CO245: Probability and Statistics

Din-Houn Lau Imperial College London dhl@ic.ac.uk

Autumn 2016

Contents

1	Introduction								
	1.1	Introduction to Uncertainty	1						
	1.2	Introduction to Statistics	1						
		1.2.1 Population vs. Sample	1						
	1.3	Probability AND Statistics	2						
	1.4	Statistical Modelling	3						
2	Mat	athematical Methods 4							
	2.1	Notation	4						
	2.2	Log and Exponential	4						
	2.3	Arithmetic and Geometric Progressions	5						
	2.4	Calculus	5						
	2.5	Function images and inverses	6						
	2.6	Interpolation	7						
3	Nur	merical Summaries	8						
	3.1	Summary Statistics	8						
		3.1.1 Measures of Location	8						
		3.1.2 Measures of Dispersion	11						
		3.1.3 Skewness	12						
		3.1.4 Covariance and Correlation	13						
	3.2	Related Graphical Displays	13						
		3.2.1 Box-and-Whisker Plots	13						
		3.2.2 Empirical CDF	14						
4	Eler	Elementary Set Theory 15							
	4.1	Sets, subsets and complements	15						
			15						
		4.1.2 Subsets, Complements and Singletons	15						
	4.2	Set operations	15						
		4.2.1 Unions and Intersections	15						
		4.2.2 Cartesian Products	17						
	4.3	Cardinality	18						
5	Prol	robability							
	5.1	Sample Spaces and Events	19						
		5.1.1 Sample Spaces	19						
			19						
		5.1.3 Combinations of Events	20						
	5.2	The σ -algebra	20						
	5.3	-	21						
		·	22						

		5.3.2	Interpretations of Probability	22							
		5.3.3	Independent Events	24							
	5.4	More	Examples	25							
		5.4.1	Joint events	26							
	5.5	Condi	tional Probability	27							
		5.5.1	Conditional Independence	29							
		5.5.2	Bayes' Theorem	29							
		5.7.1	More Examples	30							
6	Disc	crete Pr	robability Distributions	35							
	6.1	Rando	om Variables	35							
		6.1.1	Cumulative Distribution Function	36							
	6.2	Discre	ete Random Variables	37							
		6.2.1	Properties of Mass Function f_X	37							
		6.2.2	Discrete Cumulative Distribution Function	37							
		6.2.3	Connection between F_X and f_X	37							
		6.2.4	Properties of Discrete CDF F_X	38							
	6.3	Mean	and Variance	40							
		6.3.1	Expectation	40							
		6.4.1	Sums of Random Variables	42							
	6.5	Some	Important Discrete Random Variables	43							
		6.5.1	Bernoulli Distribution	43							
		6.5.2	Binomial Distribution	44							
		6.5.3	Geometric Distribution	45							
		6.5.4	Poisson Distribution	47							
		6.5.5	Discrete Uniform Distribution	49							
7	Con	Continuous Random Variables 51									
		7.0.6	Continuous Cumulative Distribution Function	51							
		7.0.7	Properties of Continuous F_X and f_X	51							
		7.0.8	Transformations	54							
	7.1	Mean,	, Variance and Quantiles	55							
		7.1.1	Expectation	55							
		7.1.2	Variance	56							
		7.1.3	Quantiles	56							
	7.2	Conti	nuous Distributions	57							
		7.2.1	Continuous Uniform Distribution	57							
		7.2.2	Exponential Distribution	58							
		7.2.3	Normal Distribution	60							
8	Join	Jointly Distributed Random Variables 66									
		8.0.1	Joint Cumulative Distribution Function	66							
		802	Properties of Joint CDF Eye	67							

		8.0.3	Joint Probability Mass Functions	67						
		8.0.4	Joint Probability Density Functions	68						
	8.1	Indepe	endence and Expectation	68						
		8.1.1	Independence	68						
		8.1.2	Expectation	69						
		8.1.3	Conditional Expectation	70						
	8.2	Examp	ples	71						
9	Estir	stimation 72								
		9.0.1	Estimators	73						
	9.1	Point 1	Estimates	73						
		9.1.1	Bias, Efficiency and Consistency	74						
		9.1.2	Maximum Likelihood Estimation	75						
	9.2	Confid	lence Intervals	78						
		9.2.1	Normal Distribution with Known Variance	79						
		9.2.2	Normal Distribution with Unknown Variance	80						
10	Нур	Hypothesis Testing 85								
		10.0.3	Duality with Confidence Intervals	82						
		10.0.4	Error Rates and Power of a Test	83						
	10.1	Testing	g for a population mean	83						
		10.1.1	Normal Distribution with Known Variance	83						
		10.1.2	Normal Distribution with Unknown Variance	85						
	10.2	Testing	g for differences in population means	86						
		10.2.1	Two Sample Problems	86						
		10.2.2	Normal Distributions with Known Variances	87						
		10.2.3	Normal Distributions with Unknown Variances	87						
	10.3	Goodr	ness of Fit	89						
		10.3.1	Count Data and Chi-Square Tests	89						
			1 · · · · · · · · · · · · · · · · · · ·							
			Proportions	90						
		10.3.2		90 91						

Course Information

Office Hours

Friday 10-11 in Huxley Room 542 or by appointment

Course Material

All the material for the course will be made available on CATe. Lecture notes will be revealed in batches over the term. Also, Piazza will be available for this course.

Lectures

The lecture notes will be made available ahead of the lectures — you will be expected to print out the notes. During the lecture, I will go through the notes and work through examples and fill in the gaps. You are encourgaged to ask questions during the lecture. Lectures should be available on Panopto – please do not rely on these recordings, as they may fail.

Problem Sheets

There will be non-assessed problem sheets to complement the material. It is expected that you work through these problems. Solutions will be provided 1 or 2 weeks after the problem sheet is made available.

Problems Classes

One hour a week (Thursdays 1700 - 1800) is a problems class tutorials. In these tutorials you can ask anything about the course material and problem sheets. Myself and GTAs will be present.

Course Assessment

- Exam (11/13): 2 hours, 4 questions. Question 1 is multiple choice.
- Coursework (2/13): tentatively handed out in Week 6 see CATe.

Course Content

Lecture notes based on slides created by Dr Nick Heard and Dr Nicola Fitz-Simon. All the content (and more) can be found in any introductory statistical textbook such as:

- Grimmett, G. & Stirzaker, D. (2001). *Probability and Random Processes*. Probability and Random Processes. OUP Oxford
- Wasserman, L. (2013). All of Statistics: A Concise Course in Statistical Inference. Springer

However all content contained in lecture notes, problem sheets etc.

Chapter 1. Introduction

1.1 Introduction to Uncertainty

This course is about uncertainty, measuring and quantifying uncertainty. Loosely speaking, by uncertainty we mean the condition when results, outcomes, the nearest and remote future are not completely determined; their development depends on a number of factors and just on a pure chance.

Simple examples of uncertainty appear when you bet on the outcome of a football match, turn a wheel of fortune, or toss a coin to make a choice.

Uncertainty appears in virtually all areas of Computer Science and Software Engineering. Installation of software requires uncertain time and often uncertain disk space. A newly released software contains an uncertain number of defects. When a computer program is executed, the amount of required memory may be uncertain. When a job is sent to a printer, it takes uncertain time to print, and there is always a different number of jobs in a queue ahead of it. Electronic components fail at uncertain times, and the order of their failures cannot be predicted exactly. Viruses attack a system at unpredictable times and affect an unpredictable number of files and directories. Uncertainty surrounds us in everyday life, at home, at work, in business, and in leisure.

This course is about measuring and dealing with uncertainty and randomness. It teach you that probability is a language used to describe and quantify uncertainty. But what about Statistics?

1.2 Introduction to Statistics

Definition of "Statistics"

- **Statistics** is the science and practice of developing human knowledge through the use of empirical data.
- **Statistical theory** is a branch of mathematics using probability theory to model randomness and uncertainty in data.
- **Statistical inference** is inference made from the sample data to the defined population using inductive methods and statistical theory.
- A **statistic** is a numerical summary of data.

1.2.1 Population vs. Sample

The previous definitions suggested an important distinction between a sample and a population.

Loosely, we can think of a population as being a large, perhaps infinite, collection of individuals or objects or quantities in which we are interested. For reasons of generality we would wish to make inferences about the entire population.

Example Suppose a new treatment for headaches was being developed by a pharmaceutical company. The target population for this new drug is potentially everybody in the world. To truly, fully understand the efficacy of the new treatment with respect to this population, we would have to administer treatments to every living individual, just after they get a headache, and measure their response.

Often it will be impractical or impossible to exhaustively observe every member of a population. So instead we observe what we hope is a representative sample from the population.

To best ensure the sample is representative and not biased in some way, where possible we draw the sample at random from the population.

Example Returning to the drug discovery example, we perform a clinical trial testing efficacy on a small subset of the population, randomising allocation of the new drug or a control treatment.

Statistical methods are then used to relate the measurements of the sample to the characteristics of the entire population.

1.3 Probability AND Statistics

A typical Probability problem sounds like this:

Example A folder contains 50 executable files. When a computer virus attacks a system, each file is affected with probability 0.2. Compute the probability that during a virus attack, more than 15 files get affected.

Notice that the situation is rather clearly described, in terms of the total number of files and the chance of affecting each file. The only uncertain quantity is the number of affected files, which cannot be predicted for sure.

A typical Statistics problem sounds like this:

Example A folder contains 50 executable files. When a computer virus attacks a system, each file is affected with the same probability p. It has been observed that during a virus attack, 15 files got affected. Estimate p. Is there a strong indication that p is greater than 0.2?

This is a practical situation. A user only knows the objectively observed data: the number of files in the folder and the number of files that got affected. Based on that, she needs to estimate p, the proportion of all the files, including the ones in her system and any similar systems. One may provide a point estimator of p, a real number, or may choose to construct a confidence interval of "most probable" values of p.

1.4 Statistical Modelling

Modern statistical methods are largely driven by the notion of a **model**. In contrast with Machine Learning, which focuses on algorithms.

A model is a postulated structure, or an approximation to a structure, which could have led to the data. (Berthold & Hand, 2002)

- Commonly models are parametric.
- ⇒ Problem of learning about the underlying population is reduced to learning about a finite set of parameters.

Besides machine learning techniques, computing advances have enabled the fitting of complex parametric/non-parametric models (e.g. Bayesian methods, Monte Carlo simulation, ...).

In this course, we will consider very simple parametric statistical models to represent our populations of interest.

- Statistical inference will thus mean estimating model parameters using our observed sample.
- Likelihood methods will be our main tool for this task. We will learn to calculate the likelihood of a particular parameter solution given our observed sample.