Please add new claims 21-36. New claims 21-36 are present in an attached appendix.

Remarks

Claims 1-20 are cancelled. New claims 21-36 are presented for examination in this continuation application. Claim 21 is the only independent claim.

During the prosecution of the parent application, Applicant amended claims to limit them to where component (b) are hydroxylamines. In this continuation application, the claims are amended to limit them to where component (b) are amine oxides. That is, the present claims cover subject matter deleted during prosecution of the parent application.

New claims 21-36 correspond to original claims 1-3 and 8-20 respectively.

The specification is amended to make reference to the parent applications.

No new matter is added.

Applicant respectfully awaits consideration of the present claims on their merits.

Ciba Specialty Chemicals Corp. 540 White Plains Road P.O. Box 2005 Tarrytown, NY 10591-9005 Tel. (914)785-2783 Fax (914)785-7102

Attachment: Appendix to Preliminary Amendment

Respectfully submitted,

Tylet/A. Stevenson Agent for Applicants Reg. No. 46,388

CASE PP/1-21983/P1/CGC 2022/CIP/CONT

APPENDIX to PRELIMINARY AMENDMENT New Claims 21-36

- (a) at least one compound from the group of the organic phosphites and phosphonites,
- (b) one or more compounds selected from the group consisting of amine oxide derivatives and
- (c) at least one compound from the group of the hindered amine stabilizers,

filling this mixture into a mold, heating this mold in an oven to above 280°C, such that the stabilized polyolefin fuses,

rotating the mold around at least 2 axes, the plastic material spreading to the walls,

cooling the mold while still rotating,

opening it, and

taking the resultant hollow article out.

22. (new) A process according to claim 21 wherein the organic phosphites and phosphonites of component (a) are selected from the group consisting of formulae (1), (2), (3), (4), (5), (6) and (7)

(1)
$$R \leftarrow Y \leftarrow P$$
 $O \leftarrow R_3$

$$A_{1} = \begin{bmatrix} O - R_{2} \\ O - R_{3} \end{bmatrix}_{n}$$
 (2)

(3)
$$\begin{bmatrix} R_7 & O \\ P & O \end{bmatrix}_q A_1$$

$$D_1 = \begin{bmatrix} O \\ D_2 \end{bmatrix} P = O$$

$$R_1$$
 (4)

HAN AND AND AND

$$R_1 - O - P_0 - O - R_1$$

(6)
$$E \longrightarrow P Z \xrightarrow{R_{15}} R_{15}$$
 R_{15}
 R_{14}
 R_{15}
 R_{14}

$$\begin{bmatrix} O & O & O & P \\ O & O & O & P \\ O & O & O \\ O & O & P \\ O & O$$

in which the indices are integral and

n is 2, 3 or 4; p is 1 or 2; q is 2 or 3; r is 4 to 12; y is 1, 2 or 3; and z is 1 to 6;

 A_1 , if n is 2, is C_2 - C_{18} alkylene; C_2 - C_{12} alkylene interrupted by oxygen, sulfur or -NR₄-; a radical of

the formula
$$R_6$$
 R_6 or phenylene;

 A_1 , if n is 3, is a radical of the formula - C_rH_{2r-1} -;

$$CH_{2}$$

A₁, if n is 4, is $-CH_{2}$
 CH_{2}
 CH_{2}
 CH_{2}

A₂ is as defined for A₁ if n is 2;

B is a direct bond, -CH $_2$ -, -CHR $_4$ -, -CR $_1$ R $_4$ -, sulfur, C $_5$ -C $_7$ cycloalkylidene, or cyclohexylidene which is substituted by from 1 to 4 C $_1$ -C $_4$ alkyl radicals in position 3, 4 and/or 5;

 D_1 , if p is 1, is C_1 - C_4 alkyl and, if p is 2, is - CH_2OCH_2 -;

 D_2 , if p is 1, is C_1 - C_4 alkyl;

E, if y is 1, is C₁-C₁₈ alkyl, -OR₁ or halogen;

E, if y is 2, is $-O-A_2-O-$,

E, if y is 3, is a radical of the formula R₄C(CH₂O-)₃ or N(CH₂CH₂O-)₃;

Q is the radical of an at least z-valent alcohol or phenol, this radical being attached via the oxygen atom to the phosphorus atom;

 R_1 , R_2 and R_3 independently of one another are C_1 - C_{18} alkyl which is unsubstituted or substituted by halogen, -COOR₄, -CN or -CONR₄R₄; C_2 - C_{18} alkyl interrupted by oxygen, sulfur or -NR₄-; C_7 - C_9 phenylalkyl; C_5 - C_{12} cycloalkyl, phenyl or naphthyl; naphthyl or phenyl substituted by halogen, 1 to 3 alkyl radicals or alkoxy radicals having a total of 1 to 18 carbon

atoms or by C_7 - C_9 phenylalkyl; or a radical of the formula $-(CH_2)_m$ OH in which m is an R_6

integer from the range 3 to 6;

R₄ is hydrogen, C₁-C₁₈ alkyl, C₅-C₁₂ cycloalkyl or C₇-C₉ phenylalkyl,

R₅ and R₆ independently of one another are hydrogen, C₁-C₈ alkyl or C₅-C₆ cycloalkyl,

 R_7 and R_8 , if q is 2, independently of one another are $C_1\text{-}C_4$ alkyl or together are a 2,3-dehydropentamethylene radical; and

 R_7 and R_8 , if q is 3, are methyl;

 R_{14} is hydrogen, $C_1\hbox{-} C_9$ alkyl or cyclohexyl,

R₁₅ is hydrogen or methyl and, if two or more radicals R₁₄ and R₁₅ are present, these radicals are identical or different,

X and Y are each a direct bond or oxygen,

Z is a direct bond, methylene, -C(R₁₆)₂- or sulfur, and

R₁₆ is C₁-C₈ alkyl.

23. (new) A process according to claim 21 wherein the organic phosphites and phosphonites of component (a) are selected from the group consisting of tris(2,4-di-tert-butylphenyl) phosphite, tris(nonylphenyl) phosphite and formulae (A), (B), (C), (D), (E), (F), (G), (H), (J), (K) and (L)

$$(CH_3)_3C$$
 O
 $P-O-CH_2CH_2$
 $(CH_3)_3$
 $C(CH_3)_3$
 $C(CH_3)_3$
 $C(CH_3)_3$

$$(CH_3)_3C$$
 O
 P
 O
 $C(CH_3)_3$
 C
 $C(CH_3)_3$
 C
 $C(CH_3)_3$
 C
 $C(CH_3)_3$
 C
 $C(CH_3)_3$
 C
 $C(CH_3)_3$
 C
 $C(CH_3)_3$

$$(CH_3)_3C$$
 $C(CH_3)_3$ $C(CH_3)_4$ $C(CH_3)_4$ $C(CH_3)_5$ $C(CH$

$$H_{3}C \longrightarrow \begin{pmatrix} C(CH_{3})_{3} & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O \end{pmatrix} \longrightarrow \begin{pmatrix} C(CH_{3})_{3}C & (CH_{3})_{3}C \\ - O - P & O$$

(F)
$$H_{37}C_{18} = O - P_O - C_{18}H_{37}$$

$$(G)$$

$$H_{3}C_{18} = O - P_O - C_{18}H_{37}$$

$$H_{3}C_{18} = C - CH_{3}$$

$$H_{3}C_{18} = CH_{3}$$

$$\begin{bmatrix} C(CH_3)_3 \\ C(CH_3)_3 \end{bmatrix} P - \begin{bmatrix} C(CH_3)_3 \\ C(CH_3)_3 \end{bmatrix} D + C(CH_3)_3$$

$$\begin{bmatrix} C(CH_3)_3 \\ C(CH_3)_3 \end{bmatrix} D + C(CH_3)_3$$

$$C(CH_3)_3 D + C(CH_3)_3 D + C(CH_3)_3 D + C(CH_3)_3 D + C(CH_3)_3 D + C(CH_3)_3$$

$$(CH_3)_3C - C(CH_3)_3 - CH_2CH_3 - C(CH_3)_3 - CH_2CH_3 - C(CH_3)_3 - C(CH_3)_3 - CH_2CH_3 - C(CH_3)_3 - C(CH_3)$$

24. (new) A process according to claim 21 wherein the amine oxide derivatives are of the formula (III)

wherein

 G_1 and G_2 are independently a straight or branched chain alkyl of 6 to 36 carbon atoms, aryl of 6 to 12 carbon atoms, aralkyl of 7 to 36 carbon atoms, alkaryl of 7 to 36 carbon atoms, cycloalkyl of 5 to 36 carbon atoms, alkcycloalkyl of 6 to 36 carbon atoms;

Lost Cost

 G_3 is a straight or branched chain alkyl of 1 to 36 carbon atoms, aryl of 6 to 12 carbon atoms, aralkyl of 7 to 36 carbon atoms, alkaryl of 7 to 36 carbon atoms, cycloalkyl of 5 to 36 carbon atoms, alkcycloalkyl of 6 to 36 carbon atoms or cycloalkylalkyl of 6 to 36 carbon atoms; with the proviso that at least one of G_1 , G_2 and G_3 contains a \square carbon-hydrogen bond; and

wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups may be interuppted by one to sixteen -O-, -S-, -SO-, -SO₂-, -COO-, -OCO-, -CO-, -NG₄-, -CONG₄- and -NG₄CO- groups, or wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups may be substituted by one to sixteen groups selected from -OG₄, -SG₄, -COOG₄, -OCOG₄, -COG₄, -N(G₄)₂, -CON(G₄)₂, -NG₄COG₄ and 5- and 6-membered rings containing the -C(CH₃)(CH₂R_x)NL(CH₂R_x)(CH₃)C- group or wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups are both interuppted and substituted by the groups mentioned above; and

wherein

G₄ is independently hydrogen or alkyl of 1 to 8 carbon atoms;

R_x is hydrogen or methyl;

L is a C_{1-30} straight or branched chain alkyl moiety, a -C(O)R moiety wherein R is a C_{1-30} straight or branched chain alkyl group, or a -OR moiety wherein R is a C_{1-30} straight or branched chain alkyl group; and

wherein said aryl groups may be substituted by one to three halogen, alkyl of 1 to 8 carbon atoms, alkoxy of 1 to 8 carbon atoms or combinations thereof.

25. (new) A process according to claim **24** wherein G_1 and G_2 are independently straight or branched chain alkyl groups of 6 to 22 carbon atoms and G_3 is a straight or branched chain alkyl of 1 to 22 carbon atoms.

26. (new) A process according to claim 24 in which G₃ is methyl.

 $^{\circ}$ 27. (new) A process according to claim 24 wherein G_1 and G_2 are each independently a straight or branched chain alkyl of 12 to 22 carbon atoms and wherein G_3 is methyl.

- 28. (new) A process according to claim 24 wherein G_1 , G_2 and G_3 are each independently a straight or branched chain alkyl of 12 to 22 carbon atoms.
- 29. (new) A process according to claim 24 wherein the amine oxide derivatives are selected from the group consisting of didecyl methyl amine oxide, tridecyl amine oxide, tridecyl amine oxide and trihexadecyl amine oxide.
- 30. (new) A process according to claim 24 wherein at least one of G_1 , G_2 and G_3 comprises at least one moiety of the group consisting of -O-, -S-, -SO-, -COO-, -CO- and -CONG₄-.
- 31. (new) A process according to claim 21 wherein the amine oxide derivatives are poly(amine oxides).
- 32. (new) A process according to claim 31 wherein the poly(amine oxides) comprise at least one moiety of the group consisting of -O-, -S-, -SO-, -COO-, -CO- and -CONG₄-.

33. (new) A process according to claim 24 wherein one or more of G_1 , G_2 and G_3 is substituted by one to sixteen groups of formulae (IV) and (V),

$$\begin{pmatrix}
R_x C H_2 & C H_3 & R_x \\
L & & & & \\
R_x C H_2 & C H_3
\end{pmatrix} (IV)$$

$$\begin{array}{c|c}
 & CH_3 \\
 & L & N \\
 & R_x CH_2 & CH_3
\end{array}$$
(V)

34. (new) A process according to claim 21 wherein the hindered amine stabilizers of component (c) contain at least one group of the formula (VI)

$$R_xCH_2$$
 CH_3
 R_x
 CH_2
 CH_3
 R_x
 CH_2
 CH_3

in which R_x is hydrogen or methyl.

1771 the this that the this

35. (new) A process according to claim **34** wherein the hindered amine stabilizers are selected from the group consisting of formulae (H1), (H2), (H3), (H4), (H5), (H6), (H7), (H8), (H9), (H10), (H11), (H12), (H13), (H14), (H15), (H16) and (H17)

$$(CH_{3})_{3}C \qquad \qquad n-C_{4}H_{9} \qquad O \qquad CH_{3} \qquad CH_{3} \qquad (H2)$$

$$(CH_{3})_{3}C \qquad CH_{2} \qquad CH_{2} \qquad CH_{3} \qquad (H2)$$

$$H_3C$$
 CH_3
 CH_3

The Company of the Co

$$CH_{3}O \longrightarrow CH = C \longrightarrow H_{3}C \longrightarrow CH_{3}$$

$$CH_{3}O \longrightarrow H_{3}C \longrightarrow CH_{3}$$

$$CH_{3}C \longrightarrow CH_{3}$$

- 11 -

HO NO (H14)

$$\begin{array}{c|c}
 & C & H \\
 & C \\
 &$$

He will be by HI LESS BY The Br.

THE RULE STATE OF THE STATE OF

where R' = R" or H

and where R" =
$$\begin{array}{c} H_9C_4 \\ N \\ N \\ N \\ N \end{array}$$
 (H17).

36. (new) A process according to claim **21**, wherein the temperature reaches the range from about 200°C to 400°C.