FUNDAMENTALS OF QUALITY IMPROVEMENT

William Baum

WHY QUALITY IMPROVEMENT?

- To provide a simple framework to apply the Data Science skillset...
- · to real-world problems,
- · incorporating soft skills,
- · with real people.

A SYNERGISTIC BLEND OF THREE KEY DISCIPLINES

- I. Organizational Behavior
 (Cultural Change)
- 2. Systems Thinking
- 3. Analytic Problem Solving

W. Edwards Deming

"Defects are not free. Somebody makes them and gets paid for making them"

-W. Edwards Deming

ORGANIZATIONAL BEHAVIOR

- I. Organizational Behavior (Cultural Change)
 - · Presents the most challenging aspect of QI
 - · Where there are people, there are politics.
 - Goal: Implement a culture of continuous and harmonious quality improvement

HOW TO TACKLE ORGANIZATIONAL BEHAVIOR

- Find a Champion (Organization-wide, Project-specific)
 - Data scientists typically support Line/Product Managers, Directors
 - Line Managers usually have larger budgets/more resources
- Nemawashi Ground work seeking guidance and building consensus
 - "The work will teach you how to do it." Estonian Proverb
 - The people most intimately involved in a process often understand the challenges very well and can identify areas for Quality Improvement.
- Start Small. Go after low-hanging fruit. Live close to the data.

"A bad system will beat a good person every time."

-W. Edwards Deming

SYSTEMS THINKING

- The focus is on the whole system, interdependencies within it, and optimizing the system over time.
- · Processes are viewed as series of interconnected steps.
 - View problems holistically
 - We often forget how interconnected we are!

HOW TO TACKLE SYSTEMS THINKING

- People often tend towards working in silos with blinders on
 - It takes consistent effort and time to change this cultural phenomenon - patience is your best weapon
 - Authority vs Influence choose the latter whenever possible
- Build trust to foster open communication
 - Strive to maintain an attitude of unconditional positive regard
 - · Run efficient, multi-disciplinary meetings. Listen to the quiet ones.
 - Thank people for their work. Praise success. Learn from failure.

"In God we trust. All others bring data."

-W. Edwards Deming

ANALYTIC PROBLEM SOLVING

- · Data Science!
 - The Theory of Variation:
 - Understanding sources of variation is key.
 - Eliminating sources of variation is the chief goal.
 - Inputs Process Outcomes
 - Output is a combination of:
 Signal (Product) + Noise (Waste)

HOW TO TACKLE ANALYTIC PROBLEM SOLVING

- Apply QI framework Flexibly & Consistently
- Ensure quality data collection
 - Do not assume that easily accessible data is of high quality.
 - "Garbage in, Garbage out"
- Democratize Data Consumption
 - Fewer touches are better
 - Automate whenever possible

PROCESS MAPPING

Visual Six Sigma: Making Data Analysis Lean, 1st Edition

VISUAL SIX SIGMA

Visual Six Sigma: Making Data Analysis Lean, 1st Edition

- Frame the problem
- Collect Data
- Uncover Relationships (EDA)
- Model Relationships (CDA)
- Revise Knowledge
- Utilize Knowledge

VSS GUIDE

Frame the problem

Identify the core problem, or outcomes of interest

Assemble a multi-disciplinary team

Assign a champion, a coordinator, team members

Conduct Concept Mapping (e.g. Root Cause Analyses, FMEA)

Conduct brainstorming

Identify needed resources for project (personnel, budget, etc.)

Establish a timeframe to achieve benchmarks (Gantt Chart)

Collect Data

Collect baseline data

Ensure accuracy of data collection systems

If necessary, adjust or add data collection systems and recollect data

Uncover Relationships (statistics as Detective - EDA)

Dynamically visualize the variables one at a time (Histograms, Densities, Box plots) two at a time (scatterplots, mosaic plots)

more than two at a time (3-D, bubble charts, Decision Trees, Dimension Reduction Visually, determine the Input factors that affect variation in the Outcomes

Model Relationships (statistics as Judge - CDA)

For each Outcome, identify the Input factors to include in the signal function Model the Outcome as a function of the influential Input factors; check noise function Use weights to optimize multiple outcomes, simultaneously, using Desirability functions Select the best model; If needed, revise the model

If required, return to the Collect Data step and use DOE to optimize learning efficiency

Revise Knowledge

Identify the best Input settings

Visualize the effect on the Outputs, should those input settings vary

Verify improvements with a pilot study or confirmatory trials

Utilize Knowledge

Change processes to implement optimal input settings

Monitor processes for variation

Alert team should phase shift occur, or new, special causes of variation are identified

RECOMMENDED READING

- Our Iceberg is Melting
 John Kotter; Leadership, Story describes Group dynamics in QI
- Read this Before Our Next Meeting
 Al Pittampalli; Running efficient meetings
- <u>Peace And Power: Creative Leadership For Building Community</u>
 Peggy L. Chin; Running productive meetings of different types
- <u>Visual Six Sigma: Making Data Analysis Lean, 1st Edition</u>
 lan Cox, Marie Gaudard, Philip Ramsey, Mia Stephens, Leo Wright;
 Framework to use statistics in a QI setting, with Case Studies

QUALITY IMPROVEMENT TERMINOLOGY

- **Kaizen** (kai="change", zen="good") Japanese term that emphasizes continuous QI that is inclusive of entire organizations: management, staff, processes. https://en.wikipedia.org/wiki/Kaizen
- **Lean** Maximizing customer value while minimizing waste; creating more value for customers with fewer resources. https://www.lean.org/WhatsLean/
- **Six Sigma** (6σ) is a set of techniques and tools for process improvement. As a manufacturing goal, it represents produce some feature of a part are statistically expected to be virtually free of defects (6 standard deviations, or 3.4 defects per million). https://en.wikipedia.org/wiki/Six Sigma
- Total Quality Management (TQM) consists of organization-wide efforts to install and
 make a permanent climate in which an organization continuously improves its ability to deliver
 high-quality products and services to customers. (Motorolla, General Electric)
 http://asq.org/learn-about-quality/total-quality-management/overview/overview.html

REFERENCES

- Nemawashi https://www.youtube.com/watch?v=Nz-X4cZRoCl
- Visual Six Sigma: Making Data Analysis Lean, 1st Edition
 Ian Cox, Marie Gaudard, Philip Ramsey, Mia Stephens, Leo Wright,
 SAS & Wiley.