A comparative study of generative adversarial networks on domain name generator in botnet malware

Student: Chia-Ruei Lee

Advisor: Chia-Mu Yu

Po-Chun Huang

CONTENTS

- A. Introduction
 - 1. Botnet
 - 2. Domain Generation Algorithm
 - 3. Literature Review
 - 4. Purpose
- B. Deep Learning
 - 1. Neural Network (NN)
 - 2. Deep Learning
 - CNN / RNN / RL
 - 3. Auto-Encoder
 - 4. Generative Adversarial Networks (GAN)
 - 5. Wasserstein GAN (WGAN)
 - 6. Improved Wasserstein GAN (WGAN-GP)

CONTENTS

- C. MATERIALS AND METHODS
 - 1. Requirement
- D. Result
 - 1. Compare

Botnet

Introduction

Botnet

- Command and Control Server
- Bot

- ■以往連接到C&C Server的方法:
 - ■特定IP
 - ■特定Domain

Botnet

Introduction

C&C server:

-- not working --

DNS解析器

Bot DGA:

 $[a-d]{1,4}\.com$

a.com

NXDOMAIN (這個Domain不存在)

C&C server:

-- not working --

NXDOMAIN

-- not working --

DNS解析器

Bot

DGA: $[a-d]{1,4}\setminus.com$

dddd.com

-- not working --

DNS解析器

Bot

DGA: $[a-d]{1,4}\setminus.com$

dddd.com

NXDOMAIN

C&C server:

DNS解析器

140.138.240.240

Bot

DGA:

[a-d]{1,4}\.com

註冊 dddd.com

a.com

NXDOMAIN (這個Domain不存在)

C&C server: DNS解析器 Bot DGA: 140.138.240.240 $[a-d]{1,4}\setminus.com$ 註冊 dddd.com bb.com **NXDOMAIN**

C&C server: DNS解析器 Bot DGA: 140.138.240.240 $[a-d]{1,4}\setminus.com$ 註冊 dddd.com ccc.com **NXDOMAIN**

C&C server:

DNS解析器

Bot

DGA: $[a-d]{1,4}\setminus.com$

140.138.240.240

註冊 dddd.com

dddd.com

IP:140.138.0.0

- 隨手寫的式子: [a-d]{1,4}\.com
 - → 就已經可以產生340種網域名稱了

- ■現實中Botnet的DGA更加複雜
- ■一天就可以產生成千上萬個網域名稱
 - → 太多可疑對象,防禦方難以防禦
 - → DNS供應商
 - → 網路管理員

- 雖然有成千上萬的網域名稱,但是只有一個或 少數幾個才會被真正註冊作為惡意伺服器
 - → 攻擊方所付出的代價卻很低廉

Literature Review

Introduction

28 Purpose

Introduction

Neural Network

Deep Learning

@ Auto-Encoder

Deep Learning

AUTO-ENCODER

As close as possible

Randomly generate a vector as code

From Hung-yi Lee, "Generative Adversarial Network/Basic Idea/Machine Learning and having it deep and structured (2017,Spring)" http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html

AUTO-ENCODER

From Hung-yi Lee, "Generative Adversarial Network/Basic Idea/Machine Learning and having it deep and structured (2017,Spring)"

AUTO-ENCODER

From Hung-yi Lee, "Generative Adversarial Network/Basic Idea/Machine Learning and having it deep and structured (2017,Spring)"

Generative Adversarial Networks (GAN)

Deep Learning

ALGORITHM

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k=1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Wasserstein GAN (WGAN)

Deep Learning

ALGORITHM

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, c = 0.01, m = 64, $n_{\text{critic}} = 5$.

```
Require: : \alpha, the learning rate. c, the clipping parameter. m, the batch size.
      n_{\text{critic}}, the number of iterations of the critic per generator iteration.
Require: : w_0, initial critic parameters. \theta_0, initial generator's parameters.
  1: while \theta has not converged do
           for t = 0, ..., n_{\text{critic}} do
  2:
                 Sample \{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r a batch from the real data.
  3:
                 Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples. g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)}))\right]
  4:
  5:
                 w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_w)
  6:
                 w \leftarrow \text{clip}(w, -c, c)
  7:
           end for
  8:
           Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples.
  9:
           g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))
10:
           \theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, q_{\theta})
11:
12: end while
```

From "Wasserstein GAN" https://arxiv.org/abs/1701.07875

Deep Learning

ALGORITHM

Algorithm 1 WGAN with gradient penalty. We use default values of $\lambda = 10$, $n_{\text{critic}} = 5$, $\alpha = 0.0001$, $\beta_1 = 0$, $\beta_2 = 0.9$.

Require: The gradient penalty coefficient λ , the number of critic iterations per generator iteration n_{critic} , the batch size m, Adam hyperparameters α, β_1, β_2 .

Require: initial critic parameters w_0 , initial generator parameters θ_0 .

```
1: while \theta has not converged do
  2:
              for t = 1, ..., n_{\text{critic}} do
                     for i = 1, ..., m do
  3:
                            Sample real data x \sim \mathbb{P}_r, latent variable z \sim p(z), a random number \epsilon \sim U[0, 1].
  4:
                            \tilde{\boldsymbol{x}} \leftarrow G_{\theta}(\boldsymbol{z})
  5:
                            \hat{\boldsymbol{x}} \leftarrow \epsilon \boldsymbol{x} + (1 - \epsilon)\tilde{\boldsymbol{x}}
  6:
                            L^{(i)} \leftarrow D_w(\tilde{x}) - D_w(x) + \lambda (\|\nabla_{\hat{x}} D_w(\hat{x})\|_2 - 1)^2
  7:
                     end for
  8:
                     w \leftarrow \operatorname{Adam}(\nabla_w \frac{1}{m} \sum_{i=1}^m L^{(i)}, w, \alpha, \beta_1, \beta_2)
  9:
              end for
10:
              Sample a batch of latent variables \{z^{(i)}\}_{i=1}^m \sim p(z).
11:
              \theta \leftarrow \operatorname{Adam}(\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} -D_{w}(G_{\theta}(\boldsymbol{z})), \theta, \alpha, \beta_{1}, \beta_{2})
12:
13: end while
```

From "Improved Training of Wasserstein GANs" https://arxiv.org/abs/1704.00028

Requirement

MATERIALS AND METHODS

REQUIREMENT

- Q: Where is my training data?
- A: From Alexa Top 1-million sites.

Α	В
1	google.com
2	youtube.com
3	facebook.com
4	baidu.com
5	yahoo.com
6	wikipedia.org
7	amazon.com
8	twitter.com
9	qq.com
10	google.co.in
11	live.com
12	taobao.com
13	bing.com
14	google.co.jp
15	msn.com
16	yahoo.co.jp
17	linkedin.com
18	sina.com.cn
19	weibo.com
20	vk.com
21	instagram.com
22	google.ru
23	yandex.ru
24	google.de
25	hao123.com
26	ebay.com
27	reddit.com
28	google.co.uk
29	amazon.co.jp
30	t.co
31	google.com.br
32	mail.ru
33	google.fr
34	pinterest.com
	1 2 3 4 4 5 5 6 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

REQUIREMENT

- Q: How to use this data?
- A: I deal these domain names as 38x80 pictures.

REQUIREMENT

• Because we don't have the "code". We have to train an Auto-encoder model.

