Universidad Nacional de la Patagonia San Juan Bosco

AUTOMATIZACIÓN INDUSTRIAL TRABAJO FINAL

Banco de pruebas para motor trifásico

Alumnos CAAMIÑA, Daniela YAPURA, Cristian Docentes
Ing. LORENC, Marcelo
Dr. PEÑA, Ramiro

Junio 2020

Índice

1.	Introducción	3
2.	Objetivo	4
3.	Motor 3.1. Especificaciones	5 5
4.	Variador de velocidad4.1. Especificaciones	6 6 6 7
5.	PLC 5.1. Especificaciones	8 8 8
6.	Banco de pruebas6.1. Construcción6.2. Elementos6.3. Presupuesto–Valor–Costo a tal día	9 9 9
7.	Comunicación 7.1. CANopen 7.2. Modbus 7.3. HMI	10 10 10 10
8.	Conclusiones	11
9.	Anexos	12

Índice de figuras

1.	Motor Altium	ļ
2.	Variador de velocidad Altivar 312	(
3.	Comandos básicos del panel	6
4.	Restauración de fábrica	7

1. Introducción

aca poner la introoooo

2. Objetivo

Realizar un banco de pruebas y una interfaz gráfica para un motor trifásico conectado a un variador de velocidad a través de un PLC.

VER EJEMPLOS QUE SIGUEN PARA USAR EN OBJETIVOS O EN CONCLUSIONES

- .-Comprender los métodos de conexionado entre PLC y variador de frecuencia..
- -Comparar los métodos de conexionado en función delnúmero de conductores a utilizar y del tiempo de respuesta..
- -Diferenciar entre la transferencia de datos de control (PLC-Variador) y datos de supervisión (Variador -PLC). ESTOY VIENDO SI ANDA SECCIONES

3. Motor

3.1. Especificaciones

El motor (Figura 1) asincrónico que se utiliza es de la marca **Altium** perteneciente a la firma **Schneider Electric**. Las especificaciones se muestran a continuación

Altium Eff2

■ Tipo: TE2A90SP2

■ Tensión nominal: 220/380 V

• Corriente nominal: 5.97 A

• Frecuencia nominal: 50 Hz.

■ Potencia: 1.5kW / 2 HP

■ Fases: 3

■ Factor de Potencia: 0.84

Figura 1: Motor Altium

4. Variador de velocidad

4.1. Especificaciones

El variador de velocidad que se utilizó pertenece a la marca **Schneider Electric** (Figura 2) que posee las siguientes características.

Altivar 312

■ Modelo: ATV312HU15N4

■ Tensión: 380-500 V

■ Frecuencia: 50/60 Hz

■ Potencia: 1.5kW / 2 HP

■ Fases: 3

Figura 2: Variador de velocidad Altivar 312

4.2. Restauración de fábrica

Para modificar el variador desde el dispositivo se sabe que cada aceptación del parámetro o ingreso al menú se realiza presionando el botón central blanco y para buscar estos es necesario girar la misma. Para salir, tan solo presionar botón *ESC* tantas veces como sea necesarias.

Para comenzar a realizar la configuración del variador de velocidad primero se procede a restaurarlo de fábrica.

Figura 3: Comandos básicos del panel

Figura 4: Restauración de fábrica

4.3. Configuración de parámetros primarios

El paso siguiente será la configuración de los parámetros del motor que se utilizará: Frecuencia estándar del motor; tensión nominal del motor, frecuencia nominal, corriente nominal, factor de potencia

usar las imagenes en autocad

5. PLC

Que modulos tiene PLC M340????

5.1. Especificaciones

5.2. Comunicación

6. Banco de pruebas

6.1. Construcción

6.2. Elementos

Se decidió que el banco de pruebas cuente con los siguientes elementos:

- interruptor
- botón de marcha/ parada
- botón parada de emergencia
- señalización lumínica
- freno para generar perturbaciones
- riel para colocar un nuevo motor que actuará como carga

6.3. Presupuesto-Valor-Costo a tal día

7. Comunicación

El variador también se puede controlar en modo remoto. Es adecuado paraaplicaciones en los que los cambios de variables del variadorse realizan frecuentemente durante el proceso. Dichos cambios pueden realizarse por parte del propio operario (mediante potenciómetros, interruptores, selectores rotativos o BCD, etc.). Sin embargo, la situación más común es que los parámetros del variador los establezca el equipo de control y supervisión del proceso, al que está conectado el variadorde frecuencia: reguladores de tensión y/o corriente, finales de carrera, pantallas de operador, etc., o incluso un ordenador personal y/o PLC. Para el casode estos controles remotos, la comunicación se puede realizarde dos modos:

Mediante un número determinado de conductores, que depende de los elementos que se tengan conectados al variador de frecuencia, por el que se transmiten señales digitales (finalesde carrera, interruptores, salidas digitales de un PLC), o analógicas (potenciómetro, salida analógica de un PLC):

Mediante un bus de comunicaciones industriales (de 2 o 4 hilos), sobre el que se transmiten mensajes de ajuste de parámetros siguiendo un protocolo preestablecido (Modbus, CanBus, ProfiBus, EtherCat, etc.).Con 2 conductores la comunicación se hace más lenta(modo semidúplex), pero lógicamente representa un menor coste.

7.1. CANopen

7.2. Modbus

7.3. HMI

Se realizó una interfaz humana maquina con los siguientes elementos:

- boton de start(acá o en el tablero???)
- varias velocidades configuradas previamente
- inversión y señalización del mismo
- torque???

Velocidades Preestablecidas

8. Conclusiones

Realizar un banco de pruebaSSSSssssssSSSSs de un motor trifásico conectado a un variador de velocidad a través de un PLC generando una interfaz para el usuario. VER EJEMPLOS QUE SIGUEN PARA USAR EN OBJETIVOS O EN CONCLUSIONES .-Comprenderlos métodos de conexionado entre PLC y variador de frecuencia..

- -Comparar los métodos de conexionado en función delnúmero de conductores a utilizar y del tiempo de respuesta..
- -Diferenciar entre la transferencia de datos de control (PLC-Variador) y datos de supervisión (Variador -PLC).

9. Anexos