Asymptotic results for the stochastic block model

Jan van Waaij

In collaboration with

Bas Kleijn

https://github.com/Jan-van-Waaij/Berlin2018

Community detection on networks

- More present than ever... social networks, protein-protein networks...
- ► A lot of attention... Abbe (2017), "Community detection and stochastic block models: recent developments"

Example

Protein-protein networks. Protein's interact. Goal: find communities of interacting protein's, Chen and Yuan (2006).

The stochastic block model

Consider a graph of 2n nodes, partitioned in two sets of size n.

$$Pr(\text{edge between i and j}) = \begin{cases} p_n & \text{i and j same partition,} \\ q_n & \text{i and j different partition.} \end{cases}$$

Parameter space Set of labels $\Theta \ni \theta = (\theta_1, \dots, \theta_{2n})$, $\theta_i \in \{0, 1\}, \sum_i \theta_i = n$.

 θ and $\neg \theta = (1 - \theta_1, \dots, 1 - \theta_{2n})$ give rise to the same partition.

Define $\Theta = \Theta / \sim$, $\theta \sim \eta : \Leftrightarrow \theta = \eta$ or $\theta = \neg \eta$.

Statistical problem

- ► Given a graph of 2*n* nodes and its random edges, can we determine the communities?
- ▶ Of course impossible when $p_n = q_n$.
- ▶ When $p_n q_n > c$ is constant, then it's easy.
- ► E.g. Facebook, giant graph > 2 billion, average number of friends 155 \approx 7.19 * log(2'271'000'000),

$$\mathbb{P}(\text{probability of being friends}) \approx \frac{7.19 * \log n}{n}$$
.

Exact recovery and detection

Definition

An estimator $\hat{\boldsymbol{\theta}}$ exactly recovers $\boldsymbol{\theta}_0$ when $\mathbb{P}_{\boldsymbol{\theta}_0}(\hat{\boldsymbol{\theta}}=\boldsymbol{\theta}_0) \to 1$.

Definition

An estimator $\hat{m{ heta}}$ detects $m{ heta}_0$ when

 $\mathbb{P}\left(\text{fraction of mismatched labels} \to 0\right) = 1.$

Theorem

- ► If $p_n = \frac{a \log n}{n}$, $q_n = \frac{b \log n}{n}$, then the graph is connected with probability converging to one, if and only if a, b > 0 and a + b > 1.
- ▶ If $p_n = a_n/n$, $q_n = b_n/n$, then the graph has a connected component of $\mathcal{O}(n)$ with probability converging to one, if and only if a, b > 0 and a + b > 1.

Different modes of estimation: exact recovery

$$\mathbb{P}_{ heta_0}(\hat{oldsymbol{ heta}}=oldsymbol{ heta_0}) o 1$$

- ▶ Only possible if the graph is connected.
- \blacktriangleright When $0 < c < a_n, b_n < C$ and

$$p_n = \mathbb{P}(\text{edge between vertices of the same class}) = \frac{a_n \log n}{n}$$
 $q_n = \mathbb{P}(\text{edge between vertices of different class}) = \frac{b_n \log n}{n}$

Mossel, Neeman, and Sly (2016): Exact recovery is possible if and only if

$$(a_n+b_n-2\sqrt{a_nb_n}-1)\log n+\frac{1}{2}\log\log n\to\infty.$$

Different modes of estimation: detection

 $\mathbb{P}(\text{fraction of mismatched labels goes to zero}) \to 1.$

- ▶ Only possible if there is a giant component.

$$p_n = \mathbb{P}(\text{edge between vertices of the same class}) = \frac{a_n}{n}$$
 $q_n = \mathbb{P}(\text{edge between vertices of different class}) = \frac{b_n}{n}$

Mossel, Neeman, and Sly (2016): Exact recovery is possible if and only if

$$\frac{n(a_n-b_n)^2}{a_n+b_n}\to\infty.$$

Bayesian setup

- Recall, parameter space is set of labels $\Theta \ni \theta = (\theta_1, \dots, \theta_{2n}), \ \theta_i \in \{0, 1\}, \ \sum_i \theta_i = n.$ Identify θ and $\neg \theta = (1 \theta_1, \dots, 1 \theta_{2n}), \ \Theta = \Theta / \sim$.
- ▶ Θ has $\binom{2n}{n}$ elements, $\#\Theta = \frac{1}{2}\binom{2n}{n}$.
- Uniform prior, $\pi(\theta) = \frac{1}{\frac{1}{2}\binom{2n}{n}}$.
- Posterior is given by

$$\pi(\theta \mid X) = \frac{p_{\theta}(X)\pi(\theta)}{\sum_{\eta \in \Theta} p_{\eta}(X)\pi(\eta)} = \frac{p_{\theta}(X)}{\sum_{\eta \in \Theta} p_{\eta}(X)}$$

Maximum a-posteriori (MAP) estimator same as maximum likelihood estimator (MLE).

Goals

- Establish posterior consistency.
- ► Confidence sets.

Posterior consistency

Theorem

If
$$(p_n = \frac{a_n \log n}{n})$$
 and $(q_n = \frac{b_n \log n}{n})$ are such that

$$(a_n + b_n - 2\sqrt{a_n b_n} - 2) \log n \to \infty$$
, then $\pi(\theta_0 \mid X) \xrightarrow{P_{\theta_0}} 1$.

Idea of the proof.

- 1. Choose $\theta_0 \in \theta_0$. Let $Z_{\theta} = \{i : \theta_i = 0\}$. Let $V_k = \{\theta : \#(Z_{\theta_0} \setminus Z_{\theta}) = k\}$. V_k has $\binom{n}{k}^2$ elements.
- 2. For every $\theta \in V_k$ there is a test of power $a_{n,k}$,

$$\mathbb{P}_{\theta_0}\phi(X) + \mathbb{P}_{\theta}(1 - \phi(X)) \leq a_{n,k}$$
.

3.
$$\mathbb{P}_{\theta_0} \Pi(\theta \neq \theta_0 \mid X) \leq \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k}^2 a_{k,n} = \mathbf{o}(1).$$

Credible sets turn out to be confidence sets

Definition

A $1-\alpha$ credible set, is any measurable set $D(X)\subset \Theta$ with $\Pi(D(X)\mid X)\geq 1-\alpha$.

Definition

A $1-\alpha$ confidence set is any measurable set $C(X)\subset \Theta$ with $P_{\theta_0}(\theta_0\in C(X))\geq 1-\alpha$.

Theorem

When exact recovery holds, $1 - \alpha$ -credible sets, are $1 - 3\alpha$ confidence sets.

Proof.

See blackboard.