

Throughput Performance Benchmarking: Pre-Training Foundational Large Language Models on Kubernetes

Agenda

Intro

03

Benchmarking results

02

LLM training – a look under the hood

04

Demo

Ronen Dar

Co-Founder & CTO, Run:ai

- Lives near Tel Aviv, in Israel
- PhD & Postdoc in Information Theory, background in Chip Startups
- Since 2018, Co-Founder & CTO at Run:ai
- Run:ai Al Infrastructure Orchestration
 Platform

Certified for NVIDIA SuperPODs

Raz Rotenberg

Director of Engineering, Run:ai

- Lives near Tel Aviv, in Israel
- Engineering group responsible for advanced GPU provisioning capabilities in Kubernetes and LLM training and deployment
- Since 2018 with Run:ai

Blog

Introducing ChatGPT

We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests.

Try ChatGPT ↗

Read about ChatGPT Plus

November 30, 2022

Authors OpenAl ↓

Prompt Engineering (+RAG)

Fine Tuning

Training From Scratch

Why organizations fine-tune or train models from scratch?

Control training datasets

Adjust the model to specific use cases or to proprietary data

Reduce costs

Control IP

Why organizations fine-tune or train models from scratch?

Bad News

Training complexity has increased significantly in the LLM era

Good News

New tools and frameworks simplify and abstract that complexity

Explosive growth in model size

	Weights	Memory requirements for training	GPU requirement s for training
Llama-2 7b float32	~28GB	~98GB	4 GPUs (assuming 40GB GPU Memory)
Llama-2 13b float32	~52GB	~192GB	8 GPUs (assuming 40GB GPU Memory)
Llama-2 70b float32	~280GB	~1TB	32 GPUs (assuming 40GB GPU Memory)

	Weights	Memory requirements for training	GPU requirement s for training
Llama-2 7b float16	~14GB	~49GB	2 GPUs (assuming 40GB GPU Memory)
Llama-2 13b float16	~26GB	~96GB	4 GPUs (assuming 40GB GPU Memory)
Llama-2 70b float16	~140GB	~512GB	16 GPUs (assuming 40GB GPU Memory)

	Weights	Memory requirements for training	GPU requirement s for training
Llama-2 7b int8	~7GB	~25GB	1 GPUs (assuming 40GB GPU Memory)
Llama-2 13b int8	~13GB	~48GB	2 GPUs (assuming 40GB GPU Memory)
Llama-2 70b int8	~70GB	~256GB	8 GPUs (assuming 40GB GPU Memory)

 Quantization usually comes with a significant accuracy degradation Training with mixed 16/32 bit precision can keep reasonable tradeoff between accuracy and memory reduction

GPU 0

Parallelism strategies – Pipeline parallelism

Parallelism strategies – Tensor parallelism

More advanced parallelism strategies

Pipeline parallelism

Offloading memory to CPU

Model Parallelism

3D parallelism
Tensor + pipeline + data parallelism

Zero Redundancy Optimizer (ZeRO)

Fully Sharded Data Parallelism (FSDP) Parallelism Strategies for Distributed
Training
https://www.run.ai/blog/parallelism-strategies-for-distributed-training

Good news - full software stack for large scale training

Model-Specific Libraries

High-level Interface

Parallelism Libraries

Deep Learning Framework

Communication Backend

What it takes to train large models on shared AI clusters

From an organizational point of view

GPU Pooling + Schedulers

GPU Pooling – from siloed AI to collaborative efforts

Siloed ______
Infrastructure

Shared Clusters

On-Demand Compute

Reserved Clusters

Repurposing resources between different **teams**

Repurposing resources between different **teams**

Repurposing resources between different teams

Repurposing resources between different workloads

Repurposing resources between different workloads

run:

32

Higher Efficiency

Through sharing and repurposing resources

More GPU Accessibility

Users become more productive with easier access to more GPUs

Controls & Governance

Ability to align resources with business goals

Centralized Visibility

Better planning and decision making

Kubernetes as the orchestration layer

Training benchmarking

Infrastructure setup

- 4 x NVIDIA DGX A100-80GB Nodes, with a total of 32 x NVIDIA A100 Tensor
 Core GPUs
- 8 x 200 Gb HDR NVIDIA InfiniBand connectivity per node

Kubernetes with the following components

- NVIDIA GPU Operator
- NVIDIA Network Operator
- Kubeflow Training Operator

Training benchmarking: GPT-3 / 5B parameters

	1 Node (8 GPUs)	2 Nodes (16 GPUs)	4 Nodes (32 GPUs)
Bare metal (tokens / Sec)	48941	97541	185090
Kubernetes (tokens / Sec)	48131	95545	182791
Diff.	1.65%	2.05%	1.24%

Training benchmarking: GPT-3 / 5B parameters

Training benchmarking: GPT-3 / 126M parameters

	1 Node (8 GPUs)	2 Nodes (16 GPUs)	4 Nodes (32 GPUs)
Bare metal (tokens / Sec)	919803	1747626	3236345
Kubernetes (tokens / Sec)	894208	1724417	3268835
Diff.	2.78%	1.33%	1.00%

Training benchmarking: GPT-3 / 126M parameters

Good news - the software stack for large scale training

NVIDIA NeMo Megatron Launcher Run on Clusters **NVIDIA NeMo Megatron** Model Collection **NVIDIA NeMo Framework** Model-Specific Libraries Pytorch Lightning High-level Interface DeepSpeed FairScale Parallelism Libraries Pytorch Deep Learning Framework **NCCL** Gloo MPI Communication Backend

Bad News

Training complexity has increased significantly in the LLM era

Good News

New tools and platforms simplify and abstract that complexity

Visit us at Booth 1408

Parallelism Strategies for Distributed Training https://www.run.ai/blog/parallelism-strateg

Monday 10am

Accelerating AI Workflows on AI Data Center Infrastructure
Omri G. & Ersin Y. from Adobe

Tuesday 3pm

Throughput Performance Benchmarking: Pre-Training Foundational Large Language Models on Kubernetes **Ronen D. & Raz R.**

Wednesday 2pm

Accelerating AI Workflows on AI Data Center Infrastructure Ronen D. & Guy S.

On-Demand

Expert Perspectives on the Evolution of Al Infrastructure

Panel

On-Demand

Considerations for Choosing LLM Serving Technologies **Ekin K.**