Canary Wharf .NET User Group CWNUG

Johnny Hooyberghs

Microsoft Q# and Azure Quantum

involved

Johnny Hooyberghs

@djohnnieke

github.com/Djohnnie

www.involved-it.be

johnny.hooyberghs@involved-it.be

www.cvoantwerpen.be

slido

Join at slido.com #CWDNUG

- There are still a lot of problems that cannot be solved by computers
- CPU's have their physical limits
- Current classical computing architectures already have issues with unwanted quantum side effects because of their scale
- Why try to simulate a complex quantum world using classical computers?

Superposition and Entanglement

- Quantum mechanics describes superposition and entanglement of quantum particles
- Quantum Computing can use these phenomenon to its advantage

- Security
 - Public/private key encryption?
 - Could make current RSA encryption obsolete
 - QKD (Quantum Key Distribution)

 $3.167 \times 6.301 = 19.955.267$

- Drug development
 - It takes a quantum system to simulate a quantum system
 - Interactions between molecules
 - Gene sequencing
 - Protein folding

- Machine Learning
 - Analyze large quantities of data
 - Fast feedback
 - Emulate human mind

100110

0)

1)

100110)

$$\alpha | 0 \rangle + \beta | 1 \rangle$$

$$\alpha |0\rangle + \beta |1\rangle$$

$$|\alpha|^2 + |\beta|^2 = 1$$

$$\alpha |0\rangle + \beta |1\rangle$$

$$|\alpha|^2 + |\beta|^2 = 1$$

$$\alpha = a + bi$$

$$\beta = c + di$$

$$\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

$$\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

- Classical bit 0, Quantum bit $|0\rangle$
- Classical bit 1, Quantum bit |1>
- Quantum bit in superposition
- $\boldsymbol{\alpha}|0\rangle + \boldsymbol{\beta}|1\rangle$ where $|\boldsymbol{\alpha}|^2 + |\boldsymbol{\beta}|^2 = 1$
- α and β are complex numbers (ai + b)
- Value known after measurement
- Collapses to $|0\rangle$ with probability $|\alpha|^2$ or $|1\rangle$ with probability $|\beta|^2$

• 2 Qubit system (4 probabilities):

$$\alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$

2 Qubit system (4 probabilities):

$$\alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$

3 Qubit system (8 probabilities):

$$\alpha |000\rangle + \beta |001\rangle + \gamma |010\rangle + \delta |011\rangle + \varepsilon |100\rangle + \epsilon |110\rangle + \zeta |101\rangle + \eta |111\rangle$$

• 4 Qubit system (16 probabilities):

•••

X-gate

(1

1)

Y-gate

 $\binom{0}{i}$

-i

Z-gate

H-gate

$$\begin{pmatrix} 1 & 1 \\ \overline{\sqrt{2}} & \overline{\sqrt{2}} \\ 1 & 1 \\ \overline{\sqrt{2}} & \overline{\sqrt{2}} \end{pmatrix}$$

CNOT-gate

IBM Q Experience

https://quantum-computing.ibm.com

Microsoft Q#

https://www.microsoft.com/en-us/quantum/development-kit

Azure Quantum

- Quantum in the cloud
 - Optimization
 - Machine Learning
 - Quantum Simulation
- Access to quantum hardware
 - Microsoft (Topological)
 - IonQ & Honeywell (Ion Traps)
 - QCI (Superconducting)
- Q# & QDK
 - Quantum Intermediate Representation (QIR)

Entanglement

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} H \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} cnot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} = ?$$

Entanglement

If the product state of two qubits cannot be factored, they are entangled

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} c \\ d \end{pmatrix} \rightarrow \begin{cases} ad = 0 \\ bc = 0 \\ bd = \frac{1}{\sqrt{2}} \end{cases}$$

$$bd = \frac{1}{\sqrt{2}}$$

This set of two qubits has a 50% chance of collapsing to $|00\rangle$ and a 50% chance of collapsing to $|11\rangle$

Teleportation

- Deutch (1985)
 - Is there a problem that a Quantum Computer can solve faster than a Classical Computer?
 - Deterministic!

- Deutsch–Jozsa (1992)
 - Based on Deutch (for 1 bit), but applicable for n-bits
 - Deterministic!

- Grover's algorithm (1996)
 - "Searching a database"
 - Probabilistic!

- Shor's algorithm (1994)
 - Prime factorization of integers
 - Combination of classical and quantum algorithm
 - Probabilistic!

Can a Quantum Computer be quicker than a Classical Computer?

A Black-Box containing a function on one bit

How many operations do you need to figure out the function if input and output is know?

On a Classical Computer?

On a Quantum Computer?

It is important to ask the right question!

A Black-Box containing a function on one bit

How many operations do you need to figure out if the function is CONSTANT or VARIABLE if input and output is know?

On a Classical Computer?

On a Quantum Computer?

It is important to ask the right question!

A Black-Box containing a function on one bit

How many operations do you need to figure out if the function is CONSTANT or VARIABLE if input and output is know?

On a Classical Computer?

On a Quantum Computer?

If BB is a constant function \rightarrow Quantum state will always measure to $|11\rangle$ If BB is a variable function \rightarrow Quantum state will always measure to $|01\rangle$

Identity

Identity

Negation

Negation

Constant-0 (circuit overview)

Constant-0 (calculated proof – part 1)

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \xrightarrow{X} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \xrightarrow{H} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \stackrel{X}{\rightarrow} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \stackrel{H}{\rightarrow} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

Constant-0 (calculated proof – part 2)

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \stackrel{\mathbf{H}}{\rightarrow} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1 \rangle$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \stackrel{\mathbf{H}}{\rightarrow} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1 \rangle$$

https://github.com/Djohnnie/QSharp-and-AzureQuantum-CanaryWharf-2020

Constant-1 (circuit overview)

Constant-1 (calculated proof – part 1)

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \xrightarrow{X} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \xrightarrow{H} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \stackrel{X}{\rightarrow} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \stackrel{H}{\rightarrow} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

Constant-1 (calculated proof – part 2)

$$\begin{pmatrix}
\frac{1}{\sqrt{2}} \\
-1 \\
\overline{\sqrt{2}}
\end{pmatrix} \times \begin{pmatrix} 0 & 1 \\
1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\
-1 \\
\overline{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{-1}{\sqrt{2}} \\
1 \\
\overline{\sqrt{2}} \end{pmatrix} \times \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -1 \\
\overline{\sqrt{2}} & \overline{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{-1}{\sqrt{2}} \\
1 \\
\overline{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\
-1 \end{pmatrix} = |1\rangle$$

$$\begin{pmatrix}
\frac{1}{\sqrt{2}} \\
-1
\end{pmatrix} \times \begin{pmatrix} 1 & 0 \\
0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\
-1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\
-1 \end{pmatrix} \times \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\
-1 \end{pmatrix} = \begin{pmatrix} 0 \\
1 \end{pmatrix} = |1\rangle$$

https://github.com/Djohnnie/QSharp-and-AzureQuantum-CanaryWharf-2020

Identity (circuit overview)

Identity (calculated proof – part 1)

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \overset{X}{\longrightarrow} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \overset{H}{\longrightarrow} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} \\ |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \overset{X}{\longrightarrow} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \overset{H}{\longrightarrow} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Identity (calculated proof – part 2)

$$\begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix} CNOT \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} H \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

Negation (circuit overview)

Negation (calculated proof – part 1)

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \overset{X}{\longrightarrow} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \overset{H}{\longrightarrow} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} \\ |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \overset{X}{\longrightarrow} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \overset{H}{\longrightarrow} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Negation (calculated proof – part 2)

$$\begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \text{CNOT} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} + \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = |1\rangle$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} + \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} + \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} + \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = |1\rangle$$