Machine Learning for Networking ML4N

Luca Vassio
Gabriele Ciravegna
Zhihao Wang
Tailai Song

Recap

- Data, Model, Loss
- ERM (parametrized) $\widehat{\mathbf{w}} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^n} f(\mathbf{w})$
- Model selection and hyper-parameters tuning through validation set
- How to minimize the function (learn)?
 In some cases, Gradient Descent

What is missing?

- Show combinations of data/model/loss and an algorithm (technique) to perform ERM
 - How to find best hypothesis h in H
 - In practice, models are always parametrized
 - How to find find the best parameters w

Supervised learning techniques

Regression

- Linear and polynomial regressors
- LASSO regressor
- Decision tree and random forest
- k-Nearest Neighbors
- Neural networks (next lectures)

Classification

- Logistic regression
- Support Vector Machines
- Naive Bayes classifiers
- Decision tree and random forest
- k-Nearest Neighbors
- Neural networks (next lectures)

LASSO regressor

LASSO: design choices

- Regressor
- LASSO (least absolute shrinkage and selection operator)
- Datapoints with numeric features and label
- Model = space of linear maps
- Regularized squared loss

LASSO

- Linear regression requires a training set larger than the number of features (m>n) to not overfit
- However, sometimes m<n

LASSO

- Linear regression requires a training set larger than the number of features (m>n) to not overfit
- However, sometimes m<n
- Regularization technique: penalty term in the loss for using too many features
- Regularized squared loss

$$L\left((\mathbf{x}, y), h^{(\mathbf{w})}\right) = \left(y - \mathbf{w}^T \mathbf{x}\right)^2 + \lambda \|\mathbf{w}\|_1.$$

LASSO

- Regularization parameter λ
 - Increasing λ results in a weight vector w with increasing number of zero coefficients
 - Works as a feature selection

$$L\left((\mathbf{x}, y), h^{(\mathbf{w})}\right) = \left(y - \mathbf{w}^T \mathbf{x}\right)^2 + \lambda \|\mathbf{w}\|_1.$$

LASSO in Python

sklearn.linear_model.Lasso

 $class \ sklearn.linear_model. \ Lasso(alpha=1.0, *, fit_intercept=True, precompute=False, copy_X=True, max_iter=1000, \\ tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic') \\ [source]$

Linear Model trained with L1 prior as regularizer (aka the Lasso).

Minimization through coordinate descent (a variation of gradient descent)

Support Vector Machines (SVM)

SVM: design choices

- Classifier (can be extended as regressor)
- Datapoints with numeric features
- Binary label values, e.g., y=-1 vs. y=1
- Model = space of linear maps
- Regularized hinge loss

 Find a linear hyperplane (decision boundary) that will separate the data

 Find a linear hyperplane (decision boundary) that will separate the data

Which one is better? B1 or B2?

- Hinge loss: $L((\mathbf{x}, y), h) := \max\{0, 1 yh(\mathbf{x})\}.$
- For a linearly separable dataset, there might be infinite maps with 0 average hinge loss
- Regularized hinge loss:

$$L\left((\mathbf{x}, y), h^{(\mathbf{w})}\right) := \max\{0, 1 - y \cdot h^{(\mathbf{w})}(\mathbf{x})\} + \lambda \|\mathbf{w}\|_{2}^{2}$$

$$\stackrel{h^{(\mathbf{w})}(\mathbf{x}) = \mathbf{w}^{T}\mathbf{x}}{=} \max\{0, 1 - y \cdot \mathbf{w}^{T}\mathbf{x}\} + \lambda \|\mathbf{w}\|_{2}^{2}.$$

- Minimize average regularized hinge loss = maximize the margin
- Find a linear hyperplane (decision boundary) that will separate the data and maximizes the margin

Which one is better? B1 or B2?

B1 is better: maximizes the margin

- The loss favors linear maps h(w) that are robust against (small) perturbations
 of the data points more robust than logistic regressor
- The margin is the minimum distance of all closest point (misclassified have negative distance)
 - We allow for error terms in case there is no hyperplane

- What if decision boundary is not linear?
- Transform data into higher dimensional space (non-linear kernels)

SVM in Python

sklearn.svm.SVC

 $class \ sklearn.svm. SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, \\ cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, \\ random_state=None) \\ [source]$

C-Support Vector Classification.

sklearn.svm.LinearSVC

class sklearn.svm.LinearSVC(penalty='l2', loss='squared_hinge', *, dual='warn', tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000) [source]

Linear Support Vector Classification.

Learn through quadratic programming (QP) problem and solver, or through gradient descent (and its variations)

Naive Bayes classifier: design choices

- Classifier
- Datapoints with numeric features
- Binary label values, e.g., y=-1 vs. y=1
- model = space of linear maps
- 0/1 loss

Bayes classifiers

- ERM with 0/1 loss difficult for gradient methods
- ERM aims at estimating Bayes risk p(h(x) ≠ y) (i.e., expected 0/1 loss)
- Given the features \mathbf{x} , we want to classify the sample as the class y with maximum $p(y \mid \mathbf{x})$
- Binary case: $\widehat{h}(\mathbf{x}) = \begin{cases} 1 & \text{if } p(y=1|\mathbf{x}) > p(y=-1|\mathbf{x}) \\ -1 & \text{otherwise.} \end{cases}$
- We do not have this probability distribution → estimate it from training points

Bayes' rule:

$$p(y|\mathbf{x}) = p(\mathbf{x}|y) \cdot p(y) / p(\mathbf{x})$$

- p(x) constant for all y, disregarded for maximum computation
- p(y) probability of class y → estimated by relative frequency of class y in the training set
- How to estimate $p(\mathbf{x}|y)$, i.e. $p(x_1,...,x_n|y)$?
 - Different Bayes estimators for different probabilistic models of features p(x|y)
 - Naive hypothesis: $p(x_1,...,x_n|y) = p(x_1|y) p(x_2|y) ... p(x_n|y)$
 - Statistical independence of attributes x₁,...,x_n

• Estimate p(x|y) with Naive hypothesis

$$h(\mathbf{x}) = \underset{y}{\operatorname{argmax}} P(y|\mathbf{x})$$

$$= \underset{y}{\operatorname{argmax}} \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

$$= \underset{y}{\operatorname{argmax}} P(\mathbf{x}|y)P(y) \qquad (P(\mathbf{x}) \text{ does not depend on } y)$$

$$= \underset{y}{\operatorname{argmax}} \prod_{\alpha=1}^{d} P(x_{\alpha}|y)P(y) \qquad (\text{by the naive Bayes assumption})$$

$$= \underset{y}{\operatorname{argmax}} \sum_{\alpha=1}^{d} \log(P(x_{\alpha}|y)) + \log(P(y)) \qquad (\text{as log is a monotonic function})$$

Gaussian Naive Bayes

 Gaussian Naive Bayes: assume x is Gaussian with mean and variance depending on y

$$P(x_i \mid y) = rac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-rac{(x_i - \mu_y)^2}{2\sigma_y^2}
ight)$$

 Mean and variance estimated by maximum likelihood (from training set)

Naive Bayes is a linear classifier

With binary labels:

- As in logistic regression, Naive Bayes works in the space of linear maps
- Class is obtained by thresholding a linear map h(x)=w^tx

Gaussian Naive Bayes in Python

sklearn.naive_bayes.GaussianNB

class sklearn.naive_bayes.GaussianNB(*, priors=None, var_smoothing=1e-09)

[source]

Decision tree (DT) and random forest (RF)

Decision tree: design choices

- Regressor and classifier
- Datapoints with numeric and categorical features
- Label values arbitrary
- **Model** = piece-wise constant. Maps represented by flow-chart ("decision trees")
- Different options for loss function
 - Losses are optimized locally and greedily, not globally

Decision tree classifier

- Decision trees are models that uses a tree-like model of decisions and their possible outcomes/classes
- Only contains conditional control statements
- A decision tree can be represented as a flowchart-like structure in which:
 - each internal node represents a condition test on an attribute
 - each branch represents the outcome of the condition test
 - each leaf node represents a class label

Example of decision tree

10

No

Single

90K

Yes

Decision tree inference

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Parametrized DT

DT decision boundary

Piece-wise constant (2 classes)

DT decision boundary - multi-class

Piece-wise constant (3 classes)

Decision tree learning algorithm

- Many algorithms: Hunt's Algorithm, CART, ID3, C4.5, C5.0,...
- Greedy strategy: best attribute for the split is selected locally at each step, not a global optimum
- Local losses: Gini Index, information gain

Decision tree validation curve

Important hyper-parameter:

Depth of tree/Number of nodes

Decision tree

- Allows for non-linear decision boundary
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees

Decision tree regression

- Decision trees applied to regression work similarly to the ones for classification
- In regression, the trees output a single number per leaf node instead of a label
- A tree can predict a non linear function

Decision tree regression

Random forest classifier

- Random forest is an ensemble classifier that consists of many decision trees
- Outputs the class according to the results of the trees
 - E.g., the mode of the output classes majority voting
- For each tree of the **K trees** of the forest, choose a **subset of n' features** (n is the total number of features) and a **subset of m' training samples** (m is the total number of samples in the training data)

Random forest classifier

Random forest classifier

- How to select number of trees K?
 - Default number: more trees → more computational time
 - Validation curve (build trees until the validation error no longer decreases)
- How to select number of features n' and samples m'?
 - Defaults: half of them, proportional to data,...
 - Validation curve
- Can also rank features

DT and RF in Python

sklearn.tree.DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0) [source]

sklearn.tree.DecisionTreeRegressor

class sklearn.tree.DecisionTreeRegressor(*, criterion='squared_error', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, ccp_alpha=0.0)

[source]

sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False,
class_weight=None, ccp_alpha=0.0, max_samples=None) [source]

sklearn.ensemble.RandomForestRegressor

 $class \ sklearn.ensemble. RandomForestRegressor (n_estimators=100, *, criterion='squared_error', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0, max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, ccp_alpha=0.0, max_samples=None) [source]$

Decision trees in Python

Once trained, we can export the tree in Graphviz format:

```
import graphviz
from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, y)
dot_data = tree.export_graphviz(clf,out_file=None)
graph = graphviz.Source(dot_data)
graph.render("iris")
```


k-nearest neighbors (k-NN)

k-Nearest Neighbors: design choices

- Regressor and classifier
- Datapoints with numeric features
- Label values numeric or categoric
- Model: piecewise constant map hypothesis space of k-NN depends on a labeled dataset (training set) D
- No loss function
 - Nothing is optimized
 - No training

k-Nearest Neighbors

- Instance-based learning: it does not construct a general internal model
- Simply stores instances of the training data
- Uses k closest points for performing classification/regression
 - k data points that have the k smallest distance to \mathbf{x}

k-Nearest Neighbors classifier

Requires

- The set of stored records
- Distance metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by majority vote)

k in Nearest Neighbors

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

k in Nearest Neighbors

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

k-Nearest Neighbors

- Scaling issues
 - Attribute domain should be normalized/standardized to prevent distance measures from being dominated by one of the attributes
 - Example: height [1.5m to 2.0m] vs. income [\$10K to \$1M]
- If many features, curse of dimensionality

k-NN in Python

sklearn.neighbors.KNeighborsClassifier

class sklearn.neighbors.**KNeighborsClassifier**(n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None) [source]

sklearn.neighbors.KNeighborsRegressor

class $sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)$ [source]

Multi-class and multi-label classification

- One-vs-one
 - data points with label values "1", "2", "3"
 - break into 3 binary classification problems, one for each pair o classes
 - Problem 1: label values "1" vs "2"
 - Problem 2: label values "2" vs "3"
 - Problem 3: label values "3" vs "1"
 - The class which received the most votes is selected

- One-vs-rest
 - data points with label values "1", "2", "3"
 - break into 3 binary classification problems
 - Problem 1: label values "1", "either 2 or 3"
 - Problem 2: label values "2", "either 1 or 3"
 - Problem 3: label values "3", "either 2 or 3"

One-vs-Rest

Sub-Problem 2 (red/blue)

Sub-Problem 3 (red/blue)

- One-vs-rest
 - one sub-problem for each label value k
 - sub-problem k: "label = c or not"
 - learn hypothesis h_k for each sub-problem
 - predict c with highest confidence/probability |h_k|

$$\hat{y} = rgmax_{k \in \{1 \dots K\}} f_k(x)$$

Multi-class logistic regression

- Specific **loss** functions for multi-class data
- 0/1 loss also works for > 2 label values (classes)
- How to encode confidence in predictions?
- Soft-max (extending logistic loss to K classes):

$$P(y = j \mid \mathbf{x}) = rac{e^{\mathbf{x}^\mathsf{T} \mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T} \mathbf{w}_k}}$$

Label 1 = 1 or 0 if car present or not

Label 2 = 1 or 0 if **person** present or not

Label 3 = 1 or 0 if **tree** present or not

Label 4 = 1 or 0 if a cat present or not

- Naive approach
 - consider each label separately
 - solve binary/multi-class problem for each label
 - ignores correlations among different labels

- Multi-class approach
 - Each combination of label values defines a category
 - Obtain a multi-class problem with many classes
 - Possibly huge number of resulting categories

New class label	Label 1	Label 2	Label 3	Label 4
1	0	0	0	0
2	0	0	1	0'
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	1	0'
10	1	0	1	1
11	1	1	0	0
12	1	1	0	1
13	1	1	1	0
14	1	1	1	1
15	1	0	0	1
16	0	0	0	1

- Multi-task learning approach
 - Each individual label results in separate learning task
 - Use similarities between learning tasks
 - Similarities inform regularization techniques
 - Combine the loss to learn together the two hypothesis

Any questions?

Self-assessment quiz

- Write a decision tree regressor with accuracy 1 on training for the following training data. Show it as a flowchart. What is its output on the test data?
- Given training data, what would predict a 1-NN regressor on test data, if using euclidean distance?

Train data

Feature 1	Feature 2	Feature 3	Label
10	5	1	7
7	0	1	-2
7	0	2	5
5	4	0	4
-1	0	0	0
10	1	1	6
2	1	1	2

Test data

Feature 1	Feature 2	Feature 3	Label
4	3	1	3
5	1	0	7

References: readings

Chapters 3-4-5

Chapter 3-4-7

Slide acknowledgments

- Alexander Jung Aalto University
- Tania Cerquitelli and Elena Maria Baralis Politecnico di Torino
- Kilian Weinberger Cornell Univesity