# **Assignment #11**

Jingye Wang December 2, 2016

### Ch24.1

Download the data in the folder dogs and fit some other models, for example using as a predictor the result from the previous trial, or the previous two trials, rather than the total number of shocks and avoidances.

```
options(stringAsFactors = F, max.print = 10000)
setwd("~/Dropbox/WUSTL third/Multilevel Modeling for Quantitative Research/assignment/1
1")
.libPaths("/Library/Frameworks/R.framework/Versions/3.3/Resources/library")
require(R2jags)
require(rjags)
require(dplyr)
require(magrittr)
dogs_data <- read.table('dogs2.txt', row.names = 1)
y <- dogs_data
n_dogs <- nrow(y)
n_trials <- ncol(y)</pre>
```

### Part A

Fit this model, as usual building up from simpler versions (first a single- level model, then varying intercepts, then varying slopes, then adding other predictors as appropriate). Plot the data and fitted model to make sure that your model makes sense.

#### Single Level Model

```
dogs_1 <- function() {</pre>
 for (j in 1:n_dogs) {
   pre1_s[j, 1] <- 0
   pre1 a[j, 1] <- 0
   for (t in 2:n_trials) {
     pre1_s[j, t] <- y[j, t-1]
     prel_a[j, t] <- 1 - y[j, t-1]
   }
   for (t in 1:n_trials) {
     y[j, t] \sim dbin(p[j, t], 1)
     log(p[j, t]) <- b_s * prel_s[j, t] + b_a * prel_a[j, t]
   }
 b s < - -b s neq
 b_a <- -b_a_neg
 b_s_neg ~ dlnorm(mu_b_s, tau_b_s)
b_a_neg ~ dlnorm(mu_b_a, tau_b_a)
 tau_b_s <- pow(sigma_b_s, -2)</pre>
 tau_b_a <- pow(sigma_b_a, -2)</pre>
mu_b_s ~ dnorm(0, .0001)
 mu b a \sim dnorm(0, .0001)
 sigma b s ~ dunif(0, 100)
 sigma b a \sim dunif(0, 100)
}
data 1 <- list("y", "n dogs", "n trials")</pre>
inits 1 <- function (){</pre>
 list(b s neg=rlnorm(1),
      b a neg=rlnorm(1),
      mu b s = rnorm(1),
      mu b a=rnorm(1),
      sigma b s=dunif(1, 0, 100),
      sigma b a=dunif(1, 0, 100))
params 1 <- c ('b s', 'b a')
dogs 1 jags <- jags(data 1, inits 1, params 1, n.chains = 3, n.iter = 1000, dogs 1)
plot(dogs 1 jags)
dogs 1 jags$BUGSoutput
```

```
Inference for Bugs model at "/var/folders/ld/tp92rb3n3gs4zx9_3_xly5fw0000gn/T//Rtmp1YMtz
Z/model520c23f95225.txt", fit using jags,
 3 chains, each with 1000 iterations (first 500 discarded)
 n.sims = 1500 iterations saved
         mean sd 2.5%
                          25%
                                 50%
                                      75% 97.5% Rhat n.eff
          -2.0 0.1 -2.2 -2.0 -1.9 -1.9 -1.7
b_a
                                                     1500
b_s
         -0.5 0.1 -0.7 -0.6 -0.5 -0.5 -0.4
                                                        580
deviance 716.7 2.1 714.6 715.1 716.1 717.6 722.0
                                                       1500
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 2.1 and DIC = 718.8
DIC is an estimate of expected predictive error (lower deviance is better).
```

92rb3n3gs4zx9\_3\_xly5fw0000gn/T//Rtmp1YMtzZ/model520c23f95225.txt\*, fit using jags, 3 chains, each with 100



Based on this single lever model, both of the shock (slope = -0.5) and the avoid (slope = -2.0) of the previous trials decrease the possibility of shock and the avoid plays a more important role compared to the shock.

### Varying Intercept Model

```
dogs_2 <- function() {</pre>
 for (j in 1:n_dogs) {
   pre1_s[j, 1] <- 0
   pre1 a[j, 1] <- 0
   for (t in 2:n_trials) {
     pre1_s[j, t] <- y[j, t-1]
     prel_a[j, t] <- 1 - y[j, t-1]
   }
   for (t in 1:n_trials) {
     y[j, t] \sim dbin(p[j, t], 1)
     logit(p[j, t]) <- b_s * prel_s[j, t] + b_a * prel_a[j, t] + b0[j]
   b0[j] ~ dnorm(mu b0, tau b0)
 }
 mu b0 \sim dnorm(0, .0001)
 tau b0 < -pow(sigma b0, -2)
 sigma_b0 ~ dunif(0, 100)
 b_s ~ dnorm(mu_b_s, tau_b_s)
 b a ~ dnorm(mu b a, tau b a)
 tau_b_s <- pow(sigma_b_s, -2)</pre>
 tau b a \leftarrow pow(sigma b a, -2)
 mu b s \sim dnorm(0, .0001)
 mu_b_a \sim dnorm(0, .0001)
 sigma_b_s ~ dunif(0, 100)
 sigma b a \sim dunif(0, 100)
}
data 2 <- list("y", "n dogs", "n trials")</pre>
inits 2 <- function () {</pre>
 list(b s=rnorm(1),
      b a=rnorm(1),
      mu b s = rnorm(1),
      mu b a=rnorm(1),
      sigma b s=dunif(1, 0, 100),
      sigma b a=dunif(1, 0, 100),
      b0=rnorm(n dogs),
      mu b0=rnorm(1),
      sigma b0=runif(1, 0, 100))
params 2 <- c ('b s', 'b a', 'b0')
dogs 2 jags <- jags(data 2, inits 2, params 2, n.chains = 3, n.iter = 5000, dogs 2)\</pre>
plot(dogs_2_jags)
dogs 2_jags$BUGSoutput
```

```
Inference for Bugs model at "/var/folders/ld/tp92rb3n3gs4zx9_3_xly5fw0000gn/T//Rtmp1YMtz
Z/model520c4afa0c00.txt", fit using jags,
 3 chains, each with 5000 iterations (first 2500 discarded), n.thin = 2
 n.sims = 3750 iterations saved
          mean
                sd
                    2.5%
                            25%
                                  50%
                                        75% 97.5% Rhat n.eff
           7.7 2.4
                            5.1
                                  8.5
b0[1]
                     3.4
                                        9.3
                                             11.2
                                                    5.1
                                                            3
b0[2]
           7.7 2.4
                     3.4
                            5.1
                                  8.6
                                             11.3
                                                    5.1
                                                            3
                                        9.3
b0[3]
           7.7 2.4
                            5.1
                                             11.3
                                                            3
                     3.4
                                  8.5
                                        9.3
                                                    5.1
b0[4]
           7.7 2.4
                     3.4
                            5.1
                                  8.5
                                        9.3
                                             11.2
                                                    5.1
                                                            3
b0[5]
           7.7 2.4
                     3.4
                            5.1
                                  8.5
                                        9.3
                                             11.2
                                                    5.1
                                                            3
. . .
                            5.1
                                  8.5
                                                    5.1
                                                            3
b0[25]
           7.7 2.4
                     3.3
                                        9.3
                                             11.2
           7.7 2.4
                            5.1
                                  8.5
                                        9.3
                                             11.2
                                                    5.1
                                                            3
b0[26]
                     3.3
b0[27]
           7.7 2.4
                     3.3
                            5.1
                                  8.5
                                        9.3
                                             11.2
                                                    5.1
                                                            3
b0[28]
           7.7 2.4
                     3.4
                            5.1
                                  8.5
                                        9.3
                                             11.2
                                                    5.1
                                                            3
b0[29]
           7.7 2.4
                     3.4
                            5.1
                                  8.5
                                        9.3 11.2
                                                    5.1
b0[30]
           7.7 2.4
                     3.3
                            5.1
                                  8.5
                                        9.3
                                             11.2
                                                    5.1
b_a
          -9.5 2.4 -13.0 -11.1 -10.3
                                      -6.9 -5.2
                                                    4.7
                                                            3
          -7.4 2.4 -10.9 -9.0
                                -8.2
                                                            3
b_s
                                       -4.8 -3.1
                                                    4.7
deviance 716.8 2.9 711.9 715.0 716.3 718.1 723.7
                                                          170
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 4.1 and DIC = 720.8
DIC is an estimate of expected predictive error (lower deviance is better).
```

32rb3n3gs4zx9\_3\_xly5fw0000gn/T//Rtmp1YMtzZ/model520c4afa0c00.txt", fit using jags, 3 chains, each with 5000



Based on this varying intercept model, both of the shock (slope = -7.4) and the avoid (slope = -9.5) of the previous trials decrease the possibility of shock and the avoid plays a more important role compared to the shock. The varying intercepts doesn't change much among different dogs.

#### Varying Slopes Model

```
dogs_3 <- function() {</pre>
 for (j in 1:n_dogs) {
   pre1_s[j, 1] <- 0
   pre1 a[j, 1] <- 0
   for (t in 2:n_trials) {
     pre1_s[j, t] <- y[j, t-1]
     prel_a[j, t] <- 1 - y[j, t-1]
   }
   for (t in 1:n_trials) {
     y[j, t] \sim dbin(p[j, t], 1)
     log(p[j, t]) <- b_s[j] * prel_s[j, t] + b_a[j] * prel_a[j, t]
   b s[j] <- -b_s_neg[j]</pre>
   b_a[j] <- -b_a_neg[j]</pre>
   b_s_neg[j] ~ dlnorm(mu_b_s, tau_b_s)
   b_a_neg[j] ~ dlnorm(mu_b_a, tau_b_a)
 }
 tau_b_s <- pow(sigma_b_s, -2)</pre>
 tau_b_a <- pow(sigma_b_a, -2)</pre>
 mu_b_s \sim dnorm(0, .0001)
 mu_b_a \sim dnorm(0, .0001)
 sigma b s \sim dunif(0, 100)
 sigma b a \sim dunif(0, 100)
}
data 3 <- list("y", "n dogs", "n trials")</pre>
inits 3 <- function (){</pre>
list(b s neg=rlnorm(n dogs),
      b a neg=rlnorm(n dogs),
      mu b s = rnorm(1),
      mu b a=rnorm(1),
      sigma b s=dunif(1, 0, 100),
      sigma b a=dunif(1, 0, 100))
params 3 <- c ('b s', 'b a')</pre>
dogs 3 jags <- jags(data 3, inits 3, params 3, n.chains = 3, n.iter = 1000, dogs 3)</pre>
plot(dogs 3 jags)
dogs 3 jags$BUGSoutput
```

```
Inference for Bugs model at "/var/folders/ld/tp92rb3n3gs4zx9 3 xly5fw0000gn/T//Rtmp1YMtz
Z/model520c45800d96.txt", fit using jags,
 3 chains, each with 1000 iterations (first 500 discarded)
 n.sims = 1500 iterations saved
          mean
                 sd
                     2.5%
                             25%
                                   50%
                                         75% 97.5% Rhat n.eff
          -2.0
                     -3.1
                           -2.2
b_a[1]
                0.4
                                  -1.9
                                        -1.9
                                              -1.5
                                                     1.1
                                                            27
                     -3.0 -2.2
b a[2]
          -2.0
                0.4
                                  -1.9
                                        -1.9
                                              -1.4
                                                    1.1
                                                            27
          -1.8
                0.3
                     -2.4 -1.9
                                  -1.8
                                        -1.6
                                              -1.1
                                                    1.1
                                                            44
b_a[3]
                    -2.3 -1.9 -1.9
b_a[4]
          -1.8
                0.2
                                        -1.7
                                              -1.3
                                                    1.1
                                                            62
b_a[5]
          -2.3
                0.6
                     -4.0 -2.5
                                  -2.1
                                        -1.9
                                              -1.7
                                                    1.3
                                                            11
. . .
          -1.9
                0.3
                     -2.5
                           -2.0
                                  -1.9
                                                           370
b_a[25]
                                        -1.7
                                              -1.3
                                                    1.1
          -1.9
                0.3
                     -2.6 -2.0
                                  -1.9
                                        -1.8
                                              -1.4
                                                    1.1
b a[26]
                                                           240
          -2.2
                                  -2.0
                                              -1.6
b a[27]
                0.5
                     -3.3 -2.3
                                        -1.9
                                                    1.2
                                                            14
b a[28]
          -1.8
                0.3
                     -2.4 -1.9
                                  -1.9
                                        -1.7
                                              -1.2
                                                    1.1
                                                            86
                     -2.2 -1.9
b a[29]
          -1.7
                0.3
                                 -1.8
                                        -1.5
                                              -1.1
                                                    1.2
                                                            17
b_a[30]
          -2.0
                0.3
                     -2.8 -2.2
                                  -1.9
                                        -1.8
                                              -1.5
                                                    1.1
                                                            41
                    -1.5 -0.9 -0.7
b_s[1]
          -0.7
                0.3
                                        -0.5
                                              -0.3
                                                    1.0
                                                           690
          -0.4
                                  -0.4
b_s[2]
                0.1
                     -0.7 -0.5
                                        -0.3
                                              -0.2
                                                    1.0
                                                            53
b_s[3]
          -0.6
               0.2
                    -1.1 -0.7
                                  -0.6
                                        -0.5
                                              -0.3
                                                    1.0
                                                           260
                     -1.8 -1.0
          -0.8 0.4
                                  -0.7
                                        -0.6
                                              -0.4
                                                    1.0
b_s[4]
                                                           140
b_s[5]
                0.2
                     -0.8 -0.5
          -0.4
                                  -0.4
                                        -0.3
                                              -0.2
                                                    1.0
                                                            84
. . .
                                                           230
b s[25]
          -0.6
                0.2
                     -1.0
                           -0.7
                                  -0.6
                                        -0.5
                                              -0.3
                                                    1.0
b_s[26]
          -0.8
                0.3
                     -1.6 -0.9
                                  -0.7
                                        -0.6
                                              -0.4
                                                    1.0
                                                           310
                    -1.0 -0.7
b s[27]
          -0.6 0.2
                                  -0.5
                                        -0.4
                                              -0.3
                                                    1.0
                                                           460
b s[28]
          -0.8 0.3
                    -1.5 -0.9
                                  -0.7
                                        -0.6
                                              -0.4
                                                    1.0
                                                          1500
                0.2
                     -1.2 -0.8
b s[29]
          -0.7
                                  -0.6
                                        -0.5
                                              -0.3
                                                    1.0
                                                           890
          -0.6 0.2
                     -1.2 -0.7
b s[30]
                                  -0.6
                                        -0.5
                                              -0.3
                                                    1.0
                                                           440
deviance 697.1 10.8 676.1 689.7 697.2 704.9 716.5
                                                    1.5
                                                             8
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 41.2 and DIC = 738.3
DIC is an estimate of expected predictive error (lower deviance is better).
```

92rb3n3gs4zx9\_3\_xly5fw0000gn/T//Rtmp1YMtzZ/model520c45800d96.txt", fit using jags, 3 chains, each with 100



Based on this varying slope model, both of the shock (slope =  $-0.4 \sim -0.8$ ) and the avoid (slope =  $-1.8 \sim -2.3$ ) of the previous trials decrease the possibility of shock and the avoid plays a more important role compared to the shock.

#### **Additional Predictor Model**

```
# Model_4 (additional predictor)
dogs 4 <- function() {</pre>
for (j in 1:n_dogs) {
   pre1 s[j, 1] < -0
   pre1 a[j, 1] <- 0
   pre num trials[j, 1] <- 0</pre>
   for (t in 2:n_trials) {
     pre1_s[j, t] <- y[j, t-1]
     prel_a[j, t] <- 1 - y[j, t-1]</pre>
     pre_num_trials[j, t] <- t - 1</pre>
   for (t in 1:n_trials) {
     y[j, t] \sim dbin(p[j, t], 1)
     log(p[j, t]) \leftarrow b_s[j] * prel_s[j, t] + b_a[j] * prel_a[j, t] + b_n[j] * pre_num_tr
ials[j, t]
   b_n[j] <- -b_n_neg[j]</pre>
   b_s[j] <- -b_s_neg[j]
   b_a[j] <- -b_a_neg[j]</pre>
   b_n_neg[j] ~ dlnorm(mu_b_n, tau_b_n)
   b_s_neg[j] ~ dlnorm(mu_b_s, tau_b_s)
   b_a_neg[j] ~ dlnorm(mu_b_a, tau_b_a)
 }
mu_b_n \sim dnorm(0, .0001)
mu_b_s \sim dnorm(0, .0001)
mu b a \sim dnorm(0, .0001)
tau b n \leftarrow pow(sigma b n, -2)
tau b s \leftarrow pow(sigma b s, -2)
tau b a <- pow(sigma b a, -2)
sigma b n \sim dunif(0, 100)
sigma_b_s \sim dunif(0, 100)
sigma b a \sim dunif(0, 100)
}
data 4 <- list("y", "n dogs", "n trials")</pre>
inits 4 <- function (){</pre>
list(
   b n neg=rlnorm(n dogs),
  b s neg=rlnorm(n dogs),
   b a neg=rlnorm(n dogs),
  mu b n = rnorm(1),
  mu b s=rnorm(1),
  mu_b_a=rnorm(1),
   sigma b n=dunif(1, 0, 100),
   sigma b s=dunif(1, 0, 100),
   sigma b a=dunif(1, 0, 100))
params 4 <- c ('b s', 'b a', 'b n')
dogs 4 jags <- jags(data 4, inits 4, params 4, n.chains = 3, n.iter = 5000, dogs 4)
plot(dogs 4 jags)
dogs 4 jags$BUGSoutput
```

```
Inference for Bugs model at "/var/folders/ld/tp92rb3n3gs4zx9_3_xly5fw0000gn/T//Rtmp1YMtz
Z/model520c16c88927.txt", fit using jags,
 3 chains, each with 5000 iterations (first 2500 discarded), n.thin = 2
n.sims = 3750 iterations saved
          mean sd
                     2.5%
                             25%
                                   50%
                                         75% 97.5% Rhat n.eff
           0.0 0.0
                             0.0
                                   0.0
                                         0.0
                                                     1.3
b_a[1]
                      0.0
                                                0.0
b_a[2]
           0.0 0.0
                      0.0
                             0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.2
                                                          1200
b_a[3]
           0.0 0.0
                      0.0
                             0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.1
                                                            550
                      0.0
                            0.0
                                                            220
b_a[4]
           0.0 0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.3
           0.0 0.0
                      0.0
                            0.0
                                   0.0
                                                     1.2
                                                          1400
b_a[5]
                                         0.0
                                                0.0
. . .
b a[25]
           0.0 0.0
                      0.0
                             0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.2
                                                            220
b a[26]
           0.0 0.0
                     -0.1
                             0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.3
                                                             31
b_a[27]
           0.0 0.0
                      0.0
                             0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.3
                                                             97
           0.0 0.0
                      0.0
                             0.0
                                   0.0
                                                0.0
                                                     1.2
                                                             70
b_a[28]
                                         0.0
b_a[29]
           0.0 0.0
                      0.0
                            0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.3
                                                            180
           0.0 0.0
                      0.0
                            0.0
                                   0.0
                                         0.0
                                                     1.2
                                                            250
b_a[30]
                                                0.0
          -0.2 0.1
                     -0.3
                           -0.2
                                 -0.2 -0.2
                                               -0.1
                                                     1.0
                                                            750
b_n[1]
          -0.1 0.0
                     -0.2
                           -0.1
                                 -0.1
                                        -0.1
                                               -0.1
                                                     1.0
                                                          1700
b_n[2]
                           -0.1
                                 -0.1 -0.1
          -0.1 0.0
                     -0.2
                                               -0.1
                                                     1.0
                                                          3800
b n[3]
                     -0.2
                           -0.2
                                 -0.2
                                        -0.1
                                               -0.1
b_n[4]
          -0.2 0.0
                                                     1.0
                                                          2200
                                 -0.1
                                        -0.1
b_n[5]
          -0.2 0.0
                     -0.2
                           -0.2
                                               -0.1
                                                     1.0
                                                          3800
. . .
                                        -0.1
          -0.1 0.0
                     -0.2
                           -0.1
                                 -0.1
                                               -0.1
                                                     1.0
                                                            530
b n[25]
b n[26]
          -0.2 0.0
                     -0.3
                           -0.2
                                 -0.2 -0.1
                                               -0.1
                                                     1.0
                                                          3800
                                 -0.2
                                        -0.2
b n[27]
          -0.2 0.0
                     -0.3
                           -0.2
                                               -0.1
                                                     1.0
                                                            460
                           -0.2
                                 -0.1 -0.1 -0.1
b n[28]
          -0.2 0.0
                     -0.2
                                                     1.0
                                                          3800
          -0.1 0.0
                     -0.2
                           -0.1
                                 -0.1
                                        -0.1
                                               -0.1
                                                     1.0
                                                          3800
b n[29]
                           -0.2
                                 -0.2
                                        -0.1
                                               -0.1
                                                          3800
b n[30]
          -0.2 0.0
                     -0.3
                                                     1.0
b s[1]
           0.0 0.0
                      0.0
                            0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.3
                                                             52
b s[2]
           0.0 0.0
                      0.0
                            0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.5
                                                             13
b_s[3]
           0.0 0.0
                      0.0
                            0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.6
                                                             10
           0.0 0.0
                      0.0
                            0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.3
                                                             38
b s[4]
b_s[5]
           0.0 0.0
                      0.0
                            0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.3
                                                             16
. . .
b s[25]
           0.0 0.0
                      0.0
                            0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.3
                                                             18
           0.0 0.0
                      0.0
                             0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.4
                                                             17
b s[26]
                                                              7
b s[27]
           0.0 0.0
                      0.0
                            0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.8
b_s[28]
           0.0 0.0
                      0.0
                             0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.4
                                                             16
                             0.0
                                   0.0
                                                0.0
b s[29]
           0.0 0.0
                      0.0
                                         0.0
                                                     1.4
                                                             14
b_s[30]
           0.0 0.0
                      0.0
                             0.0
                                   0.0
                                         0.0
                                                0.0
                                                     1.5
                                                             14
deviance 547.9 7.7 534.9 542.4 547.4 552.9 564.4
                                                     1.0
                                                          2800
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 29.4 and DIC = 577.3
DIC is an estimate of expected predictive error (lower deviance is better).
```



For this additional predictor model, I add number of trials as a third predictor. After adding this predictor, both of the shock (slope = 0) and the avoid (slope = 0) doesn't matter for this model. However, the number of trials (slope =  $-0.1 \sim -0.2$ ) plays the most important role.

### Part B

Use Bugs to simulate replicated datasets from your model, and make various plots to compare the replicated with the actual data.

#### **Simulation**

```
b_a <- dogs_3_jags$BUGSoutput$summary[1:30, 1]</pre>
b s <- dogs 3 jags$BUGSoutput$summary[31:60, 1]</pre>
n sims <- 1000
y_rep <- array(NA, c(n_sims, n_dogs, n_trials))</pre>
for (j in 1:n_dogs){
prel_a_rep <- rep (0, n_sims)</pre>
prel_s_rep <- rep (0, n_sims)</pre>
for (t in 1:n_trials){
   p_rep <- exp (b_a[j] * prel_a_rep + b_s[j] * prel_s_rep)</pre>
   y_rep[ , j, t] <- rbinom (n_sims, 1, p_rep)</pre>
   prel_a_rep <- 1 - y_rep[ , j, t]</pre>
   prel_s_rep <- y_rep[ , j, t]</pre>
}
}
par(mfrow=c(1,2),mar=c(2,2,2,2),oma=c(2,2,4,2),col.axis="white",col.main="white",
   col.lab="white",col.sub="white",col="white",bg="slategray")
plot(1:25,1-apply(dogs_data,2,mean),type="n")
rand.sample <- sample(x=1:n sims, size=20)</pre>
for (i in rand.sample) lines(1:25,1-apply(y_rep[i,,],2,mean),col="mintcream")
lines(1:25,1-apply(dogs data,2,mean),col="darkorchid4",lwd=3,type="1")
mtext(side=3,line=1.25,"T(yrep) versus T(y)")
plot(1:25, seq(-0.5, 0.5, length=25), type="n")
for (i in rand.sample)
lines(1:25,(1-apply(y rep[i,,],2,mean))-(1-apply(dogs data,2,mean)),
       col="mintcream",lwd=2,type="l")
abline(h=0,col="darkorchid4",lwd=3)
mtext(side=3,line=1.25,"T(yrep)-T(y)")
title(outer=TRUE,line=2,col="white","Avoidance By Trial Number")
```



I choose to use the varying slope model to do the simulation part. The simulation curves remain much higher than the actual data at the first 10 trials, but lower than the actual data at the last 15 trials, which means this model is not appropriate in predicting the results.

## Ch24.4

Model checking for ordered categorical regression:

## Part A

Do some simulation-based graphical checking for the ordered logistic regression model that you fit in Exercise 17.11 to the data from the storable-voting experiment.

### **Model Fit**

```
require(R2WinBUGS)
require(R2OpenBUGS)
vote_data <- read.csv('3playergames.csv')</pre>
y <- vote data$vote
x <- vote_data$value
n <- nrow(vote_data)</pre>
player <- vote_data$person %>% factor %>% as.numeric
n cut <- 2
n_player <- player %>% unique %>% length
order_logit <- function() {</pre>
 for (i in 1:n) {
   y[i] \sim dcat(P[i, ])
   y_sim[i] ~ dcat(P[i, ])
   P[i, 1] \leftarrow 1 - Q[i, 1]
   P[i, 2] \leftarrow Q[i, 1] - Q[i, 2]
   P[i, 3] \leftarrow Q[i, 2]
   for (k in 1:n_cut) {
     logit(Q[i, k]) \leftarrow Z[i, k]
     Z[i, k] \leftarrow (x[i] - C[player[i], k])/s[player[i]]
   }
 }
 for (j in 1:n_player) {
   C[j, 1] ~ dnorm(mu_c[1], tau_c[1])
   I(0, C[j, 2])
   C[j, 2] ~ dnorm(mu_c[2], tau_c[2])
   I(C[j, 1], 100)
   s[j] ~ dlnorm (mu log s, tau log s)
 for (k in 1:n cut){
   mu_c[k] \sim dnorm (0, 1.E-6)
   I(0, 100)
   tau_c[k] \leftarrow pow(sigma_c[k], -2)
   sigma c[k] ~ dunif (0, 1000)
 }
mu \log s \sim dnorm (0, .00001)
 tau log s <- pow(sigma log s, -2)
sigma log s ~ dunif (0, 1000)
}
data_vote <- list('y', 'x', 'n', 'n_cut', 'n_player', 'player')</pre>
C_inits <- array(dim= c(n_player,2))</pre>
for (j in 1:n player){
for (k in 1:2){
   C_{inits[j,k]} \leftarrow 25+5*k+rnorm(1)
}
inits vote <- function() {</pre>
list(
   'y_sim'=y,
   "C"=C inits,
   "s"=rep(10000, n_player),
```

Assignment #11

| me                                             | an sd                  | 2.5%       | 25%      | 50%     | 75%      | 97.5%         |
|------------------------------------------------|------------------------|------------|----------|---------|----------|---------------|
| Rhat n.eff<br>s[1] 10.1813                     | 05 4.36542013          | 4.6929750  | 7.30200  | 9.2710  | 11.95250 | 21.490250 1.  |
| 001117 9200<br>s[2] 7.0674                     | 15 2.25927448          | 3.6509500  | 5.45875  | 6.7190  | 8.31700  | 12.480250 1.  |
| 001083 11000<br>s[3] 3.8702                    | 34 1 <b>.</b> 56559758 | 1.7059500  | 2.74400  | 3.5560  | 4.68200  | 7.735075 1.   |
| 001350 4400                                    | 18 10.84820575         | 6.0398749  | 9.82000  | 12 7550 | 16.79000 | 31.430500 1.  |
| 002030 15000                                   |                        |            |          |         |          |               |
| s[5] 3.5466<br>001307 4900                     | 96 1.54022281          | 1.4149750  | 2.44500  | 3.2475  | 4.33000  | 7.323100 1.   |
| s[15] 6.7920<br>000927 15000                   | 26 1.99155116          | 3.7109750  | 5.39100  | 6.5240  | 7.86525  | 11.470000 1.  |
| s[16] 3.8551<br>000906 15000                   | 70 1.49329858          | 1.7520000  | 2.78900  | 3.5950  | 4.59300  | 7.493000 1.   |
|                                                | 95 3.28194063          | 6.4710000  | 8.81475  | 10.5100 | 12.72000 | 19.190250 1.  |
|                                                | 48 19.45617618         | 34.9800000 | 48.81750 | 58.9400 | 71.86000 | 110.200000 1. |
|                                                | 41 3.47929161          | 8.8369250  | 11.77000 | 13.8000 | 16.27000 | 22.330000 1.  |
|                                                | 95 2.24216548          | 3.8449500  | 5.61875  | 6.8525  | 8.40350  | 12.570250 1.  |
| s[21] 3.4927                                   | 59 1.71594086          | 1.1250000  | 2.26400  | 3.1640  | 4.35025  | 7.808075 1.   |
| 000949 15000<br>C[1,1] 45.2719<br>001363 4300  | 27 4.80034424          | 35.7397500 | 42.18000 | 45.2500 | 48.31000 | 54.830250 1.  |
|                                                | 03 5.78309925          | 44.3697500 | 50.16000 | 53.4100 | 57.28000 | 67.110750 1.  |
|                                                | 44 5.12170905          | 34.8597500 | 42.12000 | 45.6700 | 49.01000 | 54.920000 1.  |
|                                                | 56 4.53582565          | 81.9000000 | 88.20000 | 91.4500 | 94.60000 | 99.070000 1.  |
| C[3,1] 40.5111                                 | 11 3.09110271          | 34.1797500 | 38.58000 | 40.5500 | 42.53000 | 46.460000 1.  |
| 000947 15000<br>C[3,2] 95.9476<br>001035 15000 | 65 2.52574230          | 90.5500000 | 94.26000 | 96.1900 | 97.93000 | 99.760000 1.  |
|                                                | 48 6.32876678          | 15 530/007 | 24 76000 | 20 1200 | 33.05000 | 40.160000 1.  |
| 001463 15000                                   |                        |            |          |         |          |               |
| C[19,2] 90.6712<br>001078 11000                |                        |            |          | 91.4000 | 95.56000 | 99.540000 1.  |
| C[20,1] 36.5599<br>000906 15000                |                        |            |          |         | 39.72000 | 46.180250 1.  |
| C[20,2] 83.2789<br>000957 15000                |                        | 74.3700000 |          |         | 86.26000 | 93.710500 1.  |
| C[21,1] 16.4445<br>001025 15000                | 16 4.31706757          | 7.5599250  | 13.62000 | 16.7000 | 19.51000 | 24.170000 1.  |
| C[21,2] 93.1769<br>001281 5200                 | 95 3.02309148          | 87.1300000 | 91.21000 | 93.0900 | 95.23000 | 99.010000 1.  |
|                                                | 67 0.22990572          | 1.0000000  | 1.00000  | 1.0000  | 1.00000  | 1.000000 1.   |

|                            |           |                  |             | -         |          |           |               |
|----------------------------|-----------|------------------|-------------|-----------|----------|-----------|---------------|
| 001819 15000               |           |                  |             |           |          |           |               |
| y_sim[2]                   | 2.964400  | 0.24070003       | 3.0000000   | 3.00000   | 3.0000   | 3.00000   | 3.000000 1.   |
| 000916 15000               |           |                  |             |           |          |           |               |
| y_sim[3]                   | 2.539000  | 0.75479599       | 1.0000000   | 2.00000   | 3.0000   | 3.00000   | 3.000000 1.   |
| 001106 9600                |           |                  |             |           |          |           |               |
| y_sim[4]                   | 1.055133  | 0.29860720       | 1.0000000   | 1.00000   | 1.0000   | 1.00000   | 2.000000 1.   |
| 001231 12000               |           |                  |             |           |          |           |               |
| y_sim[5]                   | 1.084333  | 0.36354280       | 1.0000000   | 1.00000   | 1.0000   | 1.00000   | 3.000000 1.   |
| 001012 15000               |           |                  |             |           |          |           |               |
| •••                        |           |                  |             |           |          |           |               |
| 1                          | 1.032200  | 0.17653679       | 1.0000000   | 1.00000   | 1.0000   | 1.00000   | 2.000000 1.   |
| 001196 12000               |           |                  |             |           |          |           |               |
| y_sim[626]                 | 1.992067  | 0.09020867       | 2.0000000   | 2.00000   | 2.0000   | 2.00000   | 2.000000 1.   |
| 000901 15000               | 0 000000  | 0 17706600       | 2 222222    | 2 2222    | 2 2222   | 2 2222    | 2 000000 1    |
| y_sim[627]                 | 2.032333  | 0.17726623       | 2.0000000   | 2.00000   | 2.0000   | 2.00000   | 3.000000 1.   |
| 000981 15000               | 2 426222  | 0 40455002       | 2.0000000   | 2.00000   | 2.0000   | 3.00000   | 3.000000 1.   |
| y_sim[628]<br>000956 15000 | 2.426333  | 0.49455993       | 2.0000000   | 2.00000   | 2.0000   | 3.00000   | 3.000000 1.   |
| y sim[629]                 | 2.068333  | 0.25285335       | 2.0000000   | 2.00000   | 2.0000   | 2.00000   | 3.000000 1.   |
| y_sim[029]<br>000994 15000 | 2.000333  | 0.23203333       | 2.0000000   | 2.00000   | 2.0000   | 2.00000   | 3.000000 1.   |
| y sim[630]                 | 1.099000  | 0.29867197       | 1.0000000   | 1.00000   | 1.0000   | 1.00000   | 2.000000 1.   |
| 000931 15000               | 1.00000   | 0.25007157       | 1.000000    | 1.00000   | 1.0000   | 1.00000   | 2.000000 1.   |
|                            | 92.852240 | 12.26409560      | 570.8000000 | 584.30000 | 592,2000 | 600.70000 | 618.800000 1. |
| 001105 9700                |           | ,_ , _ , _ , _ , |             |           |          |           |               |
|                            |           |                  |             |           |          |           |               |





## **Plot**



 $\label{eq:continuous} $\operatorname{ggplot}(\operatorname{vote\_data\_hist},\ \operatorname{aes}(x = \operatorname{sd})) + \operatorname{geom\_histogram}(\operatorname{binwidth} = .005) + \operatorname{geom\_vline}(\operatorname{xinte} \operatorname{rcept} = \operatorname{sd}(\operatorname{vote\_data\_plot}\))$ 



```
data_plot <- melt(vote_data_plot[, c(1:6)], id.vars = c("person", "value"))
colnames(data_plot)[4] <- "vote"
ggplot(data_plot[data_plot$person==501,], aes(x= value, y= vote, color = factor(variabl
e))) + geom_point() + ggtitle("Actual vote and three times of simulations of person ID 5
01")</pre>
```



### Part B

How might you expand the model to fix the problems you have found?

I use openBUGS to fit the ordered logistic regression model. The histgram plots show the predictive checks for the mean and sd of the vote. The vertical bars indicate the mean and sd of the actual data. The scatter plot shows the actual vote and the first three times of simulations of the model. Based on these plots, this model is fitted reasonable well of the actual data. In order to improve the result, I think we can add more variables into the model, like round, or increase the number of simulations.