Ciągi liczbowe

Definicja (ciąg liczbowy, n-ty wyraz ciągu). Funkcję odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tej funkcji dla liczby naturalnej n nazywamy n-tym wyrazem ciągu. Jeśli a_n oznacza n-ty wyraz ciągu, to ciąg oznaczamy symbolem (a_n) .

Uwaga. Dla uproszczenia zapisu w dalszej części wykładu przez $\{a_n\}$ oznaczać będziemy zbiór wyrazów ciągu (a_n) , tj. zbiór $\{a_n : n \in N\}$.

Definicja (granica ciągu, ciąg zbieżny i rozbieżny). Liczba $a \in R$ jest granicą właściwą ciągu (a_n) , co zapisujemy, $\lim_{n\to\infty} a_n = a$, wtedy i tylko wtedy, gdy

$$\bigvee_{\varepsilon>0} \prod_{n_0 \in N} \bigvee_{n>n_0} |a_n - a| < \varepsilon.$$

Ciąg, który ma granicę a, nazywamy ciągiem zbieżnym.

Ciąg, który nie ma granicy, nazywamy rozbieżnym. Wśród ciągów rozbieżnych wyróżniamy ciągi rozbieżne do $+\infty$ i do $-\infty$.

Twierdzenia o ciągach

Twierdzenie. Każdy ciąg zbieżny jest ograniczony.

Twierdzenie (o 3 ciągach). Niech istnieje taka liczba n_0 , że dla każdego $n > n_0$ spełniona jest nierówność $a_n \le b_n \le c_n$. Ponadto niech $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = g$. Wtedy $\lim_{n\to\infty} b_n = g$.

Twierdzenie (o 2 ciągach). Niech istnieje taka liczba n_0 , że dla każdego $n > n_0$ spełniona jest nierówność $a_n \le b_n$. Ponadto niech $\lim_{n \to \infty} a_n = \infty$. Wtedy

$$\lim_{n\to\infty}b_n=\infty.$$

Twierdzenie (warunek Cauchy'ego zbieżności ciągu).

$$(a_n)$$
 jest zbieżny $\Leftrightarrow \forall \exists \forall a_m - a_n < \varepsilon$.

Twierdzenie. Każdy ciąg monotoniczny i ograniczony jest zbieżny.

Granice wybranych ciągów liczbowych

$$\lim_{n \to \infty} \frac{c}{n} = 0 \text{ dla } c = const.,$$

$$\lim_{n \to \infty} c^n = 0 \text{ dla } 0 < c < 1,$$

$$\lim_{n \to \infty} c^n = \infty \text{ dla } c > 1,$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1,$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1,$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1 \text{ dla } c > 0,$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e,$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{a_n}\right)^{a_n} = e, \text{ przy czym } \lim_{n \to \infty} a_n = \pm \infty.$$

Twierdzenie (o arytmetyce granic ciągów). Jeżeli ciągi (a_n) i (b_n) są zbieżne to:

- $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$,
- $\lim_{n\to\infty}(a_n-b_n)=\lim_{n\to\infty}a_n-\lim_{n\to\infty}b_n$,
- $\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$,
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}, b_n \neq 0, \lim_{n\to\infty} b_n \neq 0.$