COMPUTATIONAL BEHAVIOR MODELING

MULTI-DISCIPLINARY RESEARCH

DATA SCIENTIST

MACHINE LEARNING

- Purpose
- Find patterns in data
- Use the learned patterns to predict for future
- Use the learned patterns to make decisions

- Data
- Data that contains patterns
- ML algorithm finds the patterns and generates a model
- Given new data, the model recognizes these patterns.

MACHINE LEARNING PIPELINE

MACHINE LEARNING PIPELINE

TRAINING MODELS

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

- A credit card company receives thousands of applications for new cards. Each application contains information about an applicant,
 - age
 - Marital status
 - annual salary
 - outstanding debts
 - credit rating
 - etc.
- Problem: to decide whether an application should be approved, or to classify applications into two categories, approved and not approved.

Age	Has_Job	Own_House	Credit_Rating	Class
young	false	false	fair	No
young	false	false	good	No
young	true	false	good	Yes
young	true	true	fair	Yes
young	false	false	fair	No
middle	false	false	fair	No
middle	false	false	good	No
middle	true	true	good	Yes
middle	false	true	excellent	Yes
middle	false	true	excellent	Yes
old	false	true	excellent	Yes
old	false	true	good	Yes
old	true	false	good	Yes
old	true	false	excellent	Yes
old	false	false	fair	No

labels

- Like human learning from past experiences or historical data.
- A computer does not have "experiences".
- A computer system learns from data, which represent some "past experiences" of an application domain.
- Our focus: learn a target function that can be used to predict the values of a discrete class attribute, e.g., approve or not-approved, and high-risk or low risk.
- The task is commonly called: Supervised learning, classification, or inductive learning.

- Learn a classification model from the data
- Use the model to classify future loan applications into
 - Yes (approved) and
 - No (not approved)
- What is the class for following case/instance?

Age	Has_Job	Own_house	Credit-Rating	Class
young	false	false	good	?

- Supervised learning: classification is seen as supervised learning from examples.
 - Supervision: The data (observations, measurements, etc.) are labeled with pre-defined classes. It is like that a "teacher" gives the classes (supervision).
 - Test data are classified into these classes too.
- Unsupervised learning (clustering)
 - Class labels of the data are unknown
 - Given a set of data, the task is to establish the existence of classes or clusters in the data

- Learning (training): Learn a model using the training data
- Testing: Test the model using unseen test data to assess the model accuracy

$$Accuracy = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}},$$

Step 1: Training

Step 2: Testing

- Data: credit card application data
- Task: Predict whether a credit card application should be approved or not.
- Performance measure: accuracy.

No learning: classify all future applications (test data) to the majority class (i.e., Yes):

Accuracy =
$$9/15 = 60\%$$
.

We can do better than 60% with learning.

Assumption: The distribution of training examples is identical to the distribution of test examples (including future unseen examples).

- In practice, this assumption is often violated to certain degree.
- Strong violations will clearly result in poor classification accuracy.
- To achieve good accuracy on the test data, training examples must be sufficiently representative of the test data.

MODELS – SUPERVISED LEARNING ALGORITHMS

- Decision tree induction/classification
- Random Forest (the average of the results from 100 random trees)
- Naïve Bayesian classification (0 or 1 cases binary cases)
- Naïve Bayes for text classification
- Support vector machines (binary cases)
- K-nearest neighbor
- Ensemble methods: Bagging and Boosting

MODELS

- Supervised learning: discover patterns in the data with a target (class).
 - to predict the target attribute in future data.
- Unsupervised learning: without target attribute.
 - learn intrinsic structures in data.

MODELS

ID	Age	Has_Job	Own_House	Credit_Rating
1	young	false	false	fair
2	young	false	false	good
3	young	true	false	good
4	young	true	true	fair
5	young	false	false	fair
6	middle	false	false	fair
7	middle	false	false	good
8	middle	true	true	good
9	middle	false	true	excellent
10	middle	false	true	excellent
11	old	false	true	excellent
12	old	false	true	good
13	old	true	false	good
14	old	true	false	excellent
15	old	false	false	fair

MODELS – UNSUPERVISED LEARNING (CLUSTERING)

MODELS – UNSUPERVISED LEARNING MODELS

- K-means algorithm
- Representation of clusters
- Hierarchical clustering

MODELS

- Supervised learning
 - Classification (discrete), regression(continuous)
- Unsupervised learning
 - clustering
- Reinforcement learning
 - more general than supervised/unsupervised learning
 - learn from interaction w/ environment to achieve a goal

MODELS – REINFORCEMENT LEARNING

- Supervised learning
 - Classification (discrete), regression(continuous)
- Unsupervised learning
 - clustering
- Reinforcement learning
 - more general than supervised/unsupervised learning
 - learn from interaction w/ environment to achieve a goal

MODELS – REINFORCEMENT LEARNING

		+4
		-4
START		

actions: UP, DOWN, LEFT, RIGHT

60% move UP 15% move Down 15% move LEFT 10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.01 for each step
- what's the strategy to achieve max reward?

MODELS – REINFORCEMENT LEARNING

- pole-balancing: move car left/right
- no teacher who would say "good" or "bad"
 - is reward "10" good or bad?
 - rewards could be delayed
- more general, fewer constraints
- explore the environment and learn from experience

MACHINE LEARNING ALGORITHMS FOR TOPICS

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

- car or bicycle driving patterns (traffic management)
 - Resource re-allocation.
- Human mobility patterns based on GPS data
 - Crowd flow
- Crime Analysis for Chicago
 - Algorithm: Explainable Al (bonus: design a website / app system)
- Weather prediction and its impact to human behavior
 - Maximize the energy efficiency to help the weather.
- Mining the spread patterns of COVID-19
 - GPS/ sensor; combine spatio-temporal data into one model: IRL
- Robotic deep inverse reinforcement learning
 - Smart and connected community

car or bicycle driving patterns (traffic management)

Resource re-allocation.

Outline

Dataset from Data.world

We want to design features that could be used to train the ML models to better allocate resources (e.g., shared bikes).

Innovative parts: design features (date cleaning + data manipulation + data analysis \Leftrightarrow part of data science) + incorporate with the current ML algorithms.

Features:

- over activity level in each place (defined what is a place cells with longtitude / latitude)
- Duration for a bike that has been parking in a spot.
- Number of the bikes in that spot.
- Other features