Multicast content distribution

TUDelft

1

Quality of Experience

TUDelft

2

QoE

ITU-T FG IPTV: Quality of Experience (QoE) refers to the overall acceptability of an application or service, as perceived subjectively by the user

3

QoE in perspective

Mean Opinion Score from 1(bad) to 5 (excellent)

End-to-end perceived service quality (MOS)

Terminal/content quality

Supported network QoS mechanisms

Terminal/content quality

_

Full-reference models

- Full-reference speech: PESQ ITU-T Rec. P.862
- Full-reference audio: PEAQ ITU-R BS.1387
- Excerpts of reference and test signal are aligned and compared
- Tool:
 - Peaqb

Where does toxicity happen?

Toxicity is a major issue especially in MOBAs

MOBA: Multiplayer Online Battle Arena

Highly strategic and very competitive 5vs5 matches with a strong emphasis on cooperative team play

9

TUDelft

How to detect it? [1]

- Analyze the content of text messages in MOBAs by Natural Language Processing (NLP)
- Ambiguity?

"you are noob"

toxic?

"sry, i am such noob - lol"

toxic?

Toxicity is not about saying bad words, it is about the context!

[1] M. Märtens, S. Shen, A. Iosup, and F.A. Kuipers, "Toxicity Detection in Multiplayer Online Games," Proc. of NetGames, 2015.

10

Any-Source Multicast (ASM)

- Multicast applications:
 - Movie-distribution, Pay-TV
 - Software updates, multicast file transfer
 - Video conference
- Multicast is receiver based (scales well):
 - new group members attach to the closest branch of the multicast tree
- IP multicast model: Host group model and Multicast routing protocol
 - IPv4 + Internet Group Management Protocol (IGMP)
 - IPv6 integrates Multicast Listener Discovery (MLD)

14

Internet Group Management Protocol (IGMP)

- Router periodically sends Membership Queries to obtain up-to-date information
- Can query "all systems" Multicast address (224.0.0.1, ff02::1) or query a specific group
- Hosts respond with Membership Report

グ **TU**Delft

17

Dense-Mode ASM

- Dense Mode (DVMRP, PIM-DM)
 - Reverse path forwarding (RPF):
 - When a multicast packet is received, denote source S and interface I
 - If I belongs to the shortest path towards S, forward to all interfaces except I, else refuse packet
 - RPF with pruning:
 - If there are no group members in a subtree, this subtree is cut off by sending a prune message to the previous hop router.

Sparse-Mode ASM

- Sparse Mode (CBT, PIM-SM)
 - Build tree starting from a core (=center of multicast group); the recipients send 'join/leave' messages to the core
 - Source sends unicast message to core
 - Core sends message to all group members

19

Disadvantages ASM

- Connection state scalability:
 - Entries for each multicast group
 - Huge multicast tables in backbone
- Source advertisement mechanism scalability:
 - Sparse Mode (CBT, PIM-SM): core node needs to be globally advertised
 - Dense Mode (DVMRP, PIM-DM): flood and prune mechanism

20

P2P network

- Distributed system consisting of interconnected nodes that are able to self-organize into an overlay network and adapt to changes
- Purpose: sharing resources (content, CPU, storage, ...)
- Interaction between peers, instead of client-server model

TUDelft

23

Down- and uploading in BT

- Content is separated into pieces ("chunks")
- Each piece is given a hash code for integrity
- Torrent file contains the hash codes of a file
- Distributed exchange process:
 - Selection strategy (which pieces first): rarest first
 - Fair mechanism between up- and downloading speed (tit-for-tat)

25

25

Application-Layer Multicast

End hosts perform the multicast function

26

TUDelft

27

SDN Multicast

IP multicast

- Poor scalability
 - Multicast tables
 - Communication between routers
- Security issues
- Difficult failure recovery

SDN multicast

- Centralized view, so easy to:
 - Compute efficient multicast trees
 - Recover from failures (to some extent)
 - Add security

2

TUDelft

Multicast in OpenFlow (OF)

- Requires outputting packet to multiple ports
- 2 methods:
 - Add multiple "Output" actions*
 - "All" group

* Not supported by all OF switches

29

29

Static Multicast (OF)

- Compute optimal tree(s) connecting source and destinations
 - Shortest Path Tree
 - Steiner Tree
- 2. Install trees

30

Dynamic Multicast (OF)

- Hosts can join, leave and create group at any time
- Construct trees on the fly
 - Add, remove, or edit flow entries where necessary

31

31

Content distribution networks

- Load balancers
- Localisation by
 - source IP: GeoDNS
 - anycast IP addresses
- Synchronization between nodes

TUDelft

Explicit connections

http://www.tudelft.nl

DNS(www.tudelft.nl) -> IP:131.180.77.102

TCP(131.180.77.102:80) -> 3-way handshake

HTTP(GET "/")

Explicit connection disables direct optimization for Content Distribution and DDoS prevention

Content-Based Security

Data packet is authenticated with a digital signature

50

TUDelft

Advantages

- Content goes only where there's interest
- It takes at most one trip across any link
- Average latency is minimized
- Total bandwidth is minimized
- There's no routing or control traffic associated with the replicas

5

TUDelft

New problems

- Cache eviction/replacement policies
- Longer evaluation times of packet header
- New forms of DDoS
 - PIT attacks

N.L.M. van Adrichem and F.A. Kuipers, "Globally Accessible Names in Named Data Networking," Proc. of the 2nd IEEE INFOCOM Workshop on Emerging Design Choices in Name-Oriented Networking (NOMEN 2013), Turin, Italy, April 19, 2013.

