Math 525

Sections 5.1–5.2: Finite Fields and Minimal **Polynomials**

November 16, 2020

November 16, 2020 1 / 14

- BCH codes form a large class of powerful cyclic codes. Although we will study binary BCH codes, their description and decoding are carried out over a finite field $GF(2^r)$ (also denoted by \mathbb{F}_{2^r}), which contains K = GF(2). Here, r denotes a positive integer.
- BCH codes were discovered by Hocquenghem in 1959 and independently by Bose and Chaudhuri in 1960.
- GF means Galois field, in honor of its discoverer, Évariste Galois, a French mathematician of the 19th century (1811–1832).

November 16, 2020 2 / 14

Recall: K[x] is the set of all polynomials with coefficients in K. A polynomial $p(x) \in K[x]$ is called irreducible over K if its only divisors are 1 and p(x).

Examples: x, x + 1, $x^2 + x + 1$ are all irreducible over K. The polynomials $x^4 + x^2 + x + 1$ and $x^5 + x^4 + 1$ are not irreducible because

$$x^4 + x^2 + x + 1 = (x + 1) \cdot (x^3 + x^2 + 1)$$

and

$$x^5 + x^4 + 1 = (x^2 + x + 1) \cdot (x^3 + x + 1).$$

The next result can be used to check whether $p(x) \in K[x]$ is divisible by x + a. Notation: $x + a \mid p(x)$.

Lemma

Let $p(x) \in K[x]$. Then $x + a \mid p(x)$ if and only if p(a) = 0.

Sections 5.1-5.2

November 16, 2020

3 / 14

Examples: $x^3 + x^2 + x + 1$ is not irreducible over K, but $x^3 + x + 1$ is.

How about $x^4 + x^2 + 1$ and $x^4 + x + 1$? Note:

$$x^4 + x^2 + 1 = (x^2 + x + 1)^2$$

so the first polynomial is not irreducible over K. As for $x^4 + x + 1$, we can use Wolfram Cloud to decide:

$$IrreduciblePolynomialQ[x^4 + x + 1, Modulus \rightarrow 2]$$

The output will be "True." Alternatively, observe that $x^4 + x + 1$ cannot be written as a product of a polynomial of degree 1 and a polynomial of degree 3 (by the above lemma). It also cannot be written as a product of two polynomials of degree 2 each. Try to write

$$x^4 + x + 1 = (x^2 + ax + b) \cdot (x^2 + cx + d)$$

and then reach a contradiction after equating coefficients of corresponding powers of x.

Sections 5.1-5.2

November 16, 2020

4 / 14

Recall:

Definition

A field is a set of elements in which it is possible to add, subtract, multiply, and divide (division by 0 is not defined). Addition (+) and multiplication (\cdot) or juxtaposition) must satisfy the commutative, associative, and distributive laws: for any a,b,c in the field,

$$a+b=b+a, \qquad ab=ba,$$
 $a+(b+c)=(a+b)+c, \qquad a(bc)=(ab)c,$ $a(b+c)=ab+ac.$

Furthermore, elements 0, 1, -a, and a^{-1} (for all a) must exist such that

$$0 + a = a$$
, $(-a) + a = 0$, $0a = 0$, $1a = a$, and if $a \neq 0$, $a^{-1}a = 1$.

Note: Addition and multiplication may have "very different" meanings from the usual addition and multiplication in \mathbb{R} or \mathbb{C} (real and complex fields, respectively).

Sections 5.1-5.2 November 16, 2020 5 / 14

The Finite Field $GF(2^r)$.

Fact from abstract algebra: The finite fields that contain K = GF(2) are precisely the finite fields $GF(2^r)$ where r is a positive integer. $GF(2^r)$ has 2^r elements.

Attention! Except when r = 1, $GF(2^r)$ is <u>not</u> the set $\{0, 1, \dots, 2^r - 1\}$ under addition and multiplication modulo 2^r .

We will now discuss the existence and then the actual construction of $GF(2^r)$, describing the operations + and \cdot explicitly.

Recall: An element α of a field F is a *root* (or a *zero*) of a polynomial p(x) if $p(\alpha) = 0$.

Sections 5.1-5.2 November 16, 2020 6 / 14

(a) Existence: Let F be any field. From abstract algebra, given $p(t) \in F[t]$, there exists a field $L \supseteq F$ such that p(t) factors completely into linear factors in L[t] (some of these factors may appear more than once) and p(t) does not factor completely into linear factors over any proper subfield of L containing F.

Now consider $f(t) = t^{2^r} + t$ in K[t]. Since f'(t) = 1, we have $\gcd(f(t), f'(t)) = 1$, so p(t) has exactly 2^r distinct roots. It is not difficult to see that 0 and 1 are roots of f(t), and if α, β are roots of f(t), then so are $\alpha + \beta, \alpha \cdot \beta$, and α^{-1} (when $\alpha \neq 0$).

This proves that the set of roots of $t^{2^r} + t \in K[t]$ is a field with 2^r elements. We denote this field by $GF(2^r)$.

In abstract algebra, it is proved that $\mathrm{GF}(2^r)$ has an element $\alpha \neq 0$ such that

$$GF(2^r) = \{0\} \cup \{\alpha^i \mid i = 1, \dots, 2^r - 1\}$$

where $\alpha^{2^r-1}=1$. Any such element is called a primitive element of $\mathrm{GF}(2^r)$.

ections 5.1-5.2 November 16, 2020 7 / 14

Construction of $GF(2^r)$: Given a positive integer r, consider an irreducible polynomial h(x) of degree r over K. Form the set S of all polynomials of degree < r over K and define addition and multiplication in S as:

Addition: $(f(x) + g(x)) \mod h(x) = f(x) + g(x)$.

Multiplication: $(f(x) \cdot g(x)) \mod h(x)$.

Observe that S consists of 2^r polynomials. Moreover, given $f(x) \in S$, with $f(x) \neq 0$, there exist $a(x), b(x) \in K[x]$ such that

$$f(x) \cdot a(x) + h(x) \cdot b(x) = 1$$

(this follows from the fact that gcd(f(x), h(x)) = 1.)

Hence, $(f(x) \cdot a(x)) \mod h(x) = 1$, which means that the element $\beta = f(x) \in S$ is invertible: $\beta^{-1} = a(x) \mod h(x)$.

In conclusion, S forms the field $GF(2^r)$.

Examples: (They will be worked out during the lecture.)

- (a) Construct the field GF(4) from $h(x) = x^2 + x + 1$.
- (b) Construct the field GF(16) from $h(x) = x^4 + x + 1$.

Remark: In Part (b), $h(x) \nmid x^n + 1$ for 0 < n < 15. Hence, $x^n \not\equiv 1 \pmod{h(x)}$ for 0 < n < 15. See the table on the next slide.

Definition

An irreducible polynomial $h(x) \in K[x]$ of degree $r \ge 1$ and with the property that $h(x) \nmid x^n + 1$ for $0 < n < 2^r - 1$ is called *primitive*.

In view of the above definition, we can construct $GF(2^r)$ as:

$$\{0\} \cup \{1 \bmod h(x), x \bmod h(x), x^2 \bmod h(x), \dots, x^{2^r-2} \bmod h(x)\},\$$

when h(x) is a primitive polynomial of degree r in K[x].

Sections 5.1-5.2

November 16, 2020

9/14

Example

The table below displays three different representations for each element of the field $GF(2^4)$ constructed from $h(x) = 1 + x + x^4$; β is a primitive element, so $\beta^{15} = 1$.

. ,	• • • • • • • • • • • • • • • • • • • •	,
word	polynomial in x (modulo $h(x)$)	power of β
0000	0	_
1000	1	1
0 1 0 0	×	β
0 0 1 0	x^2	β^2
0001	x^3	β^3
1 1 0 0	$1+x\equiv x^4$	β^4
0 1 1 0	$x + x^2 \equiv x^5$	eta^5
0 0 1 1	$x^2 + x^3 \equiv x^6$	eta^6
1 1 0 1	$1 + x + x^3 \equiv x^7$	β^7
1010	$1+x^2\equiv x^8$	β^8
0 1 0 1	$x + x^3 \equiv x^9$	β^9
1 1 1 0	$1 + x + x^2 \equiv x^{10}$	β^{10}
0 1 1 1	$x + x^2 + x^3 \equiv x^{11}$	β^{11}
1111	$1 + x + x^2 + x^3 \equiv x^{12}$	β^{12}
1011	$1 + x^2 + x^3 \equiv x^{13}$	β^{13}
1001	$1 + x^3 \equiv x^{14}$	eta^{14}

Sections 5.1-5.2

Minimal Polynomials

Definition

An element $\alpha \in GF(2^r)$ is a *root* (or a *zero*) of a polynomial $p(x) \in K[x]$ if $p(\alpha) = 0$.

Example

Let $p(x) = x^2 + x + 1$, and let $\beta \in GF(2^4)$ be a primitive element. Calculate $p(\beta)$ and $p(\beta^5)$.

The example shows that $\beta^5 = \beta + \beta^2$ is a root of p(x).

Recall from page 7 that any nonzero element $\alpha \in \mathrm{GF}(2^r)$ is a root of the polynomial $x^{2^r-1} + 1 \in K[x]$.

Definition

Let $\alpha \in \mathrm{GF}(2^r)$. The minimal polynomial of α , denoted by $m_{\alpha}(x)$, is the (nonzero) polynomial in K[x] of smallest degree having α as a root.

November 16, 2020 11 / 14

Theorem (Theorem 5.2.2)

Let $\alpha \neq 0$ be an element of GF(2^r). Then:

- (a) $m_{\alpha}(x)$ is unique;
- (b) $m_{\alpha}(x)$ is irreducible;
- (c) Let $f(x) \in K[x]$. If $f(\alpha) = 0$, then $m_{\alpha}(x) | f(x)$;
- (d) $m_{\alpha}(x) | x^{2^{r}-1} + 1$.

Regarding the elements of $GF(2^r)$ as words in K^r , note that $GF(2^r)$ can be seen as a vector space over GF(2) of dimension r. Therefore, given $\alpha \in GF(2^r)$, with $\alpha \neq 0$, the set

$$\{1, \alpha, \alpha^2, \dots, \alpha^r\}$$

is linearly dependent.

This observation implies that there exist $a_0, a_1, a_2, \ldots, a_r$ in K, not all zero, such that

$$a_0 + a_1\alpha + a_2\alpha^2 + \cdots + a_r\alpha^r = 0,$$

that is, $f(\alpha) = 0$, where $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_rx^r$ is a nonzero polynomial in K[x].

In conclusion: deg $m_{\alpha}(x) \leq r$, for any $\alpha \in GF(2^r)$.

Next, we will tackle the problem of effectively determining $m_{\alpha}(x)$.

Sections 5.1-5.2 November 16, 2020 13 / 14

The following lemma is a straightforward consequence of the "freshman's dream" property:

Lemma

Let $f(x) \in K[x]$. If $\alpha \in GF(2^r)$ is a root of f(x), then $f(\alpha^{2^i}) = 0$ for any nonnegative integer i.

Theorem

Let $\alpha \in \mathrm{GF}(2^r)$ and let e be the smallest nonnegative integer such that $\alpha^{2^e} = \alpha$. Then $\deg m_{\alpha}(x) = e$ and

$$m_{\alpha}(x) = \prod_{i=0}^{e-1} (x + \alpha^{2^i}).$$

The idea for the proof is to show that $m_{\alpha}(x) \in K[x]$ and $m_{\alpha}(x)$ is irreducible. As an example, see the calculation of $m_{\alpha}(x)$, where $\alpha = \beta^3$, with β a primitive element of $GF(2^4)$.

Sections 5.1-5.2 November 16, 2020 14 / 14