HW-5-Product-demand-data-set

Pushkar Singh Negi

Ku ID: 2946319

EECS 731: Introduction to Data Science

Notebook: LabProject#5_Product-demand-Forecasting.ipynb Purpose: Deduced Additional Information, visualization and ARIMA Time series forecasting.

Input raw dataset : Historical Product Demand.csv.zip

Processed dataset : AdditionalInfo#1_NoOfProductEachCategory.csv,

AdditionalInfo#3_WHouse_Category_product.csv, AdditionalInfo#4 Demans order per day.csv

Jupyter Notebook File name : LabProject#5 Product-demand-Forecasting.ipynb

1. Imported the Historical Product Demand.csv data file in dataframe using pandas.

- 2. Checked the total non-null entries to handle missing values.
- 3. Handled the missing values.
- **4.** Analyzed the dataset with the help of various commands, such as finding the total unique warehouse, category and product types.
- 5. Next, I found out the Additional Information #1: To find total number of products that belong to each category.
- **6.** Next, I applied various pandas feature to convert the above result dataset into a panda frame.
- 7. Viusalization: Plotted a graph, number of products against each category of products.

- **8.** Converted the above data into a new data frame (df_prod_ProductPerCategory).
- Saved the resulted dataframe in a csv (AdditionalInfo#1_NoOfProductEachCategory.csv.csv)

- **10.** Additional Information #2: To find total number of product category that belong to each warehouse.
- **11.** Converted the above new data into a dataframe (df_prod_CategoryPerWHouse).
- **12.** Viusalization: Plotted a graph, number of category that belongs to each warehouse.

- **13.** Additional Information #3: For each Warehouse to find corresponding Product_Category and for each product category **find total product. **
- **14.** Converted the above new data into a dataframe (df_prod_WHouse_Category_product)
- 15. Saved the resulted dataframe in a csv (AdditionalInfo#3_WHouse_Category_product.csv)
- 16. Additional Information #4: To find the date on which maximum and minimum orders where placed.
- **17.** Converted the above new data into a dataframe (df_prod_OrderPerDay)

18. Visualization: Date wise order demand distribution

19. Additional Information #5: Created 3 new columns namely year, month and date for each of the order placed.

	Product_Code	Warehouse	Product_Category	Date	Order_Demand	year	month	date
0	Product_0993	Whse_J	Category_028	2012/7/27	100	2012	7	27
1	Product_0979	Whse_J	Category_028	2012/1/19	500	2012	1	19
2	Product_0979	Whse_J	Category_028	2012/2/3	500	2012	2	3
3	Product_0979	Whse_J	Category_028	2012/2/9	500	2012	2	9
4	Product_0979	Whse_J	Category_028	2012/3/2	500	2012	3	2

- **20.** Additional Information #6: To find for each year how many orders were placed.
- 21. Converted the above new data into a dataframe (df prod new Year)
- 22. Visualization: Year wise order demand distribution

- **23.** Additional Information #7: To find for each month how many orders were placed.
- **24.** Converted the above new data into a dataframe (df_prod_new_Month)
- 25. Visualization: Month wise order demand distribution

- 26. Additional Information #8: To find for each day how many orders were placed.
- 27. Converted the above new data into a dataframe (df prod new date)
- 28. Visualization: Day wise order demand distribution

29. My Findings→

- There are total 2160 unique products.
- ➤ The most popular product is Product_1359 with 16936 frequency.
- Only 4 unqique warehouses
- All in all total 33 unique Product_Category
- Category_019 has maximum of 470266 produtcs.
- Whse_J has maximum and Whse_C has minimum products respectively.
- ➤ On date 2013/9/27 maximum of 2075 orders were placed.
- In year 2013, maximum number of 218298 orders were placed.
- ➤ Most/ maximum of 96619 orders were demand/placed in the month of October.
- On every 1st of month, maximum orders were demand.

ARIMA: Time Series Forecasting

- > Forecasted for the warehouseA demand.
- > Removed the unnecessary columns from the dataframe.
- Indexing with Time Series Data
- Visualizing WarehouseA Sales Time Series Data

- > Visualize the data using time-series decomposition: decompose our time series into three distinct components: trend, seasonality, and noise
- > ARIMA, which stands for Autoregressive Integrated Moving Average.
- > ARIMA(p, d, q): parameters account for seasonality, trend, and noise in data
- > Parameter Selection for our warehouseA demand ARIMA Time Series Model.

- > Fitting the ARIMA model
- Validating forecasts

Mean Squared Error of our forecasts