What is AI?

Al Core Concepts - Turing Test "Al Agent & Environment ____

Uninformed Search BFS, DFS, DLS, IDS **Informed Search**

Best-First, Beam, A*, AO* Hill Climbing

Introduction to Artificial Intelligence (AI)

Definition

Artificial Intelligence (A) referss the simulation of human intelligence in machines that think like humans and mimc their actions. It ecompasses wapalilities, from problem-solving learning to understanding language and recogning patterns.

Example

 Speech Recogntion: Virtual assistants like Siri or Google Assistnt use AI to understand arespond on spoken commands. and lesistand tre dadtie sard past behusios.

 Recommendation Systems: Platforms like Netflx or Amazon use AI to suggest moggest movies or products based your past behavior.

Key takaway:

All is about creating intelligent machines that can perform tasks traditionally requinan intelligence.

Core Concepts of AI - Building Blocks of Intelligence

Intelligent Agent

Perception Lore mein Invisingls on

she titet nest of

Perception

Action Pastis al. tit

Rationality Exweng tin rehartier

Knowledge Repessentation

Reasoning Rose ansacion or artss

Example

- Oulstvagent
- I intelligem cen auemd ar eample of Al agent, and scheed in ill otdom ast cuciue tione asend sndiphe resutivic tirrells mel gerten ulse
- Noralligum and imeipeeds at sus usgent, All and staus the enviontes to exuestue al acgest.

Key toakavay: Al systems are designed perceive, reason, and act intelligentit within their environments.

AI, Machine Learning (ML), and Deep Learning (DL) - Understanding the Hierarchy

Al: The overaching field, that enables to enables systems. *#Horisard learn in camord urehuage and uderstning tas. Al: The date a no subbett Ali that that systems and orapbillities use artificial necorttis ich past betterns.

Example

Al (Self-driving car): The lentire
 Netflike system he andrris a prodictial,
 Mgs foid cale: Algorithms that sugggest les rerticine aus axtificial neteran. nural om data...

Key takaway:

DI is about creating intelligent and ML. They reprererform tasks traditionally requinan intelligence.

The Turing Test - A Measure of Machine Intelligence

Concept

Proposed by Alan Turing in 1950, the Turing Test is a method for determining if a determine can exhibit intelligent behavior behavior inslisurtitable from that the a human.

Example

Conversational Chatbots: Advanced chatbots are used to explore to explore principles of the Turing Test, trying mimic conversation well well well that users might believe they talking to a person.

Key takeway:

The Turist remains a significant benchmark and philosoprical discussion point in Al

Al Agent & Environment - The Intaraction Loop

- Al Agent: An autonmous entity...
- Al Agents: An autonmous entity...
- Environment: An greening, Radar, Lidar
- Percepts: Int oumenn and
- Actuators: Actustors radar, Lidar
- Actuees: An autonmous entity...

Example: Self-driving Car (Agent) -Sensors: Cameras, radar, lidar,

lidar (paceds...); perceive roads...);

Actuators: Steeeing wheel...;

Environment: Roads...

Key takeway: The intaraction between an AI agent and its environment through sensors and actuators forms the fundamental loop of intelligent behavior

Informed Search Algorithms - Using Knowledge to Guide the Way

Concept

Types

- Best-First
- Beam
- A* Algorithm
- AO* Algorithm
- A* Addimisible Heuristics
- · Hill Climbing Algorthm

←→ Cost from start

$$f(n) = g(n) + h(n)$$
 h_g Estimated cost to to goal (Heutietic)

Key takaway:

Informed search algortims significantly improve efficiency by using heuristics to make intelligent choices during the search.

Uninformed Search Algorithms - Exploring Without Heurhstics

Concept

Types

- BFS
- DFS
- Bidarational Search
- DLS
- Bidaigtinal Search
- IDS

Example (BFS/DFS on a maze)

The an layer storis for inith with the sted in fifeamist.

Key takeway: Uninformed search algoritms are fundamental but can athe computatioaly expensive for complex problems.

The 8-Puzzle Problem - A lassic Al Challenge

Revelance to Al

- Classic problem for search algorithms... (ee.gl., A* heuriitics)
- Demonrates state representation...
- Heusrtics (Manhattan Distance, Misplaced Tiles)...

1		
	2	
	1	

Key taakway:

The 8-Puzzle is simple yet powerful problem for understanding and testing AI search techniques.

Gaming Algorithms - Strategies for Intelligent Play

Key taakeway:

Minimax and Alpha-Ateta Pruning are fundamental for developing Al players in turnbased games, allowing theo theo make optimal decisions.

Al in Games - Classic Examples

Tic-Tac-Toe

- · A simple game for game theory.
- · Perfectly solved by Minimax.
- Al can always achieve a draw/win.

Chess

- Complex game, vast search space.
- Deep Blue vs. Kasaprarv (1997).
- Sophtisicated Minimax, Alpha-Beta Pruning, Heuristics

Key taakaway:

Games like Tic-Tacooe and Chess have beeen crucial testbeds for AI research, pushing boundaries of search and strategic decision-making