ESQUEMA DE RESUMEN PARA EL CÁCULO DE INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA PARA LA MEDIA DE UNA DISTRIBUCION.

Para todos los casos, suponga que se tiene una muestra aleatoria $X_1, X_2, ..., X_n$ de una distribución f(x). Suponga que $E[X_i] = \mu$, $Var[X_i] = \sigma^2$; i = 1, 2, ..., n. Con base en dicha muestra se obtienen \bar{x} y s^2 .

Intervalos de confianza al $100(1-\alpha)\%$ para μ

INTERVALOS DE CONFIANZA PARA LA DIFERENCIA ENTRE LAS MEDIAS DE DOS DISTRIBUCIONES.

Para todos los casos, suponga que se tiene una muestra aleatoria $X_1, X_2, ..., X_n$ de una distribución $f_1(x)$. Suponga que $E[X_i] = \mu_X$, $Var[X_i] = \sigma_X^2$; i = 1, 2, ..., n. Adicionalmente se tiene otra muestra aleatoria $Y_1, Y_2, ..., Y_m$ de una distribución $f_2(x)$. Suponga que $E[Y_j] = \mu_Y$, $Var[Y_j] = \sigma_Y^2$; j = 1, 2, ..., m. Con base en dichas muestras se obtienen: \bar{x} , s_X^2 , \bar{y} , s_Y^2 .

Intervalos de confianza al $100(1-\alpha)\%$ para $\mu_X - \mu_Y$

Se redondea al entero más cercano

INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN DE UNA POBLACIÓN

Suponga que se tiene una variable aleatoria X, tal que $X \sim Bin(n,p)$. Sea \hat{p} un estimador puntual para p. El TLC garantiza que si el tamaño de muestra n es grande entonces:

$$\frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \stackrel{d}{\to} Z, \text{ donde } Z \sim N(0,1)$$

Intervalos de confianza al $100(1-\alpha)\%$ para p

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p} (1-\hat{p})}{n}}$$

Suponga que se tiene una variable aleatoria X, tal que $X \sim Bin(n,p_1)$. Suponga además que tenemos otra variable aleatoria Y, tal que $Y \sim Bin(m,p_2)$. Sean \hat{p}_1 y \hat{p}_2 estimadores puntuales para p_1 y p_2 respectivamente. El TLC garantiza que si los tamaños muestrales n y m son grandes entonces:

$$\frac{\widehat{p}_1 - \widehat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{\widehat{p}_1}{n} (1 - \widehat{p}_1)} + \frac{\widehat{p}_2}{m}} \xrightarrow{d} Z, \text{ donde } Z \sim N(0, 1)$$

Intervalos de confianza al $100(1-\alpha)\%$ para $p_1 - p_2$

$$\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1 (1 - \hat{p}_1)}{n} + \frac{\hat{p}_2 (1 - \hat{p}_2)}{m}}$$