FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

Graduação Tecnólogo Data Science

GIOVANNA SHIGUEMORI BARBOSA ISABELA VICTORIA DE NOVAIS ROMANATO

GS Cloud Solutions

PAULISTA 2024

GIOVANNA SHIGUEMORI BARBOSA ISABELA VICTORIA DE NOVAIS ROMANATO

GS Cloud Solutions

Projeto apresentado a Graduação Tecnólogo de Data Science, à Faculdade de Informática e Administração Paulista, à disciplina de Cloud Solutions, sob a orientação do professor Conrad Peres.

Arquitetura

Contexto

A ONU busca promover um mundo mais sustentável e inclusivo, alinhando-se aos Objetivos de Desenvolvimento Sustentável (ODS) como o ODS 13 (Ação contra a Mudança Climática), ODS 14 (Vida na Água), ODS 15 (Vida Terrestre) e ODS 10 (Redução das Desigualdades). A organização enfatiza a importância de uma sociedade diversa e inclusiva, promovendo a igualdade e o combate à discriminação, especialmente em relação às populações mais vulneráveis, que sofrem desproporcionalmente com os impactos ambientais. Além disso, destaca a preservação da biodiversidade e a redução da pegada de carbono como passos essenciais para mitigar a crise climática, incentivando práticas sustentáveis em todos os setores da sociedade. A ação conjunta entre governos, empresas e cidadãos é fundamental para alcançar esses objetivos, promovendo um futuro mais justo, resiliente e saudável para todos.

Link do dataset: https://www.kaggle.com/datasets/goyaladi/climate-insights-dataset?resource=download&select=climate_change_data.csv

Link do projeto auxiliar no git: https://github.com/conradperes/azure-cosmos-db-mongodb-python-getting-started-main.git

Link do código fonte no git: https://github.com/isabelaromanato/GS_CLOUD.git

NO VSCODE:

az login

bash setup.sh

Evidências dos recursos criados na Azure:

Carregar dataset (climate_change_data.csv) no Blob:

NO DATABRICKS:

Fazer login:

Criar um Cluster:

Compute

Create compute Cancel

NOTEBOOK PYTHON:

1. Validação dos Dados

Importação das bibliotecas

!pip install azure-storage-blob pandas import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pyspark.pandas as ps

Carregar dataset

from azure.storage.blob import BlobServiceClient import pandas as pd import io # Import necessário para StringIO

Configurações da Azure

connection_string

"DefaultEndpointsProtocol=https;AccountName=isabelagiovanna;AccountKey=dYDCV4VHTyp/J+xVV7A5zUMAQGBmj2HdyRJv+yvU7tnRM3oYGRtR7A9paVMW4sd+Jve42U9/+nJR+AStx+doDg==;EndpointSuffix=core.windows.net" container_name = "origemdedados"

blob_name = "climate_change_data.csv"

Conecte-se ao Blob Storage

blob_service_client =

BlobServiceClient.from_connection_string(connection_string)

blob_client = blob_service_client.get_blob_client(container=container_name, blob=blob_name)

Faça o download do arquivo como texto

```
download_stream = blob_client.download_blob()
csv_content = download_stream.readall().decode('utf-8')
```

Use io.StringIO para interpretar o conteúdo como arquivo csv_file_like = io.StringIO(csv_content)

Carregue o conteúdo no pandas
df = pd.read_csv(csv_file_like)

Exiba os dados display(df)

Resumo com informações das colunas

df.info()

Verifica presença de nulos

df.isnull().sum()

Verifica se há linhas duplicadas

df.duplicated().values.any()

Out[123]: False

Resumo conciso das estatísticas descritivas

df.describe()

2. Análise Exploratória de Dados

Gerar cópia do dataset original e criar um "limpo"

clean_df[['Temperature', 'CO2 Emissions','Sea Level Rise', 'Precipitation', 'Humidity', 'Wind Speed']].hist(figsize=(12, 10), bins=30)
plt.tight_layout()

Observações em relação aos histogramas:

- Temperatura: O histograma de temperatura mostra uma distribuição aproximadamente normal, sugerindo que as leituras de temperatura são estáveis e previsíveis.
- Emissões de CO2: O histograma de emissões de CO2 também é aproximadamente normal, com valores concentrados em torno de 400 ppm, sendo estáveis ao longo do tempo.
- 3. Aumento do nível do mar: O histograma de aumento do nível do mar também é aproximadamente normal.

- 4. Precipitação: O histograma de precipitação mostra uma distribuição mais uniforme, indicando variabiliade nos padrões.
- 5. Umidade: O histograma de umidade também mostra uma distribuição relativamente uniforme na faixa de 0% a 100%.
- 6. Velocidade do vento: O histograma da velocidade do vento apresenta uma distribuição uniforme, com valores variando de 0 a 50 km/h.

Analisando colunas com valores discrepantes

```
plt.figure(figsize=(12, 6))
sns.boxplot(data=clean_df)
plt.xticks(rotation=90)
plt.title('Box Plots of Features')
```


Verificando presença de outliers

features = ['Temperature', 'CO2 Emissions', 'Sea Level Rise']

fig, axs = plt.subplots(1,3,figsize = (12,6))

for ax,feature in zip(axs, features):
 sns.boxplot(y = feature,data=clean_df, ax = ax)
 ax.set_title(f'Box plot of {feature}')

plt.tight_layout()

Mapa de Calor

sns.pairplot(data = clean_df)


```
# Ajustando o gráfico
plt.figure(figsize=(10, 6))
plt.scatter(df_relacionamento_pandas['Temperature'],
df_relacionamento_pandas['Sea Level Rise'], color='blue', alpha=0.7)
```

Adicionando título e rótulos aos eixos
plt.title("Relação entre Temperatura e Aumento do Nível do Mar")
plt.xlabel("Temperatura")
plt.ylabel("Aumento do Nível do Mar")
plt.show()

Matriz de Correlação

num_features=clean_df[['Sea Level Rise', 'Temperature', 'CO2 Emissions', 'Precipitation', 'Humidity', 'Wind Speed']]

corr_matrix = num_features.corr()

plt.figure(figsize=(12,6))
sns.heatmap(corr_matrix, annot = True)

A correlação entre as variáveis é baixa. Essa evidência sugere uma relação linear quase inexistente entre a Sea Level Rise e as outras características.

```
# plt.figure(figsize=(12, 6))
# plt.plot(clean_df['Date'], clean_df['Temperature'])
# plt.title('Temperature Over Time')
# plt.xlabel('Date')
# plt.ylabel('Temperature (°C)')
# Não há tendencia ao longo dos anos.
```

3. Desenvolvimento dos Modelos

Regressão Linear

clean_df.drop(['Date','Location','Country', 'Date'], axis = 1, inplace = True)

import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_squared_error, r2_score
X = clean_df.drop(['Sea Level Rise'], axis = 1)
y = clean_df['Sea Level Rise']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print('Erro quadrático médio:', mse)
print('Coeficiente de determinação:', r2)
 Erro quadrático médio: 0.9973860307922685
 Coeficiente de determinação: -0.0029546178809112256
```

Random Forest Regressor

from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn import metrics

```
X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=0.3,
random_state=101)

rf_model = RandomForestRegressor()
rf_model.fit(X_train, y_train)
predictions = rf_model.predict(X_test)
```

print('MAE:', metrics.mean_absolute_error(y_test, predictions))
print('MSE:', metrics.mean_squared_error(y_test, predictions))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))
print('Score:', rf_model.score(X_test, y_test))

MAE: 0.8124131354713865 MSE: 1.0283395817132381 RMSE: 1.0140707971898402 Score: -0.037693797047672506

Interpretando os Resultados

Com base nos valores apresentados:

MAE = 0.8101: Em média, o modelo erra por cerca de 0.81 unidades na previsão.

MSE = 1.0259: O erro quadrático médio é de aproximadamente 1.02.

RMSE = 1.0129: A raiz quadrada do erro quadrático médio é de aproximadamente 1.01, o que significa que, em média, as previsões estão desviando cerca de 1.01 unidades dos valores reais.

Score = -0.0353: O valor negativo do score indica que o modelo não está conseguindo explicar a variabilidade dos dados.

PCA

import pandas as pd
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import scale
from sklearn.decomposition import PCA
from sklearn.decomposition import FactorAnalysis
import seaborn as sns

components = 2

cols = ['Temperature', 'CO2 Emissions', 'Sea Level Rise', 'Precipitation', 'Humidity', 'Wind Speed']

```
pca = PCA(n_components=components)
pca_components = pca.fit_transform(scaled_df)

columns = ['pca_comp_%i' % i for i in range(components)]

df_pca = pd.DataFrame(pca_components, columns=columns, index=clean_df.index)

df_pca.head()
```

	pca_comp_0	pca_comp_1
0	-3.227739	-39.930871
1	3.491375	-9.179324
2	-51.211111	38.561890
3	-22.504535	-22.830991
4	-10.047279	23.896076

scaled_df = clean_df[cols]


```
# instanciar o pca
components = 2
pca = PCA(n_components=components)
pca_components = pca.fit_transform(scaled_df)

columns = ['pca_comp_%i' % i for i in range(components)]
componentes_cols = ['PC'+str(i) for i in range(1,components+1)]
df_pca = pd.DataFrame(pca_components, columns=componentes_cols, index=clean_df.index)
df_pca.head()
```


df2 = pd.concat([df_pca, clean_df['Sea Level Rise']], axis=1)
df2.head()

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import scipy.stats as stats
from sklearn.linear_model import LinearRegression

```
from sklearn.preprocessing import PolynomialFeatures
# validação cruzada
from sklearn.model_selection import KFold, StratifiedKFold
# regressao penalizada
from sklearn.linear_model import Ridge, Lasso, RidgeCV, LassoCV
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler
features = ['PC1','PC2']
target = ['Sea Level Rise']
x = df2[features]
y = df2[target]
x_columns = x.columns.to_list()
scaler = StandardScaler()
x = scaler.fit_transform(x)
x_train,
                    x_test,
                                       y_train,
                                                           y_test
train_test_split(x,y,test_size=0.2,random_state=42)
model = LinearRegression()
model.fit(x_train, y_train)
print(model.score(x_test, y_test))
Ir_coef = pd.DataFrame(np.append(model.intercept_, model.coef_), ['intercepto']
+ x_columns, columns=['Lin Reg'])
Ir_coef
```



```
#define cross-validation method to evaluate model

cv = KFold(n_splits=10, shuffle=True, random_state=42)

model = LassoCV(alphas=np.arange(0.1, 1, 0.1), cv=cv)

model.fit(x_train,y_train.values.ravel())

print(model.alpha_)

print(model.score(x_test, y_test))

coef_lasso = pd.DataFrame(np.append(model.intercept_, model.coef_),

['intercepto'] + x_columns, columns=['Lasso'])

coef_lasso
```



```
# Define a forma de validação cruzada que será usada na regressão Ridge
cv = KFold(n_splits=10, shuffle=True, random_state=42)
                 RidgeCV(alphas=np.arange(0.1,
                                                     1,
                                                            0.1),
                                                                      CV=CV.
scoring='neg_mean_squared_error')
model.fit(x_train, y_train)
# Indica o melhor alpha para a Ridge
print(model.alpha_)
print(model.score(x_test, y_test))
                 pd.DataFrame(np.append(model.intercept_,
coef_ridge
                                                             model.coef_),
['intercepto'] + x_columns, columns=['Ridge'])
# Indica os coeficientes calculados para a Ridge
coef_ridge
```


coefs = pd.concat([Ir_coef, coef_lasso, coef_ridge], axis=1)
coefs

Observando o modelo, o desempenho foi insatisfatório...

MLP

	<u> </u>								
	Temperature	CO2 Emissions	Sea Level Rise	Precipitation	Humidity	Wind Speed			
0	10.688986	403.118903	0.717506	13.835237	23.631256	18.492026			
1	13.814430	396.663499	1.205715	40.974084	43.982946	34.249300			
2	27.323718	451.553155	-0.160783	42.697931	96.652600	34.124261			
3	12.309581	422.404983	-0.475931	5.193341	47.467938	8.554563			
4	13.210885	410.472999	1.135757	78.695280	61.789672	8.001164			
9995	15.020523	391.379537	-1.452243	93.417109	25.293814	6.531866			
9996	16.772451	346.921190	0.543616	49.882947	96.787402	42.249014			
9997	22.370025	466.042136	1.026704	30.659841	15.211825	18.293708			
9998	19.430853	337.899776	-0.895329	18.932275	82.774520	42.424255			
9999	12.661928	381.172746	2.260788	78.339658	99.243923	41.856539			
10000 rows × 6 columns									

import pandas as pd
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score, classification_report

```
import matplotlib.pyplot as plt
import pyspark.pandas as ps
# Carregando os dados
file_location = "/FileStore/tables/climate_change_data.csv"
df = ps.read_csv(file_location).to_pandas()
# Criando uma coluna de destino 'target' com base em uma condição (por
exemplo, temperatura acima da média)
df['target'] = (df['Temperature'] > df['Temperature'].mean()).astype(int)
# Selecionando as variáveis numéricas para o PCA
features = ['Temperature', 'CO2 Emissions', 'Precipitation', 'Humidity', 'Wind
Speed', 'Sea Level Rise']
df features = df[features]
target = df['target']
# Padronizando os dados
scaler = StandardScaler()
scaled_features = scaler.fit_transform(df_features)
# Aplicando PCA
pca = PCA()
pca_components = pca.fit_transform(scaled_features)
# Percentual de variância explicada por cada componente
explained_variance = pca.explained_variance_ratio_
# Plotando a variância explicada acumulada
plt.figure(figsize=(10, 6))
plt.plot(range(1, len(explained_variance) + 1), explained_variance.cumsum(),
marker='o', linestyle='--')
plt.xlabel('Número de Componentes Principais')
plt.ylabel('Variância Explicada Acumulada')
```

```
plt.title('Variância Explicada pelo PCA')
plt.grid()
plt.show()
# Usando apenas os primeiros componentes principais que explicam a maioria
da variância
n_components = 3 # Ajuste conforme necessário com base na variância
explicada
pca = PCA(n_components=n_components)
pca_components = pca.fit_transform(scaled_features)
# Dividindo os dados em treino e teste
X_train, X_test, y_train, y_test = train_test_split(pca_components, target,
test_size=0.2, random_state=42)
# Criando e treinando o modelo MLP
mlp
            MLPClassifier(hidden_layer_sizes=(10,
                                                     10),
                                                             activation='relu',
solver='adam', max_iter=1000, random_state=42)
mlp.fit(X_train, y_train)
# Fazendo previsões
y_pred = mlp.predict(X_test)
# Avaliando o modelo
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
print("Classification Report:\n", classification_report(y_test, y_pred))
```


O melhor modelo:

Accuracy: 0.7345 Classification Report: precision recall f1-score support 0 0.73 0.75 0.74 997 1 0.74 0.72 0.73 1003 accuracy 0.73 2000 macro avg 0.73 0.73 0.73 2000 weighted avg 0.73 0.73 0.73 2000

Agregar os dataframes

df_africa_sul = df.filter(df["Country"] == "South Africa")
display(df_africa_sul)

import pandas as pd
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score, classification_report
import matplotlib.pyplot as plt
import pyspark.pandas as ps

```
# Carregando os dados
file_location = "/FileStore/tables/climate_change_data.csv"
df = ps.read_csv(file_location).to_pandas()
# Criando uma coluna de destino 'target' com base em uma condição (por
exemplo, temperatura acima da média)
df['target'] = (df['Temperature'] > df['Temperature'].mean()).astype(int)
# Selecionando as variáveis numéricas para o PCA
features = ['Temperature', 'CO2 Emissions', 'Precipitation', 'Humidity', 'Wind
Speed', 'Sea Level Rise']
df_features = df[features]
target = df['target']
# Padronizando os dados
scaler = StandardScaler()
scaled_features = scaler.fit_transform(df_features)
# Aplicando PCA
pca = PCA()
pca_components = pca.fit_transform(scaled_features)
# Percentual de variância explicada por cada componente
explained_variance = pca.explained_variance_ratio_
# Plotando a variância explicada acumulada
plt.figure(figsize=(10, 6))
plt.plot(range(1,
                          len(explained_variance)
                                                                        1),
explained_variance.cumsum(), marker='o', linestyle='--')
plt.xlabel('Número de Componentes Principais')
plt.ylabel('Variância Explicada Acumulada')
plt.title('Variância Explicada pelo PCA')
plt.grid()
plt.show()
```

```
# Usando apenas os primeiros componentes principais que explicam a
maioria da variância
n_components = 3 # Ajuste conforme necessário com base na variância
explicada
pca = PCA(n_components=n_components)
pca_components = pca.fit_transform(scaled_features)
# Capturando os índices originais
indices = df.index
# Dividindo os dados em treino e teste, incluindo os índices
X_train, X_test, y_train, y_test, idx_train, idx_test = train_test_split(
  pca_components, target, indices, test_size=0.2, random_state=42)
# Criando e treinando o modelo MLP
          MLPClassifier(hidden_layer_sizes=(10,
                                                  10), activation='relu',
solver='adam', max_iter=1000, random_state=42)
mlp.fit(X_train, y_train)
# Fazendo previsões
y_pred = mlp.predict(X_test)
# Avaliando o modelo
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
print("Classification Report:\n", classification_report(y_test, y_pred))
# Criando um DataFrame com os dados de teste e as predições
df_test = df.loc[idx_test].copy()
df_test['Prediction'] = y_pred
df_test['Accuracy'] = accuracy # Adicionando a acurácia como uma coluna
# Extraindo o subconjunto para a África do Sul
```

df_south_africa_predictions = df_test[df_test["Country"] == "South
Africa"]

Exibindo o resultado print(df_south_africa_predictions)

	CO2 Emi	ssions	Sea	Level Rise	Precipitation	Humidity	Wind Speed
5202	354.	396848		0.222505	74.020297	7.062798	49.696142
7942	390.	788074		0.774298	27.580919	11.186988	22.104335
9190	417.	556846		-0.723507	59.859020	88.764547	39.722428
624	360.	570508		2.291537	78.568437	54.779141	39.568239
4397	444.	937824		-1.049358	12.812707	25.700580	30.932173
8839	324.	475178		-1.319394	20.529996	34.917983	32.663057
4342	415.	528641		-0.039382	95.746367	82.516208	16.831612
738	398.	566044		-1.177339	34.192164	11.869819	35.270217
8028	390.	086223		1.951576	96.529079	16.534903	9.508678
	target	Predic	tion	Accuracy			
5202	1		1	0.7345			
7942	0		1	0.7345			
9190	1		0	0.7345			
624	0		1	0.7345			
4397	1		0	0.7345			
8839	0		0	0.7345			
4342	0		0	0.7345			
738	1		1	0.7345			
8028	1		1	0.7345			

	Date	Location	Country	Temperature	CO2 Emissions	Sea Level Rise	Precipitation	Humidity	Wind Speed	target	Prediction	Accuracy
5202	2011-12-19 02:48:29.810981	New Donnafurt	South Africa	20.190744	354.396848	0.222505	74.020297	7.062798	49.696142	1	1	0.7345
7942	2018-04-07 22:43:57.623762	Oneillton	South Africa	14.079005	390.788074	0.774298	27.580919	11.186988	22.104335			0.7345
9190	2021-02-19 08:55:44.014401	East Mallory	South Africa	15.173620	417.556846	-0.723507	59.859020	88.764547	39.722428			0.7345
624	2001-06-08 05:05:53.195319	Stevenburgh	South Africa	12.778918	360.570508	2.291537	78.568437	54.779141	39.568239			0.7345
4397	2010-02-10 20:23:06.858685	Devinton	South Africa	15.154172	444.937824	-1.049358	12.812707	25.700580	30.932173			0.7345
8839	2020-04-30 12:03:40.342034	Hernandezbury	South Africa	9.470464	324.475178	-1.319394	20.529996	34.917983	32.663057			0.7345
4342	2009-12-26 15:28:27.650765	Luisshire	South Africa	12.879226	415.528641	-0.039382	95.746367	82.516208	16.831612			0.7345
738	2001-09-11 23:34:04.644464	Sarafurt	South Africa	15.770152	398.566044	-1.177339	34.192164	11.869819	35.270217			0.7345
8028	2018-06-19 04:39:57.839783	South Sharonton	South Africa	25.555012	390.086223	1.951576	96.529079	16.534903	9.508678			0.7345

4. Conexão com Azure

!pip install pymongo

import pymongo from random import randint import json

CONNECTION_STRING

```
"""mongodb://conradcosmosdb:rkN9BM3Cxt5gjTar9hjUfMDeDFR1km4XkUciTn ZzcbzWMiZwo1SGivGhUrJWQENPDqPAx8exIFYJACDbqpChIA==@conradco smosdb.mongo.cosmos.azure.com:10255/?ssl=true&replicaSet=globaldb&retry writes=false&maxIdleTimeMS=120000&appName=@conradcosmosdb@"""DB_NAME = "api-mongodb-sample-database"UNSHARDED_COLLECTION_NAME = "level_of_the_sea"SAMPLE_FIELD_NAME = "sample_field"
```

```
"""Save a list of documents to the collection"""

for document in documents:
    collection.insert_one(document)
    print("Inserted document:", document)

print("Saved {} documents to the collection".format(len(documents)))
```

def main():

```
"""Connect to the API for MongoDB, create DB and collection, perform CRUD
operations"""
  client = pymongo.MongoClient(CONNECTION_STRING)
  try:
    client.server_info() # validate connection string
  except pymongo.errors.ServerSelectionTimeoutError:
    raise TimeoutError("Invalid API for MongoDB connection string or timed out
when attempting to connect")
  # Retrieve database and collection
  db = client[DB_NAME]
  collection = db[UNSHARDED_COLLECTION_NAME]
  # Convert DataFrame to JSON list of documents
                                           documents
json.loads(df south africa predictions.to json(orient="records"))
  # Save the documents to the collection
  save_documents(collection, documents)
if __name__ == '__main__':
  main()
```

Resultado final:

<command-3702893422387475>:15: UserWarning: You appear to be
connected to a CosmosDB cluster. For more information regarding feature
compatibility and support please visit
https://www.mongodb.com/supportability/cosmosdb client =
pymongo.MongoClient(CONNECTION_STRING) Inserted document: {'Date':
1324262909810, 'Location': 'New Donnafurt', 'Country': 'South Africa',
'Temperature': 20.190743637, 'CO2 Emissions': 354.3968480395, 'Sea Level
Rise': 0.2225051395, 'Precipitation': 74.0202965159, 'Humidity': 7.0627984437,

'Wind Speed': 49.6961420354, 'target': 1, 'Prediction': 1, 'Accuracy': 0.7345, '_id': ObjectId('6737419cc2fea385be522a47')} Inserted document: {'Date': 1523141037623, 'Location': 'Oneillton', 'Country': 'South Africa', 'Temperature': 14.0790047427, 'CO2 Emissions': 390.7880742136, 'Sea Level Rise': 0.7742977597, 'Precipitation': 27.5809185189, 'Humidity': 11.1869878438, 'Wind Speed': 22.1043351286, 'target': 0, 'Prediction': 1, 'Accuracy': 0.7345, '_id': ObjectId('6737419dc2fea385be522a48')} Inserted document: {'Date': 1613724944014, 'Location': 'East Mallory', 'Country': 'South Africa', 'Temperature': 15.1736199921, 'CO2 Emissions': 417.5568457389, 'Sea Level Rise': -0.7235071594, 'Precipitation': 59.8590197022, 'Humidity': 88.76454655, 'Wind Speed': 39.7224276894, 'target': 1, 'Prediction': 0, 'Accuracy': 0.7345, '_id': ObjectId('6737419dc2fea385be522a49')} Inserted document: 991976753195, 'Location': 'Stevenburgh', 'Country': 'South Africa', 'Temperature': 12.7789182391, 'CO2 Emissions': 360.5705076473, 'Sea Level Rise': 2.2915371671, 'Precipitation': 78.5684367018, 'Humidity': 54.7791410538, 'Wind Speed': 39.5682394526, 'target': 0, 'Prediction': 1, 'Accuracy': 0.7345, ' id': ObjectId('6737419dc2fea385be522a4a')} Inserted document: {'Date': 1265833386858, 'Location': 'Devinton', 'Country': 'South Africa', 'Temperature': 15.1541717593, 'CO2 Emissions': 444.9378238186, 'Sea Level Rise': -1.0493580954, 'Precipitation': 12.8127065552, 'Humidity': 25.7005804862, 'Wind Speed': 30.9321732121, 'target': 1, 'Prediction': 0, 'Accuracy': 0.7345, '_id': ObjectId('6737419ec2fea385be522a4b')} Inserted document: {'Date': 1588248220342, 'Location': 'Hernandezbury', 'Country': 'South Africa', 'Temperature': 9.4704644004, 'CO2 Emissions': 324.4751779896, 'Sea Level 'Precipitation': -1.3193941992, 20.5299958501, 34.9179825866, 'Wind Speed': 32.6630567408, 'target': 0, 'Prediction': 0, 'Accuracy': 0.7345, '_id': ObjectId('6737419ec2fea385be522a4c')} Inserted document: {'Date': 1261841307650, 'Location': 'Luisshire', 'Country': 'South Africa', 'Temperature': 12.8792257407, 'CO2 Emissions': 415.5286411381, 'Sea Level Rise': -0.039382306, 'Precipitation': 95.7463671718, 82.5162084522, 'Wind Speed': 16.8316124757, 'target': 0, 'Prediction': 0, 'Accuracy': 0.7345, '_id': ObjectId('6737419ec2fea385be522a4d')}

Se precisar da query na Azure:

db.level_of_the_sea.find({ Prediction: { \$exists: true } })

Excluir grupo de recursos para evitar consumir créditos:

