CS241 #28 — Scheduling Algorithms. Networking (UDP, IPv6, Building a better HTTP server)

Why might a process be placed on the ready queue?

What is 'wait time'? Total wait time, or the first waiting before it is scheduled the first time?

Write a formula for the wait time based on arrival time, execution time(=duration) and completion time

Determine the scheduling sequence and calculate the average wait time of the following schedulers
In a tie-break: Schedule the earliest arriving job.

Round robin (quanta = 10ms)

Process	Arrival Time(ms)	Burst Time(ms)	Wait Time (ms)
P1	0	30	,
P2	0	20	
P3	0	20	
P4	10	10	

010	20	30	40	50	60	70	80

Shortest Job First

Shortest job First								
Process	Arrival	Burst	Wait TIme					
	Time(ms)	Time(ms)	(ms)					
P1	0	30						
P2	0	20						
P3	0	20						
P4	10	10						

010	20	30	40	50	60	70	80

First Come First Served (assume arrive in order P1,P2,P3)

Process	Arrival Time(ms)	Burst Time(ms)	Wait Time (ms)
P1	0	30	
P2	0	20	
P3	0	20	
P4	10	10	

010	20	30	40	50	60	70	80

Pre-emptive Shortest Job First (assume interrupted jobs are placed at the front of the queue)

Process	Arrival T	Burst T	Wait T
P1	0	30	
P2	0	20	
Р3	0	20	
P4	10	10	

010	20	30	40	50	60	70	80

Pre-emptive Priority (higher value = higher priority)

Process	Arrival	Burst	Priority	Wait
P1	0	30	2	
P2	0	20	4	
Р3	0	20	1	
P4	10	10	3	

		1		ı	ı	1	1	ı
()10	20	30	40	50	60	70	80
1		I		ĺ	ĺ	1		ĺ

Which schedulers can suffer from starvation? Which schedulers are appropriate for batch jobs? What scheduler does Linux use?

What is the **Convoy Effect** (poor I/O parallelism)?

Webserver challenge: How do I make a web server that can serve different files?

```
Parse a string "GET /mypage.pdf HTTP/1.0"
  char method[16], url[2048], protocol[32];
  sscanf( buffer, "%15s %2047s %31s", method, url, protocol);
  sprintf(filename, "/var/www/mysite/%s", url);
  // Todo: use realpath() and validate directory is a subdirectory
  int fd = open( filename, O_RDONLY);
  struct stat file_stat;
  fstat(fd, &file_stat);
  off_t len = file_stat.st_size;
  void * buf = mmap(NULL, len, PROT_READ, MAP_SHARED, fd, 0);
  // Todo: write headers including MIME-TYPE and size
  write( client, buf, len);
```

```
Example: How do you listen for IPv6 UDP packets?

// get host info, make socket, bind it to port 300

memset (&hints, 0, sizeof hints);

hints.ai_family = _____

hints.ai_socktype = ____;

ok= getaddrinfo(____, ____, &hints, &res);

sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

bind(sockfd, res->ai_addr, res->ai_addrlen);

struct sockaddr_storage addr;

fromlen = sizeof addr;

// ssize_t recvfrom(int socket, void *buffer, size_t length, int flags, struct sockaddr *address, socklen_t * addr_len);

byte_count = recvfrom(sockfd, buf, sizeof(buf), 0, &addr, &fromlen);
```

TCP Packets: What is "SYN, SYK-ACK, ACK"?

What is a SYN flood?

What is the sequence number and what is it used for? What is its initial value & why?

I see the port number but where is the machine's IP address?

Source: http://nmap.org/book/tcpip-ref.html

Congestion control? Receive Window? Lost packet retransmission? Packet re-ordering? Secure?