Intro to Machine Lear	ning
* Machine Learning: Training software, called a model, t predictions or generate conte	o make useful
. How Machine Learning Model	s work?
Decision Tree: They are to blocks for some of the in Data Science. They are understand.	best models
Eg:- Sample Decision Tr. Does house have more than 2 bedre	
Predicted Price:	Predicted price \$ 188000

We use data to décide how to break houses into 2 groups & then again to determine the predicted price in each group.

\$ 178000

This step of capturing patterns from dolo.
is colled fitting or training the mode
The data used to fit the model is
called the training data.
Decision Tree can be expanded which has
more "splits". These are called as
"deeper" trees.
The point at the bottom where
we make a prediction is called
a leaf!
The splits & values at the leaves
will be determined by the data.
* Using Pandas to get familiar with Data
Para
We'll use Panda's library to familiarize
yourself with data in machine learning
project.

> Pandas is the primary tool data scientists use for exploring & manipulating data. (Abbreviated as pd)
import pandas as pd
Tmp part of Panda's library is Duta Frame. DataFrame holds type of dota you might think of as a table, similar to sheet in Excel; or table in SQL database. *Loading Data:
import pandas as pd file_path = ' CSV' # Path of file to read
home-data = pd. read-csv(file-path) stept-check() # call line below with no organish to check that you have loaded data correctly
* Review Data: # shows data home-data describe() in forms of rows & columns

Selecting Data for Modeling: If your dataset has too many variable, it is difficult to understand it. Hence to choose variables/columns, we'll need to see a list of all columns in dataset This is done with columns property of Data Frome.
Eg: readed - file · columns File name
Nays to select a subset of your Data: (1) Dot Notation, which we use to select prediction torget! (2) Selecting with a column list, which we use to select the features!
O Dot Notation: You car pull out a variable with dot-notation. This single column is stored in Series, which is a like a Data Frame with only single column of data

By convection, prediction target is called y.
Eg y = file-name. price
File name column
2) Choosing Features:
The columns that are inputted into our model (& later used to make predictions) are called "features"
By convertion this data is called X
Building Model:
We'll use Scikit-learn library to
create models. Also called skleams Steps to build & using a model:
· Define
o Fit
· Predict
Evaluate.

Fg.- From sklearn. tree import DecisionTree Regressor

me_model = DecisionTree Regressor (ran-skote = 1)

12 fine model

me-model. fit (X, y)

Fit mode!

· Model Validation.

- To measure quality of your model.

 Measuring model quality is the they

 to improving your models.
- The relevant measure of model quality is predictive accuracy. In other words, will the model's predictions be close to what actually happens.

We need to summarize model quality into an understandable way. he into a single metric. There are many metrics for summarizing model quality, we'll stort with Mean Absolute Error (MAE)

Error = Actual - Predicted.

with MAE metric, we take absolute

value for each error. This converts

each error to a positive number.

Then we take any of those absolute error.

H dropna () method removes the rows that contains hull values.

first define a model then,
from sklearn. metrices import mean-absolute error
predicted_val = me_model. predicted(X)
mean_absolute_error(y, predicted_val)

The measure we just computed can be called an "in-sample" score. We used a single sample for both building model & evaluting it. This is bad since model's practical value come from making predictions on new data, we measure performance on data that wasn't used to build the matel. The way to do this is to exclude some data from

model building	process	& then	use t	hose	to
test model's	accurac	y. This	data	(S	
called valida	tion do	ta.		,	

- # The scikit-learn library has a firm train-test-split to break up data into 2 pieces. We'll use some data as training data & other data as validation data to col mean absolute error.
 - · Overfitting: It is a phenomenon where model matches the training data almost perfectly, but does poorly in validation & other new data.
- · Underfitting: When a model fails to capture imp distinctions & patterns in the date so it performs poorly even in training data, that is called underfitting.

Random Forests (Using a more sophisticated machine learning algorithm)
Just wany trees, & makes a prediction by averaging the predictions of each component hee. Better predictive accuracy than a single decision tree & works well with default parameters.
We can build a model using the class Random Forest Regressor' from sklearn ensemble import RandomForest
from sklearn ensemble import RandomForrest Regresson

#