High Average-Utility Itemset Sampling under Length Constraints

Author name

Affiliation

Abstract. This supplementary document presents a first the proofs which were stated in the article titled "High Average-utility Itemset Sampling under Length Constraints". Then, it ends with additional experimental results.

1 Recalls

Definition 1 (Occurrence of a pattern). Let φ be a pattern defined on a language \mathcal{L} of a database \mathcal{D} . If it exist a transaction t_j of \mathcal{D} such that $\varphi \subseteq t_j$, then φ_j is an occurrence of the pattern φ in the transaction t_j . The utility of the pattern φ in the transaction t_j , denoted by $\mathbf{uOcc}(\varphi, t_j)$, is equal to 0 if $\varphi \not\subseteq t_j$ or $\varphi = \emptyset$, else $\mathbf{uOcc}(\varphi, t_j) = \sum_{e \in \varphi} (q(e, t_j) \times p(e))$.

There are also utilities that are independent of any database such as length-based utilities. In the following, we consider the length-based utility defined by $\mathtt{uLen}_{[m..M]} = 1/|\varphi|$ if $|\varphi| \in [m..M]$ and 0 otherwise. Thus, a pattern whose length is larger than M or smaller than m will be deemed useless.

Definition 2 (Average-Utility of a pattern under length constraints). Let \mathcal{D} be a database, \mathcal{L} its language, m and M two integers such that $m \leq M$. The average-utility of the pattern $\varphi \in \mathcal{L}$ in \mathcal{D} under minimum m and maximum M length constraints, denoted by $u_{[m..M]}^{avg}(\varphi, \mathcal{D})$, is the product of the sum of utilities of its occurrences and its length-based utility. Formally, $u_{[m..M]}^{avg}(\varphi, \mathcal{D}) = (\sum_{(j,t) \in \mathcal{D} \land \varphi \subseteq t} u \mathcal{O} cc(\varphi,t)) \times u Len_{[m..M]}(\varphi)$.

It is important to note that $u^{avg}_{[m..M]}$ is not a length-based utility.

2 Proofs of the theoretical results

Property 1 (Item weights $\omega_{\ell}^{\bullet}(t[i],t)$). The weight $\omega_{\ell}^{+}(t[i],t)$ is the sum of the utilities of the occurrences of length $\ell-1$ in the transaction $t^{i}=t[i+1]\cdots t[n]$ to which we add the item t[i]. Formally, for all $\ell \in [m..M]$ one has:

$$\omega_{\ell}^+(t[i],t) = \sum_{\varphi \subseteq t^i \wedge |\varphi| = \ell-1} \mathtt{uOcc}(\{t[i]\} \cup \varphi,t) = \omega_1(t[i],t) \times \binom{\ell-1}{|t^i|} + \sum_{\star \in \{+,-\}} \omega_{\ell-1}^\star(t[i+1],t)$$

¹ by convention $\binom{k}{n} = 0$ if k>n and 1 if k=0

$$\omega_{\ell}^{-}(t[i],t) = \sum_{\varphi \subseteq t^{i} \wedge |\varphi| = \ell} \mathtt{uOcc}(\varphi,t) = \sum_{\star \in \{+,-\}} \omega_{\ell}^{\star}(t[i+1],t)$$

with $\omega_1^+(t[i],t) = \mathsf{uOcc}(t[i],t)$ for all $i \in [1..|t|]$ and $\omega_\ell^*(t[i],t) = 0$ for all i > |t|.

Proof (Property 1). Let's start by showing that $\omega_\ell^-(t[i],t) = \sum_{\star \in \{+,-\}} \omega_\ell^\star(t[i+1],t)$. By definition, $\omega_\ell^-(t[i],t)$ is the sum of the utilities of the set of patterns of length ℓ in t^i , $\omega_\ell^-(t[i],t) = \sum_{\varphi \subseteq t^i \wedge |\varphi| = \ell} \mathsf{uOcc}(\varphi,t)$. This set can be split into two parts: the one that contains the patterns starting with the item t[i+1] whose sum of their utilities is equal to $\omega_\ell^+(t[i+1],t)$ by definition, and the one that contains the patterns not starting with t[i+1] and whose sum of their utilities is equal to $\omega_\ell^-(t[i+1],t)$. That implies that $\sum_{\varphi \subseteq t^i \wedge |\varphi| = \ell} \mathsf{uOcc}(\varphi,t) = \omega_\ell^+(t[i+1],t) + \omega_\ell^-(t[i+1],t) = \sum_{\star \in \{+,-\}} \omega_\ell^\star(t[i+1],t)$. (1)

Let's now show that $\omega_\ell^+(t[i],t) = \omega_1(t[i],t) \times \binom{\ell-1}{|t^i|} + \sum_{\star \in \{+,-\}} \omega_{\ell-1}^\star(t[i+1],t)$. We know by definition that $\omega_\ell^+(t[i],t)$ is the sum of the utilities of itemsets of length ℓ in t^i which start with t[i] following the total order relation $>_{\mathcal{I}}$. Formally, we have: $\omega_\ell^+(t[i],t) = \sum_{\varphi \subseteq t^i \wedge |\varphi| = \ell-1} \mathsf{uOcc}(\{t[i]\} \cup \varphi,t)$. But $\mathsf{uOcc}(\{t[i]\}) \cup \varphi,t) = \mathsf{uOcc}(\{t[i]\},t) + \mathsf{uOcc}(\varphi,t)$ by definition. Then, $\omega_\ell^+(t[i],t) = \sum_{\varphi \subseteq t^i \wedge |\varphi| = \ell-1} \mathsf{uOcc}(\{t[i]\},t) + \mathsf{uOcc}(\varphi,t)$. Which implies: $\omega_\ell^+(t[i],t) = \sum_{\varphi \subseteq t^i \wedge |\varphi| = \ell-1} \mathsf{uOcc}(\{t[i]\},t) + \mathsf{uOcc}(\{t[i]\},t) = \mathsf{uOcc}(\{t[i]\},t) + \mathsf{uOcc}(\{t[i]\},t) = \mathsf{uOcc}(\{t[i]\},t) + \mathsf{uOcc}(\{t[i]\},t) = \mathsf{uOcc}(\{t[i]\},t) + \mathsf{uOcc}(\{t[i]\},t) + \mathsf{uOcc}(\{t[i]\},t) = \mathsf{uOcc}(\{t[i]\},t) + \mathsf{uOcc}(\{t[i]\},t) + \mathsf{uOcc}(\{t[i]\},t) = \mathsf{uOcc}(\{t[i]\},t) + \mathsf{uOcc}(\{t[i]\},t) = \mathsf{uOcc}(\{t[i]\},t) + \mathsf{uOcc}(\{$

Property 2 (Transaction weight). The weight of a transaction t under minimum m and maximum M length constraints, denoted by $\omega_{[m..M]}^{avgU}(t)$, is the sum of the average-utilities of the occurrences it contains. Formally,

$$\omega_{[m..M]}^{avgU}(t) = \sum_{\ell=m}^{M} \left(\frac{1}{\ell} \sum_{i=1}^{|t|} \omega_{\ell}^{+}(t[i], t) \right) = \sum_{\ell=m}^{M} \frac{1}{\ell} \left(\omega_{\ell}^{+}(t[1], t) + \omega_{\ell}^{-}(t[1], t) \right).$$

Proof (Property 2). By definition, the weight of the transaction t is the sum of the average-utilities of the pattern occurrences it contains. According to Property 1, the weight of the transaction t under the minimum m and maximum M length constraints is nothing more than the sum of the sum of the average-utilities of pattern occurrences that start with the item t[1] and respect the imposed length constraints, $\sum_{\ell=m}^{M} (\frac{1}{\ell} \times \omega_{\ell}^{+}(t[1],t))$, and that of the patterns that do not start

with the item t[1] but respect the length constraints, $\sum_{\ell=m}^{M}(\frac{1}{\ell}\times\omega_{\ell}^{-}(t[1],t))$. However, we know that $\sum_{\ell=m}^{M}(\frac{1}{\ell}\times\omega_{\ell}^{+}(t[1],t))+\sum_{\ell=m}^{M}(\frac{1}{\ell}\times\omega_{\ell}^{-}(t[1],t))=\sum_{m}^{M}\frac{1}{\ell}\times(\omega_{\ell}^{+}(t[1],t)+\omega_{\ell}^{-}(t[1],t))$. Hence the result. \Box

Lemma 1. Let ℓ be the length of the itemset to output, $\mathbb{P}_{\ell}^{t}(t[i]|\varphi,\ell')$ the probability to draw item t[i] in the transaction t after drawing $\ell - \ell^{\bar{t}}$ items and storing them in φ , with $e >_{\mathcal{I}} t[i]$ for all $e \in \varphi$. The probability to draw the t[i] knowing φ and ℓ' can be formulated as follows:

$$\mathbb{P}^t_{\ell}(t[i]|\varphi,\ell') = \frac{\sum_{\varphi' \subseteq t^i \wedge |\varphi'| = \ell'-1} \textit{uOcc}(\varphi \cup \{t[i]\} \cup \varphi',t)}{\sum_{\varphi' \subset t^{i-1} \wedge |\varphi'| = \ell'} \textit{uOcc}(\varphi \cup \varphi',t)}.$$

Proof (Lemma 1). By definition, the probability to draw the item t[i] of the transaction t after having drawing on it $\ell-\ell'$ items and store them in φ is nothing but the probability of drawing a pattern that begins with $\varphi \cup \{t[i]\}$, according to the order relation $>_{\mathcal{I}}$, among the set of patterns that start with φ . On the one hand, we know that the set of patterns of length ℓ that start with $\varphi \cup t[i]$ is defined by $\{\varphi'' \subseteq t: (\varphi'' = \varphi \cup \{t[i]\} \cup \varphi')(\varphi' \subseteq t^i)(|\varphi'| = \ell' - 1)\}$. The sum of the utilities of the patterns of this set is equal to $\sum_{\varphi' \subseteq t^i \wedge |\varphi'| = \ell' - 1} \mathsf{uOcc}(\varphi \cup \{t[i]\} \cup \varphi', t)$. On the other hand, we know that the set of patterns of length ℓ that start with φ is defined by $\{\varphi'' \subseteq t: (\varphi'' = \varphi \cup \varphi')(\varphi' \subseteq t^{i-1})(|\varphi'| = \ell')\}$. The sum of the utilities of the patterns of this set is equal to $\sum_{\varphi' \subseteq t^{i-1} \wedge |\varphi'| = \ell'} \mathsf{uOcc}(\varphi \cup \varphi', t)$. So $\mathbb{P}^t_{\ell}(t[i]|\varphi,\ell') = \frac{\sum_{\varphi' \subseteq t^i \wedge |\varphi'| = \ell' - 1} \mathsf{uOcc}(\varphi \cup \{t[i]\} \cup \varphi', t)}{\sum_{\varphi' \subseteq t^{i-1} \wedge |\varphi'| = \ell'} \mathsf{uOcc}(\varphi \cup \{t[i]\} \cup \varphi', t)}$. Hence the result. \square

Property 3. The probability to draw the item t[i] in the transaction t knowing the itemset φ and the length ℓ' , with $|\varphi| = \ell - \ell'$, denoted by $\mathbb{P}^t_{\ell}(t[i]|\varphi,\ell')$, is given by the following formula:

$$\mathbb{P}_{\ell}^{t}(t[i]|\varphi,\ell') = \frac{\left(\sum_{k < i \land t[k] \in \varphi} \omega_{1}(t[k],t)\right) \times \binom{\ell'-1}{|t^{i}|} + \omega_{\ell'}^{+}(t[i],t)}{\left(\sum_{k < i \land t[k] \in \varphi} \omega_{1}(t[k],t)\right) \times \binom{\ell'}{|t^{i-1}|} + \left(\sum_{\star \in \{+,-\}} \omega_{\ell'}^{\star}(t[i],t)\right)}.$$

The probability that the item t[i] is not drawn knowing φ and ℓ' is $1 - \mathbb{P}^t_{\ell}(t[i]|\varphi, \ell')$.

The proofs of these two formulas follow from the fact that the probability of drawing t[i] depends on the utilities of the items already drawn and those of the items which follow it to form a pattern of length ℓ .

 $\begin{array}{l} \textit{Proof (Property 3). From the lemma 1, we have:} \\ \mathbb{P}_{\ell}^{t}(t[i]|\varphi,\ell') = \frac{\sum_{\varphi' \subseteq t^{i} \wedge |\varphi'| = \ell'-1} \mathtt{uOcc}(\varphi \cup \{t[i]\} \cup \varphi',t)}{\sum_{\varphi' \subseteq t^{i-1} \wedge |\varphi'| = \ell'} \mathtt{uOcc}(\varphi \cup \varphi',t)}. \end{array}$

First, by definition we have $\mathtt{uOcc}(\varphi \cup \{t[i]\} \cup \varphi', t) = \mathtt{uOcc}(\varphi, t) + \mathtt{uOcc}(\{t[i]\} \cup \varphi', t)$. Let $z_i = \sum_{\varphi' \subseteq t^i \wedge |\varphi'| = \ell' - 1} \mathtt{uOcc}(\varphi \cup \{t[i]\} \cup \varphi', t)$. That implies that $z_i = \sum_{\varphi' \subseteq t^i \wedge |\varphi'| = \ell' - 1} (\mathtt{uOcc}(\varphi, t) + \mathtt{uOcc}(\{t[i]\} \cup \varphi', t))$. We then have: $z_i = \sum_{\varphi' \subseteq t^i \wedge |\varphi'| = \ell' - 1} \mathtt{uOcc}(\varphi, t) + \sum_{\varphi' \subseteq t^i \wedge |\varphi'| = \ell' - 1} \mathtt{uOcc}(\{t[i]\} \cup \varphi', t)$. But

 $\sum_{\varphi'\subseteq t^i \wedge |\varphi'| = \ell'-1} \mathsf{uOcc}(\varphi,t) = \mathsf{uOcc}(\varphi,t) \times \binom{\ell'-1}{|t^i|} \text{ and } \sum_{\varphi'\subseteq t^i \wedge |\varphi'| = \ell'-1} \mathsf{uOcc}(\{t[i]\} \cup \varphi',t) = \omega_{\ell'}^+(t[i],t) \text{ by definition. Then } z_i = \mathsf{uOcc}(\varphi,t) \times \binom{\ell'-1}{|t^i|} + \omega_{\ell'}^+(t[i],t).$ We also know that $\mathsf{uOcc}(\varphi,t) = \sum_{k < i \wedge t[k] \in \varphi} \omega_1(t[k],t)$. So we have : $z_i = \left(\sum_{k < i \wedge t[k] \in \varphi} \omega_1(t[k],t)\right) \times \binom{\ell'-1}{|t^i|} + \omega_{\ell'}^+(t[i],t).$ Second, we have $\mathsf{uOcc}(\varphi \cup \varphi',t) = \mathsf{uOcc}(\varphi,t) + \mathsf{uOcc}(\varphi',t)$. By setting $Z_i = \sum_{\varphi' \subseteq t^{i-1} \wedge |\varphi'| = \ell'} \mathsf{uOcc}(\varphi \cup \varphi',t)$, we get then $Z_i = \sum_{\varphi' \subseteq t^{i-1} \wedge |\varphi'| = \ell'} \mathsf{uOcc}(\varphi,t) + \sum_{\varphi' \subseteq t^{i-1} \wedge |\varphi'| = \ell'} \mathsf{uOcc}(\varphi',t)$. But $\sum_{\varphi' \subseteq t^{i-1} \wedge |\varphi'| = \ell'} \mathsf{uOcc}(\varphi,t) = \mathsf{uOcc}(\varphi,t) \times \binom{\ell'}{|t^{i-1}|} = \left(\sum_{k < i \wedge t[k] \in \varphi} \omega_1(t[k],t)\right) \times \binom{\ell'}{|t^{i-1}|} \text{ et } \sum_{\varphi' \subseteq t^{i-1} \wedge |\varphi'| = \ell'} \mathsf{uOcc}(\varphi',t) = \sum_{\star \in \{+,-\}} \omega_{\ell'}^{\star}(t[i],t)$, so $Z_i = \left(\sum_{k < i \wedge t[k] \in \varphi} \omega_1(t[k],t)\right) \times \binom{\ell'-1}{|t^{i-1}|} + c(t)$

Finally,
$$\mathbb{P}^t_{\ell}(t[i]|\varphi,\ell') = \frac{z_i}{Z_i} = \frac{\left(\sum_{k. $\square$$$

Property 4 (Correctness). Let \mathcal{D} be a transactional database having utilities on items with a total order relation $>_{\mathcal{I}}$, and m and M two integers such that $m \leq M$. HAISAMPLER randomly draws a pattern φ from the language $\mathcal{L}(\mathcal{D})$ with a probability equal to $u_{[m..M]}^{avg}(\varphi,\mathcal{D})/Z$ where Z is the constant of normalization.

Proof (Property 4). Let m be the minimum and M the maximum length constraints, the probability of drawing the pattern φ of length ℓ in the database \mathcal{D} denoted by $\mathbb{P}_{[m..M]}(\varphi,\mathcal{D})$, and Z a normalization constant defined by $Z = \sum_{\varphi' \in \mathcal{L}(\mathcal{D})} u_{[m..M]}^{avg}(\varphi',\mathcal{D})$. We know that $: \mathbb{P}_{[m..M]}(\varphi,\mathcal{D}) = \sum_{(j,t)\in\mathcal{D}} \left(\mathbb{P}_{[m..M]}(t_j,\mathcal{D}) \times \mathbb{P}_{[m..M]}(\varphi,t_j)\right)$. But $\mathbb{P}_{[m..M]}(t_j,\mathcal{D}) = \frac{\omega_{[m..M]}^{avgU}(t_j)}{Z}$, then $\mathbb{P}_{[m..M]}(\varphi,\mathcal{D}) = \sum_{(j,t)\in\mathcal{D}} \left(\frac{\omega_{[m..M]}^{avgU}(t_j)}{Z} \times \mathbb{P}_{[m..M]}(\ell|t_j) \times \mathbb{P}_{[m..M]}^{t_j}(\varphi|\ell)\right)$. (1)

We also know that: $\mathbb{P}_{[m..M]}(\varphi,t_j) = \mathbb{P}_{[m..M]}(\ell|t_j) \times \mathbb{P}_{[m..M]}^{t_j}(\varphi|\ell)$. (2)

But we have: $\mathbb{P}_{[m..M]}(\ell|t_j) = \frac{\omega_{[\ell..\ell]}^{avgU}(t_j)}{\omega_{[m..M]}^{avgU}(t_j)}$ and $\mathbb{P}_{[m..M]}^{t_j}(\varphi|\ell) = \frac{u_{[\ell..\ell]}^{avgU}(t_j) \times \ell}{\omega_{[\ell..\ell]}^{avgU}(t_j) \times \ell}$ then by substituting the two terms in (2) we obtain $\mathbb{P}_{[m..M]}(\varphi,t_j) = \frac{\omega_{[\ell..\ell]}^{avgU}(t_j)}{\omega_{[m..M]}^{avgU}(t_j) \times \ell} = \frac{u_{[m..M]}^{avgU}(\varphi,t_j)}{\omega_{[m..M]}^{avgU}(t_j) \times \ell} = \frac{u_{[m..M]}^{avgU}(\varphi,t_j)}{\omega_{[m..M]}^{avgU}(t_j) \times \ell}$. Now, if we replace $\mathbb{P}_{[m..M]}(\varphi,t_j)$ in (1) by its last expression, we get: $\mathbb{P}_{[m..M]}(\varphi,\mathcal{D}) = \sum_{(j,t)\in\mathcal{D}} \left(\frac{\omega_{[m..M]}^{avgU}(t_j)}{Z} \times \frac{\omega_{[m..M]}^{avgU}(t_j) \times \ell}{\omega_{[m..M]}^{avgU}(t_j) \times \ell}\right) = \frac{1}{Z} \times \frac{\sum_{(j,t)\in\mathcal{D}} u_{[m..M]}^{avgU}(\varphi,\mathcal{D})}{\ell}$. But by definition, we have $\frac{\sum_{(j,t)\in\mathcal{D}} u_{[m..M]}^{avgU}(\varphi,t_j)}{\ell} = u_{[m..M]}^{avg}(\varphi,\mathcal{D})$, so $\mathbb{P}_{[m..M]}(\varphi,\mathcal{D}) = u_{[m..M]}^{avg}(\varphi,\mathcal{D})$. Hence the result. \square

3 Additional experiments

Fig. 1. Dispersion of average utilities of 10,000 sampled patterns