## 3.5 直流負荷線 ( $E_C=9V,\ R_C=390\Omega$ ):第1象限グラフ

直流負荷線は、トランジスタのコレクタに負荷抵抗  $R_C$  が接続されている時の、コレクタ-エミッタ間の電圧  $V_{CE}$  とコレクタ電流  $I_C$  の関係を示している

負荷抵抗  $R_C=390\Omega$  を通したコレクタ電流  $I_C$  を測定できる様に接続を変更した後、次の手順で実験を進める

- (1) ベース電流  $I_B=0$   $\mu A$  になる様に  $E_B$  を調整し、その状態でコレクタ-エミッタ間の電圧  $V_{CE}=9 V$  となる様に  $E_C$  を調整する(これ以降  $E_C$  には触らない)
- (2) コレクタ-エミッタ間の電圧  $V_{CE}$  を観察しながら、 $E_B$  (必要に応じて可変抵抗器) を調整して  $V_{CE}$  を表 1.5 の通り変化させ、その都度コレクタ電流  $I_C$  測定して記録する



図 1.8 直流負荷線

表 1.5 2SC1815:直流負荷線: $E_C = 9$ V、 $R_C = 390\Omega$ 

| $V_{CE}[\mathbf{V}]$        | 9.0 | 8.0 | 7.0 | 6.0 | 5.0 | 4.0 | 3.0 | 2.0 | 1.0 |
|-----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| $I_C[\mathbf{m}\mathbf{A}]$ |     |     |     |     |     |     |     |     |     |

直流負荷線のグラフは、第1象限の出力特性グラフに重ねて作図する。

## 【結果の検討】

- (1) 直流負荷線を 2 等分する点の  $V_{CE}$  と  $I_{C}$  をグラフから読み取れ
- (2) 読み取った点の印をグラフ上に書き込め
- (3) このグラフから分かること(直流負荷線、 $V_{CE}-I_{C}$ 特性)について、言葉で表現してみよう