Lab 7

Least squares approximation

1. The following table list the temperatures of a room recorded during the time interval [1:00,7:00]. Find the best liniar least squares function $\varphi(x)=ax+b$ that approximates the table, using the normal equations (equations (3) from Course 5). Use your result to predict the temperature of the room at 8:00. Find the minimum value E(a,b) (equation (2) from Course 5), for the obtained a and b. In the same figure, plot the points (Time, Temperature) and the least squares function.

Time	1:00	2:00	3:00	4:00	5:00	6:00	7:00
Temperature	13	15	20	14	15	13	10

2. The vapor pressure P of the water (in bars) as a function of temperature T (in ${}^{\circ}C$) is:

T (temperature)	0	10	20	30	40	60	80	100
P (pressure)	0.0061	0.0123	0.0234	0.0424	0.0738	0.1992	0.4736	1.0133

- a) Obtain two least squares approximations for the given data, using polyyfit for 2 different degrees of the polynomials. Find their values for T=45 using polyval. Compute the approximation errors, knowing that the exact value is P(45)=0.095848.
- b) Plot the interpolation points, the least squares approximants and the interpolation polynomial, in the same figure.
- **3.** Consider 10 random points in the plane $[0,3] \times [0,5]$ using Matlab function *ginput*. Plot the points and the least squares polynomial of 2nd degree that best fits these points.

Facultative:

4. Consider 12 random points in the interval [0, 10]. Find the discret least squares approximant of n-th degree for the function $f(x) = x^3$ using the least squares approximation method with weight function w(x) = 1 and the basis $1, x, x^2, ..., x^n$. (The least squares approximant is of the form $\varphi(x) = \sum_{i=1}^n a_i g_i(x)$,

where $\{g_i, i=1,...,n\}$ is a basis of the space and the coefficients a_i are obtained solving the normal equations: $\sum_{i=1}^n a_i \langle g_i, g_k \rangle = \langle f, g_k \rangle, \quad k=1,...,n,$ with $\langle f, g \rangle = \sum_{i=0}^m f(x_k)g(x_k)$). Plot the function and the obtained least squares approximant.