Math Notes

K

March 6, 2020

Contents

1	Trigonometric Concepts	2		
	1.1 Unit Circle	2		
	1.2 Basic Trigonometry	3		
	1.3 Pythagorean Theorem Identities			
	1.4 Half Angle Identities			
	1.5 Double Angle Identities			
	1.6 Power Reduction Identities			
2	Trigonometric Substitution 4			
3	Table of Basic Derivatives			
4	Table of Basic Integrals	3 3 3 3 3 3 3 4 4 4 5 5 6 6 6 6 6 7 7 7 7		
5	Substitution Techniques	6		
	5.1 U Substitution			
	5.2 Integration by Parts			
6	Engineering Formulas	7		
	6.1 Spring Formulas	7		
	6.2 Fluid Formulas	7		

1 Trigonometric Concepts

1.1 Unit Circle

 $Source: \verb|https://etc.usf.edu/clipart/43200/43215/unit-circle7_43215|. \\ \verb|htm|$

1.2 Basic Trigonometry

$$sin(\theta) = \frac{Opposite}{Hypotenuse}$$
 $cos(\theta) = \frac{Adjacent}{Hypotenuse}$ $tan(\theta) = \frac{Opposite}{Adjacent}$
 $= \frac{y}{1} = y$ $= \frac{x}{1} = x$ $= \frac{y}{x}$
 $= \frac{sin(\theta)}{cos(\theta)}$

$$csc(\theta) = \frac{1}{sin(\theta)}$$
 $sec(\theta) = \frac{1}{cos(\theta)}$ $cot(\theta) = \frac{cos(\theta)}{sin(\theta)}$

1.3 Pythagorean Theorem Identities

$$sin^{2}\theta + cos^{2}\theta = 1$$
$$tan^{2}\theta + 1 = sec^{2}\theta$$
$$1 + cot^{2}\theta = csc^{2}\theta$$

1.4 Half Angle Identities

$$cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1 + cos(\theta)}{2}}$$

$$tan(\frac{\theta}{2}) = \pm \sqrt{\frac{1 - cos(\theta)}{2}}$$

$$= \frac{sin(\theta)}{1 + cos(\theta)}$$

$$= \frac{1 - cos(\theta)}{sin(\theta)}$$

1.5 Double Angle Identities

$$sin(2\theta) = 2sin\theta cos\theta$$

$$cos(2\theta) = cos^2\theta - sin^2\theta$$

$$= 2cos^2\theta - 1$$

$$= 1 - 2sin^2\theta$$

$$tan(2\theta) = \frac{2tan\theta}{1 - tan^2\theta}$$

1.6 Power Reduction Identities

$$sin^{2}\theta = \frac{1 - cos2\theta}{2}$$

$$cos^{2}\theta = \frac{1 + cos2\theta}{2}$$

$$tan^{2}\theta = \frac{1 - cos2\theta}{1 + cos2\theta}$$

$$cot^{2}\theta = \frac{2}{1 + cos2\theta}$$

$$cot^{2}\theta = \frac{2}{1 + cos2\theta}$$

$$cot^{2}\theta = \frac{1 + cos2\theta}{1 - cos2\theta}$$

2 Trigonometric Substitution

$$\begin{array}{lll} \text{Expression} & \text{Substitution} & \text{Identity} \\ \sqrt{a^2-b^2x^2} & x=\frac{a}{b}sin\theta & 1-sin^2\theta=cos^2\theta \\ \sqrt{a^2+b^2x^2} & x=\frac{a}{b}tan\theta & 1-tan^2\theta=sec^2\theta \\ \sqrt{b^2x^2-a^2} & x=\frac{a}{b}sec\theta & sec^2\theta-1=tan^2\theta \\ \end{array}$$

3 Table of Basic Derivatives

C	$\frac{dy}{dx}$
C	0
x	1
$ax^2 + bx + c$	2ax + b
x^n	nx^{n-1}
$\frac{x^{-1}, \frac{1}{x}}{\sqrt{x}}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sqrt[n]{x}$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$
ln(x)	$\frac{1}{x}$
$log_a(x)$	$\frac{1}{xln(a)}$
a^x	$a^x ln(a)$
e^x	e^x
sin(x)	cos(x)
cos(x)	-sin(x)
tan(x)	$\frac{1}{\cos^2 x}$
cot(x)	$-\frac{1}{\cos^2 x}$
sec(x)	tan(x)sec(x)
csc(x)	-cot(x)csc(x)

4 Table of Basic Integrals

	f(x)	$\int f(x)dx = F(x) + C$
1	x^{α}	$\frac{x^{\alpha+1}}{\alpha+1} + C$
	$\alpha \neq 0$	· ·
2	sin(kx)	$-\frac{\cos(kx)}{k} + C$
3	cos(kx)	$\frac{k}{\sin(kx)} + C$
4	$sec^2(kx)$	$\frac{k}{tan(kx)} + C$
5	$csc^2(kx)$	$-\frac{\cot(kx)}{k+C}$
6	e^{kx}	$\frac{-\frac{e^{kx}}{k} + C}{\frac{e^{kx}}{k} + C}$
7	$x^{-1}, \frac{1}{x}$	ln x + C
8	$\frac{1}{\sqrt{1-x^2}}$	$sin^{-1} + C$
9	$\frac{1}{1+x^2}$	$tan^{-1}x + C$
10	$\frac{1+x^2}{a^{kx}}$	$\frac{1}{klna}a^{kx} + C$
11	$\frac{1}{\sqrt{a^2-x^2}}$	$sin^{-1}\frac{x}{a} + C$
12	$\frac{1}{a^2+x^2}$	$\frac{1}{a}tan^{-1}(x/a) + C$

5 Substitution Techniques

5.1 U Substitution

$$\int f(g(x))g'(x)dx = \int f(u)du = F(u) + C$$
where: $u = g(x), du = g'(x)$

5.2 Integration by Parts

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx$$
$$\int udv = uv - \int vdu$$

$$\int_{a}^{b} f(x)g'(x) = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} g(x)f'(x)dx$$

6 Engineering Formulas

6.1 Spring Formulas

$$F = kx$$

$$W = \int_{a}^{b} kx dx$$

F = Force (Newtons [N]) $k = \text{spring constant (Newton meters }^{N}/_{m})$ x = change in distance (meters [m]) W = Work (Joules [J]) a = initial length (meters [m]) b = final length (meters [m])

6.2 Fluid Formulas

$$W = F \cdot d = \int F dx$$

$$V = \pi r^2 h \text{(apply to cylinders)}$$

$$F = m \cdot a = V \cdot \rho$$

$$W = \text{Weight ()}$$

$$F = \text{Force (Newtons [N])}$$

$$d = \text{distance (meters [d])}$$

$$m = \text{mass (meters}^3[m^3])$$

$$a = \text{acceleration (meters per second}^2[m^*/s^2])$$

$$\rho = \text{Something}$$