3. Prove Beta-Binomial conjugation
X ~ Bin (n, p)
$f(x p) = C_x^n p^x (1-p)^{n-x} \propto \exp x \ln p + (n-x) \ln (1-p) $
prior is beta distribution to Beta (x, p)
$\pi(p) \perp p^{d-1} (1-p)^{q-1} = \exp f(a-1) \ln p + (q-1) \ln (1-p)^{\frac{q}{2}}$
$\pi(p x) = \pi(p) f(x p)$
d exp (x lnp+ (n-x) ln (1-p) 3. exp (a-1) lnp+ (a-1) ln (1-p) 3
= exp { (x+d-1) lnp + (n-x+a-1) ln(1-p) }
$= p^{\alpha+X-1} (1-p)^{n+\beta-X-1}$
$\pi(p x) \sim \text{Beta}(d+x, n+g-x)$

4. Prove Gamma - Poisson conjugation	
$\times \sim \text{Exp}(\lambda)$	
$f(x x) = e^{-\lambda} \frac{x^{x}}{x!} = \frac{1}{x!} \exp(f - \lambda + x \ln \lambda)$	
prior is gamma distribution $Z \sim gamma(\alpha, \beta)$	
$\pi(\lambda) \propto \lambda^{\alpha-1} e^{-\beta\lambda} = \exp\{-\beta\lambda + (\alpha-\lambda) \ln \lambda\}$	
$\pi(\lambda x) = f(x \lambda)\pi(\lambda)$	
$\angle \exp\{-\lambda + \times \ln \lambda \}$ - $\exp\{-\beta\lambda + (\alpha-i) \ln \lambda \}$	
$= \lambda^{\times + \alpha - 1} e^{-(\beta + 1) \lambda}$:
TINIX) ~ gamma (x+d, B+1)	
	:
	: :
	: