

LAB 4: TCP and UDP

Akshar Panchani ID- 202101522 IT304 Computer Networks 9/12/23

Exercise:

1.2:

1. Calculate and Observe moving average throughput throughput of both the applications (CBR and VIDEO).

We observe the Throughput for CBR is 0.199600 Mbps and Video is 0.255613 Mbps

Application_metrics	Det	Detailed View						
oughput Plot	Application Name	Packet transmitted	Packet received	Throughput (Mbps)	Delay(microsec)			
lication throughput plot	APP1_CBR	499	499	0.199600	114.127134			
lication throughput plot	APP2_CBR	499	499	0.199600	12226.512102			
lication throughput plot	APP3_VIDEO	499	498	0.252925	179.272450			
lication throughput plot	APP4_VIDEO	499	499	0.255613	183.780842			

2. Observe the delay and throughput metrics in the simulation window and write down your observation.

Delay is in microseconds as 114.127 for CBR packet and 179.2724 for Video packet.

Queue_Me	trics_Table	;			
Queue_Metrics		D	etailed View		
Device_id	Port_id	Queued_packet	Dequeued_packet	Dropped_packet	
5	1	500	500	0	
5	2	501	501	0	
5	3	0	0	0	
5	4	0	0	0	
5	5	2000	2000	0	

Calculate throughput:

Here is the attached calculations from the packet trace of the output file.

Here we will notice that the values obtain will be >>0 rather than to be in the average, this shows that at starting the queue is empty and an easy flow is seen so the values are higher, as the queue will be filled this will start decreasing.

- 3) Sample calculation for Fix throughput
- -> PAYLOAD/(APPLICATION LAYER ARRIVAL TIME PHYSICAL LAYER END TIME) for row 16th -> 566/(20098.92-20000) = 5.72179 Mbps.

Moving Average CBR

Continuous Average

For CBR:

PACK ET_I D	PACKE T_TYP E		DESTIN ATION_I D			PHY_LAYER _PAYLOAD(B ytes)	DIffere nce	Throu ghput	Movin g avera ge
1	CBR	NOD E-1	NODE-6	20000	20098.92	566	98.92	5.721 79539	
1	CBR	NOD E-2	NODE-6	20000	20105.48	566	105.4 8	5.365 94615 1	
1	CBR	NOD E-1	NODE-6	20000	20215.84	566	215.8 4	2.622 31282 4	6.861 75945 7
1	CBR	NOD E-2	NODE-6	20000	20262.08	566	262.0 8	2.159 64591	7.164 99127
2	CBR	NOD E-1	NODE-6	40000	40050.28	566	50.28	11.256 96102	
2	CBR	NOD E-2	NODE-6	40000	40050.28	566	50.28	11.256 96102	8.483 91975 6

Lab- CC	mputer	INCLINO	N						Musiam
		NOD					125.3	4.514 99680	7.550 41733
2	CBR	E-1	NODE-6	40000	40125.36	566	6	9	7
								3.298	
		NOD						36829	7.477
2	CBR	E-2	NODE-6	40000	40171.6	566	171.6	8	14945
		NOD						11.256	8.361
3	CBR	E-1	NODE-6	60000	60050.28	566	50.28	96102	43753
		NOD						11.256	8.361
3	CBR	E-2	NODE-6	60000	60050.28	566	50.28	96102	43753
								5.628	7.736
	000	NOD			20122 = 2		100.5		
3	CBR	E-1	NODE-6	60000	60100.56	566	6	9	7
								3.855	7.534
	000	NOD	NODE	20000	22442.0	500	4 4 0 0	58583	14510
3	CBR	E-2	NODE-6	60000	60146.8	566	146.8	1	5
		NOD						11.256	
4	CBR	E-1	NODE-6	80000	80050.28	566	50.28	96102	
		NOD						11.256	
4	CBR	E-2	NODE-6	80000	80050.28	566	50.28	96102	

For Video:

Moving average Video

PACK ET_I D	PACKE T_TYP E		DESTIN ATION_I D	APP_LAYER_A RRIVAL_TIME(US)		_	DIffere nce	Throu ghput	Movin g avera ge
1	Video	NOD E-4	NODE-6	20000	20043.88	486	43.88	11.075 66089	7.003 38140 7
1	Video	NOD E-3	NODE-6	20000	20073.4	855	73.4	11.648 50136	7.373 58015 9
1	Video	NOD E-4	NODE-6	20000	20087.76	486	87.76	5.537 83044 7	7.159 83409 9
1	Video	NOD E-3	NODE-6	20000	20169.6	855	169.6	5.041 27358 5	7.085 83116 4
2	Video	NOD E-3	NODE-6	40000	40039.56	432	39.56	10.92 01213 3	
2	Video	NOD E-3	NODE-6	40000	40079.12	432	79.12	5.460 06066 7	
2	Video	NOD E-4	NODE-6	40000	40096.52	1144	96.52	11.852 46581	7.656 27666 2
2	Video	NOD E-4	NODE-6	40000	40264.08	1144	264.0 8	4.332 0206	
3	Video	NOD E-4	NODE-6	60000	60019.72	184	19.72		8.028 25839
3	Video	NOD E-4	NODE-6	60000	60039.44	184	39.44	4.665 31440 2	

Thomas Assortant Park	DA-IICT DE LES
	8 105

Lab- Computer Network										otto junuication	
										8.105	
			NOD						11.717	28042	
	3	Video	E-3	NODE-6	60000	60079.88	936	79.88	57636	2	

2.2:

```
Microsoft Windows [Version 10.0.22621.2134]
(c) Microsoft Corporation. All rights reserved.
C:\Users\ASUS>ipconfig /flushdns
Windows IP Configuration
Successfully flushed the DNS Resolver Cache.
C:\Users\ASUS>nslookup 8.8.8.8
        smtp.daiict.ac.in
Server:
Address: 10.100.56.27
        dns.google
Name:
Address: 8.8.8.8
C:\Users\ASUS>
```

1. Select one UDP packet from your trace. From this packet, determine how many fields there are in the UDP header. Name these fields.

There 4 fields observed: Destination and source port with length and checksum

Lab- Computer Network

2. By consulting the displayed information in Wireshark's packet content field for this packet, determine the length (in bytes) of the UDP header fields.

From the above screenshot, The UDP header has a length of 8 bytes, where each field is 2 bytes long.

3. The value in the Length field is the length of what? Verify your claim with your captured UDP packet.

Here length observed is 28 and therefore the UDP payload is 28-8 bytes of length i.e 20 bytes.

4. What is the maximum number of bytes that can be included in a UDP payload?

We know that the max no of payload is 2^16 - the header field bytes which is 65527-> 65535- 8 bytes if we consider 1 header file.

5. What is the largest possible source port number?

As mentioned above max payload port number is 2^16 -1 which is 65535.

6. What is the protocol number for UDP? Give your answer in both hexadecimal and decimal notation. To answer this question, you'll need to look into the Protocol field of the IP datagram containing this UDP segment.

Protocol number Decimal number is 17 and hexadecimal is 0x11.

```
Wireshark · Packet 462 · Wi-Fi
> Frame 462: 1495 bytes on wire (11960 bits), 1495 bytes captured (11960 bit
> Ethernet II, Src: AzureWav b9:f8:77 (14:13:33:b9:f8:77), Dst: IntelCor 5c:
Internet Protocol Version 4, Src: 10.200.17.196, Dst: 239.255.102.18
     0100 .... = Version: 4
     .... 0101 = Header Length: 20 bytes (5)
  > Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
     Total Length: 1481
     Identification: 0xa3cd (41933)
  > 000. .... = Flags: 0x0
     ...0 0000 1011 1001 = Fragment Offset: 1480
     Time to Live: 1
     Protocol: UDP (17)
     Header Checksum: 0x9d00 [validation disabled]
     [Header checksum status: Unverified]
     Source Address: 10.200.17.196
0010 05 c9 a3 cd 00 b9 01 11 9d 00 0a c8 11 c4 ef ff
0020 66 12 0a 64 9b 88 84 a9 33 1f 31 7f a8 93 2b e5
                                                          f - · d - · · · 3 · 1 · · · + ·
0030 ea 8a 18 65 fd 73 a8 1f 0e 49 47 d5 6d db 97 8f
                                                           ···e·s·· ·IG·m···
```

7. Why have we used DNS commands to capture UDP packets? Do you know any-other method to generate UDP traffic using wireshark? Write your answer in detail.

Lab- Computer Network

> Internet Protocol Version 4, Src: 10.200.4.38, Dst: 10.100.5

✓ User Datagram Protocol, Src Port: 55325, Dst Port: 53

Source Port: 55325 Destination Port: 53

Length: 79

Checksum: 0x51cd [unverified]
[Checksum Status: Unverified]

[Stream index: 6]

> [Timestamps]

UDP payload (71 bytes)

> Domain Name System (query)

Port number:

Source = 55325

Destination = 53

We would further observe that the sending and receiving port number would come to be same as it connects to UDP.