The Value of Accepting the Null Hypothesis

Andy Grogan-Kaylor

2023-10-02

Table of contents

Re	eferences	3
2	Important Substantive Cases	2
1	Background	1

1 Background

In standard frequentist models, we cannot formally accept the Null Hypothesis H_0 , but can only reject, or fail to reject, H_0 .

Bayesian models allow one to both accept and reject H_0 (Kruschke and Liddell 2018).

Accepting H_0 may have consequences for affirming similarity, universality, or treatment invariance (Gallistel 2009; Morey, Homer, and Proulx 2018). The ability to accept H_0 may also lead to a lower likelihood of the publication bias that results from frequentist methods predicated upon the rejection of H_0 (Kruschke and Liddell 2018).

This handout is written from a *Bayesian* perspective. However, even from a traditional *frequentist* statistical perspective, it may be helpful to think about the *value* of results that are *not statistically significant*.

A finding of a *null result* is dependent on having enough statistical power that one might plausibly detect an effect were an effect to exist.

2 Important Substantive Cases

The Value of Accepting the Null Hypothesis ${\cal H}_0$

case	description	H_0	example
Equivalence Testing	Equivalence Of 2 Treatments Or Interventions	$\beta_1 = \beta_2$	The effect of Treatment 1 is indistinguishable from the effect of Treatment 2 (especially important if one treatment is much more expensive, or time consuming than another).
Equivalence Testing	Equivalence Of 2 Groups On An Outcome	$\bar{y_1} = \bar{y_2}$ or in multilevel modeling $u_0 = 0$	Men and women are more similar than different with regard to psychological processes (Hyde2005).
Retiring Interventions	There Is No Evidence That Intervention X Is Effective	$\beta_{intervention} = 0$	Evidence consistently suggests that a particular treatment has near zero effect.
Contextual Equivalence	Equivalence of a Predictor Across Contexts (Moderation)	$\beta_{interaction} = 0$ or in multilevel modeling $u_k = 0$	Warm and supportive parenting is equally beneficial across different contexts or countries.
Family Member Equivalence	Equivalence of a Predictor Across Family Members	$\beta_{parent1} = \beta_{parent2}$	Parenting from one parent is equivalent to parenting from another parent
Full Mediation	Association of x and y Is Completely Mediated; No Direct Effect	$\beta_{xmy} \neq 0 \ \beta_{xy} = 0$	The relationship of the treatment and the outcome is completely mediated by mechanism m.
Theory Simplification	Removing An Association From A Theory	$\beta_x = 0$	There is no evidence that x is associated with y.

case	description	H_0	example
Theory Rejection	Rejecting A Theory	$\beta_{theory} = 0$	There is strong evidence (contra Theory X) that x is not associated with y.

References

Gallistel, C R. 2009. "The importance of proving the null." Psychological Review 116 (2): 439-53. https://doi.org/10.1037/a0015251.

Hyde, Janet Shibley. 2005. "The Gender Similarities Hypothesis." *American Psychologist* 60 (6): 581–92. https://doi.org/10.1037/0003-066X.60.6.581.

Kruschke, John K, and Torrin M Liddell. 2018. "The Bayesian New Statistics: Hypothesis Testing, Estimation, Meta-Analysis, and Power Analysis from a Bayesian Perspective." Psychonomic Bulletin & Review 25 (1): 178–206. https://doi.org/10.3758/s13423-016-1221-4.

Morey, Richard D., Saskia Homer, and Travis Proulx. 2018. "Beyond Statistics: Accepting the Null Hypothesis in Mature Sciences." *Advances in Methods and Practices in Psychological Science*. https://doi.org/10.1177/2515245918776023.