MATH3611: Higher Analysis Assignment 1

Name: Keegan Gyoery zID: z5197058

1. Claim: The set S of all eventually constant sequences of natural numbers is countable.

Proof: Define an eventually constant sequence of natural numbers as $\{x_k\}_{k=0}^{\infty}$, where $x_k \in \mathbb{N}$, and $x_k = x_{k+1} \ \forall k \geq K \in \mathbb{N}$. Now, let $S_n \subset S$ be the set of all eventually constant sequences of natural numbers that become constant once K = n. Thus, $S_n = \{\{x_k\}_{k=0}^{\infty} \mid x_k = x_{k+1} \ \forall k \geq n\}$. Consider the sequence $s \in S_n$ where $s = (s_0, s_1, s_2, \dots, s_{n-1}, s_n, s_n, \dots)$, and consider the function $f: S_n \to \mathbb{N}^{n+1}$ defined by

$$f(s) = (s_0, s_1, s_2, \dots, s_{n-1}, s_n).$$

To see that f is injective, consider $s,t\in S$ such that $s=(s_0,s_1,s_2,\ldots,s_{l-1},s_l,s_l,\ldots)$, and $t=(t_0,t_1,t_2,\ldots,t_{m-1},t_m,t_m,\ldots)$. Suppose that f(s)=f(t). Clearly, the sequences must become eventually constant at l=m=n. Furthermore, $s_i=t_i, \ \forall i\in \mathbb{N}$ and $i\leq n$. Thus s=t, and so $f:S_n\hookrightarrow \mathbb{N}^{n+1}$.

In lectures it was shown inductively that the set \mathbb{N}^{n+1} was countable. Thus, $|S_n| \leq |\mathbb{N}^{n+1}| \leq |\mathbb{N}|$. The set S is then simply the union of all countable sets S_n , where $n \in \mathbb{N}$, that is

$$S = \bigcup_{n \in \mathbb{N}} S_n.$$

From lectures, a countable union of countable sets is countable, and so S is countable.

2. Claim: The set T of all sequences of rational numbers which converge to 3 is uncountable.

Proof: Define the set B of infinite binary strings, $B = \{b_1b_2 \dots b_i \dots \mid b_i \in \{0,1\}\}$. Furthermore, define $T_b = \left\{\left\{3 + \frac{b_i}{i}\right\}_{i=1}^{\infty} \mid b_i \in \{0,1\}, i \in \mathbb{Z}^+\right\}$, which is a proper subset of T as $\lim_{i \to \infty} \left(3 + \frac{b_i}{i}\right) = 3$, and is right hand convergence. Thus $T_b \subset T$. Consider the infinite binary string $b \in B$ where $b = b_1b_2 \dots b_i \dots$, and consider the function $f: B \to T_b$ defined by

$$f(b) = \left\{3 + \frac{b_i}{i}\right\}_{i=1}^{\infty}.$$

To see that f is injective, consider $c, d \in T_b$ such that $c = c_1 c_2 \dots c_i \dots$, and $d = d_1 d_2 \dots d_i \dots$ Suppose that f(c) = f(d). Thus $3 + c_i/i = 3 + d_i/i$ and so $c_i = d_i \ \forall i \in \mathbb{N}$. Thus c = d, and so $f : B \hookrightarrow T_b$.

In lectures, we proved that there exists a bijection $g:B\to\mathbb{P}(\mathbb{N})$. Thus, $|B|=|\mathbb{P}(\mathbb{N})|$. Furthermore, we also proved that $|\mathbb{P}(\mathbb{N})|>|\mathbb{N}|$, and thus B is uncountable. As we have the injection $f:B\hookrightarrow T_b$, clearly $|B|\leq |T_b|$. Finally, as $T_b\subset T$, we have $|T_b|<|T|$. Hence, $|T|>|\mathbb{N}|$ and so the set T is uncountable.