Convolutional Neural Networks III

CS7150, Spring 2025

Prof. Huaizu Jiang

Northeastern University

Recap

Padding: 1D Case

Input: 7 vs output: 7

Slide inspired by: J Johnson

Receptive Fields

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K-1)

Problem: For large images we need many layers for each output to "see" the whole image image

Solution: Downsample inside the network

Idea: Image/Feature Pyramid

Input: 7x7

Filter: 3x3

Stride: 2

Input: 7x7

Filter: 3x3

Stride: 2

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

In general:

Input: W

Filter: K

Padding: P

Stride: S

Output: Ceil((W - K + 1 + 2P) / S)

Today's Class

- More about convolution layer
- Pooling layer
- Batch normalization layer

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size:

Ceil((32+2*2-5+1)/1) = 32 spatially, so $10 \times 32 \times 32$

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Parameters per filter: 3*5*5 + 1 (for bias) = 76

10 filters, so total is **10** * **76** = **760**

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Number of multiply-add operations: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Number of multiply-add operations: 768,000

10*32*32 = 10,240 outputs; each output is the inner product

of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K

Convolution Summary

Input: C_{in} x H x W

Hyperparameters:

- Kernel size: K_H x K_W
- **Number filters**: C_{out}
- **Padding**: P
- **Stride**: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$ giving C_{out} filters of size $C_{in} \times K_H \times K_W$

Bias vector: C_{out}

Output size: C_{out} x H' x W' where:

- H' = Ceil((H K + 2P + 1) / S)
- W' = Ceil((W K + 2P + 1) / S)

Convolution Summary

Input: C_{in} x H x W

Hyperparameters:

- Kernel size: K_H x K_W
- Number filters: C_{out}
- Padding: P
- Stride: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$ giving C_{out} filters of size $C_{in} \times K_H \times K_W$

Bias vector: C_{out}

Output size: C_{out} x H' x W' where:

- H' = Ceil((H K + 2P + 1) / S)
- W' = Ceil((W K + 2P + 1) / S)

Common settings:

 $K_H = K_W$ (Small square filters)

P = (K - 1) / 2 ("Same" padding)

 C_{in} , C_{out} = 32, 64, 128, 256 (powers of 2)

K = 3, P = 1, S = 1 (3x3 conv)

K = 5, P = 2, S = 1 (5x5 conv)

K = 1, P = 0, S = 1 (1x1 conv)

K = 3, P = 1, S = 2 (Downsample by 2)

Properties: Shift-Invariant

Assume: I image, f filter

Shift-invariant: shift(apply(I,f)) = apply(shift(I,f))

Intuitively: only depends on filter neighborhood

Slide credit: J Johnson

Forward pass of a convolution layer

```
x_padded = pad_input(x)
H_out, W_out = compute_output_dimension()
N, C, H, W = x.shape
F, C, HH, WW = w.shape
# shape of (F, C'), where C'=C * HH * WW
w reshape = reshape to F Cp(w).T
for i in range(W out):
 for j in range(H out):
  startx, starty = get_top_left_position()
  # shape of (N, C, HH, WW)
  x_data = get_patch(x_padded, startx, starty, HH, WW)
  # shape of (N, C'), where C'=C* HH * WW
  x_data_reshape = reshape_to_N_Cp(x_data)
  # shape of each location is (N, F)
  out[:, :, j, i] = dot_product(x_data_reshape, w_reshape) + b
```

Gradients of weights in convolution

2	3	2	4
5	6	6	8
3	2	1	0
1	2	3	4

1	2	3
4	5	6
7	8	9

conv kernel

input

Gradients of weights in convolution

2	3	2	4
5	6	6	8
3	2	1	0
1	2	3	4

input

1	2 ←	3
4	5	6
7	8	9

conv kernel

Gradients for this particular weight

Gradients of weights in convolution

2	3	2	4
5	6	6	8
3	2	1	0
1	2	3	4

1	2 ←	3
1	2	3
4	5	6
7	8	9

Gradients for this particular weight

conv kernel

input

Sum the gradients from different patches (determined by the padding and stride).

The same idea applies to the bias term.

Gradients of input in convolution

2	3	2	4
5	6	6	8
3	2	1	0
1	2	3	4
	inp	out	

1	2	3
4	5	6
7	8	9

conv kernel

Gradients for this particular input

(why we ever need to compute the gradient for the input?)

Gradients of input in convolution

2	3	2	4
5	6	6	8
3	2	1	0
1	2	3	4
input			

1	2	3
4	5	6
7	8	9

10	11	12
13	14	15
16	17	18

conv kernel

Gradients for this particular input

Sum the gradients from different convolution kernels.

So far: 2D Convolution

So far: 2D Convolution

1D Convolution

Input: C_{in} x W

Weights: C_{out} x C_{in} x K

Group-based convolution

[Zhang et al., CVPR 2017]

Dilated convolution

[Yu and Koltun. ICLR 2016] [Chen et al., ICLR 2015]

PyTorch Convolution Layer

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

[SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{\rm in}, H, W)$ and output $(N, C_{\rm out}, H_{\rm out}, W_{\rm out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

PyTorch Convolution Layers

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

Conv1d

CLASS torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros') [SOURCE] &

[SOURCE]

Conv3d

CLASS torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros') [SOURCE]

Components of a Convolutional Network

Fully-Connected Layers

$$y = Wx + b$$

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Pooling Layers: Downampling

Hyperparameters:

Kernel Size
Stride
Pooling function

Max Pooling

6834

Introduces **invariance** to small spatial shifts
No learnable parameters!

Average Pooling

4	5
2	2

Introduces **invariance** to small spatial shifts
No learnable parameters!

Pooling Summary

Input: C x H x W

Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Output: C x H' x W' where

- H' = Ceil((H K + 2P + 1) / S)
- W' = Ceil((W K + 2P + 1) / S)

Learnable parameters: None!

Common settings:

max, K = 2, S = 2

max, K = 3, S = 2 (AlexNet)

Global Average Pooling

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Components of a Convolutional Network

Fully-Connected Layers

$$y = Wx + b$$

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Convolutional Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Layer	Output Size	Weight Size
Input	1 x 28 x 28	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

As we go through the network:

Spatial size **decreases** (using pooling or strided conv)

Number of channels **increases** (total "volume" is preserved!)

ResNet

Why is it a better idea than flattening the feature map before the classifier (a fully-connect layer)?

Number of parameters.

Spatial dimension of the input.

global average pooling

Backpropagation for CNNs

What does its computational graph look like?

Problem: Deep Networks very hard to train!

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Idea: "Normalize" the outputs of each layer so they have zero mean and unit variance

Why? Helps reduce "internal covariate shift", improves optimization (hypothesis)

Idea: "Normalize" the outputs of each layer so they have zero mean and unit variance

Why? Helps reduce "internal covariate shift", improves optimization (hypothesis)

We can normalize a batch of activations like this:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

This is a differentiable function, so we can use it as an operator in our networks and backprop through it!

$$\in \mathbb{R}^{N \times D} \qquad \mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \qquad \begin{array}{l} \text{Per-channel mean, shape is D} \\ \\ \sigma_j^2 = \frac{1}{N} \sum_{i=1}^N \left(x_{i,j} - \mu_j \right)^2 \quad \begin{array}{l} \text{Per-channel std, shape is D} \\ \\ \hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \quad \begin{array}{l} \text{Normalized x, Shape is N x D} \\ \end{array}$$

Input: $x \in \mathbb{R}^{N \times D}$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \qquad \begin{array}{ll} \text{Per-channel } \\ \text{mean, shape is D} \end{array}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N \left(x_{i,j} - \mu_j \right)^2 \qquad \begin{array}{ll} \text{Per-channel } \\ \text{std, shape is D} \end{array}$$

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \qquad \begin{array}{ll} \text{Normalized x,} \\ \text{Shape is N x D} \end{array}$$

Problem: What if zero-mean, unit variance is too restrictive?

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \qquad \begin{array}{ll} \text{Per-channel } \\ \text{mean, shape is D} \end{array}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N \left(x_{i,j} - \mu_j \right)^2 \qquad \begin{array}{ll} \text{Per-channel } \\ \text{std, shape is D} \end{array}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \qquad \begin{array}{ll} \text{Normalized x, } \\ \text{Shape is N x D} \end{array}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j \qquad \begin{array}{ll} \text{Output, } \\ \text{Shape is N x D} \end{array}$$

Shape is N x D

Problem: Estimates depend on minibatch; can't do this at test-time!

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \qquad \begin{array}{l} \text{Per-channel } \\ \text{mean, shape is D} \end{array}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N \left(x_{i,j} - \mu_j \right)^2 \qquad \begin{array}{l} \text{Per-channel } \\ \text{std, shape is D} \end{array}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \qquad \begin{array}{l} \text{Normalized } x, \\ \text{Shape is N x D} \end{array}$$

Batch Normalization: Test-Time

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_j = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array}$$

$$\sigma_j^2 = \frac{\text{(Running) average of values seen during training}}{\text{values seen during training}} \frac{\text{Per-channel std, shape is D}}{\text{Std, shape is D}}$$

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D $y_{i,j} = \gamma_j \widehat{x}_{i,j} + \beta_j$ Output,

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,
Shape is N x D

Batch Normalization: Test-Time

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

During testing batchnorm becomes a linear operator! Can be fused with the previous $y_{i,j} = \gamma_i \hat{x}_{i,j} + \beta_i$ fully-connected or conv layer

$$\mu_j = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array}$$

$$\sigma_j^2 = \frac{\text{(Running) average of values seen during training}}{\text{values seen during training}} \text{ Per-channel std. shape is 1.}$$

Per-channel

mean, shape is D

std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \qquad \text{Normalized x,}$$
 Shape is N x D

$$\gamma_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output, Shape is N x D

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

Normalize
$$\begin{array}{c|c}
x : N \times D \\
\mu, \sigma : 1 \times D \\
\gamma, \beta : 1 \times D \\
y = \frac{(x - \mu)}{\sigma} \gamma + \beta
\end{array}$$

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

$$x: N \times C \times H \times N$$

$$\mu, \sigma$$

$$: 1 \times C \times 1 \times 1$$

$$\gamma, \beta$$

$$: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Batch Normalization for ConvNets

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

$$x: N \times C \times H \times N$$

$$\mu, \sigma$$

$$: 1 \times C \times 1 \times 1$$

$$\gamma, \beta$$

$$: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Free at test-time: can be fused with conv!

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Free at test-time: can be fused with conv!
- Not well-understood theoretically (yet)
- Behaves differently during training and testing:
 this is a very common source of bugs!

Different Normalization Layers

[Wu and He. Group Normalization. ECCV 2018. Best paper honorable mention.]

Devils in the details (mainly for PyTorch)

- 1. To reliably estimate BN statistics (running mean and average), you need at least 8 samples on each GPU
- 2. If you don't have enough samples on each GPU
 - 1. Synchronized BN layers
 - 2. Group normalization layers
- 3. Instance normalization layers are useful for some applications: such as style transfer, dense correspondence.

Next Class

More about Convolutional Neural Networks