EE25BTECH11064 - Yojit Manral

Question:

In $\triangle ABC$, **D**, **E** and **F** are, respectively, the mid-points of sides AB, BC and CA. Show that $\triangle ABC$ is divided into four congruent triangles by joining **D**, **E**, and **F**.

Solution:

→ Given that

$$\mathbf{D} = \frac{\mathbf{A} + \mathbf{B}}{2} \qquad \qquad \mathbf{F} = \frac{\mathbf{C} + \mathbf{A}}{2} \tag{1}$$

 \rightarrow From (1), it follows that

$$\mathbf{A} = \mathbf{D} + \mathbf{F} - \mathbf{E}$$

$$\mathbf{B} = \mathbf{E} + \mathbf{D} - \mathbf{F}$$

$$\mathbf{C} = \mathbf{F} + \mathbf{E} - \mathbf{D}$$
 (2)

 \rightarrow From (2), we get that

In $\triangle FAD$ and $\triangle DEF$	In $\triangle DBE$ and $\triangle DEF$	In $\triangle ECF$ and $\triangle DEF$	(3)
$\mathbf{A} - \mathbf{D} = \mathbf{F} - \mathbf{E} \text{ (Side 1)}$	$\mathbf{B} - \mathbf{E} = \mathbf{D} - \mathbf{F} \text{ (Side 1)}$	$\mathbf{C} - \mathbf{F} = \mathbf{E} - \mathbf{D} \text{ (Side 1)}$	(4)
$\mathbf{A} - \mathbf{F} = \mathbf{D} - \mathbf{E} \text{ (Side 2)}$	$\mathbf{B} - \mathbf{D} = \mathbf{E} - \mathbf{F} \text{ (Side 2)}$	$\mathbf{C} - \mathbf{E} = \mathbf{F} - \mathbf{D} \text{ (Side 2)}$	(5)
$\mathbf{D} - \mathbf{F}$ is common to both	$\mathbf{E} - \mathbf{D}$ is common to both	$\mathbf{F} - \mathbf{E}$ is common to both	(6)
$\triangle FAD \cong \triangle DEF(SSS \text{ criterion})$	$\triangle DBE \cong \triangle DEF(SSS \text{ criterion})$	$\triangle ECF \cong \triangle DEF(SSS \text{ criterion})$	(7)

 \rightarrow From (7), we know that $\triangle ABC$ is divided into four congruent triangles

$$\triangle FAD \cong \triangle DBE \cong \triangle ECF \cong \triangle DEF \tag{8}$$

Triangle ABC with Medial Triangle DEF 4 2 F D D B O 1 2 3 4 5

Fig. 0: Plot of $\triangle ABC$ and its medial triangle $\triangle DEF$