Práctica 5. Implementación de grafos y algoritmos sobre grafos

Ejercicio 0: Hacer uso de la implementación vista en clase de grafo para representar el que se incluye a continuación:

Ahora, realiza las siguientes tareas:

- 1. Añade a la implementación del grafo disponible en el fichero *graph.py* un método para poder devolver una cadena de caracteres de un grafo, y prueba su funcionamiento imprimiendo el grafo representado arriba. La cadena a devolver debe tener la estructura vista en el ejemplo estudiado en clase de leer un grafo de un fichero.
- 2. Imprime el número de vértices y aristas del grafo.
- 3. Imprime el grado del vértice "Tamassia".
- 4. Imprime las aristas que inciden en el vértice "Tollis".

Ejercicio 1: Dados los siguientes casos indicar si se debería usar una lista de adyacencia, un mapa de adyacencia o una matriz de adyacencia:

- 1. Para representar un grafo de 10000 vértices y 20000 aristas, siendo importante usar el menor espacio posible.
- 2. Necesitamos la respuesta a get_edge(u,v) tan rápido como sea posible y sin importar el espacio usado.

Ejercicio 2: Sea un grafo no dirigido G, cuyos vértices son enteros del 1 al 8 y el conjunto de vértices adyacentes de cada vértice es el siguiente:

Vértice	Vértices adyacentes				
1	(2,3,4)				
2	(1,3,4)				
3	(1,2,4)				
4	(1,2,3,6)				
5	(6,7,8)				
6	(4,5,7)				
7	(5,6,8)				
8	(5,7)				

Asumiendo que, en un recorrido de G, los vértices adyacentes de un vértice dado son devueltos en el mismo orden de la lista anterior:

1. Dibujar G.

- 2. Dar la secuencia de vértices de G visitados usando un recorrido DFS empezando en el vértice 1.
- 3. Dar la secuencia de vértices de G visitados usando un recorrido BFS empezando en el vértice 1.

Ejercicio 3: Desarrollar una función que imprima un grafo en un fichero, siguiendo el formato visto en clase para el programa que lee un grafo de un fichero.

Ejercicio 4: Resolver el ejercicio 2 usando una implementación de los recorridos DFS y BFS. Comparar los resultados. Después añade un enlace entre los vértices 2 y 5 y vuelve a realizar los recorridos, justificando el resultado obtenido.

Ejercicio 5: Desarrollar una función para detectar si hay un ciclo en un grafo no dirigido.

Ejercicio 6: Desarrollar una función para detectar si hay un ciclo en un grafo dirigido.

Ejercicio 7: Desarrollar una función que imprima en pantalla el árbol de expansión mínimo generado por el Algoritmo de Prim.

Ejercicio 8: Calcular el orden topológico del grafo dirigido siguiente (tener en cuenta las líneas sólidas):

Ejercicio 9: A Bob le encanta estudiar lenguas extranjeras y quiere planificar sus estudios para los próximos años. Está interesado en los cursos de 9 lenguas: L15, L16, L22, L31, L32, L126, L127, L141 y L169. Quiere hacerlos todos, pero existen requisitos previos de haber cursado otros cursos con antelación. Los prerrequisitos de los cursos son los siguientes:

• L15: Ninguno

L16: L15

L22: Ninguno

• L31: L15

• L32: L16, L31

L126: L22, L32

L127: L16

L141: L22, L16

• L169: L32

¿En qué orden debe cursar Bob estos cursos respetando los requisitos?

Ejercicio 10: Hay 8 pequeñas islas en un lago y se quiere construir 7 puentes para conectarlas de forma que cada isla pueda ser alcanzada desde cualquier otra a través de los puentes. El coste de un puente es proporcional a su longitud. Las distancias entre pares de islas son las siguientes:

1	240	210	340	280	200	345	120
2		265	175	215	180	185	155
3			260	115	350	295	230
4				160	330	295	230
5					360	400	170
6						175	205
7							305
8							

Encontrar dónde se deben situar los puentes para minimizar el coste de la construcción.

Ejercicio 11: Implementa un sistema de cálculo de rutas. Para ello, realiza las siguientes tareas:

- 1. Crea un grafo las principales calles de la ciudad de Cartagena o Murcia, partiendo de un mapa digital on-line (por ejemplo, Open Street Maps), identificando una serie de cruces que serán destinos de interés. Considera alrededor de 20 destinos para el grafo, y representa las distintas conexiones mediante la distancia en metros.
- 2. Representa el grafo en un formato de fichero que permita ser leído con la función vista en clase de lectura de grafos desde ficheros.
- 3. Implementa un programa que cargue el grafo del punto anterior y que solicite por pantalla el origen y el destino de la ruta.
- 4. Usa la implementación del algoritmo de Dijkstra para calcular la distancia más corta desde el nodo de origen a todos los demás nodos, y reconstruye la ruta más corta desde el nodo de origen al destino.
- 5. Muestra el resultado por pantalla, indicando los distintos cruces (o puntos de interés) por los que habría que pasar para recorrer menor distancia desde el origen al destino.