CNN: Aplicando Técnicas de Green Deep Learning

Grupo: Caio Guimarães, Eduardo Loivos

Problema

Nós escolhemos resolver o problema de classificação de cores de veículos a partir de imagens utilizando *CNN*.

O dataset escolhido para o problema foi o **Vehicle-Rear** da UFPR, que foi utilizado no artigo "Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks".

Esse dataset é um conjunto de dados que contém mais de três horas de vídeos em alta resolução, com informações precisas sobre marca, modelo, cor e ano de quase 3.000 veículos, além da posição e identificação de suas placas.

As sequências temporais mostram exemplos de (a) motocicletas; (b) carros e ônibus; (c) caminhões; (a) e (c) em condições climáticas normais; (b) quadros escuros causados pelo movimento de veículos de grande porte; e (d) condições severas de iluminação

As arquiteturas, os modelos treinados e o conjunto de dados estão disponíveis no repositório https://github.com/icarofua/vehicle-rear

Implementação

Dataset

Inicialmente, nós criamos um script *data_org.py* com o objetivo de extrair imagens de carros disponíveis no dataset e organizar em pastas de acordo com a cor do carro, que é extraída de um arquivo XML. Nesse processo, cada imagem é renomeada com a placa do veículo e somente uma imagem por placa é movida para a pasta.

Dessa forma, nós reduzimos drasticamente o tamanho do dataset e fizemos a divisão do dataset em dados de treino na pasta *data* e dados de testes na pasta *data_test*.

A seguir, fizemos um processo manual de remoção de imagens de veículos em que sua cor não condizia com a pasta na qual ele foi inserido. Isso ocorre, devido ao registro da cor do veículo no XML ser uma, mas na imagem ser outra.

Treinamento

Para o treinamento do modelo de classificação de cores de um veículo, nós escolhemos utilizar a rede neural **ResNet50** pré-treinada com pesos do ImageNet. O treinamento foi feito no arquivo **color_classifier.py**.

Primeiramente, nós separamos o dataset em 80% dos dados para treino e 20% dos dados para validação.

Cada pasta do conjunto representa uma classe, ou seja, uma das possíveis cores pro veículo (blue, red, white, ...).

```
# Carrega o dataset de treino e validação
train_ds = image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset='training',
    seed=seed,
    image_size=img_size,
    batch_size=batch_size
)

val_ds = image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset='validation',
    seed=seed,
    image_size=img_size,
    batch_size=batch_size
)
```

Depois, nós aplicamos o pré-processamento específico da *ResNet50*, ele é responsável por normalizar os valores dos pixels.

```
# Aplica o preprocessamento da ResNet50
train_ds = train_ds.map(lambda x, y: (preprocess_input(x), y))
val_ds = val_ds.map(lambda x, y: (preprocess_input(x), y))
```

O modelo base então é criado sem a camada final, e ele tem os seus pesos congelados, ou seja, eles não serão atualizados durante o treinamento. Assim, esse modelo base será utilizado somente para extração das características

```
# Modelo base: ResNet50 sem o topo (congelada)
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=img_size + (3,))
base_model.trainable = False
```

Nós, então, criamos as camadas finais. A camada *GlobalAveragePooling2D* reduz o mapa de ativação da ResNet a um vetor, a camada *fully-connected Dense(128, relu)* realiza a aplicação da função de ativação *ReLU*. Por fim, a camada de saída *Dense(num_classes, softmax)* utiliza a função *softmax* para transformar o modelo em probabilidades de classes, onde cada neurônio representa uma classe (cor), assim ela calcula a probabilidade de uma entrada ser de uma determinada cor.

```
# Adiciona camadas finais
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(128, activation='relu')(x)
outputs = Dense(num_classes, activation='softmax')(x)
```

A compilação do modelo é feita utilizando o otimizador **Adam**, uma variação do **SGD**, com **learning_rate** de 0,0001. A função de perda utilizada é a **sparse categorical crossentropy** e a métrica de avaliação é a acurácia.

O modelo foi treinado por 10 épocas e depois salvo no formato **SavedModel** do **TensorFlow**, o que permite ele ser carregado posteriormente ou convertido para **TFLite**.

```
::\Users\kai_o\Downloads\Trabalho03>python color_classifier.py
ound 1178 files belonging to 8 classes.
Ising 943 files for training.
1025-06-24 23:51:46.951519: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neur
1: AVX AVX2
0/30 [================] - 76s 2s/step - loss: 1.7426 - accuracy: 0.3266 - val_loss: 1.3063 - val_accuracy: 0.5362
poch 2/10
0/30 [=====
poch 3/10
                                      ====] - 70s 2s/step - loss: 1.1452 - accuracy: 0.6543 - val_loss: 0.9740 - val_accuracy: 0.7149
30/30 [====
Epoch 4/10
                                  ======] - 66s 2s/step - loss: 0.8663 - accuracy: 0.7540 - val_loss: 0.8244 - val_accuracy: 0.7702
                         :========] - 66s 2s/step - loss: 0.7175 - accuracy: 0.7985 - val_loss: 0.7464 - val_accuracy: 0.7872
0/30 [====
poch 5/10
0/30 [====
poch 6/10
                                =======] - 65s 2s/step - loss: 0.6229 - accuracy: 0.8240 - val_loss: 0.6923 - val_accuracy: 0.8170
                              ========] - 66s 2s/step - loss: 0.5515 - accuracy: 0.8494 - val_loss: 0.6538 - val_accuracy: 0.8255
                                ========] - 66s 2s/step - loss: 0.4853 - accuracy: 0.8802 - val_loss: 0.6272 - val_accuracy: 0.8298
                             =========] - 61s 2s/step - loss: 0.4390 - accuracy: 0.8897 - val_loss: 0.6079 - val_accuracy: 0.8213
      [====
9/10
                          =========] - 60s 2s/step - loss: 0.4017 - accuracy: 0.9109 - val_loss: 0.5939 - val_accuracy: 0.8298
pocn 10/10
|0/30 [====================] - 60s 2s/step - loss: 0.3674 - accuracy: 0.9099 - val_loss: 0.5849 - val_accuracy: 0.8298
|ARNING:absl:Found untraced functions such as _jit_compiled_convolution_op, _jit_compiled_convolution_op, _jit_compiled_convolution_op, _j
ions will not be directly callable after loading.
| Modelo salvo como vehicle_colon_classifier_resnet50_savedmodel
        s\kai o\Downloads\Trabalho03
```

Resultados

A avaliação do modelo foi feita no arquivo model_evaluation.py.

O primeiro passo é carregar o modelo salvo no treinamento e carregar todas as imagens do conjunto de teste. Cada imagem, é redimensionada para 224x224 e depois convertida parra um array *NumPy*. Por fim, é aplicado o mesmo pré-processamento do *ResNet50* e então é feita a predição.

```
# Percorre cada classe (pasta de cor)
for label in class_names:
    class_path = os.path.join(test_dir, label)
    for fname in os.listdir(class_path):
        if not fname.lower().endswith(('.jpg', '.jpeg', '.png')):
            continue

    img_path = os.path.join(class_path, fname)

# Carrega imagem e pré-processa
    img = image.load_img(img_path, target_size=(224, 224)) # ajuste ao tamanho do seu modelo
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array = preprocess_input(img_array)

# Predição
    prediction = model.predict(img_array)
    predicted_class = class_names[np.argmax(prediction)]

# Registra resultado
    y_true.append(label)
    y_pred.append(predicted_class)
```

```
C:\Windows\system32\cmd.exe - python model_evaluation.py
Microsoft Windows [versão 10.0.19045.5965]
(c) Microsoft Corporation. Todos os direitos reservados.
C:\Users\kai_o>cd C:\Users\kai_o\Downloads\Trabalho03
C:\Users\kai o\Downloads\Trabalho03>python model_evaluation.py
2025-06-24 23:47:40.375359: I tensorflow/core/platform/cpu_feature_guard.cc:193] This Ten
5: AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flag
1/1 [======] - 1s 589ms/step
1/1 [======] - 0s 83ms/step
  [======] - 0s 75ms/step
   [======] - 0s 75ms/step
   [======] - 0s 80ms/step
[=====] - 0s 73ms/step
1/1
   [======] - 0s 72ms/step
   [======] - 0s 72ms/step
   [======] - 0s 75ms/step

[=====] - 0s 79ms/step

[=====] - 0s 75ms/step

[=====] - 0s 74ms/step
1/1
   [======] - 0s 77ms/step
   [======] - 0s 76ms/step
   [=======] - 0s 72ms/step
[=====] - 0s 73ms/step
1/1
   [======] - 0s 69ms/step
   [======] - 0s 77ms/step
   [======] - 0s 102ms/step
```

A partir da predição, podemos gerar o relatório de métricas e realizar sua análise.

	precision	recall	f1-score	support
black	0.74	0.95	0.83	59
blue	0.00	0.00	0.00	8
green	0.00	0.00	0.00	5
grey	1.00	0.21	0.34	29
orange	1.00	1.00	1.00	18
red	0.97	0.91	0.94	35
silver	0.72	0.79	0.76	78
white	0.69	0.84	0.76	56
accuracy			0.77	288
macro avg	0.64	0.59	0.58	288
weighted avg	0.76	0.77	0.73	288

Podemos perceber que o modelo apresenta uma acurácia de 77% e que ele não conseguiu aprender a prever as cores azul e verde, um dos motivos pode ser a baixa quantidade de exemplos disponíveis.

Por último, é gerada uma matriz de confusão para análise dos resultados.

A partir dela é possível analisar que o modelo apresenta um bom desempenho para a maioria das classes. As cores azul e verde foram confundidas com a cor preta, e a cor cinza foi confundida com a cor preta e prata, o que pode ser explicado pela proximidade das cores e pela variação de luz das imagens.

Técnicas de Green Al

Com a intenção de reduzir o tamanho do modelo, foi utilizada duas técnicas de Green Al

Pruning

É uma técnica de compressão que zera pesos de baixa importância na rede neural, criando esparsidade. Ela foi aplicada através do arquivo *generate pruning.py*.

Para utilizar esta técnica vamos utilizar a biblioteca *tfmot* (TensorFlow Model Optimization Toolkit). A função responsável por aplicar o pruning é a *prune_low_magnitude*, zerando os pesos menos relevantes, o parâmetro *final_sparsity=0.5* indica que a poda termina com 50% dos pesos zerados. O parâmetro **end_step=1000** indica o numéro máximo de iterações a serem feitas.

```
# Define parâmetros de pruning

36 v pruning_params = {

37 v 'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(

38 initial_sparsity=0.0,

39 final_sparsity=0.5,

40 begin_step=0,

41 end_step=1000 # ajuste com base no número total de steps

42 )

43 }

44
```

Para aplicar o pruning, é necessário carregar o modelo já treinado que foi salvo anteriormente. O modelo com pruning precisa ser recompilado para ser ajustado com a poda ativa.

```
model = load_model("vehicle_color_classifier_resnet50_savedmodel")
model_for_pruning = prune_low_magnitude(model, **pruning_params)

wodel_for_pruning.compile(optimizer=Adam(1e-4),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

# Re-treinar por algumas épocas
wodel_for_pruning.fit(train_ds, validation_data=val_ds, epochs=5,
callbacks=[tfmot.sparsity.keras.UpdatePruningStep()])

model = tfmot.sparsity.keras.strip_pruning(model_for_pruning)
model.save("pruned_vehicle_color_classifier", save_format="tf")
```

Quantização

É uma técnica que reduz a precisão numérica dos pesos e ativações do modelo, diminuindo o tamanho, uso de memória, e podendo aumentar a velocidade da inferência.

A quantização é feita convertendo o modelo treinado para o formato *TensorFlow Lite (TFLite)*. Ela foi executada através do arquivo *generate_quantization.py*.

```
generate_quantization.py > ...
1    import tensorflow as tf
2
3    model = tf.keras.models.load_model("vehicle_color_classifier_resnet50_savedmodel")
4    converter = tf.lite.TFLiteConverter.from_keras_model(model)
6    converter.optimizations = [tf.lite.Optimize.DEFAULT]
7    quantized_model = converter.convert()
9    # Salva modelo quantizado
11    with open('model_quantized.tflite', 'wb') as f:
12    f.write(quantized_model)
13
```

```
PS C:\Users\loivo\Documents\Projects\Aula_GAI\Trabalho03> python3 .\eval_TFLite.py
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
Found 288 files belonging to 8 classes.
2025-06-24 23:17:10.235600: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use
To enable the following instructions: SSE SSE2 SSE3 SSE4.1 SSE4.2 AVX AVX2 FMA, in other operations, rebuild TensorFlow with

79%

to use available CPU instructions in performance-critical operations.
ow with the appropriate compiler flags.

| 233/288 [35:27<08:33, 9.34s/it]
```

Resultados

As métricas obtidas pelo modelo após o pruning são as seguintes:

	precision	recall	f1-score	support
black	0.75	0.88	0.81	59
blue	0.50	0.12	0.20	8
green	0.00	0.00	0.00	5
grey	0.62	0.34	0.44	29
orange	1.00	1.00	1.00	18
red	0.94	0.89	0.91	35
silver	0.75	0.91	0.82	78
white	0.82	0.80	0.81	56
accuracy			0.79	288
macro avg	0.67	0.62	0.63	288
weighted avg	0.77	0.79	0.77	288

A matriz de confusão gerada pelo modelo após o pruning é a seguinte:

As métricas obtidas pelo modelo após a quantização são as seguintes:

	precision	recall	f1-score	support
black	0.85	0.59	0.70	59
blue	1.00	0.12	0.22	8
green	0.00	0.00	0.00	5
grey	0.29	0.24	0.26	29
orange	1.00	0.33	0.50	18
red	0.81	0.60	0.69	35
silver	0.46	0.38	0.42	78
white	0.43	0.96	0.60	56
accuracy			0.53	288
macro avg	0.61	0.41	0.42	288
weighted avg	0.60	0.53	0.52	288

A matriz de confusão gerada pela quantização é a seguinte:

Em relação ao tamanho dos modelos, a CNN original possui um tamanho de 93.9 MB, enquanto o modelo após o pruning possui um tamanho de 91.9 MB e o modelo após a quantização ocupa somente 22.8 MB sendo este o ideal para execução em dispositivos com baixa capacidade de armazenamento.

Quanto ao processamento, a técnica de pruning gera uma matriz esparsa reduzindo o tempo de processamento embora preserve a mesma dimensão. O modelo TFLite é otimizado para dispositivos móveis, o teste em CPU precisa ser emulado e portanto consome muito tempo.

Conclusão

Após analisarmos as métricas dos modelos pode que o modelo original apresenta uma acurácia de 77% e que ele não conseguiu aprender a prever as cores azul e verde, além de ter dificuldades com a cor cinza. Essas dificuldades enfrentadas estão presentes nos demais modelos, no entanto, no modelo com quantização o desempenho cai consideravelmente, apresentando apenas 53% de acurácia, 61% de precisão e 41% de recall.

O modelo com pruning apresentou o melhor desempenho, obtendo uma acurácia de 79%, que é superior ao modelo original, e um tempo de processamento menor do que o original.