S.E. (Computer) (Semester - III) (RC) Examination, Nov./Dec. 2013 INTEGRATED ELECTRONICS

Duration: 3 Hours Total Marks: 100

Instructions: 1) Attempt any five, choosing at least one from each Module.

2) Assume any data, if necessary.

MODULE-1

a) Calculate the CMRR for the circuit measurement shown in fig.

 $V_{1}=0.5mv$ $V_{2}=0.5mv$ $V_{3}=0.5mv$ $V_{4}=0.5mv$ $V_{5}=0.5mv$ $V_{7}=0.5mv$ $V_{7}=0.5mv$ $V_{8}=0.5mv$ $V_{1}=0.5mv$ $V_{2}=1mv$ $V_{3}=1mv$ $V_{4}=1mv$ $V_{5}=1mv$ $V_{7}=1mv$ $V_{8}=1mv$ $V_{1}=1mv$ $V_{1}=1mv$ $V_{2}=1mv$ $V_{3}=1mv$ $V_{4}=1mv$ $V_{5}=1mv$ $V_{7}=1mv$ $V_{8}=1mv$ $V_{1}=1mv$ $V_{1}=1mv$ $V_{2}=1mv$ $V_{3}=1mv$ $V_{4}=1mv$

- b) Explain the working of a zero crossing detector.
- c) With a neat circuit diagram describe the operation of a non-inverting op-amp summer and averager with three inputs.
- d) Draw the block schematic of an op-amp and describe the operation of each block.
- a) For the differentiator circuit shown in fig. determine the output voltage, if the input goes from 0 V to 10 V in 0.4 seconds. Assume the input voltage changes at constant rate.

5

6

4

4

	b)	Draw the circuit diagram and explain the working of an op-amp configured in	
		the inverting mode as a summing, scaling and averaging amplifier.	8
	c)	Draw and explain the working of a Schmitt trigger.	8
		STREETS; ACTA	
		MODULE - 2	
3.	a)	Describe the operating principle of PLL.	6
	b)	Give pin description of LM 105 with its block diagram.	6
	c)	Write a short note on	8
		i) Pulse stretcher	
		ii) Frequency divider.	
4.	a)	Explain any two applications of phase locked loop.	7
	b)	Design a regulator for the following specification:	6
		$V_0 = 5V$, output current $I_0 = 50$ mA, $V_{in} = 12V$, short circuit current $I_{SC} = 75$ mA, $V_{sense} = 0.65$ V.	
	c)	Draw and explain the working of IC 555 as a free running multivibrator.	7
		MODULE -3 and a long term managed of	
5.	a)	List the characteristics of CMOS and name the types in bipolar and unipolar logic families.	6
	b)	Explain the working of two input DTL NAND gate and draw the circuit for three input modified DTL gate.	8
	c)	Mention the fastest logic family and give its disadvantages along with a symbol for a 3-input OR/NOR gate.	6
6.	a)	Draw a neat diagram of a three-input TTL NAND gate and explain its operation. Verify that it performs NAND logic for all possible input combinations.	8
	b)	Draw and explain 3-input HTL NAND gate with a fan-out of N and why HTL are best suited for an industrial environment.	6
	c)	Why RTL families are no more used for new systems and mention why TTL is most general purpose logic family.	4
	d)	Draw voltage levels and noise margins of ICs.	2

MODULE-4

7.	a)	Explain the specifications of D/A converters.	8
	b)	Describe 3-bit binary Ladder D/A network. State its advantages and disadvantages.	7
	c)	An 8-bit successive approximation A/D converter has a resolution of 20 mV. If the analog input voltage is 1.085 V, find its digital output in binary form.	5
8.	a)	Illustrate how output of counter in dual-slop A/D converter is proportional to the analog voltage.	6
	b)	Draw a schematic and wave forms of A/D converter using voltage to frequency conversion.	6
	c)	Draw the circuit diagram of weighted-resistor D/A converter and give uses of A/D and D/A converters	8