

$$\phi^{++1} = \phi^{+} - \eta \frac{\partial t}{\partial \phi}$$

$$o^{+11} = o^{+} - \eta \stackrel{?}{\underset{i=1}{\sum}} \frac{\partial f(x_i)}{\partial o}$$

Batch Gradient Descent

H dar

Batch GD

$$0^{+4}$$
 $= 0^{+} - \eta \leq 2f(x_{i})$
 $ies y$
 g

B is a random rankle of

Batch = 1 data point

$$\int_{0}^{\infty} \frac{\partial f(x_{k})}{\partial x_{k}} = \int_{0}^{\infty} \frac{\partial$$

PCA (Principal Compunent Analysis)

ldu

D = 0 5000

5000 70-9865 Jood 70-9865 50002 70-9865 5003 70-9865

Diabetel

weight	Age	Diade'		
10	30			
<i>so</i>	30	weight	**	
31	31		** **	
40 56	30 11		¥	
V D	7		x K	
		1		age

w, weight +

WC(+ W2 (2 + W3 C) WE C! + W6 C8 + W)

PCA -> 109.5 40%

(00 col =) 8col

Standardisatives

2 = 2 - 2 mean x- Ftdl)

Mean = 0

Max 2 3.2 . 1

May (ben) J. A. Land (bel)

$$A^2 = A^T \cdot A = \|A\|^2$$

$$\frac{\partial L}{\partial u} = 2 V u + 2 \lambda u$$

$$\mathcal{L}$$
, $\vec{\chi} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, $A = \begin{bmatrix} -6 \\ 4 \end{bmatrix}$

$$\frac{\partial A^{T}A}{\partial \theta} = 2A$$

$$\frac{\partial x \cdot x}{\partial x} = 2x$$

$$A = \begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix}$$

$$A \cdot \overrightarrow{A} = \overrightarrow{y}$$

$$\begin{bmatrix} -6 & 3 \\ 5 & 5 \end{bmatrix} \begin{pmatrix} 2 \\ 6 & 5 \end{pmatrix}$$

$$\Rightarrow \begin{bmatrix} -3 \\ 35 \end{pmatrix} \Rightarrow 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 \\ 5 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 24 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} cales & eign \\ Vectn \\ 29 & value \end{bmatrix}$$

$$\begin{cases} (6, 29) & value \end{cases}$$

Eigen Value (Vector

For any matrix A, there exist

c (,4)

l eigen vectod value