Марина Б04-005, Лабораторная работа №.3.2.4

Цель работы: Исследовать свободные колебаний в электрическом колебательном контуре:

- 1. Зависимость периода свободных колебаний контура от ёмкости
- 2. Зависимость логарифмического декремента затухания от сопротивления
- 3. Определить критическое сопротивление
- 4. Определить добротность контура

Оборудование:

- 1. Генератор импульсов
- 2. Электронное реле
- 3. Магазин сопротивлений
- 4. Магазин ёмкостей
- 5. Катушка индуктивности

Теоретическая справка:

Основное уравнение колебательного контура

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0 \tag{1}$$

Где $\gamma = \frac{R}{2L}$ — коэффициент затухания, $\omega_0^2 = \frac{1}{LC}$ — собственная частота контура. Решением этого уравнения являются затухающие колебания:

$$I = Ae^{-\gamma t}\cos(\omega t - \theta) \tag{2}$$

Здесь $\omega = \sqrt{\omega_0^2 - \gamma^2}$. Можно записать решение (1) и для напряжения:

$$U_C = U_0 \frac{\omega_0}{\omega} e^{-\gamma t} \cos(\omega t - \theta) \tag{3}$$

В контуре с затухающими колебаниями можно использовать следующую формулу

$$T = \frac{T_o x}{n \cdot x_0} \tag{4}$$

Режим работы контура, при котором $\gamma = \omega_0$, называется **критическим**. Его сопротивление равно

$$R = 2\pi \sqrt{\frac{L}{C}} = 2\pi \sqrt{\frac{\Delta Y}{\Delta X}} \tag{5}$$

Добротность, потери энергии

$$Q = 2\pi \frac{W}{\Delta W} = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{\pi}{\Theta} \tag{6}$$

С, мкФ	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$T_{\text{эксп}},$ мс		l					l	
$T_{\rm reop, MC}$	0.39	0.49	0.56	0.62	0.68	0.74	0.79	0.84

Таблица 1: Таблица 1: зависимость периода от емкости

Лог. декремент, потери амплитуды

$$\Theta = \frac{1}{n}\gamma T = \frac{1}{n}\ln\frac{U_k}{U_{k+n}}\tag{7}$$

Метод наименьших квадратов

$$y = a + bx \tag{8}$$

Описание установки:

На рисунке приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L, переменную ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Г5-54.

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\approx 1~\mathrm{MOm}$), так что его влиянием на контур можно пренебречь.

1. Измерение периодов свободных колебаний:

- (a) Соберем схему, установим на магазине сопротивлений величину R=0, на магазине емкостей C=0.2 мк Φ .
- (b) Подберем частоту развертки осциллографа, измерим по шкале экрана осциллографа длительность нескольких периодов колебаний контура. Рассчитаем период свободных затухающих колебаний по формуле (4).
- (c) Изменяя ёмкость C, проведем измерения периодов $T_{\text{эксп}}$ свободных колебаний при R=0. Результат занесем в таблицу 1, построим график, пользуясь МНК (ф-ла 8):

Отсюда получим, что результат **отличается всего** b=1,31 **раза**

- 2. Измерение критического сопротивления и декремента затухания
 - (а) Найдем логарифмический декремент затухания посредством изменения сопротивления контура

Θ	R, Om	R_{σ} , Ом	$1/R_{\sigma}^2 \cdot 10^{-7}$	$1/\Theta^2$
0.6	1100	1109.44	8.12	2.78
0.77	1400	1409.44	5.04	1.69
1.16	1700	1709.44	3.42	0.74
1.32	2100	2109.44	2.25	0.57
1.61	2400	2409.44	1.72	0.39
1.79	2700	2709.44	1.36	0.31

(b) Далее построим график зависимости $\frac{1}{\Theta^2}(\frac{1}{R_{\mbox{\tiny KD}}^2})$

По формуле (5) рассчитаем критическое сопротивление, приняв в учет то, что $\frac{\Delta Y}{\Delta X}=k$ при построение графика по МНК.

$$R_{\text{kd}} = 2 \cdot 3.14 \cdot \sqrt{3.75} \cdot 10^3 \approx 12.161 \cdot 10^3 \text{Om}$$

(с) Рассчитаем погрешность

$$\varepsilon_R = \sqrt{\frac{1}{2}\varepsilon_a + \frac{1}{2}\varepsilon_b} \cdot 100\% \approx 8\%$$

(d) Окончательно получим:

$$R_{\rm kp} = (12.0 \pm 1.0) \cdot 10^3 \; {\rm Om}$$

(е) Далее по формуле (5) рассчитаем теоретическое критическое значение для сопротивления:

$$R_{\rm kp} = 2\pi \sqrt{\frac{L}{C}} = 12.649 \cdot 10^3 \; {
m Om}$$

(f) Также подберем вручную $R_{\rm kp}$ при помощи магазина сопротивлений:

$$R_{\rm kp} = (11.010 \pm 1.0) \cdot 10^3 \; {\rm Om}$$

- 3. Добротность контура
 - (a) Рассчитаем добротность контура для максимального и минимального значений Θ по картине затухающих колебаний

$$Q_{max} = \frac{\pi}{0.6} \approx 5.24$$

$$Q_{min} = \frac{\pi}{1.75} \approx 1.80$$

(b) Сравним полученные значения со значениями добротности контура, которые получаются в зависимости от характеристики контура(формула 6)

$$Q_{max} \approx 5.75$$

$$Q_{min} \approx 2.34$$

(с) Посчитаем добротность по спирали на фазовой плоскости

Θ	R, Ом	R_{Σ} , Om	Q
0.81	1100	1109.44	3.87
0.92	1400	1409.44	3.43
1.16	1700	1709.44	2.70
1.39	2100	2109.44	2.27
1.60	2400	2409.44	1.95
1.57	2700	2709.44	2.00

4. Характеристики катушки

Сопротивление катушки: $R_L = 9.44~{
m Om}$

ν, Γц	L, мГн	R, Ом
50	136	9.55
10^{3}	130.9	12.60
$5 \cdot 10^3$	131.4	21

5. Сводные таблицы полученных данных

I	$R_{ m \kappa p}$			
L	Teop.	Подбор	Граф.	
0.2 Гн	$12.6 \pm 1.0 \; { m kOm}$	1.1 ± 0.1 кОм	$12.0 \pm 1.0 \; \text{кОм}$	

Значения критического сопротивления

R	Q		
	Teop.	$f(\Theta)$	Спираль
$\min = 1242 \text{ Om}$	$7,76 \pm 0,09$	$7,82 \pm 0,51$	$6,33 \pm 0,87$
$\max = 3642 \text{ Om}$	$2,43 \pm 0,03$	$2,47 \pm 0,27$	$2,27 \pm 0,43$

Значения добротности

Выводы:

- 1. Мы установили разницу между теоретическим и экспериментальным периодами колебаний. У нас эти два значения различаются в 1.3 раза, что может быть вызвано неточностью в снятии показаний или неидеальностью элементов установки.
- 2. Установили зависимость логарифмического декремента затухания от сопротивления
- 3. Вычислили различными способами значение критического сопротивления
- 4. Нашли различными способами добротность контура