Symbolic Model checking of Relative Safety LTL properties

A. Bombardelli^{1, 2} A. Cimatti¹ S. Tonetta¹ M. Zamboni¹

¹Fondazione Bruno Kessler via Sommarive 18, Povo 38123, Italy

²University of Trento via Sommarive 9, Povo 38123, Italy

Outline

- Introduction
 - Motivation
 - Motivating example
 - Contribution
- 2 Background
 - Property classification
 - LTL
 - Safety fragments of LTL
 - Relative Safety
- Contribution
 - SafetyLTL to invariant
 - Algorithms
- 4 Conclusion

Problem:

$$\mathcal{M} \models_{\mathit{LTL}} \varphi \stackrel{\bullet}{\bullet} \overline{\Sigma} \odot$$

Problem:

$$\mathcal{M} \models_{\mathit{LTL}} \varphi \stackrel{\bullet}{\bullet} \boxtimes \odot$$

Idea: Can we reduce the problem to invariant checking? Doable for safetyLTL (assuming absense of deadlocks/livelocks)

Problem:

$$\mathcal{M} \models_{\mathit{LTL}} \varphi \stackrel{\bullet}{\bullet} \overline{\Sigma} \odot$$

Idea: Can we reduce the problem to invariant checking?

Doable for safetyLTL (assuming absense of deadlocks/livelocks)

Goal/Contribution: Generalize the approach for a larger fragment of LTL using relative safety

$$\mathcal{M} \models \mathbf{G}q$$

Let's use invariant checking: INVAR $\it q$

$$\mathcal{M} \models \mathbf{G}q$$

Let's use invariant checking: INVAR q

$$\pi_f := \overset{\mathsf{a} \wedge \mathsf{b} \wedge \mathsf{q}}{\bullet} \to . \overset{\mathsf{q}}{\cdot} . \to \overset{\neg \mathsf{q}}{\bullet}$$

$$\mathcal{M} \models \mathbf{G}q$$

Let's use invariant checking: INVAR q

$$\pi_f := {\overset{a \wedge b \wedge q}{\bullet}} \to . \overset{q}{\cdot} . \to {\overset{\neg q}{\bullet}}$$

Nice counterexample BUT it is finite! Let's extend it!

$$\overset{\mathsf{a} \wedge b \wedge q}{\bullet} \to \overset{q}{\cdot} \cdot \overset{\neg q}{\bullet} \to \overset{\mathsf{a} \wedge b \wedge q}{\bullet} \to \underbrace{\overset{\mathsf{X}}{\bigvee}}_{\mathsf{Deadlock}} \ \ \odot$$

$$\mathcal{M} \models \mathbf{G}q$$

Let's use invariant checking: INVAR q

$$\pi_f := {\overset{a \wedge b \wedge q}{\bullet}} \to . ?. \to {\overset{\neg q}{\bullet}}$$

Nice counterexample BUT it is finite! Let's extend it!

$$\stackrel{a \wedge b \wedge q}{\bullet} \to . \stackrel{q}{\cdot}. \to \stackrel{\neg q}{\bullet} \to \stackrel{a \wedge b \wedge q}{\bullet} \to \underbrace{X}_{\mathsf{Deadlock}}$$

We need to get rid of deadlocks!

$$\mathcal{M} \models \mathbf{G}q$$

Let's use invariant checking: INVAR q

$$\pi_f := {\overset{a \wedge b \wedge q}{\bullet}} \to . \overset{q}{\cdot}. \to {\overset{\neg q}{\bullet}}$$

Nice counterexample BUT it is finite! Let's extend it!

$$\stackrel{a \wedge b \wedge q}{\bullet} \to . \stackrel{q}{\cdot}. \to \stackrel{\neg q}{\bullet} \to \stackrel{a \wedge b \wedge q}{\bullet} \to \underbrace{X}_{\mathsf{Deadlock}}$$

We need to get rid of deadlocks!

Deadlock/livelock: A deadlock (livelock) state is a state from which no (fair) state is

IFM 2023

Bounded response: $\varphi_{BR} := \mathbf{G}(in \land t = p \rightarrow \mathbf{F}(t \le p + 5 \land out))$

Bounded response:
$$\varphi_{BR} := \mathbf{G}(\mathit{in} \land t = p \rightarrow \mathbf{F}(t \leq p + 5 \land out))$$

$$\alpha := \underbrace{\mathbf{G}(t' \geq t)}_{\mathsf{Weak monotonicity}} \land \underbrace{\mathbf{GF}(t' - t \geq \epsilon)}_{\mathsf{non-zenoness}}$$

Bounded response:
$$\varphi_{BR} := \mathbf{G}(in \land t = p \rightarrow \mathbf{F}(t \le p + 5 \land out))$$

$$\alpha := \underbrace{\mathbf{G}(t' \geq t)}_{\mathsf{Weak monotonicity}} \land \underbrace{\mathbf{GF}(t' - t \geq \epsilon)}_{\mathsf{non-zenoness}}$$

Counterexample shape of
$$\alpha \to \varphi_{BR}$$
:
$$\underbrace{\stackrel{in \land t=p}{\bullet} \to \stackrel{t=p+2}{\bullet} \to \stackrel{t=p+5.01}{\bullet}}_{\text{Bad prefix}} \to \dots$$

Bounded response:
$$\varphi_{BR} := \mathbf{G}(in \land t = p \rightarrow \mathbf{F}(t \le p + 5 \land out))$$

$$lpha := \underbrace{\mathbf{G}(t' \geq t)}_{\mathsf{Weak monotonicity}} \land \underbrace{\mathbf{GF}(t' - t \geq \epsilon)}_{\mathsf{non-zenoness}}$$

Counterexample shape of
$$\alpha \to \varphi_{BR}$$
: $\stackrel{in \land t=p}{\bullet} \to \stackrel{t=p+2}{\bullet} \to \stackrel{t=p+5.01}{\bullet} \to \dots$

It would be nice to be able to verify this property using invariants and getting rid of deadlocks/livelocks!

Contributions

- Reduce safetyLTL to invariant checking + Block deadlocks
- **1** Extend safety LTL to invariant with relative safety to cover a larger fragment $\alpha_S \wedge \alpha_L \to \varphi$
- Generalize (ii) blocking unfair counterexamples

Background

Safety property:

 $P_S \subseteq \Sigma^{\omega}$ is a safety property iff $\forall \pi \in \Sigma^{\omega}$ s.t. $\pi \nvDash P_S$, $\exists \pi_f \in Pref(\pi)$ s.t. $\forall \pi^{\omega} \in \Sigma^{\omega} : \pi_f \pi^{\omega} \nvDash P_S$.

$$\underbrace{\bullet \to \bullet \to \bullet}_{\text{"bad prefix"} \pi_f} \to \bullet \to \bullet \to \dots \notin P_S$$

Safety property:

 $P_S \subseteq \Sigma^{\omega}$ is a safety property iff $\forall \pi \in \Sigma^{\omega}$ s.t. $\pi \nvDash P_S$, $\exists \pi_f \in Pref(\pi)$ s.t. $\forall \pi^{\omega} \in \Sigma^{\omega} : \pi_f \pi^{\omega} \nvDash P_S$.

$$\underbrace{\bullet \to \bullet \to \bullet}_{\text{"bad prefix"} \pi_f} \to \bullet \to \bullet \to \dots \notin P_S$$

Liveness property:

 $P_L \subseteq \Sigma^{\omega}$ is a liveness property iff $\forall \pi \in \Sigma^{\omega}, \forall \pi_f \in Pref(\pi) \ \exists \pi^{\omega} \in \Sigma^{\omega} : \pi_f \pi^{\omega} \models P_L$.

Safety property:

 $P_S \subseteq \Sigma^{\omega}$ is a safety property iff $\forall \pi \in \Sigma^{\omega}$ s.t. $\pi \nvDash P_S$, $\exists \pi_f \in Pref(\pi)$ s.t. $\forall \pi^{\omega} \in \Sigma^{\omega} : \pi_f \pi^{\omega} \nvDash P_S$.

$$\underbrace{\bullet \to \bullet \to \bullet}_{\text{"bad prefix"} \pi_f} \to \bullet \to \bullet \to \dots \notin P_S$$

Liveness property:

 $P_L \subseteq \Sigma^{\omega}$ is a liveness property iff $\forall \pi \in \Sigma^{\omega}, \forall \pi_f \in Pref(\pi) \exists \pi^{\omega} \in \Sigma^{\omega} : \pi_f \pi^{\omega} \models P_L$.

$$\underbrace{\cdots}_{\mathsf{Any \ prefix}} \to \underbrace{\bullet \to \bullet \to \cdots}_{\pi^\omega} \in P_L$$

Generic property:

$$P = P_S \cap P_L$$

LTL

LTL

Syntax:
$$\phi := \overline{\top \mid p \mid \phi \lor \phi \mid \neg \phi} | \overline{\mathbf{X}\phi \mid \phi \mathbf{U}\phi} | \overline{\mathbf{Y}\phi \mid \phi \mathbf{S}\phi}$$
Abbreviations: $\bot := \neg \top \quad \mathbf{F}\phi := \top \mathbf{U}\phi \quad \phi_1 \mathbf{R}\phi_2 := \neg (\neg \phi_1 \mathbf{U} \neg \phi_2) \quad \mathbf{G}\phi := \bot \mathbf{R}\phi$

$$\mathbf{Z}\phi := \neg \mathbf{Y} \neg \phi \quad \phi_1 \mathbf{T}\phi_2 := \neg (\neg \phi_1 \mathbf{S} \neg \phi_2) \quad \mathbf{H}\phi := \bot \mathbf{T}\phi \quad \mathbf{O}\phi := \top \mathbf{S}\phi$$

LTL

Syntax:
$$\phi := T \mid p \mid \phi \lor \phi \mid \neg \phi \mid X\phi \mid \phi U\phi \mid Y\phi \mid \phi S\phi$$
Abbreviations: $\bot := \neg T \quad F\phi := TU\phi \quad \phi_1 R\phi_2 := \neg (\neg \phi_1 U \neg \phi_2) \quad G\phi := \bot R\phi$
 $Z\phi := \neg Y \neg \phi \quad \phi_1 T\phi_2 := \neg (\neg \phi_1 S \neg \phi_2) \quad H\phi := \bot T\phi \quad O\phi := TS\phi$
Semantics (graphical repr):

$$\varphi \mathbf{U} \psi \quad \stackrel{\varphi}{\bullet} \to . \stackrel{\varphi}{\cdot} . \to \stackrel{\psi}{\bullet} \to . \stackrel{\omega}{\cdot} .$$

$$\mathbf{X} \varphi \quad \bullet \to \stackrel{\varphi}{\bullet} \to . \stackrel{\omega}{\cdot} .$$

$$\varphi \mathbf{S} \psi \quad \cdots \to \stackrel{\psi}{\bullet} \to . \stackrel{\varphi}{\cdot} . \to \stackrel{\varphi}{\bullet} \to . \stackrel{\omega}{\cdot} .$$

$$\mathbf{Y} \varphi \quad \cdots \to \stackrel{\varphi}{\bullet} \to \bullet \to . \stackrel{\omega}{\cdot} .$$

Safety fragments of LTL

Safety LTL (nnf):
$$\phi := \phi \lor \phi \mid \phi \land \phi \mid p \mid \underbrace{\neg p}_{\text{Neg on leaves}} \mid \mathbf{X}\phi \mid \underbrace{\phi \mathbf{R}\phi}_{\text{No until}} \mid \mathbf{Y}\phi \mid \phi \mathbf{S}\phi \mid \mathbf{Z}\phi \mid \phi \mathbf{T}\phi$$

G α -past: $\phi := \mathbf{G}\phi_P$ $\phi_P := p \mid \neg \phi_P \mid \phi_P \lor \phi_P \mid \mathbf{Y}\phi_P \mid \phi_P \mathbf{S}\phi_P$

Relation with safety:

 $Safety \cap LTL \equiv safetyLTL \equiv G\alpha$ -past[Chang, Manna Pnuelli 92]

Relative safety[Henzinger92]

Let P and A be two properties. P is safety relative to A iff

$$\forall \pi \in A \text{ s.t. } \pi \notin P, \exists \pi_f \in Pref(\pi) \text{ s.t.}$$

$$\forall \pi^{\omega} \in \Sigma^{\omega} : \text{ if } \pi_f \pi^{\omega} \in A \text{ then } \pi_f \pi^{\omega} \notin P$$

Relative safety[Henzinger92]

Let P and A be two properties. P is safety relative to A iff

$$\forall \pi \in A \text{ s.t. } \pi \notin P, \exists \pi_f \in Pref(\pi) \text{ s.t.}$$
$$\forall \pi^\omega \in \Sigma^\omega : \text{ if } \pi_f \pi^\omega \in A \text{ then } \pi_f \pi^\omega \notin P$$

Less formally: "Considering a world in which A is true, P becomes safety."

Relative safety[Henzinger92]

Let P and A be two properties. P is safety relative to A iff

$$\forall \pi \in A \text{ s.t. } \pi \notin P, \exists \pi_f \in Pref(\pi) \text{ s.t.}$$
$$\forall \pi^\omega \in \Sigma^\omega : \text{ if } \pi_f \pi^\omega \in A \text{ then } \pi_f \pi^\omega \notin P$$

Less formally: "Considering a world in which A is true, P becomes safety."

Notable examples:

- φ_S is safety relative to \top .
- $\mathbf{G}p \to \mathbf{G}q$ is safety relative to $\mathbf{G}p$.
- Bounded response is safety relative to non-zenoness and weak monotonicity.
- pUq is safety relative to Fq

Contributions

Steps

- Construct a safetyLTL model checking procedure reducing to invariant checking

unfair counterexamples

Note: Extension can be done because $\alpha \to \varphi$ safety relative to α .

• Combines automata construction of LTL[Clarke, Grumberg, Hamaguchi CAV 1994] with the notion of informative prefix[Kupferman, Vardi 2001].

- Combines automata construction of LTL[Clarke, Grumberg, Hamaguchi CAV 1994] with the notion of informative prefix[Kupferman, Vardi 2001].
- informative prefix: ≈ "an algorithmic definition for bad prefixes"

- Combines automata construction of LTL[Clarke, Grumberg, Hamaguchi CAV 1994] with the notion of informative prefix[Kupferman, Vardi 2001].
- informative prefix: \approx "an algorithmic definition for bad prefixes"
- Notion used to construct invariant, the invariant is valid iff there is no informative prefix for the property.

- Combines automata construction of LTL[Clarke, Grumberg, Hamaguchi CAV 1994] with the notion of informative prefix[Kupferman, Vardi 2001].
- informative prefix: \approx "an algorithmic definition for bad prefixes"
- Notion used to construct invariant, the invariant is valid iff there is no informative prefix for the property.

If \mathcal{M} is deadlock free, then

$$\mathcal{M} \models \phi_{\mathcal{S}} \Leftrightarrow \mathcal{M} \models_{\mathsf{INVAR}} \phi_{\mathcal{S}}$$

Basic algorithm (no loop)

$$igg(\mathcal{M}' := \mathcal{M} imes \mathcal{M}_{lpha_{\mathcal{S}}}igg)$$

Check:
$$\mathcal{M}$$
 $\models \alpha_S \land \alpha_L \rightarrow \varphi$ $\land \gamma_{I,\mathcal{T},\mathcal{F}} \land \beta_{\mathsf{fair}} \land \mathsf{STS} \rightarrow \beta_{\mathsf{safety}} \land \beta_{\mathsf{liveness}} \rightarrow \beta_{\mathsf{safetyLTL}} \land \beta_{\mathsf{safetyLTL}}$

Iterative algorithm

Iterative algorithm

Optimization: extending safetyLTL verification with lookahead

Idea:

- ullet If \mathcal{M}' has livelocks, multiple iterations are required
- Computing steps ahead for counterexamples can rule out deadlock states.

Discard:

$$\underbrace{\bullet \to \bullet \to \bullet}_{\mathsf{Bad prefix}} \to \underbrace{\hspace{1cm} \hspace{1cm} \hspace{$$

Consider:

$$\underbrace{\bullet \to \bullet \to \bullet}_{\text{Bad prefix } \pi'_f} \to \underbrace{\bullet}_{n-2 \text{ steps}} \to \underbrace{\bullet}_{la=n}^{la=n}$$

Procedure:

- When the original invariant is falsified start incrementing la
- New INVAR: la < n</p>

Experimental evaluation

- Implemented inside nuXmv symbolic model checker on top of SMT based infinite state invariant checking.
- LTL check using K-liveness with IC3
- Invariant checking done with IC3
- Comparison with k-liveness[K. Claessen and N. Sörensson 2012], liveness to safety[A. Biere, C. Artho, and V. Schuppan 2002] (adapted for infinite state).

Models:

- A/G contracts (e.g. Wheel Brake System)
- Bounded response (infinite state)
- Asynchronous systems with fair scheduling $\bigwedge_i \mathbf{GF} run_i \to \varphi$
- NuSMV models (finite state)
- nuXmv models (infinite state)

Comparison with k-liveness

Comparison with k-liveness

Comparison with k-liveness

Comparison with liveness to safety

Comparison with liveness to safety

Comparison with liveness to safety

Impact of lookahead construction

Impact of lookahead construction

Impact of lookahead construction

Conclusion

Concluding remarks

Considerations:

- **1** Deadlocks and livelocks are the main obstacle, many times the LTL to automata construction introduces the deadlocks with prophecy variables ($v_{X\beta}$).
- Providing a finite lookahead computation is sufficient to rule out many spurious counterexamples.
- There are rooms for improvements (next slide)

Future directions

Improvements of the algorithm:

- Counterexample generalization exploiting k-liveness (using inductive invariants)
- Consider using temporal testers
- Extend with lockstep with BMC (as for k-liveness)
- Exploit SMT solver incrementality

Applications of the algorithm:

- ullet Extend the fragment such that arphi can be non-safety
- Targetting continuous time
- Apply to contract-based verification compositionally where A/G are formulae

Questions?

Appendix

Standard LTL model checking:

$$\mathcal{M} \models_{\mathit{LTL}} \phi \Leftrightarrow \mathcal{M} \times \mathcal{M}_{\neg \phi} \models \neg \bigwedge_{f_i \in \mathcal{F}_{\neg \phi}} \mathbf{GF} f_i$$

Standard LTL model checking:

$$\mathcal{M} \models_{\mathit{LTL}} \phi \Leftrightarrow \mathcal{M} \times \mathcal{M}_{\neg \phi} \models \neg \bigwedge_{f_i \in \mathcal{F}_{\neg \phi}} \mathsf{GF} f_i$$

Symbolic compilation of LTL[Clarke, Grumberg, Hamaguchi CAV 1994]:

$$\mathcal{M}_{\phi} := \langle V_{\phi}, \mathcal{I}_{\phi}, \mathcal{T}_{\phi} \rangle$$

Standard LTL model checking:

$$\mathcal{M} \models_{\mathit{LTL}} \phi \Leftrightarrow \mathcal{M} \times \mathcal{M}_{\neg \phi} \models \neg \bigwedge_{f_i \in \mathcal{F}_{\neg \phi}} \mathsf{GF} f_i$$

Symbolic compilation of LTL[Clarke, Grumberg, Hamaguchi CAV 1994]:

$$\mathcal{M}_{\phi} := \langle V_{\phi}, \mathcal{I}_{\phi}, \mathcal{T}_{\phi} \rangle \ V_{\phi} := V \cup \{ v_{\mathbf{X}\beta} \mid \mathbf{X}\beta \in Sub(\phi) \} \cup \{ v_{\mathbf{X}(\phi_1 \mathbf{U}\phi_2)} \mid \phi_1 \mathbf{U}\phi_2 \in Sub(\phi) \}$$

Introduce prophecy variables for temporal operators.

Standard LTL model checking:

$$\mathcal{M} \models_{\mathit{LTL}} \phi \Leftrightarrow \mathcal{M} \times \mathcal{M}_{\neg \phi} \models \neg \bigwedge_{f_i \in \mathcal{F}_{\neg \phi}} \mathsf{GF} f_i$$

Symbolic compilation of LTL[Clarke, Grumberg, Hamaguchi CAV 1994]:

$$egin{aligned} \mathcal{M}_{\phi} := & \langle V_{\phi}, \mathcal{I}_{\phi}, \mathcal{T}_{\phi}
angle \ V_{\phi} := & V \cup \{v_{\mathbf{X}eta} \mid \mathbf{X}eta \in \mathit{Sub}(\phi)\} \cup \ & \{v_{\mathbf{X}(\phi_1 \mathbf{U}\phi_2)} \mid \phi_1 \mathbf{U}\phi_2 \in \mathit{Sub}(\phi)\} \ \mathcal{I}_{\phi} := & \mathit{Enc}(\phi) \end{aligned}$$

- Introduce prophecy variables for temporal operators.
- 2 Initially ϕ holds
- Enc rewrites operators in terms of prophecy variables.

Standard LTL model checking:

$$\mathcal{M} \models_{\mathit{LTL}} \phi \Leftrightarrow \mathcal{M} \times \mathcal{M}_{\neg \phi} \models \neg \bigwedge_{f_i \in \mathcal{F}_{\neg \phi}} \mathsf{GF} f_i$$

Symbolic compilation of LTL[Clarke, Grumberg, Hamaguchi CAV 1994]:

$$egin{aligned} \mathcal{M}_{\phi} := & \langle V_{\phi}, \mathcal{I}_{\phi}, \mathcal{T}_{\phi}
angle \ V_{\phi} := & V \cup \{ v_{\mathbf{X}eta} \mid \mathbf{X}eta \in \mathit{Sub}(\phi) \} \cup \ & \{ v_{\mathbf{X}(\phi_1\mathbf{U}\phi_2)} \mid \phi_1\mathbf{U}\phi_2 \in \mathit{Sub}(\phi) \} \ \mathcal{I}_{\phi} := & \mathop{\mathsf{Enc}}(\phi) \quad \mathcal{T}_{\phi} := & \mathop{\bigwedge}_{v_{\mathbf{X}eta} \in V_{\phi} \setminus V} (v_{\mathbf{X}eta} \leftrightarrow \mathit{Enc}(eta)') \end{aligned}$$

- Introduce prophecy variables for temporal operators.
- 2 Initially ϕ holds
- Enc rewrites operators in terms of prophecy variables.
- ullet Relate each eta to its prophecy variable

Standard LTL model checking:

$$\mathcal{M} \models_{\mathit{LTL}} \phi \Leftrightarrow \mathcal{M} \times \mathcal{M}_{\neg \phi} \models \neg \bigwedge_{f_i \in \mathcal{F}_{\neg \phi}} \mathbf{GF} f_i$$

Symbolic compilation of LTL[Clarke, Grumberg, Hamaguchi CAV 1994]:

$$egin{aligned} \mathcal{M}_{\phi} := & \langle V_{\phi}, \mathcal{I}_{\phi}, \mathcal{T}_{\phi}
angle \ V_{\phi} := & V \cup \{ v_{\mathbf{X}eta} \mid \mathbf{X}eta \in \mathit{Sub}(\phi) \} \cup \ & \{ v_{\mathbf{X}(\phi_1\mathbf{U}\phi_2)} \mid \phi_1\mathbf{U}\phi_2 \in \mathit{Sub}(\phi) \} \ \mathcal{I}_{\phi} := & Enc(\phi) \quad \mathcal{T}_{\phi} := \bigwedge_{v_{\mathbf{X}eta} \in V_{\phi} \setminus V} (v_{\mathbf{X}eta} \leftrightarrow \mathit{Enc}(eta)') \end{aligned}$$

 $\mathcal{F}_{\phi} := \{ Enc(\phi_1 \mathbf{U} \phi_2) \rightarrow Enc(\phi_2) \mid \phi_1 \mathbf{U} \phi_2 \in Sub(\phi) \}$

- Introduce prophecy variables for temporal operators.
- 2 Initially ϕ holds
- Enc rewrites operators in terms of prophecy variables.
- **4** Relate each β to its prophecy variable
- Enforce fairness for until

Informative prefix[Kupferman, Vardi 2001]

Definition

Let ψ be an LTL formula in negative normal form, $Sub(\psi)$ be the set of sub-formulas of ψ and let π be a finite path of length n over the language of ψ . We say that π is *informative* for ψ iff there exists a mapping $L: \{0, \ldots, n\} \to 2^{Sub(\neg \psi)}$ such that:

- \bullet $\neg \psi \in L(0)$.
- $2 L(n) = \emptyset.$
- **3** For all $0 \le i < n$, for all $\varphi \in L(i)$:
 - If φ is propositional, $\pi, i \models \varphi$.
 - If $\varphi = \varphi_1 \vee \varphi_2$, $\varphi_1 \in L(i)$ or $\varphi_2 \in L(i)$.
 - If $\varphi = \varphi_1 \wedge \varphi_2$, $\varphi_1 \in L(i)$ and $\varphi_2 \in L(i)$.
 - If $\varphi = \mathbf{X}\varphi_1$, $\varphi_1 \in L(i+1)$
 - If $\varphi = \varphi_1 \mathbf{U} \varphi_2$, $\varphi_2 \in L(i)$ or $[\varphi_1 \in L(i) \text{ and } \varphi_1 \mathbf{U} \varphi_2 \in L(i+1)]$.
 - If $\varphi = \varphi_1 \mathbf{R} \varphi_2$, $\varphi_2 \in L(i)$ and $[\varphi_1 \in L(i) \text{ or } \varphi_1 \mathbf{R} \varphi_2 \in L(i+1)]$.

Safety LTL model checking

High level idea:

- Rewrite $\neg \phi$ in *nnf*
- Construct STS of $\neg \phi$ (similar to LTL2SMV)
- Compute invariant $INV_{\phi} := \neg(\bigwedge_{v_{\mathbf{X}\beta}} \neg v_{\mathbf{X}\beta})$

Safety LTL model checking

High level idea:

- Rewrite $\neg \phi$ in nnf
- Construct STS of $\neg \phi$ (similar to LTL2SMV)
- Compute invariant $INV_{\phi} := \neg(\bigwedge_{v_{\mathbf{X}\beta}} \neg v_{\mathbf{X}\beta})$

$$\mathcal{M}_{\neg \phi} := \langle V_{\neg \phi}, \mathcal{I}_{\neg \phi}, \mathcal{T}_{\neg \phi} \rangle$$

$$I_{\neg\phi} = Enc(\neg\phi) \land \bigwedge_{\mathbf{v}_{\gamma_{eta}} \in V_{\neg\phi}} \neg \mathbf{v}_{\mathbf{Y}_{eta}}$$
 $T_{\neg\phi} = \bigwedge_{\mathbf{v}_{\mathbf{X}_{eta}} \in V_{\neg\phi}} \mathbf{v}_{\mathbf{X}_{eta}}
ightarrow Enc(eta)') \land$
 $\bigwedge_{\mathbf{v}_{\gamma_{eta}} \in V_{\neg\phi}} \mathbf{v}_{\gamma_{eta}}'
ightarrow Enc(eta)$

Safety LTL model checking

$$\mathcal{M}_{\neg \phi} := \langle V_{\neg \phi}, \mathcal{I}_{\neg \phi}, \mathcal{T}_{\neg \phi} \rangle$$

High level idea:

- Rewrite $\neg \phi$ in nnf
- Construct STS of $\neg \phi$ (similar to LTL2SMV)
- Compute invariant $\mathit{INV}_\phi := \neg(\bigwedge_{v_{\mathbf{X}\beta}} \neg v_{\mathbf{X}\beta})$

$$I_{\neg\phi} = Enc(\neg\phi) \land \bigwedge_{\mathsf{v}_{\mathsf{Y}eta} \in V_{\neg\phi}} \neg \mathsf{v}_{\mathsf{Y}eta}$$
 $T_{\neg\phi} = \bigwedge_{\mathsf{v}_{\mathsf{X}eta} \in V_{\neg\phi}} \mathsf{v}_{\mathsf{X}eta} o Enc(eta)') \land \bigwedge_{\mathsf{v}_{\mathsf{Y}eta}} \mathsf{v}_{\mathsf{Y}eta} o Enc(eta)$

 $v_{\mathbf{Y}\beta} \in V_{\neg \phi}$

$Enc(\varphi)$:

- $Enc(\phi_1 \land \phi_2) = Enc(\phi_1) \land Enc(\phi_2)$, $Enc(\phi_1 \lor \phi_2) = Enc(\phi_1) \lor Enc(\phi_2)$
- $Enc(\neg \phi_1) = \neg Enc(\phi_1)$
- $Enc(\mathbf{X}\phi_1) = v_{\mathbf{X}\phi_1}$
- $Enc(\phi_1 \mathbf{U} \phi_2) = Enc(\phi_2) \vee (Enc(\phi_1) \wedge v_{\mathbf{X}(\phi_1 \mathbf{U} \phi_2)})$

Extended motivating example

Bounded response:
$$\varphi := \mathbf{G}(in \land t = p \rightarrow \mathbf{F}(t \le p + 5 \land out))$$

$$\alpha := \underbrace{\mathbf{G}(t' \geq t)}_{\mathsf{Weak monotonicity}} \land \underbrace{\mathbf{GF}(t' - t \geq \epsilon)}_{\mathsf{non-zenoness}}$$

Assuming α , bounded response can be reduced to $(\alpha \to (\varphi \leftrightarrow \varphi_S))$

$$\varphi_S := \mathbf{G}(in \wedge t = p \rightarrow out\mathbf{R}t \leq p + 5)$$

Counterexample shape of
$$\varphi_S$$
: $\overset{in \wedge t = p}{\bullet} \to \overset{t = p+2}{\bullet} \to \overset{t = p+5.01}{\bullet} \to \dots$

Any finite counterexample of φ_S that can be extended to infinity is a counterexample of $\alpha \to \varphi$

