

Untersuchung des Drehmoments der M4 Schrauben auf der Ein-/Auskoppelplattform

Autor: FBA

Datum: 26.04.2021

Änderungsverzeichnis

Datum	Kürzel	Beschreibung
26.04.2021	FBA	Erstellung

Inhaltsverzeichnis

1	Vorbemerkungen	1
2	Berechnung der Mindesteinschraubtiefe m _{eff min}	1
	Berechnung der zulässigen Schraubenvorspannkraft der Schraube im Aluminium utterngewinde analog zur Mindesteinschraubtiefe m _{eff min}	3
4	Elastische Nachgiebigkeit der Verbindungselemente und Vorspannkraftverlust durch	
Set	tzten im Betrieb	4
	4.1 Nachgiebigkeit der Schraube	4
	4.2 Nachgiebigkeit der verspannten Bauteile	4
	4.3 Vorspannkraftverlust durch Setzten im Betrieb F _z	6
5	Beanspruchung der Schraube beim Anziehen und im Betrieb	6
6	Empfehlungen	7

1 Vorbemerkungen

Zur Verbesserung der Prozesssicherheit wurde durch Florian Skopnik, eine Untersuchung des maximal zulässigen Anziehdrehmoment der Schraubenverbindung M4 Edelstahl A70 in das Aluminium (AlMg4,5Mn0,7) Breadboard beauftragt. Im Folgenden wurde eine Festigkeitsbetrachtung nach VDI-Richtlinie VDI 2230 (Systematische Berechnung hochbeanspruchter Schraubenverbindungen, Zylindrische Einschraubverbindungen) [1] und nach Roloff/Matek Maschinenelemente [2] vorgenommen. Stand der Richtline (VDI 2230) Februar 2003. Die Festigkeitskennwerte des betrachteten Aluminiums sind nach Datenblatt [3] für die Streckgrenze $R_{p0,2\,min}=110\,MPa$ und $R_{p0,2\,max}=130\,MPa$ sowie für die maximale Zugfestigkeit $R_{m,min}=230\,MPa$ und $R_{m,max}=290\,MPa$.

2 Berechnung der Mindesteinschraubtiefe meff min

Nach dem Konstruktionsprinzip der Schraubenverbindung soll im Falle einer Überlastung der im freien liegende belastete Gewinde- oder Schaftteil der Schraube brechen. Dies erfordert eine gezielte Abstimmung der Tragfähigkeiten der einzelnen Bereiche der Schraubenverbindung. Zunächst wird die kritische Einschraubtiefe m_{kr} (Länge der vollständig im Eingriff befindlichen Gewindelänge von

Schraube und Mutter, inklusive der unbelasteten Einschraubtiefe von $0.8 \cdot P$) berechnet. Die Berechnung erfolgt nach Gleichung:

$$m_{eff \ min} = \frac{R_{m \ max} \cdot A_{s} \cdot P}{\left\{ C_{1} \cdot C_{3} \cdot \tau_{BM} \left[\frac{P}{2} + (d - D_{2}) \tan 30^{\circ} \right] \cdot \pi \cdot d \right\}} + 0.8 \cdot P = 3.91 \ mm$$

Die tatsächlich tragende Einschraubtiefe m_{eff} beträgt ohne die unbelastete Einschraubtiefe von $0,8 \cdot P$ 3,35 mm. Die eingesetzten Werte sind der Tabelle 1 zu entnehmen.

Tabelle 1: Parameter für die Berechnung der Mindesteinschraubtiefe

Formelzeichen	Einheit	Benennung	Wert
$R_{m max}$	MPa	Maximale Zugfestigkeit der Schraube	700 MPa
A_{S}	mm³	Spannungsquerschnitt des Schraubengewindes	8,78 mm ²
P	mm²	Gewindesteigung	0,7mm
C_1	-	Korrekturfaktor Muttergeometrie	1 (Einschraubgewinde)
C_3	-	Korrekturfaktor Festigkeitsverhältnis	1,03588
$ au_{BM}$	MPa	Scherfestigkeitskennwert der Mutter nach $ au_{BM} = 0.7 \cdot R_m = 0.7 \cdot 230 \ MPa$	161 MPa
d	mm	Gewindeaußendurchmesser	4 mm
D_1	mm	Kernduchmesser der Mutter	3,141 mm
$D_2 = d_2$	mm	Flankenduchmesser	3,545 mm

Der Korrekturfaktor \mathcal{C}_3 kann mit

$$C_3 = 0.728 + 1.769 \cdot R_s - 2.896 \cdot R_s^2 + 1.296 \cdot R_s^3 = 1.03588$$

und mit $R_{mS} = R_{m max}$

$$R_s = \frac{\tau_{BM} \cdot A_{SGM}}{R_{ms} \cdot A_{SGS}} = 0.3076$$

sowie

$$A_{SGM} = \pi \cdot d \cdot \left(\frac{m_{eff}}{P}\right) \cdot \left[\frac{P}{2} + (d - D_2) \cdot \tan 30^{\circ}\right] = 36,84 \text{ } mm^2$$

und

$$A_{SGS} = \pi \cdot D_1 \cdot \left(\frac{m_{eff}}{P}\right) \cdot \left[\frac{P}{2} + (d_2 - D_1) \cdot \tan 30^{\circ}\right] = 27,54 \text{ mm}^2$$

ermittelt werden.

Es wird für die Mindesteinschraubtiefe ein Sicherheitsfaktor von 1,5 bis 2 empfohlen, um geometrische Abweichungen hinsichtlich Bauteiltoleranzen auszugleichen. Die **empfohlene Einschraubtiefe** sind somit **mindestens 5,9 mm bis 7,8 mm**.

3 Berechnung der zulässigen Schraubenvorspannkraft der Schraube im Aluminium Mutterngewinde analog zur Mindesteinschraubtiefe m_{eff min}

Analog zur Berechnung der Mindesteinschraubtiefe $m_{eff\ min}$ wird im Folgenden die zulässige axiale Gewindekraft abgeschätzt. Die Berechnung der **Abstreifkraft des Gewindes** kann nach der Gleichung

$$F_{mGM} = C_1 \cdot C_3 \cdot \tau_{BM} \left(\frac{m_{eff}}{P} \right) \left[\frac{P}{2} + (d - D_2) \tan 30^{\circ} \right] \cdot \pi \cdot d = 6145N$$

berechnet werden. Bei der zulässigen Gewindekraft wird nicht mehr gegen die Scherfestigkeit $\tau_{\rm BM}$ gerechnet, sondern gegen die Bauteilfestigkeit gegen Fließen. Diese kann überschlägig mit $\tau_{SF}=0.6\cdot R_e\cdot \nu$ für Aluminium Knetlegierungen nach [2] bestimmt werden. Es wird mit einem Ausnutzungsgrad der Streckgrenze R_e von 90 % gerechnet. Diese berechnete Kraft entspricht der maximal zulässigen Montagevorspannkraft.

$$F_M = C_1 \cdot C_3 \cdot \tau_{sF} \left(\frac{m_{eff}}{P} \right) \left[\frac{P}{2} + (d - D_2) \tan 30^{\circ} \right] \cdot \pi \cdot d = 2267N$$

Die eingesetzten Werte sind der Tabelle 2 zu entnehmen.

Tabelle 2: Parameter für die Berechnung der zulässigen Muttergewinde Kraft

Formelzeichen	Einheit	Benennung	Wert
R_e	MPa	Maximale Streckgrenze der Aluminium Platte	110 MPa
ν	-	Ausnutzungsgrad	0,9
μ_G	-	Reibungszahl im Gewinde [2]	0,14
μ_K	-	Reibungszahl der Kopfauflage [2]	0,14
D_{Km}	mm	Wirksamer Durchmesser für das Reibmoment der Schraubkopfauflage	7 mm
$m_{eff} - 0.8 \cdot P$	mm	Die tatsächlich tragende Einschraubtiefe des Gewindes	3,35mm

Das maximal zulässige Anziehmoment der Schraube wird wie folgt berechnet:

$$M_A = F_M \left(0.16 \cdot P + 0.58 \cdot d_2 \cdot \mu_G + \frac{D_{Km}}{2} \mu_K \right) = 2017 Nmm \approx 2Nm$$

Das Anziehmoment, bei dem das Gewinde der Mutter abgeschert wird, beträgt:

$$M_{Abscher} = F_{mGM} \left(0.16 \cdot P + 0.58 \cdot d_2 \cdot \mu_G + \frac{D_{Km}}{2} \mu_K \right) = 5468Nmm \approx 5.5Nm$$

Dieses Anziehmoment führt zu einer sicheren Beschädigung des Mutterngewinde und ist nur als allgemeiner Hinweis zu verstehen und keinesfalls zu verwenden.

4 Elastische Nachgiebigkeit der Verbindungselemente und Vorspannkraftverlust durch Setzten im Betrieb

4.1 Nachgiebigkeit der Schraube

Die Nachgiebigkeit der Schraube kann wie folgt ermittelt werden:

$$\delta_S = \delta_K + \delta_2 + \delta_G = \frac{1}{E_S} \left(\frac{0.4d}{A_N} + \frac{l_2}{A_3} + \frac{0.5d}{A_3} \right) = 5.076 \cdot 10^{-6} \frac{mm}{N}$$

Die eingesetzten Werte sind der Tabelle 3 zu entnehmen.

Tabelle 3: Parameter für die Berechnung der Nachgiebigkeit der Schraube

Formelzeichen	Einheit	Benennung	Wert
E_S	GPa	E-Modul der Schraube	210 GPa
$A_N = \frac{\pi d^2}{4}$	mm²	Nennquerschnitt des Schraubenschaftes	25,13mm²
A_3	mm²	Kernquerschnitt des Schraubengewindes	8,78 mm²
d	mm	Nenndurchmesser	4 mm
$l_2 = l_K$	mm	Klemmlänge	6,8 mm
δ_K	mm/N	Elastische Nachgiebigkeit des Schraubenkopfes	
δ_2	mm/N	Elastische Nachgiebigkeit des zylindrischen Elements (freies Gewinde)	
δ_G	mm/N	Elastische Nachgiebigkeit des eingeschraubten Gewindes	

4.2 Nachgiebigkeit der verspannten Bauteile

Für die Berechnung der Nachgiebigkeit der verspannten Bauteile wird der vorhandene Fall in der Baugruppe 680274_030 der möglichst die steiffesten Bauteile miteinander verbindet gewählt, da dies

zu den größten Vorspannkraftverlusten infolge Setzen während des Betriebs führt. Das kritische Bauteil ist die 601280_010 "Basis für Qbit EOM's" nach Abbildung 1.

Abbildung 1: Kritisches Bauteil bei der Baugruppe 680274_030

Die Berechnung erfolgt nach folgenden zwei Gleichungen:

$$\delta_T = \frac{l_K}{A_{arc} \cdot E_T} = 3,1168 \cdot 10^{-6} \frac{mm}{N}$$

und

$$A_{ers} = \frac{\pi}{4} \left(d_w^2 - d_h^2 \right) + \frac{\pi}{8} \left(D_A - d_w \right) \left[\left(\sqrt[3]{\frac{l_k \cdot d_w}{D_A^2}} + 1 \right)^2 - 1 \right] = 31,17 \ mm^2$$

Für die Berechnung der Ersatzquerschnittes wurde nach dem Grenzfall nach $D_A>d_w+l_k$ die Grenzbedingung $D_A=d_w+l_k=11$,8 mm eingesetzt.

Die eingesetzten Werte sind der Tabelle 4 zu entnehmen.

Tabelle 4: Parameter für die Berechnung der Nachgiebigkeit der Bauteile

Formelzeichen	Einheit	Benennung	Wert
d_w	mm	Außendurchmesser der der ebenen Kopfauflage	7 mm
d_h	mm	Bohrungsdurchmesser der verspannten Platte	4,8 mm
D_A	mm	Außendurchmesser der verspannten Hülse	

l_k	mm	Klemmlänge	6,8 mm
E_T	GPa	E-Modul der verspannten Bauteile	70 GPa

4.3 Vorspannkraftverlust Fz durch Setzten im Betrieb

Die Vorspannkraftverluste durch Setzten im Betrieb sind nach:

$$F_Z = \frac{f_Z}{\delta_S + \delta_T} = \frac{0,007}{5,076 \cdot 10^{-6} + 3,315 \cdot 10^{-6}} = 854,5N$$

Die eingesetzten Werte sind der Tabelle 5 zu entnehmen.

Tabelle 5: Parameter für die Berechnung der Vorspannkraftverluste infolge des Setzens im Betrieb

Formelzeichen	Einheit	Benennung	Wert
f_Z	mm	Setzbetrag für Rautiefen der Oberflächen < 10 μm [2]	7 μm

Für eine sichere Auslegung der Schraubenverbindung muss nach

$$F_{VM} = k_a (F_{Kl} + F_Z)$$

und dem Anziehfaktor k_A = 1,5 [2] (für das Anziehen mit dem Drehmomentschlüssel) eine ausreichende Restklemmkraft F_{Kl} vorhanden sein. Diese ist mit 656,9N etwas knapp. Die Schraubenverbindung sollte nach 24h erneut mit dem empfohlenen Drehmoment angezogen werden um eventuell auftretende Vorspannkraftverluste auszugleichen.

5 Beanspruchung der Schraube beim Anziehen und im Betrieb

Der Festigkeitsnachweis der Schraube für den Lastfall Anziehen der Schraubenverbindung und den Betriebsfall durchzuführen. Die Beanspruchung der Schraube beim Anziehen wird nach Gleichung

$$\sigma_{red.} = \sqrt{\sigma_M^2 + 3\tau_t^2} = \sqrt{258,2^2 + 3 \cdot 206,2^2} = 440,7 MPa \le v \cdot R_{p0,2} = 0.9 \cdot 700 MPa = 630 MPa$$

bestimmt. Mit Montagezugspannung σ_M

$$\sigma_M = \frac{F_M}{A_S} = \frac{2267N}{8,78 \text{ mm}^2} = 258,2 \text{ MPa}$$

und Torsionsspannung au_t

$$\tau_t = \frac{M_G}{W_t} = \frac{M_G}{\frac{\pi}{12} \left(\frac{d_2 + d_3}{2}\right)^3} = \frac{2017 \ Nmm}{\frac{\pi}{12} \left(\frac{3,545 \ mm + 3,141 \ mm}{2}\right)^3} = 206,2 \ MPa$$

Die Beanspruchung der Schraube im Betrieb:

$$\sigma_{red.} = \sqrt{\sigma_{z \, max}^2 + 3(k_{\tau} \cdot \tau_t)^2} = \sqrt{258,2^2 + 3(0,5 \cdot 206,2)^2} = 313,9MPa \le \nu \cdot R_{p0,2}$$
$$= 0.9 \cdot 700MPa = 630MPa$$

Mit Montagezugspannung σ_M :

$$\sigma_M = \frac{F_M}{A_S} = \frac{2267N}{8,78 \text{ mm}^2} = 258,2 \text{ MPa}$$

Mit Torsionsspannung τ_t :

$$\tau_t = \frac{M_G}{W_t} = \frac{M_G}{\frac{\pi}{12} \left(\frac{d_2 + d_3}{2}\right)^3} = \frac{2017 \ Nmm}{\frac{\pi}{12} \left(\frac{3,545 \ mm + 3,141 \ mm}{2}\right)^3} = 206,2 \ MPa$$

Durch den Entfall einer zusätzlichen Betriebskraft F_B ist der Lastfall Anziehen der kritische.

6 Empfehlungen

- Anziehmoment der Schraube M4 Edelstahl in Aluminium (AlMg4,5Mn0,7): 2 Nm
- Die vorhandene Einschraubtiefe muss mindestens 5,9 bis 7,8 mm. Längere Einschraubtiefen stellen kein Problem dar.
- Nachziehen der Schraubverbindung nach 24 h

Literatur

- [1] VDI-Richtlinie 2230 T1: Systematische Berechnung hochbeanspruchter Schraubenverbindungen. Zylindrische Einschraubverbindungen. Düsseldorf: VDI 2003
- [2] Muhs, D.: Roloff/Matek Maschinenelemente. 18. Auflage Wiesbaden: Friedr. Vieweg & Sohn Verlag, 2007
- [3] Bikar Metalle GmbH: Datenblätter Aluminium FORMODAL 024 elox