

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO

Prova Escrita de Matemática A

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Prova 635/2.a Fase

15 Páginas

Duração da Prova: 150 minutos. Tolerância: 30 minutos.

2014

VERSÃO 1

——— Página em branco ——	

Indique de forma legível a versão da prova.

Utilize apenas caneta ou esferográfica de tinta azul ou preta, exceto nas respostas que impliquem construções, desenhos ou outras representações, que podem ser, primeiramente, elaborados a lápis, e, a seguir, passados a tinta

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Não é permitido o uso de corretor. Deve riscar aquilo que pretende que não seja classificado.

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

Apresente apenas uma resposta para cada item.

A prova inclui um formulário.

As cotações dos itens encontram-se no final do enunciado da prova.

	- Página em branco -	

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$

Áreas de figuras planas

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Polígono regular: Semiperímetro × Apótema

Sector circular:

$$\frac{\alpha r^2}{2}(\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g (r - raio da base; g - geratriz)$$

Área de uma superfície esférica:
$$4\pi r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Cone:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Esfera:
$$\frac{4}{3}\pi r^3 \ (r-raio)$$

Trigonometria

$$sen(a+b) = sen a cos b + sen b cos a$$

$$cos(a+b) = cos a cos b - sen a sen b$$

$$tg(a+b) = \frac{tga + tgb}{1 - tga \ tgb}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n}\right) \quad (k \in \{0, ..., n-1\} \quad \mathbf{e} \quad n \in \mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

GRUPO I

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

1. Seja Ω , conjunto finito, o espaço de resultados associado a uma experiência aleatória.

Sejam A e B dois acontecimentos $(A \subset \Omega \in B \subset \Omega)$.

Sabe-se que:

- A e B são acontecimentos independentes;
- P(A) = 0.4
- $P(\overline{A} \cap \overline{B}) = 0.48$

Qual é o valor de P(B)?

- (A) 0,08
- **(B)** 0,12 **(C)** 0,2
- **(D)** 0.6
- 2. Na Figura 1, está representado, num referencial o.n. Oxyz, um octaedro [ABCDEF], cujos vértices pertencem aos eixos coordenados.

Escolhem-se, ao acaso, três vértices desse octaedro.

Qual é a probabilidade de esses três vértices definirem um plano paralelo ao plano de equação z = 5?

(B)
$$\frac{4}{{}^{6}C_{3}}$$

(C)
$$\frac{8}{{}^6C_3}$$

Figura 1

- **3.** Um dos termos do desenvolvimento de $\left(\frac{2}{x}+x\right)^{10}$, com $x\neq 0$, não depende da variável x Qual é esse termo?
 - (A) 10240
 - **(B)** 8064
 - **(C)** 1024
 - **(D)** 252
- **4.** Seja g uma função, de domínio $]-\infty,e[$, definida por $g(x)=\ln(e-x)$ Considere a sucessão estritamente crescente de termo geral $x_n=\left(1+\frac{1}{n}\right)^n$

Qual é o valor de $\lim g(x_n)$?

- (A) $+\infty$
- **(B)** *e*
- **(C)** 1
- (D) $-\infty$
- **5.** Considere, para um certo número real k, a função f, contínua em $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$, definida por

$$f(x) = \begin{cases} \frac{\cos x}{x - \frac{\pi}{2}} & \text{se } \frac{\pi}{4} \le x < \frac{\pi}{2} \\ k - 3 & \text{se } x = \frac{\pi}{2} \end{cases}$$

Qual é o valor de k?

- **(A)** 0
- **(B)** 1
- **(C)** 2
- **(D)** 4

6. Na Figura 2, está representada, num referencial ortogonal xOy, parte do gráfico da função g'', segunda derivada de uma função g

Figura 2

Em qual das opções seguintes pode estar representada parte do gráfico da função $\,g\,?\,$

(A)

(B)

(C)

(D)

7. Considere, num referencial o.n. Oxyz, o ponto A, de coordenadas (1,0,3), e o plano α , definido por 3x + 2y - 4 = 0

Seja $\,eta\,$ um plano perpendicular ao plano $\,lpha\,$ e que passa pelo ponto A

Qual das condições seguintes pode definir o plano $\ \beta$?

(A)
$$3x + 2y - 3 = 0$$

(B)
$$2x - 3y - z + 1 = 0$$

(C)
$$2x - 3y + z = 0$$

(D)
$$3x + 2y = 0$$

8. Na Figura 3, estão representadas, no plano complexo, duas semirretas $\dot{O}A$ e $\dot{O}B$ e uma circunferência de centro C e raio \overline{BC}

Sabe-se que:

- ullet O é a origem do referencial;
- o ponto A é a imagem geométrica do complexo $\frac{2\sqrt{3}}{3} + 2i$
- o ponto B é a imagem geométrica do complexo $-\frac{2\sqrt{3}}{3} + 2i$
- ullet o ponto C é a imagem geométrica do complexo 2i

Figura 3

Considere como $\arg(z)$ a determinação que pertence ao intervalo $[-\pi,\pi[$

Qual das condições seguintes define a região sombreada, excluindo a fronteira?

(A)
$$|z-2i| < \frac{2\sqrt{3}}{3} \land \frac{\pi}{4} < \arg(z) < \frac{3\pi}{4}$$

(B)
$$|z-2i| < \frac{2\sqrt{3}}{3} \land \frac{\pi}{3} < \arg(z) < \frac{2\pi}{3}$$

(C)
$$|z-2i| > \frac{2\sqrt{3}}{3} \wedge \frac{\pi}{3} < \arg(z) < \frac{2\pi}{3}$$

(D)
$$|z-2i| > \frac{2\sqrt{3}}{3} \wedge \frac{\pi}{4} < \arg(z) < \frac{3\pi}{4}$$

— Página em branco ———	

GRUPO II

Na resposta aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Seja $\mathbb C$ o conjunto dos números complexos.

1.1. Considere
$$z = 2 \operatorname{cis} \left(\frac{\pi}{6} \right)$$
 e $w = \frac{(z-i)^4}{1+zi}$

No plano complexo, seja $\,O\,$ a origem do referencial.

Seja A a imagem geométrica do número complexo \overline{z} e seja B a imagem geométrica do número complexo w

Determine a área do triângulo [AOB], sem utilizar a calculadora.

1.2. Seja $\alpha \in]0,\pi[$

Resolva, em \mathbb{C} , a equação $z^2 - 2\cos\alpha z + 1 = 0$

Apresente as soluções, em função de α , na forma trigonométrica.

- 2. Uma caixa tem seis bolas distinguíveis apenas pela cor: duas azuis e quatro pretas.
 - **2.1.** Considere a experiência aleatória que consiste em retirar, ao acaso, uma a uma, sucessivamente e sem reposição, todas as bolas da caixa. À medida que são retiradas da caixa, as bolas são colocadas lado a lado, da esquerda para a direita.

Determine a probabilidade de as duas bolas azuis ficarem uma ao lado da outra.

Apresente o resultado na forma de fração irredutível.

2.2. Considere a caixa com a sua composição inicial.

Considere agora a experiência aleatória que consiste em retirar dessa caixa, simultaneamente e ao acaso, três bolas.

Seja X a variável aleatória «número de bolas azuis que existem no conjunto das três bolas retiradas».

Construa a tabela de distribuição de probabilidades da variável $\, X \,$

Apresente as probabilidades na forma de fração.

3. Na Figura 4, está representado um pentágono regular [ABCDE]

Sabe-se que
$$\overline{AB} = 1$$

Mostre que
$$\frac{\overrightarrow{AB} \cdot \overrightarrow{AD}}{\|\overrightarrow{AD}\|} = 1 - 2 \operatorname{sen}^2 \left(\frac{\pi}{5}\right)$$

Nota: \overrightarrow{AB} . \overrightarrow{AD} designa o produto escalar do vetor \overrightarrow{AB} pelo vetor \overrightarrow{AD}

Figura 4

4. Considere as funções f e g, de domínio $]-\infty,0[$, definidas por

$$f(x) = x - 1 + \frac{\ln(-x)}{x}$$
 e $g(x) = -x + f(x)$

Resolva os itens seguintes, recorrendo a métodos analíticos, sem utilizar a calculadora.

- **4.1.** Estude a função f quanto à existência de assíntotas do seu gráfico e, caso existam, indique as suas equações.
- **4.2.** Mostre que a condição f(x) = -e tem, pelo menos, uma solução em]-e, -1[
- **4.3.** Estude a função g quanto à monotonia e quanto à existência de extremos relativos.

Na sua resposta, deve indicar o(s) intervalo(s) de monotonia e, caso existam, os valores de x para os quais a função g tem extremos relativos.

5. Na Figura 5, estão representados uma circunferência de centro $\,O\,$ e raio $\,2\,$ e os pontos $\,P,\,Q,\,R\,$ e $\,S\,$

Sabe-se que:

- ullet os pontos $P,\,Q,\,R\,$ e $\,S\,$ pertencem à circunferência;
- [PR] é um diâmetro da circunferência;
- $\overline{PQ} = \overline{PS}$
- α é a amplitude, em radianos, do ângulo QPR
- $\alpha \in \left]0, \frac{\pi}{2}\right[$
- $A(\alpha)$ é a área do quadrilátero [PQRS], em função de α

Figura 5

Para um certo número real θ , com $\theta \in \left]0, \frac{\pi}{2}\right[$, tem-se que $tg\theta = 2\sqrt{2}$

Determine o valor exato de $A(\theta)$, recorrendo a métodos analíticos, sem utilizar a calculadora.

Comece por mostrar que $A(\alpha) = 16 \operatorname{sen} \alpha \cos \alpha$

6. Considere, num referencial o.n. xOy, a representação gráfica da função f, de domínio [0,10], definida por $f(x) = -e^{\frac{x}{2}} + x^2 + 8$, e dois pontos $A \in B$

Sabe-se que:

- ullet o ponto A é o ponto de intersecção do gráfico da função f com o eixo das ordenadas;
- ullet o ponto B pertence ao gráfico da função f e tem abcissa positiva;
- a reta AB tem declive -2

Determine a abcissa do ponto B, recorrendo à calculadora gráfica.

Na sua resposta, deve:

- equacionar o problema;
- reproduzir, num referencial, o gráfico da função ou os gráficos das funções que tiver necessidade de visualizar na calculadora, devidamente identificados;
- indicar o valor da abcissa do ponto B com arredondamento às centésimas.
- 7. Na Figura 6, está representada, num referencial o.n. xOy, parte do gráfico de uma função polinomial f, de grau 3

Sabe-se que:

- ullet -2 e 3 são os únicos zeros da função f
- a função f tem um extremo relativo em x = -2
- h', primeira derivada de uma função h, tem domínio $\mathbb R$ e é definida por $h'(x)=\frac{f(x)}{e^{2x}}$
- $\bullet \lim_{x \to +\infty} h(x) = 3$

Figura 6

Considere as afirmações seguintes.

- I) A função h tem dois extremos relativos.
- II) h''(-2) = 0
- III) y + 3 = 0 é uma equação da assíntota do gráfico da função h quando x tende para $+\infty$

Elabore uma composição, na qual indique, justificando, se cada uma das afirmações é verdadeira ou falsa.

Na sua resposta, apresente três razões diferentes, uma para cada afirmação.

FIM

	- Página em branco -	

COTAÇÕES

GRUPO I

1. a 8	3(8 × 5 pontos)	40 pontos	
			40 pontos
	GRUPO II		
1.			
1.	1	15 pontos	
1.2	2	15 pontos	
2.	•	40 1	
	1	10 pontos	
۷.,	2	15 pontos	
3		15 pontos	
		·	
4.			
4.	1	20 pontos	
	2	10 pontos	
4.3	3	15 pontos	
5		15 pontos	
6.		15 pontos	
7		15 pontos	
			160 pontos
		_	
	TOTAL		200 pontos