8.2- Other Indeterminate Forms

Name/ Uid:______ Date:_____

Theorem 1 (L'Hôpital's Rule, type ∞/∞). Suppose f and g are differentiable functions. If

$$\lim_{x \to a} |f(x)| = \infty \qquad \text{ and } \qquad \lim_{x \to a} |g(x)| = \infty$$

then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided the limit on the right hand side exists (or is equal to $\pm \infty$).

Remark 1. Again, this version of L'Hôpital's rule applies to one-sided limits and limits at infinity as well $(a = \pm \infty)$.

Example 1. Evaluate the following limits using L'Hôpital's Rule:

(a)
$$\lim_{x \to \infty} \frac{\ln x}{x}$$

(b)
$$\lim_{x \to 1^+} \frac{\ln x}{(x-1)^2}$$

(c) $\lim_{x\to\infty} \frac{x^n}{e^x}$, where n is any positive integer.

There are other indeterminate forms, which can be transformed into type 0/0 or ∞/∞ by some algebraic manipulation.

• (Type $0 \cdot \infty$) If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = \infty$, then to compute $\lim_{x \to a} f(x)g(x)$, we can apply L'Hospital's Rule to either

$$\lim_{x \to a} \frac{f(x)}{\frac{1}{g(x)}} \quad \text{or} \quad \lim_{x \to a} \frac{g(x)}{\frac{1}{f(x)}},$$

which are of indeterminate form $\frac{0}{0}$ and $\frac{\infty}{\infty}$ respectively.

• (Type $\infty - \infty$) If $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = \infty$, then to compute

$$\lim_{x \to a} \left(f(x) - g(x) \right),\,$$

we can sometimes apply L'Hospital's Rule if we can write the difference as a fraction (either by using a common denominator, rationalization, or by factoring out some term).

• (Type 0^0 , ∞^0 , and 1^∞) To compute

$$\lim_{x \to a} f(x)^{g(x)},$$

we can compute the logarithm of the above limit. That is, if $\lim_{x\to a} f(x)^{g(x)} = L$, then we can find L by noting that $\ln L = \lim_{x\to a} g(x) \ln (f(x))$.

Example 2. Evaluate the following limits using L'Hôpital's Rule.

$$(a) \lim_{x \to 0^+} x \ln x$$

(b)
$$\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$$

(c)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$