# Finding Order in Metric Structures

Aaron Anderson (joint with Diego Bejarano)

**UPenn** 

May 13, 2025

### Metric Structures

#### Definition

A *metric language* is just like a regular first-order language, consisting of functions and relations.

#### Definition

A metric structure consists of:

- A complete metric space of diameter 1
- For each n-ary function symbol, a uniformly continuous function  $M^n \to M$
- For each *n*-ary relation symbol, a uniformly continuous function  $M^n \to [0,1]$

### **Formulas**

### Definition

An atomic formula is defined as usual, except instead of =, the basic relation is d(x, y).

#### Definition

A formula is

- An atomic formula
- $u(\phi_1,\ldots,\phi_n)$  where  $\phi_i$ s are formulas and  $u:[0,1]^n \to [0,1]$  is continuous
- $\circ$   $\sup_{x} \phi$  or  $\inf_{x} \phi$

#### Definition

A definable predicate is a uniform limit of formulas.

# Making Linear Orders Metric

• Most famous examples of metric structures are stable or not NIP - how do we put an order on one?

# Making Linear Orders Metric

- Most famous examples of metric structures are stable or not NIP - how do we put an order on one?
- Itaï Ben Yaacov has described Ordered Real Closed Metric Valued Fields, but making the metric space bounded complicated things.

# Making Linear Orders Metric

- Most famous examples of metric structures are stable or not NIP - how do we put an order on one?
- Itaï Ben Yaacov has described Ordered Real Closed Metric Valued Fields, but making the metric space bounded complicated things.
- Diego Bejarano and I are working to simplify this approach.

## Metric Linear Orders

- Call M a metric linear order if
  - M has a bounded complete metric
  - M has a linear order
  - open balls are order-convex.
- M is a metric structure in the language  $\{r\}$ , with

$$r(x,y) = \begin{cases} 0 & x \le y \\ d(x,y) & y \le x \end{cases}$$

• Think of r(x, y) as "the amount x is greater than y."

#### Definition

A theory is a set of conditions  $\phi(x) = 0$ .

## Axiomatizing Metric Linear Orders

#### Definition

A theory is a set of conditions  $\phi(x) = 0$ .

### Theorem (A., Bejarano)

Metric linear orders are axiomatized in  $\{r\}$  by

$$\circ \sup_{x,y} |(r(x,y) + r(y,x)) - d(x,y)| = 0$$

# Axiomatizing Metric Linear Orders

#### Definition

A theory is a set of conditions  $\phi(x) = 0$ .

## Theorem (A., Bejarano)

Metric linear orders are axiomatized in  $\{r\}$  by

$$\circ \sup_{x,y} |(r(x,y) + r(y,x)) - d(x,y)| = 0$$

• 
$$\sup_{x,y} \min\{r(x,y), r(y,x)\} = 0$$

## Axiomatizing Metric Linear Orders

#### Definition

A theory is a set of conditions  $\phi(x) = 0$ .

### Theorem (A., Bejarano)

Metric linear orders are axiomatized in  $\{r\}$  by

$$\sup_{x,y} |(r(x,y) + r(y,x)) - d(x,y)| = 0$$

• 
$$\sup_{x,y} \min\{r(x,y), r(y,x)\} = 0$$

• 
$$\sup_{x,y,z} r(x,z) \dot{-} (r(x,y) + r(y,z)) = 0$$

• DLO and  $\mathrm{Th}(\mathbb{Z},<)$  are two useful completions of the theory of linear orders

- DLO and  $\mathrm{Th}(\mathbb{Z},<)$  are two useful completions of the theory of linear orders
- We seek an analogous completion of MLO

- DLO and  $\mathrm{Th}(\mathbb{Z},<)$  are two useful completions of the theory of linear orders
- We seek an analogous completion of MLO
- For simplicity, assume the metric is an ultrametric

- DLO and  $\mathrm{Th}(\mathbb{Z},<)$  are two useful completions of the theory of linear orders
- We seek an analogous completion of MLO
- For simplicity, assume the metric is an ultrametric

#### Definition

Let UDLO be the theory of *ultrametric-dense linear orders*, consisting of MLO with the following axioms:

- $o d(x,z) \leq \max(d(x,y),d(y,z))$
- For any rational  $p \in \mathbb{Q} \cap [0,1]$ ,  $\sup_x \inf_y |r(x,y) p| = 0$
- For any rational  $p \in \mathbb{Q} \cap [0,1]$ ,  $\sup_{x} \inf_{y} |r(y,x) p| = 0$ .

- UDLO is complete
- UDLO eliminates quantifiers
- UDLO is the model companion of the theory of ultrametric linear orders

- UDLO is complete
- UDLO eliminates quantifiers
- UDLO is the model companion of the theory of ultrametric linear orders
- The metric and order topologies agree in a model of UDLO

- UDLO is complete
- UDLO eliminates quantifiers
- UDLO is the model companion of the theory of ultrametric linear orders
- The metric and order topologies agree in a model of UDLO
- dcl in UDLO is metric closure

- UDLO is complete
- UDLO eliminates quantifiers
- UDLO is the model companion of the theory of ultrametric linear orders
- The metric and order topologies agree in a model of UDLO
- dcl in UDLO is metric closure
- Orders Van Thé put on Urysohn ultrametric spaces model UDLO

• Let  $S \subseteq (0,1]$  be countable, dense.

- Let  $S \subseteq (0,1]$  be countable, dense.
- Let  $U_S = \{f : S \to \mathbb{Q} : \forall r > 0, \{s > r : f(s) \neq 0\}$  is finite.}.

- Let  $S \subseteq (0,1]$  be countable, dense.
- Let  $U_S = \{f : S \to \mathbb{Q} : \forall r > 0, \{s > r : f(s) \neq 0\} \text{ is finite.} \}.$
- Let  $d(f,g) = \max\{x : f(x) \neq g(x)\}.$

- Let  $S \subseteq (0,1]$  be countable, dense.
- Let  $U_S = \{f : S \to \mathbb{Q} : \forall r > 0, \{s > r : f(s) \neq 0\} \text{ is finite.} \}.$
- Let  $d(f,g) = \max\{x : f(x) \neq g(x)\}.$
- Let f(x) < g(x) when f(d(f,g)) < g(d(f,g)).

- Let  $S \subseteq (0,1]$  be countable, dense.
- Let  $U_S = \{f : S \to \mathbb{Q} : \forall r > 0, \{s > r : f(s) \neq 0\} \text{ is finite.} \}.$
- Let  $d(f,g) = \max\{x : f(x) \neq g(x)\}.$
- Let f(x) < g(x) when f(d(f,g)) < g(d(f,g)).

## Lemma (A., Bejarano)

 $U_S \vDash \text{UDLO}$ .

- Let  $S \subseteq (0,1]$  be countable, dense.
- Let  $U_S = \{f : S \to \mathbb{Q} : \forall r > 0, \{s > r : f(s) \neq 0\} \text{ is finite.} \}.$
- Let  $d(f,g) = \max\{x : f(x) \neq g(x)\}.$
- Let f(x) < g(x) when f(d(f,g)) < g(d(f,g)).

## Lemma (A., Bejarano)

 $U_S \models \text{UDLO}$ .

### Theorem (Van Thé)

 $U_S$  has extremely amenable automorphism group, following from Fraïssé theory in the discrete-logic language of ordered S-valued metric spaces.

# o-Minimality in Discrete Logic

#### **Fact**

If M expands a linear order, TFAE:

- every formula  $\phi(x)$  in one variable is qf-definable in  $\{<\}$
- every formula  $\phi(x)$  in one variable is a finite union of intervals.
- If these happen, M is o-minimal.

# o-Minimality in Discrete Logic

#### **Fact**

If M expands a linear order, TFAE:

- every formula  $\phi(x)$  in one variable is qf-definable in  $\{<\}$
- every formula  $\phi(x)$  in one variable is a finite union of intervals.
- If these happen, M is o-minimal.
- How do we describe these properties for MLOs?

# Metric o-Minimality

## Theorem (A., Bejarano)

If M expands a metric linear order, TFAE:

- every predicate  $\phi(x)$  in one variable is qf-definable in  $\{r\}$
- every predicate  $\phi(x)$  in one variable is regulated (a uniform limit of step functions).

o-Minimality ○●○○○○

# Metric o-Minimality

## Theorem (A., Bejarano)

If M expands a metric linear order, TFAE:

- every predicate  $\phi(x)$  in one variable is qf-definable in  $\{r\}$
- every predicate  $\phi(x)$  in one variable is regulated (a uniform limit of step functions).

#### Definition

If M expands a metric linear order, call M o-minimal if every predicate  $\phi(x)$  in one variable satisfies these equivalent properties.

## Metric o-Minimality

## Theorem (A., Bejarano)

If M expands a metric linear order, TFAE:

- every predicate  $\phi(x)$  in one variable is qf-definable in  $\{r\}$
- every predicate  $\phi(x)$  in one variable is regulated (a uniform limit of step functions).

#### Definition

If M expands a metric linear order, call M o-minimal if every predicate  $\phi(x)$  in one variable satisfies these equivalent properties.

By QE, a model of UDLO is o-minimal.



## Definable Functions

### Definition

A function  $f: M \to M$  is definable when d(f(x), y) is.

### **Definable Functions**

#### Definition

A function  $f: M \to M$  is definable when d(f(x), y) is.

## Theorem (A., Bejarano)

If  $f: M \to M$  is definable in an o-minimal metric structure M, then for all a < b, M can be partitioned into finitely many intervals on which either f(x) > a or f(x) < b.

### **Definable Functions**

#### Definition

A function  $f: M \to M$  is definable when d(f(x), y) is.

### Theorem (A., Bejarano)

If  $f: M \to M$  is definable in an o-minimal metric structure M, then for all a < b, M can be partitioned into finitely many intervals on which either f(x) > a or f(x) < b.

#### Proof.

The definable predicate r(f(x), a) is regulated. Approximate this with an appropriate step function, and partition into the intervals on which it is constant.

### Definable Sets

#### Definition

A set  $D \subseteq M$  is definable when it is closed and  $\inf_{y \in D} d(x, y)$  is a definable predicate.

### Theorem (Definable completeness: A., Bejarano)

Let M be an o-minimal metric structure and  $D \subset M$  a definable set. If D is bounded above (resp. below), then D has a least upper bound (resp. greatest lower bound).

## Theorem (A., Bejarano)

Let M be an o-minimal expansion of MDLO and  $D \subset M$  a definable set. The complement of D is a union of countably many intervals, with only finitely many of diameter  $\geq \varepsilon$  for any  $\varepsilon > 0$ .

# Cell Decomposition

By using the bounded alternation numbers of (weakly) regulated functions, we can build distal cell decompositions:

Theorem (A., Bejarano)

Any (weakly) o-minimal metric structure is distal.

o-Minimality

# Cell Decomposition

By using the bounded alternation numbers of (weakly) regulated functions, we can build distal cell decompositions:

### Theorem (A., Bejarano)

Any (weakly) o-minimal metric structure is distal.

Our main goal is to find more specific *o*-minimal cell decompositions for definable predicates and sets.

Thank you, ASL Model Theory Session!