Statistical Methods in AI (CSE/ECE 471)

Lecture-7:

- A short detour back to NB
- Linear Regression
- Logistic Regression

Ravi Kiran

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Announcements

- A2 is due Feb 2, 11.59 pm
- SMAI Mid-1 will be on Feb 7 (Thursday)
 - Syllabus: Lec 1 Lec 8 (this week's Friday lecture)

A short detour back to Naïve Bayes

$$P(X_1, \dots, X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

Generative v/s Discriminative Models

$$\arg\max_{Y} P(Y|X_1,\ldots,X_n)$$

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$

$$P(X_1, \dots, X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

Generative v/s Discriminative Models

$$\operatorname{arg\,max}_{Y} P(Y|X_1,\ldots,X_n)$$

Likelihood Prior

 $P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$

Normalization Constant

$$P(X_1, \dots, X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

Discriminative vs. generative

Discriminative vs. generative

• Discriminative model

(The lousy painter)

• Classification function

x = data

Classification Regression Reinforcement Learning

Linear Regression Model

1. Relationship Between Variables Is a Linear Function

Sample Linear Regression Model

Least Squares

1. 'Best Fit' Means Difference Between Actual Y Values
 & Predicted Y Values is a Minimum. But Positive
 Differences Off-Set Negative ones. So square errors!

$$\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

Least Squares

1. 'Best Fit' Means Difference Between Actual Y Values & Predicted Y Values Are a Minimum. But Positive Differences Off-Set Negative. So square errors!

$$\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

> 2. LS Minimizes the Sum of the Squared Differences (errors) (SSE)

Least Squares Graphically

LS minimizes
$$\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \hat{\varepsilon}_{1}^{2} + \hat{\varepsilon}_{2}^{2} + \hat{\varepsilon}_{3}^{2} + \hat{\varepsilon}_{4}^{2}$$

Coefficient Equations

> Prediction equation

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

> Sample slope

$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xx}} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

> Sample Y - intercept

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Parameter Estimation Thinking Challenge

You're a Vet epidemiologist for the county cooperative. You gather the following data:

> <u>Food (lb.)</u>	Milk yield (lb.)	
4	3.0	
6	5.5	
10	6.5	
12	9.0	

What is the relationship between cows' food intake and milk yield?

Coefficient Interpretation Solution*

- > 1. Slope $(\hat{\beta}_1)$
 - Milk Yield (Y) Is Expected to Increase by .65
 lb. for Each 1 lb. Increase in Food intake (X)

Coefficient Interpretation Solution*

- > 1. Slope $(\hat{\beta}_1)$
 - Milk Yield (Y) Is Expected to Increase by .65
 lb. for Each 1 lb. Increase in Food intake (X)
- > 2. Y-Intercept (β_0)
 - Average Milk yield (Y) Is Expected to Be 0.8
 Ib. When Food intake (X) Is 0

Types of Regression Models

Interpretation of coefficients

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_{1} = \frac{SS_{xy}}{SS_{xx}} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}}$$

Regression – Error measures

Regression – Error measures

$$MSE = \frac{1}{n} \sum \left(y - \widehat{y} \right)^{2}$$
The square of the difference between actual and predicted

Linear Algebra in 1 slide

- Matrices Square, Rectangular
- Matrix ops Transpose, Inverse
- Rank of a matrix

Linear Regression – Matrix Form

Linear Regression – Matrix Form

Consider the model

where
$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}$$
 $X = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1p} \\ 1 & X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{np} \end{pmatrix}$ $\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$ $\epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$

Based on this model we get the following expansion for the first subject:

$$Y_1 = \beta_0 + \beta_1 X_{11} + \beta_2 X_{12} + \ldots + \beta_p X_{1p} + \epsilon_1$$

Then using matrix calculus we find that the least squares estimate for β is given by

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Hence, the least squares regression line is $\hat{Y} = X\hat{\beta}$.

Linear Regression – Matrix Form - Issues

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Hence, the least squares regression line is $\hat{Y} = X\hat{\beta}$.

- N samples, p-dimensional (what if p > N?)
- Complexity of matrix inversion (what if N very large ?)
- Collinearity

Linear Regression Linear in coefficients and NOT variables

• A second-order model (quadratic model):

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$$

- β_1 : Linear effect parameter.
- β_2 : Quadratic effect parameter.

kth order polynomial model in one variable

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k + \epsilon$$

A quadratic polynomial regression function

$$Y_i = \beta_0 + \beta_1 X_i + \beta_{11} X_i^2 + \varepsilon_i$$

where:

- Y_i = amount of immunoglobin in blood (mg)
- X_i = maximal oxygen uptake (ml/kg)
- typical assumptions about error terms ("INE")

Linear Regression

 Linear in coefficients and NOT variables

$$egin{bmatrix} y_1 \ y_2 \ y_3 \ dots \ y_n \end{bmatrix} = egin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \ 1 & x_2 & x_2^2 & \dots & x_2^m \ 1 & x_3 & x_3^2 & \dots & x_3^m \ dots & dots & dots & dots \ 1 & x_n & x_n^2 & \dots & x_n^m \end{bmatrix} egin{bmatrix} eta_0 \ eta_1 \ eta_2 \ dots \ eta_3 \ dots \ eta_m \end{bmatrix} + egin{bmatrix} arepsilon_1 \ arepsilon_2 \ dots \ eta_3 \ dots \ eta_n \end{bmatrix},$$

FIGURE 5-7C: TŌHOKU, JAPAN EARTHQUAKE FREQUENCIES CHARACTERISTIC FIT

FIGURE 5-7C: TÖHOKU, JAPAN EARTHQUAKE FREQUENCIES CHARACTERISTIC FIT

Careful: X may not be causing y!

Linear Regression – Outliers

Linear Regression is problematic in many other cases

Linear Regression is problematic in many other cases

Linear Regression is problematic in many other cases

Linear Regression is problematic in many other cases

Piecewise Linear Regression

Total Least Squares ("Errors-in-variables" model)

General Linear Models

https://en.wikipedia.org/wiki/General_linear_model

Generalized Linear Models

- For bounded or discrete data
 - Positive quantities (e.g. prices, populations)
 - Varying over a large scale (log-normal, Poisson distribution)
 - Categorical data (Bernoulli / Binomial / Multinomial)
 - Ordinal data (e.g. ratings Ordered logit)

Classification

Regression

Reinforcement

Learning

Re-using linear regression?

Re-using linear regression?

What we really want – a step function!

- We want a step-function like behavior
 - But with nicer mathematical properties (e.g. like linear regression)!
- Probabilistic classification is also nice (Naïve Bayes)
- Combine all of these ?

Logistic Regression - Intuition

Maximum Likelihood

 The likelihood function is the simultaneous density of the observation, as a function of the model parameters.

$$L(\Theta) = Pr(Data|\Theta)$$

 If the observations are independent, we can decompose the term into

$$\Pr(Data \mid \Theta) = \prod_{i=1}^{n} \Pr(X_i \mid \Theta)$$

An example

- Consider the estimation of heads probability of a coin tossed n times
- Heads probability p
- Data = HHTTHTHTTT
- $L(p) = Pr(D|p) = pp(1-p)(1-p)p(1-p)pp(1-p)(1-p)(1-p) = p^5(1-p)^6$

$$L(p) = p^5(1-p)^6$$

Maximum Likelihood

$$L(p) = p^5(1-p)^6$$

Take the derivative of *L* with respect to *p*:

$$\frac{dL}{dp} = 5 p^4 (1-p)^6 - 6 p^5 (1-p)^5$$

Equate it to zero and solve:

$$\hat{p} = 5/11$$

Log Likelihood

$$L(p) = p^5(1-p)^6$$

For computational reasons, we maximise the logarithm

lnL = 5 lnp + 6 ln(1-p)with derivative

$$\frac{d(\ln L)}{dp} = \frac{5}{p} - \frac{6}{(1-p)} = 0$$

$$\hat{p} = 5/11$$

Logistic Regression - Learning parameters

$$h_{\theta}(x) = g(\theta^{T}x) = \frac{1}{1 + e^{-\theta^{T}x}};$$

$$p(y \mid x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$

$$L(\theta) = p(\vec{y} \mid X; \theta)$$

$$= \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{m} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1-y^{(i)}}$$

$$\ell(\theta) = \log L(\theta)$$

$$= \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)}))$$

References and Reading

- <u>Linear Regression</u>
 - https://en.wikipedia.org/wiki/Linear regression
 - http://www.stat.purdue.edu/~boli/stat512/lectures/topic3.pdf (up to page 7)
- Logistic Regression
 - https://en.wikipedia.org/wiki/Logistic regression (up to Section 6)