

MID TERM EXAMINATIONS - April 2024

Programme Course Title/ Course Code Time B. Tech.

Discrete Mathematics And Graph Theory/
MAT2002

1 1/2 hours

Semester : Wi Slot : B1 Max. Marks : 50

: Winter 2023-24 : B11+B12+B13

Answer all the Questions

Question Description

		Huon	
Q.	vo. Si	If R is the relation on the set of positive integers such that $(a, b) \in R$ if and only if $a^2 + b$ is	Marks
1	(a)	even, prove that R is an or	6
	(b)	Draw the digraph representing diagram for desiring the given by on the set {1, 2, 3, 4,	4
2	(a)	If $a, b \in S = \{1, 2, 4, 8\}$ and $a' = \frac{1}{a}$, show that	5
	(b)	Draw the logic circuit L with the expression:	5
		(a) $Y = ABC + A'C' + B'C'$ (b) $Y = AB'C + ABC' + AB'C'$	3
3		Use the laws to show the following: (1) $p \to (q \to r) \equiv (p \land q) \to r$ (2) $\neg (p \leftrightarrow q) \equiv \neg p \leftrightarrow q$ (3) $p \to q \equiv p \leftrightarrow p \land q$.	10
4	(a)	Is the following argument valid?	
		If $x = 4$, then discrete math is bad. Discrete math is bad. Therefore, $x = 4$.	5
	(b)	Express the negation of the statement $\forall x \exists y (xy = 1)$ so that no negation precedes a quantifier.	5
5	(a)	Define graph, subgraph and weighted graph with example.	4
	(b)	Determine whether the following pair of graphs G and H are isomorphic. If isomorphic, labe the vertices of the two graphs to show that their adjacency matrices are the same	i

Graph G

Graph H ⇔⇔⇔

6