M52-Time Series Data (xts, dygraph, lubridate)

Learning Spoons R

2019-03-03

Part 0. Introduction

Part 1. MSFT 데이터 불러오기

Part 2. xts 객체로 변환하기

Part 3. dygraph로 interactive plot 그리기

Part 4. lubridate로 시간 데이터 다루기

Part 0. Introduction

시계열 데이터 다루기 (데이터 구조 & 날짜/시간 다루기 & 그래프)

- 0. 목적: Microsoft의 주가에 대해서 시계열 그래프 그리기
- 1. Time Series Data
 - ▶ 시간에 따라서 값이 변화하는 데이터.
 - ▶ → 시간에 따라서 정렬된 data.frame
 - ▶ → 1개 column이 시간 정보를 담고 있는 data.frame
 - ▶ → rownames가 시간 정보를 담고 있는 data.frame -> xts라는 새로운 자료구조

2. xts

- ▶ rownames가 시간 정보를 담고 있는 data.frame형태의 자료 구조
- ▶ data.frame의 많은 명령어를 그대로 사용할 수 있음.
- ▶ data.frame의 rownames에 해당하는 특성을 index라고도 함.
- xts의 index는 Date 객체등 시간을 나타내는 데이터 타입.

3. dygraph

- ▶ 시계열 시각화 도구
- https://rstudio.github.io/dygraphs/
- ▶ 특징
 - ▶ highlight, annotation, label 등의 기능을 쉽게 추가할 수 있음.
 - ▶ ggplot2보다 시계열 데이터에서 강력함
 - htmlwidget (html, fd, shiny에 유용)
 - ▶ shiny에서 사용 가능한 renderDygraph() 제공

4. lubridate

▶ Date객체 등 시간을 나타내는 데이터 타입을 다루는 패키지

Part 1, MSFT 데이터 불러오기

Part 1. MSFT 데이터 불러오기

데이터 불러오기 (Quand1)

- ▶ 글로벌 금융 데이터 베이스 제공업체
- ▶ Quandl:Bloomberg = 위키피디아:브리터니커의 관계를 지향

```
library (Quand1) # 'quantmod' is another library for financial data
Quandl.api key("SD27xu59qZmj-YCnxwDm")
MSFT <- Quand1("WIKI/MSFT")</pre>
str(MSFT)
## 'data frame': 8076 obs. of 13 variables:
## $ Date : Date, format: "2018-03-27" "2018-03-26" ...
## $ Open : num 94.9 90.6 89.5 91.3 92.9 ...
## $ High : num 95.1 94 90.5 91.8 94 ...
## $ Low : num 88.5 90.4 87.1 89.7 92.2 ...
## $ Close : num 89.5 93.8 87.2 89.8 92.5 ...
## $ Volume : num 53704562 55031149 42159397 37578166 23753263 ...
## $ Ex-Dividend: num 0 0 0 0 0 0 0 0 0 ...
## $ Split Ratio: num 1 1 1 1 1 1 1 1 1 1 ...
## $ Adj. Open : num 94.9 90.6 89.5 91.3 92.9 ...
## $ Adj. High : num 95.1 94 90.5 91.8 94 ...
## $ Adi. Low : num 88.5 90.4 87.1 89.7 92.2 ...
## $ Adj. Close: num 89.5 93.8 87.2 89.8 92.5 ...
## $ Adj. Volume: num 53704562 55031149 42159397 37578166 23753263 ...
## - attr(*, "freq")= chr "daily"
class(MSFT)
## [1] "data.frame"
```

▶ MSFT객체에서 날짜, 거래량, 일일 종가만을 선택하여 진행합니다.

```
MSFT \leftarrow MSFT[.c(1.6.12)]
head (MSFT)
          Date Volume Adi. Close
## 1 2018-03-27 53704562
                            89.47
## 2 2018-03-26 55031149
                          93.78
## 3 2018-03-23 42159397
                          87.18
                         89.79
## 4 2018-03-22 37578166
## 5 2018-03-21 23753263
                         92.48
## 6 2018-03-20 21787780
                         93.13
class(MSFT)
```

- ## [1] "data.frame"
 - ▶ data.frame 객체이며 첫번째 컬럼이 시간 정보를 포함하고 있습니다.
 - ▶ xts 객체로 변화해 볼까요?
 - ▶ 어떤 argument가 포함되어야 할까요?

Part 2. xts 객체로 변환하기

xts 객체로 변환

library(xts)

MSFT_xts <- xts(x = MSFT[,-1], order.by = as.Date(MSFT[,1]))

- ▶ MSFT는 data.frame객체이며 첫번째 컬럼(Date)이 시간 정보를 포함하고 있습니다.
- ▶ xts(): xts개체를 정의합니다.
- order.by = as.Date(MSFT[,1]): 첫 번째 컬럼을 index로 정의합니다.
- ▶ x = MSFT[,-1]: 나머지 부분을 넣어줍니다.

str(MSFT_xts)

```
## An 'xts' object on 1986-03-13/2018-03-27 containing:
## Data: num [1:8076, 1:2] 3582600 1070000 462400 235300 166300 ...
## - attr(*, "dimnames")=List of 2
## ..$: NULL
## ..$: chr [1:2] "Volume" "Adj. Close"
## Indexed by objects of class: [Date] TZ: UTC
## xts Attributes:
## NULL
```

data.frame vs xts

```
dim(MSFT)
                                              dim(MSFT xts)
              3
## [1] 8076
                                              ## [1] 8076
head (MSFT)
                                              head(MSFT xts)
##
                  Volume Adj. Close
           Date
                                              ##
                                                             Volume Adj. Close
## 1 2018-03-27 53704562
                              89.47
                                              ## 1986-03-13 3582600 0.06471998
## 2 2018-03-26 55031149
                             93.78
                                              ## 1986-03-14 1070000 0.06703141
## 3 2018-03-23 42159397
                             87.18
                                              ## 1986-03-17 462400 0.06818712
## 4 2018-03-22 37578166
                         89.79
                                              ## 1986-03-18 235300 0.06645355
## 5 2018-03-21 23753263
                          92.48
                                              ## 1986-03-19 166300 0.06529784
## 6 2018-03-20 21787780
                             93.13
                                              ## 1986-03-20 202900 0.06356427
```

- xts로 변환하면서 dimension이 줄었습니다. 그런데 모든 정보를 포함하고 있습니다?!
- ▶ 시간의 정보를 index로 만들기 때문에 정보의 손실없이 객체를 변환할 수 있습니다.

R vs Python

- ▶ Python의 Pandas는 R의 data.frame에서 영감을 받았다 합니다.
- ▶ 문법, 구조, 기능 유사

	R	Python
데이터 프레임	data.frame	Pandas.DataFrame
시계열 데이터	xts	Pandas.Series
그래프	ggplot2,dygraph	matplotlib

xts객체를 data.frame로 변환

▶ xts객체를 data.frame으로 바꾸는 것도 당연히 가능합니다.

```
MSFT_df <- data.frame(index(MSFT_xts), MSFT_xts)
head(MSFT_df, 3)

## index.MSFT_xts. Volume Adj..Close
## 1986-03-13 1986-03-13 3582600 0.06471998
## 1986-03-14 1986-03-14 1070000 0.06703141
## 1986-03-17 1986-03-17 462400 0.06818712
class(MSFT_df)
```

- ## [1] "data.frame"
 - ▶ data.frame에서 rownames가 거슬린다면 없애주면 됩니다.

```
rownames(MSFT_df) <- NULL
head(MSFT_df, 3)

## index.MSFT_xts. Volume Adj..Close

## 1 1986-03-13 3582600 0.06471998

## 2 1986-03-14 1070000 0.06703141

## 3 1986-03-17 462400 0.06818712
```

Part 3. dygraph로 interactive plot 그리기

dygraph로 그리기

- ▶ xts 객체를 시계열 그래프로 표현하기
- ▶ htmlwidget 이기에 html, slidy, ioslides, flexdashboard, shiny에 유용
- ▶ x축이 고정되어 있으므로 ggplot보다 문법이 더 쉬워요!
 - ▶ dygraph(xts_object) 이게 끝입니다.
 - ▶ dyRangeSelector()로 간단하게 interactive plot을 만듭니다.

Part 4. lubridate로 시간 데이터 다루기

lubridate로 시계열 데이터 다루기 (M13 참조)

```
library(lubridate)
theDay <- as.Date("2018-03-26")</pre>
```

▶ theDay의 한달 전은 언제입니까? '03'에서 1을 빼서 '02'로 바꾸면 되겠네요?

```
a <- as.numeric(substr(theDay, 6, 7))-1 # subtract month
library(stringr)
lastMonthDay <- as.Date(paste(
    substr(theDay, 1, 4), # Year
    str_pad(a, 2, pad = "0"), # Month: fill with leading zero
    substr(theDay, 9, 10), # Day
    sep = "-"))
lastMonthDay</pre>
```

[1] "2018-02-26"

- ▶ 그런데…
 - ▶ '2018-01-15'의 한달 전은 언제입니까? 위의 코드로 해결이 안됩니다.
 - ▶ '2018-03-31'의 한달 전은 언제입니까? 위의 코드로 해결이 안됩니다.
 - ▶ lubridate의 months를 이용하면 아래와 같이 간단히 해결됩니다!

```
theDay - months(1)
## [1] "2018-02-26"
```

[1] "2017-03-31"

사용 예제

```
이번달 1일
                                              ▶ 2018-03-26의 MSFT주가는?
floor date(theDay, "month")
                                            MSFT xts[theDav.]
## [1] "2018-03-01"
                                            ##
                                                           Volume Adj. Close
                                            ## 2018-03-26 55031149
                                                                       93.78
                                            MSFT xts[index(MSFT xts)==theDay.]
 ▶ 저번달 말일
                                            ##
                                                           Volume Adj. Close
floor_date(theDay, "month") - days(1)
                                            ## 2018-03-26 55031149
                                                                       93.78
## [1] "2018-02-28"
                                              ▶ theDay의 1개월전 주가는?
 ▶ 전년 말일
                                            MSFT xts[theDay-months(1),]
floor_date(theDay, "years")-1
                                                           Volume Adj. Close
                                            ##
## [1] "2017-12-31"
                                            ## 2018-02-26 29760276
                                                                       95.42
                                            MSFT xts[index(MSFT xts)==(theDay-months(1)),]
 ▶ 전년 동월 말일
                                            ##
                                                           Volume Adi. Close
                                            ## 2018-02-26 29760276
                                                                       95.42
ceiling date(theDay-years(1), "month") - 1
```

▶ theDay의 1년전 주가는?

MSFT_xts[theDay-years(1),]

Volume Adj. Close

MSFT_xts[index(MSFT_xts)==(theDay-years(1)),]

Volume Adj. Close

- ▶ 왜 없나요?
 - weekdays(theDay-years(1))로 theDay-years(1)의 요일을 확인할 수 있습니다.
 - ▶ 확인을 해보니 일요일입니다. 그래서 기록이 없습니다.
- ▶ 시계열 데이터의 현실적인 이슈 (특히 금융데이터)
 - ▶ 많은 경우에 관찰값이 없는 경우가 있습니다. (비영업일)
 - ▶ 흔히 tidyverse의 fill과 같은 명령을 사용해서 데이터셋을 365일로 강제로 바꾸기도 합니다.
 - 이 경우에는 관찰값이 있었던 날과 아닌 날이 구분이 안되므로 또 다른 문제를 야기하기도 한니다
 - ▶ 어떻게 해야할까요?
 - 1. 해당일 까지의 날짜 중에서
 - 2. 관찰값이 존재하는 날짜 중에서
 - 3. 가장 나중의 날짜의 값을 조회

```
available <- which(index(MSFT_xts)<=(theDay-years(1)))
MSFT_xts[max(available),]</pre>
```

Volume Adj. Close ## 2017-03-24 22617105 63.95089

- 1. which()는 값이 TRUE인 index를 반환합니다.
- 2. 즉, available은 theDay-years(1)이전의 모든 기록의 index입니다.
- 3. max(available)을 사용해 '해당일 이전 중에서 가장 나중'의 기록을 불러옵니다.
- ▶ 위의 해결 방식은…
 - 관찰값이 있던 없던 해당 시점에 사용가능한 가장 마지막 관찰값을 불러올 수 있습니다.
 - ▶ 꽤나 자주 사용되며 다른 컴퓨터 언어와 엑셀을 사용할 때도 활용 가능합니다.