SPRAWOZDANIE

Zajęcia: Matematyka Konkretna Prowadzący: prof. dr hab. Vasyl Martsenyuk

Zadanie 10 Temat: Rozkład w trybie dynamicznym Wariant 13

> Łukasz Pindel Informatyka II stopień, stacjonarne, 2 semestr, Gr. 1B

1. Polecenie:

Zadaniem do zrealizowania jest obliczenie na podstawie metody DMD przybliżona macierz przekształcenia A, korzystając z danych o dynamicznych stanach układu – zgodnych z wariantem zadania.

2. Wprowadzane dane:

Wariant 13 – pliki csv z macierzami X i X'.

1	155,3324	1690,948	20339,35	242437,2	2890075	34449708	4,11E+08	4,89E+09	5,83E+10	6,96E+11
2	138,7914	1613,643	19231,46	229222,9	2732800	32575756	3,88E+08	4,63E+09	5,52E+10	6,58E+11
3	165,2378	2006,638	24151,73	287886,2	3431514	40903361	4,88E+08	5,81E+09	6,93E+10	8,26E+11
4	103,0196	1415,063	16925,04	201562	2402232	28634441	3,41E+08	4,07E+09	4,85E+10	5,78E+11
5	160,3071	1986,99	23563,4	280941,6	3348925	39919112	4,76E+08	5,67E+09	6,76E+10	8,06E+11
6	124,8473	1470,702	17362,95	206766,2	2464201	29373342	3,5E+08	4,17E+09	4,97E+10	5,93E+11
7	159,388	1842,189	21915,37	261282,4	3114535	37125576	4,43E+08	5,28E+09	6,29E+10	7,50E+11
8	155,7336	1876,823	22349,05	266252	3173359	37826689	4,51E+08	5,37E+09	6,41E+10	7,64E+11
9	127,7248	1569,28	18678,25	222567,6	2653129	31625679	3,77E+08	4,49E+09	5,36E+10	6,38E+11
10	135,2796	1584,311	18748,59	223811,3	2668055	31802778	3,79E+08	4,52E+09	5,39E+10	6,42E+11
11	142,6838	1806,769	21262,53	253475,4	3021530	36017377	4,29E+08	5,12E+09	6,1E+10	7,27E+11
12	132,7468	1683,271	20058,53	239241	2851489	33989588	4,05E+08	4,83E+09	5,76E+10	6,86E+11
13	134,3013	1633,701	19572,55	233255,8	2780058	33138053	3,95E+08	4,71E+09	5,61E+10	6,69E+11
14	125,9247	1484,126	17906,18	213526,1	2544642	30331708	3,62E+08	4,31E+09	5,14E+10	6,12E+11
15	136,1634	1552,417	18179,59	216490,1	2580682	30762937	3,67E+08	4,37E+09	5,21E+10	6,21E+11
16	124,0392	1592,224	19044,89	227206	2708627	32286827	3,85E+08	4,59E+09	5,47E+10	6,52E+11
17	158,175	1889,058	22416,54	266958,7	3182130	37931813	4,52E+08	5,39E+09	6,42E+10	7,66E+11
18	173,4939	2017,268	24274,68	289568,9	3452116	41149615	4,91E+08	5,85E+09	6,97E+10	8,31E+11
19	172,1441	1818,154	21439,54	255576	3047119	36322385	4,33E+08	5,16E+09	6,15E+10	7,33E+11
20	157,4942	1740,631	20748,22	246985,3	2944070	35093575	4,18E+08	4,99E+09	5,94E+10	7,09E+11
21	116,837	1496,516	17992,41	214245,8	2553392	30435956	3,63E+08	4,32E+09	5,15E+10	6,14E+11
22	144,6935	1551,559	18679,81	223173,8	2660680	31715050	3,78E+08	4,51E+09	5,37E+10	6,40E+11
23	119,1191	1490,89	17799,37	212256,9	2530086	30158813	3,59E+08	4,29E+09	5,11E+10	6,09E+11

Rysunek 1: Struktura dokumentu dla macierzy X

3. Wykorzystane komendy:

Wczytywanie danych:

```
X = pd.read\_table("War13\_X.csv", delimiter=";").select\_dtypes(inc-lude=[np.number]).to\_numpy()
```

```
Xprime = pd.read_table("War13_Xprime.csv", delimiter=";", decimal=",").select_dtypes(include=[np.number]).to_numpy()
```

Wczytanie danych z plików CSV odbywa się za pomocą **pd.read_table()** i konwertowane są one na tablice NumPy.

Funkcja DMD:

Funkcja DMD przyjmuje trzy argumenty: macierz X, macierz Xprime i liczbę rzędów r. Dokonuje ona rozkładu SVD macierzy X za pomocą **np.linalg.svd()** i pobiera podmacierz Ur, macierz diagonalną Sigmar, i macierz transponowaną VTr. Następnie oblicza macierz Atilde poprzez rozwiązanie równania liniowego. Po tym kroku oblicza wektor własny i macierz wektorów własnych Lambda i W macierzy Atilde. Następnie dochodzi do obliczenia macierzy Phi oraz wektorów alpha1 i b, po czym zwracane są Phi, Lambda oraz b.

Analiza danych:

$$V2 = np.real(np.reshape(Phi[:, 1], (11, 2)))$$

$$plt.hist(V2.reshape(-1), 128)$$

$$plt.show()$$

W tej części programu następuje obliczenie rzeczywistej części drugiego wektora własnego V2 przy użyciu funkcji **reshape**(), a następnie wyświetlenie histogramu wartości z macierzy V2.

Link do repozytorium:

https://github.com/denniak/MK/tree/main/MK_10

4. Wynik działania:

```
print("Parametry kształtu Phi:", Phi.shape)

Parametry kształtu Phi: (22, 2)
```

Rysunek 2: Wyświetlenie parametrów dla Phi kluczowych do utworzenia wykresu

Rysunek 3: Histogram dla wartości Phi

5. Wnioski:

Na podstawie otrzymanego wyniku można stwierdzić, że macierz Phi zawiera istotne informacje dotyczące dynamiki systemu, które zostały uchwycone przez metodę DMD, która służy do utworzenia rozkładu przekazanych danych. Parametry 22 wierszy i 2 kolumny wskazują na strukturę danych, która jest zgodna z oczekiwaniami. Histogram wartości Phi pokazuje rozkład tych danych, co może być przydatne przy dalszej analizie i modelowaniu dynamiki układu.