CLAIMS

vviiat is claimica to	What	is	claimed	is
-----------------------	------	----	---------	----

1	1.	An integrated circuit card for a test head, the integrated circuit card
2		comprising:
3		O channel with an elastomeric connector;
4	pin e	lectronics integrated circuit (PEIC) coupled to the I/O channel;
5	micro	omachine relays coupled to the PEIC;
6	sprin	g pins coupled to and controlled by the micromachine relays, the
7		spring pins designed to be movably coupled to a device under test
8		(DUT);
9	a hea	at sink structure integral to the integrated circuit card to flow a chilled
10		substance through the heat sink structure to cool the PEICs.
1	2.	The integrated circuit card of claim 1, wherein the chilled substance
2		comprises a gas or a liquid.
1	3.	The integrated circuit card of claim 1, wherein the heat sink
2		structure comprises cooling channels within the integrated circuit
3		card.
1	4.	The integrated circuit card of claim 1, wherein the cooling channels
2		are etched, drilled, cast, or micromachined within the integrated
3		circuit card.

1	5.	The integrated circuit card of claim 1, further comprising a driver
2		circuit for driving a movement of the micromachine relay.
1	6.	The integrated circuit card of claim 1, wherein the integrated circuit
2		card further includes a timing generator for generating clocking
3		and timing signals for the PEIC.
1	7.	The integrated circuit card 6, wherein the timing generator is
2		located on the test head, thereby reducing signal delays.
i	8.	The integrated circuit card of claim 1, further comprising a tester
2		for generating the signals used to test the DUT.
-1	9.	The integrated circuit card of claim 8, further comprising a logic
2		circuit receiving signals from the tester.
1	10.	The integrated circuit card of claim 9, wherein the logic circuit is
2		located on the test head.
1	11.	The integrated circuit card of claim 9, wherein the logic circuit is a
2		field programmable gate array (FPGA).
1	12.	A testing unit comprising:
2	a con	nputing system;

,	a test	head coupled to the computing system and receiving control signals
4		from the computing system, the test head having a place for a
5		device under test (DUT), the test head comprising:
6		a location to place a DUT;
7		a plurality of spring pins for connecting signals to the DUT;
8		a plurality of micromachine relays for controlling the
9		plurality of spring pins; and
10		an integrated circuit device for controlling the relays;
11		wherein the micromachine relays are included within a
12		substrate of the integrated circuit device.
1	13.	The testing unit of claim 12, wherein the test head is moveable with
2		respect to the computing system.
1	14.	The testing unit of claim 12, wherein the test head is coupled to the
2		computing system via a flexible transmission line.
1	15.	The testing unit of claim 14, wherein the flexible transmission line
2		is a flexible low impedance bus.
1	16.	The testing unit of claim 12, wherein the testing unit further
2		includes a timing generator for generating clocking and timing
3		signals for the integrated circuit device.

1	17.	The testing unit of claim 16, wherein the fiming generator is locate
2		on the test head, thereby reducing signal delays.
1	18.	The testing unit of claim 12, further comprising a tester for
2		generating the signals used to test the DUT.
1	19.	The testing unit of claim 18, further comprising a logic circuit
2		receiving signals from the tester.
1	20.	The testing unit of claim 12, wherein the test head has a circular
2		body, and the integrated circuit device comprises a plurality of
3		integrated circuit cards located within the test head.
1	21.	The testing unit of claim 20, wherein:
2	the bo	dy of the test head includes a plurality of cut-outs;
3	the in	tegrated circuit device includes a plurality of circuit cards having
4		tops that fit within the cut-outs of the test head; and
5	the pl	urality of spring pins extend from the tops of the circuit cards
6		through the cut-outs.
1	22.	The testing unit of claim 12, further comprising a micromachine
2		relay switch matrix coupled to the integrated circuit device, the
3		micromachine relay switch matrix selectively coupling signals to
4		the plurality of spring pins.

1	23	The testing unit of claim 22, wherein the micromachine relay switch
2		matrix comprises a plurality of switches implemented on the
3		substrate.
1	24.	The testing unit of claim 22, wherein the micromachine relay switch
2		matrix is implemented on a hybrid circuit.
1	25.	The testing unit of claim 12, wherein the micromachine relay
2		comprises a moveable cantilever arm controlled by electromagnetic
3		attraction/repulsion.
1	26.	The testing unit of claim 12, wherein the micromachine relay
2		comprises rhodium contacts and a ferrite electromagnets.
1	27.	The testing unit of claim 12, wherein the micromachine relay
2		comprises a relay built of micromachined parts.
I	28.	The testing unit of claim 12, wherein the micromachine relay
2		comprises an electrostatic relay.
1	29.	A tester including a moveable test head for testing a device under
2		test (DUT), the test head comprising:
3	a sprir	ng pin array designed to couple the tester to the DUT;
4	•	comachine relay array designed to control the spring pin array;
•	" TITLE	villadule letay allay accidited to collitor the opining partally,

5	an integrated circuit for controlling the micromachine relay array to
6	permit testing of the DUT; and
7	a control circuitry for controlling a testing of the DUT coupled to the
8	integrated circuit.