15.561 Information Technology Essentials

Thomas Malone

Acknowledgments:

Slides marked "SM" are adapted from Stuart Madnick, MIT. Slides marked "CD" are adapted from Chris Dellarocas, U. Md.

Why bother?

Why should you, as a manager, care about information technology?

?????????????????????????

Main Course Objectives

- Become comfortable with the technologies that are shaping business today
- Acquire tools that will help you assess technological trends long after you have left Sloan

Course overview

Technology

Applications of Technology

A Typical Computer

A Simplified Computer

MEMORY

- There are 100 "locations" on the blackboard
- Each location identified by number from 00 to 99
- Each location has room for one 3-digit number
- Load moves number from blackboard to register. Example: LOAD 01
- Store moves number from register to blackboard. Example: STORE 00

INPUT/OUTPUT

- Input and Output conveyors hold 3-digit numbers
- GET moves number from INPUT to REGISTER
- PUT moves number from REGISTER to OUTPUT

PROCESSOR/CALCULATOR

- Register has room for one 3-digit number
- Calculator can add and subtract numbers from memory to register

Examples: ADD 02

SUBTRACT 03

LMC INSTRUCTIONS

- 1. Get
- 2. Put
- 3. Load x (Load 01)
- 4. Store x (Store 05)
- 5. Add x (Add 02)
- 6. Sub x (Sub 03)
- 7. Stop

SYMBOLIC LMC ADDRESSES

- 1. Load Wage
- Add **Bonus**
- 3. Store Pay
- Stop

Program to:

- 1) Read WAGE and BONUS amount from INPUT
- 2) Compute total PAY
- 3) Output total PAY

 $SM\square$

LMC STORED PROGRAM CONCEPTS

ISSUES:

- Where is LMC program stored?
- How does LMC understand instructions like STOP? It only likes numbers.
- How does LMC handle symbolic labels like A, B, C?

ANSWERS (Stored Program Concept):

 $SM\square$

LMC MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

 $SM\square$

INSTRUCTION SEQUENCING

INSTRUCTIONS opsymbolic code 000 stop add 1xx 2xx subtract 3xx store 5xx load 901 get 902 put

INSTRUCTION SEQUENCING

- 1. LOOK AT COUNTER
- 2. GET THAT INSTRUCTION
- 3. PERFORM THAT INSTRUCTION
- 4. PULL COUNTER CORD

(REPEAT)

INSTRUCTION SEQUENCING

CONTROL FLOW

- BRANCH always puts a new address in the instruction counter
- BRANCH ZERO puts a new address in the instruction counter if the REGISTER is 0. Otherwise it increases the instruction counter by 1.

Examples: BRANCH 02

BRANCH ZERO 06

INSTRUCTIONS

6xx

7xx

opcode symbolic

000 stop
1xx add
2xx subtract
3xx store
5xx load

branch

branch zero

opcode symbolic

901 get
902 put

So what are: MIPS and MHz all about?

BASIC FACTS TO ASK ABOUT ANY COMPUTER

LMC ANSWERS

1. MEMORY

- (A) BASIC UNIT 3 DECIMAL DIGIT NUMBER
- (B) MAXIMUM SIZE 100 LOCATIONS

2. **REGISTERS**

- (A) HOW MANY 1
- (B) NUMBERS 3 DECIMAL DIGIT NUMBER

3. INSTRUCTIONS

(A) NUMBER 7 INSTRUCTIONS

INTEL PENTIUM 4 ANSWERS

1. MEMORY

- (A) INDUSTRY
 BASIC UNIT
- 8 BINARY DIGITS (BITS) = 1 BYTE

- (B) BASIC UNIT 32 BITS = 4 BYTES
- (C) TYPICAL SIZE MEMORY RAM: 128 MB 1GB

2. REGISTERS

- (A) HOW MANY ABOUT 50 REGISTERS
- (B) NUMBERS VARIOUS TYPES

3. INSTRUCTIONS

(A) NUMBER ABOUT 500

Conclusions

- 1. There are many detailed facts about computers.
- 2. Many of them will change every year of your career.
- 3. You will never know them all.
- 4. That's okay.
- 5. What you need to know is:
 - What kinds of questions to ask
 - How to make sense of the answers.
- 6. The basic concepts you have learned today will be useful for a long time.