Multi-Label Marching Triangles

Misha Kazhdan

Outline

- Review
- Multi-label segmentation
- Extensions to higher dimensions

Review: convex spaces in \mathbb{R}^d

Definition:

A region $\mathcal{R} \subset \mathbb{R}^d$ is said to be *convex* if it is the intersection of (closed) half-spaces.

Definition (equivalent):

A region $\mathcal{R} \subset \mathbb{R}^d$ is said to be *convex* if it is closed and any line-segment with endpoints in \mathcal{R} is entirely contained in \mathcal{R} .

Review: convex spaces in \mathbb{R}^d

Definition:

A region $\mathcal{R} \subset \mathbb{R}^d$ is said to be *convex* if it is the intersection of (closed) half-spaces.

Fact:

The intersection of two convex regions is itself convex.

Proof:

Use the intersection of both sets of defining (closed) half-spaces

Definition:

An affine function* $f: \mathbb{R}^d \to \mathbb{R}$ is a function that can be expressed as: $f(\mathbf{p}) = \alpha_f + \langle \mathbf{v}_f, \mathbf{p} \rangle$ with $\alpha_f \in \mathbb{R}, \mathbf{v}_f \in \mathbb{R}^d$ and we denote the space of affine functions on \mathbb{R}^d as $\mathcal{A}(d)$.

A hyperplane $\mathcal{P} \subset \mathbb{R}^d$ is the zero-set of a (non-singular) affine function: $\mathcal{P} = \{\mathbf{p} \in \mathbb{R}^d | f(\mathbf{p}) = 0, \text{ for some } f \in \mathcal{A}(d)\}$

Note:

The function defining the hyperplane is not unique:

• If \mathcal{P} is the zero-set of f then it is also the zero-set of $c \cdot f$ for all $c \neq 0$.

Fact:

Given two affine functions* $f, g \in \mathcal{A}(d)$, the set of points at which the functions are equal forms a hyperplane in \mathbb{R}^d .

Proof:

For a point $\mathbf{p} \in \mathbb{R}^d$

$$f(\mathbf{p}) = g(\mathbf{p})$$

$$\updownarrow$$

$$\alpha_f + \langle \mathbf{v}_f, \mathbf{p} \rangle = \alpha_g + \langle \mathbf{v}_g, \mathbf{p} \rangle$$

$$\updownarrow$$

$$0 = \alpha_g - \alpha_f + \langle \mathbf{v}_g - \mathbf{v}_f, \mathbf{p} \rangle$$

$$\updownarrow$$

The set of points at which they are equal is the zero-set of an affine function

^{*}Throughout will be assuming that geometry is "in general position"

Fact:

Given two affine functions* $f, g \in \mathcal{A}(d)$, the set of points at which the functions are equal is a hyperplane in \mathbb{R}^d .

- ⇒ The hyperplane defines two half-spaces:
 - The half-space where $f(\mathbf{p}) \ge g(\mathbf{p})$
 - The half-space where $g(\mathbf{p}) \ge f(\mathbf{p})$

^{*}Throughout will be assuming that geometry is "in general position"

Notation:

Given a collection of affine functions $\{f_1, ..., f_n\} \subset \mathcal{A}(d)$, let \mathcal{H}_{ij} be the (closed) subset of points on which f_i (weakly) dominates f_j : $\mathcal{H}_{ij} \equiv \{\mathbf{p} \in \mathbb{R}^d | f_i(\mathbf{p}) \geq f_i(\mathbf{p})\}$

Note:

The hyperplane on which f_i equals f_j is the intersection: $\{\mathbf{p} \in \mathbb{R}^d | f_i(\mathbf{p}) = f_i(\mathbf{p})\} = \mathcal{H}_{i,i} \cap \mathcal{H}_{i,i}$

Fact:

Given a collection of affine functions $\{f_1, ..., f_n\} \subset \mathcal{A}(d)$, the set of points where the *i*-th function is maximized:

$$\mathcal{P}_i = \left\{ \mathbf{p} \in \mathbb{R}^d \middle| f_i(\mathbf{p}) = \max_{1 \le j \le n} f_j(\mathbf{p}) \right\}$$

is convex.

Proof:

The set \mathcal{P}_i is the intersection of half-spaces:

$$\mathcal{P}_i = \bigcap_{j=1}^n \mathcal{H}_{ij}$$

Fact:

Given a collection of affine functions $\{f_1, ..., f_n\} \subset \mathcal{A}(d)$, the set of points where the i-th and j-th functions are simultaneously maximized:

$$\mathcal{P}_{ij} = \left\{ \mathbf{p} \in \mathbb{R}^d \middle| f_i(\mathbf{p}) = f_j(\mathbf{p}) = \max_{1 \le k \le n} f_k(\mathbf{p}) \right\}$$

is a convex subset of a hyperplane.

Proof:

The set of points where f_i and f_j simultaneously dominate lies in the hyperplane where they are equal, intersected with a set of half-spaces:

$$\mathcal{P}_{ij} = (\mathcal{H}_{ij} \cap \mathcal{H}_{ij}) \cap \bigcap_{k=1}^{n} \mathcal{H}_{ik} \cap \bigcap_{k=1}^{n} \mathcal{H}_{jk}$$

Fact:

Given a collection of affine functions $\{f_1, ..., f_n\} \subset \mathcal{A}(d)$, the set of points where the i-th and j-th functions are simultaneously maximized:

$$\mathcal{P}_{ij} = \left\{ \mathbf{p} \in \mathbb{R}^d \middle| f_i(\mathbf{p}) = f_j(\mathbf{p}) = \max_{1 \le k \le n} f_k(\mathbf{p}) \right\}$$

is a convex subset of a hyperplane.

For d = 2:

• The set \mathcal{P}_{ij} is either empty or is an edge

Indicator functions

Given a solid shape S, the *indicator function*:

$$\chi_{\mathcal{S}}: [0,1]^2 \to \{0,1\}$$

is the binary function:

- Equal to 1 inside the solid
- Equal to 0 outside the solid

Indicator functions

Given a solid shape S, the *indicator function*:

$$\chi_{\mathcal{S}}: [0,1]^2 \to \{0,1\}$$

is the binary function:

- Equal to 1 inside the solid
- Equal to 0 outside the solid

To get the boundary, we can extract the 0.5-level-set.

More generally, we can think of a *soft* assignment function:

$$\chi_{\mathcal{S}}: [0,1]^2 \to [0,1]$$

which has value:

- Close to 1 at points that are likely to be inside
- Close to 0 at points that are likely to be outside

More generally, we can think of a *soft* assignment function:

$$\chi_{\mathcal{S}}: [0,1]^2 \to [0,1]$$

which has value:

- Close to 1 at points that are likely to be inside
- Close to 0 at points that are likely to be outside

We can extract the boundary between the points "likely to be inside" and those "likely to be outside" by computing the 0.5-level-set.

Can think of two label functions:

- "Inside" function: $\chi_1 = \chi_S$
- "Outside" function: $\chi_0 = 1 \chi_1$

Properties:

- The label functions take values in [0,1]
- The label functions sum to 1
- Points are "inside" where the "inside" function is maximal: $\chi_1(\mathbf{p}) > \chi_0(\mathbf{p})$
- Points are "outside" where the "outside" function is maximal: $\chi_0(\mathbf{p}) > \chi_1(\mathbf{p})$

Can think of two label functions:

- "Inside" function: $\chi_1 = \chi_S$
- "Outside" function: $\chi_0 = 1 \chi_1$

Properties:

 The boundary is where the two label functions are simultaneously maximized:

$$\chi_{0}(\mathbf{p}) = \chi_{1}(\mathbf{p})$$

$$\updownarrow$$

$$1 - \chi_{\mathcal{S}}(\mathbf{p}) = \chi_{\mathcal{S}}(\mathbf{p})$$

$$\updownarrow$$

$$\chi_{\mathcal{S}}(\mathbf{p}) = 0.5$$

 $\chi_0: [0,1]^2 \to [0,1]$

 $\chi_1: \overline{[0,1]^2 \to [0,1]}$

Generalization

What if we have more than two (soft) label functions?

- We identify a label with the subset of points at which its function is maximized
- \Rightarrow For two labels l and m, the (l, m) label boundary consist of the subset of points where:
 - The label functions of l and m are equal
 - The label functions of \boldsymbol{l} and \boldsymbol{m} are greater than (i.e. dominate) all other label

 χ_5

 χ_0

 χ_1

 χ_2

 χ_3

 χ_4

Generalization

Goal:

Given label functions $\phi_1, ..., \phi_L$: $[0,1]^2 \to [0,1]$ forming a partition of unity, for every pair $1 \le l < m \le L$, solve for the set of points:

$$\mathcal{P}_{lm} = \{ \mathbf{p} \in [0,1]^2 | \phi_l(\mathbf{p}) = \phi_m(\mathbf{p}) = \max_{1 \le n \le L} \phi_n(\mathbf{p}) \}$$

Generalization

Goal:

Given label functions $\phi_1, ..., \phi_L$: $[0,1]^2 \to [0,1]$ forming a partition of unity, for every pair $1 \le l < m \le L$, solve for the set of points:

$$\mathcal{P}_{lm} = \{ \mathbf{p} \in [0,1]^2 | \phi_l(\mathbf{p}) = \phi_m(\mathbf{p}) = \max_{1 \le n \le L} \phi_n(\mathbf{p}) \}$$

Approach:

- Consider each cell of the grid in turn
- Partition the cell into simplices
- For each simplex and each pair of labels, compute the partitioning geometry

Approach: per simplex

Given:

- Affine functions $f_1, \dots, f_L : \mathbb{R}^2 \to [0,1]$
- A triangle, $\sigma \subset \mathbb{R}^2$, and given

Compute:

• The set of points where two functions are simultaneously maximized:

$$\bigcup_{1 \le i < j \le L} \mathcal{P}_{ij} = \bigcup_{1 \le i < j \le L} \left\{ \mathbf{p} \in \mathbb{R}^d \middle| f_i(\mathbf{p}) = f_j(\mathbf{p}) = \max_{1 \le k \le n} f_k(\mathbf{p}) \right\}$$

The intersection with the triangle:

$$\sigma \cap \bigcup_{1 \le i < j \le L} \mathcal{P}_{ij}$$

Approach: per simplex

Given:

- Affine functions $f_1, ..., f_L : \mathbb{R}^2 \to [0,1]$
- A triangle, $\sigma \subset \mathbb{R}^2$, and given

Compute

Naively computing the intersection is difficult, as some of the edges \mathcal{P}_{ij} are unbounded

• The set of points where two functions are simultaneously maximized:

$$\bigcup_{1 \le i < j \le L} \mathcal{P}_{ij} = \bigcup_{1 \le i < j \le L} \left\{ \mathbf{p} \in \mathbb{R}^d \middle| f_i(\mathbf{p}) = f_j(\mathbf{p}) = \max_{1 \le k \le n} f_k(\mathbf{p}) \right\}$$

The intersection with the triangle:

$$\sigma \cap \bigcup_{1 \le i < j \le L} \mathcal{P}_{ij}$$

Observation

We are interested in two types of vertices:

- The vertices interior to the triangle (red)
 - ⇒ Points where three functions are equal and dominate
- The vertices on the boundary of the triangle (blue)
 - ⇒ Points where two functions are equal and dominate

Note:

Since \mathcal{P}_{ij} is either empty or an edge, and since the triangle σ is convex, the intersection $\mathcal{P}_{ij} \cap \sigma$ is either empty or an edge

Algorithm

```
// Get triangle vertices For each triplet 1 \leq i < j < k \leq L Compute the point \mathbf{p} s.t. f_i(\mathbf{p}) = f_j(\mathbf{p}) = f_k(\mathbf{p}) If \mathbf{p} is in the triangle and f_i(\mathbf{p}) = f_j(\mathbf{p}) = f_k(\mathbf{p}) = \max_{1 \leq l \leq L} f_l(\mathbf{p}) Add \mathbf{p}, annotated with (i,j,k) to the vert list
```

```
// Get edge vertices For each boundary edge of \sigma: For each pair 1 \leq i < j \leq L Compute the point \mathbf{p} s.t. f_i(\mathbf{p}) = f_j(\mathbf{p}) If \mathbf{p} is on the edge and f_i(\mathbf{p}) = f_j(\mathbf{p}) = \max_{1 \leq k \leq L} f_k(\mathbf{p}) Add \mathbf{p}, annotated with (i,j) to the vert list
```


Algorithm

```
// Get edges For each pair 1 \le i < j \le L Combine vertices in the triangle/edge vert list which are annotated with both i and j into an edge
```


Multi-label segmentation

Question:

Why not individually separate each label from the combination (e.g. sum) of the other labels?

Multi-label segmentation

Question:

Why not individually separate each label from the combination (e.g. sum) of the other labels?

Answer:

Individually segmenting does not partition space.

 This becomes apparent if we smooth the curves

Individual label segmentation (smoothed)

Multi-label segmentation (smoothed)

Question:

Why not individually separate each label from the combination (e.g. sum) of the other labels?

Individually segmenting does not partition space.

- This becomes apparent if we smooth the curves
- But is also evident at coarse resolutions

Individual label segmentation

Multi-label segmentation (smoothed)

Extensions to higher dimensions

For d-dimensional simplices:

- Need to compute annotated vertices on all d'-dimensional sub-simplices, with $1 \le d' \le d$, by computing the position at which d' + 1 affine functions dominate.
- \mathcal{P}_{ij} is a convex polytope in a (d-1)-dimensional hyperplane \Rightarrow Compute the convex hull of all vertices annotated with both i and j.

