SP(H) - Lab Sheet #3

Yehia Elkhatib

The topics for this lab sessions are:

- pointers
- memory allocation

Task 3.A

- ▶ Write a function that implements the following prototype: void reverse_print (char **p, int n); The function takes an array of strings p and a number of words n, then prints the first n strings in reverse order.
- ► In the main function, you will need to declare the message to be reversed as such:

 char *message[WORDS_MAX] = {"I", "think", "we've", "got", "our", "roles", "reversed"};

char *message[WORDS_MAX] = {"I", "think", "we've", "got", "our", "roles", "reversed"} where WORDS_MAX is a constant defined using the #define directive. Set its value to 50.

▶ Using the above declaration, calling reverse_print (message, 3); should result in the output: we've think I;

while calling reverse_print (message, WORDS_MAX); should print: reversed roles our got we've think I.

▶ Make sure your code is robust enough for when the size of the actual message is shorter than the maximum size it could be. Test this using a large value of WORDS_MAX (e.g. 1,000).

Task 3.B

- ▶ On Moodle you are provided with a file that partially implements a basic linked list structure. It also includes a driver, i.e. main method that could be used to test that your code works.
- ▶ You are asked to write implementation for the 2 following functions:
 - 1. create_node attempts to allocate a new node using malloc. If it fails, it returns NULL. Otherwise, it sets the members (value and next) to appropriate values.
 - 2. free_list frees the whole list starting from the node.