4.1 Inner products

Let V be a vector space with field of scalars \mathbb{R} .

An inner product on V is a function

$$\langle , \rangle : V \times V \to \mathbb{R}$$

satisfying

1.
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

2.
$$\langle \lambda \mathbf{u}, \mathbf{v} \rangle = \lambda \langle \mathbf{u}, \mathbf{v} \rangle$$

3.
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

4. (a)
$$\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$$

(b)
$$\langle \mathbf{u}, \mathbf{u} \rangle = 0 \Rightarrow \mathbf{u} = \mathbf{0}$$
.

7

An *inner product space* is a vector space V together with a choice of inner product.

If W is a subspace of V, then W is itself an inner product space with respect to the inner

Example 4.1. Consider

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 2u_2 v_2$$

on \mathbb{R}^2 .

Example 4.2. Consider

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_1 v_2 + u_2 v_2$$

on \mathbb{R}^2 .

249

Example 4.3. Consider

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 - u_2 v_2 + u_3 v_3$$

on \mathbb{R}^3 .

Example 4.4. Consider

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx$$

on the vector space of continuous functions $\mathcal{C}([0,1])$.

251

4.2 The Cauchy-Schwarz inequality

Let V be an inner product space.

The *length* of a vector $\mathbf{u} \in V$ is

$$\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}.$$

The distance between two vectors $\mathbf{u}, \mathbf{v} \in V$ is

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$$

To define the angle between two vectors, we need the Cauchy-Schwarz inequality:

Theorem 4.5. Let \mathbf{u}, \mathbf{v} be vectors in an inner product space V. Then

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \, \|\mathbf{v}\|$$

Proof.

253

The angle θ between two vectors $\mathbf{u}, \mathbf{v} \in V$ is defined by the equation

$$\cos(\theta) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Example 4.6. Consider the inner product

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 2u_2 v_2$$

on 120

Compute $\|\mathbf{u}\|$, $d(\mathbf{u}, \mathbf{v})$, and the angle between \mathbf{u} and \mathbf{v} for $\mathbf{u} = (2, 5)$ and $\mathbf{v} = (-1, 3)$.

4.3 Orthogonality

Let V be an inner product space.

We say that $\mathbf{u}, \mathbf{v} \in V$ are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

We say that a subset $S \subset V$ is orthogonal if any two distinct vectors in S are orthogonal.

We say that a subset $S \subset V$ is *orthonormal* if it is orthogonal and every vector in S has length 1.

255

Example 4.7. In \mathbb{R}^2 with the dot product,

the vectors (1,1) and (1,-1) are

the vectors $(1/\sqrt{2},1/\sqrt{2})$ and $(1/\sqrt{2},-1/\sqrt{2})$ are

Example 4.8. In C([-1,1]) with inner product

$$\langle f,g\rangle = \int_{-1}^1 f(x)g(x)\,dx,$$

the functions x^2 and x^3 are

257

Theorem 4.9. Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be an orthogonal set of nonzero vectors in an inner product space. Then S is linearly independent.

(We call S an orthogonal basis for Span(S). Moreover, if S is an orthonormal set, we call it an *orthonormal basis* for Span(S).) If $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal basis for V, then every $\mathbf{v} \in V$ can be written

We will soon see that every inner product space has orthonormal bases.

259

Proposition 4.10. Let \mathbf{u}, \mathbf{v} be vectors in an inner product space V, with $\mathbf{u} \neq \mathbf{0}$. Then the vector

$$\mathbf{v} - rac{\langle \mathbf{v}, \mathbf{u}
angle}{\langle \mathbf{u}, \mathbf{u}
angle} \mathbf{u}$$

is orthogonal to \mathbf{u} .

This motivates the definition: the *orthogonal projection of* $\mathbf v$ *onto* $\mathbf u$ is

$$\mathrm{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \, \mathbf{u}.$$

If ${\bf u}$ happens to be a unit vector, then the formula simplifies to

$$\mathrm{proj}_{\mathbf{u}}(\mathbf{v}) = \langle \mathbf{v}, \mathbf{u} \rangle \; \mathbf{u}.$$

Moreover, we can project onto a subspace W of V as follows: let $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ be an orthonormal basis for W. The orthogonal projection of ${\bf v}$ onto W is

$$proj_W(\mathbf{v}) = proj_{\mathbf{u}_1}(\mathbf{v}) + \dots + proj_{\mathbf{u}_m}(\mathbf{v})$$
$$= \langle \mathbf{v}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \dots + \langle \mathbf{v}, \mathbf{u}_m \rangle \mathbf{u}_m.$$

Note that this defines a linear transformation $\operatorname{proj}_W\colon V\to V$ with image W.

261

4.4 The Gram-Schmidt orthonormalisation process

Let V be an inner product space.

There is a procedure that starts with an arbitrary basis $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of V and returns an orthonormal basis $C = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$. **Example 4.11.** Let $W = \mathrm{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) \subset \mathbb{R}^4$ with the dot product, where

$$\mathbf{v}_1 = (1,1,1,1)$$
 $\mathbf{v}_2 = (2,4,2,4)$ $\mathbf{v}_3 = (1,5,-1,3).$

- (a) Find an orthonormal basis for W.
- (b) Find the point of W closest to the point $\mathbf{v} = (1, 2, 3, 0)$.

263

4.5 Curve fitting

Given data points $(x_1, y_1), \ldots, (x_n, y_n)$ and a linear model of the form

$$y = a + bx$$

we wish to find the values of the parameters a and b that exhibit the best fit for the data.

For an exact fit we would have

$$y_1 = a + bx_1$$

$$\vdots$$

$$y_n = a + bx_n,$$

in other words

$$\begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{$$

It will typically be impossible to find ${\bf u}$ such that ${\bf y}-A{\bf u}={\bf 0}$, so we attempt the next $A\mathbf{u}$ is as small as possible. best thing: Find $\mathbf{u} = \mathbf{u}_{\min}$ such that $\|\mathbf{y} - \mathbf{u}_{\min}\|$

Letting

X g

$$W = \{ A\mathbf{u} \mid \mathbf{u} \in \mathbb{R}^2 \},$$

we are after \mathbf{u}_{\min} such that $A\mathbf{u}_{\min}$ is the point of W closest to \mathbf{v} vertible In other words,

the orthogonal projection of y All min = projuy Note that

nnot

3

4-Au = (y- (a+bx1), y--(a+bx2) $\frac{2}{3} \quad ||\mathbf{y} - A\mathbf{u}||^2 = \sum_{\mathbf{k}, \mathbf{l}} \left(\mathbf{y}_{\mathbf{F}}(\mathbf{a} + \mathbf{b} \times \mathbf{l}) \right)$

which is why this is known as the method of

, y

when we take any vector in W ue pr

UT(ATY - ATA UMIN)=0 fixed = 0 We conclude that \mathbf{u}_{\min} is a solution of the equation

 $A^T A \mathbf{u}_{\min} = A^T \mathbf{y},$

Example 4.12. Find the straight line
$$y = a + bx$$
 that best fits the data points $(-1,1)$, $(2,3)$.

The first fits the data points $(-1,1)$, $(2,3)$.

The first fits the data points $(-1,1)$, $($

بخ

-> A is not a square mat

 $\mathbf{u}_{\min} = (A^T A)^{-1} A^T \mathbf{y}.$

or, if (A^TA) is invertible,

me ca Simpli (1,1), (2,3)

$$R = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \quad y = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad R^{T}A = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \qquad R^{T}A = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \qquad Shuplis$$

$$Umin = \begin{bmatrix} 2 \\ 6 \end{bmatrix} \qquad \begin{bmatrix} 2 \\ 2 \end{bmatrix} \qquad \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

The same method extends, with small adjustments, to more complicated models.

Suppose, for instance, that you want to fit the model

$$y = a + bx^2 + ce^x$$

to data points $(x_1, y_1), ..., (x_n, y_n)$.

269

4.6 Orthogonal matrices

An $n \times n$ matrix Q is an *orthogonal matrix* if

$$Q^TQ=I.$$

In particular, Q is invertible with

Example 4.13.
$$Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{A}^{\mathsf{T}} \mathbf{A} = \frac{1}{\sqrt{\mathbf{\Sigma}}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \cdot \frac{1}{\sqrt{\mathbf{\Sigma}}} \begin{bmatrix} 1 \\ 1 & 1 \end{bmatrix}$$

so a is an orthogonal mathix

Proposition 4.15. If Q is an $n \times n$ orthogonal matrix and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, then

T C

$$(Q\mathbf{u})\cdot (Q\mathbf{v})=\mathbf{u}\cdot \mathbf{v}.$$

So orthogonal matrices preserve the dot product of vectors. Therefore they also preserve lengths and angles.

Geometrically, they correspond to
$$\mathbf{Q}^{\mathsf{T}}\mathbf{G} = \mathbf{I}$$

$$\mathbf{Q}^{\mathsf{T}}\mathbf{G} = \mathbf{I}$$

$$\mathbf{Q}\mathbf{e}\mathbf{f} (\mathbf{G}^{\mathsf{T}}\mathbf{E}) = \mathbf{d}\mathbf{e}\mathbf{f}(\mathbf{I})$$

$$\mathbf{d}\mathbf{e}\mathbf{f}(\mathbf{G}^{\mathsf{T}}\mathbf{E}) = \mathbf{d}\mathbf{e}\mathbf{f}(\mathbf{I})$$

$$\mathbf{d}\mathbf{e}\mathbf{f}(\mathbf{G}) = \mathbf{d}\mathbf{e}\mathbf{f}(\mathbf{I}) > /$$

$$\mathbf{d}\mathbf{e}\mathbf{f}(\mathbf{G}) = \mathbf{d}\mathbf{e}\mathbf{f}(\mathbf{I}) > /$$

real matr An $n \times n$ matrix A is symmetric if $A^T = A$. The spectral theorem **Theorem 4.16.** If A is a symmetric $n \times n$ real matrix then

- (a) all the eigenvalues of A are real $(A-\lambda I)=0$

- unear independent avaganatisable (b) A has n orthonormal eigenvectors.

 $Q^{-1}AQ = D$ and the change of basis matrix Q is orthogonal. Hence A is diagonalisable:

So if A is symmetric then there is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors

(We say that
$$A$$
 is orthogonally diagonalisable.)

, orthogonally diagonalise A. Example 4.17. Given A =eigenspace

$$det(A-\lambda I) = \begin{bmatrix} -2 & 4 & 0 \\ 3^{-1} - k^{-2} - k \\ -k & 4 \end{bmatrix}$$

$$0 \quad PPP = 0$$

2(8-4) (12-16) -2(-2x+8) -2 (8-2 two free $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} y - y & x \\ x & y - y \\ x & y - y - z \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} y - y & x \\ x & y - y \\ x & y - z \\ x$ 5--- () h--- C -(人-4)2 (人+C) 7-4 " diagonaliable not orthogonal [2], [-1] eigenvector a phose

メニンターンナ

S = そX

$$D = \begin{bmatrix} \varphi \\ \varphi \\ -\zeta \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ x \\ -\zeta \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ x \\ -\zeta \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ x \\ -\zeta \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ x \\ -\zeta \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ x \\ -\zeta \end{bmatrix}$$