Kaiserhof

Cornelius

1/27/2020

Fragestellungen

- 1. Welche Kaiser sind für die Analyse interessant?
- 2. Welche Job-Wechsel wurden beobachtet?
- 3. Welche Kovariablen könnten die Job-Wechsel erklären?
- 4. Welche Akteure sollten berücksichtigt werden?
- 5. Welche Akteure sind in dem Hofstaat bestimmter Kaiser?

Kaiser (1)

Kaiser (2)

Kaiser (3)

Kaiser (4)

Job: All (Numbers)

- ▶ Was für Job-Wechsel gibt es in den Daten?
- ► Ein Großteil der Beobachtung bleibt in dem gleichen Job

Job: All (Changes)

Job: All (Age)

Job: All (Age)

Job: Rank 2 (Age per King)

Job: Rank 3 (Age per King)

Job: Rank 4 (Age per King)

Job: Rank 5 (Age per King)

Job: Ferdinand III. (Changes)

Job: Leopold I. (Changes)

Job: Rudolf II. (Changes)

Missing Data: Alle Akteure (1)

Missing Data: In Job (2)

Missing Data: In Job (3)

Time-Constant Network Measures (1)

- Aggregated marriages and births over all observations
- ► Average Degree: 2.558
- Clustering Coefficient: 0.196
- Number of weakly connected components: 185
- ▶ Percentage of biggest component: 88.76%

Time-Constant Network Measures (2)

Time-Constant Network Measures (3)

Time-Constant Networks: Graphics

- Only the biggest component is regarded in the graph drawings!
- Used Color-Scale (Exception is the Modularity Group Allocation):

Low Middle High

Time-Constant Networks: Age

Time-Constant Networks: Closeness Centrality

Time-Constant Networks: Modularity

Time-Constant Networks: Authority

Time-Varying Networks: Graphics

▶ We define the time-varying network at time-point t as the network including all actors whose birth lies within a 35-year radius of t

Time-Varying Networks: Number of Actors

Time-Varying Networks: Number of Isolates

Time-Varying Networks: Mean Degree

Time-Varying Networks: Degree Variance

Time-Varying Networks: Centrality

Time-Varying Networks: Transitivity

Time-Varying Networks: Paths

Time-Varying Networks: Paths

Time-Varying Networks: Paths

Time-Varying Networks: Sex of Actors

Time-Varying Networks: Components

Time-Varying Networks: Components

Time-Varying Networks: Community Detection

Time-Varying Networks: Community Detection

Change Point Detection: Number of Actors

Change Point Detection: Number of Isolates

Change Point Detection: Mean Degree

Change Point Detection: Degree Variance

Change Point Detection: Components

Time-Varying Networks

Time-Varying Networks

