І НЕДЕЉА

Примитивна функција, Неодређени интеграл

Огњен • Fri Feb 09 2024

Започећемо теорију са дефиницијом примитивне функције.

Кликни на 📚 да би видео тачан одговор.

Често сам заборављао интервале у мојим дефиницијама функција. Хајде да то исправимо.

Примитивна функција

је нека функција ${\bf F}$ функције ${\bf f}$ на неком интервалу (коначном или бесконачном) (a, b), тако да важи:

$$F'(x) = f(x)$$

Теорема 1.1 A)
Ако је F примитивна функција функције f на неком интервалу l онда је и _____?

Интеграли

Ако је F произвољна примитивна функција функције f на интервалу (a, b), онда се

функције f, у ознаци:

$$\int f(x)d(x)$$

дефинише помоћу:

$$\int f(x)d(x) = F'(x) + C$$

$$C = const, a < x < b$$

дефиниција М

Скуп свих ____ функције f називамо _____?

За примитивну функцију F(x) функције f(x) на интервалу I, важи: $d\int f(x)d(x)= \underline{\hspace{1cm}}?$ $\left(\int f(x)d(x)\right)'= \underline{\hspace{1cm}}?$ $\int dF(x)= \underline{\hspace{1cm}}?$

І Табела основних неодређених интеграла

Овде сам навео оне које су тежи да се запамте.

$$\int \frac{dx}{1-x^2} = ?$$

$$\int \frac{dx}{\cos^2 x} = ?$$

$$\int \frac{dx}{\sin^2 x} = ?$$

$$\int \frac{dx}{x} = ?$$

$$\int a^x dx = ?$$

$$\int sh(x) dx = ?$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = ?$$

$$\int \frac{dx}{a^2 + x^2} = ?$$

$$\int \frac{dx}{\sqrt{x^2 \pm 1}} = ?$$

$$\int \frac{dx}{\sqrt{x^2 \pm a}} = ?$$

$$\int \frac{dx}{\sqrt{x^2 \pm a}} = ?$$

II Линеарност интеграла

₹ Теорема 1.3
Ако функције f и g имају примитивне функције на интервалу (a, b) тада и функција ______ важи једнакост _____?

III Смена променљиве

Ово је једна од оних теорема које се тешко памте јер покушавају да опишу практичну примену - смену.

Тако да док не провежбаш практично - неће ти бити лако запамтити:

* Теорема 1.4 Смена променљиве

Навести две врсте смене променљиве.

IV Метод парцијалне интеграције

Ово је можда "Тевенен" за интеграле, јер је толико моћнан метод.

Теорема 1.5 Правило парц. инт.

Ако су *и* и *v* ______ на интервалу I, тада _____?

Неки карактеристични примери примене методе парцијалне интеграције:

 $\int P_n(x)\{e^x, sinx, cosx\}dx \rightarrow ?$ $\int P_n(x)\{(lnx)^k, (arcsinx)^k, (arccosx)^k, (arctgx)^k\}dx \rightarrow ?$ $\int e^{ax}\{sin(bx), cos(bx)\}dx \rightarrow ?$

V Свођење квадратног тринома на канонски облик

Шта је уопште канонски облик?

У задацима користићемо канонски облик да би применили неку од основних формула интеграла.

Често ћемо добити интеграле за решавање које се на овај или онај начин замене у канонски облик.

Пример

$$\begin{aligned} ax^2 + bx + c \\ &= a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] \\ &= a \left[\left(x^2 + 2x \cdot \frac{b}{2a} + \frac{b^2}{4a^2} \right) - \frac{b^2}{4a^2} + \frac{c}{a} \right] \\ &= a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \right] \\ &= a \left[\left(x + \frac{b}{2a} \right)^2 + \frac{4ac - b^2}{4a^2} \right] \\ &= a \left[\left(x + \frac{b}{2a} \right)^2 + \frac{4ac - b^2}{4a^2} \right] \end{aligned}$$

Сменом $t = x + \frac{b}{2a}$,

добијамо облик квадратног тринома који се другачије назива **канонски облик**.

У скрипти су нам дати неки облици, али њих ћемо проћи кроз задатке.

Copyright © 2024 kodiranje.com - All rights reserved.