



| Height (inches) | Weight (kg)    |  |
|-----------------|----------------|--|
| 68              | 72             |  |
| 62              | 58             |  |
| 64              | 67             |  |
| 61              | 72             |  |
| 70              | 79             |  |
| 66              | 61             |  |
| 61              | 68             |  |
| 65              | 64             |  |
| 71              | 80             |  |
| 72              | 79             |  |
| $\bar{h} = 66$  | $\bar{w} = 70$ |  |



(68-66)(72-70)=2\*2=4 the average of (62-66)(58-70)=(-4)\*(-12)=48 all these (64-66)(67-70)=(-2)\*(-3)=6 numbers (61-66)(72-70)=(-1)(2)=-2

(72 - 66)(80 - 70) = (6)(10) = 60

## **Positive correlation**

- Top right
- Bottom left

## **Negative correlation**

- Top left
- Bottom right

$$\operatorname{cov}(h, w) = \frac{1}{n} \sum_{i} (h_i - \bar{h})(w_i - \bar{w})$$

$$\frac{1}{10}(4+48+6-2+\cdots+60)$$

Which has more influence? Positive or negative
Positive has more influence
We say that these two features are positively correlated

#### Ice cream Vs Rain



#### **Positive correlation**

- Top right
- Bottom left

# **Negative correlation**

- Top left
- Bottom right

$$cov(x, y) = \frac{1}{n} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

Which has more influence? Positive or negative

Negative has more influence

We say that these two features are positively correlated

# **Height Vs Rain**



Which has more influence? Positive or negative

Both have (approximately) equal influence
We say that these two features are uncorrelated

#### **Positive correlation**

- Top right
- Bottom left

## **Negative correlation**

- Top left
- Bottom right

$$cov(x, y) = \frac{1}{n} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$



Suppose we express height in centimetres and weight in pounds

Simply stretching the axis should not have much influence on how we quantify correlation

The definition of "correlation" does a standardisation of "covariance"



If we apply the formula of correlation, we get the same number whether we use the inch/Kg axis or cms/pounds axis

#### **Positive correlation**

- Top right
- Bottom left

## **Negative correlation**

- Top left
- Bottom right

$$cov(x, y) = \frac{1}{n} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

$$\rho_{xy} = \frac{cov(x, y)}{\sigma_x \sigma_y}$$

$$-1 \le \rho_{xy} \le 1$$

## Salary Vs Experience



## Positive correlation

- Top right
- Bottom left

## **Negative correlation**

- Top left
- Bottom right

$$cov(x, y) = \frac{1}{n} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

$$\rho_{xy} = \frac{cov(x, y)}{\sigma_x \sigma_y}$$

$$-1 \le \rho_{xy} \le 1$$

Years of Experience

Strange phenomenon: Even though we know that the two features are related, the correlation turns out to be very low

Spearman to the rescue!!!

Rank along both the x and y-axis, then take the correlations of the ranks

#### **Pearson Correlation**

$$cov(x,y) = \frac{1}{n} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

$$\rho_{hw} = \frac{\text{cov}(h, w)}{\sigma_h \sigma_w}$$

Spearman Correlation Pearson correlation of rank(X) and rank(Y)