1. Bayesian Network

CPTs

Sensitivity Analysis:

The sensitivity analysis suggests probabilities for $Pr(T = Positive \mid Disease = False)$ and Pr(Disease = True), but not for false negative $Pr(T = Negative \mid Disease = True)$ probably because no change in that value can result in meeting the constraint.

2. (a) Set of variables and values:

Variable	Value
FamilyHome	Yes/No
OutdoorLight	On/Off
ExpectingGuests	Yes/No
DogOutside	Yes/No
DogBowelTrouble	Yes/No
DogBarking	Yes/No
HearableBarking	Yes/No
LightSensor	On/Off
SoundSensor	On/Off
LightSensorHealth	OK/Broken
SoundSensorHealth	OK/Broken
Battery	OK/Dead

(b) Causal structure:

• Given that Sambot has sensed the lights to be on but has sensed no bark, the most likely instantiation of variables is:

I obtained this answer by first doing EM learning on the causal structure created in part (b) with the given sambot.dat data file. Then I selected LightSensor to On and SoundSensor to Off on the left sidebar where all the variables are listed. Then I ran the MPE computation tool to see what value the rest of the variables would be.

• Given that the family is home and no guests are expected, the most likely instantiation of the sensors is:

I obtained this answer by first selecting FamilyHome to Yes and ExpectingGuests to No. Then I clicked the Variable Selection Tool and clicked the map variable type. Then I checked off LightSensor and SoundSensor as the map variables. Then I ran the MAP Tool to get the results.

- The smallest set of variables Z in the network such that the two sensors are independent given Z is Z = { FamilyHome, Battery }. This is because FamilyHome and Battery cover all the possible paths between the sensors:
 - LightSensor ← Battery → LightSensor
 - Battery is divergent, which makes the path blocked if it is in Z.

- $\hspace{0.5cm} \circ \hspace{0.5cm} \mathsf{LightSensor} \leftarrow \mathsf{OutdoorLight} \leftarrow \mathsf{FamilyHome} \rightarrow \mathsf{DogOutside} \rightarrow \mathsf{DogBarking} \rightarrow \mathsf{HearableBarking} \rightarrow \mathsf{SoundSensor}$
 - FamilyHome is divergent, which makes the path blocked if it is in Z.
- LightSensor ← OutdoorLight ← ExpectingGuests → FamilyHome →
 DogOutside → DogBarking → HearableBarking → SoundSensor
 - FamilyHome is sequential, which makes the path blocked if it is in Z.

Since Z = { FamilyHome, Battery } d-separates the sensors, they are independent.

 The type of network I constructed is a multiply-connected network because there is more than one path between nodes (e.g. ExpectingGuests → FamilyHome → OutdoorLight → LightSensor and ExpectingGuests → OutdoorLight → LightSensor)