# 滑らかな常微分方程式の計算量

 太田浩行\*
 河村彰星†
 マルチン・ツィーグラー‡

 カルステン・レースニク§

平成 24 年 1 月 31 日

#### 概要

常微分方程式  $h(0)=0,\ h'(t)=g(t,h(t))$  の解 h の計算量と、関数 g の計算量及び制限の関係は、常微分方程式を数値解析的に解くことの本質的な難しさを表しているとして調べられている。 本稿では河村が 2010 年の論督の中で Lipschitz 条件を満たす多項式時間計算可能な関数 g の常微分方程式の解が  $\mathbf{PSPACE}$  完全たりうる結果をしめすために用いた手法を、微分可能な g について拡張する。多項式時間計算可能で 1 回連続的微分可能な関数の常微分方程式は、 $\mathbf{PSPACE}$  完全な解を持ちうること、多項式時間計算可能で任意回微分可能関数の常微分方程式は、本稿の中で定義される計算量  $\mathbf{DIVP}(\log)$  困難な解を持ちうることをしめす。 $\mathbf{DIVP}(\log)=\mathbf{PSPACE}$  であるかどうかはは未解決である。

# 1 導入

### 1.1 計算可能解析

計算可能解析 (Computable Analysis) では計算可能性理論や計算量理論の視点から解析学を扱う. 実数や実関数といった解析学の対象が、機械により計算できるかを問う. 例えば「計算可能な実数」や「多項式時間計算可能な実関数」といった概念を定義し、実数計算の本質的な難しさを分析する.

有限な対象においては「計算できる関数」はモデルによらず、すべてチューリング機械で計算できるものと同値であることが知られているが、実数計算においては、計算できる関数が互いに異なる、いくつかのモデルが提唱されている。その中でも本稿で扱うモデルにおいては、「機械が実関数を計算する」ことを定義する。

実関数  $f\colon \mathbf{R} \to \mathbf{R}$  を計算する機械を考えるとき、問題となるのが実数は有限の脅字列で表現不可能であるため、機械が完全な値を読み、書くことはできない点である.

<sup>\*</sup> 東京大学

<sup>†</sup>第1著者に同じ

<sup>‡</sup> ダルムシュタット工科大学

<sup>§</sup>第3著者に同じ

表 1.1 関連研究

| 制限                          | 上界            | 下界                  |
|-----------------------------|---------------|---------------------|
| _                           | _             | 計算不可能たりうる [?]       |
| h が $g$ の唯一解                | 計算可能 [?]      | 任意の時間がかかりうる [?] [?] |
| Lipschitz 条件を満たす            | PSPACE        | PSPACE 困難になりうる [1]  |
| $\mathcal{D}^{(0,1)} g$ が連続 | PSPACE        | PSPACE 困難たりうる [本稿]  |
| $\mathcal{D}^{(0,i)} g$ が連続 | PSPACE        | PSPACE 困難たりうる [本稿]  |
| g が解析的                      | 多項式時間 [?] [?] | _                   |

そこで実数を近似値の列で表現する。有理数の列  $(r_n)_n$  が x を表現するとは,  $(r_n)_n$  が x へ速く収束すること, すなわち  $|r_n-x|\leq 2^{-n}$  を満たすこととする。数列は  $n\in {\bf N}$  を  $r_n\in {\bf Q}$  へ移す関数と考えることもでき、そのような関数または数列を実数の名と呼ぶ。

関数を計算する機械にたいして、入力である実数は、その名つまり近似値を返す関数を神託として機械に与える。 そしてある神託機械が関数  $f\colon [0,1] \to \mathbf{R}$  を計算するとは、入力となる 実数 x の名を神託として与えられ、求める精度 n を入力として与えられたとき、有理数  $s_n$  で  $|s_n-f(x)|\leq 2^{-n}$  を満たすものを出力することとする.

この神託機械の資源を制限することで、多項式時間 (P) や多項式領域 (PSPACE) に対応する実関数のクラスを定義できる。厳密には 2 節において定義する。

#### 1.2 問題と関連研究

連続実関数  $g:[0,1] \times \mathbf{R} \to \mathbf{R}$  にたいして次の常微分方程式を考える.

$$h(0) = 0,$$
  $h'(t) = g(t, h(t)) \quad (t \in [0, 1])$  (1.1)

本稿では「g を単純な実関数としたとき, h がどれほど複雑な実関数になりうるか」を考える.

g に何の制限も設けない場合,その解は計算不能たりうるため,様々な制限のもと常微分方程式の解の計算量が研究されている [表 1.1]. Lipschitz 条件とは常微分方程式の解の一意性を保証する重要な条件である。 Lipschitz 条件を満たすとき,解は多項式領域計算可能であり,多項式領域計算困難たりうる。一方で g が解析的であるとき,常微分方程式の解も解析的となるため,多項式時間計算可能である。

そこで我々はこの隔たりを埋めることを目的として、滑らかな関数、つまり微分可能な g について h の計算量がどれほどになりうるかを調べ、以下の結果を得た.

定理 1.1. 多項式時間実関数  $g:[0,1]\times \mathbf{R}\to \mathbf{R}$  で $,(\infty,1)$  回連続的微分可能であり,g の常微分方程式(1.1) の解 h が PSPACE 完全であるものが存在する.

定理 1.2. 任意の自然数  $k \geq 2$  にたいして、多項式時間実関数  $g: [0,1] \times \mathbf{R} \to \mathbf{R}$  で、 $(\infty,k)$  回連続的微分可能であり、g の常微分方程式 (1.1) の解 h が  $\mathbf{DIVP}(\mathbf{log})$  困難であるものが存在する.

 $\mathbf{DIVP}(\log)$  とは本稿において定義される計算量クラスであり、 $\mathbf{DIVP}(\log) \subseteq \mathbf{PSPACE}$  であるが、 $\mathbf{DIVP}(\log) = \mathbf{PSPACE}$  は未解決であるため、 $(\infty,k)$  階連続的微分可能関数の常微分方程式の解が  $\mathbf{PSPACE}$  完全になりうるかは未解決である.厳密な定義は次節で導入する.

二変数関数 g が (i,j) 階連続的微分可能であるとは、第一変数について i 回、第二変数について j 回微分可能であり、その導関数が連続であることと定義する。この定義は一般的な多変数関数における k 階連続的微分可能の定義(任意の k 階導関数が存在し、それらがすべて連続)とは異なる。  $i \geq j$  とすると (i,j) 回連続的微分可能であれば j 回連続的微分可能であるため、定理  $1.1,\,1.2$  は それぞれ 1 回連続的微分可能,k 階連続的微分可能と置き換えても成り立つ。

また定理 1.2 において任意の k に対して  $(\infty,k)$  階微分可能な関数を考えているが,一つ関数が任意の k にたいして k 階微分ではない.つまり g が無限回微分可能であると制限しているわけではない.無限回微分可能な関数に対する常微分方程式の計算量は今後の課題である.

## 1.3 差分方程式

定理 1.1 と定理 1.2 の証明の中では、まず滑らかな実関数の常微分方程式で模倣可能であるような離散版常微分方程式を考え、その「離散版常微分方程式」がある計算量クラスについて困難であることを示している。この節ではその離散版常微分方程式である、差分方程式と差分方程式に対応する計算量クラスについて定義する。

 $[n] = \{0, \dots, n-1\}$  と表記する。 関数  $G \colon [P] \times [Q] \times [R] \to \{-1, 0, 1\}$  にたいして、関数  $H \colon [P+1] \times [Q+1] \to [R]$  が任意の  $i \in [P]$ ,  $T \in [Q]$  について以下を満たすとき、H を G の差分方程式の解と呼ぶ。

$$H(i,0) = H(0,T) = 0 (1.2)$$

$$H(i+1,T+1) = H(i+1,T) + G(i,T,H(i,T))$$
(1.3)

P,Q,R のことをそれぞれ行数、列数、欄の大きさと呼ぶ。G と H が常微分方程式の g と h に対応し、H(i,0)=0 と言う条件が h(0)=0、式 (1.3) と同値である H(i+1,T+1)-H(i+1,T)=G(i,T,H(i,T)) と言う条件が h'(t)=g(t,h(t)) と対応する。

関数族  $(H_u)_u$  が 関数族  $(G_u)_u$  の差分方程式族の解であるとは、各 u にたいして  $G_u$  の段数が |u| の多項式で抑えられ、列数及び欄の大きさが |u| の指数  $(2^{\mathrm{poly}(|u|)})$  で抑えられており、 $H_u$  が  $G_u$  の差分方程式の解となっていることと定義する.

言語 L にたいして、

$$L(u) = \begin{cases} 1 & u \in L \\ 0 & u \notin L \end{cases} \tag{1.4}$$

と表記する. 言語 L が差分方程式族  $(G_u)_u$  の解  $(H_u)_u$  によって認識されるとは、各 u にたいして  $G_u$  の段数と列数を  $P_u,Q_u$  としたとき、 $H_u(P_u,Q_u)=L(u)$  をみたすこととする.

河村の論脋において多項式時間差分方程式族によって認識される言語のクラスは PSPACE であることが示されている.

補題 1.3 (補題 4.7. [1]). 任意の言語 L について以下は同値.

- $L \in \mathbf{PSPACE}$
- ullet その差分方程式の解が L を認識する, 多項式時間関数族  $(G_u)_u$  が存在する.

ここで関数族  $(G_u)_u$  が多項式時間計算可能であるとは, u も入力であるとみなした関数 G が多項式時間計算可能なことである.

さらに段数が対数によって制限される差分方程式を考える。段数が |u| の対数で抑えられる  $(G_u)_u$  の差分方程式を対数段差分方程式とよび,多項式時間関数族  $(G_u)_u$  の対数段差分方程式によって認識される言語のクラスを  $\mathbf{DIVP}(\log)$  と名付ける。

段数が多項式である離散初期値問題が認識する言語は PSPACE であったため、 $\mathbf{DIVP}(\mathbf{log}) \subseteq \mathbf{PSPACE}$  であるが、 $\mathbf{DIVP}(\mathbf{log}) = \mathbf{PSPACE}$  か否かは未解決である。 段数が 2 段の差分方程 式を考えると、 $H_u$  の最後の欄の値は |u| の多項式サイズの 各  $t \in \{0,1\}^*$  について  $G_u(0,t,0) \in \{-1,0,1\}$  の和になっている。 つまり  $\sharp \mathbf{P}$  と同程度の能力を持つと言える。 よって  $\mathbf{DIVP}(\mathbf{log})$  は  $\sharp \mathbf{P}$  よりも強いクラスであると考えられる。

## 2 準備

#### 2.1 表記

(二進) 自然数の集合を  ${f N}$ , 整数の集合を  ${f Z}$ , 実数の集合を  ${f R}$ , 有理数の集合を  ${f Q}$ ,  $\{0\}^*=\{0^n\mid n\in {f N}\}$  と表記する.

 $A\subset {f R}$  とする. 一変数関数  $f\colon A\to {f R}$  が i 回微分可能であるとき, その i 階導関数を  ${\cal D}^{(i)}f$  と表記する.

二変数関数  $g: A \times B \to \mathbf{R}$  が (i,j) 階連続的微分可能であるとき,第一変数にたいして i 階,第二変数にたいして j 階の導関数はその微分の順序によらず等しい [3]. よってその導関数を  $\mathcal{D}^{(i,j)}g$  と表記する.

実関数  $f: A \to \mathbf{R}$  にたいして  $|f| = \max_{x \in A} f(x)$  と表記する.

## 2.2 実数の名

実数は無限の長さを持つため、有限な脅字列に符号化することが不可能である。そこで脅字列から脅字列への関数に符号化する。

定義 2.1 (実数の名). 関数  $\phi$ :  $\{0\}^* \to \mathbf{Z}$  が実数  $x \in [0,1]$  の名であるとは,  $\phi(0^n) = |x \cdot 2^n|$  また



図 2.1 実関数のモデル化

は  $\phi(0^n) = \lceil x \cdot 2^n \rceil$  を満たすこと.

ここで  $\lfloor \cdot \rfloor$ ,  $\lceil \cdot \rceil$  とはそれぞれ切り捨て関数と切り上げ関数である. つまり実数 x の名とはサイズ n の入力を受け取ると, x の n 桁精度を持つ近似値を返すような関数である.

## 2.3 計算可能実関数, 多項式時間実関数

実関数は実数を受け取り、実数を返す関数であるが、実数自体が関数として符号化されているため、実関数の計算する機械を神託機械として定義する。つまり関数の入力である実数の名を神託として与えられ、求める精度を入力として受け取ったとき、神託の表現する実数での関数の値の近似値を返すような神託機械を実関数を計算する機械と定義する [図 2.3]. より厳密には以下のように定義する.

定義 2.2. 神託機械 M が実関数  $f\colon A\to \mathbf{R}$  を計算するとは、任意の実数  $x\in A$ 、任意の x の名  $\phi_x$  にたいして、 $M^{\phi_x}$  が f(x) の名であること.

計算可能な実関数は Grzegorczyk によって初めて形式的に定義され, [?]. 多変数関数のモデル も, 変数と同じ数だけ神託を持つ神託機械によって同様に定義される.

ある実関数が計算可能であるとは、その関数を計算する神託機械が存在することである。同様に、 ある実関数が多項式時間計算可能であるとは、その関数を計算する多項式時間神託機械が存在する ことである.

神託機械 M がある実関数族  $(f_u)_u$  を計算するとは、入力 u を受けったとき、 $M_u$  が  $f_u$  を計算することである。実関数族が多項式時間計算可能であるとは、その実関数族を計算する多項式時間神託機械が存在することである。

神託機械 M で f を計算するとき、求める精度 n にたいして、x の近似値に必要な精度 m が定まるため、計算可能な関数は連続である。 また n と m の対応関係と有理数における近似値を与えることで、計算可能実関数や多項式時間計算可能実関数にたいして、神託機械を用いない同値な特徴付けが可能である。



図 2.2 言語 L から関数 f への還元

補題 2.3. 実関数  $f: [0,1] \to \mathbf{R}$  にたいして,  $\phi_f: (\mathbf{Q} \cap [0,1]) \times \{0\}^* \to \mathbf{Q}, m_f: \mathbf{N} \to \mathbf{N}$  は

$$|\phi_f(d, 0^n) - f(d)| \le 2^{-n} \qquad (d \in (\mathbf{Q} \cap [0, 1]), \quad n \in \mathbf{N})$$
 (2.1)

$$|x - y| \le 2^{-p_f(m)} \Rightarrow |f(x) - f(y)| \le 2^{-m} \qquad (x, y \in [0, 1], \quad m \in \mathbf{N})$$
 (2.2)

をみたす関数とする.

- ullet f が計算可能であることは、計算可能な  $\phi_f, m_f$  が存在することと同値である.
- ullet f が多項式時間計算可能であることは、多項式時間計算可能な  $\phi_f$ 、多項式  $m_f$  が存在することと同値である.

## 2.4 完全性

関数の下限を示すために、困難性及び完全性を定義する。 言語 L が実関数  $f\colon [0,1]\to \mathbf{R}$  に多項式時間還元可能であるとは、f を計算する機械をブラックボックスとして、入力 u にたいして、精度を f に与え、ある実数  $x_u$  の神託を模倣し、 $f(x_u)$  の近似値から、u が L に含まれるか否かを多項式時間で計算可能であることである [図 2.4]。 厳密には以下のように定義する.

定義  ${f 2.4}$  (多項式時間還元可能). 言語 L が実関数  $f\colon [0,1] \to {f R}$  に多項式時間還元可能であるとは,任意の脅字列 u にたいして,以下を満たす実数  $x_u\in [0,1]$  多項式時間計算可能な関数 R,S,T が存在すること.

- $R: N \times N \to \{0,1\}, \quad S: \mathbf{N} \times \{0\}^* \to \mathbf{N}, \quad T: \mathbf{N} \to \{0\}^*;$
- S(u,·) は実数 x<sub>u</sub> の名;
- 任意の  $f(x_u)$  の名  $\phi$  にたいして

$$L(u) = R(u, \phi(T(u))).$$

計算量 C にたいして、関数 f が C 困難であるとは、任意の C に含まれる言語が f に多項式時間還元可能であることである。 さらに f が C に含まれるとき、つまり C に対応する神託機械で f を計算するものが存在するとき、f は C 完全であると定義する.

## 3 微分可能関数と常微分方程式

## 3.1 離散初期値問題を模倣する関数族

任意の言語  $L \in \mathbf{PSPACE}$ 、脅字列 u にたいして、上記の計算を模倣し L(u) を計算する微分可能な実関数  $g_u$  を構成する.

補題 3.1. 任意の言語  $L \in \mathbf{PSPACE}$  にたいして、係数のみに i を含む多項式  $\mu_i$  が存在して、任意の多項式  $\gamma$  にたいして、多項式  $\rho$ 、関数族  $(g_u)_u, (h_u)_u$  で、 $(g_u)_u$  は多項式時間計算可能であり、各二進脅字列 u にたいして以下を満たすものが存在する.

- (i)  $g_u: [0,1] \times [-1,1] \to \mathbf{R}, \quad h_u: [0,1] \to [-1,1];$
- (ii)  $h_u$  は  $g_u$  の常微分方程式 (1.1) の解;
- (iii)  $g_u$  は ( $\infty$ , 1) 階連続微分可能;
- (iv) 任意の  $i \in \mathbb{N}, y \in [-1, 1]$  にたいして

$$\mathcal{D}^{(i,0)}g_u(0,y) = \mathcal{D}^{(i,0)}g_u(1,y) = 0$$

(v) 任意の  $i \in \mathbb{N}$  にたいして

$$|\mathcal{D}^{(i,1)}g_u| \le 2^{\mu_i(|u|)-\gamma(|u|)}, \qquad |\mathcal{D}^{(i,0)}g_u| \le 2^{\mu_i(|u|)-\gamma(|u|)}$$

(vi) 
$$h_u(1) = 2^{-\rho(|u|)} L(u)$$
.

ここで実関数族  $(g_u)_u$   $(g_u\colon [0,1]\times [-1,1]\to \mathbf{R})$  が多項式時間計算可能であることを,実関数の多項式時間計算可能性から自然に定義する. つまりある神託機械 M が実関数族  $(g_u)_u$  を計算するとは,実数 t,y の名  $\phi,\psi$  を神託として受けとり,脅字列 u,求める精度 n を入力として受けとったとき, $|M^{\phi,\psi}(u,0^n)-g_u(t,y)|\leq 2^{-n}$  を満たすことである.そして実関数族が多項式時間計算可能であるとは,実関数族を計算し,|u| と n の多項式時間で動作する神託機械が存在することと定義する.

この補題の証明の前に、葛によって示されている滑らかな多項式時間実関数  $f\colon [0,1] o \mathbf{R}$  を導入する.

補題 3.2 (補題 3.6. [2]). 以下を満たす多項式時間無限回微分可能実関数  $f\colon [0,1] \to \mathbf{R}$  が存在する.

- (i) f(0) = 0, f(1) = 1;
- (ii) 任意の  $n \ge 1$  で  $f^{(n)}(0) = f^{(n)}(1) = 0$ ;
- (iii) f は [0,1] で単調増加;
- (iv) 任意の  $n \ge 1$  で  $f^{(n)}$  は多項式時間実関数.

補題 3.1 の証明. 補題 1.3 から, L を認識する離散初期値問題  $\langle d,p,q,(G_u)_u \rangle$  とその解  $(H_u)_u$  を得る. 各ステップを p(u) 個に分割することで,  $G_u(i,T,Y) \neq 0$  を満たす i を各 T にたいしてたかだか 1 つにすることができる. そのような i のことを  $j_u l(T)$  と表現する. 任意の i で  $G_u(i,T,Y)=0$  ならば  $j_u(T)$  は任意の値を取るとする. さらに以下を満たすとしても一般性を失わない.

$$H_u(i, 2^{q(|u|)}) = \begin{cases} L(u) & (i = p(|u|)) \\ 0 & (i < p(|u|)) \end{cases}$$
(3.1)

$$G_u(i, 2 \cdot 2^{q(|u|)} - 1 - T, Y) = \begin{cases} 0 & (i = p(|u|) - 1) \\ -G_u(i, T, Y) & (i < p(|u|) - 1) \end{cases}$$
(3.2)

$$H_u(i, 2 \cdot 2^{q(|u|)} - T) = \begin{cases} H_u(p(|u|), 2^{q(|u|)}) & (i = p(|u|)) \\ H_u(i, T) & (i < p(|u|)) \end{cases}$$
(3.3)

補題 3.2 の f にたいして、自然数  $c_i$  を各  $i \in \mathbb{N}$  にたいして  $|\mathcal{D}^{(i)}f(x)| \leq 2^{c_i}$  を満たす最小の自然数と定める。定数  $d' = \lceil \log(4d+1) \rceil$ , $B = 2^{\gamma(|u|)+d'}$  とおき,各  $(t,y) \in [0,1] \times [-1,1]$  にたいして、自然数  $N, \theta \in [0,1]$ ,整数  $Y, \eta \in [-1/4,3/4]$  を  $t = (T+\theta)2^{-q(|u|)}$ , $y = (Y+\eta)B^{-j_u(T)}$  を満たすように定める。

そのとき、

$$\delta_{u,Y}(t) = \frac{2^{q(|u|)} f'(\theta)}{B^{j_u(T)+1}} G_u\left(j_u(T), T, \min\left(Y \bmod 2^{d'}, d-1\right)\right)$$
(3.4)

とおき  $g_u, h_u$  を以下のように定義する.

$$g_u(t,y) = \begin{cases} \delta_{u,Y}(t) & (\eta \le \frac{1}{4}) \\ (1 - f(\frac{4\eta - 1}{2}))\delta_{u,Y}(t) + f(\frac{4\eta - 1}{2})\delta_{u,Y+1}(t) & (\eta > \frac{1}{4}) \end{cases}$$
(3.5)

$$h_u(t) = \sum_{i=0}^{p(|u|)} \frac{H_u(i,T)}{B^i} + \frac{f(\theta)}{B^{j_u(T)+1}} G_u(j_u(T), T, H_u(j_u(T), T))$$
(3.6)

上記のように定義した  $g_u,h_u$  が補題 3.1 で求める性質を満たすことを示す. (i) は自明.  $(g_u)_u$  が多項式時間計算可能であることは補題 2.3 によって示される.

 $h_u$  は  $g_u$  の常微分方程式の解であることを示す. まず  $h_u$  について解析する.  $h_u(t)=(Y+\eta)B^{-j_u(T)}$  とおくときの,  $\eta$  の範囲がどうなるか,つまり式 (3.5) のどちらのケースを使うかを考える.式 (4.4) の一つ目の項において  $i\leq j_u(T)$  の合計は  $B^{j_u(T)}$  の倍数なので  $\eta$  に影響はない. $i>j_u(T)$  の合計は,

$$\sum_{i>j_u(T)} \frac{H_u(i,T)}{B^i} \le \sum_{i>j_u(T)} \frac{d-1}{B^i} = \sum_{i>j_u(T)} \frac{d-1}{B^{i-j_u(T)}} B^{-j_u(T)}$$

$$\le \sum_{i>j_u(T)} \frac{(d-1)}{(4d+1)^{i-j_u(T)}} B^{-j_u(T)}$$

$$= \frac{d-1}{4d} B^{-j_u(T)}$$

#### 二つ目の項の絶対値は

$$\left| \frac{f(\theta)}{B^{j_u(T)+1}} G_u(j_u(T), T, H_u(j_u(T), T)) \right| \le \frac{1}{B^{j_u(T)+1}} \le \frac{B^{-j_u(T)}}{4d+1}$$
(3.7)

 $(rac{d-1}{4d}+rac{1}{4d+1})B^{-j_u(T)}\leq rac{1}{4}B^{-j_u(T)}$  より  $h_u(t)=(Y+\eta)B^{-j_u(T)}$  を満たす  $\eta\in[-1/4,1/4]$  が存在する.このとき,

$$Y = \sum_{i=0}^{j_u(T)} H_u(i, T) \cdot B^{j_u(T)-i}.$$
 (3.8)

B は  $2^{d'}$  の倍数なので,  $\min(Y \bmod 2^{d'}, d-1) = \min(H_u(j_u), d-1) = H_u(j_u)$ . (3.5) へ Y と  $\eta$  を代入すると,

$$g_u(t, h_u(t)) = \frac{2^{q(|u|)} f'(\theta)}{B^{j_u(T)+1}} G_u(j_u(T), T, H_u(j_u(T), T))$$
  
=  $\mathcal{D}^{(1)} h_u(t)$ .

よって  $h_u$  は  $g_u$  の常微分方程式の解.

 $g_u$  が  $(\infty,1)$  階連続的微分可能であることを証明する.  $\eta$  が [-1/4,1/4] と [1/4,3/4] である区間それぞれにおいて微分する.

$$\mathcal{D}^{(i)}\delta_{u,Y}(t) = \frac{2^{(i+1)q(|u|)}\mathcal{D}^{(i+1)}f(\theta)}{B^{j_u(T)+1}}G_u\left(j_u(T), T, \min\left(Y \bmod 2^{d'}, d-1\right)\right)$$
(3.9)

$$\mathcal{D}^{(i,0)}g_{u}(t,y) = \begin{cases} \mathcal{D}^{(i)}\delta_{u,Y}(t) & (-\frac{1}{4} < \eta < \frac{1}{4}) \\ (1 - f(\frac{4\eta - 1}{2})) \mathcal{D}^{(i)}\delta_{u,Y}(t) + f(\frac{4\eta - 1}{2}) \mathcal{D}^{(i)}\delta_{u,Y+1}(t) \\ (\frac{1}{4} < \eta < \frac{3}{4}) \end{cases}$$
(3.10)

$$\mathcal{D}^{(i,1)}g_{u}(t,y) = \begin{cases} 0 & (-\frac{1}{4} < \eta < \frac{1}{4}) \\ 2B^{j_{u}(T)}\mathcal{D}^{(1)}f(\frac{4\eta-1}{2})(\mathcal{D}^{(i)}\delta_{u,Y+1}(t) - \mathcal{D}^{(i)}\delta_{u,Y}(t)) \\ & (\frac{1}{4} < \eta < \frac{3}{4}) \end{cases}$$
(3.11)

f は 無限回微分可能であるため、 $\delta_{u,Y}$  も無限回微分可能である. よって 区間 [-1/4,1/4]、[1/4,3/4] において  $\mathcal{D}^{(i,0)}g_u$ 、 $\mathcal{D}^{(i,1)}g_u$  は連続. $\eta=1/4$  および  $\eta=3/4(-1/4)$  においても連続であることは自明.よって  $g_u$  は  $(\infty,1)$  階連続的微分可能.

式 
$$(4.8)$$
 に  $t=0$  を代入して  $\mathcal{D}^{(i,0)}g_u(0,y)=\mathcal{D}^{(i,0)}g_u(1,y)=0.$  
$$|\mathcal{D}^{(i,1)}g_u|\leq 2^{\mu_i(|u|)-\gamma(|u|)} \text{ および } |\mathcal{D}^{(i,0)}g_u|\leq 2^{\mu_i(|u|)-\gamma(|u|)} \text{ を示す}.$$

$$|\mathcal{D}^{(i)}\delta_{u,Y}(t)| \le \left| \frac{2^{(i+1)q(|u|)}\mathcal{D}^{(i+1)}f(\theta)}{B^{j_u(T)+1}} \right| \le \frac{2^{(i+1)q(|u|)+c_i}}{B^{j_u(T)+1}}$$
(3.12)

 $\mu_i(k)=(i+1)q(k)+c_i+c_1+2$  とおく. これは  $\lambda$  に依存しない. B の定義より

$$\left| \mathcal{D}^{(i,0)} g_{u} \right| \leq \left| \mathcal{D}^{(i)} \delta_{u,Y}(t) \right| \leq \frac{2^{(i+1)q(|u|)+c_{i}}}{B} \leq 2^{\mu_{i}(|u|)-\gamma(|u|)} \tag{3.13}$$

$$\left| \mathcal{D}^{(i,1)} g_{u} \right| \leq 2B^{j_{u}(T)} \left| \mathcal{D}^{(1)} f\left(\frac{4\eta-1}{2}\right) \right| \cdot \left| \mathcal{D}^{(i)} \delta_{u,Y+1}(t) - \mathcal{D}^{(i)} \delta_{u,Y}(t) \right|$$

$$\leq 2B^{j_{u}(T)} \cdot 2^{c_{1}} \cdot 2 \cdot \frac{2^{(i+1)q(|u|)+c_{i}}}{B^{j_{u}(T)+1}}$$

$$= \frac{2^{(i+1)q(|u|)+c_{i}+c_{1}+2}}{B} \leq 2^{\mu_{i}(|u|)-\gamma(|u|)}.$$
(3.14)

(vii) は

$$h_{u}(1) = \frac{H_{u}(p(|u|), 2^{q(|u|)})}{B^{p(|u|)}}$$

$$= \frac{L(u)}{2^{p(|u|)(\gamma(|u|)+d')}}$$
(3.15)

より, 
$$\rho(k) = p(k)(\gamma(k) + d')$$
 とおくと成り立つ.

#### 3.2 定理 1.1 の証明

証明. L を PSPACE 完全な言語とおく. PSPACE 完全な言語 L にたいして補題 3.1 を用いて、まず多項式  $\mu_i$  をえる.  $\mu_i$  は i を係数部にのみ持つ多項式であるため、 $\mu_i(k) = O(k^c)$  をみたす最小の定数 c が存在する.

$$\lambda(k) = 2k + 2, \qquad \gamma(k) = k^{c+1} + k\lambda(k) \tag{3.16}$$

とおき、各uにたいして

$$\Lambda_u = 2^{\lambda(|u|)}, \qquad c_u = 1 - \frac{1}{2^{|u|}} + \frac{2\bar{u} + 1}{\Lambda_u}, \qquad l_u^{\pm} = c_u \mp \frac{1}{\Lambda_u}$$
(3.17)

とおく. ただし  $\bar{u} \in \{0,\dots,2^{|u|}-1\}$  は u を二進数として解釈した数.  $\gamma$  にたいして, 再び補題より  $\rho$ ,  $(g_u)_u$ ,  $(h_u)_u$  を得る.

任意の [0,1) の実数にたいして,  $l_u^\mp\pm\frac{t}{A_u}$  がその実数と等しくなるような  $u,\pm,t\in[0,1]$  が存在する. 関数 g,h を  $t\in[0,1],$   $y\in\mathbf{R}$  にたいして, それぞれ  $[0,1)\times[-1,1]$  の範囲と [0,1) の範囲で下のように定義する.

$$g\left(l_{u}^{\mp} \pm \frac{t}{\Lambda_{u}}, \frac{y}{\Lambda_{u}}\right) = \begin{cases} \pm \left(g_{u}(t, 1) + \mathcal{D}^{(0, 1)}g_{u}(t, 1)(y - 1)\right) & (1 < y) \\ \pm g_{u}(t, y) & (-1 \le y \le 1) \\ \pm \left(g_{u}(t, -1) + \mathcal{D}^{(0, 1)}g_{u}(t, -1)(y + 1)\right) & (y < -1) \end{cases}$$
(3.18)

$$h\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}\right) = \frac{h_u(t)}{\Lambda_u}.\tag{3.19}$$

任意の  $y \in \mathbf{R}$  にたいして g(1,y) = h(1) = 0 と定義する.

この g と h が定理 1.1 で求める関数の性質を満たすことを示す.

まず g が多項式時間計算可能であることを補題 2.3 を用いて示す。各有理数 T,Y について g(T,Y) を求めるとき, $T=l_u^\mp\pm t/\Lambda_u$ , $Y=y/\Lambda_u\Gamma_u$  を満たすような  $u,\pm,t,y$  は,多項式時間で計算可能であり, $(g_u)_u$  は多項式時間計算可能なので g(T,Y) は多項式時間計算可能.

g が  $(\infty,1)$  階連続的微分可能であることをしめすため, まず g が  $(\infty,0)$  階連続的微分可能であることをしめす.

 $g_u$  は  $(\infty,1)$  階連続的微分可能であるため、各区間においては  $(\infty,1)$  階連続的微分可能である.  $t\in(0,1)$  において

$$\mathcal{D}^{(i,0)}g\left(l_{u}^{\mp} \pm \frac{t}{\Lambda_{u}}, \frac{y}{\Lambda_{u}}\right)$$

$$= \begin{cases} \pm \Lambda_{u}^{i} \left(\mathcal{D}^{(i,0)}g_{u}(t,1) + \mathcal{D}^{(i,1)}g_{u}(t,1)(y-1)\right) & (1 < y) \\ \pm \Lambda_{u}^{i} \mathcal{D}^{(i,0)}g_{u}(t,y) & (-1 < y < 1) \\ \pm \Lambda_{u}^{i} \left(\mathcal{D}^{(i,0)}g_{u}(t,-1) + \mathcal{D}^{(i,1)}g_{u}(t,-1)(y+1)\right) & (y < -1) \end{cases}$$
(3.20)

 $\mathcal{D}^{(i,0)}g_u$  は連続であるため  $t\in(0,1),\ y\neq-1,1$  の区間において連続。確認すべきなのは  $g_u$  同士をつなぐ境界 t=0,1 と  $g_u$  の外側との境界 y=0,1, および極限  $g_u$  の極限,つまり g の第一引数が 1 へ限りなく近づくとき発散せずに連続であることである.

y=1 のとき  $\mathcal{D}^{(i,0)}g\left(l_u^{\mp}\pm t/\Lambda_u,y/\Lambda_u\right)=\pm\Lambda_u^i\mathcal{D}^{(i,0)}g_u(t,1), y=-1$  のとき  $\mathcal{D}^{(i,0)}g\left(l_u^{\mp}\pm t/\Lambda_u,y/\Lambda_u\right)=\pm\Lambda_u^i\mathcal{D}^{(i,0)}g_u(t,-1)$  より  $\mathcal{D}^{(i,0)}g$  は第二変数について連続である.

第一変数が [0,1) の範囲にあるとき、つまり  $l_u^\mp \pm t/\Lambda_u$  と表される範囲において連続であることをしめす。 t=1 において  $g_u$  と  $-g_u$  が接続され、t=0 において  $g_u$  とつぎの脅字 u' の関数  $g_{u'}$  が接続されているが、 $\mathcal{D}^{(i,0)}g_u(0,y)=\mathcal{D}^{(i,0)}g_u(1,y)=0$  より連続に接続されている。

最後に第一変数が 1 へ向かうとき発散しないことをしめす.

$$\left| \mathcal{D}^{(i,0)} g \left( l_u^{\mp} \pm \frac{t}{\Lambda_u}, \frac{y}{\Lambda_u} \right) \right| \leq \Lambda_u^i (|\mathcal{D}^{(i,0)} g_u| + |\mathcal{D}^{(i,1)} g_u| (\Lambda_u + 1))$$

$$\leq \Lambda_u^i (\Lambda_u + 2) 2^{\mu_i (|u|) - \gamma(|u|)}$$

$$\leq \Lambda_u^{(i+1)} 2^{\mu_i (|u|) - \gamma(|u|) + 1}$$

$$= 2^{(i+1)\lambda(|u|) + \mu_i (|u|) + 1 - \gamma(|u|)}$$
(3.21)

 $\gamma$  のとり方により,  $|u|\to\infty$  のとき式 (3.21) は 0 に収束する. よって  $\lim_{t\to 1-0}\mathcal{D}^{(i,0)}g(t,y)=0$ . とくに i=0 のとき,  $\lim_{t\to 1-0}g(t,y)=0=g(1,y)$  より 1 で連続. 以上により g が  $(\infty,0)$  階連続的微分可能であることをしめした.

g が  $(\infty,1)$  階連続的微分可能であることをしめす.  $(\infty,0)$  階連続的微分可能と同様に、各区間において、 $(\infty,1)$  階連続的微分可能であるためそれぞれ導関数を求める.  $t\in(0,1)$  において

$$\mathcal{D}^{(i,1)}g\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}, \frac{y}{\Lambda_u}\right) = \begin{cases} \pm \Lambda_u^{i+1} \mathcal{D}^{(i,1)} g_u(t,1) & (1 < y) \\ \pm \Lambda_u^{i+1} \mathcal{D}^{(i,1)} g_u(t,y) & (-1 < y < 1) \\ \pm \Lambda_u^{i+1} \mathcal{D}^{(i,1)} g_u(t,-1) & (y < -1). \end{cases}$$
(3.22)

 $\mathcal{D}^{(0,1)}g(t,1)=\pm \Lambda_u \mathcal{D}^{(0,1)}g_u(t,1),\ \mathcal{D}^{(0,1)}g(t,-1)=\pm \Lambda_u \mathcal{D}^{(0,1)}g_u(t,-1)$  であり、第二変数について連続.

第一変数について連続性をしめす. [0,1) 区間において  $t\in(0,1)$  ならば  $\mathcal{D}^{(i,1)}g_u$  が連続であるため  $\mathcal{D}^{(i,1)}g$  も連続.  $g_u(0,y)=g_u(1,y)=1$  より  $\mathcal{D}^{(i,1)}g_u(0,y)=\mathcal{D}^{(i,1)}g_u(1,y)=0$  なので  $\mathcal{D}^{(i,1)}g(0,y)=\mathcal{D}^{(i,1)}g(1,y)=0$  のため t=0,1 においても連続.

最後に第一変数が1へ向かうとき発散しないことをしめす.

$$\left| \mathcal{D}^{(i,1)} g \left( l_u^{\mp} \pm \frac{t}{\Lambda_u}, \frac{y}{\Lambda_u} \right) \right| \le \Lambda_u^{i+1} |\mathcal{D}^{(i,1)} g_u|$$

$$\le 2^{(i+1)\lambda(|u|) + \mu_i(|u|) - \gamma(|u|)}$$
(3.23)

 $\gamma$  のとり方により  $|u|\to\infty$  のとき  $2^{(i+1)\lambda(|u|)+\mu_i(|u|)-\gamma(|u|)}$  は 0 へ収束する. よって  $\lim_{t\to 1-0}\mathcal{D}^{(i,0)}g(t,y)=0$ . 以上により g が  $(\infty,1)$  階連続的微分可能であることをしめした.

h が g の常微分方程式の解であることを示す. h(0)=0,  $\mathcal{D}^{(1)}h(1)=0=g(1,h(1))$  は自明.

$$h'\left(l_{u}^{\mp} \pm \frac{t}{\Lambda_{u}}\right) = \pm \frac{h'_{u}(t)}{\Lambda_{u}}$$

$$= \pm g_{u}\left(t, h_{u}(t)\right)$$

$$= g\left(l_{u}^{\mp} \pm \frac{t}{\Lambda_{u}}, \frac{h_{u}(t)}{\Lambda_{u}}\right)$$

$$= g\left(l_{u}^{\mp} \pm \frac{t}{\Lambda_{u}}, h\left(l_{u}^{\mp} \pm \frac{t}{\Lambda_{u}}\right)\right). \tag{3.24}$$

L は h に還元可能であることを示す.

$$h(c_u) = \frac{h_u(1)}{\Lambda_u} = \frac{L(u)}{2^{\lambda(|u|) + \rho(|u|)}}$$
(3.25)

つまり R, S, T を以下のように定義することで、還元可能.

$$R(u,v) = v (3.26)$$

$$S(u,0^n) = |2^n c_u|$$
 を表す脋字列, (3.27)

$$T(u) = 0^{\lambda(|u|) + \rho(|u|)} \tag{3.28}$$

L は PSPACE 完全であるため、h も PSPACE 完全.

## 4 任意回微分可能関数と常微分方程式

第二変数について任意回微分可能な関数の常微分方程式の解は、 $\mathbf{DIVP}(\log)$  困難でありうることを証明する.

### 4.1 対数深さ離散初期値問題を模倣する関数族

証明の流れは  $(\infty,1)$  階連続的微分可能の時と変わらない。任意の言語  $L\in \mathbf{DIVP(log)}$ ,脋字列 u にたいして,上記の対数深さ離散初期値問題を模倣し L(u) を計算する任意回微分可能な実関数  $g_u$  を構成する.

補題 4.1. 任意の自然数  $k \geq 2$ , 任意の言語  $L \in \mathbf{DIVP}(\log)$  にたいして、係数のみに i を含む多項式  $\mu_i$  が存在して、任意の多項式  $\gamma$  にたいして、関数  $\rho \colon \mathbf{N} \to \mathbf{N}$ 、関数族  $g_u, h_u$  で、 $\rho, (g_u)_u$  は多項式時間計算可能であり、各二進督字列 u にたいして以下を満たすものが存在する.

- (i)  $g_u: [0,1] \times [-1,1] \to \mathbf{R}, \quad h_u: [0,1] \to [-1,1];$
- (ii)  $h_u$  は  $g_u$  の常微分方程式 (1.1) の解;
- (iii)  $g_u$  は  $(\infty, k)$  階連続微分可能;
- (iv) 任意の  $i \in \mathbb{N}, y \in [-1, 1]$  にたいして

$$\mathcal{D}^{(i,0)}q_u(0,y) = \mathcal{D}^{(i,0)}q_u(1,y) = 0$$

(v) 任意の  $i \in \mathbb{N}, j \in \{0, ..., k\}$  にたいして

$$\left| \mathcal{D}^{(i,j)} g_u(t,y) \right| \le 2^{\mu_i(|u|) - \gamma(|u|)}$$

(vi)  $h_u(1) = 2^{-\rho(|u|)}L(u)$ .

証明.  $L \in \mathbf{DIVP}(\log)$  を認識する対数深さ離散初期値問題  $\langle d, p, q, (G_u)_u \rangle$  とその解  $(H_u)_u$  を得る. さらに以下のように仮定する.

$$H_u(i, 2^{q(|u|)}) = \begin{cases} L(u) & (i = p(|u|)) \\ 0 & (i < p(|u|)). \end{cases}$$
(4.1)

補題 3.2 の f にたいして、自然数の族  $c_i$  を各  $i \in \mathbb{N}$  にたいして  $|\mathcal{D}^{(i)}f(x)| \leq 2^{c_i}$  を満たす最小の自然数と定める。定数  $d' = \lceil \log(4d+1) \rceil$ , $B = 2^{\gamma(|u|)+d'}$  とおき,各  $(t,y) \in [0,1] \times [-1,1]$  にたいして、自然数 N, $\theta \in [0,1]$ ,整数 Y, $\eta \in [-1/4,3/4]$  を  $t = (T+\theta)2^{-q(|u|)}$ , $y = (Y+\eta)B^{-k^{j_u(T)}}$  を満たすように定める。

そのとき,

$$\delta_{u,Y}(t) = \frac{2^{q(|u|)} f'(\theta)}{B^{k^{j_u(T)+1}}} G_u\left(j_u(T), T, \min\left(Y \bmod 2^{d'}, d-1\right)\right)$$
(4.2)

とおき  $g_u, h_u$  を以下のように定義する.

$$g_u(t,y) = \begin{cases} \delta_{u,Y}(t) & (\eta \le \frac{1}{4}) \\ (1 - f(\frac{4\eta - 1}{2}))\delta_{u,Y}(t) + f(\frac{4\eta - 1}{2})\delta_{u,Y+1}(t) & (\eta > \frac{1}{4}) \end{cases}$$
(4.3)

$$h_u(t) = \sum_{i=0}^{p(|u|)} \frac{H_u(i,T)}{B^{k^i}} + \frac{f(\theta)}{B^{k^{j_u(T)+1}}} G_u(j_u(T), T, H_u(j_u(T), T))$$
(4.4)

上記のように定義した  $g_u,h_u$  が補題 3.1 で求める性質を満たすことを示す. (i) は自明.  $(g_u)_u$  が多項式時間計算可能であることは補題 2.3 によって示される.

 $h_u$  は  $g_u$  の常微分方程式の解であることを示す。まず  $h_u$  について解析する。 $h_u(t)=(Y+\eta)B^{-k^{j_u(T)}}$  とおくときの,  $\eta$  の範囲がどうなるか,つまり式 (3.5) のどちらのケースを使うかを考える。式 (4.4) の一つ目の項において  $i\leq j_u(T)$  の合計は  $B^{k^{j_u(T)}}$  の倍数なので  $\eta$  に影響はない。 $i>j_u(T)$  の合計は,

$$\sum_{i>j_{u}(T)}^{p(|u|)} \frac{H_{u}(i,T)}{B^{k^{i}}} \leq \sum_{i>j_{u}(T)}^{\infty} \frac{d-1}{B^{k^{i}}}$$

$$\leq \sum_{i>j_{u}(T)}^{\infty} \frac{d-1}{B^{i}} = \sum_{i>j_{u}(T)}^{\infty} \frac{d-1}{B^{i-j_{u}(T)}} B^{-j_{u}(T)}$$

$$\leq \sum_{i>j_{u}(T)}^{\infty} \frac{d-1}{(4d+1)^{i-j_{u}(T)}} B^{-j_{u}(T)}$$

$$= \frac{d-1}{4d} B^{-j_{u}(T)}$$

### 二つ目の項の絶対値は

$$\left| \frac{f(\theta)}{B^{k^{j_u(T)+1}}} G_u(j_u(T), T, H_u(j_u(T), T)) \right| \le \frac{1}{B^{j_u(T)+1}} \le \frac{B^{-j_u(T)}}{4d+1}$$
(4.5)

 $(rac{d-1}{4d}+rac{1}{4d+1})B^{-j_u(T)}\leq rac{1}{4}B^{-j_u(T)}$  より  $h_u(t)=(Y+\eta)B^{-j_u(T)}$  を満たす  $\eta\in[-1/4,1/4]$  が存在する. このとき、

$$Y = \sum_{i=0}^{j_u(T)} H_u(i, T) \cdot B^{k^{j_u(T)} - k^i}.$$
 (4.6)

B は  $2^{d'}$  の倍数なので $,\min(Y \bmod 2^{d'},\ d-1)=\min(H_u(j_u),d-1)=H_u(j_u).$   $g_u$  に代入すると,

$$g_u(t, h_u(t)) = \frac{2^{q(|u|)} f'(\theta)}{B^{k^{j_u(T)+1}}} G_u(j_u(T), T, H_u(j_u(T), T))$$
  
=  $\mathcal{D}^{(1)} h_u(t)$ .

よって  $h_u$  は  $g_u$  の常微分方程式の解.

 $g_u$  が  $(\infty,k)$  階連続的微分可能であることを証明する.  $\eta$  が [-1/4,1/4] と [1/4,3/4] である区間それぞれにおいて微分する. 任意の  $i\in {\bf N}$  について

$$\mathcal{D}^{(i)}\delta_{u,Y}(t) = \frac{2^{(i+1)q(|u|)}\mathcal{D}^{(i+1)}f(\theta)}{B^{k^{j_u(T)+1}}}G_u\left(j_u(T), T, \min\left(Y \bmod 2^{d'}, d-1\right)\right)$$
(4.7)

$$\mathcal{D}^{(i,0)}g_{u}(t,y) = \begin{cases} \mathcal{D}^{(i)}\delta_{u,Y}(\theta) & (-\frac{1}{4} < \eta < \frac{1}{4})\\ (1 - f(\frac{4\eta - 1}{2}))\mathcal{D}^{(i)}\delta_{u,Y}(\theta) + f(\frac{4\eta - 1}{2})\mathcal{D}^{(i)}\delta_{u,Y+1}(\theta) & (\frac{1}{4} < \eta < \frac{3}{4}) \end{cases}$$
(4.8)

 $j \in \{1, \ldots, k\}$  について,

$$\mathcal{D}^{(i,j)}g_{u}(t,y) = \begin{cases} 0 & (-\frac{1}{4} < \eta < \frac{1}{4}) \\ (2B^{j_{u}(T)})^{j}\mathcal{D}^{(j)}f(\frac{4\eta - 1}{2})(\mathcal{D}^{(i)}\delta_{u,Y+1}(\theta) - \mathcal{D}^{(i)}\delta_{u,Y}(\theta)) \\ & (\frac{1}{4} < \eta < \frac{3}{4}) \end{cases}$$
(4.9)

f は 無限回微分可能であるため、 $\delta_{u,Y}$  も無限回微分可能である。 よって 区間 (-1/4,1/4)、(1/4,3/4) において  $\mathcal{D}^{(i,0)}g_u$ 、 $\mathcal{D}^{(i,j)}g_u$  は連続。  $\eta=1/4$  および  $\eta=3/4(-1/4)$  においても連続であることは自明。  $\mathcal{D}^{(i+1,0)}f(0)=\mathcal{D}^{(i+1,0)}f(1)=0$  より  $\theta=0$  または  $\theta=1$  において  $\mathcal{D}^{(i,0)}g_u(t,y)=0$ 、 $\mathcal{D}^{(i,0)}g_u(t,y)=0$ 、よって t についても連続。以上により  $g_u$  は  $(\infty,j)$  階連続 的微分可能であることがしめされた。

式 (4.8) に t=0,1  $(\theta=0)$  を代入して  $\mathcal{D}^{(i,0)}g_u(0,y)=\mathcal{D}^{(i,0)}g_u(1,y)=0.$  任意の  $i\in\mathbf{N},\,j\in\{0,\ldots,k\}$  について  $|\mathcal{D}^{(i,j)}g_u|\leq 2^{\mu_i(|u|)-\gamma(|u|)}$  を示す.

$$|\mathcal{D}^{(i)}\delta_{u,Y}(t)| \le \left| \frac{2^{(i+1)q(|u|)}\mathcal{D}^{(i+1)}f(\theta)}{B^{k^{j_u(T)+1}}} \right| \le \frac{2^{(i+1)q(|u|)+c_i}}{B^{k^{j_u(T)+1}}}$$
(4.10)

 $\mu_i(k)=(i+1)q(k)+\sum_{j=1}^kc_i+c_i+k+1$  とおく. これは  $\lambda$  に依存しない. B の定義より

$$\left| \mathcal{D}^{(i,0)} g_{u} \right| \leq \left| \mathcal{D}^{(i)} \delta_{u,Y}(t) \right| \leq \frac{2^{(i+1)q(|u|)+c_{i}}}{B} \leq 2^{\mu_{i}(|u|)-\gamma(|u|)}$$

$$\left| \mathcal{D}^{(i,j)} g_{u} \right| \leq \left( 2B^{j_{u}(T)} \right)^{j} \left| \mathcal{D}^{(j)} f\left(\frac{4\eta-1}{2}\right) \right| \cdot \left| \mathcal{D}^{(i)} \delta_{u,Y+1}(t) - \mathcal{D}^{(i)} \delta_{u,Y}(t) \right|$$

$$\leq 2^{k} B^{k \cdot j_{u}(T)} \cdot 2^{c_{j}} \cdot 2 \cdot \frac{2^{(i+1)q(|u|)+c_{i}}}{B^{k^{j_{u}(T)+1}}}$$

$$\leq \frac{2^{(i+1)q(|u|)+\sum_{j=1}^{k} c_{j}+c_{i}+k+1}}{B} \leq 2^{\mu_{i}(|u|)-\gamma(|u|)}.$$
(4.12)

(vii) は

$$h_{u}(1) = \frac{H_{u}(p(|u|), 2^{q(|u|)})}{B^{p(|u|)}}$$

$$= \frac{L(u)}{2^{p(|u|)(\gamma(|u|)+d')}}$$
(4.13)

より,  $\rho(k) = p(k)(\gamma(k) + d')$  とおくと成り立つ.

#### 4.2 定理 1.2 の証明

証明. L を  $\mathbf{DIVP}(\log)$  に含まれる言語,つまり対数深さ離散初期値問題によって認識される言語とおく. L にたいして補題 3.1 を用いて,まず多項式  $\mu_i$  をえる.  $\mu_i$  は i を係数部にのみ持つ多項式であるため, $\mu_i(k)=O(k^c)$  をみたす最小の定数 c が存在する.

$$\lambda(k) = 2k + 2, \qquad \gamma(k) = k^{c+1} + k\lambda(k) \tag{4.14}$$

とおき、各uにたいして

$$\Lambda_u = 2^{\lambda(|u|)}, \qquad c_u = 1 - \frac{1}{2^{|u|}} + \frac{2\bar{u} + 1}{\Lambda_u}, \qquad l_u^{\mp} = c_u \mp \frac{1}{\Lambda_u}$$
(4.15)

とおく. ただし  $\bar{u}\in\{0,\ldots,2^{|u|}-1\}$  は u を二進数として解釈した数.  $\gamma$  にたいして, 再び補題より  $\rho,\,(g_u)_u,\,(h_u)_u$  を得る.

任意の [0,1) の実数にたいして,  $l_u^{\mp}\pm\frac{t}{A_u}$  がその実数と等しくなるような  $u,\pm,t\in[0,1]$  が存在する. 関数 g,h を  $t\in[0,1],$   $y\in\mathbf{R}$  にたいして, それぞれ  $[0,1)\times[-1,1]$  の範囲と [0,1) の範囲で下のように定義する.

$$g\left(l_{u}^{\mp} \pm \frac{t}{\Lambda_{u}}, \frac{y}{\Lambda_{u}}\right) = \begin{cases} \pm \sum_{l=0}^{k} \frac{\mathcal{D}^{(0,l)} g_{u}(t,1)}{l!} (y-1)^{l} & (1 < y) \\ \pm g_{u}(t,y) & (-1 \le y \le 1) \\ \pm \sum_{l=0}^{k} \frac{\mathcal{D}^{(0,l)} g_{u}(t,-1)}{l!} (y+1)^{l} & (1 < y) \end{cases}$$
(4.16)

$$h\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}\right) = \frac{h_u(t)}{\Lambda_u}.\tag{4.17}$$

任意の  $y \in \mathbf{R}$  にたいして g(1,y) = h(1) = 0 と定義する.

この q と h が定理 1.2 で求める関数の性質を満たすことを示す.

まず g が多項式時間計算可能であることを補題 2.3 を用いて示す。各有理数 T,Y について g(T,Y) を求めるとき, $T=l_u^\mp\pm t/\Lambda_u$ , $Y=y/\Lambda_u\Gamma_u$  を満たすような  $u,\pm,t,y$  は,多項式時間で計算可能であり, $(g_u)_u$  は多項式時間計算可能なので g(T,Y) は多項式時間計算可能.

g が  $(\infty, k)$  階連続的微分可能であることをしめす.

 $g_u$  は  $(\infty,k)$  階連続的微分可能であるため、各区間においては  $(\infty,k)$  階連続的微分可能である.  $t\in(0,1)$  において

$$\mathcal{D}^{(i,j)}g\left(l_{u}^{\mp} \pm \frac{t}{\Lambda_{u}}, \frac{y}{\Lambda_{u}}\right) = \begin{cases} \pm \Lambda_{u}^{i+j} \sum_{l=j}^{k} \frac{\mathcal{D}^{(i,l)}g_{u}(t,1)}{(l-j)!} (y-1)^{l-j} & (1 < y) \\ \pm \Lambda_{u}^{i+j} \mathcal{D}^{(i,j)}g_{u}(t,y)(y-1)^{l-j} & (-1 < y < 1) \\ \pm \Lambda_{u}^{i+j} \sum_{l=j}^{k} \frac{\mathcal{D}^{(i,l)}g_{u}(t,-1)}{(l-j)!} (y+1)^{l-j} & (y < -1) \end{cases}$$

 $\mathcal{D}^{(i,j)}g_u$  は連続であるため  $t\in(0,1),\ y\neq-1,1$  の区間において連続. 確認すべきなのは  $g_u$  同士をつなぐ境界 t=0,1 と  $g_u$  の外側との境界 y=0,1, および極限  $g_u$  の極限, つまり g の第一引数が 1 へ限りなく近づくとき発散せずに連続であることである.

y=1 のとき  $\mathcal{D}^{(i,j)}g\left(l_u^\mp\pm t/\Lambda_u,y/\Lambda_u
ight)=\pm \Lambda_u^{i+j}\mathcal{D}^{(i,j)}g_u(t,1),\ y=-1$  のとき  $\mathcal{D}^{(i,j)}g\left(l_u^\mp\pm t/\Lambda_u,y/\Lambda_u
ight)=\pm \Lambda_u^{i+j}\mathcal{D}^{(i,j)}g_u(t,-1)$  より  $\mathcal{D}^{(i,j)}g$  は第二変数について連続である.

第一変数が [0,1) の範囲にあるとき、つまり  $l_u^\mp \pm t/\Lambda_u$  と表される範囲において連続であることをしめす。 t=1 において  $g_u$  と  $-g_u$  が接続され,t=0 において  $g_u$  とつぎの脅字 u' の関数  $g_{u'}$  が接続されている。ここで  $\mathcal{D}^{(i,0)}g_u(0,y)=\mathcal{D}^{(i,0)}g_u(1,y)=0$  より  $\mathcal{D}^{(i,j)}g_u(0,y)=\mathcal{D}^{(i,j)}g_u(1,y)=0$ . よって  $\mathcal{D}^{(i,j)}g(0,y)=\mathcal{D}^{(i,j)}g(1,y)=0$  なので [0,1) で連続.

最後に第一変数が 1 へ向かうとき発散しないことをしめす.

$$\left| \mathcal{D}^{(i,j)} g \left( l_u^{\mp} \pm \frac{t}{\Lambda_u}, \frac{y}{\Lambda_u} \right) \right| \leq \Lambda_u^{i+j} \sum_{l=j}^k \frac{|\mathcal{D}^{(i,l)} g_u|}{(l-j)!} (|y|+1)^{l-j}$$

$$\leq \Lambda_u^{i+j} 2^{\mu_i(|u|)-\gamma(|u|)} \sum_{l=j}^k (2\Lambda_u)^{l-j}$$

$$\leq \Lambda_u^{i+j} 2^{\mu_i(|u|)-\gamma(|u|)} (2\Lambda_u)^{k-j+1}$$

$$= 2^{\mu_i(|u|)+(i+k+1)\lambda(|u|)+k-j+1-\gamma(|u|)}$$
(4.19)

 $\gamma$  のとり方により,  $|u|\to\infty$  のとき 0 に収束する. よって  $\lim_{t\to 1-0}\mathcal{D}^{(i,j)}g(t,y)=0$ . とくに i=0 のとき,  $\lim_{t\to 1-0}g(t,y)=0=g(1,y)$  より 1 で連続. 以上により g が  $(\infty,k)$  階連続的微分可能であることをしめした.

h が g の常微分方程式の解であることを示す.  $h(0)=0, \quad \mathcal{D}^{(1)}h(1)=0=g(1,h(1))$  は自明.

$$h'\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}\right) = \pm \frac{h'_u(t)}{\Lambda_u}$$

$$= \pm g_u(t, h_u(t))$$

$$= g\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}, \frac{h_u(t)}{\Lambda_u}\right)$$

$$= g\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}, h\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}\right)\right). \tag{4.20}$$

L は h に還元可能であることを示す.

$$h(c_u) = \frac{h_u(1)}{\Lambda_u} = \frac{L(u)}{2^{\lambda(|u|) + \rho(|u|)}}$$
(4.21)

つまり R, S, T を以下のように定義することで、還元可能.

$$R(u,v) = v (4.22)$$

$$S(u,0^n) = \lfloor 2^n c_u \rfloor$$
 を表す脋字列, (4.23)

$$T(u) = 0^{\lambda(|u|) + \rho(|u|)} \tag{4.24}$$

任意の  $L \in \mathbf{DIVP}(\mathbf{log})$  について h へ還元可能であるため, h は  $\mathbf{DIVP}(\mathbf{log})$  困難.

## 5 考察

### 5.1 議論

 $(\infty,1)$  回連続的微分可能な関数の常微分方程式の解は PSPACE 完全足りうることを本稿では示したが,しかし一回連続的微分可能と二回連続的微分可能の間に本質的なギャップがあるとは思えず, $(\infty,k)$  回連続的微分可能以上に関しても PSPACE 完全足りうることを証明できるのではないかと考えている. 証明される可能性としてひとつは PSPACE = DIVP $(\log)$  が示されることであるが,重要なのは PSPACE  $\neq$  DIVP $(\log)$  ならば  $(\infty,k)$  回連続的微分可能な関数の常微分方程式の解が PSPACE 完全になりえないというわけではないことである.

### 5.2 課題

任意階微分可能な関数の常微分方程式の解が PSPACE 完全たりうることを証明することが第一の課題である. しかし, 対数深さ離散初期値問題が任意階微分可能な関数の常微分方程式で模倣できる計算の最大限であるという保証はない. つまりまたはまったく別の PSPACE 完全な計算を, 任意回微分可能な関数の常微分方程式で模倣できる可能性も残っている.

依然として解が多項式時間実関数となる、解析的であるという条件との間にはギャップが存在し、例えば g が無限回連続微分可能でかつであるとき、解はどうなるのか等の疑問が生まれる.

また g の第一引数 t に関して本稿では連続であることのみ要求したが、微分可能になると解はどうなるか、更に制限するとどうなるかは不明である.

# 6 謝辞

# 参考脋献

- [1] A. Kawamura. Lipschitz continuous ordinary differential equations are polynomial-space complete. *Computational Complexity*, 19(2):305–332, 2010.
- [2] K.I. Ko. Complexity theory of real functions. Birkhauser Boston Inc., 1991.
- [3] 高木貞治. 解析概論. 岩波書店, 1968.