

COMS10015 lecture: week #1

- Agenda: an introduction to
 - 1. propositional logic,
 - 2. Boolean algebra, and
 - 3. application of, i.e., use-cases and rationale for the above within the context of COMS10015.

► A **proposition** is basically a statement

the temperature is $20^{\circ}C$

this statement is false the temperature is too hot

► A **proposition** is basically a statement

the temperature is $20^{\circ}C$

this statement is false the temperature is too hot

whose meaning

1. can be **evaluated** to yield a **truth value**, i.e., **false** or **true**.

▶ A **proposition** is basically a statement

the temperature is $20^{\circ}C$

this statement is false the temperature is too hot

- 1. can be **evaluated** to yield a **truth value**, i.e., **false** or **true**,
- 2. must be unambiguous.

► A **proposition** is basically a statement

the temperature is $20^{\circ}C$ the temperature is $x^{\circ}C$ this statement is false the temperature is too hot

- 1. can be evaluated to yield a truth value, i.e., false or true,
- 2. must be unambiguous,
- 3. can include free **variables**.

A proposition is basically a statement

```
f = the temperature is 20^{\circ}C

g(x) = the temperature is x^{\circ}C

this statement is false

the temperature is too hot
```

- 1. can be evaluated to yield a truth value, i.e., false or true,
- 2. must be unambiguous,
- 3. can include free variables, and
- 4. can be represented using a short-hand variable or function, whereby free variables must be bound to concrete arguments before evaluation.

▶ Single statements can be combined using various **connectives**, e.g.,

the temperature is not $20^{\circ}C$

adding parentheses where needed to add clarity, so that

1. "not x" is denoted $\neg x$,

▶ Single statements can be combined using various **connectives**, e.g.,

 \neg (the temperature is 20°*C*)

adding parentheses where needed to add clarity, so that

1. "not x" is denoted $\neg x$,

► Single statements can be combined using various **connectives**, e.g.,

the temperature is 20°C and it is sunny

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,

Single statements can be combined using various connectives, e.g.,

(the temperature is $20^{\circ}C$) \land (it is sunny)

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,

Single statements can be combined using various connectives, e.g.,

the temperature is $20^{\circ}C$ or it is sunny

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,

Single statements can be combined using various connectives, e.g.,

(the temperature is $20^{\circ}C$) \lor (it is sunny)

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,

► Single statements can be combined using various **connectives**, e.g.,

either the temperature is 20°C or it is sunny, but not both

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,

Single statements can be combined using various connectives, e.g.,

(the temperature is $20^{\circ}C$) \oplus (it is sunny)

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,

Single statements can be combined using various connectives, e.g.,

the temperature being 20°C implies that it is sunny

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,
- 5. "x implies y" is denoted $x \Rightarrow y$, and sometimes written "if x then y", and

Single statements can be combined using various connectives, e.g.,

(the temperature is $20^{\circ}C$) \Rightarrow (it is sunny)

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,
- 5. "x implies y" is denoted $x \Rightarrow y$, and sometimes written "if x then y", and

Single statements can be combined using various connectives, e.g.,

the temperature is $20^{\circ}C$ is equivalent to it being sunny

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,
- 5. "x implies y" is denoted $x \Rightarrow y$, and sometimes written "if x then y", and
- 6. "x is equivalent to y" is denoted $x \equiv y$, and sometimes written "x if and only if y" or "x iff. y".

Single statements can be combined using various connectives, e.g.,

(the temperature is $20^{\circ}C$) \equiv (it is sunny)

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,
- 5. "x implies y" is denoted $x \Rightarrow y$, and sometimes written "if x then y", and
- 6. "x is equivalent to y" is denoted $x \equiv y$, and sometimes written "x if and only if y" or "x iff. y".

- ▶ You *might* see more formal terms or different notation for the *same* connectives:
 - ► ¬ is often termed logical **compliment** (or **negation**),
 - ► ∧ is often termed logical **conjunction**,
 - ▶ ∨ is often termed logical (inclusive) **disjunction**,
 - ightharpoonup \oplus is often termed logical (exclusive) **disjunction**,
 - ightharpoonup \Rightarrow is often termed logical **implication**, and
 - ightharpoonup \equiv is often termed logical **equivalence**.

You can think of the same thing diagrammatically, i.e.,

$$r=$$
 (the temperature is $20^{\circ}C$) \land (it is sunny)
$$\equiv$$
 the temperature is $20^{\circ}C \xrightarrow{} \land \qquad \rightarrow r$ it is sunny $\xrightarrow{} \land \qquad \rightarrow r$

but either way, the question is how do we **evaluate** the (compound) proposition (or **expression**) to produce a truth value?

Since each statement can only evaluate to true or false, we can enumerate all possible outcomes in a truth table, e.g., if

x =the temperature is $20^{\circ}C$

y = it is sunny

 $r = (\text{the temperature is } 20^{\circ}C) \land (\text{it is sunny})$

then

inputs		output
х	у	r
false	false	false
false	true	false
true	false	false
true	true	true

- Note that
 - 1. each row details the output(s) associated with a given assignment to the inputs,
 - 2. if there are n inputs, the truth table will have 2^n rows.

Definition

x	y	$\neg x$	$x \wedge y$	$x \lor y$	$x \oplus y$	$x \Rightarrow y$	$x \equiv y$
false	false	true	false	false	false	true	true
false	true	true	false	true	true	true	false
true	false	false	false	true	true	false	false
true	true	false	true	true	false	true	true

Example

Imagine that now

x =the temperature is $20^{\circ}C$

y = it is sunny

g(z) = the temperature is $z^{\circ}C$

 $r = \neg(((\text{the temperature is } 20^{\circ}C) \land (\text{it is sunny})) \lor (\text{the temperature is } z^{\circ}C))$

which we translate into the diagrammatic form

An example evaluation might be as follows:

ınp	outs	intermediates			output
	~				$\overline{}$
х	у	t_0	t_1	t_2	r
false	false	false	false	false	true
false	true	false	false	false	true
true	false	false	true	true	false
true	true	true	true	true	false

- Notice that
 - 1. in **elementary algebra**, for some number *x* we have that

$$x + 0 = x$$

and

$$x \cdot 1 = x$$
,

2. in **set theory**, for some set *x* we have that

$$x \cup \emptyset = x$$

and

$$x\cap\mathcal{U}=x,$$

plus we've now demonstrated that

3. in **propositional logic**, for some truth value *x* we have that

$$x \vee \mathbf{false} = x$$

and

$$x \wedge \mathbf{true} = x$$
.

Thou must

- work with the set B = {0,1} of binary digits, using 0 and 1 instead of false and true,
- 2. shorten every statement into either a **variable** *or* **function**,
- use unary operators, e.g., ¬ (or NOT), and binary operators, e.g., ∧ and ∨ (or AND and OR), to form expressions,
- 4. manipulate said expressions according to some axioms (or rules),

then call the result Boolean algebra.

- Put more concretely, we now have
 - 1. a set of operators specified by

Definition

х	y	$\neg x$	$x \wedge y$	$x \lor y$	$x \oplus y$	$x \Rightarrow y$	$x \equiv y$
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

▶ Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition			
Name	Axiom(s)	Name	Axiom(s)
commutativity association distribution	$\begin{array}{rcl} x \wedge y & \equiv & y \wedge x \\ (x \wedge y) \wedge z & \equiv & x \wedge (y \wedge z) \\ x \wedge (y \vee z) & \equiv & (x \wedge y) \vee (x \end{array}$		$\begin{array}{cccc} x \vee y & \equiv & y \vee x \\ (x \vee y) \vee z & \equiv & x \vee (y \vee z) \\ x \vee (y \wedge z) & \equiv & (x \vee y) \wedge (x \vee z) \end{array}$

▶ Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition			
Name	Axiom(s)	Name	Axiom(s)
identity null idempotency inverse	$ \begin{array}{rcl} x \wedge 1 & \equiv & x \\ x \wedge 0 & \equiv & 0 \\ x \wedge x & \equiv & x \\ x \wedge \neg x & \equiv & 0 \end{array} $	identity null idempotency inverse	$ \begin{array}{rcl} x \lor 0 & \equiv & x \\ x \lor 1 & \equiv & 1 \\ x \lor x & \equiv & x \\ x \lor \neg x & \equiv & 1 \end{array} $

▶ Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition			
Name	Axiom(s)	Name	Axiom(s)
absorption de Morgan	$ \begin{array}{rcl} x \wedge (x \vee y) & \equiv & x \\ \neg (x \wedge y) & \equiv & \neg x \vee \neg y \end{array} $	absorption de Morgan	$ \begin{array}{rcl} x \lor (x \land y) & \equiv & x \\ \neg (x \lor y) & \equiv & \neg x \land \neg y \end{array} $

▶ Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Name		Axio	m(s)	
quivalence nplication nvolution	$x \Rightarrow y$	=	$\neg x \lor y$	
	quivalence nplication	quivalence $x \equiv y$ replication $x \Rightarrow y$	quivalence $x \equiv y \equiv$ pplication $x \Rightarrow y \equiv$	quivalence $x \equiv y \equiv (x \Rightarrow y) \land (y \Rightarrow x)$ explication $x \Rightarrow y \equiv \neg x \lor y$

Definition

The fact there are AND and OR forms of most axioms hints at a more general underlying principle. Consider a Boolean expression e: the **principle of duality** states that the **dual expression** e^D is formed by

- 1. leaving each variable as is,
- 2. swapping each ∧ with ∨ and vice versa, and
- 3. swapping each 0 with 1 and vice versa.

Of course e and e^D are different expressions, and clearly not equivalent; if we start with some $e \equiv f$ however, then we do still get $e^D \equiv f^D$.

Example

As an example, consider axioms for

1. distribution, e.g., if

$$e = x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$$

then

$$e^D = x \vee (y \wedge z) \equiv (x \vee y) \wedge (x \vee z)$$

and

2. identity, e.g., if

$$e = x \wedge 1 \equiv x$$

then

$$e^D = r \vee 0 = r$$

Definition

Consider a Boolean expression:

 When the expression is written as a sum (i.e., OR) of terms which each comprise the product (i.e., AND) of variables, e.g.,

$$(a \wedge b \wedge c) \vee (d \wedge e \wedge f),$$

minterm

it is said to be in **disjunctive normal form** or **Sum of Products (SoP)** form; the terms are called the **minterms**. Note that each variable can exist as-is *or* complemented using NOT, meaning

$$\underbrace{(\neg a \land b \land c)}_{\text{minterm}} \lor (d \land \neg e \land f),$$

is also a valid SoP expression.

2. When the expression is written as a product (i.e., AND) of terms which each comprise the sum (i.e., OR) of variables, e.g.,

$$(a \vee b \vee c) \wedge (d \vee e \vee f),$$

maxterm

it is said to be in **conjunctive normal form** or **Product of Sums (PoS)** form; the terms are called the **maxterms**. As above each variable can exist as-is *or* complemented using NOT.

Part 2: Boolean algebra (7) Derived operators

- ▶ Concept: we can define various **derived operators** in terms of NOT, AND, and OR.
- Example:
 - "exclusive-OR" or XOR, such that

$$x \oplus y \ \equiv \ (\neg x \wedge y) \vee (x \wedge \neg y)$$

so

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Part 2: Boolean algebra (7) Derived operators

- ► Concept: we can define various **derived operators** in terms of NOT, AND, and OR.
- Example:
 - "NOT-AND" or NAND, such that

$$x \overline{\wedge} y \equiv \neg (x \wedge y)$$

so

ĺ	х	у	$x \overline{\wedge} y$
	0	0	1
	0	1	1
	1	0	1
	1	1	0

► "NOT-OR" or **NOR**, such that

$$x \; \overline{\vee} \; y \;\; \equiv \;\; \neg (x \vee y)$$

so

х	у	$x \overline{\vee} y$
0	0	1
0	1	0
1	0	0
1	1	0

Part 3: application (1)

Part 3: application (2)

- ► (Fairly) reasonable question(s):
 - 1. "I thought this was CS, not Maths!", and
 - 2. "why does this unit duplicate material in other units?".

Part 3: application (2)

- ► (Fairly) reasonable question(s):
 - 1. "I thought this was CS, not Maths!", and
 - 2. "why does this unit duplicate material in other units?".
- ► Answer: it isn't, and it doesn't (well, not *too* much) ... note that
 - theoretical concepts, e.g., often have significant practical motivations or implications, and
 - it's perfectly reasonable to utilise **Electronic Design Automation (EDA)** [3] tools.

Part 3: application (3) Axiomatic manipulation → optimisation

Question: simplify the Boolean expression

$$(\neg(a \lor b) \land \neg(c \lor d \lor e)) \lor \neg(a \lor b)$$

into a form that contains the fewest operators possible.

Question: simplify the Boolean expression

$$(\neg(a \lor b) \land \neg(c \lor d \lor e)) \lor \neg(a \lor b)$$

into a form that contains the fewest operators possible.

Solution #1: less steps.

$$\begin{array}{llll} (\neg(a \lor b) & \land & \neg(c \lor d \lor e)) & \lor & \neg(a \lor b) \\ = & \neg(a \lor b) & \lor & (\neg(a \lor b) & \land & \neg(c \lor d \lor e)) & (commutativity) \\ = & \neg(a \lor b) & & & & & & & & & & \\ \end{array}$$

Question: simplify the Boolean expression

$$(\neg(a \lor b) \land \neg(c \lor d \lor e)) \lor \neg(a \lor b)$$

into a form that contains the fewest operators possible.

► Solution #2: more steps.

Part 3: application (4) Axiomatic manipulation → optimisation

Question: simplify the Boolean expression

$$(a \wedge b \wedge c) \vee (\neg a \wedge b) \vee (a \wedge b \wedge \neg c)$$

into a form that contains the fewest operators possible.

Question: simplify the Boolean expression

$$(a \land b \land c) \lor (\neg a \land b) \lor (a \land b \land \neg c)$$

into a form that contains the fewest operators possible.

► Solution:

Part 3: application (5) Axiomatic manipulation → optimisation

Quote

If I designed a computer with 200 chips, I tried to design it with 150. And then I would try to design it with 100. I just tried to find every trick I could in life to design things real tiny.

– Wozniak

Quote

So I took 20 chips off their board; I bypassed 20 of their chips.

– Wozniak

Part 3: application (6) Axiomatic manipulation → optimisation

Concept: truth tables can accommodate don't care entries, e.g.,

y	r
0	1
1	?
1	0
	0 1 1

such that

- a ? (rather than 0 or 1) means we "don't care" (≠ "don't know"),
- on the LHS, for an *in*put,
 - ? is a wildcard (or short-hand),
 - it means 0 and 1,
 - we've compressed two truth table rows into one.
- on the RHS, for an *out*put,
 - ? is a choice.
 - it means 0 or 1,
 - we can select which one to, e.g., optimise the associated expression.

Fact: NAND and NOR are functionally complete (or universal), e.g.,

which we can prove via

x	у	$x \overline{\wedge} y$	$x \overline{\wedge} x$	<i>y</i>	$(x \overline{\wedge} y) \overline{\wedge} (x \overline{\wedge} y)$	$(x \overline{\wedge} x) \overline{\wedge} (y \overline{\wedge} y)$
0	0	1	1	1	0	0
0	1	1	1	0	0	1
1	0	1	0	1	0	1
1	1	0	0	0	1	1

:. any Boolean function can be expressed using a *single* operator.

Part 3: application (9) Universality → manufacturability

Question: translate

$$x \wedge (y \vee z)$$

into a version using NAND only.

Question: translate

$$x \wedge (y \vee z)$$

into a version using NAND only.

► Solution #1: apply the identities *naively* to get

$$\begin{array}{ll} & x \wedge (y \vee z) \\ = & x \wedge ((y \overline{\wedge} y) \overline{\wedge} (z \overline{\wedge} z)) \\ = & (x \overline{\wedge} ((y \overline{\wedge} y) \overline{\wedge} (z \overline{\wedge} z))) \overline{\wedge} (x \overline{\wedge} ((y \overline{\wedge} y) \overline{\wedge} (z \overline{\wedge} z))) \end{array}$$

Question: translate

$$x \wedge (y \vee z)$$

into a version using NAND only.

► Solution #2: apply the identities *intelligently* to get

$$\begin{array}{ll} & x \wedge (y \vee z) \\ = & x \wedge ((y \overline{\wedge} y) \overline{\wedge} (z \overline{\wedge} z)) \\ = & t \overline{\wedge} t \end{array}$$

where $t = x \overline{\wedge} ((y \overline{\wedge} y) \overline{\wedge} (z \overline{\wedge} z))$ is a common sub-expression [2].

Conclusions

► Take away points:

1. The design of computational devices, e.g., micro-processors, *isn't* ad hoc: Boolean algebra offers a theoretical basis for reasoning about computational devices (and computation) in practice.

Conclusions

► Take away points:

- 2. Boolean algebra is a (somewhat) cosmetic extension of what you already know.
- 3. Keep in mind that
 - any Boolean function f which can be expressed by a truth table can be computed using an associated Boolean expression,
 - a Boolean expression is composed of Boolean operators,
 - if we (physically) implement the Boolean operators, we can implement the Boolean expression and hence compute f.

Conclusions

► Take away points:

- 4. We'll focus on application (i.e., use) vs. theory (e.g., study) of Boolean algebra from here on.
- 5. Keep in mind that
 - "it works" ≠ "it works well",
 - using automation is fine iff. you know the underlying theory,
 - using brute-force is fine iff. you know the underlying theory,
 - Boolean algebra > Boolean axioms: concepts that seem of interest in theory alone, can be important if/when applied in practice.

Additional Reading

- Wikipedia: Boolean algebra. url: https://en.wikipedia.org/wiki/Boolean_algebra.
- D. Page. "Chapter 1: Mathematical preliminaries". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
- W. Stallings. "Chapter 11: Digital logic". In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.
- A.S. Tanenbaum and T. Austin. "Section 3.1: Gates and Boolean algebra". In: Structured Computer Organisation. 6th ed. Prentice Hall. 2012.

References

- [1] Wikipedia: Boolean algebra. URL: https://en.wikipedia.org/wiki/Boolean_algebra (see p. 54).
- [2] Wikipedia: Common sub-expression elimination. URL: https://en.wikipedia.org/wiki/Common_subexpression_elimination (see pp. 49, 50).
- [3] Wikipedia: Electronic Design Automation (EDA). url: https://en.wikipedia.org/wiki/Electronic_design_automation (see pp. 37, 38).
- [4] D. Page. "Chapter 1: Mathematical preliminaries". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see p. 54).
- [5] W. Stallings. "Chapter 11: Digital logic". In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 54).
- [6] A.S. Tanenbaum and T. Austin. "Section 3.1: Gates and Boolean algebra". In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012 (see p. 54).