2022-2023 MP2I

7. Calcul d'intégrales et de primitives

Exercice 1. © Calculer les intégrales suivantes en reconnaissant l'intégrale d'une fonction de la forme $u'(t)F'(u(t)) = (F \circ u)'(t)$:

$$1) \int_0^3 te^{t^2} dt$$

2)
$$\int_0^1 t^3(t^4+1)^3 dt$$

3)
$$\int_{0_{\pi}}^{1} \frac{2 \arctan(t)}{1 + t^2} dt$$

$$4) \quad \int_{e}^{e^2} \frac{1}{t \ln(t)} dt$$

5)
$$\int_{0}^{\frac{1}{2}} \frac{t}{\sqrt{1-t^2}} dt$$

$$6) \quad \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{\tan(t)} dt$$

Exercice 2. (c) Calculer les intégrales suivantes en intégrant par parties :

$$I_1 = \int_0^\pi x^2 \cos(3x) dx, \ I_2 = \int_0^1 x \sqrt{1 - x} dx, \ I_3(x) = \int_0^x e^t \sin(2t) dt \ \text{et} \ I_4 = \int_1^2 x^4 \ln(x) dx$$

Exercice 3. © Calculer $\int_{\frac{1}{x}}^{x} \frac{\ln(t)}{1+t^2} dt$ pour tout $x \ge 1$ en posant $u = \frac{1}{t}$.

Exercice 4. (m) Calculer à l'aide d'un changement de variable les intégrales suivantes :

$$I_1 = \int_1^2 \cos(\ln(x)) dx$$
, $I_2 = \int_1^4 e^{-\sqrt{x}} dx$, $I_3 = \int_1^e \frac{1}{t(1+\ln(t))^3} dt$ et $I_4 = \int_0^{\ln(2)} \sqrt{e^{3x} + e^{2x}} dx$.

Exercice 5. (i) On pose $I = \int_0^{\frac{\pi}{4}} \ln(1+\tan(t))dt$. Déterminer I en posant $t = \frac{\pi}{4} - x$.

Exercice 6. (m) Calculer les primitives suivantes $\int_{-\infty}^{\infty} \cos^3(t) dt$, $\int_{-\infty}^{\infty} \sin^4(t) dt$ et $\int_{-\infty}^{\infty} \sin^2(t) \cos^2(t) dt$.

Exercice 7. (m) Calculer les intégrales $I = \int_0^\pi x \cos^2(x) dx$ et $J = \int_0^\pi x \sin^2(x) dx$.

Exercice 8. (i) Soit $f: \mathbb{R} \to \mathbb{R}$ continue et T > 0. Montrer que f est T-périodique si et seulement si la fonction $x \mapsto \int_{x}^{x+T} f(u)du$ est constante.

Exercice 9. $\boxed{\mathbf{m}}$ Soit $g: \mathbb{R} \to \mathbb{R}$ continue. On pose pour tout $x \in \mathbb{R}$, $f(x) = \int_0^x \sin(x-t)g(t)dt$. Montrer que f est bien définie, dérivable sur \mathbb{R} et que pour tout $x \in \mathbb{R}$, $f'(x) = \int_0^x \cos(x-t)g(t)dt$.

Exercice 10. © et $\widehat{\mathbf{i}}$ On pose $f(x) = \int_{x^2}^{x^3} \frac{1}{\ln(t)} dt$. Déterminer D_f , justifier la dérivabilité de f et déterminer sa dérivée et ses variations. En étudiant alors les variations de $t \mapsto \frac{1}{\ln(t)}$, déterminer les limites de f en 0 et en $+\infty$.

Exercice 11. (m) Pour $n \in \mathbb{N}^*$, on pose $f_n : x \mapsto x^n \ln(x)$. Justifier que f_n se prolonge par continuité sur [0,1] puis calculer $\int_0^1 f_n(x) dx$ et sa limite en l'infini.

Exercice 12. (m) Calculer les intégrales suivantes :

$$I_1 = \int_0^1 \frac{1}{x^2 + 2x + 1} dx, \ I_2 = \int_0^1 \frac{1}{x^2 + 3x + 2} dx, \ I_3 = \int_0^1 \frac{1}{x^2 + 2x + 4} dx \text{ et } I_4 = \int_0^1 \frac{2x + 3}{x^2 + 2x + 5} dx.$$

Exercice 13. (m) Déterminer les primitives
$$\int_{-\infty}^{\infty} \frac{1}{2t^2+t+1} dt$$
, $\int_{-\infty}^{\infty} \frac{t+1}{t^2-6t+10} dt$ et $\int_{-\infty}^{\infty} \frac{t+1}{t^2-3t+\frac{9}{2}} dt$.

Exercice 14. m Intégrales de Wallis. On pose pour $n \ge 0$, $I_n = \int_0^{\frac{\pi}{2}} \sin^n(\theta) d\theta$.

- 1) Justifier sans la calculer que la suite $(I_n)_{n\in\mathbb{N}}$ est bien définie, positive et décroissante.
- 2) Montrer à l'aide d'une intégration par parties que $\forall n \in \mathbb{N}, \ I_{n+2} = \frac{n+1}{n+2}I_n$.
- 3) Prouver que $\forall k \in \mathbb{N}, \ I_{2k} = \frac{(2k)!}{2^{2k}(k!)^2} \times \frac{\pi}{2}$. Déterminer une formule similaire pour I_{2k+1} .
- 4) Pour $n \in \mathbb{N}$, on pose $u_n = nI_n^2$.
 - a) Montrer que la suite $((n+1)I_nI_{n+1})_{n\in\mathbb{N}}$ est constante et déterminer la valeur de cette constante.
 - b) En utilisant alors la décroissance de $(I_n)_{n\in\mathbb{N}}$, montrer que $\forall n\in\mathbb{N}^*$, $\frac{n\pi}{2n+2}\leq u_n\leq\frac{\pi}{2}$ et en déduire $\lim_{n\to+\infty}u_n$.

Exercice 15. (m) Pour $p, q \in \mathbb{N}$, on pose $I_{p,q} = \int_0^1 x^p (1-x)^q dx$.

- 1) Montrer que $I_{p,q} = I_{q,p}$.
- 2) Montrer que si $p \ge 1$, alors $I_{p,q} = \frac{p}{q+1} I_{p-1,q+1}$.
- 3) En déduire $I_{p,q}$ en fonction de factorielles faisant intervenir p et q.

Exercice 16. (m) Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$.

- 1) Sans la calculer, montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est bien définie et tend vers 0.
- 2) Montrer que pour tout $n \in \mathbb{N}$, $I_n = \frac{1}{(n+1)!} + I_{n+1}$.
- 3) En déduire que $e = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!}$.

Exercice 17. (i) Soit $I_n = \int_0^1 \frac{x^n}{1+x} dx$ pour $n \in \mathbb{N}$.

- 1) Montrer que $\lim_{n\to+\infty} I_n = 0$.
- 2) Pour $n \in \mathbb{N}^*$, déterminer $I_{n-1} + I_n$ et en déduire $\lim_{n \to +\infty} \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$.