Gibbs-Maß auf unendlichen Gittersystemen

Moritz Berg

Universität Bonn

June 11, 2021

Worum geht es eigentlich?

- Konstruktion des Gibbs-Maßes im Unendlichen und Existenz
- Eindeutigkeit und Symmetrien
- Unterklasse von Gibbs-Maßen

Überblick

- 1. Problemstellung
- 2. DLR Ansatz
- 3. Gibbs-Spezifikation
- 4. Existenz

Problem mit unendlichen Systemen

- Bisher haben wir Gibbs-Maß definiert als $\mu_{\Lambda;\beta,h}^+(\omega) = \frac{e^{-\mathcal{H}_{\Lambda;\beta,h}(\omega)}}{\mathcal{Z}_{\Lambda;\beta,h}^+} = \mathcal{O}$
- Hamiltonian und Partitionsfunktion sind nicht wohldefiniert
- D.h. die Wahrscheinlichkeit von jeder Konfiguration wäre 0

Problemstellung 4/6

Schon bekannt

Definitionen

Spinmenge: Ω_0 Bsp. $\{-1,1\}$

Gitter: $S \subset \mathbb{Z}^d$ Bsp. $\{3,4,5\}^d$

Spinkonfiguration : $\Omega_S := \Omega_0^S = \{(\omega_i)_{i \in S} : \omega_i \in \Omega_0 \forall i \in S\}$

Hamiltonian : $\mathcal{H}_{\Lambda}: \Omega \to \mathbb{R}$ mit $\Lambda \subseteq \mathbb{Z}^d$

Problemstellung 5/66

Notation

Notation

- Falls $S = \mathbb{Z}^d$ schreiben wir $\Omega = \Omega_S$
- Für $\omega, \eta \in \Omega_{\Lambda}$ schreiben wir $\omega_{\Lambda}, \eta_{\Lambda}$
- Sei $\Delta \subset \Lambda \subset \mathbb{Z}^d$ dann ist für $\omega \in \Omega_\Lambda$ $\omega_\Delta = \omega_{|\Delta}$ eingeschränkt auf Δ . Weiter schreiben wir $\omega_\Lambda = \eta_\Delta \eta \prime_{\Lambda \setminus \Delta}$ für $\eta, \eta \prime \in \Omega$, um Konfigurationen von Gebieten zu verknüpfen.

Problemstellung 6/66

Zvlinder

Definition (Zylinder)

Sei für $\Lambda \in \mathbb{Z}^d$, $\Pi_{\Lambda} : \Omega \to \Omega_{\Lambda}$: die Projektion und $A \in \mathscr{P}(\Omega_{\Lambda})$, dann ist $A = \mathcal{F}_{\Lambda}$?

ein Zylinder zur Basis Λ und

$$\mathscr{C}(\Lambda) := \{ \Pi_{\Lambda}^{-1}(A) : A \in \mathscr{P}(\Omega_{\Lambda}) \}$$

die Menge aller Ereignisse die nur von Spins in Λ abhängen.

Problemstellung 7/66

σ -Algebra von Zylindern

Definition (σ -Algebra von Zylindern)

Sei $S \subset \mathbb{Z}^d$ nicht notwendigerweise endlich und sei

$$\mathscr{C}_{S} := \cup_{\Lambda \in S} \mathscr{C}(\Lambda),$$

dann ist

$$\mathscr{F}_{\mathcal{S}} := \sigma(\mathscr{C}_{\mathcal{S}})$$

die kleinste σ -Algebra von lokalen Ereignissen in S.

σ -Algebra von Zylindern

Definition (σ -Algebra von Zylindern)

Sei $S \subset \mathbb{Z}^d$ nicht notwendigerweise endlich und sei

$$\mathscr{C}_{\mathcal{S}} := \cup_{\Lambda \Subset \mathcal{S}} \mathscr{C}(\Lambda),$$

dann ist

$$\mathscr{F}_{\mathcal{S}} := \sigma(\mathscr{C}_{\mathcal{S}})$$

die kleinste σ -Algebra von lokalen Ereignissen in S.

Bsp.
$$\{\omega\} \in \mathscr{F}$$
: Betrachten $B(n) := \{-n, ..., n\}^d \in \mathbb{Z}^d$
Dann ist $\Pi_{B(n)}^{-1}(\omega) \in \mathscr{C}_{\mathbb{Z}^d}$ und deshalb $\bigcap_{n \in \mathbb{N}} \Pi_{B(n)}^{-1}(\omega) = \{\omega\} \in \mathscr{G}_{\mathbb{Z}^d}$

Problemstellung 9/6

Messbare und lokale Funktionen

Lemma 6.3

Eine Funktion $g:\Omega\to\mathbb{R}$ ist \mathscr{F}_S -messbar genau dann, wenn $\exists \phi:\Omega_S\to\mathbb{R}$, sd.

$$g(\omega) = \phi(\omega_S)$$

• lokale Funktionen sind \mathscr{F}_{S} -messbar für ein $S \subset \Omega$

Problemstellung 10/66

Marginale

Definition (Marginal)

Sei $\mu \in \mathcal{M}(\Omega)$ und $\Lambda \subseteq \mathbb{Z}^d$ die marginale Verteilung von μ auf Λ ist definiert als:

$$\mu|_{\Lambda} := \mu \circ \Pi_{\Lambda}^{-1}.$$

Für alle $\Delta \subset \Lambda \subseteq \mathbb{Z}^d$ sei $\Pi_{\Lambda}^{\Lambda} : \Omega_{\Lambda} \to \Omega_{\Delta}$ die kanonische Projektion. Dann gilt für alle Marginale:

$$\mu|_{\Delta} = \mu|_{\Lambda} \circ (\Pi_{\Delta}^{\Lambda})^{-1}$$

11/66 Problemstellung

Kolmogorovs Erweiterungssatz

Satz 6.6 (Kolmogorovs Erweiterungssatz)

Sei $\{\mu_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$, $\mu_{\Lambda} \in \mathscr{M}_1(\Omega_{\Lambda})$, **konsistent**, d.h.

$$\forall \Lambda \in \mathbb{Z}^d : \ \mu_{\Delta} = \mu_{\Lambda} \circ (\Pi_{\Delta}^{\Lambda})^{-1}, \ \forall \Delta \subset \Lambda.$$

Dann existiert ein eindeutiges $\mu \in \mathcal{M}(\Omega)$, so dass $\mu_{|\Lambda} = \mu_{\Lambda}$ für alle $\Lambda \in \mathbb{Z}^d$.

Problemstellung 12/66

Kolmogorovs Erweiterungssatz

Satz 2 (Kolmogorovs Erweiterungssatz)

Sei $\{\mu_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$, $\mu_{\Lambda} \in \mathscr{M}_1(\Omega_{\Lambda})$, **konsistent**, d.h.

$$\forall \Lambda \in \mathbb{Z}^d : \ \mu_{\Delta} = \mu_{\Lambda} \circ (\Pi_{\Delta}^{\Lambda})^{-1}, \ \forall \Delta \subset \Lambda.$$

Dann existiert ein eindeutiges $\mu \in \mathcal{M}(\Omega)$, so dass $\mu_{|\Lambda} = \mu_{\Lambda}$ für alle $\Lambda \in \mathbb{Z}^d$.

- erster Ansatz in Wahrscheinlichkeitstheorie um Existenz von Wahrscheinlichkeitsmaßen auf überabzählbaren Produkträumen zu zeigen
- stellen lokale Anforderungen an das Wahrscheinlichkeitsmaß

Problemstellung 13/6

Warum nicht Kolmogorovs Erweiterungssatz?

Gegenbeispiel

- betrachten Ising-Modell mit $d=2,\ h=0$ und wollen Marginal vom Ursprung σ_0
- $\sigma_0 \sim Ber(p)$, wir wollen p bestimmen
- für hinreichend großes β hängt der Erwartungswert von σ_0 vom Gibbs-Zustand ab
- es gibt verschiedene Gibbs-Zustände, die zu den selben Parametern β , h gehören
- makroskopischer Zustand nötig, um Marginale aufzustellen

Problemstellung 14/6

DLR Ansatz

Dobrushin, Lanford und Ruelle

- betrachten bedingte Erwartungswerte anstatt Marginalen
- nutzen aber eine ähnliche Konsistenzbedingung
- der Erwartungswert von lokalen Funktionen f hängt nur von der Konfiguration auf Δ ab

DLR Ansatz 15/66

Konsistenzbedingung für bedingte Erwartungswerte

Lemma 6.7

Für alle $\Delta\subset\Lambda\Subset\mathbb{Z}^d$ und alle beschränkten messbaren Funktionen $f:\Omega\to\mathbb{R}$ gilt :

$$\langle f \rangle_{\Lambda;\beta,h}^{\eta} = \langle \langle f \rangle_{\Delta;\beta,h}^{\cdot} \rangle_{\Lambda;\beta,h}^{\eta} \quad \forall \eta \in \Omega$$

• Für den Beweis vereinfachen wir die Notation und lassen β und h weg

$$\langle\langle f
angle_\Delta^.
angle_\Lambda^\eta = \sum_{\omega_\Lambda} \langle f
angle_\Delta^{\omega_\Lambda\eta_{\Lambda^c}} rac{e^{-\mathscr{H}_\Lambda(\omega_\Lambda\eta_{\Lambda^c})}}{Z_\Lambda^\eta}$$

$$egin{aligned} \langle\langle f
angle_{\Delta}
angle^{\eta} &= \sum_{\omega_{\Lambda}} \langle f
angle_{\Delta}^{\omega_{\Lambda}\eta_{\Lambda^c}} rac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda}\eta_{\Lambda^c})}}{Z_{\Lambda}^{\eta}} \ &= \sum_{\omega_{\Lambda}} \sum_{\omega_{\Delta}'} f(\omega_{\Delta}'\omega_{\Lambda/\Delta}\eta_{\Lambda^c}) rac{e^{-\mathscr{H}_{\Delta}(\omega_{\Delta}'\omega_{\Lambda/\Delta}\eta_{\Lambda^c})}}{Z_{\Delta}''^{\eta_{\Lambda^c}}} rac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda}\eta_{\Lambda^c})}}{Z_{\Lambda}''} \end{aligned}$$

DLR Ansatz 18/66

$$egin{aligned} \langle\langle f
angle_{\Delta}^{\cdot}
angle_{\Lambda}^{\eta} &= \sum_{\omega_{\Lambda}} \langle f
angle_{\Delta}^{\omega_{\Lambda}\eta_{\Lambda^{c}}} rac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda}\eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}} \ &= \sum_{\omega_{\Lambda}} \sum_{\omega_{\Lambda}^{\prime}} f(\omega_{\Delta}^{\prime}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) rac{e^{-\mathscr{H}_{\Delta}(\omega_{\Delta}^{\prime}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}})}}{Z_{\Delta}^{\omega_{\Lambda}\eta_{\Lambda^{c}}}} rac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda}\eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}} \end{aligned}$$

$$\mathscr{H}_{\Lambda}(\omega_{\Delta}\omega_{\Lambda/\Delta}\eta_{\Lambda^c}) - \mathscr{H}_{\Delta}(\omega_{\Delta}\omega_{\Lambda/\Delta}\eta_{\Lambda^c}) = \mathscr{H}_{\Lambda}(\omega_{\Delta}'\omega_{\Lambda/\Delta}\eta_{\Lambda^c}) - \mathscr{H}_{\Delta}(\omega_{\Delta}'\omega_{\Lambda/\Delta}\eta_{\Lambda^c})$$

DLR Ansatz 19/66

$$egin{aligned} \langle\langle f
angle_{\Delta}^{\cdot}
angle_{\Lambda}^{\eta} &= \sum_{\omega_{\Lambda}} \langle f
angle_{\Delta}^{\omega_{\Lambda}\eta_{\Lambda^{c}}} rac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda}\eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}} \ &= \sum_{\omega_{\Lambda}} \sum_{\omega_{\Lambda}^{\prime}} f(\omega_{\Delta}^{\prime}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) rac{e^{-\mathscr{H}_{\Delta}(\omega_{\Delta}^{\prime}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}})}}{Z_{\Delta}^{\omega_{\Lambda}\eta_{\Lambda^{c}}}} rac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda}\eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}} \end{aligned}$$

$$\mathcal{H}_{\Lambda}(\omega_{\Delta}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) - \mathcal{H}_{\Delta}(\omega_{\Delta}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) = \mathcal{H}_{\Lambda}(\omega_{\Delta}'\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) - \mathcal{H}_{\Delta}(\omega_{\Delta}'\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}})$$

$$\Leftrightarrow -\mathcal{H}_{\Delta}(\omega_{\Delta}'\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) = \mathcal{H}_{\Lambda}(\omega_{\Delta}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) - \mathcal{H}_{\Delta}(\omega_{\Delta}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) - \mathcal{H}_{\Lambda}(\omega_{\Delta}'\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}})$$

DLR Ansatz 20/66

$$\begin{split} \langle \langle f \rangle_{\Delta}^{\cdot} \rangle_{\Lambda}^{\eta} &= \sum_{\omega_{\Lambda}} \langle f \rangle_{\Delta}^{\omega_{\Lambda} \eta_{\Lambda^{c}}} \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda} \eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}} \\ &= \sum_{\omega_{\Lambda}} \sum_{\omega_{\Delta}^{\prime}} f(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}}) \frac{e^{-\mathscr{H}_{\Delta}(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}})}}{Z_{\Delta}^{\omega_{\Lambda} \eta_{\Lambda^{c}}}} \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda} \eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}} \\ &= \sum_{\omega_{\Lambda}} (\sum_{\omega_{\Delta}^{\prime}} f(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}}) \frac{e^{\mathscr{H}_{\Lambda}(\omega_{\Delta} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}}) - \mathscr{H}_{\Delta}(\omega_{\Delta} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}}) - \mathscr{H}_{\Lambda}(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\omega_{\Lambda} \eta_{\Lambda^{c}}}}) \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda} \eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}} \end{split}$$

DLR Ansatz 21/66

$$\begin{split} &\langle\langle f\rangle_{\Delta}^{\cdot}\rangle_{\Lambda}^{\eta} = \sum_{\omega_{\Lambda}} \langle f\rangle_{\Delta}^{\omega_{\Lambda}\eta_{\Lambda^{c}}} \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda}\eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}} \\ &= \sum_{\omega_{\Lambda}} \sum_{\omega_{\Delta}^{\prime}} f(\omega_{\Delta}^{\prime}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) \frac{e^{-\mathscr{H}_{\Delta}(\omega_{\Delta}^{\prime}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}})}}{Z_{\Delta}^{\omega_{\Lambda}\eta_{\Lambda^{c}}}} \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda}\eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}} \\ &= \sum_{\omega_{\Lambda}} (\sum_{\omega_{\Delta}^{\prime}} f(\omega_{\Delta}^{\prime}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Delta}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) - \mathscr{H}_{\Delta}(\omega_{\Delta}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) - \mathscr{H}_{\Lambda}(\omega_{\Delta}^{\prime}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\omega_{\Lambda}\eta_{\Lambda^{c}}}}) \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda}\eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}} \\ &= \sum_{\omega_{\Lambda}} (\sum_{\omega_{\Delta}^{\prime}} f(\omega_{\Delta}^{\prime}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}}) \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Delta}^{\prime}\omega_{\Lambda/\Delta}\eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}}) \frac{e^{-\mathscr{H}_{\Delta}(\omega_{\Lambda}\eta_{\Lambda^{c}})}}{Z_{\Delta}^{\omega_{\Lambda}\eta_{\Lambda^{c}}}} \end{split}$$

DLR Ansatz 22/66

$$\begin{split} \langle \langle f \rangle_{\Delta}^{\cdot} \rangle_{\Lambda}^{\eta} &= \sum_{\omega_{\Lambda}} (\sum_{\omega_{\Delta}^{\prime}} f(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}}) \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}}) \frac{e^{-\mathscr{H}_{\Delta}(\omega_{\Lambda} \eta_{\Lambda^{c}})}}{Z_{\Delta}^{\omega_{\Lambda} \eta_{\Lambda^{c}}}} \\ &= \sum_{\omega_{\Lambda/\Delta}} (\sum_{\omega_{\Delta}^{\prime}} f(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}}) \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}}) \frac{\sum_{\omega_{\Delta}} e^{-\mathscr{H}_{\Delta}(\omega_{\Delta} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}})}}{Z_{\Delta}^{\omega_{\Lambda} \eta_{\Lambda^{c}}}} \end{split}$$

DLR Ansatz 23/66

$$\begin{split} \langle \langle f \rangle_{\Delta}^{\cdot} \rangle_{\Lambda}^{\eta} &= \sum_{\omega_{\Lambda}} (\sum_{\omega_{\Delta}^{\prime}} f(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}}) \frac{e^{-\mathcal{H}_{\Lambda}(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}}) \frac{e^{-\mathcal{H}_{\Delta}(\omega_{\Lambda} \eta_{\Lambda^{c}})}}{Z_{\Delta}^{\omega_{\Lambda} \eta_{\Lambda^{c}}}} \\ &= \sum_{\omega_{\Lambda/\Delta}} (\sum_{\omega_{\Delta}^{\prime}} f(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}}) \frac{e^{-\mathcal{H}_{\Lambda}(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}}) \frac{\sum_{\omega_{\Delta}} e^{-\mathcal{H}_{\Delta}(\omega_{\Delta} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}})}}{Z_{\Delta}^{\omega_{\Lambda} \eta_{\Lambda^{c}}}} \\ \text{mit } \omega_{\Lambda}^{\prime} &= \omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \\ &= \sum_{\omega_{\Lambda}^{\prime}} f(\omega_{\Lambda}^{\prime} \eta_{\Lambda^{c}}) \frac{e^{-\mathcal{H}_{\Lambda}(\omega_{\Lambda}^{\prime} \eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}} \end{split}$$

DLR Ansatz 24/66

$$\begin{split} \langle \langle f \rangle_{\Delta}^{\cdot} \rangle_{\Lambda}^{\eta} &= \sum_{\omega_{\Lambda}} (\sum_{\omega_{\Delta}^{\prime}} f(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}}) \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}}) \frac{e^{-\mathscr{H}_{\Delta}(\omega_{\Lambda} \eta_{\Lambda^{c}})}}{Z_{\Delta}^{\omega_{\Lambda} \eta_{\Lambda^{c}}}} \\ &= \sum_{\omega_{\Lambda/\Delta}} (\sum_{\omega_{\Delta}^{\prime}} f(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}}) \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Delta}^{\prime} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}}) \frac{\sum_{\omega_{\Delta}} e^{-\mathscr{H}_{\Delta}(\omega_{\Delta} \omega_{\Lambda/\Delta} \eta_{\Lambda^{c}})}}{Z_{\Delta}^{\omega_{\Lambda} \eta_{\Lambda^{c}}}} \\ &= \sum_{\omega_{\Lambda}^{\prime}} f(\omega_{\Lambda}^{\prime} \eta_{\Lambda^{c}}) \frac{e^{-\mathscr{H}_{\Lambda}(\omega_{\Lambda}^{\prime} \eta_{\Lambda^{c}})}}{Z_{\Lambda}^{\eta}} \\ &= \langle f \rangle_{\Lambda}^{\eta} \end{split}$$

DLR Ansatz 25/66

Kern

Definition (Kern)

Sei $\Lambda \subseteq \mathbb{Z}^d$. Ein **Kern** von \mathscr{F}_{Λ^C} nach \mathscr{F} ist die Abbildung $\pi_{\Lambda} : \mathscr{F} \times \Omega \to [0,1]$ mit folgenden Eingenschaften:

- Für alle $\omega \in \Omega$ ist $\pi_{\Lambda}(\cdot | \omega)$ ein Wahrscheinlichkeitsmaß auf (Ω, \mathscr{F}) .
- Für alle $A \in \mathscr{F}$ ist $\pi_{\Lambda}(A|\cdot) \mathscr{F}_{\Lambda^{C}}$ -messbar.

Falls weiter gilt:

$$\pi_{\Lambda}(B|\omega) = \mathbb{1}_{B}(\omega), \quad \forall B \in \mathscr{F}_{\Lambda^{C}}$$

für alle $\omega \in \Omega$ ist π_{Λ} **zulässig**.

DLR Ansatz 26/66

Kern

Definition (Kern)

Sei $\Lambda \subseteq \mathbb{Z}^d$. Ein **Kern** von \mathscr{F}_{Λ^C} nach \mathscr{F} ist die Abbildung $\pi_{\Lambda} : \mathscr{F} \times \Omega \to [0,1]$ mit folgenden Eingenschaften:

- Für alle $\omega \in \Omega$ ist $\pi_{\Lambda}(\cdot | \omega)$ ein Wahrscheinlichkeitsmaß auf (Ω, \mathscr{F}) .
- Für alle $A \in \mathscr{F}$ ist $\pi_{\Lambda}(A|\cdot)$ $\mathscr{F}_{\Lambda^{C}}$ -messbar.

Falls weiter gilt:

$$\pi_{\Lambda}(B|\omega) = \mathbb{1}_{B}(\omega), \quad \forall B \in \mathscr{F}_{\Lambda^{C}}$$

für alle $\omega \in \Omega$ ist π_{Λ} zulässig.

Bsp. unabhängige ZV. mit Wahrscheinlichkeitsverteilung ρ_i von ω_i für $i \in \mathbb{Z}^d$ $\pi_{\Lambda}(A|\omega) = \sum_{\omega' \in A} \prod_{i \in \Lambda} \rho_i(\omega'_i) \mathbb{1}_A(\omega'_{\Lambda}\omega_{\Lambda^c})$

Komposition von Kernen

Definition (Komposition von Kernen)

Für π_{Λ} , π_{Δ} definieren wir die **Komposition**:

$$\pi_{\mathsf{\Lambda}}\pi_{\mathsf{\Delta}}(\mathsf{A}|\eta) := \int \pi_{\mathsf{\Delta}}(\mathsf{A}|\omega)\pi_{\mathsf{\Lambda}}(\mathsf{d}\omega|\eta).$$

Analog wird $\mu\pi_{\Lambda}$ für ein $\mu \in \mathcal{M}(\Omega)$ definiert:

$$\mu\pi_{\Lambda}(A) := \int \pi_{\Lambda}(A|\omega)\mu(d\omega).$$

• $\pi_{\Lambda}\pi_{\Delta}$ ist wieder zulässig

Spezifikation

Definition (Spezifikation)

Eine **Spezifikation** ist eine Familie $\pi = \{\pi_{\Lambda}\}_{{\Lambda} \in \mathbb{Z}^d}$ von zulässigen Kernen die **konsistent** sind, d.h.:

$$\pi_{\Lambda}\pi_{\Delta} = \pi_{\Lambda} \quad \forall \Delta \subset \Lambda \in \mathbb{Z}^d$$

Spezifikation

Definition (Spezifikation)

Eine **Spezifikation** ist eine Familie $\pi = \{\pi_{\Lambda}\}_{{\Lambda} \in \mathbb{Z}^d}$ von zulässigen Kernen die **konsistent** sind, d.h.:

$$\pi_{\Lambda}\pi_{\Delta}=\pi_{\Lambda} \quad \forall \Delta \subset \Lambda \in \mathbb{Z}^d$$

Bsp. unahb. ZV.:

$$\pi_{\mathsf{\Lambda}}\pi_{\mathsf{\Delta}}(\mathsf{A}|\eta) = \sum_{\omega \in \Omega} (\sum_{\omega' \in \mathsf{A}} \prod_{i \in \mathsf{\Delta}} \rho_i(\omega_i') \mathbb{1}_{\mathsf{A}}(\omega_{\mathsf{\Delta}}'\omega_{\mathsf{\Delta}^c})) \prod_{i \in \mathsf{\Lambda}} \rho_j(\omega_j) \mathbb{1}_{\omega}(\omega_{\mathsf{\Lambda}}\eta_{\mathsf{\Lambda}^c})$$

$$=\sum_{\omega_{\Lambda/\Delta}}(\sum_{\omega'\in A}\prod_{i\in\Delta}\rho_i(\omega_i')\mathbb{1}_A(\omega_\Delta'\omega_{\Lambda/\Delta}\eta_{\Lambda^c}))\prod_{j\in\Lambda/\Delta}\rho_j(\omega_j)=\sum_{\omega\in A}\prod_{i\in\Lambda}\rho_i(\omega_i)\mathbb{1}_A(\omega_\Lambda\eta_{\Lambda^c})=\pi_\Lambda(A|\eta)$$

DLR Ansatz 30/6

Kompatible Maße

Definition (kompatibel)

Sei $\pi = \{\pi_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$ eine Spezifikation. Ein Maß $\mu \in \mathscr{M}(\Omega)$ heißt **kompatibel** mit π , falls

$$\mu \pi_{\Lambda} = \mu \quad \forall \Lambda \subseteq \mathbb{Z}^d.$$

Bsp. unabh. ZV.:

Das Produktmaß $\mu(\omega) = \prod_{i \in \mathbb{Z}^d} \rho_i(\omega_i)$ ist das kompatible Maß zu der Spezifikation von unabhängigen Zufallsvariablen.

DLR Ansatz 31/66

Kompatible Maße

Definition (kompatibel)

Sei $\pi=\{\pi_{\Lambda}\}_{\Lambda\in\mathbb{Z}^d}$ eine Spezifikation. Ein Maß $\mu\in\mathscr{M}(\Omega)$ heißt **kompatibel** mit π , falls

$$\mu \pi_{\Lambda} = \mu \quad \forall \Lambda \subseteq \mathbb{Z}^d.$$

- die Menge der kompatiblen Maße von π heißt $\mathscr{G}(\pi)$.
- ullet mit dieser Definition kann man Maße μ auf unendlichen Gittern konstruieren

DLR Ansatz 32/66

Gibbs-Spezifikation

- bisher ganz allgemeine Spezifikationen und Maße betrachtet
- Gibbs Spezifikationen beschreiben die Modelle aus diesem Buch
- generalisiert das Ising Modell, indem Interaktionen zwischen verschiedenen Mengen von Spins betrachtet werden

Gibbs-Spezifikation 33/66

Potential

Definition (Potential)

Sei $B \subseteq \mathbb{Z}^d$ und $\Phi_B : \Omega \to \mathbb{R}$ eine \mathscr{F}_B -messbare Funktion, dann ist $\Phi = \{\Phi_B\}_{B \in \mathbb{Z}^d}$ ein Potential.

Der assoziierte Hamiltonian auf dem Gebiet Λ ist definiert als:

$$\mathscr{H}_{\Lambda;\Phi}(\omega) := \sum_{B \in \mathbb{Z}^d: \ B \cap \Lambda \neq \emptyset} \Phi_B(\omega), \quad \forall \omega \in \Omega$$

- Falls Φ endliche Reichweite hat ist die Summe endlich
- Falls Φ nicht endliche Reichweite hat, nehmen wir an, dass Φ_B absolut summierbar ist

Gibbs-Spezifikation 34/6

Potential des Ising-Modells

Beispiel: Potential des Ising-Modells

$$\Phi_{B}(\omega) = \begin{cases} -\beta \omega_{i} \omega_{j} & \text{falls B=\{i,j\}, } i \sim j, \\ -\underline{h\omega_{i}} & \text{falls B=\{\underline{i}\},} \\ 0 & \text{sonst} \end{cases}$$

Gibbs-Spezifikation 35/66

Gibbs-Spezifikation

Definition (Gibbs-Spezifikation)

Für jede Konfiguration $\tau_{\Lambda}\omega_{\Lambda^c}$ definieren wir die **Gibbs-Spezifikation** $\pi^{\Phi} = \{\pi_{\Lambda}^{\Phi}\}_{\Lambda \in \mathbb{Z}^d}$ als:

$$\pi^{oldsymbol{\phi}}_{oldsymbol{\Lambda}}(au_{oldsymbol{\Lambda}}|\omega) := rac{1}{Z^{\omega}_{oldsymbol{\Lambda}:oldsymbol{\phi}}} e^{-\mathscr{H}_{oldsymbol{\Lambda}:oldsymbol{\phi}}(au_{oldsymbol{\Lambda}}\omega_{oldsymbol{\Lambda}^c})}$$

mit

$$Z^{\omega}_{\mathsf{\Lambda};\mathbf{\Phi}} := \sum_{ au_{\mathsf{\Lambda}} \in \Omega_{\mathsf{\Lambda}}} e^{-\mathscr{H}_{\mathsf{\Lambda};\mathbf{\Phi}}(au_{\mathsf{\Lambda}}\omega_{\mathsf{\Lambda}^{\mathbf{c}}})}$$

Lemma 6.15

$$\pi^{\Phi} = \{\pi^{\Phi}_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$$
 ist eine Spezifikation

der Beweis funktioniert ähnlich zu dem von Lemma 6.7

Unendliches Gibbs-Maß

Definition (Unendliches Gibbs-Maß)

Für eine Gibbs-Spezifikation π^{Φ} zum Potential Φ heißt ein Wahrscheinlichkeitsmaß μ , das kompatibel mit π^{Φ} ist, **unendliches Gibbs-Maß** assoziiert zu Φ .

- unterschiedliche Potentiale können zur selben Spezifikation führen
- dann beschreiben sie auch den selben physikalischen Zustand. Man sagt auch sie sind physikalisch äquivalent

Gibbs-Spezifikation 37/6

Phase-Transition

Definition (Phase-Transition)

Falls $\mathscr{G}(\pi^{\Phi})$ mindestens zwei verschiedene Maße enthält, $|\mathscr{G}(\pi^{\Phi})| > 1$, gibt es eine first-order Phase Transition für das Potential Φ

Gibbs-Spezifikation 38/60

Existenz

- Bedingung für die Existenz gesucht
- Beweis nutzt Kompaktheit von Ω
- Wir brauchen topologische Notation
- Wir brauchen Endlichkeit der Spinmenge

Existenz 39/6

Konvergenz auf Ω

Definition (Konvergenz auf Ω)

Eine Reihe $(\omega_n)_{n\in\mathbb{N}}$ konvergiert gegen $\omega^*\in\Omega$ falls,

$$\lim_{n\to\infty}\omega_j^{(n)}=\omega_j^*,\quad\forall j\in\mathbb{Z}^d$$

Wir schreiben $\omega^{(n)} \to \omega^*$.

• zwei Elemente aus Ω liegen nah zusammen, wenn sie auf einer großen Menge um den Ursprung gleich sind.

Existenz 40/6

Kompaktheit von Ω

Proposition 6.20 (Kompaktheit von Ω)

 Ω ist **folgenkompakt**, d.h. für jede Folge $(\omega^{(n)})_{n\geq 1}\subset \Omega$ gibt es ein $\omega^*\in \Omega$ und eine Teilfolge $(\omega^{(n_k)})_{k\geq 1}$ s.d. $\omega^{(n_k)}\to\omega^*$

Existenz 41/60

Sei $(\omega^{(n)})_{n\geq 1}\in\Omega$ eine Folge und $\{i_1,i_2,i_3,...\}$ eine beliebige Nummerierung von \mathbb{Z}^d 1. betrachten $(\omega^{(n)}_{i_1})_{n\geq 1}\in\{-1,1\}$ und finden eine Teilfolge $(\omega^{(n_1,j)}_{i_1})_{j\geq 1}$, die konvergiert

Existenz 42/6

$$b_{1}=7,2,3,...$$
 $b_{1}=7,3,5,7$
 $b_{1}=7,3,5,7$

Sei $(\omega^{(n)})_{n\geq 1}\in\Omega$ eine Folge und $\{i_1,i_2,i_3,...\}$ eine beliebige Nummerierung von \mathbb{Z}^d

- 1. betrachten $(\omega_{i_1}^{(n)})_{n\geq 1}\in\{-1,1\}$ und finden eine Teilfolge $(\omega_{i_1}^{(n_1,j)})_{j\geq 1}$, die konvergiert
- 2. betrachten $(\omega_{\underline{i_2}}^{(\underline{n_1,j})})_{j\geq 1}\in\{-1,1\}$ und finden eine Teilfolge $(\omega_{i_2}^{(\underline{n_2,j})})_{j\geq 1}$, die konvergiert

3. ...

Existenz 43/6i

Sei $(\omega^{(n)})_{n\geq 1}\in\Omega$ eine Folge und $\{i_1,i_2,i_3,...\}$ eine beliebige Nummerierung von \mathbb{Z}^d

- 1. betrachten $(\omega_{i_1}^{(n)})_{n\geq 1}\in\{-1,1\}$ und finden eine Teilfolge $(\omega_{i_1}^{(n_1,j)})_{j\geq 1}$, die konvergiert
- 2. betrachten $(\omega_{i_2}^{(n_1,j)})_{j\geq 1}\in\{-1,1\}$ und finden eine Teilfolge $(\omega_{i_2}^{(n_2,j)})_{j\geq 1}$, die konvergiert
- 3. ...
- 4. Definieren $\omega^* \in \Omega$ durch: $\omega_{i_k}^* := \lim_{j \to \infty} \omega_{i_k}^{(n_k,j)}, \quad \forall k \geq 1$

Existenz 44/60

Sei $(\omega^{(n)})_{n\geq 1}\in\Omega$ eine Folge und $\{i_1,i_2,i_3,...\}$ eine beliebige Nummerierung von \mathbb{Z}^d

- 1. betrachten $(\omega_{i_1}^{(n)})_{n\geq 1}\in\{-1,1\}$ und finden eine Teilfolge $(\omega_{i_1}^{(n_1,j)})_{j\geq 1}$, die konvergiert
- 2. betrachten $(\omega_{i_2}^{(n_1,j)})_{j\geq 1}\in\{-1,1\}$ und finden eine Teilfolge $(\omega_{i_2}^{(n_2,j)})_{j\geq 1}$, die konvergiert
- 4. Definieren $\omega^* \in \Omega$ durch: $\omega_{i_{k}}^* := \lim_{j \to \infty} \omega_{i_{k}}^{(n_{k},j)}, \quad \forall k \geq 1$
- 5. Dann ist die diagonale Teilfolge $(\omega^{(n_j,j)})_{j\geq 1}$ eine Teilfolge von $(\omega^{(n)})_{n\geq 1}$ und erfüllt $\omega^{(n_j,j)}\to\omega^*$ für $j\to\infty$

Existenz 45/60

Stetige Funktionen auf Ω

Definition (Stetigkeit)

Eine Funktion $f: \Omega \to \mathbb{R}$ ist **stetig**, falls aus $\omega^{(n)} \to \omega$ folgt $f(\omega^{(n)}) \to f(\omega)$. Die Menge der stetigen Funktionen schreiben wir als $C(\Omega)$.

Existenz 46/60

Stetige Funktionen auf Ω

Definition (Stetigkeit)

Eine Funktion $f: \Omega \to \mathbb{R}$ ist **stetig**, falls aus $\omega^{(n)} \to \omega$ folgt $f(\omega^{(n)}) \to f(\omega)$. Die Menge der stetigen Funktionen schreiben wir als $C(\Omega)$.

• lokale Funktionen sind stetig

Existenz 47/60

Quasilokalität

Definition (quasilokale Funktion)

Eine Funktion f heißt **quasilokal**, falls es eine Folge $(g_n)_{n\geq 1}$ von lokalen Funktionen gibt sd. $||g_n - f||_{\infty} \to 0$.

ŋ

Definition (quasilokale Spezifikation)

Eine Spezifikation $\pi = \{\pi_{\Lambda}\}_{{\Lambda} \in \mathbb{Z}^d}$ ist **quasilokal**, falls jeder Kern π_{Λ} stetig bezüglich der Randbedingung ist.

existenz 48/6

Zusammenhang Stetigkeit und Quasilokalität

Lemma 6.21

f ist stetig \Leftrightarrow f quasilokal ist.

Aufgabe 6.13

Sei $\pi = {\pi_{\Lambda}}_{\Lambda \in \mathbb{Z}^d}$ quasilokal. Für ein festes Λ gilt:

$$f \in C(\Omega) \Rightarrow \pi_{\Lambda} f \in C(\Omega)$$

Existenz 49/60

Charakterisierung von Maßen

Lemma 6.22

Falls $\mu, \nu \in \mathcal{M}(\Omega)$, dann sind folgende Aussagen äquivalent:

- 1. $\mu = \nu$
- 2. $\mu(C) = \nu(C)$ für alle $C \in \mathscr{C}$.
- 3. $\mu(g) = \nu(g)$ für alle lokalen Funktionen g.
- 4. $\mu(f) = \nu(f)$ für alle $f \in C(\Omega)$.

Existenz 50/66

Konvergenz von Maßen

Definition (Konvergenz auf $\mathcal{M}(\Omega)$)

Eine Folgen $(\mu_n)_{n\geq 1}\subset \mathscr{M}(\Omega)$ konvergiert zu $\mu\in \mathscr{M}(\Omega)$, falls

$$\lim_{n\to\infty}\mu_n(C)=\mu(C),\quad \text{für alle Zylinder }C\in\mathscr{C}$$

Wir schreiben $\mu_n \Rightarrow \mu$.

Äquivalente Konvergenzen

Aufgabe 6.12

- 1. $\mu_n \Rightarrow \mu$
- 2. $\mu_n(f) \to \mu(f)$ für alle lokalen Funktionen f.
- 3. $\mu_n(f) \to \mu(f)$ für alle $f \in C(\Omega)$.
- 4. $\rho(\mu_n, \mu) \to 0$, wenn wir für alle $\mu, \nu \in \mathcal{M}(\Omega)$ den Abstand definieren als

$$\rho(\mu,\nu) := \sup_{k>1} \frac{1}{k} \max_{C \in \mathscr{C}(B(k))} |\mu(C) - \nu(C)|.$$

Existenz 52/60

Kompaktheit von $\mathcal{M}(\Omega)$

Satz 6.24

 $\mathcal{M}(\Omega)$ ist **folgenkompakt**, d.h. für jede Folge $(\mu_n)_{n\geq 1} \in \mathcal{M}(\Omega)$ gibt es ein $\mu \in \mathcal{M}(\Omega)$ und eine Teilfolge $(\mu_{n_k})_{k\geq 1}$ s.d. $\mu_{n_k} \Rightarrow \mu$ für $k \to \infty$.

Existenz 53/60

Existenz

Satz 6.26

Falls $\pi = \{\pi_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$ quasilokal ist, gilt $\mathscr{G}(\pi) \neq \emptyset$.

• es existiert also ein kompatibles Maß

Existenz 54/60

Sei
$$\pi = \{\pi_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$$
 eine quasilokale Spezifikation und $\omega \in \Omega$
Definiere $\mu_n(\cdot) := \pi_{B(n)}(\cdot|\omega)$ $B(n) = \{-n,...,n\}^d$

Existenz 55/66

Sei $\pi = \{\pi_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$ eine quasilokale Spezifikation und $\omega \in \Omega$ Definiere $\mu_n(\cdot) := \pi_{B(n)}(\cdot|\omega)$ $B(n) = \{-n,...,n\}^d$ Aus der Konsistenz von π folgt für n sd. $B(n) \supset \Lambda$:

$$\mu_n \pi_{\Lambda} = \pi_{B(n)} \pi_{\Lambda}(\cdot | \omega) = \pi_{B(n)}(\cdot | \omega) = \mu_n \quad (*)$$

Existenz 56/60

Sei $\pi = \{\pi_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$ eine quasilokale Spezifikation und $\omega \in \Omega$ Definiere $\mu_n(\cdot) := \pi_{B(n)}(\cdot|\omega)$ $B(n) = \{-n,...,n\}^d$ Aus der Konsistenz von π folgt für n sd. $B(n) \supset \Lambda$:

$$\mu_n \pi_{\Lambda} = \pi_{B(n)} \pi_{\Lambda}(\cdot | \omega) = \pi_{B(n)}(\cdot | \omega) = \mu_n \quad (*)$$

Aus der Kompaktheit von $\mathcal{M}(\Omega)$ folgt:

$$\exists \mu \in \mathscr{M}(\Omega), \ (\mu_{n_k})_{k \geq 1} \ sd. \ \mu_{n_k} \Rightarrow \mu \ \text{für } k \to \infty$$

Wir zeigen, dass $\mu \in \mathscr{G}(\pi)$ ist.

Existenz 57/66

Wir erinnern uns (Lemma 6.22) $\mu = \nu \Leftrightarrow \mu(f) = \nu(f) \ \forall f \in C(\Omega)$

Wir erinnern uns (Lemma 6.22)
$$\mu = \nu \Leftrightarrow \mu(f) = \nu(f) \ \ \forall f \in C(\Omega)$$

Sei $f \in C(\Omega)$ und $\Lambda \Subset \mathbb{Z}^d$, da π quasilokal $\stackrel{\mathsf{Nr.6.13}}{\Longrightarrow} \pi_{\Lambda} f \in C(\Omega)$

Wir erinnern uns (Lemma 6.22)
$$\mu = \nu \Leftrightarrow \mu(f) = \nu(f) \ \forall f \in C(\Omega)$$

Sei $f \in C(\Omega)$ und $\Lambda \subseteq \mathbb{Z}^d$, da π quasilokal $\stackrel{\mathsf{Nr.6.13}}{\Longrightarrow} \pi_{\Lambda} f \in C(\Omega)$ Aus Nr.6.6 wissen wir, $\mu \pi_{\Lambda}(f) = \mu(\pi_{\Lambda} f)$

Existenz 60/66

Wir erinnern uns (Lemma 6.22)
$$\mu = \nu \Leftrightarrow \mu(f) = \nu(f) \ \ \forall f \in C(\Omega)$$

Sei $f \in C(\Omega)$ und $\Lambda \subseteq \mathbb{Z}^d$, da π quasilokal $\stackrel{\mathsf{Nr.6.13}}{\Longrightarrow} \pi_{\Lambda} f \in C(\Omega)$ Aus Nr.6.6 wissen wir, $\mu \pi_{\Lambda}(f) = \mu(\pi_{\Lambda} f)$

$$\mu\pi_{\Lambda}(f) \stackrel{\mathsf{Nr.6.6}}{=} \mu(\pi_{\Lambda}f) = \lim_{k \to \infty} \mu_{n_k}(\pi_{\Lambda}f)$$

Existenz 61/66

Wir erinnern uns (Lemma 6.22)
$$\mu = \nu \Leftrightarrow \mu(f) = \nu(f) \ \forall f \in C(\Omega)$$

Sei $f \in C(\Omega)$ und $\Lambda \subseteq \mathbb{Z}^d$, da π quasilokal $\stackrel{\operatorname{Nr.6.13}}{\Longrightarrow} \pi_{\Lambda} f \in C(\Omega)$ Aus Nr.6.6 wissen wir, $\mu \pi_{\Lambda}(f) = \mu(\pi_{\Lambda} f)$

$$\mu\pi_{\Lambda}(f) \stackrel{\mathsf{Nr.6.6}}{=} \mu(\pi_{\Lambda}f) = \lim_{k \to \infty} \mu_{n_k}(\pi_{\Lambda}f) \stackrel{\mathsf{Nr.6.6}}{=} \lim_{k \to \infty} \mu_{n_k}\pi_{\Lambda}(f)$$

Existenz 62/66

Wir erinnern uns (Lemma 6.22)
$$\mu = \nu \Leftrightarrow \mu(f) = \nu(f) \ \ \forall f \in C(\Omega)$$

Sei
$$f \in C(\Omega)$$
 und $\Lambda \subseteq \mathbb{Z}^d$, da π quasilokal $\stackrel{\mathsf{Nr.6.13}}{\Longrightarrow} \pi_{\Lambda} f \in C(\Omega)$ Aus Nr.6.6 wissen wir, $\mu \pi_{\Lambda}(f) = \mu(\pi_{\Lambda} f)$

$$\mu\pi_{\Lambda}(f) \stackrel{\mathsf{Nr.6.6}}{=} \mu(\pi_{\Lambda}f) = \lim_{k \to \infty} \mu_{n_k}(\pi_{\Lambda}f) \stackrel{\mathsf{Nr.6.6}}{=} \lim_{k \to \infty} \mu_{n_k}\pi_{\Lambda}(f) \stackrel{*}{=} \lim_{k \to \infty} \mu_{n_k}(f)$$

Existenz 63/66

Wir erinnern uns (Lemma 6.22)
$$\mu = \nu \Leftrightarrow \mu(f) = \nu(f) \ \ \forall f \in C(\Omega)$$

Sei $f \in C(\Omega)$ und $\Lambda \subseteq \mathbb{Z}^d$, da π quasilokal $\stackrel{\mathsf{Nr.6.13}}{\Longrightarrow} \pi_{\Lambda} f \in C(\Omega)$ Aus Nr.6.6 wissen wir, $\mu \pi_{\Lambda}(f) = \mu(\pi_{\Lambda}f)$

$$\mu\pi_{\Lambda}(f) \stackrel{\mathsf{Nr.6.6}}{=} \mu(\pi_{\Lambda}f) = \lim_{k \to \infty} \mu_{n_k}(\pi_{\Lambda}f) \stackrel{\mathsf{Nr.6.6}}{=} \lim_{k \to \infty} \mu_{n_k}\pi_{\Lambda}(f) \stackrel{*}{=} \lim_{k \to \infty} \mu_{n_k}(f) = \mu(f)$$

Wir erinnern uns (Lemma 6.22)
$$\mu = \nu \Leftrightarrow \mu(f) = \nu(f) \ \forall f \in C(\Omega)$$

Sei $f \in C(\Omega)$ und $\Lambda \subseteq \mathbb{Z}^d$, da π quasilokal $\stackrel{\mathsf{Nr.6.13}}{\Longrightarrow} \pi_{\Lambda} f \in C(\Omega)$ Aus Nr.6.6 wissen wir, $\mu \pi_{\Lambda}(f) = \mu(\pi_{\Lambda}f)$

$$\mu\pi_{\Lambda}(f) \stackrel{\mathsf{Nr.6.6}}{=} \mu(\pi_{\Lambda}f) = \lim_{k \to \infty} \mu_{n_k}(\pi_{\Lambda}f) \stackrel{\mathsf{Nr.6.6}}{=} \lim_{k \to \infty} \mu_{n_k}\pi_{\Lambda}(f) \stackrel{*}{=} \lim_{k \to \infty} \mu_{n_k}(f) = \mu(f)$$

Da f und Λ beliebig gilt $\mu\pi_{\Lambda} = \mu$ also $\mu \in \mathscr{G}(\pi)$

Vielen Dank für eure Aufmerksamkeit!

Welche Fragen gibt es?