Reg. No.:

Name:

CONTINUOUS ASSESSMENT TEST II – OCTOBER 2022

Programme	:	B.Tech	Semester	:	Fall 2022
Course Name	:	Applied Linear Algebra	Course Code	:	MAT3004
Faculty	:	Dr.M.Kaliyappan, Dr.Hannah Grace, Dr.David Raj Micheal, Dr.S. Dhanasekar, Dr. Om Namha Shivay	Slot/ Class No:	:	C2+TC2+TCC2/CH20222310003 90/391/392/ 393/394
Time	:	90 mins	Max. Marks	:	50

Answer all questions (5 \times 10 = 50 Marks)

1. (a) Determine the dimensions of the sum and of the intersection of the vector spaces V_1 and V_2 defined by the columns of these matrices $\begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -1 & -2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 & 2 \\ 0 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ (b) Dim(v1)=3, dim(v2)=3, dim(v1+v2)=4. Dim(v1intsection v2)=2

1 1 1 1 3 0 0 -1 2

0 0 1 2 0 1 -1 3

0 0 0 0 0 1 2 0 3

Find a second degree polynomial passing through the points (1,1),(2,3) and (4,8)

$$f(x) = 0.1667x^2 + 1.5x - 0.6667$$

2. Let $T_1: P_2 \to R^3$ and $T_2: P_2 \to R^3$ are the linear transformations defined as

 $T_1(a+bx+cx^2) = (a+c,a+b,0)$, $T_2(a+bx+cx^2) = (0,a+b,a-c)$ where P_2 is the vector space of all polynomials of degree at most 2.

4+6

6+4

(i) Find $Ker(T_1)$ and $Ker(T_2)$ and hence check whether of T_1 and T_2 are onto

Ker(T1) = a = -c, a = -b, b,c = -a

For example $T1(-1+x+x^2) = (0,0,0)$, ker(T2) = a = -b, a = c

$$T2(1-x+x^2) = (0,0,0)$$

Not onto

(ii) Let $(T_1 + T_2)$: $P_2 \rightarrow R^3$ be another linear transformation defined as

 $(T_1 + T_2)(p(x)) = T_1(p(x)) + T_2(p(x))$, for every $p(x) = a + bx + cx^2$ in P_2 and a,b,c in R. Then find the inverse map of $(T_1 + T_2)$

(T1+T2)(p(x))=(a+c, 2a+2b, a-c)

Matrix of T1+T2

[1 0 1

2 2 0

1 0 -1]

	B ₁	B ₂	B ₃
1	1/2	0	1/2
2	-1/2	1/2	-1/2
3	1/2	0	-1/2

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformations given by $T_1(x, y, z) = (-2x + y, -y - z, x + 3z)$.

(i) Find $[T]^{\beta}_{\alpha}$ where $\alpha = \{(1, -3, 1), (0, 3, -1), (2, -2, 1), \beta = \{(2, 0, 1), (3, -1, 1), (15, -6, 4)\}$

and (ii) Find the transition matrix $[id]_{\alpha}^{\beta}$

(i) [-16 9 -24

6 - 40 89

-11 7 -15]

		ii[-10 5 -2								
		27 -33 14								
		-4 12 -5]								
4.	(a)	Find $ f $, $ g $ and d(f,g) where $f = 1 + x$, $g = 1 + x + x^2$ for the inner product space V relative to the inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$.	5+5							
	(b)	(b) Sqrt (7/3), sqrt(37/10), 1/sqrt(5)								
		Find the value of K so that the following is an inner product space on R^2 $< u, v > = x_1y_1 - 2x_1y_2 - 2x_2y_1 + Kx_2y_2$ where $u = (x_1, x_2), v = (y_1, y_2) \in R^2$								
		k>4								
5.		Find the QR factorization of the matrix $A = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 3 & -2 \\ 1 & 3 & 2 \\ 1 & -1 & 0 \end{bmatrix}$.								
		Also find a vector orthogonal to first two columns of A.								
		$Q \times R = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \times \begin{bmatrix} 2 & 2 & 2 \\ 0 & 4 & -2 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 3 & -2 \\ 1 & 3 & 2 \\ 1 & -1 & 0 \end{bmatrix}$								