

Behavioral Drivers of Diabetes

Classifying Diabetes Risk from Lifestyle Data

Rossana Antonella Sacco

Master's Degree in Artificial Intelligence and Data Engineering

Data Mining and Machine Learning project

The problem

Diabetes is rapidly rising in the U.S:

- +28% between 2001-2020
- Today: 38 million Americans (1 in 10 adults)
- Nearly 1 in 5 cases undiagnosed, leading to heart disease, kidney failure and amputations
- High medical costs limit access to standard treatment

Lifestyle is a key factor:

- Healthy diet & exercise → up to 40%
 lower risk
- Smoking, alcohol, inactivity aggravate outcomes

Using Data Mining and Machine Learning techniques this research aims to build a classification model capable to identify diabetes cases, promote early detection and healthy behaviors.

Dataset Overview

Behavioral Risk Factor Surveillance System (BRFSS) – a dataset based on a health survey conducted by the U.S. Centers for Disease Control and Prevention (CDC)

- 430,000+ records
- **300+** features

The dataset includes a wide range of variables covering demographics, overall health status, chronic conditions, access to healthcare, and lifestyle habits.

Target variable: **DIABETE3**

Data cleaning

- Removed admin/survey-derived fields
- Dropped features with >30% missing values
- Redundant features were consolidated.
- Recode missing values (e.g. 9, 99 → NaN)
- Convert Yes/No → 1/0
- Align scale directions in ascending order for ordinal features
- Ambiguous or inconsistently scaled variables were transformed into standardized and interpretable formats

Target Variable

- Filtered out unknown values (codes 7, 9)
- Missing values within the majority class were removed to ensure data integrity.

Dataset Exploratory Data Analysis

- Removed obvious data entry errors (e.g. "77 children")
- Applied winsorization (1st-99th percentile)
- Correlation Study
 - Removed features with corr < 0.05 with the target variable
- Categorical variables
 - Sparse categories merged to "Other"
 - Chi-square test
- Class Balance study

Preprocessing and pipeline building

Multiclass Classification

Identifying PreDiabetes would support early intervention and prevention.

Heavy Class Imbalance

- Prediabetes is only the 3% of data
 - Too few samples to learn class's caratheristics
- Hybrid behavior: prediabetes overlaps both other classes
 - Difficult to separate

To balance the dataset, several techniques were applied:

- Oversampling (SMOTE):
 - Not effective due to limited variability in real PreDiabetes cases
- Undersampling:
 - Required removing too much valid data; insufficient separation
- Hybrid Sampling:
 - Balanced all classes to ~40K records → still unclear boundaries

Despite different approaches, performance remained consistently low:

	Precision	Recall	F1Score
NoDiabetes	~ O.9	< 0.55	< 0.48
PreDiabetes	< 0.05	~0.2	< 0.1
Diabetes	< 0.5	~0.5	~0.5

Balanced Accuracy	Accuracy	Precision	Recall	F1Score
< 0.53	~ 0.68	< 0.55	< 0.53	< 0.48

Given the nature of the problem, recall is the most critical metric.

	Accuracy	Precision	Recall	F1Score	ROC AUC
Random Forest	0.819080	0.640542	0.452776	0.530536	0.846516
Logistic Regression	0.758000	0.477881	0.776083	0.591525	0.844316
AdaBoost	0.798824	0.547680	0.625839	0.584157	0.841173
Decision Tree	0.746456	0.442573	0.473856	0.457681	0.649933
KNN	0.677834	0.391324	0.768609	0.518608	0.766200
Bayesian	0.739527	0.449842	0.689048	0.544324	0.789219
XGBoost	0.825713	0.660209	0.469921	0.549045	0.857348
CatBoost	0.826195	0.662924	0.468334	0.548893	0.859398

Model Evaluation

	Accuracy	Precision	Recall	F1Score	ROC AUC
Logistic Regression	0.76	0.48	0.78	0.60	0.77

Feature Importance

	Feature	Importance
0	_BMI5CAT_1.0	1.175089
1	AGE_GROUP_Young	0.994092
2	BPHIGH4	0.763472
3	_BMI5CAT_4.0	0.701080
4	GENHLTH	0.681720
5	CHOLCHK	0.631822
6	PNEUVAC3	0.609406
7	MEDCOST	0.593065
8	TOLDHI2	0.555843
9	_BMI5CAT_2.0	0.538180
10	_RACE_1.0	0.495054

Binary Classification User Interface

Bibliography

- Dataset: https://www.kaggle.com/datasets/cdc/behavioral-risk-factor-surveillance-system?resource=download&select=2015.csv
- Codebook: https://www.cdc.gov/brfss/annual_data/2015/pdf/codebook15_llcp.pdf
- CDC's Study: https://www.cdc.gov/pcd/issues/2019/19 0109.htm
- Lancaster University's study:
 https://www.researchgate.net/publication/377829779 Predictions of diabetes throug
 h machine learning models based on the health indicators dataset

THANKYOU for your attention

Rossana Antonella Sacco