EMBEDDINGS 2

WHAT IS FASTTEXT?

FastText treats each word as composition of n-grams:

example: ball

```
"<ba"
```

"bal"

"ball"

"all"

"||>"

with smallest n-grams set to 3 and highest to 4

Note that the sequence <all>, corresponding to the word *all* is different from the tri-gram all from the word *ball*.

WORD2VEC VS. FASTTEXT

FASTTEXT.ZIP

COMPRESSING TEXT CLASSIFICATION MODELS

What?

reduce memory of text classification model

How?

- quantization
- retraining
- vocabulary pruning
- hashing

QUANTIZATION

The purpose of vector quantization is to compress vectorial data.

general idea:

- find a good set of reference vectors
- replace each data vector by the index of its best reference vector

RETRAINING

retrain the layers occurring after the quantization,
 so that the network can re-adjust itself to the quantization

MEMORY SAVINGS

compression factor of <u>10</u>

(without any noticeable loss of performance)

• without RETRAINING: drop in accuracy of 0.5%

VOCABULARY PRUNING

- feature selection problem:
 selecting K words & ngrams that preserve
 the highest magnitude to the model
- BUT: some documents won't have any of the K best features

greedy approach

each document -> already covered by retained feature? if not: add highest magnitude feature to set of retained features

HASHING

- John likes to watch movies.
- Mary likes movies too.
- · John also likes football.

Term	Index
John	1
likes	2
to	3
watch	4
movies	5
Mary	6
too	7
also	8
football	9

$\int John$	likes	to	watch	movies	\mathbf{Mary}	too	also	football
1	1	1	1	1	0	0	0	0
0	1	0	0	1	1	1	0	0
\ 1	1	0	0	0	0	0	1	1 /

MEMORY SAVINGS

compression factor of up to <u>100</u>
 (dependent on the dataset used)

complementary with quantization!

combination of both strategies: model size reduction of up to x1000

ELMO

What?

word reps that model:
(1) complex characteristics of word use
e.g. syntax, semantics
(2) how this word use vary across context

- word rep as function of entire input sentence
- computed on biLMs with character convolution
- semi-supervised learning

ELMo: Embeddings from Language Models

USE OF ENTIRE INPUT SENTENCE

• each token is assigned a representation

that is a function

of the entire input sentence

sentence level embeddings surpass the performance of using word level embeddings

BILM

 vectors are derived from a bidirectional LSTM that is trained with a coupled language Model (LM)

ELMO REPRESENTATIONS ARE ?DEEP?

- they are a function of all internal layers of a biLM
- learning a linear combination of the vectors stacked behind each input word (improves over just using the top LSTM layer)

- higher-level LSTM states capture context-dependent aspects of word meaning (semantics)
- lower-level LSTM states model aspects of syntax

exposing these signals allows semi-supervision

FUNCTIONALITY OF ELMO

- ELMo is a combination of the intermediate layer representations in the biLM
- For each token t, a biLM with L layers computes a set of 2L+1 representations
- ELMo collapses all layers of the biLM into a single vector

$$\mathbf{ELMo}_{k}^{task} = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM}.$$

each LSTM layer outputs a context-dependent representation:

$$|\mathbf{h}_{k,j}^{LM}| = [\overrightarrow{\mathbf{h}}_{k,j}^{LM}; \overleftarrow{\mathbf{h}}_{k,j}^{LM}]$$

where
$$j = 1, \dots, L$$

BENEFITS OF ADDING ELMO

- 20% relative error reduction
- increase the sample efficiency:
 - less parameter updates
 - smaller training set size

e.g. a <u>Semantic role labeling</u> task without ELMo:

- model reach maximum F1 at 486 epochs of training

with ELMo:

- maximum F1 at 10 epochs of training
- 1% of the training set has the same F1 as the baseline model with 10% of the training set

UNIVERSAL SENTENCE ENCODER

What?

- encoding sentences into embedding vectors
 - -> facing NLP transfer tasks with sentence embeddings

How?

- two variants of encoding models
 (trade-off between accuracy & computational effort)
 - transformer architecture
 - deep averaging network (DAN)

TRANSFORMER TARGETING HIGH ACCURACY!

- designed for a general purpose
 - multi-task learning:
- a Skip-Thought like task
- an input-response task
- a classification task (to train on supervised data)

Skip-Thought replaces LSTM!

DEEP AVERAGING NETWORK (DAN)

TARGETING EFFICIENT COMPUTE RESOURCES!

- Averaging of word embeddings and bi-gram embeddings
- afterwards passed through a feedforward deep neural network

multi-task learning again:

one single DAN encoder is used for all 3 tasks!

 Advantage to Transformer: compute time is linear in the length of the input sentence!

IS TECHNOLOGY BIASED?

Target words	Attrib. words	Ref	GloVe		Uni. Enc. (DAN)	
Target words	Target words Attrib. words		d	p	d	p
EurAmerican vs AfrAmerican names	Pleasant vs. Unpleasant 1	a	1.41	10^{-8}	0.361	0.035
EurAmerican vs. AfrAmerican names	Pleasant vs. Unpleasant from (a)	b	1.50	10^{-4}	-0.372	0.87
EurAmerican vs. AfrAmerican names	Pleasant vs. Unpleasant from (c)	b	1.28	10^{-3}	0.721	0.015
Male vs. female names	Career vs family	c	1.81	10^{-3}	0.0248	0.48
Math vs. arts	Male vs. female terms	c	1.06	0.018	0.588	0.12
Science vs. arts	Male vs female terms	d	1.24	10^{-2}	0.236	0.32
Mental vs. physical disease	Temporary vs permanent	e	1.38	10^{-2}	1.60	0.0027
Young vs old peoples names	Pleasant vs unpleasant	c	1.21	10^{-2}	1.01	0.022
Flowers vs. insects	Pleasant vs. Unpleasant	a	1.50	10^{-7}	1.38	10^{-7}
Instruments vs. Weapons	Pleasant vs Unpleasant	a	1.53	10^{-7}	1.44	10^{-7}

Table 4: Word Embedding Association Tests (WEAT) for GloVe and the Universal Encoder. Effect size is reported as Cohen's d over the mean cosine similarity scores across grouped attribute words. Statistical significance is reported for 1 tailed p-scores. The letters in the *Ref* column indicates the source of the IAT word lists: (a) Greenwald et al. (1998) (b) Bertrand and Mullainathan (2004) (c) Nosek et al. (2002a) (d) Nosek et al. (2002b) (e) Monteith and Pettit (2011).

RESOURCE USAGE

	Computation Time	Memory Usage
Transformer	O(n²)	O(n)
DAN	O(n²)	O(1)

RESULTS

- In general: Transformer performs as good or better than DAN
- for some tasks: DAN performs as good or better than Transformer
 - best performance on <u>most tasks</u>:

 models that make use of both sentence and word level transfer!
- transfer learning is most helpful if less training data is available

 for each NLP task the trade-off between accuracy & complexity (computation & memory) has to be considered!