Estimating ϵ from fast thermistors χpod ?

Andy Pickering

May 3, 2017

Contents

1	Introduction	2
2	Data and Processing	3
3	Results	4
	3.1 Overview	4
	3.2 Normalized eps vs chi plots	7
	3.3 Averaging many profiles of ϵ	8
4	Summary	12

1 Introduction

The main points are that gamma (computed the way we do) is not equal to 0.2, but when you compute epsilon from chi, if is appropriate to use gamma=0.2 to get the answer right, because, for the epsilons that matter (the ones that dominate the mean), gamma=0.2 gives you the correct answer.

- This document is an attempt to provide an overview/summary of what i've found in my χ pod analysis so far.
- The motivation/goal for all this work is to show if /how well the CTD- χ pod method works for estimating χ , ϵ , K_T , etc from fast temperature (thermistor) profiles. The idea is to deploy χ pods on regular CTD casts on WOCE/CLIVAR cruises etc. to making mixing measurements.
- Before dealing with all the issues with the CTD deployments (depth loops, entrained water, rosette-induced turbulence etc.), I wanted to verify that the method itself worked w/out these complications.
- The Chameleon microstructure profiler has both thermistor and shear probes, so this seemed like an ideal way to test the method. I would apply the χ pod method to the chameleon thermistor data only $(\chi_{\chi}, \epsilon_{\chi})$, and compare to the 'true' results computed using the shear probes (χ, ϵ) .
- I found that the estimates of χ agreed well, but ϵ_{χ} was biased low compared to ϵ (Figure 1,2,??).
- The χ pod method requires assuming a mixing efficiency, and uses the normal assumption that $\gamma = 0.2$. I computed gamma from the chameleon data (formula) and found that it was about an order of magnitude smaller than 0.2; hence the low epsilon estimates?
- The comparison of ϵ_{χ} to ϵ seems to improve with increased averaging (of either multiple profiles or larger depth ranges).

2 Data and Processing

- Data are from Chameleon profiles near the equator during the 'EQ14' experiment.
- Sally shared w/ me Chameleon data that she and Jim processed. I ended up reprocessing it using a smaller fmax (7Hz) because it looked like the thermistor spectra rolled off much lower than the assumed 32Hz.
- ComputeChi_Chameleon_Eq14.m : Applies χ pod method to Chameleon profiles from EQ14.
- Make_Overview_Plots.m Makes almost all the figures in this document.
- The noise floor of Chamleon ϵ was determined to be $log_{10}[\epsilon] = -8.5$. Values below this threshold were discarded. χ pod values below this threshold were also discarded, in order to make a valid comparison. An upper limit of $log_{10}[\epsilon] = -5$ (determined by Jim?) was also applied.

- 3 Results
- 3.1 Overview

Figure 1: Comparison of χ from chameleon method and chi-pod method, for EQ14 chameleon profiles. Each profile was averaged in 2m bins. Horizontal line at 80m shows region excluded in further analysis because it contains near-surface convection.

Figure 2: Comparison of ϵ from chameleon method and chi-pod method, for EQ14 chameleon profiles. Each profile was averaged in 2m bins. Values of ϵ below chameleon noise floor ($log_{10}[\epsilon] = -8.5$) have been nan'd out. Horizontal line at 80m shows region excluded in further analysis because it contains near-surface convection.

3.2 Normalized eps vs chi plots

Assuming that

$$\gamma = \frac{N^2 \chi}{2\epsilon < T_z > 2} \tag{1}$$

, plotting $[\chi/t_z^2]$ vs $[\epsilon/N\hat{2}]$ should follow a straight line with slope equal to $2\gamma.$

Figure 3: EQ14: 10m binned chameleon $\epsilon/N\hat{2}$ vs χ/t_z^2 for *below 80db*. Lines show different values of γ . Values of ϵ below noise floor ($log_{10}\epsilon < -8.5$) are discarded also.

3.3 Averaging many profiles of ϵ

Figure 4 shows one example. A folder with many profiles is located at: https://github.com/OceanMixingGroup/Analysis/tree/master/Andy_Pickering/eq14_patch_gamma/figures/chi_eps_profiles_40profavgs.

Figure 4: Example of averaging multiple profiles together. Left panels show a single profile from chamleeon and chi-pod method. Right panels show average of +/- 40 profiles, averaged in 10m depth bins.

Figure 5: 2D Histograms of χ_{chi} vs χ (left) and ϵ_{χ} vs ϵ (right) for different numbers of profiles averaged.

Figure 6: (log10) Ratio of ϵ_χ/ϵ for different numbers of profiles averaged. Consecutive chunks of N profiles were averaged, and then (normalized) histogram of the ratios was plotted. Vertical lines are mean of $log_{10}[\epsilon_\chi/\epsilon]$ for each distribution.

4 Summary

- Inidivudal (and 10m binned) χ pod estimates of ϵ_{χ} are biased low compared to Chameleon ϵ .
- \bullet This appears to be because γ computed from the Chameleon data is lower than the assumed 0.2
- γ computed from averaged (across profiles) N^2 , T_z , χ , and ϵ is closer to 0.2
- Averaging many ϵ profiles reduces the bias (if we use same noise floor for ϵ as Chameleon).
- Increased depth-averaging also reduces bias.