

Paula Mabee
Monte Westerfield
Todd Vision

Workshop outcome:

- ■What research questions would you like us to enable?
- What data are required to answer those questions?
- □ How would you envision to query the system to ask those questions?
- How would you visualize the results?

Motivation & Background:

Practical opportunity: Possible to connect evolutionary phenotypes to genetics

Research opportunity: Genetic basis for evolutionary changes in phenotype?

AND OTHERS....

Door opener

Model organism databases developed methods to computerize and compute on phenotype

-Zebrafish genetic database (zfin.org)

Zebrafish is a model organism: Genetic approach

Model organism (zebrafish): Mutagenesis produces phenotypes

Zebrafish phenotypes (relative to wt):

Morphology Mutant/gene

Maxilla: size reduction sox9ahi1134 **Dentary**: size reduction sox9ahi1134 □ Retroarticular: loss edn1 **Opercle**: size reduction; loss sox9ahi1134; lockjaw **Ceratohyal**: shape change val ■ **Branchiostegals**: numberdecrease edn1 **Branchiostegals**: shape change she, stu, edn1-MO Opercle: lost edn1, lockjaw **Opercle**: size increase edn1 **Hypobranchials**: loss val **Ceratobranchial 5**: size reduction sox9ahi1134 □ Arches 2—5: reduced or absence lockiaw □ Arches 4—6: loss duckbill, flathead **Ethmoid**: loss chameleon, cyclops, detour, etc. chameleon, cyclops, detour, etc. □ **Trabeculae**: fused **Pectoral fin:** loss Fqf24-MO ■ Median fins: loss lepidotrichia finless sox9a loss **□** Scapulocoracoid: loss **Neural and hemal spines**: alignment chordin

Simultaneously...

Phylogenetic community in process of developing databases for phenotype (e.g. ToLs, Treebase, Morphobank, Morphbank)

Evolution also produces phenotypes

But, the genetic bases of morphology unknown

Cypriniform fish species

Morphology

- Branchiostegal rays: number
- Basibranchial 2: T-shaped
- **Basibranchial 4**: development
- Basibranchial 4: shape keeled
- Basihyal: shape
- Basihyal tooth plate
- Copula 3
- Hypobranchial 3: development
- Hypobranchial 4
- Ceratobranchial 5: size
- Ceratobranchial 5: teeth
- Infrapharyngeals; number
- ☐ Infrapharyngeal 1: presence
- Epibranchial 1: uncinate process
- Pharyngeal teeth: rows
- Interhyal: size
- □ Ceratohyal: shape
- Anterior ceratohyal: shape

Genes

Interdisciplinary Fish Working Group (NESCent):

- ■Zebrafish (zfin.org)
 - Researchers
 - Informaticians

- □ Fish evolution
 - Cypriniform Tree of Life
 - Other fish morphologists

Goals:

Communication

■Will model organism methods work for evolutionary biologists?

Changes required for use by evolutionary biologists?

Results:

- 1. Phenotype is common ground for model organism & evolutionary biologists.
- 2. If evolutionary phenotypes are databased using ontologies, they can be connected to zebrafish phenotypic & genomic data.

Conservation of gene sequence & function

(Lamason et al., 2005)

Zebrafish Human

Conservation of gene sequence & function 16 December 2005: The lightly pigmented golden

zebrafish show a striking resemblance to lighter skinned humans. The zebrafish pigment gene

Uses: co-query data

Zebrafish

Many fishes

- Prototype using fishes/zebrafish
- Develop database of phenotypic characters (skeletal) for fishes
- Connect to database of mutant phenotypes (skeletal) for zebrafish
- Access genetic and associated molecular data via shared phenotypes

Workshop outcome:

- ■What research questions would you like us to enable?
- What data are required to answer those questions?
- □ How would you envision to query the system to ask those questions?
- How would you visualize the results?