# Informe técnico del diseño del sistema de control

Versión 2

Elaboró: Oscar Quiroz

#### Actividades:

- Diseño conceptual del sistema de control.
- Elección de actuadores y sensores.
- Diseño de circuito electrónico, esquemático y layout.
- Rutina de control, software en escritorio y firmware en máquina.

## Diseño conceptual del sistema de control.

Se requiere controlar la posición de un sistema gimbal con precisión mediante el uso de motores paso-paso, uno por cada eje de rotación. Cada motor tendrá su propio driver que es alimentado a 24VDC y recibe señales de control de la tarjeta principal. La tarjeta a su vez tiene comunicación bidireccional al computador por medio de USB2.0. El sistema debe tener dos sensores finales de carrera para establecer con seguridad los límites de rotación. El esquema general es el siguiente:



Los drivers poseen 2 borneras de alimentación con capacidad de 9 - 42VDC y 4 borneras para conexión al motor, un par por cada bobina. Hay 3 señales de control PNP (se activan en nivel bajo de voltaje) que proporcionan sentido de giro, habilitación y pulso (un paso por cada pulso).



Se puede configurar el micro paso y salida corriente con el interruptor DIP 6. Hay 7 tipos de micro pasos (1, 2 / A, 2 / B, 4, 8, 16, 32) y 8 tipos de control de corriente (0.5A, 1A, 1.5A, 2A, 2.5 A, 2.8A, 3.0A, 3.5A) en total.

Nota: Estas configuraciones serán establecidas en pruebas, cualquier cambio deberá ser configurado también en el software de control.

La tarjeta de control debe estar entonces en capacidad de controlar 3 señales por cada driver, para un total de 6, adicionalmente la lectura de los dos finales de carrera y comunicación USB2.0

#### Elección de actuadores y sensores.

Para el calculo de los motores se usó como referencia "Manual: Sistema de motores paso a paso SureStep. Automationdirecto.com – Apéndice A"

#### Calculo motor cenit

Resolución de la carga

$$\theta_{paso} = \left(\frac{d_{carga}/i}{L_{\theta}}\right) = \left(\frac{360^{\circ}/80}{0.05}\right) = 90 \, pasos/rev$$

Donde:

 $\theta_{paso}$  resolución mínima requerida

 $d_{carga}$  es el desplazamiento de la carga por cada rotación del actuador

i es la razón de reducción del reductor de velocidad (GearBox)

 $L_{\theta}$  es la resolución deseada

Determinación perfil de movimiento

$$P_{total} = \frac{D_{total} * i}{\left(d_{carga}\right)} \theta_{paso} = \frac{90^{\circ} * 80}{360^{\circ}} 90 = 1800 \ pulsos$$

Donde:

 $P_{total}$  son los pulsos totales

D<sub>total</sub> es la distancia total de movimiento

i es la razón de reducción del reductor de velocidad (GearBox)

 $d_{carga}$  es el desplazamiento de la carga por cada rotación del actuador

 $heta_{paso}$  resolución mínima requerida

$$f_{trapez} = P_{total} * \frac{(f_o - t_{acele})}{(t_{total} - t_{acele})} = 3272 \text{ Hz}$$

$$\Delta_{vel} = 3272 \text{Hz} * \frac{60s}{\frac{1min}{90}} = 2181 \text{ RPM}$$

Donde:

 $f_{trapez}$  es la frecuencia máxima del tren de pulsos a ser generado para un movimiento trapezoidal.

 $f_o$  es la frecuencia inicial

tacele es el tiempo de aceleración

 $t_{total}$  es el tiempo de duración del movimiento

 $\Delta_{vel}$  es la velocidad del movimiento en RPM

Torque del motor requerido

$$\begin{split} J_{total} &= J_{rel} + \left(\frac{J_{mesa}}{i^2}\right) = 1.4351 \times 10^{-4} + \left(\frac{0.4807 \ Kgm^2}{80^2}\right) = 0.0002186 \ Kgm^2 \\ T_{acel} &= J_{total} \left(\frac{\Delta_{vel}}{\Delta_t}\right) * \frac{2\pi}{60} = 0.332 \ Nm \\ T_{motor} &= T_{acel} + T_{resist} + J_{motor} \left(\frac{\Delta_{vel}}{\Delta_t}\right) * \frac{2\pi}{60} = 1.563 \ Nm \end{split}$$

#### Donde:

 $J_{total}$  es la inercia total del motor

 $J_{rel}$  es la inercia del reductor

 $J_{mesa}$  es la inercia de la mesa

i es la razón de reducción del reductor de velocidad (GearBox)

 $T_{acel}$  es el torque requerido para acelerar la inercia

 $\Delta_{vel}$  es la velocidad del movimiento en RPM

 $\Delta_t$  es el tiempo de aceleración

 $T_{resist}$  es el torque resistivo

 $T_{motor}$  es el torque a ser suministrado por el motor

#### Calculo motor azimut

Resolución de la carga

$$\theta_{paso} = \left(\frac{d_{carga}/i}{L_{\theta}}\right) = \left(\frac{360^{\circ}/80}{0.05}\right) = 90 \, pasos/rev$$

Determinación perfil de movimiento

$$P_{total} = \frac{D_{total} * i}{(d_{caraa})} \theta_{paso} = \frac{360^{\circ} * 80}{360^{\circ}} 90 = 7200 \ pulsos$$

$$f_{trapez} = P_{total} * \frac{(t_o - t_{acele})}{(t_{total} - t_{acele})} = 13090 \text{ Hz}$$

$$13090Hz * \frac{\frac{60s}{1min}}{90} = 8726 RPM$$

Torque del motor requerido

$$\begin{split} J_{total} &= J_{rel} + \left(\frac{J_{mesa}}{i^2}\right) = 1.4351 x 10^{-4} + \left(\frac{0.6784 \ Kgm^2}{80^2}\right) = 0.0002495 \ Kgm^2 \\ T_{acel} &= J_{total} \left(\frac{\Delta_{vel}}{\Delta_t}\right) * \frac{2\pi}{60} = 1.52 \ Nm \\ T_{motor} &= T_{acel} + T_{resist} + J_{motor} \left(\frac{\Delta_{vel}}{\Delta_t}\right) * \frac{2\pi}{60} = 4.95 \ Nm \end{split}$$

Se eligieron finales de carrera con barra flexible y sujeción atornillada con protección IP65, tienen un contacto normalmente abierto y uno normalmente cerrado, ambas configuraciones podrían usarse una vez se definan como parámetros en el firmware de control.

### Diseño de circuito electrónico, esquemático y layout

Definidos los requisitos de hardware, se puede iniciar con el diseño esquemático de la tarjeta de control. La tarjeta tendrá internamente un sistema regulación de voltaje, entradas y salidas optoacopladas, interfaz de comunicación y microcontrolador:

#### SISTEMAS EMBEBIDOS TARJETA DE CONTROL



Los planos eléctricos de cada subsistema son los siguientes:









Para el diseño del layout se tienen encuentra los requisitos estándar de diseño:

- Ubicar los conectores en un solo lado de la tarjeta para impedir el acoplamiento de altas frencuencias en los cables externos.
- Ubicar perforación de agujeros en los 4 extremos que permitan la sujeción de la PCB en otra superficie.
- Ubicar todos los componentes en un solo lado de la tarjeta para facilitar su ensamblaje.
- Usar un plano de retorno para todos los componentes.
- Usar pistas anchas para la distribución de líneas de energía
- Usar pistas anchas para las señales provenientes de conectores para disminuir impedancia.
- Usar labels que permitan identificar las señales en conectores





### Rutina de control, software en escritorio y firmware en máquina.

El sistema de control es en lazo abierto, no hay realimentación de posición angular, los motores paso-paso se encargan de realizar el giro preciso de acuerdo a su configuración y numero de pasos. La rutina de control consiste en la transmisión por parte del software de escritorio (CGimbal) al firmware en la tarjeta de control (FCC) los comandos de control, cada comando establece parámetros o ejecuta métodos e instrucciones dentro del firmware.

#### **Rutina CGimbal**

Start exe Threshold events

# IF portOpen

Send command "CONF"

Listen data

Invoke visual components

## **WHILE**

Threshold events Listen data Send commands

Invoke visual components

## **Rutina FCC**

Init setup

### Loop

Listen port Read command Method execution Send response

# Lista de comandos CGimbal - FCC

| CONF        | Devolver configuración inicial                           |  |  |  |
|-------------|----------------------------------------------------------|--|--|--|
| VA035       | Setear velocidad azimuth 0.35RPM                         |  |  |  |
| VC050       | Setear velocidad cenit 0.5RPM                            |  |  |  |
| AApdu035000 | Enviar angulo azimut izquierda equivalente a 35000 pasos |  |  |  |
| AApdd070000 | Enviar angulo azimut derecha equivalente a 70000 pasos   |  |  |  |
| PApdu       | Dar paso unitario azimut derecha                         |  |  |  |
| PApdd       | Dar paso unitario azimut izquierda                       |  |  |  |
| PAcuo       | Activar giro continuo azimut derecha                     |  |  |  |
| PAcdo       | Activar gro continuo azimut izquierda                    |  |  |  |
| PAcdt       | Desactivar giro continuo azimut derecha                  |  |  |  |
| PAcit       | Desactivar giro continuo azimut izquierda                |  |  |  |
| ACpdu035000 | Enviar angulo cenit abajo equivalente a 35000 pasos      |  |  |  |
| ACpdd070000 | Enviar angulo cenit arriba equivalente a 70000 pasos     |  |  |  |
| PCpdu       | Dar paso unitario cenit arriba                           |  |  |  |
| PCpdd       | Dar paso unitario cenit abajo                            |  |  |  |
| ACcuo       | Activar giro continuo arriba derecha                     |  |  |  |
| ACcdo       | Activar gro continuo abajo izquierda                     |  |  |  |
| ACcdt       | Desactivar giro continuo arriba derecha                  |  |  |  |
| ACcit       | Desactivar giro continuo abajo izquierda                 |  |  |  |
| PG00500     | Setear paso unitario en 500 pasos                        |  |  |  |
| INIT        | Llevar a posición inicial                                |  |  |  |