- 1. Suppose you would like to take an SRS of size n from a list of N units, but do not know the population size N in advance. Consider the following procedure:
- (a) Set $S_0 = \{1, 2, ..., n\}$, so that the initial sample for consideration consists of the first n units on the list.
- (b) For k = 1, 2, ..., generate a random number u_k between 0 and 1. If $u_k > n/(n+k)$, then set S_k equal to S_{k-1} . If $u_k \le n/(n+k)$, then select one of the units in S_{k-1} at random, and replace it by unit (n+k) to form S_k .

Show that S_{N-n} from this procedure is an SRS of size n. Hint: Use induction.

Solution:

Fix the sample size at n, and let k = N - n be the difference in the size between the population to the sample. For clarity, denote $S_k : \Omega \to \{1, 2, \dots, (n+k)\}^n$ a random variable whose realizations are denoted $S_k(\omega) = s_k$. We must show that S_k takes on each subset of $\{1, 2, \dots, N = n + k\}$ of size n with equal probability. We proceed by induction on k from k = 0 to k = N - n.

In the base case, k=0 implies N=n and S_0 takes on only $s_0=\{1,\ldots,n\}$ with probability 1, which is the only subset of $\{1,\ldots,N=n+0\}$ of size n. Hence it is trivally a random sample of all such subsets.

Now, assume the induction hypothesis, i.e. S_k produces an SRS for a population of size n + k – equivalently,

$$P(S_k = s_k) = 1 / \binom{n+k}{n}$$

for each subset s_k of size n from $\{1, 2, \ldots, (n+k)\}$. Upon the realization $S_{k+1} = s_{k+1}$, either the sample remains fixed with $S_{k+1} = s_k$, in which case $u_{k+1} \in \left(\frac{n}{n+k+1}, 1\right)$ with probability $\left(1 - \frac{n}{n+k+1}\right) = \left(\frac{k+1}{n+k+1}\right)$, or S_{k+1} takes on s_k with a randomly selected element replaced with (n+k+1), in which case $u_{k+1} \in \left(0, \frac{n}{n+k+1}\right)$ with probability $\left(\frac{k+1}{n+k+1}\right)$. If we assume that the selection of u_{k+1} is independent of the generation of the sample from the previous step, then in the first case

$$P(S_{k+1} = s_{k+1}) = P(S_k = s_k) P\left(U_{k+1} \in \left(\frac{n}{n+k+1}, 1\right)\right)$$
$$= {\binom{n+k}{n}}^{-1} \left(\frac{k+1}{n+k+1}\right)$$
$$= {\binom{n+k+1}{n}}^{-1}$$

In the second case, denote $s_k = \{a_1, a_2, \dots, a_n\}$, then $s_{k+1} = s_k \setminus \{a_i\} \cup \{k+1+n\}$ where a_i is the realization of the random selection in the algorithm. For each event where $\{a_1, a_2, \dots, a_n\} \setminus a_i \subset S_k$, there are (n+k) - (n-1) = k+1 possible choices that fix each a_1, \dots, a_n except for a_i . Since each of those events are disjoint and have equal probability, $P(S_{k+1} = s_{k+1} | u_k, a_i) = P(\{a_1, \dots, a_n\} \setminus a_i \in S_k) = (k+1)\binom{n+k}{n}^{-1}$. Now, assuming the independence of realization of u_k and a_i and

the previous selection, we have

$$P(S_{k+1} = s_{k+1}) = \left((k+1) \binom{n+k}{n}^{-1} \right) \cdot P\left(U_{k+1} \in \left(0, \frac{n}{n+k+1} \right] \right) \cdot P\left(A_i = a_i \right)$$

$$= (k+1) \binom{n+k}{n}^{-1} \cdot \frac{n}{n+k+1} \cdot \left(\frac{1}{n} \right)$$

$$= \binom{n+k}{n}^{-1} \frac{k+1}{n+k+1}$$

$$= \binom{n+k+1}{n}^{-1}.$$

Note that the collection of possible realizations $S_{k+1} = s_{k+1}$ contains all realizations $S_k = s_k$ which is each subset of size $n \{1, \ldots, n+k\}$ by the induction hypothesis. Certainly, s_{k+1} is a subset of size n of $\{1, 2, \ldots, n+k+1\}$ as possibly only (n+k+1) is added to s_k in the (k+1)th step, and if $\{a_1, \ldots, a_n\}$ is a subset of $\{1, \ldots, n+k+1\}$, then if $(n+k+1) = a_i$ for some a_i , then $\{a_1, \ldots, a_i = (n+k+1), \ldots, a_n\}$ is a possible realization in step two, otherwise (n+k+1) is not a_i for any i, and the subset is realized in step 1. Hence each subset of size n from $\{1, 2, \ldots, k+n+1\}$ is realized.