Lista de Exercícios 01 – EDOs

Questão 1

Determine as soluções constantes das EDOs abaixo

a)
$$\frac{dx}{dt} = x + 2$$

b)
$$\frac{dy}{dt} - y^2 + 4 = 0$$

c)
$$\frac{dy}{dx} + 2y + 3 = 0$$

a)
$$\frac{dx}{dt} = x + 2$$

b) $\frac{dy}{dt} - y^2 + 4 = 0$
c) $\frac{dy}{dx} + 2y + 3 = 0$
d) $\frac{dy}{dt} = (1 - y)(2 + y)$
e) $\frac{dy}{dt} = y^2 + 5y + 6$

e)
$$\frac{dy}{dt} = y^2 + 5y + 6$$

Questão 2

Nas EDOs abaixo determine a solução geral das EDOs abaixo

a)
$$y' + 2y = 2e^x$$

b)
$$x^3 \frac{dy}{dx} + x^2 y = 1$$

b)
$$x^3 \frac{dy}{dx} + x^2y = 1$$

c) $x \frac{dy}{dx} + y = x^2$
d) $\frac{dy}{dx} = y \cdot x$
e) $\frac{dy}{dt} = e^t(y+1)^3$

d)
$$\frac{dy}{dx} = y \cdot x$$

e)
$$\frac{dy}{dt} = e^t (y+1)^3$$

f)
$$y'' + 5y' + 4y = e^{2x}$$

g)
$$y'' - y' - 6y = 1 + e^{-2x}$$
 (pesquise sobre o princípio da superposíção)

Questão 3

Encontre a solução das EDOs abaixo que atenda às condições iniciais informadas

a)
$$t \frac{dy}{dt} = y + t^2 \sin(t), y(\pi) = 0$$

b) $x^2 \frac{dy}{dx} + xy = 1, y(2) = 1$
c) $y' = -y^2, y(0) = 0.5$

b)
$$x^2 \frac{dy}{dx} + xy = 1, y(2) = 1$$

c)
$$y' = -y^2$$
, $y(0) = 0.5$

d)
$$y' = xy^3, y(5) = 1, y(x) > 0$$

e)
$$y' = x^2 e^y$$
, $y(0) = 1$

f)
$$y'' + 6y' = 0, y(1) = 3, y'(1) = 12$$

g)
$$y'' - 6y' + 25y = 0, y(0) = 2, y'(0) = 1$$

h)
$$y'' - 5y + 4y = 0$$
, $y(0) = 0$, $y'(0) = 1$

i)
$$9y'' + y = 3x + e^{-x}$$
, $y(0) = 1$, $y'(0) = 2$ (pesquise pelo "Princípio da Superposição" para resolver a letra i))

Questão 4

- a) Em um dado circuito elétrico composto de uma fonte de tensão contínua, resistor com resistência $R=100\Omega$ e capacitor com a capacitância C = 0.001F, a tensão da fonte v(t) = 5 é igual a tensão no capacitor $v_c(t)$ somada ao produto de três termos: R, C e a taxa de variação de tensão no capacitor. Determine função а $v_c(t)$.
- b) Um objeto com uma temperatura de 100ºC no instante t = 0é colocado em um compartimento com temperatura uma ambiente de 25°C. Um minuto(t = 1) após ser colocado no compartimento, a temperatura do objeto é 75ºC. Admitindo (lei de resfriamento de Newton) que a temperatura T = T(t) do objeto esteja variando a uma taxa proporcional à diferença entre a temperatura do objeto e a do quarto, determine a EDO e em seguida a função de T(t) com t em minutos (Use as duas condições fornecidas para encontrar todas as constantes)
- c) Determine uma função y(x), tal que para qualquer ponto (x, y), a reta tangente do gráfico y = f(x) é igual a duas vezes o valor do produto entre y e x, considerando que y(x) > 0, assumindo que y(1) = 1.

Gabarito de algumas questões
2.b)
$$y(x) = (k x - 1)/x^2$$
; 2e) $y(t) = (e^t + k - 1)/(e^t + k)$; 2g) $y(x) = -\frac{1}{5}e^{-2x}x + k_1 e^{-2x} + k_2 e^{3x} - \frac{1}{6}$; 3d) $(x) = 1/\sqrt{26 - x^2}$; 3e) $y(x) = -log\left(-\frac{x^3}{3} + e^{-1}\right)$; 3i) $y(x) = 0.1e^{(-x)} + 3x + 0.9\cos(x/3) - 2.7\sin(x/3)$ 4a) $v_c(t) = 5 + ke^{-10t}$; 4b) $T(t) = 25 + 75e^{-4.48t}$; 4c) $y(x) = e^{x^2 - 1}$