

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Математического обеспечения и стандартизации информационных технологий

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 7

по дисциплине

«Структуры и алгоритмы обработки данных»

Тема: «Применение стека и очереди при преобразовании и вычислении арифметических выражений»

Выполнил студент группы ИКБО-	Ракитин В.А.	
Принял преподаватель		Филатов А.С.
Лабораторная работа выполнена	«»202 г.	(подпись студента)
«Зачтено»	« » 202 г.	(подпись руководителя)

1. Цель работы

Получение знаний применения стека и очереди при преобразовании и вычислении арифметических выражений. Получение знаний и практических навыков по работе с различными нотациями арифметических выражений.

2. Постановка задачи

Вариант №3. Условие задания:

Упражнение 1	1. Провести преобразование инфиксной записи		
	выражения в префиксную нотацию, расписывая процесс по		
	шагам		
	S=a+(b-c*k)-d*e-f		
	2. Представить постфиксную нотацию выражений		
	a+(c-b)/(b*d)		
	(a+b)*c-(d+e*f/((g/h+i-j)*k))/r		
	3. Представить префиксную нотацию выражений п.2		
	4. Провести вычисление значения выражения,		
	представленного в постфиксной форме, расписывая		
	процесс по шагам		
	72-32+/3+4*		
Упражнение 2	Выполнить программную реализацию следующих задач,		
	используя структуру стек или очередь		
	1. Реализовать класс стек, реализующий структуру и		
	методы: втолкнуть элемент в стек, вытолкнуть элемент из		
	стека, вернуть значение элемента в вершине стека, сделать		
	стек пустым, определить пуст ли стек. Рассмотреть два		
	варианта реализации: на массиве; на однонаправленном		
	списке. Интерфейс программы должен обеспечивать		
	непрерывную работу со структурой.		

2. Разработать программу сложения двух больших целых чисел (не попадающих в диапазон стандартных типов), вводимых с клавиатуры, как последовательность символов.

3. Решение

Задание 1

Пункт 1

Преобразуем выражение S=a+(b-c*k)-d*e-f в префиксную запись. Развернём выражение и получим f-e*d-(k*c-b)+a=S.

No	Выражение	Стек	Префикс
0		(
1	f	(f
2	-	(-	f
3	e	(-	fe
4	*	(-*	fe
5	d	(-*	fed
6	-	(fed*
7	(((fed*
8	k	((fed*k
9	*	((*	fed*k
10	c	((*	fed*kc
11	-	((-	fed*kc*
12	b	((-	fed*kc*b
13)	(fed*kc*b-
14	+	(+	fed*kc*b-
15	a	(+	fed*kc*b-a
16	=	(+	fed*kc*b-a=
17	S	(+	fed*kc*b-a=S
18)		fed*kc*b-a=S=+

Разворачиваем выражение обратно. Ответ: --+S=a-b*ck*def

Пункт 2

Представляем выражение a+(c-b)/(b*d) в постфиксном виде

Ī	No	Виромение	Стек	Постфикс
	71/⊡	Выражение	CICK	Постфикс

0		(
1	a	(a
2	+	(+	a
3	((+(a
4	c	(+(ac
5	-	(+(-	ac
6	b	(+(-	acb
7)	(+	acb-
8	/	(+/	acb-
9	((+/(acb-
10	b	(+/(acb-b
11	*	(+/(*	acb-b
12	d	(+/(*	acb-bd
13)	(+/	acb-bd*
14)		acb-bd*/+

Ответ: acb-bd*/+

Представляем выражение (a+b)*c-(d+e*f/((g/h+i-j)*k))/r в постфиксном виде

№	Выражение	Стек	Постфикс
0		(
1	(((
2	a	((a
3	+	((+	a
4	b	((+	ab+
5)	(ab+
6	*	(*	ab+
7	c	(*	ab+c
8	-	(-	ab+c*
9	((-(ab+c*
10	d	(-(ab+c*d
11	+	(-(+	ab+c*d
12	e	(-(+	ab+c*de
13	*	(-(+*	ab+c*de
14	f	(-(+*	ab+c*def
15	/	(-(+/	ab+c*def*
16	((-(+/(ab+c*def*
17	((-(+/((ab+c*def*
18	g	(-(+/((ab+c*def*g
19	/	(-(+/((/	ab+c*def*g
20	h	(-(+/((/	ab+c*def*gh
21	+	(-(+/((+	ab+c*def*gh/

22	i	(-(+/((+	ab+c*def*gh/i
23	-	(-(+/((-	ab+c*def*gh/i+
24	j	(-(+/((-	ab+c*def*gh/i+j
25)	(-(+/(ab+c*def*gh/i+j-
26	*	(-(+/(*	ab+c*def*gh/i+j-
27	k	(-(+/(*	ab+c*def*gh/i+j-k
28)	(-(+/	ab+c*def*gh/i+j-k*
29)	(-	ab+c*def*gh/i+j-k*/+
30	/	(-/	ab+c*def*gh/i+j-k*/+
31	r	(-/	ab+c*def*gh/i+j-k*/+r
32)		ab+c*def*gh/i+j-k*/+r/-

Ответ: ab+c*def*gh/i+j-k*/+r/-

Пункт 3

Представляем выражение a+(c-b)/(b*d) в префиксном виде. Развернём выражение: (d*b)/(b-c)+a

№	Выражение	Стек	Префикс
0		(
1	(((
2	d	((d
3	*	((*	d
4	b	((*	db
5)	(db*
6	/	(/	db*
7	((/(db*
8	b	(/(db*b
9	-	(/(-	db*b
10	c	(/(-	db*bc
11)	(/	db*bc-
12	+	(+	db*bc-/
13	a	(+	db*bc-/a
14)		db*bc-/a+

Теперь снова разворачиваем выражение. Ответ: +a/-cb*bd

Представляем выражение (a+b)*c-(d+e*f/((g/h+i-j)*k))/r в префиксном виде. Для этого разворачиваем выражение: r/((k*(j-i+h/g))/f*e+d)-c*(b+a)

№	Выражение	Стек	Постфикс
0		(
1	r	(r
2	/	(/	r

		1	T
3	((/(r
4	((/((r
5	k	(/((rk
6	*	(/((*	rk
7	((/((*(rk
8	j	(/((*(rkj
9	-	(/((*(-	rkj
10	i	(/((*(-	rkji
11	+	(/((*(+	rkji-
12	h	(/((*(+	rkji-h
13	/	(/((*(+/	rkji-h
14	g	(/((*(+/	rkji-hg
15)	(/(*(rkji-hg/+
16)	(/(rkji-hg/+*
17	/	(/(/	rkji-hg/+*
18	f	(/(/	rkji-hg/+*f
19	*	(/(*	rkji-hg/+*f/
20	е	(/(*	rkji-hg/+*f/e
21	+	(/(+	rkji-hg/+*f/e*
22	d	(/(+	rkji-hg/+*f/e*d
23)	(/	rkji-hg/+*f/e*d+
24	-	(-	rkji-hg/+*f/e*d+/
25	c	(-	rkji-hg/+*f/e*d+/c
26	*	(-*	rkji-hg/+*f/e*d+/c
27	((-*(rkji-hg/+*f/e*d+/c
28	b	(-*(rkji-hg/+*f/e*d+/cb
29	+	(-*(+	rkji-hg/+*f/e*d+/cb
30	a	(-*(+	rkji-hg/+*f/e*d+/cba
31)	(-*	rkji-hg/+*f/e*d+/cba+
32)		rkji-hg/+*f/e*d+/cba+*-

Развернём выражение. Ответ: -*+abc/+d*e/f*+/gh-ijrk

Пункт 4

- 1. Указываем на символ 7.
- 2. Помещаем его в стек.
- 3. Указываем на символ 2.
- 4. Помещаем его в стек.
- 5. указываем на оператор –.

- 6. Извлекаем из стека два операнда (7 и 2) и выполняем операцию. Результат
- (5) помещаем в стек.
- 7. Указываем на символ 3.
- 8. Помещаем его в стек.
- 9. Указываем на символ 2.
- 10. Помещаем его в стек.
- 11. Указываем на оператор +.
- 12. Извлекаем из стека два операнда (3 и 2) и выполняем операцию. Результат
- (5) помещаем в стек.
- 13. Указываем на оператор /.
- 14. Извлекаем из стека два операнда (5 и 5) и выполняем операцию. Результат
- (1) помещаем в стек.
- 15. Указываем на символ 3.
- 16. Помещаем его в стек.
- 17. Указываем на оператор +.
- 18. Извлекаем из стека два операнда (1 и 3) и выполняем операцию. Результат
- (4) помещаем в стек.
- 19. Указываем на символ 4.
- 20. Помещаем его в стек.
- 21. Указываем оператор *.
- 22. Извлекаем из стека два операнда (4 и 4) и выполняем операцию. Результат (16) помещаем в стек.

Ответ: 16.

Задание 2.

Пункт 1.

Стек – структура данных, представляющая из себя упорядоченный набор элементов, в которой добавление новых элементов и удаление существующих производится с одного конца, называемого вершиной стека. Притом первым из стека удаляется элемент, который был помещен туда последним, то есть в стеке реализуется стратегия «последним вошел — первым вышел».

Для решения первого упражнения была написана функция push_back, которая помещает элемент в стек. На вход функция получает целое число — элемент, который будет помещён в стек. Далее программа добавляет этот элемент в наш стек и информирует об этом пользователя. Если в нашем стеке, реализованном на массиве, не будет места, то программа также сообщит пользователю о невозможности добавить элемент в стек.

Для решения второго упражнения была написана функция pull_out, которая удаляет последний элемент из стека. После удаления элемента, программа информирует пользователя об удалении элемента и скажет, какой элемент удалился. Если стек пуст, то программа сообщит, что нечего удалять.

```
void Stack::pull out() {
      Node* current = head;
      Node* temp = nullptr;
      if (current == nullptr) {
            cout << "Стек пуст. Нечего выталкивать" << endl;
      else if (current->next == nullptr) {
            cout << "Элемент " << current->data << " вытолкнут из стека" <<
endl;
            head = nullptr;
            free(current);
      else {
            while (current->next != nullptr) {
                  temp = current;
                  current = current->next;
            cout << "Элемент " << current->data << " вытолкнут из стека" <<
endl;
            temp->next = nullptr;
            free(current);
     }
```

Для решения третьего упражнения была написана функция return_meaning, которая возвращает последний элемент стека. Программа сообщит пользователю, какой последний элемент, а также сообщит, если стек пуст.

```
int Stack::return_meaning() {
   Node* current = head;
   if (current == nullptr) {
        cout << "Стек пуст" << endl;
   }
   else {
        while (current->next != nullptr) {
            current = current->next;
        }
        cout << "Элемент в вершине стека: " << current->data << endl;
        return current->data;
   }
}
```

Для решения четвёртого упражнения была написана функция make_empty_stack, которая делает стек пустым. Программа удаляет каждый элемент стека, а далее сообщает пользователю об отсутствии элементов в стеке.

```
void Stack::make_empty_stack() {
   Node* current = head;
   Node* next;
   while (current != nullptr) {
        next = current->next;
        delete current;
        current = next;
   }
   head = nullptr;
   cout << "CTEK NYCT" << endl;
}</pre>
```

Для решения пятого упражнения была написана функция is_empty, которая определяет, пустой стек или нет. Далее программа проверяет первый элемент стека. Если в стеке имеется первый элемент, то программа сообщит пользователю, что стек не пустой.

```
void Stack::is_empty() {
    Node* current = head;
    if (current == nullptr) {
        cout << "CTek πyct" << endl;
    }
    else {
        cout << "CTek не πyctoй" << endl;
    }
}</pre>
```

Также для удобства была написана была написана функция print_Stack, которая выводит все элементы стека. Если в стеке нет элементов, то программа сообщает пользователю об отсутствии элементов в стеке.

```
void Stack::print_Stack() {
    Node* current = head;
    if (current == nullptr) {
        cout << "CTEK MYCT" << endl;
    }
    else {
        cout << "Bam cTek: ";
        while (current != nullptr) {
            cout << current->data << " ";
            current = current->next;
        }
        cout << endl;
    }
}</pre>
```

При запуске программы пользователь видит пользовательское меню, где пользователю надо выбрать, какую задачу надо решить.

```
1 - Поместить элемент в стек
2 - Вытолкнуть элемент из стека
3 - вернуть значение элемента в вершине стека
4 - сделать стек пустым
5 - определить пуст ли стек
6 - Вывести стек
0 - Завершить работу программы
Выберите 1, 2, 3, 4, 5, 6, 0:
```

Рисунок 1. Интерфейс программы

Пункт 2.

Для решения упражнения была написана функция add, которая складывает два числа. На вход функция получает массивы типа char. В двух массивах хранятся наши числа, а третий массив — будущая сумма двух чисел. Далее программа складывает числа и передаёт число в массив.

```
void add(char* num1, char* num2, char* result) {
    int carry = 0;
    int i = strlen(num1) - 1;
    int j = strlen(num2) - 1;
    int k = 0;
    while (i >= 0 || j >= 0) {
       int sum = carry;
        if (i >= 0) {
            sum += num1[i--] - '0';
        if (j >= 0) {
            sum += num2[j--] - '0';
        result[k++] = sum % 10 + '0';
        carry = sum / 10;
    if (carry != 0) {
        result[k++] = carry + '0';
    result[k] = ' \ 0';
    int len = strlen(result);
    for (int i = 0; i < len / 2; i++) {
       swap(result[i], result[len - i - 1]);
    }
```

При запуске программы пользователю надо будет ввести число, а затем надо будет ввести второе число.

Введите первое число:

Рисунок 2. Интерфейс программы

4. Тестирование

Пункт 1.

Протестируем программой выполнение первого упражнения. Добавим следующие элементы в стек: 14, 38, 29, 52. Далее выведем элементы стека. На рисунке 3 программа вывела верный результат.

```
1 - Поместить элемент в стек
2 - Вытолкнуть элемент из стека
3 - вернуть значение элемента в вершине стека
4 - сделать стек пустым
5 - определить пуст ли стек
6 - Вывести стек
0 - Завершить работу программы
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 14
Элемент 14 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 38
Элемент 38 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 29
Элемент 29 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 52
Элемент 52 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 6
Ваш стек: 14 38 29 52
```

Рисунок 3. Решение программой первого упражнения

Протестируем программой выполнение второго упражнения. Добавим в стек элементы 11, 55, 28. Далее удалим последний элемент из стека (28) и выведем наш стек (11, 55). На рисунке 4 программа вывела верный результат.

```
1 - Поместить элемент в стек
2 - Вытолкнуть элемент из стека
3 - вернуть значение элемента в вершине стека
4 - сделать стек пустым
5 - определить пуст ли стек
6 - Вывести стек
0 - Завершить работу программы
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 11
Элемент 11 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 55
Элемент 55 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 28
Элемент 28 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 2
Элемент 28 вытолкнут из стека
Выберите 1, 2, 3, 4, 5, 6, 0: 6
Ваш стек: 11 55
```

Рисунок 4. Решение программой второго упражнения

Протестируем программой выполнение четвёртого упражнения. Введём в стек элементы 68, 77, 32, 51. Выведем наш стек. Далее удалим все элементы из стека и снова выведем наш стек. Программа должна сообщить нам, что в стеке нет элементов. На рисунке 5 программа вывела верный результат.

```
1 - Поместить элемент в стек
2 - Вытолкнуть элемент из стека
3 - вернуть значение элемента в вершине стека
4 - сделать стек пустым
5 - определить пуст ли стек
6 - Вывести стек
0 - Завершить работу программы
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 68
Элемент 68 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 77
Элемент 77 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 32
Элемент 32 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 51
Элемент 51 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 6
Ваш стек: 68 77 32 51
Выберите 1, 2, 3, 4, 5, 6, 0: 4
Стек пуст
Выберите 1, 2, 3, 4, 5, 6, 0: 6
Стек пуст
```

Рисунок 5. Решение программой четвёртого упражнения

Протестируем программой выполнение пятого упражнения. Введём в стек элементы 11 и 22. Далее выведем наш стек. Затем проверим наличие элементов в стеке. На рисунке 6 программа вывела верный результат.

```
1 - Поместить элемент в стек
2 - Вытолкнуть элемент из стека
3 - вернуть значение элемента в вершине стека
4 - сделать стек пустым
5 - определить пуст ли стек
6 - Вывести стек
0 - Завершить работу программы
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 11
Элемент 11 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 1
Введите элемент, который нужно поместить в стек: 22
Элемент 22 помещён в стек
Выберите 1, 2, 3, 4, 5, 6, 0: 6
Ваш стек: 11 22
Выберите 1, 2, 3, 4, 5, 6, 0: 5
Стек не пустой
```

Рисунок 6. Решение программой пятого упражнения

Пункт 2.

Протестируем программой выполнения упражнения. Введём два числа: 53228 и 48712. Программа должна вывести новое число: 101940. На рисунке 7 программа вывела верный результат.

```
Введите первое число: 53228
Введите второе число: 48712
Ответ: 101940
```

Рисунок 7. Решение программой упражнения

5. Вывод

В результате работы я:

- 1) Получил знания применения стека и очереди при преобразовании и вычислении арифметических выражений.
- 2) Получил знания и практические навыки по работе с различными нотациями арифметических выражений.

6. Исходный код программы

```
#include <iostream>
using namespace std;
const int MAX SIZE = 100;
class Stack {
private:
   int arr[MAX SIZE];
   int k = -1;
public:
     void push_back(int x);
     void pull out();
     void print Stack();
     void is empty();
     void make_empty_stack();
     int return meaning();
};
void Stack::push back(int x) {
     if (k != MAX SIZE) {
           k += 1;
           arr[k] = x;
           cout <<"Элемент " << x << " Помещён в стек" << endl;
      }
     else {
          cout << "Стек полон" << endl;
void Stack::pull out() {
     if (k == -1) {
           cout << "Стек пуст. Нечего выталкивать" << endl;
     }
           cout << "Элемент " << arr[k] << " вытолкнут из стека" << endl;
           k = 1;
      }
void Stack::print Stack() {
     if (k == -1) {
           cout << "CTEK TYCT" << endl;
     }
     else {
           int c = 0;
           cout << "Ваш стек: ";
```

```
while (c != k+1) {
                  cout << arr[c] << " ";
                  c += 1;
            }
      }
void Stack::is_empty() {
      if (k == -1) {
            cout << "Стек пустой" << endl;
      }
      else {
           cout << "Стек не пустой" << endl;
      }
}
void Stack::make empty stack() {
     k = -1;
      cout << "CTEK TYCT" << endl;
}
int Stack::return meaning() {
      if (k == -1) {
            cout << "CTEK TYCT" << endl;
      else {
           cout << "Элемент в вершине стека: " << arr[k] << endl;
           return arr[k];
      }
}
int main() {
      setlocale(LC ALL, "Rus");
      Stack s;
      int pointer = 1;
      cout << endl << "1 - Поместить элемент в стек" << endl
           << "2 - Вытолкнуть элемент из стека" << endl
           << "3 - вернуть значение элемента в вершине стека" << endl
           << "4 - сделать стек пустым" << endl
            << "5 - определить пуст ли стек" << endl
            << "6 - Вывести стек" << endl
            << "0 - Завершить работу программы" << endl << endl;
      while (pointer == 1) {
            int choise;
            cout << endl << "Выберите 1, 2, 3, 4, 5, 6, 0: "; cin >> choise;
            switch (choise)
            case(1):
                  int x;
                  cout << "Введите элемент, который нужно поместить в стек:
";cin >> x;
                  s.push back(x);
                  break;
            case (2):
                  s.pull out();
                  break;
            case (3):
                  s.return meaning();
                  break;
            case(4):
                  s.make_empty_stack();
                  break;
            case(5):
                 s.is empty();
```

Таблица 1. Код программы задачи №1 на основе статического массива

```
#include <iostream>
using namespace std;
const int MAX SIZE = 100;
class Stack {
private:
      struct Node {
            int data;
            Node* next;
      };
      Node* head;
      int arr[MAX SIZE];
      int k = -1;
public:
      void push_back(int data);
      void pull out();
      void print Stack();
      void is empty();
      void make empty stack();
      int return meaning();
};
void Stack::push back(int data) {
      Node* newNode = new Node;
      newNode->data = data;
      newNode->next = nullptr;
      if (head == nullptr)
            head = newNode;
      else {
            Node* current = head;
            while (current->next != nullptr) {
                   current = current->next;
            current->next = newNode;
      cout << "Элемент " << data << " помещён в стек" << endl;
void Stack::pull_out() {
      Node* current = head;
      Node* temp = nullptr;
      if (current == nullptr) {
            \mathsf{cout} \mathrel{<<} \mathsf{"Стек} пуст. Нечего выталкивать" \mathrel{<<} endl;
```

```
else if (current->next == nullptr) {
            cout << "Элемент " << current->data << " вытолкнут из стека" <<
endl;
            head = nullptr;
            free (current);
      }
      else {
            while (current->next != nullptr) {
                  temp = current;
                  current = current->next;
            cout << "Элемент " << current->data << " вытолкнут из стека" <<
endl;
            temp->next = nullptr;
            free(current);
void Stack::print Stack() {
      Node* current = head;
      if (current == nullptr) {
            cout << "CTEK TYCT" << endl;
      }
      else {
            cout << "Ваш стек: ";
            while (current != nullptr) {
                  cout << current->data << " ";</pre>
                  current = current->next;
            cout << endl;</pre>
      }
void Stack::is empty() {
      Node* current = head;
      if (current == nullptr) {
           cout << "CTEK TYCT" << endl;
      else {
           cout << "Стек не пустой" << endl;
void Stack::make_empty_stack() {
      Node* current = head;
Node* next;
      while (current != nullptr) {
           next = current->next;
           delete current;
           current = next;
      }
      head = nullptr;
      cout << "CTEK TYCT" << endl;
int Stack::return meaning() {
      Node* current = head;
      if (current == nullptr) {
           cout << "CTEK TYCT" << endl;
      else {
            while (current->next != nullptr) {
                 current = current->next;
```

```
cout << "Элемент в вершине стека: " << current->data << endl;
           return current->data;
      }
}
int main() {
      setlocale(LC ALL, "Rus");
     Stack s;
     int pointer = 1;
      cout << endl << "1 - Поместить элемент в стек" << endl
           << "2 - Вытолкнуть элемент из стека" << endl
           << "3 - вернуть значение элемента в вершине стека" << endl
           << "4 - сделать стек пустым" << endl
           << "5 - определить пуст ли стек" << endl
            << "6 - Вывести стек" << endl
            << "0 - Завершить работу программы" << endl << endl;
      while (pointer == 1) {
           int choise;
            cout << endl << "Выберите 1, 2, 3, 4, 5, 6, 0: "; cin >> choise;
            switch (choise)
            case(1):
                 cout << "Введите элемент, который нужно поместить в стек:
";cin >> x;
                 s.push back(x);
                 break;
            case (2):
                  s.pull out();
                 break;
            case(3):
                  s.return meaning();
                 break;
            case(4):
                  s.make_empty_stack();
                 break;
            case(5):
                  s.is_empty();
                 break;
            case (6):
                  s.print Stack();
                 break;
            case(0):
                  pointer = 0;
                  break;
            default:
                 break;
      return 0;
```

Таблица 2. Код программы задачи №1 на основе однонаправленного списка

```
#include <iostream>
using namespace std;

const int MAX_SIZE = 100;

void add(char* num1, char* num2, char* result) {
   int carry = 0;
   int i = strlen(num1) - 1;
   int j = strlen(num2) - 1;
   int k = 0;
```

```
while (i >= 0 || j >= 0) {
        int sum = carry;
        if (i >= 0) {
             sum += num1[i--] - '0';
        if (j >= 0) {
            sum += num2[j--] - '0';
         }
        result[k++] = sum % 10 + '0';
        carry = sum / 10;
    }
    if (carry != 0) {
        result[k++] = carry + '0';
    }
    result[k] = ' \setminus 0';
    int len = strlen(result);
    for (int i = 0; i < len / 2; i++) {</pre>
        swap(result[i], result[len - i - 1]);
}
int main() {
    setlocale(LC ALL, "Rus");
    char num1[MAX SIZE];
    char num2[MAX SIZE];
    char result[MAX SIZE];
    cout << "Введите первое число: "; cin >> num1;
    cout << "Введите второе число: "; cin >> num2;
    add(num1, num2, result);
    cout << "OTBET: " << result << endl;
    return 0;
}
```

Таблица 3. Код программы задачи №2