ECE 310

Digital Signal Processing

Spring, 2021, ZJUI Campus

Lecture 21

Topics:

✓ DFT Spectral Estimation (or Spectral Analysis)

Educational Objectives:

- ✓ Understand DFT spectral analysis method
 - Sampling requirement
 - Windowing effect
 - Resolution limitation
 - Mapping from $m \to \omega \to \Omega$

DFT Spectral Analysis: Problem Formulation

Spectral analysis: determining the frequency content of a given signal

$$x_a(t) \leftrightarrow X_a(\Omega)$$

More specifically,

$$x_a(t) = \sum_{i=1}^{M} A_i \cos(\Omega_i t)$$

Determine $\{\Omega_i, A_i\}_{i=1}^M$

$$X_{a}(\Omega) = \sum_{i=1}^{M} \pi A_{i} [\delta(\Omega + \Omega_{i}) + \delta(\Omega - \Omega_{i})]$$

DFT Spectral Analysis: Procedure

$$X_a(t) \xrightarrow{T} \{x_n\}_{n=0}^{N-1} \longrightarrow \{X_m\}_{m=0}^{N-1} \longrightarrow \{X_m\}_{m=0}^$$

Sampling Effect: Nyquist Criterion

Relationship between DFT and DTFT Spectra

$$X_{d}(\omega) = \begin{cases} \frac{1}{T} X_{a}(\frac{\omega}{T}), & 0 \leq \omega \leq \pi \\ \\ \frac{1}{T} X_{a}(\frac{\omega - 2\pi}{T}), & \pi < \omega \leq 2\pi \end{cases}$$

$$X_{m} = X_{d} \left(\frac{2\pi}{N}m\right) = \begin{cases} \frac{1}{T}X_{a}\left(\frac{2\pi m}{NT}\right) & 0 \leq m \leq \frac{N-1}{2}, N \text{ odd} \\ \frac{1}{T}X_{a}\left(\frac{2\pi (m-N)}{NT}\right) & \frac{N-1}{2} \leq m \leq N-1, N \text{ odd} \\ \frac{N}{2} < m \leq N-1, N \text{ even} \end{cases}$$

Determination of Spectral Parameters

Amplitudes:
$$\frac{A_i}{T}$$

Frequencies:
$$m_i$$

$$\omega_i = \frac{2\pi}{N} m_i$$

$$\Omega_i = \frac{\omega_i}{T} \qquad \Omega_i = \frac{\omega_i}{T} - \frac{2\pi}{T}$$

Windowing Effect

$$\hat{x}[n] = x[n]w[n]$$

$$\hat{X}_d(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_d(u) W_d(\omega - u) du$$

Note:

$$A\cos(\Omega_0 nT) \to \pi A[\delta(\omega - \Omega_0 T) + \delta(\omega + \Omega_0 T)], |\omega| < \pi$$

Rectangular window:

$$w[n] = \begin{cases} 1, & 0 \le n \le N - 1 \\ 0, & \text{else} \end{cases}$$

$$W_d(\omega) = \frac{\sin(\omega \frac{N}{2})}{\sin(\frac{\omega}{2})} e^{-j\frac{\omega}{2}(N-1)}$$

Windowing Effect

$$\hat{x}_n = A\cos(\Omega_0 nT), \quad 0 \le n \le N-1$$

$$\hat{X}_{d}(\omega) = e^{-j(\omega - \Omega_{0}T)\frac{N-1}{2}} \frac{\frac{A}{2}\sin[(\omega - \Omega_{0}T)N/2]}{\sin(\omega - \Omega_{0}T)/2} + e^{-j(\omega + \Omega_{0}T)\frac{N-1}{2}} \frac{\frac{A}{2}\sin[(\omega + \Omega_{0}T)N/2]}{\sin(\omega + \Omega_{0}T)/2}$$

Windowing Effect

Width of the main lobe: Height:

 $\frac{4\pi}{N}$

AN/2

DFT Spectral Analysis

$$|\hat{X}_{d}(\omega)| = \frac{A}{2} \left| \frac{\sin((\omega - \Omega_{0}T)\frac{N}{2})}{\sin(\omega - \Omega_{0}T)/2} \right| + \frac{A}{2} \left| \frac{\sin((\omega + \Omega_{0}T)\frac{N}{2})}{\sin(\omega + \Omega_{0}T)/2} \right|$$

M: number of "peaks" on $[0, \pi]$

 Ω_i : location of its peak / T

 A_i : height of its peak $\times \frac{2}{N}$

Resolution Limitation

How big N is big enough? (spectral resolution)

$$\Omega_0 + \frac{2\pi}{N} < \Omega_1 T - \frac{2\pi}{N}$$

$$(\Omega_1 - \Omega_0)T > \frac{4\pi}{N}$$

(Ignore sidelobes)

$$NT > \frac{4\pi}{\Omega_1 - \Omega_0}$$
 $NT > \frac{2\pi}{\Omega_1 - \Omega_0}$