Assignment 18

Venkatesh E AI20MTECH14005

Download latex-tikz codes from

https://github.com/venkateshelangovan/IIT-Hyderabad-Assignments/tree/master/ Assignment18 Matrix Theory

1 Problem

If **A** be the $n \times n$ matrix(with n > 1) satisfying $\mathbf{A}^2 - 7\mathbf{A} + 12\mathbf{I}_{n \times n} = \mathbf{0}_{n \times n}$ where $\mathbf{I}_{n \times n}$ and $\mathbf{0}_{n \times n}$ denotes the identity matrix and zero matrix of order n respectively. Then which of the following statements are true?

1) A is invertible

- 2) t^2 -7t+12n=0 where t=Tr(**A**)
- 3) d^2 -7d+12=0 where d=Det(**A**)
- 4) λ^2 -7 λ +12=0 where λ is an eigen value of **A**

2 Solution

Given	A be the $n \times n$ matrix where $n > 1$ satisfying the following equation		
	$\mathbf{A}^2 - 7\mathbf{A} + 12\mathbf{I}_{n \times n} = 0_{n \times n}$	(2.0.1)	
Explanation	The Cayley Hamilton Theorem states that every square matrix satisfies its own characteristic equation.		
	Using this theorem the given equation (2.0.1) can be written as,		
	$\lambda^2 - 7\lambda + 12 = 0$	(2.0.2)	
	$(\lambda - 4)(\lambda - 3) = 0$	(2.0.3)	
	$\lambda_1 = 3$	(2.0.4)	
	$\lambda_2 = 4$	(2.0.5)	
	Here λ_1 and λ_2 were eigen values of matrix A We know that determinant is product of eigen values.		
	$d = Det(\mathbf{A})$	(2.0.6)	
	$\implies d = \lambda_1 \lambda_2$	(2.0.7)	
	$\implies d = 12 \neq 0$	(2.0.8)	
Statement 1	A is invertible		
	From equation (2.0.8), since $d \neq 0$ the given matrix A is Invertible.		
	True Statement		
Statement 2	$t^2 - 7t + 12n = 0$	(2.0.9)	

	We know that the trace is the sum of the eigen values.		
	$t = Tr(\mathbf{A})$	(2.0.10)	
	$\implies t = \lambda_1 + \lambda_2$	(2.0.11)	
	$\implies t = 7$	(2.0.12)	
	Substituting the equation (2.0.12) in (2.0.9) we get,		
	$7^2 - 7(7) + 12n = 0$	(2.0.13)	
	12n = 0	(2.0.14)	
	Since given that $n > 1$ the equation (2.0.17) is not possible i.e $12n \neq 0$.		
	Therefore, $t^2 - 7t + 12n = 0$ is a False Statement		
Statement 3	$d^2 - 7d + 12 = 0$	(2.0.15)	
	Substituting the equation (2.0.8) in (2.0.15), we get,		
	$12^2 - 7(12) + 12 = 0$	(2.0.16)	
	72 = 0	(2.0.17)	
	From equation (2.0.17) it is clear that the above statement 3 is invalid.		
	False Statement		
Statement 4	$\lambda^2 - 7\lambda + 12 = 0$	(2.0.18)	
	By Cayley Hamilton Theorem, equation (2.0.2) shows that the above statement 4 is valid.		
	True Statement		

TABLE 1: Explanation