

SHANGZE DAI

1.1 Solve Tauchen (86) approximation and simulate the stationary distribution $D^{T}(y)$

$$y_{t+1} = \rho y_t + u_{t+1} \quad N(0, \sigma_u^2) \quad \rho = 0.9, \sigma_u = 0.1, n = 11, m = 3$$

Solving M*Y=Y

QUESTION 1.2

QUESTION 1.3&1.4

Base Case: n=2

For two states (n=2), the transition probability matrix is:

$$P_2 = egin{bmatrix} p & 1-p \ 1-q & q \end{bmatrix}$$

where:

- $p = \frac{1+\rho}{2}$
- q = p

Recursive Step: Expanding to n States

For n>2, we construct P_n recursively from P_{n-1} :

$$P_n = egin{bmatrix} p P_{n-1} & (1-p) P_{n-1} \ (1-q) P_{n-1} & q P_{n-1} \end{bmatrix}$$

QUESTION 1.3&1.4

2.1
$$\rho = 0.9, \sigma_u = 0.1, n = 11, m = 3, \hat{\sigma}_u = 0.2$$

$$P(i,j) = \Phi\left(rac{y_j + \delta/2 -
ho\,y_i}{\sigma}
ight) - \Phi\left(rac{y_j - \delta/2 -
ho\,y_i}{\sigma}
ight)$$

As long as the state grid is constructed according to the unconditional standard deviation (that is, the grid range and step size are scaled with σ), transition the probability matrix must be the same under the normalized scale.

2.2 Simulate 1000 individuals indexed by i for 21 periods t = 0, 1, ..., 20, starting with $y_{i,0} = 0$ that receive an uncertainty shock only at time t = 11. Plot the time path of $y_{i,t}$ of all 1000 individuals over t.

QUESTION 2.3

m_t[11:] = np.random.poisson(1, num_periods - 11) + 3 # Poisson distribution + 3 after t=11

Dynamically Changing State Space (m_t from Poisson Distribution after t = 11

Time Path of 1000 Individuals with Poisson-Driven Expanding State Space (After t = 11)

QUESTION 3.1

$$w_{t+1} = (1 + r_{t+1})s(w_t) + y_{t+1}$$

$$z_{t+1} = az_t + b + \sigma_z \epsilon_{t+1}$$

$$1 + r_t = c_r \exp(z_t) + \exp(\mu_r + \sigma_r \xi_t)$$

$$y_t = c_y \exp(z_t) + \exp(\mu_y + \sigma_y \zeta_t)$$

$$s(w) = s_0 w \cdot \mathbf{1}\{w \geq \hat{w}\}$$

```
# Define simulation parameters
N = 10000 # Number of individuals
T = 1000 # Number of time steps for convergence
w_0 = np.random.uniform(1.0, 10.0, N) # Initial wealth values randomly distributed
```


QUESTION 3.2& 3.3

Mean of z: -0.000681

Variance of z: 0.0133

Mean of w: 12.8

Variance of w: 16.9

Correlation(z, w): 0.0665

4.1 Compare the stochastic simulation using discrete grids to the original stochastic simulation in Task 3. Plot the stationary distribution in one- and two-dimension.

4.2 Compare the non-stochastic simulation to the stochastic simulation using discrete grids. Plot the stationary distribution in one- and two-dimension.

QUESTION 4.3

1.3.2: 43.5s 1.4.1: 4.83s 1.4.2: 10.6s

```
def run_and_time(script_path):
    """
    Call an external Python script and count its running time (in seconds).
    Returns the running time of the script.
    """
    start = time.time()
    # If necessary, you can change it to "python3" or an absolute path subprocess.run(["python", script_path], check=True)
    end = time.time()
    return end - start
```


THANK YOU