Assignment 2: Probability Bayesian

<u>311605004</u> <u>劉子商</u>

```
2. Set sumy = 1 cloudy = 2 rainy = 3

\sum_{(A)} P(X_1 = 1 \cap X_2 = 2 \cap X_3 = 2 \cap X_4 = 3)
= P(X_4 = 3 \mid X_1 = 1 \cap X_2 = 2 \cap X_3 = 2) \times P(X_1 = 1 \cap X_2 = 2 \cap X_3 = 2)
= P(X_4 = 3 \mid X_3 = 2) \times P(X_3 = 2 \mid X_1 = 1 \cap X_2 = 2) \times P(X_1 = 1 \cap X_2 = 2)
= P(X_4 = 3 \mid X_3 = 2) \times P(X_3 = 2 \mid X_2 = 2) \times P(X_2 = 2 \mid X_3 = 1) \times P(X_1 = 1)
= 0.2 \times 0.4 \times 0.2 \times 1
= 0.016 ##
```

My code:

```
import random as rd
print("Exercise 2.b: ")
cnt_weath = [0,0,0]
weath = ["sunny", "cloudy", "windy"]
trans = [[0.8, 1.0, 1.0],[0.4, 0.8,1.0],[0.2,0.8,1.0]]
yest = 0
 today = 0
√ while cnt < 10000000:
     tran = trans[yest]
     p = rd.random()
     if p < tran[0]:
         today = 0
     elif p < tran[1]:</pre>
         today = 1
         today = 2
     print(weath[today])
     cnt_weath[today] = cnt_weath[today] + 1
     cnt = cnt+1
     yest = today
```

The result of the weather generation

cloudy
sunny

cloudy
cloudy
windy
cloudy
cloudy
cloudy
windy
cloudy
sunny
sunny
cloudy
cloudy
cloudy

sunny

My code:

The calculated result of the distribution

```
C:\Users\jonat\Desktop\Self-Driving-Cars\Assignment 2>python exercise_2.py
Exercise 2.c:
0.6428788 0.2857488 0.0713724
```

```
Let (t = \begin{cases} P(X_t=1) \\ P(X_t=2) \\ P(X_t=3) \end{cases}
P(X_{t+1}=1 \mid X_{t+1}) \quad P(X_{t+1}=1 \mid X_{t+2}) \quad P(X_{t+1}=1 \mid X_{t+2})
P(X_{t+1}=1 \mid X_{t+1}) \quad P(X_{t+1}=2 \mid X_{t+2}) \quad P(X_{t+1}=2 \mid X_{t+2})
P(X_{t+1}=2 \mid X_{t+1}) \quad P(X_{t+1}=2 \mid X_{t+2}) \quad P(X_{t+1}=2 \mid X_{t+2})
P(X_{t+1}=2 \mid X_{t+1}) \quad P(X_{t+1}=2 \mid X_{t+2}) \quad P(X_{t+1}=2 \mid X_{t+2})
```

$$= \begin{bmatrix} 0.8 & 0.4 & 0.2 \\ 0.5 & 0.4 & 0.6 \\ 0 & 0.2 & 0.2 \end{bmatrix}$$

We already know Yt = A. Yt-1

⇒ Yt ∈ N , Yt = A"Y.

The matrix A is diagonalizable, which A = P.D.P

P=
$$\begin{cases} 9 & \sqrt{2} - \sqrt{2} - \sqrt{2} - \sqrt{2} \\ 1 & 1 \end{cases}$$

P= $\begin{cases} 9 & \sqrt{2} - \sqrt{2} - \sqrt{2} - \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} \\ 1 & 1 \end{cases}$

P= $\begin{cases} 1 & \sqrt{2} - \sqrt{2} + \sqrt{2}$

2191

The markon property states the probability law of future state conditioned on the current state does not depend on any other variables. However, the current state could be sufficient to compute the future state evolution, which means the state transition function can not depent on the season. Hence, to restore the Markon property, he can incorporate the season that the state variable.

We can obta	an the	status	transtion	matrix	Inm	the	previous	pholem
		0.4						
which is	A= 0.2	v.4	0.6					
	L 0	0.7	0.2					

According to the Boyes rule

$$\eta = \left(\sum_{i=1}^{n} P(z_{t-i}) | X_{t-i}\right) \cdot P(X_{t-i})^{-1}$$

we set the smithal value as

Through recursive calculation, we can get the following chart

2t	bel (Xt)	bel (Xt)	ŋ
sunny	[[o o]]	[I o o] ^T	1
cloudy	[0.8 0.2 0]	$\begin{bmatrix} 16 & 7 \\ 23 & 23 \end{bmatrix}$	2.1739
cloudy	[18 30 7] ^T	[112 ×10 0] T	7.7031
rany	[2080-U Z082,0 PED.0]	[00]	124.2857
Sunny	[0.2 0.6 0.2]T	[0.4 0.6 0.]T	3.3333

Through the chart above, we get the probability for Day 5 to be surmy 15 0.4 #

3(6)

P(x2 \ X, , 22)

$$= \eta \cdot \begin{pmatrix} 0.6 \\ 0.3 \end{pmatrix} \cdot \begin{pmatrix} 0.8 \\ 0.1 \end{pmatrix} = \eta \cdot \begin{pmatrix} 0.48 \\ 0.06 \end{pmatrix} = \begin{pmatrix} \frac{8}{9} \\ \frac{1}{4} \end{pmatrix}$$

Day 2: 88.9 % summy, 11.1% cloudy, 0% rainy #

Day 2 with data from future days. 80% sunny. >0% cloudy. 0% rainy

=
$$\eta \cdot P(x_2|x_1) \cdot P(\frac{1}{2}|x_3:4, X_2) \cdot P(\frac{1}{2}:4|x_1)$$

=
$$\eta \cdot P(X_2|X_1) \cdot P(\frac{2}{5}|X_2) \cdot \sum_{x_3} P(x_3|X_2) \cdot P(\frac{2}{5}:4|X_3)$$

```
= N. b(x=1x1). b(3=1x3). 2 b(x3|xx). b(5=1x3). 2 b(x4|x3). b(5-4|x41x3)
          = N. b(x=1x1). b(== 1x=). = b(x3|x=).b(==1x3). = b(x4|x3). b(==4|x4)
          = \eta \cdot P(X_{2}|X_{1}) \cdot P(\frac{1}{2^{2}}|X_{2}) \cdot \sum_{X_{3}} P(X_{3}|X_{2}) \cdot P(\frac{1}{2^{3}}|X_{3}) \cdot \sum_{X_{4}} P(X_{4}|X_{3}) \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} P(X_{4}|\frac{1}{2^{4}})
                     = \eta \cdot P(X_{2}|X_{1}) \cdot P(\frac{1}{2}, |X_{2}) \cdot \sum_{X_{3}} P(X_{3}|X_{2}) \cdot P(\frac{1}{2}, |X_{3}) \cdot \begin{pmatrix} 0.2 \\ 0.2 \end{pmatrix} P(X_{3}|\frac{1}{2}, |X_{3}|) \cdot \begin{pmatrix} 0.2 \\ 0.2 \end{pmatrix} P(X_{3}|\frac{1}{2}, |X_{3}|) \cdot \begin{pmatrix} 0.2 \\ 0.2 \\ 0.2 \end{pmatrix} P(X_{3}|\frac{1}{2}, |X_{3}|) \cdot \begin{pmatrix} 0.2 \\ 0.2 \\ 0.2 \end{pmatrix} P(X_{3}|\frac{1}{2}, |X_{3}|) \cdot \begin{pmatrix} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \end{pmatrix} P(X_{3}|\frac{1}{2}, |X_{3}|) \cdot \begin{pmatrix} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \end{pmatrix} P(X_{3}|\frac{1}{2}, |X_{3}|) \cdot \begin{pmatrix} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 
             = \lambda \cdot b(x_{7}|x_{1}) \cdot b(x_{7}|x_{7}) \cdot \begin{pmatrix} 0.036 \\ 0.017 \\ 0.017 \end{pmatrix} b(x_{7}|x_{7}) \cdot b(x_{7}|x_{7}) \cdot \begin{pmatrix} 0.057 \\ 0.017 \\ 0.017 \end{pmatrix}
           = N \cdot \begin{pmatrix} 0.8 \\ 0.2 \\ 0.8 \end{pmatrix} P'(X^2|X^1) \cdot \begin{pmatrix} 0.6 \\ 0.3 \\ 0.6 \\ 0.6 \\ 0.036 \end{pmatrix} P'(X^2|X^2) \cdot \begin{pmatrix} 0.012 \\ 0.036 \\ 0.036 \end{pmatrix} P'(X^2|X^2)
     = N \cdot \left(0.00576\right) = \left(0.8\right)
   Day 2 with data from future days: 80% surmy, 20% cloudy, 0% rang #
P(X2) X1, 22, 23) = n. P(X2 | X1) . P(22, 23 | X2, X1)
                                                                                                = n. P(xs | X1). P(Zz. Z3 | Xx)
                                                                                              = n. P(xx|x1). P(22/23, X2). P(23/X2)
                                                                                        = n. P(x>|x1). P(z2 |x2). P(z3 |x2)
                                                                                 = 4. b(x2/X1). b(55/X2). [b(x3. 53/X2)
```

$$= \eta \cdot P(X_{1}|X_{1}) \cdot P(\overline{z}_{2}|X_{3}) \cdot \sum P(X_{3}|X_{2}) \cdot P(\overline{z}_{3}|X_{3}, X_{2})$$

$$= \eta \cdot P(X_{1}|X_{1}) \cdot P(\overline{z}_{2}|X_{3}) \cdot \sum P(X_{3}|X_{2}) \cdot P(\overline{z}_{3}|X_{3})$$

$$= \eta \cdot P(X_{1}|X_{1}) \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{3}|X_{2}) \cdot \begin{pmatrix} o, b \\ o, 3 \\ b \end{pmatrix} P(X_{1}|\overline{z}_{3})$$

$$= \eta \cdot P(X_{1}|X_{1}) \cdot P(\overline{z}_{3}|X_{3}) \cdot \begin{pmatrix} o, b \\ o, 3 \\ o, 3 \end{pmatrix} P(X_{1}|\overline{z}_{3})$$

$$= \eta \cdot \begin{pmatrix} o, 8 \\ o, 2 \end{pmatrix} P(X_{1}|X_{1}) \cdot P(\overline{z}_{3}|X_{3}) \cdot \begin{pmatrix} o, 4 \\ o, 3 \end{pmatrix} P(X_{1}|\overline{z}_{3})$$

$$= \eta \cdot \begin{pmatrix} o, 8 \\ o, 2 \end{pmatrix} P(X_{1}|X_{1}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot \begin{pmatrix} o, 4 \\ o, 3 \end{pmatrix} P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot \sum P(X_{1}|X_{2}) \cdot P(X_{2}|X_{1}, 2)$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot P(\overline{z}_{3}|X_{2}) \cdot P(\overline{z}_{3}|X_{2}) \cdot P(\overline{z}_{3}|X_{2})$$

$$= \eta \cdot P(\overline{z}_{3}|X_{3}) \cdot P(\overline{z}_{3}|X_{2}) \cdot P(\overline{z}_{3}|X_{2}) \cdot P(\overline{z}_{3}|X_{2})$$

$$= \eta \cdot \begin{pmatrix} 0.6 \\ 0.3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 6.8 \\ 2-0 \\ 0.2 \end{pmatrix} = \begin{pmatrix} 408 \\ 468 \\ 468 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.8718 \\ 0.1282 \\ 0 \end{pmatrix}$$

9 Day 3: 87.2 % sunmy, 12.8 % cloudy, 0% rany.

P(X3 | X1, 23:4) = n. P(X3 | X1, 22:3) . P(24 | X3, X1, 22:3)

$$= N \cdot \begin{pmatrix} 0.1602 \\ 0.8362 \end{pmatrix} \cdot \begin{pmatrix} 0.5 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

- Day 3 with data from future days: 0% swmy, look cloudy, 0% rainy

P(X4 | X1. 23:4) = P(X4 | X3. 24)

$$= \eta \cdot P(\exists x \mid xx) \cdot P(xx \mid xz) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- Day 4:0% surmy. 0% cloudy, 100% rainy #

3(0)

The probability of the sequence of weather is given by

P(X=14 |X1 . = 1, P(==14 | X1, X=14) . P(X=14 | X1)

where

 $P(X_{2}, \mu | X_{1}) = P(X_{4}|X_{3}) \cdot P(X_{7}|X_{2}) \cdot P(X_{2}|X_{1})$ $P(Z_{2}, \mu | X_{1}, X_{2}, \mu) = P(Z_{4}|X_{4}) \cdot P(Z_{7}|X_{3}) \cdot P(Z_{2}, X_{2})$ Hence, He "swmy, cloudy, ramy" prohability is 0.00576 + 0.00144 = 80% which there 15 a 20 % probability of cloudy, cloudy, rainy and 0% of probability to all the other sequences.