Homework2

Bowei Xiao 20/09/2019

Calculate Posterior Porbability

$$P(\mathbf{G}|\mathbf{D}, \mathbf{R}|) = \frac{P(\mathbf{D}|\mathbf{G}, \mathbf{R}) * P(\mathbf{G}|\mathbf{R})}{P(\mathbf{D}|\mathbf{R})}$$
$$= \frac{P(\mathbf{D}|\mathbf{G}) * P(\mathbf{G}|\mathbf{R})}{P(\mathbf{D}|\mathbf{R})}$$

given that \mathbf{D} and \mathbf{R} are conditional independent on \mathbf{G} .

Now, for each postion we want to calculate the probability of the true genotye (\mathbf{G}) being xx (0 copies of reference allele), xy (1 reference allele), and yy (2 reference allele) given the data.

1. To calculate the first case where $P(\mathbf{G} = xx|\mathbf{D}, \mathbf{R} = \mathbf{y}) = \frac{P(\mathbf{D}|\mathbf{G} = xx) * P(\mathbf{G} = xx|\mathbf{R} = \mathbf{y})}{P(\mathbf{D}|\mathbf{R} = \mathbf{y})}$. These three parts can be calculated separately as below:

 $P(\mathbf{D}|\mathbf{G} = xx) = \prod_{i=1}^{n} P(D_i|\mathbf{G} = xx)$ $= \prod_{\{i|D_i = x\}} P(D_i|\mathbf{G} = xx) * \prod_{\{i|D_i \neq x\}} P(D_i|\mathbf{G} = \mathbf{xx})$

The first probability is simply $(1 - \epsilon)$ where as the second probability is ϵ , assuming ϵ being the error made when genotyping on the read.

- $P(\mathbf{G} = \mathbf{x}\mathbf{x}|\mathbf{R} = \mathbf{y})$ is simply the frequency of non-reference allele squared $((1 \rho)^2)$ based on Hardy-Weinberg Equilibrium (HWE).
- $P(\mathbf{D}|\mathbf{R} = \mathbf{y})$: This is a scaling constant and does not depend on \mathbf{G} , we noted it as c for now. This can be solved (by computer of course) using the fact that $P(\mathbf{G} = xx|\mathbf{D}, \mathbf{R} = \mathbf{y}) + P(\mathbf{G} = xy|\mathbf{D}, \mathbf{R} = \mathbf{y}) + P(\mathbf{G} = yy|\mathbf{D}, \mathbf{R} = \mathbf{y}) = 1$

To sum up, the probability that $P(\mathbf{G} = xx|\mathbf{D}, \mathbf{R} = \mathbf{y}) = \frac{(1-\rho)^2}{c} \prod_{\{i|D_i = x\}} (1-\epsilon) \prod_{\{i|D_i \neq x\}} \epsilon$.

2. $P(\mathbf{G} = xy|\mathbf{D}, \mathbf{R} = \mathbf{y}) = \frac{P(\mathbf{D}|\mathbf{G} = xy) * P(\mathbf{G} = xy|\mathbf{R} = \mathbf{y})}{P(\mathbf{D}|\mathbf{R} = \mathbf{y})}$

 $P(\mathbf{D}|\mathbf{G} = xy) = \prod_{i=1}^{n} P(D_i|\mathbf{G} = xy)$ $= \prod_{i|D_i \in x, y} P(D_i|\mathbf{G} = xy) * \prod_{i|D_i \notin x, y} P(D_i|\mathbf{G} = xy)$

The first probability is $\frac{1}{2}(1-\epsilon) + \frac{\epsilon/3}{2}$ and the second probability is $\frac{\epsilon}{3}$.

- $P(\mathbf{G} = \mathbf{x}\mathbf{y}|\mathbf{R} = \mathbf{y})$ is simply $2 * \rho * (1 \rho)$ based on HWE.
- $P(\mathbf{D}|\mathbf{R} = \mathbf{y})$: as before, this is a constant c.

To sum up, the probability that $P(\mathbf{G} = xy | \mathbf{D}, \mathbf{R} = \mathbf{y}) = \frac{2*\rho*(1-\rho)}{c} \prod_{\{i|D_i \in x,y\}} \frac{1-2/3\epsilon}{2} * \prod_{\{i|D_i \notin x,y\}} \frac{\epsilon}{3}$

3. The last probability $P(\mathbf{G} = yy|\mathbf{D}, \mathbf{R} = \mathbf{y})$ is very similar to the first case except that $P(\mathbf{G} = \mathbf{yy}|\mathbf{R} = \mathbf{y}) = \rho^2$, and thus the probability is $P(\mathbf{G} = yy|\mathbf{D}, \mathbf{R} = \mathbf{y}) = \frac{\rho^2}{c} \prod_{\{i|D_i = x\}} (1 - \epsilon) \prod_{\{i|D_i \neq x\}} \epsilon$.

For the sake of this homework, we can assume $\rho^2=0.999$ and thus $\rho=0.999$. I think, we might have to estimate ϵ from the dataset?