A glympse into Computational Social Choice

Maria Serna

Fall 2019

- Social Choice
- 2 Some properties of voting rules

Social Choice Theory

 Mathematical theory for aggregating individual preferences into collective decisions

Social Choice Theory

- Mathematical theory for aggregating individual preferences into collective decisions
- Originated in ancient Greece. Formal foundations:
 - 18th Century (Condorcet and Borda)
 - 19th Century: Charles Dodgson (a.k.a. Lewis Carroll)
 - 20th Century: Nobel prizes to Arrow and Sen
- Objective: Methods to select a collective outcome based on (possibly different) individual preferences.

Social Choice Theory

- Set of voters $N = \{1, \dots, n\}$
- Set of alternatives $A = \{1, ..., m\}$
- Voter i has a preference ranking over alternatives \succ_i
- Preference ranking

 is the collection of all voters' rankings

Social Choice Theory

- Set of voters $N = \{1, \dots, n\}$
- Set of alternatives $A = \{1, \dots, m\}$
- Voter i has a preference ranking over alternatives \succ_i
- Preference ranking

 is the collection of all voters' rankings

Social Choice Theory: Objective

Social choice function

Social Choice Theory: Objective

- Social choice function
 - Takes as input a preference profile ≻
 - Returns an alternative $a \in A$

Social Choice Theory: Objective

- Social choice function
 - Takes as input a preference profile ≻
 - Returns an alternative $a \in A$
- Social welfare function
 - Takes as input a preference profile ≻
 - Returns a societal preference on $A \succ_s$

Social Choice Theory: Objective

- Social choice function
 - Takes as input a preference profile ≻
 - Returns an alternative $a \in A$
- Social welfare function
 - Takes as input a preference profile ≻
 - Returns a societal preference on $A \succ_s$
- voting rule = social choice function

- Each voter awards one point to her top alternative
- Alternative with the most point wins

- Each voter awards one point to her top alternative
- Alternative with the most point wins

N	1	2	3	4	5
	а	а	а	b	b
	b	b	b	С	С
С		С	С	d	d
d		d	d	е	е
	е	е	е	а	а

- Each voter awards one point to her top alternative
- Alternative with the most point wins

N	1	2	3	4	5
	а	а	а	b	b
	b	b	b	С	С
С		С	С	d	d
d		d	d	е	е
	е	е	е	а	а

- Each voter awards one point to her top alternative
- Alternative with the most point wins

N	1	2	3	4	5	
	а	а	а	b	b	
	b	b	b	С	С	
	С	С	С	d	d	
	d	d	d	е	е	
	e	е	е	а	а	

- Most frequently used voting rule
- Many political elections use plurality

- Each voter awards one point to her top alternative
- Alternative with the most point wins

N	1	2	3	4	5	
	а	а	а	b	b	
	b	b	b	С	С	
	С	С	С	d	d	
	d	d	d	е	е	
	e	е	е	а	а	

- Most frequently used voting rule
- Many political elections use plurality Problems?

- Each voter awards m k points to its rank k alternative
- Alternative with the most point wins

- Each voter awards m k points to its rank k alternative
- Alternative with the most point wins

Ν	1	2	3	4	5	
	а	а	а	b	b	
	b	b	b	С	С	
	С	С	С	d	d	
	d	d	d	е	е	
	е	е	е	a	a	

- Each voter awards m k points to its rank k alternative
- Alternative with the most point wins

Ν	1	2	3	4	5	
	а	а	а	b	b	
	b	b	b	С	С	
	С	С	С	d	d	
	d	d	d	е	е	
	е	е	е	а	а	

Total							
a:	12						
b:	17						
c:	12						
d:	7						
e:	2						

Voting rules: Borda

- Each voter awards m k points to its rank k alternative
- Alternative with the most point wins

Ν	1	2	3	4	5	
	а	а	а	b	b	
	b	b	b	С	С	
	С	С	С	d	d	
	d	d	d	е	е	
	е	е	е	а	a	

To	Total							
a:	12							
b:	17							
c:	12							
d:	7							
e:	2							

Winner b

Voting rules: Borda

- Each voter awards m k points to its rank k alternative
- Alternative with the most point wins

N	1	2	3	4	5	Total	
	а	а	а	b	b	a: 12	
	b	b	b	С	С	b: 17	Winner
	С	С	С	d	d	c: 12	b
	d	d	d	е	е	d: 7	
	е	е	е	a	a	e: 2	

Proposed in the 18th century by chevalier de Borda

- Each voter awards m k points to its rank k alternative
- Alternative with the most point wins

Ν	1	2	3	4	5	Total	
	а	а	a	b	b	a: 12	
	b	b	b	С	С	b: 17	
	С	С	С	d	d	c: 12	
	d	d	d	е	е	d: 7	
	е	е	е	а	а	e: 2	

- Proposed in the 18th century by chevalier de Borda
- Used for elections to the national assembly of Slovenia

- Each voter awards m k points to its rank k alternative
- Alternative with the most point wins

Ν	1	2	3	4	5	Total	
	а	a	а	b	b	a: 12	
	b	b	b	С	С	b: 17	Winner
	С	С	С	d	d	c: 12	b
	d	d	d	е	е	d: 7	
	е	е	е	а	а	e: 2	

- Proposed in the 18th century by chevalier de Borda
- Used for elections to the national assembly of Slovenia
- A modified Borda Count is used in the Eurovision Song Context, points to the top 10 songs with 12, 10, 8,9,...,1 points

- Each voter awards 1 point to its first *k*-ranked alternatives and 0 to the others
- Alternative with the most point wins

- Each voter awards 1 point to its first *k*-ranked alternatives and 0 to the others
- Alternative with the most point wins

Ν	1	2	3	4	5	
	а	а	а	b	b	
	b	b	b	С	С	
	С	С	С	d	d	
	d	d	d	е	е	
	е	е	е	а	а	

- Each voter awards 1 point to its first *k*-ranked alternatives and 0 to the others
- Alternative with the most point wins

Ν	1	2	3	4	5	
	а	а	а	b	b	
	b	b	b	С	С	
	С	С	С	d	d	
	d	d	d	е	е	
	e	e	е	а	а	

k	= 3
Тс	tal
a:	3
b:	5
c:	5
d:	2
e:	0

- Each voter awards 1 point to its first *k*-ranked alternatives and 0 to the others
- Alternative with the most point wins

Ν	1	2	3	4	5	
	а	а	а	b	b	
	b	b	b	С	С	
	С	С	С	d	d	
	d	d	d	е	е	
	e	e	e	а	а	

k = 3	
Total	
a: 3	
b: 5	
c: 5	
d: 2	
_	

Winner	
b or c	

- Each voter awards 1 point to its first *k*-ranked alternatives and 0 to the others
- Alternative with the most point wins

Ν	1	2	3	4	5	
	а	а	а	b	b	
	b	b	b	С	С	
	С	С	С	d e	d	
	d	c d	c d	е	e	
	е	е	е	а	a	

k =	3
Tota	al
a: 3	
b: 5	
c: 5	
d: 2	.
e: 0	

Winner	
b or c	

- Approval voting was used for papal conclaves between 1294 and 1621.
- Used to select potential consensus candidates for an election.

Voting rules: Positional Scoring Rules

Voting rules: Positional Scoring Rules

- Defined by a score vertor $s = (s_1, \dots, s_m)$
- Each voter awards s_k points to its rank k alternative
- Alternative with the most point wins

Voting rules: Positional Scoring Rules

- Defined by a score vertor $s=(s_1,\ldots,s_m)$
- Each voter awards s_k points to its rank k alternative
- Alternative with the most point wins
- The family include many rules
 - Plurality s = (1, 0, ..., 0)
 - Borda s = (m-1, m-2, ..., 0)
 - k-aproval s = (1, ..., 1, 0, ..., 0)
 - Veto s = (0, ..., 0, 1)
 - ...

Voting rules: Plurality with runoff

Voting rules: Plurality with runoff

- First round: two alternatives with the highest plurality scores survive
- Second round: between these two alternatives, select the one that majority of voters prefer

Voting rules: Plurality with runoff

- First round: two alternatives with the highest plurality scores survive
- Second round: between these two alternatives, select the one that majority of voters prefer

Ν	1	2	3	4	5
	а	а	а	b	b
	b	b	b	С	С
	С	С	С		d
	d	d	d		е
	е	е	е	а	а

Voting rules: Plurality with runoff

- First round: two alternatives with the highest plurality scores survive
- Second round: between these two alternatives, select the one that majority of voters prefer

N	1	2	3	4	5
	а	а	а	b	b
	b	b	b	С	С
	С	С	С	d	d
	d	d	d	е	е
	е	е	е	а	a

1st round	
Winners	
a, b	

Voting rules: Plurality with runoff

- First round: two alternatives with the highest plurality scores survive
- Second round: between these two alternatives, select the one that majority of voters prefer

N	1	2	3	4	5
	а	а	а	b	b
	b	b	b	С	С
	С	С	С	d	d
	d	d	d	е	е
	e	e	e	а	а

1st round	2nd round
Winners	Winner
a, b	a

Voting rules: Plurality with runoff

- First round: two alternatives with the highest plurality scores survive
- Second round: between these two alternatives, select the one that majority of voters prefer

Ν	1	2	3	4	5
	а	а	а	b	b
	b	b	b	С	С
	С	С	С	d	d
	d	d	d	е	е
	e	e	е	а	а

1st round	2nd round
Winners	Winner
a, b	a

- Similar to the French presidential election system
 - Problem: vote division
 - Happened in the 2002 French presidential election

Choice wersus welfare Plurality Borda Approval Other voting rules

Voting rules: STV

• Single Transferable Vote (STV): Plurality with multiple rounds

- Single Transferable Vote (STV): Plurality with multiple rounds
- m-1 rounds.
- In each round, the alternative with the least plurality votes is eliminated.
- The selected alternative is the standing one.

- Single Transferable Vote (STV): Plurality with multiple rounds
- m-1 rounds.
- In each round, the alternative with the least plurality votes is eliminated.
- The selected alternative is the standing one.

N		2						
	a	С	d	b	b	а	С	а
	b	c b	b	С	С	b	b	b
	С	a	С	d	d	d	е	е
	d	d	а	е	e	С	d	d
	e	e	e	a	a	e	a	С

- Single Transferable Vote (STV): Plurality with multiple rounds
- m-1 rounds.
- In each round, the alternative with the least plurality votes is eliminated.
- The selected alternative is the standing one.

N	1	2						
	а	С	d	b	b	а	С	а
	b	b	b	С	С	b	b	b
	С	а	С	d	d	d	е	е
	d	d	a	e	b c d	С	d	d
	e	e	e	a	а	е	а	С

- Single Transferable Vote (STV): Plurality with multiple rounds
- m-1 rounds.
- In each round, the alternative with the least plurality votes is eliminated.
- The selected alternative is the standing one.

Ν	1	2	3	4	5	6	7	8
	а	С	d	b	b	а	С	а
	b	b	b	С	С	b	b	b
	С	a	С	d	d	d	е	е
	d	d	а	е	b c d e	С	d	d
	е	е	е	а	а	е	a	С

	Loser
R1	е
R2	d
	l

- Single Transferable Vote (STV): Plurality with multiple rounds
- m-1 rounds.
- In each round, the alternative with the least plurality votes is eliminated.
- The selected alternative is the standing one.

Ν	1	2	3	4	5	6	7	
	а	С	d	b	b	а	С	a b
	b	b	b	С	С	b	b	b
	С	а	С	d	d		е	е
	d	d			е	С	d	d
	e	e	e	а	а	е	а	С

	Loser
R1	е
R2	d
R3	С
	."

- Single Transferable Vote (STV): Plurality with multiple rounds
- m-1 rounds.
- In each round, the alternative with the least plurality votes is eliminated.
- The selected alternative is the standing one.

N	1	2	3	4	5	6	7	8	
	а	С	d	b	b	а	С	а	-
	b	b	b	С	С	b	b	b	
	С	a	С	d	d	d	е	е	
	d	d	а	e	e	С	d	d	
	е	е	е		a	е	a	С	

	Loser
R1	е
R2	d
R3	С
R4	а

Choice wersus welfare Plurality Borda Approval Other voting rules

Social welfare function: Kemeny's Rule

Choice wersus welfare Plurality Borda Approval Other voting rules

Social welfare function: Kemeny's Rule

• Unhappiness: For a ranking σ on A.

- Unhappiness: For a ranking σ on A.
 - Let $n_{a \succ b}$ be the number of voters who prefer a to b
 - Player *i* is unhappy when $a \succ_{\sigma} b$ but $b \succ_{i} a$.
 - For $(a \succ_{\sigma} b)$, σ makes $n_{b \succ a}$ players unhappy

- Unhappiness: For a ranking σ on A.
 - Let $n_{a \succ b}$ be the number of voters who prefer a to b
 - Player *i* is unhappy when $a \succ_{\sigma} b$ but $b \succ_{i} a$.
 - For $(a \succ_{\sigma} b)$, σ makes $n_{b \succ a}$ players unhappy
 - ullet Define the total unhappiness of σ as

$$K(\sigma) = \sum_{a \succ_{\sigma} b} n_{b \succ a}$$

- Unhappiness: For a ranking σ on A.
 - Let $n_{a \succ b}$ be the number of voters who prefer a to b
 - Player i is unhappy when $a \succ_{\sigma} b$ but $b \succ_{i} a$.
 - For $(a \succ_{\sigma} b)$, σ makes $n_{b \succ a}$ players unhappy
 - ullet Define the total unhappiness of σ as

$$K(\sigma) = \sum_{a \succ_{\sigma} b} n_{b \succ a}$$

• Select the ranking σ^* with minimum total unhappiness.

- Unhappiness: For a ranking σ on A.
 - Let $n_{a \succ b}$ be the number of voters who prefer a to b
 - Player i is unhappy when $a \succ_{\sigma} b$ but $b \succ_{i} a$.
 - For $(a \succ_{\sigma} b)$, σ makes $n_{b \succ a}$ players unhappy
 - ullet Define the total unhappiness of σ as

$$K(\sigma) = \sum_{a \succ_{\sigma} b} n_{b \succ a}$$

- Select the ranking σ^* with minimum total unhappiness.
- Social choice: The top alternative in σ^*

Choice wersus welfare Plurality Borda Approval Other voting rules

Voting rules: Copeland and Maximin

Choice wersus welfare Plurality Borda Approval Other voting rules

Voting rules: Copeland and Maximin

 x beats y in a pairwise election if a strict majority of voters prefer x to y.

Voting rules: Copeland and Maximin

- x beats y in a pairwise election if a strict majority of voters prefer x to y.
- Copeland
 - Score(x) = #alternatives x beats in pairwise elections
 - elect x* with the maximum score

Voting rules: Copeland and Maximin

- x beats y in a pairwise election if a strict majority of voters prefer x to y.
- Copeland
 - Score(x) = #alternatives x beats in pairwise elections
 - elect x* with the maximum score
- Maximin
 - $Score(x) = min_y n_{x \succ y}$
 - elect x* with the maximum score

Which rule to use?

- We just introduced infinitely many rules
- How do we know which is the "right" rule to use? Axioms,
 Characterization theorems, Impossibility Theorems
- Impossibility versus Computational hardness

- Social Choice
- 2 Some properties of voting rules

 Recall: x beats y in a pairwise election if a strict majority of voters prefer x to y.

 Recall: x beats y in a pairwise election if a strict majority of voters prefer x to y.

The majority preference prefers x to y

- Recall: x beats y in a pairwise election if a strict majority of voters prefer x to y.
 - The majority preference prefers x to y
- A Condorcet winner is an alternative that beats every other alternative in pairwise election

- Recall: x beats y in a pairwise election if a strict majority of voters prefer x to y.
 - The majority preference prefers x to y
- A Condorcet winner is an alternative that beats every other alternative in pairwise election
- A Condorcet paradox happens when the majority preference has a cycle.

Condorcet Paradox: Example

Condorcet Paradox: Example

Ν	1	2	3	Majority Pref
	а	С	b	a ≻ b
	b	а	С	$b \succ c$
	С	b	a	c ≻ a

Condorcet Paradox: Example

Ν	1	2	3	Majority Pref
	а	С	b	a ≻ b
	b	а	С	$b \succ c$
	С	b	a	c ≻ a

Also known as Dodgson's Paradox (Alice in Wonderland by Charles L. Dodgson alias Lewis Carroll)

• If a Condorcet winner exists, it is unique.

- If a Condorcet winner exists, it is unique.
- A voting rule is Condorcet consistent if it always selects the Condorcet winner if one exists.

- If a Condorcet winner exists, it is unique.
- A voting rule is Condorcet consistent if it always selects the Condorcet winner if one exists.
- Among rules we just saw
 - All positional scoring rules (plurality, Borda, . . .), plurality with runoff, STV, are NOT Condorcet consistent.
 - Kemeny, Copeland, Maximin ARE Condorcet consistent.

- If a Condorcet winner exists, it is unique.
- A voting rule is Condorcet consistent if it always selects the Condorcet winner if one exists.
- Among rules we just saw
 - All positional scoring rules (plurality, Borda, . . .), plurality with runoff, STV, are NOT Condorcet consistent.
 - Kemeny, Copeland, Maximin ARE Condorcet consistent.
 - What is the complexity of Existence of Condorcet winner, obtaining the Condorcet winner . . .

Strategy-proofness

- A voting rule is strategy-proof if there exists no profile where some voter can obtain a preferred outcome by changing her preferences.
- Which voting rules are strategy-proof?
- Do they have good properties?
- When they are not, can the manipulation be computed easily?

E-manipulation: Given a set C of candidates, a set V of nonmanipulative voters, a set S of manipulative voters, with $S \cap V = \emptyset$, and a candidate $c \in C$. Is there a way to set the preference lists of the voters in S such that, under election system E, c is the (a) winner?

E-manipulation: Given a set C of candidates, a set V of nonmanipulative voters, a set S of manipulative voters, with $S \cap V = \emptyset$, and a candidate $c \in C$. Is there a way to set the preference lists of the voters in S such that, under election system E, c is the (a) winner?

E-Bribery: Given a set C of candidates, a set V of voters, a candidate $c \in C$, and a nonnegative integer k. Is there a way to set the preference lists of at most k voters such that, under election system E, c is the (a) winner?

E-Control under additive candidates: Given a set C of candidates, a pool D of potential additional candidates, a candidate $c \in C$, and a set of voters V with preferences over $C \cup D$. Is there a set $D' \subseteq D$, such that setting the set of candidates to $C \cup D'$, under election system E, C is the (a) winner?

E-Control under additive candidates: Given a set C of candidates, a pool D of potential additional candidates, a candidate $c \in C$, and a set of voters V with preferences over $C \cup D$. Is there a set $D' \subseteq D$, such that setting the set of candidates to $C \cup D'$, under election system E, C is the (a) winner?

E-Destructive control under additive candidates: Given a set C of candidates, a pool D of potential additional candidates, a candidate $c \in C$, and a set of voters V with preferences over $C \cup D$. Is there a set $D' \subseteq D$, such that setting the set of candidates to $C \cup D'$, under election system E, c is not a winner?