

Retrieval-Augmented Generation

Technical Interview

Eng. Miguel Salazar

Agenda

- 1. Problem & Goal Statement
- 2. Solution Overview
- 3. High-Level Architecture Diagram
- 4. Component Breakdown
- 5. Implementation Strategy
- 6. Technical Challenges & Trade-offs
- 7. Demo Instructions & GitHub
- 8. Next Steps & Production Considerations

Problem & Goal Statement

- **Objective:** Build a RAG system using a local LLM and custom embedding-based retrieval.
- Goal: Answer user queries grounded on knowledge extracted from provided PDFs.
- Constraints:
 - Must run locally (no cloud APIs).
 - Efficient on CPU (low-resource hardware).
 - Deliver notebook + architecture PDF + GitHub link.

Solution Overview

- Local semantic search using SentenceTransformers (MiniLM).
- Local response generation using Falcon-RW-1B.
- Query flow:
 - Ingest PDF files.
 - Chunk and embed text.
 - Retrieve relevant chunks using cosine similarity.
 - Generate response via local LLM.

Component Breakdown

1. PDF Loader:

Uses PyMuPDF to extract text.

2. Text Chunker:

Splits documents into ~200 token chunks with sentence-awareness.

3. Embedding Generator:

SentenceTransformer (MiniLM-L6-v2) locally hosted.

4. Vector Search:

Cosine similarity using sklearn between question and stored chunks.

5. Prompt Constructor:

Concatenates top-k retrieved chunks with the user query.

6. Generator:

transformers.pipeline() with Falcon-RW-1B.

Implementation Plan

Technical Challenges & Trade-Offs

Area	Challenge	Resolution
Model Size	Limited RAM/CPU	Used MiniLM + Falcon-RW- 1B
Chunk Quality	Overlapping/redundant chunks	Refined token-based chunking
Output Length	Truncated/incomplete answers	Tweaked max_new_tokens, prompt
No GPU	Inference speed	Used efficient models + batching

Demo & Repo Instructions

- ✓ **Jupyter Notebook:** notebooks/rag_demo.ipynb
- ✓ Models are downloaded and used via local paths.
- ✓ **Repo:** https://github.com/miguelsa12/rag-project.git
- ✓ To test:

pip install -r requirements.txt python rag_pipeline.py jupyter notebook notebooks/rag_demo.ipynb

✓ **Dataset:** Inside /data folder, 3 HPE-related PDFs

Round Table

- Anything you would like to add?
- Any feedback?

Thank you! Let's Build What's Next — Together

miguel-andres.salazar@hpe.com +1 833 698 1869 Ext. 2031163

