Oskar Sterle Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo

> 22. Seminar radijske komunikacije Ljubljana, 3-5 februar 2016

- Satelitski sistemi GNSS
- Princip delovanja GNSS
- Združevanje različnih GNSS
- Podpora k določitvi položaja visoke kakovosti
- Zaključek

GNSS – Globalni Navigacijski Satelitski Sistemi

Pridobimo položaj na osnovi satelitov – poljubna lokacija na/nad
Zemljo, poljuben čas, poljubni vremenski pogoji – nujna le "vidnost"

Ločimo:

- Globalne (GPS, GLONASS, Galileo, BDS)
- Regionalne (IRNSS (Indija), QZSS (Japonska))

• Pomen:

- Postaja ključna komponenta globalnih, regionalnih in lokalnih podatkovnih infrastruktur (natančnost, točnost, zanesljivost, dostopnost, ekonomičnost...)
- Široka uporaba pri aplikacijah prostorskih podatkov (geodezija, navigacija, gradbeništvo, geologija, prostorsko planiranje, seizmologija, naloge reševanja življenj...)

Regionalni GNSS – primer IRNSS

Vir: http://defenceforumindia.com/forum/threads/irnss-indian-regional-navigation-satellite-system.3129/page-4 /

Primerjava globalnih GNSS

Sistem	Lastnik	Popolna operativnost	Sateliti	Koordinatni sistem in čas	Nosilna valovanja
GPS	ZDA	1985 / 1994	31 oper. 6 ravnin	WGS84 in GPS čas	L1, L2 (L5) - CDMA
GLONASS	SZ, Rusija	1995 in 2011	27 oper.3 ravnine23 aktivnih sat.	PZ90 in UTC čas	L1, L2 (L3) – FDMA in CDMA
BDS	LR Kitajska	-	17 aktivnih sat.	~ITRS in BDT	E1, E2, E5B, E6 - CDMA
Galileo	EU	-	10 satelitov 5 aktivnih	ITRS in UTC čas	E1, E5b, E5a - CDMA

Interoperabilnost GNSS

Prednosti

- Večje število vidnih satelitov vsak trenutek
- Vedno več frekvenc za vsak sistem
- Večja jakost in zanesljivost signalov
- Višja natančnost, točnost, zanesljivost... določenega položaja
- Več prednosti v realnem času

• Problemi:

- Različni koordinatni sistemi
- Različni časovni sistemi
- Določene informacije se morajo uporabiti za uskladitev razlik

Princip delovanja GNSS

- Prostorska trilateracija
- Znani položaji satelitov
- Sprejemnik izmeri "psevdorazdalje" med sateliti in sprejemniki
- Zakaj izraz "psevdo-razdalja"

Pogreški opazovanih psevdo-razdalj

- Izvor na satelitu:
 - Pogrešek položaja satelita in teka ure satelita (~10m nivo)
 - Relativnost (~30m)
 - Fazna opazovanja: preskok faze ("Phase wind-up") (dm nivo)
 - Fazni center antene satelita (par metrov)
 - Zamik med kodami na nosilnih valovanjih (metrski nivo)
- Izvor v atmosferi:
 - Ionosfera (5 150 m v zenitu)
 - Troposfera (2,5 m v zenitu, do 25 m)
- Izvor na točki, kjer je postavljen sprejemnik:
 - Pogrešek ure sprejemnika
 - Fazni center antene sprejemnika (dm nivo)
 - Plimovanje čvrste Zemlje (do 30 cm po višini)
 - Vpliv plimovanja oceanov (cm nivo)
 - Gibanje polov (mm cm nivo)
 - "hardware delay" (do 1,5m)
 - Odboj signala (multipath) koda (par m), faza (do 6cm)
 - Geodinamika

Geodetska rešitev – bazni vektor

Bazni vektor odpravi številne pogreške, a le na krajše razdalje (?). Samo še relativna določitev položaja Nujno poznavanje položaja točke A

Določitev položaja točke z GNSS

Absolutna določitev

- Znani položaji satelitov (efemeride)
- Izmerjene psevdo-razdalje
- Postopek trilateracije

Relativna določitev :

- Znan položaj dane točke A
- "Izmerjeni bazni" vektor s točke A na točko B
- Položaj B = Položaj A + bazni vektor

Osnovno

Pridobiti koordinate točke B

Pomembno:

Pridobiti koordinate točke B

Visoka natančnost, točnost, zanesljivost

Zelo pomembno

- Pridobiti koordinate točke B
- Visoka natančnost, točnost, zanesljivost
- Položaj v pravem koordinatnem sistemu

Odvisna od "izmere"

- Uporabljen inštrumentarij
 - Eno- ali dvo- frekvenčni sprejemnik
 - Zunanja antena
- Količina pridobljenih psevdo-opazovanj
- Način izmere
 - Statična izmera
 - Kinematična izmera
- Način obdelave psevdo-opazovanj
 - V realnem času
 - Naknadna obdelava
- Uporabljen programski paket
- Odvisna od natančnosti položaja A

- Pojma definirata
 - Točnost: določen položaj je "pravi"
 - Zanesljivost: visoka stopnja ponovljivosti
- Odvisna od:
 - Izmere
 - Centriranje, horizontiranje, višina antene nad točko...
 - Postopka obdelave
 - Modeliranje pogreškov
 - Odstranjevanje pogreškov
- Odvisna od točnosti in zanesljivosti položaja A

1

Pomeni:

 Skladnost koordinatnega sistema točke A, položajev satelitov in psevdo-razdalj

Posamezni GNSS:

- Različni koordinatni sistemi
- Različni časovni sistemi
- Dostopno preko "s satelita oddanih efemerid"

Poenotenje:

- Uporaba preciznih efemerid, parametrov rotacije Zemlje in preciznih popravkov ur satelitov
- Enoten globalen koordinatni sistem: IGS/ITRS
- Prehod v uporabniški koordinatni sistem transformacija

Natančen, točen in zanesljiv položaj

- Že nivo pod 1 m
- Pomeni upoštevanje/poznavanje:
 - Uporaba ustreznega inštrumentarija
 - Uporabe ustreznih opazovanj (kodna, fazna)
 - Uporaba ustreznih linearnih kombinacij (neodvisna od ionosfere, geometrije...)
 - Uporaba številnih modelov pogreškov (troposfera,plimovanja,relativnost, kalibracije anten...)
 - Poznavanje lastnosti produktov službe IGS (precizne efemeride, parametri rotacije Zemlje, precizni popravki ur satelitov)
 - Poznavanje modernih globalnih in regionalnih koordinatnih sistemov (WGS84, PZ90, ITRS, ETRS)
 - Poznavanje relacij med sistemi (časovno spreminjanje transformacijskih parametrov)

19

• GNSS:

- Vedno bolj prisotni in dostopni (več sistemov, opazovanj, boljša pokritost)
- Vedno bolj robustni, zanesljivi, natančni, točni...
- Možnost izrabe GNSS v vedno bolj oteženih pogojih

Povzročili bodo:

- Vedno več modelov odstranjevanja/zmanjševanja pogreškov
- Vedno bolj kompleksni postopki obdelave psevdorazdalj
- Za povprečnega uporabnika vedno bolj "black box"

20

- Geodetski vidik najvišja natančnost:
 - Pridobiti kakovostna opazovanja (izmera, inštrumentarij, okolica točke...)
 - Odstranitev ali zmanjševanje čim večjega števila pogreškov (na mm nivo)
 - Moderni koordinatni sistemi:
 - Globalni
 - Časovno odvisni
 - Skladni z opazovanji GNSS
 - Povezava z državnimi koordinatnimi sistemi