

"Hi, honey... I'm Ohm!"

# CIRCUITOS ELÉCTRICOS

# Problemas resolvidos

I



Circuitos Eléctricos – 2019/2020



a) Qual foi a potência fornecida ao elemento E em cada um dos 3 intervalos ?

# 1.1 - Problema 6





a)

$$P[0,2] = 5 \times 1mA = 5mW$$

$$P[2,3] = 2 \times 0 = 0W$$

 $P[3,5]=2\times (-1mA)=-2mW$  (neste intervalo o elemento E fornece potência ao exterior)

E. Martins, DETI Universidade de Aveiro

I-3

#### Circuitos Eléctricos - 2019/2020

# **1.1 – Problema 6**





b) Qual foi a energia fornecida ao elemento E durante as primeiras duas horas ?

# 1.1 - Problema 6





b) 
$$P = VI = 5x(1mA) = 5mW$$
  
 $E = Pxt = (5mW)(2x60x60) = 36J$ 

E. Martins, DETI Universidade de Aveiro

I-5

#### Circuitos Eléctricos - 2019/2020

# **1.1 – Problema 6**





c) Supondo uma energia inicial nula, qual é a energia que permanece (restante) no elemento E ao fim das 5 horas ?

## 1.1 - Problema 6



c) 
$$E[0,2] = 36J$$
 
$$E[3,5] = -2mW \times 2h \times 60m \times 60s = -14.4J$$
 
$$E_{restante} = 36J - 14.4J = 21.6J$$

E. Martins, DETI Universidade de Aveiro

I-7

Circuitos Eléctricos – 2019/2020

## **1.2** – Problema 10

Um circuito composto por um bateria de automóvel de 12Volts e uma lâmpada, apresentado na figura 1.2 fornece à lâmpada uma energia de 460.8Wh durante o período de 8 horas.



- a) Qual é a potência fornecida à lâmpada ?
- b) Qual é a corrente que percorre a lâmpada?

# 1.2 – Problema 10



a) Uma vez que a potência é igual à energia a dividir pelo tempo temos:

$$P = \frac{E}{t} = \frac{460.8}{8} = 57.6W$$

b) Uma vez que a corrente é igual à potência a dividir pela tensão:

$$I = \frac{P}{V} = \frac{57.6}{12} = 4.8A$$

E. Martins, DETI Universidade de Aveiro

I-9

#### Circuitos Eléctricos – 2019/2020



- Calcular valores das tensões, correntes e potências dissipadas.
- Para cada elemento, indicar se está a dissipar ou a fornecer potência (D/F).

| Tabela I |       |       |                    |     |  |  |  |
|----------|-------|-------|--------------------|-----|--|--|--|
| Elemento | V (V) | I (A) | P <sub>d</sub> (W) | D/F |  |  |  |
| a        | 10    | 25    |                    |     |  |  |  |
| b        | -2    |       |                    |     |  |  |  |
| c        |       | 5     |                    |     |  |  |  |
| d        | 12    |       |                    |     |  |  |  |
| e        | 10    | 10    |                    |     |  |  |  |
| f        |       |       |                    |     |  |  |  |
| g        |       |       |                    |     |  |  |  |



$$\begin{split} V_a - V_c + V_b &= 0 \Leftrightarrow 10 - V_c - 2 = 0 \Leftrightarrow V_c = 8V \\ V_f &= V_e = 10V \\ V_a + V_e - V_g - V_d &= 0 \Leftrightarrow 10 + 10 - V_g - 12 = 0 \Leftrightarrow V_g = 8V \end{split}$$

I-11

#### Circuitos Eléctricos - 2019/2020



| Tabela I |       |       |                    |     |  |  |  |
|----------|-------|-------|--------------------|-----|--|--|--|
| Elemento | V (V) | I (A) | P <sub>d</sub> (W) | D/F |  |  |  |
| a        | 10    | 25    |                    |     |  |  |  |
| b        | -2    |       |                    |     |  |  |  |
| c        |       | 5     |                    |     |  |  |  |
| d        | 12    |       |                    |     |  |  |  |
| e        | 10    | 10    |                    |     |  |  |  |
| f        |       |       |                    |     |  |  |  |
| g        |       |       |                    |     |  |  |  |

$$\begin{split} I_b &= I_c = 5A \\ I_a + I_b + I_d &= 0 \Leftrightarrow 25 + 5 + I_d = 0 \Leftrightarrow I_d = -30A \\ I_g &= I_d = -30A \\ I_e + I_f + I_g &= 0 \Leftrightarrow 10 + I_f - 30 = 0 \Leftrightarrow I_f = 20A \end{split}$$



| Tabela I |       |      |                    |     |  |  |  |
|----------|-------|------|--------------------|-----|--|--|--|
| Elemento | V (V) | I(A) | P <sub>d</sub> (W) | D/F |  |  |  |
| a        | 10    | 25   | 250                | D   |  |  |  |
| b        | -2    | 5    | 10                 | D   |  |  |  |
| c        | 8     | 5    | 40                 | D   |  |  |  |
| d        | 12    | -30  | -360               | F   |  |  |  |
| e        | 10    | 10   | 100                | D   |  |  |  |
| f        | 10    | 20   | 200                | D   |  |  |  |
| g        | 8     | -30  | -240               | F   |  |  |  |

I-13

#### Circuitos Eléctricos – 2019/2020

# 1.4 - Problema 16

Dado o circuito eléctrico da figura 1.5 em que as unidades das resistências estão todas em ohms  $(\Omega)$ .



#### Calcular:

- a) O valor da corrente ia.
- b) O valor da tensão va.
- c) A potência fornecida pela fonte de 15Volts.

# 1.4 - Problema 16



E. Martins, DETI Universidade de Aveiro

I-15

#### Circuitos Eléctricos - 2019/2020



**KVL:** 
$$-15 - v_b + 50 + v_c - v_a = 0$$

$$v_a = 1200i_a$$
  
 $v_b = 800i_a$   
 $-15 - 800i_a + 50 - 3000i_a - 1200i_a = 0$   
 $v_c = -3000i_a$   
 $i_a = 7mA$ 



$$i_a = 7mA$$
  $v_a = 1200i_a = 1200 \times 0.007 = 8.4V$ 

I-17

#### Circuitos Eléctricos - 2019/2020



$$i_a = 7mA$$
  $P_{a(15)} = VxI = 15x0.007 = 105mW$ 

Mas isto é a potência absorvida!

$$P_{f(15)} = -105mW$$

# **1.5** – **Problema 14A**

## Dado o circuito eléctrico



Calcular a tensão v e a corrente i.

E. Martins, DETI Universidade de Aveiro

I-19

Circuitos Eléctricos - 2019/2020

# 



$$v = -\frac{R_p}{2+3+R_p} = 10$$

$$v = -0.98V$$

$$i = \frac{v}{R_p} = -1.8A$$

E. Martins, DETI Universidade de Aveiro

# Calcular a resistência equivalente entre A e B



E. Martins, DETI Universidade de Aveiro

I-21

Circuitos Eléctricos - 2019/2020





I-23

Circuitos Eléctricos – 2019/2020





I-25

Circuitos Eléctricos - 2019/2020





I-27

Circuitos Eléctricos – 2019/2020



$$R_{eq} = [(6+6)//4] + 8 = 3 + 8 = 11K\Omega$$



# CIRCUITOS ELÉCTRICOS

# Problemas resolvidos

II



Circuitos Eléctricos - 2019/2020

# 1 - Calcule *Req* (valores das resistências em *Ohm*)



# 1º Passo: redesenhar o circuito de maneira a evidenciar séries e paralelos...



II-3

Circuitos Eléctricos - 2019/2020

# 2º Passo: associar resistências por partes...



$$\frac{1}{R_p} = \frac{1}{15+10} + \frac{1}{30+20} + \frac{1}{40+10} \Leftrightarrow R_p = 12.5\Omega$$

$$R_{eq} = 2 + R_p + 8 = 22.5\Omega$$

# 2 - Calcule Req (valores das resistências em Ohm)



11-5

Circuitos Eléctricos - 2019/2020

# 1º Passo: redesenhar o circuito de maneira a evidenciar séries e paralelos (e evitar elementos oblíquos)...



2

# 2º Passo: associar resistências por partes...



Circuitos Eléctricos - 2019/2020

# 3º Passo: associar o resto...



$$R_{eq} = (30/30) + 3 + 2 = 20\Omega$$

# 3 - Calcule a potência absorvida por cada um dos elementos do circuito.



**Prob. 19** 

11-9

Circuitos Eléctricos - 2019/2020

# 1º Passo: redesenhar o circuito...



# 2º Passo: aplicar Análise Nodal...



$$\frac{v_1}{40} + \frac{v_1}{5} - 0.1v_1 - 3.1 = 0$$
$$v_1 = 24.8V$$

II-11

Circuitos Eléctricos - 2019/2020

# 3º Passo: calculamos a potências absorvidas



#### Resistências:

$$P_{40\Omega} = \frac{(v_1)^2}{40} = \frac{(24.8)^2}{40} = 15.4W$$

$$P_{5\Omega} = \frac{(v_1)^2}{5} = 123W$$

#### **Fontes:**

$$P_{0.1v_1} = VxI = -v_1(0.1v_1) = -61.5W$$
  
 $P_{3.1} = VxI = -v_1(3.1) = -76.9W$ 

Ambas as fontes fornecem energia!

## 4º Passo: verificar o balanço das potências



$$\sum_{i} P_{i} = 15.4 + 123 - 61.5 - 76.9 = 0$$

II-13

Circuitos Eléctricos - 2019/2020

# 4 - Circuito representa um carregador ligado a uma bateria.



Calcular o valor de R de maneira que:

- a) a corrente de carga seja 4A;
- b) a potência fornecida à bateria seja 25W;
- c) a tensão aos terminais da bateria seja 11V.

# a) Aplicar KVL



$$-13 + 0.02i + Ri + 0.035i + 10.5 = 0$$

$$R = \frac{2.5}{i} - 0.055$$

Para 
$$i = 4A$$
,  $R = 0.57\Omega$ 

II-15

Circuitos Eléctricos - 2019/2020

# **b)** Começamos por calcular *i*...



$$P_{BAT} = 25W$$

$$P_{Bat} = 25$$

$$P_{Bat} = P_{35} + P_{10.5} = 25$$

$$0.035i^{2} + 10.5i = 25$$

$$i^{2} + 300i - 714.3 = 0$$

$$i = \frac{-300 \pm \sqrt{300^2 - 4(-714.3)}}{2}$$
$$i = 2.36A \quad \lor \quad i = -302.4A$$

# b) ... e depois calculamos o valor de R para esse i



$$R = \frac{2.5}{i} - 0.055$$
 Para  $i = 2.36A$ ,  $R = 1\Omega$ 

II-17

Circuitos Eléctricos - 2019/2020

# c) Começamos por aplicar KVL no loop de saída para obter i



$$-11+0.035i+10.5=0$$
  $R = \frac{2.5}{i} - 0.055$   $i = 14.29A$  Para  $i = 14.29A$ ,  $R = 0.12\Omega$ 

- 5 Use a Análise Nodal para calcular
- a)  $v_x e v_y$
- b) a potência absorvida pela resistência de  $6\Omega$



II-19

Circuitos Eléctricos - 2019/2020

## 1º Passo: identificar nós do circuito e tensões nodais...



### 2º Passo: marcar correntes e tensões nas resistências...



# **NOTA:** Os sentidos das correntes e as polaridades das tensões são de referência – por isso são arbitrárias!

II-21

Circuitos Eléctricos - 2019/2020

# 3º Passo: Aplicar KCL aos nós cuja tensão é desconhecida...



Nó 
$$v_2$$
:  $i_x + i_z = 10$   
Nó  $v_3$ :  $i_z + i_a + i_y = 0$ 

# 4º Passo: Exprimir correntes em função das tensões ...



Nó 
$$v_2$$
:  $i_x + i_z = 10 \Leftrightarrow \frac{v_x}{3} + \frac{v_z}{6} = 10$ 

Nó 
$$v_3$$
:  $i_z + i_a + i_y = 0 \Leftrightarrow \frac{v_z}{6} + \frac{v_3}{30} + \frac{v_y}{12} = 0$ 

11-23

Circuitos Eléctricos - 2019/2020

# 5º Passo: Exprimir correntes em função das tensões nodais...



Nó 
$$v_2$$
:  $\frac{v_x}{3} + \frac{v_z}{6} = 10 \iff \frac{240 - v_2}{3} + \frac{v_3 - v_2}{6} = 10$ 

Nó 
$$v_3$$
:  $\frac{v_z}{6} + \frac{v_3}{30} + \frac{v_y}{12} = 0 \Leftrightarrow \frac{v_3 - v_2}{6} + \frac{v_3}{30} + \frac{v_3 - 60}{12} = 0$ 

II-24

# 6º Passo: Resolver sistema de equações...



$$\begin{cases} \frac{240 - v_2}{3} + \frac{v_3 - v_2}{6} = 10\\ \frac{v_3 - v_2}{6} + \frac{v_3}{30} + \frac{v_3 - 60}{12} = 0 \end{cases}$$

$$\begin{cases} v_2 = 181.5V \\ v_3 = 124.4V \end{cases}$$

II-25

Circuitos Eléctricos - 2019/2020

# 7º Passo: Calcular o que é pedido.



**a**)

$$v_x = 240 - v_2 = 58.5V$$
  
 $v_y = v_3 - 60 = 64.5V$ 

$$P_{6\Omega} = \frac{(v_z)^2}{6} = \frac{(v_3 - v_2)^2}{6} = 543.4W$$

# 6 - Calcule *Req* (valores das resistências em *Ohm*)



II-27

Circuitos Eléctricos - 2019/2020

# 1º Passo: redesenhar o circuito de maneira a evidenciar séries e paralelos...



# 2º Passo: Associar resistências gradualmente da direita para a esquerda...



II-29

#### Circuitos Eléctricos - 2019/2020





II-31

Circuitos Eléctricos - 2019/2020

# 7 - Calcule *Req*



# Redesenhar o circuito de maneira a evidenciar séries e paralelos...



$$R_{eq} = R //[(R // R) + (R // R)]$$

$$R_{eq} = \frac{R}{2}$$



II-33

Circuitos Eléctricos - 2019/2020

# 8 – Calcular $v_A$ usando Análise Nodal.



# 1º Passo: identificar nós do circuito e tensões nodais...



II-35

Circuitos Eléctricos - 2019/2020

## 2º Passo: marcar correntes e tensões nas resistências...



Mais uma vez, não esquecer que estas marcações têm sentidos e polaridades arbitrárias!

# 3º Passo: Aplicar KCL aos nós cuja tensão é desconhecida...

Temos que escrever duas equações nodais:

- $\triangleright$  nó  $v_2$  e
- Super-nó

**Nó** 
$$v_2$$
:  $i_x + i_a = 8$ 



**Super-nó:** 
$$i_3 + 8 = i_x + 5$$

II-37

Circuitos Eléctricos - 2019/2020

4º Passo: Exprimir correntes em função das tensões...

Notar que  $v_a = v_2$ 



Nó 
$$v_2$$
:  $i_x + i_a = 8 \Leftrightarrow \frac{v_x}{2} + \frac{v_2}{5} = 8$ 

Super-nó: 
$$i_3 + 8 = i_x + 5 \Leftrightarrow \frac{v_3}{2.5} + 8 = \frac{v_x}{2} + 5$$

# 5° Passo: Exprimir correntes em função das tensões nodais...



Nó 
$$v_2$$
:  $\frac{v_x}{2} + \frac{v_2}{5} = 8 \Leftrightarrow \frac{v_2 - v_1}{2} + \frac{v_2}{5} = 8$ 

Super-nó: 
$$\frac{v_3}{2.5} + 8 = \frac{v_x}{2} + 5 \Leftrightarrow \frac{v_3}{2.5} + 8 = \frac{v_2 - v_1}{2} + 5$$

II-39

Circuitos Eléctricos - 2019/2020

6º Passo: Obter equação do super-nó e resolver...

# Equação do super-nó:

$$0.8v_a = v_1 - v_3$$

Ou, como  $v_a = v_2$ 

$$0.8v_2 = v_1 - v_3$$



Juntando esta às duas equações anteriores... 
$$\begin{cases} -0.5v_1 + 0.5v_2 - v_3/2.5 = 3 \\ 0.5v_1 - 0.7v_2 = -8 \\ v_1 - 0.8v_2 - v_3 = 0 \end{cases} \quad \begin{cases} v_1 = 20.3V \\ v_2 = 25.9V \\ v_3 = -0.45V \end{cases}$$

# 9 – Calcular $v_A$ usando, agora, Análise de Malhas.



II-41

Circuitos Eléctricos - 2019/2020

# 1º Passo: identificar as malhas do circuito e atribuir correntes de malha...



Mais uma vez, não esquecer que os sentidos das correntes de malha são arbitrários

2º Passo: ... fontes de corrente dão lugar a simplificações... e a super-malhas!



Circuitos Eléctricos - 2019/2020

3º Passo: marcar tensões nas resistências...



4º Passo: Aplicar KVL às malhas/super-malhas...



Usando o sentido horário...

Super-malha: 
$$-v_a + v_x + 0.8v_a + v_y = -0.2v_a + v_x + v_y = 0$$

II-45

Circuitos Eléctricos - 2019/2020

5º Passo: Exprimir tensões em função das correntes de

malha...

$$v_a = 5(i_1 - i_3)$$

$$v_x = 2(i_2 - i_1)$$

$$v_y = 2.5i_3$$

Substituindo em...

$$-0.2v_a + v_x + v_y = 0$$



**Obtemos** 

$$-0.2[5(i_1-i_3)]+2(i_2-i_1)+2.5i_3=-3i_1+2i_2+3.5i_3=0$$

#### 6º Passo: Aplicar KCL à super-malha e resolver...

A fonte de corrente de 8A pode ser expressa por

$$i_2 - i_3 = 8$$

Juntando esta à equação anterior obtemos:

$$\begin{cases} i_1 = 5 \\ i_2 - i_3 = 8 \\ -3i_1 + 2i_2 + 3.5i_3 = 0 \end{cases}$$



11-47

Circuitos Eléctricos - 2019/2020

## 7º Passo: Calcular o que é pedido.



## 10 – Calcular K de modo que a tensão $v_x$ seja $\theta V$



11-49

Circuitos Eléctricos - 2019/2020

## O problema resolve-se partindo da suposição $v_x = \theta V \dots$



$$i_1 = \frac{v_x - (-2)}{1} = 2A$$

$$i_2 = i_1 = 2A$$

$$i_3 = i_2 + 1 = 3A$$



$$\frac{v_y - v_x}{4} = i_2 \Leftrightarrow v_y = 4i_2 = 8V$$

$$\frac{v_z - v_y}{3} = i_3 \Leftrightarrow v_z = 3i_3 + v_y = 17V$$

$$v_z = Kv_y \Leftrightarrow K = 17/8$$

II-51



## CIRCUITOS ELÉCTRICOS

## Problemas resolvidos





Circuitos Eléctricos - 2019/2020

1 — As tensões indicadas nos terminais do circuito abaixo são relativas a um nó de referência não representado. Calcule o valor da tensão nodal  $v_x$  e a potência fornecida pela fonte de 6V.



## 1: calculo de $v_x$



$$v_y = v_3 + 10 \iff v_y = (3)(2) + 10 = 16V$$
  
 $v_y - v_x = 6 \iff v_x = v_y - 6 = 10V$ 

III-3

Circuitos Eléctricos - 2019/2020



$$i_8 = \frac{10-2}{8} = 1A$$

$$P_{a6} = V \times I = 6 \times 1 = 6W$$
 **É a potência absorvida!**

$$P_{f6} = -6W$$

## 2 - Calcule Req (o valor de todas as resistências é $10\Omega$ )









$$R_{eq} = (16//5) + (16//5) = 7.62\Omega$$

111-7

Circuitos Eléctricos - 2019/2020

# 3 – Usando Análise de Malhas calcule a potência fornecida pela fonte dependente.



# 1º Passo: identificar as malhas do circuito e atribuir correntes de malha...



III-9

Circuitos Eléctricos - 2019/2020

# 2º Passo: identificar super-malhas e malhas com fontes de corrente na periferia



#### 3º Passo: marcar tensões nas resistências...



III-11

Circuitos Eléctricos - 2019/2020

### 4º Passo: Aplicar KVL à malha e super-malha...

- ●Temos de escrever:
- uma equação para a malha 2;
- uma equação para a super-malha.



**Malha 2:** 
$$-60 - v_x + 6i_a = 0$$

**Super-malha:** 
$$-6i_a + v_x - v_y + v_z + v_w = 0$$

### 5º Passo: Exprimir tensões em função das correntes de malha...



 $v_{w} = 4(i_3 - i_4)$ 



III-13

Circuitos Eléctricos - 2019/2020

#### 6º Passo: Resolver equações...

#### Sabendo que

$$i_4 = 5A$$

$$i_a = i_1$$

$$i_3 - i_1 = 4$$

e substituindo tudo nas equações da malha 2 e da super-malha...

$$\begin{cases} 2i_1 + i_2 = 30 \\ 4i_1 - 2i_2 + 4i_3 = 35 \\ i_3 - i_1 = 4 \end{cases}$$





$$\begin{cases} i_1 = 6.58A \\ i_2 = 16.83A \\ i_3 = 10.58A \end{cases}$$

#### 7º Passo: Calcular o que é pedido...



## A potência absorvida pela fonte dependente é

$$P_{a6} = VxI = (6i_a)(i_2 - i_3)$$
$$= (6x6.58)(16.58 - 10.58)$$
$$= 236.9W$$

A potência fornecida é

$$P_{f6} = -P_{a6} = -236.9W$$

III-15

Circuitos Eléctricos - 2019/2020

- 4 Usando teorema da sobreposição calcule
- a) O valor de  $i_x$
- b) O valor que deverá ter a fonte de corrente, para que  $i_x$  diminua para metade do valor obtido em a)



a) Desactivemos primeiro a fonte de corrente...



Usando KVL: 
$$-v_x - 4 + 3i_{x1} + 5v_x = 0$$

Substituindo: 
$$v_x = -1i_{x1} \implies i_{x1} - 4 + 3i_{x1} - 5i_{x1} = 0$$
  
 $i_{x1} = -4A$ 

III-17

Circuitos Eléctricos - 2019/2020

a) ... e agora anulamos a fonte de tensão de 4V.



**Aplicando KCL:** 

$$i_{x2} + \frac{v_x}{1} = I$$

e sabendo que:

$$\frac{v_x - 5v_x}{3} = i_{x2} \Leftrightarrow v_x = -\frac{3}{4}i_{x2}$$

substituindo...

$$i_{x2} - \frac{3}{4}i_{x2} = I \Leftrightarrow i_{x2} = 4I$$
  $i_{x2} = 8A$ 

## a) Aplicamos o Teorema da Sobreposição para obter $i_x$



$$i_x = i_{x1} + i_{x2} = -4 + 8 = 4A$$

III-19

Circuitos Eléctricos - 2019/2020

## **b)** Para obter metade do valor anterior de $i_x$ ...

$$i_x = i_{x1} + i_{x2} = -4 + 4I = 4/2$$

$$I = 1.5A$$



## 5 - Calcule $v_6$ pelo Teorema da Sobreposição



A aplicação do Teorema da Sobreposição não obriga que se considere o efeito individual de cada uma das fontes. Por vezes é mais útil agrupar fontes e considerar o efeito de cada grupo. Este exemplo ilustra este ponto.

III-21

Circuitos Eléctricos - 2019/2020

#### 1º Passo: consideremos o efeito só das fontes de corrente



#### 2º Passo: ... e agora apenas o efeito da fonte de tensão



III-23

Circuitos Eléctricos - 2019/2020

6 — Usando o Teorema da Sobreposição, determine o intervalo de valores da corrente  $I_X$  que garante que a potência dissipada em qualquer uma das resistências do circuito não ultrapassa os 250mW.



# 1º Passo: comecemos por calcular os limites das correntes em cada uma das resistências.



$$P_1 = 100(i_1)^2 < 250mW \iff |i_1| < 50mA$$

$$P_2 = 64(i_2)^2 < 250mW \iff |i_2| < 62.5mA$$

III-25

Circuitos Eléctricos - 2019/2020

## 2º Passo: consideremos agora só a fonte de tensão



$$i_{11} = i_{21} = \frac{6}{100 + 64} = 36.6 \text{mA}$$

#### 3º Passo: consideremos agora só a fonte de corrente



Aplicando a fórmula do divisor de corrente:

$$i_{12} = -\frac{64}{100 + 64}I_X = -0.39I_X$$

$$i_{22} = \frac{100}{100 + 64} I_X = 0.61 I_X$$



III-27

Circuitos Eléctricos - 2019/2020

## 4º Passo: aplicamos agora o Teorema da Sobreposição



$$i_1 = i_{11} + i_{12} = 36.6 - 0.39I_X$$

$$i_2 = i_{21} + i_{22} = 36.6 + 0.61I_X$$

# $5^{\circ}$ Passo: finalmente obtemos os limites de $I_X$ para cada resistência

#### Resistência de $100\Omega$

$$i_1 = 36.6 - 0.39I_X$$

#### Sabendo que

$$|i_1| < 50 mA$$
 ou  $-50 < i_1 < 50$ 

#### Obtém-se

$$-34.4mA < I_x < 222.1mA$$

#### Resistência de $64\Omega$

$$i_2 = 36.6 + 0.61I_X$$
 $|i_2| < 62.5mA$ 
 $-62.5 < i_2 < 62.5$ 

$$-162.5mA < I_x < 42.5mA$$

## O intervalo de valores permissível para $I_X$ será pois:

$$-34.4mA < I_X < 42.5mA$$

III-29

Circuitos Eléctricos - 2019/2020

# 7 — Calcule a potência dissipada na resistência de 1M. Comece por simplificar o circuito usando sucessivas transformações de fontes.



## Recordando a Transformação de fontes...



III-31

#### Circuitos Eléctricos - 2019/2020





Circuitos Eléctricos - 2019/2020

# 8 – Usando transformação de fontes, determine o valor máximo de V e o valor máximo de I.





Circuitos Eléctricos - 2019/2020



$$(200V)/(60\Omega) = \frac{20}{6}A$$





III-37

#### Circuitos Eléctricos - 2019/2020





Circuitos Eléctricos – 2019/2020

#### ... finalmente obtemos os valores máximos de Ve de I



• Se  $R = \infty$  (circuito aberto)  $\Rightarrow I = 0$ 

$$V_{\text{max}} = 255.4V$$

• Se 
$$R = \theta$$
 (curto-circuito)  $\Rightarrow V = \theta$ 

$$I_{\text{max}} = \frac{255.4}{48.8} = 5.23A$$

#### Relembrando...

→ Resistência em paralelo com fonte de tensão



Aplicando KVL ao circuito:

$$-v_S + R_S i_L + v_L = 0$$
$$v_L = -R_S i_L + v_S$$

• ... igual à fonte real de tensão!

 Do ponto de vista dos terminais A e B, o circuito é equivalente a uma fonte real de tensão.

III-41

Circuitos Eléctricos - 2019/2020

#### Relembrando...

→ Resistência em série com fonte de corrente



• Aplicando KCL ao nó superior:

$$i_L = -i_i + i_S = -\frac{1}{R_i} v_L + i_S$$

• ... igual à fonte real de corrente!

 Do ponto de vista dos terminais A e B, o circuito é equivalente a uma fonte real de corrente.

# 9 – Calcular I. Simplificar primeiro o circuito usando transformações de fontes.









$$-6 + 29I - 51v_x + v_x + 9 = 0$$

$$v_x = 2I$$

De onde se tira

$$I = 43.2 mA$$



# 10 – Calcular $v_I$ . Simplificar primeiro o circuito usando transformações de fontes.





Circuitos Eléctricos - 2019/2020



III-49

#### Circuitos Eléctricos - 2019/2020



$$v_1 = -\frac{2}{2+24} (34v_1 - 0.6)$$

#### **Donde**

$$v_1 = 12.8 mV$$





## CIRCUITOS ELÉCTRICOS

Problemas resolvidos





Circuitos Eléctricos - 2019/2020

- 1 Efectuaram-se as seguintes medições de tensão aos terminais de uma fonte de alimentação DC de laboratório:
- > 75V, com a fonte em aberto;
- $\succ$  60V, tendo-se ligado previamente uma resistência de 20 $\Omega$  entre os terminais da fonte.

Com base nestes dados, calcule o equivalente de Thévenin da fonte de alimentação.

Como sabemos, uma fonte de tensão real pode representarse pelo circuito...



... que tem, portanto, a mesma forma que o equivalente de Thévenin dessa fonte, com  $v_T = v_S$  e  $R_T = R_i$ .

IV-3

Circuitos Eléctricos - 2019/2020

Antes de prosseguir, recordemos, mais um vez, o omnipresente e infinitamente recorrente, divisor de tensão © ...

#### Divisor de tensão



$$v_2 = \frac{R_2}{R_1 + R_2} v_s$$

## Medição em circuito aberto: 75V



$$v_{oc} = 75V = v_T$$

#### Medição com resistência de $20\Omega$ : 60V



$$v_R = \frac{20}{R_T + 20} \, 75 = 60V$$

$$R_T = 5\Omega$$

IV-5

Circuitos Eléctricos - 2019/2020

# O equivalente de Thévenin da fonte de alimentação é portanto.



2 – Calcule os equivalentes de Thévenin e de Norton entre os terminais A e B do circuito.



IV-7

Circuitos Eléctricos - 2019/2020

1º Passo: Comecemos por determinar a resistência de Thévenin  $(R_T)$  que é, como sabemos, igual à resistência de Norton  $(R_N)$ .

Segundo a definição, esta resistência é:

• a resistência equivalente vista aos terminais do circuito quando este é desativado, ou seja, quando todas as fontes independentes de tensão são curto-circuitadas e todas as fontes independentes de corrente são abertas (as fontes dependentes mantêm-se).

## desactivando as fontes...



#### Circuitos Eléctricos - 2019/2020



## $2^{\circ}$ Passo: calculo de ou $v_T$ e $i_N$

### Equivalente de Thévenin



#### **Equivalente de Norton**



Sabemos que  $i_N = v_T / R_T$ 

portanto, podemos optar por determinar ou  $v_T$  ou  $i_N$  ... o que for mais fácil de obter!

IV-11

Circuitos Eléctricos - 2019/2020

# $v_T$ é igual à tensão em circuito aberto



# $i_N$ é igual à corrente de curto-circuito



#### Calculemos a tensão em circuito aberto



#### Usando análise nodal

## Nó $v_x$ :

$$\frac{500 - v_x}{8} = \frac{v_x}{12} + \frac{v_x - v_T}{5.2}$$

#### Nó A:

$$10 + \frac{500 - v_T}{30} + \frac{v_x - v_T}{5.2} = 0$$

#### Resolvendo...

$$v_x = 360V$$

$$v_T = 425V$$

IV-13

Circuitos Eléctricos - 2019/2020

## O cálculo da corrente de curto-circuito seria, no entanto, mais fácil!...



$$i_N = 10 + i_1 + i_2$$
$$= 10 + \frac{500}{30} + \frac{v_y}{5.2}$$

$$v_y = \frac{5.2//12}{8 + (5.2//12)} 500 = 156.1V$$

$$i_N = 56.67A$$

### Os equivalentes de Thévenin e de Norton são portanto

### **Equivalente de Thévenin**

### Equivalente de Norton





Notar que, como era de esperar, verifica-se  $i_N = v_T/R_T$ 

Nota: Neste problema fizemos duas análises separadas para obter  $v_T$  e  $i_N$  mas em geral basta calcular um destes valores. O outro obtém-se usando a relação acima.

IV-15

Circuitos Eléctricos - 2019/2020

- 3 Calcule:
- a) A potência dissipada na resistência de  $4\Omega$ ;
- b) O novo valor que esta resistência deve ter de forma a que dissipe, neste circuito, a potência máxima.



### Dado que

- $\succ$  as duas alíneas do problema se referem à resistência de  $4\Omega$ ;
- uma delas remete para o Teorema da Máxima Transferência de Potência...

... a melhor estratégia passa por determinar primeiro o Equivalente de Thévenin visto por esta resistência.

IV-17

Circuitos Eléctricos - 2019/2020

### Começemos por simplificar o circuito...





Este é o circuito *visto* pela resistência de  $4\Omega$ 





Vamos portanto calcular o Equivalente de Thévenin entre A e B

IV-19

Circuitos Eléctricos - 2019/2020

### Resistência equivalente



### Tensão em circuito aberto



#### Nó A:

$$\frac{20 - v_T}{8} = \frac{v_T}{2} + 5$$

### Resolvendo...

$$v_T = -4V$$

Com o Equivalente de Thévenin é agora muito fácil responder às questões:

### Equivalente de Thévenin



a) A potência dissipada na resistência de  $4\Omega$ ?

$$P = RI^{2}$$

$$= 4\left(\frac{-4}{4+1.6}\right)^{2}$$

$$= 2.04W$$

IV-21

Circuitos Eléctricos - 2019/2020

b) Novo valor da resistência de forma a que dissipe a potência máxima?

### Equivalente de Thévenin



Teorema da máxima transferência de potência: Uma fonte real de tensão com resistência interna  $R_S$ , fornece a potência máxima quando a resistência de carga tem o valor  $R_L = R_S$ 

Portanto, o novo valor da resistência deve ser  $1.6\Omega$ .

- 4 Um amperímetro é usado para medir a corrente  $i_0$ , indicando o valor 2.1A. Determine:
- a) A resistência interna do amperímetro;
- b) A percentagem de erro introduzida pelo amperímetro na medição.



IV-23

Circuitos Eléctricos - 2019/2020

O problema diz respeito ao ramo onde está a resistência de 4.8Ω, portanto o melhor é começarmos por determinar o Equivalente de Thévenin visto por esta resistência.



Dado que o circuito inclui uma fonte dependente, vamos usar aqui o Método Universal, substituindo a resistência de  $4.8\Omega$  por uma fonte de tensão de teste, de valor  $\nu$ .

### Aplicação do Método Universal



• Vamos então analisar o circuito de forma a obter uma expressão de *v* em função de *i*, com a forma

$$v = ai + b$$

Dos coeficientes a e b concluiremos

$$R_T = a$$
 e  $v_T = b$ 

IV-25

Circuitos Eléctricos - 2019/2020

#### Usando análise nodal...



Nó v: 
$$\frac{24-v}{2} + i = \frac{v-v_x}{4}$$

Nó 
$$v_x$$
:  $\frac{v - v_x}{4} = 2.5i_0 + \frac{v_x}{16}$ 

Sabendo que  $i_0 = -i$  obtém-se

$$\begin{cases} v + 10i = \frac{5}{4}v_x \\ -3v + 4i = -v_x - 48 \end{cases}$$

Eliminando  $v_x$ , obtemos...



Circuitos Eléctricos - 2019/2020

### Modelo do amperímetro

Podemos considerar que o amperímetro usado na medição é constituído por um amperímetro ideal em série com uma resistência.



Ligar o amperimetro em série com a resistência de  $4.8\Omega$  no circuito original, é o mesmo que ligar este conjunto ao Equivalente de Thévenin determinado:



IV-29

Circuitos Eléctricos - 2019/2020



Nestas condições o valor medido de  $i_0$  foi 2.1A, portanto

$$\frac{240/11}{(60/11) + R_A + 4.8} = 2.1$$

$$R_{\Delta} = 135m\Omega$$



Sem o amperímetro presente no circuito o valor de  $i_{\theta}$  seria

$$\frac{240/11}{(60/11)+4.8} = 2.13A$$

O erro introduzido pelo amperímetro é portanto 
$$\frac{2.1-2.13}{2.13} = -0.014 \rightarrow -1.4\%$$

IV-31

Circuitos Eléctricos - 2019/2020

# 5 – Determine o equivalente de Thévenin entre os terminais A e B do circuito.



# Como o circuito contém uma fonte dependente, vamos usar o Método Universal.



**Por um lado:** 
$$v_1 = \frac{5}{5+10}v_2 = \frac{v_2}{3}$$

... e por outro: 
$$v_2 = 6v_z = 6(100 - v_1)$$

IV-33

Circuitos Eléctricos - 2019/2020

### Conjugando as duas equações obtemos $v_2 = 200V$



$$i = \frac{v - 200}{40} \Leftrightarrow v = 40i + 200$$

### Equivalente de Thévenin

### **Portanto**

$$v_T = 200V$$
  $R_T = 40\Omega$ 



# 6 – Determine a resistência equivalente entre os terminais X e Y.



IV-35

Circuitos Eléctricos - 2019/2020

Note-se, antes de mais, que este circuito não permite associação de resistências em série ou em paralelo para obter  $R_{eq}$ .



Na prática, se tivéssemos que medir esta resistência, aplicaríamos uma tensão  $\nu$  entre os terminais X e Y, mediamos a corrente i e, finalmente, calcularíamos  $R_{eq}$  fazendo  $R_{eq} = \nu/i$ .

### É isso mesmo que podemos fazer!

### Usando análise nodal...

Nó  $v_1$ :

$$\frac{v_1}{30} + \frac{v_1 - v_2}{10} + \frac{v_1 - v}{10} = 0$$

Nó  $v_2$ :

$$\frac{v_2}{20} + \frac{v_2 - v_1}{10} + \frac{v_2 - v}{50} = 0$$

Usando KCL no nó inferior...

$$\frac{v_1}{30} + \frac{v_2}{20} = i$$



Eliminando as incógnitas  $v_1$  e  $v_2$  obtemos...

$$\frac{v}{i} = 21.7\Omega = R_{eq}$$

IV-37

Circuitos Eléctricos - 2019/2020

- 7 Um condensador de  $0.25\mu F$  é percorrido pela corrente i do gráfico abaixo. Sabendo que v(0) = 0, calcule
- a) A carga no condensador para  $t = 15 \mu s$ ;
- b) A tensão no condensador para t = 30 μs;
- c) A energia armazenada no condensador para  $t > 50 \mu s$ .



• A partir do gráfico dado poderíamos começar por exprimir algebricamente i(t), integrando depois as equações correspondentes a cada intervalo de tempo, de forma a responder às questões pedidas.



• ... mas uma maneira mais expedita de chegar lá é calculando áreas.

### Vejamos:

IV-39

Circuitos Eléctricos - 2019/2020

a) 
$$q(t = 15 \mu s) = ?$$

Num qualquer instante t<sub>1</sub> a carga no condensador pode ser calculada por

$$q(t_1) = \int_{0}^{t_1} i(t)dt + q(0)$$

Como  $v(\theta) = 0$ , então  $q(\theta) = 0$ e a carga pode ser obtida calculando a área:



$$\acute{A}rea_{[0,15]} = \frac{5x400}{2} + (15-5)x400 = 5000nC = 5\mu C$$

**b)** 
$$v(t = 30 \mu s) = ?$$

Num qualquer instante t<sub>1</sub> a tensão no condensador é dada por

$$v(t_1) = \frac{1}{C} \int_{0}^{t_1} i(t)dt + v(0)$$



### Calculamos então a área de 0

a 30 µs :

$$\acute{A}rea_{[0,30]} = \acute{A}rea_{[0,15]} + (20 - 15)x400 - \left[ (30 - 20)x200 + \frac{(30 - 20)x100}{2} \right]$$

$$\acute{A}rea_{[0,30]} = 4.5 \mu C \qquad \rightarrow \qquad v(30 \mu s) = \frac{4.5 \mu C}{0.25 \mu F} = 18V$$

IV-41

Circuitos Eléctricos - 2019/2020

c) 
$$E_C(t = 50 \mu s) = ?$$

Calculamos *v(50 µs)* pela área total

$$v(50\mu s) = \frac{2.5\mu C}{0.25\mu F} = 10V$$

$$\rightarrow E_{\rm C}(50\mu s) = \frac{1}{2}Cv^2 = \frac{1}{2}x0.25x10^2 = 12.5\mu J$$



# 8 – Determine o valor da capacidade equivalente no circuito abaixo. Todos os condensadores são de 1μF.



IV-43

Circuitos Eléctricos - 2019/2020

# Como sempre, começamos por redesenhar o circuito de maneira a evidenciar séries e paralelos...







# 9 – No circuito abaixo considere $i_1(0) = 20mA$ . Calcule

- a) A tensão v(t);
- b) A energia armazenada na bobina de 6H em t = 5ms.





Circuitos Eléctricos - 2019/2020



$$i_{1}(t) = \frac{1}{L} \int_{0}^{t} v(t)dt + i_{1}(0) = \frac{1}{6} \int_{0}^{t} -28.8e^{-200t}dt + 0.02$$

$$= \frac{1}{6} \left( -\frac{1}{200} \right) (-28.8)e^{-200t} \Big|_{0}^{t} + 0.02 = 24e^{-200t} - 4 \quad [mA]$$

$$i_{1}(5ms) = 4.83mA \qquad W = \frac{1}{2} Li_{1}^{2} = 70 \mu J$$

IV-49

Circuitos Eléctricos - 2019/2020

# 10 – Usando o Principio da Sobreposição, calcule no circuito abaixo

- a)  $v_C(t)$ ;
- b)  $v_I(t)$ .





Circuitos Eléctricos - 2019/2020

#### 1) Considerando só as fontes DC



**Do circuito tiramos:**  $v_{L1} = 0V$ 

$$i_R + 20 = 30 \iff i_R = 10mA$$
  
 $-v_{C1} + v_R + 9 = 0 \iff v_{C1} = 9 + (20x0.01) = 9.2V$ 





IV-53

Circuitos Eléctricos - 2019/2020

#### 2) Considerando só a fonte AC



**Do circuito tiramos:**  $v_{C2} = 0V$ 

$$v_{L2}(t) = -L\frac{d}{dt}i(t) = -0.06\frac{d}{dt}(0.04\cos 10^3 t) = 2.4\sin 10^3 t$$
 [V]

### Aplicando o Teorema da Sobreposição:

$$v_C(t) = v_{C1} + v_{C2} = 9.2 + 0 = 9.2V$$

$$v_L(t) = v_{L1} + v_{L2} = 0 + 2.4 \sin 10^3 t = 2.4 \sin 10^3 t$$
 [V]

## 11 – Sabendo que, no circuito abaixo, i(t) é dada por

$$i(t) = 5e^{-2000t} \cos 4000t \quad [A] \quad t \ge 0$$

Calcule  $v_L(\theta)$  e  $v_C(\theta)$ .



 $40\Omega$ 

IV-55

Circuitos Eléctricos - 2019/2020

# Começamos por calcular a tensão na bobina

$$v_L = L \frac{d}{dt} i(t)$$

$$=0.01\frac{d}{dt} \left(5e^{-2000t}\cos 4000t\right)$$

$$=0.01\left[5(-2000)e^{-2000t}\cos 4000t + 5e^{-2000t}(-4000\sin 4000t)\right]$$

$$v_L = -100e^{-2000t} (\cos 4000t + 2\sin 4000t)$$
 [V]

### Calculamos agora os valores

### para t = 0

$$v_L = -100e^{-2000t} (\cos 4000t + 2\sin 4000t)$$

$$v_L(0) = -100V$$



### **Aplicando KVL:**

$$-v_C(0) + v_R(0) + v_L(0) = 0$$
$$v_C(0) = 40i(0) - 100$$

$$v_C(0) = 40x5 - 100 = 100V$$

$$i(t) = 5e^{-2000t} \cos 4000t$$
$$i(0) = 5A$$