Homework 2

ALECK ZHAO

February 13, 2017

1. Let R be a commutative ring. Show that

 $p \in R$ is prime $\iff \langle p \rangle$ is a nonzero prime ideal.

Proof. \Longrightarrow : Suppose $ab \in \langle p \rangle$ for $a, b \in R$. This means $p \mid ab$, and since p is prime, either $p \mid a$ or $p \mid b$. It then follows that either $a \in \langle p \rangle$ or $b \in \langle p \rangle$, which shows that $\langle p \rangle$ is a prime ideal.

 $\Leftarrow=:$ Suppose $p\mid ab,$ which means that $ab\in\langle p\rangle$. Since $\langle p\rangle$ is a prime ideal, either $a\in\langle p\rangle$ or $b\in\langle p\rangle$. This means that $p\mid a$ or $p\mid b,$ so p is a prime element, as desired.

2. Let R be a UFD. Fill in the gap in the proof of §5.1 Theorem 10 by showing that if $p \in R[x]$ is irreducible of degree 0, then p is prime in R[x].

Proof. If p is irreducible of degree 0, it is just an element in R, and since R is a UFD, we also know that p is prime in R. If $p \mid fg$, where $f, g \in R[x]$, then let fg = kp for $k \in R[x]$. Let

$$f \sim c(f)f_1$$

$$g \sim c(g)g_1$$

$$k \sim c(k)k_1$$

where $f_1, g_1, k_1 \in R[x]$ are primitive. Then

$$c(f)f_1c(g)g_1 \sim c(k)k_1p$$

and taking the content of both sides, we have

$$c(f)c(g) \sim c(k)p$$

so $p \mid c(f)c(g)$. Since $c(f), c(g) \in R$ and p is prime in R, it follows that either $p \mid c(f)$ or $p \mid c(g)$, so $p \mid f$ or $p \mid g$, and thus p is prime in R[x], as desired.

3. Let R be an integral domain, and let $\delta: R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ be a function satisfying condition DA. For nonzero $a \in R$, define

$$\tilde{\delta}(a) := \min_{x \in R \setminus \{0\}} \delta(xa).$$

Show that $\tilde{\delta}$ satisfies conditions DA and E in the text.

Proof. E: Since δ takes values in $\mathbb{Z}_{\geq 0}$, we have

$$\tilde{\delta}(ab) = \min_{x \in R \setminus \{0\}} (xab) = \delta(x_0 ab)$$

for some $x_0 \in R$. Then we have

$$\tilde{\delta}(a) = \min_{x \in R \setminus \{0\}} \delta(xa) \le \delta[(x_0b)a]$$

SO

$$\tilde{\delta}(ab) = \delta(x_0 ab) \ge \tilde{\delta}(a)$$

as desired.

DA: For any choice of $a, b \in R$ with $b \neq 0$, we must show that we can write a = qb + r such that $\tilde{\delta}(b) > \tilde{\delta}(r)$, or r = 0. We know that for the same choice of a, b, we can also write a = qb + r with r = 0 or $\delta(b) > \delta(r)$. The case with r = 0 is trivial, so it suffices to prove that $\tilde{\delta}(b) > \tilde{\delta}(r)$.

Since $\tilde{\delta}$ satisfies E from above, we have

$$\delta(1 \cdot r) \ge \tilde{\delta}(r) = \min_{x \in R \setminus \{0\}} \delta(xr) = \delta(x_0 r) \ge \delta(r)$$

So $\tilde{\delta}(k) = \delta(k)$ for all $k \in R$. Thus, since $\delta(b) > \delta(r)$, it holds that

$$\tilde{\delta}(b) = \delta(b) > \delta(r) = \tilde{\delta}(r)$$

as desired.

Section 5.1: Irreducibles and Unique Factorization

35. Let R be a UFD and let $g \mid f$ in R[x], where $f \neq 0$. If f is primitive, show that g is also primitive.

Proof. Let f = gh for $h \in R[x]$. Taking the content of both sides, by Gauss' Lemma, we have

$$c(f) \sim c(gh) \sim c(g)c(h)$$

Since f is primitive, we have

$$1 \sim c(g)c(h) \implies c(g) \in R^{\times}$$

so $c(g) \sim 1$, which means that g must also be primitive.

38. Let R be a UFD with field of quotients F. If $p \in R[x]$ is primitive, and p is irreducible in F[x], show that p is irreducible in R[x].

Proof. This is trivial because $R[x] \subset F[x]$, so if p does not have a non-trivial factorization in F[x], it can't possibly have one in R[x] either.

Section 5.2: Principal Ideal Domains

5. If R is a PID and $A \neq 0$ is an ideal of R, show that R/A has a finite number of ideals, all of which are principal.

Proof. Since R is a PID, $A = \langle d \rangle$ for some $d \in R$. If d is a unit, then A = R, so R/A is trivial. Otherwise, let $B \subset R$ be an ideal of R, so $B/A \subset R/A$ is an ideal of R/A. Let $B = \langle b \rangle$, so the quotient ring $B/A = \langle b \rangle / \langle d \rangle$ is only nontrivial if $b \mid d$. Since R is a PID, it is also a UFD, so d has a unique factorization with finitely many irreducible factors, and b is some finite product of them, so the possibilities for b are also finite. It is also clear that all ideals of R/A are principal, where $B/A = \langle b + A \rangle$ for b as above.

10. Let R be a ring such that $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$. Show that R is a PID.

Proof. Let $I \subset R$ be an ideal of R, and let $A = \mathbb{Z} \cap I$.

31. Show that every unit of $\mathbb{Z}[\sqrt{2}]$ has the form $\pm u^k$, where $k \in \mathbb{Z}$ and $u = 1 + \sqrt{2}$.

Proof. We have

$$N\left[\pm(1+\sqrt{2})^k\right] = N\left[\pm(1+\sqrt{2})\right]^k = (1^2-2\cdot 1^2)^k = \pm 1$$

so $\pm u^k$ is a unit for all $k \in \mathbb{Z}$. On the other hand, if $v \in \mathbb{Z}[\sqrt{2}]$ is a unit not equal to $\pm u^k$ for some $k \in \mathbb{Z}$, WLOG it is positive, and it must lie between two units

$$u^i < v < u^{i+1}$$

for some $i \in \mathbb{Z}$. It follows that $1 < vu^{-i} = w < u$ where w is also a unit, so it suffices to consider w. If w is a unit, then $|w| |w^*| = 1$. Since w > 1, it follows that $|w^*| < 1$. If $w = a + b\sqrt{2}$, then $w^* = a - b\sqrt{2}$, so we have the two inequalities

$$-1 < a - b\sqrt{2} < 1$$

 $1 < a + b\sqrt{2} < 1 + \sqrt{2}$

and adding them gives

$$0 < 2a < 2 + \sqrt{2}$$

The only possibility is a = 1, so then

$$1 < 1 + b\sqrt{2} < 1 + \sqrt{2}$$
$$0 < b\sqrt{2} < \sqrt{2}$$

which is impossible for $b \in \mathbb{Z}$. Thus, it is impossible for v to lie between u^i and u^{i+1} for any i, so it must be that $v = \pm u^k$ are the only units.