Буфер (тип FIFO)

Pasted image 20250313142750.png

Адресные запоминающие устройства

Постоянные ЗУ (ПЗУ)

- МПЗУ (MROM)
- ППЗУ (PROM)
- РПЗУ-УФ (EPROM)
- ОПРПЗУ-УФ (EPROM-ОТР)
- РПЗУ-ЭС (EEPROM)
- Flash

ЗУ с произвольным доступом (RAM)

- Динамические ЗУПД
 - Использующие кучность адресов
 - FPM DRAM
 - EDO DRAM
 - BEDO DRAM
 - SDRAM
 - DDR SDRAM
 - RDRAM
 - Не использующие кучность адресов
 - DRAM
 - RLDRAM

Статические ЗУПД (SRAM)

- Синхронные
- Асинхронные

"Переход от асинхронности - это хорошо. Положительно 👍"

© Попов 2025

Организация запоминающих массивов адресных ЗУ

Структура 3M 2D

Pasted image 20250313143536.png Количество выходов DC = количеству слов в памяти (2^n) Применима только для малоразмерных ЗУ

Структура 3M 3D

Адрес делится на две части (двухкоординатная выборка) - буквально выбор запоминающей ячейки по координатам

Количество выходов DC - $2^{n/2} + 2^{n/2}$

Pasted image 20250313143735.png

Pasted image 20250313143752.png

Структура 3M 2DM

Мультиплексоры дают выбирать один из $2^{n/2}$ разрядов в каждом из запоминающих массивов

- Размеры массивов близки к оптимальным
- Количество линий чтения/записи минимально

Pasted image 20250313144610.png

Расслоение памяти

Видимо в попытках ускорить память производится расслоение памяти - разделение на несколько кусков, называемых банками, а дальше как в морском бою по "координатам" выбирается ячейка

Блочное разделение адреса

Номер банка определяется старшей частью адреса Pasted image 20250313151908.png

Циклическое разделение адреса

Номер банка определяется младшей частью адреса

Pasted image 20250313152003.png

Блочно-циклическое разделение адреса

Обеспечивает возможность пакетной передачи и ускоряет доступ при кучности адресов

Pasted image 20250313153330.png

Пример разделения адреса в SDRAM (PIII, P4)

Pasted image 20250313152113.png