Notas de Álgebra Lineal

Carlos Francisco Flores Galicia.

Capítulo 1

Espacios vectoriales

- 1.0.1. Espacios vectoriales
- 1.0.2. Subespacios vectoriales
- 1.0.3. Combinaciones lineales

Definición 1. Sea V un espacio vectorial $y \in S \subseteq V$, $S \neq \emptyset$. Se dice que un vector $v \in V$ es combinación lineal de elementos de S, si existe un conjunto finito $\{s_1, s_2, ..., s_n\} \subseteq S$ y escalares $\lambda_1, \lambda_2, ... \lambda_n \in K$ tales que $v = \lambda_1 s_1 + \lambda_2 s_2 + ... + \lambda_n s_n$. Se dice también que $v \in S$ combinación lineal de $\{s_1, s_2, ..., s_n\}$.

Definición 2. Sea V un espacio vectorial y $S = \{s_1, s_2, ..., s_n\} \subseteq V$. Definimos al conjunto generado por elementos de S como

$$\langle S \rangle = \{ \lambda_1 s_1 + \lambda_2 s_2 + \dots + \lambda_n s_n : \lambda_1, \lambda_2, \dots \lambda_n \in K \}$$
 (1.1)

Esto es, el conjunto generado por S es el conjunto de todas las combinaciones lineales de los elementos de S.

Definición 3. $\langle \emptyset \rangle = \{0_V\}$

Teorema 1. Sea V un espacio vectorial $y \in S \subseteq V$, $S \neq \emptyset$, entonces $\langle S \rangle \subseteq V$ $y \langle S \rangle$ es el subespacio de V más pequeño que contiene a S (es decir, que $\langle S \rangle$ es un subconjunto de todos los subespacios de V que contienen a S).

Demostración. Probemos primero que $\langle S \rangle \leq V$. Como $S \neq \emptyset$, al menos $0_V \in \langle S \rangle$. Luego, sean $u,v \in \langle S \rangle$, por tanto u y v son combinaciones lineales de elementos de S, de manera que existen $s_1,s_2,...s_n,t_1,t_2,...,t_n \in S$ tales que $v=a_1s_1+...+a_ns_n$ y $u=b_1t_1+...+b_nt_n$, con $a_1,...a_n,b_1,...,b_n \in K$. Ahora bien, es claro que $v+u=a_1s_1+...+a_ns_n+b_1t_1+...+b_nt_n$ y $cu=cb_1t_1+...+cb_nt_n$ pertenecen a $\langle S \rangle$, para cualquier $c \in K$. Por lo tanto $\langle S \rangle \leq V$.

Por otra parte, sea U un subespacio de V que contiene a S. Sea $v \in \langle S \rangle$, entonces $v = a_1s_1 + ... + a_ns_n$, con $a_1, ..., a_n \in K$ y $s_1, ..., s_n \in S$, además como

 $S \subseteq U$ entonces $v = a_1s_1 + a_2s_2 + ... + a_ns_n \in U$, pues los subespacios vectoriales son cerrados bajo la suma y bajo el producto por escalares. Por tanto tenemos que si $v \in \langle S \rangle$ entonces $v \in U$, así que $\langle S \rangle \subseteq U$.

Definición 4. Sea $S \subseteq V$. Decimos que S genera a V si $\langle S \rangle = V$. También podemos decir que los elementos de S generan a V.

1.0.4. Dependencia e independencia lineal.

Definición 5. Sea $S = \{s_1, s_2, ..., s_n\} \subseteq V$. Decimos que S es linealmente dependiente si existe $s \in S$ tal que $s \in \langle S - \{s\} \rangle$.

Teorema 2. Sea $S = \{s_1, s_2, ..., s_n\} \subseteq V$. S es linealmente dependiente si y solo si existen $a_1, a_2, ..., a_n \in K$ tal que $a_1s_1 + a_2s_2 + ... + a_ns_n = 0_V$ y $a_1, a_2, ..., a_n \in K$ no son todos cero.

 $Demostraci\'on. \Rightarrow$ Supongamos que S es linealmente dependiente, entonces existe $s \in S$ tal que $s \in \langle S - \{s\} \rangle$, por tanto existen $s_1, s_2, ..., s_n \in S - \{s\}$ y los escalares $a_1, a_2, ..., a_n \in K$ tales que $s = a_1s_1 + a_2s_2 + ... + a_ns_n$. Al sumar -s en ambos lados de la expresión anterior obtenemos $0_V = -s + a_1s_1 + a_2s_2 + ... + a_ns_n$, con lo cual se garantiza que no todos los escalares que multiplican a los vectores son cero, pues -1 multiplica a s.

 \Leftarrow Supongamos que existen $a_1, a_2, ..., a_n \in K$, no todos cero, tales que $a_1s_1 + a_2s_2 + ... + a_ns_n = 0_V$. Puesto que no todos los escalares son cero, supongamos sin perdida de generalidad que $a_1 \neq 0$, por tanto podemos multiplicar en ambos lados de la igualdad anterior por el escalar $\frac{1}{a_1}$. En consecuencia obtenemos $s_1 + \frac{a_2}{a_1}s_2 + ... + \frac{a_n}{a_1}s_n = 0_V$. Luego, al sumar $-s_1$ y multiplicar por -1 en ambos lados nos queda que $s_1 = \left(-\frac{a_2}{a_1}\right)s_2 + ... + \left(-\frac{a_n}{a_1}\right)s_n$, esto es, que $s_1 \in \langle S - \{s_1\} \rangle$. Por lo tanto S es linealmente dependiente.

Definición 6. Sea $S \subseteq V$. Decimos que S es linealmente independiente si y solo si no es linealmente dependiente.

Por la equivalencia lógica $(P \Leftrightarrow \exists x(Q \land S)) \Leftrightarrow (\neg P \Leftrightarrow \forall x(Q \Rightarrow \neg S))$, el teorema anterior es equivalente a la siguiente proposición que enunciaremos como corolario.

Corolario 1. Sea $S \subseteq V$. S es linealmente independiente si y solo si para todo $a_1, a_2, ..., a_n \in K$ tal que si $a_1s_1 + a_2s_2 + ... + a_ns_n = 0_V$ entonces $a_1, a_2, ..., a_n$ son todos cero.

Demostración. Se sigue del teorema anterior y de la equivalencia lógica $(P \Leftrightarrow \exists x(Q \land S)) \Leftrightarrow (\neg P \Leftrightarrow \forall x(Q \Rightarrow \neg S)).$

Proposición 1. Si $S \subseteq V$ y $0_V \in S$, entonces S es linealmente dependiente.

$Demostraci\'on.$
Teorema 3. El conjunto \emptyset es linealmente independiente
$Demostraci\'on$. Supongamos que \emptyset es linealmente dependiente, entonces existe $s \in \emptyset$ tal que $s \in \langle \emptyset - \{s\} \rangle$. Como $s \in \emptyset$ entonces por definición del conjunto vacío se cumple que $s \neq s$ lo cual es una contradicción. Por lo tanto el conjunto \emptyset es linealmente independiente.
Lemma 4. Si V es un K -espacio vectorial y $S_1 \subseteq S_2 \subseteq V$, entonces $\langle S_1 \rangle \subseteq \langle S_2 \rangle$.
$Demostraci\'on.$
Teorema 5. Sea V un K -espacio vectorial y sean $S_1 \subseteq S_2 \subseteq V$. Si S_1 es linealmente dependiente entonces S_2 también lo es.
Demostración. Supongamos que S_1 es linealmente dependiente, entonces existe $s \in S_1$ tal que $s \in \langle S_1 - \{s\} \rangle$. Luego, como $S_1 \subseteq S_2$ entonces $S_1 - \{s\} \subseteq S_2 - \{s\}$, y por el lema anterior $\langle S_1 - \{s\} \rangle \subseteq \langle S_2 - \{s\} \rangle$, por lo que $s \in \langle S_2 - \{s\} \rangle$, luego S_2 es linealmente dependiente.
Corolario 2. Sea V un K -espacio vectorial y sean $S_1 \subseteq S_2 \subseteq V$. Si S_2 es linealmente independiente entonces S_1 también lo es.

Demostración. La demostración se sigue de hacer la contrapositiva del teorema

anterior.