

Lecture # 13 LTL | Büchi Automata | LTL to NBA

Linear Temporal Logic

LTL formulas that satisfy the set of worlds:

Linear Temporal Logic

LTL formulas that satisfy the set of worlds:

The term "Automata" is derived from the Greek word "αὐτόματα" which means "self-acting". An automaton (Automata in plural) is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically.

An automaton with a finite number of states is called a **Finite Automaton** (FA) or **Finite State Machine** (FSM).

Here: Finite state automata to describe sets of finite words

 Σ : finite alphabet $\Sigma^* = \text{set of all words over } \Sigma$ Language: A set of finite words

```
ab(ab)^* { ab, abab, ababab, ...}
           finite words starting with an a
            finite words starting with a b
   b\Sigma^*
         b^* \{ \epsilon, b, bb, bbb, \ldots \}
      (ab)^* { \epsilon, ab, abab, ababab, ...}
  (bbb)^* { \epsilon, bbb, bbbbbb, (bbb)^3, ...}
a\Sigma^*a words starting and ending with an a
```

Alphabet: $\{a,b\}$

$$ab^* = \{ a, ab, ab^2, ab^3, ab^4, \ldots \}$$

Design a Finite automaton for *ab**

Alphabet: $\{a,b\}$

$$a^* = \{ \epsilon, a, aa, aaa, aaaa, a^5, \ldots \}$$

a* is the set of all words having only a

Design a Finite automaton for a*

Alphabet: $\{a,b\}$

$$ab^* = \{ a, ab, ab^2, ab^3, ab^4, \dots \}$$

 $ba^* = \{ b, ba, ba^2, ba^3, ba^4, \dots \}$

Design a Finite automaton for $ab^* \cup ba^*$

Alphabet: $\{a,b\}$

$$ab^* = \{ a, ab, ab^2, ab^3, ab^4, \dots \}$$

 $ba^* = \{ b, ba, ba^2, ba^3, ba^4, \dots \}$

Design a Finite automaton for $ab^* \cup ba^*$

Multiple initial states: non-deterministic automaton

What is the language of the following automaton?

Answer: $a \Sigma^* a$

words starting and ending with a

Languages over finite words

Runs:

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0$$

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \text{ accepting run}$$

Language: set of words for which there exists an accepting run

Languages over finite words

Runs:

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0$$
 Not accepted

Language: set of words for which there exists an accepting run

Languages over infinite words

In finite words, there is an end

A run is accepting if it ends in an accepting state

How do we define accepting runs for infinite words?

ababaabbbbbb ...

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \dots$$

Above word is accepted by this automaton

Run is accepting if some accepting state occurs infinitely often

ababaaaaaaa...

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \dots$$

Above word is **not accepted** by this automaton

Run is accepting if some accepting state occurs infinitely often

Non-deterministic Büchi Automata

- States, transitions, initial and accepting states like an NFA
- Difference in accepting condition

Word is accepted if it has a run in which some accepting state occurs infinitely often

Example:
$$a^{\omega} + b^{\omega}$$

Example:
$$(a + b)^*a^{\omega}$$

Example:
$$aa(a+b)^*ab^{\omega}$$

Non-deterministic Büchi Automaton

Accepting state occurs infinitely often

LTL to NBA

Converting LTL formula to Non Deterministic Büchi Automata

 \mathbf{F}_{p_1} Words where p_1 occurs sometime

```
\{p_2\}\{\}\{p_2\}\{p_1,p_2\}\{p_2\}\{p_2\}\{p_2\}\dots
\{p_1,p_2\}\{\}\{\}\{p_1\}\{p_1\}\{p_1,p_2\}\dots
\vdots
```

 $G p_1$ Words where p_1 occurs always

```
 \{p_1\} \{p_1,p_2\} \{p_1\} \{p_1,p_2\} \{p_1\} \{p_1\} \{p_1\} \dots \\ \{p_1,p_2\} \{p_1,p_2\} \{p_1\} \{p_1\} \{p_1\} \{p_1,p_2\} \dots \\ \vdots
```

 $p_1 \wedge \mathbf{X} \neg p_2$

```
 \begin{array}{c} \{p_1\}\{\}\{p_2\}\{p_1,p_2\}\{p_2\}\{p_2\}\{p_2\}\}\dots \\ \{p_1,p_2\}\{p_1\}\{\}\{p_1\}\{p_1\}\{p_1,p_2\}\dots \\ \vdots \end{array}
```


LTL to NBA

Converting LTL formula to Non Deterministic Büchi Automata

