1. 양쪽의 굴절률이 다른 렌즈

및 그림과 같은 광학계가 있다. 오른쪽에서 들어온 평행광이 모이는 지점의 렌즈로부터의 거리가 3cm, 왼쪽에서 들어온 평행광이 모이는 지점의 렌즈로부터의 거리가 6cm이다. 렌즈 왼쪽 9cm 거리에 있는 물체가 맺는 상의 위치를 구하여라.

2. 물속의 거울

4cm의 물 속에 초점거리 5cm의 얇은 오목거울이 잠겨 있다. 높이 h의 물체를 수면에서부터 4,5cm 위에 놓았을 때, 상이 맺히는 위치와 크기를 구하시오.

3. 색수차 보정 렌즈

서로 다른 굴절률 n_1,n_2 를 가지는 두 가지 물질로 만든 두 렌즈를 묶어서 색수차 보정 렌즈를 만들려고 한다. 두 렌즈의 초점 거리는 각각 f_1,f_2 이며, 충분히 넓은 범위에서 두 물질의 굴절률 - 파장 관계식은 $n=n_i+a_i\Delta\lambda$ (i=1,2)의 선형성을 만족한다고 하자. (단, 관측하는 빛의 중심 파장에서는 굴절률이 n_1,n_2 라고 하자.)

 f_2 를 n_1, n_2, f_1, a_1, a_2 로 나타내어라.

힌트: 색수차를 없애려면, 초점거리가 파장에 따라 변하는 정도를 최소화해야 한다.

4. 분해능

N = 180 인 회절 격자를 이용하여 서로 다른 파장의 두 스펙트럼선을 분리하려고 한다. 300nm, 300.5nm의 파장을 가지는 두 빛은 몇 차 극대에서 처음으로 분리되는가?

5. 축전기 속 유전체가 받는 힘

밀도 ρ 의 물 속에 내경 a, 외경 b, 높이 H의 원통형 축전기를 집어넣고, 양극 사이에 V의 전압을 걸었다. 끌려올라오는 물의 높이를 구하시오.

Figure P.3.17

6. 전자기 유도 응용

아래 그림과 같이 자기장 B가 걸려 있는 구간에 길이 l의 막대가 V_0 의 속력으로 입사한다. 반대쪽에는 축전기와 인덕터가 연결되어 있다. 자기장 영역이 충분히 길다고 가정할 때 축전기의 전하 진동 진폭을 구하시오.

7. 도체와 에너지

다음 계를 만드는 데 해주어야 하는 일을 구하여라. (단, 빗금 친 곳은 도체이다)

번외

극판의 면적과 사이 거리가 동일한 두 개의 평행판 축전기가 있다. 하나는 극판 모양이 정사 각형, 하나는 원형이다. 둘 중 어느 축전기의 전기 용량이 더 클까?