Transparência em Ecossistemas de Software

Rodrigo Santos^{1,2}, Claudia Cappelli¹, Cristiano Maciel³, Julio Cesar Sampaio do Prado Leite⁴

¹DIA/UNIRIO, Universidade Federal do Estado do Rio de Janeiro CEP 22290-240 – Rio de Janeiro, RJ, Brasil

²COPPE/UFRJ – Universidade Federal do Rio de Janeiro CEP 21941-972 – Rio de Janeiro, RJ, Brasil

³LAVI/UFMT, Universidade Federal de Mato Grosso CEP 78060-900 – Cuiabá, MT, Brasil

⁴DI/PUC-Rio, Pontificia Universidade Católica do Rio de Janeiro CEP 22451-900 – Rio de Janeiro, RJ, Brasil

Resumo. A diversidade de abordagens para construir sistemas alavancou plataformas globalizadas, de larga escala e de longo prazo. Tais plataformas têm sido vistas como núcleos de ecossistemas e envolvem aspectos técnicos, econômicos e sociais em sua construção e evolução. Dado que ecossistemas são formados por uma comunidade de orquestradores e colaboradores, lidar com transparência é um fator crítico. Este artigo apresenta uma discussão preliminar sobre a importância de se pensar a transparência em ecossistemas de software e identifica desafios e oportunidades para a sua implementação.

Abstract. The diversity of approaches to build software systems led to the emergence of globalized, large-scale, and long-term platforms. Such platforms have been seen as ecosystems cores and involve technical, economic and social aspects in their development and evolution. Since the ecosystems are formed by a community of orchestrators and niche players, the need to handle transparency is a critical factor. This paper presents an initial discussion on the importance of thinking about the transparency in software ecosystems and identifies challenges and opportunities for its implementation.

1. Introdução

Conforme discutido por Cataldo e Herbsleb (2010), modelos de desenvolvimento de software têm lidado com o surgimento de plataformas globalizadas, de larga escala e de longo prazo. Os desafios desse cenário não mais se limitam à construção e evolução de um projeto ou produto único. Santos *et al.* (2014) afirmam que, ao reunir diversos projetos e produtos em torno de uma tecnologia de software central, essas plataformas originam sistemas mais complexos, que integram uma rede de diversos atores e artefatos, internos e externos, denominados Ecossistemas de Software (ECOS). Nesse contexto, organizações produtoras de software (orquestradoras) têm sofrido pressão do mercado para abrir plataformas e envolver desenvolvedores externos (colaboradores). Portanto, o elemento "software" passa a não existir mais de maneira "fechada", ficando distribuído e mantido pelas comunidades criadas ao seu redor (Manikas, 2016).

Baseado nos resultados de Barbosa *et al.* (2013), observa-se que tal abertura produz algumas indagações: "entre plataformas livres ou proprietárias, qual gera maior sucesso?", "qual estratégia recebe maior atenção da comunidade de desenvolvedores?" e "qual delas produz aplicações mais inovadoras?". Nesse contexto, a necessidade de lidar com transparência é um fator crítico para um desenvolvimento de software de qualidade (Leite e Cappelli, 2010). Um problema está em como produzir/adquirir software e gerir negócios a partir de informações "consumidas" via ECOS, de forma transparente. Este artigo apresenta uma discussão preliminar sobre a importância de se pensar a transparência em ECOS e identifica desafios e oportunidades para a sua implementação. Para isso, a Seção 2 discorre sobre transparência; a Seção 3 introduz este conceito no contexto de ECOS; a Seção 4 traz uma agenda de pesquisa; e a Seção 5 conclui o artigo.

2. Transparência

Transparência tem sido uma preocupação crítica para a sociedade moderna (Holzner e Holzner, 2006). A importância da abertura de informações sobre o funcionamento de sistemas se deve à necessidade de atores capazes de entender e acessar as informações disponíveis. Lord (2006) estabelece transparência como condição para que informações relativas a prioridades, capacidades e comportamentos estejam amplamente disponíveis. No Brasil, por meio da Lei de Acesso à Informação nº 12.527 (Brasil, 2011), foram estabelecidos vários elementos para garantir o acesso da sociedade a informações públicas. Observando essa e outras necessidades, Cappelli (2009) definiu transparência como um conjunto de características que permite fornecer aos interessados informações gerais sobre *acessibilidade*, *usabilidade*, *informativo*, *entendimento* e *auditabilidade*. A Figura 1 apresenta essas características reunidas para criar o conceito de transparência.

Figura 1. Grafo de interdependência de metas flexíveis em transparência (Cappelli, 2009)

Todavia, a geração de informação nas organizações e processos organizacionais são, em sua grande parte, realizados pelo uso de software, tornando-se necessária a extensão do conceito de transparência ao software e aos processos de desenvolvimento deste. Os padrões de desenvolvimento atuais têm buscado promover a disponibilização das informações em formatos abertos e acessíveis, a fim de possibilitar a reutilização e a interligação com informações de outras fontes, gerando novos significados. Isso tem sido possível com o uso do conceito de Dados Governamentais Abertos (Germano e Takaoka, 2012), que tem relação com a transparência (Cruz *et al.*, 2016). No entanto, conforme a Figura 1, isso é insuficiente, face às várias características que contribuem

para a transparência. Quanto mais contribuições (*help*) receber a meta-flexível *transparência*, maior será o seu grau de satisfatibilidade (Leite e Cappelli, 2010).

3. Transparência em Ecossistemas de Software

Analisar um ECOS é mais complicado do que simplesmente separar parte técnica e não técnica de um sistema (Cukierman et al., 2007), pois o ecossistema pode ter diferentes usos ou aplicações. Veja o caso, por exemplo, de uma biblioteca universitária que demanda um sistema para gestão do acervo, com integração com outras universidades, com o portal de periódicos da Capes, com grupos de pesquisa, e atendendo a diferentes tipos de usuários. Esse sistema se caracteriza por envolver diferentes softwares de terceiros, além de uma gama de diferentes atores. Portanto, é adequado tratá-lo com a ótica de ECOS, de forma a melhor compreender como os vários softwares colaboram. Tal sistema lidará com vários tipos de estímulos, notadamente controlados por humanos, que desenvolverão, operarão e/ou serão usuários das facilidades de uma biblioteca e, com isso, contarão com uma infraestrutura de hardware e software selecionada para tal. Se compararmos os diversos tipos de atores, veremos que existem diferenças em seus interesses frente ao ECOS. Por exemplo, existem interesses: a) relativos ao portal da Capes, b) de como se dará a comunicação com outras universidades ou grupos de pesquisa, c) de usuários da biblioteca dessa universidade, e d) de uso/cessão de softwares de terceiros. O fato de haver diferenças entre interesses requer a existência de uma política de transparência no ECOS.

Nesse sentido, a ausência da devida transparência do que cada interessado tem como política de convivência, isto é, como está disposto a interagir/comunicar-se, seria um grande obstáculo para a construção desse sistema. Portanto, é importante que todos que ali convivem saibam sobre os demais interesses, permitindo negociação e consenso entre os participantes. Isso envolve gerir requisitos desejados e objetivos estabelecidos para o sistema (Fotrousi *et al.*, 2014). A definição do ecossistema é, portanto, função da percepção desses atores, sejam eles orquestradores (*hubs*) ou colaboradores (*niche players*), podendo ter matizes diferentes. Pode-se pensar em ecossistemas centrados na infraestrutura como, por exemplo, em uma plataforma móvel, ou no caso de aplicações transacionais, no qual o foco está em uma tecnologia, como o sistema gerenciador de banco de dados. Pode-se ainda centrar o ecossistema no ambiente externo, no qual o foco são os atores que operam e aqueles que usam os serviços como, por exemplo, *sites* de redes sociais e ecossistemas de *startups*. Supõe-se que um maior conhecimento compartilhado aumenta o nível de satisfação do ECOS (Manikas, 2016).

O compartilhamento de elementos em um ECOS deve ser tratado considerando o conceito de transparência. Leite e Cappelli (2010) definem o escopo de transparência em três níveis: a transparência organizacional, a transparência direcionada e a transparência social, cada qual com um foco específico: a primeira foca os interessados, a segunda os consumidores e a terceira os cidadãos. Quanto maior a transparência, maior a qualidade de compartilhamento (Holzner e Holzner, 2006). Para tal, os principais interessados em um ECOS devem definir o escopo do seu interesse e o nível de transparência que deseja ver presente no ECOS (tipos de características). Utilizar os conceitos de transparência no enfoque de ECOS implica em aplicar as características da Figura 1 aos produtos e processos tratados no ecossistema. Essa aplicação vai requerer processos de negociação entre os atores e a implementação de operacionalizações adequadas à "satisfação a

contento" das referidas qualidades/características visíveis na Figura 1. Uma vez isso aceito como premissa, resta saber como responder a questões tais como: a) a quem se destina a transparência, ou seja, quais atores terão acesso ao compartilhamento de informações?, b) o que significa maior ou menor transparência? e c) que práticas deveriam ser implementadas para que um conjunto de atores seja transparente?

4. Agenda de Pesquisa para Transparência em Ecossistemas de Software

A partir da discussão promovida, esta seção propõe uma agenda de pesquisa inicial para explorar transparência em ECOS. Utilizou-se a categorização dos seis desafios de ECOS definida por Barbosa *et al.* (2013), relacionando-os com os conceitos da Figura 1. Muitos desses desafios são do desenvolvimento de software, mas afloram em ECOS devido à complexidade e à diversidade de interesses entre participantes neste universo.

Ecossistemas Abertos: é importante explorar como a característica *informativo* pode apoiar os ECOS abertos a manterem e expandirem o compartilhamento de informações acerca de recursos, artefatos e informações, bem como desenvolver métodos, técnicas e ferramentas para tratar isso em repositórios de software.

Governança: as características *entendimento* e *auditabilidade* podem ajudar na concepção e seleção de estratégias para assegurar a sustentabilidade da plataforma do ECOS, trazendo o desafio de como gerenciar e monitorar dependências de fornecedores, de tecnologias e de objetivos de negócio do ECOS, de forma mais transparente.

Análise: torna-se crítico operacionalizar as características *acessibilidade*, *usabilidade* e *entendimento*, uma vez que modelos, visualizações e grandes volumes de dados são usados para instrumentalizar o ECOS com o conhecimento necessário para tomada de decisões sobre parcerias ou admissão de membros.

Abertura: a partir da essência de um ECOS, o desafio de lidar com as características *acessibilidade* e *auditabilidade* surge como algo crítico, de modo que elementos que interferem ou afetam o sucesso da plataforma precisam ser melhor investigados, bem como permissões e níveis de acesso dos vários atores às informações compartilhadas.

Qualidade: a transparência é um requisito não funcional (qualitativo) de sistemas de software e, como tal, não é específica de ECOS, embora a forma como ela é tratada traz à tona a necessidade de explorar como a experiência de desenvolvedores e usuários afeta a qualidade geral do ECOS. Assim, as diversas características da Figura 1 contribuem para essa qualidade geral; *e.g.*, um estudo mapeando o modelo de qualidade MPS e a transparência de software aponta para algumas similaridades (Sousa et. al. 2015).

Arquitetura de Software: para apoiar o escopo e o nível de transparência acordados em um ECOS, é preciso uma arquitetura que atenda a essas necessidades e operacionalize as várias características. Portanto, diferentes operacionalizações para a Figura 1 devem ser levadas em consideração na arquitetura, e.g.: ser aberta, atender a padrões, tratar protocolos estabelecidos, ser fácil de aprender, ser usável, ser consistente e ser evoluída.

5. Considerações Finais

Este artigo apresentou uma discussão preliminar sobre transparência em ECOS e identificou desafios e oportunidades para a sua implementação. É preciso ter em mente

_

¹ Tradução do termo "satisfice" cunhado por Herbert Alexander Simon.

que a transparência da informação afeta o contexto de ECOS, uma vez que é necessário, por exemplo, assegurar transparência nos processos de negócio, no desenvolvimento dos sistemas ou mesmo nas informações disponibilizadas para agentes externos ao ECOS. Por meio deste estudo, pode-se perceber que, entre as características críticas da transparência para ECOS, *informativo* e *auditabilidade* referem-se respectivamente à gestão do conhecimento/aprendizagem no ECOS e ao gerenciamento/monitoramento da plataforma ao longo do tempo. Nesse sentido, considerando a ampla literatura de qualidade de software e a necessidade de tratar transparência em ECOS, adaptações de modelos e estratégias existentes para esse contexto pode ser um caminho. Além disso, a carência de pesquisas sobre transparência em ECOS abre oportunidades para trabalhos que analisem os desafios listados de maneira mais aprofundada.

Agradecimentos

Ao CNPq (Proc. No. PDJ 150539/20016-9) e a FAPERJ pelo apoio financeiro.

Referências

- Barbosa, O. *et al.* (2013) "A Systematic Mapping Study on Software Ecosystems through a Three-dimensional Perspective". In: Jansen, S. *et al.* (eds.) Software Ecosystems: Analyzing and Managing Business Networks in the Software Industry, Edward Elgar Pub., 59-81.
- Brasil (2011) "Lei nº 12.527, de 18 de novembro de 2011. Regula o acesso a informações previsto no inciso XXXIII do art. 5º, no inciso II do § 3º do art. 37 e no § 2º do art. 216 da Constituição Federal". Diário Oficial da República Federativa do Brasil, Brasília, 18/11/11.
- Cappelli, C. (2009) "Uma Abordagem para Transparência em Processos Organizacionais Utilizando Aspectos". Tese de Doutorado. DI/PUC-Rio, Rio de Janeiro, Brasil.
- Cataldo, M., Herbsleb, J.D. (2010) "Architecting in Software Ecosystems: Interface Translucence as an Enabler for Scalable Collaboration". In: 4th ECSA, Copenhagen, 65-72.
- Cruz, W., Maciel, C., Castilho, F., Girata, N. (2016) "Um Método Quantitativo para Avaliar a Adoção de Dados Abertos nos Tribunais de Contas do Brasil". iSys Revista Brasileira de Sistemas de Informação 9(1):33-57.
- Cukierman, H.L., Teixeira, C., Prikladnicki, R. (2007) "Um Olhar Sociotécnico sobre a Engenharia de Software". Revista de Informática Teórica e Aplicada 14(2):207-227.
- Fotrousi, F., Fricker, S.A., Fiedler, M., Le-Gall, F. (2014) "KPIs for Software Ecosystems: A Systematic Mapping Study". In: 5th ICSOB, Paphos, 194-211.
- Germano, C.E., Takaoka, H. (2012) "Uma Análise das Dimensões da Qualidade de Dados Abertos em Projetos de Dados Governamentais Abertos". In: Anais do Congresso CONSAD de Gestão Pública, Brasília, 1-21.
- Holzner, B., Holzner L. (2006) "Transparency in Global Change: The Vanguard of the Open Society". University of Pittsburgh Press, 1st edition.
- Leite, J.C.S.P., Cappelli, C. (2010) "Software Transparency". Business & Information Systems Engineering 2(3):127-139.
- Lord, K.M. (2006) "The Perils and Promise of Global Transparency". SUNY Press.
- Manikas, K. (2016) "Revisiting Software Ecosystems Research: A Longitudinal Literature Study". JSS 117(2016):84-103.
- Santos, R.P. *et al.* (2014) "Qualidade em Ecossistemas de Software: Desafios e Oportunidades de Pesquisa". In: V CBSoft, VIII WDES, Maceió, v. 2, 41-44.
- Sousa, H.P.S, Leal, A.L.C., Leite, J.C.S.P. (2015) "Alinhamento de Operacionalizações entre Transparência e MPS.BR". iSys Revista Brasileira de Sistemas de Informação 8(4):109-141.