Introduction to Statistical Machine Learning CSC/DSCC 265/465

Lecture 14: Midterm Review

Cantay Caliskan

Notes and updates

SICSS Summer School (May 9 – May 20)

- Summer Institute in Computational Social Sciences (May 9 – May 20) at the University of Rochester
- Opportunity to learn, to network, and to listen to exciting speakers, but most importantly: to finish a CSS project in a team (and there is no tuition)
- <u>Topics</u>: ML, image as data, NLP, data visualization, network analysis with applications in CSS
- Advanced UGs interested in PhD, Master's students, PhD students, postdoctoral students (from different fields) are welcome!
- Check the link for more information and application (Deadline: March 18): https://sicss.io/2022/rochester/

SICSS Summer School (May 9 – May 20)

Midterm

- Practice midterm posted!
- Midterm will be in-class on March 16, Wednesday. Please arrive 10 minutes early!
- Eight (8) questions in total (80 points in total = each question is worth 10 points)
- Distribution of questions:
 - ~3 Math questions (matrix algebra + probability)
 - ~5 Theory questions (ML)
 - <u>~One (1)</u> of these questions might be an exploratory question about a relevant topic we haven't studied in class
- Review will cover the important concepts, but it will not provide an exhaustive coverage

Revisiting: Topics we covered

- Vectors and matrices
- Matrix algebra
- Probability
- Statistical concepts (distributions, definitions on matrices)
- ML basics (cross-validation, bias/variance, regularization, overfitting/underfitting)
- Basics for supervised learning (algorithms, cost functions, optimization)
- Gradient descent
- Maximum likelihood estimation
- Logistic regression (two-class and multi-class)
- Practical examples on NLP
- Model performance (accuracy and goodness-of-fit)
- Regularized linear models
- Clustering (kmeans(++), DBSCAN, OPTICS, GMM soft/hard clustering, optimization)
- Dimensionality reduction (PCA and SVD)

Matrix Algebra

Concepts: Matrix algebra

- Matrices were useful in storing data, optimization, calculating similarities, distances...
- Vectors and matrices
 - Difference between scalar, a vector, and a matrix
 - *Scalar*: 1 x 1 matrix
 - *Vector*: *m x 1* matrix
 - Matrix: m x n matrix
 - Vectors
 - Magnitude: Usually calculated by Euclidean distance
 - Direction: Given by the locations in vector space
 - More about vectors:
 - Live in an *n-dimensional* space (=*n* is the number of features)
 - We usually deal with feature vectors (=values associated with an observation/unit of analysis)
 - We also analyzed documents in NLP

Concepts: Matrix algebra

- Vectors and matrices
 - Matrix algebra (addition, multiplication, transpose, inverse)
 - Addition: Add each element (pairwise)
 - Two matrices need to have the same dimensions.
 - *Multiplication*: Multiply and add the elements by rows (of the 1^{st} matrix) and columns (of the 2^{nd} matrix)
 - Same as dot product [=usually meant for vectors]
 - Multiplication by identity matrix (I) -> Provides the same result
 - Multiplying by inverse -> Provides the identity matrix (I)
 - *Transpose*: Rows become columns, columns become rows
 - Helpful for calculating the <u>Variance-Covariance matrix</u>
 - <u>Var-Cov</u> is helpful in various ways including finding optimal coefficients or doing dimensionality reduction

Concepts: Matrix algebra

- Vectors and matrices
 - Matrix algebra (addition, multiplication, transpose, inverse)
 - Inverse: Helpful in optimization
 - Hard to compute (check *pseudo-inverse*)
 - Sometimes not computable
 - Sparse matrices
 - Matrices with no determinant
 - Multiplying with inverse gives the identity matrix -> AA⁻¹ = I
 - Special matrices
 - Symmetric
 - Skew-symmetric
 - Identity
 - Diagonal

Probability

Concepts: Probability

Probability concepts:

- Sample space, events
 - What are the possible outcomes? All probabilities of independent events sum to 1.
 - Conditional events do not sum to 1.
- Independent events
- Marginal probability, joint probability, conditional probability
 - Joint: Two events happening at the same time
 - Conditional: Probability given that something has already happened
- Probability density function
 - Discrete or continuous (example: balls vs. temperature)
- Schools of statistics
 - Bayesian vs. Frequentist statistics
 - <u>Difference</u>: **Power of sample (Frequentist)** vs. **Power of sample+priors (Bayesian)**

Concepts: Probability

Probability concepts:

Bayesian Statistics

 $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

- Bayes' (or Bayesian) Theorem
 - Relationship between the conditional probabilities of two events
- MLE vs MAP
 - Maximum Likelihood Estimation vs. Maximum A Posteriori

More definitions

- [Probability] Expectation/Mean
- Matrix decomposition
- Matrix definiteness
- Gaussian Distribution
 - Bivariate
 - Multivariate

ML Basics

ML Basics

Cross-Validation

- A technique used to select the appropriate algorithm (not the coefficients)
- Usually used when you want to test the fragility of the algorithm and/or you have little data
- Train/test CV; K-Fold CV; Leave-one-out CV (LOOCV)

Bias and Variance

- Do you want bias or variance in your model?
- Complex models -> Less bias, more variance
- Basic models -> more bias, less variance

Underfitting and Overfitting

- Overfitting on the training dataset -> Variance in the test dataset
- Underfitting on the training dataset -> <u>Bias</u> in the test dataset
- Best model -> When training and test dataset have comparable errors
- Regularization (we will come to that later...)

ML Basics

Goodness-of-Fit

- Idea: Quantifying the performance of a model
 - R2
 - Accuracy
 - Specificity
 - Sensitivity
 - F1-Score
 - MSE
 - Root-MSE
 - MAE
 - MAPE
 - Confusion Matrices

Supervised Learning

Supervised Learning

Need to have:

- Feature vectors + label
- Or: Independent variables + dependent variable
- Idea: You can teach the computer a pattern in a guided/supervised way
- Goal: Explanatory or predictive analysis
- Models:
 - Categorical data OR continuous data
 - Linear regression, logistic regression
 - Regularized linear regression
- Cost Functions:
 - Convex (= closed-form solutions possible)
 - Example: Linear Regression -> SSE
 - Non-Convex (= iterative optimization is necessary)
 - Example: Logistic Regression -> Cross-Entropy

Gradient Descent

Gradient Descent

Gradient Descent

- An iterative optimization algorithm that can be applied to any supervised learning problem with a defined cost function
- Intuition: How does the cost function look like?

Gradient

Slope of the tangent at a particular point on the cost function curve

Learning rate

How fast you are willing to move along the curve

Gradient problems

- Vanishing gradient
- Exploding gradient

Types

Stochastic GD, Batch GD, Mini Batch GD

Maximum Likelihood

Maximum Likelihood

Parametric vs. Non-Parametric Models

- Are the paremeters given or calculated?
- Idea: Can we estimate the parameters of a distribution to fit the model in a 'better' way?

Estimating MLE

Maximizing the log-likelihood

MLEists

Bayesians with flat priors

Classification

Classification: Logistic Regression

Two-class vs. Multi-class

- Binomial logistic regression vs. multinomial logistic regression
- There are other algorithms, as well...
- Generative vs. Discriminative Algorithms
 - Features of the observation vs. border between observations
 - Generative (=probabilistic), discriminative (=probabilistic/non-probabilistic)

Activation Function

- Sigmoid function
- Comparison with linear regression
- Optimization
 - Iterative learning logistic regression: Gradient Descent
 - Cost Function: Cross-Entropy
- Log-Odds vs. Probability
 - Results need to be converted into probability

Classification: Empirical Example

- Natural Language Processing (NLP)
 - Sentiment analysis
 - Tokenization
 - POS-Tagging
 - Stemming
 - Lemmatization
 - Count-Vectorization
 - TF-IDF-Vectorization
- <u>Idea</u>: Convert the text into a numerical form so that you can make predictions

Regularization

Regularization

- Solution to:
 - Overfitting/underfitting
 - Bias/Variance
- <u>Idea</u>: Make the model generalizable
 - Regularization vs. Generalization dilemma
- Philosophically connected to:
 - Occam's Razor
 - Parsimonious explanations
- Math:
 - L2, L1, L1+L2, L^p regularization
 - Applications in linear models (Ridge, Lasso, ElasticNet)
- Question:
 - Should we discard some of the features? (=model selection/identification strategy)
 - Should we decrease the importance of some of the features? (=shrinkage)_D

Idea:

- 1) Finding patterns in data
- 2) Dimensionality reduction
- Simple Goal: Find clusters. Minimize intra-cluster distances. Maximize inter-cluster distances.
- Different clustering methods have emerged, because of:
 - Convergence issues
 - Distribution/Shape of Data
 - Different density
 - Cluster size
- Clustering families:
 - Centroid-based (i), density-based (ii), distribution-based (iii), hierarchical (iv) NIVERSITY of CHESTE

Kmeans(++):

- Centroid-based clustering
- Assumption: Gaussian distribution in data
- Random initialization (-> comes with problems)
- No convergence-guarantee to global minimum (=each initialization leads to a different result)
- Faster

DBSCAN:

- Density-based clustering
- Assumption: Clustering can be inferred from local density
- Constant density parameter (-> comes with problems)
- Discards some of the data
- Different densities lead to problems
- Slower

OPTICS:

- Density-based clustering
- Assumption: Clustering can be inferred from local density
- Dynamic density parameter (-> fixes an issue with DBSCAN)
- Slower

• **GMM**:

- Distribution-based clustering
- <u>Assumption</u>: MLE can be used to identify different distributions
- Probabilistic approach
- Expectation-Maximization (EM)
- Slower
- Other issues: Choosing the optimal k (theory vs. Math dilemma), hard vs. soft clustering

Dimensionality Reduction

Dimensionality Reduction

• Idea:

- Transform a high-dimensional space to a low-dimensional space
- Curse of dimensionality
- Feature elimination vs. feature extraction

Methods:

PCA and SVD

• *PCA*:

- Transform the data into a lower-dimensional space
- Maximize the variance of the projected data
- Connection to Var-Cov matrix, eigenvalues, eigenvectors
- Assumes linear relationship between variables
- Creates independent principal components (=helpful)

Do you have any questions?

