Practice Problems on Phase Portraits

1) Discuss the nature of the general solution of linear system in a neighborhood of (0,0)

$$X' = \begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} X$$

2) Discuss the nature of the general solution of linear system in a neighborhood of (0,0)

$$X' = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} X$$

3) Discuss the nature of the general solution of linear system in a neighborhood of (0,0), and plot the solution that satisfies X(0) = (1,1)

$$\mathbf{X}' = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix} \mathbf{X}$$

For each of the following linear systems find general solution, classify the origin of the system. Also produce the phase portrait

$$4. x' = 2x + 2y; y' = 5x - y$$

5.
$$x' = x - 2y$$
; $y' = x + y$

$$6. X' = AX$$

$$A = \begin{bmatrix} 1 & -5 \\ 1 & -1 \end{bmatrix}$$

$$|X| = \begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} \times |X| = 0 \Rightarrow |X^2 + 4 = 0|$$

$$|X| = \begin{bmatrix} -1 & 2i \\ -1 & -2i \end{bmatrix} \times |X| = 0 \Rightarrow |X^2 + 4 = 0|$$

$$|X| = \begin{bmatrix} -1 & 2i \\ -1 & -2i \end{bmatrix} \times |X| = 0 \Rightarrow |X^2 + 4 = 0|$$

$$|X| = \begin{bmatrix} -1 & 2i \\ -1 & 2i \end{bmatrix} \times |X| = \begin{bmatrix} -1 & 2i$$

The critical point (0,0) is called center.

Source: https://aeb01 9.hosted.uark. edu/pplane.ht ml

2)
$$x' = \begin{cases} 1 & -1 \\ 1 & -1 \\ 1 & -1 \end{cases} = 0$$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1 & -1 \end{cases} = 0$
 $\begin{cases} 1 - 1 & -1 \\ 1$

Source: https://aeb019.hosted.uark.edu/pplane.html

3)
$$X' = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix} X$$

$$\begin{vmatrix} 2 - 3 & -1 \\ 3 & -2 - 3 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & -1 & 0 \\ 3 & -3 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & -1 & 0 \\ 3 & -3 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -3 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -3 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -3 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -3 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -3 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow 3 = \pm 1$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0$$

choe, n'= 2n-4

22-y=0, 32-2y=0. .. (0,0) is critical point.

if both et, et sourtains than as to in ways et becomes unbounded and et reaches zero. Therefore pasticle at in the direction of k, moves away from origin, particle in the direction of the direction of the direction.

Source: https://aeb019.hosted.uark.edu/pplane.html

4. For each of the following linear systems find general solution, classify the origin of the system . Also produce the phase portrait

$$x' = 2x + 2y; y' = 5x - y$$

Finding the eigen values.

$$\begin{vmatrix}
2 & 2 \\
5 & -1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
2 - \lambda & 2 \\
5 & -1 - \lambda
\end{vmatrix} = 0$$

$$\Rightarrow \lambda^{2} - \lambda - 12 = 0$$

$$(\lambda + 3) (\lambda + 4) = 0 \quad \lambda = -3, \lambda = 4$$
Now finding eigen vectors for $\lambda = -3$.

$$(A+3I) \quad v = 0.$$

$$\begin{bmatrix}
5 & 2 \\
5 & 2
\end{bmatrix} \begin{bmatrix}
v_{1} \\
v_{2}
\end{bmatrix} = 0 \Rightarrow \begin{bmatrix}
1 & 2/5 \\
0 & 0
\end{bmatrix} \begin{bmatrix}
v_{1} \\
v_{2}
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}$$

$$v = \begin{bmatrix}
-2/5 \\
1
\end{bmatrix}$$

Source:https://aeb019.hosted.uark.edu/pplane.html

$$5.x' = x - 2y; y' = x + y$$

$$x^{1}=x-2y$$
 $y^{1}=x+y$

$$\begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$
Finding the eigen values. $\begin{vmatrix} A-\lambda I \end{vmatrix}=0$

$$\begin{vmatrix} 1-\lambda & -2 \\ 1 & 1-\lambda \end{vmatrix}=0$$

$$\begin{vmatrix} 1-\lambda & -2 \\ 1 & 1-\lambda \end{vmatrix}=0$$

$$\begin{vmatrix} 1-\lambda & 2 \\ 1 & 1-\lambda \end{vmatrix}=0$$
Eigen vectors: $(A-\lambda_{1}I) = 0$.

$$\begin{bmatrix} \sqrt{2}i & -2 \\ 1 & \sqrt{2}i \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & \sqrt{2}i \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad v = \begin{bmatrix} -\sqrt{2}i \\ 1 \end{bmatrix}$$

For
$$\lambda_2$$
 $(A-\lambda_2 I) v=0$

$$\begin{bmatrix} -\sqrt{2}i & -2 \\ i & -\sqrt{2}i \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad v = \begin{bmatrix} \sqrt{2}i \\ 1 \end{bmatrix}$$

Let $\eta = \alpha ti\beta$ be an eigen vector with $\alpha f \circ \xi$ eigen vectors UtiV hence a solution is.

Origin -> Spiral source.

$$A = 1 - \sqrt{2}i$$

$$A = 1 - \sqrt{2}$$

Source: https://aeb019.hosted.uark.edu/pplane.html

6. Find the general solution, classify the origin of the system X' = AX for the given coefficient matrix. Also produce the phase portrait

$$A = \begin{bmatrix} 1 & -5 \\ 1 & -1 \end{bmatrix}$$

Eigen values
$$|4-\lambda I| = 0$$

 $\begin{vmatrix} 1-\lambda & -5 \\ 1 & -1-\lambda \end{vmatrix} = 0$
 $= -1+\lambda-\lambda+\lambda^2+5=0$
 $= -1+\lambda-\lambda+\lambda^2+5=0$
 $= -1+\lambda-\lambda+\lambda^2+5=0$
 $= -1+\lambda-\lambda+\lambda^2+5=0$
 $= -1+\lambda-\lambda+\lambda^2+5=0$

$$\lambda = \alpha \pm i\beta$$
 Eigen vectors (u+iV)
 $x(t) = c_1 e^{\alpha t} \left[\text{U.os.} \beta t - v. \text{sin.} \beta t \right] + c_2 e^{\alpha t} \left[\text{U.sin.} (\beta t) + v. \text{sin.} (\beta t) \right]$
 $\alpha > 0$ Spiralis outward from origin.
 $\alpha < 0$ length of $\alpha < 0$ reduces to zero.
 $\alpha < 0$ Closed convermith origin.

The origin is a center

The general solution is

$$X = \begin{cases} (C_1 - 2C_2) & \sin 2t + (2C_1 + C_2) & \cos 2t \\ C_1 \sin(2t) + C_2 \cos(2t) \end{cases}$$

Source:https://aeb019.hosted.uark.edu/pplane.html