Lista 05 de Circuitos Lógicos

Leo - DRE: XXXXXXXXX

¹Universidade Federal do Rio de Janeiro (UFRJ)

leonardongc@poli.ufrj.br

1. Sinal para Carros

Considerando que o clock tem 10 segundos de período, podemos considerar também que cada estado do dispositivo dura 10s:

Então teremos 12 estados verdes $[G_{120}$, $G_{10}]$, 1 amarelo Y e 4 vermelhos $[R_{40}$, $R_{10}]$ totalizando 17 estados (5 bits para armazenar). E temos uma entrada b assíncrona que se acionada num dos estados G_{40} a G_{120} faz com que o próximo estado seja G_{20} . Sendo assim 9 estados reagem ao acionamento de b e 8 não, uma escolha então seria alocar os estados de 0_{HEX} a 7_{HEX} (3 bits) dos Flip-Flops aos estados que não respondem ao acionamento $(G_{30}, G_{20}, G_{10}, Y, R_{40}, R_{30}, R_{20}, R_{10})$. Codificados sequencialmente, pois usaremos um contador:

Estado	Código	Próximo Estado	Com Acionamento de b
G_{30}	00000	G_{20}	
G_{20}	00001	G_{10}	
G_{10}	00010	Y	
Y	00011	R_{40}	=
R_{40}	00100	G_{30}	
R_{30}	00101	R_{20}	
R_{20}	00110	R_{10}	
R_{10}	00111	G_{120}	
G_{120}	01000	G_{110}	
G_{110}	01001	G_{100}	
G_{100}	01010	G_{90}	
G_{90}	01011	G_{80}	
G_{80}	01100	G_{70}	G_{20}
G_{70}	01101	G_{60}	
G_{60}	01110	G_{50}	
G_{50}	01111	G_{40}	
G_{40}	10000	G_{30}	

Para o acionamento de b podemos usar outro FF excitável apenas quando o 4º ou 5º FF do estado estiver ativo, podemos então ter a seguinte condição para o mecanismo de entrada b assíncrono:

$$b_{assync} = b.(C_3 + C_4)$$

E poderemos ter a evolução do estado desse FlipFlop_b sabendo que ele deve desacionar assim que o estado evoluir e permanecer em 0 enquanto não for acionado, para isso ligaremos a entrada J na saída e a entrada K no clock. Sendo também sua saída responsável por carregar o estado $G_{20} = 00001$ no contador.

Com isso temos a lógica de entrada e de evolução dos estados, faltando apenas a lógica de saída:

Saída do Verde:

Estado	Código
G_{30}	00000
G_{20}	00001
G_{10}	00010
G_{120}	01000
G_{110}	01001
G_{100}	01010
G_{90}	01011
G_{80}	01100
G_{70}	01101
G_{60}	01110
G_{50}	01111
G_{40}	10000

Saída do Amarelo:

Estado	Código
Y	00011

Saída do Vermelho:

Estado	Código
R_{40}	00100
R_{30}	00101
R_{20}	00110
R_{10}	00111

As saídas vermelha e amarela são de fácil constatação:

$$Y = \overline{C_4}.\overline{C_3}.\overline{C_2}.C_1.C_0$$

$$R = \overline{C_4}.\overline{C_3}.C_2$$

Então podemos definir a saída do verde como o complemento das demais saídas:

$$G = \overline{R}.\overline{Y}$$

Teremos Então a Figura 1 (Ao final) com o circuito.

2. Sinal para Pedestres

O sinal dos pedestres tem o mesmo ciclo do sinal de carros, portanto os estados são análogos (Verde = W_X , Vermelho = S_X e Vermelho Piscante = B):

Estado no Sinal para Carros	Estado Análogo para Pedestres
G_{30}	S_{40}
G_{20}	S_{30}
G_{10}	S_{20}
Y	S_{10}
R_{40}	W_{30}
R_{30}	W_{20}
R_{20}	W_{10}
R_{10}	B
G_{120}	S_{130}
G_{110}	S_{120}
G_{100}	S_{110}
G_{90}	S_{100}
G_{80}	S_{90}
G_{70}	S_{80}
G_{60}	S_{70}
G_{50}	S_{60}
G_{40}	S_{50}

Podemos observar que os estados W_x e B, são análgos a estados R_x e S_x é complementar a R Portanto podemos extrair as lógicas:

$$S = \overline{R} = C_4 + C_3 + \overline{C_2}$$

$$B = R.C_1.C_0 = \overline{C_4}.\overline{C_3}.C_2.C_1.C_0$$

Por fim W_x seriam complementares a S_x e B :

$$W = \overline{S}.\overline{B}$$

Teremos então o circuito da figura 2. E o Sinal completo na Figura 3

Figura 1. Circuito para Carros

Figura 2. Circuito para Pedestres

Figura 3. Circuito para Carros e Pedestres