纳什均衡: 最优反应, 下划线法

授课教师: 雷浩然

湖南大学课程

纳什均衡: Nash (1950) 和 Nash (1951)

John Nash (1950): "Equilibrium points in n-person games"

- 在这篇论文中, Nash 提出均衡的概念, 并用 Kakutani 不动点定理证明了均衡的存在性.
- 课程网站提供了论文的 PDF. 全文仅一页
- 后人将这种均衡称为纳什均衡,均衡的存在性定理称为纳什定理.

在随后的一篇更正式的论文中, Nash 给出了一个均衡存在性的简化证明(主要工具是 Brouwer 不动点定理), 以及纳什均衡在扑克牌游戏中的应用.

• John Nash (1951): "Non-cooperative games". 全文十页

最优反应

考虑如下两人同时行动博弈:

- 参与人: $N = \{1, 2\}$
- 行动集: *A*₁, *A*₂
- 效用函数: $u_1(a_1,a_2)$, $u_2(a_1,a_2)$

最优反应

考虑如下同时行动博弈:

- 参与人: $N = \{1, 2\}$
- 行动集: A₁, A₂
- 效用函数: $u_1(a_1,a_2)$, $u_2(a_1,a_2)$

定义: 给定参与人2的行动 a_2 , 若行动 $a_1^* \in A_1$ 最大化了此时参与人 1 的效用,则称 a_1^* 是对 a_2 的最优反应.

• 例: 给定李四的行动 $a_2=$ 石头, 张三的最优反应: $a_1^*=$ 布

最优反应: 数学描述

给定 $a_2 \in A_2$, 若 a_1^* 是如下优化问题的解:

$$\max_{a_1\in A_1}u_1(a_1,a_2)$$

则称 a_1^* 是对 a_2 的最优反应.

- 这个定义和前一页用文字描述的定义是等价的, 只不过这里用到了最优化 (optimization) 的数学语言.
- 随着课程的不断深入, 我们会反复使用最优化的工具. 你需要熟悉上面用到的数学符号.

对于有限博弈(即可以用收益矩阵来描述的博弈), 我们一般用下划线来标出参与人的最优反应.

张三\李四	左	中	右
上	1,0	1,3	0 , 1
下	0,4	0,2	2,0

下划线表示最优反应

<u>1</u> , 0	1, 3	0,1
0 , <u>4</u>	0,2	<u>2</u> , 0

最优反应: 约会博弈

张三 \ 李四	网吧	商场
网吧	(2,1)	(0,0)
商场	(0,0)	(1, 2)

最优反应: 约会博弈

张三 \ 李四	网吧	商场
网吧	(2,1)	(0,0)
商场	(0,0)	(1,2)

张三 \ 李四	网吧	商场
网吧	$(\underline{2},\underline{1})$	(0,0)
商场	(0,0)	$(\underline{1},\underline{2})$

纳什均衡: 两人博弈情形

定义: 对于两人博弈, 若策略组合 (a_1, a_2) 满足如下要求:

- a_1 是对 a_2 的最优反应
- a_2 是对 a_1 的最优反应

则称 (a_1,a_2) 为 纳什均衡.

• 也就是说, 纳什均衡中每个参与人的策略都是针对其他参与人策略的最优反应.

纯策略与混合策略

- 严格来讲, 我们在上一页给出的, 是纯策略纳什均衡的定义.
- 和纯策略相对应的另一个概念是混合策略, 也叫随机策略.
 - 顾名思义, 在混合策略 (随机策略) 中, 参与人的行动是随机的.
 - 。 我们需要使用基本的概率论工具来讨论混合策略.
- 你也可以把"混合策略"叫作"混合行动".
 - 在这一章里(完备信息静态博弈),策略和行动这两个概念没有区别.
- 我们会在第二章的最后介绍混合策略以及对应的混合策略均衡.
 - 这一讲里, 我们只讨论纯策略均衡.

理解纳什均衡

 (a_1,a_2) 是纳什均衡意味着:

- 张三和李四都没有**单方面**偏离 (a_1, a_2) 的激励.
- 纳什均衡 \neq 社会最优. 博弈中可能存在某个结果 (a'_1, a'_2) , 使得张三和李四的福利都高于均衡 (a_1, a_2) 对应的福利, 并且 (a'_1, a'_2) 不是纳什均衡.
 - 例: 囚徒困境

理解纳什均衡

 (a_1,a_2) 是纳什均衡意味着:

- 张三和李四都没有**单方面**偏离 (a_1, a_2) 的激励.
- 纳什均衡 \neq 社会最优. 博弈中可能存在某个结果 (a'_1, a'_2) , 使得张三和李四的福利都高于均衡 (a_1, a_2) 对应的福利, 并且 (a'_1, a'_2) 不是纳什均衡.
 - 例: 囚徒困境

寻找纳什均衡: 下划线法

- 根据纳什均衡的定义, 找纳什均衡就是在找参与人可能的最优反应.
- 如果某个博弈结果中, 所有参与人的收益都有下划线, 那么导致这个结果的策略组合就是一个纳什均衡.

寻找纳什均衡: 下划线法

- 根据纳什均衡的定义, 找纳什均衡就是在找参与人可能的最优反应.
- 如果某个博弈结果中, 所有参与人的收益都有下划线, 那么导致这个结果的策略组合就是一个纳什均衡.

张三 \ 李四	坦白	抵赖
坦白	(-1, -1)	(1,-3)
抵赖	(-3, 1)	(0, 0)

寻找纳什均衡: 下划线法

- 根据纳什均衡的定义, 找纳什均衡就是在找参与人可能的最优反应.
- 如果某个博弈结果中, 所有参与人的收益都有下划线, 那么导致这个结果的策略组合就是一个纳什均衡.

张三 \ 李四	坦白	抵赖
坦白	(-1,-1)	(1, -3)
抵赖	(-3, 1)	(0,0)

• (坦白, 坦白) 是纳什均衡.

寻找纳什均衡: 约会博弈

张三 \ 李四	网吧	商场
网吧	$(\underline{2},\underline{1})$	(0,0)
商场	(0,0)	$(\underline{1},\underline{2})$

寻找纳什均衡: 约会博弈

张三 \ 李四	网吧	商场
网吧	$(\underline{2},\underline{1})$	(0,0)
商场	(0,0)	$(\underline{1},\underline{2})$

- 存在两个(纯策略)纳什均衡: (网吧, 网吧), (商场, 商场)
- 这个博弈其实还存在另一个混合策略纳什均衡, 我们之后会介绍.

寻找纳什均衡: 石头剪刀布

张三 \ 李四	石头	剪刀	布
石头	(0, 0)	(1, -1)	(-1, 1)
剪刀	(-1, 1)	(0, 0)	(1, -1)
布	(1, -1)	(-1, 1)	(0,0)

寻找纳什均衡: 石头剪刀布

张三 \ 李四	石头	剪刀	布
石头	(0, 0)	(1, -1)	(-1, 1)
剪刀	(-1, 1)	(0, 0)	(1, -1)
布	(1, -1)	(-1, 1)	(0, 0)

- 不存在纯策略纳什均衡
- 这个博弈存在混合策略纳什均衡, 我们之后会介绍.

(纯策略)纳什均衡定义: 多人情形

- $i(a_1,...,a_n)$ 为参与人的**策略组合**, 其中 a_i 为参与人 i 的策略.
- 纳什均衡是一组特殊的策略组合

$$(a_1^*,...,a_n^*),$$

其中对任意参与人 $i \in N$, 其行动 a_i^* 都是对其他参与人行动

$$a_{-i}^* = (a_1^*, \dots, a_{i-1}^*, a_{i+1}^*, a_n^*),$$

的最优反应.

问: 对于给出了收益矩阵的两人博弈, 你觉得找纳什均衡和重复剔除严格劣策略哪个更复杂?

问: 对于给出了收益矩阵的两人博弈, 你觉得找纳什均衡和重复剔除严格劣策略哪个更复杂?

• 重复剔除严格劣策略更复杂. (对比前一讲中, 3 × 3 收益矩阵的练习题)

问: 对于给出了收益矩阵的两人博弈, 你觉得找纳什均衡和重复剔除严格劣策略哪个更复杂?

- 重复剔除严格劣策略更复杂. (对比前一讲中, 3 × 3 收益矩阵的练习题)
- 但是,等我们之后介绍了混合策略均衡,你就会发现,还是找纳什均衡更复杂. 因为我们不仅要考虑纯策略,还要考虑混合策略.

- 一般情况下,证明 (a_1,a_2) 不是纳什均衡比证明 (a_1,a_2) 是纳什均衡容易.
- 证明 (a_1, a_2) 不是纳什均衡, 只需下面两者之一即可:
 - 1. 存在某个张三策略 a_1' 使得 $u_1(a_1,a_2) < u_1(a_1',a_2)$
 - 2. 存在某个李四策略 a_2' 使得 $u_1(a_1,a_2) < u_1(a_1,a_2')$

- 一般情况下,证明 (a_1,a_2) 不是纳什均衡比证明 (a_1,a_2) 是纳什均衡容易.
- 证明 (a_1, a_2) 不是纳什均衡, 只需下面两者之一即可:
 - 1. 存在某个张三策略 a_1' 使得 $u_1(a_1,a_2) < u_1(a_1',a_2)$
 - 2. 存在某个李四策略 a_2' 使得 $u_1(a_1,a_2) < u_1(a_1,a_2')$
- 证明 (a_1, a_2) 是纳什均衡, 你需要验证下列所有不等式都成立:

$$u_1(a_1,a_2) \geq u_1(a_1',a_2) \quad orall a_1' \in A_1$$

$$u_2(a_1,a_2) \geq u_2(a_1,a_2') \quad orall a_2' \in A_2$$

- 一般情况下,证明 (a_1,a_2) 不是纳什均衡比证明 (a_1,a_2) 是纳什均衡容易.
- 证明 (a_1, a_2) 不是纳什均衡, 只需下面两者之一即可:
 - 1. 存在某个张三策略 a_1' 使得 $u_1(a_1,a_2) < u_1(a_1',a_2)$
 - 2. 存在某个李四策略 a_2' 使得 $u_1(a_1,a_2) < u_1(a_1,a_2')$
- 证明 (a_1, a_2) 是纳什均衡, 你需要验证下列所有不等式都成立:

$$u_1(a_1,a_2) \geq u_1(a_1',a_2) \quad orall a_1' \in A_1$$

$$u_2(a_1,a_2) \geq u_2(a_1,a_2') \quad orall a_2' \in A_2$$

下一讲中,我们讨论无穷博弈中的纳什均衡,到时会用到这个技巧.