Structural Macroeconometrics

Chapter IV Bayesian Estimation

Johannes Pfeifer

Kobe University

Summer 2018

Outline

- 1. The Problem
- 2. Characterizing the Posterior
- 3. Prior Distributions
 - Normal Distribution
 - Uniform Distribution
 - Beta Distribution
 - Gamma Distribution
 - Inverse Gamma Distribution
 - Example
- 4. Deriving the Metropolis-Hastings algorithm
 - The Goal
 - Constructing a Transition Kernel
 - Choosing a Proposal Density
 - The Scaling of the Proposal Density
- 5. Convergence and Efficiency
 - Geweke (1992) Convergence Diagnostics
- Brooks and Gelman (1998) Convergence Diagnostics
- 6. Prior vs. Posterior Structural Macro, Ch. IV The Problem

Review

- Log-Linearized DSGE model solution takes state-state space form
- Typically, not all state variables are observed
- Solution: use Kalman Filter to deal with unobserved states and construct likelihood
- Result: likelihood $\mathcal{L}(y^T|\theta)$, where θ is the vector of deep parameters and y^T is the complete history of observables
- \bullet Estimating meant finding the parameters θ that maximized $\mathcal{L}(y^T|\theta)$

The Likelihood

- The likelihood is a high-dimensional object
- Even for simple models, it can be ill-behaved, showing hardly any curvature and exhibiting many local maxima

The Likelihood

- For more complicated models, you can think of it as an egg-crate
- "Dilemma of absurd parameter estimates" (An and Schorfheide 2007): ML estimates often at odds with information from outside of the model

Bayesian vs. Frequentist Philosophy

- In principle, there is a fundamental philosophical difference between Bayesian and frequentist econometrics
- Most macroeconomists are not Bayesian believers but pragmatists up to the point that Bayesian and frequentist techniques are used in the same papers
- Adopting Bayesian techniques makes our lives easier
- Historically, Bayesian were the minority because computing power was not sufficient to apply their methods
- There are very good reasons to be Bayesian (see e.g. Berger and Wolpert 1988; Sims 2007)

Bayesian vs. Frequentist Philosophy: concept of probability

- Bayesian probability is usually associated with degrees of belief or degrees of knowledge
- Frequentist probability is usually based on features of hypothetically observable systems
 - \rightarrow relative frequency of an event "in the long run"
- Example: "There is a .50 probability that a fair coin will land heads."
 - Bayesian: belief evenly divided between the coin landing heads or tails
 - Frequentist: result if coin were flipped a hypothetical infinite number of times
- Frequentist analysis limited to inference about relative frequency of events in the long run
- But: long run unobservable and not in researchers' actual interest
- Bayesians can apply probability to anything that can be the subject of belief or knowledge (hypotheses, statistical parameters, entire statistical models)

Bayesian vs. Frequentist Philosophy: conditioning sets

- Frequentists estimate sampling distribution for estimated effect/parameter
 - distribution simulates observed effect if repeated infinite number of times, with only sampling error affecting results
 - data carry uncertainty via sampling distribution, while parameter has fixed "true" population value
 - \rightarrow conditioning on parameter $P(Y|\theta)$
 - Null Hypothesis Significance Testing (NHST) involves testing a hypothesis we do not believe in
 - p-value gives probability of effect, assuming Null is true → relies on hypothetically repeating experiment that never occurred
- Bayesians make direct probabilistic statements about effect/parameter, based on observed data
 - Parameter is treated as random/uncertain while data is taken as fixed
 - \rightarrow conditioning on data $P(\theta|Y)$

The posterior density

Central object: posterior probability/posterior density

$$P(\theta|Y) \tag{1}$$

of a parameter θ , conditional on having seen the data Y

- Posterior is fully-fledged density function!
- Allows statements like: the regression indicates that with 90% probability the fiscal multiplier is between 0.3 and 1.5
- NHST does not allow such statements!
- Rejecting the Null does not tell us anything about likely effect

 → only know the data is unlikely to come from a world where the
 Null is true
 - \rightarrow estimated value is then preferred
- Problem: how to obtain this posterior?

The Central Element: Bayes Rule

• Consider the basic laws of probability for two events A and B:

$$p(A,B) = p(A|B) p(B)$$
(2)

$$p(A,B) = p(B|A)p(A)$$
(3)

where p(A, B) is the joint probability, p(A|B) is the conditional probability, and p(B) the marginal probability

Equating them results in Bayes Rule

$$p(B|A) = \frac{p(A|B)p(B)}{p(A)} \tag{4}$$

 Provides consistent rule for rational decision maker on how to update beliefs in the face of evidence!

Bayes Rule Applied

 \bullet Now apply this to a case where we want to use some data y^T to infer a parameter vector θ

$$p\left(\theta|y^{T}\right) = \frac{\mathcal{L}\left(y^{T}|\theta\right)p\left(\theta\right)}{p\left(y^{T}\right)} \propto \mathcal{L}\left(y^{T}|\theta\right)p\left(\theta\right) \tag{5}$$

- $p\left(\theta|y^T\right)$ is called the **posterior distribution**; it incorporates all we know about the parameters and incorporates data and non-data information
- $p(\theta)$ is the **prior distribution**; it is independent of the data and incorporates all non-data information on the parameters
- $p\left(y^T\right)$ is the **data density**; as it is independent of the parameters, it can be treated as a proportionality constant (except when doing model comparison)
- Equation (5) says that the posterior is proportional to likelihood times prior

The Problem with Bayesian Estimation

• Historically, Bayesians were the minority because computing power was not sufficient to apply their methods. Why?

 $p\left(\theta|y^{T}\right) = \frac{\mathcal{L}\left(y^{T}|\theta\right)p\left(\theta\right)}{p\left(y^{T}\right)} \propto \mathcal{L}\left(y^{T}|\theta\right)p\left(\theta\right) \tag{5}$

describes a **full distribution** that often is not analytically tractable

• Say, we are interest in characterizing the posterior distribution by its mean and variance. We need to compute:

$$E\left(\theta|y^{T}\right) = \int \theta p\left(\theta|y^{T}\right) d\theta \tag{6}$$

and

$$\operatorname{var}\left(\theta|y^{T}\right) = E\left(\theta^{2}|y^{T}\right) - \left[E\left(\theta|y^{T}\right)\right]^{2}$$
$$= \int \theta^{2} p\left(\theta|y^{T}\right) d\theta - \left[E\left(\theta|y^{T}\right)\right]^{2} \tag{7}$$

• In both cases we need to evaluate an integral that usually cannot be worked out analytically!

Getting the Mean

• Ingenious Idea: we are typically interested in integrals of the form

$$E\left(g\left(\theta\right)|y^{T}\right) = \int g\left(\theta\right)p\left(\theta|y^{T}\right)d\theta\tag{8}$$

 If we had iid draws from the posterior, we could simply use a law of large numbers:

$$E\left(g\left(\theta\right)|y^{T}\right) = \int g\left(\theta\right)p\left(\theta|y^{T}\right)d\theta \approx \frac{1}{S}\sum_{s=1}^{S}g\left(\theta_{s}\right) = \hat{g}_{S} \qquad (9)$$

- Replace integral by sum over S draws from the posterior distribution $p(\theta|y^T)$
- This is called Monte Carlo Integration

(12)

Numerical Standard Error

- How good is this estimate?
- Central limit theorem ensures that

$$\sqrt{S}\left(\hat{g}_{S} - E\left(g\left(\theta\right)|y^{T}\right)\right) \to N\left(0, \sigma_{g}^{2}\right) \tag{10}$$

Hence,

$$E\left(g\left(\theta\right)|y^{T}\right) \sim N\left(\hat{g}_{S}, \frac{\sigma_{g}^{2}}{S}\right)$$
 (11)

The standard deviation

The Newsonian Chandra France (NCF)

The Numerical Standard Error (NSE)

$$\frac{\sigma_g}{\sqrt{S}}$$
 (13)

is a measure of approximation error.

 $\sigma_q^2 = var(g(\theta)|y^T)$

Some More Jargon

- Even if you are not a Bayesian believer, you should be familiar with the different terminology
- Denote with $\omega=g(\theta)$ some vector of functions of the parameters θ , defined over some region Ω

Definition 1 (Credible Set)

The set $C\subseteq\Omega$ is a $100(1-\alpha)\%$ credible set with respect to $p(\omega|y)$ if

$$p(\omega \in C|y) = \int_C p(\omega|y)d\omega = 1 - \alpha$$
 (14)

• We are typically interested in the smallest one, the "Bayesian equivalent to a confidence interval"

Definition 2 (Highest Posterior Density Interval)

A $100(1-\alpha)\%$ highest posterior density interval for ω is a $100(1-\alpha)\%$ credible interval that has a smaller area than any other $100(1-\alpha)\%$ credible interval for ω

Credible Set vs. Confidence Intervals

- Bayesian credible sets are **post-experimental**: conditional upon observing the data, a $(1-\alpha)\%$ credible set contains the true parameter, which is a random variable, with $(1-\alpha)\%$ probability
- Frequentist confidence intervals are based on the long-run performance if an experiment is repeatedly performed
- They are thus inherently **pre-experimental** and treat the parameter as non-random
- Cls are constructed so that the true parameter will be contained in $(1-\alpha)\%$ of the CI constructed from the data
- Moreover, a $(1-\alpha)\%$ CI contains the true parameter value with probability $(1-\alpha)\%$ only before one has seen the data
- After the data has been seen, the probability is zero or one
- Cls do not help in putting constraints on a parameter after data is observed
- One can only say: the true parameter is either in the CI or not
- Thus, both answer fundamentally different questions Structural Macro, Ch. IV

Credible Set vs. Confidence Intervals: Example

 \bullet We want to infer a parameter θ and observe two independent random variables X_1 and X_2 with

$$P(X_i = \theta - 1) = P(X_i = \theta + 1) = 0.5, i \in 1, 2$$

• The smallest 75% CI is

$$C\left(X_{1},X_{2}\right) = \begin{cases} &\frac{1}{2}\left(X_{1} + X_{2}\right) \text{ if } X_{1} \neq X_{2}\\ &X_{1} - 1 \text{ if } X_{1} = X_{2} \end{cases}$$

- When repeatedly sampling, the true θ will be in this interval in 75% of the cases, because
 if x₁ ≠ x₂ (half of the cases), we know for sure that θ = 0.5(x₁ + x₂)
 - \Rightarrow correct in 100% of these cases
 - if $x_1 = x_2$ (half of the cases), either $\theta = x_1 + 1$ or $\theta = x_1 1$ \Rightarrow correct in 50% of these cases
- Bayesians, upon observing the data, are 100% sure about θ or 50%
- Does it make sense to report pre-experimental measure when it is known to be misleading after seeing the data?

Problems everywhere: Posterior Sampling

- Monte Carlo Integration sounds nice and easy, but there's a problem: how to get draws from an intractable distribution?
- This is the big topic of posterior sampling algorithms
- The most important ones are
 - Importance Sampling
 - Gibbs-Sampling (S. Geman and D. Geman 1984)
 - Metropolis-Hastings algorithm (Hastings 1970; Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller 1953)
- We will only consider the last one
- Gibbs-Sampler is a special case of the Metropolis-Hasting algorithm (see Gelman 1992)
- Gibbs sampling and the Metropolis-Hastings algorithm give rise to correlated random draws from the posterior and belong to the class of Monte Carlo Markov Chain algorithms

Prior distributions and subjectivity

- There is a large discussion about the "subjectivity" of priors (e.g. Berger 2006)
- We will abstract from the philosophical issues arising here
- Necessarily subjective choices like e.g. the model used tend to be more important than the prior over parameters
- But be aware: issue is contentious as "subjectivity" does not square well with the "scientific method"

First Things First: Specifying the Prior

- We need to specify the prior distribution $p(\theta)$
- In general, this can be a full multivariate distribution
- In practice, people typically use **independent priors** (Andrle and Benes 2013, is a notable exception)
- Choosing sensible priors is hard, see Del Negro and Schorfheide (2008)
- What is the purpose of priors?
 - 1. Incorporating information extraneous to the sample
 - 2. Providing additional curvature to the likelihood function and straightening out cliffs
- Parameter range often narrows down prior choice
- After choosing the priors, you should do a prior predictive: check what the prior implies for the question you are asking (see Leeper, Traum, and T. B. Walker 2017)
- This way, you make sure that your estimation results are not solely driven by your prior

Endogenous Priors

- We are doing **full information** estimation
- We are not matching moments!
- Regularly happens that estimated model implies too high variances
- Proposed solution: endogenous priors (Christiano, Trabandt, and Walentin 2011; Del Negro and Schorfheide 2008)
- Motivated by sequential Bayesian learning
- Starting from independent initial priors, use standard deviations observed in a "pre-sample" to update those initial priors.
- Product of the initial priors and the pre-sample likelihood of the standard deviations of the observables is used as the new prior

Normal Prior

- Unbounded support $(-\infty, \infty)$ and symmetric
- Typically used for e.g. feedback parameters where sign is unknown

Uniform Prior

ullet Bounded support on [LB,UB]

Structural Macro, Ch. IV The Problem Posterior Prior M-H Derivation Convergence Prior vs. Posterior 23/66

Uniform Prior

• For a variable $Y \sim U(a,b)$, the PDF is given by

$$f_{U}(y|a,b) = \begin{cases} \frac{1}{b-a} & \text{if } a \leqslant y \leqslant b \\ 0 & \text{otherwise} \end{cases}$$
 (15)

where $-\infty < a < b < \infty$

Moreover,

$$E(Y) = \frac{a+b}{2} \tag{16}$$

$$var(Y) = \frac{(b-a)^2}{12}$$
 (17)

- Prior is "flat", i.e. all points are equally likely and it does not introduce curvature
- Often called uninformative prior
- But: it is informative in the sense that you say all parameter values in the interval are equally likely
- Beware: with bounds at infinity, prior is improper (cf. model comparison)

Beta Prior

- Bounded support on [0,1]
- Often used for autoregressive parameters, the discount factor, Calvo parameters, etc.

Structural Macro, Ch. IV The Problem Posterior Prior M-H Derivation Convergence Prior vs. Posterior 25/66

Beta Prior

[-1,1]

Suitable transformations allow scaling it to different support like

- Relatively flexible in allowing for different shapes, but care is required
- Due to bounded support, a high variance can result in assigning high mass to extremes in the tails
- ⇒ mode, i.e. point of highest likelihood, far away from prior mean
 - Always plot the prior distribution!

Gamma Prior

- Support $[0, \infty)$, i.e. 0 is included
- Typically used for variances and Taylor rule feedback parameters

27/66

Gamma Prior

• For a variable $Y \sim G(\mu, \nu)$, where μ is the mean and ν the degrees of freedom, the PDF is given by

$$f_G(y|\mu,\nu) = \begin{cases} \frac{1}{\left(\frac{2\mu}{\nu}\right)^{\frac{\nu}{2}}\Gamma\left(\frac{\nu}{2}\right)} y^{\frac{\nu-2}{2}} e^{-\frac{y\nu}{2\mu}} & \text{if } 0 \leqslant y \leqslant \infty \\ 0 & \text{otherwise} \end{cases}$$
 (18)

where $\Gamma()$ is the Gamma function

Moreover,

$$E(Y) = \mu \tag{19}$$

$$\operatorname{var}(Y) = \frac{2\mu^2}{\nu} \tag{20}$$

- Beware: Matlab uses $f_G(y|a,b)$ with $a=\frac{\nu}{2}, b=\frac{2\mu}{\nu}$
- Thus, use

$$a = \frac{\mu^2}{\sigma^2} \tag{21}$$

$$b = \frac{\sigma^2}{\mu} \tag{22}$$

Inverse Gamma Prior

- Support $(0, \infty)$, i.e. 0 is not included
- Typically used for variances

(23)

(24)

(25)

Inverse Gamma Prior

- If y is Inverse Gamma, then 1/y is Gamma distributed
- The pdf is given by

s given by
$$f_{IG}\left(y|a,b\right)=\left\{\begin{array}{l} \frac{b^a}{\Gamma(a)}y^{a-1}e^{-by} \text{ if } 0\leqslant y\leqslant\infty\\ 0 \text{ otherwise} \end{array}\right.$$

with

$$E(Y) = \frac{a}{b}$$
$$var(Y) = \frac{a}{b^2}$$

$$\operatorname{var}(I) = \overline{b^2}$$

The Problem Posterior Prior M-H Derivation Convergence Prior vs. Posterior

Thus:

Structural Macro, Ch. IV

$$a = \frac{\mu^2}{\sigma^2}$$

$$b = \frac{\mu}{\sigma^2}$$
(26)

- Theoretically, a better choice for variances if you want to prevent stochastic singularity
- But: variance of exactly 0 is a zero probability event

Example

• Always check whether your prior looks sensible

Example

• Notice how the prior affects the posterior for rhog

32/66

Markov Chains: Discrete State Space

ullet Stochastic process x_t has **Markov property** if

$$Prob(x_{t+1}|x_t, x_{t-1}, \dots, x_{t-k}) = Prob(x_{t+1}|x_t)$$
 (28)

- We assume the process can be characterized by a time-invariant
 Markov Chain
- Such a Markov chain is characterized by
 - 1. n-dimensional state space consisting of the n basis vectors e_i of \mathcal{R}^n
 - 2. $n \times n$ transition matrix P recording probability of moving from one state to another:

$$P_{ij} = \mathsf{Prob}(x_{t+1} = e_j | x_t = x_i) \tag{29}$$

$$n \times 1 \text{ vector } \pi_0 \text{ of initial probabilities of being in a particular state } i \text{ at}$$

- 3. $n \times 1$ vector π_0 of initial probabilities of being in a particular state i at t=0
- Markov Chain theory is interested in existence of and convergence to invariant distribution π , given transition matrix
- Invariant distribution: π is unaltered when passing through transition:

$$\pi' = \pi' P \tag{30}$$

Markov Chains: Continuous State Space

- Things are more complicated when state space is continuous
- Could try to work with densities
- But: there may be mass points
- Solution: work with probability measures that can handle this
- Leads to more heavy notation: e.g. transition kernel will take place of transition matrix

Markov Chains: Invariant Distribution (Continuous Case)

- Consider a Markov-Chain with continuous state-space and **transition kernel** P(x,A), where
 - $\theta \in \mathcal{R}^d$
 - $A \in \mathcal{B}$, where \mathcal{B} is the Borel σ -field on \mathcal{R}^d (σ -algebra)
- ullet The invariant distribution π^* is characterized by

$$\pi^* \left(d\tilde{\theta} \right) \equiv \pi \left(\tilde{\theta} \right) d\tilde{\theta} = \int_{R^d} P \left(\theta, d\tilde{\theta} \right) \pi \left(\theta \right) d\theta , \qquad (31)$$

- i.e. $\pi(\theta)$ is unaltered when passing it through the transition kernel
- ullet π is the density with respect to Lebesgue measure of π^* , i.e.

$$\pi^*(A) = \int_A \pi\left(\tilde{\theta}\right) d\tilde{\theta} , \qquad (32)$$

• In our case: π^* is our known invariant distribution, but how to get $P(\theta,A)$?

(34)

Transition Kernel and the Reversibility Condition

 \bullet Suppose transition kernel, for some function $p(\theta,\tilde{\theta})$ is expressed as

$$P(\theta, d\tilde{\theta}) = p(\theta, \tilde{\theta})d\tilde{\theta} + r(\theta)\delta_{\theta}(d\tilde{\theta})$$
(33)

- $p(\theta, \theta) = 0$
- $\delta_{\theta} \left(d\tilde{\theta} \right) = \begin{cases} 1 \text{ if } \theta \in d\tilde{\theta} \\ 0 \text{ otherwise} \end{cases}$
- $r(\theta) = 1 \int_{\mathbb{R}^d} p(\theta, \tilde{\theta}) d\tilde{\theta}$ is the probability of staying at θ

Theorem 3 (Sufficiency of the Reversibility Condition)

If function $p(\theta, \tilde{\theta})$ satisfies the **reversibility condition**

$$\pi(\theta) p(\theta, \tilde{\theta}) = \pi(\tilde{\theta}) p(\tilde{\theta}, \theta)$$

then $\pi(\cdot)$ is the invariant distribution of $P(\theta, \cdot)$

• The probability of moving from θ to $\tilde{\theta}$, with θ generated from $\pi(\cdot)$, is equal to the probability of moving from $\tilde{\theta}$ to θ , where $\tilde{\theta}$ comes from the same distribution $\pi(\cdot)$

Proof of the Sufficiency of the Reversibility Condition

Proof.

Consider the RHS of equation (31):

$$\int P(\theta, A) \pi(\theta) d\theta \stackrel{\text{(33)}}{=} \int \left[\int_{A} p(\theta, \tilde{\theta}) d\tilde{\theta} \right] \pi(\theta) d\theta + \int r(\theta) \delta_{\theta}(A) \pi(\theta) d\theta
= \int_{A} \left[\int p(\theta, \tilde{\theta}) \pi(\theta) d\theta \right] d\tilde{\theta} + \int_{A} r(\theta) \pi(\theta) d\theta
\stackrel{\text{(34)}}{=} \int_{A} \left[\int p(\tilde{\theta}, \theta) \pi(\tilde{\theta}) d\theta \right] d\tilde{\theta} + \int_{A} r(\theta) \pi(\theta) d\theta
= \int_{A} (1 - r(\tilde{\theta})) \pi(\tilde{\theta}) d\tilde{\theta} + \int_{A} r(\theta) \pi(\theta) d\theta
= \int_{A} \pi(\tilde{\theta}) d\tilde{\theta}$$

Constructing such a Transition Kernel

- \bullet How to find such a function $p(\theta,\tilde{\theta})$ satisfying the reversibility condition?
- Consider a candidate-generating density/proposal density $q(\theta, \hat{\theta})$ with $\int q(\theta, \tilde{\theta}) d\tilde{\theta} = 1$
- \bullet If the process starts at $\theta,$ the density generates a value $\tilde{\theta}$ from $q(\theta,\tilde{\theta})$
- If $q(\theta,\tilde{\theta})$ satisfies the reversibility condition, we are done, but it usually does not
- \bullet Say without loss of generality that for some $\theta,\tilde{\theta}$

$$\pi\left(\theta\right)q\left(\theta,\tilde{\theta}\right) > \pi\left(\tilde{\theta}\right)q\left(\tilde{\theta},\theta\right) \tag{35}$$

- ullet We move from heta to $ilde{ heta}$ too often and from $ilde{ heta}$ to heta too rarely
- Idea: introduce **probability of move** $\alpha(\theta, \tilde{\theta})$ that such a move is made
- ullet If no move is made, we stay at heta

Reweighting

ullet Transition from heta to $ilde{ heta}$ happens according to

$$p_{MH}\left(\theta,\tilde{\theta}\right) = q\left(\theta,\tilde{\theta}\right)\alpha\left(\theta,\tilde{\theta}\right), \theta \neq \tilde{\theta}$$
(36)

- How to construct α ?
- From (35) we know that we move from $\tilde{\theta}$ to θ too rarely
- \Rightarrow set $\alpha(\tilde{\theta}, \theta) = 1$
 - From reversibility condition (34) follows

$$\pi(\theta) q(\theta, \tilde{\theta}) \alpha(\theta, \tilde{\theta}) = \pi(\tilde{\theta}) q(\tilde{\theta}, \theta) \alpha(\tilde{\theta}, \theta) = \pi(\tilde{\theta}) q(\tilde{\theta}, \theta)$$
(37)

 \bullet Thus, α

$$\alpha\left(\theta,\tilde{\theta}\right) = \begin{cases} \min\left[\frac{\pi(\tilde{\theta})q(\tilde{\theta},\theta)}{\pi(\theta)q(\theta,\tilde{\theta})},1\right] & \text{if } \pi\left(\theta\right)q\left(\theta,\tilde{\theta}\right) > 0\\ 1 & \text{otherwise} \end{cases}$$
(38)

The Desired Transition Kernel

• What happens if there is non-zero possibility of staying at θ :

$$r(\theta) = 1 - \int_{R^d} q(\theta, \tilde{\theta}) \alpha(\theta, \tilde{\theta}) d\tilde{\theta}$$
 (39)

Thus, the required transition kernel is given by

$$P_{MH}(\theta, d\tilde{\theta}) = q(\theta, \tilde{\theta})\alpha(\theta, \tilde{\theta})d\tilde{\theta} + \left[1 - \int_{R^d} q(\theta, \tilde{\theta})\alpha(\theta, \tilde{\theta})d\tilde{\theta}\right]\delta_{\theta}\left(d\tilde{\theta}\right)$$
(40)

- Due to satisfied reversibility condition, $\pi(\theta)$ is its invariant density Remarks
- the M-H algorithm is specified by its proposal density $q(\theta, \theta)$
- If candidate θ is rejected, the next draw is θ
- Calculating $\alpha(\theta, \theta)$ does not involve the normalizing constant of $\pi(\cdot)$ as it appears in numerator and denominator
- For symmetric proposal densities with $q(\theta, \tilde{\theta}) = q(\tilde{\theta}, \theta)$, probability of move is $\pi(\hat{\theta})/\pi(\theta)$; jump always "uphill" and "downhill" with some probability (cf. Simulated Annealing)

Applying the Theory to our DSGE Model

• How does this help us? Remember

$$p\left(\theta|y^{T}\right) = \frac{p\left(y^{T}|\theta\right)p\left(\theta\right)}{p\left(y^{T}\right)} \propto \mathcal{L}\left(y^{T}|\theta\right)p\left(\theta\right) \tag{5}$$

- Thus, if $\pi(\theta)=p(\theta|y^T)$, we can use the following algorithm to generate draws from the posterior and we don't even need $p\left(y^T\right)$
- Mild regularity conditions assure convergence to posterior when starting from arbitrary point
 - irreducibility+positive recurrence: if θ and θ are in domain of posterior, it must be possible to move from θ to $d\tilde{\theta}$ in a finite number of iterations with positive probability
 - aperiodicity: the number of moves required to get from θ to $d\tilde{\theta}$ is not required to be the multiple of some integer
- \bullet Typically satisfied when $q(\theta,\tilde{\theta})$ has positive density on same support as posterior

Summary: Metropolis Hastings-Algorithm

- Start with a vector θ_0
- Repeat for $j = 1, \dots, N$
 - Generate $\tilde{\theta}$ from $q(\theta_{j-1},\cdot)$ and u from $\mathcal{U}(0,1)$
 - If $\tilde{\theta}$ is valid parameter draw (steady state exists, Blanchard-Kahn conditions satisfied etc.) and $u<\alpha(\theta^{j-1},\theta^j)$ set $\theta_j=\tilde{\theta}$
 - Otherwise, set $\theta_j = \theta_{j-1}$ (implies setting $\pi(\tilde{\theta}) = 0$ if draw invalid)
- Return the values $\{\theta_0, \dots, \theta_N\}$
- After the chain has passed the transient stage and the effect of the starting values has subsided, the subsequent draws can be considered draws from the posterior
- ⇒ **burnin** required that assures remaining chain has **converged**

The Random-Walk Metropolis Hastings Algorithm

- As long as the regularity conditions are satisfied, any proposal density will ultimately lead to convergence to the invariant distribution
- However: speed of convergence may differ significantly
- In practice, people often use the Random-Walk Metropolis Hastings algorithm where

$$q\left(\theta,\tilde{\theta}\right) = q_{RW}\left(\tilde{\theta} - \theta\right) \tag{41}$$

and q_{RW} is a multivariate density

 \bullet The candidate $\tilde{\theta}$ is thus given by the old value θ plus a random variable increment

$$\tilde{\theta} = \theta + z, z \sim q_{RW} \tag{42}$$

Choosing a Proposal Density

Often, one uses

$$q_{RW} = \mathcal{N}(0, c^2 \Sigma) \text{ or } q_{RW} = t_{\nu}(0, c^2 \Sigma)$$
(43)

- Thus, one needs a scaling matrix Σ and a scaling factor c
- Note: with symmetric density, the scaling probability simplifies to

$$\alpha\left(\theta_{j-1}, \tilde{\theta}\right) = \min\left[\frac{L\left(Y^T \middle| \tilde{\theta}\right) p\left(\tilde{\theta}\right)}{L\left(Y^T \middle| \theta_{j-1}\right) p\left(\theta_{j-1}\right)}, 1\right]$$
(44)

- Idea: construct Gaussian approximation to posterior and use asymptotic covariance matrix as scaling matrix
- Allows efficient evaluation around mode
- Note: asymptotically, the prior plays no role and the posterior will only depend on the likelihood
- Koop (2003) only uses likelihood function, while An and Schorfheide (2007) use posterior; we side with the latter

Asymptotic Normality

- Using normal approximation is justified, because with regularity conditions, posterior of θ will be asymptotically normal (see e.g. Crowder 1988; Kim 1998; A. M. Walker 1969)
- But convergence may be slow
- Normal approximation can often be improved by natural re-parametrization (Adolfson, Lindé, and Villani 2007): bring bounded parameters to unbounded support:
 - log transformation of positive parameters
 - logit-transformation for parameters on unit interval

Technical Considerations

- Usual procedure: use numerical optimizer to find posterior mode of log-posterior $p(\theta|Y^T)$
- In practical applications, non-derivative based optimizers seem to perform better
- Finding the mode is hard and time-intensive; try (sequence of) different optimizers
- In some sense, finding the mode is not important as long as the regularity conditions are met (positive definite scaling matrix)
- Wherever you start, asymptotically the MCMC sampler will spend most time at the mode and get there
- MCMC is a quite inefficient optimizer (cf. Simulated Annealing)
- Thus: if you only have finite time, try to get as close as possible
- Problems of not having found the mode can often be seen as a slow drift in the parameters and posterior density

Technical Considerations: the Scaling matrix

 \bullet Set the scaling matrix Σ to the **inverse Hessian** at the posterior mode:

$$\Sigma = \operatorname{var}\left(\hat{\theta}\right) = I\left(\theta\right)^{-1} = \left(-E\left[\frac{\partial^2 \log p\left(\theta|Y\right)}{\partial \theta \partial \theta'}\right]\right)^{-1} \tag{45}$$

- csminwel will provide an estimate of the Hessian as one of its outputs
- In practice, having fatter tails often works better: might want to use *t*-distribution instead of normal
- Sounds easy, but creates a lot of problems!
- Theoretical Inverse Hessian at the true mode is positive definite, but the numerical one at the conjectured mode often is not
- Solution: various dirty tricks like
 - use Jordan decomposition to decompose matrix, set the eigenvalues smaller than or equal 0 to some small number, and then recompose the matrix
 - use **generalized Cholesky** (see e.g. Gill and King 2004)
 - Try different step sizes for numerical evaluation of derivatives (An and Schorfheide 2007)

Choosing the Scaling Factor

- The scaling factor affects the behavior of the M-H Chain through:
 - Acceptance Rate: percentage of times a move is made
 - Region of the sample space covered by the sampler
- \bullet Consider a case where the sampler has converged and the area around the ${\bf mode}$ is sampled
- If the scaling is too wide, many implausible parameter vectors far away from the mode will be proposed and rejected (accept. prob. low)
- If the scaling is too small, many likely parameter vectors close to the mode will be proposed and accepted (accept. prob. high)
- \bullet Low probability regions will be undersampled \Rightarrow will take the sampler a long time to traverse the support of the density
- In both cases, there tends to be a **high autocorrelation in the draws**
- Roberts, Gelman, and Gilks (1997): if target and proposal are normal densities, the optimal acceptance rate is 45% in the univariate case and 23% for infinitely many parameters (and already 25% for 6 parameters)

Acceptance Rate Too Low

Figure 1: Trace and Autocorrelation Plot: eps_z

- Acceptance Rate of 2.5%
- Bad mixing and autocorrelation function only decays slowly

Acceptance Rate Too High

Figure 2: Trace and Autocorrelation Plot: eps_z

- Acceptance Rate of 85%
- Bad mixing and autocorrelation function only decays slowly

Acceptance Rate on Target

Figure 3: Trace and Autocorrelation Plot: eps_z

51/66

- Acceptance Rate of 21%
- Good mixing and autocorrelation function decays relatively fast

Structural Macro, Ch. IV The Problem Posterior Prior M-H Derivation Convergence Prior vs. Posterior

Efficiency

- Ideally, we want iid draws from the posterior
- MCMC only delivers correlated draws (hence: Markov Chain)
- While high autocorrelation in the draws may signify problems with the scaling, even with the "optimal" acceptance rate, there might be high autocorrelation
- In this case, it might be necessary to try different proposal density
- ⇒ e.g. Tailored Random Block Metropolis Hastings (Chib and Ramamurthy 2010)

Monitoring Convergence

- We only want to consider draws after the transition kernel has converged to the invariant distribution
- How to monitor that?
 - Geweke (1992) convergence diagnostics: requires single MCMC
 - Brooks and Gelman (1998) convergence diagnostics: requires at least two MCMC

(46)

(47)

Geweke (1992) Convergence Diagnostics

- Idea: if we have sufficient number of draws from posterior, the first SA draws after a burnin of S0 should be similar to the last SC draws
 By leaving out SB draws in the middle, draws in SA and SC should
 - be independent • In practice, often $S_A=0.1S_1,\,S_C=0.4S_1,$ where S_1 is the number
 - of draws after the burnin

 To test similarity, test the means (or any other statistics) $q_{Si} = E(q(\theta)|Y^T), i \in \{A, C\}:$

$$g_{S_i} = E(g(\theta)|Y^T), i \in \{A, C\}:$$

$$CD_{GWK} = \frac{\hat{g}_{S_A} - \hat{g}_{S_C}}{\frac{\hat{\sigma}_A}{\sqrt{S_C}} + \frac{\hat{\sigma}_C}{\sqrt{S_C}}}$$

The Problem

Structural Macro, Ch. IV

 $CD_{GWK} o N\left(0,1\right)$

- ullet Problem: estimate of numerical standard error $\hat{\sigma}_i$ needs to take correlation in draws into account
- Use Newey and West (1987)-type estimator that tapers spectral density

Posterior Prior M-H Derivation Convergence

Example

Geweke (1992) Convergence Tests, based on means of draws 100000 to 120000 vs 150000 to 200000. navelues are for Chi2-test for equality of means

p-varues are rol	L CHIZ-LEST IOI	equatity of means	٥.				
Parameter	Post. Mean	Post. Std	p-val No Taper	p-val 4% Taper	p-val 8% Taper	p-val 15% Taper	
SE_eps_z	0.023	0.004	0.000	0.299	0.292	0.262	
SE_eps_g	0.011	0.001	0.681	0.915	0.915	0.921	
rhog	0.944	0.009	0.024	0.517	0.520	0.507	
rhoz	0.756	0.069	0.024	0.568	0.560	0.540	
SE_eps_g rhog	0.011 0.944	0.001 0.009	0.681 0.024	0.915 0.517	0.915 0.520	0.	.921 .507

• Higher tapers correcting for serial correlation suggest convergence

Structural Macro, Ch. IV The Problem Posterior M-H Derivation Convergence Prior vs. Posterior

56/66

Brooks and Gelman (1998) Convergence Diagnostics

- Idea: wherever the MC starts, it should converge to the same invariant distribution
- Start multiple chains from overdispersed draws and see whether they yield similar posterior draws after burnin
- The univariate convergence diagnostics are based on comparing **pooled** and within MCMC moments (ANOVA)
- Consider a statistic g with variance σ and having J chains with N draws each after discarding a burnin
- Denote means with bars
- The variance within a chain is given by

$$\sigma_j^2 = \frac{1}{N-1} \sum_{j=1}^{N} (g_{nj} - \bar{g}_j)^2$$
 (48)

The Problem Posterior Prior M-H Derivation Convergence Prior vs. Posterior

Getting the Variances

• The **between sequence variance** B/N is given by

$$\frac{B}{N} = \frac{1}{J-1} \sum_{i=1}^{J} (\bar{g}_j - \bar{g})^2 \tag{49}$$

- \bullet Here, B/N is the square of the standard error of the mean and B the actual variance estimate of g
- The (average) within sequence variance is given by

$$W = \frac{1}{J(N-1)} \sum_{j=1}^{J} \sum_{n=1}^{N} (g_{jn} - \bar{g}_j)^2 = \frac{1}{J} \sum_{j=1}^{J} \sigma_j^2$$
 (50)

 \bullet The variance σ^2 can now be estimated by a weighted average of the two:

$$\hat{\sigma}^2 = \left(1 - \frac{1}{N}\right)W + \frac{1+J}{N}B\tag{51}$$

• Because we use overdispersed starting points, this is an overestimate of σ^2 , but it is consistent

58/66

Potential Scale Reduction Factor

• The statistic of interest is the **potential scale reduction factor**, i.e. the ratio between the pooled variance estimate and the within-chain variance estimate:

$$\hat{R} = \sqrt{\frac{\hat{\sigma}^2}{W}} \tag{52}$$

- If \hat{R} is large, either the pooled variance estimate $\hat{\sigma}^2$ can be decreased by further simulations or the within chain variance will increase due to it not yet having made a full tour through the target distribution
- \bullet If \hat{R} is close to 1, each of the J chains of N draws is close to the target distribution
- At convergence, three properties should hold
 - \hat{R} should be close to 1
 - \bullet The pooled variance $\hat{\sigma}^2$ should stabilize with convergence as the chains were started from an overdispersed distribution
 - The same should hold true for the within chain variance, which should be smaller than $\hat{\sigma}^2$
- All three conditions can be monitored graphically

A Non-Parametric Version

- But: previous approach assumes normality by looking at means and variances
- Alternative (also used in Dynare): take length of the $1-\alpha$ percentile for each of the chains and for the pooled draws
- Compare the interval for the pooled draws with the average from the individual chains

$$\hat{R}_{interval} = \frac{\text{length of total sequence interval}}{\text{mean length of within sequence interval}}$$
 (53)

- R_{interval} is a potential scale reduction factor based on percentiles
- The same convergence criteria apply

Example

Prior vs. Posterior

- Priors (grey) and posteriors (black) differ: data seems to be informative for updating
- ullet Exception: ho_z where we saw the flat likelihood
- When the prior is (almost) equal to the posterior, there are two cases
 - Data is uninformative
 - Data is informative, but coincides with chosen prior

Bibliography I

- Adolfson, Malin, Jesper Lindé, and Mattias Villani (2007). "Bayesian analysis of DSGE models some comments". *Econometric Reviews 26* (2-4), 173–185.
- An, Sungbae and Frank Schorfheide (2007). "Bayesian analysis of DSGE models". *Econometric Reviews 26* (2-4), 113–172.
- Andrle, Michal and Jaromir Benes (2013). "System priors: formulating priors about DSGE model's properties". IMF WOrking Paper WP/13/257.
- Berger, James Orvis (2006). "The case for objective Bayesian analysis". *Bayesian Analysis* 1 (3), 385–402.
- Berger, James Orvis and Robert L. Wolpert (1988). *The likelihood principle*. Ed. by Shanti S. Gupta. Institute of Mathematical Statistics.
- Brooks, Stephen P. and Andrew Gelman (1998). "General methods for monitoring convergence of iterative simulations". *Journal of computational and graphical statistics* 7 (4), 434–455.

Bibliography II

- Chib, Siddhartha and Edward Greenberg (1995). "Understanding the Metropolis-Hastings algorithm". *The American Statistician* 49 (4), 327–335.
- Chib, Siddhartha and Srikanth Ramamurthy (2010). "Tailored randomized block MCMC methods with application to DSGE models". *Journal of Econometrics* 155 (1), 19–38.
- Christiano, Lawrence J., Mathias Trabandt, and Karl Walentin (2011). "Introducing financial frictions and unemployment into a small open economy model". *Journal of Economic Dynamics and Control* 35 (12), 1999–2041.
- Crowder, Martin (1988). "Asymptotic expansions of posterior expectations, distributions and densities for stochastic processes". Annals of the Institute of Statistical Mathematics 40 (2), 297–309.
- Del Negro, Marco and Frank Schorfheide (2008). "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)". *Journal of Monetary Economics* 55 (7), 1191–1208.

Bibliography III

- Gelman, Andrew (1992). "Iterative and non-iterative simulation algorithms". Computing Science and Statistics: Proceedings of the 24th Symposium on the Interface, 433–438.
- Geman, Stuart and Donald Geman (1984). "Stochastic relaxation, Gibbs distributions, and the bayesian restoration of images". *IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6* (6), 721–741.
- Geweke, John (1992). "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments". *Bayesian Statistics*. Ed. by José M. Bernardo, James O. Berger, A. Philip Dawid, and Adrian F. M. Smith. Vol. 4. Oxford: Clarendon Press, 641–649.
- Gill, Jeff and Gary King (2004). "What to do when your Hessian is not invertible alternatives to model respecification in nonlinear estimation". Sociological methods & research 33 (1), 54–87.
- Hastings, W. Keith (1970). "Monte Carlo sampling methods using Markov chains and their applications". *Biometrika* 57 (1), 97–109.

Bibliography IV

- Kim, Jae-Young (1998). "Large sample properties of posterior densities, bayesian information criterion and the likelihood principle in nonstationary time series models". *Econometrica* 66 (2), 359–380.
- Koop, Gary (2003). Bayesian econometrics. Chichester: John Wiley & Sons.
- Leeper, Eric M., Nora Traum, and Todd B. Walker (2017). "Clearing up the fiscal multiplier morass". *American Economic Review* 107 (8), 2409–54.
- Ljungqvist, Lars and Thomas J. Sargent (2012). *Recursive macroeconomic theory*. 3rd ed. Cambridge, MA: MIT Press.
- Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953). "Equation of state calculations by fast computing machines". *The Journal of Chemical Physics 21*, 1087–1092.

Bibliography V

- Newey, Whitney K. and Kenneth D. West (1987). "A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix". *Econometrica* 55 (3), 703–708.
- Roberts, Gareth O., Andrew Gelman, and Walter R. Gilks (1997). "Weak convergence and optimal scaling of random walk Metropolis algorithms". *The annals of applied probability* 7 (1), 110–120.
- Sims, Christopher A. (2007). "Bayesian methods in applied econometrics, or, why econometrics should always and everywhere be Bayesian".

 Mimeo. Princeton University.
- Walker, A. M. (1969). "On the asymptotic behaviour of posterior distributions". *Journal of the Royal Statistical Society. Series B* (Methodological) 31 (1), 80–88.
- Zyphur, Michael J. and Frederick L. Oswald (2013). "Bayesian estimation and inference". *Journal of Management 41* (2), 390–420.

Structural Macro, Ch. IV References 66/66