OneNote Basics

Remember everything

- ▶ Add Tags to any notes
- ▶ Make checklists and to-do lists
- ▶ Create your own custom tags

Collaborate with others

- ▶ Keep your notebooks on OneDrive
- ▶ Share with friends and family
- ▶ Anyone can edit in a browser

Keep everything in sync

- ▶ People can edit pages at the same time
- ▶ Real-Time Sync on the same page
- ▶ Everything stored in the cloud
- ▶ Accessible from any device

Clip from the web

- ▶ Quickly clip anything on your screen
- ▶ Take screenshots of products online
- ▶ Save important news articles

Organize with tables

- ▶ Type, then press TAB to create a table
- ▶ Quickly sort and shade tables
- ▶ Convert tables to Excel spreadsheets

Write notes on slides

- ▶ Send PowerPoint or Word docs to OneNote
- ▶ Annotate with a stylus on your tablet
- ▶ Highlight and finger-paint

Integrate with Outlook

- ▶ Take notes on Outlook or Lync meetings
- ▶ Insert meeting details
- ▶ Add Outlook tasks from OneNote

Add Excel spreadsheets

- ▶ Track finances, budgets, & more
- Preview updates on the page

Brainstorm without clutter

- ▶ Hide everything but the essentials
- ▶ Extra space to focus on your notes

Take quick notes

- ▶ Quickly jot down thoughts and ideas
- ▶ They go into your Quick Notes section

Теорија на Броеви

Лука Хаџи Јорданов

 CMM

2022

Диофантови равенки

ax +b Vg = C

Равенка од обликот $\underbrace{ax + by = c}$ каде a, b, c се целобројни константи се нарекува линеарна диофантова равенка со 2 променливи.

Во општ случај, диофантови равенки се нарекува равенка која има целобројни коефициенти и каде што решенијата од интерес се исто така целобројни. При тоа, равенката се состои од собирање, множење или степенување на променливите.

Равенките x + 2y = 3, $x^2 + 3y + z = 14$, $xy + 2z^{14} = 0$ и $x^2 = y^3 - 2^z$ се диофантови равенки, при што само првата е линеарна. Последната равенка се нарекува експоненцијална равенка.

Onick Notes Page 5

Диофантови равенки

Својство 1: Равенката $\underbrace{ax+by}_{C}=c$ со целобројни a,b и c има целобројно решение ако и само ако NZD(a,b)|c.

Доказ: Ако дадената равенка има решение, тогаш бидејќи има цели броеви k,m така што $\underline{a}=\underbrace{kd}$ и $\underline{b}=\underbrace{md}$ каде $\underline{d}=NZD(a,b)$, следува $\underline{c}=\underbrace{ax+\underline{b}y}=\underbrace{kdx+\underline{mdy}}=\underline{d(kx+my)}$, односно $\underline{d}=NZD(a,\underline{b})|\underline{c}$.

Сега, нека NZD(a,b)=d|c. Имаме дека постои $k\in\mathbb{Z}$ така што $\underline{c=kd}$, а според теоремата на Безу постојат $m,l\in\mathbb{Z}$ за кои важи am+bl=d, та со множење на последнава равенка со k добиваме $a(mk)+b(lk)=dk=\underline{c}$, та равенката $a\underline{x}+b\underline{y}=\underline{c}$ има решение за $\underline{x}=mk$ и $\underline{y}=lk$.

 $\frac{(x + 4y = 1)}{2(x + 2y)} = 1$ 2(x + 4y + 24z = 3) x = (2, 4, 24) = 2

Облик на решенијата

Својство 2: Нека е дадена линеарна диофантова равенка ax + by = c и нека истата има решение (x_0, y_0) . Тогаш имаме дека парот (x, y) е решение на равенката акко = 2 LO и $= 2 \text{L$

Доказ: Ако важат
$$x = x_0 + \frac{b}{NZD(a,b)}t$$
 и $y = y_0 - \frac{b}{NZD(a,b)}t$, тогаш имаме
$$ax + by = \underbrace{a \cdot \left(x_0 + \frac{b}{NZD(a,b)}t\right) + b \cdot \left(y_0 - \frac{a}{NZD(a,b)}t\right)}_{= ax_0 + by_0 + \frac{ab}{NZD(a,b)}t - \frac{ab}{NZD(a,b)}t = ax_0 + by_0 = c$$

бидејќи (x_0, y_0) е решение на дадената равенка.

$$4 \times +7 = 1$$
 $1 \times 10 = 1$
 $1 \times 10 = 10 = 1$
 $1 \times 10 = 1$

$$7 \times 47 = 42 - 42 - 42 = 1$$

Quick Notes Page 7

Облик на решенијата

axatby=c

Heka axtby=c

Сега, нека (x,y) е решение на диофантовата равенка. Нека d=NZD(a,b) и $a=a_0d$ и $b=b_0d$, каде што се разбира $NZD(a_0,b_0)=1$. Имаме $ax+by=c=ax_0+by_0$, односно $a_0dx+b_0dy=a_0dx_0+b_0dy_0$ односно $a_0x+b_0y=a_0x_0+b_0y_0$, што е еквивалентно со $a_0(x-x_0)=b_0(y_0-y)$. Оттука следува $a_0|b_0(y_0-y)$, но $NZD(a_0,b_0)=1$, та $a_0|y_0-y$ т.е. $y_0-y=a_0t$ односно $y=y_0-a_0t=y_0-\frac{a}{d}t=y_0-\frac{a}{NZD(a,b)}t$. на сличен начин добиваме $x=x_0+\frac{b}{NZD(a,b)}t$, што и требаше да докажеме.

Последица: Од ова својство можеме да приметиме дека ако најдеме едно решение на равенката ax+by=c, тогаш можеме да најдеме бесконечно (за секое $t\in\mathbb{Z}$ добиваме ново решение). Оттука следува дека линеарната диофантова равенка со 2 променливи или 0 или бесконечно многу решенија.

Quick Notes Page 8

Диофантови равенки

Задача 1: Реши ја равенката 2x + 3y = 1 во множеството цели броеви.

Ојлеров метод

NZD(ab)

Пример 1: Реши ја равенката 738x + 621y = 45 во множеството цели броеви.

Решение: Можеме да приметиме дека за разлика од претходната задача, наоѓањето на почетни решенија за оваа равенка не е воопшто лесна (поради големината на коефициентите). Сепак, NZD(738,621)=9 45, та според Својство 1 оваа равенка треба да има решение, а според Својство 2 треба да има бесконечно многу решенија. Бидејќи коефициентот пред y е помал од тој пред x, да го изразиме y преку x. Имаме $y=\frac{45-738x}{621}=-x+\frac{-117x+45}{621}$. Бидејќи y треба да биде цел број, како и x, следува дека и $\frac{-117x+45}{621}\in\mathbb{Z}$. Нека $t=\frac{-117x+45}{621}$.

10.40.41.41.1.1.000

Диофантови равенки

Изразувајќи го x преку t добиваме $\underline{x} = \frac{45-621t}{117} = -5t + \frac{-36t+45}{117}$, а повторно како x и 5t се цели броеви следува дека и $\overline{s} = \frac{-36t+45}{117} \in \mathbb{Z}$. Продолжувајќи како претходно, $t = \frac{45-117s}{536} = -(3s-1) + \frac{-9s+9}{366} = -(3s-1) + \frac{-s+1}{4}$, та повторно $r = \frac{-s+1}{4} \in \mathbb{Z}$. Од последниов израз добиваме

 $t=-(3s-1)+\frac{-s+1}{4}=-3s+1+r=-3(1-4r)+1+r=13r-2.$ Слично, x=-5t+s=-5(13r-2)+1-4r=-69r+11 и y=-x+t=69r-11+13r-2=82r-13, та за секој цел број r парот (-69r+11,82r-13) е решение на дадената диофантова равенка.

Проверка: 738x + 621y = 738(-69r + 11) + 621(82r - 13) = -50922r + 50922r + 8118 - 8073 = 45. Се разбира параметарскиот облик на x и y претставува решение на равенката, та оваа проверка на решенијата не е потребна да ја правите.

-69r+11,82r-13 r=0 r=-1 r=1 r=-2 r=2

Задача 2: Реши ја равенката

$$(x^2+1)(y^2+1)+2(x-y)(1-xy)=4(1+xy)$$
 кеството цели броеви.

во множеството цели броеви.

Задача 2: Реши ја равенката
$$(x^2+1)(y^2+1)+2(x-y)(1-xy)=4(1+xy)$$
 Во множеството цели броеви.
$$\frac{x^2+2}{x^2+2}+\frac{x^2+2+1}{x^2+2}+\frac{1}{x^2-2}+\frac{1}$$

Quick Notes Page 12

Задачи
$$\frac{N=3}{N=1}$$
Задача 3: Најди ги сите природни броеви \underline{n} така што $\sqrt{n^2+4n-5}$ е природен број.

 $M=\sqrt{N^2+4n-5}$ е природен број

Задачи $\alpha^{4} + 4b^{4} = (\alpha^{2})^{2} + (2b^{2})^{2} + 2\alpha^{2} \cdot 2b^{2} - 2\alpha^{2} \cdot 2b^{2} = (\alpha^{2} + 2b^{2})^{2} - 4\alpha^{2}b^{2} = (\alpha^{2} + 2b^{2})^{2} - 4\alpha^{2}b^{2} = (\alpha^{2} + 2b^{2})^{2} - 4\alpha^{2}b^{2} = (\alpha^{2} + 2b^{2} - 2ab) \cdot (2ab)^{2} = (\alpha^{2} + 2b^{2} - 2ab) \cdot (2ab)^{2} = (\alpha^{2} + 2b^{2} + 2ab)$ $A^{4} + 4b^{4} = \rho$

3adaun
$$d = NZD(x^2 + 2x + 2, x^2 - 2x + 2)$$
 $d = NZD(x^2 + 2x + 2, x^2 - 2x + 2)$ $d = X^2 + 2x + 2$ $d =$

Задача 5: Најди ги сите природни броеви m и n за кои равенката $5^n+6^m=123329$ има решение.

$$\times = \times (x-1) \cdot (x-2) - 1$$

Задача 6: Најди ги сите природни броеви x и прости броеви pза кои важи $x! + 2 = p^2$.

$$x \ge 5$$
 $x \mid = 100$
 $y =$

$$X \geq 0$$

Задача 7: Најди ги сите целобројни решенија на равенката

$$2^{x} + 1 = y^{2}$$
. $4 \ge 0$
 $2^{x} = y^{2} - 1^{2} = (y - 1) (y + 1)$

$$y-1=2$$
 $y+1=2^{b}$

$$2 - 4 + 1 - 14 - 1 - 2^{h} - 2^{n}$$

$$2 - 2 - 2 - 2 - 2$$

$$2^{-t} + 1 = y^2$$

$$2^{-t} = y^{2}$$
 $2^{-t} = y^{2} - 1$

Задача 8: Реши ја равенката $x^5-y^2=4$ во множеството цели броеви.

$$N \geq S (5,2) + 1 = 11$$

$$x^{a} - y^{b} = C$$
 $Nz = (a,b) + 1$

Задача 9: Најди ги сите ненегативни цели броеви кои ја $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

Задача 10 (ЈММО 2015, Задача 1): Во множеството на цели броеви реши ја равенката

Задача 11 (ЈММО 2016, Задача 1): Во множеството цели броеви, реши ја равенката

$$x_{1}^{4} + x_{2}^{4} + \dots + x_{14}^{4} = 2016^{3} - 1$$

$$x_{1}^{4} + x_{2}^{4} + \dots + x_{14}^{4} = 2016^{3} - 1$$

$$x_{1}^{4} + x_{2}^{4} + \dots + x_{14}^{4} = 2016^{3} - 1$$

$$x_{1}^{4} + x_{2}^{4} + \dots + x_{14}^{4} = 2016^{3} - 1$$

$$x_{1}^{4} + x_{2}^{4} + \dots + x_{14}^{4} = 2016^{3} - 1$$

$$x_{1}^{4} + x_{2}^{4} + \dots + x_{14}^{4} = 2016^{3} - 1$$

$$x_{1}^{4} + x_{2}^{4} + \dots + x_{14}^{4} = 2016^{3} - 1$$

$$x_{1}^{4} + x_{2}^{4} + \dots + x_{14}^{4} = 2016^{3} - 1$$

$$x_{2}^{4} = x_{1}^{4} + x_{2}^{4} + \dots + x_{14}^{4} = 2016^{3} - 1$$

$$2016^{3} - 1 = 16^{3} = 15$$

Задача 13 (ЈММО 2012, Задача 1): Најди ги сите прости

броеви од обликот
$$\overbrace{11...1}^{2n}$$
, каде n е природен број.

$$n = 0$$
 $n = 1$

$$11...1 = \frac{1}{5} \cdot \frac{59}{5} = \frac{1}{5} \cdot \left(\frac{100}{5} - \frac{1}{5} \right) = \frac{1}{5} \left(\frac{10}{10} - 1 \right$$

$$11...1 = \frac{1}{5} \cdot \frac{59}{5} \cdot \frac{9}{5} = \frac{1}{5} \cdot \left(\frac{100}{5} - 0 - 1 \right) = \frac{1}{5}$$

$$10 - 1$$

$$10 - 1$$

$$10 - 1$$

$$10 - 1$$

$$1+2+...+n = \frac{n(n+1)}{7}$$

Задача 14 (ЈММО 2019, Задача 1): Најди ги сите прости броеви од облик $1 + 2^p + 3^p + ... + p^p$, каде p е прост број.

$$P = 2$$
 $1 + 2^2 = 5$

$$0>2$$

$$1+2^{p}+...+p^{p}=p^{2}+2+...+(p-1)+0=p^{2}+2p^{2}=p^{2}$$

$$\alpha = \rho \alpha$$
 $1+2+\dots+\rho^{p}>\rho^{p}>\rho$

$$\frac{\begin{pmatrix} p-1 \end{pmatrix} \stackrel{?}{p}}{2} = p \stackrel{?}{p} \stackrel{?}{p} \stackrel{?}{=} p \stackrel{?}{0}$$

$$\frac{p-1}{2} \stackrel{?}{p} = p \stackrel{?}{p} \stackrel{?}{0}$$

Задача 15 (ЈММО 2018, Задача 1): Определи ги сите природни броеви n>2, такви што $n=a^3+b^3$, каде што a е најмалиот природен делител на n поголем од 1 и b е произволен делител

на *п*.

Задача 16 (ЈММО 2020, Задача 3): Во множеството цели броеви реши ја равенката

$$x^{5} + 2 = 3 \cdot 101 \frac{1}{4}$$

$$x^{5} + 2 = 3 \cdot 101 \frac{1}{4} = \frac{3}{101} = \frac{3}$$

$$4 \left(\frac{1}{100} \right)^{20} = \frac{20}{100} = \frac{20$$

Quick Notes Page 41

Задача 17 (ЈММО 2016, Задача 5): Во множеството природни

броеви реши ја равенката
$$x + y^{2} + (NZD(x,y))^{2} = x \cdot y \cdot NZD(x,y)$$

$$x + y^{2} + d^{2} = xyd \qquad ad + b^{2}d^{2} + d^{2} = abd^{3}$$

$$a + b^{2}d + d = abd^{2} \qquad da = cd$$

$$cd + b^{2}d + d = bcd^{3} \qquad c+b^{2} + 1 = b(d^{2})$$

