

Anne Guérin-Dugué GIPSA-lab Département des Images et des Signaux Equipe « Vision and Brain Signal processing »

anne.guerin@gipsa-lab.grenoble-inp.fr

PLAN

- Introduction
- Caractéristique de l'œil humain
- Acquisition Echantillonnage
- Couleur
- Histogramme, Modification d'histogramme
- Filtrage par convolution
- Application du filtrage
 - Réduction du Bruit et Rehaussement d'Image
- Détection de contours

I. Introduction

- Domaines liés au TI
 - Point de départ de la vision par ordinateur
 - Applications industrielles
 - Contrôle Qualité, Chaîne de montage
 - Robotique,
 - Surveillance,
 - Imagerie médicale,
 - Multimédias, ...

I. Introduction

Signal lumineux

Longueur d'onde : $\lambda = c/v$, avec c vitesse de le lumière dans le vide et v fréquence de l'onde $c \approx 300.10^6 \text{m/s}$

I. Introduction

Types d'images ...

Photographie d'une scène

Echographie

Caméra infrarouge

Image IRM GINF41A6 - AGD

Représentation d'un phénomène physique

II. Caractéristique de l'œil humain

Caractéristique anatomique

http:/:www.emse.fr/~gavet/doctorat.html

II. Caractéristique de l'œil humain

Caractéristique optique

http:/:www.emse.fr/~gavet/doctorat.html

II. Caractéristique de l'œil humain

Photorécepteurs : cônes, bâtonnets

- Echantillonnage spatial
 - Information continue spatialement → discrète spatialement
 - Signal analogique → signal numérique
 - Photographie argentique > Photographie numérique

- Fréquence spatiale
 - Rappel fréquence temporelle : Hz = 1/sec
 - Ici : fréquence spatiale : 1/pixel = pixel-1
 - Fréquence horizontale (Fx) et Fréquence verticale (Fy)

- Quelle est la fréquence maximale (exprimée en pixel-1) d'un motif périodique en niveau de gris pour qu'il soit visible sur une image numérique ?
- Il existe d'autres unités de fréquence spatiale : ex cycle/°

Résolution spatiale

- Nombre de points (pixel) par unité de longueur (cm, pouce = inch)
- Unité : dpi, ppp

L[cm]

wikipedia

W[cm] NW1 [pix]

 $RW_1 = NW_1/W$

 $RW_1[dpi] = 2.54xNW_1/W$

W[cm] NW3 [pix]

 $RW_2 = NW_2/W$

 $RW_2^2[dpi]$

W[cm]

NW3 [pix]

 $RW_3 = NW_3/W$

RW₃[dpi]

Résolution verticale : même principe

Résolution globale :

Résolution

horizontale:

$$R = \sqrt{\frac{Rw^2 + RH^2}{2}}$$

GINF41A6 - AGD

Echantillonnage spatial

- Artefact de l'échantillonnage : « Aliasing »
- Fréquence maximale : Fmax < Fe/2 (théorème de Shannon)
- Pour une image : Fmax,x ; Fmax,y = ½ pixel⁻¹

- Echantillonnage spatial
 - Artefact de l'échantillonnage : « Aliasing »
 - Phénomène de Moiré

- Echantillonnage spatial
 - Artefact sur les structures géométriques
 - Effet de ligne brisée

- Echantillonnage tonal : Quantification
 - * 8bits \rightarrow 4 bits \rightarrow 2bits \rightarrow 1 bit (image binaire)

- Phénomène complexe
 - Lumière
 - Objet
 - Observateur (sujet humain)

Synthèse additive

Couleurs primaires: Bleu

Rouge, Vert,

Lumière Jaune=R+V

Objet Cian=B+V qui absorbe tout sauf le Bleu et le Vert

Synthèse soustractive

Couleurs primaires : Cyan, Jaune, Magenta

En lumière blanche Cyan (V+B) : absorbe le rouge Magenta (R+B) : absorbe le vert Jaune (R+V) : absorbe le bleu

Imprimante en trichromie, En quadrichromie avec le noir

- Couleur : 1 attribut Physique
 - Caractéristique de l'illuminant
 - Energie, Amplitude, longueur d'onde, spectre

1

IV. Perception des couleurs

- Couleur : 1 attribut Physique
 - Interaction avec un objet
 - La couleur d'un objet est caractérisée par son spectre de reflectance

- Couleur : 1 attribut Physique
 - Interaction avec un observateur
 - > Capture par la rétine d'un stimuli lumineux : $S(\lambda) = I(\lambda) \times R(\lambda)$
 - > Stimulation des photorécepteurs de la rétine $I(\lambda)$, $m(\lambda)$ et $s(\lambda)$

Couleur : 1 attribut Physique

- Interaction avec un observateur
 - > Information à traiter par le cerveau, en chaque point :

$$l = \int_{\lambda \min}^{\lambda \max} I(\lambda).R(\lambda).l(\lambda).d\lambda$$

$$m = \int_{\lambda \min}^{\lambda \max} I(\lambda).R(\lambda).m(\lambda).d\lambda$$

$$s = \int_{\lambda \min}^{\lambda \max} I(\lambda).R(\lambda).s(\lambda).d\lambda$$

- Couleur : 1 attribut Physique
 - Interaction avec un observateur
 - Cas illustratif pédagogique : Non Daltonien vs Daltonien

(http://michelf.com/projets/sim-daltonisme/)

- Caractérisation d'une couleur
 - Brillance : sensation d'émission de lumière par une surface
 - Luminosité : perception de la luminance (très non linéaire)
 - Luminance : sensation achromatique (niveau de gris)
 - Teinte : sensation chromatique
 - Saturation : couleurs délavées , « blanc dans la couleur »
- Représentation dans un espace à trois dimensions
 - Expérience de Newton en synthèse additive
 - Reconstituer toutes les nuances avec 3 fondamentaux

- Les espaces de représentation ont 3 trois dimensions
 - Le plus connu : R, G, B
 - Le plus utilisé en compression d'image JPEG : Y, Cb, Cr
 - Le plus commode pour la retouche d'image :T, L, S

- Espace R, G, B
 - Espace euclidien
 - N'est pas un espace perceptif

- Espace Y-Cb-Cr (format JPEG)
 - Transformation linéaire à partir de R, G, B
 - Espace à luminance séparée
 - Utilisé pour la compression

Organisation des couleurs

Z0

- Espace L- a-b (définie par la CIE)
 - Transformation non linéaire à partir de R, G, B
 - Espace perceptif
 - Espace à luminance séparé

Organisation des couleurs :

a, b : Opposition de couleurs

a : Rouge – Vertb : Jaune – Bleu

- Espace TLS
 - Luminance : sensation achromatique (niveau de gris)
 - Teinte : sensation chromatique
 - Saturation : couleurs délavées , « blanc dans la couleur »

- Représentation HSI ou TLS
 - Hue : Teinte
 - Saturation
 - Intensity : Luminance

- □ Transformation Couleur → Luminance
 - Par l'espace YCbCr : Prendre la dimension Y
 Y = 0.299 x R + 0.587 x G + 0.114 x B

 - Par l'espace TLS (HSI ou HSV) : Prendre la dimension L (I ou V)

- Capture par les appareils photo numériques
 - Matrice CCD: mosaïque de Bayer
 - 2 fois plus de vert : pourquoi ?

Caméra CCD

Echantillonnage régulier : Risque d'"Aliasing"

<u>Rétine</u>

Echantillonnage irrégulier : Pas d'"Aliasing"

Comment créer des anaglyphes ?

- Application : images anaglyphes 3D
 - « Un anaglyphe est constitué de deux images superposées (appelées homologues) de couleurs complémentaires représentant la même scène mais vue de points légèrement décalés : le plus souvent la vue gauche en rouge et la vue droite en cyan. Ces images homologues ne sont donc pas identiques : le décalage (appelé parallaxe ou disparité) n'est pas le même pour tous les éléments de l'image. ...» (Wikipedia)

Comment créer des anaglyphes ?

Application : images anaglyphes 3D

VI. Table des couleurs

- Table de couleurs
 - Couleurs Indexées
 - Quantification de l'espace des couleurs possibles
- Intérêt
 - Réduction de la taille des fichiers
 - Compression

image originale

image quantifiée indexée 16

image quantifiée indexée 8

VI. Table des couleurs

- Comment créer une table de couleurs (dictionnaire)
 - Découpage uniforme de l'espace de couleurs en K couleurs
 - Ou mieux quantification par classification
 - Trouver les K couleurs les plus présentes dans l'image ou dans la base d'images (algorithme : KMEANS)
 - Créer une table de transcodage (LUT = Look Up Table) à K entrées.

VI. Table des couleurs

- Comment créer une image en couleur indexée I(x,y)=k
 - Avoir une table des K couleurs
 - Affecter à chaque pixel la couleur (R*, G*, B*) d'indice k* qui est la plus proche de la couleur (R(x,y), G(x,y), B(x,y)) au sens de la distance euclidienne

