

Universidad de Granada

Departamento de Electrónica y Tecnología de Computadores

□ **A**. -0.5**A**.

□ **C**. 0.5A.

puntos) □ **A**. -6**V**.

□ **C**. -1.2**V**.

□ **B**. 0.6A.

□ **D**. 1/12A.

□ **B**. -5**V**.

□ **D**. -0.2**V**.

7. Para el circuito de la figura V_0 vale: (0.25

GIM

Examen A Febrero 2014

Duración 30 min

Alumno:

DNI:

Responda a las siguientes preguntas tipo test:

 1. Tenemos tres partículas cargadas con cargas q₁ = 5 pC, q₂ = -5 pC y q₃ = 2 pC, cuyas posicior vienen dadas según los vectores r₁ = 3î(m), r₂ = -3î(m) y r₃ = 4ĵ(m). Colocamos una partícula cargada q₄ en r₄ = 5î + 4ĵ(m). ¿Cuál ha de ser el valor de q₄ para que la fuerza neta sobre q₃ si nula?(0.5 puntos) □ A6pC □ B. 6pC □ C2pC □ D. 2pC 	la
 2. Las superficies equipotenciales (0.25 puntos) □ A. son tangentes a las líneas del campo eléctrico. □ B. son perpendiculares a las líneas del campo eléctrico. □ C. forman cualquier ángulo con las líneas del campo eléctrico. □ D. son siempre esféricas. 	
 3. Supongamos que el flujo del campo eléctrico a través de una determinada superficie cerrada es cero. Entonces podemos deducir que (0.25 puntos) □ A. no hay campo eléctrico en ningún punto. □ B. no hay cargas eléctricas en las inmediaciones de la superficie cerrada □ C. no hay carga neta dentro de la superficie cerrada □ D. el campo eléctrico es perpendicular a la superficie cerrada. 	3
 4. Las dos entradas de un de un amplificador operacional se denominan: (0.25 puntos) □ A. Positiva y negativa. □ B. Diferencial y no diferencial. □ C. Inversora y no inversora. □ D. Alta y baja. 	
 5. Para un amplificador operacional ideal, ¿qué sentencia es falsa?: (0.25 puntos) □ A. La corriente de entrada en los terminales de entrada es nula. □ B. La ganancia es infinita. □ C. La corriente de salida es nula □ D. En realimentación negativa V⁺ = V⁻. 	
6. Para el circuito de la figura $\mathbf{i_x}$ vale: (0.25 puntos) $ \frac{10 \text{ k}\Omega}{10 \text{ k}\Omega} = \frac{i_x}{10 \text{ k}\Omega} $	

Universidad de Granada

Departamento de Electrónica y Tecnología de Computadores **GIM**

Examen Febrero 2014

Duración 2:30 horas

Alumno:

DNI:

PROBLEMAS: (Responde en hojas separadas y numeradas para cada problema)

1. Hallar el equivalente Thevenin en los nodos A y B de la figura: (2.5 puntos) Pista: las fuentes dependientes no se anulan.

- 2. Dado el circuito de la figura: (2.5 puntos)
 - a) encuentra la función de transferencia. ¿Qué tipo de filtro es?
 - b) determina la atenuación en decibelios para una frecuencia de entrada de 2 kHz.
 - c) si $v_i(t) = 4\sin(2\pi \times 10^8 t)$ determina $v_o(t)$

 $R=10~k\Omega \quad R_{_{\rm f}}=25~k\Omega ~\rm C=7.958~nF$

3. Implementar con tecnología CMOS estática la función (1 punto)

$$F = \overline{(D + A(B + C))}$$
 lógica

4. Calcula:

- a) El valor de V_{o.} (1.25 puntos)
- b) El valor de la potencia consumida por el MOSFET y por el diodo. (0.75 puntos)

Datos:
$$V_{DD}=5 \text{ V}$$
; $R_D=1 \text{ k}\Omega$; $V_T=1 \text{ V}$; $k=2 \text{ mA/V}^2$; $V_G=2.5 \text{ V}$; $V_{\gamma}=0.6 \text{ V}$

Corriente en la región de saturación:
$$I_D = \frac{k}{2}(V_{GS} - V_T)^2$$

Corriente en la región lineal:
$$I_D = \frac{k}{2} \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right]$$

