ASSIGNMENT-9

18K41A0538.

let us consider a sample dataset have a input (xi) and one output (yi) and number of sample 4, toevelop a simple linear regievlien model using momentum optimiser.

Sample	xia	yia
1	0.2	3.4
2	0.4	3.8
3	0.6	4.2
4	0.8	4.6

1st a samples.

Step 1:
$$[x, y]m = 1, c = -1, \eta = 0.1, epachs = x, \delta = 0.9,$$

Step 2: $[t = 1]$ $\partial m = \{c = 0, \eta \leq 2\}$

Step3: sample = 1

Step4:
$$gm = \frac{\partial E}{\partial m} = -(4i - mxi - 0)xi$$

= $-(3 \cdot u - (1) (0.2) + 1(0.2)$
= -0.84
 $g(= \frac{\partial E}{\partial c} = -(4i - mxi - c)$

Fig. 200-496

$$3(2 + 3)(2 - 4)3(2 + 3)$$
 $= (0 + 3)(0 - 363) + [0 + 1 \times - 5 \times 3]$
 $= (-1 + 3)(3 + 1)$
 $= 0 + 3 + 3 + 3 + 3$
 $= (-3 + 3)(3 + 1)$
 $= (-3 + 3)(3 + 1)$
 $= (-3 + 3)(3 + 1)$
 $= (-3 + 3)(3 + 3)(3 + 3)$
 $= (-3 + 3)(3 + 3)(3 + 3)(3 + 3)(3 + 3)$
 $= (-3 + 3)(3$

0-293-0-609=-0.316

C+= VC

-3.615 = 1.928 = -5.543

Step. 7: sample + = 1

2+1=3

Steps: if (Sample > ns)

goto step-9

else

goto step-4

Step q: it y = 1

8+1=3

Step 10: if city > epochs

goto step-11

else

90 to step-3

Step 11: Point m, c

m = -0.316, c = -5.543