WHAT IS CLAIMED IS:

1. A monomer having a form selected from the group consisting of:

wherein X^1 , X^2 , and X^3 are each selected from the group consisting of H, Cl, Br, F, I, and combinations thereof, and wherein not all of X^1 , X^2 , and X^3 are H; and wherein Y^1 is a polymerizable unit.

- 2. The monomer of claim 1, wherein the polymerizable unit comprises a functional moiety selected from the group consisting of an epoxide, an alkene, an alkyne, and combinations thereof.
- 3. The monomer of claim 1, wherein the polymerizable unit comprises at least two polymerizing functional moieties.
- 4. The monomer of claim 1, wherein the polymerizable unit is a bis-alkene.
- 5. The monomer of claim 1, wherein the polymerizable unit is attached to the monomer via a spacer group.
- 6. The monomer of claim 1, wherein the polymerizable unit is selected from the group consisting of polymerizable moieties **1-11**.

7. The monomer of claim 1, wherein Y² is selected from the group consisting of OH; H; CI; Br; I; F; OR, wherein R is selected from the group consisting of alkyl, aryl, alkenyl, and combinations thereof; R, wherein R is selected from the group consisting of alkyl, alkenyl, alkynyl, and combinations thereof; and combinations thereof.

8. A polymer comprising monomers with pendant groups, the pendant groups having a form selected from the group consisting of:

$$X^4$$
 X^5 and X^4 X^5 X^6 Y^4 Y^5 Y^4 Y^5 Y^6

and combinations thereof; wherein the pendants are attached to the polymer backbone through Y^3 , wherein Y^4 is selected from the group consisting of H, OH, Br, CI, F, I, and combinations thereof; wherein X^4 , X^5 , and X^6 are each selected from the group consisting of H, CI, Br, F, I, and combinations thereof, wherein not all of X^4 , X^5 , and X^6 are H; and wherein the polymer is flame retardant by virtue of the functionality on the pendant groups.

- 9. The polymer of claim 8, wherein the polymer backbone is selected from the group consisting of $-[CCH]_{n-}$, $-[CHCH_2]_{n-}$, and combinations thereof; and wherein the pendant groups are attached through Y^3 .
- 10. The polymer of claim 8, wherein the polymer is a copolymer, the copolymer being of a type selected from the group consisting of alternating, random, block, and combinations thereof.

WO 2004/113265

- 11. The copolymer of claim 8 comprising repeat units not containing pendant groups **III** and **IV**.
- 12. The polymer of claim 8, wherein the polymer has a structure selected from the group consisting of polymer structures **27-30**.
- 13. A flame retardant material comprising polymeric species comprising monomeric species comprising pendant groups, the pendant groups having a form selected from the group consisting of:

$$X^4$$
 X^5 and X^4 X^5 X^6 Y^3 Y^4

and combinations thereof, wherein the pendants are attached to the polymer backbone through Y^3 , wherein Y^4 is selected from the group consisting of H, OH, Br, CI, F, I, and combinations thereof; and wherein X^4 , X^5 , and X^6 are selected from the group consisting of H, CI, Br, F, I, and combinations thereof, wherein not all of X^4 , X^5 , and X^6 are H.

- 14. The material of claim 13, wherein the material further comprises other material blended with it.
- 15. The material of claim 14, wherein the other material is selected from the group consisting of anti-drip agents, metal oxides, synergists, anti-degradation agents, colorants, carbon-carbon composites, and combinations thereof.

- 16. A method comprising the steps of:
 - a) reacting a benzaldehyde,

wherein X is selected from the group consisting of H, Br, Cl, and combinations thereof, with CHCl₃, KOH, and methyldigol to form a carbinol species,

b) reacting the carbinol species with phenol, and BF₃ to yield the asymmetrical molecule,

c) dehydrohalogenating the asymmetrical DDT molecule to yield 15

d) reacting 15 with acryloyl chloride to yield 17,

wherein 17 is a flame retardant monomer.

- 17. The method of claim 16 further comprising the steps of:
 - a) exposing the flame retardant monomer to an initiating agent; and

b) polymerizing the flame retardant monomer to form polymers with flame retardant properties.

1 -

- 18. A method for forming a flame retardant polymer comprising the steps of:
 - a) providing a quantity of at least one flame retardant monomer of claim 1;
 - b) exposing the flame retardant monomer to an initiating agent; and
 - c) polymerizing the flame retardant monomer to form polymers with flame retardant properties.
- 19. The method of claim 18, wherein the initiating agent is selected from the group consisting of AIBN, di-t-butylperoxide, di-benzoylperoxide, light, heat, cations, anions, catalysts, and combinations thereof.
- 20. The method of claim 18, wherein the flame retardant monomer is copolymerized with non-flame retardant monomer.
- 21. The method of claim 18 further comprising a step of adding at least one other material selected from the group consisting of anti-drip agents, metal oxides, synergists, anti-degradation agents, colorants, and combinations thereof.
- 22. The method of claim 21, wherein the at least one other material is the synergist Sb₂O₃.

23. A monomer having a form selected from the group consisting of:

wherein,

- a) X^1-X^3 are each selected from the group consisting of H, Cl, Br, F, I, and combinations thereof, and wherein not all of X^1 , X^2 , and X^3 are H;
- b) at least one of Y^2 and Y^9-Y^{12} is selected from the group consisting of (i) OH; (ii) H; (iii) CI; (iv) Br; (v) I; (vi) F; (vii) OR, wherein R is selected from the group consisting of alkyl, aryl, alkenyl, and combinations thereof; (viii) R, wherein R is selected from the group consisting of alkyl, alkenyl, alkynyl, and combinations thereof; and (ix) combinations thereof;
- c) the remainder of Y^2 and Y^9-Y^{12} are each selected from the group consisting of H, Cl, Br, F, I, and combinations thereof;
 - d) at least one of Y¹ and Y⁵-Y⁸ is a polymerizable unit; and
- e) the remainder of Y^1 and Y^5-Y^8 are each selected from the group consisting of H, Cl, Br, F, I, and combinations thereof.
- 24. The polymer of Claim 23, wherein exactly one of Y¹ and Y⁵-Y⁸ is a polymerizable unit.
- 25. The polymer of Claim 24, wherein exactly one of Y^2 and Y^9-Y^{12} is selected from the group consisting of (i) OH; (ii) OR, wherein R is selected from the group

consisting of alkyl, aryl, alkenyl, and combinations thereof; (iii) R, wherein R is selected from the group consisting of alkyl, alkenyl, alkynyl, and combinations thereof; (ix) combinations of at least two of OH, OR, and R; and (x) combinations with one or more of OH, OR, and R with one or more of H, Cl, Br, F, and I.

- 26. The polymer of Claim 24, wherein Y^2 and Y^9-Y^{12} are each selected from the group consisting of H, Cl, Br, F, I, and combinations thereof.
- 27. The polymer of Claim 22, wherein,
- (a) X^1-X^3 , Y^5-Y^{12} are each selected from the group consisting of H, CI, Br, F, I, and combinations thereof, and wherein not all of X^1 , X^2 , and X^3 are H;
- (b) Y² is selected from the group consisting of (i) OH; (ii) H; (iii) CI; (iv) Br; (v) I; (vi) F; (vii) OR, wherein R is selected from the group consisting of alkyl, aryl, alkenyl, and combinations thereof; (viii) R, wherein R is selected from the group consisting of alkyl, alkenyl, alkynyl, and combinations thereof; and (ix) combinations thereof; and
 - (c) Y¹ is a polymerizable unit.
- 28. A polymer comprising monomers with pendant groups, the pendant groups having a form selected from the group consisting of:

and combinations thereof; wherein the pendants are attached to the polymer backbone through at least one of Y^3 and Y^5-Y^8 , wherein,

(a) at least one of Y⁴ and Y⁹-Y¹² is selected from the group consisting of H, OH, Br, CI, F, I, and combinations thereof;

- (b) the remainder of Y³-Y¹² are each selected from the group consisting of H, Cl, Br, F, I, and combinations thereof;
- (c) X⁴, X⁵, and X⁶ are each selected from the group consisting of H, Cl, Br, F, I, and combinations thereof, wherein not all of X⁴, X⁵, and X⁶ are H; and
- (d) the polymer is flame retardant by virtue of the functionality on the pendant groups.
- 29. The polymer of Claim 28, wherein the pendants are attached to the polymer backbone through exactly one of Y^3 and Y^5-Y^8 .
- 30. The polymer of Claim 29, wherein exactly one of Y^4 and Y^9-Y^{12} is selected from the group consisting of OH and combinations of OH with one or more of H, Cl, Br, F, and I.
- 31. The polymer of Claim 29, wherein Y⁴ and Y⁹-Y¹² are each selected from the group consisting of H, Cl, Br, F, I, and combinations thereof.
- 32. The polymer of Claim 28, wherein
 - a) the pendants are attached to the polymer backbone through Y³;
- b) Y⁴ is selected from the group consisting of H, OH, Br, Cl, F, I, and combinations thereof; and
- c) Y⁵-Y¹² are each selected from the group consisting of H, Cl, Br, F, I, and combinations thereof.