有限元第一次编程作业

W Huang

日期: 2023年10月26日

1 有限元推导

求解 PDE

$$\begin{cases}
-\Delta u + u = f, & \text{in } \Omega, \\
\mathbf{n} \cdot \nabla u = 0, & \text{on } \partial \Omega.
\end{cases}$$
(1)

其中区域 $\Omega = [0,1]^2$, 取精确解:

$$u(x,y) = \cos(\pi x)\cos(\pi y). \tag{2}$$

导出右端项:

$$f(x,y) = (2\pi^2 + 1)\cos(\pi x)\cos(\pi y). \tag{3}$$

变分公式: 求 $u \in H^1(\Omega)$, 使得,

$$(u,v) + (\nabla u, \nabla v) = (f,v), \quad \forall v \in H^1(\Omega).$$
(4)

使用三角网格 T_b , 取 P_1 元, 有限元逼近空间为:

$$V_h = \{ u_h \in C(\bar{\Omega}) : u_h |_{\mathcal{K}} \in \mathcal{P}_1, \ \forall \mathcal{K} \in \mathcal{T}_h \} \subset H^1(\Omega).$$
 (5)

求得的数值解 $u_h \in V_h$ 可写为:

$$u_h = \sum_{j=1}^{N} U_j \Phi_j. \tag{6}$$

其中N为顶点个数, Φ_i 为顶点j的线性节点基函数。我们需要装配离散系统

$$AU = F. (7)$$

其中,

$$A_{ij} = (\Phi_i, \Phi_j) + (\nabla \Phi_i, \nabla \Phi_j), \quad i, j = 1, ..., N,$$
 (8)

$$F_i = (\Phi_i, f), \quad i = 1, ..., N.$$
 (9)

积分需要遍历所有函数值非零的三角形单元,将结果累加。在每个三角形中,积分值由 二阶 Gauss quadrature formula 计算,由于我们采用的是 P_1 元,因此这样算出来的 (Φ_i, Φ_j) 与 $(\nabla \Phi_i, \nabla \Phi_j)$ 都是精确的。

2 数值测试

用 deal.ii 自带的函数生成正方形网格,再进行三角化,生成米字形三角网格。按上节所述方式装配离散系统,用 deal.ii 的共轭梯度求解器解离散系统,当代数误差达到 $10^{-6}||F||_2$ 时停止

迭代,最终结果如下。(米字形网格的误差分布非常有意思)

图 1: $h = \frac{1}{16}$ 时的网格点编号

图 2: $h = \frac{1}{16}$ 时得到的离散系统

图 3: $h = \frac{1}{16}$ 时的数值解

图 4: $h = \frac{1}{16}$ 时数值解与真解的误差

h	$\frac{1}{16}$	Rate	$\frac{1}{32}$	Rate	$\frac{1}{64}$	Rate	$\frac{1}{128}$
$ u-u_h _{L_1}$	0.00385344	2.00	0.000965871	2.00	0.00024153	2.00	6.03922e-05
$ u-u_h _{L_2}$	0.00451671	2.00	0.0011314	2.00	0.00028299	2.00	7.07562e-05
$ u-u_h _{L_{\infty}}$	0.0380602	1.99	0.00960736	2.00	0.00240764	2.00	0.000602272
$ u-u_h _{H_1}$	0.205241	1.00	0.102761	1.00	0.0513983	1.00	0.0257014
$ u-u_h _{H_1}$	0.205291	1.00	0.102768	1.00	0.0513991	1.00	0.0257015
CPU Time (s)	0.186		0.391		1.221		4.782

误差范数用积分计算,积分值在每个三角形单元里都由二阶 Gauss quadrature formula 计算。 完全符合理论分析的结果。