

INTERNATIONAL AS MATHEMATICS MA02

(9660/MA02) Unit PSM1 Pure Mathematics, Statistics and Mechanics

Mark scheme

January 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaga.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

ISW Ignore subsequent working

Q	Answer	Marks	Comments
1(a)	[P](0°, -2)	B1	Condone omission of units.
	[Q] (30°, 0)	B1	Condone omission of units. Allow $\left(\frac{\pi}{6},0\right)$
			If first two B1 marks not awarded, then allow SC1 for –2 for <i>P</i> and 30° for Q
	[R] (300°, -4)	В1	Condone omission of units. Allow $\left(\frac{5\pi}{3}, -4\right)$
		3	

Q	Answer	Marks	Comments
1(b)	Translation	E1	Correct single transformation named and no others
	$\begin{bmatrix} -105^{\circ} \\ 0 \end{bmatrix} \text{or} \begin{bmatrix} 255^{\circ} \\ 0 \end{bmatrix}$	E 1	oe Condone omission of units. Allow $\begin{bmatrix} -\frac{7\pi}{12} \\ 0 \end{bmatrix}$ or $\begin{bmatrix} \frac{17\pi}{12} \\ 0 \end{bmatrix}$ If more than one transformation described, then award E0 E0
		2	

Question 1 To	5
---------------	---

Q	Answer	Marks	Comments
2(a)	$\frac{22-7}{3-(-2)}$ [=3]	В1	oe Correct unsimplified expression for the gradient of <i>AB</i> PI by correct gradient
	$3 \times -\frac{1}{2} \neq -1$ or $-\frac{3}{2} \neq -1$ or $-\frac{1}{3} \neq -\frac{1}{2}$ and AD is not a diameter [of C_1]	E1ft	Shows or explains that the gradients are not perpendicular followed by a correct deduction ft their gradient of <i>AB</i> provided it is not equal to 2
		2	

Q	Answer	Marks	Comments
2(b)(i)	$\left(\frac{(-2)+18}{2},\frac{7+17}{2}\right)=(8,12)$	B1	oe Correct unsimplified coordinates of the midpoint of AE and AG
		1	

Q	Answer	Marks	Comments
2(b)(ii)	$rac{1}{r^2} = (18-8)^2 + (17-12)^2$		
	or $ [r^2 =] (3-8)^2 + (22-12)^2 $ or $ [r^2 =] ((-2)-8)^2 + (7-12)^2 $	М1	oe Correct use of Pythagoras' Theorem PI by $r = 5\sqrt{5}$ or $r^2 = 125$
	$[r^2 =]$ 125 or $[r =]$ 5 $\sqrt{5}$ or $\sqrt{125}$	A 1	Correct value for r^2 or r
	$(x-8)^2 + (y-12)^2 = 125$	A1ft	ft their r^2
		3	

Q	Answer	Marks	Comments
2(c)	$[m=]$ $\frac{22-12}{3-8}$ $[=-2]$	M1	Correct method for finding the gradient of the normal PI in later working
	y-22 = -2(x-3) or y-12 = -2(x-8) or y = -2x+28	A 1	Correct equation of normal in any form, simplified or unsimplified May use $y = 0$ PI by correct final coordinates
	$[y=0 \Rightarrow x=14]$ (14, 0)	A 1	CAO Condone <i>x</i> -coordinate given only
		3	

Q	Answer	Marks	Comments
2(d)	$(x-11)^2 + (y-7)^2 = 125$	B2ft	B2ft : Answer in the correct form, ft their k from part(b)(ii) Award B1ft for one correct bracketed term in an equation of the correct form set equal to their k from part(b)(ii)
		2	

Question 2 Tota	11	
-----------------	----	--

Q	Answer	Marks	Comments
3(a)	$(x-12)^2$ or $(y-10)^2$	M1	
	$(x-12)^{2}-12^{2}+(y-10)^{2}-10^{2}+163 [=0]$ or $(x-12)^{2}-144+(y-10)^{2}-100+163 [=0]$ or $(x-12)^{2}+(y-10)^{2}=81$	M1	oe Correctly completes both squares simplified or unsimplified
	$\left[PQ = \sqrt{81} = \right] 9$	A 1	CAO PI in later working.
	$\frac{1}{2} \times 9 \times 9 \times \sin \theta = 20.25$	М1	oe Forms correct equation using formula for the area of a triangle ft their $ PQ $
	$\theta = \sin^{-1}\left(\frac{1}{2}\right) \text{ or } \sin\theta = \frac{1}{2}$ and $\theta = \frac{5\pi}{6}$	A 1	Finds value for $\sin\theta$ and AG For $\frac{1}{2}$ accept 0.5
		5	

Q	Answer	Marks	Comments
3(b)	$\left[9 \times \frac{5\pi}{6} = \right] \frac{15\pi}{2}$ or 23.5[6194]	B1ft	oe Correct arc length of <i>QR</i> ft their <i>PQ</i> from part (a) AWRT 23.6 PI by correct final answer.
		M 1	oe ft their $ PQ $ from part (a) Correct use of the Cosine Rule or Sine Rule Condone use of $\frac{\pi}{6}$ or 30°
	[QR =] 17.3[8666]	A 1	Correct value AWRT 17.4 PI by correct final answer.
	40.9	A1	AWRT 40.9 Condone 41.0 as final answer
		4	

Question 3 tot	I 9	
----------------	-----	--

Q	Answer	Marks	Comments
4(a)	$\left[6^{3t-1} = \frac{27}{8} \Rightarrow\right]$ $3t - 1 = \log_6\left(\frac{27}{8}\right)$	M1	oe Correct equation with use of $\log_6 6^k = k$
	$\left[\frac{1}{3}\log_6\left(\frac{27}{8}\right) = \right] \log_6\left(\frac{27}{8}\right)^{\frac{1}{3}}$	M1	Use of a logarithm property PI, oe
	$\left[t=\right]\frac{1}{3} + \log_6\left(\frac{3}{2}\right)$	A 1	CAO
		3	

Q	Answer	Marks	Comments
4(b)(i)	$[y=] \log_{10} x^2 \left[+ \log_{10} (x+5) \right]$	M1	Use of log property for powers PI
	$\begin{bmatrix} y = \end{bmatrix} \log_{10} \left(x^2 (x+5) \right)$ and $y = \log_{10} \left(x^3 + 5x^2 \right)$	A1	Use of log property for addition AG Must be convincingly shown
		2	

Q	Answer	Marks	Comments
4(b)(ii)	$[m=] \frac{\log_{10}(396) - \log_{10}(144)}{6-4}$	М1	oe Expression for the gradient with values substituted PI
	$[m=] \frac{\log_{10}\left(\frac{11}{4}\right)}{2}$	M1	oe Use of logarithm property Accept fractions equivalent to $\frac{11}{4}$
	$[m=] \log_{10}\left(\frac{1}{2}\sqrt{11}\right)$	A 1	Correct answer in correct form A1 dependent upon both method marks scored
		3	

Question 4 To	I 8	
---------------	-----	--

Q	Answer	Marks	Comments
5(a)	$7\tan^2 x - \tan x = \frac{6}{\cos^2 x}$	M1	Oe Use of $tan x = \frac{sin x}{cos x}$ to obtain terms in $tan x$ and $tan^2 x$
	$\sin^2 x - \sin x \cos x - 6\cos^2 x = 0$ or $7\tan^2 x - \tan x = \frac{6(\sin^2 x + \cos^2 x)}{\cos^2 x}$ or $7\tan^2 x - \tan x = 6(\tan^2 x + 1)$ or $7\sin^2 x - \sin x \cos x = 6(\sin^2 x + \cos^2 x)$	M1	Oe Use of $\sin^2 x + \cos^2 x = 1$
	$\tan^2 x - \tan x - 6 = 0$ and $(\tan x - 3)(\tan x + 2) = 0$	A 1	Simplified quadratic equation set equal to zero AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
5(b)	$\tan(\theta - 35^{\circ}) - 3 = 0$ or $\tan(\theta - 35^{\circ}) = 3$ or $\theta - 35^{\circ} = \tan^{-1}(3)$	M1	Clear use of result in part (a) Condone x used instead of θ – 35°
	$\tan(\theta - 35^{\circ}) + 2 = 0 \text{ or } \tan(\theta - 35^{\circ}) = -2$ or $\theta - 35^{\circ} = \tan^{-1}(-2)$		
	$[\theta - 35^{\circ} =] 71.5[6505]$ and $[\theta - 35^{\circ} =] -63.4[3494]$	A 1	Both correct values Anything that rounds or truncates to 1 dp
	$[\theta =] -73.4$ and $[\theta =] -28.4$	B2,1	B2: Both correct values given to 3 sf and no othersB1: One correct value given to 3 or more sf
		4	

Question 5 Total

7

Q	Answer	Marks	Comments
6(a)	8	B1	CAO
		1	

Q	Answer	Marks	Comments
6(b)	30	B1	CAO
		1	

Q	Answer	Marks	Comments
6(c)	9	B1	CAO
		1	

Q	Answer	Marks	Comments
6(d)	$1+6+4+3+ Var(X_5) = 39$ or $\left[Var(X_5) = \right] 25$	M1	PI by correct final answer
	$\left[SD(X_5) = \right] 5$	A 1	CAO Accept √25
		2	

|--|

Q	Answer	Marks	Comments
7(a)(i)	Bernoulli	B1	Accept binomial
		1	

Q	Answer	Marks	Comments
7(a)(ii)	E(X) = 0.286	B1	
		1	

Q	Answer	Marks	Comments
7(b)(i)	$Var(Y) = 5 \times \frac{1}{6} \left(1 - \frac{1}{6} \right)$	M1	oe $np(1-p)$ with correct values substituted PI by correct final answer
	$Var(Y) = \frac{25}{36}$	A 1	AWRT 0.694
		2	

Q	Answer	Marks	Comments
7(b)(ii)	$P(Y=2) = {5 \choose 2} {\left(\frac{1}{6}\right)}^2 {\left(\frac{5}{6}\right)}^3$	M1	oe Correct calculation PI by correct answer
	$P(Y=2) = \frac{625}{3888}$	A 1	AWRT 0.161
		2	

Q	Answer	Marks	Comments
7(c)	$0.286 \times \frac{625}{3888}$	M1	0.286×their answer to part (b)(ii) PI by correct final answer.
	$=\frac{715}{15552}$	A1ft	AWRT 0.046 ft their answer to part (b)(ii) but answer must be at least 3 dp
		2	

Question 7 Tota	8	
-----------------	---	--

Q	Answer	Marks	Comments
8(a)	44 101	M1 A1	M1: Correct numerator or denominator, with fraction in interval (0, 1) A1: CAO, 0.435[64]
		2	

Q	Answer	Marks	Comments
8(b)	$P(A) = \frac{78}{200}$ and $P(B) = \frac{91}{200}$	B1	oe PI by sight of 78 and 91 within a correct calculation, or 270 seen
	$P(A \cup B) = 1 - \left(\frac{101 - 26 - 44}{200}\right)$	M1	Correct calculation of $P(A \cup B)$ or finds corresponding frequency 169 or correct calculation of $P(A \cup B)'$ PI, for example by sight of $101-26-44$ in a calculation
	$P(A \cap B) = \frac{78}{200} + \frac{91}{200} - \frac{169}{200}$	M1	Uses addition law or sets up a correct equation with their probabilities to find $P(A \cap B)$ or finds corresponding frequency. PI by $78+101+91-26-44 = 200$ or $78+101+91-26-44-200 = 0$
	$P(A \cap B) = 0$	B1	Must be expressed as a probability, e.g. $A \cap B = \emptyset$ is B0
	Hence mutually exclusive	A 1	Dependent on both previous M1 marks and all working correct
		5	

Question 8 Tota	7	
-----------------	---	--

Q	Answer	Marks	Comments
9	3 = 0.6(u - (-3u))	M1	Allow sign errors
	[3=2.4u]	Δ1	A1 oe
	u = 1.25	- • •	

Question 9 Total	2	
------------------	---	--

Q	Answer	Marks	Comments
10(a)	$1800 - 170 \times 9.8 = 170a$	M1	A three-term equation with at least two fully correct Condone 9.81 m s ⁻² for <i>g</i> ,
			but not 10 m s ⁻²
	$\left[a=\right]\frac{67}{85} \text{ ms}^{-2}$	A 1	AWRT 0.79 If 9.81 m s ⁻² used then final answer is $\frac{1323}{1700} = 0.778 \text{ m s}^{-2}, \text{ AWRT } 0.78$ Condone omission of units
		2	

Q	Answer	Marks	Comments
10(b)	The resultant force is downwards [, so the acceleration is downwards.]	B1	Calculation or explanation implying resultant force is downwards PI by statement that box could be accelerating downwards
	The velocity of the box may be upwards	E1	Allow 'moving upwards' B0 E1 not possible
		2	

Question 10 Tota	4	
------------------	---	--

Q	Answer	Marks	Comments
11(a)(i)	$3t - 0.1t^2 = 0$ or 3 - 0.2t = 0	М1	Uses $v = 0$ to form a quadratic equation in t or differentiates expression for v and sets equal to zero.
	$0.1t(30-t)$ $[=0]$ or $t=0$ and $t=30$ or $[3-0.2t=0 \Rightarrow]$ $t=15$ [Therefore] $k=30$	A 1	At least one further intermediate line of working and AG Must be convincingly shown.
		2	

Q	Answer	Marks	Comments
11(a)(ii)	$v = 3 \times 15 - 0.1 \times 15^2 = 22.5 \text{ ms}^{-1}$	B1	oe, condone omission of units
	[t=] 15 s	В1	Condone omission of units
		2	
Q	Answer	Marks	Comments
11(b)	$\left[\int (3t - 0.1t^2) dt = \right] \frac{3}{2}t^2 - \frac{0.1}{3}t^3$	B1	Correctly integrates expression for v
	$\left[\left[\frac{3}{2}t^2 - \frac{0.1}{3}t^3 \right]_0^{30} = \right]$		
	$ \frac{3}{2}(30)^2 - \frac{0.1}{3}(30)^3 \left[-\left(\frac{3}{2}(0)^2 - \frac{0.1}{3}(0)^3\right) \right] $	M1	Substitutes correct limits into their integration PI
	= 450 [m]	A 1	Correct change in displacement
	$\left[\text{Average speed } = \frac{450}{30} = \right] \text{ 15 m s}^{-1}$	B1ft	ft their 450 divided by 30, provided their 450 comes from integration Condone omission of units
		4	

Q	Answer	Marks	Comments
11(c)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 3 - 0.2t$	M1	Differentiates v with respect to t
	[When $t = 0$, $a = 3 - 0.2 \times 0$]		
	$[a=] 3 \text{ m s}^{-2}$	A 1	Condone omission of units
		2	

Question 11 Tota	10
------------------	----

Q	Answer	Marks	Comments
12	[Friction =] $5\mu g$	B1	Correct expression for friction, such as 49μ PI by $a = -\mu g$ or $a = \mu g$
	$\left[-\mu \times 5g = 5a \Longrightarrow \right] \qquad a = -\mu g$	B1	Correct expression for acceleration Condone $a = \mu g$
	$v^2 = u^2 + 2as$		
	$0 = 36 + 2 \times -\mu g \times x$	M1	Uses a valid constant acceleration formula to find an expression for displacement Must be working with $a=-\mu g$
	$x = \frac{18}{\mu g}$	A 1	

Question 12 Tota	4	
------------------	---	--