Morse theory

- · Hand-wavy view of
 - o How the game of differential topology feels like.
- · More careful look at
 - o What happens near gradient = 0 (Morse lemma)
 - · Controns and toy examples

The game of cut and glue

A large part of classical topology concerns how to iteratively construct a good topology space using simple ingredients.

· Triangulations

· Cut - and - paste (Anybody played PORTAL ?) Cylinder: Torus: (am you see?) Exercise: What are these?

Euler characteristics

Invariance

X = V - E + F only depends

on the topology of the space

$$\chi = 4 - 6 + 4 = 2$$

$$\chi = 2 - |+| = 2$$

the two are glied to be the Same vertex $\mathcal{N} = |-|+| = 1$

Try others

Take-away:

· Topologists de compose manifolds

into unit discs:

Vertex: D° o-dim "disc"

edge: D¹ 1-dim "disc"

face: D² 2-dim disc

(you can go to higher dim!)

• Euler characteristic: alternating sum of them ⇒ invariant under homeomorphism

Gradient flow and Morse lemma

Given a differentiable submanifold $X \subset \mathbb{R}^N$, a differentiable function $f: X \longrightarrow \mathbb{R}$

It induces a gradient flow $\forall x \in X$, $v \in T_{x}X$, $d_{x}f(v) = \langle \nabla_{x}f, v \rangle$

Critical points: xEX, Vxf = 0

e.g.

$$f(x_1, x_2) = -x_1^2 - x_2^2 \qquad f(x_1, x_2) = x_1^2 - x_2^2 \qquad f(x_1, x_2) = -x_1^2 + x_2^2 \qquad f(x_1, x_2) = x_1^2 + x_2^2$$

$$f(\chi_1,\chi_2) = \chi_1^2 - \chi_2^2$$

$$f(X_1, X_2) = -X_1^2 + X_2^2$$

$$f(X_1, X_2) = X_1^2 + X_2^2$$

Hessian:

(Given a local coordinate)

 $f: \mathbb{R}^{M} \to \mathbb{R}$

 $H_{f}(x) := \left(\frac{\partial^{2}f}{\partial x_{i} \partial x_{j}}\right)_{1 \leq i,j \leq M}$

It depends on the local coordinates, but if $(x_i=\circ)$ is a critical pt, Jacobian matrix acts on it as $TH_{\alpha}(x)T^T=H_{\alpha}(y)$

 $JH_{f}(x)J^{T}=H_{f}(y)$

"Invariant symmetric bilinear form"

Tensor (the real meaning haha)

When there is a change of variable $y_i = y_i(x_1, \dots, x_M)$, $1 \le i \le M$

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial \left(\frac{\partial f}{\partial y_{i'}}, \frac{\partial y_{i'}}{\partial x_i}\right)}{\partial y_{j'}} \frac{\partial y_{j'}}{\partial x_j}$$

$$=\frac{\partial^2 f}{\partial y_{i'}y_{j'}} \cdot \frac{\partial y_{i'}}{\partial x_i} \cdot \frac{\partial y_{j'}}{\partial x_j}$$

$$+\frac{\partial^2 f}{\partial y_{i'}y_{j'}} \cdot \frac{\partial^2 y_{i'}}{\partial x_i} \cdot \frac{\partial y_{j'}}{\partial x_j}$$

Given a matrix M,
What are unchanged in JMJ^T
for nondegenerate J?

- · rank
- · the index

 $\begin{pmatrix}
0. \\
0 \\
1 \\
-1 \\
-1
\end{pmatrix} \text{ index}$

Morse function:

f: X -> IR such that the Hessian at any critical point is nondegenerate.

Morse lemma:

Given a Morse function $f: X \rightarrow \mathbb{R}$, a critical pt $p \in X$ there exists a coordinate x_1, \dots, x_M $f = -x_1^2 - x_2^2 - \dots - x_{ind(p)}^2 + x_{ind(p)}^2 + \dots + x_M^2$ where indep := index of $H_f(p)$

Take-away: X and f can be easily described near crit. pt, fully determined by index.

What's the point here?

- Any submfd $X \subset \mathbb{R}^N$ admits a Morse function.
- Gradient flow of Morse function induces a decomposition of X which unveils its topology.

2-dim disc

2-dim disc

1-dim "discs" (unit intervals)

Take-away:

- . Index i at $p \iff A + taching disc <math>D^i$ at p
- Euler characteristic = alternating sum of the counts of indices

What happens if Hessian degenerates?

will form critical submanifold!

In other words, "loss valleys"

Some final referencing keywords:

	SLT	differential topology
nondeg. Hessian	regular model	Morse theory
deg. Hessiam	singular model	Morse-Bott theory

(There is an infinite dim version, where function => functional, "Floer theory")