	À	Con	ep	hel	les										
		\cap					\ 1		1	1		1			
									1)						
(F		Jo	ree	_ C	de	Su	He	rel	d	2 (که ۲	- 0	tep	erd	
C	de		m	me	- Vo	عار	mig	æ	, ,						
	2	, Usu	Ove) (b	ègo	برام ر	ale	ers.	ch	Stest	- M	e h	emp	3_
(C)	<u></u>		(fc	rce	na	Mo	ر (و)							

On projette:

 $J = mg \cos 2$ $J = mg \sin 2$

$$\Theta) = (2) = (0)$$

$$\int_{-m}^{m} \frac{R}{8\pi \Theta} \frac{v^{2}}{R^{2}} \sin^{2} \theta = \int_{-8}^{\infty} \sin^{2} \theta d^{2} d^{$$

 $= mng cosd \left(-8'ndlong + \sqrt{2} \right)$ = mgcosd RgOn veut of Do N (la force max qu'en peut exorer avent que la workne de rape et qu'en pane en frortenets cinétiques. $g \in \mu_s N$

tond Us > 1 e V_s $\frac{1}{rand}$ Si 1- hand Us >0: 12 (12 + rand) Rg 1- rand Us es V { - Ra (Ps+rond) 1-rond Ps)

On projeke. (m+m)is = (m+m)g - D(mn+m') si = Fe - FTA On pose FTA = Us. N et = 0-10 = Fe - Ps. N - Ps. N $fe > U_S - (m + m) a$

 $on o = \frac{1}{m}$ $F_{e} = (m+m) \div + D_{e} \cdot (m+m') \cdot 3$ $= \left(m + m\right) \cdot \frac{FF}{m} + De\left(m + m\right)g$ $= (m \in m') \cdot \frac{\text{DS-mG}}{m} + \text{DC}(m \in m')g$ $= (Vs'+Vc) \cdot (m+mi) \cdot g$ mais peut-être que Pc > ps (la force minimale pour faire bouger la feuille une sas sercit trop faible pour la feure

choser). Fe > (max (ps; (ps+pc)) -(m+m).9.

$$\dot{x} = \sqrt{x} \Rightarrow \dot{x} = 0$$

$$h(f) = \frac{4}{2}\cos(\omega t)$$

$$T = \frac{2\pi}{\omega} \iff W = \frac{2\pi}{T}$$

$$T = \frac{L}{Vx}$$
 denc $w = \frac{2\pi}{L}$ \sqrt{x}

$$h(t) = \frac{1}{2} \cos(\frac{2\pi}{L}, 4\pi t)$$

$$=$$
 \overrightarrow{P} \leftarrow \overrightarrow{P}

$$\int_{0}^{\infty} m\ddot{y} = m\dot{y} - k\Delta z$$

$$\int_{0}^{\infty} m\dot{x} = 0$$

$$m\ddot{y} = -mg - ky + k \left(\frac{H}{2} \cos \left(\frac{2\pi}{L} \cdot V_{x}(\xi) \right) + k \right)$$

$$\ddot{y} = -g - \frac{K}{m} y + \frac{K}{m} \frac{H}{2} \cos \left(\frac{2\pi}{L} \cdot V_{x}(\xi) + \frac{K}{m} \right)$$

$$\ddot{y} = -g - \omega_{0}^{2} y + \omega_{0}^{2} \frac{H}{2} \sin \left(\frac{\pi}{2} - \frac{2\pi}{L} \cdot V_{x} \right) + \omega_{0}^{2} \right)$$

$$\ddot{y} + g + \omega_{0}^{2} y - \omega_{0}^{2} \right) = \omega_{0}^{2} \frac{H}{2} \left(- \right)$$

$$\ddot{y} + \omega_{0}^{2} \left(\frac{g}{w_{0}^{2}} + y - 0 \right) = \omega_{0}^{2} \frac{H}{2} \left(- \right)$$

$$\ddot{y} + \omega_{0}^{2} \left(\frac{g}{w_{0}^{2}} + y - 0 \right) = \omega_{0}^{2} \frac{H}{2} \left(- \right)$$

$$\ddot{y} + \omega_{0}^{2} \left(\frac{g}{w_{0}^{2}} + y - 0 \right) = \omega_{0}^{2} \frac{H}{2} \left(- \right)$$

$$\frac{1}{2} = \frac{1}{2} - \frac{2}{2} \cdot \sqrt{2}$$

$$\frac{1}{2} - \frac{2}{2} - \frac{2}{2} \cdot \sqrt{2}$$

$$\frac{1}{2} - \frac{2}{2} - \frac{2}{2} \cdot \sqrt{2}$$

$$\frac{1}{2} - \frac{2}{2} - \frac{2}{2} - \frac{2}{2} - \frac{2}{2} - \frac{2}{2}$$

$$\frac{1}{2} - \frac{2}{2} - \frac{2}{2} - \frac{2}{2} - \frac{2}{2}$$

$$\frac{1}{2} - \frac{2}{2} - \frac{2}{2} - \frac{2}{2} - \frac{2}{2} - \frac{2}{2}$$

$$\frac{1}{2}$$

$$\rho = \frac{H}{2} \cdot w_0^2 \cdot \frac{1}{-w^2 + w_0^2}$$

$$= \frac{H}{2} \cdot \frac{w_0^2}{w_0^2}$$

$$= \frac{H}{2} \cdot \frac{1}{w_0^2}$$

$$= \frac{H}$$