```
# Libraries to help with reading and manipulating data
import numpy as np
import pandas as pd
# Libraries to help with data visualization
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
# Removes the limit for the number of displayed columns
pd.set_option("display.max_columns", None)
# Sets the limit for the number of displayed rows
pd.set option("display.max rows", 200)
# to split the data into train and test
from sklearn.model_selection import train_test_split
# to build linear regression model
from sklearn.linear_model import LinearRegression
# to check model performance
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
# I changed this part
!pip install mlxtend
import joblib
import sys
sys.modules['sklearn.externals.joblib'] = joblib
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
     Requirement already satisfied: mlxtend in /usr/local/lib/python3.10/dist-packages (0.22.0)
     Requirement already satisfied: scipy>=1.2.1 in /usr/local/lib/python3.10/dist-packages (from mlxtend) (1.11.4)
     Requirement already satisfied: numpy>=1.16.2 in /usr/local/lib/python3.10/dist-packages (from mlxtend) (1.25.2)
     Requirement already satisfied: pandas>=0.24.2 in /usr/local/lib/python3.10/dist-packages (from mlxtend) (2.0.3)
     Requirement already satisfied: scikit-learn>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from mlxtend) (1.2.2)
     Requirement already satisfied: matplotlib>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from mlxtend) (3.7.1)
     Requirement already satisfied: joblib>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from mlxtend) (1.4.0)
     Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from mlxtend) (67.7.2)
     Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->mlxtend) (1.2.1)
     Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->mlxtend) (0.12.1)
     Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->mlxtend) (4.51.0)
     Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->mlxtend) (1.4.5)
     Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->mlxtend) (24.0)
     Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->mlxtend) (9.4.0)
     Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->mlxtend) (3.1.2)
     Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->mlxtend) (2.8.2)
     Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.2->mlxtend) (2023.4)
     Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.2->mlxtend) (2024.1)
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.2->mlxtend) (3.4.
     Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib>=3.0.0->mlxten
```

```
# Importing Libraries
import requests
import pandas as pd
{\tt from\ imblearn.over\_sampling\ import\ SMOTE}
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB as Naive_Bayes
from sklearn import metrics
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score
from sklearn.datasets import make_classification
from xgboost import XGBClassifier
from sklearn.externals import joblib
from IPython.display import display
import pickle
df = pd.read_csv('/content/parkinsons dataset.csv')
```

Double-click (or enter) to edit

df.head()

	name	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitter(Abs)	MDVP:RAP	MDVP:PPQ	Jitter:DDP	MDVP:Shimm
0	phon_R01_S01_1	119.992	157.302	74.997	0.00784	0.00007	0.00370	0.00554	0.01109	0.043
1	phon_R01_S01_2	122.400	148.650	113.819	0.00968	0.00008	0.00465	0.00696	0.01394	0.061
2	phon_R01_S01_3	116.682	131.111	111.555	0.01050	0.00009	0.00544	0.00781	0.01633	0.052
3	phon_R01_S01_4	116.676	137.871	111.366	0.00997	0.00009	0.00502	0.00698	0.01505	0.054
4	phon_R01_S01_5	116.014	141.781	110.655	0.01284	0.00011	0.00655	0.00908	0.01966	0.064

df.tail()

	name	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitt
191	phon_R01_S50_3	209.516	253.017	89.488	0.00564	
192	phon_R01_S50_4	174.688	240.005	74.287	0.01360	
193	phon_R01_S50_5	198.764	396.961	74.904	0.00740	
194	phon_R01_S50_6	214.289	260.277	77.973	0.00567	
195	phon_R01_S50_6	216.289	266.279	77.974	0.00568	

```
print('Number of Features In Dataset :', df.shape[1])
print('Number of Instances In Dataset : ', df.shape[0])

   Number of Features In Dataset : 24
   Number of Instances In Dataset : 196

# Dropping The Name Column
df.drop(['name'], axis=1, inplace=True)

print('Number of Features In Dataset :', df.shape[1])
print('Number of Instances In Dataset : ', df.shape[0])
```

```
Number of Features In Dataset : 23
Number of Instances In Dataset : 196
```

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 196 entries, 0 to 195 Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype			
0	MDVP:Fo(Hz)	196 non-null	float64			
1	MDVP:Fhi(Hz)	196 non-null	float64			
2	MDVP:Flo(Hz)	196 non-null	float64			
3	MDVP:Jitter(%)	196 non-null	float64			
4	MDVP:Jitter(Abs)	196 non-null	float64			
5	MDVP:RAP \	196 non-null	float64			
6	MDVP:PPQ	196 non-null	float64			
7	Jitter:DDP	196 non-null	float64			
8	MDVP:Shimmer	196 non-null	float64			
9	MDVP:Shimmer(dB)	196 non-null	float64			
10	Shimmer:APQ3	196 non-null	float64			
11	Shimmer:APQ5	196 non-null	float64			
12	MDVP:APQ	196 non-null	float64			
13	Shimmer:DDA	196 non-null	float64			
14	NHR	196 non-null	float64			
15	HNR	196 non-null	float64			
16	status	196 non-null	int64			
17	RPDE	196 non-null	float64			
18	DFA	196 non-null	float64			
19	spread1	196 non-null	float64			
20	spread2	196 non-null	float64			
21	D2	196 non-null	float64			
22	PPE	196 non-null	float64			
dtypes: float64(22), int64(1)						

memory usage: 35.3 KB

df.describe()

	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitter(Abs)	MDVP
coun	t 196.000000	196.000000	196.000000	196.000000	196.000000	196.00
mear	154.545276	197.457847	116.128964	0.006218	0.000044	0.00
std	41.521110	91.390318	43.496022	0.004836	0.000035	0.00
min	88.333000	102.145000	65.476000	0.001680	0.000007	0.00
25%	117.721000	134.965750	84.044250	0.003460	0.000020	0.00
50%	149.239500	176.212000	104.205000	0.004945	0.000030	0.00
75%	183.653750	224.804250	139.504250	0.007347	0.000060	0.00
max	260.105000	592.030000	239.170000	0.033160	0.000260	0.02

```
df['status'] = df['status'].astype('uint8')
# Checking For Duplicate Rows In Dataset
print('Number of Duplicated Rows :',df.duplicated().sum())
     Number of Duplicated Rows : 0
# Checking For Missing Values In Dataset
df.isna().sum()
     MDVP:Fo(Hz)
                        0
    MDVP:Fhi(Hz)
                        0
     MDVP:Flo(Hz)
                        0
    MDVP:Jitter(%)
                        0
    MDVP:Jitter(Abs)
                        0
     MDVP:RAP
                        0
     MDVP:PPQ
                        0
     Jitter:DDP
    MDVP:Shimmer
                        0
     MDVP:Shimmer(dB)
                        0
     Shimmer:APQ3
```

```
Shimmer:APQ5
MDVP:APQ
                   0
Shimmer:DDA
                   0
                   0
HNR
                   0
                   0
status
                   0
RPDE
DFA
                   0
spread1
                   0
                   0
spread2
PPE
                   0
dtype: int64
```

#Balance of Data
sns.countplot(x='status',data=df)

<Axes: xlabel='status', ylabel='count'>


```
#Box Plot
fig,axes=plt.subplots(5,5,figsize=(15,15))
axes=axes.flatten()

for i in range(1,len(df.columns)-1):
    sns.boxplot(x='status',y=df.iloc[:,i],data=df,orient='v',ax=axes[i])
plt.tight_layout()
plt.show()
```



```
plt.rcParams['figure.figsize'] = (15, 4)
sns.pairplot(df,hue = 'status', vars = ['MDVP:Jitter(%)','MDVP:Jitter(Abs)','MDVP:RAP','MDVP:PPQ', 'Jitter:DDP'] )
plt.show()
```


fig, ax = plt.subplots(figsize=(20,20))
sns.heatmap(df.corr(),annot=True,ax=ax)


```
plt.rcParams['figure.figsize'] = (15, 4)
sns.pairplot(df,hue = 'status', vars = ['MDVP:Shimmer','MDVP:Shimmer(dB)','Shimmer:APQ3','Shimmer:APQ5','MDVP:APQ','Shimmer:DDA'] )
plt.show()
```



```
# Exploring Imabalance In Dataset
df['status'].value_counts()
     status
         147
     1
           49
     Name: count, dtype: int64
X = df.drop(['status'], axis=1)
y = df['status']
print('Feature (X) Shape Before Balancing :', X.shape)
print('Target (y) Shape Before Balancing :', y.shape)
     Feature (X) Shape Before Balancing: (196, 22)
     Target (y) Shape Before Balancing: (196,)
y=df['status']
cols=['MDVP:RAP','Jitter:DDP','DFA','NHR','MDVP:Fhi(Hz)','status']
x=df.drop(cols,axis=1)
```

```
from sklearn.preprocessing import MinMaxScaler
```

```
# Scaling features between -1 and 1 for mormalization
scaler = MinMaxScaler((-1,1))
\# define X_features , Y_labels
X_features = scaler.fit_transform(X)
Y_labels = y
\# splitting the dataset into traning and testing sets into 80 - 20
train_size=0.80
test_size=0.20
seed=5
from sklearn.model_selection import train_test_split
X_train , X_test , y_train , y_test = train_test_split(X_features, Y_labels , test_size=0.20, random_state=20)
logmodel = LogisticRegression()
logmodel.fit(X_train, y_train)
predlog = logmodel.predict(X_test)
print(classification_report(y_test, predlog))
print("Confusion Matrix:")
confusion_matrix(y_test, predlog)
                   precision
                                recall f1-score
                0
                        0.86
                                  0.46
                                            0.60
                                                         13
                1
                        0.79
                                  0.96
                                            0.87
                                                         27
                                            0.80
                                                         40
         accuracy
                        0.82
                                  0.71
                                            0.73
                                                         40
        macro avg
     weighted avg
                        0.81
                                  0.80
                                            0.78
                                                         40
     Confusion Matrix:
```

array([[6, 7], [1, 26]])

```
y_pred_proba = logmodel.predict_proba(X_test)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
auc = metrics.roc_auc_score(y_test, y_pred_proba)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
plt.legend(loc=4)
plt.show()
```



```
# Dumping Logistic Regression Model
pickle.dump(logmodel, open('lg.pkl','wb'))
```

```
# Naive Bayes
gnb = Naive_Bayes()
gnb.fit(X_train, y_train)
predgnb = gnb.predict(X_test)
print(classification_report(y_test, predgnb))
                   precision
                                recall f1-score
                0
                        0.50
                                  1.00
                                            0.67
                                                         13
                        1.00
                                  0.52
                                            0.68
                                                         27
```

0.75

0.84

0.76

0.68

0.68

0.67

0.68

40

40 40

accuracy

macro avg

weighted avg

```
# scores -check how efficiently labels are predicted
accuracy_testing = accuracy_score(y_test, predgnb)
print("Accuracy % :",accuracy_testing*100)
```

Accuracy % : 67.5

```
y_pred_proba = gnb.predict_proba(X_test)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
auc = metrics.roc_auc_score(y_test, y_pred_proba)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
plt.legend(loc=4)
plt.show()
```


pickle.dump(gnb,open ('gnb.pkl','wb'))

```
import numpy as np
Ks = 10
mean_acc = []
ConfustionMx = [];
for n in range(2,Ks):
    #Train Model and Predict
    neigh = KNeighborsClassifier(n_neighbors = n).fit(X_train,y_train)
    yhat=neigh.predict(X_test)
    mean_acc.append(metrics.accuracy_score(y_test, yhat))
print('Neighbor Accuracy List')
print(mean_acc)
     Neighbor Accuracy List
     [0.925, 0.95, 0.925, 0.85, 0.85, 0.85, 0.825, 0.825]
plt.plot(range(2,Ks),mean_acc,'g')
plt.ylabel('Accuracy ')
plt.xlabel('Number of Neighbours (K)')
plt.tight_layout()
plt.show()
```



```
knn.fit(X_train, y_train)
predKNN = knn.predict(X_test)

y_pred_proba = knn.predict_proba(X_test)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
auc = metrics.roc_auc_score(y_test, y_pred_proba)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
plt.legend(loc=4)
plt.show()
```

knn = KNeighborsClassifier(n_neighbors=5)

Metric LR NB KNN 0 Accuracy 0.800000 0.675000 0.850000 1 F1-Score 0.866667 0.682927 0.892857 2 Recall 0.962963 0.518519 0.925926 3 Precision 0.787879 1.000000 0.862069 4 R2-Score 0.088319 -0.481481 0.316239

✓ NB

```
# @title NB
```

```
from matplotlib import pyplot as plt
chart['NB'].plot(kind='hist', bins=20, title='NB')
plt.gca().spines[['top', 'right',]].set_visible(False)
```


KNN

@title KNN

from matplotlib import pyplot as plt
chart['KNN'].plot(kind='hist', bins=20, title='KNN')
plt.gca().spines[['top', 'right',]].set_visible(False)

✓ LR

@title LR

from matplotlib import pyplot as plt
chart['LR'].plot(kind='hist', bins=20, title='LR')
plt.gca().spines[['top', 'right',]].set_visible(False)


```
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, roc_curve, roc_auc_score
import matplotlib.pyplot as plt
# Initialize Logistic Regression and Naive Bayes classifiers
logmodel = LogisticRegression()
gnb = GaussianNB()
# Fit both models on training data
logmodel.fit(X_train, y_train)
gnb.fit(X_train, y_train)
# Predict probabilities for both models
log_prob = logmodel.predict_proba(X_test)[:, 1]
gnb_prob = gnb.predict_proba(X_test)[:, 1]
# Weighted average of probabilities
hybrid_prob = (log_prob + gnb_prob) / 2
# Compute accuracy for each model
log\_accuracy = accuracy\_score(y\_test, logmodel.predict(X\_test))
gnb_accuracy = accuracy_score(y_test, gnb.predict(X_test))
# Compute AUC for each model
log_auc = roc_auc_score(y_test, log_prob)
gnb_auc = roc_auc_score(y_test, gnb_prob)
hybrid_auc = roc_auc_score(y_test, hybrid_prob)
# Plot ROC curves for each model
plt.figure(figsize=(8, 6))
fpr_log, tpr_log, _ = roc_curve(y_test, log_prob)
fpr_gnb, tpr_gnb, _ = roc_curve(y_test, gnb_prob)
fpr_hybrid, tpr_hybrid, _ = roc_curve(y_test, hybrid_prob)
plt.plot(fpr_log, tpr_log, label='Logistic Regression (AUC = {:.2f}, Acc = {:.2f}%)'.format(log_auc, log_accuracy * 100))
plt.plot(fpr_gnb, tpr_gnb, label='Naive \ Bayes \ (AUC = \{:.2f\}, Acc = \{:.2f\}\%)'.format(gnb_auc, gnb_accuracy * 100))
plt.plot(fpr_hybrid, tpr_hybrid, label='Hybrid (AUC = {:.2f})'.format(hybrid_auc), linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend()
plt.show()
```



```
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, roc_curve, roc_auc_score
import matplotlib.pyplot as plt
# Initialize Naive Bayes and KNN classifiers
gnb = GaussianNB()
knn = KNeighborsClassifier(n_neighbors=5)
# Fit both models on training data
gnb.fit(X_train, y_train)
knn.fit(X_train, y_train)
# Predict probabilities for both models
gnb_prob = gnb.predict_proba(X_test)[:, 1]
knn_prob = knn.predict_proba(X_test)[:, 1]
# Weighted average of probabilities
hybrid_prob = (gnb_prob + knn_prob) / 2
# Compute accuracy for each model
gnb_accuracy = accuracy_score(y_test, gnb.predict(X_test))
knn\_accuracy = accuracy\_score(y\_test, knn.predict(X\_test))
# Compute AUC for each model
gnb_auc = roc_auc_score(y_test, gnb_prob)
knn_auc = roc_auc_score(y_test, knn_prob)
hybrid_auc = roc_auc_score(y_test, hybrid_prob)
# Plot ROC curves for each model
plt.figure(figsize=(8, 6))
\label{eq:fpr_gnb} \texttt{fpr\_gnb, } \texttt{\_} = \texttt{roc\_curve}(\texttt{y\_test, } \texttt{gnb\_prob})
fpr_knn, tpr_knn, _ = roc_curve(y_test, knn_prob)
fpr_hybrid, tpr_hybrid, _ = roc_curve(y_test, hybrid_prob)
plt.plot(fpr_gnb, tpr_gnb, label='Naive Bayes (AUC = {:.2f}, Acc = {:.2f}%)'.format(gnb_auc, gnb_accuracy * 100))
plt.plot(fpr_knn, tpr_knn, label='KNN (AUC = {:..2f}, Acc = {:..2f}%)'.format(knn_auc, knn_accuracy * 100))
plt.plot(fpr\_hybrid, tpr\_hybrid, label='Hybrid (AUC = \{:.2f\})'.format(hybrid\_auc), linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend()
plt.show()
```



```
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, roc_curve, roc_auc_score
import matplotlib.pyplot as plt
# Initialize classifiers
logmodel = LogisticRegression()
gnb = GaussianNB()
knn = KNeighborsClassifier(n_neighbors=5)
# Fit all models on training data
logmodel.fit(X_train, y_train)
gnb.fit(X_train, y_train)
knn.fit(X_train, y_train)
# Predict probabilities for all models
log_prob = logmodel.predict_proba(X_test)[:, 1]
gnb_prob = gnb.predict_proba(X_test)[:, 1]
knn_prob = knn.predict_proba(X_test)[:, 1]
# Weighted average of probabilities
hybrid_prob = (log_prob + gnb_prob + knn_prob) / 3
# Compute accuracy for each model
log_accuracy = accuracy_score(y_test, logmodel.predict(X_test))
gnb_accuracy = accuracy_score(y_test, gnb.predict(X_test))
knn_accuracy = accuracy_score(y_test, knn.predict(X_test))
# Compute AUC for each model
log_auc = roc_auc_score(y_test, log_prob)
gnb_auc = roc_auc_score(y_test, gnb_prob)
knn_auc = roc_auc_score(y_test, knn_prob)
hybrid_auc = roc_auc_score(y_test, hybrid_prob)
# Plot ROC curves for each model
plt.figure(figsize=(8, 6))
fpr_log, tpr_log, _ = roc_curve(y_test, log_prob)
fpr_gnb, tpr_gnb, _ = roc_curve(y_test, gnb_prob)
fpr_knn, tpr_knn, _ = roc_curve(y_test, knn_prob)
fpr_hybrid, tpr_hybrid, _ = roc_curve(y_test, hybrid_prob)
plt.plot(fpr_log, tpr_log, label='Logistic Regression (AUC = \{:.2f\}, Acc = \{:.2f\}\%)'.format(log_auc, log_accuracy * 100))
plt.plot(fpr_gnb, tpr_gnb, label='Naive Bayes (AUC = {:.2f}, Acc = {:.2f}%)'.format(gnb_auc, gnb_accuracy * 100))
plt.plot(fpr_knn, tpr_knn, label='KNN (AUC = \{:.2f\}, Acc = \{:.2f\}\%)'.format(knn_auc, knn_accuracy * 100))
plt.plot(fpr\_hybrid, tpr\_hybrid, label='Hybrid (AUC = \{:.2f\})'.format(hybrid\_auc), linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend()
plt.show()
```



```
import seaborn as sns
import matplotlib.pyplot as plt
# Assuming you have a DataFrame 'data' with multiple observations for each algorithm
# For demonstration purposes, I'll create a random dataset
import pandas as pd
import numpy as np
algorithms = ['Logistic Regression', 'Naive Bayes', 'KNN', 'Hybrid']
auc_scores = np.random.rand(100, 4)  # Random AUC scores for 100 observations and 4 algorithms
# Create a DataFrame for visualization
data = pd.DataFrame(auc_scores, columns=algorithms)
# Plotting box plots for AUC scores
plt.figure(figsize=(10, 6))
sns.boxplot(data=data)
plt.title('AUC Scores Comparison')
plt.xlabel('Algorithm')
plt.ylabel('AUC')
plt.show()
```