Série de TD 5

Exercice 3

Considérer un repère euclidien avec les 9 points suivants :

 $A_1(2, 10)$; $A_2(4, 9)$; $A_3(5, 8)$; $A_4(5, 9)$; $A_5(8, 5)$; $A_6(8, 4)$; $A_7(7, 5)$; $A_8(6, 4)$; $A_9(7, 4)$. où (x, y) représente les coordonnées du point.

3) Avec r = 1 unité, déterminer le voisinage de chacun des points donnés précédemment. On va utiliser la distance de Manhattan.

	A1 (2,10)	A2 (4,9)	A3 (5,8)	A4 (5,9)	A5 (8,5)	A6 (8,4)	A7 (7,5)	A8 (6,4)	A9 (7,4)
A1(2,10)	0	3	5	4	11	12	10	10	11
A2 (4,9)	3	0	2	1	9	9	7	7	8
A3 (5,8)	5	2	0	1	6	7	5	5	6
A4 (5,9)	4	1	1	0	7	8	6	6	7
A5 (8,5)	11	9	6	7	0	1	1	3	2
A6 (8,4)	12	9	7	8	1	0	2	2	1
A7 (7,5)	10	7	5	6	1	2	0	2	1
A8 (6,4)	10	7	5	6	3	2	2	0	1
A9 (7,4)	11	8	6	7	2	1	1	1	0

```
voisinage(A_1) = {A_1}

voisinage(A_2) = {A_2, A_4}

voisinage(A_3) = {A_3, A_4}

voisinage(A_4) = {A_4, A_2, A_3}

voisinage(A_5) = {A_5, A_6, A_7}

voisinage(A_6) = {A_6, A_5, A_9}

voisinage(A_7) = {A_7, A_5, A_9}

voisinage(A_8) = {A_8, A_9}

voisinage(A_9) = {A_9, A_6, A_7, A_8}
```

4) Avec MinPts = 2, appliquer l'algorithme DBSCAN sur les 9 points.

Etape 1: On choisit un point de D : soit A1 A1 est marqué comme visité.

Etape 2: On calcule le voisinage de A1 \Rightarrow PtsVoisins = {A₁}

Etape 3: Taille(PtsVoisins) = $1 < MinPts \Rightarrow A1.cluster = Bruit$

Bruit	Reste des points
A1	A2, A3, A4, A5, A6, A7, A8, A9

Étape 4: On choisit un autre point de D : soit A2

A2 est marqué comme visité.

Bruit	Reste des points
A1	A2 , A3, A4, A5, A6, A7, A8, A9

Étape 2: On calcule le voisinage de A2 \Rightarrow PtsVoisins = {A₂, A₄}

Étape 3: Taille(PtsVoisins) = $2 \ge MinPts \Rightarrow C=1$ et on étend le cluster.

Étape 4: A2.cluster = C1

Bruit	C1	Reste des points	
A1	A2	A3, A4, A5, A6, A7, A8, A9	

Étape 5: La boucle sur chaque point de PtsVoisins :

A2 déjà visité et déjà clusterisé.

A4 est marqué comme visité.

Bruit	C1	Reste des points
A1	A2	A3, A4 , A5, A6, A7, A8, A9

Étape 6: On calcule le voisinage de A4 \Rightarrow PtsVoisins' = {A₂, A₄, A₃}

Étape 7: Taille(PtsVoisins') = 3 >= MinPts

$$\Rightarrow$$
 PtsVoisins = {A₂, A₄} U {A₂, A₄, A₃} = {A₂, A₄, A₃}

A4 : n'appartient à aucun cluster : A4.cluster = C1

Bruit	C1	Reste des points
A1	A2, A4	A3, A5, A6, A7, A8, A9

Étape 8: La boucle sur chaque point de PtsVoisins :

A3: est marqué comme visité.

Bruit	C1	Reste des points
A1	A2, A4	A3 , A5, A6, A7, A8, A9

Étape 9: On calcule le voisinage de A3 \Rightarrow PtsVoisins' = {A₄, A₃}

Étape 10: Taille(PtsVoisins') = $2 \ge MinPts$

$$\Rightarrow$$
 PtsVoisins = {A₂, A₄, A₃} U {A₄, A₃} = {A₂, A₄, A₃}

A3 : déjà visité, mais n'appartient à aucun cluster : A3.cluster = C1

Bruit	C1	Reste des points	
A1	A2, A4, A3	A5, A6, A7, A8, A9	

-----Fin de la boucle dans etendreCluster() car nous avons parcourus toute la liste PtsVoisin.

Étape 11: On choisit un autre point de D: soit A5

A5 est marqué comme visité.

Bruit	C1	Reste des points	
A1	A2, A4, A3	A5 , A6, A7, A8, A9	

Étape 12: On calcule le voisinage de A5 \Rightarrow PtsVoisins = {A₅, A₆, A₇}

Étape 13: Taille(PtsVoisins) = $3 \ge MinPts \Rightarrow C=2$ et on étend le cluster.

Étape 14: A5.cluster = C2

Bruit	C1	C2	Reste des points
A1	A2, A4, A3	A5	A6, A7, A8, A9

Étape 15: La boucle sur chaque point de PtsVoisins :

A5 déjà visité et déjà clusterisé.

A6 est marqué comme visité.

Bruit	C1	C2	Reste des points
A1	A2, A4, A3	A5	A6 , A7, A8, A9

Étape 16: On calcule le voisinage de A6 \Rightarrow PtsVoisins' = {A₅, A₆, A₉}

Étape 17: Taille(PtsVoisins') = $3 \ge MinPts$

$$\Rightarrow$$
 PtsVoisins = {A₅, A₆, A₇} U {A₅, A₆, A₉} = {A₅, A₆, A₇, A₉}

A6: n'appartient à aucun cluster: A6.cluster = C2

Bruit	C1	C2	Reste des points
A1	A2, A4, A3	A5 , A6	A7, A8, A9

A7 : est marqué comme visité.

Bruit	C1	C2	Reste des points
A1	A2, A4, A3	A5, A6	A7 , A8, A9

Étape 18: On calcule le voisinage de A7 \Rightarrow PtsVoisins' = {A₅, A₇, A₉}

Étape 19: Taille(PtsVoisins') = $3 \ge MinPts$

$$\Rightarrow$$
 PtsVoisins = {A₅, A₆, A₇, A₉} U {A₅, A₇, A₉} = {A₅, A₆, A₇, A₉}

A7 : n'appartient à aucun cluster : A7.cluster = C2

Bruit	C1	C2	Reste des points
			*

A1	A2, A4, A3	A5, A6, A7	A8, A9
-----------	------------	------------	--------

A9: est marqué comme visité.

Bruit	C1	C2	Reste des points
A1	A2, A4, A3	A5, A6, A7	A8, A9

Étape 20: On calcule le voisinage de A9 \Rightarrow PtsVoisins' = {A₆, A₇, A₈, A₉}

Étape 21: Taille(PtsVoisins') = 3 >= MinPts

$$\Rightarrow$$
 PtsVoisins = {A₅, A₆, A₇, A₉} U {A₆, A₇, A₈, A₉} = {A₅, A₆, A₇, A₉, A₈}

A9: n'appartient à aucun cluster: A9.cluster = C2

Bruit	C1	C2	Reste des points
A1	A2, A4, A3	A5, A6, A7, A9	A8

A8 : est marqué comme visité.

Bruit	C1	C2	Reste des points
A1	A2, A4, A3	A5, A6, A7, A9	A8

Étape 22: On calcule le voisinage de A8 \Rightarrow PtsVoisins' = {A₈, A₉}

Étape 23: Taille(PtsVoisins') = 3 >= MinPts

$$\Rightarrow$$
 PtsVoisins = {A₅, A₆, A₇, A₉, A₈} U {A₈, A₉} = {A₅, A₆, A₇, A₉, A₈}

A8 : n'appartient à aucun cluster : A8.cluster = C2

Bruit	C1	C2	Reste des points
A1	A2, A4, A3	A5, A6, A7, A9, A8	1

-----Fin de la boucle dans etendreCluster() car nous avons parcourus toute la liste PtsVoisin.

-----Fin de DBSCAN car nous avons parcouru tous le Dataset D.

Bruit	Cluster : C1	Cluster : C2
A1	A2, A4, A3	A5, A6, A7, A9, A8

6) Déterminer le bruit engendré par DBSCAN.

Le bruit engendré par DBSCAN est le point A1.

Exercice 4

Méthode agglomérative dite AGNES (AGglomerative NESting).

2) Appliquer l'algorithme sur les 9 points $A_1(2, 10)$; $A_2(4, 9)$; $A_3(5, 8)$; $A_4(5, 9)$; $A_5(8, 5)$; $A_6(8, 4)$; $A_7(7, 5)$; $A_8(6, 4)$; $A_9(7, 4)$.

On choisit la méthode : Centroid linkage: (Lien centroïde) La distance entre deux clusters est définie comme la distance entre le centroïde du cluster C1 et le centroïde du cluster C2. et comme formule de calcule de distance entre 2 instances : la distance euclidienne.

Etape 1 : affecter chaque point à un cluster différent :

A1 (2, 10)	A2 (4, 9)	A3 (5, 8)	A4 (5, 9)	A5 (8, 5)	A6 (8, 4)	A7 (7, 5)	A8 (6, 4)	A9 (7, 4)
C1 (2, 10)	C2 (4, 9)	C3 (5, 8)	C4 (5, 9)	C5 (8, 5)	C6 (8, 4)	C7 (7, 5)	C8 (6, 4)	C9 (7, 4)

Etape 2 : calculer la distance entre chaque pair de clusters

	C1 (2,10)	C2 (4,9)	C3 (5,8)	C4 (5,9)	C5 (8,5)	C6 (8,4)	C7 (7,5)	C8 (6,4)	C9 (7,4)
C1(2,10)	0	$\sqrt{5}$	$\sqrt{13}$	$\sqrt{10}$	$\sqrt{61}$	$\sqrt{72}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{61}$
C2 (4,9)		0	$\sqrt{2}$	$\sqrt{1}$	$\sqrt{32}$	$\sqrt{41}$	$\sqrt{25}$	$\sqrt{29}$	$\sqrt{34}$
C3 (5,8)			0	$\sqrt{1}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{20}$
C4 (5,9)				0	$\sqrt{25}$	$\sqrt{34}$	$\sqrt{20}$	$\sqrt{26}$	$\sqrt{29}$
C5 (8,5)					0	$\sqrt{1}$	$\sqrt{1}$	$\sqrt{5}$	$\sqrt{2}$
C6 (8,4)						0	$\sqrt{2}$	$\sqrt{4}$	$\sqrt{1}$
C7 (7,5)							0	$\sqrt{2}$	$\sqrt{1}$
C8 (6,4)								0	$\sqrt{1}$

Etape 3 : fusionner les pairs de distance minimale →nouveaux clusters:

Distance minimale = $1(\sqrt{1})$

Les paires concernées sont : C2-C4 ; C3-C4 ; C5-C6 ; C5-A7 ; C6-C9 ; C7-C9 ; C8-C9

Donc on va fusionner C2-C4; C5-C6; C7-C9;

Etape 4 : calculer les nouveaux centroïdes :

A1(2, 10)	A3(5, 8)	A2 (4, 9); A4(5, 9)	A5(8, 5); A6(8, 4)	A8(6, 4)	A7(7, 5); A9(7, 4)
C1(2, 10)	C2(5, 8)	C3(4.5, 9)	C4(8, 4.5)	C5(6,4)	C6(7, 4.5)

—-----Et on recommence les étapes de 2 à 4 jusqu'à former 1 seul cluster

Etape 2': calculer la distance entre chaque pair de clusters

	C1 (2, 10)	C2 (5,8)	C3 (4.5, 9)	C4 (8, 4.5)	C5 (6, 4)	C6 (7, 4.5)
C1 (2, 10)	0	$\sqrt{13}$	$\sqrt{7.25}$	$\sqrt{66.25}$	$\sqrt{52}$	$\sqrt{55.25}$
C2 (5,8)		0	$\sqrt{1.25}$	$\sqrt{21.25}$	$\sqrt{17}$	$\sqrt{16.25}$
C3 (4.5, 9)			0	$\sqrt{32.5}$	$\sqrt{27.25}$	$\sqrt{26.5}$
C4 (8, 4.5)				0	$\sqrt{4.25}$	$\sqrt{1}$
C5 (6, 4)					0	$\sqrt{1.25}$

Etape 3': fusionner les pairs de distance minimale →nouveaux clusters:

Distance minimale = $1 (\sqrt{1})$ La paire concernée est : C4-C6

Etape 4': calculer les nouveaux centroïdes :

A1(2, 10)	A3(5, 8)	A2 (4, 9); A4(5, 9)	A5(8, 5); A6(8, 4); A7(7, 5); A9(7, 4)	A8(6, 4)
C1(2, 10)	C2(5, 8)	C3(4.5, 9)	C4(7.5, 4.5)	C5(6,4)

Etape 2": calculer la distance entre chaque pair de clusters

	C1 (2, 10)	C2 (5,8)	C3 (4.5, 9)	C4 (7.5, 4.5)	C5 (6, 4)
C1 (2, 10)	0	$\sqrt{13}$	$\sqrt{7.25}$	$\sqrt{60.5}$	$\sqrt{52}$
C2 (5,8)		0	$\sqrt{1.25}$	$\sqrt{18.5}$	$\sqrt{17}$
C3 (4.5, 9)			0	$\sqrt{29.25}$	$\sqrt{27.25}$
C4 (7.5, 4.5)				0	$\sqrt{2.5}$

Etape 3": fusionner les pairs de distance minimale →nouveaux clusters:

Distance minimale = $\sqrt{1.25}$ Le paire concernée est : C2-C3

Etape 4": calculer les nouveaux centroïdes :

A1(2, 10)	A3(5, 8); A2 (4, 9); A4(5, 9)	A5(8, 5); A6(8, 4); A7(7, 5); A9(7, 4)	A8(6, 4)
C1(2, 10)	C2(4.66, 8.66)	C3(7.5, 4.5)	C4(6,4)

Etape 2": calculer la distance entre chaque pair de clusters

	C1 (2, 10)	C2 (4.66, 8.66)	C3 (7.5, 4.5)	C4 (6, 4)
C1 (2, 10)	0	$\sqrt{8.87}$	$\sqrt{60.5}$	$\sqrt{52}$
C2 (4.66, 8.66)		0	$\sqrt{25.37}$	$\sqrt{23.51}$

C3 (7.5, 4.5)		0	$\sqrt{2.5}$
			V =

Etape 3": fusionner les pairs de distance minimale →nouveaux clusters:

Distance minimale = $\sqrt{2.5}$ Le paire concernée est : C3-C4

Etape 4": calculer les nouveaux centroïdes :

A1(2, 10)	A3(5, 8); A2 (4, 9); A4(5, 9)	A5(8, 5); A6(8, 4); A7(7, 5); A9(7, 4); A8(6, 4)
C1(2, 10)	C2(4.66, 8.66)	C3(7.2, 4.4)

Etape 2"": calculer la distance entre chaque pair de clusters

	C1 (2, 10)	C2 (4.66, 8.66)	C3 (7.2, 4.4)
C1 (2, 10)	0	$\sqrt{8.87}$	$\sqrt{58.4}$
C2 (4.66, 8.66)		0	$\sqrt{24.6}$

Etape 3"": fusionner les pairs de distance minimale →nouveaux clusters:

Distance minimale = $\sqrt{8.87}$ Le paire concernée est : C1-C2

Etape 4"": calculer les nouveaux centroïdes :

A1(2, 10); A3(5, 8); A2 (4, 9); A4(5, 9)	A5(8, 5); A6(8, 4); A7(7, 5); A9(7, 4); A8(6, 4)
C1(4,9)	C2(7.2, 4.4)

il ne reste que 2 clusters, on les fusionne pour donner le cluster global. Fin du clustering.

4) Dessiner le dendrogramme des clusters.

Ci-dessous le dendrogramme avec le nombre de cluster représenté sur la gauche

5) Spécifier les clusters qui sont à une distance de séparation supérieure à $\sqrt{5}$. Cela signifie qu'on coupe là où la distance minimal entre 2 clusters était supérieur à $\sqrt{5}$ ce qui correspond à l'avant dernière étape de fusion ou la distance minimale entre clusters est de $\sqrt{8.87}$ (donc on aura 3 clusters)

Ci-dessous le dendrogramme avec la **distance minimale** entre clusters représenté sur la gauche.

6) Appliquer l'algorithme DIANA sur les 9 points $A_1(2, 10)$; $A_2(4, 9)$; $A_3(5, 8)$; $A_4(5, 9)$; $A_5(8, 5)$; $A_6(8, 4)$; $A_7(7, 5)$; $A_8(6, 4)$; $A_9(7, 4)$.

On choisit la formule de calcule de distance entre 2 instances : la distance de manhathan.

Etape 1 : affecter tous les points à un cluster global C1 :

A1 (2, 10)	A2 (4, 9)	A3 (5, 8)	A4 (5, 9)	A5 (8, 5)	A6 (8, 4)	A7 (7, 5)	A8 (6, 4)	A9 (7, 4)
C1	C1	C1	C1	C1	C1	C1	C1	C1

Etape 2 : Calculer l'instance la plus dissimilaire de C1 :

	A1 (2,10)	A2 (4,9)	A3 (5,8)	A4 (5,9)	A5 (8,5)	A6 (8,4)	A7 (7,5)	A8 (6,4)	A9 (7,4)
A1(2,10)	0	3	5	4	11	12	10	10	11
A2 (4,9)	3	0	2	1	9	9	7	7	8
A3 (5,8)	5	2	0	1	6	7	5	5	6

A4 (5,9)	4	1	1	0	7	8	6	6	7
A5 (8,5)	11	9	6	7	0	1	1	3	2
A6 (8,4)	12	9	7	8	1	0	2	2	1
A7 (7,5)	10	7	5	6	1	2	0	2	1
A8 (6,4)	10	7	5	6	3	2	2	0	1
A9 (7,4)	11	8	6	7	2	1	1	1	0
	<mark>66</mark>	46	37	40	40	42	34	36	37

Point avec la plus grande dissimilarité est A1(2,10) = 66Mettre A1 dans un new cluster C2

A1 (2, 10)	A2 (4, 9)	A3 (5, 8)	A4 (5, 9)	A5 (8, 5)	A6 (8, 4)	A7 (7, 5)	A8 (6, 4)	A9 (7, 4)
C2	C1	C1	C1	C1	C1	C1	C1	C1

Etape 3 : Cinder le cluster C1 entre C1 et C2

		A1 (2,10)	A2 (4,9)	A3 (5,8)	A4 (5,9)	A5 (8,5)	A6 (8,4)	A7 (7,5)	A8 (6,4)	A9 (7,4)
C2	A1(2,10)	0	3	5	4	11	12	10	10	11
	Dist(C2)	-	3	5	4	11	12	10	10	11
	A2 (4,9)	3	0	2	1	9	9	7	7	8
	A3 (5,8)	5	2	0	1	6	7	5	5	6
	A4 (5,9)	4	1	1	0	7	8	6	6	7
C1	A5 (8,5)	11	9	6	7	0	1	1	3	2
C1	A6 (8,4)	12	9	7	8	1	0	2	2	1
	A7 (7,5)	10	7	5	6	1	2	0	2	1
	A8 (6,4)	10	7	5	6	3	2	2	0	1
	A9 (7,4)	11	8	6	7	2	1	1	1	0
	Dist(C1)	-	43	32	36	29	30	24	26	26
dist	(C1)-dist(C2)	-	<mark>40</mark>	27	32	18	18	14	16	15

L'instance ayant la plus forte différence dist(C1)-dist(C2) est A2 avec une différence de 40. Migrer A2 vers C2

A1 (2, 10)	A2 (4, 9)	A3 (5, 8)	A4 (5, 9)	A5 (8, 5)	A6 (8, 4)	A7 (7, 5)	A8 (6, 4)	A9 (7, 4)
C2	C2	C 1	C1	C 1	C1	C 1	C1	C 1

		A1 (2,10)	A2 (4,9)	A3 (5,8)	A4 (5,9)	A5 (8,5)	A6 (8,4)	A7 (7,5)	A8 (6,4)	A9 (7,4)
C2	A1(2,10)	0	3	5	4	11	12	10	10	11
	A2 (4,9)	3	0	2	1	9	9	7	7	8
	Dist(C2)	-	ı	7	5	20	21	17	17	19
	A3 (5,8)	5	2	0	1	6	7	5	5	6
	A4 (5,9)	4	1	1	0	7	8	6	6	7
	A5 (8,5)	11	9	6	7	0	1	1	3	2
C1	A6 (8,4)	12	9	7	8	1	0	2	2	1
C1	A7 (7,5)	10	7	5	6	1	2	0	2	1
	A8 (6,4)	10	7	5	6	3	2	2	0	1
	A9 (7,4)	11	8	6	7	2	1	1	1	0
	Dist(C1)	-	-	30	35	20	21	17	19	18
dist	(C1)-dist(C2)	-	-	23	30	0	0	0	2	-1

L'instance ayant la plus forte différence dist(C1)-dist(C2) est A4 avec une différence de 30. Migrer A4 vers C2

A1 (2, 10)	A2 (4, 9)	A3 (5, 8)	A4 (5, 9)	A5 (8, 5)	A6 (8, 4)	A7 (7, 5)	A8 (6, 4)	A9 (7, 4)
C2	C2	C1	C2	C1	C1	C1	C1	C1

		A1 (2,10)	A2 (4,9)	A3 (5,8)	A4 (5,9)	A5 (8,5)	A6 (8,4)	A7 (7,5)	A8 (6,4)	A9 (7,4)
	A1(2,10)	0	3	5	4	11	12	10	10	11
C2	A2 (4,9)	3	0	2	1	9	9	7	7	8
	A4 (5,9)	4	1	1	0	7	8	6	6	7
	Dist(C2)	-	1	8	-	27	29	23	23	26
	A3 (5,8)	5	2	0	1	6	7	5	5	6
	A5 (8,5)	11	9	6	7	0	1	1	3	2
	A6 (8,4)	12	9	7	8	1	0	2	2	1
C1	A7 (7,5)	10	7	5	6	1	2	0	2	1
	A8 (6,4)	10	7	5	6	3	2	2	0	1
	A9 (7,4)	11	8	6	7	2	1	1	1	0
	Dist(C1)	-		29	ı	13	13	11	13	11
dist((C1)-dist(C2)	-	-	21	-	-14	-16	-12	-10	-15

L'instance ayant la plus forte différence dist(C1)-dist(C2) est A3 avec une différence de 21. Migrer A3 vers C2

A1 (2, 10)	A2 (4, 9)	A3 (5, 8)	A4 (5, 9)	A5 (8, 5)	A6 (8, 4)	A7 (7, 5)	A8 (6, 4)	A9 (7, 4)
C2	C2	C2	C2	C1	C1	C1	C1	C1

		A1 (2,10)	A2 (4,9)	A3 (5,8)	A4 (5,9)	A5 (8,5)	A6 (8,4)	A7 (7,5)	A8 (6,4)	A9 (7,4)
	A1(2,10)	0	3	5	4	11	12	10	10	11
C2	A2 (4,9)	3	0	2	1	9	9	7	7	8
<u></u>	A4 (5,9)	4	1	1	0	7	8	6	6	7
	A3 (5,8)	5	2	0	1	6	7	5	5	6
	Dist(C2)	1	1	1	-	33	36	28	28	32
	A5 (8,5)	11	9	6	7	0	1	1	3	2
	A6 (8,4)	12	9	7	8	1	0	2	2	1
C1	A7 (7,5)	10	7	5	6	1	2	0	2	1
	A8 (6,4)	10	7	5	6	3	2	2	0	1
	A9 (7,4)	11	8	6	7	2	1	1	1	0
	Dist(C1)	-	-	-	-	7	6	6	8	5
dist((C1)-dist(C2)	-	-	-	-	-26	-30	-22	-20	-27

Toutes les différences de distances sont négatives ou nulles. Fin de la séparation. Réitérer le processus sur les deux clusters obtenus C1 et C2.

Etape 2 : Calculer l'instance la plus dissimilaire de C1 :

		A5 (8,5)	A6 (8,4)	A7 (7,5)	A8 (6,4)	A9 (7,4)
	A5 (8,5)	0	1	1	3	2
	A6 (8,4)	1	0	2	2	1
C1	A7 (7,5)	1	2	0	2	1
	A8 (6,4)	3	2	2	0	1
	A9 (7,4)	2	1	1	1	0
	Dist(C1)	7	6	6	8	5

Etape 3 : Cinder le cluster C1 entre C1 et C3 Point avec la plus grande dissimilarité est A8(6,4) = 8

Mettre A8 dans un new cluster C3

A5 (8,5)	A6 (8,4)	A7 (7,5)	A8 (6,4)	A9 (7,4)
C1	C1	C1	C3	C1

		A5 (8,5)	A6 (8,4)	A7 (7,5)	A8 (6,4)	A9 (7,4)
C3	A8 (6,4)	3	2	2	0	1
	Dist(C3)	3	2	2	-	1
	A5 (8,5)	0	1	1	3	2
C1	A6 (8,4)	1	0	2	2	1
	A7 (7,5)	1	2	0	2	1
	A9 (7,4)	2	1	1	1	0
	Dist(C1)	4	4	4	-	4
dist	(C1)-dist(C3)	1	2	2	-	3

L'instance ayant la plus forte différence dist(C1)-dist(C3) est A9 avec une différence de 3. Migrer A9 vers C3

A5 (8,5)	A6 (8,4)	A7 (7,5)	A8 (6,4)	A9 (7,4)
C1	C1	C1	C3	C3

		A5 (8,5)	A6 (8,4)	A7 (7,5)	A8 (6,4)	A9 (7,4)
	A8 (6,4)	3	2	2	0	1
C3	A9 (7,4)	2	1	1	1	0
	Dist(C3)	5	3	3	-	-
	A5 (8,5)	0	1	1	3	2
C1	A6 (8,4)	1	0	2	2	1
	A7 (7,5)	1	2	0	2	1
	Dist(C1)	2	3	3	-	-
dist(C1)-dist(C3)	-3	0	0	-	_

Toutes les différences de distances sont négatives ou nulles. Fin de la séparation. Réitérer le processus sur les deux clusters obtenus C1 et C3.

Il est clair qu'à l'appel suivant C3 contenant A8 et A9 seront séparés dans 2 clusters différents C3 et C5, respectivement.

Etape 2 : Calculer l'instance la plus dissimilaire de C1 :

		A5 (8,5)	A6 (8,4)	A7 (7,5)
	A5 (8,5)	0	1	1
	A6 (8,4)	1	0	2
C1	A7 (7,5)	1	2	0
	Dist(C1)	2	3	3

Etape 3 : Cinder le cluster C1 entre C1 et C7 Point avec la plus grande dissimilarité est A6(8,4) = 3

Mettre A6 dans un new cluster C7

A5 (8,5)	A6 (8,4)	A7 (7,5)
C1	C7	C1

		A5 (8,5)	A6 (8,4)	A7 (7,5)
	A6 (8,4)	1	0	2
	Dist(C7)	1	0	2
	A5 (8,5)	0	1	1
C1	A7 (7,5)	1	2	0
	Dist(C1)	1	-	1
dist	(C1)-dist(C7)	0	-	-1

Toutes les différences de distances sont négatives ou nulles. Fin de la séparation.

Réitérer le processus sur les deux clusters obtenus C1 et C7.

Il est clair qu'à l'appel suivant C1 contenant A5 et A7 seront séparés dans 2 clusters différents C1 et C9, respectivement.

/**************/

Etape 2 : Calculer l'instance la plus dissimilaire de C2 :

		A1 (2,10)	A2 (4,9)	A3 (5,8)	A4 (5,9)
	A1(2,10)	0	3	5	4
C2	A2 (4,9)	3	0	2	1
	A3 (5,8)	5	2	0	1
	A4 (5,9)	4	1	1	0
	Dist(C2)	12	6	8	6

Etape 3 : Cinder le cluster C2 entre C2 et C4

Point avec la plus grande dissimilarité est A1(2,10) = 12

Mettre A1 dans un new cluster C4

A1 (2, 10)	A2 (4, 9)	A3 (5, 8)	A4 (5, 9)
C4	C2	C2	C2

	11 (2.10)	10 (10)	A 2 (E 0)	A 4 (5 0)
	A1 (2,10)	A2 (4,9)	A3 (5.8)	A4 (5,9)
	() -)	()-)	- (-)-)	(-)-)

C4	A1(2,10)	0	3	5	4
	Dist(C4)	-	3	5	4
	A2 (4,9)	3	0	2	1
C2	A3 (5,8)	5	2	0	1
	A4 (5,9)	4	1	1	0
	Dist(C2)	-	3	3	2
dist	(C2)-dist(C4)	-	0	-2	-2

Toutes les différences de distances sont négatives ou nulles. Fin de la séparation. Réitérer le processus sur les deux clusters obtenus C2 et C4.

Etape 2 : Calculer l'instance la plus dissimilaire de C2 :

		A2 (4,9)	A3 (5,8)	A4 (5,9)
	A2 (4,9)	0	2	1
C2	A3 (5,8)	2	0	1
C2	A4 (5,9)	1	1	0
	Dist(C2)	3	3	2

Etape 3 : Cinder le cluster C2 entre C2 et C6 Point avec la plus grande dissimilarité est A2(4,9) = 3

Mettre	A2	aans	un	new	ciuster	C6	

A2 (4, 9)	A3 (5, 8)	A4 (5, 9)
C6	C2	C2

		A2 (4,9)	A3 (5,8)	A4 (5,9)
C6	A2 (4,9)	0	2	1
	Dist(C4)	-	2	1
	A3 (5,8)	2	0	1
C2	A4 (5,9)	1	1	0
	Dist(C2)	-	1	1
dist	(C2)-dist(C6)	-	-1	0

Toutes les différences de distances sont négatives ou nulles. Fin de la séparation.

Réitérer le processus sur les deux clusters obtenus C2 et C6.

Il est clair qu'à l'appel suivant sur C2 contenant A3 et A4 seront séparés dans 2 clusters différents C2 et C8, respectivement.

Fin de l'algo lorsque tous les clusters ne contiennent qu'une seule instance.