图论与代数结构

道路与回路进阶

崔 勇 清华大学计算机系 网络技术研究所

主要内容道路与回路进阶

- 欧拉道路与回路
- 哈密顿道路与回路
- 旅行商问题与分支定界法

欧拉道路与回路

7桥问题 (一笔画问题): 能否从某处出发, 经过各桥一次且仅一次,

最后返回原处?

- 欧拉道路 (回路)
 - 无向连通图G=(V,E)中的一条经过所有边的简单道路(回路),称为G的欧拉道路(回路)

即问在上图中是否存在欧拉回路? 「

呼唤存在性定理?

欧拉道路与回路(2)

定理

- 无向连通图G有欧拉回路的充要条件是 各顶点的度都是偶数。
- 证明(充要条件?)

• 必要性

- 已知存在欧拉回路, 要证明度都是偶数
- 欧拉回路经过每边一次且仅一次
- 沿该回路进入某点后, 必定经由另一条边出去
- 对每一点的进出次数相同
- 因此, 各点的度都是偶数

欧拉道路与回路(3)

- 证(续):
 - 充分性
 - "无向连通图G有欧拉回路的充要条件是各顶点的度都是偶数" (证明思路?)
 - 采用构造法证明

欧拉回路的特点

- 从任意点vo出发,构造G的一条简单回路C
 - 由于 v_i 的度为偶,所以不可能停留在某点 $v_i \in V v_0$ 上,而不能继续向前构造
 - 由于G是有穷图,因此最终一定能够回到v₀,构成简单回路C
- 若C包含了G中的所有边,它即是G的欧拉回路

欧拉道路与回路(4)

• 证 (续):

- 否则,从G中删去C的各边,得到G₁ = G-C
- 显然G₁中每点的度仍然是偶数
- 此时, G_1 中一定存在度非0的顶点 v_i ,它同时还是回路C 经过的顶点(否则G是非连通图)

- 这时,在v_i所在的G₁的连通支中,同理可构造简单回路C',令C=C∪C',
 得到包含边数比原来更多的简单回路
- 继续上述构造过程,最终该简单回路必包含了所有边,即构造出了的一条欧拉回路
- 充分性证毕 "无向连通图G有欧拉回路的充要条件是各顶点的度都是偶数"

欧拉道路与回路(5)

• 例

- 找出下图G中欧拉回路

从任意一点,如A开始,构造简单回路C=(e_1 , e_2 , e_5 , e_6 , e_4) G_1 =G-C中,A,C度非零,且为G中结点 从A开始构造简单回路 C_1 =(e_3 , e_8 , e_7) 则C U C_1 = (e_1 , e_2 , e_5 , e_6 , e_4 , e_3 , e_8 , e_7)是G的一条欧拉回路。

欧拉道路与回路(6)

- 全是偶度则欧拉回路, 那存在奇度呢?
- 推论(欧拉道路存在性)

欧拉回路存在性, 然后呢? 什么情况不存在?

- 若无向连通图G中只有两个奇顶点,则G存在欧拉道路。
- 证明 (思路?)
 - 构造法
 - 设这两个奇顶点是v_i, v_i,
 - 在图G中加入一条边 (v_i, v_j) ,则所有的顶点的度都为偶,此时其中必然存在一条欧拉回路。
 - 然后将边(v_i, v_j)去掉,可得从v_i到v_j的欧拉道路。

- A 没有欧拉道路
- B 有欧拉道路但没有欧拉回路
- 有欧拉回路

提交

欧拉道路与回路(7)

- 例
 - 设连通图中有K个度为奇数的顶点。证明E(G)可以划分成K/2条简单道路
 - 证明(基本思路?)
 - 构造法
 - 由图的性质可得, K是偶数
 - K个顶点两两配对,增添K/2条边,得到G'
 - G'中每点的度都是偶数,由定理, G'中有欧拉回路C

• 即这K/2条简单道路就是E(G)的一个划分

欧拉道路与回路(8)

- 研究了无向图欧拉回路/道路的存在性, 那有向图呢?
- 推论
 - 若有向连通图G中各个结点的正度与负度相等,则G中存在有向欧拉回路。
 - 证明
 - 略

欧拉道路与回路(9)

例

- 如右图, 一个编码盘分成8个扇面,每个表示1或者0,其中a,b,c三个位置组成一组输出
- 当圆盘按照逆时针旋转一格的时候,就会产生一组输出
- 一 试问,圆盘上的数怎么排列,可以使圆盘旋转一周能不重复的输出000~111这8个二进制数(不需要按顺序)?

欧拉道路与回路(10)

• 例 (续)

- 如何进行建模?
- 每次旋转时,输出中有两位不变,如abc变成bcd
- 结点: 三位数字的前两位
 - 如这里的abc中的ab, bcd中的bc
 - 用0/1组成前两位ab,四种组合情况作为四个结点

动态!

- 边: 结点数字之间的变化关系
 - 每次旋转可以从一个结点ab到另一个结点bc
- 有两种可能的旋转变化: c = 0 / 1
 - ab输出为ab1或者ab0,即下一状态为b0或b1

欧拉道路与回路(11)

- 例 (续)
 - 画出这种转换关系图 (结点为a₁/a₂位置的数)

- 1. 八条边表示八个输出值
- 2. 每个结点的度都是偶数,因此存在欧拉回路
- 3. 任何一条欧拉回路都是一种可行方案
- 4. 例如: (上)上左右左 下下右上
- 5. 所有的a3构成序列"01011100"

哈密顿道路与回路(1)

- 欧拉道路 (回路)
 - 无向连通图中的一条经过所有边的简单道路(回路)称为欧拉道路(回路)
- "清华道路(回路)?" : 过所有边/点的简单/初级道路?
- 哈密顿道路 (回路)
 - 哈密尔顿的周游世界问题: 1857年爱尔兰数学家哈密尔顿发明了"周游世界"玩具,用一个正十二面体的20个顶点表示世界上20个大城市,30条棱代表这些城市之间的道路。要求游戏者从任意一个城市(即顶点)出发,延棱行走经过每个城市一次且只经过一次,最终返回出发地。
 - 无向图连通图的一条过全部结点的初级道路(回路)称为哈密顿(Hamilton)道路(回路)(H-道路,H-回路)
- 哈密顿图: 含有 H-回路的图

哈密顿

- 1805年生于爱尔兰都柏林
- 1823-24年间完成多篇几何学和光学的论文
- 年仅22岁的哈密顿被任命为敦辛克天文台的皇家天文研究员和 三一学院的天文学教授
- 1834年,哈密顿发表了历史性论文"一种动力学的普遍方法", 成为动力学发展过程中的新里程碑

威廉·罗恩·哈密顿

- 在1843年正式提出了四元数(quaternion),这是代数学中一项重要成果
- 1836年,皇家学会因他在光学上的成就而授予皇家奖章
- 哈密顿家庭负担很重,为减轻父亲经济压力……
- 发表的论文一般都很简洁,别人不易读懂,但手稿却很详细,因而很多成果都由后人整理而得

哈密顿道路与回路(2)

- 哈密顿回路的研究范畴
 - H回路是初级回路
 - 将任一图中的重边与自环去掉,得到的简单图的H回路的存在性与原图等价
 - 因此,一般考虑简单图...

如何进一步研究?

H道路存在性?

哈密顿道路与回路(3)

- 定理(什么情况下更可能存在H道路?)
 - 若简单图G中任两点u,v, 恒有 $d(v)+d(u) \ge n-1$,则G中存在 Hamilton道路
 - 证明(基本思路?):
 - 基本思路: 构造法

- 道路不断加点?
- (1)证G连通 (思考) (2)构造G中的H道路
- 设P为G的长为I的极长初级道路, $P=(v_{i1},v_{i2},...v_{il})$,则与 v_{i1} 和 v_{il} 相邻的点都在P上
- 若I=n,则P为H道路

哈密顿道路与回路(4)

- 证 (续)
 - 若I<n, 可证明G中一定存在经过结点v_{i1},v_{i2},...v_{ii}的初级回路C

- 假设不存在初级回路
- 设(v_{i1},v_{ip}) ∈ E(G),则不能有(v_{i,p-1},v_{il}) ∈ E(G),否则删除(v_{i,p-1},v_{ip}),上图形成一个回路
- 设d(v_{i1})=k, 则v_{i1}至少与这k个点的左邻居不能相邻,
 即d(v_{i1}) ≤l-k, 考虑v_{i1}本身无自环,则d(v_{i1}) ≤l-k-1
- 则d(v_{i1})+d(v_{i1}) ≤ I-1 < n-1,与已知 $d(v)+d(u) \ge n-1$ 矛盾
- 因此I<n,则存在回路C

哈密顿道路与回路(5)

- 证 (续)
 - 若I<n, 已证明G中一定存在经过结点vi1,vi2,...vii的初级回路C。

- 设C=(v_{i1},v_{i2},...v_{i1},v_{i1}), 由于G连通,故存在C之外的结点v_t,
 必然与C中的某点v_{ia}相邻
- 可构造长为I+1的初级道路 P=(v_t,v_{iq},v_{iq+1},,...v_{il},v_{i1}...v_{iq-1}),
- 如此构造直到I=n,从而P为H道路

H道路存在性充分条件: $d(v)+d(u) \ge n-1$

哈密顿道路与回路(6)

推论

- 如简单图G中任两点u,v, 恒有 $d(v)+d(u) \ge n$, 则G中存在Hamilton回路。
 - 由定理可知,G中存在哈密顿道路,设H为v₁,v₂,...,v_n

- 假设H不是回路
- 设d(v₁)=k, 则d(vո) ≤n-k-1 (vn无自环)
- 则d(v_n)+d(v₁)≤ n -1 < n, 与已知矛盾
- 因此存在初级回路C,即H回路
- 如简单图G中任意点v, 恒有 $d(v) \ge \frac{n}{2}$, 则G中存在Hamilton回路。

自己能发明出来吗?

哈密顿道路与回路(7)

例

- n (n>2) 个人中,设任意两人合在一起能认识其余n-2个人,则他们可以站成一排,使相邻者相识
- 证明
 - 图论建模
 - 每个人看成一个结点
 - 人之间的相识关系作为边
 - 那么以上问题就是这样构造出来的图中存在一条哈密顿道路
 - "任意两人合在一起能认识其余n-2个人"?

哈密顿道路与回路(8)

• 证 (续):

- 根据题意,任意两个结点 v_i , v_j ,合在一起能认识其余n-2个人,
 - 即有 $d(v_i) + d(v_j) \ge n 2$
- 若v_i, v_j认识,则有 $d(v_i)+d(v_j) \ge n$;
- 若v_i, v_j不认识,则任意v_k必同时认识v_i和v_j
 - 否则v_i, v_k合起来不认识v_i ,与已知矛盾

- 因此由n>2,除 v_i , v_j 外至少还有1人 v_k ,即存在1人 v_k 同时认识 v_i , v_j $d(v_i)+d(v_i)\geq n-1$
- 根据定理, 存在哈密顿道路

哈密顿道路与回路(9)

• 引理2.4.1

呼唤: H回路存在性的充要条件

$$d(v) + d(u) \ge n$$
 任意v?

- 一简单图G中v_i和v_j不相邻,且d(v_i)+d(v_j)≥n,则G存在H回路的充要条件
 是G+(v_i,v_i)有H回路
- 证: (必要性显然,下面证明充分性)
 - 由 $G+(v_i,v_j)$ 存在H回路,考虑H回路是否包含边 (v_i,v_j) ,若不包含则已得证
 - 若包含(v_i,v_i), 删去此边(v_i,v_i), G中存在以v_i,v_i为端点的H道路
 - 根据条件d(v_i)+d(v_i)≥n,则H道路可以扩展为H回路,G存在H回路
- 充分性得证。

能否不断增加这样的边?

给出定义!

哈密顿道路与回路(10)

• 闭合图

- 若 v_i 和 v_j 是简单图G的不相邻结点,满足d (v_i) +d (v_j) ≥n ,则令 $G' = G + (v_i, v_j)$,对G' 重复上述过程,直到不再有这样的结点对。 最终得到的图称为G的闭合图,记为C(G)

存在性,唯一性?

哈密顿道路与回路(11)

- 引理2.4.2
 - 简单图G的闭合图C(G)是唯一的
 - 证明
 - 设C₁(G)和C₂(G)是G的两个闭合图
 - $L_1 = \{e_1, e_2, ..., e_r\}, L_2 = \{a_1, a_2, ..., a_s\}$ 是 $C_1(G)$ 和 $C_2(G)$ 中新加入的边集合
 - 需证L₁=L₂
 - 假设L₁≠L₂,为不失一般性,假设e_{i+1}=(u,v)∈L₁是构造时第一条
 不属于L₂的边,令H=G∪{e₁,e₂,...,e_i},则H是C₂(G)的子图
 - 由于构造 L_1 时加入了 e_{i+1} ,则H有d(u)+d(v) ≥ n,但是 $(u,v) \notin C_2(G)$,与 $C_2(G)$ 是G的闭合图矛盾

哈密顿道路与回路(12)

定理

- 简单图G存在哈密顿回路的充要条件是其闭合图存在哈密顿回路
- 证明:
 - 设C(G)=G∪L, L={e₁,e₂,...,e_t}
 - 由引理2.4.1和2.4.2
 - G有H回路 ⇔G+e₁有H回路⇔...⇔ G∪L有H回路
 - 由于C(G)唯一, 定理得证。

哈密顿道路与回路(13)

• 回顾

- 若简单图G中任两点u,v, 恒有d(u)+d(v) ≥n-1, 则G中存在 Hamilton道路
- 若简单图G中任两点u,v, 恒有d(u)+d(v) ≥n, 则G中存在Hamilton
 回路
- 若简单图G中任意一点v, 有d(v) ≥n/2, 则G中存在Hamilton回路

推论

- 若简单图G(n>2)的闭合图是完全图,则G有Hamilton回路

哈密顿道路与回路(14)

- 例 (脑筋急转弯)
 - 证明下图没有H回路

- 若给某个结点标记A,其相 邻结点标记B,B的邻结点 标为A,恰好把图标完
- 若G中有H回路,则必是 ABAB...AB的形式,但由 于A与B数目不同,所以不 存在H回路

哈密顿道路与回路(15)

- 例: 4色猜想.....
 - 若一个地图中有H回路,则可用4种不同颜色 对域进行着色,使相邻域(共边)颜色不同。
 - 找到图中一个H回路(粗线表示)
 - H将图分成回路内外两部分
 - 每部分内都不存在三个(以上)区域互相相邻的情形
 - 否则会存在如图中v这样的点!
 - 存在这样的点与H是哈密顿回路矛盾
 - 因此回路内或外都只用两种颜色可以区分

哈密顿道路与回路(16)

• 哈密顿回路与欧拉回路

回路名称	欧拉回路	哈密顿回路
回路类型?	简单回路	初级回路
回路定义?	过所有边	过所有点
如何判断?	有充要条件	无直接判断的 充要条件

哈密顿道路与回路(17)

• 哈密顿回路与欧拉回路

回路名称	欧拉回路	哈密顿回路
回路类型?	简单回路	初级回路
回路定义?	过所有边	过所有点
如何判断?	有充要条件	无直接判断的 充要条件

道路存在性之后呢? 唯一性?最优回路?

旅行商问题与分支定界法

游览下述城市并返回, 如何规划路线?

北京、广州、天津、厦门、青岛、深圳、大连、三亚

- 旅行商问题
 - 给定一个正权完全图, 求其长最短的H 回路

各就各位: AI开找......

最短的H回路是(A,B,D,C,A), 长为11

旅行商问题与分支定界法(2)

• 求解旅行商问题

算法之前来点基础理论.....

- 枚举法
 - n个结点的完全图有多少个不同的H回路?

$$\frac{1}{2}(n-1)!$$

- 完全穷举复杂度太大
- 求解精确解的最佳方法
 - 分支定界法

• 先选较短边,探测次短边,利用现有"最佳"路径的结果!

旅行商问题与分支定界法(3)

- 例: 求图的最短H回路
 - 使用分支定界法

- 将边权排序后可得

- 使用深探法构造分支

旅行商问题与分支定界法(4)

旅行商问题与分支定界法(5)

旅行商问题与分支定界法(3)

• 分支定界法

1. 将权由小到大排序,初始界为d₀足够大。

- 2. 在边权序列中依次选边进行深探,直到选取n条边,记为s,判断是否构成H回路
 - 每个结点标号只出现两次
 - 若构成H回路, 用d(s)替换d₀, 结束。
- 3. 若尚未构成H回路: 继续深探
 - 依次删除当前s中最长的边,加入后面第一条待选边,进行深探。若它是H回路,且 $d(s) < d_0$,则用d(s)替换 d_0 ,转4;否则转3
- 4. 退栈过程
 - 不能再深探或 $d(s)>=d_0$ 时,需要退栈
 - 若栈空则结束,最佳值为 d_0 ;否则,如果新分支的 $d(s)>=d_0$,继续退栈;若 $d(s)< d_0$ 则转3

旅行商问题与分支定界法(6)

• 分支定界法特点

$$l_{ij} \begin{pmatrix} 3 & 4 & 4 & 9 & 10 & 10 & 11 & 13 & 16 & 20 \\ e_{ij} \begin{pmatrix} e_{35} & e_{24} & e_{15} & e_{14} & e_{12} & e_{13} & e_{34} & e_{23} & e_{45} & e_{25} \end{pmatrix}$$

搜索多少次?

- 搜索过程实质
 - 不断构造分支与确定新界值
 - 不搜索大于界值的分支
 - 最后得到的界值是最佳解吗?
- 复杂度
 - 由于使用"剪枝",该法显然比枚举法优越
 - 最坏情况下(不断尝试),复杂度仍为O(n!)
 - 怎么办呢???

本质? 连问三个为什么!

 0
 18
 35
 25
 27

 18
 0
 23
 21
 19

 35
 23
 0
 17
 28

 25
 21
 17
 0
 24

 27
 19
 28
 24
 0

- 例:求旅行商问题近似解: "便宜"算法
 - 已知图G的权矩阵,使用便宜算法 求解其旅行商问题的近似解

• 例(续)

- 求旅行商问题近似解——"便宜"算法
 - 构造不断扩充的初级回路T
 - 最初T是一个自环
 - 寻找与T最近的结点k,将k插入T
 - 设k与T中的t最近,具体插入t的位置需要 依据k插入后回路T长度增量的大小而定
 - 若w(k,t)+w(k,t₁)-w(t,t₁)<=w(k,t)+w(k,t₂)-w(t,t₂)
 则k插到t与t₁之间; 否则k在t与t₂之间
 - 更新不在T上的节点到T的距离
 - 便宜算法的计算复杂度为O(n²)
 - 每加入一个点O(n) (寻找n+更新n)), 加入n个点

循环n次

+2

- 便宜算法是启发式算法
 - 启发式规则:加入当前最近的节点(距离当前回路圈)
 - 现在的决定是局部最优还是全局最优?
 - 将来还会修改现在的决定吗?
- 定理 (便宜算法的性能)

- 设正权完全图的边权满足三角不等式,其旅行商问题的最优值为Q,便宜算法的值是T,则T/Q<2。

发明定理: 近似性定理

- 分支定界法与"便宜"算法
 - 质量 (性能)
 - 从理论上讲"便宜"算法近似程度并不理想,便宜值T与最优值Q相比只能保证T/Q<2
 - 实际中与最优解非常接近: 上例中,便宜算法的解是109,使用分支定界法是107
 - 效率 (计算复杂度)
 - "便宜" 算法大大优于分支定界法: O(n²) vs. O(n!)

实际生活的例子:游览下述城市并返回,如何规划路线(北京、广州、天津、厦门、青岛、深圳、上海)?

考虑哪些因素? 距离、列车时刻、停留时间......

总结: 道路与回路进阶

- 欧拉道路与回路
 - 不要急于求解,而用大招:定义、定理、性质
 - 充要条件(构造法)
- 哈密顿道路与回路
 - 充分条件(极长): $d(v)+d(u) \ge n-1$
 - 充要条件: 闭合图② (存在唯一性)
 - 相邻人认识的例题: 建模描述精准吗?
 - 初识四色猜想: 妙用哈密顿回路
- 旅行商问题与分支定界法
 - 精确求解:分支定界法(透过现象看本质)
 - 近似求解: 便宜算法(性能不仅仅是复杂度)

作业-欧拉图、H回路和旅行商

- 习题二 (P53)
 - H回路: 第18, 20, 22题
 - 旅行商: 分别用分支定界法和便宜法解第31题
- 补充题
 - (1) 凸n边形及n-3条在形内不相交的对角线组成的 图形称为一个剖分图。

求证: 当且仅当3|n时, 存在一个剖分图是可以一笔画的圈。

- (2) 脑筋急转弯:右图是否有哈密顿回路?若有请指出;如无请证明。
- (3) 开放题:以欧拉与H回路为例,总结创新与写书思路(约300字)。

道路与回路的判定

- 代码实现BFS和DFS的思路
 - 存储待访问的顶点: 队列和栈
 - C++中数组、vector、queue、stack 等都可以
 - 标记已访问的点
 - C++中 bool visited[N] 或是 set、map 等
- 更多参考
 - 语言的文档, 如 https://zh.cppreference.com/
 - OI Wiki: https://oi-wiki.org/graph/dfs/
 - HackerEarth: https://www.hackerearth.com/practice/algorithms/graphs/depth-first-search/tutorial/

道路与回路的判定

```
BFS (G, s)
                                存储待访问点的队列
     queue Q
     bool visited[G.V.size()]
                                标记顶点是否已访问
     Q.push(s)
                                从源 s 开始 BFS
     visited[ s ] = true
     while (Q not empty)
          v = Q.pop()
          // do something
                                对每个点 v 进行需要的操作
          for w in v.neighbours()
                if (not visited[w])将 v 的所有未访问邻居入队
                     Q.push(w)
                     visited[ w ] = true
```

道路与回路的判定

```
DFS (G, s)
                                存储待访问点的栈 (与 BFS 不同)
     stack S
     bool visited[G.V.size()]
                                标记顶点是否已访问
     S.push(s)
                                从源 s 开始 DFS
     visited[ s ] = true
     while (S not empty)
          v = S.pop()
          // do something
                                对每个点 v 进行需要的操作
          for w in v.neighbours()
                if (not visited[w])将 v 的所有未访问邻居入栈
                     S.push(w)
                     visited[ w ] = true
```