

PeraSwarm: Simultaneous Localization and Mapping in Mixed Reality Environment

Group 19

Supervisors:

Prof. Roshan Ragel Dr. Isuru Nawinne Mr. Nuwan Jaliyagoda

Team Members:

E/18/077 Nipun Dharmarathne E/18/150 Yojith Jayarathna E/18/227 Dinuka Mudalige

Content

Swarm Robotics

- Multiple robots collaboratively work together to accomplish tasks in a,
 - Distributed
 - Decentralized manner

- Inspired by the collective behaviour observed in natural swarms such as,
 - Ants
 - Bees

SLAM with Swarm Robots

- Involves a team of robots working together to map an unknown environment while localizing
- Advantages:
 - Increased efficiency
 - Rapid coverage
 - Distributed exploration

Features:

- Decentralized control
- Self-organizing behavior
- Robustness
- Scalability
- Efficiency

Applications:

- Warehouse management
- Exploration
- Surveillance
- Search and rescue
- Environmental monitoring

Problems and Proposed Solutions

Expensive sensors

→ Cost effective sensors

Centralized communication

Decentralized multi-robot communication

Novel algorithms with more performance enhancements

Our Approach

- Occupancy grid representation
- 2D integer array was used to keep track of the map
- Robot has 4 distance sensors faced to
 - North, South, East, West
 - With a range of 2 cells
- Assumptions
 - Robots can only move one step at a time to
 - North, South, East, West
 - Initial position and heading directions of robots are known

- For each step robots broadcast,
 - Current position
 - Local map

Robot 1

Update & merge map

Decide next move

Broadcast

Current position

Local map

Robot 2

Update & merge map

Decide next move

- - Random Movement Algorithm a.
 - b. Heuristic Based on Wavefront Algorithm (HWA)
 - Heuristic Based on Least Cost Estimate (HLCE) Novel Algorithm C.
 - Voronoi Coverage d.

Experiments

- Different arena sizes
 - Default Arenas (18x18 cell grid)

○ **Small Test Arenas** ⇒ mainly for physical robots testing

Large Arenas (60x60 cell grid) ⇒ for performance tests with large number of robots

Experiments

Different arena types

arena_warehouse

arena_cubicles

Findings

- Performance Measurements
 - Full Coverage Time
 - Correctly Explored Probability
 - Stability Comparison

Full Coverage Time

• Time taken for the swarm to cover the entire environment.

arena_obstacles_large (60x60 cells)

By comparing generated map with the ground truth

Correctly Explored Probability

For equally biased testing ⇒ applied a time bound of 20% of *Full Coverage Time*

arena_obstacle_large (60x60 cells)

Stability Comparison

Done by calculating the Sample Standard Deviation (SD_{sample}) of 3 test instances (n=3) for the two performance metrics (*Full Coverage Time* and *Correctly Explored Probability*)

$$ext{SD}_{ ext{sample}} = \sqrt{rac{1}{n-1}\sum_{i=1}^n (X_i - ar{X})^2}$$

Example:-

Environment	Algorithm	SD of Full Coverage Time			SD of Correctly Explored Probability
arena_cubicles	Random		25.47		2.84
	HLCE		6.74	←	1.35
	HWA		7.18		3.36

Expected outcomes, deliverables and their impact

Expected outcomes and deliverables:

- A functional multi-agent swarm robotic system capable of performing SLAM
- Algorithms for decentralized decision-making and task allocation
- Communication infrastructure for swarm coordination

Impact:

- Cost reduction in swarm SLAM research:
 - Lower experimental and development costs
 - Preservation of swarm intelligence experiment scale
- Optimization of warehouse management:
 - Improved mapping and navigation
 - Enhanced inventory logistics
- Advancement in search and rescue operations:
 - Improved mapping of disaster areas
 - Enhanced victim location capabilities
 - Better navigation in hazardous terrains

Thank You !!!

Q&A

Demonstration

- 1. Virtual Robots
 - a. Random Movement Algorithm
 - b. HLCE
 - c. HWA
 - d. Voronoi Coverage
- 2. Physical Robots
 - a. HLCE
 - b. MQTT Communication Modifications

Demonstration: Random movement algorithm

Demonstration: HLCE

Demonstration: HWA

Demonstration: Voronoi coverage

Demonstration: HLCE with physical robot

Demonstration: MQTT connectivity of the Test Robot

