第1章

層状化空間・因子化ホモロジー

[?], [?] のレビュー

1.1 conically smooth な層状化空間

1.1.1 層状化空間

定義 1.1: 半順序集合の位相

 (P,\leq) を半順序集合とする. P上の位相 $\mathscr{O}_{\leq} \subset 2^P$ を以下で定義する:

$$U \in \mathscr{O}_{\leq} \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \forall x \in U, \, \forall y \in P, \, \left[\, x \leq y \quad \Longrightarrow \quad y \in U \, \right]$$

実際, 空集合の定義から $\emptyset \in \mathcal{O}_{<}$ であり, $\forall U_1, U_2 \in \mathcal{O}_{<}$ に対して $x \in U_1 \cap U_2$ であることは

$$\forall y \in P, \ x \leq y \implies y \in U_1$$
 かつ $y \in U_2$

と同値なので $U_1\cap U_2\in \mathscr{O}_{\leq}$ であり、さらに勝手な開集合族 $\left\{U_{\lambda}\in \mathscr{O}_{\leq}\right\}_{\lambda\in\Lambda}$ に対して $x\in\bigcup_{\lambda\in\Lambda}U_{\lambda}$ は

$$\exists \alpha \in \Lambda, \ \forall y \in P, \ x \leq y \quad \Longrightarrow \quad y \in U_{\alpha} \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$$

と同値であるから $\bigcup_{\lambda \in \Lambda} U_{\lambda} \in \mathcal{O}_{\leq}$ であり、 \mathcal{O}_{\leq} は集合 P の位相である.

【例 1.1.1】 [n] の位相

半順序集合 $[2] \coloneqq \{0 \le 1 \le 2\}$ を考える. このとき, 位相 \mathcal{O}_{\le} とは

$$\mathscr{O}_{<} = \{ \emptyset, \{2\}, \{1, 2\}, \{0, 1, 2\} \}$$

のことである. 同様に、半順序集合 $[n] := \{0 \le 1 \le \cdots \le n\}$ に対して

$$\mathcal{O}_{<} = \{\emptyset, \{n\}, \{n-1, n\}, \dots, \{0, \dots, n\}\}$$

が成り立つ.

定義 1.2: 層状化空間・層状化写像

 (P, \leq) を半順序集合とし、定義 1.1 の位相を入れて位相空間にする.

このとき,位相空間 X が P-層状化されている (P-stratified)とは,連続写像 $s\colon X\longrightarrow P$ が存在 することを言う.組 $(X,s\colon X\longrightarrow P)$ のことを P-層状化空間 (P-stratified space)と呼ぶ.また, $i\in P$ の逆像 $X_i:=s^{-1}(\{i\})\subset X$ のことを i-層 (i-strata)と呼ぶ.

層状化空間 $(X,s\colon X\longrightarrow P),\; (X',s'\colon X'\longrightarrow P')$ の間の**層状化写像** (stratified map) とは,連続写像の組み $(f\colon X\longrightarrow X',\; \tilde{f}\colon P\longrightarrow P')$ であって以下の図式を可換にするもののこと:

$$\begin{array}{ccc} X & \xrightarrow{f} & X' \\ s \downarrow & & \downarrow s' \\ P & \xrightarrow{\tilde{f}} & P' \end{array}$$

【例 1.1.2】[n]-層状化空間

半順序集合 $[n] := \{0 \le \cdots \le n\}$ に対して【例 1.1.1】の位相を入れる. まず、

$$X_0 = s^{-1}([n] \setminus \{1, \ldots, n\})$$

でかつ $\{1, \, \dots, \, n\}$ は [n] の開集合であるから, s の連続性から X の部分空間 $X_0 \subset X$ は閉集合だとわかる. さらに

$$X_0 \cup X_1 = s^{-1}([n] \setminus \{2, \dots, n\}),$$

$$X_0 \cup X_1 \cup X_2 = s^{-1}([n] \setminus \{3, \dots, n\}),$$

$$\vdots$$

$$X_0 \cup \dots \cup X_n = X$$

が成り立つことから、s の連続性より X の部分空間 $X_0 \cup \cdots \cup X_{m \le n}$ は閉集合だと分かる.

【例 1.1.3】CW 複体

CW 複体 X を与える. $X_{\leq k}$ を X の k-骨格とするとき, $X_k \setminus X_{k-1}$ を $k \in \mathbb{Z}_{\geq 0}$ に写す写像 $s: X \longrightarrow \mathbb{Z}_{\geq 0}$ は X の層状化を与える.

直観的には,層状化空間とは defect 付き位相多様体の一般化である.特に X を位相多様体とするとき,[n]-層状化空間 $(X,s\colon X\longrightarrow [n])$ の i-層 X_i とは,多様体 X 上の余次元 d-i の defect を全て集めてきたものだと見做せる.

定義 1.3: 層状化開埋め込み

層状化写像 (f, \tilde{f}) : $(X, s: X \longrightarrow P) \longrightarrow (X', s': X' \longrightarrow P')$ が**層状化開埋め込み** (stratified open embedding) であるとは、以下の 2 条件を充たすことを言う:

- (1) 連続写像 $f: X \longrightarrow X'$ は位相的開埋め込みである^a
- (2) $\forall p \in P$ に対して, $f \circ p$ -strata への制限^b

$$f|_{X_p}\colon X_p\longrightarrow X'_{\tilde{f}(p)}$$

は位相的開埋め込みである.

以下では混乱が生じにくい場合,層状化空間 $(X,s\colon X\longrightarrow P)$ のことを $(X\stackrel{s}{\to}P)$ や $(X\to P)$ と略記する.さらに,層状化写像 $(f,\tilde{f})\colon (X,s\colon X\longrightarrow P)\longrightarrow (X',s'\colon X'\longrightarrow P')$ のことを $f\colon (X\to P)\longrightarrow (X'\to P')$ と略記し,連続写像 $\tilde{f}\colon P\longrightarrow P'$ のことも f と書く場合がある.

圏 StTop を,

- 第2可算な Hausdorff 空間であるような層状化空間を対象とする
- 層状化開埋め込みを射とする

ことで定義する.

1.1.2 C^0 級層状化空間

定義 1.4: コーン

層状化空間 $(X \stackrel{s}{\to} P)$ を与える. X の**コーン** (cone) とは、以下のようにして構成される層状化空間 $(\mathsf{C}(X)\,,\,\mathsf{C}(s):\mathsf{C}(X)\longrightarrow\mathsf{C}(P))$ のこと:

• 位相空間 C(X) を,押し出し位相空間

$$\mathsf{C}(X) := \{ \mathsf{pt} \} \coprod_{\{0\} \times X} (\mathbb{R}_{>0} \times X)$$

と定義する:

$$\{0\} \times X \xrightarrow{\{0\} \times \mathrm{id}_X} \mathbb{R}_{\geq 0} \times X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{\mathrm{pt}\} \xrightarrow{\longleftarrow} \{\mathrm{pt}\} \coprod_{\{0\} \times X} (\mathbb{R}_{\geq 0} \times X)$$

• 半順序集合 C(P) を、P に最小の要素 $-\infty$ を付け足すことで定義する. これは半順序集合の

 $[^]a$ i.e. $f \colon X \longrightarrow f(X)$ が同相写像かつ $f(X) \subset Y$ が開集合

^b 層状化写像の定義に登場する図式の可換性より、 $\forall x \in X_p$ に対して $s'\big(f(x)\big) = s' \circ f(x) = \tilde{f} \circ s(x) = \tilde{f}(p)$, i.e. $f(x) \in s'^{-1}\big(\{\tilde{f}(p)\}\} = X'_{\tilde{f}(p)}$ が分かる.

圏における押し出し

$$\mathsf{C}(P) \coloneqq \{-\infty\} \coprod_{\{0\} \times P} ([1] \times P)$$

である.

• 連続写像

$$\mathbb{R}_{\geq 0} \times X \longrightarrow [1] \times P,$$

$$(t, x) \longmapsto \begin{cases} (0, s(x)), & t = 0, \\ (1, s(x)), & t > 0 \end{cases}$$

が誘導する連続写像 $C(X) \longrightarrow C(P)$ を C(s) と書く.

位相空間の圏における押し出しの公式から、位相空間 C(X) とは

$$i_1: \{0\} \times X \longrightarrow \mathbb{R}_{\geq 0} \times X, \ x \longmapsto (0, x),$$

 $i_2: \{0\} \times X \longrightarrow \{\text{pt}\}, \ x \longmapsto \text{pt}$

とおいたときのコイコライザ

$$\{0\} \times X \xrightarrow{i_1} \{\text{pt}\} \sqcup (\mathbb{R}_{\geq 0} \times X) \xrightarrow{q} \mathsf{C}(X),$$

i.e. 商位相空間

$$\frac{\mathbb{R}_{\geq 0} \times X}{i_1(x) \sim i_2(x)} = \frac{\mathbb{R}_{\geq 0} \times X}{\{0\} \times X}$$

のこと. 従って $C(s): C(X) \longrightarrow C(P)$ とは, 連続写像*1

$$\frac{\mathbb{R}_{\geq 0} \times X}{\{0\} \times X} \longrightarrow \mathsf{C}\left(P\right), \; \left[\left(t,\,x\right)\right] \longmapsto \begin{cases} -\infty, & t = 0 \\ s(x), & t > 0 \end{cases}$$

のことである.

以下では,混乱の恐れがない限り層状化空間 $(X\stackrel{s}{ o}P)$ のコーンを $\mathsf{C}\left(X\stackrel{s}{ o}P
ight)$ と略記する.

^{*1} $\mathsf{C}(P)$ の位相 $\mathscr{O}_{\mathsf{C}(P)}$ は、P の位相 \mathscr{O}_P に 1 つの開集合 $\{-\infty\} \cup P$ を加えたものである。 $\forall U \in \mathscr{O}_P$ に対して $\mathsf{C}(s)^{-1}(U) = \mathbb{R}_{>0} \times s^{-1}(U) \in \mathscr{O}_{\mathsf{C}(X)}$ で、かつ $\mathsf{C}(s)^{-1}(\{-\infty\} \cup P) = \mathsf{C}(X) \in \mathscr{O}_{\mathsf{C}(X)}$ なので $\mathsf{C}(s)$ は連続である。

定義 1.5: C^0 級層状化空間

以下を充たす \mathbf{StTop} の最小の充満部分圏を \mathbf{Snglr}^{C^0} と書き、圏 \mathbf{Snglr}^{C^0} の対象を $\mathbf{C^0}$ 級層状化空間 (C^0 stratified space) と呼ぶ:

(Snglr-1)
$$(\emptyset \to \emptyset) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$$

(Snglr-2)

$$(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$$
 かつ X , P が位相空間としてコンパクト $\Longrightarrow \mathsf{C}(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$

(Snglr-3)

$$(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0}) \implies (X \times \mathbb{R} \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})^a$$

(Snglr-4)

$$(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$$
 かつ $\mathrm{Hom}_{\mathbf{StTop}}((U \to P_U), (X \to P)) \neq \emptyset$ $\Longrightarrow (U \to P_U) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$

(Snglr-5)

$$(X \to P) \in \mathrm{Ob}(\mathbf{StTop})$$
 が開被覆 $\{(U_{\lambda} \to P_{\lambda}) \longrightarrow (X \to P)\}_{\lambda \in \Lambda}^{b}$ を持ち、かつ $\forall \lambda \in \Lambda$ に対して $(U_{\lambda} \to P_{\lambda}) \in \mathrm{Ob}(\mathbf{Snglr}^{C^{0}})$ $\Longrightarrow (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^{0}})$

【例 1.1.4】位相多様体は C^0 級層状化空間

(Snglr-1) より、 $* := \mathsf{C}(\emptyset \to \emptyset) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ である. (Snglr-3) より、 $\forall n \geq 0$ に対して $\mathbb{R}^n = (\mathbb{R}^n \to [0]) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ であることが帰納的に分かる. \mathbb{R}^n の任意の開集合 $U \hookrightarrow \mathbb{R}^n$ に対して、

$$\begin{array}{ccc}
U & \longrightarrow \mathbb{R}^n \\
\downarrow & & \downarrow \\
[0] & \longrightarrow & [0]
\end{array}$$

は層状化埋め込みであり、従って (Snglr-4) より $U\coloneqq (U\to [0])\in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ が分かる.以上の考察と (Snglr-5) を併せて、任意の位相多様体 M は a 圏 \mathbf{Snglr}^{C^0} の対象である.

【例 1.1.4】の意味で, C^0 級層状化空間は位相多様体の一般化と見做せる.しかしまだそこには C^∞ 構造を一般化した構造は入っておらず, C^∞ 多様体の一般化とは見做せない.

1.1.3 C^0 basic

 $[^]aX \times \mathbb{R}$ の層状化は、連続写像 $X \times \mathbb{R} \longrightarrow X$ 、 $(x,t) \longmapsto x$ を前もって合成することにより定める.

 $[^]b$ i.e. $\left\{U_{\lambda}\right\}_{\lambda\in\Lambda},\,\left\{P_{\lambda}\right\}_{\lambda\in\Lambda}$ が,それぞれ位相空間 $X,\,P$ の開被覆を成す.

 $[^]a$ より正確には,M を<mark>層状化空間</mark> ($M \rightarrow [0]$) と同一視している.

定義 1.6: C⁰ basic

 C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ が C^0 -basic であるとは、ある $n \in \mathbb{Z}_{\geq 0}$ およびコンパクトな C^0 級層状化空間 $(Z \to Q) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ が存在して $(X \to P) = (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to Q)$ が成り立つことを言う.

いま、 C^0 basic な $(U \to P_U) = (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ を 1 つとる. コーンの定義から、U の点を $(v, [t, z]) \in \mathbb{R}^n \times \frac{\mathbb{R}_{\geq 0} \times Z}{\{0\} \times Z}$ と表示することができる.この表示の下で自己同相

$$\gamma \colon \mathbb{R}_{>0} \times T\mathbb{R}^n \times \mathsf{C}(Z) \longrightarrow \mathbb{R}_{>0} \times T\mathbb{R}^n \times \mathsf{C}(Z),$$

$$(t, (v, p), [s, z]) \longmapsto (t, (tv + p, p), [ts, z])$$

$$(1.1.1)$$

を考える*².

さらに、もう 1 つの C^0 basic な $(U' \to P_{U'}) = (\mathbb{R}^{n'} \to [0]) \times \mathsf{C}(Z' \to P') \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ および $f \in \mathsf{Hom}_{\mathbf{Snglr}^{C^0}} \left((U \to P_U), (U' \to P_{U'}) \right)$ をとる。ただし、f はコーンポイントをコーンポイントへ写す、i.e. $\forall u \in \mathbb{R}^n$ に対して $f(u, \operatorname{pt}) \in \mathbb{R}^{n'} \times \{\operatorname{pt}\}$ が成り立つことを仮定する。 $f|_{\mathbb{R}^n} : \mathbb{R}^n \times \{\operatorname{pt}\} \longrightarrow \mathbb{R}^{n'} \times \{\operatorname{pt}\}$ を f のコーンポイントへの制限として、

$$f_{\Delta} : \mathbb{R}_{>0} \times T\mathbb{R}^{n} \times \mathsf{C}(Z) \longrightarrow \mathbb{R}_{>0} \times T\mathbb{R}^{n'} \times \mathsf{C}(Z'),$$

 $(t, v, p, [s, z]) \longmapsto (t, f|_{\mathbb{R}^{n}}(v), f(p, [ts, z]))$

とおこう.

【例 1.1.5】

 $Z = Z' = \emptyset$ のとき, f とは単に連続関数 $f: \mathbb{R}^n \longrightarrow \mathbb{R}^{n'}$ のことである. このとき,

$$(\gamma^{-1} \circ f_{\Delta} \circ \gamma)(t, v, p) = \gamma^{-1} \circ f_{\Delta}(t, tv + p, p)$$
$$= \gamma^{-1} (t, f(tv + p), f(p))$$
$$= \left(t, \frac{f(tv + p) - f(p)}{t}, f(p)\right)$$

と計算できるため,f が C^1 級であることと $\forall (v,p) \in T\mathbb{R}^n$ に対して $t \to +0$ の極限,i.e. v に沿った片側方向微分が存在することは同値である.

【例 1.1.5】をもとに、 C^0 basic な C^0 級層状化空間の間の層状化開埋め込みの conically smoothness を定義する. C^∞ 多様体の C^∞ 構造の定義においては、チャート $(U, \varphi \colon \mathbb{R}^n \to U)$ 、 $(V, \psi \colon \mathbb{R}^n \to V)$ の間の変換関数 $\psi^{-1} \circ \varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ が C^∞ 級であることを要請した. 次の小節で conically smooth structure の定義を行うが、その際にチャートに対応するものは basic $U = \mathbb{R}^n \times \mathbb{C}(Z)$ から着目している C^0 -級層状化空間 X への層状化開埋め込み $\varphi \colon U \to X$ であり、概ね*32 つのチャート $\varphi \colon U \to X$ 、 $\psi \colon V \to X$ の間の変換関数 $\psi^{-1} \circ \varphi \colon U \to V$ に対して conically smooth (along \mathbb{R}^n) であることを要請する.

^{*2} 接東 $T\mathbb{R}^n$ は \mathbb{R}^{2n} と微分同相である. [?, p.23] の記法に合わせて底空間 \mathbb{R}^n の点を p, p 上のファイバーの元を v としたとき $(v,p)\in T\mathbb{R}^n$ と書いた. 命題??の記法と順番が逆なので注意.

^{*3} コーンポイントをコーンポイントに写さない変換関数も存在しうるので、これだけではいけない.

定義 1.7: \mathbb{R}^n に沿って conically smooth

- C^0 basic $\mathcal{T}(U \to P_U) = (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$
- C^0 basic $\ \ (U' \to P_{U'}) = (\mathbb{R}^{n'} \to [0]) \times \mathsf{C}(Z' \to P') \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$
- $f \in \text{Hom}_{\mathbf{Snglr}^{C^0}} \left((U \to P_U), \, (U' \to P_{U'}) \right)$ であって、コーンポイントを保存するもの

を与える.このとき,f が \mathbb{R}^n に沿って C^1 級 $(C^1 \text{ along } \mathbb{R}^n)$ であるとは,以下の図式を可換にする連続写像

$$\tilde{D}f: \mathbb{R}_{\geq 0} \times T\mathbb{R}^n \times \mathsf{C}(Z) \longrightarrow \mathbb{R}_{\geq 0} \times T\mathbb{R}^{n'} \times \mathsf{C}(Z')$$

が存在することを言う:

$$\mathbb{R}_{\geq 0} \times T\mathbb{R}^{n} \times \mathsf{C}\left(Z\right) \xrightarrow{\overset{\tilde{D}f}{\longrightarrow}} \mathbb{R}_{\geq 0} \times T\mathbb{R}^{n'} \times \mathsf{C}\left(Z'\right)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathbb{R}_{\geq 0} \times T\mathbb{R}^{n} \times \mathsf{C}\left(Z\right)_{\gamma \xrightarrow{-1} \circ f_{\Delta} \circ \gamma} \mathbb{R}_{\geq 0} \times T\mathbb{R}^{n'} \times \mathsf{C}\left(Z'\right)$$

このような拡張が存在するとき、第一変数を t=0 に制限して得られる連続写像を

$$\mathbf{D}\mathbf{f} \colon T\mathbb{R}^n \times \mathsf{C}\left(Z\right) \longrightarrow T\mathbb{R}^{n'} \times \mathsf{C}\left(Z'\right)$$

と書く. f が \mathbb{R}^n に沿って C^r 級 であるとは, Df が \mathbb{R}^n に沿って C^{r-1} 級であることを言う. f が \mathbb{R}^n に沿って conically smooth であるとは, $\forall r \geq 1$ について C^r 級であることを言う.

1.1.4 conically smooth な層状化空間

次に行うべきは、与えられた C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ の上の conically smooth structure i.e. 変換関数が conically smooth であるような**極大アトラス**を定義することである.この手続きは、次で定義する次元と深さに関する帰納法によって構成される.

定義 1.8: 被覆次元

X を位相空間とする. 以下の条件を充たす最小の $d \in \mathbb{Z}_{\geq -1}$ のことを(存在すれば)X の被覆次元 (covering dimension) と呼び、 $\dim X$ と書く:

(covering)

X の任意の開被覆 $\mathscr U$ に対して、十分細かい細分 $\mathscr V_{\mathscr U} \prec \mathscr U$ が存在して、任意の互いに異なる $\forall m>d+1$ 個の開集合 $V_1,\ldots,V_m\in\mathscr V_{\mathscr U}$ の共通部分が空になるようにできる.特に、 \emptyset の被覆次元は -1 と定義する.

点 $x \in X$ における被覆次元を以下で定義する:

$$\dim_x X \coloneqq \inf \big\{ \dim U \ge -1 \bigm| x \in U \underset{\mathrm{open}}{\subset} X \big\}$$

定義 1.9: 次元と深さ

空でない C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ を与える.

- $(X \to P)$ の点 $x \in X$ における局所的次元 (local dimension) とは、点 x における X の被覆 次元 $\dim_x(X)$ のことを言う.
- $(X \to P)$ の次元 (dimension) とは

$$\dim(X \to P) \coloneqq \sup_{x \in X} \dim_x(X)$$

のこと.

• $(X \xrightarrow{s} P)$ の点 $x \in X$ における局所的深さ (local depth) とは、

$$\operatorname{depth}_x(X \to P) := \dim_x(X) - \dim_x(X_{s(x)})$$

のこと.

• $(X \to P)$ の深さ (depth) とは,

$$\operatorname{\mathbf{depth}}(X \to P) \coloneqq \sup_{x \in X} \operatorname{depth}_x(X \to P)$$

のこと. ただし, depth(\emptyset) := -1 と定義する.

【例 1.1.6】コーンの深さ

n 次元位相多様体 Z について,定義から $\forall x \in Z$ に対して $\dim_x(Z) = n$ が成り立つ.Z を【例 1.1.4】により C^0 級層状化空間 $(Z \stackrel{s}{\to} [0]) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ と見做すと,これのコーン $\mathbf{C}\left(Z \stackrel{s}{\to} [0]\right)$ について

$$\operatorname{depth}_x \left(\mathsf{C} \left(Z \xrightarrow{s} [0] \right) \right) = \begin{cases} n+1, & x = \mathsf{pt}, \\ 0, & \text{otherwise} \end{cases}$$

であることがわかる。実際 $\mathsf{C}(Z)_{\mathsf{C}(s)(\mathrm{pt})} = \{\mathrm{pt}\}$ であるが、1 点からなる位相空間の<mark>被覆次元</mark>は 0 次元なので $\dim_{\mathrm{pt}}(\mathsf{C}(Z)_{\mathsf{C}(s)(\mathrm{pt})}) = 0$ である。一方、コーンポイント以外の点 $x \in \mathsf{C}(Z)$ に対して $\mathsf{C}(s)(x)$ -層は $\mathsf{C}(Z)_{\mathsf{C}(s)(x)} = \mathbb{R}_{>0} \times Z \approx \mathbb{R} \times Z$ であるから、 $\dim_x(\mathsf{C}(Z)_{\mathsf{C}(s)(x)}) = n+1$ と計算できる a

また、 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ に対して

$$\dim((\mathbb{R}^m \to [0]) \times (X \to P)) = m + \dim(X \to P),$$

$$\operatorname{depth}((\mathbb{R}^m \to [0]) \times (X \to P)) = \operatorname{depth}(X \to P)$$

が成り立つ. 従って、 C^0 basic な $(U \to P_U) = (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ に対して

$$\begin{split} \operatorname{depth}(U \to P_U) &= \operatorname{depth} \left(\operatorname{\mathsf{C}} \left(Z \to P \right) \right) \\ &= \dim(Z \to P) + 1 \end{split}$$

が成り立つ.

a さらに、 $\forall x \in C(Z)$ に対して $\dim_x C(Z) = n+1$ である.

次元と深さに関する帰納法を実行する前に、構成したい (1,1)-圏を表す記号の整理をしておこう:

• conically smooth チャートの素材となる, basic が成す圏

\mathbf{Bsc}

これは, C^{∞} 多様体の圏 **Mfld** において \mathbb{R}^n ($\forall n \geq -1$) 全体が成す充満部分圏に相当するものである.

• 与えられた C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ に対して,その上に入る極大アトラス*4全体が成す集合を返す前層

$$\mathsf{Sm} \colon (\mathbf{Snglr}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$$

この対応が前層であることの直観は、層状化開埋め込み $f \in \operatorname{Hom}_{\mathbf{Snglr}^{C^0}}\left((X \to P), (Y \to Q)\right)$ が与えられると、 $(X \to P)$ 上の極大アトラス $\operatorname{Sm}(X \to P)$ が $(Y \to Q)$ 上の極大アトラス $\operatorname{Sm}(Y \to Q)$ を「制限」する写像 $\operatorname{Sm}(f) \colon \operatorname{Sm}(Y \to Q) \longrightarrow \operatorname{Sm}(X \to P)$ によって得られるということである.

• 深さが k 以下,かつ次元が n 以下であるような C^0 級層状化空間全体が成す \mathbf{Snglr}^{C^0} の充満部分圏を

$$\mathbf{Snglr}^{C^0}\underbrace{\underbrace{\leq k}_{\text{depth}}},\underbrace{\underbrace{\leq n}_{\text{dimension}}}$$

と書く. 同様に

$$\mathbf{Bsc}_{\leq k,\,\leq n},\qquad \mathsf{Sm}_{\leq k,\,\leq n}\colon (\mathbf{Snglr}_{\leq k,\,\leq n}^{C^0})^{\mathrm{op}}\longrightarrow \mathbf{Sets}$$

と書く.

• conically smooth な層状化空間の圏

Snglr

これを作ることが本小節の最終目標である.

帰納法により、 $\forall k \geq -1$ に対して $\mathbf{Bsc}_{\leq k, \leq \infty}$ および $\mathsf{Sm}_{\leq k, \leq \infty} \colon (\mathbf{Snglr}_{\leq k, <\infty}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$ が構成される.

定義 1.10: 帰納法の出発点

(Snglr-1) より $(\emptyset \to \emptyset) \in \mathrm{Ob}(\mathbf{Snglr}_{\leq -1, \leq \infty}^{C^0})$ である.

- (1) $\mathbf{Bsc}_{<-1,<\infty} := \emptyset$
- (2) $\mathsf{Sm}_{<-1,<\infty}(\emptyset) := \{*\}$

と定義する.

^{*4} 存在するか分からないし、存在したとして一意であるとは限らない. 実際、例えば C^{∞} 多様体の段階においてさえ \mathbb{R}^4 の上の極大アトラス (i.e. C^{∞} 構造) は非可算無限個存在する [?].

仮定 1.1: 帰納法の仮定

与えられた $k \ge -1$ に対して以下の構成が完了していると仮定する:

- (1) 圏 $\mathbf{Bsc}_{\leq k, \leq \infty}$
- (2) 前層 $\mathsf{Sm}_{\leq k, \leq \infty} \colon (\mathbf{Snglr}_{\leq k, \leq \infty}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$
- (3) 関手

$$\mathbb{R} \times (-) \colon \mathbf{Bsc}_{\leq k, \leq \infty} \longrightarrow \mathbf{Bsc}_{\leq k, \leq \infty},$$

$$U \longmapsto \mathbb{R} \times U,$$

$$\left(U \xrightarrow{f} V\right) \longmapsto \left(\mathbb{R} \times U \xrightarrow{\mathrm{id} \times f} \mathbb{R} \times V\right)$$

およびそれが誘導する自然変換な

 a X の極大アトラス $\left\{U_{lpha},\,arphi_{lpha}
ight\}_{lpha\in\Lambda}$ に対して, $\left\{\mathbb{R} imes U_{lpha},\,\mathrm{id} imesarphi_{lpha}
ight\}_{lpha\in\Lambda}$ を対応づける.

定義 1.11: 圏 $\operatorname{Bsc}_{\leq k+1, \leq \infty}$

帰納法の仮定 1.1 がある $k \geq -1$ において成立しているとする。また, C^0 basic を $U_Z^n \coloneqq (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ と書く.このとき,圏 $\mathbf{Bsc}_{\leq k+1, \leq \infty}$ を以下で定義する:

(対象)

$$C^0$$
 basic ${}^aU_Z^n\in \mathrm{Ob}(\mathbf{Snglr}_{\leq k+1,\,\leq\infty}^{C^0})$ および、極大アトラス $\mathcal{A}_Z\in \mathrm{Sm}_{\leq k,\,\leq\infty}(Z o P)$ の組み $(U_Z^n,\,\mathcal{A}_Z)$

を対象とする. これを basic と呼ぶ.

(射)

任意の 2 つの対象 $(U_Z^n,\mathcal{A}_Z),\; (U_W^m,\mathcal{A}_W)\in \mathrm{Ob}(\mathbf{Bsc}_{\leq k+1,\,\leq\infty})$ に対して、以下の条件を充た す層状化開埋め込み $f\in\mathrm{Hom}_{\mathbf{Snglr}^{C^0}_{\leq k+1,\,\leq\infty}}\left(U_Z^n,\,U_W^m\right)$ を射とする:

f がコーンポイントを保存しない場合

ある層状化開埋め込み $f_0\in \mathrm{Hom}_{\mathbf{Snglr}^{C^0}_{\leq k+1,<\infty}}\left(U^n_Z,\ \mathbb{R}^m imes\mathbb{R}_{>0} imes W
ight)$ が存在して

$$f \colon U_Z^n \xrightarrow{f_0} \mathbb{R}^m \times (\mathbb{R}_{>0} \times W) \hookrightarrow U_W^m = \mathbb{R}^m \times \mathsf{C}\left(W\right)$$

と書けて、かつ $(U_Z^n, f_0) \in \mathcal{A}_{\mathbb{R}^m \times \mathbb{R}_{>0} \times W} \in \mathsf{Sm}(\mathbb{R}^m \times \mathbb{R}_{>0} \times W)$

f がコーンポイントを保存する場合

f は \mathbb{R}^n に沿って conically smooth であって、かつ $Df: \mathbb{R}^n \times U_Z^n \longrightarrow \mathbb{R}^m \times U_W^m$ が単射

であり、かつ

$$\mathcal{A}_{f^{-1}(U_W^m \backslash \mathbb{R}^m)} = \mathsf{Sm}_{\leq k, \leq \infty} (f|_{f^{-1}(U_W^m \backslash \mathbb{R}^m)}) (\mathcal{A}_{U_W^m \backslash \mathbb{R}^m})$$

を充たす b . ただし, $U_W^m \setminus \mathbb{R}^m \coloneqq U_W^m \setminus (\mathbb{R}^m \times \{ \mathrm{pt} \}) = \mathbb{R}^{m+1} \times W$ と略記した.

 $\frac{a}{d}$ depth の定義から $\det(Z \to P) \leq \dim(Z \to P)$ である。故に【例 1.1.6】から, $\det(Z \to P) \leq \dim(Z \to P) = \det U_Z^n - 1 \leq k$ であること,i.e. $(Z \to P) \in \mathrm{Ob}(\mathbf{Snglr}_{\leq k, \leq \infty}^{C^0})$ が分かる.

 b ここで帰納法の仮定 1.1-(3) を暗に使っている.

定義 1.12: 前層 $Sm_{< k+1, < \infty}$

帰納法の仮定 1.1 がある $k \geq -1$ において成立しているとする. さらに定義 1.11 によって $\mathbf{Bsc}_{\leq k+1,\leq \infty}$ が完成しているとする.

• C^0 級層状化空間 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0}_{\leq k+1, \leq \infty})$ に対して、 $X \to P$ のアトラス (atlas) を族

$$\mathcal{A} := \left\{ \left(U_{\alpha} \in \mathrm{Ob}(\mathbf{Bsc}_{\leq k+1, \leq \infty}), \, \varphi_{\alpha} \colon U_{\alpha} \hookrightarrow (X \to P) \right) \right\}_{\alpha \in \Lambda} \in \mathsf{Sm}_{\leq k+1, \leq \infty}(X \to P)$$

であって以下の条件を充たすものとして定義する:

(Atlas-1)

A は $(X \to P)$ の開被覆である.

(Atlas-2)

 $orall lpha,\,eta\in\Lambda$ および $orall x\in arphi_lpha(U_lpha)\caparphi_eta(U_eta)$ に対して,圏 $\mathbf{Snglr}_{\leq k+1,\,\leq\infty}^{C^0}$ の可換図式

$$\exists W \stackrel{f_{\beta}}{\longleftrightarrow} U_{\beta}$$

$$f_{\alpha} \downarrow \qquad \qquad \downarrow \varphi_{\beta}$$

$$U_{\alpha} \stackrel{f_{\varphi}}{\longleftrightarrow} X$$

が存在して $x \in \varphi_{\alpha} \circ f_{\alpha}(W) = \varphi_{\beta} \circ f_{\beta}(W)$ を充たす。ただし、可換図式中の赤色の部分は全て圏 $\mathbf{Bsc}_{< k+1, < \infty}$ の対象および射からなる。

アトラス A の元 $(U_{\alpha}, \varphi_{\alpha}) \in A$ のことをチャート (chart) と呼ぶ.

- C^0 級層状化空間 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}_{\leq k+1, \leq \infty}^{C^0})$ の 2 つのアトラス A, $\mathcal B$ が同値であるとは, $A \cup \mathcal B$ が $(X \to P)$ のアトラスであることを言う.これは $(X \to P)$ のアトラス全体の集合の上に同値関係を定める。 $(X \to P)$ の極大アトラス (maximal atlas) とは,この同値関係によるアトラス A の同値類 [A] のことを言う.
- 前層

$$\mathsf{Sm}_{\leq k+1, \leq \infty} \colon (\mathbf{Snglr}_{\leq k+1, \leq \infty}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$$

を以下のように定義する:

(対象)

任意の C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0}_{\leq k+1, \leq \infty})$ に対して

$$\mathsf{Sm}_{\leq k+1, \leq \infty}(X \to P) \coloneqq \{ [\mathcal{A}] \mid \mathcal{A} \text{ is an atlas of } (X \to P) \}$$

(射)

任意の層状化開埋め込み $f\in \mathrm{Hom}_{\mathbf{Snglr}^{C^0}_{\leq k+1,\,\leq\infty}}\left((X\to P),\,(Y\to Q)\right)$ に対して,f によるアトラスの引き戻しを対応付ける.

以上の帰納法をまとめて、conically smooth な層状化空間と層状化開埋め込みの圏 Snglr を得る.

定義 1.13: 圏 Snglr

• basic のなす圏 Bsc を以下で定義する:

$$\mathbf{Bsc}\coloneqqigcup_{k\geq -1}\mathbf{Bsc}_{\leq k,\,\leq\infty}$$

• 極大アトラスの集合を与える関手 Sm: $(\mathbf{Snglr}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$ を以下の右 Kan 拡張として定義する:

$$(\mathbf{Snglr}^{C^0}_{<\infty, \leq \infty})^{\mathrm{op}} \xrightarrow{\mathsf{Sm}_{<\infty, \leq \infty}} \mathbf{Sets}$$

$$\downarrow \qquad \qquad \qquad \mathsf{Snglr}^{C^0})^{\mathrm{op}}$$

ただし、
$$\mathbf{Snglr}^{C^0}_{<\infty,\leq\infty}\coloneqq igcup_{k\geq -1}\mathbf{Snglr}^{C^0}_{\leq k,\leq\infty}$$
 とおいた.

• **conically smooth な層状化空間** (conically smooth stratified space) と**層状化開埋め込み**の 圏 **Snglr** を以下で定義する:

(対象)

 C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ およびその極大アトラス $\mathcal{A}_{\mathcal{X}} \in \mathrm{Sm}(X \to P)$ の組み $((X \to P), \mathcal{A}_X)$ を対象とする.

(射)

層状化開埋め込み $f \in \operatorname{Hom}_{\mathbf{Snglr}^{C^0}}\left((X \to P),\, (Y \to Q)\right)$ であって、 $f^*\mathcal{A}_Y = \mathcal{A}_X$ を充たすものを射とする.

1.1.5 conically smooth map

ここまでは層状化開埋め込みのみを考えていたため、一般の層状化写像の conically smoothness を定義しなくてはいけない.

 $[^]a$ 同値関係であることの証明は [?, Lemma 3.2.11.] を参照.

定義 1.14: conically smooth map

2 つの $\underline{\text{basic}}^a X = (U_Z^n, A_Z), Y = (U_W^m, A_W) \in \text{Ob}(\mathbf{Bsc})$ の間の層状化写像 $f: U_Z^n \longrightarrow U_W^m$ が conically smooth であることを、 $\underline{\text{depth}}(Y)$ に関する帰納法によって定義する:

- (1) まず、 $\operatorname{depth}(Y) = -1$ のときは $X = Y = \emptyset$ であり、一意的に定まる X, Y 間の層状化写像が conically smooth であると定義する.
- (2) 深さ $k \ge -1$ の basic に対して定義が完了しているとする. $Y \in \mathrm{Ob}(\mathbf{Bsc})$ の深さが高々 k+1 であるとき,層状化写像 $f\colon X \longrightarrow Y$ が conically smooth であることを以下で定義する:

f がコーンポイントを保存しない場合

ある conically smooth な層状化写像 $f_0: X \longrightarrow \mathbb{R}^m \times \mathbb{R}_{>0} \times W$ が存在して

$$f: X \xrightarrow{f_0} \mathbb{R}^m \times (\mathbb{R}_{>0} \times W) \hookrightarrow Y = \mathbb{R}^m \times \mathsf{C}(W)$$

と書ける**b**.

f がコーンポイントを保存する場合

f は \mathbb{R}^n に沿って conically smooth であって、かつ制限

$$f|_{f^{-1}(Y\setminus\mathbb{R}^m)}\colon f^{-1}(Y\setminus\mathbb{R}^m)\longrightarrow Y\setminus\mathbb{R}^m$$

が conically smooth. ただし, $U_W^m \setminus \mathbb{R}^m := U_W^m \setminus (\mathbb{R}^m \times \{\text{pt}\}) = \mathbb{R}^{m+1} \times W$ と略記した.

conically smooth な層状化空間 $((X \to P), A_X), ((Y \to Q), A_Y) \in Ob(\mathbf{Snglr})$ の間の層状化写像 $f: (X \to P) \longrightarrow (Y \to Q)$ が conically smooth であるとは、任意のチャートの組み合わせ $(U, \varphi) \in \mathcal{A}_X, (V, \psi) \in \mathcal{A}_Y$ に対して

$$\psi^{-1} \circ f \circ \varphi \colon U \longrightarrow V$$

が conically smooth (for basics) であることを言う.

命題 1.1: conically smooth map の基本性質

2つの conically smooth map の合成も conically smooth である.

証明 [?, Proposition 3.3.5]

命題 1.1 より, conically smooth な層状化空間の圏を定義できる.

 $[^]aC^0$ basic を $U_Z^n \coloneqq (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ と書く.

b 【例 1.1.6】より depth(W) < k+1 であり、帰納法の仮定が使える.

定義 1.15: conically smooth な層状化空間の圏 Strat

conically smooth な層状化空間の圏 Strat を以下で定義する:

(対象)

圏 Snglr と全く同じ対象を持つ:

$$Ob(\mathbf{Strat}) := Ob(\mathbf{Snglr})$$

(射)

conically smooth map を射とする.

定義から明らかに Snglr ⊂ Strat である. ここで、圏 Strat における特別な射に名前をつけておこう:

定義 1.16: constructuble bundle

• conically smooth な層状化写像 $\pi \in \operatorname{Hom}_{\mathbf{Strat}} \big((E \to P), (B \to Q) \big)$ が層状化ファイバー 東 (conically smooth fiber bundle) であるとは、conically smooth な層状化開埋め込みの族 $\big\{ U_{\alpha} \hookrightarrow B \big\}_{\alpha \in \Lambda}, \ \big\{ \varphi_{\alpha} \colon U_{\alpha} \times F_{\alpha} \hookrightarrow E \big\}_{\alpha \in \Lambda}$ が存在して以下を充たすことを言う:

(Bun-1)

 $\forall \alpha \in \Lambda$ に対して、圏 **Strat** における引き戻しの図式

$$U_{\alpha} \times F_{\alpha} \xrightarrow{\varphi_{\alpha}} E$$

$$\text{proj}_{1} \downarrow \qquad \qquad \downarrow \pi$$

$$U_{\alpha} \longleftrightarrow B$$

が成り立つ.

(Bun-2)

族 $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ は B の開基である.

• conically smooth な層状化写像 $\pi \in \operatorname{Hom}_{\mathbf{Strat}} \big((E \to P), (B \to Q) \big)$ が弱構成可能束 (weakly constructuble bundle) であるとは、 $\forall q \in Q$ に対して、 π の q-層への制限

$$\pi|_{\pi^{-1}(B_q)} \colon \pi^{-1}(B_q) \longrightarrow B_q$$

が層状化ファイバー束であることを言う.

- conically smooth な層状化写像 $\pi \in \operatorname{Hom}_{\mathbf{Strat}} \big((E \to P), (B \to Q) \big)$ が構成可能束 (constructuble bundle) であることを、 $\operatorname{depth}(E)$ に関する帰納法によって定義する:
 - (1) $\operatorname{depth}(E)=0$ のとき, π が構成可能束であるとは, π が C^{∞} ファイバー束であることを言う.
 - (2) 深さ $k \ge 0$ までの定義が完了しているとする. $\operatorname{depth}(E) \le k+1$ のとき, π が構成可能束であるとは、以下の 2 条件を充たすことを言う:

(cBun-1) π は弱構成可能束である.

(cBun-2) $\forall q \in Q$ に対して、 π が誘導する層状化写像

$$\operatorname{Link}_{\pi^{-1}(B_q)}(E) \longrightarrow \pi^{-1}(B_q) \times_{B_q} \operatorname{Link}_{B_q}(B)$$

が構成可能束である.

1.1.6 管状近傍・ハンドル分解

1.2 層状化空間の接構造

1.2.1 Kan-豊穣化

圏 Kan を,

- Kan 複体を対象に持つ
- Kan 複体の間の自然変換を射に持つ

(1,1)-圏とする. **Kan** は単体的集合の圏 **sSet** の充満部分圏であり,直積 $(\ref{eq:ssection})$ をテンソル積とするモノイダル圏になる.

定義 1.17: 余単体的多様体

以下で定義する関手

$$\Delta_e \colon \Delta \longrightarrow \mathbf{Strat}$$

のことを**余単体的多様体** (standard cosimplicial manifold) と呼ぶ。:

• $[n] \in \mathrm{Ob}(\Delta)$ を、conically smooth な層状化空間

$$\Delta_e^n := \{ (x^0, \dots, x^n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n x^i = 1 \}$$

に対応付ける.

• $\alpha \in \operatorname{Hom}_{\Delta}([m], [n])$ を、conically smooth な層状化写像

$$\Delta_e(\alpha) \colon \Delta_e^m \longrightarrow \Delta_e^n,$$

$$(x^0, \dots, x^m) \longmapsto \left(\sum_{j, \alpha(j)=0} x^j, \dots, \sum_{j, \alpha(j)=n} x^j\right)$$

に対応付ける.

PSh (Strat^{op}, Sets) から sSet への関手を

$$(-)|_{\Delta} \colon \mathrm{PSh}\left(\mathbf{Strat}, \, \mathbf{Sets}\right) \longrightarrow \mathbf{sSet},$$

$$F \longmapsto F \circ \Delta_{e}$$

で定義する. さらに、 $\forall X, Y \in \text{Ob}(\mathbf{Strat})$ に対して前層 $\text{Hom}_{\mathbf{Strat}}(X, Y) \in \text{PSh}(\mathbf{Strat}, \mathbf{Sets})$ を

$$\widetilde{\operatorname{Hom}_{\operatorname{\mathbf{Strat}}}}(X,Y) \colon \mathbf{Strat}^{\operatorname{op}} \longrightarrow \mathbf{Sets},$$

$$\mathbf{Z} \longmapsto \big\{ f \in \operatorname{Hom}_{\mathbf{Strat}}(\mathbf{Z} \times X, \mathbf{Z} \times Y) \mid \operatorname{proj}_{\mathbf{Z}} \circ f = \operatorname{proj}_{\mathbf{Z}} \big\},$$

 $[^]a$ 幾何学的 n-単体に似ているが、 $x^i \geq 0$ の領域で切り取っていない.

$$(Z \xrightarrow{\alpha} W) \longmapsto \begin{pmatrix} \widetilde{\operatorname{Hom}_{\operatorname{\mathbf{Strat}}}(X,Y)(Z)} \longrightarrow \widetilde{\operatorname{Hom}_{\operatorname{\mathbf{Strat}}}}(X,Y)(W), \\ f \longmapsto \left((w,x) \mapsto \left(w, \operatorname{proj}_{Y} \circ f(\alpha(w),x) \right) \right) \end{pmatrix}$$

で定義する。ただし、conically smooth な層状化写像 $\operatorname{proj}_Z \in \operatorname{Hom}_{\mathbf{Strat}}(Z \times X, Z)$ とは第一成分への射影のことである。同様にして前層 $\widetilde{\operatorname{Hom}}_{\mathbf{Snglr}}(X, Y) \in \operatorname{PSh}\left(\mathbf{Strat}, \mathbf{Sets}\right)$ を

$$\begin{split} \operatorname{Hom}_{\operatorname{\mathbf{Snglr}}}(X,\,Y) \colon \mathbf{Strat}^{\operatorname{op}} &\longrightarrow \mathbf{Sets}, \\ Z &\longmapsto \big\{\, f \in \operatorname{Hom}_{\mathbf{Snglr}}\left(Z \times X,\, Z \times Y \right) \,\big|\, \operatorname{proj}_Z \circ f = \operatorname{proj}_Z \,\big\}, \\ (Z \xrightarrow{\alpha} W) &\longmapsto \left(\stackrel{\operatorname{Hom}_{\operatorname{\mathbf{Snglr}}}(X,Y)(Z) \longrightarrow \operatorname{Hom}_{\operatorname{\mathbf{Snglr}}}(X,Y)(W),}{f \mapsto \left((w,x) \mapsto \left(w,\operatorname{proj}_Y \circ f(\alpha(w),x) \right) \right)} \right) \end{aligned}$$

で定義する.

補題 1.1:

 $\forall X, Y \in \text{Ob}(\mathbf{Strat})$ に対して定まる単体的集合

$$\operatorname{Hom}_{\operatorname{\mathcal{S}trat}}(X, Y) := \widetilde{\operatorname{Hom}_{\operatorname{\mathcal{S}trat}}}(X, Y)\Big|_{\Delta},$$
 $\operatorname{Hom}_{\operatorname{\mathcal{S}nglr}}(X, Y) := \widetilde{\operatorname{Hom}_{\operatorname{\mathcal{S}nglr}}}(X, Y)\Big|_{\Delta},$

は Kan 複体である.

証明 [?, Lemma 4.1.4.].

定義 1.18: $(\infty, 1)$ -圏 \mathcal{S} trat, \mathcal{S} nglr, \mathcal{B} sc

Kan-豊穣圏 Strat を以下で定義する:

- Ob(Strat) := Ob(Snglr)
- 補題 1.1 で構成した $\operatorname{Hom}_{\operatorname{Strat}}(X,Y) \in \operatorname{Ob}(\mathbf{Kan})$ を Hom 対象とする.

同様に、Kan-豊穣圏 Snglr を以下で定義する:

- Ob(Snglr) := Ob(Snglr)
- 補題 1.1 で構成した $\operatorname{Hom}_{\operatorname{Snglr}}(X,Y) \in \operatorname{Ob}(\mathbf{Kan})$ を Hom 対象とする.

Kan-豊穣圏 Snglr の対象を Ob(Bsc) に制限して得られる充満部分圏を $\mathcal{B}sc$ と書く.

 \mathbf{Kan} -豊穣圏を homotopy coherent nerve functor N_{hc} : $\mathbf{Cat}_{\Delta} \longrightarrow \mathbf{sSet}$ で単体的集合の圏 \mathbf{sSet} へ埋 め込んだものは $(\infty, 1)$ -圏である [?, Proposition 1.1.5.10.]. 故に以下では \mathbf{Kan} -豊穣圏 $\mathcal{S}\mathbf{trat}$, $\mathcal{S}\mathbf{nglr}$ と $(\infty, 1)$ -圏 $N_{hc}(\mathcal{S}\mathbf{trat})$, $N_{hc}(\mathcal{S}\mathbf{nglr})$ を区別しない.

1.2.2 $(\infty, 1)$ -圏におけるファイブレーション

定義 1.19: $(\infty, 1)$ -ファイブレーション

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ を $(\infty, 1)$ -圏の関手とする.

(lifting property)

包含 $\iota \in \operatorname{Hom}_{\mathbf{sSet}}(\Lambda_j^n, \Delta^n)$ に関して $p \circ f_0 = f \circ \iota$ を充たす任意の $(f_0, f) \in \operatorname{Hom}_{\mathbf{sSet}}(\Lambda_j^n, \mathcal{E}) \times \operatorname{Hom}_{\mathbf{sSet}}(\Delta_j^n, \mathcal{B})$ に対して、以下の図式を可換にする $\bar{f} \in \operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, \mathcal{E})$ が存在する:

- p が内的ファイブレーション (inner fibration) であるとは、 $0 < \forall j < \forall n$ に対して (lifting property) を充たすことを言う.
- p が右ファイブレーション (right fibration) であるとは、 $0 < \forall j \leq \forall n$ に対して (lifting property) を充たすことを言う.
- p が**左ファイブレーション** (left fibration) であるとは, $0 \le \forall j < \forall n$ に対して (lifting property) を充たすことを言う.
- p が Kan ファイブレーション (Kan fibration) であるとは、 $0 \le \forall j \le \forall n$ に対して (lifting property) を充たすことを言う.

系**??**によると**, (lifting property)** は**,** $(\infty, 1)$ -圏 \mathcal{B} における</mark>角の図式 $(p_{[n-1]}(f_{00}), \ldots, \underbrace{\bullet}_{j}, \ldots, p_{[n-1]}(f_{0n}))$ \in $(\mathcal{B}_{n-1})^{\times n}$ を n-射 $f \in \mathcal{B}_{n}$ が埋めているならば, $(\infty, 1)$ -圏 \mathcal{E} における</mark>角の図式 $(f_{00}, \ldots, \underbrace{\bullet}_{j}, \ldots, f_{0n})$ \in $(\mathcal{E}_{n-1})^{\times n}$ を埋める n-射 $\overline{f} \in \mathcal{E}_{n}$ が存在することを主張している.

定義 1.20: 充満部分 $(\infty, 1)$ -圏

- $(\infty, 1)$ -圏 \mathcal{C} の部分 $(\infty, 1)$ -圏 $(\text{sub }(\infty, 1)\text{-category})$ とは、単体的部分集合 $\mathcal{S} \subset \mathcal{C}$ であって、その包含写像 $i: \mathcal{S} \hookrightarrow \mathcal{C}$ が内的ファイブレーションであるようなもののこと。
- 部分 $(\infty, 1)$ -圏 $S \subset C$ が充満部分 $(\infty, 1)$ -圏 (full sub $(\infty, 1)$ -category) であるとは, $\forall n \geq 0$ に対して以下の条件を充たすことを言う:

(fullsub) $\forall \sigma \in \mathcal{C}_n \cong \operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, \mathcal{C})$ に対して、 $\sigma_{[0]}(\Delta^n_0) \subset \mathcal{S}_0 \implies \sigma \in \mathcal{S}_n$ が成り立つ.

a このとき S は $(\infty, 1)$ -圏になる [?, Tag 01CG]

2つの右ファイブレーション $\mathcal{E} \xrightarrow{p} \mathcal{B}$, $\mathcal{E}' \xrightarrow{p'} \mathcal{B}$ が与えられたとき, これらの間の射とは集合

$$\operatorname{Hom}_{\mathbf{Rfib}_{\mathcal{B}}}(\mathcal{E}, \mathcal{E}') := \{ f \in \operatorname{Hom}_{\mathbf{sSet}}(\mathcal{E}, \mathcal{E}') \mid p' \circ f = p \}$$

のことである. $\operatorname{Hom}_{\mathbf{Rfib}_{\mathcal{B}}}(\mathcal{E},\mathcal{E}')$ の元を \mathbf{sSet} における可換図式として表すと以下の通り:

$$\mathcal{E} \xrightarrow{p} \mathcal{E}'$$

 $\operatorname{Hom}_{\mathbf{Rfib}_{\mathcal{B}}}(\mathcal{E},\mathcal{E}') \subset \operatorname{Hom}_{\mathbf{sSet}}(\mathcal{E},\mathcal{E}')$ を【例??】の方法で単体的集合と見做せる.このようにして得られる単体的集合 $\operatorname{Hom}_{\mathbf{Rfib}_{\mathcal{B}}}(\mathcal{E},\mathcal{E}')$ の最大の部分 Kan 複体を $\operatorname{Hom}_{\mathbf{Rfib}_{\mathcal{B}}}(\mathcal{E},\mathcal{E}')$ と書く.

定義 1.21: 右ファイブレーションの成す $(\infty, 1)$ -圏

 \mathcal{B} を $(\infty, 1)$ -圏とする. Kan-豊穣圏 \mathcal{R} fib $_{\mathcal{B}}$ を

- 右ファイブレーションを対象とする
- $\operatorname{Hom}_{\mathcal{R}\mathbf{fib}_{\mathcal{B}}}(\mathcal{E},\mathcal{E}')$ を Hom 対象とする

ことで定義する. 以降では $(\infty, 1)$ -圏 $N_{hc}(\mathcal{R}\mathbf{fib}_{\mathcal{B}}) \in Ob(\mathbf{sSet})$ のことも $\mathcal{R}\mathbf{fib}_{\mathcal{B}}$ と書き, 区別しない.

1.2.3 $(\infty, 1)$ -圏におけるスライス圏

定義 1.22: 単体的集合の join

2 つの単体的集合 $S, T \in \mathrm{Ob}(\mathbf{sSet})$ の **join** とは、単体的集合

$$S \star T : \Delta^{\mathrm{op}} \longrightarrow \mathbf{Sets},$$

$$[n] \longmapsto \coprod_{[i]; \ -1 \le i \le n} (S_i \times T_{n-i-1}),$$

$$\left([m] \xrightarrow{\alpha} [n] \right) \longmapsto \left(\left([i]; \ (x, y) \right) \mapsto \left(\alpha^{-1}([i]); \ \left(S(\alpha|_{\alpha^{-1}([i])})(x), \ T(\alpha|_{\alpha^{-1}([m]\setminus[i])})(y) \right) \right) \right)$$
のこと、ただし $S_{-1} = T_{-1} \coloneqq \{*\}, \ [-1] \coloneqq \emptyset$ とおいた。

 $d_i^n \in \operatorname{Hom}_{\Delta^{\operatorname{op}}}([n], [n-1])$ に対して

$$(d_j^n)^{-1}([i]) = \begin{cases} [i], & -1 \le i < j \\ [i-1], & j \le i \le n \end{cases}$$
$$(d_j^n)^{-1}([n] \setminus [i]) = \begin{cases} [n-1] \setminus [i], & -1 \le i < j \\ [n-1] \setminus [i-1], & j \le i \le n \end{cases}$$

であるから, $S \star T$ の面写像は $n \geq 1, \, 0 \leq j \leq n$ に対して

$$\partial_j^n : \coprod_{-1 \le i \le n} (S_i \times T_{n-i-1}) \longrightarrow \coprod_{-1 \le i \le n-1} (S_i \times T_{n-i-2}), \tag{1.2.1}$$

$$([i]; (x, y)) \longmapsto \begin{cases} ([-1]; (*, \partial_{j}^{n}y)), & i = -1 \\ ([i]; (x, \partial_{j-i-1}^{n-i-1}y)), & 0 \leq i < j, (i, j) \neq (n-1, n) \\ ([i-1]; (\partial_{j}^{i}x, y)), & j \leq i \leq n-1, (i, j) \neq (0, 0) \\ ([n-1]; (\partial_{j}^{n}x, *)), & i = n \\ ([n-1]; (x, *)), & (i, j) = (n-1, n) \\ ([-1]; (*, y)), & (i, j) = (0, 0) \end{cases}$$

となる.

【例 1.2.1】join $\Delta^0 \star \Delta^0$

 $\Delta^0 \star \Delta^0$ を計算してみよう^a. まず対象は

$$(\Delta^0 \star \Delta^0)_0 = \Delta^0_0 \sqcup \Delta^0_0 = \left\{ \begin{cases} \{0\} \\ \bullet \\ \{0\} \end{cases} \right\}$$

である. 1-射は

$$(\Delta^0 \star \Delta^0)_1 = {\color{red}\Delta^0}_1 \sqcup (\Delta^0_0 \times \Delta^0_0) \sqcup {\color{red}\Delta^0}_1$$

であるが、(1.2.1) より始点関数は

$$\partial_1^1|_{\Delta_0^0 \times \Delta_0^0} \colon \Delta_0^0 \times \Delta_0^0 \longrightarrow \Delta_0^0 \sqcup \Delta_0^0,$$
$$(\{0\}, \{0\}) \longmapsto \{0\}$$

終点関数は

$$\begin{split} \partial_0^1|_{\Delta_0^0\times\Delta_0^0} \colon \Delta_0^0\times\Delta_0^0 &\longrightarrow {\color{red}\Delta^0}_0\sqcup {\color{blue}\Delta^0}_0,\\ (\{0\},\,\{0\}) &\longmapsto \{0\} \end{split}$$

となるため、 Δ^{0}_{1} 、 Δ^{0}_{1} が縮退していることを考慮すると

$$(\Delta^0 \star \Delta^0)_1 = \left\{ \begin{array}{c} \{0\} \\ \bullet \\ \{0\} \end{array} \right\}$$

と図示できる.

 $[^]a$ 左右の区別を付けるために色を付けた.

【例 1.2.2】join $\Delta^1 \star \Delta^0$

 $\Delta^1 \star \Delta^0$ を計算してみよう. まず対象は

$$(\Delta^{1} \star \Delta^{0})_{0} = \Delta^{1}_{0} \sqcup \Delta^{0}_{0} = \left\{ \begin{array}{c} \{0\} & \{1\} \\ \bullet & \bullet \\ \\ \{0\} \end{array} \right\}$$

である. 1-射は

$$(\Delta^1 \star \Delta^0)_1 = \Delta^1_1 \sqcup (\Delta^1_0 \times \Delta^0_0) \sqcup \Delta^0_1$$

であるが、(1.2.1) より始点関数は

$$\partial_1^1|_{\Delta_0^1 \times \Delta_0^0} \colon \Delta_0^1 \times \Delta_0^0 \longrightarrow \underline{\Delta}_0^1 \sqcup \underline{\Delta}_0^0,$$
$$(x, \{0\}) \longmapsto \underline{x}$$

終点関数は

$$\begin{array}{c} \partial_0^1|_{\Delta_0^1 \times \Delta_0^0} \colon \Delta_0^1 \times \Delta_0^0 \longrightarrow {\color{red} \Delta^1_0} \sqcup {\color{blue} \Delta^0_0}, \\ (x, \{0\}) \longmapsto \{0\} \end{array}$$

となるため,

$$\Delta^{1} \star \Delta^{0} = \begin{cases} \{0\} & \{1\} \\ & (\text{Id}_{[1]}, \{0\}) \end{cases}$$

と図示できる.ただし,三角形の内部は 2-射 $(\mathrm{Id}_{[1]},\,\{0\})\in\Delta^1_1\times\Delta^0_0\subset(\Delta^1\star\Delta^0)_2$ が埋めている.同様に

$$(\Delta^0 \star \Delta^1)_1 = \left\{ \begin{array}{c} \{0\} & \{1\} \\ \\ (\{0\}, \operatorname{Id}_{[1]}) \\ \\ \{0\} \end{array} \right\}$$

であることが分かる.

【例 1.2.3】join $\Delta^2 \star \Delta^0$

 $\Delta^2 \star \Delta^0$ を計算してみよう. まず

$$(\Delta^2 \star \Delta^0)_0 = \Delta^2_0 \sqcup \Delta^0_0 = \left\{ \begin{array}{ccc} \{1\} & & \{0\} \\ \bullet & \bullet \\ & \bullet \\ \{2\} & \\ & \bullet \\ \{0\} & \end{array} \right\}$$

である. 次に1射は

$$(\Delta^2 \star \Delta^0)_1 = {\color{red}\Delta^2}_1 \sqcup (\Delta_0^2 \times \Delta_0^0) \sqcup {\color{red}\Delta^0}_1$$

であるが、(1.2.1) より始点関数は

$$\partial_1^1|_{\Delta_0^2 \times \Delta_0^0} \colon \Delta_0^2 \times \Delta_0^0 \longrightarrow {\color{red}\Delta^2_0} \sqcup {\color{blue}\Delta^0_0}, \\ (x, \operatorname{Id}_{\{0\}}) \longmapsto {\color{blue}x}$$

となり,終点関数は

$$\partial_0^1|_{\Delta_0^2 \times \Delta_0^0} \colon \Delta_0^2 \times \Delta_0^0 \longrightarrow {\color{red}\Delta^2_0} \sqcup {\color{blue}\Delta^0_0}, \\ (x, \operatorname{Id}_{\{0\}}) \longmapsto \{0\}$$

となる. 従って図式??に倣うと

$$(\Delta^2 \star \Delta^0)_1 = \Delta^2_1 \sqcup (\Delta_0^2 \times \Delta_0^0) \sqcup \Delta^0_1 = \left\{ \begin{array}{c} \{0\} \\ \{1\} \\ \{0\} \end{array} \right.$$

と図示できる. ただし、四面体の内部は 3-射 $(\mathrm{Id}_{[2]},\,\{0\})\in\Delta_2^2\times\Delta_0^0\subset(\Delta^1\star\Delta^0)_3$ が埋めている. 同様に、 $\Delta^0\star\Delta^2$ の 1-射を図示すると

$$(\Delta^{0} \star \Delta^{2})_{1} = \Delta^{0}_{1} \sqcup (\Delta^{0}_{0} \times \Delta^{2}_{0}) \sqcup \Delta^{2}_{1} = \begin{cases} \{0\} \\ \{0\} \end{cases}$$

のようになる.

補題 1.2: $(\infty, 1)$ -圏同士の join は $(\infty, 1)$ -圏

 $(\infty, 1)$ -圏同士の join は $(\infty, 1)$ -圏である.

証明 [?, Proposition 1.2.8.3]

定義 1.23: スライス $(\infty, 1)$ -圏

 $(\infty, 1)$ -圏 \mathcal{D}, \mathcal{C} および $(\infty, 1)$ -圏の関手 $p \in \operatorname{Hom}_{\mathbf{sSet}}(\mathcal{D}, \mathcal{C})$ を与える. p に沿った \mathcal{C} のスライス圏 (overcategory)

$$\mathcal{C}_{/p} \colon \Delta^{\mathrm{op}} \longrightarrow \mathbf{Sets}$$

を以下で定義する:

• $\forall [n] \in \mathrm{Ob}(\Delta^{\mathrm{op}})$ に対して、集合

$$\operatorname{Hom}_{p}\left(\Delta^{n}\star\mathcal{D},\,\mathcal{C}\right)\coloneqq\left\{\,f\in\operatorname{Hom}_{\mathbf{sSet}}\left(\Delta^{n}\star\mathcal{D},\,\mathcal{C}\right)\mid f|_{\mathcal{D}}=p\,\right\}$$

を対応付ける。.

• $\forall \alpha \in \operatorname{Hom}_{\Delta^{\operatorname{op}}}([m], [n])$ に対して、写像

$$C_{/p}(\alpha) \colon \operatorname{Hom}_p(\Delta^m \star \mathcal{D}, \mathcal{C}) \longrightarrow \operatorname{Hom}_p(\Delta^n \star \mathcal{D}, \mathcal{C}),$$

$$f \longmapsto f \circ (\alpha_* \star \operatorname{Id}_{\mathcal{D}})$$

を対応付ける.

実際, 単体的集合 $\mathcal{C}_{/p}$ は $(\infty, 1)$ -圏である [?, Tag 018F].

p に沿った C のコスライス圏 (undercategory)

$$\mathcal{C}_{p}$$
: $\Delta^{\mathrm{op}} \longrightarrow \mathbf{Sets}$

を以下で定義する:

• $\forall [n] \in \mathrm{Ob}(\Delta^{\mathrm{op}})$ に対して、集合

$$\operatorname{Hom}_p\left(\mathcal{D}\star\Delta^n,\,\mathcal{C}\right)\coloneqq\left\{\,f\in\operatorname{Hom}_{\mathbf{sSet}}\left(\mathcal{D}\star\Delta^n,\,\mathcal{C}\right)\;\middle|\;f|_{\mathcal{D}}=p\,\right\}$$

を対応付ける。.

∀α ∈ Hom_{Δ∘P} ([m], [n]) に対して、写像

$$C_{p/}(\alpha) \colon \operatorname{Hom}_p(\mathcal{D} \star \Delta^m, \mathcal{C}) \longrightarrow \operatorname{Hom}_p(\mathcal{D} \star \Delta^n, \mathcal{C}),$$

$$f \longmapsto f \circ (\operatorname{Id}_{\mathcal{D}} \star \alpha_*)$$

を対応付ける.

 $[^]af|_{\mathcal D}$ というのは、join の定義における $(\Delta^n\star \mathcal D)_k$ の disjoint union のうち、添字 i=0 が振られている成分への制限を意味する.

 $^af|_{\mathcal{D}}$ というのは、 join の定義における $(\mathcal{D}\star\Delta^n)_k$ の disjoint union のうち、添字 i=n が振られている成分への制限を意味する.

特に注目すべきは、 $(\infty, 1)$ -圏の関手 $p: \Delta^0 \longrightarrow \mathcal{C}$ をとった場合である.このとき $X \coloneqq p_{[0]}(\{0\}) \in \mathcal{C}_0$ とおいて $\mathcal{C}_{/X}$ 、 $\mathcal{C}_{X/}$ などと書く.

まず、 $(\infty, 1)$ -圏 $\mathcal{C}_{/X}$ の対象 $\varphi \in (\mathcal{C}_{/X})_0 = \operatorname{Hom}_p(\Delta^0 \star \Delta^0, \mathcal{C})$ をとる. すると【例 1.2.1】および $\varphi|_{\Delta^0} = p$ の条件から、 $\varphi_{[1]} : (\Delta^0 \star \Delta^0)_1 \longrightarrow \mathcal{C}_1$ とは図式

$$\varphi_{[0]|\Delta_0^0}(\{0\})$$

$$\varphi = \varphi_{[1]|\Delta_0^0 \times \Delta_0^0}(\{0\} \to \{0\})$$

$$X$$

である. $n \geq 2$ 射に相当する $\varphi_{[n]}$: $(\Delta^0 \star \Delta^0)_n \longrightarrow \mathcal{C}_n$ のデータは縮退していて自明である. 従って, φ は (1,1)-圏における X 上のスライス圏の対象と等価なデータを与える.

同様に、 $(\infty, 1)$ -圏 $\mathcal{C}_{/X}$ の 1-射 $f \in (\mathcal{C}_{/X})_1 = \operatorname{Hom}_p(\Delta^1 \star \Delta^0, \mathcal{C})$ とは、【例 1.2.2】 より

のことである. ただし三角形の内部は 2-射 $f_{[2]}|_{\Delta^1_1 \times \Delta^0_0}(\mathrm{Id}_{[2]}, \{0\}) \in \mathcal{C}_2$ が埋めている. これは (1,1)-圏における X 上のスライス圏の射のデータに対応しているが,横向きの矢印を決めるだけでは f が upto homotopy でしか定まらないという点で異なっている.

 $(\infty, 1)$ -圏 $\mathcal{C}_{/X}$ の n-射も同様に図示できる.

【例 1.2.4】スライス圏からの forgetful functor

 $(\infty, 1)$ -圏 \mathcal{C} の、 $X: \Delta^0 \longrightarrow \mathcal{C}$ に沿ったスライス圏に対して、**忘却関手** (forgetful functor)

forget:
$$\mathcal{C}_{/X} \longrightarrow \mathcal{C}$$

を次のように定義する:

$$\operatorname{forget}_{[n]} : (\mathcal{C}_{/X})_n = \operatorname{Hom}_X (\Delta^n \star \Delta^0, \mathcal{C}) \longrightarrow \mathcal{C}_n = \operatorname{Hom}_{\mathbf{sSet}} (\Delta^n, \mathcal{C}),$$

$$f \longmapsto f|_{\Delta^n}$$
(1.2.2)

n=0,1,2 の場合, i.e. 【例 1.2.1】,【例 1.2.2】,【例 1.2.3】の図式においては、ちょうど $X\in\mathcal{C}_0$ に対応する青色の頂点(コーンポイント)を除去する操作に対応している. (1.2.2) の定義は $\frac{1}{1}$ ので表している.

1.2.4 $(\infty, 1)$ -圏の limit/colimit

後の議論のため、先取りして $(\infty, 1)$ -圏における limit/colimit を定義しておこう. $(\infty, 1)$ -圏のモデルとして quasi-category を採用する場合、これは **homotopy limit/colimit** と呼ばれることもある.

定義 1.24: $(\infty, 1)$ -圏における始対象と終対象

- $(\infty, 1)$ -圏 C における対象 $x \in C_0$ が始対象 (initial object) であるとは、ホモトピー圏 hC における始対象 a であること.
- $(\infty, 1)$ -圏 C における対象 $x \in C_0$ が終対象 (final object) であるとは、ホモトピー圏 hC における終対象 b であること.
- $^{a}(1,1)$ -圏の**始対象**とは、空の図式における余極限のこと、
- $^{b}(1,1)$ -圏の終対象とは、空の図式における極限のこと、

定義 1.25: $(\infty, 1)$ -圏の limit/colimit

 $(\infty, 1)$ -圏の関手 $D: \mathcal{I} \longrightarrow \mathcal{C}$ を与える。

- D の limit とは、スライス $(\infty, 1)$ -圏 $\mathcal{C}_{/D}$ における終対象のこと。 $\lim D \in \mathcal{C}_0$ と書く.
- D の colimit とは、スライス $(\infty, 1)$ -圏 $\mathcal{C}_{D/}$ における始対象のこと。colim $\mathbf{D} \in \mathcal{C}_0$ と書く.

【例 1.2.5】pullback

単体的集合の積 $S \times T \colon \Delta^{\mathrm{op}} \longrightarrow \mathbf{Sets}$ における面写像とは

$$\partial_j^n \colon S_n \times T_n \longrightarrow S_{n-1} \times T_{n-1},$$

 $(x, y) \longmapsto (\partial_j^n x, \partial_i^n y)$

のことであった. 故に、単体的集合 $\Delta^1 \times \Delta^1$ は、 $\Delta^1_0 = \{\bullet_0, \bullet_1\}$ とおくと

$$\Delta^{1} \times \Delta^{1} = (0, 0) \qquad (1, 0)$$

$$(0, 1) \qquad (1, 1)$$

と図示できる. ただし, 2-射以上は縮退していて見えない.

 $(\infty, 1)$ -圏の関手 $D: \Delta^1 \times \Delta^1 \longrightarrow \mathcal{C}$ の limit のことを(存在すれば) pullback と呼び、

$$D(0, 1) \times_{D(1, 1)} D(1, 0) := \lim D \in C_0$$

と書く.

 $^{^{}a}$ (1, 1)-圏の場合からのアナロジーで,D を図式と見做す.

1.2.5 Unstraightening construction

定理 1.1: unstraightening construction

 $(\infty, 1)$ -圏同値

$$\operatorname{PSh}_{(\infty,1)}(\mathcal{B}) \xrightarrow{\cong} \mathcal{R}\operatorname{fib}_{\mathcal{B}}$$

が存在する.

証明 $(\infty, 1)$ -圏同値

Un:
$$\mathbf{PSh}_{(\infty, 1)}(\mathcal{B}) \longrightarrow \mathcal{R}\mathbf{fib}_{\mathcal{B}}$$

は、次のようにして構成される (unstraightening construction):

対象 $F \in \mathbf{PSh}_{(\infty,1)}(\mathcal{B})_0$ に対して、 $(\infty,1)$ -圏の pullback

$$egin{aligned} \operatorname{Un}(F) & \longrightarrow \mathcal{S}\mathrm{paces}_{/*} \ & & \downarrow^{\mathrm{forget}} \ \mathcal{B} & \longrightarrow_F & \mathcal{S}\mathrm{paces} \end{aligned}$$

により得られる右ファイブレーション $\operatorname{Un}(F) \longrightarrow \mathcal{B} \in (\mathcal{R}\mathbf{fib}_{\mathcal{B}})_0$ を対応付ける.

n-射

逆向きの $(\infty, 1)$ -圏同値 (straightning construction)

St:
$$\mathcal{R}$$
fib $_{\mathcal{B}} \longrightarrow \mathbf{PSh}_{(\infty, 1)}(\mathcal{B})$

は難しい. 詳細は [?, Proposition 2.2.3.11] を参照.

1.2.6 $(\infty, 1)$ -圏における米田埋め込み

定義 1.26: twisted arrow category

 $(\infty,1)$ -圏 $\mathcal C$ を与える. このとき, $\mathcal C$ の twisted arrow category と呼ばれる $(\infty,1)$ -圏を以下で定義する:

$$\operatorname{Tw}(\mathcal{C}) \colon \Delta^{\operatorname{op}} \longrightarrow \mathbf{Sets},$$

$$[n] \longmapsto \operatorname{Hom}_{\mathbf{sSet}} \left((\Delta^n)^{\operatorname{op}} \star \Delta^n, \, \mathcal{C} \right),$$

$$\left([m] \xrightarrow{\alpha} [n] \right) \longmapsto \left(f \mapsto f \circ (\alpha_* \times \alpha_*) \right)$$

(∞, 1)-圏の関手

$$\operatorname{pr} \colon \operatorname{Tw}(\mathcal{C}) \longrightarrow \mathcal{C}^{\operatorname{op}} \times \mathcal{C}$$

を以下で定義すると、これは左ファイブレーションになる [?, Tag 03JQ]:

$$\operatorname{pr}_{[n]} \colon \operatorname{Tw}(\mathcal{C})_n \longrightarrow \mathcal{C}_n^{\operatorname{op}} \times \mathcal{C}_n = \operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, \mathcal{C}^{\operatorname{op}}) \times \operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, \mathcal{C})$$

$$f \longmapsto (f|_{(\Delta^n)^{\mathrm{op}}}, f|_{\Delta^n})$$

 $(\infty, 1)$ -圏における Hom 関手

$$\mathrm{Map}_{\mathcal{C}}:\mathcal{C}^\mathrm{op}\times\mathcal{C}\longrightarrow\mathcal{S}\mathbf{paces}$$

の自然な構成は、straightning construction を用いた

$$\operatorname{Tw}(\mathcal{C}) \longrightarrow \mathcal{S}\mathbf{paces}_{*/}$$
 $\operatorname{pr} \downarrow \qquad \qquad \downarrow_{\operatorname{forget}}$
 $\mathcal{C}^{\operatorname{op}} \times \mathcal{C}_{\overset{}{\operatorname{Map}_{\mathcal{C}}} := \operatorname{St}(\mathbf{pr})} \mathcal{S}\mathbf{paces}$

である [?, I.26., p.19].

定義 1.27: $(\infty, 1)$ -圏の米田埋め込み (informal)

 \mathcal{C} を $(\infty, 1)$ -圏とする. $(\infty, 1)$ -圏の米田埋め込み (Yoneda embedding)

$$\sharp \colon \mathcal{C} \longrightarrow \mathbf{PSh}_{(\infty, 1)}(\mathcal{C})$$

とは、 \mathcal{C} から $(\infty, 1)$ -前層の成す $(\infty, 1)$ -圏 $\mathbf{PSh}_{(\infty, 1)}(\mathcal{C})$ への $(\infty, 1)$ -圏の関手であって、対象 $x \in \mathcal{C}_0$ に対して

$$\sharp_{[0]}(x)_{[0]} \colon \mathcal{C}_0^{\mathrm{op}} \longrightarrow \mathcal{S}\mathbf{paces}_0,$$

 $y \longmapsto \mathrm{Map}_{\mathcal{C}}(x, y)$

を充たす a ような $(\infty, 1)$ -圏の関手 $\mathfrak{s}_{[0]}(x) \in \mathbf{PSh}_{(\infty, 1)}(\mathcal{C})_0 = \mathrm{Hom}_{\mathbf{sSet}}(\mathcal{C}^{\mathrm{op}}, \mathcal{S}\mathbf{paces})$ を対応付けるもののこと b .

1.2.7 層状化空間の接構造

定義 1.28: enter-path category

conically smooth な層状化空間 $X \in \mathrm{Ob}(\mathbf{Strat})$ の enter-path $(\infty, 1)$ -category とは、 $(\infty, 1)$ -圏 \mathcal{B} sc のスライス圏

$$\mathcal{E}$$
ntr $(X) := \mathcal{B}$ **sc** $_{/X}$

のこと.

 $[^]a$ $(\infty,1)$ -圏 $\mathcal C$ において、対象 $x,y\in\mathcal C_0$ の間の射の空間 $\mathrm{Map}_{\mathcal C}(x,y)$ は Kan 複体を成すのだった $[?,\mathrm{Tag}\ 01\mathrm{JC}].$

^b 厳密な構成については [?, Tag 03NF] を参照.

定義 1.29: tangent classifier

 $\iota \colon \mathcal{B}\mathbf{sc} \hookrightarrow \mathcal{S}\mathbf{nglr}$ を包含とする. tangent classifier とは, $(\infty, 1)$ -圏の関手

$$au \colon \mathcal{S}\mathrm{nglr} \overset{\hspace{0.1em} riangle}{ o} \mathrm{PSh}_{(\infty,\,1)}\left(\mathcal{S}\mathrm{nglr}\right) \overset{\iota^{*}}{\longrightarrow} \mathrm{PSh}_{(\infty,\,1)}\left(\mathcal{B}\mathrm{sc}\right)$$

のこと.

定義 1.27 より, tangent classifier は conically smooth な層状化空間 $X \in \mathcal{S}$ ngl \mathbf{r}_0 に対して $(\infty, 1)$ -圏の表現可能前層

$$\tau_{[0]}(X) = \operatorname{Map}_{\mathcal{B}sc}(-, X) \in \mathbf{PSh}_{(\infty, 1)}(\mathcal{B}sc)_{0}$$
(1.2.3)

を対応付ける.

定理 1.1 により、tangent classifier τ のことを

$$\tau \colon \mathcal{S}\mathrm{nglr} \xrightarrow{\sharp} \mathrm{PSh}_{(\infty,\,1)}\left(\mathcal{S}\mathrm{nglr}\right) \xrightarrow{\iota^*} \mathrm{PSh}_{(\infty,\,1)}\left(\mathcal{B}\mathrm{sc}\right) \xrightarrow{\simeq} \mathcal{R}\mathrm{fib}_{\mathcal{B}\mathrm{sc}}$$

と見做すこともできる.このとき, $\mathcal{R}\mathbf{fib}_{\mathcal{B}\mathbf{sc}}$ の構成および $(\infty,1)$ -前層 (1.2.3) に対する定理 1.1 の具体的構成から,conically smooth な層状化空間 $X \in \mathcal{S}\mathbf{nglr}_0$ に対して定まる $(\infty,1)$ -圏の右ファイブレーション $\tau_{[0]}(X) \in (\mathcal{R}\mathbf{fib}_{\mathcal{B}\mathbf{sc}})_0$ とは忘却関手

$$\tau_{[0]}(X) \colon \mathcal{E}\mathbf{ntr}(X) \longrightarrow \mathcal{B}\mathbf{sc}$$

のことである. この忘却関手を以下では $au_X := au_{[0]}(X)$ と書く.

定義 1.30: *B*-多様体

- (\mathcal{B}, f) 構造 a とは、 $(\infty, 1)$ -圏の右ファイブレーション $(\mathcal{B} \xrightarrow{f} \mathcal{B}\mathbf{sc}) \in (\mathcal{R}\mathbf{fib}_{\mathcal{B}\mathbf{sc}})_0$ のこと.
- (\mathcal{B}, f) 構造 $\mathcal{B} \xrightarrow{f} \mathcal{B}sc$ を 1 つ固定する. このとき, \mathcal{B} -多様体 $(\mathcal{B}$ -manifold) の成す $(\infty, 1)$ -圏 $\mathcal{M}fld(\mathcal{B})$ とは, $(\infty, 1)$ -圏の pullback

$$\mathcal{M}\mathrm{fld}\left(\mathcal{B}
ight) \longrightarrow (\mathcal{R}\mathrm{fib}_{\mathcal{B}\mathrm{sc}})_{/f} \ \downarrow \qquad \qquad \downarrow_{\mathrm{forget}} \ \mathcal{S}\mathrm{nglr} \longrightarrow_{ au} \mathcal{R}\mathrm{fib}_{\mathcal{B}\mathrm{sc}}$$

のこと、特に、 $\mathcal{M}\mathbf{fld}(\mathcal{B})_0$ の元は以下の 2 つのデータから成り、 \mathcal{B} -多様体と呼ばれる:

- conically smooth な層状化空間 $X \in \mathcal{S}$ ngl \mathbf{r}_0
- $-(\infty, 1)$ -圏の関手 $g: \mathcal{E}\mathbf{ntr}(X) \longrightarrow \mathcal{B}$

これらは以下の条件を充たさねばならない:

(lift of tangent classifier)

sSet における以下の図式は可換である:

a [?, Definition 1.1.6] では $(\infty, 1)$ -category of basics と呼ばれている.

1.2.8 C^{∞} -多様体の接構造との比較

1.2.9 \mathcal{B}_{sc} における Hom

しばらくの間、basic $U := ((\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P), \mathcal{A}_Z) \in \mathrm{Ob}(\mathbf{Bsc})$ を 1 つ固定する. これまでと同様に、層状化空間 $\mathsf{C}\left(Z \overset{s} \to P\right) = \left(\mathsf{C}(Z) \overset{\mathsf{C}(s)} \to \mathsf{C}(P)\right)$ のコーンポイントのことを $\mathrm{pt} \in \mathsf{C}(Z)$ と書き、 $\mathbb{R}^n \times \{\mathrm{pt}\} \subset \mathbb{R}^n \times \mathsf{C}(Z)$ のことを \mathbb{R}^n と略記することにする. さらに、点 $(0,\mathrm{pt}) \in \mathbb{R}^n \times \mathsf{C}(Z)$ のことを $0 \in \mathbb{R}^n \times \mathsf{C}(Z)$ と略記し、U の原点 (origin) と呼ぶことにする.

lacklown 以下では,混乱が生じにくい場合は層状化空間 $(X\stackrel{s}{ ightarrow} P)$ の s と P を省略する.

いま,特異単体の変種として,滑らかな(境界付き)多様体 X の滑らかな特異単体 (smooth singular simplicial set) と呼ばれる単体的集合を

$$\operatorname{Sing}^{\operatorname{sm}}(X) \colon \Delta^{\operatorname{op}} \longrightarrow \mathbf{Sets},$$

$$[n] \longmapsto \operatorname{Hom}_{\mathbf{Top}}(\Delta_{e}^{n}, X)_{\operatorname{smooth}},$$

$$([m] \xrightarrow{\alpha} [n]) \longmapsto (\operatorname{Sing}^{\operatorname{sm}}(X)_{m} \xrightarrow{\Delta_{e}(\alpha)^{*}} \operatorname{Sing}^{\operatorname{sm}}(X)_{n})$$

と定義する*⁵. これは Kan 複体になる. ここで (1.1.1) を思い出して,写像

$$\tilde{\gamma} \colon \mathbb{R}_{\geq 0} \times \mathbb{R}^n \longrightarrow \operatorname{Hom}_{\mathbf{Bsc}}(U, U),$$

$$(t, p) \longmapsto \left(\left(v, [s, z] \right) \mapsto \left(tv + p, [ts, z] \right) \right) \eqqcolon \tilde{\gamma}_{[m]t, p}$$

を考える. これを Kan 複体の間の射 (i.e. 自然変換)

$$\gamma \colon \operatorname{Sing}^{\operatorname{sm}}(\mathbb{R}_{\geq 0} \times \mathbb{R}^n) \longrightarrow \operatorname{Hom}_{\mathcal{B}_{SC}}(U, U)$$
 (1.2.4)

へと格上げすることができる。実際、 $\forall m > 0$ に対して、m-単体はそれぞれ

$$\operatorname{Sing}^{\operatorname{sm}}(\mathbb{R}_{\geq 0} \times \mathbb{R}^{n})_{m} = \operatorname{Hom}_{\operatorname{\mathbf{Top}}}(\Delta_{e}^{m}, \mathbb{R}_{\geq 0} \times \mathbb{R}^{n})_{\operatorname{smooth}},$$

$$\operatorname{Hom}_{\operatorname{\mathbf{Bsc}}}(U, U)_{m} = \left\{ f \in \operatorname{Hom}_{\operatorname{\mathbf{Strat}}}(\Delta_{e}^{m} \times U, \Delta_{e}^{m} \times U) \mid \operatorname{proj}_{\Delta_{e}^{m}} \circ f = \operatorname{proj}_{\Delta_{e}^{m}} \right\}$$

であったから,

$$\gamma_{[m]} \colon \operatorname{Sing}^{\operatorname{sm}}(\mathbb{R}_{\geq 0} \times \mathbb{R}^n)_m \longrightarrow \operatorname{Hom}_{\operatorname{\mathcal{B}sc}}(U, U)_m,$$
$$\left(x \mapsto \left(t(x), p(x)\right)\right) \longmapsto \left(\left(x, u\right) \mapsto \left(x, \tilde{\gamma}_{t(x), p(x)}(u)\right)\right) \eqqcolon \gamma_{t, p}$$

^{*&}lt;sup>5</sup> 滑らかな特異単体と言ったときは幾何学的 n-単体を用いることが多く,このように定義することは稀だと思う.

と定義すればよい.

さらに、勝手な conically smooth な層状化空間 $Z \in \mathrm{Ob}(\mathbf{Snglr})$ に対して、その自己同相群 (automorphism group)

$$\operatorname{Aut}(Z) : \Delta^{\operatorname{op}} \longrightarrow \mathbf{Sets}$$

を, Kan 複体 $\operatorname{Hom}_{\operatorname{Snglr}}(Z,Z)$ の部分 Kan 複体として次のように定義する:

$$\operatorname{Aut}(Z)_m := \left\{ f \in \operatorname{Hom}_{\operatorname{\mathbf{Snglr}}}(Z, Z)_m \mid \operatorname{proj}_{\Delta^m} \circ f = \operatorname{proj}_{\Delta^m}, \exists f^{-1} \in \operatorname{Hom}_{\operatorname{\mathbf{Snglr}}}(\Delta_e^m \times Z, \Delta_e^m \times Z) \right\}$$

なお、 $\forall m \geq 0$ に対し集合 $\operatorname{Aut}(Z)_m$ は (1, 1)-圏 **Snglr** における 1-射の合成に関して群になるため、Kan 複体 $\operatorname{Aut}(Z)$ は **Kan 群** (group Kan complex)*6 と見做すことができる.

定義 1.31: 層状化された一般線形群

勝手な basic $U \coloneqq \left(\left(\mathbb{R}^n \to [0] \right) \times \mathsf{C} \left(Z \to P \right), \, \mathcal{A}_Z \right) \in \mathsf{Ob}(\mathbf{Bsc})$ を与える.

Kan 複体 $Hom_{Snglr}(U, U)$ の部分 Kan 複体

$$GL(U): \Delta^{op} \longrightarrow \mathbf{Sets}$$

を次のように定義し、**層状化された一般線形群**と呼ぶ:

$$\operatorname{GL}(U)_m := \left\{ T \in \operatorname{Hom}_{\operatorname{Snglr}}(U, U)_m \mid \forall (t, p) \in \operatorname{Sing}^{\operatorname{sm}}(\mathbb{R}_{\geq 0} \times \mathbb{R}^n)_m, \ T \circ \gamma_{[m]t, p} = \gamma_{[m]t, (Tp)_{\mathbb{R}^n}} \circ T \right\}$$

ただし, $(Tp)_{\mathbb{R}^n} := \operatorname{proj}_{\mathbb{R}^n} \circ T|_{\Delta^m_c \times \mathbb{R}^n \times \{0\}} \circ p : \Delta^m_e \longrightarrow \mathbb{R}^n$ と略記した.

Kan 複体 $Hom_{Snglr}(U, U)$ の部分 Kan 複体

$$O(U): \Delta^{op} \longrightarrow \mathbf{Sets}$$

を次のように定義し、層状化された直交群と呼ぶ:

$$O(U) := \operatorname{Sing}^{\operatorname{sm}}(O(n)) \times \operatorname{Aut}(Z)$$

【例 1.2.6】通常の一般線形群

 $Z=\emptyset$ の場合を考える. このとき $U=\mathbb{R}^n$ なので、Kan 複体の射 (1.2.4) とは単に

$$\gamma_{[m]}: (x \mapsto (t(x), p(x))) \longmapsto ((x, u) \mapsto (x, t(x)u + p(x)))$$

のことであり、 $T\in \mathrm{GL}(U)_m$ とは $\forall (t,\,p)\in \mathrm{Sing}^{\mathrm{sm}}(\mathbb{R}_{\geq 0}\times\mathbb{R}^n)$ および $\forall (x,\,u)\in\Delta^m_e\times U=\Delta^m_e\times\mathbb{R}^n$ に対して

$$\begin{split} T \circ \gamma_{[m]t,\,p}(x,\,u) &= T\big(x,\,t(x)u + p(x)\big) \\ &= \gamma_{[m]t,\,\operatorname{proj}_{\mathbb{R}^n} \circ T|_{\mathbb{R}^n}(p)} \circ T(x,\,u) \\ &= \Big(x,\,t(x)\operatorname{proj}_{\mathbb{R}^n} \circ T(x,\,u) + \operatorname{proj}_{\mathbb{R}^n} \circ T\big(x,\,p(x)\big)\Big) \end{split}$$

^{*} 6 Kan 複体であって、 $\Delta^{op} \longrightarrow \mathbf{Grp}$ でもあるもの.従って,homotopy hypothesis より位相群と見做すことができる.

が成り立つことを意味する。i.e. $\forall x \in \Delta_e^m$ に対して, $\tilde{T}_x \coloneqq \operatorname{proj}_{\mathbb{R}^n} \circ T|_{\{x\} \times U} \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ は線型写像である。(1,1)-圏 Snglr の定義より T は開埋め込みであり,単射である。故に,有限次元ベクトル空間の間の単射線型写像 \tilde{T}_x は全単射でもあり, $\tilde{T}_x \in \operatorname{GL}(n,\mathbb{R})$ だと分かった.この事実は,Kan 複体の同型 $\operatorname{GL}(\mathbb{R}^n) \cong \operatorname{Sing}^{\mathrm{sm}}(\operatorname{GL}(n,\mathbb{R}))$ を意味する.

さて、部分 Kan 複体 Aut $^0(U) \subset \operatorname{Hom}_{\mathcal{B}sc}{}^0(U,U) \subset \operatorname{Hom}_{\mathcal{S}nglr}{}^n(U,U)$ を次のように定義しよう:

$$\operatorname{Hom}_{\mathcal{B}\mathbf{sc}}{}^{0}(U, U)_{m} := \left\{ f \in \operatorname{Hom}_{\mathcal{S}\mathbf{nglr}}(U, U)_{m} \mid \forall x \in \Delta_{e}^{m}, \ f(x, 0) = (x, 0) \right\},$$

$$\operatorname{Aut}{}^{0}(U)_{m} := \left\{ f \in \operatorname{Hom}_{\mathcal{B}\mathbf{sc}}{}^{0}(U, U)_{m} \mid \forall x \in \Delta_{e}^{m}, \ \exists (f|_{\{x\} \times U})^{-1} \in \operatorname{Hom}_{\mathbf{S}\mathbf{nglr}}(U, U) \right\}$$

補題 1.3: 層状化された一般線形群は原点を保つ自己同相群

$$\operatorname{GL}(U) \subset \operatorname{Aut}^0(U) \subset \operatorname{Hom}_{\mathcal{B}\mathbf{sc}}{}^0(U, U)$$

<u>証明</u> $\forall m \geq 0$ および $\forall T \in \mathrm{GL}(U)_m$ を 1 つ固定する. $\forall x \in \Delta_e^m$ および $\forall t \in \mathbb{R}_{\geq 0}$ に対して $\gamma_{[m]t,\,0}(x,\,0) = (x,\,0)$ が成り立つので、

$$T(x, 0) = T \circ \gamma_{[m]0, 0}(x, 0) = \gamma_{[m]0, 0}(T(x, 0)) = (x, 0)$$

が言える。また,(1,1)-圏 **Snglr** の定義より $T \in \operatorname{Hom}_{\mathbf{Snglr}} (\Delta_e^m \times U \longrightarrow \Delta_e^m \times U)$ は開埋め込みであるから単射である。故に T が全射であることを示せば良い.

補題 1.4: 層状化された直交群は一般線形群の部分 Kan 複体

$$O(U) \subset GL(U)$$

<u>証明</u> $\forall m \geq 0$ および $\forall T \coloneqq (A, f) \in \mathrm{O}(U)_m = \mathrm{Sing}^{\mathrm{sm}} \big(\mathrm{O}(n) \big)_m \times \mathrm{Aut}(Z)_m$ を 1 つ固定する. まず、 $\forall (x, (v, [s, z])) \in \Delta_e^m \times U = \Delta_e^m \times \mathbb{R}^n \times \mathrm{C}(Z)$ に対して

$$T(x, (v, [s, z])) := (x, (A(x)v, [s, \operatorname{proj}_Z \circ f(x, z)]))$$

と定めることで $T \in \operatorname{Hom}_{\mathcal{B}\mathbf{sc}}^{0}(U, U)_{m}$ と見做せる. このとき、 $\forall (t, p) \in \operatorname{Sing}^{\operatorname{sm}}(\mathbb{R}_{>0} \times \mathbb{R}^{n})$ に対して

$$T \circ \gamma_{[m]t, p}(x, (v, [s, z])) = T\left(x, \left(t(x)v + p(x), [t(x)s, z]\right)\right)$$

$$= \left(x, \left(t(x)A(x)v + A(x)p(x), [t(x)s, \operatorname{proj}_{Z} \circ f(x, z)]\right)\right)$$

$$= \gamma_{[m]t, Ap}\left(x, \left(A(x)v, [s, \operatorname{proj}_{Z} \circ f(x, z)]\right)\right)$$

$$= \gamma_{[m]t, (Tp)_{\mathbb{R}^{n}}} \circ T\left(x, (v, [s, z])\right)$$

が成り立つため $T \in GL(U)_m$ が言えた.

命題 1.2:

Kan 複体の包含写像

$$\mathrm{O}(U) \overset{i_1}{\hookrightarrow} \mathrm{GL}(U) \overset{i_2}{\hookrightarrow} \mathrm{Hom}_{\mathcal{B}\mathbf{sc}} \, {}^0(U,\, U) \overset{i_3}{\hookrightarrow} \mathrm{Hom}_{\mathcal{B}\mathbf{sc}} \, (U,\, U)$$

は全て Kan 複体のホモトピー同値である.

証明 i_1 のホモトピー逆

Gram-Schmidt の正規直交化を行う.

i2 のホモトピー逆

射は全て conically smooth なので、 $\forall f \in \operatorname{Hom}_{\operatorname{Bsc}}{}^0(U,U)_m$ の微分 $D_0f \coloneqq Df|_{\mathbb{R}^n \times \{0\} \times \operatorname{C}(Z)} \in \operatorname{Hom}_{\operatorname{Snglr}}(U,U)$ が存在する.この D_0 がホモトピー逆を与える.

i_3 のホモトピー逆

 γ により原点へ並行移動すれば良い.

1.3 Disk algebras

1.3.1 $(\infty, 1)$ -オペラッド

本資料では、 $(\infty, 1)$ -圏を quasi-category として定義した。この小節では、quai-category における colored operad を定義する.

定義 1.32: (1, 1)-圏 Fin, Fin_{*}

(1, 1)-圏 Fin を以下で定義する:

- 有限集合および空集合を対象に持つ.
- $I, J \in Ob(\mathbf{Fin})$ の間の写像を射とする.

(1,1)-圏 \mathbf{Fin}_* を以下で定義する:

• 基点付き有限集合

$$\langle n \rangle := \{*, 1, \dots, n\}$$

を対象に持つ. i.e.

$$Ob(\mathbf{Fin}_*) := \{ \langle n \rangle \mid n \in \mathbb{Z}_{\geq 0} \}.$$

• $\forall \langle m \rangle, \langle n \rangle \in \mathrm{Ob}(\mathbf{Fin}_*)$ に対して、それらの間の基点を保つ写像を射とする. i.e.

$$\operatorname{Hom}_{\mathbf{Fin}_*}(\langle m \rangle, \langle n \rangle) := \{ f \in \operatorname{Hom}_{\mathbf{Sets}}(\langle m \rangle, \langle n \rangle) \mid f(*) = * \}.$$

定義 1.33: inert/active morphism

- 圏 \mathbf{Fin}_* における射 $f \in \mathrm{Hom}_{\mathbf{Fin}_*}$ $(\langle m \rangle, \langle n \rangle)$ が inert であるとは、 $\forall i \in \langle n \rangle \setminus \{*\}$ に対して $f^{-1}(\{i\}) \subset \langle m \rangle$ が 1 点集合であることを言う.
- 圏 \mathbf{Fin}_* における射 $f \in \mathrm{Hom}_{\mathbf{Fin}_*}$ $(\langle m \rangle \,,\, \langle n \rangle)$ が active であるとは, $f^{-1}ig(\{ * \} ig) = \{ * \} \subset \langle m \rangle$ であることを言う.

【例 1.3.1】inert な射 ho^i

 $1 \le \forall i \le \forall n$ を 1 つ固定する. このとき, 写像

$$\rho^{i} \colon \langle n \rangle \longrightarrow \langle 1 \rangle \,,$$
$$j \longmapsto \begin{cases} 1, & j = i \\ *, & j \neq i \end{cases}$$

は圏 Fin* における inert な射である.

【例 1.3.2】 active な射 α_n

 $\forall n > 1$ を 1 つ固定する. このとき, 写像

$$\alpha_n \colon \langle n \rangle \longrightarrow \langle 1 \rangle \,,$$

$$j \longmapsto \begin{cases} 1, & j \neq * \\ *, & j = * \end{cases}$$

は圏 \mathbf{Fin}_* における active な射である. なお、 α_n は射の集合 $\mathrm{Hom}_{\mathbf{Fin}_*}\left(\langle n \rangle, \langle 1 \rangle\right)$ の元のうち、唯一の active な射である.

脈体の定義において $[n] \in \mathrm{Ob}(\Delta)$ を (1,1)-圏と見做した方法と同様にして、半順序集合 $\{n-1 \leq n\}$ を (1,1)-圏と見做す、このとき、

$$N(\{n-1 \le n\}) = \begin{pmatrix} \bullet & \bullet \\ n-1 & n \end{pmatrix} \cong \Delta^1$$

と図示できる. 同様に,

$$N(\{0 \le 1\}) = \begin{pmatrix} \bullet & & \bullet \\ 0 & & 1 \end{pmatrix} \cong \Delta^1$$

である.

定義 1.34: p-Cartesian morphism

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ を内的ファイブレーションとする.

• \mathcal{E} の 1-射 $(x \xrightarrow{f} y) \in \mathcal{E}_1$ が以下の条件を充たすとき,f は p-Cartesian であると言う: (Cartesian) $\forall n \geq 2$ に対して,以下の sSet の図式を可換にする \mathcal{E} の n-射 $\bar{\varphi}$ \in

 $\operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, \mathcal{E}) \cong \mathcal{E}_n$ が存在する:

ただし、sSet の射 $f: N(\{n-1 \le n\}) \longrightarrow \mathcal{E}$ とは

$$f_{[1]}\left(\begin{array}{c} \bullet \longrightarrow \bullet \\ n-1 & n \end{array}\right) = \begin{array}{c} \bullet \\ x & y \end{array}$$

を充たす唯一の自然変換である.

• \mathcal{E} の 1-射 $(x \xrightarrow{f} y) \in \mathcal{E}_1$ が以下の条件を充たすとき,f は p-coCartesian であると言う: (coCartesian) $\forall n \geq 2$ に対して,以下の sSet の図式を可換にする \mathcal{E} の n-射 φ \in $\mathrm{Hom}_{\mathbf{sSet}}(\Delta^n,\mathcal{E}) \cong \mathcal{E}_n$ が存在する:

ただし、sSet の射 $f: N(\{0 \le 1\}) \longrightarrow \mathcal{E}$ とは

$$f_{[1]}\left(\begin{array}{c} \bullet \longrightarrow \bullet \\ n-1 & n \end{array}\right) = \begin{array}{c} \bullet \longrightarrow f \\ x & y \end{array}$$

を充たす唯一の自然変換である.

n=2 の場合の (coCartesian) の可換図式の意味を,系 \ref{N} ?を用いて解読しよう.まず,包含 $Nig(0\le 1\}ig)\hookrightarrow\Lambda_0^2$ というのは,系 \ref{N} ?による角 Λ_0^2 の図示

のうち辺 $\{0\} \longrightarrow \{1\}$ への埋め込みであるから、可換図式の

$$N(\{0 \le 1\}) \cong \Delta^1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad f$$

$$\Lambda_0^2 \xrightarrow{\forall \varphi_0} \mathcal{E}$$

の部分は勝手な角の図式 $\varphi_0=(ullet,f,arphi_{02})\in\mathcal{E}_1^{ imes2}$ を与えることに対応する. 図示すると

となる. 従って, (coCart-2) の主張は次のような意味を持つ:

 $(\infty, 1)$ -圏 \mathcal{B} において角の図式が 2-射 $\varphi \in \operatorname{Hom}_{\mathbf{sSet}}(\Delta^2, \mathcal{B}) \cong \mathcal{B}_2$ によって

と埋められているならば、 \mathcal{E} において角の図式 (1.3.1) を

のように埋める 2-射 $\bar{\varphi} \in \operatorname{Hom}_{\mathbf{sSet}}(\Delta^2, \mathcal{E}) \cong \mathcal{E}_2$ が存在する.

定義 1.35: デカルトファイブレーション

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ を内的ファイブレーションとする.

- p がデカルトファイブレーション (Cartesian fibration) であるとは、
 - $-\mathcal{B}$ の任意の 1 射 $(x \xrightarrow{f} y) \in \mathcal{B}_1$
 - $-p_{[0]}(\bar{y})=y$ を充たす \mathcal{E} の任意の対象 $\bar{y}\in\mathcal{E}_0$

に対して、以下の条件を充たす \mathcal{E} の 1-射 $(z \xrightarrow{\bar{f}} \bar{y}) \in \mathcal{E}_1$ が存在することを言う:

(Cart-1)

 \bar{f} は f の持ち上げである. i.e. $p_{[1]}(\bar{f}) = f$ が成り立つ.

(Cart-2)

 \bar{f} は p-Cartesian である.

- p が余デカルトファイブレーション (coCartesian fibration) であるとは、
 - $-\mathcal{B}$ の任意の 1 射 $(x \xrightarrow{f} y) \in \mathcal{B}_1$
 - $-p_{[0]}(\bar{x})=x$ を充たす \mathcal{E} の任意の対象 $\bar{x}\in\mathcal{E}_0$

に対して、以下の条件を充たす \mathcal{E} の 1-射 $(\bar{x} \xrightarrow{\bar{f}} z) \in \mathcal{E}_1$ が存在することを言う:

(coCart-1)

 \bar{f} は f の持ち上げである. i.e. $p_{[1]}(\bar{f}) = f$ が成り立つ.

(coCart-2)

 \bar{f} は p-coCartesian である.

定義 1.36: $(\infty, 1)$ -オペラッド

 $(\infty, 1)$ -オペラッド $((\infty, 1)$ -operad)^a とは、 $(\infty, 1)$ -圏の関手

$$p: \mathcal{O}^{\otimes} \longrightarrow \mathrm{N}(\mathbf{Fin}_*)$$

であって以下の条件を充たすもののこと [?, Definition 2.1.1.10.]:

(Op-1)

任意の inert な射 $f \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m \rangle, \langle n \rangle\right)$ および $\forall c \in (\mathcal{O}_{\langle m \rangle}^{\otimes})_0$ に対して, \mathcal{O}^{\otimes} における p-coCartesian な 1-射 $\bar{f} \colon c \longrightarrow c'$ が存在して $p_{[1]}(\bar{f}) = f$ を充たす.

(Op-2)

 $\forall f \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m \rangle, \langle n \rangle\right)$ および $\forall c \in (\mathcal{O}_{\langle m \rangle}^{\otimes})_0, \ \forall c' \in (\mathcal{O}_{\langle n \rangle}^{\otimes})_0$ に対して、**【例 1.3.1】**の inert な射の族 $\left\{ \rho^i \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle n \rangle, \langle 1 \rangle\right) \right\}_{1 \leq i \leq n}$ に **(Op-1)** を適用して得られる p-coCartesian な 1-射の族 $\left\{ c' \xrightarrow{\bar{\rho}^i} c'_i \in (\mathcal{O}^{\otimes})_1 \right\}_{1 \leq i \leq n}$ が誘導する Kan 複体の関手 b

$$\operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c')_f \longrightarrow \prod_{i=1}^n \operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c'_i)_{\rho^i \circ f}$$

は、 $(\infty, 1)$ -圏 \mathcal{S} paces における同型射である.

(Op-3)

 $\forall c_1, \ldots, c_n \in (\mathcal{O}_{\langle 1 \rangle}^{\otimes})_0$ に対して、ある $c \in (\mathcal{O}_{\langle n \rangle}^{\otimes})_0$ および p-coCartesian な 1-射 $\widehat{\rho_i} \in (\operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c_i)_{\rho^i})_0$ が存在する.

ただし,以下の記法を採用した:

• 点 $\langle n \rangle \in \mathrm{N}(\mathbf{Fin}_*)_0$ における $(\infty, 1)$ -圏の関手 $p: \mathcal{O}^{\otimes} \longrightarrow \mathrm{N}(\mathbf{Fin}_*)$ のファイバー $\mathcal{O}_{\langle n \rangle}^{\otimes}$ を, $(\infty, 1)$ -圏の pullback

$$\begin{array}{ccc} \mathcal{O}_{\langle n \rangle}^{\otimes} & \longrightarrow & \Delta^{0} \\ \downarrow & & & \downarrow^{\langle n \rangle} \\ \mathcal{O}^{\otimes} & \xrightarrow{p} & \mathrm{N}(\mathbf{Fin}_{*}) \end{array}$$

と定義した^c.

• $f \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m \rangle, \langle n \rangle\right)$ および $c \in (\mathcal{O}_{\langle m \rangle}^{\otimes})_0$, $c' \in (\mathcal{O}_{\langle n \rangle}^{\otimes})_0$ に対して, $\bar{f} \in \operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c')_0$ であって $p_{[1]}(\bar{f}) = f$ を充たすもの全体から定まる, $\operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c') \in \mathcal{S}$ paces $_0$ の充満部分 Kan 複体を

$$\operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c')_f \hookrightarrow \operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c')$$

と書いた.

補題 1.5: Segal 条件

 $(\infty, 1)$ -圏の関手

$$p \colon \mathcal{O}^{\otimes} \longrightarrow \mathrm{N}(\mathbf{Fin}_*)$$

であって条件 (Op-1), (Op-2) を充たすものを与える. このとき, 条件 (Op-3) は以下と同値である a :

(Segal)

 $\forall n \geq 0$ に対して、【**例 1.3.1**】の inert な射の族 $\left\{
ho^i \in \operatorname{Hom}_{\mathbf{Fin}_*} \left(\langle n \rangle \,,\, \langle 1 \rangle \right) \right\}_{1 \leq i \leq n}$ が条件 **(Op-1)** により誘導する $(\infty,\, 1)$ -圏の関手の族 $\left\{
ho^i_! : \mathcal{O}^\otimes_{\langle n \rangle} \longrightarrow \mathcal{O}^\otimes_{\langle 1 \rangle} \right\}_{1 \leq i \leq n}$ は、 $(\infty,\, 1)$ -圏同値

$$(\rho_!^1, \ldots, \rho_!^n) \colon \mathcal{O}_{\langle n \rangle}^{\otimes} \xrightarrow{\simeq} (\mathcal{O}_{\langle 1 \rangle}^{\otimes})^{\times n}$$
 (1.3.2)

を与える.

証明 (OP-3) ⇒ (Segal)

(OP-3) を仮定する.命題**??**より, $(\infty, 1)$ -圏の関手 (1.3.2) が忠実充満かつ本質的全射であることを示せば良い.

 $\forall n \geq 0$ および $\forall c, c' \in (\mathcal{O}_{\langle n \rangle}^{\otimes})_0$ を固定する. このとき $\mathrm{Id}_{\langle n \rangle} \in \mathrm{Hom}_{\mathbf{Fin}_*}\left(\langle n \rangle, \langle n \rangle\right)$ に対して **(OP-2)** を用いることで、ホモトピー同値

$$\operatorname{Map}_{\mathcal{O}_{\langle n \rangle}^{\otimes}}(c, c') \simeq \operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c')_{\operatorname{Id}_{\langle n \rangle}} \longrightarrow \prod_{i=1}^{n} \operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c'_{i})_{\rho^{i}}$$

が得られる. さらに、p-coCartesian な射の定義からホモトピー同値

$$\prod_{i=1}^{n} \operatorname{Map}_{\mathcal{O}_{\langle 1 \rangle}^{\otimes}} \left(\rho_{![0]}^{i}(c), \, \rho_{![0]}^{i}(c') \right) \simeq \prod_{i=1}^{n} \operatorname{Map}_{\mathcal{O}^{\otimes}} \left(c_{i}, \, c_{i}' \right)_{\operatorname{Id}_{\langle 1 \rangle}} \longrightarrow \prod_{i=1}^{n} \operatorname{Map}_{\mathcal{O}^{\otimes}} \left(c, \, c_{i}' \right)_{\rho^{i}}$$

が得られる *7 ため、(1.3.2) が忠実充満だと分かった.本質的全射であることは **(OP-3)** より従う.**(OP-3)** \iff **(Segal)** 明らか.

 $^{^{}a}$ ∞-operad とも呼ばれる.

 $[^]b$ 対象の対応としては $ar f \longmapsto (ar
ho^1 \circ ar f, \ldots, ar
ho^n \circ ar f)$ であるが、右辺の $(\infty, 1)$ -圏 $\mathcal O^\otimes$ における 1-射の合成は up to homotopy でしか定まらないため、この関手は up to homotopy でしか決まらない.

 $[^]c$ これ自体が $(\infty, 1)$ -圏である. なお,ファイバーは $(\infty, 1)$ -圏の pullback なので一見すると非常に計算が難しいが,幸いにしてこの場合は (1, 1)-圏 **sSet** における pullback と一致する.

 $[^]a$ 一般に Segal 条件というと n-fold pullback のことだが、現在は $\mathcal{O}_{\langle 0 \rangle}^{\otimes}$ が contractible なので n-fold product になっている.

^{*7 (}OP-2) における $c_i' \in (\mathcal{O}_{(1)}^{\otimes})_0$ とは、ちょうど $\rho_{![0]}^i(c')$ のことである.

定義 1.37: $(\infty, 1)$ -オペラッドの射

 $(\infty,1)$ -オペラッド $p: \mathcal{O}^{\otimes} \longrightarrow \mathrm{N}(\mathbf{Fin}_*)$ を与える. このとき, $(\infty,1)$ -圏 \mathcal{O}^{\otimes} の 1-射 $f \in (\mathcal{O}^{\otimes})_1$ が inert であるとは、以下の 2 条件を充たすことを言う:

(inert-1) $p_{[1]}(f)$ は (1, 1)-圏 \mathbf{Fin}_* における inner な射である.

(inert-2) f は p-coCartesian な 1-射である.

2 つの $(\infty, 1)$ -オペラッド $p: \mathcal{O}^{\otimes} \longrightarrow \mathrm{N}(\mathbf{Fin}_{*}), \ p': \mathcal{O}'^{\otimes} \longrightarrow \mathrm{N}(\mathbf{Fin}_{*})$ を与える. このとき, $(\infty, 1)$ -圏の関手 $f: \mathcal{O}^{\otimes} \longrightarrow \mathcal{O}'^{\otimes}$ が $(\infty, 1)$ -オペラッドの射 $(\infty$ -operad map) であるとは, 以下の 2 つの条件を充たすことを言う:

(Opmap-1) (1, 1)-圏 sSet の図式

は可換である.

(Opmap-2) 1-射の間の写像 $f_{[1]}: (\mathcal{O}^{\otimes})_1 \longrightarrow (\mathcal{O}'^{\otimes})_1$ により、inert な 1-射が保存される^a.

定義 1.36 がオペラッドと呼ぶにふさわしいことを示すために、次の小節では (1, 1)-圏の文脈で対応物を考えよう.

1.3.2 色付きオペラッドと (1, 1)-圏の coCartesian fibration

定義 1.38: colored operad

色付きオペラッド a (colored operad) \mathcal{O} は、以下の 4 つのデータから成る:

• 対象^b (object) の集まり

$$Ob(\mathcal{O})$$

• $\forall I \in \mathrm{Ob}(\mathbf{Fin}), \ \forall \{x_i \in \mathrm{Ob}(\mathcal{O})\}_{i \in I}, \ \forall y \in \mathrm{Ob}(\mathcal{O}) \ \mathcal{O} \ 3 \ \mathcal{O}$ 組に対して定まっている, $\{x_i\}_{i \in I} \ \mathcal{O} \ \mathcal$

$$\mathbf{Mul}_{\mathcal{O}}(\{x_i\}_{i\in I}, y) \in \mathbf{Ob}(\mathbf{Sets})$$

• $\forall \alpha \in \operatorname{Hom}_{\mathbf{Fin}}(I,J), \ \forall \big\{ x_i \in \operatorname{Ob}(\mathcal{O}) \big\}_{i \in I}, \ \big\{ y_j \in \operatorname{Ob}(\mathcal{O}) \big\}_{j \in J}, \ \forall z \in \operatorname{Ob}(\mathcal{O}) \ \mathcal{O} \ 4 \ \mathcal{O}$ 知能に対して定まっている、多射の合成(composition map)と呼ばれる写像

$$o_{\alpha} \colon \mathrm{Mul}_{\mathcal{O}}\big(\{y_j\}_{j \in J}, \, z\big) \times \prod_{j \in J} \mathrm{Mul}_{\mathcal{O}}\big(\{x_i\}_{i \in \alpha^{-1}(\{j\})}, \, y_j\big) \longrightarrow \mathrm{Mul}_{\mathcal{O}}\big(\{x_i\}_{i \in I}, \, z\big),$$

$$(G, (F_j)_{j \in J}) \longmapsto G \circ_{\alpha} (F_j)_{j \in J}$$

 $[^]a$ 条件 (Opmap-1) より、inert な 1-射の $p_{[1]}$ による像が条件 (inert-1) を充たすことは明らかである.

• 恒等射 (identitiy) と呼ばれる多射の族 $\left\{\mathrm{Id}_x\in\mathrm{Mul}_\mathcal{O}\big(\{x\},\,x\big)\right\}_{x\in\mathrm{Ob}(\mathcal{O})}$

これらは以下の条件を充たさねばならない:

(cOp-1)

恒等射は合成に関して単位元として振る舞う.

(cOp-2)

多射の合成は結合則を充たす. i.e. $\forall \alpha \in \operatorname{Hom}_{\mathbf{Fin}}(I,J), \ \forall \beta \in \operatorname{Hom}_{\mathbf{Fin}}(J,K), \ \forall \{x_i \in \operatorname{Ob}(\mathcal{O})\}_{i \in I}, \ \forall \{y_j \in \operatorname{Ob}(\mathcal{O})\}_{j \in J}, \ \forall \{z_k \in \operatorname{Ob}(\mathcal{O})\}_{k \in K}, \ \forall w \in \operatorname{Ob}(\mathcal{O}) \$ に対して,(1,1)-圏 Sets の図式

$$\operatorname{Mul}_{\mathcal{O}}(\{z_{k}\}_{k\in K}, w) \times \prod_{k\in K} \operatorname{Mul}_{\mathcal{O}}(\{y_{j}\}_{j\in\beta^{-1}(\{k\})}, z_{k}) \times \prod_{j\in J} \operatorname{Mul}_{\mathcal{O}}(\{x_{i}\}_{i\in\alpha^{-1}(\{j\})}, y_{j})$$

$$\circ_{\beta} \times \operatorname{Id}$$

$$\operatorname{Mul}_{\mathcal{O}}(\{y_{j}\}_{j\in J}, w) \times \prod_{j\in J} \operatorname{Mul}_{\mathcal{O}}(\{x_{i}\}_{i\in\alpha^{-1}(\{j\})}, y_{j})$$

$$\operatorname{Mul}_{\mathcal{O}}(\{y_{j}\}_{j\in J}, w) \times \prod_{j\in J} \operatorname{Mul}_{\mathcal{O}}(\{x_{i}\}_{i\in\alpha^{-1}(\{j\})}, y_{j})$$

$$\operatorname{Mul}_{\mathcal{O}}(\{z_{k}\}_{k\in K}, w) \times \prod_{k\in K} \operatorname{Mul}_{\mathcal{O}}(\{x_{i}\}_{i\in(\beta\circ\alpha)^{-1}(\{k\})}, z_{k})$$

$$\operatorname{Mul}_{\mathcal{O}}(\{x_{i}\}_{i\in I}, z)$$

は可換である.

色付きオペラッドの定義において、写像 $\alpha \in \operatorname{Hom}_{\mathbf{Fin}}(I,J)$ が多射の合成の「型」を規定している.

定義 1.39: (1, 1)-圏における coCartesian fibration

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ を (1, 1)-圏の関手とする.

• \mathcal{E} の射 $\bar{f} \in \operatorname{Hom}_{\mathcal{E}}(\bar{x}, \bar{y})$ が以下の条件を充たすとき, \bar{f} は p-coCartesian であると言う: (coCart-ord) (1, 1)-圏 \mathcal{B} の図式

を可換にする勝手な 2 つの射 $\varphi_0 \in \operatorname{Hom}_{\mathcal{E}}(\bar{x}, \bar{z}), \ \varphi \in \operatorname{Hom}_{\mathcal{B}}\left(p(\bar{y}), p(\bar{z})\right)$ に対して、射 $\bar{\varphi} \in \operatorname{Hom}_{\mathcal{E}}(\bar{y}, \bar{z})$ が一意的に存在して (1, 1)-圏 \mathcal{E} の図式

^a いわゆる**対称色付きオペラッド** (symmetric colored operad) である.

 $^{^{}b}$ 色 (color) と呼ばれることもある.

を可換にする.

- p が coCartesian fibration であるとは,
 - -(1,1)-圏 \mathcal{B} の任意の射 $f \in \operatorname{Hom}_{\mathcal{B}}(x,y)$
 - $-p(\bar{x}) = x$ を充たす (1, 1)-圏 \mathcal{E} の対象 $\bar{x} \in Ob(\mathcal{E})$

に対して、以下の条件を充たす (1, 1)-圏 \mathcal{E} の射 $\bar{f} \in \operatorname{Hom}_{\mathcal{E}}(\bar{x}, z)$ が存在することを言う:

(coCart-ord-1)

 \bar{f} は f の持ち上げである. i.e. $p(\bar{f}) = f$ が成り立つ.

(coCart-ord-2)

 \bar{f} は p-coCartesian である.

定義 1.36 に合わせて、(1,1)-圏の関手

$$p \colon \mathcal{O}^{\otimes} \longrightarrow \mathbf{Fin}_{*}$$
 (1.3.3)

であって以下の3条件を充たすものを考えてみる:

(OP-ord-1)

任意の inert な射 $f \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m \rangle, \langle n \rangle\right)$ および $\forall c \in \operatorname{Ob}(\mathcal{O}^{\otimes}_{\langle m \rangle})$ に対して, \mathcal{O}^{\otimes} における p-coCartesian な射 $\bar{f} \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}\left(c, c'\right)$ が存在して $p(\bar{f}) = f$ を充たす.

(OP-ord-2)

 $\forall f \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m \rangle, \langle n \rangle\right)$ および $\forall c \in \operatorname{Ob}(\mathcal{O}_{\langle m \rangle}^{\otimes}), \forall c' \in \operatorname{Ob}(\mathcal{O}_{\langle n \rangle}^{\otimes})$ に対して、inert な射 $\rho^i \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle n \rangle, \langle 1 \rangle\right)$ に **(Op-ord-1)** を適用して得られる p-coCartesian な射の族 $\left\{\bar{\rho}^i \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}\left(c', c_i'\right)\right\}_{1 \leq i \leq n}$ が誘導する写像

$$\operatorname{Hom}_{\mathcal{O}^{\otimes}}(c, c')_{f} \longrightarrow \prod_{i=1}^{n} \operatorname{Hom}_{\mathcal{O}^{\otimes}}(c, c'_{i})_{\rho^{i} \circ f},$$
$$\varphi \longmapsto (\bar{\rho}^{1} \circ \varphi, \dots, \bar{\rho}^{n} \circ \varphi)$$

は, (1,1)-圏 **Sets** における同型射 (i.e. 全単射) である.

(OP-ord-3)

 $\forall c_1, \ldots, c_n \in \mathrm{Ob}(\mathcal{O}_{\langle 1 \rangle}^{\otimes})$ に対して、ある $c \in \mathrm{Ob}(\mathcal{O}_{\langle n \rangle}^{\otimes})_0$ および p-coCartesian な射 $\widehat{\rho_i} \in \mathrm{Hom}_{\mathcal{O}^{\otimes}}(c, c_i)_{\rho^i}$ が存在する.

ここで、Cat における引き戻し

$$\begin{array}{ccc}
\mathcal{O}_{\langle n \rangle}^{\otimes} & \longrightarrow * \\
\downarrow & & \downarrow^{\langle n \rangle} \\
\mathcal{O}^{\otimes} & \xrightarrow{n} & \mathbf{Fin}_{*}
\end{array}$$

により (1,1)-圏 \mathcal{O}^{\otimes} を定義している. 具体的には

$$\mathrm{Ob}(\mathcal{O}_{\langle n \rangle}^{\otimes}) = \left\{ c \in \mathrm{Ob}(\mathcal{O}^{\otimes}) \mid p(c) = \langle n \rangle \right\}$$

である. さらに、 $\forall f \in \text{Hom}_{\mathbf{Fin}_*}(\langle m \rangle, \langle n \rangle)$ に対して

$$\operatorname{Hom}_{\mathcal{O}^{\otimes}}(c, c')_{f} := \{ \varphi \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}(c, c') \mid p(\varphi) = f \}$$

と定義した.

命題 1.3: 色付きオペラッドの再構成

条件 (Op-ord-1)-(Op-ord-3) を充たす (1, 1)-圏の関手 (1.3.3) から次のように構成されたデータの組み O は色付きオペラッドを成す:

- 対象の集まりを $\mathrm{Ob}(\mathcal{O})\coloneqq\mathrm{Ob}(\mathcal{O}_{\langle 1\rangle}^\otimes)$ と定義する.
- $\forall x_1, \ldots, x_n, y \in \mathrm{Ob}(\mathcal{O})$ に対して、以下の 3 つ組全体が成す集合を $\mathrm{Mul}_{\mathcal{O}}\big((x_1, \ldots, x_n), y\big)$ と定義する.
 - (1) x_1, \ldots, x_n に対して (Op-ord-3) を適用することにより定まる $X \in \mathrm{Ob}(\mathcal{O}_{(n)}^{\otimes})$
 - (2) x_1, \ldots, x_n に対して **(Op-ord-3)** を適用することにより定まる p-coCartesian な射の族 $\left\{\widehat{\rho_i} \in \operatorname{Hom}_{\mathcal{O}^\otimes}(X, x_i)_{\rho^i}\right\}_{1 \leq i \leq n}$
 - (3) 【例 1.3.2】の active な射 $\alpha_n \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle n \rangle, \langle 1 \rangle\right)$ およびその上の \mathcal{O}^{\otimes} の射 $F \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}\left(X,\,y\right)_{\alpha_n}$
- n 個の多射

$$(X^{1}, \{\widehat{\rho_{i}}^{1}\}_{1 \leq i \leq m_{1}}, F^{1}) \in \operatorname{Mul}_{\mathcal{O}}((x_{1}^{1}, \dots, x_{m_{1}}^{1}), y_{1}),$$

$$\vdots$$

$$(X^{n}, \{\widehat{\rho_{i}}^{n}\}_{1 \leq i \leq m_{n}}, F^{n}) \in \operatorname{Mul}_{\mathcal{O}}((x_{1}^{n}, \dots, x_{m_{n}}^{n}), y_{n})$$

と 1 つの多射 $(Y, \{\hat{\rho_j}\}_{1 \le j \le n}, G) \in \operatorname{Mul}_{\mathcal{O}}((y_1, \ldots, y_n), z)$ の合成

$$(X, \{\widehat{\rho_i}\}_{1 \le i \le m_1 + \dots + m_n}, G \circ (F^1; \dots; F^n)) \in \text{Mul}_{\mathcal{O}}((x_1^1, \dots, x_{m_1}^1; \dots; x_1^n, \dots, x_{m_n}^n), z)$$

を次のように定義する:

- (1) $X \in \mathrm{Ob}(\mathcal{O}_{(m_1+\cdots+m_n)}^{\otimes})$ は、 $x_1^1,\ldots,x_{m_n}^n \in \mathrm{Ob}(\mathcal{O})$ に対して (Op-ord-3) を適用することにより定める.
- (2) p-coCartesian な射の族 $\{\widehat{\rho_i^j} \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}(X, x_i^j)_{\rho^{i+m_1+\cdots+m_{j-1}}}\}_{\substack{1 \leq j \leq n \\ 1 \leq i \leq m_j}}$ は $x_1^1, \ldots, x_{m_n}^n \in \operatorname{Ob}(\mathcal{O})$ に対して (Op-ord-3) を適用することにより定める.
- (3) \mathcal{O}^{\otimes} の射 $G \circ (F^1; \dots; F^n) \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}(X, z)_{\alpha_{m_1+\dots+m_n}}$ は以下の手順に従って構成する: (STEP-1)

まず、
$$1 \le \forall j \le n$$
 に対して inert な射 $\pi_j \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m_1 + \dots + m_n \rangle, \langle m_j \rangle\right)$ を

$$\pi_{j} \colon \langle m_{1} + \dots + m_{n} \rangle \longrightarrow \langle m_{j} \rangle,$$

$$k \longmapsto \begin{cases} k - (m_{1} + \dots + m_{j-1}), & 1 \leq k - (m_{1} + \dots + m_{j-1}) \leq m_{j} \\ *, & \text{otherwise} \end{cases}$$

で定義する.

(STEP-2)

inert な射 $\pi_j \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\left\langle m_1 + \dots + m_n \right\rangle, \left\langle m_j \right\rangle\right)$ に対して **(Op-ord-1)** を適用することにより、p-coCartesian な射 $\bar{\pi}_j \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}(X, X^j)_{\pi_j}$ を取得する.

(STEP-3)

$$(F^1 \circ \bar{\pi}_1, \ldots, F^n \circ \bar{\pi}_n) \in \prod_{j=1}^n \operatorname{Hom}_{\mathcal{O}^{\otimes}} (X, y_j)_{\alpha_{m_j} \circ \pi_j}$$

に対して (Op-ord-2) を適用することで、対応する

$$F \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}(X, Y)_{\pi}$$

が一意的に定まる. これに $G \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}(Y,z)_{\alpha_n}$ を合成して

$$G \circ_{\pi} (F^1; \dots; F^n) \coloneqq G \circ F \in \operatorname{Hom}_{\mathcal{O}^{\otimes}} (X, z)_{\alpha_{m_1 + \dots + m_n}}$$

と定義する. ただし、 $\pi \in \operatorname{Hom}_{\mathbf{Fin}_*}(\langle m_1 + \cdots + m_n \rangle, \langle n \rangle)$ は

$$\pi(k) := \begin{cases} j, & m_{j-1} < k \le m_j \\ *, & k = * \end{cases}$$

と定義される active な射である^a.

 $a \ 1 \le \forall j \le n$ に対して $\rho^j \circ \pi = \alpha_{m_j} \circ \pi_j$ が成り立つ.

証明

逆の対応を作ることもできる.

定義 1.40: Category of operators

いま, colored operad $\mathcal O$ が与えられたとする. このとき category of operators と呼ばれる (1,1)- 圏 $\mathcal O^\otimes$ を次のように定義する:

- \mathcal{O} の対象の有限列 $x_1, \ldots, x_n \in \mathrm{Ob}(\mathcal{O})$ を対象に持つ.
- $\forall (x_1,\ldots,x_m), (y_1,\ldots,y_n) \in \mathrm{Ob}(\mathcal{O}^\otimes)$ に対して、以下の 2 つ組を全て集めて得られる集合を $\mathrm{Hom}_{\mathcal{O}^\otimes}\left(\{x_i\}_{1\leq i\leq m},\,\{y_j\}_{1\leq j\leq n}\right)$ とする.
 - (1) **Fin**_{*} の射

$$\alpha \in \operatorname{Hom}_{\mathbf{Fin}_*} (\langle m \rangle, \langle n \rangle)$$

(2) 多射の族

$$\left\{\phi_j \in \operatorname{Mul}_{\mathcal{O}}\left(\{x_i\}_{i \in \alpha^{-1}(\{j\})}, y_j\right)\right\}_{1 \le j \le n}$$

より具体的には,

$$\operatorname{Hom}_{\mathcal{O}^{\otimes}}\left(\{x_i\}_{1\leq i\leq m},\,\{y_j\}_{1\leq j\leq n}\right)\coloneqq \coprod_{\alpha\in\operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m\rangle,\,\langle n\rangle\right)}\prod_{j=1}^n\operatorname{Mul}_{\mathcal{O}}\left(\{x_i\}_{i\in\alpha^{-1}(\{j\})},\,y_j\right)$$

である.

• 射の合成は、 \mathbf{Fin}_* における射の合成および $\mathcal O$ における多射の合成によって定める.

 \mathcal{O}^{\otimes} から \mathbf{Fin}_* への忘却関手を

$$p \colon \mathcal{O}^{\otimes} \longrightarrow \mathbf{Fin}_{*},$$
$$\{x_{i}\}_{1 \leq i \leq n} \longmapsto \langle n \rangle,$$
$$(\alpha, \{\phi_{i}\}_{1 \leq i \leq n}) \longmapsto \alpha$$

と定義する.

命題 1.4: 色付きオペラッドと category of operators

(1, 1)-圏の関手

$$p \colon \mathcal{O}^{\otimes} \longrightarrow \mathbf{Fin}_*$$

において、 O^{\otimes} がある色付きオペラッド O の category of operators と圏同値になる必要十分条件は、p が条件 (Op-ord-1)-(Op-ord-3) を充たすことである.

証明 [?, Proposition 2.2.II.]

1.3.3 $(\infty, 1)$ -圏の構成

話を $(\infty, 1)$ -オペラッドに戻そう.