





NIM : 2000019

NAMA : Muhammad Ajriel Rahayu

NAMA KAMPUS : Universitas Pendidikan Indonesia

### Tugas

| no | Nama    | Asal     | organisasi | hobi     | prioritas |
|----|---------|----------|------------|----------|-----------|
| 1  | umi     | Malang   | tidak      | ym       | 2         |
| 2  | vita    | Malang   | ya         | facebook | 1         |
| 3  | vitis   | Surabaya | tidak      | shooping | 3         |
| 4  | waskita | Kediri   | ya         | facebook | 1         |
| 5  | wika    | Surabaya | ya         | facebook | 1         |
| 6  | wiratno | Kediri   | tidak      | ym       | 2         |
| 7  | yudi    | Surabaya | tidak      | ym       | 2         |
| 8  | yianto  | Kediri   | tidak      | ym       | 2         |
| 9  | yunita  | Surabaya | ya         | facebook | 1         |
| 10 | zida    | Kediri   | ya         | shooping | 2         |
| 11 | desi    | Surabaya | tidak      | shooping | 3         |
| 12 | sita    | Kediri   | tidak      | facebook | 2         |
| 13 | novia   | Malang   | ya         | facebook | 1         |
| 14 | ika     | Malang   | tidak      | shooping | 3         |
| 15 | enggar  | Kediri   | tidak      | facebook | 2         |

- 1. Buat decison tree untuk melakukan klasifikasi tersebut,
- 2. Langkah:
  - 1. Seleksi dulu atribut mana saja yang dipergunakan dan mana yang dibuat
  - 2. Gunakan algoritma c4.5 untuk membuat decision tree nya dengan kelasnya adalah prioritas Dari decision tree tersebut, buat rulenya

#### Jawaban:

 Langkah 1: Menyeleksi atribut yang dipakai Untuk atribut yang dipakai adalah Asal, Organisasi, Hobi dan Prioritas sebagai label. Untuk atribut Nomor dan juga Nama tidak dipakai karena hanya sebagai identitas saja, berikut atribut yang dipakai







# Tugas Mandiri C4.5

| NO | Asal     | Organisasi | Hobi     | Prioritas |
|----|----------|------------|----------|-----------|
| 1  | Malang   | tidak      | ym       | 2         |
| 2  | Malang   | ya         | facebook | 1         |
| 3  | Surabaya | tidak      | shooping | 3         |
| 4  | Kediri   | ya         | facebook | 1         |
| 5  | Surabaya | ya         | facebook | 1         |
| 6  | Kediri   | tidak      | ym       | 2         |
| 7  | Surabaya | tidak      | ym       | 2         |
| 8  | Kediri   | tidak      | ym       | 2         |
| 9  | Surabaya | ya         | facebook | 1         |
| 10 | Kediri   | ya         | shooping | 2         |
| 11 | Surabaya | tidak      | shooping | 3         |
| 12 | Kediri   | tidak      | facebook | 2         |
| 13 | Malang   | ya         | facebook | 1         |
| 14 | Malang   | tidak      | shooping | 3         |
| 15 | Kediri   | tidak      | facebook | 2         |

### 2. Langkah 2: Membuat decision tree c4.5

a. Untuk membangun sebuah decision tree, diawali dengan mencari nilai *entropy, Gain, Splitinfo* dan *Gain Ratio* pada masing- masing atribut yang diformulasikan dengan

$$Entropy(S) = \sum_{i=1}^{n} -pi * \log_{2} pi$$

$$Gain(S, A) = Entropy(S) - \sum_{i=1}^{n} \frac{|S_{i}|}{|S|} * Entropy(S_{i})$$

$$Split_{info}(S) = -\sum_{i=1}^{n} \frac{|Si|}{|S|} * \log_{2} \frac{|Si|}{|S|}$$

$$GainRatio(A) = \frac{Gain(A)}{Splitinfo(A)}$$

## Sehingga jika data dilakukan perhitungan diperoleh hasil sebagai berikut:

|            |          |           | •     | •     | •     | · ·         |             |             |             |
|------------|----------|-----------|-------|-------|-------|-------------|-------------|-------------|-------------|
|            |          | Jumlah(S) | 1(Si) | 2(Si) | 3(Si) | Entrophy    | Gain        | splitinfo   | Gain Ratio  |
| Total      |          | 15        | 5     | 7     | 3     | 1,5058231   |             |             |             |
| Asal       |          |           |       |       |       |             | 0,598513735 | 1,56559623  | 0,382291247 |
|            | Malang   | 4         | 2     | 1     | 1     | 1,5         |             |             |             |
|            | Surabaya | 5         | 2     | 1     | 2     | 1,521928095 |             |             |             |
|            | Kediri   | 6         | 1     | 5     | 0     | 0           |             |             |             |
| Organisasi |          |           |       |       |       |             | 1,5058231   | 0,970950594 | 1,5508751   |
|            | ya       | 6         | 5     | 1     | 0     | 0           |             |             |             |
|            | tidak    | 9         | 0     | 6     | 3     | 0           |             |             |             |
| Hobi       |          |           |       |       |       |             | 1,5058231   | 1,530124965 | 0,984117725 |
|            | ym       | 4         | 0     | 4     | 0     | 0           |             |             |             |
|            | facebook | 7         | 5     | 2     | 0     | 0           |             |             |             |
|            | Shooping | 4         | 0     | 1     | 3     | 0           |             |             |             |





Untuk menentukan *Root node* dari Decision Tree, dipilih *gain ratio* yang paling besar, dalam hal ini atribut organisasi memiliki gain ratio yang lebih besar dari atribut lainnya, sehingga *Root node* dipilih organisasi dengan cabang nilai ya dan tidak



Karena *leaf node*(label) belum ditemukan maka harus membuat *internal node*, kemudian langkah selanjutnya mencari atribut apa yang cocok untuk mengisi *internal node* pada 1.1 dan 1.2, pada percobaan ini saya mengambil nilai ya pada atribut organisasi untuk mengisi internal node 1.2.

| A1 - |         | A 1      | 0          | 11.1.1   | D         |
|------|---------|----------|------------|----------|-----------|
| No   | Nama    | Asal     | Organisasi | Hobi     | Prioritas |
| 1    | Vita    | Malang   | ya         | facebook | 1         |
| 2    | Waskita | Kediri   | ya         | facebook | 1         |
| 3    | Wika    | Surabaya | ya         | facebook | 1         |
| 4    | Yunita  | Surabaya | ya         | facebook | 1         |
| 5    | Zida    | Kediri   | ya         | shooping | 2         |
| 6    | Novia   | Malang   | ya         | facebook | 1         |

Kemudian mencari nilai *entropy, Gain, Splitinfo* dan *Gain Ratio* pada masing- masing atribut, diperoleh hasil sebagai berikut

|       |          | Jumlah(S) | 1(Si) | 2(Si) | Entrophy    | Gain        | splitinfo   | Gain Ratio  |
|-------|----------|-----------|-------|-------|-------------|-------------|-------------|-------------|
| Total |          | 6         | 5     | 1     | 0,650022422 |             |             |             |
| Asal  |          |           |       |       |             | 0,316689088 | 1,584962501 | 0,199808568 |
|       | Malang   | 2         | 2     | 0     | 0           |             |             |             |
|       | Surabaya | 2         | 2     | 0     | 0           |             |             |             |
|       | Kediri   | 2         | 1     | 1     | 1           |             |             |             |
| Hobi  |          |           |       |       |             | 0,650022422 | 0,650022422 | 1           |
|       | ym       | 0         | 0     | 0     | 0           |             |             |             |
|       | facebook | 5         | 5     | 0     | 0           |             |             |             |
|       | Shooping | 1         | 0     | 1     | 0           |             |             |             |





Untuk mengisi internal node 1.2 yang kosong dipilih Gain ratio terbesar sehingga atribut hobi menjadi pengisi untuk node 1.2 karena memiliki nilai gain ratio terbesar, dan asal dipilih untuk node 1.1. Kemudian pada node hobi, seperti pada tabel diatas semua nilai entropy nya 0 dan juga semua nilai facebook ada pada label 1(Si) dan shooping ada pada label 2(Si) maka bisa langsung diberi label untuk node hobi.



Langkah selanjutnya mencari nilai node 2.1, 2.2, 2.3, dilakukan dengan memfilter data yang atribut organisasinya bernilai tidak saja seperti pada tabel berikut

| No | Nama    | Asal     | Organisasi | Hobi     | Prioritas |
|----|---------|----------|------------|----------|-----------|
| 1  | Umi     | Malang   | tidak      | ym       | 2         |
| 2  | Vitis   | Surabaya | tidak      | shooping | 3         |
| 3  | Wiranto | Kediri   | tidak      | ym       | 2         |
| 4  | Yudi    | Surabaya | tidak      | ym       | 2         |
| 5  | Yianto  | Kediri   | tidak      | ym       | 2         |
| 6  | Desi    | Surabaya | tidak      | shooping | 3         |
| 7  | Sita    | Kediri   | tidak      | facebook | 2         |
| 8  | Ika     | Malang   | tidak      | shooping | 3         |
| 9  | Enggar  | Kediri   | tidak      | facebook | 2         |

Disini melihat atribut asal dan juga label prioritas, ditemukan hasil bahwa semua nilai kediri berlabel 2 sehingga dapat langsung diberikan label pada node 2.1, sedangkan nilai malang dan Surabaya masih memiliki label yang berbeda beda, lebih jelasnya dapat dilihat pada tabel di bawah ini





| No | Nama  | Asal     | Organisasi | Hobi     | Prioritas |
|----|-------|----------|------------|----------|-----------|
| 1  | Vitis | Surabaya | tidak      | shooping | 3         |
| 2  | Yudi  | Surabaya | tidak      | ym       | 2         |
| 3  | Desi  | Surabaya | tidak      | shooping | 3         |
| 4  | Umi   | Malang   | tidak      | ym       | 2         |
| 5  | Ika   | Malang   | tidak      | shooping | 3         |

Karena malang dan Surabaya masih memiliki label yang berbeda maka dibuat cabang node kembali dan atribut yang tersisa hanya hobi jadi node 2.2 dan 2.3 bisa diisi dengan atribut hobi dan juga dapat langsung diberi label karena semua nilai atribut hobi yang sesuai dengan asal sudah sesuai dengan label, dan gambar pola decision tree dari percobaan ini dapat disimpulkan sebagai berikut:

