Applied Cryptography: Homework 10

(Deadline: 10:00am, 2020/12/02)

Justify your answers with calculations, proofs, and programs.

- 1. (15 points, question 7.1, page 302 of the textbook)
 - Implement SHANKS' ALGORITHM for finding discrete logarithms in \mathbb{Z}_p^* , where p is prime and α is a primitive element modulo p. Use your program to find $\log_{106} 12375$ in \mathbb{Z}_{24691}^* and $\log_6 248388$ in \mathbb{Z}_{458009}^* .
- 2. (15 points, question 7.3, page 303 of the textbook)

The integer p=458009 is prime and $\alpha=2$ has order 57251 in \mathbb{Z}_p^* . Use the POLLARD RHO ALGORITHM to compute the discrete logarithm in \mathbb{Z}_p^* of $\beta=56851$ to the base α . Take the initial value $x_0=1$, and define the partition (S_1,S_2,S_3) as in Example 7.3. Find the smallest integer i such that $x_i=x_{2i}$, and then compute the desired discrete logarithm.

- 3. (15 points, question 7.5, page 303 of the textbook)
 - Implement the POHLIG-HELLMAN ALGORITHM for finding discrete logarithms in \mathbb{Z}_p^* , where p is prime and α is a primitive element. Use your program to find $\log_5 8563$ in \mathbb{Z}_{28703}^* and $\log_{10} 12611$ in \mathbb{Z}_{31153}^* .
- 4. (15 points, question 7.6, page 303 of the textbook)

Let p = 227. The element $\alpha = 2$ is primitive in \mathbb{Z}_p^* .

- (a) Compute α^{32} , α^{40} , α^{59} , and α^{156} modulo p, and factor them over the factor base $\{2, 3, 5, 7, 11\}$.
- (b) Using the fact that $\log 2 = 1$, compute $\log 3, \log 5, \log 7$, and $\log 11$ from the factorizations obtained above (all logarithms are discrete logarithms in \mathbb{Z}_p^* to the base α).
- (c) Now suppose we wish to compute $\log 173$. Multiply 173 by the "random" value $2^{177} \mod p$. Factor the result over the factor base, and proceed to compute $\log 173$ using the previously computed logarithms of the numbers in the factor base.