Segmenting Consumers on Bath Soap

PREPARED BY

IT16073838 - Dilini H.O. Pathirana

IT16071094 - G.C.L. Chandrasiri

IT13112660 - M.D.S.Jayasekara

IT16038288 - D.P.Madanayake

IT16017702 - H.L.K.Tharushika

IT16017498 - A.A.N.H.Amarasinghe

IT16030954 - Nuzrath M.I.Z.S

IT16161252 - D.H.Vishara Dilmi

Contents

Introduction	2
Understanding the business problem & objectives	
Business Objectives	2
Data Mining Objectives	3
Data Preparation	3
Clustering Analysis using R	4
Clustering based on demographics	4
Clustering based on purchase behavior	6
Clustering based on basis of purchase	9
Clustering based on both purchase behaviors and basis of purchase.	12
Conclusion	15

Introduction

CRISA is an Asian market research organization that tracks consumer buying behavior In consumer goods. CRISA records data on household consumption patterns. family Use stratified sampling techniques to choose. The data captured by CRISA contains The following information:

- Family demographics (updated annually)
- Have durable goods: This data is used to calculate the "Excellent Index"
- Purchase data for product categories and brands (updated monthly)

In this project, we use k-means clustering to identify clusters based on the following parameters:

- Purchase behavior (quantity, frequency, vulnerability to discounts and brand loyalty)
- Purchasing basis (price, sales proposition)

Then we combine the above variables and find the breakdown based on both purchase behaviour and Basis of purchase.

Understanding the business problem & objectives Business Objectives

The data must be analyzed by segmenting the variables into different groups according to criteria other than demographics. Customers display different levels of brand loyalty based on price, selection criteria, promotions, affluence, social and economic status, etc. If we can segment the customers based on certain important variables as shown in the dataset, we can target them more in particular by proposing personalized branding and promotion strategies. Therefore, the company's business objective is to train customer segments that exhibit similar buying behavior and are affected the same way by any type of sales proposal or promotional campaigns so that the segments can be targeted in particular for branding and promotion activities.

Data Mining Objectives

To divide variables into clusters or segments based on the following:

- Purchase behavior (quantity, frequency, vulnerability to discounts and brand loyalty)
- Purchasing basis (price, sales proposition)
- Variables describing purchase behavior and purchase basis

We can use the demographic variable combination to find the best segmentation for these clusters.

There is a limit on the number of clusters due to the number of promotions. You can run 4, so ideal clustering should not exceed 4 clusters.

Data Preparation

The given dataset has many missing values. Hence,

a).Replaced missing values

Majority of SEX variable values were 0, converted them into 2 as female.

FEH = 3 assuming major population is non-vegetarian

b). Deriving the brand loyalty index.

Brand loyalty index is measured by using 3 criterias.

- No. of Brands-As the number of brands increases, the possibility of switching between brands increases, so the fewer the number of brands, the better. Therefore, we assign lower scores to fewer brands, indicating higher brand loyalty.
- Brand Runs-The lower the number of brand runs, the better. As the number
 of brand runs increases, the probability of multiple brands' brand runs
 increases, indicating that the switching behavior is higher. Therefore, assign
 lower scores to rows with fewer brand runs.
- Volume of purchases attributed to each brand Taking maximum values out of the variables Br. Cd. 57,144; Br.Cd. 55; Br. Cd. 272Cd.286; Br. Cd.24; Br. Cd.481; Br. Cd.352, Br. Cd.5.

Clustering Analysis using R

Clustering based on demographics

All the demographic variables were used in clustering. In all there are 10 variables. Below diagrams show the cluster analysis.

Optimal number of clusters : 5.

Cluster Summary								
Cluster	Frequency	RMS Std Deviation	Maximum Distance from Seed to Observation	Radius Exceeded	Nearest Cluster	Distance Between Cluster Centroids		
1	18	0.2522	1.1305		5	0.8749		
2	223	0.1931	1.3520		4	0.6589		
3	40	0.2346	1.2078		2	0.9151		
4	159	0.2077	1.3998		2	0.6589		
5	160	0.2167	1.3179		1	0.8749		

		tics for Variab	ics.	
Variable	Total STD	Within STD	R-Square	RSQ/(1-RSQ)
SEC	0.37299	0.25609	0.531761	1.135661
FEH	0.44439	0.12182	0.925351	12.396070
MT	0.21261	0.19278	0.183300	0.224440
SEX	0.18393	0.18060	0.042388	0.044264
AGE	0.28850	0.28124	0.055995	0.059316
EDU	0.19940	0.17151	0.265090	0.360711
HS	0.12471	0.12364	0.023671	0.024245
CHILD	0.30428	0.28628	0.120695	0.137262
cs	0.29575	0.19255	0.578946	1.374990
Affluence_Index	0.21528	0.20090	0.135022	0.156099
OVER-ALL	0.27939	0.20818	0.448488	0.813197
	Pseudo F	Statistic =	120.96	
Approvim	ata Eupaatas	LOver All D.C.	marad = 0	.38944
Approxim	ate Expected	Over-All R-So	quareu – U	1.30344
	Cubic Cluster	ing Criterion :	10.891	

Clustering based on purchase behavior

Variables used for this process are:

- No.of Brands
- Brand Runs
- Total Volume
- No. of Transactions
- Value
- Avg Price
- Others 999(this gives the share of transactions towards other brands which indicates that a customer is not brand loyal.)
- Maximum brand loyalty (Maximum brand loyalty is obtained by taking maximum values out of the variables Br. Cd. 57,144; Br.Cd. 55; Br. Cd. 272Cd.286; Br. Cd.24; Br. Cd.481; Br. Cd.352, Br. Cd.5.)

Optimal number of clusters: 4

Cluster Summary								
Cluster	Frequency	RMS Std Deviation	Maximum Distance from Seed to Observation	Radius Exceeded	Nearest Cluster	Distance Between Cluster Centroids		
1	140	0.1489	1.3065		4	0.5932		
2	201	0.0992	1.0852		4	0.5057		
3	70	0.1085	0.9399		1	0.9117		
4	189	0.1150	1.2821		2	0.5057		

Variable	Total STD	Within STD	R-Square	RSQ/(1-RSQ)
No_of_Brands	0.19746	0.13443	0.538825	1.168374
Brand_Runs	0.14242	0.10578	0.451069	0.821724
Total_Volume	0.15313	0.15079	0.035144	0.036424
No_of_Trans	0.12721	0.10712	0.294483	0.417400
Value	0.13904	0.13286	0.091414	0.100612
TransBrand_Runs	0.11839	0.10835	0.166738	0.200103
Vol_Tran	0.10235	0.09883	0.072126	0.077733
Avg_Price	0.13507	0.11902	0.227428	0.294378
Br_Cd_57_144	0.23643	0.17452	0.457890	0.844643
Br_Cd_55	0.25972	0.10721	0.830446	4.897840
Br_Cd_272	0.09438	0.09323	0.029025	0.029893
Br_Cd_286	0.11288	0.11162	0.027028	0.027779
Br_Cd_24	0.07978	0.07935	0.015679	0.015928
Br_Cd_481	0.09952	0.09871	0.021084	0.021538
Br_Cd_352	0.12241	0.11880	0.062850	0.067065
Br_Cd_5	0.06993	0.06945	0.018712	0.019069
Others_999	0.29732	0.15265	0.737709	2.812563
OVER-ALL	0.15914	0.11837	0.449523	0.816605

Approximate Expected Over-All R-Squared = 0.30601

Cubic Clustering Criterion = 28.668

Clustering based on basis of purchase

Variables used for this process are:

- All price categories
- Selling propositions
- Purchase volume with no promotion, promotion 6 and other promotion

We have plotted graphs for all selling propositions and observed that PropCat 9, PropCat 10, PropCat 11,

PropCat 13, PropCat 14 have very less data points against them. We did not observe much distribution

patterns for this variables. So we have considered only PropCat 5 – 8, PropCat 12, PropCat 15.

Cluster Summary								
Cluster	Frequency	RMS Std Deviation	Maximum Distance from Seed to Observation	Radius Exceeded	Nearest Cluster	Distance Between Cluster Centroids		
1	204	0.1615	1.2014		3	0.5845		
2	82	0.1674	1.3017		1	0.7634		
3	198	0.1916	1.2177		1	0.5845		
4	116	0.0833	1.1441		1	0.6555		

Statistics for Variables						
Variable	Total STD	Within STD	R-Square	RSQ/(1-RSQ)		
PropCat_12	0.07904	0.07815	0.027323	0.028090		
PropCat_15	0.10428	0.10201	0.047863	0.050269		
Pur_Vol_No_Promo	0.11949	0.11941	0.006430	0.006471		
Pur_Vol_Promo_6_	0.13943	0.13836	0.020240	0.020658		
Pur_Vol_Other_Promo_	0.07198	0.07177	0.011018	0.011140		
Pr_Cat_1	0.28087	0.18390	0.573431	1.344286		
Pr_Cat_2	0.31158	0.17944	0.670013	2.030419		
Pr_Cat_3	0.26803	0.23832	0.213354	0.271220		
Pr_Cat_4	0.19168	0.16827	0.233206	0.304131		
PropCat_5	0.31634	0.23188	0.465391	0.870525		
PropCat_6	0.17129	0.15773	0.156297	0.185251		
PropCat_7	0.19575	0.18047	0.154312	0.182469		
PropCat_8	0.15826	0.15090	0.095368	0.105422		
OVER-ALL	0.20255	0.16177	0.365374	0.575731		

Pseudo F Statistic = 114.38

Approximate Expected Over-All R-Squared = 0.31923

Cubic Clustering Criterion = 8.257

Clustering based on both purchase behaviors and basis of purchase.

Here we have combined both customer purchase behavior and basis of purchase together.

Optimal number of clusters : 4.

Cluster Summary							
Cluster	Frequency	RMS Std Deviation	Maximum Distance from Seed to Observation	Radius Exceeded	Nearest Cluster	Distance Between Cluster Centroids	
1	102	0.1138	1.4514		2	0.7977	
2	263	0.1381	1.4876		3	0.7534	
3	108	0.1593	1.7091		2	0.7534	
4	127	0.1800	1.7337		2	0.8979	

	1	for Variables		
Variable	Total STD	Within STD	R-Square	RSQ/(1-RSQ)
PropCat_12	0.07904	0.07839	0.021290	0.021753
PropCat_15	0.10428	0.10314	0.026645	0.027375
Pur_Vol_No_Promo	0.11949	0.11696	0.046810	0.049109
Pur_Vol_Promo_6	0.13943	0.13398	0.081218	0.088398
Pur_Vol_Other_Promo	0.07198	0.07205	0.003201	0.003212
Pr_Cat_1	0.28087	0.17123	0.630210	1.704241
Pr_Cat_2	0.31158	0.25833	0.316050	0.462094
Pr_Cat_3	0.26803	0.21246	0.374833	0.599572
Pr_Cat_4	0.19168	0.17338	0.185914	0.228372
PropCat_5	0.31634	0.20036	0.600846	1.505299
PropCat_6	0.17129	0.16562	0.059812	0.075051
PropCat_7	0.19575	0.18702	0.091783	0.101058
PropCat_8	0.15826	0.15573	0.036544	0.037930
No_of_Brands	0.19746	0.19264	0.053068	0.056042
Brand_Runs	0.14242	0.13184	0.147362	0.172831
Total_Volume	0.15313	0.15170	0.023424	0.023985
No_of_Trans	0.12721	0.12498	0.039555	0.041185
Value	0.13904	0.13758	0.025746	0.026426
TransBrand_Runs	0.11839	0.11121	0.122033	0.138995
Vol_Tran	0.10235	0.09873	0.074167	0.080109
Avg_Price	0.13507	0.10578	0.389773	0.638734
Br_Cd_57_144	0.23643	0.14521	0.624662	1.664262
Br_Cd_55	0.25972	0.20403	0.385975	0.628597
Br_Cd_272	0.09438	0.09349	0.023763	0.024342
Br_Cd_286	0.11288	0.11092	0.039155	0.040751
BrCd24	0.07978	0.07561	0.106094	0.118686
Br_Cd_481	0.09952	0.09781	0.038881	0.040454
Br_Cd_352	0.12241	0.11558	0.113070	0.127485
Br_Cd_5	0.06993	0.06737	0.076595	0.082949
Others_999	0.29732	0.21302	0.489261	0.957948
OVER-ALL	0.17925	0.14825	0.319380	0.469249
	Pseudo F Sta			
Approximate	Expected Ove	er-All R-Square	ed = 0.185	84

2D representation of the Cluster solution

Hence, we can see that a combination of both basis of purchase and purchase behavior gives the minimum overall R-Squared value out of all the segmentations. Hence segmenting with the combination of both basis of purchase and purchase behaviour is the best segmentation criteria.

Conclusion:

By comparing all the segmentations done so far, segmentation of customers by considering both customer purchase behaviour and basis of purchase, gives the best segmentation.

Based on the segment profile of this segmentation basis, we can say that the segments have the following membership.

Cluster Number	Characteristics
1	Less than average brand loyalty, Second highest average price, Highest volume purchase.
2	Highest brand loyalty, Less than second highest average price, Average volume purchase.
3	Average brand loyalty, Highest average price,Least volume purchase.
4	Least brand loyalty, Least average price, Less than average volume purchase.