CHAPTER 3 ENTITY-RELATIONSHIP (E-R) MODEL & NORMALIZATION

Objectives:

- To illustrate how relationships between entities are defined and refined.
- To know how relationships are incorporated into the database design process.
- To describe how ERD components affect database design and implementation.

Level Database Design

What is Conceptual Database Design?

- Process of describing the data, relationships between the data, relationships between the data, and the constraints on the data.
- After analysis Gather all the essential data required and understand how the data are related
- The focus is on the <u>data</u>, rather than on the processes.
- The output of the conceptual database design is a Conceptual Data Model (+ Data Dictionary)

Gathering Information for Conceptual Data Modeling

Two perspectives

01

Top-down

Data model is derived from an intimate understanding of the business.

02

Bottom-up

Data model is derived by reviewing specifications and business documents.

ER Modeling is a *top-down* approach to database design.

An **Entity-relationship model (ER model)** describes the structure of a database with the help of a diagram, which is known as **Entity Relationship Diagram (ER Diagram)**.

An ER model is a <u>design</u> or <u>blueprint</u> of a database that can later be implemented as a database.

The main components of E-R model are:

ENTITY SET

RELATIONSHIP SET

What is an **Entity Relationship Diagram (ER Diagram)?**

among tables and their

attributes

An ER diagram shows the relationship among entity sets. An entity set is a group of similar entities and these entities can have attributes. In,

ER diagram shows the complete logical structure of a database.

Notation uses **THREE** main constructs:

- Data Entities
- 2 Relationship
- Attributes

- 1. Chen Model
- 2. Crow's Foot Model

ENTITY

- An entity is an object or component of data.
- An entity is represented as rectangle in an ER diagram.
- In the following ER diagram we have two entities Student and College and these two entities have many to one relationship as many students study in a single college.

 Entities are typically nouns such as: product, customer, location, or promotion

ENTITY

- Examples of entities:
 - Person: EMPLOYEE, STUDENT, PATIENT
 - Place: STORE, WAREHOUSE
 - Object: MACHINE, PRODUCT, CAR
 - Event: SALE, REGISTRATION, RENEWAL
 - Concept: ACCOUNT, COURSE

- Guidelines for naming and defining entity types:
 - An entity type name is a singular noun
 - An entity type should be descriptive and specific
 - An entity name should be concise
 - Event entity types should be named for the result of the event, not the activity or process of the event.

Weak ENTITY

- A weak entity is an entity that depends on the existence of another entity.
- In more technical terms it can be defined as an entity that cannot be identified by its own attributes.
- An entity that cannot be uniquely identified by its own attributes and relies on the relationship with other entity.
- The weak entity is represented by a double rectangle.

Strong ENTITY VS Weak ENTITY

Strong entity	Weak entity
An entity type that is not existence-	An entity type that is existence-
dependent on some other entity type	dependent on some other entity type
STUDENT	PARENT
Sno PELAJAR States PARENT Pic Pic	

MADAM ZHZ 2019

Associative Entity

- Associative entities relate the instances of several entity types. They also contain attributes specific to the relationship between those entity instances
- Associative entities are implemented in a database structure using associative tables, which are tables that can contain references to columns from the same or different database tables.

Associative Entity

 An associative (or junction) table maps two or more tables together by referencing the primary keys of each data table.

→ it contains a number of foreign keys, each in a many-toone relationship from the junction table to the individual

data tables.

ATTRIBUTES

- Attribute a property of an entity or a relationship type.
- Attribute oval, with a line to the rectangle representing its entity set.
- Example :

- Attribute domain the set of allowable values for one or more attributes.
- Example:

Attribute domain for attribute Sname is the value of the character between 1 and 24

ATTRIBUTES

- An attribute is a property, trait, or characteristic of an entity, relationship, or another attribute.
- Attributes describe entities and are the specific information that must be known.

For example, the attribute Inventory Item Name is an attribute of the entity Inventory Item.

Characteristic of ATTRIBUTES

- It is a single-valued property detail of an entity.
- Attributes are shown within the entity box on the ERD.
- Attribute names are singular and mixed case or lowercase.

Types of ATTRIBUTES

There are four types of attributes:

- 1) Key attribute
- 2) Composite attribute
- 3) Multivalued attribute
- 4) Derived attribute

Key ATTRIBUTES

• Simple attribute/Key Attribute – an attribute composed of a single component with an independent existence.

• EXAMPLE:

Composite ATTRIBUTES

- Composite attribute an attribute composed of multiple components, each with an independent existence.
- Attributes can also have their own specific attributes.
- For example, the attribute "name" can have the attributes
 FirstName and LastName.

Composite ATTRIBUTES

- A combination of other attributes is known as composite attribute.
- For example, In student entity, the student address is a composite attribute as an address is composed of other attributes such as pin code, state, country.

recall ATTRIBUTES

Multi-valued ATTRIBUTES

- Multi-valued attribute an attributes that holds multiple values for each occurrence of an entity type.
- It is represented with double ovals in an ER Diagram

A teacher entity can have multiple subject values.

A person can have more than one phone numbers so the phone number attribute is multivalued.

Derived ATTRIBUTES

- Derived attribute an attribute that represents a value that is derivable from the value of a related attribute or set of attributes, not necessarily in the same entity type.
- one whose value is dynamic and derived from another attribute. It is represented by dashed oval in an ER Diagram.

salary

An attribute based on another attribute.

For example, for a circle, the area can be derived from the radius.

Derived ATTRIBUTES

Example:

age

Person age is a derived attribute as it changes over time and can be derived from another attribute (Date of birth).

Types of ATTRIBUTES

Attribute Symbol	Name	Description
Attribute	Attribute	Attributes are characteristics of an entity, a many-to-many relationship, or a one-to-one relationship.
Multivalued Attribute	Multivalued attribute	Multivalued attributes are those that are can take on more than one value.
Derived Attribute	Derived attribute	Derived attributes are attributes whose value can be calculated from related attribute values.
Relationship	Relationship	Relationships are associations between or among entities.

recall ENTITY & ATTRIBUTES

STAFF		
PK	<u>staffID</u>	
	staff_name gender	
	numIdentification	

Crow's Foot Model

CHEN NOTATION

Represents a set or collection of objects in the real world that share the same properties

CHEN NOTATION

CROW'S FOOT NOTATION

ENTITY

entity

An entity is a representation of a class of object.

Entities usually have attributes that describe them

ATTRIBUTE

student

* student_id first_name last_name date_of_birth major

An attribute is a property that describes a particular entity.

RELATIONSHIP

Verb phrase

Relationships illustrate the association between two entities.

Presented as a straight line.
Each relationship has a name, expressed as a verb, written on the relationship line.

This describes what kind of relationship connects the objects.

CASE STUDY

Matt, I want to know the specifications for all tables and columns required in the simplified library database.

Sure. I will convert the entities and their attributes into tables and columns.

Learn about Relationship

- Associations between instances of one or more entity types that is of interest
- → A relationship describes how entities interact.
- → Given a name that describes its function.
- → relationship name is an <u>active</u> or a <u>passive</u> verb.

An author writes one or more books
A book can be written by one or more authors.

Learn about Relationship

Relationships are represented by <u>diamond shapes</u> and are labeled using verbs.

MADAM ZHZ 2019

- Relationships illustrate the association between two entities.
- They are presented as a straight line.
- Usually, each relationship has a name, expressed as a verb, written on the relationship line.

 describes what kind of relationship connects the objects.

Degree of Relationship

Degree: number of entity types that participate in a relationship

THREE CASES

- Unary: between two instances of one entity type
- Binary: between the instances of two entity types
- Ternary: among the instances of three entity types

2.4 Cardinality and Connectivity

 A relationship is represented by diamond shape in ER diagram, it shows the relationship among entities.
 There are four types of relationships:

- 1. One to One
- 2. One to Many
- 3. Many to One
- 4. Many to Many

Connectivity

 Cardinality: minimum and maximum number of instances of Entity B that can (or must be) associated with each instance of entity A.

One to One Relationship

 In a one-one relationship, each entity of either entity set is related to at most one entity of the other set

One to One Relationship

Table name: PROFESSOR Database name: Ch03_TinyCollege

Primary key: EMP_NUM Foreign key: DEPT_CODE

	EMP_NUM	DEPT_CODE	PROF_OFFICE	PROF_EXTENSION	PROF_HIGH_DEGREE
	103	HIST	DRE 156	6783	Ph.D.
75.5	104	ENG	DRE 102	5561	MA
	105	ACCT	KLR 229D	8665	Ph.D.
	106	MKTMGT	KLR 126	3899	Ph.D.
	110	BIOL	AAK 160	3412	Ph.D.
	114	ACCT	KLR 211	4436	Ph.D.
	155	MATH	AAK 201	4440	Ph.D.
	160	ENG	DRE 102	2248	Ph.D.
	162	CIS	KLR 203E	2359	Ph.D.
	191	MKTMGT	KLR 409B	4016	DBA
	195	PSYCH	AAK 297	3550	Ph.D.
	209	CIS	KLR 333	3421	Ph.D.
	228	CIS	KLR 300	3000	Ph.D.
	297	MATH	AAK 194	1145	Ph.D.
	299	ECON/FIN	KLR 284	2851	Ph.D.
	301	ACCT	KLR 244	4683	Ph.D.
	335	ENG	DRE 208	2000	Ph.D.
	342	SOC	BBG 208	5514	Ph.D.
	387	BIOL	AAK 230	8665	Ph.D.
	401	HIST	DRE 156	6783	MA
	425	ECON/FIN	KLR 284	2851	MBA
	435	ART	BBG 185	2278	Ph.D.

Table name: DEPARTMENT Primary key: DEPT_CODE Foreign key: EMP_NUM

MADAM ZHZ 2019

		DEPT_CODE	DEPT_NAME	SCHOOL_CODE	EMP_NUM	DEPT_ADDRESS	DEPT_EXTENSION
* * * * *	+	ACCT	Accounting	BUS	114	KLR 211, Box 52	3119
	+	ART	Fine Arts	A&SCI	435	BBG 185, Box 128	2278
	+	BIOL	Biology	A&SCI	387	AAK 230, Box 415	4117
	+	CIS	Computer Info. Systems	BUS	209	KLR 333, Box 56	3245
	+	ECON/FIN	Economics/Finance	BUS	299	KLR 284, Box 63	3126
	+	ENG	English	A&SCI	160	DRE 102, Box 223	1004
	+	HIST	History	A&SCI	103	DRE 156, Box 284	1867
	+	MATH	Mathematics	A&SCI	297	AAK 194, Box 422	4234
	+	MKT/MGT	Marketing/Management	BUS	106	KLR 126, Box 55	3342
	+	PSYCH	Psychology	A&SCI	195	AAK 297, Box 438	4110
	+	soc	Sociology	A8SCI	342	BBG 208, Box 132	2008

One to Many Relationships

 When a single instance of an entity is associated with more than one instances of another entity

One to Many Relationships

 When a single instance of an entity is associated with more than one instances of another entity

The Implemented 1:M relationship between PAINTER and PAINTING

Many-One Relationships

- Some binary relationships are *many -one* from one entity set to another.
- Each entity of the first set is connected to at most one entity of the second set.
- But an entity of the second set can be connected to zero, one, or many entities of the first set.

Many-One Relationships

EXAMPLE:

Many students can study in a single college but a student cannot study in many colleges at the same time.

Many-One Relationships

- When more than one instances of an entity is associated with more than one instances of another entity
- Must be avoided because they lead to data redundancies.
- Can be implemented by breaking it up to produce a set of 1:M relationships
- Can avoid problems inherent to M:N relationship by creating a composite entity or bridge entity
 - This will be used to link the tables that were originally related in a M:N relationship
 - The composite entity structure includes-as foreign keysat least the primary keys of the tables that are to be linked.

A student can be assigned to many projects

A project can be assigned to many students.

Changing the M:N relationship to TWO 1:M relationships

Changing the M:N relationship to TWO 1:M relationships

Minimum Cardinality

- Minimum cardinality describes the minimum number of instances that must participate in a relationship for any one instance
- Minimums are generally stated as either zero or one:
 - 0 (optional): participation in the relationship by the entity is optional.

■ 1 (mandatory): participation in the relationship by the entity is mandatory.

relationship (optional for a programmer); or a programmer may not have any certificates.

A programmer instance is required in the relationship (a programmer is mandatory for a certificate); or a certificate has to be issued to someone.

2.6 Mandatory vs. Optional Cardinalities

Specifies whether an instance must exist or can be absent in the relationship

- Cardinality Constraints the number of instances of one entity that can or must be associated with each instance of another entity.
- Minimum Cardinality
 - ✓ If zero, then optional
 - ✓ If one or more, then mandatory
- Maximum Cardinality
 - √ The maximum number

2.6 Mandatory vs. Optional Cardinalities

Cardinality of the relationship

2.6 Mandatory vs. Optional Cardinalities

Specifies whether an instance must exist or can be absent in the relationship

CHEN'S MODEL

• Developed by Peter Chen and published in a 1976.

CHEN'S MODEL

Associative Entity

Entity Attribute Attribute Entity Weak Entity Weak Entity <u>Attribute</u> Key attribute Relationship Attribute Relationship Weak key attribute Relationship Identifying Relationship Attribute Derived attribute Associative Attribute Multivalue attribute

Notations

used in

Chen's

Model

MADAM ZHZ 2019

Entity

CHEN'S MODEL

Relationship / Cardinality in Chen's Model

CROW'S FOOT NOTATION

- Crow's foot diagrams represent entities as boxes, and relationships as lines between the boxes.
- Different shapes at the ends of these lines represent the cardinality of the relationship.

CROW'S FOOT NOTATION

Cardinality of the relationship

Example: Crow's Foot

Components of a ER Diagram

Components of ER Diagram

As shown in the above diagram, an ER diagram has three main components:

- 1. Entity
- 2. Attribute
- 3. Relationship

ERD "Crow's Foot" Relationship Symbols [Quick Reference]

