武汉大学计算机学院

2017~2018 学年第二学期 2017 级《数字逻辑》

期未考试试卷 (闭卷考试) A 卷参考答案

- 一、填空(每空1分,共18分)
 - $1, (101001.1)_{2} = (29.8)_{16}$
 - $2, (1.0110)_{\mathbb{R}}, (1.0111)_{*}$
 - 3、与、或、非,与门、或门、非门
 - 4、下降沿(后沿、负边沿)
 - $5, \overline{F} = (A + \overline{B}) \cdot (B + \overline{C}), F' = (\overline{A} + B) \cdot (\overline{B} + C)$
 - 6、非用户定制电路、半用户定制电路、全用户定制电路
 - 7、允许(可以)
 - 8, 256, 100
 - 9、"•"、"×"
 - 10、OC门(集电极开路门)
- 二、选择题(每空2分,共16分)
 - 1, A
- 2, B
- 3、C
- 4、C

- 5, D 6, B
- 7、A
- 8, D

三、化简题(10分)

把 $F(A,B,C,D) = ABC + \Sigma m(2,3,6,13) + \Sigma d(4,7,12)$ 化成最简 "与一或"式和最简或与式

最简与一或表达式:

最简与一或表达式:

 $F = \overline{A}C + A\overline{C}$

 $F = (A + C)(\overline{A} + \overline{C})$

四、分析题(12分,每问4分)

1. 花达式:

$$Z_1 = \overline{m_1 m_2 m_4 m_7} = m_1 + m_2 + m_4 + m_7$$

$$Z_2 = \overline{m_1 m_2 m_3 m_7} = m_1 + m_2 + m_3 + m_7$$

2. 真位表

ABCL	2122
000	00
001	1 1
010	
011	0_1_
100	10
101	00
(10	0 0
(11)	1 1

3. 2093

深观全测、黑水场。 A为放积本, B为彩色 以为似位域位。 是,为是, 是2为有信向 高位潜位。

五、设计题 (每小题 12 分, 共 24 分)

1.

	, 12h?	杨美	
现态	XI	X2	*
A	B	A	0
13	13	5	0
C	B	D	0
D	13	A	1 1

2. ①到农会投报其任表

1					XY2
	新入	决态、	治石石为	杨当	4,00 01 11 10
7	(724,	youth youth	D2 D1	2	o d d
0	300	00	0 0	0	D-XV
0	000	0 0	d d	d	D2 = Xy1
1	011	0 0	0 0	0	9,0 d d D
	00	0 1	0 1	0	D=X
	110	dd	d d	d	, ,
	(1 (1	1 [1	Z= X4241 (X42)

② 角图 (略)

六 综合应用题(20分)

答: 1、设计思路及设计过程(10分)

- (1) 首先用 5G555 加阻容元件构成多谐振荡器,使输出方波频率大约为 1hz,即周期为 1s。根据震动频率 $Tw=0.7(R_1+2R_2)$ 选取合适的电阻电容值(例如 $R_1=15K$, $R_2=25K$, C=22uf)。(局部图略)
- (2) 把秒计数器的个位 74LS193 设计成 10 进制计数器,把十位和个位两片设计成 60 进制计数器,充分利用 CLR 清零的功能。
- 10 进制计数器的 $CLR=Q_{D} \wedge Q_{B} \wedge f$ 作用于个位,60 进制计数器的 $CLR=Q_{C}+Q_{B}+$ 共同作用于十位个位。

5G555 的输出 OUT 作为个位计数脉冲。(局部图略)

- (3) 计数器的输出作为七段显示译码/驱动器 74LS48 的输入,74LS48 的七段输出作为数码管的输入。
 - (4) 秒计数器开始工作之前,加一个启动清零正脉冲把计数初值清零。
 - 2、逻辑图如下(10分)

