

# ECS524 Network layer

Prof. Steve Uhlig steve.uhlig@qmul.ac.uk
Office: Eng202

Dr. Felix Cuadrado felix.cuadrado@qmul.ac.uk
Office: E205

## Slides



#### **Disclaimer:**

Some of the slides' content is borrowed directly from those provided by the authors of the textbook. They are available from

http://wwwnet.cs.umass.edu/kurose-ross-ppt-6e



KUROSE ROSS

Computer **Networking: A** Top Down **Approach** 6th edition Jim Kurose, Keith Ross **Addison-Wesley March 2012** 

# The Network layer



- Introduction
- IP Addressing
- IP routers
- IP
- Routing: concepts
- Routing: practice

# **Network layer**



- Transport segment from sending to receiving host
- On sending side encapsulates segments into datagrams
- On receiving side, delivers segments to transport layer
- Network layer protocols in every host, router
- Router examines header fields in all IP datagrams passing through it



## **Datagram networks**



no call setup at network layer routers: no state about end-to-end connections no network-level concept of "connection" packets forwarded using destination host address



# The Internet network layer



Host, router network layer functions:



# The Network layer



- Introduction
- IP Addressing
- IP routers
- IP
- Routing: concepts
- Routing: practice

# IP addressing: introduction



- IP address: 32-bit identifier for host, router interface
- Interface: connection between host/router and physical link
  - router's typically have multiple interfaces
  - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- IP addresses associated with each interface



### **Subnets**



### • IP address:

- subnet part high order bits
- host part low order bits

#### What's a subnet ?

- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router



network consisting of 3 subnets

### **Subnets**



## Recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a subnet



subnet mask: /24

## **Subnets**



How many?



# IP addressing: CIDR



## CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address



11001000 00010111 00010000 00000000

200.23.16.0/23

# IP address: how to get one?



Q: How does a *host* get an IP address?

- Hard-coded by system admin in a file
  - Windows: control-panel->network->configuration->tcp/ip->properties
  - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server "plug-and-play"

## **DHCP** client-server scenario





# DHCP: Dynamic Host Configuration Protocol



- Goal: allow host to dynamically obtain its IP address from network server when it joins network
  - can renew its lease on address in use
  - allows reuse of addresses (only hold address while connected/"on")
  - support for mobile users who want to join network (more shortly)
- DHCP overview:
  - host broadcasts "DHCP discover" msg [optional]
  - DHCP server responds with "DHCP offer" msg [optional]
  - host requests IP address: "DHCP request" msg
  - DHCP server sends address: "DHCP ack" msg

## **DHCP** client-server scenario





# **DHCP:** more than IP addresses



# DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS server
- network mask (indicating network versus host portion of address)

## **DHCP:** example





Connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP

- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- Ethernet frame broadcast (dest: fffffffffff) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

## **DHCP:** example





- DHCP server formulates
  DHCP ACK containing
  client's IP address, IP
  address of first-hop
  router for client, name &
  IP address of DNS server
- Encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- Client now knows its IP address, name and IP address of DNS server, IP address of its first-hop router

# IP addresses: how to get one?



Q: how does network get subnet part of IP address?

A: gets allocated portion of its provider ISP's address space

| ISP's block    | <u>11001000</u> | 00010111 | 00010000 | 0000000  | 200.23.16.0/20 |
|----------------|-----------------|----------|----------|----------|----------------|
| Organization 0 | 11001000        | 00010111 | 00010000 | 00000000 | 200.23.16.0/23 |
| Organization 1 | •               | 00010111 |          |          | 200.23.18.0/23 |
| Organization 2 | 11001000        | 00010111 | 00010100 | 00000000 | 200.23.20.0/23 |
| •••            |                 | ••••     |          | ••••     | ••••           |
| Organization 7 | 11001000        | 00010111 | 00011110 | 00000000 | 200.23.30.0/23 |

# IP addressing: the last word...



Q: how does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned
Names and Numbers http://www.icann.org/
allocates addresses
manages DNS
assigns domain names, resolves disputes

# The Network layer



- Introduction
- Addressing
- IP routers
- IP
- Routing: concepts
- Routing: practice

# Two key network-layer functions



forwarding: move packets from router's input to appropriate router output

routing: determine route taken by packets from source to dest.

routing algorithms

## analogy:

- routing: process of planning trip from source to dest
- forwarding: process of getting through single interchange

# Interplay between routing and forwarding





# Datagram forwarding table





4 billion IP addresses, so rather than list individual destination address list range of addresses (aggregate table entries)



# Datagram forwarding table



| Destination Address Range                                                             | Link Interface |
|---------------------------------------------------------------------------------------|----------------|
| 11001000 00010111 00010000 00000000<br>through<br>11001000 00010111 00010111 11111111 | 0              |
| 11001000 00010111 00011000 00000000<br>through<br>11001000 00010111 00011000 11111111 | 1              |
| 11001000 00010111 00011001 00000000<br>through<br>11001000 00010111 00011111 11111111 | 2              |
| otherwise                                                                             | 3              |

## Q: but what happens if ranges don't divide up so nicely?

# Longest prefix matching



### longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

| Destination Address Range          | Link interface |
|------------------------------------|----------------|
| 11001000 00010111 00010*** ******* | 0              |
| 11001000 00010111 00011000 ******  | 1              |
| 11001000 00010111 00011*** ******* | 2              |
| otherwise                          | 3              |

#### examples:

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

which interface? which interface?

# Router architecture overview



## Two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link



# Input port functions





queuing: if datagrams arrive faster than

forwarding rate into switch fabric

29

# **Switching fabrics**



- Transfer packet from input buffer to appropriate output buffer
- Switching rate: rate at which packets can be transfer from inputs to outputs

often measured as multiple of input/output line rate

N inputs: switching rate N times line rate desirable

Three types of switching fabrics



# The Network layer



- Introduction
- IP Addressing
- IP router
- IP
- Routing: concepts
- Routing: practice

# IP datagram format





# IP fragmentation, reassembly



- Network links have MTU (max.transfer size) - largest possible link-level frame different link types, different MTUs
- Large IP datagram divided ("fragmented") within net
  - one datagram becomes several datagrams
  - reassembled" only at final destination
  - IP header bits used to identify, order related fragments



# IP fragmentation, reassembly





# ICMP: internet control message protocol



- Used by hosts & routers to communicate networklevel information
  - error reporting: unreachable host, network, port, protocol
  - echo request/reply (used by ping)
- Network-layer "above"IP:
  - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

| <u>Type</u> | <u>Code</u> | description               |
|-------------|-------------|---------------------------|
| 0           | 0           | echo reply (ping)         |
| 3           | 0           | dest. network unreachable |
| 3           | 1           | dest host unreachable     |
| 3           | 2           | dest protocol unreachable |
| 3           | 3           | dest port unreachable     |
| 3           | 6           | dest network unknown      |
| 3           | 7           | dest host unknown         |
| 4           | 0           | source quench (congestion |
|             |             | control - not used)       |
| 8           | 0           | echo request (ping)       |
| 9           | 0           | route advertisement       |
| 10          | 0           | router discovery          |
| 11          | 0           | TTL expired               |
| 12          | 0           | bad IP header             |
|             |             |                           |

## **Traceroute and ICMP**



- Source sends series of UDP segments to dest
  - first set has TTL =1
  - second set has TTL=2, etc.
  - unlikely port number
- When nth set of datagrams arrives to nth router:
  - router discards datagrams
  - and sends source ICMP messages (type 11, code 0)
  - ICMP messages includes name of router & IP
     address

 When ICMP messages arrives, source records RTTs

### stopping criteria:

- UDP segment eventually arrives at destination host
- Destination returns ICMP "port unreachable" message (type 3, code 3)
  - source stops



# The Network layer



- Introduction
- IP router
- IP
- Routing: concepts
- Routing: practice