

7. Fourier transformation

Structural Dynamics part of 4DM00

dr.ir. R.H.B. (Rob) Fey, ir. D.W.M. (Daniël) Veldman

Fourier transformation

The Fourier transformation is

- a unique transformation from time domain to frequency domain
- a decomposition of a signal in harmonic components (frequency, amplitude, and phase)

First: complex periodic signals x(t) = x(t + T)

T is the minimal period

Complex form of Fourier-series:

$$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{(2\pi f_n t)j}, \qquad c_n = \frac{1}{T} \int_0^T x(t) e^{-(2\pi f_n t)j} dt, \qquad n \in \mathbb{Z}$$

with $e^{(2\pi f_n t)j} = \cos(2\pi f_n t) + j \sin(2\pi f_n t)$ and $f_n = n/T$.

Note: if x(t) real, $c_{-n} = \bar{c}_n$.

x(t) and c_n have the same unit.

Frequency spectrum

Fourier transformation

In practice non-periodic signals (e.g. impulse response, white noise) Fourier integral needed $T \to \infty$

Compute Fourier transform X(f) of non-periodic x(t) by the Fourier integral

$$X(f) = F[x(t)] = \int_{t=-\infty}^{\infty} x(t) e^{-(2\pi f t)j} dt$$

Note: unit of X(f) is $[x]/Hz \Rightarrow X(f)$ is a spectral density.

Inverse Fourier transform:

$$x(t) = F^{-1}[X(f)] = \int_{f=-\infty}^{\infty} X(f) e^{(2\pi f t)j} df$$

Dirichlet condition

Fourier integral exists if x(t) fulfils Dirichlet condition.

<u>Dirichlet condition:</u> $\int_{t=-\infty}^{\infty} |x(t)| dt$ exists and x(t) piecewise smooth

For signals which do not fulfil Dirichlet condition: use generalised Fourier integral

In practice x(t) is only known in a time window.

Only
$$x_B(t) \coloneqq w(t)x(t)$$
 is available, with

$$w(t) = \begin{cases} 1 & \text{if} & t \in [0, T) \\ 0 & \text{if} & \text{otherwise.} \end{cases}$$

Note: $x_B(t)$ fulfills Dirichlet condition and

$$\lim_{T\to\infty} X_B(f) = X(f)$$

Fourier transformation tables

General rules

time domain	frequency domain	Notes
x(t) + y(t)	X(f) + Y(f)	
$\alpha x(t)$	$\alpha X(f)$	
$x(\alpha t)$,	$X(f/\alpha)/ \alpha $	$\alpha \in \mathbb{R} \backslash 0$
$x(t-t_0)$	$X(f)e^{-2\pi jft_0}$	$t_0 \in \mathbb{R}$
$x(t)e^{2\pi jf_0t}$	$X(f-f_0)$	$f_0 \in \mathbb{R}$
$\dot{x}(t)$	$2\pi j f X(f)$	
tx(t)	$(j/2\pi) dX(f)/df$	
$ar{x}(t)$	X(-f)	

Selected signals

time domain	frequency domain	
$\delta(t-t_0)$	$e^{-2\pi j f t_0}$	Dirac function
$e^{-2\pi j f_0 t}$	$\delta(f+f_0)$	
$\cos(2\pi f_0 t)$	$\frac{\delta(f-f_0)+\delta(f+f_0)}{2}$	
$\sin(2\pi f_0 t)$	$-j\frac{\delta(f-f_0)-\delta(f+f_0)}{2}$	
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\sum_{n=-\infty}^{\infty} \delta(f - n/T)$	pulse train

Example: Fourier transform of w(t)

$$w(t) = \begin{cases} 1 & \text{if } t \in [0, T) \\ 0 & \text{if otherwise.} \end{cases}$$

Compute
$$W(f) = F[w(t)]$$

$$W(f) = \int_{-\infty}^{\infty} w(t)e^{-2\pi jft}dt$$

$$= \int_{0}^{T} (\cos(2\pi ft) - j\sin(2\pi ft))dt$$

$$= \frac{1}{2\pi f} (\sin(2\pi fT) + j\cos(2\pi fT) - j)$$

$$= T \frac{\sin(\pi fT)}{\pi fT} e^{-\pi jfT}$$

Red line T = 40, Black line T = 100

$$W(f) \rightarrow \delta(f)$$
 for $T \rightarrow \infty$.

Convolution

Convolution in time domain

$$x(t) = x_1(t) \otimes x_2(t) = \int_{\tau = -\infty}^{\infty} x_1(\tau) x_2(t - \tau) d\tau$$

becomes in the frequency domain

$$X(f) = \int_{t=-\infty}^{\infty} \left[\int_{\tau=-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau \right] e^{-(2\pi i f t)} dt$$

Introduce $\xi=t- au$ (note that $d\xi=dt$) and note that $e^{-2\pi jft}=e^{2\pi jf au}e^{2\pi jf\xi}$

$$X(f) = \int_{\tau = -\infty}^{\infty} x_1(\tau) e^{-(2\pi i f \tau)} d\tau \int_{\xi = -\infty}^{\infty} x_2(\xi) e^{-(2\pi i f \xi)} d\xi = X_1(f) X_2(f)$$

Convolution in time domain is equivalent to **multiplication** in frequency domain.

Convolution

time domain	frequency domain
$x_1(t)x_2(t)$	$X_1(f) \otimes X_2(f)$
$x_1(t) \otimes x_2(t)$	$X_1(f)X_2(f)$

Do not calculate x(t) via convolution in the time domain!

- 1. transform $x_1(t)$, $x_2(t)$ to frequency domain: $X_1(f)$, $X_2(f)$
- 2. apply simple multiplication $X(f) = X_1(f)X_2(f)$
- 3. transform X(f) back to time domain: $x(t) = F^{-1}[X(f)]$

Availability of Fast Fourier Transformation algorithm essential (will be treated later on)

Impulse response and FRF

Consider linear time-invariant (LTI) system with

- input x(t)
- output y(t)

For example, a 1-dof mass-spring-damper system.

- The **impulse response function** h(t) is the output y(t) resulting from the input $x(t) = \delta(t)$. In other words, if $x(t) = \delta(t)$ (Dirac) then y(t) = h(t).
- For general inputs x(t), the output y(t) is the convolution of h(t) with x(t) $y(t) = h(t) \otimes x(t)$. Note that special case $x(t) = \delta(t)$ indeed results in $y(t) = h(t) \otimes \delta(t) = h(t)$.
- Transform to the frequency domain:

$$Y(f) = H(f)X(f)$$

The Fourier transform of the impulse response h(t) is the FRF H(f)

7b. Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT)

Recall notation:

- x(t) is the continuous time signal for $-\infty < t < \infty$
- $x_B(t)$ is the windowed signal that is equal to x(t) for $0 \le t \le T$ and zero otherwise

Digitization of signal with N (equidistant) **samples**:

$$x_B(t_k) = x_B (k\Delta T), \qquad \Delta T = \frac{T}{N}, \qquad k = 0, 1, \dots, N-1.$$

Discrete Fourier Transform (DFT)

Discrete approximation of Fourier integral (unit: [x]/Hz)

$$X_B(f) = \int_{t=0}^{T} x_B(t)e^{-(2\pi ft)j}dt \approx \sum_{k=0}^{N-1} x_B(k\Delta T)e^{-2\pi jfk\Delta T}\Delta T$$

Observe: the windowed part $x_B(t)$ can be viewed as 1 period of **periodic** signal

$$x_p(t) = \sum_{i=1}^{n} x_B(t - lT)$$

Fundamental frequency of $x_B(t)$ is $f_1 = 1/\overline{T}$.

Evaluate $X_B(f)$ therefore only at discrete values $f_n = nf_1 = \frac{n}{T}$, $n \in \mathbb{Z}$.

Discrete Fourier Transform (DFT, unit: [x]/Hz):

$$X_B(f_n) = \Delta T \sum_{k=0}^{N-1} x_B(k\Delta T) e^{-2\pi jkn\frac{\Delta T}{T}} = \Delta T \sum_{k=0}^{N-1} x_B(k\Delta T) e^{-2\pi j\frac{kn}{N}}, \qquad n \in \mathbb{Z}$$

Two forms of DFT

In practice two forms of DFT are used (difference: factor 1/T):

1. Spectral density (approximation of Fourier integral, unit: [x]/Hz):

$$X(f_n) = X(n) = \Delta T \sum_{k=0}^{N-1} x(k\Delta T)e^{-2\pi j\frac{kn}{N}}, \qquad n = 0, 1, ..., N-1.$$

2. Frequency spectrum ($X(f_n)$ is equivalent with c_n , unit: [x]):

$$X(f_n) = X(n) = \frac{\Delta T}{T} \sum_{k=0}^{N-1} x(k\Delta T)e^{-2\pi j\frac{kn}{N}}, \qquad n = 0, 1, ..., N-1.$$

Note: fft in matlab computes

$$X(f_n) = X(n) = \sum_{k=0}^{N-1} x(k\Delta T)e^{-2\pi j\frac{kn}{N}}, \qquad n = 0, 1, ..., N-1.$$

For spectral density, multiply with $T/N = \Delta T$. For frequency spectrum, multiply with 1/N.

Periodicity

DFT is periodic with sample frequency

$$f_N = \frac{1}{\Delta T} = \frac{N}{T}$$

Proof: for each integer *l*

$$X(f_{n+lN}) = \Delta T \sum_{k=0}^{N-1} x(k\Delta T) e^{-2\pi j \frac{k(n+lN)}{N}} = \Delta T \sum_{k=0}^{N-1} e^{-2\pi j k l} x(k\Delta T) e^{-2\pi j \frac{kn}{N}} = X(f_n).$$

QED.

Therefore, evaluate $X(f_n)$ only for N discrete frequencies

$$X(f_n) = \Delta T \sum_{k=0}^{N-1} x(k\Delta T) e^{-2\pi j \frac{kn}{N}}, \qquad n = 0, 1, ..., N-1.$$

The essential information of a **complex** signal $x(k\Delta T)$, k=0,1,...,N-1 is thus contained in the **complex** DFT $X(f_n)$, n=0,1,...,N-1.

Folding property

For **real** $x(k\Delta T)$, the DFT $X(f_n)$ is still **complex**, but

$$X(f_{(N/2)+n}) = \bar{X}(f_{(N/2)-n}).$$

The DFT is thus folded in a special way around folding frequency

$$f_{fold} = f_{N/2} = \frac{f_N}{2} = \frac{N}{2T}.$$

Indeed, in both time and frequency domain, a real signal $x(k\Delta T)$ is defined by N numbers:

• $X(f_0)$ and $X(f_{N/2})$ are real:

2 numbers

• $X(f_n)$, n = 1, 2, ..., (N/2) - 1 are complex: $2\left(\left(\frac{N}{2}\right) - 1\right) = N - 2$ numbers.

The essential information of a **real** signal $x(k\Delta T)$, k=0,1,...,N-1 is thus contained in the **complex** DFT $X(f_n)$, n=0,1,...,N/2.

Inverse DFT

Again two forms:

Inverse of the Spectral density
$$x(t_k)=x(k)=\frac{1}{T}\sum_{n=0}^{N-1}X(f_n)e^{2\pi j\frac{kn}{N}}, \qquad k=0,1,\dots,N-1.$$

Inverse of the Frequency spectrum

$$x(t_k) = x(k) = \sum_{n=0}^{N-1} X(f_n) e^{2\pi j \frac{kn}{N}}, \qquad k = 0, 1, ..., N-1.$$

Note: ifft in matlab computes

$$x(k\Delta T) = x(k) = \frac{1}{N} \sum_{n=1}^{N-1} X(f_n) e^{2\pi j \frac{kn}{N}}, \qquad k = 0, 1, ..., N-1.$$

For inverse of spectral density, multiply with $1/\Delta T$. For inverse of frequency spectrum, multiply with N

Periodicity of inverse DFT

The inverse DFT $x(t_k)$ is periodic with period $T = N\Delta T$ (for both forms).

Proof:

$$x(t_{k+lN}) = \frac{1}{T} \sum_{n=0}^{N-1} X(f_n) e^{2\pi j \frac{(k+lN)n}{N}} = \frac{1}{T} \sum_{n=0}^{N-1} e^{2\pi j n l} X(f_n) e^{2\pi j \frac{kn}{N}} = x(t_k).$$

Example: DFT of w(t)

$$w(t) = \begin{cases} 1 & \text{if} & t \in [0,10) \\ 0 & \text{if} & \text{otherwise.} \end{cases}$$

Measurement time: T = 200 s.

Number of time points: N = 200.

Fundamental frequency (resolution)

$$f_1 = \Delta f = \frac{1}{T} = 0.005 \text{ Hz.}$$

- Sample time (increment): $\Delta T = \frac{T}{N} = 1$ s.
- Sample frequency: $f_N = \frac{1}{\Lambda T} = 1$ Hz.
- Folding frequency: $f_{fold} = \frac{f_N}{2} = 0.5$ Hz.

Compute the spectral density.

Example: DFT of w(t)

$$w(t) = \begin{cases} 1 & \text{if} & t \in [0,10) \\ 0 & \text{if} & \text{otherwise.} \end{cases}$$

Measurement time: T = 200 s.

Number of time points: N = 2000.

Fundamental frequency (resolution)

$$f_1 = \Delta f = \frac{1}{T} = 0.005 \text{ Hz}$$

- $f_1 = \Delta f = \frac{1}{T} = 0.005$ Hz. Sample time (increment): $\Delta T = \frac{T}{N} = \mathbf{0}.\mathbf{1}$ s.
- Sample frequency: $f_N = \frac{1}{\Delta T} = 10$ Hz.
- Folding frequency: $f_{fold} = \frac{f_N}{2} = 5$ Hz.

Compute the spectral density.

Fast Fourier Transformation (FFT)

$$X(f_n) = X(n) = \frac{1}{N} \sum_{k=0}^{N-1} x(k\Delta T) e^{-2\pi j \frac{kn}{N}}, \qquad n = 0, 1, ..., N-1.$$

DFT: N^2 complex multiplications needed, expensive for large N!

However, a lot of identical multiplications...

FFT: algorithm, see book

When $N = 2^m$ ($m \in \mathbb{N}$) only $N \log_2 N$ complex multiplications.

For $N = 2048 = 2^{11}$, FFT reduces the cpu-time by a factor 186!

7c. Error sources

Error sources in DFT/FFT

1. Signal leakage

Basic problem: x(t) is defined for $-\infty < t < \infty$, but only the interval $0 \le t < T$ is taken into account. In other words, we consider $x_R(t)$ instead of x(t).

2. Aliasing

Basic problem: the continuous-time signal x(t) (or in fact $x_B(t)$) is only sampled in a limited number of discrete values.

Main questions:

- a) How do these error sources influence the DFT/FFT?
- b) How can the effect of these error sources be reduced?

Signal leakage

The application of a rectangular window generally leads to signal leakage!

Two exceptions:

- Window length is a multiple of period of a periodic signal.
- Transient signal (e.g. impulse response) which is (practically) damped out before the end of the window

Signal leakage

Signal leakage is caused by the windowing function w(t)

$$x_B(t) = w(t)x(t),$$

In the frequency domain:

$$X_B(f) = F[x_B(t)] = W(f) \otimes X(f).$$

Because $\delta(f) \otimes X(f) = X(f)$:

the better W(f) resembles $\delta(f)$, the better $X_B(f)$ resembles X(f) and the better W(t) resembles 1 (for all $-\infty < t < \infty$), the better $X_B(f)$ resembles X(f).

Signal leakage thus results in:

- Energy in a certain frequency will be spread out over neighbouring dummy frequencies
- Resonance peaks become wider
 ⇒ very close peaks cannot be distinguished.

Example: Signal leakage

Signal: $x(t) = \cos(2\pi f_x t)$ Rectangular window w(t)

Theoretical FT:
$$X(f) = \frac{1}{2} [\delta(f - f_x) + \delta(f + f_x)]$$

Windowed FT: $X_B(f) = \frac{1}{2} [W(f - f_x) + W(f + f_x)]$

Case A:
$$f_x = 1/8$$
 Hz, $T = 4/f_x = 32$ s, $N = 32$.

Case B:
$$f_x = 1/9.143$$
 Hz, $T = 3.5/f_x = 32$ s, $N = 32$.

Look at the open dots at the discrete frequencies f_n .

Case A: No leakage

Case B: Some energy has leaked to frequencies around f_x .

Example: Signal leakage

Signal: $x(t) = \cos(2\pi f_x t)$ Rectangular window w(t)

Case A: $f_x = 1/8$ Hz, $T = 4/f_x = 32$ s, N = 32.

Case B: $f_x = 1/9.143$ Hz, $T = 3.5/f_x = 32$ s, N = 32.

For Case B, we see a discontinuous signal in the time domain!

Solution to signal leakage

- in the time domain: edge discontinuities should be reduced.
- in the frequency domain: use a window function w(t) for which W(f) = F[w(t)] resembles a Dirac delta $\delta(f)$.

Windowing functions

For unaffected mean power of w(t)x(t)

$$MSV = \frac{1}{T} \int_0^T w^2(t) \, x^2(t) dt,$$

require:

$$\frac{1}{T} \int_0^T w^2(t) \, dt = 1$$

Hanning window compared to Rectangular window:

- side lobes are almost missing (++)
- central peak a bit wider (-)

Example: Signal leakage

Signal: $x(t) = \cos(2\pi f_x t)$

Again, consider Case B: $f_x = 1/9.143$ Hz, $T = 3.5/f_x = 32$ s, N = 32.

Rectangular window w(t) = 1 for $0 \le t < T$ (solid lines) and Hanning window $w_H(t) = \sqrt{2/3}(1 - \cos(2\pi t/T))$ (dotted lines with open dots).

Windowing in practice

Transient not yet damped out at the end of measurement interval

time [s]

Natural to use **exponential window.** This introduces numerical damping!

After impact: noise, swinging of hammer, putting hammer on table. All not related to hammer impact on the structure.

Use rectangular window.

Related to **sampling** of x(t) in discrete time points $t_n = n\Delta T = \frac{nI}{N}$. Sampling frequency $f_N = 1/\Delta T$.

Approximate Fourier transform X(f) = F[x(t)] using **only** the samples $x(t_n)$.

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-(2\pi ft)j}dt \approx \sum_{n=-\infty}^{\infty} x(n\Delta T)e^{-2\pi jfn\Delta T}\Delta T.$$

The RHS can be considered as the Fourier transform of the pulse train

$$x_B(t) = x(t) \Delta T \sum_{n=-\infty}^{\infty} \delta(t - n\Delta T).$$

Taking the Fourier transform of $x_B(t)$ yields

$$X_B(f) = X(f) \otimes \sum_{n=-\infty}^{\infty} \delta(f - nf_N) = \sum_{n=-\infty}^{\infty} X(f + nf_N).$$

$$X_B(f) = \sum_{n=0}^{\infty} X(f + nf_N)$$

 $X_B(f) = \sum_{n=-\infty} X(f+nf_N)$ Situation I: sufficiently high sampling frequency f_N , so |X(f)|=0 for $f>\frac{f_N}{2}=f_{N/2}$.

- $X_B(f)$ is periodic with period f_N , X(f) is not periodic!
- $X_B(f)$ is **exactly equal** to X(f) in $-f_{N/2} \le f \le f_{N/2}$

$$X_B(f) = \sum_{n=0}^{\infty} X(f + nf_N)$$

 $X_B(f) = \sum_{n=-\infty} X(f+nf_N)$ Situation II: sampling frequency f_N is too low, so |X(f)|>0 for (some) $f>\frac{f_N}{2}=f_{N/2}$.

- $X_R(f)$ is periodic with period f_N , X(f) is not periodic!
- $X_B(f)$ is **not equal** to X(f) in $-f_{N/2} \le f \le f_{N/2}$, aliasing occurs!

Avoid aliasing by choosing the sampling time ΔT such that the **Nyquist (folding)** frequency satisfies:

$$f_{fold} = f_{Nyquist} = f_{N/2} = \frac{1}{2\Delta T} > f_{max}.$$

• f_{max} may be very high, then **analogue low-pass filtering** should be applied.

Aliasing is close related to **Shannon's sampling theorem**:

If X(f)=0 for all $|f|>f_{max}$ then the continuous function x(t) is fully determined by samples at the discrete time points $t_n=n\Delta T$, $n\in\mathbb{Z}$ with $\Delta T=1/(2f_{max})$.

Example: aliasing

Consider signals $x_i(t) = \cos(2\pi f_i t)$ with $f_2 = 14$ Hz (solid line) and $f_3 = 22$ Hz (dashed line).

Sample time: $\Delta T = 0.0833$ s, sampling frequency $f_N = 12$ Hz.

Samples of $x_2(t)$ and $x_3(t)$ coincide with samples of $x_1(t)$ with $f_1=2$ Hz.

Problems could be expected: $f_{fold} = 1/(2\Delta T) = 6$ Hz

Zoom-FFT

Method to obtain detailed information in small frequency band.

Motivation: consider the signal

$$x(t) = 2\sin(2\pi f_1 t) + 4\cos(2\pi f_2 t)$$
, $f_1 = 200.4$ Hz, $f_2 = 201.3$ Hz.

Compute FFT N = 512, T = 1 s, so $f_{fold} = 256$ Hz.

Not clear that we are dealing with two frequency components. Resolution $\Delta f = 1$ Hz is too low!

Zoom-FFT

Method to obtain detailed information in small frequency band.

Motivation: consider the signal

$$x(t) = 2\sin(2\pi f_1 t) + 4\cos(2\pi f_2 t), \qquad f_1 = 200.4 \text{ Hz}, f_2 = 201.3 \text{ Hz}.$$

Possible solution: compute FFT N=8192, T=16 s, so $f_{fold}=256$ Hz and $\Delta f=0.0625$ Hz

Disadvantage: N is large, FFT will take much time. Only information around 200 Hz is interesting.

Zoom-FFT

Another solution: Zoom-FFT! Now N can be kept small.

Frequency band of interest $f_{min} < f < f_{max}$.

Introduce $g := f - f_{min}$, so we are interested in $0 \le g \le f_b \coloneqq f_{max} - f_{min}$.

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-2\pi i ft}dt = \int_{-\infty}^{\infty} x(t)e^{-2\pi i f_{min}t}e^{-2\pi i gt}dt = \int_{-\infty}^{\infty} y(t)e^{-2\pi i gt}dt = Y(g)$$

where

$$y(t) \coloneqq x(t)e^{-2\pi j f_{min}t}$$
.

Observe:

- Complex y(t) is obtained by frequency modulation of real x(t).
- Y(g) can be computed using a standard FFT with $g_N = f_b = 1/\Delta T$.

Example: Zoom-FFT

We choose
$$f_{min}=199$$
 Hz, $f_{max}=204$ Hz $\Rightarrow f_b=g_N=f_{max}-f_{min}=5$ Hz $\Rightarrow \Delta T=1/f_b=0.2$ s.

We also choose
$$N = 512$$
 (small) $\Rightarrow T = N\Delta T = 102.4$ s, (large)

$$\Rightarrow T = N \Delta T = 102.4 \text{ s, (large)}$$

 $\Rightarrow \Delta f = \frac{1}{T} \approx 0.01 \text{ Hz (small)}$

Compute Y(g) and shift result to $f = g + f_{min}$.

Observe:

Not only peaks at 200.4 and 201.3 Hz, b but also at 199.6 and 203.7 Hz (dummy frequencies)!

Remarks on Zoom-FFT

- There is no folding frequency at $g_{N/2} = (f_{max} f_{min})/2$ Hz because y(t) is complex! Only if f_{min} is a multiple of f_b a folding frequency will arise.
- Dummy frequencies can be understood as follows:

$$y(t) = \sin(2\pi f_1 t) e^{-2\pi j f_{min}} = \frac{j}{2} \left[-e^{-2\pi j (f_1 - f_{min})} + -e^{-2\pi j (-f_1 - f_{min})} \right],$$

so an harmonic at $f=f_1$ introduces two peaks at $g_{1a}=f_1-f_{min}$ and $g_{1b}=-f_1-f_{min}$.

Furthermore, the FFT Y(g) is periodic with $g_{N/2}=(f_{max}-f_{min})/2$ Hz. The peaks thus also appear at $g=g_{1a}+ng_{N/2}$ and $g=g_{1b}+ng_{N/2}$, $n\in\mathbb{Z}$.

With $f_1=200.4$ Hz, $f_{min}=199$ Hz, and $f_{max}=204$ Hz, we thus get $g_{1a}=1.4$ Hz and $g_{1b}=-399.4$ Hz. Due to the periodicity of Y(g) with 5 Hz, g_{1b} leads to a peak at g=0.6 Hz, which corresponds to $f_b=g_b+f_{min}=199.6$ Hz!

For $f_2=201.3$ Hz, $g_{1a}=2.3$ Hz and $g_{1b}=-400.3$ Hz. g_{1b} leads to a peak at g=4.7 Hz, which corresponds to f=203.7 Hz!

