Apuntes de Lenguajes Formales

Leonardo H. Añez Vladimirovna¹

Universidad Autónoma Gabriél René Moreno, Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones, Santa Cruz de la Sierra, Bolivia

17 de mayo de 2019

 $^{^{1}}$ Correo Electrónico: toborochi98@outlook.com

Agradecimiento a marmot

Notas del Autor

Estos apuntes fueron realizados durante mis clases en la materia INF319 (Lenguajes Formales), acompañados de referencias de libros, fuentes y código que use a lo largo del curso, en el período I-2019 en la Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones.

Para cualquier cambio, observación y/o sugerencia pueden enviarme un mensaje al siguiente correo:

toborochi98@outlook.com

Índice general

1.	Pre	liminares Formales	
	1.1.	Conjuntos	1
		1.1.1. Conjunto Finito e Infinito	Į.
	1.2.	Preliminares	E.
		1.2.1. Alfabeto	
		1.2.2. Palabra	F
		1.2.3. Notaciones	6
		1.2.4. Cantidad de Ocurrencias	6
			6
		1.2.6. Inversa	7
		1.2.7. Potencia de una Palabra	7
		1.2.8. Principio de Inducción para Σ^*	7
		1.2.9. Lenguajes	5
			8
		1.2.11. Módulos	
		1.2.12. Máquinas	
		1.2.12. Maquinas	٠.(
2.	Ant	ómatas 1	1
		Autómata Finito Determinístico (AFD)	_
	2.1.	2.1.1. Definición	
		2.1.2. Interpretación	
		2.1.3. Representación	
	2.2	2.1.4. Configuración	
	۷.۷.	Autómata Finito no Determinístico (AFN)	
	0.0	2.2.1. Definición	
	2.5.	Equivalencia entre una AFD y un AFN	1 2

ÍNDICE GENERAL

Capítulo 1

Preliminares Formales

1.1. Conjuntos

1.1.1. Conjunto Finito e Infinito

Equivalencia

Dado A y B (conjuntos) los llamamos equivalentes si existe una biyección: $f:A\to B$

Conjunto Finito

Un conjunto A es finito si es equivalente a $\{1, 2, 3, \dots, n\}$ para algún $n \in \mathbb{N}$.

Conjunto Infinito

Un conjunto es infinito si no es finito. Si no es equivalente a $\{1, 2, 3, ..., n\}$ es decir no hay biyección. Sin embargo no todos los conjuntos finitos son equivalentes.

- Conjunto Contablemente Infinito: Se dice que un conjunto es contablemente infinito si es equivalente con N.
- Conjunto Contable: Es contable si es finito o contablemente infinito.
- Conjunto Incontable: Se dice que es incontable si no es contable.

Principio de las Casillas

Si A y B son conjuntos finitos no vacíos y |A| > |B| entonces no existe una función inyectiva de: $A \to B$.

1.2. Preliminares

1.2.1. Alfabeto

Un alfabeto Σ es cualquier conjunto finito no vacío.

Ejemplo(s)

$$\Sigma_1 = \{Leo, Martha\}$$
 $\Sigma_2 = \{0, 1, 2, 3, \dots, 13\}$
 $\Sigma_3 = \{a, b\}$
 $\Sigma_4 = \{R, G, B, A\}$

1.2.2. Palabra

Una palabra sobre Σ es una sucesión finita de símbolos de Σ . Es decir:

$$(\sigma_1, \sigma_2, \dots, \sigma_n); \sigma \in \Sigma$$
 ó $\sigma_1 \sigma_2 \sigma_3 \dots \sigma_n; \sigma \in \Sigma$

Ejemplo(s)

Sobre Σ_1	$\textbf{Sobre}\Sigma_2$	Sobre Σ_3	$\textbf{Sobre}\Sigma_4$
$w_1 = LeoLeo$	$w_1 = 11111110$	$w_1 = bababababa$	$w_1 = ABGR$
$w_2 = MarthaLeoMartha$	$w_2 = 11235813$	$w_2 = abba$	$w_2 = RRRA$

Denotamos por Σ^* el conjunto de todas las palabras sobre Σ .

Longitud de una Palabra

Sea w una palabra sobre Σ , es decir $w = \sigma_1 \sigma_2 \dots \sigma_n; \sigma \in \Sigma$. La longitud de w es n y se denota por: |w| = n.

Palabra vacía

Es la sucesión vacía de símbolos de Σ y se denota por: $\lambda.$

1.2.3. Notaciones

- $\Sigma^+ = \{ w \in \Sigma^* / |w| > 0 \}$
- $\Sigma^0 = \{ w \in \Sigma^* / |w| = 0 \} = \{ \lambda \}$
- $\bullet \ \Sigma^1 = \{w \in \Sigma^*/|w| = 1\} = \Sigma$

1.2.4. Cantidad de Ocurrencias

Sea $w \in \Sigma^*$, denotamos por $|w|_{\sigma}$ al número de ocurrencias del símbolo σ en la palabra w.

Ejemplo(s)

$$\Sigma = \{a, b\}$$

- $\Sigma^* = \{\lambda, a, b, aa, bb, ab, ba, aaa, \ldots \}$
- $\quad \blacksquare \ \Sigma^0 = \{\lambda\}$
- $\Sigma_1 = \Sigma = \{a, b\}$

1.2.5. Concatenación

Sea $u, v \in \Sigma^*$ tal que $u = \sigma_1 \sigma_2 \dots \sigma_n, v = \epsilon_1 \epsilon_2 \dots \epsilon_n$. La concatenación de u y v se define por:

$$uv = \sigma_1 \sigma_2 \dots \sigma_n \epsilon_1 \epsilon_2 \dots \epsilon_n$$

Definición de Recurrencia

$$\begin{aligned} | \ | : \Sigma^* \to \mathbb{N} \\ |\lambda| &= 0 \\ |wa| &= |w| + 1 \end{aligned}$$

Ejemplo(s)

$$u = abab$$
$$v = bba$$

$$uv = ababbba$$

 $vu = bbaabab$

Propiedades

- $uv \neq vu$
- (uv)w = u(vw)
- $u\lambda = \lambda u = u$
- |uv| = |u| + |v|
- $|uv|_a = |u|_a + |v|_a$

1.2.6. Inversa

Si $w = \sigma_1, \sigma_2, \dots, \sigma_n \in \Sigma^n$ entonces $w' = \sigma_n, \sigma_{n-1}, \dots, \sigma_1$ se llama inversa o transpuesta de w.

Definición de Recurrencia

$$\begin{aligned} ': \Sigma^* &\to \Sigma^* \\ \begin{cases} \lambda' &= \lambda \\ (wa)' &= aw' \end{cases} \end{aligned}$$

1.2.7. Potencia de una Palabra

$$w^n = \underbrace{ww \dots w}_{n-veces}$$

Definición de Recurrencia

$$': \Sigma^* \to \Sigma^*$$

$$\begin{cases} w^0 = \lambda \\ w^{n+1} = ww^n \end{cases}$$

Propiedades

- $|w^n| = n|w|$
- $w^m w^n = w^{m+n}$
- $(w^n)^m = w^{mn}$
- $\quad \blacksquare \ \lambda^n = \lambda$

1.2.8. Principio de Inducción para Σ^*

Sea L un conjunto de palabras sobre Σ con las propiedades:

- i.) $\lambda \in L$
- ii.) $w \in L \land a \in \Sigma \Rightarrow wa \in L$

Entonces

 $L=\Sigma^*,$ (es decir, todas las palabras sobre Σ están en L.)

1.2.9. Lenguajes

Un lenguaje sobre Σ es un subconjunto de Σ^*

Operaciones

Recordemos que ya conocemos otras operaciones (Unión, Intersección, Diferencia y Complemento), para esta materia tenemos las siguientes:

■ Concatenación

Sea $A, B \subseteq \Sigma^*$

$$AB = \{ w \in \Sigma^* / w = xy, x \in A, y \in B \}$$

■ Transposición

Sea $A \subseteq \Sigma^*$

$$A' = \{ w' \in \Sigma^* / w \in A \}$$

■ Estrella de Kleene

Sea $A \subseteq \Sigma^*$

$$A^* = \{w \in \Sigma^* / w = w_1 w_2 \dots w_n \text{ para algún } k \in \mathbb{N} \text{ y para algunas } w_1, w_2, \dots, w_k \in A\}$$

1.2.10. Expresiones Regulares

Las expresiones regulares (ER) sobre un alfabeto (Σ) son las palabras sobre el alfabeto $\Sigma \cup \{\}, (\emptyset, \cup, *\}$ tal que cumple lo siguiente:

- 1.) \emptyset y cada símbolo de Σ es una ER.
- **2.)** Si α y β son ER entonces $(\alpha\beta)$ es una ER.
- **3.)** Si α y β son ER entonces $(\alpha \cup \beta)$ es una ER.
- **4.)** Si α es una ER entonces α^* es una ER.
- 5.) Nada mas es una ER a menos que provenga de (1.) a (4.)

Ejemplo(s)

Para $\Sigma = \{a, b\}$ podemos formar:

 $(ba)^* \cup (a \cup b)^*$

Lenguaje Regular

Un lenguaje es regular ssi es generado por una expresión regular.

1.2. PRELIMINARES 9

1.2.11. Módulos

Definición

Un módulo es una tripleta $D = (k, \Sigma, f)$ donde:

- lacktriangle es un conjunto finito no vacío, llamado conjunto de estados
- \blacksquare Σ es un conjunto finito no vacío, llamado~alfabeto
- ullet $f: k \times \Sigma \to k$, llamado función de transición

Interpretación

Un módulo se puede interpretar como un dispositivo que en determinados instantes de tiempo recibe señales (símbolos del alfabeto), que producen cambios en su configuración interna.

$$\sigma \in \Sigma$$
 $s \in k$

Representación

- Tabla de Transición
- Grafo

Figura 1.1: ssi: $f(s_i, \sigma) = s_j$

Comportamiento Dinámico

Sea $D = (k, \sigma, f)$ un módulo:

$$t_0$$
 t_1 t_2 \cdots t_k

$$s_0 \xrightarrow{\sigma_0} s_1 \xrightarrow{\sigma_1} s_2 \xrightarrow{\sigma_2} \cdots \xrightarrow{\sigma_{k-1}} s_k$$

Función Estado Terminal

Sea $D=(k,\sigma,f)$ un módulo:

Una función de Estado Terminal del módulo D es una única función:

$$\widehat{f}: k \times \Sigma \to k$$
 tal que $\forall s \in k, w \in \Sigma^*, \sigma \in \Sigma$

$$\begin{cases} \widehat{f}(s,\lambda) = s \\ \widehat{f}(s,\sigma w) = \widehat{f}\left[f(s,\sigma),w\right] \end{cases}$$

\diamond Notas

• $w = \lambda$

$$\widehat{f}(s,\sigma) = \widehat{f}(s,\sigma\lambda) = \widehat{f}[f(s,\sigma),\lambda] = f(s,\sigma)$$

 $\quad \blacksquare \ \forall w \in \Sigma^*$

$$f: k \to k$$
 tal que: $f_w(s) = \widehat{f}(s, w)s$

1.2.12. Máquinas

Una máquina es una quíntupla $M=(k,\Sigma,\Delta,f,g)$ donde:

- lacktriangle es un conjunto finito no vacío, llamado conjunto de estados
- \blacksquare Σ es un conjunto finito no vacío, llamado alfabeto de entrada
- lacktriangle Δ es un conjunto finito no vacío, llamado alfabeto de salida
- ullet $f: k \times \Sigma \to k$, llamado función de transición
- $g: k \times \Sigma \to \Delta$, llamado función de salida

Interpretación

Una máquina se puede interpretar como un dispositivo que en determinados instantes de tiempo recibe señales (símbolos de entrada) que producen cambios en su configuración interna y emiten señales (símbolos de salida).

$$\sigma \in \Sigma$$
 $s \in k$ $\delta \in \Delta$

Representación

- Tabla de Transición
- Grafo

$$s_i$$
 σ/δ s_j

Figura 1.2: ssi: $f(s_i, \sigma) = s_j \wedge g(s_i, \sigma) = \delta$

Comportamiento Dinámico

Sea $M=(k,\Sigma,\Delta,f,g)$ una máquina:

$$t_0$$
 t_1 t_2 \cdots t_k

$$s_0 \xrightarrow{\sigma_0/\delta_0} s_1 \xrightarrow{\sigma_1/\delta_1} s_2 \xrightarrow{\sigma_2/\delta_2} \cdots \xrightarrow{\sigma_{k-1}/\delta_{k-1}} s_k$$

Capítulo 2

Autómatas

2.1. Autómata Finito Determinístico (AFD)

2.1.1. Definición

Un Autómata Finito Determinístico (AFD) es una quintupla $M=(k,\Sigma,f,s_0,F)$ donde:

- lacktriangle k conjunto finito no vacio, $conjunto \ de \ estados$
- ullet Σ conjunto finito no vacio, Alfabeto
- $f: k \times \Sigma \to k$, Function de transicion
- $s_0 \in k$, Estado inicial
- $F \subseteq k$, Conjunto de estados finales

2.1.2. Intepretación

2.1.3. Representación

2.1.4. Configuración

Sea $M = (k, \Sigma, \delta, s_0, F)$ un AFD.

Una configuración de M es un elemento de $k \times \Sigma^*$

Relación $\frac{1}{M}$

Sea (q, w) y (q', w') dos configuraciones¹:

Lenguaje Aceptado por M

$$\begin{split} L(M) = & \{w \in \Sigma^*/M \text{ acepta } w\} \\ L(M) = & \{w \in \Sigma^*/(s,w) \left| \frac{*}{M} \left(q,\lambda\right) \land q \in F\} \right. \end{split}$$

2.2. Autómata Finito no Determinístico (AFN)

2.2.1. Definición

Un autómata Finito no Deterministico (AFN) es una quintupla $M = (k, \Sigma, \Delta, s, F)$ donde:

- \bullet k: conjunto finito no vacio
- \bullet Σ : conjunto finito no vacio

 $^{1 | \}underline{}_{M}$ se lee "conduce a" en un paso.

- Δ : es un subconjunto finito de $k \times \Sigma^* \times k$
- $s \in k$
- $F \subseteq k$

2.3. Equivalencia entre una AFD y un AFN

Teorema

Para cada AFN existe un AFD equivalente.

★ Prueba

Sea $M = (k, \Sigma, \Delta, s, F)$ un AFN

i.) Construimos $M'=(k',\Sigma,\Delta',s',F')$ eliminando todas las aristas de M que:

$$(q, u, q') \in \Delta \qquad \land \qquad |u| > 1$$

Si $u = \sigma_1 \sigma_2 \dots \sigma_k, k > 1$ entonces añadimos p_1, p_2, \dots, p_{k-1} estados y las nuevas transiciones:

$$(q, \sigma_1, p_1), (p_1, \sigma_2, p_2), \dots, (p_{k-1}, \sigma_k, q')$$

a Δ para u tal que |u| > 1.

ii.) Construimos $M'' = (k'', \Sigma, \delta'', s'', F'')$

La idea clave es considerar que un AFN en un determinando instante se encuentra en un conjunto de estados:

- $k'' = \Sigma^{k'}$
- $F'' = \{Q \subseteq k'/Q \cap F' \neq \emptyset\}$

Formalmente:

$$E(q) = \{ p \in k'/(q, \lambda) \mid \frac{*}{M'}(p, \lambda) \}$$

Equivalentemente:

$$E(q) = \{ p \in k'/(q, w) \mid \frac{*}{M'}(p, w) \}$$

Donde:

- s'' = E(s')
- $\forall Q \subseteq k' \land \text{ para cada símbolo } \sigma \in \Sigma$

Ademas:

$$\delta''(Q,\sigma) = \bigcup \{ E(p) : p \in k' \land (q,\sigma,p) \in \Delta', \exists q \in Q \}$$

Afirmamos que $\forall w \in \Sigma^* \ y \ \forall p, q \in k'$:

$$(q,w) \stackrel{*}{\underset{M'}{\mid}} (p,\lambda) \Leftrightarrow (E(q),w) \stackrel{*}{\underset{M''}{\mid}} (P,\lambda)$$

p.d.
$$M' \approx M''$$

p.d.
$$L(M') = L(M'')$$

$$\begin{split} w \in L(M') \Leftrightarrow (s',w) & \mid \frac{*}{M'} (q,\lambda), q \in F' \\ \Leftrightarrow (E(s'),w) & \mid \frac{*}{M''} (Q,\lambda) \\ \Leftrightarrow (s'',w) & \mid \frac{*}{M''} (Q,\lambda), Q \in F'' \\ \Leftrightarrow w \in L(M'') \end{split}$$

$$\therefore L(M') = L(M'')$$