2 5 2 6 3

cost to connect 2 ropus -> Sum tuytr of 2 ropes

Find minimum cost to connect all the ropes, connecting two at a time.

				cost = 0 $+ = 7$
\bigcirc	a	5	7	+=+
				+ = 9
	2	7	9	
				4 = 15
	6	9	15	
				t = 18
	15	3	18	49

No relationship 6/w 8ibleys.

update/ seaut/ deluter- O(N)

Build Hea	P					
$\overline{\downarrow}$	l	irput:				
usy user	1.	week .				S-(:0(N)
Bu	fid alua	ody give	the data	- D(N)	, o(1) s·c	
N	leaves		\bigcirc \rightarrow \swarrow	ef	CA	1 ⁷ J
1	1	/				8
2 3	1	C_{i}			N 🦻	2
-	2	\angle	6			
4 5	3	$\bigcup_{i \in I} A_i$				
6	3	66				

T.C.
$$N_{2}*0 + N_{1}4*1 + N_{8}*2 + N_{16}*3 - ...$$

$$= N_{1}(1_{1} + 2_{1} + 3_{2} + 1_{16} + ...) \rightarrow AuP$$

$$S = 1_{2} + 2_{1}4 + 2_{1}8 + 2_{16}4 + ...$$

$$S_{1} = 1_{2} + 1_{1}4 + 2_$$

Heapity (heap (1, mt i)

while dit (xire)

dint x = max (heap (i), heap [2i+1], heap [2i+2]);if (heap [i] = = x)

description (heap [2i+1) = = x)

f swap (heap [i], heap [2i+1]);

i'= 2i+1;

f clst of swap (heap [i]; heap [2i+2]); i'= 2i+2;

Q

N chocolate bags, each hoving A[i] chocolates.

Kid ⇒ select the bag with max no of chocolates to eats it.

Magician ⇒ File the bag again by A[i] 2 choclates.

Find no of chocolates kid can eat in k steps.

 $A = \begin{bmatrix} 16, 3, 15, 8, 4 \end{bmatrix}$ K = 5 Coul + 6 = 8 1 = 8 1 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 2 = 6 3 = 6 4 = 6 4 = 6 4 = 6 4 = 6 6 = 6

ised (n/2),

Doub

7	3	5	1	6	8	10	2	13	14	2	7
7 7	3	5									
3 7											
$\frac{3}{4}$											
7 3											