Höhere Mathematik I

G. Herzog, Ch. Schmoeger

Wintersemester 2016/17

Karlsruher Institut für Technologie

Inhaltsverzeichnis

1	Reelle Zahlen	2
2	Folgen und Konvergenz	12
3	Unendliche Reihen	31
4	Potenzreihen	45
5	q-adische Entwicklung	49
6	Grenzwerte bei Funktionen	53
7	Stetigkeit	59
8	Funktionenfolgen und -reihen	70
9	Differentialrechnung	76
10	Das Riemann-Integral	91
11	Uneigentliche Integrale	106
12	Die komplexe Exponentialfunktion	111
13	Fourierreihen	118
14	Der Raum \mathbb{R}^n	125

Kapitel 1

Reelle Zahlen

Die Grundmenge der Analysis ist die Menge \mathbb{R} , die Menge der **reellen Zahlen**. Diese führen wir **axiomatisch** ein, d.h. wir nehmen \mathbb{R} als gegeben an und **fordern** in den folgenden 15 **Axiomen** Eigenschaften von \mathbb{R} aus denen sich alle weiteren Rechenregeln herleiten lassen.

Körperaxiome: In \mathbb{R} sind zwei Verknüpfungen "+" und "·" gegeben, die jedem Paar $a, b \in \mathbb{R}$ genau ein $a + b \in \mathbb{R}$ und genau ein $ab \coloneqq a \cdot b \in \mathbb{R}$ zuordnen. Dabei gilt:

```
(A1) \forall a, b, c \in \mathbb{R}: a + (b + c) = (a + b) + c (Assoziativgesetz für "+")
```

(A5)
$$\forall a, b, c \in \mathbb{R} : a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 (Assoziativgesetz für "·")

(A2)
$$\exists 0 \in \mathbb{R} \ \forall a \in \mathbb{R} : a + 0 = a \text{ (Existenz einer Null)}$$

(A6)
$$\exists 1 \in \mathbb{R} \ \forall a \in \mathbb{R} : a \cdot 1 = a \text{ und } 1 \neq 0 \text{ (Existenz einer Eins)}$$

(A3)
$$\forall a \in \mathbb{R} \exists -a \in \mathbb{R} : a + (-a) = 0$$
 (Inverse bzgl. "+")

(A7)
$$\forall a \in \mathbb{R} \setminus \{0\} \exists a^{-1} \in \mathbb{R} : a \cdot a^{-1} = 1 \text{ (Inverse bzgl. "·")}$$

$$(A4) \ \forall a,b \in \mathbb{R} : a+b=b+a$$
 (Kommutativgesetz für "+")

$$(A8) \ \forall a,b \in \mathbb{R} : a \cdot b = b \cdot a$$
 (Kommutativgesetz für "·")

(A9)
$$\forall a, b, c \in \mathbb{R} : a \cdot (b+c) = a \cdot b + a \cdot c$$
 (Distributivgesetz)

Schreibweisen: Für $a, b \in \mathbb{R}$: a - b := a + (-b) und für $b \neq 0$: $\frac{a}{b} := a \cdot b^{-1}$.

Alle bekannten Regeln der Grundrechenarten lassen sich aus (A1)-(A9) herleiten. Diese Regeln seien von nun an bekannt.

Beispiele:

a) Behauptung: $\exists_1 0 \in \mathbb{R} \ \forall a \in \mathbb{R} : a + 0 = a$.

Beweis: Sei
$$\tilde{0} \in \mathbb{R}$$
 und es gelte $\forall a \in \mathbb{R} : a + \tilde{0} = a$. Mit $a = 0$ folgt: $0 + \tilde{0} = 0$. Mit $a = \tilde{0}$ in (A2) folgt: $\tilde{0} + 0 = \tilde{0}$. Damit ist $0 = 0 + \tilde{0} \stackrel{(A4)}{=} \tilde{0} + 0 = \tilde{0}$.

b) Behauptung: $\forall a \in \mathbb{R} : a \cdot 0 = 0$.

Beweis: Sei
$$a \in \mathbb{R}$$
 und $b := a \cdot 0$. Es gilt $b \stackrel{(A2)}{=} a \cdot (0+0) \stackrel{(A9)}{=} a \cdot 0 + a \cdot 0 = b+b$, und damit $0 \stackrel{(A3)}{=} b + (-b) = (b+b) + (-b) \stackrel{(A1)}{=} b + (b+(-b)) = b+0 \stackrel{(A2)}{=} b$.

Anordnungsaxiome: In \mathbb{R} ist eine Relation " \leq " gegeben. Für diese gilt:

$$(A10) \ \forall a, b \in \mathbb{R} : a \leq b \text{ oder } b \leq a$$

(A11)
$$a < b \text{ und } b < a \Rightarrow a = b$$

(A12)
$$a < b \text{ und } b < c \Rightarrow a < c$$

(A13)
$$a \le b \text{ und } c \in \mathbb{R} \Rightarrow a + c \le b + c$$

(A14)
$$a \le b \text{ und } 0 \le c \Rightarrow ac \le bc$$

Schreibweisen: $b \ge a : \iff a \le b; a < b : \iff a \le b \text{ und } a \ne b; b > a : \iff a < b.$

Aus (A1) - (A14) lassen sich alle Regeln für Ungleichungen herleiten. Diese Regeln seien von nun an bekannt.

Beispiele (Übung):

a)
$$a < b \text{ und } 0 < c \Rightarrow ac < bc$$

b)
$$a \le b$$
 und $c \le 0 \Rightarrow ac \ge bc$

c)
$$a \le b$$
 und $c \le d \Rightarrow a + c \le b + d$

Intervalle: Es seien $a, b \in \mathbb{R}$ und a < b. Wir setzen:

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$
 (abgeschlossenes Intervall)

$$(a,b) \coloneqq \{x \in \mathbb{R} : a < x < b\}$$
 (offenes Intervall)

$$\begin{array}{l} (a,b] \coloneqq \{x \in \mathbb{R} : a < x \leq b\} \text{ (halboffenes Intervall)} \\ [a,b) \coloneqq \{x \in \mathbb{R} : a \leq x < b\} \text{ (halboffenes Intervall)} \\ [a,\infty) \coloneqq \{x \in \mathbb{R} : x \geq a\}, \ (a,\infty) \coloneqq \{x \in \mathbb{R} : x > a\} \\ (-\infty,a] \coloneqq \{x \in \mathbb{R} : x \leq a\}, \ (-\infty,a) \coloneqq \{x \in \mathbb{R} : x < a\} \\ (-\infty,\infty) \coloneqq \mathbb{R} \end{array}$$

Der Betrag

Für $a \in \mathbb{R}$ heißt $|a| \coloneqq \begin{cases} a, & \text{falls } a \ge 0 \\ -a, & \text{falls } a < 0 \end{cases}$ der **Betrag** von a. Für $a, b \in \mathbb{R}$ heißt die Zahl |a - b| der **Abstand** von a und b.

Beispiele: |1| = 1, |-7| = -(-7) = 7.

Regeln: Für $a, b \in \mathbb{R}$ gilt:

a)
$$|-a| = |a|$$
 und $|a - b| = |b - a|$

b) $|a| \ge 0$

c)
$$|a| = 0 \iff a = 0$$

$$\mathrm{d})\ |ab| = |a||b|$$

e)
$$\pm a \le |a|$$

f)
$$|a+b| \le |a| + |b|$$
 (Dreiecksungleichung)

g)
$$||a| - |b|| \le |a - b|$$

Beweis:

a) - e) leichte Übung.

f) Fall 1:
$$a + b \ge 0$$
. Dann gilt: $|a + b| = a + b \stackrel{e}{\le} |a| + |b|$.
Fall 2: $a + b < 0$. Dann gilt: $|a + b| = -(a + b) = -a + (-b) \stackrel{e}{\le} |a| + |b|$.

g) Es sei c := |a| - |b|. Es gilt

$$|a| = |a - b + b| \stackrel{f}{\leq} |a - b| + |b| \Rightarrow c = |a| - |b| \leq |a - b|.$$

Analog zeigt man

$$-c = |b| - |a| \le |b - a| = |a - b|.$$

Also gilt $\pm c \le |a - b| \Rightarrow |c| \le |a - b|$.

Definition: Es sei $M \subseteq \mathbb{R}$.

- a) M heißt nach oben beschränkt : $\iff \exists \gamma \in \mathbb{R} \ \forall x \in M : x \leq \gamma$. In diesem Fall heißt γ eine obere Schranke (OS) von M.
- b) Ist γ eine obere Schranke von M und gilt $\gamma \leq \delta$ für jede weitere obere Schranke δ von M, so heißt γ das **Supremum** (oder **die kleinste obere Schranke**) von M.
- c) M heißt nach unten $beschränkt : \iff \exists \gamma \in \mathbb{R} \ \forall x \in M : \gamma \leq x.$ In diesem Fall heißt γ eine untere Schranke (US) von M.
- d) Ist γ eine untere Schranke von M und gilt $\gamma \geq \delta$ für jede weitere untere Schranke δ von M, so heißt γ das **Infimum** (oder **die größte untere Schranke**) von M.

Bezeichnung in diesem Fall: $\gamma = \sup M$ bzw. $\gamma = \inf M$.

Aus (A11) folgt: Ist sup M bzw. inf M vorhanden, so ist sup M bzw. inf M eindeutig bestimmt.

Ist sup M bzw. inf M vorhanden und gilt sup $M \in M$ bzw. inf $M \in M$, so heißt sup M das **Maximum** bzw. inf M das **Minimum** von M und wird mit max M bzw. min M bezeichnet.

Beispiele:

- a) M = (1,2). sup $M = 2 \notin M$, inf $M = 1 \notin M$. M hat kein Maximum und kein Minimum.
- b) M = (1, 2]. $\sup M = 2 \in M$, $\max M = 2$.

- c) $M = (3, \infty)$. M ist nicht nach oben beschränkt, $3 = \inf M \notin M$.
- d) $M = (-\infty, 0]$. M ist nach unten unbeschränkt, $0 = \sup M = \max M$.
- e) $M = \emptyset$. Jedes $\gamma \in \mathbb{R}$ ist eine obere Schranke und eine untere Schranke von M.

${f Vollst\"{a}ndigkeits axiom:}$

(A15) Ist $\emptyset \neq M \subseteq \mathbb{R}$ und ist M nach oben beschränkt, so ist sup M vorhanden.

Satz 1.1: Ist $\emptyset \neq M \subseteq \mathbb{R}$ und ist M nach unten beschränkt, so ist inf M vorhanden.

Beweis: In den Übungen.

Definition: Es sei $M \subseteq \mathbb{R}$. M heißt beschränkt: $\iff M$ ist nach oben und nach unten beschränkt. Äquivalent ist:

$$\exists c \ge 0 \ \forall x \in M : |x| \le c.$$

Satz 1.2: Es sei $\emptyset \neq B \subseteq A \subseteq \mathbb{R}$.

- a) Ist A beschränkt, so ist inf $A \leq \sup A$.
- b) Ist A nach oben bzw. unten beschränkt, so ist B nach oben beschränkt und $\sup B \le \sup A$ bzw. nach unten beschränkt und $\inf B \ge \inf A$.
- c) A sei nach oben beschränkt und γ eine obere Schranke von A. Dann gilt:

$$\gamma = \sup A \iff \forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in A : x > \gamma - \varepsilon$$

d) A sei nach unten beschränkt und γ eine untere Schranke von A. Dann gilt:

$$\gamma = \inf A \iff \forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in A : x < \gamma + \varepsilon$$

Beweis:

- a) $A \neq \emptyset \Rightarrow \exists x \in \mathbb{R} : x \in A$. Es gilt: $\inf A \leq x \text{ und } x \leq \sup A \Rightarrow \inf A \leq \sup A$.
- b) Es sei $x \in B$. Dann: $x \in A$, also $x \le \sup A$. Also ist B oben beschränkt und $\sup A$ ist eine obere Schranke von B. Somit ist $\sup B \le \sup A$. Analog falls A nach unten beschränkt ist.

c) "\(\sim\)": Es sei $\gamma:=\sup A$ und $\varepsilon>0$. Dann ist $\gamma-\varepsilon<\gamma$. Also ist $\gamma-\varepsilon$ keine obere Schranke von A. Es folgt: $\exists x\in A: x>\gamma-\varepsilon$. "\((\sim\)": Es sei $\tilde{\gamma}:=\sup A$. Dann ist $\tilde{\gamma}\leq\gamma$. Annahme: $\gamma\neq\tilde{\gamma}$. Dann ist $\tilde{\gamma}<\gamma$, also $\varepsilon:=\gamma-\tilde{\gamma}>0$. Nach Voraussetzung gilt: $\exists x\in A: x>\gamma-\varepsilon=\gamma-(\gamma-\tilde{\gamma})=\tilde{\gamma}$. Widerspruch zu $x\leq\tilde{\gamma}$.

d) Analog zu c).

Natürliche Zahlen

Definition:

a) Eine Menge $A \subseteq \mathbb{R}$ heißt **Induktionsmenge** (IM)

$$: \Longleftrightarrow \begin{cases} (i) & 1 \in A; \\ (ii) & aus \ x \in A \ folgt \ stets \ x+1 \in A. \end{cases}$$

Beispiele: \mathbb{R} , $[1, \infty)$, $\{1\} \cup [2, \infty)$ sind Induktionsmengen.

b) $\mathbb{N} := \{x \in \mathbb{R} : x \text{ geh\"{o}rt } zu \text{ jeder } IM \} = Durchschnitt aller Induktionsmengen.}$ Also: $\mathbb{N} \subseteq A$ f\"{u}r jede Induktionsmenge A. Beispiele: $1, 2, 3, 4, 17 \in \mathbb{N}$; $\frac{3}{2} \notin \mathbb{N}$.

Satz 1.3:

- a) \mathbb{N} ist eine Induktionsmenge.
- b) N ist nicht nach oben beschränkt.
- c) Ist $x \in \mathbb{R}$, so existient ein $n \in \mathbb{N}$ mit n > x.

Beweis:

a) Es gilt $1 \in A$ für jede IM A, also $1 \in \mathbb{N}$. Sei $x \in \mathbb{N}$. Dann ist $x \in A$ für jede IM A, somit $x + 1 \in A$ für jede IM A. Also gilt $x + 1 \in \mathbb{N}$.

b) Annahme: \mathbb{N} ist beschränkt. Nach (A15) existiert $s := \sup \mathbb{N}$. Mit 1.2 folgt: $\exists n \in \mathbb{N} : n > s - 1$. Nun ist n + 1 > s. Wegen $n + 1 \in \mathbb{N}$ ist aber $n + 1 \leq s$, ein Widerspruch.

c) Folgt aus 1.3 b).

Satz 1.4 (Prinzip der vollständigen Induktion):

Ist $A \subseteq \mathbb{N}$ und ist A eine Induktionsmenge, so ist $A = \mathbb{N}$.

Beweis: Es gilt $A \subseteq \mathbb{N}$ (nach Voraussetzung) und $\mathbb{N} \subseteq A$ (nach Definition), also ist $A = \mathbb{N}$.

Beweisverfahren durch vollständige Induktion

Es sei A(n) eine Aussage, die für jedes $n \in \mathbb{N}$ definiert ist. Für A(n) gelte:

$$\begin{cases} (i) & A(1) \text{ ist wahr;} \\ (ii) & \text{ist } n \in \mathbb{N} \text{ und } A(n) \text{ wahr, so ist auch } A(n+1) \text{ wahr.} \end{cases}$$

Dann ist A(n) wahr für **jedes** $n \in \mathbb{N}$.

Beweis: Sei $A := \{n \in \mathbb{N} : A(n) \text{ ist wahr } \}$. Dann ist $A \subseteq \mathbb{N}$ und wegen (i), (ii) ist A eine Induktionsmenge. Nach 1.4 ist $A = \mathbb{N}$.

Beispiel: Behauptung:
$$\forall n \in \mathbb{N} : \underbrace{1 + 2 + \ldots + n = \frac{n(n+1)}{2}}_{A(n)}$$
.

Beweis: (induktiv)

Induktionsanfang (I.A.): Es gilt $1 = \frac{1(1+1)}{2}$, A(1) ist also wahr.

Induktionsvoraussetzung (I.V.): Für ein $n \in \mathbb{N}$ sei A(n) wahr, es gelte also

$$1+2+\ldots+n=\frac{n(n+1)}{2}.$$

Induktionsschluß $(n \curvearrowright n+1)$: Es gilt:

$$1 + 2 + \ldots + n + (n+1) \stackrel{I.V.}{=} \frac{n(n+1)}{2} + (n+1)$$
$$= (n+1)\left(\frac{n}{2} + 1\right) = \frac{(n+1)(n+2)}{2}.$$

Also ist A(n+1) wahr.

Definition: Wir setzen:

- a) $\mathbb{N}_0 := \mathbb{N} \cup \{0\}.$
- b) $\mathbb{Z} := \mathbb{N}_0 \cup \{-n : n \in \mathbb{N}\}\ (Menge\ der\ ganzen\ Zahlen).$
- c) $\mathbb{Q} := \{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \}$ (Menge der rationalen Zahlen).

Satz 1.5: Sind $x, y \in \mathbb{R}$ und x < y, so gilt: $\exists r \in \mathbb{Q}$: x < r < y.

Beweis: In den Übungen.

Einige Definitionen und Formeln

a) Ganzzahlige Potenzen.

Für $a \in \mathbb{R}$, $n \in \mathbb{N} : a^n \coloneqq \underbrace{a \cdot \ldots \cdot a}_{n \text{ Faktoren}}$, $a^0 \coloneqq 1$. Für $a \in \mathbb{R} \setminus \{0\}$, $n \in \mathbb{N} : a^{-n} \coloneqq \frac{1}{a^n}$.

$$n$$
 Faktoren $n - n - 1$

Es gelten die bekannten Rechenregeln.

b) Fakultäten.

$$n! := 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \ (n \in \mathbb{N}), \quad 0! := 1.$$

c) Binomialkoeffizienten. Für $n \in \mathbb{N}_0, k \in \mathbb{N}_0$ und $k \leq n$:

$$\binom{n}{k} \coloneqq \frac{n!}{k!(n-k)!}.$$

Es gilt (nachrechnen):

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \quad \text{für } 1 \le k \le n.$$

d) Für $a, b \in \mathbb{R}$ und $n \in \mathbb{N}_0$ gilt:

$$a^{n+1} - b^{n+1} = (a-b) \left(a^n + a^{n-1}b + a^{n-2}b^2 + \dots + ab^{n-1} + b^n \right)$$
$$= (a-b) \sum_{k=0}^{n} a^{n-k}b^k = (a-b) \sum_{k=0}^{n} a^k b^{n-k}.$$

e) Binomischer Satz. Für $a, b \in \mathbb{R}$ und $n \in \mathbb{N}_0$ gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Beweis: In den Übungen.

f) Bernoullische Ungleichung. Es sei $x \in \mathbb{R}$ und $x \ge -1$. Dann gilt:

$$\forall n \in \mathbb{N}: \ (1+x)^n \ge 1 + nx.$$

Beweis: (induktiv)

I.A.: n = 1: $1 + x \ge 1 + x$ ist wahr.

I.V.: Für ein $n \in \mathbb{N}$ gelte $(1+x)^n \ge 1 + nx$.

I.S.: $n \curvearrowright n+1$: Wegen $1+x \ge 0$ folgt aus der I.V.:

$$(1+x)^{n+1} \ge (1+nx)(1+x) = 1+nx+x+\underbrace{nx^2}_{\ge 0}$$

 $\geq 1 + nx + x = 1 + (n+1)x.$

Hilfssatz 1.6: Für $x, y \ge 0$ und $n \in \mathbb{N}$ gilt: $x \le y \iff x^n \le y^n$.

Beweis: In den Übungen.

Satz 1.7: Es sei $a \ge 0$ und $n \in \mathbb{N}$. Dann gibt es genau ein $x \ge 0$ mit $x^n = a$. Dieses x heißt die n-te Wurzel aus a. Bezeichnung: $x = \sqrt[n]{a}$ ($\sqrt[n]{a} = \sqrt[n]{a}$, $\sqrt[n]{a} = a$).

Beweis: Existenz: Später in §7. Eindeutigkeit: Es seien $x, y \ge 0$ und $x^n = a = y^n$. Mit 1.6 folgt x = y.

Bemerkungen:

- a) Bekannt (Schule): $\sqrt{2} \notin \mathbb{Q}$.
- b) Für $a \ge 0$ ist $\sqrt[n]{a} \ge 0$. Bsp.: $\sqrt{4} = 2$, $\sqrt{4} \ne -2$. Die Gleichung $x^2 = 4$ hat zwei Lösungen: x = 2 und x = -2.

c)

$$\forall x \in \mathbb{R} : \sqrt{x^2} = |x|.$$

Rationale Exponenten

a) Es sei zunächst $a \ge 0$ und $r \in \mathbb{Q}$, r > 0. Dann existieren $m, n \in \mathbb{N}$ mit $r = \frac{m}{n}$. Wir wollen definieren:

$$(*) a^r \coloneqq \left(\sqrt[n]{a}\right)^m.$$

Problem: Gilt auch noch $r = \frac{p}{q}$ mit $p, q \in \mathbb{N}$, gilt dann $(\sqrt[n]{a})^m = (\sqrt[q]{a})^p$? Antwort: Ja (d.h. obige Definition (*) ist sinnvoll).

Beweis: Setze $x := (\sqrt[p]{a})^m$, $y := (\sqrt[q]{a})^p$. Dann gilt $x, y \ge 0$ und mq = np, also

$$x^{q} = \left(\sqrt[n]{a}\right)^{mq} = \left(\sqrt[n]{a}\right)^{np} = \left(\left(\sqrt[n]{a}\right)^{n}\right)^{p} = a^{p}$$
$$= \left(\left(\sqrt[q]{a}\right)^{q}\right)^{p} = \left(\left(\sqrt[q]{a}\right)^{p}\right)^{q} = y^{q}.$$

Mit 1.6 folgt x = y.

b) Es seien $a>0,\,r\in\mathbb{Q}$ und r<0. Wir definieren:

$$a^r \coloneqq \frac{1}{a^{-r}}.$$

Es gelten die bekannten Rechenregeln: $a^r a^s = a^{r+s}, (a^r)^s = a^{rs}$.

Kapitel 2

Folgen und Konvergenz

Definition: Es sei X eine Menge, $X \neq \emptyset$. Eine Funktion $a: \mathbb{N} \to X$ heißt eine **Folge** in X. Ist $X = \mathbb{R}$, so heißt a eine **reelle Folge**.

Schreibweisen: a_n statt a(n) (n-tes Folgenglied)

$$(a_n)$$
 oder $(a_n)_{n=1}^{\infty}$ oder (a_1, a_2, \dots) statt a .

Beispiele:

- a) $a_n := \frac{1}{n} \ (n \in \mathbb{N}), \text{ also } (a_n) = (1, \frac{1}{2}, \frac{1}{3}, \dots).$
- b) $a_{2n} := 0, a_{2n-1} := 1 \ (n \in \mathbb{N}), \text{ also } (a_n) = (1, 0, 1, 0, \dots).$

Bemerkung: Ist $p \in \mathbb{Z}$ und $a: \{p, p+1, p+2, \dots\} \to X$ eine Funktion, so spricht man ebenfalls von einer Folge in X. Bezeichnung: $(a_n)_{n=p}^{\infty}$. Meistens ist p=0 oder p=1.

Definition: Es sei X eine Menge, $X \neq \emptyset$.

- a) X heißt $abz\ddot{a}hlbar : \iff Es \ gibt \ eine \ Folge \ (a_n) \ in \ X \ mit \ X = \{a_1, a_2, a_3, \dots\}.$
- b) X heißt $\ddot{u}berabz\ddot{a}hlbar$: $\iff X$ ist nicht abzählbar.

Beispiele:

- a) Ist X endlich, so ist X abzählbar.
- b) \mathbb{N} ist abzählbar, denn $\mathbb{N} = \{a_1, a_2, a_3, \dots\}$ mit $a_n := n \ (n \in \mathbb{N})$.
- c) \mathbb{Z} ist abzählbar, denn $\mathbb{Z} = \{a_1, a_2, a_3, \dots\}$ mit

$$a_1 \coloneqq 0, \ a_2 \coloneqq 1, \ a_3 \coloneqq -1, \ a_4 \coloneqq 2, \ a_5 \coloneqq -2, \dots$$

also

$$a_1 := 0, \quad a_{2n} \coloneqq n, \quad a_{2n+1} \coloneqq -n \quad (n \in \mathbb{N}).$$

Abbildung 2.1: Zum Beweis der Abzählbarkeit von Q.

d) Q ist abzählbar.

Durchnummerieren in Pfeilrichtung liefert:

$${x \in \mathbb{Q} : x > 0} = {a_1, a_2, a_3, \dots}.$$

Setze $b_1 := 0, b_{2n} := a_n, b_{2n+1} := -a_n \ (n \in \mathbb{N})$. Dann gilt:

$$\mathbb{Q} = \{b_1, b_2, b_3, \dots\}.$$

e) \mathbb{R} ist überabzählbar (Beweis in §5).

Vereinbarung: Solange nichts anderes gesagt wird, seien alle vorkommenden Folgen stets Folgen in \mathbb{R} . Die folgenden Sätze und Definitionen formulieren wir nur für Folgen der Form $(a_n)_{n=1}^{\infty}$. Sie gelten sinngemäß für Folgen der Form $(a_n)_{n=p}^{\infty}$ $(p \in \mathbb{Z})$.

Definition: Es sei (a_n) eine Folge und $M := \{a_1, a_2, \dots\}$.

a) (a_n) heißt nach oben beschränkt : \iff M ist nach oben beschränkt. In diesem Fall:

$$\sup_{n\in\mathbb{N}} a_n := \sup_{n=1}^{\infty} a_n := \sup M.$$

b) (a_n) heißt nach unten beschränkt : \iff M ist nach unten beschränkt. In diesem Fall:

$$\inf_{n\in\mathbb{N}} a_n := \inf_{n=1}^{\infty} a_n := \inf M.$$

c) (a_n) heißt **beschränkt** : \iff M ist beschränkt. Äquivalent ist:

$$\exists c \ge 0 \ \forall n \in \mathbb{N} : \ |a_n| \le c$$

Definition: Es sei A(n) eine für jedes $n \in \mathbb{N}$ definierte Aussage. A(n) gilt **für fast alle** (ffa) $n \in \mathbb{N}$: $\iff \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : A(n)$ ist wahr.

Definition: Es sei $a \in \mathbb{R}$ und $\varepsilon > 0$. Das Intervall

$$U_{\varepsilon}(a) := (a - \varepsilon, a + \varepsilon) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$$

heißt ε -Umgebung von a.

Definition: Eine Folge (a_n) heißt konvergent

$$:\iff \exists a\in\mathbb{R}: \begin{cases} Zu\ jedem\ \varepsilon>0\ existiert\ ein\ n_0=n_0(\varepsilon)\in\mathbb{N}\ so,\\ da\beta\ f\ddot{u}r\ jedes\ n\geq n_0\ gilt\ : |a_n-a|<\varepsilon. \end{cases}$$

In diesem Fall heißt a **Grenzwert** (GW) oder **Limes** von (a_n) und man schreibt

$$a_n \to a \ (n \to \infty) \ oder \ a_n \to a \ oder \ \lim_{n \to \infty} a_n = a.$$

Ist (a_n) nicht konvergent, so heißt (a_n) divergent. Beachte:

$$a_n \to a \ (n \to \infty) \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ a_n \in U_{\varepsilon}(a)$$

$$\iff \forall \varepsilon > 0 \ gilt: \ a_n \in U_{\varepsilon}(a) \ ffa \ n \in \mathbb{N}$$

$$\iff \forall \varepsilon > 0 \ gilt: \ a_n \notin U_{\varepsilon}(a) \ f\"{u}r \ h\"{o}chstens \ endlich \ viele \ n \in \mathbb{N}$$

Satz 2.1: Es sei (a_n) konvergent und $a = \lim_{n \to \infty} a_n$. Dann gilt:

- a) Gilt auch noch $a_n \to b$, so ist a = b.
- b) (a_n) ist beschränkt.

Beweis:

a) Annahme $a \neq b$. Dann ist $\varepsilon \coloneqq \frac{|a-b|}{2} > 0$. Nun gilt:

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : |a_n - a| < \varepsilon \text{ und } \exists n_1 \in \mathbb{N} \ \forall n \ge n_1 : |a_n - b| < \varepsilon.$$

Es sei $N := \max\{n_0, n_1\}$. Dann gilt:

$$2\varepsilon = |a - b| = |a - a_N + a_N - b| \le |a_N - a| + |a_N - b| < 2\varepsilon.$$

Widerspruch. Also ist a = b.

b) Es sei $\varepsilon = 1$. Es gilt: $\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |a_n - a| < 1$. Damit folgt:

$$\forall n \ge n_0: |a_n| = |a_n - a + a| \le |a_n - a| + |a| \le 1 + |a|.$$

Setze $c := \max\{1 + |a|, |a_1|, \dots, |a_{n_0-1}|\}$. Dann: $\forall n \in \mathbb{N} : |a_n| \le c$.

Beispiele:

a) Es sei $c \in \mathbb{R}$ und $a_n := c \ (n \in \mathbb{N})$. Dann gilt:

$$\forall n \in \mathbb{N}: |a_n - c| = 0.$$

Also: $a_n \to c \ (n \to \infty)$.

b) $a_n := \frac{1}{n} \ (n \in \mathbb{N})$. Behauptung: $a_n \to 0 \ (n \to \infty)$.

Beweis: Es sei $\varepsilon > 0$. Es gilt: $|a_n - 0| = |a_n| = \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$. Mit 1.3 c) erhalten wir:

$$\exists n_0 \in \mathbb{N} : \ n_0 > \frac{1}{\varepsilon}.$$

Für $n \ge n_0$ ist damit $n > \frac{1}{\varepsilon}$, also $\frac{1}{n} < \varepsilon$. Somit ist $|a_n - 0| < \varepsilon \ (n \ge n_0)$.

c) $a_n := (-1)^n \ (n \in \mathbb{N})$. Es gilt $|a_n| = 1 \ (n \in \mathbb{N})$, also ist (a_n) beschränkt. Behauptung: (a_n) ist divergent.

Beweis: Für jedes $n \in \mathbb{N}$ gilt:

$$|a_n - a_{n+1}| = |(-1)^n - (-1)^{n+1}| = |(-1)^n||1 - (-1)| = 2.$$

Annahme: (a_n) konvergiert. Definiere $a := \lim_{n \to \infty} a_n$. Es gilt:

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ |a_n - a| < \frac{1}{2}.$$

Für $n \ge n_0$ folgt dann aber:

$$2 = |a_n - a_{n+1}| = |a_n - a + a - a_{n+1}| \le |a_n - a| + |a_{n+1} - a| < \frac{1}{2} + \frac{1}{2} = 1,$$
 ein Widerspruch.

- d) $a_n := n \ (n \in \mathbb{N})$. (a_n) ist nicht beschränkt. Nach 2.1 b) ist (a_n) also divergent.
- e) $a_n := \frac{1}{\sqrt{n}} \ (n \in \mathbb{N})$. Behauptung: $a_n \to 0$.

Beweis: Es sei $\varepsilon > 0$. Es gilt:

$$|a_n - 0| = \frac{1}{\sqrt{n}} < \varepsilon \iff \sqrt{n} > \frac{1}{\varepsilon} \iff n > \frac{1}{\varepsilon^2}.$$

Mit 1.3 c) erhalten wir:

$$\exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon^2}.$$

Für $n \ge n_0$ gilt damit: $n > \frac{1}{\varepsilon^2} \Rightarrow \frac{1}{\sqrt{n}} < \varepsilon$, also $|a_n - 0| < \varepsilon$.

f) $a_n := \sqrt{n+1} - \sqrt{n} \ (n \in \mathbb{N})$. Behauptung: $a_n \to 0$.

Beweis: Es gilt

$$0 \le a_n = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}},$$

also $|a_n - 0| = a_n \le \frac{1}{\sqrt{n}}$ $(n \in \mathbb{N})$. Es sei $\varepsilon > 0$. Nach Beispiel e) folgt:

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ \frac{1}{\sqrt{n}} < \varepsilon, \text{ somit gilt } \forall n \ge n_0 : \ |a_n - 0| < \varepsilon.$$

Also gilt:
$$a_n \to 0$$
.

Definition: Es seien (a_n) und (b_n) Folgen und $\alpha \in \mathbb{R}$.

$$(a_n) \pm (b_n) := (a_n \pm b_n); \ \alpha(a_n) := (\alpha a_n); \ (a_n)(b_n) := (a_n b_n).$$

Gilt $b_n \neq 0 \ (n \geq m)$, so ist die Folge $\left(\frac{a_n}{b_n}\right)_{n=m}^{\infty}$ definiert.

Satz 2.2: Es seien $(a_n), (b_n), (c_n)$ und (α_n) Folgen und $a, b, \alpha \in \mathbb{R}$. Dann gilt:

- $a) \ a_n \to a \iff |a_n a| \to 0.$
- b) Gilt $|a_n a| \le \alpha_n$ ffa $n \in \mathbb{N}$ und $\alpha_n \to 0$, so gilt $a_n \to a$.
- c) Es gelte $a_n \to a$ und $b_n \to b$. Dann gilt:
 - (i) $|a_n| \rightarrow |a|$;
 - (ii) $a_n + b_n \rightarrow a + b$;
 - (iii) $\alpha a_n \to \alpha a$;
 - (iv) $a_n b_n \to ab$;
 - (v) ist $a \neq 0$, so existiert ein $m \in \mathbb{N}$ mit:

$$a_n \neq 0 \ (n \geq m) \ und \ f\ddot{u}r \ die \ Folge \ \left(\frac{1}{a_n}\right)_{n=m}^{\infty} \ gilt: \frac{1}{a_n} \to \frac{1}{a}.$$

- d) Es gelte $a_n \to a$, $b_n \to b$ und $a_n \le b_n$ ffa $n \in \mathbb{N}$. Dann ist $a \le b$.
- e) Es gelte $a_n \to a$, $b_n \to a$ und $a_n \le c_n \le b_n$ ffa $n \in \mathbb{N}$. Dann gilt $c_n \to a$.

Beispiele:

a) Es sei $p \in \mathbb{N}$ und $a_n := \frac{1}{n^p}$ $(n \in \mathbb{N})$. Es gilt $n \leq n^p$ $(n \in \mathbb{N})$. Also:

$$0 \le a_n \le \frac{1}{n} \ (n \in \mathbb{N}) \stackrel{2.2 \ e}{\Longrightarrow} a_n \to 0.$$

b) Es sei $a_n := \frac{5n^2 + 3n + 1}{4n^2 - n + 2}$ $(n \in \mathbb{N})$. Es gilt: $a_n = \frac{5 + \frac{3}{n} + \frac{1}{n^2}}{4 - \frac{1}{n} + \frac{2}{n^2}} \xrightarrow{2.2} \frac{5}{4}$.

Beweis: (von 2.2)

a) Folgt aus der Definition der Konvergenz.

b) Es gilt: $\exists m \in \mathbb{N} \ \forall n \geq m : \ |a_n - a| \leq \alpha_n$. Sei $\varepsilon > 0$. Wegen $\alpha_n \to 0$ gilt:

$$\exists n_1 \in \mathbb{N} \ \forall n \geq n_1 : \ \alpha_n < \varepsilon.$$

Setze $n_0 := \max\{m, n_1\}$. Für $n \ge n_0$ gilt nun: $|a_n - a| \le \alpha_n < \varepsilon$.

- c) (i) $\forall n \in \mathbb{N} : ||a_n| |a|| \stackrel{\S1}{\leq} |a_n a| \xrightarrow{a),b} |a_n| \to |a|.$
 - (ii) Es sei $\varepsilon > 0$. Es gilt: $\exists n_1, n_2 \in \mathbb{N}$ mit

$$\forall n \ge n_1 : |a_n - a| < \frac{\varepsilon}{2} \text{ und } \forall n \ge n_2 : |b_n - b| < \frac{\varepsilon}{2}.$$

Setze $n_0 := \max\{n_1, n_2\}$. Für $n \ge n_0$ erhalten wir:

$$|a_n + b_n - (a+b)| = |a_n - a + b_n - b| \le |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

- (iii) Übung.
- (iv) Es sei $c_n := |a_n b_n ab| \ (n \in \mathbb{N})$. Wir zeigen: $c_n \to 0$. Es gilt:

$$c_n = |a_n b_n - a_n b + a_n b - a b| = |a_n (b_n - b) + (a_n - a) b|$$

$$\leq |a_n| |b_n - b| + |b| |a_n - a|.$$

Mit 2.1 b) folgt: $\exists c \geq 0 \ \forall n \in \mathbb{N} : |a_n| \leq c$. Damit erhalten wir:

$$\forall n \in \mathbb{N}: \ c_n \le c|b_n - b| + |b||a_n - a| =: \alpha_n.$$

Mit c) (ii), c) (iii) und a) folgt: $\alpha_n \to 0$.

Also: $|c_n - 0| = c_n \le \alpha_n \ (n \in \mathbb{N})$ und $\alpha_n \to 0$. Mit b) folgt nun $c_n \to 0$.

(v) Setze $\varepsilon := \frac{|a|}{2}$. Aus (i) folgt: $|a_n| \to |a|$. Damit gilt:

$$\exists m \in \mathbb{N} \ \forall n \ge m : \ |a_n| \in U_{\varepsilon}(|a|) = (|a| - \varepsilon, |a| + \varepsilon) = (\frac{|a|}{2}, \frac{3}{2}|a|).$$

Insbesondere ist $|a_n| > \frac{|a|}{2} > 0$ $(n \ge m)$, also $a_n \ne 0$ $(n \ge m)$. Für $n \ge m$ gilt nun:

$$\left| \frac{1}{a_n} - \frac{1}{a} \right| = \frac{|a_n - a|}{|a_n||a|} \le \frac{2|a_n - a|}{|a|^2} =: \alpha_n.$$

Es gilt $\alpha_n \to 0$. Mit b) folgt $\frac{1}{a_n} \to \frac{1}{a}$.

d) Annahme: b < a. Setze $\varepsilon := \frac{a-b}{2} > 0$. Dann gilt:

$$\forall x \in U_{\varepsilon}(b) \ \forall y \in U_{\varepsilon}(a) : \ x < y.$$

Weiter gilt:

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ b_n \in U_{\varepsilon}(b),$$

$$\exists m \in \mathbb{N} \ \forall n \geq m : \ a_n \leq b_n.$$

Setze $m_0 := \max\{n_0, m\}$. Für $n \ge m_0$ ist $a_n \le b_n < b + \varepsilon$, also $a_n \notin U_{\varepsilon}(a)$. Widerspruch.

e) Es gilt: $\exists m \in \mathbb{N} \ \forall n \geq m: \ a_n \leq c_n \leq b_n$. Sei $\varepsilon > 0$. Es existieren $n_1, n_2 \in \mathbb{N}$ mit:

$$\forall n \ge n_1: \ a - \varepsilon < a_n < a + \varepsilon,$$

$$\forall n \ge n_2: \ a - \varepsilon < b_n < a + \varepsilon.$$

Setze $n_0 := \max\{n_1, n_2, m\}$. Für $n \ge n_0$ gilt nun:

$$a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon$$
.

Also: $|a_n - a| < \varepsilon \ (n \ge n_0)$.

Definition:

- a) (a_n) heißt monoton wachsend : $\iff \forall n \in \mathbb{N} : a_n \leq a_{n+1}$.
- b) (a_n) heißt streng monoton wachsend : $\iff \forall n \in \mathbb{N}: \ a_n < a_{n+1}$.
- c) Entsprechend definiert man monoton fallend und streng monoton fallend.
- d) (a_n) heißt [streng] monoton : \iff (a_n) ist [streng] monoton wachsend oder [streng] monoton fallend.

Satz 2.3 (Monotoniekriterium):

a) Die Folge (a_n) sei monoton wachsend und nach oben beschränkt. Dann ist (a_n) konvergent und

$$\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n.$$

b) Die Folge (a_n) sei monoton fallend und nach unten beschränkt. Dann ist (a_n) konvergent und

$$\lim_{n\to\infty} a_n = \inf_{n\in\mathbb{N}} a_n.$$

Beweis:

a) Setze $a := \sup_{n \in \mathbb{N}} a_n$. Es sei $\varepsilon > 0$. Dann ist $a - \varepsilon$ keine obere Schranke von $\{a_n : n \in \mathbb{N}\}$. Also existiert ein $n_0 \in \mathbb{N}$ mit $a_{n_0} > a - \varepsilon$. Für $n \ge n_0$ gilt:

$$a - \varepsilon < a_{n_0} \le a_n \le a < a + \varepsilon$$
,

also
$$|a_n - a| < \varepsilon \ (n \ge n_0)$$
.

b) Zeigt man analog.

Beispiel: $a_1 := \sqrt[3]{6}$, $a_{n+1} := \sqrt[3]{6 + a_n}$ $(n \ge 1)$.

Behauptung: $\forall n \in \mathbb{N} : 0 < a_n < 2 \text{ und } a_{n+1} > a_n.$

Beweis: (induktiv)

I.A.: n = 1.

$$0 < a_1 = \sqrt[3]{6} < \sqrt[3]{8} = 2;$$

$$a_2 = \sqrt[3]{6 + a_1} > \sqrt[3]{6} = a_1.$$

I.V.: Es sei $n \in \mathbb{N}$ und $0 < a_n < 2$ und $a_{n+1} > a_n$.

I.S. n
ightharpoonup n + 1: Es gilt $a_{n+1} = \sqrt[3]{6 + a_n} >_{I.V.} 0$. Weiter ist

$$a_{n+1} = \sqrt[3]{6+a_n} <_{I.V.} \sqrt[3]{6+2} = 2; \quad a_{n+2} = \sqrt[3]{6+a_{n+1}} >_{I.V.} \sqrt[3]{6+a_n} = a_{n+1}.$$

Also ist (a_n) nach oben beschränkt und monoton wachsend. Nach 2.3 ist (a_n) konvergent. Setze $a := \lim_{n \to \infty} a_n$. Es gilt $a_n \ge 0$ $(n \in \mathbb{N})$, also $a \ge 0$. Weiter ist

$$a_{n+1}^3 = 6 + a_n \quad (n \in \mathbb{N}).$$

Mit 2.2 folgt
$$a^3 = 6 + a \Rightarrow 0 = a^3 - a - 6 = (a - 2)(\underbrace{a^2 + 2a + 3}_{>3})$$
. Also ist $a = 2$.

Wichtige Beispiele:

Vorbemerkung: Es seien $x,y\geq 0$ und $p\in\mathbb{N}$: Es ist (vgl. §1)

$$x^{p} - y^{p} = (x - y) \sum_{k=0}^{p-1} x^{p-1-k} y^{k}$$

$$\Rightarrow |x^p - y^p| = |x - y| \sum_{k=0}^{p-1} x^{p-1-k} y^k \ge y^{p-1} |x - y|.$$

Beispiel 2.4: Es sei (a_n) eine konvergente Folge in $[0, \infty)$ mit Grenzwert a (bea. $a \ge 0$) und $p \in \mathbb{N}$. Dann gilt $\sqrt[p]{a_n} \to \sqrt[p]{a}$.

Beweis:

Fall 1: a = 0. Es sei $\varepsilon > 0$. Dann gilt: $\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ 0 \le a_n < \varepsilon^p$. Daraus folgt:

$$\forall n > n_0: \ 0 < \sqrt[p]{a_n} < \varepsilon.$$

Also gilt: $\sqrt[p]{a_n} \to 0 = \sqrt[p]{a}$.

Fall 2: $a \neq 0$. Dann gilt:

$$|a_n - a| = |\underbrace{(\underbrace{\sqrt[p]{a_n}})^p - (\underbrace{\sqrt[p]{a}})^p|}_{=:x} = |x^p - y^p|$$

$$\geq_{s.o.} \underbrace{y^{p-1}}_{:=c} |x - y| = c|\sqrt[p]{a_n} - \sqrt[p]{a}|, \quad c > 0.$$

$$\Rightarrow |\sqrt[p]{a_n} - \sqrt[p]{a}| \le \frac{1}{c}|a_n - a| =: \alpha_n$$
. Es gilt $\alpha_n \to 0$, also $\sqrt[p]{a_n} \to \sqrt[p]{a}$.

Beispiel 2.5: Für $x \in \mathbb{R}$ gilt: (x^n) ist konvergent $\iff x \in (-1,1]$. In diesem Fall:

$$\lim_{n \to \infty} x^n = \begin{cases} 1, & \text{falls } x = 1\\ 0, & \text{falls } x \in (-1, 1) \end{cases}$$

Beweis:

Fall 1: x=0. Dann gilt $x^n \to 0$. Fall 2: x=1. Dann gilt $x^n \to 1$.

Fall 3: x = -1. Dann ist $(x^n) = ((-1)^n)$ divergent.

Fall 4: |x| > 1. Dann gibt es ein $\delta > 0$ mit $|x| = 1 + \delta$. Damit gilt:

$$|x^n| = |x|^n = (1+\delta)^n \ge 1 + n\delta \ge n\delta \quad (n \in \mathbb{N}).$$

Also ist (x^n) nicht beschränkt und somit divergent.

Fall 5: 0 < |x| < 1. Dann ist $\frac{1}{|x|} > 1$ und es gibt ein $\eta > 0$ mit $\frac{1}{|x|} = 1 + \eta$. Damit gilt:

$$\left|\frac{1}{x^n}\right| = \left(\frac{1}{|x|}\right)^n = (1+\eta)^n \ge 1 + n\eta \ge n\eta \quad (n \in \mathbb{N}).$$

Also ist

$$|x^n| \le \frac{1}{n\eta} \quad (n \in \mathbb{N}).$$

Damit folgt $x^n \to 0$.

Beispiel 2.6: Es sei $x \in \mathbb{R}$ und

$$s_n := 1 + x + x^n + \dots + x^n = \sum_{k=0}^n x^k \quad (n \in \mathbb{N}_0).$$

Fall 1: x = 1. Dann ist $s_n = n + 1$ $(n \in \mathbb{N}_0)$, (s_n) ist also divergent.

Fall 2: $x \neq 1$. Dann ist

$$s_n = \frac{1 - x^{n+1}}{1 - x} \quad (n \in \mathbb{N}_0).$$

Aus 2.5 folgt:

$$(s_n)$$
 ist konvergent \iff $|x| < 1$.

In diesem Fall gilt: $\lim_{n\to\infty} s_n = \frac{1}{1-x}$.

Beispiel 2.7: Behauptung: Es gilt $\sqrt[n]{n} \to 1$.

Beweis: Es ist $\sqrt[n]{n} \ge 1$ $(n \in \mathbb{N})$, also $a_n := \sqrt[n]{n} - 1 \ge 0$ $(n \in \mathbb{N})$. Wir zeigen: $a_n \to 0$. Für jedes $n \ge 2$ gilt:

$$n = \left(\sqrt[n]{n}\right)^n = (a_n + 1)^n \stackrel{\S 1}{=} \sum_{k=0}^n \binom{n}{k} a_n^k \ge \binom{n}{2} a_n^2 = \frac{n(n-1)}{2} a_n^2.$$

Es folgt

$$\forall n \ge 2: \ 0 \le a_n \le \frac{\sqrt{2}}{\sqrt{n-1}}.$$

Wegen $\sqrt{2}/\sqrt{n-1} \to 0$ folgt $a_n \to 0$.

Beispiel 2.8: Es sei c > 0. Behauptung: Es gilt $\sqrt[n]{c} \to 1$.

Beweis: Fall 1: $c \ge 1$. Dann gilt: $\exists m \in \mathbb{N} : 1 \le c \le m$. Daraus folgt:

$$1 \le c \le n \ (n \ge m) \ \Rightarrow \ 1 \le \sqrt[n]{c} \le \sqrt[n]{n} \ (n \ge m).$$

Mit 2.7 folgt die Behauptung.

Fall 2: 0 < c < 1. Dann ist $\frac{1}{c} > 1$. Also gilt

$$\sqrt[n]{c} = \frac{1}{\sqrt[n]{\frac{1}{c}}} \xrightarrow{Fall1} 1 \quad (n \to \infty).$$

Beispiel 2.9: Es sei

$$a_n := \left(1 + \frac{1}{n}\right)^n, \ b_n := \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} \quad (n \in \mathbb{N}).$$

Behauptung: (a_n) und (b_n) sind konvergent und $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.

Beweis: In der großen Übungen wird gezeigt: $\forall n \in \mathbb{N} : 2 \leq a_n < a_{n+1} < 3$. Nach 2.3 ist (a_n) also konvergent; $a := \lim_{n \to \infty} a_n$.

Weiter ist $b_n > 0$ und $b_{n+1} = b_n + \frac{1}{(n+1)!} > b_n$ $(n \in \mathbb{N})$. Also ist (b_n) monoton wachsend. Für jedes n > 3 gilt:

$$b_{n} = 1 + 1 + \frac{1}{2} + \underbrace{\frac{1}{2 \cdot 3}}_{<(\frac{1}{2})^{2}} + \underbrace{\frac{1}{2 \cdot 3 \cdot 4}}_{<(\frac{1}{2})^{3}} + \dots + \underbrace{\frac{1}{2 \cdot \dots \cdot n}}_{<(\frac{1}{2})^{n-1}}$$

$$< 1 + \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^{2} + \dots + \left(\frac{1}{2}\right)^{n-1}\right) = 1 + \frac{1 - \left(\frac{1}{2}\right)^{n}}{1 - \frac{1}{2}}$$

$$< 1 + \frac{1}{1 - \frac{1}{2}} = 3.$$

Nach 2.3 ist (b_n) konvergent; $b := \lim_{n \to \infty} b_n$.

Weiter gilt für jedes $n \geq 2$:

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} \stackrel{\S 1}{=} \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^{k}}$$

$$= 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \frac{n!}{(n-k)!} \frac{1}{n^{k}} = 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \frac{n(n-1) \cdot \dots \cdot (n-(k-1))}{n \cdot n \cdot \dots \cdot n}$$

$$= 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \underbrace{\left(1 - \frac{1}{n}\right)}_{<1} \underbrace{\left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right)}_{<1} \underbrace{\left(1 - \frac{k-1}{n}\right)}_{$$

Also gilt $a_n \leq b_n \ (n \geq 2)$ und damit folgt $a \leq b$.

Weiter sei $j \in \mathbb{N}, j \geq 2$ (zunächst fest). Für jedes $n \in \mathbb{N}$ mit $n \geq j$ gilt:

$$a_n \stackrel{s.o.}{=} 1 + 1 + \sum_{k=2}^n \frac{1}{k!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \cdot \dots \cdot (1 - \frac{k-1}{n})$$

$$\geq 1 + 1 + \sum_{k=2}^j \frac{1}{k!} \underbrace{(1 - \frac{1}{n})}_{\to 1} \underbrace{(1 - \frac{2}{n})}_{\to 1} \cdot \dots \cdot \underbrace{(1 - \frac{k-1}{n})}_{\to 1}$$

$$\to 1 + 1 + \sum_{k=2}^j \frac{1}{k!} = b_j \quad (n \to \infty).$$

Also gilt $a \geq b_j$ für jedes $j \geq 2$. Wegen $b_j \to b$ $(j \to \infty)$ folgt $a \geq b$.

Definition: Die gemeinsame Grenzwert der Folgen in 2.9

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!}$$

heißt **Eulersche Zahl**. $(e \approx 2,718...)$.

Übung: Es gilt: 2 < e < 3.

Definition: Es sei (a_n) eine Folge und (n_1, n_2, n_3, \dots) eine Folge in \mathbb{N} mit $n_1 < n_2 < n_3 < \dots$ Für $k \in \mathbb{N}$ setze

$$b_k \coloneqq a_{n_k}$$

also $b_1 = a_{n_1}, b_2 = a_{n_2}, b_3 = a_{n_3}, \dots$

Dann heißt $(b_k) = (a_{n_k})$ eine **Teilfolge** (TF) von (a_n) .

Beispiele:

- a) $(a_2, a_4, a_6, ...)$ ist eine Teilfolge von (a_n) ; hier: $n_k = 2k$.
- b) $(a_1, a_4, a_9, ...)$ ist eine Teilfolge von (a_n) ; hier: $n_k = k^2$.
- c) $(a_2, a_6, a_4, a_{10}, a_8, a_{14}, \dots)$ ist keine Teilfolge von (a_n) .

Definition: Es sei (a_n) eine Folge. Eine Zahl $\alpha \in \mathbb{R}$ heißt ein **Häufungswert** (HW) von (a_n) , wenn eine Teilfolge (a_{n_k}) von (a_n) existiert mit $a_{n_k} \to \alpha$ $(k \to \infty)$. Weiter sei

$$H(a_n) := \{ \alpha \in \mathbb{R} : \alpha \text{ ist ein Häufungswert von } (a_n) \}.$$

Satz 2.10: *Es gilt:*

$$\alpha \in H(a_n) \iff \forall \varepsilon > 0 : \ a_n \in U_{\varepsilon}(\alpha) \ \text{für unendlich viele } n \in \mathbb{N}.$$

Beweis:

"⇒": Es sei (a_{n_k}) eine Teilfolge mit $a_{n_k} \to \alpha$ und es sei $\varepsilon > 0$. Dann existiert ein $k_0 \in \mathbb{N}$ mit $a_{n_k} \in U_{\varepsilon}(\alpha)$ für $k \ge k_0$.

"⇐": Es gilt:

 $\exists n_1 \in \mathbb{N} : a_{n_1} \in U_1(\alpha),$

 $\exists n_2 \in \mathbb{N} : a_{n_2} \in U_{\frac{1}{2}}(\alpha) \text{ und } n_2 > n_1,$

 $\exists n_3 \in \mathbb{N} : a_{n_3} \in U_{\frac{1}{3}}(\alpha) \text{ und } n_3 > n_2, \text{ etc...}$

So entsteht eine Teilfolge (a_{n_k}) von (a_n) mit $a_{n_k} \in U_{\frac{1}{k}}(\alpha)$ $(k \in \mathbb{N})$. Also gilt: $a_{n_k} \to \alpha$. \square

Beispiele:

- a) $a_n = (-1)^n$ $(n \in \mathbb{N})$. Es gilt: $a_{2k} \to 1, a_{2k+1} \to -1$, also $1, -1 \in H(a_n)$. Es sei $\alpha \in \mathbb{R} \setminus \{-1, 1\}$. Wähle $\varepsilon > 0$ so, daß $1, -1 \notin U_{\varepsilon}(\alpha)$. Dann gilt $a_n \in U_{\varepsilon}(\alpha)$ für kein $n \in \mathbb{N}$. Nach 2.10 ist $\alpha \notin H(a_n)$. Fazit: $H(a_n) = \{1, -1\}$.
- b) $a_n = n \ (n \in \mathbb{N})$. Ist $\alpha \in \mathbb{R}$ und $\varepsilon > 0$, so gilt: $a_n \in U_{\varepsilon}(\alpha)$ für höchstens endlich viele n, also $\alpha \notin H(a_n)$. Fazit: $H(a_n) = \emptyset$.
- c) \mathbb{Q} ist abzählbar. Es sei (a_n) eine Folge mit $\mathbb{Q} = \{a_n : n \in \mathbb{N}\}$. Es sei $\alpha \in \mathbb{R}$ und $\varepsilon > 0$. Nach 1.5 enthält $U_{\varepsilon}(\alpha) = (\alpha \varepsilon, \alpha + \varepsilon)$ unendlich viele verschiedene rationale Zahlen. Nach 2.10 folgt $\alpha \in H(a_n)$. Fazit: $H(a_n) = \mathbb{R}$.

Folgerung: Ist $x \in \mathbb{R}$, so existieren Folgen (r_n) in \mathbb{Q} mit $r_n \to x$.

Satz 2.11: Die Folge (a_n) sei konvergent, $a := \lim_{n \to \infty} a_n$ und (a_{n_k}) eine Teilfolge von (a_n) . Dann gilt:

$$a_{n_k} \to a \quad (k \to \infty).$$

Insbesondere gilt: $H(a_n) = \{\lim_{n \to \infty} a_n\}.$

Beweis: Es sei $\varepsilon > 0$. Dann ist $a_n \in U_{\varepsilon}(a)$ ffa $n \in \mathbb{N}$, also auch $a_{n_k} \in U_{\varepsilon}(a)$ ffa $k \in \mathbb{N}$. Somit gilt $a_{n_k} \to a$.

Definition: Es sei (a_n) eine Folge und $m \in \mathbb{N}$.

 $m \text{ heißt } niedrig \text{ (für } (a_n)): \iff \forall n \geq m: \ a_n \geq a_m.$

Bemerkung: Es gilt also:

 $m \in \mathbb{N}$ ist nicht niedrig $\iff \exists n \geq m : a_n < a_m \Rightarrow \exists n > m : a_n < a_m$.

Hilfssatz 2.12: Es sei (a_n) eine Folge. Dann enthält (a_n) eine monotone Teilfolge.

Beweis:

Fall 1: Es existieren höchstens endlich viele niedrige Indizes. Also existiert $n_1 \in \mathbb{N}$ so, daß jedes $n \geq n_1$ nicht niedrig ist.

 n_1 nicht niedrig $\Rightarrow \exists n_2 > n_1 : a_{n_2} < a_{n_1}$,

 n_2 nicht niedrig $\Rightarrow \exists n_3 > n_2 : a_{n_3} < a_{n_2}$,

etc...

Wir erhalten so eine streng monoton fallende Teilfolge (a_{n_k}) von (a_n) .

Fall 2: Es existieren unendlich viele niedrige Indizes $n_1, n_2, n_3 \dots$; o.B.d.A. sei

$$n_1 < n_2 < n_3 < \dots$$

 n_1 ist niedrig und $n_2 > n_1 \Rightarrow a_{n_2} \ge a_{n_1}$,

 n_2 ist niedrig und $n_3 > n_2 \Rightarrow a_{n_3} \geq a_{n_2}$,

etc...

Wir erhalten so eine monoton wachsende Teilfolge (a_{n_k}) von (a_n) .

Satz 2.13 (Bolzano-Weierstraß):

Die Folge (a_n) sei beschränkt. Dann gilt: $H(a_n) \neq \emptyset$, d.h. (a_n) enthält eine konvergente Teilfolge.

Beweis: Es gilt: $\exists c \geq 0 \ \forall n \in \mathbb{N} : |a_n| \leq c$. Nach 2.12 enthält (a_n) eine monotone Teilfolge (a_{n_k}) . Wegen $|a_{n_k}| \leq c \ (k \in \mathbb{N})$ ist (a_{n_k}) auch beschränkt.

Nach 2.3 ist (a_{n_k}) konvergent. Damit ist $\lim_{k\to\infty} a_{n_k} \in H(a_n)$.

Satz 2.14: Die Folge (a_n) sei beschränkt (nach 2.13 gilt damit $H(a_n) \neq \emptyset$). Es gilt:

- a) $H(a_n)$ ist beschränkt.
- b) $\sup H(a_n)$, $\inf H(a_n) \in H(a_n)$; es existieren also $\max H(a_n)$ und $\min H(a_n)$.

Beweis:

a) Es gilt: $\exists c \geq 0 \ \forall n \in \mathbb{N} : \ |a_n| \leq c$. Es sei $\alpha \in H(a_n)$. Dann existiert eine Teilfolge (a_{n_k}) von (a_n) mit $a_{n_k} \to \alpha \ (k \to \infty)$. Es ist $|a_{n_k}| \leq c \ (k \in \mathbb{N})$, also $|\alpha| \leq c$. Somit gilt

$$\forall \alpha \in H(a_n) : |\alpha| \le c.$$

b) ohne Beweis.

Definition: Die Folge (a_n) sei beschränkt.

a) Die Zahl

$$\limsup_{n \to \infty} a_n := \overline{\lim}_{n \to \infty} a_n := \max H(a_n)$$

heißt Limes superior oder oberer Limes von (a_n) .

b) Die Zahl

$$\liminf_{n \to \infty} a_n := \underline{\lim}_{n \to \infty} a_n := \min H(a_n)$$

heißt Limes inferior oder unterer Limes von (a_n) .

Satz 2.15: Die Folge (a_n) sei beschränkt. Dann gilt:

- a) $\forall \alpha \in H(a_n)$: $\liminf_{n \to \infty} a_n \le \alpha \le \limsup_{n \to \infty} a_n$.
- b) Ist (a_n) konvergent, so ist $\limsup_{n\to\infty} a_n = \liminf_{n\to\infty} a_n = \lim_{n\to\infty} a_n$.
- c) $\forall \alpha \geq 0$: $\limsup_{n \to \infty} (\alpha a_n) = \alpha \limsup_{n \to \infty} a_n$.
- d) $\limsup_{n\to\infty} (-a_n) = -\liminf_{n\to\infty} a_n$.

Beweis: a) ist klar, b) folgt aus 2.11, c) und d) Übung.

Vorbemerkung: Die Folge (a_n) sei konvergent und $\lim_{n\to\infty} a_n =: a$. Es sei $\varepsilon > 0$. Dann gilt:

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ |a_n - a| < \frac{\varepsilon}{2}.$$

Für $n, m \ge n_0$ gilt damit:

$$|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a_m - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Die Folge (a_n) hat also die folgende Eigenschaft:

(c)
$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n, m \ge n_0 : \ |a_n - a_m| < \varepsilon.$$

Äquivalent ist:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \ \forall k \in \mathbb{N} : |a_n - a_{n+k}| < \varepsilon.$$

Definition: Eine Folge (a_n) heißt eine **Cauchyfolge** (CF)

$$:\iff (a_n)\ hat\ die\ Eigenschaft\ (c).$$

Konvergente Folgen sind also Cauchyfolgen!

Satz 2.16 (Cauchykriterium): (a_n) ist konvergent \iff (a_n) ist eine Cauchyfolge.

Beweis: " \Rightarrow ": wurde in obiger Vorbemerkung bewiesen. " \Leftarrow ": Es gilt:

$$\exists N \in \mathbb{N} \ \forall n, m \ge N : \ |a_n - a_m| < 1.$$

Für $n \geq N$ ist somit

$$|a_n| = |a_n - a_N + a_N| \le |a_n - a_N| + |a_N| < 1 + |a_N| =: c.$$

Also gilt:

$$\forall n \in \mathbb{N} : |a_n| \le \max\{c, |a_1|, \dots |a_{N-1}|\}.$$

Damit ist (a_n) beschränkt und nach 2.13 hat (a_n) eine konvergente Teilfolge (a_{n_k}) . Es sei $a := \lim_{k \to \infty} a_{n_k}$.

Es sei $\varepsilon > 0$. Dann gilt:

$$\exists n_0 \in \mathbb{N} \ \forall n, m \ge n_0 : \ |a_n - a_m| < \frac{\varepsilon}{2}.$$

und

$$\exists k_0 \in \mathbb{N}: |a_{n_{k_0}} - a| < \frac{\varepsilon}{2} \text{ und } n_{k_0} \ge n_0.$$

Für jedes $n \ge n_0$ gilt nun

$$|a_n - a| \le |a_n - a_{n_{k_0}}| + |a_{n_{k_0}} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Also gilt $a_n \to a \ (n \to \infty)$.

Beispiel: $a_1 := 1, a_{n+1} := \frac{1}{1+a_n}$ $(n \in \mathbb{N})$. Mit Induktion folgt $0 < a_n \le 1$ $(n \in \mathbb{N})$ und damit $a_n \ge \frac{1}{2}$ $(n \in \mathbb{N})$. Für $n \ge 2$ und $k \in \mathbb{N}$ gilt daher:

$$|a_{n+k} - a_n| = \left| \frac{1}{1 + a_{n+k-1}} - \frac{1}{1 - a_{n-1}} \right| = \frac{|a_{n-1} - a_{n+k-1}|}{(1 + a_{n+k-1})(1 + a_{n-1})}$$

$$\leq \frac{1}{(1 + \frac{1}{2})^2} |a_{n+k-1} - a_{n-1}| = \frac{4}{9} |a_{n+k-1} - a_{n-1}|$$

$$\leq \left(\frac{4}{9}\right)^2 |a_{n-k-2} - a_{n-2}| \leq \dots \leq \left(\frac{4}{9}\right)^{n-1} |a_{k+1} - a_1|$$

$$\leq \left(\frac{4}{9}\right)^{n-1} (|a_{k+1}| + |a_1|) \leq 2 \left(\frac{4}{9}\right)^{n-1}.$$

Es sei $\varepsilon > 0$. Wegen $2\left(\frac{4}{9}\right)^{n-1} \to 0 \ (n \to \infty)$ gilt:

$$\exists n_0 \in \mathbb{N} \setminus \{1\} \ \forall n \ge n_0: \ 2\left(\frac{4}{9}\right)^{n-1} < \varepsilon.$$

Wir erhalten:

$$\forall n \ge n_0 \ \forall k \in \mathbb{N}: \ |a_{n+k} - a_n| < \varepsilon.$$

Also ist (a_n) eine Cauchyfolge und somit konvergent; $a := \lim_{n \to \infty} a_n$. Klar ist:

$$a \ge \frac{1}{2}$$
 und $a = \frac{1}{1+a}$.

Also ist

$$a^{2} + a - 1 = 0 \Rightarrow a = -\frac{1}{2} + \frac{\sqrt{5}}{2} \text{ oder } a = -\frac{1}{2} - \frac{\sqrt{5}}{2}.$$

Wegen $a \ge \frac{1}{2}$ folgt $a = \frac{\sqrt{5}-1}{2}$.

Kapitel 3

Unendliche Reihen

Definition: Es sei (a_n) sei eine Folge.

a) Wir setzen

$$s_n := a_1 + a_2 + \ldots + a_n \quad (n \in \mathbb{N}),$$

also $s_1 = a_1, s_2 = a_1 + a_2, s_3 = a_1 + a_2 + a_3, \ldots$ Die Folge (s_n) heißt (unendliche) Reihe und wird mit $\sum_{n=1}^{\infty} a_n$ bezeichnet. Es gilt also:

 $\sum_{n=1}^{\infty} a_n$ ist konvergent bzw. divergent \iff (s_n) ist konvergent bzw. divergent.

- b) s_n heißt n-te Teilsumme von $\sum_{n=1}^{\infty} a_n$.
- c) Ist $\sum_{n=1}^{\infty} a_n$ konvergent, so heißt $\lim_{n\to\infty} s_n$ der **Reihenwert** und wird ebenfalls mit $\sum_{n=1}^{\infty} a_n$ bezeichnet. (Vorsicht: Doppelbedeutung von $\sum_{n=1}^{\infty} a_n$.)

Bemerkung: Ist $p \in \mathbb{Z}$ und $(a_n)_{n=p}^{\infty}$ eine Folge, so definiert man entsprechend

$$s_n = a_p + a_{p+1} + \ldots + a_n \quad (n \ge p)$$

und $\sum_{n=p}^{\infty} a_n$ (meist: p=1 oder p=0).

Die folgenden Sätze und Definitionen formulieren wir nun für Reihen der Form $\sum_{n=1}^{\infty} a_n$. Diese Sätze und Definitionen gelten entsprechend für Reihen der Form $\sum_{n=p}^{\infty} a_n \ (p \in \mathbb{Z})$.

Beispiele:

a) Es sei $x \in \mathbb{R}$. Die Reihe

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$$

heißt geometrische Reihe.

Hier ist $s_n = 1 + x + \ldots + x^n$ $(n \in \mathbb{N}_0)$. Nach 2.6 gilt: (s_n) konvergiert $\iff |x| < 1$ und $\lim_{n \to \infty} s_n = \frac{1}{1-x}$ für |x| < 1. Also: $\sum_{n=0}^{\infty} x^n$ konvergiert $\iff |x| < 1$ und

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad (|x| < 1).$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}; \quad a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.$$

Es gilt:

$$s_n = a_1 + \dots + a_n$$

$$= (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n-1} - \frac{1}{n}) + (\frac{1}{n} - \frac{1}{n+1})$$

$$= 1 - \frac{1}{n+1} \to 1.$$

Also: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ ist konvergent und $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

c)
$$\sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots$$

Nach 2.9 gilt:

$$s_n = 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{n!} \to e \quad (n \to \infty).$$

Also: $\sum_{n=0}^{\infty} \frac{1}{n!}$ konvergiert und $\sum_{n=0}^{\infty} \frac{1}{n!} = e$.

d) Die Reihe

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

heißt harmonische Reihe. Hier ist $s_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$ $(n \in \mathbb{N})$. Es gilt:

$$s_{2n} = 1 + \frac{1}{2} + \ldots + \frac{1}{n} + \frac{1}{n+1} + \ldots + \frac{1}{2n} = s_n + \underbrace{\frac{1}{n+1}}_{\geq \frac{1}{2n}} + \ldots + \underbrace{\frac{1}{2n}}_{\geq \frac{1}{2n}} \geq s_n + \frac{1}{2}.$$

Annahme: (s_n) ist konvergent; $s := \lim_{n \to \infty} s_n$. Mit 2.11 folgt $s_{2n} \to s$ $(n \to \infty)$. Somit gilt

$$s \ge s + \frac{1}{2} \Rightarrow 0 \ge \frac{1}{2}.$$

Widerspruch. Also: $\sum_{n=1}^{\infty} \frac{1}{n}$ ist divergent.

Satz 3.1: Es sei (a_n) eine Folge und $s_n = a_1 + \ldots + a_n \ (n \in \mathbb{N})$.

- a) Monotoniekriterium: Sind alle $a_n \geq 0$ und ist (s_n) beschränkt, so ist $\sum_{n=1}^{\infty} a_n$ konvergent.
- b) Cauchykriterium: $\sum_{n=1}^{\infty} a_n$ ist konvergent \iff

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m > n \ge n_0 : \left| \sum_{k=n+1}^m a_k \right| < \varepsilon.$$

- c) Ist $\sum_{n=1}^{\infty} a_n$ konvergent, so gilt $a_n \to 0$ $(n \to \infty)$.
- d) Die Reihe $\sum_{n=1}^{\infty} a_n$ sei konvergent. Dann ist für jedes $m \in \mathbb{N}$ die Reihe $\sum_{n=m+1}^{\infty} a_n$ konvergent und für $r_m \coloneqq \sum_{n=m+1}^{\infty} a_n$ gilt: $r_m \to 0 \ (m \to \infty)$.

Beweis:

- a) Es gilt: $s_{n+1} = a_1 + \ldots + a_n + a_{n+1} = s_n + a_{n+1} \ge s_n \ (n \in \mathbb{N})$. Also ist (s_n) wachsend und beschränkt. Nach 2.3 ist (s_n) konvergent.
- b) Für m > n gilt:

$$|s_m - s_n| = |a_1 + \dots + a_n + a_{n+1} + \dots + a_m - (a_1 + \dots + a_n)|$$

= $|a_{n+1} + \dots + a_m| = |\sum_{k=n+1}^m a_k|$.

Die Behauptung folgt damit aus 2.16.

- c) Es gilt: $s_{n+1} s_n = a_{n+1}$ $(n \in \mathbb{N})$. Ist (s_n) konvergent, so folgt $a_{n+1} \to 0$.
- d) Ohne Beweis.

Bemerkung: Ist (a_n) eine Folge und gilt $a_n \not\to 0$, so ist $\sum_{n=1}^{\infty} a_n$ divergent.

Satz 3.2: Die Reihen $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ seien konvergent und es seien $\alpha, \beta \in \mathbb{R}$. Dann konvergiert

$$\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n)$$

und es gilt

$$\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n) = \alpha \sum_{n=1}^{\infty} a_n + \beta \sum_{n=1}^{\infty} b_n.$$

Beweis: Folgt aus 2.2.

Satz 3.3 (Leibnizkriterium): Es sei (b_n) eine Folge mit:

- a) (b_n) ist monoton fallend,
- b) $b_n \to 0 \ (n \to \infty)$.

Dann ist $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ konvergent.

Beispiel: Aus 3.3 folgt:

Die alternierende harmonische Reihe $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ ist konvergent.

Beweis: (von 3.3) Da (b_n) eine fallende Nullfolge ist gilt: $b_n \ge 0$ $(n \in \mathbb{N})$. Wir setzen $a_n := (-1)^{n+1}b_n$ und $s_n := a_1 + \ldots + a_n$ $(n \in \mathbb{N})$. Es gilt:

$$s_{2n+2} = s_{2n} + a_{2n+1} + a_{2n+2} = s_{2n} + \underbrace{b_{2n+1} - b_{2n+2}}_{>0} \ge s_{2n} \quad (n \in \mathbb{N}).$$

Also ist (s_{2n}) monoton wachsend. Analog zeigt man: (s_{2n-1}) ist monoton fallend. Weiter gilt:

(*)
$$s_{2n} = s_{2n-1} + a_{2n} = s_{2n-1} - b_{2n} \le s_{2n-1} \quad (n \in \mathbb{N}).$$

Also:

$$\forall n \in \mathbb{N}: \ s_2 \le s_4 \le \ldots \le s_{2n} \stackrel{(*)}{\le} s_{2n-1} \le \ldots \le s_3 \le s_1$$

Somit sind (s_{2n}) und (s_{2n-1}) beschränkt. Nach 2.3 sind (s_{2n}) und (s_{2n-1}) konvergent; $s := \lim_{n \to \infty} s_{2n}$. Mit (*) folgt $s = \lim_{n \to \infty} s_{2n-1}$.

Es sei $\varepsilon > 0$. Es gilt:

$$\left. \begin{array}{l} s_{2n} \in U_{\varepsilon}(s) \text{ ffa } n \in \mathbb{N} \\ s_{2n-1} \in U_{\varepsilon}(s) \text{ ffa } n \in \mathbb{N} \end{array} \right\} \Rightarrow s_n \in U_{\varepsilon}(s) \text{ ffa } n \in \mathbb{N}$$

Also gilt: $s_n \to s \ (n \to \infty)$.

Definition: $\sum_{n=1}^{\infty} a_n \text{ heißt } \textbf{absolut konvergent} : \iff \sum_{n=1}^{\infty} |a_n| \text{ ist konvergent.}$

Beispiel: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ ist konvergent, aber nicht absolut konvergent.

Satz 3.4: $\sum_{n=1}^{\infty} a_n$ sei absolut konvergent. Dann gilt:

- a) $\sum_{n=1}^{\infty} a_n$ ist konvergent,
- b) $|\sum_{n=1}^{\infty} a_n| \leq \sum_{n=1}^{\infty} |a_n|$ (\triangle -Ungleichung für Reihen).

Beweis:

a) Für $m, n \in \mathbb{N}$, m > n gilt:

$$(*) \qquad \underbrace{\left|\sum_{k=n+1}^{m} a_k\right|}_{=:\sigma_{m,n}} \le \underbrace{\sum_{k=n+1}^{m} \left|a_k\right|}_{=:\tau_{m,n}}.$$

Es sei $\varepsilon > 0$. Nach Voraussetzung und 3.1 b) gilt:

$$\exists n_0 \in \mathbb{N} \ \forall m > n > n_0: \ \tau_{m,n} < \varepsilon,$$

also mit (*)

$$\exists n_0 \in \mathbb{N} \ \forall m > n > n_0 : \ \sigma_{m,n} < \varepsilon.$$

Nach 3.1 b) ist $\sum_{n=1}^{\infty} a_n$ konvergent.

b) Es sei $s_n := a_1 + \ldots + a_n$, $\sigma_n := |a_1| + \ldots |a_n|$ $(n \in \mathbb{N})$, $s := \lim_{n \to \infty} s_n$ und $\sigma := \lim_{n \to \infty} \sigma_n$. Es gilt: $|s_n| \to |s|$ $(n \to \infty)$ und $|s_n| \le \sigma_n$ $(n \in \mathbb{N})$. Damit folgtonial $|s| \le \sigma$.

Satz 3.5:

- a) Majorantenkriterium: Gilt $|a_n| \leq b_n$ ffa $n \in \mathbb{N}$ und ist $\sum_{n=1}^{\infty} b_n$ konvergent, so ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent.
- b) Minorantenkriterium: Gilt $a_n \ge b_n \ge 0$ ffa $n \in \mathbb{N}$ und ist $\sum_{n=1}^{\infty} b_n$ divergent, so ist $\sum_{n=1}^{\infty} a_n$ divergent.

Beweis:

a) Es gilt: $\exists j \in \mathbb{N} \ \forall n \geq j \colon |a_n| \leq b_n$. Nun sei $m > n \geq j$. Dann ist

$$\underbrace{\sum_{k=n+1}^{m} |a_k|}_{=:\sigma_{m,n}} \le \underbrace{\sum_{k=n+1}^{m} b_k}_{=:\tau_{m,n}}.$$

Es sei $\varepsilon > 0$. Nach Voraussetzung und 3.1 b) gilt:

$$\exists n_0 \ge j \ \forall m > n \ge n_0 : \tau_{m,n} < \varepsilon,$$

also

$$\exists n_0 \geq j \ \forall m > n \geq n_0 : \sigma_{m,n} < \varepsilon.$$

Nach 3.1 b) ist $\sum_{n=1}^{\infty} |a_n|$ konvergiert.

b) Annahme: $\sum_{n=1}^{\infty} a_n$ ist konvergent. Nach a) ist dann $\sum_{n=1}^{\infty} b_n$ konvergent. Widerspruch.

Beispiele:

a) $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$, $a_n := \frac{1}{(n+1)^2}$ $(n \in \mathbb{N})$. Für jedes $n \in \mathbb{N}$ gilt:

$$|a_n| = a_n = \frac{1}{(n+1)^2} = \frac{1}{n^2 + 2n + 1} \le \frac{1}{n^2 + 2n} \le \frac{1}{n(n+1)} =: b_n.$$

Bekannt: $\sum_{n=1}^{\infty} b_n$ ist konvergent. Nach 3.5 a) ist auch $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$ konvergent.

- b) Aus Beispiel a) folgt: $\sum_{n=1}^{\infty} \frac{1}{n^2}$ ist konvergent.
- c) Sei $\alpha > 0$ und $\alpha \in \mathbb{Q}$. Wir betrachten $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$. Fall 1: $\alpha \in (0, 1]$.

$$\forall n \in \mathbb{N}: \ \frac{1}{n^{\alpha}} \ge \frac{1}{n} \ge 0 \xrightarrow{3.5 \ b)} \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ divergient.}$$

Fall 2: $\alpha \geq 2$.

$$\forall n \in \mathbb{N}: \ 0 \le \frac{1}{n^{\alpha}} \le \frac{1}{n^2} \xrightarrow{3.5 \ a)} \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ konvergiert.}$$

Fall 3: $\alpha \in (1, 2)$.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 konvergiert.

Beweis in den Übungen.

Fazit: Ist $\alpha > 0$ und $\alpha \in \mathbb{Q}$, so gilt:

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ konvergiert } \Leftrightarrow \alpha > 1.$$

Bemerkung: Ist später (in §7) die allgemeine Potenz a^x ($a > 0, x \in \mathbb{R}$) eingeführt, so zeigt man analog: Ist $\alpha > 0$, so gilt:

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ konvergiert } \Leftrightarrow \alpha > 1.$$

d) $\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{n^3+1}$. Es gilt:

$$\left| (-1)^n \frac{n+2}{n^3+1} \right| = \frac{n+2}{n^3+1} \le \frac{n+2}{n^3} \le \frac{2n}{n^3} = \frac{2}{n^2} \quad (n \ge 2).$$

Die Reihe $\sum_{n=1}^{\infty} \frac{2}{n^2}$ ist konvergent. Nach 3.5 a) ist $\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{n^3+1}$ absolut konvergent.

e) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$. Es gilt

$$\frac{\sqrt{n}}{n+1} \ge \frac{\sqrt{n}}{2n} = \frac{1}{2\sqrt{n}} \ge 0 \quad (n \in \mathbb{N}).$$

Die Reihe $\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n}}$ divergiert. Nach 3.5 b) ist auch $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$ divergent.

Hilfssatz 3.6: Die Folge (c_n) sei beschränkt. Dann gilt:

- a) Ist $\alpha := \limsup_{n \to \infty} c_n \text{ und } x > \alpha, \text{ so ist } c_n < x \text{ ffa } n \in \mathbb{N}.$
- b) Ist $\alpha := \liminf_{n \to \infty} c_n \text{ und } x < \alpha, \text{ so ist } c_n > x \text{ ffa } n \in \mathbb{N}.$
- c) Ist $c_n \ge 0$ $(n \in \mathbb{N})$ und $\limsup_{n \to \infty} c_n = 0$, so gilt $c_n \to 0$ $(n \to \infty)$.

Beweis:

c) Es sei $\varepsilon > 0$. Mit a) (für $x = \varepsilon$) folgt: $-\varepsilon < 0 \le c_n < \varepsilon$ ffa $n \in \mathbb{N}$. Also gilt $c_n \in U_{\varepsilon}(0)$ ffa $n \in \mathbb{N}$.

a) Annahme: $c_n \ge x$ für unendlich viele n, etwa für n_1, n_2, n_3, \ldots mit

$$n_1 < n_2 < n_3 < \dots$$

Die Teilfolge (c_{n_k}) ist beschränkt. Nach 2.11 enthält (c_{n_k}) eine konvergente Teilfolge $(c_{n_{k_i}})$. Definiere

$$\beta := \lim_{j \to \infty} c_{n_{k_j}}.$$

Es gilt $c_{n_{k_j}} \geq x$ $(j \in \mathbb{N})$, also ist $\beta \geq x > \alpha$. Auch $(c_{n_{k_j}})$ ist eine Teilfolge von (c_n) , also ist $\beta \in H(a_n)$ und somit $\beta \leq \alpha$, Widerspruch.

b) Analog wie a).

Satz 3.7 (Wurzelkriterium (WK)): Es sei (a_n) eine Folge, $c_n := \sqrt[n]{|a_n|}$ $(n \in \mathbb{N})$.

- a) Ist (c_n) unbeschränkt, so ist $\sum_{n=1}^{\infty} a_n$ divergent.
- b) Es sei (c_n) beschränkt und $\alpha := \limsup_{n \to \infty} c_n$. Dann gilt:
 - (i) Ist $\alpha < 1$, so ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent.
 - (ii) Ist $\alpha > 1$, so ist $\sum_{n=1}^{\infty} a_n$ divergent.

Im Falle $\alpha = 1$ ist keine allgemeine Aussage möglich.

Beweis:

- a) (c_n) ist unbeschränkt $\Rightarrow c_n \geq 1$ für unendlich viele $n \in \mathbb{N} \Rightarrow |a_n| \geq 1$ für unendlich viele $n \in \mathbb{N} \Rightarrow a_n \not\to 0$. Mit 3.1 c) folgt die Behauptung.
- b) (i) Es sei $\alpha < 1$. Wähle ein $x \in (\alpha, 1)$. Nach 3.6 gilt: $c_n \leq x$ ffa $n \in \mathbb{N}$, also $|a_n| \leq x^n$ ffa $n \in \mathbb{N}$. Die Reihe $\sum_{n=1}^{\infty} x^n$ konvergiert. Nach 3.5 a) konvergiert $\sum_{n=1}^{\infty} a_n$ absolut.
 - (ii) Es sei $\alpha > 1$. Wähle $\varepsilon > 0$ so, daß $\alpha \varepsilon > 1$. Es gilt $c_n \in U_{\varepsilon}(\alpha)$ für unendlich viele $n \in \mathbb{N}$. Damit ist $c_n > \alpha \varepsilon > 1$ für unendlich viele n. Wie bei a) folgt: $\sum_{n=1}^{\infty} a_n$ divergiert.

Beispiele:

- a) $a_n := \frac{1}{n} \ (n \in \mathbb{N}); \ c_n = \sqrt[n]{|a_n|} = \frac{1}{\sqrt[n]{n}} \to 1$, also $\alpha = 1$ und $\sum_{n=1}^{\infty} a_n$ divergiert.
- b) $a_n := \frac{1}{n^2} \ (n \in \mathbb{N}); \ c_n = \sqrt[n]{|a_n|} = \frac{1}{(\sqrt[n]{n})^2} \to 1$, also $\alpha = 1$ und $\sum_{n=1}^{\infty} a_n$ konvergiert.

c) Es sei $x \in \mathbb{R}$ und $a_n := \begin{cases} \frac{1}{2^n}, & \text{falls } n = 2k \\ nx^n, & \text{falls } n = 2k - 1 \end{cases}$

Frage: Für welche x ist $\sum_{n=1}^{\infty} a_n$ (absolut) konvergent? Es ist

$$c_n = \sqrt[n]{|a_n|} = \begin{cases} \frac{1}{2}, & \text{falls } n = 2k\\ \sqrt[n]{n}|x|, & \text{falls } n = 2k - 1 \end{cases}$$

- (c_n) ist also beschränkt und $H(c_n) = \left\{\frac{1}{2}, |x|\right\}$.
- Fall 1: |x| < 1. Dann ist $\alpha = \limsup_{n \to \infty} c_n < 1$, also ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent.
- Fall 2: |x| > 1. Dann ist $\alpha = \limsup_{n \to \infty} c_n > 1$, also ist $\sum_{n=1}^{\infty} a_n$ divergent.
- Fall 3: |x| = 1. Dann ist $\alpha = \limsup_{n \to \infty} c_n = 1$ und das Wurzelkriterium liefert keine Entscheidung. Es ist $|a_n| = n$ falls n = 2k 1. Also gilt $a_n \neq 0$. Damit ist $\sum_{n=1}^{\infty} a_n$ also divergent.

Satz 3.8 (Quotientenkriterium (QK)): Es sei $a_n \neq 0$ ffa $n \in \mathbb{N}$ und $c_n := \left| \frac{a_{n+1}}{a_n} \right|$.

- a) Ist $c_n \geq 1$ ffa $n \in \mathbb{N}$, so ist $\sum_{n=1}^{\infty} a_n$ divergent.
- b) Es sei (c_n) beschränkt, $\alpha := \limsup_{n \to \infty} c_n$ und $\beta := \liminf_{n \to \infty} c_n$. Dann gilt:
 - (i) Ist $\alpha < 1$, so ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent.
 - (ii) Ist $\beta > 1$, so ist $\sum_{n=1}^{\infty} a_n$ divergent.

Ohne Beweis.

Folgerung 3.9: (a_n) und (c_n) seien wie in 3.8, (c_n) sei konvergent und $\alpha := \lim_{n \to \infty} c_n$.

$$\sum_{n=1}^{\infty} a_n \text{ ist } \begin{cases} \text{absolut konvergent,} & \text{falls } \alpha < 1 \\ \text{divergent,} & \text{falls } \alpha > 1 \end{cases}.$$

Im Falle $\alpha = 1$ ist keine allgemeine Aussage möglich.

Beispiele:

- a) $a_n = \frac{1}{n} \ (n \in \mathbb{N}), \ \left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1} \to 1, \ \sum_{n=1}^{\infty} a_n$ divergiert.
- b) $a_n = \frac{1}{n^2} \ (n \in \mathbb{N}), \ \left| \frac{a_{n+1}}{a_n} \right| = \frac{n^2}{(n+1)^2} \to 1, \ \sum_{n=1}^{\infty} a_n \ \text{konvergiert.}$

3.10 Die Exponentialreihe: Für $x \in \mathbb{R}$ betrachte die Reihe

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Frage: Für welche $x \in \mathbb{R}$ konvergiert diese Reihe (absolut)?

Klar: Die Reihe konvergiert absolut für x=0. Sei nun $x\neq 0$ und $a_n:=\frac{x^n}{n!}$ $(n\in\mathbb{N}_0)$. Es gilt:

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \frac{|x|}{n+1} \to 0 \quad (n \to \infty).$$

Mit 3.9 folgt:

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 konvergiert absolut für jedes $x \in \mathbb{R}$.

Damit ist eine Funktion $E \colon \mathbb{R} \to \mathbb{R}$ definiert:

$$E(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Sie heißt **Exponentialfunktion**. Es gilt: E(0) = 1, $E(1) \stackrel{\S 2}{=} e$.

Später zeigen wir $\forall r \in \mathbb{Q} : E(r) = e^r$ und definieren dann $e^x := E(x)$ für alle $x \in \mathbb{R} \setminus \mathbb{Q}$. Dann ist also $e^x = E(x)$ $(x \in \mathbb{R})$.

Definition: Sei (a_n) eine Folge und $\varphi \colon \mathbb{N} \to \mathbb{N}$ eine Bijektion. Setze $b_n \coloneqq a_{\varphi(n)} \ (n \in \mathbb{N})$. Also

$$b_1 = a_{\varphi(1)}, \quad b_2 = a_{\varphi(2)}, \quad b_3 = a_{\varphi(3)}, \dots$$

Dann heißt (b_n) eine **Umordnung** von (a_n) .

Beispiel: $(a_2, a_4, a_1, a_3, a_6, a_8, a_5, a_7, \dots)$ ist eine Umordnung von (a_n) .

Satz 3.11: Es sei (b_n) eine Umordnung von (a_n) . Dann gilt:

a) Ist (a_n) konvergent, so ist (b_n) konvergent und $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n$.

b) Ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent, so ist $\sum_{n=1}^{\infty} b_n$ absolut konvergent und

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n.$$

Beweis:

a) Setze $a := \lim_{n \to \infty} a_n$. Es sei $\varepsilon > 0$. Dann gilt:

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ |a_n - a| < \varepsilon.$$

Da φ injektiv ist, ist die Menge $\{n \in \mathbb{N} : \varphi(n) < n_0\}$ endlich. Also gilt:

$$|b_n - a| = |a_{\varphi(n)} - a| < \varepsilon \text{ ffa } n \in \mathbb{N}.$$

b) Ohne Beweis.

Bemerkung (ohne Beweis): Es sei $\sum_{n=1}^{\infty} a_n$ konvergent, aber nicht absolut konvergent. Dann gilt:

a) Ist $s \in \mathbb{R}$, so existiert eine Umordnung (b_n) von (a_n) mit:

$$\sum_{n=1}^{\infty} b_n \text{ ist konvergent und } \sum_{n=1}^{\infty} b_n = s.$$

b) Es existiert eine Umordnung (c_n) von (a_n) mit: $\sum_{n=1}^{\infty} c_n$ ist divergent.

Definition: Gegeben seien die Reihen $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$. Für $n \in \mathbb{N}_0$ sei

$$c_n := \sum_{k=0}^n a_k b_{n-k} = \sum_{k=0}^n a_{n-k} b_k, \ also$$

$$c_n = a_0 b_n + a_1 b_{n-1} + \ldots + a_n b_0.$$

Die Reihe $\sum_{n=0}^{\infty} c_n$ heißt das **Cauchyprodukt** (CP) von $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$.

Satz 3.12: Es seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ absolut konvergent. Für ihr Cauchyprodukt $\sum_{n=0}^{\infty} c_n$ gilt dann:

$$\sum_{n=0}^{\infty} c_n \text{ ist absolut konvergent und } \sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n).$$

Ohne Beweis.

Beispiel: Es sei $x \in \mathbb{R}$ und |x| < 1.

Bekannt: $\sum_{n=0}^{\infty} x^n$ konvergiert absolut und $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. Also ist

$$\frac{1}{(1-x)^2} = \left(\sum_{n=0}^{\infty} x^n\right) \left(\sum_{n=0}^{\infty} x^n\right) \stackrel{3.12}{=} \sum_{n=0}^{\infty} c_n,$$

mit $c_n = \sum_{k=0}^n x^k x^{n-k} = (n+1) x^n \ (n \in \mathbb{N}_0)$. Somit gilt:

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n \quad (|x| < 1).$$

z.B. $(x = \frac{1}{2}) : 4 = \sum_{n=0}^{\infty} \frac{(n+1)}{2^n}$

Weiter gilt:

$$\frac{x}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^{n+1} = \sum_{n=1}^{\infty} nx^n.$$

z.B. $(x = \frac{1}{2}) : 2 = \sum_{n=1}^{\infty} \frac{n}{2^n}$, also $1 = \sum_{n=1}^{\infty} \frac{n}{2^{n+1}}$.

3.13 Eigenschaften der Exponentialfunktion: $E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ (x \in \mathbb{R})$. Es gilt:

- a) E(0) = 1, E(1) = e;
- b) $\forall x, y \in \mathbb{R} : E(x+y) = E(x)E(y);$
- c) $\forall x_1, ..., x_m \in \mathbb{R} : E(x_1 + ... + x_m) = E(x_1) \cdot ... \cdot E(x_m);$
- d) E(x) > 1 (x > 0); E(x) > 0 $(x \in \mathbb{R})$; $E(-x) = E(x)^{-1}$ $(x \in \mathbb{R})$;
- e) $\forall x \in \mathbb{R} \ \forall r \in \mathbb{Q} : E(rx) = E(x)^r;$
- f) $\forall r \in \mathbb{Q} : E(r) = e^r;$

- g) E ist auf \mathbb{R} streng monoton wachsend, d.h. aus x < y folgt stets E(x) < E(y).

 Beweis:
 - a) Ist bekannt.
 - b) Es gilt

$$E(x)E(y) = (\sum_{n=0}^{\infty} \frac{x^n}{n!})(\sum_{n=0}^{\infty} \frac{y^n}{n!}) \stackrel{\text{3.12}}{=} \sum_{n=0}^{\infty} c_n,$$

mit

$$c_n = \sum_{k=0}^n \frac{x^k}{k!} \cdot \frac{y^{n-k}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^n \underbrace{\frac{n!}{k!(n-k)!}} x^k y^{n-k} \stackrel{\S 1}{=} \frac{1}{n!} (x+y)^n \quad (n \in \mathbb{N}_0).$$

Also: $E(x)E(y) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!} = E(x+y).$

- c) Folgt aus b).
- d) Für x > 0 gilt $E(x) = 1 + \underbrace{x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots}_{>0} > 1$. Weiter ist

$$1 = E(x + (-x)) \stackrel{b)}{=} E(x)E(-x) \quad (x \in \mathbb{R}).$$

Insbesondere gilt: E(x) > 0 (x < 0) und $E(-x) = E(x)^{-1}$ $(x \in \mathbb{R})$.

e) Für $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$E(nx) = E(x + \ldots + x) \stackrel{c)}{=} E(x)^{n}.$$

Also ist

$$E(x) = E(n\frac{x}{n}) = (E(\frac{x}{n}))^n \implies E(\frac{1}{n}x) = E(x)^{\frac{1}{n}}.$$

Für $m, n \in \mathbb{N}$ folgt damit:

$$E(\frac{m}{n}x) = E(m\frac{x}{n}) = E(\frac{x}{n})^m = (E(x)^{\frac{1}{n}})^m = E(x)^{\frac{m}{n}}.$$

Somit gilt $E(rx) = E(x)^r$ für jedes $r \in \mathbb{Q}$ mit r > 0. Sei $r \in \mathbb{Q}$ und r < 0. Dann ist -r > 0, also

$$\frac{1}{E(rx)} = E(-rx) = E(x)^{-r} = \frac{1}{E(x)^r} \implies E(rx) = E(x)^r.$$

- f) Folgt aus e) mit x = 1.
- g) Es sei x < y. Dann gilt y x > 0, also

$$\Rightarrow 1 \stackrel{d)}{<} E(y-x) \stackrel{b)}{=} E(y)E(-x) \stackrel{d)}{=} \frac{E(y)}{E(x)} \stackrel{d)}{\Rightarrow} E(x) < E(y).$$

Kapitel 4

Potenzreihen

Definition: Es sei $(a_n)_{n=0}^{\infty}$ eine Folge in \mathbb{R} und $x_0 \in \mathbb{R}$. Eine Reihe der Form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots$$

heißt **Potenzreihe** (PR).

Frage: Für welche $x \in \mathbb{R}$ konvergiert eine Potenzreihe (absolut)?

Klar: Eine Potenzreihe konvergiert absolut für $x = x_0$.

Beispiele:

a) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Hier: $a_n = \frac{1}{n!}$ $(n \in \mathbb{N}_0)$, $x_0 = 0$. Bekannt: Die Potenzreihe konvergiert absolut für jedes $x \in \mathbb{R}$.

b) $\sum_{n=0}^{\infty} (x-x_0)^n$. Hier: $a_n=1$ $(n \in \mathbb{N}_0)$. Bekannt: Die Potenzreihe konvergiert absolut $\iff |x-x_0| < 1$ (geometrische Reihe).

c) $\sum_{n=0}^{\infty} n^n (x - x_0)^n$. Hier: $a_n = n^n$ $(n \in \mathbb{N}_0)$. Es sei $x \neq x_0$ und $b_n := n^n (x - x_0)^n$. Es gilt: $\sqrt[n]{|b_n|} = n|x - x_0|$. Wegen $x \neq x_0$ ist $\left(\sqrt[n]{|b_n|}\right)$ unbeschränkt. Nach 3.7 ist $\sum_{n=0}^{\infty} n^n (x - x_0)^n$ divergent. Also: $\sum_{n=0}^{\infty} n^n (x - x_0)^n$ konvergiert nur für $x = x_0$.

Definition: Es sei $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ eine Potenzreihe. Setze

$$\rho \coloneqq \begin{cases} \infty, & \textit{falls} \left(\sqrt[n]{|a_n|} \right) \textit{ unbeschränkt} \\ \limsup_{n \to \infty} \sqrt[n]{|a_n|}, & \textit{falls} \left(\sqrt[n]{|a_n|} \right) \textit{ beschränkt} \end{cases}$$

und

$$r := \begin{cases} 0, & falls \ \rho = \infty \\ \infty, & falls \ \rho = 0 \\ \frac{1}{\rho}, & falls \ \rho \in (0, \infty) \end{cases}$$

(kurz: " $r = \frac{1}{\rho}$ "). r heißt der **Konvergenzradius** (KR) der Potenzreihe.

Satz 4.1: Es sei $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ eine Potenzreihe und ρ und r seien wie in obiger Definition. Dann gilt:

- a) Ist r = 0, so konvergiert die Potenzreihe nur für $x = x_0$.
- b) Ist $r = \infty$, so konvergiert die Potenzreihe absolut für jedes $x \in \mathbb{R}$.
- c) Ist $r \in (0, \infty)$, so konvergiert die Potenzreihe absolut für jedes $x \in \mathbb{R}$ mit $|x-x_0| < r$ und sie divergiert für jedes $x \in \mathbb{R}$ mit $|x - x_0| > r$. Für $x = x_0 \pm r$ ist keine allgemeine Aussage möglich.

Beweis: Für $x \in \mathbb{R}$ sei $b_n(x) := a_n(x - x_0)^n$ $(n \in \mathbb{N}_0)$, also $\sqrt[n]{|b_n(x)|} = \sqrt[n]{|a_n|}|x - x_0|$ $(n \in \mathbb{N}).$

- a) Es sei $x \neq x_0$. Es gilt r = 0 also $\rho = \infty$. Somit ist $\left(\sqrt[n]{|b_n(x)|}\right)$ unbeschränkt. Nach 3.7 ist $\sum_{n=0}^{\infty} b_n(x)$ divergent.
- b) Es gilt $r = \infty$ also $\rho = 0$. Somit ist $\limsup_{n \to \infty} \sqrt[n]{|b_n(x)|} = 0$ $(x \in \mathbb{R})$. Mit 3.7 folgt die Behauptung.
- c) Es gilt:

$$\limsup_{n \to \infty} \sqrt[n]{|b_n(x)|} = \limsup_{n \to \infty} \sqrt[n]{|a_n|} |x - x_0| = \rho |x - x_0| = \frac{1}{r} |x - x_0|.$$

Also gilt:

$$\limsup_{n \to \infty} \sqrt[n]{|b_n(x)|} < 1 \iff |x - x_0| < r,$$
$$\limsup_{n \to \infty} \sqrt[n]{|b_n(x)|} > 1 \iff |x - x_0| > r.$$

$$\limsup_{n \to \infty} \sqrt[n]{|b_n(x)|} > 1 \iff |x - x_0| > r$$

Die Behauptung folgt aus 3.7.

Folgerung: Es gilt:

$$\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0.$$

Beweis: Bekannt: $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ hat den Konvergenzradius $r=\infty$. Nach 4.1 ist $\rho=0$, d.h.

$$\limsup_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0.$$

Mit 3.6 folgt die Behauptung.

Beispiele:

- a) $\sum_{n=0}^{\infty} x^n$; $a_n = 1$ $(n \in \mathbb{N}_0)$, $x_0 = 0$; $\rho = 1$, r = 1. Die Potenzreihe konvergiert für |x| < 1 absolut und sie divergiert für |x| > 1. Für |x| = 1 ist die Potenzreihe divergent.
- b) $\sum_{n=1}^{\infty} \frac{x^n}{n}$; $a_0 = 0$, $a_n = \frac{1}{n}$ $(n \ge 1)$, $x_0 = 0$. Es gilt: $\sqrt[n]{|a_n|} = \frac{1}{\sqrt[n]{n}} \to 1$. Also ist $\rho = 1$ und damit r = 1. Die Potenzreihe konvergiert absolut für |x| < 1 und sie divergiert für |x| > 1. Für x = 1: $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert. Für x = -1: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ konvergiert (nicht absolut).
- c) $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$; $a_0 = 0$, $a_n = \frac{1}{n^2}$ $(n \ge 1)$, $x_0 = 0$. Es gilt: $\sqrt[n]{|a_n|} \to 1$. Also ist $\rho = 1$ und damit r = 1. Die Potenzreihe konvergiert absolut für |x| < 1 und sie divergiert für |x| > 1. Für x = 1: $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert absolut. Für x = -1: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ konvergiert absolut.

In vielen Fällen läßt sich auch über das Quotientenkriterium 3.8 der Konvergenzradius einer Potenzreihe bestimmen:

Satz 4.2: Es sei $a_n \neq 0$ ffa $n \in \mathbb{N}_0$, die Folge $\left(\left|\frac{a_n}{a_{n+1}}\right|\right)$ sei konvergent und $L := \lim_{n \to \infty} \left|\frac{a_n}{a_{n+1}}\right|$. Dann hat die Potenzreihe $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ den Konvergenzradius L.

Ohne Beweis.

4.3 Cosinus: Wir betrachten die Reihe

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

Hier: $x_0 = 0$, $a_{2n+1} = 0$, $a_{2n} = \frac{(-1)^n}{(2n)!}$ $(n \in \mathbb{N}_0)$.

Wegen $0 \le \sqrt[n]{|a_n|} \le \frac{1}{\sqrt[n]{n!}} \ (n \in \mathbb{N})$ und $\frac{1}{\sqrt[n]{n!}} \to 0 \ (n \to \infty)$ folgt

$$\sqrt[n]{|a_n|} \to 0 \quad (n \to \infty).$$

Nach 4.1 hat obige Potenzreihe den Konvergenzradius $r = \infty$, konvergiert also absolut für jedes $x \in \mathbb{R}$.

Cosinus:
$$\begin{cases} \cos \colon \mathbb{R} \to \mathbb{R} \\ \cos x \coloneqq \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \end{cases}$$

4.4 Sinus: Analog wie bei 4.3 sieht man: Die Potenzreihe

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

konvergiert absolut für jedes $x \in \mathbb{R}$.

Sinus:
$$\begin{cases} \sin \colon \mathbb{R} \to \mathbb{R} \\ \sin x := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \end{cases}$$

Offensichtlich gilt: $\sin 0 = 0$, $\cos 0 = 1$, sowie

$$\forall x \in \mathbb{R} : \sin(-x) = -\sin(x), \cos(-x) = \cos(x).$$

Ähnlich wie in 3.13 zeigt man (mit dem Cauchyprodukt) die folgenden Additionstheoreme:

$$\forall x, y \in \mathbb{R} : \sin(x+y) = \sin x \cos y + \cos x \sin y,$$

$$\forall x, y \in \mathbb{R} : \cos(x+y) = \cos x \cos y - \sin x \sin y.$$

Für $x \in \mathbb{R}$ erhalten wir

$$1 = \cos(0) = \cos(x + (-x)) = \cos x \cos(-x) - \sin x \sin(-x) = \cos^2 x + \sin^2 x,$$

$$\cos^2 x \le \cos^2 x + \sin^2 x = 1, \ \sin^2 x \le \cos^2 x + \sin^2 x = 1,$$

und damit $|\cos x| \le 1$ und $|\sin x| \le 1$.

Kapitel 5

q-adische Entwicklung

Definition: Es sei $x \in \mathbb{R}$. Dann existiert genau eine größte ganze Zahl $\leq x$, also ein $k \in \mathbb{Z}$ mit $k \leq x < k+1$;

$$[x] \coloneqq k.$$

Vereinbarung: In diesem §en sei stets $a \ge 0$ und $q \in \mathbb{N} \setminus \{1\}$.

Setze $z_0 := [a]$, dann gilt: $z_0 \le a < z_0 + 1$.

Setze $z_1 := [(a - z_0)q]$, dann gilt: $z_1 \le aq - z_0q < z_1 + 1$.

Also:

$$z_0 + \frac{z_1}{q} \le a < z_0 + \frac{z_1}{q} + \frac{1}{q}.$$

Es gilt $z_1 \in \mathbb{N}_0$. Annahme: $z_1 \geq q$. Dann gilt $\frac{z_1}{q} \geq 1$, also

$$z_0 + 1 \le z_0 + \frac{z_1}{q} \le a < z_0 + 1.$$

Widerspruch. Also ist $z_1 \in \{0, 1, \dots, q-1\}$.

Setze $z_2 := [(a - z_0 - \frac{z_1}{q})q^2]$. Wie oben folgt

$$z_0 + \frac{z_1}{q} + \frac{z_2}{q^2} \le a < z_0 + \frac{z_1}{q} + \frac{z_2}{q^2} + \frac{1}{q^2}.$$

und $z_2 \in \{0, 1, \dots, q-1\}.$

Allgemein (induktiv): Sind z_0, \ldots, z_n schon definiert, so setze

$$z_{n+1} := [(a - z_0 - \frac{z_1}{q} - \dots - \frac{z_n}{q^n})q^{n+1}].$$

Wir erhalten so eine Folge $(z_n)_{n=0}^{\infty}$ mit:

$$\left\{ \begin{array}{l}
 z_0 \in \mathbb{N}_0, \ z_n \in \{0, 1, \dots, q - 1\} \ (n \ge 1) \\
 \text{und} \\
 \underline{z_0 + \frac{z_1}{q} + \dots + \frac{z_n}{q^n}} \le a < \underline{z_0 + \frac{z_1}{q} + \dots + \frac{z_n}{q^n} + \frac{1}{q^n}} \\
 \underline{=:s_n} \\
 \underline{=:s_n + \frac{1}{q^n}}
 \end{array} \right.$$

In den großen Übungen wird gezeigt:

Satz 5.1: Ist $(\tilde{z}_n)_{n=0}^{\infty}$ eine weitere Folge mit den Eigenschaften in (*), so gilt:

$$\forall n \in \mathbb{N}_0: z_n = \tilde{z}_n.$$

Es gilt:

$$\forall n \in \mathbb{N}: \ 0 \le \frac{z_n}{q^n} \le \frac{q-1}{q^n} \quad \text{und} \quad \sum_{n=1}^{\infty} \frac{q-1}{q^n} \text{ konvergiert.}$$

Nach 3.5 a) ist $\sum_{n=0}^{\infty} \frac{z_n}{q^n}$ konvergent. Also ist (s_n) konvergent und mit (*) folgt

$$a = \lim_{n \to \infty} s_n = \sum_{n=0}^{\infty} \frac{z_n}{q^n}.$$

Definition: Ist $(y_n)_{n=0}^{\infty}$ eine Folge mit $y_0 \in \mathbb{N}_0$ und $y_n \in \{0, 1, \dots, q-1\}$, so schreibt man

$$y_0, y_1 y_2 y_3 y_4 \dots := \sum_{n=0}^{\infty} \frac{y_n}{q^n}.$$

Bemerkungen:

a) Die Darstellung einer reellen Zahl als ein solcher Reihenwert ist nicht eindeutig. Z.B. ist (q = 10):

$$1,0000000... = 1 = 0,99999999...$$

b) Gilt mit einem $m \in \mathbb{N} : y_n = 0 \ (n > m)$, so schreibt man auch:

$$y_0, y_1 \dots y_m$$
.

c) Obige Konstruktion der Folge (z_n) zeigt, daß jede reelle Zahl $a \geq 0$ als ein solcher Reihenwert geschrieben werden kann:

$$a = z_0, z_1 z_2 z_3 z_4 \dots$$

Die so erhaltene Darstellung von a heißt die q-adische Entwicklung von a. Sie ist nach 5.1 durch (*) eindeutig bestimmt.

d) Sprechweisen: q = 10: Dezimalentwicklung; q = 2: Dualentwicklung.

Beispiele:

a) q = 10, a = 1. Dann gilt:

$$z_0 = 1$$
, $z_1 = [(a - z_0)q] = 0$, $z_2 = [(a - z_0 - \frac{z_1}{q})q^2] = 0$,...

Induktiv folgt: $z_n = 0 \ (n \ge 1)$, also 1 = 1,000...

b) $q = 10, a = \frac{1}{2}$. Dann gilt:

$$z_0 = 0, \ z_1 = \left[(a - z_0)q \right] = \left[\frac{10}{2} \right] = 5, \ z_2 = \left[(a - z_0 - \frac{z_1}{q})q^2 \right] = \left[\left(\frac{1}{2} - \frac{5}{10} \right) 100 \right] = 0, \dots$$

Induktiv folgt: $z_n = 0 \ (n \ge 2)$, also $\frac{1}{2} = 0,5000... = 0,5$.

Definition: Es sei $b \in \mathbb{R}$ und b < 0. Weiter sei $z_0, z_1 z_2 z_3 \ldots$ die q-adische Entwicklung von -b. Dann heißt $-z_0, z_1 z_2 z_3 \ldots$ die q-adische Entwicklung von b.

Satz 5.2:

- a) Es sei $z_0, z_1 z_2 z_3 \dots$ die q-adische Entwicklung von a. Dann ist $z_n = q-1$ ffa $n \in \mathbb{N}$ nicht möglich.
- b) Ist $(y_n)_{n=0}^{\infty}$ eine Folge mit $y_0 \in \mathbb{N}_0$, $y_n \in \{0, 1, \dots, q-1\}$, $a = y_0, y_1y_2y_3 \dots$ und $y_n = q-1$ nicht ffa $n \in \mathbb{N}$, so ist $y_0, y_1y_2y_3 \dots$ die q-adische Entwicklung von a.

Beweis: a) Annahme: $\exists m \in \mathbb{N} \ \forall n \geq m : z_n = q - 1$. Dann gilt:

$$a = \sum_{n=0}^{\infty} \frac{z_n}{q^n} = \underbrace{\sum_{n=0}^{m-1} \frac{z_n}{q^n}}_{=s_{m-1}} + \sum_{n=m}^{\infty} \frac{q-1}{q^n}$$

und

$$\sum_{n=m}^{\infty} \frac{q-1}{q^m} = (q-1) \left(\frac{1}{q^m} + \frac{1}{q^{m+1}} + \dots \right)$$

$$= \frac{q-1}{q^m} \left(1 + \frac{1}{q} + \frac{1}{q^2} + \dots \right)$$

$$= \frac{q-1}{q^m} \frac{1}{1 - \frac{1}{q}} = \frac{1}{q^{m-1}}.$$

Also ist $a = s_{m-1} + \frac{1}{q^{m-1}} \stackrel{(*)}{>} a$. Widerspruch.

b) Übung (mit 5.1).

Satz 5.3: \mathbb{R} ist überabzählbar.

Beweis: Es genügt zu zeigen, daß [0,1) überabzählbar ist. Annahme: [0,1) ist abzählbar, also $[0,1)=\{a_1,a_2,a_3,\dots\}$. Für $j\in\mathbb{N}$ sei

$$a_i = 0, z_1^{(j)} z_2^{(j)} z_3^{(j)} \dots$$

die 3-adische Entwicklung von a_j , also $z_n^{(j)} \in \{0,1,2\}$. Setze

$$z_n := \begin{cases} 1, & \text{falls } z_n^{(n)} = 0 \text{ oder } z_n^{(n)} = 2\\ 0, & \text{falls } z_n^{(n)} = 1 \end{cases}$$

Dann gilt $z_n \neq z_n^{(n)}$ $(n \in \mathbb{N})$ (**). Setze $a := \sum_{n=1}^{\infty} \frac{z_n}{3^n}$. Es gilt:

$$0 \le a \le \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{2}$$
, also $a \in [0, 1)$.

Nach 5.2 b) ist $0, z_1 z_2 z_3 \dots$ ist die 3-adische Entwicklung von a. Wegen $a \in [0, 1)$ existiert ein $m \in \mathbb{N}$ mit $a = a_m$, also

$$0, z_1 z_2 z_3 \dots = 0, z_1^{(m)} z_2^{(m)} z_3^{(m)} \dots$$

Es folgt $z_j = z_j^{(m)}$ $(j \in \mathbb{N})$, also für j = m: $z_m = z_m^{(m)}$. Widerspruch zu (**).

Kapitel 6

Grenzwerte bei Funktionen

Definition: Es sei $D \subseteq \mathbb{R}$ und $x_0 \in \mathbb{R}$. x_0 heißt ein **Häufungspunkt** (HP) von D: \iff Es gibt eine Folge (x_n) in $D \setminus \{x_0\}$ mit $x_n \to x_0$.

Beispiele:

- a) D = (0, 1]. Es gilt: x_0 ist Häufungspunkt von $D \iff x_0 \in [0, 1]$.
- b) $D = \{\frac{1}{n} : n \in \mathbb{N}\}$. Es gilt: D hat genau einen Häufungspunkt: $x_0 = 0$.
- c) $D = \mathbb{Q}$. Es gilt: Jedes $x \in \mathbb{R}$ ist Häufungspunkt von D.
- d) Ist D endlich, so hat D keine Häufungspunkte.

Hilfssatz 6.1: Sei $D \subseteq \mathbb{R}$ und $x_0 \in \mathbb{R}$. Dann gilt:

 x_0 ist Häufungspunkt von $D \iff \forall \varepsilon > 0 : U_{\varepsilon}(x_0) \cap (D \setminus \{x_0\}) \neq \emptyset$.

Beweis:

"\(\Rightarrow\)": Es gibt eine Folge (x_n) in $D\setminus\{x_0\}$ mit $x_n\to x_0$. Es sei $\varepsilon>0$. Dann gilt:

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ x_n \in U_{\varepsilon}(x_0) \cap (D \setminus \{x_0\}).$$

"⇐": Nach Voraussetzung gilt:

$$\exists x_1 \in U_1(x_0) \cap (D \setminus \{x_0\}), \text{ also } |x_1 - x_0| < 1;$$

$$\exists x_2 \in U_{\frac{1}{2}}(x_0) \cap (D \setminus \{x_0\}), \text{ also } |x_2 - x_0| < \frac{1}{2}; \text{ etc.}$$

Wir erhalten eine Folge (x_n) in $D \setminus \{x_0\}$ mit

$$|x_n - x_0| < \frac{1}{n} \quad (n \in \mathbb{N}),$$

also $x_n \to x_0$.

Vereinbarung: Ab jetzt sei stets in diesem §en $\emptyset \neq D \subseteq \mathbb{R}$, x_0 ein Häufungspunkt von D und $f: D \to \mathbb{R}$ eine Funktion.

Bezeichnung:

- a) $D_{\delta}(x_0) := U_{\delta}(x_0) \cap (D \setminus \{x_0\}).$
- b) Sei $M \subseteq D$ und $g: D \to \mathbb{R}$ eine weitere Funktion. Wir schreiben " $f \leq g$ auf M" für " $f(x) \leq g(x)$ ($x \in M$)".

Definition: $\lim_{x\to x_0} f(x)$ existiert: \iff Es gibt ein $a\in\mathbb{R}$ so, $da\beta$ für jede Folge (x_n) in $D\setminus\{x_0\}$ mit $x_n\to x_0$ gilt: $f(x_n)\to a$.

In diesem Fall ist a eindeutig bestimmt und wir schreiben:

$$\lim_{x \to x_0} f(x) = a \ oder \ f(x) \to a \ (x \to x_0).$$

Bemerkung: Sollte $x_0 \in D$ sein, so ist der Wert $f(x_0)$ in obiger Definition nicht relevant. Relevant ist allein das Verhalten von f in das "Nähe" von x_0 .

Beispiele:

a) $D \coloneqq [0, \infty), \ p \in \mathbb{N}, \ f(x) \coloneqq \sqrt[p]{x}$. Es sei $x_0 \in D$ (dann ist x_0 eine Häufungspunkt von D). Es sei (x_n) eine Folge in D mit $x_n \to x_0$. Nach 2.4 gilt dann: $\sqrt[p]{x_n} \to \sqrt[p]{x_0} \ (n \to \infty)$. Also gilt:

$$\lim_{x \to x_0} \sqrt[p]{x} = \sqrt[p]{x_0}.$$

b) D = (0, 1],

$$f(x) := \begin{cases} x^2, & 0 < x < \frac{1}{2} \\ \frac{1}{2}, & x = \frac{1}{2} \\ 1, & \frac{1}{2} < x < 1 \\ 0, & x = 1 \end{cases}$$

Klar: $\lim_{x\to 0} f(x) = 0$, $\lim_{x\to 1} f(x) = 1$. Weiter sei

$$x_n := \frac{1}{2} - \frac{1}{n}, \ y_n := \frac{1}{2} + \frac{1}{n} \quad (n \ge 3).$$

Es gilt $x_n \to \frac{1}{2}$, $y_n \to \frac{1}{2}$, aber $f(x_n) = \left(\frac{1}{2} - \frac{1}{n}\right)^2 \to \frac{1}{4} \neq 1 \leftarrow f(y_n)$. D.h. $\lim_{x \to \frac{1}{2}} f(x)$ existiert nicht. Schränkt man aber f auf $D \cap (-\infty, \frac{1}{2}) = (0, \frac{1}{2})$ ein, so gilt

$$\lim_{\substack{x \to \frac{1}{2} \\ x \in (0, \frac{1}{2})}} f(x) = \frac{1}{4}.$$

Dafür schreibt man

$$\lim_{x \to \frac{1}{2}^{-}} f(x) = \frac{1}{4} \text{ (linksseitiger Grenzwert)}.$$

Analog: Schränkt man f auf $D \cap (\frac{1}{2}, \infty) = (\frac{1}{2}, 1]$ ein, so ist

$$\lim_{x\to\frac{1}{2}+}f(x):=\lim_{\substack{x\to\frac{1}{2}\\x\in(\frac{1}{2},1]}}f(x)=1 \text{ (rechtsseitiger Grenzwert)}.$$

c) $D = \mathbb{R}$, f = E, also $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ Für $|x| \le 1$ gilt:

$$|E(x) - E(0)| = |E(x) - 1| = |x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots|$$

$$= |x| \left| 1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots \right|$$

$$\leq |x| \left(1 + \frac{|x|}{2!} + \frac{|x|^2}{3!} + \dots \right)$$

$$\leq |x| \left(1 + \frac{1}{2!} + \frac{1}{3!} + \dots \right)$$

$$= |x|(e - 1).$$

Es sei (x_n) Folge in \mathbb{R} mit $x_n \to 0$. Dann gilt:

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : |x_n| \le 1,$$

und somit

$$\forall n \ge n_0: |E(x_n) - 1| \le |x_n|(e - 1).$$

Damit folgt $E(x_n) \to 1$. Somit ist $\lim_{x\to 0} E(x) = 1 = E(0)$. Es gilt also:

$$\lim_{x \to 0} \sum_{n=0}^{\infty} \frac{x^n}{n!} = \sum_{n=0}^{\infty} \left(\lim_{x \to 0} \frac{x^n}{n!} \right).$$

Satz 6.2: *Es gilt:*

a)
$$\lim_{x \to x_0} f(x) = a \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D_{\delta}(x_0) : \ |f(x) - a| < \varepsilon.$$

b) $\lim_{x\to x_0} f(x)$ existient

$$\iff$$
 Für jede Folge (x_n) in $D \setminus \{x_0\}$ mit $x_n \to x_0$ ist $(f(x_n))$ konvergent.

c) Cauchykriterium:

$$\lim_{x \to x_0} f(x) \text{ existiert } \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in D_{\delta}(x_0) : \ |f(x_1) - f(x_2)| < \varepsilon.$$

Beweis:

- b) und c) ohne Beweis.
- a) " \Rightarrow ": Es sei $\varepsilon > 0$. Annahme: Für kein $\delta > 0$ gilt $|f(x) a| < \varepsilon$ $(x \in D_{\delta}(x_0))$. Dann existiert zu jedem $n \in \mathbb{N}$ ein $x_n \in D_{1/n}(x_0)$ mit $|f(x_n) a| \ge \varepsilon$. Damit ist (x_n) eine Folge in $D \setminus \{x_0\}$ mit $x_n \to x_0$ und $f(x_n) \not\to a$ Widerspruch.

"\(\xi\)": Es sei (x_n) eine Folge in $D \setminus \{x_0\}$ mit $x_n \to x_0$. Es sei $\varepsilon > 0$. W\(\text{ahle }\delta > 0\) so, da\(\beta\) $|f(x) - a| < \varepsilon \ (x \in D_{\delta}(x_0))$. Es gibt ein $n_0 \in \mathbb{N}$ mit $|x_n - x_0| < \delta \ (n \ge n_0)$. F\(\text{ur} \ n \ge n_0\) gilt damit $|f(x_n) - a| < \varepsilon$. Also gilt: $f(x_n) \to a$.

Satz 6.3: Es seien $f, g, h: D \to \mathbb{R}$ Funktionen. Weiter seien $a, b \in \mathbb{R}$ und es gelte $f(x) \to a, g(x) \to b \ (x \to x_0)$. Dann gilt:

a)
$$\alpha f(x) + \beta g(x) \to \alpha a + \beta b; \quad f(x)g(x) \to ab; \quad |f(x)| \to |a| \quad (x \to x_0).$$

b) Ist $a \neq 0$, so existiert ein $\delta > 0$ mit $f(x) \neq 0$ $(x \in D_{\delta}(x_0))$. Für $\frac{1}{f} \colon D_{\delta}(x_0) \to \mathbb{R}$ gilt: $\frac{1}{f(x)} \to \frac{1}{a} \quad (x \to x_0).$

- c) Für ein $\delta > 0$ gelte $f \leq g$ auf $D_{\delta}(x_0)$. Dann ist $a \leq b$.
- d) Für ein $\delta > 0$ gelte $f \leq h \leq g$ auf $D_{\delta}(x_0)$. Ist a = b, so gilt $h(x) \to a$ $(x \to x_0)$.

Beweis: z. B.: c) Es sei (x_n) eine Folge in $D \setminus \{x_0\}$ mit $x_n \to x_0$. Dann gilt:

$$\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \ x_n \in D_{\delta}(x_0).$$

Also ist $f(x_n) \leq g(x_n)$ $(n \geq n_0)$. Nach 2.2 folgt

$$a = \lim_{n \to \infty} f(x_n) \le \lim_{n \to \infty} g(x_n) = b.$$

Die anderen Aussagen beweist man analog durch Zurückführen auf 2.2.

Definition:

a) Es sei (x_n) eine Folge in \mathbb{R} .

$$x_n \to \infty : \iff \forall c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ x_n > c,$$

 $x_n \to -\infty : \iff \forall c < 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ x_n < c.$

Übung: Es gilt:

$$x_n \to \infty \iff x_n > 0 \text{ ffa } n \in \mathbb{N} \text{ und } \frac{1}{x_n} \to 0,$$

 $x_n \to -\infty \iff x_n < 0 \text{ ffa } n \in \mathbb{N} \text{ und } \frac{1}{x_n} \to 0.$

b) Es sei $D \subseteq \mathbb{R}$, x_0 sei ein Häufungspunkt von D und $g: D \to \mathbb{R}$ eine Funktion.

$$\lim_{x \to x_0} g(x) = \infty : \iff F\ddot{u}r \ jede \ Folge \ (x_n) \ in \ D \setminus \{x_0\} \ mit \ x_n \to x_0 \ gilt: \ g(x_n) \to \infty,$$
$$\lim_{x \to x_0} g(x) = -\infty : \iff F\ddot{u}r \ jede \ Folge \ (x_n) \ in \ D \setminus \{x_0\} \ mit \ x_n \to x_0 \ gilt: \ g(x_n) \to -\infty.$$

c) Es sei D nicht nach oben beschränkt, $g: D \to \mathbb{R}$ sei eine Funktion und es sei $a \in \mathbb{R} \cup \{\infty, -\infty\}$.

$$\lim_{x \to \infty} g(x) = a : \iff \text{ Für jede Folge } (x_n) \text{ in } D \text{ mit } x_n \to \infty \text{ gilt: } g(x_n) \to a.$$

d) Es sei D sei nicht nach unten beschränkt, $g: D \to \mathbb{R}$ sei eine Funktion und es sei $a \in \mathbb{R} \cup \{\infty, -\infty\}$.

$$\lim_{x \to -\infty} g(x) = a : \iff \text{ Für jede Folge } (x_n) \text{ in } D \text{ mit } x_n \to -\infty \text{ gilt: } g(x_n) \to a.$$

Beispiel 6.4: $\frac{1}{x} \to \infty \ (x \to 0+), \ \frac{1}{x} \to -\infty \ (x \to 0-), \ \frac{1}{x} \to 0 \ (x \to \pm \infty).$

6.5 Exponentialfunktion: $E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ Es sei $p \in \mathbb{N}_0$. Für jedes $x \geq 0$ gilt

$$E(x) = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^{p+1}}{(p+1)!} + \ldots \ge \frac{x^{p+1}}{(p+1)!},$$

also

$$\frac{E(x)}{x^p} \ge \frac{x}{(p+1)!} \quad (x > 0).$$

Somit folgt:

$$\frac{E(x)}{x^p} \to \infty \quad (x \to \infty).$$

Insbesondere gilt (p = 0):

$$E(x) \to \infty \quad (x \to \infty),$$

also

$$E(-x) = \frac{1}{E(x)} \to 0 \quad (x \to \infty),$$

und damit

$$E(x) \to 0 \quad (x \to -\infty).$$

Kapitel 7

Stetigkeit

Definition: Es sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ eine Funktion und $x_0 \in D$.

- a) f heißt $in \ x_0$ $stetig : \iff$ Für jede Folge (x_n) in D mit $x_n \to x_0$ gilt: $f(x_n) \to f(x_0)$.
- b) f heißt auf D $stetig : \iff f$ ist in jedem $x \in D$ stetig.
- c) Wir setzen

$$C(D) := C(D, \mathbb{R}) := \{g : D \to \mathbb{R} : g \text{ ist stetig auf } D\}.$$

Beispiele:

a) $D = [0, \infty), p \in \mathbb{N}, f(x) = \sqrt[p]{x}.$

Bekannt: Ist (x_n) eine Folge in D mit $x_n \to x_0 \in D$, so gilt $f(x_n) \to f(x_0)$. Also gilt $f \in C([0,\infty))$.

b)
$$D = [0, 1] \cup \{2\}, f(x) = \begin{cases} x^2, & 0 \le x < 1 \\ 0, & x = 1 \\ 1, & x = 2 \end{cases}$$

Offensichtlich gilt: f ist stetig in jedem $x \in [0, 1)$.

- (i) Es sei $x_0 = 1$, $x_n = 1 \frac{1}{n}$ $(n \in \mathbb{N})$. Dann ist (x_n) eine Folge in D mit $x_n \to 1$, aber $f(x_n) = x_n^2 \to 1 \neq 0 = f(1)$. Also ist f in $x_0 = 1$ nicht stetig.
- (ii) Es sei $x_0 = 2$, und (x_n) eine Folge in D mit $x_n \to 2$. Dann ist $x_n = 2$ ffa $n \in \mathbb{N}$, also $f(x_n) = 1$ ffa $n \in \mathbb{N}$. Somit gilt $f(x_n) \to 1 = f(2)$. Also ist f in $x_0 = 2$ stetig.

Satz 7.1: Es sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ eine Funktion und $x_0 \in D$. Dann gilt:

a)

 $f \text{ ist in } x_0 \text{ stetig } \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in U_\delta(x_0) \cap D : \ |f(x) - f(x_0)| < \varepsilon.$

b) Ist x_0 Häufungspunkt von D, so gilt:

$$f$$
 ist in x_0 stetig $\iff \lim_{x \to x_0} f(x) = f(x_0)$.

Beweis:

- a) Fast wörtlich wie bei 6.2.
- b) Übung.

Satz 7.2:

a) Es seien $f, g: D \to \mathbb{R}$ stetig in $x_0 \in D$ und es seien $\alpha, \beta \in \mathbb{R}$. Dann sind

$$\alpha f + \beta g$$
, fg und $|f|$ stetig in x_0 .

Ist $x_0 \in \tilde{D} := \{x \in D : f(x) \neq 0\}$, so ist $\frac{1}{f} : \tilde{D} \to \mathbb{R}$ stetig in x_0 .

b) Sind $f, g \in C(D)$ und $\alpha, \beta \in \mathbb{R}$, so gilt:

$$\alpha f + \beta g$$
, fg , $|f| \in C(D)$.

Beweis: a) Folgt aus 2.2; b) folgt aus a).

Bemerkung: Satz 7.2 b) zeigt insbesondere: C(D) ist ein reeller Vektorraum.

Satz 7.3: Es seien $D, D_0 \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$, $g: D_0 \to \mathbb{R}$ Funktionen, $f(D) \subseteq D_0$, $x_0 \in D$ und $y_0 := f(x_0)$. Ist f in x_0 stetig und ist g in y_0 stetig, so ist

$$g \circ f \colon D \to \mathbb{R}, \ (g \circ f)(x) \coloneqq g(f(x))$$

stetig in x_0 .

Beweis: Es sei (x_n) eine Folge in D mit $x_n \to x_0$.

Da f stetig in x_0 ist gilt: $f(x_n) \to f(x_0) = y_0$. Da g stetig in y_0 ist folgt

$$(g \circ f)(x_n) = g(f(x_n)) \to g(y_0) = g(f(x_0)) = (g \circ f)(x_0).$$

Satz 7.4: Es sei $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ eine Potenzreihe mit Konvergenzradius r > 0. Es sei $D := (x_0 - r, x_0 + r)$ falls $r < \infty$ und $D := \mathbb{R}$ falls $r = \infty$. Weiter sei

$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \quad (x \in D).$$

Dann gilt: $f \in C(D)$.

Wir beweisen 7.4 später, nach 8.3.

Beispiele: Nach 7.4 sind die Exponentialfunktion, und die Funktionen Sinus und Cosinus auf \mathbb{R} stetig.

Beispiel 7.5: Behauptung:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Beweis: Für $x \neq 0$ gilt:

$$\frac{\sin x}{x} = \frac{1}{x} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \right) = \underbrace{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots}_{PR \text{ mit KR } r = \infty} \xrightarrow{7.4} 1 \ (x \to 0).$$

Beispiel 7.6: Behauptung:

$$\lim_{x \to 0} \frac{E(x) - 1}{x} = 1.$$

Beweis: Für $x \neq 0$ gilt:

$$\frac{E(x) - 1}{x} = \frac{1}{x} \left((1 + x + \frac{x^2}{2!} + \dots) - 1 \right) = \underbrace{1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots}_{PR \text{ mit KB } r = \infty} \xrightarrow{7.4} 1 \ (x \to 0).$$

Folgerung: Für jedes $x_0 \in \mathbb{R}$ gilt:

$$\lim_{h \to 0} \frac{E(x_0 + h) - E(x_0)}{h} = E(x_0).$$

Beweis: Es gilt:

$$\frac{E(x_0 + h) - E(x_0)}{h} = \frac{E(x_0)E(h) - E(x_0)}{h} = E(x_0)\frac{E(h) - 1}{h} \xrightarrow{7.6} E(x_0) (h \to 0).$$

Satz 7.7 (Zwischenwertsatz): Es seien $a, b \in \mathbb{R}$, a < b, $f \in C([a, b])$ und

$$y_0 \in [\min\{f(a), f(b)\}, \max\{f(a), f(b)\}],$$

also y_0 zwischen f(a) und f(b). Dann existiert ein $x_0 \in [a,b]$ mit $f(x_0) = y_0$.

Beweis: Fall 1: Ist $f(a) = y_0$ oder $f(b) = y_0$ so gilt die Behauptung.

Fall 2: Es sei $f(a) \neq y_0 \neq f(b)$. O.B.d.A. sei f(a) < f(b), also $f(a) < y_0 < f(b)$. Wir setzen

$$M := \{x \in [a, b] : f(x) \le y_0\}.$$

Es gilt $a \in M$, also $M \neq \emptyset$. Wegen $M \subseteq [a,b]$ ist M beschränkt. Damit existiert $x_0 := \sup M$ und es gilt $x_0 \in [a,b]$. Ist $n \in \mathbb{N}$, so ist $x_0 - \frac{1}{n}$ keine obere Schranke von M, also existiert ein $x_n \in M$ mit

$$x_n > x_0 - \frac{1}{n}.$$

Also: $\forall n \in \mathbb{N}: x_0 - \frac{1}{n} < x_n \leq x_0$. Somit gilt $x_n \to x_0$. Da f stetig in x_0 ist folgt $f(x_n) \to f(x_0)$. Nach Definition von M ist $f(x_n) \leq y_0$ $(n \in \mathbb{N})$, also $f(x_0) \leq y_0$. Weiter gilt $x_0 < b$ (andernfalls: $x_0 = b \Rightarrow f(b) = f(x_0) \leq y_0 < f(b)$, Widerspruch).

Es sei $z_n := x_0 + \frac{1}{n}$. Es gilt $z_n \in [a, b]$ ffa $n \in \mathbb{N}$, und für diese n gilt:

$$z_n > x_0 \implies z_n \notin M \implies f(z_n) > y_0.$$

Wegen $z_n \to x_0$ folgt (f ist stetig): $f(z_n) \to f(x_0)$. Damit ist $f(x_0) \ge y_0$.

Folgerung (vgl. 1.7): Ist a > 0 und $n \in \mathbb{N}$, so existiert ein $x_0 > 0$ mit $x_0^n = a$.

Beweis: Es sei b := 1 + a und $f(x) := x^n$ $(x \in [0, b])$.

Dann gilt:

$$f \in C([0,b]), \ f(0) = 0 < a, \ f(b) = (1+a)^n \ge 1 + na > a.$$

Mit 7.7 folgt:
$$\exists x_0 \in [0, b] : f(x_0) = a$$
, also $x_0^n = a$. Wegen $a > 0$ ist $x_0 > 0$.

Bemerkung: Erst jetzt ist 1.7 vollständig bewiesen!

Aus 7.7 folgt mit $y_0 = 0$:

Satz 7.8 (Nullstellensatz von Bolzano): Ist $f \in C([a,b])$ und $f(a)f(b) \leq 0$, so existiert ein $x_0 \in [a,b]$ mit $f(x_0) = 0$.

7.9 Exponential function: $E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ (x \in \mathbb{R}).$

Behauptung: $E(\mathbb{R}) = (0, \infty)$.

Beweis: Nach 3.13 gilt E(x) > 0 $(x \in \mathbb{R})$, also $E(\mathbb{R}) \subseteq (0, \infty)$.

Es sei $y_0 \in (0, \infty)$. Nach 6.5 gilt:

$$E(x) \to \infty \ (x \to \infty) \ \Rightarrow \ \exists b > 0 : \ E(b) > y_0$$

$$E(x) \to 0 \ (x \to -\infty) \Rightarrow \exists a < 0 : E(a) < y_0.$$

Mit 7.7 folgt: $\exists x_0 \in [a, b] : E(x_0) = y_0$, also $y_0 \in E(\mathbb{R})$. Somit ist $(0, \infty) \subseteq E(\mathbb{R})$.

Definition: Es sei $D \subseteq \mathbb{R}$.

a) D heißt **abgeschlossen**: \iff Für jede konvergente Folge (x_n) in D gilt

$$\lim_{n\to\infty} x_n \in D.$$

b) D heißt $kompakt : \iff Jede \ Folge \ (x_n)$ in D enthält eine konvergente Teilfolge (x_{n_k}) mit

$$\lim_{k \to \infty} x_{n_k} \in D.$$

Satz 7.10: Es sei $D \subseteq \mathbb{R}$. Dann gilt:

- a) D ist abgeschlossen \iff Jeder Häufungspunkt von D gehört zu D.
- b) D ist kompakt \iff D ist beschränkt und abgeschlossen.

c) Ist D kompakt und $D \neq \emptyset$, so existieren max D und min D.

Beispiele:

- a) [a, b] ist kompakt, also auch abgeschlossen.
- b) Endliche Mengen sind kompakt.
- c) $[a, \infty)$, $(-\infty, a]$ und \mathbb{R} sind abgeschlossen, aber nicht kompakt.
- d) Ø ist kompakt.
- e) (a, b], [a, b), (a, b) sind nicht abgeschlossen.

Beweis: (von 7.10):

- a) Übung.
- b) " \Leftarrow " Folgt direkt aus 2.13, " \Rightarrow " Übung.
- c) Es sei $s := \sup D$. Dann gilt:

$$\forall n \in \mathbb{N} \ \exists x_n \in D: \ s - \frac{1}{n} < x_n \le s.$$

Somit gilt $x_n \to s$. Da D abgeschlossen ist folgt $s \in D$. Also ist $s = \max D$. Analog zeigt man: inf $D \in D$.

Definition: $f: D \to \mathbb{R}$ heißt beschränkt : $\iff f(D)$ ist beschränkt. Äquivalent ist

$$\exists c \ge 0 \ \forall x \in D: \ |f(x)| \le c.$$

Satz 7.11: Es sei $\emptyset \neq D \subseteq \mathbb{R}$ kompakt und $f \in C(D)$. Dann ist f(D) kompakt. Insbesondere ist f beschränkt und es existieren $x_1, x_2 \in D$ mit $f(x_1) = \min f(D)$ und $f(x_2) = \max f(D)$, d.h.

$$\forall x \in D: \ f(x_1) \le f(x) \le f(x_2).$$

Beweis: Es sei (y_n) eine Folge in f(D). Dann existiert eine Folge (x_n) in D mit $f(x_n) = y_n$ $(n \in \mathbb{N})$. Da D kompakt ist enthält (x_n) eine konvergente Teilfolge (x_{n_k}) mit $x_0 := \lim_{k \to \infty} x_{n_k} \in D$. Da f stetig ist folgt

$$y_{n_k} = f(x_{n_k}) \to f(x_0) \in f(D).$$

Satz 7.12:

- a) Ist $I \subseteq \mathbb{R}$ ein Intervall und ist $f \in C(I)$, so ist f(I) ein Intervall.
- b) Sei $f \in C([a,b])$, $A := \min f([a,b])$ und $B := \max f([a,b])$, so ist f([a,b]) = [A,B].

Beweis: a) Übung: Eine Teilmenge $M \subseteq \mathbb{R}$ ist genau dann ein Intervall, wenn gilt:

$$x, y \in M, \ x < z < y \ \Rightarrow z \in M.$$

Damit folgt die Behauptung aus 7.7.

b) folgt aus a).
$$\Box$$

Definition:

- a) $f: D \to \mathbb{R}$ heißt monoton wachsend : \iff Aus $x_1, x_2 \in D$ und $x_1 < x_2$ folgt stets $f(x_1) \leq f(x_2)$.
 - $f: D \to \mathbb{R}$ heißt streng monoton wachsend: \iff Aus $x_1, x_2 \in D$ und $x_1 < x_2$ folgt stets $f(x_1) < f(x_2)$.
- b) Entsprechend definiert man (streng) monoton fallend.
- c) f heißt (streng) monoton: \iff f ist (streng) monoton wachsend oder (streng) monoton fallend.

Es sei $I \subseteq \mathbb{R}$ ein Intervall und $f : I \to \mathbb{R}$ sei streng monoton wachsend (bzw. streng monoton fallend). Dann ist f auf I injektiv, es existiert also die Umkehrfunktion $f^{-1} : f(I) \to I$ und f^{-1} ist streng monoton wachsend (bzw. streng monoton fallend). Es gilt:

$$\forall x \in I : f^{-1}(f(x)) = x, \quad \forall y \in f(I) : f(f^{-1}(y)) = y.$$

Bemerkung: f(I) ist im allgemeinen kein Intervall.

Satz 7.13: Es sei $I \subseteq \mathbb{R}$ ein Intervall, $f \in C(I)$ und f sei auf I streng monoton. Dann ist f(I) ein Intervall (vgl. 7.12) und

$$f^{-1} \in C(f(I))$$
.

Ohne Beweis.

7.14 Der Logarithmus: Bekannt: E ist auf \mathbb{R} streng monoton wachsend und $E(\mathbb{R}) = (0, \infty)$. Es existiert also $E^{-1}: (0, \infty) \to \mathbb{R}$. Die Funktion

$$\log x := \ln x := E^{-1}(x) \quad (x \in (0, \infty))$$

heißt Logarithmus.

Eigenschaften: Es gilt:

- a) $\log 1 = 0$, $\log e = 1$;
- b) log: $(0, \infty) \to \mathbb{R}$ ist stetig und streng monoton wachsend;
- c) $\log((0,\infty)) = \mathbb{R}$;
- d) $\log x \to \infty \ (x \to \infty), \ \log x \to -\infty \ (x \to 0);$
- e) $\forall x, y > 0$: $\log(xy) = \log x + \log y$;
- f) $\forall x, y > 0$: $\log\left(\frac{x}{y}\right) = \log x \log y$.

Beweis:

- a) Folgt aus E(0) = 1 und E(1) = e.
- b) Folgt aus 7.13.
- c) Folgt aus $E(\mathbb{R}) = (0, \infty)$.
- d) Folgt aus $E(x) \to \infty \ (x \to \infty)$ bzw. $E(x) \to 0 \ (x \to -\infty)$.

e) Es sei $z := \log x + \log y$. Dann gilt:

$$E(z) = E(\log x + \log y) = E(\log x)E(\log y) = xy,$$

also

$$\log(xy) = \log E(z) = z.$$

f) Übung. (Ähnlich wie e)).

Erinnerung: Nach 3.13 gilt: $\forall x \in \mathbb{R} \ \forall r \in \mathbb{Q} : E(rx) = E(x)^r$. Es sei a > 0. Mit $x := \log a$ erhalten wir:

$$\forall r \in \mathbb{Q} : E(r \log a) = E(\log a)^r = a^r.$$

7.15 Die allgemeine Potenz: Es sei a > 0. Wir definieren:

$$a^x := E(x \log a) \quad (x \in \mathbb{R} \setminus \mathbb{Q}).$$

Ist speziell a = e, so ist $e^x = E(x \log e) = E(x)$ $(x \in \mathbb{R})$. Somit gilt

$$a^x = e^{x \log a} \ (x \in \mathbb{R}, a > 0).$$

Eigenschaften: Es sei a > 0 und $x, y \in \mathbb{R}$. Dann gilt:

- a) $a^x > 0$;
- b) Die Funktion $x \mapsto a^x$ ist auf \mathbb{R} stetig;
- c) $a^{x+y} = e^{(x+y)\log a} = e^{x\log a + y\log a} = e^{x\log a}e^{y\log a} = a^x a^y$;
- d) $a^{-x} = e^{-x \log a} = \frac{1}{e^x \log a} = \frac{1}{a^x}$;
- e) $\log(a^x) = \log(e^{x \log a}) = x \log a;$
- f) $(a^x)^y = e^{y \log a^x} \stackrel{e)}{=} e^{xy \log a} = a^{xy};$
- g) Ist auch x > 0, so ist $a^{x^y} := a^{(x^y)}$. Im allgemeinen ist $a^{x^y} \neq (a^x)^y$.

Definition: $f: D \to \mathbb{R}$ heißt auf D gleichmäßig stetig : \iff Sind (x_n) , (y_n) Folgen in D mit $x_n - y_n \to 0$, so gilt $f(x_n) - f(y_n) \to 0$.

Erinnerung an 7.1: Es sei $f \in C(D)$, $x_0 \in D$ und $\varepsilon > 0$. Dann existiert ein $\delta = \delta(\varepsilon, x_0) > 0$ mit:

$$\forall x \in D: |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

Die Zahl δ hängt also im Allgemeinen von ε und x_0 ab!

Bemerkung: Ähnlich wie in 7.1 kann man eine ε -δ-Bedingung für gleichmäßige Stetigkeit beweisen. Es gilt (ohne Beweis):

 $f \colon D \to \mathbb{R}$ ist gleichmäßig stetig \iff

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ \forall x, y \in D : |x - y| < \delta \ \Rightarrow \ |f(x) - f(y)| < \varepsilon.$$

Offensichtlich gilt: Ist f gleichmäßig stetig auf D, so ist f stetig auf D.

Satz 7.16 (Satz von Heine):

Ist $D \subseteq \mathbb{R}$ kompakt und ist $f \in C(D)$, so ist f auf D gleichmäßig stetig.

Beweis: Annahme: f ist nicht gleichmäßig stetig. Dann existieren ein $\varepsilon > 0$ und Folgen $(x_n), (y_n)$ in D mit $x_n - y_n \to 0$, aber $|f(x_n) - f(y_n)| \ge \varepsilon$ $(n \in \mathbb{N})$. Da D kompakt ist enthält (x_n) eine konvergente Teilfolge (x_{n_k}) mit $x_0 := \lim_{k \to \infty} x_{n_k} \in D$. Nun gilt

$$y_{n_k} = y_{n_k} - x_{n_k} + x_{n_k} \to 0 + x_0 = x_0 \quad (k \to \infty),$$

also
$$f(x_{n_k}) - f(y_{n_k}) \to f(x_0) - f(x_0) = 0 \ (k \to \infty)$$
. Ein Widerspruch.

Definition: $f: D \to \mathbb{R}$ heißt auf D **Lipschitz-stetig**: \iff

$$\exists L \ge 0 \ \forall x, y \in D: \ |f(x) - f(y)| \le L|x - y|.$$

Übung: Ist f Lipschitz-stetig auf D, so ist f gleichmäßig stetig auf D.

Beispiele:

a) $f:[0,1] \to \mathbb{R}, \, f(x)=x^2$ ist Lipschitz-stetig (also gleichmäßig stetig):

$$|f(x) - f(y)| = |x^2 - y^2| = |(x+y)(x-y)| = |x+y||x-y|$$

$$\leq (|x| + |y|)|x-y| \leq 2|x-y| \quad (x, y \in [0,1]).$$

b) $g:[0,\infty)\to\mathbb{R},\,g(x)=x^2$ ist nicht gleichmäßig stetig, insbesondere nicht Lipschitzstetig:

Betrachte $(x_n) = (n + \frac{1}{n}), (y_n) = (n)$. Es gilt $x_n - y_n = \frac{1}{n} \to 0$, aber

$$g(x_n) - g(y_n) = 2 + \frac{1}{n^2} \not\to 0 \quad (n \to \infty).$$

Kapitel 8

Funktionenfolgen und -reihen

In diesem §en sei stets $\emptyset \neq D \subseteq \mathbb{R}$, (f_n) eine Folge von Funktionen $f_n \colon D \to \mathbb{R}$ und $s_n \coloneqq f_1 + f_n + \cdots + f_n \ (n \in \mathbb{N})$.

Definition:

a) Die Funktionenfolge (f_n) heißt **auf** D **punktweise konvergent**: \iff Für jedes $x \in D$ ist die Folge $(f_n(x))$ konvergent.

In diesem Fall sei

$$f(x) := \lim_{n \to \infty} f_n(x) \quad (x \in D).$$

Die Funktion $f: D \to \mathbb{R}$ heißt die **Grenzfunktion** von (f_n) .

b) Die Funktionenreihe $\sum_{n=1}^{\infty} f_n$ heißt **auf** D **punktweise konvergent**: \iff Für jedes $x \in D$ ist die Folge $(s_n(x))$ konvergent.

In diesem Fall sei

$$f(x) := \sum_{n=1}^{\infty} f_n(x) \quad (x \in D).$$

Die Funktion $f: D \to \mathbb{R}$ heißt die **Summenfunktion** von (f_n) .

Beispiele:

a) $D = [0, 1], f_n(x) = x^n \ (n \in \mathbb{N}).$ Es gilt:

$$f(x) := \lim_{n \to \infty} f_n(x) = \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$$

- (f_n) konvergiert auf [0,1] punktweise gegen f.
- b) Es sei $\sum_{n=0}^{\infty} a_n (x x_0)^n$ eine Potenzreihe mit dem Konvergenzradius r > 0 und $D := (x_0 r, x_0 + r)$ $(D := \mathbb{R}, \text{ falls } r = \infty)$. Es sei $f_n : D \to \mathbb{R}$ definiert durch

 $f_n(x) = a_n(x - x_0)^n$ $(n \in \mathbb{N}_0)$. Nach 4.1 gilt: $\sum_{n=0}^{\infty} f_n$ konvergiert auf D punktweise gegen

$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

c) $D = [0, \infty), f_n(x) := \frac{nx}{1 + n^2 x^2} \ (n \in \mathbb{N}).$ Für jedes $x \in [0, \infty)$ gilt

$$f_n(x) = \frac{\frac{x}{n}}{\frac{1}{n^2} + x^2} \to 0 \quad (n \to \infty).$$

Also konvergiert (f_n) auf D punktweise gegen $f: D \to \mathbb{R}, f(x) = 0$.

Bemerkung: Punktweise Konvergenz von (f_n) auf D gegen f bedeutet:

$$\forall x \in D \ \forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon, x) \in \mathbb{N} \ \forall n \ge n_0 : \ |f_n(x) - f(x)| < \varepsilon.$$

Definition:

a) (f_n) konvergiert auf D gleichmäßig (glm) gegen $f: D \to \mathbb{R}: \iff$

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \ \forall n \ge n_0 \ \forall x \in D : \ |f_n(x) - f(x)| < \varepsilon.$$

b) $\sum_{n=1}^{\infty} f_n$ konvergiert auf D gleichmäßig (glm) gegen $f: D \to \mathbb{R}: \iff$

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \ \forall n \ge n_0 \ \forall x \in D : \ |s_n(x) - f(x)| < \varepsilon.$$

Offensichtlich folgt aus gleichmäßiger Konvergenz stets punktweise Konvergenz. Die Umkehrung ist im allgemeinen falsch (siehe Beispiele unten).

 (f_n) konvergiert auf D gleichmäßig gegen f bedeutet anschaulich: Zu jedem $\varepsilon > 0$ existiert ein $n_0 = n_0(\varepsilon) \in \mathbb{N}$ mit:

Für $n \geq n_0$ liegt der Graph von f_n im " ε -Schlauch" um den Graphen von f.

Beispiele:

a) Es sei $D = [0, 1], f_n(x) = x^n \ (n \in \mathbb{N}).$ Bekannt: (f_n) konvergiert punktweise gegen

$$f(x) = \begin{cases} 0, & \text{falls } x \in [0, 1) \\ 1, & \text{falls } x = 1 \end{cases}$$

Es sei $0 < \varepsilon < \frac{1}{2}$. Wegen $f_n(\frac{1}{\sqrt[n]{2}}) = \frac{1}{2}$ und $\frac{1}{\sqrt[n]{2}} \in [0,1)$ gilt

$$\left| f_n(\frac{1}{\sqrt[n]{2}}) - f(\frac{1}{\sqrt[n]{2}}) \right| = \frac{1}{2} > \varepsilon \quad (n \in \mathbb{N}).$$

Also konvergiert (f_n) auf [0,1] nicht gleichmäßig gegen f.

b) Wir betrachten $\sum_{n=0}^{\infty} x^n$ auf D = (-1, 1). Es gilt:

$$\forall x \in D: \ s_n(x) = 1 + x + \ldots + x^n = \frac{1 - x^{n+1}}{1 - x} \to \frac{1}{1 - x} \quad (n \to \infty).$$

Die Funktionenreihe $\sum_{n=0}^{\infty} x^n$ konvergiert also punktweise auf D gegen die Summenfunktion $f(x) := \frac{1}{1-x}$.

Behauptung: $\sum_{n=0}^{\infty} x^n$ konvergiert auf D nicht gleichmäßig gegen f.

Beweis: Annahme: $\sum_{n=0}^{\infty} x^n$ (also (s_n)) konvergiert auf D gleichmäßig gegen f. Zu $\varepsilon = 1$ existiert dann ein $n_0 \in \mathbb{N}$ mit

$$|s_n(x) - f(x)| = \frac{|x|^{n+1}}{1-x} < 1 \quad (n \ge n_0, \ x \in D).$$

Aber:

$$\frac{|x|^{n+1}}{1-x} \to \infty \quad (x \to 1-),$$

Widerspruch.

c) Es sei $D = [0, \infty), f_n(x) = \frac{nx}{1 + n^2x^2} \ (n \in \mathbb{N}).$ Bekannt:

$$\forall x \in D: f_n(x) \to 0 =: f(x).$$

Es sei $0 < \varepsilon < \frac{1}{2}$. Es gilt $f_n(\frac{1}{n}) = \frac{1}{2}$ $(n \in \mathbb{N})$ und damit:

$$\forall n \in \mathbb{N}: |f_n(\frac{1}{n}) - f(\frac{1}{n})| = \frac{1}{2} > \varepsilon.$$

Also konvergiert (f_n) auf D nicht gleichmäßig gegen f.

Satz 8.1:

a) Die Folge (f_n) konvergiere auf D punktweise gegen $f: D \to \mathbb{R}$. Weiter sei (α_n) eine Folge mit $\alpha_n \to 0$, $m \in \mathbb{N}$ und

$$\forall n \ge m \ \forall x \in D: \ |f_n(x) - f(x)| \le \alpha_n.$$

Dann konvergiert (f_n) auf D gleichmäßig gegen f.

b) Kriterium von Weierstraß: Es sei $m \in \mathbb{N}$, (c_n) eine Folge in $[0, \infty)$, $\sum_{n=1}^{\infty} c_n$ sei konvergent und

$$\forall n \ge m \ \forall x \in D: \ |f_n(x)| \le c_n.$$

Dann konvergiert $\sum_{n=1}^{\infty} f_n$ auf D gleichmäßig.

Beweis:

a) Es sei $\varepsilon > 0$. Es gilt:

$$\exists n_0 \geq m \ \forall n \geq n_0 : \ \alpha_n < \varepsilon,$$

und damit

$$\forall n \ge n_0 \ \forall x \in D: \ |f_n(x) - f(x)| < \varepsilon.$$

b) Ohne Beweis.

Satz 8.2: Es sei $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ eine Potenzreihe mit Konvergenzradius r > 0, es sei $D := (x_0 - r, x_0 + r)$ $(D := \mathbb{R}, falls \ r = \infty).$

Ist $[a,b] \subseteq D$, so konvergiert die Potenzreihe auf [a,b] gleichmäßig.

Beweis: Es sei o.B.d.A. $x_0 = 0$.

Wähle $\delta > 0$ so, daß $-r < -\delta < a < b < \delta < r$. Für jedes $x \in [a,b]$ gilt dann $|x| \le \delta$, also

$$(*) \qquad \forall n \in \mathbb{N}_0: |a_n x^n| = |a_n||x|^n \le |a_n|\delta^n =: c_n.$$

Nach 4.1 konvergiert $\sum_{n=0}^{\infty} a_n \delta^n$ absolut, also ist $\sum_{n=0}^{\infty} c_n$ konvergent. Aus (*) und 8.1 b) folgt die Behauptung.

Satz 8.3: (f_n) bzw. $\sum_{n=1}^{\infty} f_n$ konvergiere auf D gleichmäßig gegen $f: D \to \mathbb{R}$. Dann gilt:

- a) Sind alle f_n in $x_0 \in D$ stetig, so ist f in x_0 stetig.
- b) Sind alle $f_n \in C(D)$, so ist $f \in C(D)$.

Folgerungen:

- a) Konvergiert (f_n) auf D punktweise gegen $f: D \to \mathbb{R}$ und gilt $f_n \in C(D)$ $(n \in \mathbb{N})$ aber $f \notin C(D)$, so ist die Konvergenz nicht gleichmäßig.
- b) Unter den Voraussetzung von 8.3 a) gilt: Ist x_0 ein Häufungspunkt von D, so ist:

$$\lim_{x \to x_0} \left(\lim_{n \to \infty} f_n(x) \right) = \lim_{x \to x_0} f(x) \stackrel{8.3 \text{ a}}{=} f(x_0) = \lim_{n \to \infty} f_n(x_0)$$
$$= \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right).$$

Beweis: (von 8.3)

a) Es sei (x_k) eine Folge in D mit $x_k \to x_0$. Wir zeigen $f(x_k) \to f(x_0)$: Es sei $\varepsilon > 0$. Nach Voraussetzung gilt:

$$\exists m \in \mathbb{N} \ \forall x \in D: \ |f_m(x) - f(x)| < \frac{\varepsilon}{3}.$$

Da f_m stetig in x_0 ist gilt $f_m(x_k) \to f_m(x_0)$ $(k \to \infty)$. Damit folgt:

$$\exists k_0 \in \mathbb{N} \ \forall k \ge k_0 : \ |f_m(x_k) - f_m(x_0)| < \frac{\varepsilon}{3}.$$

Für $k \ge k_0$ gilt damit:

$$|f(x_k) - f(x_0)| = |f(x_k) - f_m(x_k) + f_m(x_k) - f_m(x_0) + f_m(x_0) - f(x_0)|$$

$$\leq |f(x_k) - f_m(x_k)| + |f_m(x_k) - f_m(x_0)| + |f_m(x_0) - f(x_0)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Damit folgt die Behauptung.

b) folgt aus a).

Beweis: (von 7.4) Es sei $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ sei eine Potenzreihe mit Konvergenzradius r > 0, $D := (x_0 - r, x_0 + r)$ ($D := \mathbb{R}$, falls $r = \infty$) und $f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n$ ($x \in D$). Es sei $x \in D$. Wähle $a, b \in \mathbb{R}$ so, daß $x \in (a, b) \subseteq [a, b] \subseteq D$. Nach 8.2 konvergiert die Potenzreihe auf [a, b] gleichmäßig. Nach 8.3 ist $f \in C([a, b])$. Also ist f in x stetig. Da $x \in D$ beliebig war ist $f \in C(D)$.

Satz 8.4 (Identitätssatz für Potenzreihen): Es sei $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ eine Potenzreihe mit Konvergenzradius r > 0, $D := (x_0 - r, x_0 + r)$ ($D := \mathbb{R}$, falls $r = \infty$) und $f(x) := \sum_{n=0}^{\infty} a_n(x-x_0)^n$ ($x \in D$).

Weiter sei (x_k) eine Folge in $D \setminus \{x_0\}$ mit $x_k \to x_0$ und $f(x_k) = 0$ $(k \in \mathbb{N})$. Dann gilt:

$$\forall n \in \mathbb{N}_0: a_n = 0.$$

Insbesondere ist dann $r = \infty$ und f(x) = 0 $(x \in \mathbb{R})$.

Ohne Beweis.

Kapitel 9

Differentialrechnung

I.d. §en sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion.

Definition: f heißt in $x_0 \in I$ differenzierbar (db): \iff Es existiert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \in \mathbb{R}.$$

Äquivalent ist: Es existiert

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \in \mathbb{R}.$$

In diesem Fall heißt obiger Grenzwert die **Ableitung von** f **in** x_0 und wird mit $f'(x_0)$ bezeichnet.

Ist f in jedem $x \in I$ differenzierbar, so heißt f auf I differenzierbar und die Ableitung $f': I \to \mathbb{R}$ von f auf I ist gegeben durch $x \mapsto f'(x)$.

Beispiele:

- a) Es sei $c \in \mathbb{R}$ und f(x) := c $(x \in \mathbb{R})$. Dann ist f auf \mathbb{R} differenzierbar und f'(x) = 0 $(x \in \mathbb{R})$.
- b) Es sei $I = \mathbb{R}$, f(x) = |x|, $x_0 = 0$. Es gilt:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{|x|}{x} = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$

f ist also in $x_0 = 0$ nicht differenzierbar.

c) Es sei $I = \mathbb{R}, n \in \mathbb{N}, f(x) = x^n$. Für $x_0 \in \mathbb{R}, x \neq x_0$ gilt:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^n - x_0^n}{x - x_0}
= \frac{(x - x_0)(x^{n-1} + x^{n-2}x_0 + \dots + xx_0^{n-2} + x_0^{n-1})}{x - x_0}
= x^{n-1} + x^{n-2}x_0 + \dots + xx_0^{n-2} + x_0^{n-1} \to nx_0^{n-1} (x \to x_0).$$

Also ist f auf \mathbb{R} differenzierbar und $f'(x) = nx^{n-1}$ $(x \in \mathbb{R})$, kurz:

$$(x^n)' = nx^{n-1}$$
 auf \mathbb{R} .

d) Es sei $I = \mathbb{R}$, $f(x) = e^x$. Für $x_0 \in \mathbb{R}$, $h \neq 0$ gilt:

$$\frac{f(x_0+h)-f(x_0)}{h} = \frac{e^{x_0+h}-e^{x_0}}{h} \xrightarrow{7.6} e^{x_0} (h \to 0).$$

Also ist f auf \mathbb{R} differenzierbar und $f'(x) = e^x$ ($x \in \mathbb{R}$), kurz:

$$(e^x)' = e^x$$
 auf \mathbb{R}

Satz 9.1: Ist f in $x_0 \in I$ differenzierbar, so ist f in x_0 stetig.

Beweis: Es sei $x \in I$, $x \neq x_0$. Es gilt:

$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \to f'(x_0) \cdot 0 = 0 \ (x \to x_0)$$

Also gilt $\lim_{x\to x_0} f(x) = f(x_0)$.

Bemerkung: Die Funktion $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| ist in $x_0 = 0$ stetig aber in diesem Punkt nicht differenzierbar.

Satz 9.2 (Differentiationsregeln): Die Funktionen $f, g: I \to \mathbb{R}$ seien in $x_0 \in I$ differenzierbar. Dann gilt:

a) Für $\alpha, \beta \in \mathbb{R}$ ist $\alpha f + \beta g$ differenzierbar in x_0 und

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0)$$

b) fg ist differenzierbar in x_0 und

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

c) Ist $g(x_0) \neq 0$, so existiert ein $\delta > 0$ mit $g(x) \neq 0$ ($x \in J := I \cap U_{\delta}(x_0)$). Die Funktion $\frac{f}{g}: J \to \mathbb{R}$ ist differenzierbar in x_0 und

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

Beweis:

- a) Übung.
- b) Übung (man orientiere sich an c)).
- c) Nach 9.1 ist g stetig in x_0 . Wegen $g(x_0) \neq 0$ folgt mit 6.3 b):

$$\exists \delta > 0 \ \forall x \in I \cap U_{\delta}(x_0) =: J : \ g(x) \neq 0.$$

Sei $h := \frac{f}{g}$ auf J. Für $x \neq x_0, x \in J$ gilt:

$$\frac{h(x) - h(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} \frac{1}{g(x)} - f(x_0) \frac{\frac{1}{g(x_0)} - \frac{1}{g(x)}}{x - x_0}$$

$$= \underbrace{\frac{1}{g(x)g(x_0)}}_{\xrightarrow{\frac{1}{g(x_0)^2}}} \underbrace{\underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{\xrightarrow{f'(x_0)}} g(x_0) - f(x_0) \underbrace{\frac{g(x) - g(x_0)}{x - x_0}}_{\xrightarrow{g(x_0)}} \underbrace{\underbrace{\frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{x - x_0}}_{\xrightarrow{f'(x_0)}} (x \to x_0).$$

Satz 9.3: Es sei $f \in C(I)$ streng monoton, in $x_0 \in I$ differenzierbar und es sei $f'(x_0) \neq 0$. Dann ist $f^{-1}: f(I) \to \mathbb{R}$ differenzierbar in $y_0 := f(x_0)$ und

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}.$$

Beweis: Nach 7.12 ist f(I) ein Intervall. Es sei (y_n) eine Folge in f(I) mit $y_n \to y_0$ und $y_n \neq y_0$ $(n \in \mathbb{N})$. Setze $x_n := f^{-1}(y_n)$ $(n \in \mathbb{N})$. Nach 7.13 ist $f^{-1} \in C(f(I))$, also gilt $x_n = f^{-1}(y_n) \to f^{-1}(y_0) = x_0$. Somit gilt:

$$\frac{f^{-1}(y_n) - f^{-1}(y_0)}{y_n - y_0} = \frac{x_n - x_0}{f(x_n) - f(x_0)} \to \frac{1}{f'(x_0)} \quad (n \to \infty).$$

Satz 9.4 (Kettenregel): Es sei $J \subseteq \mathbb{R}$ sei ein weiteres Intervall, $g: J \to \mathbb{R}$ eine Funktion und $f(I) \subseteq J$. Weiter sei f in $x_0 \in I$ differenzierbar und g sei in $y_0 := f(x_0)$ differenzierbar. Dann ist

$$g \circ f \colon I \to \mathbb{R}$$
 differenzierbar in x_0

und

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Beweis: Für $y \in J$ sei

$$\tilde{g}(y) := \begin{cases} \frac{g(y) - g(y_0)}{y - y_0}, & y \neq y_0 \\ g'(y_0), & y = y_0 \end{cases}$$

Nach Voraussetzung ist g differenzierbar in y_0 . Damit ist \tilde{g} stetig in y_0 , d.h.

$$\tilde{g}(y) \to \tilde{g}(y_0) = g'(y_0) = g'(f(x_0)) \quad (y \to y_0).$$

$$\Rightarrow \tilde{g}(f(x)) \to g'(f(x_0)) \quad (x \to x_0)$$

Es ist $g(y) - g(y_0) = \tilde{g}(y)(y - y_0)$ $(y \in J)$. Damit folgt:

$$\frac{g(f(x)) - g(f(x_0))}{x - x_0} = \tilde{g}(f(x)) \frac{f(x) - f(x_0)}{x - x_0} \to g'(f(x_0)) f'(x_0) \quad (x \to x_0).$$

Beispiele:

a) Es sei a > 0 und $h(x) = a^x$ $(x \in \mathbb{R})$. Mit $g(x) = e^x$ und $f(x) = x \log a$ gilt $h(x) = e^{x \log a} = g(f(x))$. Nach 9.4 gilt:

$$h'(x) = g'(f(x))f'(x) = e^{x \log a} \cdot \log a = a^x \log a.$$

Kurz: $(a^x)' = a^x \log a$ auf \mathbb{R} .

b) Betrachte $f(x) = e^x$ $(x \in \mathbb{R})$, $f^{-1}(y) = \log y$ $(y \in (0, \infty))$. Nach 9.3 ist f^{-1} auf $(0, \infty)$ differenzierbar und

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{e^{\log(y)}} = \frac{1}{y}.$$

Kurz: $(\log x)' = \frac{1}{x}$ auf $(0, \infty)$.

c) Es sei $\alpha \in \mathbb{R}$ und $f(x) = x^{\alpha} = e^{\alpha \log x}$ $(x \in (0, \infty))$.

$$f'(x) = e^{\alpha \log x} (\alpha \log x)' = x^{\alpha} \alpha \frac{1}{x} = \alpha x^{\alpha - 1}.$$

Kurz: $(x^{\alpha})' = \alpha x^{\alpha-1}$ auf $(0, \infty)$.

d) Aus Beispiel c) folgt: $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$ auf $(0, \infty)$.

Anwendung 9.5: Es sei $a \in \mathbb{R}$ und o.B.d.A. $a \neq 0$. Für $f(t) = \log(1+t)$ (t > -1) gilt: $f'(t) = \frac{1}{1+t}$. Damit folgt:

$$\lim_{t \to 0} \frac{\log(1+t)}{t} = \lim_{t \to 0} \frac{f(t) - f(0)}{t - 0} = f'(0) = 1$$

$$\Rightarrow 1 = \lim_{x \to \infty} \frac{\log(1 + \frac{a}{x})}{\frac{a}{x}} = \lim_{x \to \infty} \frac{1}{a} x \log(1 + \frac{a}{x}) = \lim_{x \to \infty} \frac{1}{a} \log(1 + \frac{a}{x})^x$$

$$\Rightarrow \lim_{x \to \infty} \log(1 + \frac{a}{x})^x = a \Rightarrow \lim_{x \to \infty} (1 + \frac{a}{x})^x = e^a.$$

Definition: Es sei $M \subseteq \mathbb{R}$ und $g: M \to \mathbb{R}$ eine Funktion.

- a) $x_0 \in M$ heißt ein **innerer Punkt von M**: $\iff \exists \delta > 0 : U_{\delta}(x_0) \subseteq M$
- b) g hat in $x_0 \in M$ ein lokales Maximum [bzw. Minimum] : \iff

$$\exists \delta > 0 \ \forall x \in U_{\delta}(x_0) \cap M: \ g(x) \leq g(x_0) \ [\ bzw. \ g(x) \geq g(x_0)].$$

Alternative Sprechweise: Relatives Maximum [bzw. Minimum].

c) g hat in $x_0 \in M$ ein globales Maximum [bzw. Minimum] : \iff

$$\forall x \in M: g(x) \leq g(x_0) \quad [bzw. g(x) \geq g(x_0)].$$

Alternative Sprechweise: Absolutes Maximum [bzw. Minimum].

d) "Extremum" bedeutet "Maximum oder Minimum".

Satz 9.6: Die Funktion $f: I \to \mathbb{R}$ habe in $x_0 \in I$ ein lokales Extremum und sei in x_0 differenzierbar. Ist x_0 ein innerer Punkt von I, so ist $f'(x_0) = 0$.

Beweis: O.B.d.A. habe f in x_0 ein lokales Maximum. Dann gilt:

$$\exists \delta > 0 : U_{\delta}(x_0) \subseteq I \text{ und } f(x) \leq f(x_0) \ (x \in U_{\delta}(x_0)).$$

Damit ist

$$D(x) := \frac{f(x) - f(x_0)}{x - x_0} \begin{cases} \le 0, & x \in (x_0, x_0 + \delta) \\ \ge 0, & x \in (x_0 - \delta, x_0) \end{cases}.$$

Also gilt $f'(x_0) = \lim_{x \to x_0 +} D(x) \le 0$ und $f'(x_0) = \lim_{x \to x_0 -} D(x) \ge 0$.

Satz 9.7 (Der Mittelwertsatz (MWS) der Differentialrechnung):

Es sei $f \in C([a,b])$ und f sei auf (a,b) differenzierbar. Dann gilt:

$$\exists \xi \in (a,b): \frac{f(b) - f(a)}{b - a} = f'(\xi).$$

Beweis: Wir setzen

$$g(x) := f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a) \quad (x \in [a, b]).$$

Es gilt: $g \in C([a, b])$, g ist differenzierbar auf (a, b), g(a) = g(b) = 0 und

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \quad (x \in (a, b)).$$

Wir zeigen: $\exists \xi \in (a, b) : g'(\xi) = 0.$

Fall 1: $g(x) = 0 \ (x \in [a, b]). \checkmark$

Fall 2: $g(x_0) \neq 0$ für ein $x_0 \in [a, b]$. Nach 7.11 gilt:

$$\exists x_1, x_2 \in [a, b] \ \forall x \in [a, b]: \ g(x_1) \le g(x) \le g(x_2).$$

Nun ist $x_1 \in (a, b)$ oder $x_2 \in (a, b)$ (sonst wäre g = 0 auf [a, b]). Mit 9.6 folgt: $g'(x_1) = 0$ oder $g'(x_2) = 0$.

Folgerung 9.8: Es sei $f: I \to \mathbb{R}$ differenzierbar auf I. Dann gilt:

$$f$$
 ist auf I konstant $\iff \forall x \in I: f'(x) = 0.$

Beweis: " \Rightarrow " \checkmark , " \Leftarrow " Es seien $x_1, x_2 \in I$ mit $x_1 < x_2$. Nach 9.7 gilt:

$$\exists \xi \in (x_1, x_2) : f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) = 0,$$

also
$$f(x_1) = f(x_2)$$
.

Anwendung 9.9: Es sei $f: I \to \mathbb{R}$ differenzierbar. Dann gilt:

$$f' = f \text{ auf } I \iff \exists c \in \mathbb{R} : f(x) = ce^x \ (x \in I)$$

Beweis: " \Rightarrow " \checkmark , " \Leftarrow " Setze $g(x) := \frac{f(x)}{e^x}$ $(x \in I)$. Dann gilt:

$$\forall x \in I : g'(x) = \frac{f'(x)e^x - f(x)e^x}{e^{2x}} = 0.$$

Mit 9.8 folgt: $\exists c \in \mathbb{R} \ \forall x \in I : g(x) = c$, also $f(x) = ce^x \ (x \in I)$.

Satz 9.10: $f, g: I \to \mathbb{R}$ seien auf I differenzierbar. Dann gilt:

- a) Ist f' = g' auf I, so existivet ein $c \in \mathbb{R}$ mit f = g + c auf I.
- b) Ist $f' \ge 0$ auf I, so ist f monoton wachsend auf I. Ist f' > 0 auf I, so ist f streng monoton wachsend auf I.
- c) Ist $f' \leq 0$ auf I, so ist f monoton fallend auf I. Ist f' < 0 auf I, so ist f streng monoton fallend auf I.

Beweis:

- a) Es gilt (f g)' = f' g' = 0 auf I. Mit 9.8 folgt die Behauptung.
- b) Es sei z.B. f' > 0 auf I und $x_1, x_2 \in I$ mit $x_1 < x_2$. Mit dem MWS folgt:

$$\exists \xi \in (x_1, x_2) : f(x_2) - f(x_1) = \underbrace{f'(\xi)}_{>0} (x_2 - x_1) > 0,$$

also $f(x_1) < f(x_2)$.

c) Analog zur b).

9.11 Die Regeln von de l'Hospital:

Es sei I=(a,b), wobei $a=-\infty$ oder $b=\infty$ zugelassen ist. Es seien $f,g\colon I\to\mathbb{R}$ auf I differenzierbar mit $g'(x)\neq 0$ $(x\in I)$, und es sei c=a oder c=b. Es existiere

$$L := \lim_{x \to c} \frac{f'(x)}{g'(x)} \in \mathbb{R} \cup \{-\infty, \infty\}.$$

Gilt (I) $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0$ oder (II) $\lim_{x\to c} g(x) = \pm \infty$, so ist

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L.$$

Ohne Beweis.

Beispiele:

a) Für a, b > 0 gilt:

$$\lim_{x \to 0} \frac{a^x - b^x}{x} = \lim_{x \to 0} \frac{a^x \log a - b^x \log b}{1} = \log a - \log b.$$

b)

$$\lim_{x \to \infty} \frac{\log x}{x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0.$$

c)

$$\lim_{x \to 0} x \log x = \lim_{x \to 0} \frac{\log x}{\frac{1}{x}} = \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0} (-x) = 0.$$

Hieraus folgt:

$$\lim_{x \to 0} x^x = \lim_{x \to 0} e^{x \log x} = e^0 = 1.$$

d)

$$0 = \lim_{x \to 1} \frac{\log x}{x} \neq \lim_{x \to 1} \frac{\frac{1}{x}}{1} = 1.$$

Die Voraussetzungen der Regeln von de l'Hospital sind hier nicht erfüllt.

Satz 9.12: Es sei $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ eine Potenzreihe mit Konvergenzradius r>0, $I=(x_0-r,x_0+r)$ $(I=\mathbb{R}, falls\ r=\infty)$ und $f(x)\coloneqq\sum_{n=0}^{\infty}a_n(x-x_0)^n$ $(x\in I)$. Dann gilt:

- a) Die Potenzreihe $\sum_{n=1}^{\infty} na_n(x-x_0)^{n-1}$ hat den Konvergenzradius r.
- b) f ist auf I differenzierbar und

$$f'(x) = \sum_{n=1}^{\infty} na_n(x - x_0)^{n-1} \quad (x \in I).$$

Beweis:

a) Es gilt: $\sum_{n=1}^{\infty} na_n(x-x_0)^{n-1}$ konvergiert genau dann, wenn $\sum_{n=1}^{\infty} na_n(x-x_0)^n$ konvergiert. Beide Potenzreihen haben also denselben Konvergenzradius. Wegen $\lim_{n\to\infty} \sqrt[n]{n} = 1$ gilt

$$\limsup_{n \to \infty} \sqrt[n]{n|a_n|} = \limsup_{n \to \infty} \sqrt[n]{|a_n|}.$$

Mit 4.1 folgt die Behauptung.

- b) Ohne Beweis (kann mit 10.18 bewiesen werden).
- **9.13 Sinus/Cosinus:** $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \ (x \in \mathbb{R}).$

Nach 9.12 gilt: sin ist auf \mathbb{R} differenzierbar und

$$(\sin x)' = \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \cos x.$$

Analog: cos ist auf \mathbb{R} differenzierbar und $(\cos x)' = -\sin x$.

9.14 Definition von π :

a) Für $x \in (0,2)$ ist

$$\sin x = \underbrace{\left(x - \frac{x^3}{3!}\right)}_{>0} + \underbrace{\left(\frac{x^5}{5!} - \frac{x^7}{7!}\right)}_{>0} + \underbrace{\left(\frac{x^9}{9!} - \frac{x^{11}}{11!}\right)}_{>0} + \dots > x - \frac{x^3}{3!} > 0.$$

Speziell: $\sin 1 > 1 - \frac{1}{6} = \frac{5}{6}$.

b) $\exists \xi_0 \in (0,2)$: $\cos \xi_0 = 0$ und $\cos x > 0$ $(x \in [0,\xi_0))$

Beweis: Es gilt $\cos 0 = 1 > 0$ und

$$\cos 2 = \cos(1+1) \stackrel{4.4}{=} \cos^2 1 - \sin^2 1 = \cos^2 1 + \sin^2 1 - 2\sin^2 1$$
$$= 1 - 2\sin^2 1 \le 1 - 2 \cdot \frac{25}{36} < 0.$$

Mit 7.7 folgt: $\exists \xi_0 \in (0,2) : \cos \xi_0 = 0$. Weiter gilt:

$$\forall x \in (0,2): (\cos x)' = -\sin x \stackrel{a)}{<} 0 \implies \forall x \in [0,\xi_0): \cos x > 0.$$

c) Es sei ξ_0 wie in b). Wir definieren

$$\pi \coloneqq 2\xi_0.$$

Es gilt $\xi_0 \in (0,2)$, also $\pi \in (0,4)$ ($\pi \approx 3,14...$). Es ist $\frac{\pi}{2} = \xi_0$, also $\cos \frac{\pi}{2} = 0$. Damit gilt:

$$\sin^2 \frac{\pi}{2} = 1 - \cos^2 \frac{\pi}{2} = 1 \Rightarrow |\sin \frac{\pi}{2}| = 1 \stackrel{a)}{\Rightarrow} \sin \frac{\pi}{2} = 1.$$

Abbildung 9.1: Sinus und Cosinus.

9.15 Weitere Eigenschaften von Sinus und Cosinus:

a) Aus 4.4 folgt:

$$\sin(x + \frac{\pi}{2}) = \sin x \cos \frac{\pi}{2} + \cos x \sin \frac{\pi}{2} = \cos x$$

Analog:

$$\cos(x + \frac{\pi}{2}) = -\sin x$$

$$\sin(x + \pi) = -\sin x, \quad \cos(x + \pi) = -\cos x$$

$$\sin(x + 2\pi) = \sin x, \quad \cos(x + 2\pi) = \cos x$$

- b) cos hat in $[0, \pi]$ genau eine Nullstelle. Ohne Beweis.
- c) In der großen Übungen wird gezeigt:

$$\cos x = 0 \iff x \in \{(2k+1)\frac{\pi}{2} : k \in \mathbb{Z}\}$$

$$\sin x = 0 \iff x \in \{k\pi : k \in \mathbb{Z}\}$$

Definition: Die Funktion

$$\tan : \mathbb{R} \setminus \{(2k+1)\frac{\pi}{2} : k \in \mathbb{Z}\} \to \mathbb{R}, \ \tan x := \frac{\sin x}{\cos x}$$

heißt Tangens. Es gilt:

$$(\tan x)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} > 0.$$

Also ist tan auf $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ streng monoton wachsend.

Definition: Es gilt ($\ddot{U}bung$): $tan((-\frac{\pi}{2}, \frac{\pi}{2})) = \mathbb{R}$. Es existiert also die Umkehrfunktion

$$\arctan := \tan^{-1} \colon \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2}).$$

Sie heißt **Arkustangens**. Mit 9.3 folgt:

$$(\arctan x)' = \frac{1}{1+x^2} \quad (x \in \mathbb{R}).$$

Satz 9.16 (Abelscher Grenzwertsatz): Es sei $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ eine Potenzreihe mit Konvergenzradius $r \in (0, \infty)$. Dann gilt:

a) Konvergiert die Potenzreihe auch in $x_0 + r$ und ist

$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ für } x \in (x_0 - r, x_0 + r],$$

so ist f stetig in $x_0 + r$.

b) Konvergiert die Potenzreihe auch in $x_0 - r$ und ist

$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ für } x \in [x_0 - r, x_0 + r),$$

so ist f stetig in $x_0 - r$.

Ohne Beweis.

Anwendungen 9.17:

a) Betrachte $f(x) = \log(1+x)$ ($x \in (-1,1]$). Dann gilt:

$$f'(x) = \frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n \quad (x \in (-1,1) =: I).$$

Wir setzen $g(x) := \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$ für $x \in (-1,1]$. Nach 9.12 ist g ist differenzierbar auf I und

$$g'(x) = \sum_{n=1}^{\infty} (-1)^{n+1} x^{n-1} = \sum_{n=1}^{\infty} (-1)^{n-1} x^{n-1} = f'(x) \quad (x \in I).$$

Damit existiert ein $c \in \mathbb{R}$ mit f(x) = g(x) + c $(x \in I)$. Mit x = 0 folgt c = 0. Also gilt:

$$f(x) = g(x) \quad (x \in I).$$

Da f und g stetig auf (0,1] sind (vgl. 9.16) gilt

$$f(x) = g(x)$$
 $(x \in (-1, 1]),$

also

$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \quad (x \in (-1,1]).$$

Insbesondere gilt für x = 1:

$$\log(2) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}.$$

b) Ähnlich wie in a) zeigt man (Übung):

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \quad (x \in [-1, 1]).$$

Insbesondere gilt für x = 1:

$$\arctan 1 = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Es gilt:

$$\cos \frac{\pi}{4} = \cos(-\frac{\pi}{4}) \stackrel{9.15}{=} \sin(\frac{\pi}{2} - \frac{\pi}{4}) = \sin \frac{\pi}{4} \Rightarrow \tan \frac{\pi}{4} = 1 \Rightarrow \arctan 1 = \frac{\pi}{4}.$$

Somit gilt:

$$\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}.$$

Definition:

a) Es sei $f: I \to \mathbb{R}$ auf I differenzierbar. Ist f' in $x_0 \in I$ differenzierbar, so heißt f in x_0 zweimal differenzierbar und

$$f''(x_0) \coloneqq (f')'(x_0)$$

heißt die 2. Ableitung von f in x_0 .

b) Ist f' auf I differenzierbar, so heißt f auf I zweimal differenzierbar und

$$f'' := (f')'$$

die 2. Ableitung von f auf I. Entsprechend definiert man, falls vorhanden:

$$f'''(x_0), f^{(4)}(x_0), f^{(5)}(x_0), \dots \text{ und } f''', f^{(4)}, f^{(5)}, \dots$$

c) Für $n \in \mathbb{N}$ heißt f auf I n-mal stetig differenzierbar: \iff f ist auf I n-mal differenzierbar und $f^{(n)} \in C(I)$. In diesem Fall gilt: $f, f', \ldots, f^{(n)} \in C(I)$. Wir setzen

$$C^0(I) := C(I), \quad f^{(0)} := f,$$

 $C^n(I) := \{ f : I \to \mathbb{R} : f \text{ ist auf } I \text{ } n\text{-mal stetig differenzierbar} \} \quad (n \in \mathbb{N}),$

$$C^{\infty}(I) := \bigcap_{n \ge 0} C^n(I).$$

Beispiele:

- a) $(e^x)''' = e^x$, $(\sin x)'' = (\cos x)' = -\sin x$, $\sin \cos \in C^{\infty}(\mathbb{R})$.
- b) Betrachte $f(x) = x|x| \ (x \in \mathbb{R})$. Es gilt:

Für
$$x > 0$$
: $f(x) = x^2$, $f'(x) = 2x$.

Für
$$x < 0$$
: $f(x) = -x^2$, $f'(x) = -2x$.

Für
$$x = 0$$
: $\frac{f(t) - f(0)}{t - 0} = |t| \to 0 \ (t \to 0)$, also $f'(0) = 0$.

Somit ist f auf \mathbb{R} differenzierbar, f'(x) = 2|x| $(x \in \mathbb{R})$ und f' ist stetig auf \mathbb{R} . In $x_0 = 0$ ist f nicht zweimal differenzierbar. Also gilt: $f \in C^1(\mathbb{R})$ und $f \notin C^2(\mathbb{R})$.

Beispiel 9.18:

Wir betrachten $f:[0,1]\to\mathbb{R}$ definiert durch

$$f(x) = \begin{cases} x^{\frac{3}{2}} \sin \frac{1}{x}, & x \in (0, 1] \\ 0, & x = 0 \end{cases}$$

Auf (0,1] gilt:

$$f'(x) = \frac{3}{2}\sqrt{x}\sin\frac{1}{x} + x^{\frac{3}{2}}(\cos\frac{1}{x})(-\frac{1}{x^2}) = \frac{3}{2}\sqrt{x}\sin\frac{1}{x} - \frac{1}{\sqrt{x}}\cos\frac{1}{x}.$$

Weiter gilt:

$$\frac{f(x) - f(0)}{x - 0} = \underbrace{\sqrt{x}}_{\to 0} \underbrace{\sin \frac{1}{x}}_{\text{beschr}} \to 0 \quad (x \to 0).$$

Also ist f auf [0,1] differenzierbar (mit f'(0)=0). Für $x_n:=\frac{1}{2n\pi}$ $(n\in\mathbb{N})$ gilt: $x_n\to 0$ und

$$f'(x_n) = -\sqrt{2n\pi}\cos(2n\pi) = -\sqrt{2n\pi} \to -\infty \quad (n \to \infty).$$

Damit ist f' auf [0,1] nicht beschränkt, also insbesondere nicht stetig auf [0,1]. Also: f ist auf [0,1] differenzierbar, aber $f \notin C^1([0,1])$.

Satz 9.19: Es sei $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ eine Potenzreihe mit Konvergenzradius r > 0, $I := (x_0 - r, x_0 + r)$ $(I = \mathbb{R}, falls \ r = \infty)$ und

$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \quad (x \in I).$$

Dann gilt $f \in C^{\infty}(I)$ und

$$\forall k \in \mathbb{N}_0 \ \forall x \in I : \ f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1) \cdots (n-k+1) a_n (x-x_0)^{n-k}.$$

Mit $(x = x_0)$ gilt insbesondere: $f^{(k)}(x_0) = k!a_k$, also

$$\forall k \in \mathbb{N}_0: \ a_k = \frac{f^{(k)}(x_0)}{k!}.$$

Beweis: Folgt induktiv aus 9.12.

Satz 9.20 (Satz von Taylor):

Es sei $n \in \mathbb{N}_0$ und f sei auf I (n+1)-mal differenzierbar. Es seien $x, x_0 \in I$ und $x \neq x_0$. Dann existiert ein $\xi \in (\min\{x, x_0\}, \max\{x, x_0\})$ mit

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}.$$

Ohne Beweis.

Bemerkung: Im Fall n = 0 folgt sie Aussage von 9.20 direkt aus dem MWS.

Satz 9.21: Es sei $n \ge 2$, $f \in C^n(I)$, $x_0 \in I$ sei ein innerer Punkt von I, und

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
 und $f^{(n)}(x_0) \neq 0$.

Dann gilt:

- a) Ist n gerade und $f^{(n)}(x_0) < 0$, so hat f in x_0 ein lokales Maximum.
- b) Ist n gerade und $f^{(n)}(x_0) > 0$, so hat f in x_0 ein lokales Minimum.
- c) Ist n ungerade, so hat f in x_0 kein lokales Extremum.

Beweis: Aus $f^{(n)}(x_0) \neq 0$ und $f^{(n)} \in C(I)$ folgt:

(*)
$$\exists \delta > 0 : U_{\delta}(x_0) \subseteq I \text{ und } f^{(n)}(x)f^{(n)}(x_0) > 0 \ (x \in U_{\delta}(x_0)).$$

Es sei $x \in U_{\delta}(x_0) \setminus \{x_0\}$ Nach 9.20 existiert ein ξ zwischen x und x_0 mit:

$$f(x) = \underbrace{\sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}_{=f(x_0)} + \underbrace{\frac{f^{(n)}(\xi)}{n!} (x - x_0)^n}_{=:R(x)}$$

a) Es sei $f^{(n)}(x_0) < 0$. Mit (*) folgt $f^n(\xi) < 0$. Da n gerade ist gilt $(x - x_0)^n > 0$. Also ist R(x) < 0. Somit gilt:

$$\forall x \in U_{\delta}(x_0) \setminus \{x_0\} : f(x) < f(x_0).$$

- b) Analog zu a).
- c) Es sei o.B.d.A. $f^{(n)}(x_0) > 0$, also $f^{(n)}(\xi) > 0$. Da n ungerade ist gilt

$$(x-x_0)^n \begin{cases} > 0, & x > x_0 \\ < 0, & x < x_0 \end{cases}$$

und damit

$$R(x) \begin{cases} > 0, & x > x_0 \\ < 0, & x < x_0 \end{cases} \Rightarrow f(x) \begin{cases} > f(x_0), & x > x_0 \\ < f(x_0), & x < x_0 \end{cases}.$$

Kapitel 10

Das Riemann-Integral

Vereinbarung: In diesem §en sei stets a < b, $f: [a,b] \to \mathbb{R}$ eine Funktion und f beschränkt auf [a,b]. Wir setzen $m := \inf f([a,b]), M := \sup f([a,b])$.

Definition:

a) $Z = \{x_0, x_1, \dots, x_n\}$ heißt eine **Zerlegung** von $[a, b] : \iff$

$$a = x_0 < x_1 < \ldots < x_n = b.$$

 $\mathcal{Z} \coloneqq \{Z: Z \text{ ist eine Zerlegung von } [a,b]\}.$

b) Es sei $Z = \{x_0, \dots, x_n\} \in \mathcal{Z}$. Wir definieren

$$I_j := [x_{j-1}, x_j], |I_j| := x_j - x_{j-1}, m_j := \inf f(I_j), M_j := \sup f(I_j) \quad (j = 1, \dots, n),$$

sowie

$$s_f(Z) \coloneqq \sum_{j=1}^n m_j |I_j| \quad (die \ \textit{Untersumme} \ von \ f \ bzgl. \ Z),$$

$$S_f(Z) \coloneqq \sum_{j=1}^n M_j |I_j| \quad (die \ \textbf{Obersumme} \ von \ f \ bzgl. \ Z).$$

Für jedes $j \in \{1, ..., n\}$ gilt $m \le m_j \le M_j \le M$, also $m|I_j| \le m_j|I_j| \le M_j|I_j| \le M|I_j|$ und somit

(*)
$$m(b-a) = m \sum_{j=1}^{n} |I_j| \le s_f(Z) \le S_f(Z) \le M \sum_{j=1}^{n} |I_j| = M(b-a).$$

Definition: Es seien $Z_1, Z_2 \in \mathcal{Z}$. Z_2 heißt eine Verfeinerung von $Z_1 : \iff Z_1 \subseteq Z_2$.

Satz 10.1: Es seien $Z_1, Z_2 \in \mathcal{Z}$. Dann gilt:

a)
$$s_f(Z_1) \le S_f(Z_2)$$
.

b) Ist $Z_1 \subseteq Z_2$, so gilt:

$$s_f(Z_1) \le s_f(Z_2), \quad S_f(Z_1) \ge S_f(Z_2).$$

Aus (*) folgt: Es existieren

$$s_f := \sup\{s_f(Z) \colon Z \in \mathcal{Z}\} \text{ und } S_f := \inf\{S_f(Z) \colon Z \in \mathcal{Z}\}.$$

Aus (*) und 10.1 a) folgt:

$$m(b-a) \le s_f \le S_f \le M(b-a)$$
.

Definition:

Die Funktion f heißt (Riemann-)**integrierbar** (ib) über $[a,b]:\iff s_f=S_f$. In diesem Fall heißt

$$\int_{a}^{b} f dx := \int_{a}^{b} f(x) dx := S_{f}(=s_{f})$$

das (Riemann-)**Integral** von f über [a,b] und wir schreiben: $f \in R([a,b])$ oder $f \in R([a,b],\mathbb{R})$.

Beispiele:

- a) Es sei $c \in \mathbb{R}$ und f(x) = c $(x \in [a, b])$. Dann gilt $(b a) \le s_f \le S_f \le c(b a)$ also $f \in R[a, b]$ und $\int_a^b c dx = c(b a)$.
- b) Es sei $Z=\{x_0,\ldots,x_n\}$ eine Zerlegung von [0,1] und $f:[0,1]\to\mathbb{R}$ definiert durch

$$f(x) := \begin{cases} 1, & x \in [0,1] \cap \mathbb{Q} \\ 0, & x \in [0,1] \setminus \mathbb{Q} \end{cases}.$$

Hier gilt: $m_j = \inf f(I_j) = 0$, $M_j = \sup f(I_j) = 1$ (j = 1, ..., n), also $s_f(Z) = 0$, $S_f(Z) = 1$. Somit ist $s_f = 0 \neq 1 = S_f$ und damit $f \notin R([0, 1])$.

Satz 10.2: Es seien $f, g \in R([a, b])$. Dann gilt:

a) Ist $f \leq g$ auf [a, b], so ist $\int_a^b f dx \leq \int_a^b g dx$.

b) Für $\alpha, \beta \in \mathbb{R}$ ist $\alpha f + \beta g \in R([a, b])$ und

$$\int_{a}^{b} (\alpha f + \beta g) dx = \alpha \int_{a}^{b} f dx + \beta \int_{a}^{b} g dx.$$

Beweis: Nur a) (b) Übung): Es sei $Z = \{x_0, \dots x_n\} \in \mathcal{Z}, I_j \text{ und } m_j \text{ wie immer. Es sei } \tilde{m}_j := \inf g(I_j) \ (j = 1, \dots, n).$ Wegen $f \leq g$ auf I_j gilt:

$$m_j \le \tilde{m}_j \ (j=1,\ldots,n) \ \Rightarrow \ s_f(Z) \le s_g(Z) \le s_g.$$

Da $Z \in \mathcal{Z}$ beliebig war folgt

$$\int_{a}^{b} f dx = s_f \le s_g = \int_{a}^{b} g dx.$$

Satz 10.3 (Riemannsches Integrabilitätskriterium):

Es gilt:

$$f \in R([a,b]) \iff \forall \varepsilon > 0 \ \exists Z = Z(\varepsilon) \in \mathcal{Z} : \ S_f(Z) - s_f(Z) < \varepsilon.$$

Ohne Beweis.

Satz 10.4: *Ist* $f : [a,b] \to \mathbb{R}$ *monoton, so ist* $f \in R([a,b])$.

Beweis: O.B.d.A. sei f monoton wachsend. Es sei $\varepsilon > 0$. Wähle $n \in \mathbb{N}$ so, daß

$$\frac{b-a}{n}(f(b)-f(a))<\varepsilon.$$

Für $j = 0, \ldots, n$ sei $x_j := a + j \frac{b-a}{n}$. Damit ist $Z := \{x_0, \ldots, x_n\} \in \mathcal{Z}$. Es seien I_j, m_j und M_j wie immer. Es gilt:

$$|I_j| = \frac{b-a}{n}, \ m_j = f(x_{j-1}), \ M_j = f(x_j) \quad (j = 1, \dots, n).$$

Also:

$$S_f(Z) - s_f(Z) = \sum_{j=1}^n (M_j - m_j) |I_j|$$

$$= \frac{b-a}{n} \sum_{j=1}^n (f(x_j) - f(x_{j-1}))$$

$$= \frac{b-a}{n} (f(b) - f(a)) < \varepsilon.$$

Mit 10.3 folgt die Behauptung.

Satz 10.5: *Es gilt:* $C([a,b]) \subseteq R([a,b])$.

Beweis: Es sei $f \in C([a,b])$ und $\varepsilon > 0$. Mit 7.16 folgt:

$$(*) \quad \exists \delta > 0 \ \forall t, s \in [a, b]: \ |t - s| < \delta \ \Rightarrow \ |f(t) - f(s)| < \frac{\varepsilon}{b - a}.$$

Es sei $Z = \{x_0, \ldots, x_n\} \in \mathcal{Z}$ so gewählt, daß $|I_j| < \delta \ (j = 1, \ldots, n)$, und I_j, M_j, m_j seien wie immer. Betrachte I_j : Nach 7.11 gilt:

$$\exists \xi, \eta \in I_j : \ f(\xi) = m_j, \ f(\eta) = M_j.$$

Wegen $|I_j| < \delta$ ist $|\xi - \eta| < \delta$ und mit (*) folgt:

$$M_j - m_j = f(\eta) - f(\xi) = |f(\eta) - f(\xi)| < \frac{\varepsilon}{b - a}$$

Damit ist

$$S_f(Z) - s_f(Z) = \sum_{j=1}^n (M_j - m_j)|I_j| < \frac{\varepsilon}{b-a} \sum_{j=1}^n |I_j| = \varepsilon.$$

Mit 10.3 folgt die Behauptung.

Definition: Es sei $I \subseteq \mathbb{R}$ sei ein Intervall und $G, g: I \to \mathbb{R}$ Funktionen. Die Funktion G heißt eine **Stammfunktion** von g auf $I: \iff G$ ist auf I differenzierbar und G' = g auf I.

Beachte: Sind G und H Stammfunktionen von g auf I, so ist G' = g = H' auf I und nach 9.10 gilt

$$\exists c \in \mathbb{R} \ \forall x \in I : \ G(x) = H(x) + c.$$

Satz 10.6 (Erster Hauptsatz der Differential- und Integralrechnung): Ist $f \in R([a,b])$ und besitzt f auf [a,b] eine Stammfunktion F, so ist

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Beweis: Es sei $Z = \{x_0, \ldots, x_n\} \in \mathcal{Z}$, und I_j, m_j, M_j seien wie immer. Für jedes $j = 1, \ldots, n$ gilt:

$$F(x_j) - F(x_{j-1}) \stackrel{MWS}{=} F'(\xi_j)(x_j - x_{j-1}) = f(\xi_j) \underbrace{(x_j - x_{j-1})}_{=|I_j|},$$

mit $\xi_j \in (x_{j-1}, x_j)$. Wegen $m_j \leq f(\xi_j) \leq M_j$ gilt $m_j |I_j| \leq f(\xi_j) |I_j| \leq M_j |I_j|$. Summation über j liefert

$$s_f(Z) \le \sum_{j=1}^n f(\xi_j)|I_j| = \sum_{j=1}^n (F(x_j) - F(x_{j-1})) = F(b) - F(a) \le S_f(Z).$$

Also gilt:

$$\forall Z \in \mathcal{Z} : s_f(Z) \le F(b) - F(a) \le S_f(Z).$$

Wegen $f \in R([a,b])$ folgt:

$$\int_{a}^{b} f dx = s_f \le F(b) - F(a) \le S_f = \int_{a}^{b} f dx.$$

In Rechnungen ist folgende Schreibweise nützlich:

$$F(x)\Big|_{a}^{b} := [F(x)]_{a}^{b} := F(b) - F(a).$$

Beispiele:

a) Es sei 0 < a < b, $f(x) = \frac{1}{x}$ $(x \in [a, b])$. Es gilt $f \in C([a, b]) \stackrel{10.5}{\Longrightarrow} f \in R([a, b])$, und $F(x) := \log x$ ist eine Stammfunktion von f auf [a, b]. Mit 10.6 folgt:

$$\int_{a}^{b} \frac{1}{x} dx = \log x \Big|_{a}^{b} = \log b - \log a.$$

b) Es gilt:

$$\int_0^{\frac{\pi}{2}} \cos x dx = \sin x \Big|_0^{\frac{\pi}{2}} = \sin \frac{\pi}{2} - \sin 0 = 1.$$

Bemerkung:

- a) Es gibt integrierbare Funktionen, die keine Stammfunktion besitzen!
- b) Es gibt nicht integrierbare Funktionen, die Stammfunktionen besitzen!

Beispiele:

a) Betrachte

$$f(x) = \begin{cases} 1, & x \in (0,1] \\ 0, & x = 0 \end{cases}.$$

f ist monoton $\stackrel{10.4}{\Longrightarrow} f \in R([0,1])$.

Annahme: f besitzt auf [0,1] eine Stammfunktion F. Dann gilt:

$$F'(x) = f(x) \ (x \in [0,1]), \text{ also } F'(x) = 1 \ (x \in (0,1]).$$

Mit 9.10 folgt: $\exists c \in \mathbb{R} : F(x) = x + c \ (x \in (0,1])$. Weiter gilt:

F ist differenzierbar in $0 \Rightarrow F$ ist stetig in $0 \Rightarrow F(0) = c$. Also ist F(x) = x + c $(x \in [0,1])$. Es folgt

$$0 = f(0) = F'(0) = \lim_{x \to 0} \frac{F(x) - F(0)}{x - 0} = \lim_{x \to 0} \frac{x + c - c}{x} = 1,$$

ein Widerspruch.

b) Betrachte

$$F(x) := \begin{cases} x^{\frac{3}{2}} \sin \frac{1}{x}, & x \in (0, 1] \\ 0, & x = 0 \end{cases}.$$

Nach 9.18 ist F ist auf [0,1] differenzierbar. Setze f := F'. Dann ist F eine Stammfunktion von f auf [0,1]. Nach 9.18 ist f ist auf [0,1] nicht beschränkt, also $f \notin R[a,b]$.

Satz 10.7: Es sei $c \in (a,b)$. Dann gilt:

$$f \in R([a,b]) \iff f \in R([a,c]) \text{ und } f \in R([c,b]).$$

In diesem Fall gilt:

$$\int_a^b f dx = \int_a^c f dx + \int_c^b f dx.$$

Ohne Beweis.

Motivation: Für $n \ge 2$ sei

$$f_n \colon [0,1] \to \mathbb{R}, \quad f_n(x) = \begin{cases} n^2 x, & x \in [0,\frac{1}{n}), \\ n - (x - \frac{1}{n})n^2, & x \in [\frac{1}{n},\frac{2}{n}), \\ 0, & x \in [\frac{2}{n},1]. \end{cases}$$

Abbildung 10.1: f_n für n = 5.

Es gilt:

$$f_n \in C([0,1]) \stackrel{10.5}{\Longrightarrow} f_n \in R([0,1]) \stackrel{10.6}{\Longrightarrow} \int_0^1 f_n dx = 1 \ (n \ge 2).$$

Übung: (f_n) konvergiert auf [0,1] punktweise gegen $f \equiv 0$. Also:

$$\lim_{n \to 0} \int_0^1 f_n(x) dx = 1 \neq 0 = \int_0^1 f(x) dx = \int_0^1 \left(\lim_{n \to \infty} f_n(x) \right) dx.$$

Satz 10.8: Es sei (f_n) eine Folge in R([a,b]) und (f_n) konvergiere auf [a,b] gleichmäßig gegen $f:[a,b] \to \mathbb{R}$. Dann gilt: $f \in R([a,b])$ und

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx.$$

Ohne Beweis.

Satz 10.9: Es sei $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ eine Potenzreihe mit Konvergenzradius r > 0, $I := (x_0 - r, x_0 + r)$ $(I := \mathbb{R}, falls \ r = \infty)$ und

$$g(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \quad (x \in I)$$

Dann hat die Potenzreihe $\sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1}$ den Konvergenzradius r und für

(*)
$$G(x) := \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1} \quad (x \in I).$$

 $gilt G' = g \ auf I.$

Beweis: Es sei \tilde{r} der Konvergenzradius der Potenzreihe in (*). Nach 9.12 gilt $r = \tilde{r}$ und G' = g auf I.

Satz 10.10: Es seien $f, g \in R([a, b])$. Dann gilt:

a) Es sei $D \coloneqq f([a,b])$ und mit einem $L \ge 0$ gelte für $h \colon D \to \mathbb{R}$:

$$|h(s) - h(t)| \le L|s - t| \quad (t, s \in D).$$

Dann ist $h \circ f \in R([a,b])$.

- b) $|f| \in R([a,b])$ und $|\int_a^b f(x)dx| \le \int_a^b |f(x)|dx$ (\triangle -Ungleichung für Integrale).
- c) $fg \in R([a,b])$.
- d) Ist $g(x) \neq 0$ $(x \in [a,b])$ und $\frac{1}{g}$ auf [a,b] beschränkt, so ist $\frac{1}{g} \in R([a,b])$.

Beweis:

- a) c) und d) ohne Beweis.
- b) Es sei $D \coloneqq f([a,b])$ und $h(t) \coloneqq |t|$ $(t \in D)$. Dann ist $|f| = h \circ f$. Für $t,s \in D$ gilt:

$$|h(t) - h(s)| = ||t| - |s|| \le |t - s|.$$

Aus a) folgt $|f| \in R([a,b])$. Weiter ist $\pm f \leq |f|$ auf [a,b]. Mit 10.2 folgt

$$\pm \int_a^b f dx \le \int_a^b |f| dx$$
, also $|\int_a^b f(x) dx| \le \int_a^b |f(x)| dx$.

Definition: Es sei $f \in R[a,b]$ und $\alpha, \beta \in [a,b]$. Wir setzen

$$\int_{\alpha}^{\alpha} f(x)dx := 0.$$

Ist $\alpha < \beta$, so ist nach 10.7 $f \in R([\alpha, \beta])$ und wir setzen

$$\int_{\beta}^{\alpha} f(x)dx := -\int_{\alpha}^{\beta} f(x)dx.$$

Satz 10.11 (Zweiter Hauptsatz der Differential- und Integralrechnung): Es sei $f \in R([a,b])$ und

$$F(x) := \int_{a}^{x} f(t)dt \quad (x \in [a, b]).$$

Dann gilt:

- a) $F(y) F(x) = \int_x^y f(t)dt \ (x, y \in [a, b]).$
- b) F ist Lipschitz-stetig.
- c) Ist $f \in C([a,b])$, so ist $F \in C^1([a,b])$ und F'(x) = f(x) $(x \in [a,b])$.

Beweis:

a) Es seien $x, y \in [a, b]$. Fall 1: Für $x \le y$ gilt

$$F(y) - F(x) = \int_{a}^{y} f(t)dt - \int_{a}^{x} f(t)dt$$

$$\stackrel{10.7}{=} \int_{a}^{x} f(t)dt + \int_{x}^{y} f(t) - \int_{a}^{x} f(t)dt$$

$$= \int_{x}^{y} f(t)dt$$

Fall 2: Für x > y gilt

$$F(y) - F(x) = -(F(x) - F(y)) \stackrel{Fall1}{=} -\int_{y}^{x} f(t)dt = \int_{x}^{y} f(t)dt.$$

b) Setze $L := \sup\{|f(t)| : t \in [a, b]\}$. Es seien $x, y \in [a, b]$ und o.B.d.A.: $x \leq y$. Dann gilt:

$$|F(y) - F(x)| \stackrel{a)}{=} |\int_{x}^{y} f(t)dt| \stackrel{10.10}{\leq} \int_{x}^{y} |f(t)|dt \stackrel{10.2}{\leq} \int_{x}^{y} Ldt$$
$$= L(y - x) = L|y - x|.$$

c) Wir zeigen für $x_0 \in [a, b)$:

$$\lim_{h \to 0+} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0),$$

(analog zeigt man für $x_0 \in (a, b]$: $\lim_{h\to 0^-} \frac{F(x_0+h)-F(x_0)}{h} = f(x_0)$). Sei also $x_0 \in [a, b), h > 0$ und $x_0 + h \in [a, b]$. Es ist

$$\frac{1}{h} \int_{x_0}^{x_0+h} f(x_0) dt = f(x_0)$$

und

$$\frac{F(x_0 + h) - F(x_0)}{h} \stackrel{a)}{=} \frac{1}{h} \int_{x_0}^{x_0 + h} f(t) dt.$$

Weiter gilt:

$$D(h) := \left| \frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) \right|$$

$$= \frac{1}{h} \left| \int_{x_0}^{x_0 + h} (f(t) - f(x_0)) dt \right|$$

$$\stackrel{10.10}{\leq} \frac{1}{h} \int_{x_0}^{x_0 + h} |f(t) - f(x_0)| dt.$$

Die Funktion $t \mapsto |f(t) - f(x_0)|$ ist stetig auf [a, b]. Nach 7.11 gilt daher:

$$\exists \xi_h \in [x_0, x_0 + h] \ \forall t \in [x_0, x_0 + h] : |f(t) - f(x_0)| \le |f(\xi_h) - f(x_0)|.$$

Also gilt:

$$D(h) \le \frac{1}{h} \int_{x_0}^{x_0+h} |f(\xi_h) - f(x_0)| dt = |f(\xi_h) - f(x_0)|.$$

Für $h \to 0+$ gilt $\xi_h \to x_0$. Da f stetig ist folgt $f(\xi_h) \to f(x_0)$ $(h \to 0+)$, also $D(h) \to 0$ $(h \to 0+)$.

Aus 10.10 folgt (Übung):

Folgerung 10.12: Es sei $I \subseteq \mathbb{R}$ ein Intervall, $g \in C(I)$ und $x_0 \in I$ (fest). Definiere $G: I \to \mathbb{R}$ durch

$$G(x) = \int_{x_0}^x f(t)dt.$$

Dann gilt: $G \in C^1(I)$ und G' = g auf I.

Definition: Es sei $I \subseteq \mathbb{R}$ ein Intervall. Besitzt $g: I \to \mathbb{R}$ auf I eine Stammfunktion, so schreibt man für eine solche auch

$$\int g dx \ oder \int g(x) dx$$

und nennt dies ein unbestimmtes Integral von g.

Beispiel 10.13:

$$\int \cos x dx = \sin x, \quad \int \cos x dx = \sin x + 17.$$

Satz 10.14 (Partielle Integration):

Es sei $I \subseteq \mathbb{R}$ ein Intervall und $f, g \in C^1(I)$. Dann gilt:

a)
$$\int f'gdx = fg - \int fg'dx$$
 auf I.

b) Ist
$$I = [a, b]$$
, so ist $\int_a^b f'gdx = fg\Big|_a^b - \int_a^b fg'dx$.

Beweis: Es gilt $(fg)' = f'g + fg' \Rightarrow f'g = (fg)' - fg'$ und damit a), sowie

$$\int_{a}^{b} f'g dx = \int_{a}^{b} (fg)' dx - \int_{a}^{b} fg' dx \stackrel{10.6}{=} fg \Big|_{a}^{b} - \int_{a}^{b} fg' dx.$$

Beispiele:

a) $\int \sin^2 x dx = \int \underbrace{\sin x}_{f'} \underbrace{\sin x}_{g} dx = -\cos x \sin x - \int -\cos^2 x dx$ $= -\cos x \sin x + \int \cos^2 x dx = -\cos x \sin x + \int (1 - \sin^2 x) dx$ $= x - \cos x \sin x - \int \sin^2 x dx$ $\Rightarrow \int \sin^2 x dx = \frac{1}{2} (x - \cos x \sin x).$

b) Ungeeignete Anwendung der partiellen Integration:

$$\int \underbrace{x}_{f'} \underbrace{e^x}_g dx = \frac{1}{2} x^2 e^x - \int \frac{1}{2} x^2 e^x dx.$$

Besser:

$$\int \underbrace{x}_{q} \underbrace{e^{x}}_{f'} = xe^{x} - \int e^{x} dx = xe^{x} - e^{x}.$$

c)
$$\int \log x dx = \int \underbrace{1}_{f'} \underbrace{\log x}_{q} dx = x \log x - \int x \frac{1}{x} dx = x \log x - x.$$

Bezeichnung: Es seien $\alpha, \beta \in \mathbb{R}$ und $\alpha \neq \beta$. Wir setzen

$$\langle \alpha, \beta \rangle := \begin{cases} [\alpha, \beta], & \text{falls } \alpha < \beta \\ [\beta, \alpha], & \text{falls } \alpha > \beta \end{cases}$$

Satz 10.15 (Substitutionsregeln):

Es seien I und J Intervalle in \mathbb{R} , es sei $f \in C(I)$, $g \in C^1(J)$ und $g(J) \subseteq I$.

a) Es gilt

$$\int f(g(t))g'(t)dt = \int f(x)dx \Big|_{x=g(t)} \quad auf \ J.$$

b) Es sei $g'(t) \neq 0$ $(t \in J)$ $(\Rightarrow g' > 0$ auf J oder g' < 0 auf $J \Rightarrow g$ ist streng monoton). Dann gilt:

$$\int f(x)dx = \int f(g(t))g'(t)dt \Big|_{t=g^{-1}(x)} \text{ auf } I.$$

c) Ist $I = \langle a, b \rangle$, $J = \langle \alpha, \beta \rangle$, $g(\alpha) = a$ und $g(\beta) = b$, so gilt

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(g(t))g'(t)dt.$$

Beweis: Nach 10.2 hat f auf I eine Stammfunktion F. Setze G(t) := F(g(t)) $(t \in J)$. Es gilt (Kettenregel): $G \in C^1(J)$ und

$$G'(t) = F'(g(t))g'(t) = f(g(t))g'(t) \quad (t \in J)$$

und damit

a)
$$\int f(g(t))g'(t)dt = \int G'(t)dt = G(t) = F(g(t)) = \int f(x)dx \Big|_{x=q(t)}.$$

b)
$$\int f(g(t))g'(t)dt\Big|_{t=g^{-1}(x)} = G(g^{-1}(x)) = F(g(g^{-1}(x))) = F(x) = \int f(x)dx.$$

c)
$$\int_{\alpha}^{\beta} f(g(t))g'(t)dt \stackrel{10.6}{=} G(\beta) - G(\alpha) = F(g(\beta)) - F(g(\alpha))$$
$$= F(b) - F(a) \stackrel{10.6}{=} \int_{a}^{b} f(x)dx.$$

Merkregel: Ist y = y(x) eine differenzierbare Funktion, so schreibt man für y' auch $\frac{dy}{dx}$. Zu 10.15: Substituiere x = g(t), fasse also x als Funktion von t auf. Dann: $\frac{dx}{dt} = g'(t)$, also

"
$$dx = g'(t)dt$$
".

Beispiele:

a)
$$\int_{0}^{1} \frac{e^{2x} + 1}{e^{x}} dx \begin{cases} x = \log t, e^{x} = t \\ \frac{dx}{dt} = \frac{1}{t}, dx = \frac{1}{t} dt \\ x = 0 \Rightarrow t = 1, x = 1 \Rightarrow t = e \end{cases}$$

$$= \int_{1}^{e} \frac{t^{2} + 1}{t} \cdot \frac{1}{t} dt = \int_{1}^{e} \frac{t^{2} + 1}{t^{2}} = \int_{1}^{e} (1 + \frac{1}{t^{2}}) dt \\
= \left[t - \frac{1}{t} \right]_{1}^{e} = e - \frac{1}{e} - (1 - 1) = e - \frac{1}{e}.$$

b)
$$\int_0^1 \sqrt{1 - x^2} dx \begin{cases} x = \sin t, t \in [0, \frac{\pi}{2}] \\ \frac{dx}{dt} = \cos t, dx = \cos t dt \end{cases}$$

$$= \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin^2 t} \cos t dt = \int_0^{\frac{\pi}{2}} \sqrt{\cos^2 t} \cos t dt$$

$$= \int_0^{\frac{\pi}{2}} |\cos t| \cos t dt = \int_0^{\frac{\pi}{2}} \cos^2 t dt = \int_0^{\frac{\pi}{2}} (1 - \sin^2 t) dt$$

$$\stackrel{s.o.}{=} \left[t - \frac{1}{2} (t - \cos t \sin t) \right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

Satz 10.16: Es seien $f, g: [a, b] \to \mathbb{R}$ beschränkt. Dann gilt:

- a) Ist $\{x \in [a,b] : f \text{ ist in } x \text{ nicht stetig }\}$ endlich, so ist $f \in R([a,b])$.
- b) Ist $f \in R([a,b])$ und $\{x \in [a,b]: f(x) \neq g(x)\}$ endlich, so ist $g \in R([a,b])$ und

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g(x)dx.$$

Ohne Beweis.

Satz 10.17: Es seien $f, g \in R([a,b]), g \ge 0$ auf $[a,b], m := \inf f([a,b])$ und $M := \sup f([a,b])$. Dann gilt:

- a) $\exists \mu \in [m, M]$: $\int_a^b fg dx = \mu \int_a^b g dx$.
- b) $\exists \mu \in [m, M]$: $\int_a^b f dx = \mu(b a)$.

Ist $f \in C([a,b])$, so existiert ein $\xi \in [a,b]$ mit $\mu = f(\xi)$ in a) bzw. b).

Beweis:

a) Aus $g \ge 0$ auf [a, b] folgt $mg \le fg \le Mg$ auf [a, b]. Mit 10.2 folgt

$$m\underbrace{\int_a^b g dx}_{=:A} \leq \underbrace{\int_a^b f g dx}_{=:B} \leq M \int_a^b g dx,$$

also $mA \leq B \leq MA$. Beachte: $A \geq 0$.

Fall 1: A = 0. Dann ist B = 0 und jedes $\mu \in [m, M]$ leistet das Verlangte.

Fall 2: A>0. Es gilt: $m\leq \frac{B}{A}\leq M$. Nun leistet $\mu=\frac{B}{A}$ das Verlangte.

b) folgt aus a) mit $g \equiv 1$.

Der Zusatz folgt aus 7.7 und 7.11.

Satz 10.18: Es sei (f_n) eine Folge mit:

- i) $f_n \in C^1([a,b])$ $(n \in \mathbb{N}),$
- ii) $(f_n(a))$ ist konvergent,
- iii) (f'_n) konvergiert auf [a,b] gleichmäßig gegen $g:[a,b] \to \mathbb{R}$.

Dann konvergiert (f_n) auf [a,b] gleichmäßig und für

$$f(x) := \lim_{x \to \infty} f_n(x) \ (x \in [a, b])$$

gilt:

$$f \in C^1([a,b]) \text{ und } f'(x) = g(x) \text{ } (x \in [a,b]).$$

Bemerkung: Satz 10.18 enthält wieder eine Aussage über das Vertauschen von Grenzwerten:

$$\lim_{n \to \infty} f'_n(x) = g(x) = f'(x) = (\lim_{n \to \infty} f_n(x))' \quad (x \in [a, b]).$$

Beweis: Wir setzen $\alpha_n := \int_a^b |f_n'(t) - g(t)| dt \ (n \in \mathbb{N})$. Nach iii) folgt: $(|f_n' - g|)$ konvergiert auf [a, b] gleichmäßig gegen 0. Damit folgt mit 10.8: $\alpha_n \to 0 \ (n \to \infty)$. Wir setzen $c := \lim_{n \to \infty} f_n(a)$. Für jedes $x \in [a, b]$ gilt:

$$f_n(x) \stackrel{10.6}{=} \underbrace{f_n(a)} + \int_a^x f_n'(t)dt \xrightarrow{10.8} c + \int_a^x g(t)dt =: f(x) \quad (n \to \infty).$$

Also: (f_n) konvergiert auf [a, b] punktweise gegen f. Mit 8.3 a) folgt $g \in C([a, b])$, und nach 10.11 ist daher $f \in C^1([a, b])$ und f' = g auf [a, b]. Weiter gilt:

$$|f_n(x) - f(x)| = |f_n(x) - f_n(a) + f_n(a) - c - \int_a^x g(t)dt|$$

$$\stackrel{10.6}{=} |\int_a^x (f'_n(t) - g(t))dt + f_n(a) - c|$$

$$\leq \int_a^x |f'_n(t) - g(t)|dt + |f_n(a) - c|$$

$$\leq \int_a^b |f'_n(t) - g(t)|dt + |f_n(a) - c|$$

$$= \underbrace{\alpha_n + |f_n(a) - c|}_{0} \quad (x \in [a, b]).$$

Mit 8.1 folgt: (f_n) konvergiert auf [a, b] gleichmäßig gegen f.

Bemerkung: Der Beweis von 9.12 b) kann mit 8.2 und 10.18 geführt werden.

Kapitel 11

Uneigentliche Integrale

Vereinbarung: Ist $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion, so soll stets gelten: $f \in R(J)$ für jedes kompakte Intervall $J \subseteq I$.

Definition:

a) Es sei $a \in \mathbb{R}$, $\beta \in \mathbb{R} \cup \{\infty\}$, $a < \beta$ und $f : [a, \beta) \to \mathbb{R}$ eine Funktion. Das uneigentliche Integral $\int_a^\beta f(x) dx$ heißt konvergent : \iff

Es existiert
$$\lim_{t\to\beta-}\int_a^t f(x)dx\in\mathbb{R}$$
.

In diesem Fall:

$$\int_{a}^{\beta} f(x)dx := \lim_{t \to \beta -} \int_{a}^{t} f(x)dx.$$

b) Es sei $b \in \mathbb{R}$, $\alpha \in \mathbb{R} \cup \{-\infty\}$, $\alpha < b$ und $f: (\alpha, b] \to \mathbb{R}$ eine Funktion. Das uneigentliche Integral $\int_{\alpha}^{b} f(x) dx$ heißt konvergent : \iff

Es existiert
$$\lim_{t\to\alpha+}\int_t^b f(x)dx\in\mathbb{R}$$
.

In diesem Fall:

$$\int_{\alpha}^{b} f(x)dx := \lim_{t \to \alpha +} \int_{t}^{b} f(x)dx.$$

Ein nicht konvergentes uneigentliches Integral heißt divergent.

Beispiele:

a) $\int_{1}^{\infty} \frac{1}{x^{\gamma}} dx$ $(\gamma > 0)$ $(a = 1, \beta = \infty)$. Für t > 1 gilt:

$$\int_{1}^{t} \frac{1}{x^{\gamma}} dx = \begin{cases} \log t, & \text{falls } \gamma = 1\\ \frac{1}{1 - \gamma} (t^{1 - \gamma} - 1), & \text{falls } \gamma \neq 1 \end{cases}$$

Also gilt: $\int_1^\infty \frac{1}{x^{\gamma}} dx$ konvergiert $\iff \gamma > 1$. In diesem Fall ist

$$\int_{1}^{\infty} \frac{1}{x^{\gamma}} dx = \frac{1}{\gamma - 1}.$$

b) $\int_0^\infty \frac{1}{1+x^2} dx \ (a = 0, \beta = \infty)$. Für t > 0 gilt:

$$\int_0^t \frac{1}{1+x^2} dx = \arctan t \to \frac{\pi}{2} \ (t \to \infty).$$

Also ist $\int_0^\infty \frac{1}{1+x^2} dx$ konvergent und $= \frac{\pi}{2}$.

c) $\int_0^1 \frac{1}{x^{\gamma}} dx$ ($\gamma > 0$) ($\alpha = 0, b = 1$). Wie in Beispiel a) sieht man:

$$\int_0^1 \frac{1}{x^{\gamma}} dx \text{ konvergient} \iff \gamma < 1$$

d) $\int_{-\infty}^{0} \frac{1}{1+x^2} dx$ ($\alpha = -\infty, b = 0$). Wie in Beispiel b) sieht man:

$$\int_{-\infty}^{0} \frac{1}{1+x^2} dx \text{ konvergiert und } = \frac{\pi}{2}.$$

e) $\int_0^\infty \sin x dx \ (a=0,\beta=\infty)$. Es sei $t_n=n\pi \ (n\in\mathbb{N})$. Es gilt: $t_n\to\infty$ und

$$\int_0^{t_n} \sin x dx = -\cos \Big|_0^{t_n} = 1 - \cos t_n = 1 - \cos(n\pi) = 1 - (-1)^n \quad (n \in \mathbb{N}).$$

Also ist $\int_0^\infty \sin x dx$ divergent.

Definition: Es sei $\alpha < \beta$, $\alpha \in \mathbb{R} \cup \{-\infty\}$, $\beta \in \mathbb{R} \cup \{\infty\}$ und $f: (\alpha, \beta) \to \mathbb{R}$ eine Funktion.

Das uneigentliche Integral $\int_{\alpha}^{\beta} f(x)dx$ heißt konvergent : \iff

$$\exists c \in (\alpha, \beta): \int_{\alpha}^{c} f(x)dx \ und \int_{c}^{\beta} f(x)dx \ sind \ konvergent.$$

In diesem Fall:

$$\int_{\alpha}^{\beta} f(x)dx := \int_{\alpha}^{c} f(x)dx + \int_{c}^{\beta} f(x)dx.$$

Im anderen Fall heißt das Integral divergent.

Übung: Obige Definition ist unabhängig von $c \in (\alpha, \beta)$.

Beispiele:

a) $\int_{-\infty}^{\infty} x dx$ ist divergent, denn $\int_{0}^{\infty} x dx$ ist divergent.

b) Es sei $\gamma > 0$. Obige Beispiele a) und c) zeigen:

$$\int_0^\infty \frac{1}{x^{\gamma}} dx \text{ ist divergent.}$$

c) Obige Beispiele b) und d) zeigen:

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx \text{ ist konvergent und} = \pi.$$

Die folgenden Definitionen und Sätze formulieren wir nur für uneigentliche Integrale der Form

$$\int_{a}^{\beta} f(x)dx.$$

Sie gelten sinngemäß auch für die beiden anderen Typen uneigentlicher Integrale.

Bemerkung: Für $t \in (a, \beta)$ sei $g(t) := \int_a^t f(x) dx$. Dann gilt:

$$\int_{a}^{\beta} f(x)dx \text{ konvergient } \iff \lim_{t \to \beta^{-}} g(t) \text{ existient.}$$

D.h. die Existenz eines uneigentlichen Integrals ist gleichbedeutend mit der Existenz eines Funktionenlimes.

Satz 11.1 (Cauchykriterium): Es gilt:

$$\int_{a}^{\beta} f(x)dx \ konvergiert \iff \forall \varepsilon > 0 \ \exists c \in (a,\beta) \ \forall u,v \in (c,\beta) : \ \left| \int_{u}^{v} f(x)dx \right| < \varepsilon.$$

Beweis: Folgt aus
$$6.2$$
 c).

Beispiel: Behauptung: $\int_1^\infty \frac{\sin x}{x} dx$ konvergiert.

Beweis: Für 1 < u < v gilt:

$$\begin{aligned} \left| \int_{u}^{v} \frac{\sin x}{x} dx \right| &= \left| \int_{u}^{v} \underbrace{\frac{1}{x}}_{g} \underbrace{\sin x}_{f'} dx \right| \\ &= \left| \left[-\frac{\cos x}{x} \right]_{v}^{u} - \int_{u}^{v} -\frac{1}{x^{2}} (-\cos x) dx \right| \\ &= \left| \frac{\cos v}{v} - \frac{\cos u}{u} - \int_{u}^{v} \frac{\cos x}{x^{2}} dx \right| \\ &\leq \frac{1}{v} + \frac{1}{u} + \int_{u}^{v} \frac{1}{x^{2}} dx = \frac{2}{u} \end{aligned}$$

Es sei $\varepsilon>0$ und o.B.d. A $\varepsilon<2$. Setze $c:=\frac{2}{\varepsilon}.$ Für $\frac{2}{\varepsilon}=c< u< v$ gilt nun:

$$|\int_{u}^{v} \frac{\sin x}{x} dx| \le \frac{2}{u} < \varepsilon.$$

Mit 11.1 folgt die Behauptung.

Definition:

$$\int_a^\beta f(x)dx \text{ heißt } \textbf{absolut konvergent} : \iff \int_a^\beta |f(x)|dx \text{ ist konvergent}.$$

Beispiel: $\int_1^\infty \frac{\sin x}{x} dx$ ist nicht absolut konvergent (Übung).

Den folgenden Satz beweist man mit 11.1 ähnlich wie bei Reihen:

Satz 11.2:

a) Ist $\int_a^\beta f(x)dx$ absolut konvergent, so ist $\int_a^\beta f(x)dx$ konvergent und

$$\left| \int_{a}^{\beta} f(x)dx \right| \le \int_{a}^{\beta} |f(x)|dx.$$

- b) **Majorantenkriterium**: Ist $|f| \leq h$ auf $[a, \beta)$ und $\int_a^{\beta} h(x)dx$ konvergiert, so ist $\int_a^{\beta} f(x)dx$ konvergent.
- c) **Minorantenkriterium**: Ist $f \ge h \ge 0$ auf $[a, \beta)$ und $\int_a^{\beta} h(x)dx$ divergiert, so ist $\int_a^{\beta} f(x)dx$ divergent.

Beispiele:

a)
$$\int_{1}^{\infty} \underbrace{\frac{x}{\sqrt{1+x^5}}}_{=:f(x)} dx$$
. Für $x \ge 1$ gilt: $|f(x)| = f(x) \le \frac{x}{\sqrt{x^5}} = \frac{1}{x^{\frac{3}{2}}} =: g(x)$.

$$\int_{1}^{\infty} g(x) dx \text{ konvergiert } \Rightarrow \int_{1}^{\infty} f(x) dx \text{ konvergiert.}$$

b)
$$\int_1^\infty \underbrace{\frac{x}{x^2 + 7x}} dx$$
. Es sei $g(x) := \frac{1}{x}$. Es gilt:

$$\frac{f(x)}{g(x)} = \frac{x^2}{x^2 + 7x} \to 1 \ (x \to \infty)$$

$$\Rightarrow \exists c \geq 1 \ \forall x \geq c: \ \frac{f(x)}{g(x)} \geq \frac{1}{2} \ \Rightarrow \ \forall x \geq c: \ f(x) \geq \frac{1}{2}g(x).$$

Weiter gilt:

$$\int_{c}^{\infty} \frac{1}{2} g(x) dx \text{ divergient} \Rightarrow \int_{c}^{\infty} f(x) dx \text{ divergient} \Rightarrow \int_{1}^{\infty} f(x) dx \text{ divergient}.$$

Kapitel 12

Die komplexe Exponentialfunktion

Erinnerung (lineare Algebra): Die Menge $\mathbb C$ der komplexen Zahlen ist ein Körper. Alle aus den Körperaxiomen hergeleiteten Formeln gelten daher auch in $\mathbb C$.

Beispiele:

- a) Die Binomische Formel gilt in \mathbb{C} .
- b) Die geometrische Summenformel gilt in \mathbb{C} :

$$\sum_{k=0}^{n} z^k = \frac{1 - z^{k+1}}{1 - z} \quad (z \in \mathbb{C}, \ z \neq 1).$$

Es sei $z = x + iy \in \mathbb{C} \ (x, y \in \mathbb{R}).$

 $|z| \coloneqq \sqrt{x^2 + y^2}$ heißt **Betrag** von z.

 $\overline{z} \coloneqq x - iy$ heißt komplex Konjugierte von z.

$$z \cdot \overline{z} = |z|^2 \ (z \in \mathbb{C}).$$

$$|z \cdot w| = |z| \cdot |w| \ (z, w \in \mathbb{C}).$$

$$|z+w| \le |z| + |w| \ (z, w \in \mathbb{C}).$$

Definition: Die auf \mathbb{C} definierte Funktion

$$z = x + iy \mapsto e^z := e^x(\cos y + i\sin y)$$

heißt komplexe Exponentialfunktion.

Ist $z = x \in \mathbb{R}$, so ist $e^z = e^x$; ist z = it $(t \in \mathbb{R})$, so ist $e^{it} = \cos t + i \sin t$.

Satz 12.1: *Es gilt:*

a)
$$\forall z, w \in \mathbb{C}$$
: $e^{z+w} = e^z e^w$; $\forall z \in \mathbb{C} \ \forall n \in \mathbb{Z}$: $e^{nz} = (e^z)^n$.

- b) $\forall t \in \mathbb{R} : |e^{it}| = 1, e^{-it} = \overline{e^{it}}.$
- c) $e^{i\pi} + 1 = 0$.
- d) $\forall k \in \mathbb{Z} \ \forall z \in \mathbb{C} : \ e^{z+2k\pi i} = e^z$.
- e) $\forall t \in \mathbb{R} : \cos t = \frac{1}{2} (e^{it} + e^{-it}), \sin t = \frac{1}{2i} (e^{it} e^{-it}).$

Beweis:

a) Übung (mit den Additionstheoremen von E, sin, cos).

b) $e^{it} = \cos t + i \sin t \Rightarrow |e^{it}| = (\cos^2 t + \sin^2 t)^{\frac{1}{2}} = 1,$ $e^{-it} = \cos(-t) + i \sin(-t) = \cos t - i \sin t = \overline{\cos t + i \sin t} = \overline{e^{it}}.$

- c) $e^{i\pi} = \cos \pi + i \sin \pi = -1$.
- d) $e^{z+2k\pi i} = e^z e^{2k\pi i} = e^z (\cos(2k\pi) + i\sin(2k\pi)) = e^z$.
- e) $e^{it} + e^{-it} = 2\cos t$, $e^{it} e^{-it} = 2i\sin t$.

Definition: $F\ddot{u}r \ z \in \mathbb{C} \ sei$

$$\cos z := \frac{1}{2} \left(e^{iz} + e^{-iz} \right), \quad \sin z := \frac{1}{2i} \left(e^{iz} - e^{-iz} \right).$$

Übung: Für alle $z, w \in \mathbb{C}$ gilt:

$$\sin(z + w) = \sin z \cos w + \sin w \cos z$$
$$\cos(z + w) = \cos z \cos w - \sin z \sin w$$

Satz 12.2: Es sei $z = x + iy \in \mathbb{C}$ $(x, y \in \mathbb{R})$. Dann gilt:

$$e^z = 1 \iff \exists k \in \mathbb{Z} : z = 2k\pi i.$$

Beweis: " \Leftarrow ": Folgt aus 12.1 d). " \Rightarrow ": Es sei $e^z = 1$, also

$$1 = e^x(\cos y + i\sin y) = e^x\cos y + ie^x\sin y$$

$$\Rightarrow e^x \cos y = 1, e^x \sin y = 0 \Rightarrow \sin y = 0 \Rightarrow \exists j \in \mathbb{Z} : y = j\pi.$$

Also ist $\cos y = (-1)^j$, somit $1 = e^x(-1)^j$ und daher j = 2k für ein $k \in \mathbb{Z}$ und x = 0. Also gilt $z = 2k\pi i$.

Aus 12.2 folgt:

$$e^{z} = e^{w} \iff e^{z}e^{-w} = e^{w}e^{-w}$$

 $\iff e^{z-w} = e^{w-w} = e^{0} = 1$
 $\stackrel{12.2}{\iff} \exists k \in \mathbb{Z} : z = w + 2k\pi i$

Polarkoordinaten: Es sei $z = x + iy \in \mathbb{C}$, $(x, y \in \mathbb{R})$ und $z \neq 0$. Wir setzen

$$r := |z| = (x^2 + y^2)^{\frac{1}{2}}$$

Die Gerade durch 0 und z schließt mit der positiven x-Achse einen Winkel $\varphi \in (-\pi, \pi]$ ein. Die Zahl φ heißt das **Argument von** z; arg $z := \varphi$. Es gilt

$$\cos \varphi = \frac{x}{r}, \quad \sin \varphi = \frac{y}{r},$$

also

$$z = x + iy = r\cos\varphi + ir\sin\varphi = re^{i\varphi} = |z|e^{i\arg z}.$$

Ist weiter $w \in \mathbb{C}$ und $\psi := \arg w$, so gilt:

$$zw = |z|e^{i\varphi}|w|e^{i\psi} = |z||w|e^{i(\varphi+\psi)}$$

Satz 12.3 (Fundamentalsatz der Algebra):

Es sei $p(z) = a_0 + a_1 z + \ldots + a_n z^n$ ein Polynom mit $n \ge 1$, $a_0, \ldots, a_n \in \mathbb{C}$ und $a_n \ne 0$. Dann existieren eindeutig bestimmte Zahlen $z_1, \ldots, z_n \in \mathbb{C}$ mit

$$p(z) = a_n(z - z_1) \cdot \ldots \cdot (z - z_n) \quad (z \in \mathbb{C}).$$

Insbesondere gilt:

$$p(z) = 0 \iff z \in \{z_1, \dots, z_n\}.$$

Ohne Beweis.

Definition: Es sei $a \in \mathbb{C}$ und $n \in \mathbb{N}$. Jedes $z \in \mathbb{C}$ mit $z^n = a$ heißt eine n-te Wurzel aus a.

 $\sqrt[n]{a}$ bezeichnet eine n-te Wurzel aus a.

Satz 12.4: Es sei $a \in \mathbb{C} \setminus \{0\}$, $n \in \mathbb{N}$, r := |a| und $\varphi := \arg a$ (also $a = |a|e^{i\varphi} = re^{i\varphi}$). Für $k = 0, 1, \ldots, n-1$ sei

$$z_k := \sqrt[n]{r}e^{i\frac{\varphi + 2k\pi}{n}}$$

Dann gilt:

- a) $z_j \neq z_k \text{ für } j \neq k$.
- b) z ist eine n-te Wurzel aus a \iff $z \in \{z_0, z_1, \dots, z_{n-1}\}.$

Beweis:

a) Es seien $j, k \in \{0, \dots, n-1\}, k \ge j$. Ist

$$z_k = e^{i\frac{\varphi + 2k\pi}{n}} = e^{i\frac{\varphi + 2j\pi}{n}} = z_j,$$

so existiert ein $l \in \mathbb{Z}$ mit:

$$i\frac{\varphi + 2k\pi}{n} = i\frac{\varphi + 2j\pi}{n} + 2l\pi i \Rightarrow \frac{\varphi}{2\pi} + k = \frac{\varphi}{2\pi} + j + ln \Rightarrow \frac{k - j}{n} = l.$$

Somit ist

$$0 \le l = \frac{k-j}{n} \le \frac{k}{n} \le \frac{n-1}{n} = 1 - \frac{1}{n} < 1.$$

Wegen $l \in \mathbb{Z}$ folgt damit l = 0, also k = j.

b) Es sei $p(z) := z^n - a$. Dann gilt: z ist eine n-te Wurzel aus $a \iff p(a) = 0$. Weiter gilt

$$z_k^n = re^{i(\varphi + 2k\pi)} = re^{i\varphi}e^{2k\pi i} = re^{i\varphi} = a \quad (k = 0, \dots, n-1).$$

also $p(z_k) = 0$ (k = 0, ..., n - 1). Aus a) und 12.3 folgt die Behauptung.

Bezeichnung:

Ist a=1, so heißen die Zahlen z_0,\ldots,z_{n-1} aus 12.4 die **n-ten Einheitswurzeln**. Diese sind also

$$z_k = e^{\frac{2k\pi i}{n}}$$
 $(k = 0, \dots, n-1).$

Bemerkung: Insbesondere gilt:

$$z^{n} - 1 = \prod_{k=0}^{n-1} (z - e^{\frac{2k\pi i}{n}}) \quad (z \in \mathbb{C}).$$

Beispiele:

- a) Die 4. Einheitswurzel sind 1, -1, i, -i.
- b) Die 4. Wurzeln aus 16 sind 2, -2, 2i, -2i.
- c) Im Reellen ist $\sqrt{4}=2$. Im Komplexen sind 2 und -2 die Wurzeln aus 4.

Beispiel: $\sqrt{-3+4i}$ =?. Man kann Wurzeln auf verschiedene Weisen berechnen:

1. Möglichkeit: $w = u + iv \ (u, v \in \mathbb{R})$. Dann gilt:

$$w^2 = u^2 - v^2 + 2iuv = -3 + 4i \iff u^2 - v^2 = -3, \ 2uv = 4.$$

Löse das Gleichungssystem.

2. Möglichkeit: z=3+4i. Bestimme |z| und $\varphi=\arg z$. Dann sind

$$\pm \sqrt{|z|} e^{i\frac{\arg z}{2}}$$
 die Wurzeln von z.

3. Möglichkeit: Ist $z \in (-\infty, 0]$, so sind $w = \pm \sqrt{-z}$ die Wurzeln von z. Behauptung: Ist $z \in \mathbb{C} \setminus (-\infty, 0]$, so sind

$$w = \pm \sqrt{|z|} \frac{z + |z|}{|z + |z||}$$

die Wurzeln von z.

Beweis: Es gilt:

$$\left(\pm\sqrt{|z|}\frac{z+|z|}{|z+|z||}\right)^2 = |z|\frac{(z+|z|)(z+|z|)}{(z+|z|)(\overline{z}+|z|)} = |z|\frac{(z+|z|)}{(\overline{z}+|z|)}$$
$$= \frac{(|z|z+z\overline{z})}{(\overline{z}+|z|)} = z\frac{(|z|+\overline{z})}{(\overline{z}+|z|)} = z.$$

Also gilt:

$$\sqrt{-3+4i} = \pm\sqrt{5} \frac{-3+4i+5}{|-3+4i+5|} = \pm\sqrt{5} \frac{2+4i}{\sqrt{20}} = \pm(1+2i).$$

Satz 12.5: Es seien $p, q \in \mathbb{C}$. Für $z \in \mathbb{C}$ gilt:

$$z^2 + pz + q = 0 \iff z = -\frac{p}{2} \pm \underbrace{\sqrt{\frac{p^2}{4} - q}}_{doppeldeutig!}$$

Beweis: "←" nachrechnen. Rest mit 12.3.

Beispiel 12.6: Löse (*) $z^2 + (1-2i)z - 2i = 0$.

$$z = \frac{2i - 1}{2} \pm \sqrt{\frac{(2i - 1)^2}{4} + 2i} = i - \frac{1}{2} \pm \sqrt{\frac{-4 - 4i + 1}{4} + 2i}$$
$$= i - \frac{1}{2} \pm \frac{1}{2}\sqrt{-3 - 4i + 8i} = i - \frac{1}{2} \pm \frac{1}{2}\sqrt{-3 + 4i}.$$

Also sind

$$z_1 = i - \frac{1}{2} + \frac{1}{2}(1+2i) = 2i \text{ und } z_2 = i - \frac{1}{2} + \frac{1}{2}(-1-2i) = -1$$

die Lösungen von (*). Es gilt

$$z^{2} + (1-2i)z - 2i = (z-z_{1})(z-z_{2}) = (z-2i)(z+1).$$

Definition: Es sei $w \in \mathbb{C} \setminus \{0\}$. Jedes $z \in \mathbb{C}$ mit $e^z = w$ heißt ein **Logarithmus von** w.

Satz 12.7: Es sei $w \in \mathbb{C} \setminus \{0\}$, r = |w| und $\varphi = \arg w$, also $w = re^{i\varphi}$. Für $z \in \mathbb{C}$ gilt:

$$z \ ist \ ein \ Logarithmus \ von \ w \iff \exists k \in \mathbb{Z} : z = \underbrace{\log |w|}_{\log \ in \ \mathbb{R}} + i\varphi + 2k\pi i.$$

Beweis: "⇐": Es gilt

$$e^z = e^{\log|w|} e^{i\varphi} e^{2k\pi i} = |w| e^{i\varphi} = w.$$

"\(\Rightarrow\)": Es sei $z=x+iy\ (x,y\in\mathbb{R})$ und $w=e^z=e^xe^{iy}$. Dann gilt $|w|=e^x\Rightarrow x=\log|w|$. Weiter ist

$$|w|e^{i\varphi} = w = e^z = e^x e^{iy} = |w|e^{iy}$$

$$\Rightarrow e^{i\varphi} = e^{iy} \Rightarrow \exists k \in \mathbb{Z} : iy = i\varphi + 2k\pi i.$$

Also gilt $z = \log |w| + i\varphi + 2k\pi i$.

Beispiele:

a) w = -1; |w| = 1, arg $w = \pi$. Alle Logarithmen von -1:

$$i\pi + 2k\pi i \quad (k \in \mathbb{Z}).$$

b) w = 1; |w| = 1, arg w = 0. Alle Logarithmen von 1:

$$2k\pi i \quad (k \in \mathbb{Z}).$$

c) w = 1 + i; $|w| = \sqrt{2}$, arg $w = \frac{\pi}{4}$. Alle Logarithmen von 1 + i:

$$\log \sqrt{2} + i\frac{\pi}{4} + 2k\pi i \quad (k \in \mathbb{Z}).$$

Kapitel 13

Fourierreihen

Für eine Funktion $f \colon \mathbb{R} \to \mathbb{R}$ betrachten wir die Eigenschaft

(V)
$$\begin{cases} f \in R([-\pi, \pi]) \text{ und } f \text{ ist auf } \mathbb{R} \text{ } 2\pi\text{-periodisch}, \\ \text{d.h. } f(x + 2\pi) = f(x) \text{ } (x \in \mathbb{R}). \end{cases}$$

Definition: Es seien $(a_n)_{n=0}^{\infty}$ und $(b_n)_{n=1}^{\infty}$ Folgen in \mathbb{R} . Eine Reihe der Form

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

heißt eine trigonometrische Reihe (TR).

Fragen: Wann ist f mit der Eigenschaft (V) durch eine trigonometrische Reihe darstellbar? Wie hängt dann f mit (a_n) und (b_n) zusammen?

Satz 13.1: *Es gilt:*

a) Die Funktion f erfülle (V). Dann ist jedes $a \in \mathbb{R}$

$$f \in R([a, a + 2\pi]) \text{ und } \int_{a}^{a+2\pi} f(x)dx = \int_{-\pi}^{\pi} f(x)dx.$$

b) Orthogonalitätsrelationen: Für alle $k, n \in \mathbb{N}$ gilt:

$$\int_{-\pi}^{\pi} \sin(nx) \cos(kx) dx = 0$$

und

$$\int_{-\pi}^{\pi} \sin(nx)\sin(kx)dx = \int_{-\pi}^{\pi} \cos(nx)\cos(kx)dx = \begin{cases} \pi, & k = n \\ 0, & k \neq n \end{cases}.$$

Beweis: a) Übung.

b) Die Funktion $x \mapsto \sin(nx)\cos(kx)$ ist ungerade. Damit folgt

$$\int_{-\pi}^{\pi} \sin(nx)\cos(kx)dx = 0.$$

Rest: Übung.

Motivation: Es seien $(a_n)_{n=0}^{\infty}$ und $(b_n)_{n=1}^{\infty}$ Folgen und es gelte

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right) \quad (x \in \mathbb{R}),$$

wobei diese trigonometrisch Reihe auf $\mathbb R$ gleichmäßig konvergent sei. Für jedes $k \in \mathbb N$ gilt dann:

$$f(x)\sin(kx) = \frac{a_0}{2}\sin(kx) + \sum_{n=1}^{\infty} \left(a_n\cos(nx)\sin(kx) + b_n\sin(nx)\sin(kx)\right) \quad (x \in \mathbb{R}).$$

Übung: Die letzte Reihe konvergiert auf R ebenfalls gleichmäßig. Mit 10.8 folgt daher:

$$\int_{-\pi}^{\pi} f(x) \sin(kx) dx = \frac{a_0}{2} \underbrace{\int_{-\pi}^{\pi} \sin(kx) dx}_{=0} + \sum_{n=1}^{\infty} a_n \underbrace{\int_{-\pi}^{\pi} \cos(nx) \sin(kx) dx}_{\stackrel{13.1}{=} 0}$$

$$+ \sum_{n=1}^{\infty} b_n \underbrace{\int_{-\pi}^{\pi} \sin(nx) \sin(kx) dx}_{\stackrel{13.1}{=} \left\{\pi, \quad \text{falls } k = n \atop 0, \quad \text{falls } k \neq n \right\}}_{= b_k \pi}$$

$$= b_k \pi$$

Also gilt:

$$\forall k \in \mathbb{N}: \ b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx.$$

Analog zeigt man:

$$\forall k \in \mathbb{N}_0: \ a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx.$$

Definition: Die Funktion f erfülle (V). Setze

$$a_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx \quad (n \in \mathbb{N}_0),$$

und

$$b_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx \quad (n \in \mathbb{N}).$$

Die Zahlen a_n , b_n heißen die **Fourierkoeffizienten** (FK) von f und die mit a_n und b_n gebildete trigonometrische Reihe heißt die zu f gehörenden **Fourierreihe**. Man schreibt:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)).$$

Frage: Für welche $x \in \mathbb{R}$ konvergiert die zu f gehörige Fourierreihe, und wogegen?

Satz 13.2: $F\ddot{u}r \ f \ qelte(V)$.

a) Ist f gerade, also f(x) = f(-x) $(x \in \mathbb{R})$, so gilt für die Fourierkoeffizienten von f:

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx \ (n \in \mathbb{N}_0) \ und \ b_n = 0 \ (n \in \mathbb{N}).$$

b) Ist f ungerade, also f(x) = -f(-x) $(x \in \mathbb{R})$, so gilt für die Fourierkoeffizienten von f:

$$a_n = 0 \ (n \in \mathbb{N}_0) \ und \ b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx \ (n \in \mathbb{N}).$$

Beweis: Übung. \Box

Definition: Es sei $D \subseteq \mathbb{R}$, x_0 ein Häufungspunkt von D und $g: D \to \mathbb{R}$ eine Funktion. Wir setzen

$$g(x_0\pm) := \lim_{x\to x_0\pm} g(x)$$
, falls dieser Grenzwert vorhanden und $\in \mathbb{R}$ ist.

Definition: Es sei $f : \mathbb{R} \to \mathbb{R}$ 2π -periodisch. Die Funktion f heißt **stückweise glatt** $: \iff$ es existiert eine Zerlegung $\{t_0, t_1, \ldots, t_n\}$ von $[-\pi, \pi]$ (also $-\pi = t_0 < t_1 < \ldots < t_{n-1} < t_n = \pi$) mit:

i)
$$f \in C^1((t_{j-1}, t_j)) \ (j = 1, ..., n).$$

ii) Es existieren die folgenden Grenzwerte:

$$f(\pi-), f'(\pi-), f(-\pi+), f'(-\pi+)$$

und

$$f(t_j+), f'(t_j+), f(t_j-), f'(t_j-) \quad (j=1,\ldots,n-1).$$

Beachte:

- a) In den Punkten t_j muss f nicht stetig sein.
- b) f hat die Eigenschaft (V), vgl. 10.16 a).
- c) Es gilt: $f(t_0) = f(-\pi) = f(-\pi + 2\pi) = f(\pi) = f(t_n)$.
- d) Da f(x) periodisch ist existieren f(x) und f(x) für jedes $x \in \mathbb{R}$. Wir setzen

$$s_f(x) := \frac{f(x+) + f(x-)}{2} \quad (x \in \mathbb{R}).$$

Satz 13.3: Die Funktion f sei 2π -periodisch und stückweise glatt. Dann konvergiert die Fourierreihe von f in jedem $x \in \mathbb{R}$ gegen $s_f(x)$. Ist in diesem Fall f in $x \in \mathbb{R}$ stetig, so konvergiert die Fourierreihe von f also gegen f(x).

Ohne Beweis.

Beispiel 13.4: $f: \mathbb{R} \to \mathbb{R}$ sei 2π -periodisch und auf $(-\pi, \pi]$ definiert durch

$$f(x) = \begin{cases} x, & x \in (-\pi, \pi) \\ 0, & x = \pi \end{cases}.$$

Es gilt: f ist stückweise glatt und $s_f(x) = f(x)$ $(x \in \mathbb{R})$. Weiter ist f ist ungerade. Nach 13.2 ist also $a_n = 0$ $(n \in \mathbb{N}_0)$ und

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx \stackrel{\text{10.16}}{=} \frac{2}{\pi} \int_0^{\pi} x \sin(nx) dx \stackrel{\text{Übung}}{=} (-1)^{n+1} \frac{2}{n} \quad (n \in \mathbb{N} = .)$$

Mit 13.3 folgt nun:

$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx) \quad (x \in \mathbb{R}).$$

$$\Rightarrow \frac{x}{2} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx) \quad (x \in (-\pi, \pi) = .$$

Mit $x = \frac{\pi}{2}$ folgt:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots,$$

vgl. 9.17 b).

Beispiel 13.5: $f: \mathbb{R} \to \mathbb{R}$ sei 2π -periodisch und auf $[-\pi, \pi]$ definiert durch $f(x) = x^2$. Es gilt: f ist stückweise glatt, f ist gerade und $f(x) = s_f(x)$ ($x \in \mathbb{R}$). Nach 13.2 ist also $b_n = 0$ ($n \in \mathbb{N}$) und

$$a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos(nx) dx = \begin{cases} \frac{2\pi^2}{3}, & n = 0\\ 4\frac{(-1)^n}{n^2}, & n \ge 1 \end{cases}.$$

Mit 13.3 folgt:

$$f(x) = \frac{\pi^2}{3} - 4\left(\frac{\cos x}{1^2} - \frac{\cos(2x)}{2^2} + \frac{\cos(3x)}{3^2} - + \dots\right) \quad (x \in \mathbb{R})$$

$$\Rightarrow x^2 = \frac{\pi^2}{3} - 4\left(\frac{\cos x}{1^2} - \frac{\cos(2x)}{2^2} + \frac{\cos(3x)}{3^2} - + \dots\right) \quad (x \in [-\pi, \pi]).$$

Hieraus erhalten wir:

$$x = 0:$$
 $\frac{\pi^2}{12} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ (1)

$$x = \pi: \quad \frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 (2)

Addition von (1), (2) liefert:

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^n}.$$

Ohne Beweis.

Satz 13.6: Es sei $f \in C(\mathbb{R})$ und f sei 2π -periodisch und stückweise glatt. Dann gilt:

- a) Die Fourierreihe von f konvergiert in jedem $x \in \mathbb{R}$ absolut.
- b) Die Fourierreihe von f konvergiert auf \mathbb{R} gleichmäßig gegen f.

c) Sind a_n, b_n die Fourierkoeffizienten von f, so konvergieren die Reihen

$$\sum_{n=0}^{\infty} a_n \ und \ \sum_{n=1}^{\infty} b_n \ absolut.$$

Definition: Es sei $g \in R([-\pi, \pi])$. Setze

$$a_n := \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos(nx) dx \quad (n \in \mathbb{N}_0)$$

und

$$b_n := \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \sin(nx) dx \quad (n \in \mathbb{N}).$$

Auch in diesem Fall heißen die Zahlen a_n, b_n die Fourierkoeffizienten von g und die Reihe

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

die zu g gehörige Fourierreihe.

Satz 13.7: Es seien g, a_n und b_n seien wie in obiger Definition. Dann gilt:

- a) $\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ ist konvergent.
- b) $\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} g(x)^2 dx$ (Besselsche Ungleichung).
- c) $a_n \to 0$, $b_n \to 0$ $(n \to \infty)$.

Beweis: Für $n \in \mathbb{N}$ und $x \in [-\pi, \pi]$:

$$s_n(x) := \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$$

Dann gilt:

$$0 \le \int_{-\pi}^{\pi} (g(x) - s_n(x))^2 dx = \int_{-\pi}^{\pi} (g(x)^2 - 2g(x)s_n(x) + s_n(x)^2) dx$$

$$\stackrel{13.1}{\underset{nachr.}{=}} \int_{-\pi}^{\pi} g(x)^2 dx - \pi \left(\frac{a_0^2}{2} + \sum_{k=1}^{n} (a_k^2 + b_k^2) \right),$$

also

$$\alpha_n := \frac{a_0^2}{2} + \underbrace{\sum_{k=1}^b (a_k^2 + b_k^2)}_{=:\beta_n} \le \frac{1}{\pi} \int_{-\pi}^{\pi} g(x)^2 dx =: \alpha.$$

Die Folge (α_n) ist monoton wachsend und beschränkt, somit ist (α_n) konvergent. Damit ist (β_n) konvergent und es folgt a).

Aus $\alpha_n \leq \alpha \ (n \in \mathbb{N})$ folgt b).

Aus (1) und 3.1 folgt $a_n^2 + b_n^2 \to 0$. Damit gilt $a_n^2 \to 0$, $b_n^2 \to 0$ und hieraus folgt c).

Satz 13.8 (Satz von Riemann-Lebesgue): Es seien $a, b \in \mathbb{R}$, a < b und $g \in R([a, b])$. Dann gilt:

$$\int_a^b g(x)\sin(nx)dx \to 0 \ \ und \ \int_a^b g(x)\cos(nx)dx \to 0 \quad (n\to\infty)$$

Ohne Beweis. Für $[a,b]=[-\pi,\pi]$ vgl. 13.7 c).

Kapitel 14

Der Raum \mathbb{R}^n

Es sei $n \in \mathbb{N}$. Erinnerung (lineare Algebra):

$$\mathbb{R}^n := \{(x_1, \dots, x_n) : x_1, \dots, x_n \in \mathbb{R}\}.$$

 \mathbb{R}^n ist mit der bekannten Addition und Skalarmultiplikation ein Vektorraum über \mathbb{R} mit dim $\mathbb{R}^n = n$.

Die Vektoren

$$e_1 := (1, 0, \dots, 0), e_2 := (0, 1, 0, \dots, 0), \dots, e_n := (0, \dots, 0, 1)$$

heißen Einheitsvektoren. $\{e_1, \ldots, e_n\}$ ist eine Basis des \mathbb{R}^n . Ist $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, so ist

$$x = x_1 e_1 + \ldots + x_n e_n.$$

Definition: Es seien $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n$.

- a) Die Zahl $xy := x \cdot y := x_1y_1 + \ldots + x_ny_n$ heißt **Skalarprodukt** oder **Innenprodukt** von x und y.
- b) Die Zahl $||x|| := \sqrt{x \cdot x} = (x_1^2 + \ldots + x_n^2)^{\frac{1}{2}}$ heißt **Norm** oder **Länge** von x. Beachte: $||x||^2 = x \cdot x$. Im Fall n = 1 ist ||x|| = |x|.
- c) Die Zahl ||x y|| heißt **Abstand** von x und y. Beachte: ||x y|| = ||y x||.

Beispiele:

a)
$$(1,2,-1) \cdot (1,3,4) = 1+6-4=3$$
.

b)
$$\|(1,2,-1)\| = (1+4+1)^{\frac{1}{2}} = \sqrt{6}$$
.

c)
$$||e_j|| = 1$$
 $(j = 1, ..., n)$.

Satz 14.1: Es seien $x = (x_1, \dots, x_n), y, z \in \mathbb{R}^n$ und $\alpha \in \mathbb{R}$. Dann gilt:

a)
$$(x+y) \cdot z = x \cdot z + y \cdot y$$
, $x \cdot y = y \cdot x$.

b)
$$(\alpha x) \cdot y = \alpha(x \cdot y) = x \cdot (\alpha y)$$
.

c)
$$||x|| \ge 0$$
; $||x|| = 0 \iff x = 0 = (0, ..., 0)$.

- d) $\|\alpha x\| = |\alpha| \|x\|$.
- e) $||x \cdot y|| \le ||x|| ||y||$ (Cauchy-Schwarzsche Ungleichung (CSU)).
- f) $||x+y|| \le ||x|| + ||y||$ (Dreiecksungleichung).
- $|y| ||x|| ||y|| \le ||x y||.$
- h) $\forall j \in \{1, ..., n\}: |x_j| \le ||x|| \le \sum_{k=1}^n |x_k|.$

Beweis: a) - d): Nachrechnen.

e) O.B.d.A. sei $y \neq 0$, also ||y|| > 0. Es sei $A := ||x||^2 = x \cdot x$, $B := x \cdot y$, $C := ||y||^2 = y \cdot y$ und $\alpha := \frac{B}{C}$. Dann gilt:

$$0 \le \sum_{j=1}^{n} (x_j - \alpha y_j)^2 = \sum_{j=1}^{n} \left(x_j^2 - 2\alpha x_j y_j + \alpha^2 y_j^2 \right)$$
$$= A - 2\alpha B + \alpha^2 C = A - 2\frac{B^2}{C} + \frac{B^2}{C} = A - \frac{B^2}{C}$$
$$\Rightarrow B^2 \le AC \Rightarrow (x \cdot y)^2 \le ||x||^2 ||y||^2.$$

f) Es gilt:

$$||x + y||^2 = (x + y) \cdot (x + y) = x \cdot x + 2x \cdot y + y \cdot y = ||x||^2 + 2x \cdot y + ||y||^2$$

$$\leq ||x||^2 + 2|x \cdot y| + ||y||^2 \stackrel{e}{=} ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

g) Übung.

h) Für jedes $j \in \{1, ..., n\}$ gilt:

$$|x_j|^2 = x_j^2 \le x_1^2 + \ldots + x_n^2 = ||x||^2 \Rightarrow |x_j| \le ||x||.$$

Weiter gilt:

$$x = x_1 e_1 + \ldots + x_n e_n \Rightarrow ||x|| \stackrel{d),f)}{\leq} |x_1|||e_1|| + \ldots ||x_n|||e_n|| = |x_1| + \ldots + |x_n|.$$

Definition: Es seien $l, m, n \in \mathbb{N}$ und

$$A := \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

eine reelle $m \times n$ -Matrix.

$$||A|| = \left(\sum_{j=1}^{m} \sum_{k=1}^{n} a_{jk}^{2}\right)^{\frac{1}{2}} hei\beta t \ Norm \ von \ A.$$

Es sei B eine reelle $n \times l$ -Matrix (dann existiert AB). Es gilt (Übung):

$$(*) ||AB|| \le ||A|| ||B||.$$

Sei $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

$$Ax := A \cdot x^T = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad (\boldsymbol{Matrix\text{-}Vektorprodukt})$$

Aus (*) folgt:

$$||Ax|| \le ||A|| ||x||.$$

Definition: Es sei $x_0 \in \mathbb{R}^n$ und $\varepsilon > 0$.

a) $U_{\varepsilon}(x_0) := \{x \in \mathbb{R}^n : ||x - x_0|| < \varepsilon\}$ heißt offene Kugel um x_0 mit Radius ε , oder auch ε -Umgebung von x_0 .

b) $\overline{U_{\varepsilon}(x_0)} := \{x \in \mathbb{R}^n : ||x - x_0|| \le \varepsilon\}$ heißt abgeschlossene Kugel um x_0 mit Radius ε .

Definition: Es sei $A \subseteq \mathbb{R}^n$.

- $a) \ A \ hei \beta t \ \textbf{beschränkt} : \iff \exists c \geq 0 \ \forall a \in A : \ \|a\| \leq c.$
- b) A heißt offen : $\iff \forall a \in A \ \exists \varepsilon = \varepsilon(a) > 0 : \ U_{\varepsilon}(a) \subseteq A.$
- c) A heißt **abgeschlossen**: $\iff \mathbb{R}^n \setminus A$ ist offen.
- d) $A \text{ heißt } \textbf{kompakt} : \iff A \text{ ist beschränkt und abgeschlossen.}$

Beispiele:

- a) Offene Kugeln sind offen, abgeschlossene Kugeln sind nicht offen.
- b) \mathbb{R}^n ist offen, \emptyset ist offen, \mathbb{R}^n ist abgeschlossen, \emptyset ist abgeschlossen.
- c) Abgeschlossene Kugeln sind kompakt.
- d) $A = \{(x, y) \in \mathbb{R}^2 : y = x^2\}$ ist nicht beschränkt, also auch nicht kompakt. A ist nicht offen, aber A ist abgeschlossen.
- e) $A = \{(x, y) \in \mathbb{R}^2 : y \ge 0, x > 0\}$ ist nicht offen und auch nicht abgeschlossen.

Stichwortverzeichnis

Abelscher Grenzwertsatz, 86	stetig, 87
abgeschlossen, 63, 128	divergent, 14, 31
Ableitung, 76	Dreiecksungleichung, 126
n-te, 87 abzählbar, 12 Additionstheoreme, 48 Argument, 113 Arkustangens, 86 Axiome	Einheitsvektoren, 125 Einheitswurzeln n-te, 114 Eulersche Zahl, 24 Exponentialfunktion, 40 Exponentialreihe, 40
Anordnungs-, 3 Körper-, 2 Vollständigkeits-, 6	für fast alle, 14 Fakultät, 9
Bernoullische Ungleichung, 9 beschränkt, 6, 64, 128 Folge, 13 Menge, 5	Folge, 12 Fourierkoeffizienten, 119 Fourierreihe, 119 Fundamentalsatz der Algebra, 113
Besselsche Ungleichung, 123 Betrag, 4	ganze Zahlen, 9 Grenzfunktion, 70
einer komplexen Zahl, 111 Binomialkoeffizient, 9	Grenzwert, 14
Binomischer Satz, 9	linksseitiger, 54, 120 rechtsseitiger, 54, 120
Cauchy-Schwarz Ungleichung, 126 Cauchyfolge, 28 Cauchykriterium, 28, 32, 108 Cauchyprodukt, 41 Cosinus, 47	Häufungspunkt, 53 Hauptsätze der Diff und Integralrechnung 1. Hauptsatz, 94 2. Hauptsatz, 98
differenzierbar, 76 n-mal, 87	Identitätssatz für Potenzreihen, 75 Induktionsmenge, 7

Infimum, 5	Limes superior, 27
Innenprodukt, 125	Logarithmus, 66, 116
Integrabilitätskriterium	M ·
Riemannsches, 93	Majorantenkriterium, 109
Integral, 92	Minorantenkriterium, 109
Riemann, 92	Mittelwertsatz, 81
unbestimmtes, 100	monoton, 19
integrierbar, 92	fallend, 65
Riemann, 92	streng fallend, 65
Intervalle, 3	streng wachsend, 65
	wachsend, 65
Kettenregel, 78	fallend, 19
kompakt, 63, 128	streng fallend, 19
konvergent, 14, 31, 106	streng wachsend, 19
absolut, 34, 109	wachsend, 19
punktweise, 70	Monotoniekriterium, 19, 32
Konvergenzkriterium	Natürliche Zahlen, 7
Cauchy, 56	,
Funktionen	niedrig, 26
Weierstraß, 72	Norm, 125
Reihen	Matrizen, 127
Leibniz, 34	Nullstellensatz, 63
Majoranten, 35	oberer Limes, 27
Minoranten, 35	offen, 128
Quotienten, 39	Orthogonalitätsrelationen, 118
Wurzel, 38	,
Konvergenzradius, 45	Partielle Integration, 101
Kugel, 127	Polarkoordinaten, 113
abgeschlossene, 127	Potenzreihe, 45
offene, 127	q-adische Entwicklung, 50
Länge, 125	rationale Zahlen, 9
Limes, 14	Reihe, 31
Limes inferior, 27	alternierende harmonische Reihe, 34

```
geometrische, 31
   harmonische, 31
    unendliche, 31
Reihenwert, 31
\operatorname{Satz}
   Bolzano-Weierstraß, 27
Schranke, 5
Sinus, 48
Skalar<br/>produkt, 125
Stammfunktion, 94
stetig, 59
   gleichmäßig, 67
Substitutionsregeln, 102
Summenfunktion, 70
Supremum, 5
Tangens, 85
Teilfolge, 24
Teilsumme, 31
trigonometrische Reihe, 118
überabzählbar, 12
Umgebung, 14, 127
Umordnung, 40
uneigentliche Integral, 106
    konvergiert, 107
unterer Limes, 27
vollständige Induktion, 8
Wurzeln, 10
    komplexe, 114
Zerlegung, 91
Zwischenwertsatz, 62
```