함수의 무한대로의 발산(AP) (Divergence of Function to Infinity(AP))

\*양의 무한대로 발산 lim

\*양의 무한대로 발산 lim \*

\*양의 무한대로 발산  $\lim_{x\to}$ 

\*양의 무한대로 발산  $\lim_{x\to a}$ 

\*양의 무한대로 발산  $\lim_{x \to a} f(x) =$ 

\*양의 무한대로 발산  $\lim_{x \to a} f(x) = \infty$ 

\*양의 무한대로 발산  $\lim_{x \to a} f(x) = \infty$ 

\*양의 무한대로 발산  $\lim_{x \to a} f(x) = \infty \quad \forall M,$ 

\*양의 무한대로 발산  $\lim_{x \to a} f(x) = \infty \quad \forall M, \; \exists \delta > 0$ 

\*양의 무한대로 발산  $\lim_{x \to a} f(x) = \infty \quad \forall M, \; \exists \delta > 0 \; s.t.$ 

\*양의 무한대로 발산  $\lim_{x \to a} f(x) = \infty \quad \forall M, \; \exists \delta > 0 \; s.t. \; 0 < |x-a| < \delta$ 

\*양의 무한대로 발산 
$$\lim_{x\to a}f(x)=\infty \quad \forall M, \ \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$
 lim

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$
 lim

 $\lim_{x \to a-0}$ 

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{x \to a-0} f(x) =$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \;\; \exists \delta>0 \; s.t. \; 0<|x-a|<\delta \Rightarrow f(x)>M$$

$$\lim_{x \to a-0} f(x) = \infty$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \;\; \exists \delta>0 \; s.t. \; 0<|x-a|<\delta \Rightarrow f(x)>M$$

$$\lim_{x \to a-0} f(x) = \infty$$

$$\lim_{x \to a-0} f(x) = \infty \quad \forall M,$$

$$\lim_{x \to a-0} f(x) = \infty \quad \forall M, \ \exists \delta > 0$$

$$\lim_{x \to a-0} f(x) = \infty \quad \forall M, \ \exists \delta > 0 \text{ s.t.}$$

\*양의 무한대로 발산

$$\lim_{x \to a} f(x) = \infty \quad \forall M, \ \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a \to 0} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0$$

$$\lim_{x \to a = 0} f(x) = \infty \quad \forall M, \ \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow$$

\*양의 무한대로 발산

$$\lim_{x \to a} f(x) = \infty \quad \forall M, \ \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a-0} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a - 0 \\ \text{lim}}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

\*양의 무한대로 발산  $\lim_{x \to a} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \; 0 < |x-a| < \delta \Rightarrow f(x) > M$   $\lim_{x \to a-0} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; -\delta < x-a < 0 \Rightarrow f(x) > M$  lim

\*양의 무한대로 발산  $\lim_{x \to a} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \; 0 < |x-a| < \delta \Rightarrow f(x) > M$   $\lim_{x \to a-0} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; -\delta < x-a < 0 \Rightarrow f(x) > M$   $\lim_{x \to a} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; -\delta < x-a < 0 \Rightarrow f(x) > M$   $\lim_{x \to a} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; -\delta < x-a < 0 \Rightarrow f(x) > M$ 

 $\lim_{x\to a+0}$ 

\*양의 무한대로 발산  $\lim_{x \to a} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \; 0 < |x-a| < \delta \Rightarrow f(x) > M$   $\lim_{x \to a-0} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; -\delta < x-a < 0 \Rightarrow f(x) > M$ 

 $\lim_{x \to a+0} f(x) =$ 

\*양의 무한대로 발산 
$$\lim_{x \to a} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \; 0 < |x-a| < \delta \Rightarrow f(x) > M$$
 
$$\lim_{x \to a-0} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; -\delta < x-a < 0 \Rightarrow f(x) > M$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \;\; \exists \delta>0 \; s.t. \; 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \;\; \exists \delta>0 \; s.t. \; 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \;\; \exists \delta>0 \; s.t. \; 0<|x-a|<\delta \Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M,$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \ \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \ \exists \delta > 0 \text{ s.t.}$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

\*음의 무한대로 발산 lim

\*양의 무한대로 발산 
$$\lim_{x \to a} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \; 0 < |x-a| < \delta \Rightarrow f(x) > M$$
 
$$\lim_{x \to a-0} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; -\delta < x-a < 0 \Rightarrow f(x) > M$$
 
$$\lim_{x \to a+0} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; 0 < x-a < \delta \Rightarrow f(x) > M$$

\*음의 무한대로 발산 lim

\*양의 무한대로 발산 
$$\lim_{x \to a} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \; 0 < |x-a| < \delta \Rightarrow f(x) > M$$
 
$$\lim_{x \to a-0} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; -\delta < x-a < 0 \Rightarrow f(x) > M$$
 
$$\lim_{x \to a+0} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; 0 < x-a < \delta \Rightarrow f(x) > M$$

\*음의 무한대로 발산 lim \*→

\*양의 무한대로 발산 
$$\lim_{x \to a} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \; 0 < |x-a| < \delta \Rightarrow f(x) > M$$
 
$$\lim_{x \to a-0} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; -\delta < x-a < 0 \Rightarrow f(x) > M$$
 
$$\lim_{x \to a+0} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; 0 < x-a < \delta \Rightarrow f(x) > M$$

\*음의 무한대로 발산  $\lim_{x\to a}$ 

\*양의 무한대로 발산 
$$\lim_{x \to a} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \; 0 < |x-a| < \delta \Rightarrow f(x) > M$$
 
$$\lim_{x \to a-0} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; -\delta < x-a < 0 \Rightarrow f(x) > M$$
 
$$\lim_{x \to a+0} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \;\; 0 < x-a < \delta \Rightarrow f(x) > M$$

\*음의 무한대로 발산 
$$\lim_{x \to a} f(x) =$$

\*양의 무한대로 발산 
$$\lim_{x \to a} f(x) = \infty \quad \forall M, \; \exists \delta > 0 \; s.t. \; 0 < |x - a| < \delta \Rightarrow f(x) > M$$
 
$$\lim_{x \to a} f(x) = \infty \quad \forall M, \; \exists \delta > 0 \; s.t. \; -\delta < x - a < 0 \Rightarrow f(x) > 0$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

\*음의 무한대로 발산 
$$\lim_{x\to a} f(x) = -\infty$$

\*양의 무한대로 발산 
$$\lim_{x \to a} f(x) = \infty \quad \forall M, \; \exists \delta > 0 \; s.t. \; 0 < |x - a| < \delta \Rightarrow f(x) > M$$
 
$$\lim_{x \to a} f(x) = \infty \quad \forall M, \; \exists \delta > 0 \; s.t. \; -\delta < x - a < 0 \Rightarrow f(x) > 0$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

\*음의 무한대로 발산 
$$\lim_{x\to a} f(x) = -\infty$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \;\; \exists \delta>0 \; s.t. \; 0<|x-a|<\delta \Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

\*음의 무한대로 발산 
$$\lim_{x \to a} f(x) = -\infty \quad \forall m,$$

\*양의 무한대로 발산 
$$\lim_{x \to a} f(x) = \infty \quad \forall M, \; \exists \delta > 0 \; s.t. \; 0 < |x - a| < \delta \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

\*음의 무한대로 발산 
$$\lim_{x\to a} f(x) = -\infty \quad \forall m, \; \exists \delta > 0$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \;\; \exists \delta>0 \; s.t. \; 0<|x-a|<\delta \Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$
$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

\*음의 무한대로 발산
$$\displaystyle \lim_{x o a} f(x) = -\infty \quad orall m, \;\; \exists \delta > 0 \; s.t.$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

\*음의 무한대로 발산  $\lim_{x \to a} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } 0 < |x-a| < \delta$ 

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \;\; \exists \delta>0 \; s.t. \; 0<|x-a|<\delta \Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$
$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

\*음의 무한대로 발산 
$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \; \exists \delta > 0 \; s.t. \; 0 < |x-a| < \delta \Rightarrow$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

 $\lim$ 

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

lim

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

 $\lim_{x \to \infty}$ 

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{x \to a-0}$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{x \to a-0} f(x) =$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{x \to a-0} f(x) = -\infty$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{x \to a-0} f(x) = -\infty$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{x \to a-0} f(x) = -\infty \quad \forall m,$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{x \to a-0} f(x) = -\infty \quad \forall m, \ \exists \delta > 0$$

$$\lim_{x \to a} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{x \to a-0} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \ s.t.$$

\*양의 무한대로 발산  $\lim_{\substack{x\to a\\ y\to a}} f(x) = \infty \quad \forall M, \ \exists \delta>0 \text{ s.t. } 0<|x-a|<\delta\Rightarrow f(x)>M$ 

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{x \to a-0} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{x \to a-0} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow$$

$$\lim_{x \to a} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{x \to a - 0} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{x \to a-0} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a = 0 \\ x}} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \text{ s.t. } 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a = 0 \\ \text{lim} \\ x \to a}} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a - 0 \\ \text{lim} \\ x \to a + 0}} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a - 0}} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a + 0}} f(x) =$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a - 0}} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a + 0}} f(x) = -\infty$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a - 0}} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a + 0}} f(x) = -\infty$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a - 0}} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a + 0}} f(x) = -\infty \quad \forall m,$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a - 0}} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a + 0}} f(x) = -\infty \quad \forall m, \ \exists \delta > 0$$



$$\lim_{x \to a} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a - 0}} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a + 0}} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t.}$$

$$\lim_{x \to a} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a - 0}} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a + 0}} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta$$

\*양의 무한대로 발산 
$$\lim_{x\to a} f(x) = \infty \quad \forall M, \ \exists \delta>0 \ s.t. \ 0<|x-a|<\delta\Rightarrow f(x)>M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a - 0}} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a + 0}} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow$$

\*양의 무한대로 발산 
$$\lim_{x \to a} f(x) = \infty \quad orall M, \;\; \exists \delta > 0 \; s.t. \; 0 < |x-a| < \delta \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a - 0}} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a + 0}} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) < m$$

\*양의 무한대로 발산 
$$\lim_{x \to a} f(x) = \infty \quad \forall M, \;\; \exists \delta > 0 \; s.t. \; 0 < |x-a| < \delta \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a - 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) > M$$

$$\lim_{\substack{x \to a + 0}} f(x) = \infty \quad \forall M, \quad \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} f(x) = -\infty \quad \forall m, \quad \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a - 0}} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } -\delta < x - a < 0 \Rightarrow f(x) < m$$

$$\lim_{\substack{x \to a + 0}} f(x) = -\infty \quad \forall m, \ \exists \delta > 0 \text{ s.t. } 0 < x - a < \delta \Rightarrow f(x) < m$$

## Github:

https://min7014.github.io/math20200910002.html

Click or paste URL into the URL search bar, and you can see a picture moving.