Aim 2.2 & 2.3 — Urbanicity, Uninsurance, and Maternal Vaccination (Updated)

Ruiqi Li

2025-10-22

Contents

0.1	0. Import & normalize names	1
0.2	1) Build state–year outcomes (de-dup \rightarrow pivot)	2
0.3	2) Predictors: Uninsurance & NCHS	4
0.4	3) Merge \rightarrow state×year panel + harmonize years	5
0.5	4) Aim 2.2 — Between-state association (state means)	6
0.6	5) Aim 2.3 — TWFE with interaction (state & year FE)	6
0.7	6) Marginal effects of Uninsurance across rurality	7
0.8	6A) Observation scatter + linear fit grouped by NCHS (one sheet each for Flu/Tdap) $\ \ldots \ \ldots$	9
0.9	6B) Prediction line (TWFE model) \times NCHS facet $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	11
0.10	6C) Forecast heat map (Uninsurance \times NCHS \rightarrow Forecast coverage)	13
0.11	6D) Error bar graph of interactive "marginal effects"	16
0.12	6E) Coefficient plot	17
0.13	7) Robustness	19

0.1 0. Import & normalize names

```
vacc_path <- "vaccination.csv"
ins_path <- "insurance_summary_by_state_2012_2022.csv"
nchs_path <- "state_urban_index_2013_2023.csv"

vacc_raw <- readr::read_csv(vacc_path, show_col_types = FALSE)
ins_raw <- readr::read_csv(ins_path, show_col_types = FALSE)
nchs_raw <- readr::read_csv(nchs_path, show_col_types = FALSE)

norm_names <- function(df){
   nm <- names(df)
   nm <- gsub("[^A-Za-z0-9]+","_", nm)
   nm <- gsub("_+","_", nm)
   nm <- tolower(nm)</pre>
```

```
names(df) <- nm</pre>
}
vacc_raw <- norm_names(vacc_raw)</pre>
ins_raw <- norm_names(ins_raw)</pre>
nchs_raw <- norm_names(nchs_raw)</pre>
 vacc_cols = names(vacc_raw),
 ins_cols = names(ins_raw),
 nchs_cols = names(nchs_raw)
)
## $vacc_cols
## [1] "vaccine"
                                         "geography_type"
## [3] "geography"
                                         "survey_year_influenza_season"
                                         "dimension"
## [5] "dimension_type"
## [7] "estimate_"
                                         "x95 ci "
                                         "state"
## [9] "sample_size"
##
## $ins_cols
## [1] "year"
                    "state"
                                 "insured"
                                              "uninsured"
##
## $nchs_cols
## [1] "st_abbrev" "index2013" "index2023" "change"
```

0.2 1) Build state-year outcomes (de-dup \rightarrow pivot)

```
# Adaptive column name selector
pick_col <- function(nms, ...) {</pre>
  pats <- unlist(list(...))</pre>
  hits <- NULL
  for (p in pats) {
    idx <- grep(p, nms, ignore.case = TRUE, perl = TRUE)
    if (length(idx)) { hits <- idx[1]; break }</pre>
  }
  if (is.null(hits)) return(NA_character_)
  nms[hits]
nms <- names(vacc_raw)</pre>
              <- pick_col(nms, "^survey.*year", "influenza.*season", "^year$")</pre>
year_col
estimate_col <- pick_col(nms, "^estimate", "estimate.*percent", "value$")</pre>
sample_col <- pick_col(nms, "^sample.*size", "n$")</pre>
state_col <- pick_col(nms, "^state$", "state.*abbr", "location")</pre>
           <- pick_col(nms, "^vaccine$", "vax", "vaccine.*type")</pre>
vax_col
dimtype_col <- pick_col(nms, "^dimension.*type$", "dim.*type")</pre>
dim_col
             <- pick_col(nms, "^dimension$", "^dim$")</pre>
# Print the matching results to confirm the mapping.
```

```
cat("Mapped columns:\n",
    "year
              ->", year_col, "\n",
    "estimate ->", estimate_col, "\n",
    "sample ->", sample_col, "\n",
    "state
             ->", state_col, "\n",
    "vaccine ->", vax_col, "\n",
   "dim.type ->", dimtype_col, "\n",
    "dimension ->", dim col, "\n")
## Mapped columns:
## year
             -> survey_year_influenza_season
## estimate -> estimate_
## sample -> sample_size
## state
            -> state
## vaccine -> vaccine
## dim.type -> dimension_type
## dimension -> dimension
# Basic check: at least year / estimate / sample / state / vaccine
need <- c(year_col, estimate_col, sample_col, state_col, vax_col)</pre>
if (any(is.na(need))) {
  stop("vaccination.csv is missing key columns, please run `names(vacc raw)`
       first to see the actual column names and tell me the first 5 rows")
}
# Placed before the same code block: universal value/year conversion
num_any <- function(x) {</pre>
 if (is.numeric(x)) as.numeric(x) else
   readr::parse_number(as.character(x))
year_any <- function(x) {</pre>
  if (is.numeric(x)) as.integer(round(x)) else as.integer(readr::parse_number(as.character(x)))
# Construct vacc_overall (compatible character/numeric value
vacc_overall0 <- vacc_raw %>%
  transmute(
   state = toupper(.data[[state_col]]),
   year = year_any(.data[[year_col]]),
   vaccine = as.character(.data[[vax_col]]),
          = num_any(.data[[estimate_col]]),
          = num_any(.data[[sample_col]]),
   dimtype = if (!is.na(dimtype_col)) .data[[dimtype_col]] else NA_character_,
          = if (!is.na(dim_col))
                                   .data[[dim_col]]
                                                        else NA_character_
   dim
  )
# If Dimension column exists, filter Age: >=18 Years; otherwise skip filtering
if (!all(is.na(vacc_overall0$dimtype)) && !all(is.na(vacc_overall0$dim))) {
  vacc_overall <- vacc_overall0 %>%
    filter(dimtype %in% c("Age", "age"), dim %in% c(">=18 Years", ">= 18 Years"))
  if (nrow(vacc overall) == OL) {
   message("Age: >=18 Years not found in Dimension column,
            fallback to use unfiltered version")
```

```
vacc_overall <- vacc_overall0</pre>
  }
} else {
  message("Dimension column not detected, use the overall sample directly")
  vacc_overall <- vacc_overall0</pre>
# De-aggregation (preventing multiple rows of vaccines in the same state-year)
vacc_overall_dedup <- vacc_overall %>%
  group_by(state, year, vaccine) %>%
  summarise(
    est = if (all(is.na(n))) mean(est, na.rm = TRUE)
    else stats::weighted.mean(est, n, na.rm = TRUE),
    n = sum(n, na.rm = TRUE),
    .groups = "drop"
  )
# Map vaccine ID to flu/tdap
vacc_overall_dedup <- vacc_overall_dedup %>%
  mutate(vax = case_when(
    grepl("influenza|flu", vaccine, ignore.case = TRUE) ~ "flu",
    grepl("tdap",
                           vaccine, ignore.case = TRUE) ~ "tdap",
    TRUE ~ NA_character_
  )) %>%
  filter(!is.na(vax))
vacc_wide <- vacc_overall_dedup %>%
  select(state, year, vax, est, n) %>%
  tidyr::pivot_wider(names_from = vax, values_from = c(est, n), names_sep = "_") %>%
  dplyr::rename(
   vacc_flu_pct = est_flu,
    vacc_tdap_pct = est_tdap,
    n_flu
                 = n_flu,
    n_tdap
                  = n_tdap
  )
# quick look
print(head(vacc_wide, 5))
## # A tibble: 5 x 6
##
     state _year vacc_flu_pct vacc_tdap_pct n_flu n_tdap
                                    <dbl> <dbl> <dbl>
##
     <chr> <int>
                     <dbl>
                        49.2
## 1 AK
           2012
                                         NA 852
                                                      NΑ
## 2 AK
           2013
                        57.6
                                         NA 1240
                                                      NA
                                         NA 1145
## 3 AK
            2014
                        61.8
                                                      NA
                                         NA 1154
## 4 AK
            2015
                        56.7
                                                      NA
## 5 AK
            2016
                         57.4
                                         NA 1133
                                                      NA
```

0.3 2) Predictors: Uninsurance & NCHS

```
stopifnot(all(c("state","year","insured","uninsured") %in% names(ins_raw)))
ins <- ins raw %>%
 transmute(
   state = toupper(state),
   year = as.integer(year),
   insured = num(insured),
   uninsured = num(uninsured),
   uninsured_rate = uninsured / (insured + uninsured)
  )
stopifnot(all(c("st_abbrev","index2013","index2023","change") %in% names(nchs_raw)))
nchs <- nchs_raw %>%
 transmute(
   state = toupper(st_abbrev),
   nchs_2013 = num(index2013),
   nchs_2023 = num(index2023),
   nchs_change = num(change)
)
```

0.4 3) Merge \rightarrow state×year panel + harmonize years

```
dat <- vacc wide %>%
  inner_join(ins, by = c("state", "year")) %>%
  left_join(nchs, by = "state") %>%
 mutate(
   vacc_flu_pct = num(vacc_flu_pct),
   vacc_tdap_pct = num(vacc_tdap_pct),
             = num(n_flu),
   n flu
   n_{tdap}
                 = num(n_tdap)
  ) %>%
  arrange(state, year)
# keep years observed for BOTH vaccines to balance samples in Aim 2.3
years keep <- intersect(unique(dat$year[!is.na(dat$vacc flu pct)]),</pre>
                        unique(dat$year[!is.na(dat$vacc_tdap_pct)]))
dat <- dat %>% filter(year %in% years_keep)
summary(dat[,c("vacc_flu_pct","vacc_tdap_pct","uninsured_rate","nchs_2013")])
```

```
## vacc_flu_pct vacc_tdap_pct uninsured_rate nchs_2013
## Min. :23.4 Min. : 8.20 Min. :0.02530 Min. :1.000
## 1st Qu.:53.0 1st Qu.:62.50 1st Qu.:0.06785 1st Qu.:2.616
## Median :59.5 Median :74.90 Median :0.09817 Median :3.022
## Mean :59.4 Mean :68.47 Mean :0.10547 Mean :3.193
## 3rd Qu.:66.1 3rd Qu.:81.20 3rd Qu.:0.13198 3rd Qu.:3.937
## Max. :82.2 Max. :90.20 Max. :0.25953 Max. :4.989
##
```

	Flu mean \sim NCHS (between)	Tdap mean \sim NCHS (between)
(Intercept)	58.184	69.103
$nchs13_z$	$ \begin{array}{c} (1.346)[<0.001]\\ 0.681\\ (1.361)[0.619] \end{array} $	(2.630)[<0.001] 4.856 (2.889)[0.106]
Num.Obs. R2	46 0.006	26 0.105

0.5 4) Aim 2.2 — Between-state association (state means)

```
between_df <- dat %>%
  group_by(state) %>%
  summarise(
   vacc_flu_mean = wmean_safe(vacc_flu_pct, n_flu),
   vacc_tdap_mean = wmean_safe(vacc_tdap_pct, n_tdap),
                = dplyr::first(nchs_2013),
   nchs_2013
    .groups = "drop"
  ) %>%
 mutate(nchs13_z = as.numeric(scale(nchs_2013)))
m22_flu_between <- lm(vacc_flu_mean ~ nchs13_z, data = between_df)</pre>
m22_tdap_between <- lm(vacc_tdap_mean ~ nchs13_z, data = between_df)
modelsummary::msummary(
 list("Flu mean ~ NCHS (between)" = m22_flu_between,
      "Tdap mean ~ NCHS (between)" = m22 tdap between),
 statistic = "({std.error})[{p.value}]",
 gof_omit = "AIC|BIC|Log.Lik|F|Adj|RMSE"
```

0.6 5) Aim 2.3 — TWFE with interaction (state & year FE)

```
data = dat_flu,
 weights = ~ n_flu,
 cluster = ~ state
)
m23_tdap <- feols(</pre>
 vacc_tdap_pct ~ unins_z * nchs13_z | state + year,
 data = dat_tdap,
 weights = ~ n_tdap,
 cluster = ~ state
fixest::etable(
 m23_flu, m23_tdap,
 se = "cluster",
 dict = c(unins_z = "Uninsurance (z)",
         nchs13_z = "NCHS 2013 (z)",
         "unins_z:nchs13_z" = "Unins \times NCHS13"),
 title = "Aim 2.3 - TWFE with interaction (state & year FE; clustered SE by state)"
                        m23_flu
                                    m23_tdap
## Dependent Var.: vacc_flu_pct vacc_tdap_pct
## Uninsurance (z) 0.0271 (0.6218) 6.530* (2.431)
## Unins × NCHS13 0.6254 (0.4335) 1.242 (1.314)
## Fixed-Effects: -----
## state
                           Yes
                                         Yes
                           Yes
## year
## Observations
                           321
                                         151
## R2
                        0.93303
                                    0.97527
## Within R2
                       0.02077
                                    0.08689
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

0.7 6) Marginal effects of Uninsurance across rurality

```
me_table <- function(mod, dat0, title){
  b <- coef(mod)
  V <- vcov(mod)
  b1 <- b["unins_z"]
  b3 <- b["unins_z:nchs13_z"]
  V11 <- V["unins_z", "unins_z"]
  V33 <- V["unins_z:nchs13_z", "unins_z:nchs13_z"]
  V13 <- V["unins_z", "unins_z:nchs13_z"]

nchs_seq <- 1:6
  mu <- mean(dat0$nchs_2013, na.rm=TRUE)
  sdv <- sd(dat0$nchs_2013, na.rm=TRUE)</pre>
```

```
z <- (nchs_seq - mu)/sdv
  tibble(
    NCHS = nchs_seq,
    nchs13_z = z,
    marginal_effect = b1 + b3 * z,
    se = sqrt(V11 + (z^2)*V33 + 2*z*V13),
    lo95 = marginal_effect - 1.96*se,
    hi95 = marginal_effect + 1.96*se,
    model = title
  )
}
me_flu <- me_table(m23_flu, dat_flu, "Flu")</pre>
me_tdap <- me_table(m23_tdap, dat_tdap, "Tdap")</pre>
me_all <- dplyr::bind_rows(me_flu, me_tdap)</pre>
ggplot(me_all, aes(x = NCHS, y = marginal_effect, color = model)) +
  geom_line() + geom_point() +
  geom_ribbon(aes(ymin = lo95, ymax = hi95, fill = model), alpha = .15, color = NA) +
  labs(x = "NCHS (1 = urban \rightarrow 6 = rural)",
       y = "Marginal effect of Uninsurance on coverage (pp per 1 SD)",
       title = "Aim 2.3 - Interaction: Uninsurance × NCHS (marginal effects)") +
  theme_minimal()
```

Aim 2.3 – Interaction: Uninsurance × NCHS (marginal effects)

0.8 6A) Observation scatter + linear fit grouped by NCHS (one sheet each for Flu/Tdap)

Demonstrate the relationship between uninsurance and coverage under different rural levels in real observations. Point size = sample size

```
num_any <- function(x) if (is.numeric(x)) as.numeric(x) else readr::parse_number(as.character(x))</pre>
norm names <- function(df){</pre>
  nm <- names(df)
 nm <- gsub("[^A-Za-z0-9]+","_", nm); nm <- gsub("_+","_", nm); nm <- tolower(nm)
  names(df) <- nm; df</pre>
pick <- function(nm, cands){</pre>
  cand <- intersect(tolower(cands), nm);if (length(cand)) cand[1]</pre>
  else NA_character_ }
# Rebuild nchs_lookup from original NCHS CSV
nchs raw <- readr::read csv("state urban index 2013 2023.csv",
                             show_col_types = FALSE) |> norm_names()
cand_state <- c("st_abbrev","state","state_abbrev","state_abbreviation","st")</pre>
cand_2013 <- c("index2013","index_2013","nchs2013","nchs_2013","score2013")</pre>
cand 2023 <- c("index2023", "index 2023", "nchs2023", "nchs 2023", "score2023")
scol <- pick(names(nchs raw), cand state)</pre>
c13 <- pick(names(nchs_raw), cand_2013)</pre>
c23 <- pick(names(nchs_raw), cand_2023)
# If it stops here, it means that the column name in the file is not among the candidates, and the real
stopifnot(!is.na(scol), !is.na(c13), !is.na(c23))
nchs_lookup <- nchs_raw |>
  dplyr::transmute(
    state = toupper(.data[[scol]]),
    nchs_2013 = num_any(.data[[c13]]),
    nchs_2023 = num_any(.data[[c23]])
  dplyr::mutate(nchs_base = dplyr::coalesce(nchs_2013, nchs_2023))
# Use it to make a special panel for 6A drawing (no year intersection)
panel_plot <- vacc_wide %>%
  dplyr::inner_join(ins, by = c("state", "year")) %>%
  dplyr::left_join(nchs_lookup %>%
                     dplyr::select(state, nchs_2013, nchs_2023, nchs_base), by = "state") %>%
  dplyr::mutate(
    vacc_flu_pct = as.numeric(vacc_flu_pct),
    vacc_tdap_pct = as.numeric(vacc_tdap_pct),
    n_flu = as.numeric(n_flu),
    n_tdap
                 = as.numeric(n_tdap)
# plot
lab_nchs <- function(x) factor(x, levels = 1:6, labels = paste0("NCHS", 1:6))</pre>
```

```
panel_plot_grp <- panel_plot %>%
  dplyr::mutate(
    # Map continuous indices to 1..6, and truncate out-of-bounds indices to [1,6]
    nchs_grp = dplyr::case_when(
      is.na(nchs_base) ~ NA_integer_,
      TRUE ~ pmin(6L, pmax(1L, as.integer(round(nchs_base))))
    ),
    nchs_lab = lab_nchs(nchs_grp)
  )
flu_plot_df <- panel_plot_grp %>%
  dplyr::filter(!is.na(vacc_flu_pct),
                !is.na(uninsured_rate),
                !is.na(nchs_grp))
ggplot(flu_plot_df, aes(uninsured_rate, vacc_flu_pct, color = nchs_lab)) +
  geom_point(aes(size = n_flu), alpha = .35) +
  geom_smooth(method = "lm", se = FALSE) +
  scale_size_continuous(name = "Sample size") +
  scale_color_discrete(name = "Rurality") +
  labs(x = "Uninsurance rate", y = "Flu coverage (%)",
       title = "Observed scatter with OLS fits by NCHS (Flu)") +
  theme_minimal()
```

Observed scatter with OLS fits by NCHS (Flu)

Observed scatter with OLS fits by NCHS (Tdap)

0.9 6B) Prediction line (TWFE model) \times NCHS facet

Use the estimated model to draw "predicted coverage curves changing with the uninsured rate under different NCHS (1..6)"; and mutual confirmation with 6A's "observation + OLS"

```
# Generate prediction grid
mk_grid <- function(dat){
  g <- expand.grid(
    nchs_2013 = 1:6,
    uninsured_rate = seq(min(dat$uninsured_rate, na.rm=TRUE),</pre>
```

```
max(dat$uninsured_rate, na.rm=TRUE), length.out = 50),
    year = median(dat$year, na.rm=TRUE),
    state = dat$state[1]
  )
  g <- dplyr::mutate(</pre>
    nchs13_z = (nchs_2013 - mean(dat$nchs_2013, na.rm=TRUE))/sd(dat$nchs_2013, na.rm=TRUE),
    unins z = (uninsured rate - mean(dat$uninsured rate,
                                       na.rm=TRUE))/sd(dat$uninsured_rate, na.rm=TRUE)
 )
grid_flu <- mk_grid(dat_flu)</pre>
grid_flu$pred <- predict(m23_flu, newdata = grid_flu)</pre>
grid_tdap <- mk_grid(dat_tdap)</pre>
grid_tdap$pred <- predict(m23_tdap, newdata = grid_tdap)</pre>
# Faceted prediction line
ggplot(grid_flu, aes(uninsured_rate, pred)) +
 geom_line() +
 facet_wrap(~ nchs_2013, nrow = 2, labeller = label_both) +
 labs(x="Uninsurance rate", y="Predicted Flu coverage (%)",
       title="TWFE predicted lines by NCHS (Flu)") +
  theme minimal()
```

TWFE predicted lines by NCHS (Flu)

TWFE predicted lines by NCHS (Tdap)

0.10 6C) Forecast heat map (Uninsurance \times NCHS \rightarrow Forecast coverage)

Suitable for "global sense" display interaction: horizontal axis uninsured rate, vertical axis NCHS, color = predicted coverage.

```
unins_z = (uninsured_rate - mean(dat$uninsured_rate,
                                       na.rm=TRUE))/sd(dat$uninsured_rate, na.rm=TRUE)
 g$pred <- predict(mod, newdata = g)</pre>
heat flu <- mk heat(dat flu, m23 flu)
heat_tdap <- mk_heat(dat_tdap, m23_tdap)</pre>
# Discretize the continuous uninsurance into "grid strips" and take
# the average predicted value for each grid
# we can increase or decrease nbins to control the number of grids
nbins <- 12
bin_and_avg <- function(g){</pre>
  rng <- range(g$uninsured_rate, na.rm = TRUE)</pre>
  breaks <- seq(rng[1], rng[2], length.out = nbins + 1)</pre>
  g %>%
    dplyr::mutate(
     nchs_bin = factor(nchs_2013, levels = 1:6, labels = paste0("NCHS", 1:6)),
     unins_bin = cut(uninsured_rate, breaks = breaks, include.lowest = TRUE)
    ) %>%
    dplyr::group_by(nchs_bin, unins_bin) %>%
    dplyr::summarise(pred = mean(pred, na.rm = TRUE), .groups = "drop")
}
heat_flu_b <- bin_and_avg(heat_flu)</pre>
heat_tdap_b <- bin_and_avg(heat_tdap)</pre>
# heatmap
ggplot(heat_flu_b, aes(x = nchs_bin, y = unins_bin, fill = pred)) +
  geom_tile(color = "white", size = 0.6) + # Add white qrid lines
  scale_fill_gradient(low = "#f7fbff", high = "#08306b",
                      name = "Predicted coverage (%)") +
  labs(x="NCHS (1=urban → 6=rural)", y="Uninsurance (binned)",
       title="Predicted Flu coverage - binned heatmap") +
  coord_equal() +
  scale_fill_viridis_c(option = "magma", direction = -1, name = "Predicted (%)") +
  theme_minimal()
```

Predicted Flu coverage – binned heatmap

Predicted Tdap coverage – binned heatmap

0.11 6D) Error bar graph of interactive "marginal effects"

Also based on 6-step me_all, only changed to point + error bar style

Aim 2.3 – Marginal effects with 95% CI

0.12 6E) Coefficient plot

Draw the key coefficients (uninsz and uninsz:nchs13_z) as error bars to visually see the significance and direction.

coef_plot(m23_tdap, "TWFE coefficients (Tdap)")

0.13 7) Robustness

```
# Replace NCHS with 2023 index in interaction
m23_flu_2023 <- feols(vacc_flu_pct ~ unins_z * scale(nchs_2023)[,1] | state + year,
                     data = dat_flu, weights = ~ n_flu, cluster = ~ state)
m23_tdap_2023 <- feols(vacc_tdap_pct ~ unins_z * scale(nchs_2023)[,1] | state + year,
                     data = dat_tdap, weights = ~ n_tdap, cluster = ~ state)
fixest::etable(m23_flu_2023, m23_tdap_2023, se="cluster", title="Replace NCHS with 2023 index")
##
                                   m23_flu_2023 m23_tdap_2023
## Dependent Var.:
                                   vacc_flu_pct vacc_tdap_pct
##
                               0.0775 (0.6222) 5.868* (2.187)
## unins_z
## unins_z x scale(nchs_2023)[,1] 0.4636 (0.4114) 0.1392 (1.262)
## Fixed-Effects:
## state
                                            Yes
                                                          Yes
## year
                                            Yes
## S.E.: Clustered
                                    by: state by: state
## Observations
                                            321
                                                        151
## R2
                                        0.93249
                                                     0.97501
## Within R2
                                        0.01283
                                                      0.07757
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

```
# Unweighted versions
m23_flu_unw <- feols(vacc_flu_pct ~ unins_z * nchs13_z |</pre>
                     state + year, data = dat_flu, cluster = ~ state)
m23_tdap_unw <- feols(vacc_tdap_pct ~ unins_z * nchs13_z |</pre>
                     state + year, data = dat_tdap, cluster = ~ state)
fixest::etable(m23_flu_unw, m23_tdap_unw, se="cluster", title="Unweighted models")
##
                       m23_flu_unw m23_tdap_unw
## Dependent Var.:
                      vacc_flu_pct vacc_tdap_pct
                  -0.0496 (0.6224) 5.719* (2.538)
## unins z
## unins_z x nchs13_z 0.3875 (0.3731) 0.9742 (1.472)
## Fixed-Effects: -----
## state
                               Yes
## year
                               Yes
                                             Yes
## S.E.: Clustered by: state by: state
## Observations
                              321
                                        151
                                        0.97632
## R2
                           0.93006
## Within R2
                            0.00715
                                       0.07441
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```