Chapter_01

March 19, 2022

0.1 STATISTICAL LEARNING

0.1.1 Basic Functions:

rnorm() function generates a vector of random normal variables, with first argument 'n' the sample size

```
[1]: x = rnorm(50)

y = x + rnorm(50, mean = 50, sd = .1)
```

In the above code snippet, 'x' is a vector of 50 random variables 'y' is a vector of 50 random variables that are distributed around the point/mean 50

```
[2]: # What's the corelation value between x and y(round off to two decimal places)??
# use R's corelation function; ?cor() - describes the corelation function
# correlation = ?

# your code here

correlation = round(cor(x,y))
correlation
```

1

```
[3]: round(correlation)
stopifnot(round(correlation,2) == 1)
```

1

0.1.2 Matrices:

Defining Matrices: Column First

```
[4]: mat = matrix(c(1,2,3,4,5,6), 3, 2)
mat
```

```
A matrix: 3 \times 2 of type dbl \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
```

Row First

```
[5]: mat = matrix(c(1,2,3,4,5,6), nrow = 3, ncol = 2, byrow = TRUE) mat
```

A matrix: 3×2 of type dbl $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$

Indexing data in matrices

A matrix: 2×2 of type dbl $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

A matrix: 4×5 of type int

```
[8]: # Create a submatrix containing the values of ( 3rd & 4th row, 1st & 4th column)
# sub_matrix = ?

# your code here
sub_matrix = Matrix[c(3,4), c(1,4)]
```

[9]: stopifnot(sub_matrix[1,1] == 3, sub_matrix[2,2] == 16)

0.1.3 Loading Data (using ISLR2)

```
[10]: library(ISLR2) #import library ISLR2
```

[11]: head(Auto)

		mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
		<dbl></dbl>	<int $>$	<dbl $>$	<int $>$	<int $>$	<dbl $>$	<int $>$	<int></int>
A data.frame: 6×9	1	18	8	307	130	3504	12.0	70	1
	2	15	8	350	165	3693	11.5	70	1
	3	18	8	318	150	3436	11.0	70	1
	4	16	8	304	150	3433	12.0	70	1
	5	17	8	302 140 3449 10.5 70 1	1				
	6	15	8	429	198	4341	10.0	70	1

```
[12]: #what are the dimensions of the Auto dataset??
#?dim() - describe the dimension function
#auto_d = ?

# your code here
auto_d = dim(Auto)
auto_d
```

1. 392 2. 9

```
[13]: stopifnot(matrix(auto_d)[1,1] == 392, matrix(auto_d)[2,1] == 9)
```

```
[14]: #define all the columns of the Auto Dataset
#?names() - describe the columns of the data set
#cols = ?

# your code here
cols = names(Auto)
cols
```

1. 'mpg' 2. 'cylinders' 3. 'displacement' 4. 'horsepower' 5. 'weight' 6. 'acceleration' 7. 'year' 8. 'origin' 9. 'name'

```
[15]: stopifnot(length(cols)== 9, cols[1]=='mpg')
```

0.1.4 Plot variables - Data set

Plotting variables of a data set

```
[16]: plot(Auto$cylinders, Auto$mpg)
```


Attach the data set to the context of R Reference the columns directly without use of the data set

```
[17]: attach(Auto)
plot(cylinders,mpg)
```


Plotting Histograms

```
[18]: hist(mpg)
hist(mpg, col=2, breaks = 15)
```

Histogram of mpg

The pairs() function creates a scatterplot matrix, i.e. a scatterplot for every pair of variables.


```
[20]: plot(horsepower, mpg)
  identify(horsepower, mpg, name)
```


Summary () Function - It produces a numerical summary of each variable in a particular data set

[21]: summary(Auto)

mpg	cylinders	displacement	horsepower	weight
Min. : 9.00	Min. :3.000	Min. : 68.0	Min. : 46.0	Min. :1613
1st Qu.:17.00	1st Qu.:4.000	1st Qu.:105.0	1st Qu.: 75.0	1st Qu.:2225
Median :22.75	Median :4.000	Median :151.0	Median: 93.5	Median:2804
Mean :23.45	Mean :5.472	Mean :194.4	Mean :104.5	Mean :2978
3rd Qu.:29.00	3rd Qu.:8.000	3rd Qu.:275.8	3rd Qu.:126.0	3rd Qu.:3615
Max. :46.60	Max. :8.000	Max. :455.0	Max. :230.0	Max. :5140
acceleration	year	origin		name
Min. : 8.00	Min. :70.00	Min. :1.000	amc matador	: 5

```
1st Qu.:13.78
                   1st Qu.:73.00
                                   1st Qu.:1.000
                                                  ford pinto
     Median :15.50 Median :76.00
                                   Median :1.000
                                                  toyota corolla
                                                                  : 5
     Mean :15.54 Mean
                          :75.98
                                   Mean
                                         :1.577
                                                  amc gremlin
                                                                   : 4
     3rd Qu.:17.02
                    3rd Qu.:79.00
                                   3rd Qu.:2.000
                                                  amc hornet
                                                                   : 4
     Max. :24.80
                    Max. :82.00
                                   Max. :3.000
                                                  chevrolet chevette: 4
                                                  (Other)
                                                                   :365
[22]: #Find the summary of the mpg column
     \#mpg\_summary = ?
     # your code here
     mpg_summary = summary(Auto$mpg)
[23]: stopifnot(mpg_summary['Median'] == 22.75, mpg_summary['Max.'] == 46.60)
```