Chapter 4: Security Policies

- Overview
- Policies
- Trust
- Example Policy

Security Policy

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation
- Secure system
 - Starts in authorized state
 - Never enters unauthorized state

Confidentiality

- X set of entities, I information
- I has confidentiality property with respect to X if no x ∈ X can obtain information from I
- *I* can be disclosed to others
- Example:
 - *X*: set of students
 - *I*: home work answer key
 - *I* is confidential with respect to *X* if students cannot obtain the home work answer key

Integrity

- *X* set of entities, *I* information
- *I* has *integrity* property with respect to *X* if all *x* ∈ *X* trust information in *I*
- Types of integrity:
 - trust *I*, its transmission and storage (data integrity)

Examples: Data Integrity

Examples: Data Integrity

Transmission integrityOnline shopping

Examples: Data Integrity

- Transmission integrity
 - Online shopping

- Storage integrity
 - Presentation slides and a cheap USB drive

Integrity

- *X* set of entities, *I* information
- *I* has *integrity* property with respect to *X* if all *x* ∈ *X* trust information in *I*
- Types of integrity:
 - trust *I*, its transmission and storage (data integrity)
 - *I* information about origin of something or an identity (origin integrity, authentication)

Example: Authentication

• Information about origin of something or an identity (origin integrity, authentication)

Integrity

- *X* set of entities, *I* information
- *I* has *integrity* property with respect to *X* if all *x* ∈ *X* trust information in *I*
- Types of integrity:
 - trust *I*, its transmission and storage (data integrity)
 - *I* information about origin of something or an identity (origin integrity, authentication)
 - *I* resource: means resource functions as it should (assurance)

- Definition: a resource functions as it should
- What are the resources and things that affect their assurance?
 - Network links

- Definition: a resource functions as it should
- What are the resources and things that affect their assurance?
 - Network links

→ transmission errors

- Definition: a resource functions as it should
- What are the resources and things that affect their assurance?
 - Network links

→ transmission errors

Applications

- Definition: a resource functions as it should
- What are the resources and things that affect their assurance?
 - Network links

→ transmission errors

Applications

→ Trojan horses

- Definition: a resource functions as it should
- What are the resources and things that affect their assurance?
 - Network links

→ transmission errors

Applications

- → Trojan horses
- Operating systems

- Definition: a resource functions as it should
- What are the resources and things that affect their assurance?
 - Network links
 - Applications
 - Operating systems → rootkits
- → transmission errors
- → Trojan horses

Integrity

- *X* set of entities, *I* information
- *I* has *integrity* property with respect to *X* if all *x* ∈ *X* trust information in *I*
- Types of integrity:
 - trust *I*, its transmission and storage (data integrity)
 - *I* information about origin of something or an identity (origin integrity, authentication)
 - *I* resource: means resource functions as it should (assurance)

Availability

- *X* set of entities, *I* resource
- I has availability property with respect to X if all x
 ∈ X can access I
- Types of availability:
 - traditional: *x* gets access or not
 - quality of service (QoS): promised a level of access (for example, a specific level of bandwidth in voice over IP) and not meet it, even though some access is achieved

Types of Security Policies

- Military (governmental) security policy
 - Policy primarily protecting confidentiality
- Commercial security policy
 - Policy primarily protecting integrity
- Confidentiality policy
 - Policy protecting only confidentiality
- Integrity policy
 - Policy protecting only integrity

The Role of Trust

A system administrator receives and installs a security patch for her computer's operating system.

If she claims to have improved the security of her system, what does she have to trust in order to support such a claim?

The Role of Trust

- Trusts patch came from vendor, not tampered with in transit
- Trusts vendor tested patch thoroughly
- Trusts vendor's test environment corresponds to local environment
- 4. Trusts patch is installed correctly

Trust in Formal Verification

- Gives formal mathematical proof that given input *i*, program *P* produces output *o* as specified
- Suppose a security-related program S formally verified to work with operating system O
- What are the assumptions?

Trust in Formal Methods

- Proof has no errors
 - Bugs in automated theorem provers
- 2. Preconditions hold in environment in which *S* is to be used
 - Command line input
- S transformed into executable S'whose actions follow source code
 - Compiler bugs, linker/loader/library problems
- 4. Hardware executes S'as intended
 - Hardware bugs (Intel Pentium f00f bug, for example)

Types of Access Control

- Discretionary Access Control (DAC, IBAC)
 - individual user sets access control mechanism to allow or deny access to an object
- Mandatory Access Control (MAC)
 - system mechanism controls access to object, and individual cannot alter that access
- Originator Controlled Access Control (ORCON)
 - originator (creator) of information controls who can access information

Question

- Policy disallows cheating
 - Includes copying homework, with or without permission
- CS class has students do homework on computer
- Anne forgets to read-protect her homework file
- Bill copies it
- Who cheated?
 - Anne, Bill, or both?

Answer Part 1

- Bill cheated
 - Policy forbids copying homework assignment
 - Bill did it
 - System entered unauthorized state (Bill having a copy of Anne's assignment)
- If not explicit in computer security policy, certainly implicit
 - Not credible that a unit of the university allows something that the university as a whole forbids, unless the unit explicitly says so

Answer Part 2

- Anne didn't protect her homework
 - Not required by security policy
- She didn't breach security
- If policy said students had to read-protect homework files, then Anne did breach security
 - She didn't read-protect her homework

Example English Policy

- Computer security policy for academic institution
 - Institution has multiple campuses, administered from central office
 - Each campus has its own administration, and unique aspects and needs
- Authorized Use Policy
- Electronic Mail Policy

Authorized Use Policy

- Intended for one campus (Davis) only
- Goals of campus computing
 - Underlying intent
- Procedural enforcement mechanisms
 - Warnings
 - Denial of computer access
 - Disciplinary action up to and including expulsion
- Written informally, aimed at user community

Electronic Mail Policy

- Systemwide, not just one campus
- Three parts
 - Summary
 - Full policy
 - Interpretation at the campus

Summary

- Warns that electronic mail not private
 - Can be read during normal system administration
 - Can be forged, altered, and forwarded
- Unusual because the policy alerts users to the threats
 - Usually, policies say how to prevent problems, but do not define the threats

Summary

- What users should and should not do
 - Think before you send
 - Be courteous, respectful of others
 - Don't interfere with others' use of email
- Personal use okay, provided overhead minimal
- Who it applies to
 - Problem is UC is quasi-governmental, so is bound by rules that private companies may not be
 - Educational mission also affects application

Full Policy

- Context
 - Does not apply to Dept. of Energy labs run by the university
 - Does not apply to printed copies of email
 - Other policies apply here
- E-mail, infrastructure are university property
 - Principles of academic freedom, freedom of speech apply
 - Access without user's permission requires approval of vice chancellor of campus or vice president of UC
 - If infeasible, must get permission retroactively

Uses of E-mail

- Anonymity allowed
 - Exception: if it violates laws or other policies
- Can't interfere with others' use of e-mail
 - No spam, letter bombs, e-mailed worms, *etc*.
- Personal e-mail allowed within limits
 - Cannot interfere with university business
 - Such e-mail may be a "university record" subject to disclosure

Security of E-mail

- University can read e-mail
 - Won't go out of its way to do so
 - Allowed for legitimate business purposes
 - Allowed to keep e-mail robust, reliable
- Archiving and retention allowed
 - May be able to recover e-mail from end system (backed up, for example)

Implementation

- Adds campus-specific requirements and procedures
 - Example: "incidental personal use" not allowed if it benefits a non-university organization
 - Allows implementation to take into account differences between campuses, such as self-governance by Academic Senate
- Procedures for inspecting, monitoring, disclosing e-mail contents
- Backups

Key Points

- Policies describe *what* is allowed
- Mechanisms control how policies are enforced
- Trust underlies everything