Emily Bunnapradist

J +1 424-284-6633 <u>■ embunna@stanford.edu</u> <u>in linkedin.com/in/ebunnapradist</u>

EDUCATION

Stanford University

Palo Alto, CA

Master's in Computer Science (Artificial Intelligence), GPA: 4.03 / 4.0 Bachelor's in Mathematics & Symbolic Systems (Neuroscience) Sept 2023 - Dec 2024 Sept 2020 - June 2024

TECHNICAL SKILLS

Languages: Python, C, C++, Javascript, MatLab; ML Frameworks: PyTorch, Tensorflow, Jax, HF, SLURM ML Skills: Training, Fine-tuning, Model Editing, Agentic Frameworks, Preference Optimization, Evaluation

Research Areas: NLP, NLU, Reliability, Explainability & Interpretability, Applied Math, CompNeuro, Phil of Mind

SELECTED RESEARCH PROJECTS

Heterogeneity of Preference Datasets for AI Alignment

Sept 2024 - Present

Affiliated with Stanford Trustworthy AI Research (STAIR), advised by Prof. Sanmi Koyejo

Paper in Progress

• Quantitatively measuring the diversity of preferences expressed utilizing the ideal point model framework by to learn k prototypical "individuals", proposing a new metric beyond one-dimensional inter-annotator disagreement.

Investigating Memory Mechanisms of Toy Language Models

Mar 2024 – Present

Affiliated with the Stanford NLP Group, advised by Profs. Chris Manning and Chris Potts

Paper in Progress, Poster

- Conducting interpretability research on state-space models representations through systematic ablation studies.
- Developing comparative analysis framework for memory characteristics across RNNs, Transformers, and SSMs.

Scaled-Up Social Learning through Reinforcement Learning

June 2023 - Sept 2023

Affiliated with the Stanford AI Lab (CoCoLab), advised by Prof. Noah Goodman

Poster

- Implemented multi-armed bandit RL algorithms to model multi-generational knowledge transmission.
- Designed and ran human experiments using Dallinger and Javascript to validate computational findings.

Modeling of Cortical Network Dynamics for Neuroscience

May 2022 - August 2022

Affiliated with the NYU Courant Institute of Applied Mathematics, advised by Dr. Lai-Sang Young

Presentation

- Modeled cortical network dynamics with LSTMs to predict multiple firing events from high-dimensional neural data.
- Fully funded through NSF-RTG in Modeling & Simulation grant and presented research at the AM-SURE symposium.

SELECTED SOFTWARE PROJECTS

Visualizations and Analyses of Real-Time Neural Data for Vision

 $\mathbf{Sept}\ \mathbf{2022}-\mathbf{Sept}\ \mathbf{2023}$

Affiliated with the Stanford School of Medicine (Chichilnisky Lab), advised by Prof. E.J. Chichilnisky

Github Repo

- Contributed to the Stanford Artificial Retina Project, a research initiative which aims to develop an epiretinal implant that reproduces high-fidelity vision for blind people affected by incurable retinal disease with a novel electronic device.
- Developed a GUI to analyze and visualize compressed neural data recordings in real time, increasing speed by 40%.

RELEVANT COURSEWORK

Graduate-Level AI/ML: CS224N (NLP), CS224U (NLU), CS229 (Statistical ML), CS231N (Computer Vision), CS329H (ML from Human Preferences), CS339N (ML for Neural Data), CS362 (AI Alignment)

Cognitive Science: CS428A (Probabilistic Cognition), MATSCI 384 (NeuroTech), PSYC124 (Brain Plasticity), PSYCH45 (Learning & Memory), PSYCH209 (NN Models of Cognition), PSYCH240A (Curiosity in AI)

Mathematics: CS157 (Logic), CS205L (Math for ML), MATH51-53 (Lin. Alg/MVC/DiffEQs), MATH110-115

(Combinatorics/Number Theory/Real Analysis), PHIL150/151 (Metalogic), STATS116 (Probability Theory)

HONORS & AWARDS

Stanford Award of Excellence Recipient

Designed to recognize the top 10% of the class for their impact on the university.

Jun 2024

More Info

Google CS Research Mentorship Program (CSRMP) Award Recipient

Sept 2023

Designed to support the pursuit of computing research for students from historically marginalized groups.

More Info

SELECTED TECHNICAL PROJECTS

Interchange Interventions in Vision Models

Mar 2024 - Jun 2024

CS 231N: Deep Learning for Computer Vision Final Project, with Profs. Eshan Adeli and Fei-Fei Li

Paper, Poster

- Implemented interchange interventions, leveraging Distributed Alignment Search (DAS), for vision models.
- Fine-tuned ResNet architecture achieving 100% classification accuracy revealing key insights about feature importance.
- Created custom image datasets to evaluate model reliance on color, shape, and background features.

Investigating Internal Representations of Garden Path Sentences in LLMs

CS 224U: Natural Language Understanding Final Project, with Prof. Chris Potts

Mar 2023 - Jun 2023

Paper, Github Repo

• Compared how different language models process complex linguistic structures, specifically analyzing BERT and GPT models' handling of garden path sentences, using Manhattan distance, cosine similarity, and surprisal metrics.

• Demonstrated that GPT-2's processing aligns more closely with human comprehension patterns, while BERT's bidirectional architecture shows different processing characteristics.

Modeling Attachment Theory through Reinforcement Learning

Mar 2023 - Jun 2023

PSYCH 240A: Curiosity in Artificial Intelligence Final Project, with Prof. Nick Haber

Paper, Github Repo

- Developed a custom reinforcement learning environment using Python and Minigrid to model parent-child attachment behaviors, integrating developmental psychology principles into AI training.
- Collaborated in a 3-person team using Git for version control, managing codebase on GitHub, and iterating through multiple framework options (Multigrid, TF Agents) to optimize performance.

Are LLMs Smarter than a 5th Grader? Mathematical Cognition in LLMs

Jan 2023 – Mar 2023

PSYCH 209: Neural Network Models of Cognition Final Project, with Prof. Jay Mcclelland

Paper

- Designed and conducted empirical study evaluating GPT-3's mathematical reasoning capabilities through analysis of over 5.600 model responses to novel mathematical operations to assess mathematical comprehension vs. pattern matching.
- Quantified significant performance degradation (up to 68% accuracy drop) when models encounter higher magnitude numbers and complex explanatory requirements.

EI's in Disguise: Classification of Retinal Ganglion Cells

Jan 2023 - Mar 2023

CS 339N: ML Methods for Neural Data Analysis Final Project, with Prof. Scott Linderman

Paper

- Designed and implemented CNN architectures achieving 70.5% accuracy in classifying retinal ganglion cell types using only electrical imaging data, improving upon prior benchmarks of 63%.
- Built data preprocessing pipeline for normalizing spatiotemporal voltage patterns across multiple retinal recordings.

TEACHING & OUTREACH

Teaching Assistant for Stanford Computer Science Department

CS 224N: Natural Language Processing with Deep Learning (Winter 2025)

CS 224V: Conversational Virtual Assistants with Deep Learning (Fall 2024)

CS 181: Computers, Ethics, and Public Policy (Spring 2023)

CS 184: Bridging Technology and Policy Through Design (Spring 2022)

Mar 2022 - Present

Course Website

Course Website

Course Website

Co-Instructor for CS 25: Transformers United

Mar 2024 - Jun 2024

Speaker series focused on research in Transformers, reached an audience of 400+ each week.

Course Website