CMA211 AN - Cálculo 2 - Mecânica Noturno

27 de Novembro de 2018 Prova 3

Nome:			

Q:	1	2	3	4	5	6	7	Total
P:	15	15	25	15	15	15	10	110
N:								

Calcule $\iiint_E \frac{z^2}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} V$, onde E é a região acima do cone $z = \sqrt{x^2 + y^2}$ entre as esferas $x^2 + y^2 + z^2 = 1$ e $x^2 + y^2 + z^2 = 4$.

Calcule $\oint_C x^2 e^y dy$, onde C é a curva fechada que passa nos vértices (0,0), (2,-2) e (2,2) no sentido anti-horário.

- (a) 10 Esboce o campo vetorial F.
- (b) 10 Calcule a integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ onde C é a curva parametrizada por $\mathbf{r}(t) = \langle t^2, e^{t^3} \rangle$, $0 \le t \le 1$.
- (c) $\boxed{5}$ Calcule a integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ onde C é a curva dada pela circunferência centrado em C(3,2) e raio 2.

Questão 6 \dots 15

Calcule o fluxo de $\mathbf{F} = xz\vec{i} + yz\vec{j} + 2018z\vec{k}$ através da casca elíptica $\frac{x^2}{4} + y^2 = 1$, com $0 \le z \le 2$.

Questão 7 10

Calcule I = $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} y \, dy \, dx$.