Es01A: Uso dello strumento Analog Discovery 2.

Gruppo 1.AC Matteo Rossi, Bernardo Tomelleri

11 ottobre 2021

2 Utilizzo del canale di alimentazione e del multimetro

2.d Accensione diodo

La tensione di alimentazione è stata variata nell'intervallo tra 0.5 V e 5 V

Si osserva che la luminosità del diodo è proporzionale alla tensione erogata dal generatore, una volta superata una tensione di soglia per cui il LED inizia a emettere luce di intensità osservabile. La tensione di soglia varia per i diversi colori; in particolare V_{γ} risulta proporzionale alla frequenza del colore di luce emessa. Dunque rosso < giallo < verde < blu.

2.e Misura tensione

Utilizzando il multimetro si misura la resistenza e la tensione ai capi del diodo e si ottiene:

$\boxed{ \text{R1} = 217 \pm 3\Omega }$							
V+	σ V+	VD	$\sigma \text{ VD}$	I(R1)	σ I(R1)		
2.51	0.02	1.852	0.009	3.03	0.17		
2.51	0.02	1.931	0.009	2.67	0.17		
3.98	0.02	2.65	0.02	6.13	0.26		
3.98	0.02	2.76	0.02	5.62	0.25		

Tabella 1: (2.e) Dall'alto al basso tensione e corrente ai capi dei diodi R-Y-G-B misurata con la stessa ddp in ingresso al circuito $V+\approx 2.5~V$. Tutte le tensioni in V e intensità di corrente in mA.

3 Uso generatore di forme d'onda

Con un'onda quadra di frequenza $\sim 10 \rm Hz$, ampiezza $\sim 2 \rm V$ e componente DC $\sim +2 \rm V$ in ingresso alla serie di $R_1 + \rm LED$ rosso si vede bene come la tensione ai capi del diodo non si discosti molto dalla tensione di accensione $V_{\gamma} \approx 1.85 \rm V$ anche quando la tensione in ingresso $V_{+} \approx 2 \rm V$ (cioè quando l'onda quadra è in alto) è sensibilmente superiore. In accordo con quanto previsto dalla legge di Shockley per il diodo a giunzione ideale.

$$I_D = I_0 \left(e^{\frac{V_D}{\eta V_T}} - 1 \right) \tag{1}$$

Le bande semitrasparenti nelle tracce dei segnali indicano rumore a frequenza più alta del sampling rate $f_s \approx 16 \mathrm{kHz}$. Su entrambi i canali si riesce infatti ad apprezzare come nel salto discontinuo dell'onda quadra l'ampiezza superi il valore costante sul semiperiodo per via del fenomeno di Gibbs.

4 Oscilloscopio

4.e Uso del trigger

Quando la tensione di soglia del trigger (indicata dal triangolo giallo a destra) incontra almeno un fronte di salita del segnale ai capi del diodo (CH1) la traccia rimane stabile sullo schermo. Mentre per valori di soglia > 2 V o negativi la traccia viene disegnata ogni volta che il circuito di trigger è autonomamente attivato dall'oscilloscopio, per cui il segnale sembra spostarsi in maniera irregolare sullo schermo.

Figura 1: (3.b) Onda quadra in ingresso $f \approx 10$ Hz al diodo.

Si nota immediatamente come la tensione ai capi del diodo cresca di pari passo con l'onda triangolare fino a quando la tensione di alimentazione raggiunge la tensione di soglia V_{γ} del LED rosso. Una volta superata V_{γ} è la caduta di tensione sulla resistenza (CH2) a seguire il profilo dell'onda triangolare, mentre la tensione ai capi del diodo cresce molto lentamente; sempre secondo il modello di Shockley in maniera simile ad un logaritmo.

Figura 2: (4.e) Relazione tra trigger e segnale

4.f Misura tensione massima ai capi del diodo

La tensione massima ai capi del diodo misurata con i cursori risulta essere $V_{\rm MAX}=(2.0\pm0.1)\,{\rm V}$. La funzione di misura automatica fornisce il valore $V_{\rm AUTO}=1.975\,{\rm V}$

Le due misure sono compatibili, ma la seconda è notevolmente più precisa di quella fatta ad occhio guardando la t<u>raccia sullo schermo.</u>

Inserire commento sulla accuratezza della misura.

5 Caratteristica del diodo

5.c Caratteristica del diodo

Figura 3: (5.c) Caratteristica corrente-tensione del diodo in modalità XY

5.d Fit curva del diodo

Figura 4: (2.b) Grafico I_D vs. ${\cal V}_D$ e fit all'equazione di Schockley

6 Partitore

6.b Partitore con resistenze da 1k

Si realizza un partitore con resistenze da 1 k Ω . Valori misurati con il multimetro: R1=993 ± 8 Ω , R2=993 ± 8 Ω

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	$\sigma \text{ VOUT/VIN}$
1.000	0.005	0.500	0.003	0.500	0.008
2.00	0.02	1.000	0.005	0.500	0.011
3.00	0.02	1.500	0.008	0.500	0.008
4.00	0.03	2.00	0.02	0.500	0.012

Tabella 2: (6.b) Partitore di tensione con resistenze da circa 1k. Tutte le tensioni in V.

I valori di attenuazione attesi per il partitore risultano compatibili con quelli misurati per tutti i valori di tensione compresi nell'intervallo esplorato (1-4 V.)

6.d Partitore con resistenze da circa 1M

Si realizza un partitore con resistenze da 1 M Ω . Valori misurati con il multimetro: R1=993±8 k Ω , R2=996±8 k Ω

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN
1.000	0.005	0.481	0.003	0.481	0.008
2.00	0.02	0.955	0.005	0.478	0.011
3.00	0.02	1.431	0.007	0.477	0.008
4.00	0.03	1.906	0.009	0.477	0.009

Tabella 3: (6.d) Partitore di tensione con resistenze da circa 1M. Tutte le tensioni in V.

La tensione in uscita dal partitore $R_1 + R_2$ risulta apprezzabilmente inferiore rispetto al suo valore atteso. Questo è dovuto al comportamento non ideale del voltmetro, per cui quando la sua impedenza in ingresso $10M\Omega$ (nom.) è paragonabile a quella della resistenza del partitore a cui si trova in parallelo durante la misura, ne abbassa la resistenza effettiva $R_2 \mapsto R_{\text{eff}} = (\frac{1}{R_{\text{in}}} + \frac{1}{R^2})^{-1}$. Di conseguenza aumenta la corrente che passa per il partitore, dunque la caduta di tensione ai capi di R_1 , per cui diminuiscono la tensione in uscita e quindi il valore di attenuazione, come osservato.

6.e Resistenza di ingresso del multimetro

Usando il modello mostrato nella scheda si ottiene

$$\frac{R_1}{R_{IN}} = \frac{V_{IN}}{V_{OUT}} - (1 + \frac{R_1}{R_2}) \tag{2}$$

Con i dati con resistenze da 1k si ottiene

$$R_1/R_{IN} = 0.00 \pm 0.04 \implies R_{IN} \ge 2k\Omega \tag{3}$$

Con i dati con resistenze da 1M si ottiene

$$R_1/R_{IN} = 0.09 \pm 0.04 \implies R_{IN} = (11 \pm 5) \text{M}\Omega$$

Quando la resistenza del multimetro $R_{IN} \gg R_2$ come visto al punto 6.b si ha $A \approx A_{\rm exp}$, per cui dalla (2)

$$\frac{1}{A} - \frac{1}{A_{\text{exp}}} = \frac{V_{IN}}{V_{OUT}} - (1 + \frac{R_1}{R_2}) = \frac{R_1}{R_{IN}}$$

si vede come (a causa dell'incertezza sulla stima di R_{IN} dalla propagazione dell'errore sulla differenza) non sia possibile dare una misura soddisfacente del suo valore. Ne possiamo però dare una stima dal basso:

$$\frac{1}{A} \ge \frac{R_1}{R_{IN}} \implies R_{IN} \ge AR_1$$

come in (3).

7 Misure di tempo e frequenza

7.e Misure di frequenza

Misure con onda sinusoidale

Periodo T (µ s)	$\sigma T (\mu s)$	Frequenza f (kHz)	σ f (kHz)	Misura oscilloscopio (kHz)	Differenza (kHz)
999	10	0.99	0.01	1.0	0.01
99.9	1.1	10.00	0.11	9.99	0.01
9.99	0.10	100.0	1.0	99.98	0.02
0.999	0.011	1000	11	1000.1	0.1

Tabella 4: (7.e) Misura di frequenza di onde sinusoidali e confronto con misurazione interna dell'oscilloscopio

Periodo T (μ s)	$\sigma T (\mu s)$	Durata alto t_H (s)	σt_H (s)	Duty cycle D(%)	σ D (%)
100	2	9	2	0.09	0.02
100	2	50	2	0.50	0.02
100	2	90	2	0.90	0.02

Tabella 5: (7.f) Misura di duty cycle per onde quadre

7.f Misure di duty cyle

Misure con onda quadra

7.g Tempo di salita e di discesa

Misure su onda quadra

$$f = (1.000 \pm 0.011) \text{MHz}, \quad t_{\text{salita}} = (35 \pm 6) \text{ns}, t_{\text{discesa}} = (37 \pm 6) \text{ns},$$

La misura è un po' balorda, visto che il tempo di salita/discesa è dello stesso ordine di grandezza del periodo di campionamento $^{1}/f_{s}=\Delta t\approx 10$ ns.

Figura 5: (7.g) Misura del tempo di salita dell'onda quadra

8 Conclusioni e commenti finali

Si è riusciti ad apprezzare la differenza tra il comportamento ideale e quello realmente esibito da due circuiti molto semplici. Nel primo per la non trascurabilità dello strumento di misura sul funzionamento del partitore di tensione (DUIT); nel secondo per la componente resistiva del diodo reale.

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.

Figura 6: (7.g) Misura del tempo di discesa dell'onda quadra