Redes de Computadores I

Prof Felipe Cunha felipe@uit.br

ENDEREÇAMENTO IP

- Na Internet, cada hospedeiro e cada roteador tem um endereço IP
- Endereço IP de um computador:
 - Número binário único de 32 bits (teoricamente 4.294.967.296 endereços)
 - Usados nos campos Source Address e Destination Address dos pacotes IP
 - Auxilia no roteamento
- Um endereço IP identifica uma interface de rede (se um hospedeiro tiver duas interfaces de redes, ele precisará de dois endereços IP)

- •E endereço IP é dividido em duas partes:
 - Prefixo:
 - Identifica a rede física na qual o computador se encontra (número de rede)
 - Controlado globalmente
 - •Sufixo:
 - Identifica o hospedeiro na rede
 - Controlado localmente

Máscara da rede:

 Mostra a divisão entre endereço de rede e endereço de computador

Rede 223 1 2 0

Endereçamento de Classe Completo

 A arquitetura de endereçamento original da Internet definia classes de endereços

Endereçamento de Classe Completo

Espaço de endereçamento:

Classe	Nº de Bits no Prefixo	Nº Máximo de Redes	Nº de Bits no Sufixo	Nº Máximo de Hosts por Rede
Α	7	128	24	16.777.216
В	14	16.384	16	65.536
С	21	2.097.152	8	256

Exercícios

- Suponha que, em vez de serem utilizados 16 bits na parte de rede de um endereço da classe B, tenham sido usados 20 bits. Nesse caso, quantas redes da classe B existiriam?
- 2. A máscara de sub-rede de uma rede na Internet é 255.255.240.0. Qual é o número máximo de hospedeiros que ela pode manipular?

- Todos os hospedeiros de uma rede devem ter o mesmo endereço de rede
- •Inicialmente:
 - Um único endereço da classe A, B ou C se refere a uma única rede
- •À medida que mais e mais organizações se conectavam à rede:
 - Foi necessário permitir que uma rede fosse dividida em diversas partes para uso interno, mas externamente continuasse a funcionar como uma única rede

Uma rede de campus consistindo em LANs para vários departamentos

- Uma rede pode ser dividida em diversas partes
- As partes da rede são chamadas sub-redes
 - Alguns bits são retirados do número do hospedeiro para criar um número de sub-rede
 - Número de bits em uma rede Classe B:

	Sem Sub-rede	Com Sub-rede
Fixo	2	2
Rede	14	14
Sub-rede	0	X
Host	16	16-X

- Exemplo de uma Universidade
 - Classe B
 - 35 departamentos
 - 64 redes Ethernet, cada uma com o máximo de 1022 hots (0 e −1 não estão disponíveis)

- Uma máscara (netmask) indica a divisão entre o número de rede + sub-rede e o hospedeiro
- Exemplo:

• Máscara: 255.255.252.0 ou /22

- Exemplo: rede 130.50.0.0 e máscara de sub-rede 255.255.252.0 ou /22
 - Sub-rede 0: 130.50.0.1 a 130.50.3.254

```
10000010 00110010 000000 00 00000001 a
```

10000010 00110010 000000 11 11111110

- Sub-rede 1: 130.50.4.1 a 130.50.7.254
 - 10000010 00110010 000001 00 00000001 a
 - 10000010 00110010 000001 11 11111110
- Sub-rede 2: 130.50.8.1 a 130.50.11.254
 - 10000010 00110010 000010 00 00000001 a
 - 10000010 00110010 000010 11 11111110
- Sub-rede 3: 130.50.12.1 a 130.50.15.254
 - 10000010 00110010 000011 00 00000001 a
 - 10000010 00110010 000011 11 11111110

Exercício

Um ISP possui o seguinte bloco de endereços: 150.164.192.0/18. Ele deseja dividir esse espaço de endereçamento igualmente entre 4 organizações. Informe a quantidade de endereços IP cada organização terá, o endereço inicial, final e a máscara de cada organização.

- Fora da rede, a divisão em sub-redes não é visível
- A alocação de uma nova sub-rede não exige a mudança de quaisquer bancos de dados externos
- Como os pacotes IP são processados em um roteador?

Roteamento de Pacotes IP

- Cada roteador mantém uma tabela de roteamento
 - A tabela é inicializada quando o roteador é ligado e deve ser atualizada se a topologia muda ou há uma falha de hardware
 - Cada entrada da tabela especifica um destino e o próximo roteador a ser usado para alcançar esse destino
 - Cada roteador só precisa manter entradas para as outras redes e para os hospedeiros locais

Roteamento de Pacotes IP

- Quando um pacote IP é recebido, procura-se pela entrada cujo endereço case com o AND entre a sua máscara e o endereço de destino do pacote IP
 - Se o destino for de uma rede distante, o pacote será encaminhado para o próximo roteador da interface fornecida na tabela
 - Se o destino for um hospedeiro local, o pacote será enviado diretamente
 - Se a rede do destino não estiver presente na tabela, o pacote será enviado para um roteador predefinido que tenha tabelas maiores (default gateway)

Roteamento de Pacotes IP

- Endereço de destino x Next-hop
 - Endereço de destino indica para quem deve ser entregue o pacote
 - Endereço de Next-hop indica para que roteador o pacote deve ser enviado
 - Next-hop n\u00e3o aparece no pacote

A deseja enviar uma mensagem para B

pacote IP:

outros		endereço	4-4
campos	IP origem	IP destino	dados

 Os endereços do pacote não mudam ao viajar da fonte ao destino

outros	222 1 1 1	223.1.1.3	dados
campos	223.1.1.1	225.1.1.5	dados

- Começando em A, levar pacote IP para B:
 - 223.1.1.3 AND 255.255.255.0 casa com 223.1.1.0
 - B está na mesma rede de A
 - Camada de enlace envia pacote diretamente para B em um quadro da camada de enlace

Tabela de roteamento em A

A deseja enviar uma mensagem para E

outro	os	222 1 1 1	223.1.2.2	dados
camp	os	223.1.1.1	223.1.2.2	uauus

outi	cos	222 1 1 1	223.1.2.2	dados
cam	pos	223.1.1.1	223.1.2.2	dados

- Começando em A:
 - 223.1.2.2 AND 255.255.255.0
 casa com 223.1.2.0
 - Próximo roteador para E é 223.1.1.4
 - Pacote chega em 223.1.1.4

Tabela de roteamento em A

Tabela de roteamento no roteador

Rede destino	Próx. roteador	Núm. saltos	Endereço Interface
223.1.1.0/24	-	1	223.1.1.4
223.1.2.0/24	-	1	223.1.2.9
223.1.3.0/24	-	1	223.1.3.27

No roteador

- 223.1.2.2 AND 255.255.255.0 casa com 223.1.2.0
- Está na mesma rede da interface 223.1.2.9 do roteador
 - Roteador e E estão diretamente ligados
- Envia o pacote para 223.1.2.2 através da interface 223.1.2.9

Exercício

4. Um roteador tem as seguintes entradas em sua tabela de roteamento:

Endereço/máscara	Próximo hop
135.46.56.0/22	Interface 0
135.46.60.0/22	Interface 1
192.53.40.0/23	Roteador 1
padrão	Roteador 2

Para cada um dos endereços IP a seguir, o que o roteador fará se chegar um pacote com esse endereço?

a) 135.46.63.10

b) 135.46.57.14

c) 135.46.52.2

d) 192.53.40.7

e) 192.53.56.7

CIDR (Classless Interdomain Routing)

- A Internet está esgotando com rapidez os endereços IP disponíveis
- A prática de organizar o espaço de endereços por classes faz com que milhões deles sejam desperdiçados
 - Organização em classes:
 - Classe A: 128 redes de 16.777.216 hospedeiros
 - Classe B: 16.384 redes de 65.536 hospedeiros
 - Classe C: 2.097.152 redes de 256 hospedeiros
 - Um endereço classe B é grande demais para a maioria das organizações e um classe C é pequeno demais
 - Mais da metade de todas as redes da classe B tem menos de 50 hospedeiros

- Solução é usar endereçamento sem classes:
 CIDR (Classless Interdomain Routing)
 - Alocar os endereços IP restantes em blocos de tamanho variável, sem levar em consideração as classes
 - A parcela da rede de um endereço IP pode ter qualquer comprimento de bits, não ficando mais limitada a 8, 16 ou 24 bits
 - Se alguém precisar de 2.000 endereços, ele receberá um bloco de 2.048 endereços

•Exemplo:

- Existem endereços disponível na rede 194.24.0.0
- Universidade de Cambridge solicita 2.048 endereços
- Universidade de Oxford solicita 4.096 endereços
- Universidade de Edinburgh solicita 1.024 endereços

Universidade	Primeiro endereço	Último endereço	Quantidade	Escritos como
Cambridge	194.24.0.0	194.24.7.255	2.048	194.24.0.0/21
Edinburgh	194.24.8.0	194.24.11.255	1.024	194.24.8.0/22
(Disponível)	194.24.12.0	194.24.15.255	1.024	194.24.12.0/22
Oxford	194.24.16.0	194.24.31.255	4.096	194.24.16.0/20

	Endereço	Máscara
Cam.	11000010 00011000 00000000 00000000	11111111 11111111 11111000 00000000
Edi.	11000010 00011000 00001000 00000000	11111111 11111111 11111100 00000000
Oxf.	11000010 00011000 00010000 00000000	11111111 11111111 11110000 00000000

- Roteamento para 194.24.17.4
 - 11000010 00011000 00010001 00000100
- Endereço AND Máscara de Cambridge
 - 11000010 00011000 00010000 00000000 (não casa com endereço de Cambridge)
- Endereço AND Máscara de Edinburgh
 - 11000010 00011000 00010000 00000000 (não casa com endereço de Edinburgh)

- Endereço AND Máscara de Oxford
 - •11000010 00011000 00010000 00000000 (casa com endereço de Oxford)
- Se não for encontrada nenhuma outra correspondência que utilize uma máscara com mais bits, o pacote será enviado para Oxford

Agregação de Endereços IP

• Em roteadores distantes, endereços associados à mesma linha de saída são agregados

	Endereço	Máscara
Cam.	11000010 00011000 00000000 00000000	11111111 11111111 11111000 00000000
Edi.	11000010 00011000 00001000 00000000	11111111 11111111 11111100 00000000
Oxf.	11000010 00011000 00010000 00000000	11111111 11111111 11110000 00000000

- Estas três entradas podem ser agrupadas em 194.24.0.0/19:
 - Endereço: 11000010 00011000 00000000 00000000
 - Máscara: 11111111 1111111 11100000 00000000
- Agregação é muito utilizada em toda a Internet para reduzir o tamanho das tabelas de roteamento

Exercício

Um grande número de endereços IP consecutivos está disponível a partir de 198.16.0.0. Suponha que quatro organizações, A, B, C e D, solicitem 4.000, 2.000, 4.000 e 8.000 endereços, respectivamente, e nessa ordem. Para cada uma delas, forneça o primeiro endereço IP atribuído, o último endereço IP atribuído e a máscara na notação w.x.y.z/s.

NAT (NETWORK ADDRESS TRANSLATION)

Escassez de Endereços IP

- •O IP está ficando sem endereços
- Solução:
 - NAT: Network Address Translation
 - Atribuir a cada empresa um único endereço IP (ou, no máximo, um número pequeno deles) para tráfego na Internet
 - Dentro da empresa, todo computador obtém um endereço IP exclusivo, usado para roteamento interno
 - Quando um pacote sai da empresa e vai para o ISP, ocorre uma conversão de endereço

- Para tornar o NAT possível, três intervalos de endereços IP foram declarados como privativos:
 - 10.0.0.0 a 10.255.255.255/8 (16.777.216 hosts)
 - 172.16.0.0 a 172.31.255.255/12 (1.048.576 hosts)
 - 192.168.0.0 a 192.168.255.255/16 (65.536 hosts)
- As empresas podem utilizar esta faixa de endereços internamente

- Funcionamento do NAT:
 - Dentro das instalações da empresa, toda máquina tem um endereço exclusivo da forma 10.x.y.z
 - Quando um pacote deixa as instalações da empresa, ele passa por uma caixa NAT que converte o endereço interno (exemplo 10.0.0.1) no endereço IP verdadeiro da empresa (exemplo 198.60.42.12)
 - Quando a resposta volta, ela é endereçada ao IP verdadeiro (198.60.42.12), como a caixa NAT sabe por qual endereço deve substituir o endereço da resposta?

- Portas do TCP e UDP:
 - Quando um processo deseja estabelecer uma conexão TCP com um processo remoto, ele se associa a uma porta TCP não utilizada
 - As portas são inteiros de 16 bits
 - Essa porta é chamada porta de origem e informa ao código do TCP para onde devem ser enviados os pacotes que chegarem pertencentes a essa conexão
 - O processo também fornece uma porta de destino para informar a quem devem ser entregues os pacotes no lado remoto

- Funcionamento do NAT:
 - Utilizam o campo de porta do UDP e do TCP
 - Sempre que um pacote de saída entra na caixa NAT, o endereço de origem 10.x.y.z é substituído pelo endereço IP verdadeiro da empresa
 - O campo porta de origem do TCP é substituído por um índice para a tabela de conversão de 65.536 entradas da caixa NAT
 - Essa entrada de tabela contém a porta de origem e o endereço IP original

- •Funcionamento:
 - Quando um pacote chega ao NAT vindo do ISP, o campo porta de destino do cabeçalho do TCP é extraído e usado como índice para a tabela de mapeamento da caixa NAT
 - A partir da entrada localizada, o endereço IP interno e o campo porta de origem do TCP original são extraídos e inseridos no pacote como endereço IP e porta de destino

- 1. Endereço IP original (10.0.0.2) é substituído pelo externo (198.60.42.12)
- 2. Porta de origem (1500) é substituída por um índice na tabela (666)
- 3. Checksum do segmento TCP/UDP e do datagrama IP são recalculados

- Desvantagens:
 - A NAT viola o modelo arquitetônico do IP que estabelece que todo endereço IP identifica de forma exclusiva uma única máquina em todo o mundo
 - A NAT faz a Internet mudar suas características de rede sem conexões para uma espécie de rede orientada a conexões (NAT mantém informações sobre as conexões)
 - Os processos na Internet não são obrigados a usar o TCP ou o UDP

- Desvantagens
 - A NAT viola a regra mais fundamental da distribuição de protocolos em camadas: a camada k não pode fazer quaisquer suposições sobre o que a camada k+1 inseriu no campo de carga útil
 - Algumas aplicações inserem endereços IP ou números de porta no corpo do texto (FTP)
 - No máximo 61.440 (65.536 4.096 portas reservadas) máquinas podem ser mapeadas em um endereço IP

Exercício

6. Tanto o NAT quanto o endereçamento sem classes da Internet (CIDR) foram projetados devido à escassez de endereços IP disponíveis Explique o funcionamento básico destas duas técnicas e a principal diferença entre elas.