SBML Model Report

Model name: "Lavrentovich2008_Ca_Oscillations"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 3 format. This model was created by the following two authors: Harish Dharuri¹ and Lukas Endler² at August 21st 2008 at 11:36 a. m. and last time modified at July eleventh 2012 at 5:45 p. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	3
events	0	constraints	0
reactions	7	function definitions	0
global parameters	14	unit definitions	4
rules	0	initial assignments	0

Model Notes

The model reproduces the time profile of cytoplasmic Calcium as depicted in Fig 3 of the paper. Model successfully reproduced using Jarnac and MathSBML.

¹California Institute of Technology, hdharuri@cds.caltech.edu

²EMBL-EBI, lukas@ebi.ac.uk

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of eight unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name micro mole

Definition µmol

2.2 Unit 11M

Name uM

Definition $\mu mol \cdot l^{-1}$

2.3 Unit uM_sec_1

Name uM_sec_1

Definition $\mu mol \cdot l^{-1} \cdot s^{-1}$

2.4 Unit sec_1

Name sec_1

Definition s^{-1}

2.5 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.6 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.7 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.8 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment ER	Cytoplasm Endoplasmic Reticulum		3 3	1	litre litre	✓	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

Name Cytoplasm

3.2 Compartment ER

This is a three dimensional compartment with a constant size of one litre.

Name Endoplasmic Reticulum

4 Species

This model contains three species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

	-	more ever reperiors or each species.			
Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
X	Cytoplasmic Calcium	compartment	μ mol· 1^{-1}		\Box
Y	Calcium in ER	ER	$\mu mol \cdot l^{-1}$	\Box	
Z	IP3	compartment	$\mu mol \cdot l^{-1}$	\Box	

5 Parameters

This model contains 14 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
10	Name	300	varue	UIIIt	Constant
vin			0.05	$\mu mol \cdot l^{-1} \cdot s^{-1}$	
kout			0.50	s^{-1}	
vM3			40.00	s^{-1}	\checkmark
$k_{\sf CaA}$			0.15	μ mol·l ⁻¹	
n			2.02	dimensionless	
k_CaI			0.15	μ mol·l ⁻¹	
m			2.20	dimensionless	
kip3			0.10	μ mol·l ⁻¹	
vM2			15.00	μ mol·l ⁻¹ ·s ⁻¹	
k2			0.10	μ mol·l ⁻¹	
kf			0.50	s^{-1}	
vp			0.05	μ mol·l ⁻¹ ·s ⁻¹	
kp			0.30	μ mol·l ⁻¹	
kdeg			0.08	s^{-1}	

6 Reactions

This model contains seven reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	R1	vin	$\emptyset \longrightarrow X$	
2	R2	Calcium export from cell	$X \longrightarrow \emptyset$	
3	R3	CICR	$Y \xrightarrow{Z} X$	
4	R4	serca	$X \longrightarrow Y$	
5	R5	Leak flux	$Y \longrightarrow X$	
6	R6	PLC	$\emptyset \xrightarrow{\mathbf{X}} \mathbf{Z}$ $\mathbf{Z} \longrightarrow \emptyset$	
/	R7	IP3 degradation	$Z \longrightarrow \emptyset$	

6.1 Reaction R1

This is an irreversible reaction of no reactant forming one product.

Name vin

Reaction equation

$$\emptyset \longrightarrow X$$
 (1)

Product

Table 6: Properties of each product

140	ic o. Troperties of each p	nouuct.
Id	Name	SBO
Х	Cytoplasmic Calcium	

Kinetic Law

Derived unit $\mu mol \cdot s^{-1}$

$$v_1 = \text{vol} (\text{compartment}) \cdot \text{vin}$$
 (2)

6.2 Reaction R2

This is an irreversible reaction of one reactant forming no product.

Name Calcium export from cell

Reaction equation

$$X \longrightarrow \emptyset$$
 (3)

Reactant

Table 7: Properties of each reactant.

Id	Name	SBO
Х	Cytoplasmic Calcium	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_2 = \text{vol}\left(\text{compartment}\right) \cdot \text{kout} \cdot [X]$$
 (4)

6.3 Reaction R3

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name CICR

Reaction equation

$$Y \xrightarrow{Z} X$$
 (5)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
Y	Calcium in ER	

Modifier

Table 9: Properties of each modifier.

Id	Name	SBO
Z	IP3	

Product

Table 10: Properties of each product.

Id	Name	SBO
Х	Cytoplasmic Calcium	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{3} = vol\left(ER\right) \cdot 4 \cdot vM3 \cdot k_CaA^{n} \cdot \frac{[X]^{n}}{([X]^{n} + k_CaA^{n}) \cdot ([X]^{n} + k_CaI^{n})} \cdot \frac{[Z]^{m}}{[Z]^{m} + kip3^{m}} \cdot ([Y] - [X]) \tag{6}$$

6.4 Reaction R4

This is an irreversible reaction of one reactant forming one product.

Name serca

Reaction equation

$$X \longrightarrow Y$$
 (7)

Reactant

Table 11: Properties of each reactant.

	· · · · · · · · · · · · · · · · · · ·	
Id	Name	SBO
X	Cytoplasmic Calcium	

Product

Table 12: Properties of each product.

Id	Name	SBO
Y	Calcium in ER	

Kinetic Law

 $\textbf{Derived unit} \ \ 1.0000000000000024 \cdot 10^{-6} \ mol \cdot s^{-1}$

$$v_4 = \frac{\text{vol (compartment)} \cdot \text{vM2} \cdot [\text{X}]^2}{[\text{X}]^2 + \text{k2}^2}$$
 (8)

6.5 Reaction R5

This is an irreversible reaction of one reactant forming one product.

Name Leak flux

Reaction equation

$$Y \longrightarrow X$$
 (9)

Reactant

Table 13: Properties of each reactant.

Id	Name	SBO
Y	Calcium in ER	

Product

Table 14: Properties of each product.

	Name	SBO
Х	Cytoplasmic Calcium	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_5 = \text{vol}(\text{ER}) \cdot \text{kf} \cdot ([Y] - [X]) \tag{10}$$

6.6 Reaction R6

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name PLC

Reaction equation

$$\emptyset \xrightarrow{X} Z \tag{11}$$

Modifier

Table 15: Properties of each modifier.

Id	Name	SBO
X	Cytoplasmic Calcium	

Product

Table 16: Properties of each product.

Id	Name	SBO
Z	IP3	

Kinetic Law

Derived unit $1.000000000000024 \cdot 10^{-6} \text{ mol} \cdot \text{s}^{-1}$

$$v_6 = \frac{\text{vol (compartment)} \cdot \text{vp} \cdot [X]^2}{[X]^2 + \text{kp}^2}$$
 (12)

6.7 Reaction R7

This is an irreversible reaction of one reactant forming no product.

Name IP3 degradation

Reaction equation

$$Z \longrightarrow \emptyset$$
 (13)

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
Z	IP3	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_7 = \text{vol}(\text{compartment}) \cdot \text{kdeg} \cdot [Z]$$
 (14)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species X

Name Cytoplasmic Calcium

Initial concentration $0.1 \, \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R2, R4 and as a product in R1, R3, R5 and as a modifier in R6).

$$\frac{\mathrm{d}}{\mathrm{d}t}X = v_1 + v_3 + v_5 - v_2 - v_4 \tag{15}$$

7.2 Species Y

Name Calcium in ER

Initial concentration $1.5 \ \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R3, R5 and as a product in R4).

$$\frac{d}{dt}Y = v_4 - v_3 - v_5 \tag{16}$$

7.3 Species Z

Name IP3

Initial concentration $0.1 \ \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R7 and as a product in R6 and as a modifier in R3).

$$\frac{\mathrm{d}}{\mathrm{d}t}Z = v_6 - v_7 \tag{17}$$

 $\mathfrak{BML2}^{a}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany