Probability Theory Summary

Mathematical Notes

October 19, 2025

Contents

1	Mea	asure Theory Foundations	•
	1.1	Sigma-Algebras	•
	1.2	Measures	٠
	1.3	Probability Measures	٠
	1.4	Measurable Functions	•
2	Ran	ndom Variables	•
	2.1	Definition	•
	2.2	Distribution Functions	٠
	2.3	Probability Density Functions	٠
	2.4	Expected Value	٠
	2.5	Variance	4
3	Con	nmon Distributions	4
	3.1	Discrete Distributions	4
		3.1.1 Bernoulli Distribution	4
		3.1.2 Binomial Distribution	4
		3.1.3 Poisson Distribution	4
	3.2	Continuous Distributions	,
		3.2.1 Uniform Distribution	,
		3.2.2 Normal Distribution	,
		3.2.3 Exponential Distribution	١
4	Con	avergence of Random Variables	,
	4.1	Almost Sure Convergence	,
	4.2	Convergence in Probability	١
	4.3	Convergence in Distribution	,
	4.4	Convergence in L^p	,
5	Lim	nit Theorems	,
	5.1	Law of Large Numbers	,
	5.2	Central Limit Theorem	(
6	Cor	nditional Probability and Independence	•
-	6.1		(
	6.2	Independence	(
	6.3	Conditional Expectation	í

7	Characteristic Functions				
	7.1	Definition	7		
	7.2	Properties	7		
8		rtingales	7		
	8.1	Definition	7		
		Martingale Convergence Theorem			
9	Sto	chastic Processes	7		
	9.1	Markov Chains	7		
		Brownian Motion			
10	Арр	blications	3		
	10.1	Finance	3		
	10.2	Statistics	3		
		Physics			
11	Imp	oortant Theorems	9		
	-	Radon-Nikodym Theorem	9		
		Fubini's Theorem			
		Dominated Convergence Theorem			

1 Measure Theory Foundations

1.1 Sigma-Algebras

Definition 1.1. A σ -algebra on a set Ω is a collection \mathcal{F} of subsets of Ω such that:

- 1. $\Omega \in \mathcal{F}$
- 2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
- 3. If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

1.2 Measures

Definition 1.2. A measure on a measurable space (Ω, \mathcal{F}) is a function $\mu : \mathcal{F} \to [0, \infty]$ such that:

- 1. $\mu(\emptyset) = 0$
- 2. If A_1, A_2, \ldots are disjoint sets in \mathcal{F} , then $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$

1.3 Probability Measures

Definition 1.3. A probability measure P on (Ω, \mathcal{F}) is a measure such that $P(\Omega) = 1$.

1.4 Measurable Functions

Definition 1.4. A function $f: \Omega \to \mathbb{R}$ is **measurable** if for every Borel set $B \subseteq \mathbb{R}$, $f^{-1}(B) \in \mathcal{F}$.

2 Random Variables

2.1 Definition

Definition 2.1. A random variable is a measurable function $X: \Omega \to \mathbb{R}$.

2.2 Distribution Functions

Definition 2.2. The cumulative distribution function (CDF) of random variable X is:

$$F_X(x) = P(X \le x)$$

2.3 Probability Density Functions

Definition 2.3. For a continuous random variable X, the **probability density function** (PDF) is a function f_X such that:

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

2.4 Expected Value

Definition 2.4. The **expected value** of random variable X is:

$$E[X] = \int_{\Omega} X(\omega) dP(\omega) = \int_{-\infty}^{\infty} x dF_X(x)$$

2.5 Variance

Definition 2.5. The **variance** of random variable X is:

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}$$

Figure 1: Common probability density functions

3 Common Distributions

3.1 Discrete Distributions

3.1.1 Bernoulli Distribution

Definition 3.1. $X \sim \text{Bernoulli}(p)$ if P(X = 1) = p and P(X = 0) = 1 - p.

$$E[X] = p$$
, $Var(X) = p(1-p)$

3.1.2 Binomial Distribution

Definition 3.2. $X \sim \text{Binomial}(n, p)$ if $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$.

$$E[X] = np$$
, $Var(X) = np(1-p)$

3.1.3 Poisson Distribution

Definition 3.3. $X \sim \text{Poisson}(\lambda)$ if $P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$.

$$E[X] = \lambda, \quad Var(X) = \lambda$$

3.2 Continuous Distributions

3.2.1 Uniform Distribution

Definition 3.4. $X \sim \text{Uniform}(a, b)$ has PDF $f(x) = \frac{1}{b-a}$ for $x \in [a, b]$.

$$E[X] = \frac{a+b}{2}, \quad Var(X) = \frac{(b-a)^2}{12}$$

3.2.2 Normal Distribution

Definition 3.5. $X \sim \mathcal{N}(\mu, \sigma^2)$ has PDF $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.

$$E[X] = \mu, \quad Var(X) = \sigma^2$$

3.2.3 Exponential Distribution

Definition 3.6. $X \sim \text{Exponential}(\lambda)$ has PDF $f(x) = \lambda e^{-\lambda x}$ for $x \geq 0$.

$$E[X] = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}$$

4 Convergence of Random Variables

4.1 Almost Sure Convergence

Definition 4.1. $X_n \to X$ almost surely if $P(\lim_{n\to\infty} X_n = X) = 1$.

4.2 Convergence in Probability

Definition 4.2. $X_n \to X$ in probability if for every $\epsilon > 0$:

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$$

4.3 Convergence in Distribution

Definition 4.3. $X_n \to X$ in distribution if $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ for all continuity points of F_X .

4.4 Convergence in L^p

Definition 4.4. $X_n \to X$ in L^p if $\lim_{n\to\infty} E[|X_n - X|^p] = 0$.

5 Limit Theorems

5.1 Law of Large Numbers

Theorem 5.1 (Strong Law of Large Numbers). If X_1, X_2, \ldots are i.i.d. with $E[X_i] = \mu < \infty$, then:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\to\mu \text{ almost surely}$$

5

5.2 Central Limit Theorem

Theorem 5.2 (Central Limit Theorem). If $X_1, X_2, ...$ are i.i.d. with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2 < \infty$, then:

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{d} \mathcal{N}(0, 1)$$

Figure 2: Central Limit Theorem: convergence of sample means to normal distribution

6 Conditional Probability and Independence

6.1 Conditional Probability

Definition 6.1. The **conditional probability** of A given B is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

provided P(B) > 0.

6.2 Independence

Definition 6.2. Events A and B are **independent** if $P(A \cap B) = P(A)P(B)$.

6.3 Conditional Expectation

Definition 6.3. The **conditional expectation** E[X|Y] is the random variable that equals E[X|Y=y] when Y=y.

7 Characteristic Functions

7.1 Definition

Definition 7.1. The characteristic function of random variable X is:

$$\phi_X(t) = E[e^{itX}] = \int_{-\infty}^{\infty} e^{itx} dF_X(x)$$

7.2 Properties

Theorem 7.1. 1. $\phi_X(0) = 1$

- 2. $|\phi_X(t)| \le 1$
- 3. $\phi_{aX+b}(t) = e^{itb}\phi_X(at)$
- 4. If X and Y are independent, then $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$

8 Martingales

8.1 Definition

Definition 8.1. A sequence of random variables $\{X_n\}$ is a **martingale** with respect to filtration $\{\mathcal{F}_n\}$ if:

- 1. X_n is \mathcal{F}_n -measurable
- 2. $E[|X_n|] < \infty$
- 3. $E[X_{n+1}|\mathcal{F}_n] = X_n$

8.2 Martingale Convergence Theorem

Theorem 8.1. If $\{X_n\}$ is a martingale with $\sup_n E[|X_n|] < \infty$, then X_n converges almost surely.

9 Stochastic Processes

9.1 Markov Chains

Definition 9.1. A Markov chain is a sequence of random variables $\{X_n\}$ such that:

$$P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = P(X_{n+1} = j | X_n = i)$$

9.2 Brownian Motion

Definition 9.2. Brownian motion $\{B_t\}_{t\geq 0}$ is a stochastic process such that:

- 1. $B_0 = 0$
- 2. $B_t B_s \sim \mathcal{N}(0, t s)$ for s < t
- 3. Increments are independent
- 4. Paths are continuous

Figure 3: Sample path of Brownian motion

10 Applications

10.1 Finance

Probability theory is fundamental to:

- Option pricing (Black-Scholes model)
- Risk management
- Portfolio optimization
- Credit risk modeling

10.2 Statistics

Applications include:

- Parameter estimation
- Hypothesis testing
- Confidence intervals
- Bayesian inference

10.3 Physics

Used in:

- Statistical mechanics
- Quantum mechanics

- Brownian motion
- Phase transitions

11 Important Theorems

11.1 Radon-Nikodym Theorem

Theorem 11.1. If μ and ν are σ -finite measures with $\nu \ll \mu$, then there exists a measurable function f such that $\nu(A) = \int_A f \, d\mu$.

11.2 Fubini's Theorem

Theorem 11.2. If f is integrable on $X \times Y$, then:

$$\int_{X\times Y} f \, d(\mu \times \nu) = \int_X \left(\int_Y f(x, y) \, d\nu(y) \right) d\mu(x)$$

11.3 Dominated Convergence Theorem

Theorem 11.3. If $f_n \to f$ almost everywhere and $|f_n| \le g$ for some integrable g, then:

$$\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu$$