LECTURE 9: NEURAL NETWORKS

Ehsan Aryafar earyafar@pdx.edu

http://web.cecs.pdx.edu/~aryafare/ML.html

Recall: MNIST Digit Classification

HANDWRITING SAMPLE FORM

From Patrick J. Grother, NIST Special Database, 1995

- Problem: Recognize hand-written digits
- Original problem:
 - Census forms
 - Automated processing
- Classic machine learning problem
- Benchmark

Recall: Linear Separability and Margin

- Given training data (x_i, y_i) , i = 1, ..., N
 - Binary class label: $y_i = \pm 1$
- Suppose it is separable with parameters (w, b)
- There must exist a $\gamma > 0$ s.t.:
 - $b + w_1 x_{i1} + \cdots w_d x_{id} > \gamma$ when $y_i = 1$
 - $b + w_1 x_{i1} + \cdots w_d x_{id} < -\gamma$ when $y_i = -1$
- Single equation form:

$$y_i(b + w_1x_{i1} + \cdots w_dx_{id}) > \gamma$$
 for all $i = 1, ..., N$

- Margin: $\mathbf{m} = \frac{\gamma}{\|\mathbf{w}\|}$: minimal distance of a sample to the plane
 - γ is the minimum value satisfying the above constraints

Recall: Hinge Loss

- Fix $\gamma = 1$
- Want ideally: $y_i(\mathbf{w}^T \mathbf{x} + b) \ge 1$ for all samples i
 - Equivalently, $y_i z_i \ge 1$, $z_i = b + \mathbf{w}^T \mathbf{x}$
 - Note that y_i is + or one
- But perfect separation may not be possible
- Define hinge loss or soft margin:
 - $L_i(\mathbf{w}, b) = \max(0, 1 y_i z_i)$
- Starts to increase as sample is misclassified:
 - $y_i z_i \ge 1 \Rightarrow$ Sample meets margin target, $L_i(w) = 0$
 - $y_i z_i \in [0,1) \Rightarrow$ Sample margin too small, small loss
 - $y_i z_i \le 0 \Rightarrow$ Sample misclassified, large loss

Recall: SVM Optimization

- Given data (x_i, y_i)
- Optimization $\min_{w,b} J(w,b)$

$$J(\mathbf{w}, b) = C \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)) + \frac{1}{2} ||\mathbf{w}||^2$$

C controls final margin

Hinge loss term Attempts to reduce Misclassifications

margin= $1/\|\boldsymbol{w}\|$

- Constant C > 0 will be discussed below
- Note: ISL book uses different naming conventions.
 - We have followed convention in sklearn

Recall: Alternate Form of SVM Optimization (Constrained Optimization Form)

Equivalent optimization:

$$\min J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}), \qquad J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}) = C \sum_{i=1}^N \epsilon_i + \frac{1}{2} \|\boldsymbol{w}\|^2$$

Subject to constraints:

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \epsilon_i$$
 for all $i = 1, ..., N$

- ϵ_i = amount sample *i* misses margin target
- Sometimes written as $J_1(w, b, \epsilon) = C \|\epsilon\|_1 + \frac{1}{2} \|w\|^2$
 - $\|\epsilon\|_1 = \sum_{i=1}^N \epsilon_i$ called the "one-norm"
 - Generally one-norm would have absolute sign over ϵ_i .
 - But in this case, when the constraint is met, ϵ_i >=0.

Recall: Support Vectors

- Support vectors: Samples that either:
 - Are exactly on margin: $y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$
 - Or, on wrong side of margin: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \leq 1$
- Changing samples that are not SVs
 - Does not change solution
 - Provides robustness

Recall: SVMs with Non-Linear Transformations

- Non-linear transformation:
 - Replace x with $\phi(x)$
 - Enables more rich, non-linear classifie
 - Examples: polynomial classification

$$\phi(x) = [1, x, x^2, ..., x^{d-1}]$$

- Tries to find separation in a feature space (e.g., classification in the picture)
 - You can do this with any classifier (we have already done this)
- Kernel trick in SVMs:
 - Makes applying non-linear transformations easy

Recall: SVM with the Transformation

- Consider SVM model with x replaced by $\phi(x)$
- Minimize SVM cost function as before (i.e. Hinge loss + inverse margin)
- Theorem: The optimal weight is of the form (linear):

$$w = \sum_{i=1}^{N} \alpha_i y_i \phi(x_i)$$

- $\alpha_i \ge 0$ for all i
- $\alpha_i > 0$ if and only if sample i is a support vector
- Will show this fact later using results in constrained optimization
- Consequence: The linear discriminant on any other sample x is:

$$z = b + \mathbf{w}^T \phi(\mathbf{x}) = b + \sum_{i=1}^N \alpha_i y_i \boxed{\phi(\mathbf{x}_i)^T \phi(\mathbf{x})}$$

•

$$K(x_i, x) = \text{``kernel''}$$

Recall: Kernel Form of the SVM Classifier

• SVM classifier can be written with the kernel $K(x_i, x)$ and values $\alpha_i \ge 0$:

$$z = b + \sum_{i=1}^{N} \alpha_i y_i K(x_i, x),$$

$$\hat{y} = \text{sign}(z) = \begin{cases} 1 & \text{if } z > 0 \\ -1 & \text{if } z < 0 \end{cases}$$
Classification decision

- Key point: SVM classifier is approximately Kernel classifier
- But there are two differences:
 - introduction of weights $\alpha_i \ge 0$ on the samples (the weights are only non-zero on the SVs)
 - A bias term b (can be positive or negative)

Recall: "Kernel Trick" and Dual Parameterization

Kernel form of SVM classifier (previous slide):

$$z = b + \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}),$$

$$\hat{y} = \operatorname{sign}(z)$$

- Dual parameters: $\alpha_i \ge 0, i = 1, ..., N$
 - Problem based on α_i parameters
 - Called the dual parameters due to constrained optimization see next section
- Kernel trick:
 - Directly solve the parameters α instead of the weights w
 - Can show that the optimization only needs the kernel $K(x_i, x)$
 - Does not need to explicitly use $\phi(x)$

Recall: MNIST Results

from sklearn import svm

- Run classifier
- Very slow
 - Several minutes for 40,000 samples
 - Slow in training and test
 - Major drawback of SVM
- Accuracy ≈ 0.984
 - Much better than logistic regression
- Can get better with:
 - pre-processing
 - More training data
 - Optimal parameter selection

```
# Create a classifier: a support vector classifier
svc = svm.SVC(probability=False, kernel="rbf", C=2.8, gamma=.0073,verbose=10)

svc.fit(Xtr,ytr)

[LibSVM]

SVC(C=2.8, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape=None, degree=3, gamma=0.0073, kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=10)
```

```
yhat1 = svc.predict(Xts)
acc = np.mean(yhat1 == yts)
print('Accuaracy = {0:f}'.format(acc))
```

Accuaracy = 0.984000

Learning Objectives

- Mathematically describe a neural network with a single hidden layer
 - Describe mappings for the hidden and output units
- Manually compute output regions for very simple networks
- Select the loss function based on the problem type
- Build and train a simple neural network in Keras
- Write the formulas for gradients using backpropagation
- Describe mini-batches in stochastic gradient descent

Outline

- Motivating Idea: Nonlinear classifiers from linear features
- Training Neural Networks and Stochastic Gradient Descent
- Building and Training a Network in Tensorflow
 - Synthetic data
 - MNIST
- Backpropagation Training

Most Datasets are not Linearly Separable

- Consider simple synthetic data
 - See figure to the left
 - 2D features
 - Binary class label
- Not linearly separable

Need a better classifier!

From Linear to Nonlinear

- Idea: Build nonlinear region from linear decisions
- Possible form for a classifier:
 - Step 1: Classify into small number of linear regions
 - Step 2: Predict class label from step 1 decisions

A First Neural Network

- Input: $x = (x_0, x_1)$
- Step 1. Hidden units: Four linear classification rules of the inputs
 - $z_{H,m} = \mathbf{w}_{H,m}^T \mathbf{x} + b_m, \quad m = 1, ..., 4$
 - $u_{H,m} = 1/(1 + e^{-z_{Hm}})$
- Step 2: Output unit: A linear classification rule on the hidden units

 - $u_0 = 1/(1 + e^{-z_0})$

General Neural Net Block Diagram

- Hidden layer: $\mathbf{z}_H = \mathbf{W}_H^T \mathbf{x} + \mathbf{b}_H$, $\mathbf{u}_H = g_{hid}(\mathbf{z}_H)$
- Output layer: $\mathbf{z}_O = \mathbf{W}_O^T \mathbf{u}_H + \mathbf{b}_O$, $u_O = g_{out}(\mathbf{z}_O)$

Inspiration from Biology

- Simple model of neurons
 - Dendrites: Input currents from other neurons
 - Soma: Cell body, accumulation of charge
 - Axon: Outputs to other neurons
 - Synapse: Junction between neurons
- Operation:
 - Take weighted sum of input current
 - Outputs when sum reaches a threshold
- Each neuron is like one unit in neural network

History

- Interest in understanding the brain for thousands of years
- 1940s: Donald Hebb. Hebbian learning for neural plasticity
 - Hypothesized rule for updating synaptic weights in biological neurons
- 1950s: Frank Rosenblatt: Coined the term perceptron
 - Essentially single layer classifier, similar to logistic classification
 - Early computer implementations
 - But, Limitations of linear classifiers and computer power
- 1960s: Backpropagation: Efficient way to train multilayer networks
 - More on this later
- 1980s: Resurgence with greater computational power
- 2005+: Deep networks
 - Many more layers. Increased computational power and data
 - Enabled first breakthroughs in various image and text processing.

 $g_{out}(\mathbf{z}_0)$

Terminology

Equations:

$$\mathbf{z}_{H} = \mathbf{W}_{H}^{T} \mathbf{x} + \mathbf{b}_{H}, \quad \mathbf{u}_{H} = g_{hid}(\mathbf{z}_{H})$$

$$\mathbf{z}_{O} = \mathbf{W}_{O}^{T} \mathbf{u}_{H} + \mathbf{b}_{O}, \quad u_{O} = g_{out}(\mathbf{z}_{O})$$

$$\mathbf{z}_{H} = \mathbf{w}_{O}^{T} \mathbf{u}_{H} + \mathbf{b}_{O}, \quad \mathbf{u}_{O} = g_{out}(\mathbf{z}_{O})$$

 $g_{hid}(\mathbf{z}_{O})$

- Units:
 - Hidden units: The components of $oldsymbol{u}_H$
 - Output units: The components of $oldsymbol{u}_O$
- Activations:
 - "Activation functions": $g_{hid}(\mathbf{z}_H)$ and $g_{out}(\mathbf{z}_O)$
 - z_H and z_O are the "pre-activations"
 - u_H and u_O are the "post-activations"

Selecting the Output Activation

Target	Num output units $=\dim(u_o)=\dim(z_o)$	Output activation $u_0 = g_{out}(\mathbf{z}_0)$	Interpretation
Binary classification	1	$u_0 = \operatorname{sigmoid}(z_0)$	$u_0 = P(y = 1 x)$
K-class classification	K	$\mathbf{u}_0 = \operatorname{softmax}(\mathbf{z}_0)$	$u_{O,k} = P(y = k x)$
Regression with K outputs	K	$u_0 = z_0$	$u_{O,k} = \hat{y}_k$

Selecting the Hidden Activation

- Two common choices
- Sigmoid:
 - $u_{H,k} = 1/(1 + \exp(-z_{H,k}))$
- ReLU (Rectified linear unit):
 - $u_{H,k} = \max\{0, z_{H,k}\}$

ReLU

Outline

- Motivating Idea: Nonlinear classifiers from linear features
- Training Neural Networks and Stochastic Gradient Descent
- Building and Training a Network in Tensorflow
 - Synthetic data
 - MNIST
- Backpropagation Training

Training a Neural Network

- Given data: $(x_i, y_i), i = 1, ..., N$
- Learn parameters: $\theta = (W_H, b_H, W_o, b_o)$
 - Weights and biases for hidden and output layers
- Will minimize a loss function: $L(\theta)$ $\hat{\theta} = \arg\min_{\theta} L(\theta)$
 - $L(\theta)$ = measures how well parameters θ fit training data (x_i, y_i)

Number of Parameters

Layer	Parameter	Symbol	Number parameters	Example $N_I = 5, N_H = 20, N_O = 3$
Hidden layer	Bias	b_H	N_H	20
	Weights	W_H	$N_H N_I$	20(5)=100
Output layer	Bias	b_O	N_O	3
	Weights	W_O	$N_O N_H$	3(20)=60
Total			$N_H(N_I + 1) + N_O(N_H + 1)$	183

■Sizes:

- \circ N_I = input dimension, N_H = number of hidden units, N_O =output dimension
- \square N_H = number of hidden units is a free parameter
- □Discuss selection later

Selecting the Right Loss Function

- Depends on the problem type
- Always compare final output z_{Oi} with target y_i (ground truth)

Problem	Target y _i	Output z_{0i}	Loss function	Formula
Regression	y_i = Scalar real	z_{Oi} = Prediction of y_i Scalar output / sample	Squared / MSE loss	$\sum_{i} (y_i - z_{Oi})^2$
Regression with vector samples	$\mathbf{y}_i = (y_{i1}, \dots, y_{iK})$	z_{Oik} = Prediction of y_{ik} K outputs / sample	Squared / MSE loss	$\sum_{ik} (y_{ik} - z_{Oik})^2$
Binary classification	$y_{\rm i}=\{0,1\}$	z_{Oi} = "logit" score Scalar output / sample	Binary cross entropy	$\sum_{i}[\ln(1+e^{y_iz_i})-y_iz_{0i}]$
Multi-class classification	$y_{\rm i}=\{1,\ldots,K\}$	z_{Oik} = "logit" scores K outputs / sample	Categorical cross entropy	$\sum_{i} \ln \left(\sum_{k} e^{z_{Oik}} \right) - \sum_{k} r_{ik} z_{Oik}$

Note on Indexing

- Neural networks are often processed in batches
 - Set of training or test samples
- Need different notation for single and batch input case
- For a single input x
 - $x_i = j$ -th feature of the input
 - $z_{H,j}$, $u_{H,j}$, $z_{O,j}$ = j-th component of hidden and output variables
 - H and O stand for Hidden and Output. Not an index
 - Write x, z_0, y if they are scalar (i.e. do not write index)
- For a batch of inputs x_1, \dots, x_N
 - $x_{ij} = j$ -th feature of the input sample i
 - $z_{H,ij}$, $u_{H,ij}$, $z_{O,ij}$ = j-th component of hidden and output variables for sample i

Dimension Example

- Consider a neural network with:
 - d = 5 inputs, $N_H = 20$ hidden units
 - Output is for K = 3 class classification $\Rightarrow 3$ output units
- Dimensions for one input sample:
 - Input x: vector shape 5
 - Hidden units z_H , u_H : vector shape 20 (each hidden unit has 20 dimensions)
 - Output units z_0 , u_0 : vector shape 3 (each output unit has 3 dimensions)
- Dimensions for batch of 100 samples
 - Input x: matrix shape (100,5)
 - Hidden units z_H , u_H : matrix shape (100,20)
 - Output units z_0 , u_0 : matrix shape (100,3)

Problems with Standard Gradient Descent

Neural network training (like all training): Minimize loss function

$$\widehat{\theta} = \arg\min_{\theta} L(\theta), \qquad L(\theta) = \frac{1}{N} \sum_{i=1}^{N} L_i(\theta, \mathbf{x}_i, y_i)$$
• $L_i(\theta, \mathbf{x}_i, y_i)$ = loss on sample i for parameter θ

- Standard gradient descent:

$$\theta^{k+1} = \theta^k - \alpha \nabla L(\theta^k) = \theta^k - \frac{\alpha}{N} \sum_{i=1}^N \nabla L_i(\theta^k, \mathbf{x}_i, y_i)$$

- Each iteration requires computing N loss functions and gradients
- Will discuss how to compute this gradient later
- But gradient computation is expensive when data size N is large
 - Because at each step you need to compute the gradient on all data samples
 - Even on a small dataset like MNIST (50000 samples) it becomes expensive
 - We need to make the process more efficient!

Stochastic Gradient Descent

- In each step:
 - Select random small "minibatch"
 - Evaluate gradient on mini-batch
- For t = 1 to N_{Steps}
 - Select random mini-batch *I* ⊂ {1, ..., *N*}
 - Compute gradient approximation (only over minibatch samples):

$$g^{t} = \frac{1}{|I|} \sum_{i \in I} \nabla L(x_{i}, y_{i}, \theta)$$

• Update parameters: $\theta^{t+1} = \theta^t - \alpha^t g^t$

SGD Theory (Advanced)

Mini-batch gradient = true gradient in expectation:

$$E(g^t) = \frac{1}{N} \sum_{i=1}^{N} \nabla L(x_i, y_i, \theta) = \nabla L(\theta^t)$$

- Hence can write $g^t = \nabla L(\theta^t) + \xi^t$,
 - ξ^t = random error in gradient calculation, $E(\xi^t) = 0$
 - SGD update: $\theta^{t+1} = \theta^t \alpha^t g^t$, $\theta^{t+1} = \theta^t \alpha^t \nabla L(\theta^t) \alpha^t \xi^t$
- Robins-Munro: Suppose that $\alpha^t \to 0$ and $\sum_t \alpha^t = \infty$. Let $s_t = \sum_{k=0}^t \alpha^k$
 - Then $\theta^t \to \theta(s_t)$ where $\theta(s)$ is the continuous solution to the differential equation:

$$\frac{d\theta(s)}{ds} = -\nabla L(\theta)$$

- High-level take away:
 - If step size is decreased, random errors in sub-sampling are averaged out

SGD Practical Issues

- Terminology:
 - Suppose minibatch size is B. Training size is N
 - Each training epoch includes updates going through all nonoverlapping minibatches
 - There are $\frac{N}{B}$ steps per training epoch
- Example: (Typical values for MNIST)
 - N = 50000 samples, B = 100 batch size $\Rightarrow \frac{N}{B} = 500$ steps per epoch
- Data shuffling
 - Generally do not randomly pick a mini-batch
 - In each epoch, randomly shuffle training samples
 - Then, select mini-batches in order through the shuffled training samples.
 - It is critical to reshuffle in each epoch!

Outline

- Motivating Idea: Nonlinear classifiers from linear features
- Training Neural Networks and Stochastic Gradient Descent
- Building and Training a Network in Tensorflow
 - Synthetic data
 - MNIST
- Backpropagation Training

Keras and TensorFlow

- Keras: An open-source software library with a Python interface for NNs. Keras acts as an interface for TF.
- TensorFlow (TF): An open-source and free software library for ML that can be used across a range of tasks with a particular focus on training and inference of deep NNs.

Keras Recipe

- Step 1. Describe model architecture
 - Number of hidden units, output units, activations, ...
- Step 2. Select an optimizer
- Step 3. Select a loss function and compile the model
- Step 4. Fit the model
- Step 5. Test / use the model

Synthetic Data Example

- Try a simpler two-layer NN
 - Input $x = 2 \dim$
 - 4 hidden units
 - 1 output unit (binary classification)

Step 0: Import the Packages

- Install Tensorflow
- For this lab, you can use the CPU version
- If you are using Google Collaboratory, TF is pre-installed

import tensorflow as tf

https://www.tensorflow.org/install

Step 1: Define Model

```
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Dense, Activation

import tensorflow.keras.backend as K
K.clear_session()
```

- Load modules for layers
- Clear graph (extremely important!)
- Build model
 - This example: dense layers
 - Give each layer a dimension, name & activation

```
nin = nx # dimension of input data
nh = 4 # number of hidden units
nout = 1 # number of outputs = 1 since this is binary
model = Sequential()
model.add(Dense(units=nh, input_shape=(nx,), activation='sigmoid', name='hidden'))
model.add(Dense(units=nout, activation='sigmoid', name='output'))
```

Step 1: Continued

- Print the model summary
- For each layers
 - Shows dimensions and shape
- Note shapes:

• (None, 4) ×

model.summary()			
Layer (type)	Output Shape	Param #	
hidden (Dense)	(None, 4)	12	
output (Dense)	(None, 1)	5	
Total params: 17			
Trainable params: 17 Non-trainable params: 0			

Step 2, 3: Select an Optimizer & Compile

- Adam optimizer generally works well for most problems
 - In this case, had to manually set learning rate
 - You often need to play with this.
- Use binary cross-entropy loss
- Metrics indicate what will be printed in each epoch

Step 4: Fit the Model

```
model.fit(X, y, epochs=10, batch size=100)
Epoch 1/10
400/400 [================] - 0s - loss: 0.8047 - acc: 0.3900
Epoch 2/10
400/400 [================] - 0s - loss: 0.7695 - acc: 0.3900
Epoch 3/10
400/400 [================] - 0s - loss: 0.7428 - acc: 0.3900
Epoch 4/10
400/400 [===============] - 0s - loss: 0.7223 - acc: 0.3900
Epoch 5/10
400/400 [=========== ] - 0s - loss: 0.7027 - acc: 0.4000
Epoch 6/10
400/400 [===========] - 0s - loss: 0.6895 - acc: 0.5650
Epoch 7/10
400/400 [===============] - 0s - loss: 0.6814 - acc: 0.6100
Epoch 8/10
400/400 [============== ] - 0s - loss: 0.6756 - acc: 0.6100
Epoch 9/10
400/400 [===============] - 0s - loss: 0.6720 - acc: 0.6100
Epoch 10/10
```

- Use keras fit function
 - Specify number of epoch & batch size
- Prints progress after each epoch
 - Loss = loss on training data
 - Acc = accuracy on training data

Fitting the Model with Many Epochs

- This example requires large number of epochs (~1000)
- Do not want to print progress on each epoch
- Rewrite code to manually print progress
- Can also use a callback function

```
epoch= 50 loss= 6.6854e-01 acc=0.61000
epoch= 100 loss= 6.6702e-01 acc=0.61000
epoch= 150 loss= 6.5264e-01 acc=0.61000
epoch= 200 loss= 5.9691e-01 acc=0.53500
epoch= 250 loss= 5.4305e-01 acc=0.70500
epoch= 300 loss= 4.8620e-01 acc=0.79000
epoch= 350 loss= 4.1364e-01 acc=0.86250
epoch= 400 loss= 3.6114e-01 acc=0.86250
epoch= 450 loss= 3.3093e-01 acc=0.86750
epoch= 500 loss= 3.1383e-01 acc=0.86750
epoch= 550 loss= 3.0321e-01 acc=0.87250
epoch= 600 loss= 2.9631e-01 acc=0.88000
epoch= 650 loss= 2.9159e-01 acc=0.87750
epoch= 700 loss= 2.8804e-01 acc=0.88250
epoch= 750 loss= 2.8534e-01 acc=0.88750
epoch= 800 loss= 2.8322e-01 acc=0.88250
epoch= 850 loss= 2.8132e-01 acc=0.88750
epoch= 900 loss= 2.7995e-01 acc=0.89000
epoch= 950 loss= 2.7846e-01 acc=0.88500
epoch=1000 loss= 2.7721e-01 acc=0.89000
```

```
nit = 20 # number of training iterations
nepoch per it = 50 # number of epochs per iterations
# Loss, accuracy and epoch per iteration
loss = np.zeros(nit)
acc = np.zeros(nit)
epoch it = np.zeros(nit)
# Main iteration loop
for it in range(nit):
    # Continue the fit of the model
    init epoch = it*nepoch per it
    model.fit(X, y, epochs=nepoch_per_it, batch_size=100, verbose=0)
    # Measure the loss and accuracy on the training data
    lossi, acci = model.evaluate(X,y, verbose=0)
    epochi = (it+1)*nepoch per it
    epoch it[it] = epochi
    loss[it] = lossi
    acc[it] = acci
    print("epoch=%4d loss=%12.4e acc=%7.5f" % (epochi,lossi,acci))
```

Performance vs Epoch

Can observe loss function slowly converging

Step 5. Visualizing the Decision Regions

- Feed in data $x = (x_1, x_2)$ over grid of points in $[0,1] \times [0,1]$
- Use predict to observe output for each input point
- Plot outputs $u_O = sigmoid(z_O)$

```
0.9
# Limits to plot the response.
                                                                                                                 0.8
xmin = [0,0]
xmax = [1,1]
                                                                                                                 0.7
                                                                                                                 0.6
# Use mesharid to create the 2D input
nplot = 100
                                                                                                                 0.5
x0plot = np.linspace(xmin[0],xmax[1],nplot)
                                                                                                                 0.4
x1plot = np.linspace(xmin[0],xmax[1],nplot)
x0mat, x1mat = np.meshgrid(x0plot,x1plot)
                                                                                                                 0.3
Xplot = np.column stack([x0mat.ravel(), x1mat.ravel()])
                                                                     0.2
                                                                                                                 0.2
# Compute the output
                                                                                                                 0.1
yplot = model.predict(Xplot)
yplot mat = yplot[:,0].reshape((nplot, nplot))
                                                                                     0.4
                                                                                            0.6
# Plot the recovered region
plt.imshow(np.flipud(yplot mat), extent=[xmin[0],xmax[0],xmin[0],xmax[1]], cmap=plt.cm.Reds)
plt.colorbar()
```

Visualizing the Hidden Layers

- Create a new model with hidden layer output
- Feed in data $x = (x_1, x_2)$ over $[0,1] \times [0,1]$
- Predict outputs from hidden outputs

Each hidden layer is a logistic regression layer with a different separating line!

Outline

- Motivating Idea: Nonlinear classifiers from linear features
- Training Neural Networks and Stochastic Gradient Descent
- Building and Training a Network in Tensorflow
 - Synthetic data
 - MNIST
- Backpropagation Training

Recap: MNIST data

- Classic MNIST problem:
 - Detect hand-written digits
 - Each image is 28 x 28 = 784 pixels
- Dataset size:
 - 50,000 training digits
 - 10,000 test
 - 10,000 validation (not used here)
- Can be loaded with sklearn and many other packages
 - Can also get it directly from TF package

Simple MNIST Neural Network

784 inputs, 100 hidden units, 10 outputs

```
nin = Xtr.shape[1] # dimension of input data
nh = 100  # number of hidden units
nout = int(np.max(ytr)+1)  # number of outputs = 10 since there are 10 classes
model = Sequential()
model.add(Dense(units=nh, input_shape=(nin,), activation='sigmoid', name='hidden'))
model.add(Dense(units=nout, activation='softmax', name='output'))
```

model.summary()		
Layer (type)	Output Shape	Param #
hidden (Dense)	(None, 100)	78500
output (Dense)	(None, 10)	1010

Total params: 79,510 Trainable params: 79,510 Non-trainable params: 0

Fitting the Model

- Run for 20 epochs, ADAM optimizer, batch size = 100
- Final accuracy = 0.972
- Not great, but much faster than SVM. Also, CNNs do better.

```
opt = optimizers.Adam(lr=0.001) # beta 1=0.9, beta 2=0.
model.compile(optimizer=opt,
         loss='sparse categorical_crossentropy',
         metrics=['accuracy'])
model.fit(Xtr, ytr, epochs=10, batch size=100, validation data=(Xts,yts))
FDOCU \\TA
c: 0.9717
Epoch 8/10
50000/50000 [============= ] - 3s - loss: 0.0440 - acc: 0.9884 - val loss: 0.0875 - val ac
c: 0.9718
Epoch 9/10
c: 0.9732
Epoch 10/10
c: 0.9718
```

Training and Validation Accuracy


```
tr_accuracy = hist.history['acc']
val_accuracy = hist.history['val_acc']

plt.plot(tr_accuracy)
plt.plot(val_accuracy)
plt.grid()
plt.xlabel('epochs')
plt.ylabel('accuarcy')
plt.legend(['training accuracy', 'validation accuracy'])
```

- Training accuracy continues to increase
- Validation accuracy eventually flattens and sometimes starts to decrease.
- Should stop when the validation accuracy starts to decrease.
- This indicates overfitting.

Outline

- Motivating Idea: Nonlinear classifiers from linear features
- Training Neural Networks and Stochastic Gradient Descent
- Building and Training a Network in Tensorflow
 - Synthetic data
 - MNIST
- Backpropagation Training

Stochastic Gradient Descent

- Training uses SGD
- In each step:
 - Select a subset of sample for minibatch $I \subset \{1, ..., N\}$
 - Evaluate mini-batch loss $L(\theta^t) = \sum_{i \in I} L_i(\theta^t, \mathbf{x}_i, y_i)$
 - Evaluate mini-batch gradient $g^t = \sum_{i \in I} \nabla L_i(\theta^t, x_i, y_i)$
 - Take SGD step: $\theta^{t+1} = \theta^t \alpha g^t$
- Question: How do we compute gradient?

Gradients with Multiple Parameters

- For neural net problem: $\theta = (W_H, b_H, W_O, b_O)$
- Gradient is computed with respect to each parameter:

$$\nabla L(\theta) = [\nabla_{W_H} L(\theta), \nabla_{b_H} L(\theta), \nabla_{W_O} L(\theta), \nabla_{b_O} L(\theta)]$$

Gradient descent is performed on each parameter:

$$W_{H} \leftarrow W_{H} - \alpha \nabla_{W_{H}} L(\theta),$$

$$b_{H} \leftarrow b_{H} - \alpha \nabla_{b_{H}} L(\theta),$$

• • • •

Computation Graph & Forward Pass

- Neural network loss function can be computed via a computation graph
- Sequence of operations starting from measured data and parameters
- Loss function computed via a forward pass in the computation graph

•
$$z_{H,i} = W_H x_i + b_H$$

•
$$u_{H,i} = g_{act}(z_{H,i})$$

•
$$L = \sum_{i} L_i(z_{O,i}, y_i)$$

Forward Pass Example in Numpy

- Example network:
 - Single hidden layer with N_H hidden units, single output unit
 - Sigmoid activation, binary cross entropy loss

```
def forward(param, X, y):
   Computes the BCE loss for a neural network
   with one hidden layer and sigmoid activations
   # Unpack the parameters
   Wh, bh, Wo, bo = param
   # Hidden layer
   Zh = X.dot(Wh) + bh[None, :]
   Uh = 1/(1+np.exp(-Zh))
   # Output layer
    zo = Uh.dot(Wo) + bo[None, :]
    zo = zo.ravel()
   # Binary cross entropy
   loss = np.sum(np.log(1+np.exp(zo))-y*zo)
    return zo, loss
```

```
# Random initial values
Wh = np.random.normal(0,1,(nx,nh))
bh = np.random.normal(0,1,(nh,))
Wo = np.random.normal(0,1,(nh,nout))
bo = np.random.normal(0,1,(nout))
param0 = [Wh,bh,Wo,bo]

# Compute output on the training data
loss = forward(param0, X, y)
```

Back-Propagation on A Two Node Graph

- Back Propagation:
 - A way to compute gradients
 - Iterative procedure that works in reverse
- Consider a simple 2 node computation graph
 - Input $\mathbf{x} = (x_1, \dots, x_N)$, Hidden $\mathbf{z} = (z_1, \dots, z_M)$
 - Scalar output J
- First, we compute $\frac{\partial J}{\partial z_i}$
- Then compute $\frac{\partial J}{\partial x_j}$ from multi-variable chain rule:

$$\frac{\partial J}{\partial x_j} = \sum_{i=1}^n \frac{\partial J}{\partial z_i} \frac{\partial z_i}{\partial x_j}$$

Variables computed in forward pass

Gradients computed in reverse pass

Back-Prop on a General Computation Graph

- Backpropagation:
 - Compute gradients backwards
 - Work one node at a time
- First compute all derivatives of all the variables
 - $\partial L/\partial z_0$
 - $\partial L/\partial u_H$ from $\partial L/\partial z_O$, $\partial z_O/\partial u_H$
 - $\partial L/\partial z_H$ from $\partial L/\partial u_H$, $\partial u_H/\partial z_H$
- Then compute gradient of parameters:
 - $\partial L/\partial W_O$ from $\partial L/\partial z_O$, $\partial z_O/\partial W_O$
 - $\partial L/\partial b_O$ from $\partial L/\partial z_O$, $\partial z_O/\partial b_O$
 - $\partial L/\partial W_H$ from $\partial L/\partial z_H$, $\partial z_H/\partial W_H$
 - $\partial L/\partial b_H$ from $\partial L/\partial z_H$, $\partial z_H/\partial b_H$

Back-Propagation Example (Part 1)

- Continue our example:
 - Single hidden layer with M hidden units, single output unit
 - Sigmoid activation, binary cross entropy loss
 - N samples, D input dimension
- Loss node forward pass:

$$L = \ln[1 + e^{z_{oi}}] - y_i z_{oi}$$

Gradient reverse step:

•
$$\frac{\partial L}{\partial z_{O,i}} = \frac{1}{1 + e^{-z_{Oi}}} - y_i$$

Back-Propagation Example (Part 2)

- Node z_0
 - $z_O = u_H W_O + b_O$
 - $z_{Oi} = \sum_{m} u_{H,im} W_{Om} + b_{O}$
- Gradient:

•
$$\frac{\partial z_{O,i}}{\partial W_{O,m}} = u_{H,i,m}$$

•
$$\frac{\partial z_{O,i}}{\partial b_O} = 1$$

- Other partial derivatives are zero
- Apply chain rule:

•
$$\frac{\partial L}{\partial W_{O,m}} = \sum_{i} \frac{\partial L}{\partial z_{O,i}} \frac{\partial z_{O,i}}{\partial W_{O,m}} = \sum_{i} \frac{\partial L}{\partial z_{O,i}} u_{H,im}$$

•
$$\frac{\partial L}{\partial b_O} = \sum_i \frac{\partial L}{\partial z_{O,i}} \frac{\partial z_{O,i}}{\partial b_O} = \sum_i \frac{\partial L}{\partial z_{O,i}}$$

Back-Propagation Example (Part 3)

- Node z₀
 - $z_O = u_H W_O + b_O$
 - $z_{Oi} = \sum_{m} u_{H,im} W_{Om} + b_{O}$
- Gradient:

•
$$\frac{\partial z_{O,i}}{\partial u_{H,ij}} = W_{O,j}$$
, m=1,...,M

- Other partial derivatives are zero
- Apply chain rule:

•
$$\frac{\partial L}{\partial u_{H,ij}} = \frac{\partial L}{\partial z_{O,i}} \frac{\partial z_{O,i}}{\partial u_{H,ij}} = \frac{\partial L}{\partial z_{O,i}} W_{O,j}$$

Back-Propagation Example (Part 4)

- Node u_H
 - $u_H = g_{act}(z_H)$
 - $u_{H,ij} = \frac{1}{1 + \exp(-z_{H,ij})}$
- Gradient:

•
$$\frac{\partial u_{H,ij}}{\partial z_{H,ij}} = \frac{\exp(-z_{H,ij})}{(1+\exp(-z_{H,ij}))^2} = u_{H,ij}(1-u_{H,ij})$$

- Other partial derivatives are zero
- Apply chain rule:

•
$$\frac{\partial L}{\partial z_{H,ij}} = \frac{\partial L}{\partial u_{H,ij}} \frac{\partial u_{H,ij}}{\partial z_{H,ij}} = \frac{\partial L}{\partial u_{H,ij}} u_{H,ij} (1 - u_{H,ij})$$

Back-Propagation Example (Part 5)

- Node z_0
 - $z_H = XW_H + b_H$
 - $z_{Hij} = \sum_{k} x_{ik} W_{H,kj} + b_{H,j}$
- Gradient:

•
$$\frac{\partial z_{H,ij}}{\partial W_{H,kj}} = x_{ik}$$

•
$$\frac{\partial z_{H,ij}}{\partial b_{H,i}} = 1$$

- Other partial derivatives are zero
- Apply chain rule:

•
$$\frac{\partial L}{\partial W_{H,kj}} = \sum_{i} \frac{\partial L}{\partial z_{H,ij}} \frac{\partial z_{H,ij}}{\partial W_{H,kj}} = \sum_{i} \frac{\partial L}{\partial z_{H,ij}} x_{ik}$$

•
$$\frac{\partial L}{\partial b_{H,j}} = \sum_{i} \frac{\partial L}{\partial z_{O,ij}} \frac{\partial z_{O,i}}{\partial b_{O,j}} = \sum_{i} \frac{\partial L}{\partial z_{O,ij}}$$

Initialization and Data Normalization

- Solution by gradient descent algorithm depends on the initial weights
- Typically, weights are set to random values near zero.
- Small weights make the network behave like linear classifier.
 - Hence model starts out nearly linearly
 - Becomes nonlinear as weights increase during the training process.
- Starting with large weights often lead to poor results.
- Normalizing data to zero mean and unit variance
 - Allows all input dimensions be treated equally and facilitate better convergence.
- With normalized data, it is typical to initialize the weights to be uniform in [-0.7, 0.7] [ESL]

Regularization

- To avoid the weights get too large, can add a penalty term explicitly, with regularization level λ
- Ridge penalty

$$R(\theta) = \sum_{d,m} w_{H,d,m}^2 + \sum_{m,k} w_{O,m,k}^2 = ||w_H||^2 + ||w_O||^2$$

Total loss

$$L_{reg}(\theta) = L(\theta) + \lambda R(\theta)$$

- Change in gradient calculation
- Typically used regularization
 - L2 = Ridge: Shrink the sizes of weights
 - L1: Prefer sparse set of weights
 - L1-L2: use a combination of both

Regularization in Keras

```
    kernel_regularizer : instance of keras.regularizers.Regularizer
    bias_regularizer : instance of keras.regularizers.Regularizer
```

activity_regularizer : instance of keras.regularizers.Regularizer

Example

Available penalties

```
keras.regularizers.l1(0.)
keras.regularizers.l2(0.)
keras.regularizers.l1_l2(0.)
```

Activity regularization tries to make the output at each layer small or sparse.

Choice of network parameters

- Number of layers (typically not more than 2)
- Number of hidden units in the hidden layer
- Regularization level
- Learning rate
- Determined by maximizing the cross validation error through typically exhaustive search

Learning Objectives

- Mathematically describe a neural network with a single hidden layer
 - Describe mappings for the hidden and output units
- Manually compute output regions for very simple networks
- Select the loss function based on the problem type
- Build and train a simple neural network in Keras
- Write the formulas for gradients using backpropagation
- Describe mini-batches in stochastic gradient descent
- Importance of regularization
- Hyperparameter optimization