Combinational Logic Circuits

Lecture-17

By Bhagyalaxmi Behera Asst. Professor (Dept. of ECE)

Combinational Logic

Overview of previous lecture

- What is a Combinational Circuit.
- ➤ How is it different from Sequential Circuit.
- > What is the analysis procedure for a Combinational Circuit.
- > What is the design procedure for a Combinational Circuit.

Binary Adder

➤ The simple binary addition consists of four possible elementary operations:

$$0+0=0$$
 $0+1=1$
 $1+0=1$
 $1+1=10$ (The higher significant bit of this result is called a *carry*).

When the augend and addend numbers contain more significant digits, the carry obtained from the addition of two bits is added to the next higher order pair of significant bits.

- ➤ A combinational circuit that performs the addition of two bits is called a *half adder* .
- ➤ One that performs the addition of three bits (two significant bits and a previous carry) is a *full adder*.
- ➤ A *binary adder–subtractor* is a combinational circuit that performs the arithmetic operations of addition and subtraction with binary numbers.

> Half Adder

From the verbal explanation of a half adder, we find that this circuit needs two binary inputs and two binary outputs. The input variables designate the augend and addend bits; the output variables produce the sum and carry. We assign symbols x and y to the two inputs and S (for sum) and C (for carry) to the outputs.

- > The truth table for the half adder is listed below.
- ➤ The C output is 1 only when both inputs are 1.
- ➤ The S output represents the least significant bit of the sum.

x	у	С	S
0	0	0	0
0	0	0	U
0	1	0	1
1	0	0	1
1	1	1	O

The simplified Boolean functions for the two outputs can be obtained directly from the truth table. The simplified sum-of-products expressions are

$$S = x'y + xy'$$
$$C = xy$$

Implementation of half adder

Implement HALF ADDER using NAND GATES

$$C = AB$$

HDL for Half Adder

module half_adder (output S, C, input x, y); xor (S, x, y);

and (C, x, y);
endmodule

Full Adder

- ➤ A full adder is a combinational circuit that forms the arithmetic sum of three bits. It consists of three inputs and two outputs. Two of the input variables, denoted by x and y, represent the two significant bits to be added. The third input, z, represents the carry from the previous lower significant position.
- ➤ The two outputs are designated by the symbols S for sum and C for carry. The binary variable S gives the value of the least significant bit of the sum. The binary variable C gives the output carry formed by adding the input carry and the bits of the words.

The truth table of the full adder is listed below.

Full Adder								
y	Z	C	S					
0	0	0	0					
0	1	0	1					
1	0	0	1					
1	1	1	0					
0	0	0	1					
0	1	1	O					
1	0	1	O					
1	1	1	1					
	0 1 1 0	0 0 0 1 1 0 1 1 0 0	0 0 0 0 1 0 1 0 0 1 1 1 0 0 0					

K-Maps for full adder

The logic diagram for the full adder implemented in sumof-products form.

Implementation of full adder in sum-of-products form

It can also be implemented with two half adders and one OR gate,

The S output from the second half adder is the exclusive-OR of z and

the output of the first half adder, giving

$$S = z \oplus (x \oplus y)$$

$$= z'(xy' + x'y) + z(xy' + x'y)'$$

$$= z'(xy' + x'y) + z(xy + x'y')$$

$$= xy'z' + x'yz' + xyz + x'y'z$$

The carry output is

$$C = z(xy' + x'y) + xy = xy'z + x'yz + xy$$

Realize Full ADDER using NAND gates only

Sum =
$$A \oplus B \oplus C$$

Carry =
$$A.B + (A \oplus B) C$$

HDL for Full Adder

```
// Description of full adder
// module full_adder (S, C, x, y, z);
// output S, C;
// input x, y, z;
module full_adder (output S, C, input x, y, z);
wire S1, C1, C2;
// Instantiate half adders
half_adder HA1 (S1, C1, x, y);
half_adder HA2 (S, C2, S1, z);
or G1 (C, C2, C1);
endmodule
```


Binary adder

 This is also called Ripple Carry Adder, because of the construction with full adders are connected in cascade.

Subscript i:	3	2	1	0	5,114
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_{i}
Sum	1	1	1	0	S_{i}
Output carry	0	0	1	1	C_{i+1}

HDL for Ripple Carry Adder

```
module ripple_carry_4_bit_adder ( output [3: 0] Sum, output C4,
input [3: 0] A, B,
input Co);
wire C1, C2, C3;
// Intermediate carries
// Instantiate chain of full adders
full_adder FAo (Sum[o], C1, A[o], B[o], Co),
               FA1 (Sum[1], C2, A[1], B[1], C1),
              FA2 (Sum[2], C_3, A[2], B[2], C_2),
              FA<sub>3</sub> (Sum[<sub>3</sub>], C<sub>4</sub>, A[<sub>3</sub>], B[<sub>3</sub>], C<sub>3</sub>);
endmodule
```

Carry Propagation

- ➤ It causes a unstable factor on carry bit, and produces a longest propagation delay.
- The signal from C_i to the output carry C_{i+1} , propagates through an AND and OR gates, so, for an n-bit RCA, there are 2n gate levels for the carry to propagate from input to output.

Carry Propagation

- ➤ Because the propagation delay will affect the output signals on different time, so the signals are given enough time to get the precise and stable outputs.
- ➤ The most widely used technique employs the principle of carry look-ahead to improve the speed of the algorithm.

Boolean functions

$$P_i = A_i \oplus B_i$$

 $P_i = A_i \oplus B_i$ steady state value

$$G_i = A_i B_i$$

steady state value

Output sum and carry

$$S_i = P_i \oplus C_i$$

$$C_{i+1} = G_i + P_i C_i$$

 G_i : carry generate P_i : carry propagate

 C_0 = input carry

$$C_1 = G_o + P_o C_o$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

 \triangleright C₃ does not have to wait for C₂ and C₁ to propagate.

Logic diagram of carry look-ahead generator

 $ightharpoonup C_3$ is propagated at the same time as C_2 and C_1 .

4-bit adder with Carry Look ahead

 \triangleright Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

THANK YOU