Package 'RLumCarlo'

October 10, 2019

```
Type Package
Title Monte-Carlo Methods for Simulating Luminescence Phenomena
Version 0.1.0.9000-87
Date 2019-10-10
Author Johannes Friedrich [aut, trl] (<a href="https://orcid.org/0000-0002-0805-9547">https://orcid.org/0000-0002-0805-9547</a>),
       Sebastian Kreutzer [aut, trl, cre] (<a href="https://orcid.org/0000-0002-0734-2199">https://orcid.org/0000-0002-0734-2199</a>),
       Vasilis Pagonis [aut] (<a href="https://orcid.org/0000-0002-4852-9312">https://orcid.org/0000-0002-4852-9312</a>),
       Christoph Schmidt [aut] (<a href="https://orcid.org/0000-0002-2309-3209">https://orcid.org/0000-0002-2309-3209</a>),
      Ena Rajovic [ctb],
       Alex Roy Duncan [ctb],
       Christian Laag [ctb]
Maintainer Sebastian Kreutzer < sebastian.kreutzer@u-bordeaux-montaigne.fr>
Description A Collection of Functions to Simulate Luminescence Production in Minerals using
       Monte-Carlo methods.
Contact Package Developer Team <sebastian.kreutzer@u-bordeaux-montaigne.fr>
License GPL-3
BugReports https://github.com/R-Lum/RLumCarlo/issues
Depends R (>= 3.3.0),
      utils,
      magrittr
URL https://CRAN.R-project.org/package=RLumCarlo
LinkingTo Rcpp (>= 1.0.2),
      RcppArmadillo (>= 0.9.700.2.0)
Imports abind (>= 1.4-5),
      doParallel (>= 1.0.15),
      foreach (>= 1.4.7),
      khroma (>= 1.2.0),
      parallel,
       methods,
      Rcpp (>= 1.0.2)
Suggests R.rsp (>= 0.43.1),
      testthat (>= 2.0.0)
Encoding UTF-8
VignetteBuilder R.rsp
RoxygenNote 6.1.1
```

2 plot_RLumCarlo

R topics documented:

plot_RLumCarlo	
run_MC_CW_IRSL_LOC	3
run_MC_CW_IRSL_TUN	5
run_MC_CW_OSL_DELOC	
run_MC_ISO_DELOC	8
run_MC_ISO_LOC	10
run_MC_ISO_TUN	12
run_MC_LM_OSL_DELOC	14
run_MC_LM_OSL_LOC	15
run_MC_LM_OSL_TUN	17
run_MC_TL_DELOC	18
run_MC_TL_LOC	20
run_MC_TL_TUN	22
	25

plot_RLumCarlo

Plot RLumCarlo Monte-Carlo Simulations Results

Description

Index

The function allows to visualise 'RLumCarlo' modelling results without extracting the values manually. Typically visualised values are the signal or the number of remaining electrons as averaged values with a polygon indicating modelling uncertainties.

Usage

```
plot_RLumCarlo(object, plot_uncertainty = "range", norm = FALSE,
   add = FALSE, ...)
```

Arguments

object

list of class RLumCarlo_Model_Output (**required**): input object to be plotted, usually the required input object is generated by one for the functions preceding with run. Alternatively a list of such objects can be provided.

plot_uncertainty

logical (with default): sets the nature of the show uncertainty, allowed values are range, sd (standard deviation), var (variance) and NULL disables the uncertaintiy visualisation

norm logical (with default): normalise curve to the highest intensity

add logical (with default): allow overplotting of results by adding this curve to an

existing plot

further arguments that can be passed to control the plot output. Currently sup-

ported are: xlab, xlim, ylim, main, lwd, type, pch, lty,col, grid, legend. The arguments lwd, type, pch, lty, col can be provided as vector if object is

a list

Details

The colour curves, the package khroma::khroma-package is used to provide colours that can be best distinguished, in particular by colour-blind users.

Value

This function returns a graphical output

Function version

0.1.0

How to cite

Friedrich, J., Kreutzer, S., 2019. plot_RLumCarlo(): Plot RLumCarlo Monte-Carlo Simulations Results. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, Université Bordeaux Montaigne (France)

run_MC_CW_IRSL_LOC

Run Monte-Carlo simulation for CW-IRSL for localized transition

Description

Runs a Monte-Carlo (MC) simulation of constant wave infrared stimulated luminesence (CW-IRSL) using the generalized one trap (GOT) model. Localized refers to excitation of an electron before it recombines, but without the involvement of the conduction band.

Usage

```
run_MC_CW_IRSL_LOC(A, times, clusters = 10, n_filled = 100, r,
 method = "par", output = "signal", ...)
```

Arguments

A	numeric (required): The optical excitation rate from trap to conduction band (s^-1).
times	numeric (with default): The sequence of temperature steps within the simulation (s).
clusters	numeric (with default): The number of MC runs (unitless).
n_filled	integer (with default): The number of filled electron traps at the beginning of the simulation (unitless).
r	numeric (with default): The retrapping ratio (unitless).
method	character (with default): sequential 'seq' or parallel processing 'par'
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments

Details

$$I_{LOC}(t) = -dn/dt = A * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_CW_IRSL_LOC(): Run Monte-Carlo simulation for CW-IRSL for localized transition. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Reuven, C. and S. Mckeever, 1997. Theory of thermoluminescence and related phenomena.

run_MC_CW_IRSL_TUN

Run Monte-Carlo simulation for CW-IRSL

Description

Runs a Monte-Carlo (MC) simulation of constant wave infrared stimulated luminesence (CW-IRSL) using the model. Tunneling refers to the direct movement of electrons from a trap directly to the recombination center.

Usage

```
run_MC_CW_IRSL_TUN(A, rho, times, clusters = 10, r_c = 0,
  delta.r = 0.1, N_e = 200, method = "seq", output = "signal", ...)
```

Arguments

A	numeric (required): The optical excitation rate from trap to conduction band (s^{-1}) .
rho	numeric (required): The density of recombination centers (defined as rho' in Huntley 2006) (unitless).
times	numeric (with default): The sequence of temperature steps within the simulation (s).
clusters	numeric (with default): The number of MC runs (unitless).
r_c	numeric (with default): The retrapping ratio.
delta.r	numeric (with default):
N_e	numeric (width default): The total number of electron traps available (unitless).
method	character (with default): sequential 'seq' or parallel processing 'par'
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments
r	numeric (with default): The radius of tunneling (unitless).

Details

$$p(t) = A * e^{(-r/rho^{(-1/3)})}$$

$$I_{TUN}(t) = 3 * n * p(t) * r^{2} * e^{(-r^{3})}$$

Where in the function $n := n_filled := t := times$

Value

This function returns a list.

Function version

0.2.0

How to cite

Friedrich, J., Kreutzer, S., 2019. run_MC_CW_IRSL_TUN(): Run Monte-Carlo simulation for CW-IRSL. Function version 0.2.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Reuven, C. and S. Mckeever, 1997. Theory of thermoluminescence and related phenomena.

Examples

run_MC_CW_OSL_DELOC

Run Monte-Carlo simulation for CW-OSL for delocalized transition

Description

Runs a Monte-Carlo (MC) simulation of constant wave optically stimulated luminesence (CW-OSL) using the one trap one recombination center (OTOR) model. Delocalized refers to involvement of the conduction band.

Usage

```
run_MC_CW_OSL_DELOC(A, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

A	numeric (required): The optical excitation rate from trap to conduction band (s^-1).
times	numeric (with default): The sequence of temperature steps within the simulation (s)
clusters	numeric (with default): The number of MC runs (unitless).
N_e	integer (with default): The total number of electron traps available (unitless).
n_filled	integer (with default): The number of filled electron traps at the beginning of the simulation (unitless).
R	numeric (with default): The retrapping ratio (unitless).
method	character (with default): sequential 'seq' or parallel processing 'par'
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1 - R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_CW_OSL_DELOC(): Run Monte-Carlo simulation for CW-OSL for delocalized transition. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Reuven, C. and S. Mckeever, 1997. Theory of thermoluminescence and related phenomena.

```
##-----##
## Example 1: Simulate CW-OSL
##-----##
## Not run:
run_MC_CW_OSL_DELOC(
A = 0.12,
R = 1,
times = 0:100) %>%
  plot_RLumCarlo(legend = T)
## End(Not run)
#' @examples
##-----##
## Example 2: Simulate CW-OSL DELOC with several parameter changes
##============================##
## Not run:
# define your parameters
A=c(0.1,0.3,0.5,1)
times=seq(0,60,1)
s=1e12
R<-c(1e-7,1e-6,0.01,0.1) # sequence of different R values
clusters=1000 # number of Monte Carlo simulations
N_e = c(200, 500, 700, 400) \# number of free electrons
n_{filled} = c(200, 500, 100, 70) # number of filled traps
method="par"
output ="signal"
col=c(1,2,3,4) # ifferent colours for the individual curves
plot_uncertainty \leftarrow c(T,F,T,F) # do you want to see the uncertainty?
add_TF <- c(F,rep(T, (length(R)-1)))</pre>
for (u in 1:length(R)){
results <-run_MC_CW_OSL_DELOC(A=A[u], times, clusters =clusters, N_e = N_e[u],
                     n_filled = n_filled[u], R=R[u], method = method, output = output)
plot_RLumCarlo(results,add=add_TF[u],legend = F, col=col[u], main=" your plot")
legend("topright",ncol=4,cex=0.55,title = "parameters" ,legend=c(paste0("A = ", A),
                                               paste0("n_filled = ", n_filled),
                                                      paste0("N_e = ", N_e),
                                              paste0("R = ", R)), text.col=col)
## End(Not run)
```

Description

Runs a Monte-Carlo (MC) simulation of isothermally stimulated luminesence (ISO-TL or ITL) using the one trap one recombination center (OTOR) model. Delocalized refers to involvement of the conduction band.

Usage

```
run_MC_ISO_DELOC(s, E, T = 20, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

S	numeric (required): The frequency factor of the trap (s^-1).
Е	numeric (required): Thermal activation energy of the trap (eV).
T	numeric (with default): Temperature (degrees C).
times	numeric (with default): the sequence of temperature steps within the simulation (s).
clusters	numeric (with default): The number of MC runs (unitless).
N_e	integer (with default): The total number of electron traps available (unitless).
n_filled	integer (with default): The number of filled electron traps at the beginning of the simulation (unitless).
R	numeric (with default): The retrapping ratio (unitless).
method	character (with default): sequential 'seq' or parallel processing 'par'
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments

Details

```
ISOI_{DELOC}(t) = -dn/dt = (s * e^{-}E/kT_{I}TL/ISO) * (n^{2}/(NR + n(1 - R)))
```

Where in the function $n := n_filled := N := N_e$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S., 2019. run_MC_ISO_DELOC(): Run Monte-Carlo simulation for ISO-TL for delocalized transition. Function version 0.0.1. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

10 run_MC_ISO_LOC

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Reuven, C. and S. Mckeever, 1997. Theory of thermoluminescence and related phenomena.

Examples

```
##=========##
## Example 1: Simulate ITL
##========##

## Not run:
run_MC_ISO_DELOC(
    s = 3.5e12,
    E = 1.45,
    T = 200,
    R = 1,
    times = 0:10000) %>%
    plot_RLumCarlo(legend = T)

## End(Not run)
```

run_MC_ISO_LOC

Run Monte-Carlo simulation for ISO-TL for localized transition

Description

Runs a Monte-Carlo (MC) simulation of isothermally stimulated luminesence (ISO-TL or ITL) using the genralized one trap (GOT) model. Localized refers to excitation of an electron before it recombines, but without the involvement of the conduction band.

Usage

```
run_MC_ISO_LOC(s, E, T = 20, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

```
s numeric (required): The frequency factor of the trap (s^-1).

E numeric (required): Thermal activation energy of the trap (eV).

T numeric (with default): Temperature (degrees C).
```

run_MC_ISO_LOC

numeric (with default): The sequence of temperature steps within the simulation (s).

clusters numeric (with default): The number of MC runs (unitless).

n_filled integer (with default): The number of filled electron traps at the beginning of the simulation (unitless).

r numeric (with default): the retrapping ratio (unitless).

method character (with default): sequential 'seq' or parallel processing 'par'

output character (with default): output is either the 'signal' (the default) or 'remaining_e'

(the remaining charges, electrons, in the trap)

... further arguments

Details

$$ISOI_{LOC}(t) = -dn/dt = (s * e^{-}E/kT_{I}TL/ISO) * (n^{2}/(r+n)))$$

Where in the function $n := n_filled := N := N_e$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S., 2019. run_MC_ISO_LOC(): Run Monte-Carlo simulation for ISO-TL for localized transition. Function version 0.0.1. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

run_MC_ISO_TUN

```
## Not run:
run_MC_ISO_LOC(
s = 3.5e12,
E = 1.45,
T = 200,
r = 1,
times = 0:10000) %>%
    plot_RLumCarlo(legend = T)
## End(Not run)
```

run_MC_ISO_TUN

Run Monte-Carlo Simulation for ISO-TL for tunneling transition

Description

Runs a Monte-Carlo (MC) simulation of isothermally stimulated luminesence (ISO-TL or ITL) using the tunneling (TUN) model. Tunneling refers to the direct movement of electrons from a trap directly to the recombination center.

Usage

```
run_MC_ISO_TUN(E, s, T = 200, rho, times, clusters = 10, r_c = 0,
  delta.r = 0.1, N_e = 200L, method = "par", output = "signal",
    ...)
```

Arguments

Е	numeric (required): Thermal activation energy of the trap (eV).
S	numeric (required): Frequency factor of the trap (s^-1).
T	numeric (required): Temperature (degrees C).
rho	numeric (required): The density of recombination centers (defined as rho' in Huntley 2006) (unitless).
times	numeric (with default): The sequence of temperature steps within the simulation (s).
clusters	numeric (with default): The number of MC runs (unitless).
r_c	numeric (with default): The radius of tunneling (dimensionless)
delta.r	numeric (with default):
N_e	numeric (width default): The total number of electron traps available (unitless).
method	character (with default): sequential 'seq' or parallel processing 'par'
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments
r	numeric (with default): The radius of tunneling (unitless).

 $run_MC_ISO_TUN$ 13

Details

$$p(t) = s * e^{(-E/kB * T)} * e^{(-r/rho^{1}/3)}$$
$$I_{TUN}(t) = 3 * n * p(t) * r^{2} * e^{(-r^{3})}$$

Where in the function $n := n_filled := t := times$

Value

This function returns a list.

Function version

0.1.0

How to cite

Friedrich, J., Kreutzer, S., 2019. run_MC_ISO_TUN(): Run Monte-Carlo Simulation for ISO-TL for tunneling transition. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Univerité Bordeaux Montaigne (France)

References

Pagonis, V. and Kulp, C., 2017. Monte Carlo simulations of tunneling phenomena and nearest neighbor hopping mechanism in feldspars. Journal of Luminescence 181, 114–120. doi: 10.1016/j.jlumin.2016.09.014

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Further reading Aitken, M.J., 1985. Thermoluminescence dating. 276-280. doi: 10.1002/gea.3340020110

run_MC_LM_OSL_DELOC

Run Monte-Carlo simulation for LM-OSL for delocalized transition

Description

Runs a Monte-Carlo (MC) simulation of linearly modulated optically stimulated luminesence (LM-OSL) using the one trap one recombination center (OTOR) model. Delocalized refers to involvement of the conduction band.

Usage

```
run_MC_LM_OSL_DELOC(A, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

A	numeric (required): The optical excitation rate from trap to conduction band (s^{-1}) .
times	numeric (with default): The sequence of temperature steps within the simulation (s).
clusters	numeric (with default): The number of MC runs (unitless).
N_e	integer (with default): The total number of electron traps available (unitless).
n_filled	integer (with default): The number of filled electron traps at the beginning of the simulation (unitless).
R	numeric (with default): The retrapping ratio (unitless).
method	character (with default): sequential 'seq' or parallel processing 'par'
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1-R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_LM_OSL_DELOC(): Run Monte-Carlo simulation for LM-OSL for delocalized transition. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Reuven, C. and S. Mckeever, 1997. Theory of thermoluminescence and related phenomena.

Examples

run_MC_LM_OSL_LOC

Run Monte-Carlo simulation for LM-OSL for localized transition

Description

Runs a Monte-Carlo (MC) simulation of linearly modulated optically stimulated luminesence (LM-OSL) using the generalized one trap (GOT) model. Localized refers to excitation of an electron before it recombines, but without the involvement of the conduction band.

Usage

```
run_MC_LM_OSL_LOC(A, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

A	numeric (required): The optical excitation rate from trap to conduction band (s^{-1}) .
times	numeric (with default): The sequence of temperature steps within the simulation (s).
clusters	numeric (with default): The number of MC runs (unitless).
n_filled	integer (with default): The number of filled electron traps at the beginning of the simulation (unitless).
r	numeric (with default): The retrapping ratio (unitless)

method character (with default): sequential 'seq' or parallel processing 'par'

output character (with default): output is either the 'signal' (the default) or 'remaining_e'

(the remaining charges, electrons, in the trap)

further arguments

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1 - R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_LM_OSL_LOC(): Run Monte-Carlo simulation for LM-OSL for localized transition. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

```
##========##
## Example 1: Simulate LM-OSL
##============##
## Not run:
run_MC_LM_OSL_LOC(
    A = 0.12,
    r = 1,
    times = 0:100) %>%
    plot_RLumCarlo(legend = T)
## End(Not run)
```

run_MC_LM_OSL_TUN

Run Monte-Carlo simulation for LM-OSL for tunneling transition

Description

Runs a Monte-Carlo (MC) simulation of linearly modulated optically stimulated luminesence (LM-OSL) using the tunneling (TUN) model. Tunneling refers to the direct movement of electrons from a trap directly to the recombination center

Usage

```
run_MC_LM_OSL_TUN(A, rho, times, clusters = 10, r_c = 0,
  delta.r = 0.1, N_e = 200, method = "par", output = "signal", ...)
```

Arguments

A	numeric (required): The optical excitation rate from trap to conduction band (s^{-1}) .
rho	numeric (required): The density of recombination centers (defined as rho' in Huntley 2006) (unitless).
times	vector (with default): The sequence of temperature steps within the simulation (s).
clusters	numeric (with default): The number of clusters.
r_c	numeric (with default): The retrapping ratio.
delta.r	numeric (with default): Increments of r_c (unitless).
N_e	numeric (width default): The total number of electron traps available (unitless).
method	character (with default): sequential 'seq' or parallel processing 'par'
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments
r	numeric (with default): The radius of tunneling (unitless).

Details

$$p(t) = A * (t/p) * e^{(-r/rho^{(-1/3)})}$$
$$I_{TUN}(t) = 3 * n * p(t) * r^{2} * e^{(-r^{3})}$$

Where in the function $n := n_filled := t := times$

Value

This function returns a list.

Function version

0.1.0

run_MC_TL_DELOC

How to cite

Friedrich, J., 2019. run_MC_LM_OSL_TUN(): Run Monte-Carlo simulation for LM-OSL for tunneling transition. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

References

Pagonis, V. and Kulp, C., 2017. Monte Carlo simulations of tunneling phenomena and nearest neighbor hopping mechanism in feldspars. Journal of Luminescence 181, 114–120. doi: 10.1016/j.jlumin.2016.09.014

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Further reading Aitken, M.J., 1985. Thermoluminescence dating. 276-280. doi: 10.1002/gea.3340020110

Examples

```
## Not run:
##TODO: Primary example, should be verified
run_MC_LM_OSL_TUN(A = 10000, rho = 0.0001, times = 1:100, clusters = 10, r = NULL,
delta.r = 0.1,
N_e = 200, method = "par", output = "signal") %>%
plot_RLumCarlo(norm = T)
## End(Not run)
```

run_MC_TL_DELOC

Run Monte-Carlo simulation for TL for delocalized transition

Description

Runs a Monte-Carlo (MC) simulation of thermo-luminesence (TL) using the one trap one recombination center (OTOR) model. Delocalized refers to involvement of the conduction band.

Usage

```
run_MC_TL_DELOC(s, E, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

run_MC_TL_DELOC 19

Arguments

numeric (required): The frequency factor of the trap (s^-1). s Ε numeric (required): Thermal activation energy of the trap (eV). numeric (with default): The sequence of temperature steps within the simulation times (s). clusters numeric (with default): The number of MC runs (unitless). integer (with default): The total number of electron traps available (unitless). N_e n_filled integer (with default): The number of filled electron traps at the beginning of the simulation (unitless). R numeric (with default): The retrapping ratio (unitless). method character (with default): sequential 'seq' or parallel processing 'par' character (with default): output is either the 'signal' (the default) or 'remaining_e' output (the remaining charges, electrons, in the trap)

Details

$$TLI_{DELOC}(t) = -dn/dt = (s * e^{-}E/kT) * (n^{2}/(NR + n(1-R))))$$

where in the function $N := N_e := n := n_filled$

further arguments

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S., 2019. run_MC_TL_DELOC(): Run Monte-Carlo simulation for TL for delocalized transition. Function version 0.0.1. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Reuven, C. and S. Mckeever, 1997. Theory of thermoluminescence and related phenomena.

20 run_MC_TL_LOC

```
## Example 1: Simulate TL
##========================##
## Not run:
run_MC_TL_DELOC(
s = 3.5e12,
E = 1.45,
R = 1,
times = 100:450) %>%
  plot_RLumCarlo(legend = T)
## End(Not run)
#' @examples
## Example 2: Plot multiple TL stimulation TL curves in R with varying params
##-----##
     ## Not run:
# define your parameters
times=seq(100,450,1)
s=rep(3.5e12,4)
E=rep(1.45,4)
R<-c(0.7e-6,1e-6,0.01,0.1)
clusters=1000
N_e = c(400, 500, 700, 400)
n_filled =c(400, 500, 300, 70)
method="par"
output ="signal"
col=c(1,2,3,4) # different colours for the individual curves
plot_uncertainty <- c(TRUE,TRUE,TRUE,TRUE) # do you want to see the uncertainty?</pre>
add_TF <- c(FALSE,rep(TRUE, (length(R)-1)))</pre>
for (u in 1:length(R)){
results <-run_MC_TL_DELOC(times=times, s=s[u],E=E[u], clusters =clusters, N_e = N_e[u],
                    n_filled = n_filled[u], R=R[u], method = method, output = output)
plot\_RLumCarlo(results, add=add\_TF[u], legend = FALSE, col=col[u], main="your plot", ylim=c(0,20))
}
legend("topright",ncol=5,cex=0.55,title = "parameters" ,legend=c(paste0("E = ", E),
                                                        paste0("s = ", s),
                                                 paste0("n_filled = ", n_filled),
                                                        paste0("N_e = ", N_e),
                                                paste0("R = ", R)), text.col=col)
## End(Not run)
```

run_MC_TL_LOC 21

Description

Runs a Monte-Carlo (MC) simulation of thermo-luminesence (TL) using the generalized one trap (GOT) model. Localized refers to excitation of an electron before it recombines, but without the involvement of the conduction band.

Usage

```
run_MC_TL_LOC(s, E, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

s	numeric (required): The frequency factor of the trap (s^-1).
Е	numeric (required): Thermal activation energy of the trap (eV).
times	numeric (<i>with default</i>): The sequence of temperature steps within the simulation (s).
clusters	numeric (with default): The number of MC run (unitless).
n_filled	integer (with default): The number of filled electron traps at the beginning of the simulation (unitless).
r	numeric (with default): The retrapping ratio (unitless).
method	character (with default): sequential 'seq' or parallel processing 'par'
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments

Details

$$TLI_{LOC}(t) = -dn/dt = (s * e^{-}E/kT) * (n^{2}/(r+n))$$

where in the function $n := n_filled$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_TL_LOC(): Run Monte-Carlo simulation for TL for localized transition. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

22 run_MC_TL_TUN

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Examples

```
##==========##
## Example 1: Simulate TL
##==========##
## Not run:
run_MC_TL_LOC(
    s = 3.5e12,
    E = 1.45,
    r = 1,
    times = 100:450) %>%
    plot_RLumCarlo(legend = T)

## End(Not run)
```

run_MC_TL_TUN

Run Monte-Carlo Simulation for TL for tunnelling transition

Description

Runs a Monte-Carlo (MC) simulation of thermo-luminesence (TL) using the tunneling (TUN) model. Tunneling refers to the direct movement of electrons from a trap directly to the recombination center

Usage

```
run_MC_TL_TUN(s, E, rho, r_c = 0, times, clusters = 10, N_e = 200,
  delta.r = 0.1, method = "par", output = "signal", ...)
```

Arguments

S	list (required): The frequency factor of the trap (s^{-1}).
E	numeric (required): Thermal activation energy of the trap (eV).
rho	numeric (required): The density of recombination centers (defined as rho' in Huntley 2006) (unitless).
r_c	numeric (with default): Distance parameter (radius of tunneling) (unitless).
times	vector (with default): The sequence of temperature steps within the simulation (s).
clusters	numeric (with default): The number of MC runs (unitless).

run_MC_TL_TUN 23

N_e	numeric (with default): The total number of electron traps available (unitless).
delta.r	numeric (with default): The increments of r_c (unitless).
method	character (with default): sequential 'seq' or parallel processing 'par'
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments
r	numeric (with default): The radius of tunneling (unitless).

Details

$$p(t) = s * e^{(-E/kB * T)} * e^{(-r/rho^{1}/3)}$$
$$I_{TUN}(t) = 3 * n * p(t) * r^{2} * e^{(-r^{3})}$$

Where in the function $n := n_filled := t := times := \rho := \rho' := r_c := \rho'_c$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.1.0

How to cite

Friedrich, J., Kreutzer, S., 2019. run_MC_TL_TUN(): Run Monte-Carlo Simulation for TL for tunnelling transition. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-87.

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, Université Bordeaux Montaigne (France)

References

Pagonis, V. and Kulp, C., 2017. Monte Carlo simulations of tunneling phenomena and nearest neighbor hopping mechanism in feldspars. Journal of Luminescence 181, 114–120. doi: 10.1016/j.jlumin.2016.09.014

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Further reading Aitken, M.J., 1985. Thermoluminescence dating. 276-280. doi: 10.1002/gea.3340020110

24 run_MC_TL_TUN

Index

```
array, 4, 7, 9, 11, 14, 16, 19, 21, 23
character, 3, 5, 7, 9, 11, 12, 14, 16, 17, 19,
         21, 23
integer, 3, 7, 9, 11, 14, 15, 19, 21
khroma::khroma-package, 3
list, 2, 22
logical, 2
numeric, 3, 5, 7, 9-12, 14, 15, 17, 19, 21-23
plot_RLumCarlo, 2
run_MC_CW_IRSL_LOC, 3
run_MC_CW_IRSL_TUN, 5
run_MC_CW_OSL_DELOC, 6
run_MC_ISO_DELOC, 8
run_MC_ISO_LOC, 10
run_MC_ISO_TUN, 12
run_MC_LM_OSL_DELOC, 14
run_MC_LM_OSL_LOC, 15
run_MC_LM_OSL_TUN, 17
run_MC_TL_DELOC, 18
run_MC_TL_LOC, 20
run_MC_TL_TUN, 22
vector, 17, 22
```