Capítulo 11

Programação com Objectos

1. Defina uma classe em Python, chamada estacionamento, que simula o funcionamento de um parque de estacionamento. A classe estacionamento recebe um inteiro que determina a lotação do parque e devolve um objeto com os seguintes métodos: entra(), corresponde à entrada de um carro; sai(), corresponde à saída de um carro; lugares() indica o número de lugares livres no estacionamento. Por exemplo,

```
>>> ist = estacionamento(20)
>>> ist.lugares()
20
>>> ist.entra()
>>> ist.sai()
>>> ist.lugares()
17
```

- 2. Suponha que desejava criar a classe racional em Python. Um número racional é qualquer número que possa ser expresso como o quociente de dois inteiros: o numerador (um inteiro positivo, negativo ou nulo) e o denominador (um inteiro positivo ou negativo). Os racionais a/b e c/d são iguais se e só se $a \times d = b \times c$. Assuma que a representação externa de um racional é apresentada de modo que o numerador e o denominador são primos entre si. A classe racional admite as operações nume e deno que devolvem, respetivamente o numerador e o denonimador.
 - (a) Defina a classe racional, incluindo o transformador de saída.
 - (b) Usando operações polimórficas, escreva métodos para calcular a soma e o produto de racionais. Se $r_1=a/b$ e $r_2=c/d$ então $r_1+r_2=(ad+bc)/bd$ e $r_1*r_2=(a*c)/(b*d)$. Por exemplo,

```
>>> r1 = racional(2, 4)
>>> r2 = racional(1, 6)
>>> r1
1/2
>>> r2
1/6
>>> r1 + r2
2/3
>>> r1*r2
1/2
```

- 3. Os automóveis mais recentes mostram a distância que é possível percorrer até ser necessário um reabastecimento. Pretende-se criar esta funcionalidade em Python através da classe automovel. Esta classe é construída indicando a capacidade do depósito, a quantidade de combustível no depósito e o consumo do automóvel em litros aos 100 km. A classe automovel apresenta os seguintes métodos:
 - combustivel devolve a quantidade de combustível no depósito;
 - autonomia devolve o numero de Km que é possível percorrer com o combustível no depósito;
 - abastece(n_litros) aumenta em n_litros o combustível no depósito. Se este abastecimento exceder a capacidade do depósito, gera um erro e não aumenta a quantidade de combustível no depósito;
 - percorre(n_km) percorre n_km Km, desde que a quantidade de combustível no depósito o permita, em caso contrário gera um erro e o trajecto não é efectuado.

Por exemplo:

```
>>> a1 = automovel(60, 10, 15)
>>> a1.combustivel()
10
>>> a1.autonomia()
66
>>> a1.abastece(45)
'366 Km até abstecimento'
>>> a1.percorre(150)
'216 Km até abstecimento'
>>> a1.percorre(250)
ValueError: Não tem autonomia para esta viagem
```

4. Suponha que desejava criar a classe *conjunto*. Considere as seguintes operações para conjuntos:

Construtores:

- conjunto: {} → conjunto
 conjunto() tem como valor um conjunto sem elementos.
- $insere: elemento \times conjunto \mapsto conjunto$ insere(e,c) tem como valor o resultado de inserir o elemento e no conjunto c; se e já pertencer a c, tem como valor c.

Seletores:

- $el_conj: conjunto \mapsto elemento$ $el_conj(c)$ tem como valor um elemento escolhido aleatoriamente do conjunto c; se o conjunto for vazio esta operação é indefinida.
- $retira_conj$: $elemento \times conjunto \mapsto conjunto$ $retira_conj(e,c)$ tem como valor o resultado de retirar do conjunto c o elemento e; se e não pertencer a c, tem como valor c.
- $cardinal: conjunto \mapsto inteiro$ cardinal(c) tem como valor o número de elementos do conjunto c.

Reconhecedores:

• e_conj_vazio : $conjunto \mapsto l\'ogico$ $e_conj_vazio(c)$ tem o valor verdadeiro se o conjunto c é o conjunto vazio, e tem o valor falso, em caso contrário.

Testes:

• $pertence : elemento \times conjunto \mapsto l\'ogico$ pertence(e,c) tem o valor verdadeiro se o elemento e pertence ao conjunto e e tem o valor falso, em caso contrário.

Operações adicionais:

- $subconjunto : conjunto \times conjunto \mapsto l\'ogico$ $subconjunto(c_1, c_2)$ tem o valor verdadeiro, se o conjunto c_1 for um subconjunto do conjunto c_2 , ou seja, se todos os elementos de c_1 pertencerem a c_2 , e tem o valor falso, em caso contrário.
- $uniao: conjunto \times conjunto \mapsto conjunto$ $uniao(c_1, c_2)$ tem como valor o conjunto união de c_1 com c_2 , ou seja, o conjunto formado por todos os elementos que pertencem a c_1 ou a c_2 .
- $interseccao: conjunto \times conjunto \mapsto conjunto$ $interseccao(c_1, c_2)$ tem como valor o conjunto intersecção de c_1 com c_2 , ou seja, o conjunto formado por todos os elementos que pertencem simultaneamente a c_1 e a c_2 .

• $diferenca: conjunto \times conjunto \mapsto conjunto$ $diferenca(c_1, c_2)$ tem como valor o conjunto diferença de c_1 e c_2 , ou seja, o conjunto formado por todos os elementos que pertencem a c_1 e não pertencem a c_2 .

Defina a classe conjunto.

5. Considere a função de Ackermann:

$$A(m,n) = \begin{cases} n+1 & \text{se } m=0 \\ A(m-1,1) & \text{se } m>0 \text{ e } n=0 \\ A(m-1,A(m,n-1)) & \text{se } m>0 \text{ e } n>0 \end{cases}$$

esta função pode ser directamente implementada em Python através da função:

```
def A(m, n):
    if m == 0:
        return n + 1
    elif m > 0 and n == 0:
        return A(m-1, 1)
    else:
        return A(m-1, A(m, n-1))
```

Como pode verificar, esta função calcula várias vezes o mesmo valor. Para evitar este problema, podemos definir uma classe, mem_A, cujo estado interno contém informação sobre os valores de A já calculados, apenas calculando um novo valor quando este ainda não é conhecido. Esta classe possui um método val que calcula o valor de A para os inteiros que são seus argumentos e um método mem que mostra os valores memorizados. Por exemplo,

```
>>> a = mem_A()
>>> a.val(2, 3)
9
>>> a.mem()
{(0, 1): 2,
        (0, 2): 3,
        (0, 3): 4,
        (0, 4): 5,
        (0, 5): 6,
        (0, 6): 7,
        (0, 7): 8,
        (0, 8): 9,
        (1, 0): 2,
        (1, 1): 3,
        (1, 2): 4,
```

```
(1, 3): 5,

(1, 4): 6,

(1, 5): 7,

(1, 6): 8,

(1, 7): 9,

(2, 0): 3,

(2, 1): 5,

(2, 2): 7,

(2, 3): 9}
```

Defina a classe mem_A .