Show all work clearly and in order. Please box your answers. 10 minutes.

1. Draw an arrow diagram for the "is an element of" relation \in from $X = \{0, 1, 2, 3\}$ to $Y = \mathcal{P}(\{0, 2\})$.

2. Define the relation R on $X = \{1, 2, 3\}$ by

xRy if and only if $x \leq y$.

(a) Draw a digraph (directed graph) for the relation R on X.

(b) Show that R is a partial order relation on X.

proof:

reflexive: $\forall x \in X$, $x \leq x$ have $x R \times$

ontisymmetric: Let x,y \(\) and Let xRy \(\) yRX

so \(\times = \) and \(\times = \) \(\times \)

this is only true if \(\times = \) (property of R and X \(\times = \) \(\times \)

transitive: Let \(\times \) y \(\times = \) \(\times \) and \(\times = \) \(\times \)

The analysis of \(\times = \) \(\times = \) \(\times \)

The analysis of \(\times = \) \(\times

(c) Draw a Hasse diagram for the relation R on X.

