

ECEN 403 Final Presentation Team URS-1_Enjeti_Matrix_Converter Jack Alagood, Kyle Bedrich, lan Farrar

Problem Overview

- The rise of energy-intensive computing (Almodel training, cloud computing, data centers, etc.) creates a need to optimize power delivery to these loads
- Matrix converters offer bi-directional power flow, adjustable input power factor, and greater power density relative to traditional rectifiers

Problem Overview

- Schematics done for gate driver, voltage sensor, and primary side for single-phase converter (will expand to 3-phase after verifying current design)
- Finalizing PCB layout and traces

Task	Due Date	Status
Gate driver schematic	9-19	Complete
Voltage sensor schematic	9-26	Complete
Matrix converter schematic	10-10	Complete
PCB layout	10-31	Complete
PCB tracing	11-21	In Progress

Remaining Tasks

- Finish PCB trace, refine board design, order parts, assemble PCB
- Next semester we will be testing the single-phase circuit, then implementing the full 3-phase design, and collecting data on the converter's performance

- Parametric core models for both torroid and E core shapes completed. Simulations for inductor design have been ran.
- In process of modifying parametric core dimensions to achieve specific performance metrics for inductor design
- Will use experience gained from inductor design to direct transformer design

	i and vandatio	<u> </u>
Task	Due Date	Status
Compile Research Document for HF Transformer Design	10-17	Complete
Learn how to use ANSYS modeling software and develop parametric model	10-31	Complete
Develop E-core model as alternative to original torroid and run simulations	11-14	Complete
Modify parametric models to fulfill inductor performance metrics	11-28	In Progress
Design transformer	Beginning of next semester (using winter break to catch up due to change of scope of task in mid-October	In Progress

Remaining Tasks

- Rest of semester will be used to fine tune inductor design and simulation, and then I will move onto transformer design.
- I aim to have the transformer design done by the start of next semester. Next semester will start by assembling the designed transformer, testing, and implementing in full 3x1 matrix converter.

- Designed control system and validated functionality in PowerSim software.
- Currently validating controls system using HIL in conjunction with the TI F28379D board.

 Picture of simulated output voltage in PowerSim with validated control logic

- Validation currently underway for control system
- Utilizing Typhoon HIL system to test control system blocks and switch output

Remaining Tasks

- Execution will occur after every portion of the control subsystem is validated
- Implementation onto PCB
- Full controls test with power system

Task	Deadline	Status
URS Program Application	9/3/2024	Complete
Analyze Prior Studies	9/5/2024	Complete
Acquire Software Licenses	9/5/2024	Complete
Concept of Operations Report	9/15/2024	Complete
Research	9/19/2024	Complete
Functional System Requirements	9/26/2024	Complete
Interface Control Document	9/26/2024	Complete
Validation Plan	9/26/2024	Complete
Design and Simulation	10/10/2024	Complete
Status Update Presentation	10/23/2024	Complete
Midterm Presentation	10/10/2024	Complete
PCB Design	11/21/2024	In Progress
PCB Assembly		
Testing		
Final Presentation	11/20/2024	Complete
Final Demo		

