

Bacharelado em Sistemas de Informação

Estrutura de Dados I

Prof. Dory Gonzaga Rodrigues

O que são Estruturas de dados?

A resolução de problemas computacionais requer a representação destas entidades e objetos reais em dados armazenados no computador. As diferentes formas nas quais estes dados são logicamente relacionados e armazenados definem diferentes estruturas de dados.

Assim, estruturas de dados são formas de organização e armazenamento de dados na memória de um computador, usadas em diversos tipos de aplicações.

Os tipos de dados manipulados por um algoritmo podem ser classificados em dois grupos:

- **primitivos** / **atômicos**: Os tipos atômicos são aqueles cujos elementos do conjunto de valores são indivisíveis. Exemplo: inteiro, real, caractere e boolean.
- **complexos** / **compostos**: Os tipos complexos são aqueles cujos elementos do conjunto de valores podem ser decompostos em partes mais simples.

Se um tipo de dado pode ser decomposto, então o tipo de dado é estruturado, e a organização de cada componente e as relações entre eles constituem a disciplina de Estrutura de Dados.

Uma outra classificação que pode ser aplicada à Estrutura de dados é quanto ao tipo de dados utilizados em sua estrutura.

- **Dados Homogêneos**: utiliza somente <u>um tipo de dado</u>, em sua definição é conhecida como dados homogêneos.

Variáveis compostas homogêneas correspondem a posições de memória, identificadas por um mesmo nome, individualizado por índices e cujo conteúdo é composto do mesmo tipo.

Exemplos: Vetores (estruturas de dados unidimensionais) e

Matrizes (estruturas de dados bidimensionais)

Uma outra classificação que pode ser aplicada à Estrutura de dados é quanto ao tipo de dados utilizados em sua estrutura.

- **Dados Heterogêneos**: quando utilizamos mais de um tipo primitivo de dado para representar uma estrutura de dados. Normalmente, este tipo de dado é chamado de registro.

Um registro é uma estrutura de dados que agrupa dados de tipos distintos. Um registro de dados é composto por certo número de campos de dados, que são itens de dados individuais.

O registro é um caso mais geral de variável composta na qual os elementos do conjunto não precisam ser, necessariamente, homogêneos ou do mesmo tipo.

Vetores

O tipo vetor permite armazenar mais de um valor primitivo em uma mesma variável. O tamanho dessa variável é definido na sua declaração, e seu conteúdo é dividido em posições. Nessa estrutura todos os elementos são do mesmo tipo, e cada um pode receber um valor diferente.

Características:

- Alocação sequencial (bytes contíguos na memória)
- Alocação estática (significa que o tamanho da variável deve ser definido no momento da declaração).
- Estrutura homogênea
- Inserção / Exclusão
 - Realocação dos elementos
 - Posição de memória não liberadas

Vetores

- possui um número fixo de células idênticas e seu conteúdo é armazenado nestas posições.
 - cada célula armazena um e somente um dos valores de dados do vetor.
- cada uma das células de um vetor possui seu próprio endereço, ou índice, através do qual pode ser referenciada.

Vetores

Exemplo

```
// Declaração da variável int vet[5];
```

// Atribuição de valor diretamente

```
vet[3] = 100.20;
```

// Atribuição indireta

```
printf("Digite o valor: ");
scanf("%d", vet[3]);
```


Matriz

Uma matriz é um arranjo bidimensional ou multidimensional de alocação estática e sequencial. Todos os valores da matriz são do mesmo tipo e tamanho, e a posição de cada elemento é dada pelos índices, um para cada dimensão.

Os elementos ocupam posições contíguas na memória. A alocação dos elementos da matriz na memória pode ser feita colocando os elementos linha-por-linha ou coluna-por-coluna.

<u>Características:</u>

- Arranjo bi ou multidimensional (um índice por dimensão)
- Alocação sequencial
- Alocação estática
- Estrutura homogênea

Matriz

- possui um número fixo de células idênticas e seu conteúdo é armazenado nestas posições.
 - cada célula armazena um e somente um dos valores de dados da matriz.
- cada uma das células de uma matriz possui seu próprio endereço, ou índices, através do qual pode ser referenciada.

Matriz

Exemplo

```
// Declaração da variável
    int mat[5][5];
// Atribuição de valor diretamente
    mat[0][0] = 14;
```

printf("Digite o valor: ");
scanf("%d", mat[0][0]);

// Atribuição indireta

Matrizes Especiais

Diagonais

15	0	0	0
0	44	0	0
0	0	35	0
0	0	0	12

Simétrica

23	13	5	4	
13	8	23	35	
5	23	66	54	
4	35	54	20	

Triangulares

25	0	0	0
33	9	0	0
19	78	65	0
8	12	54	28

Antissimétrica

23	-13	-5	-4	
13	8	-23	-35	
5	23	66	-54	
4	35	54	20	

Esparsas

2	0	0	45	0	10
0	1	7	0	0	0
0	0	0	3	0	0
0	0	0	0	0	0
-8	0	0	0	0	0
0	0	15	0	0	0

