论文标题

tanghongyu

2024年6月21日

摘要

这里是摘要.

关键词: 这里是关键词; 这里是关键词.

目录 I

目录

1	一级标题		1
	1.1	二级标题	1
2	同态	加密方案	4
	2.1	一级同态加密加法和常量乘法	4
	2.2	一级同态乘法加密与二级同态加密加法和常量乘法	5
	2.3	二级同态加密乘法	6
	2.4	三级同态加密加法和模乘	7
A	附录	·标题	8

1 一级标题 1

1 一级标题

1.1 二级标题

定理 1.1.

表 1:

	原始 Paillier 算法	改进后 Paillier 算法
KeyGen	n = pq,	n = PQ, P = 2pp' + 1, Q = 2qq' + 1
Encryption	$c = g^m r^n \bmod n^2, r \stackrel{R}{\leftarrow} Z_n^*$	$c = (1 + mn)(-y^{2p'q'})^{nr} \mod n^2, r \stackrel{R}{\leftarrow} \{0, 1\}^l$
Decryption	$m = L_n(c^{\lambda} \bmod n^2) \cdot \mu \bmod n$	$m = L_n(c^{2pq} \bmod n^2) \cdot (2pq)^{-1} \bmod n$

 $g^{\alpha n} = 1 mod n^2, \alpha \in \{1, 2, \cdots, \lambda\}$ 即 $g = (1+n)^x \cdot y^n mod n^2$ (一般取 1+n),对于 $\lambda = lcm(p-1, q-1), \mu = L(g^{\lambda} \mod n^2)^{-1} \mod n^2$,又 $r^{\lambda \cdot n} = 1 \mod n^2$,则 $c^{\lambda} \mod n^2 = (1+n)^{xm} \mod n^2 = (1+xmn) \mod n^2$ 。同理 $\mu = L((1+xn) \mod n^2)^{-1} \mod n$,故可以成功解密。 $(1+n)^m = (1+mn) \mod n^2$ 可以减少模指数运算。

对于 $y \in Z_n^*$, $(-y^2)^{p'q'}$ mod $n \in QR_n^{n-l}$ 。随机取 $r \in \{0,1\}^l$,则 $(-y^2)^{rp'q'}$ mod n 在计算上为 Z_n^* [+1] 上的随机元素。其中指数为 r,从而可以提升效率。

$$c = (h^r \mod n)^n \mod n^2$$

$$= (h^r + x \cdot n)^n \mod n^2, x \in \{-n + 1, \dots, n - 1\}$$

$$= h^{rn} + xnh^{r(n-1)} \mod n^2$$
(1)

又
$$n|h^{r(n-1)}$$
,故 $n^2|xnh^{r(n-1)}$ 由 $\phi(P^2)=P(1-P)=2pp'P$, $(-y^{2p'q'})^{2pnr}=1$ mod P^2 ,

1 一级标题 2

$$c_p = (1 + mn)^{2p} \mod P^2$$

$$= 1 + 2pmn \mod P^2$$

$$= 1 + 2pPQm \mod P^2$$
(2)

 $c_p = m \bmod P^2, c_q = m \bmod Q^2, \ \ \boxplus \ \mathrm{CRT}, \ m = c_p Q(Q^{-1} \bmod P) + c_q P(P^{-1} \bmod Q) \bmod N$ 。 又 $Q(Q^{-1} \bmod P) + P(P^{-1} \bmod Q) = 1 \bmod n$,故 $m = c_p + h_q \cdot P \cdot (P^{-1} \bmod Q) \bmod N$ 。

 $\alpha=\alpha_1+\alpha_2=m_1+m_2-b_1-b_2$, $\beta=\beta_1\cdot\beta_2=Enc_{pk}(b_1+b_2)$,故可以成功解密。

密文 $(\alpha_{11}, \beta_{11}), (\alpha_{12}, \beta_{12}), (\alpha_{21}, \beta_{21}), (\alpha_{22}, \beta_{22})$,进行第一轮乘法同态加密,得到

$$\alpha_1 = Enc_{pk}(\alpha_{11} \cdot \alpha_{12})(\beta_{11})^{\alpha_{12}}(\beta_{12})^{\alpha_{11}}$$
$$\alpha_2 = Enc_{pk}(\alpha_{21} \cdot \alpha_{22})(\beta_{21})^{\alpha_{22}}(\beta_{22})^{\alpha_{21}}$$

进行第二轮加法同态加密,得到

$$\alpha = \alpha_1 \cdot \alpha_2, \beta_1 = \beta_{11} \cdot \beta_{12}, \beta_2 = \beta_{21} \cdot \beta_{22}$$

解密得到

$$Dec_{sk}(\alpha) = \alpha_{11} \cdot \alpha_{12} + \alpha_{12} \cdot b_{11} + \alpha_{11} \cdot b_{12} + \alpha_{21} \cdot \alpha_{22} + \alpha_{22} \cdot b_{21} + \alpha_{21} \cdot b_{22}$$

$$= (m_{11} - b_{11})(m_{12} - b_{12}) + (m_{12} - b_{12})b_{11} + (m_{11} - b_{11})b_{12}$$

$$+ (m_{21} - b_{21})(m_{22} - b_{22}) + (m_{22} - b_{22})b_{21} + (m_{21} - b_{21})b_{22}$$

$$= m_{11} \cdot m_{12} - b_{11}b_{12} + m_{21} \cdot m_{22} - b_{21}b_{22}$$
(3)

$$(Dec_{sk}(\beta_1)Dec_{sk}(\beta_2)) = (b_{11} + b_{12})(b_{21} + b_{22})$$

表 2:

	原始 Paillier 算法	改进后 Paillier 算法
KeyGen	1.36039 s	2.19955 s
Encryption	0.145491 s	$0.0217804 \mathrm{\ s}$
Decryption	0.0490871 s	$0.0107389 \mathrm{\ s}$

表 3:

加密 4k 字节数据的运行效率	SM4-ECB
改进后 AVX — 512	30341 Mb/s
改进后 AVX - 256	5030 Mb/s
AVX - 256	2300 Mb/s
原始版	732 Mb/s

表 4:

加密 128 字节数据的运行效率	SM4-GCM	
改进后 AVX - 512	400 Mb/s	
改进后 AVX - 256	326 Mb/s	
AVX - 256	258 Mb/s	
原始版	253 Mb/s	

表 5:

加密 128 字节数据的运行效率	SM4-GCM	
改进后 AVX — 512	2528 Mb/s	
改进后 AVX — 256	918 Mb/s	
AVX - 256	1374 Mb/s	
原始版	513 Mb/s	

2 同态加密方案

符号说明:明文 $m \in M$,密文 $c \in C$,并且 $Enc_{pk}(m)$, $Dec_{sk}(c)$ 表示使用公钥 pk 或私钥 sk 的原始 Paillier 加密算法进行加解密。 \oplus 表示密文的同态加法, \odot 表示为密文的同态乘法。

同态加密密文初始化为 $C \in M \times C$,其中 $C = (a, \beta)$ 。取随机数 $b \in M$,分别计算 $a = m - b, \beta = Enc_{pk}(b)$ 。

2.1 一级同态加密加法和常量乘法

对于 Level = 1 的密文同态加法计算,对于输入密文 $C_i = (a_i, \beta_i), i = 1, 2$,通过以下计算可得到密文 $C_{add1} \in M \times C$ 。

$$C_{add1} = C_1 \oplus C_2 = (a_1 + a_2, \beta_1 \cdot \beta_2)$$

对于 Level = 1 的密文同态标量乘法计算,对于任意 $k \in \mathbb{Z}$,对于输入 密文 $C = (a, \beta)$,通过以下计算可得到密文 $C_{cm1} \in M \times C$ 。

$$C_{cm1} = k \cdot C = (ka, \beta^k)$$

对于 level-1 的密文 $C = (a, \beta)$, 利用私钥 sk 对密文解密: $Dec(C) = a + Dec_{sk}(\beta)$ 。对于 $C_{add1} = C_1 \oplus C_2$ 与 $C_{cm1} = k \cdot C$ 解密正确性为

$$Dec(C_{add1}) = a_1 + a_2 + Dec_{sk}(\beta_1 \cdot \beta_2) = a_1 + a_2 + b_1 + b_2 = m_1 + m_2$$

 $Dec(C_{cm1}) = ka + Dec_{sk}(\beta^k) = ka + kb = km$

2.2 一级同态乘法加密与二级同态加密加法和常量乘法

对于 Level = 1 的密文同态乘法计算,对于输入密文 $C_i = (a_i, \beta_i), i = 1, 2$,通过以下计算可得到密文 $C_{mul1} \in C^3$ 。

$$C_{mul1} = C_1 \odot C_2 = (\alpha, \beta_1, \beta_2)$$

其中: $\alpha = Enc_{pk}(\alpha_1 \cdot \alpha_2) \cdot \beta_1^{\alpha_2} \cdot \beta_2^{\alpha_1}$ 。

对于 Level = 2 的密文同态加法计算,对于输入密文 $C_i = (a_i, \beta_{1,i}, \beta_{2,i}), i = 1, 2$,通过以下计算可得到密文 $C_{add2} \in C^3$ 。

$$C_{add2} = C_1 \oplus C_2 = (\alpha_1 \cdot \alpha_2, (\beta_{1,1}, \beta_{1,2}), (\beta_{2,1}, \beta_{2,2}))$$

对于 Level = 2 的密文同态标量乘法计算,对于任意 $k \in \mathbb{Z}$,对于输入 密文 $C = (\alpha, \beta_1, \beta_2)$,通过以下计算可得到密文 $C_{cm2} \in M \times C$ 。

$$C_{cm1} = k \cdot C = (\alpha^k, (\beta_1, \dots, \beta_1), (\beta_2, \dots, \beta_2))$$

对于 Level = 2 的密文 $C = (\alpha, \beta_1, \beta_2)$, 并且 β_1, β_2 为两个 k 元组,利用 私钥 sk 对密文解密: $Dec(C) = Dec_{sk}(\alpha) + \sum_{i=1}^{k} (Dec_{sk}(\beta_1[i]) \cdot Dec_{sk}(\beta_2[i]))$ 。 该解密方法对于 Level = 1 的密文同态乘法计算的正确性为,

$$Dec_{sk}(\alpha) = (a_1 \cdot a_2) + (a_2 \cdot b_1) + (a_1 \cdot b_2)$$

$$= m_1 m_2 - m_1 b_2 - m_2 b_1 + b_1 b_2 + m_2 b_1 - b_1 b_2 + m_1 b_2 - b_1 b_2$$

$$= m_1 m_2 - b_1 b_2$$

$$(4)$$

又 $Dec_{sk}(\beta_1) \cdot Dec_{sk}(\beta_2) = b_1b_2$,故 $m_1m_2 = Dec_{sk}(\alpha) + Dec_{sk}(\beta_1) \cdot Dec_{sk}(\beta_2)$ 。

对于 Level = 2 的密文同态加法计算,若 C_1 , C_2 分别由明文 m_1 , m_2 , m_3 , m_4 所生成的密文通过两次 Level = 1 的密文同态乘法计算得到,则由4可知

$$Dec_{sk}(\alpha_1 \cdot \alpha_2) = Dec_{sk}(\alpha_1) + Dec_{sk}(\alpha_2)$$

$$= m_1 m_2 - b_1 b_2 + m_3 m_4 - b_3 b_4$$
(5)

且 $Dec_{sk}(\beta_{1,1}) \cdot Dec_{sk}(\beta_{2,1}) = b_1b_2$, $Dec_{sk}(\beta_{1,2}) \cdot Dec_{sk}(\beta_{2,2}) = b_3b_4$, 故通过上述过程可解密得到 $m_1m_2 + m_3m_4$, Level = 2 的密文同态标量乘法计算同理。

2.3 二级同态加密乘法

若对明文 m_1, m_2, m_3, m_4 进行初始化,得到密文 $C_i = (a_i, \beta_i), i = 1, 2, 3, 4$ 。对于二级同态加密乘法,我们考虑两种情况,

- (1) C_1, C_2 通过 Level = 1 的密文同态乘法计算得到 $C_{mul1} = C_1 \odot C_2$,而后 计算 $C_{mul2} = C_{mul1} \odot C_3$;
- (2) $C_1, C_2 与 C_3, C_4$ 通过 Level = 1 的密文同态乘法计算分别得到 $C_{mul1} = C_1 \odot C_2 与 C'_{mul1} = C_3 \odot C_4$,而后计算 $C_{mul2} = C_{mul1} \odot C'_{mul1}$ 。

令 C_{mul2} 为一个四元组 $(\Delta_1, \Delta_2, \Delta_3, (\beta_1, \dots, \beta_n))$,并且记 $C_{mul1} = (\alpha, \beta_1, \beta_2), C'_{mul1} = (\alpha', \beta_3, \beta_4)$ 。

在情况 1 下, $C_{mul2} = C_{mul1} \odot C_3 = (\alpha^{a_3}, (\beta_1^{a_3}, \beta_2), (\alpha, \beta_3), (\beta_1, \beta_2, \beta_3))$; 在情况 2 下, $C'_{mul2} = C_{mul1} \odot C'_{mul1} = ((\alpha, \alpha'), (\alpha', \beta_1, \beta_2), (\alpha, \beta_3, \beta_4), (\beta_1, \beta_2, \beta_3, \beta_4))$ 。

二级同态加密乘法的解密算法为

 $Dec(C_{mul2}) = Dec(\Delta_1) + Dec(\Delta_2) + Dec(\Delta_3) + \prod_{i=1}^{n} (Dec(\beta_i))$.

对于情况 1, $Dec(\Delta_1) = Dec_{sk}(\alpha^{a_3})$, 由4可知, $Dec(\Delta_1) = (m_3 - b_3)(m_1m_2 - b_1b_2) = m_1m_2m_3 - m_1m_2b_3 - m_3b_1b_2 + b_1b_2b_3$,

 $Dec(\Delta_2) = Dec_{sk}((\beta_1)^{a_3})Dec_{sk}(\beta_2) = m_3b_1b_2 - b_1b_2b_3,$

 $Dec(\Delta_3) = Dec_{sk}(\beta_3)Dec_{sk}(\alpha) = m_1m_2b_3 - b_1b_2b_3$,则 $Dec(C_{mul2}) = m_1m_2m_3$ 。

对于情况 2, $Dec(\Delta_1) = Dec_{sk}(\alpha)Dec_{sk}(\alpha')$, 由4可知,

 $Dec(\Delta_1) = (m_1 m_2 - b_1 b_2)(m_3 m_4 - b_3 b_4) = m_1 m_2 m_3 m_4 - m_1 m_2 b_3 b_4 - m_3 m_4 b_1 b_2 + b_1 b_2 b_3 b_4,$

 $Dec(\Delta_2) = Dec_{sk}(\alpha')Dec_{sk}(\beta_1)Dec_{sk}(\beta_2) = m_3m_4b_1b_2 - b_1b_2b_3b_4,$

 $Dec(\Delta_3) = Dec_{sk}(\alpha) Dec_{sk}(\beta_3) Dec_{sk}(\beta_4) = m_1 m_2 b_3 b_4 - b_1 b_2 b_3 b_4$,则 $Dec(C'_{mul2}) = m_1 m_2 m_3 m_4$ 。

2.4 三级同态加密加法和模乘

设有 8 个明文 $m_{1,1}, m_{1,2}, m_{1,3}, m_{1,4}, m_{2,1}, m_{2,2}, m_{2,3}, m_{2,4}$, 分别初始化密文为 $C_{1,1}, C_{1,2}, C_{1,3}, C_{1,4}, C_{2,1}, C_{2,2}, C_{2,3}, C_{2,4}$ 。

两两进行一级同态加密乘法,即 $C_{mul1,1}=C_{1,1}\odot C_{1,2}, C_{mul1,2}=C_{1,3}\odot C_{1,4}$, $C_{mul1,3}=C_{2,1}\odot C_{2,2}, C_{mul1,4}=C_{2,3}\odot C_{2,4}$ 。

对密文 $C_{mul1,1}, C_{mul1,2}, C_{mul1,3}, C_{mul1,4}$ 两两进行二级同态加密乘法得 $C_{mul2,2} = C_{mul1,1} \odot C_{mul1,2}, C'_{mul2,2} = C_{mul1,3} \odot C_{mul1,4}$ 为二级同态加密乘法的第二种情况。其中 $C_{mul2,2} = (\Delta_{1,2}, \Delta_{2,2}, \Delta_{3,2}, (\{\beta_{1,i}|i=1,2,3,4\}))$

=
$$((\alpha_1, \alpha_2), (\alpha_2, \beta_{1,1}, \beta_{1,2}), (\alpha_1, \beta_{1,3}, \beta_{1,4}), (\{\beta_{1,i} | i = 1, 2, 3, 4\})).$$

 $C'_{mul2,2} = (\Delta'_{1,2}, \Delta'_{2,2}, \Delta'_{3,2}, (\{\beta_{2,i}|i=1,2,3,4\}))$ 同理。

对密文 $C_{mul1,1}, C_{1,3}, C_{mul1,2}, C_{1,4}$ 进行二级同态加密乘法得 $C_{mul2,1} = C_{mul1,1} \odot C_{1,3}, C'_{mul2,1} = C_{mul1,3} \odot C_{2,3}$ 为二级同态加密乘法的第一种情况。 其中 $C_{mul2,1} = (\Delta_{1,1}, \Delta_{2,1}, \Delta_{3,1}, (\{\beta_{1,i} | i=1,2,3\}))$

$$=(\alpha_1^{a_{1,3}},(\beta_{1,1}^{a_{1,3}},\beta_{1,2}),(\alpha_1,\beta_{1,3}),(\{\beta_{1,i}|i=1,2,3\})).$$

 $C'_{mul2,1} = (\Delta'_{1,1}, \Delta'_{2,1}, \Delta'_{3,1}, (\{\beta_{2,i}|i=1,2,3\}))$ 同理。 三级同态加密加法分为三种情况:

- (1) $C_{add3,1} = C_{mul2,1} \oplus C'_{mul2,1}$;
- (2) $C_{add3,2} = C_{mul2,1} \oplus C_{mul2,2};$
- (3) $C_{add3,3} = C_{mul2,2} \oplus C'_{mul2,2} \circ$

$$C_{add3,1} = (\alpha_1^{a_{1,3}} \alpha_3^{a_{2,3}}, (\beta_{1,1}^{a_{1,3}}, \beta_{1,2}, \beta_{2,1}^{a_{2,3}}, \beta_{2,2}),$$

$$(\alpha_1 \alpha_3, \beta_{1,3}, \beta_{2,3}), (\{\beta_{i,i} | i = 1, 2, 3, j = 1, 2\}))$$

$$(6)$$

$$C_{add3,2} = (\alpha_1^{a_{1,3}} \alpha_3^{a_{2,3}}, (\beta_{1,1}^{a_{1,3}}, \beta_{1,2}, \beta_{2,1}^{a_{2,3}}, \beta_{2,2}),$$

$$(\alpha_1 \alpha_3, \beta_{1,3}, \beta_{2,3}), (\{\beta_{i,i} | i = 1, 2, 3, j = 1, 2\}))$$

$$(7)$$

参考文献 8

 $U = ABR^2 \bmod MM^{-1} \bmod R$

 $C = \frac{ABR^2 + ABR^2 \cdot M}{R}$

图 1: 图 1

参考文献

- [1] 作者. 文献 [M]. 地点: 出版社, 年份.
- [2] 作者. 文献 [M]. 地点: 出版社, 年份.

A 附录标题

这里是附录.