

Dye-sensitized solar cells

(DSSCs)

Jeonbuk National University

School of International Engineering and Science

Won-Yeop Rho

e-mail address: rho7272@jbnu.ac.kr

*Renewable Energy

= Solar Wind, Geothermal etc.

What is Solar Cells?

When sunlight is absorbed by some materials, the solar energy knocks electrons loose from their atoms, allowing the electrons to flow through the material to produce electricity. This process and device of converting light (photon) to electricity (voltage) is called the photovoltaic (PV) effect and solar cell, respectively.

Light Energy (photons) → **Electrical Energy**

Types of Solar Cells

Why DSSCs?

Transparent & Colorful

Low Cost

Flexible

Large Area
From KIST Dye-sensitized Solar Cell Technologies

Dyesol Dye-Sensitized Solar Panel Incorporated into Tata Steel Roof Panel

Potential Market of DSSCs

From DyeSol and Samsung

Best Research-Cell Efficiencies

Photosynthesis vs DSSCs

Principle of DSSCs

: Sensitizer

light

- Photon + Dye
 → Dye⁺ + e⁻
- 2. Electron transport to TiO₂ nanoparticles
- 3. Electron circulation
- 4. Reduction:

$$2e^{-} + I_{3}^{-} \rightarrow 3I^{-}$$

5. Oxidation:

$$2Dye^+ + 3I^-$$

$$\rightarrow$$
 I_3 + 2Dye

Electron Transfer Rates of DSSCs

- 1. Excitation of the dye (ns)
- Electron injection from dye into conduction band of nanoporous
 TiO₂ (ps)
- 3. Electron diffusion through nanoporous TiO₂ (ms)
- 4. Recombination of injected electron with oxidized dye (s)
- 5. Recombination of injected electron with oxidized redox couple (ms)
- 6. Regeneration of the dye by electron transfer from redox couple (10 ns)

Ru Dyes and Bonding on TiO₂ Surface

(b)

(c)

(a) N3, (b) N719, (c) Z907, and (d) Black dye

Chemical Bondings between TiO₂ and Dyes

Unidentate

Chelating

Bridging bidentate

Molar Extinction coefficient of dyes

 $N719: 14.0 \times 10^3 \,\mathrm{M}^{-1} \mathrm{cm}^{-1}$

 $Z907:12.2\times10^3\,\mathrm{M}^{-1}\mathrm{cm}^{-1}$

How to adsorb? Physisorption vs Chemisoprtion

Electrolyte

Consists of

1. Redox couples

- \checkmark I⁻/I₃⁻, Br⁻/Br₃⁻
- \checkmark Se(CN):/(Se(CN)₃:
- \checkmark Co(III)/Co(II)(dbbip)₂

2. Solvent

✓ Acetonitrile, 3-methoxy-propionitrile, ethylene carbonate (EC), Propylene carbonate (PC), or ionic liquids

3. Additives

- **✓** Guanidium thiocyanate
- ✓ *t*-butyl pyridine

Types

1. Liquid electrolyte

- ✓ High efficiency (~11 % at 100 mW/cm²)
- ✓ Difficulty in preparation and maintenance
- ✓ Solvent Leakage
- **✓** Poor mechanical strength

2. Gel electrolyte

- ✓ High efficiency (~8 % at 100 mW/cm²)
- ✓ High ionic conductivity
- **✓** Solvent vapor permeation
- **✓** Poor mechanical strength

3. Polymer electrolyte

- ✓ Low efficiency (~6 % at 100 mW/cm²)
- ✓ No liquid solvent use
- **✓** Good mechanical strength
- ✓ Low ionic conductivity
- ✓ Poor contact between electrolyte and dye

Electron transport of TiO₂ nanoparticles and TiO₂ nanotubes

Charge transport of the photoanode depends,

- a. Morphology (particulate, rod, wire, tube etc)
- b. Conductivity (semiconductor and conductor)

Particulate type material

- Hopping conduction
- Grain boundary loss (trapping/detrapping)

One dimensional material

- Rapid transport
- ◆ Reduced grain boundary loss

Nanoparticles vs Nanotubes

2. Nanoparticles size: 10-30 nm

3. Porosity: 50-60 %

4. ~600 dye molecules on the TiO₂ NPs' surface

- 1. Low electron diffusion coefficiency (defects, surface states, grain boundaries etc)
- 2. Trapped in TiO₂ film about more than 90 % of electrons

- 1. High aspect ratio (about 1000 μm)
- 2. Highly-ordered and vertically-oriented structure
- 3. Better charge-collection efficiency by faster transport and slower recombination
- 4. Wild inner diameter: from 100 nm to 25 nm
- 1. Low surface area
- 2. Macropores

Charge collection efficiency of TiO₂

Improvement of energy conversion efficiency

- 1. Effective electron diffusion coefficiency (electron transport)
- 2. Improvement of electron lifetimes

Adv. Mater., 20 (2008) 54-58

Electron transport of TiO₂ nanoparticles vs TiO₂ nanofibers

E. Ghadiri. et al, *Nano. Lett.*, **2010**, *10*, 1632

Rutile or Anatase TiO₂ films on DSSCs

IPCE: Incident photon-to-current efficiency

D_n: electron diffusion coefficient

TiO₂ nanotube arrays by anodization

 $Ti + 2H_2O \rightarrow TiO_2 + 4H^+ + 4e^-$

 $TiO_2 + 6F^- \rightarrow TiF_6^{2-} + 2O^{2-}$

How to treat TiO₂ nanotube arrays after anodization

 $V_g > V_d$: long nanotubes

 $V_g < V_d$: short nanotubes

Washed with protic solvent

Amorphous phase of freestanding TiO₂ NTs

Washed with aprotic solvent

Crystallized phase of freestanding TiO₂ NTs

How to prepare freestanding TiO₂ nanotube arrays with crystallized phase

Crystallized phase

DSSCs based on TiO₂ nanotube arrays

Plasmon

- ➤ A plasmon is a quantum of plasma oscillation.
- > Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons.
- The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations.
- Plasmons are collective (a discrete number) oscillations of the free electron gas density.
- plasmons can couple with a photon to create another quasiparticle called a plasmon polariton.

SPR vs FRET

Metal nanoparticles: Au, Ag, Cu, etc.

- 1. Electrons are generated by surface plasmon resonance (SPR).
- 2. Electrons are recombined by
 Förster (or Fluorescence)
 Resonance Energy Transfer (FRET).

Metal nanoparticles must be coated with metal oxides.

Charging effect vs Plasmonic effect

- A. TiO₂ NPs
- > Acceptor materials.
- B. Core@shell type by SiO₂@Au NPs
- ➤ Plasmonic effect (SiO₂ is insulator.)
- ➤ Better charge separation
- Same Fermi level

- C. Core@shell type by TiO₂ @Au NPs
- Charging effect (TiO₂ is semiconductor)
- ➤ Recombination center on active layer
- ➤ Increment of electron density
- ➤ More negative potential Fermi level
- > Increasing Voc

Barrier layer effect on freestanding TiO₂ nanotube arrays (a) Ti plate **Electrolyte** 100nm (a) Current density (mA/cm²) **(**b) **(**C) (d)**(e)**

0.6

0.8

0.0

0.2

0.4

Voltage (V)

FE-SEM images of bottom layer. After ion milling for (a) 0, (b) 20, (c) 30, and (d) 90 min

	Ion milling time	J_{sc} (mA/cm ²)	V_{oc} (V)	ff	η (%)
(a)	0 min	5.37	0.76	0.62	2.5
(b)	10 min	5.69	0.75	0.63	2.7
(c)	20 min	6.17	0.76	0.61	2.9
(d)	30 min	6.59	0.76	0.61	3.1
(e)	90 min	7.85	0.75	0.62	3.7

C. Rho, et al., *Journal of Physical Chemistry C* 116(12) (2012) 7213-7218

Charging and Plasmonic effects in DSSCs

DSSCs based on the freestanding TiO₂ nanotube arrays with Au NPs

Pre-synthesis Ag nanoparticles on the active layer with TiO₂ nanotubes in DSSCs

TEM image of TiO_2 nanotube arrays with Ag NPs and high-angle annular dark-field (HAADF) image), Yellow dots indicate Ag NPs

	18 -							\neg
n^2)	16 -			***************************************				
√cr	14 -							
Current density (mA/cm ²	12 -			***************************************	***************************************			
ïŧ	10 -							
Sue	8 -						W	
it d	6 -			lm / PCE NPs, 8.04			M	
D2, TiO₂ NPs/NTs, 8.78%							W	
5						TTIP, 9.29%		
$\vec{\mathbf{o}}$	2 -					vithout H ₂ redu		
	0 -	_	D5, TiO ₂	NPs/NTs-	Ag@TiO₂ v	vith H ₂ reduction	on, 10.60%	
	0.	.0	0.2	2	0.4	0.6	0.8	
	Voltage (V)							

	DSSCs based on	J_{sc} (mA/cm ²)	<i>V_{oc}</i> (V)	ff	η (%)
D1	TiO ₂ NPs	12.46	0.86	0.75	8.04
D2	TiO ₂ NPs/NTs	13.62	0.86	0.75	8.78
D3	TiO ₂ NPs/NTs treated with TTIP	14.80	0.86	0.73	9.29
D4	TiO ₂ NPs/NTs and Ag@TiO ₂ without H ₂ reduction	15.53	0.87	0.72	9.72
D5	TiO ₂ NPs/NTs and Ag@TiO ₂ with H ₂ reduction	16.46	0.87	0.74	10.60

W.-Y. Rho, et al., Applied Surface Science 429 (2018) 23-28

Conclusions

- 1. The V_{oc} is increase by charging effect with a small amount of metal NPs incorporated on the active layer because of the more negative Fermi level.
- 2. The J_{sc} is also increased by plasmonic effect with the optimized amount of metal NPs because of better charge separation.
- 3. The V_{oc} , J_{sc} , and FF are decreased with large amount of metal NPs because of aggregation.
- 4. The energy conversion efficiency of solar cells is optimized or improved by machine learning and AI

