Bank loan case study

Introduction:

There is a finance company that specializes in lending various types of loans to urban customers. The company faces a challenge: some customers who don't have a sufficient credit history take advantage of this and default on their loans.

Task:

Using Exploratory Data Analysis (EDA) to analyse patterns in the data and ensure that capable applicants are not rejected.

Issues:

When a customer applies for a loan, your company faces two risks:

- 1. If the applicant can repay the loan but is not approved, the company loses business.
- 2. If the applicant cannot repay the loan and is approved, the company faces a financial loss.

When a customer applies for a loan, there are four possible outcomes:

- 1. Approved: The company has approved the loan application.
- 2. Cancelled: The customer cancelled the application during the approval process.
- 3. Refused: The company rejected the loan.
- 4. Unused Offer: The loan was approved but the customer did not use it.

Missing values:

In application_data csv:

Percentage of missing values in each column:

COMMONAREA MEDI	69.87230
COMMONAREA AVG	69.87230
COMMONAREA MODE	69.87230
NONLIVINGAPARTMENTS MODE	69.43296
NONLIVINGAPARTMENTS AVG	69.43296
NONLIVINGAPARTMENTS MEDI	69.43296
FONDKAPREMONT MODE	68.38617
LIVINGAPARTMENTS MODE	68.35495
LIVINGAPARTMENTS AVG	68.35495
LIVINGAPARTMENTS MEDI	68.35495
FLOORSMIN AVG	67.84863
FLOORSMIN MODE	67.84863

	65 01060
FLOORSMIN_MEDI	67.84863
YEARS_BUILD_MEDI	66.49778
YEARS_BUILD_MODE	66.49778
	66.49778
	65.99081
	59.37674
_	59.37674
_	59.37674
	58.51596 58.51596
	58.51596
	56.38107
	55.17916
	55.17916
	55.17916
	53.29598
	53.29598
	53.29598
	50.84078
WALLSMATERIAL_MODE APARTMENTS MEDI	50.74973
APARTMENTS AVG	50.74973
APARTMENTS MODE	50.74973
ENTRANCES MEDI	50.34877
ENTRANCES AVG	50.34877
	50.34877
	50.19333
LIVINGAREA MODE	50.19333
LIVINGAREA MEDI	50.19333
HOUSETYPE MODE	50.17609
FLOORSMAX_MODE	49.76082
FLOORSMAX_MEDI	49.76082
FLOORSMAX AVG	49.76082
YEARS BEGINEXPLUATATION MODE	48.78102
YEARS_BEGINEXPLUATATION_MEDI YEARS_BEGINEXPLUATATION_AVG	48.78102
YEARS BEGINEXPLUATATION AVG	48.78102
TOTALAREA MODE	48.26852
EMERGENCYSTATE MODE	47.39830
OCCUPATION TYPE	31.34555
EXT_SOURCE_3	19.82531
AMT_REQ_CREDIT_BUREAU_HOUR	13.50163
AMT_REQ_CREDIT_BUREAU_DAY	13.50163
AMT_REQ_CREDIT_BUREAU_WEEK	13.50163
AMT_REQ_CREDIT_BUREAU_MON	13.50163
AMT_REQ_CREDIT_BUREAU_QRT	13.50163
AMT_REQ_CREDIT_BUREAU_YEAR	13.50163
NAME_TYPE_SUITE	0.42015
OBS_30_CNT_SOCIAL_CIRCLE	0.33202
DEF_30_CNT_SOCIAL_CIRCLE	0.33202
OBS_60_CNT_SOCIAL_CIRCLE	0.33202
DEF_60_CNT_SOCIAL_CIRCLE	0.33202
EXT_SOURCE_2	0.21463
AMT_GOODS_PRICE	0.09040
AMT_ANNUITY	0.00390
CNT_FAM_MEMBERS	0.00065
DAYS_LAST_PHONE_CHANGE	0.00033
CNT_CHILDREN	0.00000
FLAG_DOCUMENT_8	0.00000
NAME_CONTRACT_TYPE	0.00000

CODE GENDER	0.00000
FLAG OWN CAR	0.00000
FLAG DOCUMENT 2	0.00000
FLAG DOCUMENT 3	0.00000
FLAG DOCUMENT 4	0.00000
FLAG DOCUMENT 5	0.00000
FLAG DOCUMENT 6	0.00000
FLAG DOCUMENT 7	0.00000
FLAG DOCUMENT 9	0.00000
FLAG DOCUMENT 21	0.00000
FLAG DOCUMENT 10	0.00000
FLAG DOCUMENT 11	0.00000
FLAG OWN REALTY	0.00000
FLAG DOCUMENT 13	0.00000
FLAG DOCUMENT 14	0.00000
FLAG DOCUMENT 15	0.00000
FLAG DOCUMENT 16	0.00000
FLAG DOCUMENT 17	0.00000
FLAG DOCUMENT 18	0.00000
FLAG DOCUMENT 19	0.00000
FLAG DOCUMENT 20	0.00000
FLAG DOCUMENT 12	0.00000
AMT CREDIT	0.00000
AMT_INCOME_TOTAL	0.00000
FLAG PHONE	0.00000
LIVE CITY NOT WORK CITY	0.00000
REG_CITY_NOT_WORK_CITY	0.00000
TARGET	0.00000
REG_CITY_NOT_LIVE_CITY	0.00000
LIVE REGION NOT WORK REGION	0.00000
REG REGION NOT WORK REGION	0.00000
REG_REGION_NOT_LIVE_REGION	0.00000
HOUR_APPR_PROCESS_START	0.00000
WEEKDAY_APPR_PROCESS_START	0.00000
REGION_RATING_CLIENT_W_CITY	0.00000
REGION_RATING_CLIENT	0.00000
FLAG_EMAIL	0.00000
FLAG_CONT_MOBILE	0.00000
ORGANIZATION_TYPE	0.00000
FLAG_WORK_PHONE	0.00000
FLAG_EMP_PHONE	0.00000
FLAG_MOBIL	0.00000
DAYS_ID_PUBLISH	0.00000
DAYS_REGISTRATION	0.00000
DAYS_EMPLOYED	0.00000
DAYS_BIRTH	0.00000
REGION_POPULATION_RELATIVE	0.00000
NAME_HOUSING_TYPE	0.00000
NAME_FAMILY_STATUS	0.00000
NAME_EDUCATION_TYPE	0.00000
NAME INCOME TYPE	
NAME_INCOME_IIIE	0.00000
	0.00000
SK_ID_CURR	

I dropped the above columns as I felt there not related to the analysis.

I removed columns with more than 35% as they cannot be used for analysis.

```
OCCUPATION_TYPE
                     96391
AMT_REQ_CREDIT_BUREAU_YEAR 41519
AMT_REQ_CREDIT_BUREAU_QRT
AMT_REQ_CREDIT_BUREAU_MON
AMT_REQ_CREDIT_BUREAU_WEEK
AMT_REQ_CREDIT_BUREAU_DAY
                          41519
AMT_REQ_CREDIT_BUREAU_HOUR 41519
OBS_60_CNT_SOCIAL_CIRCLE
                          1021
OBS_30_CNT_SOCIAL_CIRCLE
                          1021
DEF_30_CNT_SOCIAL_CIRCLE
                          1021
DEF_60_CNT_SOCIAL_CIRCLE
                          1021
AMT_GOODS_PRICE
                      278
AMT_ANNUITY
CNT_FAM_MEMBERS
HOUR_APPR_PROCESS_START
```

```
ORGANIZATION_TYPE
LIVE_CITY_NOT_WORK_CITY
                           0
REG_CITY_NOT_WORK_CITY
                           0
REG_CITY_NOT_LIVE_CITY
LIVE REGION NOT WORK REGION
                               0
REG_REGION_NOT_WORK_REGION
REG_REGION_NOT_LIVE_REGION
SK_ID_CURR
WEEKDAY_APPR_PROCESS_START
                              0
REGION_RATING_CLIENT_W_CITY
                              0
NAME_CONTRACT_TYPE
                          0
CODE_GENDER
CNT_CHILDREN
                     0
AMT_INCOME_TOTAL
                         0
AMT_CREDIT
                    0
NAME_INCOME_TYPE
NAME_EDUCATION_TYPE
                          0
NAME_FAMILY_STATUS
                         0
NAME_HOUSING_TYPE
REGION_POPULATION_RELATIVE
                              0
DAYS_BIRTH
DAYS_EMPLOYED
DAYS_REGISTRATION
                        0
                      0
DAYS_ID_PUBLISH
TARGET
REGION_RATING_CLIENT
                          0
dtype: int64
```

Outliers:

After analyzing the outliers I have decided to use mode for

```
OBS_60_CNT_SOCIAL_CIRCLE 1021
OBS_30_CNT_SOCIAL_CIRCLE 1021
DEF_30_CNT_SOCIAL_CIRCLE 1021
DEF_60_CNT_SOCIAL_CIRCLE 1021
```

And median for the following

```
AMT_REQ_CREDIT_BUREAU_YEAR 41519
AMT_REQ_CREDIT_BUREAU_QRT 41519
AMT_REQ_CREDIT_BUREAU_MON 41519
AMT_REQ_CREDIT_BUREAU_WEEK 41519
AMT_REQ_CREDIT_BUREAU_DAY 41519
AMT_REQ_CREDIT_BUREAU_HOUR 41519
AMT_ANNUITY 12
CNT_FAM_MEMBERS 2
```


As AMT_GOODS_PRICE will be closer to AMT_CREDIT I replaced the empty values with the corresponding ones.

occupation type had the highest number of missing values

I used 'unkown' to fill the empty cells.

The graph shows the different occupations distribution.

And also converted the below values from negative to their absolute values

```
'DAYS_BIRTH','DAYS_EMPLOYED','DAYS_REGISTRATION','DAYS_ID_PUBLISH'
```

In the gender column as there are only 4 rows with XNA entries and most of the entries are females I replaced those 4 rows with female entry.

I aggregated the INCOME_GROUP and CREDIT_GROUP into low, medium, high, very high groups for better analysis.

I also aggregated the AGE GROUP for better analysis.

I did the similar data preprocessing for the previous data.csv as well

It had percentage of missing values in each columns as shown

```
RATE INTEREST PRIVILEGED
                                 99.64370
                                 99.64370
AMT DOWN PAYMENT
                                 53.63648
RATE DOWN PAYMENT
                                 53.63648
NAME TYPE SUITE
                                 49.11975
                                 40.29813
DAYS TERMINATION
                                 40.29813
DAYS LAST DUE
                                 40.29813
                                 40.29813
DAYS LAST DUE 1ST VERSION
DAYS FIRST DUE
                                 40.29813
DAYS FIRST DRAWING
                                 40.29813
AMT GOODS PRICE
                                 23.08177
AMT ANNUITY
                                 22.28667
CNT PAYMENT
                                 22.28637
PRODUCT COMBINATION
                                  0.02072
```

AMT_CREDIT	0.00006
NAME_YIELD_GROUP	0.00000
NAME_PORTFOLIO	0.00000
NAME SELLER INDUSTRY	0.00000
SELLERPLACE_AREA	0.00000
CHANNEL TYPE	0.00000
NAME PRODUCT TYPE	0.00000
SK ID PREV	0.00000
NAME GOODS CATEGORY	0.00000
NAME CLIENT TYPE	0.00000
CODE REJECT REASON	0.00000
SK ID CURR	0.00000
DAYS DECISION	0.00000
NAME CONTRACT STATUS	0.00000
NAME CASH LOAN PURPOSE	0.00000
NFLAG LAST APPL IN DAY	0.00000
FLAG LAST APPL PER CONTRACT	0.00000
HOUR APPR PROCESS START	0.00000
WEEKDAY APPR PROCESS START	0.00000
AMT APPLICATION	0.00000
NAME CONTRACT TYPE	0.00000
NAME PAYMENT TYPE	0.00000

I removed the HOUR_APPR_PROCESS_START and NAME_TYPE_SUITE as I felt they weren't relevant for the analysis.

Similar to the application_data.csv. I used median to fill the empty cells in AMT_ANNUITY, CNT_PAYMENT, PRODUCT_COMBINATION, AMT_CREDIT

I used AMT_CREDIT values to fill the empty values in AMT_GOOD_PRICE

Heatmaps:

I used heatmaps to find the correlation between the columns in the separate datasets and the merged dataset.

Data imbalance:

Data imbalance in application_data.csv

Univariate analysis:

Univariate analysis involves the examination of a single variable at a time. It focuses on describing and summarizing the distribution of values within that variable.

The main goal is to understand the characteristics of a single variable, such as central tendency, dispersion, and shape of the distribution.

- People who have cash loans are less likely to be defaulters.
- Females are less likely to be defaulters compared to males as when compared many females are regulars.
- ➤ Working professionals are very less likely to default compared to others as we have more data on them and the graphs indicate.
- Commercial Associate, pensioner and state servant are less likely to be defaulters.
- ➤ Secondary/Secondary Special are very less likely to be defaulters.
- People with higher education are less likely to be defaulters.
- ➤ Married people are very less likely to default. And they are the ones who took the most loans compared to others.
- ➤ People who own a house or an apartment are very less likely to be defaulters.
- People in business entity type 3 and XNA are very less likely to be defaulters.
- People who are self employed are less likely to be defaulters.

Segmented univariate analysis:

Segmented univariate analysis is an extension of univariate analysis where the data is divided into subgroups or segments based on another variable, and then univariate analysis is performed on each segment.

This type of analysis helps in understanding how the distribution of a variable varies across different segments. It allows for a more nuanced exploration of the data, revealing potential patterns or differences that may not be apparent in a global univariate analysis.

- Middle aged people and senior citizens are less likely to be defaulters compared to young people.
- ➤ In case of CREDIT_GROUP it is hard to predict as all groups are almost same in comparison of defaulters and regulars. But we can say people with very high income are less likely to be defaulters.
- ➤ In case of INCOME GROUP also it is hard to predict as the ratios are similar.

Bivariate analysis:

Bivariate analysis involves the simultaneous analysis of two variables to determine if there is a relationship or association between them.

The main goal is to explore how changes in one variable are related to changes in another.

- People who are young and have low income are more likely to be defaulters.
- ➤ People who have lower secondary education and medium credit are likely to be defaulters.
- ➤ People who have incomplete higher education or secondary or secondary special education and in medium credit group are also likely to be defaulters.
- ➤ People who are medium credit group and medium income are a bit likely to be defaulters. it is hard to predict from the graph though.
- Males with low and very low income are more likely to be defaulters.

Univariate analysis of merged dataset

- > People with approved contract status are high in both defaulters and non-defaulters. it is hard to predict from the graph.
- > Repeaters are more likely to be defaulters.
- > People with POS as the name portfolio are more likely to be defaulters.

- Males are more likely to be defaulters and to be refused.
- > Young people are more likely to be defaulters and to be refused.
- > People with low and very low income are likely to be defaulters and to be refused.

Remarks:

The bank needs to work on the missing data as there were many columns with very high missing percentage of entries.

The bank is giving loans to mostly middle-aged group, medium income group, and people with POS name portfolio.

LINK:

https://drive.google.com/file/d/1STInucbVbOPNikFFccflKU6uL3M5R_fh/view?usp=sharing

 $\frac{https://colab.research.google.com/drive/1vPzgIlHkD9Nw7v60D8h8Jz8YFXtoTOdM?usp_sharing$