

การแข่งขนเคมีโอลิมปิก สอวน. ครั้งที่ ๔

ณ คณะวิทยาศาสตร์ประยุกต์

มหาวิทยาลัยเทคในโลยีพระจอมเกล้าพระนครเหนือ

วันพฤหัสบดีที่ ๘ พฤษภาคม ๒๕๕๑

เวลา ๐๘.๓๐ - ๑๓.๓๐ น.

ขอสอบภาคทฤษฎี

รหัสประจำตัวส	เอบ	 	
ศนย์ สอวน		 	

คำชี้แจงการสอบภาคทฤษฎี

- 1. ข้อสอบมีจำนวน 19 ข้อ ประกอบด้วยกระดาษคำถาม 23 หน้า และกระดาษคำตอบ 33 หน้า กะแนนรวมทั้งหมด 120 กะแนน คิดเป็น 60 % เวลาสอบ **08.30-13.30 น. (5 ชั่วโมง)**
- 2. เขียนรหัสประจำตัวสอบ ศูนย์ สอวน. ลงในหน้าปกคำถามและกระคาษคำตอบทุกหน้า
- 3. ให้ลงมือทำข้อสอบได้เมื่อกรรมการคุมสอบประกาศให้ "ลงมือทำ" และเมื่อประกาศว่า "หมดเวลา" นักเรียนต้องหยุดทำข้อสอบทันที และรวบรวมกระดาษคำถามและกระดาษคำตอบวางไว้บนโต๊ะ ก่อนออกจากห้องสอบ
- 4. ให้เขียนตอบในกระดาษกำตอบ<u>ด้วยปากกาสีน้ำเงินหรือดำเท่านั้น</u> โดยเขียนให้ตรงกับข้อและเขียน ในกรอบที่กำหนดให้ กรณีเขียนผิดให้ขีดฆ่าและเขียนใหม่ให้ชัดเจน ห้ามลบด้วยน้ำยาลบคำผิด การทดหรือขีดเขียนอย่างอื่นให้ทำในกระดาษคำถามเท่านั้น
- 5. โจทย์กำนวณให้แสดงวิธีทำตามโจทย์กำหนด กรณีกำตอบที่เป็นตัวเลข **ต้องกำนึงถึงเลขนัยสำคัญ**
- 6. ห้ามยืมเครื่องเขียน และเครื่องคิดเลข ผู้อื่นใช้โดยเด็ดขาด
- 7. ห้ามนักเรียนนำเอกสารใค ๆ เข้าหรือออกจากห้องสอบโคยเค็ดขาด
- 8. ในระหว่างการสอบ นักเรียนสามารถรับประทานอาหารว่างที่วางให้บนโต๊ะได้
- 9. ห้ามคุยหรือปรึกษากันในช่วงเวลาสอบ หากฝ่าฝืนถือว่าทุจริต <u>กรณีทุจริตใด ๆ ก็ตาม นักเรียนจะ</u> <u>หมดสิทธิ์ในการแข่งขัน และจะถูกให้ออกจากห้องสอบทันที</u>

ตารางธาตุ

	58 140.1	59 140.9	60 144.2	61 (145)	62 150.0	63 152.0	64 157.3	65 158.9	66 162.5	67 164.9	68 167.3	69 168.9	70 173.0	71 175.0
Lanthanide series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	$\mathbf{D}\mathbf{y}$	Ho	Er	Tm	Yb	Lu
	cerium	praseodymium	neodymium	promithium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
	90 232.0	91 231.0	92 238.0	93 237.0	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (254)	100 (257)	101 (258)	102 (255)	103 (256)
Actinide series	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelivium	nobelium	lawrencium

โจทย์ข้อที่ 1 (9 คะแนน)

แอนิถีน (aniline, $C_6H_5NH_2$) เป็นเบสอ่อน มีค่า $K_b=4.3\times10^{-10}$ กำหนดให้ ค่าคงที่การแตกตัวของน้ำ $(K_w)=1.0\times10^{-14}$ ที่ $25~^\circ C$ คำถาม

- 1.1 (3.5 คะแนน) เมื่อผสมสารละลาย $C_6H_5NH_2$ ความเข้มข้น 0.100~mol/L ปริมาตร 20.00~mL กับ สารละลายกรดเปอร์คลอริก (HClO₄) ความเข้มข้น 0.200~mol/L ปริมาตร 20.00~mL
 - ก. เขียนสมการแสดงปฏิกิริยาเคมีที่เกิดขึ้น
 - ง. สารละลายผสมที่ได้มีความเข้มข้นของ H_3O^+ เป็นเท่าไร
- 1.2 (5.5 คะแนน) ปีเปตสารละลาย $C_6H_5NH_2$ ความเข้มข้น 0.100 mol/L ปริมาตร 25.00 mL ใส่ใน ขวครูปกรวย หยคอินคิเคเตอร์ 2-3 หยค นำมาไทเทรตกับสารละลายกรคไฮโครคลอริก (HCl) ความเข้มข้น 0.100 mol/L
 - ก. ต้องเติมสารละลาย HCl ปริมาตรเท่าไรจึงจะถึงจุดสมมูล
 - ข. สารละลายที่จุดสมมูลมี pH เท่าไร
 - ก. อินดิเกเตอร์ชนิดใดต่อไปนี้เหมาะสมที่สุดสำหรับการไทเทรตนี้ และที่จุดยุติ อินดิเกเตอร์เปลี่ยนสื อย่างไร

อินดิเคเตอร์	ช่วง pH ที่เปลี่ยนสี	การเปลี่ยนสี
ใทมอลบลู	1.2 - 2.8	แคง – เหลือง
โบร โมครีซอลกรีน	3.5 - 5.4	เหลือง – น้ำเงิน
เมทิลเรค	4.2 - 6.3	แคง – เหลือง
ฟีนอล์ฟทาลีน	8.3 - 10.0	ไม่มีสี – ชมพู

โจทย์ข้อที่ 2 (7.5 คะแนน)

สารละลายผสมชนิคหนึ่งประกอบด้วยกรด HCl และสารประกอบ MCl2นำมาทำการทดลองคังนี้

การทคลองที่ 1 ปีเปตสารละลายผสมปริมาตร 20.00 mL ใส่ในขวครูปกรวย แล้วไทเทรตกับ สารละลายมาตรฐาน NaOH ความเข้มข้น 0.0250 mol/L โดยใช้โบรโมครีซอลกรีนเป็นอินดิเคเตอร์ ปรากฏว่า ที่จุดยุติใช้สารละลาย NaOH เท่ากับ 16.00 mL

ข้อมูลเพิ่มเติม โบรโมครีซอลกรีนมีช่วง pH ที่เปลี่ยนสีเป็น 3.5-5.4 (เหลือง - น้ำเงิน)

การทดลองที่ 2 ปีเปตสารละลายผสมปริมาตร 10.00 mL ผสมกับสารละลายมาตรฐาน $AgNO_3$ ความเข้มข้น 0.100 mol/L ปริมาตร 15.00 mL ได้ตะกอนสีขาว น้ำหนัก 0.0717 g

- 2.1 (0.5 คะแนน) เขียนสมการ โมเลกุลแสดงปฏิกิริยาที่เกิดขึ้นในการทดลองที่ 1
- 2.2 (1 คะแนน) เขียนสมการ โมเลกุลแสดงปฏิกิริยาที่เกิดขึ้นในการทดลองที่ 2
- 2.3 (1.5 คะแนน) ความเข้มข้นของกรด HCl ในสารละลายผสมเป็นเท่าใด
- 2.4 (4.5 คะแนน) ความเข้มข้นของ MCl₂ ในสารละลายผสมเป็นเท่าใค มีสารชนิคใคเหลือหลังจากทำปฏิกิริยา ในการทคลองที่ 2 และเหลือปริมาณเท่าใค

โจทย์ข้อที่ 3 (5 คะแนน)

การชุบโลหะ X ด้วยโครเมียม อาจทำได้โดยจุ่มโลหะ X ในสารละลายไดโครเมตในกรด ไดโครเมตไอออน ($\operatorname{Cr_2O_7^{2-}}$) จะเกิดปฏิกิริยารีดักชั้นดังสมการ

$$Cr_2O_7^{2-}(aq) + H^+(aq) + e^- \rightarrow Cr(s) + H_2O(l)$$
 (สมการยังไม่คล)

คำถาม

- 3.1~(1~กะแนน)~ ดุลสมการแสดงครึ่งปฏิกิริยารีดักชันของ $\text{Cr}_2\text{O}_7^{2-}$
- 3.2~(1.5~กะแนน) กำหนดรูปเซลล์์อิเล็กโทรไลต์ที่ใช้ในการชุบโครเมียมบนแผ่นโลหะ ${f X}$ ดังนี้

- ก. ขั้วไฟฟ้าเฉื่อยทำหน้าที่เป็นแอโนคหรือแคโทค
- ข. ขั้วไฟฟ้าเฉื่อยต่อกับขั้วบวกหรือขั้วลบของแหล่งจ่ายไฟฟ้ากระแสตรง (DC Power Supply)
- ค. ภายในเซลล์อิเล็กโทรไลต์นี้มีการถ่ายโอนอิเล็กตรอนผ่านลวดตัวนำจากขั้วใดไปยังขั้วใด
- 3.3 (2.5 คะแนน) จะต้องใช้เวลากี่ชั่วโมงถ้าต้องการชุบกันชนรถยนต์ซึ่งมีพื้นที่ผิว $0.25~\mathrm{m}^2$ ด้วยโครเมียม หนา $1.0 \times 10^{-2}~\mathrm{mm}$ ในเซลล์อิเล็กโทรไลต์ที่ให้กระแสไฟฟ้า $25.0~\mathrm{A}$

กำหนดให้ ความหนาแน่นของโครเมียม (Cr) = $7.19~g/cm^3$

Faraday constant = $96,500 \text{ C/mol e}^-$

โจทย์ข้อที่ 4 (5 คะแนน)

ถ้านำครึ่งเซลล์ที่ประกอบด้วยขั้ว A1 จุ่มในสารละลาย Al(NO₃) $_3$ ความเข้มข้น 0.025~mol/L กับครึ่งเซลล์ ที่ประกอบด้วยขั้ว Fe จุ่มในสารละลาย Fe(NO₃) $_2$ ความเข้มข้น 0.50~mol/L มาต่อเป็นเซลล์กัลวานิก

กำหนด ค่าศักย์ใฟฟ้ามาตรฐานของครึ่งเซลล์รีดักชันที่ 25 °C ดังนี้

$$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$$
 $E^{\circ} = -1.68 \text{ V}$

$$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$$
 $E^{\circ} = -0.44 \text{ V}$

$$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$$
 $E^{\circ} = -0.04 \text{ V}$

$$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq) \quad E^{\circ} = +0.77 \text{ V}$$

Faraday constant (F) = 96,500 C/mol e⁻

- 4.1 (1 คะแนน) เขียนสมการที่คุลแสคงปฏิกิริยาของเซลล์นี้
- 4.2~(1.5~กะแนน) คำนวณค่าคงที่สมคุล (K) ของปฏิกิริยาในข้อ 4.1~โดยตอบในรูปของ $\log K$
- 4.3~(1~กะแนน) คำนวณ $\Delta G^{\circ}~$ ของปฏิกิริยาในข้อ 4.1~
- 4.4 (1.5 คะแนน) คำนวณศักย์ไฟฟ้าของเซลล์นี้

โจทย์ข้อที่ 5 (5 คะแนน)

กำหนดค่าคงที่ผลคูณของการละลาย (K_{sp}) ของ $Co(OH)_3$ และค่าคงที่การแตกตัวของน้ำ ที่ $25\ ^{\circ}C$ คังนี้

$$Co(OH)_3(s) \rightleftharpoons Co^{3+}(aq) + 3 OH^{-}(aq)$$
 $K_{sp} = 1.6 \times 10^{-44}$

$$2H_2O(l) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$
 $K_w = 1.0 \times 10^{-14}$

- 5.1 (2 คะแนน) คำนวณการละลาย (ในหน่วย mol/L) ของ $\mathrm{Co}(\mathrm{OH})_3$ ในน้ำ
- 5.2 (2 คะแนน) คำนวณการละลาย (ในหน่วย mol/L) ของ $\mathrm{Co}(\mathrm{OH})_3$ ในสารละลายที่ควบคุม pH ให้ เป็น 9.00
- 5.3 (1 คะแนน) ใช้หลักของเลอชาเตอลิเยร์ (Le Chatelier's principle) อธิบายว่า การเติมกรคจะเพิ่มการ ละลายของ Co(OH)3 ได้หรือไม่ อย่างไร

โจทย์ข้อที่ 6 (5 คะแนน)

ในปัจจุบัน ความก้าวหน้าค้านอุตสาหกรรมได้พัฒนาขึ้นอย่างมาก ในขณะเคียวกันปัญหาที่ตามมาคือน้ำเสีย จากโรงงานอุตสาหกรรม ซึ่งบางครั้งมีการปล่อยสารที่อาจเป็นพิษต่อสิ่งแวคล้อม เช่น โลหะหนัก เป็นต้น

นำน้ำตัวอย่างจากแหล่งน้ำทิ้งแห่งหนึ่งมาวิเคราะห์ชนิดของไอออนโลหะ 6 ชนิด (Al^{3+} , Cd^{2+} , Cu^{2+} , Mn^{2+} , Pb^{2+} , Zn^{2+}) ที่อาจปนเปื้อนในแหล่งน้ำนี้ ดังต่อไปนี้

- ก. แบ่งน้ำตัวอย่างมาส่วนหนึ่ง หยดสารละลาย HCl ลงไป สังเกตเห็นตะกอนสีขาว เมื่อนำไปอุ่นให้ร้อน ตะกอนสีขาวละลายหมด
- ข. แบ่งน้ำตัวอย่างมาอีกส่วนหนึ่ง หยดสารละลาย NaOH ลงไป สังเกตเห็นตะกอนสีขาว
- ค. แบ่งน้ำตัวอย่างอีกส่วนหนึ่งมาผ่านคอลัมน์ที่บรรจุแคตไอออนเอกซ์เชนจ์เรซิน (cation exchange resin) จากนั้นชะคอลัมน์ด้วยสารละลายที่เหมาะสม เก็บสารละลายที่ผ่านออกมาจากคอลัมน์ได้
 3 ส่วน คือ A, B และ C ตามลำดับการชะออกมาจากก่อนไปหลัง (โดยสารละลายแต่ละส่วนประกอบ ด้วยไอออนเพียงชนิดเดียวและไม่ซ้ำกัน) นำสารละลายที่เก็บได้ไปทดสอบ ดังนี้

สารละลาย A แบ่งเป็น 2 หลอด

- หลอดที่ 1 หยดสารละลาย NaOH ลงไป ได้ตะกอนสีขาวลักษณะคล้ายวุ้น และตะกอนละลายได้ อย่างรวดเร็วใบรีเอเจนต์ที่มากพอ
- หลอดที่ 2 หยดสารละลาย NH3 ลงไป ได้ตะกอนสีขาว และตะกอนละลายได้อย่างรวดเร็วในรีเอเจนต์ ที่มากพล

เมื่อจะนำสารละลาย B มาทคสอบ กลับพบว่า ฉลากที่ติดข้างภาชนะ B และ C หลุดออก จึงไม่ทราบ ว่าภาชนะใดบรรจุสารละลาย B แต่ได้ตัดสินใจเลือก<u>สารละลายชนิดหนึ่ง</u>มาทคสอบ (ซึ่งขณะทคสอบ ยังไม่ทราบว่าเป็น B หรือ C) โดยแบ่งเป็น 2 หลอด

- หลอดที่ 1 หยดสารละลาย NaOH ลงไป ได้ตะกอนสีขาวซึ่งไม่ละลายในรีเอเจนต์ที่มากพอ
- หลอคที่ 2 หยคสารละลาย NH3 ลงไป ได้ตะกอนสีขาว และตะกอนละลายได้หากเติมรีเอเจนต์ที่ มากพอ

ไอออนทั้ง 6 ชนิด ที่สนใจวิเคราะห์ มีแรงกระทำกับแคตไอออนเอกซ์เชนจ์เรซิน เรียงตามลำดับ (จากมากไปน้อย) คังนี้ $Al^{3+}>Pb^{2+}>Cd^{2+}>Cu^{2+}>Zn^{2+}>Mn^{2+}$

- 6.1 (0.5 กะแนน) เขียนสมการแสดงปฏิกิริยาการเกิดตะกอนสีขาว เมื่อหยดสารละลาย HCl ลงไปใน น้ำตัวอย่าง ตามขั้นตอน ก
- 6.2 (3 คะแนน) ระบุชนิดของใอออนโลหะที่พบในสารละลายแต่ละส่วน (A, B และ C) ที่ได้จากการนำ น้ำตัวอย่างผ่านคอลัมน์แคตไอออนเอกซ์เชนจ์เรซิน
- 6.3 (0.5 คะแนน) เขียนสูตรเคมีของตะกอนสีขาวที่เกิดขึ้นเมื่อหยดสารละลาย NH_3 ลงไปใน สารละลาย A
- 6.4 (0.5 คะแนน) หากหยดสารละลาย H_2SO_4 ลงในสารละลาย B จะสังเกตเห็นการเปลี่ยนแปลงทาง กายภาพหรือไม่ อย่างไร
- 6.5 (0.5 คะแนน) หากหยดสารละลาย H_2SO_4 ลงในสารละลาย C จะสังเกตเห็นการเปลี่ยนแปลงทาง กายภาพหรือไม่ อย่างไร

โจทย์ข้อที่ 7 (15.5 คะแนน)

สาร ${f A}$ ถึง ${f L}$ มีความสัมพันธ์ดังแสดงในแผนภาพ นักเรียนคนหนึ่งพยายามที่จะพิสูจน์สูตรโครงสร้างของ สารที่ยังไม่ทราบว่าเป็นสารอะไร ได้แก่ สาร ${f B}$, ${f C}$, ${f E}$, ${f F}$, ${f G}$, ${f H}$, ${f J}$, ${f K}$, และ ${f L}$ เขาจึงส่งสารเหล่านี้บาง ชนิคไปวิเคราะห์ร้อยละของธาตุองค์ประกอบ และคำนวณหาสูตรโมเลกุลของสารเหล่านี้ได้ดังแสดงใน แผนภาพ

จากนั้นเขาพยายามทดสอบหาหมู่ฟังก์ชันของสาร 4 ชนิด จากทั้งหมด และ ได้ข้อมูลดังแสดงในตาราง ตารางแสดงผลการทดสอบหาหมู่ฟังก์ชันของสาร

สาร	รีเอเจนต์ที่ใช้	ผลที่สังเกตได้
В	สารละลาย ceric ammonium nitrate	สารละลายเปลี่ยนจากสีเหลืองเป็นสีแดง
C	สารละลาย KMnO4 เจือจาง	จะได้สารละลายใสและเปลี่ยนเป็นสีน้ำตาล
Н	สารละลาย KMnO4 เข้มข้น และให้ความร้อน	วิเคราะห์พบว่า ได้ но он
		เป็นผลิตภัณฑ์
L	สารละลาย Br ₂	สีของโบรมีนจางหายใป

นอกจากนี้เขายังพบว่า สาร ${f E}$ และ ${f F}$ ต่างก็มีสูตรโมเลกุลเหมือนกัน และสามารถเตรียมได้จากสาร ${f G}$ ด้วยปฏิกิริยาชนิดเดียวกัน แต่หมุนระนาบแสงโพลาไรซ์ไปในทิสทางตรงกันข้าม เมื่อให้ ${f E}$ และ ${f F}$ ทำปฏิกิริยากับ ${f H}_2{f SO}_4$ และให้ความร้อนด้วย ต่างก็ให้ผลิตภัณฑ์เป็นสาร ${f C}$

จากนั้นนักเรียนผู้นี้ได้นำสาร A เก็บไว้บนชั้น เมื่อกลับจากพักทานอาหารกลางวัน เขาพบว่า บนชั้น มีสารอยู่ 2 ขวด ซึ่งทราบในภายหลังว่า อีกขวดหนึ่งเป็น cyclopentanol ซึ่งไม่ได้ติดฉลากเช่นกัน นักเรียน จึงคิดจะตรวจสอบสาร โดยใช้เทคนิคโครมาโทกราฟีเยื่อบาง (thin layer chromatography หรือ TLC) เนื่องจากคาดว่าสารทั้งคู่มีขั้วต่างกัน และในห้องปฏิบัติการขณะนั้นก็มีเครื่องมือดังกล่าวพร้อมใช้อยู่พอดี จะได้เป็นข้อมูลยืนยันได้อีกทางหนึ่ง

เมื่อนำสารตัวอย่างทั้งสองขวดมาวิเคราะห์ด้วย TLC ที่มีซิลิกาเป็นเฟสอยู่กับที่โดยใช้สารละลาย ผสม chloroform-ethanol (7:3) เป็นเฟสเคลื่อนที่ ได้โครมาโทแกรม (chromatogram) ของ TLC ดังภาพข้างล่าง

คำถาม

- 7.1 (7.5 กะแนน) จงเขียนสูตรโครงสร้างพร้อมทั้งแสดงสเตอริโอเคมี (ถ้ามี) ของสาร ${f B}, {f C}, {f G}, {f J}, {f H}, {f K},$ และ ${f L}$
- 7.2~ ($2\,$ กะแนน) เขียนสูตร โครงสร้างพร้อมทั้งแสดงสเตอริ โอเคมีที่ถูกต้องของ ${f E}$ และ ${f F}$
- 7.3 (1 คะแนน) จากโครมาโทแกรม ระบุว่าจุดใดเป็นตำแหน่งของสาร ${f A}$
- 7.4 (1 คะแนน) เหตุใดนักเรียนจึงคิดว่าสาร A อยู่ในตำแหน่งดังกล่าว
- $7.5 \, (1\,$ กะแนน) คำนวณค่า $R_{\rm f}$ ของจุดที่ 1
- 7.6 (1 คะแนน) หากเปลี่ยนสัดส่วนของเฟสเคลื่อนที่เป็น chloroform-ethanol (1:1) ค่า \mathbf{R}_{f} ของจุดที่ $\mathbf{1}$ จะเปลี่ยนแปลงอย่างไร (มากขึ้น/เท่าเดิม/น้อยลง)
- 7.7 (2 คะแนน) หากนำสาร ณ จุดที่ 1 และจุดที่ 2 ไปทำปฏิกิริยากับสารละลายของ 2,4-dinitrophenyl hydrazine (2,4-DNP) จะเห็นการเปลี่ยนแปลงอย่างไร

หมายเหตุ: เป็นที่ทราบคีว่า TLC เป็นวิธีที่สามารถแยกองค์ประกอบของสารที่มีขั้วต่างกันออกจากกันได้ เมื่อใช้ระบบตัวทำละลายที่เหมาะสม ซึ่งมีหลักการคล้ายกับโครมาโทกราฟิกระดาษ เทคนิค TLC มีหลักว่า องค์ประกอบของสารแต่ละชนิดจะกระจายตัวอยู่ระหว่าง 2 เฟส ได้แก่ เฟสอยู่กับที่ ซึ่งมักเป็นซิลิกาที่เคลือบ เป็นชั้นบางบนแผ่นกระจกหรือแผ่นอะลูมิเนียม และเฟสเคลื่อนที่ ซึ่งมักเป็นตัวทำละลายอินทรีย์ หากสาร ตัวอย่างเกิดแรงกระทำที่แข็งแรงกับซิลิกา ก็จะเคลื่อนที่ได้ช้า

โจทย์ข้อที่ 8 (8 คะแนน)

อะตอมของธาตุในอนุกรม "hypotransition" (ซึ่งรอกอยการค้นพบในอนาคต) มีเลขอะตอมเริ่มตั้งแต่ 121 และเริ่มมีอิเล็กตรอนอยู่ใน g ออร์บิทัล

<u>คำถาม</u>

- 8.1 (1 คะแนน) จงเขียนโครงสร้างอิเล็กตรอนของชาตุตัวแรกในอนุกรม hypotransition ตามหลัก Aufbau (ตัวอย่างเช่น โครงสร้างอิเล็กตรอนของ He คือ 1s²)
- 8.2 (0.5 คะแนน) จะมีธาตุในอนุกรม hypotransition อยู่กี่ธาตุ
- 8.3 (1 คะแนน) จะมีชาตุในอนุกรมนี้กี่ชาตุที่มีสมบัติเป็น diamagnetic และชาตุเหล่านั้นควรจะมี โครงสร้างอิเล็กตรอนใน g ออร์บิทัลเป็นอย่างไร
- 8.4 (1 คะแนน) อะตอมของธาตุหนึ่งในกลุ่ม hypotransition มีจำนวนอิเล็กตรอนเคี่ยว (unpaired electron) 7 ตัว ธาตุนี้สามารถมีจำนวนอิเล็กตรอนใน g ออร์บิทัลเป็นเท่าไรได้บ้าง
- 8.5 (0.5 กะแนน) ธาตุในกลุ่ม hypotransition นี้จะมีจำนวนอิเล็กตรอนเดี่ยวได้มากที่สุดกี่อิเล็กตรอน

นักวิทยาศาสตร์นิยมบอกหน่วยของพลังงานในรูปของเลขคลื่น (จากสูตร $E=h\frac{c}{\lambda}$ เลขคลื่นก็คือ λ^{-1} มีหน่วยเป็น cm⁻¹) ถ้าอะตอมของชาตุหนึ่งในอนุกรม hypotransition ให้เส้นสเปกตรัมที่มี ความยาวคลื่น 250 nm, 400 nm และ 667 nm และจากการคำนวณทางทฤษฎีทำนายว่า เมื่ออะตอม ถูกกระตุ้นจะมีสถานะกระตุ้น (excited state) ได้เพียงสองสถานะ

- 8.6 (2 คะแนน) อธิบายโดยเขียนแผนภาพแสดงระดับพลังงานว่า เหตุใดจึงเห็นสเปกตรัมถึง 3 เส้น และ ให้เขียนช่วงความยาวคลื่นกำกับลงไปที่เส้นระดับพลังงานด้วย
- 8.7 (1.5 คะแนน) ระดับพลังงานของสถานะกระตุ้นจะสูงกว่าระดับพลังงานของสถานะพื้น (ground state) เป็นเท่าใดในหน่วยเลขคลื่น (cm⁻¹)
- 8.8 (0.5 คะแนน) ระดับพลังงานของสถานะกระตุ้นที่ 1 จะอยู่ต่ำกว่าสถานะกระตุ้นที่ 2 อยู่เท่าไรใน หน่วยเลขคลื่น (cm^{-1})

โจทย์ข้อที่ 9 (5 คะแนน)

จงอธิบายพันธะเคมีในออกซิเจนโมเลกุลและไอออนต่าง ๆ ได้แก่ $\mathbf{O_2}^{2-}, \mathbf{O_2}^-, \mathbf{O_2}$ และ $\mathbf{O_2}^+$ ในหัวข้อต่อไปนี้

- 9.1 (1 คะแนน) จำนวนเวเลนซ์อิเล็กตรอนทั้งหมด
- 9.2 (2 คะแนน) ให้ระบุสัญลักษณ์ของโมเลคูลาร์ออร์บิทัลและบรรจุอิเล็กตรอนตามลำคับพลังงานใน Molecular Orbital Energy Diagram
- 9.3 (0.5 คะแนน) เปรียบเทียบความยาวพันธะ
- 9.4 (0.5 คะแนน) เปรียบเทียบความยาวพันธะ
- 9.5 (1 คะแนน) บอกสมบัติทางแม่เหล็ก (magnetic property)

โจทย์ข้อที่ 10 (5 คะแนน)

- 10.1 (1 คะแนน) ผลึก SiO₂ (crystalline SiO₂) หรือ SiO₂ อสัญฐาน (amorphous SiO₂) มีความ หนาแน่นมากกว่า เพราะเหตุใด
- 10.2 โลหะผสมระหว่างทองแดงและทองคำที่มีโครงสร้างผลึก ดังรูป

- 10.2.1 (2 คะแนน) คำนวณจำนวนอะตอมของทองแดงและทองคำในแต่ละหน่วยเซลล์
- 10.2.2 (1 คะแนน) บอกชนิดของโครงสร้างผลึกของโลหะผสม
- 10.2.3 (1 คะแนน) ถ้าทองคำบริสุทธิ์คือทองคำ 24 กะรัต โลหะผสมนี้เป็นทองคำกี่กะรัต (ตอบเป็น เลขจำนวนเต็ม)

โจทย์ข้อที่ 11 (5 คะแนน)

สารเชิงซ้อนชนิดหนึ่งของแพลทินัมมีสูตร [$Pt(NH_3)_2Cl_2$] โครงสร้างเป็นรูปสี่เหลี่ยม มี 2 ใอโซเมอร์ ซึ่งจัดเรียงลิแกนค์ต่างกัน ใอโซเมอร์หนึ่งที่โมเลกุลมีขั้วสามารถใช้เป็นยารักษามะเร็งได้

- 11.1 (1.5 คะแนน) วาครูปแสดงโครงสร้างของสารเชิงซ้อนนี้ทั้งสองไอโซเมอร์ และระบุสภาพขั้ว (มีขั้ว/ไม่มีขั้ว) ไว้ใต้รูป
- 11.2 (1 คะแนน) เรียกชื่อสารเชิงซ้อนนี้ตามระบบ IUPAC (เขียนเป็นภาษาอังกฤษ)
- 11.3 (2 คะแนน) สมบัติแม่เหล็กของ [Pt(NH₃)₂Cl₂] เป็นแบบใดอะแมกเนติก (diamagnetic) ถ้าอธิบายพันธะในสารเชิงซ้อนนี้โดยใช้ทฤษฎีพันธะเวเลนซ์ Pt ควรใช้ใฮบริดออร์บิทัลเป็นแบบใด และเป็น inner- หรือ outer-orbital complex
- 11.4 (0.5 คะแนน) จากสูตรข้างต้น ถ้าเปลี่ยนอะตอม Pt เป็น Co โดยเลขออกซิเดชันเท่ากัน สารเชิงซ้อน ที่ได้ไม่มีใอโซเมอร์ ให้นักเรียนวาดรูปแสดงโครงสร้างของสารเชิงซ้อนนี้พร้อมทั้งระบุชื่อโครงสร้าง ไว้ใต้รูป

โจทย์ข้อที่ 12 (5 คะแนน)

ทอเรียม-228 (228 Th) เกิดการแตกสลายตัวของเรเดียม-228 และทอเรียมเองก็แตกสลายตัวหลายขั้นตอน ให้รังสี α และ β ดังแสดง จนได้ผลิตภัณฑ์สุดท้ายเป็นตะกั่วซึ่งเสถียร

$$^{228}\text{Th} \xrightarrow{\quad \alpha \quad } A \xrightarrow{\quad \alpha \quad } B \xrightarrow{\quad \alpha \quad } B \xrightarrow{\quad \alpha \quad } C \xrightarrow{\quad \alpha \quad } D \xrightarrow{\quad \beta \quad } E \xrightarrow{\quad \beta \quad } E \xrightarrow{\quad \beta \quad } F \xrightarrow{\quad \alpha \quad } Pb$$

<u>คำถาม</u>

- 12.1 (2 คะแนน) เขียนสัญลักษณ์นิวเคลียร์ของ B F และ Pb (สำหรับ B และ F ให้ระบุสัญลักษณ์ ของธาตุด้วย)
- 12.2 (2 คะแนน) ถ้าเริ่มต้นด้วยสารตัวอยาง ซึ่งมี 228 ThO $_2$ 1.00×10^{-2} mol ตั้งทิ้งไว้เป็นเวลา 10 ปี ในภาชนะเปิด จะเหลือ ThO $_2$ กี่กรัม และน้ำหนักสารตัวอย่างจะเหลือเท่าใด ให้ถือว่าผลิตภัณฑ์ของ การแตกสลายตัวเป็น PbO $_2$ ทั้งหมด
- 12.3 (1 คะแนน) จากข้อ 12.2 ถ้าสารตัวอย่างถูกเก็บไว้ในบรรยากาศที่ขั้วโลก น้ำหนักที่คำนวณได้จะ แตกต่างไปหรือไม่ ให้เหตุผลสั้น ๆ

<u>กำหนดให้</u>

- (1) $2.303 \log(N_0/N) = kt$
- (2) อัตราการแตกสลายตัวของใอโซโทปกัมมันตรังสี = kN
- (3) ครึ่งชีวิต $t_{1/2} = 0.693/k$

โจทย์ข้อที่ 13 (5 คะแนน)

CaO(s) หรือปูนสุก (quicklime) เป็นสารอนินทรีย์ที่ใช้ประโยชน์มากที่สุดในอุตสาหกรรมหลายชนิด เช่น การผลิตเหล็กกล้า กระดาษ และโลหะแคลเซียม นอกจากนี้ยังใช้ในกระบวนการควบคุมภาวะมลพิษ โดยเฉพาะการปรับคุณภาพน้ำ

CaO(s) เตรียมได้จากการเผา $CaCO_3(s)$ หรือหินปูน โดยเผาในเตาเผาที่มีอุณหภูมิสูง ๆ ปฏิกิริยาที่เกิดจาก การเผา $CaCO_3(s)$ เป็นดังนี้

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

กำหนด enthalpy of formation (ΔH°_f) และ absolute entropy (S°) ที่สภาวะมาตรฐาน 25 °C และ 1 atm ของสารต่าง ๆ ดังนี้

สาร	$\Delta H^{\circ}_{\mathrm{f}}$ (kJ/mol)	S [◦] (J/Kmol)
CaCO ₃ (s)	-1,206.9	92.9
CaO(s)	-635.6	39.8
$CO_2(g)$	-393.5	213.6

- 13.1 (1 คะแนน) การเผา CaCO3(s) เป็นการเปลี่ยนแปลงประเภทดูดหรือคายความร้อน และมีค่า enthalpy ของปฏิกิริยา (ΔH°) ที่ 25 °C และ 1 atm เป็นเท่าใดในหน่วย kJ
- 13.2 (1 คะแนน) การเผา CaCO₃(s) ทำให้เกิดการเปลี่ยนแปลง entropy ของปฏิกิยา (ΔS°) ที่ 25 °C และ 1 atm เป็นเท่าใดในหน่วย J/K
- 13.3 (1 คะแนน) การเผา CaCO₃(s) ทำให้เกิดการเปลี่ยนแปลง free energy ของปฏิกิริยา (ΔG°) ที่ 25 °C และ 1 atm เป็นเท่าใดในหน่วย kJ
- 13.4 (0.5 คะแนน) ปฏิกิริยาในข้อ 13.3 เกิดขึ้นได้เองหรือไม่ เพราะเหตุใด
- 13.5 (3 คะแนน) ถ้ากำหนดให้การเผา $CaCO_3(s)$ มี ΔH° และ ΔS° คงที่ตลอดช่วงของอุณหภูมิที่ทดลอง ต้องใช้อุณหภูมิเท่าใดจึงจะเกิดปฏิกิริยา
- 13.6 (2.5 คะแนน) ถ้าเผา CaCO3(s) ที่อุณหภูมิ 850 °C และ 1 atm จะมี ΔG° ของปฏิกิริยาเป็น เท่าใดในหน่วย kJ และปฏิกิริยาจะเกิดขึ้นได้เองหรือไม่ เพราะเหตุใด

โจทย์ข้อที่ 14 (15 คะแนน)

พิจารณากลไกของปฏิกิริยาเคมีชนิดหนึ่งดังนี้

$$A + B = \frac{k_1}{k_{-1}} \quad C + D \quad (s_1^2)$$

$$C + E \xrightarrow{k_2} D$$

คำถาม

14.1 (1 คะแนน) เขียนปฏิกิริยาสุทธิที่เกิดขึ้น

14.2 (0.5 คะแนน) สารตัวกลาง (intermediate) ในปฏิกิริยาคือสารใด และเพราะเหตุใด

14.3 (2.5 คะแนน) เขียนกฎอัตราของปฏิกิริยา โดยสมมุติว่าสารตัวกลางถูกใช้ไปหมด

14.4 (4 คะแนน) ถ้าพลังงานกระตุ้นสำหรับปฏิกิริยาสุทธิที่ไปข้างหน้าเป็น 37.1 kJ/mol และพลังงาน กระตุ้น สำหรับปฏิกิริยาสุทธิย้อนกลับเป็น 45.4 kJ/mol สมมติว่า Arrhenius frequency factor (A) สำหรับปฏิกิริยาสุทธิที่ไปข้างหน้าและปฏิกิริยาสุทธิที่ย้อนกลับมีค่าเท่ากัน จงหา ค่าคงที่สมคุลเป็น ln K และเอนทาลปีของปฏิกิริยานี้ที่ 300 K และจงบอกชนิดของปฏิกิริยาว่าเป็น ชนิดกายความร้อนหรือดูดความร้อน

14.5 (3.5 คะแนน) จากปฏิกิริยาสุทธิที่ได้ในข้อ 14.1

ถ้าความเข้มข้น ณ ขณะหนึ่งของ $[A] = 6.0 \times 10^{-5} \, \mathrm{M}$ $[B] = 3.0 \times 10^{-4} \, \mathrm{M}$

[C] = $1.0 \times 10^{-20} \text{ M}$ [D] = $6.0 \times 10^{-3} \text{ M}$

 $[E] = 2.0 \times 10^{-3} \text{ M}$

จงทำนายว่าปฏิกิริยาสุทธิที่ไปข้างหน้าเกิดขึ้นเองได้หรือไม่ เพราะเหตุใด

14.6 (3.5 คะแนน) จงหาอุณหภูมิซึ่งให้ค่าคงที่อัตราเป็น 2 เท่าของค่าคงที่อัตราที่อุณหภูมิ 300 K

กำหนดให้ Arrhenius equation: $k = Ae^{\frac{-E_a}{RT}}$ $R = 8.314 \text{ J/mol} \cdot \text{K}$

โจทย์ข้อที่ 15 (3 คะแนน)

น้ำแข็ง 200 กรัม ที่อุณหภูมิ –35.0 °C ได้รับความร้อนจนกลายเป็นใอที่ 140.0 °C ถ้าน้ำแข็งได้รับความร้อนจากเตาด้วยอัตรา 500 J/s อยากทราบว่า เตาจะต้องให้ความร้อนเพื่อกระบวนการนี้ เท่าใด และจะต้องใช้เวลานานเท่าใด

กำหนดให้

ความร้อนจำเพาะของน้ำ	=	4.18	J/g·°C
ความร้อนจำเพาะของน้ำแข็ง	=	2.09	J/g·°C
ความร้อนจำเพาะของไอน้ำ	=	2.00	J/g·°C
ความร้อนแฝงของการหลอมเหลว	=	333	J/g·°C
ความร้อนแฝงของการกลายเป็นไอ	=	2,260	J/g·°C

โจทย์ข้อที่ 16 (3 คะแนน)

นักเล่นบอลลูนได้เตรียมเดินทางโดยการบรรจุฮีเลียม 1 โมล เข้าไปในบอลลูน เขาเริ่มออกเดินทางในเวลา เช้าที่อุณหภูมิ 15 °C พอถึงเวลาเที่ยงอุณหภูมิเพิ่มเป็น 30 °C สมมุติว่าความดันยังคงเท่าเดิมที่ 1 บรรยากาศ และสมมุติว่า ฮีเลียมมีพฤติกรรมแบบแก๊สอุดมคติ จงหางาน (W) ที่ทำโดยบอลลูน

กำหนดให้ $R = 0.082 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$

 $W = -P\Delta V$

โจทย์ข้อที่ 17 (6.5 คะแนน)

กรคกลูตามิกอยู่ในผงชูรสในรูป monosodium glutamate (MSG) และเป็นองค์ประกอบของโปรตีน โดยทั่วไป กรคกลูตามิกตัวหนึ่งในฮีโมโกลบินมีบทบาทสำคัญทำให้เม็ดเลือดแคงมีรูปร่างคล้ายโดนัท ทำให้ฮีโมโกลบินเกิดการกลายพันธุ์แล้วเกิดเวลีน (Val) ขึ้นมาแทนที่ เม็ดเลือดแคงจึงมีรูปร่างคล้ายเคียว (sickle) เป็นผลให้เกิดโรคโลหิตจางที่เรียกว่า sickle-cell anemia

กรคกลูตามิกมีสูตร โครงสร้างคือ

$$\begin{array}{c} \mathsf{H} \\ \\ | \\ \mathsf{C} \\ \mathsf{COOH} \\ \\ \mathsf{CH}_2 \\ | \\ \mathsf{COOH} \\ \end{array}$$

 pK_a ของหมู่ที่แตกตัวได้มีค่าเท่ากับ 2.20, 4.30 และ 9.70 ตามลำดับ

- 17.1 (1 คะแนน) จงเขียนปฏิกิริยาการแตกตัวของกรคกลูตามิก โดยเริ่มจากสารละลาย pH ต่ำไปหาสูง (0.5 คะแนน) ค่า pI (isoelectric point) ของกรคกลูตามิกมีค่าเท่าใด
- 17.2 (0.5 คะแนน) ถ้านักเคมีต้องการสังเคราะห์ใตรเพปไทด์จากกรดอะมิโน 3 ตัว คือ Alanine (A),
 Tyrosine (Y) และ Lysine (K) ใตรเพปไทด์ที่ได้จะมีกี่ชนิด
 (1 คะแนน) พร้อมทั้งเขียนปฏิกิริยาที่ทำให้เกิดไตรเพปไทด์ AYK โดยให้มี side chain เป็น R₁,
 R₂, R₃ ตามลำดับ

17.3 พิจารณารูปข้างล่างซึ่งเป็นโครงสร้างของโปรตีนตัวหนึ่ง แล้วตอบคำถาม

- 17.3.1 (0.5 คะแนน) หมู่ฟังก์ชัน **ก.** ที่ pI คือหมู่ใด
- 17.3.2 (0.5 คะแนน) หมู่ฟังก์ชัน **ข.** ที่ pI คือหมู่ใด
- 17.3.3 (0.5 คะแนน) แรงยึดเหนี่ยวระหว่าง ค. และ ง. คือแรงชนิดใด
- 17.3.4 (1 คะแนน) ค. เป็นกรดอะมิโนประเภทใด
- 17.3.5 (1 คะแนน) ง. เป็นกรดอะมิโนประเภทใด

โจทย์ข้อที่ 18 (2 คะแนน)

กลูโคสมีสูตรโครงสร้าง คือ

- 18.1 (1.5 คะแนน) เมื่อเตรียมสารละถายกลูโคสในน้ำให้ได้สารละถายความเข้มข้น 0.1 % (w/v) กลูโคสจะอยู่ในรูปใดบ้าง
- 18.2 (0.5 คะแนน) เราสามารถอธิบายโครงสร้างของ maltose ได้เป็น glucose $-\alpha(1 \rightarrow 4)$ -glucose จงเขียนสูตรโครงสร้างของ maltose แบบ Haworth

โจทย์ข้อที่ 19 (1.5 คะแนน)

ตารางข้างล่างแสดงกรดไขมัน 3 ชนิด

กรดไขมัน	สัญลักษณ์ย่อ	โครงสร้าง
Oleic acid	18:1 ^{∆9}	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH
Stearic acid	18:0	CH ₃ (CH ₂) ₁₆ COOH
Linoleic acid	18:3 ^{\Delta 9,12,15}	CH ₃ CH ₂ CH=CHCH ₂ CH=CHCH ₂ CH=CH(CH ₂) ₇ COOH

เตรียมสารละลายกรดไขมันแต่ละชนิดใน $\mathrm{CH_2Cl_2}$ ให้ได้สารละลายความเข้มข้น $0.5~\%~(\mathrm{w/v})$ แล้วทดสอบ การฟอกสีโบรมีน

- 19.1 (0.5 คะแนน) จงเรียงลำดับกรดไขมันตามความสามารถในการฟอกจางสีโบรมีนจากมากไปน้อย
- 19.2 (1 คะแนน) จงเขียนปฏิกิริยาการฟอกจางสีโบรมีน (โดยเลือกจากกรดใจมัน 1 ตัว)