Product Labeling for Inattentive Consumers

Silvio Ravaioli

Columbia University - Industrial Organization Colloquium

April 25, 2018

Motivation

- ► Labeling as "coarse information" (category) about the product
- ▶ *Reduced fat milk* label: fat content $\leq 2\%$
- Nutrition facts: Indicates the precise amount
- Why using labels?
- ▶ No effect on a fully attentive or fully inattentive consumer
- Possible effect only on partially attentive consumers
 - Information collection is costly
 - Decreasing returns of information collection
- ▶ Discrete choice model with cognitively bounded consumers

Motivation

- Labeling as "coarse information" (category) about the product
- Reduced fat milk label: fat content $\leq 2\%$
- Nutrition facts: Indicates the precise amount
- Why using labels?
- No effect on a fully attentive or fully inattentive consumer
- Possible effect only on partially attentive consumers
 - Information collection is costly
 - Decreasing returns of information collection
- Discrete choice model with cognitively bounded consumers

Perception problem vs Choice problem

Literature review

Behavioral and cognitive economics

- Categorization and optimal coding: Krueger and Cement (1994), Arthur (1994), Gennaioli and Shleifer (2010), Manzini and Mariotti (2012), Robson and Whitehead (2017)
- Perceptual bias: Koszegi and Szeidl (2012)
- Rational inattention: Sims (2003), Gabaix (2014)

Discrete choice models

- ► Empirical literature: Kiesel (2007), De los Santos et al. (2012), Allcott et al. (2017), Moraga-Gonzales et al. (2017)
- ▶ Bounded rational consumers: Mehta et al. (2003), Abaluck (2011), Pires (2015), Clerides and Courty (2015), Pires (2015)
- Rational inattention to discrete choices: Matejka and McKay (2015) [Shannon entropy], Fosgerau et al. (2017) [Generalized entropy], Cheremukhin et al. (2015), Matejka (2016), Aguiar and Riabov (2017), Fosgerau et al. (2018)
- ▶ Information design, regulation: Diamond (1989), Mullainathan et al. (2008), Piccione and Spiegler (2012), Hui et al. (2017)

Research proposal

1. How do quality labels affect consumer behavior?

- Jointly estimate preference and information cost
- ► This is my challenge for the 2YP

2. How do quality labels affect producers?

- Price adjustment under stable product set
- Quality adjustment
- Reduced form analysis only

3. Counterfactual: Alternative labeling schemes

- This is a classic information design problem
- ▶ In this model more (coarse) information is not necessarily better

Research proposal

1. How do quality labels affect consumer behavior?

- Jointly estimate preference and information cost
- ► This is my challenge for the 2YP

2. How do quality labels affect producers?

- Price adjustment under stable product set
- Quality adjustment
- Reduced form analysis only

3. Counterfactual: Alternative labeling schemes

- This is a classic information design problem
- ▶ In this model more (coarse) information is not necessarily better

Research proposal

1. How do quality labels affect consumer behavior?

- Jointly estimate preference and information cost
- ► This is my challenge for the 2YP

2. How do quality labels affect producers?

- Price adjustment under stable product set
- Quality adjustment
- Reduced form analysis only

3. Counterfactual: Alternative labeling schemes

- This is a classic information design problem
- ▶ In this model more (coarse) information is not necessarily better

Intuition of the model

- ► A consumer faces a two-stage choice problem: collect information, then choose a product
- ► At the begin (no information) the product space is blurry: all the products (e.g. refrigerators) look identical
- No information: binary decision buy/no buy, no choice
- ▶ By collecting information the consumer can reduce coarseness
- ► Infinite information leads to perfect refinement
- ▶ Information is costly, it takes time to refine the space
- Intuition: reduce the variance of the T1EV logit error
- A label delivers immediate, free, yet coarse information

Intuition of the model

- ► A consumer faces a two-stage choice problem: collect information, then choose a product
- ► At the begin (no information) the product space is blurry: all the products (e.g. refrigerators) look identical
- ▶ No information: binary decision buy/no buy, no choice
- ▶ By collecting information the consumer can reduce coarseness
- Infinite information leads to perfect refinement
- Information is costly, it takes time to refine the space
- Intuition: reduce the variance of the T1EV logit error
- A label delivers immediate, free, yet coarse information

Intuition of the model

- ► Three categories of agents: consumers (C), retailer (R), and an information designer (ID)
- ► The information designer decides the minimum requirement for a label that is displayed on all the high-quality products
- Product quality and label are exogenous for the retailer (monopolist producer) who only sets prices
- ► The consumers faces a two-stages discrete choice problem: select information level, then choose a product

What is a good industry for this model?

- 1. European Union Energy Label
 - 2010 reform: change in the regulation
 - 25 product categories: heterogeneous requirement
- 2. US Energy Star Label
 - 2011 reform: certification is more demanding
 - product heterogeneity as above
- 3. US FDA food labeling regulation
 - 2011 Nutrition Keys front-of-pack labeling
 - Additional to previously adopted standard labels

1. European Union Energy Label

- ► EU Directive 1992/75/EC established the energy consumption labeling scheme A-G to indicate energy efficiency classes
- ▶ Replaced by Directive 2010/30/EU that introduces A+, A++, and A+++ in the attempt to keep up with advances in energy efficiency
- ➤ 2010 regulation (applied since 31 July 2011) introduces new high-quality levels (A+) and modifies the threshold for the different classes
- 25 categories, including fridges, dishwashers, air conditioners

EU Energy Label: Identification strategy

- Geographical/temporal heterogeneity in prices and choice sets
- ▶ IV price of energy: exogenous wrt product characteristic
- Consumers differ in preference over observable characteristics (e.g. brand, power, size,...), coarse characteristics (e.g. energy consumption), and price elasticity
- Quasi-natural experiment: 2010 regulation change
- ► Transition phase: from announcement to implementation
- Post-change phase: after 1 August 2011
- ► Stated preference survey data: Heinzle and Wustenhagen 2012

2. US Energy Star Label

- Energy guide appliance label of qualifying products, aka Energy Star
- Voluntary program launched by US Environmental Protection Agency (EPA)
- 75 product categories, it indicates cost-saving energy efficient products
- ➤ Specifications differ across item categories: average refrigerators need 20% savings over the minimum standard, dishwashers need at least 41%
- Established in 1992, reformed in 2010 because of a scandal (before it was for the most part a self-certification program, vulnerable to fraud and abuse)
- Since 2011, product are tested in an EPA-recognized laboratory (recognized certification)

3. FDA food labeling regulation

- ▶ 1990: Nutrition Labeling and Education Act (NLEA) implemented in 1994. It requires all packaged foods to bear nutrition labeling and all health claims, labels, and serving size to be standardized.
- 2011: The Grocery Manufacturers Association announces Nutrition Keys (now Facts Up Front), a voluntary front-of-pack labeling system, just months before the FDA is to issue its guidance to industry on the matter.
- Coarse labels such as "low calorie" are now less informative as they are combined with other accessible information

Food data: Nielsen HH panel and USDA Nutrient DB

- 1) Nielsen Consumer Panel Data: longitudinal home scanner data, 40,000 United States households, 2004-2016.
 - Demographic and geographic variables (household)
 - Purchases: date, the UPC code (for each product purchased), quantity, price.
 - Products and product characteristics: all 10 Nielsen food and nonfood departments; UPC code and description, brand, multi-pack, and size, product group, and product module. Some products contain additional characteristics (e.g. flavor).
- 2) USDA Nutrient Database for Standard Reference
 - Database for branded food products
 - ► Energy, protein, lipid, fiber, sugars, and minerals (per 100 g)

Model: Framework

- ▶ Products are vertically differentiated and fully represented by the pair of quality and price (x_j, p_j)
- Three categories of agents
 - Information designer
 - Selects the requirement x* for the high-quality label
 - Agnostic about the objective (agentic/paternalistic?)
 - Producers
 - ▶ Set of *J* distinct products that differ in quality $0 \le x_j \le 1$
 - ▶ Visible high-quality label if $x_i \ge x^*$
 - ► Maximize joint profits by choosing prices $\{p_j\}_{j=1}^J$
 - Consumers
 - Each consumer can buy a single unit, or not buy
 - ▶ Distribution $f(\beta)$ of consumers with pref. over quality $\beta \ge 0$
 - Constant price elasticity $\alpha = 1$ and information cost $\lambda \geq 0$
 - Maximize expected utility by choosing info. ρ and product x_j

Model: Two-stages choice problem

1) Choose optimal precision level ρ

$$\max_{\rho \geq 0} EU(\rho) \coloneqq EU_{\beta}^*(\rho) - \lambda \cdot \rho$$

2) Given ρ , select a random product from the best partition cell

$$EU_{\beta}^*(\rho) := \max_{c \in [1, \dots, 2^{\rho}] \cup \varnothing} \mathbb{E} \Big[\beta \cdot q(x_j) - p_j | x_j \in \Pi_{\rho}^c \Big]$$

Consumer's individual choice is summarized by the pair $\left(\rho,\Pi_{\rho}^{c}\right)$, that is associated with a pdf over products.

Model: Information acquisition

Probability of selecting a product x conditional on partition cell and collected information (top to bottom). Sharp partition (left), fuzzy partition (center), and fuzzy partition with quality label x^* (right).

Model: Information acquisition

Probability of selecting a product x conditional on partition cell and collected information (top to bottom). Sharp partition (left), fuzzy partition (center), and fuzzy partition with quality label x^* (right).

Model: Information acquisition

Probability of selecting a product x conditional on partition cell and collected information (top to bottom). Sharp partition (left), fuzzy partition (center), and fuzzy partition with quality label x^* (right).

Model: Product space partition

Given a precision level ρ , the interval [0, 1] is divided into 2^{ρ} disjoint intervals Π of equal length.

When $\rho \to \infty$ the buyer perfectly distinguishes the products.

Choice probability in the degenerate case (sharp partition)

$$pdf(x_j|\Pi_{\rho}^c) = \begin{cases} 0 & x \leq \frac{c-1}{2\rho}, x_j \geq \frac{c}{2\rho} \\ 2^{\rho} & \frac{c-1}{2\rho} \leq x_j \leq \frac{c}{2\rho} \end{cases}$$

Choice probability for generic trapezoidal pdf (fuzzy partition)

$$pdf(x_{j}|\Pi_{\rho}^{c}; a_{\rho}^{c}, b_{\rho}^{c}, d_{\rho}^{c}, e_{\rho}^{c}) = \begin{cases} 0 & x \leq a_{\rho}^{c}, x_{j} \geq d_{\rho}^{c} \\ \frac{2(x_{j} - a_{\rho}^{c})}{(b_{\rho}^{c} - a_{\rho}^{c})(e_{\rho}^{c} + d_{\rho}^{c} - b_{\rho}^{c} - a_{\rho}^{c})} & a_{\rho}^{c} \leq x_{j} \leq b_{\rho}^{c} \\ \frac{2}{e_{\rho}^{c} + d_{\rho}^{c} - b_{\rho}^{c} - a_{\rho}^{c}} & b_{\rho}^{c} \leq x_{j} \leq d_{\rho}^{c} \\ \frac{2(d_{\rho}^{c} - x_{j})}{(e_{\rho}^{c} - d_{\rho}^{c})(e_{\rho}^{c} + d_{\rho}^{c} - b_{\rho}^{c} - a_{\rho}^{c})} & d_{\rho}^{c} \leq x_{j} \leq e_{\rho}^{c} \end{cases}$$

Model: Consumer

Utility of consumer β from product j after collecting ρ information

$$U_{\beta}(\rho, x_j, p_j) = \beta \cdot q(x_j) - \alpha \cdot p_j - \lambda \cdot \rho$$

Consumers differ in preference intensity β over product quality x, and have homogeneous information cost $\lambda \geq 0$. A consumer needs to pay the cost $\lambda \cdot \rho$ in order to achieve the precision level $\rho \geq 0$.

The consumer selects a precision level ρ , that corresponds to a partition cell Π_{ρ}^{c} of the product space. Then, she selects the cell with the highest expected value and purchases randomly withing the cell.

Outside option (ρ, \emptyset) , with $U_{\beta}(\rho, \emptyset) = -\lambda \cdot \rho$.

Example: Solution of the consumer's problem

- ► Assume functional form $q_j := q(x_j) = log(x_j + 1)$
- Assume free entry, product price linear in quality $p_j = p(x_j) = x_j$, and distribution $x \sim U[0, 1]$
- ▶ Under perfect information, consumer β selects $x_j = \beta 1$
- ▶ So every $\beta \ge 1$ purchases a product. Assume $\beta \sim U[1,2]$
- ▶ Under full coarseness ($\lambda = \infty$), consumers buy a product if $\beta \ge \frac{\mathbb{E}[p]}{\mathbb{E}[q]} = \frac{0.5}{2\ln(2)-1} \approx 1.3$
- If q(·) is monotonic, the fraction of consumers who do not buy any product is decreasing in the information cost λ

Simulation

Figure 4: Simulation of the model without label (red) and with label $x^* = 0.8$. 1) Expected utility as a function of β if $\lambda > 1$. 2) Fraction of buyers (full line) and high-quality buyers (dotted line). 3-4) Purchase distribution under coarse (orange), partial (blue), and full info (green).

Simulation

Figure 5: Simulation of the model without label (red) and with label $0 \le x^* \le 1$. Fraction of buyers (full line) and high-quality buyers (dotted line) as a function of the label requirement.

Product Labeling for Inattentive Consumers

Silvio Ravaioli

Columbia University - Industrial Organization Colloquium

April 25, 2018

Extra

Information theory: Simplicity vs Likelihood

- Shannon information theory relies on the exact knowledge of the likelihood of different events
- Generalized entropy relaxes the functional form of the cost but it still relies on information about the event distribution in order to create the signal structure
- Structural Information Theory (psychology) and Algorithmic Information Theory (computer science) relax this assumption
- Simplicity principle (e.g. data visualization): minimize the information load in a flexible environment
- The code allows a perceptual interpretation that is "fairly veridical" in many possible worlds, instead of "highly veridical" in only one world