Калибровка моделей и uncertainty estimation

Смирнов Тимофей

Как выдавать предикт

$$b(x) = (b_1(x), \dots, b_l(x)) \in [0,1]_{|\cdot|_{1}=1}^{l},$$

$$a(x) = \arg\max_{j} (b_j).$$

Вероятность верности предикта

$$b_{a(x)}(x) \approx \mathbf{P}(y(x) = a(x)).$$

Как это посчитать

$$\frac{1}{|B|} \sum_{x \in B} b_k(x) \operatorname{vs} \frac{1}{|B|} \sum_{x \in B} I[y(x) = k].$$

Диаграмма калибровки

Диаграмма калибровки с равномощными бинами

Expected Calibration Error

$$\frac{1}{|\{B\}|} \sum_{B \in \{B\}} \frac{|B|}{m} \left| \frac{1}{|B|} \sum_{x \in B} b_k(x) - \frac{1}{|B|} \sum_{x \in B} I[y(x) = k] \right| =$$

$$= \frac{1}{|\{B\}|} \sum_{m \in \{B\}} \left| \sum_{x \in B} b_k(x) - \sum_{x \in B} I[y(x) = k] \right|$$

NLL =
$$-\frac{1}{m} \sum_{j=1}^{m} y_j \log b_j$$
 MSE = $-\frac{1}{m} \sum_{j=1}^{m} (y_j - b_j)^2$

Figure 2: How metrics related to model calibration change whilst training a ResNet-50 network on CIFAR-10.

Изотоническая регрессия

Калибровка Платта

$$b_{\text{new}}(x) = \text{sigmoid}(\alpha \cdot r(x) + \beta)$$

Температурное шкалирование

 $a(x) = \operatorname{softmax}(b_1 / T, \dots, b_l / T)$

Когда нужна калибровка?

- 1. Для правильного понимания насколько можно доверять результатам модели(например человеческая обработка граничных случаев, краудсорсинг)
- 2. Для хорошего стакинга моделей (тк модели если модели по разному откалиброваны это может плохо сказаться на стакинге)
- 3. Когда на основе предиктов считается uplift или какая-то денежная выгода

Стакинг

Uplift-моделирование

Uplift-моделирование

Look-alike модель

Р(целевого действия) на основе схожести

Response модель

P(целевого действия)

Uplift модель

(целевого действия) при коммуникации)

(целевого действия без коммуникации

Uplift * communication_cost vs marginality

Выводы

- 1. Калибровка нужна когда нам нужно интерпретировать результаты модели или использовать ее вероятности в бизнес метриках
- 2. Для нейросетей/SVM лучше всего использовать калибровку Платта/Температурное шкалирование