

How high is 'good', how low is 'bad'? Do Word Embedding Spaces Encode Conventional Metaphor

Sara Bartl

Corpus Linguistics 2023

Lancaster University

5 July 2023

Motivation

- 1) Better understanding word embeddings
- word embeddings aim to model meaning in language
- figurative meaning is a part of how language means
- 2) Application: studying metaphor at scale
- more language data available
- semantic projection for modeling metaphor

Outline

- Word Embeddings
- Semantic Projection for Literal Meaning
- Semantic Projection for Metaphor
- Results
- Conclusion and Future Directions

words as vectors

hamster — hamster

What is a Vector?

$$v = (2, 4)$$

words as vectors

From Words to Vectors

The particular shape of a word's vector is learned from the word's distribution in a corpus.

Pre-trained GloVe embeddings:

- CommonCrawl corpus
- 42 billion tokens
- 300 dimensional vectors

Distributional Hypothesis

Words with similar distributions tend to have similar meanings (Firth, 1957; Harris, 1954)

(The vectors of) words that have similar distributions are closer together in the word embedding space.

Word Embeddings in Action

Some Words

hamster, elephant, mouse yellow, green, red hospital, nurse, doctor

Problem: Similarity is Context-Dependant

Solution: Semantic Projection

(Grand et al., 2022)

Category: Animals

Feature: Size

Solution: Semantic Projection (Grand et al., 2022)

danger

Do Word Embeddings Correlate with Human Ratings? (Grand et al., 2022)

 $r = 0.616 \text{ OC}_p = 72\%$ $r = 0.94 \text{ OC}_p = 87\%$ $r = 0.651 \text{ OC}_p = 74\%$ $r = 0.533 \text{ OC}_p = 65\%$

(Grand et al., 2022, p. 5)

Grand et al. (2022) Findings

"These results demonstrate that semantic knowledge about context-dependent similarities is explicitly represented in the structure of word embeddings." (Grand et al., 2022, p. 7)

Semantic Projection for Conventional Metaphor?

- Case Study: UP/HIGH IS GOOD, DOWN/LOW IS BAD
- feeling up, feeling low; thumbs up, thumbs down
- vertical orientation (source domain) → emotional valence (target domain)
- experimental evidence: participants prefer vertical axis when ordering emotional valence words best, better, worse, worst (Woodin and Winter, 2018)

Literal

Feature: literal attribute

(e.g. size)

Category: objects (e.g.

animals)

Figurative

Feature: source domain (e.g. vertical

orientation)

Category: target domain vocabulary (e.g.

emotional valence words)

Methods

- Semantic scales: up-down, high-low
- Words projected: worst, worse, better, best
- good and bad excluded following Woodin and Winter (2018)

Results

best, better, worst, worse

Conclusion

The GloVe word embedding space explicitly represents the context-dependent semantic relationship between source domain and target domain.

Conclusion

Semantic projection as a method for analysing metaphor at scale.

- develop and test semantic projection "in the wild"
- study metaphor variation at scale across two sub-reddits:

r/depression and r/depression_partners

Thank you.

References

- Firth, J.R. (1957) *Papers in linguistics 1934–51*. Oxford University Press.
- Grand, G., Blank, I. A., Pereira, F., & Fedorenko, E. (2022). Semantic projection recovers rich human knowledge of multiple object features from word embeddings. *Nature human behaviour*, *6*(7), 975-987.
- Harris, Z. S. (1954). Distributional structure. Word, 10(2-3), 146-162.
- Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In *Proceedings of the 2014 conference on empirical* methods in natural language processing (EMNLP) (pp. 1532-1543).
- Wiedemann, G., Remus, S., Chawla, A., & Biemann, C. (2019). Does BERT make any sense? Interpretable word sense disambiguation with contextualized embeddings. arXiv preprint arXiv:1909.10430.

Additional Slides

Type vs. Token Based Word Embeddings

(a) BERT

Measuring Word Similarity

Do Word Embeddings Correlate with Human Ratings? (Grand et al., 2022)

Same category (animals), different features

(Grand et al., 2022, p. 3)

