chapter 1 HW solutions

1.3 a-d

(a) (4310)₅

$$= (4.5^3) + (3.5^2) + (1.5') + (0.5°)$$

= 500 + 75 + 5 + 0

$$= 580 \text{ or } (580)_{10}$$

(b) (198)₁₂

$$= (1 \cdot 12^{2}) + (9 \cdot 12^{'}) + (8 \cdot 12^{\circ})$$

$$(=(260)_{10})$$

(c) (435)₈

$$=(4.8^2)+(3.8^1)+(5.8^\circ)$$

(d) (345)6

$$=(3.6^2)+4.6'+5.6°$$

$$=(3.36)+(4.6)+(5.1)$$

femainder Method: divide by 2 + Keep Remainder (0 or 1)

(b) (431)₁₀

1. Divide by 16

2. Divide 26:16 3. Divide 1:16

4. Take Remainders + convert to hex

$$15 \rightarrow F$$

5. Rewrite in most to least significant digit in HEX System (1,2,3,..., A,B,C,...)

(0001 1010 1111)2

(c)
$$(26.24)_8$$

 $2*8'+6*8'$
 $2*8''+4*8^{-2}$
 $25+0.062^{-1}$
 $16+6$

(d)
$$(DADA.B)_{16}$$

 $B=11$
 $A=10$ $13 \times 16^3 + 10 \times 16^2 + 13 \times 16^1 + 10 \times 16^0$ 11×16^{-1}
 $= 53248 + 2560 + 208 + 10 = .6875$
 $D=13$ $= 56026.6872$

(e)
$$(1010.1101)_2$$
 2^{-1}
8+2 $.5+.25+.0625$
Y
10 0.8125

$$= 10.8125$$

1.14 Obtain the 1's and 2's complements of the following binary numbers: (a) 00010000 (b) 00000000 (c) 11011010 (d) 10101010 (e) 10000101 (f) 11111111. 1.14 a 0001 0000 1 (1's complement) 1110 1111 1111 0000 (2's complement) 1.14 b 0000 0000 1111 1111 (1's complement) $1\ 0000\ 0000 \rightarrow \text{we can ignore bit overflow} \rightarrow 0000\ 0000\ (2's complement)$ 1.14 c 1101 1010 1 0010 0101 (1's complement) 0010 0110 (2's complement) 1.14 d 1010 1010 1 (1's complement) 0101 0101 0101 0110 (2's complement) 1.14 e 1000 0101

0111 1010

 $\frac{+}{0111} \frac{1}{1011}$

(1's complement)

(2's complement)

```
subtrahend. Where the result should be negative, find its 2's complement and affix a minus sign.
         (a) 10011 - 10010
                                                          (b) 100010 - 100110
         (c) 1001 - 110101
                                                          (d) 101000 – 10101
1.18 a) 10011 – 10010
       Minuend: 10011 = 19 (in decimal)
       Subtrahend: 10010 = 18 (in decimal) \rightarrow 2's complement: 10010 \rightarrow 01101 \rightarrow 01110
         10011
       + 01110
        100001 → we only need 5 bits so ignore the bit overflow \rightarrow 00001
1.18 b) 100010 – 100110
       Minuend: 100010 = 34 (in decimal)
       Subtrahend: 100110 = 38 (in decimal) → 2's complement: 100110 \to 011001 \to 011010
         100010
       +011010
         111100 \rightarrow find 2's complement & affix minus sign: 111100 \rightarrow 000011 \rightarrow -000100
1.18 c) 1001 – 110101
       Minuend: 1001 = 001001 = 9 (in decimal)
       Subtrahend: 110101 = 53 (in decimal) \rightarrow 2's complement: 110101 \rightarrow 001010 \rightarrow 001011
         001001
       +001011
         010100 \rightarrow \text{find 2's complement \& affix minus sign: } 010100 \rightarrow 101011 \rightarrow -101100
1.18 d) 101000 - 10101
       Minuend: 101000 = 40 (in decimal)
       Subtrahend: 10101 = 010101 = 21 (in decimal)
                → 2's complement: 010101 → 101010 → 101011
         101000
       +101011
       1010011 → we only need 6 bits so ignore the bit overflow \rightarrow 010011
```

1.18 Perform subtraction on the given unsigned binary numbers using the 2's complement of the

1.15 Find the 9's and the 10's complement of the following decimal numbers:

(a) 25,478,036

(b) 63, 325, 600

(c) 25,000,000

(d) 00,000,000.

1.15 a)

1.15 b)

1.15 c)

1.15 d)

1.17 Perform subtraction on the given unsigned numbers using the 10's complement of the subtrahend. Where the result should be negative, find its 10's complement and affix a minus sign. Verify your answers.

```
(a) 4,637 - 2,579
```

(b)
$$125 - 1,800$$

(c)
$$2,043 - 4,361$$

(d)
$$1,631 - 745$$

```
1.17 a) 4637 - 2579

Minuend = 4637

Subtrahend = 2579 \rightarrow 10's complement: 2579 \rightarrow 7420 \rightarrow 7421

4637

+7421

12058 \rightarrow \text{drop extra digit } \rightarrow 2058
```

```
1.17 b) 125 – 1800

Minuend = 125 = 0125

Subtrahend = 1800 → 10's complement: 1800 → 8199 → 8200

0125

+8200

8325 → find 10's complement & append minus sign: 8325 → 1674 → -1675
```

```
1.17 c) 2043 – 4361
Minuend = 2043
Subtrahend = 4361 → 10's complement: 4361 → 5638 → 5639
2043
+5639
7682 → find 10's complement & append minus sign: 7682 → 2317 → -2318
```

```
1.17 d) 1631 – 745

Minuend = 1631

Subtrahend = 745 = 0745 → 10's complement: 0745 → 9254 → 9255

1631

+9255

10886 → drop extra digit → 886
```

1.25 Represent the decimal number 6,248 in (a) BCD, (b) excess-3 code, (c) 2421 code, and (d) a 6311 code.

```
1.25 a) 6248 (in decimal) to BCD (binary coded decimal)
```

```
6 \rightarrow 0110
```

$$2 \rightarrow 0010$$

$$4 \rightarrow 0100$$

$$8 \rightarrow 1000$$

6248 (decimal) = 0110 0010 0100 1000 (BCD)

1.25 b) 6248 (in decimal) to excess-3 code

$$6 \rightarrow 6+3 = 9 \rightarrow 1001$$

$$2 \rightarrow 2+3 = 5 \rightarrow 0101$$

$$4 \rightarrow 4+3 = 7 \rightarrow 0111$$

$$8 \rightarrow 8+3 = 11 \rightarrow 1011$$

6248 (decimal) = 1001 0101 0111 1011 (excess-3 code)

1.25 c) 6248 (in decimal) to 2421 code

$$6 \rightarrow 2(1) + 4(1) + 2(0) + 1(0) = 6 \rightarrow 1100$$
 (0110 is also a valid answer)

$$2 \rightarrow 2(1) + 4(0) + 2(0) + 1(0) = 2 \rightarrow 1000$$

$$4 \rightarrow 2(0) + 4(1) + 2(0) + 1(0) = 4 \rightarrow 0100$$

$$8 \rightarrow 2(1) + 4(1) + 2(1) + 1(0) = 8 \rightarrow 1110$$

6248 (decimal) = 1100 1000 0100 1110 (2421 code)

(**0110** 1000 0100 1110 is also a valid answer)

1.25 d) 6248 (in decimal) to 6311 code

$$6 \rightarrow 6(1) + 3(0) + 1(0) + 1(0) = 6 \rightarrow 1000$$

$$2 \rightarrow 6(0) + 3(0) + 1(1) + 1(1) = 2 \rightarrow 0011$$

$$4 \rightarrow 6(0) + 3(1) + 1(1) + 1(0) = 4 \rightarrow 0110$$
 (0101 is also a valid answer)

$$8 \rightarrow 6(1) + 3(0) + 1(1) + 1(1) = 8 \rightarrow 1011$$

6248 (decimal) = 1000 0011 0110 1011 (6311 code)

(1000 0011 **0101** 1011 is also a valid answer)

- **1.33*** The state of a 12-bit register is 100010010111. What is its content if it represents
 - (a) Three decimal digits in BCD?
 - (b) Three decimal digits in the excess-3 code?
 - (c) Three decimal digits in the 84-2-1 code?
 - (d) A binary number?

1.33 a) 1000 1001 0111 BCD to decimal

$$1000 = 8$$

$$0111 = 7$$

1.33 b) 1000 1001 0111 excess-3 code to decimal

$$1000 = 8 \rightarrow 8-3 = 5$$

$$1001 = 9 \rightarrow 9-3 = 6$$

$$0111 = 7 \rightarrow 7-3 = 4$$

$$1000\ 1001\ 0111\ (excess-3\ code) = \frac{564}{600}\ (decimal)$$

1.33 c) 1000 1001 0111 84-2-1 code to decimal

$$1000 \rightarrow 8(1) + 4(0) - 2(0) - 1(0) = 8$$

$$1001 \rightarrow 8(1) + 4(0) - 2(0) - 1(1) = 7$$

$$0111 \rightarrow 8(0) + 4(1) - 2(1) - 1(1) = 1$$

1.33 d) 1000 1001 0111 binary to decimal

$$2^{11} + 2^{7} + 2^{4} + 2^{2} + 2^{1} + 2^{0} = 2199$$
 (decimal)

1.35 By means of a timing diagram similar to Fig. 1.5, show the signals of the outputs f and g in Fig. P1.35 as functions of the three inputs a, b, and c. Use all eight possible combinations of a, b, and c.

FIGURE P1.35

a	b	C	f = NOT(a AND b AND c)	g = NOT(a OR b OR c)
0	0	0	0	1
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

1.36 By means of a timing diagram similar to Fig. 1.5, show the signals of the outputs f and g in Fig. P1.36 as functions of the two inputs a and b. Use all four possible combinations of a and b.

FIGURE P1.36

•			
a	b	f = a XOR b	g = NOT(a XOR b)
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1