

Regelungstechnik

für BEI4, BMEI4 und IBT

Prof. Dr. B. Wagner

Regler	aperiodischer kürzeste		20% Überschwingung kleinster Schwingungsdauer (D ≈ 0,45)		
	Führungsverhalten	Störverhalten	Führungsverhalten	Störverhalten	
P-Regler	$V_R = \frac{0.3 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.3 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.7 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.7 \cdot T_G}{V_s \cdot T_u}$	
PI-Regler	$V_R = \frac{0.35 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.7 \cdot T_G}{V_s \cdot T_u}$	
	$T_n = 1.2 \cdot T_G$	$T_n = 4 \cdot T_u$	$T_n = T_G$	$T_n = 2,3 \cdot T_u$	
PID-Regler	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.95 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.95 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{1,2 \cdot T_G}{V_s \cdot T_u}$	
	$T_n = T_G$	$T_n = 2.4 \cdot T_u$	$T_n = 1.35 \cdot T_G$	$T_n = 2 \cdot T_u$	
	$T_v = 0.5 \cdot T_u$	$T_v = 0.42 \cdot T_u$	$T_v = 0.47 \cdot T_u$	$T_v = 0.42 \cdot T_u$	

Tabelle 7-1: Einstellwerte nach Chien, Hrones und Reswick

Kap. 7 Optimierung von Regelkreisen

Einstellen von Reglern

Bisher:

Kompensationsregler ⇔ über Vorgabe von Gw(s),

z. B. über Anschwingdauer Tan und relative Überschwingweite ü

Einstellung im Bode-Diagramm ⇔ über Phasenreserve (oder Amplitudenreserve)

z. B. gutes Führungsverhalten: $\phi R = 60 \dots 90^{\circ}$

z. B. gutes Störverhalten : $\phi R = 30 \dots 50^{\circ}$

Einstellung in der WOK ⇔ Zusammenhang dominante Pole ⇔ Zeitverhalten

z. B. Dämpfungsvorgabe

Nun:

Typische Spezifikationen einer Regelung

Zusammenfassen von Erkenntnissen hinsichtlich der "Kompensation" langsamer Streckenpole

Einige in der Praxis gebräuchliche Einstellregeln ... für gutes Führungs-/ Störverhalten

Was möchte man? Spezifikation einer guten Regelung (Führungsverhalten)?

1: zu schwach gedämpft

2: passt

3: zu langsam

Typische Kennwerte einer Regelung

a) Führungsverhalten

Bild 7-2: Charakteristische Größen der Führungssprungantwort

Typische Kennwerte einer Regelung

b) Störverhalten

Bild 7-3: Charakteristische Größen der Störsprungantwort

Bisherige Erkenntnisse zur Kompensation langsamer Streckenzeitkonstanten

Wenn Führungsverhalten im Vordergrund steht:

- \succ Kompensation langsamer Streckenzeitkonstanten durch Reglernullstellen (z. B. $T_N = T_S$)
- ➤ Kürzen in G_w(s) ⇔ einfache Zusammenhänge
- Störverhalten "kriecht" jedoch unter Umständen

Falls Störverhalten im Vordergrund steht:

- > Vermeidung der Kompensation langsamer Streckenpole
- > Tendenziell Wahl einer höheren Verstärkung => bessere Störunterdrückung

Entdecken Sie in den folgenden Arbeitsblättern diese Zusammenhänge ?!

Einige in der Praxis gebräuchliche Einstellregeln (1) Methode von Chien, Hrones & Reswick

Bild 7-4: Sprungantwort bei PT_n-Strecken mit aperiodischem Verhalten

Regler	aperiodischer kürzeste		20% Überschwingung kleinster Schwingungsdauer (D ≈ 0,45)		
	Führungsverhalten	Störverhalten	Führungsverhalten	Störverhalten	
P-Regler	$V_R = \frac{0.3 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.3 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.7 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.7 \cdot T_G}{V_s \cdot T_u}$	
PI-Regler	$V_R = \frac{0.35 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.7 \cdot T_G}{V_s \cdot T_u}$	
Kompensation: $T_n = 1.2 \cdot T_G$		$T_n = 4 \cdot T_u$ keine Komp.	$T_n = T_G$	$T_n = 2.3 \cdot T_u$	
	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.95 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.95 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{1,2 \cdot T_G}{V_s \cdot T_u}$	
PID-Regler	$T_n = T_G$	$T_n = 2.4 \cdot T_u$	$T_n = 1.35 \cdot T_G$	$T_n = 2 \cdot T_u$	
	$T_v = 0.5 \cdot T_u$	$T_v = 0.42 \cdot T_u$	$T_v = 0.47 \cdot T_u$	$T_v = 0.42 \cdot T_u$	

Tabelle 7-1: Einstellwerte nach Chien, Hrones und Reswick

Vorteile:

- Einfache Anwendung
- Keine aufwendige Modellbildung
- Praxiserprobt

Nachteile:

- Bei extremen T_U-T_G-Verhältnissen nicht sinnvoll
- Keine Regeln für schwingfähige Systeme
- Spezifikation wird oft "nicht wirklich" eingehalten

Beispiel zur Einstellregel nach Chien, Hrones und Reswick

Gegeben: Tempomat-Regelaufgabe aus dem Praktikum (Einheitssprungantwort, $G_S(s) = \frac{1,71}{1+13s+22s^2}$)

- T_U,T_G,V_S
- Regler
- Simulation
- Bewertung

TU = 1 TG = 15 VS = 1,71

Beispiel zur Einstellregel nach Chien, Hrones und Reswick

Gegeben: Tempomat-Regelaufgabe (Einheitssprungantwort) mit Wendetangente:

- $T_U=1$, $T_G=15$, $V_S=1,71$
- PI-Regler
- Simulation
- Bewertung

Regler	aperiodischer kürzeste		20% Überschwingung kleinster Schwingungsdauer (D ≈ 0,45)		
	Führungsverhalten	Störverhalten	Führungsverhalten	Störverhalten	
P-Regler	$V_R = \frac{0.3 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.3 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.7 \cdot T_G}{V_s \cdot T_u}$	$V_{R} = \frac{0.7 \cdot T_{G}}{V_{s} \cdot T_{u}}$	
PI-Regler	$V_R = \frac{0.35 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.7 \cdot T_G}{V_s \cdot T_u}$	
	$T_n = 1.2 \cdot T_G$	$T_n = 4 \cdot T_u$	$T_n = T_G$	$T_n = 2.3 \cdot T_u$	
PID-Regler	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.95 \cdot T_G}{V_s \cdot T_u}$	$V_{R} = \frac{0.95 \cdot T_{G}}{V_{s} \cdot T_{u}}$	$V_R = \frac{1,2 \cdot T_G}{V_s \cdot T_u}$	
	$T_n = T_G$	$T_n = 2.4 \cdot T_u$	$T_n = 1.35 \cdot T_G$	$T_n = 2 \cdot T_u$	
	$T_v = 0.5 \cdot T_u$	$T_v = 0.42 \cdot T_u$	$T_v = 0.47 \cdot T_u$	$T_v = 0.42 \cdot T_u$	

Tabelle 7-1: Einstellwerte nach Chien, Hrones und Reswick

Tempomat-Beispiel zur Einstellregel nach Chien, Hrones und Reswick Vergleich der Führungs- und Störantworten

Nochmal die Tabelle von Chien, Hrones und Reswick Erkennen Sie die Zusammenhänge ... ?!

- ⇒ Gutes Führungsverhalten ⇔ Kompensation der großen Streckenzeitkonstante
- \Rightarrow Gutes Störverhalten \Leftrightarrow Keine Kompensation der großen Streckenzeitkonstante, größeres V_R

Führungsverhalten kleinere Verstärkung

Kompensation im Führungsverhalten

keine Komposition im Störverhalten

Regler	aperiodischer kürzeste		20% Überschwingung kleinster Schwingungsdauer (D ≈ 0,45)		
	Führungsverhalten	Störverhalten	Führungsverhalten	Störverhalten	
P-Regler	$V_R = \frac{0.3 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.3 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.7 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.7 \cdot T_G}{V_s \cdot T_u}$	
PI-Regler	$V_R = \frac{0.35 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.7 \cdot T_G}{V_s \cdot T_u}$	
	$T_n = 1.2 \cdot T_G$	$T_n = 4 \cdot T_u$	$T_n = T_G$	$T_n = 2.3 \cdot T_u$	
PID-Regler	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.95 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.95 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{1.2 \cdot T_G}{V_s \cdot T_u}$	
	$T_n = T_G$	$T_n = 2.4 \cdot T_u$	$T_n = 1.35 \cdot T_G$	$T_n = 2 \cdot T_u$	
	$T_v = 0.5 \cdot T_u$	$T_v = 0.42 \cdot T_u$	$T_v = 0.47 \cdot T_u$	$T_v = 0.42 \cdot T_u$	

Einstellregel von Ziegler und Nichols

7.3 Einstellwerte nach Ziegler und Nichols

Die Vorgehensweise zur Anwendung der Einstellwerte nach Ziegler und Nichols wird im Folgenden kurz und knapp beschrieben.

- Regelkreis mit P-Regler schließen
- Verstärkung des P-Reglers erhöhen, bis der Regelkreis schwingt (Stabilitätsgrenze, Dauerschwingungen)
- 3) Kenndaten des Regelkreises am Stabilitätsrand entnehmen Kritische Verstärkung V_{R-Krit} , Kritische Schwingungsdauer $T_{Krit} = \frac{2\pi}{\omega_{Krit}}$
- 4) Einstellwerte für günstiges Führungsverhalten

P-Regler	PI-Regler	PID-Regler		
$V_R = 0.5 \cdot V_{R-Krit}$	$V_R = 0.45 \cdot V_{R-Krit}$ $T_n = 0.85 \cdot T_{Krit}$	$V_{R} = 0.6 \cdot V_{R-Krit}$ $T_{n} = 0.5 \cdot T_{Krit}$ $T_{v} = 0.12 \cdot T_{Krit}$		

Tabelle 7-2: Einstellwerte nach Ziegler und Nichols

Einstellregel von Ziegler und Nichols; Beispiel $Gs(s) = \frac{3}{(1+2s)^3}$

P-Regler: VR = 1,3 PI-Regler: VR = 1,2; TN = 6,2

Vorteil: Sehr einfach in der Anwendung

Nachteile:

in den meisten Fällen sehr schwach gedämpfte Regelung funktioniert nicht für Regelstrecken 1. und 2. Ordnung (Schwingversuch führt auf kein verlässliches Ergebnis) Schwingversuch muss zulässig sein für die Regelstrecke

Optimierung im Frequenzbereich \Leftrightarrow Bode-Diagramm (1) : Führungsverhalten

Zusammenhang geöffneter

GO(jw)

GW(jw) \Leftrightarrow

geschlossener Regelkreis

Durchtrittsfrequenz von Go(jω)

 \Leftrightarrow

Bandbreite des Führungsverhaltens

Abschätzung:

$$G_{W}(j\omega) = \frac{V(j\omega)}{W(j\omega)} = \frac{G_{R}(j\omega) \cdot G_{S}(j\omega)}{1 + G_{R}(j\omega) \cdot G_{S}(j\omega)} = \frac{G_{O}(j\omega)}{1 + G_{O}(j\omega)}$$

$$|G_{O}(\omega)| << 1 \implies G_{W}(j\omega) \approx G_{O}(j\omega)$$

 $|G_{O}(\omega)| >> 1 \implies G_{W}(j\omega) \approx 1$

$$|G_{\mathcal{O}}(\omega)| >> 1 \implies G_{\mathcal{W}}(j\omega) \approx 1$$

Zur Erinnerung aus Kapitel 6: 10-fache Durchtrittskreisfrequenz ⇔ 10-mal so schneller Regelkreis!

Optimierung im Frequenzbereich \Leftrightarrow Bode-Diagramm (2) : Störverhalten (Störung am Streckenscheing and Streckenschein Gebenschein Gebeschule und der Gebenschein gestellt ges

Zusammenhang geöffneter

GO(jw)

GZ(jw)

geschlossener Regelkreis

Durchtrittsfrequenz von Go(jω)

 \Leftrightarrow

 \Leftrightarrow

Qualität der Störunterdrückung???

Abschätzung:

$$G_{Z}(j\omega) = \frac{V(j\omega)}{Z(j\omega)} = \frac{G_{S}(j\omega)}{1 + G_{R}(j\omega) \cdot G_{S}(j\omega)} = \frac{G_{S}(j\omega)}{1 + G_{O}(j\omega)}$$

$$|G_{O}(\omega)| \ll 1 \implies G_{Z}(j\omega) \approx G_{S}(j\omega)$$

$$|G_{O}(\omega)| >> 1 \implies G_{Z}(j\omega) \approx \frac{G_{S}(j\omega)}{G_{O}(j\omega)} = \frac{1}{G_{R}(j\omega)}$$

Zur Erinnerung aus Kapitel 6: Größere Reglerverstärkung ⇔ bessere Störunterdrückung!

--> wenn GR nach oben verschoben wird wird GZ nach unten verschoben

Zwei beliebte Einstellungen im Frequenzbereich: Betragsoptimum und symmetrisches Optimum

Zur Veranschaulichung des Betragsoptimums: Idee: möglichst gutes Führungsverhalten

- \Rightarrow Betragsgang $G_w(j\omega)$ soll sich möglichst lange an die 0dB-Linie anschmiegen (ohne Resonanzüberhöhung!)
- \Rightarrow Betragsoptimale Dämpfung: $D=\frac{1}{\sqrt{2}}\approx 0$, 71 \Leftrightarrow gerade noch keine Resonanzüberhöhung, vgl. Kap. 3!

Zwei beliebte Einstellungen im Frequenzbereich: Betragsoptimum und symmetrisches Optimum

eine große Zeitkonstante --> PI-Regler

zwei große Zeitkonstanten --> PIDT1-Regler

Vorgehen:

- ⇒ Wegen stationärer Genauigkeit: Meist Wahl eines Reglers mit I-Anteil
- ⇒ Kompensiere große Streckenzeitkonstante(n) durch Reglernullstelle(n) (PI- oder PIDT1-Regler)
- \Rightarrow Fasse kleine Zeitkonstanten von Strecke und Regler zusammen zur Summenzeitkonstante T_{σ}
- \Rightarrow VR wird so gewählt, dass der Regelkreis die betragsoptimale Dämpfung : $D={}^1\!/_{\!\sqrt{2}}\approx 0$, 71 hat.

$$\Rightarrow$$
 Beispiel: $G_S(s) = \frac{4}{(1+s)(1+2s)(1+11s)(1+22s)}$

--> PIDT1-Regler --> größte Zeitkonstane mit TN kompensieren

$$\Rightarrow \text{Regler: } G_R(s) = \frac{V_R \cdot (1 + s22)(1 + s11)}{s22 \cdot (1 + sT_R)}$$
zB TR = 1

- \Rightarrow Summe kleiner Zeitkonst.: $T_{\sigma} = 1+1+2=4$ (incl. Reglerzeitkonstante!)
- \Rightarrow Offener Regelkreis: $G_o(s) = \frac{4 \cdot V_R}{s22 \cdot (1 + s4)}$ --> IT1

$$\Rightarrow V_R = 0.69$$

Praktische Auswertung des Betragsoptimums (BO) und des symmetrischen Optimums (SO):

- \Rightarrow $G_o(s)$ beim BO ist immer IT1-Funktion!
- ⇒ BO liefert ein gutes Führungsverhalten
- ⇒ SO liefert in vielen Fällen ein besseres Störverhalten als BO
- ⇒ Was ist "symmetrisch" am SO?
 - ⇒ Übungsaufgabe 7.2
 - ⇒ Erkennen Sie die Symmetrie(n) im Bode-Diagramm?!
 - ⇒ Ursprünglich: SO wurde für PI-Regler für IT1-Strecke hergeleitet
- ⇒ Beim SO: keine Kompensation der langsamen Streckenzeitkonstante
 - \Rightarrow Reglernullstelle tritt in $G_W(s)$ auf
 - \Rightarrow PT₁-Vorfilter mit Filterzeitkonstante T_G (siehe Tabelle!)

Gegebene Regelstrecke		Opt. verf.	Reglerstruktur und Optimierung				wertkanal
$G_S(s) = \frac{V_s}{1 + sT_\sigma}$ (PT ₁ , keine große Zeitkonstante)		во	ı		$T_I = 2T_{\sigma} V_{S}$		
	T ₁ <4T _σ	ВО	PI	$T_1 / (2T_{\sigma} V_{S})$	$T_N = T_1$		
$G_{S}(s) = \frac{V_{s}}{(1+sT)(1+sT)}$		BO ¹⁾	PI	$T_1 / (2T_{\sigma} V_{S})$	$T_N = T_1$		
I(PT ₂ eine droße Zeitkonstante)				$T_1 / (2T_{\sigma} V_{S})$ $T_1 / (2T_{\sigma} V_{S})$			$4T_{\sigma}\left(1-e^{-\left(T_{1}/4T_{\sigma}-1\right)}\right)$
(F 12, Gille grobb Zolikolistanto)	$T_1 >> 4 T_{\sigma}$	ВО	Р	$T_1 / (2T_{\sigma} V_{S})$			
	T ₁ <4T _σ	ВО	PID	$T_1 / (2T_{\sigma} V_{S})$	$T_N = T_1$	<i>T</i> ₂	
$G_s(s) = \frac{V_s}{V_s}$	T ₁ >4T _σ	BO ¹⁾	PID	$T_1/(2T_{\sigma}V_{S})$	$T_N = T_1$	<i>T</i> ₂	
$G_{S}(s) = \frac{V_{s}}{(1 + sT_{1})(1 + sT_{2})(1 + sT_{\sigma})}$ (DT		SO ²⁾	PID	$T_1/(2T_\sigma V_S)$	$T_N = 4T_{\sigma}$	<i>T</i> ₂	$4T_{\sigma}(1-e^{-(T_{1}/4T_{\sigma}-1)})$
				$T_1 / (2T_\sigma V_S)$		<i>T</i> ₂	
- ()	T ₀ <4T _σ oder T ₀ >4T _σ	so	PI	T ₀ / 2T _σ	$T_N = 4T_{\sigma}$		4T _o
(IT ₁ , keine große Zeitkonstante)	$T_0 >> 4T_{\sigma}$	ВО	Р	T ₀ / 2T _σ			
$G_{S}(s) = \frac{1}{2T(1+2T)(1+2T)}$	T ₀ <4T _σ oder T ₀ >4T _σ	so	PID	Τ ₀ / 2Τ _σ	$T_N = 4T_{\sigma}$	<i>T</i> ₁	4T _o
(IT ₂ , eine große Zeitkonstante)	$T_0 >> 4T_{\sigma}$	ВО	PD	T ₀ / 2T _σ		<i>T</i> ₁	

¹⁾ Liefert besseres Führungsverhalten

wenn T0 >> 4Tsigma --> I-Anteil würde zu Kriechen führen, deshalb manchmal nur P oder PD

²⁾ Liefert besseres Störverhalten

Zum Betragsoptimum BO

 $G_W(s)$ hat die betragsoptimale Dämpfung

$$D=\frac{1}{\sqrt{2}}\approx 0,71$$

Damit ergibt sich eine relative Überschwingweite

$$\ddot{u} = 4,3\%$$

Die Anschwingdauer hängt dann nur noch von T_{σ} ab:

$$T_{an}=4.7T_{\sigma}$$

Somit sieht die Führungssprungantwort bei Regelung mit BO immer so aus:

Beliebter Einsatz:
BO für Stromregler von E-Antrieben
SO für Drehzahlregler von E-Antrieben
=> Kaskadierung, siehe Kapitel 8

Zusammenfassung

Einige in der Praxis beliebte Methoden zum Einstellen von Reglern:

Phasen- (und Amplituden-)Reserve (Kapitel 6)

Wurzelortskurven (Kapitel 6)

Chien, Hrones, Reswick

Ziegler, Nichols

Betragsoptimum und Symmetrisches Optimum

Optimierung in Hinblick auf günstiges Führungs- ODER Störverhalten

Will man Führungs- UND Störverhalten optimieren:

Strukturelle Erweiterungen des einschleifigen Regelkreises ⇔ siehe Kapitel 8!