Lecture Module - Fluid Systems

ME3050 - Dynamic Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 1 - Basic Concepts

Fluid Systems

- Definitions and Concepts
- Conservation of Mass
- Fluid Capacitance and Resistance
- Dynamic Models of Hydraulic Systems
- Examples

Definitions and Concepts

A fluid system uses one or more fluids to achieve its purpose. Examples:

- Fluid Damper in Suspension (Shock Absorber)
- Hydraulic Front Loader (Tractor)
- Fuel Delivery System
- HVAC System

Definitions and Concepts

Fluid systems can be categorized as either hydraulic or pneumatic systems.

Hydraulic:

Pneumatic:

For incompressible fluids, the conservation of mass becomes the:

of _____.

Definitions and Concepts

The mass density and the volume flow rate can be used to find the volume flow rate.

$$q_m = \rho q_v$$

Conservation of Mass

The conservation of mass is stated below.

$$\dot{m} = q_{mi} - q_{mo}$$

If the fluid is incompressible, this relation can be re-written as the conservation of volume.

$$\dot{m} = \rho \dot{V} \implies q_{mi} = \rho q_{vi} \text{ and } q_{mo} = \rho q_{vo}$$

$$\rho \dot{V} = \rho q_{vi} - \rho q_{vo}$$

$$\dot{V} = q_{vi} - q_{vo}$$

Fluid Capacitance and Resistance

Fluid systems can be compared to equivalent electrical systems.

Analogous Quantities

Fluid Mass, mMass Flow Rate, q_m Pressure, pFluid (linear) Resistance , R $R = p/q_m$ Fluid Capacitance, C C = m/pFluid inertance, I $I = p/\left(\frac{dq_m}{dt}\right)$

Charge, QCurrent, iVoltage, vElectrical Resistance, R R = v/iElectrical Capacitance, C C = Q/vElectrical Inductance, C $L = v/\left(\frac{di}{dt}\right)$

Fluid Capacitance and Resistance

Fluid Resistance is the relation between pressure and mass flow rate.

Fluid Capacitance is the relation between pressure and

Fluid Capacitance and Resistance

Can you relate	Kirchoff's laws to a fluid system?
The	law is analogous to Kirchoff's voltage law (KVL).
The	law is analogous to Kirchoff's current law (KVL).

Dynamic Models of Hydraulic Systems

Examples