

Model Development Phase Template

Date	12 November 2024
Team ID	team-739849
Project Title	PixelProse - Crafting Visual Stories with Intelligent Image Captioning
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

model=get_model(
model.summary() Layer (type) Output Shape Param # Connected to input_layer (InputLayer) (None, 256, 256, 3) conv1_pad (ZeroPadding2D) (None, 262, 262, 3) input_layer[0][0] conv1_conv (Conv2D) conv1_pad[0][0] pool1_pad (ZeroPadding2D) (None, 130, 130, 64)
pool1_pool (MaxPooling2D) (None, 64, 64, 64) conv1_conv[0][0] (None, 64, 64, 64) pool1_pad[0][0] conv2_block1_preact_bn
(BatchNormalization) pool1_pool[0][0] conv2_block1_preact_relu (Activation) conv2_block1_preact_b... conv2_block1_1_conv (Conv2D) conv2_block1_preact_r... conv2_block1_1_relu (Activation) conv2_block1_1_bn[0][. conv2_block1_2_pad
(ZeroPadding2D)

conv5_block3_2_pad (ZeroPadding2D)	(None, 10, 10, 512)	0	conv5_block3_1_relu[0
conv5_block3_2_conv (Conv2D)	(None, 8, 8, 512)	2,359,296	conv5_block3_2_pad[∂]
conv5_block3_2_bn (BatchNormalization)	(None, 8, 8, 512)	2,048	conv5_block3_2_conv[3
conv5_block3_2_relu (Activation)	(None, 8, 8, 512)	Ø	conv5_block3_2_bn[0][
conv5_block3_3_conv (Conv2D)	(None, 8, 8, 2048)	1,050,624	conv5_block3_2_relu[0
conv5_block3_out (Add)	(None, 8, 8, 2048)	Ø	conv5_block2_out[0][0 conv5_block3_3_conv[0
<pre>post_bn (BatchNormalization)</pre>	(None, 8, 8, 2048)	8,192	conv5_block3_out[0][0]
post_relu (Activation)	(None, 8, 8, 2048)	0	post_bn[0][0]
global_average_pooling2d (GlobalAveragePooling2D)	(None, 2048)	0	post_relu[⊘][⊘]
dense (Dense)	(None, 1000)	2,049,000	global_average_poolin
dense_1 (Dense)	(None, 10)	10,010	dense[0][0]

Total params: 60,300,658 (230.37 MB)
Trainable params: 56,430,338 (215.26 MB)
Non-trainable params: 3,060,320 (15.11 MB)


```
[] der cleam(asoping):
    for key, captions in ampoing.items():
        for i in range(len(captions)):
            riske one caption st a time
            caption - caption st a time
            caption - caption (st a time
            caption - caption (st a time
            caption - caption (st a time
            caption - caption - caption (st a time
            caption - captio
```


${\bf Model\ Validation\ and\ Evaluation\ Report\ (5\ marks):}$

Model	Summary	Training and Validation Performance Metrics
InceptionV 3	Inception v3 is a highly efficient and accurate convolutional neural network (CNN) architecture, widely used for image classification and feature extraction tasks. Developed as part of the Google Inception series, it improves computational efficiency while maintaining high performance. Factorized Convolutions: Breaks down large convolutions into smaller, more efficient ones, reducing computation time and improving performance. Auxiliary Classifiers: Incorporates auxiliary outputs during training to improve gradient flow and prevent overfitting. Batch Normalization: Normalizes input data across layers to accelerate convergence and stabilize training.	1 train the mail: quades - 28 state 1 train from mail: for it is respirately; percent of this generatory to a spain, finders, takening, and length, mail: if is recognition; mail: finders finders, finders, takening, and length, mail: finders if is recognition; quades, deep yet generatory, entered.] minor