Team <1> Versie<1.0>

Inhoudsopgave

1.1- Referentie 1.2- Leeswijzer 2- Architectuur Overzicht 2.1- Systeem Context 2.1- Systeem Context 2.2- Stakeholders 2.3- Key drivers 2.3- Key driver graph 3- Architectuur Requirements 1 3- Architectuur Requirements 1 3.1- Functional Requirements 1 3.2 - Non-Functional Requirements 1 3.3 - Constraints 1 3.3- Usecases 1 Usecase beschrijvingen 1 Usecase diagram 1 3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6- Development View 2 8- Realisatie View 2 8- Realisatie View 2 8- Physical View 2 8- 2- Ontwerpkeuzes 2 Beslissingsmatrix motoren 3 Beslissingsmatrix interieur materialen 3
2- Architectuur Overzicht 2.1- Systeem Context 2.2- Stakeholders 2.3- Key drivers 2.3- Key drivers 2.4- Key driver graph 3- Architectuur Requirements 1 3.1- Functional Requirements 1 3.2 - Non-Functional Requirements 1 3.3 - Constraints 1 3.3- Usecases 1 Usecase beschrijvingen 1 Usecase diagram 1 3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6-1 Software structure 2 7- Proces View 2 8- Realisatie View 2 8- Realisatie View 2 8-1- Physical View 2 8-2- Ontwerpkeuzes 2 8-Beslissingsmatrix motoren 3
2.1- Systeem Context 2.2- Stakeholders 2.3- Key drivers 2.4- Key driver graph 3- Architectuur Requirements 1 3.1- Functional Requirements 1 3.2 – Non-Functional Requirements 1 3.3 – Constraints 1 3.3- Usecases 1 Usecase beschrijvingen 1 Usecase diagram 1 3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6-1 Software structure 2 7- Proces View 2 8- Realisatie View 2 8- Realisatie View 2 8-2- Ontwerpkeuzes 2 8- Beslissingsmatrix motoren 3
2.2- Stakeholders 2.3- Key drivers 2.4- Key driver graph 3- Architectuur Requirements 3- Architectuur Requirements 1 3.1- Functional Requirements 1 3.2 – Non-Functional Requirements 1 3.3 – Constraints 1 3.3- Usecases 1 Usecase beschrijvingen 1 Usecase diagram 1 3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6- Development View 2 8- Realisatie View 2 8- Realisatie View 2 8- Realisatie View 2 8- 2- Ontwerpkeuzes 2 8- Beslissingsmatrix motoren 3
2.3- Key drivers 2.4- Key driver graph 3- Architectuur Requirements 1 3.1- Functional Requirements 1 3.2 – Non-Functional Requirements 1 3.3 – Constraints 1 3.3- Usecases 1 Usecase beschrijvingen 1 Usecase diagram 1 3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6-1 Software structure 2 7- Proces View 2 8- Realisatie View 2 8- Realisatie View 2 8-1 - Physical View 2 8-2 - Ontwerpkeuzes 2 Beslissingsmatrix motoren 3
2.4- Key driver graph
3- Architectuur Requirements 1 3.1- Functional Requirements 1 3.2 – Non-Functional Requirements 1 3.3 – Constraints 1 3.3- Usecases 1 Usecase beschrijvingen 1 Usecase diagram 1 3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6.1 Software structure 2 7- Proces View 2 8- Realisatie View 2 8.1- Physical View 2 8.2- Ontwerpkeuzes 2 Beslissingsmatrix motoren 3
3.1- Functional Requirements 1 3.2 - Non-Functional Requirements 1 3.3 - Constraints 1 3.3- Usecases 1 Usecase beschrijvingen 1 Usecase diagram 1 3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6-1 Software structure 2 7- Proces View 2 8- Realisatie View 2 8- Realisatie View 2 8.1- Physical View 2 8.2- Ontwerpkeuzes 2 Beslissingsmatrix motoren 3
3.2 – Non-Functional Requirements 1 3.3 – Constraints 1 3.3 - Usecases 1 Usecase beschrijvingen 1 Usecase diagram 1 3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6-1 Software structure 2 7- Proces View 2 8- Realisatie View 2 8-1 - Physical View 2 8.2- Ontwerpkeuzes 2 Beslissingsmatrix motoren 3
3.3 - Constraints 1 3.3- Usecases 1 Usecase beschrijvingen 1 Usecase diagram 1 3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6.1 Software structure 2 7- Proces View 2 8- Realisatie View 2 8.1- Physical View 2 8.2- Ontwerpkeuzes 2 Beslissingsmatrix motoren 3
3.3- Usecases 1 Usecase beschrijvingen 1 Usecase diagram 1 3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6.1 Software structure 2 7- Proces View 2 8- Realisatie View 2 8.1- Physical View 2 8.2- Ontwerpkeuzes 2 Beslissingsmatrix motoren 3
Usecase beschrijvingen 1 Usecase diagram 1 3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6.1 Software structure 2 7- Proces View 2 8- Realisatie View 2 8.1- Physical View 2 8.2- Ontwerpkeuzes 2 Beslissingsmatrix motoren 3
Usecase diagram 1 3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6.1 Software structure 2 7- Proces View 2 8- Realisatie View 2 8.1- Physical View 2 8.2- Ontwerpkeuzes 2 Beslissingsmatrix motoren 3
3.4- Activity Diagram(men) 2 4- Requirements Traceability 2 5- Logische View 2 6- Development View 2 6.1 Software structure 2 7- Proces View 2 8- Realisatie View 2 8.1- Physical View 2 8.2- Ontwerpkeuzes 2 Beslissingsmatrix motoren 3
4- Requirements Traceability25- Logische View26- Development View26.1 Software structure27- Proces View28- Realisatie View28.1- Physical View28.2- Ontwerpkeuzes2Beslissingsmatrix motoren3
5- Logische View 2 6- Development View 2 6.1 Software structure 2 7- Proces View 2 8- Realisatie View 2 8.1- Physical View 2 8.2- Ontwerpkeuzes 2 Beslissingsmatrix motoren 3
6- Development View
6.1 Software structure
7- Proces View 2 8- Realisatie View 2 8.1- Physical View 2 8.2- Ontwerpkeuzes 2 Beslissingsmatrix motoren 3
8- Realisatie View 2 8.1- Physical View 2 8.2- Ontwerpkeuzes 2 Beslissingsmatrix motoren 3
8.1- Physical View
8.2- Ontwerpkeuzes
Beslissingsmatrix motoren3
-
Beslissingsmatrix interieur materialen3
Beslissingsmatrix communicatie protocollen3
Beslissingsmatrix exterieur materialen3
8.3- FMEA3
Drone Crash FMEA3
Defecte Motor FMEA3
Drone Overbelast FMEA3

Kan niet inloggen FMEA	33
Bijlages	34
Literatuurliist	35

1- Inleiding

Doordat er in stedelijke gebieden veel verkeer is komen Uber's, Lyft's en taxi's niet altijd op tijd. Uber en Lyft gaven aan dat ze bijdragen aan het verminderen waren, van het aantal voertuigen in de steden, maar uit bron 1 blijkt dat dit niet helemaal waar is. Integendeel maken ze de verkeerssituatie alleen maar erger. Hierdoor is Uber zelf ook aan de slag gegaan met een toekomstgerichte probleemoplossing (bron 2). Ook zij zijn bezig met de ontwikkeling van een drone die geschikt is voor passagiersvervoer, om dit mogelijk te maken hebben ze het bedrijf Joby Aviaton gecontacteerd voor de ontwikkeling van een drone.

Figuur 1: Een van de vele uber drone concepten

Opdrachtgever Elon Musk kan natuurlijk niet achterblijven en is ook aan de gang gegaan met een oplossing. Hij heeft een passende oplossing bedacht, namelijk drone's voor personentransport. In dit document zijn alle aspecten van zijn drone verder toegelicht.

1.1- Referentie

- De Reader: Reader System Engineering
- Architectural Reasoning Explained: ArchitecturalReasoningBook
- Chapter 2 of Incose Systems Engineering Handbook: SEHandbookv3
- Chapter 2 of Nasa Systems Engineering Handbook: nasa_systems_engineering_handbook
- ISO 25010:2011
- SYSML Distilled Deligatti

1.2- Leeswijzer

Het Architectuur overzicht biedt een overzicht van de stakeholders en hun belangen bij het systeem. Vervolgens gaan we deze belangen uitbreiden door middel van de Architectuur Requirements en de Requirements Traceability. In de Logische view presenteren we vervolgens de dronesysteemconcept op basis van de uitgebreide belangen. Vervolgens verdiepen we ons in de software structure van het dronesysteem bij de Development View en verdiepen we ons in de fysieke concept en de desbetreffende beslissingen bij de realisatie view.

2- Architectuur Overzicht

2.1- Systeem Context

Figuur 2: Systeemcontext Diagram

Het diagram zoals te zien in figuur 2 beschrijft de context van het Personal Drone Transportsysteem. In dit figuur kun je zien dat de passagier en klant apart van elkaar staan. In deze context is de passagier enkel de persoon die de reis aflegt en de klant de persoon die de vlucht boekt voor de passagier tevens kan de klant en passagier ook dezelfde persoon zijn.

2.2- Stakeholders

Figuur 3: Onion Model

In figuur 3 is het onion model te zien. In dit model maken we duidelijk wie onze belangrijkste stakeholders zijn en wat hun relatie is met het project. Dit project is opgezet door de opdrachtgever te vinden in de business laag deze is betrokken geweest bij het initiële design proces en financieërt het project, om in eerste instantie door te kunnen verkopen aan de klant. Die dan het product op de markt kunnen gaan brengen voor de gebruikers.

Betrokkenheid

Figuur 4: invloed-betrokkenheidsdiagram

Ook in het figuur hierboven worden de belangrijkste stakeholders geanalyseerd. Het opvallende hier is dat het publiek centraal staat in het diagram. Hier is voor gekozen, omdat onze opdrachtgever erg veel om zijn publieke imago geeft.

2.3- Key drivers

Stakeholders	Keydrivers
Opdrachtgever, Gebruikers, Publiek en Overheid	Veiligheid
Opdrachtgever en Publiek	Publiek
Gebruikers	Gebruiksgemak
Klant	Rendement
Opdrachtgever, Klant en Gebruikers	Snelheid
Leverancier, Opdrachtgever, Klant en Gebruiker	Mensentransport

Keydrivers	Toelichtingen	Application Drivers	Requirements
Veiligheid	De drones veroorzaken geen gevaarlijke situaties.	Volgt procedures.Periode hardware check.Veilige afstand behouden.	 Procedures Onderhoudspersoneel Intern controlesysteem Afstand meten
Publiek	De drones storen de mensen in hun omgeving niet.	Stoort de omgeving niet.	Chassis kleurStille elektromotoren
Gebruiksgemak	De gebruikers kunnen zonder extra instructies gebruik maken van het systeem.	Overzichtelijke App.Gemakkelijk bemanningsproces .	 Phone App Nabije landing Katrolsysteem Passagiers verificatie
Rendement	De klanten willen winst kunnen maken met dit systeem.	Rendabele drone productie kosten.Lage onderhoudskosten.	BudgetOnderhoudskosten
Snelheid	De drones moeten even snel zijn als auto's.	Korte wachttijd.Competitief met auto's.	OplaadpuntenBatterijenSnelle elektromotoren
Mensentransport	De drones moeten mensen comfortabel kunnen vervoeren.	Comfortabel transportproces.Transportsysteem.	InterieurMinimal tilvermogenDrone beheersysteemDrone navigatiesysteem

2.4- Key driver graph

Figuur 5: Deel 1/2 van de Keydriver Graph

Figuur 6: deel 2/2 van de Keydriver Graph

3- Architectuur Requirements

3.1- Functional Requirements

F01 – ONDERHOUDSPERSONEEL

OMSCHRIJVING	De drone moet periodiek en/of gebaseerd op sensor lezingen onderhouden worden.
RATIONALE	De drone moet ten alle tijden volledig functioneel zijn.
BUSINESS PRIORITY	Must Have

F02 – AFSTAND BEWAREN

OMSCHRIJVING	De drone moet de afstand met zijn omgeving bewaren.
RATIONALE	Het is belangrijk dat de drone geen schade aan zijn omgeving
	aanricht.
BUSINESS PRIORITY	Must Have

F03 - MOBIEL OPROEPBAAR

OMSCHRIJVING	De drones moeten opgeroepen kunnen worden met een overzichtelijke app en de app moet voor iedereen beschikbaar zijn.
RATIONALE	De gebruikers moeten een drone kunnen boeken.
BUSINESS PRIORITY	Must Have

F04 – NABIJE LANDING

OMSCHRIJVING	De drone probeert zo dichtbij de afgesproken locatie te landen
	indien mogelijk.
RATIONALE	De gebruiker moet zich niet al te ver hoeven te verplaatsen voor de drone.
BUSINESS PRIORITY	Should Have

F05 – KATROLSYSTEEM

OMSCHRIJVING	Het katrolproces moet gemakkelijk en comfortabel verlopen.
RATIONALE	Het moet makkelijk zijn voor de passagiers om in te kunnen stappen
	op plekken waar het niet mogelijk is om te landen.
BUSINESS PRIORITY	Should Have

F06 – PASSAGIERS VERIFICATIE

OMSCHRIJVING	De passagier moet geverifieerd worden.
RATIONALE	De drone moet kunnen verifiëren of de juiste persoon probeert in te
	stappen.
BUSINESS PRIORITY	Should Have

F07 - OPLAADPUNTEN

OMSCHRIJVING	Er moeten meerderen oplaadpunten verspreid zijn over een stad zodat de drones dichterbij de gebruikers kunnen zijn.
RATIONALE	De gebruiker wilt namelijk een zo kort mogelijke wachttijd.
BUSINESS PRIORITY	Should Have

F08 – OPLAADBARE DRONES

OMSCHRIJVING	De drones moeten oplaadbaar zijn
RATIONALE	De drones moeten meerdere keren in te zetten zijn.
BUSINESS PRIORITY	Must Have

F09 – OP AFSTAND BESTUURBAAR

OMSCHRIJVING	De drones moeten naar locatie gestuurd kunnen worden indien beschikbaar.
RATIONALE	De drones moeten aangestuurd kunnen worden door een centraal beheert systeem.
BUSINESS PRIORITY	Must Have

F10 – ZELFSTANDIG NAVIGEREN

OMSCHRIJVING	De drone moet een speciaal navigatiesysteem hebben.
RATIONALE	De drone moet correct kunnen navigeren in de luchtwegen.
BUSINESS PRIORITY	Must Have

3.2 – Non-Functional Requirements

NF01 - PROCEDURES

OMSCHRIJVING	De drone houd zich aan de veiligheidsprocedures.
RATIONALE	De drone moet veilig zijn.
BUSINESS PRIORITY	Must Have

NF02 - INTERN CONTROLESYSTEEM

OMSCHRIJVING	De drone kan zijn hardware controleren op defects.
RATIONALE	De drone moet aan kunnen geven wanneer er iets mis is.
BUSINESS PRIORITY	Must Have

NF03 – CHASSISKLEUR

OMSCHRIJVING	De drone moet een zo onopvallend mogelijke chassiskleur hebben.
RATIONALE	De drone moet de mensen uit de omgeving niet storen.
BUSINESS PRIORITY	Should Have

NF04 - STILLE DRONES

OMSCHRIJVING	De drones mogen niet luider zijn dan 55 dB.
RATIONALE	De drone moet de mensen uit de omgeving niet storen.
BUSINESS PRIORITY	Must Have

NF05 - BATTERIJEN

OMSCHRIJVING	De drone moet rond de 200 km af kunnen leggen voordat de drone moet worden herladen.
RATIONALE	De drone moet zoveel mogelijk ingezet kunnen worden.
BUSINESS PRIORITY	Should Have

NF06 - SNELLE DRONES

OMSCHRIJVING	De drones moeten 120 km/u kunnen bereiken.
RATIONALE	De drone moet competitief zijn met onder anderen auto's.
BUSINESS PRIORITY	Must Have

NF07 - INTERIEUR

OMSCHRIJVING	Het interieur van de drone moet ruim genoeg zijn voor de
	gemiddelde Amerikaan.
RATIONALE	Comfort van de passagier.
BUSINESS PRIORITY	Should Have

NF8 – MINIMAAL TILVERMOGEN

OMSCHRIJVING	De drone moet 1 passagier en wat bagage kunnen vervoeren.
RATIONALE	De gebruiker moet wat handbagage met zich mee kunnen nemen.
BUSINESS PRIORITY	Must Have

3.3 - Constraints

C01 – MAXIMALE VLIEGHOOGTE

OMSCHRIJVING	Drones zijn toegestaan te vliegen tot en met een hoogte van ~106
	meter in Silicon Valley.

CO2 – FLYZONES

OMSCHRIJVING	De drones moeten rekening houden met no-fly zones.
BUSINESS PRIORITY	Must Have

CO3 – BUDGET

OMSCHRIJVING	De door ons geproduceerde drones mogen niet duurder zijn dan de
	concurrenten

3.3- Usecases

Usecase beschrijvingen

UC01 – Plan Vlucht	UC01 – Plan Vlucht	
Actor	Klant	
Samenvatting	De klant boekt een vlucht.	
Preconditie	-	
Scenario	Klant voert gebruikersnaam en wachtwoord in.	
	2. Systeem valideert gebruikersnaam en wachtwoord.	
	3. Klant voert begin en eindlocatie in.	
	4. Systeem valideert begin en eindlocatie.	
	5. Systeem displayed alle beschikbare drones.	
	6. Klant wordt verstuurd naar het betaalscherm.	
Postconditie	Klant is naar de betaalscherm gestuurd.	
Uitzonderingen	2a Gebruiksnaam is ongeldig.	
	2b Wachtwoord is ongeldig.	
	4a Begin en/of eindlocatie is te ver weg	
	5a Er zijn geen beschikbare drones op de aangegeven locaties.	

UC02 – Check-out	
Actor	Klant en Betaalsystemen
Samenvatting	De klant kan de vlucht betalen of annuleren.
Preconditie	De klant moet een vlucht hebben gekozen.
Scenario	1. Klant kiest betaalmethode.
	2. Klant rond betaling af.
	3. Vlucht is geboekt.
Postconditie	Vlucht is geboekt. Klant annuleert de boeking.
Uitzonderingen	Klant annuleert de betaling.

UC03 – Plan Route	
Actor	GPS-Netwerk
Samenvatting	De Drone wordt aangeroepen.
Preconditie	De klant moet een vlucht hebben geboekt.
Scenario	Systeem stuurt begin en eindlocatie naar de desbetreffende controltower.
	2. Controltower stuurt de meest geschikte¹ drone naar locatie.
Postconditie	Drone is onderweg.
Uitzonderingen	-

¹de meest geschikte drone betreft in dit geval de dichtstbijzijnde drone die ook genoeg batterijspanning heeft om de desbetreffende reis te kunnen maken.

UC04 - Reizen	
Actor	Passagier en Obstakels
Samenvatting	Het maken van een reis met passagiers
Preconditie	De route moet zijn gedefinieerd. De passagier moet aanwezig zijn. De drone is op locatie A.
Scenario	De drone volgt geplande route.
	2. De drone is aangekomen op locatie.
	3. De drone controleert landmogelijkheden.3.1. De drone haalt de passagier op.3.2. De drone zet de passagier af.
	4. De drone controleert op route.4.1. Het systeem gaat terug naar stap 1.4.2. Het systeem gaat door naar stap 5.
	5. De drone gaat naar de dichtstbijzijnde beschikbare oplaadpunt.
Postconditie	De passagier is afgezet.
Uitzonderingen	1a De drone kan niet vliegen.
	1b De drone moet vanwege externe factoren een noodlanding maken
	5a De drone is ingepland voor een nieuwe route 1. het systeem gaat terug naar stap 1.

UC05 – Controleer Landmogelijkheden	
Actor	Passagier en Obstakels
Samenvatting	De drone checkt of er bij de bestemming geland kan worden.
Preconditie	De drone moet in de lucht zijn.
	2. De drone moet bij de bestemming zijn
Scenario	De drone controleert het Externe weersysteem en Obstakels.
	 De metingen indiceren er op dat er geland kan worden. 2.1. De drone landt.
	 De metingen indiceren er op dat er niet geland kan worden. 3.1. De drone gebruikt het katrolsysteem.
	4. De metingen indiceren er op dat er geen gebruik gemaakt kan worden van het katrolsysteem.4.1 De drone zoekt een nieuwe locatie en gaat terug naar stap 1.
Postconditie	De drone voert een landmogelijkheid uit.
Uitzonderingen	De landoptie wordt geforceerd naar noodlanding.

UC06 – Gebruik Katrolsysteem	
Actor	Passagier
Samenvatting	De passagier wordt via een katrol systeem naar de drone opgehesen of naar de grond gedaald.
Preconditie	1. Het is niet veilig om te landen.
Scenario	 De drone vliegt boven de bestemming of positie van de passagier. De drone laat het katrol systeem dalen. De passagier wordt of afgezet of opgehaald. Het katrolsysteem wordt opgehesen.
Postconditie	 De passagier is opgehesen. De passagier is gedaald.
Uitzonderingen	-

UC07 - Drone Landen	
Actor	Passagier
Samenvatting	De drone landt.
Preconditie	1. De drone is in de lucht.
	2. Het is veilig om te landen.
Scenario	De drone vliegt boven de besteming.
	2. De drone daalt naar beneden.
Postconditie	1. De drone is geland.
Uitzonderingen	-

UC08 - Noodlanding	
Actor	Obstakels
Samenvatting	De drone maakt een noodlanding
Preconditie	De drone heeft besloten dat vliegen niet meer veilig is vanwege externe factoren
Scenario	 De drone probeert te landen. De drone land. De drone kan niet landen. De drone zoekt nieuwe locatie en voert stap 1 opnieuw uit.
Postconditie	De drone is geland
Uitzonderingen	1a De drone kan niet vliegen of landen en stort neer

UC09 – Controleer drone onderhoudssysteem	
Actor	Onderhoudspersoneel, Schoonmaker
Samenvatting	De drone geeft waarschuwingen aan, deze dienen te worden gecontroleerd door het onderhoudspersoneel en de schoonmaker.
Preconditie	-
Scenario	 Onderhoudspersoneel checkt de onderhoudsinterval. Onderhoudspersoneel checkt onderhoudswaarschuwingen. Schoonmaker checkt of de drone schoongemaakt moet worden. 3.1. De drone heeft geen onderhoud nodig. 3.2. De drone heeft geen onderhoud of schoonmaakbeurt nodig.
Postconditie	 Drone heeft onderhoud nodig. Drone heeft schoonmaakbeurt nodig. Drone heeft geen onderhoud of schoonmaakbeurt nodig.
Uitzonderingen	-

UC10 - Drone onderhouden	
Actor	Onderhoudspersoneel, Schoonmaker
Samenvatting	De drone heeft onderhoud nodig.
Preconditie	Het onderhoudspersoneel heeft aangegeven dat de drone onderhoud nodig heeft.
Scenario	 1.1 De drone wordt door het onderhoudspersoneel deels gedemonteerd. 1.2 De vervangende onderdelen worden geïnstalleerd. 2.1 De drone wordt nagecheckt op de veiligheidspunten 2.2 Er wordt een testvlucht gemaakt. 3. De drone is klaar voor her ingebruikname.
Postconditie	Drone is klaar om weer ingezet te worden
Uitzonderingen	De drone kan niet meer worden gerepareerd

UC11 - Drone schoonmaken	
Actor	Onderhoudspersoneel, Schoonmaker
Samenvatting	De drone moet worden schoongemaakt.
Preconditie	Het schoonmaakpersoneel heeft aangegeven dat de drone moet worden schoongemaakt.
Scenario	 Schoonmakers ruimen losse rommel op Schoonmakers stofzuigen de drone Schoonmakers dweilen de drone en nemen de instrumentpanelen af
Postconditie	De drone is schoon.
Uitzonderingen	

Usecase diagram

Figuur 7: Usecase diagram

3.4- Activity Diagram(men)

Figuur 8: Activity Diagram van Usecase: Controleer Landmogelijkheden voor verdere informatie bij figuur 7 refereer naar use case 5: Controleer landmogelijkheden.

4- Requirements Traceability

Figuur 9: Tracibility Diagram

5- Logische View

Figuur 10: Logische View

Op afbeelding 10 is de logische view van ons systeem te zien. De logische view is een concept van ons Drone Transportsysteem. Het eerste onderdeel van de drone is het besturingssysteem. Alle subsystemen worden aangestuurd door het besturingssysteem. Het sensorsubsysteem krijgt al zijn informatie van zijn sensoren en stuurt die vervolgens door naar het besturingssysteem. Ook kalibreert het sensorsubsysteem met de informatie die hij heeft gekregen de spanningsmeter, gyrosensor en accelerometer. Het authenticatiesubsysteem verstuurt een signaal door naar het slot als de passagier zichzelf heeft laten verifiëren. Als het slot opengaat kunnen de deuren en bagage worden geopend. Het katrolsubsysteem bevat een touw en harnas voor de passagier en stuurt de elektromotoren aan wanneer het katrol wordt gebruikt. Het motorsubsysteem stuurt simpel weg alleen de elektromotoren aan. De elektromotoren worden vervolgens gebruikt door de deur en natuurlijk de propellers. Het tweede onderdeel van de drone is de chassis. De chassis bevat een deur en propellers. Het derde onderdeel van de drone is het interieur die een stoel, bagagevak, touchscreen, luidsprekers en een noodknop bevat. De touchscreen en de luidsprekers worden bestuurt door het infotainment subsysteem. Het infotainment subsysteem stuurt beeldmateriaal door naar de touchscreen en speelt geluid af via de luidsprekers.

6- Development View

6.1 Software structure

Figuur 11: BDD Software Structure

Op afbeelding 11 is het BDD van de drone over de Software Structure te zien. In dit diagram staat de drone centraal, aan de drone zitten verschillende subsystemen verbonden. Communicatie zorgt ervoor dat er data heen en weer verstuurd kan worden met de controle toren. De drone verstuurt zijn huidige locatie en resterende batterij percentage op en de controle toren verstuurt de begin en eindlocaties op. De communicatie verloopt via een radio signaal (3/4/5G). Gebaseerd op deze data zal de drone het vlucht subsysteem aanroepen, zodra de drone op locatie is zal hij de beste landingsoptie proberen te volbrengen. De beste landingsoptie wordt bepaalt doormiddel van de sensoren en de bijbehorende subsystemen.

Figuur 12: IBD Sensor Subsysteem Software Structure

Op afbeelding 12 is het IBD van het subsysteem sensoren te zien. In dit diagram laten wij zien wat voor data op welke manier wordt uitgewisseld. De sensoren versturen data door naar de desbetreffende sensorcontrollers. De sensorcontrollers verwerken vervolgens de data om het in een bruikbare manier door te sturen naar het sensorsubsysteem die het vervolgens verwerkt naar bruikbare data voor de rest van de subsystemen.

7- Proces View

SUBSYSTEEM	SUBSYSTEEM PROCES BESCHRIJVING
VLUCHT CONTROL	Het aansturen van de vier propellers van de drone. De vier propellers worden
	individueel aangestuurd om manoeuvres te kunnen maken.
	States: inactief, zweven, vooruit, draaien, opstijgen, landen
	Events: Input gedetecteerd
VEILIGHEID CONTROL	Het controleren van het systeem zowel intern als extern. Hierbij wordt ook
	gecontroleerd of vliegen, landen en het katrol systeem gebruiken mogelijk is.
	States: interne controle, externe controle
	Events: landen, opstijgen, vliegen
STROOM CONTROL	Het regelen van de elektriciteit binnen de drone.
	States: levert elektriciteit
	Event: drone aan, drone uit
BEREKEN ROUTE	Bereken de route die de drone zal gaan afleggen. Hierbij hoort ook het
	aanpassen van de route in geval van obstakel
	States: bereken route, bereken kleine aanpassing
	Events: opstijgen, input gedetecteerd
LANDING CONTROL	Verantwoordelijk voor het landen van de drone. Hierbij wordt het katrol
	systeem en het klassiek landen bedoelt.
	State: landen, katrolsysteem gebruiken
	Event: input gedetecteerd

In de tabel hierboven zijn een aantal subsystemen beschreven. Deze subsystemen kunnen in samenwerking met elkaar de drone besturen zoals vereist van het systeem in zijn geheel. Hierbij wordt speciaal focus gelegd op veiligheid. Niet alleen bij het vliegen, maar ook bij het stijgen en landen. De vlucht control, stroom control en landing control spreken voor zich, maar veiligheid control en bereken route kunnen nog wat extra toelichting gebruiken. Het veiligheidssysteem is bedoeld om te controleren of de situatie binnen en buiten de drone nog is zoals verwacht en of er geen acties ondernomen moeten worden om veiligheid te verhogen. Dit systeem werkt dan ook nauw samen met bereken route. Dit subsysteem maakt met een eindlocatie een verwachte route die de drone in principe zou kunnen uitvoeren tot de eindbestemming. Maar deze kan ook een input krijgen van het veiligheid control om kleine aanpassing te maken aan de route.

8- Realisatie View

8.1- Physical View

odd[package] Structure [Drone]

In afbeelding 13 is het BDD van de drone over de physical view te zien. Het hart van dit systeem is de boordcomputer, deze regelt de meeste taken van de drone. Aan de boordcomputer zitten verschillende onderdelen verbonden. Communicatie zorgt voor het versturen van data tussen de drone en de controletoren en vraagt de GPS coördinaten van de drone op. De drone communiceert met de controle toren via een radiosignaal (3/4/5g). De black box is een vluchtlogger, deze dient goed beschermt te zijn tegen impacts en heeft voldoende opslag nodig, vandaar dat hierin 2 constraints zitten verwerkt met betrekking tot de opslaggrootte en de behuizingsterkte. In dit diagram zitten verschillende standard ports verwerkt. Deze sturen tussen communicatie en boordcomputer alle inkomende en uitgaande data, denk aan de locatie, snelheid, batterijpercentage, etc. Ook is er een standard port geplaatst tussen de sensorcontroller en de elektronische motorcontroller, deze stuurt informatie zodra een afwijkende situatie plaatsvind in de omgeving. De voeding in het systeem voorziet de onderdelen van stroom, bijvoorbeeld de elektronische motor controller, deze stuurt de motoren en de stappenmotor van het katrolsysteem aan.

ibd [block] Communicatie [flow oriented view]

Figuur 14: IBD Communicatie Physical View

In afbeelding 14 is het IBD van de communicatie van de drone over de physical view te zien. Communicatie is verder toegelicht omdat deze een ingewikkelde werking heeft. Er zijn twee antennes in het blok communicatie, een van deze twee is voor de communicatie met gps satellieten, de andere antenne is voor de communicatie met de controletoren. Deze zenden en ontvangen radio frequentie cycles, hieronder staan modulators en demodulators, de modulator maakt van packets radio frequentie cycles en de demodulator doet dit andersom. Deze packets worden vertaald via translators, deze zetten de packets om in nuttige data die vervolgens naar de boordcomputer van de drone kan worden verstuurd.

Figuur 15: SOD BDD Physical View

In afbeelding 15 is de BDD van de physical view van het systeem om de drone heen te zien. Hier in worden het oplaadpunt, de controletoren en de smartphone gemodelleerd. Het oplaadpunt bestaat uit alle onderdelen die zorgen voor de voeding voor de drone. Ook is deze direct verbonden met de server die gebruikt wordt door de controletoren en smartphone. Deze server is ook direct verbonden met de controletoren. De controletoren heeft ook een antenne en een beveiligingssysteem die bestaat uit beveiligingscamera's en bewegingssensoren. De smartphone heeft een GPS die gebruikt wordt om de locatie van de gebruiker te vinden.

Figuur 16: IBD Beveilingssysteem

In afbeelding 16 is de IBD van de physical view van het beveiligingssysteem van de controletoren te zien. Het hart van het beveiligingssysteem is de computer, deze is verbonden met alle andere delen. De computer ontvangt de videobeelden van de beveiligingscamera's en ontvangt ook de bewegingssignalen van de bewegingssensoren. De computer stuurt een alarmsignaal naar het alarmsysteem. De computer Data sturen en ontvangen van de SSD en controletoren.

8.2- Ontwerpkeuzes

Beslissingsmatrix motoren

Kwaliteitsattribuut	weegfactor	Elektrische motor		Benzine motor		Hybride motor	
		waarde	score	waarde	score	Waarde	score
Milieu	0,3	++	100	-	25	+	50
kosten brandstof	0,1	74 euro	100	131 euro	55	101 euro	70
Geluid(50 km/h)	0,3	80 dB	100	85 dB	60	82 dB	80
Snelheid	0,2	112.7	75	105	50	125	100
		km/h		km/h		km/h	
Kracht	0,1	99kW	90	88 kW	75	103	100
Gewogen			94		48.5		76
gemiddelde							
Minimum score			75		25		50

Beslissingsmatrix interieur materialen

Kwaliteitsattribuut	weegfactor	leer		Pu leer		textiel	
		waarde	score	waarde	score	Waarde	score
Milieu	0,2		10	+	70	++	100
kosten	0,1	799 euro	30	399 euro	100	429 euro	85
comfort	0,3	++	100	+	80	-	40
Onderhoud	0,2	++	100	+	60		0
Duurzaamheid	0,2	++	100	-	25	+	70
Gewogen			75		65		54.5
gemiddelde							
Minimum score			10		25		0

Beslissingsmatrix communicatie protocollen

Kwaliteitsattribuut	weegfactor	4g		Radiosignaal		bluetooth	
		waarde	score	waarde	score	Waarde	score
Range	0,2	16 km	100	10 km	70	1 km	30
Data grote	0,1	100 Mb/s	100	80 Kb/s	40	2 Mb/s	75
Stroom	0,3	6 KW	30	4 W	60	0.5 W	100
Onderhoudskosten	0,2	-	50	++	100		0
Bestaand netwerk	0,2	++	100	++	100		0
Gewogen			69		76		43.5
gemiddelde							
Minimum score			30		40		0

Beslissingsmatrix exterieur materialen

Kwaliteitsattribuut	weegfactor	aluminium		plastic		Carbon fiber	
		waarde	score	waarde	score	Waarde	score
Prijs	0,1	2 euro/kg	50	0.20	100	18.25	20
				euro/kg		euro/kg	
Duurzaamheid	0,2	+	100	-	40	++	75
Gewicht	0,2	2712	20	940	100	1800	50
		kg/m^3		kg/m^3		kg/m^3	
Onderhoud	0,2	++	50	-	25	-	25
Elasticiteit	0,3	27 GPa	90	1 GPa	0	31 GPa	100
Gewogen			66		43		62
gemiddelde							
Minimum score			20		0		25

Er zijn 4 beslissingsmatrixen gemaakt. Deze gaan over de motor, het materiaal van de stoel, opties voor communicatie tussen de drone en controletoren, en het materiaal van de chassis. Bij het selecteren van de motor is de focus gelegd op de omgeving. Zoals eerder in dit document ook al naar voren is gekomen is het voor dit project erg belangrijk dat het publiek een positief beeld heeft van het drone systeem. Factoren zoals geluid en duurzaamheid staan hierom hoger aangeschreven dan gebruikelijk zou zijn voor een vergelijkbare opdracht. Uit deze matrix komt overweldigend de Elektromotor als beste naar voren.

Voor het materiaal van de stoelen is de keuze minder voor de hand liggend. Alle drie de opties hier hebben minimaal één score die erg slecht is. Hoewel Pu leer de hoogste minimum score heeft gekregen is het gemiddelde van leer hoger. Leer scoort enorm slecht op twee categorieën maar uitzonderlijk goed op de rest. Tevens scoort leer ook een 100 op de belangrijkste score comfort. En dus zou leer als beste gezien kunnen worden.

Het communicatie medium is erg subjectief. Niet alleen zijn voor hetzelfde systeem meerdere factoren belangrijk maar ook is het vinden van waardes zonder concrete meting erg lastig. Ondanks dit is er wel een beslissing matrix opgezet. Uit deze matrix komt duidelijk dat gebruik maken van een radio signaal zonder meer het beste is. Niet alleen is de gemiddelde waarde van radio het hoogst, maar ook is de laagste score hoger dan zijn twee concurrenten. Echter moet hierbij wel worden opgemerkt dat de waardes die zijn verkregen erg afhangen van de context van het systeem. Signaal sterke en data grote kan enorm veranderen op basis van antennes zowel bij de ontvanger als de zender.

Tot slot is er een afweging gemaakt voor verschillende materialen van de chassis. Hierbij zijn aluminium, plastic en carbon fiber vergeleken. Carbon fiber en aluminium komen hier uit met vergelijkbare scores. Aluminium scoort het beste overall, maar carbon fiber heeft een betere minimum score. Maar ook dit ligt erg dicht bij elkaar. Uiteindelijk zal het gewogen gemiddelde zwaarder wegen dan de minimum score. En dus kan aluminium als materiaal voor de chassis worden aangeraden.

8.3- FMEA

Defecte Motor FMEA

Drone Overbelast FMEA

Kan niet inloggen FMEA

Voor de failure mode is er met namen gekeken naar oorzaken voor het neerstorten van de drone. Hieruit is dan ook snel af te lezen dat neerstorten met namen zal komen door defecten van de drone. Dit zou verholpen moeten worden door periodieken checks zowel intern door de drone als extern door een monteur. Ook wordt uitgelicht dat voor een product als dit voorlichting en hulp met het ontdekken en begrijpen van het systeem belangrijk is om user error te voorkomen. Tot slot laat de laatste FMEA ook zien dat er problemen in het systeem kunnen ontstaan die geen preventie hebben. Maar waarbij het vooral belangrijk is om na te denken over acties die in het geval van dergelijke situaties ondernemen moeten worden.

Bijlages

Literatuurlijst

Afbeelding 1: eCRM-002. (z.d.). [Illustratie]. evtol. https://evtol.news/uber-elevate-ecrm-002/

Bron 1: Hawkins, A. J. (2019, 6 augustus). *Uber and Lyft finally admit they're making traffic congestion worse in cities*. The Verge. https://www.theverge.com/2019/8/6/20756945/uber-lyft-tnc-vmt-traffic-congestion-study-fehr-peers

Bron 2 : Yamanouch, K. (2019, 27 mei). *Could drones be the solution to traffic gridlock?* PHYS. https://phys.org/news/2019-05-drones-solution-traffic-gridlock.html