

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

⑫ 公開特許公報 (A) 平3-292093

⑬ Int. Cl. 5

H 04 N 13/04
G 06 F 15/62

識別記号

350

庁内整理番号

9068-5C
8125-5L

⑭ 公開 平成3年(1991)12月24日

審査請求 未請求 請求項の数 1 (全3頁)

⑮ 発明の名称 3次元表示装置

⑯ 特 願 平2-94619

⑰ 出 願 平2(1990)4月10日

⑱ 発明者 鈎持伸彦 長野県諏訪市大和3丁目3番5号 セイコーホン株式会社内

⑲ 出願人 セイコーホン株式 東京都新宿区西新宿2丁目4番1号

⑳ 代理人 弁理士 鈴木喜三郎 外1名

明細書

1、発明の名称

3次元表示装置

2、特許請求の範囲

画像表示パネルとこれを結像する接眼レンズを持つ両眼鏡式の3次元表示装置において、使用者の表示画像中の注視点を検出する機構と、検出した注視点の両眼視差による奥行き方向の表示位置と接眼レンズによる画像表示パネルの奥行き方向の結像位置を一致させる機構を備えたことを特徴とする3次元表示装置。

3、発明の詳細な説明

〔産業上の利用分野〕

本発明は3次元表示装置に関する。

〔従来の技術〕

従来の3次元表示装置は、片眼各々の画像表示パネルの虚像を接眼レンズによって所望の距離に結像し、表示されるパターンの両眼視差効果によって遠近感を認識させる方式のものがある。

〔発明が解決しようとする課題〕

しかし従来技術では、接眼レンズによる結像位置が固定されているために前記位置と大幅に異なる遠近感を両眼視差効果に基づいて表現する場合、目の焦点調節作用から得られる遠近感と両眼視差効果から得られる遠近感の間に大きな差違が生じ、違和感、不快感、疲労等が発生しやすかった。

そこで本発明はこのような問題点を解決するもので、その目的とするところは目の焦点調節作用から得られる遠近感と両眼視差効果から得られる遠近感の間の格差が小さく違和感、不快感、疲労等の少ない3次元表示装置を提供するところにある。

〔課題を解決するための手段〕

上記課題を解決するために、本発明の3次元表示装置は、使用者の表示画像中の注視点を検出する機構と、検出した注視点の両眼視差による奥行き方向の表示位置と接眼レンズによる画像表示パネルの奥行き方向の結像位置を一致させる機構を備えたことを特徴とする。

[実施例]

以下に本発明の実施例を図面に基づいて説明する。

第1図において、目1は接眼レンズ2によって結像された画像表示パネル3の虚像4を観察する。アイトラッカー7は使用者の瞳の位置によって画面に対する注視点を検出する。処理装置8は検出された注視点位置を3次元の画像データと対比させてその点の奥行き情報(以後、奥行き)を割り出す。奥行きを用いて両眼視差効果用の左右画像の分離幅と接眼レンズにより結像すべき位置が計算できるため、これに従って信号発生回路9で左目用右目用別々の画像信号と接眼レンズ駆動信号

を作り出す。

従来方式は第2図に示すように接眼レンズ2による虚像4の位置が固定されおり、目の焦点調節作用から生ずる画像の感覚的な位置はB点にある。ところが両眼視差効果により生ずる画像の感覚的な位置は両眼の視線の交点であるA点にあるため、この差が違和感となってしまっていた。

この違和感を取り除くためには、両眼視差効果により生ずる画像の感覚的な位置Aと目の焦点調節作用から生ずる画像の感覚的な位置Bを一致させれば良い。

そこで、前記の様にして使用者の注視点を基準として焦点位置が可変の接眼レンズにより、虚像4の位置を画像表示パネル3に表示している画像中の注視点の位置と等しく結像させることで従来の様な違和感等の発生を軽減することができる。

接眼レンズの焦点位置可変機構はレンズ位置をアクチュエーターによって移動させることで実現できる。

前記のような結像位置の補正を行なうと、結像

の倍率と視野の変動が生じてしまうが、この問題は画像表示パネルの外にあらかじめ予偏の領域を設けて表示領域の大きさをも可変とし、同時に入力画像に倍率補正を施すことで、解決できる。

[発明の効果]

本発明は以上説明したように、遠近感を両眼視差効果に基づいて表現する場合でも違和感等の発生を軽減することができるという効果を有する。

4、図面の簡単な説明

第1図は本発明における3次元表示装置の構成図、第2図は従来の3次元表示時における違和感発生の説明図である。

- 5、接眼レンズ
- 6、アクチュエーター
- 7、アイトラッカー
- 8、処理装置
- 9、信号発生回路

以上

出願人セイコーエプソン株式会社
代理人弁理士鈴木喜三郎(他1名)

- 1、目
- 2、接眼レンズ
- 3、画像表示パネル
- 4、虚像

第1図

第2図