];
     for (int i=0; i<SIZE; ++i) {</pre>
         for (int j=0; j<SIZE; ++j) {
   for (int k=0; k<SIZE; ++k) {
      C[i][j] += A[i][k] * B[k][j];</pre>
          }
     }
     return C;
}
// умножение матрицы на число
public static double[][] multiplyMatrixByNumber(double[][] A, double n) {
     double[][] C = new double[SIZE][SIZE];
     for (int i=0; i<SIZE; ++i) {
   for (int j=0; j<SIZE; ++j) {
      C[i][j] = A[i][j] * n;</pre>
     return C;
// деление матрицы на число
public static double[][] divideMatrixByNumber(double[][] A, double n) {
     double[][] C = new double[SIZE][SIZE];
     for (int i=0; i<SIZE; ++i) {
   for (int j=0; j<SIZE; ++j) {
      C[i][j] = A[i][j] / n;</pre>
          }
     return C;
}
   деление вектора на число
public static double[] divideVectorByNumber(double[] f, double n) {
     double[] v = new double[SIZE];
for (int i=0; i<SIZE; ++i) {</pre>
         v[i] = f[i] / n;
     return v;
// умножение матрицы на вектор
public static double[] multipleMatrixByVector(double[][] A, double[] x) {
     double[] v = new double[SIZE];
    for (int i=0; i<SIZE; ++i) {
    for (int j=0; j<SIZE; ++j) {
        v[i] += A[i][j] * x[j];
          }
     return v;
}
   сложение векторов
public static double[] addVectorToVector(double[] a, double[] b) {
     double[] v = new double[SIZE];
for (int i=0; i<SIZE; ++i) {</pre>
         v[i] = a[i] + b[i];
     return v;
// вычитание векторов
public static double[] subtractVectorFromVector(double[] a, double[] b) {
     double[] v = new double[SIZE];
     for (int i=0; i<SIZE; ++i) {
   v[i] = a[i] - b[i];</pre>
     return v;
// норма вектора
public static double vectorNorm(double[] a) {
     double res = Math.abs(a[0]);
     for (int i=1; i<SIZE; ++i) {
          if (Math.abs(a[i]) > res)
```

```
res = Math.abs(a[i]);
        return res;
   }
    // сумма по столбцам
   public static double norm_1(double[][] A) {
        double max = 0;
        for (int j=0; j<SIZE; ++j) {</pre>
             double sum = 0;
             for (int i=0; i<SIZE; ++i) {</pre>
                 sum += Math.abs(A[i][j]);
             if (sum>max)
                 max = sum;
        return max;
   }
    // сумма по строкам
   public static double norm_2(double[][] A) {
        double max = 0;
        for (int i=0; i<SIZE; ++i) {</pre>
             double sum = 0;
             for (int j=0; j<SIZE; ++j)</pre>
                 sum += Math.abs(A[i][j]);
             if (sum>max)
                 max = sum;
        return max;
   ŀ
    // simple-iteration method
    public static int solveSIM(double[][] B, double[] g) {
        double[] x0 = g;
double[] x1 = addVectorToVector(multipleMatrixByVector(B, x0), g);
        int iterationNumber = 0;
        while (vectorNorm(subtractVectorFromVector(x1, x0)) > EPS) {
            x0 = x1;
            x1 = addVectorToVector(multipleMatrixByVector(B, x0), g);
             ++iterationNumber;
        System.out.println("Solution:");
        printVector10(x1);
        System.out.println("Number of iterations: " + iterationNumber + "\n");
        return iterationNumber;
    // relaxation method
   public static int solveRelaxation(double[][] A1, double q) {
        // counting L, R, D
        double[][] L = new double[SIZE][SIZE];
double[][] R = new double[SIZE][SIZE];
        double[][] D = new double[SIZE][SIZE];
        for (int i=1; i<SIZE; ++i) {
    System.arraycopy(A1[i], 0, L[i], 0, i);</pre>
        for (int i=0; i<SIZE-1; ++i) {</pre>
            for (int j=i+1; j<SIZE; ++j) {
   R[i][j] = A1[i][j];</pre>
             }
        for (int i=0; i<SIZE; ++i) {</pre>
            D[i][i] = A1[i][i];
        // counting new B and g
        countInverseMatrix(B1, B); // B = B1^{-}(-1) \\ \textbf{double}[] \ g = multipleMatrixByVector(multiplyMatrixByNumber(B, q), f); \\
        B = multiplyMatrix(B, subtractMatrix(D, multiplyMatrixByNumber(addMatrix(D, R),q))); // B =
(B1)^{(-1)} * (D - q(D + R))
        // finding solution
double[] x0 = g;
        x = addVectorToVector(multipleMatrixByVector(B, x0), g);
        int iterationNumber = 0;
        while (vectorNorm(subtractVectorFromVector(x, x0)) / q > EPS) {
            x0 = x;
```

```
x = addVectorToVector(multipleMatrixByVector(B, x0), g);
        ++iterationNumber;
    return iterationNumber;
}
public static void main(String[] args) {
    System.out.println("---#1 метод простых итераций---\n");
    generateMatrix(A);
    System.out.println("A:");
    printMatrix2(A);
    generateX(myX);
    countF(A, myX);
    System.out.println("f:");
    printVector10(f);
    countTransposedMatrix(A, A_TRANSPOSED);
double[][] A1 = multiplyMatrix(A_TRANSPOSED, A);
    f = multipleMatrixByVector(A_TRANSPOSED, f);
    System.out.println("A1 = A^T * A:");
    printMatrix4(A1);
    System.out.println("f1:");
    printVector12(f);
    System.out.println("My solution:");
    printVector10(myX);
    generateE();
    double n = norm_1(A1);
    double[][] B = SubtractMatrix(E, divideMatrixByNumber(A1, n)); // B = E - (A / ||A||)
    double[] g = divideVectorByNumber(f, n);
    int it1 = solveSIM(B, g);
    System.out.println("---#2 метод Зейделя---");
    int it2 = solveRelaxation(A1, 1);
    printVector10(x);
    System.out.println("Number of iterations: " + it2 + "\n");
    System.out.println("---#3 метод релаксации---");
    double qMin = 0.1;
    int itMin = solveRelaxation(A1, qMin);
    // [0,1; 1,9]
double[] a = new double[19];
    double[] b = new double[19];
    int j=0;
    for (double q = 0.2; q<2; q+=0.1) {
        int tmp = solveRelaxation(A1, q);
        System.out.println("q = "+ round(qMin, 1));
        System.out.println("Number of iterations: " + tmp + "\n");
        if (tmp < itMin) {</pre>
             itMin = tmp;
             qMin = q;
        a[j] = q;
b[j++] = tmp;
    // [qMin-0.1; qMin+0.1]
    double tmpMin = qMin;
    for (double q = tmpMin-0.1; q < tmpMin + 0.1; q+=0.01) {
        int tmp = solveRelaxation(A1, q);
        if (tmp < itMin) {</pre>
             itMin = tmp;
            qMin = q;
        }
    System.out.println("q with least number of iterations:");
    int tmp = solveRelaxation(A1, qMin);
    System.out.println("q = "+ round(qMin, 2));
    System.out.println("Solution:");
    printVector10(x);
    System.out.println("Number of iterations: " + tmp + "\n");
}
```

}

Результат

Сгенерированная матрица:

-80,61	77,97	-66,69	87,54	4,38	-15,83	-2,84	31,71	-41,89
77 , 97	25,01	71,52	22,25	62,38	-11,35	79 , 82	-72,41	-69 , 23
-66 , 69	71 , 52	-10,27	46,04	68,13	20,25	77,46	-24,99	-85 , 22
87 , 54	22,25	46,04	-43,14	67,79	50,55	62,58	-86,11	-29,80
4,38	62,38	68,13	67,79	47,00	41,43	-26,88	-1,25	-15 , 54
-15 , 83	-11 , 35	20,25	50,55	41,43	0,48	77,64	95,12	10,85
-2,84	79 , 82	77,46	62,58	-26,88	77,64	-41,09	-1,34	-39,12
31,71	-72,41	-24,99	-86,11	-1,25	95,12	-1,34	-5,21	81,45
-41,89	-69 , 23	-85 , 22	-29,80	-15,54	10,85	-39,12	81,45	11,50

Функция f:

- 928,7260337104
- -7458,1370840479
- -6818,9360593790
- -4506,5182272031
- -11560,1899245097
- -16832,6118446709
- -10488,1279403163
 - -3,0713516691
- 5002,8543047756

Изменённая матрица:

27726,2358	-6326,9061	18202,8416	-14331,8897	6139,1391	5980,8874	7131,1090	-19158,0057	3025,8442
-6326,9061	32742,3142	14791,0511	26663,2945	9765,0321	2192,2844	5674,7224	-9567 , 8509	-22664,6206
18202,8416	14791,0511	30726,5805	8475,3429	9905,1709	7907 , 9597	7909,1322	-16075,1102	-9539 , 1965
-14331,8897	26663,2945	8475,3429	31509,0704	6152,6204	-3709,3110	3206,1966	6390,1611	-18154 , 8531
6139,1391	9765,0321	9905,1709	6152,6204	18038,6632	3621,6928	18153,7446	-9259,1413	-11838,0676
5980,8874	2192,2844	7907,9597	-3709,3110	3621,6928	20254,9582	-947 , 5274	-4261,0340	2413,1922
7131,1090	5674,7224	7909,1322	3206,1966	18153,7446	-947 , 5274	26266,6681	-8899 , 8770	-11564 , 4692
-19158,0057	-9567 , 8509	-16075,1102	6390,1611	-9259 , 1413	-4261 , 0340	-8899,8770	30000,5835	9996,5565
3025.8442	-22664.6206	-9539.1965	-18154.8531	-11838.0676	2413.1922	-11564.4692	9996.5565	23353.9944

Изменённая функция f:

- -560175,376236170600
- -2415437,659340892500
- -3099925,339732949600
- -2643896,927407029600
- -2267765,428470433700
- -1543267,582105221200
- -2169055,227975717300
- -37160,119500064350
- 1657416,211776281200

Вектор решения:

4,2818180642

4,5585486928

-88,5718230505

-48,7145237012

-37,2786812262

-61,1504648965

-56,1069328204

-67,3960717622

-10,7214701046

Метод простых итераций:

4,2818119089

4,5585122537

-88,5718266715

-48,7144860080

-37,2786866631

-61,1504552808

-56,1069307322

-67,3960978532

-10,7214683696

N = 4455

Метод Зейделя:

4,2818176458

4,5585445458

-88,5718236433

-48,7145194478

-37,2786818501

-61,1504637842

-56,1069326785

-67,3960745417

-10,7214701818

N = 726

Метод релаксации:

q = 0.1 N = 5759

q = 0.2 N = 3716

q = 0.3 N = 2678

q = 0.4 N = 2046

q = 0.5 N = 1617

q = 0.6 N = 1306

q = 1.9 N = 1275

q-оптимальное = 1.49 N = 172

Решение при q = 1.49:

4,2818173301 4,5585461514 -88,5718232028 -48,7145210103 -37,2786815982 -61,1504642563 -56,1069325788 -67,3960737951 -10,7214697576

График зависимости N от q:

