

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 491/06 // A61K 31/55, (C07D 491/06, 307:00, 223:00)

(11) International Publication Number:

WO 95/27715

A2

(43) International Publication Date:

19 October 1995 (19.10.95)

(21) International Application Number:

PCT/US95/04888

(22) International Filing Date:

7 April 1995 (07.04.95)

(30) Priority Data:

*

08/224,932

8 April 1994 (08.04.94)

US

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 08/224,932 (CON) 8 April 1994 (08.04.94)

(71) Applicant (for all designated States except US): CIBA-GEIGY CORPORATION [US/US]; 444 Saw Mill River Road, Ardsley, NY 10502 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SHIEH, Wen-Chung [US/US]; 295 Timber Drive, Berkeley Heights, NJ 07922 (US). CARLSON, John, Alan [US/US]; 363 Mountain Avenue, Berkeley Heights, NJ 07922 (US).
- (74) Agent: FISHMAN, Irving, M.; Ciba-Geigy Corporation, Patent Dept., Room D-3061, 556 Morris Avenue, Summit, NJ 07901 (US).

(81) Designated States: AT, AU, BB, BG, BR, CA, CH, CZ, ĎE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: METHOD OF MANUFACTURE OF (-)GALANTHAMINE IN HIGH YIELD AND PURITY SUBSTANTIALLY FREE OF EPIGALANTHAMINE

(57) Abstract

(-)-Galanthamine (I) or (Ia) is obtained in substantially high yield and purity substantially without concomitant production of epigalanthamine by conversion of racemic narwedine to (-)-narwedine (II) or (IIa) and subsequent reduction to (-)-galanthamine using bulky organo-aluminum or organo-boron reducing agents.

(Ia)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	
BB	Barbados	GN	Guinea	NE NE	Malawi
BE	Belgium	GR	Greece	NL	Niger Netherlands
BF	Burkina Faso	HU	Hungary	NO	
BG	Bulgaria	IE	Ireland		Norway
BJ	Benin	IT	Italy	NZ	New Zealand
BR			_ •	PL	Poland
	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Солдо		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechosłovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	ÜA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		J	•••	* *** * *****

-1-

METHOD OF MANUFACTURE OF (-)GALANTHAMINE IN HIGH YIELD AND PURITY SUBSTANTIALLY FREE OF EPIGALANTHAMINE

FIELD OF THE INVENTION

The invention relates to manufacturing processes of pharmaceutically active alkaloids. In particular it relates to obtaining active enantiomers of natural alkaloids without having to extract and separate the enantiomers from natural sources. The invention further relates to the natural alkaloid galanthamine and obtaining the active enantiomer thereof from racemic precursors. It further relates to obtaining enantiomeric galanthamine derivatives, especially ethers, esters and amides.

BACKGROUND OF THE INVENTION

(-)-Galanthamine is a tertiary Amaryllidaceae alkaloid having acetylcholinesterase inhibitor properties thereby enhancing cholinergic function. The cholinesterase inhibitors have recently been under investigation for use as nootropics, in particular, in the treatment of Alzheimer's disease. Currently, galanthamine is only available through an extraction from daffodils (Narcissus Pseudonarcissus L.). The extraction process has proved to be quite expensive for pharmaceutical grade material, even when taking into account large scale production efficiencies.

An alternate source of (-)-galanthamine is its chemical synthesis. Some synthetic routes to galanthamine have been published over the last 30 years, beginning with the work of Barton and Kirby in 1962 (J. Chem. Soc. 1962, 806). Over the years, other contributors to synthetic steps in the production of galanthamine from readily available materials have included Shimizu et al, Heterocycles 1977, 8, 277; and Shimizu et al, Chem. Pharm. Bull. 1978, 26, 3765. Additional contributions to the production of racemic galanthamine (which would still need to be resolved) have been made by Szewczyk et al, J. Heterocycl. Chem., 1988, 25, 1809; Kametani et al, J. Org. Chem. 1971, 36, 1295; Kametani et al, J. Chem. Soc. Perkin Trans. 1, 1972, 1513; Kametani et al, J. Heterocycl. Chem. 1973, 10, 35; Vlahov et al, Tetrahedron 1989, 45, 3329; and Holton et al, J. Am. Chem. Soc. 1988, 110,

- 2 -

314. Holton's work provided a short and elegant synthesis of racemic narwedine; (-)-narwedine is the biogenic precursor of (-)-galanthamine. Notwithstanding these advances, the synthetic approach to (-)-galanthamine production in high purity pharmaceutical grade on a commercial scale is still problematical.

In 1962 Barton et al reported the first successful chemical synthesis of

(-)-galanthamine by reducing (-)-narwedine, which itself was obtained by chemical
resolution on a small laboratory scale. Barton's process was able to yield racemic
narwedine in an amount of about 1.4%. Barton then reduced the racemic narwedine with
lithium aluminum hydride and obtained both racemic galanthamine and racemic
epigalanthamine. Barton further reported that the Ponndorf-Meerwein reduction of racemic
narwedine gave mostly racemic epigalanthamine. In the course of oxidizing
(-)-galanthamine (obtained from extraction or other sources) to narwedine (to confirm
structures), Barton found that the presence of some unoxidized (-)-galanthamine remaining
in the oxidation product mixture resulted in (+)-narwedine, rather than racemic narwedine.
Reduction of this gave (+)-galanthamine and (+)-epigalanthamine. These were then used as
is to resolve racemic narwedine to obtain the (-) compound. On obtaining the
(-)-narwedine, Barton then reduced the material to obtain a mixture of (-)-galanthamine and
(-)-epigalanthamine. Typically, the reduction reported by Barton resulted in about 40% of
the yield being epigalanthamine.

According to Barton, the greater the amount of enantiomeric galanthamine used, the better the resolution of narwedine. Basically, the Barton process took racemic narwedine and used some (-)-galanthamine to produce (+)-narwedine. This was then reduced to the (+)-galanthamine and (+)-epigalanthamine, which were then used to convert additional racemic narwedine to (-)-narwedine, which would be reduced to (-)-galanthamine and (-)-epigalanthamine. Clearly, this was an extremely wasteful process and not very suitable to large scale production.

At page 810 of the Barton et al article, the authors report that the standard resolution techniques were not successful, whether applied to narwedine or galanthamine, therefore making the above complicated process necessary to achieve (-)-galanthamine through synthetic means.

Szewczyk et al, in J. Heterocyclic Chem. 25, 1809 (1988), disclose an alternate process which goes through a narwedine analog yielding about 50% racemic galanthamine

and about 30% racemic epigalanthamine. Kametani et al, J. Org. Chem. 36, No. 9, 1971, 1295-1297, also report still another synthesis. Both of these references utilize lithium aluminumhydride as the reducing agent to reduce the precursor to galanthamine. In each case, racemic material is obtained as a mixture of both galanthamine and epigalanthamine. The two Shimizu et al articles relate complex synthetic routes to enantiomeric galanthamine (not really related to the present processes) in fairly low overall yield.

As mentioned above, Holton et al reported a short, elegant synthesis of racemic narwedine in 1988.

Notwithstanding all of these researchers attempting to find an economic, scalable, synthetic route for (-)-galanthamine, none has been adequately found. Either the processes are so involved as to make the overall yields totally unacceptable or too expensive, or the processes end in the need to resolve the racemates or in the inefficient concomitant production of substantial amounts of epigalanthamine.

OBJECTS OF THE INVENTION

It is therefore an object of the invention to provide a means to convert (-)-narwedine to (-)-galanthamine with substantially less, essentially no, simultaneous production of epigalanthamine.

It is another object of the invention to provide an efficient process for the conversion of racemic narwedine into (-)-narwedine for further conversion to (-)-galanthamine.

A further object of the invention is the synthetic production of enantiomeric ethers, esters, or amides of galanthamine and/or narwedine.

SUMMARY OF THE INVENTION

The foregoing objects, and others, are obtained by the present invention, which is a process for the manufacture of enantiomeric galanthamine (or its ethers, esters, or amides or analogs thereof) of formula I or formula Ia comprising reacting enantiomeric narwedine (or its corresponding ethers, esters, or amides or analogs thereof) of formula II or formula IIa with a reducing agent selected from the group consisting of compounds of formulas III-VII:

wherein formulas I-VII are:

$$OR_1$$
 N
 R_3
 OR_2

$$OR_1$$
 OR_2
 OR_2
 OR_3
 OR_3

$$O_{\text{M}}$$
 O_{R_3}
 O_{R_2}
 O_{R_2}
 O_{R_2}

 $\begin{array}{ll} MB(R_4)_pH_{4-p} & (III); \\ M_qAl(R_4)_mH_{(3+q)-m} & (IV); \\ MAl(OR_5)_nH_{4-n} & (V); \\ NaBH_4/CeCl_3 & (VI); \end{array}$

- 6 -

LiAlH_d/AlCl₃

(VII); and

mixtures thereof; in which R_1 and R_2 are independently selected from (a) hydrogen; (b) C_{1-7} straight or branched alkyl, preferably straight or branched C_{1-4} alkyl, most preferably methyl of ethyl; (c) straight or branched C₁₋₇ alkanoyl, preferably straight or branched C_{1-4} alkanoyl, most preferably acetyl; and (d) $(R_6)(R_7)N$ -C(O)- in which each of R_6 and R_7 is selected from hydrogen or straight or branched C₁₋₇alkyl, preferably straight or branched C₁₋₄alkyl, most preferably methyl or ethyl, or one of R₆ and R₇ may also be phenyl, and in any event preferably one of R₆ and R₇ is other than hydrogen; R₃ is selected from the groups (a)-(c) defined for R_1 above; m is 1, 2, or 3; n is 1, 2, or 3; p is 1, 2, or 3; q is 0 or 1; M is Li, Na, or K; each R₄ is independently selected from the group consisting of straight and branched alkyl having 2-7 carbon atoms; and each R_5 is independently selected from the group consisting of straight and branched alkyl having 2-7 carbon atoms and R₈-O-R₉in which each R₈ is independently straight or branched alkyl of 1-3 carbon atoms, and each R₉ is independently 1,2-C₂₋₃alkylene or 1,3-propylene; whereby said (-)-galanthamine (or its corresponding ether or ester or amide) is produced without more than 20% production of epigalanthamine (or its corresponding ether or ester or amide).

DETAILED DESCRIPTION OF THE DISCLOSURE

The present invention is ultimately a process for the production of (-)-galanthamine (or its ethers, esters, or amides) from (-)-narwedine (or its ethers, esters, or amides) which is free from the problems associated with the art processes which attempt a similar conversion. These art processes had significant losses in yield or had substantial amounts diverted to side reactions such that substantial losses resulted. In particular, much of the art had problems with epigalanthamine being produced. The present invention results in very much lower amounts of epigalanthamine (or its ethers, esters, or amides) being produced; in fact, substantially no epigalanthamine (or its ethers, esters, or amides) results from the invention process.

The present invention is a process for the manufacture of (-)-galanthamine (or its ethers, esters, or amides) of formula I comprising reacting (-)-narwedine (or its ethers, esters, or amides) of formula II with a reducing agent selected from the group consisting of compounds of formulas III-VII, where in formulae I-VII are:

$$OR_1$$
 OR_2
 OR_3
 OR_3
 OR_2

$$OR_1$$
 OR_2
 OR_3
 OR_2
 OR_3

$$O_{R_3}$$
 (IIa)

 $\begin{array}{ll} MB(R_4)_pH_{4-p} & (III); \\ M_qAl(R_4)_mH_{(3+q)-m} & (IV); \\ MAl(OR_5)_nH_{4-n} & (V); \\ NaBH_4/CeCl_3 & (VI); \end{array}$

-9-

LiAlH₄/AlCl₃

(VII); and

mixtures thereof; in which R_1 and R_2 are independently selected from (a) hydrogen; (b) C_{1-7} straight or branched alkyl, preferably straight or branched C_{1-4} alkyl, most preferably methyl of ethyl; (c) straight or branched C_{1-7} alkanoyl, preferably straight or branched C_{1-4} alkanoyl, most preferably acetyl; and (d) $(R_6)(R_7)N$ -C(O)- in which each of R_6 and R_7 is selected from hydrogen or straight or branched C_{1-7} alkyl, preferably straight or branched C_{1-4} alkyl, most preferably methyl or ethyl, or one of R_6 and R_7 may also be phenyl, and in any event preferably one of R_6 and R_7 is other than hydrogen; R_3 is selected from the groups (a)-(c) defined for R_1 above; m is 1, 2, or 3; n is 1, 2, or 3; p is 1, 2, or 3; q is 0 or 1; M is Li, Na, or K; each R_4 is independently selected from the group consisting of straight and branched alkyl having 2-7 carbon atoms; and each R_5 is independently is selected from the group consisting of straight and branched alkyl having 2-7 carbon atoms and R_8 -O- R_9 -in which each R_8 is independently straight or branched alkyl of 1-3 carbon atoms, and each R_9 is independently 1,2- C_{2-3} alkylene or 1,3-propylene; whereby said (-)-galanthamine (or its ethers, esters, or amides) is produced without more than 20% production of epigalanthamine (or its ethers, esters, or amides) of formula VIII

in which R₁-R₃ are as defined above. If the other enantiomers of galanthamine (or its ethers, esters, or amides) of formula Ia are desired, the process merely employs the

narwedine (or its ethers, esters, or amides) enantiomer of formula IIa, and the product is produced with the lower amounts of the epigalanthamine (or its ethers, esters, or amides) enantiomer of formula VIIIa

$$OR_1$$
 OR_2
 OR_3
 OR_3
 OR_2

in which R₁-R₃ are as defined above.

As stated above, racemic narwedine is well known in the art and is conveniently made from other materials in the process set forth by Holton et al., J. Am. Chem. Soc. 110, 314-316, 1988. Whether one's synthesis has R₂ and/or R₃ corresponding to narwedine and galanthamine or some other group within the definitions of R₂ and R₃ above, these may be altered by processes in the art before resolution of the formula II/IIa racemate; after the resolution thereof but before the reduction step; or after achieving the compound of formula I or Ia. The R₁ group may be changed only after a compound of formula I or Ia is obtained.

The resolution of the racemate is carried out with either seeds of (-)-narwedine or (+)-galanthamine or one of their esters, ethers, or amides if (-)-narwedine (or one of its ethers, esters, or amides) is the desired enantiomer. (+)-narwedine or (-)-galanthamine or one of their esters, ethers, or amides are used if (+)-narwedine (or one of its ethers, esters, or amides) is the desired enantiomer. It is most preferable for the R₂ and R₃ groups to be the same in the resolving agent (a formula I, formula Ia, formula II, or formula IIa compound)

as will be present in the formula II/IIa racemate being resolved, but this is not critical.

If needed, an initial crop of (-)-galanthamine (obtained from natural product extraction or other sources) or one of its ethers, esters, or amides can be used to obtain the (+)-narwedine (or one of its ethers, esters, or amides), which can then be reduced by the procedures here to (+)-galanthamine (or one of its ethers, esters, or amides depending on the narwedine derivative used). This product can then be used to initially crystallize out the (-)-narwedine (or one of its ethers, esters, or amides) from racemic narwedine (or from a racemate of one of its ethers, esters, or amides). Once this batch of (-)-narwedine (or one of its ethers, esters, or amides) is obtained, the direct use of some (-)-narwedine (or one of its ethers, esters, or amides) from one production batch can be used as seed crystals for the next batch.

The (-)-narwedine (or one of its ethers, esters, or amides) is then reduced using the reducing agents set forth below to surprisingly and unexpectedly give high yields of highly pure (-)-galanthamine (or one of its ethers, esters, or amides) without substantial amounts of epigalanthamine (or one of its ethers, esters, or amides). For the balance of this disclosure wherever galanthamine, narwedine or epigalanthamine are mentioned, they include the ethers, esters, and amides thereof within the definitions of formulae I, Ia, II, IIa, VIII, and VIIIa, unless the text specifies otherwise.

The reducing agents for use in the conversion of enantiomeric narwedine to enantiomeric galanthamine are selected from the group consisting of

$MB(R_4)_pH_{4-p}$	(III);
$M_qAl(R_4)_mH_{(3+q)-m}$	(IV);
$MAl(OR_5)_nH_{4-n}$	(V);
NaBH ₄ /CeCl ₃	(VI);
LiAlH ₄ /AlCl ₃	(VII); and

mixtures thereof; in which

m is 1, 2, or 3, preferably 2; n is 1, 2, or 3, preferably 3; p is 1, 2, or 3, preferably 3; q is 0 or 1; M is Li, Na, or K; each R_4 is independently selected from the group consisting of straight and branched alkyl having 2-7 carbon atoms, preferably 2-5 carbon atoms, such as methyl, ethyl, n-butyl, sec-butyl, iso-butyl, t-butyl, amyl, iso-amyl, sec-amyl, and t-amyl, most preferably sec-butyl, and isoamyl; and each R_5 is independently is selected from the group

consisting of straight and branched alkyl having 2-7 carbon atoms, preferably 2-5 carbon atoms, such as methyl, ethyl, n-butyl, sec-butyl, iso-butyl, t-butyl, amyl, iso-amyl, sec-amyl, and t-amyl, most preferably sec-butyl, and isoamyl; and R_8 -O- R_9 - in which each R_8 is independently straight or branched alkyl of 1-3 carbon atoms, and each R_9 is independently 1,2- C_{2-3} alkylene or 1,3-propylene. Preferably these reducing agents include, without limitation, bis(2-methoxyethoxy)aluminumhydride; lithium sec-butyl-bis-isobutylaluminumhydride; sodium borohydride/cesium chloride; lithium trisec-butylborohydride; lithium trisisoamylborohydride; potassium tri-sec-butylborohydride; potassium trisisoamylborohydride; sodium tri-sec-butylborohydride; and sodium trisisoamylborohydride.

The reduction reaction is carried out at a temperature of from -100°C to 25°C, preferably from -90°C to -20°C, more preferably from -80°C to -40°C, most preferably at about -78°C, and in a solvent selected from tetrahydofuran, toluene, diethylether, methylene chloride, and dichloroethane, preferably tetrahydrofuran. The resulting crystals are filtered off, washed in any suitable solvent known in the art, preferably heptane, or cyclohexane, and dried for use as is (as the active agent in the case of the (-)-galanthamine or as the further resolution aid in the case of the (+)-galanthamine). While not usually necessary, further crystallization or purification steps known within the art can be utilized to reduce or remove any remaining epigalanthamine.

The resolution reaction from racemic narwedine to enantiomerically pure narwedine is carried out at a temperature from 20°C to 80°C, preferably 30°C to 60°C, most preferably about 40°C, in a solvent/amine base mixture in which the solvent is selected from ethanol, isopropanol, toluene, acetone, acetonitrile, tetrahydrofuran, and ethyl acetate, while the amine base is selected from pyridine and $(R_{10})_3N$ in which each R_{10} is independently a C_{2-4} alkyl. The ratio of the solvent:base is from 1:9 to 15:1, most preferably about 9:1.

Once dissolved, the racemic narwedine mixture is maintained at a temperature of 25°C to 70°C, preferably 40°C to 60°C, and the crystals of enantiomeric narwedine, enantiomeric galanthamine, or enantiomeric epigalanthamine in an amount of from 0.1% to 2%, preferably 0.2% to 1% by weight relative to the amount of narwedine to be resolved are added. If (-)-narwedine is to be produced, the crystals added here are either (-)-narwedine, (+)-galanthamine, or (+)-epigalanthamine. If the reaction is to produce (+)-narwedine, the crystal used here are (+)-narwedine, (-)-galanthamine or (-)-epigalanthamine. Since the end

- 13 -

result of the next step (the reduction to (-)-galanthamine) is intended to be as free as possible of epigalanthamine and (+)-galanthamine, (-)-narwedine is the most preferred crystal to use to generate additional (-)-narwedine so long as it is available. The temperature is then dropped to 25°C to 70°C, preferably 40°C to 60°C and held there for 5-24 hours, preferably 12-18 hours, most preferably about 16 hours.

EXAMPLES

The following Examples are provided to further exemplify, but do not limit, the invention.

Example I: Resolution of (±)-Narwedine to (+)-Narwedine using (-)-Galanthamine as Resolving Agent

0.5 grams of (±)-narwedine are dissolved into 8 ml of a boiling mixture of 95% ethanol/triethylamine (9:1). After dissolution, the mixture is cooled to 70°C and 1 mg (0.2%) of crystals of (-)-galanthamine are added. The mixture is then cooled to 60°C and held there for 24 hours. The resulting white suspension is slowly cooled to room temperature and held there for 3 hours. The resulting precipitate is filtered, rinsed with the same solvent mixture and dried to yield 0.37g of white solid (74%) which is identified as (+)-narwedine {m.p. 192-193°C; $[\alpha]_D^{25} = +418$ }.

Example II: Resolution of (±)-Narwedine to (+)-Narwedine using (+)-Narwedine as Resolving Agent

0.2 grams of (±)-narwedine is dissolved into 3.2 ml of a mixture of 95% ethanol/triethylamine (9:1) at 80°C to form a clear solution. The solution is cooled until a hazy suspension is obtained. 5 mg (2.5%) of (+)-narwedine is added at 69°C. The solution is then cooled further to 40°C and held there for 16 hours with stirring to form a white suspension. The suspension is then cooled to 25°C and stirred for another 3 hours. The precipitate is collected by filtration and the cake washed with 1ml of a solvent mixture of (9:1) 95% ethanol/triethylamine. The washed product is dried under vacuum at 25°C for 30 minutes to yield 0.164 grams of white powder (84%) which is (+)-narwedine. $\{[\alpha]_D^{25} = +418\}$.

Example III: Resolution of (±)-Narwedine to (+)-Narwedine using (+)-Narwedine as Resolving Agent

Repeating Example II using 15mg (7.5%) of (+)-narwedine as the resolving agent, results in an 85% yield with a product having $[\alpha]_D^{25} = +412.9$.

Example IV: Reduction of (+)-Narwedine to (+)-Galanthamine

2 mmole (1N in tetrahydrofuran {THF}) of L-Selectride[®] (lithium tri-sec-butylborohydride, Aldrich) is charged into 8 ml THF and cooled to -78°C. 1 mmole of (+)-narwedine in 50 ml THF is added dropwise over a period of 30 minutes. After addition, the solution is stirred at -78°C for 2 hours and then warmed to 0°C. 0.4 ml of methanol is added and the solution is warmed to 25°C and stirred for 15 minutes. Solvent is then evaporated under vacuum to dryness to obtain a syrup. The syrup is dissolved in 0.5 ml CHCl₃ and the solution is loaded into a SiO₂ 200-400 mesh, 6A, column. The column is eluted with a solvent mixture of CH₂Cl₂/CH₃OH 6:1 to obtain pure (+)-galanthamine.

Example V: Resolution of (±)-Narwedine to (-)-Narwedine using (+)-Galanthamine as Resolving Agent

10 grams of (\pm)-narwedine and 100mg (+)-galanthamine (1%) are placed in a flask having a reflux condenser. 160 ml of a solvent mixture of (9:1) 95% ethanol/triethylamine is added and the suspension is heated to 80°C, and stirred for 30 minutes until a clear colorless solution is formed. The temperature is reduced to 40°C and held there with stirring for 24 hours to result in a white suspension. The temperature is further reduced to 25°C and stirred for another 2 hours. The precipitate is collected by filtration and the cake rinsed with 50 ml of a solvent mixture of (9:1) 95% ethanol/triethylamine. The rinsed product is then dried under vacuum at 25°C for 1 hour to obtain 7.62 grams of white powder(76.2%), which is (-)-narwedine. {m.p. 192-193°C; $[\alpha]_D^{25} = -414.7$ }

The mother liquor can be saved and recycled.

Example VI: Recycling mother liquor of Example V

The mother liquor of Example V is evaporated to dryness under vacuum to obtain a white solid, which is theoretically 2.4 grams of racemic narwedine and 100 mg of (+)-galanthamine. 38 ml of a solvent mixture of (9:1) 95% ethanol/triethylamine is added and the suspension is heated to 80°C with stirring until a clear solution is formed. The solution is cooled to 40°C and held there for 16 hours with stirring to obtain a white suspension. The suspension is then cooled to 25°C, and then stirred for 2 hours. The resulting precipitate is collected by filtration and the cake is rinsed with 12.5 ml of (9:1) 95% ethanol/triethylamine. The rinsed product is dried to give 1.4 grams of additional

(-)-narwedine. $[\alpha]_D^{25}$ = -403.1. The total yield from Examples V and VI is 90.2%

Example VII: Resolution of (±)-Narwedine to (-)-Narwedine using (-)-Narwedine as Resolving Agent

0.2 grams of (\pm)-narwedine is dissolved into 3.2 ml of a mixture of 95% ethanol/triethylamine (9:1) at 80°C to form a clear solution. The solution is cooled until a hazy suspension is obtained. 5 mg (2.5%) of (-)-narwedine is added at 68°C. The solution is then cooled further to 40°C and held there for 16 hours with stirring to form a white suspension. The suspension is then cooled to 25°C and stirred for another 3 hours. The precipitate is collected by filtration and the cake washed with 1 ml of a solvent mixture of (9:1) 95% ethanol/triethylamine. The washed product is dried under vacuum at 25°C for 30 minutes to yield 0.168 grams of white powder (84%) which is (-)-narwedine. {m.p. 192-193°C; $[\alpha]_D^{25} = -407.5$ }.

Example VIII: Reduction of (-)-Narwedine to (-)-Galanthamine

2 mmole (1N in tetrahydrofuran {THF}) of L-Selectride (lithium tri-sec-butylborohydride, Aldrich) is charged into 8 ml THF and cooled to -78°C. 1 mmole of (-)-narwedine in 50 ml THF is added dropwise over a period of 30 minutes. After addition, the solution is stirred at -78°C for 2 hours and then warmed to 0°C. 0.4 ml of methanol is added and the solution is warmed to 25°C and stirred for 15 minutes. Solvent is then evaporated under vacuum to dryness to obtain a syrup. The syrup is dissolved in 0.5 ml CHCl₃ and the solution is loaded into a SiO₂ 200-400 mesh, 6A, column. The column is eluted with a solvent mixture of CH₂Cl₂/CH₃OH 6:1 to obtain 286 mg of pure (-)-galanthamine (a yield of 99.5%). HPLC of the resultant mixture indicates there is no epigalanthamine or lycoramine present. {m.p. 128-129°C; $[\alpha]_D^{25} = -93.4$ }. Natural (-)-galanthamine has a melting point of 126-127°C ($[\alpha]_D^{25} = -91.0$)

Examples IX-X

The procedures outlined in Examples I and V are repeated using the corresponding enantiomer of epigalanthamine in place of the galanthamine as the resolving agent. Similar results are obtained.

Examples XI-XII

- 17 -

The procedures set forth in Examples IV and VIII are repeated using the products obtained in Examples IX and X, as appropriate. Similar yields and purity are obtained. Epigalanthamine and lycoramine are not identified in the products.

Examples XIII-XIV

Example VIII is repeated using the conditions set forth in Table I below with similar results as in Example VIII being achieved. Repeating Example IV with these conditions gives results similar to that achieved in Example IV. The conditions in Example VIII are repeated in the Table for comparison purposes.

TABLE I

EXAMPLE NO.

	VIII	хш	XIV
REDUCING AGENT	LiB(sec-butyl) ₃ H	Ksec-butyl(iBu)2AlH	NaBH ₄ /CeCl ₃
MOLES PER MOLE NARWEDINE	1	2	0.5
DISSOLVED IN	TETRAHYDROFURAN (THF)	TOLUENE	ТНБ
COOLED TO	-78 ^o C	-90°C	-60°C
HOLD AT THIS FOR	2 HOURS	3	1.5
WARM TO	O _o C	10°C	-5°C \
SOLVENT TO ADD	СН ₃ ОН	ETHANOL	EtOC(O)CH ₃
WARM TO	25°C	25°C	25°C
HOLD AT THIS FOR	15 MIN	30 MIN	1 HOUR

WO 95/27715

- 18 -

PCT/US95/04888

EXAMPLE NO.

DRY PRODUCT AND
REDISSOLVED IN

CHCl₃

CH₂Cl₂

CHCl₃

CHCl₃

Examples XV-XXI

Example VIII is repeated using the following reducing agents in place of the L-Selectride[®] (lithium tri-sec-butylborohydride) to achieve similar results as seen with Example VIII.

Example No.	Reducing Agent
XV	LS-Selectride® (Li trisamylborohydride)
XVI	K-Selectride® (K tri-sec-butylborohydride)
XVII	KS-Selectride® (K trisamylborohydride)
XVIII	N-Selectride® (Na tri-sec-butylborohydride
XIX	Na trisamylborohydride
XX	Na bis(2-methoxyethoxy)aluminum dihydride
XXI	Li sec-butyl(di-isobutyl) aluminum hydride

Examples XXII-XXV

Example VIII is repeated using the following reducing agents in place of the L-Selectride[®]. Results analogs to those achieved in Example VIII are obtained.

Example No. Reducing Agent

- 19 -

XXII	NaBH ₄ /CeCl ₃ (1:1)
XXIII	NaBH ₄ /CeCl ₃ (1:4)
XXIV	LiAlH ₄ /AlCl ₃ (1:2)
XXV	LiAlH ₄ /AlCl ₂ (1:1)

Examples XXVI-XXIX

Examples I-VIII are repeated using the corresponding compounds wherein R_2 is acetyl (Example XXVI), ethyl (Example XXVII), or R_3 is acetyl (Example XXVIII) or both R_2 and R_3 are acetyl (Example XXIX). Similar results are obtained as in Examples I-VIII.

Examples XXX and XXXI

Example VIII is repeated using NaBH₄ alone (Example XXX) or LiAlH₄ (Example XXXI) as the reducing agent in accordance with the teachings of the Barton reference. The reaction product contains in excess of 35 % epigalanthamine.

We claim:

1. A process for the manufacture of an enantiomer of galanthamine or an ester, ether, or amide thereof of formulae I or Ia

$$OR_1$$
 N
 R_3
 OR_2

$$OR_1$$
 OR_2
 OR_3
 OR_2
 OR_3

in which R_1 and R_2 are independently selected from (a) hydrogen; (b) C_{1-7} straight or branched alkyl; (c) straight or branched C_{1-7} alkanoyl; and (d) $(R_6)(R_7)N-C(O)$ - in which each of R_6 and R_7 is selected from hydrogen or straight or branched C_{1-7} alkyl, or one of R_6 and R_7 may also be phenyl; and R_3 is selected from the groups (a)-(c) defined for R_1 above;

comprising reacting the corresponding enantiomer of narwedine or an ester, ether, or amide thereof of formulae II or IIa

$$R_3$$
 (II)

in which R_2 and R_3 are as defined above;

with a reducing agent selected from the group consisting of compounds of formulas III-VII:

$MB(R_4)_{p}H_{4-p}$	(111);
$M_qAl(R_4)_mH_{(3+q)-m}$	(IV);
$MAl(OR_5)_nH_{4-n}$	(V);
NaBH ₄ /CeCl ₃	(VI);
LiAlH ₄ /AlCl ₃	(VII); and

mixtures thereof; in which

m is 1, 2, or 3;

n is 1, 2, or 3;

p is 1, 2, or 3;

q is 0 or 1;

M is Li, Na, or K;

each R_4 is independently selected from the group consisting of straight and branched alkyl having 2-7 carbon atoms; and

each R_5 is independently is selected from the group consisting of straight and branched alkyl having 2-7 carbon atoms and R_8 -O- R_9 - in which each R_8 is independently straight or

WO 95/27715

branched alkyl of 1-3 carbon atoms, and each R_9 is independently 1,2- C_{2-3} alkylene or 1,3-propylene;

whereby said compound of formulae I or Ia is produced without more than 20% production of epigalanthamine or an ester, ether, or amide thereof of formula VIII or VIIIa

in which R₁ - R₃ are as defined above.

- 2. The process of claim 1, wherein in said reducing agent of compounds of formula III, p is 3; and in compounds of formula IV, m is 2.
- 3. The process of claim 1 in which each R_4 is independently selected from ethyl, n-butyl, sec-butyl, iso-butyl, t-butyl, amyl, iso-amyl, sec-amyl, and t-amyl.
- 4. The process of claim 1 in which each R₅ is independently 2-methoxyethoxy or 2-ethoxyethoxy.
- 5. The process of claim 1 wherein said reducing agent is selected from compounds of formula III in which p is 3 and each R_4 is the same; compounds of formula IV in which q is 1, m is 3, and at least one R_4 is different from the others; and compounds of formula V in which n is 2 and each R_5 is the same; and mixtures thereof.
- 6. The process of claim 1 wherein said reducing agent is selected from the group consisting of bis(2-methoxyethoxy)aluminumhydride; lithium sec-butyl-bis-isobutylaluminumhydride; sodium borohydride/cesium chloride; lithium aluminumhydride/aluminum chloride; lithium

- 25 -

tri-sec-butylborohydride; lithium trisamylborohydride; potassium tri-sec-butylborohydride; potassium trisamylborohydride; sodium tri-sec-butylborohydride; and sodium trisamylborohydride.

7. The process of claim 1 further comprising preparing said enantiomer of formula II or IIa in economically high yield and purity from a racemic mixture of a compound of formula II and its corresponding enantiomer of formula IIa comprising dissolving said racemic mixture in a solvent/amine base mixture in which the solvent is selected from ethanol, isopropanol, toluene, acetone, acetonitrile, tetrahydrofuran, and ethyl acetate, and the amine base is selected from pyridine and $(R_{10})_3N$ in which each R_{10} is independently C_{2-4} alkyl, said solvent and said amine base being in a ratio of from 1:9 to 15:1, at a temperature of from 20°C to 80°C, then adding 0.1 to 2.0 % by weight relative to the amount of racemate to be resolved of said resolving agent of formula I, Ia, II, IIa, VIII, or VIIIa at a temperature of from 25°C to 70°C;

then reducing the temperature 25°C to 70°C and held there for a period of 5-24 hours; and isolating the resulting crystals of the compound of either formula II or of formula IIa.

8. The process of claim 7 wherein said resolving agent is a first resolving agent and is a compound of formula Ia or VIIIa further comprising preparing said first resolving agent by dissolving a racemic mixture of a compound of formula II and its corresponding enantiomer of formula IIa

in a solvent/amine base mixture in which the solvent is selected from ethanol, isopropanol, toluene, acetone, acetonitrile, tetrahydrofuran, and ethyl acetate, and the amine base is selected from pyridine and $(R_{10})_3N$ in which each R_{10} is independently $C_{2.4}$ alkyl, said solvent and said amine base being in a ratio of from 1:9 to 15:1, at a temperature of from 20°C to 80°C, then adding 0.1 to 2.0 % by weight (relative to the amount of racemate to be resolved for production of said first resolving agent) of a compound of formula I, IIa, or VIII at a temperature of from 25°C to 70°C;

then reducing the temperature 25°C to 70°C and held there for a period of 5-24 hours; and isolating the resulting crystals of the compound of formula IIa for use as the first resolving agent.

9. A process for the production of a substantially enantiomerically pure compound of formula II from a racemic mixture of said compound of formula II and its corresponding enantiomer of formula II a wherein said formula II and II are:

- 26 -

$$O_{M}$$
 O_{R_3}
 O_{R_2}
 O_{R_2}
 O_{R_3}

in which R_2 is selected from (a) hydrogen; (b) C_{1-7} straight or branched alkyl; (c) straight or branched C_{1-7} alkanoyl; and (d) $(R_6)(R_7)N-C(O)$ - in which each of R_6 and R_7 is selected from hydrogen or straight or branched C_{1-7} alkyl, or one of R_6 and R_7 may also be phenyl; and R_3 is selected from the groups (a)-(c) defined for R_2 above; comprising dissolving a racemic mixture of a compound of formula II and its corresponding enantiomer of formula IIa

in a solvent/amine base mixture in which the solvent is selected from ethanol, isopropanol, toluene, acetone, acetonitrile, tetrahydrofuran, and ethyl acetate, and the amine base is selected from pyridine and $(R_{10})_3N$ in which each R_{10} is independently C_{2-4} alkyl, said solvent and said amine base being in a ratio of from 1:9 to 15:1, at a temperature of from 20°C to 80°C, then adding 0.1 to 2.0 % by weight (relative to the amount of racemate to be resolved) of a compound of formula Ia, or VIIIa in which formula Ia and VIIIa are:

$$OR_1$$
 OR_2
 R_3
(Ia) and

WO 95/27715

$$OR_1$$
 OR_2
 OR_3
 OR_2
 OR_3

in which R_1 is selected from (a) hydrogen; (b) C_{1-7} straight or branched alkyl; (c) straight or branched C_{1-7} alkanoyl; and (d) $(R_6)(R_7)N$ -C(O)- in which each of R_6 and R_7 is selected from hydrogen or straight or branched C_{1-7} alkyl, or one of R_6 and R_7 may also be phenyl; and R_2 and R_3 are as defined above;

at a temperature of from 25°C to 70°C;

then reducing the temperature 25°C to 70°C and held there for a period of 5-24 hours; and isolating the resulting crystals of the compound of formula II.

10. A process for the production of a substantially enantiomerically pure compound of formula IIa from a racemic mixture of said compound of formula II and its corresponding enantiomer of formula IIa wherein said formula II and IIa are:

- 29 -

$$R_3$$
 (II) and

$$O_{\text{def}}$$
 (IIa)
 O_{R_3}

in which R_2 is selected from (a) hydrogen; (b) C_{1-7} straight or branched alkyl; (c) straight or branched C_{1-7} alkanoyl; and (d) $(R_6)(R_7)N$ -C(O)- in which each of R_6 and R_7 is selected from hydrogen or straight or branched C_{1-7} alkyl, or one of R_6 and R_7 may also be phenyl; and R_3 is selected from the groups (a)-(c) defined for R_2 above; comprising dissolving a racemic mixture of a compound of formula II and its corresponding enantiomer of formula IIa

WO 95/27715

in a solvent/amine base mixture in which the solvent is selected from ethanol, isopropanol, toluene, acetone, acetonitrile, tetrahydrofuran, and ethyl acetate, and the amine base is selected from pyridine and $(R_{10})_3N$ in which each R_{10} is independently C_{2-4} alkyl, said solvent and said amine base being in a ratio of from 1:9 to 15:1, at a temperature of from 20°C to 80°C, then adding 0.1 to 2.0 % by weight (relative to the amount of racemate to be resolved) of a compound of formula I, or VIII in which formula I and VIII are:

$$OR_1$$
 N
 R_3
 OR_2

in which R_1 is selected from (a) hydrogen; (b) C_{1-7} straight or branched alkyl; (c) straight or branched C_{1-7} alkanoyl; and (d) $(R_6)(R_7)N-C(O)$ - in which each of R_6 and R_7 is selected from hydrogen or straight or branched C_{1-7} alkyl, or one of R_6 and R_7 may also be phenyl; and R_2 R_3 are as defined above;

at a temperature of from 25°C to 70°C;

then reducing the temperature 25°C to 70°C and held there for a period of 5-24 hours; and isolating the resulting crystals of the compound of formula IIa.

- 11. The process of claim 1 wherein the compound of formula I is (-)-galanthamine, the compound of formula Ia is (+)-galanthamine, the compound of formula II is (-)-narwedine, the compound of formula III is (+)-narwedine, the compound of formula VIII is (-)epigalanthamine, and the compound of formula VIIIa is (+)-epigalanthamine.
- 12. The process of claim 9 wherein the compound of formula I is (-)-galanthamine, the compound of formula II is (-)-narwedine, the compound of formula III is (-)-narwedine, and the compound of formula VIII is (-)-epigalanthamine.

13. The process of claim 10 wherein the compound of formula Ia is (+)-galanthamine, the compound of formula II is (-)-narwedine, the compound of formula IIa is (+)-narwedine, and the compound of formula VIIIa is (+)epigalanthamine.

14. A process for the production of a substantially enantiomerically pure compound of formula II or a substantially enantiomerically pure compound of formula IIa from a racemic mixture of said compound of formula II and its corresponding enantiomer of formula IIa wherein said formula II and IIa are:

$$R_3$$
 (II) and R_3

in which R_2 is selected from (a) hydrogen; (b) C_{1-7} straight or branched alkyl; (c) straight or branched C_{1-7} alkanoyl; and (d) $(R_6)(R_7)N$ -C(O)- in which each of R_6 and R_7 is selected from hydrogen or straight or branched C_{1-7} alkyl, or one of R_6 and R_7 may also be phenyl; and R_3 is selected from the groups (a)-(c) defined for R_2 above;

comprising dissolving a racemic mixture of a compound of formula II and its corresponding enantiomer of formula IIa

in a solvent/amine base mixture in which the solvent is selected from ethanol, isopropanol, toluene, acetone, acetonitrile, tetrahydrofuran, and ethyl acetate, and the amine base is selected from pyridine and $(R_{10})_3N$ in which each R_{10} is independently C_{2-4} alkyl, said solvent and said amine base being in a ratio of from 1:9 to 15:1, at a temperature of from 20°C to 80°C, then adding 0.1 to 2.0 % by weight (relative to the amount of racemate to be resolved) of a resolving agent which resolving agent is an substantially enantiomerically pure compound of formula II or of formula IIa other than the compound being resolved and which is the same optical rotation as the desired enantiomer of the racemate being resolved,

at a temperature of from 25°C to 70°C;

then reducing the temperature 25°C to 70°C and held there for a period of 5-24 hours; and isolating the resulting crystals of the compound of formula II or IIa neither of which is the same compound as the resolving agent.

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C07D 491/06, A61K 31/55 // (C07D 491/06, 307:00, 223:00)

A3

(11) International Publication Number:

WO 95/27715

(43) International Publication Date:

19 October 1995 (19.10.95)

(21) International Application Number:

PCT/US95/04888

(22) International Filing Date:

7 April 1995 (07.04.95)

(30) Priority Data:

08/224,932

8 April 1994 (08.04.94)

US

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 08/224,932 (CON)

8 April 1994 (08.04.94)

(71) Applicant (for all designated States except US): CIBA-GEIGY CORPORATION [US/US]; 444 Saw Mill River Road, Ardsley, NY 10502 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SHIEH, Wen-Chung [US/US]; 295 Timber Drive, Berkeley Heights, NJ 07922 (US). CARLSON, John, Alan [US/US]; 363 Mountain Avenue, Berkeley Heights, NJ 07922 (US).
- (74) Agent: FISHMAN, Irving, M.; Ciba-Geigy Corporation, Patent Dept., Room D-3061, 556 Morris Avenue, Summit, NJ 07901 (US).

(81) Designated States: AT, AU, BB, BG, BR, CA, CH, CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Refore the expiration of the time l

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 30 November 1995 (30.11.95)

(54) Title: METHOD OF MANUFACTURE OF (-)GALANTHAMINE IN HIGH YIELD AND PURITY SUBSTANTIALLY FREE OF EPIGALANTHAMINE

(57) Abstract

(-)-Galanthamine (I) or (Ia) is obtained in substantially high yield and purity substantially without concomitant production of epigalanthamine by conversion of racemic narwedine to (-)-narwedine (II) or (IIa) and subsequent reduction to (-)-galanthamine using bulky organo-aluminum or organo-boron reducing agents.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CF	·		of Korea	SE	Sweden
CH	Congo Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhsian	SK	Slovakia
	Cameroon	LI	Liechtenstein	SN	Senegal
CM CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
-	Czech Republic	ĹŸ	Latvia	TJ	Tajikistan
CZ	•	MC	Monaco	TT	Trinidad and Tobago
DE	Germany	MD	Republic of Moldova	UA	Ukraine
DK	Denmark	MG	Madagascar	US	United States of America
ES	Spain	ML	Mali	UZ	Uzbekistan
FT	Finland	MN	Mongolia	VN	Viet Nam
FR	France	MIN	1-10mg one		
GA	Gabon				

A. CLASS IPC 6	CO7D491/06 A61K31/55 //(CO7D	0491/06,307:00,223:00)	
According	to International Patent Classification (IPC) or to both national class	sification and IPC	<u> </u>
B. FIELDS	S SEARCHED		
IPC 6	documentation searched (classification system followed by classific CO7D A61K		
	tion searched other than minimum documentation to the extent that the documentation to the extent that data base consulted during the international search (name of data b		
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
A	JOURNAL OF HETEROCYCLIC CHEMISTS vol.25, 1988, PROVO US pages 1809 - 1811 J. SZEXCZYK ET AL 'An improved of Galanthamine' cited in the application see page 1809, right column	·	1
A	JOURNAL OF ORGANIC CHEMISTRY., vol.47, 1982, EASTON US pages 1513 - 1518 S. F. MARTIN ET AL 'General methalkaloid synthesis. Total syntheracemic lycorymine' see page 1515, right column - paleft column; table 1	esis of	
X Fur	rther documents are listed in the continuation of box C.	Patent family members are listed	in annex.
'A' docur	* Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the		
'E' earlier document but published on or after the international filing date "X" document of particular relevance; the cla cannot be considered novel or cannot be			ot be considered to
'I,' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'I,' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu- ments, such combination being obvious to a person skilled			
'P' docur	r means ment published prior to the international filing date but than the priority date claimed	ments, such combination being obvi in the art. '&' document member of the same pater	
	e actual completion of the international search 20 October 1995	Date of mailing of the international and 27. 10. 95	search report
Name and	I mailing address of the ISA Furopean Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	Authorized officer	
	Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Voyiazoglou, D	

1

		PC1/US 95/U4888		
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
A	ANGEWANDTE CHEMIE. INTERNATIONAL EDITION., vol.24, no.6, 1985, WEINHEIM DE pages 466 - 485 L. ADDADI ET AL 'Growth and dissolution of organic crystals with "tailor-made" inhibitors. Implications in stereochemistry and materials science' see page 466, right column - page 468, left column	9,10,14		
A	JOURNAL OF THE CHEMICAL SOCIETY., 1962, LETCHWORTH GB pages 806 - 817 D. H. R. BARTON ET AL 'Phenol oxidation and biosynthesis. Part V. The synthesis of galanthamine' see the whole document	1-14		
P,X	JOURNAL OF ORGANIC CHEMISTRY., vol.59, no.18, 9 September 1994, EASTON US pages 5463 - 5465 WC. SHIEH ET AL 'Asymmetric transformation of either enantiomer of narwedine via total spontaneous resolution process, a concise solution to the synthesis of (-)-Galanthamine' see the whole document	1-14		