

Modern Digital System Design

ECE 2372 / Fall 2018 / Lecture 15

Texas Tech University Dr. Tooraj Nikoubin

Finite State Machines

<u>Outline</u>

- Finite State Machine
 - Describe the sequential behavior using a
 FSM
 - Example of FSM
 - Convert a finite state machine to a
 Controller a sequential circuit having
 - A register and Combinational logic

Sequential Circuit: FSM

Formally Describe/mathematically Describe

Boolean Algebra: Working Combinational Circuit

Finite State Machine: Working of Sequential Circuit

Need Better Way to Design Sequential Circuits

- Trial and error : not a good design method
 - Will we be able to "guess" a circuit that works for other desired behavior?
 - How about counting up from 1 to 9?
 - Pulsing an output for 1 cycle every 10 cycles?
 - Detecting the sequence 1 3 5 in binary on a 3-bit input?

Need a Better Way to Design Sequential Circuits

- Combinational circuit design process had two important things
 - A formal way to describe desired circuit behavior
 - Boolean equation, or truth table
 - A well-defined process to convert that behavior to a circuit
- We need those things for sequence circuit design

Finite State Machine

- Finite-State Machine (FSM)
 - A way to describe desired behavior of sequential circuit
 - Akin to Boolean equations for combinational behavior
 - List states, and transitions among states

Finite State Machine: Example

- Example: Make x change toggle (0 to 1, or 1 to 0) every clock cycle
- Two states: "Off" (x=0), and "On" (x=1)
- Transition from Off to On, or On to Off, on rising clock edge
- Arrow with no starting state points to initial state (when circuit first starts)

Controller for On-Off

- Want 0, 1, 1, 1, 0, 1, 1, 1, ...
 - Each value for one clock cycle
- Can describe as FSM: Four states, Transition on rising clock edge to next state

Extend FSM to Three-Cycles High Laser Timer

- Four states: Wait in "Off" state while b is 0 (b')
- When b=1 (& rising clock edge), transition to On1
 - Sets X=1
 - On next two clock edges, transition to On2,
 then On3, which also set x=1
- So x=1 for three cycles after button pressed

Extend FSM to Three-Cycles High Laser Timer

FSM Simplification: Rising Clock Edges Implicit

- Showing rising clock on every transition: cluttered
- Make implicit -- assume every edge has rising clock
- What if we wanted a transition without a rising edge
 - Asynchronous FSMs -- less common, and advanced topic
 - We consider synchronous FSMs
 - All transition on rising edge

FSM Simplification: Rising Clock Edges Implicit

FSM Definition

- Set of states
 - Ex: {Off, On1, On2, On3}
- Set of inputs & set of outputs
 - Ex: Inputs: {x}, Outputs: {b}
- Initial state
 - Ex: "Off"
- Set of transitions
 - Describes next states, Ex: Has 5 transitions
- Set of actions
 - Sets outputs while in states
 - Ex: x=0, x=1, x=1, and x=1

We often draw FSM graphically, known as state diagram

Can also use table (state table), or textual languages

- Unlock door (u=1) only when buttons pressed in sequence:
 - -start, then red, blue, green, red
- Input from each button: s, r, g, b
 - Also, output a indicates that some colored button

pressed

- Wait for start (s=1) in "Wait",
- Once started ("Start")
 - If see red, go to "Red1"
 - -Then, if see blue, go to "Blue", Then, if see green, go to "Green", Then, if see red, go to "Red2"
 - In that state, open the door (u=1)
 - Wrong button at any step, return to "Wait"

FSM Example: Code Detector

Q: Can you trick this FSM to open the door, without knowing the code?

A: Yes, hold all buttons simultaneously

Improve FSM for Code Detector

- New transition conditions detect if wrong button pressed, returns to "Wait"
- FSM provides formal, concrete means to accurately define desired behavior

Finite State Machines: Design of digital lock (011)

$$2^3 = 8 \leftarrow$$

n	n+ 1		(y)Out put	
	x=0	x=1	x=0	x=1

n	n+ 1		(y) 0ι	
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	С	d	0	0
С	е	f	0	0
d	g	h	1	0
е	a	b	0	0
f	С	d	0	0

a

n	n+ 1 x=0 x=1		(y)0ı x=0	ut put x=1
а	a	b	0	0
b	С	d	0	0
С	е	f	0	0
d	g	h	1	0
е	a	b	0	0
f	С	d	0	0
g	е	f	0	0

a

n	n- x=0	+ 1 x=1	(y)0ı x=0	ıt put x=1
a	a	b	0	0
b	С	d	0	0
С	е	f	0	0
d	g	h	1	0
е	а	b	0	0
f	С	d	0	0
g	е	f	0	0
h	g	h	1	0

n	n+ 1 x=0 x=1		(y)0ı x=0	ıt put x=1
a	а	b	0	0
b	С	d	0	0
С	е	f	0	0
d	g	h	1	0
е	a	b	0	0
f	С	d	0	0
g	е	f	0	0
h	g	h	1	0

n	n+ 1 x=0 x=1		(y)0ı x=0	ıt put x=1
а	a	b	0	0
b	С	d	0	0
С	е	f	0	0
d	g	h	1	0
е	a	b	0	0
g	е	f	0	0
h	g	h	1	0

	n	n+ 1		(y) 0ι	ıt put
		x=0	x=1	x=0	x=1
	a	a	b	0	0
	b	С	d	0	0
	С	е	f	0	0
	d	g	h	1	0
	e	a	b	0	0
C ←	g	е	f	0	0
	h	g	h	1	0

n	n+ 1		(y) 0ι	ıt put
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	С	d	0	0
С	е	f	0	0
d	g	h	1	0
е	a	b	0	0
h	g	h	1	0

	n	n- x=0	+ 1 x=1	(y)0u x=0	ıt put x=1
	а	a	b	0	0
	b	С	d	0	0
	С	е	f	0	0
	d	g	h	1	0
	e	a	b	0	0
d ←	h	g	h	1	0

n	n+ 1			ıt put
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	С	d	0	0
С	е	f	0	0
d	g	h	1	0
е	а	b	0	0

n	n+ 1		(y) 0ι	ıt put
	x=0	x=1	x=0	
a	a	b	0	0
b	С	d	0	0
С	е	f	0	0
d	g	h	1	0
e	a	b	0	0

n	n+1		(y) 0ı	ıt put
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	С	d	0	0
С	е	f	0	0
d	g	h	1	0

n	n+ 1		(y)Out put	
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	С	d	0	0
С	е	f	0	0
d	g	h	1	0

$$f \rightarrow b$$

n	n+ 1		(y) 0ı	ıt put
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	С	d	0	0
С	е	b	0	0
d	g	h	1	0

$$g \rightarrow c$$

n	n+ 1		(y) 0ι	ut put x=1
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	С	d	0	0
С	е	b	0	0
d	С	h	1	0

$$h \rightarrow d$$

n	n+ 1		(y) 0ι	ıt put x=1
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	С	d	0	0
С	e	b	0	0
d	С	d	1	0

$$e \rightarrow a$$

n	n+ 1		(y) 0ı	ıt put
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	С	d	0	0
С	a	b	0	0
d	С	d	1	0

	n	n-	-1	(y) 0ι	ıt put x=1
		x=0	x=1	x=0	x=1
	a	a	b	0	0
	b	С	d	0	0
a ←	С	a	b	0	0
	d	С	d	1	0

n	n+1		(y)0ı x=0	ıt put
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	С	d	0	0
d	С	d	1	0

n	n+ 1		(y)0ı x=0	ıt put
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	C	d	0	0
d	C	d	1	0

$$c \rightarrow a$$

n	n+1		(y) 0ı	ıt put
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	а	d	0	0
d	a	d	1	0

n	n+ 1		(y) 0ι	ıt put
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	а	d	0	0
d	a	d	1	0

n	n+ 1		(y)0ı x=0	ıt put
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	a	d	0	0
d	a	d	1	0

	A	В
а	0	0
b	0	1
d	1	0
X	1	1

	A	В
a	0	0
b	0	1
d	1	0
X	1	1

	A	В
a	0	0
b	0	1
d	1	0
X	1	1

		x=0	x=1	x=0	x=1
A	В	AB	AB	7	7
0	0	00	01	0	0
0	1	00	10	0	0
1	0	00	10	1	0

	A	В
a	0	0
b	0	1
d	1	0
X	1	1

$$J_B = 100$$

	A	В
a	0	0
b	0	1
d	1	0
X	1	1

$$K_B = \frac{X A B}{OO1 + 101}$$

	A	В
a	0	0
b	0	1
d	1	0
X	1	1

	A	В
a	0	0
b	0	1
d	1	0
X	1	1

			X	
	0	2	6	4
В	1	3	7	5
		-	7	

$$J_B = 100$$

$$J_B = 100$$

$$J_B = 100 = \overline{A} \overline{B} X$$

$$J_B = 100 = ABX$$
 $K_B = 001 + 101$

$$J_{B} = 100 = A B X$$
 $K_{B} = 001 + 101 = B$
 $J_{A} = 101 = B X$
 $K_{A} = 010 = A \overline{X}$
 $Y = 010$

$$J_{B} = 100 = A B X$$
 $K_{B} = 001 + 101 = B$
 $J_{A} = 101 = B X$
 $K_{A} = 010 = A \overline{X}$
 $Y = 010$

$$J_B = 100 = \overline{A} \overline{B} X$$
 $K_B = 001 + 101 = B$
 $J_A = 101 = BX$
 $K_A = 010 = A \overline{X}$
 $Y = 010 = A \overline{X}$

$$J_B = 100 = \overline{A} \overline{B} X$$
 $K_B = 001 + 101 = B$
 $J_A = 101 = BX$
 $K_A = 010 = A \overline{X}$
 $Y = 010 = A \overline{X}$

$$J_B = 100 = \overline{A} \overline{B} X = \overline{A} X$$
 $K_B = 001 + 101 = B = 1$
 $J_A = 101 = BX$
 $K_A = 010 = A \overline{X} = \overline{X}$
 $Y = 010 = A \overline{X}$

With simplification

Up-Down counter with input controller: If x="0" then count up counter. If x="1" then count down counter.

State Table

$$x=0$$
 $x=1$

State Table

	x=0	x=1
a	b	h

State Table

	x=0	x=1
a	b	h
b	С	a

	x=0	x=1
a	b	h
b	С	a
С	d	b

	x=0	x=1
a	b	h
b	С	a
С	d	b
d	е	С

	x=0	x=1
a	b	h
b	С	a
С	d	b
d	е	С
е	f	d

	x=0	x=1
a	b	h
b	С	a
С	d	b
d	е	С
е	f	d
f	g	е

	x=0	x=1
a	b	h
b	С	a
С	d	b
d	е	С
е	f	d
f	g	е
g	h	f

	x=0	x=1
a	b	h
b	С	a
С	d	b
d	е	С
е	f	d
f	g	е
g	h	f
h	a	g

	A	В	С
a	0	0	0
b	0	0	1
С	0	1	0
d	0	1	1
e	1	0	0
f	1	0	1
g	1	1	0
h	1	1	1

			X=0			X=1		
A	В	С	A	В	С	A	В	С
0	0	0	0	0	1	1	1	1
0	0	1	0	1	0	0	0	0
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	0	1	0
1	0	0	1	0	1	0	1	1
1	0	1	1	1	0	1	0	0
1	1	0	1	1	1	1	0	1
1	1	1	0	0	0	1	1	0

$$J_A = 1000 + 0011$$

			X=0			X=1		
A	В	С	A	В	С	A	В	С
0	0	0	0	0	1	1	1	1
0	0	1	0	1	0	0	0	0
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	0	1	0
1	0	0	1	0	1	0	1	1
1	0	1	1	1	0	1	0	0
1	1	0	1	1	1	1	0	1
1	1	1	0	0	0	1	1	0

$$K_A = 1100 + 0111$$

			X=0				X=1	
A	В	С	A	В	С	A	В	С
0	0	0	0	0	1	1	1	1
0	0	1	0	1	0	0	0	0
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	0	1	0
1	0	0	1	0	1	0	1	1
1	0	1	1	1	0	1	0	0
1	1	0	1	1	1	1	0	1
1	1	1	0	0	0	1	1	0

$$J_B = 1000 + 0001 + 1100 + 0101$$

			X=0			X=0 X=1		
A	В	С	A	В	С	A	В	С
0	0	0	0	0	1	1	1	1
0	0	1	0	1	0	0	0	0
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	0	1	0
1	0	0	1	0	1	0	1	1
1	0	1	1	1	0	1	0	0
1	1	0	1	1	1	1	0	1
1	1	1	0	0	0	1	1	0

$$K_B = 1010 + 0011 + 1110 + 0111$$

$$J_C = 0000 + 1000 + 0010 + 1010 + 0100 + 1100 + 0110 + 1110$$

 $K_C = 0001 + 1001 + 0011 + 1011 + 0101 + 1101 + 0111 + 1111$

$$J_A = 1000 + 0011$$

 $K_A = 1100 + 0111$

$$J_B = 1000 + 0001 + 1100 + 0101$$

 $K_B = 1010 + 0011 + 1110 + 0111$

$$J_C = 0000 + 1000 + 0010 + 1010 + 0100 + 1100 + 0110 + 1110$$

 $K_C = 0001 + 1001 + 0011 + 1011 + 0101 + 1101 + 0111 + 1111$

$$J_A = 1000 + 0011 = X \overline{A} \overline{B} \overline{C} + \overline{X} \overline{A} B C$$

 $K_A = 1100 + 0111 = X \overline{A} \overline{B} \overline{C} + \overline{X} \overline{A} B C$

$$J_B = 1000 + 0001 + 1100 + 0101 = X BC + X BC$$

 $K_B = 1010 + 0011 + 1110 + 0111 = XB$

$$J_C = 0000 + 1000 + 0010 + 1010 + 0100 + 1100 + 0110 + 1110 = \overline{C}$$

 $K_C = 0001 + 1001 + 0011 + 1011 + 0101 + 1101 + 0111 + 1111 = C$

$$J_A = 1000 + 0011 = X \overline{A} \overline{B} \overline{C} + \overline{X} \overline{A} \overline{B} C = X \overline{B} \overline{C} + \overline{X} \overline{B} C$$

$$K_A = 1100 + 0111 = X \overline{A} \overline{B} \overline{C} + \overline{X} \overline{A} \overline{B} C = X \overline{B} \overline{C} + \overline{X} \overline{B} C$$

$$J_B = 1000 + 0001 + 1100 + 0101 = X \overline{BC} + \overline{X} \overline{BC} = X \overline{C} + \overline{X} C = X \oplus C$$

 $K_B = 1010 + 0011 + 1110 + 0111 = XB = X$

$$J_C = 0000 + 1000 + 0010 + 1010 + 0100 + 1100 + 0110 + 1110 = \overline{C} = 1$$

 $K_C = 0001 + 1001 + 0011 + 1011 + 0101 + 1101 + 0111 + 1111 = C = 1$

Mealy State Machine

Present	Next	State	Outp	ut (Z)
State	X=0	X=1	X=0	X=1
S0				
S1				
S2				
S 3				
S4				
S5				

Present	Next	State	Output (Z)		
State	X=0	X=1	X=0	X=1	
S0					
S1					
S2					
S 3					
S4					
S5					

Present	Next	State	Outp	ut (Z)
State	X=0	X=1	X=0	X=1
S0	s1	s4	0	0
S1	s1	s2	0	0
S2	s 3	s4	1	0
S 3	s5	s2	0	0
S4	s 3	s4	0	0
S 5	s1	s2	0	1

Present	Next	State	Output (Z)		
State	X=0	X=1	X=0	X=1	
S0	s1	s4	0	0	
S1	s1	s2	0	0	
S2	s 3	s4	1	1	
S 3	s5	s2	1	1	
S4	s 3	s4	0	0	
S5	s1	s2	0	0	

Example:

Given the following timing chart for sequential circuit, construct as much of the state table as possible. Is this a Mealy or Moore machine? In the chart X1 and X2 are independent input signals and Z1 and Z2 are output signals. (X2X1/Z2Z1)

Present State	Next State (Q2Q1)				Output (Z2,Z1)			
(Q2Q1)	X2X1 00	X2X1 01	X2X1 10	X2X1 11	X2X1 00	X2X1 01	X2X1 10	X2X1 11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z1	Z2Z1
00								
01								
10								
11								

Present State	Next State (Q2Q1)				Output (Z2,Z1)			
(Q2Q1)	X2X1	X2X1	X2X1		X2X1	X2X1		
	00	01	10	11	00	01	10	11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z1	Z2Z1
00							01	
01								
10								
11								

Present State	Ne	ext State	e (Q2Q1	.)	Output (Z2,Z1)			
(Q2Q1)	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1
(< - < - /	00	01	10	11	00	01	10	11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z1	Z2Z1
00							01	
01								
10							10	
10							10	
11								

Present State	Next State (Q2Q1)				Output (Z2,Z1)			
(Q2Q1)	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1
(4-4-)	00	01	10	11	00	01	10	11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z1	Z2Z1
00							01	
01								
10 _						01	10	
11								

Present State	Next State (Q2Q1)				Output (Z2,Z1)			
(Q2Q1)	X2X1 00	X2X1 01	X2X1 10	X2X1 11	X2X1 00	X2X1 01	X2X1 10	X2X1 11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z1	Z2Z1
00							01	
01						00		
10						01	10	
11								

Present State	Next State (Q2Q1)				Output (Z2,Z1)			
(Q2Q1)	X2X1	X2X1	X2X1	X2X1			X2X1	X2X1
	00	01	10	11	00	01	10	11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z1	Z2Z L
00							01	
01						00		00
10						01	10	
11								

Present State	Ne	ext State	e (Q2Q1	.)	Output (Z2,Z1)			
(Q2Q1)	X2X1 00	X2X1 01	X2X1 10	X2X1 11	X2X1 00	X2X1 01	X2X1 10	X2X1 11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z1	Z2Z L
00							01	
01						00		00
10						01	10	11
11								

Present State	Next State (Q2Q1)				Output (Z2,Z1)			
(Q2Q1)	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1	X2X 1	X2X1
(00	01	10	11	00	01	10	11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z 1.	Z2Z1
00							01	
01						00		00
10 _						01	10	11
11								

Present State	Next State (Q2Q1)				Output (Z2,Z1)			
(Q2Q1)	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1	X2X 1	X2X1
(00	01	10	11	00	01	10	11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z 1.	Z2Z1
00							01	
01						00		00
10 _						01	10	11
11								

Present State	Next State (Q2Q1)			Output (Z2,Z1)				
(Q2Q1)	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1
(< - < - /	00	01	10	11	00	01	10	11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z:	Z2Z1
00							01	
01						00		00
10						01	10	11
11 _							10	

Present State	Next State (Q2Q1)			Output (Z2,Z1)				
(Q2Q1)	X2X1 00	X2X1 01	X2X1 10	X2X1 11	X2X1 00	X2X1 01	X2X1 10	X2X1 11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z1	Z2Z1
00			10				01	
01						00		00
10						01	10	11
11							10	

Present	Next State (Q2Q1)			Output (Z2,Z1)				
State								
(Q2Q1)	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1
(4241)	00	01	10	11	00	01	10	11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z1	Z2Z1
00			10				01	
01						00		00
10		01				01	10	11
11							10	

Present State	Next State (Q2Q1)			Output (Z2,Z1)				
(Q2Q1)	X2X1	X2X1	X2X1	X2X 1	X2X	1 X2X1	X2X1	X2X1
(4241)	00	01	10	11	00	01	10	11
	Q2Q1	Q2Q1	Q2Q1	Q2Q:	. Z2Z:	L Z2Z1	Z2Z1	Z2Z1
					1			
00			10				01	
01				10	1	00		00
O I						00		00
10		01				01	10	11
11							10	
				•				

Present State	Nε	ext State	e (Q2Q	1)		Output	(Z2,Z1)	
(Q2Q1)	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1	X2X1
(4-4-)	00	01	10	11	00	01	10	11
	Q2Q1	Q2Q1	Q2Q1	Q2Q1	Z2Z1	Z2Z1	Z2Z1	Z2Z1
00			10				01	
01				10		00		00
10		01	11			01	10	11
11							10	

Present	Next	State	Outp	ut (Z)
State	X = 0	X = 1	X = 0	X = 1
000	100	101	1	0
001	100	101	0	1
010	000	000	1	0
011	000	000	0	1
100	111	110	1	0
101	110	110	0	1
110	011	010	1	0
111	011	011	0	1

Determine the state table of following state graph:

$$X = 0101101011010001$$

$$Z = 0001011010110100$$

X = 0101101011010001

Z = 000101101010100

X = 0101101011010001

Z = 0001011010110100

The direction of data is left to right It could be right to left too.

X = 0101101011010001

Z = 0001011010110100

The direction of data is left to right It could be right to left too.

X = 0101101011010001

Z = 000101101010100

The direction of data is left to right It could be right to left too.

	XEO	X=I	X=0	Xel
a	a	C	0	0
b	a	C	1	
0	6	d	0	0
d	b	d	1	1

THANK YOU