

Nouvelles méthodes actuarielles et data science

FONCTIONNEMENT D'UNE COMPAGNIE D'ASSURANCE

Chauvet Lisa
Diabate Souleymane
Goutondji Anaelle
Konate Vamousa
Mohamed El Hafed Ismail
Pelenc Ines

Table des matières

I- Anciennes et nouvelles méthodes actuarielles

- A- Quelques méthodes utilisées actuellement en actuariat
- B- Détail de 2 méthodes nouvellement utilisées en actuariat

II- Applications

- A- Mémoire sur la tarification automobile
- B- Mémoire sur une comparaison des méthodes actuarielles

dans le Reporting Santé

C- Mémoire sur la tarification habitation

III- Conclusion

I- Anciennes et nouvelles méthodes actuarielles

• Modèle linéaire

- Modèle linéaire
- Modèle de survie

Entry Ages	Original Data $q_{[x]5}$	King		HARDY	
		$q_{[x]\overline{5} }$	Deviation × 10 ⁵	$q_{[x]\overline{51}}$	Deviation × 10 ⁵
20 to 24 25 ,, 29 30 ,, 34 35 ,, 39 40 ,, 44 45 ,, 49 50 ,, 54 55 ,, 59 60 ,, 64	·02400 ·02380 ·02766 ·03239 ·03874 ·05117 ·07061 ·09245 ·13004	·02343 ·02515 ·02794 ·03237 ·03922 ·04983 ·06596 ·09088 ·12652	- 57 + 135 + 28 - 2 + 48 - 134 - 465 - 157 - 352	·02357 ·02530 ·02808 ·03244 ·03925 ·04979 ·06582 ·09069 ·12634	- 43 + 150 + 42 + 5 + 51 - 138 - 479 - 176 - 370
Totals	·49086	·48130	+ 211 -1167	·48128	+ 248 -1206

- Modèle linéaire
- Modèle de survie
- Modèle de Markov

- Modèle linéaire
- Modèle de survie
- Modèle de Markov
- Modèle stochastique
- Modélisation statistique

 Arbres de déscision et modèle de CART

- Arbres de déscision et modèle de CART
- Méthode de bagging

- Arbres de déscision et modèle de CART
- Méthode de bagging
- Méthode Random Forest

- Arbres de déscision et modèle de CART
- Méthode de bagging
- Méthode Random Forest
- Methode de Gradiant boosting

Data Visualisation – P1

- •« Une image vaut mille mots » Confucius
- •Rapidité
- •Démocratisation des données
- •Théorie ce Gestalt
- •Rôle du DataScientist :
- •Collecter
- •Préparer
- •Analyser et extraire

Data Visualisation – P2

Similarité

Quelques principes:

Point Focal

Figure – fonds

Continuité

II- Applications

Mémoire sur la tarification automobile à l'aide de modèles de Machine Learning et l'apport des données télématiques

- Modèles tarifaires reflétant au mieux le risque de l'assuré
- Segmentation du portefeuille
- 2 points majeurs :
 - 1- Comparaison des modèles GLM avec modèles plus innovants (CART...)
 - nombre de sinistres
 - coût du sinistre
 - 2- L'impact de l'ajout de données télématique
- Principe de mutualisation

Mémoire sur la tarification automobile à l'aide de modèles de Machine Learning et l'apport des données télématiques

•

•

- 2 points majeurs :
 - 1- Comparaison des modèles GLM avec modèles plus innovants (CART...)
 - nombre de sinistres □ GLM
 - coût du sinistre □ CART

2-

Table 4.28 - Comparaison des différents modèles testés

Modèle Facilité d'explication Facilité de Interprétabilité Vitesse Pouvoir d'apprentissage de l'algorithme prédictif des résultats paramétrage GLM +++++ +++++ +++++ ++++ CART ++++ Random Forest GBM ++ ++ XGBoost +++++

Mémoire sur les outils actuariels dans le reporting santé

Objectifs:

- 1. Appréhender la consommation en santé des individus
- 2. Améliorer le reporting santé à l'aide d'outils de la data science

Modèles comparés

pour l'obtention du Diplôme Universitaire d'actuariat de l'ISF. et l'admission à l'Institut des Actuaires

ct i admission a i institut de	SActuaries
Par : Thomas LE HO Titre	nner à l'aide de la Data Science? an ■ 2 ans)
Les signitaire le Regent à respecter la confidentialité	
Membre présents du jury de l'Institut signature des Actuaires Mme Rith Angle DN OM FC Mme Isbelle PRAJIL DOM FC	Entreprise:
Membres présents du jury de l'ISFA M. Yn stian Bu ROSER S	Directeur de mémoire en entreprise : Nom : Léonard Fontaine Signature : Invité : Nom : Signature :
	Autorisation de publication et de mise en ligne sur un site de diffusion de documents actuariels (après expiration de l'éventuel délai de confidentialité) Signature du responsable entreprise
	GALEA & Associés 25-rue-de Choiseul 75002 PARIS TM. 01 43 22 11 11 Signature du caRG@nParis - 492 379 839
	RV

Poste "Consultations Visites"

Madélisation nce

Critère: Mean Squared Error (MSE)

| Fréquence

Dépenses moyennes

Modèle	Fréquence	Dépenses moyennes	
	MSE base test	MSE base test	
GLM	22,6	82,9	
CART	23,5	59,6	
Random Forest	22,1	56,3	
XGBoost	23,2	54,5	

Comparaison des modèles

Algorithme	Explication de l'algorithme	Vitesse d'apprentissage	Interprétabilité des résultats	Pouvoir prédictif
GLM	***	****	***	*
CART	***	****	****	**
Random Forest	**	*	**	***
XGBoost	*	*	**	***

Conclusions

- Le modèle *GLM* est quasi-instantané en termes d'exécution
- Les arbres CART sont les modèles les plus rapides à mettre en place
- L'étape de calibration des modèles Random Forest est assez rapide
- Devant le nombre important de paramètres à disposition, l'étape de calibration des modèles XG Boost demande un temps conséquent
- L'*interprétabilité* des résultats est également moins aisée avec des modèles agrégés puisque le résultat obtenu est une agrégation d'estimateurs et non plus un simple estimateur
- Les modèles ayant le plus grand pouvoir *prédictif* sont, sans surprise, les modèles agrégés

REGRESSION TREE

Étapes	Fonction	
1	Gamme	
2	Gamme	
3	Gamme	
1	Log-norm	
2	Log-norm	
3	Log-norm	
4	Log-norm	
5	Log-norm	

Table 17 - Résur

Table 19 - Tableau donnant la significativité des variables et celles choisies.

FIGURE 28 - Arbre de décision du coût de sinistre (INCENDIE).

Diagramme des deviances des modèles pour le coût du sinistre

FIGURE 17 - Déviance des modèles.

REGRESSION TRUE

Étapes	Fonctions varia	bles non signifi	icatives variables significatives	AIC
1	Variables	Significativités	Variables pour Tree optimal	238793
2	Nature du bâtiment	15.02	Oui	229827
3	Qualité occupant	14.001	Oui	218918
4	Nombre de pièces	12.723	Oui	200078
5	ZonierSin	10.023	Oui ——	198791
5	Nombre d'enfant	07.280	Oui	
1	Situation matrimoniale	07.011	Oui	287989
2	Ancienneté	04.089	Oui	278796
3	Catégorie socio-Professionnelle	03.007	Oui	268789
4	Age	01.234	Oui ——	
4	Salarié AGPM	01.113	Non	250897
5	Nombre de créanciers	00.998	Non	210585
6	superficie Véranda	00.500	Non	205020
7	Monument Historique	00.100	Non —	195305
0	Nombre de Chien	00.001	Non	189500
0	Table 24 - Tableau donnant la significativité des variables et celles choisies.			
9				187446

 ${\it Table~22-R\'esume~des~it\'erations~du~GLM~pour~aboutir~au~meilleur~mod\`ele~.}$

FIGURE 19 - Déviance des modèles.

FIGURE 19 - Déviance des modèles.

III- Conclusion