

UNIDADE II

Tópicos de Matemática Aplicada

Prof. Me. Rene Ignácio

Introdução

Nesta unidade II, veremos:

- O que são matrizes;
- Os tipos de matrizes;
- As operações realizadas com matrizes; e
- Sistemas lineares.

- As matrizes são representadas por espécies de tabelas, em que vemos valores numéricos nas suas linhas e nas suas colunas.
- Pontuações de cinco candidatos a uma vaga de emprego em avaliações de Português,
 Inglês e Lógica. Essas pontuações podem variar de 0 a 100.

Candidato	Português	Inglês	Lógica
Claudia	83	67	78
Lucila	64	71	75
Rafael	52	79	68
Tatiana	91	57	63
Tiago	87	92	69

Uma matriz representa, de modo completo, as pontuações dos candidatos:

Candidato	Português	Inglês	Lógica	
Claudia	83	67	78	
Lucila	64	71	75	
Rafael	52	79	68	
Tatiana	91	57	63	
Tiago	87	92	69	

$$A = \begin{pmatrix} 83 & 67 & 78 \\ 64 & 71 & 75 \\ 52 & 79 & 68 \\ 91 & 57 & 63 \\ 87 & 91 & 69 \end{pmatrix}$$

Uma matriz que representa, apenas, as pontuações de Claudia, indicada por B:

Candidato	Português	Inglês	Lógica
Claudia	83	67	78
Lucila	64	64 71	
Rafael	52	79	68
Tatiana	91	57	63
Tiago	87	92	69

$$B = (83 \quad 67 \quad 78)$$

Fonte: autoria própria.

Como a matriz B tem uma única linha, ela é classificada como:

Matriz linha.

Uma matriz que representa as pontuações dos candidatos em Lógica, indicada por C:

Candidato	Português	Inglês	Lógica		/78\
Claudia	83	67	78		/ \
Lucila	64	71	75		75
Rafael	52	79	68	C =	68
Tatiana	91	57	63		63
Tiago	87	92	69		\ 65 /
		F	- -onte: autoria própria.		\69/

Como a matriz C tem uma única coluna, ela é classificada como:

Matriz coluna.

- De modo geral, podemos dizer que uma matriz de ordem mxn ("eme por ene") é uma tabela de números reais dispostos em m linhas e n colunas.
- Cada um desses números é um elemento da matriz e é identificado pela sua posição, ou seja, pela linha e pela coluna em que ocupa.

A matriz A, das avaliações, tem ordem 5x3:

- 5 linhas e 3 colunas;
- D;
- E.

$$A = \begin{pmatrix} 83 & 67 & 78 \\ 64 & 71 & 75 \\ 52 & 79 & 68 \\ 91 & 57 & 63 \\ 87 & 91 & 69 \end{pmatrix}_{5x}$$

Observando a posição dos elementos na matriz A:

- O elemento da 1^a linha e da 1^a coluna, representado por a_{11} , é o número 83;
- O elemento da 1^a linha e da 2^a coluna, representado por a_{12} , é o número 67;
- O elemento da 1^a linha e da 3^a coluna, representado por a_{13} , é o número 78;
- O elemento da 2^a linha e da 1^a coluna, representado por a_{21} , é o número 64;
- O elemento da 2^a linha e da 2^a coluna, representado por a_{22} , é o número 71;
- O elemento da 2^a linha e da 3^a coluna, representado por a_{23} , é o número 75; e
- Assim por diante.

$$A = \begin{pmatrix} 83 & 67 & 78 \\ 64 & 71 & 75 \\ 52 & 79 & 68 \\ 91 & 57 & 63 \\ 87 & 91 & 69 \end{pmatrix}_{5x3}$$

Generalizando:

Um elemento qualquer de uma matriz A é indicado por a_{ij} , sendo:

- i = 1,2,3,..., m a linha que o elemento ocupa;
- j = 1,2,3,..., n a coluna que o elemento ocupa;
- Os valores de i e de j para dado elemento a_{ij} são chamados de índices;

De maneira geral, temos a representação a seguir:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{22} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}_{mxn}$$
Fonte: autoria própris

 Podemos ter qualquer número real como um elemento de uma matriz, e não, apenas, números inteiros e positivos.

- Inteiros, como o elemento $a_{23} = 7$;
- Fracionários, como o elemento $a_{13} = \frac{5}{6}$;
- Na matriz D, temos como elementos números:

 Positivos, como o elemento $a_{13} = \frac{5}{6}$;

 Negativos, como o elemento $a_{11} = -1.3$;

 Negativos, como o elemento $a_{11} = -1.3$; $D = \begin{pmatrix} -1.3 & \pi & \frac{5}{6} \\ \sqrt{2} & 0 & 7 \end{pmatrix}$

Fonte: autoria própria.

• Irracionais, como o elemento $a_{12} = \pi$.

Tipos de matrizes

Matriz nula ou matriz zero (E):

Todos os elementos da matriz são iguais a zero.

Matriz linha (L):

Formada por uma única linha.

Matriz coluna (C):

Formada por uma única coluna.

Matriz quadrada (F):

Quantidade m de linhas igual à quantidade n de colunas.

$$E = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}_{2x2}$$

$$L = (3 -0.8 32)_{1x3}$$

$$C = \begin{pmatrix} 5 \\ -9 \\ 1,3 \end{pmatrix}_{3x1}$$

$$F = \begin{pmatrix} -2 & 3 & 99 \\ 1,5 & 9 & -3 \\ 7,8 & 134 & 9,2 \end{pmatrix}_{3x3}$$

Diagonais de uma matriz quadrada

- Para as matrizes quadradas, a diagonal principal é definida pelos elementos a_{ij} , em que i=j.
- Em uma matriz de ordem 3x3, a diagonal principal é formada pelos elementos a_{11} , a_{22} e a_{33} .
- Elementos que constituem a diagonal principal da matriz F: -2, 9 e 9,2.

$$F = \begin{pmatrix} -2 & 3 & 99 \\ 1,5 & 9 & -3 \\ 7,8 & 134 & 9,2 \end{pmatrix}$$
 Fonte: autoria própria.

- Em uma matriz de ordem 3x3, a diagonal secundária é formada pelos elementos a_{11} , a_{22} e a_{33} .
 - Elementos que constituem a diagonal secundária da matriz F:
 7, 8, 9 e 99.

$$F = \begin{pmatrix} -2 & 3 & 99 \\ 1,5 & 9 & -3 \\ 7,8 & 134 & 9,2 \end{pmatrix}_{3x3}$$
 Fonte: autoria própria.

Matriz diagonal

Se todos os elementos de uma matriz quadrada são iguais a zero, com a exceção de, pelo menos, um elemento da diagonal principal, ela é chamada de matriz diagonal, como as matrizes G e H:

$$G = \begin{pmatrix} 256 & 0 \\ 0 & -3,44 \end{pmatrix}_{2x2}^{\text{Fonte: autoria própria.}}$$

$$H = \begin{pmatrix} -5 & 0 & 0 \\ 0 & 9,7 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{3x3}^{\text{Fonte: autoria própria.}}$$

Matriz identidade

Se todos os elementos da diagonal principal de uma matriz quadrada forem iguais a 1 e todos os outros elementos forem iguais a 0, essa matriz é chamada de matriz identidade ou matriz unidade, como as matrizes I_2 e I_3 :

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{2x2}$$
 Fonte: autoria própria.

$$I_3=egin{pmatrix}1&0&0\0&1&0\0&0&1\end{pmatrix}_{3\chi3}$$
 Fonte: autoria própria.

Interatividade

A matriz $A = \begin{pmatrix} 9 & 3 \\ 2 & 5 \end{pmatrix}$ é uma matriz:

- a) Linha.
- b) Coluna.
- c) Quadrada.
- d) Nula.
- e) Identidade.

Resposta

A matriz $A = \begin{pmatrix} 9 & 3 \\ 2 & 5 \end{pmatrix}$ é uma matriz:

- a) Linha.
- b) Coluna.
- c) Quadrada.
- d) Nula.
- e) Identidade.

Matriz transposta

■ A matriz transposta de *J*, indicada por *J*^t, é uma matriz de ordem nxm, cujas linhas são formadas pelas colunas de J e cujas colunas são formadas pelas linhas de J.

A matriz J^t resulta da troca ordenada das linhas pelas colunas de J:

- A linha 1 de *J* vira a coluna 1 de *J^t*;
- A linha 2 de J vira a coluna 2 de J^t.

$$J = \begin{pmatrix} 9 & 13 & -7,5 \\ 5 & 68 & 132 \end{pmatrix}_{2x3}^{\text{Fonte: autoria própria.}}$$

$$J^{t} = \begin{pmatrix} 9 & 5 \\ 13 & 68 \\ -7,5 & 132 \end{pmatrix}_{3x2}^{\text{Fonte: autoria própria.}}$$

Matriz oposta

■ A matriz oposta de J, indicada por -J, é uma matriz de ordem mxn, cujos elementos são os opostos dos elementos de J.

Se o elemento a_{mn} de J:

- For positivo, em -J ele será negativo;
- For negativo, em -J ele será positivo.

$$J = \begin{pmatrix} 9 & 13 & -7.5 \\ 5 & 68 & 132 \end{pmatrix}_{2x3}^{\text{Fonte: autoria própria.}}$$

$$-J = \begin{pmatrix} -9 & -13 & 7,5 \\ -5 & -68 & -132 \end{pmatrix}_{2x3}^{\text{Fonte: autoria própria.}}$$

Igualdade de matrizes

- Igualdade de matrizes.
- Duas matrizes *K* e *L*, de mesma ordem, são iguais se os seus elementos de mesmo índice são iguais.

$$K = \begin{pmatrix} 2 & -5 \\ 0 & 8 \\ 0,3 & 13 \end{pmatrix}_{3x2}$$
 Fonte: autoria própria.

$$L = \begin{pmatrix} 2 & -5 \\ 0 & 8 \\ 0,3 & 13 \end{pmatrix}$$
 Fonte: autoria própria.

Soma de matrizes

 De modo geral, podemos dizer que, se A e B são matrizes de mesma ordem mxn, então a matriz C, dada por C = A + B, será uma matriz de ordem mxn, em que cada elemento é o resultado da soma dos elementos correspondentes de A e de B.

A soma de duas matrizes $A = (a_{ij})$ mxn e $B = (b_{ij})$ mxn é a matriz $C = (c_{ij})$ mxn, em que:

• $c_{ij}=a_{ij}+b_{ij}$.

Com:

- $1 \le i \le m$ (linhas); e
- $1 \le j \le n$ (colunas).

Exemplo de soma de matrizes

- A + B = C.
- A e B são matrizes de mesma ordem: 3x2.
- $c_{ij} = a_{ij} + b_{ij}$
- $c_{11} = a_{11} + b_{11}$
- $c_{12} = a_{12} + b_{12}$
- $c_{21} = a_{21} + b_{12}$

$$c_{32}=a_{32}+b_{32}$$

$$A = \begin{pmatrix} 12 & -5 \\ 0 & 8 \\ 27,5 & 10 \end{pmatrix}_{3x2}$$

$$B = \begin{pmatrix} -8 & 2\\ 37 & 0\\ 1 & -9 \end{pmatrix}_{3x2}$$

E, assim por diante, até o último elemento:
$$C = A + B = \begin{pmatrix} 12 + (-8) & (-5) + 2 \\ 0 + 37 & 8 + 0 \\ 27,5 + 1 & 10 + (-9) \end{pmatrix}_{3x2}$$

$$C = \begin{pmatrix} 4 & -3 \\ 37 & 8 \\ 28,5 & 1 \end{pmatrix}_{3x2}$$

Soma de matrizes – Atenção!

Matrizes de ordens diferentes não podem ser somadas!

• $c_{ij} = a_{ij} + b_{ij}$

Caso A + B:

$$A = \begin{pmatrix} 12 & -5 \\ 0 & 8 \\ 27,5 & 10 \end{pmatrix}_{3x2} B = \begin{pmatrix} -8 & 2 \\ 37 & 0 \end{pmatrix}_{2x2}$$
 Fonte: autoria própria.

■ Na matriz B não existem os elementos b_{31} e b_{32} para serem somados com os elementos a_{31} e a_{32} da matriz A.

Caso C + D:

$$C = \begin{pmatrix} -8 & 2 & 5 \\ 37 & 0 & 4 \end{pmatrix}_{2x3}$$
 $D = \begin{pmatrix} 12 & -5 & 8 \\ 0 & 8 & 4 \\ 27,5 & 10 & 2 \end{pmatrix}_{3x3}$ Fonte: autoria própria.

■ Na matriz C não existem os elementos c_{31} , c_{32} e c_{33} para serem somados com os elementos d_{31} , d_{32} e d_{33} da matriz D.

Multiplicação de matriz por escalar

Um escalar, no sentido aqui utilizado, é um valor numérico.

Se A é uma matriz de ordem mxn e k é um escalar, então a matriz D = k. A é uma matriz de ordem mxn, em que cada elemento é o resultado da multiplicação do número k por cada elemento de A:

• $d_{ij}=k.a_{ij}$.

Com:

- $1 \le i \le m$ (linhas); e
- $1 \le j \le n$ (colunas).

Exemplo de multiplicação de matriz por escalar

- \bullet $d_{11}=5\cdot a_{11}$
- $d_{12} = 5 \cdot a_{12}$
- E, assim por diante, até o último elemento de A.
- \bullet $d_{33}=5 \cdot a_{33}$

$$D = k \cdot A = 5 \cdot \begin{pmatrix} 12 & -5 \\ 0 & 8 \\ 27,5 & 10 \end{pmatrix} = \begin{pmatrix} 5 \cdot 12 & 5 \cdot (-5) \\ 5 \cdot 0 & 5 \cdot 8 \\ 5 \cdot 27,5 & 5 \cdot 10 \end{pmatrix}_{3x2}$$

$$D = \begin{pmatrix} 60 & -25 \\ 0 & 40 \\ 137,5 & 50 \end{pmatrix}_{3x2}$$

Exemplo de soma de matrizes que foram multiplicadas por escalares

$$P = 8 \cdot M - 2 \cdot N$$

$$M = \begin{pmatrix} -7 & 23 \\ 12 & 0 \end{pmatrix}_{2x2}$$

$$N = \begin{pmatrix} 100 & 10 \\ -0.1 & -5 \end{pmatrix}_{2x2}$$

$$P = 8 \cdot M - 2 \cdot N = 8 \cdot \begin{pmatrix} -7 & 23 \\ 12 & 0 \end{pmatrix} + (-2) \cdot \begin{pmatrix} 100 & 10 \\ -0,1 & -5 \end{pmatrix}$$

$$P = \begin{pmatrix} 8 \cdot (-7) & 8 \cdot 23 \\ 8 \cdot 12 & 8 \cdot 0 \end{pmatrix} + \begin{pmatrix} (-2) \cdot 100 & (-2) \cdot 10 \\ (-2) \cdot (-0,1) & (-2) \cdot (-5) \end{pmatrix}$$

$$P = \begin{pmatrix} -56 & 184 \\ 96 & 0 \end{pmatrix} + \begin{pmatrix} -200 & -20 \\ 0.2 & 10 \end{pmatrix}$$

$$P = \begin{pmatrix} -56 + (-200) & 184 + (-20) \\ 96 + 0.2 & 0 + 10 \end{pmatrix}$$

$$P = 8 \cdot M - 2 \cdot N = \begin{pmatrix} -256 & 164 \\ 96,2 & 10 \end{pmatrix}$$

Multiplicação de matrizes

Somente podemos fazer a multiplicação de duas matrizes A e B, caso a quantidade de colunas da matriz A seja igual à quantidade de linhas da matriz B:

$$A \cdot B$$

 $(m \times p) (p \times n)$

Fonte: autoria própria.

Se essa condição for atendida, o resultado obtido é uma matriz C, que tem a mesma quantidade de linhas da matriz A e a mesma quantidade de colunas da matriz B:

$$\frac{A \cdot B}{(m \times p) \cdot (p \times n)} = \frac{C}{(m \times n)}$$

Fonte: autoria própria.

Os elementos da matriz C são dados por:

$$c_{ik} = \sum_{j=1}^{n} a_{ij} . b_{jk} = a_{i1} . b_{1k} + \dots + a_{in} . b_{nk}$$

Exemplo de multiplicação de matrizes

 $T = R \cdot S$.

$$R = \begin{pmatrix} 12 & -7 & 3 \\ 50 & 10 & 2 \end{pmatrix}_{2x3} \qquad S = \begin{pmatrix} 25 \\ -8 \\ 6 \end{pmatrix}_{3x1} \qquad \begin{bmatrix} A & \cdot & B \\ (m \times p) & (p \times n) \end{bmatrix} = \begin{pmatrix} C \\ (m \times p) & (p \times n) \end{bmatrix}$$
 Fonte: autoria própria.

- A multiplicação é possível, pois R tem 3 colunas e S tem 3 linhas, ou seja, o número de linhas de S é o número de colunas de R.
- Mas não é possível fazer $U = S \cdot R$, pois S tem 1 coluna e R tem 2 linhas, ou seja, o número de linhas de R não é o número de colunas de S.

$$S = \begin{pmatrix} 25 \\ -8 \\ 6 \end{pmatrix}_{2x4} \qquad R = \begin{pmatrix} 12 & -7 & 3 \\ 50 & 10 & 2 \end{pmatrix}_{2x3}$$

Exemplo de multiplicação de matrizes

 $T = R \cdot S$

$$R = \begin{pmatrix} 12 & -7 & 3 \\ 50 & 10 & 2 \end{pmatrix}_{2x3}$$

$$R = \begin{pmatrix} 12 & -7 & 3 \\ 50 & 10 & 2 \end{pmatrix}_{2x3} \qquad T = R \cdot S = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \end{pmatrix} \cdot \begin{pmatrix} s_{11} \\ s_{21} \\ s_{31} \end{pmatrix} = \begin{pmatrix} r_{11} \cdot s_{11} + r_{12} \cdot s_{21} + r_{13} \cdot s_{31} \\ r_{21} \cdot s_{11} + r_{22} \cdot s_{21} + r_{23} \cdot s_{31} \end{pmatrix} = \begin{pmatrix} t_{11} \cdot s_{11} + r_{22} \cdot s_{21} + r_{23} \cdot s_{31} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{31} \end{pmatrix} = \begin{pmatrix} t_{21} \cdot s_{21} + r_{22} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{31} \end{pmatrix} = \begin{pmatrix} t_{21} \cdot s_{21} + r_{22} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \end{pmatrix} = \begin{pmatrix} t_{21} \cdot s_{21} + r_{22} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{21} \cdot s_{21} + r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{22} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{23} \cdot s_{21} + r_{23} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{23} \cdot s_{21} + r_{23} \cdot s_{21} + r_{23} \cdot s_{21} \\ r_{23} \cdot s_{21} + r_{23} \cdot s_{22} + r_{23} \cdot s_{22} \\ r_{23} \cdot s_{21} + r_{23} \cdot s_{22} + r_{23} \cdot s_{23} + r_{23} \cdot s_$$

$$S = \begin{pmatrix} 25 \\ -8 \\ 6 \end{pmatrix}_{3x1}$$

$$\frac{R \cdot S}{(2 \times 3) \cdot (3 \times 1)} = \frac{T}{(2 \times 1)}$$

$$T = R \cdot S = \begin{pmatrix} 12 & -7 & 3 \\ 50 & 10 & 2 \end{pmatrix} \cdot \begin{pmatrix} 25 \\ -8 \\ 6 \end{pmatrix} = \begin{pmatrix} 12 \cdot 25 + (-7) \cdot (-8) + 2 \cdot 6 \\ 50 \cdot 25 + 10 \cdot (-8) + 2 \cdot 6 \end{pmatrix}$$

Fonte: autoria própria.
$$T = {374 \choose 1182}_{2x1}$$

Matriz inversa

A matriz inversa da matriz quadrada A, indicada por A^{-1} , é calculada por meio da seguinte igualdade:

- $A \cdot A^{-1} = I$.
- *I* é a matriz identidade.
- As matrizes quadradas A, A^{-1} e I têm a mesma ordem mxm.

Vale destacar que:

- Nem toda matriz tem matriz inversa;
 - Somente matrizes quadradas podem ter matrizes inversas;
 - A matriz inversa I⁻¹ da matriz identidade I é a própria matriz identidade;
 - A inversa da inversa da matriz A é a própria matriz A.

Exemplo de matriz inversa

 $A \cdot A^{-1} = I$.

$$\bullet A \cdot A^{-1} = I.$$

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & 1 \end{pmatrix} \qquad A^{-1} = \begin{pmatrix} 0 & -0.5 & 0.5 \\ -0.5 & 0.25 & 0.25 \\ 1 & 1 & -1 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & 1 \end{pmatrix} \qquad A^{-1} = \begin{pmatrix} 0 & -0.5 & 0.5 \\ -0.5 & 0.25 & 0.25 \\ 1 & 1 & -1 \end{pmatrix} \qquad I = A \cdot A^{-1} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & -0.5 & 0.5 \\ -0.5 & 0.25 & 0.25 \\ 1 & 1 & -1 \end{pmatrix}$$

$$I = A \cdot A^{-1} = \begin{pmatrix} 2.0 + 0.(-0.5) + 1.1 & 2.(-0.5) + 0.0.25 + 1.1 & 2.0.5 + 0.0.25 + 1.(-1) \\ 1.0 + 2.(-0.5) + 1.1 & 1.(-0.5) + 2.0.25 + 1.1 & 1.0.5 + 2.0.25 + 1.(-1) \\ 3.0 + 2.(-0.5) + 1.1 & 3.(-0.5) + 2.0.25 + 1.1 & 3.0.5 + 2.0.25 + 1.(-1) \end{pmatrix}$$

$$I = A \cdot A^{-1} = \begin{pmatrix} 0 + 0 + 1 & -1 + 0 + 1 & 1 + 0 - 1 \\ 0 - 1 + 1 & -0.5 + 0.5 + 1 & 0.5 + 0.5 - 1 \\ 0 - 1 + 1 & -1.5 + 0.5 + 1 & 1.5 + 0.5 - 1 \end{pmatrix}$$

$$I = A \cdot A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 Fonte: autoria própria.

Interatividade

Está correto o que se afirma em:

- a) As matrizes de ordens diferentes podem ser somadas.
- b) As matrizes quadradas não podem ser multiplicadas por um escalar.
- c) A inversa de uma matriz não pode ser quadrada.
- d) Na multiplicação de duas matrizes A e B, a quantidade de colunas da matriz A deve ser diferente da quantidade de linhas da matriz B.
- e) A matriz identidade é obtida pela multiplicação de uma matriz pela sua inversa.

Resposta

Está correto o que se afirma em:

- a) As matrizes de ordens diferentes podem ser somadas.
- b) As matrizes quadradas não podem ser multiplicadas por um escalar.
- c) A inversa de uma matriz não pode ser quadrada.
- d) Na multiplicação de duas matrizes A e B, a quantidade de colunas da matriz A deve ser diferente da quantidade de linhas da matriz B.
- e) A matriz identidade é obtida pela multiplicação de uma matriz pela sua inversa.

Determinante de uma matriz quadrada

 O determinante de uma matriz quadrada é um número que pode ser usado para acharmos a solução de um sistema de equações lineares.

Matrizes 1x1, o determinante é o seu único elemento:

$$A = (a_{11}) \Longrightarrow det A = a_{11}$$
 $B = (93) \det B = |93|$

B = (93)Matrizes 2x2, o determinante é obtido pelo resultado da multiplicação dos elementos da diagonal principal subtraído do resultado da multiplicação dos elementos da diagonal secundária:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \Longrightarrow \det A = a_{11}. a_{22} - a_{12}. a_{21}$$

$$C = \begin{bmatrix} 10 & 20 \\ 30 & 40 \end{bmatrix}$$

$$\det C = \begin{vmatrix} 10 & 20 \\ 30 & 40 \end{vmatrix} = 10.40 - 20.30 = 400 - 600 = -200$$

Determinante de uma matriz quadrada

Matrizes 3x3, o determinante é obtido pela aplicação da regra de Sarrus.

$$D = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 Fonte: autoria própria.

Regra de Sarrus

Copiar os elementos da primeira e da segunda colunas ao lado da terceira coluna:

$$D = \begin{vmatrix} 1 & 2 & 3 & 1 & 2 \\ 4 & 5 & 6 & 4 & 5 \\ 7 & 8 & 9 & 7 & 8 \end{vmatrix}$$

Regra de Sarrus

1 2 3 1 2

4 5 6 4 5

7 8 9 7 8

Multiplicar os 3 elementos das 3 diagonais para a direita e somar os resultados:

Fonte: autoria própria.

1.5.9+2.6.7+3.4.8.

Repetir para as 3 diagonais para a esquerda e subtrair do resultado anterior:

- (1.5.9+2.6.7+3.4.8) (3.5.7+1.6.8+2.4.7).
- O determinante é o resultado dessa operação.
 - $\det D = (45+84+96)-(105+48+72)$.
 - $\det D = 225 225$.
 - det D = 0.

Resumo da regra de Sarrus

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\det A = (a_{11}, a_{22}, a_{33} + a_{12}, a_{23}, a_{31} + a_{13}, a_{21}, a_{32}) - (a_{13}, a_{22}, a_{31} + a_{11}, a_{23}, a_{32} + a_{12}, a_{21}, a_{33})$$

Sistemas lineares

Equação linear tem a forma:

$$a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = b.$$

- Coeficientes: a_1, a_2, \dots, a_n .
- Incógnitas: $x_1, x_2, ..., x_n$.
- Termo independente: *b*.

$$-2x_1=16 (x_1=8).$$

■
$$3x_1+7x_2=58$$
 ($x_1=-4$ e $x_2=10$).

Sistemas lineares

Sistema linear de *m* equações e *n* incógnitas:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Solução do sistema linear é um conjunto de números que satisfaz todas as equações.

Sistemas lineares

Exemplo:

$$\begin{cases} 3x_1 - 5x_2 = 6 \\ x_1 + 5x_2 = 22 \end{cases}$$

Solução do sistema:

- $x_1 = 7$
- $x_2 = 3$
- $\begin{cases} 3.7 5.3 = 21 15 = 6 \\ 7 + 5.3 = 7 + 15 = 22 \end{cases}$

Como determinar a solução do sistema?

Dois métodos:

Substituição e adição.

Método da substituição

$$\begin{cases} 3x_1 - 5x_2 = 6 & \text{(I)} \\ x_1 + 5x_2 = 22 & \text{(II)} \end{cases}$$

• (II)
$$x_1 = 22 - 5x_2$$

• (I)
$$3(22 - 5x_2) - 5x_2 = 6$$

$$\blacksquare$$
 (I) $66 - 15x_2 - 5x_2 = 6$

• (I)
$$66 - 20x_2 = 6$$

$$-$$
 (I) $-20x_2 = 6 - 66$

• (I)
$$-20x_2 = -60$$

• (I)
$$x_2 = 3$$

• (II)
$$x_1 = 22 - 5.3 = 22 - 15$$

• (II)
$$x_1 = 7$$

Método da adição

$$\begin{cases} 3x_1 - 5x_2 = 6 & \text{(I)} \\ x_1 + 5x_2 = 22 & \text{(II)} \end{cases}$$

$$3x_1 - 5x_2 = 6 (I)$$

$$-3x_1 - 15x_2 = -66 (3. II)$$

$$-20x_2 = -60 (I) (3. II)$$

•
$$x_2 = 3$$

$$\bullet$$
 (II) $x_1 + 5.3 = 22$

$$x_1 = 22 - 15$$

•
$$x_1 = 7$$

Classificação dos sistemas lineares

Possível ou compatível:

Admite uma solução.

Possível e determinado:

Admite uma única solução.

$$\begin{cases} 3x_1 - 5x_2 = 6 \\ x_1 + 5x_2 = 22 \end{cases}$$

 $x_1 = 7, x_2 = 3$

Possível e indeterminado:

Admite infinitas soluções.

$$\begin{cases} x_1 + x_2 = 12 \\ 3x_1 + 3x_2 = 36 \end{cases}$$

Impossível ou incompatível:

Não admite uma solução.

$$\begin{cases} x_1 + x_2 = 6 \\ x_1 + x_2 = 10 \end{cases}$$

Interatividade

Está incorreto o que se afirma em:

- a) Em uma matriz 1x1, o determinante é o seu único elemento.
- b) Em matrizes 3x3, o determinante é obtido pela aplicação da regra de Sarrus.
- c) A solução de um sistema linear é o conjunto de números que satisfaz todas as equações.
- d) Substituição e adição são métodos de solução de sistemas lineares.
- e) Um sistema linear possível e determinado admite infinitas soluções.

Resposta

Está incorreto o que se afirma em:

- a) Em uma matriz 1x1, o determinante é o seu único elemento.
- b) Em matrizes 3x3, o determinante é obtido pela aplicação da regra de Sarrus.
- c) A solução de um sistema linear é o conjunto de números que satisfaz todas as equações.
- d) Substituição e adição são métodos de solução de sistemas lineares.
- e) Um sistema linear possível e determinado admite infinitas soluções.

Expressão matricial de um sistema linear

Um sistema linear pode ser representado com o uso de matrizes:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

- Matriz é construída pelos coeficientes das incógnitas;
- Matriz coluna construída pelas incógnitas;
- Matriz coluna construída pelos termos independentes.

Expressão matricial de um sistema linear

$$\begin{cases} 3x_1 - 5x_2 = 6 \\ 2x_1 + 10x_2 = 44 \end{cases}$$

$$\begin{pmatrix} 3 & -5 \\ 2 & 10 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 44 \end{pmatrix}$$

Resolução de sistemas lineares pela regra de Cramer

- A regra de Cramer é um método usado na resolução de sistemas lineares que utiliza o cálculo de determinantes.
- Essa regra pode ser usada no caso de um sistema linear ter o número de equações igual ao número de incógnitas.
- O determinante tem que ser diferente de zero.

Resolução de sistemas lineares pela regra de Cramer

$$\begin{cases} a_{11}x_1 - a_{12}x_2 = b_1 \\ a_{21}x_1 - a_{22}x_2 = b_2 \end{cases}$$

Matriz dos coeficientes das incógnitas x_1 e x_2 :

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Matriz dos coeficientes com a substituição dos coeficientes de x_1 pelos termos independentes b_1 e b_2 :

 $A_{x_1} = \begin{pmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{pmatrix}$

Matriz dos coeficientes com a substituição dos coeficientes de x_1 pelos termos independentes b_1 e b_2 :

$$A_{x_2} = \begin{pmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{pmatrix}$$

Resolução de sistemas lineares pela regra de Cramer

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad A_{x_1} = \begin{pmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{pmatrix} \quad A_{x_2} = \begin{pmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{pmatrix}$$

Os componentes da solução do sistema são calculados por:

$$x_1 = \frac{\det A_{x_1}}{\det A}$$

$$x_2 = \frac{\det A_{x_2}}{\det A}$$

Resolução de sistemas lineares pela regra de Cramer 3x3

Matriz dos coeficientes a:

Fonte: autoria própria.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

As matrizes com substituição dos coeficientes de x pelos termos independentes:

$$A_{x_1} = \begin{pmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{pmatrix} \qquad A_{x_2} = \begin{pmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{pmatrix} \qquad A_{x_3} = \begin{pmatrix} a_{11} & a_{13} & b_1 \\ a_{21} & a_{23} & b_2 \\ a_{31} & a_{33} & b_3 \end{pmatrix}$$

$$A_{x_2} = \begin{pmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{pmatrix}$$

$$A_{x_3} = \begin{pmatrix} a_{11} & a_{13} & b_1 \\ a_{21} & a_{23} & b_2 \\ a_{31} & a_{33} & b_3 \end{pmatrix}$$

E os componentes da solução do sistema:

$$x_1 = \frac{\det A_{x_1}}{\det A} \qquad \qquad x_2 = \frac{\det A_{x_2}}{\det A} \qquad \qquad x_3 = \frac{\det A_{x_3}}{\det A}$$

$$x_2 = \frac{\det A_{x_2}}{\det A}$$

$$x_3 = \frac{\det A_{x_3}}{\det A}$$

Resolução de sistemas lineares pelo método do escalonamento

 No método do escalonamento (ou método de Gauss), convertemos a matriz associada a determinado sistema linear de n equações a n incógnitas em uma matriz escalonada.

Aplicação de uma série de operações algébricas que não alteram a solução do sistema:

- Somar os elementos de duas linhas da matriz;
- Multiplicar os elementos de uma linha da matriz por um número real diferente de zero;
- Somar os múltiplos dos elementos de uma linha com elementos de outra linha da matriz;
- Trocar posições de linhas da matriz.

Resolução de sistemas lineares pelo método do escalonamento

Objetivo do escalonamento:

Chegar a sistemas que facilitem os cálculos das incógnitas:

$$\begin{cases} 1x_1 + k_1 x_2 = k_2 \\ 0x_1 + 1x_2 = k_3 \end{cases}$$

$$\begin{cases} 1x_1 + k_1x_2 + k_2x_3 = k_3 \\ 0x_1 + 1x_2 + k_4x_3 = k_5 \\ 0x_1 + 0x_2 + 1x_3 = k_6 \end{cases}$$

$$\begin{cases} 1x_1 + k_1x_2 = k_2 \\ 0x_1 + 1x_2 = k_3 \end{cases} \begin{cases} 1x_1 + k_1x_2 + k_2x_3 = k_3 \\ 0x_1 + 1x_2 + k_4x_3 = k_5 \\ 0x_1 + 0x_2 + 1x_3 = k_6 \end{cases} \begin{cases} 1x_1 + k_1x_2 + k_2x_3 + k_3x_4 = k_4 \\ 0x_1 + 1x_2 + k_5x_3 + k_6x_4 = k_7 \\ 0x_1 + 0x_2 + 1x_3 + k_8x_4 = k_9 \\ 0x_1 + 0x_2 + 0x_3 + 1x_4 = k_{10} \end{cases}$$

Exemplo de escalonamento

$$\begin{cases} 2x_1 + 4x_2 - 1x_3 = -20 \\ 3x_1 - 2x_2 + 5x_3 = 49 \\ -5x_1 + 10x_2 - 2x_3 = -77 \end{cases}$$

Com os coeficientes e com os termos independentes desse sistema, podemos elaborar a matriz:

$$\begin{pmatrix}
2 & 4 & -1 & -20 \\
3 & -2 & 5 & 49 \\
-5 & 10 & -2 & -77
\end{pmatrix}$$

Exemplo de escalonamento - 1

Multiplicamos todos os elementos da 1^a linha por $\frac{1}{2}$, a fim de ficarmos com o elemento da 1^a linha e da 1^a coluna (a_{11}) igual a 1:

$$\begin{pmatrix} 2.\frac{1}{2} & 4.\frac{1}{2} & -1.\frac{1}{2} & -20.\frac{1}{2} \\ 3 & -2 & 5 & 49 \\ -5 & 10 & -2 & -77 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1/2 & -10 \\ 3 & -2 & 5 & 49 \\ -5 & 10 & -2 & -77 \end{pmatrix}$$

Exemplo de escalonamento - 2

Multiplicamos todos os elementos da 1^a linha por -3 e somamos com os elementos da 2^a linha, a fim de ficarmos com o elemento da 2^a linha e 1^a (a_{21}) coluna igual a 0:

$$\begin{pmatrix} 1 & 2 & -1/2 & -10 \\ -3+3 & -6-2 & 3/2+5 & 30+49 \\ -5 & 10 & -2 & -77 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1/2 & -10 \\ 0 & -8 & 13/2 & 79 \\ -5 & 10 & -2 & -77 \end{pmatrix}$$

Exemplo de escalonamento - 7

Agora, com base na última matriz, podemos calcular o valor das incógnitas:

$$\begin{pmatrix}
1 & 2 & -\frac{1}{2} & -10 \\
0 & 1 & -\frac{13}{16} & -\frac{79}{8} \\
0 & 0 & 1 & 6
\end{pmatrix}
\begin{cases}
1x_1 + 2x_2 - \frac{1}{2}x_3 = -10 \\
0x_1 + 1x_2 - \frac{13}{16}x_3 = -\frac{79}{8} \\
0x_1 + 0x_2 + 1x_3 = 6
\end{cases}$$

$$\begin{cases} 1x_1 + 2x_2 - \frac{1}{2}x_3 = -10 \\ 0x_1 + 1x_2 - \frac{13}{16}x_3 = -\frac{79}{8} \\ 0x_1 + 0x_2 + 1x_3 = 6 \end{cases}$$
 Fonte: autoria própria.

- $x_3 = 6$, determinamos o valor de x_2 pela 2ª equação.
- $x_2 = -5$ e $x_3 = 6$, determinamos o valor de x_1 pela 1ª equação.

A solução do sistema de equações:

•
$$(x_1, x_2, x_3) = (3,-5,6).$$

Testando a solução

• $(x_1, x_2, x_3)=(3,-5,6)$.

$$\begin{cases} 2x_1 + 4x_2 - 1x_3 = -20 \\ 3x_1 - 2x_2 + 5x_3 = 49 \\ -5x_1 + 10x_2 - 2x_3 = -77 \end{cases}$$

$$\begin{cases} 2.3 + 4.(-5) - 1.6 = 6 - 20 - 6 = -20 \\ 3.3 - 2.(-5) + 5.6 = 9 + 10 + 30 = 49 \\ -5.3 + 10.(-5) - 2.6 = -15 - 50 - 12 = -77 \end{cases}$$

Interatividade

Assinale a alternativa verdadeira sobre o método de Gauss:

- a) Utiliza o cálculo de determinantes.
- b) Aplica uma série de operações algébricas que não alteram a solução do sistema.
- c) Usa a regra de Sarrus.
- d) Não é um método de escalonamento.
- e) Não serve para as matrizes.

Resposta

Assinale a alternativa verdadeira sobre o método de Gauss:

- a) Utiliza o cálculo de determinantes.
- b) Aplica uma série de operações algébricas que não alteram a solução do sistema.
- c) Usa a regra de Sarrus.
- d) Não é um método de escalonamento.
- e) Não serve para as matrizes.

Referências

- HILL, D. R.; KOLMAN, B. Introdução à Álgebra Linear com Aplicações. Rio de Janeiro: LTC Livros Técnicos e Científicos Editora, 2006.
- HOLT, J. Álgebra Linear com Aplicações. Rio de Janeiro: LTC Livros Técnicos e Científicos Editora, 2016.

ATÉ A PRÓXIMA!