5.89. Показать, что при умножении матрицы A слева на матрицу

$$G_{kl}(\varphi) = \begin{pmatrix} 1 & 0 & \dots & 0 & \dots \\ 0 & \cos \varphi & 0 & -\sin \varphi & 0 \\ \dots & 0 & 1 & 0 & \dots \\ 0 & \sin \varphi & 0 & \cos \varphi & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix},$$

 $(g_{kl} = \sin \varphi)$, т. е. синусы и косинусы находятся на пересечении строк и столбцов с номерами k и l, остальные диагональные элементы равны единице) можно получить нуль на позиции элемента a_{kl} .

5.90. (Метод вращений). Показать, что произвольная квадратная матрица A может быть приведена к верхнему треугольному виду в результате последовательного умножения слева на ортогональные матрицы вращений.

Указание.
$$G_{n\,n-1}\dots G_{3\,2}G_{n\,1}\dots G_{3\,1}G_{2\,1}A=R$$
.

- **5.91.** Показать, что реализации прямого и обратного хода метода вращений в общем случае требуют по порядку $2\,n^3$ и n^2 арифметических действий соответственно.
- **5.92.** Записать формулы метода вращений для задачи $A\mathbf{x}=\mathbf{b}$, где A- матрица из 5.87. Оценить вычислительные затраты алгоритма.

Рассмотренные методы отражений и вращений применяют не только при построении QR-разложения матрицы A, но и для приведения A к специальному виду: (2p+1)-диагональному, блочному диагональному, Хессенбергову. На основании данных разложений удается построить эффективные численные методы решения систем линейных уравнений, а также методы вычисления инвариантных подпространств и решения задачи на собственные значения.

5.4. Линейные итерационные методы

Рассмотрим класс итерационных методов решения систем линейных алгебраических уравнений, основанный на сжимающем свойстве оператора перехода. Различные постановки задачи минимизации нормы оператора перехода приводят к различным алгоритмам расчета.

Метод простой итерации. Преобразуем систему линейных алгебраических уравнений $A\,{\bf x}={\bf b} \eqno(5.3)$

с невырожденной матрицей A к виду

$$\mathbf{x} = B\,\mathbf{x} + \mathbf{c}.\tag{5.4}$$

Если решение системы (5.4) находят как предел последовательности

$$\mathbf{x}^{k+1} = B\,\mathbf{x}^k + \mathbf{c},\tag{5.5}$$

то такой процесс называют методом простой итерации, а матрицу B- оператором перехода. Справедливы следующие теоремы о сходимости метода.

Теорема 1. Если ||B|| < 1, то система уравнений (5.4) имеет единственное решение и итерационный процесс (5.5) сходится к решению со скоростью геометрической прогрессии.

Теорема 2. Пусть система (5.4) имеет единственное решение. Итерационный процесс (5.5) сходится к решению системы (5.4) при любом начальном приближении тогда и только тогда, когда все собственные значения матрицы B по модулю меньше 1.

Aсимптотической скоростью сходимости $R_{\infty}(B)$ итерационного метода называют величину $R_{\infty}(B)=-\ln \rho(B)$, где $\rho(B)$ — спектральный радиус (максимальное по модулю собственное значение) оператора перехода B.

Рассмотрим общий способ перехода от системы (5.3) к системе (5.4). Всякая система

$$\mathbf{x} = \mathbf{x} - D\left(A\,\mathbf{x} - \mathbf{b}\right) \tag{5.6}$$

имеет вид (5.4) и при $\det(D) \neq 0$ равносильна системе (5.3). В то же время всякая система (5.4), равносильная (5.3), записывается в виде (5.6) с матрицей $D = (I-B)\,A^{-1}$.

Оптимальный линейный одношаговый метод. Для систем со знакоопределенными матрицами метод (5.5) обычно строят в виде

$$\frac{\mathbf{x}^{k+1} - \mathbf{x}^k}{\tau} + A \mathbf{x}^k = \mathbf{b}, \quad \text{ r. e. } \quad B = I - \tau A, \quad \mathbf{c} = \tau \mathbf{b},$$
 (5.7)

где τ — итерационный параметр. Так как точное решение \mathbf{x} удовлетворяет уравнению (5.7), то для вектора ошибки $\mathbf{z}^k = \mathbf{x} - \mathbf{x}^k$ справедливы выражения

$$\mathbf{z}^{k+1} = (I - \tau A) \mathbf{z}^k, \quad \|\mathbf{z}^{k+1}\| \le \|I - \tau A\| \|\mathbf{z}^k\|, \ k = 0, 1, 2, \dots$$

Итерационный параметр au ищется из условия минимума нормы оператора перехода. Если $A=A^T>0$ и выбрана евклидова векторная норма, то минимизационная задача

$$\min_{\tau} \left(\max_{\lambda(A)} |1 - \tau \lambda(A)| \right) = q$$

решается явно. Пусть известны точные границы спектра матрицы A, т. е. $\lambda(A) \in [m,M]$, тогда оптимальные значения соответственно равны

$$\tau = \frac{2}{m+M} \,, \quad q = \frac{M-m}{M+m} < 1$$

и справедлива оценка

$$\|\mathbf{x} - \mathbf{x}^k\|_2 \leqslant q^k \|\mathbf{x} - \mathbf{x}^0\|_2.$$

Оптимальный линейный N**-шаговый метод.** Будем считать, что в итерационном алгоритме

$$\frac{\mathbf{x}^{k+1} - \mathbf{x}^k}{\tau_{k+1}} + A\mathbf{x}^k = \mathbf{b} \tag{5.8}$$

допускается циклическое изменение (с периодом N) параметра τ в зависимости от номера итерации, т. е. $\tau_1, \tau_2, \ldots, \tau_N, \tau_1, \tau_2, \ldots$ В этом случае после N итераций для вектора ошибки имеем:

$$\mathbf{z}^{k+N} = \prod_{j=1}^{N} (I - \tau_j A) \, \mathbf{z}^k, \quad \|\mathbf{z}^{k+N}\|_2 \leqslant \left\| \prod_{j=1}^{N} (I - \tau_j A) \right\|_2 \, \|\mathbf{z}^k\|_2, \ k = 0, 1, 2, \dots.$$

Будем искать набор τ_j , $j=1,\ldots,N$, из условия минимума нормы оператора перехода после N итераций. Если $A=A^T>0$, то

$$\min_{\tau_j} \left\| \prod_{j=1}^N (I - \tau_j A) \right\|_2 = \min_{\tau_j} \left(\max_{\lambda(A)} \left| \prod_{j=1}^N (1 - \tau_j \lambda(A)) \right| \right).$$

Пусть известны точные границы спектра матрицы A, т. е. $\lambda(A) \in [m, M]$, тогда оптимальные значения параметров равны обратным величинам корней многочлена Чебышёва степени N на отрезке [m, M]:

$$\tau_j^{-1} = \frac{M+m}{2} + \frac{M-m}{2} \cos \frac{\pi(2j-1)}{2N}$$
,

и справедлива оценка погрешности после N итераций

$$\|\mathbf{x} - \mathbf{x}^N\|_2 \leqslant \frac{2q_1^N}{1 + q_1^{2N}} \|\mathbf{x} - \mathbf{x}^0\|_2 \leqslant 2q_1^N \|\mathbf{x} - \mathbf{x}^0\|_2, \quad q_1 = \frac{\sqrt{M} - \sqrt{m}}{\sqrt{M} + \sqrt{m}}.$$

При численной реализации N-шагового метода для устойчивости требуется специальным образом перемешивать значения параметров τ_i .

Недостатком рассмотренных оптимальных методов является требование информации о границах спектра матрицы A.

5.93. Пусть элементы матрицы B имеют вид $b_{kj} = \frac{1}{2} \cdot 3^{-|k-j|}$. Доказать, что система $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ имеет единственное решение и метод простой итерации сходится при любом начальном приближении.

Указание. $||B||_1 = ||B||_{\infty} < 1$.

5.94. Найти все α , β , при которых метод простой итерации $\mathbf{x}^{k+1} = B\,\mathbf{x}^k + \mathbf{c}$, где

$$B = \begin{pmatrix} \alpha & \beta & 0 \\ \beta & \alpha & \beta \\ 0 & \beta & \alpha \end{pmatrix},$$

сходится с произвольного начального приближения.

$$\triangleleft$$
 Имеем $\det(B - \lambda I) = (\alpha - \lambda)(\alpha - \lambda - \sqrt{2}\beta)(\alpha - \lambda + \sqrt{2}\beta) = 0, |\alpha| < 1, |\alpha \pm \sqrt{2}\beta| < 1.$

5.95. Привести пример задачи $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ такой, что у матрицы B есть собственное значение λ вне единичного круга, но метод (5.5) сходится при некотором начальном приближении.

< Имеем

$$B = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix},$$

$$\frac{3}{2} : \quad \mathbf{x}_{1} = \begin{pmatrix} 1 & -1 \end{pmatrix}^{T} : \quad \mathbf{x}^{0} = \mathbf{x} = t \mathbf{x}_{1} + t \mathbf{c}_{2} \quad \text{in } \mathbf{x} \neq 0.$$

$$\lambda(B) = \frac{1}{2}, \ \frac{3}{2}; \quad \mathbf{x}_{\lambda=1/2} = (1, -1)^T; \quad \mathbf{x}^0 - \mathbf{x} = t \, \mathbf{x}_{\lambda=1/2} \quad \text{при} \quad t \neq 0. \quad \triangleright$$

5.96. Пусть матрица B в методе (5.5) имеет вид

$$B = \begin{pmatrix} \alpha & 4 \\ 0 & \beta \end{pmatrix} \quad 0 < \alpha, \beta < 1.$$

Показать, что величина ошибки $\mathbf{z}^k = \mathbf{x} - \mathbf{x}^k$ в норме $\|\cdot\|_{\infty}$ начинает монотонно убывать лишь с некоторого номера итерации N. Оценить N при $\alpha = \beta \approx 1$.

Ответ: $N \approx \frac{1}{1-\alpha}$.

5.97. Пусть все собственные значения матрицы A вещественные и положительные: $\lambda(A)>0$. Доказать сходимость метода

$$\frac{\mathbf{x}^{k+1} - \mathbf{x}^k}{\tau} + A\mathbf{x}^k = \mathbf{b}$$

при $au = \|A\|^{-1}$ с любой матричной нормой, которая подчинена векторной.

$$<$$
 Собственные значения оператора перехода $B = I - \tau A$ имеют вид $\lambda(B) = 1 - \|A\|^{-1} \lambda(A)$. Так как $0 < \lambda(A) \le \|A\|$, то $0 \le \lambda(B) < 1$.

5.98. Доказать, что все собственные значения матрицы A размерности $n \times n$ принадлежат области комплексной плоскости G(A), представляющей собой объединение кругов

$$G_i(A) = \{z : |z - a_{ii}| \leq R_i(A) = \sum_{i \neq i} |a_{ij}|\}, \quad i = 1, \dots, n.$$

 \triangleleft Пусть λ —произвольное собственное значение матрицы A и \mathbf{x} —соответствующий ему собственный вектор. Обозначим через x_i максимальную по модулю компоненту вектора \mathbf{x} . Если таких компонент несколько, то x_i —любая из них. Из равенства $A\mathbf{x} = \lambda \mathbf{x}$ следует соотношение $(\lambda - a_{ii})x_i = \sum_{j \neq i} a_{ij}x_j$. Отсюда имеем

$$|\lambda - a_{ii}| \le \sum_{j \ne i} |a_{ij}| \frac{|x_j|}{|x_i|} \le \sum_{j \ne i} |a_{ij}| = R_i(A).$$

Это утверждение называется *теоремой Гершгорина*. Имеется обобщение этого факта.

Теорема. Если указанное объединение кругов G(A) распадается на несколько связных частей, то каждая такая часть содержит столько собственных значений, сколько кругов ее составляют.

5.99. Доказать, что все собственные значения матрицы A размерности $n \times n$ принадлежат области $G(A) \cap G(A^T)$.

У казание. Собственные значения матриц A и A^T совпадают.

5.100. Доказать, что у матрицы
$$\begin{pmatrix} 2 & 0.4 & 0.4 \\ 0.3 & 4 & 0.4 \\ 0.1 & 0.1 & 5 \end{pmatrix}$$
 все собственные значе-

ния вещественны и найти интервалы, которым они принадлежат.

Ответ:
$$1, 6 \leqslant \lambda_1 \leqslant 2, 4, 3, 5 \leqslant \lambda_2 \leqslant 4, 5, 4, 8 \leqslant \lambda_3 \leqslant 5, 2.$$

5.101. Привести пример, демонстрирующий ложность утверждения: все собственные значения матрицы A размерности $n \times n$ принадлежат объединению кругов

$$|z - a_{ii}| \leq \min\{R_i(A), R_i(A^T)\}, \quad i = 1, \dots, n.$$

Ответ: у матрицы $\begin{pmatrix} 0 & 0,1\\ -40 & 5 \end{pmatrix}$ оба собственных значения $\lambda_1=1$ и $\lambda_2=4$ не принадлежат системе кругов: $|z|\leqslant 0,1,\;|z-5|\leqslant 0,1.$

5.102. Доказать, что все собственные значения матрицы A размерности $n \times n$ принадлежат объединению кругов

$$|z - a_{ii}| \leqslant R_i^{\alpha}(A) R_i^{1-\alpha}(A^T), \quad i = 1, \ldots, n,$$

где α — произвольное число из отрезка [0,1] ($meopema\ Ocmpoeckoro$).

5.103. Доказать, что все собственные значения матрицы A размерности $n \times n$ принадлежат объединению $\frac{n(n-1)}{2}$ овалов Кассини:

$$|z - a_{ii}||z - a_{jj}| \le R_i(A) R_j(A), \quad i, j = 1, \dots, n, \ i \ne j.$$

- **5.104.** Доказать, что если для некоторого i и при всех j выполняются неравенства $|a_{ii}-a_{jj}|>R_i(A)+R_j(A)$, то в круге $|z-a_{ii}|\leqslant R_i(A)$ лежит точно одно собственное значение матрицы A.
- **5.105.** Пусть p_1, \ldots, p_n —положительные числа. Доказать, что собственные значения матрицы A принадлежат объединению кругов

$$|z - a_{ii}| \le \frac{1}{p_i} \sum_{j \ne i} p_j |a_{ij}|, \quad i = 1, \dots, n.$$

Указание. Пусть $S={\rm diag}\,(p_1,\ldots,p_n)\;({\rm det}(S)\neq 0),$ тогда достаточно показать, что собственные значения матриц A и $S^{-1}AS$ совпадают.

5.106. С помощью 5.105 найти интервалы, которым принадлежат собственные значения матрицы

$$\begin{pmatrix} 7 & -16 & 8 \\ -16 & 7 & -8 \\ 8 & -8 & -5 \end{pmatrix}.$$

У казание. Точные собственные значения матрицы -9, -9 и 27.

5.107. Пусть p_1, \dots, p_n —положительные числа. Получить оценки для спектрального радиуса матрицы A:

$$\rho(A) \leqslant \min_{p_1,\dots,p_n} \max_{1 \leqslant i \leqslant n} \frac{1}{p_i} \sum_{j=1}^n p_j |a_{ij}|,$$

$$\rho(A) \leqslant \min_{p_1,\dots,p_n} \max_{1 \leqslant j \leqslant n} \frac{1}{p_j} \sum_{i=1}^n p_i |a_{ij}|.$$

- **5.108.** Для матрицы $A = \begin{pmatrix} 1 & 1 \\ -1, 5 & 2 \end{pmatrix}$ показать, что $\rho(A) \leqslant \min \|D^{-1}AD\|_{\infty}$, где минимум берется по всем матрицам $D = \mathrm{diag}\,(p_1, p_2)$ с положительными p_1, p_2 .
- **5.109.** Пусть A матрица npocmoй cmpyкmypы, т. е. подобна диагональной ($A = QDQ^{-1}$, где столбцы \mathbf{q}_i матрицы Q собственные векторы матрицы A, а элементы диагональной матрицы D соответствующие собственные значения, т. е. $d_{ii} = \lambda_i$), и все $\lambda(A) \in [m, M], \ m > 0$. Доказать, что метод

$$\frac{\mathbf{x}^{k+1} - \mathbf{x}^k}{\tau} + A\mathbf{x}^k = \mathbf{b}$$

сходится при $0 < \tau < \frac{2}{M}$ с произвольного начального приближения.

 \lhd Пусть \mathbf{z}^k — вектор ошибки на k-й итерации. Тогда

$$\mathbf{z}^{k+1} = (I - \tau A) \mathbf{z}^k = (Q Q^{-1} - \tau Q D Q^{-1}) \mathbf{z}^k.$$

Умножим полученное выражение слева на Q^{-1} и сделаем замену $Q^{-1}\mathbf{z}^k=\tilde{\mathbf{z}}^k.$ Тогда $\tilde{\mathbf{z}}^{k+1}=(I-\tau\,D)\,\tilde{\mathbf{z}}^k$.

Здесь $B = I - \tau D$ — диагональная матрица, а ее собственные значения равны $\lambda(B) = 1 - \tau \lambda(A)$. Поэтому необходимым и достаточным условием сходимости метода является выполнение неравенства

$$|1 - \tau \lambda(A)| < 1 \quad \forall \lambda(A) \in [m, M],$$

откуда и следует искомый результат.

5.110. Пусть матрица системы $A \mathbf{x} = \mathbf{b}$ имеет вид

$$A = \begin{pmatrix} 2 & 0.3 & 0.5 \\ 0.1 & 3 & 0.4 \\ 0.1 & 0.1 & 4.8 \end{pmatrix}.$$

Доказать, что метод простой итерации $\mathbf{x}^{k+1} = (I - \tau A)\mathbf{x}^k + \tau \mathbf{b}$ при $0 < \tau < \frac{2}{5}$ сходится с произвольного начального приближения.

Указание. Воспользоваться аналогией с 5.100 и решением 5.109.

5.111. Пусть λ и ${\bf q}$ — собственное значение и соответствующий собственный вектор невырожденной матрицы простой структуры $A, {\bf x}^0$ — начальное приближение в методе простой итерации (5.7) для решения системы $A{\bf x}={\bf b}$. Найти такое значение параметра метода, чтобы в разложении ошибки по собственным векторам коэффициент при векторе ${\bf q}$ на первой итерации был равен нулю.

Указание. Выписать оператор перехода для вектора ошибки за один шаг и получить $\tau = \frac{1}{\lambda}$.

5.112. Пусть для невырожденной матрицы простой структуры A порядка n известны все собственные значения $\lambda_1, \ldots, \lambda_n$. Построить итерационный метод (5.8) с переменными параметрами τ_k , который не более чем за n шагов приводил бы в точной арифметике к решению системы $A\mathbf{x} = \mathbf{b}$.

Указание. Разложить ошибку $\mathbf{x} - \mathbf{x}^k$ по базису $\{\mathbf{q}_i\}$ из собственных векторов матрицы A. Выбор $\tau_k = \lambda_k^{-1}, \ k = 1, \ldots, n$, обеспечивает на каждом шаге обнуление коэффициента при векторе \mathbf{q}_k в разложении ошибки (см. 5.111).

- **5.113.** Пусть в задаче $A\mathbf{x} = \mathbf{b}$ с матрицей простой структуры у матрицы A имеется одно отрицательное собственное значение $\lambda_1 \in [-2-\varepsilon, -2+\varepsilon]$, $\varepsilon = 0,01$, а остальные значения положительные: $\lambda_i \in [1,3], \ i=2,\ldots,n$. Предложить итерационный метод (5.8) для решения такой системы.
- **5.114.** Для решения системы $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ рассмотрим алгоритм с некоторым начальным приближением \mathbf{x}^0 :

$$\mathbf{y}^{k+1} = B\mathbf{x}^k + \mathbf{c}, \quad \mathbf{x}^{k+1} = \alpha \mathbf{x}^k + (1-\alpha)\mathbf{y}^{k+1}.$$

Пусть $B=B^T$ и $\lambda(B)\in[m,M],\ m>1.$ Найти оптимальное значение итерационного параметра $\alpha.$

< Имеем

$$\mathbf{x}^{k+1} = (\alpha I + (1 - \alpha)B)\mathbf{x}^k + (1 - \alpha)\mathbf{c},$$

$$\min_{\alpha} \varphi(\alpha) = \min_{\alpha} \max_{\lambda} |\alpha + (1 - \alpha)\lambda|, \ \alpha = \frac{m + M}{m + M - 2}.$$

5.115. Построить квадратную матрицу A размерности 31×31 с элементами $|a_{ij}| \leqslant 1$ и собственными значениями $|\lambda(A)| \leqslant 1$ такую, что $||A^{30}||_{\infty} \geqslant 10^9$.

Ответ:
$$a_{ij} = \begin{cases} 1 & \text{при} & i=j, \\ 1 & \text{при} & i+1=j, \\ 0 & - & \text{иначе.} \end{cases}$$

5.116. Пусть A — невырожденная матрица размерности $n \times n$ и X_0 — произвольная матрица размерности $n \times n$. Рассмотрим итерационный процесс

мроцесс $X_{k+1} = X_k + X_k (I - AX_k), \ k = 0, 1, \dots.$ Доказать, что $\lim_{k \to \infty} X_k = A^{-1}$ тогда и только тогда, когда спек-

тральный радиус матрицы $I-AX_0$ меньше 1. При этом $I-AX_k=(I-AX_0)^{2^k},\ k=0,1,\ldots$ Доказать также, что если $AX_0=X_0A$, то $AX_k=X_kA$ для всех k.

< Для приближений нетрудно получить равенство

$$I - AX_{k+1} = (I - AX_k)^2$$
.

Пусть $X_k \to A^{-1}$. Тогда $I - AX_k \to 0$ и $(I - AX_0)^{2^k} \to 0$ при $k \to \infty$. Если допустить, что $\rho(I - AX_0) \geqslant 1$, то для собственного вектора \mathbf{x} , соответствующего собственному числу λ , $|\lambda| \geqslant 1$, вектор $(I - AX_0)^{2^k} \mathbf{x} = \lambda^{2^k} \mathbf{x}$ не стремится к нулю, т. е. имеет место противоречие.

Пусть теперь $\rho(I-AX_0)<1$, тогда найдется (см. 5.41) норма матрицы $||\cdot||_*$, для которой $||I-AX_0||_*=q<1$ и $||I-AX_k||_*\leqslant q^{2^k}\to 0$.

Для доказательства равенства $AX_k = X_k A$ при условии $AX_0 = X_0 A$ воспользуемся индукцией.

5.117. При каких значениях параметра τ метод $\mathbf{x}^{k+1} = (I - \tau A)\mathbf{x}^k + \tau \mathbf{b}$ для системы уравнений $A\mathbf{x} = \mathbf{b}$ с матрицей:

1)
$$A = \begin{pmatrix} 5 & 0.8 & 4 \\ 2.5 & 2 & 0 \\ 2 & 0.8 & 4 \end{pmatrix}$$
; 2) $A = \begin{pmatrix} 2 & 1 & 0.5 \\ 3 & 5 & 1 \\ 1 & 3 & 3 \end{pmatrix}$;
3) $A = \begin{pmatrix} 1 & 0.5 & 0.3 \\ 1 & 3 & 0 \\ 1 & 1 & 2 \end{pmatrix}$; 4) $A = \begin{pmatrix} 3 & 1.2 & 0.8 \\ 1.4 & 2 & 0.1 \\ 0.6 & 0.4 & 1 \end{pmatrix}$

сходится с произвольного начального приближения?

5.118. Пусть $A=A^T>0$ и $\lambda(A)\in[m,M],\,m>0.$ Записать наилучший по скорости сходимости в норме $\|\cdot\|_2$ итерационный процесс вида

$$\mathbf{x}^{k+1} = \mathbf{x}^k - P_1(A)(A\mathbf{x}^k - \mathbf{b}), \ P_1(t) = \alpha t + \beta.$$

5.119. Пусть приближения метода $\mathbf{x}^{k+1} = B\mathbf{x}^k + \mathbf{c}, ||B|| < 1$, сходятся к решению \mathbf{x} . Доказать, что

$$||\mathbf{x} - \mathbf{x}^k|| \le ||(I - B)^{-1}|| ||\mathbf{x}^{k+1} - \mathbf{x}^k||.$$

У казание. Вывод оценки следует из равенства $\mathbf{x} - \mathbf{x}^k = (I - B)^{-1} (\mathbf{x}^{k+1} - \mathbf{x}^k)$.

- **5.120.** Для приближений метода $\mathbf{x}^{k+1} = B\mathbf{x}^k + \mathbf{c}, ||B|| < 1$, доказать оценку $||\mathbf{x}^k|| \leqslant ||B||^k ||\mathbf{x}^0|| + \frac{||\mathbf{c}||}{1 ||B||}$.
- **5.121.** Пусть A = I B, $b_{ij} \geqslant 0$. Доказать, что если все компоненты векторов **x** и **c** из задачи A**x** = **c** неотрицательны, то приближения метода $\mathbf{x}^{k+1} = B\mathbf{x}^k + \mathbf{c}$, $\mathbf{x}^0 = 0$, сходятся к **x**.

 \lhd В силу того, что $A{\bf x}={\bf c},~A=I-B,$ неотрицательности решения ${\bf x}$ и элементов матрицы B, справедливо неравенство ${\bf x}\gg B^n{\bf c}+B^{n-1}{\bf c}+\cdots+{\bf c}$ для любого n (здесь использован знак \gg для покомпонентного неравенства векторов; аналогичный смысл имеет знак \ll). С другой стороны, при ${\bf x}^0=0$ приближения удовлетворяют неравенствам ${\bf x}^0\ll {\bf x}^1={\bf c}\ll {\bf x},\ldots,{\bf x}^n\ll {\bf x}^{n+1}\ll B^n{\bf c}+B^{n-1}{\bf c}+\cdots+{\bf c}\ll {\bf x}.$ Итак, последовательность $\{{\bf x}^n\}$ монотонно возрастает (монотонно возрастают все последовательности координат $\{x_i^n\}$), ограничена сверху в смысле \ll вектором ${\bf x}$ и поэтому сходится. Переходя к пределу в равенстве ${\bf x}^{k+1}=B{\bf x}^k+{\bf c}$, убеждаемся в том, что ее предел совпадает с ${\bf x}$.

5.122. Пусть спектр матрицы A удовлетворяет условиям $0 < \delta \le \Re\{\lambda(A)\} \le 1$, $|\operatorname{Im}\{\lambda(A)\}| \le 1$. Найти область значений вещественного параметра τ , при которых итерационный метод $\mathbf{x}^{k+1} = (I - \tau A)\mathbf{x}^k + \tau \mathbf{b}$ решения системы $A\mathbf{x} = \mathbf{b}$ сходится с произвольного начального приближения.

 \triangleleft По условию собственные значения λ оператора перехода $I-\tau\,A$ имеют вид $\lambda(I-\tau\,A)=1-\tau\,u-\mathrm{i}\,\tau\,v\,,\quad 0<\delta\leqslant u\leqslant 1\,,\;\;|v|\leqslant 1\,.$

Из условия сходимости $|\lambda|^2=(1-\tau\,u)^2+\tau^2v^2<1$ имеем неравенство $\tau<\frac{2\,u}{u^2+v^2}.$ Рассмотрим выражение

$$\min_{u,v} \frac{u}{u^2 + v^2} = \min_{u} \frac{u}{u^2 + 1} = \frac{\delta}{\delta^2 + 1} \ .$$

Отсюда следует ответ: $0 < \tau < \frac{2 \, \delta}{\delta^2 + 1}$.

5.123. Исследовать сходимость метода $\mathbf{x}^{k+1} = B\mathbf{x}^k + \mathbf{c}$ для решения системы уравнений $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ с матрицей

$$B = \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} & \cdots & \frac{1}{2^n} & \frac{1}{2^{n+1}} \\ \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{8} & \cdots & \frac{1}{2^{n-1}} & \frac{1}{2^n} \\ \frac{1}{8} & \frac{1}{4} & 0 & \frac{1}{4} & \cdots & \frac{1}{2^{n-2}} & \frac{1}{2^{n-1}} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{1}{2^{n+1}} & \frac{1}{2^n} & \frac{1}{2^{n-1}} & \cdots & \cdots & \frac{1}{4} & 0 \end{pmatrix}.$$

Ответ: метод сходится с произвольного начального приближения, так как $||B||_1 < 1$.

5.124. Построить сходящийся метод простой итерации (5.7) для системы уравнений с матрицей

$$A = \begin{pmatrix} 1 & 0,5 & 0 & 0 & \dots & 0 & 0 \\ 0 & 2 & 0,5 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 0,5 & \dots & 0 & 0 \\ 0 & 0 & 0 & 2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1 & 0,5 \\ 0 & 0 & 0 & 0 & \dots & 0 & 2 \end{pmatrix}.$$

Ответ: матрица положительно определена и имеет два кратных собственных числа $\lambda_1=1$ и $\lambda_2=2$, поэтому условие сходимости имеет вид: $0<\tau<\frac{1}{2}$.

5.125. При каких условиях итерационный метод

$$\mathbf{x}^{k+1} = (2B^2 - I)\mathbf{x}^k + 2(B+I)\mathbf{c}$$

сходится быстрее метода простой итерации $\mathbf{x}^{k+1} = B\mathbf{x}^k + \mathbf{c}$?

5.5. Вариационные методы

Класс вариационных методов строится как множество методов минимизации некоторых функционалов, минимум которых достигается на решении исходной системы линейных уравнений. Конкретный вид функционала и алгоритм минимизации определяют параметры итерационного процесса. Порядок сходимости рассматриваемых вариационных методов не хуже, чем у линейного одношагового метода. При этом для практической реализации данных методов не требуется знания границ m, M спектра матрицы A.

Метод наискорейшего градиентного спуска. Пусть $A = A^T > 0$. Расчетные формулы итерационного процесса имеют вид

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \tau_k(\mathbf{b} - A\mathbf{x}^k), \quad \tau_k = \frac{(\mathbf{r}^k, \mathbf{r}^k)}{(A\mathbf{r}^k, \mathbf{r}^k)}, \ k = 0, 1, \dots,$$

где $\mathbf{r}^k = \mathbf{b} - A\mathbf{x}^k$ — вектор невязки.

Отметим, что в приведенных формулах на каждой итерации требуется два умножения матрицы A на вектор.