$S = \iiint (\frac{1}{6} (6t_{1} \mathcal{A}^{\alpha_{i}} \mathcal{A}^{\theta}_{i} + 6 \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 6 f^{\alpha\beta} \tau (\Delta + \mathcal{K})_{\alpha\beta} - 12t_{1} \mathcal{A}^{\theta}_{\alpha} \partial_{i} f^{\alpha i} + 12t_{1} \mathcal{A}^{\theta}_{i} \partial_{i} f^{\alpha}_{\alpha} - 6t_{1} \partial_{i} f^{\theta}_{\alpha} \partial_{i} f^{\alpha}_{\alpha} - 6t_{1} \partial_{i} f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{\alpha} - 6t_{1} \partial_{i} f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{\alpha} - 8r_{1} \partial_{\beta} \mathcal{A}_{\alpha i \theta} \partial_{\beta} \mathcal{A}^{\alpha\beta i} + 4r_{1} \partial_{\beta} \mathcal{A}_{\alpha \theta i} \partial_{\beta} \mathcal{A}^{\alpha\beta i} - 4r_{1} \partial_{\alpha} \mathcal{A}_{\alpha\beta i} \partial_{\beta} \mathcal{A}^{\alpha\beta i} + 4r_{1} \partial_{\theta} \mathcal{A}_{\alpha\beta i} \partial_{\beta} \mathcal{A}^{\alpha\beta i} + 4r_{1} \partial_{\alpha} \mathcal{A}_{\alpha\beta i} \partial_{\beta}$

Wave operator

	${}^0\cdot \mathscr{F}^{\scriptscriptstyle \parallel}$	$0.7f^{\parallel}$	$^{0} f^{\perp}$	${}^{0}\mathcal{F}^{\parallel}$										
$^{0^{+}}\mathcal{R}^{\parallel}$ †	-t. 1	$i\sqrt{2}kt$	0	0										
^{0,+} f [∥] †	$-i \sqrt{2} kt$	$-2 k^2 t$.	0	0										
0.+ f +	0	0	0	0										
^{0⁻} Æ [∥] †	0	0	0	<i>t</i> . 2	${}^{1^+}_{\cdot}\mathcal{F}^{\parallel}_{\alpha\beta}$	$^{1^{+}}_{\cdot}\mathcal{F}^{\perp}{}_{\alpha\beta}$	$1.^{+}f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{A}^{\perp}{}_{lpha}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$^{1}f_{a}^{\perp}$			
				$^{1.}^{+}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$\frac{1}{6} (6k^2 (2r_1 + r_5) + t_1 + 4t_1)$	$-\frac{t2t.}{3\sqrt{2}}$	$-\frac{i k (t2 t.)}{3 \sqrt{2}}$	0	0	0	0			
				$^{1\overset{+}{.}}\mathcal{H}^{\scriptscriptstyle\perp}\dagger^{^{lphaeta}}$	$-\frac{t2t.}{\frac{1}{3}\sqrt{2}}$	$\frac{t.+t.}{\frac{1}{3}}$	$\frac{1}{3} ik(t_1 + t_1)$	0	0	0	0			
				$1.^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k (t, -2 t_1)}{3 \sqrt{2}}$	$-\frac{1}{3} \bar{i} k (t_1 + t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0			
				$^{1}\mathcal{H}^{\parallel}$ † lpha	0	0	0	$k^2 (r_1 + r_2) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt. 1			
				$^{1}\mathcal{A}^{\scriptscriptstyle{\perp}}\dagger^{^{\alpha}}$	0	0	0	$\frac{t}{\sqrt{2}}$	0	0	0			
				$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$^{1}f^{\perp}\dagger^{\alpha}$	0	0	0	-lī k t . 1	0	0	0	$^{2\overset{+}{.}}\mathcal{A}^{\parallel}{}_{lphaeta}$	$2^+_{\cdot}f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$	t. 1/2	$-\frac{i kt}{\sqrt{2}}$	0
											$\overset{2^+}{\cdot}f^{\parallel}\uparrow^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	$k^2 t_{\underline{i}}$	0
											$2^{-}\mathcal{A}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities			
$0^{+}_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1			
$-2 \bar{i} k^{0^{+}} \sigma^{\parallel} + {}^{0^{+}} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1			
$2ik 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3			
$1.\tau^{\parallel^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
$\overline{i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0}$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\alpha\delta}$	3			
$-2 i k 2^{+}_{0} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{0} \tau^{\parallel^{\alpha\beta}} == 0$	$-i\left(4\partial_{\sigma}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\partial_{\sigma}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi}_{\chi}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\delta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\delta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\delta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\delta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\delta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^$	5			
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}^{\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial^{\beta}\sigma^{\delta\alpha\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial^{\alpha}\sigma^{\delta\alpha\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial^{\alpha}\sigma^{\delta\alpha\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial^{\alpha}\sigma^{\delta\alpha\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial^{\alpha}\sigma^{\delta\alpha\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial^{\alpha}\sigma^{\delta\alpha\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\lambda}\partial^{\alpha}\sigma^{\delta\alpha\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\lambda}\partial^{\alpha}\sigma^{\delta\alpha\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\lambda}\partial^{\alpha}\sigma^{\delta\alpha\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\lambda}\partial^{\alpha}\sigma^{\delta\alpha\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\lambda}\partial^{\alpha}\sigma^{\delta\alpha\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\lambda}\partial^{\alpha}\sigma^{\alpha\epsilon} - 6ik^{\chi$				
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$				
Total expected gauge generators:					

Massive spectrum

Massless spectrum

(No particles)

Unitarity conditions

r. < 0 &&t. < 0 &&t. > -t. &&r. > -2 r.1 2 5 1