Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
18/03/2023	9 – Algorithmique	INT2 – Sujet

Note

Algorithmique

Nom:

Exercice 1: Terminaison - Correction

Prénom :

1-2

Soit l'algorithme suivant :

```
# Factoriel n, n>0

p = n
a = n
for i in range(n-1):
    a = a - 1
    p = p * a
print(p)
```

Il est censé calculer le factoriel :

$$n! = \prod_{i=1}^{n} i$$

Question 1: Comment prouve-t-on la terminaison d'un algorithme ?

1-1

Question 2: Vérifier la terminaison de cet algorithme

@ 080 EY NO SA

Dernière mise à jour		Informatique	Denis DEFAUCHY – <u>Site web</u>	
	18/03/2023	9 – Algorithmique	INT2 – Sujet	

Question 3: Réaliser la correction (preuve) de cet algorithme

Algorithme	
Propriété	
Initialisation	
Transmission	
Sortie	

1-3

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
18/03/2023	9 – Algorithmique	INT2 – Sujet

Exercice 2: Complexité

Question 1: Compléter le tableau suivant en indiquant pour chaque complexité la complexité équivalente la plus simple $\mathcal{C}(n)$ de la fonction f(n)

f(n)	C(n)
5 <i>n</i>	
$n + (10n)^2$	
2 ⁿ⁺¹	
$0.5^n + 1^n$	
$\log_{10} n$	

2-1

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
18/03/2023	9 – Algorithmique	INT2 – Sujet

Question 2: Donner la complexité en temps des algorithmes suivants en justifiant brièvement le résultat. S'il y a lieu, préciser meilleur et pire des cas

2-2

N°	Programme	Complexité
1	<pre>L = [] n = 100 for i in range(n+1): L.append(i) print(L)</pre>	
2	<pre>from random import randint as rand n = 100 S = 0 for i in range(n): L = [rand(1,10) for i in range(n)] for i in range(n): S += L[i] print(S)</pre>	
3	# L étant une liste de n termes $L = L + [1]$	
4	n = 1000 while n>1: n = n/10	