Calculabilité

Cours 1 : introduction et machines de Turing

(2 semaines à distance)

Kévin Perrot – L3 Info Aix Marseille Université – printemps 2022

Table des matières

Mad	Machines de Turing		
2.1	Définitions		
2.2	Décider et calculer		
2.3	Un peu d'histoire		

1 Introduction

Une machine de Turing est un objet mathématique, défini en 1936 par *Alan Turing*, qui a pour but de décrire ce qu'est un *calcul*. Tout le monde sent ce qu'est un calcul : si vous avez deux nombre en base 10, disons 123 et 456, et vous voulez calculer leur somme, vous le faites chiffre par chiffre de droite à gauche en propageant d'éventuelles retenues pour obtenir 579. Si vous voulez calculer leur produit, vous le décomposez en multiplications plus simples pour lesquelles vous avez appris un nombre fini de tables, et vous sommez les résultats des sous-problèmes :

```
123x456 = (1x100+2x10+3)x(4x100+5x10+6)
= (1x4)x(100x100)+(1x5)x(100x10)+(1x6)x(100)
+(2x4)x(10x100)+(2x5)x(10x10)+(2x6)x(10)
+(3x4)x(100)+(3x5)x(10)+(3x6)
= 56088.
```

Lorsque vous apprenez à quelqu'un une méthode pour effectuer une multiplication, vous décrivez un algorithme: vous donnez une description finie (par exemple en 10 minutes de parole, ou en 2 pages) de la procédure à suivre pour obtenir le résultat. Les machines de Turing sont des objets mathématiques pour décrire les algorithmes. Une machine de Turing pour l'addition de nombres naturels en base 10 donne l'ensemble des instructions qu'il faut effectuer pour calculer la somme de deux nombres. Une remarque importante est que la description de la procédure est finie, mais elle permet de calculer la somme de n'importe quel couple de nombres: 123+456 ou 1234567890+2345678901 ou des nombres plus grands!

Bon, soyons sérieux. Une machine de Turing décrit comment calculer quelque chose. Mais quel est ce *quelque chose*? C'est une *fonction*. Par exemple, une fonction peut-être

l'addition, ou la multiplication : étant donnée une *entrée* finie (dans notre exemple 123 et 456), une fonction associe une unique *sortie*. L'entrée et la sortie peuvent être un ou plusieurs entiers naturels, des nombres négatifs, une phrase écrite en alphabet Latin ou n'importe quel autre. Le point important est qu'elle soit de taille *finie*. Une fonction associe alors une unique sortie (le résultat) à chaque entrée.

Les fonctions peuvent être simples : l'addition ou la multiplication de deux entiers naturels ; ou plus complexes : étant donné un entier naturel, quelle est sa décomposition en produit de facteurs premiers (entiers naturels plus grand que 1 qui n'ont pas de diviseur autre que 1 et lui-même) ; ou même non calculable : étant donné un énoncé mathématique, décider s'il est vrai ou faux. Oui, certaines fonctions ne sont pas calculables : il n'existe pas d'algorithme qui les calcul. De plus, il y a infiniment plus de fonctions non calculables que de fonctions calculables! Il existe une infinité de fonctions, et une infinité de machines de Turing (d'algorithmes), mais le nombre de fonctions est infiniment plus grand que le nombre de machines de Turing.

Une question naturel est : si les machines de Turing peuvent calculer si peu de fonctions, pourquoi ne pas calculer avec un autre modèle mathématique? En réalité, les machines de Turing ne sont pas le seul objet mathématique permettant de décrire des algorithmes. De tels modèles sont appelés modèles de calcul effectifs, où effectif signifie approximativement « en accord avec le monde réel ». Il est cependant magnifique de constater que tous les modèles de calcul proposés jusqu'à présent sont équivalents! Deux modèles sont équivalents s'ils peuvent calculer exactement le même ensemble de fonctions. Rappelons nous bien : soit F l'ensemble de toutes les fonctions, les machines de Turing ne peuvent pas calculer toutes les fonctions de l'ensemble F, mais seulement un sous-ensemble C. La croyance (répandue) selon laquelle tout autre modèle de calcul effectif que l'on pourrait imaginer sera également capable de calculer toutes les fonctions de l'ensemble C et aucune autre est appelée thèse de Church-Turing, et C est appelé l'ensemble des fonctions calculables. L'une des questions les plus fondamentales de la science informatique est la suivante : pourquoi une fonction est-elle calculable ou non calculable?

Un point intéressant est l'existence de machines de Turing universelles. Une machine de Turing universelle U est une machine capable de simuler tout autre machine de Turing. Qu'est-ce que cela signifie? Soit M une machine de Turing quelconque et x une entrée, la sortie de M sur l'entrée x est notée M(x). Une machine U est universelle si l'on peut écrire une entrée y sur le ruban telle que le calcul de U sur y donne M(x) en sortie.

U et y ne sont pas très compliqués à construire : M a une description finie (principalement sa table d'actions), donc cette description peut être écrite sur le ruban, elle utilisera $\mathbf n$ cellules ; et sur d'autres cellules vides, on peut écrire $\mathbf x$; le tout donne l'entrée y. Maintenant, U a toute l'information qui définit $\mathbf M(\mathbf x)$ sur le ruban, et il est possible 1 de construire une telle machine U qui lit l'entrée $\mathbf x$ sur le ruban, ensuite lit la table d'action de $\mathbf M$ sur les $\mathbf n$ cellules dédiées du ruban, et ensuite réalise sur $\mathbf x$ ce que la machine $\mathbf M$ aurait réalisé si elle avait été exécutée sur un ruban contenant $\mathbf x$. Une telle machine $\mathbf M$ est un peu délicate à construire, mais pas excessivement.

De nos jours, un ruban est appelé disque dur, la table d'action de M écrite sur le ruban est un programme, et U est un ordinateur!

Une machine de Turing universelle entièrement mécanique a été réalisée en Lego.

^{1.} Remarquons que l'existence de fonctions non calculables implique que pour d'autres problèmes (encore une fois il y en a énormément, infiniement plus que des calculales), même avec toute l'information qui définit la question, il n'existe pas de machine de Turing qui calcule le résultat.

http://www.dailymotion.com/video/xrmfie/ http://rubens.ens-lyon.fr/

Par conséquent, ce tas de Lego est capable de calculer l'ensemble des fonctions calculables C: il a exactement la même *puissance de calcul* que votre ordinateur ou votre téléphone portable! En comparaison avec un ordinateur moderne qui réalise une instruction toutes les nano-secondes (0.00000001 secondes), cette machine en Lego réalise une instruction toutes les 100 secondes. Elle peut faire ce qu'un ordinateur moderne peut faire, mais pour réaliser ce que ce dernier effectue en 1 seconde, il lui faut 3168 ans 295 jours 9 heures 46 minutes et 40 secondes². Quoi qu'il en soit, l'important est qu'elle en soit capable, n'est-ce pas?

C'est le coeur de la *calculabilité*. Les ordinateurs sont chaque année plus rapides, et leur vitesse continue d'augmenter. Cependant, ils restent restreints à l'ensemble des fonctions calculables, C. Ils peuvent calculer les fonctions de l'ensemble C toujours plus vite, mais ne peuvent pas s'échapper de C: leur *expressivité* reste la même. L'étude de cette expressivité, du sens de cette puissance de calcul, s'appelle la *théorie de la calculabilité*.

Vous pouvez parfois entendre que nous sommes aujourd'hui capables de calculer des choses qui étaient impossible à calculer les années passées, que les ordinateurs sont plus puissants aujourd'hui qu'hier. Ces phrases doivent être précisées. En réalité, ces calculs étaient simplement trop longs à réaliser les années passées (par exemple, il aurait fallut 100 ans si vous les aviez exécutés sur un ordinateur en l'an 2000), mais aujourd'hui vous pouvez les calculer en un temps raisonnable (par exemple 100 secondes) ce qui permet d'obtenir effectivement le résultat. Un exemple intéressant est le jeu des échecs : il est possible aujourd'hui, et il a toujours été possible, d'écrire un algorithme qui vous indique coup après coup la meilleure action possible, mais les ordinateurs actuels sont bien trop lents pour exécuter un tel algorithme jusqu'au bout... Néanmoins, un jour nous serons capables de réaliser ce calcul en un temps raisonnable, et ensuite jouer aux échecs avec un ordinateur deviendra définitivement ennuyant car nous serons sûrs et certains de perdre chaque partie³. Laissez moi répéter qu'un tel algorithme existe déjà et est facile à implémenter sur un ordinateur, les ordinateurs sont simplement trop lents pour réaliser les calculs en un temps raisonnable. La théorie de la calculabilité s'intéresse à des vérités mathématiques qui sont indépendantes du temps de calcul: la question n'est pas de savoir si quelque chose sera faisable dans 10 ou 20 ans ou même 1000 ans, mais plutôt si quelque chose est fondamentalement faisable ou non. De comprendre quels problèmes peuvent être résolus algorithmiquement, et quels problèmes ne le peuvent pas.

2 Machines de Turing

Pour montrer qu'une fonction est calculable ou qu'un langage est décidable (distinction discutée en 2.2) il faut donner un algorithme correct. Pour montrer qu'une fonction n'est pas calculable ou qu'un langage est indécibable, il faut montrer que tout algorithme est incorrect, mais pour cela il faut d'abord définir l'ensemble des algorithmes (ce qui définit l'ensemble de ce qui est calculable/décibable). L'intérêt des machines de Turing

^{2.} Ce nombre est en réalité complètement faux, parce qu'une instruction de machine de Turing est différente d'une instruction d'un ordinateur moderne. Néanmoins, il est là pour souligner le fait que cette machine de Turing en Lego est très précisément équivalente à un ordinateur moderne.

^{3.} Je mens un peu. En réalité, puisque nous n'avons encore jamais calculé toutes les actions possibles aux échecs, nous ne savons pas si ce sont les blancs ou les noirs qui ont une stratégie gagnante, ou si nous arriverions à un match nul avec deux joueurs parfaits...

est qu'elles définissent les algorithmes de façon intuitive et simple! Imaginez devoir définir mathématiquement votre langage de programmation préféré dans ses moindres détails...

L'idée d'Alan Turing est inspirée du calculateur humain devant sa feuille [3] :

- feuilles découpées en cases : ruban;
- crayon posé sur une case : tête de lecture/écriture, déplacement ;
- l'opérateur dispose d'une mémoire finie (son cerveau) : états.

2.1 Définitions

Définition 1. Une machine de Turing (MT) déterministe est un 7-uplet

$$M = (Q, \Gamma, \Sigma, \delta, q_0, B, q_F)$$

où

- Q est un ensemble fini : les **états**,
- Γ est un ensemble fini : l'alphabet de ruban,
- $-\Sigma \subset \Gamma$ est l'alphabet d'entrée,
- $\delta: (Q \setminus \{q_F\}) \times \Gamma \to Q \times \Gamma \times \{L, R\}$ est la fonction de transition décrite ci-après,
- $-q_0 \in Q$ est l'état initial,
- $-B \in \Gamma \setminus \Sigma$ est le symbole blanc,
- $-q_F \in Q$ est l'état final.

 Γ contient tous les symboles qui peuvent apparaître sur le ruban. En particulier $\Sigma \subset \Gamma$ car l'entrée est initialement écrite sur le ruban. On supposera que $Q \cap \Gamma = \emptyset$ pour qu'il n'y ait pas de confusion entre états et symboles du ruban.

La fonction de transition δ est une application partielle

de l'ensemble $(Q \setminus \{q_F\}) \times \Gamma$ dans l'ensemble $Q \times \Gamma \times \{L, R\}$.

Une transition

$$\delta(q, a) = (p, b, L)$$

signifie que dans l'état q et en lisant le symbole de ruban a, la machine passe dans l'état p, remplace a par b sur le ruban, et déplace la tête de lecture/écriture d'une cellule sur la gauche (L pour left et R pour right). Une application partielle peut être indéfinie pour certains arguments, auquel cas la machine n'a pas de mouvement suivant et s'arrête. En particulier, il n'y a pas de transition depuis l'état final q_F .

Pour décrire une machine de Turing, en général on la dessine sous la forme d'un automate dont les sommets sont les états (l'ensemble Q) et avec un arc de q vers p étiqueté $a \mid b, \leftarrow$ lorsque $\delta(q, a) = (p, b, L)$. Des exemples sont donnés en fin de document.

Initialement, le mot d'entrée est écrit sur le ruban et toutes les autres cellules contiennent le symbole blanc B. La machine est dans l'état q_0 , et la tête de lecture/écriture est positionnée sur la lettre la plus à gauche de l'entrée. Il y a trois possibilités :

- **acceptation** si au cours des transitions la machine entre dans l'état final q_F (et donc s'arrête),
- **rejet** si au cours des transitions la machine s'arrête dans un état non final (s'il n'y a pas de mouvement suivant à réaliser),
- **rejet** si la machine ne s'arrête jamais.

Définition 2. Une description instantanée (DI) d'une MT décrit sa configuration courante. C'est un mot

$$ugav \in (\{\epsilon\} \cup (\Gamma \setminus \{B\})\Gamma^*)Q\Gamma(\{\epsilon\} \cup \Gamma^*(\Gamma \setminus \{B\}))$$

avec $q \in Q$ l'état courant, $u, v \in \Gamma^*$ le contenu du ruban à gauche et à droite de la tête, respectivement, jusqu'au dernier symbole non blanc, et $a \in \Gamma$ le symbole de ruban actuellement sous la tête.

Définition 3. Un mouvement, une transition, un déplacement de la MT à partir de la DI $\alpha = uqav$ vers la DI suivante β sera noté $\alpha \vdash \beta$. Plus précisément :

- 1. $Si \ \delta(q, a) = (p, b, L),$
 - $si\ u = \epsilon \ alors\ \beta = pBbv\ (potentiellement\ en\ supprimant\ les\ B\ à\ la\ fin\ de\ bv),$
 - $si\ u = u'c\ avec\ c \in \Gamma\ alors\ \beta = u'pcbv\ (potentiellement\ en\ supprimant\ les\ B\ à\ la\ fin\ de\ bv).$
- 2. $Si \delta(q, a) = (p, b, R),$
 - $-siv = \epsilon \ alors \ \beta = ubpB \ (potentiellement \ en \ supprimant \ les \ B \ au \ début \ de \ ub),$
 - $si \ v \neq \epsilon \ alors \ \beta = ubpv \ (potentiellement \ en \ supprimant \ les \ B \ au \ début \ de \ ub).$
- 3. Si $\delta(q, a)$ est indéfini alors aucun mouvement n'est possible depuis α , et α est une **DI** d'arrêt. Si $q = q_F$ alors α est une **DI** acceptante.

Notation 4. Notre modèle de MT est **déterministe**, ce qui signifie que pour tout α il y a au plus un β tel que $\alpha \vdash \beta$. Nous noterons

$$\alpha \vdash^* \beta$$

si la MT change α en β en n'importe quel nombre d'étapes (0 inclus, auquel cas $\alpha = \beta$), $\alpha \vdash^+ \beta$ si la MT change α en β en au moins une étape, et $\alpha \vdash^i \beta$ si la MT change α en β en exactement i étapes.

Pour tout $w \in \Sigma^*$ nous pouvons définir la DI de départ correspondante

$$\iota_w = \begin{cases} q_0 w, & \text{si } w \neq \epsilon \\ q_0 B & \text{si } w = \epsilon. \end{cases}$$

2.2 Décider et calculer

Définition 5. Le langage reconnu (ou accepté) par la MT M est

$$L(M) = \{ w \mid w \in \Sigma^* \ et \ \iota_w \vdash^* uq_F v \ avec \ u, v \in \Gamma^* \}$$

Définition 6. Un langage est **semi-décidable** s'il est reconnu par une machine de Turing. Un langage est **décibable**, s'il est reconnu par une machine de Turing qui s'arrête sur toutes les entrées.

Attention à la différence! Tout langage décidable est également semi-décidable.

Notation 7. Le résultat du calcul de la MT M sur l'entrée w sera noté

$$M(w) = \begin{cases} uv & si \ \iota_w \vdash^* uq_Fv \ avec \ u,v \in \Gamma^* \\ uav & si \ \iota_w \vdash^* uqav \ avec \ u,v \in \Gamma^* \ et \ \delta(q,a) \ non \ d\'efinit \\ \uparrow & si \ l'ex\'ecution \ ne \ termine \ pas. \end{cases}$$

†potentiellement en supprimant les B à la fin de av.

Définition 8. Une fonction $f: \Sigma^* \to \Gamma^*$ est calculable si et seulement si il existe une MT M telle que pour tout $w \in \Sigma^* : f(w) = M(w)$.

Remarque 9. Décider (un langage) est équivalent à calculer (une fonction).

← Décider un langage L revient à calculer sa fonction caractéristique

$$f_L: \Sigma^* \to \{0,1\}$$

$$w \mapsto \begin{cases} 1 & si \ w \in L \\ 0 & sinon. \end{cases}$$

 \Rightarrow Calculer une fonction f revient à décider le langage

$$L_f = \{(x, y) \mid y = f(x)\}.$$

Nous n'établirons pas de distinction très nette entre calculer et décider.

- Dans la vraie vie on dira plutôt calculer (plus parlant).
- Dans le monde des mathématiques on dira plutôt décider (plus simple à formaliser).
- **Récursif** est synonyme de calculable et décidable.

Remarque 10. Le terme semi-décidable (définition 6) vient du fait que la machine de Turing qui semi-décide s'arrête pour toute entrée qui appartient au langage (on a à coup sûr la réponse si le mot appartient au langage car la machine atteindra un état final acceptant), mais ne s'arrêt pas obligatoirement sur les entrées qui n'appartiennent pas au langage (si le mot n'appartient pas au langage, la machine peut ne pas s'arrêter). Il y a donc une asymétrie entre les mots dans et en dehors du langage. En lançant une telle machine sur un mot d'entrée dont on se demande s'il appartient au langage, on ne sait pas si la machine va s'arrêter et donner une réponse, mais on sait que si le mot est dans le langage alors la machine finira par nous donner la réponse en l'acceptant au bout d'un temps fini (mais a priori inconnu).

Pour semi-décidable on dit également récursivement énumérable car il est possible d'écrire (pour ces langages) une MT qui va, à partir d'une entrée vide, énumérer tous les mots du langage, un à un et sans en oublier aucun (dans n'importe quel ordre, possiblement en répétant plusieurs fois certains mots). Pour formaliser cette idée nous aurons un état spécial d'énumération q_e (quand on entre dans cet état c'est qu'on énumère le mot présent sur le ruban, par convention à la droite de la tête de lecture/écriture) tel que : pour tout mot $w \in L$, il existe une étape t telle que $\iota_{\epsilon} \vdash^t w' q_e w$.

Exemple 11. Le langage suivant est décidable :

$$\{w \in \{a,b\}^* \mid w \text{ est un palindrome}\}$$

donc il existe une machine M_{palindrome} qui le décide (répond oui/non sur toute entrée).

Rappelons qu'un palindrome est un mot qui se lit identiquement de gauche à droite, et de droite à gauche. Notre idée consiste à effacer les lettres du mot d'entrée de la gauche vers la droite, en vérifiant à chaque fois que la lettre correspondante à l'opposée du mot est identique (et en l'effaçant également). Nous avons un palindrome si et seulement si nous atteignons le mot vide. Par soucis de lisibilité nous écrivons plusieurs fois l'état q_F .

Les états q_a et q_b servent à parcourir le mot de gauche à droire jusqu'à la lettre correspondante. Les états q'_a et q'_b vérifient l'identité des lettres en début et fin du mot d'entrée (s'il comporte un nombre impair de lettres, alors la dernière lettre est comparée avec B). L'état q_{\leftarrow} sert à revenir au début du mot.

Exemple 12. Que se passe-t-il quand on lance la machine ci-dessous sur l'entrée vide ϵ (c'est-à-dire sur un ruban initial où chaque case contient le symbole B)?

Exemple 13. Beau simulateur de machines de Turing: https://turingmachine.io/.

2.3 Un peu d'histoire

Cantor (1845-1918)

Hilbert (1862-1943)

Gödel (1906-1978)

Church (1903-1995)

Kleene (1909-1994)

Turing (1912-1954)

von Neumann (1903-1957)

A la toute fin du XIX° siècle, Georg Cantor définit les fondements de la théorie des ensembles, dont l'usage systématique (c'est-à-dire qui est utilisée dans tous les domaines) allait bouleverser les fondements de la logique mathématique. En 1900, pour fêter le passage au XX° siècle, David Hilbert énonce 23 grands problèmes ouverts, dont le suivant : les propriétés qui s'expriment en langage mathématique sont-elles toutes décidables? Si la réponse devait être affirmatives, les propriétés mathématiques valides seraient des théorèmes dérivables mécaniquement de quelques axiomes dans un système formel. Autrement dit : on pourrait remplacer les mathématicien·ne·s par des machines surpuissantes! En 1931, Kurt Gödel met un terme à cette interrogation : il existe des propriétés mathématiques indécidables (dans tous les systèmes d'axiomes qui formalisent au moins l'arithmétique). Autrement dit : mathématicien·ne·s 1 - machines 0. Entre 1932 et 1936, Alsonso Church et Stephen Kleene proposent des modèles de calculs (le λ -calcul et les fonctions μ -récursives) qui semblent capturer la notion intuitive de fonctions calculables, mais il est un peu difficile de s'en convaincre. . . Notons tout de même que le λ -calcul est extrêmement minimaliste, ce qui rend sa compréhension mathématique fort intéressante :

tout est capturé en quelques lignes de définition! Indépendamment, en 1936, Alan Turing propose sa définition de machines. En 1937 il montre que la classe des fonctions λ -calculables est égale à la classe des fonctions programmables sur les machines de Turing. Les machines de Turing permettent de reformuler en termes intuitifs de calculs les résultats de Kurt Gödel (qui étaient exprimés en termes de démonstration). Avec l'aide de Von Neumann (et d'autres), les premiers ordinateurs programmables verront le jour quelques années plus tard!

La vie de Turing vaut le coup d'oeil (savez vous que le rôle de Turing durant la seconde guerre mondiale est resté secret d'Etat de nombreuses années?).

e-penser (13'): https://www.youtube.com/watch?v=7dpFeXV_hqs

Références

- [1] J. Kari. Automata and formal languages. University of Turku, 2013. Course notes available at http://users.utu.fi/jkari/.
- [2] M. Sipser. Introduction to the theory of computation. Course Technology, 2006.
- [3] A. M. Turing. On computable numbers, with an application to the Entscheidung-sproblem. *Proceedings of the London Mathematical Society*, 2(42):230–265, 1936.