QUANTUM INFORMATION & QUANTUM COMPUTATION

- A Quick Guide -

Huan Q. Bui

Colby College

PHYSICS & MATHEMATICS Statistics

Class of 2021

December 2, 2019

Preface

Greetings,

This guide is based on *Quantum Computer Science*, An Introduction by N. David Mermin, and *Quantum Computation and Quantum Information* by Isaac Chuang and Michael Nielsen.

The entire copy of this text can be found in Chapter 4 of *Quantum Theories*, A *Quick Guide to*. While this text fits under the more general title of *quantum theories*, the topics covered here are no longer physical phenomena as explained by quantum theories. Rather, we will pay much attention to what happens when computation and information theory meets a touch of quantumness. This guide thus deserves its status as a separate set of notes.

In any case, enjoy!

Contents

		Preface
1	The	Game 5
	1.1	Quantum computer
	1.2	Cbits & their states
	1.3	Reversible operations on Cbits
	1.4	Manipulating operations on Cbits
	1.5	Qbits & their states
	1.6	Reversible operations on Qbits
	1.7	Circuit diagrams
	1.8	Measurement gates and the Born rule
	1.9	The generalized Born rule
	1.10	Measurement gates and state preparation
	1.11	Constructing arbitrary 1- and 2-Qbit state
		Summary

4 CONTENTS

Part 1

The Game

1.1 Quantum computer

1.2 Cbits & their states

1.3 Reversible operations on Cbits

1.4 Manipulating operations on Cbits

1.5 Qbits & their states

1.6 Reversible operations on Qbits

1.7 Circuit diagrams

1.8 Measurement gates and the Born rule

1.9 The generalized Born rule

1.10 Measurement gates and state preparation

1.11 Constructing arbitrary 1- and 2-Qbit state

1.12. SUMMARY 17

1.12 Summary