Условный экстремум

Пусть M^k - гладкая k-мерная поверхность в \mathbb{R}^n . Пусть $f\colon \mathbb{R}^n \to \mathbb{R}$ - непрерывно дифференцируемая функция.

Опр: 1. Точка $p \in M^k$ является точкой локального условного максимума функции f на M^k , если:

$$\exists \mathcal{U}(p) \colon \forall x \in \mathcal{U}(p) \cap M^k, f(x) \leq f(p)$$

Опр: 2. Точка $p \in M^k$ является точкой строгого локального условного максимума функции f на M^k , если:

$$\exists \mathcal{U}(p) \colon \forall x \in \mathcal{U}(p) \cap M^k, x \neq p, \ f(x) < f(p)$$

Опр: 3. Точка $p \in M^k$ является точкой локального условного минимума функции f на M^k , если:

$$\exists \mathcal{U}(p) \colon \forall x \in \mathcal{U}(p) \cap M^k, \ f(x) \ge f(p)$$

Опр: 4. Точка $p \in M^k$ является точкой строгого локального условного минимума функции f на M^k , если:

$$\exists \mathcal{U}(p) \colon \forall x \in \mathcal{U}(p) \cap M^k, x \neq p, f(x) > f(p)$$

Onp: 5. Точки локального условного максимума и минимума (в том числе строгого) называются точками локального условного экстремума.

Таким образом, мы изучаем на экстремум функцию f, но смотрим не на всём \mathbb{R}^n , а ограничиваемся значениями на M^k . Мы хотим научиться узнавать, чем характерны точки в которых функция f достигает своего максимума и минимума на поверхности M^k . Всего два основных утверждения.

Необходимое условие локального условного экстремума

Теорема 1. (**Необходимое условие**) Если p - точка локального условного экстремума на M^k , то:

$$\nabla f(p) \perp T_p M^k$$

В частности, если градиент $\nabla f(p) \neq 0$, то $T_p M^k \subset TS$, где TS это касательное пространство в точке p к $\{x\colon f(x)=f(p)\}.$

Рис. 1: Градиент функции f в точке p перпендикулярен касательной плоскости.

<u>Идея</u>: Если в точке p у функции f локальный условный экстремум и мы в ней посчитаем градиент, то он должен быть перпендикулярен поверхности $M^k \Rightarrow$ перпендикулярен касательной плоскости.

С другой стороны, градиент (невырожденный) это то что перпендикулярно множеству уровня. Если градиент f отличен от нуля, то в окрестности точки p множество уровня $\{x\colon f(x)=f(p)\}$ является гладкой (n-1)-мерной поверхностью и тогда свойства перпендикулярности означают, что касательная плоскость T_pM^k лежит среди всех касательных векторов TS(f(p)) уровня f(x)=f(p).

Рис. 2: Касательная плоскость T_pM^k к M^k в p содержится внутри касательного пространства TS(f(p)).

<u>Геометрический смысл</u>: Если размерность TS(f(p)) и T_pM^k была бы одинаковая, то они бы совпадали \Leftrightarrow происходит касание между поверхностями M^k и $\{x\colon f(x)=f(p)\}$. Но если размерность T_pM^k меньше размерности TS(f(p)) (множество уровня функции f это гиперповерхность, а поверхность с условиями M^k уже меньшей размерности), то касательное пространство к M^k будет содержаться в касательном пространстве к множеству уровня.

Пусть мы в \mathbb{R}^3 , можно поставить два дополнительных условия (два уравнения) и взять поверхность M^k в виде линий. Пусть M^k это линия $\Rightarrow k=1$. Если на этой линии функция f достигает экстремума в точке p, то касательный вектор в этой точке к этой линии должен лежать в касательном пространстве к множеству уровня функции f.

Рис. 3: Касательная плоскость к $M^1 \subset$ касательная плоскость к линии уровня f(p).

Rm: 1. Это воплощение геометрического образа, которое мы видели на конкретных примерах по поиску условного экстремума в предыдущих лекциях.

 \square Пусть $v \in T_p M^k \Rightarrow \exists \gamma \colon \gamma(0) = p, \, \gamma(t) \in M^k, \, \dot{\gamma}(0) = v.$ Рассмотрим $f(\gamma(t))$ - функция одного аргумента, у которой в точке t=0 - локальный экстремум, поскольку у функции f в точке p - локальный экстремум.

Рис. 4: В окрестности Q точки p, функция f имеет точку экстремума в p.

Поскольку функция одномерная, то в точке t=0 верно следующее:

$$\frac{d}{dt}\bigg|_{t=0} f(\gamma(t)) = 0 \Rightarrow \langle \nabla f(p), \dot{\gamma}(0) \rangle = 0 \Rightarrow \langle \nabla f(p), v \rangle = 0 \Rightarrow \nabla f(p) \perp T_p M^k$$

Следствие 1. Если в условиях теоремы множество M^k в окрестности точки p задано системой уравнений: $F_{k+1}(x) = 0, \dots, F_n(x) = 0$, где градиенты $\nabla F_{k+1}(p), \dots, \nabla F_n(p)$ - линейно независимы, то:

$$\exists \lambda_{k+1}, \dots, \lambda_n \in \mathbb{R} \colon \nabla f(p) = \lambda_{k+1} \nabla F_{k+1}(p) + \dots + \lambda_n \nabla F_n(p)$$

□ По утверждению с прошлой лекции:

$$v \in T_p M^k \Leftrightarrow \begin{cases} \langle \nabla F_{k+1}(p), v \rangle &= 0 \\ \vdots &\vdots &\vdots \\ \langle \nabla F_n(p), v \rangle &= 0 \end{cases} \Leftrightarrow \begin{cases} v \perp \nabla F_{k+1}(p) \\ \vdots \\ v \perp \nabla F_n(p) \end{cases}$$

Заметим, что $\dim (T_p M^k) = k$, число градиентов равно (n-k), они линейно независимы и лежат в ортогональной плоскости $(T_p M^k)^\perp$. Из линейной алгебры мы знаем, что размерность ортогонального пространства равна $\dim (\mathbb{R}^n) - \dim (T_p M^k) = n-k$, значит $\nabla F_{k+1}(p), \dots, \nabla F_n(p)$ - это базис в $(T_p M^k)^\perp$.

Рис. 5: Ортогональное пространство $(T_p M^k)^{\perp}$.

Поскольку $\nabla f(p) \perp T_p M^k \Rightarrow \nabla f(p) \in (T_p M^k)^\perp \Rightarrow \nabla f(p)$ является линейной комбинацией базисных векторов ортогонального пространства $\Rightarrow \exists \lambda_{k+1}, \ldots, \lambda_n \in \mathbb{R} \colon \nabla f(p) = \lambda_{k+1} \nabla F_{k+1}(p) + \ldots + \lambda_n \nabla F_n(p)$.

Стандартная задача на условный экстремум

В обычной постановке задачи звучат так:

$$\begin{cases} f \to \text{extr!} \\ F_{k+1} = 0 \\ \vdots \\ F_n = 0 \end{cases}$$

где условия $F_{k+1} = 0, \ldots, F_n = 0$ задают k-мерную поверхность. Нарисуем в точке p касательную плоскость, тогда градиенты $\nabla F_{k+1}(p), \ldots, \nabla F_n(p)$ будут лежать в ортогональном дополнении и градиент функции f в точке p перпендикулярен касательному пространству.

Рис. 6: Градиент функции f выражается через градиенты $\nabla F_{k+1}, \dots, \nabla F_n$.

Следовательно $\nabla f(p)$ должен выражаться через градиенты $\nabla F_{k+1}(p), \dots, \nabla F_n(p)$, то есть:

$$\nabla f(p) = \lambda_{k+1} \nabla F_{k+1}(p) + \ldots + \lambda_n \nabla F_n(p)$$

Метод множителей Лагранжа

Поиск условного экстремума можно представить в ином виде. Запишем функцию Лагранжа:

$$L(x,\lambda) = f(x) - \lambda_{k+1} F_{k+1}(x) - \ldots - \lambda_n F_n(x)$$

Необходимое условие условного экстремума:

$$\begin{cases} \frac{\partial L}{\partial x_i} = 0, i = \overline{1, n} \\ \frac{\partial L}{\partial \lambda_j} = 0, j = \overline{k+1, n} \end{cases}$$

где первые равенства получены из теоремы о достаточном признаке:

$$\frac{\partial L}{\partial x_i} = 0, \ i = \overline{1, n} \Leftrightarrow \nabla f(p) - \lambda_{k+1} \nabla F_{k+1}(p) - \dots - \lambda_n \nabla F_n(p) = 0$$

и вторые равенства есть просто задание k-мерной поверхности:

$$\frac{\partial L}{\partial \lambda_j} = 0, j = \overline{k+1, n} \Leftrightarrow F_j(x) = 0, j = \overline{k+1, n}$$

Суть метода: хотим исследовать функцию f на экстремум при условии $F_{k+1} = 0, \ldots, F_n = 0$, тогда необходимо составить функцию Лагранжа и действовать также как и раньше, исследуя функцию на обычный экстремум. Конкретнее, если хотим найти точки подозрительные на экстремум, то необходимо приравнять частные производные функции Лагранжа к нулю.

Задача Лагранжа: Пусть есть тонкая проволока, которая задается как F(x) = 0 и по ней без трения двигается бусина под действием некоей силы. Сила потенциальна (то есть она тянет куда-то бусину) и задается как ∇f . Изучаются точки равновесия, то есть точки в которых эта бусина будет в покое на заданной кривой.

Рис. 7: Задача Лагранжа: ищем точки равновесия бусины на проволоке.

Движение бусины описывается следующим образом (по закону Ньютона): $\ddot{x} = -\nabla f + R$ (массу бусины считаем равной 1). Домножим на \dot{x} (вектор скорости: всегда будет направлен по касательной к этой проволоке \Rightarrow будет перпендикулярен силе рекции опоры R), тогда получим:

$$\langle \ddot{x}, \dot{x} \rangle = -\langle \nabla f, \dot{x} \rangle + \langle R, \dot{x} \rangle = -\langle \nabla f, \dot{x} \rangle \Leftrightarrow \frac{d}{dt} \left(\frac{\|\dot{x}\|^2}{2} \right) = -\frac{d}{dt} f(x(t))$$

Получаем закон сохранения энергии:

$$\frac{\|\dot{x}\|^2}{2} + f(x) = \text{const}$$

Представим, что взяли точку минимума потенциальной энергии x_0 (f(x) трактуется как потенциальная энергия). Может ли бусина уехать из этой точки? Нет, так как необходима положительная скорость для этого \Rightarrow необходимо уменьшить f, чтобы сумма оставалась константой, но мы и так взяли минимум. Точка минимума является точкой равновесия для бусины, а это означает что силы должны быть равны:

$$-\nabla f(x_0) + R(x_0) = 0$$

Сила реакции опоры действует перпендикулярно линии $F(x)=0 \Rightarrow R=\lambda \nabla F$ и получим:

$$\nabla f(x_0) = \lambda \nabla F(x_0)$$

Достаточное условие локального условного экстремума

Теорема 2. (Достаточное условие) Пусть поверхность M^k в окрестности точки p задана системой уравнений $F_{k+1}=0,\ldots,F_n=0$, где F_i - дважды непрерывно дифференцируемые функции, f тоже дважды непрерывно дифференцируемая функция и в точке p выполняется необходимое условие локального условного экстремума. Пусть $L(x,\lambda)=L(x)$ - это соответствующая функция Лагранжа. Тогда:

- 1) Если $d^2L(p,h)>0,\,\forall h\neq 0,\,h\in T_pM^k,$ то p точка строгого локального условного минимума функции f;
- 2) Если $d^2L(p,h) < 0, \forall h \neq 0, h \in T_pM^k$, то p точка строгого локального условного максимума функции f;
- 3) Если $\exists v,h \in T_pM^k\colon d^2L(p,v)>0,\, d^2L(p,h)<0,$ то p не является точкой локального условного экстремума;

Rm: 2. Проверять положительную или отрицательную определенность необходимо не на всех векторах, а только на касательных пространствах.

В точке p знак приращения функции определяется вторым дифференциалом, но приращения функции надо брать вдоль заданной поверхности M^k , а это все равно что взять касательные приращения (брать только касательные вектора). И таким образом, мы смотрим как меняется функция вдоль касательных направлений.

 ${\bf Rm: 3.}$ Отметим также, что для изучения свойств f мы рассматриваем новую функцию L. Почему так? Почему бы не использовать достаточные условия локального экстремума:

$$f(p+h) - f(p) = \langle \nabla f(p), h \rangle + \frac{1}{2}d^2f(p,h) + \dots$$

Пусть $h \in T_pM^k$, тогда:

$$f(p+h) - f(p) = 0 + +\frac{1}{2}d^2f(p,h) + \dots$$

Почему так нельзя? Так нельзя поскольку $p+h\notin M^k$. Из-за того, что поверхность это нелинейный объект и приходится переходить к функции Лагранжа. Ровно по этой же причине второй дифференциал не является инвариантным при замене координат.

 \square Выпишем функцию Лагранжа L(x):

$$L(x) = L(x, \lambda) = f(x) - \lambda_{k+1} F_{k+1}(x) - \dots - \lambda_n F_n(x)$$

и заметим что на M^k верно f(x) = L(x), поскольку если $x \in M^k \Rightarrow F_{k+1}(x) = 0, \dots, F_n(x) = 0$. Следовательно p - точка экстремума L на $M^k \Leftrightarrow p$ - точка экстремума f на M^k . Заметим также, что:

$$\frac{\partial L}{\partial x_i}(p) = 0, i = \overline{1, n}$$

из необходимого условия локального условного экстремума.

Мы ранее обсуждали, что поверхность M^k в окрестности точки p можно задать параметрически:

$$\begin{cases} x_1 = x_1(u_1, \dots, u_k) \\ \vdots & \vdots \\ x_n = x_n(u_1, \dots, u_k) \end{cases}$$

где u_1, \ldots, u_k находятся в окрестности нуля W и x(0) = p. Обозначим L(x(u)) = H(u). Точка p - точка локального экстремума L на $M^k \Leftrightarrow u = 0$ - точка локального экстремума H.

Таким образом, задача о локальном условном экстремуме свелась к задаче об обычном локальном экстремуме функции H в координатах u_1, \ldots, u_k . Рассмотрим следующее:

$$\frac{\partial H}{\partial u_m}(0) = \sum_{i} \frac{\partial L}{\partial x_i}(p) \cdot \frac{\partial x_i}{\partial u_m}(0) = \sum_{i} 0 \cdot \frac{\partial x_i}{\partial u_m}(0) = 0$$

Следовательно для H выполнено необходимое условие. Рассмотрим вторые производные H:

$$\frac{\partial^2 H}{\partial u_l \partial u_m}(u) = \sum_{j,i} \frac{\partial^2 L}{\partial x_j \partial x_i} (x(u)) \cdot \frac{\partial x_j}{\partial u_l} (u) \cdot \frac{\partial x_i}{\partial u_m} (u) + \sum_i \frac{\partial L}{\partial x_i} (x(u)) \cdot \frac{\partial^2 x_i}{\partial u_l \partial u_m} (u)$$

Тогда в точке 0 мы получим:

$$\frac{\partial^2 H}{\partial u_l \partial u_m}(0) = \sum_{j,i} \frac{\partial^2 L}{\partial x_j \partial x_i} (p) \cdot \frac{\partial x_j}{\partial u_l} (0) \cdot \frac{\partial x_i}{\partial u_m} (0) + 0 = \sum_{j,i} \frac{\partial^2 L}{\partial x_j \partial x_i} (p) \cdot \frac{\partial x_j}{\partial u_l} (0) \cdot \frac{\partial x_i}{\partial u_m} (0)$$

Rm: 4. Обычно про такой эффект говорят, что в критической точке второй дифференциал инвариантен.

Запишем тогда второй дифференциал функции H:

$$d^{2}H(0,v) = \sum_{j,i} \frac{\partial^{2}L}{\partial x_{i}\partial x_{j}}(p) \cdot \sum_{l,m} \frac{\partial x_{i}}{\partial u_{m}} \cdot \frac{\partial x_{j}}{\partial u_{l}} \cdot v_{m} \cdot v_{l} = d^{2}L(p,h), \ h = \frac{\partial x}{\partial u_{1}} \cdot v_{1} + \ldots + \frac{\partial x}{\partial u_{k}} \cdot v_{k}$$

где из предыдущей лекции мы знаем, что касательное пространство натянуто на вектора $\frac{\partial x}{\partial u_1}, \dots, \frac{\partial x}{\partial u_k}$. Следовательно верно, что:

 $h = \frac{\partial x}{\partial u_1} \cdot v_1 + \ldots + \frac{\partial x}{\partial u_k} \cdot v_k \in T_p M^k, \, \forall v_l$

Таким образом, $d^2H(0,v) > 0 \Leftrightarrow d^2L(p,h) > 0$ и $d^2H(0,v) < 0 \Leftrightarrow d^2L(p,h) < 0$. Тем самым, утверждение вытекает из обычной теоремы о локальном экстремуме применяемой к функции H.

Пример: Пусть на плоскости задана функция f(x,y), необходимо найти её экстремум на оси x:

$$\begin{cases} f \to \text{extr!} \\ y = 0 \end{cases}$$

Что в этом случае делаем? Подставляем y=0 и исследуем функцию f(x,0).

В последнем шаге доказательства мы делаем нечто похожее: исследуем на экстремумы функцию L на поверхности. Поверхность задана параметрически через u_1, \ldots, u_n . Соответственно мы переводим функцию L в функцию H(u) = L(x(u)) и задача свелась к обычной задаче локального экстремума.

Можно было поступить аналогично и с функцией $f \Rightarrow$ получить функцию f(x(u)), но проблема будет в том, что мы не знаем что из себя представляет второй дифференциал $(d_u^2 f)$ такой функции, так как там будут вторые производные координатных отображений (опять же наглядная демонстрация неинвариантности второго дифференциала).

Поэтому использование функции L с заменой координат дает нужный результат, поскольку есть понимание что $d_x^2 L = d_y^2 L$.