Vorlesung 21.01.2011 - StringMatching

Proof (Lemma 28): Running Time of ComputePrefixFunction is $\mathcal{O}(m)$ Sketch: Potential $\Phi(\text{currentstate}) := k$

Grafik vervollständigen

Always: $k \ge 0$ Initially: k = 0

Total increase of $k \le m-2$

 \Rightarrow total number of decrease-executions of $,k = \pi(k) \le m-1 \Rightarrow \mathcal{O}(m)$

Proof (Lemma 29 Sketch): "<" $i \in \pi^*(q) \Rightarrow i \in \pi^u(q), \ u \in \mathbb{N}_0$

(IB)
$$u = 0 \Rightarrow i = q \checkmark$$

(IS)
$$P_{\pi(i)} \supset P_i \underset{\text{IH}}{\supset} P_q$$

">" Suppose $\exists j \in \{k|P_k \supset P_q\} \setminus \pi^*(q)$. Wlog. j maximal.

$$q \in \{k|P_k \supset P_q\} \cap \pi^*(q) \Rightarrow j < q$$

$$j' = \min\{r \in \pi^*(q)|r > j\}$$

Then

$$\begin{cases}
P_j \supset P_q \text{ since } j \in \{k | P_k \supset P_q\} \\
P'_j \supset P_q \text{ since } j' \in \pi^*(q) \text{ and } ,, < "
\end{cases}$$

$$\Rightarrow_{\text{L25a}} P_j \supset P_{j'}$$

$$j \max_{j} \pi(j') = j \Rightarrow j \in \pi^*(q)$$

Proof (Corollary 9): If $r = \pi(q)$, then $P_r \supset P_q$ and thus $r \ge 1$ implies $p_r = p_q$. By Lemma 30, if $r \ge 1$ then

$$r = 1 + \max\{k \in \pi^*(q-1) | p_{k+1} = p_q\}$$

= 1 + \max\{k | k \in E_{q-1}\} and E_{q-1} \neq \emptyset\$

If r = 0, there is no $k \in \pi^*(q - 1)$ for which we can extend P_k to P_{k+1} and get a suffix of P_q . Since then $\pi(q) > 0$. Thus $E_{q-1} = \emptyset$.

Proof (Corollary 10): $\pi(1) = 0$

At the start of each iteration of the for-loop we have $k = \pi(q-1)$. This is maintained as an invariant. The while-loop searches through all values $k \in \pi^*(q-1)$ until one is found for which $p_{k+1} = p_q$. At that point $k = \max\{E_{q-1}\}$, so by Corollary 9 we can set $\pi(q)$ to k+1. If no such k is found, $\pi(q)$ is correctly set to 0.