GDOI2018模拟赛Day2试题

试题名称	后缀自动机	休比最后的请求	快速沃尔什变换	送命题
题目文件名	sam	request	fwt	die
输入文件名	sam.in	request.in	fwt.in	die.in
输出文件名	sam.out	request.out	fwt.out	die.out
时间限制	5s	3s	3s	1s
空间限制	16MB	256MB	128MB	128MB
测试点数目	10	10	20	捆绑测试
每个测试点分值	10	10	5	详见题面
评测环境	Windows	Windows	Windows	Linux

1.所有题目代码长度限制均为32KB。

2.本试题部分题目难度偏近GDSOI。

3.本次比赛最终解释权归组题人所有。

第一题 后缀自动机(sam.cpp)

这是一道后缀自动机裸题。

现在给出一个长度为 n 的字符串,它仅由 'A'~'H' 8种字符组成。你需要求出一个仅由 'A'~'H' 组成的字符串,使得该字符串**不是**给定字符串的子串。**该字符串应该在长度最小的前提下字典序最小。**

本题共有T组测试数据。

输入格式

第一行一个正整数T,表示测试数据组数。

接下来T行,每行一个字符串。

输出格式

共T行,每行一个字符串表示答案。

输入样例

3

ABCDEFGH

AAABAACADAEAFAGAH

ACAC

输出样例

AA

BB

В

数据范围

对于 30% 的数据, $n \leq 200$ 。

对于另外 30% 的数据, $n \leq 2000$ 。

对于另外 20% 的数据, $n \leq 100000$ 。

对于所有数据, $n \leq 1000000, T \leq 50$ 。

第二题 休比最后的请求(request.cpp)

伊纲: "仔细想想的话基本全是这货的错啊,的说。"

吉普莉尔: "克洛妮•多拉, 里克•多拉, 休比•多拉。"

空: "克洛妮•多拉?"

斯蒂芬妮: "那是艾尔奇亚王国的女王,一生都没有人见过她哭泣,是位充满了知性和笑容的才女,多拉家的骄

傲。"

白: "另外两位呢?"

斯蒂芬妮: "这,我还真不知道呢。"

吉普莉尔: "休比?记得那个好像不是人类种来的……"

.....

(6000 years ago)

里克: "我还能活多久?"

休比: "我不会让你死的, 里克要活到休比死掉才行。"

里克: "机凯种的寿命有多少年?"

休比: "待用年数,还有892年。"

里克: "哈哈, 那看来要加把劲才行啊。"

.....

完成了第一个目标,里克成功地将战线移到了人类的生存圈外。

然而他的身体却受到黑灰的侵染,已经极度虚弱了。

为此, 他每天都要喝休比准备的除染液。

除染液的配备需要很长的时间, 你能帮帮休比吗?

现在已知标准的除染液有以下两种特征:

1.每个除染液分子由 n 个原子组成,这些原子由 n-1 条边相互连接。保证两个原子之间有且仅有一条路径可以到达。

2.这n个原子中可能有若干个是"活化原子",但**两个"活化原子"之间不能有直接边相连**。

如果除染液分子 A 和 B 满足以下条件,则称它们是**结构相同**的:

- ①:存在一种对 A 和 B 中原子的编号方式,使得对于在 A 中直接相连的连个原子 u,v ,在 B 中也直接相连。如果两个**结构相同**的除染液分子满足以下条件,则称它们是**完全相同**的:
- ②:在满足①的编号规则下,对于编号为x的节点,要么在A和B中都不是"活化原子",要么都是。

现在休比给出了一种除染液分子的结构模型,她想知道有多少个 $\underline{\mathbf{r}}$ 完全相同的除染液分子和给出的模型 $\underline{\mathbf{s}}$ 的模型。**答案对** $\mathbf{10}^{9}$ + 7 \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n}

输入格式

第一行一个正整数 n ,表示除染液中原子的数量。原子以 $1 \sim n$ 编号。

接下来 n-1 行,每行两个正整数 u,v。表示这两个点之间有直接边相连。

输出格式

一行一个整数,表示答案。

输入样例1

1

输出样例1

2

输入样例2

5

12

13

14

15

输出样例2

6

样例2说明

输入样例3

6

12

13

14

45

46

输出样例3

9

数据范围

对于 10% 的数据, $n \le 1000$ 。保证与 给出的模型 结构相同的 所有除染液分子 中,不存在一种方式使其 重新标号后与原来完全相同 。(就是说你不需要考虑无根树同构导致答案算重的问题)

另有 20% 的数据, $n \le 1000$ 。保证给出的结构模型为一条链。

另有 30% 的数据, $n \leq 1000$ 。保证给出的结构模型中存在一个点:如果将该点当成根,那么该点的所有子树结构相同(即有根树同构)。

对于 100 的数据, $n \leq 500000$ 。

第三题 快速沃尔什变换(fwt.cpp)

该题的AC算法与题目名称无直接联系。

给出一棵 n 个点的无根树,每个点有一个 [0,m) 的权值。现在要你求权值分别为 $0 \sim m-1$ 的非空连通块个数。一个连通块的权值定义为它其中所有点的异或和。**答案对** 10^9+7 **取模**。

保证 $m=2^k(0 \le k)$ 。多组测试数据。

输入格式

第一行一个正整数 T ,表示测试数据组数。

对于每组测试数据:

第一行两个正整数 n, m , 意义同题面。

接下来的一行有n个非负整数,表示每个点的权值。

然后有 n-1 行,每行两个正整数 $u,v(1 \le u,v \le n)$,表示这两个点直接相连。

输出格式

对于每组测试数据,输出一行 m 个整数。第 i 个整数表示值为 i-1 的连通块个数模 10^9+7 后的结果。

输入样例

2

44

2013

12

13

14

44

0131

12

13

1 4

输出样例

3323

2423

数据范围

对于 15% 的数据, $n \leq 18$ 。

对于另外 20% 的数据, $n \leq 30$ 。

对于另外 25% 的数据, $n, m \leq 300$ 。

对于全部数据, $n, m \leq 1024, T \leq 10$ 。

第四题 送命题(die.cpp)

现在给出一幅 n 个点 m 条边的DAG(有向无环图)。你一开始在 a 号节点,而死神一开始在 b 号节点,初始时刻为 0 。

从第1个时刻起,每个时刻你和死神都可以选择站着不动,也可以选择移动到相邻的节点。你们每时刻的移动是同时开始的,并且不能中途改变方向。你们一直能知道对方的位置并对地图完全了解,但在第t个时刻,你们都看不出对方接下来会走哪里。

你的目的是尽可能逃离死神,而死神的目的是尽快杀掉你,你们都绝顶聪明。

当你和死神站在同一个节点时,死神会立刻把你杀掉,此时停止计时。若死神一直没有杀掉你,在第t个时刻死神会感到不耐烦并瞬移到你身边杀掉你,计时在t+1时刻停止。

现在你想知道,在双方最优决策的情况下,计时停止的期望值是多少。

输入格式

第一行5个整数n, m, a, b, t,用空格隔开。

接下来m行,每行两个整数a,b,表示从a到b有一条单向边(不存在重边)。

输出格式

一个实数,四舍五入保留3位小数,表示计时停止的期望值。

你的答案必须和标准答案完全相同才算正确。

输入样例1

321210

13

23

输出样例1

11.000

样例1解释

你只要一直不动,死神在前t单位时间内就无法杀掉你,故答案为t+1。

输入样例2

68212

12

13

15

23

35

5 6

6 4

24

输出样例2

2.333

样例2解释

无可奉告

数据范围

对于 30% 的数据, $n \leq 3$,捆绑测试。

对于 100% 的数据, $n,t \leq 20$,前 40% 的数据和后 30% 的数据分别捆绑测试。