Revised: 1/12/2021

Summarizing Data II

Michael C. Hackett
Assistant Professor, Computer Science

Community
College
of Philadelphia

- A contingency table is a table that summarizes data for two categorical variables.
- Contingency tables show the frequency of combinations between the two variables.
 - For example, the table below shows there were 3496 observations in the data set that had an application type of "individual" and homeownership type of "rent"
 - Another example, there were 183 observations in the data set that had an application type of "joint" and homeownership type of "own"

		homeownership			
		rent	mortgage	own	Total
ann tune	individual	3496	3839	1170	8505
app_type	joint	362	950	183	1495
	Total	3858	4789	1353	10000

```
> library(readr)
> loans <- read_csv("loans.csv")</pre>
Parsed with column specification:
cols(
 .default = col_double(),
 emp_title = col_character(),
 state = col_character(),
 homeownership = col_character(),
 verified_income = col_character(),
 verification_income_joint = col_character(),
 loan_purpose = col_character(),
 application_type = col_character(),
 grade = col_character(),
 sub_grade = col_character(),
 issue_month = col_character(),
 loan_status = col_character(),
 initial_listing_status = col_character(),
 disbursement_method = col_character()
See spec(...) for full column specifications.
> table(loans$application_type, loans$homeownership)
            MORTGAGE OWN RENT
  individual
                3839 1170 3496
                 950 183 362
> addmargins(table(loans$application_type, loans$homeownership))
            MORTGAGE
                       OWN RENT
                                  Sum
  individual
                 3839 1170 3496 8505
  ioint
                 950 183 362 1495
                4789 1353 3858 10000
  Sum
```

		homeownership			
		rent	mortgage	own	Total
app_type	individual	3496	3839	1170	8505
	joint	362	950	183	1495
	Total	3858	4789	1353	10000

table function addmargins function

• A contingency table can also be used to summarize one categorical variable.

> table(loa	ans\$homeov	wnership)		
MORTGAGE	OWN	RENT		
4789	1353	3858		
> addmargir	ns(table(loans\$hom	eownership))
MORTGAGE	OWN	RENT	Sum	
4789	1353	3858	10000	

homeownership	Count
rent	3858
mortgage	4789
own	1353
Total	10000

• Sometimes, it is useful for contingency tables display proportions instead of frequencies.

```
> t<-table(loans$application_type, loans$homeownership)</pre>
> t
             MORTGAGE
                       OWN RENT
                                                           Frequencies
  individual
 ioint
                  950 183 362
> prop.table(t)
                               RENT
             MORTGAGE
                                                           Proportions
 individual
               0.3839 0.1170 0.3496
  joint
               0.0950 0.0183 0.0362
                                                                      prop.table function
```

Row Proportions:

- 63.5% of observations with an application type of "joint" have a homeownership type of "mortgage".
- 12.2% of observations with an application type of "joint" have a homeownership type of "own".
- 24.2% of observations with an application type of "joint" have a homeownership type of "rent".

```
> t<-table(loans$application_type, loans$homeownership)</p>
> t
             MORTGAGE
                       OWN RENT
  individual
                 3839 1170 3496
 joint
                  950 183
                             362
> prop.table(t, margin=1)
                              OWN
                                       RENT
              MORTGAGE
  individual 0.4513815 0.1375661 0.4110523
  joint
             0.6354515 0.1224080 0.2421405
```

- Column Proportions:
 - 86.5% of observations with a homeownership type of "own" have an application type of "individual".
 - 13.5% of observations with a homeownership type of "own" have an application type of "joint".

Bar plots are used to visualize the distribution of categorical variables.

```
> t<-table(loans$homeownership)
> barplot(t, xlab="Homeownership", ylab="Frequency")
```


barplot function

- Can be used to display frequencies or proportions.
 - When displaying proportions, it is sometimes called a *relative frequency bar chart*.

```
> t<-table(loans$homeownership)
> barplot(t, xlab="Homeownership", ylab="Frequency")
> barplot(prop.table(t), xlab="Homeownership", ylab="Proportion")
```


- Bar plots can be used to visualize contingency tables.
 - Below is a **stacked bar plot** showing frequency

This stacked bar plot shows the proportion by column

```
> t<-table(loans$application_type, loans$homeownership)</pre>
> pt<-prop.table(t, margin=2)
> barplot(pt, ylab="Proportion", ylim=c(0,1),legend.text=rownames(t), args.legen
d = list(x='right', inset=c(-0.50,0),xpd=TRUE))
                                                          80.
                                                      Proportion
                                                         9.0
             MORTGAGE
                             OWN
                                      RENT-
 individual 0.8016287 0.8647450 0.9061690
                                                                                                 □ ioint
                                                                                                 individual
joint
            0.1983713 0.1352550 0.0938310
                                                          0.2
                                                          0.0
                                                                                    RENT
                                                              MORTGAGE
                                                                          OWN
```

 Both plots below used the same data, but they each tell a different story about the data

 This stacked bar plot clearly shows there are far fewer owners than renters or those with a mortgage

 This stacked bar plot clearly shows the proportion of joint applicants is roughly the same as individual applicants, regardless of homeowner status

 Side-by-side bar plots show the bars next to each other instead of stacked

```
> t<-table(loans$application_type, loans$homeownership)
> pt<-prop.table(t, margin=2)
> barplot(t, ylab="Frequency", ylim=c(0,4000),legend.text=rownames(t), args.lege
nd = list(x='right', inset=c(-0.50,0),xpd=TRUE), beside=TRUE)
```

```
MORTGAGE OWN RENT
individual 3839 1170 3496
joint 950 183 362
```


- Stacked bar plots best emphasize the total count of each column
- Side-by-side bar plots best emphasize the row data of each column

Mosaic plots

- Mosaic plots are another visualization for contingency tables.
 - Shows the relative group sizes of the variables

```
> t<-table(loans$homeownership, loans$application_type)
> mosaicplot(t, main="")
```


mosaicplot function

Mosaic plots

• Very similar to stacked bar plots, except widths now have meaning.

Width in the mosaic plot represents the frequency

