Problem 1

The following data is from a random sample: 5, 1, 3, 3, 8. Compute the sample mean and sample standard deviation.

Problem 2

Let X_1, X_2, X_3 be a random sample of size n = 3 from a distribution with the geometric probability mass function:

$$f(x) = \left(\frac{3}{4}\right) \left(\frac{1}{4}\right)^{x-1}$$

for x = 1, 2, 3, ... What is $P(\max X_i \le 2)$?

Problem 3

If X_i is a Bernoulli random variable with parameter p, then:

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is the maximum likelihood estimator (MLE) of p. Is the MLE of p an unbiased estimator of p?

Problem 4

If X_i are normally distributed random variables with mean μ and variance σ^2 , then:

$$\hat{\mu} = rac{\sum X_i}{n} = ar{X}$$
 and $\hat{\sigma}^2 = rac{\sum (X_i - ar{X})^2}{n}$

are the maximum likelihood estimators of μ and σ^2 , respectively. Are the MLEs unbiased for their respective parameters?

Problem 5

Let $Y_1 < Y_2 < Y_3 < Y_4 < Y_5 < Y_6$ be the order statistics associated with n = 6 independent observations each from the distribution with probability density function:

$$f(x) = \frac{1}{2}x$$
 ; for $0 < x < 2$

What is the probability that the next-to-largest order statistic, that is, Y_5 , is less than 1?

Problem 6

Example 2: Suppose X_1, X_2, \dots, X_n are i.i.d. random variables with density function $f(x|\sigma) = \frac{1}{2\sigma} \exp\left(-\frac{|x|}{\sigma}\right)$, please find the maximum likelihood estimate of σ .

Problem 7

Example 3. Light bulbs

Suppose that the lifetime of *Badger* brand light bulbs is modeled by an exponential distribution with (unknown) parameter λ . We test 5 bulbs and find they have lifetimes of 2, 3, 1, 3, and 4 years, respectively. What is the MLE for λ ?

Problem 8

Suppose our data $x_1, \ldots x_n$ are independently drawn from a uniform distribution U(a, b). Find the MLE estimate for a and b.

Problem 9

Example 7. Hardy-Weinberg. Suppose that a particular gene occurs as one of two alleles (A and a), where allele A has frequency θ in the population. That is, a random copy of the gene is A with probability θ and a with probability $1 - \theta$. Since a diploid genotype consists of two genes, the probability of each genotype is given by:

genotype	AA	Aa	aa
probability	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

Suppose we test a random sample of people and find that k_1 are AA, k_2 are Aa, and k_3 are aa. Find the MLE of θ .

Problem 10

Example 2.2.2 (Weibull with known α) $\{Y_i\}$ are iid random variables, which follow a Weibull distribution, which has the density

$$\frac{\alpha y^{\alpha-1}}{\theta^{\alpha}} \exp(-(y/\theta)^{\alpha}) \qquad \theta, \alpha > 0.$$

Suppose that α is known, but θ is unknown. Our aim is to fine the MLE of θ .

Problem 11

Let $X_1, X_2, X_3, ..., X_n$ be a random sample from the following distribution:

$$f_X(x) = \begin{cases} \theta\left(x - \frac{1}{2}\right) + 1 & \text{for } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

where $\theta \in [-2, 2]$ is an unknown parameter. We define the estimator $\hat{\Theta}_n$ as

$$\hat{\Theta}_n = 12\overline{X} - 6$$

to estimate θ .

- (a) Is $\hat{\Theta}_n$ an unbiased estimator of θ ?
- (b) Is $\hat{\Theta}_n$ a consistent estimator of θ ?
- (c) Find the mean squared error (MSE) of $\hat{\Theta}_n$.

Problem 12

Let X be one observation from a $N(0, \sigma^2)$ distribution.

- (a) Find an unbiased estimator of σ^2 .
- (b) Find the log likelihood, $\log(L(x; \sigma^2))$, using

$$f_X(x;\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} exp\left\{-\frac{x^2}{2\sigma^2}\right\}$$

as the PDF.

(c) Find the Maximum Likelihood Estimate (MLE) for the standard deviation σ , $\hat{\sigma}_{ML}$.

Problem 13

15. Let X_1 , X_2 , X_3 , X_4 , X_5 be a random sample from a $N(\mu, 1)$ distribution, where μ is unknown. Suppose that we have observed the following values

We would like to decide between

$$H_0$$
: $\mu = \mu_0 = 5$,

$$H_1: \mu \neq 5.$$

- (a) Define a test statistic to test the hypotheses and draw a conclusion assuming $\alpha = 0.05$.
- (b) Find a 95% confidence interval around \overline{X} . Is μ_0 included in the interval? How does the exclusion of μ_0 in the interval relate to the hypotheses we are testing?

Problem 14

Let $X_1, X_2, ..., X_{150}$ be a random sample from an unknown distribution. After observing this sample, the sample mean and the sample variance are calculated to be as follows:

$$\overline{X} = 52.28, \qquad S^2 = 30.9$$

Design a level 0.05 test to choose between

 H_0 : $\mu = 50$,

 H_1 : $\mu > 50$.

Do you accept or reject H_0 ?

Problem 15

Let $X_1, X_2, ..., X_{121}$ be a random sample from an unknown distribution. After observing this sample, the sample mean and the sample variance are calculated to be as follows:

$$\overline{X} = 29.25, \qquad S^2 = 20.7$$

Design a test to decide between

 H_0 : $\mu = 30$,

 H_1 : $\mu < 30$,

and calculate the P-value for the observed data.

Problem 16

Example 2.9 Let $X_1, X_2, ..., X_n$ be a random sample from $f(x, \alpha, \beta) = \beta e^{-\beta(x-\alpha)}$; $\alpha \le x < \infty$ and $\beta > 0$. Find MLE's of α, β .

Problem 17

Example 2.10 Let $X_1, X_2, ..., X_n$ be a random sample from $f(x, \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha \le x \le \beta \\ 0, & \text{Otherwise} \end{cases}$

- (a) Show that the MLE of (α, β) is $(Min X_i, Max X_i)$.
- (b) Also find the estimators of α and β by the method of moments.

Problem 18

Example 5.2 Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$. Find $(1 - \alpha)$ level confidence interval for σ^2 when (i) μ is known and (ii) μ is unknown.

Problem 19

Example 5.3 Let $X_1, X_2, ..., X_n$ be a random sample from density function $f(x|\theta) = (\frac{1}{\theta})$, $0 < x < \theta$. Find $100(1 - \alpha)\%$ confidence interval of θ .

Problem 20

There are two candidates in a presidential election: Candidate A and Candidate B. Let θ be the portion of people who plan to vote for Candidate A. Our goal is to find a confidence interval for θ . Specifically, we choose a random sample (with replacement) of n voters and ask them if they plan to vote for Candidate A. Our goal is to estimate the θ such that the margin of error is 3 percentage points. Assume a 95% confidence level. That is, we would like to choose n such that

$$P\left(X - 0.03 \le \theta \le X + 0.03\right) \ge 0.95,$$

where X is the portion of people in our random sample that say they plan to vote for Candidate A. How large does n need to be?