

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Escola Politècnica Superior de Gandia

Índice

Direcciones IPv4

- Sistema numérico binario
- La máscara de subred, campos de red y de host
- Direcciones unicast, broadcast y multicast
- Direcciones públicas y privadas
- Direcciones con clase y sin clase
- Direcciones de usos específicos

Direcciones IPv6

- Coexistencia de IPv4 e IPv6
- Sistema numérico hexadecimal
- Representación de direcciones IPv6
- Configuración IPv6 estática
- ICMP (ping y traceroute)

DIRECCIONES DE RED IPv4

Estructura de la dirección IPv4 Notación binaria

- Los ordenadores trabajan con notación binaria
- La conversión de valores binarios a decimales requiere la comprensión de los fundamentos matemáticos de un sistema de numeración denominado "notación posicional"

 $192 = 1 \cdot 10^2 + 9 \cdot 10^1 + 2 \cdot 10^0$ centenas decenas unidades

192

	Centenas	Decenas	Unidades		
Raíz	10	10	10		
Exponente	2	1	0		
Valor de posición	100	10	1		
Identificador numérico	1	9	2		
Valor numérico	1*100=100	9*10=90	2*1=2		
Valor numerico 1*100=100 9*10=90 2*1=2					

100+90+2

Sistemas de numeración no posicional

■ Romano: base=NO dígitos= I, V, X, L, C, D, M

$$CCLXXXVII = 100 + 100 + 50 + 10 + 10 + 10 + 5 + 1 + 1$$

Sistemas de numeración no posicional

■ Romano: base=NO dígitos= I, V, X, L, C, D, M

$$CCLXXXVII = 100 + 100 + 50 + 10 + 10 + 10 + 5 + 1 + 1$$

■ Egipcio: base=NO dígitos= I n ୧ 🗓 🖟 📡

Sistemas de numeración posicional

Decimal: base=10 dígitos= 0,1,2,3,4,5,6,7,8,9

$$392 = 3 \cdot 10^{2} + 9 \cdot 10^{1} + 2 \cdot 10^{0} = \sum_{i=0}^{\infty} d_{i} \cdot b^{i}$$

Sistemas de numeración posicional

Decimal: base=10 dígitos= 0,1,2,3,4,5,6,7,8,9

$$392 = 3 \cdot 10^{2} + 9 \cdot 10^{1} + 2 \cdot 10^{0} = \sum_{i=0}^{\infty} d_{i} \cdot b^{i}$$

■ **Binario:** base=2 dígitos= 0,1

101101 =
$$1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 32 + 8 + 4 + 1 = 45$$

32 16 8 4 2 1

Hexadecimal: base=16 dígitos= 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

24F =
$$2 \cdot 16^2$$
 + $4 \cdot 16^1$ + $5 \cdot 16^0$ = $512 + 64 + 15 = 591$
256 16 1

Ejercicios: transcribe a decimal

■ **Binario:** base=2 dígitos= 0,1

10101011 =

Hexadecimal: base=16 dígitos= 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F4A7 =

Estructura de la dirección IPv4

Sistema de numeración binario

- Una dirección IPv4 es un número binario de 32 bits
- Resulta difícil de escribir y recordar, por lo que se utiliza el formato decimal punteado:

Conversión de una dirección binaria en decimal

$$192 = 1 \cdot 10^2 + 9 \cdot 10^1 + 2 \cdot 10^0$$
 centenas decenas unidades

$$10110000 = 1.2^7 + 1.2^5 + 1.2^4$$
128 32 16

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
1	0	1	1	0	0	0	0

Conversión de una dirección binaria en decimal

Estructura de la dirección IPv4

Conversión de decimal en binario

Estructura de la dirección IPv4

Conversión de decimal en binario

Estructura de la dirección IPv4 Conversión de decimal a binario y viceversa

Cuestiones

10.31.125.254

192.13.105.22

232.45.78.0

10101010.01010101.11110000.00001111

10110101.01101001.00000001.11011110

01011010.001111111.10000000.111111111

Estructura de la dirección IPv4 Conversión de decimal en binario

Solución

```
10.31.125.254
   00001010.00011111.01111101.11111110
192.13.105.22
   11000000.00001101.01101001.00010110
232.45.78.0
   11101000.00101101.01001110.00000000
10101010.01010101.11110000.00001111
   170.85.240.15
10110101.01101001.00000001.11011110
   181 105 1 222
01011010.001111111.10000000.111111111
   90.63.128.255
```


- Un equipo solamente tiene conectividad directa a nivel de capa de red con los equipos de su subred
 - Habrá que indicar tanto su dirección IP, como la subred a la que pertenece
- Para poder acceder a otros equipos, necesitará, además, una puerta de enlace (default gateway)

Configuración de una dirección IPv4

neral	
	omatically
IP address:	10 . 0 . 0 . 1
Subnet mask:	255 . 255 . 255 . 0
Default gateway:	10 . 0 . 0 . 254
Derout gaterray.	
C Obtain DN5 server addres Use the following DNS server:	

- Dirección IP = porción de red + porción de host
- Toda IP con idéntica porción de red pertenece a la misma red

- máscara de subred: define las porciones de red y de host.
 Se escribe: 32 bits, en porción de red 1 y host 0 => decimal.
- longitud de prefijo: define exactamente lo mismo.
 Se escribe: /x. Donde x es la longitud de la porción de red.

- Cuestiones
- Pasar de máscara de subred a longitud de prefijo y viceversa:

255.255.255.0

255.255.255.128

255.255.252.0

/30

/20

Solución:

255.255.255.0

/24

255.255.255.128

/25

255.255.252.0

/22

/30

255.255.252

/20

255.255.240.0

Valor de subred
255
254
252
248
240
224
192
128
0

Valor de bit							
128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	0
1	1	1	1	1	1	0	0
1	1	1	1	1	0	0	0
1	1	1	1	0	0	0	0
1	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Direcciones de red, host y broadcast

Red 10.1.1.0/24

Porción de red			Porción de host
10	1	1	0
00001010	00000001	00000001	00000000
10	1	1	10
00001010	00000001	00000001	00001010
10	1	1	255
00001010	00000001	00000001	11111111

dir. host

dir. broadcast

Primera y última dirección de host

Dirección de red: operación AND bit a bit

Dirección IPv4

11000000 10101000 00001010

00001010

Máscara de subred

11111111 11111111 1111111

0 0 0 0 0 0 0

Dirección de red

11000000 10101000 00001010

 $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$

1 AND 1 = 1 1 AND 0 = 0 0 AND 1 = 0 0 AND 0 = 0

direcc. Red = direcc. IP AND máscara de red

Análisis de la longitud de prefijo

 En las prácticas 7 y 8 se trabaja con el siguiente escenario, utilizando como máscara de red 255.255.255.240 (es decir, /28) en todos los casos:

- Vemos que, en realidad, hay dos subredes:
 - Interface Fa0/0 (198.133.219.30) → Red 198.133.219.16/28 (IPs desde 198.133.219.16 hasta 198.133.219.31)
 - Interface Fa0/1 (198.133.219.46) → Red 198.133.219.32/28 (IPs desde 198.133.219.32 hasta 198.133.219.47)
- ¿Qué posibles direcciones podemos asignar al host 3?

Análisis de la longitud de prefijo

	Decimal punteada	Bits importantes mostrados en sistema binario
Dirección de red	10.1.1.0/24	10.1.1.00000000
Primera dirección de host	10.1.1.1	10.1.1.00000001
Última dirección de host	10.1.1.254	10.1.1.11111110
Dirección de broadcast	10.1.1.255	10.1.1.11111111
Cantidad de hosts: 2 ⁸ – 2	= 254 hosts	
Dirección de red	10.1.1.0/25	10.1.1.00000000
Primera dirección de host	10.1.1 <mark>.1</mark>	10.1.1.00000001
Última dirección de host	10.1.1 <mark>.126</mark>	10.1.1.01111110
Dirección de broadcast	10.1.1 .127	10.1.1.01111111
Cantidad de hosts: 2^7 – 2	= 126 hosts	

Dirección de red	10.1.1.0/26	10.1.1.00 000000			
Primera dirección de host	10.1.1 <mark>.1</mark>	10.1.1.00000001			
Última dirección de host	10.1.1 <mark>.62</mark>	10.1.1.00111110			
Dirección de broadcast	10.1.1 <mark>.63</mark>	10.1.1.00111111			
Cantidad de hosts: $2^6 - 2 = 62$ hosts					

Dirección suministrada/prefijo 184.212.189.243/24

Tipo de dirección	Introduzca el último octeto del prefijo de red en valores binarios	Introduzca el ÚLTIMO octeto en valores decimales	Introduzca la dirección completa en valores decimales
Red	00000000	0	184.212.189.0
Broadcast	11111111	255	184.212.189.255
Primera dirección de host utilizable	00000001	1	184.212.189.1
Última dirección de host utilizable	11111110	254	184.212.189.254

Dirección suministrada/prefijo 130.188.142.165/29

Tipo de dirección	Introduzca el último octeto del prefijo de red en valores binarios	Introduzca el ÚLTIMO octeto en valores decimales	Introduzca la dirección completa en valores decimales
Red			
Broadcast			
Primera dirección de host utilizable			
Última dirección de host utilizable			

Dirección suministrada/prefijo 130.188.142.165/29

Tipo de dirección	Introduzca el último octeto del prefijo de red en valores binarios	Introduzca el ÚLTIMO octeto en valores decimales	Introduzca la dirección completa en valores decimales
Red	10100000	160	130.188.142.160
Broadcast	10100111	167	130.188.142.167
Primera dirección de host utilizable	10100001	161	130.188.142.161
Última dirección de host utilizable	10100110	166	130.188.142.166

Dirección suministrada/prefijo 164.102.78.195/19

Tipo de dirección	Introduzca el último octeto del prefijo de red en valores binarios	Introduzca el ÚLTIMO octeto en valores decimales	Introduzca la dirección completa en valores decimales
Red			
Broadcast			
Primera dirección de host utilizable			
Última dirección de host utilizable			

Análisis de la longitud de un prefijo

Dirección suministrada/prefijo 164.102.78.195/19

Tipo de dirección	Introduzca el último octeto del prefijo de red en valores binarios	Introduzca el ÚLTIMO octeto en valores decimales	Introduzca la dirección completa en valores decimales
Red	00000000	0	164.102.64.0
Broadcast	11111111	255	164.102.95.255
Primera dirección de host utilizable	00000001	1	164.102.64.1
Última dirección de host utilizable	11111110	254	164.102.95.254

Ejercicios

1. La dirección 192.168.15.19/30 corresponde a:

una dirección de host una dirección de red una dirección de broadcast

2. La máscara de red 255.255.255.192 equivale a:

/23 /24 /25 /26 /27 /28

3. Dada la dirección IP 172.16.20.243 / 27

La dirección de red a la que pertenece es: 172.16.20. _____

La dirección de broadcast correspondiente es: 172.16.20. _____

La primera dirección de host de su red es: 172.16.20. _____

La última dirección de host de su red es: 172.16.20. _____

4. Dada la dirección IP 172.16.17.161 / 23

La dirección de red a la que pertenece es: 172.16.____. ____.

La dirección de broadcast correspondiente es: 172.16.____.

La primera dirección de host de su red es: 172.16.____.

La última dirección de host de su red es: 172.16.____.

Solución: (16.0, 17.255, 16.1, 17.254)

Direcciones IPv4 unicast, broadcast y multicast Transmisión de unicast

En una red IPv4, los hosts pueden comunicarse de tres maneras diferentes:

1. Unicast: proceso por el cual se envía un paquete de un host a un host individual.

Direcciones IPv4 unicast, broadcast y multicast

Transmisión de broadcast

 Broadcast: proceso por el cual se envía un paquete de un host a todos los hosts en la red propia

Direcciones IPv4 unicast, broadcast y multicast Transmisión de multicast

- Multicast: proceso por el cual se envía un paquete de un host a un grupo seleccionado de hosts, posiblemente en redes distintas. Reduce el tráfico.
- Direcciones multicast: 224.0.0.0 a 239.255.255.255.
 - Link-local: **224.0.0**.0 a **224.0.0**.255 no pueden salir de la red (ej. información de enrutamiento).
 - Direcciones agrupadas globalmente: **224**.0.1.0 a **239**.255.255.255 sí pueden salir de la red (ej. 224.0.1.1 protocolo de hora de red).
 - Ejemplo: Streaming de Movistar a sus descodificadores de TV (pero no a la App que funciona con unicast).

Direcciones IPv4 públicas y privadas

Las direcciones de host pueden dividirse en:

Direcciones **públicas**: sin restricciones de acceso a Internet Direcciones **privadas**: visibles sólo en nuestra red privada

Los bloques de direcciones privadas son:

```
de 10.0.0.0 a 10.255.255.255
de 172.16.0.0 a 172.31.255.255
de 192.168.0.0 a 192.168.255.255
```

 Se debe garantizar que las direcciones privadas sean únicas dentro de todo el entorno corporativo

Direcciones IPv4 públicas y privadas

Direcciones IPv4 públicas y privadas

- Los paquetes con direcciones privadas no pueden aparecer en la Internet pública
- Por ello los routers perimetrales deben:
 - bloquear los paquetes (si no tienen permiso para salir), o bien,
 - traducir las direcciones → NAT
- NAT (Network Address Translation)

NAT permite a los hosts de la red con direcciones privadas utilizar la misma dirección pública para comunicarse con redes externas.

A pesar de que existen algunas limitaciones y problemas de rendimiento con NAT, los *clientes* de la mayoría de las aplicaciones pueden acceder a los servicios de Internet sin problemas evidentes.

Pero para poder instalar servidores públicos en una red privada, hay que configurar los routers.

Direcciones IPv4 de uso especial

- Direcciones de red y de broadcast: no es posible asignar a hosts la primera ni la última dirección de cada red
- Dirección de loopback: 127.0.0.1 es una dirección especial que los hosts utilizan para dirigir tráfico a sí mismos (las direcciones de 127.0.0.0 a 127.255.255.255 están reservadas para esto)
- Dirección link-local: las direcciones de 169.254.0.0
 a 169.254.255.255 (169.254.0.0/16) se asignan automáticamente al host local. Suele indicar que no se dispone de una IP válida
- Direcciones TEST-NET: las direcciones de 192.0.2.0
 a 192.0.2.255 (192.0.2.0/24) se reservan para fines de enseñanza y aprendizaje, y se utilizan en ejemplos de documentos y de redes
- Direcciones experimentales: las direcciones de 240.0.0.0
 a 255.255.255.254 se indican como reservadas

Direccionamiento con clase (antiguo)

Clase de dirección	Rango del 1er octeto (decimal)	Bits del primer octeto (los bits verdes no cambian)	Red (N) y Host (H) partes de la dirección	Máscara de subred predeterminada (decimal y binaria)	Cantidad de redes y hosts posibles por red
A	1-127**	0 0000000 0 1111111	N.H.H.H	255.0.0.0	128 redes (2^7) 16777214 hosts por red (2^24-2)
В	128-191	10000000-10111111	N.N.H.H	255.255.0.0	16384 redes (2^14) 65534 hosts por red (2^16 2)
С	192-223	1100000041011111	N.N.N.H	255.255.255 .0	2097150 redes (2^21) 254 hosts por red (2^8-2)
D	224-239	11100000-11101111	No disponible (multicast)		
E	240-255	11110000-11111111	No disponible (experimental)		

Direccionamiento con clase (antiguo)

Direccionamiento sin clase (actual):

- El nombre formal es "enrutamiento entre dominios sin clase" (CIDR, pronunciado "cider").
- Se creó un nuevo estándar que permitía asignar direcciones IPv4 con cualquier número de bits en la porción de red, en lugar de solo con una dirección de clase A, B o C.

Con clase:

La máscara de red se conoce mirando el primer byte de la IP (no hay que indicar máscara) Máscaras: A: /8 B:/16 C:/24 Ya no se usa

Sin clase:

Es obligatotio indicar junto a la IP la máscara.

Máscaras: /1 ... /30

Duda: ¿por qué no hay /0,

/31 ni /32?

Asignación de direcciones IP

Internet Assigned Numbers Authority (IANA)

Registros regionales de Internet (RIR). Los principales registros son:

Direcciones de Red IPv6

La necesidad de IPv6

- IPv6 se diseñó para suceder a IPv4
- El agotamiento del espacio de direcciones IPv4 fue el factor que motivó la migración a IPv6
- Por qué cambiar a IPv6
 - Espacio limitado de direcciones IPv4
 - Limitaciones de NAT
 - Ejemplo: si queremos poner un servidor en una red privada, habrá que programar el router perimetral para que deje pasar las peticiones de los clientes al servidor
 - Internet de las cosas (IoT), en principio, necesita muchas direcciones

Problemas de IPv4 La necesidad de IPv6

- IPv4 trabaja con direcciones de 32 bits, por lo que tiene un máximo teórico de unos 4.300 millones de direcciones
- IPv6 tiene un espacio de direcciones de 128 bits, que proporciona 340 sextillones de direcciones

 $2^{128} = 340.282.366.920.938.463.463.374.607.431.768.211.456$

 IPv6 resuelve las limitaciones de IPv4 e incluye mejoras adicionales, como ICMPv6

Coexistencia de IPv4 e IPv6

Las técnicas de migración se dividen en tres categorías:

Dual-stack: permite que IPv4 e IPv6 coexistan en la misma red. Los dispositivos ejecutan stacks de protocolos IPv4 e IPv6 de manera simultánea.

Coexistencia de IPv4 e IPv6

Las técnicas de migración se dividen en tres categorías:

Tunneling: método para transportar paquetes IPv6 a través de redes IPv4. El paquete IPv6 se encapsula dentro de un paquete IPV4.

Coexistencia de IPv4 e IPv6

Las técnicas de migración se dividen en tres categorías:

Traducción: la traducción de direcciones de red 64 (NAT64) permite que los dispositivos con IPv6 se comuniquen con dispositivos con IPv4 mediante una técnica de traducción similar a la NAT. Un paquete IPv6 se traduce en un paquete IPv4, y viceversa.

Coexistencia de IPv6 con IPv4 Situación actual de IPv6 en ISPs de España

A fecha de hoy, así funcionan los ISP en España:

- Digi, pero sólo fibra: Primer ISP en España que asignó direcciones IPv6 a todos sus clientes
 - Utiliza dual stack (IPv6 y IPv4 simultáneas)
 - Asigna por defecto IPv4 privada (CG-NAT), pero pagando 1 euro más al mes, concede IPv4 pública
- Orange y filiales (Simyo y Jazztel), sólo fibra: dependiendo de la central y del router utilizado, suele conceder IPv6
 - Utiliza DS Lite
 - Si concede IPv6, es bastante posible que la IPv4 asignada sea privada (CG-NAT), pero no siempre
 - Se puede sesactivar IPv6 a petición del usuario, para así tener IPv4 pública
- Movistar y O2, para móviles: Primer ISP con IPv6 para móviles
 - Dual stack
 - IPv4 privada (CG-NAT)
- Movistar y O2, para fibra: Empieza a haber IPv6 para algunos clientes
 - Dual stack
 - IPv4 pública
- Resto: Sólo IPv4, casi siempre privadas (CG-NAT)

Sistema numérico hexadecimal

- El sistema hexadecimal es un sistema de base dieciséis.
- El sistema de numeración de base 16 utiliza los números del 0 al 9 y las letras de la A a la F.
- Se puede representar cuatro bits (medio byte) con una sola cifra hexadecimales.

Representación de valores hexadecimales			
Hexadecimal	Decimal	Binario	
0	0	0000	
1	1	0001	
2	2	0010	
3	3	0011	
4	4	0100	
5	5	0101	
6	6	0110	
7	7	0111	
8	8	1000	
9	9	1001	
А	10	1010	
В	11	1011	
С	12	1100	
D	13	1101	
E	14	1110	
F	15	1111	

Sistema numérico hexadecimal

 Un patrón de 8 bits binarios (1 byte) coincide con dos valores hexadecimales

Conversión de octetos binarios a valores hexadecimales			
Hexadecimal	Decimal	Binario	
00	0	0000000	
01	1	0000001	
02	2	0000 0010	
03	3	0000 0011	
04	4	0000 0100	
05	5	0000 0101	
06	6	0000 0110	
07	7	0000 0111	
08	8	0000 1000	
0A	10	00001010	
0F	15	0000 1111	
10	16	0001 0000	
20	32	0010 0000	
40	64	0100 0000	
80	128	10000000	
C0	192	11000000	
EC	202	1100 1010	
F0	240	11110000	
FF	255	11111111	

Representación de direcciones IPv6

- Tiene una longitud de 128 bits y se representan como una cadena de valores hexadecimales.
- 128 bits = 32 dígitos hexadecimales = 16 bytes = 8 "hextetos"

2001:0DB8:0000:1111:0000:0000:0000:0200

FE80:0000:0000:0000:0123:4567:89AB:CDEF

- "Hexteto" se utiliza para referirse a un segmento de 16 bits = cuatro valores hexadecimales = 2 bytes.
- Se pueden escribir en minúscula o mayúscula.

Regla 1: Omisión de ceros iniciales

- La primera regla que permite reducir la notación de direcciones IPv6 es que se puede omitir cualquier 0 (cero) inicial en cualquier sección de 16 bits o hexteto.
- 01AB puede representarse como 1AB.
- 0A00 puede representarse como A00.
- 00AB puede representarse como AB.

Recomendado	2001: 0 DB8: 0	00:000:00	000:00	000:00	000:0100
Sin 0 inicial	2001: DB8:	A:1000:	0:	0:	0: 100

Regla 2: Omitir los segmentos con 0

 Los dos puntos dobles (::) pueden reemplazar a uno o varios segmentos de 16 bits (hextetos) compuestos sólo por ceros.

FE80:0000:0000:0000:1123:4567:89AB:CDEF

FE80::1123:4567:89AB:CDEF

 Los dos puntos dobles (::) se pueden utilizar solamente una vez en una dirección.

Dirección incorrecta: 2001:1DB8::ABCD::1234

Esto se suele conocer como formato comprimido.

Regla 2: Omitir todos los segmentos 0

Ejemplos

N.° 1

N.° 2

Recomendado	FE80:0000:0000:0000:0123:4567:89AB:CDEF				
Sin 0 inicial	FE80: 0: 0: 123:4567:89AB:CDEF				
Comprimida	FE80::123:4567:89AB:CDEF				

Ejercicio

 Escribe la siguiente IPv6 en formato comprimido más pequeño posible

FE80:0000:0123:4500:0000:0000:0000:000A

Ejercicio

 Escribe la siguiente IPv6 en formato comprimido más pequeño posible

FE80:0000:0123:4500:0000:0000:0000:000A

Solución:

FE80:0:123:4500::A

Longitud de prefijo IPv6

- IPv6 no permite la notación decimal punteada para la máscara de subred.
- Sólo se permite longitud de prefijo (número de bits de la porción de red), nunca la máscara de red.

2001:0DB8:000A:: / 64

- La longitud de prefijo puede ir de 0 a 128.
- Las longitudes de prefijo más habituales son /56 y /64:

Direcciones IPv6 unicast Configuración estática de una dirección IPv6 unicast global

Notas sobre IPv6

- IPv6 permite la autoconfiguración de los equipos. Al conectarse el equipo a la red, se obtiene:
 - El prefijo de red directamente a partir del router
 - El ID de red, directamente a partir de su propia dirección MAC, sin necesidad de DHCP

Verificación de conectividad

Mensajes de ICMPv4

- IP no es un protocolo confiable. Si se produce un error no hace nada por evitarlo.
- Si se produce un error, se usa ICMP en la capa de red para notificarlo. (no puede corregirlo)
- Algunos tipos de mensajes ICMPv4:
 - Envío de ping: hacemos un ping a un host
 - Respuesta de ping: El host nos contesta
 - Red, host o servicio inaccesible: El paquete no ha llegado por que el algún router no encuentra la red o host destino, o en el host destino no ha podido entregarse al protocolo de capa superior
 - <u>Tiempo superado:</u> Cada vez que un paquete pasa por un router se descuenta en uno su campo TTL. Si llega a cero el router lo elimina y manda este mensaje al origen
 - Descarte por congestión: Llegan más paquetes a un router de los que puede retransmitir. Como no ha podido almacenarlo en las colas de retransmisión lo ha tenido que eliminar

Uso habitual de la herramienta ping

• El comando ping permite verificar muchos problemas de conectividad:

- ¿Está funcionando bien la tarjeta de red de mi equipo?
- ¿Tengo conectividad en mi red?
- ¿Tengo acceso a otras redes?

Ping para prueba del stack local

Prueba del stack de TCP/IP local

Ping para prueba de conectividad a la LAN local

Prueba de conectividad IPv4 a la red local

Ping para prueba de conectividad a dispositivo remoto

Prueba de conectividad a una LAN remota Ping a un host remoto

Mensajes ICMPv6

ICMPv6 incluye los mensajes ICMPv4 y añade los siguientes:

Mensaje de solicitud de router

Mensaje de anuncio de router

Mensaje de solicitud de router vecino

Mensaje de anuncio de router vecino

Traceroute, prueba de la ruta

traceroute (o tracert, en Windows)

- Genera una lista de saltos a través de los routers de la ruta.
- Proporciona información importante para propósitos de verificación y resolución de problemas.
- Si los datos llegan al destino, el rastreo indica la interfaz de cada router que aparece en la ruta entre los hosts.
- Si se produce un error en los datos en algún salto a lo largo del camino, la dirección del último router que respondió al rastreo puede indicar dónde se encuentra el problema o las restricciones de seguridad.
- Proporciona los tiempos de ida y vuelta para cada salto a lo largo de la ruta e indica si un salto no responde.
- traceroute6 es la versión para IPv6

Direccionamiento IP Resumen

- Las direcciones IP son jerárquicas y tienen porciones de red y host.
- Una IP puede representar una red completa, un host específico o la dirección de broadcast de la red.
- La máscara de red o el prefijo de red se utilizan para determinar la porción de red de una dirección IP.
- El DHCP permite la asignación automática de información de direccionamiento, como una dirección IP, una máscara de subred, un gateway predeterminado y servidor DNS.

Resumen IPv4 / IPv6

- Una dirección IPv4 tiene 32 bits y se suele representar en decimal punteado.
- Los hosts IPv4 pueden comunicarse por: unicast, broadcast y multicast.
- Los bloques de direcciones IPv4 privadas son los siguientes: 10.0.0.0/8, 172.16.0.0/12 y 192.168.0.0/16.
- La migración a IPv6 está motivada por el agotamiento del espacio de direcciones IPv4.
- Una dirección IPv6 tiene 128 bits y se representa en hexadecimal. Existen 2 reglas para omitir ceros.
- En IPv6 no está permitida la máscara de red. Sólo IPv6 / longitud de prefijo.

- 1. Transcribe a decimal:
- **Hexadecimal:** base=16 dígitos= 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

$$4A7 =$$

2. La dirección 192.168.15.19/30 corresponde a:

una dirección de host una dirección de red una dirección de broadcast

3. La máscara de red 255.255.255.192 equivale a:

/23 /24 /25 /26 /27 /28

4. Dada la dirección IP 172.16.20.243 / 27

La dirección de red a la que pertenece es: 172.16.20. _____

La dirección de broadcast correspondiente es: 172.16.20. _____

La primera dirección de host de su red es: 172.16.20. _____

La última dirección de host de su red es: 172.16.20. _____

5. Dada la dirección IP 172.16.17.161 / 23

La dirección de red a la que pertenece es: 172.16.____. ____.

La dirección de broadcast correspondiente es: 172.16.____.

La primera dirección de host de su red es: 172.16.____.

La última dirección de host de su red es: 172.16.____.

Solución: (16.0, 17.255, 16.1, 17.254)

Repasar ejemplos como:

Dada una IPv4 es:

Unicast, broadcast o multicast. Públicas o privadas, Clase A, B o C. Loopback, link-local o experimental.

Reescribe la siguiente IPv6 en formato comprimido:

FE80:0000:0123:4500:0000:0000:0000:000A