Recap and Further Resources

Introduction to cBioPortal

- Recognise the applications and utility of cBioPortal for cancer research
- Operate and explore the cBioPortal website to identify cancer data of interest
- Complete two cancer biology problem-solving tasks using cBioPortal
- 4 Recognise the process for accessing and analysing cBioPortal data

Further training resources

Direct link

cBioPortal FAQs

Accessing and using underlying cBioPortal data

Introduction to cBioPortal

Recognise the process for accessing and analysing cBioPortal data

Why bother?

"under-the-hood" dataset has more information than displayed publicly analyse lists of genes quickly
"improve" the plot quality
perform more advanced statistical testing (e.g. DEA, GSEA)

Downloading data

Unhelpful starting point.

Downloading data

Explore your dataset first, and then download.

Download will start and give a .tar.gz file

Downloading data

For each assay, 1 data file and 1 metadata/information file

25/03/2022 19:15 TXT File 25/03/2022 19:15 TXT File

25/03/2022 19:15 TXT File 103 KB

355 KB

TSV – feature x patient ID (many missing values, cancer-specific features)

Patient information

Sex, height, weight, race, ethnicity, diagnosis age, survival status

Occupation history, smoking status, family history

Tumour information

Stage, grade, disease codes, metastasis status

Tumour-specific categories (e.g. for bladder, rate of prostate cancer)

25/03/2022 19:15

TXT File

22,499 KB

tumour x gene using GISTIC scale (TSV)

- -2 homozygous "deep" deletion
- -1 shallow deletion (anything that isn't total loss)
- o diploid
- gain ("a few" extra copies)
- 2 amplification (often in focal sets)

tumour x gene, normalised gene expression data (TSV)

- Normalised counts
- Can feed into differential expression pipelines (DESeq2 etc), if careful!
- Good for comparisons of <u>one</u> gene across samples
- Harder to compare expression between genes of same sample

TSV – list of all mutations, sorted by tumour ID

- Includes synonymous mutations as well as non-synonymous
- Data structure is rubbish, requires lots of parsing to find hotspots etc.

Working with the data

Existing UG training and extensive core bioinformatic support

Specific cBioPortal REST API for programmatic access

Doable...! But. Memory intensive, and watch delimiters when importing.

cBioPortal API demonstration using RStudio

Introduction to cBioPortal

Course material

Google Form for questions

Working with the data... final thoughts

The data is not always complete

- Inconsistent column usage between datasets
- Watch 'whitespace' vs 'tab space' vs comma delimiters

Biological vs Statistical significance

Limited by previous bioinformatic analysis pipelines, genome version etc.

- More advanced questions can go back to the <u>raw</u> data

Course complete!

