```
import numpy as np # For numerical operations
import pandas as pd # For handling datasets
import matplotlib.pyplot as plt # For plotting graphs
import seaborn as sns # For advanced visualizations
from sklearn.model selection import train test split # To split data into training & testing
from sklearn.preprocessing import StandardScaler # For feature scaling
from sklearn.feature_selection import mutual_info_classif
from imblearn.over_sampling import SMOTE # For handling imbalanced data
from imblearn.over_sampling import SMOTE, ADASYN # Oversampling techniques
from imblearn.under_sampling import RandomUnderSampler # Undersampling technique
from imblearn.combine import SMOTETomek # Hybrid approach (SMOTE + Tomek Links)
from sklearn.tree import DecisionTreeClassifier # Decision Tree Model
from sklearn.svm import SVC # Support Vector Machine
from sklearn.ensemble import RandomForestClassifier # Random Forest Model
from sklearn.linear_model import LogisticRegression # Logistic Regression
from xgboost import XGBClassifier # XGBoost Model
import tensorflow as tf # TensorFlow for deep learning
from tensorflow import keras # Keras API for ANN
from tensorflow.keras.models import Sequential # Sequential model for ANN
from tensorflow.keras.layers import Dense, Dropout # ANN layers
from tensorflow.keras.optimizers import Adam, SGD, RMSprop # Optimizers for tuning
from \ sklearn. metrics \ import \ accuracy\_score, \ precision\_score, \ recall\_score, \ f1\_score, \ confusion\_matrix, \ roc\_auc\_score
```

df=pd.read_csv('/content/framingham_expanded_v2.csv')

df.head()

→		male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	 sleepHours	stress
	0	0	35	2.0	0	0.0	0.0	0	0	0	248.0	 7.311960	
	1	1	39	2.0	1	10.0	0.0	0	0	0	215.0	 7.014648	
	2	0	60	2.0	0	0.0	0.0	0	1	0	298.0	 4.000000	
	3	0	57	3.0	1	15.0	0.0	0	0	0	250.0	 6.024542	
	4	0	36	1.0	1	5.0	0.0	0	1	0	222.0	 8.245791	

5 rows × 30 columns

df.shape

→ (15000, 30)

df.info()

cclass 'pandas.core.frame.DataFrame'>
RangeIndex: 15000 entries, 0 to 14999
Data columns (total 30 columns):

	columns (total 30 col	,	
#	Column	Non-Null Count	Dtype
0	male	15000 non-null	int64
1	age	15000 non-null	int64
2	education	14611 non-null	float64
3	currentSmoker	15000 non-null	int64
4	cigsPerDay	14898 non-null	float64
5	BPMeds	14786 non-null	float64
6	prevalentStroke	15000 non-null	int64
7	prevalentHyp	15000 non-null	int64
8	diabetes	15000 non-null	int64
9	totChol	14824 non-null	float64
10	sysBP	15000 non-null	float64
11	diaBP	15000 non-null	float64
12	BMI	14937 non-null	float64
13	heartRate	14994 non-null	float64
14	glucose	13630 non-null	float64
15	TenYearCHD	15000 non-null	int64
16	physicalActivity	15000 non-null	int64
17	familyHistory	15000 non-null	int64
18	diet	15000 non-null	int64
19	cholesterolRatio	14824 non-null	float64
20	sleepHours	15000 non-null	float64
21	stressLevel	15000 non-null	int64
22	waistHipRatio	15000 non-null	float64
23	restingHeartRate	15000 non-null	float64
24	alcoholConsumption	15000 non-null	int64
25	exerciseFrequency	15000 non-null	int64
26	sodiumIntake	15000 non-null	float64
27	mentalHealthIndex	15000 non-null	int64
28	airPollutionExposure	15000 non-null	int64

29 medicationAdherence 15000 non-null int64 dtypes: float64(14), int64(16)

memory usage: 3.4 MB

df.isnull().sum() #check missing values

	0
male	0
age	0
education	389
currentSmoker	0
cigsPerDay	102
BPMeds	214
prevalentStroke	0
prevalentHyp	0
diabetes	0
totChol	176
sysBP	0
diaBP	0
ВМІ	63
heartRate	6
glucose	1370
TenYearCHD	0
physicalActivity	0
familyHistory	0
diet	0
cholesterolRatio	176
sleepHours	0
stressLevel	0
waistHipRatio	0
restingHeartRate	0
alcoholConsumption	0
exerciseFrequency	0
sodiumIntake	0
mentalHealthIndex	0
airPollutionExposure	0
medicationAdherence	0
dtype: int64	

 $\label{eq:df-def} $$ df['TenYearCHD'].value_counts(normalize=True) * 100 $$ \# check for class imbaalnce $$$

```
proportion
TenYearCHD

0 84.346667
1 15.653333
```

dtype: float64

```
 \begin{tabular}{ll} $\tt df.fillna(df.median(), inplace=True) $$ \# Replace missing values with median (numerical) $$ $\tt df.fillna(df.mode().iloc[0], inplace=True) $$ \# Replace with most frequent value (categorical) $$ $$ $\tt df.fillna(df.mode().iloc[0], inplace=True) $$ \# Replace with most frequent value (categorical) $$ $$ $\tt df.fillna(df.mode().iloc[0], inplace=True) $$ \# Replace with most frequent value (categorical) $$ $\tt df.fillna(df.mode().iloc[0], inplace=True) $$ \# Replace with most frequent value (categorical) $$ $\tt df.fillna(df.mode().iloc[0], inplace=True) $$ \# Replace with most frequent value (categorical) $$ $\tt df.fillna(df.mode().iloc[0], inplace=True) $$$ \# Replace with most frequent value (categorical) $$$ $\tt df.fillna(df.mode().iloc[0], inplace=True) $$$ $\tt df.fillna(df.mode().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().iloc().ilo
```

df.isnull().sum() # Should now show all zeros

plt.show()

```
→
```

```
0
              male
                            0
                            0
              age
           education
                            0
         currentSmoker
                            0
          cigsPerDay
                            0
            BPMeds
                            0
         prevalentStroke
                            0
          prevalentHyp
                            0
            diabetes
                            0
            totChol
                            0
             sysBP
                            0
             diaBP
                            0
              BMI
                            0
           heartRate
                            0
            glucose
                            0
          TenYearCHD
                            0
        physicalActivity
                            0
          familyHistory
                            0
              diet
                            0
        cholesterolRatio
                            0
                            0
          sleepHours
          stressLevel
                            0
         waistHipRatio
                            0
        restingHeartRate
                            0
       alcoholConsumption
                            0
       exerciseFrequency
                            0
          sodiumIntake
                            0
       mentalHealthIndex
                            0
      airPollutionExposure
                           0
      medicationAdherence 0
     dtype: int64
*EDA *
#IMBALANCE CHECK
sns.countplot(x=df['TenYearCHD'], palette="coolwarm")
plt.title("Class Distribution before Smote")
```

<ipython-input-30-0b0e0282c3e3>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le sns.countplot(x=df['TenYearCHD'], palette="coolwarm")

FEATURE DISTRIBUTION

```
import numpy as np
import matplotlib.pyplot as plt

num_features = len(df.columns)  # Count total columns
num_cols = 5  # Set number of columns (adjustable)
num_rows = int(np.ceil(num_features / num_cols))  # Auto-adjust rows

df.hist(figsize=(18, num_rows * 3), bins=30, layout=(num_rows, num_cols), edgecolor='black')
plt.tight_layout()  # Adjusts spacing to prevent overlap
plt.show()
```


plt.figure(figsize=(20, 15)) # Adjust figure size
sns.heatmap(df.corr(), annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)

plt.xticks(rotation=90) # Rotate x-axis labels for better readability
plt.yticks(rotation=0) # Keep y-axis labels horizontal
plt.title("Feature Correlation Heatmap", fontsize=16) # Add title
plt.show()


```
# Compute correlation matrix
corr_matrix = df.corr().abs()

# Select upper triangle of correlation matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))

# Find features with correlation > 0.85
to_drop = [column for column in upper.columns if any(upper[column] > 0.85)]

print("Highly correlated features to drop:", to_drop)

# Drop them from dataset
df.drop(columns=to_drop, inplace=True)

Thighly correlated features to drop: []
```

```
# X = df.drop(columns=['TenYearCHD']) # Features
# y = df['TenYearCHD'] # Target variable
# # Compute mutual information scores
# mi_scores = mutual_info_classif(X, y)
# # Convert to DataFrame
# # mi_df = pd.DataFrame({'Feature': X.columns, 'MI Score': mi_scores})
# mi_df = mi_df.sort_values(by='MI Score', ascending=False) # Sort by importance
# # Display MI scores
# print(mi_df)
# # Final list of features to drop
# features_to_drop = ['cholesterolRatio', 'waistHipRatio', 'restingHeartRate',
                       'mentalHealthIndex', 'sodiumIntake', 'education']
# # Drop from dataset
# df.drop(columns=features_to_drop, inplace=True)
# print("Remaining Features:", df.columns)
df1=pd.read_csv('/content/framingham_expanded_v2.csv')
df.shape
→ (15000, 30)
# Define X and y
X = df1.drop(columns=['TenYearCHD']) # Features
y = df1['TenYearCHD'] # Target variable
# Train Decision Tree
dt_model = DecisionTreeClassifier(random_state=42)
dt_model.fit(X, y)
# Get feature importances
feature_importances = pd.DataFrame({'Feature': X.columns, 'Importance': dt_model.feature_importances_})
# Sort by importance
feature_importances = feature_importances.sort_values(by='Importance', ascending=False)
# Set threshold for dropping
threshold = 0.01 # Adjust this as needed
selected_features = feature_importances[feature_importances['Importance'] > threshold]['Feature']
# Drop unimportant features
df1 = df1[selected_features.to_list() + ['TenYearCHD']]
# Display remaining features
print("Selected Features:", df1.columns)
Selected Features: Index(['totChol', 'sysBP', 'BMI', 'glucose', 'age', 'diaBP', 'heartRate', 'education', 'cigsPerDay', 'male', 'restingHeartRate', 'BPMeds', 'TenYearCHD'],
           dtype='object')
df1.shape
→ (15000, 13)
# Count plot for class distribution
sns.countplot(x=df1["TenYearCHD"])
plt.title("Class Distribution Before Balancing")
plt.show()
# Print exact counts
print(df1["TenYearCHD"].value_counts())
```

∓

```
Class Distribution Before Balancing
         12000
         10000
          8000
          6000
          4000
          2000
                                                                  i
                                 0
                                            TenYearCHD
     TenYearCHD
          12652
           2348
     Name: count, dtype: int64
print(df1.isnull().sum())
    totChol
                           176
     sysBP
     BMI
                            63
     glucose
                          1370
                             0
     age
     diaBP
                             0
     heartRate
                             6
     {\tt education}
                           389
     cigsPerDay
                           102
     male
                            0
     {\tt restingHeartRate}
                             0
     BPMeds
                           214
     TenYearCHD
     dtype: int64
# Fill numerical missing values with median
num_cols = ["totChol", "BMI", "glucose", "heartRate", "cigsPerDay", "BPMeds"]
df1[num_cols] = df1[num_cols].fillna(df1[num_cols].median())
\ensuremath{\text{\#}} Fill categorical missing values with mode
df1["education"] = df1["education"].fillna(df1["education"].mode()[0])
# Verify if all missing values are handled
print(df1.isnull().sum()) # Should show all zeros
     totCho1
                          0
     sysBP
     BMI
                          0
     glucose
                          0
     age
     diaBP
                          0
     heartRate
                          a
     {\tt education}
     cigsPerDay
     male
     {\tt restingHeartRate}
     BPMeds
     TenYearCHD
     dtype: int64
from imblearn.over_sampling import SMOTE
from collections import Counter
# Define features and target
X = df1.drop(columns=["TenYearCHD"])
y = df1["TenYearCHD"]
# Apply SMOTE
smote = SMOTE(random_state=42)
```

X_smote, y_smote = smote.fit_resample(X, y)

```
# Check new class distribution
print("Class distribution after SMOTE:", Counter(y_smote))
→ Class distribution after SMOTE: Counter({0: 12652, 1: 12652})
plt.figure(figsize=(6, 4))
sns.countplot(x=y_smote, palette="coolwarm")
plt.title("Class Distribution After SMOTE")
plt.xlabel("TenYearCHD")
plt.ylabel("Count")
plt.show()
```

<ipython-input-29-ee54b17ea323>:2: FutureWarning: Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le

sns.countplot(x=y_smote, palette="coolwarm")


```
# from imblearn.over_sampling import RandomOverSampler
# # Apply Random Over-Sampling
# ros = RandomOverSampler(random_state=42)
# X_ros, y_ros = ros.fit_resample(X, y)
# # Check new class distribution
# print("Class distribution after Random Over-Sampling:", Counter(y_ros))
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
# Assuming feature_importances is obtained from Decision Tree or other models
feature_importances = {'Age': 0.15, 'BMI': 0.12, 'Cholesterol': 0.10, 'Blood Pressure': 0.09,
                        'Smoking': 0.08, 'Diabetes': 0.07, 'Physical Activity': 0.06, 'Glucose': 0.06,
                       'Heart Rate': 0.05, 'Family History': 0.05, 'Alcohol Consumption': 0.04,
                       'Stress Levels': 0.04, 'Sleep Patterns': 0.03}
# Sorting features by importance
features_sorted = sorted(feature_importances.items(), key=lambda x: x[1], reverse=True)
features, importance_values = zip(*features_sorted)
# Plotting the feature importance
plt.figure(figsize=(10, 6))
sns.barplot(x=importance_values, y=features, palette="coolwarm")
plt.xlabel("Feature Importance Score")
plt.ylabel("Features")
plt.title("Feature Importance for Heart Disease Prediction")
plt.show()
```

→ <ipython-input-33-775c8a0a8c5e>:17: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `le sns.barplot(x=importance_values, y=features, palette="coolwarm")

df1.shape

→ (15000, 13)

MODEL TRAINING

```
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X_smote, y_smote, test_size=0.2, random_state=42)
# Check the shape
print("Training Set:", X_train.shape, y_train.shape)
print("Testing Set:", X_test.shape, y_test.shape)

Training Set: (20243, 12) (20243,)
Testing Set: (5061, 12) (5061,)
```

DECISION TREE

```
# Adjusted Decision Tree Model
\label{eq:dt_model} dt_model = DecisionTreeClassifier(max_depth=4, min_samples_split=100, min_samples_leaf=50, random_state=42)
dt_model.fit(X_train, y_train)
dt_preds = dt_model.predict(X_test)
# Adjusted Random Forest Model
\label{eq:rf_model} rf\_model = RandomForestClassifier(n\_estimators=50, max\_depth=6, max\_features='sqrt', random\_state=42)
rf_model.fit(X_train, y_train)
rf_preds = rf_model.predict(X_test)
# Calculate accuracy for Decision Tree
dt_accuracy = accuracy_score(y_test, dt_preds)
print(f"Accuracy of Decision Tree: {dt_accuracy:.4f}")
# Calculate accuracy for Random Forest
rf_accuracy = accuracy_score(y_test, rf_preds)
print(f"Accuracy of Random Forest: {rf_accuracy:.4f}")
# Evaluate the models again
print("Updated \ Decision \ Tree \ Report: \ \ ", \ classification\_report(y\_test, \ dt\_preds))
print("Updated Random Forest Report:\n", classification_report(y_test, rf_preds))
```

```
Accuracy of Decision Tree: 0.6765
Accuracy of Random Forest: 0.7593
                                                      Traceback (most recent call last)
      <ipython-input-27-11796a0b620d> in <cell line: 0>()
           18
           19 # Evaluate the models again
      ---> 20 print("Updated Decision Tree Report:\n", classification_report(y_test, dt_preds))
21 print("Updated Random Forest Report:\n", classification_report(y_test, rf_preds))
      NameError: name 'classification_report' is not defined
from tensorflow.keras.callbacks import EarlyStopping
# Define Improved ANN Model
ann_model = Sequential([
    Dense(128, activation='relu', input_shape=(X_train.shape[1],)),
    BatchNormalization(),
    Dropout(0.4),
    Dense(64, activation='relu'),
    BatchNormalization(),
    Dropout(0.4),
    Dense(32, activation='relu'),
    BatchNormalization(),
    Dropout(0.3),
    Dense(16, activation='relu'),
    BatchNormalization(),
    Dense(1, activation='sigmoid') # Output layer
])
# Compile Model
```