Computational identification of inhibitors using QSAR approach against

Nipah virus

Akanksha Rajput*, Archit Kumar* and Manoj Kumar *

Virology Discovery Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh-160036, India.

- # Equal contributions
- * Corresponding Author: manojk@imtech.res.in

Supplementary Information

Supplementary Figures

Supplementary Figure S1. Frequency distribution of assays used to check the inhibition of anti-Nipah compounds

Supplementary Tables

Supplementary Table S1. Details of the most relevant descriptors extracted from RemoveUseless and CfsSubsetEval feature selection algorithms and used for prediction model development

Supplementary Table S2. Actual and predicted efficiency of 95 anti-nipah compounds employing support vector machine along with their structures

Supplementary Table S3. Details of prediction done using 74 decoy set through prediction model employing support vector machine along with their structures

Supplementary Figure S1. Frequency distribution of assays used to check the inhibition of anti-Nipah compounds

Supplementary Table S1. Details of the most relevant descriptors extracted from RemoveUseless and CfsSubsetEval feature selection algorithms and used for prediction model development

Features	Description	Туре
	Average centered Broto-Moreau autocorrelation - lag	
AATSC5e	5 / weighted by Sanderson electronegativities	2D
	Moran autocorrelation - lag 5 / weighted by Sanderson	
MATS5e	electronegativities	2D
JGI9	Mean topological charge index of order 9	2D
JGI10	Mean topological charge index of order 10	2D
FP169	Fingerprint of length 1024 and search depth of 8	CDK fingerprint
FP204	Fingerprint of length 1024 and search depth of 8	CDK fingerprint
FP339	Fingerprint of length 1024 and search depth of 8	CDK fingerprint
FP396	Fingerprint of length 1024 and search depth of 8	CDK fingerprint
FP490	Fingerprint of length 1024 and search depth of 8	CDK fingerprint
FP551	Fingerprint of length 1024 and search depth of 8	CDK fingerprint
FP582	Fingerprint of length 1024 and search depth of 8	CDK fingerprint
FP606		CDK fingerprint
FPOUO	Fingerprint of length 1024 and search depth of 8	CDK inigerprint
ExtFP79	Extends the Fingerprinter with additional bits describing ring features	fingerprint
LXII F / 3	Extends the Fingerprinter with additional bits	CDK extended
ExtFP442	describing ring features	fingerprint
LXIII 442	Extends the Fingerprinter with additional bits	CDK extended
ExtFP584	describing ring features	fingerprint
Ext. 1301	Extends the Fingerprinter with additional bits	CDK extended
ExtFP700	describing ring features	fingerprint
	Extends the Fingerprinter with additional bits	CDK extended
ExtFP1010	describing ring features	fingerprint
	Extends the Fingerprinter with additional bits	CDK extended
ExtFP1019	describing ring features	fingerprint
	Specialized version of the Fingerprinter which does not	CDK graph only
GraphFP158	take bond orders into account	fingerprint
	Specialized version of the Fingerprinter which does not	CDK graph only
GraphFP504	take bond orders into account	fingerprint
	Specialized version of the Fingerprinter which does not	CDK graph only
GraphFP622	take bond orders into account	fingerprint
	Specialized version of the Fingerprinter which does not	CDK graph only
GraphFP762	take bond orders into account	fingerprint
	Specialized version of the Fingerprinter which does not	CDK graph only
GraphFP860	take bond orders into account	fingerprint
0 155000	Specialized version of the Fingerprinter which does not	CDK graph only
GraphFP906	take bond orders into account	fingerprint
C = = 1	Specialized version of the Fingerprinter which does not	CDK graph only
GraphFP1007	take bond orders into account	fingerprint
MACCSEDSE	MACCS kovs	MACCS
MACCSFP26	MACCS keys	fingerprint
MACCSFP150	MACCS keys	MACCS

		fingerprint
	Presence of SMARTS Patterns for Functional Group	Substructure
SubFP147	Classification by Christian Laggner	fingerprint
		Klekota-Roth
KRFP349	Presence of chemical substructures	fingerprint
		Klekota-Roth
KRFP360	Presence of chemical substructures	fingerprint
		Klekota-Roth
KRFP364	Presence of chemical substructures	fingerprint
		Klekota-Roth
KRFP397	Presence of chemical substructures	fingerprint
		Klekota-Roth
KRFP607	Presence of chemical substructures	fingerprint
		Klekota-Roth
KRFP1538	Presence of chemical substructures	fingerprint
		Klekota-Roth
KRFP2135	Presence of chemical substructures	fingerprint
		Klekota-Roth
KRFP3940	Presence of chemical substructures	fingerprint
		Klekota-Roth
KRFPC349	Count of chemical substructures	fingerprint count
		Klekota-Roth
KRFPC2135	Count of chemical substructures	fingerprint count
		Klekota-Roth
KRFPC2694	Count of chemical substructures	fingerprint count
		Klekota-Roth
KRFPC3139	Count of chemical substructures	fingerprint count
		Klekota-Roth
KRFPC3520	Count of chemical substructures	fingerprint count
		Klekota-Roth
KRFPC4292	Count of chemical substructures	fingerprint count

Supplementary Table S2. Actual and predicted efficiency of 95 anti-nipah compounds employing support vector machine along with their structures

S.No	Anti_NiV			Actu al_pl	Predic ted_pl
	_IDs	SMILES	Image	C50	C50
1	Anti_NiV_	FC(F)(F)C(=O)NC1= C(C(=O)NC2=CC=C C3=CC=CC=C23)C2 =C(CCCC2)S1	F HN S	7.54	7.77
2	Anti_NiV _002	CCC(CC)COC(=0)C(C)NP(=0)(OCC1C(C (C(O1)(C#N)C2=CC= C3N2N=CN=C3N)O) O)OC4=CC=CC=C4	H,C OH NN	7.49	7.52
3	Anti_NiV_ 003	CCCCCCC(=0)OC 1C2C(=C(C1OC(=0) C(=CC)C)C)C3C(C(C C2(C)OC(=0)C)OC(=0)CCC)(C(C(=0)O 3)(C)O)O	H.C. H.C. O. H	7.30	6.04
4	Anti_NiV_ 004	CC1CCC2(C(CC(C(O2)C(C)C(=O)C3=C C=CN3)C)C)OC1CC 4=NC5=C(O4)C=CC(=C5C(=O)O)NC	H ₂ C CH ₃ O CH ₃ CH ₃ O CH ₃	7.15	7.00
5	Anti_NiV_ 005	CC(=O)OCC1C(C(C(O1)N2C(=O)NC(=O) C=N2)O)O	O CH ₃	6.92	6.23
6	Anti_NiV_ 006	CN1C(=O)C23CC4= CC=CC(C4N2C(=O) C1(SS3)CO)O		6.83	6.56

			H ₃ C N S N HO		
7	Anti_NiV_ 007	CCN(CC)C1=CC=C(C=C1)C(=C2C=CC(= [N+](CC)CC)C=C2)C 3=CC=CC=C3.OS(= O)(=O)[O-]	CH ₁ CH ₁ OH	6.66	6.08
8	Anti_NiV_ 008	CCN1C(=S)S\C(=C/ C2=CC=C(O2)C2=C C=CC=C2OC)C1=O	CH ₂	6.40	6.19
9	Anti_NiV_ 009	C1=CC=C2C(=C1)C =CC3=C2C=CC(=C3)C4=CC(=NN4C5=C C=C(C=C5)NC(=O)C N)C(F)(F)F	HN O NH	6.40	5.91
10	Anti_NiV_ 010	C(C1C(C(C(O1)C2= C(C(=NN2)C(=O)N)O)O)O)O	HN OH OH	6.36	6.52

11	Anti_NiV_ 011	CCN1C(=O)S\C(=C/ C2=CC=C(O2)C2=C C=CC=C2[N+]([O-])=O)C1=S	S N CH ₃	6.31	4.73
12	Anti_NiV_ 012	CN(C)C1=CC=C(C= C1)C(=C2C=CC(=[N +](C)C)C=C2)C3=CC =C(C=C3)N(C)C.[CI-]	H,C CH, CH, CH, CH,	6.28	5.80
13	Anti_NiV_ 013	CCN(CC)CCCC(C)N C1=C2C=CC(=CC2= NC=C1)CI	H ₃ C NH	6.21	5.95
14	Anti_NiV_ 014	CCN1C(=O)/C(=C/c2 ccc(o2)c3cccc3C(F) (F)F)/SC1=S	S N O	6.09	6.05
15	Anti_NiV_ 015	CCN1C(=O)C(=Cc2c cc(o2)c3ccccc3F)SC 1=S	H ₁ C S N O	6.04	5.73
			CH ₃		
16	Anti_NiV_ 016	CCCN1C(=O)/C(=C/c 2ccc(o2)c3ccccc3)/S C1=S		6.02	5.49

			H ₃ C O O O O O O O O O O O O O O O O O O O		
17	Anti_NiV_ 017	CCN1C(=O)/C(=C/c2 ccc(o2)c3ccccc3[N+](=O)[O-])/SC1=S		5.99	5.56
18	Anti_NiV_ 018	O=C1N(CC#C)C(=S) S\C1=C/C1=CC=C(O 1)C1=CC=CC=C1		5.99	5.58
19	Anti_NiV_ 019	c1ccc(cc1)c2ccc(o2)/ C=C\3/C(=O)NC(=S) S3	S HN	5.98	5.92
			O N S		
20	Anti_NiV_ 020	CCN1C(=S)S\C(=C/ C2=CC=C(O2)C2=C C=CC(OC)=C2)C1= O	H,C	5.94	5.48
			S CH ₃		
21	Anti_NiV_ 021	CN1C(=O)/C(=C/c2c cc(o2)c3ccccc3)/SC1 =S		5.91	5.59

			S N O		
22	Anti_NiV_ 022	CCN1C(=O)/C(=C/c2 ccc(o2)c3ccccc3CI)/S C1=S		5.90	5.90
			S N O		
23	Anti_NiV_ 023	CCN1C(=O)/C(=C/c2 ccc(o2)c3cccc(c3)CI)/ SC1=S	CI H ₁ C	5.85	5.56
			S N O		
24	Anti_NiV_ 024	CCN1C(=O)/C(=C/c2 ccc(o2)c3cccc(c3)F)/ SC1=S		5.84	5.90
25	Anti_NiV_	NC(=0)C1CCN(CC1) C1=CC2=C(C=C1F) C(=0)C(CN2C1CC1) C(=0)NCC1=CC=C(NH,	5.00	E 25
25	025	CI)C=C1CI	HO N	5.82	5.35
		C1=CN(C(=O)N=C1	HO		
26	Anti_NiV_ 026	N)C2C(C(C(O2)(CO) N=[N+]=[N-])O)O F[B-	NH ₂	5.82	5.45
27	Anti_NiV_ 027](F)(F)F.CCN1C(=S) S\C(=C/C2=CC=C(O 2)C2=CC=CC=C2[N		5.79	5.89

		+]#N)C1=O	CH ₁		
			F B F N N N		
			OH OH		
28	Anti_NiV_ 028	OCCCN1C(=S)S\C(= C/C2=CC=C(O2)C2= CC=CC=C2)C1=O		5.76	5.78
29	Anti_NiV_ 029	O=C(CCCC1SCC2N C(=O)NC12)OCCCN 1C(=S)S\C(=C/C2=C C=C(O2)C2=CC=CC =C2)C1=O		5.75	5.40
	-	, -	H ₃ C S		
30	Anti_NiV_ 030	CCN1C(=O)/C(=C/c2 ccc(o2)c3ccccc3)/SC 1=S		5.75	5.76
24	Anti_NiV_	CC(=O)OCCCN1C(= S)S\C(=C/C2=CC=C(O2)C2=CC=CC=C2)	H,C O	5 72	E 94
30	030	ccc(o2)c3ccccc3)/SC 1=S CC(=O)OCCCN1C(= S)S\C(=C/C2=CC=C(H,C O O O O O O O O O O O O O O O O O O O	5.75	5.7 5.8

			CH ₃		
			H ₃ N		
32	Anti_NiV_ 032	CCN1C(=S)S\C(=C/ C2=CC=C(O2)C2=C C=CC=C2N)C1=O		5.71	5.93
	Anti_NiV_	CCN1C(=S)S\C(=C/ C2=CC=C(O2)C2=C	O CH ₃	5.00	5.50
33	033	C=CC=C2O)C1=O		5.63	5.56
	Anti_NiV_	CCN1C(=S)S\C(=C/ C2=CN=C(O2)C2=C			
34	034	C=CC=C2)C1=O		5.62	5.37
25	Anti_NiV_	c1ccc(cc1)CN2C(=O) /C(=C/c3ccc(o3)c4cc		F 60	E 66
35	035 Anti_NiV_	ccc4)/SC2=S C=CCN1C(=O)C(=C C2=CC=C(O2)C3=C	-	5.60	5.66
36	036	C=CC=C3)SC1=S		5.59	5.52

			S N O S		
37	Anti_NiV_ 037	CCN1C(=S)S\C(=C/ C2=CC=C(S2)C2=C C=CC=C2)C1=O	O N S	5.58	5.52
38	Anti_NiV_ 038	OCCN1CC(C(=O)NC C2=CC=C(CI)C=C2C I)C(=O)C2=C1C=C(N 1CCC(CC1)C(=O)C1 CO1)C(F)=C2	OH O	5.52	5.46
39	Anti_NiV_ 039	FC1=CC2=C(C=C1N 1CCN(CC1)C(=0)C1 CO1)N(CC(C(=0)NC C1=CC=C(CI)C=C1C I)C2=O)C1CC1		5.52	5.41
40	Anti_NiV_ 040 Anti_NiV	C1=CC=C(C=C1)C(C 2=CC=CC=C2)(C3= CC=CC=C3CI)N4C= CN=C4 CC(C)NCC(COC1=C	N C C	5.46	4.68
41	041	C=CC2=CC=CC		5.42	5.34

		1)O	CH ₃	ĺ	
			ОН	<i>5</i>	
			O NH		
42	Anti_NiV_ 042	c1ccc2c(c1)CCC(=C 2)S(=O)(=O)Nc3ccc(cc3)n4cnnn4	N N N	5.41	5.89
43	Anti_NiV_ 043	OCCN1CC(C(=O)NC C2=CC=C(CI)C=C2C I)C(=O)C2=C1C=C(N 1CCN(CC1)C(=O)C1 CO1)C(F)=C2	OH OH N N N N N N N N N N N N N N N N N	5.40	5.42
44	Anti_NiV_ 044	C1=NC(=NN1C2C(C(C(O2)CO)O)O)C(=O) N	HO HO N N N N N N N N N N N N N N N N N	5.38	5.94
	Anti_NiV_	CC(CCC(=0)0)CC(C)CC(C)C(=0)C=C(C(C)CC(C)CC=CC(C)C (C(C)C(CC1CCC(O1)(C)C2CCC(O2)(C)C(CI, CI, CI, CI, 100, CI,	\ \	
45	045	C)O)O)O	OH OH	5.28	4.52

46	Anti_NiV_ 046	CCN(C1=NC(=C(N= C1CI)C(=O)N=C(N)N)N)C(C)C	CH ₃ CH ₃ CH ₃ CH ₃ NH ₂ NH ₂	5.22	4.45
47	Anti_NiV_ 047	CC(C)C1C2=C(CCC 1(CCN(C)CCC3=N C4=CC=CC=C4N3)O C(=0)COC)C=C(C= C2)F	CH ₃	√ √ ~ 5.21	5.64
48	Anti_NiV_ 048	CC(COC1=CC=CC= C1)N(CCCI)CC2=CC =CC=C2	H ₁ C N	5.16	4.51
49	Anti_NiV_ 049	C1CCC2CCN3CCC C(C3O2)CCCCCCC4 CCN5CCCC(C5O4)C C1		5.15	4.26
50	Anti_NiV_ 050	CCC(=C(C1=CC=C(C=C1)O)C2=CC=C(C=C2)OCCN(C)C)C3 =CC=CC=C3	H _J C O N CH	,	4.81
51	Anti_NiV_ 051	CN(C)S(=O)(=O)c1cc c2c(c1)CCN2S(=O)(= O)c3cccs3		5.11	5.06

			CH ₃ N CH ₃		
52	Anti_NiV_ 052	OCCN1C=C(C(=O)N CC2=CC=C(CI)C=C2)C(=O)C2=C1C=C(C =C2)C(F)(F)F	OH NH O	5.10	5.58
53	Anti_NiV_ 053	OC(=O)C1=CC2=C(NC=C(C(O)=O)C2=O)C=C1	HO O O O	5.10	4.89
54	Anti_NiV_ 054	C1=CC=C(C=C1)CC 2=NC3=C(O2)C=CC(=C3)N		5.10	5.27
	Anti_NiV_	Fc1ccc(cc1F)S(=O)(= O)Nc2ccc(cc2)n3nnn	F NH		
55	055	c3	N — N	4.93	5.09

	Anti_NiV_	CC(C)(C)C1=CC(=C(H ₃ C CH ₃ H ₃ C CH ₃ OH CH ₃		
56	056	C=C1O)C(C)(C)C)O		4.91	4.75
57	Anti_NiV_ 057	CCC1(CCC(O1)C2(C CC3(O2)CC(C(C(O3) C(C)C(C(C)C(=O)O) OC)C)O)C)C4C(CC(O4)C5C(CC(C(O5)(C O)O)C)C)C	H ₁ C CH ₃ H ₁ C H ₂ C CH ₃	4.91	4.67
	Anti NiV	C1C(=O)NC(=O)N1N =CC2=CC=C(O2)C3 =CC=C(C=C3)[N+](=	N N N N N N N N N N N N N N N N N N N		
58	058	O)[O-]	\ <u>\</u>	4.91	4.38
	Anti_NiV_	CCC1C(=O)N(CC(= O)N(C(C(=O)NC(C(= O)N(C(C(=O)NC(C(= O)NC(C(=O)N(C(C(= O)N(C(C(=O)N(C(C(= O)N(C(C(=O)N1)C(C(C)CC=CC)O)C)C(C)C)CC(C)C)C)CC(C)C)C)CC(C)C)C)CC(C)C)CC(C)C)CC(C)C)CC(C)C)CC(C)C)CC(C)CC(C)CC(C)CC(C)CC(C)CC(C)CC(C)CC(C)CC(C)CC(C)CC(C)C(H,C CH ₁ NH	ga ^t	
59	059	С	н,с́	4.90	4.38

	Anti_NiV_	C1=C(N=C(C(=O)N1)	NH ₂		
60	060	C(=O)N)F	'	4.83	4.34
61	Anti_NiV_ 061	CC1=C(C(=C(C(=C1 O)C(=O)C)O)CC2=C (C3=C(C(=C2O)C(= O)C=CC4=CC=CC= C4)OC(C=C3)(C)C)O	HO OH OH OH OH OH OH	4.70	4.74
62	Anti_NiV_	CCOC(=O)C1C(N(C C=C)C(C2=CC=C(C =C2)[N+]([O-])=O)C(C(=O)OCC)= C1O)C1=CC=C(C=C 1)[N+]([O-])=O	H ₃ C O O O O O O O O O O O O O O O O O O O	4.70	5.17
63	Anti_NiV_ 063	CC(C)C(CCCN(C)CC C1=CC(=C(C=C1)O C)OC)(C#N)C2=CC(=C(C=C2)OC)OC	H ₁ C O CH ₃ CH ₃	4.66	4.71
64	Anti_NiV_ 064	CC(CCCC(C)(C)O)C 1CCC2C1(CCCC2=C C=C3CC(CCC3=C)O)C	H ₃ C OH CH ₃ CH ₃ CH ₃ OH	4.51	4.59
65	Anti_NiV_ 065	C1CCC(CC1)C(=O)N 2CC3C4=CC=CC=C 4CCN3C(=O)C2		4.47	4.88

CC12CCC3C(C1CC C2NCCCCCN4C(= O)C=CC4=O)CCC5= C3C=CC(=C5)OC Anti_NiV_ C1=CC=C(C=C1)C2(C(=O)NC(=O)N2)C3	
CC12CCC3C(C1CC C2NCCCCCN4C(= O)C=CC4=O)CCC5= C3C=CC(=C5)OC Anti_NiV_ C1=CC=C(C=C1)C2(C(=O)NC(=O)N2)C3	4.73
Anti_NiV_ C1=CC=C(C=C1)C2(C(=O)NC(=O)N2)C3	4.96
Anti_NiV_ C1=CC=C(C=C1)C2(C(=O)NC(=O)N2)C3	
	4.30
CC(C)CCC(C)C1C CC2C1(CCCC2=CC =C3CC(CCC3=C)O) C 4.25	4.57
H ₂ N H ₂ N N N N N N N N N N N N N N N N N N N	
	4.75
CC1CCC2(C3(CC4(C5(C(C(C3(C5(C2(C 10)O4)O)O)OC(=O) Anti_NiV_ C6=CC=CN6)(C(C)C 71 071)O)C)O)C)O 4.18	5.21

			HO OH OH CH ₃ OH OH CH ₃ OH OH CH ₃		
			H ₃ C S N		
72	Anti_NiV_ 072	CCN1C(=O)/C(=C/c2 ccc(o2)C)/SC1=S	H ₃ C	4.00	4.16
73	Anti_NiV_ 073	CCN1C(=O)/C(=C/c2 ccco2)/SC1=S	H ₃ C N	4.00	4.74
74	Anti_NiV_ 074	CCN1C(=S)S\C(=C/ C2=CC=CC(=C2)C2 =CC=CC=C2)C1=O	CH ₃	4.00	5.67

			S N O		
75	Anti_NiV_ 075	C=CN1C(=O)/C(=C/c 2ccc(o2)c3ccccc3)/S C1=S		4.00	5.16
75	075	C1-3	0 N O	4.00	3.10
76	Anti_NiV_ 076	CCN1C(=O)/C(=C/c2 ccc(o2)c3cccc3[N+](=O)[O-])/SC1=O		4.00	4.84
77	Anti_NiV_ 077	C=CN1C(=S)S\C(=C/ C2=CC=C(O2)C2=C C=CC=C2)C1=S	S N S	4.00	5.38
78	Anti_NiV_ 078	CCN1C(=S)S\C(=C/ C2=CC=C(O2)C2=C C=CC=C2[N+]([O-])=O)C1=S	CH ₃	4.00	5.25

79	Anti_NiV_ 079	C=CCN1C(=S)SC(C C2=CC=C(O2)C2=C C=CC=C2)C1=O	CH ₂	4.00	5.32
80	Anti_NiV_ 080	CC(=O)NCCCN1C(= O)S\C(=C/C2=CC=C(O2)C2=CC=CC=C2) C1=O	H ₃ C H N N N N N N N N N N N N N N N N N N	4.00	4.63
81	Anti_NiV_ 081	NCCCN1C(=O)S\C(= C/C2=CC=C(O2)C2= CC=CC=C2)C1=O	NH ₂	4.00	5.42
82	Anti_NiV_ 082	CC(C)COC(=O)NCC CN1C(=S)S\C(=C/C2 =CC=C(O2)C2=CC= CC=C2)C1=O	11, COH, STATE OF THE STATE OF	4.00	5.38
83	Anti_NiV_ 083	O=C(CCCC1SCC2N C(=0)NC12)OCCCN 1C(=0)S\C(=C/C2=C C=C(O2)C2=CC=CC =C2)C1=O		4.00	4.19
84	Anti_NiV_ 084	B(C1=CC=CC=C1)(C 2=CC=CC=C2)OCC N		3.88	3.84

			B O NH ₂		
85	Anti_NiV_ 085	CC1=C(C(C(=C(N1) C)C(=O)OC)C2=CC= CC=C2[N+](=O)[O-])C(=O)OC	H ₃ C O O O O O O O O O O O O O O O O O O O	3.61	3.74
86	Anti_NiV_ 086	CCCCCCCC1=C2C 3=C(C=C1)N(C(C(=O)NC(CC3=CN2)CO)C (C)C)C	H ₃ C CH ₃	° 3.51	4.51
87	Anti_NiV_ 087	CCOC(=0)CCCCCC CCCCCN(C)C(=0)C OC(C)C(C)OCC(=0) N(C)CCCCCCCCC CC(=0)OCC		3.46	4.20
88	Anti_NiV_ 088	CCCCCCCCCCCC C(=O)OC1C(C2(C(C =C(CC3(C2C=C(C3= O)C)O)CO)C4C1(C4(C)C)OC(=O)C)O)C		3.43	3.28
	Anti_NiV_	C1CCC(CC1)(CC(=O	OH NH ₂		
89	089)O)CN CCOC(=0)C1=C(NC	G O CH,	3.27	4.28
90	Anti_NiV_ 090	(=C(C1C2=CC=CC= C2CI)C(=O)OC)C)C OCCN.C1=CC=C(C= C1)S(=O)(=O)O	NH ₂	3.19	3.50
91	Anti_NiV_ 091	CN1CCC2=CC(=C3 C=C2C1CC4=CC=C(3.18	4.00

92 Anti_NiV_ C1(=C(N=C(C(=N1)C NH ₂) NH ₂	
	4.19
93 Anti_NiV_ CI[La](CI)CI 2.99	2.48
94 Anti_NiV_ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	3.08
95 Anti_NiV_ CN1C=NC2=C1C(=O)N(C(=O)N2C)C CH ₃ 2.12	3.22

Supplementary Table S3. Details of prediction done using 74 decoy set through prediction model employing support vector machine along with their structures

S.No.	ZINC_ID	SMILES	Images	Predicted_pl C50
			N NH ₂	
1	ZINC01418565	Nc1nc(N)n2c(c1)nc n2	NH ₂	3.8867641
2	ZINC76045055	Cc1n[nH]c(n1)[C@ H]1OCCN(C1)C(=O) c1cc(sc1Cl)Cl	CI S NH	5.8360873
3	ZINC94666930	Brc1ccc(s1)S(=O)(= O)[N-]c1ccc([nH+]c1C)C	HN CH ₃ O	5.4610064
4	ZINC61718549	FC(c1nnc2n1nc(s2) c1noc(c1)c1ccco1)(CI)F	CI NON NO O	5.8472315

			H N O	
5	ZINC49551322	O=C(c1cc2CCCc2[n H]c1=O)N1CCCCC1		4.729709
		O=C(NCC1CC1)NCC	H H N H N T T T T T T T T T T T T T T T	
6	ZINC32909472	c1cccc(c1)Cl	CI	4.3834935
7	ZINC92779969	O=C([C@H]1NCc2c (C1)nc[nH]2)Nc1c(C)n[nH]c1C	H ₃ C NNH CH ₃	5.7719926
		COC(=0)c1nc2nnc(H ₂ N N N N N N N N N N N N N N N N N N N	
8	ZINC08655749	n2c(c1)c1ccc(cc1)N)N	CH₃	6.019685

9	ZINC40162136	CCN(C(=O)c1ccc2c(c1)[nH]c(=O)c(=O)[nH]2)Cc1ccc(s1)Cl	CI N H N O O	5.3902657
10	ZINC19846561	N#Cc1cccnc1Sc1nc 2c(s1)cccc2	S N N N	5.0631296
			\sim	
11	ZINC28802886	N#Cc1c(NC(=O)CSc 2scc(n2)C)sc2c1CC CCC2	S N H S N CH ₃	6.863947
			S CH ₃	
		Cc1csc(n1)Sc1nc(nc	S N N	
12	ZINC07780252	2c1cccc2)c1cccs1		4.6468422

13	ZINC16940346	OC[C@@H]10[C@ @H]([C@@H]([C@ H]10)0)[C@@H]1C =Nc2c1ncnc2N	HO NH ₂	6.0687112
14	ZINC70807776	N#CC1(CCCC1)C(=O)Oc1ccc(c(c1)C)C	CH ₃	5.1389496
15	ZINC93584610	CN(Cc1cccn1C)Cc1c ccc2c1N(CC2)C(=0) OC(C)(C)C	H ₃ C CH ₃ CH ₃	4.2884885

			NH ₂	
16	ZINC94975524	Nc1cc(F)c(c(c1)F)SC c1scc(n1)C(C)(C)C	H ₃ C CH ₃	4.3705865
17	ZINC94541485	Nc1n[nH]cc1CNS(= O)(=0)c1cc(c(s1)Br) C	H ₃ C NH NH ₂	6.0091462
18	ZINC92711562	c1ccc2c(c1)S[C@H] (C2)CSc1nc2c(s1)cc cc2	S N	4.9740363
19	ZINC02666989	CC(CC(=O)N[C@@ H](C(CI)(CI)CI)Nc1c ccc(c1CI)CI)C	H ₃ C CI	4.9088033

20	ZINC81462747	CCN(C(=O)c1ccc(c(c 1)S(=O)(=O)N)C)c1s cc(n1)C	ONH ₂ ONH ₃ CH ₃ CH ₃	4.7152084
21	ZINC28304734	Cc1[nH]/c(=N\S(=O)(=O)c2ccc(cc2)C(C) (C)C)/sc1C	H ₃ C CH ₃ NH CH ₃ CH ₃ CH ₃	4.7252084
22	ZINC85235369	CCc1ccc(s1)S(=O)(= O)[N-]c1c[nH+]ccc1C	CH ₃	5.8046097
23	ZINC40212035	CC(N(C(=O)Cn1c(C CCCCNC(=O)C(C)(C) C)nc2c1cccc2)Cc1c cccc1)C	H ₃ C CH ₃	4.6624828
24	ZINC84509637	COCc1c(sc2c1c(F)c cc2)c1onc(n1)c1cn ccn1	H ₃ C N N	5.4898942

			H ₃ C CH ₃	
25	ZINC09145092	CCc1cccc(c1NC(=O) CSc1nnc(n1C1CCCC C1)c1cccc(c1)F)C	F	5.2362261
26	ZINC89447997	CCc1onc(c1NC(=O) c1cc(C)c(c(c1)S(=O) (=O)NC)C)C	H ₃ C O CH ₃	4.7440007
27	ZINC12428336	OC[C@H]([C@H](c 1cnc2c(n1)c(=O)[n H]c(n2)N)O)O	OH HOMMINN NH NH 2	4.9369192

			<u>F</u>	
			Br HN	
		Fc1cccc(c1)NC(=O)	N	
28	ZINC41107492	c1cccnc1Br	~	4.757407
			CH ₃	
			NH NH	
29	ZINC00192078	COc1ccc2c(c1)ccc(c 2)S(=O)(=O)Nc1ccc cn1	N N	5.7803614
29	ZINC00192078	CIII		3.7803014
			(O)	
			O CH ₃	
			$\bigvee_{N}\bigvee_{N}$	
30	ZINC71883568	Cc1cn(nc1NC(=O)c 1noc(c1)c1ccco1)c 1ccccc1		5.6745762
		Ec1ccc2c/c1\cc/n2\	CH ₃	
31	ZINC94883725	Fc1ccc2c(c1)sc(n2) NCc1sccc1C	<u></u>	5.5519799

32	ZINC16952310	CSc1[nH]c(=O)c2c(n1)n(nn2)[C@H]1O C[C@@H]([C@H]([C@@H]1O)O)O	HO OH OH NH S CH ₃	6.4557595
33	ZINC24257777	COC(=O)c1cccc(c1) S(=O)(=O)Nc1cc(C) ccc1F	H ₃ C	5.3899743
34	ZINC72481528	O=c1cc(nc([nH]1)N)N1CCN(CC1)c1ncn c2c1c(C)nn2C	H ₃ C N	4.4301798

35	ZINC04260552	OC[C@]1(C)[C@H](O)CC[C@@]2([C@ @H]1Cc1sc(nc1[C @H]2CC(=O)Nc1cc ccc1O)c1cccnc1)C	N OH OH OH HO	5.9589788
36	ZINC20496761	N#CC1(CCCC1)c1cc c(cc1)NC(=0)c1ccc(o1)c1cccc(c1Cl)Cl	HN CI	6.2292559
			H ₃ C N	
			HN S	
37	ZINC10555431	Fc1ccc(cc1)n1nc(nc 1C)C(=O)Nc1scc(n1)C	CH ₃	4.8477151

38	ZINC80529481	CN(C(=0)c1ccc(cc1)	F F S N	3 8880513
38	ZINC80529481	SC(F)(F)F)Cc1nccs1	F	3.8880513
			F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
39	ZINC09670144	O=C(Nc1ccc(cc1)NS (=O)(=O)c1ccc(c(c1)F)F)CCc1nc2cccc2 c(=O)[nH]1	S S O HN N HN N O O	5.2087045
40	ZINC07006610	CCC(=O)Nc1ccc(cc1)C1=Nn2c(SC1)nnc 2c1cccc(c1)F	N N N CH ₃	5.2481278
41	ZINC82108957	O=C(N1CCCC[C@@ H]1c1nccs1)c1csc(n 1)c1cccs1	S N N S N N N N N N N N N N N N N N N N	4.8600598
42	ZINC82108957 ZINC48561162	O=C(Nc1ccc(c(c1)Cl)N1CCNC(=O)C1)N CCc1ccc(cc1)F	O HN H HN H	5.1645088

43	ZINC72646183	O=C([C@@H]1C[C @@H]2O[C@H]1C C2)Nc1scc(n1)c1cc c2c(c1)OCO2	HNNO S	4.7391872
44	ZINC92664040	N#Cc1c(Cl)nsc1N([C@H](c1ccc(cc1)[S @@](=O)C)C)C	H ₃ C O O O O O O O O O O O O O	5.6224617
45	ZINC12955489	O=c1cc(c2c([nH]1)c (C)ccc2)C(F)(F)F	O H N CH ₃	4.9421349
46	ZINC05115341	OC[C@H]10[C@H] ([C@@H]([C@@H] 10)0)n1cnc2c1nc([nH]c2=0)N(C)C	HO MAN CH3	5.3034263

47	ZINC08593803	Cc1cc(C)c(c(c1)C)N C(=0)Cn1c2cccc2c (=0)n(c1=0)CCC(= 0)N1CCc2c(C1)cccc 2	H ₃ C CH ₃	4.8599469
48	ZINC64953026	CCCN1C(=O)c2n(C[C@@]1(C)C(=O)NC c1ccc(cc1)C)cnc2C(=O)N1CCN(CC1)c1c cccn1	CH ₁	4.473165
49	ZINC19560635	Cc1nc(c(s1)c1cc(=O)[nH]c(n1)NCc1cccs 1)C	CH ₃ CH ₃ CH ₃	5.2568595
50	ZINC19596883	COc1ccc(cc1)n1nnn c1c1cnc2c(c1N)ccc(c2)Cl	N N NH2 CH3	6.296559

51	ZINC12375827	Clc1nss/c/1=N\c1c cccc1	N S S S	4.2259402
52	ZINC05998403	Clc1ccccc1CS(=O)(= O)c1ncn[nH]1	HNNNN	5.2383476
32	2114003330403	O)CINCII[III]I	CH₃	3.2303470
			H ₃ C CH ₃	
			0	
			S N N	
		CCOC(=O)c1c(C)[n	S NH	
53	ZINC03378586	H]c(c1C)C(=O)CSc1 nnc(s1)Nc1ccc(cc1) SC(F)F	F	4.4241811

		CCCC[C@]([C@H](c 1ccccc1)C=C)(c1ccc	H ₂ C OH	
54	ZINC05309880	cc1)O		4.7219278
55	ZINC89297038	N#C[C@H](Cc1cccs 1)COC(=O)c1ccc(cc 1)[S@](=O)C(C)C	CH ₃	5.981777
			HN N	
56	7INC22156662	O=C(C1c2cccc2Oc 2c1cccc2)Nc1nnc(o 1)c1ccco1		6.0546415
30	ZINC23156662	CC(=C)CSc1nc2sc3c (c2c(=O)n1CC(=C)C	H ₂ C S N S CH ₂	0.0340413
57	ZINC00440729)CCC3	*	5.9091266

HN O	
O=C(Nc1ccc(c(c1)Cl)Cl)Nc1ccc(cc1)N1C 59 ZINC54581012 CCCC1	4.8949908
Clc1ccc(cc1)S(=O)(= O)N(Cc1cc2c(C)cc(c c2[nH]c1=O)C)Cc1c cc2c(c1)OCO2	н, 5.591317
Cc1nc(Nc2ccc(cc2) NS(=O)(=O)c2cccc(c2)Cl)nc(c1)N1CCC	5.36896
CCn1c(=O)n(c2c1cc cc2)Cc1nc(oc1C)c1 cccs1	3.9105695

		CCN(S(=O)(=O)c1cc c(c(c1)C(F)(F)F)C#N	CH ₃	
63	ZINC83537860)c1cccnc1	N	5.0422614
64	ZINC91636449	CSc1ncc(cn1)C(=O) N1CCC[C@@H]1c1 onc(n1)c1ccccc1	CH ₃	5.2808292
		Fc1c(Oc2ccc3c2nc cc3)c(F)c(c(c1F)C(F)	F F N N N N N N N N N N N N N N N N N N	
65	ZINC04776575	(F)F)F		5.2331511

66 ZINC16971039 1 5.2560289 Clc1ccc2c(c1)[C@H			OC(c1ccccc1)(c1ccc cc1)C[C@@H](c1cc	OH OH	
Clc1ccc2c(c1)[C@H	66	ZINC16971039	cc2c1cccc2)c1ccccc	~~	5.2560289
@@H]3N1[C@@H]]10c3cc(Cl)ccc3[C @@H]3N1[C@@H]	NIIIII	4.8347449

		O=C(Nc1nnc(s1)SCc 1ccc(cc1)Cl)CSc1nn	N N NH ₂	
68	ZINC59047046	c(n1N)CCc1ccccc1	ď	6.1241522
	7111042525450	CCOC(=O)c1c(NC(= O)CSc2cc(C)c3c(n2) cc(cc3)OC)sc2c1CC	H ₃ C H _N CH ₃	7.5405027
69	ZINC12625468	CC2		7.5485037

		O=C(N1CCC(CC1)c1 c(cnn1c1ccccc1)C(=	H ₃ C CH ₃	
70	ZINC09610473	O)N1CC[C@@H](C 1)c1ccccc1)OC(C)(C)C		4.9914512
		COc1ccc2c1nc/c2\	N CH ₃	
71	ZINC36691722	COc1cccc2c1nc(s2) N(C(=0)c1nccnc1)C c1ccccn1	N N	6.1128335
		C=CCc1ccccc1OCC OCCn1c(nc2c(c1=O)cccc2)c1ccc(cc1)O	CH ₂	
72	ZINC02398782	С		5.089154

73	ZINC12791027	COc1ccc(cc1c1scc(n1)CN1C(=0)c2c(S1 (=0)=0)cccc2)Br	D CH ₃	6.3387781
74	ZINC36074317	CCCN(C(=O)c1ccc2 c(c1)OCO2)CC(=O) N1CCN(CC1)c1ccc(nn1)c1ccccc1Cl	H ₃ C N	5.0062977