

TD 1: nombres complexes

Les questions marquées par une étoile ★ sont plus difficiles.

Forme algébrique

Exercice 1. On considère les nombres complexes suivants :

$$z_1 := 2 - 5i$$
,

$$z_2 := \frac{1}{2} - \frac{i}{4}$$

$$z_1 := 2 - 5\mathbf{i}, \qquad \qquad z_2 := \frac{1}{2} - \frac{\mathbf{i}}{4}, \qquad \qquad z_3 := \pi - \frac{\mathbf{i}\sqrt{2}}{3}, \qquad \qquad z_4 := \frac{2}{3} - \frac{\mathbf{i}}{6}, \qquad \qquad z_5 := -\frac{\mathbf{i}}{\sqrt{2}}.$$

$$z_4 := \frac{2}{3} - \frac{i}{6},$$

$$z_5 := -\frac{\mathrm{i}}{\sqrt{2}}.$$

- 1. Déterminer la forme algébrique des sommes des nombres z_i avec $w_1 := \frac{1}{2} \frac{\mathrm{i}}{3}$.
- **2.** Déterminer la forme algébrique des produits des nombres z_i avec $w_2 := 1 + 3i$.
- **3.** Soit $z = x + iy \in \mathbb{C}$, avec $x \neq 0$ ou $y \neq 0$. Montrer que $\frac{1}{z} = \frac{x iy}{x^2 + y^2}$.
- **4.** En déduire la forme algébrique de l'inverse des nombres z_i .

Exercice 2. Déterminer la forme algébrique des nombres complexes suivants :

1.
$$z_1 := 3 + 2i - 1 + 3i$$
.

3.
$$z_3 := (2+i)(3-2i)$$
.

2.
$$z_2 := -4 + 7i - (2 + 4i)$$
.

4.
$$z_4 := (4-3i)^2$$
.

Exercice 3. Mettre sous forme algébrique les nombres complexes suivants :

1.
$$z_1 := \frac{2}{i}$$
.

3.
$$z_3 := \left(\frac{1+i}{2-i}\right)^2$$
.

5.
$$z_5 := \frac{2}{2 + \frac{1}{1+i}}$$

2.
$$z_2 := \frac{2-i}{3-2i}$$
.

4.
$$z_4 := \frac{2-5i}{1+i} - \frac{2+5i}{1-i}$$
.

6.
$$z_6 := \frac{\sqrt{3} - i}{1 + i\sqrt{3}}$$

- **1.** Résoudre dans \mathbb{C} l'équation : 2iz + z + 1 = 2z 4i 1.
- 2. Résoudre dans C le système suivant :

$$\begin{cases} z_1 - iz_2 = -2 - 3i \\ 2z_1 + (1 - i)z_2 = 3 - 5i. \end{cases}$$

Exercice 5.

- 1. Calculer i², i³ et i⁴.
- **2.** En déduire la valeur de i^n en fonction de $n \in \mathbb{N}$.
- **3.** Calculer la somme : $S := \sum_{k=0}^{2023} i^k$.

Exercice 6.

1. Calculer le module des nombres complexes suivants :

•
$$z_1 := -\frac{3}{\sqrt{2}}$$
,

•
$$z_3 := 3 - 4i$$
,

•
$$z_5 := \sqrt{3} - \frac{\mathrm{i}}{\sqrt{2}}$$

•
$$z_2 := \frac{i}{\sqrt{3}}$$
,

•
$$z_4 := \frac{1}{3} - \frac{i}{6}$$
,

•
$$z_6 := \frac{1-3i}{2+3i}$$
.

2. Montrer que les nombres suivants sont réels sans calculer le produit des quatre facteurs.

•
$$w_1 := (2+i)(3-2i)(2-i)(3+2i)$$
,

•
$$w_2 := (1+2i)(2+i)(2-3i)(3-2i)$$
.

Exercice 7. Soit $z \in \mathbb{C} \setminus \{i\}$ et soit $Z := \frac{z+1}{z-i}$.

- **1.** Exprimer \overline{Z} en fonction de \overline{z} .
- **2.** En déduire une condition nécessaire et suffisante sur z pour que $Z \in \mathbb{R}$.

Exercice 8. Soit $z \in \mathbb{C} \setminus \{1\}$ et soit $Z := \frac{z-2i}{z-1}$. On note z = x+iy et Z = X+iY avec $x, y, X, Y \in \mathbb{R}$.

- **1.** Exprimer X et Y en fonction de x et y.
- **2.** Déterminer et représenter dans le plan complexe l'ensemble $E := \{z \in \mathbb{C} \setminus \{1\} \mid Z \in \mathbb{R}\}.$
- **3.** Déterminer et représenter dans le plan complexe l'ensemble $F := \{z \in \mathbb{C} \setminus \{1\} \mid Z \in \mathbb{R}\}.$

Exercice 9. Déterminer les nombres complexes z qui sont solutions des équations ci-dessous.

1.
$$(1+2i)z-3+5i=0$$
.

4.
$$2z + 6\overline{z} = 3 + 2i$$
.

2.
$$2z + 3\overline{z} = 5$$
.

$$5^*$$
. $z^2 = |z|$.

3.
$$\overline{z}^2 + 2|z|^2 - 3 = 0$$
.

6*.
$$|z| = |1 - z| = \frac{1}{|z|}$$
, avec $z \neq 0$.

Exercice 10*.

- **1.** Montrer que pour tout $z \in \mathbb{C}$, $\Re c(z) \le |\Re c(z)| \le |z|$ et $\Im m(z) \le |\Im m(z)| \le |z|$.
- 2. Établir l'identité du parallélogramme :

$$\forall z, w \in \mathbb{C}, \quad |z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2).$$

3. Montrer la formule de polarisation :

$$\forall z, w \in \mathbb{C}, \quad zw = \frac{1}{4} \Big(\big| z + \overline{w} \big|^2 - \big| z - \overline{w} \big|^2 + \mathrm{i} \big| z + \mathrm{i} \, \overline{w} \big|^2 - \mathrm{i} \big| z - \mathrm{i} \, \overline{w} \big|^2 \Big).$$

Exercice 11. Déterminer les racines carrées des nombres complexes suivants :

1.
$$z_1 := -7$$
.

2.
$$z_2 := 8i$$
.

3.
$$z_3 := -2i$$
.

1.
$$z_4 := 5 - 12i$$

4.
$$z_4 := 5 - 12i$$
. **5.** $z_5 := -3 - 4i$.

Exercice 12. Déterminer les nombres complexes z qui sont solutions des équations suivantes :

1.
$$z^2 - 2z + 5 = 0$$
.

4*.
$$z^4 = 1$$
.

2.
$$z^2 + (4-6i)z - 5 - 14i = 0$$
.

$$5^*$$
. $z^4 - (5 - 14i)z^2 - 2(5i + 12) = 0$.

3.
$$z^2 - 2\cos(\theta)z + 1 = 0$$
, avec $\theta \in \mathbb{R}$.

6*.
$$z^4 + z^2 - 1 + 3i = 0$$
.

Indication : pour les équations étoilées, faire un changement de variable.

2 Forme trigonométrique

Exercice 13.

1. Écrire les nombres complexes suivants sous forme algébrique :

a.
$$z_1 \coloneqq \mathrm{e}^{\mathrm{i} \frac{\pi}{3}}$$

b.
$$z_2 := \sqrt{2} e^{-i\frac{\pi}{4}}$$

c.
$$|z_3| = 7$$
 et $\arg(z_3) \equiv \frac{\pi}{6}$ (2π)

2. Déterminer le module et un argument des nombres complexes suivants :

a.
$$z_1 := 2\sqrt{3} - 2i$$

c.
$$z_3 := i - 1$$

e.
$$z_5 := \frac{-3\sqrt{3}-3i}{1+i}$$
.

b.
$$z_2 := -4$$

d.
$$z_4 := 2i(1+i)(1+i\sqrt{3})$$
. **f***. $z_6 := \sin(2) + i\cos(2)$.

2

$$f^*$$
. $z_6 := \sin(2) + i\cos(2)$

Exercice 14. Mettez sous forme algébrique les nombres complexes suivants :

1.
$$z_1 := (-1 + i)^{100}$$
.

3.
$$z_3 := (1 + i\sqrt{3})^8$$
.

2.
$$z_2 := \left(\frac{\sqrt{3} - i}{2}\right)^{200}$$
.

4.
$$z_4 := \left(\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\right)^6$$
.

Exercice 15^{*}. Représenter dans le plan complexe les ensembles suivants :

1.
$$E_1 := \{z \in \mathbb{C} \mid |z - 1 + 2i| = 3\}.$$

3.
$$E_3 := \{ z \in \mathbb{C} \mid z + \overline{z} = 4 \}.$$

2.
$$E_2 := \{z \in \mathbb{C} \mid \arg(z) \equiv \frac{\pi}{4} \mod \pi \}.$$

4.
$$E_4 := \{z \in \mathbb{C} \mid |z-1| = |z-i|\}.$$

Exercice 16. Soit $z_1 := 1 + i$ et $z_2 := \sqrt{3} - i$.

- 1. Calculer le module et un argument de z_1 et de z_2 .
- **2.** Donner les formes algébrique et trigonométrique du produit $z_1 z_2$.
- **3.** En déduire les valeurs exactes de $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$.

Exercice 17. Soit $\theta \in \mathbb{R}$. Déterminer le module et un argument des nombres complexes suivants, et les mettre sous forme trigonométrique.

1.
$$z := -e^{i\theta}$$
.

2.
$$w_{+} := \pm i e^{i\theta}$$
.

Exercice 18. Soit $z_1 := 2 + 2i\sqrt{3}$ et $z_2 := 2 - 2i\sqrt{3}$.

- **a.** Déterminer la forme trigonométrique des nombres z_1 et z_2 .
 - **b.** En déduire les racines carrées complexes de z_1 et de z_2 sous forme trigonométrique, puis sous forme algébrique.
- **a.** Déterminer les nombres complexes Z qui sont solutions de l'équation $Z^2 4Z + 16 = 0$. 2.
 - **b.** En déduire les nombres complexes z qui sont solutions de l'équation $z^4 4z^2 + 16 = 0$.

Exercice 19. Soit $\theta \in \mathbb{R}$.

1. Exprimer les nombres suivants en fonction de $cos(\theta)$ et $sin(\theta)$:

a.
$$cos(2\theta)$$
.

$$\mathbf{c}^{\star}$$
. $\cos(3\theta)\sin(4\theta)$.

b.
$$\sin(3\theta)$$
.

$$\mathbf{d}^{\star}$$
. $\sin(6\theta)$.

2. Linéariser les expressions trigonométriques suivantes :

a.
$$\cos^2(\theta)$$
.

$$\mathbf{c}^{\star}$$
. $\sin^4(\theta)$.

b.
$$\sin^3(\theta)$$
.

$$\mathbf{d}^{\star}$$
. $\sin^2(\theta)\cos^3(\theta)$.

Exercice 20. Soit $n \in \mathbb{N}$ et $\theta, \varphi \in \mathbb{R}$.

- **1.** Calculer la somme $E_n := \sum_{k=1}^{n} e^{i(\varphi + k\theta)}$.
- 2. En déduire la valeur des sommes :

a.
$$C_n \coloneqq \sum_{k=0}^n \cos(\varphi + k\theta)$$

b.
$$S_n := \sum_{k=0}^n \sin(\varphi + k\theta)$$
.

$$\mathbf{a.} \ \ C_n \coloneqq \sum_{k=0}^n \cos(\varphi + k\theta). \qquad \qquad \mathbf{b.} \ \ S_n \coloneqq \sum_{k=0}^n \sin(\varphi + k\theta). \qquad \qquad \mathbf{c^{\star}.} \ \ T_n \coloneqq \sum_{k=0}^n \cos^2(\varphi + k\theta).$$

Exercice 21. Soient $\theta, \varphi \in]-\pi, \pi[$. Déterminer le module et un argument des nombres complexes suivants :

1.
$$z_1 := 1 + e^{i\theta}$$
.

2.
$$z_2 := e^{i\theta} + e^{i\varphi}$$
.

3.
$$z_3 := i e^{i\theta} - e^{i\varphi}$$
.

Exercice 22. Démontrer que pour tous $z, w \in \mathbb{U}$ tel que $zw \neq -1$, on a :

$$\frac{z+w}{1+zw} \in \mathbb{R}.$$

Exercice 23. Soit $z \in \mathbb{U}$ tel que l'argument principal de z appartienne à $\left]0,\frac{\pi}{3}\right[$. Calculer le module et un argument de:

$$\frac{1+z^3}{z^2}.$$

3 Racines *n*-ièmes

Exercice 24. Déterminer les racines quatrièmes et sixièmes des nombres complexes suivants :

1.
$$z_1 := 1$$
.

3.
$$z_3 := -i$$
.

$$5^*. z_5 := \frac{1+i}{\sqrt{3}-i}.$$

2.
$$z_2 := -1$$
.

4.
$$z_4 := 1 + i$$
.

Exercice 25. Soient $n \in \mathbb{N}^*$ et $\theta \in \mathbb{R}$.

- **1.** Déterminer les nombres $w \in \mathbb{C}$ qui sont solutions de l'équation $w^2 2\sin(\theta)w + 1 = 0$.
- **2.** En déduire les nombres $z \in \mathbb{C}$ qui sont solutions de l'équation $z^{2n} 2\sin(\theta)z^n + 1 = 0$.

Exercice 26. Soit $\omega := e^{\frac{2i\pi}{5}}$.

- 1. Montrer que $\omega + \omega^4 = 2\cos(\frac{2\pi}{5})$ et $\omega^2 + \omega^3 = 2\cos(\frac{4\pi}{5})$.
- **2.** Montrer que $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$.
- **3.** En déduire que $\cos(\frac{2\pi}{5})$ est solution de l'équation $4x^2 + 2x 1 = 0$.
- **4.** Calculer les valeurs exactes de $\cos(\frac{2\pi}{5})$ et $\cos(\frac{4\pi}{5})$.

Exercice 27. Soient $n \in \mathbb{N}^*$ et $\omega \in \mathbb{U}_n \setminus \{1\}$.

- 1. Montrer que $\sum_{k=0}^{n-1} \omega^k = 0$.
- **2***. Calculer $S := \sum_{k=0}^{n-1} k\omega^k$. Indication : calculer $S \omega S$.