Det The rank of a module is the consinality of its maximal linearly independent subset.

ey M=Q, R=Z any single element is a made linearly indep subsect. $Cb\frac{a}{b}-ad\frac{c}{d}=0$.

And Q/2 is a torsion module: Q/2 = roots of unity

ey R = F(x,y), M = (x,y). $X \cdot y - y \cdot x = 0$ So $\{x,y\}$ are linerly dependent $\{x\}$ is a max'l linerly in Lep-subset, So is $\{y\}$.

 $M/R_{M} = \{b_{i}y + \cdots + b_{n}y^{n} : b_{i} \in R\}$ is a torsion module.

Rank M = 1. but $M \not\equiv R$.

Theorem any vector space is a free module (has a basis $B : A : V = \bigoplus_{b \in B} F$).

Note: $\prod_{copies} F \cong \bigoplus_{copies} F$

Proof: Vector spaces have no torston elements.

Let B be a maxil linearly independent subset in V. Then B glurate V. Indeed, let ue V.

Then $\{430B$ is a linearly dependent set So $\{a_1,a_1,...,a_n\in F,\ V,V_1,...,V_n\in V \text{ s.t.} au+a_iv_i+...+a_nv_n=\delta\}$ A not all $a_1,a_2=0$. $a_1\ne 0$ otherwise $\{B_i\}$ is line dep. So $u=-a^{-1}(a_1v_1+...+a_nv_n)$.

If C is a linerly indp subset in a module M,

I multillin indp. subset of M contaming C.

for V.S., englih. indp set can be extended to a basis.

Theorem: if V is a vector space & W is a subspace,
then W is a direct summed of V. JUCVs. I. V=WOU.

Proof: Find a basis C of V. extend it to B. Let U=Span(B-c)=F.(B-c).
Then V=W&u.

Splittne
Sequence
as follows: Send basis to any premayes of Basis.

Since the free module is a universal object were.

So V= WOU where U= Yw.

Lema: If N is a free module and Y:M->N is Surjective, then Y has a section $\sigma:N\to M$ s.t. Y. $\sigma=id_N$.

Prod let B be a basis in N. The B, choose $v_n \in \varphi^-(u) \subseteq M$, and let $O\left(\sum_{b \in B} a_b \cdot b\right) = \sum_{b \in B} a_b \cdot v_b$.

Page 2

The Same Condinality.

Proof: Let B = {

Let $B = \{u_0, \dots, u_n 3\}$, $C = \{v_1, \dots, v_m \}$ be two Bases. $V_1 = \alpha_1 u_1 + \dots + \alpha_n u_n = 1$

 $V_{i} = \alpha_{i} u_{i+1} + \alpha_{n} u_{n}, \quad \text{let} \quad \alpha_{i} \neq 0. \quad \text{Then} \quad u_{i} = \alpha_{i}^{-1} \left(V_{i} - \alpha_{2} u_{2} - \dots - \alpha_{n} u_{n} \right).$ Put $B_{i} = \left\{ V_{i}, u_{2}, \dots, u_{n} \right\}. \quad \text{Cleam:} \quad B_{i} \quad \text{is still a basis of } V.$

were dependent, C₁ V₁ + C₂ U₂ + ··· + C_nU_n = 0, Then

 $C_1 a_1 u_1 + (C_1 a_2 + C_2) u_2 + \cdots + (C_1 a_n + c_n) u_n = 0$ and $C_1 a_1 \neq 0$ $\frac{7}{2}$.

Replace Uz by one of remaining Vi. At somepoint,

Bn = {Vi,..., Vn} will be a basis, so if nem,

Then C is livery dependent.

for infinite are, we need zon lumin to make it rigorous: B,C boxes. Consider the family of of sets of the form (B',C') S.t. $B'\subseteq B$, $C'\subseteq C$, and $B'\cup C'$ is a box's in V, and \exists a bijection $B:B'\longleftrightarrow C'$.

Order on \mathcal{A} is defined by (B',c')<(B'',c'') if $B''\subset B'$, $C''\supset C'$.

Max'l elt will be some (Ø,C')