Decomposition of contextual information for forecast adjustments

Anna Sroginis, Robert Fildes, Nikolaos Kourentzes

Lancaster University

17th June 2019

Marketing Analytics

Human role in forecasting

- Demand forecasting at the core of behavioural operations:
 - In retailing, manufacturing and services;
 - Delivered through a forecasting support system (FSS);
 - Handled by demand planners/forecasters.

Human role in forecasting

- Demand forecasting at the core of behavioural operations:
 - In retailing, manufacturing and services;
 - Delivered through a forecasting support system (FSS);
 - Handled by demand planners/forecasters.
- We know a lot about the algorithms:
 - New methods (e.g. machine learning).

Human role in forecasting

- Demand forecasting at the core of behavioural operations:
 - In retailing, manufacturing and services;
 - Delivered through a forecasting support system (FSS);
 - ► Handled by demand planners/forecasters.
- We know a lot about the algorithms:
 - New methods (e.g. machine learning).
- But almost nothing about how these methods are used
 - Human input from choosing software to amending parameters.

Our objective: to understand how forecasting algorithms are used in FSS and to propose improvements

Forecasting process: a case study

- UK-based retailer with 50k SKUs and 400 stores
- 2 years of sales and 10 types of promotions
- Statistical model in the SAP F&R includes promotional dummies
- Around 60% of all SKUs are being adjusted due to seasonal events, promotions and weather

Interface used in practice

 $Contextual \ information \ is \ handled \ outside \ of \ the \ system$

The null case-experiment by Fildes et al. (2018)

Use and misuse of information in supply chain forecasting of promotion effects (IJF, 2018): "participants were distracted from the 50% base rate by the previous promotion uplift and by the reasons given, despite this information having either no or unknown diagnosticity."

Our previous experiments

- What is the effect of contextual information on adjustments?
- Baseline forecasts vs statistical model with promotional effects

Decomposition approach

Decomposition of information

a strategy to split the task into smaller parts (sub-problems) in order to reduce cognitive load, which could enhance the forecasting process (Armstrong et al., 1975; Wright and Goodwin, 1993)

- Decomposition of judgments about trend/seasonality components (Edmundson, 1990);
- Presenting information selectively and sequentially in FSS improves accuracy (Webby et al., 2005): not substantially when the amount of information to be process increases (from 4 to 8 pieces).

Experimental setting

- Control group with possible information overload;
- Baseline forecasts vs Statistical promotional model

Experimental setting

- Decomposed contextual information;
- Baseline forecasts vs Statistical promotional model

Hypotheses

- H1: Adjustments to statistical forecasts in a case of information decomposition will deviate from a control group.
- H2: Users revise their adjustments when they see new pieces of soft information.
- H3: Any type of decomposition will influence the magnitude of anchoring (e.g. last promotional uplift, current statistical forecast).

Implementation of the experiment

- We assume that the average uplift for promotional periods is 50%;
- Promotional, marketing and hypothetical information for the upcoming period is provided;
 - Hype and marketing information do NOT have predictive value for forecasters;
 - Promotional information is diagnostic;
- Baseline statistical forecast is SES(0.2);
- 2-period promotions: 4 historical + 1 upcoming

Descriptive statistics

- Trial run: 25 people (mainly students);
- Between subjects;
- Repeated measures data: 200 observations

 ${\bf Table\ 1:\ Descriptive\ statistics.}$

	Overall	Experiment type			
		1	2	3	4
Statistical forecast		Baseline	Promotional	Baseline	Promotional
Decomposition		No	No	Yes	Yes
Participants	25	7	6	8	4
Adjustment size	X	11.38%	$3{,}08\%$	22.57%	0.09%
Adjusted cases	X	73%	93%	73%	72%
FVA	X	4.7%	-2.73%	6.12%	1.59%

Accuracy

Conclusions

- Given the role of human judgment in forecasting, how can we help a forecaster to deal with a flow of contextual information?
 - ► To filter and use it:
 - To evaluate forecast value added.
- Using a decomposition approach to contextual information, we find more consistent results.

Next steps:

- To gamify the experiment;
- To promote it online in order to get more participants;
- To analyse adjustments and value added using regression modelling.

Thank you for your attention!

Any questions?

Anna Sroginis, PhD student a.sroginis@lancaster.ac.uk

- Armstrong, J. S., Denniston, W. B., Gordon, M. M., 1975. The use of the decomposition principle in making judgments. Organizational Behavior and Human Performance 14 (2), 257–263.
- Edmundson, R. H., 1990. Decomposition; a strategy for judgemental forecasting. Journal of Forecasting 9 (4), 305–314.
- Webby, R., O'Connor, M., Edmundson, B., 2005. Forecasting support systems for the incorporation of event information: An empirical investigation. International Journal of Forecasting 21 (3), 411–423.
- Wright, G., Goodwin, P., 1993. Improving judgmental time series forecasting: A review of the guidance provided by research. International Journal of Forecasting 9, 147–161.