浅谈CrossFormer

论文名称: CROSSFORMER: A VERSATILE VISION TRANSFORMER BASED ON CROSS-

SCALE ATTENTION

论文链接: https://arxiv.org/pdf/2108.00154.pdf

论文代码: https://github.com/cheerss/CrossFormer

1. 出发点

Transformers模型在处理视觉任务方面已经取得了很大的进展。然而,现有的vision transformers仍然不具备一种对视觉输入很重要的能力:**在不同尺度的特征之间建立注意力**。

- 每层的输入嵌入都是等比例的, 没有跨尺度的特征;
- 一些transformers模型为了减少self-attention的计算量,衰减了key和value的部分特征表达。

2. 怎么做

为了解决上面的问题,提出了几个模块。

- 1. Cross-scale Embedding Layer (CEL)
- 2. Long Short Distance Attention (LSDA)
- 3. Dynamic Position Bias (DPB)

这里1和2都是为了弥补了以往架构在建立跨尺度注意力方面的缺陷,3的话和上面的问题无关,是为了使相对位置偏差更加灵活,更好的适合不定尺寸的图像和窗口。这篇文章还挺讲究,不仅提出两个模块来解决跨尺度特征attention,还附送了一个模块来搞一个搞位置编码。

3. 模型结构

模型整体的结构图如上所示,与swin-transformers和pvt基本整体结构一致,都是采用了层级的结构,这样的好处是可以迁移到dense任务上去,做检测,分割等。整体结构由以下组成:

- 1. Cross-scale embeeding layer (CEL), 用来做patch embeeding和patch merging(下采样)。
- 2. CrossFrom block,看上图(b),整体看是两个transformer结构的block所组成,其中第一个transformer block采用的是SDA,也就是short distance attention,并且引入了一个DPB模块,第二个transformer block采用的则是LDA,也就是long distance attention,同样也引入了一个DPB模块,两个transformer block串行,组成一个CrossFormer block。
- 3. Classification Head, 就是常规的分类MLP, 没啥可说的。

3.1 Cross-scale embeeding layer (CEL)

Q&A

Question: 既然是层级结构,那么就一定会有尺度上的下采样,那crossformers是怎么做的呢?

Answer: 简单回顾一下pvt和swin的做法

pvt: 假设feature map为 $B \times H \times W \times C_1$, 那么我们就可以做一个stride为2的一个convolution, 变换为 $B \times H//2 \times W//2 \times C_2$,由于patchsize固定,所以,featuremap下采样,对应的就是token的下采样。

swin: swin由于是基于windows做attention,为了达到下采样的效果,选择直接对featuremap上采样,每个4邻域都会分别采样到另一个map里面去,最后则有 $B imes H imes W imes C_1$ 变换为 $B imes H//2 imes w//2 imes C_2$,也可以看做是stride为2带有空洞的卷积操作。

Question: 万变不离其宗,所以为了达到下采样的效果,用*卷积*其实就可以了。那么CrossFormer为了实现下采样是怎么做的呢?

Answer:

看上图,很明显,直接用不同卷积核来对输入的图片做卷积,得到卷积后的结果,直接concat一起,作为我们的patch embeeding。想法很简单,实现的话也很朴素,通过不同卷积核的卷积,来获取不同尺度特征的信息,对于变化尺度的物体相对来说是比较友好的,这个可行性其实在很多paper里面都有用到过,比如Pyramidal Convolution,如下图所示。

ps: 这里除了patch embeeding,也就是第一个CEL用的是4个卷积核stride为4来做多尺度,其余的CEL也就是patch merge用的都是2个卷积核stride为2来做的多尺度。两个操作基本相同,只看一份代码即可,核心代码如下:

```
class PatchEmbed(nn.Module):
    def __init__(self, img_size=224, patch_size=[4], in_chans=3, embed_dim=96, norm_layer=None):
        super(). init ()
        self.projs = nn.ModuleList()
        for i, ps in enumerate(patch size):
            if i == len(patch_size) - 1:
                dim = embed dim // 2 ** i
            else:
                dim = embed_dim // 2 ** (i + 1)
            stride = patch size[0]
            padding = (ps - patch_size[0]) // 2
            self.projs.append(nn.Conv2d(in chans, dim, kernel size=ps, stride=stride, padding=pa
        if norm layer is not None:
            self.norm = norm layer(embed dim)
            self.norm = None
    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img size[0]}*{self.img size[
        xs = []
        for i in range(len(self.projs)):
            tx = self.projs[i](x).flatten(2).transpose(1, 2)
            xs.append(tx) # B Ph*Pw C
        x = torch.cat(xs, dim=2)
        if self.norm is not None:
            x = self.norm(x)
        return x
```

代码做了两件事情:

- 初始化几个不同kernel,不同padding,相同stride的conv
- 对输入进行卷积操作后得到的feature, 做concat

这样,以输入为224x224为例,我们通过patch embeeding,得到了一个56x56的featuremap,输入到第一个stage,输出继续做一个patchmerging,得到了一个28x28的featuremap,输入到第二个stage,输出继续做一个patchmerging,得到了一个14x14的featuremap,输入到第三个stage,输出再次做一个patchmerging,得到一个7x7的featuremap,在输入到最后一个stage,最后的输出做分类即可,基本上都是这么一个套路了,大同小异。那么stage里面是怎么做的,看下一节。

3.2 Stage block

对于标准的transformerblock来说,假设输入为 $B \times N \times L$,经过transformer后,我们的输出还是 $B \times N \times L$,输入和输出是没有变化的,唯一的尺度变换都在patch embeeding和patch merging。那么我们在改动transformer block的时候,也是要遵守这一原则,对应的,如果想有resolution上的变化,那么就要借助于reshape或者view等操作,好了,不说废话,看这篇文章的crossformer block是怎样的。

CrossFormer Block

CrossFormer block由两个transformer的block堆叠而成,两个transformer block的self-attention都是基于windows来做的,不同之处在于一个考虑的是局部内的信息,一个则是考虑的是全局的信息。这个思想并没有什么突出的地方,目前来说transformer做局部和全局的串联,已经屡见不鲜。

Q&A

Question: 问题来了,怎样实现呢,既要保证基于windows做self-attention,又想要全局的信息? **Answer**: 使用一个固定的步长step,比如2或者3,对行和列分别按步长采样,这样可以得到多个全局的信息,同时基于一个 $\frac{H}{step} imes \frac{W}{step}$ 大小的windows。这样最大可能的利用到了featuremap的全局性,同时

节省了计算的复杂度,假设输入为 $S\times S$,step为I,那么windows的窗口大小为 $G\times G,G=\frac{S}{I}$,原始的复杂度为 $O(S^4)$,那么基于窗口的attention的复杂度为 $O(G^4)=O(G^2(\frac{S}{I})^2)==O(G^2S^2)$,G< S。

CrossFormerblock中的基石: windows self-attention

Short Distance Attention(SDA)

对于一个 $4 \times 4 \times C$ 的feautremap,如果我们想要实现self-attention,需要先转换为 $(4 \times 4) \times C$ 的向量,那么这里就是所谓的long-range的attention,也就是全局的。但是对于MHA来说,部分head还是更多的focus到short-range,结合swin和twins的结论可以验证,局部attention不仅可以达到很好的效果同时还会节省计算。那么怎么获得局部的attention,很简单,如上图所示,只需要把原始的 $4 \times 4 \times C$ 做reshape操作,既可以得到 $4 \times (2 \times 2) \times C$,那么我们只需要对 $4 \wedge 2 \times 2$ 做attention即可,最后在reshape回原始形状,代码如下:

```
x = x.reshape(B, H // G, G, W // G, G, C).permute(0, 1, 3, 2, 4, 5)
x = attention(x)
....
```

Long Distance Attention(LDA)

从上面的SDA, 我们得到了局部attention,但是也说了,部分head是局部友好的,也就是说,对于self-attention来说,long-range始终是必不可少的,所以还是需要引入long distance attention。如上图所示,颜色一致的部分表示的是归属于同一个sub-windows的,对于原始的 $4\times4\times C$,使用step为2进行采样,得到了4个 $2\times2\times C$,可以抽象成两种计算方法,一种是空洞卷积,一种则是

1x1的卷积, stride为step, 对于图像来说, 相邻的位置, 像素所表达的信息接近, 所以两种得到的都是全局的一个感受野, 所以对应我们的attention, 也会得到一个近乎全局的attention, 代码如下:

```
x = x.reshape(B, G, H // G, G, W // G, C).permute(0, 2, 4, 1, 3, 5)
x = attention(x)
...
```

直接看这个代码可能不太好理解,我们用 einops 简单改写一下,代码如下: 输入:

SDA:

对于SDA的情况,实际上就是循环HW,扣2x2的区域下来,那么因为有行遍历优先,或者列遍历优先,实际上得到的结果是顺序的。

LDA:

那么对于LDA的情况,我们希望的是外循环是有间隔的,所以把step放到HW的外面,这样循环的时候则是按间隔来进行sample,以达到全局的效果。

CrossFormerblock中的位置编码: Dynamic Position Bias(DPB)

Relative position bias (RPB)

随着位置编码技术的不断发展,相对位置编码偏差逐渐的应用到了transformers中,很多的vision transformers均采用RPB来替换原始的APE,好处是可以直接插入到我们的attention中,不需要很繁琐的公式计算,并且可学习性高,鲁棒性强,公式如下:

$$Attention = Softmax(QK^T/\sqrt{d} + B)V$$

Q&A

Question:但是这里有个问题,对于 $Q,K,V\in\mathbb{R}^{G^2\times D}$ 来说,会有一个偏差 $B\in R^{G^2\times G^2}$,B所表达的则是matrix上的i和j的相对位置的embeeding,很显然,如果图像的尺寸变化,那么可能会超出B所表达的范围,会导致PE没有作用,那么要怎么改进呢?

Answer:很简单,插值或者切片不就好了,但是切片会导致pe完整性差,损失信息,插值是通过原始的位置信息来模拟出来信息,实际上还是原始的信息,没有信息收益。那本文想到的一个方法就是可以通过学习得到位置信息。

• Dynamic Position Bias (DPB)

举个栗子,如果我们的窗口大小为 7×7 ,那么我们希望的相对位置范围为 $x \in [-6,6]$ 假设我们不考虑截断距离,如果我们的窗口突然放大到了 9×9 ,那么我们实际的相对位置所表达的信息只是中间的一部分窗口,失去了对外层数据位置的访问。DPB的思想则是,我们不希望通过用实际的相对位置来做embeeidng,而是希望通过隐空间先对位置偏差进行学习,如上图所示。

DPB,由3个线性层+LayerNorm+ReLU组成的block堆叠而成,最后接一个输出为1的线性层做bias的表征,输入是(N,2),由于self-attention是由多个head组成的,所以输出为(N,1 imes heads),代码如下:

1. 先得到一个相对位置偏差的矩阵,假设group size的大小为 7×7 ,那么bias的维度为(169,2)

```
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
# generate mother-set
position bias h = torch.arange(1 - self.group size[0], self.group size[0])
position bias w = torch.arange(1 - self.group size[1], self.group size[1])
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w])) # 2, 2Wh-1, 2
biases = biases.flatten(1).transpose(0, 1).float()
self.register_buffer("biases", biases)
biases:
tensor([[-6., -6.],
[-6., -5.],
[-6., -4.],
[-6., -3.],
[-6., -2.],
[-6., -1.],
. . .
[ 6., 4.],
[6., 5.],
[ 6., 6.]])
```

2. 构建索引矩阵, 得到了一个 49×49 的一个索引,从右上角为0开始,向左和向下递增。

```
coords h = torch.arange(self.group size[0])
coords_w = torch.arange(self.group_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww,
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.group_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.group_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.group_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
relateive_position_index:
tensor([[ 84, 83, 82, ..., 2, 1,
                                        0],
[85, 84, 83, ..., 3, 2, 1],
[86, 85, 84, \ldots, 4, 3, 2],
[166, 165, 164, \ldots, 84, 83, 82],
[167, 166, 165, ..., 85, 84, 83],
[168, 167, 166, ..., 86, 85, 84]])
```

3. 初始化DBP模块

```
pos = DynamicPosBias(64 // 4, 8, residual=False)
```

4. 通过DBP生成bias的embeeding, 通过索引矩阵进行取值, 最后与attn相加

```
pos = self.pos(self.biases) # 2Wh-1 * 2Ww-1, heads
# select position bias
relative_position_bias = pos[self.relative_position_index.view(-1)].view(
    self.group_size[0] * self.group_size[1], self.group_size[0] * self.group_size[1], -
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh
attn = attn + relative_position_bias.unsqueeze(0)
```

• Rethinking: 对于PE来说,目前的形成方法都是通过embeeding来构建bias矩阵,对于VIT来说,直接使用绝对位置的embeeding,通过学习来更新,对于swins来说,直接使用embeeding而不是相对bias的值,相当于 $embeeding_{bias} == DBP(bias)$,其实本质上没有太大的差异,从消融实验结果上来看,DBP和RBP的性能一样。唯一的作用,就是embeeding是后验而不是先验,对于变换的尺寸来说,可能更加友好,只不过这个embeeding是有给出结论,还需要更多的实验来验证。

Method	#Params/FLOPs	Throughput	Acc.
APE	30.9342M/4.9061G	686 imgs/sec	82.1%
RPB	30.6159M/4.9062G	684 imgs/sec	82.5%
DPB	30.6573M/4.9098G	672 imgs/sec	82.5%
DPB-residual	30.6573M/4.9098G	672 imgs/sec	82.4%

综上,我们每个stageblock里面,都是由SDA+DBP&LDA+DBP堆叠而成,与swin类似,奇数layer走SDAblock,偶数layer走LDAblock,从结构上来看,先局部attention,再全局attention,有一点点由点到面的既视感。

	Output Size	Layer Name	CrossFormer-T	CrossFormer-S	CrossFormer-B	CrossFormer-L
		Cross Embed.	Ker	nel size: 4×4 , 8×8 ,	$16 \times 16,32 \times 32$, Strice	de=4
Stage-1	56×56 $(S_1 = 56)$	SDA/LDA MLP	$\begin{bmatrix} D_1 = 64 \\ H_1 = 2 \\ G_1 = 7 \\ I_1 = 8 \end{bmatrix} \times 1$	$\begin{bmatrix} D_1 = 96 \\ H_1 = 3 \\ G_1 = 7 \\ I_1 = 8 \end{bmatrix} \times 2$	$egin{bmatrix} D_1 = 96 \ H_1 = 3 \ G_1 = 7 \ I_1 = 8, \end{bmatrix} imes 2$	$\begin{bmatrix} D_1 = 128 \\ H_1 = 4 \\ G_1 = 7 \\ I_1 = 8 \end{bmatrix} \times 2$
		Cross Embed.		Kernel size: $2 \times$	$2, 4 \times 4$, Stride= 2	
Stage-2	28×28 $(S_2 = 28)$	SDA/LDA MLP	$\begin{bmatrix} D_2 = 128 \\ H_2 = 4 \\ G_2 = 7 \\ I_2 = 4 \end{bmatrix} \times 1$	$\begin{bmatrix} D_2 = 192 \\ H_2 = 6 \\ G_2 = 7 \\ I_2 = 4 \end{bmatrix} \times 2$	$\begin{bmatrix} D_2 = 192 \\ H_2 = 6 \\ G_2 = 7 \\ I_2 = 4 \end{bmatrix} \times 2$	$\begin{bmatrix} D_2 = 256 \\ H_2 = 8 \\ G_2 = 7 \\ I_2 = 4 \end{bmatrix} \times 2$
		Cross Embed.		$2, 4 \times 4$, Stride= 2		
Stage-3	14×14 $(S_3 = 14)$	SDA/LDA MLP	$\begin{bmatrix} D_3 = 256 \\ H_3 = 8 \\ G_3 = 7 \\ I_3 = 2 \end{bmatrix} \times 8$	$\begin{bmatrix} D_3 = 384 \\ H_3 = 12 \\ G_3 = 7 \\ I_3 = 2 \end{bmatrix} \times 6$	$\begin{bmatrix} D_3 = 384 \\ H_3 = 12 \\ G_3 = 7 \\ I_3 = 2 \end{bmatrix} \times 18$	$\begin{bmatrix} D_3 = 512 \\ H_3 = 16 \\ G_3 = 7 \\ I_3 = 2 \end{bmatrix} \times 18$
		Cross Embed.		Kernel size: 2 ×	$2, 4 \times 4$, Stride= 2	
Stage-4	7×7 $(S_4 = 7)$	SDA/LDA MLP	$\begin{bmatrix} D_4 = 512 \\ H_4 = 16 \\ G_4 = 7 \\ I_4 = 1 \end{bmatrix} \times 6$	$\begin{bmatrix} D_4 = 768 \\ H_4 = 24 \\ G_4 = 7 \\ I_4 = 1 \end{bmatrix} \times 2$	$\begin{bmatrix} D_4 = 768 \\ H_4 = 24 \\ G_4 = 7 \\ I_4 = 1 \end{bmatrix} \times 2$	$\begin{bmatrix} D_4 = 1024 \\ H_4 = 32 \\ G_4 = 7 \\ I_4 = 1 \end{bmatrix} \times 2$
Head	1×1	Avg Pooling		Kernel s	ize: 7 × 7	
Linear					es: 1000	

与其他的paper大同小异了,设计了4种不同FLOPs的模型,Tiny, Small, Big和Large 用来和其他的模型在同等FLOPs下公平比较。D表示的是维度,H表示的是attention头的个数,G表示的是attention窗口的大小,I表示的是滑动窗口的间隔。

4. 实验结果

Table 2: Results on ImageNet validation set. The input size is 224×224 for most models, while is 384×384 for the model with a †. Results of other architectures are drawn from their papers.

7								
Architectures	#Params	FLOPs	Acc.		Architectures	#Params	FLOPs	Acc.
PVT-S	24.5M	3.8G	79.8%		BoTNet-S1-59	33.5M	7.3G	81.7%
RegionViT-T	13.8M	2.4G	80.4%		PVT-L	61.4M	9.8G	81.7%
Twins-SVT-S	24.0M	2.8G	81.3%		DeiT-B	86.0M	17.5G	81.8%
CrossFormer-T	27.8M	2.9G	81.5%		CvT-21	32.0M	7.1 G	82.5%
DeiT-S	22.1M	4.6G	79.8%		CAT-B	52.0M	8.9G	82.8%
T2T-ViT	21.5M	5.2G	80.7%		Swin-S	50.0M	8.7G	83.0%
CViT-S	26.7M	5.2G 5.6G	81.0%		RegionViT-M	41.2M	7.4G	83.1%
PVT-M	44.2M	6.7G	81.0%		Twins-SVT-B	56.0M	8.3G	83.1%
TNT-S	23.8M	5.2G	81.3%		NesT-S	38.0M	10.4G	83.3%
Swin-T	29.0M	4.5G	81.3%		CrossFormer-B	52.0M	9.2G	83.4%
NesT-T	17.0M	5.8G	81.5%		DeiT-B [†]	86.0M	55.4G	83.1%
CvT-13	20.0M	4.5G	81.6%		ViL-B	55.7M	13.4G	83.1%
ResT	30.2M	4.3G	81.6%					
					RegionViT-B	72.0M	13.3G	83.3%
CAT-S	37.0M	5.9G	81.8%		Twins-SVT-L	99.2M	14.8G	83.3%
ViL-S	24.6M	4.9G	81.8%		Swin-B	88.0M	15.4G	83.3%
RegionViT-S	30.6M	5.3G	82.5%		NesT-B	68.0M	17.9G	83.8%
CrossFormer-S	30.7M	4.9G	82.5%		CrossFormer-L	92.0M	16.1G	84.0%
	•	•	•	-				

CrossFormer都是再224x224的图片大小下进行训练,使用的类似DeiT的训练策略,不过采用了更大的warmup(20个, DeiT是5), 学习率为1e-3, weightdecay为5e-2, 与DeiT不同的是,这里随着模型大小的改变,分别采用了0.1, 0.2, 0.3, 0.5的drop path rate。可以看到,在同等数量级的FLOPs的情况下,CF在imagenet上都取得了SOTA的效果。

Table 3: Object detection and instance segmentation results on COCO *val* 2017. Results for Swin (Liu et al., 2021b) are drawn from Twins (Chu et al., 2021) as Swin does not report results on RetinaNet and Mask-RCNN. Results in blue fonts are the second-placed one. CrossFormers with [‡] use different group size from classification models, as described in the appendix (A.3).

Method	Backbone	#Params	FLOPs	AP^b	AP_{50}^b	AP^b_{75}	AP^b_S	AP^b_M	\mathbf{AP}_L^b
	ResNet-50	37.7M	234.0G	36.3	55.3	38.6	19.3	40.0	48.8
	CAT-B	62.0M	337.0G	41.4	62.9	43.8	24.9	44.6	55.2
	Swin-T	38.5M	245.0G	41.5	62.1	44.2	25.1	44.9	55.5
	PVT-M	53.9M	_	41.9	63.1	44.3	25.0	44.9	57.6
	ViL-M	50.8M	338.9G	42.9	64.0	45.4	27.0	46.1	57.2
	RegionViT-B	83.4M	308.9G	43.3	65.2	46.4	29.2	46.4	57.0
	TransCNN-B	36.5M	_	43.4	64.2	46.5	27.0	47.4	56.7
Datina Nat	CrossFormer-S	40.8M	282.0G	44.4(+1.0)	65.8	47.4	28.2	48.4	59.4
RetinaNet 1× schedule	CrossFormer-S [‡]	40.8M	272.1G	44.2(+0.8)	65.7	47.2	28.0	48.0	59.1
1× senedule	ResNet101	56.7M	315.0G	38.5	57.8	41.2	21.4	42.6	51.1
	PVT-L	71.1M	345.0G	42.6	63.7	45.4	25.8	46.0	58.4
	Twins-SVT-B	67.0M	322.0G	44.4	66.7	48.1	28.5	48.9	60.6
	RegionViT-B+	84.5M	328.2G	44.6	66.4	47.6	29.6	47.6	59.0
	Swin-B	98.4M	477.0G	44.7	65.9	49.2	_	_	_
	Twins-SVT-L	110.9M	455.0G	44.8	66.1	48.1	28.4	48.3	60.1
	CrossFormer-B	62.1M	389.0G	46.2(+1.4)	67.8	49.5	30.1	49.9	61.8
	CrossFormer-B‡	62.1M	379.1G	46.1(+1.3)	67.7	49.0	29.5	49.9	61.5
Method	Backbone	#Params	FLOPs	AP^b	AP_{50}^b	AP_{75}^b	AP^m	AP_{50}^m	\mathbf{AP}_7^n
	PVT-M	63.9M	_	42.0	64.4	45.6	39.0	61.6	42
	Swin-T	47.8M	264.0G	42.2	64.6	46.2	39.1	61.6	42.0
	Twins-PCPVT-S	44.3M	245.0G	42.9	65.8	47.1	40.0	62.7	42.9
	TransCNN-B	46.4M	-	44.0	66.4	48.5	40.2	63.3	43.2
	ViL-M	60.1M	261.1G	43.3	65.9	47.0	39.7	62.8	42.0
	RegionViT-B	92.2M	287.9G	43.5	66.7	47.4	40.1	63.4	43.0
	RegionViT-B+	93.2M	307.1G	44.5	67.6	48.7	41.0	64.4	43.9
	CrossFormer-S	50.2M	301.0G	45.4(+0.9)	68.0	49.7	41.4(+0.4)	64.8	44.6
Mask-RCNN	CrossFormer-S [‡]	50.2M	291.1G	45.0(+0.5)	67.9	49.1	41.2(+0.2)	64.6	44.3
$1 \times$ schedule	CAT-B	71.0M	356.0G	41.8	65.4	45.2	38.7	62.3	41.4
	PVT-L	81.0M	364.0G	42.9	65.0	46.6	39.5	61.9	42.5
	Twins-SVT-B	76.3M	340.0G	45.1	67.0	49.4	41.1	64.1	44.4
	ViL-B	76.1M	365.1G	45.1	67.2	49.3	41.0	64.3	44.2
	Twins-SVT-L	119.7M	474.0G	45.2	67.5	49.4	41.2	64.5	44.5
	Swin-S	69.1M	354.0G	44.8	66.6	48.9	40.9	63.4	44.2
	Swin-B	107.2M	496.0G	45.5	_	_	41.3	-	_
							40 = 4 4 45		100
	CrossFormer-B	71.5M	407.9G	47.2(+1.7)	69.9	51.8	42.7(+1.4)	66.6	46.2

可以看到CrossFromer在coco2017上基于RetinaNet架构,也可以达到SOTA的效果,高于Twins模型1.4个ap之多。实例分割则是基于Mask-Rcnn的架构,也是SOTA,超过Swin 1.7个ap。相比而言参数量和FLOPs都更少,性能更好。

Table 4: Semantic segmentation results on ADE20K validation set. "MS IOU" means testing with variable input size.

Semantic FPN (80K iterations)			UPerNet (160K iterations)					
Backbone	#Params	FLOPs	IOU	Backbone	#Params	FLOPs	IOU	MS IOU
PVT-M	48.0M	219.0G	41.6	Swin-T	60.0M	945.0G	44.5	45.8
Twins-SVT-B	60.4M	261.0G	45.0	Shuffle-T	60.0M	949.0G	46.6	47.6
Swin-S	53.2M	274.0G	45.2	CrossFormer-S	62.3M	979.5G	47.6(+1.0)	48.4
CrossFormer-S	34.3M	220.7G	46.0(+0.8)	CrossFormer-S [‡]	62.3M	968.5G	47.4 (+0.8)	48.2
CrossFormer-S [‡]	34.3M	209.8G	46.4(+1.2)	Swin-S	81.0M	1038.0G	47.6	49.5
PVT-L	65.1M	283.0G	42.1	Shuffle-S	81.0M	1044.0G	48.4	49.6
CAT-B	55.0M	276.0G	43.6	CrossFormer-B	83.6M	1089.7G	49.7(+1.3)	50.6
CrossFormer-B	55.6M	331.0G	47.7 (+4.1)	CrossFormer-B [‡]	83.6M	1078.8G	49.2(+0.8)	50.1
CrossFormer-B [‡]	55.6M	320.1G	48.0(+4.4)	Swin-B	121.0M	1088.0G	48.1	49.7
Twins-SVT-L	103.7M	397.0G	45.8	Shuffle-B	121.0M	1096.0G	49.0	_
CrossFormer-L	95.4M	497.0G	48.7 (+2.9)	CrossFormer-L	125.5M	1257.8G	50.4 (+1.4)	51.4
CrossFormer-L [‡]	95.4M	482.7G	49.1(+3.3)	CrossFormer-L [‡]	125.5M	1243.5G	50.5(+1.5)	51.4

语义分割上,可以看到可以看到最多提升3.3%的MIOU,非常厉害了。

(a) Ablation study for cross-scale embedding (CEL) and long short distance attention (LSDA). The base model is CrossFormer-S (82.5%).

PVT-like	Swin-like	LSDA	CEL	Acc.
√		1	✓	81.3% 81.9%
	✓		\checkmark	81.9%
		\checkmark	\checkmark	82.5%
		√		81.5%

消融实验上,可以看到,当CEL和LSDA一起使用的时候,性能最高。不过这实验也很明显了,CrossFormer参考了PVT和swin的设计思想。使用了LSDA,相比于Swin提升了0.6%个点,设计比swin更加朴实,不错的提升。

5. 结论

本文提出了一个新的transformers架构称为CrossFormer。其核心设计包括一个跨尺度嵌入层(CEL)和长短距离注意(LSDA)模块。此外,我们提出了动态位置偏置(DPB),使相对位置偏置适用于任何输入尺寸。实验表明,CrossFormer在几个有代表性的视觉任务上取得了SOTA。特别是,CrossFormer在检测和分割方面有很大的改进,这表明跨尺度嵌入和LSDA对于密集预测的视觉任务特别重要。

ps: 欢迎大家关注我的知乎: https://www.zhihu.com/people/flyegle