Messung Energiemessung EM-Chip

Autor: Manuel König Messdatum: 18. Mai 2016

Zusammenfassung

Die Energie die zur Verfügung steht beträgt über 250 μ J. Der Verbrauch liegt bei ca. 150 μ J für die Initialisierung und des Versendens des ersten Bluetooth Smart Pakets. Somit sollte die Energie für die Initialisierung und das Versenden des ersten Bluetooth Smart Pakets reichen.

1 Aufgabenstellung

Es soll die Energie, welche der Prototyp zur Verfügung stellt, gemessen bzw. berechnet werden.

2 Messschaltung/Messverfahren

Abbildung 1: Schema des Prototyps

Vorgehensweise:

- Es werden die Spannungen VSUP und VCC_STS aufgezeichnet
- VSUP wird mit einem Widerstand von 10 $k\Omega$ belastet

3 Ergebnis

Abbildung 2: gelb VSUP; rot VCC_STS; Belastung 10 $k\Omega$

Die Energie, welche hier im Zeitraum von 723 ms verbraucht wird, lässt sich folgendermassen berechnen.

$$E = \int_{0 \text{ ms}}^{723 \text{ ms}} \frac{U^2}{R} * dt = \frac{U_{mean}^2}{R} * \Delta t = \frac{(2 \text{ V})^2}{10 \text{ k}\Omega} * 723 \text{ ms} = 0.0002892 \text{ Ws} = 289.2 \text{ } \mu\text{Ws}$$

Die Vereinfachung beim Integral kann gemacht werden, da die Spannung in einer linearen Funktion ahfällt

4 Schlusswort

Die Energie die zur Verfügung steht beträgt über 250 μ J. Der Verbraucht liegt bei ca. 150 μ J für die Initialisierung und des Versendens des ersten Bluetooth Smart Pakets. Somit sollte die Energie für die Initialisierung und das Versenden des ersten Bluetooth Smart Pakets reichen.

5 Inventar

KO: Tektronix MSO2024; Serie-Nr. C012115