CSC 320 Midterm 1 Practice Questions

- 1) Let $\Sigma = 0, 1$ be an alphabet, and let L be a language over Σ . Circle every true statement.
 - (a) Σ is countable
 - (b) Σ^* is counbable
 - (c) $L \subseteq \Sigma^*$ and L is countable
 - (d) $\mathcal{P}(\Sigma^*)$ is countable
 - (e) L^+ is countable
- $\mathbf{2}$) Let R be a regular expression. Circle every true statement.
 - (a) $R \cup \emptyset = \emptyset$
 - (b) $R\emptyset = R$
 - (c) There exists a DFA M with L(M) = L(R)
 - (d) There exists an NFA M with L(M) = L(R)
 - (e) There exists a DFA M with L(M) = R
- 3) Let $\Sigma = a, b, c, d$ and let $R = (c \cup d)^* d(a \cup ab)^*$. Select every true statement about L(R).
 - (a) If $w \in L(R)$ then |w| > 0
 - (b) If $w \in L(R)$ then |w| > 1
 - (c) If $w \in L(R)$ then w contains at least one d
 - (d) If $w \in L(R)$ and if w contains an a, then w contains at least one d somewhere after the occurrence of a
- 4) Is the language $\{110, 101\}$ a regular language? Explain.

Yes. We can write a regular expression to describe the language:

110 0 101

5) Can a subset of a non-regular language be a regular language? Explain.

Yes. The empty language \$\phi\$ is a subset of every language, including non-regular languages, and the empty language is a regular language.

Therefore, a subset of a non-regular language can be a regular language.

6) Consider the following state diagram for finite automaton M:

Describe the language recognized by M using your own words and a regular expression.

- · Strings containing 0 and 1 which begin with 10
- . (0(001)*

- 7) Consider the language $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 11 \text{ and contains } 000 \text{ as a substring}\}.$
 - (a) Construct a DFA which recognizes L

(b) Write a regular expression which describes L

8) Create an NFA which recognizes the language described by the regular expression $(((1^*) \cup 01)^* \cup 00)1$

9) Consider the following DFA D:

Convert the DFA D to a regular expression. Show your work by drawing the state diagram for the corresponding GNFA and the state diagram after removing states q_0 , q_1 , and q_2 . Remove the states in lexicographic order.

GNFA

10) Prove that the language $L = \{0^n 1^{n+1} 0^{n+1} 0^n \mid n \ge 0\}$ is non-regular using the pumping lemma.

Assume for a contradiction that L is regular. Let p be the pumping length given by the pumping lemma. Choose $S = O^{p+1}O^{p+1}O^{p}$

Since SEL and $|S| \ge p$, we can rewrite s = xy2 such that |.|y| > 0 $(y \ne \varepsilon)$

2. 12y1 = p

3. 2412 El for all : 20

By property 2, say consists of 0's
By property 1, y is a nonempty substring of 0's

Consider sey22 (or sey02). The resulting string 13 not in the language since it is not of form On1000, which violates properly 3 of the pumping lemma.

Hence, he cannot rewrite S = 2cy 2 such that all the properties of the PL hold, which is a contradiction. Therefore, L is not regular.