Sicherungsschicht

TERMINOLOGIE

Knoten: Endsysteme + Router

Links: Übertragungsabschnitt zwischen Knoten

Rahmen: Pakete auf Schicht 2 (IP-Datagramme eingekapselt)

Aufgabe: Übertraugng von Datagrammen zwischen benachbarten Knoten über Link

AUFGABEN

Strukturierung des Datenstroms (framing)

→ Datagramm in Rahmen einkapseln

Medienzugangskontrolle bei geteilten Medien

Adressierung mittels MAC-Adressen

Je nach angebotenem Dienst Fehlererkennung/-behebung bzw. Flusskontrolle Übertragungsart:

- (Semi-) Broadbcast

- Punkt-zu Punkt (Halb-/Vollduplex)

BROADCAST- VS. PUNKT-ZU-PUNKT-LINK

Broadcast-Link

alle Stationen können alle gesendeten Rahmen sehen (zB WLAN = semi-broadcast)

Punkt-zu-Punkt-Link:

zwei Stationen sind über dedizierten Link verbunden (zB switch-basiertes Ethernet)

PUNKT-ZU-PUNKT-KOMMUNIKATION

Simplex: Übertragung in eine Richtung

Halbduplex: Übertragung in beide Richtungen, nicht zeitgleich (Voll-) Duplex: Übertragung in beide Richtungen, zeitgleich

SICHERUNGSSCHICHT - IMPLEMENTIERUNG

Sicherungsschicht ist in jedem Knoten (Endsystem, Router, Switch) implementiert (auf Netzadapter oder auf Chip), an Systembus angeschlossen (Kombination von Hardware, Software und Firmware)

SICHERUNGSSCHICHT - KOMMUNIKATION

Sender:

- Datagramm einkapseln
- ggf Felder für Prüfsumme, Flusskontrolle etc hinzufügen

Empfänger:

- Überprüfung hinsichtlich Fehler, Fluskontrolle usw
- Datagramm extrahieren und an Vermittlungsschicht weiterreichen

${\bf SICHERUNGSSCHICHT-FEHLERERKENNUNG}$

Wie Schicht 4: Erkennung/Behebung von Bit- und Paketfehlern **Unterschied Schicht 4**:

- zu sendende/empfangende Bitfolge wird bitseriell betrachtet
- Internetprüfsumme basiert auf Wörtern, die bereits im Speicher stehen

Rahmen erhält senderseitig Sicherungssequenz zur Überprüfung auf Empfangsseite

- frame check sequence (FCS)
- steht üblicherweise an Rahmenende als Anhang

FEHLERERKENNUNG — CYCLIC REDUNDANCY CHECK (CRC)

Polynom: 0101 \to $0x^3+1x^2+0x^1+1x^0=x^2+1$ Generatorpolynom: von g(x) generierte Code ist

 $C := \{v(x) \mid \deg(v(x)) < n \land g(x) \text{ teilt } v(x)\}$

Prinzip:

- gleiches Polynom ${\cal G}(x)$ für Sender und Empfänger
- Sender:
- \cdot hängt $\deg(G(x))$ Nullen an Daten
- $\cdot \text{ berechnet Rest von } M(x)/G(x) \ (m \text{ Bit Rahmen} \to M(x))$
- · hängt Rest an mit Nullen erweiterte Daten an
- *Empfänger*: Dividiert durch G(x)
- · Ergebnis 0: keine Fehler erkannt
- · Ergebnis ≠ 0: Fehler!

CRC — WICHTIGE GENERATOREN

$$\begin{array}{l} \textbf{CRC-12:} \ x^{12} + x^{11} + x^3 + x^2 + x + 1 \\ \textbf{CRC-16:} \ x^{16} + x^{15} + x^2 + 1 \\ \textbf{CRC-CCITT:} \ x^{16} + x^{12} + x^5 + 1 \\ \textbf{CRC-C2IT:} \ x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1 \end{array}$$

CRC — HARDWAREIMPLEMENTIERUNG

Rückgekoppelte Schieberegister ightarrow CRC bei Durchschieben berechnet **Prinzi** \mathbf{p} :

- Bitweises Empfangen der Daten, durchlaufen Schieberegister
- Rückkopplung durch XOR-Gatter an 1-Stellen des Generators (ohne höchstes Bit)

MULTIPLEXING

Problem: Link von mehreren Knoten parallel benutzt

Dimensionen:

- Raum r
- Zeit t
- Frequenz f
- Code c

Wichtig: Schutzabstände erforderlich

MULTIPLEXING — RAUM

Raumeinteilung in Sektoren (zB gerichtete Antennen) **Kupfermultiplex**: Zuordnung dedizierter Leitungen

Einsatz: Mobilfunkzellen

MULTIPLEXING — FREQUENZ

Prinzip: verfügbare Bandbreite wird in Frequenzabschnitte unterteilt **Vorteile**:

- keine dynamische Koordination nötig
- auch für analoge Signale möglich

Nachteile:

- Bandbreitenverschwendung bei ungleichmäßiger Auslastung
- unflexibelEinsatz: DSL

MULTIPLEXING — ZEIT

Prinzip: Kanal belegt ganzen Frequenzraum für festgelegte Zeit **Vorteile:**

- nur ein Träger gleichzeitig auf Medium
- auch bei großer Teilnehmerzahl hoher Durchsatz

Nachteile

- genaue Synchronisation nötig

Einsatz: Ethernet

Hinweis: Standard-Multiplexverfahren im Folgenden

MULTIPLEXING — CODE

Prinzip:

- **ınzıp:** - alle Stationen zur gleichen Zeit auf gleicher Frequenz
- Sender: verknüpft Signal mit eindeutiger Pseudozufallszahl
- Empfänger: kann mithilfe bekannter Pseudozufallszahlfolge + Korrelationsfunktion Originalsignal wiederherstellen

Vorteile:

- keine Frequenzplanung erforderlich
- großer Coderaum im Vergleich zu Frequenzraum
- Vorwärtskorrektur + Verschlüsselung leicht integrierbar

Nachteile

- höhere Komplexität wegen Signalregenerierung
- alle Signale müssen bei Empfänger gleich stark ankommen

Einsatz: UMTS

MEDIENZUGRIFF

Problem: Unterschiedliche Medien (Kabel + Drahtlos) **Varianten**:

- feste Mediumszuteilung (feste Zeitschlitze, Punkt-zu-Punkt-Verbindungen)
- teste Mediumszuteilung (feste Zeitschlitze, Punkt-zu-Punkt-v - konkurrierende Nutzung → Zugriffsorganisation notwendig

ZEITMULTIPLEX — KATEGORIEN

fort

variabel:

- kontrollierter Zugriff
- · zentral
- · dezentral
- zufälliger Zugriff

ZEITMULTIPLEX — ZUFALLSSTRATEGIEN

Aloha:

- verwendbar bei zufälligen, unabhängigen, seltenen Sendewünschen
- gleichzeitiges Senden → Kollision

Slotted Aloha:

- Verbesserung von Aloha
- Erfordert Knotensynchronisation

CSMA (carrier sense multiple access):

- Prinzip: Andere nicht unterbrechen während sie reden
- listen before talk: System prüft vor Senden, ob Medium frei ist
- Medium belegt: später erneut versuchen
- Medium frei: Senden
- Problem: mehrere Systeme können quasi gleichzeitig Senden beginnen
 → Kollisionen

CSMA/CD (CSMA with collision detection)

- listen while talk: Kollisionserkennung durch Abhören während des Sendens
- Kollision: Sendungsabbruch, später neu versuchen

ZEITMULTIPLEX — UMSETZUNG ETHERNET

Kollision:

- 1. Sendungsabbruch
- 2. Sender sendet Jamming-Signal
- 3. Backoff-Algorithmus regelt Sendungswiederholung

Vorraussetzungen:

- Senden der Rahmen darf nach Signallaufzeit durch Medium und zurück noch nicht fertig sein
- Mindestlänge für Rahmen (abhängig von Netzausdehnung + Ausbreitungsgeschwindigkeit) erforderlich
- zu kleiner Rahmen: Auffüllen auf Mindestlänge (padding)

KOLLISIONSFREIER ZUGRIFF — PRINZIP

Polling: Kontrolle durch zentralen Knoten

- Senderecht sequentiell zugewiesen
- Nachteil: koordinierender Knoten nötig, kann ausfallen
- Einsatz: Bluetooth

Token Passing: Senderechtsweitergabe von Knoten zu Knoten

- Nachteil: Knoten können ausfallen \rightarrow Zugriff blockiert
- Einsatz: Token Ring

KOLLISIONSFREIER ZUGRIFF — TOKEN RING

Prinzip

- Systeme physikalisch Punkt-zu-Punkt-verbunden zu Ring
- Jedes System hat Vorgänger und Nachfolger
- Senderechtszuteilung durch zirkulierendes Token

KOLLISIONSFREIER ZUGRIFF — TOKEN BUS

Prinzip:

- Verbindet Vorteile von Ethernet und Token Ring
- Busverkabelung wie bei Ethernet
- Garantierte Antwortzeiten durch zirkulierendes Token

Aufbau:

- Alle Stationen physikalisch durch Bus verbunden
- Bildung eines logischen Rings

LOKALE NETZE — MAC-ADRESSEN

Theoretisch weltweit eindeutig

Aufbau:

- 24 Bit von IEEE an Hersteller zugewiesen
- 24 Bit von Hersteller durchnummeriert

Funktion: lokal genutzt, um Rahmen von Interface zu benachbartem, physikalisch verbundenem Interface zu übertragen

Format:

- 48 Bit
- stehen im NIC-ROM, können aber auch per Software gesetzt werden
- Darstellung meist hexadezimal (zB 24-2F-EA-76-CC-28)
- Broadcast: FF-FF-FF-FF-FF

LOKALE NETZE — ADDRESS RESOLUTION PROTOCOL (ARP)

Problem: Welche MAC-Adresse hat nächstes System?

Aufgabe: MAC-Adresse zu bekannter IP-Adresse ermitteln

Prinzip: dynamisch Adresszuordnungen lernen

- ARP-Cache: kleine Tabelle auf jedem System
- Eintrag IP + MAC + maximale Lebenszeit- Einträge bei Bedarf gelernt

ARP — ADRESSAUFLÖSUNG

Szenario 1: A sendet Datagramm an B in selbem Subnetz

- Fall 1: ARP-Cache von $\stackrel{
 ightharpoonup}{A}$ hat Eintrag für B
- · Paket verschicken
- · Timeout neu setzen
- Fall 2: ARP-Cache von A hat Eintrag für B nicht:
- \cdot Broadcast ARP-Request mit IP von B
- Jeder Knoten liest ARP-Request falls eigene IP ARP-Reply
- \cdot A trägt Infos in ARP-Cache ein

Szenario 2: A sendet Datagramm an B in anderem Subnetz

- 1. A sendet ARP-Request für Router R
- 2. A sendet Datagramm an IP von B und MAC von R
- 3. Router empfängt Datagramm, setzt Ziel-MAC auf B und Sender-MAC auf R
- 4. Router leitet Datagramm weiter

LOKALE NETZE — ETHERNET

Standard: IEEE 802.3

Medienzuteilung:

- zeitmultiplex, variabel, zufälliger Zugriff
- Verwendung von CSMA/CD (exponentieller Backoff)

Netztopologie: Ursprünglich Bus-, heute Sterntopologie

Varianten:

- Bezeichnung: [Datenrate] [Baseband/Broadband] [Medium]
- *Invadiante*: Format Ethernet-Rahmen
- 10Base5: 10Mbit/s, Baseband, Bustopologie, 10mm Koax
- 10Base2: 10Mbit/s, Baseband, Bustopologie, 5mm Koax

Ethernet					
	10Base5	10Base2	10Base-T		
Medium	Koaxialkabel		Twisted Pair		
Kodierung	Manchester				
Topologie	Bus		Stern		
Fast Ethern	et				
	100Base-T	100Base-T4	100Base-Tx	100Base-Fx	
Medium	Twisted Pair			Glasfaser	
Kodierung	Manchester	8B/6T NRZ	4b/5B NRZI & MLT-3	4B/5B NRZI	

Gigabit Ethernet and beyond

angush Euromot and so you						
	1000Base-SX	1000Base-T	10GBase-SR	10GBase-T		
Medium	Glasfaser	Twisted Pair	Glasfaser	Twisted Pair		
Kodierung	8B/10B NRZ	PAM-5 & Trellis	66B/68B	PAM-16 & DSQ128		
Topologia	Store					

ETHERNET — EXPONENTIELLER BACKOFF

Schema: Station wählt randomisiert Anzahl zu wartender Zeitschlitze nach Schema:

- 1. Kollision: Wartezeit 0/1 Zeitschlitze
- 2. Kollision: Wartezeit 0/1/2/3 Zeitschlitze
- i. Kollision: Wartezeit $0/.../2^i-1$ Zeitschlitze
- $i=16 \leadsto \mathsf{Systemfehler}$

ETHERNET — ZEITSCHLITZE

Prinzip:

- Kanal wird logisch in Zeitschlitze fester Länge aufgeteilt
- Dauer = minimale Rahmenlänge ightarrow Kollisionserkennung vor Zeitschlitz-Ende

ETHERNET — SWITCHES

Prinzip:

- Schicht-2-Netzkopplung
- Trennung von Inter- und Intranetz-Verkeht ightarrow Erhöhung Netzkapazität
- Switches nicht sichtbar für Endsysteme

Ziel: Selbstorganisierte Netzkonfiguration mit Switches

Aufgaben:

- Etablierung schleifenfreie Netztopologie (spanning tree)
- Etablierung von Wegen zwischen Endsystemen (selbstlernend)

ETHERNET — KOLLISIONSDOMÄNEN

= Netzbereich, auf dem Kollision möglich ist

VIRTUAL LOCAL AREA NETWORK (VLAN)

Idee: Logische Trennung von Datenverkehr auf Ethernet-Ebene

→ virtuelle Leitung

Sicherheit:

- Trennung in logische Medien ermöglicht gezielte Systemgruppierung
- Bessere Kontrolle über Netzstruktur

Flexibilität:

- Einfache Reorganisation der logischen Medien möglich
- keine Änderungen an physikalischem Medium (Neuverkabelung) nötig

Performance: Broadcast-Last eines Netzes sinkt, wenn physikalisches Medium in mehrere logische aufgeteilt wird

VLAN — INTERFACE-BASIERT

Verkehrsisolation: Rahmen von Interfaces 1-8 können nur Interfaces 1-8 erreichen

→ Sicherheit. Performance

Dynamische Zuweisung: Interfaces dynamisch anderen VLANs zuordnern
→ Flexibilität

Weiterleitung zwischen VLANs über Routing (oft über in Switch integrierten Router)

Trunks: Transport von Rahmen zwischen multi-switch-VLANs

- VLAN-ID: Jedes VLAN erhält Kennzeichner
- Ethernet-Frames werden mit VLAN-ID getaggt
- Switches entfernen Tagging vor Auslieferung an Endsystem

Telematik (Interfaces 1-8)

Dezentrale Systeme (Interfaces 9-15)