Séries de fonctions

Dans tout le chapitre, E et F sont deux espaces vectoriels normés **de dimension** finie.

I. Suites de fonctions dans les e.v.n.

I.1. Modes de convergence

Définition. Soit $A \subset E$. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de A dans F. On dit que la suite (f_n) converge simplement vers $f: A \longrightarrow F$ si, pour tout vecteur $x \in A$, la suite de vecteurs $(f_n(x))$ converge dans F vers le vecteur f(x).

Définition. Sous les mêmes hypothèses, on dit que la suite (f_n) converge uniformément sur A vers la fonction f si

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n \geqslant n_0 \quad \forall x \in A \quad ||f(x) - f_n(x)|| \leqslant \varepsilon$$

Théorème I.1. Avec les notations précédentes, la convergence de (f_n) vers f est uniforme sur A si et seulement si

- les fonctions $f f_n$ sont bornées à partir d'un certain rang;
- la suite ($||f f_n||_{\infty}$) a pour limite 0.

Théorème I.2. Avec les mêmes notations, la convergence de (f_n) vers f est uniforme sur A si et seulement s'il existe une suite réelle (a_n) et $n_0 \in \mathbb{N}$ tels que

- $\forall n \geqslant n_0 \quad \forall x \in A \quad ||f(x) f_n(x)|| \leqslant a_n$;
- la suite (a_n) a pour limite θ .

I.2. Propriétés

Théorème I.3. Avec les notations précédentes, soit $a_0 \in A$. On suppose que

- la suite de fonctions (f_n) converge vers f uniformément sur A;
- chaque fonction f_n est continue en a_0 (respectivement sur A).

Alors, f est continue en a_0 (respectivement sur A).

Théorème I.4. Avec toujours les mêmes notations, on suppose que :

- la suite (f_n) converge vers f uniformément sur A;
- a est un point adhérent à A;
- chaque fonction f_n admet une limite b_n en a.

Alors la suite (b_n) admet une limite b, et f a pour limite b en a.

On suppose désormais les fonctions f_n et f définies sur un intervalle I de \mathbb{R} , à valeurs dans F.

Théorème I.5. Soit $a \in I$. On suppose que :

- la suite (f_n) converge vers f uniformément sur tout segment inclus dans I;
- chaque fonction f_n est continue sur I.

Pour tout $n \in \mathbb{N}$ et tout $x \in I$, on pose $F_n(x) = \int_a^x f_n(t) dt$. Alors, la suite (F_n) converge vers la fonction $F: x \longmapsto \int_a^x f(t) dt$, et la convergence est uniforme sur les segments de I.

En particulier, si $[a,b] \subset I$, alors la suite $(I_n) = (\int_a^b f_n(t) dt)$ a pour limite $I = \int_a^b f(t) dt$.

Théorème I.6. On suppose que :

- chaque fonction f_n est de classe C^1 sur I;
- la suite (f_n) converge vers f simplement sur I;
- la suite (f'_n) converge vers une fonction g, uniformément sur tout segment inclus dans I.

Alors, f est de classe C^1 sur I, g = f', et la convergence de (f_n) vers f est uniforme sur tout segment.

II. Modes de convergence des séries de fonctions

Dans ce paragraphe, (f_n) est une suite de fonctions de $A \subset E$ dans F.

II.1. Convergence simple, convergence absolue

Pour tout n, on pose $S_n = \sum_{k=0}^n f_k$; S_n est la somme partielle de rang n de la série de fonctions $\sum f_k$.

Définition. On dit que la série de fonctions $\sum f_n$ converge simplement sur A si la suite (S_n) associée converge simplement sur A. La fonction S, limite simple de la suite (S_n) , est alors appelée somme de la série $\sum f_n$, et notée $\sum_{n=0}^{+\infty} f_n$.

En supposant toujours que la série converge simplement, on pose pour tout n $R_n = S - S_n = \sum_{k=n+1}^{+\infty} f_k$. La fonction R_n est appelée **reste** de rang n de la série $\sum f_n$; la suite (R_n) converge simplement vers la fonction nulle.

Définition. On dit que la série de fonctions $\sum f_n$ converge absolument sur A si, pour tout $x \in A$, la série réelle $\sum ||f_n(x)||$ converge.

Proposition II.1. La convergence absolue entraîne la convergence simple.

II.2. Convergence uniforme

Définition. On dit que la série de fonctions $\sum f_n$ converge uniformément sur A si la suite de fonctions (S_n) associée converge uniformément sur A.

Proposition II.2. La série de fonctions $\sum f_n$ converge uniformément sur A si et seulement si sont vérifiées les deux conditions :

- la série $\sum f_n$ converge simplement sur A;
- la suite des restes (R_n) converge uniformément sur A vers la fonction nulle.

Théorème II.3. Avec les mêmes notations, soit $a_0 \in A$. On suppose que

- la série de fonctions $\sum f_n$ converge uniformément sur A;
- chaque fonction f_n est continue en a_0 (respectivement sur A).

Alors, $S = \sum_{n=0}^{+\infty} f_n$ est continue en a_0 (respectivement sur A).

Théorème II.4. Avec les notations précédentes, on suppose que :

- la série de fonctions $\sum f_n$ converge uniformément sur A;
- a est un point adhérent à A;
- chaque fonction f_n admet une limite b_n en a.

Alors, la série $\sum b_n$ converge, et $S = \sum_{n=0}^{+\infty} f_n$ a pour limite $\sum_{n=0}^{+\infty} b_n$ en a.

II.3. Convergence normale

Définition. On dit que la série $\sum f_n$ converge normalement sur A s'il existe un rang n_0 tel que:

- les fonctions f_n sont toutes bornées sur A à partir du rang n_0 ;
- la série $\sum_{n>n_0} ||f_n||_{\infty}$ converge.

Théorème II.5. Avec les notations précédentes, la série $\sum f_n$ converge normalement sur A si et seulement s'il existe un rang n_0 et une suite réelle (a_n) vérifiant :

- $\forall n \geqslant n_0 \quad \forall x \in A \quad ||f_n(x)|| \leqslant a_n$;
- la série $\sum a_n$ converge.

Théorème II.6. Si la série $\sum f_n$ converge normalement sur A, alors elle converge absolument et uniformément sur A.

III. Intégration et dérivation

Les fonctions étudiées sont définies sur un intervalle I de \mathbb{R} , à valeurs dans F.

III.1. Intégration

Théorème III.1. Soit $a \in I$. On suppose que :

- chaque fonction f_n est continue sur I;
- la série $\sum f_n$ converge uniformément sur chaque segment inclus dans I. Pour tout $n \in \mathbb{N}$ et tout $x \in I$, on pose $F_n(x) = \int_a^x f_n(t) dt$. Alors, la série $\sum_{n=0}^{\infty} F_n \text{ converge uniform\'ement sur tout segment inclus dans } I, \text{ et, pour tout } x \in I,$ $\sum_{n=0}^{+\infty} F_n(x) = \int_a^x \left[\sum_{n=0}^{+\infty} f_n(t) \right] dt.$

III.2. Dérivation

Théorème III.2. On suppose que :

- chaque fonction f_n est de classe C^1 sur I;
- la série $\sum f_n$ converge simplement sur I, de somme $S = \sum_{n=0}^{+\infty} f_n$;

• la série $\sum f'_n$ converge uniformément sur tout segment inclus dans I. Alors, S est de classe C^1 sur I, $S' = \sum_{n=0}^{+\infty} f'_n$, et la convergence de la série $\sum f_n$ est uniforme sur tout segment inclus dans I.

Théorème III.3. Soit $p \in \mathbb{N}^*$. On suppose que :

- chaque fonction f_n est de classe C^p sur I;
- pour tout $k \in [0, p-1]$, la série $\sum f_n^{(k)}$ converge simplement sur I, de somme $g_k = \sum_{n=0}^{+\infty} f_n^{(\bar{k})}$;
- la série $\sum f_n^{(p)}$ converge uniformément sur tout segment inclus dans I, de

Alors, en posant $S = g_0 = \sum_{n=0}^{+\infty} f_n$, S est de classe C^p sur I, et $g_k = S^{(k)}$ pour tout $k \in [1, p]$.

III.3. Intégration sur un intervalle quelconque

Théorème III.4 (Cas positif). Soit (f_n) une suite de fonctions de $I \subset \mathbb{R}$ dans \mathbb{R} ou \mathbb{C} . On suppose que :

- $\forall n \in \mathbb{N} \quad \forall t \in I \quad f_n(t) \geqslant 0$;
- chaque fonction f_n est continue par morceaux et intégrable sur I;
- la série $\sum f_n$ converge simplement sur I, et sa somme S est continue par $morceaux \ sur \ I.$

Alors, la série $\sum \int_I f_n(t) dt$ converge si et seulement si S est intégrable sur I, et

dans ce cas
$$\int_{I} S(t) dt = \sum_{n=0}^{+\infty} \int_{I} f_n(t) dt.$$

Théorème III.5. Soit (f_n) une suite de fonctions de $I \subset \mathbb{R}$ dans \mathbb{R} ou \mathbb{C} . On suppose que :

- chaque fonction f_n est continue par morceaux et intégrable sur I;
- la série $\sum f_n$ converge simplement sur I, et sa somme S est continue par $morceaux \ sur \ I$:
- la série $\sum \int_{I} |f_n(t)| dt$ converge.

Alors, la fonction S est intégrable sur I et $\int_I S(t) dt = \sum_{n=0}^{+\infty} \int_I f_n(t) dt$.

Remarque: on a de plus $\int_I |S(t)| dt \leq \sum_{n=0}^{+\infty} \int_I |f_n(t)| dt$.