

Introduction to Large Language Models

Eya Ben Charrada

Too smart or too dumb?

ChatGPT has passed medical, law and business schools exams

Fails to answer questions that a 5-years-old child can answer

How does it work?

Famous google paper (2017)

Attention Is All You Need

 $\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Goal

Understand how transformer models work :

Explore the hidden meaning behind mathematical equations

Outline

What is a language model

Before the transformer

Language Model

In Tunisia, I ate delicious — ?

Translation, summarisation, question answering...

Language Model

Large Language Model

Training costs

10 TB of Text (scraped from the internet)

6000 GPUs for 12 days ~2M\$*

Parameters

Calculated based on training

Parameters are not interpretable or understandable by human

No one knows how they collaborate

How do language models work?

In Tunisia, I ate delicious — couscous

Outline

What is a language model

Before the transformer

Neural network

Sequence to sequence models - Translation

Takes a sequence as input and generated another sequence Example: Recurrent neural network (RNN), Gated Recurrent Units (GRU), Long-short-term memory (LSTM)

Sequence to sequence models

Sequence to sequence models

These models process the sequence word by word. This makes them very expensive to train.

What is a language model

Before the transformer

Transformer architecture

"Attention is all you need" (2017)

Transformer architecture Encoder

Sequence as Matrix

apple

3.4 5.2 -0.3 0.4

She made apple cake

0.1	2.2	3.4	6.4
5.2	1.0	5.2	2.2
0.7	2.3	-0.3	5.3
2.4	-1.0	0.4	3.1

Word embedding

Words are represented as a vectors in a space of n dimensions

Similar words are closer to each other

Distance is usually calculated using cosine similarity: $cos(\theta)$

Word embedding

I made an apple juice

I made <u>orange</u> juice

I made a fruit salad with apples and oranges

I go to school by car

The school bus arrived on time

Word embedding

Cairo The distance between words reflects the relation Tokyo between the words Tunisia Example: Tokyo to Japan is like Cairo to Egypt Man King Women Queen

Attention mechanism

Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

The math is too simple.

But wait...

What's the meaning of multiplying the input 3 times?

Ideas?

Attention mechanism - Explained

The value of the dot product depends on the cosine distance between the vectors

So similar words will have a higher dot product

Sequence: she made apple cake

Food	Tech	Other
3	0	0
2	2	0
0	0	2
0	0	3
	2	2 2 0

Food

cake apple made she 0 0 0 2 0 0 3 0 2 0

First dot product

Cookies and dates have a higher dot product than dates and she

The multiplication gives higher values to similar words in the input sequence

	cookies	apple	made	she
cookies	9	6	0	0
dates	6	8	0	0
made	0	0	4	6
she	0	0	6	9

Scaling & Softmax

Scaling:

For large values of d_k , the dot products grow large in magnitude. To counteract this effect, the dot product is scaled by $1/\sqrt{d_k}$

Softmax:
$$\frac{e^{z_i}}{\sum_{i=1}^{K} e^{z_i}}$$

Returns values between 0 and 1 while preserving the order of the elements

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

First dot product

Orange and apple have a higher dot product than apple and an

The multiplication gives higher values to similar words in the input sequence

	cookies	apple	made	she
cookies	0.8	0.2	0	0
apple	0.2	0.8	0	0
made	0	0	0.6	0.3
she	0	0	0.4	0.5

Second dot product

	cake	apple	made	she
cake	0.8	0.2	0	0
apple	0.2	0.8	0	0
made	0	0	0.6	0.3
she	0	0	0.4	0.5

	Food	Tech	Other
cake	3	0	0
apple	2	2	0
made	0	0	2
she	0	0	3

Second dot product

	cake	apple	made	she
cake	0.8	0.2	0	0
apple	0.2	0.8	0	0
made	0	0	0.6	0.3
she	0	0	0.4	0.5

	Food	Tech	Other
cake	3	0	0
apple	2	2	0
made	0	0	2
she	0	0	3

cake	2.8	0.4	
apple			
made			
she			3

Second dot product

	cake	apple	made	she
cake	0.8	0.2	0	0
apple	0.2	0.8	0	0
made	0	0	0.6	0.3
she	0	0	0.4	0.5

	Food	Tech	Other
cake	3	0	0
apple	2	2	0
made	0	0	2
she	0	0	3

Words are attracted to each other.
Similar words will have more attraction effect on each other than non similar words.

cake	2.8	0.4	0
apple	2.2	1.6	0
made	0	0	2.1
she	0	0	2.3

Dot product for context awareness

She made apple cake

Using the matrix dot product will move "apple" toward "cake"

Dot product for context awareness

new phone from apple

Dot product provides context awareness

She made a fruit cake with apples, pears and almond.

Gravity effect

Similar words attract each other more

Cluster similar words have a stronger attraction effect

Multi-Head Attention

Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Projections

V, K and Q are the result of multiplying the sequence S with parameter matrices

The multiplication is a linear projection of the sequence

What is a language model

Before the transformer

Transformer architecture

Masked attention on output sequence

Add information about word position

Transform input words to vectors

Output Probabilities

Softmax

Decoder

Masked attention

Mask out dependency with following words by setting it to -∞

Only previous words are taken into consideration

The softmax will transform the -∞ to 0

Allows processing the whole output sequence at once during learning

	<sos></sos>	Sie	machte	Apfelkuchen
<sos></sos>	0.8	-∞	_∞	-∞
Sie	0.1	0.7	-∞	-∞
machte	0	0.4	0.6	-∞
Apfelkuchen	0.2	0.1	0.4	0.5

Costs of attention

Learning:

Input/output sequences processed in one step

Inference:

Input sequence processed in one step

Output inferred token by token

GPT

Generative Pre-trained Transformer

Decoder only

BERT

Bidirectional Encoder Representations from Transformers

Encoder only

Smart or Stupid

Smart or Stupid

Summary

What is a language model

Before the transformer

References

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

[1hr Talk] Intro to Large Language Models. Andrej Karpathy https://youtu.be/zjkBMFhNjg?si=wpJVQf6ah18LM30z

The Attention Mechanism in Large Language Models. Serrano. Academy https://youtu.be/OxCpWwDCDFQ?si=qpKl2hgWtgAoEH3n