Sample Final for MATH 104

Problem 1

[Review all important definition and results of the relevant material.]

Problem 2

If the followings statements are true, answer "TRUE". If not, give a brief explanation why.

- (1) If F is a field and $x, y \in F$, then $x \cdot y = 0$ implies x = 0 or y = 0.
- (2) If $S, T \subseteq \mathbb{R}$ are bounded and $\sup S = \inf T$, then $S \cap T \neq \emptyset$.
- (3) If (s_n) is a sequence of real numbers, and for some $k \ge 1$, $\lim_n (s_{n+k} s_n) \to 0$, then (s_n) is a Cauchy sequence.
- (4) The series $\sum \frac{n!}{n^n}$ converges absolutely.
- (5) If a set contains no interior points, it is closed.
- (6) The set of nondecreasing functions from \mathbb{Q} into $\{0,1\}$ is countable.
- (7) If f is differentiable and f(-x) = f(x), then f'(-x) = -f'(x).
- (8) If $f:[0,1] \to [0,1]$ is bijective, and f(0)=0 and f(1)=1, then f is continuous on [0,1].
- (9) If $0 \le f(x) \le g(x)$ for all $x \in [a, b]$, and g is Riemann integrable on [a, b], then f is Riemann integrable on [a, b].
- (10) If f and g are not differentiable at x = 0, then $f \cdot g$ is not differentiable at 0.

Problem 3

Show that if E is a compact subset of \mathbb{R} , then sup E and inf E belong to E.

Problem 4

Show that if f is differentiable on (a,b) and f'(x) < 0 for all $x \in (a,b)$, then f' is strictly decreasing on (a,b).

Problem 5

Show that there does not exist a sequence (p_n) of polynomials that converges uniformly to e^x on \mathbb{R} .

Problem 6

Suppose 0 < t < 1. Let $s_1 = 1$ and $s_{n+1} = t(s_n + 1)$. Show that (s_n) converges (hint: bounded and monotone) and calculate $\lim_n s_n$.

Problem 7

Let $f:(a,b)\to\mathbb{R}$ be differentiable. Suppose $\lim_{x\to b}f(x)=\infty$. Show that $\lim_{x\to b}f'(x)=\infty$, provided that the limit exists.

Problem 8

Suppose that f is a continuous function on [a,b] and that $f(x) \ge 0$ for all $x \in [a,b]$. Show that if $\int_a^b f = 0$, then f(x) = 0 for all $x \in [a,b]$.