Relations Binaires Relations d'ordre MPSI 2

1 Définition

Soit E un ensemble non vide. Soit \mathcal{R} une relation binaire sur E.

Définition 1.0.1

 \mathcal{R} est une relation d'ordre sur E si:

- R est réflexive.
- \mathcal{R} est antisymétrique: $\forall (x,y) \in E^2$, $(x \mathcal{R} y \text{ et } y \mathcal{R} x) \Rightarrow (x=y)$
- \mathcal{R} est transitive.

Notations: $x \mathcal{R} y$, $x \leq y$ Se note aussi $x \leq y$

Définition 1.0.2

 $Soit \leq une \ relation \ d$ 'ordre $sur \ E$.

- On dit que l'ordre est <u>total</u> si deux éléments de E sont toujours en relation: $\forall (x,y) \in E^2$, $(x \leq y)$ ou $(y \leq x)$.
- Sinon, on dit que l'ordre est partiel.

Définition 1.0.3

Soit (E, \preceq) un ensemble ordonné.

- $m \in E$ est le plus petit élément de E si: $\forall x \in E, m \leq x$
- $M \in E$ est le plus grand élément de E si: $\forall x \in E, x \leq M$

Définition 1.0.4

Soit (E, \preceq) un ensemble ordonné.

- $m \in E$ est un <u>élément minimal</u> de E si: $\forall x \in E, (x \leq m) \Rightarrow (x = m)$
- $M \in E$ est un <u>élément maximal</u> de E si: $\forall x \in E, (M \preccurlyeq x) \Rightarrow (x = M)$

Définition 1.0.5

Soit (E, \preceq) un ensemble ordonné.

Soit A un sous-ensemble de E

- $\alpha \in E$ est un <u>minorant de A dans E</u> si: $\forall x \in E, (x \in A) \Rightarrow (\alpha \leq x)$
- $\beta \in E$ est un majorant de A dans E si: $\forall x \in E, (x \in A) \Rightarrow (x \leq \beta)$

2 Ordre naturel sur \mathbb{N}

Définition 2.0.6

$$\forall (x,y) \in \mathbb{N}, \ x \leqslant y \iff \exists n \in \mathbb{N}, y = x + n$$

C'est un ordre total de plus petit élément 0.

Propriété 2.0.1

Propriété caractéristique de \mathbb{N} :

Tout sous-ensemble de N admet un plus petit élément.

Corollaire 2.0.1

Tout sous-ensemble non vide et majoré de $\mathbb N$ admet un plus grand élément.

Soit A un sous-ensemble non vide et majoré de \mathbb{N} .

On considère B l'ensemble des majorants de A.

$$B = \{ x \in \mathbb{N}, \ \forall a \in A, x \geqslant a \}$$

A est majoré donc B est un sous-ensemble non vide de \mathbb{N} .

D'après la propriété caractéristique de $\mathbb N$ B admet un plus petit élément que l'on note α

On a:
$$\begin{cases} \alpha \in \mathbb{N} \\ \forall a \in A, \ a \leqslant \alpha \end{cases}$$

Montrer que $\alpha \in \mathbb{N}$

 $\underline{\text{HA}}$: $\alpha \notin A$

Alors $\forall x \in A, \ a < \alpha$

Ou encore, puisque α est entier: $\forall a \in A, \ a \leq \alpha - 1$

On a donc $\alpha - 1$ entier naturel et $\alpha - 1$ majorant de A.

Donc $\alpha \in B$ et $\alpha - 1 < \alpha$, ce qui contredit α plus petit élément de B.

Donc $\alpha \in A$

Conclusion: α est le plus grand élément de A.

Corollaire 2.0.2

Principe de récurrence

Soit P une proposition portant sue les entiers naturels. Soit P(n) le prédicat associé a n.

$$\exists n_0 \in \mathbb{N}, \ [P(n_0) \ et \ (\forall n \in \mathbb{N}, \ P(n) \Rightarrow P(n+1))] \Rightarrow [\forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow P(n)]$$

 $\underline{\mathbf{H}_1}$: Soit n_0 un entier naturel tel que $(\underline{\mathbf{H}_1'})$ $P(n_0)$ et $(\underline{\mathbf{H}_1''})$ $\forall n \in \mathbb{N}, \ P(n) \Rightarrow P(n+1)$

 $\overline{\text{Montrer que }} \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow P(n)$

On considère l'ensemble E, ensemble des $n \in \mathbb{N}$, $(n \ge n_0 \text{ et } \neg P(n))$

Montrer que $E = \emptyset$

 $\underline{\text{HA}}$: Supposons E non vide.

D'après la propriété caractéristique, E admet un plus petit élément, poté p_0 .

 p_0 vérifie: $p_0 \in \mathbb{N}$

 $p_0 \geqslant n_0$

 $P(p_0)$ est Faux

Par ailleurs, $P(n_0)$ est Vrai, donc $p_0 > n_0$, ou encore $p_0 - 1 \ge n_0$

Or, $p_0 > p_0 - 1$, donc $p_0 - 1$ n'est pas dans E, donc $P(p_0 - 1)$ est Vrai.

D'après H_1'' , avec $n = p_0 - 1$, $P(p_0)$ est Vrai, ce qui est en contradiction avec HA.

Donc HA est fausse, $E = \emptyset$

Conclusion: $\forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow P(n)$

3 Ordre naturel sur \mathbb{R}

3.1 Ordre

Ordre sur \mathbb{R} : $x \leq y \iff y - x \in \mathbb{R}^+$. Il est total.

Propriété 3.1.1

 $(\mathbb{R}, +, \times, \leq)$ est un corps totalement ordonné.

• $(\mathbb{R},+)$ est un groupe commutatif car:

```
+ \ est \ associative: \ \forall (x,y,z) \in \mathbb{R}^3, \ x+(y+z)=(x+y)+z\\ + \ admet \ in \ \'el\'ement \ neutre: \ \forall x \in \mathbb{R}, \ x+0=x\\ + \ octroie \ un \ \'el\'ement \ sym\'etrique: \ -x \ (car \ \forall x \in \mathbb{R}, \ x+(-x)=0)\\ + \ est \ commutative: \ \forall (x,y) \in \mathbb{R}, \ x+y=y+x\\ \bullet \ (\mathbb{R}^*,\times) \ est \ un \ groupe \ commutatif \ car:\\ \times \ est \ associative: \ \forall (x,y,z) \in \mathbb{R}^3, \ x\times(y\times z)=(x\times y)\times z\\ \times \ admet \ in \ \'el\'ement \ neutre: \ \forall x \in \mathbb{R}, \ x\times 1=x\\ \times \ octroie \ un \ \'el\'ement \ sym\'etrique: \ \frac{1}{x} \ (car \ \forall x \in \mathbb{R}, \ x\times \frac{1}{x}=1)\\ \times \ est \ commutative: \ \forall (x,y) \in \mathbb{R}, \ xy=yx\\ \bullet \ La \ relation \ d'ordre \ est \ compatible \ avec \ les \ op\'erateurs:\\ \forall (x,y,x',y') \in \mathbb{R}, \ (x \leqslant y \ et \ x' \leqslant y') \Rightarrow (x+x' \leqslant y+y')\\ \forall (x,y,z) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^+, \ (x \leqslant y) \Rightarrow (z\,x \leqslant z\,y)
```

Définition 3.1.1

Soit (E, \leq) un ensemble ordonné.

- Soit A une partie de E non vide et majorée, B l'ensemble des majorants de A. $B = \{x \in E, \ \forall a \in E, \ (a \in A \Rightarrow a \leq x)\}$ On appelle borne supérieure de A le plus petit élément de B (lorsqu'il existe).
- Soit A une partie de E non vide et minorée, B l'ensemble des minorants de A. $B = \{x \in E, \ \forall a \in E, \ (a \in A \Rightarrow a \geqslant x)\}$ On appelle borne inférieure de A le plus grand élément de B (lorsqu'il existe).

Notation: Sup(A), Inf(A)

Propriété 3.1.2

Propriété caractéristique de \mathbb{R} :

- Propriété de la borne supérieure: Tout ensemble non vide et majoré de \mathbb{R} admet une borne supérieure.
- Propriété de la borne inférieure: Tout ensemble non vide et minoré de $\mathbb R$ admet une borne inférieure.

Remarque: Soit A une partie de \mathbb{R} non vide et majorée (minorée), et α sa borne supérieure (inférieure).

 α est caractérisé par: \bullet α est un majorant (minorant) de A

- si β est strictement inférieur (supérieur) a α , il n'est pas majorant (minorant) de A
- Critère 1: α est la borne supérieure de A si et seulement si: $\begin{cases} \forall x \in \mathbb{R} & x \in A \Rightarrow x < \alpha \end{cases}$

$$\begin{cases} \forall x \in \mathbb{R}, \ x \in A \Rightarrow x \leqslant \alpha \\ \forall \beta \in \mathbb{R}, \ (\beta \leqslant \alpha) \Rightarrow (\exists x \in \mathbb{R}, \ x \in A \text{ et } \beta < x \leqslant \alpha) \end{cases}$$

• Critère 2: α est la borne supérieure de A si et seulement si:

$$\begin{cases} \forall x \in \mathbb{R}, \ x \in A \Rightarrow x \leqslant \alpha \\ \forall \epsilon \in \mathbb{R}^{+*}, \ \exists x \in \mathbb{R}, \ (x \in A \text{ et } x - \epsilon < x \leqslant \alpha) \end{cases}$$

Corollaire 3.1.1

 \mathbb{R} est <u>Archimédien</u>: $\forall x \in \mathbb{R}, \ x > 0 \Rightarrow (\exists n \in \mathbb{N}^*, \ n > x)$

Corollaire 3.1.2

 $\forall (a,b) \in \mathbb{R}^{+*^2}, \ \exists n \in \mathbb{N}, \ n \, a > b$

Corollaire 1:

Soit x un réel positif.

On considère $A = \{n \in \mathbb{N}, \ n > x\}$

Montrer que $A \neq \emptyset$

HA: $A = \emptyset$

Alors $\forall n \in \mathbb{N}, \ n \leqslant x$

Donc \mathbb{N} est une partie non vide et majorée de \mathbb{R} .

Donc A admet une borne supérieure, que l'on note α

En utilisant le critre 2 avec $\epsilon = \frac{1}{2}$:

 $\exists x' \in \mathbb{N}, \ \alpha - \frac{1}{2} < x \leqslant \alpha$

Or x' + 1 est un entier naturel vérifiant $\alpha + \frac{1}{2} < x' + 1$

Ce qui contredit le fait que α soit le majorant de \mathbb{N} .

Conclusion: $A \neq \emptyset$

Conclusion générale: \mathbb{R} est Archimédien.

Corollaire 2: prendre $x = \frac{b}{a}$

Corollaire 3.1.3

Partie Entire: $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z}, unique, n \leq x < n+1$

Éxistance:

Soit x un rel positif.

Soit $A = \{n \in \mathbb{N}, n > x\}$

A est non vide car \mathbb{R} est archimdien

Donc A admet un plus petit lment, not n_0 .

On a: $0 \le x < n_0$ donc $1 \le n_0$. Donc $n_0 - 1 \in \mathbb{N}$ et $n_0 - 1 \notin A$ Donc $n_0 - 1 \le x < n_0$. En posant $n = n_0 - 1$, on a: $n \le x < n + 1$

Soit x un rel strictement ngatif.

 $-x \in \mathbb{R}^+$, donc on applique la partie predente.

$$\exists p \in \mathbb{N}, p \leqslant -x < p+1$$

Soit p_0 cet entier.

Donc $-p_0 - 1 < x \le p_0$

 \bullet $x=-p_0$

On peut alors crire $-p_0 \le x < -p_0 + 1$

On note $n = -p_0$

 $\bullet \ x \neq -p_0$

On peut alors crire $-p_0 - 1 \le x < -p_0$

On note $n = -p_0 - 1$

Unicit:

Supposons qu'il existe deux entiers n_1 et n_2 tels que:

$$\begin{cases} n_1 \leqslant x < n_1 + 1 \\ n_2 \leqslant x < n_2 + 1 \\ n_1 < n_2 \\ n_1 < n_2 \text{ donc } x < n_1 + 1 \leqslant n_2 \leqslant x \\ \text{Donc } n \text{ est unique.} \end{cases}$$

3.2 Proprits de \mathbb{R}

Propriété 3.2.1

 \mathbb{Q} est dense dans \mathbb{R}

 $\mathbb{Q} \setminus \mathbb{R}$ est dense dans \mathbb{R}

Soit x et y deux rels tels que x < y $y - x \in \mathbb{R}^+ \Rightarrow \exists n \in \mathbb{N}, \ n(y - x) > 1$ Soit n un tel entier naturel. Donc $y < x + \frac{1}{n}$ Soit k la partie entire de nx: $k \leqslant x < k + 1$

$$k \le x < k+1$$

$$\frac{k}{n} \leqslant x < \frac{x+1}{n} \leqslant x + \frac{1}{n} < y$$
 Posons $q = \frac{k+1}{n}$

q est rationnel, donc \mathbb{Q} est dense dans \mathbb{R}

```
Soit x et y deux rels tels que x < y e est un irrationnel strictement positif donc \frac{x}{e} < \frac{y}{e} \frac{x}{e} et \frac{y}{e} sont deux rels, donc: \exists q \in \mathbb{Q}, \ \frac{x}{e} < q < \frac{y}{e} Soit q un tel lment. Donc x < q e < y Donc \mathbb{Q} \setminus \mathbb{R} est dense dans \mathbb{R}
```

Définition 3.2.1

Soit I un sous-ensemble de \mathbb{R}

I est un intervalle si I est une partie convexe de \mathbb{R} :

$$\forall (a,b) \in I^2, \ (a < b) \Rightarrow (\forall x \in \mathbb{R}, \ a < x < b \Rightarrow x \in I)$$

Propriété 3.2.2

Les seuls intervalles rels sont les sous-ensembles du type:

 $\begin{array}{l} \mathbb{R}; \ \varnothing \\]a,b[\ ; \ [a,b[\ ; \]a,b]\ ; \ [a,b] \\]a,+\infty[\ ; \ [a,+\infty[\ ; \]-\infty,b[\ ; \]-\infty,b] \end{array}$

Soit I une partie convexe de \mathbb{R}

- \bigcirc Montrer que si I est de l'un des types ci-dessus, I est un intervalle.
 - $[a, b] = \{x \in \mathbb{R}, \ a \leqslant x \leqslant b\}$ $] \infty, b[= \{x \in \mathbb{R}, \ x < b\}$
 - Etc...
- (2) Montrer que si I est une partie convexe de \mathbb{R} , alors I est de l'un des ces types.
 - I n'est ni minore, ni majore. Montrer que $I = \mathbb{R}$
 - * Par hypothse sur $I, I \subset \mathbb{R}$
 - * Montrer que $\mathbb{R} \subset I$ Soit x un rel. x n'est ni majorant, ni minorant:

 $\exists a \in \mathbb{R}, \ a \in I \text{ et } a < x$ $\exists b \in \mathbb{R}, \ b \in I \text{ et } b > x$

Soit a et b deux tels rels: $(a,b) \in i^2$, a < x < b

Or I est un intervalle, donc $x \in I$

Ce raisonnement tant valable pour tout $x, \mathbb{R} \subset I$

- I est majore et non minore. Montrer que $I =]-\infty, b[$ ou $I =]-\infty,]$ I est non vide et majore, donc admet une borne suprieure, note b.
 - * Montrer que $I \subset]-\infty, b]$

C'est a dire montrer que $\forall x \in \mathbb{R}, x \in I \Rightarrow x \leq b$

Ce qui est vrai car b majore I.

- * Montrer que $]-\infty, b[\subset I$ C'est a dire montrer que $\forall x \in \mathbb{R}, \ x < b \Rightarrow x \in I$ Soit x un rel de I.
 - · x n'est pas un minorant de I: $\exists a \in \mathbb{R}, \ a \in I \text{ et } a < x$
 - · b est une borne suprieure de I: $(x < b) \Rightarrow (\exists x' \in \mathbb{R}, \ x' \in I \text{ et } x < x' \leq b)$ Soit x' un tel lment.

Donc: $a < x < x' \le b$

Donc $x \in I$, donc $]-\infty, b[\subset I]$

- * Donc] $-\infty$, $b[\subset I \subset]-\infty$, b]Donc $I=]-\infty$, b[si $b\notin I,$ ou $I=]-\infty$, b[si $b\in I$
- I est minore et non majore.
- I est borne.

Définition 3.2.2

Valeur absolue: $: \mathbb{R} \longrightarrow \mathbb{R}$

$$x \longmapsto \begin{cases} x & si \ x \in \mathbb{R}^+ \\ -x & si \ x \in \mathbb{R}^- \end{cases}$$

Propriété 3.2.3

$$|x| = 0 \iff x = 0$$

$$|x + y| \leqslant |x| + |y|$$

$$|x y| = |x| |y|$$

Corollaire 3.2.1

$$||x| - |y|| \leqslant |x - y|$$

Définition 3.2.3

Soit $(a, r) \in \mathbb{R} \times \mathbb{R}^{+*}$

On appelle intervalle ouvert centr en a de rayon r le sous-ensemble]a-r,a+r[

Propriété 3.2.4
$$]a,b[=\bigcup_{n\in\mathbb{N}^*}[a+\tfrac{1}{n},b-\tfrac{1}{n}]$$

$$[a,b] = \bigcap_{n \in \mathbb{N}^*} \left[a - \frac{1}{n}, b + \frac{a}{n} \right]$$