SEMINAR 7

1) Arătați că grupul abelian (\mathbb{R}_+^*,\cdot) este un \mathbb{R} -spațiu vectorial în raport cu operația externă * definită prin

$$\alpha * x = x^{\alpha}, \ \alpha \in \mathbb{R}, \ x \in \mathbb{R}_{+}^{*}.$$

2) Fie V un K-spaţiu vectorial şi M o mulţime. Să se arate că V^M este K-spaţiu vectorial în raport cu operațiile definite punctual în V^M , adică

$$(f+g)(x) = f(x) + g(x), \ (\alpha f)(x) = \alpha f(x), \ \forall f, g \in V^M, \ \forall \alpha \in K.$$

- 3) Poate fi organizată o mulțime finită M ca un spațiu vectorial peste un corp infinit K?
- 4) Fie $p \in \mathbb{N}$ prim. Poate fi organizat grupul abelian $(\mathbb{Z}, +)$ ca spațiu vectorial peste corpul $(\mathbb{Z}_p, +, \cdot)$?
- 5) Care dintre următoarele submulțimi sunt subspații în spațiile indicate alăturat:
 - a) $A = \{(x, y) \in \mathbb{R}^2 \mid ax + by = 0\}, (a, b \in \mathbb{R} \text{ fixate}) \text{ în } \mathbb{R}\mathbb{R}^2;$
 - b) $D = [-1, 1] \text{ în }_{\mathbb{R}}\mathbb{R};$
 - b') $D' = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ în \mathbb{R}^2 ;
 - b") $D'' = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 \le 1\}$ în \mathbb{R}^n ;
 - c) $P_n(\mathbb{R}) = \{ f \in \mathbb{R}[X] \mid \operatorname{grad} f \leq n \} \text{ în } \mathbb{R}[X] \ (n \in \mathbb{N} \text{ fixat});$
 - d) $B = \{ f \in \mathbb{R}[X] \mid \operatorname{grad} f = n \}$ în $\mathbb{R}[X]$ $(n \in \mathbb{N} \text{ fixat})$?
- 6) Fie V un K-spațiu vectorial, $A \leq_K V$ și $C_V A = V \setminus A$.
 - i) Este $C_V A$ subspațiu în $_K V$?
 - ii) Dar $C_V A \cup \{0\}$?