

Advanced Logic Design Lecture 3: Sequential Circuits

Mingoo Seok Columbia University

BV: Secs. 5.1, 5.4, 5.8-5.10, 5.15, 7.8

Sequential Circuit Definition

- Combinational circuit: the output depends solely on the input of logic circuits (Lecture 2)
- **Sequential circuit:** the output depends on both the input and the *past state* of the circuit
- Past state = memory
- The circuit changes through a *sequence* of states as a result of changes in the inputs → *sequential circuits*
- Sequence is also related to the order of operations and sometimes includes the notion of *pipelining*

Rudimentary Memory Element

- Back-to-back inverters (= cross-coupled inverters) can store binary (1 or 0) information
- It needs additional circuits to read and write data

D Latch

- Transparent-high latch
 - Latch is sensitive to the level of clk signal
- Fig. 5.7 in the BV book is not the most popular form

Setup and Hold Time

• Defined w/r/t the *falling* edge of Clk for the transparent-*high* latch

(a) Circuit

(c) Graphical symbol

Master-Slave Flip-Flop

- Sensitive to the edge, rather than the level, of clock signal
- Robust
- Where is t_s and t_h?

(a) D flip-flop with asynchronous clear

(b) Timing diagram

Setup & Hold Constraints

- Critical path
- Short path
- Setup violation
- Hold violation

$$T_{\min} = t_{cq} + 3 \cdot t_{AND} + t_{XOR} + t_{setup}$$

$$t_{\rm cq} {+} t_{\rm XOR} > t_{\rm hold}$$

Clock Skew

- Pos. clock skew $(d_2>d_1)$: relax setup, worsen hold
- Neg. clock skew $(d_2 < d_1)$: worsen setup, relax hold

Clock Tree

- Important to minimize clock skew
- Balance (not shorten) clock signal delay from the *source* to each *sink* via a H-shape tree
- However, often you need to shorten the delay. Why?

Output and Input Delay

Clock Domain Crossing (CDC)

- Data exchange between two clock domains
- TX and RX clocks may have unknown and timevarying phase and frequency relationships

Metastability in Clock Domain Crossing

 If D arrives too close to the RX clock edge, it will cause metastability

Metastability in Clock Domain Crossing

 The metastability in the RX flip-flop results in longer clk-toq delay

[C. Lin, JSSC'23]

Synchronizer

- Synchronizers are used to reduce the probability of metastability
- Give one extra cycle for the first flop to resolve the metastability
- Latency varies by one cycle
- Used to the req and ack signals
- However, it cannot guarantee to eliminate metastability
- It cannot provide long-term mitigation, i.e., D can still arrive close to Rx_clk edge at any moment [C. Lin, ISSCC'20]

Register

- One flip-flop (or one latch) stores 1 bits
- Multiple flip-flops storing n bits are called a register
- Register is a microarchitecture term
- Flip-flops and latches are an circuit term

Shift Register

(a) Circuit

	In	Q_1	Q	Q_3	$Q_4 = Out$
t_0	1	0	0	0	0
<i>t</i> ₁	0	1	0	0	0
<i>t</i> ₂	1	0	1	0	0
<i>t</i> ₃	1	1	0	1	0
<i>t</i> ₄	1	1	1	0	1
<i>t</i> ₅	0	1	1	1	0
<i>t</i> ₆	0	0	1	1	1
<i>t</i> ₇	0	0	0	1	1

- A register that provides the ability to shift its contents is called shift register
- ← 4-bit shift register
- Can we make one using *latches*?

Latch Shift Register

- Single-clock? Hold time?
- Two phase clock?

Parallel-Access Shift Register

Toggle Flip-Flop

 Can be made out of the edge-triggered D flip-flop w/ some logic gate

Asynchronous Counter

Another Asynchronous Counter

Synchronous Counter – Better?

Synchronous Counter

Clock cycle	Q_2	Q ₁	
0	0	0	Q ₁ changes
1	0	0	1 Q ₂ changes
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
8	0	0	0
· ·	•		

Ring Counter

(a) An n-bit ring counter

Johnson Counter

- A variation of the ring counter
- $0000 \rightarrow 1000 \rightarrow 1100 \rightarrow 1110 \rightarrow 1111 \rightarrow 0111 \rightarrow 0011$ $\rightarrow 0001 \rightarrow 0000$

29

- The n-bit shift register we have shown have far less than the maximum of 2ⁿ states.
- An n-bit linear feedback shift-register (LFSR) can have 2ⁿ-1 states; such is also called a maximum-length sequence generator
- The design of the LFSR is based on the theory of finite fields (by Evariste Galois, 1811-1832) shortly before he was killed in a duel with a political opponent

n	Feedback Equation
2	X2 = X1 ⊕ X0
3	X3 = X1 ⊕ X0
4	X4 = X1 ⊕ X0
5	X5 = X2 ⊕ X0
6	X6 = X1 ⊕ X0
7	X7 = X3 ⊕ X0
8	$X8 = X4 \oplus X3 \oplus X2 \oplus X0$
12	$X12 = X6 \oplus X4 \oplus X1 \oplus X0$
16	$X16 = X5 \oplus X4 \oplus X3 \oplus X0$
20	X20 = X3 ⊕ X0
24	$X24 = X7 \oplus X2 \oplus X1 \oplus X0$
28	X28 = X3 ⊕ X0
32	X32 = X22 ⊕ X2 ⊕ X1 ⊕ X0

- ← lists feedback
 equations that yield
 maximum length
 sequences for selected
 values of n
- Many others are available for n > 3
- The initial state stored in the register matters

- Used to generate pseudo random sequences
- Digital test circuits
- Error detecting and correcting codes
- Scrambling and descrambling codes in data communications
- Real random number generators, typically in the form of analog circuits, are more complex, large, and power-consuming