Roots

26 April 2017 14:03

For a cubic:

- Differentiate to find turning points
 - o Can then explore properties

Trig Identities to Know

26 April 2017 14:25

$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$$

$$\sin (\alpha - \beta) = \sin \alpha \cos \beta - \sin \beta \cos \alpha$$

$$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}.$$

- Multiply by *i* rotation by 90 degrees anti-clockwise
- $e^{ix} = \cos x + i\sin x$
- $[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$

Hyperbolic Trig

•
$$\cos(ix) = \cosh(x) = \frac{1}{2}(e^x + e^{-x})$$

•
$$\sin(ix) = i\sinh(x) = i\frac{1}{2}(e^x - e^{-x})$$

•
$$sinh^{-1}(x) = ln(x + \sqrt{1 + x^2})$$

•
$$sinh^{-1}(x) = \ln\left(x + \sqrt{1 + x^2}\right)$$

• $cosh^{-1}(x) = \ln\left(x + \sqrt{x^2 - 1}\right)$

Locus

- || = constant CIRCLE
- || = || Perpendicular Bisector
- Arg(z) = constant HALF LINE

Functions

26 April 2017 16:01

EVEN:
$$f(-x) = f(x)$$

$$ODD: f(-x) = -f(x)$$

$$let Y(x) = \frac{1}{2} [f(x) \pm f(-x)]$$

For +: $Y(-x) = Y(x) \rightarrow EVEN$ part of F

For -:
$$Y(-x) = -Y(x) \rightarrow ODD$$
 part of F

HEAVISIDE Function

- Unit Step

	Χ	H(x)
-	<0	0
	>=0	1

MULTIPLY FUNCIONS

F	G	Туре
Odd	Odd	EVEN
Even	Even	EVEN
O/E	E/O	ODD

EXTENSIONS

- Periodic
- Even
- Odd

INVERSE

- Only take inverse of Normal RESTRICTED
- e.g. cos^-1(cos(-pi/2)) NOT VALID
 - As -pi/2 out of restriction

Limits

27 April 2017 14:45

- Can Factor out a Scalar
- Limits are Linear
- LIM(F.G) = Lim_L * Lim_G
- Limit of F(G) = Lim of F
 - ◆ as x-> lim of G

$$a^{2} - b^{2} = (a - b)(a + b)$$

$$a^{3} - b^{3} = (a - b)(a^{b} + ab + b^{2})$$

$$a^{4} - b^{4} = (a - b)(a^{3} + a^{2}b + ab^{2} + b^{3})$$
etc

Approach:

- If some smooth Fn: input value
 - Get value
 - Sensible limit found
 - Otherwise doesn't exist
 - Except
 - If one of the 4 special cases
 - Explore
 - □ Factorisation
 - □ Divide by highest power of x
 - □ Use Binomial / Maclaurin Series
 - □ Sandwich Theorem
 - ◆ Use of LIM of sinc
 - ☐ Multiply by Conjugate

Sandwich Theorem:

Interval Containing A LIM of H

as x->a

- o IF
 - LIM of F = L
 - LIM of G = L
- o AND
 - F < H < G
- THEN
- LIM of H = L

Stationary Points:

- $f^{(k)}(x_0) = 0$ for k = 0,1,2..n-1 but $f^{(n)}(x_0) != 0$
 - o n is odd inflection
 - o n is even
 - < 0 = max</p>
 - > 0 = min

L'Hopital's Rule:

• Case "
$$\frac{0}{0}$$
"

$$\circ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

• Case "
$$\frac{\infty}{\infty}$$
"

$$\circ \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

$$\circ x \to \infty$$

<u>Parametric</u>

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

Riemann Sum:

•
$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \left(\frac{b-a}{n}\right) \sum_{i=0}^{n-1} f(x_i)$$

Trig Substitutions:

- 1-x² = x=sinu
- $x^2 + 1 = x = \sinh u$
- acosx + bsinx + c = tan(x/2)

Volumes of Revolution:

• x-axis
$$\circ \pi \int_{a}^{b} f^{2}(x) dx$$

• y-axis
$$\circ \pi \int_{a}^{b} g^{2}(y) dy$$

Arc Length:

$$\bullet \int_{t=a}^{b} \sqrt{\dot{x}^2 + \dot{y}^2} \, dt$$

$$\bullet \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx$$

Surface Area of Revolution:

•
$$2\pi \int_{a}^{b} f(x)\sqrt{1+[f'(x)]^2}dx$$

Integral Recurrence Relation:

STEPS

- let $I_n = \int_a^b [f(x)]^n dx$

• By Parts
$$\int_a^b [f(x)]^{n-1} [f(x)] dx$$

Series

08 January 2017

19:07

Integral Test:

$$a_n = f(x)$$

$$\bullet \int_{1}^{\infty} f(x) dx$$

- If integral exists
 - series converges
- Otherwise,
 - o series diverges

Comparison Test:

a_n < b_n for all n then if b_n series converges a_n series converges

Alternating Series Test:

 $a_n \rightarrow 0$ and terms get smaller then $(-1)^n a_n$ converges

Absolutely Converges:

if $|a_n|$ converges then a_n converges

Ratio Test:

•
$$k = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

k	Conclusion
<1	Converges absolutely
>1	Diverges
0	Can't tell

Radius of Convergence

|x| < 1 / L

Fourier Series

08 January 2017

19:07

USE 1/2 a₀ in series

Conditions:

- bounded
- finite number of extrema and discontinuity
- periodic

To Differentiate:

- continuous
- smooth

Fourier Transforms

08 January 2017

19:06

Transform a Derivative -> multiply Transform on f(t) by $(iw)^n$

Dirac - Isolate a value at that point in time

$$\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}||\mathbf{y}|\cos\theta$$

Unit Vector

$$\widehat{x} = \frac{1}{|x|}x$$

Vector Product Property - Area $|\mathbf{a} \times \mathbf{b}| = absin\theta$

a x b - perpendicular to BOTH a and b

Projection - λv

$$\lambda = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}$$

v - DIRECTION

u - vector being projected onto v

Point to a plane:

- Line
 - o passing through P
 - o perpendicular
- find intersection of L and P

SHORTEST Distance between lines

- Cross Product lines
- new line is a multiple of this
- Find $P_1 > P_2 =$ The above multiple
- Solve

Gives:

- point
- distance

Equation of a plane R

- $r \cdot n = n \cdot x_0$
- r Plane
- n any normal (can find via vector product of vectors on the plane)
- x₀ any point on the plane

Matrices

01 May 2017 20:55

$A = A^T$	Symmetric
$A = -A^T$	antisymmetric
$A^T = A^{-1}$	Orthogonal

Eigen:

- Values det(A-λI) = 0
- Vectors sub in values
 - \circ (A- λ I)x = 0

Comparison	<u>Det</u>
A^T	Same
Swap 2 R/C	Change Sign
Same 2 R/C	= 0
Multiple R/C by C	Multiply by C
Row Ops	No Change
det(AB)	det(A)det(B)
R/C Dep.	=0 (n x n)
R/C Indep.	!=0 (n x n)

Finding A⁻¹

- Gauss-Jordan Elim.
- (A:I)
 - Into (I : A⁻¹)

Reduced Echelon:

- ALL Pivots = 1
- Identity Matrix

Diagonalization: A = PDP⁻¹

 $D = P^{-1}AP$

- A symmetric orthogonal diagonalization
- P contains NORMALised eigenvectors
- D Diagonal Matrix with eigen values

Rank:

- m x n
- # of linearly independent R/C's
- Use Gaussian Elimination to find Rank
 - o Row Ops
 - o Echelon Form Pivots

Cases:

- Right most column contains a pivot
 - No solutions
- Otherwise
 - Rank = N Unique Solution
 - Rank < N Infinite Solutions

Homogenous:

- Terms of the form $\frac{y}{x}$
- Solve with the substitution $\frac{y}{x} = v$

Bernoulli's:
$$-y' + P(x)y = Q(x)y^n$$

- Multiply Eqn by y-n
- Use Sub. $v = y^{1-n}$
- Get Linear FO ODE

$$f(x,y) = F(ax + by), \qquad v = ax + by$$

$$\frac{dv}{dx} = a + bF(v)$$

Linear:
$$-y' + P(x)y = Q(x)$$

• Use Integrating Factor $\circ \ \mu(x) = e^{\int P(x)dx}$

•
$$y\mu(x) = \int Q(x)\mu(x)$$

$$f(x,y) = \frac{ax + by + c}{ex + fy + a}$$

Case 1: c = g = 0

• Convert to Homogenous

Case 2: af = be

- Manipulate with $\frac{b}{f} \left[\frac{f}{b} \cdot f(x, y) \right]$
- Get $F[\alpha x + \beta y]$
- < ---- Solve

Case 3: af != be

- $x = X + \alpha$
- $y = Y + \beta$
 - Turn $\frac{dY}{dX}$ into Case 1

2nd ODE

01 May 2017 21:41

Homogenous: = 0

• Auxiliary Equation

k ₁ and k ₂ real and unequal	$k_1 = k_2$ equal roots	$K_1 = p+qi$ $K_2 = p-qi$ (non real)
$y = Ae^{k_1 x} + Be^{k_2 x}$	$y = e^{k_1 x} (A + Bx)$	$y = e^{px}(Acosqx + Bsinqx)$

Choosing a Particular Integral

choosing a ranticular		
	y_c - contains $ae^{\lambda x}$ but not $axe^{\lambda x}$	$y = axe^{\lambda x}$
$f(x) = ce^{\lambda x}$	y_c - contains $axe^{\lambda x}$	$y = ax^2 e^{\lambda x}$
	y_c - does not contain $ae^{\lambda x}$ or $axe^{\lambda x}$	$y = ae^{\lambda x}$
$f(x) = c cos \lambda x$	y_{c} - $Acos\lambda x + Bsin\lambda x$	$y = axsin\lambda x$ if $f(x) = ccos\lambda x$
or		$y = axcos\lambda x$ if $f(x) = csin\lambda x$
$f(x) = c sin \lambda x$	y_{c-} does not contain $Acos\lambda x + Bsin\lambda x$	$y = a\cos\lambda x + b\sin\lambda x$
f(x) polynomial f		$y = ax^n + bx^{n-1} + \cdots$
degree n		$y = ax^{n} + bx^{n} + \cdots$

02 May 2017

03:31

Linear ODE with Varying Coefficients

 e^{t} - Euler's Equation: $x^{2}y'' + Axy' + By = f(x)$

• Sub. $x = e^t$

Legendre Equation: $(\alpha x + \beta)^2 y'' + (\alpha x + \beta) y' + a_0 y = f(x)$

• $\alpha x + \beta = e^t$

Series Solution:

- Based on Maclaurin Series
- Use Leibnitz' theorem to find yⁿ(0) constants
 - Via a recurrence relation
- find derivatives of y at zero through recurrence
 - use these values for Maclaurin series

Coupled 1st Order:

• $\underline{\dot{x}} = A\underline{x}$

$$\circ \ \underline{x} = \underline{a_1}c_1e^{\lambda_1t} + \underline{a_2}c_2e^{\lambda_2t}$$

- $\circ \ \underline{a}_i$: eigen vectors of A
- o c_i: find through initial conditions
- $\circ~\lambda_i~$: eigen values of A

Contour Curves - closer lines = steeper

01 May 2017 21:41

Total Differential:

•
$$\mathbf{d}f = \frac{\partial f}{\partial x}\mathbf{d}x + \frac{\partial f}{\partial y}\mathbf{d}y$$

Radially Symmetric

• df/dthi = 0

Relative Error:

- Get total differential
 - Divide this by function
- Triangle inequality with Magnitudes

Chain Rule:

- Go through variables
 - o Divide total derivative by dxi
- When dealing with non-trivial
 - o f(x,y), x(u,v), y(u,v)
 - All derivatives become PARTIAL

Wave Equation:

$$\bullet \frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

- Change on Variables
 - o x +- ct
- Chain Rule
- d'Alembert's Solution

$$\circ y(x,t) = f(x+ct) + g(x-ct)$$

Laplace's Equation:

$$\bullet \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

•
$$f(x,y) = \tan^{-1}(\frac{y}{x})$$

Solution

Equation	How to Solve
Wave	Change Variables + Chain Rule
Laplace	Chain
Heat	Direct Evaluation

More MV

02 May 2017 05

Implicitly Defined F

•
$$F(x,y,z)=0$$

$$\circ \ \frac{\partial A}{\partial B} = -\frac{F_B}{F_A}$$

Change of Coordinates: chain rule

Exact ODE:

IF

•
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

THEN

•
$$f = \int P dx + g(y)$$

•
$$f = \int Q \, dy + \boldsymbol{h}(\boldsymbol{x})$$

Equate

$$df = 0$$

f = Constant

Lagrange Multipliers:

Stationary Points:

- find F_x and F_y
 set to =0
 Solve coordinates
- hessian Det
 - D=0 more info needed
 - Stationary Point
 - D > 0
 - Min
 - \Box $f_{xx} > 0$ and $f_{yy} > 0$
 - Max

 \Box f_{xx} < 0 and f_{yy} < 0

- Saddle
 - D < 0

Inexact ODE:

•
$$\frac{\partial P}{\partial y}$$
! = $\frac{\partial Q}{\partial x}$

•
$$\frac{\partial}{\partial y}(\lambda P) = \frac{\partial}{\partial x}(\lambda Q)$$

- λ either $\lambda(x)$ or $\lambda(y)$
 - Solve above equation to obtain λ
- Multiply original inexact ODE with $\boldsymbol{\lambda}$

- f(x,y) find stationary point
 - \circ subject to g(x,y) =0
- Create

$$\circ \Phi(x,y,\lambda) = f(x,y) - \lambda g(x,y)$$

•
$$\Delta \Phi = \begin{pmatrix} \Phi_x \\ \Phi_y \\ \Phi_\lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$