(3). prove. If lim Xn = q. Then lim 4+ quantum = q a ran be real number of too or -00 (4) 2+ xn70 /im xn=q. (9>0 or a=+00) Then lim (x-1 + x2+ ... + xn-1) -1 = 9. (5) Ty X,70. /im X, = q. (a7,0 or. q=+20) Then lim n | X1 -- Xn = q. (6). It lim XnH = q. Xn > 0. (400 or q = +00) Then. $\lim_{n\to\infty} n \int X_n = q$. (7). prove. lim n = e. (8) prove $\log_a n = 0$ (9>1) (9) find lim n+1 + 1+2 + ... + 27 (10) prove. lim an n1 = 0 (a>0) (11) If lin Xn = a lim Jn = b. prove lim X1Jn + x2Jn-1 + ... + Xn J1 =ah. (12) prove: 1.3. 2n-1 < 1 then we have $\lim_{n\to\infty} \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{2n-1}{2n} = 0$

(22)	Ty lim XI+ Xx++ Xy = q. acR.
	prove. $\lim_{n\to\infty} \frac{\chi_n}{n} = 0$.
(23)	prove $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.
(24)	Prove $\mu = \alpha_n + \alpha_n^{-1}$ $\alpha_1 = 1$ prove $\mu = \alpha_1 + \alpha_2 = 1$ $\alpha_1 = 1$ $\alpha_2 = 1$
	$ (2) \stackrel{\infty}{\underset{n=1}{\sim}} q_n^{-1} = +\infty $
(25)	prove (Xn) converge.
(26).	$\chi_{o=1}$ $\chi_{n+1} = \frac{\chi_{n+2}}{\chi_{n+1}}$ prove $\chi_n \to J_2$
(27)	$X_1 = \int X_{n+1} = \int \overline{Z} + X_n \qquad \text{find } \int \overline{I} \cdot M \times M.$ $X_0 = \int X_{n+1} = \int \overline{Z} + \overline{Z} \cdot M \times M \times M.$
(29).	$X_1=0$ $X_{n+1}=\frac{X_{n+3}}{4}$ find $I_{im} X_{n}$.
(39)	05 Km+n & Km+ Kn. Hm, n EIN. prove Kn. converge.
(3) ne	pleteness axiom. I monotone sequence theorem. Ited internal Theorem. (A. Weierstrass Theorem. (B. Cauchy theorem.
fry	to start from one to prove other four theorems.

1