W9-1. The mass of block A is 100 kg. The mass of block B is 60 kg. The coefficient of kinetic friction between block B and the inclined plane is 0.4. A and B are released from rest. Determine the acceleration of block A and the tension in the cord. Neglect the mass of the pulleys and the cord.

$$W_x = W \cos 30^o = W \sin 60^o$$

$$W_y = -W\sin 30^o = -W\cos 60^o$$

W9-1. The mass of block A is 100 kg. The mass of block B is 60 kg. The coefficient of kinetic friction between block B and the inclined plane is 0.4. A and B are released from rest. Determine the acceleration of block A and the tension in the cord. Neglect the mass of the pulleys and the cord.

W9-1. The mass of block A is 100 kg. The mass of block B is 60 kg. The coefficient of kinetic friction between block B and the inclined plane is 0.4. A and B are released from rest. Determine the acceleration of block A and the tension in the cord. Neglect the mass of the pulleys and the cord.

W9-2. A horizontal force P = 20 lb is applied to block A. The coefficients of kinetic friction between block A and the horizontal surface, between the two blocks, and between block B and the vertical surface are 0.1, 0.2 and 0.3, respectively. Determine the acceleration of each block and all normal forces.

W9-2. A horizontal force P = 20 lb is applied to block A. The coefficients of kinetic friction between block A and the horizontal surface, between the two blocks, and between block B and the vertical surface are 0.1, 0.2 and 0.3, respectively. Determine the acceleration of each block and all normal forces.

W9-2. A horizontal force P = 20 lb is applied to block A. The coefficients of kinetic friction between block A and the horizontal surface, between the two blocks, and between block B and the vertical surface are 0.1, 0.2 and 0.3, respectively. Determine the acceleration of each block and all normal forces.

W9-2.
$$P=20$$
 lb, $W_A=8$ lb, $W_B=15$ lb, $\theta=15^{\circ}$, $\mu_A=0.1$, $\mu_{AB}=0.2$, $\mu_B=0.3$.

$$a_A$$
, a_B , N_A , N_B , $N = ?$

W9-2.
$$P=20$$
 lb, $W_A=8$ lb, $W_B=15$ lb, $\theta=15^\circ$, $\mu_A=0.1$, $\mu_{AB}=0.2$, $\mu_B=0.3$.

$$\vec{a}_{B/A} = ?$$

$$a_A$$
, a_B , N_A , N_B , $N = ?$

• Assume you are sitting at point A of block A and look at the point B of block B that is moving towards you. What is $\vec{a}_{B/A}$?

$$\hat{a}_{B/A} = -\hat{i}$$

$$\dot{a}_{B/A} = -i \quad a_{B/A} \cos \theta + j \quad a_{B/A} \sin \theta$$

$$= i \left(-a_{B/A} \cos \theta \right) + j \left(a_{B/A} \sin \theta \right)$$

• How $a_{B/A}$ is connected to a_A and a_B ?

A.
$$\vec{a}_{B/A} = \vec{a}_A + \vec{a}_B$$

B.
$$\vec{a}_{B/A} = \vec{a}_A - \vec{a}_B$$

$$(\vec{c})\vec{a}_{B/A} = \vec{a}_B - \vec{a}_A = (\vec{j} a_B) - (\vec{i} a_A) =$$

$$= i(-\alpha_A) + j(\alpha_B)$$

$$a_{B/A} \cos \theta = a_A$$

$$a_{B/A} = a_A$$

$$\cos \theta = a_A$$

$$a_B = \frac{a_A}{\cos \theta} \sin \theta = a_A + \cos \theta = a_B$$

W9-2.
$$P=20$$
 lb, $W_A=8$ lb, $W_B=15$ lb, $\theta=15^\circ$, $\mu_A=0.1$, $\mu_{AB}=0.2$, $\mu_B=0.3$. $a_A, a_B, N_A, N_B, N=?$

$$P - \mu_{AB}N\cos\theta - N\sin\theta - \mu_{A}N_{A} = m_{A}a_{A};$$

$$N_{A} + \mu_{AB}N\sin\theta - N\cos\theta - m_{A}g = 0;$$

$$\mu_{AB}N\cos\theta + N\sin\theta - N_{B} = 0;$$

$$N\cos\theta - \mu_{B}N_{B} - m_{B}g - \mu_{AB}N\sin\theta = m_{B}a_{B};$$

$$a_{B} = a_{A}\tan\theta$$

Solver:
$$a_A = 26.0 \frac{ft}{s^2}$$
; $a_B = 6.97 \frac{ft}{s^2}$; $N_A = 26.0 lb$; $N_B = 10.6 lb$; $N = 23.4 lb$

Let's summarize:

Starting point: Newton's 2nd law

- Two accelerations are not independent!
- Relative motion to the rescue:
- Assume you are sitting in point A of block A and look at the point B of block B that is mowing towards you. What is $\vec{a}_{B/A}$?

• We finally get: $a_A = a_{B/A} \cos \theta$, $a_B = a_{B/A} \sin \theta$