

Big Data Processing with MapReduce/Spark Programming Models

Hong-Linh Truong
Department of Computer Science
linh.truong@aalto.fi, https://rdsea.github.io

Learning objectives

- Be familiar with big data processing models using multiple nodes/clusters
- Understand MapReduce/Spark programming models for big data processing
- Able to perform practical programming features with MapReduce/Spark
- Able to design and apply MapReduce/Spark data processing with Hadoop and other frameworks

Big data at large-scale: the big picture in this course Today

Elastic Cloud Infrastructures

(VMs, dockers, Kubernetes, OpenStack elastic resource management tools, storage)

Distributed Big Data in Clusters

Analysis Layer

Data Layer

Infrastructural Layer

Remember HIVE SQL statements?

What we need when we develop analysis programs for big data

Big data processing techniques in our focus

Programming models

- MapReduce/Spark
- Stream Data Processing
- Workflows

Studied frameworks

- Apache Hadoop/Spark
- Apache Flink
- Apache Airflow

MapReduce

https://hadoop.apache.org

MapReduce programming model

- MapReduce is a programming model original from from Google
 - Various implementations/frameworks support MapReduce
 - Apache Hadoop (originally from Yahoo!) is the most famous one
 - https://hadoop.apache.org
- Support batch data processing for very large datasets
- Suitable for batch jobs in big data, e.g.,
 - Web search, document processing, ecommerce information
 - Extract, transform, data wrangling, and data cleansing tasks

Map & Reduce

- Map: map data into (key, value)
 - Receives <key,value>
 - Outputs <key,value> new set of <key,value>
- Reducer: sum results from the same key
 - Receives <key, Iterable[value]>
 - Outputs <key,value>

Example of a real data

Look at the network monitoring data

PROVINCECODE, DEVICEID, IFINDEX, FRAME, SLOT, PORT, ONUINDEX, ONUID, TIME, SPEEDIN, SPEEDOUT XXN, 10XXXXXX023, 26XXXXXX8, 1, 2, 7, 39, 100XXXXXX2310207039, 01/08/2019 00:04:07, 148163, 49018 XXN, 10XXXXXX023, 26XXXXXX8, 1, 2, 7, 38, 100XXXXXXX2310207038, 01/08/2019 00:04:07, 1658, 1362 XXN, 10XXXXXXX023, 26XXXXXX8, 1, 2, 7, 9, 100XXXXXXX2310207009, 01/08/2019 00:04:07, 6693, 5185

Sample: https://version.aalto.fi/gitlab/bigdataplatforms/cs-e4640/-/tree/master/data/onudata

Understand the MapReduce programming model

Key ideas of MapReduce

- Data can be divided by "Map" operators
 - data processing tasks extract "intermediate results"
- Intermediate results can be aggregated through "Reduce" operators
 - data processing tasks produce a result from "intermediate results"
- We can glue "Map" and "Reduce" operators into a multistage data flow model
- Other possible operators:
 - Combiner: performs "Reduce" at local nodes
 - Partitioner: decides key/value for Reduce

Key ideas of MapReduce

Key points for the developers

 should write only the main "logic": Map and Reduce operators

The runtime framework will

- handle data movement and input/output management for Map/Reduce tasks
- parallelizing tasks in multiple nodes

MapReduce concept in the original paper

```
map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));
```


User

Key point: parallelize workers to process a lot of input files and produce a lot of output files

Figures source: Jeffrey Dean and Sanjay Ghemawat. 2008.

MapReduce: simplified data processing on large clusters.

Hadoop MapReduce

- Hadoop supports the MapReduce programming model
 - Use cluster nodes for data processing tasks
 - Access data in HDFS and data partitioned in different nodes
 - Hadoop runtime automatically creates parallel tasks
 - YARN is used to run jobs of MapReduce applications
- Data management (HDFS) and data processing (MapReduce) is aligned nicely
 - Run in the same nodes → data locality optimization

Map/Reduce tasks and data/node partitions

A Map task can handle a data partition in the same node

- E.g., a Map task handles a HDFS data block → local data optimization: no data movement local processing
- Results from a Map task are intermediate → to where a task will store them?
- What if a Map task fails?

Reduce Task

Need to deal with data produced from different Map tasks → where to run the Reduce tasks?


```
Examples - Map
                                                                   Output
                                           Input
public static class SpeedInMapper₄
    extends Mapper<Object, Text, LongWritable , AverageWritable>{-
 private LongWritable id =new LongWritable();
 private AverageWritable averagecount = new AverageWritable();
 public void map(Object key, Text value, Context putput)
     throws IOException, InterruptedException {
     String valueString = value.toString();
                                                                 Parse the data to
     String[] record = valueString.split(",");
     id.set(Long.parseLong(record[7]));
                                                                get ONUID and
     averagecount.setAverage(Float.parseFloat(record[9]));
                                                                 SPEEDIN
     averagecount.setCount(1);
     output.write(id,averagecount);
```


Map (ONUID, (SPEEDIN, count))

Example - Reduce

Output

```
public static class SpeedInAverageReducer
     extends Reducer LongWritable, AverageWritable, LongWritable, FloatWritable> }
 private FloatWritable new result = new FloatWritable();
 public void reduce(LongWritable key, Iterable<AverageWritable> values,
                    Context context
                     ) throws IOException, InterruptedException {
   float avq = 0:
   int count = 0:
    for (AverageWritable val : values) {
       float current avg =val.getAverage();
       int current count =val.getCount();
       avg = avg + (current avg*current count);
       count = count + current count;
  new result.set(avg/count);
  context.write(key, new_result);
```

Simple way to determine the average as "Reduce" operator

Input

Reduce (ONUID, AVG)

Driver: connect Map and Reduce operators

```
public static void main(String[] args) throws Exception {
   Configuration conf = new Configuration();
   Job job = Job.getInstance(conf, "simpleonuaverage");
   job.setJarByClass(SimpleAverage.class);
   job.setMapperClass(SpeedInMapper.class);
   job.setCombinerClass(SpeedInAverageCombiner.class);
   job.setReducerClass(SpeedInAverageReducer.class);
   job.setMapOutputKeyClass(LongWritable.class);
   job.setMapOutputValueClass(AverageWritable.class);
   job.setOutputKeyClass(LongWritable.class);
   job.setOutputValueClass(FloatWritable.class);
   FileInputFormat.addInputPath(job, new Path(args[0]));
   FileOutputFormat.setOutputPath(job, new Path(args[1]));
   System.exit(job.waitForCompletion(true) ? 0 : 1);
}
```


Example with Python using MRJob

```
class ONUSpeedinAverage(MRJob):
    def mapper(self, _, entry):
        provincecode.deviceid,ifindex,frame,slot,port,onuindex,onuid,timestamp,speedin,speedout= entry.split(",")
      #average speed is speedin with count = 1
        vield (onuid, (float(speedin),1))
   ## recalculate the new speedin average through an array of speedin average values
    def _recalculate_avg(self, onuid, speedin_avg_values):
        current speedin total = 0
        new avg count = 0
        for speedin avg, avg count in speedin avg values:
            current speedin total = current speedin total +(speedin avg*avg count)
            new avg count = new avg count + avg count
        new speedin avg = current speedin total/new avg count
        return (onuid, (new_speedin_avg, new avg count))
    def combiner(self, onuid, speedin avg values):
        yield self._recalculate_avg(onuid, speedin avg values)
    def reducer(self, onuid, speedin_avg_values):
        onuid, (speedin avg, avg count) = self. recalculate avg(onuid, speedin avg values)
   yield (onuid, speedin avg)
if name == ' main ':
    ONUSpeedinAverage.run()
```

Note: see code examples in our GIT

Resource management and execution for MapReduce in clusters

A cluster of computing nodes can be managed by YARN or Mesos

Source:

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Schedule and monitoring for MapReduce

- A MapReduce program runs → MapReduce Job
 - includes many tasks (Map and Reduce processes + others)
- JobTracker
 - monitors the whole job (all tasks of a MapReduce program)
- TaskTracker
 - performs a task of the MapReduce applications
 - informs JobTracker about the state of the tasks

Monitoring MapReduce Jobs

Application application_1570429323498_0008

Logged in as: dr.who

→ Cluster

About
Nodes
Node Labels
Applications
NEW
NEW SAVING
SUBMITTED
ACCEPTED
RUNNING
FINISHED
FAILED
KILLED
Scheduler

→ Tools

Application Overview User: mybdp Name: cse4640-nytaxicount Application Type: SPARK Application Tags: Application Priority: 0 (Higher Integer value indicates higher priority) YarnApplicationState: FINISHED Queue: default FinalStatus Reported by AM: SUCCEEDED Started: Fri Oct 25 19:22:08 +0000 2019 Elapsed: 3mins, 6sec Tracking URL: History Log Aggregation Status: DISABLED Application Timeout (Remaining Time): Unlimited Diagnostics: Unmanaged Application: false Application Node Label expression: <Not set> AM container Node Label expression: <DEFAULT PARTITION>

Total Resource Preempted: <memory:0, vCores:0>

Total Number of Non-AM Containers Preempted: 0
Total Number of AM Containers Preempted: 0
Resource Preempted from Current Attempt: 0
Number of Non-AM Containers Preempted from Current Attempt: Aggregate Resource Allocation: 5039065 MB-seconds, 973 vcore-seconds

Aggregate Preempted Resource Allocation: 0 MB-seconds, 0 vcore-seconds

 Show 20 ▼ entries

 Attempt ID
 ▼
 Started
 Node
 Logs
 Nodes blacklisted by the app
 Nodes blacklisted by the system
 ♦

 appattempt 1570429323498 0008 000001 2019
 Fri Oct 25 2:2:22:08 +0300 2019
 http://cluster-bdp-w-3c.bigmultidatstore.internal:8042
 Logs
 0
 0

Showing 1 to 1 of 1 entries First Previous 1 Next Last

Connecting MapReduce applications

Build complex MapReduce pipelines

Using big data storage/database as data exchange
We can use workflows to coordinate different MapReduce apps

Problems with MapReduce

- Strict Map & Reduce tasks connection → limitation
- Need more flexible in processing big data workloads
 - Batch data flows and streaming data flows
- Programming diversity support
 - Software engineering productivity

Apache Spark

https://spark.apache.org/

Apache Spark

- Cluster-based high-level computing framework
- "unified engine" for different types of big data processing
 - SQL/structured data processing
 - Machine learning
 - Graph processing
 - (Microbatching)streaming processing
- It is a powerful computing framework and system → an important service that a big data platform should support

Apache Spark

Can be run a top

- Hadoop (using HDFS and YARN)
- Mesos cluster
 - http://mesos.apache.org/
- Kubernetes
- Standalone machines

Figure source: http://spark.apache.org/

Key features

- Data is distributed in different nodes for processing
 - Like data distributed in different nodes in big storage/database
- Leverage parallel computing concepts to run multiple tasks
 - Parallel tasks, task pipeline, DAG of processing stages
- Employ in-memory big data processing
- Program driver steers the execution of parallel tasks
 - Tasks are paralleled automatically and are scheduled with different underlying schedulers
- Key data operators
 - Transformations and actions on data

Spark Program: programming elements

SparkSession

- Act as a program driver to manage the execution of tasks
- SparkContext: manages connection to cluster, manage internal services

Data APIs

- Low-level Resilient Distributed Dataset (RDD)
- High-level DataFrames/DataSets
- Load and hold distributed data
- Transformation and action functions
- ML, Graph and Streaming functions and pipelines

Execution Model

Map into a resource in a cluster node

Worker Node

Driver manages operators and tasks in nodes

and tasks in

Driver Program

SparkContext

Cluster Manager

Worker Node

Executor

Cache

Task

Task

Task

Task

Task

Common concepts: Driver, Nodes, Tasks

Figure source: http://spark.apache.org/docs/latest/cluster-overview.html

Spark application management: high-level view

Submission/Request

- Submit the Spark application for running
- Resource is provided for running the Driver

Launch

- The Driver requests resources for executors (through SparkContext)
- Establish executors across worker nodes

Execution

- The driver starts to execute code and move data
- Finish/Completion:
 - Finish, release executors

Spark program logic: typical steps

- Load data and distribute data
 - Data is immutable after created
 - Data partition in Spark: a partition is allocated in a node
- Perform transformation and action operators
 - Transformations: build plans for transforming data models
 - Actions: perform computation on data
- The developer mostly focuses on loading data and performing operators

Transformation operators

- Transformation:
 - Instructions about how to transform a data in a form to another form → it will not change the original data (immutability)
- Only tell what to do: to build a DAG (direct acyclic graph): a lineage of what to do
- lazy approach → real transformation will be done at action operators

Narrow transformation, no data shuffle

Wide transformation, cross data partitions, require shuffles

Action operators

- Compute the results for a set of transformations
 - Examples: count or average
- Actions: view, collect, write, calculation

Lazy approach: an action triggers execution of transformation operators → enable various types of optimization

Resilient distributed dataset (RDD)

Low-level data structure

Collection of data elements partitioned across nodes in the cluster

Create RDD

 Created by loading data from files (text, sequence file) including local file systems, HDFS, Cassandra, HBase, Amazon S3, etc.

Persist RDD

In memory or to files

RDD transformations and actions

Transformations

- map
- filter
- sample
- intersection
- groupByKey

Actions

- reduce()
- collect()
- count()
- saveAs...File()

Example with RDD

```
VendorID,tpep_pickup_datetime,tpep_dropoff_datetime,passenger_count,trip_distance,RatecodeID,store_and_fwd_fla g,PULocationID,DOLocationID,payment_type,fare_amount,extra,mta_tax,tip_amount,tolls_amount,improvement_surc harge,total_amount 2,11/04/2084 12:32:24 PM,11/04/2084 12:47:41 PM,1,1.34,1,N,238,236,2,10,0,0.5,0,0,0.3,10.8 2,11/04/2084 12:32:24 PM,11/04/2084 12:47:41 PM,1,1.34,1,N,238,236,2,10,0,0.5,0,0,0.3,10.8 2,11/04/2084 12:25:53 PM,11/04/2084 12:29:00 PM,1,0.32,1,N,238,238,2,4,0,0.5,0,0,0.3,4.8
```

as a text file

```
conf = SparkConf().setAppName("cse4640-rddshow").setMaster(args.master)
sc = SparkContext(conf=conf)
##modify the input data
rdd=sc.textFile(args.input_file)
## if there is a header we can filter it otherwise comment two lines
csvheader = rdd.first()
rdd = rdd.filter(lambda csventry: csventry != csvheader)
## using map to parse csv text entry
rdd=rdd.map(lambda csventry: csventry.split(","))
rdd.repartition(1)
rdd.saveAsTextFile(args.output_dir)
```


Shared variables

- Implement common patterns in parallel computing:
 - broadcast and global counter
- Variables used in parallel operations
 - variables are copied among parallel tasks
 - shared among tasks or between tasks and the driver
- Types of variables
 - broadcast variables: cache a value in all nodes
 - accumulators: a global counter shared across processes

Examples

```
sc = SparkContext(conf=conf)
bVar = sc.broadcast([5,10])
print("The value of the broadcast",bVar.value,sep=" ")
counter = sc.accumulator(0)
sc.parallelize([1, 2, 3, 4]).foreach(lambda x: counter.add(bVar.value[0]))
print("The value of the counter is ",counter.value,sep=" ")
```

Use cases:

- Broadcast variables: lookup tables
- Accumulators: monitoring/checkpoint counters

Spark SQL and DataFrames

- High-level APIs
- SparkSQL: enable dealing with structured data
 - SQL query execution, Hive, JDBC/ODBC

DataFrame

- Distributed data organized into named columns, similar to a table in relational database
- Pandas and Spark DataFrames have similar concepts
 - But single machine versus multiple machines

DataFrame

```
inputFile =args.input_file
df =spark.read.csv(inputFile,header=True,inferSchema=True)
print("Number of partition",df.rdd.getNumPartitions())
df.show()
```

PROVINCECODE	DEVICEID	IFINDEX FR	RAME SI	LOT P	ORT ON	NUINDEX	ONUID	TIME	SPEEDIN	SPEEDOUT
YN I 1	3023	528	1	2	7	39 10	07039 01/08/201	9 00:04:07	148163	49018
YN 1	3023	528	1	2	7	38 10	07038 01/08/201	9 00:04:07	1658	1362
YN 1	3023	528	1	2	7	9 10	07009 01/08/201	9 00:04:07	6693	5185
YN 1	3023	528	1	2	7	8 10	97008 01/08/201	9 00:04:07	640	544
YN 1	3023	528	1	2	7	11 10	07011 01/08/201	9 00:04:07	118	114
YN 1	3023	528	1	2	7	10 10	07010 01/08/201	9 00:04:07	28514	12495
YN 1	3023	528	1	2	7	13 10	07013 01/08/201	9 00:04:07	868699	23400
YN 1	3023	528	1	2	7	15 10	07015 01/08/201	9 00:04:07	1822	1120
YN 1	3023	528	1	2	7	17 10	07017 01/08/201	9 00:04:07	998069	117345
YN 1	3023	528	1	2	7	16 10	07016 01/08/201	9 00:04:07	22402	1804
YN 1	3023	528	1	2	7	19 10	07019 01/08/201	9 00:04:07	640	791
YN j 1	3023	760	1	1	10	49 10	10049 01/08/201	9 00:04:07	662	494
YN j 1	3023	760	1	1	10	48 10	10048 01/08/201	9 00:04:07	2158	759
YN j 1	3023	528	1	2	7	21 10	07021 01/08/201		οj	6
YN İ 1	3023	760	1	1	10	51 10	10051 01/08/201		2600890	54153
YN İ 1	3023	528	1 j	2 İ	7 İ	20 10	07020 01/08/201		330	184

Create DataFrame

DataFrames can be created from a Hive table, from Spark data sources, or another DataFrame

Load and save

- From Hive, JSON, CSV
- HDFS, local file, etc

and more

Formats and Sources supported by DataFrames

Source: https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html

DataFrame Transformations

Several transformations can be done

- Think transformation for relational database or matrix
- Select
 - df.select("PROVINCECODE").show()
- Filter
 - df.filter(df['DEVICEID]).show()
- Groupby
 - df.groupBy("ONUID").count().show()
- Handle missing data
 - Drop duplicate rows, drop rows with NA/null data
 - Fill NA/null data

Actions with DataFrame

Actions

Return values calculated from DataFrame

Examples

• reduce, max, min, sum, variance and stdev

→ Distributed and parallel processing but it is done by the framework

Data Distribution

One task works on a partition at a time

→ Parallelism and performance are strongly dependent on number of partitions, tasks, CPU cores

Data Distribution: Load balance

 It is important to have well-balanced data distribution across nodes

Detection:

 look at runtime execution time to see problems or check your data

Examples of solution:

- Repartition
- Broadcast
- Change group keys

Example of a Spark program

```
#!/usr/bin/env python2
#encoding: UTF-8
# CS-E4640
import csv
import sys
from datetime import datetime
from pyspark.sql import SparkSession
import numpy as np
from pyspark.sql import functions as F
import argparse
                                                                   Session/Driver
parser = argparse.ArgumentParser()
parser.add argument('--input file', help='input data file')
parser.add argument('--output dir',help='output dir')
args = parser.parse args()
##define a context
spark = SparkSession.builder.appName("cse4640-onu").getOrCreate()
#NOTE: using hdfs:///.... for HDFS file or file:///
inputFile =args.input file
                                                                   Read data
df =spark.read.csv(inputFile,header=True,inferSchema=True)
#df.show()
print("Number of records", df.count())
exprs = {"SPEEDIN":"avg"}
                                                                      Apply operators
df2 = df.groupBy('ONUID').agg(exprs)
df2.repartition(1).write.csv(args.output file,header=True)
```


Spark application runtime view

Tasks:

 A unit of work executed in an executor: e.g., set of transformations for a data partition

Stage

- A set of tasks executed in many nodes for computing the same operation
- Move to a new stage: through shuffle operations

Job

 Runtime view of an action operator (produce a result), includes many stages

Pipelining, Shuffle and DAG

- Operations work in a pipeline without moving data across nodes
 - E.g., map->filter, select->filter
- Shuffle persistent
 - Shuffle needs move data across nodes
 - Source tasks save shuffle files into local disks for data shuffle, then the target tasks will read data from source nodes
 - *Save time, recovery, fault tolerance*

Monitoring Spark: Executors and tasks

Completed Jobs (4)

Job Id ▼	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
3	csv at NativeMethodAccessorImpl.java:0 csv at NativeMethodAccessorImpl.java:0	2019/10/27 20:09:14	31 s	3/3	279/279
2	count at NativeMethodAccessorImpl.java:0 count at NativeMethodAccessorImpl.java:0	2019/10/27 20:08:47	26 s	2/2	79/79
1	csv at NativeMethodAccessorImpl.java:0 csv at NativeMethodAccessorImpl.java:0	2019/10/27 20:07:49	57 s	1/1	78/78
0	csv at NativeMethodAccessorImpl.java:0 csv at NativeMethodAccessorImpl.java:0	2019/10/27 20:07:46	2 S	1/1	1/1

27 October 20:08

27 October 20:07

27 October 20:09

Executors and tasks

Other important support of Spark

Mlib - Machine learning

- Distributed and parallel machine learning algorithms with big data and clusters
 - You might run many ML algorithms, but many of them are sequential

Streaming

Microbatching data processing in near-realtime

Graph Processing

Parallel computation for graphs

Summary

Facts:

- MapReduce and Spark are important frameworks
- A user/developer needs to learn to develop MapReduce/Spark applications
- A platform operator/provider offer services for managing resources, processing and monitoring

Thoughts:

- Think about the success of Apache Spark: rich ecosystems!
- Think if you combine data, different distributed programming supports for your big data platform

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io

