

Comparação de Técnicas de Aprendizado utilizando o WEKA

Equipe:

Amilton Fontoura de Camargo Junior

Kauane Larisse de Oliveira Benitis

Sumário

- Introdução
- Conjuntos de Dados
- Split
- Técnicas Utilizadas
- Análise e Discussão dos Resultados Obtidos
- Trabalho Correlato
- Considerações Finais
- Referências

Introdução

O que é Inteligência Artificial (IA)?

- Inteligência artificial é um termo abrangente que engloba o Aprendizado de Máquina
- Também sob esse termo genérico está o Aprendizado Profundo (AP), um subconjunto do aprendizado de máquina que utiliza modelos de redes neurais para executar tarefas como reconhecimento de imagem e processamento de linguagem.

Introdução

A inteligência artificial propicia diversas melhorias em áreas distintas.

- Ao medir a biometria no esporte
- Ajudam os agricultores a saber quando regar as plantações para obter colheitas excelentes
- Permitem que os meteorologistas calculem o degelo.
- Cidades inteligentes utilizam dados para o gerenciamento de energia,
- Detectar doenças, realizar sequenciamento genômico e acompanhar tratamentos.

Conjunto de Dados

Nome do Conjunto	Numero de Amostras	Numero de Classes	Numero de Atributos
Colic	63983	368	23
Dermatology	32417	366	35
Diabetes	37419	768	9
Glass	17823	214	10
Hepatitis	17135	155	20
Hypothyroid	310897	3772	30
Iris	7486	150	4
Primary Tumor	34090	339	18
Vehicle	63838	4	18
Тае	4120	151	6 5

Split

Split - Dados	olit d	e Da	ados	5
Arquivo de entrada:				Procurar
Arquivos de saída				
Treinamento:				Padrão
Teste:				Padrão
Divisão: Treiname ☑ Escolher as amostras al		e Teste:	во 🛊 %	
Processar	Tae			Limpar campos

Split

	Splitted	
		Q Search
Name	^ Date Modified	Size Ki
colic_teste.arff	Today, 00:35	26 KB Te
colic_treinamento.arff	Today, 00:35	51 KB Te
diabetes_teste.arff	Today, 00:45	27 KB Te
diabetes_treinamento.arff	Today, 00:45	14 KB Te
glass_teste.arff	Today, 00:45	13 KB Te
glass_treinamento.arff	Today, 00:45	10 KB Te
hepatitis_teste.arff	Today, 00:46	12 KB Te
hepatitis_treinamento.arff	Today, 00:46	11 KB Te
hypothyroid_teste.arff	Today, 00:46	164 KB Te
hypothyroid_treinamento.arff	Today, 00:46	152 KB Te
letter_teste.arff	Today, 00:48	321 KB Te
letter_treinamento.arff	Today, 00:48	407 KB Te
primary-tumor_teste.arff	Today, 00:49	19 KB Te
primary-tumor_treinamento.arff	Today, 00:49	24 KB Te
sick_teste.arff	Today, 00:49	110 KB Te
sick_treinamento.arff	Today, 00:49	200 KB Te
vehicle_teste.arff	Today, 00:56	26 KB Te
vehicle_treinamento.arff	Today, 00:56	46 KB Te
waveform-5000_teste.arff	Today, 00:57	261 KB Te
waveform-5000_treinamento.ar	ff Today, 00:57	820 KB Te

Técnicas Utilizadas

Amostragem

Cross Validation (10 folds)

Técnicas de Aprendizado Supervisionadas

- J48
- NaiveBayes
- Multilayer Perceptron
- IBk

Técnica de Aprendizado Não-Supervisionada

kMeans

Conjunto	Custo (s)							
Conjunto	Cross Validation	NaiveBayes	J48	MLP	IBK 1	IBK 2	Kmeans 1	Kmeans 2
Colic	0.00	0.01	0.01	5.51	0.00	0.00	0.11	0.07
Dermatology	0.00	0.00	0.00	23.56	0.00	0.00	0.11	0.11
Diabetes	0.00	0.00	0.02	0.57	0.00	0.00	0.27	0.15
Glass	0.00	0.00	0.01	0.38	0.00	0.00	0.01	0.02
Hepatitis	0.00	0.00	0.00	0.32	0.00	0.00	0.04	0.02
Hypothyroid	0.00	0.01	0.02	21.92	0.00	0.00	7.78	7.51
Iris	0.00	0.00	0.00	0.09	0.00	0.00	0.01	0.01
Primary Tumor	0.00	0.00	3.74	3.76	0.00	0.00	0.11	0.06
Vehicle	0.00	0.00	0.10	2.12	0.00	0.00	0.6	0.62
Tae	0.00	0.00	0.00	0.10	0.00	0.00	0.01	0.01
Média	0.00		0.39	5.83	0.00		0.91	0.86
Desvio Padrão	0.00	0.00	1.18	9.10	0.00	0.00	2.42	2.34

Canimata	Acurácia (%)							
Conjunto	Cross Validation	NaiveBayes	J48	MLP	IBK 1	IBK 2	Kmeans 1	Kmeans 2
Colic	63.04	77.99	85.33	80.43	63.04	63.04	100.00	100.00
Dermatology	30.60	97.27	93.99	96.17	30.60	30.60	99.80	99.80
Diabetes	65.10	76.30	73.83	75.39	65.10	65.10	99.80	99.80
Glass	35.51	48.60	66.82	67.76	35.51	35.51	99.50	99.50
Hepatitis	79.35	84.52	83.87	80.00	79.35	79.35	99.70	99.70
Hypothyroid	92.29	95.28	99.58	94.17	92.29	92.29	100.00	100.00
Iris	33.33	96.00	96.00	97.33	33.33	33.33	100.00	100.00
Primary Tumor	24.78	50.15	39.82	38.35	24.78	24.78	100.00	100.00
Vehicle	25.65	44.80	72.46	81.68	25.65	25.65	94.60	100.00
Tae	34.44	54.30	59.60	54.30	34.44	34.44	97.80	97.80
Média	48.41	72.52	77.13	76.56	48.41	48.41	99.12	99.66
Desvio Padrão	24.40	21.19	18.54	18.90	24.40	24.40	1.72	0.68

Conjunto	Média Acurácia	Desvio Padrão Acurácia	Média Custo	Desvio Padrão Custo
Colic	79.11	15.53	0.71	1.94
Dermatology	72.35	34.63	2.97	8.32
Diabetes	77.55	14.52	0.13	0.20
Glass	61.09	27.11	0.05	0.13
Hepatitis	85.73	8.86	0.05	0.11
Hypothyroid	95.74	3.58	4.66	7.78
Iris	73.67	33.43	0.01	0.03
Primary Tumor	50.33	31.95	0.96	1.72
Vehicle	58.81	32.03	0.43	0.73
Tae	58.39	26.36	0.02	0.03

__ Conjunto - Split - Escolha

Hypothyroid

- . Grande número de amostras 310897
- Um dois mais custosos antes do Split com uma média de 4,66 segundos
- Maior índice de Acurácia dos conjuntos com uma média de 95,74%

Hypothyroid - J48 - Acurácia: 99,80% / 99,47%

Técnica: J48 - Training						
Conjunto: hypothyroid.arff	Classe: Class	Amostras: 3013				
↓ Real Escolhido →	negative	compensated_hypothyroid	primary_hypothyroid	secondary_hypothyroid		
negative	91.84%	0.07%	0.00%	0.00%		
compensated_hypothyroid	0.00%	5.54%	0.00%	0.00%		
primary_hypothyroid	0.03%	0.07%	2.42%	0.00%		
secondary_hypothyroid	0.03%	0.00%	0.00%	0.00%		

Técnica: J48 - Test						
Conjunto: hypothyroid.arff Classe: Class Amostras: 755						
↓ Real Escolhido →	negative	compensated_hypothyroid	primary_hypothyroid	secondary_hypothyroid		
negative	93.77%	0.00%	0.00%	0.00%		
compensated_hypothyroid	0.00%	3.58%	0.00%	0.00%		
primary_hypothyroid	0.26%	0.13%	2.12%	0.00%		
secondary_hypothyroid	0.13%	0.00%	0.00%	0.00%		

Hypothyroid - NaiveBayes - Acurácia: 99,80% / 99,47%

Técnica: NaiveBayes - Training						
Conjunto: hypothyroid.arff Classe: Class Amostras: 3013						
↓ Real Escolhido →	negative	compensated_hypothyroid	primary_hypothyroid	secondary_hypothyroid		
negative	91.11%	0.50%	0.27%	0.03%		
compensated_hypothyroid	3.62%	1.86%	0.07%	0.00%		
primary_hypothyroid	0.27%	0.20%	2.06%	0.00%		
secondary_hypothyroid	0.00%	0.00%	0.00%	0.03%		

Técnica: NaiveBayes - Test						
Conjunto: hypothyroid.arff Classe: Class Amostras: 755						
↓ Real Escolhido -	negative	compensated_hypothyroid	primary_hypothyroid	secondary_hypothyroid		
negative	93.11%	0.13%	0.07%	0.07%		
compensated_hypothyr	oid 0.46%	1.72%	0.00%	0.00%		
primary_hypothyroid	0.00%	0.26%	2.25%	0.00%		
secondary_hypothyroi	d 0.13%	0.00%	0.00%	0.00%		

Hypothyroid - MLP - Acurácia: 99,80% / 99,47%

		Técnica: MLP - Training	ė.	
Conjunto: hypothyroid.arff	Classe: Class	Amostras: 3013		
↓ Real Escolhido →	negative	compensated_hypothyroid	primary_hypothyroid	secondary_hypothyroid
negative	91.54%	0.27%	0.10%	0.00%
compensated_hypothyroid	3.09%	1.99%	0.46%	0.00%
primary_hypothyroid	0.07%	0.07%	2.39%	0.00%
secondary_hypothyroid	0.00%	0.00%	0.03%	0.00%

Técnica: MLP - Test						
Conjunto: hypothyroid.arff Classe: Class Amostras: 755						
↓ Real Escolhido →	negative	compensated_hypothyroid	primary_hypothyroid	secondary_hypothyroid		
negative	92.19%	1.32%	0.26%	0.00%		
compensated_hypothyroid	2.25%	0.93%	0.40%	0.00%		
primary_hypothyroid	0.00%	0.13%	2.38%	0.00%		
secondary_hypothyroid	0.00%	0.00%	0.13%	0.00%		

Hypothyroid - IBk=2 - Acurácia: 99,80% / 99,47%

Técnica: IBk k = 2 - Training				
Conjunto: hypothyroid.arff	Classe: Class	Amostras: 3013	20.	
↓ Real Escolhido →	negative	compensated_hypothyroid	primary_hypothyroid	secondary_hypothyroid
negative	91.90%	0.00%	0.00%	0.00%
compensated_hypothyroid	4.38%	1.16%	0.00%	0.00%
primary_hypothyroid	0.80%	0.27%	1.46%	0.00%
secondary_hypothyroid	0.00%	0.03%	0.00%	0.00%

Técnica: IBk k = 2 - Test				
Conjunto: hypothyroid.arff	Classe: Class	Amostras: 755	o;	8
↓ Real Escolhido →	negative	compensated_hypothyroid	primary_hypothyroid	secondary_hypothyroid
negative	93.38%	0.40%	0.00%	0.00%
compensated_hypothyroid	3.31%	0.26%	0.00%	0.00%
primary_hypothyroid	1.46%	0.53%	0.53%	0.00%
secondary_hypothyroid	0.13%	0.00%	0.00%	0.00%

Hypothyroid - IBk=5 - Acurácia: 99,80% / 99,47%

Técnica: IBk k = 5 - Training				
Conjunto: hypothyroid.arff	Classe: Class	Amostras: 3013		
↓ Real Escolhido →	negative	compensated_hypothyroid	primary_hypothyroid	secondary_hypothyroid
negative	91.77%	0.13%	0.00%	0.00%
compensated_hypothyroid	4.61%	0.90%	0.03%	0.00%
primary_hypothyroid	1.16%	0.17%	1.19%	0.00%
secondary_hypothyroid	0.03%	0.00%	0.00%	0.00%

Técnica: IBk k = 5 - Test					
Conjunto: hypothyroid.arff	Classe: Class	Amostras: 755			
↓ Real Escolhido →	negative	compensated_hypothyroid	primary_hypothyroid	secondary_hypothyroid	
negative	93.25%	0.53%	0.00%	0.00%	
compensated_hypothyroid	3.05%	0.53%	0.00%	0.00%	
primary_hypothyroid	1.59%	0.00%	0.93%	0.00%	
secondary_hypothyroid	0.13%	0.00%	0.00%	0.00%	

- Lexicographic preferences for predictive modeling of human decision making: A new machine learning method with an application in accounting
- Ou traduzindo: Preferências lexicográficas para a modelagem preditiva da tomada de decisão humana: Um novo método de aprendizagem de máquina com aplicação em contabilidade
- De acordo com os autores, uma estratégia de tomada de decisão humana é a heurística "Escolher a Melhor", sem integrar todas as informações, apenas de forma "competitiva" escolher a aparentemente melhor.
- Outra estratégia é o modelo lexicográfico, que é comparar duas opções, verificando um critério entre eles que difere e usando o mesmo como fator de decisão, sem considerar os demais.

- O que há de diferente?
- Ao invés de comparar cada atributo separadamente, faz a comparação de todos eles em simultâneo, aproximando-se da heurística humana.
- Outra diferença proposta pelos autores é um método para discretizar os domínios de atributos numéricos, para análise par a par, facilitando a aplicação da heurística proposta.
- Em um estudo de caso, o artigo investiga um problema importante e altamente complexo de decisão do mundo real com relação à elaboração de relatórios financeiros sobre modelo de pensões profissionais (contribuinte/não-contribuinte, segurado/não-segurado, etc.)

- Da mesma forma que outras decisões de negócios, a administração da empresa tem que considerar muitos fatores (atributos) ao decidir sobre um método, e pode ser uma boa alternativa aplicar uma heurística lexicográfica.
- Possui Lista de Preferências Lexicográficas (LPs) com as alternativas a serem consideradas, onde o algoritmo faz o aprendizado destas listas para, então, tomar as decisões.

$$\mathbf{x} \in \mathcal{X} = \mathcal{D}(V) = \mathcal{D}(A_1) \times \cdots \times \mathcal{D}(A_n),$$

Onde V são as alternativas e D os domínios dos atributos.

$$\mathcal{T} = \left\{ (\mathbf{x}_i^*, \mathbf{x}_i) \right\}_{i=1}^N$$

Conjunto de treinamento

Algoritmo para expansão dos pares de escolha mais prováveis

```
Algorithm 1: LPLL.
Input: training data \mathcal{T}, set of attributes V, maximal
                 grouping size g_{max}, maximum partition size r_{max}
Output: LP list l
l \leftarrow \emptyset, V' \leftarrow V, \mathcal{I}' \leftarrow \{1, \dots, n\}
while \mathcal{T} \neq \emptyset and V' \neq \emptyset do
      I' \leftarrow \emptyset, CR \leftarrow 0, CP \leftarrow 0
     for \mathcal{I} \subseteq \mathcal{I}', |\mathcal{I}| \leq g_{max} do
            discretize A_i, i \in \mathcal{I} into at most r_{max} bins
            determine \supset_{\mathcal{I}} on \mathcal{D}(V_{\mathcal{I}}) maximally consistent with \mathcal{T}
            compute CR(\exists_{\mathcal{I}}, \mathcal{T}) and CP(\exists_{\mathcal{I}}, \mathcal{T})
            if CR(\exists_{\mathcal{I}}, \mathcal{T}) = CR \ \&\&\ CP < CP(\exists_{\mathcal{I}}, \mathcal{T}) then
                  CP \leftarrow CP(\supset_{\mathcal{T}}, \mathcal{T})
               I' \leftarrow \mathcal{I}
            if CR(\supset_{\mathcal{T}}, \mathcal{T}) > CR then
                  CR \leftarrow CR(\supset_{\mathcal{I}}, \mathcal{T})
                  CP \leftarrow CP(\supset_{\mathcal{I}}, \mathcal{T})
            reverse discretization for A_i, i \in \mathcal{I}
      discretize A_i, i \in I' into at most r_{max} bins
      \mathcal{I}' \leftarrow \mathcal{I}' \setminus I'
      remove every (\vec{x}, \vec{x}') \in \mathcal{T} decided by \Box_{l'}
      add item (V_{l'}, \supset_{l'}) to l
```


Agrupamento/expansão dos atributos de decisão. À esquerda, apenas uma divisão e na direita duas divisões, onde cada divisão possui elementos "puros", sendo eles do tipo vermelho (negativos) ou do tipo azul (positivos).

Exemplo: decisão entre um par de carros e um par de artigos, considerando sempre dois atributos

Considerações Finais

- O aprendizado supervisionado possui maior acurácia, por terem especificadas as classes.
- Aprendizado não-supervisionado é melhor quando não se há muita informação a respeito do conjunto de dados a ser analisado.
- Mais atributos/dimensões resultam numa melhor classificação, porém deve-se atentar à maneira com que seleciona-se tais dados.
- Técnicas de aprendizado ativo não foram citadas, mas podem fazer muita diferença quando os conjuntos de dados são muito grandes.
- Se o conjunto de dados é muito grande, o computador que está executando o experimento deve conter muita memória RAM! As técnicas de aprendizado facilitam na quantidade das classificações, mas têm um grande custo computacional.
- A acurácia aumenta ao dividir os conjuntos de dado em teste e treinamento.

Referências

BARANAUSKAS, J. A. **Aprendizado de máquinas: Conceitos e definições.** 2007. Disponível em

http://dcm.ffclrp.usp.br/augusto/teaching/ami/AM-I-Conceitos-Definicoes.pdf. Acesso em 10 de Novembro de 2016.

BRÄUNING, Michael, HÜLLERMEIER, Eyk, KELLER, Tobias, GLAUM, Martin. Lexicographic preferences for predictive modeling of human decision making: A new machine learning method with an application in accounting. ELSEVIER: European Journal of Operational Research. Publicado em 18 de Agosto de 2016. Disponível em http://www.sciencedirect.com/science/article/pii/S0377221716306944. Acesso em 10 de Novembro de 2016.

OLIVEIRA, Cristiano. Inteligência Artificial – O que é?. Laboratório de Estruturas e Materiais Estruturais - USP. Disponível em

http://www.lem.ep.usp.br/Pef411/~Cristiano%20Oliveira/CristianoOliveira/Paginas/InteligenciaArtificial.htm. Acesso em 10 de Novembro de 2016.