Università di Trento - Dip. di Ingegneria e Scienza dell'Informazione

CdL in Informatica, Ingegneria dell'informazione e delle comunicazioni e

Ingegneria dell'informazione e organizzazione d'impresa

a.a. 2017-18 - PIAZZA4 - "... varie ed eventuali su C, induzione,... e poi funzioni elementari ..."

1.1) Risolvete in C le seguenti equazioni:

a)
$$(-z+2)^3 = -i$$
:

b)
$$z|z| + 4i = 0$$
;

a)
$$(-z+2)^3 = -i$$
; b) $z|z| + 4i = 0$; c) $4z^2 - 2(1+i)z + i = 0$.

Risolvete e rappresentate geometricamente nel piano di Gauss:

a)
$$\begin{cases} |z-3+i| < |z+1-i| \\ |\text{Im}(z-i)| < 2; \end{cases}$$
 b)
$$\begin{cases} \text{Re}(iz^2 - i\overline{z}^2) \ge -4 \\ |z - \frac{\sqrt{2}}{2} - i\sqrt{2}| \le \sqrt{2}; \end{cases}$$
 c) $|z+3-2i| = |\text{Im}(z-i)|$.

- Determinate le soluzioni (z, w) con $z, w \in \mathbf{C}$ del sistema $\begin{cases} z w = 2 i \\ |w|^2 \overline{z}w = i. \end{cases}$
- 1.4) Provate, usando il principio di induzione, che $(1-\frac{1}{2})(1-\frac{1}{3})\cdots(1-\frac{1}{n})=\frac{1}{n}$ per ogni $n \in \mathbb{N}, n \ge 2$.
- 1.5) i) Fissati $a, b \in \mathbf{R}$ (in **C**), verificate che $a^n b^n = (a b) \sum_{k=0}^{n-1} a^{n-k-1} b^k$ per n = 1, 2, 3.
 - ii) Provate, usando il principio di induzione, che $a^n b^n = (a b) \sum_{k=0}^{n-1} a^{n-k-1} b^k$ per ogni $n \in \mathbb{N}, n \ge 1$.
 - iii) Risolvete in C l'equazione $z^7 + z^6 + z^5 + \ldots + z + 1 = 0$ e rappresentate le soluzioni nel piano di Gauss (suggerimento: può essere utile usare ii) con a = z e b = 1).
- Usando le conoscenze basi sulle funzioni elementari, leggendo dal grafico determinate l'immagine di A tramite f per le seguenti funzioni:

i)
$$f(x) = 3 \log x - 1$$
 $A = [1, e];$

ii)
$$f(x) = -x^2 - x + 1$$
 $A = [-1, 1];$

iii)
$$f(x) = -\cos x + 1$$
 $A = [0, \pi];$

iii)
$$f(x) = -\cos x + 1$$
 $A = [0, \pi];$
iv) $f(x) = \begin{cases} 2x & \text{se } x \le -1 \\ -x^2 & \text{se } -1 < x < 0 \\ 2^x - 2 & \text{se } x \ge 0. \end{cases}$ $A = [0, \pi];$

1.7) Sia
$$f:[0,e] \to \mathbf{R}$$
 la funzione definita da $f(x) = \begin{cases} 1 & \text{se } x = 0 \\ \frac{1}{x} - 1 & \text{se } 0 < x \le 1 \\ \log x & \text{se } 1 < x \le e. \end{cases}$

Usando le conoscenze basi sulle funzioni elementari, leggendo dal grafico di f si determini l'immagine e gli intervalli di monotonia di f. La funzione f è limitata? Iniettiva? Suriettiva?