A Brief Introduction to HINTS

Dinghang Tan

2025-03-04

Outline

1. Overview	5. Conclusions 24
1.1 What is HINTS 3	5.1 Pros and Cons 25
2. Basic Principles 5	
2.1 Smoothing Principles 6	
2.2 Frequency Principle 11	
3. Algorithms	
3.1 Residual Correction 14	
3.2 Residual Equations 15	
4. Numerical Experiments 16	
4.1 1D Poisson Equation 17	
4.2 2D Helmholtz Equation . 19	
4.3 2D Stokes Equations 21	

1. Overview

HINTS^[1] is a hybrid, iterative, numerical, and transferable solver for differential equations which combines standard relaxation methods and the Deep Operator Network (DeepONet).

^[1]E. Zhang, A. Kahana, E. Turkel, R. Ranade, J. Pathak, and G. E. Karniadakis, "A hybrid iterative numerical transferable solver (hints) for pdes based on deep operator network and relaxation methods," *arXiv preprint arXiv:2208.13273*, p. 198, 2022.

1. Overview

- 2. Basic Principles
- 1. A basic residual-correction method to solve Au=f for a given initial guess u_0 .
 - 1. residual $r = f Au_k$.
 - 2. correction e = Br with $B \approx A^{-1}$.
 - 3. $u_{k+1} = u_k + e$.
- 2. Amplification matrix.

$$e_{k+1} \coloneqq u - u_{k+1} = (I - BA)(u - u_k) = (I - BA)e_k$$

Theorem 2.1.1 The residual-correction sheeme converges iff

$$\rho(I - BA) < 1.$$

- 3. Jacobi iteration $B = diag(A)^{-1}$.
- 4. $-u'' = 0, x \in (0,1)$ with u(0) = u(1) = 0.

$$\int_{0}^{1} \varphi_{i}'(x)\varphi_{j}'(x) dx = \frac{1}{h} \begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix} =: \frac{1}{h}A$$

2. Basic Principles

where $\varphi_i(x)(i=1,2,...,n)$ are hat functions and $h=\frac{1}{n+1}$. The eigenpairs (λ_k,v_k) of A are

$$\lambda_k(A) = 2(1-\cos(hk\pi)), v_{k,j}(A) = \sqrt{2h}\sin(jkh\pi).$$

Note that $B = \frac{1}{2}I$,

$$\lambda_k(I - BA) = \cos(hk\pi) = \cos\left(\frac{k\pi}{n+1}\right).$$

2.2 Frequency Principle

2. Basic Principles

Frequency principle^[1] indicates that deep neural networks always approximate the low-frequency part of the target function first, and then approach the high-frequency part. Here is an example.²

$$-u'' = \frac{1}{10}\sin(\pi x) + \sin(1000\pi x), x \in (0, 1),$$
$$u(0) = u(1) = 0.$$

^[1]Z.-Q. J. X. Zhi-Qin John Xu, Y. Z. Yaoyu Zhang, T. L. Tao Luo, Y. X. Yanyang Xiao, and Z. M. Zheng Ma, "Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks," *Communications in Computational Physics*, vol. 28, no. 5, pp. 1746–1767, 2020, doi: 10.4208/cicp.OA-2020-0085.

²see https://github.com/dhtantoy/HintsDemo.jl.git for more details.

2.2 Frequency Principle

3. Algorithms

```
1:function Iteration(A, b, epochs, \varepsilon)
```

- 2: $v \leftarrow 0$
- $i \leftarrow 0$
- 4: $r \leftarrow b Av$
- 5:
- 6: while $||r|| \le \varepsilon$ and $i \le \text{epochs do}$
- 7: solve $A\delta v = r$
- 8: $v \leftarrow v + \delta v$
- 9: $i \leftarrow i + 1$
- 10: return v

```
1:function DEEPONET_JACOBI(A, r, p)
```

- 2: $\delta v \leftarrow \text{DeepONet}(r)$
- 3: $\delta v^0 \leftarrow \delta v$
- 4: $s \leftarrow 0$
- 5:
- 6: while s < p do
- 7: solve $A\delta v = r$
- 8: $\delta v_i^{s+1} \leftarrow \frac{1}{a_{ii}} \left(r \sum_{j=1}^n a_{ij} \delta v_j^s \right)$
- 9: $s \leftarrow s + 1$
- 10: return δv^p

4.1 1D Poisson Equation

4. Numerical Experiments

$$-u'' = f, x \in (0, 1),$$

$$u'(0) + u(0) = c_0,$$

$$u'(1) + u(1) = c_1.$$

Here $f = \pi^2 \sin(\pi x) + 25\pi^2 \sin(5\pi x)$ and $c_0 = c_1 = 0$. The exact solution is $u = \sin(\pi x) + \sin(5\pi x)$.

4.1 1D Poisson Equation

4.2 2D Helmholtz Equation

4. Numerical Experiments

$$-\Delta u - k^2 u = f, \text{ in } \Omega,$$
$$\nabla u \cdot \boldsymbol{n} + u = g, \text{ on } \partial \Omega,$$

where $\Omega=(0,1)^2, f(x,y)=-x^2-y^2-\exp(-y), g(x,y)=\sin(x)\sin(y),$ and

$$k(x,y) = \begin{cases} 10 \text{ if } (x,y) \in [0,0.5]^2 \cup [0.5,1]^2, \\ \\ 20 \text{ if } (x,y) \in [0,0.5) \times (0.5,1] \cup (0.5,1] \times [0,0.5). \end{cases}$$

4.2 2D Helmholtz Equation

4.3 2D Stokes Equations

4. Numerical Experiments

$$-\nabla \cdot (\mu \nabla u) + \nabla p = f$$
, in Ω , $\nabla \cdot u = 0$, in Ω , $(\nabla u - pI) \cdot n + u = 0$, on $\partial \Omega$,

where $\Omega = (0,1)^2, \mu = 1$ and

$$\boldsymbol{f}(x,y) = \begin{cases} (1 \ 0)^{\top} & \text{if } (x,y) \in [0.3, 0.4] \times [0.2, 0.3], \\ (-1 \ 0)^{\top} & \text{if } (x,y) \in [0.3, 0.4] \times [0.7, 0.8], \\ (0 \ 0)^{\top} & \text{otherwise.} \end{cases}$$

4.3 2D Stokes Equations

4.3 2D Stokes Equations

5. Conclusions

- Retains the features of operator learning, allowing the same model to solve equations with different boundary conditions.
- Effectively accelerates the convergence speed of stationary iteration, especially for Jacobi iteration.
- Can use models trained on coarse grids to solve discrete problems on fine grids.
- Can use models trained with low-order finite elements to solve problems discretized with high-order finite elements.
- The algorithm only involves matrix-vector multiplication.
- Training of DeepONet is costly.

5. Conclusions

• Difficult to approximate high-frequency target functions.