Лекция: Организация на компютърна система. Фон Нойманова архитектура. Централен процесор. Памет. Периферни интерфейси.

1. Цел на занятието.

Целта на лекцията е студентите да се запознаят с Фон Ноймановата архитектура на компютърна система. Видове памети. Периферни интерфейси.

2. Фон Нойманова архитектура.

Фон Нойманова архитектура е дадена на фигура 1. тя се състои от:

- ❖ Процесор (CPU)
- ❖ Оперативна памет (ОП)
- Представяне на информацията в компютъра
- ❖ Входно-изходени интерфейси (В/И интерфейси)
- Периферни устройства
- ❖ Изчислителен процес CPU
- ❖ Съхраняване на информация (данни) ОП
- ❖ Обмен на информация (данни):

Фигура 1. Фон Нойманова архитектура.

Представяне на информацията в компютъра

Представянето на числата в различните бройни системи и правилата за тяхното записва.

Оперативна памет

Оперативната памет (ОП) е множество от запомнящи клетки с различна дължина на информационната дума. В нея се съхраняват изходните данни; програми; междинни и крайни резултати. В ОП се зарежда информацията, която ще се обработва, както описахме по-горе.

Броят на адресируемите клетки зависи от дължината на адресанта магистрала (Address Bus).

```
2^{16} = 65\ 536 = 64\ KB (или word)

2^{20} = 1024 * 1024 = 1\ MB (или word)

2^{30} = 1024 * 1024 * 1024 = 1\ GB (или word)

2^{40} = 1\ TB
```

Оперативна памет – Вътрешна памет

Оперативната памет на компютърните системи се определя от възможностите за избор на различни клетки от процесора. Тя се дели на два основни вида: постоянна и временна.

- ❖ Постоянната памет
- ❖ Временна памет тип RAM памет с произволен достъп

Постоянната памет

- **❖** ROM
- **❖** PROM
- **❖** EPROM
- **❖** EEPROM
- ❖ FLASH ROM

RAM памет – памет с произволен достъп

<u>Постоянната памет</u> служи за съхраняване на програмите за начално стартиране на компютъра и указване на операциите, които да извърши при всяко едно стартиране на системата. Тази памет се нарича ROM (памет само за четене). Този тип памети е енергонезависима, т. е. записаната в нея информация не се губи при изключване на захранващото напрежение. Различните типове ROM са:

<u>ROM</u> – записването на информацията се извършва в процеса на производство на паметта, много е скъпо и се използува за много големи серии;

<u>PROM</u> – програмируем ROM, еднократно програмируеми при потребителя, т.е. записа на информацията се извършва от потребителя на специално устройство наречено програматор, еднократно;

<u>EPROM</u> – изтриваем PROM, може многократно да се изтрива и записва информацията в него. Изтриването на информацията се извършва чрез облъчване с твърда ултравиолетова светлина, облъчваща самия кристал;

EEPROM – електрически изтриваем EPROM.;

<u>Flash ROM</u> – както EEPOM-а се изтрива и презаписва по електрически път , но не се изисква свалянето на интегралната схема от платката. Всички операции се извършват на непосредствено монтираната платка. Този тип памети се използуват за съхраняване на началните стартиращи програми в съвременните дънни платки - BIOS(Базова входно-изходна система);

<u>RAM памети</u> – памет с произволен достъп. Памети, в които може да се записва, и от които може да се чете. Служат за временно съхраняване на програми, входни данни, междинни и крайни резултати. Това е енерго- зависима памет, т.е. при изключване на захранващото напрежение, се губи записаната в нея информация. От нейния обем (капацитет) се определя броя различни програми, които могат да бъдат заредени за изпълнение едновременно.

Процесор

Процесорите (CPU) са обучени да разпознават определен набор от инструкции, които изпълняват. Според дължината на обработваната в тях информация се делят на 8 битови, 16 - , 32 -, 64 – битови и т.н.

Система команди

- Команди за прехвърляне на данни
- Аритметични инструкции
- Логически инструкции
- Инструкции за изместване и ротация
- Инструкции за обработване на низове
- Инструкции за предаване на управлението
- Инструкции за управление на цикли
- Инструкции за управление работата на процесора
- Специални инструкции

Архитектурата на процесора на фирмата Intel 8088 е дадена на фигура 2.

Simplified block diagram over Intel 8088 (a variant of 8086); 1=main registers; 2=segment registers and IP; 3=address adder; 4=internal address bus; 5=instruction queue; 6=control unit (very simplified!); 7=bus interface; 8=internal databus; 9=ALU; 10/11/12=external address/data/control bus.

Фигура 2. Архитектура на 18088

Периферни интерфейси.

Тази тема ще разгледаме след видовете системи в мобилните машини.