# Inter-Satellite Comparison and Evaluation of Navy SNPP VIIRS and MODIS Aqua Ocean Color Properties Paper # 9111-06

Sherwin Ladner¹, Robert Arnone², Ryan Vandermeulen², Paul Martinolich³, Adam Lawson¹, Jennifer Bowers³, Richard Crout¹, Michael Ondrusek⁴, Giulietta Fargion⁵

<sup>1</sup>Naval Research Laboratory, Stennis Space Center, MS, USA <sup>2</sup>University of Southern Mississippi, Stennis Space Center, MS, USA





### Objectives



- Evaluate the inter-comparison and accuracy of ocean color products from SNPP VIIRS and MODIS Aqua in coastal waters of the Northern Gulf of Mexico
  - rrs(I) remote sensing reflectance
  - total absorption (a), backscattering (bb), beam attenuation (c)
     and chlorophyll
- Calibration & Validation Ship Cruises
  - SEP 2013; NASA GEO-stationary Coastal and Air Pollution Events (GEOCAPE)
  - in Northern Gulf of Mexico from Galveston Bay, TX to Miss. River
    - Delta, LA (coastal, shelf, offshore)  $\square$  rrs(I), a(I), c(I)
  - NOV 2013; NRL Ocolor Cruise in Miss. Sound south of Bay St. Louis, MS (coastal) **☑** rrs(I), bb440, a(I), c(I)



# 1.APS/m2gen software (NRL, NASA) R&D Processing

- 1. Calibration applied to VIIRS SDR (AFWA IDPS/NAVO, NOAA IDPS/CLASS)
- 2. Atmospheric correction GW NIR w/ 80 aerosol models
- 3. Vicarious Gains Applied VIIRS(NRL/MOBY), MODIS Aqua (NASA/MOBY)
- 4. Glint / Cloud Removal
- 5. In-water Algorithms Quasi Analytical Algorithm (QAA)

**Coastal iteration** 

MOBY: calibration standard located off the coast of Hawaii in a blue water stable environment with minimal





VIIRS Mean Backscattering @551nm (QAA) w/ Station



05 0.002 0.008 m<sup>-1</sup> 0.032 0.13

Insitu Data: rrs(I) collected by NOAA(Ondrusek) using a Satlantic Hyperpro (in-water) and by UMASS (Lee, Pahlevan) using a HyperOCR (skylight-blocked approach above water). IOP's collected Wetlab's Hyperspectral ACS absorption and beam attenuation meter (a, c) and ECOPUC (bb).





### Rrs(I) Matchups and Statistics



Insitu: UMASS (Lee) & NOAA (Ondrusek) 25 Valid Matchups

<u>Rrs:</u> Overall VIIRS and MODIS performing well; VIIRS better (closer to 1:1 except for 412nm)





#### **IOP(I) Matchups and Statistics**







|            |                                     |                                             |                                                                                                                                                           | _                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                       |
|------------|-------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a412       | a443                                | a488                                        | a547                                                                                                                                                      | c412                                                                                                                                                                                                           | c443                                                                                                                                                                                                                                                              | c488                                                                                                                                                                                                                                                                                                            | <b>c</b> 547                                                                                                                                                                                                                                                                                                                                                          |
| 1.24       | 1.30                                | 1.08                                        | 0.99                                                                                                                                                      | 1.41                                                                                                                                                                                                           | 1.51                                                                                                                                                                                                                                                              | 1.52                                                                                                                                                                                                                                                                                                            | 1.54                                                                                                                                                                                                                                                                                                                                                                  |
| 1.21       | 1.32                                | 1.00                                        | 0.89                                                                                                                                                      | 1.11                                                                                                                                                                                                           | 1.27                                                                                                                                                                                                                                                              | 1.32                                                                                                                                                                                                                                                                                                            | 1.33                                                                                                                                                                                                                                                                                                                                                                  |
| <b>2</b> 9 | %                                   | 8%                                          | <b>10</b> °                                                                                                                                               | <u>6</u> 3                                                                                                                                                                                                     | 0%                                                                                                                                                                                                                                                                | <b>24</b> %                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                    |
| a412       | a443                                | a488                                        | a547                                                                                                                                                      | c412                                                                                                                                                                                                           | c443                                                                                                                                                                                                                                                              | c488                                                                                                                                                                                                                                                                                                            | <b>c</b> 547                                                                                                                                                                                                                                                                                                                                                          |
| 0.93       | 0.96                                | 0.95                                        | 0.97                                                                                                                                                      | 0.95                                                                                                                                                                                                           | 0.96                                                                                                                                                                                                                                                              | 0.96                                                                                                                                                                                                                                                                                                            | 0.97                                                                                                                                                                                                                                                                                                                                                                  |
| 0.93       | 0.88                                | 0.96                                        | 0.97                                                                                                                                                      | 0.92                                                                                                                                                                                                           | 0.93                                                                                                                                                                                                                                                              | 0.92                                                                                                                                                                                                                                                                                                            | 0.93                                                                                                                                                                                                                                                                                                                                                                  |
|            | 1.24<br>1.21<br>2.5<br>a412<br>0.93 | 1.24 1.30 1.21 1.32 2 % a412 a443 0.93 0.96 | 1.24       1.30       1.08         1.21       1.32       1.00         2 %       8 %         a412       a443       a488         0.93       0.96       0.95 | 1.24       1.30       1.08       0.99         1.21       1.32       1.00       0.89         2%       8%       1.05         a412       a443       a488       a547         0.93       0.96       0.95       0.97 | 1.24       1.30       1.08       0.99       1.41         1.21       1.32       1.00       0.89       1.11         2%       8%       10°       3         a412       a443       a488       a547       c412         0.93       0.96       0.95       0.97       0.95 | 1.24       1.30       1.08       0.99       1.41       1.51         1.21       1.32       1.00       0.89       1.11       1.27         2%       8%       10°       30%         a412       a443       a488       a547       c412       c443         0.93       0.96       0.95       0.97       0.95       0.96 | 1.24       1.30       1.08       0.99       1.41       1.51       1.52         1.21       1.32       1.00       0.89       1.11       1.27       1.32         2%       8%       10°       30%       24%         a412       a443       a488       a547       c412       c443       c488         0.93       0.96       0.95       0.97       0.95       0.96       0.96 |

**Insitu: UMASS** 

Overall VIIRS and MODIS QAA both performing well; BOTH have similar slopes for <u>absorption</u> while VIIRS produces much better <u>beam-c</u> values





bb(440) Matchups and Statistics



bb440: VIIRS matchups are better (slope 0.75) and overestimated by

<u>bb440:</u> MODIS had fewer points (5) and is overestimated by 44%

### IRL Ocolor Cruise (Mississippi Sound) November 20, 2013 VIIRS vs. MODIS Backscattering @551nm (QAA) w/ Station &



Insitu Data: NRL(Goode) - above water rrs(I) - hyperspectral handheld Analytical Spectral Devices (ASD). IOP's Wetlab's Hyperspectral AC9 absorption and beam attenuation meter (a, c) in continuous flowthru mode. Flowthru collected over a 20km track and binned to ~1km to match satellite resolution.

m<sup>-1</sup>

0.032

0.008

0.13

0.002



### RL Ocolor Cruise (Mississippi Sound) November 20, 2013



#### **Rrs(I) Matchups and Statistics**







| Slope             | ms443 | rrs488 | rrs547 |  |
|-------------------|-------|--------|--------|--|
| MODIS 1845        | 1.09  | 0.97   | 0.95   |  |
| <b>VIIRS 1957</b> | 0.83  | 0.89   | 1.06   |  |
| er to 1           | 8%    | 8%     |        |  |
| Rsquared          | ms443 | rrs488 | rrs547 |  |
| MODIS 1845        | 0.94  | 0.93   | 0.81   |  |
| <b>VIIRS 1957</b> | 0.92  | 0.94   | 0.87   |  |

Insitu: NRL

**<u>Rrs</u>**: Overall VIIRS and MODIS performing well; MODIS better (closer to 1:1)



### RL Ocolor Cruise (Mississippi Sound) November 20, 2013



IOP(I) Matchups (Flowthru) and Statistics

Flowthrough IOPs —Total absorption (443 nm)







|                                         | SLOPE    | a412   | a443   | a488   | a547   | c412   | c443   | c488   | c547           |
|-----------------------------------------|----------|--------|--------|--------|--------|--------|--------|--------|----------------|
|                                         | ModQAA   | 1.4719 | 1.3683 | 1.1459 | 0.8762 | 1.3836 | 1.4048 | 1.4270 | 1.4263         |
|                                         | VIIRSQAA | 0.8398 | 1.0374 | 0.9853 | 0.8244 | 1.3357 | 1.4410 | 1.4748 | 1.4678         |
| %closer to                              | 1 31%    | 33     | %      | 14%    | 6%     | 4      | !%     | 4%     | 3              |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |        | / 0    | / 0    | 0 / 0  |        | 70     | - 70   |                |
| ,00.000. 10                             | R2       | a412   | a443   | a488   | a547   | c412   | c443   | c488   | c547           |
| ,00.000. 10                             |          |        |        |        |        |        |        |        | c547<br>0.9873 |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | R2       | a412   | a443   | a488   | a547   | c412   | c443   | c488   |                |

19 - 1km ₃‰bins∳matchups

Insitu: NRL



# MODIS vs. VIIRS Comparison MissBight Echruser 15, 2014





### MODIS(y-axis) vs. VIIRS(x-axis) Comparison catter Plots - MissBight - February 15, 2014





### MODIS <u>rrs</u> values higher (all channels) 48%(412), 30%(443) ), 14%(486), 6%(551)







### **MODIS vs. VIIRS Comparison MissBight** February 15, 2014









VIIRS (x-axis) <u>IOP</u> values higher than MODIS (y-axis) 3%(a443), 20%(bb551), 19%(c5



### Summary:



- VIIRS and MODIS are currently generating quality coastal ocean color products (rrs and bio-optical products) in the Northern Gulf of Mexico (within known uncertainty requirements). Overall VIIRS performed better for GEOCAPE cruise (Sep. 2013) and MODIS for Ocolor Cruise (Nov. 2013)
- Vicarious calibration gains (MOBY) applied to VIIRS improves ocean color retrievals (lowers rrs values)
- Both sensors are capable of generating scientific research quality ocean color data.
- No current issues with Navy coastal retrievals(-) for VIIRS and MODIS
- Follow-on cruises and ocean color validation planned in near future (coastal and offshore)
- Ongoing Cal/Val efforts (NASA, NOAA, Navy,





### Questions?

See poster 9111-41 (Bowers, et.al)
Tuesday's Poster Session 6:00 - 7:30pm
"Regional Vicarious Gain Adjustment for Coastal VIIRS Products"

We greatly appreciate the support of our NOAA and Navy sponsors.

Thanks to Wesley Goode (NRL), Mike Ondrusek (NOAA), Nima Pahlevan (UMASS) and ZhongPing Lee (UMASS) for providing in situ cruise data.

Appreciate timely support of NAVO and NOAA CLASS for providing VIIRS and MODIS data to support cal/val cruises.





Spectral Rrs(I) Matchups (4 stations)









#### Insitu:

**UMASS/NOAA** 



### RL Ocolor Cruise (Mississippi Sound) November 20, 2013



**Spectral Rrs(I) Matchups (4 stations)** 









Insitu: NRL

## Exercise of the second second

0.0225

0.0175

0.0125

-0.0025

-0.0025

0.0025

### IODIS(y-axis) vs. VIIRS(x-axis) Comparison Scatter Plots - Ocolor Cruise November 20, 2013





0.0075

VIIRS rrs\_486

0.0125

0.0175

0.0225

npp.2013324.1120.181518.D.L3\_OC.viirsn.MissBight.v02.750m

= 1.2705131x

= 0.73183005







# MODIS vs. VIIRS Comparison MissBight February 15, 2014







