Office Hours!

Instructor:

Peter M. Garfield, garfield@math.ucsb.edu South Hall 6510

Office Hours:

Monday: TBA Tuesday: TBA

Final Exam:

Wednesday: 4:00-7:00PM

© 2017 Daryl Cooper, Peter M. Garfield

HW 23 Problem #4

A commuter railway has 800 passengers per day and charges each one two dollars per day. For each 4 cents that the fare is increased, 5 fewer people will go by train. What is the greatest profit that can be earned?

HW 23 Problem #4

A commuter railway has 800 passengers per day and charges each one two dollars per day. For each 4 cents that the fare is increased, 5 fewer people will go by train. What is the greatest profit that can be earned?

"Profit" in this case must mean "Revenue"

W '14 Problem #9

Carol's chocolate cookies cost \$2 each and she sells 2200 at this price. For each cent she raises the price she sells 5 fewer cookies. The ingredients for 10 cookies cost \$2.

If Carol increases the price of a cookie by x cents:

- (a) How many cookies will she sell?
- (b) How many dollars profit does she make on each cookie?
- (c) Express the total profit (in \$) in terms of x.
- (d) What should x be to make the most profit?
- (e) What should the price in \$ of one cookie be to make the most profit?

W '15 Problem #8

Let $f(x) = 20\sqrt{x}$.

- (a) Find f'(4). [Simplify your answer to something like 7/3.]
- (b) Find the tangent line approximation to y = f(x) at x = 4.
- (c) Use this to approximate the value of $20\sqrt{5}$.

W '15 Problem #3(c)

Compute
$$\frac{d}{dx} ((3x^2 + 5)/x^k)$$
. [Here k is a constant.]

- (1) Suppose $f(x) = x^2 x$.
- (a) What is the average rate of change of f(x) between x = 1 and x = 3?

$$A = 1$$
 $B = 2$ $C = 3$ $D = 4$ $E = 5$

- (1) Suppose $f(x) = x^2 x$.
- (a) What is the average rate of change of f(x) between x = 1 and x = 3?

$$A = 1$$
 $B = 2$ $C = 3$ $D = 4$ $E = 5$ \boxed{C}

(b) What is the instantaneous rate of change of f(x) at x = 3?

$$A = 1$$
 $B = 2$ $C = 3$ $D = 4$ $E = 5$

Rates Of Change

Review: Rates of Change

- (1) Suppose $f(x) = x^2 x$.
- (a) What is the average rate of change of f(x) between x = 1 and x = 3?

$$A = 1 \quad B = 2 \quad C = 3 \quad D = 4 \quad E = 5 \quad \boxed{C}$$

(b) What is the instantaneous rate of change of f(x) at x = 3?

$$A = 1$$
 $B = 2$ $C = 3$ $D = 4$ $E = 5$ E

- (1) Suppose $f(x) = x^2 x$.
- (a) What is the average rate of change of f(x) between x=1 and x = 3?

$$A = 1$$
 $B = 2$ $C = 3$ $D = 4$ $E = 5$ \boxed{C}

(b) What is the instantaneous rate of change of f(x) at x=3?

$$A = 1$$
 $B = 2$ $C = 3$ $D = 4$ $E = 5$ \boxed{E}

(2) The table to the right shows the number total number of people treated in a hospital up to and including the day shown during a flu outbreak.

days	0	3	7	9
cases	0	18	56	81

(a) On average, how many people were treated per day during the first week?

$$A = 56$$
 $B = 38$ $C = 81$ $D = 8$

- (1) Suppose $f(x) = x^2 x$.
- (a) What is the average rate of change of f(x) between x=1 and x = 3?

$$A = 1$$
 $B = 2$ $C = 3$ $D = 4$ $E = 5$ \boxed{C}

Rates Of Change

(b) What is the instantaneous rate of change of f(x) at x=3?

$$A = 1$$
 $B = 2$ $C = 3$ $D = 4$ $E = 5$ \boxed{E}

(2) The table to the right shows the number total number of people treated in a hospital up to and including the day shown during a flu outbreak.

days 0 3 7	9
cases 0 18 5	6 81

(a) On average, how many people were treated per day during the first week?

$$A = 56$$
 $B = 38$ $C = 81$ $D = 8$

(b) Which period had the greatest average number of cases per day?

$$A = 0 - 3$$
 $B = 3 - 7$ $C = 7 - 9$

- (1) Suppose $f(x) = x^2 x$.
- (a) What is the average rate of change of f(x) between x=1 and x = 3?

$$A = 1$$
 $B = 2$ $C = 3$ $D = 4$ $E = 5$ \boxed{C}

Rates Of Change

(b) What is the instantaneous rate of change of f(x) at x=3?

$$A = 1$$
 $B = 2$ $C = 3$ $D = 4$ $E = 5$ \boxed{E}

(2) The table to the right shows the number total number of people treated in a hospital up to and including the day shown during a flu outbreak.

days 0 3 7	9
cases 0 18 5	6 81

(a) On average, how many people were treated per day during the first week?

$$A = 56$$
 $B = 38$ $C = 81$ $D = 8$

(b) Which period had the greatest average number of cases per day?

$$A = 0 - 3$$
 $B = 3 - 7$ $C = 7 - 9$ \boxed{C}

Jason & Marie

- Jason Bourne and Marie Kreutz are 270 miles apart at noon.
- Marie drives towards Jason at constant speed M starting at noon.
- Jason sets out at 2pm driving towards Marie at constant speed J.
- They meet at 4pm.
- (1) Which of the following equations is true?

A
$$J + M = 270$$
 B $2J = 4M$ C $J - M = 270$
D $2J + 4M = 270$ E $2J = 270 + 4M$

Rates Of Change

Jason & Marie

- Jason Bourne and Marie Kreutz are 270 miles apart at noon.
- Marie drives towards Jason at constant speed M starting at noon.
- Jason sets out at 2pm driving towards Marie at constant speed J.
- They meet at 4pm.
- (1) Which of the following equations is true?

A
$$J + M = 270$$
 B $2J = 4M$ C $J - M = 270$
D $2J + 4M = 270$ E $2J = 270 + 4M$

Rates Of Change

Jason & Marie

- Jason Bourne and Marie Kreutz are 270 miles apart at noon.
- Marie drives towards Jason at constant speed M starting at noon.
- Jason sets out at 2pm driving towards Marie at constant speed J.
- They meet at 4pm.
- (1) Which of the following equations is true?

A
$$J + M = 270$$
 B $2J = 4M$ C $J - M = 270$
D $2J + 4M = 270$ E $2J = 270 + 4M$

- At 3pm, they are 100 miles apart.
- (2) Which of the following equations is true?

A
$$J + M = 100$$
 B $2J = 4M$ C $J - M = 100$
D $2J + 4M = 100$ E $2J = 100 + 4M$

Jason & Marie

• Jason Bourne and Marie Kreutz are 270 miles apart at noon.

Rates Of Change

- Marie drives towards Jason at constant speed M starting at noon.
- Jason sets out at 2pm driving towards Marie at constant speed J.
- They meet at 4pm.
- (1) Which of the following equations is true?

A
$$J + M = 270$$
 B $2J = 4M$ C $J - M = 270$
D $2J + 4M = 270$ E $2J = 270 + 4M$

- At 3pm, they are 100 miles apart.
- (2) Which of the following equations is true?

A
$$J + M = 100$$
 B $2J = 4M$ C $J - M = 100$
D $2J + 4M = 100$ E $2J = 100 + 4M$ A

Jason & Marie (continued)

- Jason Bourne and Marie Kreutz are 270 miles apart at noon.
- \bullet Marie drives towards Jason at constant speed M starting at noon.
- Jason sets out at 2pm driving towards Marie at constant speed J.
- They meet at 4pm.
- At 3pm, they are 100 miles apart.
- (3) What was Jason's speed?

$$A = 35$$
 $B = 45$ $C = 55$ $D = 65$ $E = 75$

Jason & Marie (continued)

- Jason Bourne and Marie Kreutz are 270 miles apart at noon.
- \bullet Marie drives towards Jason at constant speed M starting at noon.
- Jason sets out at 2pm driving towards Marie at constant speed J.
- They meet at 4pm.
- At 3pm, they are 100 miles apart.
- (3) What was Jason's speed?

$$A = 35$$
 $B = 45$ $C = 55$ $D = 65$ $E = 75$

- (A) $10^{3.65}$
- (B) Solve $10^x = 73$
- (C) The slope of the graph at x = 0.65
- (D) The average rate of change of 10^x between x = 0.1 and x = 0.6

(A) $10^{3.65}$

Answer: 4500

- (B) Solve $10^x = 73$
- (C) The slope of the graph at x = 0.65
- (D) The average rate of change of 10^x between x = 0.1 and x = 0.6

(A) $10^{3.65}$

Answer: 4500

- (B) Solve $10^x = 73$ **Answer: 1.86**
- (C) The slope of the graph at x = 0.65
- (D) The average rate of change of 10^x between x = 0.1 and x = 0.6

- (A) $10^{3.65}$
 - **Answer:** 4500
- (B) Solve $10^x = 73$ **Answer: 1.86**
- (C) The slope of the graph at x = 0.65Answer: 10
- (D) The average rate of change of 10^x between x = 0.1 and x = 0.6

- (A) $10^{3.65}$
 - **Answer:** 4500
- (B) Solve $10^x = 73$ **Answer: 1.86**
- (C) The slope of the graph at x = 0.65Answer: 10
- (D) The average rate of change of 10^x between x = 0.1 and x = 0.6Answer: 5

Review: Lines!

1. Find the equation of the line with slope 3 that contains the point (2,5).

A
$$y = 3x + 5$$
 B $y = 3x - 1$ C $y = 3x + 2$

Review: Lines!

1. Find the equation of the line with slope 3 that contains the point (2,5).

A
$$y = 3x + 5$$
 B $y = 3x - 1$ C $y = 3x + 2$ B

2. What is the x-coordinate of the point where the two lines

$$y = 3x + 2$$
 and $y - 4x + 1 = 0$

cross?

A
$$x = -3$$
 B $x = -1$ C $x = 1$ D $x = 3$ E $x = 4$

Review: Lines!

1. Find the equation of the line with slope 3 that contains the point (2,5).

A
$$y = 3x + 5$$
 B $y = 3x - 1$ C $y = 3x + 2$ B

2. What is the x-coordinate of the point where the two lines

$$y = 3x + 2$$
 and $y - 4x + 1 = 0$

cross?

A
$$x = -3$$
 B $x = -1$ C $x = 1$ D $x = 3$ E $x = 4$ D

3. Solve
$$3^x = 7$$
.

A
$$x = 7/3$$
 B $x = \log(7/3)$
C $x = \log(7)/\log(3)$ D $x = \log(7) - \log(3)$

3. Solve $3^x = 7$.

A
$$x = 7/3$$
 B $x = \log(7/3)$
C $x = \log(7)/\log(3)$ D $x = \log(7) - \log(3)$ C

Remember half-life:

- Half-life = K years
- Initial amount = A
- Amount after t years is $A \times 2^{-t/K}$
- 4. Let's start with 8 grams of an element with half-life of 5 years.
 - (a) How many grams remain after 10 years?

$$A = 0$$
 $B = 2$ $C = 4$ $D = 8$

3. Solve $3^x = 7$.

A
$$x = 7/3$$
 B $x = \log(7/3)$
C $x = \log(7)/\log(3)$ D $x = \log(7) - \log(3)$

Remember half-life:

- Half-life = K years
- Initial amount = A
- Amount after t years is $= A \times 2^{-t/K}$
- 4. Let's start with 8 grams of an element with half-life of 5 years.
 - (a) How many grams remain after 10 years?

$$A = 0 \quad B = 2 \quad C = 4 \quad D = 8 \quad \boxed{B}$$

(b) How many years until 3 grams remain?

$$A = 8/3$$
 $B = -5 \log(3/8) / \log(2)$

$$C = -5\log(3/16)$$
 $D = \log(3/8) - \log(2)$

3. Solve $3^x = 7$.

A
$$x = 7/3$$
 B $x = \log(7/3)$
C $x = \log(7)/\log(3)$ D $x = \log(7) - \log(3)$ C

Remember half-life:

- Half-life = K years
- Initial amount = A
- Amount after t years is $= A \times 2^{-t/K}$
- **4.** Let's start with 8 grams of an element with half-life of 5 years.
 - (a) How many grams remain after 10 years?

$$A = 0$$
 $B = 2$ $C = 4$ $D = 8$ B

(b) How many years until 3 grams remain?

$$A = 8/3$$
 $B = -5 \log(3/8) / \log(2)$

$$C = -5\log(3/16)$$
 $D = \log(3/8) - \log(2)$ B