closs >02

Measures of Central Tendency:

Single value that attempts to describe a set of data by identifying the central position with

Mean, Median and Mode are all valid measures of central tendency.

1) Mean:

Mean is the anithmatic average and it is probably the measure of central tendency.

improvoed data:

Three classical means are

- a) AM (Arrithmatic Mean)
- b) GIM (Greometric Mean)
- c) HM (Harmonic Mean)

AM for ungrouped data:

a = 1 no of Observation (Individual) n = Total number

$$\frac{Examp.}{\pi} = \frac{7}{3}, 10, 4$$

$$\frac{2\pi}{\pi} = \frac{7+10+4}{3} = \frac{21}{3} = 17$$

For Ungra	couped do	ita:		, Wi	s = [1]
Ti boo	Freq	wency ad H	1/1 012	^	
To be it	1 marson	4	. 1:02 a.5 (O)	20	Hale
б				5 D	
10	7777	9 2014	1 esica l	ls.	
		7		105	mill)
15		Mian	2 damill	100	JAM
20		4			,
25			Jin amor		
30		2003/4	. Samo	60	111 (

of chambing (disdoudate)

Total number

Girouped data: Fob

Class	Interval	-0 <u>H</u>	requency(31)	1.1.1 M	lid point	$f_{1}x_{1}$
	0-5 100		OIXT'XJ	,	2.5	10
			6		7.5	45
	5-10 10-15 15-20 has alaborated at 20-25		Mean.01	~ Siria	12.5	125
- Me		1	No. of the last of		17.5	280
		op.	Proceed 0/	rue ci)	22.5	270
	25-30	Le.	8		27.5	22 0
	36 - 35	. +	1 + 4/2		32.5	130

$$A - M = \frac{2 + 1}{251} = \frac{1080}{60} = \frac{1118}{181}$$

Greometric Mean:

Average value on mean which signifies

the central tendency of the set of num

by taking the most of preoduct of their Values.

GIM = = m/71 22 23 --- 7n /(x1 x2 - xu)/n

defined as the reciprocal of the AM.
of reciprocal of data values.

$$H \cdot M \cdot = \frac{\eta}{\frac{1}{\alpha_1} + \frac{1}{\alpha_2} + \cdots + \frac{1}{\alpha_n}}$$

$$\frac{3}{\frac{1}{4} + \frac{1}{6} + \frac{1}{8}}$$

$$A \cdot M = \frac{a+b}{2}$$

$$A \cdot M = \frac{a+b}{2} (ab)^{1/2}$$

$$G_1 \cdot H \cdot = \sqrt{axb} (ab)^{1/2} (ab)^{1/2} (ab)^{1/2}$$

$$G_1 \cdot H \cdot = \sqrt{axb} (ab)^{1/2} (ab)^{1/2} (ab)^{1/2}$$

$$G_1 \cdot H \cdot = \sqrt{axb}$$

$$H \cdot M \cdot = \frac{2}{\frac{1}{a+b}} = \frac{2ab}{a+b} = \frac{ab}{a+b}$$

$$= \frac{(G_{1}M)^{2}}{(G_{1}M)^{2}}$$

$$\therefore HM = \frac{(G_1 M)^2}{AM}$$

Median:

General Step to find median =>

a) Annange the data in ascending order (lowest to largor)

Determine whether there is an even on odd norm in dataset.

For example:

Hornouped data =7

1, 3, 3, 6, 7, 8, 9 50, 11

Median = 106 by

1,2,3,(4,5),6,8,9

 $Median = \frac{4+5}{2}$ = 4.5

= 4.5 Mi

By Foremuk = 6 n = 8 $\frac{n}{2} = 82 = 9-1h$ $\frac{n}{2} + 1 = 5-1h$ Then, $\frac{n}{2} + 1 + 1 + 1$

4+

= 1/2 = (4.5)

For grouped data (Find Median):

- 1) Find the cumulative frequency class and n/2.
- 2) Locate the class whose of is great than $\frac{m}{2}$. That class is median class. (newest to).

nearmost greatest

Ezample:	1. mai - 12 1		
alass	Fre que ney	c. s.	Point
0 - 10	036 -	6	5
10-20	7	(15)	(25)4
20 - 30~	[306]	(28)	-
30 - 40	16	44	35
40 - 50	. 4	rual 48 and	45
	, ,	50° 10	55
	50	44.	
11.00	40	1000	

cum. Frequency of class 20-30 which is slightly > than 25.

26.6 €

$$\lim_{n \to \infty} \frac{h}{\sqrt{m}} \left(\frac{m}{2} - F_{(m)-1} \right) \\
= 20 + \frac{10}{15} \left(\frac{50}{2} - \frac{13}{2} \right)$$

[Ans.]

Im = Lowerz Limit of median class 40 - 50 n = Total Frequency I'm = Frequency of median class Fim)-1 = C.f. of Pre-median class h = Width of median class

most die (1) of - deals moibon The mode is the value that appeares Snequently in a data set.

Cum Frey uneil of class so 30 younder of Altables Median chas = 20 = 40.

00-01

20-30

Example:

Dataset: 3.4,11,115,19,19,22,22,23,23,26

19,22,23 - multi - modal

when data set has two modes, we call it bimodal.

When the data set has only one male.

It is unimodal.

Problem:

For the following data,

Age (in years)

Frequency

24.5 - 29.5

3

29.5-34.5

9

34.6 - 39.5

15~

39.5 - 44.5

10

44.5 - 49.5

49.5 - 54.5

4

Find Mode.

Mode $= L_0 + h \left(\frac{\Delta_3}{\Delta_1 + \Delta_2}\right)$ Soln: lo = Lower Limit of modal class h = 3171 of modal class 11 = Difference in the Frequencies of modal and pre-modal classes 10 = differences in ____ modal and post modal classes Here, 11 1 6 = 34.5 Frishlen. more 13 mm h = 5 41 = 15 - 9; 42 = 15 - 12Mode = 34.5 + 5 (6+3) 37.83 [Ans.]

9617 - 911

Prob	lan:
,	

Compute

Mcan,

and Mode. Median

Payment	i Ph	Fre quen	y
9.5-12-5		B	
12.5-15.5	F. 97 - 34	14	
15.5 - 18.5		23	
18.5 - 21.5	+)	12	
21.5 - 24.5	V class		10
01 0	th from	Has 4	
27.5 -30.5		1	+/

50	m	4
74	OW	

21.5 -24.5

27.5 - 30.5

Mean,
$$\bar{a} = \frac{2 \text{ fizi}}{29\text{i}}$$

$$= \frac{1177}{65}$$

$$= 48.107$$

Median,
$$\widehat{m} = lm + \frac{h}{-lm} \left(\frac{m}{2} - F(m) - 1 \right)$$

$$N = \frac{654}{2} + h + t \alpha m$$

$$= \frac{32.5}{2005} + h + \alpha m$$

NOW,
$$= 15.5 + \frac{3}{23} \left(\frac{65}{2} - 17 \right)$$

Mode, =
$$l_0 + h \left(\frac{A_1}{A_1 + A_2} \right)$$

Here,
$$L_0 = 15.5$$
 $l_2 = 23 - 12 = 11$ $h = 3$ $l_3 = 23 - 14$ $l_4 = 23 - 14$ $l_5 = 16.85$ $l_5 = 9$