Arpon Basu, School: AECS-4, Mumbai-400094

Solution for Problem O373

We observe that any $(n-1) \times (n-1)$ square in a $n \times n$ always contains the central $(n-2) \times (n-2)$ square, that is the square which remains if we delete all those 1×1 squares whose sides are part of the perimeter of the $n \times n$ square.

Thus, whenever we increase the entries of a $(n-1) \times (n-1)$ square by ± 1 , all the entries in the central square always remain the same because the initial entries were all equal (to 0).

If we want all numbers from 1 to n^2 in the $n \times n$ square, then at least in the final stage the entries in the $(n-2) \times (n-2)$ square should be different from each other.

But, as shown above, that's not possible.

Thus, it's impossible to obtain all numbers from 1 to n^2 in the $n \times n$ square after a finite number of operations.