μ**Α747C**

DESCRIPTION

The 747 is a pair of high-performance monolithic operational amplifiers constructed on a single silicon chip. High common-mode voltage range and absence of "latch-up" make the 747 ideal for use as a voltage-follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications. The 747 is short-circuit protected and requires no external components for frequency compensation. The internal 6dB/octave roll-off insures stability in closed-loop applications. For single amplifier performance, see $\mu\text{A}741$ data sheet.

FEATURES

- No frequency compensation required
- Short-circuit protection
- Offset voltage null capability
- Large common-mode and differential voltage ranges
- Low power consumption
- No latch-up

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG#	
14-Pin Plastic DIP	0°C to 70°C	μΑ747CN	0405B	

EQUIVALENT SCHEMATIC

 $\mu A747C$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _S	Supply voltage	±18	V
P _{D MAX}	Maximum power dissipation T _A =25°C (still air) ¹	1500	mW
V_{IN}	Differential input voltage	±30	V
V _{IN}	Input voltage ²	±15	V
	Voltage between offset null and V-	±0.5	V
T _{STG}	Storage temperature range	-65 to +150	°C
T _A	Operating temperature range	0 to +70	°C
T _{SOLD}	Lead temperature (soldering, 10sec)	300	°C
I _{SC}	Output short-circuit duration	Indefinite	

NOTES:

N package at 12mW/°C

DC ELECTRICAL CHARACTERISTICS

 $T_A {=} 25^{\circ}C, \ V_{CC} {\,=\,} \pm 15 V$ unless otherwise specified.

SYMBOL	PARAMETER	TEST SOMBITIONS	μ Α747C			
		TEST CONDITIONS	Min	Тур	Max	UNIT
V _{OS}	Offset voltage	R _S ≤10kΩ		2.0	6.0	mV
		R _S ≤10kΩ, over temp.		3.0	7.5	mV
ΔV _{OS} /ΔT				10		μV/°C
Ios	Offset current			20	200	nA
		Over temperature		7.0	300	nA
ΔΙ _{ΟS} /ΔΤ				200		pA/°C
I _{BIAS}	Input current			80	500	nA
		Over temperature		30	800	nA
ΔΙ _Β /ΔΤ				1		nA/°C
V	Output valtage eving	R _L ≥2kΩ, over temp.	±10	±13		V
V_{OUT}	Output voltage swing	$R_L \ge 10 k\Omega$, over temp.	±12	±14		V
I _{CC}	Supply current each side			1.7	2.8	mA
		Over temperature		2.0	3.3	mA
P _d	Power consumption			50	85	mW
		Over temperature		60	100	mW
C _{IN}	Input capacitance			1.4		pF
	Offset voltage adjustment range			±15		mV
R _{OUT}	Output resistance			75		Ω
	Channel separation			120		dB
PSRR	Supply voltage rejection ratio	R _S ≤10kΩ, over temp.		30	150	μV/V
A _{VOL}	Large-signal voltage gain (DC)	R _L ≥2kΩ, V _{OUT} =±10V	25,000			V/V
		Over temperature	15,000			V/V
CMRR	Common-mode rejection ratio	R _S ≤10kΩ, V _{CM} =±12V Over temperature	70			dB

August 31, 1994 55

^{1.} Derate above 25°C at the following rates:

^{2.} For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

μA747C

AC ELECTRICAL CHARACTERISTICS

 $T_A=25$ °C, $V_S=\pm15$ V unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	μ Α747C			UNIT
			Min	Тур	Max	UNII
t _R	Transient response	V_{IN} =20mV, R_L =2k Ω , C_L <100pF				
	Rise time	Unity gain C _L ≤100pF		0.3		μs
	Overshoot	Unity gain C _L ≤100pF		5.0		%
SR	Slew rate	$R_L > 2k\Omega$		0.5		V/μs

TYPICAL PERFORMANCE CHARACTERISTICS

August 31, 1994 56

μA747C

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

August 31, 1994 57

μΑ747C

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

TEST CIRCUITS