Aufgabenblatt 5

Aufgabe 5.1

Wenden Sie die Rechenregeln für Dualzahlen auf folgende Operationen an:

- a) Addieren Sie (111001)₂ und (10110)₂.
- b) Subtrahieren Sie (11)₂ von (1000100)₂.
- c) Multiplizieren Sie (10110)₂ mit (1011)₂.
- d) Dividieren Sie (110 0001)₂ durch (101)₂.

Aufgabe 5.2

Ordnen Sie die folgenden sieben hexadezimal notierten Zahlen der Größe nach (absteigend) so, wie es ein Rechner tun würde, der mit N = 16 Stellen im Zweierkomplement arbeitet:

8EB6, 2BB3, F0F0, 6303, 8B43, 50A0, FFF4.

Aufgabe 5.3

Vervollständigen Sie folgende Umrechnungstabelle für rationale Zahlen:

Zahl	binär	dezimal
0,110	0,0 0011 0011 0	
C7, A ₁₆	1100 0111 , 1010	199,625
326,38	011 010 110 , 011	214,375

Die Darstellungen sollen (falls erforderlich) bis zur 10. Nachkommastelle angegeben werden.

Aufgabe 5.4

Ermitteln Sie die Gleitkommadarstellung der Zahl $(100011, \overline{101})_2$ im *single precision*-Format nach IEEE 754. (Der Überstrich bedeutet "periodisch").

Aufgabe 5.5

Schreiben Sie ein Maschinenprogramm in BROOKSHEARS Maschinensprache, das einen Wert aus der rekursiven Folge

$$x_{i+1} = 2x_i + 1$$

berechnet. Das Programm liegt im Speicher ab Adresse 0. In Speicherplatz 20_{16} liegt der Wert x_0 , in Speicherplatz 21_{16} liegt ein Wert n. Das Programm soll den Wert x_n berechnen, in Speicherplatz 22_{16} ablegen und danach den Rechner anhalten.

Überprüfen Sie Ihre Lösung mit dem Emulator https://joeledstrom.github.io/brookshear-emu/.

Aufgabe 5.6

Ein in den 1970er Jahren von Texas Instruments entwickelter und heute noch verfügbarer integrierter Schaltkreis (IC) ist der 7400. Dieser Chip realisiert genau vier NAND-Verknüpfungsglieder in einem Gehäuse:

Nehmen Sie an, Sie haben nur solche IC 7400 verfügbar, benötigen aber auch andere logische Operatoren.

Können Sie die NOT-, AND-, OR- und XOR-Funktion mittels NAND-Verknüpfungsgliedern nachbilden?