

Universidad de Oviedo. Escuela Politécnica de Ingeniería de Gijón Tecnología Electrónica de Computadores. 2º Curso Grado en Ingeniería Informática en Tecnologías de la Información

APELLIDOS Y NOMBRE	
DNI	

Ejercicio 3 MODELO A

En el circuito de la figura, el transistor es ideal. Se pide:

- 1. Para el circuito de colector, dibujar la curva característica del transistor y la recta de carga, obteniendo gráficamente el punto de funcionamiento
- 2. Indicar en qué zona de trabajo se encuentra el transistor
- 3. Calcular el punto de funcionamiento del circuito (i_B , i_C y u_{CE})
- 4. Si se conservan el resto de elementos del circuito, calcular el valor de $R_{\mathbb{C}}$ para el cual el transistor está en el límite entre la zona de saturación y la zona activa.

DATOS:

 $\begin{array}{l} V_{1}\!=\,15\;V \\ R_{1}\!=\,30\;k\Omega \\ R_{2}\!=\,60\;k\Omega \\ \beta\,=\,100 \\ R_{C}\!=\,300\;\Omega \\ V_{2}\!=\!12\;V \end{array}$

Ejercicio 4

En el circuito de la figura, se pide:

- 1. Obtener ugs
- 2. Para el circuito de drenador, dibujar sobre la gráfica la recta de carga, la curva característica del transistor MOSFET y el punto de funcionamiento del circuito.
- 3. Indicar en qué zona de trabajo se encuentra el transistor MOSFET
- 4. Obtener el punto de funcionamiento del circuito (u_{GS}, i_D y u_{DS})

DATOS: $V_{CC} = 10 \text{ V}$; $R_G = 4 \text{ k}\Omega$; $R_D = 250 \Omega$; Tensión zéner $V_{Dz} = 6 \text{ V}$

Universidad de Oviedo. Escuela Politécnica de Ingeniería de Gijón Tecnología Electrónica de Computadores. 2º Curso Grado en Ingeniería Informática en Tecnologías de la Información

APELLIDOS Y NOMBRE	
DNI	

NOTA: Dibujar en los circuitos los sentidos de las tensiones y corrientes utilizados en su resolución

Universidad de Oviedo. Escuela Politécnica de Ingeniería de Gijón Tecnología Electrónica de Computadores. 2º Curso Grado en Ingeniería Informática en Tecnologías de la Información

APELLIDOS Y NOMBRE	
DNI	

Ejercicio 3 MODELO B

En el circuito de la figura, el transistor es ideal. Se pide:

- 1. Para el circuito de colector, dibujar la curva característica del transistor y la recta de carga, obteniendo gráficamente el punto de funcionamiento
- 2. Indicar en qué zona de trabajo se encuentra el transistor
- 3. Calcular el punto de funcionamiento del circuito (i_B , i_C y u_{CE})
- 4. Si se conservan el resto de elementos del circuito, calcular el valor de $R_{\mathbb{C}}$ para el cual el transistor está en el límite entre la zona de saturación y la zona activa.

DATOS:

 $V_{1} = 15 \text{ V}$ $R_{1} = 15 \text{ k}\Omega$ $R_{2} = 30 \text{ k}\Omega$ $\beta = 50$ $R_{C} = 300 \Omega$ $V_{2} = 18 \text{ V}$

Ejercicio 4

En el circuito de la figura, se pide:

- 1. Obtener u_{GS}
- 2. Para el circuito de drenador, dibujar sobre la gráfica la recta de carga, la curva característica del transistor MOSFET y el punto de funcionamiento del circuito.
- 3. Indicar en qué zona de trabajo se encuentra el transistor MOSFET
- 4. Obtener el punto de funcionamiento del circuito (u_{GS}, i_D y u_{DS})

DATOS: V_{CC} =12 V; R_G =6 $k\Omega$; R_D =400 Ω ; Tensión zéner V_{Dz} =4 V

Universidad de Oviedo. Escuela Politécnica de Ingeniería de Gijón Tecnología Electrónica de Computadores. 2º Curso Grado en Ingeniería Informática en Tecnologías de la Información

APELLIDOS Y NOMBRE	
DNI	

NOTA: Dibujar en los circuitos los sentidos de las tensiones y corrientes utilizados en su resolución

