Work 1 ——线性回归

本次目标: 由前 9 个小时的 18 个 features(包含 PM2.5)预测第 10 个小时的 PM2.5。

步骤:

加载'train.csv': 数据读取格式为'big5', 在 train.csv 中, 为 12 个月, 每个月取 20 天, 每天 24 小时的资料(每个小时的资料有 18 个特征)

<pre>data = pd.read_csv('./train.csv', encoding = 'big5')</pre>																					
	日期	測站	測項	0	1	2	3	4	5	6		14	15	16	17	18	19	20	21	22	23
0	2014/1/1	豊原	AMB_TEMP	14	14	14	13	12	12	12		22	22	21	19	17	16	15	15	15	15
1	2014/1/1	豊原	CH4	1.8	1.8	1.8	1.8	1.8	1.8	1.8		1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
2	2014/1/1	豊原	co	0.51	0.41	0.39	0.37	0.35	0.3	0.37		0.37	0.37	0.47	0.69	0.56	0.45	0.38	0.35	0.36	0.32
3	2014/1/1	豊原	NMHC	0.2	0.15	0.13	0.12	0.11	0.06	0.1		0.1	0.13	0.14	0.23	0.18	0.12	0.1	0.09	0.1	0.08
4	2014/1/1	豐原	NO	0.9	0.6	0.5	1.7	1.8	1.5	1.9		2.5	2.2	2.5	2.3	2.1	1.9	1.5	1.6	1.8	1.5
4315	2014/12/20	豊原	THC	1.8	1.8	1.8	1.8	1.8	1.7	1.7		1.8	1.8	2	2.1	2	1.9	1.9	1.9	2	2
4316	2014/12/20	豊原	WD_HR	46	13	61	44	55	68	66		59	308	327	21	100	109	108	114	108	109
4317	2014/12/20	豊原	WIND_DIREC	36	55	72	327	74	52	59		18	311	52	54	121	97	107	118	100	105
4318	2014/12/20	豊原	WIND_SPEED	1.9	2.4	1.9	2.8	2.3	1.9	2.1		2.3	2.6	1.3	1	1.5	1	1.7	1.5	2	2
4319	2014/12/20	豊原	WS_HR	0.7	0.8	1.8	1	1.9	1.7	2.1		1.3	1.7	0.7	0.4	1.1	1.4	1.3	1.6	1.8	2

预处理: 取需要的数值部分,将'Rainfall'栏位全部补0

```
data = data.iloc[:, 3:]
data[data == 'NR'] = 0
raw_data = data.to_numpy()
```

特征提取: 取需要的数值部分,将'Rainfall'栏位全部补0。

Extract Features

Extract Features

Pseudo code

- 1 | Declare a 18-dim vector (Data)
- 2 | for i_th row in training data:
- 3 | Data[i_th row%18].append(every element in i_th row)

Data will become a vector like 2014/1/1 2014/1/2 2014/1/3

将资料依照每个月份重组成 12 个 18 特征 480 小时 (24 * 20) 的资料。

```
month_data = {}
for month in range(12):
    sample = np.empty([18, 480])
    for day in range(20):
        sample[:, day * 24 : (day + 1) * 24] = raw_data[18 * (20 * month + day) : 18 * (20 * month + day + 1), :]
    month_data[month] = sample
```

Extract Features

Extract Features

Pseudo code

- 1 | Declare train_x for previous 9-hr data, and train_y for 10th-hr pm2.5
- 2 | for i in all the given data:
- 3 | sample every10 hrs:
- 4 | train_x.append(previous 9-hr data)
- 5 | train_y.append(the value of 10th-hr pm2.5)
- 6 | add a bias term to every data in train_x

每个月有 480 小时,每 9 个小时形成一个 data,每个月就有 471 个 data。12 个月则有 12 * 471 个 data。每个 data 有 18 * 9 个特征值,12 * 471 个 target 值

标准化: 待完成

训练数据: 使用线性回归训练数据

Implement linear regression

Pseudo code

- 1 | Declare weight vector, initial Ir ,and # of iteration
- 2 | for i th iteration:
- $3 \mid y' =$ the inner product of train x and weight vector
- 4 | Loss = y' train_y
- 5 | gradient = 2*np.dot((train_x)', L)
- 6 | weight vector -= learning rate * gradient

$$\begin{pmatrix} 3. \\ \begin{pmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ x_{21} & \cdots & x_{2p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{pmatrix}$$

$$4. \qquad \qquad L = \begin{pmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{pmatrix} - \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$5. \qquad \qquad gradient = 2 \times$$

$$\begin{pmatrix} x_{11} & x_{21} & \cdots & x_{n1} \\ x_{12} & x_{22} & \cdots & x_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1p} & x_{2p} & \cdots & x_{np} \end{pmatrix} \begin{pmatrix} y_1' - y_1 \\ y_2' - y_2 \\ \vdots \\ y_n' - y_n \end{pmatrix}$$

$$p-dim \ vector$$

Adagrad

Pseudo code

- 1 | Declare weight vector, initial Ir ,and # of iteration Declare prev_gra storing gradients in every previous iterations
- 2 | for i th iteration:
- 3 | y' = the inner product of train_x and weight vector
- 4 | Loss = y' train_y
- 5 | gradient = 2*np.dot((train_x)', L)
 prev_gra += gra**2
 ada = np.sqrt(prev_gra)
- 6 | weight vector -= learning rate * gradient / ada

测试:载入 test.csv, 根据和训练数据相同的预先处理和特征提取的方式处理, 使得形成 240 个 18 * 9 + 1 的资料。test.csv 如下图

	id_0	AMB_TEMP	21	21.1	20	20.1	19	19.1	19.2	18	17
0	id_0	CH4	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.8
1	id_0	CO	0.39	0.36	0.36	0.4	0.53	0.55	0.34	0.31	0.23
2	id_0	NMHC	0.16	0.24	0.22	0.27	0.27	0.26	0.27	0.29	0.1
3	id_0	NO	1.3	1.3	1.3	1.3	1.4	1.6	1.2	1.1	0.9
4	id_0	NO2	17	14	13	14	18	21	8.9	9.4	5
4314	id_239	THC	1.8	1.8	1.8	1.8	1.7	1.7	1.7	1.7	1.7
4315	id_239	WD_HR	80	92	95	95	96	97	96	96	84
4316	id_239	WIND_DIREC	76	99	93	97	93	94	98	97	65
4317	id_239	WIND_SPEED	2.2	3.2	2.5	3.6	5	4.2	5.7	4.9	3.6
4318	id_239	WS_HR	1.7	2.8	2.6	3.3	3.5	5	4.9	5.2	3.6

通过 test.csv 保存预测值至 csv 文件,并上交:

csv 文件名: 学号.csv

完成方式: MatLab/Python

以上代码: 仅供参考

文件上交至 2025227034@stu.suda.edu.cn, 截止至期末