Festas de São Petersburgo

Por Marcio T. I. Oshiro, USP ■ Brasil

Timelimit: 3

São Petersburgo tornou-se após o fim da cortina de ferro, no início dos anos 90, uma das principais cidades da cena alternativa em todo o mundo. Grupos de punks, diversas bandas de hardcore e outros representantes da cena alternativa mudaram-se para a cidade, atraídas pela grande quantidade de jovens. Com o surgimento das comunidades virtuais, alguns anos mais tarde, notou-se o enorme potencial do uso destas comunidades para combinar encontros, festas, raves, etc.

Nestas festas de São Petersburgo é sempre muito importante que cada um dos participantes tenha pelo menos um certo número de amigos na rede social. E, ao mesmo tempo, desejamos convidar o maior número possível de pessoas de São Petersburgo desde que a restrição com relação ao número de amigos seja satisfeita. Tal restrição diz que, para ser convidada a festa, a pessoa precisa ter pelo menos um número K de amigos na lista de convidados.

Sua tarefa neste problema é, dado o conjunto de pessoas da comunidade e a lista de suas relações, determinar quais devem ser chamadas para que a festa tenha a maior quantidade possível de participantes satisfazendo a restrição.

Entrada

A entrada é composta por diversas instâncias e termina com final de arquivo (EOF). A primeira linha de cada instância contém três inteiros N ($1 \le N \le 1000$), M e K ($0 \le K \le N$) representando respectivamente o número de pessoas na comunidade, o número de relações de amizade nessa comunidade e o número mínimo de amigos convidados uma pessoa precisa ter para ser convidada. Cada pessoa da comunidade é identificada por números de 1 a N. Cada uma das próximas M linhas contém um par de pessoas indicando que elas são amigas na rede social.

Saída

Para cada instância imprima uma única linha contendo a lista das pessoas a serem convidadas separadas por um espaço em branco. A lista deve estar ordenada em ordem crescente. Caso ninguém possa ser convidado, imprima o número 0.

Exemplo de Entrada	Exemplo de Saída
6 6 2	2 4 6
1 3	0
3 5	
2 3	
2 4	
4 6	
6 2	
6 6 3	
1 2	
2 3	
3 1	
4 5	
5 6	
6 4	

XVI Maratona de Programação IME-USP, 2012. Agradecimento especial a Carlos E. Ferreira.