

1/28

FIGURE 1

2/28

Probe	R ¹	R ²	R ³	R ⁴
<i>o</i> -BMOQBA	OCH ₃	B(OH) ₂	H	H
<i>m</i> -BMOQBA	OCH ₃	H	B(OH) ₂	H
<i>p</i> -BMOQBA	OCH ₃	H	H	B(OH) ₂
BMOQ	OCH ₃	H	H	H
<i>o</i> -BMQBA	CH ₃	B(OH) ₂	H	H
<i>m</i> -BMQBA	CH ₃	H	B(OH) ₂	H
<i>p</i> -BMQBA	CH ₃	H	H	B(OH) ₂
BMQ	CH ₃	H	H	H

FIGURE 2

3/28

FIGURE 3

4/28

FIGURE 4

BEST AVAILABLE COPY

5/28

FIGURE 5

6/28

FIGURE 6

7/28

FIGURE 7

BEST AVAILABLE COPY

8/28

BEST AVAILABLE COPY

FIGURE 8

9/28

Table 1 - Dissociation constants, K_D (μM^3), for the probes with cyanide in water.

Probe	K_D (μM^3)
<i>o</i> -BMOQBA	52.9
<i>m</i> -BMOQBA	84.0
<i>p</i> -BMOQBA	20.8
BMOQ	---
<i>o</i> -BMQBA	16.7
<i>m</i> -BMQBA	16.9
<i>p</i> -BMQBA	15.9
BMQ	---

FIGURE 9

10/28

Table 2 – Multiexponential Intensity decay of BMOQ and o-BMOQBA

[Cyanide] μM	τ_1 (ns)	α_1	τ_2 (ns)	α_2	$\bar{\tau}$ (ns)	$\langle \tau \rangle$ (ns)	χ^2
*o-BMOQBA							
0	26.71	1.0			26.71	26.71	1.33
5	26.33	1.0			26.33	26.33	1.13
10	26.34	1.0			26.34	26.34	1.21
15	26.19	1.0			26.19	26.19	1.30
25	24.78	1.0			24.78	24.78	1.23
35	0.324	0.0160	25.54	0.9840	25.53	25.14	1.35
45	0.326	0.0184	25.10	0.9816	25.09	24.64	1.46
50	0.455	0.0176	25.20	0.9824	25.19	24.76	1.41
*BMOQ							
0	27.30	1.0			27.30	27.30	1.08
5	27.04	1.0			27.04	27.04	1.10
10	26.74	1.0			26.74	26.74	1.12
15	26.53	1.0			26.53	26.53	1.06
20	26.25	1.0			26.25	26.25	1.14
30	25.86	1.0			25.86	25.86	1.17
40	25.37	1.0			25.37	25.37	1.05
50	25.00	1.0			25.00	25.00	1.16

* $\lambda_{\text{ex}} = 372$ nm, emission was collected with a 416 nm cut-off filter. BMOQ $K_{\text{sv}} \approx 2$ nM⁻¹.

FIGURE 10

11/28

Table 3 – Multiexponential Intensity decay of BMQ and o-BMQBA

[Cyanide] μM	τ_1 (ns)	α_1	τ_2 (ns)	α_2	$\bar{\tau}$ (ns)	$\langle \tau \rangle$ (ns)	χ^2
*o-BMQBA							
0	2.18	0.4646	4.74	0.5354	4.01	3.55	1.00
5	2.14	0.4615	4.45	0.5385	3.78	3.38	1.12
10	2.28	0.5704	4.75	0.4296	3.78	3.34	1.04
15	1.86	0.3265	3.64	0.6735	3.29	3.06	0.97
20	1.88	0.3476	3.69	0.6524	3.30	3.06	1.04
30	1.44	0.1762	3.27	0.8238	3.11	2.95	1.21
40	1.92	0.3511	3.59	0.6489	3.21	3.00	0.90
50	1.87	0.3320	3.58	0.6680	3.22	3.01	1.07
*BMQ							
0	2.59	1.0			2.59	2.59	1.07
5	2.58	1.0			2.58	2.58	1.09
10	2.59	1.0			2.59	2.59	1.07
15	2.57	1.0			2.57	2.57	1.02
20	2.57	1.0			2.57	2.57	1.12
30	2.55	1.0			2.55	2.55	1.08
40	2.55	1.0			2.55	2.55	1.14
50	2.55	1.0			2.55	2.55	1.17

* $\lambda_{\text{ex}} = 372$ nm, emission was collected with a 416 nm cut-off filter. BMQ $K_{\text{sv}} \approx 0.4$ nM⁻¹.

FIGURE 11

12/28

Probe	R ¹	R ²	R ³
<i>o</i> -BAQBA	B(OH) ₂	H	H
<i>m</i> -BAQBA	H	B(OH) ₂	H
<i>p</i> -BAQBA	H	H	B(OH) ₂
BAQ	H	H	H

FIGURE 12

FIGURE 13

FIGURE 14

15/28

BEST AVAILABLE COPY

FIGURE 15

16/28

FIGURE 16

BEST AVAILABLE COPY

17/28

Table 4: Multiexponential intensity decay of BAQ and *o*-BAQBA

[Cyanide] μM	τ_1 (ns)	α_1	τ_2 (ns)	α_2	τ_3 (ns)	α_3	$\bar{\tau}$	$\langle \tau \rangle$	χ^2
BAQ									
0	2.48	1	-	-	-	-	2.48	2.48	1.10
2	2.48	1	-	-	-	-	2.48	2.48	1.02
4	2.49	1	-	-	-	-	2.49	2.49	1.19
6	2.49	1	-	-	-	-	2.49	2.49	1.32
10	2.49	1	-	-	-	-	2.49	2.49	1.18
16	2.49	1	-	-	-	-	2.49	2.49	1.28
20	2.47	1	-	-	-	-	2.47	2.47	0.89
<i>o</i>-BAQBA									
(380 nm) ^a									
0	2.04	0.71	3.41	0.29	-	-	2.59	2.44	1.06
2	2.02	0.68	3.367	0.32	-	-	2.61	2.45	0.99
4	1.98	0.67	3.37	0.33	-	-	2.61	2.44	0.94
6	1.92	0.62	3.23	0.38	-	-	2.59	2.42	1.06
8 ^c	1.55	0.41	2.98	0.59	-	-	2.60	2.39	1.53
10 ^c	0.67	0.19	2.64	0.81	-	-	2.53	2.27	2.15
12.5	0.44	0.22	2.60	0.78	-	-	2.50	2.12	2.37
	0.21	0.17	2.07	0.63	3.99	0.20	2.76	2.14	1.08
15	0.38	0.28	2.61	0.72	-	-	2.49	1.98	2.18
	0.21	0.23	1.85	0.44	3.46	0.32	2.71	1.97	1.01
20	0.38	0.30	2.65	0.70	-	-	2.52	1.97	2.47
	0.19	0.24	1.69	0.39	3.36	0.37	2.72	1.95	1.12
(550 nm) ^b									
0	1.99	0.63	3.19	0.37	-	-	2.57	2.43	0.99
2	1.93	0.59	3.15	0.41	-	-	2.58	2.43	0.98
4	2.04	0.70	3.39	0.30	-	-	2.60	2.45	1.07
6	1.87	0.51	2.97	0.49	-	-	2.53	2.41	1.10
8	1.86	0.55	3.14	0.45	-	-	2.60	2.44	1.01
10	1.75	0.48	3.10	0.52	-	-	2.63	2.45	1.17
12.5	1.85	0.61	3.48	0.39	-	-	2.74	2.49	1.03
15	1.32	0.31	2.93	0.69	-	-	2.66	2.43	1.25
20	1.19	0.30	2.97	0.70	-	-	2.71	2.44	0.92

^a380 nm long-pass filter.^b550±10 nm interference filter.^cNo notable improvement in fit could be obtained using a 3-exponent function. Similar values were also found for the *meta*- and *para*-BAQBA probes.**FIGURE 17**

18/28

FIGURE 18

BEST AVAILABLE COPY

19/28

FIGURE 19

BEST AVAILABLE COPY

20/28

FIGURE 20

21/28

FIGURE 21

22/28

FIGURE 22

23/28

FIGURE 23

24/28**FIGURE 24**

25/28**FIGURE 25**

26/28

FIGURE 26

27/28

FIGURE 27

28/28

BEST AVAILABLE COPY

FIGURE 28