Signaux & Systèmes Produit de convolution

K. Boudjelaba

Introduction

▶ Problème :

▶ Dans le contexte générale des systèmes LTIs, comment s'exprime la sortie s(t) en fonction du signal d'entrée e(t) et des "caractéristiques" du système ?

Objectifs

- ▶ la sortie peut s'exprimer comme la convolution du signal e(t) avec la réponse impulsionnelle du système h(t).
- ▶ Dans le domaine fréquentielle, l'opération de convolution correspond à la multiplication de la TF de e(t) par la TF de h(t).

Définition

Le produit de convolution est défini mathématiquement par :

$$s(t) = (h * e)(t) = \int_{-\infty}^{\infty} h(t - u) \cdot e(u) du = \int_{-\infty}^{\infty} h(u) \cdot e(t - u) du$$

► WARNING: L'intégration se fait par rapport à une variable "muette" *u* qui n'apparait pas dans le résultat du calcul. Le résultat est une fonction qui dépend du temps *t*.

Produit de convolution discret (signaux numériques)

Soient e[n] et h[n] deux signaux discrets. Le produit de convolution discret entre ces deux signaux est donné par :

$$s[n] = (h \otimes e)[n] = \sum_{k=-\infty}^{\infty} h[n-k] \cdot e[k] = \sum_{k=-\infty}^{\infty} h[k] \cdot e[n-k]$$

Propriété (Convolution avec une impulsion de Dirac)

$$x(t) * \delta(t-\tau) = x(t-\tau)$$

L'impulsion de Dirac est l'élément neutre du produit de convolution $(x(t) * \delta(t) = x(t))$

Figure 1: Réponse du système

Propriété (Théorème Fondamental de la Convolution)

Si s(t) = (h * e)(t), alors nous obtenons dans le domaine fréquentiel

$$S(f) = H(f)E(f)$$

- ► E(f) = TF[e(t)] et S(f) = TF[s(t)] désignent les Transformées de Fourier de e(t) et de s(t).
- ► H(f) = TF[h(t)] est appelée fonction de transfert du système.

Remarque

- ► Convoluer deux signaux dans le domaine temporel revient à les multiplier dans le domaine fréquentiel → notion de filtrage.
- ► (Dualité): Multiplier deux signaux dans le domaine temporel revient à les convoluer dans le domaine fréquentiel.

Exercice

Soient
$$h[n] = [\begin{array}{ccc} 1, & 2, & 2, & 3 \\ \uparrow & \uparrow & \uparrow & \uparrow \\ 0 & 1 & 2 & 3 \end{array}]$$
 et $e[n] = [\begin{array}{ccc} 2, & -1, & 3 \\ \uparrow & \uparrow & \uparrow \\ 0 & 1 & 2 \end{array}]$

Calculer le produit de convolution $(h \otimes e)[n]$.

h[n]	=	1	2	2	3	
e[n]	=	2	-1	3		

h[n]	=	1	2	2	3	
e[n]	=	2	-1	3		
		2	4	4	6	

h[n]	=	1	2	2	3		
e[n]	=	2	-1	3			
		2	4	4	6		
			-1	-2	-2	-3	

	=	1	2	2	3		
e[n]	=	2	-1	3			
		2	4	4	6		
			-1	-2	-2	-3	
				3	6	6	9

h[n] =	1	2	2	3		
e[n] =	2	-1	3			
	2	4	4	6		
+		-1	-2	-2	-3	
+			3	6	6	9
y[n] =	2 ↑ 0	3 ↑ 1	5 ↑ 2	10 ↑ 3	3 ↑ 4	9 ↑ 5

3	2	2	1	(h[n]
	3	-1	2	⇐	e[n]

3	2	2	1	← h[n]
	3	-1	2	$\leftarrow e[n]$
6	4	4	2	

	3	2	2	1	(h[n]
		3	-1	2	<	e[n]
	6	4	4	2		
-3	-2	-2	-1			

		3	2	2	1	(h[n]
			3	-1	2	<	e[n]
		6	4	4	2		
	-3	-2	-2	-1			
9	6	6	3				

			3	2	2	1	(h[n]
				3	-1	2	<	e[n]
			6	4	4	2		
+		-3	-2	-2	-1			
+	9	6	6	3				
=	9	3	10	5	3	2	(<i>y</i> [<i>n</i>]
	5	4	3	2	1	0		

Code Python

On utilise la fonction convolve disponible dans la librairie numpy.

```
import numpy as np
h = np.array([1, 2, 2, 3])
e = np.array([2, -1, 3])
y = np.convolve(h,e)
print(y)
```

On crée une fonction convolution qui calcule le produit de convolution à partir de la formule :

$$(h \otimes e)[n] = \sum_{k=-\infty}^{\infty} h[k] \cdot e[n-k]$$

```
import numpy as np
def convolution(A.B):
    tailleA = np.size(A)
    tailleB = np.size(B)
    C = np.zeros(tailleA + tailleB -1)
    for m in np.arange(tailleA):
        for n in np.arange(tailleB):
            C[m+n] = C[m+n] + A[m]*B[n]
    return C
h = np.array([1, 2, 2, 3])
e = np.array([2, -1, 3])
v = convolution(h.e)
print(y)
```

[2. 3. 5. 10. 3. 9.]

Exercice: sous Python

- ► Calculer et tracer le produit de convolution de deux portes rectangulaires identiques.
- Calculer et tracer le produit de convolution de la porte rectangulaire et le peigne de Dirac.

Code Python

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
a = 2.
t = np.arange(-8, 8, 0.1)
p = np.zeros(len(t))
p[np.abs(t) < a] = 1
c = np.convolve(p,p,'same')
plt.figure()
plt.plot(t,p,label='Porte')
# 011
# plt.plot(t,c/c.max(),label='
                    Convolution ')
plt.plot(t,c/sum(p),label='
                    Convolution')
plt.xlabel('Temps')
plt.title('Convolution de la fonction
                     porte avec elle-m
                    ême')
plt.legend()
plt.grid()
plt.show()
```

On utilise la fonction convolve disponible dans la librairie numpy.

Code Python

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
def convolution(A.B):
    tailleA = np.size(A)
    tailleB = np.size(B)
    C = np.zeros(tailleA + tailleB -1)
    for m in np.arange(tailleA):
        for n in np.arange(tailleB):
            C[m+n] = C[m+n] + A[m]*B[n]
    return C
t = np.arange(-8,8,0.1)
t1 = np.arange(-16, 16-0.1, 0.1)
v = np.zeros(len(t))
v[np.abs(t) < a] = 1
z = convolution(y,y)
plt.figure()
plt.plot(t, y, label = 'Porte')
plt.plot(t1,z/z.max(),label='Convolution')
plt.xlabel('Temps')
plt.title('Convolution de la fonction porte
                       avec elle-même!)
plt.xlim([-8,8])
plt.legend()
plt.grid()
plt.show()
```

On crée une fonction convolution qui calcule le produit de convolution à partir de la formule :

$$(h \otimes e)[n] = \sum_{k=-\infty}^{\infty} h[n-k] \cdot e[k]$$
$$= \sum_{k=-\infty}^{\infty} h[k] \cdot e[n-k]$$

Exercice: sous Python

Tracer
$$s(t) = \sum_{n=-N}^{N} C_n e^{j2\pi n f_0 t}$$
 pour $N=3$ puis $N=7$ et $N=11$.
Avec $f_0=10$ Hz.

► Coefficients de la DSF complexe d'un signal carré (A = 2):

$$C_n = \begin{cases} \frac{A}{2} & \text{pour } n = 0\\ 0 & \text{pour } n \text{ pair et } \neq 0\\ -j\frac{A}{n\pi} & \text{pour } n \text{ impair} \end{cases}$$

Coefficients de la DSF complexe d'un signal triangulaire (A = 2):

$$C_n = \begin{cases} \frac{A}{2} & \text{pour } n = 0\\ 0 & \text{pour } n \text{ pair et } \neq 0\\ -\frac{2A}{n^2\pi^2} & \text{pour } n \text{ impair} \end{cases}$$

