[103	<pre>2.Gender: Gender of the customer. 3.Age: Age of customer is years. 4.EstimatedSalary: Yearly estimated salary of the customer. 5.Purchased: Binary value with value 1 if the customer purchased the item, 0 otherwise. options(warn=-1) library(ggplot2) storeData <- read.csv('social.csv')</pre>
In [104	Nead (storeData)
	15668575 Female 26 43000 0 15603246 Female 27 57000 0 15804002 Male 19 76000 0 15728773 Male 27 58000 0 Spends are already reduced in given data.
[n [105	Cat ("Size of Store data", dim.data.frame(storeData)) Size of Store data 400 5 Aim is to train a support vector machine(SVM) that will predict whether a customer will purchase or not.
In [106 In [107	<pre>Spliting the data as training and testing data # sampling data to generate 75% training data and 25% test data sdata <- sample(nrow(storeData), nrow(storeData)*0.75) sampledata <- sort(sample(nrow(storeData), nrow(storeData)*0.75)) trainingData<storedata[sampledata,] ",="" "size="" ::="" cat("training="" data="" dim.data.frame(trainingdata))<="" pre="" testingdata<storedata[-sampledata,]=""></storedata[sampledata,]></pre>
	head(trainingData) cat("Testing Data :: ", "Size :: ", dim.data.frame(testingData)) head(testingData) Trainig Data :: Size :: 300 5 User.ID Gender Age EstimatedSalary Purchased 2 15810944 Male 35 20000 0 3 15668575 Female 26 43000 0
	5 15804002 Male 19 76000 0 9 15600575 Male 25 33000 0 11 15570769 Female 26 80000 0 13 15746139 Male 20 86000 0 Testing Data:: Size:: 100 5
	User.ID Gender Age EstimatedSalary Purchased 1 15624510 Male 19 19000 0 4 15603246 Female 27 57000 0 6 15728773 Male 27 58000 0 7 15598044 Female 27 84000 0
In [108	8 15694829 Female 32 150000 1 10 15727311 Female 35 65000 0 Preprocessing data for modelling # converting dataframe into matrix with required data. We are using only Age and EstimatedSalary ytrain <- as.matrix(trainingData\$Purchased) # creating yn for computation assigning +1 to 1 and -1 to 0
	<pre>ytrain <- matrix(apply(ytrain, 1, function (var) {if (var == 1) return (1) else return (-1)})) colnames(ytrain) <- c("Purchased") ones <- matrix(rep(1,nrow(ytrain)), nrow = nrow(ytrain), ncol = 1) # Adding ones in first column of data for bias parameter xtrain <- cbind(ones,trainingData\$Age,trainingData\$EstimatedSalary) colnames(xtrain) <- c("ones","Age","EstimatedSalary") cat("Trainig Data:: Input and Output") head(xtrain) head(ytrain) ytest <- as.matrix(testingData\$Purchased)</pre>
	<pre># creating yn for computation assigning +1 to 1 and -1 to 0 ytest <- matrix(apply(ytest, 1, function (var) {if (var == 1) return (1) else return (-1)})) colnames(ytest) <- c("Purchased") ones <- matrix(rep(1,nrow(ytest)), nrow = nrow(ytest), ncol = 1) # Adding ones in first column of data for bias parameter xtest <- cbind(ones,testingData\$Age,testingData\$EstimatedSalary) colnames(xtest) <- c("ones","Age","EstimatedSalary") cat("Testing Data:: Input and Output") head(xtest)</pre>
	head(ytest) Trainig Data:: Input and Output ones Age EstimatedSalary 1 35 20000 1 26 43000 1 19 76000
	1 25 33000 1 26 80000 1 20 86000 Purchased -1
	-1 -1 -1 -1 -1 -1
	ones Age EstimatedSalary 1 19 19000 1 27 57000 1 27 58000 1 27 84000
	1 32 150000 1 35 65000 Purchased -1 -1
In [109	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -
	<pre>xtrain[,2] <- (xtrain[,2] - mean(xtrain[,2]))/sd(xtrain[,2]) xtrain[,3] <- (xtrain[,3] - mean(xtrain[,3]))/sd(xtrain[,3]) cat("Training Input data after normalization") head(xtrain) #Scaling predictor variables for testing data xtest[,2] <- (xtest[,2] - mean(xtest[,2]))/sd(xtest[,2]) xtest[,3] <- (xtest[,3] - mean(xtest[,3]))/sd(xtest[,3]) cat("Testing Input data after normalization") head(xtest)</pre>
	Training Input data after normalization ones
	1 -1.2777667 -1.0383903 1 -1.1824821 0.2925163 1 -1.7541898 0.4624192 Testing Input data after normalization ones Age EstimatedSalary 1 -1.61236437 -1.6809336
	1 -0.82536529 -0.4274902 1 -0.82536529 -0.3945048 1 -0.82536529 0.4631144 1 -0.33349086 2.6401477 1 -0.03836621 -0.1636074
n [110	<pre>Defining functions for subgradient and loss function g <- function(t) { if (t < 1) return (-1) else return (0) }</pre>
	<pre># define tn = yn(<w,xn>) # yn is the output for nth index # xn is the input for nth index # x = [b w1 w2]' tn <- function(yn, x, xn){ t <- yn * ((xn%*%x)) return (t) }</w,xn></pre>
	<pre>#compute loss as terminating condition loss <-function(x,C){ N <- dim(xtrain)[1] distances <- 1 - ytrain * (xtrain%*%x) distances[distances < 0] <- 0 # equivalent to max(0, distance) hinge_loss <- C * (sum(distances) / N) # calculate cost</pre>
	<pre>cost <- 1 / 2 * t(x)%*%x + hinge_loss return (cost) } gradient <- function(x, C){ deltaF <- matrix(rep(0,3), nrow = 3, ncol = 1) sum<- matrix(rep(0,3), nrow = 3, ncol = 1) for (n in seq(length(ytrain)))</pre>
	<pre>t = tn(ytrain[n],x,xtrain[n,]) gn = g(t) diff <- x + (C * gn * ytrain[n] * xtrain[n,]) sum <- sum + diff } deltaF <- sum/length(ytrain) return (deltaF) }</pre>
n [111	Defining functions execute gradient descent for SVM, generate prediction, compute accuracy and genearte confusion matrix # Run gradient descent for SVM gradientDescent <- function(x, C, alpha,thrs,maxi) { converged<-FALSE i<-1 x1<-x prev_lossvalue <- 0
	<pre>while((!converged && i <= maxi)) { deltafx <- gradient(x1,C) if(is.infinite(deltafx) is.nan(norm(deltafx,type = "2"))){ break } x1 <- x1 - (alpha*deltafx) lossvalue <- loss(x1,C) # terminating condition based on loss function genuerred for the (prov. lossyalue lossyalue) for three to prov. lossyalue</pre>
	<pre>converged <-abs(prev_lossvalue - lossvalue) < thrs * prev_lossvalue</pre>
	<pre>{ result <- data%*%featurecoffiecients result[result < 0] <1 result[result > 0] <- 1 return(result) } # compute accuracy accuracy <- function(predicted, actual)</pre>
	<pre>{ return((sum(predicted==actual)/dim(predicted)[1])*100) } # generate confusion matrix generateconfusionmatrix <- function(predicted, actual) { consfusionMatrix <- matrix(rep(0,4), nrow = 2, ncol = 2) colnames(consfusionMatrix) <- c("actual(1)", "actual(-1)") rownames(consfusionMatrix) <- c("pred(1)", "pred(-1)")</pre>
	<pre>consfusionMatrix for (i in seq(length(actual))) { if (actual[i] ==1 & predicted[i] ==1)</pre>
	<pre>else if (actual[i] ==1 & predicted[i] ==-1) { consfusionMatrix[2,1] = consfusionMatrix[2,1] + 1 } else if (actual[i] ==-1 & predicted[i] ==1) { consfusionMatrix[1,2] = consfusionMatrix[1,2] + 1 }</pre>
	<pre>else if (actual[i] ==-1 & predicted[i] ==-1) { consfusionMatrix[2,2] = consfusionMatrix[2,2] + 1 } return (consfusionMatrix) }</pre>
in [112	<pre>#setting tradoff parameter to 50 C <- 50 # x = [w1 w2 b]' x <- matrix(rep(0,3), nrow = 3, ncol = 1) thres <- 10**(-2) maxiter <- 1000 alpha <- 0.01</pre>
	<pre>answer <- gradientDescent(x, C,alpha,thres,maxiter) wstar <- answer\$x cat("Coffiecients") wstar #prediction prediction <- predict(xtest,wstar) #accuracy accuracyper1 <- accuracy(prediction,ytest) cat("Accuarcy is :: ", accuracyper1,"%","\n") #confusion matrix</pre>
	<pre>cat("Confusion Matrix") cmatrix1 <- generateconfusionmatrix(prediction, ytest) cmatrix1 Coffiecients -0.5130687 0.9951247 </pre>
n [113	Accuarcy is :: 87 % Confusion Matrix actual(1) actual(-1) pred(1) 26 6 pred(-1) 7 61 # generating points to plot classification line
n [114	Age = seq(-2,2,0.1) # wstar[1] represents b, wstar[2] and wstar[3] represents the parameter for Age and salary EstimatesSalary = -(wstar[2]*Age+wstar[1])/wstar[3] data1 <- as.data.frame(cbind(Age,EstimatesSalary))
	ygtitle ("Visualisation for Training data with C = 50") Visualisation for Training data with C = 50 Visualisation for Training data with C = 50")
	4-
	Purchased 1.0 0.5 0.0 -0.5
	-0.5 -1.0
	-2-
n [115	-2 -1 0 1 2 Age data <- as.data.frame(cbind(xtest, ytest))
n [115	<pre>data <- as.data.frame(cbind(xtest,ytest)) # data library(ggplot2) sp <- ggplot() + geom_point(data, mapping = aes(x = Age, y = EstimatedSalary, color = Purchased))+ scale_colour_gradient(low = "red", high = "green") sp + geom_line(data1, mapping = aes(x = Age, y = EstimatesSalary))+ ggtitle("Visualisation for Testing data with C = 50") Visualisation for Testing data with C = 50")</pre>
	4-
	2- Purchased
	1.0 0.5 0.0 -0.5
	-1.0
	-2 -1 0 1 2
n [116	$C \leftarrow 1$ # $x = [w1 \ w2 \ b]'$
	<pre>x <- matrix(rep(0,3), nrow = 3, ncol = 1) thres <- 10**(-2) maxiter <- 1000 alpha <- 0.01 answer <- gradientDescent(x, C,alpha,thres,maxiter) wstar <- answer\$x #prediction prediction <- predict(xtest,wstar) #accuracy accuracyper2 <- accuracy(prediction,ytest)</pre>
	<pre>accuracyper2 <- accuracy(prediction, ytest) cat("Accuarcy is :: ", accuracyper2,"%","\n") #confusion matrix cat("Confusion Matrix") cmatrix2 <- generateconfusionmatrix(prediction, ytest) cmatrix2 Accuarcy is :: 88 % Confusion Matrix actual(1) actual(-1)</pre>
n [117	<pre>pred(1)</pre>
	<pre>thres <- 10**(-2) maxiter <- 1000 alpha <- 0.01 answer <- gradientDescent(x, C,alpha,thres,maxiter) wstar <- answer\$x #prediction prediction <- predict(xtest,wstar) #accuracy accuracyper3 <- accuracy(prediction,ytest) cat("Accuarcy is :: ", accuracyper3,"%","\n")</pre>
	<pre>#confusion matrix cat("Confusion Matrix") cmatrix3 <- generateconfusionmatrix(prediction, ytest) cmatrix3 Accuarcy is :: 87 % Confusion Matrix</pre>
n [118	<pre>pred(1) 26 6 pred(-1) 7 61 #setting tradoff parameter to 100 C <- 100 # x = [b w1 w2]' x <- matrix(rep(0,3), nrow = 3, ncol = 1) thres <- 10**(-2) maxiter <- 1000</pre>
	<pre>maxiter <- 1000 alpha <- 0.01 answer <- gradientDescent(x, C,alpha,thres,maxiter)</pre>
	<pre>wstar <- answer\$x #prediction prediction <- predict(xtest,wstar) #accuracy accuracyper4 <- accuracy(prediction,ytest) cat("Accuarcy is :: ", accuracyper4,"%","\n") #confusion matrix</pre>
	<pre>#prediction prediction <- predict(xtest,wstar) #accuracy accuracyper4 <- accuracy(prediction,ytest)</pre>
n [119	<pre>#prediction prediction <- predict(xtest,wstar) #accuracy accuracyper4 <- accuracy(prediction,ytest) cat("Accuarcy is :: ", accuracyper4,"%","\n") #confusion matrix cat("Confusion Matrix") cmatrix4 <- generateconfusionmatrix(prediction,ytest) cmatrix4 Accuarcy is :: 87 % Confusion Matrix</pre>
n [119	<pre>#prediction prediction <- predict(xtest,wstar) #accuracy accuracyper4 <- accuracy(prediction,ytest) cat("Accuarcy is :: ", accuracyper4,"%","\n") #confusion matrix cat("Confusion Matrix") cmatrix4 <- generateconfusionmatrix(prediction,ytest) cmatrix4 Accuarcy is :: 87 % Confusion Matrix</pre>
	<pre>#prediction </pre> prediction ### **This is a couracy (prediction, ytest) #### **This is a couracy is :: % a
	prediction <- predict(xtest, wstar) ###################################
	### sprediction of predict (wheel, water) ### securacy ##

HOMEWORK 4

We will read dataset that is about the stores. The data contains following information.

Read the data