YAZILIM MÜHENDİSLİĞİ

- Temel Kavramlar
- Yazılım Özellikleri
- Yazılım yaşam döngüsü
- Yazılım geliştirme modelleri
- Yazılımda Pratik Prensipler

Yazılım Nedir?

Yazılım:Herhangi bir boyuttaki herhangi bir tür donanımda çalışan bilgisayar programını ve basılı veya elektronik ortamdaki her tür dokümanı içeren ürünü ifade etmektedir.

- Herhangi bir donanım üzerinde çalışan,
- Tanımlanmış bir işlevi yerine getiren,
- Girdi ve çıktıları olan,

Bilgisayar programı ve kullanım/bakım kılavuzları gibi belgelerden oluşan bir üründür.

Yazılım Bileşenleri

Yazılım bileşenleri;

- Mantik (Algoritma) +
- Program (kod) +
- İnsan (kullanıcı, geliştirici) +
- Veri (planlama, çözümleme ve tasarım bilgisi)+
- Belge (system ve kullanıcı dokümanları)

Yazılım Mühendisliği (YM) Nedir?

Yazılım mühendisliği tanım olarak "karmaşık yazılım sistemlerinin belirli bir hedefe ve sisteme dayalı olarak ve işbölümü yapılarak, belirli prensipler, yöntemler ve araçlar kullanılarak geliştirilmesidir."

- Bilimsel bilginin bilgisayar programlarının tasarımı, pratikte uygulanması, onların geliştirilmesi, çalıştırılması ve devam ettirilmesiyle aşamalarında kullanılması/işe koşulması,
- Yazılım geliştirmek, yazılımı çalıştırmak ve devam ettirmek için sistematik, disiplinli ve ölçülebilir yaklaşımların uygulanması [IEEEComputerSociety,1990].

Yazılım Mühendisliği Nedir?

Yazılım mühendisliği; yazılım üretimi ile ilgili tüm durumlarla ilgilenen bir mühendislik bilim dalıdır.

- Yazılım mühendisleri;
 - İşlerinde sistematik ve organize yaklaşımlar benimsemelidirler.
 - Çözmek istedikleri probleme, geliştirme kısıtlamalarına ve mevcut kaynaklara uygun araç ve teknikleri kullanmalıdırlar.

Yazılım – Bilgisayarın ilk yılları

Geçmiş yıllar

- Oldukça küçük programlar
- Tek kişinin yazdığı programlar
- Sadece alan uzmanlarının geliştirip yine kendilerinin kullandığı programlar
- Bazı programlama dillerinde bilinen algoritmaların kullanım eğilimi

Yazılım – Günümüz

Günümüz Programlar ve yazılımları

- Oldukça büyük ve karmaşık
- Uzun süreler zarfında birbirleriyle işbirliği içinde çalışan takımlar tarafından geliştiriliyorlar.
- Geliştiriciler artık geliştirilen yazılımın son kullanıcısı değiller.
 - Sistemin asıl kullanıcılarının alanla ilgili uzmanlık bilgileri yok.

Yazılım Çeşitleri

Genel

 Pek çok farklı müşteriye satılmak üzere üretilmiş hazır ticari ürünler (Commercial Off The Shelf – COTS)

Ismarlama / İsteğe özelleştirilmiş

 Tek bir müşteri için onun belirtimleri (ihtiyaçları) doğrultusunda hazırlanmış

Yazılım Türleri

- Sistem yazılımları; Diğer programlara hizmet sunmak üzere hazırlanmış programlar (Derleyiciler, işletim sistemleri, vb.)
- Uygulama yazılımları; Kullanıcıların işlerine çözüm sağlayan programlardır.
- Mühendislik ya da bilimsel yazılımlar; Mühendislik ve bilimsel hesaplamalarda kullanılmak üzere hazırlanmış programlar. Büyük hacimli verilerle uğraşırlar.
- Gömülü yazılımlar; Donanım ile çok sıkı ilişkidedir. Denetim amaçlıdır.
- Kurumsal Yazılım: Belirli ticari iş gereksinimlerine yönelik programlar. İş süreçleri ile ilgili bilgiye sahip olmalıdır. Genellikle müşteriye özel tasarlanır.
- Yapay zeka yazılımları

Mühendislik Nedir?

 Doğadaki maddenin ve enerji kaynaklarının insanların kullanımı için yararlı hale getirilmesi için bilimsel ve matematiksel prensiplerin uygulanmasıdır.

Mühendisler

- Uygun olan yerlerde teori + metot + araçları uygulayarak işlerin yürümesini sağlarlar.
- Çeşitli kısıtlamalar içerisinde çözümler bulmaya çalışırlar.

Mühendislik Aktivitelerinin Prensipleri

- Mühendislik aktivitelerinin prensipleri
 - Tüm projeler
 - Umulan/önceden tahmin edilen bütçe
 - MALİYET
 - Umulan/önceden tahmin edilen zaman çizelgesi
 - ZAMAN
 - Müşteri gereksinimine/isterlerine uygun ,
 - KALİTE

şekilde tamamlanması gerekmektedir.

Maliyet + Zaman + Kalite

Yazılım Mühendisliğinin Önemi

- Gün geçtikçe yazılımla kontrol edilen sistemler artış göstermektedir.
- Tüm gelişmiş ulusların ekonomileri günümüzde yazılıma dayanmaktadır.
- Yazılım mühendisliği harcamaları ülkelerin gayri safi milli hasılalarının kayda değer bir bölümünü oluşturmaktadır.

Yazılım Mühendisliğinin Önemi

- Yazılım maliyetleri sistem maliyetlerinin büyük kısmını oluşturmaktadır.
- Bilgisayar üzerinde çalışacak yazılımın maliyeti donanımın maliyetinden genellikle daha fazladır.
- Yazılımın sürdürülebilirlik maliyeti geliştirme maliyetinden daha fazladır.
 - Uzun süreli kullanılacak sistemler için, sürdürülebilirlik maliyetleri geliştirme maliyetlerinin birkaç katı olabilir.
- Yazılım mühendisliği maliyet-etkin yazılımlar geliştirmekle ilgilidir.

Yazılım Mühendisi

- Sadece bir kodlayıcı, yani programlayıcı değildir.
- Yazılım mühendisliği disiplinini uygulayarak yazılım geliştiren kişidir.
- Herhangi bir programlama dilini bilen bir kişi programcı olabilir ama eğitimini almadan yazılım mühendisliği işini yapamaz.
 - Salt kodlayıcı değil ama kod yazma tekniklerini çok iyi bilir.
 - İyi bir belge düzenleyici olmayabilir ama çok iyi gözden geçiricidir.
 - Uygulama alanında az bilgisi olabilir fakat kullanıcı isteklerini nasıl aktarabileceğini bilir.

Yazılım Özellikleri

1. Yazılım geliştirilir (developed), *klasik* anlamda imal (manufactured) edilmez.

Yazılım Özellikleri

- 2. Yazılım aşınmaz / yıpranmaz, fakat yapılan değişiklikler nedeniyle geriler.
 - Pek çok değişiklikten sonra baştan tasarlanması gerekebilir.

YAZILIM

Yazılım Problemleri

- Öngörülen zamanın gerisinde kalma
- Bütçeyi aşma
- Düşük Kalite
 - Güvenilir olmayan yazılım
 - Kullanıcı taleplerinin karşılanmasında yetersizlik
 - Sürekliliğinin sağlanmasındaki zorluk

Yazılım Hakkında Yanılgılar

MÜŞTERİ AÇISINDAN;

- Programın yazılmasına başlanması için amaçları genel olarak belirlemek yeter, ayrıntılar sonra kararlaştırılabilir. Nasıl olsa yazılım esnektir. (Belirsiz gereksinimler, çürük atılmış temele benzer.)
- Yazılım esnektir. Değişen gereksinimler kolayca sisteme uyarlanabilir.

(Yazılım yaşam döngüsünde ilerledikçe, değişen gereksinimleri yazılıma uyarlamanın bedeli üstel olarak artar.)

• Sonuç: Yazılım esnek bir oyun hamurundan çok kil veya cam gibidir.

(Çevik süreçlerle esnekliğin arttırılması hedeflenmektedir.)

Yazılım Hakkında Yanılgılar

PROGRAMCI AÇISINDAN;

- Yazılımı tamamlayıp müşteriye teslim edince işimiz biter.
 (Yazılım üstünde harcanan çabanın yarısından fazlası, yazılımın müşteriye ilk teslimatından sonra harcanmaktadır.)
- Yazılımı tamamlamadan kalitesini ölçemem. (Kalite güvence yöntemleri yazılım hayat döngüsünün her aşamasında uygulanabilir.)
- Yazılım eşittir program (Dokümantasyon ve sınama çalışmaları?)
- Yazılım mühendisliğinin gereklerini uygulayarak boşuna çaba harcıyoruz. (Haritası olmayan yolunu kaybeder)

Yazılım Hakkında Yanılgılar

İDARİ AÇIDAN;

- İşler yetişmiyorsa takıma yeni programcılar ekleriz.
 - (Yazılım hayat döngüsü içerisinde ilerledikçe, yeni elemanların yazılıma hakim olması üstel olarak zorlaşır.)
- Geliştirmesini üstlendiğim yazılımı tamamen veya kısmen fason yaptırırım.
 - (Dışarıya verilen işin takibi zor veya imkansız olacaktır)
- Açık kaynak yazılım üretirsem kar edemem.
 (Danışmanlık hizmetleri ile kar edilebilir.)

İyi Yazılımın Özellikleri

- Yazılım kullanıcısına istenen işlevleri ve performansı sunmalı ve buna ek olarak:
 - Sürdürülebilirlik (maintainable)
 - Yazılım değişen ihtiyaçlara göre gelişebilmelidir.
 - Güvenilebilirlik (dependable)
 - Yazılım güvenilir olmalıdır
 - Verimlilik (efficiency)
 - Yazılım sistem kaynaklarını boşa harcamamalıdır.
 - Kullanılabilirlik (usability)
 - Sistem tasarlandığı kullanıcıları için kolay kullanılabilir olmalıdır.

Yazılım Yaşam Döngüsü

Herhangi bir yazılımın, üretim aşaması ve kullanım aşaması da dahil olmak üzere geçirdiği tüm aşamalar biçiminde tanımlanır. Bu aşamalara **çekirdek süreçler** de denilmektedir.

Planlama, Çözümleme/analiz, Tasarım, Gerçekleştirim, Bakım

Yazılım Yaşam Döngüsü

- Planlama: Personel ve donanım gereksinimlerinin çıkarıldığı, fizibilite (olurluk-yapılabilirlik) çalışmasının yapıldığı ve proje planının oluşturulduğu aşamadır.
- Çözümleme/Analiz: Sistem gereksinimlerinin ve işlevlerinin ayrıntılı olarak çıkarıldığı aşama. Mevcut var olan işler incelenir, temel sorunlar ortaya çıkarılır.
- Tasarım: Belirlenen gereksinimlere yanıt verecek yazılım sisteminin temel yapısının oluşturulduğu aşamadır.
 - <u>Mantıksal</u>; önerilen sistemin yapısı anlatılır, olası örgütsel değişiklikler önerilir.
 - <u>Fiziksel</u>; yazılımı içeren bileşenler ve bunların ayrıntıları.
- Gerçekleştirim: Kodlama, test etme ve kurulum çalışmalarının yapıldığı aşamadır.
- Bakım: Hata giderme ve yeni eklentiler yapma aşaması (teslimden sonra).

Yazılım Yaşam Döngüsü Ne sağlar?

- Mühendislik faaliyetlerinin (üretim, işletme ve bakım aşamaları) yazılıma uyarlanması
- Üretimden kullanıma kadar tüm sürecin fazlara ayrılması ve böylece yönetim kolaylığı
- Her bir aşamada ne yapılacağı bilgisi

 Her bir aşamadaki standartlara uyumluluk ile kaliteli yazılım geliştirme vb.
 PROJELERDE YARATICI SÜREÇ

Yazılım Süreci

- Görevler arasındaki genel akış ve bağımlılık seviyeleri
 - Problemi anlama (iletişim ve analiz)
 - Çözüm planlama (yazılım tasarımı)
 - Planı yürütme (kod üretme)
 - Doğruluk için sonuçları inceleme (test ve kalite güvencesi)

Yazılım Geliştirme Modelleri

- Kodla Düzelt
- Çağlayan (Şelale) Modeli
- V Modeli
- Helezonik/Spiral Model
- Prototipleme Modeli
- Evrimsel Model
- Diğer (artımlı, agile vb.)