

Question In Compute the limit
$$\lim_{n\to\infty} x_n$$
 of the sequence $(x_n,n\in\mathbb{N})$, where
$$x_n = \frac{2n^3}{5n^3 + 17n^2 + 2}.$$
 (5 marks)

$$x_n = \frac{2n^3}{\sqrt{n} + \sqrt{7}n^2 + 2}.$$
Question Ib Compute the limit $\lim_{n\to\infty} x_n$ of the sequence $(x_n,n\in\mathbb{N})$, where
$$x_n = \sum_{i=1}^n \frac{1}{n^2 + 2n + 3}.$$
 (5 marks)

$$x_n = \sum_{i=1}^n \frac{1}{n^2 + 2n + 3}.$$

Question Ic

Compute the upper limit , i.e.,
$$\lim_{n\to\infty}\sup x_n$$
, of the sequence $(x_n,n\in\mathbb{N})$,

$$x_n=(-1)^n+\frac{2n}{n+2}.$$

(5 marks)

(C) $\lim_{n\to\infty}\left(\frac{2n}{\log 2}\right)=\lim_{n\to\infty}\left(\frac{2}{1+\frac{2}{n}}\right)$

$$=1$$
Let $\lim_{n\to 2k-1}\lim_{n\to\infty}\left(\chi_{2k-1}\right)=-1+2$

$$=1$$

$$\lim_{n\to\infty}\left(\chi_{2k-1}\right)=\lim_{n\to\infty}\left(\frac{2}{1+\frac{2}{n}}\right)$$

$$=\frac{2}{2}.$$

(7 marks)

(8 marks)

(9 marks)

(10 marks)

(11 marks)

(12 marks)

Question 1d

Compute the function limit

$$\lim_{x\to 0} x \left(\cos \frac{1}{x} + x\right).$$

(5 marks)

(5 marks)

(6 marks)

(6 marks)

(7 marks)

(8 marks)

(9 marks)

(10 marks)

Question 2

Give an example of sequence
$$(x_n, n \in \mathbb{N})$$
 such that it is bounded but not Cauchy. Show the reason.

(10 marks)

 $x_n = c_1$ is

 $x_n = c_1$

Question 4

Consider a sequence
$$(x_n, n \in \mathbb{N})$$
. Assume that for any $n \in \mathbb{N}$ there is $|x_{n+1} - x_n| < c^n$, where $0 < c < 1$ is a constant. Show that $(x_n, n \in \mathbb{N})$ is a Cauchy sequence.

(10 marks)

We visit to show that for every 5 to those 2×1 that 2×1 then 2×1 that 2×1 t

Given
$$\varepsilon > 0$$
. Choose N rum that for all $m, n \in \mathbb{N}$, $\mathbb{N} > \frac{\ln(\varepsilon(1-c))}{\ln c} = 7$ | $\pi_m = \pi_m \mid z \in \mathbb{N}$.

Question 5

Assume a function $f(x)$ is continuous on $[0, +\infty)$ and uniformly continuous on $[1, +\infty)$. Determine whether $f(x)$ is uniformly continuous on $[0, +\infty)$.

(10 marks)

Let $A = [0, 1] \subseteq [0, \infty)$. By the Vinitoria Continuing Theorem, Since $f(x) = 0$ continuous on $f(x) = 0$.

Let $A = [0, 1] \subseteq [0, \infty)$. By the Vinitoria Continuing Theorem, Since $f(x) = 0$ continuous on $f(x) = 0$.

Let $f(x) = [0, \infty] \subseteq [0, \infty]$ and $f(x) = [0, \infty]$

Suppose
$$f(x)$$
 is a continuous function on the interval $[0,2]$ with $f(0)>0$ and $f(2)<4$. Show that the equation $f(x)=x^2$ has at least one solution in the interval $[0,2]$. (10 marks)

where $f(x) \in \mathbb{N}$ for $f(x) = x^2 = 0$ gives $f(x) = x^2 = 0$ gives $f(x) = f(x) = x^2$. Since $f(x) = f(x) = x^2$. We have $f(x)$ is continuous on $f(x) = x^2$. Since $f(x) = f(x) = x^2$. We have $f(x) = x^2 = 0$ gives $f(x) = x^2 = 0$ gives

Question 6

Question 7 Suppose $f(x): \mathbb{R} \to \mathbb{R}$ is a continuous function and $U \subset \mathbb{R}$ is an open set. Apply epsilon-delta arguments to prove that the set $f^{-1}\left(U\right)=\left\{ x\in\mathbb{R}|\ f\left(x\right)\in U\right\}$ is also an open set. Suppose $y \in f^{-1}(N)$. Then $f(y) \in N$. Since N is an open set, then show $e^{\gamma O}$, $(f(y) - \varepsilon, f(y) + \varepsilon) \subseteq N$. By the continuity of f at y, for the given ε , there exists f > O such that if |x - y| < f, then $|f(x) - f(y)| < \varepsilon$. Therefore, $f(x) \in (f(y) - \varepsilon, f(y) + \varepsilon)$. Thus, $f(x) \in N$. Here, $x \in f^{-1}(N)$. Support $y \in f^{-1}(u)$. Then $f(y) \in U$. Since U is an open set, given an E-neighbourhood $V_{\mathcal{E}}(f(y))$ of f(y), $V_{\mathcal{E}}(f(y)) \subseteq U$. By the continuity of f at u, for the given $V_{\mathcal{E}}(f(y))$, then exircs d-netyhbourhood $V_{\mathcal{E}}(y)$ of u such that if $u \in V_{\mathcal{E}}(y)$, then $f(u) \in V_{\mathcal{E}}(f(y))$. Therefore, $f(u) \in U$. Hence, $u \in f^{-1}(u)$. Thus, $V_{\mathcal{E}}(y) \subseteq f^{-1}(u)$. We conclude that f-((1) is an open set.

Question 8 Suppose f(x) is an increasing function defined on an interval X = [a, b]. Prove that f(x) is continuous at $\overline{x} = b$ if and only if $f(b) = \sup \{f(x) \mid x \in [a,b)\}$. (15 marks) We want to show that given E>O, there exists flxs) such tunt f(b)-E<f(2c) for some & E[a,b). Proof. Suppose that f is continuous at b. Thun $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Given $\frac{1}{2}$ $\frac{1}{2}$, there exists $\frac{1}{2}$ $\frac{1}{2}$ such that if $\frac{1}{2}$ $\frac{1}{2}$ We have 0 < b- x Thun $f(b) \ge f(a)$. Therefore, $|f(b) - f(x)| \le \varepsilon$. f(b)-E < f(2). We conduid that f(b) is for supremm of f(x) | x e[a, b)} Suppose that $f(b) = \sup f(b) \mid x \in [a,b) \mid$. Since f(b) is an least upper bound, given $\epsilon > 0$, there exists f(x) such that $f(b) - \epsilon < f(x)$ for some $x \in [a,b)$. Thus, f(b) - f(x) < E $|f(x)-f(b)|<\varepsilon$. Let S=b-a. Since f is increming, we have f(b) > f(x), so b>x. Thus, if o<b->x<b->x<b->x<b->f(x)-f(b) | z<b->x<b->x
Hunu, (im f(x)= f(b). Thurson, f is continuous at b.