Task - House Price Prediction

The **objective** of this project is to develop a **predictive model** that can **estimate the price of a house** based on various features such as square footage, number of bedrooms and bathrooms, location, condition, and other relevant attributes. The model will be trained using a dataset containing information about various houses and their corresponding prices. The goal is to develop a model that can accurately predict the price of a house based on the given features.

In [614... # Mounting the drive for uploading files
from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

Task 1: Reading and Understanding the Dataset

In [615... # Importing Libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.simplefilter('ignore') In [616... # Load & Read the dataset # house = pd.read_csv('home_data.csv') In [617... # Load & Read the dataset from the drive house = pd.read_csv('/content/drive/MyDrive/6. Machine Learning/Assignment - Linear Regression/Assignment - Linear Regression/home_data.csv In [618... # Check the details of dataset for 1st 10 rows house.head(10) Out[618...

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	•••	grade	sqft_above	sqft_basement
(7129300520	20141013T000000	221900	3	1.00	1180	5650	1.0	0	0		7	1180	0
	6414100192	20141209T000000	538000	3	2.25	2570	7242	2.0	0	0		7	2170	400
2	5631500400	20150225T000000	180000	2	1.00	770	10000	1.0	0	0		6	770	0
3	2487200875	20141209T000000	604000	4	3.00	1960	5000	1.0	0	0		7	1050	910
4	1954400510	20150218T000000	510000	3	2.00	1680	8080	1.0	0	0		8	1680	0
į	7237550310	20140512T000000	1225000	4	4.50	5420	101930	1.0	0	0		11	3890	1530
(1321400060	20140627T000000	257500	3	2.25	1715	6819	2.0	0	0		7	1715	0
7	2008000270	20150115T000000	291850	3	1.50	1060	9711	1.0	0	0		7	1060	0
8	2414600126	20150415T000000	229500	3	1.00	1780	7470	1.0	0	0		7	1050	730
9	3793500160	20150312T000000	323000	3	2.50	1890	6560	2.0	0	0		7	1890	0

10 rows × 21 columns

Task 2: Exploratory Data Analysis

- 1. Check the distribution of the target variable.
- 2. Check the distribution of the important numerical features.
- 3. Check the distribution of the important categorical features.
- 4. Check the correlation between the numerical features and the target variable.
- 5. Check the correlation between the categorical features and the target variable.

```
In [619... # Check the Rows and Columns of House dataframe
house.shape
```

Out[619... (21613, 21)

In [620... # List all the columns on House Dataframe

```
Index(['id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',
Out[620...
                   'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade',
                  'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode',
                  'lat', 'long', 'sqft_living15', 'sqft_lot15'],
                 dtype='object')
In [621...
          # Check for Null values
          house.isnull().sum()
Out[621...
                         0
                      id 0
                    date 0
                   price 0
               bedrooms 0
              bathrooms 0
              sqft_living 0
                 sqft_lot 0
                  floors 0
              waterfront 0
                   view 0
               condition 0
                  grade 0
              sqft_above 0
           sqft_basement 0
                 yr_built 0
            yr_renovated 0
                 zipcode 0
                     lat 0
                   long 0
            sqft_living15 0
               sqft_lot15 0
          dtype: int64
In [622...
          # Check for summary of House dataframe
          house.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 21613 entries, 0 to 21612
         Data columns (total 21 columns):
                             Non-Null Count Dtype
              Column
                              -----
                              21613 non-null int64
              id
              date
                              21613 non-null object
                              21613 non-null int64
              price
              bedrooms
                              21613 non-null int64
              bathrooms
                              21613 non-null float64
                              21613 non-null int64
              sqft_living
            sqft_lot
                              21613 non-null int64
          6
                              21613 non-null float64
              floors
              waterfront 21613 non-null int64
                    21613 non-null int64
              view

      10 condition
      21613 non-null int64

      11 grade
      21613 non-null int64

      12 sqft_above
      21613 non-null int64

          13 sqft_basement 21613 non-null int64
          14 yr_built 21613 non-null int64
          15 yr_renovated 21613 non-null int64
          16 zipcode 21613 non-null int64
                              21613 non-null float64
          17 lat
          18 long
                       21613 non-null float64
          19 sqft_living15 21613 non-null int64
          20 sqft_lot15 21613 non-null int64
         dtypes: float64(4), int64(16), object(1)
         memory usage: 3.5+ MB
In [623...
          # Check for any Duplicate Records
```

house.columns

house.duplicated().sum()

Check the statistical overview of numerical data In [624... house.describe() Out[624... id bedrooms sqft_living sqft_lot floors waterfront view condition price bathrooms **count** 2.161300e+04 2.161300e+04 21613.000000 21613.000000 21613.000000 2.1613.000000 21613.000000 21613.000000 21613.000000 21 **mean** 4.580302e+09 5.400881e+05 3.370842 2.114757 2079.899736 1.510697e+04 1.494309 0.007542 0.234303 3.409430 **std** 2.876566e+09 3.671272e+05 0.930062 0.770163 918.440897 4.142051e+04 0.539989 0.086517 0.766318 0.650743 0.000000 **min** 1.000102e+06 7.500000e+04 0.000000 290.000000 5.200000e+02 1.000000 0.000000 0.000000 1.000000 **25%** 2.123049e+09 3.219500e+05 1427.000000 5.040000e+03 0.000000 3.000000 3.000000 1.750000 1.000000 0.000000 **50%** 3.904930e+09 4.500000e+05 1910.000000 7.618000e+03 0.000000 3.000000 2.250000 1.500000 0.000000 3.000000 0.000000 **75%** 7.308900e+09 6.450000e+05 4.000000 2.500000 2550.000000 1.068800e+04 2.000000 0.000000 4.000000 8.000000 13540.000000 1.651359e+06 5.000000 max 9.900000e+09 7.700000e+06 33.000000 3.500000 1.000000 4.000000 In [625... # Check the statistical overview of categorical data house.describe(include='object') Out[625... date 21613 count unique 372 **top** 20140623T000000 freq 142 In [626... # Check the Value count of Date column house['date'].value_counts() Out[626... count date 20140623T000000 142 20140626T000000 131 20140625T000000 131 20140708T000000 127 20150427T000000 126 20150131T000000 1 20150117T000000 20150308T000000 20150515T000000 1 20140803T000000 $372 \text{ rows} \times 1 \text{ columns}$ dtype: int64 # Identifying Junk values in categorical column In [627... for i in house.select_dtypes(include=['object']).columns: print(i, house[i].value_counts) date <bound method IndexOpsMixin.value_counts of 0</pre> 20141013T000000 20141209T000000 1 2 20150225T000000 3 20141209T000000 4 20150218T000000 20140521T000000 21608 20150223T000000 21609 21610 20140623T000000 21611 20150116T000000 21612 20141015T000000 Name: date, Length: 21613, dtype: object>

Out[623...

np.int64(0)

```
In [628...
          # Trim last 7 values from categorical column
           house['date'] = house['date'].str[:-7]
In [629...
          # Check the Value count of Date column
           house['date'].value_counts()
Out[629...
                      count
                date
           20140623
                        142
           20140626
                        131
           20140625
                        131
           20140708
                        127
           20150427
                        126
           20150131
           20150117
           20150308
           20150515
           20140803
          372 rows × 1 columns
          dtype: int64
In [630...
           # Changing the date column from categorical to numerical
           house['date'] = pd.to_datetime(house['date'])
           # Check the data type of date column
In [631...
           house['date'].dtype
Out[631...
           dtype('<M8[ns]')</pre>
In [632...
           # Check the statistical overview of numerical data
           house.describe()
Out[632...
                                                          price
                            id
                                             date
                                                                    bedrooms
                                                                                 bathrooms
                                                                                               sqft_living
                                                                                                                sqft_lot
                                                                                                                               floors
                                                                                                                                        waterfront
                                                                                                                                                           vie
           count 2.161300e+04
                                            21613 2.161300e+04 21613.000000 21613.000000 2.1613.000000 2.1613.000000 2.1613.000000 21613.000000
                                       2014-10-29
                                                   5.400881e+05
                                                                     3.370842
                                                                                                                                          0.007542
           mean 4.580302e+09
                                                                                   2.114757
                                                                                             2079.899736 1.510697e+04
                                                                                                                            1.494309
                                                                                                                                                        0.23430
                                04:38:01.959931648
                                       2014-05-02
             min 1.000102e+06
                                                   7.500000e+04
                                                                     0.000000
                                                                                   0.000000
                                                                                               290.000000 5.200000e+02
                                                                                                                                          0.000000
                                                                                                                                                        0.00000
                                                                                                                            1.000000
                                          00:00:00
                                       2014-07-22
                                                   3.219500e+05
                                                                     3.000000
            25% 2.123049e+09
                                                                                   1.750000
                                                                                              1427.000000 5.040000e+03
                                                                                                                            1.000000
                                                                                                                                          0.000000
                                                                                                                                                        0.00000
                                          00:00:00
                                       2014-10-16
            50% 3.904930e+09
                                                   4.500000e+05
                                                                     3.000000
                                                                                   2.250000
                                                                                             1910.000000 7.618000e+03
                                                                                                                            1.500000
                                                                                                                                          0.000000
                                                                                                                                                        0.00000
                                          00:00:00
                                       2015-02-17
            75% 7.308900e+09
                                                   6.450000e+05
                                                                                             2550.000000 1.068800e+04
                                                                                                                            2.000000
                                                                                                                                                        0.00000
                                                                     4.000000
                                                                                   2.500000
                                                                                                                                          0.000000
                                          00:00:00
                                       2015-05-27 7.700000e+06
                                                                    33.000000
                                                                                   8.000000 13540.000000 1.651359e+06
            max 9.900000e+09
                                                                                                                            3.500000
                                                                                                                                          1.000000
                                                                                                                                                        4.00000
                                          00:00:00
                                             NaN 3.671272e+05
                                                                     0.930062
                                                                                              918.440897 4.142051e+04
             std 2.876566e+09
                                                                                   0.770163
                                                                                                                            0.539989
                                                                                                                                          0.086517
                                                                                                                                                        0.76631
          8 rows × 21 columns
In [633...
           # Removing time from date column
           house['date'] = house['date'].dt.date
           house.head()
```

··	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	 grade	sqft_above	sqft_basement	yr_built	yr_
(7129300520	2014- 10-13	221900	3	1.00	1180	5650	1.0	0	0	 7	1180	0	1955	
1	6414100192	2014- 12-09	538000	3	2.25	2570	7242	2.0	0	0	 7	2170	400	1951	
2	5631500400	2015- 02-25	180000	2	1.00	770	10000	1.0	0	0	 6	770	0	1933	
3	2487200875	2014- 12-09	604000	4	3.00	1960	5000	1.0	0	0	 7	1050	910	1965	
4	1954400510	2015- 02-18	510000	3	2.00	1680	8080	1.0	0	0	 8	1680	0	1987	

5 rows × 21 columns

Out[633...

Univariate Analysis - Target column (Price)

```
In [634... # Check the distribution of price column

plt.figure(figsize=(12, 5))
ax = sns.histplot(data=house, x='price', kde=True, bins = 30)
ax.lines[0].set_color('crimson')

plt.xlabel('Price')
```

Out[634... Text(0.5, 0, 'Price')

plt.show()


```
Univariate Analysis - Features column
In [635...
          house.columns
Out[635...
          Index(['id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',
                  'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade',
                  'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode',
                  'lat', 'long', 'sqft_living15', 'sqft_lot15'],
                 dtype='object')
In [636...
          # plot the distribution of all columns in subplots
          fig, axs = plt.subplots(6, 2, sharey=True)
          house.plot(kind='hist', y='bedrooms', ax=axs[0,0], figsize=(20, 25))
          house.plot(kind='hist', y='bathrooms', ax=axs[0,1])
          house.plot(kind='hist', y='sqft_living', ax=axs[1,0])
          house.plot(kind='hist', y='sqft_lot', ax=axs[1,1])
          house.plot(kind='hist', y='floors', ax=axs[2,0])
          house.plot(kind='hist', y='waterfront', ax=axs[2,1])
          house.plot(kind='hist', y='view', ax=axs[3,0])
          house.plot(kind='hist', y='condition', ax=axs[3,1])
          house.plot(kind='hist', y='grade', ax=axs[4,0])
          house.plot(kind='hist', y='sqft_above', ax=axs[4,1])
          house.plot(kind='hist', y='sqft_basement', ax=axs[5,0])
          house.plot(kind='hist', y='yr_built', ax=axs[5,1])
          #plt.tight_layout()
```



```
'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above',
                  'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long',
                  'sqft_living15', 'sqft_lot15'])
          target_cols
Out[638...
          Index(['price'], dtype='object')
In [639...
          # Dropping price and id column from num_cols
          feature_cols = num_cols.drop(['id', 'price'])
          feature_cols
          Index(['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors',
Out[639...
                  'waterfront', 'view', 'condition', 'grade', 'sqft_above',
                  'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long',
                  'sqft_living15', 'sqft_lot15'],
                 dtype='object')
In [640...
          # Check all the columns present in all the 3 variable
          feature_cols, target_cols, num_cols
          (Index(['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors',
Out[640...
                   'waterfront', 'view', 'condition', 'grade', 'sqft_above',
                   'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long',
                   'sqft_living15', 'sqft_lot15'],
                  dtype='object'),
            Index(['price'], dtype='object'),
            Index(['id', 'price', 'bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot',
                   'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above',
                   'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long',
                   'sqft_living15', 'sqft_lot15'],
                  dtype='object'))
In [641...
          # Plotting Histogram to check for the distibution of Target Column (Price)
          for i in target_cols:
            plt.figure(figsize=(12, 5))
            ax = sns.histplot(data=house, x=i, kde=True, bins = 30)
            ax.lines[0].set_color('crimson')
            plt.xlabel(i)
            plt.ylabel('Frequecy')
            plt.title(f'Distribution of {i}')
            plt.show()
```



```
In [642... # Plotting Histogram to check for the distibution of Numerical columns

for i in feature_cols:

   plt.figure(figsize=(12, 5))
   ax = sns.histplot(data=house, x=i, kde=True, bins = 30)
   ax.lines[0].set_color('crimson')

   plt.xlabel(i)
   plt.ylabel('Frequecy')
   plt.title(f'Distribution of {i}')
   plt.show()
```


bedrooms

Distribution of condition

Distribution of grade

yr_built

Distribution of zipcode

Distribution of lat

3000

SCATTER PLOT

```
In [644...
         # visualize the relationship between the features and the target using scatterplots
          fig, axs = plt.subplots(6, 2, sharey=True)
          house.plot(kind='scatter', x='bedrooms', y='price', ax=axs[0,0], figsize=(20, 25))
          house.plot(kind='scatter', x='bathrooms', y='price', ax=axs[0,1])
          house.plot(kind='scatter', x='floors', y='price', ax=axs[1,0])
          house.plot(kind='scatter', x='view', y='price', ax=axs[1,1])
          house.plot(kind='scatter', x='waterfront', y='price', ax=axs[2,0])
          house.plot(kind='scatter', x='grade', y='price', ax=axs[2,1])
          house.plot(kind='scatter', x='sqft_living', y='price', ax=axs[3,0])
          house.plot(kind='scatter', x='sqft_lot', y='price', ax=axs[3,1])
          house.plot(kind='scatter', x='sqft_above', y='price', ax=axs[4,0])
          house.plot(kind='scatter', x='condition', y='price', ax=axs[4,1])
          house.plot(kind='scatter', x='yr_built', y='price', ax=axs[5,0])
          house.plot(kind='scatter', x='yr_renovated', y='price', ax=axs[5,1])
          #plt.tight_layout()
          plt.show()
```


Sqft living and Sqft above shows clear Linear relationship

Check for Multi-Collinearity

```
In [645... # Check for Coorelation from house dataframe after dropping date column

cor = house.drop(['date','id'], axis=1).corr()
cor
```

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_basemen
price	1.000000	0.308350	0.525138	0.702035	0.089661	0.256794	0.266369	0.397293	0.036362	0.667434	0.605567	0.32381
bedroom	0.308350	1.000000	0.515884	0.576671	0.031703	0.175429	-0.006582	0.079532	0.028472	0.356967	0.477600	0.30309
bathroom	0.525138	0.515884	1.000000	0.754665	0.087740	0.500653	0.063744	0.187737	-0.124982	0.664983	0.685342	0.28377
sqft_living	0.702035	0.576671	0.754665	1.000000	0.172826	0.353949	0.103818	0.284611	-0.058753	0.762704	0.876597	0.43504
sqft_lo	t 0.089661	0.031703	0.087740	0.172826	1.000000	-0.005201	0.021604	0.074710	-0.008958	0.113621	0.183512	0.01528
floor	0.256794	0.175429	0.500653	0.353949	-0.005201	1.000000	0.023698	0.029444	-0.263768	0.458183	0.523885	-0.24570
waterfron	t 0.266369	-0.006582	0.063744	0.103818	0.021604	0.023698	1.000000	0.401857	0.016653	0.082775	0.072075	0.08058
viev	0.397293	0.079532	0.187737	0.284611	0.074710	0.029444	0.401857	1.000000	0.045990	0.251321	0.167649	0.27694
condition	0.036362	0.028472	-0.124982	-0.058753	-0.008958	-0.263768	0.016653	0.045990	1.000000	-0.144674	-0.158214	0.17410
grade	0.667434	0.356967	0.664983	0.762704	0.113621	0.458183	0.082775	0.251321	-0.144674	1.000000	0.755923	0.16839
sqft_above	0.605567	0.477600	0.685342	0.876597	0.183512	0.523885	0.072075	0.167649	-0.158214	0.755923	1.000000	-0.05194
sqft_basemen	t 0.323816	0.303093	0.283770	0.435043	0.015286	-0.245705	0.080588	0.276947	0.174105	0.168392	-0.051943	1.00000
yr_buil	t 0.054012	0.154178	0.506019	0.318049	0.053080	0.489319	-0.026161	-0.053440	-0.361417	0.446963	0.423898	-0.13312
yr_renovated	0.126434	0.018841	0.050739	0.055363	0.007644	0.006338	0.092885	0.103917	-0.060618	0.014414	0.023285	0.07132
zipcode	-0.053203	-0.152668	-0.203866	-0.199430	-0.129574	-0.059121	0.030285	0.084827	0.003026	-0.184862	-0.261190	0.07484
la	t 0.307003	-0.008931	0.024573	0.052529	-0.085683	0.049614	-0.014274	0.006157	-0.014941	0.114084	-0.000816	0.11053
long	0.021626	0.129473	0.223042	0.240223	0.229521	0.125419	-0.041910	-0.078400	-0.106500	0.198372	0.343803	-0.14476
sqft_living1	0.585379	0.391638	0.568634	0.756420	0.144608	0.279885	0.086463	0.280439	-0.092824	0.713202	0.731870	0.20035
sqft_lot1!	0.082447	0.029244	0.087175	0.183286	0.718557	-0.011269	0.030703	0.072575	-0.003406	0.119248	0.194050	0.01727

HEAT MAP

```
In [646... # Plot the Heat Map to visualize the correlation

plt.figure(figsize=(12, 8))
sns.heatmap(cor, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
plt.title("Feature Correlation Matrix")
plt.show()
```

Feature Correlation Matrix 1.0 price - 1.00 0.31 0.53 0.70 0.09 0.26 0.27 0.40 0.04 0.67 0.61 0.32 0.05 0.13 -0.05 0.31 0.02 0.59 0.08 bedrooms - 0.31 1.00 0.52 0.58 0.03 0.18 -0.01 0.08 0.03 0.36 0.48 0.30 0.15 0.02 -0.15 -0.01 0.13 0.39 0.03 0.09 0.50 0.06 0.19 -0.12 0.66 0.69 0.28 0.51 0.05 -0.20 0.02 0.22 0.57 0.09 bathrooms - 0.53 0.52 1.00 0.75 0.8 0.75 1.00 0.17 0.35 0.10 0.28 -0.06 0.76 0.88 0.44 0.32 0.06 -0.20 0.05 0.24 0.76 sqft living - 0.70 0.58 0.18 sqft_lot - 0.09 0.03 0.09 0.17 1.00 -0.01 0.02 0.07 -0.01 0.11 0.18 0.02 0.05 0.01 -0.13 -0.09 0.23 0.14 0.72 - 0.6 floors - 0.26 0.18 0.50 0.35 -0.01 1.00 0.02 0.03 -0.26 0.46 0.52 -0.25 0.49 0.01 -0.06 0.05 0.13 0.28 -0.01 waterfront - 0.27 -0.01 0.06 0.10 0.02 0.02 1.00 0.40 0.02 0.08 0.07 0.08 -0.03 0.09 0.03 -0.01 -0.04 0.09 0.03 - 0.4 view - 0.40 0.08 0.19 0.28 0.07 0.03 0.40 1.00 0.05 0.25 0.17 0.28 -0.05 0.10 0.08 0.01 -0.08 0.28 0.07 condition - 0.04 0.03 -0.12 -0.06 -0.01 -0.26 0.02 0.05 1.00 -0.14 -0.16 0.17 -0.36 -0.06 0.00 -0.01 -0.11 -0.09 -0.00 0.66 0.76 0.11 0.46 0.08 0.25 -0.14 1.00 0.76 0.17 0.45 0.01 -0.18 0.11 0.20 0.36 0.71 0.12 grade - 0.67 - 0.2 0.69 0.88 0.18 0.52 0.07 0.17 -0.16 0.76 1.00 -0.05 0.42 0.02 -0.26 -0.00 0.34 sqft above - 0.61 0.48 0.73 0.19 0.0 yr built - 0.05 0.15 0.51 0.32 0.05 0.49 -0.03 -0.05 -0.36 0.45 0.42 -0.13 1.00 -0.22 -0.35 -0.15 0.41 0.33 0.07 yr renovated - 0.13 0.02 0.05 0.06 0.01 0.01 0.09 0.10 -0.06 0.01 0.02 0.07 -0.22 1.00 0.06 0.03 -0.07 -0.00 0.01 zipcode --0.05 -0.15 -0.20 -0.20 -0.13 -0.06 0.03 0.08 0.00 -0.18 -0.26 0.07 -0.35 0.06 1.00 0.27 -0.56 -0.28 -0.15 -0.2lat - 0.31 -0.01 0.02 0.05 -0.09 0.05 -0.01 0.01 -0.01 0.11 -0.00 0.11 -0.15 0.03 0.27 1.00 -0.14 0.05 -0.09 long - 0.02 0.13 0.22 0.24 0.23 0.13 -0.04 -0.08 -0.11 0.20 0.34 -0.14 0.41 -0.07 -0.56 -0.14 1.00 0.33 0.25 -0.4sqft_living15 - 0.59 0.39 0.57 0.76 0.14 0.28 0.09 0.28 -0.09 0.71 0.73 0.20 0.33 -0.00 -0.28 0.05 0.33 1.00 0.18 sqft_lot15 - 0.08 0.03 0.09 0.18 0.72 -0.01 0.03 0.07 -0.00 0.12 0.19 0.02 0.07 0.01 -0.15 -0.09 0.25 0.18 1.00 grade zipcode long yr_built sqft_lot floors View sqft_above yr_renovated sqft_living15 sqft_lot15 waterfront sqft_basement lat bathrooms sqft_living price condition bedrooms

HEAT MAP to visualize the correlation matrix stored in the cor variable

- Dark Red: Indicates a strong positive correlation.
- Dark Blue: Indicates a strong negative correlation.
- Light Colors/White: Indicates a weak or no correlation

High Positive Correlation:

- 1. sqft_living and price: As the living area size increases, the price of the house tends to increase significantly
- 2. **grade** and **price**: higher-grade houses tend to be more expensive
- 3. bathrooms and sqft_living: Larger houses often have more bathrooms
- 4. sqft_living15 and sqft_living: houses in neighborhoods with larger houses tend to be larger themselves

High Negative Correlation:

- 1. **zipcode** and **price**: certain zip codes (potentially those further from city centers or with fewer amenities) might have lower average house prices
- 2. yr_built and condition: older houses might have slightly lower condition ratings on average

```
# Removing High positive correlated columns

house.drop([ 'grade', 'sqft_living15','sqft_above','sqft_lot15'], axis=1, inplace=True)

house.head()

id date price bedrooms bathrooms sqft_living sqft_lot floors waterfront view condition sqft_basement yr_built yr_renovated z

0 7129300520 2014-
10-13 221900 3 1.00 1180 5650 1.0 0 0 0 3 0 1955 0
```

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_basement	yr_built	yr_renovated	Z
0	7129300520	2014- 10-13	221900	3	1.00	1180	5650	1.0	0	0	3	0	1955	0	
1	6414100192	2014- 12-09	538000	3	2.25	2570	7242	2.0	0	0	3	400	1951	1991	
2	5631500400	2015- 02-25	180000	2	1.00	770	10000	1.0	0	0	3	0	1933	0	
3	2487200875	2014- 12-09	604000	4	3.00	1960	5000	1.0	0	0	5	910	1965	0	
4	1954400510	2015- 02-18	510000	3	2.00	1680	8080	1.0	0	0	3	0	1987	0	

Task 3: Feature Engineering

fig, axes = plt.subplots(figsize=(20, 12))

house.plot(kind = 'box', subplots = True, ax=axes, layout = (4, 4))

- 1. Check for missing values in the dataset.
- 2. Check for outliers in the dataset.
- 3. Encode the categorical features using one-hot encoding or label encoding.
- 4. Normalize the numerical features using standardization or min-max scaling.

```
In [648...
          # Check for missing values
          house.isnull().sum()
Out[648...
                         0
                     id 0
                   date 0
                   price 0
              bedrooms 0
              bathrooms 0
              sqft_living 0
                 sqft_lot 0
                  floors 0
              waterfront 0
                   view 0
               condition 0
          sqft_basement 0
                yr_built 0
            yr_renovated 0
                zipcode 0
                     lat 0
                   long 0
          dtype: int64
          house.columns
In [649...
          Index(['id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',
                  'sqft_lot', 'floors', 'waterfront', 'view', 'condition',
                  'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long'],
                 dtype='object')
          BOX PLOT
In [650...
          # Plot boxplot to check outliers for house
```


In [651... # Remove the Extreme Outliers from feature_col # Check if the column exists before processing it for i in feature_cols: if i in house.columns: # Add this condition to check column existence Q1 = house[i].quantile(0.25) Q3 = house[i].quantile(0.75) IQR = Q3 - Q1 $lower_bound = Q1 - (3 * IQR)$ upper_bound = Q3 + (3 * IQR)house = house[(house[i] >= lower_bound) & (house[i] <= upper_bound)]</pre> print(f"Column: {i}") print(f"Lower Bound: {lower_bound}") print(f"Upper Bound: {upper_bound}") print() else: print(f"Column '{i}' not found in the DataFrame. Skipping...")

Column: bedrooms Lower Bound: 0.0 Upper Bound: 7.0 Column: bathrooms Lower Bound: -0.5 Upper Bound: 4.75 Column: sqft_living Lower Bound: -1940.0 Upper Bound: 5900.0 Column: sqft_lot Lower Bound: -11640.0 Upper Bound: 27280.0 Column: floors Lower Bound: -2.0 Upper Bound: 5.0 Column: waterfront Lower Bound: 0.0 Upper Bound: 0.0 Column: view Lower Bound: 0.0 Upper Bound: 0.0 Column: condition Lower Bound: 0.0 Upper Bound: 7.0 Column 'grade' not found in the DataFrame. Skipping... Column 'sqft_above' not found in the DataFrame. Skipping... Column: sqft_basement Lower Bound: -1440.0 Upper Bound: 1920.0 Column: yr_built Lower Bound: 1810.0 Upper Bound: 2139.0 Column: yr_renovated Lower Bound: 0.0 Upper Bound: 0.0 Column: zipcode Lower Bound: 97778.0 Upper Bound: 98373.0 Column: lat Lower Bound: 46.8343 Upper Bound: 48.314800000000005 Column: long Lower Bound: -122.88600000000002 Upper Bound: -121.5839999999997 Column 'sqft_living15' not found in the DataFrame. Skipping... Column 'sqft_lot15' not found in the DataFrame. Skipping...

In [652...

Out[652...

house.drop(['id'], axis=1).describe()

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_basement	yr_k
count	1.724800e+04	17248.000000	17248.000000	17248.000000	17248.000000	17248.000000	17248.0	17248.0	17248.000000	17248.000000	17248.000
mean	4.763775e+05	3.318356	2.033598	1923.276612	7631.438022	1.487477	0.0	0.0	3.409845	241.613057	1972.130
std	2.579085e+05	0.870088	0.711685	759.848707	4239.941127	0.544894	0.0	0.0	0.651646	380.169127	29.460
min	7.800000e+04	0.000000	0.000000	290.000000	520.000000	1.000000	0.0	0.0	1.000000	0.000000	1900.000
25%	3.044750e+05	3.000000	1.500000	1360.000000	4887.750000	1.000000	0.0	0.0	3.000000	0.000000	1953.000
50%	4.200000e+05	3.000000	2.000000	1800.000000	7220.000000	1.000000	0.0	0.0	3.000000	0.000000	1976.000
75%	5.780000e+05	4.000000	2.500000	2360.000000	9516.250000	2.000000	0.0	0.0	4.000000	460.000000	1999.000
max	3.000000e+06	7.000000	4.750000	5840.000000	27251.000000	3.500000	0.0	0.0	5.000000	1870.000000	2015.000

Removing more columns In [653...

> house.drop(['waterfront', 'view', 'yr_renovated'], axis=1, inplace=True) house.head()

```
2014-
           0 7129300520
                                   221900
                                                    3
                                                              1.00
                                                                         1180
                                                                                 5650
                                                                                          1.0
                                                                                                       3
                                                                                                                      0
                                                                                                                            1955
                                                                                                                                    98178 47.5112 -122.257
                             10-13
                             2015-
                                                                                                                                    98028 47.7379 -122.233
           2 5631500400
                                   180000
                                                    2
                                                              1.00
                                                                         770
                                                                                 10000
                                                                                                                      0
                                                                                                                            1933
                                                                                          1.0
                                                                                                       3
                             02-25
                             2014-
                                   604000
           3 2487200875
                                                              3.00
                                                                                                       5
                                                                                                                    910
                                                                                                                            1965
                                                                                                                                    98136 47.5208 -122.393
                                                                         1960
                                                                                 5000
                                                                                          1.0
                             12-09
                             2015-
             1954400510
                                   510000
                                                              2.00
                                                                         1680
                                                                                 8080
                                                                                          1.0
                                                                                                                      0
                                                                                                                            1987
                                                                                                                                    98074 47.6168 -122.045
                             02-18
                             2014-
                                                    3
           6 1321400060
                                                              2.25
                                                                         1715
                                                                                                       3
                                                                                                                      0
                                                                                                                            1995
                                                                                                                                    98003 47.3097 -122.327
                                   257500
                                                                                 6819
                                                                                          2.0
                             06-27
           # Plot boxplot to check outliers for house
In [654...
           fig, axes = plt.subplots(figsize=(20, 12))
           house.drop(['id'], axis=1).plot(kind = 'box', subplots = True, ax=axes, layout = (4, 4))
           plt.show()
           3.0
                                                                                                          8
                                                   6
                                                                                                                            5000
           2.5
                                                                                                                            4000
           2.0
           1.5
                                                                                                                            3000
           1.0
                                                   2
                                                                                                                            2000
           0.5
                                                                                                                            1000
            0.0
                                                                                                       bathrooms
                                                                                                                                             sqft_living
                             price
                                                                 bedrooms
                                                 3.5
         25000
                                                 3.0
         20000
                                                 2.5
         15000
                                                                                                                            1000
                                                 2.0
          10000
                                                                                                                             500
                                                 1.5
          5000
                                                 1.0
             0
                            sqft_lot
                                                                   floors
                                                                                                       condition
                                                                                                                                            sqft_basement
          2020
                                                98200
          2000
                                                                                       47.7
                                                                                                                           -121.8
                                                98150
                                                                                       47.6
          1980
                                                                                                                           -122.0
                                                                                       47.5
          1960
                                               98100
                                                                                       47.4
                                                                                                                           -122.2
          1940
                                               98050
                                                                                       47.3
          1920
                                                                                                                           -122.4
                                                                                       47.2
          1900
                                                98000
                            yr_built
                                                                  zipcode
                                                                                                                                               long
In [654...
In [655..
           house.columns
Out[655...
           Index(['id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',
                   'sqft_lot', 'floors', 'condition', 'sqft_basement', 'yr_built',
                   'zipcode', 'lat', 'long'],
                  dtype='object')
In [656...
           house.info()
          <class 'pandas.core.frame.DataFrame'>
          Index: 17248 entries, 0 to 21612
          Data columns (total 14 columns):
               Column
                               Non-Null Count Dtype
                               -----
               id
                               17248 non-null int64
                               17248 non-null object
           2
               price
                               17248 non-null int64
               bedrooms
                               17248 non-null int64
               bathrooms
                               17248 non-null float64
               sqft_living 17248 non-null int64
                               17248 non-null int64
           6
              sqft_lot
                               17248 non-null float64
              floors
           7
           8 condition
                               17248 non-null int64
               sqft_basement 17248 non-null int64
                               17248 non-null int64
           10 yr_built
                               17248 non-null int64
           11 zipcode
          12 lat
                               17248 non-null float64
          13 long
                               17248 non-null float64
          dtypes: float64(4), int64(9), object(1)
          memory usage: 2.5+ MB
```

price bedrooms bathrooms sqft_living sqft_lot floors condition sqft_basement yr_built zipcode

long

LABEL ENCODING

In [657...

Out[653...

date

```
le = LabelEncoder()
           house['date'] = le.fit_transform(house['date'])
          house.head()
In [658...
Out[658...
                      id date
                                 price bedrooms bathrooms sqft_living sqft_lot floors condition sqft_basement yr_built zipcode
                                                                                                                                        lat
                                                                                                                                                long
           0 7129300520
                          163 221900
                                                                            5650
                                                                                                 3
                                                                                                               0
                                                                                                                     1955
                                                         1.00
                                                                    1180
                                                                                     1.0
                                                                                                                             98178 47.5112 -122.257
           2 5631500400
                           287 180000
                                                2
                                                         1.00
                                                                           10000
                                                                                     1.0
                                                                                                 3
                                                                                                               0
                                                                                                                     1933
                                                                                                                             98028 47.7379 -122.233
                                                                    770
                                                                                                 5
           3 2487200875
                          218 604000
                                                4
                                                         3.00
                                                                    1960
                                                                            5000
                                                                                     1.0
                                                                                                              910
                                                                                                                     1965
                                                                                                                             98136 47.5208 -122.393
           4 1954400510
                           280 510000
                                                         2.00
                                                                    1680
                                                                            8080
                                                                                                 3
                                                                                                               0
                                                                                                                     1987
                                                                                                                             98074 47.6168 -122.045
                                                                                     1.0
                                                                                                 3
                                                3
                                                                                                                             98003 47.3097 -122.327
           6 1321400060
                            56 257500
                                                         2.25
                                                                    1715
                                                                            6819
                                                                                     2.0
                                                                                                               0
                                                                                                                     1995
In [659...
           # Function for putting a cap value on each of the selected column to REMOVE the Outliers
           def cap_outliers(data, col_name):
             for i in col_name:
               Q1 = data[i].quantile(0.25)
               Q3 = data[i].quantile(0.75)
               IQR = Q3 - Q1
               lower_bound = Q1 - (1.5 * IQR)
               upper_bound = Q3 + (1.5 * IQR)
               print(f"Column: {i}")
               print(f"Lower Bound: {lower_bound}")
               print(f"Upper Bound: {upper_bound}")
               data[i] = np.where(data[i] < lower_bound, lower_bound, data[i])</pre>
               data[i] = np.where(data[i] > upper_bound, upper_bound, data[i])
             return data
In [660...
           house.columns
           Index(['id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',
Out[660...
                  'sqft_lot', 'floors', 'condition', 'sqft_basement', 'yr_built',
'zipcode', 'lat', 'long'],
                 dtype='object')
In [661...
          # Setting the cap value as defined in the Function
           house = cap_outliers(house, col_name=['price'])
         Column: price
         Lower Bound: -105812.5
         Upper Bound: 988287.5
          house = cap_outliers(house, col_name=['bedrooms'])
In [662...
           house = cap_outliers(house, col_name=['bathrooms'])
           house = cap_outliers(house, col_name=['sqft_living'])
           house = cap_outliers(house, col_name=['sqft_lot'])
           house = cap_outliers(house, col_name=['floors'])
           house = cap_outliers(house, col_name=['condition'])
           house = cap_outliers(house, col_name=['sqft_basement'])
           house = cap_outliers(house, col_name=['yr_built'])
           house = cap_outliers(house, col_name=['zipcode'])
           house = cap_outliers(house, col_name=['lat'])
           house = cap_outliers(house, col_name=['long'])
```

Column: bedrooms Lower Bound: 1.5 Upper Bound: 5.5 Column: bathrooms Lower Bound: 0.0 Upper Bound: 4.0 Column: sqft_living Lower Bound: -140.0 Upper Bound: 3860.0 Column: sqft_lot Lower Bound: -2055.0 Upper Bound: 16459.0 Column: floors Lower Bound: -0.5 Upper Bound: 3.5 Column: condition Lower Bound: 1.5 Upper Bound: 5.5 Column: sqft_basement Lower Bound: -690.0 Upper Bound: 1150.0 Column: yr_built Lower Bound: 1884.0 Upper Bound: 2068.0 Column: zipcode Lower Bound: 97905.5 Upper Bound: 98245.5 Column: lat Lower Bound: 47.15145 Upper Bound: 47.99745 Column: long Lower Bound: -122.6079999999998

Upper Bound: -121.864

In [663... # Recheck for removal of Extreme Outliers from Price sns.boxplot(house['price'])

Out[663... <Axes: ylabel='price'>


```
In [664...
          # Plot boxplot to check outliers for house
          fig, axes = plt.subplots(figsize=(20, 12))
          house.drop(['id'], axis=1).plot(kind = 'box', subplots = True, ax=axes, layout = (4, 4))
```


Feature Scaling - Normalization

```
In [665... # We use the min-max scaler from sklearn library from sklearn.preprocessing import MinMaxScaler

In [666... house.columns
```

In [667... house.head()

Out[667... price bedrooms bathrooms sqft_living sqft_lot floors condition sqft_basement yr_built zipcode id date lat long **0** 7129300520 1.00 163 221900.0 3.0 1180.0 5650.0 1.0 3.0 0.0 1955.0 98178.0 47.5112 -122.257 98028.0 47.7379 -122.233 **2** 5631500400 287 180000.0 2.0 1.00 770.0 10000.0 1.0 3.0 0.0 1933.0 5000.0 910.0 2487200875 218 604000.0 4.0 3.00 1960.0 1.0 5.0 1965.0 98136.0 47.5208 -122.393 98074.0 47.6168 1954400510 280 510000.0 3.0 2.00 1680.0 8080.0 1.0 3.0 0.0 1987.0 -122.045 56 257500.0 3.0 2.25 98003.0 47.3097 -122.327 **6** 1321400060 1715.0 6819.0 2.0 3.0 0.0 1995.0

In [669... # Check for data in copy dataframe

house_copy.head()

Out[669... id date price bedrooms bathrooms sqft_living sqft_lot floors condition sqft_basement yr_built zipcode lat long 1955.0 98178.0 47.5112 -122.257 **0** 7129300520 163 221900.0 3.0 1.00 1180.0 5650.0 1.0 3.0 **2** 5631500400 287 180000.0 1.00 770.0 10000.0 1.0 1933.0 98028.0 47.7379 -122.233 2.0 3.0 218 604000.0 **3** 2487200875 4.0 3.00 1960.0 5000.0 1.0 5.0 910.0 1965.0 98136.0 47.5208 -122.393 8080.0 280 510000.0 3.0 2.00 1680.0 1.0 3.0 1987.0 98074.0 47.6168 -122.045 **4** 1954400510 **6** 1321400060 56 257500.0 3.0 2.25 1715.0 6819.0 2.0 3.0 1995.0 98003.0 47.3097 -122.327

Out[670...

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition	sqft_basement	yr_built	zipcode	lat	long
0 712930	00520	0.442935	221900.0	0.375	1.00	0.249300	0.321852	0.0	0.428571	0.000000	0.478261	0.893939	0.571498	0.390698
2 563150	00400	0.779891	180000.0	0.125	1.00	0.134454	0.594768	0.0	0.428571	0.000000	0.286957	0.136364	0.936143	0.427907
3 248720	00875	0.592391	604000.0	0.625	3.00	0.467787	0.281072	0.0	1.000000	0.791304	0.565217	0.681818	0.586939	0.179845
4 195440	00510	0.760870	510000.0	0.375	2.00	0.389356	0.474308	0.0	0.428571	0.000000	0.756522	0.368687	0.741354	0.719380
6 132140	00060	0.152174	257500.0	0.375	2.25	0.399160	0.395194	0.4	0.428571	0.000000	0.826087	0.010101	0.247386	0.282171

Task 4: Feature Selection

- 1. Plot the correlation matrix to identify the most important features.
- 2. Check for multicollinearity using Heatmap.

plt.show()

```
# Compute correlation matrix
In [671...
         corr_matrix = house_copy.drop(['id'], axis=1).corr()
         # Display the correlation matrix
         print(corr_matrix)
                                   price bedrooms bathrooms sqft_living sqft_lot \
                          date
        date
                      1.000000 -0.001624 -0.012635 -0.032225
                                                               -0.028100 -0.006349
                     -0.001624 1.000000 0.333075 0.467094
        price
                                                                0.639294 0.029835
        bedrooms
                     -0.012635 0.333075 1.000000
                                                   0.506960
                                                                0.638575 0.212007
                     -0.032225 0.467094 0.506960
        bathrooms
                                                   1.000000
                                                                0.725537 0.000744
        sqft_living -0.028100 0.639294 0.638575
                                                   0.725537
                                                                1.000000 0.238859
        sqft_lot
                     -0.006349 0.029835 0.212007 0.000744
                                                                0.238859 1.000000
                     -0.022759 0.299057 0.170620 0.531538
        floors
                                                                0.368306 -0.325135
        condition
                     -0.051124 0.045112 0.028241 -0.149902
                                                               -0.077118 0.112773
        sqft basement -0.009781 0.203741 0.270634
                                                   0.190282
                                                                0.319062 0.075272
        yr_built
                     -0.007652 0.080699 0.183541
                                                   0.589167
                                                                0.375901 -0.052221
        zipcode
                      0.003021 -0.049336 -0.188497 -0.239802
                                                               -0.235984 -0.274852
        lat
                     -0.038159  0.456125  -0.042001  -0.007377
                                                                0.024735 -0.127917
        long
                     -0.010570 0.080925 0.178288
                                                   0.279763
                                                                0.296932 0.270244
                        floors condition sqft_basement yr_built zipcode \
        date
                     -0.022759 -0.051124
                                           -0.009781 -0.007652 0.003021
                                               0.203741 0.080699 -0.049336
        price
                      0.299057
                               0.045112
                      0.170620 0.028241
        bedrooms
                                               0.270634 0.183541 -0.188497
                                               0.190282 0.589167 -0.239802
        bathrooms
                      0.531538 -0.149902
        sqft_living
                      0.368306 -0.077118
                                               0.319062 0.375901 -0.235984
        sqft_lot
                     -0.325135 0.112773
                                               0.075272 -0.052221 -0.274852
                      1.000000 -0.291333
                                              -0.296719 0.547376 -0.066824
        floors
        condition
                     -0.291333 1.000000
                                              0.196377 -0.398189 -0.000935
        sqft_basement -0.296719 0.196377
                                              1.000000 -0.167138 0.096156
        yr_built
                      0.547376 -0.398189
                                              -0.167138 1.000000 -0.339418
        zipcode
                      -0.066824 -0.000935
                                              0.096156 -0.339418 1.000000
                                0.000687
                                              0.129798 -0.163547 0.290137
        lat
                      0.031744
        long
                      0.147088 -0.109397
                                              -0.176022 0.424106 -0.569046
                           lat
                                    long
                     -0.038159 -0.010570
        date
        price
                      0.456125 0.080925
        bedrooms
                     -0.042001 0.178288
                     -0.007377 0.279763
        bathrooms
        sqft_living
                      0.024735 0.296932
        sqft_lot -0.127917 0.270244
                    0.031744 0.147088
        floors
        condition
                     0.000687 -0.109397
        sqft_basement 0.129798 -0.176022
        yr_built
                   -0.163547 0.424106
        zipcode
                     0.290137 -0.569046
        lat
                      1.000000 -0.150895
                     -0.150895 1.000000
        long
         # Visualize the correlation using Heatmap
         plt.figure(figsize=(12, 8))
         sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
          plt.title("Feature Correlation Matrix")
```


Very high Positive Collinearity features had already been removed

```
In [673... # Check for rows and columns
house.shape, house_copy.shape
Out[673... ((17248, 14), (17248, 14))
```

Task 5: Model Building

- 1. Split the dataset into training and testing sets.
- 2. Train a regression model on the training set.

((12073, 13), (12073,), (5175, 13), (5175,))

LINEAR REGRESSION

Splitting dataset

Out[676...

```
In [674... # Splitting the dataset into Features and Target variable (Price)

X = house_copy.drop('price', axis=1)
y = house_copy['price']

In [675... # Splitting the dataset into Train and Test for both Features and Target variable in 70:30
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

In [676... # Check the shape of Train and Test data for both Features and Target variable
X_train.shape, y_train.shape, X_test.shape, y_test.shape
```

• Features variable dataset (X) - splitted into 70% (X Train) + 30% (X Test)

• Target variable dataset (y) - splitted into 70% (y Train) + 30% (y Test)

Applying Linear Regression Model

```
In [677... # Import Linear Regression

from sklearn.linear_model import LinearRegression
lr = LinearRegression()
```

Recursive Feature Elimination

• Identifying the most important features (columns) in our dataset for predicting House prices

```
In [678... # 5 best Feature Selection

# Importing libraries for RFE
from sklearn.feature_selection import RFE

# Applying RFE to select the best 5 features and remove 1 feature in each step
selector = RFE(lr, n_features_to_select = 5, step=1)
```

selector object now holds information about the selected features, which will be used later in the model building process

In [681...

lr.coef_

Making Prediction

np.float64(-20523.99991950678)

```
In [683... # Making Prediction on (75%)training data of Input variable/ Features

#X_train_pred = selector.predict(X_train)
X_train_pred = lr.predict(X_train)
```

Task 6: Model Evaluation

- 1. Evaluate the model on the testing set.
- 2. Check the performance metrics such as RMSE, MAE, R2 score.

Finding the weightage of each feature (Input + Target variable)

3. Check the residuals plot to check for any patterns.

```
# Model Evaluation metrics
# Assesses the accuracy and goodness-of-fit of the linear regression model using three key metrics: MAE, RMSE, and R2 score

from sklearn import metrics
print('MAE:', metrics.mean_absolute_error(y_train, X_train_pred))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_train, X_train_pred)))
print("R2 Score: ", metrics.r2_score(y_train, X_train_pred))
```

```
RMSE: 121871.66375471152
         R2 Score: 0.6527679662956574
In [685...
         # Convert R2 score into percentage
          print("R2 Score: ", metrics.r2_score(y_train, X_train_pred)*100, "%")
         R2 Score: 65.27679662956574 %
          R2 Score = 65.2 %
In [686...
          # Making Prediction on (25%) testing data of Input variable/ Features
          X_test_pred = lr.predict(X_test)
In [687...
          X_test_pred
          array([541370.3658975 , 243579.0673254 , 148120.9798125 , ...,
Out[687...
                  453096.50954511, 253638.87834584, 300181.26208599])
In [688...
          y_test
Out[688...
                     price
           15227 603000.0
           7878 205000.0
              23 252700.0
          15226 678700.0
           11348 202000.0
           17394 145000.0
          13730 325000.0
           17547 419950.0
            4844 210000.0
            387 252350.0
          5175 rows × 1 columns
          dtype: float64
In [689...
          # Model Evaluation
          from sklearn import metrics
          print('MAE:', metrics.mean_absolute_error(y_test, X_test_pred))
          print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, X_test_pred)))
          print("R2 Score: ", metrics.r2_score(y_test, X_test_pred))
         MAE: 94154.09522862731
         RMSE: 124057.42995302612
         R2 Score: 0.6525083211474176
In [690... # Convert R2 score into percentage
          print("R2 Score: ", metrics.r2_score(y_test, X_test_pred)*100, "%")
         R2 Score: 65.25083211474177 %
          R2 Score = 65.2 %
```

Result: My Model is able to explain 65.2 % of the total data set.

Regularization - To prevent Over-Fitting of Model

1. Ridge

MAE: 93244.51238445428

2. Lasso

LASSO Regression

In [695...

import seaborn as sns

sns.distplot(y_test-Lassomodel_pred)

```
<Axes: xlabel='price', ylabel='Density'>
Out[695...
              3.5
              3.0
              2.5
          Density
              2.0
              1.5
              1.0
              0.5
```

Ó

price

200000

400000

600000

If Distribution shows as **Normal Distribution**, then the **Model is Good**.

Ridge Regression

-400000 -200000

0.0

```
from sklearn.linear_model import Ridge
In [696...
           from sklearn.metrics import r2_score
In [697...
          ## Ridge Regression
           Ridgemodel = Ridge()
           Ridgemodel
Out[697...
           ▼ Ridge
          Ridge()
In [698...
          # training the model
           Ridgemodel.fit(X_train,y_train)
Out[698...
           ▼ Ridge
          Ridge()
In [699...
          #testing the model
           r_pred = Ridgemodel.predict(X_test)
           r2_score(y_test,r_pred)
```

Out[699... 0.6525319093805056

In [700...

import seaborn as sns sns.distplot(y_test-r_pred)

Out[700...

<Axes: xlabel='price', ylabel='Density'>

Making a Prediction system

In [701... house.head()

Out[701...

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition	sqft_basement	yr_built	zipcode	lat	long
0	7129300520	163	221900.0	3.0	1.00	1180.0	5650.0	1.0	3.0	0.0	1955.0	98178.0	47.5112	-122.257
2	5631500400	287	180000.0	2.0	1.00	770.0	10000.0	1.0	3.0	0.0	1933.0	98028.0	47.7379	-122.233
3	2487200875	218	604000.0	4.0	3.00	1960.0	5000.0	1.0	5.0	910.0	1965.0	98136.0	47.5208	-122.393
4	1954400510	280	510000.0	3.0	2.00	1680.0	8080.0	1.0	3.0	0.0	1987.0	98074.0	47.6168	-122.045
6	1321400060	56	257500.0	3.0	2.25	1715.0	6819.0	2.0	3.0	0.0	1995.0	98003.0	47.3097	-122.327

In [702...

house_copy.head()

Out[702...

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition	sqft_basement	yr_built	zipcode	lat	long
0	7129300520	0.442935	221900.0	0.375	1.00	0.249300	0.321852	0.0	0.428571	0.000000	0.478261	0.893939	0.571498	0.390698
2	5631500400	0.779891	180000.0	0.125	1.00	0.134454	0.594768	0.0	0.428571	0.000000	0.286957	0.136364	0.936143	0.427907
3	2487200875	0.592391	604000.0	0.625	3.00	0.467787	0.281072	0.0	1.000000	0.791304	0.565217	0.681818	0.586939	0.179845
4	1954400510	0.760870	510000.0	0.375	2.00	0.389356	0.474308	0.0	0.428571	0.000000	0.756522	0.368687	0.741354	0.719380
6	1321400060	0.152174	257500.0	0.375	2.25	0.399160	0.395194	0.4	0.428571	0.000000	0.826087	0.010101	0.247386	0.282171

Enter the values for which Prediction needs to be made

In [703... # Input the values of 1st row

```
id_val = house_copy['id'].iloc[0] # Get 'id' from the first row of house_copy
date = 0.442049
bedrooms = 0.375
bathrooms = 1.00
sqft_living = 0.249300
sqft_lot = 0.321852
floors = 0.0
condition = 0.428571
```

sqft_basement = 0.000000 $yr_built = 0.478261$ zipcode = 0.893939lat = 0.571498

long = 0.390698

charge = lr.predict([[id,date, bedrooms, bathrooms, sqft_living, sqft_lot, floors, condition,sqft_basement, yr_built, zipcode, lat, long]])
print('The charge of this new house is \$',round(charge[0],2))

The charge of this new house is \$ 242700.85

The Price of house predicted for 1st row was 242700 as compared to original 221900.

Summary

The project aimed to predict house prices using Linear Regression and Regularization Techniques. Here are the key takeaways:

- 1. **Data Exploration & Preprocessing**: The dataset was cleaned by handling missing values, encoding categorical features, and scaling numerical features using **MinMaxScaler**. Outliers were capped using the IQR method to ensure robust modeling. **Multicollinearity** was addressed by removing highly correlated features (e.g., sqft above, grade, bathrooms). A **correlation matrix** and scatter plots helped identify the most important numerical features.
- 2. **Feature Selection :** Recursive Feature Elimination **(RFE)** selected **5 best features** for training. Features like sqft_living, condition, sqft_basement, yr_built, and lat were significant in determining price.
- 3. Model Training & Evaluation: Linear Regression Model Training Performance:

MAE: Moderate error in price prediction. RMSE: Some deviation in predictions. **R² Score: 0.65 (65%)** - The model explains 65% of the variability in house prices.

Testing Performance:

Similar performance to the training set, indicating **no overfitting**. Ridge Regression Ridge performed similarly to Linear Regression, but with slightly better generalization. **Residual Plot Analysis:** Residuals followed a normal distribution, indicating a good fit. 4. **Final Prediction** The model successfully predicted house prices, with an example input resulting in a **predicted price of \$X** (based on feature values).

Conclusion

The R² Score (65%) suggests that the **model could be improved** by: Trying more complex models like XGBoost, Random Forest, or Neural Networks. Feature engineering, such as creating interaction terms or transforming skewed variables.

Overall, the model provides a solid baseline for house price prediction but can be refined further for improved accuracy!

Moreover, based on our analysis we can observe that **Price of the house is higher for** house having **more no. of bedrooms**. Price of the house was also higher where **sqft_living** and **sqft_lot** was more. Apart from other factors affecting the house price like sqft_basement, **Condition of the house** plays a significant role in deciding the final price.

We can conclude the Price of the House is highly dependent upon - Sqft_lot, Sqft_living and Basement.