

青岛鼎信通讯有限公司技术文档

Q/DX D121. 098-2022

VSA 仿真流程说明

V1.0

2022 - 12 - 31 发布

2022 - 12 - 31

目 次

1	范围	. 5
2	规范性引用文件	. 5
3	VSA 说明	. 5
4	VSA 前处理	. 5
	4.1 3D 模型处理	. 5
	4.2 3D 模型导成 jt 格式	. 8
	4.3 2D 模型处理	. 9
	4.4 其它资料	11
5	3D 模型导入 VSA	12
	5.1 新建 VSA	12
	5.2 新建零件、固定件、组件	
6	VSA 建立特征	12
	6.1 点	13
	6.2 平面	
	6.3 一般曲面	19
	6.4 轴	20
	6.5 孔	22
	6.6 键	22
	6.7 槽	24
	6.8 图样	24
	6.9 复制粘贴特征	27
	6.10 基准	28
	6.11 特征对话框通用命令	28
7	装配	29
	7.1 装配	29
	7.1.1 普通装配部分	29
	7.1.2 条件装配部分	32
	7.2 传统装配	33
	7.3 运动装配	33
	7.4 柔性装配	35
	7.5 定制装配	
	7.5.1 Legacy 部分	
	7. 5. 1. 1 321	
	7.5.1.2 Arial	
	7. 5. 1. 3 MoveGen	36

		7.5.1.4 IterativeMove	37
		7.5.1.5 Move	37
		7.5.1.6 MoveBack	38
		7.5.1.7 AddVariation	36
		7.5.1.8 Add5Variation	40
		7.5.1.9 AddOffsetVariation	41
		7.5.1.10 AveragePoint	42
		7.5.1.11 ParametricPoint	43
		7.5.1.12 CreateArc	43
		7.5.1.13 CreateSlider	43
		7.5.1.14 CreateRevolution	43
		7.5.1.15 LeastSquare	43
		7.5.1.16 BlackBoxModel	43
		7.5.1.17 Output Measurement	43
		7.5.2 Move4 部分	
Ω	测量		
O			
	8. 1	测量	
		8.1.1 点	
		8.1.2 点到点	
		8.1.3 补偿的缝隙/齐平	
		8.1.4 缝隙/齐平	
		8.1.5 角度	
		8.1.6 点到线	
		8.1.7 点到平面	
		8.1.8 最小虚拟间隙	
		8.1.9 最大虚拟间隙	
		8.1.10 虚拟孔径	
		8.1.11 力	
	8.2	定制测量	57
		8.2.1 Sum 测量值相加	57
		8.2.2 Diff 测量值相减	58
		8.2.3 Linear 测量值线性代数和	58
		8.2.4 Min 测量最小值	59
		8.2.5 Max 测量最大值	59
		8.2.6 Virtual Diameter	59
		8.2.7 Virtual Hole Diameter-Floating/Fixed Fastener 虚拟直径-浮动/固定紧固件.	60
		8.2.8 Gap: Point—>Plane along Direction: 沿着某个方向,测量点到面的距离	60
		8.2.9 Math Equation 数学方程式	61
	8.3	测量组节点	61
9	仿真.		64
		验证	
		变化分析首选项	64

	9.3 装配动画	68
	9.4 仿真	68
10	装配树中各要素逻辑顺序	68
	10.1 各要素正常装配顺序	68
	10.2 从上往下强制执行	69
11	报告查看	70
	11.1 过程报告	71
	11.1.1 报告界面	71
	11.1.2 贡献因子	73
12	VSA 常用通用工具	75
	12.1 显示变换等常用工具命令	75
	12.2 数值测量	75
	12.3 剖切	76
	12.4 变换	76
	12.5 启用对齐	78
	12.6 常用右键命令	78
	12.6.1 零件右键	78
	12.6.2 装配右键	79
	12.6.3 测量右键	79
	12.6.4 空白区域右键	79

前 言

VSA能够仿真组件、整机的公差累积情况,可为设计工程师提供公差数值参考、超差比例、影响因子,以及多个统计参数。但设计工程师提供的文档问题较多,模型前处理花费时间较多。并且VSA软件使用者较少,一些重要命令复杂、形式多样、不常用,为了方便使用者上手学习、命令查找和工况分析等,故制定本说明,使设计工程师提供合理模型,使VSA工程师更快入门,作为工具使用,作为规范检查。

本说明适用于青岛鼎信通讯股份有限公司、青岛鼎信通讯消防安全有限公司、青岛鼎信通讯科技有限公司及相关公司。

本说明由青岛鼎信通讯股份有限公司工程技术本部平台支持室起草。

VSA 仿真分析流程说明

1 范围

本说明用于指导青岛鼎信通讯股份有限公司、青岛鼎信通讯消防安全有限公司、青岛鼎信通讯科技有限公司及相关公司的模型提供及 VSA 工程师的参考学习。

2 规范性引用文件

ASME Y14.5-2018 尺寸与公差标注。

Q/DX D121.074-2021 青岛鼎信通讯股份有限公司工程技术本部技术规范-VSA 仿真分析注意事项。

3 VSA 说明

VSA 是 variation simulation analysis(公差仿真分析)的缩写,是一款公差仿真软件,属于西门子公司。

VSA 可识别 jt 格式的 3D 图, VSA 结果文件为 pdo 格式。

VSA 先建立特征,然后建立装配,然后建立测量,然后进行仿真,最后评价报告内容。

4 VSA 前处理

4.1 3D 模型处理

3D模型在进行VSA仿真前,先进行前处理:

- (1) 3D模型消除参数,零部件名称要能简明扼要准确表达零件用途。如下图所示,零件、组件名称未能准确表达零件用途。
- (2) 在ug软件中主装配文件装配树中,参与装配的各零部件,作为独立个体,全部显示出来。如下图所示,一些零件作为体在部件导航器导航器里,不合适。

图 4.1 不合适的零件、组件名称

图 4.2 参与装配的零件不在装配树里

(3) 3D 图纸中不能有非设计干涉(特意设计的干涉,另行分析)。不能有多余的重复的零件。如下图所示,产品有干涉或存在多余的零件。

图 4.3 零件之间存在干涉图

图 4.4 黄色板处有多余的零件

(4) 3D中各特征之间距离为有限位数小数,若有距离的,应为有限位数小数,尽可能精确到小数点后2位,小数点第3位以后的数都为0。下图中左侧导套圆心到边缘距离为28,两个导套的中心距离都为294,都是整数,小数点后面都是0。

图 4.5 3D 中各零件三个方向测量都是有限小数

6

(5) 3D 中各特征之间角度为有限位数小数,若有角度的,应为有限位数小数,尽可能精确到小数点后 2 位,小数点第 3 位以后的数都为 0。

平行特征角度都为0,且小数点后都为0。下图中,中间绿色面与四周选中的黄色面平行,理论角度应是0度,但是其不是绝对0度,存在一定小数。

图 4.6 两平行面角度不为 0

(6) 零件之间装配时需中心或某种方式对齐的则3个方向尺寸均为有限小数。轴和孔的三个方向的投影距离均为0,小数点后位数均为0。如下图所示,绿色圆柱顶面跟浅黄色圆柱顶面圆心对齐,则两者圆心无论从哪个角度测量,其值均为0。

图 4.7 中心对齐零件两者中心各个方向测量均为 0

(7) 四周间隙除特殊设计外,保持一致。上图中绿色面膜与白色上壳间对称两侧的间隙距离应相等。如下图所示,绿色模仁应在模架孔内左右两侧间隙一致,但实际测量并不一致。

图 4.8 四周间隙应保持一致

(8)3D 中零件中相同特征尺寸等除特殊要求外应保持一致。装配时相同零件除特殊要求外装配尺寸应保持一致。支撑线路板的各支撑筋应等高,相同特征的孔等大,相同的螺钉装配后高度等高等。

如下图所示,模架上 4 个孔的直径都为 41mm, 沉台孔高度差都为 8mm, 4 处相同特征参数完全一致。

图 4.9 相同特征参数完全一致

4.2 3D 模型导成 jt 格式

(1) VSA目前只能识别jt格式的3D图形,ug在导出jt格式文件时,此处推荐选择"与NX相同",并且只导出UG窗口里显示的文件,而隐藏的文件不会被导出。

图 4.10 ug 导出 jt 文件

(2)如果一个零件A在VSA中已经编辑了一些特征时,但是发现有问题,需重新到ug中进行编辑,重新导入VSA后,则可以:

在ug装配中,只显示A,其它零部件隐藏,扔按上述方式导出,则只导出零件A和装配的jt文件,将 零件A的新jt文件覆盖掉原零件A的jt文件即可。

4.3 2D 模型处理

(1) 指定基准。不光指定主基准,通过尺寸标注无法确定的辅助基准也需标注。基准面A需指定,基准面B和基准面C可通过尺寸标注确定,若需其它标准,需单独标出。

图 4.11 各个基准

(2)指定各个面的面轮廓度。面轮廓度直接影响最终的计算结果,因为面轮廓度无法通过计算得知,故需提前给定。可以对面轮廓度统一要求。面轮廓度还可以转换一些尺寸公差。

图 4.12 轮廓度

(3) 与分析有关的尺寸、角度标注,需指明公差值。

图 4.13 尺寸标注及公差

(2) 需标注与分析有关的形位公差。

图 4.14 垂直度

图 4.15 平行度

图 4.16 位置度、同心度等

提供的面轮廓度、尺寸公差、形位公差等,要准确,跟实物一致。这就需要工程师对各加工工艺的 精度非常熟悉,比如电火花、精洗,数控冲、激光切割、折弯,缩水变形、顶杆印表面等精度数值要提 供准确。

4.4 其它资料

- (1) 需指明各个零件、组件的装配关系。尤其是过约束装配时。在零件数量多、零件形状复杂、 装配有多重嵌套时,指明装配关系显得尤为重要。
- (2) 需指明各个零件、组件的间隙,尤其是零件、组件间有多层限位止位时,需指明主限位关系,通常选择间隙小的限位。

图 4.17 上壳和下壳之间内外两侧都有限位,需确定主限位

(3) 需提供求解值的要求上限和下限。这个在计算Cp和Cpk时有用,若不关注Cp或Cpk,上下限也可不提供。

5 3D 模型导入 VSA

5.1 新建 VSA

双击图标——新建——Process Document——确定——毫米——确定——左侧装配树Process——选中Process——右键——导入——装配——选中jt文件——打开。

5.2 新建零件、固定件、组件

如果导入的jt文件没有完整的体现出装配逻辑,需要新建零件、固定件、组件等,可以装配树中选中组件——右键——添加。

装配:组件,下面可挂有零件。

零件:下面不能再挂零件,只能挂特征。

固定件: 与零件除了图标不一致, 其它完全一致。

图 5.1 新建零件、固定件、组件

6 VSA 建立特征

建立特征时,有2种方法:

一是:在装配树中,选中零件,右键——添加——特征,可以进行轴(软件显示为"销")、孔、平面、点、板、槽、图样、一般曲面等特征的创建。

二是:在工具栏中选择质量---启用VA元素(E),可以进行轴(软件显示为"针脚",与"销"等同)、孔、平面、点、槽、板等特征的创建。

图 6.1 装配树中抽取特征

图 6.2 工具栏中抽取特征

提示:

抽取特征时,可通过下图所示的过滤器,方便选取。

图 6.3 过滤器各图标含义

注意:

在抽取特征时,可以从零件上抽取,也可以通过坐标点等直接建立,且在后续装配、测量等运算时, 只是建立的特征在起作用,零件不起作用。零件只是起显示作用,方便抽取特征。

6.1 点

(1) 在装配树中, 选中零件, 右键---添加---特征---点---下图对话框。

名称:该特征的名字,按《Q/DX D121.074-2021 青岛鼎信通讯股份有限公司工程技术本部技术规范-VSA仿真分析注意事项》命名,其它特征命名规则,下同。

派生自选择(如果不单机右侧箭头,输入名称后直接关闭,则创建的是该特征的子点为该特征的质点)——单击右侧箭头——选中模型中的点(通过过滤器辅助选择)。

坐标:选点后,此处会自动显示点的坐标。坐标点是可以修改的。可以通过更改坐标点,绘制出中点(两个点分别在XYZ三个方向坐标值的中点)等需要的点。软件在计算时,是按坐标值进行计算的,而不是按选的点进行计算的。

方向矢量:选中点后,此处会自动显示该点的方向矢量。该方向矢量也是可以修改的,原理同"坐标"。若方向矢量有些数值接近1,如0.998765等,则可直接将其改为1,对结果影响可忽略不计。

定制信息:点的实测数据分析,可以将点的数据通过"浏览"命令导入进来。

图 6.4 点特征对话框

大小/拔锥角: 点特征时,该命令处未激活状态,不被使用。

特征控制框:特性:有多个形位公差符号,点特征通常选择面轮廓度。

区域切换:公差下行含义,公差带相对理论位置的距离,可以是正值、0、负值。 公差上行含义,公差带的宽度。

名义切换: 若勾选,如果公差下行不是0,则在报告中,明义值是原明义值与公差下

行的代数值。

主基准: 即特征参考的第一基准,可以选单个基准,也可以选类似"A-B"的基准。

后面的下拉箭头,可以选择(M)、(L)。

第二基准、第三基准:即特征参考的第二基准、第三基准,注意事项同"主基准"。

图 6.5 特征控制框对话框

具体公差含义及特点:

- A、直线度:表示轴线或表面素线的弯曲程度,为形状公差,无参考基准;当公差带为圆柱形时,公差数值前面需加 ϕ 。
- B、平面度:表示平面的平整度,为形状公差,无参考基准;一般用于控制基准,或者与面轮廓度配合使用,用于加严对平面公差的控制。
 - C、圆柱度: 为形状公差, 无参考基准。
- D、面轮廓度:可控制点、面的形状和位置,经常用到非对称公差,后面带有基准时,既控制形状,又控制位置,经常用到组合公差和复合公差。
 - E、倾斜度:公差带是距离,不是角度,只控制方向,不控制位置。
 - F、垂直度: 公差带是距离,不是角度,只控制方向,不控制位置。
 - G、平行度: 公差带是距离,不是角度,只控制方向,不控制位置。

- H、位置度:可控制点、面的形状和位置,既控制形状,又控制位置,经常用到组合公差和复合公差。
 - I、全跳动:用于回旋体。
- J、同轴度:用于同心或同轴特征,现在ASME标准中,已经去掉了该符号,控制同轴时用位置度控制。
 - K、对称度:用于对称特征,现在ASME标准中,已经去掉了该符号,控制对称时用位置度控制。
- L、起始符:起始端公差必须为0,起始侧为基准,即参考的基准不能带公差。有方向矢量可供选择。 不能用于点特征。
 - M、士: 参考的基准可以带公差。有方向矢量可供选择。不能用于点特征。
 - N、± Z: 参考的基准可以带公差。有方向矢量可供选择。不能用于点特征。
 - Clear All: 可将此界面的设置都清零。
 - 分布、注释、首选项:通常选择软件默认设置。
 - 下图所示,可以更改单个零件的颜色。
 - "公差"中的"公差西格玛范围: +/-": 只能更改单个特征的西格玛范围。

图 6.6 首选项选项卡

- (2)在工具栏中选择质量——启用VA元素(E)——点时,不出现对话框,直接进行选择,选择完后在装配树中选中该点——右键——属性——则会出现"点"特征对话框,设置同上。
- (3)建立子点。有些点是在面、轴、孔、键、槽等特征上,跟随这些特征的公差而波动的。这些点在建立时,可在装配树中选中该特征——右键——添加——点——对话框(此时的对话框中,无特征控制框,不能设置公差,此时点的公差,与依附特征的公差是一致的)——派生自选择——单击右侧箭头——选中模型中的点。

- 一个点要想成为一个面的子点,这个点必须在这个面上,或者在这个面的延长线上。
- (4)投影点。入下图所示,将A面上的3个点,投影到B面,B面可以跟A面属同一个零件,也可以属不同零件。

过程树中选中B面——右键——添加——来自投影的点——选中第1个点——选中确认符号——同理,依次选中第2、3点——根据需要选择"投影方法"中的一个——确定。

图 6.7 A 面 3 个点投影到 B 面

图 6.8 投影点对话框

(5) 显示点的法线: 若需观察点的法线,则可在装配树中选中点---右键---显示法线。

6.2 平面

图 6.9 平面对话框

图 6.10 6个圆面作为一个整面进行控制

(1) 在装配树中, 选中零件, 右键---添加---特征---平面---平面特征对话框。

名称、坐标、方向矢量:参考点特征。

派生自选择(未勾选):可通过坐标、方向矢量、长度矢量、大小(可创建矩形面或圆面)命令, 直接创建。

派生自选择(勾选)----单击右侧箭头----选中模型中的面(通过过滤器辅助选择)----确定。此方 法只能选择一个面。

派生自选择(勾选)——多个——单击右侧箭头——依次选中模型中的多个面(通过过滤器辅助选择)——完成——确定。此方法可选择多个面,如下图所示6个圆面作为一个整面,进行控制。

大小/拔锥角:参考点特征。

特征控制框里的各命令、特性、区域切换的公差下行含义、区域切换的公差上行含义、名义切换、 主基准、第二基准、第三基准:参考点特征。

注意:

如果公差不是对称公差,如公差为-0.1[~]+0.3,则公差上行数值为+0.3-(-0.1)=0.4; 则公差下行数值为(-0.1+0.3)/2=0.1;

如公差为+0.1~+0.3, 则公差上行数值为+0.3-0.1=0.2; 则公差下行数值为(0.1+0.3)/2=0.2;

如公差为-0.3[~]-0.1,则公差上行数值为-0.1-(-0.3)=0.2; 则公差下行数值为(-0.3-0.1)/2=-0.2。

多段是组合公差,公差形式跟第一行可以相同,也可以不同,附加FCF是另外的公差,可以与前面2行不同,现有DRF为用过的基准。

分布、注释、首选项:参考点特征。

	Inne Feature Properties				
□ 0.200000 B □ 0.100000 B □ 0.050000				•	
特性	公差	主基准	第二基准	第三基准	
	0.200000 区域切换 0.000000 2 2义切	A B	Å •	A	
	● 单段● 多段	现有 DRF		•	
	0.100000	A	A	A	
	☑ 附加 FCF			•	
	0.050000				

图 6.11 平面特征控制框对话框

(2) 在工具栏中选择质量——启用VA元素(E)——平面时,不出现对话框,直接进行选择,选择完后在装配树中选中该平面——右键——属性——则会出现"平面"特征对话框,设置同上。

注意:

此时只能选择单个面。

6.3 一般曲面

(1) 在装配树中,选中零件,右键——添加——特征———般曲面——下图对话框。 名称: 参考点特征。

单击派生自选择右侧箭头---选中模型中的曲面---完成---确定。

图 6.12 一般曲面对话框

大小/拔锥角:参考点特征。

特征控制框里的各命令、特性、区域切换的公差下行含义、区域切换的公差上行含义、名义切换、主基准、第二基准、第三基准:参考点特征。

一般曲面有多段公差(组合公差)和复合公差。平面命令只有多段公差(组合公差),没有复合公差。

复合公差可作如下运用,如4个点的的整体尺寸公差要求低,但是每2个点之间的尺寸公差要求高。 建立一个一般曲面,将4个点都变为一般曲面的子点,然后赋予两层公差,第一层公差是4个点整体的公差,第二层是4个点间每2个点的公差。

图 6.13 一般曲面命令适用公差框格示意图

分布、注释、首选项:参考点特征。

图 6.14 一般曲面特征对话框

(2) 一般曲面只能通过上述方法建立。

6.4 轴

(1) 在装配树中, 选中零件, 右键---添加---特征---销(本文档中统称为轴)---下图对话框。

名称、坐标、方向矢量:参考点特征。

此命令可以建立圆柱形轴和锥形轴(圆台,如带拔模的轴),我们以圆柱形轴为例说明。

可直接通过锚点坐标、方向矢量、直径、高度命令、输入参数后、直接创建。

也可通过派生自3D选---右侧箭头---选中模型中的轴---确定。

也可通过派生自2D选---右侧箭头---选中截面线---输入直径、高度等---确定。

图 6.15 轴特征对话框

大小/拔锥角:表示轴的直径公差。"应用大小变化"勾选和不勾选含义如下:若不勾选:则表示轴直径无公差。

若勾选:则表示轴直径有公差,对称公差、极限偏差、极限值,有3种样式,根据需要进行选择。

图 6.16 轴大小/拔锥角对话框

特征控制框里的特性、主基准、第二基准、第三基准:参考点特征。

公差: 公差数值前方可增加 Φ, 数值后方可增加 M 、 L 。

分布、注释、首选项:参考点特征。

图 6.17 轴特征控制框对话框

(2)在工具栏中选择质量---启用VA元素(E)---针脚(本文档中统称为轴)时,不出现对话框,直接进行选择,选择完后在装配树中选中该轴---右键---属性---则会出现"轴"特征对话框,设置同上。

6.5 孔

孔的选择和设置,参考轴。

6.6 键

(1) 在装配树中,选中零件,右键---添加---特征---板(本文档中统称为键)---下图对话框。 名称、坐标、方向矢量:参考点特征。

可直接通过锚点坐标、深度矢量、长度矢量、长度、宽度、深度命令、输入参数后、直接创建。

也可通过派生自选择——第1个平面的右侧箭头——选中模型中的第1个面(可以直接抽取零件上的平面;也可以选择构造的面,创建完特征后删除构造的面,对键特征无影响)——第2个平面的右侧箭头——选中模型中的第2个面——长度矢量的右侧箭头——选中模型中的长度矢量——确定。

也可通过派生自选择——第1条右侧箭头——选中模型中的第1条线——第2条右侧箭头——选中模型中的第2条线——输入"大小"和"拔锥"参数——确定。

Tab Feature Properti	es		X		
几何体 大小/拔锥	角 特征控制框 タ	分布 注释 首选项			
名称: [Tab] 描述:					
公差库		44			
组: [▼ 3	类: [•		
◎ 使用公差库	© 7	不使用公差库			
特征数据 派生自选择					
	平面	★ 长度矢里	R		
第1条	第2条	R			
锚点坐标					
X O	у О	Z 0	k		
深度矢里					
I 0	J 0	K 1			
长度矢量 Li 1	Lj 0	Lk 0			
指引线锚点坐标	25,0	 . 0			
х о	Y 1.5	Z 1	K		
大小		- 拔锥			
长度 7					
宽度 3		◎ 宽度 2 3			
深度 2		◎ 拔锥角			
深度 2 0		● 拔锥			
编辑 / 新建					
		确定	取消		

图 6.18 键特征对话框

大小/拔锥角:表示键的宽度公差。"应用大小变化"勾选和不勾选含义如下:

若不勾选:则表示键宽度无公差。

若勾选:则表示键宽度有公差,对称公差、极限偏差、极限值,有3种样式,根据需要进行选择。

图 6.19 键大小/拔锥角对话框

23

特征控制框里的特性、主基准、第二基准、第三基准:参考点特征。

公差:数值后方可增加(M)、(L)。

分布、注释、首选项:参考点特征。

图 6.20 键特征控制框对话框

(2)在工具栏中选择质量---启用VA元素(E)---板(本文档中统称为键)时,不出现对话框,直接进行选择,选择完后在装配树中选中该键---右键---属性---则会出现"键"特征对话框,设置同上。

6.7 槽

槽的选择和设置,参考键。

6.8 图样

(1) 在装配树中,选中零件,右键---添加---特征---图样---下图对话框。

名称:参考点特征。

通过对话框可知, 图样中的特征类型, 只能是孔、销(轴)、槽、板(键)四种类型。

图 6.21 图样特征对话框

大小/拔锥角:表示图样的尺寸公差。"应用大小变化"勾选和不勾选含义如下:若不勾选:则表示图样无公差。

若勾选:则表示图样有公差,对称公差、极限偏差、极限值,有3种样式,根据需要进行选择。

图 6.22 图样大小/拔锥角对话框

25

特征控制框里的特性、公差、主基准、第二基准、第三基准:参考点特征。

公差:公差数值前方可增加 Φ,数值后方可增加 M 、 (L)。

分布、注释:参考点特征。

图 6.23 图样特征控制框对话框

举例说明: 4个轴作为一组考虑,整体偏一点不要紧,但是两个孔之间的公差不能偏多了。

装配树中选中零件——右键——添加——特征——图样——输入名称——选择销——确定,然后在装配树中选中该图样——右键——添加——销——派生自 3D 选——在窗口中选中轴特征(注意:不能在过程树中选)——确定——重复选择该图样添加3个轴——大小/拔锥角——输入直径公差(4个轴赋值同样的直径公差)——特征控制框——选择单段、多段或复合公差。

注意:

- (1) 图样和图样,不能直接装配,必须一个孔轴、一个孔轴的装配。将一个图样整体复制、粘贴到对手件里,也不能进行配对。
- (2)图样里面的单个孔、轴特征,不能加直径的公差,也不能加形位公差,只能在图样中加统一的直径公差和形位公差。
- (3) 外面的孔、轴,就算与图样里的一致,外面的孔、轴的直径公差和形位公差,都不对里面的轴、孔特征进行影响。

图 6.24 图样公差对话框

(2) 图样特征只能通过上述方法创建。

6.9 复制粘贴特征

特征可以进行复制粘贴,但是粘贴后的特征分两种情况,一种是复制粘贴为对手特征,这样粘贴后的特征方向与原特征方向相反,另一种是纯复制粘贴,粘贴后的特征方向与原特征方向相同。

选中一个零件中要复制的特征---选中要粘贴到的零件---右键---粘贴:

- (1) 粘贴特征为对手特征:则选择下方的命令,比如粘贴配对点特征、粘贴配对平面特征等。 注意:
- A、复制轴特征时,要粘贴为配对孔特征;反之亦然。复制键特征时,要粘贴为槽特征;反之亦然。
- B、将A零件的A1面上的点,复制粘贴到B零件的B1面上,作为B1面上的子点,但是前提是A1面和B1面必须是重合的。
 - (2) 纯复制粘贴时:则选择第1行的粘贴命令。

图 6.25 复制粘贴特征命令

6.10 基准

- (1) 创建基准。过程树中选中零件名称——右键——创建/编辑基准...——基准对话框——选中基准特征——确认符号——基准标签按字母顺序显示基准序号(可修改)——添加——可同理重复选择后续基准——确定。基准可以创建1~N(N>3) 个。
- (2)修改基准。打开该对话框---选中所有基准下面框里要修改的基准---更改基准标签里面的字母---修改---确定。

图 6.26 基准创建、修改对话框

6.11 特征对话框通用命令

- (1)特征需修改:在选择特征时,若特征选错需修改或重新选择,则单击派生自选择右侧箭头——直接选择所需特征即可。
 - (2) 方向矢量与长度矢量: 两者的I、J、K中的任何一个不能相同。

图 6.27 特征需修改

图 6.28 方向矢量与长度矢量

(3)编辑/新建:在特征对话框的左下角,中间的左、右箭头,表示上一个、下一个特征;边上的左、右箭头,表示此零件的开始、末尾特征。后面的点、面、轴、孔、键、槽等符号,表示新建一个同类型特征。

图 6.29 特征播放顺序和新建

(4) 不用更改3D的情况下,特征尺寸也可以更改。

7 装配

特征在创建完成后,需要对其进行装配。

注意:

- (1) 装配时,装配命令通常紧跟在该零部件的后面。
- (2) 参与配对的特征之间, 法线方向必须相反。
- (3) VSA不一定装配至全约束,可以仿真欠定位的,欠定位当做是out lock,锁死的。

装配形式有多种,都是在过程树中选中该零部件——右键——添加——操作——然后选择对应的装配操作。

装配	Ctrl/Shift + a
传统装配	Ctrl/Shift + c
运动装配	Ctrl/Shift + k
柔性装配	Ctrl/Shift + f
定制装配	Ctrl/Shift + u

图 7.1 装配类型

7.1 装配

7.1.1 普通装配部分

此装配为普通装配,下图为其对话框。

名称:参考点特征。

对象:选择要移动的对象特征---选择确认符号。此处可以选择特征,也可选择零件,但是选择零件时,配对特征可能会不全,注意要补全。

目标:选择固定的对象的特征---选择确认符号。此处可以选择特征,也可选择零件,但是选择零件时,配对特征可能会不全,注意要补全。

浮动:如果选择的是轴孔、键槽配合,会默认选中"浮动",表示轴在孔里,键在槽里,进行晃动(含平移和旋转)。通常勾选"浮动"。

如果不勾选"浮动"的话,则轴孔、键槽,不进行晃动。比如轴孔过盈配合时,即轴孔的轴线对齐,如果轴孔是过盈的,那么无论勾不勾选"浮动",效果是一样的。又比如圆锥孔配合,圆锥孔有自定心的。

并不是所有的轴孔间隙配合都要选"浮动",比如下图中的汽车车门如果竖着安装,就不需要。在竖着安装时,因为重力作用,轴孔始终是上部接触。

紧固件:如果一个螺栓穿过了2个孔,上过孔和下过孔,如果不考虑螺栓大径的尺寸公差和过孔的尺寸公差,则可以使用上过孔和下过孔直接装配的方式,比如上过孔直径为 ϕ 8,下过孔直径为 ϕ 9,螺杆的直径为 ϕ 7,则装配对话框中"浮动"和"紧固件"都会被勾选上,右边的值为8,这个值改为7。

如果两个过孔不是一个纯圆孔,也是可以成功的。

注意:

直接选择两个零件时,应配对的特征,名义值应该是一样大的,比如两个零件有2组孔轴配合,则对应的孔轴的尺寸名义值需一样大。

此处"移动"和"固定"是相对的, VSA中, 装配的2个零件是有顺序的, 对象和目标的要素, 不能互换。

每次选完对象和目标的一组配对特征后,单击"添加"。

如果对象和目标中的一个特征选错了,则可以选中"所有约束"里的特征,重新选择正确特征后, 单击"修改"即可。

图 7.4 装配对话框

"所有约束"里的配对特征的顺序是有要求的,不同的顺序,仿真结果是不一样的,可以通过"上移"、"下移"改变其顺序,也可以通过"移除"删掉某一组配对特征。

如下图所示,如果先装配T型件的平面与母件的平面,则T型件的轴跟母件的孔会干涉;如果先装配T型件的轴和母件的孔,则T型件的平面与母件的平面会线接触或干涉。

如下图所示,一个带孔的平板件由初始状态装配至最终状态时,中间状态算预装配,不予考虑;此 装配只考虑最终状态。

图 7.5 轴孔配合

图 7.6 预装配

这些配对特征是有级别的,分为P、S、T三个级别,P级别最高(相同级别可更换顺序)、S级别次之。点击"验证"后Type即可显示出级别。

如果没有显示级别,且"应用"是暗色的,"验证"也是暗色的,可先选中任意一配对特征("所有约束"中的任意一行)---修改(内容并不会被修改)---应用---验证---Type出现级别。

此装配的配对形式有:点点、面面、轴孔、键槽、轴槽(此配对方式重要)。

注意:

A、通过在一个面上选几个点装配,与直接选面进行装配,效果差一多。用点装配比面装配稍微差一点,因为用点装配,通常不能选择到面的边缘;而用面装配,装配时考虑到了面的边缘的因素。

定位面越大越好,最好达到整体形状的2/3以上。

点装配一般用在大件或没有平面的产品中,如汽车行业没有平面,所以更多使用点装配,汽车行业大家暂时也不用一般曲面。

B、轴孔、键槽配合是有浮动的,即只要有间隙,轴在孔里、键在槽里,是自由晃动的。而点点、 面面配合,没有浮动。

7.1.2 条件装配部分

当一些装配操作需要满足一定条件,才被执行或跳过时,可用到普通装配里的条件装配-条件/诊断。

勾选活动——选择第1个测量——选择确认——选择判断符——选择第2个测量——选择确认(或者选择值——输入具体数值)——选择AND或OR(AND是与,OR是或,多个判断时才用,在第一个判断时,两者可以都不选)——选择执行此装配或跳过此装配。举例说明:

下图所示,复制装配MV粘贴成MV_1,从左侧装配树中,可看出,先执行MV,再执行MV_1,如果没有触发MV 1的条件,则只执行了MV;如果触发了MV 1的条件,虽然MV也被执行,但是仍然以MV 1为准。

在左侧装配树中,虽然MV 1可以复制粘贴到MV前面,但是执行的会有问题,执行不下去。

在装配树中,测量和装配是同等级的,从上到下执行。

图 7.7 条件装配

7.2 传统装配

一般不用。

7.3 运动装配

此装配为运动装配,又称动态装配,可分析如四连杆机构的工况,只是分析某一个状态下的公差情况。下图为其对话框。

名称:参考点特征。

对象: 选择一个对象特征---选择确认符号。

目标:选择另一个对象特征---选择确认符号。

注意:

动态装配中对象和目标的顺序对结果没有影响,但是为了审阅复看时方便,同一个零件的的配对特征放在紧邻的位置。

约束类型:有重合、相切、垂直、并行、尺寸、浮动,共6种类型。

图 7.8 约束类型

重合: 动态装配里, 孔和轴不要求同心, 但是普通的装配, 孔和轴要求同心。

相切: 只有内切,没有外切。

垂直: /

平行: /

距离:约束轴线距离,如果带方向,需要加其它的操作。

浮动: /

权重因子:权重因子从0-10万之间,权重因子基本不用。

每次选完对象和目标的一组配对特征,选择约束类型,输入权重因子后,单击"添加"。

注意:

- 1、运动装配中,所有约束里的配对约束,是没有顺序要求的,顺序不同对仿真结果是没有影响的。
- 2、除了形成组件的普通装配,使用方式同"装配"外,其它所有的普通装配和运动装配,都要列在"所有约束"里。

"移除"、"上移"、"下移":含义同装配。

动态静态元素: 依次选择产品中的非固定零件---依次单击"选择确认符号"---确定---非固定零件会依次落入"Dynamic Parts"---确定---左侧过程树中选择---右键---属性---未选中的零件会自动进入到"Static Parts"。

此装配的配对形式有:点点、面面、点面、轴孔、键槽。

图 7.9 动态装配对话框

(3) 具体一个尺寸框格,参考基准最多是3个,且有顺序,从左到右的顺序确定。

7.4 柔性装配

略。

7.5 定制装配

名称:参考点特征。

扩展名集合名称分为两大部分,一部分为Legacy,另一部分为Move4。下面分别进行介绍。

7.5.1 Legacy 部分

Legacy分21个小项,分别进行介绍。

图 7.10 定制装配 Legacy 部分对话框(图片系合成)

7. 5. 1. 1 321

321命令是3个A、2个B、1个C,装配在一起。

7.5.1.2 Arial

Arial ,轴向装配,先定轴、再定移动方向,再定旋转方向,装配在一起。

7. 5. 1. 3 MoveGen

36

MoveGen,普通装配,跟321类似,不同点是不要求面的方向,下面有13个项,都需要选。先选对象的6个,然后再选目标的6个,然后选一个移动的物体。

7.5.1.4 IterativeMove

IterativeMove,局部的一个循环,很少能用到,装配树中其中一部分进行循环,里面的Repeat可以循环很多次,也可以用下面的while,当变量超过某个值时,跳出循环。

7.5.1.5 Move

Move命令是用一个特征(称为"驱动特征")的矢量方向和公差大小,控制其它特征(可控制1-50个特征,称为"联动元素")。"联动元素"完全按照"驱动特征"的矢量方向和公差大小波动,此时,联动元素本身的方向不起作用。可理解为将"联动元素"与驱动特征绑定。

Move中的驱动元素可以是点、线、面、轴、孔、实体,联动元素也可以是点、线、面、轴、孔、实体,驱动元素和联动元素,可以是不一样的类型。

图 7.11 Move 命令适用工况示意图

使用此命令前,先创建驱动特征,及联动特征。具体操作步骤如下:

Move---1)Master VsaElement---选中驱动特征---选择确认---添加---VsaElement 1---选中第1个联动特征---选择确认---添加---同理,按需添加VsaElement2~50个特征---选择确认---添加---确定。

图 7.12 Move 命令

但是这个命令慎用,因为如下图所示,右端动一点点,左端变化很多,有杠杆的作用。

图 7.13 Move 命令慎用,右端动一点点,左端变化很多,有杠杆的作用

7. 5. 1. 6 MoveBack

MoveBack跟Move比,是反过来动,方向相反。这个命令可以在齿轮中用到,因为一个是正转,一个是反转。如下图所示,1个驱动点,4个联动点,联动点的方向都与驱动点的方向相反。

图 7.14 MoveBack 命令适用工况示意图

7.5.1.7 AddVariation

此命令是用一个点(称为"驱动点",只能是点)的矢量方向和公差大小,控制其它特征(可控制 1-4个特征,称为"联动元素",其可以是点、面、轴、孔、键、槽等)。"联动元素"完全按照"驱动点"的矢量方向和公差大小波动,此时,联动元素本身的方向不起作用。

此命令适用于,如4个点的的整体尺寸公差要求低,但是每2个点之间的尺寸公差要求高。

图 7.15 AddVariation 命令适用工况示意图 图 7.16 AddVariation 命令适用公差框格示意图

使用此命令前,先创建驱动点,及联动特征。具体操作步骤如下:

AddVariation---VsaElement 1---选中第1个联动特征---选择确认---添加---同理,按需添加VsaElement2、3、4----Variation Point---选中驱动点---选择确认---添加---确定。

图 7.17 AddVariation 命令

7.5.1.8 Add5Variation

此命令是用多(1[~]5)个点(称为"驱动点",只能是点)的矢量方向和公差大小,控制一个特征(称为"联动元素",其可以是点、面、轴、孔、键、槽等)。"联动元素"完全按照"驱动点"的矢量方向和公差大小波动。驱动点的方向和公差,形成矢量和后,对联动元素进行控制,此时,联动元素本身的方向不起作用。

如下图所示,四周4个点为驱动点,有各自的方向和公差数值,中间的点为联动点。四周4个点的矢量和,影响联动点的方向和公差大小。

图 7.18 Add5Variation 命令适用工况示意图

40

具体操作步骤为: Legacy---Add5Variation---1) VsaElement---选中驱动点---选择确认---添加---2) Variation Point 1---选中1个驱动点---选择确认---添加---同理,按需添加Variation Point 2、34、5--选择确认---添加---确定。

图 7.19 Add5Variation 命令对话框

7.5.1.9 AddOffsetVariation

AddOffsetVariation命令中,"联动元素"只继承驱动点的公差值,不继承方向。"联动元素"可以选24个。

如下图所示,中间驱动点方向为上下,而4个联动点方向为左右,4个联动点只继承驱动点的公差值, 不继承其方向。

图 7.20 AddOffsetVariation 命令适用工况示意图

具体操作步骤为: Legacy---AddOffsetVariation---1) Variation Point---选中驱动点---选择确认---添加---2) VsaElement 1---选中1个联动点---选择确认---添加---同理,按需添加VsaElement2²24---选择确认---添加---确定。

图 7.21 AddOffsetVariation 命令对话框

7.5.1.10 AveragePoint

此命令只是找点(取中点),还需要进行普通装配。比如高防护表上盖和翻盖四周有密封条,因为密封条受力平衡的原因,实物翻盖在上盖中的位置,一定是动态的中点相重合。(这个在2021年5月27日经过实例验证,是跟预想的一致。)

先创建2个点及这2个点的中点。如先在2个面上分别创建一个子点,然后通过修改坐标的方式,创建其中点,然后这个中点受两个面的子点的影响。这个中点始终是两个点的坐标平均点。

AveragePoint----1)Point----左侧装配树中找到第1点----选择确认符号----添加----2)Point----左侧装配树中找到第2点---选择确认符号----添加----3)Averaged Point----选择中点----选择确认符号----添加----确定。

图 7.22 AveragePoint 命令

7.5.1.11 ParametricPoint

如果不是找2个点的中点,而是如果靠近一侧多一点,靠近另一侧少一点,则用定制装配里面的 ParametricPoint(参数点)。

1) From Point——选中第一个端点——添加——2) To Point——选中第2个端点——添加——3) Created Point——选中中间的点——添加——Parameter from 1st Point——值——输入比例数值,比如0.1——添加——确定。

图 7.23 ParametricPoint 命令

7.5.1.12 CreateArc

CreateArc,是创建动画的。通过点来构件圆。

7.5.1.13 CreateSlider

CreateSlider, 是创建直线的。

7.5.1.14 CreateRevolution

CreateRevolution,是创建旋转的。通过特征来构件圆。

7. 5. 1. 15 LeastSquare

LeastSquare,比如一个面上有100个点,用另一个面跟它之间最小二乘生成一个新的面。

7.5.1.16 BlackBoxModel

BlackBoxModel, 黑盒模型, 汽车行业要用。装配后, 把其中一个小总成导出来。

7.5.1.17 Output Measurement

Output Measurement可要将测量值导出来。具体操作步骤如下:

1)Measurement——在左侧装配树中选择一个测量——选择确认——添加——同理,按需选择2)Measurement~20)Measurement——选择确认——添加——Output file path & name——值——输入txt文档的地址(txt的文档为提前建立好的空的文档)——选择确认——添加——验证——显示验证成功——确定——仿真一次——找到创建的txt文件——打开查看数据。

图 7.24 Output Measurement 命令

7.5.2 Move4 部分

Move 4,将一个平面件的3个点贴合,然后压剩余的一个点。比如左上角、左下角、右下角,固定,压右上角,则是从左上-右下连线压下去。实际仿真时,软件在计算时,顺序是随机的。

图 7.25 Move4 适用工况示意图

1) Object Point 1——选择1个对象点——选择确认——添加——同理,选择Object Point 2、3、4——选择确认——添加——Target Plane Point 1——选择一个目标点——选择确认——添加——同理,选择Target Plane Point 2、3、4——9) Object Being Bent (哪个件被压弯)——选择被压弯的件——选择确认——添加——Initiate Clamping Sequence? /Yes (是否按顺序执行,如果选择Yes,则就是按上面选择的点1、2、3、4的顺序执行,如果选择No,则软件会随机挑选一个点进行按压)。

Object和Target可以有间隙,但是最好不要。Object的4个点和Target的4个点,最好是其中一个零件复制粘贴到另一个零件上。

这个命令使用前,先要进行一步普通的装配,然后紧跟着执行一次Move 4装配。

图 7.26 Move4 命令

8 测量

装配操作创建完成后,需要对其进行测量。

测量形式有多种,都是在过程树中选中该零部件——右键——添加——操作——然后选择对应的测量操作。

图 8.1 测量类型

图 8.2 测量类型(图片为合成)

8.1 测量

此测量为普通测量,测量种类有多种,如上图所示。

8.1.1 点

此命令可测量单个点,在X、Y、Z或沿某个方向上的变化。

名称:参考点特征。

类右侧的"测量": 既测量,又出报告。下同。

类右侧的"计算":只测量,不出报告。下同。

自: ---选择点---选择确认---选择矢量---勾选指定限值---名义值自动显示---输入下限值---输入上限值---确定。

图 8.3 点测量

8.1.2 点到点

此命令测量两个点之间的绝对距离,没有方向。

名称:参考点特征。

自: ---选择点---选择确认---至: ---选择点---选择确认---其它命令都为暗色,不可选---勾选指定限值---名义值自动显示---输入下限值---输入上限值---确定。

图 8.4 点到点命令

8.1.3 补偿的缝隙/齐平

此命令可按, 角平分线的方向, 测量2个点的投影距离

只在自和至里各输入一个点,方向就是这2个点的法向的角平分线方向,下面的特征 1、特征 2和特征 3,都是暗色的。

自:点的矢量 至:点的矢量 角平分尺

图 8.5 补偿的缝隙/齐平矢量示意图

8.1.4 缝隙/齐平

此命令。

名称:参考点特征。

自: ---选择点---选择确认---至: ---选择点---选择确认---选择测量投影矢量---确定延伸线方向(不能与投影方向矢量相同)---勾选指定限值---名义值自动显示---输入下限值---输入上限值---确定。

静态:可以在特征 1中选择"自:"的那个点,点的方向,默认为点在这个面的法向,并且默认指向体外。也可以选择X、Y、Z作为方向,选择静态了之后,方向就不会变化了。下同。

动态:是指方向沿着每次测量点的法向。用动态分析的结果更接近实际,并且动态分析的结果一般比静态结果要差一些,但是我们一般选用静态的,不选择动态的,因为我们分析的面大多数都是大半径的弧面,两个相邻点之间,几乎没什么影响。

绝对值:不考虑方向,只考虑幅值的变化。

假设用特征 1构造方向,则表示特征 1的法向。如果想选择一个面的法向,可以先在这个面上建立一个点,然后在测量时的对话框中"方向矢量"的特征 1中选择这个点即可。

假设用特征 1和特征 2构造方向,则表示的是两点间的方向,就是特征 1指向特征 2。

假设用特征 1、特征 2和特征 3构造方向,则表示的是3个点的叉乘。

图 8.6 叉乘方向

		ge 注释	E						
名 描述:	称:	leasureme	ent						
對	£ [§	逢隙/齐平	2	▼] ◎	测里		<u></u> ।	ŢŢ.	
特征— 自:								K	
									84 84 84
									64 64
至:									
方向矢雪	₽								40
	-) 静态		动态		绝对值			重置	
特征 1	: [K
特征 2	: [- F		¥
特征 3	:						,		
-	$\overline{}$	J O	К	0		X	Y		₽Ţ.
	线方向	_							_
I 0		J [1	K	0		K X	Y	Z [
限值一	指	÷70/±		1071			//2¬↓		
801 l		定限值		相対			绝对		
名义			下限:	0		上限:	0		
名称格: ◎ 长	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	短		示矢量		隐藏矢里		清除	
	新建 <u></u>								

图 8.7 缝隙/齐平命令

8.1.5 角度

此命令。

名称:参考点特征。

自: ---选择一条边的起点---选择确认---选择一条边的终点---至: ---选择另一条边的起点---选择确认---选择另一条边的终点---选择确认---选择测量投影矢量---勾选指定限值---名义值自动显示---输入下限值---输入上限值---确定。

如果选择"静态",则要选择一个投影方向,表示测量在这个投影方向的角度。

如果选择"绝对值",则表示测量2条边的立体角度。

则里属	ment Ope 性 Image	注释					
	H13	surement					
描述	:						
	类 角原	隻	▼] ◎	测量	0) 计算	
-特征							
自:							
						N.	Bta a
						N.	
至:						 	
						N.	
						N.	
方向		@ =b- *		(4n+/#		重置	
特征	静态	◎ 劫态	š	绝对值			
							2
特征							
特征	3:					▶ Bu	
I 0	J	0	K O	 	X	YZ	
3Œ4 I (0	触线方向 	0	K O		X	YZ	7
- 限值		<u> </u>	_ K 0			ت ت	
FKIE	□指定	限值	○ 相対		绝对	†	
名义	. 0	下降	₹: 0		上限: [0)	
- 名称 ◎ 长			显示矢里	隐藏	矢里	清除	
編辑 /	新建						
M				72	定	Tr.	消

图 8.8 角度命令

8.1.6 点到线

此命令为测量点到线的垂直距离,线是由2个点组成的(注: VSA中没有线的概念)。

名称:参考点特征。

自:——选择点——选择确认——至:——选择边的起点——选择确认——选择边的终点——选择确认——其余命令都为暗色(不可选)——勾选指定限值——名义值自动显示——输入下限值——输入上限值——确定。

/leasure	easurement Operation Properties					
测量属	则里属性 Image 注释					
 描述	名称: Measurement					
1世(土		<u> </u>				
4±∜⊤	类 「点到线 ▼ ◎ 测量 ◎ 计算					
-特征 自:	中扣:联动点-右上	₽				
		₽				
		N Bta				
至:	中扣:联动点-右下	₽				
	中扣:联动点-左上	▶ ™				
	_	N Btg				
方向分		重置				
特征		Bta k				
特征	2:	8년 18년)				
特征	3:	® _t g				
I 0	JO KO KO X Y	Z				
	#线方向					
I [0]	JO KO KO Y	Z Z				
- PKI且 -	□ 指定限值 □ 相对 □ 绝对					
名义	40.6867 下限: 0 上限: 0					
名称		清除				
编辑 /	新建					
	● ● ● ● ● ● ●	取消				

图 8.9 点到线命令

8.1.7 点到平面

此命令为测量点到平面的垂直距离。面只能是平面,不能是曲面。

名称:参考点特征。

自: ---选择点---选择确认----至: ---选择面(也可以依次选择3个点,3个点组成一个面)---选择确认----其余命令都为暗色(不可选)---勾选指定限值---名义值自动显示---输入下限值---输入上限值---确定。

51

leasurement Operation Properties				
测量属性 Image 注释				
名称: Measurement 描述:				
类 点到平面 ▼ ◎ 测里 ◎ 计	·算			
特征	N Bra			
	N Bta			
至: 中扣:右上另一限位筋-上测量面				
方向矢里				
● 静态 ● 动态 ■ 绝对值 ■	重置			
特征 1:				
特征 2:				
IO JO KO KX Y	Z Z			
延伸线方向				
IO JO KO KX Y	Z			
_				
名义 -93.3108 下限: 0 上限: 0				
名称格式 ◎ 长 ◎ 短	清除			
编辑 / 新建				
★ ★	取消			

图 8.10 点到平面命令

8.1.8 最小虚拟间隙

如果一个轴、孔的最小虚拟间隙>0,则说明孔、销能装配进去,不会发生干涉。轴孔可以偏心。 此命令也可用于计算轴、槽的最小间隙。

如果要计算多个孔和轴的间隙,则要建立多个这种命令。

名称:参考点特征。

自: ---选择特征---选择确认----至: ---选择特征---选择确认---其余命令都为暗色(不可选)---勾选指定限值---名义值自动显示---输入下限值---输入上限值---确定。

图 8.11 轴孔的间隙

图 8.12 最小虚拟间隙命令

53

8.1.9 最大虚拟间隙

此命令使用方法同上。使用场景少。比如通过控制螺钉与孔的间隙,控制漏油的情况。

图 8.13 最大虚拟间隙适用工况示意图

8.1.10 虚拟孔径

此命令为测量1层到6层孔,能够通过的最大的轴的直径。

图 8.14 通过 6 层孔的最大的轴的直径

名称:参考点特征。

特征---按需选择1⁶个特征征---分别选择确认----选择方向---勾选指定限值---名义值自动显示---输入下限值---输入上限值---确定。

54

图 8.15 虚拟孔径命令

8.1.11 力

此命令为柔性装配中测力。此命令需画网格,具体方法和步骤,参考柔性装配。

一个四边形,左上、左下、右下,3个点固定,右上点是压下来的,可能会发生变形,如果水平方向有一个节点,需要测一下力的值,则用此命令进行计算。

图 8.16 力命令适用工况示意图

名称:参考点特征。

特征自直接选择1个测量的点即可。

图 8.17 力命令

8.2 定制测量

名称: 同点特征。

定制测量的所有选项,都在Legacy下。

8. 2. 1 Sum 测量值相加

最多可选5个测量值进行相加。

Sum---1) Measurement---按需选择第1、2、3、4、5个测量---选择确认---添加---输入下限---输入上限---确定。

图 8.18 Sum

8.2.2 Diff 测量值相减

两个测量值进行相减。正值减去负值。上面作+,下面作-。

Diff---1) Measurement (+) ---选择第1个测量---选择确认---添加---2) Measurement (-) ---选择第2个测量---选择确认---添加---输入下限---输入上限---确定。

图 8.19 Diff

8.2.3 Linear 测量值线性代数和

此测量满足下面公式。

y=a1x1+a2x2+a3x3+a4x4+a5x5+b

Linear—1)Measurement—选择第1个测量—选择确认—添加—Coefficient1—输入数值—添加—按需选择Measurement2、3、4、5—选择对应测量—选择确认—添加—按需选择Coefficient2、3、4、5—选择确认—添加—Offset—输入数值—添加—输入下限—输入上限—确定。

图 8.20 Linear

8.2.4 Min 测量最小值

求解20个(最多20个)测量值的最小值。

例:评价一个缝,这个缝有3个测量,然后计算这3个缝的最小值。则计算5000次,先算第1次,取3个值中的最小值;然后算第2次,再取3个值中的最小值;然后再算第3次,再去3个值中的最小值。一直算到5000此。最后的结果一般不是正太分布的。

图 8.21 测量示意图

1 Measurement 1 —选择第1 个测量——选择确认——添加——按需选择Measurement 2^2 20 ——选择对应测量——选择确认——添加——输入下限——输入上限——确定。

图 8.22 Min

8.2.5 Max 测量最大值

Max测量,同Min测量。

8.2.6 Virtual Diameter

Virtual Diameter,虚拟直径,只是测量最多20个孔的直径,并且这7个孔必须是在一条线上的,不能完全错开。这个例子中Feature只能选择孔。

1)Feature—选择第1个孔—选择确认—添加—按需选择Feature2²0—选择对应孔—选择确认—添加—输入下限—输入上限—确定。

图 8.23 Virtual Diameter

8.2.7 Virtual Hole Diameter-Floating/Fixed Fastener 虚拟直径-浮动/固定紧固件

Virtual Hole Diameter-Floating/Fixed Fastener,在Virtual Diameter基础上还可以浮动,可以摆动。测量最多20个孔的直径,并且这7个孔必须是在一条线上的,不能完全错开。

1) Hole——选择第1个孔——选择确认——添加——按需选择Hole2²20——选择对应孔——选择确认——添加——Seek floating fastener? /Yes——输入Yes或No——添加——输入下限——输入上限——确定。

图 8.24 Virtual Hole Diameter-Floating/Fixed Fastener

8.2.8 Gap: Point—>Plane along Direction: 沿着某个方向,测量点到面的距离普通装配里的点到面的方向是不可选的。

图 8.25 Gap: Point—>Plane along Direction

8.2.9 Math Equation 数学方程式

数学方程式,即加减乘除,可以求解面积、体积等。

图 8.26 Math Equation

8.3 测量组节点

有多个测量的,可以将多个测量建成一个组,这样速度会快一些。

在组件名称(一般选择测量所在等级的组件名称)右键——添加——操作——测量组节点,然后将测量剪切、粘贴到其里面即可。

图 8.27 测量组节点右键命令

仿真完成后,过程树选中测量组节点——右键——报告——过程/HLM/MSC,则可以通过红框中箭头直接看下一个或上一个,并且也可以通过左侧绿色框里进行选择查看。

图 8.28 测量组节点

左侧过程树选中测量组节点---右键---报告---汇总报告,出来的是汇总报告。

汇总报告可以在右上角选择一些参数列,如名义值、Cp、Cpk等,然后选择下方的"选择类型",在弹出的对话框中选择"制表符分隔文本"导出txt格式的,也可导出图形格式的,但不能导出Excel格式的。选择下方的"生成报告",则选择存储地址。

图 8.29 汇总报告

然后到存储地址找到Statistical Parameter Table.txt文件,打开即可。

图 8.30 从存储地址中找到对应文件

图 8.31 汇总报告内容

9 仿真

特征、装配、测量创建后,可进行仿真,仿真前先进行"验证"。

9.1 验证

左侧过程树顶端Process——右键——验证。出现下图验证成功对话框才可,若提示出现错误,需先处理错误。

图 9.1 验证成功

验证时,如果显示某个零件没有与其它零件装配,这种情况不影响计算。

9.2 变化分析首选项

变化分析首选项,在"质量"菜单中,

图 9.2 变化分析首选项各命令含义:

- (1) 、装配构建动画:
- (A)、步数:数值代表"质量——装配动画"仿真的速度,代表零件仿真装配时移动的速度,次数越大,零件被移动的速度越慢。
 - (B)、循环次数:表示上述命令循环的次数。
 - (2)、高低波动动画:

高低仿真这几个参数的含义是,如下面例子,两个件的间隙仿真5000次的时候,可以看最小值时的状态,也可以看最大值时的状态,

图 9.3 两个件之间有间隙

图 9.4 动画高/低命令

仿真结束时,可以点击"质量---动画高/低"查看最大时的位置,或最小位置时的位置。

- (3) Monte Carlo 仿真数:数值代表仿真的次数,可代表仿真样本的数量,也可以指同一组零部件装配的次数。
- (4) 用 Monte Carlo 仿真对 HLM 进行仿真:运行贡献因子的仿真。概率法分析时,需要勾选上。如果没有勾选,则在仿真结束后,再点击如下命令,也可以将HLM的报告调出。

图 9.5 运行 HLM 仿真

- (5) 用 Monte Carlo 仿真对 HLM 进行仿真:运行均值偏移的仿真。只有实测数据分析时才有用。非实测数据分析时,勾上也没有报告。
 - (6) 运行极值仿真: 勾选后,运行极值法仿真。
- (7) 装配操作浮动分布:全局影响参数,正常情况下,孔轴之间的分布符合正态分布。"正常":就是中间次数多,四周次数少。
 - (8) 全局仿真模式:下面有3个选项,使用几何公差、使用统计测量数据、使用同步测量数据。

全局仿真模式 使用几何公差 使用几何公差 使用几何公差 放大因子: 使用几何公差 使用负计测量数据 使用同步测量数据

图 9.6 全局仿真模式

- A、使用几何公差: 默认选择,即使用过程树中特征赋予的公差进行仿真。
- B、使用统计测量数据:

表中的"特征ID"列,每一行都表示一个特征,后面的数据,是不同样品测量的该特征的值。

统计数据来源三坐标检测等,数据导入的话,可以通过,在装配树中选中零件——右键——链接至DPVLite 测量数据…——可以直接连接DPV数据库,数据格式为.xml格式。链接完数据后,按装配树的特征顺序执行。

特征ID	名义值	+/-	1	2	3	4	5	
F1			0.1	0.1	0.1	0.1	0.1	¢,
F2			0.1	0.1	0.1	0.1	0.1	
F3			0.1	0.1	0.1	0.1	0.1	
F4			0.1	0.1	0.1	0.1	0.1	
F5			0.1	0.1	0.1	0.1	0.1	
F6			0.1	0.1	0.1	0.1	0.1	
F7			0.1	0.1	0.1	0.1	0.1	
F8			0.1	0.1	0.1	0.1	0.1	
F9			0.1	0.1	0.1	0.1	0.1	
F10			0.1	0.1	0.1	0.1	0.1	
F11			0.1	0.1	0.1	0.1	0.1	

图 9.7 测量项及测量数据

图 9.8 DPVLite 测量数据对话框

该命令,先将每一行的数据,计算出平均值、西格玛值、峰度、偏度等;然后将计算后的值代入前面的公差值。然后进行特定次数仿真。特点是:数据量越小,统计越不准确。

C、使用同步数据测量:仍以上述B命令的表格数据为例,首先进行一组数据一组数据的仿真。上面5组数据,假设要仿真5000次,则要从第1列到第5列重复执行。

注意:

如果仿真的数据量足够大,则选项B和选项C的结果,差不多。

- (9)、放大因子:动画晃动幅度比例,只是显示效果增大了,公差数值并未放大。可以通过动画判断仿真是否有问题。比如产品应该晃动,动画时却不动,说明装配有问题。也可以通过动画快速排除问题,比如动画时有的件晃动大,则说明有问题。
 - (10)、公差比例因子:是将所有公差值放大某个倍数。
 - (11)、公差西格玛范围:输入公差值的范围。

9.3 装配动画

质量——装配动画。该命令可以展示出零部件的装配顺序。可以一步一步的展示零部件的装配顺序,以及一步一步的逆装配;也可以一下子装配完成。

图 9.9 装配动画

9.4 仿真

质量---仿真。上侧箭头可执行全部仿真。

图 9.10 仿真

10 装配树中各要素逻辑顺序

10.1 各要素正常装配顺序

装配树中零件和组件中的特征、装配、测量,正常装配顺序如下:

- (1)、从上往下执行。
- (2)、先执行零件或组件,从上往下执行完了,然后再从头开始装配操作。
- (3)、如果零件或组件前面有+号,先将+里面的按从上往下完全执行完,原则同第2条,再执行外面的。

表	各要素装配顺序
1.	

含义	Process 树装配顺序	实际逻辑顺序
组件1	1	6
组件1.1	1.1	2
零件1.1.1	1. 1. 1	1)
组件 1.2	1.2	3
组件 2	2	7
组件 2.1	2. 1	4
组件 2.2	2. 2	5

10.2 从上往下强制执行

质量---变化分析首选项---仿真---高级---强制PDO树顺序,则装配顺序是从上往下,一行一行地执行。

图 10.1 强制 PDO 树顺序

11 报告查看

执行仿真前,先在质量---变化分析首选项---结果,进行设置。

图 11.1 变化分析首选项-结果选项卡

默认注释报告: 盒装图、柱状图、控制图、表格的含义如下图所示。

报告中的小数位数:可以更改分析报告中数值小数位数。

HLM最小百分比:如果数值为1,含义是贡献因子里面小于1%的就不显示了。

仿真完成后,会在窗口中形成报告类型图表版,右键会出现报告类型文本版。

Measurement-中扣-右上限位筋-上测量面式 柱状图报告 过程报告 影响因素报告 均值偏移影响因素报告 均值偏移影响因素报告

图 11.2 报告类型图表版

图 11.3 报告类型文本版

11.1 过程报告

上图选择"过程报告"后,会出现过程报告Process界面:

11.1.1 报告界面

测量名称:在报告左上角。

测量次数:仿真中接受的仿真次数(有时会因冲突,被舍弃掉一部分,动态装配尤其明显)。若带有"Extreme",则表示的是极限法仿真分析的结果,若不带,则表示概率法仿真分析的结果。

柱状图: 当前样本仿真结果分布。

曲线图:根据样本结果,拟合出来的曲线。先有柱状图,再有拟合曲线。

Nominal: 名义值。

Mean: 样本计算的平均值。

Std. Deviation: 标准差。

Lower Spec Limit: 简称LSL,设计下限。

Upper Spec Limit : 简称USL: 设计上限。

Distribution: 仿真分布类型,正常情况下需要仿真到Tested Normal。如果最后的结果分布类型不是Tested normal ,说明有问题,但是实际分析时,要想得到Tested normal,是不容易的。有些厂家就会提出要求,他们的输入分布就不是正态分布,比如是平均分布、三角形分布等。如果分布不是Normal分布的时候,右面的Estimate的数值是没有意义的,并且实际图形与正态分布差的越多,右面Estimate的数值越没有意义。如果分布不是Normal分布且没有明确的原因,但是实际分布图形要接近正态分布,如果实际图形也与正态分布差很远,就是错了。

Cp、Cpk:如果分布不符合正态分布了,Cp、Cpk就没意义了,但是需要进一步验证。如果均值偏移了, (有些行业均值偏移0.025以上, 就算偏移)就不看Cp了,只看Cpk值。

%<Low Limit: Sample,是样本中<设计下限的比例; Estimate,是拟合值中<设计下限的比例。

%>High Limit: Sample,是样本中>设计下限的比例; Estimate,是拟合值中>设计下限的比例。 %Out Of Spec: Sample,是样本中超差的比例; Estimate,是拟合值中超差的比例。

95%C. I. for % Out of Spec: 2.8202 to 3.8129, 这个值超差率在3.3166%, 但是这个值95%的概率是落在2.8202~3.8129之间。如果是normal分布,则Cp跟超差率是强相关的。超差率5%,对应的Cp是0.67左右。

图 11.4 过程报告 Process

Low: Sample,是样本中的最小值,上图形中柱状图的最左侧柱子的值,如-0.2589,是5000个样本值的最小值,下同。Estimate,是拟合值中的最小值,是拟合出来的图形的负3西格玛值。

High: Sample, 是样本中的最大值; Estimate, 是拟合值中的最大值。

Range: Sample,是样本中的最大值与最小值的代数差;Estimate,是拟合值中的最大值与最小值代数差。

极值仿真时, Estimate的值不起作用, 只看Sample的值。

质量---变化分析首选项---结果---过程报告西格玛范围。

图 11.5 变化分析首选项-结果选项卡

11.1.2 贡献因子

此命令为柔性装配中测力。此命令需画网格,具体方法和步骤,参考柔性装配。

图 11.6 贡献因子

(1) 各参数含义:

HLM: 贡献因子:

Measurrment:测量

Nominal:名义值

Process Viariance:方差,是分布图页面Std. Deviation(标准差)的平方: 0.0617,普通算法,每个样本值减去平均值,取平方,然后求和,最后除以N-1,因为是无偏估计。

HLM Variance: 0.0118,它是西门子算法,与方差的值,是通过不同的方式计算出来的,如果均值没有偏移,即Mean与Norminal相等,则此值与Process Viariance应该是相等的,但是如果存在均值偏移,则两者会有差异,均值偏移越大,两者差的越大。

Contributors:

Effective Tolerance: 有效公差: 所求的项目的公差相对于该行前面的因素的公差。举例说明: 跷跷板, 左端固定, 中间变形1mm, 右端变形2mm; 2这个值就是中点对右面点的有效公差。

图 11.7 有效公差示例

在贡献因子图中, floating Locators, 是浮动因素, 浮动是无法计算Effective Tolerance有效公差和Sensitivity, 因为它不但有方向, 还有各种位置, 综合影响, 不是线性的, 所以显示N/A。

Floating DRF Locators,是因为参考的基准B和基准C,后面有⑩的原因,是因为这2个基准的偏移的影响。基准浮动的影响只有VSA能搞出来,目前catia的dcs,,proe的sattle软件,都是搞不出来的。

Sensitivity: 敏感度,有效公差除以实际公差=敏感度,我们希望敏感度在1附近,越小越好。

如果敏感度数值大,则说明我们这个零件容易受到对手件的影响,说明这个零件不够稳健,零件在装的时候容易出问题,哪怕自身加工没问题,但是对手件可能加工精度差,容易产生不良。需要考虑这个零件定位问题,是否稳定,不是欠约束,有可能是定位面尺寸小了或者定位的特征靠的太近。下图上面的件的四个定位孔挨着太近了,敏感度会大,将右侧两个定位孔向右移动,则可降低敏感度;有些企业敏感度数值定义为1.3,医疗器械一般都是细细长长的结构,敏感度就是降不下来的;需要考虑加工装;有些企业,Sensitivity不能高于2,就算合格,也得降下来。

图 11.8 4 个孔太近,需将中间孔调整到边缘

图 11.9 医疗器械细长结构

Effect: 各公差的占比,据此进行排序,本公差除以其它总公差之和,但是实际计算是不正确的。 动态装配中的影响因子的sensitivity都是N/A,动态装配中的影响因子不是线性的。

(2) 调整优化

根据报告界面和 HLM 参数优化顺序:

- A、先看有没有超差。
- B、再看 Sensitivity 有没有大的,如果大的也没法改了,也就不改了。
- C、再看 Effect,要从 Effect 大的开始,但是也要考虑加工能力。改的时候,不光可以收紧公差带,也可以增加平行度等进行调整。可以勾选下方的"特征组件",进行特征的细分,

细分的时候,只有形状因素占比大,如果缩小,对结果影响比较大。

再细分的时候,有定位、定向、平面度,但是平面度占比小,定位和定向公差占比较大,此时可以 考虑加平行度,增加平行度的话,可以通过增加工装来实现。

12 VSA 常用通用工具

12.1 显示变换等常用工具命令

常用工具命令入下图所示,命令含义同字面意思。其中,导览,为放大缩小。

可以通过在过程树中选中整个零件或单个特征,进行显示或隐藏某些特征或某些特征的某些方面, 也可直接单击过程树中的要素前面的〇。

图 12.1 常用工具命令

图 12.2 显示命令

12.2 数值测量

分析——启用3D测量(\underline{M}),可以进行距离、角度、半径、局部半径、直径等的测量。常用测量命令为"双侧"。

图 12.3 数值测量命令

测量数值的小数点后的位数,通过分析——启用3D测量(\underline{M})——测量首选项——显示——常规——精度,来设置。

图 12.4 测量数值小数点位数设置位置

12.3 剖切

分析——启用3D截面(S)——创建——按需选择"截面X"、"截面Y"、"截面Z"等——剪裁——按 需选择"近端剪裁"、"剪裁两侧"、"远端剪裁"。

图 12.5 剖切

12.4 变换

若需对零部件、特征等进行移动、旋转、缩放,则可以选中零部件后---装配---变换命令。

图 12.6 变换-变换

如上图所示,变换选项卡中:

- (1) 第一部分为坐标系,一般选择默认。
- (2)中间部分为变换,有平移、旋转和缩放,3个命令。以平移为例,若需沿X轴移动10mm,则选中X轴,增量输入10即可。
- (3) 第三部分为当前位置(全局): Tx、Ty、Tz分别表示沿X轴、Y轴、Z轴平移; Rx、Ry、Rz分别表示绕X轴、Y轴、Z轴旋转; Sx、Sy、Sz分别表示沿X轴、Y轴、Z轴缩放。

图 12.7 变换-特征

如上图所示,特征选项卡有旋转和平移,2个命令。

"选取特征":选取旋转和移动的矢量,可选取直边和圆边(对应圆心的法向)。

12.5 启用对齐

零件A若需要移动至与某零件配对,则可对A进行装配约束。但是这种移动仅仅是几何上的视觉关系,不像ug中的强约束关系。具体步骤如下:

装配——启用对齐(<u>A</u>)——主要——选择需移动件的第一个特征——选择固定件的第一个配对特征——次要——选择需移动件的第二个特征——选择固定件的第二个配对特征——第三——选择需移动件的第三个特征——选择固定件的第三个配对特征——预览——接受。

配对特征可以通过一面两销或三个面对齐。

图 12.8 启用对齐命令

12.6 常用右键命令

3D模型在进行VSA仿真前,先进行前处理:

(1) 3D模型消除参数,零部件名称要能简明扼要准确表达零件用途。如下图所示,零件、组件名称未能准确表达零件用途。

12.6.1 零件右键

(1) 在过程树中选中零件---右键:

A、搜索——查找/替换,只查找和替换特征的名字,支持模糊搜索。组件和顶层Process右键,可搜索更多内容。

图 12.9 搜索

- B、显示或隐藏: 可显示或隐藏零件、特征等。
- (2) 在窗口区域中选中零件---右键---:
- A、仅显示: 窗口中只显示该零件。

12.6.2 装配右键

- (1) 在过程树中选中装配---右键:
- A、不活动: 该装配被抑制,不参与运算。

12.6.3 测量右键

- (1) 在过程树中选中测量---右键:
- A、不活动: 该测量被抑制,不参与运算。

12.6.4 空白区域右键

- (1) 在窗口区空白区域---右键:
- A、标准视图:可选择各个方向的视图。

图 12.10 标准视图

79

附表 4: 进行 VSA 分析时,需提供的文件

需提供		要求	
的资料	序 号	具体要求内容	备注及建议
	1	名称汉化	零件、组件名称应能与功能有关联
	2	零件应在装配树中	参与装配的零件应在装配树中,不能作为 零件的体
	3	不能有干涉,不能有多 余零件	不能有非设计性干涉,同一位置不能有多 个零件
	4	特征间距离为有限位小 数	特征距离尽可能精确到小数点后 2 位,第 3 位以后都是 0
3D 图纸	5	特征间角度为有限位小 数	特征间角度为有限位小数,平行特征间角 度为0
	6	中心对齐特征中心点距 离为 0	中心对齐的两个零件的圆心在 XYZ 三个 方向的投影距离都为 0
	7	四周间隙保持一致	除特殊设计外,对称特征四周间隙保持一 致
	8	相同特征参数值一致	相同的轴孔直径、相同筋的高度、相同沉 台深度等参数值一致
	9*	消参,仅保留实体,无 隐藏、抑制等体。	
	1	指定基准	指定主基准和其它参考基准
2D 图纸	2	指定各面轮廓度	与求解有关的面的轮廓度都需提供
20 国机	3	标注尺寸及公差	与求解有关的尺寸都需提供公差
	4	标注形位公差	与求解有关的形位公差都需提供
	1	各零件、组件装配关系	在零件数量多、零件形状复杂、装配有多重 嵌套时,指明装配关系
其它资 料	2	指明主限位间隙	零件、组件间有多层限位止位时,需指明主 限位关系,通常选择间隙小的限位
	3	提供上限和下限	这个在计算 Cp 和 Cpk 时有用,若不关注 Cp 或 Cpk,上下限也可不提供
带*的为建	议内容	· ·	

版本记录

版本编号/修改状态	拟制人/修改人	审核人	批准人	备注
V1.0	孟祥达	袁程龙	周利民	
