Dynamic Programming in 2D

DNA Comparison: Longest Common Subsequence (LCS)

The length of the longest common subsequence (LCS) between two genomes is a measure of similarity.

- S1 ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
- S2 GTCGTTCGGAATGCCGTTGCTCTGTAA

What is an LCS of "Go Blue" and "Ghoul"?

LCS Recurrence

Case 1: Suppose the last character of S1 and S2 are the same i.e. S1[N] = S2[M]

Claim. There exists an optimal solution that matches S1[N] and S2[M]. *Proof.*

LCS Recurrence

Case 1: Suppose the last character of S1 and S2 are the same i.e. S1[N] = S2[M]

Claim. There exists an optimal solution that matches S₁[N] and S₂[M].

$$LCS(S1[1..N], S2[1..M]) =$$

Since there's an optimal solution matching S1[N] and S2[M], we can **safely** add that match to our solution!

LCS Recurrence

Case 2: The last character of S1 and S2 are not the same

OPT doesn't have at least one of S1[N] and S2[M] ("lose it or lose it!")

LCS(S1[1..N], S2[1..M]) =

S1

S2

N symbols

N symbols

N symbols

S2

M

S3

M

S4

S2

M

S4

S2

M

S5

M

S5

M

S6

M

S7

M

S8

S8

M

S8

M

S8

S8

M

S8

M

S9

M

Close S2[M]"

Full Recurrence for LCS

```
LCS(S1[1..N], S2[1..M]) = 
 if S1[N] = S2[M] otherwise
```

Base cases:

The DP Recipe

- 1. Write recurrence —— usually the trickiest part
- 2. Size of table: How many dimensions? Range of each dimension?
- 3. What are the base cases?
- 4. To fill in a cell, which other cells do I look at? In which order do I fill the table?
- 5. Which cell(s) contain the final answer?
- Running time = (size of table)•(time to fill each entry)
- 7. To reconstruct the solution (instead of just its size) follow arrows from final answer to base case

Let's Follow the DP Recipe

S ₁ =GAC; S ₂ =AGCAT									
	Ø	Α	G	C	Α	Т			
Ø									
G									
Α									
С									

Pseudocode

```
Algorithm LCS( S1[1..N], S2[1..M])
   table := 2D-array indexed from 0 to N, and 0 to M
   for i = 0 to N:
       table(i, 0) = 0
   for i = 0 to M:
       table(0, i) = 0
   for i = 0 to N:
       for j = 0 to M:
           if S1[i] = S2[j]:
               table(i,j) = 1 + table(i-1, j-1)
           else:
               table(i,j) = max{table(i-1, j), table(i, j-1)}
   Return table(N,M)
```

A Visualization of LCS DP

https://www.cs.usfca.edu/~galles/visualization/DPLCS.html

Can we do better than O(MN) time?

Under a hypothesis called the "strong exponential time hypothesis", there is no algorithm even in time $O(MN^{0.99})!$

If the hypothesis is true, you've seen the (essentially) optimal algorithm.

But... |human genome | ≈ 3bil, |chimp genome | ≈ 2.8bil

Current research: faster approximation algorithms

Knapsack Problem

Input: A set of **n** items **t**1,...,**tn**, each with an integer value **v**1 and weight **w**1, along with an integer **W** (representing the total capacity of the knapsack).

Output: A set of items whose total weight is at most **W** and whose total value is maximized.

Question: What is the input size in terms of **n** and **W**?

(Suppose each individual \mathbf{v}_i and \mathbf{w}_i is small enough that we can disregard its contribution to the input size)

Knapsack Recurrence

Consider item tn.

(use it!)

(lose it!)

```
Knapsack({t1,...,tn}, W) = {
```

Base cases:

Let's follow the DP Recipe

remaining weight

S)
\Box	
<u></u>	
\mathbf{u}	
<u>.</u> =	'
L	_
Ø	U
=	:
.⊨	:
σ	j
Ð)

	Ø	1	2	3
Ø				
t 1: 4\$, 2lb				
t2 : 8\$, 1lb				
t3 : 10\$, 2lb				
t 4: 5\$, 5lb				

Pseudocode

```
Algorithm Knapsack( {t1,...,tn}, W)
   table := 2D-array indexed from 0 to n, and 0 to W
   for i = 0 to n:
       table(i, 0) = 0
   for j = 0 to W:
       table(0, j) = 0
   for i = 0 to n:
       for j = 0 to W:
           if w_i \le j: useit = v_i + table( i-1, j - w_i )
            else: useit = -∞
           table(i,j) = max{ useit, table(i-1, j) }
   Return table(n,W)
```