

More than you ever wanted to know about: Lexical diversity

Day 3

Kristopher Kyle, University of Oregon

https://github.com/LCR-ADS-Lab/

TAALED_EnDe

- Can process English or German texts
- Currently works on Mac (not Windows make friends with someone who has a Mac ⊕)
- Takes plain text (.txt) files (with UTF-8 encoding) as input
- Files must be placed in a folder (TAALED processes all .txt files in a folder)
- Output includes:
 - Spreadsheet with lexical diversity scores for each text
 - A processed version of each text (to check how TAALED processed each file)

Your texts + Your scores + LD

How are things going?

An Empirical Evaluation of Lexical Diversity Indices in L2 Korean Writing Assessment

Sung, Cho, & Kyle (2024; Language Assessment Quarterly)

Introduction

- Lexical diversity (LD) indices have been used as measures of lexical proficiency/development in L2 assessment studies (Crossley, Salsbury, McNamara, & Jarvis, 2011, Vidal & Jarvis, 2020, inter alia)
- Breadth of lexical knowledge refers to the number of lexical items that L2 learners know (Nation, 2001; Nassaji, 2004)
- More proficient L2 learners would use a wider variety of lexical items to complete a given production task

Research Background: 1. LD indices & Reliability

- Reliability: Developing more text-length stable indices
- Learners of different proficiency will produce different lengths of a text
 - L2 English writing assessment (Zenker & Kyle, 2021)

More reliable (revised)	Less reliable (classic)
HD-D (McCarthy & Jarvis, 2007)	Type-token ratio (TTR) (Johnson, 1944)
MATTR (Covington & McFall, 2010)	Log TTR (Carroll, 1938; Chotlos, 1944)
MTLD (McCarthy & Jarvis, 2010)	Root TTR (Guiraud, 1960)

Research Background: 2. LD indices & Validity

- Validity: Measuring correlations with proficiency scores / human judgments
- Valid LD index should measure lexical diversity itself
 - L2 English

Holistic proficiency / writing scores (indirect)	Human judgments on LD (direct)
Holistic judgments on essays (L2) (Engber, 1995)	Human ratings (L1, L2) (Jarvis, 2017)
CEFR level, vocab / writing scores (L2) (Treffers-Daller et al., 2018)	Human ratings (L1, L2) (Kyle et al., 2021)

Research Background: 3. Lexical item in Korean

- LD is an index of productive lexical breadth, measured using the diversity of <u>lexical items</u> in a text.
- [English LD] One <u>lexical item</u> refers to one (functional/lexical) <u>word</u>, a written unit based on space (Biber et al., 2021)
- The notion <u>word</u> cannot be defined consistently across languages (...) A written unit separated by spaces may not reflect an important grammatical unit in some languages (Haspelmath & Michaelis, 2017)

Research Background: 3. Lexical item in Korean

• The index of synthesis (the number of morphemes per word) (Payne, 2006)

- Eojeol: Korean syntactic word separated by space
- Korean POS tagging has evolved from separating an eojeol into morphemes (Lee, Cha, & Lee, 2002)

Research Background: 3. Lexical item in Korean

 Each Korean-specific tokenizer shows different parsing styles, which would influence LD calculation.

Research Object & Question

- Object: Evaluating LD of L2 Korean writing
 - Include various LD indices (both classic & revised indices)
 - Use Korean-specific tokenizers (Okt, Mecab, Kkma) (Stanza: reference)
- Questions
 - [1] What is the relationship between LD indices and text length? (reliability)
 - [2] What is the relationship between LD indices and holistic proficiency level? (validity)

Result: RQ1

RQ1. What is the relationship between LD indices and text length?

- Mean z-score (text length LD value)
- Correlation (text length LD value)

Result: RQ1 | Mean z-score

Result: RQ1 | Correlations (text length – LD value)

a. A		TTR	LTTR	RTTR	HD-D	MATTR	MTLD
type pheme	Kkma	818	673	.605	.009	.016	061
ation t	Mecab	780	648	.622	.023	.019	050
iz –	Okt	752	587	.732	.055	.022	.024
Toker	Stanza	566	411	.864	.053	.032	.148

Note. Colored boxes indicate absolute *r*-values below .100 (i.e., negligible effect size, Cohen, 1988)

Result: RQ1 | Discussion

- The mean z-scores and correlations indicate that HD-D, MATTR, and MTLD are stable across the text lengths (Zenker & Kyle, 2021)
- There was no noticeable difference across tokenizers
- MATTR remained the most stable among three most reliable indices, followed by HD-D
- MTLD were mostly stable with Kkma and Mecab, but it fluctuated with Okt and Stanza

Result: RQ2

RQ2. To what degree are LD indices predictive of proficiency levels?

- Descriptive statistics
- Correlation (proficiency level LD value)
- Included ntokens & ntypes (Jarvis, 2017; Kyle et al., 2021)

Result: RQ2 | Descriptive statistics

			ntokens	ntypes	TTR	LTTR	RTTR	HD-D	MATTR	MTLD
A		mean	270.58	113.28	0.42	0.85	6.89	0.76	0.74	53.14
ا ع	Vlzma	(SD)	(60.67)	(21.45)	(0.05)	(0.02)	(0.78)	(0.03)	(0.04)	(10.57)
morphem e	Kkma	min	94	51	0.22	0.75	4.11	0.63	0.58	25.50
orp		max	585	216	0.64	0.92	9.74	0.85	0.84	107.53
Εþ		mean	250.88	112.55	0.45	0.86	7.11	0.78	0.75	58.01
	Mecab	(SD)	(56.79)	(21.94)	(0.06)	(0.02)	(0.83)	(0.03)	(0.04)	(12.98)
_	Wiecab	min	91	52	0.24	0.76	4.18	0.64	0.58	25.59
Tokenization type		max	551	220	0.69	0.93	10.24	0.87	0.86	136.55
iiza		mean	205.81	113.50	0.56	0.89	7.91	0.82	0.79	76.70
ken Je	Okt	(SD)	(47.51)	(22.98)	(0.06)	(0.02)	(0.92)	(0.04)	(0.04)	(22.74)
Toke	OKt	min	69	48	0.30	0.79	4.68	0.67	0.61	28.80
_		max	441	230	0.78	0.95	11.42	0.91	0.91	196.16
eojeol		mean	138.57	105.58	0.77	0.94	8.94	0.90	0.88	171.79
Φ	Stanza	(SD)	(30.97)	(23.24)	(0.07)	(0.02)	(1.12)	(0.04)	(0.05)	(70.68)
		min	54	43	0.44	0.85	5.29	0.67	0.64	28.99
+		max	295	230	0.96	0.99	13.39	0.98	1.00	700.00

Result: RQ2 | Correlations (LD value, proficiency level)

morphem	•			ntokens	ntypes	TTR	LTTR	RTTR	HD-D	MATTR	MTLD
ype mor	ט	Kkma		0.206***	0.293***	0.076***	0.156***	0.289***	0.252***	0.263***	0.264***
Tokenization type		Mecab	11	0.205***	0.294***	0.087***	0.162***	0.292***	0.272***	0.274***	0.274***
Tokeni		Okt	level	0.245***	0.280***	0.006***	0.069***	0.248***	0.180***	0.191***	0.179***
eojeol		Stanza		-0.037*	-0.029.	0.014	0.010	-0.022	-0.003	0.002	-0.009

Note. *** indicates that p-value was less than .001 ** indicates that p-value was less than .01 * indicates that p-value was less than .05, . indicates that p-values was less than .1

Result: R2 | Discussion

- Overall, the *n*types demonstrates the largest correlation with holistic level (Mecab, r = .294) (Jarvis, 2017; Kyle et al., 2021: abundance (*n*types))
- ntypes is strongly correlated to ntokens (Mecab, r = .830)
- Among the indices that provided reliable values across different text-length (in RQ1; HD-D, MATTR, MTLD), MATTR (r = .274) and MTLD (r = .274) showed the largest correlations when they were calculated by Mecab
- This is still a small correlation (r < .300), but the result shows that Korean-specific tokenizers give more valid LD scores compared to Stanza.

Summary

[RQ1]

• The revised LD indices, HD-D, MATTR, and MTLD, were more reliable than TTR, LTTR, and RTTR regardless of the type of tokenizers

[RQ2]

- The text-length stable indices (HD-D, MATTR, MTLD) demonstrated small correlations to proficiency level
- Among various pairs of tokenizers and LD indices, [Mecab MATTR/MTLD] represented the best options
- Morpheme-based tokenizers would be more valid way to calculate LD indices than eojeol-based tokenizers

Limitation and future direction

- In terms of tokenizer, other characteristics of Korean-specific tokenizers are underresearched (e.g., accuracy)
- In terms of validity, we need to compare the relationship between human judgment and different ways of tokenizing (w/wo lemmatization)

References 1

- Bai, D-Y. (2012). A study on the lexical variation and lexical density shown in writing of KFL learners. *Journal of Language Sciences*, 19(1), 99-117.
- Biber, D., Johansson, S., Leech, G. N., Conrad, S., & Finegan, E. (2021). *Grammar of spoken and written English*. John Benjamins.
- Carroll, J. B. (1964). Language and thought. Reading Improvement, 2(1), 80.
- Covington, M. A., & McFall, J. D. (2010). Cutting the Gordian Knot: The Moving-Average Type–Token Ratio (MATTR). *Journal of Quantitative Linguistics*, 17(2), 94–100. https://doi.org/10.1080/09296171003643098
- Crossley, S. A., Salsbury, T., McNamara, D. S., & Jarvis, S. (2011). Predicting lexical proficiency in language learner texts using computational indices. *Language Testing*, 28(4), 561-580.
- Engber, C. A. (1995). The relationship of lexical proficiency to the quality of ESL compositions. *Journal of Second Language Writing*, 4(2), 139–155. https://doi.org/10.1016/1060-3743(95)90004-7
- Guiraud, P. (1960). Problèmes et méthodes de la statistique linguistique. Presses universitaires de France.
- Haspelmath, M., & Michaelis, S. M. (2017, July). Analytic and synthetic. In Language Variation-European Perspectives VI: Selected papers from the Eighth International Conference on Language Variation in Europe (ICLaVE 8), Leipzig 2015. John Benjamins Publishing Company.
- Jarvis, S. (2017). Grounding lexical diversity in human judgments. *Language Testing*, 34(4), 537–553. https://doi.org/10.1177/0265532217710632
- Johnson, W. (1944). I. A program of research. Psychological Monographs, 56(2), 1–15. https://doi.org/10.1037/h0093508
- Kang, J-H. (2018). A study on the vocabulary development and the lexicon use aspect of Korean learners Focusing on the lexicon development appearing in the writing test. *Bilingual Research*, 71, 31-64.
- Koizumi, R. (2012). Relationships between text length and lexical diversity measures: Can we use short texts of less than 100 tokens? *Vocabulary Learning and Instruction*, 01(1), 60–69. https://doi.org/10.7820/vli.v01.1.koizumi

References 2

- Koizumi, R., & In'nami, Y. (2012). Effects of text length on lexical diversity measures: Using short texts with less than 200 tokens. System, 40(4), 554–564. https://doi.org/10.1016/j.system.2012.10.012
- Kyle, K., Crossley, S. A., & Jarvis, S. (2021). Assessing the Validity of Lexical Diversity Indices Using Direct Judgements. Language Assessment Quarterly, 18(2), 154–170. https://doi.org/10.1080/15434303.2020.1844205
- Lee, G. G., Cha, J., & Lee, J.-H. (2002). Syllable-Pattern-Based Unknown-Morpheme Segmentation and Estimation for Hybrid Part-of-Speech Tagging of Korean. *Computational Linguistics*, 28(1), 53–70. https://doi.org/10.1162/089120102317341774
- McCarthy, P. M., & Jarvis, S. (2007). vocd: A theoretical and empirical evaluation. *Language Testing*, *24*(4), 459–488. https://doi.org/10.1177/0265532207080767
- McCarthy, P. M., & Jarvis, S. (2010). MTLD, vocd-D, and HD-D: A validation study of sophisticated approaches to lexical diversity assessment. *Behavior Research Methods*, 42(2), 381–392. https://doi.org/10.3758/BRM.42.2.381
- Nation, P. (2001). Learning vocabulary in another language. Cambridge University Press.
- Nassaji, H. (2006). The Relationship Between Depth of Vocabulary Knowledge and L2 Learners' Lexical Inferencing Strategy Use and Success. *The Modern Language Journal*, 90(3), 387–401.
- Payne, T. (2006). Exploring language structure: A student's guide. Cambridge University Press.
- Treffers-Daller, J., Parslow, P., & Williams, S. (2018). Back to basics: How measures of lexical diversity can help discriminate between CEFR levels. *Applied Linguistics*, 39(3), 302-327.
- Vidal, K., & Jarvis, S. (2020). Effects of English-medium instruction on Spanish students' proficiency and lexical diversity in English. *Language Teaching Research*, 24(5), 568-587.
- Zenker, F., & Kyle, K. (2021). Investigating minimum text lengths for lexical diversity indices. *Assessing Writing*, 47, 100505. https://doi.org/10.1016/j.asw.2020.100505

UD-KSL-treebank: Annotations

- No funding for annotations, but a good colleague
- v1.1 (# sents = 7,530) (2023, 2024)
 - Started small, only with the morpheme annotations
 - Expanded to dependency relations
- v1.2 (# sents = 12,984) (2025a)
 - Able to recruit 2-3 annotators
- v1.3 (# sents = 15,982) (2025b)
 - Bigger research group

Gyu-Ho Shin

# sent :	id = B200018	3-9-3968							
			은을 입고 사진	l을 찍어 기념으	로 남겼다.				
1	그래서	그래서	ADV	MAJ	_ 1	11	сс		_
2	나는	나+는	PRON	NP+JX	_ 1	11	nsubj		<u></u>
3	그	ユ	DET	MM	_ 4	4	det		
4	산	산	NOUN	NNG	_ 7	7	obl		
5	앞에서	앞+에서	ADP	NNG+JKB	_ 4	4	case		
6	옷을	옷+을	NOUN	NNG+JK0	_ 7	7	obj		
7	입고	입+고	VERB	VV+EC	_	9	advcl		
8	사진을	사진+을	NOUN	NNG+JK0	_	9	obj		
9	찍어	찍+어	VERB	VV+EC	_ 1	11	advcl		_
10	기념으로	기념+으로	ADV	NNG+JKB	_ 1	11	obl		<u></u>
11	남겼다	남기+었+다	VERB	VV+EP+EF	_ (0	root		SpaceAfter=No
12			PUNCT	SF	_ 1	11	punct	_	_

Tag	Description	Tag	Description
NNG	Noun, common	EP	Ending, prefinal
NNP	Noun, proper	EF	Ending, closing
NNB	Noun, bound	EC	Ending, connecting
NR	Numeral	ETN	Ending, nounal
NP	Pronoun	ETM	Ending, determinative
VV	Verb, main	XPN	Prefix, nounal
VA	Adjective	XSN	Suffix, noun derivative
VX	Verb, auxiliary	XSV	Suffix, verb derivative
VCP	Copular, positive	XSA	Suffix, adjective derivative
VCN	Copular, negative	XR	Root
MM	Determiner	NF	Undecided (considered as a noun)
MAG	Adverb, common	NV	Undecided (considered as a predicate)
MAJ	Adverb, conjunctive	NA	Undecided
IC	Exclamation	SF	Period, Question, Exclamation
JKS	Case particle, nominative	SE	Ellipsis
JKG	Case particle, prenominal	SP	Comma, Colon, Slash
JKO	Case particle, objectival	SO	Hyphen, Swung Dash
JKB	Case particle, adverbial	SW	Symbol
JKC	Case particle, complement	SS	Quotation, Bracket, Dash
JKV	Case particle, vocative	SH	Chinese characters
JKQ	Case particle, conjunctive	SL	Foreign characters
JX	Case particle, auxiliary	SN	Number

UD-KSL-treebank: Fine-tuning

• Evaluated/trained models with the annotated dataset

		BiLSTM	tok2vec	transfor
Metric	Baseline	Stanza	SpaCy	Trankit
XPOS	82.44	89.72	83.15	91.81
LEMMA	89.61	95.64	87.97	88.84
UAS	76.72	85.53	82.21	92.28
LAS	60.69	80.36	75.21	89.13
XPOS	77.79	81.87	71.21	84.51
LEMMA	88.03	91.01	79.64	86.90
UAS	72.30	81.17	74.48	88.93
LAS	58.53	75.14	63.56	85.45
	XPOS LEMMA UAS LAS XPOS LEMMA UAS	XPOS 82.44 LEMMA 89.61 UAS 76.72 LAS 60.69 XPOS 77.79 LEMMA 88.03 UAS 72.30	Metric Baseline Stanza XPOS 82.44 89.72 LEMMA 89.61 95.64 UAS 76.72 85.53 LAS 60.69 80.36 XPOS 77.79 81.87 LEMMA 88.03 91.01 UAS 72.30 81.17	Metric Baseline Stanza SpaCy XPOS 82.44 89.72 83.15 LEMMA 89.61 95.64 87.97 UAS 76.72 85.53 82.21 LAS 60.69 80.36 75.21 XPOS 77.79 81.87 71.21 LEMMA 88.03 91.01 79.64 UAS 72.30 81.17 74.48

Table 2: Evaluation metrics