ПРИЛОЖЕНИЕ

Образец отчета к лабораторной работе 8

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева»

Кафедра физики

Лабораторная работа № 8

«Определение коэффициента вязкости жидкости методом Стокса»

Выполнили. студенты	. p
Принял: преподавател	Ь

7. Таблица измерений:

		1					1				
۴	Пас										
R	M										
$t_{ m cp}$	၁										
t	၁										
1	M										
d	M										
б	KT/M ³										
δ_2	KT/M ³			><		<i></i>					
δ_1	KL/M ³								><		
Νο		1	2	3	4	5	1	2	3	4	5
		Масло					Глицерин				

1. Цель работы: ______

2. Приборы и принадлежности:______

3.Метод измерения:

Сила тяжести:

$$F_{\rm T} = m \cdot g = \frac{4}{3} \pi \cdot r^3 \cdot \rho \cdot g,$$

где r – _______;

ρ – _____

Выталкивающая сила:

$$F_A = \frac{4}{3}\pi \cdot r^3 \cdot \delta \cdot g,$$

где δ – ______;

Сила сопротивления:

$$F_{\text{comp}} = 6 \cdot \pi \cdot \eta \cdot r \cdot v,$$

где η – ______;

4. Расчетные формулы:

$$\eta = \frac{(\rho - \delta)g \cdot d^2 \cdot t}{18 \cdot l}$$
, где $A = \frac{(\rho - \delta) \cdot g}{18 \cdot l}$, тогда $\eta = A \cdot d^2 \cdot t$.

Если шарик падает вдоль оси цилиндрического сосуда радиусом R, то учет влияния стенок приводит к следующему выражению для коэффициента вязкости:

$$\eta = \frac{Ad^2t}{1+2,4\frac{r}{R}}$$

5. Вычисления:

6. Вывод:

$$d=2r$$
.