武汉大学 2017-2018 学年第一学期 《复变函数与拉氏变换》期末考试试题 (A卷)

姓名	 学	号	专业	
			 76 -1K	

一. (本题满分 50 分,每小题 5 分)解答下列各题,写清楚理由。

★如果函数 f 在区域 D 内解析且恒取实值,则 f 一定为常数函数吗?为什么?

2. 求
$$(1+i)^t$$
 的值,并指出主值. $(1+i)^t = e^{i \ln(\pi i)} = e^{i \ln(\pi i)}$ $= e^{i \ln(\pi i)}$ $= e^{i \ln(\pi i)}$

3. 求
$$I = \int_{-\pi_1}^{3\pi_1} e^{2z} dz$$
 的值.

$$(4i)^{i} = e^{i} Ln(Hi) = e^{i} (l_{n}z + i(\frac{\pi}{4} + 2k\pi))$$

$$= e^{-(\frac{\pi}{4} + 2k\pi)} (cosl_{n}z + isin l_{n}z)$$

$$cosl_{n}z + isin l_{n}z$$

4. 判別級數
$$\sum_{n=1}^{\infty} (-1)^n \frac{(6+5i)^n}{8^n}$$
 是条件收敛还是绝对收敛。 $\left[\frac{6+5i}{8}\right] < 1$ 化分配

- 5. 求函数 $f(z) = \cos \frac{1}{1-z}$ 在奇点 z=1 处的留数.
- 7. 利用留数求 $F(s) = \frac{1}{5+s}$ 的 Laplace 逆变换. $\frac{1}{5+s} = 1$ [e^{-5t} ult]
- 8. 问: |z-2|+|z+2| < 7表示什么区域?

- 9. 求复数 $z = \frac{(3+4i)(2-5i)}{2i}$ 的共轭复数,模和辐角.
- 10. 求方程 $\sin \frac{1}{x} = 0$ 的全部解.
- 二. (本题满分 8 分) 验证 v=2xy 是调和函数, 并求解析函数 f=u+iv.
- 三. (本題滿分 10 分) 将函数 $f(z) = \frac{1}{z(1-z^2)}$ 分别在 0 < |z| < 1 和 $1 < |z| < +\infty$ 展 开成洛朗级数,进一步,是否可以把 f 在 0 < |2-3| < 3 展开成洛朗级数?为什么?
- 四. (本题满分 16 分, 每小题 8 分) 利用留数计算下列积分:

1.
$$J = \int_0^{2\pi} \frac{1}{5 + 3\sin\theta} d\theta$$
.

2.
$$K = \oint_C \frac{1}{z^{15} + 1} dz$$
, 其中 C 为正向圆周: $|z| = 2$.

- 五 (本题满分 16 分, 每小题 8 分) 解下列方程:
 - 1. 利用 Laplace 变换解常微分解方程:

$$y''' + 3y'' + 3y' + y = 1, \ y(0) = y'(0) = y''(0) = 0.$$

2. 利用 Laplace 变换解积分微分解方程:

$$y'(t) + \int_0^t y(\tau) d\tau = 1$$