

Platformy programistyczne .Net i Java - LAB3

Politechnika Wrocławska

Wydział Informatyki i telekomunikacji

Kierunek: Informatyczne systemy automatyki

grupa nr 2

github.com/wernexnrs/264254-.NET-i-Java

Dawid Popławski - 264254

Termin zajęc: Środa godz. $17\frac{05}{}$ - $18\frac{45}{}$

Prowadzący: mgr inż. Michał Jaroszczuk

α •	, , ·
nic	tracal
OUL	treści

	Spis treser						
1	Opis programu	2					
2	Uzyskane dane z przeprowadzonych eksperymentów	3					
3	Wykresy	4					

Opis programu

Zaprezentowany program demonstruje zastosowanie wielowątkowości w różnych kontekstach i poziomach abstrakcji w aplikacji Windows Forms. Główne funkcje programu obejmują równoległe przetwarzanie macierzy i operacje na obrazach, gdzie kluczowym elementem jest eksploracja wpływu wielowątkowości na wydajność obliczeń.

Aplikacja oferuje dwa tryby przetwarzania macierzy, które różnią się podejściem do równoległości:

- LL (Low-Level Multithreading): Wykorzystuje bezpośrednie zarządzanie wątkami (System.Threading.Thread) do ręcznego podziału pracy i synchronizacji. Jest to podejście "niskopoziomowe", gdzie programista ma pełną kontrolę nad procesem tworzenia, uruchamiania i synchronizacji wątków. Ta metoda jest bardziej złożona i podatna na błędy, ale oferuje większą elastyczność.
 - Praca jest podzielona równomiernie między wątki, gdzie każdy wątek otrzymuje określoną liczbę wierszy do przetworzenia.
 Jeśli liczba wierszy N nie dzieli się równo przez liczbę wątków, ostatni wątek przetwarza dodatkowe wiersze.
 - Każdy wątek wykonuje mnożenie dla swojego segmentu macierzy. Dla każdego wiersza, elementy wiersza są mnożone przez każdą kolumnę drugiej macierzy, a wyniki są sumowane, aby uzyskać odpowiednie elementy macierzy wynikowej.
- HL (High-Level Multithreading): Używa abstrakcji takich jak Parallel.For do automatyzacji podziału pracy i zarządzania wykonaniem. Jest to "wysokopoziomowe" podejście, które redukuje ilość wymaganego kodu i potencjalnych błędów, czyniąc program łatwiejszym w implementacji i utrzymaniu.

Funkcjonalności związane z obrazami:

- Umożliwia wczytanie obrazu przez użytkownika i zastosowanie różnych filtrów: skali szarości, negatywu, progowania, oraz lustrzanego odbicia.
- Filtry te są stosowane równolegle za pomocą Parallel.Invoke(), co demonstruje wykorzystanie wielowątkowości do przyspieszenia operacji na obrazach.

Uzyskane dane z przeprowadzonych eksperymentów

1 wątek							
Rozmiar macierzy	S	LL	HL				
100	0,0163	0,0175	0,02				
150	0,0554	0,0547	0,0758				
200	0,1287	0,1282	0,1314				
250	0,2489	0,2497	0,2541				
300	0,4337	0,4299	0,4372				
500	1,9923	1,983	2,0056				
600	3,5597	3,5326	3,4395				
650	4,3859	4,4557	4,5201				
800	8,3439		_				
2 wątki							
100	0,0163	0,0092	0,0179				
150	0,0554	0,0303	0,0371				
200	0,1287	0,0712	0,0853				
250	0,2489	0,1403	0,1516				
300	0,4337	0,2383	0,2517				
500	1,9923	1,1377	1,1543				
600	3,5597	1,9831	2,0195				
650	4,3859	2,4186	2,4957				
800	8,3439	4,6448	4,7193				
	3 wątki						
100	0,0163	0,007	0,0192				
150	0,0554	0,0216	0,0355				
200	0,1287	0,056	0,0677				
250	0,2489	0,1026	0,1182				
300	0,4337	0,1874	0,1991				
500	1,9923	0,8223	0,8513				
600	3,5597	1,461	1,5232				
650	4,3859	1,7706	1,8931				
800	8,3439	3,3573	3,4131				
,	4 wątki						
100	0,0163	0,0071	0,0266				
150	0,0554	0,0184	0,0384				
200	0,1287	0,0488	0,066				
250	0,2489	0,0883	0,1034				
300	0,4337	0,1572	0,1852				
500	1,9923	0,7333	0,7195				
600	3,5597	1,2012	1,3347				
650	4,3859	1,5038	1,574				
800	8,3439	2,7907	2,8952				

Tabela 2.1: Tabela przedstawiająca czasy wykonywania dla poszczególbych metod z wybranymi ilościami wątków.

Wykresy

Rys. 3.1: Wykres przedstawiający zależność czasu wykonanai od rozmiaru macierzy dla wielowątkowości niskiego poziomu.

Rys. 3.2: Wykres przedstawiający zależność czasu wykonanai od rozmiaru macierzy dla wielowątkowości wysokiego poziomu.

Rys. 3.3: Wykres przedstawiający zależność czasu wykonanai od rozmiaru macierzy dla wielowątkowości obu poziomów.

Rys. 3.4: Wynik programu.