Rec'd PCT/PTO 0.7 APR 2005

PCT/JP03/12810

07.10.03

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年10月 7日

REC'D 2 1 NOV 2003

出 願 番 号 Application Number:

特願2002-293383

WIPO POT

[ST. 10/C]:

. 468

[JP2002-293383]

出 願 人
Applicant(s):

日本臓器製薬株式会社

2003年11月 6日

特許庁長官 Commissioner, Japan Patent Office 今井原

BEST AVAILABLE COPY

【書類名】

特許願

【整理番号】

183016

【提出日】

平成14年10月 7日

【あて先】

特許庁長官殿

【国際特許分類】

G06F 15/60

【発明者】

【住所又は居所】

兵庫県加東郡社町木梨川北山442-1 日本臓器製薬

株式会社生物活性科学研究所内

【氏名】

小谷 孝行

【発明者】

【住所又は居所】

兵庫県加東郡社町木梨川北山442-1 日本臓器製薬

株式会社生物活性科学研究所内

【氏名】

東浦 邦彦

【特許出願人】

【識別番号】

000231796

【住所又は居所】

大阪府大阪市中央区平野町2丁目1番2号

【氏名又は名称】 日本臓器製薬株式会社

【代理人】

【識別番号】

100062144

【弁理士】

【氏名又は名称】

青山 葆

【選任した代理人】

【識別番号】

100086405

【弁理士】

【氏名又は名称】 河宮 治

【選任した代理人】

【識別番号】

100101454

【弁理士】

【氏名又は名称】 山田 卓二

【手数料の表示】

【予納台帳番号】 013262

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0106022

【プルーフの要否】

要

【発明の名称】 三次元構造活性相関法

【特許請求の範囲】

【請求項1】 仮想空間内で重ね合わせた複数の分子の原子座標をもとに該 化合物の特徴を抽出して視覚的に表示する三次元構造活性相関法であって、

仮想空間内で複数の分子を重ね合わせる工程Aと、

仮想空間内で重ね合わされた複数の分子の原子座標をクラスター解析して代表 点を作成する工程Bと、

重ね合わされた複数の分子の各原子と代表点との相互作用を計算する工程Cと

相互作用を統計解析する工程Dとを備え、

クラスター解析の工程Bはさらに、

仮想空間内で重ね合わされた複数の分子に含まれる各原子の座標を求める第1 の工程B1と、

各原子について他の原子との原子間距離を計算し、計算された原子間距離のうち最短の原子間距離及び該最短原子間距離を構成する2つの原子を特定する第2の工程B2と、

計算された最短原子間距離が所定の閾値以下である場合、最短原子間距離を有する2つの原子を三次元空間から削除するとともに該削除する2つの原子の座標の加重平均座標に該2つの原子を代表する原子を作成する第3の工程B3と、

第3の工程B3後、第2の工程B2に戻り上記第3の工程B3で作成した原子を含めて第2の工程B2を行う第4の工程B4と、

計算された最短原子間距離が所定の閾値を越える場合、工程Bを終了する第5 の工程B5とを含むことを特徴とする三次元構造活性相関法。

【請求項2】 仮想空間内で重ね合わせた複数の分子の原子座標をもとに該 化合物の特徴を抽出して視覚的に表示する三次元構造活性相関法であって、

仮想空間内で複数の分子を重ね合わせる工程Aと、

仮想空間内で重ね合わされた複数の分子の原子座標をクラスター解析して代表 点を作成する工程Bと、 重ね合わされた複数の分子の各原子と代表点との相互作用を計算する工程Cと

相互作用を統計解析する工程Dとを備え、

クラスター解析の工程Bはさらに、

仮想空間内で重ね合わされた分子が環構造又は官能基を備えている場合、必要 に応じて該環構造又は官能基を代表する位置に原子を仮想する第1の工程B1と

仮想された原子を含めた仮想空間内にあるすべての原子について、他の原子と の原子間距離を計算し、計算された原子間距離のうち最短の原子間距離及び該最 短原子間距離を構成する2つの原子を特定する第2の工程B2と、

計算された最短原子間距離が所定の閾値以下である場合、最短原子間距離を有する2つの原子を三次元空間から削除するとともに該削除する2つの原子の座標の加重平均座標に該2つの原子を代表する原子を作成する第3の工程B3と、

第3の工程B3後、第2の工程B2に戻り第3の工程で作成した原子を含めて 第2の工程を行う第4の工程B4と、

計算された最短原子間距離が所定の閾値を越える場合、工程Bを終了する工程 B5とを含むことを特徴とする三次元構造活性相関法。

【請求項3】 工程Dで計算する相互作用は、立体的相互作用、静電的相互作用、疎水的相互作用の少なくともいずれか一つを含むことを特徴とする請求項1又は2の三次元構造活性相関法。

【請求項4】 コンピュータを用いて仮想空間内で重ね合わせた複数の分子の原子座標をもとに該化合物の特徴を抽出して視覚的に表示する三次元構造活性相関法に利用されるプログラムであって、コンピュータに、

仮想空間内で複数の分子を重ね合わせる処理Aと、

仮想空間内で重ね合わされた複数の分子の原子座標をクラスター解析して代表 点を作成する処理Bと、

重ね合わされた複数の分子の各原子と代表点との相互作用を計算する処理Cと

相互作用を統計解析する処理Dとを実行させ、

クラスター解析の処理Bはさらに、

仮想空間内で重ね合わされた複数の分子に含まれる各原子の座標を求める第1 の処理B1と、

各原子について他の原子との原子間距離を計算し、計算された原子間距離のうち最短の原子間距離及び該最短原子間距離を構成する2つの原子を特定する第2の処理B2と、

計算された最短原子間距離が所定の閾値以下である場合、最短原子間距離を有する2つの原子を三次元空間から削除するとともに該削除する2つの原子の座標の加重平均座標に該2つの原子を代表する原子を作成する第3の処理B3と、

第3の処理B3後、第2の処理B2に戻り第3の処理B3で作成した原子を含めて第2の処理を行う第4の処理B4と、

計算された最短原子間距離が所定の閾値を越える場合、処理Bを終了する第5の処理B5とを実行させることを特徴とするプログラム。

【請求項5】 コンピュータを用いて仮想空間内で重ね合わせた複数の分子の原子座標をもとに該化合物の特徴を抽出して視覚的に表示する三次元構造活性相関法に利用されるプログラムであって、コンピュータに、

仮想空間内で複数の分子を重ね合わせる処理Aと、

仮想空間内で重ね合わされた複数の分子の原子座標をクラスター解析して代表 点を作成する処理Bと、

重ね合わされた複数の分子の各原子と代表点との相互作用を計算する処理Cと

相互作用を統計解析する処理Dとを実行させ、

クラスター解析の処理Bはさらに、

仮想空間内で重ね合わされた分子が環構造又は官能基を備えている場合、必要 に応じて該環構造又は官能基を代表する位置に原子を仮想する第1の処理B1と

仮想された原子を含めた仮想空間内にあるすべての原子について、他の原子との原子間距離を計算し、計算された原子間距離のうち最短の原子間距離及び該最短原子間距離を構成する2つの原子を特定する第2の処理B2と、

計算された最短原子間距離が所定の閾値以下である場合、最短原子間距離を有する2つの原子を三次元空間から削除するとともに該削除する2つの原子の座標の加重平均座標に該2つの原子を代表する原子を作成する第2の処理B3と、

第3の処理B3後、第2の処理B2に戻り第3の処理で作成した原子を含めて 第2の処理を行う第4の処理B4と、

計算された最短原子間距離が所定の閾値を越える場合、処理Bを終了する第5の処理B5とを実行させることを特徴とするプログラム。

【請求項6】 処理Dで計算する相互作用は、立体的相互作用、静電的相互作用、疎水的相互作用の少なくともいずれか一つを含むことを特徴とする請求項4又は5のプログラム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、統計的手法を用いて化合物の立体構造と生理活性との相関を定量的に解析する三次元構造活性相関(3 Dimensional Quantitative structure-activity relationship: 3D QSAR)法及びそのプログラムに関する。

[0002]

【発明の背景】

目的とする生理活性を有する薬物分子を設計する方法として、三次元構造活性相関 (3D QSAR) 解析やファーマコフォアマッピングを用いた論理的な分子設計手法が用いられている。これらの方法では、既存薬物同士を適切なルールに従って仮想空間内で重ね合わせた後、PLS (partial least square of latent valuables) 法、ニューラルネット (NN) 法、または遺伝アルゴリズム (GA) などを用いて統計処理することにより、生物活性、疎水性、静電相互作用等の種々のパラメータ間の特徴を抽出する。得られた結果はグラフィックス表示することができ、これにより分子構造中の活性に寄与する部分 (官能基、立体構造) を視覚的に認識し、分子設計の手がかりとすることが可能となる。また、新規にデザインした分子の活性を予測することにも応用できる。

[0003]

3D QSAR解析を実施する際に最初に行う分子の重ね合わせにおいて、これまで は比較する複数の分子間で、対応すると予想される原子-原子あるいは官能基-官能基を重ね合わせる手法、または評価関数(分子類似性)を用いて最も良い重 なりを順次探していく方法が用いられてきた。しかし、原子ー原子あるいは官能 基-官能基を重ね合わせる方法では、重ね合わせが短時間で行える反面、研究者 の主観が入り込むことを避けられないという欠点を有していた。例えば、研究者 が異なる分子同士を主観的に重ね合わせた場合、実際の分子が受容体タンパクと 相互作用している配座を重ね合わせたものと大きく異なっていることがある。ま た、計算機により官能基を自動抽出する方法では、重ね合わせる官能基の種類や 数の選択方法にソフトウェア依存の任意性や研究者の主観が含まれるといった問 題点が残っていた。一方、評価関数を用いる方法は、分子の重ね合わせ手法その ものとしては理想的であるが、計算に時間がかかることが問題となっていた。そ こで、本出願の発明者らは、より高速で任意性のない分子重ね合わせ手法の開発 を検討し、一般のPCで実行可能でありかつ、計算速度を従来の100~1000倍速く する方法を考案し報告した(Kotani, T.; Higashiura, K. Rapid evaluation of molecular shape similarity index using pairwise calculation of the near est atomic distances. J. Chem. Inf. Comput. Sci. 2002, 42, 58-63.) 。

[0004]

分子の重ね合わせの次に必要となるのは、3D QSAR解析のプログラムである。 しかしながら、一般のPCで計算できる3D QSAR手法はごく一部の分子設計統合パッケージしか報告されておらず、また、これら3D QSAR解析は専用の分子設計統合パッケージのモジュールとして提供されているため、単体で入手することはできない。さらに、ほとんどの3D QSAR解析は高価な汎用機やワークステーションで多用されている。このため、合成研究者が実験を行いながら簡便に3D QSARを行い、標的化合物の最適化に応用することが困難であった。以下に、これまでに提案されている複数のQSAR解析について具体的に説明する。

[0005]

(1) 古典的QSAR手法:

Fujita-Hansch法に代表される古典的QSAR手法はその解析に、官能基に割り付

けられた疎水性パラメータ π 、静電的パラメータ σ 、立体的パラメータEsなどのパラメータを用い、重回帰計算(Multiple Regression Analysis、MRA)などの統計手法を用いて活性に寄与する物理化学的性質を抽出し、創薬に応用しようというものである。このため、パラメータの与えられていない官能基を有する化合物群はQSAR解析できないといった欠点と共に、比較的近い骨格をもつ化合物群でのみ解析が可能となっていた。また、三次元的なQSAR解析に応用できないことが最も大きな欠点であった。

[0006]

(2) Comparative Molecular Field Analysis (CoMFA) 法:

Cramerらによって開発されたCoMFA(Cramer III, R. D.; Patterson, D. E.; Bunce, J. D. Comparative Molecular Field Analysis(CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins. J. Am. Chem. Soc. 1988, 110, 5959-5967)は、薬物分子の周りの『場』に注目してQSAR解析を行うものである。CoMFA解析では各分子の構造の差異が分子周辺の『場』の差異になり、これが生物活性値を左右すると仮定している。このため、CoMFA以外の3D QSAR手法と同様、構造の差異を適切にデータに反映させるために、分子構造を適切に重ね合わせることが必要となる。重ね合わせ処理が終わると、今度は重ね合わさった分子を囲むような箱を考え、箱内部に1または2点間隔で数千個の格子点を作成する。その後、各格子点位置に電荷+1のsp³炭素原子を疑似的に配置し、各薬物分子について、配置した全てのsp³炭素原子各々との間の、立体及び静電ポテンシャルを計算し、各薬物分子の三次元構造記述子として使用する(CoMFAフィールド)。

[0007]

CoMFAフィールドの計算では、立体相互作用はLennard-Jones式で、静電相互作用はCoulombポテンシャルで計算する。このCoMFAフィールドを、重ね合わせた分子をれぞれについて計算し、各分子の三次元構造記述子として使用して、活性値との関係を統計解析する。統計解析にはPLS(Partial Least Square)法を用い、計算された活性予測式は薬物分子に対して要求される性質を表すものとなり、三次元的に図示することが可能となる。より活性が高い化合物を得るためには、

[0008]

なお、CoMFAには疎水的な相互作用を表すパラメータがないため、KelloggらはHINTというパラメータを考案し、CoMFA解析に応用している(Kellogg, G. E.; Semus, S. F.; Abraham, D. J. HINT: a new method of empirical hydrophobic field calculation for CoMFA. J. Comput. Aided Mol. Des. 1991, 5, 545-552、Kellogg, G. E.; Abraham, D. J. Hydrophobicity: is LogP(o/w) more than the sum of its parts? Eur. J. Med. Chem. 2000, 35, 651-661.)。

[0009]

(3) Comparative Molecular Similarity Analysis (CoMSIA) 法:

Klebeらは、CoMFAを拡張した3D QSAR計算手法として、CoMSIAを報告している (Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predic t their biological activity. J. Med. Chem. 1994, 37, 4130-4146.、Klebe, G. Comparative Molecular Similarity Indices Analysis: CoMSIA. Perspect. Drug Discov. Design 1998, 12/13/14, 87-104、Klebe, G.; Abraham, U. Compa rative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J. Comput. Aided Mol. Des. 1999, 13, 1-10)。

[0010]

CoMSIAでは、CoMFA計算では立体ポテンシャルと静電ポテンシャルと幾つかの 追加的なフィールドを用いて計算が行われていたのに対し、『場』の計算にSimi larity Indexを用いてCoMFAと同様の計算を行っている。

[0011]

CoMSIAでは、CoMFAの持ついくつかの欠点に対する改良が提案されている。具体的に説明すると、CoMFAで用いるLennard-Jonesポテンシャルはvan der Waals表面近傍で急勾配となるため、分子表面に近い格子点ではポテンシャルエネルギ

ーが急激に変化する。このため、分子の小さなコンフォメーション変化により結 果が大きく異なる場合がある。また、Lennard-JonesポテンシャルやCoulombポテ ンシャルでは原子上に存在する格子点が特異点となり、無限大あるいは無限小の ような意味をなさない値となるため、ポテンシャルエネルギーのカットオフが必 要となる。さらに、Lennard-JonesポテンシャルトとCoulombポテンシャルではポ テンシャルの傾きが異なるため、カットオフされる分子からの距離が異なるとい う欠点を持っている。すなわち、それぞれのポテンシャルで分子から異なった距 離でカットオフしなければならないため、寄与率が正確に反映されないことが予 想される。このため、CoMSIAでは分子重ね合わせ法として用いられているSEALの 関数を用いて、立体フィールド・静電フィールドを計算している(「SEALの関数 」については、Klebe, G.; Mietzner, T.; Weber, F. Different approaches to ward an automatic structural alignment of drug molecules: applications t o sterol mimics, thrombin and thermolysin inhibitors. J. Comput. Aided M ol. Des. 1994, 8, 751-778.を参照。)。SEALの関数については、水素結合Dono rフィールド・水素結合Acceptorフィールド、疎水性フィールドについても応用 例が報告されている。そして、SEALではGaussian-typeの評価式を用いるため、C oMFAで問題となっていた特異点が発生せず、カットオフの必要がない。

[0012]

反面、CoMFA、CoMSIAでは格子点を作成する場合に任意性が生じ、QSAR解析の結果に影響する場合があることが知られている。この欠点を解決するために格子点の作成方法を改良したMFAがあるが、これらのどの手法でも計算の精度を上げるためは格子点の間隔を狭くする必要があり、時には数千以上の格子点が必要になることがある。このことは、正確な3D QSAR解析結果を得るためには多くの格子点が必要となるが、これに伴い計算量も増大するため、3D QSARの信頼性は計算機の能力に大きく影響されることを示している。

[0013]

(4) Hypothetical Active Site Lattice(HASL)法

HASL法は、Doweykoにより開発されたHASLはCoMFAやCoMSIAとは異なり、分子のvan der Waals半径以内の領域に2点程度の間隔で格子点を発生させ、各格子点

に分子の物理化学的性質を割り振った後に、独自のフィッティングを行う方法である(Doweyko, A. M. Three-dimensional pharmacophores from binding data. J. Med. Chem. 1994, 37, 1769-1778、Guccione, S.; Doweyko, A. M.; Chen, H.; Barretta, G. U.; Balzano, F. 3D QSAR using 'multiconformer' alignmen t: the use of HASL in the analysis of 5-HT1A thienopyrimidinone ligands. J. Comput. Aided Mol. Des. 2000, 14, 647-657.を参照)。HASLではCoMFAやCoMSIA、MFA(Accelrys Inc.から提供されている。)と比較して、必要とする格子点の数は百程度と格段に少なくなっており、そのために通常のPCで計算できるが、格子の作成に任意性が残る点でCoMFAやCoMSIAと同様の問題を有している。また、HASLでは1種類のHASL原子タイプしかなく、これらはその物理化学的性質により+1、0、-1の値しかとることができない。HASL原子タイプが定義されていない誘導体についてはQSAR解析を行うことができない。

[0014]

(5) Pharmacophoreの重ね合わせを行う方法。

この方法は、モデル中にどのような活性発現に必要となる水素結合、静電相互作用、疎水性ポケットなど物理化学的な特徴がどれだけあるかを評価することにより行う3D QSAR手法であり、具体的にはDISCOやCatalyst、Apex-3Dなどがある。しかし、これらの計算手法は、簡便であるために誘導体の重ね合わせに用いられることはあるが、どのように物理化学的性質を定義するかにより、結果が異なるという欠点を有している。DISCOについては、Martin, Y. C.; Bures, M. G.; Danaher, E. A.; DeLazzer, J.; Lico, I.; Pavlik, P. A. A fast new approach to pharmacophore mapping and its application to dopaminergic and benzo diazepine agonists. J. Comput. Aided Mol. Des. 1993, 7, 83-102. を参照。Catalystについては、Greene, J.; Kahn, S.; Savoj, H.; Sprague, P.; Teig, S. Chemical Function Queries for 3D Database Search. J. Chem. Inf. Comput. Sci., 1994, 34, 1297-1308. を参照。

[0015]

まとめると、従来の3D QSAR手法には以下の欠点がある。

(a) 格子点を数千点発生させるため、計算量の増大とともに、多くのメモリー

- (b) モデルとなる化合物を格子点に対しどのように配置するかにより結果が異なる場合がある。
- (c) 特異点の解消やカットオフの処理が必要となる。
- (d) 原子タイプの帰属が困難なものや、割り振られていないものがある。

[0016]

【発明の概要】

そこで、本発明の三次元構造活性相関法は、

仮想空間内で複数の分子を重ね合わせる工程Aと、

仮想空間内で重ね合わされた複数の分子の原子座標をクラスター解析して代表 点を作成する工程Bと、

重ね合わされた複数の分子の各原子と代表点との相互作用(例えば、立体的相 互作用、静電的相互作用、疎水的相互作用)を計算する工程Cと、

相互作用を統計解析する工程Dとを備えている。

特に、クラスター解析の工程Bはさらに、

仮想空間内で重ね合わされた複数の分子に含まれる各原子の座標を求める第1 の工程B1と、

各原子について他の原子との原子間距離を計算し、計算された原子間距離のうち最短の原子間距離及び該最短原子間距離を構成する2つの原子を特定する第2の工程B2と、

計算された最短原子間距離が所定の閾値以下である場合、最短原子間距離を有する2つの原子を三次元空間から削除するとともに該削除する2つの原子の座標の加重平均座標に該2つの原子を代表する原子を作成する第3の工程B3と、

第3の工程B3後、第2の工程B2に戻り第3の工程で作成した原子を含めて 第2の工程を行う第4の工程B4と、

計算された最短原子間距離が所定の閾値を越える場合、工程Bを終了する第5の工程B5とを含むことを特徴とする。

[0017]

本発明の他の形態の三次元構造活性相関法において、特に、工程Bはさらに、

仮想空間内で重ね合わされた分子が環構造又は官能基を備えている場合、該環構造又は官能基を代表する位置に原子(擬似原子)を仮想する工程B1と、

仮想された原子を含めた仮想空間内にあるすべての原子について、他の原子との原子間距離を計算し、計算された原子間距離のうち最短の原子間距離及び該最短原子間距離を構成する2つの原子を特定する工程B2と、

計算された最短原子間距離が所定の閾値以下である場合、最短原子間距離を有する2つの原子を三次元空間から削除するとともに該削除する2つの原子の座標の加重平均座標に該2つの原子を代表する原子を作成する工程B3と、

第3の工程B3後、第2の工程B2に戻る工程B4と、

計算された最短原子間距離が所定の閾値を越える場合、工程Bを終了する工程 B5とを含むことを特徴とする。

[0018]

このように、官能基を代表する点として擬似原子を仮想した場合、計算に使用される「原子」の数が減少し、3D QSAR解析に必要な計算量を減少することができ、より速く簡便な解析が可能となる。官能基を代表する点を設定するかしないか、またどの位置に設定するか等は、官能基の種類や使用するパラメータに応じて適宜決定すればよい。すなわち、官能基を代表する点は官能基の中心や原子量を考慮した加重平均又は単純平均を用いた位置等に設定することができ、複数であっても構わない。また、分子が環構造を備えている場合、該環構造を代表する位置に追加して擬似原子を設定してもよい。この場合は官能基の擬似原子の設定とは異なり、該環構造を構成する原子は残しておき、追加して擬似原子を設定する。これにより分子の環部分の特徴を加味することができ、より好ましい構造活性相関を見出すことが可能となる。該擬似原子を設定する位置は、上記の官能基を代表する擬似原子の設定の場合と同様に適宜設定することができる。

[0019]

本発明はまた、コンピュータを用いて仮想空間内で重ね合わせた複数の分子の原子座標をもとに該化合物の特徴を抽出して視覚的に表示する三次元構造活性相関法に利用されるプログラムに関し、コンピュータに、

仮想空間内で複数の分子を重ね合わせる処理Aと、

仮想空間内で重ね合わされた複数の分子の原子座標をクラスター解析して代表 点を作成する処理Bと、

代表点と重ね合わせた複数の分子の各原子との相互作用を計算する処理Cと、 相互作用を統計解析する処理Dとを実行させるものである。

特に、クラスター解析の処理Bはさらに、

仮想空間内で重ね合わされた複数の分子に含まれる各原子の座標を求める第1 の処理B1と、

各原子について他の原子との原子間距離を計算し、計算された原子間距離のうち最短の原子間距離及び該最短原子間距離を構成する2つの原子を特定する第2の処理B2と、

計算された最短原子間距離が所定の閾値以下である場合、最短原子間距離を有する2つの原子を三次元空間から削除するとともに該削除する2つの原子の座標の加重平均座標に該2つの原子を代表する原子を作成する第3の処理B3と、

第3の処理B3後、第2の処理B2に戻り第3の処理B3で作成した原子を含めて第2の処理B2を行う第4の処理B4と、

計算された最短原子間距離が所定の閾値を越える場合、処理Bを終了する第5の処理B5を実行させることを特徴とする。

[0020]

本発明の他の形態のプログラムにおいて、クラスター解析の処理Bはさらに、 仮想空間内で重ね合わされた分子が環構造又は官能基を備えている場合、必要 に応じて、該環構造又は官能基を代表する位置に原子を仮想する第1の処理B1 と、

仮想された原子を含めた仮想空間内にあるすべての原子について、他の原子との原子間距離を計算し、計算された原子間距離のうち最短の原子間距離及び該最短原子間距離を構成する2つの原子を特定する第2の処理B2と、

計算された最短原子間距離が所定の閾値以下である場合、最短原子間距離を有する2つの原子を三次元空間から削除するとともに該削除する2つの原子の座標の加重平均座標に該2つの原子を代表する原子を作成する第3の処理B3と、

第3の処理B3後、第2の処理B2に戻り第3の処理B3で作成した原子を含

めて第2の処理B2を行う第4の処理B4と

計算された最短原子間距離が所定の閾値を越える場合、処理Bを終了する第5の処理B5とを実行させることを特徴とする。

[0021]

このように構成された三次元構造活性相関法及びそのプログラムでは、CoMFA やCoMSIA、MFAのように分子の周りに格子点を発生させるのではなく、分子内に 相互作用を計算させるための代表点を発生させるので、計算に要する点の数が大幅に少なくする。これにより3D QSAR解析に必要な計算量とメモリー領域を大幅 に削減することができる。

[0022]

また、相互作用を計算させる点は格子点を用いるのではなく、分子の原子座標をある閾値を指標としてクラスター解析を行い決定する。すなわち、計算に用いる分子の原子座標及び必要に応じて設定した擬似原子座標を抽出し、ある閾値以内にある原子及び擬似原子座標のxyz座標について加重平均して得られるxyz座標を用いる。こうすることにより分子をxyz軸に対してどのように配置しても得られる結果が同じとなる。さらに、構造変化の大きい部分に多くの座標点が発生するため、活性に寄与すると予想される領域では座標点の間隔が狭く、一方、活性に大きく影響しないと予想される領域では座標点の間隔が広くなることが期待できる。

[0023]

さらに、相互作用の計算には高速な分子重ね合わせ法の評価式やガウス型評価 式、あるいは擬似係数を使うことにより、特異点やカットオフを避けることがで きる。

[0024]

さらにまた、立体的なパラメータや静電的なパラメータはそれぞれvan der Wa als半径や電子の部分電荷をそのまま用いるか、あるいはこれらの値から誘導された擬似係数を用いることにより、すべての原子種に対応できる。また、疎水性パラメータや水素結合パラメータについては既に知られているものが応用できる

【発明の実施の形態】

以下、添付図面を参照して本発明の計算手法を採用した三次元構造活性相関法について説明する。なお、図面には表示していないが、本発明の構造活性相関法はコンピュータを用いて行われるもので、適当なプログラム言語によって記述されたプログラムをコンピュータで実行することにより実現されるものである。また、プログラムは、CD-ROM等の種々の既存の記録媒体に記録され、又はインターネットや電話回線等の通信回線を通じて、提供される。

[0026]

図1は、本発明に係る構造活性相関法の概略プロセスを示す。図示するように、この構造活性相関法では、解析の対象となる複数の分子を仮想空間(x、y、z座標空間)内で重ね合わせる(STEP1)。例えば、ニトロベンゼンとメチルピロールについて解析する場合、図2(A)に示すように、ニトロベンゼン1とメチルピロール2の両分子の三次元構造データ(各分子に含まれる複数の原子の三次元座標を含むデータ)を取得し、その構造データを用いて両分子を仮想の三次元空間内で重ね合わせ、重ね合わせモデル3を作成する。なお、説明を簡単にするために、図面上では2つの分子を重ね合わせる状態を示しているが、分子の数は任意である。

[0027]

図1に戻り、重ね合わせた分子についてクラスター解析を行う(STEP2)。このクラスター解析ではまず、仮想空間内で重ね合わせた2つの分子の原子座標を抽出する。例えば、図2(B)に示すように、重ね合わせた2つの分子(ニトロベンゼンとメチルピロール)に含まれる原子の座標だけを抽出し、原子座標モデル4を作成する。次に、各原子について、他の原子との間の距離(空間距離)を計算し、最短原子間距離を有する一対の原子(最近接原子対5)を特定する。続いて、最近接原子対5の最短原始間距離と予め決められた閾値とを比較する。閾値の設定は任意であり、例えば0.75Åが用いられる。比較の結果、最短原子間距離が閾値以下(又は閾値未満)の場合、図2(C)に示すように、最近接原子対5を構成する2つの原子を仮想空間から削除するとともに、これら2つの原

[0028]

なお、留意すべき点として、仮想空間内で重ね合わされた分子が官能基を備えている場合、必要に応じて、該官能基を代表する位置に擬似原子を仮想することができるが、この場合、計算に使用される「原子」の数が減少し、3D QSAR解析に必要な計算量を減少することができ、より速く簡便な解析が可能となる。官能基を代表する点を設定するかしないか、またどの位置に設定するか等は、官能基の種類や使用するパラメータに応じて適宜決定すればよい。すなわち、官能基を代表する点は官能基の中心や原子量を考慮した加重平均又は単純平均を用いた位置に設定することができ、複数でも構わない。また、分子が環構造を備えている場合、該環構造を代表する位置に追加して擬似原子を設定してもよい。この場合は官能基の擬似原子の設定とは異なり、該環構造を構成する原子は残しておき、追加して擬似原子を設定する。これにより分子の環部分の特徴を加味することができ、より好ましい構造活性相関を見出すことが可能となる。該擬似原子を設定する位置は、上記の官能基を代表する擬似原子の設定の場合と同様に適宜設定することができる。

[0029]

次に、新たに作成された代表原子6を一つの原子とみなし、上述と同様に、各原子について他の原子との原子間距離を計算し、最短原子間距離が閾値以下(又は未満)の場合、それら最短原子間距離を構成する2つの原子を仮想空間から削除するとともに新たな代表原子6を作成する。

[0030]

代表原子6の作成は、最短原子間距離が閾値以上になるまで繰り返し実行され、図2(D)に示すように、原子モデル7が作成される。なお、以上のようにして作成された代表原子6の座標を「代表点」という。

[0031]

図1に戻り、クラスター解析後、適当な評価関数を用いて代表点と分子との相互作用を計算する(STEP4)。ここでの計算では、図3に示すように、重ね合わせた複数の分子の各原子と代表点との立体的相互作用、静電的相互作用、疎水的相互作用が計算される。例えば、立体的相互作用はLennard-Jones式を用いて計算され、静電的相互作用はCoulombポテンシャルを用いて計算される。立体的相互作用は、本発明者がKotani,T.; Higashiura, K. Rapid evaluation of molecular shape similarity index using pairwise calculation of the nearest at omic distances. J. Chem. Inf. Comput. Sci. 2002, 42, 58-63. で提案している分子類似性評価方法が好適に利用できる。

[0032]

続いて、得られた相互作用の結果を、CoMFAやCoMSIAと同様、PLS解析し(STEP 5)、データを視覚化する(STEP6)。既存の3D GSAR手法であるCoMFAなどでは、(分子の大きさに依存するが)数百から数千という多数の格子点について計算されるポテンシャルの値を、各分子の構造記述子(説明変数)として取り扱わなくてはならず、これを可能にするため、回帰分析手法の一種、PLS法を用いる。PLS法では、多数の記述子から目的変数(薬理活性値など)と相関のある『成分』と呼ばれる値を抽出して回帰式を組み立てる。この『成分』は、主成分分析で計算される主成分とよく似た性質を持ち、複数取り出した場合には各々が直交するという性質がある。このため、非常に多くの変数を含むようなCoMFA等のデータから活性予測式を作ることができる。また、このPLS成分数は、Leave-one-out法と呼ばれる信頼性評価法によって決定され、最も信頼性の高い活性予測式を作るのに必要な成分数での活性予測式構築が行われる。

[0033]

【実施例】

計算に用いたモデル

本発明に係る3D QSAR法の有用性を検討するために、CramerらがCoMFAの報告で発表し、以後多くの3D QSAR解析ソフトのベンチマークになっているステロイド 誘導体の構造活性相関をモデルに用いて3D QSAR解析を行った。重ね合わせに用いたステロイド誘導体を図4に、それぞれの化合物のヒトコルチコステロイド結

[0034]

【表1】

表1:ヒトコルチコステロイド結合グロブリンに対する結合活性

<u> </u>	, ,) (C 1) 7 8 M L I L L L			
化合物	Binding affinity to human corticosteroid-			
	binding globulins (CBG)			
aldosterone	-6.279			
androstandiol	-5.000			
androstenediol	-5.000			
androstenedione	-5.763			
androsterone	-5.613			
corticosterone	-7.881			
cortisol	-7.881			
cortisone	-6.892			
dehydroepiandrosterone	-5.000			
deoxycorticosterone	-7.653			
deoxycortisole	-7.881			
dihydrotestosterone	-5.919			
estradiol	-5.000			
estriol	-5.000			
estrone	-5.000			
etiocholanolone	-5.255			
pregnenolone	-5.255			
hydroxy pregnenolone	-5.000			
progesterone	-7.380			
hydroxy progesterone	-7.740			
teststerone	-6.724			

[0035]

分子のxyz座標、部分電荷などは、CoMFAの報告に用いられ、チュートリアルに含まれているファイルをそのまま用いた。計算はすべてWindows NT 4.0上のCygw in 1.3.2を用いて行い、プログラムはFortranとC、Tcl/tkを用いて作成した。PL S計算にはSAMPLS(QCPE#650)(Bush, B. L.; Nachbar, R. B., Jr. Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. J. Comput. Aided Mol. Des. 1993, 7, 587-619.)を用い、計算結果の視覚化にはWebLab ViewerLite 4.0(Accerlys社)を用いた。

[0036]

II. 従来の解析手法による結果(比較例)

対比のためにSYBYL, Tripos Inc. St. Louis から提供されているCoMFA解析例では、活性に影響を及ぼす置換基の立体因子のみについて3D QSAR解析が行われており、その結果には、17位からの側鎖部分には立体的に活性を増強させる領域および活性を低下させる領域があり、A環3位付近には活性を低下させる領域が現れている。一方、CoMSIAにより、立体項、静電項、疎水項の3つのパラメータを用いてQSAR解析を行った結果報告では、図5に示すように、立体的な寄与については17位からの側鎖部分では立体的に活性を増強させる領域(緑色:G)しか現れないがほぼCoMFAと同様の結果が得られている。図6に示すように、静電的な寄与もA環3位および17位側鎖部分に現れており、特に17位側鎖部分では酸素原子の負電化が活性増強に関与していることが示唆している。

[0037]

IIΙ. 本発明の計算

本発明に係る3D QSAR計算結果を以下に示す。代表点の取り方として、原子座標のみに基づき重なり合わせて作成した場合(例1)と環を代表する位置として、環の中央に擬似原子を置き、原子座標とともに重なり合わせて作成した場合(例2)の二通りを試みた。

[0038]

(1) 評価関数

評価関数としては以下の4つ式等を用いた。

A) 高速な分子重ね合わせ法の評価式

(Kotani, T.; Higashiura, K. Rapid evaluation of molecular shape similar ity index using pairwise calculation of the nearest atomic distances. J. Chem. Inf. Comput. Sci. 2002, 42, 58-63.)

B) SEALの評価式

(Kearsley, S. K.; Smith, G. M. An alternative method for the alignment of molecular structures: maximizing electrostatic and steric overlap. Te trahedron Comput. Method. 1990, 3, 615-633. Klebe, G.; Mietzner, T.; We ber, F. Different approaches toward an automatic structural alignment of drug molecules: applications to sterol mimics, thrombin and thermolysin inhibitors. J. Comput. Aided Mol. Des. 1994, 8, 751-778.)

C) Goodらの分子類似性の評価式

(Good, A. C.; Hodgkin, E. E.; Richatds, W. G. Utilization of Gaussian f unctions for the rapid evaluation of molecular similarity. J. Chem. Inf. Comput. Sci. 1992, 32, 188-191.)

D) 擬似変数を用いた場合

(立体的な寄与を示す擬似変数として、代表点から最も近い原子の位置が閾値以内の場合1を、閾値の2倍以内にある場合0.5を、そうでない場合0とした。また、静電的な寄与を示す擬似変数として代表点から最も近い原子の位置が閾値以内のときは最も近い原子の電荷を、閾値の2倍以内のときは最も近い原子の電荷の1/2を、そうでない場合には0とした。)

[0039]

これら4つの評価関数のうちA) -C) 法は分子類似性を計算するために用いられる評価関数である。A) 法を評価関数として用いた場合は立体項のみ3D QSAR解析に用いることができるが、各代表点と各分子との相互作用を高速に計算できる。B) 法、C) 法の評価関数ではパラメータが報告されているものについては立体的な寄与だけでなく、静電的な寄与や疎水性相互作用を考慮に入れた3D QSARが可能となる。D) 法はA法の改良法で静電相互作用を考慮に入れた3D QSARを行うことができる。疎水性相互作用、水素ドナー、水素アクセプター等のパラメータの追加によりこれらの相互作用の計算も可能である。

(2) 代表点の作成

代表点の作成に関し、原子座標だけを元に代表点を作成した場合(例 1)、クラスター解析による代表点作成の閾値は0.75 Åとした。このとき代表点として92個の点が得られた(図 7 参照)。

また、環を代表する位置に擬似原子を置いた場合、環構造を持つ分子には環の中心部分等に新たな原子(擬似原子=点)を加え、代表点を作成することもできる。この場合には代表点は97個と増加した(図8参照)。こうすることにより、分子の環部分の特徴を加味した代表点の数も増えるため、計算精度も高くなる。

また、クラスター解析により得られた代表点は、数千にもなるCoMFAやCoMSIA の格子点と比較して、格段に小さいものとなる。これに伴い、以後の計算にかかる時間が短縮されるだけでなく、PCのメモリー領域の使用量を削減させることができた。

[0041]

CoMFAでは計算により得られる格子点での相互作用はすべてポテンシャルエネルギー(kcal/mol)であるため、スケーリングの必要がなかった。しかし、CoMS IAや本発明では、logPなどのポテンシャルエネルギーではない単位の異なる記述子を用いるため、疎水項、静電項などそれぞれの項目についての影響力を合わせるためにスケーリングを行う必要がある。このため、今回の手法ではブロックスケーリングを行った。

[0042]

(3) 3D QSAR解析

例1 重なり合う各分子の原子座標を元に代表点を作成した場合

1-A) 高速な分子重ね合わせ法の評価式を使用

Kotani, T.; Higashiura, K. Rapid evaluation of molecular shape similar ity index using pairwise calculation of the nearest atomic distances. J. Chem. Inf. Comput. Sci. 2002, 42, 58-63. で提案した高速分子重ね合わせ法を用い重ね合わせを行った後、3D QSAR解析を行った。PLS解析の結果を図 9 に示す。ここで r^2 は重相関係数を、 q^2 はross-validated r^2 を、またross-validated ross-validated ross-validated

[0043]

計算で得られた結果を視覚化したものを図10に示した。図中、緑色の部分が立体的に活性を増強させる、すなわち嵩高い置換基の存在により活性が増強する領域を示し、黄色の部分はその逆、嵩高い置換基の存在により活性が減弱される領域を示す。この結果はCoMFAやCoMSIAとほぼ一致する傾向を示した。しかし、D環15位付近に、CoMFAやCoMSIAでは見られなかった領域も生じている。

[0044]

1-B) SEALの評価式を用いた場合

次にSEALの評価式を用いて3D QSAR解析を行った。 r^2 、 q^2 、 $1-(n-1)(1-q^2)/(n-c)$ のグラフを図11に示す。この場合、 q^2 値はコンポーネント4において最大値となることから、本条件下における解析が最も信頼性が高いものであるとした。この場合には、立体項だけではなく、静電項の評価も行うことができた。それぞれの図を図12及び図13に示す。図示するように、立体的および静電的な寄与に関しては、CoMSIAと良く似た結果を得ることができた。

[0045]

1-C) Goodらの分子類似性の評価式を用いた場合

Goodらの分子類似性の評価式を用いた場合の r^2 、 q^2 、 $1-(n-1)(1-q^2)/(n-c)$ のグラフを図14に示す。この場合、コンポーネント4において $q^2=0.822$ と非常に高い値を示した。このことは本モデルが極めて高い信頼性を持つことを示した。しかし、その立体項、静電項の寄与を示す図(図15及び図16)は先の3者と大きく異なることがわかった。

[0046]

1-D) 擬似変数を用いた場合

擬似変数として立体因子、静電因子共に0.5を適用した場合の r^2 、 q^2 、1-(n-1) $(1-q^2)/(n-c)$ のグラフを図17に示した。コンポーネント数4のときに q^2 が最大値となった。この条件下における3D QSAR解析結果を図18、及び図19に示す

。この場合、立体項の寄与を表す図はCoMFAおよびCoMSIAの結果と、静電項の寄与を表す図はCoMSIAと良く似た結果を与えた。立体項の寄与に関する結果は、1-A)高速な分子重ね合わせの評価式を用いて得られたものと良く似た結果を与えた

[0047]

例2 環を代表する位置に新たな点を加え、代表点を作成した場合

環を代表する位置として、環の中心部分に新たな点(擬似原子)を加え、同様の計算を行った。擬似原子を加えることにより、重なり合わせの精度が向上し、より正確な3D QSAR結果が得られることが期待できる。

[0048]

2-A) 高速な分子重ね合わせ法の評価式を用いた場合

この場合1-Aと同じ結果が得られた。このことは、我々が開発した高速分子重ね合わせ法は擬似原子を置く必要がないほど高精度で分子同士の重ね合わせを行うことができることを意味する。

[0049]

2-B) SEALの評価式を用いた場合

環中央に擬原子を置き重ね合わせを行った後、SEALの評価式を用いて3D QSAR 解析を行った。 r^2 、 q^2 、1-(n-1)(1- q^2)/(n-c)のグラフを図 2 0 に示した。この 場合、 q^2 値はコンポーネント 4 において最大値となることから、本条件下における解析が最も信頼性が高いものであるとした。立体項、静電項の評価、それぞれの図を図 2 1 及び図 2 2 に示した。また、環を代表する位置に擬似原子を置かなかった場合(例1-B)と比べると、静電項は全く同じ結果を、また立体項もほとんど同じ結果を与えた。

[0050]

2-C) Goodらの分子類似性の評価式を用いた場合

Goodらの分子類似性の評価式を用いた場合の r^2 、 q^2 、 $1-(n-1)(1-q^2)/(n-c)$ のグラフを図 2 3 に示す。この場合、コンポーネント4において $q^2=0.741$ と高い値を示した。このことは本モデルが極めて高い信頼性を持つことを示すものの、例1-Cの場合と同様にその立体項、静電項の寄与を示す図(図 2 4 及び図 2 5)

[0051]

2-D) 擬似変数を用いた場合

1-Dと同じ結果が得られた。

[0052]

TV. 結果と考察

本発明の結果をCoMFAおよびCoMSIAの結果を表2示す。ここでは、CoMFAでは立体的な寄与のみをQSAR解析に用いている。一方、CoMSIAでは立体項、静電項、疎水項の3つのパラメータを用いてQSAR解析を行っているため精密な比較はできないが、 q^2 はCoMFA、CoMSIAとも同じ値が得られており、 r^2 は若干CoMSIAで良い結果が得られている。

【表2】

表 2

	CoMFA_	CoMSIA	1-A	1-B	1-C	1-D	2-B	2-C
コンポー								
ネント数	3	4	2	4	4	4	4	2
$ m r^{3}$	0.879	0.941	0.899	0.915	0.984	0.982	0.915	0.976
g ²	0.662	0.662	0.760	0.528	0.822	0.798	0.521	0.741
静電的寄与率		0.086		0.757	0.458	0.500	0.783	0.480
立体的寄与率	1.000	0.535	1.000	0.248	0.542	0.500	0.217	0.520
疎水的寄与率		0.378				•••		

[0053]

本発明の手法を、用いた評価式に着目し解析すると、Goodsの分子類似性の評価式を用いた場合(1-C、2-C)、3D $QSAR解析では<math>r^2$ 、 q^2 とも他の評価関数と比較し高い値が得られたが、活性に影響を与える領域はCoMFAやCoMSIAで得られた結果とかなり異なっており、3D QSARの評価関数として更なる検討が必要と思わ

れる。同じGaussian-typeの評価式にもかかわらずSEALの評価式を用いた方法(1 -B、2-B)ではCoMFA(立体的な寄与)やCoMSIAで報告された等高線図とほぼ同様の結果を得ることができたが、 r^2 、 q^2 に注目すると他の評価関数と比較し、若干低い値となっている。一方、高速な分子重ね合わせ法の評価式を用いた場合(1-A)や擬似変数を用いた場合(1-D)では r^2 、 q^2 ともにCoMFAやCoMSIAより高い値が得られた。活性に影響を与える領域はSEALの評価関数を用いたときと比較して、やや異なる性質を示す領域が入り組んでいるが、ほぼ同様の結果を得ることができた。クラスター解析により代表点を決定する場合に、環を代表する位置として、環中心部分に新たな点を加えた場合と加えない場合では3D QSARの結果に大きな差が見られなかった。

使用する評価関数は前記の既存の評価式の他、いかなる評価式も利用可能である。本発明者らが検討した評価式の中では、SEALの評価式を用いる方法 (1-B) および擬似変数を用いる方法 (1-D) は通常のPCで行える簡便で良好な3D QSAR法を提供する方法として効率的な薬物設計に応用できることが示された。

【図面の簡単な説明】

- 【図1】 本発明に係る三次元構造活性相関法の概略を示す流れ図。
- 【図2】 図1のクラスター解析(STEP2)の詳細を示す図。
- 【図3】 CoMFA法の計算プロセスを示す図。
- 【図4】 重ね合わせに用いたステロイド誘導体の化合物セットを示す図。
- 【図5】 CoMSIAの解析結果(立体的相互作用)を視覚的に示す図。
- 【図6】 CoMSIAの解析結果(静電的相互作用)を視覚的に示す図。
- 【図7】 重なり合う分子の原子座標をもとに代表点を作成した図。
- 【図8】 環中心部分に新たな点(擬似原子)を加えて代表点を作成した図
- 【図9】 高速重ね合わせ法を用いたPLS解析の結果を示すグラフ。
- 【図10】 高速重ね合わせ法を用いたPLS解析の結果を視覚化した図。
- 【図11】 SEALの評価式を用いたPLS解析の結果を示すグラフ。
- 【図12】 SEALの評価式を用いたPLS解析の結果について、立体項の寄与を視覚化した図。

- 【図13】 SEALの評価式を用いたPLS解析の結果について、静電項の寄与を視覚化した図。
- 【図14】 Goodらの分子類似性の評価式を用いたPLS解析の結果を示す グラフ。
- 【図15】 Goodらの分子類似性の評価式を用いたPLS解析の結果について、立体項の寄与を視覚化した図。
- 【図16】 Goodらの分子類似性の評価式を用いたPLS解析の結果について、静電項の寄与を視覚化した図。
 - 【図17】 擬似変数を用いたPLS解析の結果を示すグラフ。
- 【図18】 擬似変数を用いたPLS解析の結果について、立体項の寄与を 視覚化した図。
- 【図19】 擬似変数を用いたPLS解析の結果について、静電項の寄与を 視覚化した図。
- 【図20】 環の中央に原子を設け、SEALの評価式を用いたPLS解析を行った結果を示すグラフ。
- 【図21】 環の中央に原子を設け、SEALの評価式を用いてPLS解析を行った結果について、立体項の寄与を視覚化した図。
- 【図22】 環の中央に原子を設け、SEALの評価式を用いてPLS解析を行った結果について、静電項の寄与を視覚化した図。
- 【図23】 環の中央に原子を設け、Goodらの分子類似性の評価式を用いて PLS解析の結果を示すグラフ。
- 【図24】 環の中央に原子を設け、Goodらの分子類似性の評価式を用いて PLS解析の結果について、立体項の寄与を視覚化した図。
- 【図25】 環の中央に原子を設け、Goodらの分子類似性の評価式を用いて PLS解析の結果について、静電項の寄与を視覚化した図。

【符号の説明】

3:重ね合わせモデル

4:原子座標モデル

5:最近接原子対

ページ: 26/E

6:代表原子

7:原子座標モデル

【書類名】 図面【図1】

【図2】

【図3】

スプレッドシート

0	活性	\S01	\$02	√ \$03 \$50	E01 E50
化合物1	5.1				
化合物2	6.8				
•••					
				· · · · · · · · · · · · · · · · · · ·	
化合物20					

PLS

構造活性相関式

活性 = y + a × S01 + b × S02 + ... + z × E50

teststerone

3D QSAR法の検証に用いた化合物セット

【図5】

CoMSIAでの立体的な寄与を示す等高線図

G: 立体的に活性を増強させる領域 Y: 立体的に活性を低下させる領域 【図6】

CoMSIAでの静電的な寄与を示す等高線図

太線: 正電荷が活性を増強させる領域 細線: 負電荷が活性を増強する領域 B: 正電荷が活性を増強させる領域 R: 負電荷が活性を増強させる領域

重なり合う各分子の原子座標を元に代表点を作成した場合 (交点が代表点となる)

【図8】

環中心部分に新たな点を加え、代表点を作成した場合

【図9】

Components 2 R2: 0.899 Q2: 0.760

G:立体的に活性を増強させる領域

Y: 活性を低下させる領域 (各カラムのCoefficient × standard deviationが0.1以上の領域)

【図11】

Components 4
R2: 0.915
Q2: 0.528
Electrostatic :0.757

Electrostatic :0.757 Steric :0.243 【図12】

G:立体的に活性を増強させる領域 Y:活性を低下させる領域 (各カラムのCoefficient × standard deviationが0.1以上の領域)

B:正電荷が活性を増強させる領域 R:負電荷が活性を増強させる領域 (各カラムのCoefficient × standard deviationが0.2以上の領域)

【図14】

Components 4

R2: 0.984

Q2: 0.822

Electrostatic :0.458

Steric :0.542

【図15】

G: 立体的に活性を増強させる領域 Y: 活性を低下させる領域 (各カラムのCoefficient × standard deviationが0.2以上の領域)

【図16】

B: 正電荷が活性を増強させる領域

R: 負電荷が活性を増強させる領域 (各カラムのCoefficient × standard deviationが0.2以上の領域)

【図17】

Components 4 R2: 0.982

Q2: 0.798

Electrostatic :0.500

Steric :0.500

G: 立体的に活性を増強させる領域

Y:活性を低下させる領域

(各カラムのCoefficient × standard deviationが0.15以上の領域)

【図19】

B: 正電荷が活性を増強させる領域 R: 負電荷が活性を増強させる領域

(各カラムのCoefficient × standard deviationが0.2以上の領域)

【図20】

Components 4

R2: 0.915

Q2: 0.521

Electrostatic :0.783

Steric :0.217

【図21】

G: 立体的に活性を増強させる領域

Y:活性を低下させる領域

(各カラムのCoefficient × standard deviationが0.1以上の領域)

【図22】

B: 正電荷が活性を増強させる領域 R: 負電荷が活性を増強させる領域

(各カラムのCoefficient × standard deviationが0.3以上の領域)

【図23】

Components 4 R2: 0.976

Q2: 0.741

Electrostatic :0.480

Steric :0.520

G: 立体的に活性を増強させる領域

Y:活性を低下させる領域 (各カラムのCoefficient × standard deviationが0.3以上の領域)

【図25】

B:正電荷が活性を増強させる領域 R:負電荷が活性を増強させる領域 (各カラムのCoefficient × standard deviationが0.3以上の領域)

【要約】

【課題】 3D QSAR解析に必要な計算量とメモリー領域を大幅に削減することができる方法を提供する。

【解決手段】 三次元構造活性相関法のクラスター解析は、仮想空間内で重ね合わされた複数の分子に含まれる各原子の座標を求める工程B1、各原子について他の原子との原子間距離を計算し、計算された原子間距離のうち最短の原子間距離及び該最短原子間距離を構成する2つの原子を特定する工程B2、計算された最短原子間距離が所定の閾値以下である場合、最短原子間距離を有する2つの原子を三次元空間から削除するとともに該削除する2つの原子の座標の加重平均座標に該2つの原子を代表する原子を作成する工程B3と、工程B3後、工程B2に戻る工程B4と、計算された最短原子間距離が所定の閾値を越える場合、工程Bを終了する第5の工程B5とを含む。

【選択図】図2

特願2002-293383

出願人履歴情報

識別番号

[000231796]

1. 変更年月日

1990年 9月12日

[変更理由]

新規登録

住 所

大阪府大阪市中央区平野町2丁目1番2号

氏名 日

日本臓器製薬株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.