

Laboratório de Manufatura

Quinagem

LM

Quinagem

Viradeira/dobradeira

universidade de aveiro escola superior aveiro norte

Tipos de quinagem

LM

2

Tipos de quinagem

QUINAGEM LIVRE (QUINAGEM NO AR)

A quinagem livre também designada quinagem no ar é o tipo de quinagem mais utilizado, pois exige uma força inferior e permite realizar ângulos diferentes com as mesmas ferramentas, mudando-se simplesmente a profundidade de quinagem.

Neste tipo de quinagem só se utiliza o efeito da flexão simples, por contacto da chapa entre as ferramentas segundo as linhas exteriores 1 e 2 e linha interior 3, para provocar na chapa a deformação pretendida. Durante a quinagem, a chapa conserva parte da sua elasticidade.

Como consequência, é necessário executar um ângulo mais fechado do que o desejado de modo a compensar o retorno elástico da chapa, quando o esforço acaba.

Nesta técnica de quinagem, o raio interior não deve ser inferior à espessura da chapa.

LM

Tipos de quinagem

QUINAGEM FORÇADA (QUINAGEM A FUNDO)

Na quinagem forçada também designada por quinagem a fundo a chapa é esmagada entre o punção e a matriz, sendo assim forçada a moldar-se ao contorno das ferramentas.

O retorno elástico, quando se aplica esta técnica de quinagem, é reduzido em função da força de esmagamento aplicada.

Em relação à quinagem no ar este tipo exige forças 3 a 5 vezes (conforme o grau de agudeza da aresta) superiores às requeridas para obter o mesmo ângulo. Daí que a sua aplicação seja geralmente reservada às chapas finas (em princípio, até 1-2 mm de espessura).

Requer um par de ferramentas (punção-matriz) para cada ângulo de quinagem, e provoca maior desgaste nas ferramentas.

Quinadora elétrica Adira BB2512

LM

Quinadora elétrica Adira BB2512

Número	Descrição do Componente
1	Control Numérico / Painel de controlo
2	Guardas Laterais
3	Lazersafe
4	Punção
5	Esbarro
6	Quadro Elétrico
7	Protecção Traseira – Guardas Traseiras

Quinadora elétrica Adira BB2512

ESTAÇÃO DE CONTROLO DO OPERADOR

Descrição do pedal de descida:

- 0. Não actuado
- 1. Actuado até ao primeiro encravamento (avental desce)
- 2. Actuado até ao fim de curso (paragem de emergência)

LM

Quinadora elétrica Adira BB2512

CARACTERÍSTICAS TÉCNICAS

Quinadora BB	Unidades	2512
Capacidade	Kn	250
Comprimento de Trabalho	mm	1200
Distância entre montantes	mm	1250
Curso	mm	200
Abertura maxima sem ferramentas	mm	440
Profundidade de Quinagem	mm	120
Consumo	kVA	9.4
Velocidade de Aproximação	mm/s	120
Velocidade de trabalho	mm/s	10
Velocidade de Retorno	mm/s	150
Curso Eixo X	mm	625
Velocidade Eixo X	mm/s	600
Curso Eixo R	mm	200
Velocidade Eixo R	mm/s	200
Dimensões Standard	mm	2200x1600x2320
Peso	Kg	3450

 LM

LM

6

Planificação da chapa

 LM

Comprimento da estampa plana

(Norma DIN6935 – peças em aço laminado, cortado e quinado a frio)

O comprimento da estampa plana pode ser calculado pela expressão:

$$I = a + b + \Delta l$$

Onde:

I – comprimento da estampa plana

a e b - comprimentos das abas

 Δl – fator de compensação, que pode ser positivo ou negativo (para $\beta > 65^o$ é sempre negativo), dependendo do ângulo β , da espessura da chapa h e do raio de dobragem r_i.

LM K=fator de correção

Comprimento da estampa plana

(Norma DIN6935 – peças em aço laminado, cortado e quinado a frio)

Fator de correção K

Relação entre o raio interior de quinagem e a espessura da chapa r _i /h	>0,65	>1	>1,5	>2,4	>3,8
Fator de correção K	0.6	0.7	0.8	0.9	1

O fator de correção K relaciona a posição da fibra neutra da chapa quinada relativamente à sua espessura média.

Raio interior da quinagem

Na quinagem livre de aço macio (σ r=40 a 50Kgf/mm²) os fabricantes de quinadoras relacionam o raio interior da quinagem com a abertura da matriz através da condição:

$$r_i = \frac{5}{32}v$$
 r_i : raio interior da quinagem v: abertura da matriz

Devemos garantir que:

 $r_i > r_{min}$

LM

Raio mínimo (método 1)

Raio mínimo de curvatura – raio para o qual aparecem as primeiras fissuras na parte exterior da dobra.

	Conditi		
Material	Soft	Hard	
Aluminum alloys	0	6T	
Beryllium copper	0	4T	
Brass, low-leaded	0	2T	
Magnesium	5T	13T	
Steels			
Austenitic stainless	0.5T	6T	
Low-carbon, low-alloy, and HSLA	0.5T	4T	
Titanium	0.7T	3T	
Titanium alloys	2.6T	4T	

Raio mínimo (método 2)

Tensão de rotura minima (MPa)	Relação entre as direções de quinagem e laminagem	t=1	1 <t<1,5< th=""><th>1,5<t<2,5< th=""><th>2,5<t<3< th=""><th>3<t<4< th=""><th>4<t<5< th=""><th>5<t<6< th=""><th>6<t<7< th=""></t<7<></th></t<6<></th></t<5<></th></t<4<></th></t<3<></th></t<2,5<></th></t<1,5<>	1,5 <t<2,5< th=""><th>2,5<t<3< th=""><th>3<t<4< th=""><th>4<t<5< th=""><th>5<t<6< th=""><th>6<t<7< th=""></t<7<></th></t<6<></th></t<5<></th></t<4<></th></t<3<></th></t<2,5<>	2,5 <t<3< th=""><th>3<t<4< th=""><th>4<t<5< th=""><th>5<t<6< th=""><th>6<t<7< th=""></t<7<></th></t<6<></th></t<5<></th></t<4<></th></t<3<>	3 <t<4< th=""><th>4<t<5< th=""><th>5<t<6< th=""><th>6<t<7< th=""></t<7<></th></t<6<></th></t<5<></th></t<4<>	4 <t<5< th=""><th>5<t<6< th=""><th>6<t<7< th=""></t<7<></th></t<6<></th></t<5<>	5 <t<6< th=""><th>6<t<7< th=""></t<7<></th></t<6<>	6 <t<7< th=""></t<7<>
até 390	Transversal	1	1,6	2,5	3	5	6	8	10
	Longitudinal	1	1,6	2,5	3	6	8	10	12
de 390	Transversal	1,2	2	3	4	5	8	10	12
a 490	Longitudinal	1,2	2	3	4	6	10	12	16
de 490	Transversal	1,6	2,5	4	5	6	8	10	12
a 640	Longitudinal	1,6	2,5	4	5	8	10	12	16

Raio mínimo de quinagem segundo a norma DIN 6935. t: espessura da chapa [mm]

LM

Relação da direção de laminagem com direção de quinagem

Pelo fato da chapa possuir anisotropia, por ter sido laminada, pode originar defeitos na quinagem. A quinagem deve ser realizada preferencialmente na perpendicular da direção de laminagem.

 LM

Dimensão da aba

a: dimensão da aba mínima

v: abertura da matriz

 $a_{min}=0.65v$

Assegura o apoio da chapa sobre a matriz

LM

Recuperação elástica

11

Força de quinagem

LM 1 daN = 10 N = 1,02 kgf

Evitar o aparecimento de fendas

Distância à linha de dobragem

Distância mínima entre furos e a linha de dobragem, para evitar defeitos de forma nos furos

Dimensão mínima da aba para evitar defeitos de dobragem

LM

Exemplo de sequência de operações de quinagem

Exercício 1

Aço macio (σ_r =400MPa) Largura 250mm

Determine:

- a) O raio mínimo de quinagem, valide os valores do enunciado.
- b) A abertura da matriz, valide os valores de aba mínima.
- Tabela com comprimento de segmento e ângulo para o próximo segmento, utilize coordenadas polares e dimensões externas.
- d) A geometria e dimensões da estampa plana e a localização das linhas de quinagem.
- e) A força de quinagem.

Exercício 2

Aço macio (σ_r =400MPa) Largura 60mm

Determine:

- a) O raio mínimo de quinagem, valide os valores do enunciado.
- b) A abertura da matriz, valide os valores de aba mínima.
- Tabela com comprimento de segmento e ângulo para o próximo segmento, utilize coordenadas polares e dimensões externas.
- d) A geometria e dimensões da estampa plana e a localização das linhas de quinagem.
- e) A força de quinagem.

LM

Software CNCBender

