Функция Эйлера

Функцией Эйлера называется функция φ , такая, что $\varphi(n)$ — это количество натуральных чисел от 1 до n взаимно простых с n.

- П Чему равно $\varphi(9)$; $\varphi(13)$; $\varphi(125)$; $\varphi(1)$?
- [3] Сколько в таблице чисел, взаимно простых с b?
- [4] Сколько в каждом столбце чисел, взаимно простых с a?
- [5] Докажите, что для взаимно простых a, b, выполняется: $\varphi(ab) = \varphi(a)\varphi(b)$. Это свойство называется **мультипликативностью**.
- [6] Докажите **формулу Эйлера**:

$$\varphi(n) = p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1} \dots p_k^{\alpha_k - 1} (p_1 - 1) (p_2 - 1) \dots (p_k - 1) =$$

$$= n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \dots \left(1 - \frac{1}{p_k} \right)$$

- $\boxed{7}$ Докажите, что при n>2 $\varphi(n)$ четно.
- 8 Найдите сумму чисел взаимно простых с n, не превосходящих n.
- [9] При каких m выполняется равенство $\varphi(m^k) = m^{k-1}\varphi(m)$?
- 10 Найдите все такие x, что а) $\varphi(x)=2$; b) $\varphi(x)=8$; c) $\varphi(x)=12$; d) $\varphi(x)=14$.
- П Найдите все такие x, что a) $\varphi(x) = \frac{x}{2}$; b) $\varphi(x) = \frac{x}{3}$; c) $\varphi(x) = \frac{x}{4}$; d) $\varphi(x) = \frac{x}{7}$;
- 12 Рассмотрим ряд дробей: $\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}$. Сократим каждую из дробей на НОД ее числителя и знаменателя. Сколько будет дробей со знаменателем d, где d некоторый делитель числа n?
- ПЗ Докажите **тождество Эйлера-Гаусса**: $\varphi(d_1)+\varphi(d_2)+\ldots+\varphi(d_k)=n$, где $d_1,d_2,\ldots d_k$ все делители числа n.
- 14 Докажите, что: $\varphi(a) \cdot \varphi(b) = \varphi((a,b)) \cdot \varphi([a,b]);$
- 15 Докажите, что: $\varphi(ab) \cdot \varphi((a,b)) = \varphi(a) \cdot \varphi(b) \cdot (a,b)$.
- $\boxed{16}$ Окружность разделена n точками на n равных частей. Сколько можно составить различных замкнутых ломаных из n равных звеньев с вершинами в этих точках?