

Imię i nazwisko ucznia
Timę i nazwisko ucznia
Pełna nazwa szkoły

Maksymalna liczba punktów	40
Uzyskana liczba punktów	

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2022/2023

ETAP DRUGI

Instrukcja dla ucznia

- 1. Na rozwiązanie wszystkich zadań masz 90 minut.
- 2. Zestaw konkursowy zawiera 17 zadań.
- 3. Przed rozpoczęciem pracy sprawdź, czy zestaw zadań jest kompletny. Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.
- 4. Zadania czytaj uważnie i ze zrozumieniem.
- 5. Zadania zapisane w brudnopisie nie będą oceniane.
- 6. Rozwiązania zapisuj długopisem lub piórem. Rozwiązania zapisane ołówkiem nie będą oceniane.
- 7. Nie używaj korektora i długopisu ścieralnego.
- 8. W nawiasach obok numerów zadań podano maksymalną liczbę punktów możliwych do uzyskania za dane zadanie.
- 9. Nie używaj kalkulatora.

POWODZENIA!

Zadanie 1. (1 punkt)

Długość pewnego odcinka w skali 3:1 wynosi 6 km. Jaka jest długość tego odcinka w skali 1:25000?

Jedna z podanych odpowiedzi jest poprawna. Zaznacz kółkiem właściwą odpowiedź.

- A. 0,8 m
- B. 0,72 cm
- C. 7,2 cm
- D. 0,08 m

Liczba punktów

Zadanie 2. (1 punkt)

Które z wyrażeń **nie** jest równe 2⁹?

Jedna z podanych odpowiedzi jest poprawna. Zaznacz kółkiem właściwą odpowiedź.

- A. $2^8 + 2^8$ B. $2 \cdot (2^7 + 2^7)$ C. $2^{11} 2^2$
- D. $\frac{1}{2} \cdot 2^{10}$

Zadanie 3. (1 punkt)

3200 kg zamieniono na gramy i otrzymaną liczbę zapisano w notacji wykładniczej. Który zapis jest poprawny?

Jedna z podanych odpowiedzi jest poprawna. Zaznacz kółkiem właściwą odpowiedź.

- A. $0.32 \cdot 10^7 \ g$ B. $3.2 \cdot 10^6 \ g$ C. $32 \cdot 10^5 \ g$ D. $3.2 \cdot 10^5 \ g$

Liczba punktów

Zadanie 4. (1 punkt)

Który z trójkatów o podanych długościach boków jest prostokatny?

Jedna z podanych odpowiedzi jest poprawna. Zaznacz kółkiem właściwą odpowiedź.

A. 13 cm; 12 cm; 6 cm

B. 5 dm; 0,4 m; 20 cm

C. 20 m; 18 m; 14 m

D. 2,6 dm; 24 cm; 0,1 m

Liczba punktów

Zadanie 5. (4 punkty)

Poniżej podane są cztery zdania dotyczące własności graniastosłupów.

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe. Wybraną odpowiedź zaznacz kółkiem.

Wszystkie krawędzie graniastosłupa prawidłowego mają równe długości.	P	F
W każdym graniastosłupie liczba krawędzi bocznych jest równa liczbie pozostałych krawędzi.	Р	F
Każdy sześcian jest graniastosłupem prawidłowym czworokątnym.	Р	F
Graniastosłup, którego podstawą jest wielokąt o n kątach, ma 3n krawędzi.	P	F

Liczba punktów
/4

Zadanie 6. (4 punkty)

Dane są dwie liczby, liczba $a = \left(\frac{1}{2^2} - 1\frac{1}{4}\right)^2$ i liczba $b = \frac{-4^2}{\sqrt{25-9}} \cdot (-1)^3$.

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe. Wybraną odpowiedź zaznacz kółkiem.

Ułamek $\frac{a}{b}$ jest ułamkiem niewłaściwym.	P	F
Ułamek $\frac{a+1}{b+1}$ jest równy ułamkowi $\frac{a}{b}$.	P	F
Ułamek $\frac{a+1}{b+1}$ jest większy od ułamka $\frac{a}{b}$.	P	F
Ułamek $\frac{a+1}{b+1}$ jest większy od ułamka $\frac{a}{b}$ o 1.	P	F

Zadanie 7. (1 punkt) Dany jest trapez równoramienny.
Uzupełnij zdanie. Jeżeli wysokość trapezu równoramiennego jest dwa razy krótsza od jego ramienia, to kąt ostr
tego trapezu ma miarę
Liczba punktów
Elezoa punktow
/1
Zadanie 8. (1 punkt)
Jakie wyrażenie algebraiczne otrzymał Janek, gdy poprawnie przekształcił do najprostsze postaci wyrażenie: $(2x - y)^2 - y^2$?
Wpisz tylko odpowiedź (nie musisz zapisywać wykonanych przekształceń).
Odpowiedź:
Liczba punktów
/1
Zadanie 9. (1 punkt) Ile cyfr ma liczba, którą otrzymamy, obliczając wartość wyrażenia $(3 \cdot 4^4 \cdot 10^4 \cdot 5^8)^4$?
Wpisz tylko odpowiedź (nie musisz zapisywać wykonanych obliczeń).
Odpowiedź:
Liczba punktów/1
Zadanie 10. (2 punkty)
Samochód, jadący ze stałą prędkością, w ciągu $1\frac{1}{3}$ godziny, pokonał odległość 100 km.
Uzupełnij zdania, wpisując w puste miejsca tylko liczby.
a) W ciągu 3,5 godziny, jadąc z tą samą prędkością, przejedziekm.
b) Jadąc z tą samą prędkością, trasę długości 180 km pokona w czasieminut.

Liczba punktów

Zadanie 11. (2 punkty)

Uzupełnij zdania, wykorzystując dane przedstawione na powyższym rysunku. Wpisz w puste miejsca tylko liczby.

- a) Na rysunku widocznych jestróżnych trójkątów.
- b) Suma pól wszystkich trójkątów widocznych na rysunku wynosi jednostek kwadratowych.

Liczba punktów
...../2

Zadanie 12. (2 punkty)

Janek kupił 40 dag cukierków, za które zapłacił 14 zł.

Odpowiedz na pytania, wpisując w puste miejsca tylko liczby (nie musisz zapisywać wykonanych obliczeń).

a)	Jaka była cena 1 kg tych cukierków?

Odpowiedź:zł

b) Ile Janek zapłaciłby za 2,5 kg takich samych cukierków, gdyby ich cenę obniżono o 30%?

Odpowiedź:zł

W zadaniach od 13. do 17. zapisz wszystkie obliczenia i odpowiedzi.

Zadanie 13. (4 punkty)

Jaś z Małgosią wybrali się na grzyby. Wśród 49 zebranych grzybów były prawdziwki, podgrzybki i 7 gąsek. W domu okazało się, że co czwarty prawdziwek i $\frac{1}{3}$ podgrzybków nadaje się do wyrzucenia. Do zjedzenia zostało 36 grzybów. Ile prawdziwków i ile podgrzybków znalazły dzieci?

																																						L
α_{1}		:	1	14.																																		
Od	pο	WI	ea	ız:	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • • •	• • • •	• • •	• • •	• • • •	•
• • • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • •	••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • • •	•••	• • •	• •

Zadanie 14. (4 punkty)

W trójkącie równoramiennym podstawa ma długość 24 cm, a wysokość opuszczona na nią jest o 8 cm krótsza od ramienia trójkąta. Oblicz pole tego trójkąta.

Ο.	lpo	wi	edź	Ž:	 															
																	L	iczb	a pu	nktów

Zadanie 15. (4 punkty)

Antek, przygotowując się do konkursu matematycznego, znalazł w Internecie informację dotyczącą jednej z wysokości trójkąta prostokątnego:

W trójkącie prostokątnym kwadrat długości wysokości, poprowadzonej z wierzchołka kąta prostego, równa się iloczynowi długości odcinków, na jakie ta wysokość dzieli przeciwprostokątną.

Korzystając z powyższej informacji, rozwiąż zadanie.

W trójkącie prostokątnym wysokość poprowadzona z wierzchołka kąta prostego podzieliła przeciwprostokątną na odcinki o długościach 1 cm i 9 cm. Oblicz i zapisz w najprostszej postaci obwód tego trójkąta.

Odpowiedź:	 	

Liczba punktów
/4
/4

Zadanie 16. (3 punkty)

Dany jest sześcian o krawędzi długości 8 cm oraz prostopadłościan, którego podstawa jest kwadratem o boku długości 6 cm. Oblicz wysokość prostopadłościanu, wiedząc, że pola powierzchni całkowitej obu brył są równe.

Odpowiedź:	 	 	

Liczba punktów
/0
/3

Zadanie 17. (4 punkty)

Ania otrzymuje co tydzień kieszonkowe na własne wydatki. Pierwszego dnia na urodzinowy prezent dla koleżanki wydała połowę kieszonkowego i jeszcze 2 zł. Drugiego dnia połowę pozostałej kwoty i jeszcze złotówkę wydała na ciastko i sok. Okazało się, że do końca tygodnia zostało jej tylko 8 zł. Ile wynosi kieszonkowe Ani? Ile kosztował, zakupiony przez Anię, prezent dla koleżanki?

Odpowiedź:		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA

KONKURS MATEMATYCZNY

DLA UCZNIÓW SZKOŁY PODSTAWOWEJ

ROK SZKOLNY 2022/2023

ETAP REJONOWY

Numer		Liczba
zadania	Odpowiedź	punktów
1.	D	1
2.	С	1
3.	В	1
4.	D	1
	F	1
	F	1
5.	P	1
	P	1
	F	1
	F	1
6.	P	1
	F	1
7.	30^{0}	1
8.	$4x^2 - 4xy$	1
9.	50	1
10.	262,5 km	1
10.	144 minut	1
11.	6	1
11.	90	1
12.	35 zł	1
12.	61,25 zł	1

Numer zadania	Etap rozwiązania	Odpowiedź	Liczba punktów
13.	Wprowadzenie oznaczeń i zapisanie jednego równania.	np. $x - liczba\ prawdziwków$ $y - liczba\ podgrzybków$ $x + y + 7 = 49$	1
	Zapisanie poprawnego układu równań.	np. $\begin{cases} x + y + 7 = 49 \\ \frac{3}{4}x + \frac{2}{3}y + 7 = 36 \end{cases}$	2

	Obliczenie jednej z niewiadomych.	np. $x = 12$	3
	Obliczenie drugiej z niewiadomych.	y = 30	4
	Wprowadzenie oznaczeń.	np. $x - długość ramienia$ $x - 8 - długość wysokości$	1
14.	Zapisanie równania.	$(x-8)^2 + 12^2 = x^2$	2
	Obliczenie długości wysokości trójkąta.	5 <i>cm</i>	3
	Obliczenie pola trójkąta.	60 cm ²	4
1.5	Zapisanie zależności pomiędzy długością wysokości a długością odcinków, na które została podzielona przeciwprostokątna i obliczenie długości wysokości.	np. $h^2 = 1 \cdot 9$ $h = 3 cm$	1
15.	Obliczenie długości krótszej przyprostokątnej trójkąta.	$\sqrt{10}\ cm$	2
	Obliczenie długości dłuższej przyprostokątnej trójkąta.	$3\sqrt{10} \ cm$	3
	Obliczenie i zapisanie w najprostszej postaci obwodu trójkąta prostokątnego.	$(10 + 4\sqrt{10}) \ cm$	4
	Poprawne obliczenie pola powierzchni całkowitej sześcianu.	384 cm ²	1
16.	Wprowadzenie oznaczenia długości wysokości i zapisanie poprawnego, zgodnego z warunkami zadania, równania.	np. $H - długość wysokości$ $prostopadłościanu$ $2 \cdot 6^2 + 4 \cdot 6 \cdot H = 384$	2
	Poprawne obliczenie długości wysokości prostopadłościanu.	H = 13 cm	3
17.	Wprowadzenie oznaczeń i poprawne zapisanie wysokości wydatków pierwszego i drugiego dnia.	np. $x - wysokość kieszonkowego$	1

	$\frac{1}{2} \left(\frac{1}{2}x - 2 \right) + 1$ $- koszt zakupu ciastka i soku$	
Zapisanie poprawnego, zgodnego z warunkami zadania, równania.	np. $\frac{1}{2}x + 2 + \frac{1}{2}(\frac{1}{2}x - 2) + 1 + 8 = x$	2
Obliczenie wysokości kieszonkowego.	40 zł	3
Obliczenie wartości prezentu.	22 zł	4

Za poprawne rozwiązanie zadań inną metodą niż podana powyżej przyznaje się odpowiednią liczbę punktów.