Signal Quality in Multi Stage Sample Rate Converters

Matthieu Guerquin-Kern, ENSEA

June 27, 2018

Abstract

The purpose of this document is to evaluate the impact that the multi-stage implementation of a sample rate converter might have on signal quality.

1 Context

1.1 Single Stage Sample Rate Converter

A synchronous sample rate converter (SRC) can be described by the cascade of an upsampler, a filter, and a downsampler.

In the above block diagram, the SRC will change the signal from a rate $F_{\rm in}$ to a rate $F_{\rm out}$ under the constraint that $L \cdot F_{\rm in} = M \cdot F_{\rm out}$ with L and M integers. The linear shift invariant filter H plays two roles: interpolating and anti-aliasing (sensible only if M > L). Therefore, in order to ensure a minimal distortion on the signal, one wants the filter as close as possible to a low-pass with cutoff pulsation $\omega_c = \pi/\max(L, M)$ and H(1) = M.

1.2 Multi Stage Sample Rate Converter

Let us consider the following factorizations

$$L = \prod_{i=1}^{N} L_i$$
 and $M = \prod_{i=1}^{N} M_i$,

where some L_i or M_i might equal 1 but with M_i ad L_j relatively prime $\forall i, j$. Then, we can consider decomposing the SRC into N multiple stages of the same form.

Since the L_i and M_j are relatively prime, the two structures are equivalent provided that

$$H(z) = \prod_{i=1}^{N} H_i \left(z^{\tilde{L}_i \cdot \tilde{M}_{N-i+1}} \right), \tag{1}$$

with the notations \tilde{L}_i and \tilde{M}_i stand for $\prod_{k=i+1}^N L_k$ and $\prod_{k=i+1}^N M_k$ if i < N, and $\tilde{L}_N = \tilde{M}_N = 1$.

For the design of the filters H_i , one can apply the constraints previously seen: low-pass with cutoff pulsation $\omega_c = \pi/\max(L_i, M_i)$ and $H_i(1) = M_i$. Then, the question is "how should organize the stages in order to have a minimal impact on signal quality?" In other words, "How to sort the sequences L_i and M_i in order to have H be the closest to a low-pass with cutoff pulsation $\omega_c = \pi/\max(L, M)$ "? ¹

2 Simple Example

In this example, we consider the case where L=9, M=8 and N=2. Since, $L_1=L_2=3$, we result in two possible implementations of a dual stage SRC.

The cutoff frequencies of H_1 and H_2 are $\pi/3$ and $\pi/4$, respectively. We have $H(z) = H_1(z^3)H_2(z^2)$. As the following plot shows, there should be no problem:

- outside of low frequencies, the filters act on different frequency bands,
- the resulting cutoff pulsation is $\pi/9$ as expected.

¹From (1), one sees that H(1) = M is not a big deal.

The cutoff frequencies of H_1 and H_2 are $\pi/4$ and $\pi/3$, respectively. We have $H(z) = H_1(z^3)H_2(z^4)$. As the following plot shows, the situation is now more complicated because

- \bullet the filters share common frequency intervals in high frequencies.
- the resulting cutoff pulsation $\pi/12$ is lower than expected.

