Constraint-based Modeling of Cellular Networks

Exercise 3 – Linear optimization

3. 11. 2022

Translate text into LP model

- Two products pants and jackets
- Material: cotton and polyester

To manufacture one pant or one jacket (i.e. 1 unit), following quantities are required:

- Each unit of pants requires 1m² of cotton and 2m² of polyester
- Each unit of jackets requires 1.5m² of cotton and 1m² of polyester

The manufacturer has a total 750m² of cotton and 1000m² of polyester. The price is fixed at

- 50€ per pant
- 40€ per jacket

What is the number of pants and jackets that the manufacturer must produce to obtain a maximum sale?

Translate text into LP model

- Two products pants and jackets
- Material: cotton and polyester

To manufacture one pant or one jacket (i.e. 1 unit), following quantities are required:

s.t.

- Each unit of pants requires 1m² of cotton and 2m² of polyester
- Each unit of jackets requires 1.5m² of cotton and 1m² of polyester

The manufacturer has a total 750m² of cotton and 1000m² of polyester. The price is fixed at

- 50€ per pant
- 40€ per jacket

What is the number of pants and jackets that the manufacturer must produce to obtain a maximum sale?

objective

Q1: What are our variables? Q2: What constrains the variables?

- Two products pants and jackets
- Material: cotton and polyester

To manufacture one pant or one jacket (i.e. 1 unit), following quantities are required:

- Each unit of pants requires 1m² of cotton and 2m² of polyester
- Each unit of jackets requires 1.5m² of cotton and 1m² of polyester

The manufacturer has a total 750m² of cotton and 1000m² of polyester. The price is fixed at

- 50€ per pant
- 40€ per jacket

What is the number of pants and jackets that the manufacturer must produce to obtain a maximum sale?

objective

s.t.

Q1: What are our variables? Q2: What constrains the variables?

- Two products pants (P) and jackets (J)
- Material: cotton and polyester

To manufacture one pant or one jacket (i.e. 1 unit), following quantities are required:

- Each unit of pants requires 1m² of cotton and 2m² of polyester
- Each unit of jackets requires 1.5m² of cotton and 1m² of polyester

The manufacturer has a total 750m² of cotton and 1000m² of polyester. The price is fixed at

- 50€ per pant
- 40€ per jacket

What is the number of pants and jackets that the manufacturer must produce to obtain a maximum sale?

objective

s.t.

Q1: What are our variables? Q2: What constrains the variables?

- Two products pants (P) and jackets (J)
- Material: cotton and polyester

To manufacture one pant or one jacket (i.e. 1 unit), following quantities are required:

- Each unit of pants requires 1m² of cotton and 2m² of polyester
- Each unit of jackets requires 1.5m² of cotton and 1m² of polyester

The manufacturer has a total 750m² of cotton and 1000m² of polyester. The price is fixed at

- 50€ per pant
- 40€ per jacket

What is the number of pants and jackets that the manufacturer must produce to obtain a maximum sale?

s.t.

obiective

Availability of material constrains product production

- Two products pants (P) and jackets (J)
- Material: cotton and polyester

To manufacture one pant or one jacket (i.e. 1 unit), following quantities are required:

- Each unit of pants requires 1m² of cotton and 2m² of polyester
- Each unit of jackets requires 1.5m² of cotton and 1m² of polyester

The manufacturer has a total 750m² of cotton and 1000m² of polyester. The price is fixed at

- 50€ per pant
- 40€ per jacket

What is the number of pants and jackets that the manufacturer must produce to obtain a maximum sale?

Availability of material constrains product production

- Two products pants (P) and jackets (J)
- Material: cotton and polyester

To manufacture one pant or one jacket (i.e. 1 unit), following quantities are required:

- Each unit of pants requires 1m² of cotton and 2m² of polyester
- Each unit of jackets requires 1.5m² of cotton and 1m² of polyester

The manufacturer has a total 750m² of cotton and 1000m² of polyester. The price is fixed at

- 50€ per pant
- 40€ per jacket

What is the number of pants and jackets that the manufacturer must produce to obtain a maximum sale?

s.t.

1*P + 1.5*J ≤ 750 (cotton) ? ≤ 1000 (polyester)

objective

Availability of material constrains product production

- Two products pants (P) and jackets (J)
- Material: cotton and polyester

To manufacture one pant or one jacket (i.e. 1 unit), following quantities are required:

- Each unit of pants requires 1m² of cotton and 2m² of polyester
- Each unit of jackets requires 1.5m² of cotton and 1m² of polyester

The manufacturer has a total 750m² of cotton and 1000m² of polyester. The price is fixed at

- 50€ per pant
- 40€ per jacket

What is the number of pants and jackets that the manufacturer must produce to obtain a maximum sale?

s.t.

 $1*P + 1.5*J \le 750$ (cotton) $2*P + 1*J \le 1000$ (polyester) objective

Lower and upper bounds

- Two products pants (P) and jackets (J)
- Material: cotton and polyester

To manufacture one pant or one jacket (i.e. 1 unit), following quantities are required:

- Each unit of pants requires 1m² of cotton and 2m² of polyester
- Each unit of jackets requires 1.5m² of cotton and 1m² of polyester

The manufacturer has a total 750m² of cotton and 1000m² of polyester. The price is fixed at

- 50€ per pant
- 40€ per jacket

What is the number of pants and jackets that the manufacturer must produce to obtain a maximum sale?

 $\max z = 50 P + 40 J$

objective

s.t.

$$1*P + 1.5*J \le 750$$
 (cotton)
 $2*P + 1*J \le 1000$ (polyester)
 $P \ge 0$
 $J \ge 0$

The objective

- Two products pants and jackets
- Material: cotton and polyester

To manufacture one pant or one jacket (i.e. 1 unit), following quantities are required:

- Each unit of pants requires 1m² of cotton and 2m² of polyester
- Each unit of jackets requires 1.5m² of cotton and 1m² of polyester

The manufacturer has a total 750m² of cotton and 1000m² of polyester. The price is fixed at

- 50€ per pant
- 40€ per jacket

What is the number of pants and jackets that the manufacturer must produce to obtain a maximum sale?

objective

s.t.

$$1*P + 1.5*J \le 750$$
 (cotton)
 $2*P + 1*J \le 1000$ (polyester)
 $P \ge 0$
 $J \ge 0$

The objective

- Two products pants (P) and jackets (J)
- Material: cotton and polyester

To manufacture one pant or one jacket (i.e. 1 unit), following quantities are required:

- Each unit of pants requires 1m² of cotton and 2m² of polyester
- Each unit of jackets requires 1.5m² of cotton and 1m² of polyester

The manufacturer has a total 750m² of cotton and 1000m² of polyester. The price is fixed at

- 50€ per pant
- 40€ per jacket

What is the number of pants and jackets that the manufacturer must produce to obtain a maximum sale?

 $\max z = 50 P + 40 J$

s.t.

 $1*P + 1.5*J \le 750$ (cotton) $2*P + 1*J \le 1000$ (polyester) $P \ge 0$ $J \ge 0$ objective

Graphical solution

$$\max z = 50 P + 40 J$$

$$1*P + 1.5*J \le 750$$
 (cotton)
 $2*P + 1*J \le 1000$ (polyester)
 $P \ge 0$
 $J \ge 0$

Graphical solution

$$\max z = 50 P + 40 J$$

$$1*P + 1.5*J \le 750$$
 (cotton)
 $2*P + 1*J \le 1000$ (polyester)
 $P \ge 0$
 $J \ge 0$

$$\max z = 50 P + 40 J$$

$$\max z = 50 P + 40 J$$

$$1*P + 1.5*J \le 750$$
 (cotton)
 $2*P + 1*J \le 1000$ (polyester)
 $P \ge 0$
 $J \ge 0$

Graphical solution – solution space

$$z(P,J) = 50*P + 40*J$$
 (objective function)

$$z(0,500) = 50*0 + 40*500 = 20\ 000$$
€

The optimal sale is achieved if 375 pants and 250 jackets are produced.

Q: Is the optimal solution unique?

-> price change from 50€ and 40€ for pants and jackets to 20€ and 30€, respectively

$$z(P,J) = 20*P + 30*J$$

$$z(0,500) = 20*0 + 30*500 =$$

$$z(500,0) = 20*500 + 30*0 =$$

$$z(375,250) = 20*375 + 30*250 =$$

-> price change from 50€ and 40€ for pants and jackets to 20€ and 30€, respectively

$$z(P,J) = 20*P + 30*J$$

Q: What is the optimal solution?

-> price change from 50€ and 40€ for pants and jackets to 20€ and 30€, respectively

$$z(P,J) = 20*P + 30*J$$

All pairs of integer values on the segment in green would give the same optimal sale!

Solving LP using Simplex

Reformulation into system of equalities!

```
max z = 50*P + 40*J (OBJECTIVE - MAXIMIZE PROFIT) s.t.

1*P + 1.5*J <= 750 (AVAILABILITY OF COTTON CONSTRAINT)

2*P + 1*J <= 1000 (AVAILABILITY OF POLYESTER CONSTRAINT)

P >= 0

J >= 0
```

To use simplex we first convert all inequalities to equalities.

Solving LP using Simplex

Reformulation into system of equalities!

```
max z = 50*P + 40*J (OBJECTIVE - MAXIMIZE PROFIT) s.t. 

1*P + 1.5*J <= 750 (AVAILABILITY OF COTTON CONSTRAINT) 

2*P + 1*J <= 1000 (AVAILABILITY OF POLYESTER CONSTRAINT) 

P >= 0 

J >= 0
```

To use simplex we first convert all inequalities to equalities.

```
Row 1: z - 50*P - 40*J - 0*s - 0*t = 0
Row 2: 1*P + 1.5*J + s = 750 (less than --> + slack, greater than --> - slack)
Row 3: 2*P + 1*J + t = 1000
P,J,s,t>=0
```

Initial tableau

Basic variable: variable isolated in a constraint that can be set to the right-hand side of that constraint

Row number	Basic variable	Z	P	J	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	-50	-40	0	0	0	
2	S	0	1	1.5	1	0	750	
3	t	0	2	1	0	1	1000	

Basic columns

Optimality conditions:

- 1. The objective row of the tableau is 0 in the basic columns, except for z
- 2. There is no negative entry in the objective row

Identify entering variable

Basic variable: variable isolated in a constraint that can be set to the right-hand side of that constraint Nonbasic variable which is associated the most negative (for maximization) coefficient in the objective

Row number	Basic variable	z	P	J	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	-50	-40	0	0	0	
2	S	0	1	1.5	1	0	750	
3	t	0	2	1	0	1	1000	

Identify leaving variable

- Basic variable: variable isolated in a constraint that can be set to the right-hand side of that constraint
- Entering variable: nonbasic variable which is associated the most negative (for maximization) coefficient in the objective
- Leaving variable: variable which will be changed from a non-zero to zero value in the next solution
 -> choose the one that has smallest upper bound on entering variable

Row number	Basic variable	z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	-50	-40	0	0	0	
2	S	0	1	1.5	1	0	750	750/1=750
3	t	0	2	1	0	1	1000	1000/2=500

Identify leaving variable

- Basic variable: variable isolated in a constraint that can be set to the right-hand side of that constraint
- Entering variable: nonbasic variable which is associated the most negative (for maximization) coefficient in the objective
- Leaving variable: variable which will be changed from a non-zero to zero value in the next solution
 -> choose the one that has smallest upper bound entering variable

Row number	Basic variable	z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	-50	-40	0	0	0	
2	S	0	1	1.5	1	0	750	750/1=750
3	t	0	2	1	0	1	1000	1000/2=500

Identify leaving variable

- Basic variable: variable isolated in a constraint that can be set to the right-hand side of that constraint
- Entering variable: nonbasic variable which is associated the most negative (for maximization) coefficient in the objective
- Leaving variable: variable which will be changed from a non-zero to zero value in the next solution
 -> choose the one that has smallest upper bound entering variable

Row number	Basic variable	z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	-50	-40	0	0	0	
2	S	0	1	1.5	1	0	750	750/1=750
3	t	0	2	1	0	1	1000	1000/2=500

- Enter the basic variable for the second tableau.
- Update the coefficients of the tableau

Row number	Basic variable	z	Р	J	s	t	Right- hand side	Upper bound on entering variable
1	Z	1	-50	-40	0	0	0	
2	S	0	1	1.5	1	0	750	750
3	t	0	2	1	0	1	1000	500

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1			0					
2			0					
3	Р	0	1	1/2	0	1/2	500	

Becomes basic variable

- Enter the basic variable for the second tableau.
- Update the coefficients of the tableau

Row number	Basic variable	Z	P	J	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	-50	-40	0	0	0	
2	S	0	1	1.5	1	0	750	750
3	t	0	2	1	0	1	1000	500

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0		0			
2	S	0	0		1			
3	Р	0	1	1/2	0	1/2	500	

Becomes basic variable

- Enter the basic variable for the second tableau.
- Update the coefficients of the tableau $(T2(i,j) = T1(i,j) \frac{T1(i,entering \, variable)}{T1(i,entering \, variable)} * T2(leaving \, variable,j))$

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0		0			
2	S	0	0		1			
3	Р	0	1	1/2	0	1/2	500	

Initial
tableau

Row number	Basic variable	z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	-50	-40	0	0	0	
2	S	0	1	1.5	1	0	750	750
3	t	0	2	1	0	1	1000	500

- Enter the basic variable for the second tableau.
- Update the coefficients of the tableau (T2(i,j) = T1(i,j) T1(i,entering variable) * T2(leaving variable,j))

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15 = -40 -(-50*1/2)	0			
2	S	0	0		1			
3	Р	0	1	1/2	0	1/2	500	

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	z	1	-50	-40	0	0	0	
2	S	0	1	1.5	1	0	750	750
3	t	0	2	1	0	1	1000	500

- Enter the basic variable for the second tableau.
- Update the coefficients of the tableau (T2(i,j) = T1(i,j) T1(i,entering variable) * T2(leaving variable,j))

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15 = -40 -(-50*1/2)	0			
2	S	0	0	1 = 1.5 -(1*1/2)	1			
3	Р	0	1	1/2	0	1/2	500	

Initial
tableau

_	Row number	Basic variable	z	P	J	S	t	Right-hand side	Upper bound on entering variable
	1	Z	1	-50	-40	0	0	0	
	2	S	0	1	1.5	1	0	750	750
	3	t	0	2	1	0	1	1000	500

- Enter the basic variable for the second tableau.
- Update the coefficients of the tableau $(T2(i,j) = T1(i,j) \frac{T1(i,entering \, variable)}{T1(i,entering \, variable)} * T2(leaving \, variable,j))$

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15 = -40 -(-50*1/2)	0	25 = 0 -(-50*1/2)		
2	S	0	0	1 = 1.5 -(1*1/2)	1			
3	Р	0	1	1/2	0	1/2	500	

Initial
tableau
tabicaa

	Row number	Basic variable	z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	L	Z	1	-50	-40	0	0	0	
2	2	S	0	1	1.5	1	0	750	750
3	3	t	0	2	1	0	1	1000	500

- Enter the basic variable for the second tableau.
- Update the coefficients of the tableau $(T2(i,j) = T1(i,j) \frac{T1(i,entering \, variable)}{T1(i,entering \, variable)} * T2(leaving \, variable,j))$

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15 = -40 -(-50*1/2)	0	25 = 0 -(-50*1/2)		
2	S	0	0	1 = 1.5 -(1*1/2)	1	-1/2 = 0 -(1*1/2)		
3	Р	0	1	1/2	0	1/2	500	

Initial
tableau

_	Row number	Basic variable	z	P	J	S	t	Right-hand side	Upper bound on entering variable
	1	Z	1	-50	-40	0	0	0	
	2	S	0	1	1.5	1	0	750	750
	3	t	0	2	1	0	1	1000	500

- Enter the basic variable for the second tableau.
- Update the coefficients of the tableau $(T2(i,j) = T1(i,j) \frac{T1(i,entering \, variable)}{T1(i,entering \, variable)} * T2(leaving \, variable,j))$

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15 = -40 -(-50*1/2)	0	25 = 0 -(-50*1/2)	25000 = 0 -(-50*500)	
2	S	0	0	1 = 1.5 -(1*1/2)	1	-1/2 = 0 -(1*1/2)		
3	Р	0	1	1/2	0	1/2	500	

Initial
tableau
tabicaa

_	Row number	Basic variable	z	P	J	S	t	Right-hand side	Upper bound on entering variable
	1	Z	1	-50	-40	0	0	0	
	2	S	0	1	1.5	1	0	750	750
	3	t	0	2	1	0	1	1000	500

- Enter the basic variable for the second tableau.
- Update the coefficients of the tableau $(T2(i,j) = T1(i,j) \frac{T1(i,entering \, variable)}{T1(i,entering \, variable)} * T2(leaving \, variable,j))$

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15 = -40 -(-50*1/2)	0	25 = 0 -(-50*1/2)	25000 = 0 -(-50*500)	
2	S	0	0	1 = 1.5 -(1*1/2)	1	-1/2 = 0 -(1*1/2)	250 = 750 -(1*500)	
3	Р	0	1	1/2	0	1/2	500	

Initial
tableau

Row number	Basic variable	z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	-50	-40	0	0	0	
2	S	0	1	1.5	1	0	750	750
3	t	0	2	1	0	1	1000	500

Optimality conditions:

- 1. The objective row of the tableau is 0 in the basic columns
- 2. There is no negative entry in the objective row

Row number	Basic variable	Z	P	J	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	0	-15	0	25	25000	
2	S	0	0	1	1	-1/2	250	
3	Р	0	1	1/2	0	1/2	500	

Identify entering and leaving variable

- Basic variable: variable isolated in a constraint that can be set to the right-hand side of that constraint
- Entering variable: nonbasic variable which is associated the most negative (for maximization) coefficient in the objective
- Leaving variable: variable which will be changed from a non-zero to zero value in the next solution
 -> choose the one that has smallest upper bound on entering variable

Row number	Basic variable	z	Р	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15	0	25	25000	
2	S	0	0	1	1	-1/2	250	250/1 = 250
3	Р	0	1	1/2	0	1/2	500	500/0.5 = 1000

• Enter the basic variable for the new tableau.

Row number	Basic variable	z	P	J	S	t	Right- hand side	Upper bound on entering variable
1				0				
2	J	0		1	1	-1/2	250	
3				0				

previous
tableau

Row number	Basic variable	z	Р	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15	0	25	25000	
2	S	0	0	1	1	-1/2	250	250
3	Р	0	1	1/2	0	1/2	500	1000

• Enter the basic variable for the new tableau.

Row number	Basic variable	z	P	J	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	0	0				
2	J	0	0	1	1	-1/2	250	
3	Р	0	1	0				

previous
tableau

Row number	Basic variable	z	Р	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15	0	25	25000	
2	S	0	0	1	1	-1/2	250	250
3	Р	0	1	1/2	0	1/2	500	1000

Row number	Basic variable	Z	P	J	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	0	0	15 = 0 -(-15*1)			
2	J	0	0	1	1	-1/2	250	
3	Р	0	1	0				

previous
tableau

Row number	Basic variable	Z	Р	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15	0	25	25000	
2	S	0	0	1	1	-1/2	250	250
3	Р	0	1	1/2	0	1/2	500	1000

Row number	Basic variable	Z	P	J	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	0	0	15 = 0 -(-15*1)			
2	J	0	0	1	1	-1/2	250	
3	Р	0	1	0	-1/2 = 0 -(1/2*1)			

previous
tableau

_	Row number	Basic variable	Z	Р	J	S	t	Right-hand side	Upper bound on entering variable
	1	Z	1	0	-15	0	25	25000	
	2	S	0	0	1	1	-1/2	250	250
	3	Р	0	1	1/2	0	1/2	500	1000

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	0	15 = 0 -(-15*1)	17.5 = 25 -(-15*-1/2)		
2	J	0	0	1	1	-1/2	250	
3	Р	0	1	0	-1/2 = 0 -(1/2*1)			

previous
tableau

Row number	Basic variable	z	Р	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15	0	25	25000	
2	S	0	0	1	1	-1/2	250	250
3	Р	0	1	1/2	0	1/2	500	1000

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	0	15 = 0 -(-15*1)	17.5 = 25 -(-15*-1/2)		
2	J	0	0	1	1	-1/2	250	
3	Р	0	1	0	-1/2 = 0 -(1/2*1)	1/4 = 0 -(1/2*-1/2)		

previous
tableau

Row number	Basic variable	Z	Р	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15	0	25	25000	
2	S	0	0	1	1	-1/2	250	250
3	Р	0	1	1/2	0	1/2	500	1000

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	0	15 = 0 -(-15*1)	17.5 = 25 -(-15*-1/2)	28750 = 25000-(-15*250)	
2	J	0	0	1	1	-1/2	250	
3	Р	0	1	0	-1/2 = 0 -(1/2*1)	1/4 = 0 -(1/2*-1/2)		

previous
tableau

_	Row number	Basic variable	Z	Р	J	S	t	Right-hand side	Upper bound on entering variable
	1	Z	1	0	-15	0	25	25000	
	2	S	0	0	1	1	-1/2	250	250
	3	Р	0	1	1/2	0	1/2	500	1000

Row number	Basic variable	Z	P	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	0	15 = 0 -(-15*1)	17.5 = 25 -(-15*-1/2)	28750 = 25000-(-15*250)	
2	J	0	0	1	1	-1/2	250	
3	Р	0	1	0	-1/2 = 0 -(1/2*1)	1/4 = 0 -(1/2*-1/2)	375 = 500-(1/2*250)	

previous
tableau

Row number	Basic variable	Z	Р	J	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-15	0	25	25000	
2	S	0	0	1	1	-1/2	250	250
3	Р	0	1	1/2	0	1/2	500	1000

Optimality conditions

- ✓ The objective row of the tableau is 0 in the basic columns
- ✓ There is no negative entry in the objective row

Row number	Basic variable	Z	P	J	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	0	0	15	17.5	28750	
2	J	0	0	1	1	-1/2	250	
3	Р	0	1	0	-1/2	1/4	375	

Solution: P = ?, J = ?, z = ?

Optimality conditions

- ✓ The objective row of the tableau is 0 in the basic columns
- ✓ There is no negative entry in the objective row

Row number	Basic variable	Z	P	J	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	0	0	15	17.5	28750	
2	J	0	0	1	1	-1/2	250	
3	Р	0	1	0	-1/2	1/4	375	

Solution: P = 375, J = 250, z = 28750

```
\max z = c^T x
s.t.
```

$$Ax = b$$
$$lb \le x \le ub$$

```
\max z = 50 P + 40 J
```

$$1*P + 1.5*J \le 750$$
 (cotton)
 $2*P + 1*J \le 1000$ (polyester)
 $P \ge 0$
 $J \ge 0$

$$\max z = c^T x \qquad \max z = [50 \quad 40] \begin{bmatrix} P \\ J \end{bmatrix}$$

s. t.
$$Ax = b$$

 $lb \le x \le ub$

```
\max z = 50 P + 40 J
```

$$1*P + 1.5*J \le 750$$
 (cotton)
 $2*P + 1*J \le 1000$ (polyester)
 $P \ge 0$
 $J \ge 0$

$$\max z = c^T x$$

$$\max z = \begin{bmatrix} 50 & 40 \end{bmatrix} \begin{vmatrix} P \\ J \end{vmatrix}$$

s.t.

$$Ax = b$$

$$\begin{bmatrix} P \\ J \end{bmatrix} = \begin{bmatrix} 750 \\ 1000 \end{bmatrix}$$

 $lb \le x \le ub$

```
\max z = 50 P + 40 J
```

$$1*P + 1.5*J \le 750$$
 (cotton)
 $2*P + 1*J \le 1000$ (polyester)
 $P \ge 0$
 $J \ge 0$

$$\max z = c^{T}x \qquad \max z = \begin{bmatrix} 50 & 40 \end{bmatrix} \begin{bmatrix} P \\ J \end{bmatrix}$$

$$s. t. \qquad s. t.$$

$$Ax = b \qquad \begin{bmatrix} 1 & 1.5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} P \\ J \end{bmatrix} \le \begin{bmatrix} 750 \\ 1000 \end{bmatrix}$$

$$lb \le x \le ub \qquad \begin{bmatrix} 0 \\ 0 \end{bmatrix} \le \begin{bmatrix} P \\ J \end{bmatrix} \le \begin{bmatrix} Inf \\ Inf \end{bmatrix}$$

 $\max z = 50 P + 40 J$

$$1*P + 1.5*J \le 750$$
 (cotton)
 $2*P + 1*J \le 1000$ (polyester)
 $P \ge 0$
 $J \ge 0$

$$\max z = c^{T}x \qquad \max z = \begin{bmatrix} 50 & 40 \end{bmatrix} \begin{bmatrix} P \\ J \end{bmatrix}$$

$$s. t. \qquad s. t.$$

$$Ax = b \qquad \begin{bmatrix} 1 & 1.5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} P \\ J \end{bmatrix} \le \begin{bmatrix} 750 \\ 1000 \end{bmatrix}$$

$$x \ge 0 \qquad \begin{bmatrix} 0 \\ 0 \end{bmatrix} \le \begin{bmatrix} P \\ J \end{bmatrix} \le \begin{bmatrix} Inf \\ Inf \end{bmatrix}$$

```
\max z = 50 P + 40 J
```

$$1*P + 1.5*J \le 750$$
 (cotton)
 $2*P + 1*J \le 1000$ (polyester)
 $P \ge 0$
 $J \ge 0$

The *linprog* solver

- part of the MATLAB Optimization Toolbox
- function definition: [x,fval,exitflag] = linprog(f,A,b,Aeq,beq,lb,ub)

argument	definition	Size
f	defines the objective (see c from our example)	n x 1
Α	matrix encoding inequality constraints (≤)	m x n
b	Right-hand side vector for inequality constraints	m x 1
Aeq	matrix encoding equality constraints (=)	m' x n
beq	Right-hand side vector for equality constraints	b' x 1
lb	lower limits (bounds) for all variables	n x 1
ub	upper limits (bounds) for all variables	n x 1
argument	definition	Size
X	Solution vector	n x 1
fval	Objective value at solution, fval = $f'*x$	1 x 1
exitflag	Integer indicating reason of termination	1 x 1

$$\min_{x} f^{T} \cdot x$$

$$s.t.$$

$$A \cdot x \leq b$$

$$Aeq \cdot x = beq$$

$$lb \leq x \leq ub$$

- all inequalities must be reformulated to the form: $A x \le b$ examples:
- $5x + 3y \ge 60$

•
$$5x + 3y \ge 60$$

$$==> -5x - 3y \le -60$$

• all inequalities must be reformulated to the form: $A x \le b$ examples:

•
$$5x + 3y \ge 60$$

$$==> -5x - 3y \le -60$$

• x ≤ 100y

•
$$5x + 3y \ge 60$$

$$==> -5x - 3y \le -60$$

$$==> x - 100y \le 0$$

•
$$5x + 3y \ge 60$$

$$==> -5x - 3y \le -60$$

$$==> x - 100y \le 0$$

•
$$x \ge -100 \text{ (y-1)}$$

•
$$5x + 3y \ge 60$$

$$==> -5x - 3y \le -60$$

$$==> x - 100y \le 0$$

•
$$x \ge -100 \text{ (y-1)}$$

$$==> -100y - x \le -100$$

linprog arguments for our problem

function definition: x = linprog(f,A,b,Aeq,beq,lb,ub)

- f =
- A =
- b =
- Aeq =
- beq =
- lb =
- ub =

```
\min_{x} f^{T} \cdot x
s. t.
A \cdot x \leq b
Aeq \cdot x = beq
lb \leq x \leq ub
```

linprog arguments for our problem

function definition: x = linprog(f,A,b,Aeq,beq,lb,ub)

```
• f = [-50; -40]; \rightarrow f \cdot (-1) needed since linprog minimizes by default, but we want to maximize
```

• b = [750; 1000];

2 1];

- Aeq = [];
- beq = [];
- lb = [0; 0];
- ub = [1000; 1000] (arbitrary large number which does not further constrain the solution)

```
\min_{x} f^{T} \cdot x
s. t.
A \cdot x \leq b
Aeq \cdot x = beq
lb \leq x \leq ub
```