M5L8085AP

8-BIT PARALLEL MICROPROCESSOR

DESCRIPTION

The M5L8085AP is a family of single-chip 8-bit parallel central processing units (CPUs) developed using the N-channel silicon-gate ED-MOS process. It requires a single 5V power supply and has a basic clock rate of 3MHz.

FEATURES

- Single 5V supply voltage
- TTL compatible
- Instruction cycle \cdots 1.3 μ s (min.)
- Clock generator (with an external crystal or RC circuit)
- Built-in system controller
- Four vectored interrupts (one of which is non-maskable)
- Decimal, binary, and double precision arithmetic operations
- Direct Addressing capability to 64K bytes of memory

APPLICATION

Central processing unit for a microcomputer

FUNCTION

Under the multiplexed data bus concept adopted, the high-order 8 bits of the address are used only as an address bus and the low-order 8 bits are used as an address/data bus. During the first clock cycle of an instruction cycle, the address is transferred. The low-order 8 bits of the address are stored in the external latch by the address latch enable (ALE) signal. During the second and third clock cycles, the address/data bus functions as the data bus, transferring the data to memory or to the I/O. For bus control, the device provides RD, WR, and IO/M signals and an interrupt acknowledge signal (INTA). The HOLD, READY and all inter-

rupt signals are synchronized with the clock pulse. For simple serial data transfer it provides both a serial input data (SID) line and a serial output data (SOD) line. It also has three maskable restart interrupts and one non-maskable trap interrupt.

PIN DESCRIPTIONS

Pin	Name	Input or output	Functions
X ₁ , X ₂	Clock input	In	These pins are used to connect an external crystal or RC circuit to the internal clock generator. An external clock pulse can also be input through X ₁ .
RESET OUT	Reset output	Out	This signal indicates that the CPU is in the reset mode. It can be used as a system RESET. The signal is synchronised to the processor clock.
SOD	Serial output data	Out	This is an output data line for serial data. The output SOD may be set or reset by means of the SIM instruction. It returns to high-level after the RESET.
SID	Serial input data	In	This is an input data line for serial data, and the data on this line is moved to the 7th bit of the accumulator whenever a RIM instruction is executed.
TRAP	Trap interrupt	In	A non-maskable restart which is recognized at the same time as an INTR it is not affected by any mask or another interrupt. It has the highest interrupt priority.
RST5. 5 RST6. 5 RST7. 5	Restart interrupt request	In	Input timing is the same as for INTR for these three signals. They all cause an automatic insertion of an internal RESTART. RST 7.5 has the highest priority while RST 5.5 has the lowest. All three signals have a higher priority than INTR.
INTR	Interrupt request signal	In	This signal is for a general purpose interrupt and is sampled only during the last clock cycle of the instruction. When an interrupt is acknowledged, the program counter (PC) is held and an INTA signal is generated. During this cycle, a RESTART or CALL can be inserted to jump to an interrupt service routine. The interrupt request may be enable and disable by means of software. But it is disable by the RESET and immeadiately after an accepted interrupt.
INTA	Interrupt acknowledge control signal	Out	This signal is used instead of RD during the instruction cycle after an INTR is accepted.
AD ₀ ~AD ₇	Bidirectional address and data bus	In/out	The low-order (I/O address) appears during the first clock cycle. During the second and third clock cycles, it becomes the data bus. It remains in the high-impedance state during the HOLD and HALT modes.
A ₈ ~A ₁₅	Address bus	Out	Output the high-order 8 bits of the memory address or the 8 bits of the I/O address. It remains in the high-impedance state during the HOLD and HALT modes.
S ₀ , S ₁	Status	Out	S S. HALT 0 0 WRITE 0 1 READ. DAD 1 0 FETCH 1 1 The S ₁ signal can be used as an advanced R/W status.
ALE	Address latch enable	Out	This signal is generated during the first clock cycle, to enable the address to be latched into the latches of peripherals. The falling edge of ALE is guaranteed to latch the address information. The ALE can also be used to strobe the status information, but it is kept in the low-level state during bus idle machine cycles
WR	Write control	Out	Indicates that the data on the data bus is to be written into the selected memory at the falling edge of the signal WR. It remains the high-impedance state during the HOLD and HALT modes.
RD	Read control	Out	Indicates that the selected memory or I/O address is to be read and that the data bus is active for data transfer. It remains in the high-impedance state during the HOLD and HALT modes.
IO/M	Data transfer control output	Out	This signal indicates whether the read/write is to memory or to I/Os. It remains in the high-ipedance state during the HOLD and HALT modes.
READY	Ready input	In	When it is at high-level during a read or write cycle, the READY indicates that the memory or peripheral is ready to send or receive date. When the signal is at low-level, the CPU will wait for the signal to turn high-level before completing the read or write cycle.
RESET IN	Reset input	In	This signal (at least three clock cycles are necessary) sets the program counter to zero and resets the interrupt enable and HLDA flip-flops. None of the other flags or registers (except the instruction register) are affected. The CPU is held in the reset mode as long as the signal is applied.
CLK	Clock output	Out	Clock pulses are available from this pin when a crystal or RC circuit is used as an input to the CPU.
HLDA	Hold acknowledge signal	Out	By this signal the processor acknowledges the HOLD request signal and indicates that it will relinquish the buses in the next clock cycle. The signal is returned to the low-level state after the HOLD request is completed. The processor resumes the use of the buses one half clock cycle after the signal HLDA gose low-level.
HOLD	Hold request signal	łn	When the CPU receives a HOLD request. It relinquishes the use of the buses as soon as the current machine cycle is completed. The CPU can regain the use of buses only after the HOLD state is removed. Upon acknowledging the HOLD signal, the address bus, the data bus, RD, WR and IO/M lines are put in the high-impedance state.

Note: HOLD, READY and all interrupt signals are synchronous with clock signal.

STATUS INFORMATION

Status information can be obtained directly from the M5L8085AP. ALE is used as a status strobe. As the status is partially encoded, it informs the user in advance what type of bus transfer is being performed. The IO/\bar{M} cycle status signal is also obtained directly. Decoded S_0 and S_1 signals carry: S_1 S_2

	0,	00
HALT	0	0
WRITE	0	1
READ	1	except for second and third machine cycles of
FETCH	1	1 DAD instruction.

 S_{1} can be used in determining the R/\tilde{W} status of all bus transfers.

In the M5L8085AP the low-order 8 bits of the address are multiplexed with data. When entering the low-order of the address into memory or peripheral latch circuits, the ALE is used as a strobe.

INTERRUPT AND SERIAL I/O

The M5L8085AP has five interrupt inputs—INTR, RST 5.5, RST 6.5, RST 7.5, and TRAP. The three RST inputs, 5.5, 6.5, 7.5, are provided with programmable masks. TRAP has the same function as the restart interrupt, except that it is non-maskable.

When an interrupt is enabled and the corresponding interrupt mask is not set, the three RST interrupts will cause the internal execution of the RST. When non-maskable TRAP is applied, it causes the internal execution of an RST regardless of the state of the interrupt enable or masks. The restart addresses (hexadecimal) of the interrupts are:

Interrupt	Adress
TRAP	2416
RST 5.5	2C ₁₆
RST 6.5	3416
RST 7.5	3C ₁₆

Two different types of signal are used for restart interrupts. Both RST 5.5 and RST 6.5 are sensitive to high-level as in INTR, and are acknowledged in the same timing as INTR. RST 7.5 is sensitive to rising-edge, and existence of a pulse sets the RST 7.5 interrupt request. This condition will be maintained until the request is fulfilled or reset by a SIM or

RESET instruction

Each of the restart interrupts may be masked independently to avoid interrupting the CPU. An interrupt requested by an RST 7.5 will be stored even when its mask is set and the interrupt is disabled. Masks can be changed in a SIM instruction or the RESET. When two enabled interrupts are requested at the same time, the interrupt with the highest priority will be accepted. The TRAP has the highest priority followed in order by RST 7.5, RST 6.5, RST 5.5 and INTR. This priority system dose not take into consideration the priority of an interrupt routine that is already started. In other words, when an RST 5.5 interrupt is reenabled before the termination of the RST 7.5 interrupt routine, it will interrupt the RST 7.5.

The TRAP interrupt is very useful in preventing disastrous errors and bus errors resulting from power failures. The TRAP input is recognized in the same manner as any other interrupt, but it has the highest priority, and is not affected by any flags or masks. The TRAP input can be sensed by both edge and level. TRAP should be maintained high-level until it is acknowledged. But, it will not be acknowledged again unless it turns low-level and high-level again. In this manner, faulty operation due to noise or logic glitches is prevented.

The selial I/O system is also considered to be an interrupt as it is controlled by instructions RIM and SIM. The SID is read by instruction RIM and the SOD data is set by instruction SIM.

BASIC TIMING

The M5L8085AP is provided with a multiplexed data bus. The ALE is utilized as a strobe with which the low-order 8 bits of the address on the data bus are sampled. Fig.1 shows the basic cycle in which an out instruction is fetched, and memory is read and written to the I/O port. The I/O port address is stored in both the address bus and the address/data bus during the I/O write and read cycle. To enable the M5L8085AP to be used with a slow memory, the READY line is used for extending the read and write pulse width.

Fig. 1 Basic cycle

\item		mor -	-		truc					of st		0 cyc			_				L	FI	ags		Addres	s bus	Da	ata b	us
stř ass	MOV	mon c	D1 D6	_				no ne	oma otatr) Z	Š	ž			Functi	ons			s	Z i	O Y	/2 C Y 1	Contents	Mach cycle	Content	5 1/0	Ma
	MOV MOV MOV	F1 - F2 M , r r - M r - n	0 1 0 1 0 0	1 D D	1 0 D D	S	S 1	S 0		7 7 7	1 1 1 2	2 2 2	(M) •	(M)				(H)(L) (H)(L)	×	X X X	x >	х х х х	M	M4 M4	(r) (M) (B2)	0	
	MVI	M , n	0 0	1	B ₂ > 1 O B ₂ >	1	1	0	3 6	10	2	3	(M) •	n		Where	м	(H)(L)	×	x	x x	< x	м	Ms	(B2)	1	
	LXI	B,m	0 0	0	0 0 B ₂ >	0	0	1	0 1	10	3	3	(C) • (B) •	(B ₂) (B ₃)		Where	m	(B ₃) (B ₂)	×	×	х х	×	+		(B2) (B3)	1	
	LXI	D , m	0 0	0	10 12>	0	0	1	1 1	10	3	3		(B ₂) (B ₃)		Where	m	(B3) (B2)	×	×	х	×		1	(B2) (B3)		
	LXI	H , m	0 0	1	B3> O O B2>	0	0	1	2 1	10	3	3		(B ₂)				(B3) (B2)	×	x	хх	×			(B ₂)	1	
ster	LXI	SP , m	0 0	1	B3> 1 0 B2>	0	0	1 :	3 1	10	3	3	(SP)•			***********	.,.	1037 (027	×	×	x x	×			⟨B₃⟩ ⟨B₂⟩		
Data transfer	SPHL		. 1.1	1	B ₃ >		0			. 6	1	1.	(SP) • (SP) •	(н) (į x	X.	X. X				(B ₃)		
Te O	STAX LDAX LDAX STA	D B	0 0 0 0 0 0 0	0 0 1	0 0 1 0 0 1 1 1 1 0	0	1 1 1 1 1 1 1 1	0 (0 2 1 2 0 A 1 A 3 2	٠,	. ; .	2 2 2 4	((D)(E)). (A).	(A) ((B) ((D)	(C)) (E))				X X	X X X	X X X X X X	X X X	(B) (C) (D) (E) (B) (C) (D) (E)	M4	(A) (A) ((B)(C)) ((D)(E))	44	
	LDA	m		1	B2 > B3 > 1 1	0	1	o :	3 A	13		4	(A) •	(m)					+ _x	`				Ma	(A)	0	
	SHLD	m	. 0 0	1	B2> B3> OO	ó	1 -		2 2	16	3 -	5 .		(L)						×							
	LHLD	m		. (1	B2> B3> O 1	0	1		2 A	16	3	5	(m + 1) + 						* =				m m - 1	M4 M5	(H)	0	
	XCHG			(I	B ₂ > B ₃ > O 1					4			(H)•	(m + 1					×	х .			m m - 1	M4 M5	(m) (m-1)		
	ADD	,	1 0	1	0 0	_ 0	1 S :	1 E	3	16	; .	5		•, GP	'+1)((SP))				X :	х х	х.	(SP) (SP) -1	 Mz M3	((SP:-1)	J	
	ADD ADI	M n	1 0	0	0 0 0 0 82>	1	1 (. ε	6 6	7	2	2	(A) •	(Δ) + (Δ) + (Δ) +	(M)	Where	м	(H)(L)	0	000	0 0	0	м	M4	(M) (B2)		
	ADC ADC ACI	r M n	1 0 1 0 1 1	0	0 1 0 1 0 1	1	S 5) ε	E	. 4	1 1 2	2 2	(A)+	(A) +	(+) + (CY2) (M) + (CY2) -1 + (UY2)	Where	м	(배) (리	-00	0 0	000	00.	м.	M4	(M)		
	DAD DAD DAD	B D H	0 0	0	B ₂ > 0 1 1 1 0 1	0	0 1	1 1	9	10	1 1	3 3	(HII(_)+	(H).() - B - (C)) - (D) (E)) - (H) (L)				×	x >	00	, x			⟨B₂⟩		
aledulo.	SUB SUB SUI	SP r M n	1011	0	1 1 1 0 1 0 1 0	S 1	0 1 S 5 1 (3	6	-	1 . 1 . 2	1	(A) · (A) ·	(H) (E) - (SP: -) M)	Where	м	(Н) (Ц;	× 00	x x x 0000	000	×.00	м.	Ma	- (M)	+	
	\$88 \$88 \$81	r M n	1 0 1 0 1 1	0	32> 1 1 1 1 1 1	1		9		4 7 7	1 2	1 · 2 2	(A) ·	(A)	1 :0.42) M1 (C43) n (C42)	Where	м.	(H) (L)	000	0000	000	0	м	M4	(B2) (M) (B2)		
	ANA ANA ANI	r M n	1 0 1 0 1 1	1 (3 ₂ > 0 0 0 0	1	S S		6		1 1 2	1 2 2	(Δ; • (Δ) • (Δ) •	$(A) \Lambda$	M)	Where.	м	.Hluri	00	0000	0 0	1 .	м	M4	(M) (B2)	1	
'	XRA XRA XRI	M n	1 0 1 0 1 1	1 (0 1	1	S S) A	E		1 2	1 2 2	(A) + (A) +	(A) V	M)	Where	м		00	000	0 0	o 0	м	M4	— → (M) <8.0	i	
•	OR A OR A OR I	M	1 0	1 1	1 0	1	S S	8	6	4 7 7		2 2	(A) •	(Δ),	r) M)	Where	м	(H)(L)	00	0000	0 0	0	M	M4	(M) (B2)	Ţ	
	CMP CMP CPI	r M n	1 0 1 0 1 1	1 1	1 1	1	S S	В	E E		1 1 2	1 2 2	Δ; , Δ; , Δ;	1) Mil N	Compare	. Where.	м	·· (H)(E)	00	0000	000	00	м	M4	(M) (Bz)	+	,
decrement	INX	M r M B	0 0	D (D D D D D D D D D D D D D D D D D D D	1 1 1 0	0 1	3 . 3	3	0	: .			(M)	1 1	Where Where		H1(c)	0000	0000) x) x) x	0000	м .	Ma Ma			^
ഫ്രാബ്രോബി മൂ	I NX I NX DCX DCX DCX	D H SP B D	0 0	0 0	0 0 1 1 1 1 1 1 1 1	0 0 0 0	1 1 1 1 1 1 1 1	3 0 1 2	3 3 8 8	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	: .	1 1 . 1 . 1	(B) (E) (B) (C) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	10 E 30 E 30 C 30 C) + 1) + 1 1 - 1 : 1				x x x x	x x x x x x x x x x	* * * * *	х х х х				. +	_
_	RL C	SP	0 0	1 1	0 0	0	1 1	3	В		1	1	Left shift i	(SP)	1 (<u>A</u> · A	i.b	Ā: A	Ac #	x	x x x x	× O	X X				\dotplus	
Tuilati.	RRC		0 0	0 0						4			Right shift i		A . A		Δ14	Δ0; •	×	x, x	0		+-				
讀.	RAL		0 0	0 1						4			Left shift	¥	₩ ÍAFA		A: /	Δη.	×	х х	0	* ·	•	-		+	_
mu	CMA		0 0	1 0						4	1	1	Hight shift i	A 1	, • Δ · Δ		_	40]	_	× ×			•		•		_
1001	STC CMC		0 0	1 1	0_0	_ 1_	1_1	. 2	7	4	1	1 7	Results of bir	nir. ai	idition are	adjusted t	n B	CD .		× o			_	- i			_

MITSUBISHI LSIS M5L8085AP

8-BIT PARALLEL MICROPROCESSOR

									_ states	bytes	ycles										
\ Item Instr	Mnem	onic		Instru				16 m	7 6	ō	P	Functions	L	FI	lags		Addres	s bus	•	ta bus	
class	JMP r			5 D5 D4				_		ž	ž		s	Z F	P CY	2 C Y 1	Contents	cycle*	Contents	0	MacI cycle
	JMP r	m 	1 1	0 0 ⟨ B 2	>	0 1	1	C3	10	3	3	(PC) • m	×	×	× >	×			(B2) (B3)		M2 M3
	PCHL		. 1. 1	⟨B₃; 1 0	1	0 0			. 6		1	(PC)+ (H)(E)	×	х	x >	× 3					
	JC r	n	1 1	<b<sub>2;</b<sub>	>	0 1	0	D A	10/7	3	3/2	(CY2) 1	×	X	X >	×	,			1	
	JNC n	n	1 1	(B₃) 0 1	0	0 1	0	D 2	10/	3	3/2	(CY2) 0 If condition is true	- ! ×	×	× ×		! ! If condi	i tion is ti	rue		
				<b₂;< td=""><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td>[,P01• m</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></b₂;<>	>							[,P01• m									
	JZ n	n	1 1	(B ₂)	>	0 1	0	CA	10/	3	3/2	(Z) 1	: x	×	х	*			(B₂) (B₃)	1	M2 M3
ď	JNZ n	n	1 1	(B ₃)	0	0 1	0	C 2	:10/7	3	3/2	; Z → 0	×	x	х х	. x			(0)		1413
Jump	1			(B ₂) (B ₃)	>				1			,									
	JP n	n .	1 1	1 1 (B ₂)		0 1	0	F 2	10/7	3	3/2	(s) < 0 If condition is false (PC → (PC) + 3	×	×	x x	×	}				
	JM n	n	1 1	(B ₃)		0 1	0	FA	10/7	3	3/2	(S) = 1			x x						
				(B ₂)	>				,			(3)		•	* *						
	JPE n	n	1 1	1 0 (B ₂)	1	0 1	0	E A	10/7	3	3/2	(P) = 1	x	×	× ×	×					
	JPO m		1 1	(B ₃)	>	0 1	_	_ ,	10.		2 /2	(P) 0									
		•	. ,	⟨B₂⟩ ⟨B₃⟩	>	0 1		E 2	10	3	3/2	(P) U	х	×	x x	×					
	CALL m	n	1 1	0 0 (B ₂)	1	1 0	1	C D	18	3	5	((SP) 1)((SP) 2)+ (PC)+3.(PC)+ m	×	x	x x	х			(B2)	1	M2
	RST n		1 1	(B2) (B3) A A	>							(SP) • (SP) 2					(SP) 1		(B3) P0 - 3	0	M3 M4
			, ,	~ ~	^	1 1	'		12	1	3	((SP) 1):((SP) 2)*(PC)*1 (PC)*n*8,	×	×	x x	×	(SP) 2 (SP) 1	M4	PC1+3	0	Ms Ms
	CC m	,	1 1	0 1		1 0	0	D C	18/9	3		(SP) + (SP) 2 Where 0:20:-7 (CY2) = 1	_x	×	 x x	× ···	(SP)_2.		PCI-1	0.	M5
	CNC m			⟨B₂⟩ ⟨B₃⟩	•							!									
	CNC m	'	1 1	0 1 ⟨B₂⟩	•	1 0	0	D 4	18/9	3	5/2	(CY2) 0 If condition is true	×	х	x x	*	If condi	ion is tr	ue		
call	CZ m		1 1	(B₃) 0 0	1	1 0	0	СС	18/9	3	5/2	(Z)-1:((SP) tr:(SP) 2)-(PC)-3	×	×	x x	×			(B ₂)		Mz
ē				⟨B₂⟩ ⟨B₃⟩			i					(PC) - m					(SP) 1	Ma	(B)) (P) - 3	1	M3 M4
Subroutine call	CNZ m	'	1 1	O O <b2></b2>		1 0	0	C 4	18/9	3	5/2	: Z) 0 .SP:- (SP) 2	×	×	х х	*	SP1 2	Ms	(PC) - 3		Ms
Sut	CP m	1	1 1	⟨B₃⟩ 1 1		1 0	0	F 4	18/9	3	5/2	. 5) 0 '		,	x x		}	1015	(PC) - 3	U	MS
				⟨B₂⟩ ⟨B₃⟩									- 1	•	- 1	Ŷ					
	CM m	1	1 1	1 1 (B ₂)		1 0	0	FC	18/9	3	5/2	. 5) 1 If condition is false		ς.	K X	*					
	CPE m	,	1 1	⟨B₃⟩ 1 0		1 0	0	E C	18/9	3	5/2	(PC)+-PC)+3 (-P-) 1									
				(B ₂) (B ₃)							3,2		,	•	x x	*		i			
	CPO m		1 1	1 0 (B ₂)	0	1 0	0	E 4	18/9	3	5/2	(Fr. 1 0	×	×	× ×	×					
	RET		1 1	⟨B₃⟩		0 0	1	C 9	10	_	_	TOOL LICEN AND ADDRESS OF THE PARTY OF THE P		_							
	RC		1 1	0 1		0 0		D B	12/6		. :	(PC) • ((SP)+1)((SP)) (SP)• (SP)• 2	. *	ĸ	x x	٠.	(SP) (SP) 1	M4 M5	SPI)		M4 M5
E	RNC RZ		1 1	0 1 (0 (0 0	0	D 0	12/6	1	3 1	(CY2) 1 - If condition is true (CY2) 0	×	×	х х х х	×	If condit	ion is tr	ue		
Return	RNZ RP		11	0 0	0 (0 0	0	СО	12/6	1	3.1	$(Z) = 1$ $\{PG\} \cdot \iota(SP) \cdot 1\} (\{SP\})$ $(Z) = 0$ $\{(SP) \cdot (SP) \cdot 2\}$	×		x x x x		SPI-1	M4 M5	: (SP1) : SP1+1		M4 Ms
	RM		1 1	1 1 (1 (0 0	0	F B	12/6 12/6	1	3 1	(S).0 (S).1 If condition is false	×	X X	х х х х		,				
	RPE RPO		1 1	10	0 (0 0	0	E O	12/6 12/6	1 [3 1	(P) -1 (PC) - (PC) -1 (P) 0	×	* ·	x x x x	* .					
Input/ output	IN n		1 1	O 1 (B ₂)		0 1	- 1	DB	10			(A) · (Input buffer) · (Input device of number n) (Input data)	×	X	x x	*	<b2> B2></b2>	Ms.	(Bz) input data	0	M4 M5
ontroi	OUT n		1 1	0 1 ((B ₂)		2 1			10	2	3	(Output device of number ni + <a> <a> <a> <a> <a> <a> <a> <a> <a> <a>	×	×	х х	*	(B2) (B2)	Ms	<b≥> (A)</b≥>	0	M4 M5
terrupt ontrol	DI		1 1	1 1	0 () 1) 1	1	FB F3	4	1	1	(NTE) · 1 (NTE) · 0	×	X X	х х х х	X X					
	PUSH P	5 W	1 1	1 1 (1 0	.	F 5	12	1	3	((\$P) 1) • (A) ((\$P) 2) • (F) (\$P) • (\$P) 2	×	x	x x	×	(SP 1	M4 M5	(A)	0	M4 M5
	PUSH B		1 1	000					12	1	3	((SP) 1)+ (B) ((SP) 2)+ (C) (SP) + (SP) 2	×	x	x x	X.	(SP) 1 (SP) 2	Ma Ms	(B)	0	M4
- I	PUSH D		1 1	0 1 0	0 1	1 0		D 5		1	3	((SP) 1)+ (D) ((SP) 2)+ (E) (SP)+ (SP) 2	×	×	х х		(SP) 1 (SP) 2	M4	(C)	0	Ms Ms
conti	PUSH H		1 1	1 0 (0 1	0	1	E 5	12	1	3	((SP) 1)+ (H) ((SP) 2)+ (L) (SP) + (SP) 2	×	x	x x	×	(SP) 1	Ms Ma	(H)	0	Ms Ma
Stack control	POP P	s w	1 1	1 1 (0 0	0	1	F 1	10	1	3	(SP) + (SP)) (A) + ((SP) + 1) (SP) + (SP) + 2	0	0 (0 0	0	SP) 2 (SP)	M5	(SP))	0	Ms Ma
St	POP B		1 1	0 0 0	0 0	0	1	C 1	10	1		(SP) + (SP)+2 (C) + ((SP)),(B)+ ((SP)+1) (SP) + (SP)+2	×	×	x x	×	(SP) · 1	M+ M4	((SP) + 1) ((SP))	1	Ms Ma
	POP D	1	1 1	0 1 0	0 0	0	1	D 1	10	1		(E) + ((SP)).(D)+ ((SP)+1)	x	×	x x	×	(SP) - 1	Ms M4	((SP) + 1) ((SP))	I.	Ms M4
	POP H	j	1 1	100	0 0	0	1	E 1	10	, !	3	(SP) + (SP)+2 (LT + ((SP)) (H)+ ((SP)+1)	×	х :	x x	х	(SP) + 1 (SP)	Ma	((SP) - 1) ((SP))	1 .	Ms Ma
	HL T NOP		0 1	1 1 0		1		7 6	5	1	Ħ	(SP) · (SP)+2 (PC) · (PC) · 1	×		x x	×	(SP) • 1	Ms	(SP) - 1)	1	Ms
	705		0 0	000	0 0	0	0	0 0	4	1	1	(PC) • (PC) • 1 All RST interrupt masks, any pending RST interrupt	, x		x x						_
ons	RIM	:	0 0	1 0 0	0	0	0	2 0	4	1	1	requests, and the serial input data from the SID pin		x >	× x	x					
Mask set		'					1					are read into the accumilator. Mask is enabled (or disabled) to the RST interrupt.									
Aas Insti	SIM	ì	0 0	1 1 0	0 0	0	0	3 0	4	1	1	corresponding to the contents (bit pattern) of the accumulator. The serial output is enabled and the	1		< x	×					
2 = :													^								

MITSUBISHI LSIS M5L8085AP

8-BIT PARALLEL MICROPROCESSOR

MACHINE INSTRUCTIONS SYMBOL MEANING

		Meaning	Symbol	Meaning
SSS Or DDD	Bit pattern designating register or memory Where M (H)(L)	Register S S S OF OF Memory D D D B O 0 0 1 D D D D D D D D D D D D D D D D D	, () v v v v v v v v v v v v v v v v v v	Data is transferred in direction shown Contents of register or memoy location Inclusive OR Exclusive OR Logical AND 1's complement Content of flag is not changed after execution Content of flag is set or reset after execution Input mode
	or	designating register or memory or DDD Where	designating memory Of D D	designating register or memory Of Of V V

INSTRUCTION CODE LIST

	D ₇ ~D ₄	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₃ ~D ₀	Hex- adecimal notation	0	1	2	3	4	5	6	7	8	9	Α	В	С		E	
0000	0	NOP	(-)	RIM	SIM	MOV B, B	MOV D, B	MOV H, B	MOV M, B	ADD B	SUB B	ANA B	ORA B	RNZ	RNC	RPO	RP
0001	1	LXI B	LXI D	LXI H	LXI SP	MOV B, C	MOV D, C	MOV H, C	MOV M, C	ADD C	SUB	ANA C	ORA C	POP B	POP D	POP H	POP PSW
0010	2	STAX B	STAX D	SHLD	STA	MOV B, D	MOV D, D	MOV H, D	MOV M, D	ADD D	SUB D	ANA D	ORA D	JNZ	JNC	JPO	JP
0011	3	INX B	INX D	INX H	INX SP	MOV B, E	MOV D, E	MOV H, E	MOV M, E	ADD E	SUB E	ANA E	ORA E	JMP	оит	XTHL	DI
0100	4	INR B	INR D	INR H	INR M	MOV B, H	MOV D, H	MOV H, H	МОV М, Н	ADD H	SUB H	ANA H	ORA H	CNZ	CNC	СРО	СР
0101	5	DCR B	DCR D	DCR H	DCR M	MOV B, L	MOV D, L	MOV H, L	MOV M, L	ADD L	SUB L	ANA L	ORA L	PUSH B	PUSH D	PUSH H	PUSH PSW
0110	6	MVI B	MVI D	MVI H	MVI M	MOV B, M	MOV D, M	МОV Н, М	HLT	ADD M	SUB M	ANA M	ORA M	ADI	SUI	ANI	ORI
0111	7	RLC	RAL	DAA	STC	MOV B, A	MOV D, A	MOV H, A	MOV M, A	ADD A	SUB A	ANA A	ORA A	RST 0	RST 2	RST 4	RST 6
1000	8	(-)	(-)	(-)	(-)	MOV C, B	MOV E, B	MOV L, B	MOV A, B	ADC B	SBB B	XRA B	CMP B	RZ	RC	RPE	RM
1001	9	DAD B	DAD D	DAD H	DAD SP	MOV C, C	MOV E, C	MOV L, C	MOV A, C	ADC C	SBB C	XRA C	CMP C	RET	(-)	PCHL	SPHL
1010	Α	LDAX B	LDAX D	LHLD	LDA	MOV C, D	MOV E, D	MOV L, D	MOV A, D	ADC D	SBB D	XRA D	CMP D	JZ	JC	JPE	JM
1011	В	DCX B	DCX D	DCX H	DCX SP	MOV C, E	MOV E, E	MOV L, E	MOV A, E	ADC E	SBB E	XRA E	CMP E	(-)	IN	xchg	ΕI
1100	С	INR C	INR E	INR L	INR A	MOV C, H	MOV E, H	MOV L, H	MOV A, H	ADC H	SBB H	XRA H	СМР Н	cz	СС	CPE	СМ
1101	D	DCR C	DCR E	DCR L	DCR A	MOV C, L	MOV E, L	MOV L, L	MOV A, L	ADC L	SBB	XRA L	CMP L	CALL	(-)	(-)	(-)
1110	E	MVI C	MVI E	MVI L	MVI A	MOV C, M	MOV E, M	MOV L, M	MOV A, M	ADC M	SBB M	XRA M	CMP M	ACI	SBI	XRI	CPI
1111	F	RRC	RAR	СМА	СМС	MOV C, A	MOV E, A	MOV L, A	MOV A, A	ADC A	SBB	XRA A	CMP A	RST 1	RST 3	RST 5	RST 7

This list shows the machine codes and corresponding machine instruction. $D_3\!\sim\! D_0$ indicate the low-order 4 bits of the machine code and $D_7\!\sim\! D_4$ indicate the high-order 4 bits. Hexadecimal numbers are also used to indicate this code.

The instruction may consists of 1, 2, or 3 bytes, but only the first byte is listed.

indicates a 3-byte instruction.

indicates a 2-byte instruction.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage	A COLOR	-0.5~7	V
. V ₁	input voltage		-0.5~7	v
Pd	Power dissipation	T _a =25℃	1.5	w
Topr	Operating free-air temperature range		-20~75	°C
Tstg	Storge temperature range		-65 ~150	°C

RECOMMENDED OPERATING CONDITIONS $(T_a = -20 \sim 75 \, \text{C. unless otherwise noted})$

Symbol	Parar	meter		Limits	1	
			 Min	Nom	Max	Unit
V _{CC}	Supply voltage		4. 75	5	5, 25	V
V_{SS}	Supply voltage (GND)		 	-		· · · · ·

$\textbf{ELECTRICAL CHARACTERISTICS} \quad (\texttt{T}_a = -20 \sim 75\,\texttt{C}, \ \texttt{V}_{\text{CC}} = 5 \texttt{V} \pm 5\%, \ \texttt{V}_{\text{SS}} = 0 \texttt{V}, \ \text{unless otherwise noted})$

Symbol	Parameter	Test conditions		Limits	
		rest conditions	Min	Тур Мах	Unit
V _{IH}	High-level input voltage (Except for X ₁ , X ₂)		2.2	V _{cc} +0.5	V
VIL	Low-level input voltage		-0.5	0, 6	
VIH RESIN	High-level reset input voltage		2.4	V _{CC} +0.5	V
VIL RESIN	Low-level reset input voltage		-0.5	0, 8	V
VIHX	X ₁ , X ₂ High-level voltage		4.0	V _{cc} +0.5	·
V _{OH}	High-level output voltage	I _{OH} =-400 μA	2, 4		<u>·</u>
Vol	Low-level output voltage	I _{OL} =2mA		0. 45	- <u>·</u>
Icc	Supply current from V _{CC}	(Note 2)		200	mA
l,	Input leak current, except RESET IN (Note 1)	$V_i = V_{CC}$	-10	10	μА
lozL	Output floating leak current	V _O =0.45V∼V _{CC}	-10	10	μA
$V_{IH} - V_{IL}$	Hysterisis RESET IN input		0. 25		μ

Note 1 : The input RESET IN is pulled up to $V_{\rm CC}$ with the resistor $3k\Omega$ (typ) when $V_{\rm I}{\ge}V_{\rm IH(RESIN)}$ 2 : Maximum $I_{\rm CC}$ is 170mA at $T_{\rm A}=0{\sim}70\,{\rm C}$

 $\textbf{TIMING REQUIREMENTS} \quad (\tau_a = -20 \sim 75\,\text{C}, \ V_{\text{CC}} = 5V \pm 5\%, \ V_{\text{SS}} = 0V, \ \text{unless otherwise noted})$

Symbol	Paramater	Test conditions		Limits		
		rest conditions	Min	Тур	Max	Unit
t _{C(CLK)}	Clock cycle time		320		2000	ns
t _{SU(DAAD)}	DA input setup time	:	-575		!	ns
t _{SU(DA-RD)}	DA input setup time		-300		· · · · · · · · · · · · · · · · · · ·	ns
th/DA-RO	DA input hold time		0			ns
t _{SU(RDY-AD}	READY input setup time		-220			ns
t _{SU(RDY -CLK)}	READY input setup time	t _{C(CLK)} ≧320ns			-110	ns
thirdy-clk,	READY input hold time	C _L =150pF	0			ns
t _{SU(DA-ALE)}	DA input setup time		-460			ns
t _{su(HLD-CLK)}	HOLD input setup time		170			ns
th(HLD - GLK)	HLD input hold time		0			ns
t _{su(INT-CLK}	Interrupt setup time		160			ns
th(INT-CLK)	Interrupt hold time		0	-	· · · · · · · · · · · · · · · · · · ·	ns
tsu(RDY-ALE)	READY input setup time		-110		1	ns

$\textbf{SWITCHING} \ \ \textbf{CHARACTERISTICS} \ \ (\textbf{T}_a = -20 \sim 75 \, \text{C}, \ \textbf{V}_{CC} = 5 \text{V} \pm 5 \text{\%}, \ \textbf{V}_{SS} = 0 \text{V}, \ \text{unless otherwise noted})$

Symbol	Parameter		Test conditions	İ	Limits		
•			- Lest conditions	Min	Тур	Max	Uni
tw(CLK)	CLK output low-level pulse width			80			ns
tw(clk)	CLK output high-level puls width			120			ns
t _{r(CLK)}	CLK output rise time					30	ns
tf(CLK)	CLK output fall time					30	ns
td(x1-clk)	Delay time, X ₁ to CLK			30		120	ns
td(x1-CLK)	Delay time, X ₁ to CLK			30		150	ns
t _{d(AD-ALE)}	Delay time, address output to ALE signal	AD ₀ ~AD	7	90			
t _{d(ALE-AD)}	Delay time, ALE signal to address output	A ₈ ~A ₁₅		115			ns
t _{W(ALE)}	ALE pulse width		-	100			ns
t _{d(ALE-CLK)}	Delay time, ALE to CLK			140			ns
d(ALE-CONT)	Delay time, ALE to control signal			100			ns
DXZ(RD-AD)	Address disable time from read		t _{C(CLK)} ≧320ns	130			ns
DZX(RD-AD)	Address enable time from read					0	ns
d(CONT-AD)	Address valid time after control signal						ns
d(DA-WR)	Delay time, data output to WR signal		-	120			ns
d(WR-DA)	Delay time, WR signal to data output		1	420			ns
w(CONT)	Control signal pulse width			100			ns
d(cont-ale)	Delay time, CLK to ALE signal		-	400			ns
d(clk-HLDA)	Delay time, CLK to HLDA signal		_	50			ns
DXZ(HLDA-BUS)	Bus disable time from HLDA			110			ns
DZX(HLDA-BUS)	Control signal disable time		-			210	ns
d(cont-cont)	Control signal disable time					210	ns
	The state of the s	1.5		400			ns
(THOO DA)	Delay time, address output to control signal	AD ₀ ~AD ₇	No see	240	Ĺ		ns
d(ALE-DA)	Delay time, ALE to data output	A ₈ ~A ₁₅		270			
d(wrht-DA)	Delay time, WR signal to data output					200	ns
e 3 : at A ₈ ∼A _{15,} a	and IO/\overline{M} $t_{d(AD-\overline{CONT})}$ after the release of the higher are 100ns(Min) 150ns(Min) respectively at	igh-impedance st hen 50pF+1TTL I	rate is 200ns oaded			40	ns

Input pulse fall time

Reference level input output 20ns V_{IH}=2.2V, V_{IL}=0.8V V_{OH}=2.0V, V_{OL}=0.8V **X** 2. 2 0. 8 2. 2**)**

Input

Output

Parameters described in the timing requirements and with the relational expression shown in the following tables switching characteristics take relevant values in accordance when the frequency is varied.

Relational Expression with the frequency T $(t_{C(CLK)})$ in the M5L8085AP $\textbf{TIMMING REQUIREMENTS} \quad (\textbf{T}_a = -20 \sim 75 \text{°C} , \ \textbf{V}_{\text{CC}} = 5 \text{V} \pm 5 \%, \ \textbf{V}_{\text{SS}} = 0 \text{V}, \ \text{unless otherwise noted})$

Symbol	Parameter	Test conditions	Relational expression (Note 6)	Limit
t _{SU(DA-AD)}	DA input setup time	C _L =150pF	225-(5/2+N)T	Min
t _{SU(DA-RD)}	DA input setup time		180-(3/2+N)T	Min
tsu(RDY-AD)	READY input setup time		260-(3/2)T	Min
t _{SU(DA-ALE)}	DA input setup time		1802T	Min

$\textbf{SWITCHING} \ \ \textbf{CHARACTERISTICS} \ \ (\textbf{T}_a = -20 \sim 75 \text{°C}, \ \textbf{V}_{\text{CC}} = 5 \text{V} \pm 5 \text{\%}, \ \textbf{V}_{\text{SS}} = 0 \text{V}, \ \text{unless otherwise notes})$

Symbol	Palameter		Test conditions	Relational expression (Note 6)	Limit	
t _{w(GLK)}	CLK output low-level pulse width			(1/2)T-80	Min	
tw(CLK)	CLK output high-level pulse width			(1/2)T-40	Min	
t _{d(AD-ALE)}	Delay time, address output to ALE signal	AD ₀ ~AD ₇		(1/2)T-70	Min	
		A ₈ ~A ₁₅		(1/2)T-45		
td(ALE-AD)	Delay time, ALE signal to address output			(1/2)T-60	Min	
t _{W(ALE)}	ALE pulse width			(1/2)T-20	Min	
td(ALE-CLK)	Delay time, ALE to CLK			(1/2)T-60	Min	
td(ALE-CONT)	Delay time, ALE to control signal			(1/2)T-30	Min	
t _{DZX} (RD-AD)	Address enable time from read			(1/2)T-10	Min	
td(cont-ad)	Address valid time after control signal			(1/2)T-40	Min	
td(DA-WR)	Delay time, data output to WR signal		C _L =150pF	(3/2+N)T-60	Min	
t _{d(wñ-da)}	Delay time WR signal to data output			(1/2)T-60	Min	
tw(CONT)	Control signal pulse width			(3/2+N)T-80	Min	
td(CONT-ALE)	Delay time, CONT to ALE signal			(1/2)T-110	Min	
td(CLK-HLDA)	Delay time, CLK to HLDA signal			(1/2)T-50	Min	
t _{DXZ} (HLDA-BUS)	Bus disable time from HLDA			(1/2)T+50	Max	
t _{DZX(HLDA-BUS)}	Bus enable time from HLDA			(1/2) T +50	Max	
td(cont-cont)	Control signal disable time			(3/2)T-80	Min	
td(ad-CONT)	Delay time, address output to control	AD ₀ ~AD ₇		T-80		
	signal	A ₈ ~A ₁₅		T-50	Min	

Note 6: N indicates the total number of wait cycles.

T=tCCCLK

TIMING DIAGRAM

Write Cycle

Read Cycle

Note: READY must remain stable during setup and hold times

Hold Cycle

Interrupt and Hold Cycle

Clock Output Timing Waveform

TRAP INTERRUPT AND RIM INSTRUCTIONS

TRAP generates interrupts regardless of the interrupt enable filp-flop (INTE FF). The current state of the INTE FF is stored in flip flop A (A FF) of the CPU and then the INTE FF is reset. The first RIM instruction after the generation of a TRAP interrupt differs in function from the ordinary RIM instruction. That is, the bit 3 (INTE FF information) in the accumulator $((A)_3)$ after the execution of the RIM instruction contains the contents of the A FF, regardless of the state of the INTE FF at the time the RIM instruction is executed. These details are shown in Figs.2 and 3, Table 1 .

Fig. 2 TRAP interrupt processing

Below are the explanations of Fig. 2.

- The TRAP interrupt request is issued while the instruction in address a is being executed.
- 2. The TRAP interrupt causes the same action as an RST instruction and then jumps to address 24_{16} .
- It returns to address a+1 after executing the RET instruction.

Table 1 shows the information in the INTE FF at address a+3 and a+4 when the instructions EI and/or DI are executed at addresses a-1 and a+2.

Fig. 4 is a flow chart of the TRAP interrupt processing routine.

Table 1 TRAP interrupt and RIM instructions

Number Condition	1	2	3	4	5	6
instruction in address a-1	El	ΕI	EI	DI	DI	DI
Instruction in address a+2	Εl	NOP	DI	EI	NOP	DI
Contents of (A) ₃ after the execution of the RIM instruction in address a+3	1	1	1	0	0	0
State of INTE FF after the execution of the RIM instruction in address a+3	1	0	0	: 1	0	0
Contents of (A) 3 after the execution of the RIM instruction in address a+4	1	0	0	1	0	0
State of INTE FF after the execution of the RIM instruction in address a+4	1	0	0	1	0	0

Note 7: The contents of (A)₃ after the excution of the RIM instruction is an information of the INTE FF. The INTE FF assumes state 1 when it is in the EI state, and 0 when it is in the DI state.

Fig.3 TRAP interrupt and INTE FF processing

Fig. 4 TRAP interrupt processing routine

PULL-UP OF THE RESET IN INPUT

In order to increase the noise margin, the RESET IN input terminal is pulled up by about $3k\,\Omega$ (typ) when the condition $V_1{\rightleftharpoons}\,V_{1H^+\text{RESIN}}$ is satisfied. Fig. 5 is a connection diagram of the RESET IN input, and Fig. 6 shows the relation between input voltage and input current.

Fig. 5 Connections of RESET IN input

Fig. 6 RESET IN input current vs input voltage

DRIVING CIRCUIT OF X1 AND X2 INPUTS

Input terminals, X_1 and X_2 of the M5L8085AP can be driven by either a crystal, RC network, or external clock. Since the driver clock frequency is divided to 1/2 internally, the input frequency required is twice the actual execution frequency (6MHz for the M5L8085AP which is operated at 3MHz). Fig. 7 are typical connection diagram for a crystal circuit respectively.

Fig. 7 Connections when crystal is used for X_1 and X_2 inputs

Conditions for Using a Quartz Crystal Element

- 1. Quartz Crystal Specifications
- Parallel resonance
- The frequency is 2 times the operation frequency (2 \sim 6.25MHz)
- Internal load capacitance: Approx. 16pF
- Parallel capacitance: Below 7pF
- Equivalent resistance: Below 75 Ω (for operation above 4MHz)
- For operation in the range 2 ~ 4MHz, the resistance showld be made as small as possible.
- Drive capability: Above 5mW (the power at which the crystal will be destoryed)

2. External Circuitry

For operation above 4MHz:

 $C_1 = C_2 = 10 pF$

For operation below 4MHz:
 C₁=C₂=15pF

External Clock Driver Circuit

Pullup resistors are required to assure that the high level voltage of the input is at least 4V.

WAIT STATE GENERATOR

Fig. 8 shows a typical 1-wait state generator for low speed RAM and ROM applications.

Fig. 8 1-wait state generator

Relation of Rim and Sim Instructions With The Accumulator

(Supplementary Description).

The contents of the accumulator after the execution of a RIM instruction is shown in Fig. 9.

Fig. 9 Relation of the instruction RIM with the accumulator

The contents of the accumulator after the execution of a SIM instruction is shown in Fig.10.

Fig. 10 Relation of the SIM instruction with the accumulator