- 1 Which unit can be expressed in base units as kg m² s⁻²?
 - A joule
 - **B** newton
 - C pascal
 - **D** watt
- **2** The luminosity *L* of a star is given by

$$L = 4\pi r^2 \sigma T^4$$

where

r is the radius of the star,

T is the temperature of the star and

 σ is a constant with units W m⁻² K⁻⁴.

What are the SI base units of L?

- \mathbf{A} kg m² s⁻¹
- $\mathbf{B} \quad \text{kg m}^2 \text{s}^{-2}$
- **C** $kg m^2 s^{-3}$
- **D** $kg m^2 s^{-4}$
- **3** A particle has velocity V at an angle θ to the horizontal.

The components of the particle's velocity are V_v upwards in the vertical direction and V_h to the right in the horizontal direction, as shown.

What are expressions for the magnitude of V and for the angle θ ?

	magnitude of V	θ
A	$\sqrt{(V_v^2 + V_h^2)}$	$\tan^{-1}\left(\frac{V_{h}}{V_{v}}\right)$
В	$\sqrt{(V_v^2 + V_h^2)}$	$ an^{-1}\left(rac{V_{ m v}}{V_{ m h}} ight)$
С	$\sqrt{(V_{\rm v}^2-V_{\rm h}^2)}$	$\tan^{-1}\left(\frac{V_{\rm h}}{V_{\rm v}}\right)$
D	$\sqrt{(V_v^2 - V_h^2)}$	$\tan^{-1}\left(\frac{V_{v}}{V_{h}}\right)$