LinAlgDM I. 12. gyakorlat: Vektoralgebra

2023. november 10.

Néhány vektoralgebrai alapfogalom és jelölés.

A, B: pontok,

O: origó,

 \overrightarrow{AB} : az A és B pontokat összekötő vektor,

 $a = \overrightarrow{OA}$ az A-hoz tartozó **helyvektor**, vagyis az origóból az A pontba mutató vektor.

Ha számít a kezdőpont, **kötött vektor**ról beszélünk, ha nem számít, **szabad vektor**ról beszélünk. A szabad vektor egyértelműen megfeleltethető a helyvektorral, hiszen csak a hossza és iránya számít.

Két szabad vektor (helyvektor) egyenlő, ha azonos a nagyságuk és irányuk.

Bázis a sikban: két nem párhuzamos (hely)vektor.

Bázis a térben: három (hely)vektor, amelyek nem esnek egy síkba.

Koordináta fogalma (a térben): Legyen $\underline{b}_1,\underline{b}_2,\underline{b}_3\in\mathbb{R}^3$ egy bázis a térben. (\mathbb{R}^3 -ban). A $\underline{v}\in\mathbb{R}^3$ előáll a bázisvektorok ún. **lineáris kombinációjaként:**

$$\underline{v} = v_1 \cdot \underline{b}_1 + v_2 \cdot \underline{b}_2 + v_3 \cdot \underline{b}_3$$

ahol v_1,v_2,v_3 konstansok. Ekkor a \underline{v} vektor b bázisra vonatkozó koordinátái a v_1,v_2,v_3 lesznek. Jelölése:

$$\underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}_{[b_1, b_2, b_2]}$$

Síkbéli vektorok koordinátáinak fogalma hasonlóan definiálható 2 db síkbéli bázisvektorral.

Ortogonális bázis a térben: a $\underline{b}_1,\,\underline{b}_2$ és \underline{b}_3 bázisvektorok egymásra merőlegesek.

Normált bázis a térben: az $\underline{e}_1,\,\underline{e}_2$ és \underline{e}_3 bázisvektorok egségnyi hosszúak.

Ortonormált bázis a síkban: ortogonális és normált bázis. A bázisvektorokat jelölhetjük $\underline{i}, \underline{j}$ -vel, ahol \underline{i} (általában) az x tengely irányú síkbéli egységvektor, míg j (általában) az y tengely irányú síkbéli egységvektor.

Ortonormált bázis a térben: ortogonális és normált bázis. Ha jobbkezes rendszert alkot, a bázisvektorokat $\underline{i}, \underline{j}, \underline{k}$ -val jelölhetjük, ahol \underline{i} (általában) az x tengely irányú, \underline{j} (általában) az y tengely irányú, \underline{k} (általában) a z tengely irányú térbeli egységvektor. Fordítva: ha adott a térben az $[\underline{i}, \underline{j}, \underline{k}]$ ortonormált bázis, ami jobbkezes (lásd előadáson), akkor az x, y és z tengelyeket felvehetjük az \underline{i}, j és \underline{k} irányába.

Ha ortonormált bázisban adjuk meg egy vektor koordinátáit, a bázisjelölés (alsó index [i,j] vagy [i,j,k]) elhagyható.

1. Adott a síkban az $\underline{a}, \underline{b}$ nem párhuzamos vektorpár. "Szerkesszük meg" az alábbi vektorokat: $\underline{c} = \underline{a} + \underline{b},$ $\underline{d} = \underline{a} - \underline{b}, \underline{e} = -0, 5\underline{a} + 2\underline{b}$. Adjuk meg ezen vektorok $\underline{a}, \underline{b}$ bázisra vonatkozó koordinátáit!

 ${f Megoldcute{as}}.$

$$\underline{c} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}_{[\underline{a},\underline{b}]} \ , \quad \underline{d} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{[\underline{a},\underline{b}]} \ , \quad \underline{e} = \begin{pmatrix} -0,5 \\ 2 \end{pmatrix}_{[\underline{a},\underline{b}]}$$

2. Írjuk fel az $\underline{a} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$ síkbéli vektorra merőleges, vele megegyező hosszúságú vektorok koordinátáit! Adjuk meg ezen vektorok abszolút értékét (hosszát)!

Megoldás. Az \underline{a} vektor koordinátáit megcseréljük, és az egyiket -1-gyel szorozzuk. Így a hossz nem változik, az eredeti és az új vektor skaláris szorzata pedig 0 lesz, ami biztosítja a merőlegességet. A

két lehetséges megoldás: $\binom{4}{-8}$ és $\binom{-4}{8}$. A vektorok hossza megegyezik az \underline{a} vektor hosszával: $|\underline{a}| = \sqrt{8^2 + 4^2} = \sqrt{80}$.

3. Egy síkbéli rombusz hosszabbik átlója kétszerese a rövidebbik átlónak. A rövidebbik átló végpontjainak koordinátái $A = \begin{pmatrix} -3 \\ 7 \end{pmatrix}$ és $C = \begin{pmatrix} 5 \\ 11 \end{pmatrix}$. Számítsa ki az átló hosszát! Határozza meg a másik két csúcs, X és Y koordinátáit!

Megoldás. Legyenek a rombusz csúcsai A, X, C, Y, és jelölje $\underline{a}, \underline{x}, \underline{c}$ és \underline{y} ezen csúcsokba mutató helyvektorokat. A rövidebbik átlóvektor koordinátái:

$$\overrightarrow{AC} = \underline{c} - \underline{a} = \begin{pmatrix} 5 \\ 11 \end{pmatrix} - \begin{pmatrix} -3 \\ 7 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$

hossza pedig $\sqrt{8^2+4^2}=\sqrt{80}$. A rombusz átlóinak felezőpontja az A és C csúcsokat összekötő szakasz felezőpontja:

$$F = \begin{pmatrix} 1 \\ 9 \end{pmatrix} = \underline{f}$$

ahol $\underline{f} = \overrightarrow{OF}$, vagyis az F pontba mutató helyvektor. Mivel a rombusz átlói merőlegesek, a hosszabb átló pedig kétszerese a rövidebbnek, az \overrightarrow{AC} vektort 90 fokkal mindkét irányban elforgatva megkapjuk az

$$\overrightarrow{FX} = \begin{pmatrix} 4 \\ -8 \end{pmatrix}$$
 , $\overrightarrow{FY} = \begin{pmatrix} -4 \\ 8 \end{pmatrix}$

vektorokat, melyek segítségével az X pontba mutató \underline{x} helyvektor koordinátái:

$$\underline{x} = \underline{f} + \overrightarrow{FX} = \begin{pmatrix} 5\\1 \end{pmatrix}$$

 $Az\; Y\; pontba\; mutató\; \underline{y}\; helyvektor\; koordinátái:$

$$\underline{y} = \underline{f} + \overrightarrow{FY} = \begin{pmatrix} -3\\17 \end{pmatrix}$$

Innen a két pont koordinátái:

$$X = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$
 , $Y = \begin{pmatrix} -3 \\ 17 \end{pmatrix}$

4. Egy paralelepipedon egyik csúcsa az origó, a három vele szomszédos csúcsa pedig:

$$A = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}_{\underbrace{[i,j,k]}}, \quad B = \begin{pmatrix} -5 \\ 3 \\ 0 \end{pmatrix}_{\underbrace{[i,j,k]}}, \quad C = \begin{pmatrix} 7 \\ -1 \\ -3 \end{pmatrix}_{\underbrace{[i,j,k]}}$$

Határozzuk meg a többi csúcs koordinátáit

- (a) az ortonormált $\{\underline{i}, \underline{j}, \underline{k}\}$ bázisban,
- (b) az A, B és C pontokhoz tartozó helyvektorok $\{\underline{a}, \underline{b}, \underline{c}\}$ bázisában!

Megoldás. (a) A további négy csúcshoz tartozó helyvektorok (a bázisjelölést most elhagyhatjuk, mert ortonormált bázisban számolunk):

$$\underline{d} = \underline{a} + \underline{b} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + \begin{pmatrix} -5 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ 3 \end{pmatrix} , \quad \underline{e} = \underline{a} + \underline{c} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + \begin{pmatrix} 7 \\ -1 \\ -3 \end{pmatrix} = \begin{pmatrix} 9 \\ -2 \\ 0 \end{pmatrix}$$

$$\underline{f} = \underline{b} + \underline{c} = \begin{pmatrix} -5 \\ 3 \\ 0 \end{pmatrix} + \begin{pmatrix} 7 \\ -1 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix} , \quad \underline{g} = \underline{a} + \underline{b} + \underline{c} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + \begin{pmatrix} -5 \\ 3 \\ 0 \end{pmatrix} + \begin{pmatrix} 7 \\ -1 \\ -3 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$$

Innen a kapcsolódó pontok koordinátái leolvashatók:

$$D = \begin{pmatrix} -3 \\ 2 \\ 3 \end{pmatrix}_{\underbrace{[i,j,\underline{k}]}} , \quad E = \begin{pmatrix} 9 \\ -2 \\ 0 \end{pmatrix}_{\underbrace{[i,j,\underline{k}]}} , \quad F = \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}_{\underbrace{[i,j,\underline{k}]}} , \quad G = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}_{\underbrace{[i,j,\underline{k}]}}$$

 $Innen\ a\ pontok\ koordin \'at\'ai:$

$$D = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}_{[\underline{a},\underline{b},\underline{c}]} , \quad E = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}_{[\underline{a},\underline{b},\underline{c}]} , \quad F = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}_{[\underline{a},\underline{b},\underline{c}]} , \quad G = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}_{[\underline{a},\underline{b},\underline{c}]}$$