On-Chip Power Delivery and Management

Inna P.-Vaisband • Renatas Jakushokas Mikhail Popovich • Andrey V. Mezhiba Selçuk Köse • Eby G. Friedman

On-Chip Power Delivery and Management

Fourth Edition

Inna P.-Vaisband University of Rochester Rochester, NY, USA

Mikhail Popovich Qualcomm Corporation San Marcos, CA, USA

Selçuk Köse University of South Florida Tampa, NY, USA Renatas Jakushokas Qualcomm Corporation San Diego, CA, USA

Andrey V. Mezhiba Intel Corporation Hillsboro, OR, USA

Eby G. Friedman University of Rochester Rochester, USA

ISBN 978-3-319-29393-6 DOI 10.1007/978-3-319-29395-0 ISBN 978-3-319-29395-0 (eBook)

Library of Congress Control Number: 2016936678

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

To Sasha and Eva
To Victoria and Daniel
To Oksana, Elizabeth, and JulieAnn
To Elizabeth
To the memory of my late father, Nurettin Köse
To Laurie, Joseph, Shlomit, and Samuel

Preface to the Fourth Edition

Novel market segments such as intelligent transportation, revolutionary health care, sophisticated security systems, and smart energy have recently emerged, requiring increasingly diverse functionality such as RF circuits, power control, passive components, sensors/actuators, biochips, optical communication, and microelectromechanical devices. Integration of these non-digital functionalities at the board-level into system platforms such as systems-in-package (SiP), systems-on-chip (SoC), and three-dimensional (3-D) systems is a primary near- and long-term challenge of the semiconductor industry. The delivery and management of high-quality, highly efficient power have become primary design issues in these functionally diverse systems. Integrated in-package and distributed on-chip power delivery is currently under development across a broad spectrum of applications; the power delivery design process, however, is currently dominated by ad hoc approaches.

The lack of methodologies, architectures, and circuits for scalable on-chip power delivery and management is at the forefront of current heterogeneous system design issues. The objective of this book is to describe the many short- and long-term challenges of high-performance power delivery systems, provide insight and intuition into the behavior and design of next-generation power delivery systems, and suggest design solutions while providing a framework for addressing power objectives at the architectural, methodology, and circuit levels.

This book is based on the body of research carried out by the authors of previous editions of this book from 2001 to 2011. The first edition of the book, titled *Power Distribution Networks in High Speed Integrated Circuits*, was published in 2004 by Andrey V. Mezhiba and Eby G. Friedman. This first book focused on onchip distribution networks, including electrical characteristics, relevant impedance phenomenon, and related design trade-offs. On-chip distributed power delivery, at that time an innovative paradigm shift in power delivery, was also introduced in the book. As the concept of integrated power delivery evolved, the important topic of on-chip decoupling capacitance was added to the book, which was released in 2008 with a new title, *Power Distribution Networks with On-Chip Decoupling Capacitors* by Mikhail Popovich, Andrey V. Mezhiba, and Eby G. Friedman. Later, this book was revised by Renatas Jakushokas, Mikhail Popovich, Andrey V. Mezhiba,

Selçuk Köse, and Eby G. Friedman to address emerging design and analysis challenges in on-chip power networks. This last edition was published with an identical title in 2011. Since the first book was published in 2004, the issue of power delivery has greatly evolved. The concept of on-chip distributed power delivery has been recognized as an important cornerstone to high-performance integrated circuits. A number of ultrasmall on-chip power supplies to support this on-chip focus have also been demonstrated.

While on-chip power integration has become a primary objective for system integration, research has remained focused on developing compact and efficient power supplies, lacking a methodology to effectively integrate and manage inpackage and on-chip power delivery systems. The challenge has become greater as the diversity of modern systems increases, and dynamic voltage scaling (DVS) and dynamic voltage and frequency scaling (DVFS) become a part of the power management process. Hundreds of on-chip power domains with tens of different voltage levels have recently been reported, and thousand-core ICs are being considered. Scalable power delivery systems and the granularity of power management in DVS/DVFS multicore systems are limited by existing ad hoc approaches. To cope with this increasing design complexity and the quality and system-wide efficiency challenges of next-generation power delivery systems, enhanced methodologies to design and analyze scalable, hierarchical power management and delivery systems with fine granularity of dynamically controllable voltage levels are necessary. Updating the vision of on-chip power delivery networks, traditionally viewed as a passive network, is the primary purpose for publishing a new (fourth) edition of this book. Emphasis is placed on complex and scalable power delivery systems, system-wide efficiency, quality of power, and intelligent, real-time, fine-grain local power management. A framework that addresses various power objectives at the architectural, methodology, and circuit levels is described, providing a general solution for existing and emerging power delivery challenges and techniques. This book, titled On-Chip Power Delivery and Management, is authored by Inna P.-Vaisband, Renatas Jakushokas, Mikhail Popovich, Andrey V. Mezhiba, Selçuk Köse, and Eby G. Friedman as the fourth edition of this series of books.

The chapters of the book are now separated into eight parts. Power networks, inductive properties, electromigration, and decoupling capacitance within integrated circuits are described in Part I (Chaps. 1, 2, 3, 4, 5, and 6). In Part II (Chaps. 7, 8, 9, and 10), the design of on-chip power distribution networks and power supplies is discussed. Circuits for on-chip power delivery and management and integrated power delivery systems are described in Part IV (Chaps. 17, 18, 19, and 20). Closed-form expressions for power grid analysis, modeling and optimization of power networks, and the codesign of power supplies are presented in Part V (Chaps. 21, 22, 23, 24, 25, 26, and 27). Since noise within the power grid is a primary design constraint, this issue is reviewed in Part VI (Chaps. 28, 29, 30, 31, 32, 33, and 34). Multilayer power distribution networks are the focus of Part VII (Chaps. 35, 36, 37, 38, and 39). In Part III (Chaps. 12, 13, 14, and 15), the issue of placing on-chip decoupling capacitors is discussed. In Part VIII (Chaps. 40, 41, 42, and 43), multiple power supply systems are described. The focus of this part is on those integrated

circuits where multiple on-chip power supplies are required. In Part IX, some concluding comments, the appendices, and additional information are provided.

This revised and updated material is based on recent research by Inna P.-Vaisband developed between 2009 and 2015 at the University of Rochester during her doctoral studies under the supervision of Prof. Eby G. Friedman. The new chapters focus on design complexity, system scalability, and system-wide optimization of power delivery and management systems. The concept of intelligent power delivery is introduced, and a framework for on-chip power delivery and management is described that provides local power control and real-time management for sharing energy resources.

The book covers a wide spectrum of issues related to on-chip power networks and systems. The authors believe that this revised edition provides the latest information on a dynamic and highly significant topic of primary importance to both the industrial and academic research and development communities.

Acknowledgments

The authors would like to thank Chuck Glaser for his sincere encouragement and enthusiastic support of the publication of this book. The authors would also like to thank Burt Price and Jeff Fischer from Qualcomm and Avinoam Kolodny from Technion – Israel Institute of Technology for their collaboration and support.

The research described in this book has been supported in part by the Binational Science Foundation under grant no. 2012139; the National Science Foundation under grant nos. CCF-1329374, CCF-1526466, and CNS-1548078; the IARPA under grant no. W911NF-14-C-0089 and by grants from Qualcomm, Cisco Systems, and Intel.

Rochester, USA San Diego, USA San Diego, USA Hillsboro, USA Tampa, USA Rochester, USA December 2015 Inna P.-Vaisband Renatas Jakushokas Mikhail Popovich Andrey V. Mezhiba Selçuk Köse Eby G. Friedman

Preface to the Third Edition

The first planar circuit was fabricated by Fairchild Semiconductor Company in 1959. Since then, the evolution of the integrated circuit has progressed, now providing billions of transistors on a single monolithic substrate. These integrated circuits are an integral and nearly essential part of our modern life. The power consumed by a typical $20 \times 20 \, \mathrm{mm^2}$ microprocessor is in the range of several hundreds of watts, making integrated circuits one of the highest power consumers per unit area. With such a high rate of power consumption, the problem of delivering power on-chip has become a fundamental issue. The focus of this book is on distributing power within high-performance integrated circuits.

In 2004, the book titled *Power Distribution Networks in High Speed Integrated Circuits* by A. V. Mezhiba and E. G. Friedman was published to describe, for the first time in book form, the design and analysis of power distribution networks within integrated circuits. The book described different aspects of on-chip power distribution networks, starting with a general introduction and ending with a discussion of various design trade-offs in on-chip power distribution networks. Later, the important and highly relevant topic of decoupling capacitance was added to this book. Due to the significant change in size and focus, the book was released in 2008 as a new first edition with a new title, *Power Distribution Networks with On-Chip Decoupling Capacitors* by M. Popovich, A. V. Mezhiba, and E. G. Friedman. Since this revised book was published, new design and analysis challenges in on-chip power networks have emerged.

The rapidly evolving field of integrated circuits has required an innovative perspective on on-chip power generation and distribution, shifting the authors' research focus to these new challenges. Updating knowledge on chip-based power distribution networks is the primary purpose for publishing a second edition of *Power Distribution Networks with On-Chip Decoupling Capacitors*. Focus is placed on complexity issues related to power distribution networks, developing novel design methodologies and providing solutions for specific design and analysis issues. In this second edition, the authors have revised and updated previously

published chapters and added four new chapters to the book. This second edition has also been partitioned into subareas (called parts) to provide a more intuitive flow to the reader.

The organization of the book is now separated into seven parts. A general background, introducing power networks, inductive properties, electromigration, and decoupling capacitance within integrated circuits, is provided in Part I (Chaps. 1, 2, 3, 4, 5, 6, and 7). In Part II (Chaps. 8, 9, 10, 11, and 12), the design of onchip power distribution networks is discussed. Since noise within the power grid is a primary design constraint, this issue is reviewed in Part III (Chaps. 13, 14, 15, 16, 17, 18, and 19). In Part IV (Chaps. 20, 21, 22, and 23), the primary issue of placing on-chip decoupling capacitors is discussed. Multilayer power distribution networks are the focus of Part V (Chaps. 24, 25, and 26). In Part VI (Chaps. 27, 28, 29, and 30), multiple power supply systems are described. The focus of this part is on those integrated circuits where several on-chip power supplies are required. In Part VII, some concluding comments, the appendices, and additional information are provided.

This revised and updated material is based on recent research by Renatas Jakushokas and Selçuk Köse developed between 2005 and 2010 at the University of Rochester during their doctoral studies under the supervision of Prof. Eby G. Friedman. The emphasis of these newly added chapters is on the complexity of power distribution networks. Models for commonly used meshed and interdigitated interconnect structures are described. These models can be used to accurately and efficiently estimate the resistance and inductance of complex power distribution networks. With these models, on-chip power networks can be efficiently analyzed and designed, greatly enhancing the performance of the overall integrated circuit.

Acknowledgments

The authors would like to thank Charles Glaser from Springer for making this book a reality. The authors are also grateful to Dr. Sankar Basu of the National Science Foundation for his support over many years. We are sincerely thankful to Dr. Emre Salman for endless conversations and discussions, leading to novel research ideas and solutions.

This research has been supported in part by the National Science Foundation under grant nos. CCF-0541206, CCF-0811317, and CCF-0829915; grants from the New York State Office of Science, Technology and Academic Research to the Center for Advanced Technology in Electronic Imaging Systems; and grants from Intel Corporation, Eastman Kodak Company, and Freescale Semiconductor Corporation.

Rochester, USA San Diego, USA Hillsboro, USA Rochester, USA Rochester, USA September 2010 Renatas Jakushokas Mikhail Popovich Andrey V. Mezhiba Selçuk Köse Eby G. Friedman

Preface to the Second Edition

The purpose of this book is to provide insight and intuition into the behavior and design of power distribution systems with decoupling capacitors for application to high-speed integrated circuits. The primary objectives are threefold. First is to describe the impedance characteristics of the overall power distribution system, from the voltage regulator through the printed circuit board and package onto the integrated circuit to the power terminals of the on-chip circuitry. The second objective of this book is to discuss the inductive characteristics of on-chip power distribution grids and the related circuit behavior of these structures. Finally, the third primary objective is to present design methodologies for efficiently placing on-chip decoupling capacitors in nanoscale integrated circuits.

Technology scaling has been the primary driver behind the amazing performance improvement of integrated circuits over the past several decades. The speed and integration density of integrated circuits have dramatically improved. These performance gains, however, have made distributing power to the on-chip circuitry a difficult task. Highly dense circuitry operating at high clock speeds has increased the distributed current to many tens of amperes, while the noise margin of the power supply has shrunk consistent with decreasing power supply levels. These trends have elevated the problems of power distribution and allocation of the on-chip decoupling capacitors to the forefront of several challenges in developing high-performance integrated circuits.

This book is based on the body of research carried out by Mikhail Popovich from 2001 to 2007 and Andrey V. Mezhiba from 1998 to 2003 at the University of Rochester during their doctoral studies under the supervision of Professor Eby G. Friedman. It is apparent to the authors that although various aspects of the power distribution problem have been addressed in numerous research publications, no text exists that provides a unified focus on power distribution systems and related design problems. Furthermore, the placement of on-chip decoupling capacitors has traditionally been treated as an algorithmic oriented problem. A more electrical perspective, both circuit models and design techniques, has been used in this

book for presenting how to efficiently allocate on-chip decoupling capacitors. The fundamental objective of this book is to provide a broad and cohesive treatment of these subjects.

Another consequence of higher speed and greater integration density has been the emergence of inductance as a significant factor in the behavior of on-chip global interconnect structures. Once clock frequencies exceeded several hundred megahertz, incorporating on-chip inductance into the circuit analysis process became necessary to accurately describe signal delays and waveform characteristics. Although on-chip decoupling capacitors attenuate high-frequency signals in power distribution networks, the inductance of the on-chip power interconnect is expected to become a significant factor in multi-gigahertz digital circuits. An important objective of this book, therefore, is to clarify the effects of inductance on the impedance characteristics of on-chip power distribution grids and to provide an understanding of related circuit behavior.

The organization of the book is consistent with these primary goals. The first eight chapters provide a general description of distributing power in integrated circuits with decoupling capacitors. The challenges of power distribution are introduced and the principles of designing power distribution systems are described. A general background to decoupling capacitors is presented followed by a discussion of the use of a hierarchy of capacitors to improve the impedance characteristics of the power network. An overview of related phenomena, such as inductance and electromigration, is also presented in a tutorial style. The following seven chapters are dedicated to the impedance characteristics of on-chip power distribution networks. The effect of the interconnect inductance on the impedance characteristics of on-chip power distribution networks is evaluated. The implications of these impedance characteristics on circuit behavior are also discussed. On-chip power distribution grids are described, exploiting multiple power supply voltages and multiple grounds. Techniques and algorithms for the computer-aided design and analysis of power distribution networks are also described; however, the emphasis of the book is on developing circuit intuition and understanding the electrical principles that govern the design and operation of power distribution systems. The remaining five chapters focus on the design of a system of on-chip decoupling capacitors. Methodologies for designing power distribution grids with on-chip decoupling capacitors are also presented. These techniques provide a solution for determining the location and magnitude of the on-chip decoupling capacitance to mitigate onchip voltage fluctuations.

Acknowledgments

The authors would like to thank Alex Greene and Katelyn Stanne from Springer for their support and assistance. We are particularly thankful to Bill Joyner and Dale Edwards from the Semiconductor Research Corporation and Marie Burnham, Olin Hartin, and Radu Secareanu from Freescale Semiconductor Corporation for

their continued support of the research project that culminated in this book. The authors would also like to thank Emre Salman for his corrections and suggestions on improving the quality of the book. Finally, we are grateful to Michael Sotman and Avinoam Kolodny from Technion – Israel Institute of Technology for their collaboration and support.

The original research work presented in this book was made possible in part by the Semiconductor Research Corporation under contract nos. 99–TJ–687 and 2004–TJ–1207; the DARPA/ITO under AFRL contract F29601–00–K–0182; the National Science Foundation under contract nos. CCR–0304574 and CCF–0541206; grants from the New York State Office of Science, Technology and Academic Research to the Center for Advanced Technology in Electronic Imaging Systems; and by grants from Xerox Corporation, IBM Corporation, Lucent Technologies Corporation, Intel Corporation, Eastman Kodak Company, Intrinsix Corporation, Manhattan Routing, and Freescale Semiconductor Corporation.

Rochester, USA Rochester, USA Hillsboro, USA June 2007 Mikhail Popovich Eby G. Friedman Andrey V. Mezhiba

Preface to the First Edition

The primary purpose of this book is to provide insight and intuition into the behavior and design of power distribution systems for high-speed integrated circuits. The objective is twofold. First is to describe the impedance characteristics of the overall power distribution system, from the voltage regulator through the printed circuit board and package onto the integrated circuit to the power terminals of the on-chip circuitry. The second objective of this book is to discuss the inductive characteristics of on-chip power distribution grids and the related circuit behavior of these structures.

Technology scaling has been the primary driver behind improving the performance characteristics of integrated circuits over the past several decades. The speed and integration density of integrated circuits have dramatically improved. These performance gains, however, have made distributing power to the on-chip circuitry a difficult task. Highly dense circuitry operating at high clock speeds has increased the distributed current to tens of amperes, while the noise margin of the power supply has been shrunk consistent with decreasing power supply levels. These trends have elevated the problem of power distribution to the forefront of challenges in developing high-performance integrated circuits.

This monograph is based on the body of research carried out by Andrey V. Mezhiba from 1998 to 2003 at the University of Rochester during his doctoral study under the supervision of Professor Eby G. Friedman. It has become apparent to the authors during this period that although various aspects of the power distribution problem have been addressed in numerous research publications, no text provides a unified description of power distribution systems and related design problems. The primary objective of this book is therefore to provide a broad and cohesive, albeit not comprehensive, treatment of this subject.

Another consequence of higher speed and greater integration density has been the emergence of inductance as a significant factor in the behavior of on-chip global interconnect structures. Once clock frequencies exceeded several hundred megahertz, incorporating on-chip line inductance into the circuit analysis process became necessary to accurately describe signal delays and rise times. Although onchip decoupling capacitors attenuate high-frequency signals in power distribution networks, the inductance of the on-chip power interconnect is expected to become a significant factor in multi-gigahertz digital circuits. Another objective of this book, therefore, is to describe the effects of inductance on the impedance characteristics of on-chip power distribution grids and to develop an understanding of related circuit behavior.

The organization of the book is consistent with these primary goals. The first eight chapters provide a general description of distributing power in integrated circuits. The challenges of power distribution are introduced and the principles of designing power distribution systems are described. A hierarchy of decoupling capacitors used to improve the impedance characteristics is reviewed. An overview of related phenomena, such as inductance and electromigration, is also presented in a tutorial style. The following six chapters are dedicated to the impedance characteristics of on-chip power distribution networks. The effect of the interconnect inductance on the impedance characteristics of on-chip power distribution networks is evaluated. The implications of these impedance characteristics for the circuit behavior are also discussed. Techniques and algorithms for the computer-aided design and analysis of power distribution networks are also described; however, the emphasis of the book is on developing circuit intuition and understanding the principles that govern the design and operation of power distribution systems.

Acknowledgments

The authors would like to thank Michael Hackett from Kluwer Academic Publishers for his support and assistance. We are particularly thankful to Bill Joyner from the Semiconductor Research Corporation for his continuing support of the research project that culminated in this book. Finally, we are sincerely grateful to Bilyana Boyadjieva for designing the cover of the book.

The original research work presented in this monograph was made possible in part by the Semiconductor Research Corporation under contract no. 99-TJ-687; the DARPA/ITO under AFRL contract F29601-00-K-0182; grants from the New York State Office of Science, Technology and Academic Research to the Center for Advanced Technology-Electronic Imaging Systems and the Microelectronics Design Center; and grants from Xerox Corporation, IBM Corporation, Intel Corporation, Lucent Technologies Corporation, and Eastman Kodak Company.

Rochester, USA

Andrey V. Mezhiba Eby G. Friedman

Contents

Part I General Background

1	Intro	oduction		3
	1.1	Evoluti	on of Integrated Circuit Technology	4
	1.2	Evoluti	ion of Design Objectives	8
	1.3		sue of Power Delivery and Management	11
	1.4	Deleter	rious Effects of Power Distribution Noise	17
		1.4.1	Signal Delay Uncertainty	17
		1.4.2	On-Chip Clock Jitter	17
		1.4.3	Noise Margin Degradation	19
		1.4.4	Degradation of Gate Oxide Reliability	20
	1.5	Summa	ary	20
2	Indu	ctive Pro	operties of Electric Circuits	23
	2.1		ions of Inductance	24
		2.1.1	Field Energy Definition	24
		2.1.2	Magnetic Flux Definition	26
		2.1.3	Partial Inductance	31
		2.1.4	Net Inductance	35
	2.2	Variatio	on of Inductance with Frequency	37
		2.2.1	Uniform Current Density Approximation	38
		2.2.2	Inductance Variation Mechanisms	39
		2.2.3	Simple Circuit Model	42
	2.3	Inducti	ve Behavior of Circuits	44
	2.4		ve Properties of On-Chip Interconnect	46
	2.5	Summa	ary	49
3	Prop	erties of	On-Chip Inductive Current Loops	51
	3.1		iction	51
	3.2		dence of Inductance on Line Length	52
	3 3	-	ve Counting Retween Two Parallel Loon Segments	57

xxii Contents

	3.4	Application to Circuit Analysis	59
	3.5	Summary	59
4	Flec	tromigration	61
•	4.1	Physical Mechanism of Electromigration	62
	4.2	Electromigration-Induced Mechanical Stress	64
	4.3	Steady State Limit of Electromigration Damage	65
	4.3	Dependence of Electromigration Lifetime on the Line	0.
	4.4	Dimensions	67
	4.5	Statistical Distribution of Electromigration Lifetime	68
	4.6	Electromigration Lifetime Under AC Current	70
	4.7	A Comparison of Aluminum and Copper	/(
	4.7	Interconnect Technologies	72
	4.8	Designing for Electromigration Reliability	73
	4.9	Summary	74
		•	
5	Scali	ing Trends of On-Chip Power Noise	75
	5.1	Scaling Models	76
	5.2	Interconnect Characteristics	79
		5.2.1 Global Interconnect Characteristics	79
		5.2.2 Scaling of the Grid Inductance	80
		5.2.3 Flip-Chip Packaging Characteristics	80
		5.2.4 Impact of On-Chip Capacitance	82
	5.3	Model of Power Supply Noise	83
	5.4	Power Supply Noise Scaling	84
		5.4.1 Analysis of Constant Metal Thickness Scenario	84
		5.4.2 Analysis of the Scaled Metal Thickness Scenario	86
		5.4.3 ITRS Scaling of Power Noise	87
	5.5	Implications of Noise Scaling	90
	5.6	Summary	91
6	Con	clusions	93
U	Con	ciusions).
Pai	rt II	Power Delivery Networks	
7	Hier	archical Power Distribution Networks	97
•	7.1	Physical Structure of a Power Distribution System	98
	7.2	Circuit Model of a Power Distribution System	99
	7.3	Output Impedance of a Power Distribution System	101
	7.4	A Power Distribution System with a Decoupling Capacitor	104
	, . . .	7.4.1 Impedance Characteristics	104
		7.4.2 Limitations of a Single-Tier Decoupling Scheme	107
	7.5	Hierarchical Placement of Decoupling Capacitance	109
	1.5	7.5.1 Board Decoupling Capacitors	109
		7.5.2 Package Decoupling Capacitors	110
		1.3.4 I ackage Decoupling Capacitors	111

Contents xxiii

		7.5.3	On-chip Decoupling Capacitors	112
		7.5.4	Advantages of Hierarchical Decoupling	113
	7.6	Resona	nce in Power Distribution Networks	114
	7.7	Full Im	pedance Compensation	120
	7.8		tudy	122
	7.9		Considerations	123
		7.9.1	Inductance of the Decoupling Capacitors	124
		7.9.2	Interconnect Inductance	125
	7.10		ions of the One-Dimensional Circuit Model	126
	7.11		ıry	128
8	On-C		ver Distribution Networks	129
o	8.1		of On-Chip Power Distribution Networks	129
	0.1	8.1.1	Basic Structure of On-Chip Power	129
		0.1.1	Distribution Networks	130
		8.1.2	Improving the Impedance Characteristics of	130
		0.1.2		135
		8.1.3	On-Chip Power Distribution Networks Evolution of Power Distribution Networks	155
		8.1.3		126
	0.2	Dia Da	in Alpha Microprocessors	136
	8.2		ckage Interface	137
		8.2.1	Wire Bond Packaging	138
		8.2.2	Flip-Chip Packaging	139
	0.2	8.2.3	Future Packaging Solutions	141
	8.3		Considerations	142
		8.3.1	Dependence of On-Chip Signal Integrity on	1.40
		0.2.2	the Structure of the Power Distribution Network	142
		8.3.2	Interaction Between the Substrate and the	
	0.4	C	Power Distribution Network	143
	8.4	Summa	ıry	143
9	Intell		wer Networks On-Chip	145
	9.1	Power 1	Network-On-Chip Architecture	146
		9.1.1	Power Routers	148
		9.1.2	Locally Powered Loads	149
		9.1.3	Power Grid	149
	9.2	Case St	tudy	150
	9.3	Summa	ıry	153
10	Conc	lusions .		155
Par	t III	On-Chi _j	p Decoupling Capacitors	
11	Deco	upling C	Capacitance	159
	11.1		ction to Decoupling Capacitance	160
		11.1.1	Historical Retrospective	160
		11 1 2	Decoupling Capacitor as a Reservoir of Charge	161

xxiv Contents

		11.1.3 Practical Model of a Decoupling Capacitor	163
	11.2	Impedance of Power Distribution System	
		with Decoupling Capacitors	165
		11.2.1 Target Impedance of a Power Distribution System	166
		11.2.2 Antiresonance	168
		11.2.3 Hydraulic Analogy of Hierarchical Placement	
		of Decoupling Capacitors	171
	11.3	Intrinsic vs Intentional On-Chip Decoupling Capacitance	176
		11.3.1 Intrinsic Decoupling Capacitance	176
		11.3.2 Intentional Decoupling Capacitance	179
	11.4	Types of On-Chip Decoupling Capacitors	181
		11.4.1 Polysilicon-Insulator-Polysilicon (PIP) Capacitors	181
		11.4.2 MOS Capacitors	183
		11.4.3 Metal-Insulator-Metal (MIM) Capacitors	189
		11.4.4 Lateral Flux Capacitors	190
		11.4.5 Comparison of On-Chip Decoupling Capacitors	194
	11.5	On-Chip Switching Voltage Regulator	195
	11.6	Summary	197
12	Effec	tive Radii of On-Chip Decoupling Capacitors	199
	12.1	Background	201
	12.2	Effective Radius of On-Chip Decoupling Capacitor	
			202
	12.3	Estimation of Required On-Chip Decoupling Capacitance	203
		12.3.1 Dominant Resistive Noise	204
		12.3.2 Dominant Inductive Noise	206
		12.3.3 Critical Line Length	208
	12.4	Effective Radius as Determined by Charge Time	211
	12.5	Design Methodology for Placing On-Chip Decoupling Capacitors	215
	12.6	Model of On-Chip Power Distribution Network	215
	12.7	Case Study	218
	12.8	Design Implications	222
	12.9	Summary	223
12	Tree .	•	225
13			225
	13.1	Technology Constraints	226
	13.2	Placing On-Chip Decoupling Capacitors in Nanoscale ICs	226
	13.3	Design of a Distributed On-Chip Decoupling Capacitor Network.	229
	13.4		222
		Capacitor Network	233
		13.4.1 Dependence of System Parameters on R_1	234
		13.4.2 Minimum C_1	234
		13.4.3 Minimum Total Budgeted On-Chip	225
		Decoupling Capacitance	235
	13.5	Design Methodology for a System of Distributed	.
		On-Chip Decoupling Capacitors	238

Contents xxv

	13.6 13.7	Case Study	239 243
14		Itaneous Co-Design of Distributed On-Chip Power lies and Decoupling Capacitors Problem Formulation Simultaneous Power Supply and Decoupling Capacitor Placement Case Study Summary	245 247 248 250 253
15	Conc	lusions	255
Par	t IV	Power Delivery Circuits	
16	Volta 16.1 16.2 16.3	ge Regulators Switching Mode Power Supplies Switched-Capacitor Converters Linear Converters 16.3.1 Analog LDO Regulators 16.3.2 Digital LDO Regulators Comparison of Monolithic Power Supplies Summary	259 261 266 268 268 271 271 274
17	Hybr 17.1	id Voltage Regulator Active Filter Based Switching DC-DC Converter 17.1.1 Active Filter Design 17.1.2 Op Amp Design	277 278 280 282
	17.2 17.3 17.4 17.5	Pros and Cons of Active Filter-Based Voltage Regulator	282 284 290 291
18	18.1	Power Delivery with Ultra-Small LDO Regulators Power Delivery System 18.1.1 Op Amp Based LDO 18.1.2 Current Sensor 18.1.3 Adaptive Bias 18.1.4 Adaptive Compensation Network 18.1.5 Distributed Power Delivery	293 294 296 302 304 305 306
	18.2 18.3	Test Results	309 313
19	Pulse 19.1	Width Modulator for On-Chip Power Management Description of the Digitally Controlled PWM Architecture 19.1.1 Header Circuitry	315 316 317 318 319

xxvi Contents

		19.1.4	Ring Oscillator Topology for Pulse Width	
			Modulation with Constant Frequency	322
	19.2	Simulat	tion Results	324
		19.2.1	Digitally Controlled Pulse Width Modulator	
			Under PVT Variations	324
		19.2.2	Duty Cycle Controlled Pulse Width Modulator	325
		19.2.3	Duty Cycle and Frequency Controlled Pulse	
			Width Modulator	327
	19.3	Summa	ry	327
20	Conc	lusions .		329
Par	tV (Compute	er-Aided Design of Power Delivery Systems	
21	Com	outer-Ai	ded Design of Power Distribution Networks	333
	21.1		Flow for On-Chip Power Distribution Networks	334
		21.1.1	Preliminary Pre-Floorplan Design	335
		21.1.2	Floorplan-Based Refinement	335
		21.1.3	Layout-Based Verification	336
	21.2	Linear	Analysis of Power Distribution Networks	338
	21.3		ng Power Distribution Networks	340
		21.3.1	Resistance of the On-Chip Power Distribution Network.	340
		21.3.2	Characterization of the On-Chip Decoupling Capacitance	341
		21.3.3	Inductance of the On-Chip Power Distribution Network.	343
		21.3.4	Exploiting Symmetry to Reduce Model Complexity	344
	21.4	Charact	terizing the Power Current Requirements	
		of On-C	Chip Circuits	345
		21.4.1	Preliminary Evaluation of Power Current Requirements.	346
		21.4.2	Gate Level Estimates of the Power Current Requirements	346
	21.5	Numeri	cal Methods for Analyzing Power Distribution Networks.	347
		21.5.1	Model Partitioning in <i>RC</i> and <i>RLC</i> Parts	348
		21.5.2	Improving the Initial Condition Accuracy	
			of the AC Analysis	348
		21.5.3	Global-Local Hierarchical Analysis	350
		21.5.4	Random Walk Based Technique	351
		21.5.5	Multigrid Analysis	352
		21.5.6	Hierarchical Analysis of Networks with	
			Mesh-Tree Topology	352
		21.5.7	Efficient Analysis of <i>RL</i> Trees	353
	21.6	Allocat	ion of On-Chip Decoupling Capacitors	353
		21.6.1	Charge-Based Allocation Methodology	355
		21.6.2	Allocation Strategy Based on the Excessive	
			Noise Amplitude	356
		21.6.3	Allocation Strategy Based on Excessive Charge	357
	21.7	Summa	ry	358

Contents xxvii

22	Effec	tive Resistance in a Two Layer Mesh	361
	22.1	Kirchhoff's Current Law Revisited	364
	22.2	Separation of Variables	365
	22.3	Effective Resistance Between Two Nodes	366
	22.4	Closed-Form Expression of the Effective Resistance	367
	22.5	Experimental Results	369
	22.6	Summary	369
23	Close	ed-Form Expressions for Fast IR Drop Analysis	373
	23.1	Background of FAIR	374
	23.2	Analytic IR Drop Analysis	376
		23.2.1 One Power Supply and One Current Load	376
		23.2.2 One Power Supply and Multiple Current Loads	378
		23.2.3 Multiple Power Supplies and One Current Load	379
		23.2.4 Multiple Power Supplies and Multiple Current Loads	383
	23.3	Locality in Power Grid Analysis	386
		23.3.1 Principle of Spatial Locality in a Power Grid	386
		23.3.2 Effect of Spatial Locality on Computational Complexity	387
		23.3.3 Exploiting Spatial Locality in FAIR	388
		23.3.4 Error Correction Windows	390
	23.4	Experimental Results	391
	23.5	Summary	396
24	Stabi	lity in Distributed Power Delivery Systems	397
	24.1	Passivity-Based Stability of Distributed Power Delivery Systems.	398
	24.2	Passivity Analysis of a Distributed Power Delivery System	400
	24.3	Model of Parametric Circuit Performance	404
	24.4	Summary	410
25	Powe	r Optimization Based on Link Breaking Methodology	413
	25.1	Reduction in Voltage Variations	415
	25.2	Single Aggressor and Victim Example	418
	25.3	Sensitivity Factor	420
	25.4	Link Breaking Methodology	421
	25.5	Case Studies	423
	25.6	Discussion	426
	25.7	Summary	428
26		r Supply Clustering in Heterogeneous Systems	433
	26.1	Heterogeneous Power Delivery System	434
		26.1.1 Number of On-Chip Power Regulators	436
		26.1.2 Number of Off-Chip Power Converters	436
		26.1.3 Power Supply Clusters	439
	26.2	Dynamic Control in Heterogeneous Power Delivery Systems	441
	26.3	Computationally Efficient Power Supply Clustering	442
		26.3.1 Near-Optimal Power Supply Clustering	443
		26.3.2 Power Supply Clustering with Dynamic Programming	447

xxviii Contents

	26.4	Demonstration of Co-design of Power Delivery System	451
		26.4.1 Power Supply Clustering of IBM Power Grid	
		Benchmark Circuits	451
		26.4.2 Power Supply Clustering and Existing Power	
		Delivery Solutions	453
	26.5	Summary	454
27	Conc	lusions	457
_			
Par	t VI	Noise in Power Distribution Networks	
28	Indu	ctive Properties of On-Chip Power Distribution Grids	461
	28.1	Power Transmission Circuit	461
	28.2	Simulation Setup	463
	28.3	Grid Types	464
	28.4	Inductance Versus Line Width	466
	28.5	Dependence of Inductance on Grid Type	469
		28.5.1 Non-interdigitated Versus Interdigitated Grids	469
		28.5.2 Paired Versus Interdigitated Grids	470
	28.6	Dependence of Inductance on Grid Dimensions	470
		28.6.1 Dependence of Inductance on Grid Width	471
		28.6.2 Dependence of Inductance on Grid Length	472
		28.6.3 Sheet Inductance of Power Grids	472
		28.6.4 Efficient Computation of Grid Inductance	473
	28.7	Summary	474
29	Varia	tion of Grid Inductance with Frequency	475
	29.1	Analysis Approach	475
	29.2	Discussion of Inductance Variation	477
		29.2.1 Circuit Models	477
		29.2.2 Analysis of Inductance Variation	479
	29.3	Summary	481
30	Indu	ctance/Area/Resistance Tradeoffs	483
	30.1	Inductance vs. Resistance Tradeoff Under a Constant	
		Grid Area Constraint	483
	30.2	Inductance vs. Area Tradeoff Under a Constant Grid	
		Resistance Constraint	487
	30.3	Summary	489
31	Noise	Characteristics of On-Chip Power Networks	491
-	31.1	Scaling Effects in Chip-Package Resonance	492
	31.2	Propagation of Power Distribution Noise	494
	31.3	Local Inductive Behavior	496
	31.4	Summary	499
	J1.⊤	Summer j	マノフ

Contents xxix

32	Powe	r Noise l	Reduction Techniques	501	
	32.1	Ground	Noise Reduction Through an Additional Low		
		Noise C	On-Chip Ground	503	
	32.2	Depend	lence of Ground Bounce Reduction on System Parameters	505	
		32.2.1	Physical Separation Between Noisy and Noise		
			Sensitive Circuits	505	
		32.2.2	Frequency and Capacitance Variations	507	
		32.2.3	Impedance of an Additional Ground Path	508	
	32.3	Summa	ry	509	
33	Shielding Methodologies in the Presence of Power/Ground Noise				
	33.1		ound	512	
		33.1.1	Crosstalk Noise Reduction Techniques	512	
		33.1.2	Coupled Interconnect Model and Decision Criterion	514	
		33.1.3	Power/Ground Noise Model	516	
	33.2	Effects	of Technology and Design Parameters		
		on the (Crosstalk Noise Voltage	518	
		33.2.1	Effect of Technology Scaling on the Crosstalk		
			Noise Voltage	519	
		33.2.2	Effect of Line Length on Crosstalk Noise	520	
		33.2.3	Effect of Shield Line Width on Crosstalk Noise	522	
		33.2.4	Effect of R_{line}/R_s on Crosstalk Noise	523	
		33.2.5	Effect of the Ratio of Substrate Capacitance		
			to Coupling Capacitance on Crosstalk Noise	525	
		33.2.6	Effect of Self- and Mutual Inductance on Crosstalk Noise	527	
		33.2.7	Effect of Distance Between Aggressor and		
			Victim Lines on Crosstalk Noise	527	
	33.3	Shield l	Insertion or Physical Spacing in a Noisy Environment	529	
	33.4	Summa	ry	531	
34	Conc	lusions.		533	
Par	t VII	Multi-la	ayer Power Distribution Networks		
35	Impe	dance C	haracteristics of Multi-layer Grids	537	
	35.1		cal Properties of Multi-layer Grids	538	
		35.1.1	Impedance Characteristics of Individual Grid Layers	538	
		35.1.2	Impedance Characteristics of Multi-layer Grids	541	
	35.2	Case St	udy of a Two Layer Grid	543	
		35.2.1	Simulation Setup	543	
		35.2.2	Inductive Coupling Between Grid Layers	544	
		35.2.3	Inductive Characteristics of a Two Layer Grid	546	
		35.2.4	Resistive Characteristics of a Two Layer Grid	548	
		35.2.5	Variation of Impedance with Frequency in a		
			Two Layer Grid	549	

xxx Contents

	35.3 35.4	Design Implications	550 551
36 Inductance Model of Interdigitated Power and Ground Net			553
	36.1	Basic Four-Pair Structure	554
	36.2	P/G Network with Large Number of Interdigitated Pairs	555
	36.3	Comparison and Discussion	559
	36.4	Summary	563
37	Multi	-layer Interdigitated Power Networks	565
01	37.1	Single Metal Layer Characteristics	566
	37.1	37.1.1 Optimal Width for Minimum Impedance	568
		37.1.2 Optimal Width Characteristics	571
	37.2	Multi-layer Optimization	574
	31.2	37.2.1 First Approach: Equal Current Density	575
		37.2.1 First Approach: Equal Current Density	580
	37.3	Discussion	581
	31.3		581
		r	
		- · · · · · · · · · · · · · · · · · · ·	582 584
		37.3.3 Fidelity	
	27.4	37.3.4 Critical Frequency	586
	37.4	Summary	587
38	Globa	ally Integrated Power and Clock Distribution Networks	589
	38.1	High Level Topology	591
	38.2	GIPAC Splitting Circuit	592
		38.2.1 Mathematical Perspective	592
		38.2.2 RC Filter Values	594
			ンノエ
	38.3	Simulation Results	
	38.3 38.4	Simulation Results	594 597
39	38.4		594
39	38.4	Simulation Results	594 597
	38.4	Simulation Results	594 597
	38.4 Conci	Simulation Results Summary	594 597
Par	38.4 Conci	Simulation Results Summary lusions Multi-voltage Power Delivery Systems	594 597 599
Par	38.4 Conci t VIII Multi	Simulation Results Summary lusions Multi-voltage Power Delivery Systems iple On-Chip Power Supply Systems	594 597 599 603
Par	38.4 Conci t VIII Multi	Simulation Results Summary	594 597 599 603 604
Par	38.4 Conci t VIII Multi	Simulation Results Summary	594 597 599 603 604 604
Par	38.4 Conci t VIII Multi	Simulation Results Summary lusions Multi-voltage Power Delivery Systems iple On-Chip Power Supply Systems ICs with Multiple Power Supply Voltages 40.1.1 Multiple Power Supply Voltage Techniques 40.1.2 Clustered Voltage Scaling (CVS) 40.1.3 Extended Clustered Voltage Scaling (ECVS)	594 597 599 603 604 604 606
Par	38.4 Conci t VIII Multi 40.1	Simulation Results Summary lusions Multi-voltage Power Delivery Systems iple On-Chip Power Supply Systems ICs with Multiple Power Supply Voltages 40.1.1 Multiple Power Supply Voltage Techniques 40.1.2 Clustered Voltage Scaling (CVS)	594 597 599 603 604 604 606 607
Par	38.4 Conci t VIII Multi 40.1	Simulation Results Summary	594 597 599 603 604 604 606 607 608
Par	38.4 Conci t VIII Multi 40.1	Simulation Results Summary	594 597 599 603 604 604 606 607 608 608 609
Par	38.4 Conci t VIII Multi 40.1	Simulation Results Summary	594 597 599 603 604 604 606 607 608 608

Contents xxxi

	40.3		Number and Magnitude of Available	C1/
	40.4		pply Voltages	61 61
		•		
41		_	Grids with Multiple Supply Voltages	61
	41.1	_	nd	62
	41.2		n Setup	62
	41.3		stribution Grid with Dual Supply and Dual Ground	62
	41.4		ated Grids with DSDG	62
			Type I Interdigitated Grids with DSDG	62
	41.5		Type II Interdigitated Grids with DSDG	62
	41.5		ids with DSDG	62
			Type I Paired Grids with DSDG	62
			Type II Paired Grids with DSDG	63
	41.6		n Results	63
			nterdigitated Power Distribution Grids	
			Vithout Decoupling Capacitors	64
			Paired Power Distribution Grids	
			Vithout Decoupling Capacitors	64
			Power Distribution Grids with Decoupling Capacitors	64
			Dependence of Power Noise on the Switching	
			Frequency of the Current Loads	64
	41.7	Design In	nplications	64
	41.8	Summary		64
42	Deco	upling Cap	pacitors for Multi-Voltage Power	
	Distr	ibution Sys	stems	65
	42.1	Impedanc	e of a Power Distribution System	65
			mpedance of a Power Distribution System	65
			Antiresonance of Parallel Capacitors	65
			Dependence of Impedance on Power	
			Distribution System Parameters	65
	42.2		ly of the Impedance of a Power Distribution System	66
	42.3		ransfer Function of Power Distribution System	66
			/oltage Transfer Function of a Power	
			Distribution System	66
			Dependence of Voltage Transfer Function on	
			Power Distribution System Parameters	66
	42.4		ly of the Voltage Response of a Power	00
			on System	66
			Overshoot-Free Magnitude of a Voltage	50
			Transfer Function	66
			Tradeoff Between the Magnitude and	00
			requency Range	67
	42.5		requency Kange	67
	7∠.J	Summaly		
43	Conc	lusions		67

xxxii Contents

Par	t IX Final Comments	
44	Closing Remarks	679
Apj	pendices	685
A	Estimate of Initial Optimal Width for Interdigitated Power/Ground Network	687
В	First Optimization Approach for Multi-Layer Interdigitated Power Distribution Network	689
C	Second Optimization Approach for Multi-Layer Interdigitated Power Distribution Network	691
D	Mutual Loop Inductance in Fully Interdigitated Power Distribution Grids with DSDG	693
E	Mutual Loop Inductance in Pseudo-Interdigitated Power Distribution Grids with DSDG	695
F	Mutual Loop Inductance in Fully Paired Power Distribution Grids with DSDG	697
G	Mutual Loop Inductance in Pseudo-Paired Power Distribution Grids with DSDG	699
Н	Derivation of $R_{2(x,y)}$	701
I	Closed-Form Expressions for Interconnect Resistance, Capacitance, and Inductance	705
Ref	erences	707
Ind	ex	737

About the Authors

Inna Vaisband received the Bachelor of Science degree in computer engineering and the Master of Science degree in electrical engineering from the Technion-Israel Institute of Technology, Haifa, Israel in, respectively, 2006 and 2009, and the Ph.D. degree in electrical engineering from the University of Rochester, Rochester, New York in 2015.

She is currently a post-doctoral researcher with the Department of Electrical Engineering, University of Rochester, Rochester, New York. Between 2003 and 2009, she held a variety of software and hardware R&D positions at Tower Semiconductor Ltd., G-Connect Ltd., and IBM Ltd., all in

Israel. In summer 2012, Inna was a Visiting Researcher at Stanford University. Her current research interests include the analysis and design of high performance integrated circuits, analog circuits, and on-chip power delivery and management. Dr. Vaisband is an Associate Editor of the *Microelectronics Journal*.

xxxiv About the Authors

Renatas Jakushokas was born in Kaunas, Lithuania. He received the B.Sc. degree in electrical engineering from Ort-Braude College, Karmiel, Israel in 2005, and the M.S. and Ph.D. degrees in electrical and computer engineering from the University of Rochester, Rochester, New York in, respectively, 2007 and 2011.

He was previously an intern at Intrinsix Corporation, Fairport, New York, in 2006, working on Sigma Delta ADCs. In the summer of 2007, he interned with Eastman Kodak Company, Rochester, New York, where he designed a high speed and precision comparator for high performance ADCs. During the summer

of 2008, he was with Freescale Semiconductor Corporation, Tempe, Arizona where he worked on developing a noise coupling estimation calculator, supporting the efficient evaluation of diverse substrate isolation techniques. In 2011, Renatas joined Qualcomm Inc., where he works on custom high speed circuit design, power and signal integrity, power distribution networks, development/optimization/placement of on-die decoupling capacitors, and power estimation/correlation/optimization.

He currently holds a US patent and is the author of additional disclosed patents. He has authored a book and published over ten journal and conference papers. Dr. Jakushokas participates in conference committees and is currently serving as an editor for the *Microelectronics Journal*. His research interests are in the areas of power distribution, noise evaluation, signal and power integrity, substrate modeling/analysis, and optimization techniques for high performance integrated circuit design.

Mikhail Popovich was born in Izhevsk, Russia in 1975. He received the B.S. degree in electrical engineering from Izhevsk State Technical University, Izhevsk, Russia in 1998, and the M.S. and Ph.D. degrees in electrical and computer engineering from the University of Rochester, Rochester, New York in, respectively, 2002 and 2007.

He was an intern at Freescale Semiconductor Corporation, Tempe, Arizona in the summer of 2005, where he worked on signal integrity in RF and mixed-signal ICs and developed design techniques and methodologies About the Authors xxxv

for placing distributed on-chip decoupling capacitors. His professional experience also includes characterization of substrate and interconnect crosstalk noise in CMOS imaging circuits for Eastman Kodak Company, Rochester, New York. He has authored several conference and journal papers in the areas of power distribution networks in CMOS VLSI circuits, placement of on-chip decoupling capacitors, and the inductive properties of on-chip interconnect. He holds several US patents. In 2007, Mikhail joined Qualcomm Corporation, where he works on power distribution networks, power and signal integrity, low power techniques, and interconnect design including on-chip inductive effects, noise coupling, and placement of on-chip decoupling capacitors.

Mr. Popovich received the Best Student Paper Award at the ACM Great Lakes Symposium on VLSI in 2005, and the GRC Inventor Recognition Award from the Semiconductor Research Corporation in 2007.

Andrey V. Mezhiba graduated from the Moscow Institute of Physics and Technology in 1996 with a Diploma in Physics. He continued his studies at the University of Rochester where he received the Ph.D. degree in electrical and computer engineering in 2004. Andrey authored several conference and journal papers in the areas of power distribution networks, on-chip inductance, circuit coupling, and signal integrity; he holds several patents. Andrey is currently with Intel Corporation working on phase-locked loops and other mixedsignal circuits in advanced CMOS technologies.

Selçuk Köse received the B.S. degree in electrical and electronics engineering from Bilkent University, Ankara, Turkey in 2006, and the M.S. and Ph.D. degrees in electrical engineering from the University of Rochester, Rochester, NY, respectively, in 2008 and 2012.

He is currently an Assistant Professor at the Department of Electrical Engineering, University of South Florida, Tampa, Florida. He was a part-time engineer at the Scientific and Technological Research Council (TÜBİTAK), Ankara, Turkey in 2006. He was with the Central Technology and Special Cir-

xxxvi About the Authors

cuits Team in the enterprise microprocessor division of Intel Corporation, Santa Clara, California in 2007 and 2008. He was with the RF, Analog, and Sensor Group, Freescale Semiconductor, Tempe, Arizona in 2010. His current research interests include the analysis and design of high performance integrated circuits, on-chip DC-DC voltage converters, and interconnect related issues with specific emphasis on the design, analysis, and management of on-chip power delivery networks, 3-D integration, and hardware security.

Dr. Köse received the National Science Foundation CAREER Award in 2014, University of South Florida College of Engineering Outstanding Junior Research Achievement Award in 2014, and Cisco Research Award in 2015. He is currently serving on the editorial board of the *Journal of Circuits, Systems, and Computers* and the *Microelectronics Journal*. He is a member of the technical program committee of a number of conferences.

Eby G. Friedman received the B.S. degree from Lafayette College in 1979, and the M.S. and Ph.D. degrees from the University of California, Irvine, in 1981 and 1989, respectively, all in electrical engineering.

From 1979 to 1991, he was with Hughes Aircraft Company, rising to the position of manager of the Signal Processing Design and Test Department, responsible for the design and test of high performance digital and analog ICs. He has been with the Department of Electrical and Computer Engineering at the University of Rochester since 1991, where he is a Distinguished Professor and the Director of the High Performance VLSI/IC Design and Analysis Laboratory. He is also a Visiting Professor at the Technion—Israel Institute of Technology. His current research and

teaching interests are in high performance synchronous digital and mixed-signal microelectronic design and analysis with application to high speed portable processors and low power wireless communications.

He is the author of almost 500 papers and book chapters, 13 patents, and the author or editor of 16 books in the fields of high speed and low power CMOS design techniques, 3-D integration, high speed interconnect, and the theory and application of synchronous clock and power distribution networks. Dr. Friedman is the Editor-in-Chief of the *Microelectronics Journal*, a Member of the editorial boards of the *Analog Integrated Circuits and Signal Processing, Journal of Low Power Electronics*, and *Journal of Low Power Electronics and Applications*, and

About the Authors xxxvii

a Member of the technical program committee of numerous conferences. He previously was the Editor-in-Chief and Chair of the steering committee of the *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, the Regional Editor of the *Journal of Circuits, Systems and Computers*, a Member of the editorial board of the *Proceedings of the IEEE, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, IEEE Journal on Emerging and Selected Topics in <i>Circuits and Systems*, and *Journal of Signal Processing Systems*, a Member of the Circuits and Systems (CAS) Society Board of Governors, Program and Technical chair of several IEEE conferences, and a recipient of the IEEE Circuits and Systems 2013 Charles A. Desoer Technical Achievement Award, a University of Rochester Graduate Teaching Award, a College of Engineering Teaching Excellence Award, and is a member of the University of California, Irvine Engineering Hall of Fame. Dr. Friedman is a Senior Fulbright Fellow and an IEEE Fellow.