Практическая работа 3

Кислотно-основное равновесие в растворах

Хохлов Андрей, Коротков Антон Б06-302

15 марта 2024 г.

1. Гидролиз солей

1.1. Опыт 1. Реакция среды в растворах различных солей

В четыре пробирки внесли по 1 микрошпателю кристаллов или 1 мл растворов следующих солей: в первую – ацетата натрия; во вторую – хлорида цинка(II); в третью – карбоната аммония; в четвертую - хлорид натрия. Во все пробирки добавили по 2 капли универсального индикатора. Все растворы размешали, аккуратно встряхивая пробирку.

1.1.1. Первая пробирка

Ацетат натрия в первой пробирке даёт **зеленоватый оттенок**, что соответствует **щелочной среде**, ведь при гидролизе по аниону ацетат даёт меньше кислотности, и ионы натрия дают щелочную среду.

$$CH_3COONa + H_2O \rightleftharpoons NaOH + CH_3COOH$$
 (1)

$$CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$$
 (2)

1.1.2. Вторая пробирка

Хлорид цинка во второй пробирке даёт **розоватую расцветку** что соответсвует **кислой среде**, гидролиз идёт по катиону, вследствие чего вещество имеет кислую среду.

$$ZnCl_2 + H_2O \rightleftharpoons ZnOHCl + HCl$$
 (3)

$$Zn^{2+} + H_2O \rightleftharpoons ZnOH^- + H^+$$
 (4)

1.1.3. Третья пробирка

Карбонат аммония в третьей пробирке даёт **тёмно-зелёную окраску**, ведь гидролиз происходит и по катиону(6) и по аниону(5), но ион аммония сильнее гидролизуется и даёт больше основности чем карбонат ион, что даёт щелочную среду

$$CO_3^{2-} + H_2O \rightleftharpoons HCO_3^- + OH^-$$

$$\tag{5}$$

$$NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+ \tag{6}$$

$$(NH4)2CO3 + H2O $\rightleftharpoons NH4CO3 + NH4OH$ (7)$$

1.1.4. Четвёртая пробирка

Хлорид натрия - сильный электролит, хорошо диссоциирует в воде. гидролиза нет, среда нейтральная.

1.2. Опыт 2. Факторы, влияющие на степень гидролиза

1.2.1. Влияние силы кислоты и основания, образующих соль, на степень её гидролиза

В две пробирки внесли по одному микрошпателю кристаллов следующих солей: в первую – сульфита натрия, в другую – карбоната натрия. Растворили соли, прилив в каждую пробирку по 1 мл дистиллированной воды, а затем добавили по одной капле фенолфталеина.

Окраска интенсивнее в растворе карбоната, т.к при гидролизе сульфита более кислая среда, чем при гидролизе карбоната

Провели аналогичный опыт с растворами солей AlCl3 и MgCl2, заменив фенолфталеин на универсальный индикатор.

Окраска интенсивнее в растворе хлорида алюминия(III), т.к чем слабее основание, тем сильнее идёт гидролиз, а гидроксид магния слабее гидроксида алюминия. Также, у магния всего 2 ступени гидролиза:

$$Mg^{2+} + H_2O \rightleftharpoons MgOH^+ + H^+$$
 (8)

$$MgOH^+ + H_2O \rightleftharpoons Mg(OH)_2 + H^+$$
 (9)

А у алюминия 3 ступени гидролиза.

$$Al^{3+} + H_2O \rightleftharpoons AlOH^{2+} + H^+ \tag{10}$$

$$AlOH^{2+} + H_2O \rightleftharpoons Al(OH)^{2+} + H^+$$
(11)

$$Al(OH)^{2+} + H_2O \rightleftharpoons Al(OH)_3 + H^+ \tag{12}$$

1.2.2. Влияние температуры на степень гидролиза

В пробирку внесли 2 микрошпателя ацетата натрия и растворили в 2 мл дистиллированной воды, а затем добавили в раствор каплю универсальный индикатор.

Наблюдаем бесцветный раствор

Пробирку с раствором аккуратно нагрейте и зафиксируйте изменение окраски индикатора. Раствор приобрёл зелёный окрас. Аккуратно охладили пробирку в холодной воде. Приобрела менее сильный зелёный окрас. В холоде гидролиз идёт **хуже**

1.2.3. Гидролиз средних и кислых солей

Взяли две пробирки и внесли в одну из них один микрошпатель карбоната натрия, а в другую столько же гидрокарбоната натрия. В каждую пробирку налили по 1 мл дистиллята и перемешали содержимое. Нанесли полученные растворы на универсальную индикаторную бумагу с помощью стеклянной палочки.

$$CO_3^{2-} + HOH \rightleftharpoons HCO_3^- + OH^-$$
 (13)

$$HCO_3^- + HOH \rightleftharpoons H_2CO_3 + OH^-$$
 (14)

Рассчитаем рН для этих реакций:

По 1 ступени:

$$K_{a1} = \frac{x^2}{0.1 - x} \implies x = 4{,}373 * 10^{-3}$$
 (15)

$$pH = \frac{-\lg 10^{-14}}{x} = 11,64078 \tag{16}$$

По 2 ступени:

$$K_{a1} = \frac{(x-y)(x+y)}{0.1-x} \Rightarrow x = 4.373 * 10^{-3}$$
 (17)

$$K_{a2} = \frac{y(x+y)}{x+y} \quad \Rightarrow x = 2.857 * 10^{-8}$$
 (18)

$$pH = \frac{-\lg 10^{-14}}{x+y} = 11,640782 \tag{19}$$

Итого, изменение всего в **6 знаке после запятой** Проделали аналогичный опыт с солями: гидрофосфатом и дигидрофосфатом натрия (или калия).

$$Na_3PO_4 + H_2O \rightleftharpoons Na_2HPO_4 + NaOH$$
 (20)

$$Na^{+} + H_{2}O \rightleftharpoons H^{+}NaOH$$
 (21)

1.3. Опыт 3. Необратимый гидролиз

1.3.1. A

В пробирку внесли 1 мл 0,5М раствора хлорида алюминия и добавили 1 микрошпатель ацетата натрия. Растворили эти кристаллы в растворе хлорида алюминия. Аккуратно нагрели пробирку в пламени спиртовки. Наблюдали образование осадка основной соли алюминия.

$$AlCl_3 + 3CH_3COONa \rightleftharpoons Al(CH_3COO)_3 + 3NaCl$$
 (22)

$$Al(CH_3COO)_3 + 2H_2O \rightarrow Al(OH)_2(CH_3COO) \downarrow +3CH_3COOH$$
 (23)

$$Al^{3+} + 3CH_3COOH + 2H_2O \rightarrow Al(OH)_2(CH_3COO) \downarrow + 2CH_3COOH$$
 (24)

1.3.2. Б

В две пробирки внесли по 1 мл 0,5М раствора хлорида алюминия. В одну пробирку добавили такой же объем раствора сульфида натрия, в другую – тот же объем раствора карбоната натрия. В процессе реакции наблюдается выпадение осадка.

$$2AlCl_3 + 3Na_2CO_3 + H_2O \rightarrow 2Al(OH)_3 \downarrow +3CO_2 \uparrow +6NaCl$$
 (25)

$$Al^{3} + 3CO_{3}^{2-} + 2H_{2}O \rightarrow 2Al(OH)_{3} \downarrow + 3CO_{2} \uparrow$$
(26)

$$2AlCl_3 + 3Na_2S + H_2O \rightarrow 2Al(OH)_3 \downarrow +3H_2S \uparrow +6NaCl$$
 (27)

$$Al^{3} + 3S^{2-} + 2H_{2}O \rightarrow 2Al(OH)_{3} \downarrow + 3H_{2}S \uparrow$$
 (28)

Сульфид и карбонат алюминия не образуются так как сразу гидролизуются, при образовании слабого основания и слабой кислоты происходит усиление гидролиза приводящее к необратимому гидролизу.

2. Определение констант кислотности многоосновной кислоты методом потенциометрического титрования

2.1. Приготовление пробы ортофосфорной кислоты с концентрацией 0,01M

Взяли $0.1 \mathrm{M}$ раствор ортофосфорной кислоты и приготовили из него путем разбавления раствор с концентрацией $0.01 \mathrm{M}$ в мерной колбе на $250 \mathrm{\ M}$ л.

2.2. Потенциометрическое титрование пробы ортофосфорной кислоты

Приготовленный рабочий раствор перенеско в химический стакан на 100 мл и добавили в него 2 капли **тимолфталеина**, выданного преподавателем. Перед началом титрования измерьте значение рН раствора ортофосфорной кислоты с помощью рНметра (запишите показание в табл. 3.1). С помощью градуированной пипетки добавили 0,5 мл стандартного 0,1М раствора NaOH, раствор перемешали и зафиксировали значение рН. Титровали с шагом 0,5 мл 1 до рН 12, занося данные в Таблицу 1.

По результатам была составлена Интегральная кривая титрования(Рис.1), Дифференциальная кривая титрования(Рис.2) и обычная кривая титрования(Рис.3)

Рис. 1: Интегральная кривая титрования

2.3. Теоретическая справка

При титровании происходили следующие реакции:

$$H_3PO_4 + NaOH \rightleftharpoons NaH_2PO_4 + H_2O$$
 (29)

$$NaH_2PO_4 + NaOH \rightleftharpoons Na_2HPO_4 + H_2O$$
 (30)

$$Na_2HPO_4 + NaOH \rightleftharpoons Na_3PO_4 + H_2O$$
 (31)

На построенных кривых титрования отмечены основные точки содержащие в себе информацию об этом титровании и титруемой к-те. Так, точка эквивалентности соответствует полному образованию одной из солей и соотвтественно, моменту полной диссоциации форм к-ты, образующих эти соли. $pH = pK_a$, при котором молярные концентрации форм кислоты равны. При этом V составляет половину от $V_{\text{т.экв}}$.

$$HA \rightleftharpoons H^{+} + A^{-} \quad K = \frac{[H^{+}][A^{-}]}{[HA]} \quad \Rightarrow \quad pH = pK_{a} + \lg \frac{[A^{-}]}{[HA]}$$
 (32)

2.4. Анализ кривых

1. По пикам дифференциальной кривой, определим точки эквивалентности. $T_{\text{экв.1}}$ наступила при $pH \approx 5.74$, $T_{\text{экв.2}}$ при $pH \approx 5.74$. До $T_{\text{экв.3}}$ не удалось дойти, но т.к. ортофосфорная к-та по 3 ступени крайне слабая в $T_{\text{экв.3}}$ скорее всего скачок бы отсутствовал.

V(ml)	рН	ΔV	ΔpH	ΔpH	ΔV	Colour
				ΔV	ΔpH	
0	2,42	0,5	0	0	_	colourless
0,5	2,33	0,5	0,09	0,18	5,55556	colourless
1	2,36	0,5	0,03	0,06	16,66667	colourless
1,5	2,41	0,5	0,05	0,1	10	colourless
2	2,49	0,5	0,08	0,16	6,25	colourless
2,5	2,59	0,5	0,1	0,2	5	colourless
3	2,73	0,5	0,14	0,28	3,57143	colourless
3,5	3,1	0,5	0,37	0,74	1,35135	colourless
4	3,53	0,5	0,43	0,86	1,16279	colourless
4,5	5,74	0,5	2,21	4,42	0,22624	colourless
5	6,19	0,5	0,45	0,9	1,11111	colourless
5,5	6,48	0,5	0,29	0,58	1,72414	colourless
6	6,71	0,5	0,23	0,46	2,17391	colourless
6,5	6,93	0,5	0,22	0,44	2,27273	colourless
7	7,19	0,5	0,26	0,52	1,92308	colourless
7,5	7,39	0,5	0,2	0,4	2,5	colourless
8	7,73	0,5	0,34	0,68	1,47059	colourless
8,5	9,11	0,5	1,38	2,76	0,36232	colourless
9	10,41	0,5	1,3	2,6	0,38462	blue
9,5	10,75	0,5	0,34	0,68	1,47059	blue
10	10,94	0,5	0,19	0,38	2,63158	blue
10,5	11,08	0,5	0,14	0,28	3,57143	blue
11	11,17	0,5	0,09	0,18	5,55556	blue
11,5	11,24	0,5	0,07	0,14	7,14286	blue
12	11,29	0,5	0,05	0,1	10	blue

Таблица 1: Результаты потенциометрического титрования

- 2. По пикам интегральной кривой, определим pK_a . pK_{a1} равно 2.33 рH, при табличном значении в 2.15, pK_{a2} с некоторой погрешностью, равно 7,19 рH, при табличном значении в 7.20, pK_{a3} сложнодостижима по нескольким причинам
 - Титрование происходило только до pH = 11,29, поэтому на интегральной кривой нельзя рассмотреть зависимость, ведь по таблице $pK_{a3} = 12,35$.
 - $K_{a3} \approx K_w$, что означает, что $\mathrm{HPO_4^{2-}}$ очень плохо диссоциирует, поэтому эта точка была бы потеряна из-за статистических погрешностей.
 - Имела место протекающая бюретка и несовершенство рН метра.
- 3. Теоретическая концентрация была 0,01 M Точную концентрацию определим по формуле:

$$C_{H_3P0_4} = \frac{C_{NaOH}V_{NaOH}}{H_3P0_4} \approx 0.009 \text{M} \quad \sigma = 10$$
 (33)

Рис. 2: Дифференциальная кривая титрования

Рис. 3: Обычная кривая титрования

Использованный индикатор - тимолфталеин, поменял окраску при рН между 9.11 и 10.41, а значит его можно использовать для приблизительного нахождения $T_{\text{экв.}2}$.

3. Буферные растворы

3.1. Приготовление буферного раствора

Взяли четыре пробирки. В первые две с помощью мерной пипетки налили по $1~\rm mn~0,1M$ растворов дигидрофосфата натрия и гидрофосфата натрия в каждую. Содержимое этих пробирок перемешали. Во вторые две пробирки внесли по $2~\rm mn~d$ истиллированной воды. Во все пробирки добавили по $2~\rm kannu$ универсального индикатора (или бромтимоловый синий).

Пробирки с дистиллятом приобрели желтоватый окрас, а пробирки с фосфатами - зеленоватый.

3.2. Изучение свойств буферного раствора

Добавили в 1ю и 3ю пробирки (буферный раствор и вода, соответственно) по одной капле 0,1М раствора NaOH, следя за изменением цвета индикатора. После добавления **1 капли** 0.1М раствора NaOH раствор в 3 пробирке сразу приобрёл **синюю окраску**, при добавлении в 1 пробирку - более интенсивный оранжевый окрас. После добавления **30 капель** 1 раствор стал **синим**.

Аналогичный опыт провели во 2й и 4й пробирках (буферный раствор и вода), добавляя в них по капле 0,1М раствора HCl до момента появления красной окраски раствора. После добавления 1 капли 0.1М раствора HCl 4-й раствор стал розовым, **24 капли** потребовалось, чтобы 2-й раствор стал **розовым**.

Буферные системы представляют собой смесь кислоты (донора протонов) и сопряженного с ней основания (акцептора протонов), то есть частиц, различающихся на H^+ . В растворе устанавливаются равновесия:

$$H_2O \rightleftharpoons H^+ + OH^-$$
 (34)

$$HA \rightleftharpoons H^+ + A^- \tag{35}$$

Каждое из этих равновесий характеризуется своей константой: первое — ионным произведением воды, второе — константой диссоциации кислоты. При добавлении в систему сильной кислоты, она протонирует основание, входящее в буферную смесь, а добавление сильного основания связывает протоны и смещает второе равновесие в сторону продуктов, при этом в итоге концентрация в растворе H^+ меняется незначительно.

4. Выводы

В рамках работы мы познакомились с основными видами кислотно-основных равновесий, происходящих в растворах солей, кислот и оснований, а также научились новому методу исследования - потенциометрическому титрованию и узнали больше о буферных системах.