Determinación del coeficiente de extinción de la atmósfera y la luminosidad de cierta estrella

Santiago Sanz Wuhl

Resumen—

En este texto se pretende hallar el coeficiente de extinción κ de la atmósfera observando la luminosidad aparente m' de cierta estrella.

1. Introducción

Para determinar estos dos parámetros se nos ha dado la información de la altitud del astro, la distancia al cénit θ , $\chi_o(\text{masa de aire}, \int_o^{H(atm)} \rho dh)$ y la magnitud m' medida. Para conocer los parámetros deseados haremos uso de la siguiente relación:

$$m' = m + log_{10}e\kappa\chi_o sec\theta \approx m + 1,086\kappa\chi_o sec\theta$$
 (1)

Al tener esta función como una relación lineal entre θ y m(partiendo de la base de que el producto $\kappa \chi_o$ se mantiene constante) podremos hacer una regresión lineal para obtener los parámetros deseados.

2. Datos otorgados

Los datos que se nos han dado son los siguientes:

Altitud $^{\rm o}$ $\pm 1^{\rm o}$	Cénit ° ±1°	$\chi_o \pm 0,01m.a/c^2$	$m' \pm 0^m, 01$
50	40	1,31	0,9
35	55	1,74	0,98
25	65	2,37	1,07
20	70	2,92	$1,\!17$

3. Trata de datos

De la regresión a realizar obtendremos una recta de la forma y = b + ax. Comparando esto con la ecuación 1 tenemos que $a = 1,086\kappa\chi_o$ y b = m.

Con los datos de la tabla ?? obtenemos que a $= (0.038 \pm 0.03)^m$ y b $= 0.850 \pm 0.017)^m$. De aquí directamente sacamos que la luminosidad m de la estrella será $(0.850 \pm 0.017)^m$.

Para obtener κ para cada medición haremos uso del hecho de que el producto a es constante, por tanto $\kappa = \frac{a}{1,086\chi_o}$. Obtenemos así, los valores de κ para las diferentes mediciones:

Cénit ° ±1°	κ
40	0,026955346237023
55	0,001608740106813
65	0,383705133510036
70	$50,\!1821736586658$