EA772U CIRCUITOS LÓGICOS 26/06/2012 Prova 3.2 Duração: 100 minutos Nome: RA:

Questão 1 (2,0) Seja a implementação da unidade aritmética e lógica abaixo. Considere que **n** = **5** para a resolução do item a.

$K_x = f_2 f_1$	F	Operação	
$\mathbf{K}_{\mathbf{v}} = \mathbf{f}_{1}$	001	ADD	z = x + y
$K_{MX} = f_0$	011	SUB	z = x - y
$\mathbf{c}_0 = \mathbf{f}_1 + \mathbf{f}_2 \; \mathbf{f}_0 \; \mathbf{c}_{\mathrm{in}}$	101	ADDC	$z = x + y + c_{in}$
	110	CS	z = -x
$F = (f_2 f_1 f_0)$	010	INC	z = x + 1

- a) Dados os valores de x=01011 e de y=10100, mostrar a execução completa ao longo do circuito (indicando os valores de K_x , K_y , K_{MX} e c_0) e determinar os valores de c_{out} , ovf, zero, sgn e \underline{z} , e os resultados em decimal para as operações:
 - i) z = x + y e ii) z = x y.
- b) Para a expressão aritmética $\mathbf{a} = -(\mathbf{b} + \mathbf{d}) \mathbf{c}$, mostrar como o valor de \mathbf{a} pode ser calculado usando as operações disponíveis no circuito (indicar as operações utilizadas e as entradas).

Questão 2 (1,5) Para um somador de transporte antecipado de 4 bits, com entradas \underline{x} , \underline{y} e c_0 , e saídas \underline{z} e c_4 , tal que:

$$\begin{aligned} z_i &= p_i \oplus c_i & p_i &= x_i \oplus y_i & propagação \\ c_{i+1} &= g_i + p_i \ c_i & g_i &= x_i \ y_i & geração \end{aligned}$$

- a) Determinar os atrasos para as saídas c_3 e z_2 a partir do momento em que as entradas estejam estabilizadas, para $t_{XOR} = 7$ ns; $t_{AND} = 3$ ns e $t_{OR} = 3$ ns. Considerar que os atrasos nas portas independem do número de entradas.
- b) Para que servem P e G, dadas pelas expressões abaixo?

$$P = p_3 p_2 p_1 p_0$$
 $G = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0$

Questão 3 (1,5) Mostre todos os passos para a realização das seguintes operações aritméticas usando 6 bits para as representações em Complemento de 2 (C2) e em Complemento de 1 (C1). Obter a representação decimal dos resultados obtidos.

Questão 4 (1,0) Seja um conversor de código Excesso de 3 para BCD implementado por um decodificador Excesso de 3 cujas saídas $(y_0, y_1, ..., y_9)$ são as entradas para o codificador BCD.

- a) Determinar as expressões lógicas simplificadas para y_0 e y_1 em função das entradas x_3 , x_2 , x_1 , x_0 do decodificador Excesso de 3.
- b) Determinar as expressões lógicas para as saídas do codificador (z_3, z_2, z_1, z_0) em função das saídas do decodificador $(y_0, y_1, ..., y_9)$.

Dígito	BCD	Excesso de 3	2421
0	0000	0011	0000
1	0001	0100	0001
2	0010	0101	0010
3	0011	0110	0011
4	0100	0111	0100
5	0101	1000	1011
6	0110	1001	1100
7	0111	1010	1101
8	1000	1011	1110
9	1001	1100	1111

Questão 5 (1,5) Mostrar como um multiplexador de 8 entradas pode ser usado para implementar a função lógica $f(x_2, x_1, x_0) = \text{conjunto-um}(0, 2, 7) + \text{conjunto-dc}(1, 6)$. Mostrar como essa mesma função pode ser implementada usando um multiplexador de 4 entradas, eliminando x_2 das variáveis de seleção.

Questão 6 (1,0) Seja um deslocador-p direita-esquerda (p = 31), implementado pelo encadeamento de deslocadores 0 ou 2^i , i = 0, 1, ..., k. As entradas para o deslocador encadeado são **d** (1: direita, 0: esquerda), $\underline{\mathbf{s}}$ (\mathbf{s}_0 , ..., \mathbf{s}_k), além dos dados de entrada $\underline{\mathbf{x}}$ (n + 2p bits); a saída é $\underline{\mathbf{y}}$ (n bits). Mostrar a implementação do deslocador 0 ou 2 usando multiplexadores (basta mostrar para um bit). De quantos bits e em que direção ocorre o deslocamento para $\mathbf{d} = 0$ e $\mathbf{s} = 11001$?

Questão 7 (1,0) Usando um registrador de deslocamento de 8 bits, implementar reconhecedores dos seguintes padrões (**com sobreposição**):

- a) 101010011
- b) 10111
- c) 1x01x1

Questão 8 (1,5) A partir do contador binário com entrada paralela módulo 16 abaixo, implementar:

- a) Contador módulo 10
- b) Contador 6-para-14
- c) Divisor de frequência módulo 13

CLR – Clear

LD – Load

CNT – Count enable

TC – Terminal count