Gauss elimination

Saturday, March 28, 2020

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3 + \dots + a_{in}x_n = b_i \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n \end{cases} \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_i \\ \vdots \\ b_n \end{bmatrix}$$

$$A \text{ nonsingular/invertible } (\det A \neq 0), A x = b \implies x = A^{-1}b.$$

A nonsingular/invertible (det $A \neq 0$), $A x = b \implies x = A^{-1}b$.

Naïve Gauss eliminination:

$\begin{bmatrix} a_{11} \\ 0 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{bmatrix}$	a_{12} a_{22} a_{23} \vdots a_{i2} \vdots a_{n2}	a_{13} a_{23} a_{33} \vdots a_{i3} \vdots a_{n3}		a_{1n} a_{2n} a_{3n} \vdots a_{in} \vdots a_{nn}	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix}$	=	$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_i \\ \vdots \\ b_n \end{bmatrix}$	•••	$\begin{bmatrix} a_{11} \\ 0 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{bmatrix}$	a_{12} a_{22} 0 \vdots 0 \vdots 0 0	a_{13} a_{23} a_{33} \vdots 0 \vdots 0		$egin{pmatrix} \widehat{a_{kk}} & & & \\ \vdots & & & \\ a_{ik} & & & \\ \vdots & & & \\ a_{nk} & & & \\ \end{matrix}$		a_{kj} \vdots a_{ij} \vdots a_{nj}		a_{1n} a_{2n} a_{3n} \vdots a_{kn} \vdots a_{in} \vdots a_{nn}	x x	i = =	$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_k \\ \vdots \\ b_n \end{bmatrix}$	
--	--	--	--	--	---	---	---	-----	--	---	--	--	--	--	--	--	--	--------	-------	---	--

 $+ \quad a_{1n}x_n = b_1$ $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots$ $a_{22}x_2 + a_{23}x_3 + \cdots$ $a_{n-1,n-1}x_{n-1} + a_{n-1,n}x_n = b_{n-1}$ $a_{nn}x_n=b_n$

Example (when the naïve Gauss elimination fails):

$$\begin{cases} \varepsilon x_1 + x_2 = 1 \\ x_1 + x_2 = 2 \end{cases} \qquad \begin{cases} \varepsilon x_1 + x_2 = 1 \\ (1 - \varepsilon^{-1})x_2 = 2 - \varepsilon^{-1} \end{cases} \qquad x_2 = \frac{2 - \varepsilon^{-1}}{1 - \varepsilon^{-1}} \approx 1, \qquad x_1 = \varepsilon^{-1}(1 - x_2) \approx 0 \qquad \text{(wrong)} \end{cases}$$

$$x_1 = \frac{1}{1 - \varepsilon} \approx 1, \qquad x_2 = \frac{1 - 2\varepsilon}{1 - \varepsilon} \approx 1 \qquad \text{(correct)} \end{cases}$$

$$\begin{cases} x_1 + x_2 = 2 \\ \varepsilon x_1 + x_2 = 1 \end{cases} \qquad \begin{cases} x_1 + x_2 = 2 \\ (1 - \varepsilon)x_2 = 1 - 2\varepsilon \end{cases} \qquad x_2 = \frac{1 - 2\varepsilon}{1 - \varepsilon} \approx 1, \qquad x_1 = 2 - x_2 \approx 1 \end{cases}$$