EECS 203: Discrete Mathematics Fall 2023 Homework 5

Due Thursday, October. 12, 10:00 pm

No late homework accepted past midnight.

Number of Problems: 7 + 2 Total Points: 100 + 20

- Match your pages! Your submission time is when you upload the file, so the time you take to match pages doesn't count against you.
- Submit this assignment (and any regrade requests later) on Gradescope.
- Justify your answers and show your work (unless a question says otherwise).
- By submitting this homework, you agree that you are in compliance with the Engineering Honor Code and the Course Policies for 203, and that you are submitting your own work.
- Check the syllabus for full details.

Individual Portion

1. Induction Construction [16 points]

Let P(n) be the statement that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! - 1$ whenever n is a positive integer. In this problem, we will prove this statement via weak induction.

- (a) What is the statement P(1)?
- (b) Show that P(1) is true, which is the base case for our inductive step.
- (c) In the base case we prove P(1); what do you need to prove in the inductive step?
- (d) What is the inductive hypothesis for your proof?
- (e) Complete the inductive step, indicating where you used the inductive hypothesis.
- (f) Explain why this proof shows P(n) is true for all positive integers n.

Solution:

- (a) P(1): $1 \cdot 1! = (1+1)! 1$.
- (b) For P(1), LHS = 1 RHS = $2! - 1 = 2 \cdot 1 - 1 = 1$. . .: LHS = RHS. .: P(1) is true.
- (c) We need to prove that $P(k) \to P(k+1)$ for any integer n which is ≥ 1 .
- (d) The inductive hypothesis: Assume P(k): $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$.
- (e) Let k be an arbitrary positive integer. Assume P(k): $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! - 1$ Want to show: P(k+1): $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! + (n+1) \cdot (n+1)! = (n+1+1)! - 1$ Using P(n) we know:

$$1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! + (n+1) \cdot (n+1)! = (n+1)! - 1 + (n+1) \cdot (n+1)!$$
$$= (n+1)!(1+n+1) + 1$$
$$= (n+1+1) \cdot (n+1) \cdot n \cdot (n-1) \cdot \dots \cdot 1 - 1$$
$$= (n+1+1)! - 1$$

Thus $P(k) \to P(k+1)$ for any integer n which is ≥ 1 .

(f) It is because that: (1) P(1): $1 \cdot 1! = (1+1)! - 1$.

 $(2)P(k) \to P(k+1)$ for any integer n which is ≥ 1 .

Therefore $P(1) \to P(2) \to P(3) \cdots \to P(n)$

Where n can be any positive integer.

 \therefore Since we know (1) is true and (2) is true, P(n) is true for all positive integers n.

2. Base Two Blues [14 points]

Prove using mathematical induction that $\log_2(n) < n$ for every positive integer n. You may assume that the base-2 logarithm function is strictly increasing on its domain.

Fun Fact: $\log_b(n) < n$ is actually true for every positive real number n and arbitrary base b > 1, but we're asking you to prove this by induction for the special case where b = 2 and n is a positive integer.

Solution:

Let k be an arbitrary positive integer.

Assume P(k): $\log_2 k < k$

Want to show: $P(k+1) : \log_2 k + 1 < k + 1$

Base Case:

 $P(0): \log_2 1 < 1$

Since $\log_2 1 = 0 < 1$, base case is true.

Inductive Step:

Using the property of logarithm we know:

$$\log_2(k+1) = \log_2(\frac{k+1}{k} \cdot k)$$

$$= \log_2(\frac{k+1}{k} + \log_2 k)$$

$$= \log_2(1 + \frac{1}{k}) + \log_2 k$$

Since k is a positive integer, $k \ge 1$, $\frac{1}{k} \le 1$, $\frac{1}{k} + 1 \le 2$

 $\therefore \log_2\left(\frac{1}{k}+1\right) \le 1.$

 $(+1) \ge 1$.

Using P(n) we know: $\log_2 k < k$.

And Since $\log_2(\frac{1}{k} + 1) \le 1$ and $\log_2 k < k$ $\log_2(k+1) = \log_2(1 + \frac{1}{k}) + \log_2 k < k + 1$.

Then we have proved that $P(K) \to P(k+1)$ for all positive integer k.

Conclusion: $\log_2(n) < n$ for every positive integer n.

3. Inductive Hypothe-six [15 points]

Prove by weak induction that 6 divides $n^3 - n$ where n is a nonnegative integer. Don't include unneeded base cases.

Solution:

Let k be an arbitrary nonnegative integer.

Assume P(k): $6|(k^3-k)$

Want to show: P(k+1): $6|[(k+1)^3 - (k+1)]$

Base Case:

P(0): $6|0^3-0$

Since $0^3 - 0 = 0$, 6|0, base case is true.

Inductive Step:

Since P(k): $6|(k^3-k)$, for some integer m, $6m=(k^3-k)$ Then

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - k - 1$$

$$= k^3 + 3k^2 + 2k$$

$$= (k^3 - k) + 3k^2 + 3k$$

$$= 6m + 3(k^2 + k)$$

$$= 6m + 3k \cdot (k+1)$$

Since k is an integer, and integers consist of alternating odd numbers and even numbers, one of k and k+1 must be even. WLOG assume k is even, then for some integer p, k=2p.

Then $(k+1)^3 - (k+1) = 6m + 3 \cdot 2p \cdot (k+1) = 6m + 6p \cdot (k+1) = 6[m + p(k+1)]$

Since p, m, k are integers, p(k+1) is an integer, [m+p(k+1)] is an integer.

Then 6|[m+p(k+1)], i.e. $6|[(k+1)^3-(k+1)]$.

Therefore we have proved that $P(k) \to P(k+1)$ for any nonnegative integer k.

Conclusion: 6 divides $n^3 - n$ where n is a nonnegative integer.

4. Incorrect Strong Induction [14 points]

For each of the following **incorrect** strong induction proofs, note where the strong induction proof breaks down and is incorrect.

Hint: Consider where the inductive step breaks down.

(a) Proving for every nonnegative integer n, P(n): 3n = 0.

Inductive Step:

Assume that P(j): 3j = 0 for all nonnegative integers j with $0 \le j \le k$. We wish to show P(k+1). We will rewrite k+1=a+b where a and b are nonnegative integers less than k+1. Thus, $3 \cdot (k+1) = 3 \cdot (a+b) = 3a+3b=0+0=0$, therefore P(k+1) is proven.

Base Case: $P(0): 3 \cdot 0 = 0$

Since we have shown the basis step and the inductive step, we have proved for every nonnegative integer n, P(n): 3n = 0.

(b) Proving that every cent value above 3 cents can be formed using just 3-cent and 4-cent stamps.

Inductive Step:

Assume we can form cent values of j cents for all $3 \le j \le k$ using just 3-cent and 4-cent stamps. We wish to show we can form k+1 cents using just 3-cent and 4-cent stamps. We can form a k+1 cent value by replacing 1 3-cent stamp with 1 4-cent stamp or by replacing 2 4-cent stamps with 3 3-cent stamps.

Base Case:

We can form cent values of 3-cents using one 3-cent stamp and we can form cent values of 4-cents using one 4-cent stamp. This covers our two base cases.

Since we have shown the basis step and the inductive step, we have proved every cent value above 3 cents can be formed using just 3-cent and 4-cent stamps.

Solution:

- (a) The proof breaks down from the base case when we induce $P(0) \to P(1)$. At this point, k+1=1, but we cannot find two integers a and b that are less than 1 while they add up to 1. If a, b are less than 1 and nonnegative, then they can only be both 0. Then they add to to 0 but not 1. Therefore the proof is incorrect.
- (b) The proof breaks down when we induce $(P(3) \land P(4)) \rightarrow P(5)$. The inductive step states that we can form a k+1 cent value by replacing 1 3-cent

stamp with 1 4-cent or by replacing 2 4-cent stamps with 3 3-cent stam. But at this point, we only have one 4-cent and can not apply the induction. Therefore the proof is incorrect.

5. Chopping Ice [15 points]

Claire doesn't have an ice tray, so she makes ice by freezing water into a rectangle and then dividing the rectangle into grid-aligned cells. She would like to divide her block of ice into n rows and m columns quickly, before the ice melts! See the image below for an example.

- (a) State the number of cuts Claire needs to make to divide her ice block into $n \times m$ cells. One cut means splitting a single rectangle into two rectangles. In other words, you may NOT make a single cut across multiple pieces of ice. You may use n and/or m in your answer.
- (b) Prove your answer from part (a).

Solution:

- (a) $(n-1) + n \cdot (m-1) = mn 1$ m, n are positive integers.
- (b) Let m, n be an arbitrary positive integer. k(m, n) is the number of cuts to make to divide her ice block into $n \times m$ cells.

Assume P(m, n): k(m, n) = mn - 1WLOG (due to symmetry, k(m+1, n) = k(m, n+1)), we want to show: P(m, n+1): k(m, n+1) = m(n+1) - 1

Inductive Step:

We can first cut the (n+1) row from the block. This requires 1 cut. Then we get $n \times m$ block and $1 \times m$ block.

From the inductive hypothesis we know, to divide the $n \times m$ block, we need k(m, n) cuts.

And to divide the $1 \times m$ block, since we can not make a single cut across multiple pieces of ice, we can only use m-1 cuts.

 \therefore In total, we need:

$$1 + k(m, n) + (m - 1) = 1 + mn - 1 + m - 1$$
$$= mn + m - 1$$
$$= m(n + 1) - 1$$

Base Case: To divide a $P(1,1): k(1,1) = 1 \times 1 - 1 = 0$ is true.

Since P(1,1), $P(m,n) \to P(m,n+1)$, and due to symmetry $P(m,n) \to P(m+1,n)$, P(m,n) is true for any positive integer m,n.

Conclusion: We need mn-1 cuts to divide her ice block into $m \times n$ cells.

6. Pastry Recurrence [12 points]

A baker decorates a cookie in 2 minutes, a cupcake in 3 minutes, and a pie in 3 minutes. Let a_n denote the number of distinct ways the baker decorates pastries in exactly n minutes for $n \ge 0$ (where order matters).

- (a) Find a recurrence relation for a_n .
- (b) What are the initial conditions? Use the fewest initial conditions necessary.

α				
Sol	1111	F 1.	α	n·
. ,,,,			. , ,	

7. Raven's Wrestlers [14 points]

Raven has n weeks to build her wrestling figure collection. Every week, Raven buys one item to add to her collection. There are 4 different types of things she can buy: Figures, T-shirts for her wrestlers to wear, Weapons for them to fight with, or Display Stands to show them off on her shelves.

- Her shelves can fit 2 Stands nicely, so when she buys a Display Stand, she will always buy a second one the next week to finish the shelf. Additionally, the week after buying the second Stand, she will buy something other than a Display Stand (they aren't as exciting to buy)
- When she buys a Figure, she gets very excited about it and wants to buy a new T-shirt for it to wear the following week.

Let a_n represent the number of ways Raven can buy items across the n weeks (where $n \geq 0$)

- (a) Find a recurrence relation for a_n .
- (b) Which terms would need to be defined with initial conditions (no need to find the value, just which terms)

Note 1: Buying the same items in a different order counts as a different way of buying items. We treat all items in a category as identical.

Note 2: on week n, Raven will not buy a Figure (because she knows she will miss buying a T-shirt) or a Stand (what a sad way to end the collection). This information is not needed for the simplest solutions, but some alternate solutions may need to know this.

Solution:			

Groupwork

1. Grade Groupwork 4

Using the solutions and Grading Guidelines, grade your Groupwork 4:

- Mark up your past groupwork and submit it with this one.
- Write whether your submission achieved each rubric item. If it didn't achieve one, say why not.
- Use the table below to calculate scores.
- For extra credit, write positive comment(s) about your work.
- You don't have to redo problems correctly, but it is recommended!
- What if my group changed?
 - If your current group submitted the same groupwork last time, grade it together.
 - If not, grade your version, which means submitting this groupwork assignment separately. You may discuss grading together.

	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)	(x)	(xi)	Total:
Problem 2												/20
Problem 3												/30
Total:												/50

2. Polly Gone [12 points]

A convex polygon is a 2D shape with all straight edges such that any line segment between any two non-adjacent vertices passes entirely through its interior (see example picture below). Show via induction that the sum of the interior angles of a convex polygon with n sides is $(n-2) \cdot 180^{\circ}$. Don't include unneeded base cases.

Hint 1: It is helpful to know that a triangle's interior angles always sum to 180°. You may assume this is true for the problem.

Hint 2: In order to apply your inductive hypothesis to a convex polygon, you'll need to think of it in terms of smaller convex polygons. How can you make smaller polygons out of a big one?

Solution:		

3. Running Recurrence [8 points]

An EECS 203 student goes to lecture everyday. On each day, she always chooses exactly one method of transportation, and always chooses to walk, bike, or take a bus. She also follows additional rules:

- She never walks two days in a row.
- If she takes the bus, she must have biked two days ago and walked a day ago.

Let a_n denote the number of ways she can go to EECS 203 lecture across n days for $n \ge 0$.

- (a) Find a recurrence relation for a_n .
- (b) What are the initial conditions? Use the fewest initial conditions necessary.

Solution:			