Séries

Martin Andrieux

Définition

Une série est dite *convergente* quand la suite des sommes partielles converge. Dans le cas contraire, elle est dite *divergente*.

1 Séries à termes positifs

Théorèmes de comparaison

• Si pour $n > n_2$ on a $x_n < y_n$, alors

$$\begin{cases} \sum y_n \, \operatorname{cv} \implies \sum x_n \, \operatorname{cv} \\ \sum x_n \, \operatorname{div} \implies \sum y_n \, \operatorname{div} \end{cases}$$

- Même conclusion si $x_n = \mathcal{O}(y_n)$
- Si $x_n \sim y_n$, les séries sont de même nature. De plus, si les séries divergent, leur sommes partielles sont équivalentes, sinon, leur restes sont équivalents.

Séries de référence

• $\sum q^n$ converge si et seulement si q < 1. On a alors

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$$

• $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Critère de d'Alembert

Avec $\sum x_n$ une série à termes positifs, Si $\frac{x_{n+1}}{x_n}$ a une limite l, alors

- Si l < 1, la série converge
- Si l > 1, la série diverge

2 Séries quelconques

Définition

Avec $\sum x_n$ une série à termes réels, si $\sum |x_n|$ converge, alors la série converge. On la qualifie alors de série absolument convergente. Si la série converge sans converger absolument, elle est semiconvergente.

Théorème spécial des séries alternées

Avec $\sum_{n\geqslant 0} \alpha_n$ et $\forall n \alpha_n \geqslant 0$, si α_n décroit vers 0, alors la série est convergente.

Utilisation de DL

Avec $\sum u_n$, si tous les termes du développement limité de u_n convergent, alors la série converge.

Transformation d'Abel -

Réécrire le terme général de la série comme différence de sommes partielles bornées permet d'établir la nature de la série.

Le théorème d'Abel dit que si \mathfrak{b}_n décroit vers $\mathfrak{0}$ et si

$$(A_n)_{n\geqslant 0} = \sum_{k=0}^n a_k$$

est bornée, alors $\sum a_n b_n$ converge.

Produit de Cauchy -

Soient $\sum a_n$ et $\sum b_n$ deux séries à termes réels. Le produit de Cauchy de ces deux séries est :

$$\sum_{n\geqslant 0}\sum_{i=0}^n a_ib_{n-i}$$

Si les séries des a_n et des b_n sont absolument convergentes, alors leur produit de Cauchy est absolument convergent et tend vers le produit des limites des deux séries