# Schémas de réaction

Voir le cours <u>Modélisation et analyse des systèmes dynamiques</u> (<a href="http://perso.uclouvain.be/georges.bastin/sysdyn.pdf">http://perso.uclouvain.be/georges.bastin/sysdyn.pdf</a>) de <u>Georges Bastin (http://perso.uclouvain.be/georges.bastin/)</u>.

Cette approche s'inspire de la <u>cinétique chimique (https://fr.wikipedia.org/wiki/Cinétique\_chimique)</u> où existe la notion d'espèce.

Dans un volume V on considère:

- N espèces  $S_i$ , i = 1, ..., N
- sujettes à M réactions  $R_j$  ,  $j=1,\ldots,M$



On note  $[S_i]$  la concentration de l'espèce i et:

$$X(t) = (X_1(t), \dots X_N(t))^* = ([S_1](t), \dots [S_N](t))^*$$

## Réactions de base

Voir wikipedia (https://fr.wikipedia.org/wiki/Ordre\_de\_réaction).

Réactions élémentaires: instantanées, principalement uni-moléculaires ou bi-moléculaires

| ordre | réaction                                     |                  |
|-------|----------------------------------------------|------------------|
| 1     | $S_i \xrightarrow{c_j} \text{produit}$       | • <b>-</b> * - • |
| 2     | $2S_i \xrightarrow{c_j} \text{produit}$      | *                |
| 2     | $S_i + S_j \xrightarrow{c_j} \text{produit}$ | *                |

On peut aussi considérer:

| ordre | réaction                              |        |
|-------|---------------------------------------|--------|
| 0     | $\emptyset \xrightarrow{c_j} produit$ | ∅ → ∗→ |

# Réactions générales

$$R_j: \underbrace{n_{1j}[S_1] + \dots + n_{Nj}[S_N]}_{\text{réactifs}} \xrightarrow{c_j} \underbrace{n'_{1j}[S_1] + \dots + n'_{Nj}[S_N]}_{\text{produits}}$$

correspond à  $x \rightarrow x + \nu_i$  avec

$$\nu_j = \begin{pmatrix} \nu_{1j} \\ \vdots \\ \nu_{Nj} \end{pmatrix} = \begin{pmatrix} n'_{1j} - n_{1j} \\ \vdots \\ n'_{Nj} - n_{Nj} \end{pmatrix}$$

- c<sub>i</sub> contantes cinétiques
- ullet  $u_{ij}$  coefficients stoechiométriques

loi d'action de masse cinétique: le taux d'une réaction est proportionnel au produit des concentrations des espèces réactantes

le taux de la réaction  $R_i$  est:

$$\lambda_i(X) = c_i [S_1]^{n_{1j}} \cdots [S_N]^{n_{Nj}}$$

## Equation du taux de réaction

si on néglige les fluctuations:

$$\dot{X}(t) = \sum_{i=1}^{M} \nu_j \, \lambda_j(X(t))$$

i.e.  $\dot{X}(t) = S \lambda(X(t))$  où  $S = [\nu_1 \ \nu_2 \cdots \nu_M]$  est la matrice de stoechiométrie

**loi d'action de masse cinétique**: le taux de réaction est proportionnel au produit des concentrations des espèces participant à la réaction.

voir la matrice de Petersen (https://en.wikipedia.org/wiki/Petersen\_matrix)

#### **Exemple**

Considérons une réaction d'ordre 3 suivie d'une réaction de Michaelis-Menten:

$$A + 2B \longrightarrow S$$

$$E + S \stackrel{k_f}{\rightleftharpoons} ES \stackrel{k_{\text{cat}}}{\longrightarrow} E + P$$

deux réactants A et B se combinent pour donner un substrat ( $S=AB_2$ ), qui à l'aide d'une enzime E, se transforme en un produit P. Le modèle de <u>Michaelis-Menten (https://fr.wikipedia.org/wiki/Équation\_de\_Michaelis-Menten)</u> décrit la cinétique d'une réaction catalysée par une enzyme agissant sur un substrat unique pour donner un produit.

$$\frac{d[A]}{dt} = -k_1[A][B]^2$$

$$\frac{d[B]}{dt} = -2k_1[A][B]^2$$

$$\frac{d[S]}{dt} = k_1[A][B]^2 - k_f[E][S] + k_r[ES]$$

$$\frac{d[E]}{dt} = -k_f[E][S] + k_r[ES] + k_{cat}[ES]$$

$$\frac{d[ES]}{dt} = k_f[E][S] - k_r[ES] - k_{cat}[ES]$$

$$\frac{d[P]}{dt} = k_{cat}[ES]$$

([X] désigne la concentration de l'espèce X).

La matrice de Petersen est:

| réaction                           | ordre | Α  | В  | S  | E  | ES | Р  | taux de réaction        |
|------------------------------------|-------|----|----|----|----|----|----|-------------------------|
| A et B produisent S                | 3     | -1 | -2 | +1 | 0  | 0  | 0  | $k_1[A][B]^2$           |
| formation de ES à partir de E et S | 2     | 0  | 0  | -1 | -1 | +1 | 0  | $k_f[E][S]$             |
| décomposition de ES en E et S      | 1     | 0  | 0  | +1 | +1 | -1 | 0  | $k_r[ES]$               |
| décomposition de ES en E et P      | 1     | 0  | 0  | 0  | +1 | -1 | +1 | $k_{\rm cat}[{\rm ES}]$ |

On obtient l'équation de la réaction:

$$\frac{d}{dt} \begin{pmatrix} [A] \\ [B] \\ [S] \\ [E] \\ [ES] \\ [P] \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ +1 & -1 & +1 & 0 \\ 0 & -1 & +1 & +1 \\ 0 & +1 & -1 & -1 \\ 0 & 0 & 0 & +1 \end{pmatrix} \begin{pmatrix} k_1 [A] [B]^2 \\ k_f [E] [S] \\ k_r [ES] \\ k_{cat} [ES] \end{pmatrix}$$