The Clean Coder

A Code of Conduct for Professional Programmers

Robert C. Martin

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York • Toronto • Montreal • London • Munich • Paris • Madrid Capetown • Sydney • Tokyo • Singapore • Mexico City

Praise for The Clean Coder

"Uncle Bob' Martin definitely raises the bar with his latest book. He explains his expectation for a professional programmer on management interactions, time management, pressure, on collaboration, and on the choice of tools to use. Beyond TDD and ATDD, Martin explains what every programmer who considers him- or herself a professional not only needs to know, but also needs to follow in order to make the young profession of software development grow."

—Markus Gärtner Senior Software Developer it-agile GmbH <u>www.it-agile.de</u> <u>www.shino.de</u>

"Some technical books inspire and teach; some delight and amuse. Rarely does a technical book do all four of these things. Robert Martin's always have for me and *The Clean Coder* is no exception. Read, learn, and live the lessons in this book and you can accurately call yourself a software professional."

—George Bullock Senior Program Manager Microsoft Corp.

"If a computer science degree had 'required reading for after you graduate,' this would be it. In the real world, your bad code doesn't vanish when the semester's over, you don't get an A for marathon coding the night before an assignment's due, and, worst of all, you have to deal with people. So, coding gurus are not necessarily professionals. *The Clean Coder* describes the journey to professionalism . . . and it does a remarkably entertaining job of it."

—Jeff Overbey University of Illinois at Urbana-Champaign

"The Clean Coder is much more than a set of rules or guidelines. It contains hard-earned wisdom and knowledge that is normally obtained through many years of trial and error or by

working as an apprentice to a master craftsman. If you call yourself a software professional, you need this book."

—R. L. Bogetti Lead System Designer Baxter Healthcare www.RLBogetti.com

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales

international@pearson.com

Visit us on the Web: www.informit.com/ph

Library of Congress Cataloging-in-Publication Data

Martin, Robert C.

The clean coder: a code of conduct for professional programmers / Robert Martin.

p. cm.

Includes bibliographical references and index.

ISBN 0-13-708107-3 (pbk. : alk. paper)

1. Computer programming—Moral and ethical aspects. 2. Computer programmers—Professional ethics. I. Title.

QA76.9.M65M367 2011

005.1092—dc22

2011005962

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc. Rights and Contracts Department 501 Boylston Street, Suite 900 Boston, MA 02116 Fax: (617) 671-3447

ISBN-13: 978-0-13-708107-3

ISBN-10: 0-13-708107-3

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

Second printing, August 2011

Between 1986 and 2000 I worked closely with Jim Newkirk, a colleague from Teradyne. He and I shared a passion for programming and for clean code. We would spend nights, evenings, and weekends together playing with different programming styles and design techniques. We were continually scheming about business ideas. Eventually we formed Object Mentor, Inc., together. I learned many things from Jim as we plied our schemes together. But one of the most important was his attitude of *work ethic;* it was something I strove to emulate. Jim is a professional. I am proud to have worked with him, and to call him my friend.

Foreword

You've picked up this book, so I assume you are a software professional. That's good; so am I. And since I have your attention, let me tell you why I picked up this book.

It all starts a short time ago in a place not too far away. Cue the curtain, lights and camera, Charley

Several years ago I was working at a medium-sized corporation selling highly regulated products. You know the type; we sat in a cubicle farm in a three-story building, directors and up had private offices, and getting everyone you needed into the same room for a meeting took a week or so.

We were operating in a very competitive market when the government opened up a new product.

Suddenly we had an entirely new set of potential customers; all we had to do was to get them to buy our product. That meant we had to file by a certain deadline with the federal government, pass an assessment audit by another date, and go to market on a third date.

Over and over again our management stressed to us the importance of those dates. A single slip and the government would keep us out of the market for a year, and if customers couldn't sign up on day one, then they would all sign up with someone else and we'd be out of business.

It was the sort of environment in which some people complain, and others point out that "pressure makes diamonds."

I was a technical project manager, promoted from development. My responsibility was to get the web site up on go-live day, so potential customers could download information and, most importantly, enrollment forms. My partner in the endeavor was the business-facing project manager, whom I'll call Joe. Joe's role was to work the other side, dealing with sales, marketing, and the non-technical requirements. He was also the guy fond of the "pressure makes diamonds" comment.

If you've done much work in corporate America, you've probably seen the finger-pointing, blamestorming, and work aversion that is completely natural. Our company had an interesting solution to that problem with Joe and me.

A little bit like Batman and Robin, it was our job to get things done. I met with the technical team every day in a corner; we'd rebuild the schedule every single day, figure out the critical path, then remove every possible obstacle from that critical path. If someone needed software; we'd go get it. If they would "love to" configure the firewall but "gosh, it's time for my lunch break," we would buy them lunch. If someone wanted to work on our configuration ticket but had other priorities, Joe and I would go talk to the supervisor.

Then the manager.

Then the director.

We got things done.

It's a bit of an exaggeration to say that we kicked over chairs, yelled, and screamed, but we did use every single technique in our bag to get things done, invented a few new ones along the way, and we did it in an ethical way that I am proud of to this day.

I thought of myself as a member of the team, not above jumping in to write a SQL statement or doing a little pairing to get the code out the door. At the time, I thought of Joe the same way, as a member of the team, not above it.

Eventually I came to realize that Joe did not share that opinion. That was a very sad day for me.

It was Friday at 1:00 PM; the web site was set to go live very early the following Monday.

We were done. *DONE*. Every system was go; we were ready. I had the entire tech team assembled for the final scrum meeting and we were ready to flip the switch. More than "just" the technical team, we had the business folks from marketing, the product owners, with us.

We were proud. It was a good moment.

Then Joe dropped by.

He said something like, "Bad news. Legal doesn't have the enrollment forms ready, so we can't go live yet."

This was no big deal; we'd been held up by one thing or another for the length of the entire project and had the Batman/Robin routine down pat. I was ready, and my reply was essentially, "All right partner, let's do this one more time. Legal is on the third floor, right?"

Then things got weird.

Instead of agreeing with me, Joe asked, "What are you talking about Matt?"

I said, "You know. Our usual song and dance. We're talking about four PDF files, right? That are done; legal just has to approve them? Let's go hang out in their cubicles, give them the evil eye, and get this thing *done*!"

Joe did not agree with my assessment, and answered, "We'll just go live late next week. No big deal."

You can probably guess the rest of the exchange; it sounded something like this:

Matt: "But why? They could do this in a couple hours."

Joe: "It might take more than that."

Matt: "But they've got *all weekend*. Plenty of time. Let's do this!"

Joe: "Matt, these are professionals. We can't just stare them down and insist they sacrifice their personal lives for our little project."

Matt: (pause) "... Joe ... what do you think we've been doing to the engineering team for the past four months?"

Joe: "Yes, but these are professionals."

Pause.

Breathe

What. Did. Joe. Just. Say?

At the time, I thought the technical staff were professionals, in the best sense of the word.

Thinking back over it again, though, I'm not so sure.

Let's look at that Batman and Robin technique a second time, from a different perspective. I thought I was exhorting the team to its best

performance, but I suspect Joe was playing a game, with the implicit assumption that the technical staff was his opponent. Think about it: Why was it necessary to run around, kicking over chairs and leaning on people?

Shouldn't we have been able to ask the staff when they would be done, get a firm answer, believe the answer we were given, and not be burned by that belief?

Certainly, for professionals, we should . . . and, at the same time, we could not. Joe didn't trust our answers, and felt comfortable micromanaging the tech team—and at the same time, for some reason, he did trust the legal team and was not willing to micromanage them.

What's that all about?

Somehow, the legal team had demonstrated professionalism in a way the technical team had not.

Somehow, another group had convinced Joe that they did not need a babysitter, that they were not playing games, and that they needed to be treated as peers who were respected.

No, I don't think it had anything to do with fancy certificates hanging on walls or a few extra years of college, although those years of college might have included a fair bit of implicit social training on how to behave.

Ever since that day, those long years ago, I've wondered how the technical profession would have to change in order to be regarded as professionals.

Oh, I have a few ideas. I've blogged a bit, read a lot, managed to improve my own work life situation and help a few others. Yet I knew of no book that laid out a plan, that made the whole thing explicit.

Then one day, out of the blue, I got an offer to review an early draft of a book; the book that you are holding in your hands right now.

This book will tell step by step exactly how to present yourself and interact as a professional. Not with trite cliché, not with appeals to pieces of paper, but what you can do and how to do it.

In some cases, the examples are word for word.

Some of those examples have replies, counter-replies, clarifications, even advice for what to do if the other person tries to "just ignore you."

Hey, look at that, here comes Joe again, stage left this time:

Oh, here we are, back at BigCo, with Joe and me, once more on the big web site conversion project.

Only this time, imagine it just a little bit differently.

Instead of shirking from commitments, the technical staff actually makes them. Instead of shirking from estimates or letting someone else do the planning (then complaining about it), the technical team actually self-organizes and makes real commitments.

Now imagine that the staff is actually working together. When the programmers are blocked by operations, they pick up the phone and the sysadmin actually gets started on the work.

When Joe comes by to light a fire to get ticket 14321 worked on, he doesn't need to; he can see that the DBA is working diligently, not surfing the web. Likewise, the estimates he gets from staff seem downright consistent, and he doesn't get the feeling that the project is in priority somewhere between lunch and checking email. All the tricks and attempts to manipulate the schedule are not met with, "We'll try," but instead, "That's our commitment; if you want to make up your own goals, feel free."

After a while, I suspect Joe would start to think of the technical team as, well, professionals. And he'd be right.

Those steps to transform your behavior from technician to professional? You'll find them in the rest of the book.

Welcome to the next step in your career; I suspect you are going to like it.

—Matthew Heusser Software Process Naturalist

Preface

At 11:39 AM EST on January 28, 1986, just 73.124 seconds after launch and at an altitude of 48,000 feet, the Space Shuttle Challenger was torn to smithereens by the failure of the right-hand solid rocket booster (SRB). Seven brave astronauts, including high school teacher Christa McAuliffe, were lost. The expression on the face of McAuliffe's mother as she watched the demise of her daughter nine miles overhead haunts me to this day.

The Challenger broke up because hot exhaust gasses in the failing SRB leaked out from between the segments of its hull, splashing across the body of the external fuel tank. The bottom of the main liquid hydrogen tank burst, igniting the fuel and driving the tank forward to smash into the liquid oxygen tank above it. At the same time the SRB detached from its aft strut and rotated around its forward strut. Its nose punctured the liquid oxygen tank. These aberrant force vectors caused the entire craft, moving well above mach 1.5, to rotate against the airstream. Aerodynamic forces quickly tore everything to shreds.

Between the circular segments of the SRB there were two concentric synthetic rubber O-rings. When the segments were bolted together the O-rings were compressed, forming a tight seal that the exhaust gasses should not have been able to penetrate.

But on the evening before the launch, the temperature on the launch pad got down to 17°F, 23 degrees below the O-rings' minimum specified temperature and 33 degrees lower than any previous launch. As a result, the O-rings grew too stiff to properly block the hot gasses. Upon ignition of the SRB there was a pressure pulse as the hot gasses rapidly accumulated. The segments of the booster ballooned outward and relaxed the compression on the O-rings. The stiffness of the O-rings prevented them from keeping the seal tight, so some of the hot gasses leaked through and vaporized the O-rings across 70 degrees of arc.

The engineers at Morton Thiokol who designed the SRB had known that there were problems with the O-rings, and they had reported those problems to managers at Morton Thiokol and NASA seven years earlier. Indeed, the O-rings from previous launches had been damaged in similar ways, though not enough to be catastrophic. The coldest launch had experienced the most damage. The engineers had designed a repair for the problem, but implementation of that repair had been long delayed.

The engineers suspected that the O-rings stiffened when cold. They also knew that temperatures for the Challenger launch were colder than any previous launch and well below the red-line. In short, the engineers *knew* that the risk was too high. The engineers acted on that knowledge. They wrote memos raising giant red flags. They strongly urged Thiokol and NASA managers not to launch. In an eleventh-hour meeting held just hours before the launch, those engineers presented their best data. They raged, and cajoled, and protested. But in the end, the managers ignored them.

When the time for launch came, some of the engineers refused to watch the broadcast because they feared an explosion on the pad. But as the Challenger climbed gracefully into the sky they began to relax. Moments before the destruction, as they watched the vehicle pass through Mach 1, one of them said that they'd "dodged a bullet."

Despite all the protest and memos, and urgings of the engineers, the managers believed they knew better. They thought the engineers were overreacting. They didn't trust the engineers' data or their conclusions. They launched because they were under immense financial and political pressure. They *hoped* everything would be just fine.

These managers were not merely foolish, they were criminal. The lives of seven good men and women, and the hopes of a generation looking toward space travel, were dashed on that cold morning because those managers set their own fears, hopes, and intuitions above the words of their own experts. They made a decision they had no right to make. They usurped the authority of the people who actually *knew*: the engineers.

But what about the engineers? Certainly the engineers did what they were supposed to do. They informed their managers and fought hard for their position. They went through the appropriate channels and invoked all the right protocols. They did what they could, *within* the system—and still the managers overrode them. So it would seem that the engineers can walk away without blame.

But sometimes I wonder whether any of those engineers lay awake at night, haunted by that image of Christa McAuliffe's mother, and wishing they'd called Dan Rather.

About This Book

This book is about software professionalism. It contains a lot of pragmatic advice in an attempt to answer questions, such as

- What is a software professional?
- How does a professional behave?
- How does a professional deal with conflict, tight schedules, and unreasonable managers?
- When, and how, should a professional say "no"?
- How does a professional deal with pressure?

But hiding within the pragmatic advice in this book you will find an attitude struggling to break through. It is an attitude of honesty, of honor, of self-respect, and of pride. It is a willingness to accept the dire responsibility of being a craftsman and an engineer. That responsibility includes working well and working clean. It includes communicating well and estimating faithfully. It includes managing your time and facing difficult risk-reward decisions.

But that responsibility includes one other thing—one frightening thing. As an engineer, you have a depth of knowledge about your systems and

projects that no managers can possibly have. With that knowledge comes the responsibility to *act*.

Bibliography

[McConnell87]: Malcolm McConnell, Challenger 'A Major Malfunction', New York, NY: Simon & Schuster, 1987

[Wiki-Challenger]: "Space Shuttle Challenger disaster," http://en.wikipedia.org/wiki/Space Shuttle Challenger disaster

Acknowledgments

My career has been a series of collaborations and schemes. Though I've had many private dreams and aspirations, I always seemed to find someone to share them with. In that sense I feel a bit like the Sith, "Always two there are."

The first collaboration that I could consider professional was with John Marchese at the age of 13. He and I schemed about building computers together. I was the brains and he was the brawn. I showed him where to solder a wire and he soldered it. I showed him where to mount a relay and he mounted it. It was a load of fun, and we spent hundreds of hours at it. In fact, we built quite a few very impressive-looking objects with relays, buttons, lights, even Teletypes! Of course, none of them actually did anything, but they were very impressive and we worked very hard on them. To John: Thank you!

In my freshman year of high school I met Tim Conrad in my German class. Tim was *smart*. When we teamed up to build a computer, he was the brains and I was the brawn. He taught me electronics and gave me my first introduction to a PDP-8. He and I actually built a working electronic 18-bit binary calculator out of basic components. It could add, subtract, multiply, and divide. It took us a year of weekends and all of spring, summer, and Christmas breaks. We worked furiously on it. In the end, it worked very nicely. To Tim: Thank you!

Tim and I learned how to program computers. This wasn't easy to do in 1968, but we managed. We got books on PDP-8 assembler, Fortran, Cobol, PL/1, among others. We devoured them. We wrote programs that we had no hope of executing because we did not have access to a computer. But we wrote them anyway for the sheer love of it.

Our high school started a computer science curriculum in our sophomore year. They hooked up an ASR-33 Teletype to a 110-baud, dial-up modem. They had an account on the Univac 1108 time-sharing system at the Illinois Institute of Technology. Tim and I immediately became the de facto operators of that machine. Nobody else could get near it.

The modem was connected by picking up the telephone and dialing the number. When you heard the answering modem squeal, you pushed the "orig" button on the Teletype causing the originating modem to emit its own squeal. Then you hung up the phone and the data connection was established.

The phone had a lock on the dial. Only the teachers had the key. But that didn't matter, because we learned that you could dial a phone (any phone) by tapping out the phone number on the switch hook. I was a drummer, so I had pretty good timing and reflexes. I could dial that modem, with the lock in place, in less than 10 seconds.

We had two Teletypes in the computer lab. One was the online machine and the other was an offline machine. Both were used by students to write their programs. The students would type their programs on the Teletypes with the paper tape punch engaged. Every keystroke was punched on tape. The students wrote their programs in IITran, a remarkably powerful interpreted language. Students would leave their paper tapes in a basket near the Teletypes.

After school, Tim and I would dial up the computer (by tapping of course), load the tapes into the IITran batch system, and then hang up. At 10 characters per second, this was not a quick procedure. An hour or so later, we'd call back and get the printouts, again at 10 characters per second. The Teletype did not separate the students' listings by ejecting pages. It just printed one after the next after the next, so we cut them apart using scissors, paper-clipped their input paper tape to their listing, and put them in the output basket.

Tim and I were the masters and gods of that process. Even the teachers left us alone when we were in that room. We were doing their job, and they knew it. They never asked us to do it. They never told us we could. They never gave us the key to the phone. We just moved in, and they moved out —and they gave us a very long leash. To my Math teachers, Mr. McDermit, Mr. Fogel, and Mr. Robien: Thank you!

Then, after all the student homework was done, we would play. We wrote program after program to do any number of mad and weird things. We wrote programs that graphed circles and parabolas in ASCII on a Teletype. We wrote random walk programs and random word generators.

We calculated 50 factorial to the last digit. We spent hours and hours inventing programs to write and then getting them to work.

Two years later, Tim, our compadre Richard Lloyd, and I were hired as programmers at ASC Tabulating in Lake Bluff, Illinois. Tim and I were 18 at the time. We had decided that college was a waste of time and that we should begin our careers immediately. It was here that we met Bill Hohri, Frank Ryder, Big Jim Carlin, and John Miller. They gave some youngsters the opportunity to learn what professional programming was all about. The experience was not all positive and not all negative. It was certainly educational. To all of them, and to Richard who catalyzed and drove much of that process: Thank you.

After quitting and melting down at the age of 20, I did a stint as a lawn mower repairman working for my brother-in-law. I was so bad at it that he had to fire me. Thanks, Wes!

A year or so later I wound up working at Outboard Marine Corporation. By this time I was married and had a baby on the way. They fired me too. Thanks, John, Ralph, and Tom!

Then I went to work at Teradyne where I met Russ Ashdown, Ken Finder, Bob Copithorne, Chuck Studee, and CK Srithran (now Kris Iyer). Ken was my boss. Chuck and CK were my buds. I learned so much from all of them. Thanks, guys!

Then there was Mike Carew. At Teradyne, he and I became the dynamic duo. We wrote several systems together. If you wanted to get something done, and done fast, you got Bob and Mike to do it. We had a load of fun together. Thanks, Mike!

Jerry Fitzpatrick also worked at Teradyne. We met while playing Dungeons & Dragons together, but quickly formed a collaboration. We wrote software on a Commodore 64 to support D&D users. We also started a new project at Teradyne called "The Electronic Receptionist." We worked together for several years, and he became, and remains, a great friend. Thanks, Jerry!

I spent a year in England while working for Teradyne. There I teamed up with Mike Kergozou. He and I schemed together about all manner of things, though most of those schemes had to do with bicycles and pubs.

But he was a dedicated programmer who was very focused on quality and discipline (though, perhaps he would disagree). Thanks, Mike!

Returning from England in 1987, I started scheming with Jim Newkirk. We both left Teradyne (months apart) and joined a start-up named Clear Communications. We spent several years together there toiling to make the millions that never came. But we continued our scheming. Thanks, Jim!

In the end we founded Object Mentor together. Jim is the most direct, disciplined, and focused person with whom I've ever had the privilege to work. He taught me so many things, I can't enumerate them here. Instead, I have dedicated this book to him.

There are so many others I've schemed with, so many others I've collaborated with, so many others who have had an impact on my professional life: Lowell Lindstrom, Dave Thomas, Michael Feathers, Bob Koss, Brett Schuchert, Dean Wampler, Pascal Roy, Jeff Langr, James Grenning, Brian Button, Alan Francis, Mike Hill, Eric Meade, Ron Jeffries, Kent Beck, Martin Fowler, Grady Booch, and an endless list of others. Thank you, one and all.

Of course, the greatest collaborator of my life has been my lovely wife, Ann Marie. I married her when I was 20, three days after she turned 18. For 38 years she has been my steady companion, my rudder and sail, my love and my life. I look forward to another four decades with her.

And now, my collaborators and scheming partners are my children. I work closely with my eldest daughter Angela, my lovely mother hen and intrepid assistant. She keeps me on the straight and narrow and never lets me forget a date or commitment. I scheme business plans with my son Micah, the founder of 8thlight.com. His head for business is far better than mine ever was. Our latest venture, cleancoders.com, is very exciting!

My younger son Justin has just started working with Micah at 8th Light. My younger daughter Gina is a chemical engineer working for Honeywell. With those two, the serious scheming has just begun!

No one in your life will teach you more than your children will. Thanks, kids!

About the Author

Robert C. Martin ("Uncle Bob") has been a programmer since 1970. He is founder and president of Object Mentor, Inc., an international firm of highly experienced software developers and managers who specialize in helping companies get their projects done. Object Mentor offers process improvement consulting, object-oriented software design consulting, training, and skill development services to major corporations worldwide.

Martin has published dozens of articles in various trade journals and is a regular speaker at international conferences and trade shows.

He has authored and edited many books, including:

- Designing Object Oriented C++ Applications Using the Booch Method
- Patterns Languages of Program Design 3
- *More C++ Gems*
- Extreme Programming in Practice
- Agile Software Development: Principles, Patterns, and Practices
- UML for Java Programmers
- Clean Code

A leader in the industry of software development, Martin served for three years as editor-in-chief of the C++ Report, and he served as the first chairman of the Agile Alliance.

Robert is also the founder of Uncle Bob Consulting, LLC, and cofounder with his son Micah Martin of The Clean Coders LLC.

On the Cover

The stunning image on the cover, reminiscent of Sauron's eye, is M1, the Crab Nebula. M1 is located in Taurus, about one degree to the right of Zeta Tauri, the star at the tip of the bull's left horn. The crab nebula is the remnant of a super-nova that blew its guts all over the sky on the rather auspicious date of July 4th, 1054 AD. At a distance of 6500 light years, that explosion appeared to Chinese observers as a new star, roughly as bright as Jupiter. Indeed, it was visible *during the day*! Over the next six months it slowly faded from naked-eye view.

The cover image is a composite of visible and X-ray light. The visible image was taken by the Hubble telescope and forms the outer envelope. The inner object that looks like a blue archery target was taken by the Chandra x-ray telescope.

The visible image depicts a rapidly expanding cloud of dust and gas laced with heavy elements left over from the supernova explosion. That cloud is now 11 light-years in diameter, weighs in at 4.5 solar masses, and is expanding at the furious rate of 1500 kilometers per second. The kinetic energy of that old explosion is impressive to say the least.

At the very center of the target is a bright blue dot. That's where the *pulsar* is. It was the formation of the pulsar that caused the star to blow up in the first place. Nearly a solar mass of material in the core of the doomed star imploded into a sphere of neutrons about 30 kilometers in

diameter. The kinetic energy of that implosion, coupled with the incredible barrage of neutrinos created when all those neutrons formed, ripped the star open, and blew it to kingdom come.

The pulsar is spinning about 30 times per second; and it flashes as it spins. We can see it blinking in our telescopes. Those pulses of light are the reason we call it a pulsar, which is short for Pulsating Star.