MATH 20510 Lecture 20

May 9, 2025

Let $E \subseteq \mathbb{R}^n$ open, $V \subseteq \mathbb{R}^m$ open, and $T : E \to V$ be a C^1 function. Let ω be a k-form on V.

Notation. We say elements of E are $x \in E$ and elements of V are $y \in V$.

Then write $\omega = \sum_I b_I(y) dy$ in standard presentation.

$$T(x) = (t_1(x), \dots, t_m(x)) = (y_1, \dots, y_m) = y.$$

Then

$$dt_i = \sum_{j=1}^n (D_j t_i)(x) dx_j \qquad i \in [m].$$

Note. dt_i is a 1-form on E.

T will transform the k-form ω on E to a k-form ω_T on E. This is called the *pullback* form.

$$\omega_T(x) = \sum_I b_I(T(x)) dt_{i_1} \wedge dt_{i_2} \wedge \cdots \wedge dt_{i_k}.$$

Example 0.1. Let id $= T : \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto x = y$, and $\omega(y) = \sum b_I(y) dy_I$. Then $t_i(x) = x_i$ so $dt_i = dx_i$. Thus

$$\omega_T(x) = \sum_I b_I(T(x)) dx_{i_1} \wedge \cdots \wedge dx_{i_k}.$$

Example 0.2. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$, $(x_1, x_2) \mapsto (x_2, x_1^2, x_1 + x_2)$, and $\omega(y_1, y_2, y_3) = y_1 dy_2 \wedge dy_3$ is a 2-form on \mathbb{R}^3 . Then $dt_1 = dx_2$, $dt_2 = 2x_1 dx_1$, $dt_3 = dx_1 + dx_2$. Thus

$$\omega_T(x_1, x_2) = b_{\{2,3\}}(T(x_1, x_2))dt_2 \wedge dt_3$$

$$= x_2(2x_1dx_1) \wedge (dx_1 + dx_2)$$

$$= 2x_2x_1(dx_1 \wedge dx_1 + dx_1 \wedge dx_2)$$

$$= 2x_2x_1dx_1 \wedge dx_2.$$

Lemma 0.3. Let $f: V \to \mathbb{R}$ be a C^1 function and $f_T = f \circ T$. Then $d(f_T) = (df)_T$.

Proof.

$$d(f_T) = \sum_{j=1}^n D_j f_T dx_j$$

$$= \sum_{j=1}^n D_j (f \circ T) dx_j$$

$$= \sum_{i=1}^m \sum_{j=1}^n (D_i f)(T) \cdot (D_j t_i) dx_j$$

$$= \sum_{i=1}^m (D_i f)(T) dt_i$$

$$= (df)_T.$$

Theorem 0.4. Let ω be a k-form and λ be an l-form on V. Then

(i)
$$(\omega + \lambda)_T = \omega_T + \lambda_T$$
 if $k = l$.

(ii) $(\omega \wedge \lambda)_T = \omega_T \wedge \lambda_T$.

(iii) $d(\omega_T) = (d\omega)_T$ if ω is of class C^1 and T is of class C^2 .

(i) Proof.

$$(\omega + \lambda)_T = (\sum (b_I + c_I)dy_I)_T$$

$$= \sum (b_I + c_I)(T)dt_I$$

$$= \sum b_I(T)dt_I + \sum c_I(T)dt_I$$

$$= \omega_T +_T.$$

(ii) HW

(iii) Proof.

$$\omega = dy_I$$
$$= dy_{i_1} \wedge \dots \wedge dy_{i_k},$$

and

$$\omega_T = dt_{i_1} \wedge \cdots \wedge dt_{i_k}.$$

We have

$$d(\omega) = \sum d(b_I) \wedge dy_I$$
$$= 0.$$

Thus equivalently,

$$d(\omega)_T = \left(\sum d(b_I) \wedge dy_I\right)_T$$
$$= 0.$$

We will finish proof next lecture.