# Min Yang

# STAT2112

Project 2: Multiple Regression Analysis on Sale Price (in \$1000)

Dr. Vadakkeveetil

### I. Introduction.

| Residence | Sales Price (in \$1000) | Square feet | Rooms | Bedrooms | Age | View | Area x Age |
|-----------|-------------------------|-------------|-------|----------|-----|------|------------|
| 2         | 49.0                    | 1290        | 6     | 3        | 36  | 0    | 46440      |
| 4         | 49.9                    | 912         | 5     | 3        | 41  | 0    | 37392      |
| 6         | 55.0                    | 1204        | 5     | 3        | 10  | 0    | 12040      |
| 7         | 80.5                    | 1764        | 8     | 4        | 64  | 0    | 112896     |
| 9         | 69.0                    | 1255        | 5     | 3        | 16  | 0    | 20080      |
| 10        | 149.0                   | 3600        | 10    | 5        | 17  | 1    | 61200      |
| 12        | 38.0                    | 720         | 4     | 2        | 41  | 0    | 29520      |
| 13        | 49.5                    | 1008        | 6     | 3        | 35  | 0    | 35280      |
| 16        | 85.0                    | 2011        | 9     | 4        | 76  | 1    | 152836     |
| 18        | 58.5                    | 1232        | 5     | 2        | 69  | 0    | 85008      |
| 19        | 101.0                   | 1736        | 7     | 3        | 67  | 1    | 116312     |
| 21        | 125.0                   | 1996        | 7     | 3        | 9   | 1    | 17964      |
| 23        | 80.0                    | 1580        | 5     | 3        | 11  | 0    | 17380      |
| 25        | 74.0                    | 1430        | 9     | 3        | 16  | 0    | 22880      |
| 26        | 69.0                    | 1486        | 6     | 3        | 27  | 0    | 40122      |
| 28        | 67.5                    | 1282        | 5     | 3        | 20  | 0    | 25640      |
| 31        | 92.2                    | 1701        | 5     | 3        | 15  | 1    | 25515      |
| 32        | 56.0                    | 1020        | 6     | 3        | 16  | 0    | 16320      |
| 34        | 60.0                    | 1728        | 6     | 3        | 26  | 0    | 44928      |
| 37        | 75.0                    | 1496        | 6     | 3        | 30  | 0    | 44880      |
| 39        | 60.0                    | 1904        | 7     | 4        | 32  | 0    | 60928      |
| 41        | 71.0                    | 1768        | 8     | 4        | 74  | 0    | 130832     |
| 43        | 90.0                    | 1736        | 7     | 3        | 16  | 1    | 27776      |
| 45        | 115.0                   | 2186        | 8     | 4        | 12  | 0    | 26232      |
| 48        | 61.0                    | 1400        | 5     | 3        | 33  | 0    | 46200      |
| 49        | 147.0                   | 2165        | 7     | 3        | 2   | 1    | 4330       |
| 50        | 210.0                   | 2353        | 8     | 4        | 15  | 1    | 35295      |
| 52        | 100.0                   | 1972        | 8     | 3        | 37  | 1    | 72964      |
| 54        | 55.0                    | 1664        | 7     | 3        | 79  | 0    | 131456     |
| 55        | 53.4                    | 925         | 5     | 3        | 20  | 0    | 18500      |
| 57        | 73.0                    | 1400        | 5     | 3        | 2   | 0    | 2800       |
| 58        | 40.0                    | 1376        | 6     | 3        | 103 | 0    | 141728     |
| 60        | 68.0                    | 1572        | 6     | 3        | 29  | 0    | 45588      |
| 61        | 139.0                   | 1545        | 6     | 3        | 9   | 1    | 13905      |
| 63        | 55.0                    | 1130        | 5     | 2        | 21  | 0    |            |

My data is based on above 35 single-family residences data. The propose for this multiply regression analysis is to test whether the residence's area size, number of rooms, number of bedrooms, the owner's age, and whether the residence has a view influence the sale price of the residence. So the hypothesis test would be:

Null hypothesis: there is no correlation between sales price and age, area, number of bedroom, number of rooms, age, and area times age.

Alternative hypothesis: there is at least one independent variable has correlation with the dependent variable. We use value of  $\alpha = 0.05$ 

## II. Methodology

a) multiple linear regression with all quantitative variables

Variables Entered/Removeda

| Model | Variables<br>Entered                                                | Variables<br>Removed | Method |
|-------|---------------------------------------------------------------------|----------------------|--------|
| 1     | Age, Number<br>of Bedroom,<br>Number of<br>Rooms, Area <sup>b</sup> |                      | Enter  |

- a. Dependent Variable: Sales Price
- b. All requested variables entered.

#### **Model Summary**

| Model | R                 | R Square | Adjusted R<br>Square | Std. Error of the Estimate |
|-------|-------------------|----------|----------------------|----------------------------|
| 1     | .809 <sup>a</sup> | .654     | .608                 | 22.951                     |

a. Predictors: (Constant), Age, Number of Bedroom, Number of Rooms, Area

This regression model tests the correlation between sales price and age, number of bedroom, number of room, and area. It contains four independent variables (age, number of bedrooms, number of rooms, area) and one dependent variable (sale price). Age, number of bedrooms, number of rooms, areas, and sale price are all quantitative variables. The R square of 0.654 indicate that 65.4 presents of the variation in the dependent variable can be explained by the variation in independent variables. We assume the relationship between independent variables and dependent variables are linear, all variables are normal, and there is little or no multicollinearity in the data.

b) multiple linear regression with all the quantitative variables and dummy variable Variables Entered/Removed<sup>a</sup>

| Model | Variables<br>Entered                                                               | Variables<br>Removed | Method |
|-------|------------------------------------------------------------------------------------|----------------------|--------|
| 1     | River View,<br>Age, Number<br>of Bedroom,<br>Number of<br>Rooms, Area <sup>b</sup> |                      | Enter  |

- a. Dependent Variable: Sales Price
- b. All requested variables entered.

### **Model Summary**

| Model | R                 | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate |
|-------|-------------------|----------|----------------------|-------------------------------|
| 1     | .876 <sup>a</sup> | .768     | .727                 | 19.130                        |

a. Predictors: (Constant), River View, Age, Number of Bedroom, Number of Rooms, Area

This regression model tests the correlation between sales price and river view, age, number of bedrooms, number of rooms, and area. It contains five independent variables (age, number of bedrooms, number of rooms, area, river view) and one dependent variable (sale price). Age, number of bedrooms, number of rooms, areas, and sale price are all quantitative variables, river view is a nominal variable. The R square of 0.768 indicate that 76.8 presents of the variation in

the dependent variable can be explained by the variation in independent variables. We assume the relationship between independent variables and dependent variables are linear, all variables are normal, and there is little or no multicollinearity in the data.

c) multiple linear regression with the quantitative variables and interaction effect Variables Entered/Removed<sup>a</sup>

| Model | Variables<br>Entered                                                         | Variables<br>Removed | Method |
|-------|------------------------------------------------------------------------------|----------------------|--------|
| 1     | Area times<br>Age, Area,<br>Number of<br>Bedroom,<br>Number of<br>Rooms, Age |                      | Enter  |

- a. Dependent Variable: Sales Price
- b. All requested variables entered.

#### **Model Summary**

| Model | R                 | R Square | Adjusted R<br>Square | Std. Error of the Estimate |
|-------|-------------------|----------|----------------------|----------------------------|
| 1     | .811 <sup>a</sup> | .658     | .599                 | 23.194                     |

a. Predictors: (Constant), Area times Age, Area, Number of Bedroom, Number of Rooms, Age

This regression model tests the correlation between sales price and are times age, area, number of bedrooms, number of rooms, and age. It contains five independent variables (age, number of bedrooms, number of rooms, area, area times age) and one dependent variable (sale price). Age, number of bedrooms, number of rooms, areas, area times age, and sale price are all quantitative variables. The R square of 0.658 indicate that 65.8 presents of the variation in the dependent variable can be explained by the variation in independent variables. We assume the relationship between independent variables and dependent variables are linear, all variables are normal, and there is little or no multicollinearity in the data.

## III. Descriptive Statistics and Graph

### a) Area

### Statistics

| Area           |          |                   |
|----------------|----------|-------------------|
| N              | Valid    | 35                |
|                | Missing  | 0                 |
| Mean           |          | 1587.06           |
| Std. Error of  | Mean     | 88.450            |
| Median         |          | 1545.00           |
| Mode           |          | 1400 <sup>a</sup> |
| Std. Deviation | on       | 523.276           |
| Variance       |          | 273818.114        |
| Skewness       |          | 1.595             |
| Std. Error of  | Skewness | .398              |
| Range          |          | 2880              |
| Minimum        |          | 720               |
| Maximum        |          | 3600              |
| Sum            |          | 55547             |
| Percentiles    | 25       | 1255.00           |
|                | 50       | 1545.00           |
|                | 75       | 1768.00           |

Multiple modes exist. The smallest value is shown





b) Number of rooms

| ta |  |  |
|----|--|--|
|    |  |  |

|   | Number of Roc    | oms     |       |
|---|------------------|---------|-------|
|   | N \              | /alid   | 35    |
|   | M                | Missing | 0     |
|   | Mean             |         | 6.37  |
|   | Std. Error of M  | ean     | .243  |
|   | Median           |         | 6.00  |
|   | Mode             |         | 5     |
|   | Std. Deviation   |         | 1.437 |
| ٠ | Variance         |         | 2.064 |
|   | Skewness         |         | .684  |
|   | Std. Error of Sk | ewness  | .398  |
|   | Range            |         | 6     |
|   | Minimum          |         | 4     |
|   | Maximum          |         | 10    |
|   | Sum              |         | 223   |
|   | Percentiles 2    | 25      | 5.00  |
|   | 5                | 50      | 6.00  |
|   | 1 7              | 75      | 7.00  |

# Histogram of Number of Rooms







### **Number of Rooms**

Number of Rooms Stem-and-Leaf Plot

| Frequency                                             | Stem &                                         | Leaf                                                 |
|-------------------------------------------------------|------------------------------------------------|------------------------------------------------------|
| 1.00<br>11.00<br>9.00<br>6.00<br>5.00<br>2.00<br>1.00 | 4 .<br>5 .<br>6 .<br>7 .<br>8 .<br>9 .<br>10 . | 0<br>00000000000<br>00000000<br>00000<br>00000<br>00 |
| Stem width:<br>Each leaf:                             | 1                                              | 1<br>case(s)                                         |

# c) Number of bedrooms

| Statistics        |          |      |  |  |
|-------------------|----------|------|--|--|
| Number of Bedroom |          |      |  |  |
| N                 | Valid    | 35   |  |  |
|                   | Missing  | 0    |  |  |
| Mean              |          | 3.14 |  |  |
| Std. Error of     | Mean     | .102 |  |  |
| Median            |          | 3.00 |  |  |
| Mode              |          | 3    |  |  |
| Std. Deviatio     | n        | .601 |  |  |
| Variance          |          | .361 |  |  |
| Skewness          |          | .809 |  |  |
| Std. Error of     | Skewness | .398 |  |  |
| Range             |          | 3    |  |  |
| Minimum           |          | 2    |  |  |
| Maximum           |          | 5    |  |  |
| Sum               |          | 110  |  |  |
| Percentiles       | 25       | 3.00 |  |  |
|                   | 50       | 3.00 |  |  |
|                   | 75       | 3.00 |  |  |



Stem width: 10
Each leaf: 1 case(s)





# d) Age

| Statistics   |             |       |  |  |  |  |  |  |
|--------------|-------------|-------|--|--|--|--|--|--|
| Age          |             |       |  |  |  |  |  |  |
| N            | Valid       | 35    |  |  |  |  |  |  |
|              | Missing     | 0     |  |  |  |  |  |  |
| Mean         |             | 32.17 |  |  |  |  |  |  |
| Std. Error o | of Mean     | 4.228 |  |  |  |  |  |  |
| Median       |             | 26.00 |  |  |  |  |  |  |
| Mode         |             | 16    |  |  |  |  |  |  |
| Std. Deviati | 25.014      |       |  |  |  |  |  |  |
| Variance     | Variance    |       |  |  |  |  |  |  |
| Skewness     |             | 1.190 |  |  |  |  |  |  |
| Std. Error o | of Skewness | .398  |  |  |  |  |  |  |
| Range        |             | 101   |  |  |  |  |  |  |
| Minimum      |             | 2     |  |  |  |  |  |  |
| Maximum      |             | 103   |  |  |  |  |  |  |
| Sum          |             | 1126  |  |  |  |  |  |  |
| Percentiles  | 25          | 15.00 |  |  |  |  |  |  |
| 1            | 50          | 26.00 |  |  |  |  |  |  |
|              | 75          | 41.00 |  |  |  |  |  |  |



Age Stem-and-Leaf Plot

|   | Frequency   | Stem    | & | Leaf       |
|---|-------------|---------|---|------------|
|   | 4.00        | 0       |   | 2299       |
|   | 10.00       | 1       |   | 0125566667 |
|   | 6.00        | 2       |   | 001679     |
|   | 6.00        | 3       |   | 023567     |
|   | 2.00        | 4       |   | 11         |
| ı | .00         | 5       |   |            |
|   | 3.00        | 6       |   | 479        |
|   | 1.00        | 7       |   | 4          |
|   | 3.00 E      | xtremes |   | (>=76)     |
|   | Stem width: | :       | 1 | 10         |
|   | Fach leaf:  |         | 1 | rase(s)    |



# e) Area times age

Statistics

| Area times Age         |                   |  |  |  |  |  |
|------------------------|-------------------|--|--|--|--|--|
| N Valid                | 35                |  |  |  |  |  |
| Missing                | 0                 |  |  |  |  |  |
| Mean                   | 49911.34          |  |  |  |  |  |
| Std. Error of Mean     | 7074.820          |  |  |  |  |  |
| Median                 | 35295.00          |  |  |  |  |  |
| Mode                   | 2800 <sup>a</sup> |  |  |  |  |  |
| Std. Deviation         | 41855.201         |  |  |  |  |  |
| Variance               | 1.752E+9          |  |  |  |  |  |
| Skewness               | 1.262             |  |  |  |  |  |
| Std. Error of Skewness | .398              |  |  |  |  |  |
| Range                  | 150036            |  |  |  |  |  |
| Minimum                | 2800              |  |  |  |  |  |
| Maximum                | 152836            |  |  |  |  |  |
| Sum                    | 1746897           |  |  |  |  |  |
| Percentiles 25         | 20080.00          |  |  |  |  |  |
| 50                     | 35295.00          |  |  |  |  |  |
| 75                     | 61200.00          |  |  |  |  |  |

a. Multiple modes exist. The smallest value is shown



Area times Age Stem—and—Leaf Plot

| Frequency                                     | y Stem &                                    | Leaf                                                             |
|-----------------------------------------------|---------------------------------------------|------------------------------------------------------------------|
| 8.00<br>11.00<br>6.00<br>3.00<br>1.00<br>2.00 | 0 .<br>0 .<br>0 .<br>0 .<br>1 .<br>Extremes | 00111111<br>2222222333<br>444444<br>667<br>8<br>11<br>(>=130832) |

Stem width: 100000 Each leaf: 1 case(s)





#### Sales Price f)

### Statistics

Sales Price (in \$1000)

| Jaies Frice (  | 41000)   |          |  |  |  |
|----------------|----------|----------|--|--|--|
| N              | Valid    | 35       |  |  |  |
| 1              | Missing  | 0        |  |  |  |
| Mean           |          | 80.59    |  |  |  |
| Std. Error of  | Mean     | 6.194    |  |  |  |
| Median         |          | 69.00    |  |  |  |
| Mode           |          | 55       |  |  |  |
| Std. Deviation | on       | 36.646   |  |  |  |
| Variance       |          | 1342.953 |  |  |  |
| Skewness       | Skewness |          |  |  |  |
| Std. Error of  | Skewness | .398     |  |  |  |
| Range          |          | 172      |  |  |  |
| Minimum        |          | 38       |  |  |  |
| Maximum        |          | 210      |  |  |  |
| Sum            |          | 2821     |  |  |  |
| Percentiles    | 25       | 55.00    |  |  |  |
|                | 50       | 69.00    |  |  |  |
|                | 75       | 92.20    |  |  |  |



| 1.00 0 . 3<br>10.00 0 . 444455:<br>11.00 0 . 666666<br>5.00 0 . 88899<br>3.00 1 . 001<br>2.00 1 . 23<br>3.00 Extremes (>=147 | 67777 |
|------------------------------------------------------------------------------------------------------------------------------|-------|

Stem width: Each leaf: 100 1 case(s)







Major findings:

From the descriptive analysis, for area, we find the minimum is 720 square feet, the maximum is 3600 square feet, the q25 is 1255 square feet, median is 1545 square feet, and q75 is 1768 square feet. For number of rooms, we find the minimum is 4, the maximum is 10, the q25 is 5, median is 6, and q75 is 7. For number of bedrooms, we find the minimum is 2, the

maximum is 5, the q25 is 3, median is 3, and q75 is 3. For age, we find the minimum is 2 years, the maximum is 103 years, the q25 is 15 years, median is 26 years, and q75 is 41 years. For area times age, we find the minimum is 2800, the maximum is 152836, the q25 is 20080, median is 35295, and q75 is 61200. For sale price, we find the minimum is \$38000, the maximum is \$210000, the q25 is \$55000, median is \$69000, and q75 is \$92000. From histogram, we found the skewness for area, number of rooms, number of bedrooms, and sale price are very small, so we can conclude that these data are roughly normal distributed. Both histograms for age and area times age are slightly skew to the lest, but the skewness of age is due to one extreme outlier, since the data number is greater than 30, and the skewness are under reasonable range -2 to 2, the descriptive statistics shows that we did not violate ANOVA's assumption and are allowed to use it.

From the steam and leaf, except area times age are concentrated more to the left, all the other variables are concentrated to the middle. From all the Q-Q plots except the one for area times age, most of the point are locating on the line, so we can tell the variance within each of the populations is roughly equal. From the boxplot, although there are outliers, it does not significantly skew the pattern, so the data is normal distributed. Thus, we can conclude that none of the ANOVA assumption is violate. From the bar chart and pie chart, we find that there are more residences with no view than residences with view. Except the data analysis for age and areas times age, we can conclude from the analysis that area, number of room, number of bedrooms, and sale price are normally distributed, and age and area times ages are slightly skewed. So we still need to take furtherer analysis to test whether the skewness is caused by interaction, and these variable's single correlation with dependent variable sale price.

#### IV. **Correlation Analysis**

### a. Correlation analysis

|                      | Correlations           |        |                    |                      |        |            |                   |  |  |  |  |
|----------------------|------------------------|--------|--------------------|----------------------|--------|------------|-------------------|--|--|--|--|
|                      |                        | Area   | Number of<br>Rooms | Number of<br>Bedroom | Age    | River View | Area times<br>Age |  |  |  |  |
| Area                 | Pearson<br>Correlation | 1      | .779**             | .764**               | 090    | .606**     | .206              |  |  |  |  |
|                      | Sig. (2-tailed)        |        | .000               | .000                 | .606   | .000       | .235              |  |  |  |  |
|                      | N                      | 35     | 35                 | 35                   | 35     | 35         | 35                |  |  |  |  |
| Number of<br>Rooms   | Pearson<br>Correlation | .779** | 1                  | .754**               | .159   | .459**     | .423°             |  |  |  |  |
|                      | Sig. (2-tailed)        | .000   |                    | .000                 | .360   | .005       | .011              |  |  |  |  |
|                      | N                      | 35     | 35                 | 35                   | 35     | 35         | 35                |  |  |  |  |
| Number of<br>Bedroom | Pearson<br>Correlation | .764** | .754**             | 1                    | .030   | .274       | .296              |  |  |  |  |
|                      | Sig. (2-tailed)        | .000   | .000               |                      | .866   | .111       | .084              |  |  |  |  |
|                      | N                      | 35     | 35                 | 35                   | 35     | 35         | 35                |  |  |  |  |
| Age                  | Pearson<br>Correlation | 090    | .159               | .030                 | 1      | 151        | .937**            |  |  |  |  |
|                      | Sig. (2-tailed)        | .606   | .360               | .866                 |        | .388       | .000              |  |  |  |  |
|                      | N                      | 35     | 35                 | 35                   | 35     | 35         | 35                |  |  |  |  |
| River View           | Pearson<br>Correlation | .606** | .459**             | .274                 | 151    | 1          | .044              |  |  |  |  |
|                      | Sig. (2-tailed)        | .000   | .005               | .111                 | .388   |            | .800              |  |  |  |  |
|                      | N                      | 35     | 35                 | 35                   | 35     | 35         | 35                |  |  |  |  |
| Area times Age       | Pearson<br>Correlation | .206   | .423°              | .296                 | .937** | .044       | 1                 |  |  |  |  |
|                      | Sig. (2-tailed)        | .235   | .011               | .084                 | .000   | .800       |                   |  |  |  |  |
|                      | N                      | 35     | 35                 | 35                   | 35     | 35         | 35                |  |  |  |  |

<sup>.</sup> Correlation is significant at the 0.01 level (2-tailed

From the correlation analysis, we find that area has a strong positive correlation with number of rooms, number of bedroom, and river view; number of rooms has a strong positive correlation with area, number of bedrooms, and river view; number of bedroom has a strong positive correlation with area and number of rooms; age has a strong positive correlation with ages times area; river view has a strong positive correlation with area and number of rooms; area times age has a strong positive correlation with river view.

- b. Scatter plots with the quantitative variables
  - a. Independent variable to dependent variable scatter plots





Sale price (y) appears highly correlated with area (x1) Sale price (y) appears somewhat correlated with number of rooms (x2), number of bedrooms (x3), and age (x4)

b. Independent variable vs independent variable scatterplots







area (x1) appears highly correlated with number of rooms (x2) and number of bedrooms (x3), number of bedrooms (x3) appears highly correlated with number of rooms (x2), these might be multicollinearity. Number of bedrooms (x3) and number of rooms (x2) are both highly correlated with each other and therefore are redundant.

# V. Regression Analysis

- a) Linear regression analysis with the quantitative variables
  - i. Explain the findings of your regression analysis

|       | ANOVA <sup>a</sup> |                   |    |             |        |                   |  |  |  |  |  |
|-------|--------------------|-------------------|----|-------------|--------|-------------------|--|--|--|--|--|
| Model |                    | Sum of<br>Squares | df | Mean Square | F      | Sig.              |  |  |  |  |  |
| 1     | Regression         | 29858.413         | 4  | 7464.603    | 14.172 | .000 <sup>b</sup> |  |  |  |  |  |
|       | Residual           | 15801.990         | 30 | 526.733     |        |                   |  |  |  |  |  |
|       | Total              | 45660.403         | 34 |             |        |                   |  |  |  |  |  |
|       |                    |                   |    |             |        |                   |  |  |  |  |  |

- a. Dependent Variable: Sales Price (in \$1000)
- b. Predictors: (Constant), Age, Number of Bedroom, Number of Rooms, Area

| Coe | ffici | ont | <sub>c</sub> a |
|-----|-------|-----|----------------|
|     |       |     |                |

|      |                      | Unstandardized Coefficients |            | Standardized<br>Coefficients |        |      | Correlations |         |      | Collinearity Statistics |       |
|------|----------------------|-----------------------------|------------|------------------------------|--------|------|--------------|---------|------|-------------------------|-------|
| Mode | I                    | В                           | Std. Error | Beta                         | t      | Sig. | Zero-order   | Partial | Part | Tolerance               | VIF   |
| 1    | (Constant)           | 23.086                      | 22.753     |                              | 1.015  | .318 |              |         |      |                         |       |
| 1    | Area                 | .051                        | .014       | .726                         | 3.625  | .001 | .743         | .552    | .389 | .288                    | 3.474 |
|      | Number of<br>Rooms   | 4.032                       | 5.053      | .158                         | .798   | .431 | .540         | .144    | .086 | .294                    | 3.401 |
|      | Number of<br>Bedroom | -10.768                     | 11.032     | 177                          | 976    | .337 | .487         | 175     | 105  | .352                    | 2.839 |
| 1    | Age                  | 466                         | .170       | 318                          | -2.744 | .010 | 364          | 448     | 295  | .857                    | 1.166 |

a. Dependent Variable: Sales Price (in \$1000)

### Collinearity Diagnostics<sup>a</sup>

|       |           |            |                    | Variance Proportions |      |                    |                      |     |  |
|-------|-----------|------------|--------------------|----------------------|------|--------------------|----------------------|-----|--|
| Model | Dimension | Eigenvalue | Condition<br>Index | (Constant)           | Area | Number of<br>Rooms | Number of<br>Bedroom | Age |  |
| 1     | 1         | 4.601      | 1.000              | .00                  | .00  | .00                | .00                  | .01 |  |
|       | 2         | .334       | 3.714              | .00                  | .01  | .00                | .00                  | .79 |  |
|       | 3         | .045       | 10.083             | .36                  | .25  | .00                | .00                  | .08 |  |
|       | 4         | .011       | 20.533             | .33                  | .67  | .74                | .02                  | .11 |  |
|       | 5         | .009       | 22.698             | .31                  | .07  | .25                | .97                  | .01 |  |

a. Dependent Variable: Sales Price (in \$1000)

Since the p value of 0 is smaller than  $\alpha$ , we can reject the null hypothesis and conclude that there is at least one independent variable has correlation with sale price. From the coefficients chart, we find that area and age have significant p value that is smaller than  $\alpha$ , so that they have correlation with sale price, while number of rooms and number of bedroom do not show correlation. Among these four independent variables, since all the VIF are smaller than 5, the multicollinearity is not significant to remove.

ii. Conduct one forecast for a set of independent variables and find the residual.

Independent variable: area, the regression line is calculated from 35 data, my forecast will show the first five values.

| SUMMARY OUTPUT |              |              |            |            |                |            |             |             |
|----------------|--------------|--------------|------------|------------|----------------|------------|-------------|-------------|
| Regression     | n Statistics |              |            |            |                |            |             |             |
| Multiple R     | 0.742545     |              |            |            |                |            |             |             |
| R Square       | 0.55137307   |              |            |            |                |            |             |             |
| Adjusted R S   | 0.53777831   |              |            |            |                |            |             |             |
| Standard Err   | 24.8998945   |              |            |            |                |            |             |             |
| Observation    | 35           |              |            |            |                |            |             |             |
| ANOVA          |              |              |            |            |                |            |             |             |
|                | df           | SS           | MS         | F          | Significance F |            |             |             |
| Regression     | 1            | 25146.0147   | 25146.0147 | 40.5577777 | 3.2748E-07     |            |             |             |
| Residual       | 33           | 20460.1567   | 620.004748 |            |                |            |             |             |
| Total          | 34           | 45606.1714   |            |            |                |            |             |             |
|                | Coefficients | tandard Erro | t Stat     | P-value    | Lower 95%      | Upper 95%  | Lower 95.0% | Upper 95.09 |
| Intercept      | -1.8529381   | 13.6181993   | -0.1360634 | 0.89259783 | -29.559373     | 25.8534967 | -29.559373  | 25.8534967  |
| X Variable 1   | 0.05197135   | 0.00816069   | 6.36849886 | 3.2748E-07 | 0.0353683      | 0.06857441 | 0.0353683   | 0.06857443  |

according from the output, the regression line function is  $y^-=1.85+0.0519x$ 

| observation | X (area/square feet) | Predicted y(in \$1000) | Residual (observed-<br>predicted)(in \$1000) |
|-------------|----------------------|------------------------|----------------------------------------------|
| 1           | 1290                 | 65.19                  | -16.19                                       |
| 2           | 912                  | 45.54                  | 4.45                                         |
| 3           | 1204                 | 60.72                  | -5.72                                        |
| 4           | 1764                 | 89.82                  | -8.82                                        |
| 5           | 1255                 | 63.37                  | 5.63                                         |

iii. Conduct hypothesis testing for the slope of an independent variable

Independent variable: area Null hypothesis: slope=0

Alternative hypothesis: slope does not equal 0

Value of  $\alpha = 0.05$ 

P-value= $3.27 \times 10^{(-7)} < 0.05$ , so we can reject the null hypothesis and conclude that the slope is not 0, so there is correlation between area and sale price.

iv. Conduct interval estimate for the slope of an independent variable Independent variable: area, Value of  $\alpha = 0.05$  Interval estimate=  $slope \pm t * standard error$  =  $0.0519\pm2.042*0.00816069=(0.035,0.069)$  So the interval of the slope with a 95% significance is between 0.035 and 0.069.

b) Linear regression analysis with all the six variables which includes the dummy variable

i. Explain the findings of your regression analysis with the dummy variable

|       | ANOVA      |                   |    |             |        |                   |  |  |  |  |  |  |
|-------|------------|-------------------|----|-------------|--------|-------------------|--|--|--|--|--|--|
| Model |            | Sum of<br>Squares | df | Mean Square | F      | Sig.              |  |  |  |  |  |  |
| 1     | Regression | 35047.542         | 5  | 7009.508    | 19.154 | .000 <sup>b</sup> |  |  |  |  |  |  |
|       | Residual   | 10612.861         | 29 | 365.961     |        |                   |  |  |  |  |  |  |
|       | Total      | 45660.403         | 34 |             |        |                   |  |  |  |  |  |  |

a. Dependent Variable: Sales Price (in \$1000)

b. Predictors: (Constant), River View, Age, Number of Bedroom, Number of Rooms, Area

| Coe | ff: | -: | _ | <br> |
|-----|-----|----|---|------|
|     |     |    |   |      |

| Unstandardized Coefficients |                      | Standardized<br>Coefficients |            |      | Co     | orrelations |            | Collinearity | Statistics |           |       |
|-----------------------------|----------------------|------------------------------|------------|------|--------|-------------|------------|--------------|------------|-----------|-------|
| Mode                        |                      | В                            | Std. Error | Beta | t      | Sig.        | Zero-order | Partial      | Part       | Tolerance | VIF   |
| 1                           | (Constant)           | 23.701                       | 18.966     |      | 1.250  | .221        |            |              |            |           |       |
| 1                           | Area                 | .024                         | .014       | .350 | 1.798  | .083        | .743       | .317         | .161       | .212      | 4.718 |
|                             | Number of<br>Rooms   | 1.251                        | 4.276      | .049 | .292   | .772        | .540       | .054         | .026       | .285      | 3.506 |
|                             | Number of<br>Bedroom | 3.907                        | 9.988      | .064 | .391   | .699        | .487       | .072         | .035       | .299      | 3.349 |
| 1                           | Age                  | 399                          | .143       | 272  | -2.792 | .009        | 364        | 460          | 250        | .844      | 1.185 |
|                             | River View           | 37.093                       | 9.851      | .464 | 3.766  | .001        | .757       | .573         | .337       | .528      | 1.894 |

a. Dependent Variable: Sales Price (in \$1000)

Collinearity Diagnosticsa

|       |           |            |                    | Variance Proportions |      |                    |                      |     |            |  |
|-------|-----------|------------|--------------------|----------------------|------|--------------------|----------------------|-----|------------|--|
| Model | Dimension | Eigenvalue | Condition<br>Index | (Constant)           | Area | Number of<br>Rooms | Number of<br>Bedroom | Age | River View |  |
| 1     | 1         | 4.981      | 1.000              | .00                  | .00  | .00                | .00                  | .01 | .01        |  |
| 1     | 2         | .698       | 2.671              | .00                  | .00  | .00                | .00                  | .09 | .41        |  |
| 1     | 3         | .269       | 4.303              | .01                  | .00  | .00                | .00                  | .76 | .18        |  |
| 1     | 4         | .034       | 12.113             | .49                  | .23  | .01                | .00                  | .02 | .21        |  |
|       | 5         | .011       | 21.462             | .22                  | .48  | .82                | .00                  | .11 | .00        |  |
|       | 6         | .007       | 25.874             | .28                  | .28  | .18                | 1.00                 | .01 | .19        |  |

a. Dependent Variable: Sales Price (in \$1000)

Since the p value of 0 is smaller than  $\alpha$ , we can reject the null hypothesis and conclude that there is at least one independent variable has correlation with sale price. From the coefficients chart, we find that area, age and river have significant p value that is smaller than  $\alpha$ , so that they have correlation with sale price, while number of rooms and number of bedroom do not show correlation. Among these five independent variables, since all the VIF are smaller than 5, the multicollinearity is not significant to remove. River view is a nominal variable here, and when other independent variable maintains constant, the residence with a river view significantly increase the sale price.

- c) Linear regression analysis all the quantitative variables and an interaction of two independent variables.
  - i. Explain the findings of your regression analysis with the interaction effect.

| Α | NI | $\boldsymbol{\sim}$ | • / | ^ | c |
|---|----|---------------------|-----|---|---|
| А | N  | w                   | v   | А |   |

| М | lodel      | Sum of<br>Squares | df | Mean Square | F      | Sig.              |
|---|------------|-------------------|----|-------------|--------|-------------------|
| 1 | Regression | 30058.929         | 5  | 6011.786    | 11.175 | .000 <sup>b</sup> |
|   | Residual   | 15601.474         | 29 | 537.982     |        |                   |
|   | Total      | 45660.403         | 34 |             |        |                   |

- a. Dependent Variable: Sales Price (in \$1000)
- b. Predictors: (Constant), Area times Age, Area, Number of Bedroom, Number of Rooms, Age

### Coefficients

|       |                      | Unstandardize | d Coefficients | Standardized<br>Coefficients |       |      | Co         | orrelations |      | Collinearity | Statistics |
|-------|----------------------|---------------|----------------|------------------------------|-------|------|------------|-------------|------|--------------|------------|
| Model |                      | В             | Std. Error     | Beta                         | t     | Sig. | Zero-order | Partial     | Part | Tolerance    | VIF        |
| 1     | (Constant)           | 4.564         | 38.068         |                              | .120  | .905 |            |             |      |              |            |
|       | Area                 | .055          | .016           | .788                         | 3.478 | .002 | .743       | .543        | .377 | .229         | 4.358      |
|       | Number of<br>Rooms   | 4.917         | 5.308          | .193                         | .926  | .362 | .540       | .170        | .101 | .272         | 3.675      |
|       | Number of<br>Bedroom | -8.919        | 11.554         | 146                          | 772   | .446 | .487       | 142         | 084  | .328         | 3.048      |
|       | Age                  | .064          | .886           | .044                         | .073  | .943 | 364        | .013        | .008 | .032         | 31.036     |
|       | Area times Age       | .000          | .001           | 387                          | 611   | .546 | 146        | 113         | 066  | .029         | 34.157     |

a. Dependent Variable: Sales Price (in \$1000)

#### Collinearity Diagnostics<sup>a</sup>

|       |           |            |                    |            | Variance Proportions |                    |                      |     |                   |  |  |
|-------|-----------|------------|--------------------|------------|----------------------|--------------------|----------------------|-----|-------------------|--|--|
| Model | Dimension | Eigenvalue | Condition<br>Index | (Constant) | Area                 | Number of<br>Rooms | Number of<br>Bedroom | Age | Area times<br>Age |  |  |
| 1     | 1         | 5.371      | 1.000              | .00        | .00                  | .00                | .00                  | .00 | .00               |  |  |
|       | 2         | .536       | 3.167              | .00        | .00                  | .00                | .00                  | .01 | .01               |  |  |
|       | 3         | .068       | 8.862              | .06        | .09                  | .00                | .00                  | .02 | .03               |  |  |
|       | 4         | .012       | 21.565             | .05        | .77                  | .38                | .11                  | .06 | .03               |  |  |
| 1     | 5         | .009       | 23.923             | .01        | .02                  | .53                | .68                  | .02 | .02               |  |  |
|       | 6         | .004       | 37.733             | .88        | .12                  | .08                | .21                  | .89 | .91               |  |  |

a. Dependent Variable: Sales Price (in \$1000)

Since the p value of 0 is smaller than  $\alpha$ , we can reject the null hypothesis and conclude that there is at least one independent variable has correlation with sale price. From the coefficients chart, we find that area has significant p value that is smaller than  $\alpha$ , so that they have correlation with sale price, while number of rooms, number of bedroom, age and area times age do not show correlation. Among these five independent variables, there are two VIF (age and area times age are greater than 5), so there are multicollinearity in this test.

### VI. Conclusions (including Step 6 tasks)

In testing the correlation between sale price and independent variables (area, number of room, number of bedrooms, age, river view, and area times age). With an  $\alpha$  of 0.05. We reject the null hypothesis in all three multiple linear regression analyses and conclude that there is at least one independent variable has correlation with sale price. We find out that area has a strong correlation with sale price as it has correlation with sale price in all three analyses. We also find number of rooms and number of bedrooms are redundant, since they are highly correlated with each other. A residence with river view would significantly increase the sale price when other independent variables maintains constant. The interaction of area times age would significantly influence the output of age by making age highly correlated with the interaction. Even though area has strong correlation with sale price, it also has strong correlation with number of rooms and number of bedroom, which make sense in real life as more more rooms requires more space. Because the correlation between area and number of rooms is not as strong as the correlation between area and sale price, thus the high correlation between area and number of rooms and bedrooms does not cause multicollinearity.