

Infrared Light Emitting Diode in SMT Plastic Package

OP280

- Wide Beam Angle
- High Power
- Plastic Leadless Chip Carrier (PLCC-2)
- 880nm Wavelength

The OP280 is a GaAlAs infrared LEDs mounted in a plastic SMT package. The device flat lens window which allows a wide beam angle. This device is packaged in a plastic leadless chip carrier (PLCC-2) that is suitable for single device or array applications. The OP280 is mechanically and spectrally matched to the OP580 phototransistor.

Applications

- Non-Contact Position Sensing
- Datum detection
- Machine automation
- Optical encoders

OP280

RoHS

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPTEK Technology Inc.— 1645 Wallace Drive, Carrollton, Texas 75006
Phone: (800) 341-4747 FAX: (972) 323-2396 sensors@optekinc.com www.optekinc.com

A subsidiary of
TT electronics plc

SMT Infrared LED

OP280

Absolute Maximum Ratings

$T_A = 25^\circ C$ unless otherwise noted

Storage Temperature Range	-40° C to +85° C		
Operating Temperature Range	-25° C to +85° C		
Lead Soldering Temperature	260° C ⁽¹⁾		
Reverse Voltage	30 V		
Continuous Forward Current	50 mA		
Power Dissipation	130 mW ⁽²⁾		

Notes:

1. Solder time less than 5 seconds at temperature extreme.
2. De-rate linearly at 2.17 mW/° C above 25° C.

Electrical Characteristics ($T_A = 25^\circ C$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
$E_{e(APT)}$	Apertured Radiant Incidence	0.5			mW/cm ²	$I_F = 20mA^{(3)}$
V_F	Forward Voltage		1.5		V	$I_F = 20mA$
I_R	Reverse Current		100		μA	$V_R = 2.0V$
λ_P	Peak Emission Wavelength	890			nm	$I_F = 10mA$
Θ_{HP}	Emission Angle at Half Power Points	100			Deg.	$I_F = 20mA$
t_r, t_f	Rise and Fall Time		500		ns	$I_{F(PEAK)} = 100mA, PW = 10\mu s, 10\% D.C.$

3. $E_{e(APT)}$ is a measurement of the apertured radiant incidence upon a sensing area 0.081" (2.06mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.590" (14.99mm) from the measurement surface. $E_{e(APT)}$ is not necessarily uniform within the measured area.

SMT Infrared LED

OP280

RECOMMENDED SOLDER PADS

