

MIPI Alliance Standard for Display Command Set

Version 1.01.00 - 22 June 2006

MIPI Board Approved 13-Dec-2006

1 NOTICE OF DISCLAIMER

- 2 The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled
- 3 by any of the authors or developers of this material or MIPI. The material contained herein is provided on
- 4 an "AS IS" basis and to the maximum extent permitted by applicable law, this material is provided AS IS
- 5 AND WITH ALL FAULTS, and the authors and developers of this material and MIPI hereby disclaim all
- 6 other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if
- any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of
- 8 accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of
- 9 negligence.
- 10 ALSO, THERE IS NO WARRANTY OF CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
- 11 POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD
- 12 TO THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT. IN NO EVENT WILL ANY
- 13 AUTHOR OR DEVELOPER OF THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT OR
- 14 MIPI BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE
- 15 GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL,
- 16 CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER
- 17 CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR
- 18 ANY OTHER AGREEMENT, SPECIFICATION OR DOCUMENT RELATING TO THIS MATERIAL,
- 19 WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
- 20 DAMAGES.
- 21 Without limiting the generality of this Disclaimer stated above, the user of the contents of this Document is
- 22 further notified that MIPI: (a) does not evaluate, test or verify the accuracy, soundness or credibility of the
- 23 contents of this Document; (b) does not monitor or enforce compliance with the contents of this Document;
- 24 and (c) does not certify, test, or in any manner investigate products or services or any claims of compliance
- 25 with the contents of this Document. The use or implementation of the contents of this Document may
- involve or require the use of intellectual property rights ("IPR") including (but not limited to) patents,
- 27 patent applications, or copyrights owned by one or more parties, whether or not Members of MIPI. MIPI
- does not make any search or investigation for IPR, nor does MIPI require or request the disclosure of any
- 29 IPR or claims of IPR as respects the contents of this Document or otherwise.
- 30 Questions pertaining to this document, or the terms or conditions of its provision, should be addressed to:
- 31 MIPI Alliance, Inc.
- 32 c/o IEEE-ISTO
- 33 445 Hoes Lane
- 34 Piscataway, NJ 08854
- 35 Attn: Board Secretary

Contents

37	Version	1.01.00 – 22 June 2006	i
38	1 Ove	erview	11
39	1.1	Scope	11
40	1.2	Purpose	11
41	2 Doo	cument Terminology	12
42	2.1	Glossary	12
43	2.2	Acronyms and Abbreviations	13
44	3 Ref	erences	14
45	4 Dis	play Architectures	15
46	5 Dis	play Functional Description	18
47	5.1	Power Level Definition	18
48	5.2	Gamma Curves	21
49	5.3	Self-diagnostic Functions	23
50	5.4	Display Command Set	27
51	5.5	Command List	28
52	5.6	Command Accessibility	32
53	5.7	Default Modes and Values	34
54	6 Cor	nmand Description	38
55	6.1	enter_idle_mode	39
56	6.2	enter_invert_mode	41
57	6.3	enter_normal_mode	42
58	6.4	enter_partial_mode	43
59	6.5	enter_sleep_mode	44
60	6.6	exit_idle_mode	46
61	6.7	exit_invert_mode	47
62	6.8	exit sleep mode	48

63	6.9	get_address_mode	50
64	6.10	get_blue_channel	52
65	6.11	get_diagnostic_result	53
66	6.12	get_display_mode	54
67	6.13	get_green_channel	56
68	6.14	get_pixel_format	57
69	6.15	get_power_mode	59
70	6.16	get_red_channel	61
71	6.17	get_scanline	62
72	6.18	get_signal_mode	63
73	6.19	nop	64
74	6.20	read_DDB_continue	65
75	6.21	read_DDB_start	66
76	6.22	read_memory_continue	68
77	6.23	read_memory_start	70
78	6.24	set_address_mode	72
79	6.25	set_column_address	77
80	6.26	set_display_off	79
81	6.27	set_display_on	80
82	6.28	set_gamma_curve	81
83	6.29	set_page_address	83
84	6.30	set_partial_area	85
85	6.31	set_pixel_format	89
86	6.32	set_scroll_area	90
87	6.33	set_scroll_start	93
88	6.34	set_tear_off	95
89	6.35	set_tear_on	96
90	6.36	set tear scanline	98

Version 1.01.00 22-Jun-200

MIPI Alliance Standard for DCS

91	6.37	soft_reset	100
92	6.38	write_LUT	101
93	6.39	write_memory_continue	103
94	6.40	write_memory_start	106
95	Annex A	A Pixel-to-Byte Mapping	109
96	A.1	Three Bits per Pixel Format	109
97	A.2	Eight Bits per Pixel Format	110
98	A.3	Twelve Bits per Pixel Format	110
99	A.4	Sixteen Bits per Pixel Format	111
100	A.5	Eighteen Bits per Pixel Format	111
101	A.6	Twenty-four Bits per Pixel Format	112
102	Annex H	B Color Depth Conversion Look-up Tables (informative)	113
103	B.1	Color Depth Conversion LUT – 12-bit Color to 16-bit Color	113
104	B.2	Color Depth Conversion LUT – 12-bit and 16-bit Colors to 18-bit Color	116
105	B.3	Color Depth Conversion LUT – 12-bit, 16-bit and 18-bit Colors to 24-bit Color	123
106			

Figures

108	Figure 1 Type 1 Display Architecture Block Diagram	15
109	Figure 2 Type 2 Display Architecture Block Diagram	16
110	Figure 3 Type 3 Display Architecture Block Diagram	17
111	Figure 4 Type 1 Display Architecture Power Change Sequences	19
112	Figure 5 Type 2 Display Architecture Power Change Sequence	20
113	Figure 6 Type 3 Display Architecture Power Change Sequence	20
114	Figure 7: Gamma curve 1 (GC0)	21
115	Figure 8: Gamma Curve 2 (GC1)	21
116	Figure 9: Gamma Curve 3 (GC2)	22
117	Figure 10: Gamma Curve 4 (GC3)	22
118	Figure 11 Flow Chart for Register Loading Detection	23
119	Figure 12 Functionality Detection Flow Chart	24
120	Figure 13 Chip Attachment Detection Reference	25
121	Figure 14 Chip Attachment Detection Flow Chart	25
122	Figure 15 Display Glass Break Detection Reference	26
123	Figure 16 Display Glass Break Detection Flow Chart	26
124	Figure 17 Flowchart Legend	38
125	Figure 18 enter_idle_mode Example	39
126	Figure 19 enter_idle_mode Flow Chart	40
127	Figure 20 enter_invert_mode Example	41
128	Figure 21 enter_invert_mode Flow Chart	41
129	Figure 22 enter_sleep_mode Flow Chart	45
130	Figure 23 exit_idle_mode Flow Chart	46
131	Figure 24 exit_invert_mode Example	47
132	Figure 25 exit_invert_mode Flow Chart	47
133	Figure 26 exit sleep mode Flow Chart	49

134	Figure 27 get_address_mode Flow Chart	51
135	Figure 28 get_blue_channel Flow Chart	52
136	Figure 29 get_diagnostic_result Flow Chart	53
137	Figure 30 get_display_mode Flow Chart	55
138	Figure 31 get_green_channel Flow Chart	56
139	Figure 32 get_pixel_format Flow Chart	58
140	Figure 33 get_power_mode Flow Chart	60
141	Figure 34 get_red_channel Flow Chart	61
142	Figure 35 get_scanline Flow Chart	62
143	Figure 36 get_signal_mode Flow Chart	63
144	Figure 37 read_DDB_continue Flow Chart	65
145	Figure 38 read_DDB_start Flow Chart	67
146	Figure 39 read_memory_continue Flow Chart	69
147	Figure 40 read_memory_start Flow Chart	71
148	Figure 41 B7 Page Address Order	72
149	Figure 42 B6 Column Address Order	73
150	Figure 43 B5 Page/Column Addressing Order	73
151	Figure 44 B3 RGB Order	74
152	Figure 45 B1 Flip Horizontal.	75
153	Figure 46 B0 Flip Vertical	75
154	Figure 47 set_address_mode Flow Chart	76
155	Figure 48 set_column_address Example	77
156	Figure 49 set_column_address Flow Chart	78
157	Figure 50 set_display_off Example	79
158	Figure 51 set_display_off Flow Chart	79
159	Figure 52 set_display_on Example	80
160	Figure 53 set_display_on Flow Chart	80
161	Figure 54 set, gamma, curve Flow Chart	82

162	Figure 55 set_page_address Example	83
163	Figure 56 set_page_address Flow Chart	84
164	Figure 57 set_partial_area with set_address_mode B4 = 0	85
165	Figure 58 set_partial_area with set_address_mode B4=1	86
166	Figure 59 set_partial_area with set_address_mode B4 = 0	86
167	Figure 60 set_partial_area with set_address_mode B4 = 1	86
168	Figure 61 Entering Partial Display Mode Flow Chart	87
169	Figure 62 Exiting Partial Display Mode Flow Chart	88
170	Figure 63 set_pixel_format Flow Chart	89
171	Figure 64 set_scroll_area set_address_mode B4 = 1 Example	91
172	Figure 65 set_scroll_area set_address_mode B4 = 1 Example	91
173	Figure 66 set_scroll_area Flow Chart	92
174	Figure 67 set_scroll_start set_address_mode B4 = 0	93
175	Figure 68 set_scroll_start set_address_mode B4 = 1	94
176	Figure 69 set_tear_off Flow Chart	95
177	Figure 70 set_tear_on M = 0	96
178	Figure 71 set_tear_on M = 1	96
179	Figure 72 set_tear_on Flow Chart	97
180	Figure 73 set_tear_scanline	98
181	Figure 74 set_tear_scanline Flow Chart	99
182	Figure 75 soft_reset Flow Chart	100
183	Figure 76 write_LUT Flow Chart	102
184	Figure 77 write_memory_continue Flow Chart	104
185	Figure 78 write_memory_start Flow Chart	108
186	Figure 79 Three Bits per Pixel Format to Byte Mapping	109
187	Figure 80 Eight Bits per Pixel Format to Byte Mapping	110
188	Figure 81 Twelve Bits per Pixel Format to Byte Mapping	110
189	Figure 82 Sixteen Bits per Pixel Format to Byte Mapping	111

	Version 1.01.00 22-Jun-2006	MIPI Alliance Standard for DCS
190	Figure 83 Eighteen Bits per Pixel Format to Byte Mapping	111
191	Figure 84 Twenty-four Bits per Pixel Format to Byte Mapping	
192		

Tables

194	Table 1 Command List	28
195	Table 2 Command Accessibility	32
196	Table 3 Default Display Mode, Power Mode and Register Values	34
197	Table 4 enter_idle_mode Memory Content vs. Display Color	39
198	Table 5 Gamma Curve Selection	55
199	Table 6 Interface Pixel Formats	57
200	Table 7 Gamma Curves	81
201	Table 8 LUT Color Depth Conversions	102
202	Table 9 Common Color Encoding	104
203	Table 10 Common Color Encoding	107
204	Table 11 12-bit to 16-bit LUT Red Component Values	113
205	Table 12 12-bit to 16-bit LUT Green Component Values	114
206	Table 13 12-bit to 16-bit LUT Blue Component Values	115
207	Table 14 12-bit, 16-bit to 18-bit LUT Red Component Values	116
208	Table 15 12-bit, 16-bit to 18-bit LUT Green Component Values	118
209	Table 16 12-bit, 16-bit to 18-bit LUT Blue Component Values	121
210	Table 17 12-bit, 16-bit and 18-bit Colors to 24-bit Color LUT Red Component Values	123
211	Table 18 12-bit, 16-bit and 18-bit Colors to 24-bit Color LUT Green Component Values	126
212	Table 19 12-bit, 16-bit and 18-bit Colors to 24-bit Color LUT Blue Component Values	129

MIPI Alliance Standard for Display Command Set

214 **1 Overview**

213

- The Display Command Set specification defines display module behavior for devices that adhere to the
- 216 MIPI specifications for mobile device host processor, and display interfaces in an abstract, device
- independent way. All commands in this specification shall be supported by display modules that adhere to
- 218 MIPI Alliance Standard for Display Pixel Interface[1], MIPI Alliance Standard for Display Bus Interface
- 219 [2], and MIPI Alliance Standard for Display Serial Interface [3] except as provided for in the individual
- 220 standards.

221 **1.1 Scope**

- 222 Display commands and logical flow are within the scope of this specification. In addition, to support device
- 223 abstraction, several display architectures are also specified.
- 224 Electrical specifications and interface protocols are out of scope for this document.

225 **1.2 Purpose**

- The Display Command Set specification is used by manufacturers to design products that adhere to MIPI
- specifications for mobile device host processor and display interfaces.
- 228 Implementing the DCS standard reduces the time-to-market and design cost of mobile devices by
- 229 simplifying the interconnection of products from different manufacturers. In addition, adding new features
- 230 such as larger or additional displays to mobile devices is simplified due to the extensible nature of the MIPI
- 231 specifications.

Document Terminology

- 233 The MIPI Alliance has adopted Section 13.1 of the IEEE Standards Style Manual, which dictates use of the words "shall", "should", "may", and "can" in the development of documentation, as follows: 234
- 235 The word shall is used to indicate mandatory requirements strictly to be followed in order 236 to conform to the standard and from which no deviation is permitted (shall equals is
- 237 required to).

232

- 238 The use of the word *must* is deprecated and shall not be used when stating mandatory 239 requirements; must is used only to describe unavoidable situations.
- 240 The use of the word will is deprecated and shall not be used when stating mandatory 241 requirements; will is only used in statements of fact.
- 242 The word *should* is used to indicate that among several possibilities one is recommended 243 as particularly suitable, without mentioning or excluding others; or that a certain course of action is preferred but not necessarily required; or that (in the negative form) a certain 244 245 course of action is deprecated but not prohibited (should equals is recommended that).
- 246 The word may is used to indicate a course of action permissible within the limits of the 247 standard (may equals is permitted).
- 248 The word can is used for statements of possibility and capability, whether material, 249 physical, or causal (can equals is able to).
- 250 All sections are normative, unless they are explicitly indicated to be informative.

2.1 251 Glossary

- 252 **Display Area:** The portion of a display device used to show image data.
- 253 **Display Controller:** A separate silicon chip, or integrated functional block in a host device, used to control
- 254 a display module. May include full-frame or partial-frame memory.
- 255 **Display Device:** A functional device that shows images such as a Liquid Crystal Display.
- 256 **Display Driver:** An integrated circuit inside a display module used to control the display device. May or
- 257 may not integrate full or partial frame-memory.
- 258 **Display Glass:** Same as Display Device. Derived from the display material's name.
- 259 **Display Module:** A functional module used to show an image. Can consist of a display device, display
- 260 driver, additional peripheral components or circuits and a display interface.
- 261 **Display Panel:** Same as Display Device.
- 262 Frame Memory: Memory integrated in a display driver or display controller in order to provide storage for
- 263 display device refreshment. Full-frame memory provides enough storage for the full display area of a
- 264 display device. Partial-frame memory provides only enough storage for a portion of the display area.

- 265 Type 1 Display Architecture: A display module architecture in which the display module includes a
- display device, display driver, full-frame memory, interface registers, timing controller, non-volatile
- 267 memory and a control interface.
- 268 **Type 2 Display Architecture:** A display module architecture in which the display module includes a
- 269 display device, display driver, partial-frame memory, interface registers, timing controller, non-volatile
- 270 memory, a control interface and a video stream interface.
- 271 Type 3 Display Architecture: Similar to the Type 2 Display Architecture except no frame memory is
- 272 present.

273 2.2 Acronyms and Abbreviations

- The following acronyms and abbreviations are used throughout this document:
- 275 **DBI** Display Bus Interface
- 276 **DCS** Display Command Set
- 277 **DPI** Display Pixel Interface
- 278 **DSI** Display Serial Interface

[2]

279	3 R	eferences
280	[1]	MIPI Alliance Standard for Display Pixel Interface (DPI-2), version 2.00, September 2005

282 [3] MIPI Alliance Standard for Display Serial Interface (DSI), version 1.00, April 2006

MIPI Alliance Standard for Display Bus Interface (DBI-2), version 2.00, November 2005

4 Display Architectures

283

- The display module shall be based on Type 1, Type 2 or Type 3 display architecture.
- The Type 1 Display Architecture should consist of the following functional blocks:
- Display Device. Used to show image data.
- 287 Display Driver. May be one or more devices used to drive the display device.
- 288 Full-frame memory. Used to hold image data. Can be integrated in the display driver.
- Registers. Used to configure display behavior and identification information. Can be integrated in the display driver.
- Timing Controller. Provides timing signals to control the display and display driver based on configuration information. Can be integrated in the display driver.
- Non-volatile memory. Used to store default register and configuration values. Can be integrated in the display driver.
- 295 Control Interface. Provides the interface between the host processor and the display driver. Can be 296 integrated in the display driver.
- Display Driving Circuit. Used to convert timing signals and voltages to signals appropriate to drive the display device.
- Power Supply. Used to convert system voltages to levels usable by the display device and display driver. Can be integrated in the display driver.

Figure 1 Type 1 Display Architecture Block Diagram

processor.

319

320

321

322

303 The Type 2 Display Architecture should consist of the following functional blocks: 304 Display Device. Used to show image data. 305 Display Driver. May be one or more devices used to drive the display device. 306 Partial-frame memory. Used to hold image data. Can be integrated in the display driver. 307 Registers. Used to configure display behavior and identification information. Can be integrated in 308 the display driver. 309 Timing Controller. Provides timing signals to control the display and display driver based on configuration information. Can be integrated in the display driver. 310 311 Non-volatile memory. Used to store default register and configuration values. Can be integrated in 312 the display driver. 313 Control Interface. Provides the interface between the host processor and the display driver. Can be 314 integrated in the display driver. 315 Display Driving Circuit. Used to convert timing signals and voltages to signals appropriate to drive the display device. 316 317 Power Supply. Used to convert system voltages to levels usable by the display device and display driver. Can be integrated in the display driver. 318

Video Stream Interface. Used to receive video image data and timing signals from the host

Figure 2 Type 2 Display Architecture Block Diagram

323 The Type 3 Display Architecture should consist of the following functional blocks: 324 Display Device. Used to show image data. 325 Display Driver. May be one or more devices used to drive the display device. 326 Partial-frame memory. Used to hold image data. Can be integrated in the display driver. 327 Registers. Used to configure display behavior and identification information. Can be integrated in 328 the display driver. 329 Timing Controller. Provides timing signals to control the display and display driver based on 330 configuration information. Can be integrated in the display driver. 331 Non-volatile memory. Used to store default register and configuration values. Can be integrated in 332 the display driver. 333 Control Interface. Provides the interface between the host processor and the display driver. Can be 334 integrated in the display driver. 335 Display Driving Circuit. Used to convert timing signals and voltages to signals appropriate to 336 drive the display device. 337 Power Supply. Used to convert system voltages to levels usable by the display device and display 338 driver. Can be integrated in the display driver. 339 Video Stream Interface. Used to receive video image data and timing signals from the host 340 processor.

Figure 3 Type 3 Display Architecture Block Diagram

- In all architecture types, it is assumed the power supply is under the control of the display driver.
- The Display Command Set is used through the mentioned control interface.

341342

5 Display Functional Description

346	5.1 Power Level Definition
347 348	Display modules designed using the Type 1 display architecture shall implement the power sequence shown in Figure 4.
349 350	Display modules designed using the Type 2 display architecture shall implement the power sequence shown in Figure 5.
351 352	Display modules designed using the Type 3 display architecture shall implement the power sequence shown in Figure 6.
353	Each power sequence consists of a combination of different display and power modes as follows.
354 355	In Normal mode, the display module shows image data using the full display area of the display device. See section 6.3 for a description of Normal mode.
356 357	In Partial mode, the display module shows image data in only a portion of the full display area of the display device. See section 6.30 for a description of Partial mode.
358 359 360	In Idle mode, the display module shows image data using a limited number of colors. Turning off Idle mode displays the image data using the full number of colors supported by the display device. See section 6.1 for a description of Idle mode.
361 362 363 364	In Sleep mode, the display module does not show any image data. In addition, the display interface shall remain powered and along with those functional blocks necessary to maintain the data in the frame memory and registers. The remaining functional blocks are placed in their low power modes. See section 6.5 for a description of Sleep mode.
365 366	When Sleep mode is off, the display module shows image data on the display device and all functional blocks operate normally. See section 6.8 for a description of operation when Sleep mode is off.

Figure 4 Type 1 Display Architecture Power Change Sequences

- Note 1: There shall be no abnormal visual effect when changing between power modes.
- Note 2: The display module can change between any power modes without restriction.

374

375

376

377

Figure 5 Type 2 Display Architecture Power Change Sequence

Figure 6 Type 3 Display Architecture Power Change Sequence

Note 1: There shall be no abnormal visual effect when changing between power modes.

Note 2: The display module can change between any power modes without restriction.

5.2 Gamma Curves

The display module can implement a gamma adjustment. If gamma adjustment is implemented then the display module shall support at a minimum Gamma Curve 1 as described in section 5.2.1. The display module can also implement up to three additional gamma curves as described in sections 5.2.2 through 5.2.4.

In the gamma curve figures **x** is the normalized image data supplied by the host processor to the display module and **y** is the normalized response of the display device.

5.2.1 Gamma Curve 1 (GC0)

386 Gamma Curve 1 (GC0) is 2.2, i.e. $y=x^{2.2}$

Figure 7: Gamma curve 1 (GC0)

387388

389

378

385

5.2.2 Gamma Curve 2 (GC1)

390 Gamma Curve 2 (GC1) is 1.8, i.e. y=x^{1.8}

Figure 8: Gamma Curve 2 (GC1)

5.2.3 Gamma Curve 3 (GC2)

394 Gamma Curve 3 (GC2) is 2.5, i.e. $y=x^{2.5}$

395396

393

Figure 9: Gamma Curve 3 (GC2)

397 **5.2.4 Gamma Curve 4 (GC3)**

398 Gamma Curve 4 (GC3) is linear, i.e. y=x¹

Figure 10: Gamma Curve 4 (GC3)

Self-diagnostic Functions 5.3

- 402 The display module shall support all the self-diagnostic functions in this section except those functions indicated as optional. Optional functions can be implemented in the display module at the manufacturer's
- 403
- 404 discretion.

401

405

411 412

5.3.1 **Register Loading Detection**

- 406 The exit sleep mode command (see section 6.8) is a trigger for the Register Loading Detection function.
- 407 This function indicates if the display module correctly loaded the factory default values from Non-volatile
- 408 memory to the registers. If the registers were loaded properly then bit D7 of the SDR register is inverted,
- 409 otherwise the value is unchanged. See section 6.11 for a description of the SDR register.
- 410 The flow chart for the Register Loading Detection function is shown in Figure 11.

Figure 11 Flow Chart for Register Loading Detection

413 Note: Registers modified by the display module after loading are not verified.

5.3.2 Functionality Detection

The exit_sleep_mode command (see section 6.8) is a trigger for the Functionality Detection function. This

- 416 function indicates if the display module functional blocks, e.g. power supply, clock generator, etc. are
- operating correctly. If the functional blocks are operating properly then bit D6 of the SDR register is
- 418 inverted, otherwise the value is unchanged. See section 6.11 for a description of the SDR register.
- The flow chart for the Register Loading Detection function is shown in Figure 12.

420 421

422

423

414

Figure 12 Functionality Detection Flow Chart

Note: The host processor shall wait before sending a get_power_mode command so the display module can exit Sleep mode and finish the Functionality Detection function.

5.3.3 Chip Attachment Detection (optional)

- 425 The exit_sleep_mode command (see section 6.8) is a trigger for the Chip Attachment Detection function.
- This function indicates if certain chips, e.g. display driver IC, are attached to the display module. If the
- 427 chips are properly attached to the display module then bit D5 of the SDR register is inverted, otherwise the
- value is unchanged. See section 6.11 for a description of the SDR register.
- The flow chart for the Register Loading Detection function is shown in Figure 14.
- 430 Figure 13 is a reference implementation for the Chip Attachment Detection function. Two bumps are
- 431 connected together via a conductor on the flex foil or the display glass substrate in all four corners of the
- 432 chip.

424

433 434

Figure 13 Chip Attachment Detection Reference

Figure 14 Chip Attachment Detection Flow Chart

5.3.4 Display Glass Break Detection (optional)

- The exit_sleep_mode command (see section 6.8) is a trigger for the Display Glass Break Detection
- 439 function. This function indicates if display glass is broken. If the display glass is broken then bit D4 of the
- SDR register is inverted, otherwise the value is unchanged. See section 6.11 for a description of the SDR
- 441 register.

437

445446

- The flow chart for the Register Loading Detection function is shown in Figure 16.
- 443 Figure 15 is a reference implementation for the Display Glass Break Detection function. Two bumps are
- connected together via a conductor routed on the outside edge of the display glass substrate.

Figure 15 Display Glass Break Detection Reference

Figure 16 Display Glass Break Detection Flow Chart

447448

Copyright © 2006 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

449 **5.4 Display Command Set**

- The Display Command Set is used to store image data, configure the display module behavior and retrieve
- 451 display module data including identification information by accessing the frame memory and the display
- 452 module registers.
- 453 The DCS is separated into two functional areas: the User Command Set and the Manufacturer Command
- Set. Each command is an eight-bit code with 00h to AFh assigned to the User Command Set and all other
- codes assigned to the Manufacturer Command Set.
- 456 The Manufacturer Command Set (MCS) is a device dependent interface intended for factory programming
- of the display module default parameters. Once the display module is configured, the MCS shall be
- 458 disabled by the manufacturer. Once disabled, all MCS commands are treated as nop by the display
- interface. The MCS is not defined in this specification.
- 460 The User Command Set provides a display device independent interface targeted at the operating system's
- hardware abstraction layer. All commands listed in this section shall be implemented except write LUT
- which is optional.
- Any unused command codes shall be treated as nop by the display module.
- 464 The remainder of this section is divided into three sections. Section 5.5 is an alphabetical list of the
- 465 supported commands. Section 5.6 and 5.7 describe command functionality in different display architectures
- and operating modes.

5.5 Command List

467

468

Table 1 Command List

Command	Hex Code	Description	Number of Parameters	Display Architecture Implementation Requirement		
				Type 1	Type 2	Type 3
enter_idle_mode	39h	Reduced color depth is used on the display panel.	0	Yes	No	No
enter_invert_mode	21h	Displayed image colors are inverted.	0	Yes	Yes	Yes
enter_normal_mode	13h	The whole display area is used for image display.	0	Yes	Yes	No
enter_partial_mode	12h	Part of the display area is used for image display.	0	Yes	Yes	No
enter_sleep_mode	10h	Power for the display panel is off.	0	Yes	Yes	Yes
exit_idle_mode	38h	Full color depth is used on the display panel.	0	Yes	No	No
exit_invert_mode	20h	Displayed image colors are not inverted.	0	Yes	Yes	Yes
exit_sleep_mode	11h	Power for the display panel is on.	0	Yes	Yes	Yes
get_address_mode	0Bh	Get the frame memory to the display panel read order.	1	Yes	Yes	Yes
get_blue_channel	08h	Get the blue component of the pixel at (0, 0).	1	No	Yes	Yes
get_diagnostic_result	0Fh	Get Peripheral Self- Diagnostic Result	1	Yes	Yes	Yes
get_display_mode	0Dh	Get the current display mode from the peripheral.	1	Yes	Yes	Yes
get_green_channel	07h	Get the green component of the pixel at (0, 0).	1	No	Yes	Yes
get_pixel_format	0Ch	Get the current pixel format.	1	Yes	Yes	Yes
get_power_mode	0Ah	Get the current power mode.	1	Yes	Yes	Yes

Command	Hex Code	Description	Number of Parameters	Imj	ay Archite plementat equireme	ion
				Type 1	Type 2	Type 3
get_red_channel	06h	Get the red component of the pixel at $(0, 0)$.	1	No	Yes	Yes
get_scanline	45h	Get the current scanline.	2	Yes	Yes	No
get_signal_mode	0Eh	Get display module signaling mode.	1	Yes	Yes	Yes
nop	00h	No Operation	0	Yes	Yes	Yes
read_DDB_continue	A8h	Continue reading the DDB from the last read location.	variable	Yes	Yes	Yes
read_DDB_start	A1h	Read the DDB from the provided location.	variable	Yes	Yes	Yes
read_memory_continue	3Eh	Read image data from the peripheral continuing after the last read_memory_continue or read_memory_start.	variable	Yes	Yes	No
read_memory_start	2Eh	Transfer image data from the peripheral to the Host Processor interface starting at the location provided by set_column_address and set_page_address.	variable	Yes	Yes	No
set_address_mode	36h	Set the read order from frame memory to the display panel.	1	Yes	Yes	Yes
set_column_address	2Ah	Set the column extent.	4	Yes	Yes	No
set_display_off	28h	Blanks the display device.	0	Yes	Yes	Yes
set_display_on	29h	Show the image on the display device.	0	Yes	Yes	Yes
set_gamma_curve	26h	Selects the gamma curve used by the display device.			Yes	Yes
set_page_address	2Bh	Set the page extent.	4	Yes	Yes	No

Command	Hex Code	Description	Number of Parameters	Display Architectur Implementation Requirement		ion
				Type 1	Type 2	Type 3
set_partial_area	30h	Defines the partial display area on the display device.	4	Yes	Yes	No
set_pixel_format	3Ah	Defines how many bits per pixel are used in the interface.	per pixel are used in the		Yes	Yes
set_scroll_area	33h	Defines the vertical scrolling and fixed area on display device.	6	Yes	No	No
set_scroll_start	37h	Defines the vertical scrolling starting point.	2	Yes	No	No
set_tear_off	34h	Synchronization 0 information is not sent from the display module to the host processor.		Yes	No	No
set_tear_on	35h	Synchronization 1 information is sent from the display module to the host processor at the start of VFP.		Yes	No	No
set_tear_scanline	44h	Synchronization information is sent from the display module to the host processor when the display device refresh reaches the provided scanline.	2	Yes	No	No
soft_reset	01h	Software Reset	0	Yes	Yes	Yes
write_LUT	2Dh	Fills the peripheral look- up table with the provided data.	variable	optional	No	No
write_memory_continue	3Ch	Transfer image information from the Host Processor interface to the peripheral from the last written location.	variable	Yes	Yes	No

Command	Hex Code	Description	Number of Parameters	Display Architecture Implementation Requirement		ion
				Type 1	Type 2	Type 3
write_memory_start	2Ch	Transfer image data from the Host Processor to the peripheral starting at the location provided by set_column_address and set_page_address.	variable	Yes	Yes	No

470471

5.6 Command Accessibility

Table 2 provides command accessibility of several combinations of display and power modes.

Table 2 Command Accessibility

Command	Hex Code	Command Accessibility					
		Normal Mode On, Idle Mode Off, Sleep Mode Off	Normal Mode On, Idle Mode On, Sleep Mode Off	Partial Mode On, Idle Mode Off, Sleep Mode Off	Partial Mode On, Idle Mode On, Sleep Mode Off	Sleep Mode On	
enter_idle_mode	39h	Yes	Yes	Yes	Yes	Yes	
enter_invert_mode	21h	Yes	Yes	Yes	Yes	Yes	
enter_normal_mode	13h	Yes	Yes	Yes	Yes	Yes	
enter_partial_mode	12h	Yes	Yes	Yes	Yes	Yes	
enter_sleep_mode	10h	Yes	Yes	Yes	Yes	Yes	
exit_idle_mode	38h	Yes	Yes	Yes	Yes	Yes	
exit_invert_mode	20h	Yes	Yes	Yes	Yes	Yes	
exit_sleep_mode	11h	Yes	Yes	Yes	Yes	Yes	
get_address_mode	0Bh	Yes	Yes	Yes	Yes	Yes	
get_blue_channel	08h	Yes	Yes	N/A	N/A	Yes	
get_diagnostic_result	0Fh	Yes	Yes	Yes	Yes	Yes	
get_display_mode	0Dh	Yes	Yes	Yes	Yes	Yes	
get_green_channel	07h	Yes	Yes	N/A	N/A	Yes	
get_pixel_format	0Ch	Yes	Yes	Yes	Yes	Yes	
get_power_mode	0Ah	Yes	Yes	Yes	Yes	Yes	
get_red_channel	06h	Yes	Yes	N/A	N/A	Yes	
get_scanline	45h	Yes	Yes	Yes	Yes	Yes	
get_signal_mode	0Eh	Yes	Yes	Yes	Yes	Yes	
nop	00h	Yes	Yes	Yes	Yes	Yes	

Command	Hex Code	Command Accessibility					
		Normal Mode On, Idle Mode Off, Sleep Mode Off	Normal Mode On, Idle Mode On, Sleep Mode Off	Partial Mode On, Idle Mode Off, Sleep Mode Off	Partial Mode On, Idle Mode On, Sleep Mode Off	Sleep Mode On	
read_DDB_continue	A8h	Yes	Yes	Yes	Yes	Yes	
read_DDB_start	Alh	Yes	Yes	Yes	Yes	Yes	
read_memory_continue	3Eh	Yes	Yes	Yes	Yes	Yes	
read_memory_start	2Eh	Yes	Yes	Yes	Yes	Yes	
set_address_mode	36h	Yes	Yes	Yes	Yes	Yes	
set_column_address	2Ah	Yes	Yes	Yes	Yes	Yes	
set_display_off	28h	Yes	Yes	Yes	Yes	Yes	
set_display_on	29h	Yes	Yes	Yes	Yes	Yes	
set_gamma_curve	26h	Yes	Yes	Yes	Yes	Yes	
set_page_address	2Bh	Yes	Yes	Yes	Yes	Yes	
set_partial_area	30h	Yes	Yes	Yes	Yes	Yes	
set_pixel_format	3Ah	Yes	Yes	Yes	Yes	Yes	
set_scroll_area	33h	Yes	Yes	Yes	Yes	Yes	
set_scroll_start	37h	Yes	Yes	Yes	Yes	Yes	
set_tear_off	34h	Yes	Yes	Yes	Yes	Yes	
set_tear_on	35h	Yes	Yes	Yes	Yes	Yes	
set_tear_scanline	44h	Yes	Yes	Yes	Yes	Yes	
soft_reset	01h	Yes	Yes	Yes	Yes	Yes	
write_LUT	2Dh	Yes	Yes	Yes	Yes	Yes	
write_memory_continue	3Ch	Yes	Yes	Yes	Yes	Yes	
write_memory_start	2Ch	Yes	Yes	Yes	Yes	Yes	

473

474

5.7 Default Modes and Values

Table 3 provides default display modes, power modes and register values.

Table 3 Default Display Mode, Power Mode and Register Values

Command	Hex	Parameters	Defa	ult Modes and Values	, Hex
	Code		Power-on Sequence	SW Reset	HW Reset
enter_idle_mode	39h	None	Idle Mode Off	Idle Mode Off	Idle Mode Off
enter_invert_mode	21h	None	Display Inversion Off	Display Inversion Off	Display Inversion Off
enter_normal_mode	13h	None	Normal Display mode On	Normal Display mode On	Normal Display mode On
enter_partial_mode	12h	None	Normal Display Mode On	Normal Display Mode On	Normal Display Mode On
enter_sleep_mode	10h	None	Sleep Mode On	Sleep Mode On	Sleep Mode On
exit_idle_mode	38h	None	Idle Mode Off	Idle Mode Off	Idle Mode Off
exit_invert_mode	20h	None	Display Inversion Off	Display Inversion Off	Display Inversion Off
exit_sleep_mode	11h	None	Sleep Mode On	Sleep Mode On	Sleep Mode On
get_address_mode	0Bh	1 st	Refer to corresponding command parameter(s)	Refer to corresponding command parameter(s)	Refer to corresponding command parameter(s)
get_blue_channel	08h	1 st	00h	00h	00h
get_diagnostic_result	0Fh	1 st	00h	00h	00h
get_display_mode	0Dh	1 st	Refer to corresponding command parameter(s)	Refer to corresponding command parameter(s)	Refer to corresponding command parameter(s)
get_green_channel	07h	1 st	00h	00h	00h

Command	Hex	Parameters	Defa	ult Modes and Values	, Hex
	Code		Power-on Sequence	SW Reset	HW Reset
get_pixel_format	0Ch	1 st	Refer to corresponding command parameter(s)	Refer to corresponding command parameter(s)	Refer to corresponding command parameter(s)
get_power_mode	0Ah	1 st	08h	08h	08h
get_red_channel	06h	1 st	00h	00h	00h
get_scanline	45h	1 st & 2 nd	Refer to corresponding command parameter(s)	Refer to corresponding command parameter(s)	Refer to corresponding command parameter(s)
get_signal_mode	0Eh	1 st	Refer to corresponding command parameter(s)	Refer to corresponding command parameter(s)	Refer to corresponding command parameter(s)
nop	00h	None	N/A	N/A	N/A
read_DDB_continue	A8h	all	See MIPI Alliance Standard for Device Descriptor Block		
read_DDB_start	A1h	all	See MIPI Alliance Standard for Device Descriptor Block		
read_memory_continue	3Eh	all	Random values	Not cleared	Not cleared
read_memory_start	2Eh	all	Random values	Not cleared	Not cleared
set_address_mode	36h	1 st	00000000Ь	No change from the value before SW reset	00000000Ь
set_column_address	2Ah	1 st	00h	00h	00h
		2 nd	00h	00h	00h

Command	Hex	Parameters	Default Modes and Values, Hex			
	Code		Power-on Sequence	SW Reset	HW Reset	
		3 rd	The frame memory column address corresponding to the last vertical line.	If set_address_mode's B5 = 0;The frame memory column address corresponding to the last vertical line.	The frame memory column address corresponding to the last vertical line.	
		4 th		If set_address_mode's B5 = 1; The frame memory column address corresponding to the last horizontal line.		
set_display_off	28h	None	Display Off	Display Off	Display Off	
set_display_on	29h	None	Display Off	Display Off	Display Off	
set_gamma_curve	26h	1 st	01h	01h	01h	
set_page_address	2Bh	1 st	00h	00h	00h	
		2 nd				
		3 rd	The frame memory page address corresponding to the last horizontal line.	If set_address_mode's B5 = 0; The frame memory page address corresponding to the last horizontal line.	The frame memory page address corresponding to the last horizontal line.	
				If set_address_mode's B5 = 1; The frame memory page address corresponding to the last vertical line.		
set_partial_area	30h	1 st	00h	00h	00h	
		2 nd				
		3 rd	The frame	The frame memory	The frame	

Command	Hex	Parameters	Default Modes and Values, Hex					
	Code		Power-on Sequence	SW Reset	HW Reset			
		4th	memory page address corresponding to the last horizontal line.	page address corresponding to the last horizontal line.	memory page address corresponding to the last horizontal line.			
set_pixel_format	3Ah	1 st	07h	07h	07h			
set_scroll_area	33h	1 st	00h	00h	00h			
		2 nd	00h	00h	00h			
		3 rd	The frame	The frame memory	The frame			
		4 th	memory page address corresponding to the last horizontal line.	page address corresponding to the last horizontal line.	memory page address corresponding to the last horizontal line.			
		5 th	00h	00h	00h			
		6 th	00h	00h	00h			
set_scroll_start	37h	1 st	00h	00h	00h			
		2 nd	00h	00h	00h			
set_tear_off	34h	None	TE line output	TE line output OFF	TE line output			
set_tear_on	35h	1 st	OFF		OFF			
set_tear_scanline	44h	1 st	00h	00h	00h			
		2 nd	00h	00h	00h			
soft_reset	01h	None	N/A	N/A	N/A			
write_LUT	2Dh	all	Random values	Contents of LUT protected	Random values			
write_memory_continue	3Ch	all	Random values	Not cleared	Not cleared			
write_memory_start	2Ch	all	Random values	Not cleared	Not cleared			

6 Command Description

- This section defines the commands supported by display modules implementing MIPI Alliance standards for display interfaces.
- 478 All commands consist of a single 8-bit byte, in some cases accompanied by parameters that supply
- 479 necessary information for the correct execution of the command. Generally, the command and
- accompanying parameter bytes are transferred using bits 0 through 7 of the display interface, regardless of
- 481 the interface width. The only exceptions are the read_memory_continue, read_memory_start,
- write_memory_continue, and write_memory_start commands. The full width of the display interface may
- be used by these commands. See sections 6.22, 6.23, 6.39, and 6.40 for the command descriptions.
- Command flow charts in this section use the symbols defined in Figure 17.

485 486

475

Figure 17 Flowchart Legend

487 **6.1 enter_idle_mode**

488 **Interface** All

Command 39h

490 Parameters None

491 Command

489

									нех
Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
H•D	0	0	1	1	1	0	0	1	39h

492 **Description**

This command causes the display module to enter Idle Mode.

In Idle Mode, color expression is reduced. Colors are shown on the display device using the MSB of each

of the R, G and B color components in the frame memory.

Figure 18 enter_idle_mode Example

498 499

496 497

Table 4 enter_idle_mode Memory Content vs. Display Color

Color	$R_7 R_6 R_5 R_4 R_3 R_7 R_1 R_0$	$G_7 G_6 G_5 G_4 G_3 G_7 G_1 G_0$	B ₇ B ₆ B ₅ B ₄ B ₃ B ₇ B ₁ B ₀
Black	0XXXXXXX	0XXXXXXX	0XXXXXXX
Blue	0XXXXXXX	0XXXXXXX	1XXXXXXX
Red	1XXXXXXX	0XXXXXXX	0XXXXXXX
Magenta	1XXXXXXX	0XXXXXXX	1XXXXXXX
Green	0XXXXXXX	1XXXXXXX	0XXXXXXX
Cyan	0XXXXXXX	1XXXXXXX	1XXXXXXX
Yellow	1XXXXXXX	1XXXXXXX	0XXXXXX
White	1XXXXXXX	1XXXXXXX	1XXXXXXX

Restrictions

500

This command has no effect when the display module is already in Idle Mode.

502 Flow Chart

503

504 Figure 19 enter_idle_mode Flow Chart

6.2	enter	invert	mode

506 Interface All 507 Command 21h 508 Parameters None

509 Command

505

									нех
Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
H•D	0	0	1	0	0	0	0	1	21h

510 **Description**

This command causes the display module to invert the image data only on the display device. The frame memory contents remain unchanged. No status bits are changed.

Figure 20 enter_invert_mode Example

Restrictions

This command has no effect when the display module is already inverting the display image.

517 Flow Chart

518519

513514

515

Figure 21 enter_invert_mode Flow Chart

520	6.3	enter	normal	mode
<i>32</i> 0	0.5	CHICH	HUHHIAI	IIIOu

- 521 **Interface** All
- **522 Command** 13h
- 523 **Parameters** None

524 Command

									Hex
Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
H•D	0	0	0	1	0	0	1	1	13h

- 525 **Description**
- 526 This command causes the display module to enter the Normal mode.
- Normal Mode is defined as Partial Display mode and Scroll mode are off.
- 528 The host processor sends PCLK, HS and VS information to Type 2 display modules two frames before this
- 529 command is sent when the display module is in Partial Display Mode.
- 530 Restrictions
- This command has no effect when Normal Display mode is already active.
- 532 Flow Chart
- See section 6.30 and section 6.32 for details of when to use this command.

- 534 6.4 enter_partial_mode
- 535 Interface All
- 536 **Command** 12h
- 537 **Parameters** None
- 538 Command

									Hex
Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
H•D	0	0	0	1	0	0	1	0	12h

- 539 **Description**
- 540 This command causes the display module to enter the Partial Display Mode. The Partial Display Mode
- window is described by the set_partial_area command. See section 6.30 for details.
- To leave Partial Display Mode, the enter_normal_mode command should be written.
- 543 The host processor continues to send PCLK, HS and VS information to Type 2 display modules for two
- frames after this command is sent when the display module is in Normal Display Mode.
- 545 **Restrictions**
- 546 This command has no effect when Partial Display Mode is already active.
- 547 Flow Chart
- 548 See section 6.30.

TT are

- 549 **6.5 enter_sleep_mode**
- 550 **Interface** All
- 551 **Command** 10h
- 552 **Parameters** None
- 553 Command

									пех
Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
H•D	0	0	0	1	0	0	0	0	10h

- 554 Description
- This command causes the display module to enter the Sleep mode.
- 556 In this mode, all unnecessary blocks inside the display module are disabled except interface
- communication. This is the lowest power mode the display module supports.
- DBI or DSI Command Mode remains operational and the frame memory maintains its contents. The host
- 559 processor continues to send PCLK, HS and VS information to Type 2 and Type 3 display modules for two
- frames after this command is sent when the display module is in Normal mode.
- 561 Restrictions
- This command has no effect when the display module is already in Sleep mode.
- The host processor must wait five milliseconds before sending any new commands to a display module
- following this command to allow time for the supply voltages and clock circuits to stabilize.
- The host processor must wait 120 milliseconds after sending an exit_sleep_mode command before sending
- an enter_sleep_mode command.

567 Flow Chart

568569

Figure 22 enter_sleep_mode Flow Chart

- 570 **6.6 exit_idle_mode**
- 571 **Interface** All
- 572 **Command** 38h
- 573 **Parameters** None
- 574 Command

									нех
Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
H•D	0	0	1	1	1	0	0	0	38h

- 575 **Description**
- 576 This command causes the display module to exit Idle mode.
- 577 **Restrictions**
- 578 This command has no effect when the display module is not in Idle mode.
- 579 Flow Chart

Figure 23 exit_idle_mode Flow Chart

582	6./ exit_i	nvert_mode
583	Interface	All
591	Command	20h

584 **Command** 20h 585 **Parameters** None

586 Command

									нех
Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
H•D	0	0	1	0	0	0	0	0	20h

587 **Description**

This command causes the display module to stop inverting the image data on the display device. The frame memory contents remain unchanged. No status bits are changed.

Figure 24 exit_invert_mode Example

Restrictions

This command has no effect when the display module is not inverting the display image.

594 Flow Chart

595 596

590591

592

Figure 25 exit_invert_mode Flow Chart

597 598 599 600	6.8 exit_sleep_mode Interface All Command 11h Parameters None					
601	Command Hex					
	Direction D7 D6 D5 D4 D3 D2 D1 D0 Code H•D 0 0 0 1 0 0 0 1 11h					
602	Description					
603 604	This command causes the display module to exit Sleep mode. All blocks inside the display module are enabled.					
605 606	The host processor sends PCLK, HS and VS information to Type 2 and Type 3 display modules two frames before this command is sent when the display module is in Normal Mode.					
607	Restrictions					
608 609	This command shall not cause any visible effect on the display device when the display module is not in Sleep mode.					
610 611	The host processor must wait five milliseconds after sending this command before sending another command. This delay allows the supply voltages and clock circuits to stabilize.					
612 613	The host processor must wait 120 milliseconds after sending an exit_sleep_mode command before sending an enter_sleep_mode command.					
614 615 616	The display module loads the display module's default values to the registers when exiting the Sleep mode. There shall not be any abnormal visual effect on the display device when loading the registers if the factory default and register values are the same or when the display module is not in Sleep mode.					
617 618	The display module runs the self-diagnostic functions after this command is received. See section 5.3 for a description of the self-diagnostic functions.					

619 Flow Chart

620621

Figure 26 exit_sleep_mode Flow Chart

 $\mathbf{D0}$

 $\mathbf{D0}$

0

Hex

Code 0Bh

Hex

Code

XXh

622 623 624 625	6.9 get_address_mode Interface All Command 0Bh Parameters See below						
626	Command						
	Direction D7 D6 D5 D4 D3 D2 D1 H•D 0 0 0 0 1 0 1						
627	Parameter						
	Direction D7 D6 D5 D4 D3 D2 D1 D•H D7 D6 D5 D4 D3 D2 0						
628	Description						
629	The display module returns the current status.						
630	Bit D7 – Page Address Order						
631	'0' = Top to Bottom						
632	'1' = Bottom to Top						
633	Bit D6 – Column Address Order						
634	'0' = Left to Right						
635	'1' = Right to Left						
636	Bit D5 - Page/Column Order						
637	'0' = Normal Mode						
638	'1' = Reverse Mode						
639	Bit D4 – Line Address Order						
640	'0' = LCD Refresh Top to Bottom						
641	'1' = LCD Refresh Bottom to Top						
642	Bit D3 – RGB/BGR Order						
643	0' = RGB						
644	'1' = BGR						
645	Bit D2 – Display Data Latch Data Order						
646	'0' = LCD Refresh Left to Right						
647	'1' = LCD Refresh Right to Left						

656

657

Flow Chart

Not applicable for display modules scanned line by line

Bit D1 – Reserved

Set to '0'

Bit D0 – Reserved

Set to '0'

Restrictions

None

Figure 27 get_address_mode Flow Chart

658	6.10 get_l	blue_cr	nannei							
659	Interface	All								
660	Command	08h								
661	Parameters	See	below							
662	Command									
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
	H•D	0	0	0	0	1	0	0	0	08h
663										
664	Parameter									
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
	D•H	B7	B6	B5	B4	В3	B2	B1	B0	XXh

- 665 **Description**
- The display module returns the blue component value of the first pixel in the active frame. This command is only valid for Type 2 and Type 3 display modules.
- B7 is the MSB and B0 is the LSB.
- Only the relevant bits are used according to the pixel format; unused bits are set to '0'
- 670 Examples:
- 12 bit format: B3 is MSB and B0 is LSB. B[7:4] are set to '0'.
- 16 bit format: B5 is MSB, B1 is LSB and B7, B6 and B0 are set to '0'.
- 18 bit format: B5 is MSB and B0 is LSB. B7 and B6 are set to '0'.
- 24 bit format: B7 is MSB and B0 is LSB. All bits are used.
- 675 **Restrictions**
- 676 None

677 Flow Chart

Figure 28 get_blue_channel Flow Chart

702

680 681 682 683	6.11 get_c Interface Command Parameters	All 0Fh		ılt						
684	Command									Ш
605	Direction H•D	D7 0	D6 0	D5 0	D4 0	D3	D2 1	D1 1	D0 1	Hex Code 0Fh
685 686	Parameter									***
	Direction D•H	D7 D7	D6 D6	D5 D5	D4 D4	D3 D3	D2 D2	D1 D1	D0 D0	Hex Code XXh
687	Description									
688 689	The display module returns the self-diagnostic results following a Sleep Out command. See section 5.3 for a description of the status results.									
690	Bit D7 – Register Loading Detection									
691	Bit D6 – Functionality Detection									
692	Bit D5 – Chij	p Attachr	ment Detect	ion						
693	Set to '0' i	f feature	unimpleme	ented.						
694	Bit D4 – Disp	play Glas	s Break De	tection						
695	Set to '0' i	f feature	unimpleme	ented.						
696	Bits D[3:0] -	Reserve	d							
697	Set to '0'.									
698	Restrictions									
699	None									
700	Flow Chart									
				_		1				

Figure 29 get_diagnostic_result Flow Chart

703	6.12 get_0	display	_mode							
704	Interface	All								
705	Command	0Dh	l							
706	Parameters	See	below							
707	Command									
	D: (1	D=	D.	D.5	D.4	D.4	D.A	D4	D.A	Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
708	H•D	0	0	0	0	I	1	0	1	0Dh
709	Parameter									
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
	D•H	D7	0	D5	0	0	D2	D1	D0	XXh

- 710 **Description**
- 711 The display module returns the Display Image Mode status.
- 712 Bit D7 Vertical Scrolling Status
- 713 '0' = Vertical Scrolling is Off.
- 714 '1' = Vertical Scrolling is On.
- 715 Bit D6 Reserved
- 716 Set to '0'.
- 717 Bit D5 Inversion On/Off
- 718 '0' = Inversion is Off.
- 719 '1' = Inversion is On.
- 720 Bit D4 Reserved
- 721 Set to '0'.
- 722 Bit D3 Reserved
- 723 Set to '0'.

724 Bits D[2:0] – Gamma Curve Selection

Table 5 Gamma Curve Selection

Gamma Curve Selection	D2	D1	D0	Gamma Set (26h) Parameter
Gamma Curve 1	0	0	0	GC0
Gamma Curve 2	0	0	1	GC1
	-	-	0	
Gamma Curve 3	0	1	0	GC2
Gamma Curve 4	0	1	1	GC3
Reserved	1	0	0	Reserved
Reserved	1	0	1	Reserved
Reserved	1	1	0	Reserved
Reserved	1	1	1	Reserved

726 **Restrictions**

727 None

729

725

728 Flow Chart

730 Figure 30 get_display_mode Flow Chart

731 732 733 734	6.13 get_g Interface Command Parameters	All 07h	channel below							
735	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	H•D	0	0	0	0	0	1	1	1	07h
736	Parameter									Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	D•H	G7	G6	G5	G4	G3	G2	G1	G0	XXh

- 737 **Description**
- The display module returns the green component value of the first pixel in the active frame. This command
- 739 is only valid for Type 2 and Type 3 display modules.
- G7 is the MSB and G0 is the LSB.
- Only the relevant bits are used according to the pixel format; unused bits are set to '0'
- 742 Examples:
- 12 bit format: G3 is MSB and G0 is LSB. G[7:4] are set to '0'.
- 16 bit format: G5 is MSB and G0 is LSB. G7 and G6 are set to '0'.
- 18 bit format: G5 is MSB and G0 is LSB. G7 and G6 are set to '0'.
- 24 bit format: G7 is MSB and G0 is LSB. All bits are used.
- 747 **Restrictions**
- 748 None
- 749 Flow Chart

Figure 31 get_green_channel Flow Chart

D0

XXh

- 752 6.14 get_pixel_format
- 753 **Interface** All
- 754 **Command** 0Ch
- 755 **Parameters** See below
- 756 Command

757

764

Direction H•D	D7 0	D6 0	D5 0	D4 0	D3	D2 1	D1 0	D0 0	Hex Code 0Ch
Parameter									TT
Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code

0

D2

D1

D4

758 **Description**

D•H

This command gets the pixel format for the RGB image data used by the interface.

D5

760 Bits D[6:4] – DPI Pixel Format Definition

0

D6

- 761 Bits D[2:0] DBI Pixel Format Definition
- Bits D7 and D3 are not used.
- The pixel formats are shown in Table 6.

Table 6 Interface Pixel Formats

Pixel Format	D6/D2	D5/D1	D4/D0
Reserved	0	0	0
3 bits/pixel	0	0	1
8 bits/pixel	0	1	0
12 bits/pixel	0	1	1
Reserved	1	0	0
16 bits/pixel	1	0	1
18 bits/pixel	1	1	0
24 bits/pixel	1	1	1

If a particular interface, either DBI or DPI, is not used then the corresponding bits in the parameter returned from the display module are undefined.

- 767 **Restrictions**
- 768 None

769 Flow Chart

770771

Figure 32 get_pixel_format Flow Chart

Hex

772	6.15 get_po	ower_mode
773	Interface	All
774	Command	0Ah
775	Parameters	See below

776 Command

777

Direction H•D	D7 0	D6 0	D5 0	D4 0	D3	D2 0	D1 1	D0 0	Code 0Ah
Parameter									
Direction	D7	D6	D5	D4	D3	D2	D 1	D 0	Hex Code
D•H	D7	D6	D5	D4	D3	D2	0	0	XXh

778 **Description**

- The display module returns the current power mode.
- 780 Bit D7 Reserved
- 781 Set to '0'
- 782 Bit D6 Idle Mode On/Off
- 783 0' = Idle Mode Off.
- 784 '1' = Idle Mode On.
- 785 Bit D5 Partial Mode On/Off
- 786 '0' = Partial Mode Off.
- 787 '1' = Partial Mode On.
- 788 Bit D4 Sleep Modet
- 789 '0' = Sleep Mode On.
- 790 '1' = Sleep Mode Off.
- 791 Bit D3 Display Normal Mode On/Off
- 792 '0' = Display Normal Mode Off.
- 793 '1' = Display Normal Mode On.
- 794 Bit D2 Display On/Off
- 795 '0' = Display is Off.
- 796 '1' = Display is On.

797	Bit D1 – Reserved
798	Set to '0'
799	Bit D0 – Reserved
800	Set to '0'
801	Restrictions
802	None

Flow Chart

803

804 805

Figure 33 get_power_mode Flow Chart

806	6.16 get_i	rea_cna	annei							
807	Interface	All								
808	Command	06h								
809	Parameters	See	below							
810	Command									Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	H•D	0	0	0	0	0	1	1	0	06h
	11 2	Ü	Ü	Ü	Ü	Ü	•	•	Ü	0011
811	Parameter									
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	D•H	R7	R6	R5	R4	R3	R2	R1	R0	XXh

812 **Description**

000

- The display module returns the red component value of the first pixel in the active frame. This command is
- only valid for Type 2 and Type 3 display modules.
- R7 is the MSB and R0 is the LSB.
- Only the relevant bits are used according to the pixel format; unused bits are set to '0'
- 817 Examples:
- 12 bit format: R3 is MSB and R0 is LSB. R[7:4] are set to '0'.
- 16 bit format: R5 is MSB, R1 is LSB and R7, R6 and R0 are set to '0'.
- 18 bit format: R5 is MSB and R0 is LSB. R7 and R6 are set to '0'.
- 24 bit format: R7 is MSB and R0 is LSB. All bits are used.
- 822 **Restrictions**
- None None

825826

824 Flow Chart

Figure 34 get_red_channel Flow Chart

827	6.17 get_	_scanlin	e							
828	Interface	All								
829	Command	45h								
830	Parameters	See	below							
831	Command									Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
	H•D	0	1	0	0	0	1	0	1	45h
832	Parameter 1	1								TT
	D!	D7	D.	D.F	D4	D2	D4	D1	DA	Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	D•H	N15	N14	N13	N12	N11	N10	N9	N8	XXh
833	Parameter 2	2								TT
	D: 4	D#	D.C	D.5	D.4	D2	D4	D1	DΛ	Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	D•H	N7	N6	N5	N4	N3	N2	N1	N0	XXh

- 834 **Description**
- The display module returns the current scanline, N, used to update the display device. The total number of
- scanlines on a display device is defined as VSYNC + VBP + VACT + VFP. The first scanline is defined as
- the first line of V Sync and is denoted as Line 0.
- When in Sleep Mode, the value returned by get_scanline is undefined.
- 839 See MIPI Alliance Standard for Display Pixel Interface (DPI-2) [1] for definitions of VSYNC, VBP,
- 840 VACT, and VFP.
- 841 **Restrictions**
- 842 None

845

843 Flow Chart

Figure 35 get_scanline Flow Chart

846	6.18 get_s	sıgnaı_	mode							
847	Interface	All								
848	Command	0Eh								
849	Parameters	See	below							
850	Command									
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
	H•D	0	0	0	0	1	1	1	0	0Eh
851	Parameter									
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
	D•H	D7	D6	0	0	0	0	0	0	X0h

- 852 **Description**
- The display module returns the Display Signal Mode.
- 854 Bit D7 Tearing Effect Line
- 655 '0' = Tearing Effect Line Off.
- 1' = Tearing Effect On.
- 857 Bit D6 Tearing Effect Line Output Mode.
- See MIPI Alliance Standard for Display Bus Interface and section 5.1 for mode definitions.
- 659 '0' = Mode 1.
- 860 '1' = Mode 2.
- 861 Bit D[5:0] Reserved
- 862 Set to '0'.
- 863 **Restrictions**
- 864 None

867

865 Flow Chart

Figure 36 get_signal_mode Flow Chart

868	6.19 nop	
869	Interface	All
870	Command	00h
871	Parameters	None

872 Command

									Hex
Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
H•D	0	0	0	0	0	0	0	0	00h

873 **Description**

- This command does not have any effect on the display module. It can be used to terminate a Frame Memory Write or Read as described in the descriptions for write_memory_continue and read_memory_continue.
- 877 **Restrictions**
- None None
- 879 Flow Chart
- 880 None

881	6.20 read_		ontinue							
882	Interface	All								
883	Command	A8h								
884	Parameters	See b	elow							
885	Command									Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
	H•D	1	0	1	0	1	0	0	0	A8h
886	Parameter 1									Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	D•H	D7	D6	D5	D4	D3	D2	D1	D0	XXh
887	<i>D</i> 11	D,	Do	20		23	22	21	20	717111
888					•					
					•					
889					•					
890	Parameter N									Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	D•H	D7	D6	D5	D4	D3	D2	D1	D0	XXh
	D-11	D,	D 0	DJ	DŦ	<i>D</i> 3	DZ	DI	Do	AAII

891 **Description**

892 See section 6.21.

893 Restrictions

894 A read_DDB_start command should be executed at least once before a read_DDB_continue command to 895 define the read location. Otherwise, data read with a read_DDB_continue command is undefined.

896 **Flow Chart**

897 898

Figure 37 read_DDB_continue Flow Chart

. ___

899 900	6.21 read	I_DDB_ All	start							
901	Command	A1h	1							
902	Parameters		below							
903	Command									
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D 0	Code
	H•D	1	0	1	0	0	0	0	1	A1h
904	Parameter 1	1								
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
	D•H	D7	D6	D5	D4	D3	D2	D1	D0	XXh
905										
906					•					
907					•					
908	Parameter I	N								
	D' 4'	D#	D.C	D.	D.4	D2	D2	D1	D0	Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	D•H	D7	D6	D5	D4	D3	D2	D1	D0	XXh
909	Description									

- 909 **Description**
- This command reads identifying and descriptive information from the peripheral. This information is
- organized in the Device Descriptor Block (DDB) stored on the peripheral. The response to this command
- 912 returns a sequence of bytes that may be any length up to 64K bytes. Note that the returned sequence of
- bytes does not necessarily correspond to the entire DDB; it may be a portion of a larger block of data.
- The format of returned data is as follows:
- Parameter 1: MS (most significant) byte of Supplier ID. Supplier ID is a unique value assigned to each peripheral supplier by the MIPI organization.
- peripheral supplier by the Wiff i organization.
- 917 Parameter 2: LS (least significant) byte of Supplier ID.
- Parameter 3: MS (most significant) byte of Supplier Elective Data. This is a byte of information that is determined by the supplier. It could include model number or revision information, for example.
- 921 Parameter 4: LS (least significant) byte of Supplier Elective Data
- Parameter 5: single-byte *Escape or Exit Code* (EEC). The code is interpreted as follows:
- FFh Exit code there is no more data in the Descriptor Block
- 00h Escape code there is supplier-proprietary data in the Descriptor Block (does not conform to any MIPI Alliance standard)
- Any other value there is DDB data in the Descriptor Block. The format and interpretation of this data is documented in *MIPI Alliance Standard for Device Descriptor Block (DDB)*.
- 928 DDBs may contain many more data fields providing information about the peripheral.

- In a DSI system, read activity takes the form of two separate transactions across the bus: first the read command read_DDB_start from host processor to peripheral, which includes the bus turn-around token. The peripheral then takes control of the bus and returns the requested data. The peripheral response to read_DDB_start is a Long Packet type, so its length may be up to 64K bytes unless limited by a previous set_max_return_size command.

 The response to a read_DDB_start command always starts at the beginning of the Device Descriptor Block. After receiving the first packet and processing the returned DDB data, the host processor may initiate a
- Subsequent read_DDB_continue commands can be used to read a DDB or supplier-proprietary block of arbitrary size. There is, however, no obligation to read the entire block. The host processor may choose to stop reading after completion of any read_DDB_xxx command.

begins the next read at the location following the last byte of the previous data read from the DDB.

read DDB continue command to access the next portion of the DDB. A read DDB continue command

941 **Restrictions**

942 None

936

937

943 Flow Chart

Figure 38 read_DDB_start Flow Chart

944

945

command.

946 947 948 949	6.22 read Interface Command Parameters	All 3Eh	-	nue										
950	Command													
	Direction H•D	D7 0	D6 0	D5	D4 1	D3	D2 1	D1	D0 0	Hex Code 3Eh				
951	Pixel Data 1													
	Direction	D15	D14	D13	D12	D11	D10	D9	D8	Hex Code				
952	D•H	P15	P14	P13	P12	P11	P10	P9	P8	XXh				
	Direction D•H	D7 P7	D6 P6	D5 P5	D4 P4	D3 P3	D2 P2	D1 P1	D0 P0	Hex Code XXh				
953 954					•									
955					•									
956	Pixel Data N	1												
0.57	Direction D•H	Hex Direction D15 D14 D13 D12 D11 D10 D9 D8 Code												
957										Hex				
	Direction D•H	D7 P7	D6 P6	D5 P5	D4 P4	D3 P3	D2 P2	D1 P1	D0 P0	Code XXh				
958	Description													
959 960 961	This comma continuing for command.													
962	If set_addres	s_mode E	B5 = 0:											
963 964 965 966 967 968	Pixels are read continuing from the pixel location after the read range of the previous read_memory_start or read_memory_continue. The column register is then incremented and pixels are read from the frame memory until the column register equals the End Column (EC) value. The column register is then reset to SC and the page register is incremented. Pixels are read from the frame memory until the page register equals the End Page (EP) value and the column register equals the EC value, or the host processor sends another command.													
969	If set_addres	s_mode E	B5 = 1:											
970 971 972 973 974 975	Pixels are rearread_memory until the page register is in Column (EC command.	y_continu e register cremente	ne. The pag equals the d. Pixels a	e register i End Page re read fro	is then increase (EP) value. m the frame	emented ar The page : he memory	nd pixels ar register is the until the c	e read fror hen reset to olumn reg	n the frame o SP and the ister equal	e memory he column ls the End				

- 976 See section 6.25 for descriptions of the Start Column and End Column values.
- See section 6.29 for descriptions of the Start Page and End Page values.
- 978 See MIPI Alliance Standard for DPI-2 and MIPI Alliance Standard for DBI-2 for color encoding for 8 or 9
- 979 bit image data.
- 980 Note the command description above shows 16-bit pixel data transferred over a 16-bit bus. Other
- 981 possibilities not illustrated here would show 9-bit pixel data transferred over a 9-bit bus, and 8-bit pixel
- data transferred over an 8-bit bus. See Annex A for details on pixel to byte mapping.

Restrictions

983

988

- 984 Regardless of the color mode set in set_pixel_format, the pixel format returned by read_memory_continue
- is always 24-bit so there is no restriction on the length of data.
- 986 A read_memory_start should follow a set_column_address, set_page_address or set_address_mode to
- 987 define the read location. Otherwise, data read with read memory continue is undefined.

Flow Chart

989 990

Figure 39 read memory continue Flow Chart

991 992 993 994	6.23 read Interface Command Parameters	All 2Eh	•							
995	Command									**
	Direction H•D	D7 0	D6 0	D5	D4 0	D3	D2 1	D1 1	D0 0	Hex Code 2Eh
996	Pixel Data 1	L								Hex
	Direction D•H	D15 P15	D14 P14	D13 P13	D12 P12	D11 P11	D10 P10	D9 P9	D8 P8	Code XXh
997										Hex
998 999	Direction D•H	D7 P7	D6 P6	D5 P5	D4 P4 •	D3 P3	D2 P2	D1 P1	D0 P0	Code XXh
1000	D. 10 . 1	. T			•					
1001	Pixel Data N									Hex
1002	Direction D•H	D15 P15	D14 P14	D13 P13	D12 P12	D11 P11	D10 P10	D9 P9	D8 P8	Code XXh
	Direction D•H	D7 P7	D6 P6	D5 P5	D4 P4	D3 P3	D2 P2	D1 P1	D0 P0	Hex Code XXh
1003	Description									
1004 1005	This comma at the pixel l									
1006	If set_addres	ss_mode I	35 = 0:							
1007	The column	and page	registers ar	e reset to the	he Start Co	lumn (SC)	and Start P	age (SP), r	espectivel	y.
1008 1009 1010 1011 1012	Pixels are read from frame memory at (SC, SP). The column register is then incremented and pixels read from the frame memory until the column register equals the End Column (EC) value. The column register is then reset to SC and the page register is incremented. Pixels are read from the frame memory until the page register equals the End Page (EP) value and the column register equals the EC value, or the host processor sends another command.									
1013	If set_addres	ss_mode I	35 = 1:							
1014	The column	and page	registers ar	e reset to the	he Start Co	lumn (SC)	and Start P	age (SP), r	espectivel	y.
1015 1016 1017 1018 1019	Pixels are re the frame me SP and the c equals the E another com	emory un olumn reg and Colum	til the page gister is inc	register ed remented.	quals the Ei Pixels are r	nd Page (E ead from th	P) value. The frame me	he page reg emory unti	gister is th l the colun	en reset to nn register

- See section 6.25 for descriptions of the Start Column and End Column values.
- See section 6.29 for descriptions of the Start Page and End Page values.
- 1022 See MIPI Alliance DPI-2 and DBI-2 specifications for color encoding for 8 or 9 data bit image data.
- Note the command description above shows 16-bit pixel data transferred over a 16-bit bus. Other
- 1024 possibilities not illustrated here would show 9-bit pixel data transferred over a 9-bit bus, and 8-bit pixel
- data transferred over an 8-bit bus. See Annex A for details on pixel to byte mapping.

Restrictions

- Regardless of the color mode set in set_pixel_format, the pixel format returned by read_memory_continue
- is always 24-bit so there is no restriction on the length of data.

Flow Chart

10301031

1026

1029

Figure 40 read_memory_start Flow Chart

1032	6.24 set_a	addres	s_mode							
1033	Interface	All								
1034	Command	36h								
1035	Parameters	See	below							
1036	Command									
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D 0	Code
	H•D	0	0	1	1	0	1	1	0	36h
1037	Parameter									
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
	H•D	B7	B6	B5	B4	В3	B2	B1	B0	XXh

1038 **Description**

1051 1052 1053

This command sets the data order for transfers from the host processor to display module's frame memory, bits B[7:5] and B3, and from the display module's frame memory to the display device, bits B[2:0] and B4.

All bits are valid for peripherals based on the Type 2 display architecture operating in Command Mode, or for peripherals based on the Type 1 display architecture. Bits B5, B4, B2 and B1 have no effect on peripherals based on the Type 2 display architecture operating in Video Mode, or for peripherals based on the Type 3 display architecture.

No status bits are changed.

1046 Bit B7 – Page Address Order

This bit controls the order that Pages of data are transferred from the host processor to the peripheral's frame memory.

1049 '0' = Top to Bottom, Pages transferred from SP to EP

1050 '1' = Bottom to Top, Pages transferred from EP to SP

Figure 41 B7 Page Address Order

1054 Bit B6 – Column Address Order

This bit controls the order that Columns of data are transferred from the host processor to the peripheral's frame memory.

1057 '0' = Left to Right, Columns transferred from SC to EC

'1' = Right to Left, Columns transferred from EC to SC

1059 1060 1061

1058

Figure 42 B6 Column Address Order

1062 Bit B5 – Page/Column Addressing Order

This bit controls the order that Columns of data are transferred from the host processor to the peripheral's frame memory.

1065 '0' = Normal Mode

See section 6.40 (B5 = 0) for a description of Normal Mode operation.

1067 '1' = Reverse Mode

See section 6.40 (B5 = 1) for a description of Reverse Mode operation.

1069 1070

Figure 43 B5 Page/Column Addressing Order

1072 Bit B4 – Display Device Line Refresh Order 1073 This bit controls the display device's horizontal line refresh order. The image shown on the display device 1074 is unaffected, regardless of the bit setting. 1075 '0' = Display device is refreshed from the top line to the bottom line 1076 '1' = Display device is refreshed from the bottom line to the top line 1077 Bit B3 – RGB/BGR Order 1078 This bit controls the RGB data order transferred from the peripheral's frame memory to the display device. 1079 '0' = Pixels sent in RGB order 1080 '1' = Pixels sent in BGR order B3 = 0

1082 Figure 44 B3 RGB Order

1083 Bit B2 – Display Data Latch Data Order

- This bit controls the display device's vertical line data latch order. The image shown on the display device
- is unaffected, regardless of the bit setting.
- 1086 '0' = Display device is refreshed from the left side to the right side
- 1087 '1' = Display device is refreshed from the right side to the left side
- Note: This bit has no visual effect if the display device is refreshed line by line.

1089 Bit B1 – Flip Horizontal

This bit flips the image shown on the display device left to right. No change is made to the frame memory.

1091 '0' = Normal

1092 '1' = Flipped

1093 1094

1094

Figure 45 B1 Flip Horizontal

1096 Bit B0 – Flip Vertical

This bit flips the image shown on the display device top to bottom. No change is made to the frame memory.

1099 '0' = Normal

1100 '1' = Flipped

1101 1102 1103

Figure 46 B0 Flip Vertical

1104 Restrictions

1105 None

1107

Figure 47 set_address_mode Flow Chart

1109	6.25 set_column_address										
1110	Interface	All									
1111	Command	2Ah	1								
1112	Parameters	s See	below								
1113	Command									**	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code	
	H•D	0	0	1	0	1	0	1	0	2Ah	
	пъ	Ü	O	1	O	1	O	1	O	27 111	
1114	Parameter	1									
										Hex	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code	
	H•D	SC15	SC14	SC13	SC12	SC11	SC10	SC9	SC8	XXh	
1115	Parameter	2								Hex	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code	
	H•D	SC7	SC6	SC5	SC4	SC3	SC2	SC1	SC0	XXh	
	пъ	507	500	503	БСТ	503	502	501	500	717111	
1116	Parameter	3									
										Hex	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code	
	H•D	EC15	EC14	EC13	EC12	EC11	EC10	EC9	EC8	XXh	
1117	Parameter	4									
				~-	5. 4					Hex	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code	
	H•D	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0	XXh	

This command defines the column extent of the frame memory accessed by the host processor with the read_memory_continue and write_memory_continue commands. No status bits are changed.

Figure 48 set_column_address Example

1123 **Restrictions**

11211122

SC[15:0] must always be equal to or less than EC[15:0].

1125 If SC[15:0] or EC[15:0] is greater than the available frame memory then the parameter is not updated.

Figure 49 set_column_address Flow Chart

1129	6.26 set_di	splay_off
1130	Interface	All
1131	Command	28h
1132	Parameters	None
1100		

1133 Command

									нех
Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
H•D	0	0	1	0	1	0	0	0	28h

1134 **Description**

This command causes the display module to stop displaying the image data on the display device. The frame memory contents remain unchanged. No status bits are changed.

11371138

Figure 50 set_display_off Example

1139 Restrictions

This command has no effect when the display panel is already off.

1141 Flow Chart

Figure 51 set_display_off Flow Chart

1144	6.27 set_di	splay_on
1145	Interface	All
1146	Command	29h
1147	Parameters	None

1148 Command

									нех
Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
H•D	0	0	1	0	1	0	0	1	29h

1149 **Description**

This command causes the display module to start displaying the image data on the display device. The frame memory contents remain unchanged. No status bits are changed.

Figure 52 set_display_on Example

Restrictions

This command has no effect when the display panel is already on.

1156 Flow Chart

11571158

11521153

1154

Figure 53 set_display_on Flow Chart

1159	6.28 set_	gamma	_curve							
1160	Interface	All								
1161	Command	26h								
1162	Parameters	See	below							
1163	Command									
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	H•D	0	0	1	0	0	1	1	0	26h
1164	Parameter									
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	H•D	GC7	GC6	GC5	GC4	GC3	GC2	GC1	GC0	XXh

This command selects the desired gamma curve for the display device. Four fixed gamma curves are defined in section 5.2. A curve is selected by setting the appropriate bit in the parameter as described in the following table.

1169

Table 7 Gamma Curves

GC[7:0]	Parameter	Curve Selected
00h	None	No curve selected
01h	GC0	Gamma Curve 1
02h	GC1	Gamma Curve 2
04h	GC2	Gamma Curve 3
08h	GC3	Gamma Curve 4

Note: All other values are reserved.

1171 Restrictions

Values of GC[7:0] not shown in Table 7 above are reserved and shall not change the currently selected gamma curve.

11751176

Figure 54 set_gamma_curve Flow Chart

1177 1178 1179 1180	6.29 set_page_address Interface All Command 2Bh Parameters See below									
1181	Command									**
	Direction H•D	D7 0	D6 0	D5	D4 0	D3	D2 0	D1	D0 1	Hex Code 0Bh
1182	Parameter 1									
	Direction H•D	D7 SP15	D6 SP14	D5 SP13	D4 SP12	D3 SP11	D2 SP10	D1 SP9	D0 SP8	Hex Code XXh
1183	Parameter 2									
	Direction H•D	D7 SP 7	D6 SP 6	D5 SP 5	D4 SP 4	D3 SP 3	D2 SP 2	D1 SP 1	D0 SP 0	Hex Code XXh
1184	Parameter :	3								
	Direction H•D	D7 EP15	D6 EP14	D5 EP13	D4 EP12	D3 EP11	D2 EP10	D1 EP9	D0 EP8	Hex Code XXh
1185	Parameter 4									
	Direction H•D	D7 EP7	D6 EP 6	D5 EP 5	D4 EP 4	D3 EP 3	D2 EP 2	D1 EP 1	D0 EP 0	Hex Code XXh

This command defines the page extent of the frame memory accessed by the host processor with the write_memory_continue and read_memory_continue command. No status bits are changed.

Figure 55 set_page_address Example

1191 Restrictions

- SP[15:0] must always be equal to or less than EP[15:0]
- 1193 If SP[15:0] or EP[15:0] is greater than the available frame memory then the parameter is not updated.

Figure 56 set_page_address Flow Chart

1197 1198 1199 1200	6.30 set_partial_area Interface All Command 30h Parameters See below											
1201	Command									TT		
	Direction H•D	D7 0	D6 0	D5	D4 1	D3 0	D2 0	D1 0	D0 0	Hex Code 30h		
1202	Parameter 1											
	Direction H•D	D7 SR15	D6 SR14	D5 SR13	D4 SR12	D3 SR11	D2 SR10	D1 SR9	D0 SR8	Hex Code XXh		
1203	Parameter	2										
	Direction H•D	D7 SR7	D6 SR6	D5 SR5	D4 SR4	D3 SR3	D2 SR2	D1 SR1	D0 SR0	Hex Code XXh		
1204	Parameter	3										
	Direction H•D	D7 ER15	D6 ER14	D5 ER13	D4 ER12	D3 ER11	D2 ER10	D1 ER9	D0 ER8	Hex Code XXh		
1205	Parameter	4										
	Direction H•D	D7 ER7	D6 ER6	D5 ER5	D4 ER4	D3 ER3	D2 ER2	D1 ER1	D0 ER0	Hex Code XXh		

12111212

This command defines the Partial Display mode's display area. There are two parameters associated with this command, the first defines the Start Row (SR) and the second the End Row (ER), as illustrated in Figure 57 and Figure 59. SR and ER refer to the Frame Memory Line Pointer.

1210 If End Row > Start Row

Figure 57 set_partial_area with set_address_mode B4 = 0

12131214

Figure 58 set_partial_area with set_address_mode B4=1

1215 If Start Row > End Row

12161217

Figure 59 set_partial_area with set_address_mode B4 = 0

12181219

Figure 60 set_partial_area with set_address_mode B4 = 1

1220 **Restrictions**

SR[15:0] and ER[15:0] cannot be 0000h nor exceed the last vertical line number.

1223 To enter Partial Display mode

Figure 61 Entering Partial Display Mode Flow Chart

1226 To exit Partial Display mode

Figure 62 Exiting Partial Display Mode Flow Chart

1229 1230 1231 1232	6.31 set_p Interface Command Parameters	All 3Ah								
1233	Command									
								-		Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	H•D	0	0	1	1	1	0	1	0	3Ah
1234	Parameter									Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
	H•D	X	D6	D5	D4	X	D2	D1	D0	XXh

- 1235 **Description**
- This command sets the pixel format for the RGB image data used by the interface.
- 1237 Bits D[6:4] DPI Pixel Format Definition
- 1238 Bits D[2:0] DBI Pixel Format Definition
- Bits D7 and D3 are not used.
- The pixel formats are shown in Table 6.
- 1241 If a particular interface, either DBI or DPI, is not used then the corresponding bits in the parameter are
- 1242 ignored.
- 1243 In 12, 16 & 18 bits/Pixel modes, the LUT is applied to transfer data into the frame memory.
- 1244 **Restrictions**
- There is no visible effect until the frame memory is written.

Figure 63 set_pixel_format Flow Chart

1249 1250 1251 1252	6.32 set_scroll_area Interface All Command 33h Parameters See below											
1253	Command Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code		
	H•D	0	0	1	1	0	0	1	1	33h		
1254	Parameter	1								Hex		
	Direction H•D	D7 TFA15	D6 TFA14	D5 TFA13	D4 TFA12	D3 TFA11	D2 TFA10	D1 TFA9	D0 TFA8	Code XXh		
1255	Parameter	2								Hex		
	Direction H•D	D7 TFA7	D6 TFA6	D5 TFA5	D4 TFA4	D3 TFA3	D2 TFA2	D1 TFA1	D0 TFA0	Code XXh		
1256	Parameter	3								Hex		
	Direction H•D	D7 VSA15	D6 VSA14	D5 VSA13	D4 VSA12	D3 VSA11	D2 VSA10	D1 VSA9	D0 VSA8	Code XXh		
1257	Parameter 4 Hex											
	Direction H•D	D7 VSA7	D6 VSA6	D5 VSA5	D4 VSA4	D3 VSA3	D2 VSA2	D1 VSA1	D0 VSA0	Code XXh		
1258	Parameter	5								Hex		
	Direction H•D	D7 BFA15	D6 BFA14	D5 BFA13	D4 BFA12	D3 BFA11	D2 BFA10	D1 BFA9	D0 BFA8	Code XXh		
1259	Parameter	6								Hex		
	Direction H•D	D7 BFA7	D6 BFA6	D5 BFA5	D4 BFA4	D3 BFA3	D2 BFA2	D1 BFA1	D0 BFA0	Code XXh		
1260	Description	n										
1261	This comm	and define	s the displa	y module's	S Vertical S	crolling A	ea.					
1262	If set_addre	ess_mode I	34 = 0:									
1263 1264	The 1 st & 2 frame mem								from the t	op of the		
1265 1266 1267 1268	The 3 rd & 4 of frame m starts imme Area ends i	emory from	m the Vert er the botto	ical Scrolli om most lir	ing Start A ne of the To	ddress. Th op Fixed A	e first line rea. The las	of the Ver	tical Scrol	ling Area		

The 5th & 6th parameter, BFA[15:0], describes the Bottom Fixed Area in number of lines from the bottom of the frame memory. The bottom of the frame memory and bottom of the display device are aligned.

1271 TFA, VSA and BFA refer to the Frame Memory Line Pointer.

12721273

1277

1278

1279

1280

Figure 64 set_scroll_area set_address_mode B4 = 1 Example

1274 If set address mode B4 = 1:

The 1st & 2nd parameter, TFA[15:0], describes the Top Fixed Area in number of lines from the bottom of the frame memory. The bottom of the frame memory and bottom of the display device are aligned.

The 3rd & 4th parameter, VSA[15:0], describes the height of the Vertical Scrolling Area in number of lines of frame memory from the Vertical Scrolling Start Address. The first line of the Vertical Scrolling Area starts immediately after the top most line of the Top Fixed Area. The last line of the Vertical Scrolling Area ends immediately before the bottom most line of the Bottom Fixed Area.

The 5th & 6th parameter, BFA[15:0], describes the Bottom Fixed Area in number of lines from the top of the frame memory. The top of the frame memory and top of the display device are aligned.

1283 TFA, VSA and BFA refer to the Frame Memory Line Pointer.

12841285

1286

Figure 65 set_scroll_area set_address_mode B4 = 1 Example

Restrictions

The sum of TFA, VSA and BFA must equal the number of the display device's horizontal lines (pages), otherwise Scrolling mode is undefined.

1289 In Vertical Scroll Mode, set_address_mode B5 should be set to '0' – this only affects the Frame Memory 1290 Write.

1292

1293 Figure 66 set_scroll_area Flow Chart

1294 1295 1296 1297	6.33 set_scroll_start Interface All Command 37h Parameters See below									
1298	Command									**
	Direction H•D	D7 0	D6 0	D5	D4 1	D3 0	D2	D1	D0 1	Hex Code 37h
1299	Parameter	1								**
	Direction H•D	D7 VSP15	D6 VSP14	D5 VSP13	D4 VSP12	D3 VSP11	D2 VSP10	D1 VSP9	D0 VSP8	Hex Code XXh
1300	Parameter	2								
	Direction H•D	D7 VSP7	D6 VSP6	D5 VSP5	D4 VSP4	D3 VSP3	D2 VSP2	D1 VSP1	D0 VSP0	Hex Code XXh

This command sets the start of the vertical scrolling area in the frame memory. The vertical scrolling area is fully defined when this command is used with the set_scroll_area command

The set_scroll_start command has one parameter, the Vertical Scroll Pointer. The VSP defines the line in the frame memory that is written to the display device as the first line of the vertical scroll area. See section 6.32 for a description of the vertical scroll area.

The displayed image also depends on the setting of the Line Address Order bit, B4, in the set address mode register. See the examples below.

1309 If set_address_mode B4 = 0:

1310 Example:

13121313

When Top Fixed Area = Bottom Fixed Area = 0, Vertical Scrolling Area = YY and VSP = 3.

Figure 67 set_scroll_start set_address_mode B4 = 0

1314 If set_address_mode B4 = 1:

1315 Example:

1316 When Top Fixed Area = Bottom Fixed Area = 0, Vertical Scrolling Area = YY and VSP = 3.

Figure 68 set_scroll_start set_address_mode B4 = 1

1319 Restrictions

1317

1318

- Since the value of the Vertical Scrolling Start Address is absolute with reference to the Frame Memory, it must not enter the fixed areas, see section 6.32, otherwise an undesirable image may be shown on the Display Panel.
- 1323 The following conditions shall apply:
- 1324 If set_address_mode B4 = 0, TFA[15:0] 1< VSP[15:0] < # of lines in frame memory BFA[15:0]
- If set address mode B4 = 1, BFA[15:0] 1 < VSP[15:0] < # of lines in frame memory TFA[15:0]

1326 Flow Chart

1327 See section 6.32 description.

1328	6.34 Set_te	ear_om
1329	Interface	All
1330	Command	34h
1331	Parameters	None

1332 Command

									нех
Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
H•D	0	0	1	1	0	1	0	0	34h

1333 **Description**

This command turns off the display module's Tearing Effect output signal on the TE signal line.

1335 Restrictions

1336 This command has no effect when the Tearing Effect output is already off.

1337 Flow Chart

13381339

Figure 69 set_tear_off Flow Chart

1340	6.35 set_1	tear_or	1							
1341	Interface	All								
1342	Command	35h								
1343	Parameters	See	below							
1344	Command									***
	D: //	D.=	D.	D.5	D.4	D.4	D4	D4	D.O.	Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D 0	Code
	H•D	0	0	1	1	0	1	0	1	35h
1345	Parameter									
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Code
	H•D	X	X	X	X	X	X	X	M	XXh

- This command turns on the display module's Tearing Effect output signal on the TE signal line. The TE signal is not affected by changing set_address_mode bit B4.
- The Tearing Effect Line On has one parameter that describes the Tearing Effect Output Line mode.
- 1350 If M = 0:
- 1351 The Tearing Effect Output line consists of V-Blanking information only.

- 1354 If M = 1:
- 1355 The Tearing Effect Output Line consists of both V-Blanking and H-Blanking information.

- The Tearing Effect Output line shall be active low when the display module is in Sleep mode.
- See MIPI Alliance Standard for Display Bus Interface for definitions of t_{vdl} and t_{vdh} .

1360 Restrictions

- This command takes affect on the frame following the current frame. Therefore, if the Tear Effect (TE)
- output is already ON, the TE output shall continue to operate as programmed by the previous set_tear_on,
- or set_tear_scanline, command until the end of the frame.

1365

Figure 72 set_tear_on Flow Chart

1367	6.36 set_	tear_sc	anline							
1368	Interface	All								
1369	Command	44h								
1370	Parameters	See	below							
1371	Command									Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	H•D	0	1	0	0	0	1	0	0	44h
1372	Parameter 1	1								Hex
	Direction	D 7	D6	D5	D4	D3	D2	D1	D0	Code
	H•D	N15	N14	N13	N12	N11	N10	N9	N8	XXh
1373	Parameter 2	2								How
	Direction	D 7	D6	D5	D4	D3	D2	D1	D 0	Hex Code
	H•D	N7	В 6	N5	D4 N4	N3	N2	N1	NO	XXh
	11-10	14/	110	113	114	113	112	141	140	ΑΛΠ

- This command turns on the display module's Tearing Effect output signal on the TE signal line when the display module reaches line N. The TE signal is not affected by changing set_address_mode bit B4.
- The Tearing Effect Line On has one parameter that describes the Tearing Effect Output Line mode.
- 1378 The Tearing Effect Output line consists of V-Blanking information only.

1380

- Figure 73 set_tear_scanline
- Note that set_tear_scanline with N = 0 is equivalent to set_tear_on with M = 0.
- The Tearing Effect Output line shall be active low when the display module is in Sleep mode.
- See *MIPI Alliance Standard for Display Bus Interface* for definitions of t_{vdl} and t_{vdh} and *MIPI Alliance Standard for Display Serial Interface* for definition of display module line numbers.

1385 Restrictions

- This command takes affect on the frame following the current frame. Therefore, if the Tear Effect (TE)
- output is already ON, the TE output shall continue to operate as programmed by the previous set_tear_on,
- or set_tear_scanline, command until the end of the frame.

1390

Figure 74 set_tear_scanline Flow Chart

1392	6.37 soft_r	eset
1393	Interface	All
1394	Command	01h
1395	Parameters	None

1396 Command

Direction	D7	D6	D5	D4	D3	D2	D1	D 0	Hex Code
H•D	0	0	0	0	0	0	0	1	01h

1397 **Description**

The display module performs a software reset. Registers are written with their SW Reset default values.

See section 5.7 for a list of the reset values.

1400 Frame Memory contents are unaffected by this command.

1401 **Restrictions**

The host processor must wait five milliseconds before sending any new commands to a display module

following this command. The display module updates the registers during this time.

1404 If a soft_reset is sent when the display module is in Sleep Mode, the host processor must wait 120

milliseconds before sending an exit_sleep_mode command.

soft_reset should not be sent when the display module is not in Sleep mode.

1407 Flow Chart

14081409

Figure 75 soft_reset Flow Chart

1432

in Table 8.

1410 1411 1412 1413	6.38 write Interface Command Parameters	All 2Dł	ı below							
1414	Command									
	Direction H•D	D7 0	D6 0	D5	D4 0	D3	D2	D1 0	D0	Hex Code 2Dh
1415	Parameter 1	1								**
1/1/6	Direction H•D	D7 R7	D6 R6	D5 R5	D4 R4	D3 R3	D2 R2	D1 R1	D0 R0	Hex Code XXh
1416 1417 1418					•					
1419	Parameter 1	N								TT
	Direction H•D	D7 R7	D6 R6	D5 R5	D4 R4	D3 R3	D2 R2	D1 R1	D0 R0	Hex Code XXh
1420	Parameter 1	N + 1								Han
1421 1422 1423	Direction H•D	D7 G7	D6 G6	D5 G5	D4 G4	D3 G3	D2 G2	D1 G1	D0 G0	Hex Code XXh
1424	Parameter 1	N + M								TT
	Direction H•D	D7 G7	D6 G6	D5 G5	D4 G4	D3 G3	D2 G2	D1 G1	D0 G0	Hex Code XXh
1425	Parameter 1	N + M +	1							TT
1426 1427 1428	Direction H•D	D7 B7	D6 B6	D5 B5	D4 B4	D3 B3	D2 B2	D1 B1	D0 B0	Hex Code XXh
1429	Parameter 2	2*N + M								TT
	Direction H•D	D7 B7	D6 B6	D5 B5	D4 B4	D3 B3	D2 B2	D1 B1	D0 B0	Hex Code XXh
1430	Description									
1431 1432	This comma	and sets th	ne LUT for	pixel color	r depth con	versions. S	Six convers	ions are su	pported as	indicated

1433

Table 8 LUT Color Depth Conversions

Convert from Color	Convert to Color Depth							
Depth	24	18	16					
18	Yes	N/A	N/A					
16	Yes	Yes	N/A					
12	Yes	Yes	Yes					

The LUT size depends on the pixel format of the display module. In the list below, N is the number of red or blue components and M is the number of green components in the LUT.

1436 16-bit color display modules: N = M = 16; Total LUT Size = 2*N + M = 48 bytes.

18-bit color display modules: N = 32, M = 64; Total LUT Size = 2*N + M = 128 bytes.

1438 24-bit color display modules: N = M = 64; Total LUT Size = 2*N + M = 192 bytes.

Regardless of host processor color depth, the defined size of the LUT shall be written according to the number of colors supported by the display module. See Annex A.

This command has no effect on other commands or the contents of frame memory. Visible changes take effect the next time the frame memory is written.

1443 **Restrictions**

1444 None

1445 Flow Chart

14461447

Figure 76 write_LUT Flow Chart

1448 1449 1450 1451	6.39 write Interface Command Parameters	All 3Ch	-	tinue						
1452	Command									
	Direction H•D	D7 0	D6 0	D5	D4 1	D3	D2 1	D1 0	D0 0	Hex Code 3Ch
1453	Pixel Data 1	L								**
	Direction H•D	D15 P15	D14 P14	D13 P13	D12 P12	D11 P11	D10 P10	D9 P9	D8 P8	Hex Code XXh
1454										Hex
	Direction H•D	D7 P7	D6 P6	D5 P5	D4 P4	D3 P3	D2 P2	D1 P1	D0 P0	Code XXh
1455										
1456 1457										
1458	Pixel Data N	N								II
	Direction	D15	D14	D13	D12	D11	D10	D9	D8	Hex Code
1459	H•D	P7	P6	P5	P4	Р3	P2	P1	P0	XXh
	Direction H•D	D7 P7	D6 P6	D5 P5	D4 P4	D3 P3	D2 P2	D1 P1	D0 P0	Hex Code XXh
1460	Description									
1461	This comma									
1462 1463	continuing from command.	rom the p	ixel location	on followin	ig the prev	ious write_	_memory_c	ontinue or	write_mei	mory_start
1464	If set_addres	ss_mode F	35 = 0:							
1.465	Data isitt	4:	: £ 4	uh a .a.: 1 1 a		41		:		
1465 1466	Data is writt or write_me									
1467	memory unt	il the colu	ımn registe	r equals th	e End Colu	ımn (EC)	value. The	column reg	gister is the	en reset to
1468 1469	SC and the									
1409	equals the End Page (EP) value and the column register equals the EC value, or the host processor sends another command. If the number of pixels exceeds $(EC - SC + 1) * (EP - SP + 1)$ the extra pixels are									
1471	ignored.									
1472	If set_address_mode B5 = 1:									
1473	Data is written continuing from the pixel location after the write range of the previous write_memory_start									
1474	or write_me	mory_cor	ntinue. The	e page regi	ister is the	n increme	nted and p	ixels are v	written to	the frame
1475 1476	memory unti									
1470	End column									
1478	command. If									

- See section 6.25 for descriptions of the Start Column and End Column values.
- See section 6.29 for descriptions of the Start Page and End Page values.
- 1481 See MIPI Alliance DPI-2 and DBI-2 specifications for color encoding for 8 or 9 data bit image data.
- Note the command description above shows 16-bit pixel data transferred over a 16-bit bus. Other
- possibilities not illustrated here would show 9-bit pixel data transferred over a 9-bit bus, and 8-bit pixel
- data transferred over an 8-bit bus. See Annex A for details on pixel to byte mapping.
- The relationship between some common colors and the corresponding image data are shown in the following table.

1487 Table 9 Common Color Encoding

Color	Red Component	Green Component	Blue Component
Black	All bits = 0	All bits = 0	All bits = 0
Red	All bits = 1	All bits = 0	All bits = 0
Green	All bits = 0	All bits = 1	All bits = 0
Blue	All bits = 0	All bits = 0	All bits = 1
Cyan	All bits = 0	All bits = 1	All bits = 1
Yellow	All bits = 1	All bits = 1	All bits = 0
Magenta	All bits = 1	All bits = 0	All bits = 1
White	All bits = 1	All bits = 1	All bits = 1

Restrictions

A write_memory_start should follow a set_column_address, set_page_address or set_address_mode to define the write address. Otherwise, data written with write_memory_continue is written to undefined addresses.

1492 Flow Chart

Figure 77 write_memory_continue Flow Chart

14931494

1488

Copyright © 2006 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

1496 1497 1498 1499	6.40 write Interface Command Parameters	All 2Ch										
1500	Command									Hex		
	Direction H•D	D7 0	D6 0	D5	D4 0	D3	D2 1	D1 0	D0 0	Code 2Ch		
1501	Pixel Data 1									Hex		
1502	Direction H•D	D15 P15	D14 P14	D13 P13	D12 P12	D11 P11	D10 P10	D9 P9	D8 P8	Code XXh		
1502	Direction H•D	D7 P7	D6 P6	D5 P5	D4 P4	D3 P3	D2 P2	D1 P1	D0 P0	Hex Code XXh		
1503 1504 1505					•							
1506	Pixel Data N	1								Hex		
1507	Direction H•D	D15 P15	D14 P14	D13 P13	D12 P12	D11 P11	D10 P10	D9 P9	D8 P8	Code XXh		
	Direction H•D	D7 P7	D6 P6	D5 P5	D4 P4	D3 P3	D2 P2	D1 P1	D0 P0	Hex Code XXh		
1508	Description											
1509 1510	This comma											
1511	If set_addres	s_mode E	35 = 0:									
1512	The column	and page	registers are	e reset to the	he Start Co	lumn (SC)	and Start P	age (SP), r	espectivel	y.		
1513 1514 1515 1516 1517 1518	Pixel Data 1 is stored in frame memory at (SC, SP). The column register is then incremented and pixels are written to the frame memory until the column register equals the End Column (EC) value. The column register is then reset to SC and the page register is incremented. Pixels are written to the frame memory until the page register equals the End Page (EP) value and the column register equals the EC value, or the host processor sends another command. If the number of pixels exceeds (EC – SC + 1) * (EP – SP + 1) the extra pixels are ignored.											
1519	If set_address_mode B5 = 1:											
	If set_addres	s_mode E	If set_address_mode B5 = 1: The column and page registers are reset to the Start Column (SC) and Start Page (SP), respectively.									
1520				e reset to the	he Start Co	lumn (SC)	and Start P	age (SP), r	espectivel	y.		

- 1524 column register equals the End column (EC) value and the page register equals the EP value, or the host
- processor sends another command. If the number of pixels exceeds (EC SC + 1) * (EP SP + 1) the extra
- pixels are ignored.
- 1527 See section 6.25 for descriptions of the Start Column and End Column values.
- See section 6.29 for descriptions of the Start Page and End Page values.
- 1529 See MIPI Alliance DPI-2 and DBI-2 specifications for color encoding for 8 or 9 data bit image data.
- 1530 Note the command description above shows 16-bit pixel data transferred over a 16-bit bus. Other
- possibilities not illustrated here would show 9-bit pixel data transferred over a 9-bit bus, and 8-bit pixel
- data transferred over an 8-bit bus. See Annex A for details on pixel to byte mapping.
- The relationship between some common colors and the corresponding image data are shown in the
- 1534 following table.

1535

Table 10 Common Color Encoding

Color	Red Component	Green Component	Blue Component
Black	All bits = 0	All bits = 0	All bits = 0
Red	All bits = 1	All bits = 0	All bits = 0
Green	All bits = 0	All bits = 1	All bits = 0
Blue	All bits = 0	All bits = 0	All bits = 1
Cyan	All bits = 0	All bits = 1	All bits = 1
Yellow	All bits = 1	All bits = 1	All bits = 0
Magenta	All bits = 1	All bits = 0	All bits = 1
White	All bits = 1	All bits = 1	All bits = 1

1536 **Restrictions**

- A write_memory_start should follow a set_column_address, set_page_address or set_address_mode to
- 1538 define the write location. Otherwise, data written with write_memory_start and any following
- write memory continue commands is written to undefined locations.

1541

1542 Figure 78 write_memory_start Flow Chart

1551

1555

1556

Annex A Pixel-to-Byte Mapping

- Many of the commands in this specification utilize display panel properties and therefore refer to pixels and scan lines. However, numerous components of a display system are inherently byte oriented. Therefore, a consistent method should be used to convert pixel formats to bytes to ensure interoperability among all components. This section defines the pixel-to-byte mapping used by this specification.
- Note the set_address_mode command (section 6.24) affects the bit ordering within a pixel, red and blue components may be swapped, and the order pixels are transferred across the interface. The figures in this section are shown with set address mode B4=B5=B6=B7=0.

A.1 Three Bits per Pixel Format

Three bits per pixel formats do not map directly to byte boundaries and therefore require special handling.

In this pixel format, each byte holds two pixels. Two bits in each byte convey no color information. The organization of bits is shown in Figure 79.

Figure 79 Three Bits per Pixel Format to Byte Mapping

1560

1561

1562

15651566

A.2 Eight Bits per Pixel Format

Eight bits per pixel formats map directly to byte boundaries and therefore require no special handling. Figure 80 shows the mapping of pixels to bytes.

Figure 80 Eight Bits per Pixel Format to Byte Mapping

A.3 Twelve Bits per Pixel Format

Twelve bits per pixel formats do not map directly to byte boundaries and therefore require special handling.

In this pixel format, three bytes hold two pixels. Figure 81 shows the mapping of pixels to bytes.

Figure 81 Twelve Bits per Pixel Format to Byte Mapping

1568 1569

1570

15711572

1573

1574 1575

1576

1577

1578

A.4 Sixteen Bits per Pixel Format

Sixteen bits per pixel formats do not map directly to byte boundaries and therefore require special handling. However, this format is simpler than twelve bit formats since one pixel occupies two bytes. Figure 82 shows the mapping of pixels to bytes.

Figure 82 Sixteen Bits per Pixel Format to Byte Mapping

A.5 Eighteen Bits per Pixel Format

Eighteen bits per pixel formats do not map directly to byte boundaries and therefore require special handling. In this pixel format, each pixel occupies three bytes (24-bits), one for each color component. Two bits in each byte convey no color information. Figure 83 shows the mapping of pixels to bytes.

Figure 83 Eighteen Bits per Pixel Format to Byte Mapping

15831584

A.6 Twenty-four Bits per Pixel Format

Twenty-four bits per pixel formats do not map directly to byte boundaries and therefore require special handling. This format is similar to the eighteen bits per pixel format since one pixel occupies three bytes. However, all bits in this format convey color information. Figure 84 shows the mapping of pixels to bytes.

Figure 84 Twenty-four Bits per Pixel Format to Byte Mapping

1586

15871588

Annex B Color Depth Conversion Look-up Tables (informative)

B.1 Color Depth Conversion LUT – 12-bit Color to 16-bit Color

Table 11 12-bit to 16-bit LUT Red Component Values

R input (4-bit) 12-bits/pixel 4,096 colors	R output (5-bit) 16-bits/pixel 65,536 colors	write_LUT Parameter
0000	$R_{004} R_{003} R_{002} R_{001} R_{000}$	1
0001	$R_{014} R_{013} R_{012} R_{011} R_{010}$	2
0010	$R_{024} R_{023} R_{022} R_{021} R_{020}$	3
0011	$R_{034} R_{033} R_{032} R_{031} R_{030}$	4
0100	$R_{044} R_{043} R_{042} R_{041} R_{040}$	5
0101	$R_{054} R_{053} R_{052} R_{051} R_{050}$	6
0110	$R_{064} R_{063} R_{062} R_{061} R_{060}$	7
0111	$R_{074} R_{073} R_{072} R_{071} R_{070}$	8
1000	$R_{084} R_{083} R_{082} R_{081} R_{080}$	9
1001	$R_{094} R_{093} R_{092} R_{091} R_{090}$	10
1010	$R_{104} R_{103} R_{102} R_{101} R_{100}$	11
1011	$R_{114} R_{113} R_{112} R_{111} R_{110}$	12
1100	$R_{124}R_{123}R_{122}R_{121}R_{120}$	13
1101	R ₁₃₄ R ₁₃₃ R ₁₃₂ R ₁₃₁ R ₁₃₀	14
1110	R ₁₄₄ R ₁₄₃ R ₁₄₂ R ₁₄₁ R ₁₄₀	15
1111	$R_{154} R_{153} R_{152} R_{151} R_{150}$	16

Table 12 12-bit to 16-bit LUT Green Component Values

G input (4bit) 12 bit/pixel -mode 4,096 colors	G output (6bit) 16 bit/pixel -mode 65,536 colors	write_LUT Parameter
0000	$G_{005} G_{004} G_{003} G_{002} G_{001} G_{000}$	17
0001	$G_{015}G_{014}G_{013}G_{012}G_{011}G_{010}$	18
0010	$G_{_{025}}G_{_{024}}G_{_{023}}G_{_{022}}G_{_{021}}G_{_{020}}$	19
0011	$G_{_{035}}G_{_{034}}G_{_{033}}G_{_{032}}G_{_{031}}G_{_{030}}$	20
0100	$G_{_{045}}G_{_{044}}G_{_{043}}G_{_{042}}G_{_{041}}G_{_{040}}$	21
0101	$G_{_{055}}G_{_{054}}G_{_{053}}G_{_{052}}G_{_{051}}G_{_{050}}$	22
0110	$G_{065} G_{064} G_{063} G_{062} G_{061} G_{060}$	23
0111	$G_{_{075}}G_{_{074}}G_{_{073}}G_{_{072}}G_{_{071}}G_{_{070}}$	24
1000	$G_{_{085}}G_{_{084}}G_{_{083}}G_{_{082}}G_{_{081}}G_{_{080}}$	25
1001	$G_{095} G_{094} G_{093} G_{092} G_{091} G_{090}$	26
1010	$G_{105} G_{104} G_{103} G_{102} G_{101} G_{100}$	27
1011	$G_{_{115}}G_{_{114}}G_{_{113}}G_{_{112}}G_{_{111}}G_{_{110}}$	28
1100	$G_{_{125}}G_{_{124}}G_{_{123}}G_{_{122}}G_{_{121}}G_{_{120}}$	29
1101	$G_{_{135}}G_{_{134}}G_{_{133}}G_{_{132}}G_{_{131}}G_{_{130}}$	30
1110	$G_{_{145}}G_{_{144}}G_{_{143}}G_{_{142}}G_{_{141}}G_{_{140}}$	31
1111	$G_{155} G_{154} G_{153} G_{152} G_{151} G_{150}$	32

Table 13 12-bit to 16-bit LUT Blue Component Values

B input (4bit) 12 bit/pixel -mode 4,096 colors	B output (5bit) 16 bit/pixel -mode 65,536 colors	write_LUT Parameter
0000	B ₀₀₄ B ₀₀₃ B ₀₀₂ B ₀₀₁ B ₀₀₀	33
0001	$B_{014}B_{013}B_{01},B_{011}B_{010}$	34
0010	$B_{024} B_{023} B_{022} B_{021} B_{020}$	35
0011	$B_{034}B_{033}B_{032}B_{031}B_{030}$	36
0100	$B_{044} B_{043} B_{042} B_{041} B_{040}$	37
0101	$B_{054} B_{053} B_{052} B_{051} B_{050}$	38
0110	$B_{064} B_{063} B_{062} B_{061} B_{060}$	39
0111	$B_{074} B_{073} B_{072} B_{071} B_{070}$	40
1000	$B_{084} B_{083} B_{082} B_{081} B_{080}$	41
1001	$B_{094} B_{093} B_{092} B_{091} B_{090}$	42
1010	$B_{104}B_{103}B_{102}B_{101}B_{100}$	43
1011	B ₁₁₄ B ₁₁₃ B ₁₁₂ B ₁₁₁ B ₁₁₀	44
1100	$B_{124} B_{123} B_{122} B_{121} B_{120}$	45
1101	$B_{134}B_{133}B_{132}B_{131}B_{130}$	46
1110	$B_{144}B_{143}B_{142}B_{141}B_{140}$	47
1111	$B_{154} B_{153} B_{152} B_{151} B_{150}$	48

1592

B.2 Color Depth Conversion LUT – 12-bit and 16-bit Colors to 18-bit Color Table 14 12-bit, 16-bit to 18-bit LUT Red Component Values

R input (4bit) 12 bit/pixel -mode 4,096 colors	R input (5 bit) 16 bit/pixel -mode 65,536 colors	R output (6bit) 18 bit/pixel -mode 262,144 colors	write_LUT Parameter
0000	00000	R ₀₀₅ R ₀₀₄ R ₀₀₃ R ₀₀₂ R ₀₀₁ R ₀₀₀	1
0001	00001	$R_{015} R_{014} R_{013} R_{012} R_{011} R_{010}$	2
0010	00010	$R_{025} R_{024} R_{023} R_{022} R_{021} R_{020}$	3
0011	00011	$R_{035} R_{034} R_{033} R_{032} R_{031} R_{030}$	4
0100	00100	$R_{045} R_{044} R_{043} R_{042} R_{041} R_{040}$	5
0101	00101	$R_{055} R_{054} R_{053} R_{052} R_{051} R_{050}$	6
0110	00110	$R_{065} R_{064} R_{063} R_{062} R_{061} R_{060}$	7
0111	00111	$R_{075} R_{074} R_{073} R_{072} R_{071} R_{070}$	8
1000	01000	$R_{085} R_{084} R_{083} R_{082} R_{081} R_{080}$	9
1001	01001	R ₀₉₅ R ₀₉₄ R ₀₉₃ R ₀₉₂ R ₀₉₁ R ₀₉₀	10
1010	01010	$R_{105} R_{104} R_{103} R_{102} R_{101} R_{100}$	11
1011	01011	$R_{115} R_{114} R_{113} R_{112} R_{111} R_{110}$	12
1100	01100	$R_{125} R_{124} R_{123} R_{122} R_{121} R_{120}$	13
1101	01101	$R_{135}R_{134}R_{133}R_{132}R_{131}R_{130}$	14
1110	01110	$R_{_{145}}R_{_{144}}R_{_{143}}R_{_{142}}R_{_{141}}R_{_{140}}$	15
1111	01111	$R_{155} R_{154} R_{153} R_{152} R_{151} R_{150}$	16
No Input	10000	R ₁₆₅ R ₁₆₄ R ₁₆₃ R ₁₆₂ R ₁₆₁ R ₁₆₀	17
No Input	10001	$R_{_{175}}R_{_{174}}R_{_{173}}R_{_{172}}R_{_{171}}R_{_{170}}$	18
No Input	10010	$R_{185} R_{184} R_{183} R_{182} R_{181} R_{180}$	19
No Input	10011	$R_{195} R_{194} R_{193} R_{192} R_{191} R_{190}$	20
No Input	10100	$R_{205} R_{204} R_{203} R_{202} R_{201} R_{200}$	21
No Input	10101	$R_{215} R_{214} R_{213} R_{212} R_{211} R_{210}$	22
No Input	10110	$R_{225} R_{224} R_{223} R_{222} R_{221} R_{220}$	23

R input (4bit) 12 bit/pixel -mode 4,096 colors	R input (5 bit) 16 bit/pixel -mode 65,536 colors	R output (6bit) 18 bit/pixel -mode 262,144 colors	write_LUT Parameter
No Input	10111	$R_{235} R_{234} R_{233} R_{232} R_{231} R_{230}$	24
No Input	11000	$R_{245} R_{244} R_{243} R_{242} R_{241} R_{240}$	25
No Input	11001	$R_{255} R_{254} R_{253} R_{252} R_{251} R_{250}$	26
No Input	11010	$R_{265} R_{264} R_{263} R_{262} R_{261} R_{260}$	27
No Input	11011	$R_{275} R_{274} R_{273} R_{272} R_{271} R_{270}$	28
No Input	11100	$R_{285} R_{284} R_{283} R_{282} R_{281} R_{280}$	29
No Input	11101	$R_{295} R_{294} R_{293} R_{292} R_{291} R_{290}$	30
No Input	11110	$R_{305} R_{304} R_{303} R_{302} R_{301} R_{300}$	31
No Input	11111	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	32

1593

Table 15 12-bit, 16-bit to 18-bit LUT Green Component Values

G input (4bit) 12 bit/pixel -mode 4,096 colors	G input (6 bit) 16 bit/pixel -mode 65,536 colors	G output (6bit) 18 bit/pixel -mode 262,144 colors	write_LUT Parameter
0000	000000	$G_{005} G_{004} G_{003} G_{002} G_{001} G_{000}$	33
0001	000001	$G_{015} G_{014} G_{013} G_{012} G_{011} G_{010}$	34
0010	000010	$G_{025} G_{024} G_{023} G_{022} G_{021} G_{020}$	35
0011	000011	$G_{035} G_{034} G_{033} G_{032} G_{031} G_{030}$	36
0100	000100	$G_{045} G_{044} G_{043} G_{042} G_{041} G_{040}$	37
0101	000101	$G_{055} G_{054} G_{053} G_{052} G_{051} G_{050}$	38
0110	000110	$G_{065} G_{064} G_{063} G_{062} G_{061} G_{060}$	39
0111	000111	$G_{075} G_{074} G_{073} G_{072} G_{071} G_{070}$	40
1000	001000	$G_{085} G_{084} G_{083} G_{082} G_{081} G_{080}$	41
1001	001001	$G_{095} G_{094} G_{093} G_{092} G_{091} G_{090}$	42
1010	001010	$G_{105} G_{104} G_{103} G_{102} G_{101} G_{100}$	43
1011	001011	$G_{_{115}}G_{_{114}}G_{_{113}}G_{_{112}}G_{_{111}}G_{_{110}}$	44
1100	001100	$G_{_{125}}G_{_{124}}G_{_{123}}G_{_{122}}G_{_{121}}G_{_{120}}$	45
1101	001101	$G_{_{135}}G_{_{134}}G_{_{133}}G_{_{132}}G_{_{131}}G_{_{130}}$	46
1110	001110	$G_{_{145}}G_{_{144}}G_{_{143}}G_{_{142}}G_{_{141}}G_{_{140}}$	47
1111	001111	$G_{155}G_{154}G_{153}G_{157}G_{151}G_{150}$	48
No Input	010000	$G_{165}G_{164}G_{163}G_{162}G_{161}G_{160}$	49
No Input	010001	$G_{_{175}}G_{_{174}}G_{_{173}}G_{_{172}}G_{_{171}}G_{_{170}}$	50
No Input	010010	$G_{_{185}}G_{_{184}}G_{_{183}}G_{_{182}}G_{_{181}}G_{_{180}}$	51
No Input	010011	$G_{_{195}}G_{_{194}}G_{_{193}}G_{_{192}}G_{_{191}}G_{_{196}}$	52
No Input	010100	$G_{205} G_{204} G_{203} G_{202} G_{201} G_{200}$	53
No Input	010101	$G_{_{215}}G_{_{214}}G_{_{213}}G_{_{212}}G_{_{211}}G_{_{210}}$	54
No Input	010110	$G_{_{225}}G_{_{224}}G_{_{223}}G_{_{222}}G_{_{221}}G_{_{220}}$	55
No Input	010111	$G_{235} G_{234} G_{233} G_{232} G_{231} G_{230}$	56

G input (4bit) 12 bit/pixel -mode 4,096 colors	G input (6 bit) 16 bit/pixel -mode 65,536 colors	G output (6bit) 18 bit/pixel -mode 262,144 colors	write_LUT Parameter
No Input	011000	$G_{245} G_{244} G_{243} G_{242} G_{241} G_{240}$	57
No Input	011001	$G_{255} G_{254} G_{253} G_{252} G_{251} G_{250}$	58
No Input	011010	$G_{265} G_{264} G_{263} G_{262} G_{261} G_{260}$	59
No Input	011011	$G_{275} G_{274} G_{273} G_{272} G_{271} G_{270}$	60
No Input	011100	$G_{285} G_{284} G_{283} G_{282} G_{281} G_{280}$	61
No Input	011101	$G_{_{295}}G_{_{294}}G_{_{293}}G_{_{292}}G_{_{291}}G_{_{290}}$	62
No Input	011110	$G_{_{305}}G_{_{304}}G_{_{303}}G_{_{302}}G_{_{301}}G_{_{300}}$	63
No Input	011111	$G_{_{315}}G_{_{314}}G_{_{313}}G_{_{312}}G_{_{311}}G_{_{310}}$	64
No Input	100000	$G_{_{325}}G_{_{324}}G_{_{323}}G_{_{322}}G_{_{321}}G_{_{320}}$	65
No Input	100001	$G_{_{335}}G_{_{334}}G_{_{333}}G_{_{332}}G_{_{331}}G_{_{330}}$	66
No Input	100010	$G_{_{345}}G_{_{344}}G_{_{343}}G_{_{342}}G_{_{341}}G_{_{340}}$	67
No Input	100011	$G_{_{355}}G_{_{354}}G_{_{353}}G_{_{352}}G_{_{351}}G_{_{350}}$	68
No Input	100100	$G_{_{365}}G_{_{364}}G_{_{363}}G_{_{362}}G_{_{361}}G_{_{360}}$	69
No Input	100101	$G_{_{375}}G_{_{374}}G_{_{373}}G_{_{372}}G_{_{371}}G_{_{370}}$	70
No Input	100110	$G_{_{385}}G_{_{384}}G_{_{383}}G_{_{382}}G_{_{381}}G_{_{380}}$	71
No Input	100111	$G_{_{395}}G_{_{394}}G_{_{393}}G_{_{392}}G_{_{391}}G_{_{390}}$	72
No Input	101000	$G_{_{405}}G_{_{404}}G_{_{403}}G_{_{402}}G_{_{401}}G_{_{400}}$	73
No Input	101001	$G_{_{415}}G_{_{414}}G_{_{413}}G_{_{412}}G_{_{411}}G_{_{410}}$	74
No Input	101010	$G_{_{425}}G_{_{424}}G_{_{423}}G_{_{422}}G_{_{421}}G_{_{420}}$	75
No Input	101011	$G_{_{435}}G_{_{434}}G_{_{433}}G_{_{432}}G_{_{431}}G_{_{430}}$	76
No Input	101100	$G_{_{445}}G_{_{444}}G_{_{443}}G_{_{447}}G_{_{441}}G_{_{440}}$	77
No Input	101101	$G_{_{455}}G_{_{455}}G_{_{453}}G_{_{452}}G_{_{451}}G_{_{450}}$	78
No Input	101110	$G_{_{465}}G_{_{464}}G_{_{463}}G_{_{462}}G_{_{461}}G_{_{460}}$	79
No Input	101111	$G_{_{475}}G_{_{474}}G_{_{473}}G_{_{472}}G_{_{471}}G_{_{470}}$	80
No Input	110000	$G_{_{485}}G_{_{484}}G_{_{483}}G_{_{482}}G_{_{481}}G_{_{480}}$	81

G input (4bit) 12 bit/pixel -mode 4,096 colors	G input (6 bit) 16 bit/pixel -mode 65,536 colors	G output (6bit) 18 bit/pixel -mode 262,144 colors	write_LUT Parameter
No Input	110001	$G_{_{495}}G_{_{494}}G_{_{493}}G_{_{492}}G_{_{491}}G_{_{490}}$	82
No Input	110010	$G_{s_{05}}G_{s_{04}}G_{s_{03}}G_{s_{02}}G_{s_{01}}G_{s_{00}}$	83
No Input	110011	$G_{s_{15}}G_{s_{14}}G_{s_{13}}G_{s_{12}}G_{s_{11}}G_{s_{10}}$	84
No Input	110100	$G_{525} G_{524} G_{523} G_{522} G_{521} G_{520}$	85
No Input	110101	$G_{535} G_{534} G_{533} G_{532} G_{531} G_{530}$	86
No Input	110110	$G_{s_{45}}G_{s_{44}}G_{s_{43}}G_{s_{42}}G_{s_{41}}G_{s_{40}}$	87
No Input	110111	$G_{555} G_{554} G_{553} G_{552} G_{551} G_{550}$	88
No Input	111000	$G_{s65} G_{s64} G_{s63} G_{s62} G_{s61} G_{s60}$	89
No Input	111001	$G_{575} G_{574} G_{573} G_{572} G_{571} G_{570}$	90
No Input	111010	$G_{_{585}}G_{_{584}}G_{_{583}}G_{_{582}}G_{_{581}}G_{_{580}}$	91
No Input	111011	$G_{595} G_{594} G_{593} G_{592} G_{591} G_{590}$	92
No Input	111100	$G_{605} G_{604} G_{603} G_{602} G_{601} G_{600}$	93
No Input	111101	$G_{615} G_{614} G_{613} G_{612} G_{611} G_{610}$	94
No Input	111110	$G_{625} G_{624} G_{623} G_{622} G_{621} G_{620}$	95
No Input	111111	$G_{635} G_{634} G_{633} G_{632} G_{631} G_{630}$	96

1594

Table 16 12-bit, 16-bit to 18-bit LUT Blue Component Values

B input (4bit) 12 bit/pixel -mode 4,096 colors	B input (5 bit) 16 bit/pixel -mode 65,536 colors	B output (6bit) 18 bit/pixel -mode 262,144 colors	write_LUT Parameter
0000	00000	B ₀₀₅ B ₀₀₄ B ₀₀₃ B ₀₀₂ B ₀₀₁ B ₀₀₀	97
0001	00001	$B_{015} B_{014} B_{013} B_{012} B_{011} B_{010}$	98
0010	00010	$B_{025} B_{024} B_{023} B_{022} B_{021} B_{020}$	99
0011	00011	$B_{035} B_{034} B_{033} B_{032} B_{031} B_{030}$	100
0100	00100	$B_{045} B_{044} B_{043} B_{042} B_{041} B_{040}$	101
0101	00101	B ₀₅₅ B ₀₅₄ B ₀₅₃ B ₀₅₂ B ₀₅₁ B ₀₅₀	102
0110	00110	B ₀₆₅ B ₀₆₄ B ₀₆₃ B ₀₆₂ B ₀₆₁ B ₀₆₀	103
0111	00111	$B_{075} B_{074} B_{073} B_{072} B_{071} B_{070}$	104
1000	01000	$B_{085} B_{084} B_{083} B_{082} B_{081} B_{080}$	105
1001	01001	B ₀₉₅ B ₀₉₄ B ₀₉₃ B ₀₉₂ B ₀₉₁ B ₀₉₀	106
1010	01010	$B_{105} B_{104} B_{103} B_{102} B_{101} B_{100}$	107
1011	01011	$B_{115} B_{114} B_{113} B_{112} B_{111} B_{110}$	108
1100	01100	$B_{125} B_{124} B_{123} B_{122} B_{121} B_{120}$	109
1101	01101	$B_{135}B_{134}B_{133}B_{132}B_{131}B_{130}$	110
1110	01110	$B_{_{145}}B_{_{144}}B_{_{143}}B_{_{142}}B_{_{141}}B_{_{140}}$	111
1111	01111	B ₁₅₅ B ₁₅₄ B ₁₅₃ B ₁₅₇ B ₁₅₁ B ₁₅₀	112
No Input	10000	B ₁₆₅ B ₁₆₄ B ₁₆₃ B ₁₆₂ B ₁₆₁ B ₁₆₀	113
No Input	10001	$B_{_{175}}B_{_{174}}B_{_{173}}B_{_{172}}B_{_{171}}B_{_{170}}$	114
No Input	10010	$B_{_{185}}B_{_{184}}B_{_{183}}B_{_{182}}B_{_{181}}B_{_{180}}$	115
No Input	10011	$B_{_{195}}B_{_{194}}B_{_{193}}B_{_{192}}B_{_{191}}B_{_{190}}$	116
No Input	10100	$B_{205} B_{204} B_{203} B_{202} B_{201} B_{200}$	117
No Input	10101	$B_{215} B_{214} B_{213} B_{212} B_{211} B_{210}$	118
No Input	10110	B ₂₂₅ B ₂₂₄ B ₂₂₃ B ₂₂₂ B ₂₂₁ B ₂₂₀	119
No Input	10111	$B_{235} B_{234} B_{233} B_{232} B_{231} B_{230}$	120

B input (4bit) 12 bit/pixel -mode	B input (5 bit) 16 bit/pixel -mode	B output (6bit) 18 bit/pixel -mode	write_LUT Parameter
4,096 colors	65,536 colors	262,144 colors	
No Input	11000	B ₂₄₅ B ₂₄₄ B ₂₄₃ B ₂₄₂ B ₂₄₁ B ₂₄₀	121
No Input	11001	B ₂₅₅ B ₂₅₄ B ₂₅₃ B ₂₅₂ B ₂₅₁ B ₂₅₀	122
No Input	11010	B ₂₆₅ B ₂₆₄ B ₂₆₃ B ₂₆₂ B ₂₆₁ B ₂₆₀	123
No Input	11011	$B_{275} B_{274} B_{273} B_{272} B_{271} B_{270}$	124
No Input	11100	$B_{285} B_{284} B_{283} B_{282} B_{281} B_{280}$	125
No Input	11101	$B_{295} B_{294} B_{293} B_{292} B_{291} B_{290}$	126
No Input	11110	B ₃₀₅ B ₃₀₄ B ₃₀₃ B ₃₀₂ B ₃₀₁ B ₃₀₀	127
No Input	11111	$\begin{bmatrix} B_{315} B_{314} B_{313} B_{312} B_{311} B_{310} \end{bmatrix}$	128

1596

B.3 Color Depth Conversion LUT – 12-bit, 16-bit and 18-bit Colors to 24-bit Color Table 17 12-bit, 16-bit and 18-bit Colors to 24-bit Color LUT Red Component Values

R input (4bit) 12 bit/pixel - mode 4,096 colors	R input (5 bit) 16 bit/pixel - mode 65,536 colors	R input (6 bit) 18 bit/pixel - mode 262,144 colors	R output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
0000	00000	000000	$R_{007}R_{006}R_{005}R_{004}R_{003}R_{002}R_{001}R_{000}$	1
0001	00001	000001	$R_{017} R_{016} R_{015} R_{014} R_{013} R_{017} R_{011} R_{010}$	2
0010	00010	000010	$R_{027} R_{026} R_{025} R_{024} R_{023} R_{022} R_{021} R_{020}$	3
0011	00011	000011	$R_{037} R_{036} R_{035} R_{034} R_{033} R_{037} R_{031} R_{030}$	4
0100	00100	000100	$R_{047} R_{046} R_{045} R_{044} R_{043} R_{042} R_{041} R_{040}$	5
0101	00101	000101	$R_{057} R_{056} R_{055} R_{054} R_{053} R_{052} R_{051} R_{050}$	6
0110	00110	000110	$R_{067} R_{066} R_{065} R_{064} R_{063} R_{062} R_{061} R_{060}$	7
0111	00111	000111	$R_{077} R_{076} R_{075} R_{074} R_{073} R_{072} R_{071} R_{070}$	8
1000	01000	001000	$R_{087} R_{086} R_{085} R_{084} R_{083} R_{082} R_{081} R_{080}$	9
1001	01001	001001	R ₀₉₇ R ₀₉₆ R ₀₉₅ R ₀₉₄ R ₀₉₃ R ₀₉₂ R ₀₉₁ R ₀₉₀	10
1010	01010	001010	$R_{107}R_{106}R_{105}R_{104}R_{103}R_{102}R_{101}R_{100}$	11
1011	01011	001011	$R_{117} R_{116} R_{115} R_{114} R_{113} R_{112} R_{111} R_{110}$	12
1100	01100	001100	$R_{127} R_{126} R_{125} R_{124} R_{123} R_{122} R_{121} R_{120}$	13
1101	01101	001101	$R_{_{137}}R_{_{136}}R_{_{135}}R_{_{134}}R_{_{133}}R_{_{132}}R_{_{131}}R_{_{130}}$	14
1110	01110	001110	$R_{_{147}}R_{_{146}}R_{_{145}}R_{_{144}}R_{_{143}}R_{_{142}}R_{_{141}}R_{_{140}}$	15
1111	01111	001111	$R_{157} R_{156} R_{155} R_{154} R_{153} R_{152} R_{151} R_{150}$	16
No Input	10000	010000	$R_{167}R_{166}R_{165}R_{164}R_{163}R_{162}R_{161}R_{160}$	17
No Input	10001	010001	$R_{_{177}}R_{_{176}}R_{_{175}}R_{_{174}}R_{_{173}}R_{_{172}}R_{_{171}}R_{_{170}}$	18
No Input	10010	010010	$R_{_{187}}R_{_{186}}R_{_{185}}R_{_{184}}R_{_{183}}R_{_{182}}R_{_{181}}R_{_{180}}$	19
No Input	10011	010011	$R_{_{197}}R_{_{196}}R_{_{195}}R_{_{194}}R_{_{193}}R_{_{19}},R_{_{191}}R_{_{190}}$	20
No Input	10100	010100	$R_{207} R_{206} R_{205} R_{204} R_{203} R_{207} R_{201} R_{200}$	21
No Input	10101	010101	$R_{217} R_{216} R_{215} R_{214} R_{213} R_{212} R_{211} R_{210}$	22
No Input	10110	010110	$R_{227} R_{226} R_{225} R_{224} R_{223} R_{222} R_{221} R_{220}$	23

R input (4bit) 12 bit/pixel - mode 4,096 colors	R input (5 bit) 16 bit/pixel - mode 65,536 colors	R input (6 bit) 18 bit/pixel - mode 262,144 colors	R output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
No Input	10111	010111	$R_{237} R_{236} R_{235} R_{234} R_{233} R_{232} R_{231} R_{230}$	24
No Input	11000	011000	$R_{247} R_{246} R_{245} R_{244} R_{243} R_{242} R_{241} R_{240}$	25
No Input	11001	011001	$R_{257}R_{256}R_{255}R_{254}R_{253}R_{252}R_{251}R_{250}$	26
No Input	11010	011010	$R_{267} R_{266} R_{265} R_{264} R_{263} R_{262} R_{261} R_{260}$	27
No Input	11011	011011	$R_{277} R_{276} R_{275} R_{274} R_{273} R_{272} R_{271} R_{270}$	28
No Input	11100	011100	$R_{287} R_{286} R_{285} R_{284} R_{283} R_{282} R_{281} R_{280}$	29
No Input	11101	011101	$R_{297} R_{296} R_{295} R_{294} R_{293} R_{292} R_{291} R_{290}$	30
No Input	11110	011110	$R_{307}R_{306}R_{305}R_{304}R_{303}R_{302}R_{301}R_{300}$	31
No Input	11111	011111	$R_{317}R_{316}R_{315}R_{314}R_{313}R_{312}R_{311}R_{310}$	32
No Input	No Input	100000	$R_{327}R_{326}R_{325}R_{324}R_{323}R_{322}R_{321}R_{320}$	33
No Input	No Input	100001	$R_{_{337}}R_{_{336}}R_{_{335}}R_{_{334}}R_{_{333}}R_{_{332}}R_{_{331}}R_{_{330}}$	34
No Input	No Input	100010	$R_{347}R_{346}R_{345}R_{344}R_{343}R_{342}R_{341}R_{340}$	35
No Input	No Input	100011	$R_{357}R_{356}R_{355}R_{354}R_{353}R_{352}R_{351}R_{350}$	36
No Input	No Input	100100	$R_{367}R_{366}R_{365}R_{364}R_{363}R_{362}R_{361}R_{360}$	37
No Input	No Input	100101	$R_{_{377}}R_{_{376}}R_{_{375}}R_{_{374}}R_{_{373}}R_{_{372}}R_{_{371}}R_{_{370}}$	38
No Input	No Input	100110	$R_{_{387}}R_{_{386}}R_{_{385}}R_{_{384}}R_{_{383}}R_{_{387}}R_{_{381}}R_{_{380}}$	39
No Input	No Input	100111	$R_{_{397}}R_{_{396}}R_{_{395}}R_{_{394}}R_{_{393}}R_{_{392}}R_{_{391}}R_{_{390}}$	40
No Input	No Input	101000	$R_{407} R_{406} R_{405} R_{404} R_{403} R_{402} R_{401} R_{400}$	41
No Input	No Input	101001	$R_{_{417}}R_{_{416}}R_{_{415}}R_{_{414}}R_{_{413}}R_{_{412}}R_{_{411}}R_{_{410}}$	42
No Input	No Input	101010	$R_{_{427}}R_{_{426}}R_{_{425}}R_{_{424}}R_{_{423}}R_{_{422}}R_{_{421}}R_{_{420}}$	43
No Input	No Input	101011	$R_{_{437}}R_{_{436}}R_{_{435}}R_{_{434}}R_{_{433}}R_{_{432}}R_{_{431}}R_{_{430}}$	44
No Input	No Input	101100	$R_{_{447}}R_{_{446}}R_{_{445}}R_{_{444}}R_{_{443}}R_{_{447}}R_{_{441}}R_{_{440}}$	45
No Input	No Input	101101	$R_{_{457}}R_{_{456}}R_{_{455}}R_{_{454}}R_{_{453}}R_{_{452}}R_{_{451}}R_{_{450}}$	46
No Input	No Input	101110	$R_{467}R_{466}R_{465}R_{464}R_{463}R_{462}R_{461}R_{460}$	47
No Input	No Input	101111	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	48

R input (4bit) 12 bit/pixel - mode 4,096 colors	R input (5 bit) 16 bit/pixel - mode 65,536 colors	R input (6 bit) 18 bit/pixel - mode 262,144 colors	R output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
No Input	No Input	110000	$R_{_{487}}R_{_{486}}R_{_{485}}R_{_{484}}R_{_{483}}R_{_{487}}R_{_{481}}R_{_{480}}$	49
No Input	No Input	110001	$R_{_{497}}R_{_{496}}R_{_{495}}R_{_{494}}R_{_{493}}R_{_{497}}R_{_{491}}R_{_{490}}$	50
No Input	No Input	110010	$R_{s07} R_{s06} R_{s05} R_{s04} R_{s03} R_{s02} R_{s01} R_{s00}$	51
No Input	No Input	110011	$R_{5_{17}}R_{5_{16}}R_{5_{15}}R_{5_{14}}R_{5_{13}}R_{5_{12}}R_{5_{11}}R_{5_{10}}$	52
No Input	No Input	110100	$R_{527}R_{526}R_{525}R_{524}R_{523}R_{522}R_{521}R_{520}$	53
No Input	No Input	110101	R ₅₃₇ R ₅₃₆ R ₅₃₅ R ₅₃₄ R ₅₃₃ R ₅₃₂ R ₅₃₁ R ₅₃₀	54
No Input	No Input	110110	$R_{s_{47}} R_{s_{46}} R_{s_{45}} R_{s_{44}} R_{s_{43}} R_{s_{42}} R_{s_{41}} R_{s_{40}}$	55
No Input	No Input	110111	R ₅₅₇ R ₅₅₆ R ₅₅₅ R ₅₅₄ R ₅₅₃ R ₅₅₂ R ₅₅₁ R ₅₅₀	56
No Input	No Input	111000	R ₅₆₇ R ₅₆₆ R ₅₆₅ R ₅₆₄ R ₅₆₃ R ₅₆₂ R ₅₆₁ R ₅₆₀	57
No Input	No Input	111001	$R_{\varsigma_{77}}R_{\varsigma_{76}}R_{\varsigma_{75}}R_{\varsigma_{74}}R_{\varsigma_{73}}R_{\varsigma_{72}}R_{\varsigma_{71}}R_{\varsigma_{70}}$	58
No Input	No Input	111010	$R_{s_{87}}R_{s_{86}}R_{s_{86}}R_{s_{86}}R_{s_{84}}R_{s_{83}}R_{s_{82}}R_{s_{81}}R_{s_{80}}$	59
No Input	No Input	111011	R ₅₀₇ R ₅₀₆ R ₅₀₅ R ₅₀₄ R ₅₀₃ R ₅₀₂ R ₅₀₁ R ₅₀₀	60
No Input	No Input	111100	R ₆₀₇ R ₆₀₆ R ₆₀₅ R ₆₀₄ R ₆₀₃ R ₆₀₂ R ₆₀₁ R ₆₀₀	61
No Input	No Input	111101	R ₆₁₇ R ₆₁₆ R ₆₁₅ R ₆₁₄ R ₆₁₃ R ₆₁₂ R ₆₁₁ R ₆₁₀	62
No Input	No Input	111110	R ₆₂₇ R ₆₂₆ R ₆₂₅ R ₆₂₄ R ₆₂₃ R ₆₂₇ R ₆₂₁ R ₆₂₀	63
No Input	No Input	111111	R ₆₃₇ R ₆₃₆ R ₆₃₅ R ₆₃₄ R ₆₃₃ R ₆₃₂ R ₆₃₁ R ₆₃₀	64

1597 Table 18 12-bit, 16-bit and 18-bit Colors to 24-bit Color LUT Green Component Values

G input (4bit) 12 bit/pixel - mode 4,096 colors	G input (6 bit) 16 bit/pixel - mode 65,536 colors	G input (6 bit) 18 bit/pixel - mode 262,144 colors	G output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
0000	000000	000000	$G_{007}G_{006}G_{005}G_{004}G_{003}G_{002}G_{001}G_{000}$	65
0001	000001	000001	$G_{017} G_{016} G_{015} G_{014} G_{013} G_{017} G_{011} G_{010}$	66
0010	000010	000010	$G_{027} G_{026} G_{025} G_{024} G_{023} G_{022} G_{021} G_{020}$	67
0011	000011	000011	$G_{037} G_{036} G_{035} G_{034} G_{033} G_{032} G_{031} G_{030}$	68
0100	000100	000100	$G_{047} G_{046} G_{045} G_{044} G_{043} G_{042} G_{041} G_{040}$	69
0101	000101	000101	$G_{057} G_{056} G_{055} G_{054} G_{053} G_{052} G_{051} G_{050}$	70
0110	000110	000110	$G_{067} G_{066} G_{065} G_{064} G_{063} G_{062} G_{061} G_{060}$	71
0111	000111	000111	$G_{077} G_{076} G_{075} G_{074} G_{073} G_{072} G_{071} G_{070}$	72
1000	001000	001000	$G_{087} G_{086} G_{085} G_{084} G_{083} G_{082} G_{081} G_{080}$	73
1001	001001	001001	$G_{097} G_{096} G_{095} G_{094} G_{093} G_{092} G_{091} G_{090}$	74
1010	001010	001010	$G_{107} G_{106} G_{105} G_{104} G_{103} G_{102} G_{101} G_{100}$	75
1011	001011	001011	$G_{117}G_{116}G_{115}G_{114}G_{113}G_{112}G_{111}G_{110}$	76
1100	001100	001100	$G_{_{127}}G_{_{126}}G_{_{125}}G_{_{124}}G_{_{123}}G_{_{122}}G_{_{121}}G_{_{120}}$	77
1101	001101	001101	$G_{_{137}}G_{_{136}}G_{_{135}}G_{_{134}}G_{_{133}}G_{_{132}}G_{_{131}}G_{_{130}}$	78
1110	001110	001110	$G_{147} G_{146} G_{145} G_{144} G_{143} G_{142} G_{141} G_{140}$	79
1111	001111	001111	$G_{157} G_{156} G_{155} G_{154} G_{153} G_{152} G_{151} G_{150}$	80
No Input	010000	010000	$G_{167}G_{166}G_{165}G_{164}G_{163}G_{162}G_{161}G_{160}$	81
No Input	010001	010001	$G_{_{177}}G_{_{176}}G_{_{175}}G_{_{174}}G_{_{173}}G_{_{172}}G_{_{171}}G_{_{170}}$	82
No Input	010010	010010	$G_{_{187}}G_{_{186}}G_{_{185}}G_{_{184}}G_{_{183}}G_{_{182}}G_{_{181}}G_{_{180}}$	83
No Input	010011	010011	$G_{197} G_{196} G_{195} G_{194} G_{193} G_{192} G_{191} G_{190}$	84
No Input	010100	010100	$G_{207} G_{206} G_{205} G_{204} G_{203} G_{202} G_{201} G_{200}$	85
No Input	010101	010101	$G_{217} G_{216} G_{215} G_{214} G_{213} G_{212} G_{211} G_{210}$	86
No Input	010110	010110	$G_{227} G_{226} G_{225} G_{224} G_{223} G_{222} G_{221} G_{220}$	87
No Input	010111	010111	$G_{237}G_{236}G_{235}G_{234}G_{233}G_{233}G_{231}G_{230}$	88

G input (4bit) 12 bit/pixel - mode 4,096 colors	G input (6 bit) 16 bit/pixel - mode 65,536 colors	G input (6 bit) 18 bit/pixel - mode 262,144 colors	G output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
No Input	011000	011000	$G_{247} G_{246} G_{245} G_{244} G_{243} G_{242} G_{241} G_{240}$	89
No Input	011001	011001	$G_{257}G_{256}G_{255}G_{254}G_{253}G_{252}G_{251}G_{250}$	90
No Input	011010	011010	$G_{267} G_{266} G_{265} G_{264} G_{263} G_{262} G_{261} G_{260}$	91
No Input	011011	011011	$G_{_{277}}G_{_{276}}G_{_{275}}G_{_{274}}G_{_{273}}G_{_{273}}G_{_{272}}G_{_{271}}G_{_{270}}$	92
No Input	011100	011100	$G_{287} G_{286} G_{285} G_{284} G_{283} G_{282} G_{281} G_{280}$	93
No Input	011101	011101	$G_{297} G_{296} G_{295} G_{294} G_{293} G_{297} G_{291} G_{290}$	94
No Input	011110	011110	$G_{307} G_{306} G_{305} G_{304} G_{303} G_{302} G_{301} G_{300}$	95
No Input	011111	011111	$G_{_{317}}G_{_{316}}G_{_{315}}G_{_{314}}G_{_{313}}G_{_{317}}G_{_{311}}G_{_{310}}$	96
No Input	100000	100000	$G_{_{327}}G_{_{326}}G_{_{325}}G_{_{324}}G_{_{323}}G_{_{322}}G_{_{321}}G_{_{320}}$	97
No Input	100001	100001	$G_{_{337}}G_{_{336}}G_{_{335}}G_{_{334}}G_{_{333}}G_{_{332}}G_{_{331}}G_{_{330}}$	98
No Input	100010	100010	$G_{_{347}}G_{_{346}}G_{_{345}}G_{_{344}}G_{_{343}}G_{_{342}}G_{_{341}}G_{_{340}}$	99
No Input	100011	100011	$G_{357} G_{356} G_{355} G_{354} G_{353} G_{352} G_{351} G_{350}$	100
No Input	100100	100100	$G_{367} G_{366} G_{365} G_{364} G_{363} G_{362} G_{361} G_{360}$	101
No Input	100101	100101	$G_{_{377}}G_{_{376}}G_{_{375}}G_{_{374}}G_{_{373}}G_{_{372}}G_{_{371}}G_{_{370}}$	102
No Input	100110	100110	$G_{_{387}}G_{_{386}}G_{_{385}}G_{_{384}}G_{_{383}}G_{_{387}}G_{_{381}}G_{_{380}}$	103
No Input	100111	100111	$G_{_{307}}G_{_{306}}G_{_{305}}G_{_{304}}G_{_{303}}G_{_{307}}G_{_{301}}G_{_{300}}$	104
No Input	101000	101000	$G_{407} G_{406} G_{405} G_{404} G_{403} G_{407} G_{401} G_{400}$	105
No Input	101001	101001	$G_{_{417}}G_{_{416}}G_{_{415}}G_{_{414}}G_{_{413}}G_{_{41}}G_{_{41}}G_{_{410}}$	106
No Input	101010	101010	$G_{_{427}}G_{_{426}}G_{_{425}}G_{_{424}}G_{_{423}}G_{_{423}}G_{_{421}}G_{_{420}}$	107
No Input	101011	101011	$G_{_{437}}G_{_{436}}G_{_{435}}G_{_{434}}G_{_{433}}G_{_{433}}G_{_{431}}G_{_{430}}$	108
No Input	101100	101100	$G_{_{447}}G_{_{446}}G_{_{445}}G_{_{444}}G_{_{443}}G_{_{447}}G_{_{441}}G_{_{440}}$	109
No Input	101101	101101	$G_{457} G_{456} G_{455} G_{454} G_{453} G_{452} G_{451} G_{450}$	110
No Input	101110	101110	$G_{467} G_{466} G_{465} G_{464} G_{463} G_{462} G_{461} G_{460}$	111
No Input	101111	101111	$G_{_{477}}G_{_{476}}G_{_{475}}G_{_{474}}G_{_{473}}G_{_{477}}G_{_{471}}G_{_{470}}$	112
No Input	110000	110000	$G_{_{487}}G_{_{486}}G_{_{485}}G_{_{484}}G_{_{483}}G_{_{487}}G_{_{481}}G_{_{480}}$	113

G input (4bit) 12 bit/pixel - mode 4,096 colors	G input (6 bit) 16 bit/pixel - mode 65,536 colors	G input (6 bit) 18 bit/pixel - mode 262,144 colors	G output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
No Input	110001	110001	$G_{_{497}}G_{_{496}}G_{_{495}}G_{_{494}}G_{_{493}}G_{_{497}}G_{_{491}}G_{_{490}}$	114
No Input	110010	110010	$G_{s_{07}}G_{s_{06}}G_{s_{05}}G_{s_{04}}G_{s_{03}}G_{s_{02}}G_{s_{01}}G_{s_{00}}$	115
No Input	110011	110011	$G_{s_{17}}G_{s_{16}}G_{s_{15}}G_{s_{14}}G_{s_{13}}G_{s_{12}}G_{s_{11}}G_{s_{10}}$	116
No Input	110100	110100	$G_{527} G_{526} G_{525} G_{524} G_{523} G_{522} G_{521} G_{520}$	117
No Input	110101	110101	$G_{s_{37}}G_{s_{36}}G_{s_{35}}G_{s_{34}}G_{s_{33}}G_{s_{32}}G_{s_{31}}G_{s_{30}}$	118
No Input	110110	110110	$G_{s_{47}}G_{s_{46}}G_{s_{45}}G_{s_{44}}G_{s_{43}}G_{s_{47}}G_{s_{40}}G_{s_{40}}$	119
No Input	110111	110111	G ₅₅₇ G ₅₅₆ G ₅₅₅ G ₅₅₄ G ₅₅₃ G ₅₅₂ G ₅₅₁ G ₅₅₀	120
No Input	111000	111000	$G_{s67} G_{s66} G_{s65} G_{s64} G_{s63} G_{s62} G_{s61} G_{s60}$	121
No Input	111001	111001	$G_{_{577}}G_{_{576}}G_{_{575}}G_{_{574}}G_{_{573}}G_{_{572}}G_{_{571}}G_{_{570}}$	122
No Input	111010	111010	$G_{587} G_{586} G_{585} G_{584} G_{583} G_{582} G_{581} G_{580}$	123
No Input	111011	111011	$G_{s_{07}}G_{s_{96}}G_{s_{95}}G_{s_{94}}G_{s_{93}}G_{s_{92}}G_{s_{91}}G_{s_{90}}$	124
No Input	111100	111100	$G_{607} G_{606} G_{605} G_{604} G_{603} G_{602} G_{601} G_{600}$	125
No Input	111101	111101	$G_{617} G_{616} G_{615} G_{614} G_{613} G_{612} G_{611} G_{610}$	126
No Input	111110	111110	$G_{627} G_{626} G_{625} G_{624} G_{623} G_{622} G_{621} G_{620}$	127
No Input	111111	111111	$G_{637}G_{636}G_{638}G_{634}G_{633}G_{637}G_{631}G_{630}$	128

1598 Table 19 12-bit, 16-bit and 18-bit Colors to 24-bit Color LUT Blue Component Values

B input (4bit) 12 bit/pixel - mode 4,096 colors	B input (5 bit) 16 bit/pixel - mode 65,536 colors	B input (6 bit) 18 bit/pixel - mode 262,144 colors	B output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
0000	00000	000000	B ₀₀₇ B ₀₀₆ B ₀₀₅ B ₀₀₄ B ₀₀₃ B ₀₀₂ B ₀₀₁ B ₀₀₀	129
0001	00001	000001	$B_{017} B_{016} B_{015} B_{014} B_{013} B_{012} B_{011} B_{010}$	130
0010	00010	000010	$B_{027} B_{026} B_{025} B_{024} B_{023} B_{022} B_{021} B_{020}$	131
0011	00011	000011	$B_{037} B_{036} B_{035} B_{034} B_{033} B_{03}, B_{031} B_{030}$	132
0100	00100	000100	B ₀₄₇ B ₀₄₆ B ₀₄₅ B ₀₄₄ B ₀₄₃ B ₀₄₇ B ₀₄₁ B ₀₄₀	133
0101	00101	000101	$B_{057} B_{056} B_{055} B_{054} B_{053} B_{052} B_{051} B_{050}$	134
0110	00110	000110	B ₀₆₇ B ₀₆₆ B ₀₆₅ B ₀₆₄ B ₀₆₃ B ₀₆₂ B ₀₆₁ B ₀₆₀	135
0111	00111	000111	B ₀₇₇ B ₀₇₆ B ₀₇₅ B ₀₇₄ B ₀₇₃ B ₀₇₇ B ₀₇₁ B ₀₇₀	136
1000	01000	001000	B ₀₈₇ B ₀₈₆ B ₀₈₈ B ₀₈₄ B ₀₈₃ B ₀₈ , B ₀₈₁ B ₀₈₀	137
1001	01001	001001	B ₀₉₇ B ₀₉₆ B ₀₉₅ B ₀₉₄ B ₀₉₃ B ₀₉₂ B ₀₉₁ B ₀₉₀	138
1010	01010	001010	B ₁₀₇ B ₁₀₆ B ₁₀₅ B ₁₀₄ B ₁₀₃ B ₁₀₂ B ₁₀₁ B ₁₀₀	139
1011	01011	001011	$B_{117} B_{116} B_{115} B_{114} B_{113} B_{11}, B_{111} B_{110}$	140
1100	01100	001100	$B_{127} B_{126} B_{125} B_{124} B_{123} B_{122} B_{121} B_{120}$	141
1101	01101	001101	$B_{137} B_{136} B_{135} B_{134} B_{133} B_{132} B_{131} B_{130}$	142
1110	01110	001110	$B_{147} B_{146} B_{145} B_{144} B_{143} B_{142} B_{141} B_{140}$	143
1111	01111	001111	B ₁₅₇ B ₁₅₆ B ₁₅₅ B ₁₅₄ B ₁₅₃ B ₁₅₂ B ₁₅₁ B ₁₅₀	144
No Input	10000	010000	$B_{167}B_{166}B_{165}B_{164}B_{163}B_{162}B_{161}B_{160}$	145
No Input	10001	010001	$B_{177} B_{176} B_{175} B_{174} B_{173} B_{172} B_{171} B_{170}$	146
No Input	10010	010010	$B_{187} B_{186} B_{185} B_{184} B_{183} B_{182} B_{181} B_{180}$	147
No Input	10011	010011	B ₁₉₇ B ₁₉₆ B ₁₉₅ B ₁₉₄ B ₁₉₃ B ₁₉₇ B ₁₉₁ B ₁₉₀	148
No Input	10100	010100	$B_{207} B_{206} B_{205} B_{204} B_{203} B_{202} B_{201} B_{200}$	149
No Input	10101	010101	$B_{217} B_{216} B_{215} B_{214} B_{213} B_{21} B_{211} B_{210}$	150
No Input	10110	010110	B ₂₂₇ B ₂₂₆ B ₂₂₅ B ₂₂₄ B ₂₂₃ B ₂₂₇ B ₂₂₁ B ₂₂₀	151
No Input	10111	010111	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	152

B input (4bit) 12 bit/pixel - mode 4,096 colors	B input (5 bit) 16 bit/pixel - mode 65,536 colors	B input (6 bit) 18 bit/pixel - mode 262,144 colors	B output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
No Input	11000	011000	$B_{247} B_{246} B_{245} B_{244} B_{243} B_{242} B_{241} B_{240}$	153
No Input	11001	011001	$B_{257} B_{256} B_{255} B_{254} B_{253} B_{252} B_{251} B_{250}$	154
No Input	11010	011010	$B_{267} B_{266} B_{265} B_{264} B_{263} B_{262} B_{261} B_{260}$	155
No Input	11011	011011	$B_{277} B_{276} B_{275} B_{274} B_{273} B_{277} B_{271} B_{270}$	156
No Input	11100	011100	$B_{287}B_{286}B_{285}B_{284}B_{283}B_{282}B_{281}B_{280}$	157
No Input	11101	011101	$B_{297} B_{296} B_{295} B_{294} B_{293} B_{292} B_{291} B_{290}$	158
No Input	11110	011110	B ₃₀₇ B ₃₀₆ B ₃₀₅ B ₃₀₄ B ₃₀₃ B ₃₀₂ B ₃₀₁ B ₃₀₀	159
No Input	11111	011111	$B_{317} B_{316} B_{315} B_{314} B_{313} B_{312} B_{311} B_{310}$	160
No Input	No Input	100000	$B_{327}B_{326}B_{325}B_{324}B_{323}B_{322}B_{321}B_{320}$	161
No Input	No Input	100001	B ₃₃₇ B ₃₃₆ B ₃₃₅ B ₃₃₄ B ₃₃₃ B ₃₃₂ B ₃₃₁ B ₃₃₀	162
No Input	No Input	100010	B ₃₄₇ B ₃₄₆ B ₃₄₅ B ₃₄₄ B ₃₄₃ B ₃₄₂ B ₃₄₁ B ₃₄₀	163
No Input	No Input	100011	B ₃₅₇ B ₃₅₆ B ₃₅₅ B ₃₅₄ B ₃₅₃ B ₃₅₂ B ₃₅₁ B ₃₅₀	164
No Input	No Input	100100	B ₃₆₇ B ₃₆₆ B ₃₆₅ B ₃₆₄ B ₃₆₃ B ₃₆₂ B ₃₆₁ B ₃₆₀	165
No Input	No Input	100101	$B_{_{377}}B_{_{376}}B_{_{375}}B_{_{374}}B_{_{373}}B_{_{372}}B_{_{371}}B_{_{370}}$	166
No Input	No Input	100110	B ₃₈₇ B ₃₈₆ B ₃₈₅ B ₃₈₄ B ₃₈₃ B ₃₈₇ B ₃₈₁ B ₃₈₀	167
No Input	No Input	100111	B ₃₀₇ B ₃₀₆ B ₃₀₅ B ₃₀₄ B ₃₀₃ B ₃₀₇ B ₃₀₁ B ₃₀₀	168
No Input	No Input	101000	B ₄₀₇ B ₄₀₆ B ₄₀₅ B ₄₀₄ B ₄₀₃ B ₄₀₂ B ₄₀₁ B ₄₀₀	169
No Input	No Input	101001	$B_{_{417}}B_{_{416}}B_{_{415}}B_{_{414}}B_{_{413}}B_{_{412}}B_{_{411}}B_{_{410}}$	170
No Input	No Input	101010	$B_{_{427}}B_{_{426}}B_{_{425}}B_{_{424}}B_{_{423}}B_{_{422}}B_{_{421}}B_{_{420}}$	171
No Input	No Input	101011	$B_{_{437}}B_{_{436}}B_{_{435}}B_{_{434}}B_{_{433}}B_{_{432}}B_{_{431}}B_{_{430}}$	172
No Input	No Input	101100	B ₄₄₇ B ₄₄₆ B ₄₄₅ B ₄₄₄ B ₄₄₃ B ₄₄₇ B ₄₄₁ B ₄₄₀	173
No Input	No Input	101101	B ₄₅₇ B ₄₅₆ B ₄₅₅ B ₄₅₄ B ₄₅₃ B ₄₅₂ B ₄₅₁ B ₄₅₀	174
No Input	No Input	101110	B ₄₆₇ B ₄₆₆ B ₄₆₅ B ₄₆₄ B ₄₆₃ B ₄₆₂ B ₄₆₁ B ₄₆₀	175
No Input	No Input	101111	$B_{_{477}}B_{_{476}}B_{_{475}}B_{_{474}}B_{_{473}}B_{_{477}}B_{_{471}}B_{_{470}}$	176
No Input	No Input	110000	$\begin{bmatrix} B_{487}B_{486}B_{485}B_{484}B_{483}B_{482}B_{481}B_{480} \end{bmatrix}$	177

B input (4bit) 12 bit/pixel - mode 4,096 colors	B input (5 bit) 16 bit/pixel - mode	B input (6 bit) 18 bit/pixel - mode 262,144 colors	B output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
4,090 Colors	65,536 colors	202,144 Colors		
No Input	No Input	110001	$B_{_{497}}B_{_{496}}B_{_{495}}B_{_{494}}B_{_{493}}B_{_{492}}B_{_{491}}B_{_{490}}$	178
No Input	No Input	110010	B ₅₀₇ B ₅₀₆ B ₅₀₅ B ₅₀₄ B ₅₀₃ B ₅₀₂ B ₅₀₁ B ₅₀₀	179
No Input	No Input	110011	$B_{s_{17}}B_{s_{16}}B_{s_{15}}B_{s_{14}}B_{s_{13}}B_{s_{12}}B_{s_{11}}B_{s_{10}}$	180
No Input	No Input	110100	$B_{527}B_{526}B_{525}B_{524}B_{523}B_{522}B_{521}B_{520}$	181
No Input	No Input	110101	B ₅₃₇ B ₅₃₆ B ₅₃₅ B ₅₃₄ B ₅₃₃ B ₅₃₂ B ₅₃₁ B ₅₃₀	182
No Input	No Input	110110	B ₅₄₇ B ₅₄₆ B ₅₄₅ B ₅₄₄ B ₅₄₃ B ₅₄₂ B ₅₄₁ B ₅₄₀	183
No Input	No Input	110111	B ₅₅₇ B ₅₅₆ B ₅₅₅ B ₅₅₄ B ₅₅₃ B ₅₅₂ B ₅₅₁ B ₅₅₀	184
No Input	No Input	111000	B ₅₆₇ B ₅₆₆ B ₅₆₅ B ₅₆₄ B ₅₆₃ B ₅₆₂ B ₅₆₁ B ₅₆₀	185
No Input	No Input	111001	$B_{\varsigma_{77}}B_{\varsigma_{76}}B_{\varsigma_{75}}B_{\varsigma_{74}}B_{\varsigma_{73}}B_{\varsigma_{72}}B_{\varsigma_{71}}B_{\varsigma_{70}}$	186
No Input	No Input	111010	B ₅₈₇ B ₅₈₆ B ₅₈₅ B ₅₈₄ B ₅₈₃ B ₅₈₂ B ₅₈₁ B ₅₈₀	187
No Input	No Input	111011	$B_{\varsigma_{07}}B_{\varsigma_{96}}B_{\varsigma_{95}}B_{\varsigma_{94}}B_{\varsigma_{93}}B_{\varsigma_{92}}B_{\varsigma_{91}}B_{\varsigma_{90}}$	188
No Input	No Input	111100	B ₆₀₇ B ₆₀₆ B ₆₀₅ B ₆₀₄ B ₆₀₃ B ₆₀₂ B ₆₀₁ B ₆₀₀	189
No Input	No Input	111101	B ₆₁₇ B ₆₁₆ B ₆₁₅ B ₆₁₄ B ₆₁₃ B ₆₁₇ B ₆₁₁ B ₆₁₀	190
No Input	No Input	111110	B ₆₂₇ B ₆₂₆ B ₆₂₅ B ₆₂₄ B ₆₂₃ B ₆₂₂ B ₆₂₁ B ₆₂₀	191
No Input	No Input	111111	B ₆₃₇ B ₆₃₆ B ₆₃₅ B ₆₃₄ B ₆₃₃ B ₆₃₇ B ₆₃₁ B ₆₃₀	192