Lifetime Reliability Trojan based on Exploring Malicious Aging

Tien-Hung Tseng and Kai-Chiang Wu
Department of Computer Science
National Chiao Tung University, Hsinchu, Taiwan
E-mail: {eric830303.cs05g@g2.nctu.edu.tw and kcw@cs.nctu.edu.tw}

Abstract—Device aging, which causes significant loss on circuit performance and lifetime, has been a primary factor in reliability degradation of nanoscale designs. In this paper, we propose to take advantage of aging-induced clock skews (i.e., make them useful for aging tolerance) by manipulating these timevarying skews to compensate for the performance degradation of logic networks. The goal is to assign achievable/reasonable aging-induced clock skews in a circuit, such that its overall performance degradation due to aging can be minimized, that is, the lifespan can be maximized. On average, 25% aging tolerance can be achieved with insignificant design overhead. Moreover, we also apply $V_{\rm th}$ assignment to further mitigate the aging-induced degradation of logic networks. Averagely, 39.74% aging tolerance can be achieved when aging manipulation and $V_{\rm th}$ assignment are applied.

I. INTRODUCTION

II. RELATED WORK AND PAPER CONTRIBUTION

A. Previous Work on Aging-Aware Optimization

To deal with aging phenomena, traditional design methods adopt guard-banding by adding extra timing margins, which in practice imply over-design and may be expensive. To avoid overly conservatism, the mitigation of aging-induced performance degradation can be formulated as a timing-constrained area minimization problem with consideration of aging effects. Existing aging-aware techniques basically follow this formulation. A novel technology mapper considering signal probabilities for NBTI was developed in [1]. On average, 10% area recovery and 12% power saving are accomplished, as compared to the most pessimistic case assuming static NBTI on all PMOS transistors in the design. The authors of [2] proposed a gate sizing algorithm based on Lagrangian relaxation. An average of 8.7% area penalty is required to ensure reliable operation for 10 years. Other methods related to gate or transistor sizing can be found in [3], [4].

Aforementioned methods focus on mitigating the aging of logic networks only. There are some work [5]–[7] addressing the aging problem of clock networks. Methodology of [7] is based on V_{th} assignment for clock buffers. Authors of [5] and [6] explore the use of alternative clock gating cells for clock-gated designs. On the other hand, two new clock gating cells were presented in [8] to balance the delay degradation of clock signal propagation, which reduces aging-induced clock skews between ungated and gated clock branches. The above work [5]–[8] aim to minimize aging-induced clock skew instead of making it useful (i.e., assign specific clock skews

in the designs to mitigate the aging-induced performance degradation).

B. Paper Contribution

In this paper, we propose an optimization framework for aging tolerance. Our proposed framework manipulates the rates of aging on different clock branches, which is achieved by changing the duty cycle of a clock waveform delivered to each of the clock branches. In addition, we involve the technique of V_{th} assignment in the framework to further improve aging tolerance of design circuits. The contributions and advantages of this work are threefold:

- Exploration of aging-induced clock skews for aging tolerance: Existing work on addressing aging-induced clock skews mainly attempts to minimize the skews. This paper presents the first work on exploring "useful" clock skews (i.e., making them useful) for aging tolerance*.
- Problem formulation based on Boolean satisfiability and optimal solutions: The proposed formulation of making clock skew useful is transformed into a Boolean satisfiability (SAT) problem, and its optimal solution can be efficiently found by a SAT solver such as MiniSat.
- Low design overhead and little design modification: Restrained by the synthesized clock tree whose topology and structure are basically determined, our post-CTS (clock tree synthesis) framework does not involve aggressive modification and thus does not incur significant design overhead.

REFERENCES

- S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, "NBTI-aware synthesis of digital circuits," in *Proc. of DAC*, Jun. 2007, pp. 370–375.
- [2] B. C. Paul et al., "Temporal performance degradation under NBTI: Estimation and design for improved reliability of nanoscale circuits," in *Proc. of DATE*, Mar. 2006, pp. 780–785.
- [3] K. Kang et al., "Efficient transistor-level sizing technique under temporal performance degradation due to NBTI," in Proc. of ICCD, Oct. 2007, pp. 216–221.

*We do not minimize "absolute" performance degradation by directly mitigating the aging of logic networks; instead; we minimize "effective" performance degradation by V_{th} assignment and manipulation of aging rates on clock networks. Furthermore, the aging of logic network is tolerated based on timing borrowing, as a result of newly-designated clock skews in designs, which is achieved by V_{th} assignment and aging manipulation on clock networks. Of course, one can mitigate the logic's aging itself by using existing techniques [1]–[4] before applying the proposed framework. This is however beyond the scope of this work and thus not particularly addressed in this paper.

- [4] X. Yang and K. Saluja, "Combating NBTI degradation via gate sizing," in Proc. of ISQED, Mar. 2007, pp. 47-52.
- [5] S.-H. Huang *et al.*, "Low-power anti-aging zero skew clock gating," *ACM TODAES*, vol. 18, no. 2, p. 27, Mar. 2013.
 [6] A. Chakraborty and D. Z. Pan, "Skew management of NBTI impacted
- gated clock trees," *IEEE TCAD*, vol. 32, no. 6, pp. 918–927, Jun. 2013.

 [7] J. Chen and M. Tehranipoor, "A novel flow for reducing clock skew considering NBTI effect and process variations," in *Proc. of ISQED*,
- Mar. 2013, pp. 327–334.
 L. Lai et al., "BTI-gater: An aging-resilient clock gating methodology," *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, vol. 4, no. 2, pp. 180–189, Jun. 2014.