Introduction to Algorithm Design

Lecture Notes 10

ROAD MAP

- Greedy Technique
 - Knapsack Problem
 - Minimum Spanning Tree Problem
 - Prim's Algorithm
 - Kruskal's Algorithm
 - Single Source Shortest Paths
 - Dijkstra's Algorithm
 - Job Sequencing With Deadlines
 - Huffman Trees
 - Activity Selection Problem

- Used for solving <u>optimization problems</u>
 - such as engineering problems
- Construct a solution through a sequence of decision steps
 - Each expanding a partially constructed solution
 - Until a complete solution is reached
- Similar to dynamic programming
 - but, not all possible solutions are explored

Greedy Technique

On each decision step the choice should be

Feasible

 has to satisfy the problem's constraints

Locally optimal

has to be the best local choice

Irrevocable

once made, it can not be changed

Greedy Technique

```
Greedy Algorithm (a [ 1 .. N ] )
 solution = \emptyset
 for i = 1 to n
     x = select (a)
     if feasible ( solution, x )
          solution = solution U {x}
 return solution
```


- In each step, greedy technique suggests a greedy selection of the best alternative avaliable
 - Feasible decision
 - Locally optimal decision
 - Hope to yield a globally optimal solution
- Greedy technique <u>does not</u> give the optimal solution for all problems
- There are problems for which a sequence of locally optimal choices does not yield an optimal solution
 - EX: TSP, Graph coloring
 - Produces approximate solution

Fractional Knapsack Problem

• Given:

w_i: weight of object *i*

m: capacity of knapsack

 p_i : profit of all of i is taken

• Find:

 x_i : fraction of *i* taken

• Feasibility:

$$\sum_{i=1}^{n} x_i w_i \le m$$

Optimality:

maximize
$$\sum_{i=1}^{n} x_i p_i$$

Greedy Technique

```
Greedy Algorithm (a [ 1 .. N ] )
 solution = \emptyset
 for i = 1 to n
     x = select (a)
     if feasible ( solution, x )
          solution = solution U {x}
 return solution
```

Knapsack Problem


```
Algorithm Knapsack (m,n)
  for i = 1 to n
      x(i) = 0
  for i = 1 to n
      select the object (j) with largest unit value
      if (w[j] < m)
            x[j] = 1.0
            m = m - w[j]
      else
            x[j] = m/w[j]
            break
```

• Example:

$$M = 20$$
 $n = 3$ $p = (25, 24, 15)$ $w = (18, 15, 10)$

$$n = 3$$

 $w = (18, 15, 10)$

Proof of Optimality

G is greedy solution

$$G = x_1, x_2, ..., x_n$$
 $0 \le x_i \le 1$
let $x_k \ne 1$ k: least index
 $x_i = 1$ $1 \le i < k$
 $x_i = 0$ $k < i \le n$

O is optimal solution

$$O = y_1, y_2, ..., y_n$$

let
$$x_j \neq y_j$$
 j is the least index $y_j < x_j$

G

C

$$y_{j} \leftarrow x_{j}$$

$$y_{j} \leftarrow y_{j} + x_{j} - y_{j}$$

$$y_{s} \leftarrow y'_{s}$$

$$\sum_{O} profit \leq \sum_{O'} profit$$

 $O \rightarrow O'$

•

$$O \rightarrow O' \rightarrow O'' \rightarrow ... \rightarrow G$$

- Problem Instance:
 - A weighted, connected, undirected graph G (V, E)
- Definition:
 - A spanning tree of a connected graph is its connected acyclic subgraph
 - A minimum spanning tree of a weighted connected graph is its spanning tree of the smallest weight
 - weight of a tree is defined as the sum of the weights on all its edges
- Feasible Solution:
 - A spanning tree G' of G

$$G' = (V, E')$$
 $E' \subseteq E$

- Objective function :
 - Sum of all edge costs in G'

$$C(G') = \sum_{e \in G'} C(e)$$

- Optimum Solution :
 - Minimum cost spanning tree

Greedy Technique

```
Greedy Algorithm (a [ 1 .. N ] )
 solution = \emptyset
 for i = 1 to n
     x = select (a)
     if feasible ( solution, x )
          solution = solution U {x}
 return solution
```


- Prim's algorithm constructs a MST through a sequence of expanding subtrees
- Greedy choice :
 - Choose minimum cost edge add it to the subgraph


```
ALGORITHM
                   Prim(G)
    //Prim's algorithm for constructing a minimum spanning tree
    //Input: A weighted connected graph G = \langle V, E \rangle
    //Output: E_T, the set of edges composing a minimum spanning tree of G
    V_T \leftarrow \{v_0\} //the set of tree vertices can be initialized with any vertex
    E_T \leftarrow \emptyset
    for i \leftarrow 1 to |V| - 1 do
         find a minimum-weight edge e^* = (v^*, u^*) among all the edges (v, u)
         such that v is in V_T and u is in V - V_T
         V_T \leftarrow V_T \cup \{u^*\}
         E_T \leftarrow E_T \cup \{e^*\}
    return E_T
```


Approach:

- 1. Each vertex j keeps near[j] \in T (current tree) where cost(j,near[j]) is minimum
- 2. near[j] = 0 if j \mathbf{E} \mathbf{T} = ∞ if there is no egde between j and T
- 3. Use a heap to select minimum of all edges

Remaining vertices	Illustration
$\mathbf{b}(\mathbf{a}, 3) \ \mathbf{c}(-, \infty) \ \mathbf{d}(-, \infty)$ e(a, 6) f(a, 5)	3 b 1 c 6 6 5 d

 $c(b, 1) d(-, \infty) e(a, 6) f(b, 4)$

c(b, 1)

d(c, 6) e(a, 6) f(b, 4)

f(b, 4)

d(f, 5) e(f, 2)

e(f, 2)

d(f, 5)

d(f, 5)

Correctness proof of Prim's Algorithm

- Prim's algorithm always yield a MST
- We can prove it by induction
 - T₀ is a part of any MST
 - consists of a single vertex
 - Assume that T_{i-1} is a part of MST
 - We need to prove that T_i, generated by T_{i-1} by Prim's algorithm is a part of a MST
 - We prove it by contradiction
 - Assume that no MST of the graph can contain T_i

Let $e_i=(u,v)$ be minimum weight edge from a vertex in T_{i-1} to a vertex not in T_{i-1} used by Prim's algorithm to expant T_{i-1} to T_i

By our assumption, if we add e_i to T (MST), a cycle must be formed.

In addition to e_i , cycle must contain another edge (v', u'). If we delete the edge e_k , (v', u'), we obtain another spanning tree

 $w_{ei} \le w_{ek}$ So weight of new spanning tree is less or equal to T. Since T is a MST, weight of new spanning tree can not be less. So, they are equal.

New spanning tree is a minimum spanning tree which contradicts the assumption that no minimum spanning tree contains T_i

Prim's Algorithm

```
Initialize S with the start vertex, s, and V–S with the remaining vertices
1.
          for all v in V - S
2.
                    if there is an edge (s, v)
3.
                               Set cost[v] to w(s, v)
4.
                               Set next[v] to s
5.
                    else
                               Set cost[v] to \infty
6.
                               Set next[v] to NULL
7.
          while V - S is not empty
8.
                    for all u in V - S, find the smallest cost[u]
9.
                    Remove u from V - S and add it to S
10.
                    Insert the edge (u, next[u]) into the spanning tree.
11.
                    for all v adjacent to u in V - S
12.
                               if w(u, v) < cost[v]
13.
                                          Set cost[v] to w(u, v)
14.
                                          Set next[v] to u.
15.
```


Analysis:

- How efficient is Prim's algorithm?
 - It depends on the data structure chosen
 - running time is Θ(|V|²) If
 - graph is represented by its weight matrix
 - unordered array is used
 - running time of is O(|E|log|V|) If
 - graph is represented by adjacency list
 - priority queue such as a min-heap is used

Kruskal's Algorithm

- Another algorithm to construct MST
- Expands a subgraph
 - initially contains all the vertices but no edges
- Generates a sequence of subgraphs
 - always acyclic
 - not necessarily connected
- Resulting graph is connected and acyclic (i.e., tree)

Greedy choice:

- Choose minimum cost edge
 - Connecting two disconnected subgraphs
- It always yields an optimal solution

Greedy Technique

```
Greedy Algorithm (a [ 1 .. N ] )
 solution = \emptyset
 for i = 1 to n
     x = select (a)
     if feasible ( solution, x )
          solution = solution U {x}
 return solution
```


Kruskal's Algorithm

```
ALGORITHM
                  Kruskal(G)
    //Kruskal's algorithm for constructing a minimum spanning tree
    //Input: A weighted connected graph G = \langle V, E \rangle
    //Output: E_T, the set of edges composing a minimum spanning tree of G
    sort E in nondecreasing order of the edge weights w(e_{i_1}) \leq \ldots \leq w(e_{i_{|E|}})
    E_T \leftarrow \emptyset; ecounter \leftarrow 0 //initialize the set of tree edges and its size
    k \leftarrow 0
                                    //initialize the number of processed edges
    while ecounter < |V| - 1 do
         k \leftarrow k + 1
         if E_T \cup \{e_{i_k}\} is acyclic
              E_T \leftarrow E_T \cup \{e_{i_k}\}; \quad ecounter \leftarrow ecounter + 1
    return E_T
```


Kruskal's Algorithm Example

Tree edges

Sorted list of edges

Illustration

bc ef ab bf cf af df ae cd de 1 2 3 4 4 5 5 6 6 8

bc bc ef ab bf cf af df ae cd de 1 2 3 4 4 5 5 6 6 8

ef bc ef ab bf cf af df ae cd de 2 1 2 3 4 4 5 5 6 6 8

Kruskal's Algorithm Example

ab 3 bc ef ab **bf** cf af df ae cd de 1 2 3 4 4 5 5 6 6 8

bf 4 bc ef ab bf cf af **df** ae cd de 1 2 3 4 4 5 5 6 6 8

df 5

Proof of Optimality

Algorithm → T not optimal

$$e_1, e_2, ..., e_{n-1}$$

$$c(e_1) < c(e_2) < ... < c(e_{n-1})$$

O is optimal

$$e \in T$$

 $e \in T$ $e \notin O$ OU {e} forms a cycle

The cycle contains an edge $e^* \notin T$

$$e^* \notin T$$

O'=O U $\{e\}$ – $\{e^*\}$ forms another spanning tree

$$Cost(O') = Cost(O) + c(e) - c(e^*)$$

Greedy choice \rightarrow c(e) \leq c(e*)

$$Cost(O') \leq Cost(O)$$

$$O \rightarrow O' \rightarrow ... \rightarrow O^{(k)} = T$$

- Some applications (such as Kruskal's algorithm) requires a dynamic partition of some *n*-element set S into a collection of disjoint subsets S₁, S₂, ..., S_k
- After being initialized as a collection n oneelement subsets, each containing a different element of S, the collection is subjected to a sequence of intermixed <u>union</u> and <u>find</u> operations

- We are dealing with an abstract data type of a collection of disjoint subsets of a finite set with operations:
 - makeset(x):
 - creates one-element set {x}
 - it is assumed that this operation can be applied to each of the element of set S only once
 - find(x):
 - returns a subset containing x
 - union (x,y) :
 - constructs the union of disjoint subsets S_x, S_y containing x and y, respectively
 - Adds it to the collection to replace S_x and S_y
 - which are deleted from it

- Example :
 - $S = \{1, 2, 3, 4, 5, 6\}$
 - make(i) creates the set(i)
 - applying this operation six times initializes the structure to the collection of six singleton sets :

- performing union (1,4) and union (5,2) yields
 {1, 4}, {5, 2}, {3}, {6}
- if followed by union (4,5) and then by union (3,6)
 {1, 4, 5, 2}, {3, 6}

 There are two principal alternatives for implementing this data structure

1. quick find

optimizes the time efficiency of the find operation

2. quick union

optimizes the union operation

1. quick find

- optimizes the time efficiency of the find operation
- uses an array indexed by the elements of the underlying set S
- each subset is implemented as a linked list whose header contains the pointers to the first and last elements of the list

Linked list representation of subsets {1, 4, 5, 2} and {3, 6} obtained by quick-find after performing union (1,4), union (5,2), union (4,5) and union (3,6)

- Time efficency of makeset(x) is Θ(1), hence initialization of n singleton subsets is Θ(n)
- Time efficency of find(x) is Θ(1)
- Executing union(x,y) takes longer,
 - $\Theta(n^2)$ for a sequence of n union operations
 - A simple way to improve the overall efficiency is to append the shorter of the two lists to the longer one
 - This modification is called union-by-size
 - But it does not improve the worst case efficiency

2. quick union

- Represents each subsets by a rooted tree
- The nodes of the tree contain the subset's elements (one per node)
- Tree's edges are directed from children to their parents

2. quick union

- Time efficiency of makeset(x) is $\Theta(1)$, hence initialization of *n* singleton subsets is $\Theta(n)$
- Time efficiency of find(x) is $\Theta(n)$
 - A tree representing a subset can degenerate into a linked list with n nodes
 - A find is performed by following the pointer chain from the node containing x to the tree's root
- Executing union (x,y) takes Θ(1)
 - It is implemented by attaching the root of the y's tree to the root of the x's tree

- a) forest representation of subsets {1, 4, 5, 2} & {3, 6} used by quick union
- b) result of union (5,6)

- A better efficiency can be obtained by using path compression
 - Every node encountered during the execution of a find operation are made to point to the tree's root

 A sequence of n-1 unions and m finds takes only slightly worse than linear

Kruskal's Algorithm

```
ALGORITHM
                  Kruskal(G)
    //Kruskal's algorithm for constructing a minimum spanning tree
    //Input: A weighted connected graph G = (V, E)
    //Output: E_T, the set of edges composing a minimum spanning tree of G
    sort E in nondecreasing order of the edge weights w(e_{i_1}) \leq \ldots \leq w(e_{i_{|E|}})
    E_T \leftarrow \emptyset; ecounter \leftarrow 0 //initialize the set of tree edges and its size
    k \leftarrow 0
                                    //initialize the number of processed edges
    while ecounter < |V| - 1 do
         k \leftarrow k + 1
         if E_T \cup \{e_{i_k}\} is acyclic
              E_T \leftarrow E_T \cup \{e_{i_k}\}; \quad ecounter \leftarrow ecounter + 1
    return E_T
```

Algorithm requires at most n-1 unions and 2m finds Analysis \rightarrow O(|E| log|E|)

ROAD MAP

- Greedy Technique
 - Knapsack Problem
 - Job Sequencing With Deadlines
 - Minimum Spanning Tree Problem
 - Prim's Algorithm
 - Kruskal's Algorithm
 - Single Source Shortest Paths
 - Dijkstra's Algorithm
 - Huffman Trees
 - Activity Selection Problem

Definition:

 For a given vertex called source in a weighted connected graph, find shortest paths to all other vertices in the graph

Idea:

- Incrementally add nodes to an empty tree
- Each time add a node that has the smallest path length

Approach :

1.
$$S = \{ \}$$

- 2. Initialize *dist [v]* for all *v*
- 3. Insert *v* with min *dist[v]* in *T*
- 4. Update dist[w] for all $w \notin S$

Idea of Dijkstra's algorithm

Greedy Technique

```
Greedy Algorithm (a [ 1 .. N ] )
 solution = \emptyset
 for i = 1 to n
    x = select (a)
    if feasible (solution, x)
         solution = solution U {x}
 return solution
```

ALGORITHM Dijkstra(G, s)//Dijkstra's algorithm for single-source shortest paths //Input: A weighted connected graph $G = \langle V, E \rangle$ with nonnegative weights and its vertex s //Output: The length d_v of a shortest path from s to v and its penultimate vertex p_v , for every vertex v in VInitialize(Q) //initialize vertex priority queue to empty for every vertex v in V do $d_v \leftarrow \infty$; $p_v \leftarrow \text{null}$ $Insert(Q, v, d_v)$ //initialize vertex priority in the priority queue $d_s \leftarrow 0$; Decrease(Q, s, d_s) //update priority of s with d_s $V_T \leftarrow \emptyset$ for $i \leftarrow 0$ to |V| - 1 do $u^* \leftarrow DeleteMin(Q)$ //delete the minimum priority element $V_T \leftarrow V_T \cup \{u^*\}$ for every vertex u in $V - V_T$ that is adjacent to u^* do **if** $d_{u^*} + w(u^*, u) < d_u$ $d_u \leftarrow d_{u^*} + w(u^*, u); \quad p_u \leftarrow u^*$ $Decrease(Q, u, d_n)$

Tree vertices	Remaining vertices	Illustration
a(-, 0)	$b(a, 3) c(-, \infty) d(a, 7) e(-, \infty)$	3 2 6 6 9 7 d 4 6
b(a, 3)	$c(b, 3+4) d(b, 3+2) e(-, \infty)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Dijkstra's Algorithm Example

d(b, 5)

c(b, 7) e(d, 5+4)

c(b, 7)

e(d, 9)

e(d, 9)

from a to b: a-b

of length 3

from a to d: a-b-d

of length 5

from a to c: a-b-c

of length 7

from a to e: a-b-d-e

of length 9

Analysis:

- Time efficiency depends on the data structure used for priority queue and for representing an input graph itself
- For graphs represented by their weight matrix and priority queue implemented as an unordered array, efficiency is in Θ(|V|²)
- For graphs represented by their adjacency list and priority queue implemented as a min-heap efficiency is in O(|E|log|V|)
- A better upper bound for both Prim and Dijkstra's algorithm can be achieved, if Fibonacci heap is used

ROAD MAP

Greedy Technique

- Knapsack Problem
- Minimum Spanning Tree Problem
 - Prim's Algorithm
 - Kruskal's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- Job Sequencing With Deadlines
- Huffman Trees
- Activity Selection Problem

Job Sequencing With Deadlines

Given :

```
n jobs 1, 2, ..., n deadline d_i > 0 each job taken 1 unit time profit p_i > 0 1 machine available
```

Find

$$J \subseteq \{1, 2, ..., N\}$$

Feasibility:

The jobs in *J* can be completed before their deadlines

Optimality:

maximize
$$\sum_{i \in I} P_i$$

Job Sequencing With Deadlines

• Example:

$$n = 4$$

 $d_i = 2, 1, 2, 1$
 $p_i = 100, 10, 15, 27$

$$J = \{1,2\} \quad \Rightarrow \quad \sum p_i = 110$$

$$J = \{1,3\} \quad \Rightarrow \quad \sum p_i = 115$$

$$J = \{1,4\} \implies \sum p_i = 127 \leftarrow \text{optimal}$$

$$J = \{1,2,3\}$$
 is not feasible

Greedy strategy?

Greedy Choice:

- Take the job gives largest profit
- Process jobs in nonincreasing order of p_i's

Greedy Technique

```
Greedy Algorithm (a [ 1 .. N ] )
 solution = \emptyset
 for i = 1 to n
    x = select (a)
    if feasible (solution, x)
         solution = solution U {x}
 return solution
```


How to check feasibility?

- Need to check all permutations
 - k jobs than k! permutations
- To check feasibility
 - If the jobs are scheduled as follows

$$i_1, i_2, ..., i_k$$

check whether
 $d_{ii}, \ge j$

- k jobs requires at least k! time
- What about using a greedy strategy to check feasibility?

Job Sequencing With Deadlines

 Order the jobs in nondecreasing order of deadlines

$$j = i_1, i_2, ... i_k$$

$$d_{i_1} \le d_{i_2} \le ... \le d_{i_k}$$

- We only need to check this permutation
 - The subset is feasible if and only if this permutation is feasible

Greedy Technique

```
Greedy Algorithm (a [ 1 .. N ] )
 solution = \emptyset
 for i = 1 to n
    x = select (a)
    if feasible (solution, x)
         solution = solution U {x}
 return solution
```


Analysis:

- Use presorting
 - Sorting and selection takes O(n log n) time in total
- Checking feasibility
 - Each check takes linear time in the worst case
 - $O(n^2)$ in total
- Total runtime is $O(n^2)$
 - Can we improve this?

- Suppose we have to encode a text that comprises characters from some n-character alphabet by assigning to each of the text's characters some sequence of bits called codeword
- We can use a fixed-encoding that assigns to each character
 - Good if each character has same frequency
 - What if some characters are more frequent than others

Encoding Text

 EX: The number of bits in the encoding of 100 characters long text

	a	b	c	d	e	f
freq	45	13	12	16	9	5
fixed word	000	•••				101 = 300
variable word	0	101	100	111	1101	1100 = 224

Prefix Codes

- A codeword is not prefix of another codeword
 - Otherwise decoding is not easy and may not be possible
- Encoding
 - Change each character with its codeword
- Decoding
 - Start with the first bit
 - Find the codeword
 - A unique codeword can be found prefix code
 - Continue with the bits following the codeword
- Codewords can be represented in a tree

Prefix Codes

• EX: Trees for the following codewords...

	a	b	c	d	e	f
fixed word	000	•••				101
variable word	0	101	100	111	1101	1100

- Given: The characters and their frequencies
- Find: The coding tree
- Cost: Minimize the cost

$$Cost = \sum_{c \in C} f(c) \times d(c)$$

- f(c): frequency of c
- d(c): depth of c

Huffman Codes

What is the greedy strategy?

Huffman Codes

Approach :

```
    Q = forest of one-node trees
        // initialize n one-node trees;
        // label the nodes with the characters
        // label the trees with the frequencies of the chars
    for i=1 to n-1
    x = select the least freq tree in Q & delete
    y = select the least freq tree in Q & delete
    z = new tree
    z→left = x and z→right = y
    f(z) = f(x) + f(y)
    Insert z into Q
```


Greedy Technique

```
Greedy Algorithm (a [ 1 .. N ] )
 solution = \emptyset
 for i = 1 to n
    x = select (a)
     is feasible (solution, x)
          solution = solution U {x}
 return solution
```


Huffman Codes Example

Consider five characters {A,B,C,D,-} with following occurrence probabilities

character	A	В	C	D	-
probability	0.35	0.1	0.2	0.2	0.15

The Huffman tree construction for this input is as follows

character	A	В	С	D	
probability	0.35	0.1	0.2	0.2	0.15
codeword	11	100	00	01	101

Huffman Codes

- Optimality Proof :
 - Tree should be full
 - Two least frequent chars x and y must be two deepest nodes
 - Induction argument
 - After merge operation → new character set
 - Characters in roots with new frequencies

- Analysis:
 - Use priority queues for forest

$$O(|c|\log|c|)$$