Disciplina EQE 776 - Modelagem e Simulação de Processos

Resolução da Lista de Exercícios

Francisco Davi Belo Rodrigues

27 de outubro de 2025

1 Exercício 1

Enunciado e dados

Consideram-se dois tanques cilíndricos interligados em série. O tanque 1 recebe uma alimentação constante e descarrega no tanque 2, que por sua vez escoa para o ambiente. As vazões de saída de cada tanque dependem do nível interno segundo a relação empírica $Q_i = k_i \sqrt{h_i}$. Os parâmetros fornecidos são resumidos na Tabela 1.

Parâmetro	Valor
Vazão de alimentação Q_0	$20 \text{ m}^3 \mathrm{h}^{-1}$
Diâmetro do tanque 1 D_1	4 m
Diâmetro do tanque 2 D_2	$3 \mathrm{m}$
Constante da válvula 1 k_1	$14 \text{ m}^{2.5} \text{h}^{-1}$
Constante da válvula 2 k_2	$12 \text{ m}^{2.5} \mathrm{h}^{-1}$
Nível inicial no tanque 1 $h_1(0)$	$3 \mathrm{m}$
Nível inicial no tanque 2 $h_2(0)$	$2 \mathrm{m}$

Tabela 1: Dados operacionais da Questão 1.

Formulação do modelo

- a) Construção das equações de balanço
- 1. A área transversal de cada tanque é $A_i = \pi D_i^2/4$, resultando em $A_1 = 12,566 \text{ m}^2 \text{ e } A_2 = 7,069 \text{ m}^2$.
- 2. A conservação de volume líquido em cada tanque fornece

$$A_1 \frac{dh_1}{dt} = Q_0 - Q_1, (1)$$

$$A_2 \frac{dh_2}{dt} = Q_1 - Q_2. (2)$$

3. Substituindo a lei das válvulas, obtém-se o sistema não linear

$$\frac{dh_1}{dt} = \frac{Q_0 - k_1\sqrt{h_1}}{A_1},\tag{3}$$

$$\frac{dh_2}{dt} = \frac{k_1\sqrt{h_1} - k_2\sqrt{h_2}}{A_2}. (4)$$

- b) Consistência de unidades
- 1. Convertem-se as vazões de m³ h^-1 para m³ s^-1: $Q_0^{(s)} = Q_0/3600 = 5,556 \times 10^{-3} \text{ m}^3 \text{ s}^{-1}$.

- 2. As constantes de válvula são tratadas como $k_i^{(s)}=k_i/3600$, de forma que $Q_i=k_i^{(s)}\sqrt{h_i}$ em segundos.
- 3. As equações finais utilizadas na simulação tornam-se

$$\frac{dh_1}{dt} = \frac{Q_0^{(s)} - k_1^{(s)}\sqrt{h_1}}{A_1},\tag{5}$$

$$\frac{dh_2}{dt} = \frac{k_1^{(s)}\sqrt{h_1} - k_2^{(s)}\sqrt{h_2}}{A_2},\tag{6}$$

com $h_1(0) = 3$ m e $h_2(0) = 2$ m.

Resolução numérica

O sistema diferencial foi integrado em $0 \le t \le 20$ h (equivalente a $72\,000$ s) empregando o método Runge–Kutta de quarta/quinta ordem adaptativo (solve_ivp do SciPy) com passo máximo de 10 s. A implementação registra também as trajetórias discretizadas (t,h_1,h_2) em arquivo auxiliar para rastreabilidade.

Resultados

As curvas temporais obtidas para os níveis de líquido encontram-se na Figura 1. Observa-se que h_1 decai de 3 m para 2,04 m, enquanto h_2 aumenta para 2,78 m ao final das 20 horas de operação, aproximando-se de um estado quase estacionário.

Figura 1: Perfis temporais simulados dos níveis h_1 e h_2 durante 20 horas.

Referências

[1] Autor, Título do Livro ou Artigo, Editora, Ano.