オペレーティングシステム 第15章 ファイルシステムの概念

https://github.com/tctsigemura/OSTextBook

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 Q (*)

主記憶 1/18

ファイルシステム

- ファイルシステムは二次記憶装置を
 - 管理する.(どのセクタが、どのファイルの一部?)
 - 抽象化する. (ハードディスク → ファイル)
 - 仮想化する. (1台のハードディスク → 多数のファイル)
- ファイルは一次元のバイト列 (バイトストリーム)オペレーティングシステムはファイルの構造を決めない。
- ファイルは名前を持つ.
- 名前とバイト位置でデータが決まる。名前=ファイル名,バイト位置=ファイル内オフセット

主記憶 2/18

ファイルの名前付け

- ファイルは木構造のディレクトリシステムに格納する。
- ディレクトリは名前とファイル本体のポインタを格納する。
- 階層構造を持った名前 (パス) でファイルを特定する.
- 絶対パスはルートディレクトリを起点にする。
- **相対パス**はワーキングディレクトリを起点にする

主記憶 3/18

ファイルの別名(1)

別名があると便利な例(最新のファイルはいつも同じ名前)

ある日

2017_06_30.log 2017 年 6 月 30 日のファイル 2017_07_01.log 2017 年 7 月 1 日のファイル 2017_07_02.log \rightarrow 2017_07_02.log

次の日

2017_07_01.log 2017年7月1日のファイル 2017_07_02.log 2017年7月2日のファイル 2017_07_03.log 2017年7月3日のファイル today.log → 2017_07_03.log

主記憶 4 / 18

ファイルの別名(2)

ハードリンク

- ファイルシステム仕組みとして OS カーネルに組み込む。
- ファイルの本体が複数のディレクトリ・エントリから指される。
- リンクカウントを用いる。
- ディレクトリをリンクするとループ検出が厄介 → 禁止!

シンボリックリンク

- ファイルシステム仕組みとして OS カーネルに組み込む
- 他ファイルのパスを格納した特別なファイル。
- リンク切れ状態が許される (Web ページのリンクに似ている)

ファイルシステムの外で実装されるリンク

- Windows のショートカット, macOS のエイリアスなど
- ファイルシステム本体が持つリンク機構は一定ではない。
 - → 現代の OS は同時に複数のファイルシステムを使用する
 - → アプリに近い側でどのファイルシステムでも共通の仕組みを提供

5/18

ファイルの別名(3)

HFS+上の macOS のエイリアスの例

```
1 $ ls -l@ a.txt*
2 -rw-r--r- 1 sigemura admin 5 Jun 27 10:19 a.txt
3 -rw-r--r-@ 1 sigemura admin 1012 Jun 27 10:19 a.txtのエイリアス
com.apple.FinderInfo 32
```

- 3行 拡張属性付きの通常ファイルとしてエイリアスが存在
- 4行 拡張属性の名前は com.apple.FinderInfo
- 4 行 拡張属性のサイズは 32 バイト

ファイルシステムのより汎用的な機構である拡張属性を利用して, **エイリアス**を実装している.

主記憶 6 / 18

ファイルの別名(4)

FAT 上の macOS のエイリアスの例

```
1 $ ls -la@ ._* a.txt*

-rwxrwxrwx 1 sigemura staff 4096 Jun 27 09:55 ._a.txtのエイリアス

-rwxrwxrwx 1 sigemura staff 5 Jun 27 09:55 a.txt

-rwxrwxrwx@ 1 sigemura staff 1040 Jun 27 09:55 a.txtのエイリアス

5 com.apple.FinderInfo 32

6 $ rm ._a.txtのエイリアス

7 $ ls -la@ a.txt*

8 -rwxrwxrwx 1 sigemura staff 5 Jun 27 09:55 a.txt

9 -rwxrwxrwx 1 sigemura staff 1040 Jun 27 09:55 a.txtのエイリアス
```

- 4.5 行 拡張属性付きの通常ファイルとしてエイリアスが存在
 - 2行 隠しファイルができている!!
 - 6 行 隠しファイルを消してみる.
 - 9行 拡張属性が消えてしまった!!

FAT ファイルシステムの規約の範囲でエイリアスを実装している.

主記憶 7/18

ボリュームのマウント

- 二つ目以降のボリュームの接続方法
- マウント方式
 - ボリュームを既存のディレクトリに接続する.
 - /Volumes/NO NAME/hello.cがUSBメモリのCプログラム
- ドライブレター方式
 - ボリュームを区別するドライブレターを用いる。
 - D:\hello.cがUSBメモリのCプログラム

主記憶 8/18

ファイルの属性(1)

- 名前:ファイル名をファイルの属性と考える場合もある。
- 識別子:ファイル本体の番号など.
- 型 (タイプ):通常ファイル,ディレクトリ,リンクなど.
- 保護:rwxrwxrwx など. (後で詳しく)
- 日時:作成日時,最終変更日時など.
- **所有者**:所有者, グループなど.
- 位置:ディスク上のどこにファイル本体があるか。 (データ位置のブロック番号など)
- **サイズ**:ファイルのバイト数.
- 拡張属性:名前付きの小さな追加データ. ファイルシステムで用途を定めていない.

主記憶 9 / 18

ファイルの属性(2)

```
$ ls -1@ b.txt*
  -rw-r--r-- 2 sigemura staff
                           123 Jun 25 19:38 b.txt
3
  -rw-r-r-0 1 sigemura staff
                            836 Jun 25 19:39 b.txt のエイリアス
4
        com.apple.FinderInfo
                                32
5
  $ rattr -1 b.txtのエイリアス
  com.apple.FinderInfo:
  00000000 61 6C 69 73 4D 41 43 53 80 00 00 00 00 00 00 00
                                               |alisMACS....|
```

- 1行 拡張属性付きでファイルの一覧を表示させる
- 4行 拡張属性を持つファイルがあることが分かる
- 5行 拡張属性の内容を表示してみる

この例の拡張属性は、以下のようなものであった。

- 属性の名前:com.apple.FinderInfo
- 属性の大きさ:32 バイト
- 目的:ファイルがエイリアスであることを表す. (恐らく)

主記憶 10 / 18

アクセス制御(1)

ファイルの保護属性に基づき、ファイルに誰が何をできるか制御する.

- ビット表現の保護モード
 - UNIX で使用される rwxrwxrwx のような情報.
 - UNIX の場合、「所有者、グループ、その他」のユーザについて

r :読める (Read),

w :書ける (Write),

x :実行できる (eXecute)

を指定する.

主記憶 11 / 18

アクセス制御(2)

• ACL (Access Control List) ファイル毎に、ユーザやグループを指定して細かな制御が可能

```
1 $ ls -le a.txt
2 -rw-r--r- 1 sigemura staff 4 Jul 5 21:55 a.txt
3 $ chmod +a "group:admin allow write" a.txt
4 $ chmod +a "group:admin deny delete" a.txt
5 $ ls -le a.txt
6 -rw-r--r-+ 1 sigemura staff 4 Jul 5 21:55 a.txt
7 0: group:admin deny delete
8 1: group:admin allow write
```

- 1行 a.txt に ACL が無いことを確認した.
- **3.4** 行 chmod コマンドで a.txt に ACL 追加した.
- **7,8 行** 二行の ACL が確認できる.
- リストの先頭から順に評価する。
- 許可・不許可が決まったら評価を完了する.
- ACL で決まらない場合は rwx を使用する.

4 L F 4 DF F 4 E F 4 E F 4 E F 9) Q (*

主記憶 12 / 18

ファイルの種類

- ファイルシステム(OSカーネル)で決まっている種類 (通常ファイル・ディレクトリ・リンクなど)
- アプリケーションなどが決めている種類 (通常ファイルの拡張子で区別する)

拡張子	意味
.c, .java, .s等 .py, .pl, .php等 .txt, .html, .xml等 .jpg, .png, .bmp等 .mp3, .m4a, .wma等 .mpg, .mp4, .wmv等 .pdf, .ps, .eps等	思味 ソース・プログラム (C 言語, Java 言語, アセンブリ言語) スクリプト言語のプログラム (python, perl, PHP) プレーンテキスト, マークアップ言語 画像データ 音声データ 動画データ 印刷・表示用の文書ファイル
.zip, .tar, .tbz等 .exe, .app, 拡張子無し .doc, .docx	アーカイブファイル 実行形式プログラム(Windows, macOS, UNIX) MS Word 文書

.app だけはディレクトリの拡張子

13 / 18

主記憶

ファイルシステムの操作(1)

ディレクトリ操作

機能	対応する UNIX の API
ファイルの作成	creat, open(O_CREAT) システムコール
ディレクトリの作成	mkdir システムコール
ファイルの削除	unlink システムコール
ディレクトリの削除	rmdir システムコール
リンクの作成	link, symlink システムコール
リンクの削除	unlink システムコール
名前の変更 (移動)	rename システムコール
ディレクトリエントリの読出し	opendir, readdir, closedir 関数

- ファイルの作成は creat システムコールでもできる.
- ディレクトリの読み出しはライブラリ関数で行う。
- rename システムコールはファイルの移動もできる.

主記憶 14 / 18

ファイルシステムの操作(2)

ファイル操作

機能	対応する UNIX の API
ファイルを開く	open システムコール
データを読む	read システムコール
データを書く	write システムコール
読み書き位置を移動	1seek システムコール
ファイルを閉じる	close システムコール
ファイルの切り詰め	truncate, open(O_TRUNC) システムコール
ファイルのプログラムを実行	execve システムコール
ファイルの属性変更	chmod, chown, chgrp, utimes システムコール
ファイル属性の読出し	stat システムコール

- open はファイルの保護属性をチェックする.
- 切り詰めは専用の truncate システムコールも使える.
- ファイルの属性の読み書きができるべき.

主記憶 15 / 18

ファイルシステムの操作(3)

ファイルの共有とロック

```
#include <sys/file.h>
#define LOCK_SH 1 // 共有ロック
#define LOCK_EX 2 // 排他ロック
#define LOCK_NB 4 // ブロックしない
#define LOCK_UN 8 // ロック解除
int flock(int fd, int operation);
```

- LOCK SH: 共有ロック (shred lock)
- LOCK_EX:排他ロック (exclusive lock)
- LOCK_NB:ロックできない時,ブロックしないでエラー
- open システムコールにもロックの機能がある.

ワーキングディレクトリの変更

```
#include <unistd.h>
int chdir(const char *path);
```

◆ロト ◆昼 ▶ ◆夏 ▶ ◆夏 ▶ ● りへで

ファイルシステムの健全性(1)

一貫性チェック

- 正常終了時にはファイルシステムにアンマウントの印をする.
- OS の起動時に印がなかったら一貫性チェックをする.
- メタデータの矛盾を解消するだけ。
- ファイルが消えたり、データが消えたりは修復できない.

主記憶 17 / 18

ファイルシステムの健全性(2)

ジャーナリング・ファイルシステム

- データベースの WAL (Write Ahead Logging) のアイデア.
- NTFS, ext3, ext4, HFS+ 等が該当する. ペロトペラトベミトベミト ミークへで

主記憶 18 / 18