2. Linear Algebra

2.2 Matrices & 2.3 Solving Systems of Linear Equations

Linear Equation이 Matrix으로 응용가능하다.

주의점

2.2.2 Inverse and Transpose

Inverse Matrix: 역행렬 A^(-1) >> AA^(-1) = I

Transpose Matrix: 전치행렬 A^T >> (A^T)^T = A

 $(AB)^T = B^T * A^T$

2.3.2 Elementary Transformation

 $Ax=b \rightarrow [A|b] \text{ or } x=(A^T*A)^(-1)*A^T*b$

2.4 Vector Spaces & 2.5 Linear Independence

Groups: 군

Definition 2.7 (Group). Consider a set \mathcal{G} and an operation $\otimes : \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ defined on \mathcal{G} . Then $G := (\mathcal{G}, \otimes)$ is called a *group* if the following hold:

- 1. Closure of \mathcal{G} under \otimes : $\forall x, y \in \mathcal{G} : x \otimes y \in \mathcal{G}$
- **2.** Associativity: $\forall x, y, z \in \mathcal{G} : (x \otimes y) \otimes z = x \otimes (y \otimes z)$
- 3. Neutral element: $\exists e \in \mathcal{G} \ \forall x \in \mathcal{G} : x \otimes e = x \text{ and } e \otimes x = x$
- 4. Inverse element: $\forall x \in \mathcal{G} \ \exists y \in \mathcal{G} : x \otimes y = e \ \text{and} \ y \otimes x = e$, where e is the neutral element. We often write x^{-1} to denote the inverse element of x.

2.6 Basis and Rank

rank: 기존에 알고 있던 공식으로 해결

2.7 Linear Mappings & 2.8 Affine Spaces

2. Linear Algebra

__ _

• *Isomorphism:* $\Phi: V \to W$ linear and bijective

• Endomorphism: $\Phi: V \to V$ linear

• Automorphism: $\Phi: V \to V$ linear and bijective

• We define $id_V: V \to V$, $x \mapsto x$ as the identity mapping or identity automorphism in V.

Example 2.21 (Transformation Matrix)

Consider a homomorphism $\Phi: V \to W$ and ordered bases $B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_3)$ of V and $C = (\boldsymbol{c}_1, \dots, \boldsymbol{c}_4)$ of W. With

$$\Phi(\mathbf{b}_1) = \mathbf{c}_1 - \mathbf{c}_2 + 3\mathbf{c}_3 - \mathbf{c}_4
\Phi(\mathbf{b}_2) = 2\mathbf{c}_1 + \mathbf{c}_2 + 7\mathbf{c}_3 + 2\mathbf{c}_4
\Phi(\mathbf{b}_3) = 3\mathbf{c}_2 + \mathbf{c}_3 + 4\mathbf{c}_4$$
(2.95)

the transformation matrix A_{Φ} with respect to B and C satisfies $\Phi(b_k) = \sum_{i=1}^4 \alpha_{ik} c_i$ for $k = 1, \dots, 3$ and is given as

$$\mathbf{A}_{\Phi} = [\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3] = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 3 \\ 3 & 7 & 1 \\ -1 & 2 & 4 \end{bmatrix},$$
 (2.96)

where the $\alpha_j,\ j=1,2,3,$ are the coordinate vectors of $\Phi(\boldsymbol{b}_j)$ with respect to C.

옆 이미지를 기억해서 affine 선을 구하라고 하면 그대로 적용하면 될 것 같다.

2. Linear Algebra 2