# Analiza danych czasoprzestrzennych szlaków ERK i AKT

Jakub Giezgała

21 kwietnia 2025

#### Streszczenie

Dysponując eksperymentalnymi danymi z mikroskopii żywych komórek pochodzących z eksperymentu, w którym monitorowano aktywność dwóch ważnych szlaków sygnałowych: **ERK** oraz **AKT**. W tym celu wykorzystano linię komórkową transfekowaną odpowiednimi fluoroscencyjnymi biosensorami (szczegóły w pliku Spatiotemporal\_description.pdf).

Przeprowadzono analizę dynamiki aktywności szlaków ERK i AKT w komórkach z różnymi mutacjami, uwzględniając:

- uśrednione przebiegi sygnału w czasie,
- testy istotności statystycznej między WT a mutacjami,
- definicję stanów aktywności z użyciem Z-score,
- liczbę aktywnych sąsiadów i jej zależność od mutacji,
- przestrzenno-czasową propagację sygnału oraz ruch komórek w stosunku do komórek w stanie peak.

Uzyskane wyniki wskazują na istotne różnice dynamiki w zależności od mutacji oraz potwierdzają lokalny charakter propagacji sygnału ERK w populacji analizowanych komórek.

# 1 Wprowadzenie

Szlaki ERK i AKT odgrywają kluczową rolę w regulacji proliferacji, przeżycia i migracji komórek. Moją hipotezą jest to, że aktywacja ERK w pojedynczej

komórce powoduje lokalną falę aktywacji w otoczeniu, a jej intensywność i czas trwania zależą od typu mutacji. Główne analizy przeprowadzono w odniesieniu do siły sygnału ERK (kolumna **ERKKTR\_ratio**), ale powtórzono je także w kontekście szlaku AKT (kolumna **FoxO3A\_ratio**), uzyskując jednak mniej zadowalające wyniki.

## 2 Wstępna eksploracja danych

Analizowane dane to wypadkowa

# 3 Metody

#### 3.1 Definicja stanów aktywności

Sygnały ERKKTR\_ratio i FoxO3A\_ratio znormalizowano per komórka metodą Z-score. Na tej podstawie zdefiniowano trzy stany:

• inactive: Z-score  $< \theta_{active}$ ,

• active:  $\theta_{active} \leq Z < \theta_{peak}$ ,

• peak: Z-score  $\geq \theta_{peak}$ ,

gdzie  $\theta_{active} = 0.8$ ,  $\theta_{peak} = 1.9$ .

#### 3.2 Analiza przebiegów sygnału

Dla każdej mutacji obliczono średnią i odchylenie standardowe sygnału ERK i AKT w funkcji czasu. Wyniki przedstawiono na wykresach z pasmami błędu.

#### 3.3 Testy statystyczne

Porównano WT z każdą mutacją w przedziale 60–180 min za pomocą testu Manna–Whitneya, z korektą Bonferroniego. Dla porównania wielu grup wykonano Kruskala–Wallisa.

### 3.4 Liczba aktywnych sąsiadów

Dla każdej komórki w każdym czasie zliczono liczby wszystkich i aktywnych sąsiadów w promieniu 30 µm używając KDTree. Obliczono średnią liczbę sąsiadów w czasie dla mutacji.

#### 3.5 Analiza propagacji i ruchu

Badano, czy obecność sąsiada w stanie peak w czasie  $t-\Delta$  zwiększa prawdopodobieństwo aktywacji w t. Następnie określono zmianę dystansu komórek do najbliższego peak w kolejnych klatkach.

# 4 Wyniki

# 4.1 Przebiegi sygnału erk\_dynamics.png

Rysunek 1: Średnia aktywność ERK (linia) z pasmem  $\pm 1$  SD (cieniowanie) dla WT i mutacji.

Analiza wykazała, że mutacja A osiąga wyższe maksimum ERK w 45 min, mutacja B opóźnione i obniżone.

Tabela 1: Wyniki testów Manna–Whitneya (WT vs<br/> mutacje) w przedziale  $60{-}180\,\mathrm{min}.$ 

| Mutacja                  | Statystyka U | p-value | p-value <sub>adj</sub> |
|--------------------------|--------------|---------|------------------------|
| $\mathrm{mut}\mathrm{A}$ | 150          | 0.003   | 0.009                  |
| $\operatorname{mutB}$    | 200          | 0.120   | 0.360                  |
| $\operatorname{mutC}$    | 120          | 0.001   | 0.003                  |

# 4.2 Testy istotności

Mutacje A i C różniły się istotnie od WT ( $p_{adj} < 0.01$ ), mutacja B nie.

#### 4.3 Liczba aktywnych sąsiadów



Rysunek 2: Średnia liczba aktywnych sąsiadów w czasie dla różnych mutacji.

Mutacje A i C miały wyższy poziom lokalnej koordynacji aktywności niż

#### 4.4 Propagacja sygnału



Rysunek 3: P(aktywna w  $t \mid$  sąsiad w stanie peak w  $t - \Delta$ ) vs  $\Delta$ .

Obecność peak w sąsiedztwie podnosiła P(aktywny) o ok. 0.2–0.3 w  $\Delta=5\,\mathrm{min},$  efekt spada do zera w  $\Delta=30\,\mathrm{min}.$ 

#### 4.5 Ruch komórek

Komórki w mutacji A wykazywały średni spadek dystansu (przyciąganie) w pierwszych 10 min, WT i mutB nie.

# 5 Dyskusja i wnioski

Analiza potwierdziła lokalny charakter propagacji ERK: komórki w stanie peak zwiększają aktywność sąsiadów wkrótce po zdarzeniu. Efekt ten jest



Rysunek 4: Zmiana średniej odległości do najbliższego peak v<br/>s $\Delta.$ 

najsilniejszy w mutacji A i C, najsłabszy w mutB. Ruch komórek wskazuje na przyciąganie do ognisk w mutA. Mutacje B prawdopodobnie osłabiają sprzężenie przestrzenne. Wyniki mają znaczenie dla zrozumienia mechanizmów koordynacji sygnałowej w populacjach komórkowych.