Data Science Class 2: Classification vs Segmentation

US – Embassy

Type of Machine Learning and comparison

We have many type of learning, such as

Machine Learning Algorithms (sample) **Reinforcement Learning** Unsupervised Supervised Clustering & Dimensionality Regression Continuous Reduction o Linear **Input Raw Data** Polynomial SVD Output **Decision Trees Best Action** Random Forests Reward K-means Classification Categorical Association Analysis Apriori KNN o FP-Growth Selection of Trees Hidden Markov Model Logistic Regression Naive-Bayes o SVM

1. Supervised Learning.

• In the previous lesson, we had studied regression, today we will discuss

Classification

The image below is an example taken from <u>my-results</u>

Process in classification

EDA vs Pre-processing

- Visualization the data-relationship
- Dummy-Encoding at categoryfeatures
- Impute with missing values
- Apply StandardScaler / MinMax Scaler or not?
- Apply PCA or not?

Robust Scaler

 $\frac{x_i - Q_1(\boldsymbol{x})}{Q_3(\boldsymbol{x}) - Q_1(\boldsymbol{x})}$

Standard Scaler

$$rac{x_i - \operatorname{mean}(oldsymbol{x})}{\operatorname{stdev}(oldsymbol{x})}$$

MinMax Scaler

$$\frac{x_i - \min(\boldsymbol{x})}{\max(\boldsymbol{x}) - \min(\boldsymbol{x})}$$

Scores and algorithms

DL models

- 1. ANN
- 2. CNN
- 3. Transfer Learning
 - ResNet
 - Efficience Net

Actual Class

- VGG16
- VGG19
- UNet
- Bottleneck

ML Algorithms

- - 1. Logistic Regression
- - 2. <u>Naïve Bayes</u>
- - 3. SGD
- - 4. K-Nearest Neighbours
- - 5. Decision Trees
- - 6. Random Forest
- - 7. Extra Trees
- - 8. SVM
- - 9. AdaBoost Classifier
- - 10. XGBoost Classifier

2. Unsupervised Learning

In this sections, we only focus on PCA and KMeans-segmentations. First of all, we will focus on PCA

Principal Component Analysis (PCA)

$$\max_{\delta \mathbf{x}} \operatorname{Var}(\delta \mathbf{X}) = \max_{\delta \mathbf{x}} \delta^T \Sigma \delta$$

$$\begin{cases} (P) : & \delta = \underset{\delta}{\operatorname{argmax}} (\delta^T \Sigma \delta) \\ \text{s.t.} : & \| \delta \|^2 = 1 \end{cases}$$

$$\mathbf{Y} = \Gamma^T(\mathbf{X} - \mu_{\mathbf{X}}).$$

$$\mathbb{E}\mathbf{Y} = \mathbf{0} \text{ and } \operatorname{Var}\mathbf{Y} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_d \end{pmatrix} \qquad \qquad \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d.$$

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_d$$
.

References

PCA sklearn python

Segmentation and applications

Market segmentation

- 1. Behavioral
- 2. Demographic
- 3. Psychographic
- 4. Geographic

Others.

- Transactional segmentation
- Technographic segmentation
- etc.

Eva First time arriving on site G Mark Returning website visitor G Kim Cart abandoner John Returning customer Alex VIP customer

Image segmentation

(compressed image)

References:

- 1. Market segmentation
- 2. Image segmentation

Motivation & benifits

Do you know why we focused on market-segmentation (then verify by using classification)?

By segmenting your market you'll be able to understand your customer's needs better and how you can fulfill these better than your competition.

1) More effective marketing

2) More efficient spending

3) Higher quality leads

4) Identifying niche markets

5) Improved customer retention

6) Differentiating your brand

7) More focus

Some useful clustering-algorithms

K-Means: reference

Mini batch K-Means: reference

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering: reference, code

Spectral Clustering

Gaussian Mixture Model

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)

etc.

K-Means clustering algorithm

How to find the centers and the label vectors

• 1) Find Y (label), for fixed M (center) Assume that we have found the centers, then determine the label vectors to minimize the loss function

$$\mathbf{y}_{i}^{*} = \underset{\mathbf{y}_{i} \in \mathbf{Y}}{\operatorname{argmin}} \sum_{j=1}^{K} y_{ij} \parallel x_{i} - m_{j} \parallel^{2},$$

by the condition on the label vector, we obtain

$$j^* = \underset{1 \le j \le K}{\operatorname{argmin}} \| x_i - m_j \|^2$$

• 2) Find M, for fixed Y Now, suppose we found the label vectors, then

$$\mathbf{m}_{j}^{*} = \underset{\mathbf{m}_{j} \in \mathbf{M}}{\operatorname{argmin}} \sum_{i=1}^{N} y_{ij} \parallel x_{i} - m_{j} \parallel^{2}$$

and hence, we get

$$\mathbf{m}_{j}^{*} = \frac{\sum_{i=1}^{N} y_{ij} \mathbf{x}_{i}}{\sum_{i=1}^{N} y_{ij}}$$

Unlabelled Data

Labelled Clusters

Elbow & Silhouette methods

$$L(\mathbf{Y}, \mathbf{M}) = \sum_{i=1}^{N} \sum_{j=1}^{K} y_{ij} \| x_i - m_j \|^2$$

 $\mathbf{y}_k = (y_{k1}, ..., y_{kK})$ for $k \in {1, ..., K}$ is the label of the cluster k^{th} .

$$\sum_{i=1}^{K} y_{ij} = 1, \quad \forall i \in 1, ..., N.$$

N is the number of observation

K is number of clusters

 $X=(X_1,\ldots,X_d)$ is datapoint,

 m_j is center j^{th}

$$s(i) = rac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$
 , if $|C_i| > 1$

and

$$s(i)=0$$
, if $|C_i|=1$

For each data point $i \in C_i$ (data point i in the cluster C_i), let

$$a(i) = \frac{1}{|C_i|-1} \sum_{j \in C_i, i \neq j} d(i,j)$$

For each data point $i \in C_i$, we now define

$$b(i) = \min_{i \neq j} \frac{1}{|C_j|} \sum_{j \in C_j} d(i,j)$$

Importance of anomallies-removal and scaling in clustering

Verify by using classification

Clustering is done on unlabelled data returning a label for each datapoint. Classification requires labels. Apply classification algorithms into your clusters-models

- Initially, check the quantity in each cluster is balanced or not?

- Then, apply Logistic Regression, SVM, Naive Bayes, XGBoost, Random Forest, etc. into your model.

- Evaluate the metrics at each cluster

Defined clusters

Demographic segmentation

Summary

- Suppervised vs Unsupervised Learning
- Classification and application
- PCA
- Segmentation and its applications
- K-Means clustering algorithm
- Metrics evaluation in classification vs segmentation