# **Markov Chains**

# Adam Kelly (ak2316@cam.ac.uk)

October 14, 2021

A stochastic process is said to have the 'Markov property' if, conditional on its present value, the future is independent of the past.

This is a *restrictive* assumption, but we do end up with a useful model with a rich mathematical theory, which we shall study in this course.

This article constitutes my notes for the 'Markov Chains' course, held in Michaelmas 2021 at Cambridge. These notes are *not a transcription of the lectures*, and differ significantly in quite a few areas. Still, all lectured material should be covered.

### **Contents**

|   | The Markov Property  1.1 What is a Markov Chain? | <b>1</b> |
|---|--------------------------------------------------|----------|
| 2 | Introduction                                     | 2        |
| 3 | MISSING LECTURE 2                                | 5        |
|   | Lecture 3 4.1 Communicating Classes              |          |

# §1 The Markov Property

### §1.1 What is a Markov Chain?

Let S be a countable set (the set of possible 'states'), and let  $X_n$  be a sequence of random variables taking values in S.

### **Definition 1.1** (Markov Chain)

The sequence of random variables  $X_n$  is a Markov chain if it satisfies the Markov property

$$\mathbb{P}(X_{n+1} = x_{n+1} \mid X_n = x_n, X_0 = x_0) = \mathbb{P}(X_{n+1} = x_{n+1} \mid X_n = x_n).$$

The Markov chain is said to be **homogeneous** if for all  $i, j \in S$  the conditional probability  $\mathbb{P}(X_{n+1} = j \mid X_n = i)$  is independent of n.

In this course we are only going to study homogeneous Markov chains.

# §2 Introduction

For this whole course, I will be a finite or countable set. All of our random variables will also be defined on the same probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ .

### **Definition 2.1** (Markov Chain)

A stochastic process  $(X_n)_{n\geq 0}$  is called a Markov chain if for all  $n\geq 0$  and all  $x_0,\ldots,x_{n+1}\in I$ , we have

$$\mathbb{P}(X_{n+1} = x_{n+1} \mid X_n = x_n, \dots, X_0 = x_0) = \mathbb{P}(X_{n+1} = x_{n+1} \mid X_n = x_n).$$

**Remark.** This definition gives a *discrete time* Markov chain. It is possible to define a continuous time Markov chain, but we won't worry about that for now.

If  $\mathbb{P}(X_{n+1} = y \mid X_n = x)$  for all  $x, y \in I$  is independent of n, then X is called **time-homogeneous**. Otherwise, it is **time-inhomogeneous**. In this course, we will only study time-homogeneous Markov chains.

We will write  $P(x,y) = \mathbb{P}(X_1 = y \mid X_0 = x)$ , where  $x,y \in I$ . We call P a **stochastic** matrix, because

$$\sum_{y \in I} P(x, y) = 1,$$

that is, the sum of each row is 1.

**Remark.** The index set does not have to be  $\mathbb{N}$ , it could be say  $\{0, 1, \dots, N\}$  for  $N \in \mathbb{N}$ .

So to characterize a Markov chain, we need this matrix P, giving the probability of passing from a state x to a state y. We call this matrix the **transition matrix** of X.

### **Definition 2.2** (Markov)

We say that X is  $Markov(\lambda, P)$  if  $X_0$  has distribution  $\lambda$  and P is the transition matrix. That is,

(i) 
$$\mathbb{P}(X_0 = x_0) = \lambda_{x_0}, x_0 \in I$$
,

(ii) 
$$\mathbb{P}(X_{n+1} = x_{n+1} \mid X_n = x_n, \dots, X_0 = x_0) = P(x_n, x_{n+1}) = P_{x_n x_{n+1}}.$$

We usually represent a Markov chain by its diagram corresponding to the allowed transitions.

### Example 2.3 (Diagram of a Markov Chain)

Let  $\alpha, \beta \in (0, 1)$ . We consider the matrix

$$P = \begin{pmatrix} \alpha & 1 - \alpha \\ 1 - \beta & \beta \end{pmatrix}.$$

This is a transition matrix on two states which we can call 1 and 2. Here  $\alpha$  is the

<sup>&</sup>lt;sup>a</sup>We assume here that we are not conditioning on a zero probability event.

probability of staying at 1, and  $1-\alpha$  is the probability of moving from state 2 when at state 1.

A diagram of this is given below. This is a directed graph with the relevant probabilities labelling each edge.



### Example 2.4

Suppose that we have the transition matrix

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ 1 & 0 & 0 \end{pmatrix}.$$

This is a transition matrix on three states and corresponds with the diagram below.



### Theorem 2.5

The process X is Markov( $\lambda, P$ ) if and only if for all  $n \geq 0$  and all  $x_0, \ldots, x_n \in I$  we have

$$\mathbb{P}(X_0 = x_0, \dots, X_n = x_n) = \lambda_{x_0} P(x_0, x_1) \cdots P(x_{n-1}, x_n).$$

*Proof.* First suppose that X is  $Markov(\lambda, P)$ . Then

$$\mathbb{P}(X_n = x_n, \dots, X_0 = x_0) = \mathbb{P}(X_n = x_n \mid X_{n-1} = x_{n-1}, \dots, X_0 = x_0)$$

$$\cdot \mathbb{P}(X_{n-1} = x_{n-1}, \dots, X_0 = x_0)$$

$$= P(x_{n-1}, x_n) \cdot \mathbb{P}(X_{n-1} = x_{n-1}, \dots, X_0 = x_0)$$

$$= P(x_0, x_1) \dots P(x_{n-1}, x_n) \mathbb{P}(X_0 = x_0)$$

$$= \lambda_{x_0} P(x_0, x_1) \dots P(x_{n-1}, x_n),$$

as required.

Now suppose that the property holds. Then n=0 gives  $\mathbb{P}(X_0=x_0)=\lambda_{x_0}$ , so our

base case holds. Then

$$\mathbb{P}(X_n = x_0 n \mid X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = \frac{\lambda_{x_0} P(x_0, x_1) \cdots P(x_{n-1}, x_n)}{\lambda_{x_0} P(x_0, x_1) \cdots P(x_{n-2}, x_{n-1})}$$
$$= P(x_{n-1}, x_n)$$

Now we are going to define some useful notation.

# **Definition 2.6** ( $\delta_i$ -mass)

For  $i \in I$ , the  $\delta_i$ -mass of i is defined as  $\delta_{ij} = \mathbb{1}(i=j)$ .

Recall the notion of independence for random variables. Let  $X_1, \ldots, X_n$  be discrete random variables. They are *independent* if for all  $x_1, \ldots, x_n \in I$ , we have

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n \mathbb{P}(X_i = x_i).$$

We have a similar notion for sequences of random variables. We say a sequence  $(X_n)_{n\geq 0}$  is *independent* if for all  $i_1 < i_2 < \cdots < i_k$  and all  $x_1, \ldots, x_k$ ,

$$\mathbb{P}(X_{i_1} = x_1, \dots, X_{i_k} = x_k) = \prod_{j=1}^k \mathbb{P}(X_{i_j} = x_j).$$

If  $X = (X_n)_{n \ge 0}$  and  $Y = (Y_n)_{n \ge 0}$  are two sequences of random variables, they are independent if for all k, m and  $i_1 < \cdots < i_k, j_1 < \cdots j_m$  we have

$$\mathbb{P}(X_{i_1} = x_1, \dots, X_{i_k} = x_k, Y_{j_1} = y_1, \dots, Y_{j_m} = y_m)$$
  
=  $\mathbb{P}(X_{i_1} = x_1, \dots, X_{i_k} = x_k) \cdot \mathbb{P}(Y_{j_1} = y_1, \dots, Y_{j_m} = y_m)$ 

### **Theorem 2.7** (Simple Markov Property)

Suppose that  $X \sim \text{Markov}(\lambda, P)$ . Fix  $m \in \mathbb{N}$  and  $i \in I$ . Conditional on  $X_m = i$ , the process  $(X_{m+n})_{n\geq 0}$  is  $\text{Markov}(\delta_i, P)$  and it is independent of  $X_0, \ldots, X_m$ .

*Proof.* We have

$$\mathbb{P}(X_{m+n} = x_{m+n}, \dots, X_m = x_m \mid X_m = i) = \frac{\mathbb{P}(X_{m+n} = x_{m+n}, \dots, X_m = x_m)\delta_{ix_m}}{\mathbb{P}(X_m = i)}.$$

We can rewrite the numerator as

$$\mathbb{P}(X_{m+n} = x_{m+n}, \dots, X_m = x_m) 
= \sum_{x_0, \dots, x_{m-1} \in I} \mathbb{P}(X_{m+n} = x_{m+n}, \dots, X_m = x_m, X_{m-1} = x_{m-1}, \dots, X_0 = x_0) 
= \sum_{x_0, \dots, x_{m-1}} \lambda_{x_0} P(x_0, x_1) \cdots P(x_{m-1}, x_m) P(x_m, x_{m+1}) \cdots P(x_{m+n-1}, x_{m+n}) 
= P(x_m, x_{m+1}) \cdots P(x_{m+n-1}, x_{m+n}) \mathbb{P}(X_m = x_m).$$

Substituting this back into our original expression, we get

$$\mathbb{P}(X_{m+n} = x_{m+n}, \dots, X_m = x_m \mid X_m = i) = \delta_{ix_m} P(x_m, x_{m+1}) \cdots P(x_{m+n-1}, x_{m+n}),$$
showing that  $(X_{m+n})_{n>0}$  is Markov $(\delta_i, P)$  conditional on  $X_m = i$ .

**Remark.** Informally, this theorem says 'past and future are independent given the present'.

# §3 MISSING LECTURE 2

# §4 Lecture 3

# Example 4.1

Given the transition matrix

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix},$$

we want to find  $p_{11}(n)$ . The eigenvalues of this matrix are 1, i/2 and -i/2. We write  $i/2 = (\cos \pi/2 + i \sin \pi/2)/2$ , and then we can write the general form for  $p_{11}(n)$  as

$$p_{11}(n) = \alpha + \beta \cdot \left(\frac{1}{2}\right)^n \cos\left(\frac{n\pi}{2}\right) + \gamma \cdot \left(\frac{1}{2}\right)^n \sin\left(\frac{n\pi}{2}\right).$$

We can then compute by hand  $p_{11}(0) = 1$ ,  $p_{11}(1) = 0$  and  $p_{11}(2) = 0$ . So, if you solve this system for  $\alpha, \beta, \gamma$ , you get

$$p_{11}(n) = \frac{1}{5} + \left(\frac{1}{2}\right)^n \left(\frac{4}{5}\cos\left(\frac{n\pi}{2}\right) - \frac{2}{5}\sin\left(\frac{n\pi}{2}\right)\right).$$

### §4.1 Communicating Classes

#### **Definition 4.2**

X is a Markov chain with transition matrix P and values in I. For  $x, y \in I$  we say that x leads to y and write it  $x \to y$  if

$$\mathbb{P}(X_m = y \text{ for some } n \ge 0) > 0.$$

We say that x communicates with y and write  $x \longleftrightarrow y$  if both  $x \to y$  and  $y \to x$ .

#### Theorem 4.3

The following are equivalent:

- (i)  $x \to y$ ;
- (ii) There exists a sequence of states  $x = x_0, x_1, \dots, x_k = y$  such that

$$P(x_0, x_1)P(x_1, x_2)\cdots P(x_{k-1}, x_k) > 0$$
;

(iii) There exists  $n \ge 0$  such that  $p_{xy}(n) > 0$ .

Proof. Trivial.  $\Box$ 

# Corollary 4.4

 $\longleftrightarrow$  is an equivalence relation on I.

*Proof.* Trivial.  $\Box$ 

### **Definition 4.5** (Communicating Classes)

The equivalence classes induced by  $\longleftrightarrow$  on I are called **communicating classes**.

A communicating class C is **closed** if whenever  $x \in C$  and  $x \to y$  then  $y \in C$ .

A matrix P is called **irreducible** if it has a single communicating class, that is, for all  $x, y \in I$  we have  $x \longleftrightarrow y$ .

A state x is called **absorbing** if  $\{x\}$  is a closed class.

# §4.2 Hitting Times

### **Definition 4.6**

For  $A \subseteq I$ , we define  $T_A$  to be the **hitting time** of  $A, T_A : \Omega \to \{0, 1, 2, \dots\} \cup \{\infty\}$ , defined by  $T_A(\omega) = \inf\{n \ge 0 : X_n(\omega) \in A\}$ , where we take  $\inf \emptyset = \infty$ .

The **hitting probability** of A is  $h^A: I \to [0,1]$  such that  $h_i^A = \mathbb{P}_i(T_A < \infty)$ .

The **mean hitting time** of A is  $k^A: I \to \mathbb{R}$  with  $k_i^A = \mathbb{E}_i[T_A] = \sum_{n=0}^{\infty} n \cdot \mathbb{P}_i(T_a = n) + \infty \cdot \mathbb{P}_i(T_a = \infty)$ .

### Example 4.7

Consider the Markov chain in the diagram below.



We take  $A = \{4\}$ , and want to find  $h_2^A = \mathbb{P}_2(T_A < \infty)$ . We have

$$h_2^A = \frac{1}{2}h_3^A$$

$$h_3^A = \frac{1}{2} \cdot 1 + \frac{1}{2}h_2^A$$

$$\implies h_2^A = \frac{1}{3}.$$

If instead we took  $B=\{1,4\}$  and wanted to find  $k_2^B,$  we would get

$$k_2^B = 1 + \frac{1}{2}k_3^B$$
$$k_3^B = 1 + \frac{1}{2}k_2^B$$
$$\implies k_2^B = 2.$$

In the computations above, we really should check that this is a valid method (though it is quite intuitive).

### Theorem 4.8

Let  $A \subseteq I$ . The vector  $(h_i^A)_{i \in A}$  is the minimal non-negative solution to

$$h_i^A = \begin{cases} 1 & \text{if } i \in A, \\ \sum_j P(i,j) h_j^A & \text{if } i \notin A, \end{cases}$$

where minimality means that if  $(x_i)_{i \in A}$  is another solution to the linear system, then  $x_i \geq h_i^A$  for all i.

*Proof.* We first check that  $h_i$  does indeed solve this system.