Grundbegriffe der Informatik Lösungsvorschläge Aufgabenblatt 8

Matr.nr.:					
Nachname:					
Vorname:					
Tutorium:	Nr.	Nr. Name des Tutors:			
Ausgabe:	11. Dezei	mber 20	13		
Abgabe: 20. Dezember 2013, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34 Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengetackert abgegeben werden.					
Vom Tutor au	ıszufüllen:				
erreichte Pu	nkte 				
Blatt 8:		/ 17			
Blätter 1 – 8	;	/ 148			

Aufgabe 8.1 (1+1+1+2=5 Punkte)

Es sei U = (V, E) ein ungerichteter Graph. Eine *Zusammenhangskomponente* von U ist ein Teilgraph Z' = (V', E') von U, der folgende Eigenschaften hat:

- Z' ist zusammenhängend.
- $E' = \{ \{x, y\} \in E \mid x, y \in V' \}.$
- Für keinen Knoten $v'' \in V \setminus V'$ gibt es einen zusammenhängenden Teilgraphen $Z'' = (V' \cup \{v''\}, E'')$ von U.
- a) Zeichnen Sie einen Graphen mit 5 Knoten, 4 Kanten und 2 Zusammenhangskomponenten.
- b) Zeichnen Sie einen Graphen mit 5 Knoten, 2 Kanten und 4 Zusammenhangskomponenten.
- c) Wieviele Zusammenhangskomponenten hat ein ungerichteter Graph U = (V, E) mindestens und wieviele hat er höchstens?
- d) Definieren Sie für alle $n \in \mathbb{N}_+$ ungerichtete Graphen $U_n^{\min} = (V_n^{\min}, E_n^{\min})$ und $U_n^{\max} = (V_n^{\max}, E_n^{\max})$, die die von Ihnen in Teilaufgabe c) behauptete minimale bzw. maximale Zahl von Zusammenhangskomponenten haben.

Lösung 8.1

a) 0 2 4

b) 0 2 4 1 1 3

- c) Ein ungerichteter Graph U=(V,E) hat mindestens 1 und höchstens |V| Zusammenhangskomponenten.
- d) $U_n^{\min} = (V_n^{\min}, E_n^{\min}) = (\mathbb{G}_n, \{\{x, y\} \mid x, y \in \mathbb{G}_n\})$ $U_n^{\max} = (V_n^{\max}, E_n^{\max}) = (\mathbb{G}_n, \{\})$

Aufgabe 8.2 (3 Punkte)

Es seien X und Y zwei Mengen und $f: X \to Y$ eine Abbildung. Auf X wird eine Relation $R \subseteq X \times X$ definiert als $R = \{(x_1, x_2) \mid x_1, x_2 \in X \land f(x_1) = f(x_2)\}$. Beweisen Sie, dass R eine Äquivalenzrelation ist.

Lösung 8.2

Reflexitvität: für alle $x \in X$ gilt: f(x) = f(x), also $(x, x) \in R$

Symmetrie: für alle $x_1, x_2 \in X$ gilt: Wenn $(x_1, x_2) \in R$ ist, dann ist $f(x_1) = f(x_2)$, also $f(x_2) = f(x_1)$, also $(x_2, x_1) \in R$

Transitivität: für alle $x_1, x_2, x_3 \in X$ gilt: Wenn $(x_1, x_2) \in R$ und $(x_2, x_3) \in R$, dann ist $f(x_1) = f(x_2)$ und $f(x_2) = f(x_3)$. Dann ist also auch $f(x_1) = f(x_3)$, also $(x_1, x_3) \in R$.

Aufgabe 8.3 (1+2+3=6 Punkte)

Es sei G = (V, E) ein gerichteter Graph. Für $v \in V$ sei $\hat{v} \subseteq V$ die Menge aller Knoten v', von denen ein Pfad zu v und zu denen ein Pfad von v führt. Der zu G gehörige Graph $\hat{G} = (\hat{V}, \hat{E})$ sei definiert durch:

- $\bullet \ \hat{V} = \{\hat{v} \mid v \in V\}$
- $\hat{E} = \{(\hat{x}, \hat{y}) \mid \hat{x}, \hat{y} \in \hat{V} \land \hat{x} \neq \hat{y} \land \exists x \in \hat{x} \exists y \in \hat{y} \colon (x, y) \in E\}$

Aufgaben:

- a) Zeichnen Sie den Graphen $H = (\mathbb{G}_7, E)$ mit $E = \{(0,1), (1,2), (2,0), (1,3), (3,4), (3,5), (4,5), (5,6), (6,5)\}.$
- b) Zeichnen Sie den zugehörigen Graphen \hat{H} ; geben Sie dabei für jeden Knoten von \hat{H} an, welche Knoten von H er enthält.
- c) Beweisen Sie, dass für jeden Graphen G der zugehörige Graph \hat{G} keinen einfachen Zyklus der Länge 2 enthält.

Lösung 8.3

- c) Das geht zum Beispiel mit einem Beweis durch Widerspruch:
 - Angenommen, \hat{G} enthielte doch einen einfachen Zyklus der Länge 2. Dann gäbe es in \hat{V} zwei *verschiedene* Knoten $\hat{x} \neq \hat{y}$ und die beiden Kanten (\hat{x}, \hat{y}) und (\hat{y}, \hat{x}) in \hat{E} .
 - Dann gäbe es nach Definition von \hat{E} aber Knoten $x \in \hat{x}$ und $y \in \hat{y}$ und die Kante $(x,y) \in E$, sowie Knoten $x' \in \hat{x}$ und $y' \in \hat{y}$ und die Kante $(y',x') \in E$.
 - Nach Definition von \hat{V} gäbe es in G einen Pfad p_x von x' nach x (weil beide im gleichen \hat{x} liegen) und einen Pfad p_y von y nach y' (weil beide im gleichen \hat{y} liegen).
 - Dann gäbe es aber auch einen Pfad von y nach x: Man benutzt erst den Pfad p_y , dann die Kante (y', x') und zuletzt den Pfad p_x .

- Also hätte man sowohl einen Pfad von x nach y als auch einen Pfad von y nach x und die beiden Knoten müssten in der *gleichen* Knotenmenge $\hat{x} = \hat{y}$ liegen
- im Widerspruch zur Annahme.

Aufgabe 8.4 (1+2=3 Punkte)

Gegeben sei der Graph $H = (\mathbb{G}_7, E)$ mit $E = \{(0,1), (1,2), (2,0), (3,4), (3,5), (4,5), (5,6), (6,3), (6,5)\}.$

- a) Geben Sie die Adjazenzmatrix des Graphen an.
- b) Geben Sie die Wegematrix des Graphen an.

Lösung 8.4

a) Adjazenzmatrix:

b) Wegematrix: