

PCP Teil 2 Oberseminar

Sebastian Berndt

Kurze Wiederholung

- Kurze Wiederholung
- Nicht-Approximierbarkeit von MAX-3-LIN

- Kurze Wiederholung
- ► Nicht-Approximierbarkeit von MAX-3-LIN
- ▶ Unique Games Conjecture

- Kurze Wiederholung
- ► Nicht-Approximierbarkeit von MAX-3-LIN
- Unique Games Conjecture
- Nicht-Approximierbarkeit von MAX-CUT

PCP

Die Klasse PCP_{c,s}[r(n), q(n)] enthält alle Sprachen $\mathcal{L} \subseteq \{0, 1\}^*$, für die es einen Verifier V gibt mit:

▶ *V* erhält eine *Instanz* $x \in \{0, 1\}^n$ und einen *Beweis* $\pi \in \{0, 1\}^*$ (es reicht $|\pi| \le 2^{r(n)} \cdot q(n)$)

PCP

- ▶ *V* erhält eine *Instanz* $x \in \{0, 1\}^n$ und einen *Beweis* $\pi \in \{0, 1\}^*$ (es reicht $|\pi| \le 2^{r(n)} \cdot q(n)$)
- ► *V* läuft in Zeit poly(*n*)

PCP

- ▶ *V* erhält eine *Instanz* $x \in \{0, 1\}^n$ und einen *Beweis* $\pi \in \{0, 1\}^*$ (es reicht $|\pi| \le 2^{r(n)} \cdot q(n)$)
- ▶ V läuft in Zeit poly(n)
- ightharpoonup V darf $\mathcal{O}(r(n))$ Münzwürfe durchführen

PCP

- ▶ V erhält eine Instanz $x \in \{0, 1\}^n$ und einen Beweis $\pi \in \{0, 1\}^*$ (es reicht $|\pi| \le 2^{r(n)} \cdot q(n)$)
- V läuft in Zeit poly(n)
- \triangleright V darf $\mathcal{O}(r(n))$ Münzwürfe durchführen
- ▶ $V \operatorname{darf} \mathcal{O}(q(n))$ Bits des Beweises π lesen

PCP

- ▶ *V* erhält eine *Instanz* $x \in \{0, 1\}^n$ und einen *Beweis* $\pi \in \{0, 1\}^*$ (es reicht $|\pi| \le 2^{r(n)} \cdot q(n)$)
- ▶ V läuft in Zeit poly(n)
- \triangleright V darf $\mathcal{O}(r(n))$ Münzwürfe durchführen
- ▶ $V \operatorname{darf} \mathcal{O}(q(n))$ Bits des Beweises π lesen
- \forall x ∈ \mathcal{L} : \exists π : $\Pr[V^{\pi}(x) = 1] \ge c$ (Completeness)

PCP

- ▶ *V* erhält eine *Instanz* $x \in \{0, 1\}^n$ und einen *Beweis* $\pi \in \{0, 1\}^*$ (es reicht $|\pi| \le 2^{r(n)} \cdot q(n)$)
- ▶ V läuft in Zeit poly(n)
- \triangleright V darf $\mathcal{O}(r(n))$ Münzwürfe durchführen
- ▶ $V \operatorname{darf} \mathcal{O}(q(n))$ Bits des Beweises π lesen
- \forall x ∈ \mathcal{L} : \exists π : $\Pr[V^{\pi}(x) = 1] \ge c$ (Completeness)
- ▶ $\forall x \notin \mathcal{L} : \forall \pi : \Pr[V^{\pi}(x) = 1] \leq s$ (Soundness)

PCP-Theorem (Arora, Lund, Motwani, Sudan, Szegedy)

$$PCP_{1,1/2}[\log n, 1] = \mathcal{NP}$$

PCP-Theorem (Arora, Lund, Motwani, Sudan, Szegedy)

$$PCP_{1,1/2}[\log n, 1] = \mathcal{NP}$$

E-GAP-MAX-3SAT

Gegeben: 3SAT-Formel φ mit m Klauseln

- Gesucht: \triangleright Ist φ erfüllbar? (JA)
 - ▶ Gilt für alle β , dass höchstens $(1 \epsilon) \cdot m$ Klauseln gleichzeitig erfüllt sind? (NEIN)

PCP-Theorem (Arora, Lund, Motwani, Sudan, Szegedy)

$$PCP_{1,1/2}[\log n, 1] = \mathcal{NP}$$

ε-GAP-MAX-3SAT

Gegeben: 3SAT-Formel φ mit m Klauseln

Gesucht: \triangleright Ist φ erfüllbar? (JA)

► Gilt für alle β , dass höchstens $(1 - \epsilon) \cdot m$ Klauseln gleichzeitig erfüllt sind? (NEIN)

Nicht-Approximierbarkeit

Das PCP-Theorem ist äquivalent zur Aussage, dass es eine Konstante ε gibt, so dass ε -GAP-MAX-3SAT \mathcal{NP} -hart ist.

Allgemeines Vorgehen

1. Zeige, dass die Existenz eines bestimmten Verifiers V^* die Nicht-Approximierbarkeit impliziert

Allgemeines Vorgehen

- 1. Zeige, dass die Existenz eines bestimmten Verifiers V^* die Nicht-Approximierbarkeit impliziert
- 2. Baue einfachen Verifier V (Outer Verifier)

Allgemeines Vorgehen

- 1. Zeige, dass die Existenz eines bestimmten Verifiers V^* die Nicht-Approximierbarkeit impliziert
- 2. Baue einfachen Verifier V (Outer Verifier)
- 3. Modifiziere *V* zu *V** (Inner Verifier)

LABEL-COVER

Gegeben: Bipartiter, regulärer Graph $G = (X \dot{\cup} Y, E)$, Alphabete Σ_X, Σ_Y , Menge von $\Pi = \{\pi_e \colon \Sigma_X \to \Sigma_Y \mid e \in E\}$

Gesucht: Zwei Abbildungen $\ell_X : X \to \Sigma_X$, $\ell_Y : Y \to \Sigma_Y$, so dass für alle $(x, y) \in E$ gilt $\pi_{(x,y)}(\ell_X(x)) = \ell_Y(y)$.

LABEL-COVER

Gegeben: Bipartiter, regulärer Graph $G=(X\dot{\cup}Y,E)$, Alphabete Σ_X, Σ_Y , Menge von $\Pi=\{\pi_e\colon \Sigma_X\to \Sigma_Y\mid e\in E\}$

Gesucht: Zwei Abbildungen $\ell_X : X \to \Sigma_X$, $\ell_Y : Y \to \Sigma_Y$, so dass für alle $(x, y) \in E$ gilt $\pi_{(x,y)}(\ell_X(x)) = \ell_Y(y)$.

Beispiel

3SAT-Formel $\varphi = \bigwedge_{i=1}^m K_i$ mit Variablen x_1, \ldots, x_n

 $X = \{K_1, K_2, ..., K_m\}$

LABEL-COVER

Gegeben: Bipartiter, regulärer Graph $G = (X \dot{\cup} Y, E)$, Alphabete Σ_X, Σ_Y , Menge von $\Pi = \{\pi_e \colon \Sigma_X \to \Sigma_Y \mid e \in E\}$

Gesucht: Zwei Abbildungen $\ell_X : X \to \Sigma_X$, $\ell_Y : Y \to \Sigma_Y$, so dass für alle $(x, y) \in E$ gilt $\pi_{(x,y)}(\ell_X(x)) = \ell_Y(y)$.

Beispiel

- $X = \{K_1, K_2, ..., K_m\}$
- $Y = \{x_1, x_2, ..., x_n\}$

LABEL-COVER

Gegeben: Bipartiter, regulärer Graph $G=(X\dot{\cup}Y,E)$, Alphabete Σ_X, Σ_Y , Menge von $\Pi=\{\pi_e\colon \Sigma_X\to \Sigma_Y\mid e\in E\}$

Gesucht: Zwei Abbildungen $\ell_X : X \to \Sigma_X$, $\ell_Y : Y \to \Sigma_Y$, so dass für alle $(x, y) \in E$ gilt $\pi_{(x,y)}(\ell_X(x)) = \ell_Y(y)$.

Beispiel

- $X = \{K_1, K_2, ..., K_m\}$
- $Y = \{x_1, x_2, ..., x_n\}$
- ▶ $E = \{(K, x) \mid x \in K\}$

LABEL-COVER

Gegeben: Bipartiter, regulärer Graph $G = (X \dot{\cup} Y, E)$, Alphabete Σ_X, Σ_Y , Menge von $\Pi = \{\pi_e \colon \Sigma_X \to \Sigma_Y \mid e \in E\}$

Gesucht: Zwei Abbildungen $\ell_X : X \to \Sigma_X$, $\ell_Y : Y \to \Sigma_Y$, so dass für alle $(x, y) \in E$ gilt $\pi_{(x,y)}(\ell_X(x)) = \ell_Y(y)$.

Beispiel

- $X = \{K_1, K_2, ..., K_m\}$
- $Y = \{x_1, x_2, ..., x_n\}$
- ▶ $E = \{(K, x) \mid x \in K\}$
- ▶ $\Sigma_X = [1..7]$

LABEL-COVER

Gegeben: Bipartiter, regulärer Graph $G = (X \dot{\cup} Y, E)$, Alphabete Σ_X, Σ_Y , Menge von $\Pi = \{\pi_e \colon \Sigma_X \to \Sigma_Y \mid e \in E\}$

Gesucht: Zwei Abbildungen $\ell_X : X \to \Sigma_X$, $\ell_Y : Y \to \Sigma_Y$, so dass für alle $(x, y) \in E$ gilt $\pi_{(x,y)}(\ell_X(x)) = \ell_Y(y)$.

Beispiel

- $X = \{K_1, K_2, ..., K_m\}$
- $Y = \{x_1, x_2, ..., x_n\}$
- ▶ $E = \{(K, x) \mid x \in K\}$
- ▶ $\Sigma_X = [1..7]$
- ▶ $\Sigma_Y = \{0, 1\}$

LABEL-COVER

Gegeben: Bipartiter, regulärer Graph $G = (X \dot{\cup} Y, E)$, Alphabete Σ_X, Σ_Y , Menge von $\Pi = \{\pi_e : \Sigma_X \to \Sigma_Y \mid e \in E\}$

Gesucht: Zwei Abbildungen $\ell_X : X \to \Sigma_X$, $\ell_Y : Y \to \Sigma_Y$, so dass für alle $(x,y) \in E$ gilt $\pi_{(x,y)}(\ell_X(x)) = \ell_Y(y)$.

Beispiel

- $X = \{K_1, K_2, ..., K_m\}$
- $Y = \{x_1, x_2, ..., x_n\}$
- ▶ $E = \{(K, x) \mid x \in K\}$
- ▶ $\Sigma_X = [1..7]$
- ▶ $\Sigma_{Y} = \{0, 1\}$
- \blacktriangleright $\pi_{(K,x)}$ wandelt Belegung von K in Belegung von x um

LABEL-COVER

Gegeben: Bipartiter, regulärer Graph $G = (X \dot{\cup} Y, E)$, Alphabete Σ_X, Σ_Y , Menge von $\Pi = \{\pi_e : \Sigma_X \to \Sigma_Y \mid e \in E\}$

Gesucht: Zwei Abbildungen $\ell_X : X \to \Sigma_X$, $\ell_Y : Y \to \Sigma_Y$, so dass für alle $(x, y) \in E$ gilt $\pi_{(x,y)}(\ell_X(x)) = \ell_Y(y)$.

Beispiel

- $X = \{K_1, K_2, ..., K_m\}$
- $Y = \{x_1, x_2, ..., x_n\}$
- ▶ $E = \{(K, x) \mid x \in K\}$
- ▶ $\Sigma_X = [1..7]$
- ▶ $\Sigma_{Y} = \{0, 1\}$
- \blacktriangleright $\pi_{(K,x)}$ wandelt Belegung von K in Belegung von x um

LABEL-COVER

Gegeben: Bipartiter, regulärer Graph $G = (X \dot{\cup} Y, E)$, Alphabete Σ_X, Σ_Y , Menge von $\Pi = \{\pi_e \colon \Sigma_X \to \Sigma_Y \mid e \in E\}$

Gesucht: Zwei Abbildungen $\ell_X : X \to \Sigma_X$, $\ell_Y : Y \to \Sigma_Y$, so dass für alle $(x, y) \in E$ gilt $\pi_{(x,y)}(\ell_X(x)) = \ell_Y(y)$.

Beispiel

3SAT-Formel $\varphi = \bigwedge_{i=1}^m K_i$ mit Variablen x_1, \ldots, x_n

- $X = \{K_1, K_2, ..., K_m\}$
- $Y = \{x_1, x_2, ..., x_n\}$
- ▶ $E = \{(K, x) \mid x \in K\}$
- ▶ $\Sigma_X = [1..7]$
- ► $\Sigma_Y = \{0, 1\}$
- \blacktriangleright $\pi_{(K,x)}$ wandelt Belegung von K in Belegung von x um

Satz

Es gibt eine Konstante ε' , so dass ε' -GAP-MAX-LABEL-COVER \mathcal{NP} -hart ist.

3-LIN

Gegeben: Menge von Variablen $x_1, ..., x_n$ und Gleichungen C

 $\operatorname{der}\operatorname{\mathsf{Form}} x\oplus y\oplus z=\{\mathsf{0},\mathsf{1}\}$

Gesucht: Belegung β : $\{x_1, x_2, ..., x_n\} \rightarrow \{0, 1\}$, so dass alle

Gleichungen erfüllt sind

3-LIN

Gegeben: Menge von Variablen $x_1, ..., x_n$ und Gleichungen C der Form $x \oplus y \oplus z = \{0, 1\}$

Gesucht: Belegung β : $\{x_1, x_2, ..., x_n\} \rightarrow \{0, 1\}$, so dass alle Gleichungen erfüllt sind

Satz (Johan Håstad, 2001)

Wenn es einen (log n, 1)-Verifier V mit Soundness s und Completeness c gibt, der genau drei Bits x, y, z liest und akzeptiert, falls $x \oplus y \oplus z = 0$, so kann MAX-3-LIN nicht besser als mit Rate \checkmark c approximiert werden. (außer $\mathcal{P} = \mathcal{NP}$)

3-LIN

Gegeben: Menge von Variablen $x_1, ..., x_n$ und Gleichungen C der Form $x \oplus y \oplus z = \{0, 1\}$

Gesucht: Belegung β : $\{x_1, x_2, ..., x_n\} \rightarrow \{0, 1\}$, so dass alle Gleichungen erfüllt sind

Satz (Johan Håstad, 2001)

Wenn es einen (log n, 1)-Verifier V mit Soundness s und Completeness c gibt, der genau drei Bits x, y, z liest und akzeptiert, falls $x \oplus y \oplus z = 0$, so kann MAX-3-LIN nicht besser als mit Rate \checkmark c approximiert werden. (außer $\mathcal{P} = \mathcal{NP}$)

Beweis

▶ Variablen $x_1, x_2, ...$

3-LIN

Gegeben: Menge von Variablen $x_1, ..., x_n$ und Gleichungen C der Form $x \oplus y \oplus z = \{0, 1\}$

Gesucht: Belegung β : $\{x_1, x_2, ..., x_n\} \rightarrow \{0, 1\}$, so dass alle Gleichungen erfüllt sind

Satz (Johan Håstad, 2001)

Wenn es einen (log n, 1)-Verifier V mit Soundness s und Completeness c gibt, der genau drei Bits x, y, z liest und akzeptiert, falls $x \oplus y \oplus z = 0$, so kann MAX-3-LIN nicht besser als mit Rate \checkmark c approximiert werden. (außer $\mathcal{P} = \mathcal{NP}$)

Beweis

- ▶ Variablen $x_1, x_2, ...$
- Simuliere Münzwürfe und konstruiere Gleichungen $C = \{x_i \oplus x_j \oplus x_k = 0 \mid Pr[V \text{ liest gleichzeitig Bits } i, j, k] > 0\}$

3-LIN

Gegeben: Menge von Variablen $x_1, ..., x_n$ und Gleichungen C der Form $x \oplus y \oplus z = \{0, 1\}$

Gesucht: Belegung β : $\{x_1, x_2, ..., x_n\} \rightarrow \{0, 1\}$, so dass alle Gleichungen erfüllt sind

Satz (Johan Håstad, 2001)

Wenn es einen (log n, 1)-Verifier V mit Soundness s und Completeness c gibt, der genau drei Bits x, y, z liest und akzeptiert, falls $x \oplus y \oplus z = 0$, so kann MAX-3-LIN nicht besser als mit Rate \checkmark c approximiert werden. (außer $\mathcal{P} = \mathcal{NP}$)

Beweis

- ▶ Variablen $x_1, x_2, ...$
- Simuliere Münzwürfe und konstruiere Gleichungen $C = \{x_i \oplus x_j \oplus x_k = 0 \mid Pr[V \text{ liest gleichzeitig Bits } i, j, k] > 0\}$
- ho Pr[V akzeptiert] = $\frac{\text{Anzahl erfüllter Gleichungen}}{\text{Anzahl der Gleichungen}}$

LABEL-COVER Instanz $G=(X\dot{\cup}Y,E), \Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für LABEL-COVER:

LABEL-COVER Instanz $G=(X\dot{\cup}Y,E), \Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für LABEL-COVER:

Verifier

▶ Wähle $(x, y) \in E$ uniform

LABEL-COVER Instanz $G=(X\dot{\cup}Y,E), \Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für LABEL-COVER:

Verifier

- ▶ Wähle $(x, y) \in E$ uniform
- ▶ Lies $\ell_X(x)$, $\ell_Y(y)$ aus dem Beweis

LABEL-COVER Instanz $G = (X \dot{\cup} Y, E), \Sigma, \Pi = \{\pi_e\}_{e \in E}$ Konstruiere typischen Verifier für LABEL-COVER:

Verifier

- ▶ Wähle $(x, y) \in E$ uniform
- ▶ Lies $\ell_X(x)$, $\ell_Y(y)$ aus dem Beweis
- ► Teste, ob $\pi(\ell_X(x)) = \ell_Y(y)$

LABEL-COVER Instanz $G = (X \dot{\cup} Y, E), \Sigma, \Pi = \{\pi_e\}_{e \in E}$ Konstruiere typischen Verifier für LABEL-COVER:

Verifier

- ▶ Wähle $(x, y) \in E$ uniform
- ▶ Lies $\ell_X(x)$, $\ell_Y(y)$ aus dem Beweis
- ► Teste, ob $\pi(\ell_X(x)) = \ell_Y(y)$

LABEL-COVER Instanz $G = (X \dot{\cup} Y, E), \Sigma, \Pi = \{\pi_e\}_{e \in E}$ Konstruiere typischen Verifier für LABEL-COVER:

Verifier

- ▶ Wähle $(x, y) \in E$ uniform
- Lies $\ell_X(x)$, $\ell_Y(y)$ aus dem Beweis
- ► Teste, ob $\pi(\ell_X(x)) = \ell_Y(y)$

Wenn alle Kanten erfüllt sind, ist die Wahrscheinlichkeit, dass diese erfüllt ist, 1.

LABEL-COVER Instanz $G = (X \dot{\cup} Y, E), \Sigma, \Pi = \{\pi_e\}_{e \in E}$ Konstruiere typischen Verifier für LABEL-COVER:

Verifier

- ▶ Wähle $(x, y) \in E$ uniform
- Lies $\ell_X(x)$, $\ell_Y(y)$ aus dem Beweis
- ► Teste, ob $\pi(\ell_X(x)) = \ell_Y(y)$

Wenn alle Kanten erfüllt sind, ist die Wahrscheinlichkeit, dass diese erfüllt ist. 1.

Sind maximal $(1 - \varepsilon) \cdot |E|$ der Kanten erfüllt, ist die Wahrscheinlichkeit, dass diese erfüllt ist, höchstens $(1 - \varepsilon)$.

LABEL-COVER Instanz $G = (X \dot{\cup} Y, E), \Sigma, \Pi = \{\pi_e\}_{e \in E}$ Konstruiere typischen Verifier für LABEL-COVER:

Verifier

- ▶ Wähle $(x, y) \in E$ uniform
- Lies $\ell_X(x)$, $\ell_Y(y)$ aus dem Beweis
- ► Teste, ob $\pi(\ell_X(x)) = \ell_Y(y)$

Wenn alle Kanten erfüllt sind, ist die Wahrscheinlichkeit, dass diese erfüllt ist, 1.

Sind maximal $(1 - \varepsilon) \cdot |E|$ der Kanten erfüllt, ist die Wahrscheinlichkeit, dass diese erfüllt ist, höchstens $(1 - \varepsilon)$. Wir lesen $\log |\Sigma_X| + \log |\Sigma_Y|$ Bits!

Idee

Wir codieren $\ell_X(x)$, $\ell_Y(y)$ so, dass wir für den Test $\pi(\ell_X(x)) = \ell_Y(y)$ nur drei Bits lesen müssen!

Idee

Wir codieren $\ell_X(x)$, $\ell_Y(y)$ so, dass wir für den Test $\pi(\ell_X(x)) = \ell_Y(y)$ nur drei Bits lesen müssen!

Long Code

Sei $\mathcal{B}_{\Sigma} = \{f : \Sigma \to \{0, 1\}\}$ Menge der booleschen Funktionen $(|\mathcal{B}_{\Sigma}|=2^{|\Sigma|}) \operatorname{mit} \mathcal{B}_{\Sigma}=\{f_0,f_1,\ldots,f_{2|\Sigma|-1}\}.$

Wir codieren $a \in \Sigma$ mit Long_a = $f_0(a)f_1(a) \dots f_{2|\Sigma|-1}(a)$, d.h.

 $\mathsf{Long}_a[f] = f(a)$ für alle $f \in \mathcal{B}_{\Sigma}$.

Neuer 3-Bit Verifier:

Verifier

▶ Wähle zufällig $(x, y) \in E$

Neuer 3-Bit Verifier:

- ▶ Wähle zufällig $(x, y) \in E$
- ▶ Wähle zufällig $f \in B_{\Sigma_X}$, $g \in B_{\Sigma_Y}$, mit $\Pr[f(\sigma) = 1] = \frac{1}{2} = \Pr[g(\sigma') = 1]$

Neuer 3-Bit Verifier:

- ▶ Wähle zufällig $(x, y) \in E$
- ▶ Wähle zufällig $f \in B_{\Sigma_X}$, $g \in B_{\Sigma_Y}$, mit $\Pr[f(\sigma) = 1] = \frac{1}{2} = \Pr[g(\sigma') = 1]$
- ► Teste, ob $\mathsf{Long}_{\ell_X(x)}[f] \oplus \mathsf{Long}_{\ell_Y(y)}[g] \oplus \mathsf{Long}_{\ell_X(x)}[(g \circ \pi_{(x,y)}) \oplus f] = 0$

Neuer 3-Bit Verifier:

- ▶ Wähle zufällig $(x, y) \in E$
- ▶ Wähle zufällig $f \in B_{\Sigma_X}$, $g \in B_{\Sigma_Y}$, mit $\Pr[f(\sigma) = 1] = \frac{1}{2} = \Pr[g(\sigma') = 1]$
- ► Teste, ob $\mathsf{Long}_{\ell_X(x)}[f] \oplus \mathsf{Long}_{\ell_Y(y)}[g] \oplus \mathsf{Long}_{\ell_X(x)}[(g \circ \pi_{(x,y)}) \oplus f] = 0$

Neuer 3-Bit Verifier:

Verifier

- ▶ Wähle zufällig $(x, y) \in E$
- ▶ Wähle zufällig $f ∈ B_{\Sigma_X}$, $g ∈ B_{\Sigma_Y}$, mit $Pr[f(\sigma) = 1] = 1/2 = Pr[g(\sigma') = 1]$
- ► Teste, ob $\mathsf{Long}_{\ell_X(x)}[f] \oplus \mathsf{Long}_{\ell_Y(y)}[g] \oplus \mathsf{Long}_{\ell_X(x)}[(g \circ \pi_{(x,y)}) \oplus f] = 0$

Completeness

Falls $\pi(\ell_X(x)) = \ell_Y(y)$:

Neuer 3-Bit Verifier:

Verifier

- ▶ Wähle zufällig $(x, y) \in E$
- ▶ Wähle zufällig $f ∈ B_{\Sigma_X}$, $g ∈ B_{\Sigma_Y}$, mit $Pr[f(\sigma) = 1] = 1/2 = Pr[g(\sigma') = 1]$
- ► Teste, ob $\mathsf{Long}_{\ell_X(x)}[f] \oplus \mathsf{Long}_{\ell_Y(y)}[g] \oplus \mathsf{Long}_{\ell_X(x)}[(g \circ \pi_{(x,y)}) \oplus f] = 0$

Completeness

Falls
$$\pi(\ell_X(x)) = \ell_Y(y)$$
:

Soundness

Idee: Wenn der Test mit zu hoher Wahrscheinlichkeit gelingt, gibt uns $Long_{\ell}$ ein Labeling, dass sehr viele Kanten erfüllt. Beweis: Fourier-Analyse von $Long_{\ell}$

Konsequenzen

Satz

Wir erhalten $c = 1 - \varepsilon$, $s = 1/2 + \varepsilon$. Eine bessere Approximation als $2 - \varepsilon$ ist nicht möglich!

Konsequenzen

Satz

Wir erhalten $c=1-\epsilon$, $s=1/2+\epsilon$. Eine bessere Approximation als $2-\epsilon$ ist nicht möglich!

Weiteres Fortführen der Ideen:

Satz (Johan Håstad, 2001)

Es gibt keinen Algorithmus, der MAX-3SAT besser als mit Rate %7 approximieren kann. (außer $\mathcal{P} = \mathcal{N}\mathcal{P}$)

Allgemeines Vorgehen

1. Zeige, dass die Existenz eines bestimmten Verifiers V^* die Nicht-Approximierbarkeit impliziert

Allgemeines Vorgehen

- 1. Zeige, dass die Existenz eines bestimmten Verifiers V^* die Nicht-Approximierbarkeit impliziert
- 2. Baue einfachen Verifier V (Outer Verifier)

Allgemeines Vorgehen

- 1. Zeige, dass die Existenz eines bestimmten Verifiers V^* die Nicht-Approximierbarkeit impliziert
- 2. Baue einfachen Verifier V (Outer Verifier)
- 3. Modifiziere *V* zu *V** (Inner Verifier)

UNIOUE-LABEL-COVER

Sei $G=(X\dot{\cup}Y,E)$, Σ , $\Pi=\{\pi_e\}_{e\in E}$ Instanz von LABEL-COVER. Sind alle π_e Permutationen, so ist es eine Instanz von UNIQUE-LABEL-COVER.

UNIQUE-LABEL-COVER

Sei $G=(X\dot{\cup}Y,E)$, Σ , $\Pi=\{\pi_e\}_{e\in E}$ Instanz von LABEL-COVER. Sind alle π_e Permutationen, so ist es eine Instanz von UNIQUE-LABEL-COVER.

Frage

Wie schwer ist UNIQUE-LABEL-COVER?

UNIQUE-LABEL-COVER

Sei $G=(X\dot{\cup}Y,E), \Sigma, \Pi=\{\pi_e\}_{e\in E}$ Instanz von LABEL-COVER. Sind alle π_e Permutationen, so ist es eine Instanz von UNIQUE-LABEL-COVER.

Frage

Wie schwer ist UNIQUE-LABEL-COVER?

ε-GAP-MAX-UNIOUE-LABEL-COVER

Gegeben: UNIQUE-LABEL-COVER Instanz

$$G = (X \dot{\cup} Y, E), \Sigma, \Pi = \{\pi_e\}_{e \in E}$$

- Gesucht: Sind mindestens $(1 \varepsilon) \cdot |E|$ Kanten erfüllbar? (JA)
 - ▶ Gilt für alle ℓ , dass höchstens $\epsilon \cdot |E|$ Kanten gleichzeitig erfüllt sind? (NEIN)

UNIQUE-LABEL-COVER

Sei $G=(X\dot{\cup}Y,E),\Sigma,\Pi=\{\pi_e\}_{e\in E}$ Instanz von LABEL-COVER. Sind alle π_e Permutationen, so ist es eine Instanz von UNIQUE-LABEL-COVER.

Frage

Wie schwer ist UNIQUE-LABEL-COVER?

ε-GAP-MAX-UNIOUE-LABEL-COVER

Gegeben: UNIQUE-LABEL-COVER Instanz

$$G = (X \dot{\cup} Y, E), \Sigma, \Pi = \{\pi_e\}_{e \in E}$$

- Gesucht: Sind mindestens $(1 \varepsilon) \cdot |E|$ Kanten erfüllbar? (JA)
 - ▶ Gilt für alle ℓ , dass höchstens $\varepsilon \cdot |E|$ Kanten gleichzeitig erfüllt sind? (NEIN)

Unique Games Conjecture (Subhash Khot, 2002)

Für alle $\varepsilon>0$ gibt es ein $s=s(\varepsilon)$, so dass ε -GAP-MAX-UNIQUE-LABEL-COVER \mathcal{NP} -hart für Instanzen mit Alphabetgröße s ist.

Unique Games Conjecture

Zustand 2005:

Name	Rate	LB	LB UGC
MIN-VERTEX-COVER	2	1.36	$2-\varepsilon$
MAX-CUT	$1/a_{GW} \approx 1.139$	$^{17}/_{16} \approx 1.0625$	$1/a_{GW}-\varepsilon$
MIN-K-UNIFORM-HYPERGRAPH-VC	k	$k-1-\varepsilon$	k – ε
MAX-2SAT	$1/a_{LLZ} \approx 1.064$	1.048	$1/a_{LLZ}-\epsilon$
CSP mit integrality gap $lpha$	α	?	$\alpha - \varepsilon$

Unique Games Conjecture

Zustand 2005:

Name	Rate	LB	LB UGC
MIN-VERTEX-COVER	2	1.36	2 – ε
MAX-CUT	$1/a_{GW} \approx 1.139$	$^{17}/_{16} \approx 1.0625$	$1/a_{GW}-\varepsilon$
MIN-K-UNIFORM-HYPERGRAPH-VC	k	$k-1-\varepsilon$	k – ε
MAX-2SAT	$1/a_{LLZ} \approx 1.064$	1.048	$1/a_{LLZ}-\epsilon$
CSP mit integrality gap $lpha$	α	?	α – ε

Satz (Raghavendra, 2008)

Unter der UGC ist jedes CSP entweder \mathcal{NP} -hart oder in Polynomialzeit lösbar.

MAX-CUT

Gegeben: Graph G = (V, E)

Gesucht: Partition $V = V_1 \dot{\cup} V_2$, so dass die Anzahl an Kanten

zwischen V_1 und V_2 maximal ist.

MAX-CUT

Gegeben: Graph G = (V, E)

Gesucht: Partition $V = V_1 \dot{\cup} V_2$, so dass die Anzahl an Kanten zwischen V_1 und V_2 maximal ist.

Satz (Khot, Kindler, Mossel, O'Donnel, 2005)

Wenn es einen (log n, 1)-Verifier V gibt mit Soundness s und Completeness c gibt, der genau zwei Bits b, b' liest und akzeptiert, falls $b \neq b'$, so impliziert die UGC, dass MAX-CUT nicht besser als mit Wert $\frac{1}{2}$ c approximiert werden kann.

MAX-CUT

Gegeben: Graph G = (V, E)

Gesucht: Partition $V = V_1 \dot{\cup} V_2$, so dass die Anzahl an Kanten zwischen V_1 und V_2 maximal ist.

Satz (Khot, Kindler, Mossel, O'Donnel, 2005)

Wenn es einen (log n, 1)-Verifier V gibt mit Soundness s und Completeness c gibt, der genau zwei Bits b, b' liest und akzeptiert, falls $b \neq b'$, so impliziert die UGC, dass MAX-CUT nicht besser als mit Wert % approximiert werden kann.

Beweis

π Beweis für V

MAX-CUT

Gegeben: Graph G = (V, E)

Gesucht: Partition $V = V_1 \dot{\cup} V_2$, so dass die Anzahl an Kanten zwischen V_1 und V_2 maximal ist.

Satz (Khot, Kindler, Mossel, O'Donnel, 2005)

Wenn es einen (log n, 1)-Verifier V gibt mit Soundness s und Completeness c gibt, der genau zwei Bits b, b' liest und akzeptiert, falls $b \neq b'$, so impliziert die UGC, dass MAX-CUT nicht besser als mit Wert % approximiert werden kann.

- π Beweis für V
- ▶ Konstruiere G = (V, E)

MAX-CUT

Gegeben: Graph G = (V, E)

Gesucht: Partition $V = V_1 \dot{\cup} V_2$, so dass die Anzahl an Kanten zwischen V_1 und V_2 maximal ist.

Satz (Khot, Kindler, Mossel, O'Donnel, 2005)

Wenn es einen (log n, 1)-Verifier V gibt mit Soundness s und Completeness c gibt, der genau zwei Bits b, b' liest und akzeptiert, falls $b \neq b'$, so impliziert die UGC, dass MAX-CUT nicht besser als mit Wert % approximiert werden kann.

- \blacktriangleright π Beweis für V
- $\bullet \quad \text{Konstruiere } G = (V, E)$
- $V = \{v_1, v_2, ..., v_{|\pi|}\}$

MAX-CUT

Gegeben: Graph G = (V, E)

Gesucht: Partition $V = V_1 \dot{\cup} V_2$, so dass die Anzahl an Kanten zwischen V_1 und V_2 maximal ist.

Satz (Khot, Kindler, Mossel, O'Donnel, 2005)

Wenn es einen (log n, 1)-Verifier V gibt mit Soundness s und Completeness c gibt, der genau zwei Bits b, b' liest und akzeptiert, falls $b \neq b'$, so impliziert die UGC, dass MAX-CUT nicht besser als mit Wert % approximiert werden kann.

- \blacktriangleright π Beweis für V
- ▶ Konstruiere G = (V, E)
- $V = \{v_1, v_2, ..., v_{|\pi|}\}$
- $E = \{(v_i, v_j) \mid \Pr[V \text{ liest Bits } i \text{ und } j] > 0\}$

MAX-CUT

Gegeben: Graph G = (V, E)

Gesucht: Partition $V = V_1 \dot{\cup} V_2$, so dass die Anzahl an Kanten zwischen V_1 und V_2 maximal ist.

Satz (Khot, Kindler, Mossel, O'Donnel, 2005)

Wenn es einen (log n, 1)-Verifier V gibt mit Soundness s und Completeness c gibt, der genau zwei Bits b, b' liest und akzeptiert, falls $b \neq b'$, so impliziert die UGC, dass MAX-CUT nicht besser als mit Wert $\frac{1}{2}$ c approximiert werden kann.

- π Beweis für V
- ▶ Konstruiere G = (V, E)
- $V = \{v_1, v_2, ..., v_{|\pi|}\}$
- \triangleright $E = \{(v_i, v_i) \mid \Pr[V \text{ liest Bits } i \text{ und } j] > 0\}$
- $ightharpoonup \Pr[V \text{ akzeptiert}] = rac{\text{Anzahl der Kanten im Cut}}{\text{Anzahl der Kanten}}$

UNIQUE-LABEL-COVER Instanz $G=(X\dot{\cup}Y,E),\Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für UNIQUE-LABEL-COVER:

UNIQUE-LABEL-COVER Instanz $G=(X\dot{\cup}Y,E),\Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für UNIQUE-LABEL-COVER:

Verifier

▶ Wähle $x \in X$ uniform

UNIQUE-LABEL-COVER Instanz $G=(X\dot{\cup}Y,E),\Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für UNIQUE-LABEL-COVER:

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$

UNIQUE-LABEL-COVER Instanz $G=(X\dot{\cup}Y,E),\Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für UNIQUE-LABEL-COVER:

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,y)}$, $\pi' = \pi_{(x,y')}$

UNIQUE-LABEL-COVER Instanz $G=(X\dot{\cup}Y,E),\Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für UNIQUE-LABEL-COVER:

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,y)}, \pi' = \pi_{(x,y')}$
- Lies $\ell(x)$, $\ell(y)$, $\ell(y')$ aus dem Beweis

UNIQUE-LABEL-COVER Instanz $G=(X\dot{\cup}Y,E),\Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für UNIQUE-LABEL-COVER:

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,y)}, \pi' = \pi_{(x,y')}$
- Lies $\ell(x)$, $\ell(y)$, $\ell(y')$ aus dem Beweis
- ► Teste, ob $\pi(\ell(x)) = \ell(y)$ und $\pi'(\ell(x)) = \ell(y')$

UNIQUE-LABEL-COVER Instanz $G=(X\dot{\cup}Y,E),\Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für UNIQUE-LABEL-COVER:

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,y)}, \pi' = \pi_{(x,y')}$
- Lies $\ell(x)$, $\ell(y)$, $\ell(y')$ aus dem Beweis
- ► Teste, ob $\pi(\ell(x)) = \ell(y)$ und $\pi'(\ell(x)) = \ell(y')$

Outer Verifier

UNIQUE-LABEL-COVER Instanz $G=(X\dot{\cup}Y,E),\Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für UNIQUE-LABEL-COVER:

Verifier

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,y)}, \pi' = \pi_{(x,y')}$
- Lies $\ell(x)$, $\ell(y)$, $\ell(y')$ aus dem Beweis
- ► Teste, ob $\pi(\ell(x)) = \ell(y)$ und $\pi'(\ell(x)) = \ell(y')$

Wenn $(1 - \varepsilon) \cdot |E|$ der Kanten erfüllt, ist die Wahrscheinlichkeit, dass beide erfüllt sind, mindestens $1 - 2\varepsilon$.

Outer Verifier

UNIQUE-LABEL-COVER Instanz $G=(X\dot{\cup}Y,E),\Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für UNIQUE-LABEL-COVER:

Verifier

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,y)}, \pi' = \pi_{(x,y')}$
- Lies $\ell(x)$, $\ell(y)$, $\ell(y')$ aus dem Beweis
- ► Teste, ob $\pi(\ell(x)) = \ell(y)$ und $\pi'(\ell(x)) = \ell(y')$

Wenn $(1 - \varepsilon) \cdot |E|$ der Kanten erfüllt, ist die Wahrscheinlichkeit, dass beide erfüllt sind, mindestens $1 - 2\varepsilon$.

Sind maximal $\varepsilon \cdot |E|$ der Kanten erfüllt, ist die Wahrscheinlichkeit, dass beide erfüllt sind, höchstens ε .

Outer Verifier

UNIQUE-LABEL-COVER Instanz $G=(X\dot{\cup}Y,E),\Sigma,\Pi=\{\pi_e\}_{e\in E}$ Konstruiere typischen Verifier für UNIQUE-LABEL-COVER:

Verifier

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,y)}, \pi' = \pi_{(x,y')}$
- Lies $\ell(x)$, $\ell(y)$, $\ell(y')$ aus dem Beweis
- ► Teste, ob $\pi(\ell(x)) = \ell(y)$ und $\pi'(\ell(x)) = \ell(y')$

Wenn $(1 - \varepsilon) \cdot |E|$ der Kanten erfüllt, ist die Wahrscheinlichkeit, dass beide erfüllt sind, mindestens $1 - 2\varepsilon$.

Sind maximal $\varepsilon \cdot |E|$ der Kanten erfüllt, ist die Wahrscheinlichkeit, dass beide erfüllt sind, höchstens ε .

Wir lesen $3 \cdot \log(|\Sigma|)$ Bits!

Idee

Wir codieren $\ell(x)$, $\ell(y)$, $\ell(y')$ so, dass wir für den Test $\pi(\ell(x)) = \ell(y)$ und $\pi'(\ell(x)) = \ell(y')$ nur zwei Bits lesen müssen!

Idee

Wir codieren $\ell(x)$, $\ell(y)$, $\ell(y')$ so, dass wir für den Test $\pi(\ell(x)) = \ell(y)$ und $\pi'(\ell(x)) = \ell(y')$ nur zwei Bits lesen müssen!

Auch hier wieder Long Code!

Verifier mit Parameter $0 < \rho < 1$

▶ Wähle $x \in X$ uniform

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,y)'}^{-1} \pi' = \pi_{(x,y')}^{-1}$

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,y)'}^{-1} \pi' = \pi_{(x,y')}^{-1}$
- ▶ Wähle $f \in B_{|\Sigma|}$, so dass $\Pr[f(\sigma) = 0] = \frac{1}{2}$

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,v)'}^{-1} \pi' = \pi_{(x,v')}^{-1}$
- ▶ Wähle $f \in B_{|\Sigma|}$, so dass $\Pr[f(\sigma) = 0] = \frac{1}{2}$
- ▶ Wähle $f_{\rho} \in B_{|\Sigma|}$, so dass $\Pr[f_{\rho}(\sigma) = 0] = \frac{1}{2} + \frac{1}{2}\rho > \frac{1}{2}$

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,y)'}^{-1} \pi' = \pi_{(x,y')}^{-1}$
- ▶ Wähle $f \in B_{|\Sigma|}$, so dass $\Pr[f(\sigma) = 0] = \frac{1}{2}$
- ▶ Wähle $f_{\rho} \in B_{|\Sigma|}$, so dass $\Pr[f_{\rho}(\sigma) = 0] = \frac{1}{2} + \frac{1}{2}\rho > \frac{1}{2}$
- ► Teste, ob Long_{$\ell(y)$} [$f \circ \pi$] = Long_{$\ell(y')$} [$(f \circ \pi') \cdot f_{\rho}$]

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,y)'}^{-1} \pi' = \pi_{(x,y')}^{-1}$
- ▶ Wähle $f \in B_{|\Sigma|}$, so dass $\Pr[f(\sigma) = 0] = \frac{1}{2}$
- ▶ Wähle $f_{\rho} \in B_{|\Sigma|}$, so dass $\Pr[f_{\rho}(\sigma) = 0] = \frac{1}{2} + \frac{1}{2}\rho > \frac{1}{2}$
- ► Teste, ob Long_{$\ell(y)$} [$f \circ \pi$] = Long_{$\ell(y')$} [$(f \circ \pi') \cdot f_{\rho}$]

Verifier mit Parameter $0 < \rho < 1$

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,v)}^{-1}, \pi' = \pi_{(x,v')}^{-1}$
- ▶ Wähle $f \in B_{|\Sigma|}$, so dass $\Pr[f(\sigma) = 0] = \frac{1}{2}$
- ▶ Wähle $f_{\rho} \in B_{|\Sigma|}$, so dass $\Pr[f_{\rho}(\sigma) = 0] = \frac{1}{2} + \frac{1}{2}\rho > \frac{1}{2}$
- ► Teste, ob Long_{$\ell(y)$}[$f \circ \pi$] = Long_{$\ell(y')$}[$(f \circ \pi') \cdot f_{\rho}$]

Completeness

Falls $\pi(\ell(x)) = \ell(y)$ und $\pi'(\ell(x)) = \ell(y')$:

Verifier mit Parameter $0 < \rho < 1$

- ▶ Wähle $x \in X$ uniform
- ▶ Wähle zufällig $(x, y), (x, y') \in E$
- Sei $\pi = \pi_{(x,y)'}^{-1} \pi' = \pi_{(x,y')}^{-1}$
- ▶ Wähle $f \in B_{|\Sigma|}$, so dass $\Pr[f(\sigma) = 0] = \frac{1}{2}$
- ▶ Wähle $f_{\rho} \in B_{|\Sigma|}$, so dass $\Pr[f_{\rho}(\sigma) = 0] = \frac{1}{2} + \frac{1}{2}\rho > \frac{1}{2}$
- ► Teste, ob Long $_{\ell(y)}[f \circ \pi] = \text{Long}_{\ell(y')}[(f \circ \pi') \cdot f_{\rho}]$

Completeness

Falls
$$\pi(\ell(x)) = \ell(y)$$
 und $\pi'(\ell(x)) = \ell(y')$:

Soundness

Idee: Wenn der Test mit zu hoher Wahrscheinlichkeit gelingt, gibt uns Long_ℓ ein Labeling, dass sehr viele Kanten erfüllt. Beweis: Fourier-Analyse von Long_ℓ und "Majority is Stablest"

Konsequenzen

Satz

Wir erhalten $c = 1/2 + 1/2\rho$ und $s = \arccos(\rho)/\pi + \epsilon$. Eine bessere Approximation als $s/c \approx 1/\alpha_{GW} - \epsilon \approx 1.139 - \epsilon$ ist nicht möglich. $(\alpha_{GW} = \min_{0 < \Theta \le \pi} \frac{2}{\pi} \cdot \frac{\Theta}{1 - \cos \Theta})$

Konsequenzen

Satz

Wir erhalten
$$c = \frac{1}{2} + \frac{1}{2}\rho$$
 und $s = \arccos(\rho)/\pi + \epsilon$. Eine bessere Approximation als $s/c \approx \frac{1}{4}\sigma_{GW} - \epsilon \approx 1.139 - \epsilon$ ist nicht möglich. $(\alpha_{GW} = \min_{0 < \Theta \le \pi} \frac{2}{\pi} \cdot \frac{\Theta}{1 - \cos \Theta})$

Satz (Goemans & Williamson, 1995)

Es gibt einen randomisierten Approximationsalgorithmus für MAX — CUT mit Approximationsrate $V_{\alpha_{GW}} \approx 1.139$.

Konsequenzen

Satz

Wir erhalten $c = \frac{1}{2} + \frac{1}{2}\rho$ und $s = \arccos(\rho)/\pi + \epsilon$. Eine bessere Approximation als $s/c \approx \frac{1}{2}\alpha_{GW} - \epsilon \approx 1.139 - \epsilon$ ist nicht möglich. $(\alpha_{GW} = \min_{0 < \Theta \le \pi} \frac{2}{\pi} \cdot \frac{\Theta}{1 - \cos \Theta})$

Satz (Goemans & Williamson, 1995)

Es gibt einen randomisierten Approximationsalgorithmus für MAX — CUT mit Approximationsrate $V_{\alpha_{GW}} \approx 1.139$.

Satz (Mahajan, Ramesh, 1995)

Es gibt einen deterministischen Approximationsalgorithmus für MAX — CUT mit Approximationsrate $V_{\alpha_{GW}} \approx 1.139$.

Allgemeines Vorgehen

1. Zeige, dass die Existenz eines bestimmten Verifiers V^* die Nicht-Approximierbarkeit impliziert

Allgemeines Vorgehen

- 1. Zeige, dass die Existenz eines bestimmten Verifiers V^* die Nicht-Approximierbarkeit impliziert
- 2. Baue einfachen Verifier V (Outer Verifier)

Allgemeines Vorgehen

- 1. Zeige, dass die Existenz eines bestimmten Verifiers V^* die Nicht-Approximierbarkeit impliziert
- 2. Baue einfachen Verifier V (Outer Verifier)
- 3. Modifiziere *V* zu *V** (Inner Verifier)