Homework 2 – Analytical Derivation of LOOCV MSE — PHAM Nam

Objective

Show that the mean squared error for leave-one-out cross-validation (LOOCV) of ℓ_2 -regularized regression using a linear model

$$f_{\theta}(x) = \sum_{j=1}^{b} \theta_j \phi_j(x)$$

can be analytically calculated as:

LOOCV MSE =
$$\frac{1}{n} \left\| \tilde{H}^{-1} H y \right\|^2$$

where:

$$H = \Phi(\Phi^{\top}\Phi + \lambda I)^{-1}\Phi^{\top}$$

$$\tilde{H} = \operatorname{diag}(H_{11}, H_{22}, \dots, H_{nn})$$

1. Linear Regression Setup

Let $\Phi \in \mathbb{R}^{n \times b}$ be the design matrix, with rows $\phi_i^{\top} = \Phi_{i,:}$, and $y \in \mathbb{R}^n$ the output vector. The ℓ_2 -regularized least squares solution is:

$$\hat{\theta} = (\Phi^{\top} \Phi + \lambda I)^{-1} \Phi^{\top} y$$

The predicted output is:

$$\hat{y} = \Phi \hat{\theta} = H y, \quad \text{where } H = \Phi (\Phi^{\top} \Phi + \lambda I)^{-1} \Phi^{\top}$$

2. Leave-One-Out Prediction

To compute the prediction $\hat{y}_i^{(-i)}$ excluding the *i*-th data point, define:

$$U = \Phi^{\top} \Phi + \lambda I, \quad \phi_i = \Phi_{i,:}^{\top}$$

Use the Sherman-Morrison-Woodbury identity:

$$(U - \phi_i \phi_i^{\top})^{-1} = U^{-1} + \frac{U^{-1} \phi_i \phi_i^{\top} U^{-1}}{1 - \phi_i^{\top} U^{-1} \phi_i}$$

This leads to:

$$\hat{y}_i^{(-i)} = \frac{\hat{y}_i - H_{ii}y_i}{1 - H_{ii}} \quad \Rightarrow \quad y_i - \hat{y}_i^{(-i)} = \frac{y_i - \hat{y}_i}{1 - H_{ii}}$$

3. LOOCV MSE

Hence, the LOOCV error becomes:

LOOCV MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i^{(-i)})^2 = \frac{1}{n} \sum_{i=1}^{n} (\frac{y_i - \hat{y}_i}{1 - H_{ii}})^2$$

4. Final Form

This can be expressed using \tilde{H}^{-1} as:

$$\text{LOOCV MSE} = \frac{1}{n} \left\| \tilde{H}^{-1} H y \right\|^2$$

where \tilde{H} is a diagonal matrix with entries H_{ii} .