

E1214 Fundamentos de las Comunicaciones **E0214 Comunicaciones** E0311/E1311 Comunicaciones

Comunicaciones Humanas por Voz

Nuestro receptor

- E Oído Externo.
- M Oído Medio
- Oído Interno

Modelado

Modelo Lineal

Simple Modelo de un Sistema de Comunicaciones

Principles of Communications, 5/E by Rodger Ziemer and William Tranter, John Wiley & Sons. Inc. All rights reserved.

Bandas de Frecuencia

Banda	Nombre	Banda (GHz)	Denominación	<u>1</u>	
330 kHz	Very low frequency (VLF)				
30300 kHz	Low frequency (LF)				
3003000 kHz	Medium frequency (MF)				
330 MHz	High frequency (HF)				
30300 MHz	Very high frequency (VHF)				FM comercial
0.33 GHz	Ultrahigh frequency (UHF)	1.02.0		${f L}$	SAOCOM, DCS, ADS-B
		2.03.0		S	
330 GHz	Super high frequency (SHF)	3.04.0		S	
		4.06.0		C	ARSAT 2
		6.08.0		C	
		8.010.0	0	X	
		10.012	2.4	X	
		12.418	3.0	Ku	Transponders ARSAT 1 y 2
		18.020	0.0	K	
		20.026	5.5	K	
30300 GHz 43430 THz 430750 THz 7503000 THz	Extremely high frequency (EHF) Infrared (0.77 μm) Visible light (0.40.7 μm) Ultraviolet (0.10.4 μm)	26.540	0.0	Ka	

Canal inalámbrico

 Principles of Communications, 5/E by Rodger Ziemer and William Tranter, John Wiley & Sons. Inc. All rights reserved.

Canal inalámbrico

• Principles of Communications, 5/E by Rodger Ziemer and William Tranter, John Wiley & Sons. Inc. All rights reserved.

Canales confinados

Canales confinados

Canales

Coordinación y Regulación

UIT (ITU) Unión Internacional de las Telecomunicaciones

www.itu.int

Radiocomunicaciones Normalización Desarrollo

ITU - Regiones

El Sector de Radiocomunicaciones UIT-R

• Gestión global del espectro de radiofrecuencias y la órbita de satélites

- Estableciendo:
 - Reglamentación Internacional
 - Normas, Recomendaciones, Informes, Manuales...
 - Asistencia a los miembros

World Radiocommunication Conference 2023 (WRC-23) 20 November - 15 December 2023 Dubai, United Arab Emirates (UAE)

World Radiocommunication Conference 2019 (WRC-19) 28 October - 22 November 2019 Sharm el-Sheikh, Egypt

World Radiocommunication Conference 2015 (WRC-15) 2-27 November 2015 Geneva, Switzerland

Grupos de Estudio (UIT-R)

Comisiones de Estudio

- Comisión de Estudio 1 (CE 1)
 Gestión del espectro
- Comisión de Estudio 3 (CE 3)
 Propagación de las ondas radioeléctricas
- Comisión de Estudio 4 (CE 4)
 Servicios por satélite
- Comisión de Estudio 5 (CE 5)
 Servicios terrenales
- Comisión de Estudio 6 (CE 6)
 Servicio de radiodifusión
- Comisión de Estudio 7 (CE 7)
 Servicios científicos

Grupos Conexos

- Comité de Coordinación del Vocabulario (CCV)
- Reunión Preparatoria de Conferencias (RPC)
- Chairmen and Vice-Chairmen Meeting (CVC)

En Argentina – ENACOM (Ente Nacional de Comunicaciones)

www.enacom.gob.ar

Cuadro de Atribución de Bandas de Frecuencias de la República Argentina (CABFRA)

RANGO DE FRECUENCIA 401 - 401,75 OBSERVACIONES GENERALES

SERVICIO (T10)	TIPO DE SERVICIO	CARACTERÍSTICAS	NORMATIVA	
Servicio de Ayudas a la Meteorología - SAM	FIJO/MOVIL		RR UIT/R2 – Art. 5	
Servicio de Operaciones Espaciales - SOS	FIJO/MOVIL		RR UIT/R2 – Art. 5	
Serv. de Exploración de la Tierra por Sat SET	ΓS FIJO/MOVIL		RR UIT/R2 – Art. 5	
Servicio de Meteorología por Satélite - SMES	FIJO/MOVIL		RR UIT/R2 – Art. 5	
Sistema de Radiocom. para uso Médico - SRM	IED FIJO/MOVIL	Categoría Secundaria		
		(401 – 406 MHz)	4479ENACOM17	
			4665ENACOM17	

RR UIT/R2 Reglamento de Radiocomunicaciones de la Unión Internacional de Telecomunicaciones, Región 2

CABFRA - WU - 29 Octubre 2019

Modelos para la señal

VID

VIC

• x[n]

x(t)

Modelo de señal DETERMINÍSTICO

• X[n]

X(t)

Modelo de señal ALEATORIO

Modelo DETERMINÍSTICO

Valor medio de una señal

$$\overline{x[n]} = \langle x[n] \rangle = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x[n]$$

$$\overline{x(t)} = \langle x(t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$$

¿Cómo se refleja en el dominio de la frecuencia el hecho que una señal tenga valor medio no nulo?

MATLAB

- sum(x)./N;
- mean(x);

Señales de Energía

Modelo DETERMINÍSTICO (cont.)

Energía de una señal

$$\varepsilon_x = \sum_{n=-\infty}^{\infty} |x[n]|^2$$

$$\varepsilon_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

• sum(x.^2);

$$>>$$
 Ex=sum(x.^2);

$$>> Ex = 85$$

¿Cuánto es la potencia c una señal de energía?

Señales de Potencia

Potencia de una señal

$$P_{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^{2} = \langle |x[n]|^{2} \rangle$$

$$P_{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-\infty}^{\infty} |x_{N}[n]|^{2}$$

$$P_{x} = \lim_{N \to \infty} \frac{\varepsilon_{x_{N}}}{2N + 1}$$

$$|x(t)|^2$$
 Potencia instantánea

 P_{x} : Potencia MEDIA NORMALIZADA

¿Qué característica tiene el contenido en frecuencia de una señal de potencia?

$$P_{x} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^{2} dt = <|x(t)|^{2} >$$

$$P_{x} = \lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{\infty} |x_{T}(t)|^{2} dt$$

$$P_{x} = \lim_{T \to \infty} \frac{\varepsilon_{x_{T}}}{2T}$$

MATLAB

- sum(abs(x).^2)./N;
- $mean(abs(x).^2);$

contenido del frecuencia de una señal periódica? notoria característica

Señales de potencia (señal periódica)

Potencia de una señal periódica

$$\exists T \in \mathbb{R} / y(t) = y(t+T) \ \forall t$$

$$y(t) = \sum_{k=-\infty}^{\infty} C_k e^{j 2\pi \frac{k}{T}t}$$

$$C_k = \frac{1}{T} \mathcal{F}\{y_p(t)\} \text{ en } f = \frac{k}{T} \text{ , } k \in \mathbb{Z}$$

$$C_0 = \langle y(t) \rangle$$

$$P_{y} = \langle |y(t)|^{2} \rangle = \langle y(t)y^{*}(t) \rangle$$

$$P_{y} = < \sum_{k=-\infty}^{\infty} C_{k} e^{j \, 2 \, \pi \frac{k}{T} t} \sum_{l=-\infty}^{\infty} C_{l}^{*} e^{-j \, 2 \, \pi \frac{l}{T} t} >$$

$$P_{y} = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} C_{k} C_{l}^{*} < e^{j 2 \pi \frac{(k-l)}{T} t} >$$

¿Cómo extendería este análisis en el caso de una señal periódica de VID?

$$P_{y} = \sum_{k=-\infty}^{\infty} |C_{k}|^{2}$$

MATLAB

Generar muestras de una señal sinusoidal de frecuencia fo arbitraria y amplitud unitaria. ¿Por qué seguramente el valor medio calculado de la señal no resulta ser exactamente cero? ¿Cuánto vale su potencia media normalizada?

Correlación (modelo determinístico)

Función de Inter-correlación:

$$r_{xy}(\tau) = \int_{-\infty}^{\infty} x(t+\tau) y^*(t) dt$$

$$r_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t+\tau) y^*(t) dt$$

$$r_{xx}(\tau) = \int_{-\infty}^{\infty} x(t+\tau) x^*(t) dt$$

 $r_{xy}(\tau) = \langle x(t+\tau) y^*(t) \rangle$

$$r_{\chi\chi}(0) = \varepsilon_{\chi}$$

$$r_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t+\tau) x^*(t) dt$$

$$r_{\chi\chi}(0)=P_{\chi}$$

$$r_{xx}(\tau) = \langle x(t+\tau) x^*(t) \rangle$$

Correlación (cont.)

Correlación (cont.)

Propiedades de la función de auto-correlación

$$r_{xx}(\tau) = \int_{-\infty}^{\infty} x(t+\tau) x^*(t) dt$$

$$r_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t+\tau) x^*(t) dt$$

•
$$r_{xx}(0) = \varepsilon_x$$
 $r_{xx}(0) = P_x$

•
$$|r_{\chi\chi}(\tau)| \le r_{\chi\chi}(0)$$

•
$$r_{\chi\chi}(\tau) = r_{\chi\chi}^*(-\tau)$$

•
$$\lim_{|\tau| \to \infty} r_{\chi\chi}(\tau) = \langle \chi(t) \rangle^2$$

•
$$\mathcal{F}\{r_{\chi\chi}(\tau)\} \geq 0$$

• Si x(t) es periódica de período To en t , entonces $r_{xx}(\tau)$ es periódica de período To en τ .

dee y dep

$$r_{xx}(\tau) = \int_{-\infty}^{\infty} x(t+\tau) \, x^*(t) \, dt$$

$$r_{\chi\chi}(0) = \varepsilon_{\chi}$$

$$\varepsilon_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt = \int_{-\infty}^{\infty} |X(f)|^{2} df$$

$$S_{\chi\chi}(f) \triangleq |X(f)|^2$$

densidad espectral de potencia:
$$r_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t+\tau) x^*(t) dt$$

$$r_{\chi\chi}(0)=P_{\chi}$$

$$P_{x} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^{2} dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{\infty} |x_{T}(t)|^{2} dt = \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{|x^{T}(f)|^{2}}{2T} df$$

$$X^{T}(f) = \mathcal{F}\{x_{T}(t)\}$$

$$s_{xx}(f) \triangleq \lim_{T \to \infty} \frac{|X^{T}(f)|^{2}}{2T}$$

¿TF (TFTD) / dee y dep? Ejemplo

$$x(t) = A\,u(t)$$

$$X(f) = \frac{A}{j \ 2\pi f} + \frac{A}{2}\delta(f)$$

Relación de Wiener - Khinchin

$$s_{xx}(f) \triangleq \lim_{T \to \infty} \frac{|X^T(f)|^2}{2T} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T x(\alpha) e^{-j2\pi f \alpha} d\alpha \int_{-T}^T x^*(\beta) e^{j2\pi f \beta} d\beta =$$

$$= \lim_{T \to \infty} \frac{1}{2T} \iint_{-T}^T x(\alpha) x^*(\beta) e^{-j2\pi f (\alpha - \beta)} d\alpha d\beta \qquad \tau = \alpha - \beta \qquad d\tau = d\alpha \atop t = \beta \qquad dt = d\beta$$

$$s_{xx}(f) = \lim_{T \to \infty} \left[\int_{-2T}^{0} \frac{1}{2T} \int_{-T-\tau}^{T} x(t+\tau)x^{*}(t) dt \ e^{-j2\pi f\tau} d\tau + \int_{0}^{2T} \frac{1}{2T} \int_{-T}^{T-\tau} x(t+\tau)x^{*}(t) dt \ e^{-j2\pi f\tau} d\tau \right]$$

$$s_{xx}(f) = \int_{-\infty}^{0} \langle x(t+\tau)x^{*}(t) \rangle e^{-j2\pi f\tau} d\tau + \int_{0}^{\infty} \langle x(t+\tau)x^{*}(t) \rangle e^{-j2\pi f\tau} d\tau$$

$$s_{\chi\chi}(f) = \mathcal{F}\{r_{\chi\chi}(\tau)\}\$$

Valor medio, Correlación y SLITs

$$y(t) = \{x * h\}(t)$$

$$< y(t) > = < x(t) > H(0)$$

$$r_{yy}(\tau) = \{r_{xx} * h * h^{\bar{*}}\} (\tau) = \{r_{xx} * r_{hh}\} (\tau)$$

$$s_{yy}(f) = s_{xx}(f) H(f) H^*(f)$$

$$s_{yy}(f) = s_{xx}(f) |H(f)|^2$$

Ejemplo

Suponga la salida de un generador de señales de RF (en el ATEI puede experimentar ...)

$$x(t) = A \sin(2\pi f_p t + \theta)$$
 [V] $T = 1/f_p$ $P_x = \sum_{k=-\infty} |C_k|^2$ $|C_1| = |C_{-1}| = A/2$ $P_x = A^2/2$ [V²] $P_x = A^2/(2R)$ [V²/ Ω]: [W]

Si R= 50Ω

$$A[V] = \sqrt[2]{100[\Omega] P_{\chi}[W]}$$

¿Por qué el valor de P_x no es función de la fase inicial θ ?

dB, dBm, dBW ...

$$x [dB] = 10 \log x$$

dB: adimensional (si x es adimensional) ... solo indica que se usa 10 log (.)

Ventajas: - "Compresión" de la escala de valores

- Multiplicaciones y divisiones

Sumas y restas

Si P es potencia en W P [dBW]= 10 log P[W]

P[mW] P[dBm]= 10 log P[mW]

P[mW] = P[W] * 1000

P [dBm]= P[dBW]+30 [dB]

Un Rx que tiene una sensibilidad de -130dBm, implica que funciona correctamente cumpliendo todos los requerimientos para una potencia recibida de $P_R=10^{-13} \mathrm{mW}$ =100 fW

$$P_{Rx}[mW] = P_{Tx}[mW] \frac{G_1 G_3 G_4}{A_2 A_5}$$

$$P_{Rx}[dBm] = P_{Tx}[dBm] + G_1[dB] + G_3[dB] + G_4[dB] - A_2[dB] - A_5[dB]$$

CANAL AWGN (sin limitación de ancho de banda)

Modelo: RUIDO BLANCO GAUSSIANO

CANAL AWGN (con limitación de ancho de banda)

Tx CANAL Rx

Caso Particular:

Modelo: RUIDO BLANCO GAUSSIANO

$$\boldsymbol{h}(\boldsymbol{t},\boldsymbol{\tau}) = \sum_{k=1}^{L} a_k(t) \, \delta(t - \tau - \tau_k(t))$$

$$r(t) = \sum_{k=1}^{L} a_k(t) X(t - \tau - \tau_k(t)) + n(t)$$

CANAL AWGN (variante en el tiempo)

Fuentes:

- Auditory Transduction by Brandon Pletsch.
- Dancing outer hair cell. J Santos Sacchi.
- Modelo Lineal para la precepción de la Altura Tonal. TF. FI-UNLP.
- Principles of Communications, 5/E by Rodger Ziemer and William Tranter, John Wiley & Sons. Inc.
- www.itu.int
- www.enacom.gob.ar
- Principles of Communications, 5/E by Rodger Ziemer and William Tranter, John Wiley & Sons. Inc.
- Signals and Systems (Prentice-Hall signal processing series) by Alan V. Oppenheim.
- Manual generador RF Agilent.
- Fotografías desde Wikipedia.

Temario

- Modelo de señal aleatorio
- Promedios temporales y estadísticos
- Correlación y Densidad Espectral de Potencia (DEP)
- Proceso ESA
- Modelo de ruido blanco
- Ancho de banda equivalente de ruido
- Intercorrelación e Inter DEP

Satélite argentino SAC-D

Modelo de señal ALEATORIO

Realización 1: $X(t, \psi_1)$

Realización 2: $X(t, \psi_2)$

Realización 3: $X(t, \psi_3)$

Realización N: $X(t, \psi_N)$

$$\begin{array}{ll} f_{X_1}(x_{1,}t_{1}) & \text{fdp} \\ \\ F_{X_1}(x_{1},t_{1}) = P\{X_1 \leq x_{1}\} = \\ \\ &= \int_{-\infty}^{x_1} f_{X_1}(\alpha,t_{1}) d\alpha \end{array}$$

Proceso estocástico

$$X(t, \psi) = X(t)$$

$$f_{X_i}(x_i, t_{i,}) , \forall t_i \in \mathbb{R}$$

$$f_{X_i, X_j}(x_i, x_j; t_i, t_j) , \forall t_i, t_j$$

$$f_{X_i, X_j, X_k}(x_i, x_j, x_k; t_i, t_j, t_k) , \forall t_i, t_j, t_k$$

Modelo de señal ALEATORIO

Por ejemplo: $\langle X(t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t) dt$ VA $r_{XX}(\tau) = \langle X(t+\tau) X^*(t) \rangle$

Promedios temporales

Por ejemplo:

$$\mu_X(t) = E\{X(t)\}$$

$$R_{XX}(t+\tau,t) = E\{X(t+\tau)X^*(t)\}$$

