

**AR-04** 

# Finding anomalies and outliers in clinical trial time series data

PHUSE EU Connect 2022

Pekka Tiikkainen

pekka.tiikkainen@bayer.com





#### Ensuring the high quality of clinical trials

#### Motivation

- Trial sponsor is responsible for ensuring the high quality of the data collected
- Examples of sponsor activities
  - On-site visits: e.g. source data verification, review of documents, investigator interviews
  - Central monitoring: e.g. protocol compliance review. Have the visits been taken at correct intervals? Were inclusion and exclusion criteria met?
  - Central statistical monitoring: analysis of results collected at the site to identify anomalies and outliers.
- Data is reviewed regularly as the study is on-going.
  - Certain errors can be corrected by site, e.g. data entry errors.
  - If a systematic bias at a site is identified early enough, the site can be offered additional training to ensure compliance.
  - Fraud performed by site can lead it to be excluded from the study.
- In this talk, I will present an internally developed tool for flagging sites and subjects with anomalous time series.





- // Time series
  - // Definition
  - // Time series features
- // Flagging sites
- // Identifying individual subjects with anomalies
- // Implementation
- // Ideas for further development



#### Defining a time series

- Time series is a sequence of time points where a parameter of interest has been measured.
  - At least three time points.
  - Subjects with at most 30% missing are included in the time series.
  - Time series must be non-redundant and have at least 30 eligible subjects.
- More than one time series might be defined per parameter.





#### Time series features

For each time series, a set of features is calculated.





- // Time series
  - // Definition
  - // Time series features
- // Flagging sites
- // Identifying individual subjects with anomalies
- // Implementation
- // Ideas for further development



#### Flagging sites





#### Site with co-clustered blood pressure profiles



Potential reasons: result fabrication, "sample" splitting, bias in subject selection



#### Site with high time series averages



Potential reasons: bias in subject selection, in-correct assay calibration (local labs), errors in sample handling (central labs)



- // Time series
  - // Definition
  - // Time series features
- // Flagging sites
- // Identifying individual subjects with anomalies
- // Implementation
- // Ideas for further development



#### Identifying individual outliers

Also individual time series might be outliers although the site as a whole does not raise alarms.

Example: an "interesting" weight profile.

The outlier time series below is due to a data entry error.







#### Identifying individual outliers

Extreme time series feature values can indicate anomalies.

Large deviation seen below might not be due to misconduct at site but this could be interesting due to a potential safety issue.







- // Time series
  - // Definition
  - // Time series features
- // Flagging sites
- // Identifying individual subjects with anomalies
- // Implementation
- // Plans for further development



#### **Implementation**

#### Calculation backend



RAVEN = internally developed data warehouse for clinical trial data



# Implementation

#### Dashboard





#### Implementation

#### Where is it used?

- The dashboard is available for all our on-going studies and is accessible by the study teams.
- So far, it has been used to...
  - support site inspections
  - perform regular data review
  - support planning for new studies





- // Time series
  - // Definition
  - // Time series features
- // Flagging sites
- // Identifying individual subjects with anomalies
- // Implementation
- // Plans for further development



#### Plans for further development

#### Controlling for local population characteristics

- In global studies, the general local population characteristics can lead to a site getting flagged.
  - In the current version, a site is compared to all sites globally. In some cases, sites from the same part of the world might be a better context.

Site in Hong Kong flagged due to a bias in subject average weights. However, the site average is close to the general adult weight in Asia.



| Region \$                       | Adult population (millions) | Average weight •   |
|---------------------------------|-----------------------------|--------------------|
| Asia                            | 2,815                       | 57.7 kg (127.2 lb) |
| Africa                          | 535                         | 60.7 kg (133.8 lb) |
| World                           | 4,630                       | 62.0 kg (136.7 lb) |
| Latin America and the Caribbean | 386                         | 67.9 kg (149.7 lb) |
| Europe                          | 606                         | 70.8 kg (156.1 lb) |
| Oceania                         | 24                          | 74.1 kg (163.4 lb) |
| North America                   | 263                         | 80.7 kg (177.9 lb) |
|                                 |                             |                    |



#### Plans for further development

- Improve the sensitivity for identifying anomalies in small sites.
- Add additional data domains such as questionnaires/PROs.
- E-mail alerts when a site gets flagged.
- Potentially, we will co-develop the tool further within the IMPALA consortium.





# Acknowledgements

#### **Bayer team**

Siavash Forootan

Jana Polley

Claudia Prange

Cornelia Fischer

Raju Kacchu

Tomomi Terada

Holger Schimanski

