

CMP4060 Languages and Compilers
Lexical Analysis — Part2

Ayman AboElHassan, PhD
Assistant Professor

<u>ayman.abo.elmaaty@eng.cu.edu.eg</u>

Course Outline

- Introduction to Compilers
- Lexical Analysis: Regular Grammars
- Lexical Implementation: Finite Automata
- Syntax Analysis: Context-Free Grammars
- Parser Implementation: Top-Down Parsers
- Parser Implementation: Bottom-Up Parsers
- Semantic Analysis
- Code Generation
- Code Optimization

How to use RE in Lexical Analyzer?

Given $R \in RE$ and input string w, need a mechanism to determine if $w \in L(R)$

Lexical Structure

Defining Lexical Structure

Step1: What is an acceptable token?

Write a regular expression for the lexemes of each token

- •digit = [0-9]+
- •letter = [a-zA-Z]+
- •number = digit+
- •identifier = letter (letter + digit + '_')*
- •keyword = 'if' + 'else' + ...
- •openpar = '('

• • • •

Step2: What regular expressions to use?

Construct R, matching all lexemes for all tokens

 $R = \text{keyword} + \text{identifier} + \text{number} + \dots$ = R1 + R2 + \dots

Defining Lexical Structure

Step3: Check if a substring matches a regular expression?

For input string be $x_1 \dots x_n$

Check if substring $x_1 \dots x_i \in L(R)$ for $i \in \{1, 2, ..., n\}$

If success:

- $^{\bullet}$ Mark substring $x_1 \dots x_i ∈ L(R)$
- Remove $x_1 \dots x_i$ from input string
- Repeat the operation on the remaining string

Lexical Implementation performs the check

Lexical implementation needs to handle ambiguities

Token Length

- If 2 substrings $x_1...x_i & x_1...x_k$ match the same regex L(R)
- Solution: Pick longest possible substring matching

Which Token

If the same substring $x_1...x_i$ matches 2 regex $L(R_m)$ & $L(R_n)$

Solution: Pick the first regex in the list

Finite Automata

Finite Automata

Regular Expression

Specification "Rules"

Finite Automata

Implementation

Finite Automata

A finite automaton consists of

- •An input alphabet \sum
- A set of states S
- A start state n
- •A set of accepting states $F \subseteq S$
- •A set of transitions: $state \xrightarrow{input} state$

A finite automaton consists of

- ullet An input alphabet \sum
- A set of states S →
- A start state n →
- •A set of accepting states $F \subseteq S$ \longrightarrow
- •A set of transitions: $state \xrightarrow{input} state$

Example

A finite automaton that accepts only "1"

Example

A finite automaton that accepts only "1"

$$L(R) = 1'$$

Example

A finite automaton that any number of 1s followed by a single 0

Example

A finite automaton that any number of 1s followed by a single 0

$$L(R) = (1)*O$$

Epsilon Moves

- Another kind of transition
- Machine can move from state A to state B without reading input

Deterministic Finite Automata (DFA)

- One transition per input per state
- No epsilon-moves

Nondeterministic Finite Automata (NFA)

- Can have multiple transitions for one input in a given state
- Can have epsilon-moves

NFAs & DFAs recognize the same set of languages (regular languages)

DFA can take only one path through the state graph

- Completely determined by input
- Faster to execute (There are no choices to consider)

NFAs can choose

- Whether to make epsilon-moves
- Which of multiple transitions for a single input to take
- Rule: NFA accepts if it can get to a final state

For a given language NFA can be simpler than DFA

Example: L(R) = (1 | 0)*00

For a given language NFA can be simpler than DFA

• Example: L(R) = (1 | 0)*00

For a given language NFA can be simpler than DFA

• Example: L(R) = (1 | 0)*00

For a given language NFA can be simpler than DFA

DFA can be exponentially larger than NFA

It is possible to convert an NFA to a DFA

AUTOMATON	INITIAL	PER STRING
NFA	O(r)	$O(r \times x)$
DFA typical case	$O(r ^{3})$	O(x)
DFA worst case	$O(r ^2 2^{ r })$	O(x)

From Regular Expressions to Finite Automata

For each kind of regular expression, define an NFA

For A

For ε

For input a

For each kind of regular expression, define an NFA

For each kind of regular expression, define an NFA

Example: (1+0)*1

Example: (1+0)*1

$$(1 + 0)* 1$$
 $M_1 M_2 M_3$
 M_4
 M_5

Example: (1+0)*1

Example: -?[0-9]+

Each state of DFA (D) is a set of NFA (N) states

Simulate "in parallel" all possible moves NFA can make on a given input string

- s is a single state of N
- T is a set of states of N

OPERATION	DESCRIPTION
ϵ -closure(s)	Set of NFA states reachable from NFA state s
	on ϵ -transitions alone.
ϵ -closure (T)	Set of NFA states reachable from some NFA state s
	in set T on ϵ -transitions alone; = $\cup_{s \text{ in } T} \epsilon$ -closure(s).
move(T, a)	Set of NFA states to which there is a transition on
	input symbol a from some state s in T .

Each state of DFA \rightarrow a non-empty subset of states of the NFA

- 1. Start state = ε -closure(S_0)
- ${}^{\bullet}S_0$ is its start state
- •The set of NFA states reachable through ε -moves from NFA start state
- 2. $T' = \varepsilon$ -closure(move(T,a))
 - ullet T' is the set of NFA states reachable from any state in T after reading the input a, considering arepsilon-moves as well
- 3. Add a transition $T \xrightarrow{a} T'$

Example: (1+0)*1

Example: (1+0)*1

Step 1: Get start state "reachable through ε -moves"

Example: (1+0)*1

Step 1: Get start state "reachable through ε -moves"

ABCDHI

Example: (1+0)*1

Step 2: States T' reachable from T by a (& ε)

Example: (1+0)*1

Step 2: States T' reachable from T by a (& ε)

- $T = \{A,B,C,D,H,I\}$
- a = 0

ABCDHI

Example: (1+0)*1

Step 2: States T' reachable from T by a (& ε)

- $T = \{A,B,C,D,H,I\}$
- a = 0

Example: (1+0)*1

Step3: Add a transition $T \xrightarrow{a} T'$

Example (a+b)*.(a+b)

Example (a+b)*.(a+b)

DFA Table Implementation

DFA Table Implementation

A DFA can be implemented by a 2D table T

- One dimension is states
- Other dimension is input symbol
- •For every transition $S_i \stackrel{a}{\rightarrow} S_k$ define T[i,a] = k

DFA execution

•If in state S_i and input a, read T[i,a] = k and skip to state S_k

Very efficient

DFA Table Implementation

Example

Putting the Pieces Together

Multiple DFAs can be used to recognize the same language Example: (a+b)*abb

These automata don't have the same number of states

When implementing a lexical analyzer as a DFA

- •Generally, prefer a DFA with as few states as possible
- Each state requires an entry in the DFA table implementation

State A and C are equivalent

- On any input they transfer to the same state
 - $A \xrightarrow{a} B$, $C \xrightarrow{a} B$
 - A \xrightarrow{b} C, C \xrightarrow{b} C

Step 1: Partition graph π into 2 groups (accepting, non-accepting)

Example

- ${}^{\bullet}$ {A, B, C, D} \rightarrow non-accepting state
- •{E} → accepting state

Step 1: Partition graph π into 2 groups (accepting, non-accepting)

Example

- ${}^{\bullet}$ {A, B, C, D} \rightarrow non-accepting state
- ${}^{\bullet}{E} \rightarrow accepting state$

Construct a new graph

$$\pi_{\text{new}} = \{ \{A, B, C, D\} \{E\} \}$$

Step 2: For each group G in π_{new}

- Split group G into subgroups
 - 2 states s & t in same subgroup <u>iff</u> for all input symbol a, state s & t have transitions on a to states in the same group

Example

- •For {A, B, C, D}
 - On input $a \rightarrow \{A, B, C, D\}$ go to B
 - On input b → {A, B, C} go to {A, B, C, D}
 → {D} go to {E}

$$\pi_{new} = \{ \{A, B, C\} \{D\} \{E\} \}$$

Step3: Repeat Step2 till converge

Example

- •For {A, B, C}
 - On input b → {A, C} go to {A, B, C}
 → {B} go to {D}

$$\pi_{new} = \{ \{A, C\} \{B\} \{D\} \{E\} \} \}$$

- •For {A, C}
 - On input a → {A, C} go to {A, C}
 - On input b → {A, C} go to {A, C}

$$\pi_{\text{new}} = \{ \; \{\text{A, C}\} \; \{\text{B}\} \; \{\text{D}\} \; \{\text{E}\} \; \} = \pi_{\text{final}}$$

Step4: Choose 1 state in each group in π_{final}

- Start State
- Accepting State
- Transition from that state to another outside on input a

Example

- ${}^{\bullet}\pi_{final} = \{ \{A, C\} \{B\} \{D\} \{E\} \}$
- Pick A

Summary

Thank you