VECTOR ALGEBRA AND SWERVE

ThunderChickens – FRC Team 217

Swerve drivebase example

WHAT IS A VECTOR?

- ► Has a direction and magnitude
 - Velocity
 - Position
 - ▶ Force
- Has a head and a tail
 - ► The tail is the starting point of the vector
 - ▶ The head is the pointed end of the vector arrow
- Can be broken into components
- Can be added and subtracted
- ▶ Has three different methods of "multiplication"
 - By a scalar
 - ► By another vector:
 - Dot product (gives us a scalar)
 - Cross product (also called the vector product because it gives us a vector)

WHAT IS A SCALAR?

- ▶ Has a magnitude but no direction
 - ▶ Speed
 - ▶ Volume
 - ► Mass
- ▶ Described by real numbers*
 - *Some branches of mathematics also use complex (imaginary) numbers

BREAKING DOWN 2-D VECTORS

- ▶ Given a 2-D vector \vec{v} with magnitude $||\vec{v}||$ and direction θ :
 - $\vec{v} = \langle \|\vec{v}\| \cos(\theta), \|\vec{v}\| \sin(\theta) \rangle$ $= \|\vec{v}\| \cos(\theta) \hat{i} + \|\vec{v}\| \sin(\theta) \hat{j}$
 - \blacktriangleright $\|\vec{v}\|\cos(\theta)$ is the \hat{i} component, $\|\vec{v}\|\sin(\theta)$ is the \hat{j} component
 - î is a unit vector pointing along x
 - \triangleright \hat{j} is a unit vector pointing along y
 - A unit vector has a magnitude of 1
- ▶ You can also go backwards. Given $\vec{v} = \langle x, y \rangle$:
 - $||\vec{v}|| = \sqrt{x^2 + y^2}$
 - $\bullet \ \theta = \tan^{-1}(\frac{y}{x})$

SCALING VECTORS

- ▶ Given $\vec{v} = \langle x, y \rangle$ and a scalar c:

 - ▶ $\|\vec{v}\|$ is scaled by c
 - \blacktriangleright θ is unchanged

ADDING AND SUBTRACTING VECTORS

- ▶ Given $\vec{u} = \langle u_1, u_2 \rangle$ and $\vec{v} = \langle v_1, v_2 \rangle$:
 - $\rightarrow \vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$
 - ► NOTE: Adding vectors does NOT add the vector magnitudes together; it adds the component magnitudes together
 - $ightharpoonup \vec{u} \vec{v} = \langle u_1 v_1, u_2 v_2 \rangle$
- ▶ Geometrically:
 - Adding vectors attaches the tail of the second vector to the head of the first
 - Subtracting vectors:
 - Flips the second vector's head and tail (scales it by -1)
 - Attaches the tail of the flipped second vector to the head of the first

DOT PRODUCT

- ▶ Given $\vec{u} = \langle u_1, u_2 \rangle$ and $\vec{v} = \langle v_1, v_2 \rangle$:
 - $\blacktriangleright \ \vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2$
- ▶ What does this mean?
- ▶ Given $\|\vec{u}\|$, $\|\vec{v}\|$, and the angle θ between \vec{u} and \vec{v} :
 - $\blacktriangleright \ \vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\theta)$
- ▶ Dot product $\vec{u} \cdot \vec{v}$ gives us the magnitude of \vec{u} in the direction of \vec{v} , and vice versa

CROSS PRODUCT

▶ Given $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$:

$$\vec{u} \times \vec{v} = \det \begin{pmatrix} \begin{bmatrix} \hat{i} & u_1 & v_1 \\ \hat{j} & u_2 & v_2 \\ \hat{k} & u_3 & v_3 \end{pmatrix} \\
= \hat{i}(u_2v_3 - u_3v_2) - \hat{j}(u_1v_3 - u_3v_1) + \hat{k}(u_1v_2 - u_2v_1) \\
= \begin{bmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{bmatrix}$$

- ▶ What does this mean?
- ightharpoonup Given $\|\vec{u}\|$, $\|\vec{v}\|$, and the angle θ between \vec{u} and \vec{v} :
 - $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| |\sin(\theta)| = Area \ of \ a \ parallelogram$
- ▶ Cross product $\vec{u} \times \vec{v}$ gives us a vector perpendicular to both \vec{u} and \vec{v} with magnitude equivalent to the area of the parallelogram formed by \vec{u} and \vec{v}

CROSS PRODUCT – PROOF

▶ Given $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$:

$$\vec{u} \times \vec{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

$$\begin{bmatrix}
u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1
\end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = u_1(u_2v_3 - u_3v_2) + u_2(u_3v_1 - u_1v_3) + u_3(u_1v_2 - u_2v_1) \\
= u_1u_2v_3 - u_1u_3v_2 + u_2u_3v_1 - u_1u_2v_3 + u_1u_3v_2 - u_2u_3v_1 = 0$$

$$\begin{bmatrix}
u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1
\end{bmatrix} \cdot \begin{bmatrix}
v_1 \\ v_2 \\ v_3
\end{bmatrix} = v_1(u_2v_3 - u_3v_2) + v_2(u_3v_1 - u_1v_3) + v_3(u_1v_2 - u_2v_1) \\
= u_2v_1v_3 - u_3v_1v_2 + u_3v_1v_2 - u_1v_2v_3 + u_1v_2v_3 - u_2v_1v_3 = 0$$

PROPERTIES OF VECTORS

- ▶ Commutative property: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- ► Associative property: $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$
- ▶ Identity property: $1\vec{v} = \vec{v}$
- \blacktriangleright Zero property: $0\vec{v} = \vec{0}$
 - $ightharpoonup \vec{0} = \langle 0,0 \rangle$
- ► Distributive property:

$$c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$$

- $(c+d)\vec{v} = c\vec{v} + d\vec{v}$
- ▶ Two non-zero vectors \vec{u} and \vec{v} are parallel if $\vec{u} = c\vec{v}$ for some scalar c
- ▶ Cancellation property: If $\vec{u} + \vec{v} = \vec{u} + \vec{w}$, then $\vec{v} = \vec{w}$

PROPERTIES OF THE DOT PRODUCT

- Commutative property: $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- ▶ Not associative
 - ▶ The dot product returns a scalar, so $\vec{u} \cdot \vec{v} \cdot \vec{w}$ is invalid
- ▶ Scalar multiplication property: $c(\vec{u} \cdot \vec{v}) = c\vec{u} \cdot \vec{v} = \vec{u} \cdot c\vec{v}$
- ▶ Zero property: $\vec{v} \cdot \vec{0} = 0$
- ▶ Distributive property: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- ▶ Bilinear property: $\vec{u} \cdot (c\vec{v} + \vec{w}) = c(\vec{u} \cdot \vec{v}) + \vec{u} \cdot \vec{w}$
- ightharpoonup Two non-zero vectors \vec{u} and \vec{v} are orthogonal if $\vec{u} \cdot \vec{v} = 0$
- ▶ No cancellation
 - \blacktriangleright $\langle 6,3 \rangle \cdot \langle 3,2 \rangle = 24 = \langle 6,3 \rangle \cdot \langle 4,0 \rangle$, but $\langle 3,2 \rangle \neq \langle 4,0 \rangle$
 - ▶ Using the distributive property, $\vec{u} \cdot (\vec{v} \vec{w}) = 0$, so $\langle 3,2 \rangle \langle 4,0 \rangle = \langle -1,2 \rangle$ is orthogonal to $\langle 6,3 \rangle$

PROPERTIES OF THE CROSS PRODUCT

- ▶ Anti-commutative property: $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$
- ▶ Not associative
 - ▶ Satisfies the Jacobi Identity: $\vec{u} \times (\vec{v} \times \vec{w}) \vec{v} \times (\vec{u} \times \vec{w}) + \vec{w} \times (\vec{u} \times \vec{v}) = 0$
- ▶ Scalar multiplication property: $c(\vec{u} \times \vec{v}) = c\vec{u} \times \vec{v} = \vec{u} \times c\vec{v}$
- ▶ Zero property: $\vec{v} \times \vec{0} = \vec{0}$
- ▶ Distributive property: $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$
- ▶ Bilinear property: $\vec{u} \times (c\vec{v} + \vec{w}) = c(\vec{u} \times \vec{v}) + \vec{u} \times \vec{w}$
- ▶ Two non-zero vectors \vec{u} and \vec{v} are parallel if $\vec{u} \times \vec{v} = 0$
- ▶ No cancellation
 - $ightharpoonup \vec{u} imes \vec{v} = \vec{u} imes \vec{w}$ does not imply $\vec{v} = \vec{w}$
 - Using the distributive property, $\vec{u} \times (\vec{v} \vec{w}) = 0$

VECTORS IN SWERVE: OVERVIEW

- ▶ The four wheels in swerve can each be represented by vectors
 - Magnitude is speed
 - Direction is wheel angle
 - ▶ Swerve wheels operate in 2-D space, so we can break down the vectors into $\langle x, y \rangle$
- A matrix is a collection of vectors, so we can represent the wheel vectors in a 4x2 matrix (4 rows, 2 columns => 4 wheels, $\langle x, y \rangle$)
 - ► In code, a matrix is a 2-D array wheels[rows][columns]
 - We will start at the front left wheel and go around clockwise when numbering our rows

VECTORS IN SWERVE: SPEED AND STRAFE

- ▶ Speed (forwards and backwards) and strafe (left and right) can be represented as a vector: ⟨strafe, speed⟩
 - strafe is left/right = x, speed is fwd/back = y
- All wheels have the same speed/strafe vector
 - All wheels point in the same direction and travel the same speed when strafing

```
double[][] strafeMatrix = new double[4][2]; // 4 vectors, each containing 2 elements (x and y)
for (double[] strafeVector : strafeMatrix) {
    strafeVector[0] = strafe; // strafe is x
    strafeVector[1] = speed; // speed is y
}
return strafeMatrix;
```

VECTORS IN SWERVE: TURNING

- ▶ When turning in swerve, the wheels lie tangent to a circle
- Vectors point clockwise when turning right, counter-clockwise when turning left
- ▶ The vector is related to the distance between the front and back wheels, and between the left and right wheels:
 - $ightharpoonup \vec{v} = \langle length, width \rangle$
 - As the bot gets longer, the wheels point farther from forward
 - As the bot gets wider, the wheels point closer to forward

► Clockwise turn:
$$\begin{bmatrix} length & width \\ length & -width \\ -length & -width \\ -length & width \end{bmatrix} * 1/\sqrt{length^2 + width^2}$$

▶ Base turning vectors must be unit vectors, scalar is $1/\sqrt{length^2 + width^2}$

VECTORS IN SWERVE: TURNING

- ► The turning matrix is scaled by the magnitude of the input turn value
 - Since the base turn vectors are unit vectors, this makes each wheel have a turn speed equal to the input turn value
 - A negative turn value flips the direction of all vectors, resulting in a counter-clockwise turn

```
turnMatrix[0][0] = kBotLength;
turnMatrix[0][1] = kBotWidth;

turnMatrix[1][0] = kBotLength;
turnMatrix[1][1] = -kBotWidth;

turnMatrix[2][0] = -kBotLength;
turnMatrix[2][1] = -kBotWidth;

turnMatrix[3][0] = -kBotLength;
turnMatrix[3][1] = kBotWidth;
```

```
double botMagnitude = Num.distance(kBotLength, kBotWidth);
for (double[] turnVector : turnMatrix) {
    // convert turnVector into unit vector
    turnVector[0] /= botMagnitude;
    turnVector[1] /= botMagnitude;
    // multiply by scalar (turn)
    turnVector[0] *= turn;
    turnVector[1] *= turn;
}
return turnMatrix;
```


VECTORS IN SWERVE: COMBINING THE VECTORS

- ► The final movement vector for the wheels is the sum of the two vectors (speed and strafe, and turn)
 - For the two vectors, larger magnitude = more influence on the final vector
- ▶ The speed of a wheel cannot be greater than 1.0, so scale down all vectors by the largest magnitude or 1.0, whichever is greater
 - ▶ If the largest magnitude is less than 1, we don't want to scale it down; doing so will result in constant max speed

```
// NOTE: matrix starts with the leftMaster and goes clockwise
                                                                                    for (int i = 0; i < wheelMatrix.length; i++) {
                                                                                        // add turnMatrix to wheel matrix
double[][] wheelMatrix = getStrafeMatrix(speed, strafe);
                                                                                       wheelMatrix[i][0] += turnMatrix[i][0];
                                                                                       wheelMatrix[i][1] += turnMatrix[i][1];
                                                                                       double wheelMagnitude = Num.distance(wheelMatrix[i]); // fun fact: Num.distance(double... axis) can accept a 1-D array
// since none of them can be greater than 1
                                                                                        maxWheelMagnitude = Math.max(maxWheelMagnitude, wheelMagnitude);
double maxWheelMagnitude = 1;
// variables in this block are not accessible elsewhere
                                                                                // divide all wheel vectors by the max magnitude so none exceed 1
                                                                                for (double[] wheelVector : wheelMatrix) {
                                                                                    wheelVector[0] /= maxWheelMagnitude;
                                                                                    wheelVector[1] /= maxWheelMagnitude;
    double[][] turnMatrix = getTurnMatrix(turn);
```

SETTING MOTOR OUTPUT

- ▶ Given a wheel vector $\vec{v} = \langle x, y \rangle$:
 - ightharpoonup speed = $\|\vec{v}\|$
 - ► $angle = \theta = \tan^{-1}\left(\frac{x}{y}\right)$
 - ▶ Forward is 0 rad, increases turning clockwise, so we flip x and y
- Set the percent output of the drive motor to speed
- Use Motion Magic to set the turn motor to Converter.radToEnc(angle, ticksPerRev) (from <u>FRC-217-Libraries</u>)

SETTING MOTOR OUTPUT (SIMPLIFIED MATH)

- We can combine all the vectors together and calculate a simple equation for each wheel instead of doing it step by step
- ► Front left example:

$$r = Num.distance(botLength, botWidth)$$
 $x = strafe + turn \frac{botLength}{r}$
 $y = speed + turn \frac{botWidth}{r}$
 $double\ flSpeed = Num.distance(x, y)$
 $double\ flAngle = tan^{-1} \left(\frac{x}{y}\right)$

OPTIMIZE SWERVE ANGLE

- If the last wheel angle was 0 rad, and the new target angle is $\frac{2\pi}{3}$ rad, we normally turn the wheel $\frac{2\pi}{3}$ rad
 - Inefficient for the turning motor
- ▶ Instead, flip the drive direction and turn to $-\frac{\pi}{3}$ rad
 - ▶ Turns the wheel half the distance

```
double angleDiff = angle - lastAngle[i];
// get how many half rotations we have to make to get within 90 degrees of lastAngle
// add signof(angleDiff) * Math.PI / 2 to angleDiff so we get within 90 degrees and not 180
int numHalfRotations = (int)((angleDiff + Math.signum(angleDiff) * Math.PI / 2) / Math.PI);
// subtract off that many half rotations
angle -= numHalfRotations * Math.PI;
if (numHalfRotations % 2 == 1) {
    // every half rotation, the wheel is flipped, so we need to flip speed
    // odd numbers of half rotations (% 2 == 1) results in a flipped speed
    speed *= -1;
}
lastAngle[i] = angle;
```

OPTIMIZE SWERVE ANGLE – EXPLANATION OF EFFICIENT ALGORITHM

- ▶ While the angle diff > $\frac{\pi}{2}$, subtract π and flip direction of speed
 - O(n) (linear) time complexity, takes longer if our wheels are rotated around multiple times
 - ▶ For absolute encoders that only read one rotation, this is very efficient
 - ► For relative encoders that read to Integer.MAX_VALUE, this is very inefficient
- ▶ Instead, for relative encoders:
 - 1. Calculate how many rotations of π we need
 - Any decimal remainder is our angle, so cast to int (truncate)
 - 2. Subtract off that many rotations of π
 - 3. Odd number of rotations = flip direction of speed
 - ▶ Rotating by π is a semicircle; an even number of π rotations is a full circle

FIELD SENSE

- Instead of speed and strafe being relative to the robot, make them relative to the field
 - Get angle from gyro/PigeonIMU
 - ▶ Find difference between angle and the "zero" angle for Field Sense
 - ▶ The "zero" angle is set when Field Sense toggles from disabled to enabled
 - Modify the speed and strafe inputs to form a vector with angle:
 - lacktriangledown heta gyroDiff if both gyroDiff and the wheel angle each increase as they turn the same direction
 - ▶ Ex: as both turn right, both angles increase
 - ▶ $strafe = strafe \cos(gyroDiff) speed \sin(gyroDiff)$
 - ightharpoonup speed $\cos(gyroDiff) + strafe \sin(gyroDiff)$
 - \blacktriangleright $\theta + gyroDiff$ if gyroDiff and the wheel angle each increases as they turn opposite directions
 - ▶ Ex: the wheel angle increases as it turns right, but the gyro increases as it turns left
 - $ightharpoonup strafe = strafe \cos(gyroDiff) + speed \sin(gyroDiff)$
 - ▶ speed = speed cos(gyroDiff) strafe sin(gyroDiff)

FIELD SENSE — EXPLANATION OF MATH

► To rotate a vector, one must perform a linear transformation using the rotation matrix:

$$R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

- When $\theta = 0$, $R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \hat{\imath} & \hat{\jmath} \end{bmatrix}$
- \blacktriangleright Increasing θ positively rotates vectors counter-clockwise
- ▶ $cos(\theta) = cos(-\theta)$, but $sin(\theta) = -sin(-\theta)$, so adding vs subtracting gyroDiff only flips the sign of $sin(\theta)$
- ▶ When we subtract gyroDiff, we want to turn counter-clockwise as gyroDiff increases, which is equivalent to increasing θ positively, so $\theta = gyroDiff$
- ▶ Matrix algebra:

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} + y \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix} = \begin{bmatrix} x \cos(\theta) - y \sin(\theta) \\ y \cos(\theta) + x \sin(\theta) \end{bmatrix}$$