Convergent Policy Optimization for Safe Reinforcement Learning

Ming Yu, Zhuoran Yang, Mladen Kolar, Zhaoran Wang

Abstract

- **Fact:** In real-world applications of RL, we need to take into consideration the safety of the agent (constrained MDP)
- Challenge: Both the objective and constraint function are nonconvex and involve expectation without closed form expression
- **Algorithms:** Optimize a sequence of convex relaxation problems, motivated by [1]
- Theoretical result: Convergence of subsequence to a stationary point almost surely
- Extension: Actor-Critic method and parallel / multi-agent RL problem with safety constraint

Optimization

Constrained MDP (CMDP) setup (D_0 is a constant):

minimize
$$J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[-\sum_{t \geq 0} \gamma^{t} \cdot r(s_{t}, a_{t}) \right],$$

subject to $D(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t \geq 0} \gamma^{t} \cdot d(s_{t}, a_{t}) \right] \leq D_{0}$ (1)

In each iteration k at θ_k , we sample a trajectory and obtain sample reward and constraint value:

$$J^*(\theta_k) = -\sum_t \gamma^t \cdot r(s_t, a_t)$$
 and $D^*(\theta_k) = \sum_t \gamma^t \cdot d(s_t, a_t)$

and their gradients $\nabla_{\theta}J^{*}(\theta_{k})$ and $\nabla_{\theta}D^{*}(\theta_{k})$

• We approximate $J(\theta)$ and $D(\theta)$ at θ_k by the quadratic surrogates:

$$\widetilde{J}(\theta, \theta_k, \tau) = J^*(\theta_k) + \langle \nabla_{\theta} J^*(\theta_k), \theta - \theta_k \rangle + \tau \|\theta - \theta_k\|_2^2,$$

$$\widetilde{D}(\theta, \theta_k, \tau) = D^*(\theta_k) + \langle \nabla_{\theta} D^*(\theta_k), \theta - \theta_k \rangle + \tau \|\theta - \theta_k\|_2^2.$$

where $\tau > 0$ is any fixed constant and

$$\overline{J}^{(k)}(\theta) = (1 - \rho_k) \cdot \overline{J}^{(k-1)}(\theta) + \rho_k \cdot \widetilde{J}(\theta, \theta_k, \tau),$$

$$\overline{D}^{(k)}(\theta) = (1 - \rho_k) \cdot \overline{D}^{(k-1)}(\theta) + \rho_k \cdot \widetilde{D}(\theta, \theta_k, \tau).$$

■ In each iteration, we solve

$$\overline{\theta}_k = \arg\min_{\theta} \overline{J}^{(k)}(\theta)$$
 subject to $\overline{D}^{(k)}(\theta) \le D_0$, (2)

if it is feasible; otherwise we solve the feasibility problem

$$\overline{\theta}_k = \underset{\theta, \alpha}{\operatorname{arg\,min}} \quad \alpha \quad \text{subject to} \quad \overline{D}^{(k)}(\theta) \leq D_0 + \alpha. \quad (3)$$

• Update θ_k by

$$\theta_{k+1} = (1 - \eta_k) \cdot \theta_k + \eta_k \cdot \overline{\theta}_k, \tag{4}$$

Algorithm

Algorithm 1 Successive convex relaxation algorithm for CMDP

```
1: Input: Initial value \theta_0, \tau, \{\rho_k\}, \{\eta_k\}.

2: for k = 1, 2, 3, ... do

3: Obtain sample J^*(\theta_k), D^*(\theta_k) by Monte-Carlo sampling.

4: Obtain sample \nabla_{\theta}J^*(\theta_k), \nabla_{\theta}D^*(\theta_k) by policy gradient theorem.

5: if problem (2) is feasible then

6: Obtain \overline{\theta}_k by solving (2).

7: else
```

9: Obtain θ_k by solving (3). end if

Update θ_{k+1} by (4).

11: end for

Assumptions

- Assumption 1. [Step size] We have $\lim_{k\to\infty} \sum_k \eta_k = \infty$, $\lim_{k\to\infty} \sum_k \rho_k = \infty$ and $\lim_{k\to\infty} \sum_k \eta_k^2 + \rho_k^2 < \infty$. Furthermore, we have $\lim_{k\to\infty} \eta_k/\rho_k = 0$ and η_k is decreasing.
- **Assumption 2.** [Smooth objective and constraint] For any realization, $J^*(\theta)$ and $D^*(\theta)$ are continuously differentiable as functions of θ . Moreover, $J^*(\theta)$, $D^*(\theta)$, and their derivatives are uniformly Lipschitz continuous.

Theoretical result

Theorem. Suppose Assumptions 1 and 2 are satisfied, and θ_0 is a feasible point. For subsequence $\{\theta_{k_j}\}$ of $\{\theta_k\}$ that converges to some $\widetilde{\theta}$, there exist $\widehat{J}(\theta)$ and $\widehat{D}(\theta)$ satisfying

$$\lim_{j \to \infty} \overline{J}^{(k_j)}(\theta) = \widehat{J}(\theta) \quad \text{and} \quad \lim_{j \to \infty} \overline{D}^{(k_j)}(\theta) = \widehat{D}(\theta).$$

Suppose there exists θ such that $\widehat{D}(\theta) < D_0$ (i.e. the Slater's condition holds), then $\widetilde{\theta}$ is a **stationary point** of the original problem (1) almost surely.

- If θ_0 is not feasible, then the following Assumption 3 is needed to exclude convergence to undesired stationary point
- Assumption 3. Suppose (θ_S, α_S) is a stationary point of the optimization problem

minimize
$$\alpha$$
 subject to $D(\theta) \leq D_0 + \alpha$.

We have that θ_S is a feasible point of the original problem.

Application to linear quadratic regulator (LQR)

- We consider the infinite-horizon, discrete-time LQR problem.
- Denote x_t as the state and u_t as the control. We have the state transition and the control sequence

$$x_{t+1} = Ax_t + Bu_t + v_t,$$

$$u_t = -Fx_t + w_t$$

- Random initial state $x_0 \sim \mathcal{D}$
- lacksquare Optimization problem with parameter F:

minimize
$$J(F) = \mathbb{E}\left[\sum_{t\geq 0} x_t^\top Q_1 x_t + u_t^\top R_1 u_t\right],$$
 subject to $D(F) = \mathbb{E}\left[\sum_{t\geq 0} x_t^\top Q_2 x_t + u_t^\top R_2 u_t\right] \leq D_0.$

Experiment

■ Constraint values and objective values for one realization

Figure: Constaint value $D(\theta_k)$

Figure: Objective value $J(\theta_k)$

Compare with Lagrangian method (50 replicates)

	min value	# iterations	approx # iterations
Our method	30.689 ± 0.114	2001 ± 1172	604.3 ± 722.4
Lagrangian	30.693 ± 0.113	$ 7492 \pm 1780 $	5464 ± 2116

Table: Comparison of our method with Lagrangian method

- Our method requires less number of policy updates
- Code available at

https://github.com/ming93/Safe_reinforcement_learning

Reference

[1] An Liu, Vincent Lau, and Borna Kananian. Stochastic successive convex approximation for non-convex constrained stochastic optimization. *IEEE Transactions on Signal Processing*, 2019