Dados utilizados

NASA Turbofan Predictive Maintenance, Composto por **múltiplas séries multivariadas**.

Dados: Log de 27 sensores para 290 motores

Target: RUL - Remaining Usefull Lifecycle. Quanto ciclos de vida aquele motor tem antes de falhar

Modelagem do problema

Como predição

Prever o RUL de cada motor dadas as leituras dos sensores ao longo do tempo

Como classificação

Para este trabalho, o problema foi transformado em um problema de classificação multilabel:

> label 0: RUL> 60 label 1: 20 a 60: label 2: RUL<= 20

Preparação dos dados

- Transformação de predição para classificação
- Separação das séries por motor manipulação intensa dos dados em um np.array de 3 dimensões
- Transposição dos dados para o formato de entrada nos algoritmos selecionados

Feature Engineering

De acordo com a representação escolhida

O que é uma série temporal?

É um dado tabular que é coletado várias vezes ao longo do tempo. São basicamente logs

Série UNIVARIADA

Um valor de interesse que varia ao longo do tempo.

Variação do preço do bitcoin entre 2010 e 2013

Série MULTIVARIADA

Temos **diversos** valores de interesse. Cada indicador é uma série temporal univariada

Variação de indicadores climáticos na embaixada dos EUA na China

ConvNets para extração automática de features para séries temporais multivariadas - 2 estratégias (1 delas funciona)

A extração de features representa etapa muito importante no desenvolvimento de modelos de aprendizado de máquina. em grande empirismo, Entretanto, é também uma etapa que confia em empirismo, podendo

algumas features serem desconsideradas, além de ocupar tempo considerável do pipeline. A geração automática de features é um problema muito relevante no cenário atual do mercado de aprendizado de máquina.

---- BASELINE: Representação tabular

Modelo

XGBoost

Acurácia

86%

id_motor	timestamp	sensor_1	 sensor_n
1	00:10:00	-0.0007	 110.00
2	00:10:00	0.0004	 120.78
1	00:20:00	0.0104	 100.15
3	00:10:00	0.0004	 78.47
1	00:30:00	0.0015	 50.78

id_motor	feature_1	feature_2	 feature_n
1	0.15	0.78	 0.35
2	0.25	0.90	 0.24
3	0.17	0.85	 0.22
n	0	0.7	 0.53

Feature engineering

Linear Growing Lookback Window com extração de estatísticas básicas. **Vantagem:** Pode ser alimentada nos algoritmos estatísticos **Desvantagem:** extração manual de features

------- $1\,$ Séries Temporais como imagens -------

Modelo

Conv2D + MaxPooling
Conv2D + MaxPooling

Dense + Dropout

Acurácia

53%

Algo de errado não está certo

A grande diferença entre imagens e séries temporais é se a ordem importa. A CNN 2D assume que a ordem não importa (spacial invariance). O que passa longe de ser verdade no caso de séries temporais...

----- 2 Recurrence Plots ------

Recurrence Plots

Forma de visualização de séries temporais multivariadas que permite entender os padrões de repetição ao longo do tempo. "Recurrence plots, which provide a way to visualize the periodic nature of a trajectory through a phase space." (Hatami et al, 2017)

Nima Hatami, Yann Gavet, Johan Debayle. Classification of Time-Series Images Using Deep Convolutional Neural Networks. 2017. Arxiv. <Disponível em: https://arxiv.org/pdf/1710.00886.pdf>

