Rentas a Interés Compuesto: inmediatas, Diferidas, Anticipadas y Perpetuas

	Valor Actual	Valor Final	
	$a_n = V_0$	$\mathcal{S}_{\mathbf{n}} = \mathbf{v} \mathbf{V}_{\mathbf{n}}$	
	$\mathbf{a_n} = \mathbf{aV_0}$	$S_n = {}_{a}V_n$	
Vencida (m = p = 1)	$a_{\mathbf{n}} = \alpha \left(\frac{1 - (1+i)^{-n}}{i} \right)$		
Adelantada $(m = p = 1)$	$\mathbf{a_n} = \boldsymbol{a_n}$ (1+i)	$S=$ δn (1+i)	
Vencida $(m = p \neq 1)$	$a_n = \alpha \left(\frac{1 - (1+i)^{-m^* n}}{i / m}\right)$		
Adelantada $(m = p \neq 1)$	$\mathbf{a_n} = \mathbf{a_n} * \text{ (1+i/m)}$	$\mathbf{S_n} = \mathbf{\hat{S}_n}^*$ (1+i/m)	
Vencida $(m \neq p \neq 1)$	$a_{n} = \alpha \left(\frac{1 - (1 + i/m)^{-n + m}}{(1 + i/m)^{m/p} - 1} \right)$	$s_{n} = \alpha \left(\frac{(1 + i/m)^{n + m} - 1}{(1 + i/m)^{m/p} - 1} \right)$	
Adelantada $(m \neq p \neq 1)$	$\mathbf{a_n} = \mathbf{a_n} * (1+i/m)^{m/p}$	$\mathbf{S_n} = \delta_{\mathbf{n}} * (1+i/m)^{m/p}$	
	RENTAS DIFERIDAS		
		 EI EF	
Vencida (m = p = 1)	$t/\boldsymbol{a_n} = \alpha \left(\frac{1-(1+i)^{-n}}{i}\right)^* (1+i)^{-t}$		
Adelantada $(m = p = 1)$	$t/\mathbf{a_n} = \mathbf{a_n} * (1+i)$		
	RENTAS ANTICIPADAS		
	EI	EV EF	
Vencida (m = p = 1)	EI $-t/\boldsymbol{a_n} = \left(\begin{array}{c} \frac{1-(1+i)^{-n}}{i} & *(1+i)^{t} \end{array}\right)$	EV EF	
		EV EF	

	RENTAS PERPETUAS	
Vencida	$\alpha = \alpha / i$	
(m = p = 1)	a ∞ - a / i	
Adelantada	$\mathbf{a}_{\infty} = (\alpha / i) * (1+i)$	
(m = p = 1)	$\mathbf{a}^{\omega} = (\mathbf{u}^{\gamma}\mathbf{I}) (\mathbf{I}^{+}\mathbf{I})$	
Diferida	$t/\boldsymbol{a}_{\infty} = (\alpha/i)^* (1+i)^{-t}$	
vencida	$U^{\prime} u^{\infty} = (u/1) (1+1)$	
(m = p = 1)		
Diferida	$t/\mathbf{a} = (\alpha/i)^*(1+i)^*(1+i)^{-t}$	
Adelantada	<i>u</i> = (<i>a</i> / 1) (111)	
(m = p = 1)		
Anticipada	$-t/\boldsymbol{a}_{\infty} = (\alpha/i)^* (1+i)^t$	
Vencida	1/ 11	
(m = p = 1)		
Anticipada	$-t/\mathbf{a} = (\alpha/i)^*(1+i)^*(1+i)^t$	
Adelantada	(111)	
(m = p = 1)		