University of Durham

EXAMINATION PAPER

May/June 2011 Examination code: 043551/01 or 044191/01

LEVEL 3 PHYSICS: THEORETICAL PHYSICS LEVEL 4 PHYSICS: THEORETICAL PHYSICS 4

SECTION A. QUANTUM MECHANICS

SECTION B. SPECIAL RELATIVITY AND ELECTROMAGNETISM

Time allowed: 3 hours

Examination material provided: None

Answer the compulsory question that heads each of sections A and B. These **two** questions have a total of 15 parts and carry 50% of the total marks for the paper. Answer **three** of the other questions with **at least one** from each section. If you attempt more than the required number of questions only those with the lowest question number compatible with the rubric will be marked: **clearly delete** those that are not to be marked. The marks shown in brackets for the main parts of each question are given as a guide to the weighting the markers expect to apply.

ANSWER EACH SECTION IN A SEPARATE ANSWER BOOK

Do **not** attach your answer booklets together with a treasury tag, unless you have used more than one booklet for a single section.

APPROVED TYPES OF CALCULATOR MAY BE USED.

Information

 $e = 1.60 \times 10^{-19} \text{ C}$ Elementary charge: $c = 3.00 \times 10^8 \,\mathrm{m\,s^{-1}}$ Speed of light: Boltzmann constant: $k_{\rm B} = 1.38 \times 10^{-23} \; {\rm J \, K^{-1}}$ $m_{\rm e} = 9.11 \times 10^{-31} \text{ kg}$ Electron mass: $G = 6.67 \times 10^{-11} \; \mathrm{N \, m^2 \, kg^{-2}}$ Gravitational constant: Proton mass: $m_p = 1.67 \times 10^{-27} \text{ kg}$ $h = 6.63 \times 10^{-34} \text{ J s}$ Planck constant: $\epsilon_0 = 8.85 \times 10^{-12} \; \mathrm{F \, m^{-1}}$ Permittivity of free space: $\mu_{\rm B} = 9.27 \times 10^{-24} \; {\rm J} \, {\rm T}^{-1}$ Bohr magneton: $\mu_0 = 4\pi \times 10^{-7} \; \mathrm{H \, m^{-1}}$ Magnetic constant: $\mu_{\rm N} = 5.05 \times 10^{-27} \ {\rm J\,T^{-1}}$ Nuclear magneton: $R = 8.31 \times 10^3 \text{ J K}^{-1} \text{ kmol}^{-1}$ Molar Gas constant: $N_{\rm A} = 6.02 \times 10^{26} \ \rm kmol^{-1}$ Avogadro's constant: $q = 9.81 \text{ m s}^{-2}$ Gravitational acceleration at Earth's surface: $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ Stefan-Boltzmann constant:

SECTION A. QUANTUM MECHANICS

Answer Question 1 and at least one of Questions 2, 3 and 4.

- (a) Give the definition of a Hermitian operator. [2 marks] Show that Hermitian operators have real eigenvalues. [2 marks]
 - (b) Consider a linear harmonic oscillator in 1-dimension whose Hamiltonian is $\hat{H} = \frac{\hat{P}_x^2}{2m} + \frac{1}{2}m\omega_0^2\hat{Q}_x^2$, with mass m and frequency ω_0 . \hat{P}_x and \hat{Q}_x are the position and momentum operators, respectively. We introduce $\lambda_0 \equiv \sqrt{\hbar/(m\omega_0)}$ and the operator $\hat{a} \equiv \frac{1}{\lambda_0\sqrt{2}}\hat{Q}_x + i\frac{\lambda_0}{\hbar\sqrt{2}}\hat{P}_x$. Show that $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$. Here, n are the eigenvalues of the operator $\hat{N} \equiv \hat{a}^{\dagger} \hat{a}$ and $|n\rangle$ the corresponding eigenstates. [4 marks]
 - (c) For the linear harmonic oscillator in (b), using $\hat{a}|0\rangle = 0$ show that the $_{
 m the}$ eigenfunction for ground $\mathcal{N}\exp(-x^2/(2\lambda_0^2))$, where \mathcal{N} is a normalisation $\psi_0(x)$ constant. [4 marks]
 - (d) State the generalised uncertainty relation for two operators \hat{A} and \hat{B} . [2 marks] Consider the angular momentum operator $\hat{\underline{L}}$ and a system which is in an eigenstate of \hat{L}_z , $|l,m\rangle$. What is the minimum uncertainty in a simultaneous measurement of \hat{L}_x and \hat{L}_y ? [2 marks]
 - (e) Consider the Hamiltonian $\hat{H} = \frac{\hat{L}^2}{(2I)}$, where I is a constant. Its normalized eigenstates are the eigenstates of \hat{L}^2 and \hat{L}_z indicated as $|l,m\rangle$. A system is described by the state

$$|\psi\rangle = \mathcal{N}(2|1,1\rangle + |1,-1\rangle + |2,0\rangle)$$
,

with \mathcal{N} a normalisation constant to be determined. What are the possible outcomes of a measurement of the energy and with what probability? [4 marks]

(f) Consider a hydrogen atom. What are the eigenvalues of the Hamiltonian? Discuss the degeneracy of the corresponding eigenstates. [2 marks] If the hydrogen atom is put in a constant and uniform magnetic field, discuss qualitatively what the effect will be on the energies and on the degeneracy of the states. 2 marks

Page 2

(g) The Born approximation for the scattering amplitude for central potentials, V(r), is $f^B(\Omega) = -\frac{2\mu}{\hbar^2 q} \int_0^\infty dr \ r V(r) \sin(qr)$, where $\underline{q} = \underline{k} - \underline{k}'$. Here $|\underline{k}'| = |\underline{k}|$ and Ω indicates the angles θ and ϕ in spherical coordinates and μ is the reduced mass of the system.

Find the differential cross section $\frac{d\sigma}{d\Omega}$ for the screened Coulomb potential $V_{sC}(r) = -\frac{e^{-ra}}{r}$, with a constant. [2 marks]

[Hint: You can use the integral $\int_0^\infty dr \ e^{-ra} \sin(qr) = \frac{q}{q^2 + a^2}$.]

Using the previous result, compute the differential cross section $\frac{d\sigma}{d\Omega}$ for the Coulomb potential $V_C(r) = -\frac{1}{r}$ and compare it with the exact result:

$$\frac{d\sigma}{d\Omega} = \frac{(2\mu)^2}{(2\hbar k)^4} \frac{1}{\sin^4(\theta/2)} ,$$

where $q = 2k\sin(\theta/2)$. [2 marks]

2. Three of the six quarks are the "up", "down" and "strange" quarks. Their states are denoted by $|u\rangle$, $|d\rangle$ and $|s\rangle$, respectively. They are orthogonal and normalised. A system composed of these objects is governed by the Hamiltonian

$$\hat{H} = \hbar\omega_0 (|u\rangle\langle d| + |d\rangle\langle u|) + \hbar\omega_1 |s\rangle\langle s|,$$

where ω_0 and ω_1 are two constants.

- (a) Determine the matrix representation of \hat{H} in the $|u\rangle$, $|d\rangle$, $|s\rangle$ basis. What are its eigenvalues? [3 marks]
- (b) Check that the eigenstates can be expressed in terms of $(|u\rangle + |d\rangle)$, $(|u\rangle |d\rangle)$ and $|s\rangle$ and properly normalise them. [3 marks]
- (c) At time t = 0, the system is described by the state $|\psi\rangle = |d\rangle$. What is the probability of finding it in the same state $|d\rangle$ at a later time t? [6 marks]
- (d) Consider now a series of subsequent measurements of the state in (c) at times T, 2T, 3T,... nT, with n a natural number. By definition $\tau \equiv nT$. What is the probability of finding the system in the $|d\rangle$ state in every measurement, from the one at T to the one at nT? What is this probability in the limit $n \to \infty$ at fixed τ ? [4 marks]

[Hint: The limit for
$$x \to \infty$$
 of $(\cos(1/x))^x$ is 1.]

(e) An observable A is described by the operator

$$\hat{A} = \hbar\omega_2|u\rangle\langle u| + \hbar\omega_3\left(|d\rangle\langle s| + |s\rangle\langle d|\right) ,$$

where ω_2 and ω_3 are two constants. Can the energy and A be measured simultaneously with infinite precision for a system in the state d? [4 marks]

3. Consider a non-relativistic particle of mass m in a 3D delta-shell potential. The Hamiltonian is given by

$$\hat{H} = \frac{\hat{\underline{P}}^2}{2m} + \hat{V}(r)$$
 with $V(r) = -\frac{\hbar^2 g_\delta^2}{2m} \delta(r - a)$,

where g_{δ} is a constant, r indicates the radial coordinate and a is a constant.

(a) Using the definition of the angular momentum, $\hat{L}_i = \sum_{jk} \epsilon_{ijk} \hat{Q}_j \hat{P}_k$, show that $[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z$. Here, \hat{Q}_i and \hat{P}_i are the position and momentum operators in the *i*-direction. What does the fact that \hat{L}_x and \hat{L}_y do not commute imply for their simultaneous measurement? [4 marks]

Consider bound states, i.e. states with negative energies. The eigenfunctions of the Hamiltonian can be expressed in spherical coordinates as $\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$, where $Y_{lm}(\theta,\phi)$ are the spherical harmonics. The reduced radial equation for $u_{nl}(r) = rR_{nl}(r)$ is

$$\left(-\frac{\hbar^2}{2m}\left(\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2}\right) + V(r)\right)u_{nl}(r) = E_{nl} \ u_{nl}(r).$$

- (b) Discuss the asymptotic behaviour of $u_{nl}(r)$ for $r \to 0$ and for $r \to \infty$. [6 marks]
- (c) Consider l = 0. Write down the continuity condition for the wavefunction at r = a. [1 mark]

Derive the discontinuity relation for the derivative of the eigenfuntion, which for this potential reads

$$\frac{d}{dr}(R_{n\,0})_{r< a}(a) - \frac{d}{dr}(R_{n\,0})_{r>a}(a) = g_{\delta}^2 R_{n\,0}(a) \ .$$

In order to do so: (i) integrate in dr both sides of the reduced radial equation given above for l=0 in the interval $[a-\Delta,a+\Delta]$. (ii) Then, take the limit for $\Delta \to 0$. [5 marks]

(d) For l = 0, we have that $(R_{n0})_{r < a}(r) = A(\exp(\alpha r) - \exp(-\alpha r))/r$ and $(R_{n0})_{r > a}(r) = B \exp(-\alpha r)/r$, where A and B are constants and $\alpha \equiv \sqrt{2m|E_0|/\hbar^2}$. By using the two boundary conditions at r = a given in (c), discuss if there can be bound states, depending on the value of $g_{\delta}^2 a$. [4 marks]

- 4. Work in the matrix representation with respect to the eigenbasis of the operator \hat{S}_z , given by $|+\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|-\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Consider a free electron with mass m_e , charge -e and spin 1/2.
 - (a) Write the matrix representation of \hat{S}_x , \hat{S}_y and \hat{S}_z . [3 marks]
 - (b) What are the possible outcomes of a measurement of S_x ? Show that the corresponding eigenstates in the chosen matrix representation are

$$|S_x = \pm \hbar/2\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}$$
.

[3 marks]

(c) S_x is measured for a large number N of electrons, all prepared in the same state. It is found that $\hbar/2$ is measured N/3 times and $-\hbar/2$ is measured 2N/3 times. What is the state which describes the electrons just before the measurement? [3 marks]

At t=0, the electron is in an eigenstate of \hat{S}_x with eigenvalue $\hbar/2$. A constant uniform magnetic field $\vec{B}=(0,B,0)$ is switched on. Focus only on the spin part. The relevant term of the Hamiltonian is

$$\hat{H}_S = 2 \frac{\mu_B}{\hbar} \hat{\vec{S}} \cdot \vec{B} ,$$

where $\mu_{\rm B}$ is the Bohr magneton.

- (d) Given that the eigenstates of S_y are $|S_y = \hbar/2\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$ and $|S_y = -\hbar/2\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$, calculate the probability of finding the electron with its spin pointing in the positive z-direction at a later time t. [8 marks]
- (e) Compute σ_x^n with n even and n odd. Here σ_x is the first Pauli matrix. Using the definition of the exponential of an operator in terms of its Taylor expansion, show that $\exp(i\theta\sigma_x) = \cos\theta + i\sin\theta\sigma_x$, where θ is a constant angle. [3 marks]

[Hint: You will need to use the fact that $\cos \theta = \sum_m (-1)^m \theta^{2m}/(2m)!$ and $\sin \theta = \sum_m (-1)^m \theta^{2m+1}/(2m+1)!.$]

SECTION B. SPECIAL RELATIVITY AND ELECTROMAGNETISM Answer Question 5 and at least one of Questions 6, 7 and 8.

- (a) State the definition of an inertial frame. Show that a frame moving with constant velocity with respect to an inertial frame is also an inertial frame. [4 marks]
 - (b) The polarization tensor for a vector boson with mass m and 4-momentum p^{μ} is

$$T^{\mu\nu} = \left(-g^{\mu\nu} + \frac{p^{\mu}p^{\nu}}{m^2c^2}\right).$$

Calculate $p_{\mu}T^{\mu\nu}$ and $\epsilon_{\alpha\beta\mu\nu}T^{\mu\nu}$. [4 marks]

- (c) A tau lepton with mass m_{τ} decays in its rest frame to a charged pion with mass m_{π} and a massless tau neutrino. Calculate the energy of the charged pion in the rest frame of the tau lepton. [4 marks]
- (d) State the definition of the 4-force f^{μ} . Use the definition to express the components of f^{μ} in terms of the energy E and three momentum \underline{p} and their derivatives with respect to time. [4 marks]
- (e) How does the 4-potential A^{μ} transform under gauge transformations? Use this to show that the electric and magnetic fields do not change under a gauge transformation. [4 marks]
- (f) The 4-potential for a parallel-plate capacitor oriented normal to the z axis is $A^{\mu} = (Ez, 0, 0, 0)$ where E is the constant electric field between the plates and z the distance from the negatively charged plate. Show that, in a frame moving with velocity v in the x direction, there is a magnetic field in the y direction and calculate its magnitude. [4 marks]
- (g) Express the 0-component of the Maxwell equation

$$\partial_{\mu}F^{\mu\nu}=\frac{j^{\nu}}{c\epsilon_{0}}$$

in terms of the electric and magnetic fields. [4 marks]

Hint: In terms of the electric and magnetic fields the field

strength tensor is given by:

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -cB_z & cB_y \\ E_y & cB_z & 0 & -cB_x \\ E_z & -cB_y & cB_x & 0 \end{pmatrix}.$$

(h) Using the covariant form of the inhomogeneous Maxwell equation derive the wave equation for the 4-potential A^{μ} using the Lorentz gauge. [4 marks]

6. Consider the decay of a particle X to two particles Y and Z. Show that the magnitude of the three-momentum of either Y or Z in the rest frame of X is

$$|\underline{p}_Y| = |\underline{p}_Z| = \frac{c}{2m_X} \sqrt{\left(m_X^2 - (m_Y + m_Z)^2\right) \left(m_X^2 - (m_Y - m_Z)^2\right)},$$

where m_X , m_Y and m_Z are the masses of X, Y and Z respectively. [8 marks] The top quark decays in its rest frame S to the bottom quark and the W^+ boson. The three-momenta of the bottom quark and W^+ boson are in the (x,y) plane and the bottom quark moves at an angle θ with respect to the x axis.

Calculate the energies of the bottom quark and W^+ boson in a frame S'moving with velocity v with respect to S along the x axis in terms of v, θ , the top quark mass m_t and W^+ boson mass m_W . The mass of the bottom quark can be neglected. [6 marks]

The probability of the bottom quark having a value of θ between θ and $\theta + d\theta$

 $dP = \frac{1}{2}(1 - \cos\theta)\sin\theta d\theta.$

Calculate the average energy of the bottom quark and W^+ boson in S' and comment on the value you obtain for the sum of the average energies of the bottom guark and W^+ boson. [6 marks]

Page 8

7. The wave 4-vector for a light wave with frequency f and wavevector \underline{k} is

$$k^{\mu} = \left(\frac{2\pi f}{c}, \underline{k}\right).$$

Show that the plane wave $\Phi = \exp(ik^{\mu}x_{\mu})$, where x^{μ} is the position 4-vector, is a solution of the wave equation $\partial^{\mu}\partial_{\mu}\Phi = 0$. [4 marks]

A light source in the frame S emits light with a frequency f at an angle θ with respect to the x-axis. Using the Lorentz transformation of the wave 4-vector, or otherwise, calculate the frequency measured by an observer in the frame S' moving with velocity \underline{v} in the x direction with respect to S. [6 marks]

What is the frequency for $\theta = 0^{\circ}$ and $\theta = 90^{\circ}$. [2 marks]

A mirror with its normal in the x direction is at rest in S'. An observer in S sees a ray of light with frequency f_1 strike the mirror at an angle of incidence θ_1 . The light is then reflected with frequency f_2 at an angle of reflection θ_2 as shown below.

By boosting the wave 4-vectors of the light into S' and using the normal relations for reflection in that frame, or otherwise, show that f_2/f_1 can be written in all of the following forms

$$\frac{f_2}{f_1} = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c \cos \theta_1 + v}{c \cos \theta_2 - v} = \frac{c + v \cos \theta_1}{c - v \cos \theta_2}.$$

[8 marks]

8. Give the definition of the electric field \underline{E} and the magnetic field \underline{B} in terms of the scalar potential Φ , and the vector potential \underline{A} . [4 marks]

State the definition of the field strength tensor in terms of the 4-potential $A^{\mu} = (\Phi, c\underline{A})$. [2 marks]

Show that the field strength tensor can be written in terms of the electric and magnetic fields as

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -cB_z & cB_y \\ E_y & cB_z & 0 & -cB_x \\ E_z & -cB_y & cB_x & 0 \end{pmatrix}.$$

[6 marks]

In the rest frame S' of a medium the charge density is ρ_0 . The current density \underline{J}' , is related to the electric field \underline{E}' by Ohm's law $J' = \sigma E'$ where σ is the conductivity.

The frame S' moves with velocity \underline{v} with respect to the frame S. In S the 4-current is

$$j^{\mu} = av^{\mu} + \frac{\sigma}{c}F^{\mu\nu}v_{\nu},$$

where a is a constant and $v^{\mu} = \gamma(c, \underline{v})$ is the 4-velocity of the medium with $\gamma = \left(1 - \frac{|\underline{v}|^2}{c^2}\right)^{-1/2}$.

Compute a in terms of the quantities in S' by calculating $j^{\mu}v_{\mu}$ and using the Lorentz invariance of the Minkowski scalar product. [2 marks]

[Hint: In the frame S', $j'^{\mu} = (\rho_0 c, \sigma \underline{E'})$]

Calculate the 3-current density \underline{J} in S in terms of the electric field \underline{E} , and the magnetic field \underline{B} , in S, and the relative velocity \underline{v} between S' and S. Interpret your result. [6 marks]