MATH 100B: Homework #8

Due on Mar 7, 2024 at 12:00pm

Professor McKernan

Section A02 6:00PM - 6:50PM Section Leader: Castellano-Macías

Source Consulted: Textbook, Lecture, Discussion, Office Hour

Ray Tsai

A16848188

Problem 1

Let M, N and P be R-modules and let F be a free R-module of rank n. Show that there are isomorphisms, which are all natural (except for the last):

(a)
$$M \underset{R}{\otimes} N \simeq N \underset{R}{\otimes} M$$
.

Proof. Let $v: N \times M \to N \underset{R}{\otimes} M$ be the bilinear map associated with $N \underset{R}{\otimes} M$. Define $f: M \times N \to N \underset{R}{\otimes} M$ that sends (m,n) to v(n,m). By the universal property of tensor product, there is an induced module homomorphism $\phi: M \underset{R}{\otimes} N \to N \underset{R}{\otimes} M$. Similarly, there exsits an induced module homomorphism $\psi: N \underset{R}{\otimes} M \to M \underset{R}{\otimes} N$. By the universal property of tensor product, $\operatorname{Hom}(M \oplus N, M \oplus N)$ and $\operatorname{Hom}(N \oplus M, N \oplus M)$ only contain the identities. But then $\phi \circ \psi \in \operatorname{Hom}(M \oplus N, M \oplus N)$ and $\psi \circ \phi \in \text{Hom}(N \oplus M, N \oplus M)$, so ϕ and ψ are inverses. It follows that ϕ is a module isomorphism, so $M \underset{P}{\otimes} N \simeq N \underset{P}{\otimes} M.$

(b)
$$(M \otimes N) \otimes P \simeq M \otimes (N \otimes P)$$
.

Proof. For $m \in M$, define $\psi_m^B : N \times P \to (M \underset{R}{\otimes} N) \underset{R}{\otimes} P$, which sends (n,p) to $(m \otimes n) \otimes p$. Note that ψ_m^B is obvisouly bilinear and well-defined, and thus the universal property gives us a linear mapping $\psi_m: N\otimes P \to (M \underset{R}{\otimes} N)\otimes P$. We now define $\phi^B: M\times (N\otimes P) \to (M \underset{R}{\otimes} N)\otimes P$, which sends $(m,n\otimes p)$ to $\psi_m(n,p)$. We check that ϕ^B is bilinear. Let $m,m'\in M,\,r\in R$, and $v,v'\in N\otimes P$, say $v=\sum a_{ij}n_i\otimes p_j$ and $v' = \sum b_{ij} n_i \otimes p_j$. Since

$$\phi^{B}(m+m',v) = \psi_{m+m'}(v)$$

$$= \sum a_{ij}\psi_{m+m'}(n_{i} \otimes p_{j})$$

$$= \sum a_{ij}((m+m') \otimes n_{i}) \otimes p_{j}$$

$$= \sum a_{ij}\psi_{m}(n_{i} \otimes p_{j}) + \sum a_{ij}\psi_{m'}(n_{i} \otimes p_{j})$$

$$= \psi_{m}(v) + \psi_{m'}(v) = \phi^{B}(m,v) + \phi^{B}(m',v),$$

$$\phi^{B}(m, v + v') = \psi_{m}(v + v')$$

$$= \sum (a_{ij} + b_{ij})\psi_{m}(n_{i} \otimes p_{j})$$

$$= \sum a_{ij}(m \otimes n_{i}) \otimes p_{j} + \sum b_{ij}(m \otimes n_{i}) \otimes p_{j}$$

$$= \sum a_{ij}\psi_{m}(n_{i} \otimes p_{j}) + \sum b_{ij}\psi_{m}(n_{i} \otimes p_{j})$$

$$= \psi_{m}(v) + \psi_{m}(v') = \phi^{B}(m, v) + \phi^{B}(m, v'),$$

$$\phi^{B}(rm, v) = \psi_{rm}(v)$$

$$= \sum_{i,j} a_{ij} \psi_{rm}(n_{i} \otimes p_{j})$$

$$= r \sum_{i,j} a_{ij} \psi_{m}(n_{i} \otimes p_{j})$$

$$= r \psi_{m}(v) = r \phi^{B}(m, v),$$

$$\phi^B(m, rv) = \psi_m(rv) = r\psi_m(v) = r\phi^B(m, v),$$

 ϕ^B is indeed bilinear, so we obtain a linear $\phi: M \underset{R}{\otimes} (N \underset{R}{\otimes} P) \to (M \underset{R}{\otimes} N) \underset{R}{\otimes} P$, by the universal property. We may repeat the above process to obtain an induced linear map $\varphi: (M \underset{R}{\otimes} N) \underset{R}{\otimes} P \to M \underset{R}{\otimes} (N \underset{R}{\otimes} P)$, and thus ϕ and φ are inveres of each other, by the standard uniqueness argument. The result now follows.

(c) $R \underset{R}{\otimes} M \simeq M$.

Proof. Define mapping $f: R \times M \to M$ that sends (r,m) to rm. Note that f is obviously bilinear. The universal property of tensor product gives us a R-linear mapping $\phi: R \otimes M \to M$ which sends $r \otimes m$ to f(rm), that is, rm. Since for all $m \in M$, we have $1 \otimes m \in R \otimes M$ that is mapped to m via ϕ , so ϕ is surjective. Suppose $r \otimes m$ is in the kernel of ϕ . Then $\phi(r \otimes m) = rm = 0$, so r = 0 or m = 0. But then $r \otimes m = 0$ in either case, and thus the kernel of ϕ is trivial. The result now follows from the first isomorphism theorem.

(d) $M \underset{R}{\otimes} (N \oplus P) \simeq (M \underset{R}{\otimes} N) \oplus (M \underset{R}{\otimes} P)$.

Proof. Define mapping $f: M \times (N \oplus P) \to (M \underset{R}{\otimes} N) \oplus (M \underset{R}{\otimes} P)$, which maps $(m, (n \otimes p))$ to $(m \otimes n, m \otimes p)$. This map is obviously well defined. We show that f is bilinear. Suppose $m, m' \in M$, $n, n' \in N$, $p, p' \in P$, and $r \in R$. We then have

$$f(m+m',(n,p)) = ((m+m') \otimes n, (m+m') \otimes p)$$

$$= (m \otimes n, m \otimes p) + (m' \otimes n, m' \otimes p)$$

$$= f(m,(n,p)) + f(m',(n,p)),$$

$$f(m,(n,p) + (n',p')) = (m \otimes (n+n'), \otimes (p+p'))$$

$$= (m \otimes n, m \otimes p) + (m \otimes n', m \otimes p')$$

$$= f(m,(n,p)) + f(m,(n',p')),$$

$$f(rm,(n,p)) = (rm \otimes n, rm \otimes p)$$

$$= (r(m \otimes n), r(m \otimes p))$$

$$= r(m \otimes n, m \otimes p) = rf(m,(n,p)),$$

$$f(m,r(n,p)) = (m \otimes rn, m \otimes rp)$$

$$= (r(m \otimes n), r(m \otimes p))$$

$$= r(m \otimes n, m \otimes p) = rf(m,(n,p)),$$

and thus f is bilinear. The universal property of tensor product now gives us an induced R-linear mapping

$$\phi: M \underset{R}{\otimes} (N \oplus P) \to (M \underset{R}{\otimes} N) \oplus (M \underset{R}{\otimes} P),$$

which maps $m \otimes (n, p)$ to f(m, (n, p)).

It remains to find the inverse of ϕ . Define $\psi_1^B: M \times N \to M \underset{R}{\otimes} (N \oplus P)$ by sending (m,n) to $m \otimes (n,0)$, and define $\psi_2^B: M \times P \to M \underset{R}{\otimes} (N \oplus P)$ by sending (m,p) to $m \otimes (0,p)$. Note that both ψ_1^B and ψ_2^B are bilinear, so the universal property gives us linear mappings $\psi_1: M \underset{R}{\otimes} N \to M \underset{R}{\otimes} (N \oplus P)$ and

 $\psi_2: M \underset{R}{\otimes} P \to M \underset{R}{\otimes} (N \oplus P)$. Now define $\psi: (M \underset{R}{\otimes} N) \oplus (M \underset{R}{\otimes} P) \to M \underset{R}{\otimes} (N \oplus P)$ by sending $((m \otimes n), (m' \otimes p))$ to $\psi_1(m \otimes n) + \psi_2(m' \otimes p)$. Note that ψ is linear, as both ψ_1 and ψ_2 are linear.

We now show that ϕ and ψ are inverses of each other. Suppose $v \in M \underset{R}{\otimes} N$, $w \in M \underset{R}{\otimes} P$, and $x \in M \underset{R}{\otimes} (N \oplus P)$, say $v = \sum a_{ij} m_i \otimes n_j$, $w = \sum b_{ij} m_i \otimes p_j$, and $x = \sum c_{ijk} m_i \otimes (n_j, p_k)$. Since both ϕ and ψ are linear,

$$\phi \circ \psi(v, w) = \phi(\psi_1(v) + \psi_2(w))
= \phi(\psi_1(v)) + \phi(\psi_2(w))
= \sum a_{ij}\phi(\psi_1(m_i \otimes n_j)) + \sum b_{ij}\phi(\psi_1(m_i \otimes p_j))
= \sum a_{ij}\phi(m_i \otimes (n_j, 0)) + \sum b_{ij}\phi(m_i \otimes (0, p_j))
= \sum a_{ij}(m_i \otimes n_j, 0) + \sum b_{ij}(0, m_i \otimes p_j) = (v, 0) + (0, w) = (v, w),$$

$$\psi \circ \phi(x) = \psi \left(\sum_{ijk} \phi(m_i \otimes (n_j, p_k)) \right)$$

$$= \sum_{ijk} c_{ijk} \psi(m_i \otimes n_j, m_i \otimes p_k)$$

$$= \sum_{ijk} c_{ijk} (\psi_1(m_i \otimes n_j) + \psi_2(m_i \otimes p_k))$$

$$= \sum_{ijk} c_{ijk} (m_i \otimes (n_j, 0) + (m_i \otimes (0, p_k)))$$

$$= \sum_{ijk} c_{ijk} (m_i \otimes (n_j, p_k)) = x,$$

and the result follows.

(e) $F \underset{R}{\otimes} M \simeq M^n$.

Proof. Note that $F \simeq R^n$. We show that $R^n \otimes M \simeq M^n$ by induction on n. The base case follows from (c). Suppose n > 1. By (d), we have $R^n \otimes M \simeq (R \otimes M) \oplus (R^{n-1} \otimes M) \simeq M \oplus (R^{n-1} \otimes M)$. The result now follows from induction.

Problem 2

Let m and n be integers. Identify $\mathbb{Z}_m \underset{\mathbb{Z}}{\otimes} \mathbb{Z}_n$.

Proof. Let $d = \gcd(m, n)$. We show that $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n \simeq \mathbb{Z}_d$. Let $a, b \in \mathbb{Z}$. We first note that $0 \otimes a = b \otimes 0 = 0$. In addition, since $(ab)(1 \otimes 1) = a \otimes b$, all elements in $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n$ are multiples of $1 \otimes 1$, so we have a cyclic group.

Define $f: \mathbb{Z}_m \times \mathbb{Z}_n \to \mathbb{Z}_d$ that sends (a, b) to ab. Suppose (a, b) = (a', b'). We know a' = a + km and b' = b + ln, for some $k, l \in \mathbb{Z}$. But then d divides m, n, so a' = a and b' = b, mod d. Hence, f(a, b) = ab = a'b' = f(a', b'), so f is well-defined. Since f is obviously bilinear, the universal property of tensor product gives us an induced module homomorphism

$$\phi: \mathbb{Z}_m \underset{\mathbb{Z}}{\otimes} \mathbb{Z}_n \to \mathbb{Z}_d,$$

which sends $1 \otimes 1$ to f(1,1) = 1.

Consider $\psi: \mathbb{Z}_d \to \mathbb{Z}_m \underset{\mathbb{Z}}{\otimes} \mathbb{Z}_n$, which sends k to $k \otimes 1$. Suppose $k' = k + \alpha d$, for some $\alpha \in \mathbb{Z}$. Then,

$$\psi(k') = (k + \alpha d) \otimes 1 = k(1 \otimes 1) + \alpha(d(1 \otimes 1)).$$

Since $d = \gcd(m, n)$, d = pm + qn, for some $p, q \in \mathbb{Z}$. But then

$$d(1 \otimes 1) = (pm + qn)(1 \otimes 1) = p(m \otimes 1) + q(1 \otimes n) = 0,$$

so $\psi(k') = k(1 \otimes 1) = \psi(k)$, and thus ψ is well defined. Note that ψ is obviously linear.

Since $\phi \circ \psi(k) = \phi(k(1 \otimes 1)) = k$ and $\psi \circ \phi(a \otimes b) = \psi(ab) = (ab)(1 \otimes 1) = (a \otimes b)$, ϕ is an module isomorphism, and the result follows.

Problem 3

Show that if M and N are two finitely generated (respectively Noetherian) R-modules (respectively and R is Noetherian) then so is $M \underset{R}{\otimes} N$.

Proof. By Proposition 11.7., it suffices to show that $M \otimes N$ is finitely generated. Suppose m_1, m_2, \ldots, m_k and n_1, n_2, \ldots, n_l are the generators of M and N, respectively. Let $m \otimes n \in M \otimes N$. Since $m = \sum_i a_i m_i$ and $n = \sum_j b_j n_j$, for some $a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_l \in R$, we have

$$m \otimes n = \sum_{i} a_i(m_i \otimes n) = \sum_{i} \sum_{j} a_i b_j(m_i \otimes n_j) = \sum_{i,j} c_{ij}(m_i \otimes n_j),$$

where $c_{ij} = a_i b_j$. Hence, $M \otimes N$ is generated by $m_i \otimes n_j$, for finitely many i, j, and the result now follows. \square