Risolvere il massimo numero di esercizi accompagnando le risposte con spiegazioni chiare ed essenziali. *Inserire le risposte negli spazi predisposti. NON SI ACCETTANO RISPOSTE SCRITTE SU ALTRI FOGLI. Scrivere il proprio nome anche nell'ultima pagina.* 1 Esercizio = 3 punti. Tempo previsto: 2 ore. Nessuna domanda durante la prima ora e durante gli ultimi 20 minuti.

- 1. Descrivere tutte le soluzioni dell'equazione diofantea 3x + y = 7.
- 2. Trovare tutte le soluzioni intere di $\begin{cases} X \equiv 3 \pmod{5} \\ X \equiv 5 \pmod{3} \end{cases}$ in [100, 200).
- 3. Enunciare e dimostrare il Teorema di Lagrange per il numero di soluzioni di una congruenza del tipo $f(X) \equiv 0 \pmod{p}$.
- 4. Determinare il numero di soluzioni di $X^3 + X + 10 \equiv 0 \pmod{40}$.
- 5. Determinare tutte le radici primitive di $\mathbb{Z}/26\mathbb{Z}$ e $\mathbb{Z}/20\mathbb{Z}$.
- 6. Mostrare che per ogni d|(p-1), in $\mathbf{Z}/p\mathbf{Z}^*$ ci sono esattamente $\varphi(d)$ elementi di ordine d.
- 7. Calcolare il seguente simbolo di Jacobi $\left(\frac{1111}{5433}\right)$.
- 8. Mostrare che $\sum_{a=1}^{p} \left(\frac{a}{p}\right) = 0$.
- 9. Calcolare $(\sigma * \tau * \mu)(2^8 \cdot 5)$.
- 10. Enunciare il teorema di classificazione per le terne pitagoriche primitive positive.
- 11. Scrivere 3036285 come somma di due quadrati.
- 12. Dimostrare che esistono infiniti numeri interi che non si possono scrivere come somma di tre quadrati.

NOME E COGNOME	1	2	3	4	5	6	7	8	9	10	11	12	TOT.