LISTA DE EXERCÍCIOS 2

- 1. O código Morse consiste de uma sequência de pontos e traços em que repetições são permitidas.
 - a) Quantas letras podem ser codificadas usando exatamente *n* símbolos?
 - b) Qual é o número de letras que se pode codificar usando n ou menos símbolos?
- 2. Um homem possui *n* chaves das quais, exatamente uma abre a fechadura. Ele experimenta as chaves uma de cada vez, escolhendo ao acaso em cada tentativa uma das chaves que não foram experimentadas. Determine a probabilidade de que ele escolha a chave correta na *r*-ésima tentativa?
- 3. Nesta questão, descreva um espaço de probabilidade adequado ao experimento e o evento envolvido no problema.
 - Um ônibus parte com 6 pessoas e para em 10 pontos diferentes. Supondo que os passageiros têm igual probabilidade de saltar em qualquer parada, determine a probabilidade de que dois passageiros não desembarquem na mesma parada.
- 4. Suponha que temos r caixas. Bolas são colocadas aleatoriamente nas caixas, uma de cada vez, até que alguma caixa contenha duas bolas pela primeira vez. Determine a probabilidade de que isto ocorra na n-ésima bola, com $r \ge n 1$.
- 5. Supondo que se distribui n bolas em n caixas.
 - a) Qual a probabilidade de que exatamente uma caixa esteja vazia?
 - b) Dado que a caixa 1 está vazia, qual a probabilidade de que somente uma caixa esteja vazia?
 - c) Dado que somente uma caixa está vazia, qual a probabilidade de que a caixa 1 esteja vazia.
- 6. Se distribuímos aleatoriamente n bolas em r caixas, qual é a probabilidade de que a caixa 1 contenha j bolas, $0 \le j \le n$?
- 7. Uma caixa contém *b* bolas pretas e *r* bolas vermelhas. Bolas são extraídas sem reposição, uma de cada vez. Determine a probabilidade de obter a primeira bola preta na *n*-ésina extração.
- 8. Considere um baralho com 52 cartas. Uma mão de pôquer consiste de 5 cartas extraídas do baralho sem reposição e sem consideração da ordem. Considera-se que constituem sequências as mãos dos seguintes tipos: A, 2, 3,4,5; 2, 3, 4, 5, 6; ...; 10, J, Q, K, A. Determine a probabilidade de ocorrência de cada uma das seguintes mãos de pôquer:
 - a) Royal flush ((10, J, Q, K, A) do mesmo naipe);
 - b) Straight flush (cinco cartas do mesmo naipe em sequência);
 - c) Four (valores da forma (x, x, x, x, y) onde x e y são distintos);
 - d) $Full\ House\ (valores\ da\ forma\ (x, x, y, y)\ onde\ x\ e\ y\ são\ distintos);$
 - e) Flush (cinco cartas do mesmo naipe);
 - f) Straight (cinco cartas em sequência, sem consideração de naipes);
 - g) Trinca (valores da forma (x, x, x, y, z) onde x, y e z são distintos);
 - h) Dois pares (valores da forma (x, x, y, y, z) onde $x, y \in z$ são distintos);
 - i) Um par (valores da forma (w, w, x, y, z) onde w, x, y e z são distintos).

- 9. Uma caixa contém dez bolas numeradas de 1 a 10. Seleciona-se uma amostra aleatória de 3 elementos. Determine a probabilidade de que as bolas 1 e 6 estejam entre as bolas selecionadas.
- 10. Suponha que se extrai, sem reposição, uma amostra de tamanho n de uma população de r elementos. Obtenha a probabilidade de que k objetos dados estejam incluídos na amostra.
- 11. Qual a probabilidade de que 4 cartas extraídas de um baralho, 2 sejam pretas e 2 vermelhas?
- 12. Se você possui 3 bilhetes de uma loteria para a qual se vendeu *n* bilhetes e existem 5 prêmios, qual a probabilidade de você ganhar pelos menos um prêmio?

Exercício	Resposta
1	a) 2^n ; b) $2(2^n - 1)$
2	1/n
3	$\frac{A_{10,6}}{10^6}$
4	$\frac{(n-1)A_{r,n-1}}{r^n}$
5	$\frac{(n-1)A_{r,n-1}}{r^n}$ a) $\frac{\binom{n}{2}n!}{n^n}$; b) $\frac{\binom{n}{2}(n-1)!}{(n-1)^n}$; c) $\frac{1}{n}$
6	$\binom{n}{i}(r-1)^{n-j}$
7	$\frac{\binom{r}{n-1}}{\binom{r+b}{n-1}} \frac{b}{r+b-n+1}$
8	a) $4q$; b) $4.10q$; c) $13.48q$; d) $13.12.4.6q$; e) $4.\binom{13}{5}q$; f) $10. \ 4^5q$ Sendo: $q = \binom{52}{5}^{-1}$
9	$8/\binom{10}{3}$
10	$\binom{r-k}{n-k} / \binom{r}{n}$
11	$\binom{26}{2}^2 / \binom{52}{4}$
12	$1 - \frac{\binom{5}{0}\binom{n-5}{3}}{\binom{n}{3}}$ ou $1 - \frac{\binom{3}{0}\binom{n-3}{5}}{\binom{n}{5}}$