

IMPERIAL AGRICULTURAL
RESEARCH INSTITUTE, NEW DELHI.

THE ANNALS

of

MATHEMATICAL STATISTICS

(Printed in U S A)

Published and Lithoprinted by EDWARDS BROTHERS, Inc. ANN ARBOR, MICH

CONTENTS OF VOLUME I

The Annals of Mathematical Statistics
Remarks on Regression
Synopsis of Elementary Mathematical Statistics 1 B. L. Shook
Bayes' Theorem
A Mathematical Theory of Seasonal Indices 5 Statistical Department, Detroit Edison Co.
Stieltjes Integrals in Mathematical Statistics
Simultaneous Treatment of Discrete and Continuous Probability by Use of Stieltjes Integrals
Fundamentals of the Theory of Sampling
Editorial Successive Integration as a Method for Finding Long Period Cycles
Ralph W. Powell Equimodal Frequency Distributions

On Fitting Curves to Observational Series by the Method of Differences
Harry S. Will
Tables of Pearson's Type III Function
L. R. Salvosa
Distribution of the means of Samples of <u>n</u> Drawn at Random from a Population Represented by a Gram-Charlier Series 199
George A. Baker
The Use of Linear Functions to Detect Hidden Periods in Data Separated into Small Sets
A Synopsis of Elementary Mathematical Statistics 224 B. L. Shook
Fundamentals of the Theory of Sampling
Derivatives of the Pearson Type III Curve Appended L. R. Salvosa
The Sampling Variability of Linear and Curvilinear Regressions
Transformations of Bimodal Distributions
Error and Unreliability in Seasonals
Modifications of the Link Relative and Interpolation Methods of Determining Seasonal Variation
Richard A. Robb

THE ANNALS OF MATHEMATICAL STATISTICS

Вy

WILLFORD I. KING

For ninety-one years the American Statistical Association has hold the van in matters statistical in the United States. At the time when our Association was founded, statistical method was an extremely simple science. In recent years, the technique has, however, been growing more and more complex. The Journal of the American Statistical Association has served all the members of the Association and an attempt has been made to cover, in its pages, all phases of statistical method. For some time past, however, it has been evident that the membership of our organization is tending to become divided into two groups—those familiar with advanced mathematics, and those who have not devoted themselves to this field. The mathematicians are, of course, interested in articles of a type which are not intelligible to the non-mathematical readers of our Journal. The Editor of our Journal has, then, found it a puzzling problem to satisfy both classes of readers.

Now a happy solution has appeared. The Association at this time has the pleasure of presenting to its mathematically inclined members the first issue of the Annals of Mathematical Statistics, edited by Prof. Harry C. Carver of the University of Michigan. This Journal will deal, not only with the mathematical technique of statistics, but also with the applications of such technique to the fields of astronomy, physics, psychology, biology, medicine, education, business, and economics. At present, mathematical articles along these lines are scattered through a great variety of publications. It is hoped that in the future they will be gathered together in the Annals.

The editorial policy will be to select articles that will best meet the needs of the time. There can be no questioning the statement that at the present time there are in this country many more who need stimulation in the fundamentals of mathematical statistics than there are individuals whose prime interest us in the advancement of modern statistical theory. Therefore particular stress will be laid on articles of a fundamental nature during the first few years of the life of the Annals. The officers, after due deliberation, have chosen a new method of printing in order to facilitate the composition of original articles and the obtaining of reprints. A photographic process is employed, which will permit the Association at any point in the

future to furnish reprints or back numbers. The advantages of this to libraries and classes in statistics is apparent. A particular effort will be made to insert from time to time tables that must be constantly referred to by statisticians. Nevertheless, the chronicling of research will in no sense be neglected.

My personal opinion is that the advent of the Annals constitutes an important milestone in the history of our Association. I am sure that this new publication will be welcomed heartily, not only by the mathematically trained section of our membership, but also by the non-mathematical group, for the latter recognize that the more advanced phases of mathematics are rendering extremely valuable service in furthering the progress of statistical technique, thus aiding in the solution of problems of the greatest moment.

REMARKS ON REGRESSION

By

S. D. WICKSELL

1. In a paper published twelve years ago¹ I derived a set of formulae for bivariate regression which were found to give good results on unimodal materials of a fairly general nature and which, in the case of moderately skew distributions, were reduced to very simple and easily applicable forms. Two years later I extended the theory also to the case of multiple correlations of similar types². These formulae were deduced on the assumption that the correlation surface could be expressed by a so-called series of type A³, i. e. that the deviations from the best fitting normal surface could be expressed as a series, developed according to the derivatives of different orders of the Bravais function, expressing that normal surface.

When, after the lapse of so many years, I find that this theory has not received the attention which it seems to me it merits in view of the very simple, and on a fairly large class of curved regressions readily applicable results, I attribute this in part at least to the apparent (not actual) speciality of the assumptions made with regard to the mathematical expression for the correlation surface, and in part also to the rather repellent show of mathematics involved in the deductions. In the hope to give the theory a better chance of coming to the attention of statisticians, I propose here to deduce some of my main results in an entirely different way, bringing the theory back on more simple principles. I believe that by this method of deduction it will be more easy for the reader to see exactly where assumptions come in, and also the nature of the restrictions caused by these assumptions.

2. Let z and y be a pair of correlated variates, our material

The correlation function of Type A, and the regression of its characteristics. Kungl. Svenska Vetenskap akademiens Handlinger Bd. 58 Nr 3 1917 Also "Meddelanden fran Lunds Astronomiska Observatorium" Ser II Nr 17

Multiple correlation and non-linear regression. Arkiv. for Matematik. Fysik och Astronomi. Bd. 14 Nr. 10, 1919. Also "Meddelanden fran Lunds Astronomiska Observatorium." Ser. I, Nr. 91.

Charlier. Contributions to the mathematical theory of statistics.
 The correlation function of type A. Arkiv for Matematik, Fysik och Astronomi.
 Nr. 26, 1914. Also "Meddelanden fran Lunds Astronomiska Observatorium" Ser. 1 Nr. 58.

consisting of N such pairs. Computing the means and central moments, we have

$$\mathcal{M}_{x} = \frac{1}{N} \sum_{x} x_{x}$$
; $\mathcal{M}_{y} = \frac{1}{N} \sum_{y} y$; $\mu_{y} = \frac{1}{N} \sum_{y} (x - \mathcal{M}_{x})^{i} (y - \mathcal{M}_{y})^{j}$

The standard deviations of x and y and the coefficient of correlation are then defined by

$$\sigma_x = \sqrt{\mu_{zo}}$$
; $\sigma_y = \sqrt{\mu_{oz}}$; $p = \frac{\mu_n}{\sigma_x \sigma_y}$

Following Yule¹ and Pearson² we now treat the problem of regression as a simple problem of graduation, defining the regression of y on x as a parabola of a given degree, which, with x as argument, is fitted to the y's by the method of least squares. The regression may then be written in the form

$$y_x - M_y = a_0 + a_1 (x - M_x) + a_2 (x - M_x)^2 + \cdots + a_p (x - M_x)^p$$

and the least squares normal equations for determining the parameters a_0 , a_1 , a_2 , \cdots a_p assume the form (Pearson Op. Cit. p. 25).

$$\begin{cases}
0 = \hat{a}_{0} & + \hat{a}_{2} \mu_{20} + \hat{a}_{3} \mu_{30} + \cdots + \hat{a}_{p} \mu_{p,0} \\
\mu_{ii} = \hat{a}_{1} \mu_{20} + \hat{a}_{2} \mu_{30} + \hat{a}_{5} \mu_{40} + \cdots + \hat{a}_{p} \mu_{pii,0} \\
\mu_{2i} = \hat{a}_{0} \mu_{20} + \hat{a}_{1} \mu_{40} + \hat{a}_{2} \mu_{40} + \hat{a}_{3} \mu_{50} + \cdots + \hat{a}_{p} \mu_{pis,0} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\mu_{p,i} = \hat{a}_{0} \mu_{p,0} + \hat{a}_{1} \mu_{p+i,0} + \hat{a}_{2} \mu_{p+2,0} + \hat{a}_{3} \mu_{p+3,0} + \cdots + \hat{a}_{p} \mu_{2p,0}
\end{cases}$$

On the Theory of Correlation. Jour. Roy. Stat. Soc, Vol 60, 1897, and On the Theory of Correlation for any number of Variables treated by a new System of Notation. Proc Roy Soc., Ser. A, Vol. 79, 1907

Mathematical Contributions to the Theory of Evolution XIV. On the General Theory of Skew Correlation and non-Linear Regression. Drapers Co. Research Memoris Biometric Series II. Cambridge Univ. Press, 1905.

Writing the solution in the form of determinants, we have

$$a_{i-1} = \frac{1}{\Delta} \cdot \Delta_i$$

where

$$\Delta = \begin{bmatrix} 1, & 0, & \mu_{2v}, & \mu_{30}, & \ddots & \mu_{\rho,o} \\ 0, & \mu_{20}, & \mu_{30}, & \mu_{40}, & \ddots & \mu_{\rho+1,o} \\ \mu_{2o}, & \mu_{3o}, & \mu_{4o}, & \mu_{5o}, & \ddots & \mu_{\rho+2,o} \\ \mu_{3o}, & \mu_{4o}, & \mu_{6o}, & \mu_{6o}, & \ddots & \mu_{\rho+3,o} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \mu_{\rho,o}, & \mu_{\rho+1,o}, & \mu_{\rho+2,o}, & \mu_{\rho+3,o}, & \ddots & \mu_{2\rho,o} \end{bmatrix}$$

and Δ_i is obtained when the *i*'th row in Δ is exchanged for the left membra of equations (1), i. c. for the series of elements:

$$o, \mu_{\mu}, \mu_{z_1}, \mu_{s_1}, \cdots, \mu_{p,l}$$

3. Some important general conclusions may at once be derived from this system. Defining as non-regression of the p'th order the case that all the coefficients a_1 , a_2 , a_3 , \cdots a_p turn out to be practically equal to zero, i. e. that a horizontal straight line is the best parabola of the p'th degree that can be fitted to the series of y's, n is first seen, from the first of equations (1), that then also $a_2 = 0$. Coundly we can draw the conclusion that this can take place only if all the elements μ_n , μ_{21} , μ_{31} , \cdots , $\mu_{p,1}$, are equal to zero. Hence the condition for non-regression of the p'th order of y on x is that we have

(4)
$$\mu_{i,o} = o \text{ for } i = 1, 2, 3, \dots p$$

This clearly involves also that the coefficient of correlation, r equals zero.

Defining further as linear regression of the p'th order the case that the coefficients $a_2, a_3, \cdots a_p$ are equal to zero, i. e. that a non-horizontal straight line is the best parabola of the p'th degree that can be fitted to the series of y's, we immediately see, from the two first of equations (1), that then we must have

(5)
$$a_o = o$$
; $a = \frac{\mu_u}{\mu_{zo}}$

Referring here to the well-known theorem that any determinant will disappear, when the elements of two rows are proportional (the elements of any one row being obtained by multiplying the corresponding elements of another row by a constant factor) it is easily seen that all the determinants Δ_i except Δ_z , and hence by (2) all the coefficients $a_0, \dots a_p$, except a_i , will disappear if the quantities o, μ_n , μ_2 , μ_{3i} , $\dots \mu_{pi}$, in the left membra of (1) are proportional to the elements o, μ_{zo} , μ_{so} , $\dots \mu_{pii,0}$ in the second row of the determinant Δ . Hence the condition for linear regression of the p'th order of p on p is that we have

(6)
$$\mu_{ii} \cdot \mu_{i+1,o} = \mu_{io} \mu_{i,i}$$
 for $i = 1, 2, 3, \cdots p$.

A few considerations will show that this condition is not only sufficient but also necessary. For p=3 these criteria were demonstrated by Pearson.

4. Thus far there are no other assumptions involved than the principle of least squares, and that the regression of y on xmay be described by a whole rational function. The chief difficulty in the application of this theory of regression is that, as seen from equation (1), in order to determine a regression of the p'th degree we must compute and use moments (of the series of x's up to the order 2p). Now, as justly remarked by Pearson, moments of high orders are, on account of their large standard errors, very little to be relied upon, at least in the case of ordinary materials (N not very large). Besides this, the numerical labor involved in computing higher moments is comparatively very great. Hence, Pearson's theory of regression will be practically applicable only in cases when the regression is at the most parabolic of the second degree. Indeed, this is a very serious restriction, because curved regressions often have at least one inflection. Thus in order to meet fairly frequent cases of regression we must needs have recourse at least to cubic parabolas. But this should require the computation of all the moments of x up to the sixth order.

In order to remove, as far as possible, this difficulty, I take refuge in a golden rule expressed by Thiele¹. Thiele introduces, instead of the moments, a system of coefficients called the semi-invariants. These semi-invariants (here denoted by $\lambda_{l,\sigma}$) are defined in terms of the moments by the identity:

1. Theory of Observations. London 1903, p. 49.

$$\lambda_{20} \frac{x^{2}}{2!} + \lambda_{30} \frac{x^{3}}{3!} + \lambda_{40} \frac{x^{4}}{4!} + \cdots$$

$$= \log_{e} \left(/ + \mu_{20} \frac{x^{2}}{2!} + \mu_{30} \frac{x^{3}}{3!} + \mu_{40} \frac{x^{4}}{4!} + \cdots \right)$$

Developing, we find

(7)
$$\lambda_{zo} = \mu_{zo}; \ \lambda_{3o} = \mu_{3o}; \ \lambda_{4o} = \mu_{4o} - 3\mu_{2o}^{2}; \\ \lambda_{5o} = \mu_{5o} - 10\mu_{3o}\mu_{2o}; \lambda_{6o} = \mu_{6o} - 15\mu_{4o}\mu_{2o} + 30\mu_{2o}^{3} - 10\mu_{3o}^{2}$$

Now, the rule indicated by Thiele is the following:

To obtain the first semi-invariants rely entirely on computations. To obtain the intermediate semi-invariants rely partly on computations, partly on theoretical considerations. But to obtain the higher semi-invariants rely entirely on theoretical considerations.

Of course, this rule is just as well applicable to the determination of moments, as any moment may be expressed in terms of the semi-invariants of the same and lower order. In particular we have

(8)
$$\mu_{2o} = \lambda_{2o}; \quad \mu_{3o} = \lambda_{3o}; \quad \mu_{4} = \lambda_{4o} + 3\lambda_{2o}^{2}; \\ \mu_{3o} = \lambda_{5o} - 10\lambda_{3o}\lambda_{2o}; \quad \mu_{6o} = \lambda_{6o} + 15\lambda_{4o}\lambda_{2o} + 15\lambda_{2o}^{3} + 10\lambda_{3o}^{2}$$

5. A most natural way of applying the rule is afforded by Pearson's celebrated theory of frequency-functions. The moments $\mu_{i,o}$ are the moments of one of the marginal distributions (here the distribution of the x's). Computing μ_{zo} , μ_{so} and μ_{so} in the ordinary way from the observations, criteria can be formed showing to which of the Pearson Types the frequency curve of x belongs. This being decided, the parameters of the curve may be determined by the aid of the same moments. As the moments of higher order are easily expressed in terms of the parameters we get, in this way, μ_{so} and μ_{so} expressed in terms of μ_{zos} , μ_{so} and μ_{so} .

To state the matter in a more general way, we may use the formulae given by Pearson in his memoir on regression, loc. cit. pp. 5 and 6.

See W. Palin Elderton: Frequency Curves and Correlation, London 1927, Table V1.

Pearson starts from a differential equation of the form

(9)
$$f'(x)(b_0 + b_1 x + b_2 x^2 + b_3^1 x^3 + \cdots) = (x+a)f(x)$$

where f(x) is the frequency function of x.

Multiplying on both sides by x and integrating by parts, he finds the following formulae¹ (placing the origin in the mean)

(10)
$$nb_o \mu_{n-1,o} + (n+1)b_1 \mu_{n,o} + (n+2)b_2 \mu_{n+1,o} + \cdots$$

= $-\mu_{n+1,o} - a\mu_{n,o}$

Now, Pearson remarks that experience shows that for the great bulk of frequency distributions the higher terms, multiplied by b_3 , b_4 , etc., may be neglected. In fact, Pearson's system of frequency curves is obtained as a result of putting $b_i = 0$ for $i \ge 3$.

Following Pearson's example, we get the recursion formula,

(//)
$$n b_o \mu_{n-1,o} + [(n+h) b_i + a] \mu_{n,o} = -[(n-2) b_2 - l] \mu_{n+1,o}$$

Putting here n=0, 1, 2, 3, we get four equations to determine a, b_0 , b_1 , and b_2 in terms of the moments μ_{20} , μ_{30} , and μ_{40} . This being done, we get μ_{50} and μ_{60} on putting n=4 and n=4.

The procedure indicated above leads, in fact, to the theory of skew regression which is the natural consequence of Pearson's theory of skew frequency curves.

6. As the theory just indicated above is at present at my request being worked out in detail by one of my pupils, Mr. Walter Anderson, I refrain from proceeding further into the matter.

It remains, however, to show how the special formulae for cubic regression, given by me twelve years ago, arise out of a somewhat similar procedure.

Instead of starting from Pearson's theory of frequency functions, I now start from Thiele's theory of frequency functions. Just as in the preceding section the coefficients b_3 , b_4 etc. were neglected in the equation (10), given by Pearson, I now neglect the semi-invariants λ_{50} and λ_{60} in the equations (8), given by Thiele. There is no doubt that the former approximation is of

^{1.} See also Palin Elderton, Op. cit. p. 39.

far more general validity than the latter; still the latter may be justified by the following considerations.

Assuming the variate x to be generated as the sum of a large number of independent, elementary increments, each of which has its own frequency distribution and its own set of semi-invariants, it follows from the theory of Thiele that any semi-invariant λ_{ro} of x is the sum of the elementary semi-invariants of the same order. Supposing the elementary increments to be z in number and denoting by λ'_r the mean value of the r elementary semi-invariants of order r we consequently have

$$\lambda_r = s \lambda_r'$$

Hence we get

$$\gamma_{r,o} = \frac{\lambda_{r,o}}{\lambda_{zo}^{r,o}} = \frac{\lambda_r'}{\lambda_z^{r,o}} \frac{l}{s^{\frac{r-s}{2}}}$$

Except under rather special conditions, which it is not necessary to dwell on here, the ratios λ_{1}^{\prime} are not extensively great. Thus if s is a large number we see that the "standardized" semi-invariants $\gamma_{r,o}$ of x are small of the order of magnitude of (\sqrt{s}) . In particular we have.

We now have, denoting by

$$\alpha_{I_0} = \frac{\mu_{I_10}}{\mu_{I_20}^{I_2}}$$

the "standardized" moment of x, by a simple transformation of equation (8).

Stopping with quantities of the order $\frac{1}{s}$ we get

(13)
$$\alpha_{so} = /0\gamma_{so}$$
; $\alpha_{so} = /5\gamma_{so} + /0\gamma_{so}^2 + /5$

In practice we can, of course, not very well know if the hypothesis of elementary increments is valid, but if we have, on computing the moments up to the fourth order, found that γ_{00} and γ_{10} are rather small, and that γ_{00} is of the order of magnitude of γ_{20}^2 , there is a certain plausibility in assuming that γ_{00} and γ_{00} are still smaller and that they may be neglected as compared to γ_{10} and γ_{30}^2 .

The curve of cubic regression of y on x we may write in the form

$$t_y = c_0 + c_1 t_x + c_2 t_x^2 + c_3 t_x^3$$

where we have put

$$t_x = \frac{x - M_x}{\sqrt{\mu_{20}}} \quad ; \qquad t_y = \frac{y_x - M_y}{\sqrt{\mu_{20}}}$$

and it is evident that equation (1) now takes the form

We get

$$(4)\Delta = \alpha_{40} (\alpha_{40} - \alpha_{30}^2 - 1) - \alpha_{50} (\alpha_{50} - 2\alpha_{30}\alpha_{40} - 2\alpha_{30}) - \alpha_{40} (\alpha_{40}^2 - \alpha_{40} + 3\alpha_{30}^2) + \alpha_{30}^4$$

$$\Delta_{z} = P(\alpha_{so} \alpha_{co} - \alpha_{so}^{2} - \alpha_{co} + 2\alpha_{so} \alpha_{so} - \alpha_{so}^{2} \alpha_{so})$$

$$-\alpha_{zi}(\alpha_{so} \alpha_{co} - \alpha_{so} \alpha_{so} + \alpha_{so} \alpha_{so} - \alpha_{so}^{2}) + \alpha_{si}(\alpha_{so} \alpha_{so} - \alpha_{so}^{2} + \alpha_{so} + \alpha_{so}^{2})$$

$$\Delta_{4} = r(\alpha_{50}\alpha_{30} - \alpha_{40}^{2} + \alpha_{40} - \alpha_{50}^{2}) - \alpha_{2/}(\alpha_{50} - \alpha_{50}\alpha_{40} - \alpha_{50}) + \alpha_{5/}(\alpha_{40} - \alpha_{50}^{2} - 1)$$

And the coefficients are

$$c_o = \frac{\Delta_f}{\Delta}$$
 $c_f = \frac{\Delta_z}{\Delta}$ $c_z = \frac{\Delta_s}{\Delta}$ $c_z = \frac{\Delta_s}{\Delta}$

We now introduce the semi-invariants by (8^t) , taking for α_{so} and α_{so} the approximate formulae (13). For α_{so} and α_{so} we put

(15)
$$\alpha_{2i} = \gamma_{2i}$$
; $\alpha_{3i} = \gamma_{3i} + \beta_{i}$

The coefficients γ_2 , and γ_3 , are then the standardized correlation semi-invariants, according to a generalized theory of semi-invariants for bi-variate distributions.

It is now a consequence of our principle of approximation that all powers and products γ_{ij} , $\gamma_{k,l}$, $\gamma_{m,n}$..., of which the sum $i+j+k+l+m+n+\ldots$ of the indices exceeds 6, shall be neglected as compared to powers and products of lower order. Observing this, the determinants reduce to the following:

$$\Delta = /2 (/-2\gamma_{3o}^{2} + 2\gamma_{4o}),$$
or
$$\frac{1}{\Delta} - \frac{1}{2} (/+2\gamma_{3o}^{2} - 2\gamma_{4o}),$$

$$\Delta_{1} = 6 (r\gamma_{3o} - \gamma_{2i}),$$

$$\Delta_{2} = /2 r + 6 (r\gamma_{4o} - \gamma_{3i}) + 24 r\gamma_{4o} - 24 r\gamma_{3o}^{2}$$

$$-/2\gamma_{3o} (r\gamma_{3o} - \gamma_{2i}),$$

$$\Delta_{3} = -6 (r\gamma_{3o} - \gamma_{2i}),$$

$$\Delta_{4} = -2 (r\gamma_{4o} - \gamma_{3i}) + 6\gamma_{3o} (r\gamma_{3o} - \gamma_{2i}).$$

Using the same rule of approximation on multiplying by $\frac{1}{\Delta}$, we finally get

$$c_{o} = \frac{1}{\zeta} (r \gamma_{3o} - \gamma_{2i}),$$

$$c_{i} = r + \frac{1}{2} (r \gamma_{4o} - \gamma_{3i}) - \gamma_{3o} (r \gamma_{3o} - \gamma_{2i}),$$

$$c_{2} = -\frac{1}{\zeta} (r \gamma_{3o} - \gamma_{2i}),$$

$$c_{3} = -\frac{1}{\zeta} (r \gamma_{4o} - \gamma_{3i}) + \frac{1}{\zeta} \gamma_{3o} (r \gamma_{3o} - \gamma_{2i}).$$

In my cited memoir of twelve years ago I put1

$$r_{30} = \frac{1}{2} (r \gamma_{30} - \gamma_{21}); \quad r_{40} = \frac{1}{6} (r \gamma_{40} - \gamma_{31}),$$

Using this notation, we get

$$C_{0} = r_{30},$$

$$c_{1} = r - 3r_{40} - 2\gamma_{30} r_{30},$$

$$c_{2} = -c_{0} = -r_{30},$$

$$c_{3} = r_{40} + \gamma_{20} r_{30}.$$

These coefficients are exactly the same as in equation (34*, 11) of my former memoir. As shown in that memoir on several numerical examples, the regression formula in question applies very well in cases of moderately skew correlations.

It is seen that the coefficients r_{so} and r_{so} determine the curvature of the regression. If $r_{so}=r_{so}=o$ the regression is linear (of the third order). I have called these coefficients the correlation coefficients of higher order. If the correlation surface is approximately normal we have the following formulae for the standard errors of the coefficients involved:

^{1.} In Pearson's notation we have $r_{30} = \frac{1}{2} \tilde{\epsilon}$ and $r_{40} = \frac{1}{2} \tilde{\xi}$.

$$\begin{split} \sigma_{(r_{so})} = & \sqrt{\frac{6}{N}} \; ; \quad \sigma_{(r_{so})} = \sqrt{\frac{24}{N}} \; , \quad \sigma_{(r_{so})} = \sqrt{\frac{2+4r^2}{N}} \; ; \quad \sigma_{(r_{so})} = \sqrt{\frac{6+18r^2}{N}} \\ (/8) \quad \sigma_{(r)} = & \frac{/-r^2}{\sqrt{N}} \; ; \quad \sigma_{(r_{so})} = & \sqrt{\frac{/-r^2}{2N}} \; ; \quad \sigma_{(r_{so})} = & \sqrt{\frac{/-r^2}{2N}} \; ; \\ \sigma_{(c_1)} = & \sqrt{\frac{5-2r^2}{(1-r^2)}} \; ; \quad \sigma_{(c_2)} = & \sqrt{\frac{/-r^2}{2N}} \; ; \quad \sigma_{(c_2)} = & \sqrt{\frac{/-r^2}{6N}} \end{split}$$

Lund (Sweden).

SYNOPSIS OF ELEMENTARY MATHEMATICAL STATISTICS*

By B. L. Shook

SECTION I. ELEMENTARY STATISTICAL FUNCTIONS

- 1. Variates. Practically all statistical data is obtained as the result of observations that endeavor to establish the magnitudes of certain variables. The individual magnitudes that are recorded are termed variates. Thus in computing the average annual rainfall of a region, the variable is rainfall, and the amount of rainfall for any single year is a variate. Likewise, if the bank clearings for the City of New York be under consideration, then the variable is bank clearings, and the clearings for any specified interval is a variate.
- 2. The arithmetic mean of a series of variates is equal to the sum of the variates divided by the number of variates in the series. If \mathcal{N}_{ν} designates the arithmetic mean of the \mathcal{N} variates ν_{i} , ν_{2} , ν_{3} , \dots , ν_{N} , $\nu_{$
- 3. The nth moment of a series of variates is defined as the arithmetic mean of the nth powers of these variates and is represented by the symbol $\mu'_{n:v}$. Thus

(2)
$$\mu'_{n,\nu} = \frac{1}{N} (\nu_i^n + \nu_z^n + \nu_z^n + \cdots + \nu_{N}^n) = \frac{1}{N} \sum_{i=1}^{N} \nu_i^n$$

That is

$$\mu'_{iv} = \frac{1}{N} \sum v$$

$$\mu'_{iv} = \frac{1}{N} \sum v$$

$$\mu'_{s:v} = \frac{1}{N} \sum v^{s}$$

- * An abstract of a series of lectures on elementary statistics given by the mathematical statistical staff at the University of Michigan.
- 1. Observe that the number of variates in a series is denoted by N, whereas the smaller italic n is employed as an ordinal number.

Obviously, by definitions (1) and (2)

$$\mu'_{iiv} = M_v$$

4. The deviation of a variate from the arithmetic mean will be designated by the symbol \overline{v} , i. e.

5. The *nth* moment about the mean* is defined as the arithmetic mean of the *nth* powers of the deviations of the variates from the mean, and is represented symbolically by μ_{nr} . Thus

(5)
$$\mu_{n,\nu} = \frac{1}{N} \sum \tilde{\nu}^n \qquad \text{so that}$$

(5a)
$$\mu_{\mu\nu} = \frac{1}{N} \sum \tilde{\nu} = 0$$

(5b)
$$\mu_{z:v} = \frac{1}{N} \sum \overline{v}^{z}$$

(5c)
$$\mu_{s:v} = \frac{1}{N} \sum \vec{v}^{3}$$

The fact that $\mu_{IV} = 0$, is demonstrated as follows:

$$\bar{v}_{i} = v_{i} - M_{v}$$

$$\bar{v}_{z} = v_{z} - M_{v}$$

$$\vdots \quad \vdots \quad \vdots$$

$$\frac{\bar{v}_{w}}{\sum \bar{v}} = \frac{v_{w} - M_{v}}{\sum v - NM_{v}}$$

$$\mu_{i:v} = \frac{\sum \bar{v}}{N} - M_{v} = M_{v} - M_{v} = 0$$
Q. E. D.

The numerical example of Table I illustrates the definitions of the preceding paragraphs. The data consists of thirteen variates, which represent the number of even numbers found in consecutive blocks of 100 numbers, drawn to determine the order of call for draft-

^{*} For convenience the arithmetic mean is frequently referred to as the mean. When referring to geometric or harmonic means, the adjectives geometric or harmonic must therefore be specified.

ing United States soldiers in 1918. These variates were obtained from the first 1300 drawings made.

The most obvious conclusion to be drawn from Table I is that the use of fractions in determining the values of μ_{nv} is cumbersome. if M_v is a whole number, then the values of \bar{v} , \bar{v}^2 and \bar{v}^3 are integers, and the procedure is simple. Generally, however, M_v will be fractional, and consequently awkward expressions for \bar{v} , \bar{v}^2 and \bar{v}^3 will result. On the other hand, the computation of values of μ'_{nv} is relatively easy, and hence it is expedient to express μ_{2v} and μ_{3v} in terms of the moments μ'_{nv} . This may be done as follows:

Since by definition,

$$\bar{V}_1 = V_1 - M_V$$
, it follows that
$$\bar{V}_1^2 = V_1^2 - 2V_1 M_V + M_V^2$$
, and
$$\bar{V}_1^3 = V_1^3 - 3V_1^2 M_V + 3V_1 M_V^2 - M_V^3$$
 Consequently

Dividing both sides of these equations through by N yields, respectively

$$\frac{\sum \bar{v}^2}{N} = \frac{\sum v^2}{N} - 2M_v \cdot M_v + M_v^2$$

$$\frac{\sum \bar{v}^3}{N} = \frac{\sum v^3}{N} - 3M_v \frac{\sum v^2}{N} + 3M_v^2 \cdot M_v - M_v^3$$

Hence

(6)
$$\begin{cases} \mu_{2\nu} = \mu'_{2\nu} - M_{\nu}^{2} \\ \mu_{3:\nu} = \mu'_{3\nu} + 3M_{\nu}\mu'_{2:\nu} + 2M_{\nu}^{3} \end{cases}$$

-
Ē
ᅱ
œ
⋖
ρ4

	7.3	/169 - 27/2197	/169 - 24389/2197	/169 1481544/2197		- 7.		-17	/169 - 4096/2197		169 1000/2197	(169 46656/2197	12167/2197		169 – 276120/2197		$=\frac{2526}{169}$	$=\frac{-21240}{2197}$
	01	/6	841/	12996/	529/	1764/169	6	14400/	256/169	6	100/169	1296/	259/	100/169	32838/169	0 :	32838	$-\frac{-276120}{13 \cdot 2197}$
י מחנוע ו	$\bar{V}_I = V_I - M_V$	- 3/13	- 29/13	114/13	23/13	- 42/13	- 3/13	- 120/13	- 16/13	- 3/13	10/13	36/13	23/13	10/13	0	= 1"#	# " = #	. v.€11
IUI	š. A	132651	117649	216000	148877	110592	132651	74088	125000	132651	140608	157464	148877	140608	1777716			
	$ u_I^*$	2001	2401	3600	2809	2304	2601	1764	2500	2601	2704	2916	5806	2704	34314	\s\l	33	177716
	Vi	51	6	99	53	48	51	42	50	51	22	54	53	52	999	$M_{\nu} = \mu'_{,\nu} = \frac{666}{13}$	$\mu'_{z,r} = \frac{34314}{13}$	$\mu'_{3:\nu} = \frac{177}{1}$
	j	1	7	က	4	ĸ	9	7	∞	6	10	11	12	13	Total	M		

These formulae are perhaps the most important in our work, since they enable us to obtain the moments about the mean without requiring that we actually determine the deviations. Applying these formulae to the numerical example of Table I,

$$\mu_{2:v} = \frac{34314}{13} - \left(\frac{666}{13}\right)^2 = \frac{2526}{169}$$

$$\mu_{s:r} = \frac{177716}{13} - 3\left(\frac{34314}{13}\right)\left(\frac{666}{13}\right) + 2\left(\frac{666}{13}\right)^3 = -\frac{21240}{2197}$$

The results thus obtained by this *indirect* method are identical with the results obtained in Table I by employing the *direct* method.

7. Standard Deviation. The second moment about the mean, μ_{xv} is a function of the variability of the data, since its essential elements are the deviations of the variates from the mean. But if the original variates happen to be measured in *inches*, then since μ_{xv} is the average of the squares of the deviations, it follows that the unit of μ_{xv} is square inch. Nevertheless, by extracting the square root of μ_{xv} we would obtain a function which would in general measure the variability of, and possess the same unit as the original data. This function is known as the standard deviation and is denoted by the symbol σ_v . Thus

(7)
$$\sigma_{\nu} = \sqrt{\mu_{z:\nu}}$$

Verbally we may say that the standard deviation is defined as the square root of the mean of the squared deviations of the variates from their mean.

Actually σ_{ν} is rarely computed directly from the squared deviations, but rather by employing the relationship given in formula (6). For the data of Table I

$$\sigma_{\mathbf{v}} = \sqrt{\frac{2526}{169}} = \frac{50.2593}{13} = 3.78918$$

8. Standard Units. If we assume that the arithmetic mean and the standard deviation of the weights of adult males are 150 lbs. and 20 lbs. respectively, then we may say that a man weighing 190 lbs. is

40 lbs. or 2 standard units above the average in weight. Likewise an individual weighing 120 lbs. may be considered as being 30 lbs. or 1.5 standard units under average weight. Conversely, if the arithmetic mean and the standard deviation for heights be 67 inches and 2.5 inches respectively, then an individual who is 2 standard units above the average height must be five inches above the average stature, or in other words must be 72 inches tall. The magnitude of an observation expressed in standard units is therefore defined as follows:

$$t_i = \frac{v_i - M_v}{\sigma} = \frac{\bar{v}_i}{\sigma}$$

It will be observed that these standard variates, t_I , are abstract numbers. For example, if the original variates be expressed in the unit inch then the unit of M_V , \bar{V} and σ_V is also inch, and it follows that if both the numerator and denominator of a fraction be expressed as inches the quotient must be an abstract number, independent of the unit employed in the measurements. For instance, one series of variates would result if the height of each of a group of individuals were recorded in inches. However, if their heights had been recorded in centimeters, each of the resulting set of variates would be numerically about 2.54 times as large as the corresponding variate expressed in inches. Nevertheless, the standard variates obtained by both methods would agree in the case of each individual. Thus, if

$$M_V = 67 \text{ ins.} = 67(2.54) \text{ cms.},$$

and

$$\sigma_{V} = 2.5 \text{ ins.} = 2.5(2.54) \text{ cms.},$$

then for an individual 6 feet tall

$$v = 72 \text{ ins.} = 72(2.54) \text{ cms.},$$
 $\bar{v} = 5 \text{ ins.} = 5(2.54) \text{ cms.},$
 $t = \frac{5 \text{ ins.}}{2.5 \text{ ins.}} = \frac{5(2.54) \text{ cms.}}{2.5(2.54) \text{ cms.}}$, or
 $t = 2 = 2$

With the aid of a computing machine, the series of standard variates corresponding to any observed series of variates may be completed very rapidly by means of a so-called continuous process. To

illustrate, we found that for the data of Table I, page 17,

$$M_{\nu} = 51.230769$$
 $\sigma_{\nu} = 3.86610$

By formula (8), then

$$t_{i} = \frac{v_{i} - 51.230769}{3.86610} = -13.2513 + .258659 v_{i}$$

In using this equation one should first subtract out 13 2513 from the machine, and then set up .258659 as a multiplier. The product of this multiplier by 51 will cause the value t = -.059691 to appear on the machine. By merely subtracting the multiplier two times, the value t = -.577009, corresponding to t = 49, appears. Continuing this "build-over" method, the following set of standard variates is readily obtained:

TABLE 11						
1	V ₂	t,				
1	51	06				
2	49	58				
3	60	2.27				
4	53	.46				
5	48	84				
6	51	06				
7	42	- 2.39				
8	50	32				
9	51	06				
10	52	.20				
11	54	.72				
12	53	.46				
13	52	.20				
Total	666	0.00				

It is scarcely an exaggeration to state that the theory of mathematical statistics hinges on standard units. Although in many problems this might not appear on the surface, yet we shall see that the fact is nevertheless true.

9. The properties of the moments of standard variates are

interesting and important. Thus

since

$$M_{t} = \frac{\sum t}{N} = \frac{1}{N} \sum \frac{v_{l} - M_{v}}{\sigma_{v}} = \frac{1}{N\sigma_{v}} \sum \bar{v}_{i} = 0$$
(see formula 5a)

Referring to formula (6) we see that

$$\mu_z = \mu_z' - M^z$$

$$\mu_3 = \mu_3' - 3\mu_z' M + 2M^3$$

But since M_t has already been proven equal to 0,

$$\mu_{2:t}' = \mu_{2:t}$$

$$\mu_{3:t}' = \mu_{3:t}$$

Which is an important simplification in the moments of the standard variates.

(10)
$$\mu_{z,t} = I$$
for
$$\mu_{z,t} = \frac{\sum t^{z}}{N} = \frac{I}{N} \sum \left(\frac{v_{z} - M_{v}}{\sigma_{v}} \right)^{2} = \frac{I}{\sigma_{v}^{z}} \sum \frac{\bar{V}^{z}}{N}$$

$$= \frac{\mu_{z,v}}{\sigma_{v}^{2}} = I \qquad \text{(see formula 7)}$$
(11)
$$\mu_{g,t} = \frac{\mu_{g,v}}{\sigma_{v}^{3}} = \frac{\mu_{g,v}}{\mu_{z,v}\sigma_{v}}$$
for
$$\mu_{s,t} = \frac{\sum t^{z}}{N} = \frac{I}{N} \sum \left(\frac{v_{t} - M_{v}}{\sigma_{v}} \right)^{3} = \frac{I}{\sigma_{v}^{3}} \sum \frac{\bar{V}^{3}}{N} = \frac{\mu_{g,v}}{\sigma_{v}^{3}}$$

We see, therefore, that although the values of μ_{it} and μ_{st} are always 0 and 1 respectively, the value of μ_{sit} will possess an abstract value depending, nevertheless, upon the variates themselves. The expression, μ_{sit} , is known as the coefficient of skewness and is denoted

by the symbol α_{311} , i. e.

(12)
$$\alpha_{sv} = \frac{\mu_{sv}}{\sigma_v^3} = \frac{\mu_{sv}}{\mu_{2v}\sigma_v}$$

Summary of Section I. From the viewpoint of Elementary Mathematical Statistics, we characterize a series of variates by its

- (a) number, N,
- (b) mean, M_V ,
- (c) standard deviation, σ_{ν} , and
- (d) skewness, α_{s}

The moments about the mean, $\mu_{n\nu}$, are introduced solely to facilitate the determination of σ_{ν} and $\alpha_{s\nu}$. Other moments, $\mu'_{n\nu}$, are used to simplify the numerical calculation of the moments about the mean, $\mu_{n\nu}$.

Verbally, we may state that the mean'serves as a convenient average, and the standard deviation measures the concentration of the variates about their mean.

A thorough discussion of the significance of the coefficient of skewness must be slightly deferred. We may say at this time merely that the value of $\alpha_{\mathfrak{s},\nu}$ depends obviously upon the value of $\mu_{\mathfrak{s},\nu}$ and that a glance at the last column of Table I will lend weight to the statement that a positive or negative skewness indicates a weighted preponderance of those variates which are considerably greater than, or less than the mean, respectively.

Finally, the operations of mathematical statistics, and even certain comparisons in descriptive statistics, require that we introduce the notion of a standard variate, defined as follows:

$$t_z = \frac{v_i - M_v}{\sigma_v}$$

SECTION II.

INDIRECT METHOD OF OBTAINING ELEMENTARY FUNCTIONS

10 One of the fundamental theorems of moments states that if a constant be added to, or subtracted from each variate of a series, the moments computed about the mean for the revised series will be

identical with the corresponding moments of the original series, By way of a simple example:

The mean of the following five variates is 138, consequently the values of $\bar{\nu}$ are as given below:

1	V ₂	ν,
1	133	-5
2	142	4
3	138	0
4	141	3
5	136	-2
Total	690	0

If we subtract, say, 130 from each of the variates, then for the revised series x_1 , x_2 , x_3 , x_4 and x_5 ,

	$M_o = 130$	*
i	x,	$\vec{x}_1 = x_1 - M_x$
1	3	- 5
2	12	4
2 3	8	0
4	11	3
5	6	- 2
Total	40	0

$$M_x = \frac{40}{5} = 8$$
, $M_v = 130 + 8 = 138$

The value subtracted, 130, is termed the provisional mean, and in general is designated by the symbol, M_o , It follows, therefore, that

$$(13) x_1 = v_1 - M_0$$

$$(14) M_{\nu} = M_o + M_{x}$$

(15)
$$\mu'_{n} = \frac{\sum x^{n}}{N}$$

$$\mu_{n} = \mu_{n} x$$

It is understood that the functions of x are defined in precisely the same manner as corresponding functions of v, that is

$$M_{x} = \frac{\sum x}{N}$$

$$\bar{x}_{i} = x_{i} - M_{x}$$

$$\mu'_{nx} = \frac{\sum x''}{N}$$

$$\mu_{n} \bar{x} = \frac{\sum \bar{x}''}{N}$$

etc.

11. Formula (13) follows from definition, although (14)—seemingly self-evident—needs proof. Thus by (13)

$$v_{i} = M_{o} + x_{i}$$

$$v_{2} = M_{o} + x_{2}$$

$$v_{3} = M_{o} + x_{3}$$

$$v_{N} = M_{o} + x_{N}$$

$$\sum v_{N} = NM_{o} + \sum x_{N}$$

Dividing both sides through by Nyields, by definition,

$$M_{\nu} = M_{o} + M_{x}$$
 Q. E. D.

Formula (15) is proved by means of (13) and (14) as tollows:

$$\vec{x}_z = x_z - M_x$$
 (Definition)

$$= (v_i - M_o) - (M_v - M_o)$$
 (Formulae 13 and 14)

$$= v_z - M_v$$

$$= \vec{v}_z$$
 Q. E. D.

Since

$$\mu_{n\nu} = \frac{\sum \bar{v}^{n}}{N}$$
 and $\mu_{n\nu} = \frac{\sum \bar{x}^{n}}{N}$

and we have just shown that always for corresponding values

$$\tilde{V}_{i} = \tilde{x}_{i}$$

the truth of (16) is apparent.

12. A comparison of tables III and I will reveal an advantage of the indirect over the direct method of calculation.

TABLE III				
i	Vi	$M_0 = 50$ x_i	x_i^s	x_i^s
1	51	1	1	1
2	49	- 1	1	- 1
3	60	10	100	1000
4	53	3	9	27
5	48	- 2	4	- 8
6	51	1	1	1
7	42	- 8	64	- 512
8	50	0	0	0
9	51		1	1
10	52	2	4	8
11	54	4	16	64
12	53	1 2 4 3 2	9	27
13	52	2	4	8
Total		16	214	616

$$M_{x} = \frac{16}{13}$$

$$\mu'_{zx} = \frac{214}{13} \qquad \mu_{z:x} = \mu'_{z:x} - M_{x}^{2} = \frac{2526}{13^{2}}$$

$$\mu'_{j:x} = \frac{616}{13} \qquad \mu_{j:x} = \mu'_{j:x} - 3\mu_{j:x}M_{x} + 2M_{x}^{3} = -\frac{21240}{13^{3}}$$

$$\sigma_{x} = \sqrt{\frac{2526}{13^{2}}} = 3.78918$$

$$\alpha'_{j:x} = \frac{\mu_{j:x}}{\sigma_{x} \mu_{z:x}} = -\frac{21240}{2526\sqrt{-2526}} = -.167303$$

$$M_{v} = 50 + \frac{16}{13} = 51 \text{ 3/13}$$

$$\sigma_{v} = \sigma_{x} = 3.78918$$

$$\alpha'_{j:y} = \alpha'_{j:x} = -.167303$$

It will be observed that the values

$$\mu_{z:x} = \frac{2526}{13^2}$$
 and $\mu_{s:x} = \frac{-21240}{13^3}$

agree exactly with those of Table I, namely

$$\mu_{z,v} = \frac{2526}{169}$$
 and $\mu_{z,v} = \frac{-21240}{2197}$

The following will illustrate an important advantage of the indirect method of determining the moments, $\mu_{\sigma,\nu}$. Let us suppose that after computing the values of M_{ν} , σ_{ν} and $\alpha_{\sigma,\nu}$ for the 13 variates of Table I we desire to delete the 13th variate, $\nu_{\sigma} = 52$, and compute the values of M, σ and α_{σ} for the remaining twelve variates.

By the direct method of Table I, the revision would be quite laborious, but by the indirect method of Table III, revisions are made easily, as follows:

$$N = 13 - 1 = 12$$
, $\sum x = 16 - 2 = 14$, $\sum x^2 = 214 - 4 = 210$, $\sum x^3 = 616 - 8 = 608$

Consequently

$$M_{x} = \frac{14}{12}$$

$$\mu'_{x:x} = \frac{210}{12} \quad \mu_{x:x} = \mu'_{x:x} - M_{x}^{z} = \frac{581}{6^{2}}$$

$$\mu'_{x:x} = \frac{608}{12} \quad \mu_{x:x} = \mu'_{x:x} - 3\mu'_{x:x} M_{x} + 2M_{x}^{y} = -\frac{1600}{6^{3}}$$

$$\sigma_{x} = \frac{1}{6} \sqrt{581} = 4.01732$$

$$\alpha'_{x:x} = \frac{-1600}{581} \sqrt{581} = -.114250$$

$$M_{v} = 50 + \frac{14}{12} = 51 \frac{1}{6}$$

$$\sigma_{v} = \sigma_{x} = 4.01732$$

$$\alpha'_{x:v} = \alpha'_{x:x} = -.114250$$

- 13. In a word, revisions of series arising from
- (a) increasing or decreasing the number of variates,
- (b) combining two or more series, or
- (c) correcting the original variates

together with the resulting smaller numbers that result by employing the indirect method, lead us ordinarily to avoid using the direct method of section I in computing the fundamental functions, mean, standard deviation and skewness.

In practice, one continually faces the problem of revision. Thus, in business statistics, publications serving as sources of data frequently are obliged to present revisions for estimates made in previous issues. Moreover, monthly and annual endeavors to bring statistics up to date require the addition of variates to series. In problems arising in the field of psychology and education, it may develop after preliminary calculations have been made that one or more observations of the original series must be deleted due to the presence of factors such as unusual physical or mental impairment at the time of examination, cheating, etc. Again, we may desire to combine the statistics for several distinct intervals, for several classes, or for various schools of a city or state, etc.

In the numerical examples above, calculations were made in terms of fractions, rather than decimals, in order to emphasize the fact that the direct and indirect methods will yield identical results. Ordinarily, decimals are employed, and the results will consequently differ slightly.

SECTION III

FREQUENCY DISTRIBUTIONS

- 14. In dealing with large groups of quantitative data, the computation of the elementary statistical functions and an appreciation of the variation in the magnitudes of the series of measurements is greatly facilitated by systematically presenting the data in the form of a frequency distribution. Such a distribution may present in tabular form
 - (a) each different variate observed, and
 - (b) the number of times that each different variate was observed in the investigation.

It is evident at the very outset, therefore, that if a frequency distribution merely reproduces precisely the same data that might otherwise have been listed serially, the values of M, σ and α_{σ} computed from such a frequency distribution must correspond exactly with the values of M, σ and α_{σ} that would have been obtained by the serial method. This serial method has been considered in the two preceding sections.

15. As an illustration, suppose that we consider the complete table from which the 13 variates, used in earlier computations, were taken. Since, according to the regulations, 17,000 numbers were withdrawn, we shall have 170 groups of one hundred numbers each, consequently 170 variates. These are listed below.

We shall see that one can compute the fundamental functions from the frequency distribution more readily than from Table IV. Again, certain phenomena are apparent at a glance at Table V, though by no means evident from a short inspection of Table IV. Thus the range of the variates is immediately observed in Table V, and the degree of symmetry in the distribution can be guessed rather accurately by one accustomed to computing the coefficient of skewness from distributions.

 $\label{eq:table_to_table} \textbf{TABLE IV}$ Number of even numbers in 170 samples of 100 numbers each.

II S Order of Call 1019

			U. S.	Order o	of Call,	, 1918			
51	42.	49	53	49	46	47	51	57	48
49	51	55	50	46	53	46	47	46	54
60	59	42	42	58	43	53	49	54	53
53	46	47	50	55	50	48	47	44	51
48	5 <i>7</i>	49	52	5 7	56	45	64	37	58
51	53	51	49	39	54	51	56	44	41
42	46	50	56	42	54	50	45	47	58
50	52	53	55	52	48	50	53	45	48
51	55	47	45	55	51	47	54	48	46
52	60	52	53	49	52	46	62	43	48
54	50	51	50	50	53	44	54	51	45
53	47	44	48	55	45	55	45	55	50
52	55	54	56	42	49	45	55	45	55
44	37	44	53	52	50	51	47	56	44
54	56 .	50	53	49	52	60	48	50	51
56	45	50	51	53	44	47	54	46	54
42	44	49	43	<i>57</i>	46	48	48	49	48

The frequency distribution for Table IV may be obtained readily by means of the "cross-five" method as follows:

TABLE V
Frequency Distribution for Data of
Table IV

ν	Tabulation	f
37 38 39 40 41 42 43 44 45	Tabulation	2 0 1 0 1 7 3 9
46 47 48 49 50 51		10 10 12 11 15 14
53 54 55 56 57 58 59	++++++++++++++++++++++++++++++++++++++	14 11 11 7 4 3 1
61 62 63 64		0 1 0 1

16. The above type of distribution should be differentiated from others in which it has been found advantageous to combine the variates

into classes and likewise to group together the corresponding frequencies. A distribution of grades will serve to illustrate this second type of distribution

TABLE VI

Distribution of Examination
Grades of 168 Students

Class	Frequency
0-, 10	0
11- 20	2
21- 30	3
31- 40	5
41- 50	7
51- 60	16
61- <i>7</i> 0	39
71- 80	45
81- 90	41
91-100	10
Total	168

Such a table does not represent *c.ractly* the original data in which the grades were recorded for each student as an integral number of per cents; nevertheless, it gives a very good idea of the general form of the distribution and enables us to compute the fundamental functions with a considerable degree of accuracy.

17. Discrete Variates. The distribution of Table V is obviously one in which the variates can, from their very nature, be expressed only as integers. A distribution of this type is termed one of discrete variates, or one of a discrete variable. Common illustrations of this type are to be found in distributions of the number of individuals in a family, the number of petals on a flower, the number of coins turning up heads, etc.

- 18. Continuous Variates. In the majority of distributions the variates by their nature may differ by infinitesimals, and the observed values, as recorded, are merely more or less accurate estimates of the true values, which never can be established with absolute accuracy by any method of measurement. Thus the variates in the case of heights may be correct to the nearest inch, one-hundredth of an inch, or even the one millionth part of an inch, etc., but theoretically it can be shown that the chances that any measurement of a continuous variable is exact is about one in infinity. A frequency table for the distribution of continuous variates must always, therefore, be one of grouped frequencies.
- 19. The fundamental differences between distributions which may be classified as
 - (a) discrete
 - (b) grouped discrete, and
 - (c) continuous

are of vital importance whenever the accurate determination of the mean, standard deviation, or skewness, is concerned. We shall now illustrate in detail and by numerical examples the procedure which should be followed in each case.

20. Frequency Distributions of Discrete Variates.

If 180 dice were thrown, and a throw of a six spot counted a success, then the *expected* frequencies of successes that would be obtained in one thousand such trials are as follows:

TABLE VII

		M _o = 30			
V	f	$\begin{bmatrix} x \\ x \end{bmatrix}$	x²	x^{s}	
15	1 1	-15	225	-3375	
16	1	-14	196	-2744	
17	2 4	-13	169	-2197	
18	4	-12	144 121	-1728	
19	6	-14 -13 -12 -11 -10	121	-1331	
20	10	-10	100 81	-1000	
21	16	- 9	81	- 729	
22	23	- 9 - 8 - 7	. 64	- 512	
23	31	- 7	49	- 343	
2 1	41	- 6 - 5	36	-1726 -1331 -1000 - 729 - 512 - 343 - 216 - 125	
25 26	51		25 16	- 125 64	
26 27	61 69	- 4	16 9	- 64 - 27	
27 28	75	- 4 - 3 - 2 - 1	4	- 8	
29	79	- 1	4 1	- 8 - 1	
30	80		ń	- 1	
31	77	1 1	0	0 1	
32	72	2	4	8	
33	64	3	ġ	27	
34	56	4	9 16	64	
35	46	5	25	125	
36	37	6	36	216	
37	29	7	49	343	
38	29 22	0 1 2 3 4 5 6 7 8 9	64	512	
39	16	9	81	729	
40	11	10	100	1000	
41	8	11	121	1331	
42	5	12	144	1728	
43	3	13	169	2197	
44	2	14	196	2744	
45 46	11 8 5 3 2 1	15 16	225 256	3375 4096	
40	1	10	2.00	1090	

 $\sum_{x} f = 1000 \qquad M_o = 30$ $\sum_{x} x f = -27 \qquad M_{\pi} = -.027$ $\sum_{x} x^2 f = 24687 \qquad \mu'_{2:x} = 24.687$ $\sum_{x} x^3 f = 11259 \qquad \mu'_{3:x} = 11.259$ $\mu_{2:x} = 24.6863 \qquad \sigma_x = 4.96853$ $\mu_{3:x} = 13.2586 \qquad \sigma_x \mu_{2:x} = 122.655$

 $\alpha_{s:x} = .108097$

 M_{ν} = 29.973, σ_{ν} = 4.96853, $\alpha_{s,\nu}$ = .108097

Explanation. Since this distribution of discrete variates is an exact reproduction of the original data listed serially, we know that the moments obtained by the frequency distribution method must be identical with those which would have resulted had the serial method been employed. In fact

(17)
$$\sum xf = \sum x,$$
$$\sum x^{2}f = \sum x^{2}, \text{ and}$$
$$|\sum x^{3}f = \sum x^{3}.$$

Numerically, $\sum x^n f$ is absolutely equivalent to $\sum x^n$. However, $\sum x^n f$ implies more; it indicates a brief and systematic method of attaining a total in which multiplication replaces repeated additions. Thus, in the serial method the value x = 5 would be added 46 times during the numerical determination of $\sum x$. In the frequency distribution method one multiplication, 5×46 , represents likewise the contribution of this variate to the total $\sum x f = \sum x$.

If a computing machine be not available, the headings of Table VII should be

V	f	x	xf	x^2f	x^{y}

and the totals $\sum x^n f$ obtained by a detailed process. With the aid of a computing machine the values of $\sum x^n f$ may be obtained readily by a continuous process, and it is necessary to record only the totals.

Since

$$(x+1)^3 = x^3 + 3x^2 + 3x + 1$$

it follows that

(18)
$$\sum (x+1)^3 f = \sum x^3 f + 3 \sum x^2 f + 3 \sum x f + \sum f$$

Formula (18) is known as Charlier's check. By associating with each value, f the value of x^3 appearing on the next lower line, the value of $\sum (x+1)^3 f$ may be obtained as readily as that of $\sum x^3 f$. Then if equation (18) be satisfied we may assume with a considerate

degree of confidence that all five summations have been accurately determined.

It follows that we may now write, employing (17),

(19)
$$(\mu'_{2:x} = \frac{\sum x^2 f}{\sum f}$$

$$\mu'_{3:x} = \frac{\sum x^3 f}{\sum f}$$

and observe that here, as in the serial method,

$$\mu_{2:x} = \mu'_{2:x} - M_x^2$$

$$\mu_{3:x} = \mu'_{3:x} - 3M_x \mu'_{2:x} + 2M_x^3$$

$$M_v = M_o + M_x$$

$$\mu_{2:v} = \mu_{2:x}$$

etc.

21 The Grouping of Discrete Variates. Occasionally frequency distributions of discrete variates contain so many different variates that some sort of grouping must be employed. Thus, the distribution of Table VII and the numerical calculations may be abbreviated as in Table VIII.

Explanation. The class mark of a class is defined as the crithmetic mean of the greatest and least variates that can occur within that class. In Table VII. we must have used the class marks as values of ν , but the use of a provisional mean, as has already been demonstrated, saves a large amount of labor.

TABLE VIII (Unadjusted)

Class	Class Mark	f	$M_o = 30, \lambda = 3$			
14-16	15	2	- 5			
17-19	18	12	- 4			
20-22	21	49	- 3			
23-25	24	123	- 2			
26-28	27	205	- 1			
29-31	30	236	0			
32-34	33	192	1			
35-3 <i>7</i>	36	112	2			
38-40	39	49	3			
41-43	42	16	4			
44-46	45	4	5			
$\sum f = 1000 \sum xf = -9 \sum x^2 f = 2817 \sum x^2 f = 405 \mu_{z x} = 2.81692 \mu_{z x} = .481058$	$ \sum_{x} xf = -9 \qquad M_{x} =009 \sum_{x} x^{2}f = 2817 \qquad \mu'_{2x} = 2.817 \sum_{x} x^{3}f = 405 \qquad \mu'_{3} = .405 \mu_{x} = 2.81692 \qquad \sigma_{x} = 1.67837 $					
	$\alpha_{sx} = .101750$					
$M_{\nu} = 29.973,$	$\sigma_{\nu} = 5.03$	3511, a	= .101750			

The class interval is defined as the common difference between two consecutive class marks. In the example of Table VIII, the class interval has been chosen as the unit of x, consequently M_x and σ_x are expressed in class units. If λ denotes the class interval for a distribution, then

(20)
$$M_{v} = M_{o} - \lambda M_{x}, \quad \text{and} \quad$$

(21)
$$\sigma_{\nu} = \lambda \, \sigma_{r}$$

Thus in Table VIII we had

$$M_{\nu} = 30 + 3(-009) = 29,973$$

 $\sigma_{\nu} = 3(1.67837) = 5.03511$

Since the skewness is an abstract number, completely independent of the unit employed

$$(22) \qquad \alpha_{3} = \alpha_{3}$$

22. Table IX shows in the second, third, and fourth columns the values of M_{ν} , σ_{ν} and $\alpha_{s\nu}$, which are obtained by various groupings of the data of Table VII. The grouping employed in Table VIII is listed as D(3:2) in Table 1X, the 3 denoting the number of different variates in each group, and the 2 designating the position of the first observed variate (i. e. $\nu=15$) in the first grouping. Thus the classes of the grouping symbolized by D(6:4) would be

12-17 18-23 24-29 etc.

From Table IX it may be observed that, although all of the values of \mathcal{M}_{ν} agree to a rather remarkable extent, nevertheless the unadjusted values of σ_{ν} reveal the fact that an increase in the class interval is as a rule accompanied by an increase in the associated standard deviation and a decrease in the corresponding skewness.

23. In computing the moments μ'_{x} , μ'_{x} , and μ'_{x} for distributions of grouped frequencies, the assumption is made that each variate in a class may be treated as being numerically equal to the class mark. A mathematical investigation that lies beyond the scope of an elementary course shows that in the computation of M_{x} and μ_{x} it is entirely legitimate to treat each variate after this manner, but the demonstration also reveals that grouping tends to introduce a systematic error into the value of μ_{x} . To eliminate this systematic tendency we find that one should introduce a correction and write

(23)

where k denotes the number of different variates that are grouped together in each class. Thus, in Table VIII we should have introduced as a correction

$$\frac{3^2 - 1}{12 - 3^2} = \frac{2}{27} = .074074$$

B L SHOOK

TABLE IX

Comparison of Adjusted and Unadjusted Values of σ_{ν} and $\sigma_{\!\!\!s\,\nu}$

					31	
(1)	(2)	(3)	(4)	(5)	(6)	
Grouping	M_{ν}	Unadj	usted	Adjus	sted	
		σ_{ν}	OX g. v	σ_{ν}	043 ,	
D(1:1)	29.973	4.969	.108	4.969	.108	
D(2:1)	29.972	4.992	.106	4.967	.108	
D(2:2)	29.974	4.995	.107	4.970	.108	
Avg. $\hat{D}(2)$	29.973	4.935	.106	4.968	.108	
D(3:1)	29,974	5.030	.109	4.963	.113	
D(3:2)	29.973	5.035	.102	4.968	.106	
D(3:3)	29.972	5.041	.101	4.974	.105	
$\overline{\text{Avg. }D(3)}$	29.973	5.035	.104	4.968	.108	
D(4:1)	29.968	5.089	.096	4.964	.103	
D(4:2)	29.976	5.094	.104	4.970	.112	
D(4:3)	29.976	5.078	.104	4.970	.112	
D(4:4)	29.972	5.096	.09૪	4.970	.105	
$\overline{\text{Avg. }D(4)}$	29.973	5.089	.100	4.968	.108	
D(5:1)	29.975	5.160	.105	4.962	.118	
D(5:2)	29.975	5.170	.097	4.972	.109	
D(5:3)	29.970	5.167	.094	4.970	.105	
D(5:4)	29.970	5.163	.085	4.966	.096	
D(5:5)	29.975	5.170	.100	4.972	.112	
Avg. $\hat{D}(\bar{5})$	29.973	5.166	.096	4.968	.108	
D(6:1)	29.974	5.247	.107	4.961	.126	
D(6;2)	29.976	5.256	.099 '	4.971	.117	
D(6:3)	29.972	5.259	.087	4.974	.102	
D(6:4)	29.974	5.250	.085	4.965	.100	
D(6:5)	29.970	5 251	.080	4.966	.094	
D(6:6)	29.972	5.259	.091	4.974	.108	
Avg. $\hat{D}(0)$	29.973	5.254	.092	4.968	.108	
D(7:1)	29.977	5.347	.097	4.959	.121	
D(7:2)	29.971	5.347	.093	4.958	.117	
D(7:3)	29.972	5 358	.087	4.971	.109	
D(7:4)	29.966	5.354	.070	4.966	.087	
D(7:5)	29.974	5.361	.088	4.974	.110	
D(7:6)	29.975	5.360	.086	4.973	.108	
D(7:7)	29.976	5.365	.084	4.978	.105	
Avg. $D(7)$	29.973	5.356	.086	4.968	.108	

This would have resulted in the following revision:

$$\mu_{zx} = 2.74285$$
 $\sigma_{x} = 1.65616$
 $\mu_{3x} = .481058$
 $\sigma_{x}\mu_{zx} = 4.54260$

$$\alpha_{sx} = .105899$$

$$M_{r} = 29.973, \qquad \sigma_{r} = 4.96848, \qquad \alpha_{s,r} = .105899$$

Again, for k = 7 we would use

$$\mu_{2,x} = \mu_{2,x}' - M_x^2 - \frac{7^2 - 1}{12 \cdot 7^2} = \mu_{2,x}' - M_x^2 - \frac{4}{49}$$

When the simple adjustment of formula (24) is made, Table IX shows that the systematic errors in the values of σ_{ν} and $\alpha_{g_{\nu}}$, caused by grouping, are eliminated. Thus in columns 5 and 6 the averages for each group are constant, consequently the errors remaining are accidental variations, which, due to a complete lack of compensation, still remain, but such discrepancies are not serious.

It should be noted that for distributions of discrete variates in which no grouping occurs, as in Table VII, the correction vanishes, since for k=1

$$\frac{1-1/k^2}{2} = 0$$

24. Frequency Distributions of Continuous Various. The tollowing will serve as an illustration of the method of obtaining the fundamental functions for a distribution of continuous variates.

TABLE X

Weights of 1000 Female Students
(Original Measurements Made to Nearest 1/10 lb.)

Class (Pounds)	Class Mark $\lambda = /0$	f	$M_o = //4 95$ x			
70- 79.9	74.95	2	A			
80- 89.9	84.95	16	2			
90- 99.9	94.95	82	2			
100-109.9	104.95	231	-4 -3 -2 -1			
110-119.9	114.95	248	0			
120-129.9	124.95	196	1			
130-139.9	134.95	122	2			
140-149.9	144.95	63	3			
150-159.9	154.95	23	4			
160-169.9	164.95		5			
170-179.9	174.95	5 7	6			
180-189.9	184.95		7			
190-199.9	194.95	2	8			
200-209.9	204.95	1	9			
210-219.9	214.95	1	10			
Total		1000				
$\Sigma f = 1000$	M_o	=114.95				
$\sum f = 1000$ $\sum xf = 379$ $\sum x^2f = 3089$			9 class units			
$\sum_{x^2} x^2 = 3089$	μ <u>΄</u> -	= 3.08	9			
$\sum x^3 f = 8131$			1			
$\mu_{zx} = 2.86203$						
$\mu_{sx} = 4.72769$	σ_{x} μ	1 _{2 x} = 4.84				
a = .976424						
$M_{\nu} = 118.74 \text{ lbs.},$	$\sigma_{\nu} = 16.9175$	tlbs.,	$\alpha_{3.v} = .976424$			

Explanation: The class mark has previously been defined as the can of the greatest and least variates that can be included in a class. Since the original measurements were made to the nearest tenth of a pound, the true limits of the 150-159.9 class are 149.95-159.95, and

their mean is 154.95, which accordingly is the class mark in this instance. If the original measurements had been made to the *nearest* pound, then the classes would be written

150.0-159.0 160.0-169.0

and the true limits of the 150.0-159.0 class would be 149.5 and 159.5 pounds respectively, and the corresponding class mark would be 144.5 lbs. It is apparent, therefore, that a table of continuous variates should specify clearly the accuracy with which the original measurements were made, for the values of the class marks and consequently that of the mean, hinges on this point.

It will be noticed that in this example the class interval has again been taken as the unit of x, and this fact must be taken into consideration in determining the value of M_r and σ_r .

Since the assumption is also made that the class mark may represent the magnitudes of all variates occurring in that class, the question of correcting the second moment, μ_{xx} again arises. Since in each class of a distribution of continuous variates an infinite number of different variates may occur, the correction is in this case

Therefore, corresponding to formula (24), we must write, in order properly to adjust the second moment of a distribution of continuous variates

(25)
$$\mu_{z:x} = \mu_{z'x}^{\prime} - M_x^2 - \frac{1}{12}$$

As before, neither the values of M_x nor $\mu_{g_{xx}}$ require adjustment.

Summary of Section III. The frequency distribution is a device for presenting an extensive series of variates in a systematic and compact form. Not only are the phenomena of aggregation more readily perceptible by this method of presenting the data, but the calculations of the fundamental functions are facilitated.

The formulae for obtaining the mean, standard deviation and skewness are, with the exception of a single adjustment that may arise, identical with those employed in the serial method. One need only observe that

$$N = \sum f$$

$$\sum x = \sum xf$$

$$\sum x^2 = \sum x^2f$$

$$\sum x^3 = \sum x^3f$$

The adjustment referred to is that we should in general regard

$$\mu_{z:x} = \mu'_{z:x} - M_x^2 - \frac{j - 1/k^2}{12}$$

For ungrouped distributions of discrete variates this correction vanishes, since in this instance k = 1. For distributions of continuous variates, since here k would equal infinity, the correction is numerically equal to 1/12.

These corrections will remove systematic errors in the standard deviation and skewness that arise from the phenomenon of grouping complete frequency distributions.

Editor's Note: This abstract of Elementary Mathematical Statistics will be continued in the May issue of the Annals.

BAYES' THEOREM

Вy

JOSEPH BERKSON

As for all established sciences, the typical problems of practical statistics have become inveterately attached to their several neat and convenient formulary solutions. To recall consideration of the basic reasoning underlying every-day statistical practice that applies to an elementary question may appear in the nature of an unnecessary disturbance of prevailing peace. If the experience of the writer is typical, however, vagueness or dubiousness of the premises inherent in a rule applied by rote will emerge to plague one in the conclusions, and a periodic return to fundamentals is as salutary for mental comfort as for the integrity of science itself. In what follows, an attempt will be made to go over the ground covered by Bayes' Theorem, and to point out its import for sound statistical reasoning. No claim is laid to mathematical originality at any specific points, but in the approach and synthesis will be found, we hope, a measure of instructive novelty,

A large class of statistical problems is typified in the following. A standard machine is known, from long experience, to produce a certain fraction P of imperfect products. What is the probability that in the next issue of n products, a fraction p will be imperfect?

We now present a related but not identical question. There is no available knowledge concerning the general practice of a machine; n products are examined and a fraction p found to be imperfect. What is the probability that the machine turns out generally a fraction p of imperfect products? The distinction between the two questions may be schematized as in Figure 1.

 From the Department of Biometry and Vital Statistics of the School of Hygiene and Public Health (Peper No. 125); and the Institute for Biological Research of the Johns Hopkins University.

The values P_1 , P_2 , P_3 , P_4 represent serially all the various fractions of imperfect products which might characterize particular machines, each one, let us say, determined by some definite combination of mechanical defects. Values p_1 , p_2 , p_3 , etc., are the fluctuating fractions of imperfect products that might appear in the samples produced by these machines. Connected by arrows with P_1 are the randomly varying values of p that might result from P_2 , with P_2 those that might result from P_2 , etc., the weight of the arrows being proportional to the probability of the particular p concerned. It is to be noticed that each p may give rise to any of a number of p's and that some of the p's may result from any of a number of p's.

The first question in terms of the diagram is: "Given P_1 , how probable is it that P_2 shall result?" The second is: "Civen P_2 , how probable is it that P_1 has been its source?" Answering the first, we calculate in the realm of the P's connected with P_1 . In the second we calculate in the realm of the P's connected with P_2 .

An answer to the first is given directly in terms of our every-day statistical reasoning. We say that the p's which result from R can be adequately described as a normal distribution with $\sigma = \sqrt{\frac{P(f-P)}{n}}$. and from this the probability of any particular p calculated. The answer to the second is more difficult, and was given in general terms first by Bayes (1) in the theorem known by his name. Bayes' Theorem is not frequently used in applied statistics; yet the problems that

arise in practical situations would often seem to demand just such an answer as it provides. More often than not do we have a specific sample and inquire about the probable character of the universe from which it was drawn, in contra-distinction to the situation in which the universe is known, and the questions concern the possible samples.

The method of presenting the theorem here given will not follow rigidly any historical demonstration. Actually the calculation quantitatively of an "inverse probability" or the "probability of causes," was first given by Bayes. But he considered a purely geometric set-up and his solution was in terms of this conception. By implication he utilized a general principle first clearly stated later by Laplace, and furthermore, Laplace generalized the solution still more by arguing from the probability of a cause given by a particular sample, to the probability of the next sample. With this realized, then, that Bayes is to be credited with the original demonstration and Laplace for an important extension, we may proceed to a demonstration which is not exactly that of either.

I. Problem. We have an urn containing three balls. Each ball is colored black or white. and each color is equally likely. We draw one ball and it is black. What are the probable contents of the urn? We argue—the following are the possibilities:

Ι	ŢΙ	III	IV
www	wwb	wbb	bbb

All of these possibilities, we say, are equally likely a priori and we have for the probabilities of the sample the following:

 P_a I, the probability of a black sample from I = 0 P_a II, the probability of a black sample from II = 1/3 P_a III, the probability of a black sample from III = 2/3 P_a IV, the probability of a black sample from IV = 3/3

where P_{σ} I is the probability of the sample σ being drawn from urn I, P_{σ} II from urn II, etc. We say now that the relative probabilities of the various urns are in proportion to the probabilities of the sample drawn, and we have

(a)
$$PI:PII:PIII:PIV = 0:1/3:2/3:3/3$$

where PI is the probability that, having drawn the ball, urn I was its source, PII that urn II was the source, etc.

Also, since the ball must have been drawn from some one of the urns, the total probability of one or another of the urns is unity and we have

(b)
$$P I + P II + P III + P IV = 1$$

From (a) and (b) we have therefore

$$PI = 0$$

 $PII = 1/6$
 $PIII = 2/6$
 $PIV = 3/6$

We now extend the problem to the case where the a priori probabilities of the various possible urns are not equal.

Suppose we say that there are many urns of the description I, II, III, IV in a large chamber, and that these are in proportion I:II:III:IV=1:2:3:4. We now pick an urn at random and draw from it a ball, which turns out to be black. What is the probability that the urn is of some particular description? Proceeding as before, we have for the probabilities of the sample being drawn from the various urns the following:

$$p_5 I = 1/10 \times 0 = 0$$
 (Probability of urn x probability of sample)

 $p_5 II = 2/10 \times 1/3 = 2/30$
 $p_5 III = 3/10 \times 2/3 = 6/30$
 $p_5 IV = 4/10 \times 3/3 = 12/30$

where p_s I is the probability that such a sample s be drawn from urn I, etc.

And again on the principle that the probabilities of the urns are in proportion to the probabilities of the sample drawn, we have

$$PI + PII + PIII + PIV = 1$$
.

Therefore

$$PI = 0$$

 $PII = 2/20$
 $PIII = 6/20$
 $PIV = 12/20$

We shall now generalize this solution.

Let π_1 , π_2 , π_3 , etc. be the *a priori* probabilities of the various possible universes from which a sample is to be drawn. Let p_1 , p_2 , p_3 , etc., be the probability of the sample being drawn from the respective universes. Then, a sample s having been drawn, the probability that its source is universe p is given by

$$P_r = \frac{\pi_r p_r}{\sum \pi p}$$

If all the universes are equally likely (our first case above), $\pi_1 = \pi_2 = \pi_3 = \pi_4$ and we have

$$(1) P_r = \frac{p_r}{\sum P}$$

If the equally probable universes are infinite in number, the P's varying by infinitesimal gradations from zero to unity, and p may assume any positive value less than 1, we may extend the last formula (1) by use of the calculus as follows:

Let x = any possible P between 0 and 1. From a universe x I draw a sample containing r + s individuals, designated hereafter as a sample (r, s). The probability that it will contain r successes and s failures is given by

$$P_{(r,s)} = E_{r,s} x^r (/-x)^s$$

where $P_{(r,s)}$ is the probability that the sample (r,s) coefficient of the (r+1)th term in the Bernoulli expansion = $\frac{(r+s)!}{r!s!}$.

The probability of the sample of (r, s) coming from a universe

the P of which lies between x and (x + dx) is therefore

$${}_{x}^{x+dx}P_{(r,s)} = E_{r,s} x^{r}(/-x)^{s}dx$$

(2)
$${}^{b}P_{(r,s)} = E_{r,s} \int_{a}^{b} x^{r} (1-x)^{s} dx$$

and the probability that x is between a and b is therefore as in (1)

(3)
$${}_{a}^{b}P = \frac{\int_{a}^{b} x^{r}(1-x)^{s} dx}{\int_{a}^{b} x^{r}(1-x)^{s} dx}$$

where $_{a}P$ is the probability that the universe trum which the sample (r,s) was drawn has a P between a and b. This is Bayes' Theorem in terms of the integral calculus.

Now, we ask the further question, what is the probability of a second sample containing m successes and n failures being drawn?

If x be the p of the universe from which the sample (m, n) is drawn, and if P may vary from 0 to 1 we have analogously with (2)

where $P_{(m,n)}$ is the probability that a sample (m,n) be drawn from universes whose P's vary between 0 and 1, and

$$E_{m,n} = \frac{(m+n)!}{m!n!}$$

1 Designated hereafter as the sample (m, n)

The probability of the event (m, n) occurring from any particular universe is given by the product of the probability of that universe and the probability of the event. The total probability of the event (m, n), i. e., the probability that the event (m, n) occurs at all from any universe, is, therefore, given by the product of form (3) with 0 and 1 substituted for a and b and (4) as follows:

(5)
$$P_{(m,n):(r,s)} = \frac{(m+n)!}{n!m!} \int_{0}^{1} x^{n+m} (1-x)^{s+n} dx$$

where $P_{(m,n):(r,s)}$ is the probability of a second sample (m,n) after a first sample (r,s) has been drawn.

This is Laplace's extension of Bayes' Theorem, somewhat modified.

Bayes' Solution.

It will be illuminating to derive this result by the method of Bayes. We shall follow his proof except to simplify his notation and to use the integral calculus where he used geometric demonstration.

ABCD is a square billiard table. A ball is thrown and comes to rest at a', through which a line is drawn parallel to AC. A second ball is thrown; if it stops to the left side of the line a', we designate a success, to the right, a failure. Before the first ball is thrown, what is the probability of the second ball succeeding r and failing 5 times in r plus 5 trials?

If the first ball comes to rest at x', the probability of a successful second throw is $\frac{Cx'}{CD} = p$, and of failure $\frac{Dx'}{CD} = q$. The probability of x successes and x failures with the first ball at x is then $\frac{(x+s)!}{n!s!} p^n q^s$.

Let us erect at each point x'along CD a distance y', so that

$$\frac{y'}{CD} = \frac{(r+s)!}{r!s!} p^r q^s$$

and connect the summits forming a figure as shown in Figure 2. At each point, of course, y' will be different because $p = \frac{Cx}{CD}'$, and $q = \frac{Dx}{CD}'$ will be different, but for any particular case, r and s remain constant.

The probability that the first ball shall fall between a and (z+dx) is $\frac{dx}{AD}$ and that the second ball shall therefore succeed r and fail s times is $\frac{y}{CD}$. That both shall happen is therefore

$$\frac{y'}{CD} \times \frac{dx'}{CD}$$

and if x is to be between a' and b', the total probability is

$$P_{(r,s)} = \frac{1}{CD^2} \int_{\mathbf{a}'}^{\mathbf{b}'} y' dx'$$

where ${}_{\sigma}^{b}P_{(r,s)}$ is the probability that the first ball fall between a and b' and that a ball thrown subsequently r+s times, succeed r and fail s times.

But CD^2 = Area of AD and $\int_{a'}^{b'} y' dx' =$ Area of the shaded portion, a'Jb'. Therefore

(7)
$$P_{\mathbf{A}'}(\mathbf{r}, \mathbf{s}) = \frac{\mathbf{Area} \ \mathbf{a}' \mathbf{J} \mathbf{b}'}{\mathbf{Area} \ \mathbf{A} \mathbf{D}}$$

The probability that the first ball fall between C and D and thereafter there occur r successes and s failures is similarly $\frac{Area\ CJD}{Area\ AD}$. But the first ball must fall somewhere between C and D; therefore the total probability of the second throws having r successes and s failures is given by

$$(8) P_{(a,s)} = \frac{Area CJD}{Area AD}$$

With this established, the analysis proceeds.

Given the result of a series of throws to be r successes and s failures, what is the probability that the first ball has fallen between a' and b'? This we may obtain by the use of the solution already derived and the principle of compound probability.

Let x be the desired probability that the first ball fell between a' and b'. We have seen that the probability of r successes and s failures in the second series of throws is

therefore the probability of the first falling between a' and b' and the experience (r, s) following is

But we have shown that this combined probability is equal to

Therefore

(9)
$$x = \frac{Area \ a'Jb'}{Area \ CJD}$$

This step is very elaborately proved in Bayes' original paper by a circuitous demonstration.

This is Bayes' Theorem, as its author gives it. The additional part of his work is concerned with the quantitative estimate of the ratio.

We may now show that his solution is the same as that given in (3), as follows:

(10)
$$y' = CD \times E_{r,s} \left(\frac{x'}{CD}\right)^{r} \left(1 - \frac{x'}{CD}\right)^{s} \qquad \text{from (6)}$$

where

x' distance from C to x'

$$\mathcal{E}_{r,s} = \frac{(r+s)!}{r!s!}$$

Now

$$a' = a \times CD$$

 $b' = b \times CD$

a and b having the meaning of equation (3). Assume the relationship

$$(11) x' = CD \times x$$

$$(12) dx' = CD \times dx$$

Then

Area aJb =
$$\int_{x'=a'}^{x'=b'} y'dx'$$

$$= CD^2 \times E_{r,s} \int_{x=a}^{r_s \cdot b} x'(1-x)^3 dx$$

(Substituting from (11) and (12)).

Similar by

Area
$$C \cup D = CD^2 \times E_{r,s} \int_{x}^{x=1} x^r (1-x)^s dx$$

Therefore

Area
$$\frac{dJ\dot{D}}{CJD} = \int_{0}^{s} x^{r}(1-x)^{s} dx$$

which is the same as formula (3) previously derived.

To be directly applicable to statistical problems formula (5) must be numerically evaluated. This is accomplished exactly for most practical instances only with a great amount of labor, and methods of approximation have been resorted to. For a few simple special cases the solution may be easily derived as follows:

An event has been tried N times with p successes and q failures. What is the probability that in the next single trial it will succeed?

Applying formula (5) to this instance, we have

$$r = p$$
 $m = l$
 $s = q$ $n = 0$

and the desired probability is given by

$$P = \int_{0}^{1} x^{p+1} (1-x)^{q} dx$$

$$\int_{0}^{1} x^{p} (1-x)^{q} dx$$

Now

$$\int_{0}^{r} x^{a} (1-x)^{b} dx = \frac{a!b!}{(a+b+1)!}$$

From which we have

$$P = \frac{m+1}{m+n+2}$$

So that if nothing is known concerning an event except that it has been tried three times and succeeded twice, the probability that it will succeed in the next trial is 3/5, not 2/3 as the more usual procedure would indicate. Again, if an event has occurred a thousand times without a failure, and we know concerning it nothing except that fact, the probability that it will fail next instance is 1/1002. If an event has never been tried at all, the probability that it will succeed on the first trial is 1/2.

An event has been tried N times and succeeded each instance. What is the probability that in the next d trials it will again succeed each time? Here

$$r = N$$
 $m = d$
 $s = 0$ $n = 0$

and the desired probability is given by

$$P = \int_{0}^{1} x^{N+d} dx$$
$$= \frac{N+1}{N+d+1}$$

From this we conclude that if an event has succeeded 25 times and never failed, the probability that in 25 further trials it will again not fail even once is 26/51, or in general if an event has never failed in M trials, the probability that M further trials will yield no failure is about 1/2.

Discussion.

To precisely what position in the methodology of applied sta istics Bayes' Theorem will eventually become adjusted, it is impossible at this point in its development to say with certainty. The literature on the subject, as soon as it leaves the realm of purely hypothetical situations, is rife with disagreement, and clarification remains a contempo ary problem. In this brief presentation, no attempt can be made to adequately summarize the various views concerning the questions at issue. We may, however, consider a few points that have disciplinary value for statistical thinking rather than any immediate practical utility.

It is basic to the aims of statistical calculations to estimate the

probability of given experiences from assumptions of pure random variation. A consideration of the logic involved in the development of Bayes' Theorem is useful in bringing out the inadequacy of the reasoning by which our most ordinary statistical procedures attempt to accomplish this. If, having observed a probability p, we estimate the standard deviation of succeeding samples of n by $\sqrt{\frac{pq}{n}}$, we imply tacitly that in the universe from which the sample was drawn, the chance of a success is the p of our observation. The reasoning leading to, and formula (3) itself, indicate how unwarranted this is. Our knowledge of the universe which generated the sample is never given with certainty by the sample. Indeed, formula (3) states a probability for any particular universe that may be assumed. With only a sample as the source of knowledge, and without Bayes' Theorem, we have no clue as to the nature of the generating universe. if we do not know the universe, how are we to calculate the character of its samples? One answer is to take refuge in formula (5), i. e. use Bayes' Theorem. As a practical solution of the difficulty this has two major objections: first, there are no existing tables for making the necessary calculations without prohibitive arithmetic labor; second, even if the evaluation could be effected there are reasons to doubt the validity of its application. For the formula in question rests on the assumption that all the probabilities from zero to unity which might characterize the universes from which we draw samples are a priori equally likely, the socalled assumption of the equal distribution of ignorance. Now this is an exceedingly questionable assumption, and it is partly on these grounds that Keynes rejects outright the possibility of applying probability to actual experience. It must be admitted, we think, that it is difficult to see what there is to justify the assumption that every sort of general universe from which arise the events of experience is equally likely. Would it not appear the more reasonable hypothesis that these universes are themselves "events," samples of some larger universe; and why should this be extremely different in the distribution of its probabilities from the universes that we ordinarily meet? There are writers, however, who, admitting that the assumption is to be questioned, believe it may be subjected to experimental test, and have essayed to actually sample at random the probabilities that characterize the universes of our experience. It would be impertinent to assert that an experimental investigation is bound to be futile, but the utility of this sort of procedure seems to us exceedingly dubious. We doubt indeed that any clear meaning can be assigned to the concept of "the universes of our experience," of which random samples are to be obtained. But granting the existence of such a

distribution of a priori probabilities we doubt the relevancy of its estimation to any practical problem. In any actual investigation, we deal with a definite slice of possible experience; an anthropologist is not concerned with the universes dealt with in the investigation of an economist or an epidemiologist. If a priori probabilities are of interest to him, they are those that obtain in his peculiar world of observation. It appears to us quite as wide of the mark aimed at, to call in a formula which obtains its a priori probability from experience in general, as to obtain it from the unique experience at hand, and indeed it may be argued that, as between the two, the latter is the more reasonable.

What then does all this come to? Does it mean that the entire structure of established statistical procedure rests on quicksand, to be toppled over by anyone armed with a reading of Bayes' Theorem? We are inclined to the belief held by Keynes that, so far as logic is concerned, this is substantially true. As regards this, however, it is at bottom in no worse plight than any current scientific procedure when its fundamental assumptions are hard pressed. But we do not rest the matter here. All this admits is that applied statistics, like all applied science, is not founded on unquestionable premises and invulnerable logic. It is perfectly consistent to add that in general its formulae are good approximations. How good? This is a question permitting no dogmatic comprehensive answer. Differently good for different situations. Some idea of the degree of approximation may be obtained for given assumed conditions by direct calculation. may be shown, for instance, that under certain conditions results obtained by way of Bayes' Theorem or the more usual "normal" distribution render not very different results, and these conditions, indeed, approach the ones we most frequently encounter. But, in general, a more satisfactory answer is furnished in the pragmatic consideration that our formulae have in fact been widely used and experience has not violated their anticipations. This is the fact that we would stress, because it throws into relief the experimental as opposed to the mathematical foundation of statistics. Comforted on the one hand that experience in general supports our procedures, the considerations we have elicited in this discussion will emphasize equally their shifting approximation. The clear minded and careful worker will keep this constantly in mind and shun literal interpretation of conclusions drawn from formulae applied to extreme cases. No scientist worth his salt will permit himself the use of formulae the premises of which he has not examined. But the statistician, because of the great variability of the data with which he is likely to deal, stands in special need of this precaution. Where statistics run counter to what appears to be the general experience, it is a wise rule to re-examine the statistics rather than to indict forthwith the dependability of the experience. Such an attitude would modify considerably much that is found in current statistical literature and it would modify it in the direction of greater soundness.

REFERENCES

- 1. Bayes, Thomas. Phil. Trans., 1763, LIII, 370; 1764, LIV, 296.
- 2. Coolidge, Julian L. Probability, Chapter Vl.
- 3. DeMorgan, Augustus. An Essay on Probabilities, Chapter III.
- 4. Keynes, Maynard. Treatise on Probability, Chapter XXX.
- 5. Pearson, Egon. Biometrika, 1925, XVII, 388.
- 6. Pearson, Karl. Phil. Mag. 1927, 13, 365.
- Todhunter, I. A History of the Mathematical Theory of Probability, Chapter XIV.
- 8. Wishart, John. Biometrika, 1927, XIX, 1.

A MATHEMATICAL THEORY OF SEASONALS

Вy

STATISTICAL DEPARTMENT, DETROIT EDISON Co.

The graph of any time series may be assumed to be a compound curve which is dependent upon the following factors:

Secular trend, f(x)

Cycle, c(x)

Seasonal s(x), and

Residual errors, ϵ_{\star}

If we designate the xth term of the observed time series by ay_x , we have that

(1)
$$y_x = f(x) \cdot c(x) \cdot s(x) + \epsilon_x$$

It also follows that the standard error, based on our hypothesis, is

(2)
$$\sigma_{\bullet} = \sqrt{\frac{\sum \epsilon_{x}^{*}}{N}}$$

In making predictions, we desire that the standard error of estimate be a minimum, and this requires that $\sum \epsilon^*$ be also a minimum.

In dealing with data covering a period of years, i. e. 12 n months, we observe that

$$\sum e^{z} = \left[y_{i} - f(I) \cdot c(I) \cdot s(I) \right]^{z}$$

$$+ \left[y_{2} - f(2) \cdot c(2) \cdot s(2) \right]^{z}$$

$$+ \left[y_{i} - f(I2) \cdot c(I2) \cdot s(I2) \right]^{z}$$

$$+ \left[y_{i} - f(I2) \cdot c(I2) \cdot s(I2) \right]^{z}$$

$$+ \left[y_{i} - f(I2) \cdot c(I2) \cdot s(I2) \right]^{z}$$

$$+ \left[y_{i} - f(I2) \cdot c(I2) \cdot s(I2) \right]^{z}$$

$$+ \left[y_{i} - f(I2) \cdot c(I2) \cdot c(I2) \cdot s(I2) \right]$$

$$+ \left[y_{i} - f(I2) \cdot c(I2) \cdot c(I2) \cdot s(I2) \right]$$

$$+ \left[y_{i} - f(I2) \cdot c(I2) \cdot c(I2) \cdot s(I2) \right]$$

Let us now find the values of $\mathfrak{I}(1)$, $\mathfrak{I}(2)$, . . . $\mathfrak{I}(12)$ that will minimize the standard error of estimate. Placing the partial derivative of $\Sigma \mathfrak{E}^{\mathfrak{I}}$ with respect to $\mathfrak{I}(1)$ equal to zero, yields

$$\frac{\partial}{\partial s I} = 2 \left[y, -f(I) \cdot c(I) \cdot s(I) \right] \left[-f(I) \cdot c(I) \right]$$
$$+ 2 \left[y, -f(I) \cdot c(I) \cdot s(I) \right] \left[-f(I) \cdot c(I) \right]$$

$$+2[\cdot, y_{n-n}-f(|2n-1|)\cdot c(|2n-1|)\cdot s(|)][-f(|2n-1|)\cdot c(|2n-1|)]=0$$

Solving
$$s(t) = \frac{\sum_{o} y_{x} f(x) \cdot c(x)}{\sum_{e} f(x) \cdot c(x)}$$

where we understand that $\sum_{x}^{(i)} y_x \cdot f(x) \cdot C(x)$ means the sum of the products of y_x , f(x) and y_x , f(x) and y_x taken from the first month of each year, and similarly for $\sum_{x}^{(i)} f(x) \cdot C(x)$

The partial derivative with respect to s(2) yiel

$$s(2) = \frac{\sum_{0}^{(2)} \mathcal{Y}_{x} \cdot f(x) \cdot c(x)}{\sum_{0}^{(2)} f(x) \cdot c(x)}$$

and in fact

(3)
$$s(i) = \frac{\sum_{o}^{(i)} y_{x} \cdot f(x) \cdot c(x)}{\sum_{o}^{(i)} f(x) \cdot c(x)}$$

Thus the seasonal for July is a function only of the various July values of the observed series, the secular trend and the cycle factors.

Since both f(x) and c(x) are smooth functions, it follows that their product, which we shall designate by $\psi(x)$, represents a smooth function which is merely that part of the time series which would remain if the accidental and seasonal fluctuations were eliminated. The formula for the seasonal index for the *i* th month may therefore be written

(4)
$$s(i) = \frac{\sum_{o}^{(i)} y_{x} \cdot \psi(x)}{\sum_{i}^{(i)} \psi^{2}(x)}$$

At this point we may recall the fact that in fitting a curve of the type $y = k \psi(x)$ to observed data by the Method of Least Squares,

$$K = \frac{\sum_{o} y_{x} \cdot \psi(x)}{\sum_{i} \psi^{2}(x)}$$

whereas if the Method of Moments be employed

$$K = \frac{\sum_o \mathcal{Y}_x}{\sum \psi(x)}$$

Experience in various statistical applications demonstrates that the two methods yield approximately the same results. Borrowing from this experience, we shall choose the simpler form and write instead of formula (4)

(5)
$$s(i) = \frac{\sum_{i=1}^{(i)} y_x}{\sum_{i=1}^{(i)} \psi(x)}$$

So far as theoretical considerations are concerned (4) may be superior to (5), but the fact that the latter formula enables us to obtain seasonals by a method far simpler than would result by using formula (4), requires that we choose (5) in preference to (4). Ordinarily the difference in results obtained by using both formulae is less than one-half of one per cent.

Verbally, formula (5) states merely that the seasonal index for any month is the ratio of the total of the variates for the month in question to the total that would have been experienced if neither accidental nor seasonal influences were present.

We now are forced to find a simple method of obtaining values of $\Sigma \psi(x)$.

Let T_{i-2} , T_{i-2} , T_{i-1} , T_i , T_i , T_{i+1} , T_{i+2} , and T_{i+3} denote the total production for seven consecutive years. If we assume that the effect of both seasonal influences and accidental or residual fluctuations is to shift the production from one month to another, but nevertheless to leave the total production for each year practically unchanged, then a smooth curve passing over the seven year period, and preserving the annual totals, may be assumed to afford a representation of $\psi(x)$. We, therefore, determine the equation of a parabola of the sixth degree in such a manner that the areas under this curve for seven equidistant unit intervals are equal respectively to $T_{i-2}, T_{i-2}, \cdots T_{i+2}, T_{i+3}$. Fitting six degree parabolae to successive seven year intervals it is possible to deal with a time series of any length.

By adding together the interpolated values for all the January values of $\psi(x)$, and similarly for the other months, we can show that

(6)
$$\sum_{i=1}^{(i)} \psi(x) = c_{i,i} T_i + c_{x,i} T_z + c_{x,i} T_z + c_{x,i} T_z + c_{x,i} \left[T_x + T_x + \cdots T_{x-x} \right] + c_{x,i} T_{x-x} + c_{x,i} T_{x-x} + c_{x,i} T_{x-x} + c_{x,i} T_{x-x}$$

where the values of the coefficients are as given in Table I.

In order to compare the efficiency of this method with another method of computing seasonals, it is necessary that each formula be tried out on some series for which the true values of the seasonal indices are known. We know in advance, of course, that there exist many satisfactory methods of obtaining seasonals, but we also desire to know something about the amount of time that each method requires as well as their relative accuracy.

The theoretical series, on which we shall try out two methods of computing seasonals, is built up from data taken from an article, "Statistical Analysis and Projection of Time Series," written and published by the statistical division of the American Telephone and Telegraph Company. After eliminating from the *Production of Pig Iron* series both trend and seasonal influences, the factors of Table II remained. We shall consider these, therefore, as the combination of "Cycle and residual" factors.

Although smoothing this data by a proper mathematical formula would eliminate the residual errors, nevertheless such procedure would introduce a bias in favor of the formula for computing seasonals that is proposed in this paper. The reason for this bias lies in the fact that most smoothing formulae are developed on the assumption that the smoothed ordinate lies on a parabola of a chosen degree, and since a similar assumption was made in our theory, it is evident that the proposed method will benefit most by employing a parabolic smoothing formula in obtaining the hypothetical cycle series.

For this reason the data of Table II, with additional data for one year on either side, was given to a draftsman with instructions to

- (1) Plot the data of Table II
- (2) draw free hand a *smooth* curve that to his mind best represented the general run of the data
- (3) 'read off from his curve the approximate value of the smoothed statistics.

The data of Table III resulted.

In essential agreement with the American Telephone and Telegraph article, we shall assume a linear trend, the value for the first month being 1511 and the monthly increment 8. The product of trend by cycle produces the theoretical values of $\psi(x)$ presented in Table IV.

TABLE I

Constants for computing seasonal indices

i	C,,,	C 2:2	C 312	C _{4.i}	C 5, i	Coil	C 714
1	.12530	.07897	.08392	.083333	.08259	.08959	.03963
2	.11822	.07914	.08389	.083333	.08269	.08849	.04757
3	.11094	.07955	.08382	.083333	.08283	.08723	.05563
4	.10345	.08018	.08373	.083333	.08299	.08590	.06375
5	.09577	.08104	.08361	.083333	.08315	.08456	.07187
6	.08792	.08208	.08347	.083333	.08331	.08327	.07995
7	.07995	.08327	.08331	.083333	.08347	.08208	.08792
8	.07187	.08456	.08315	.083333	.08361	.08104	.09577
9	.06375	.08590	.08299	.083333	.08373	.08018	.10345
10	.05563	.08723	.08283	.083333	.08382	.07955	.11094
11	.04757	.08849	.08269	.083333	.08389	.07914	.11822
12	.03963	.08959	.08259	.083333	.08392	.07897	.12530

TABLE II

Cycle and Residual Series for Pig Iron Production

	1904	1905	1906	1907	1908	1909
January	-37.5	12.4	23.0	24.2	-43.3	- 7.9
February	-13.8	5.8	18.2	20.2	-36.4	- 7.8
March	-10.4	14.2	20.2	17.6	-40.8	-13.7
April	7	15.9	18.1	19.7	-42.0	-15.6
May	- 4.2	14.6	17.5	21.9	-43.0	-10.5
June	-15.2	10.4	15.0	23.1	-42.0	- 3.3
July	-27.4	7.0	16.8	23.9	-35.5	4.9
August	-25.3	11.1	9.8	21.6	-30.6	10.1
September	-12.5	15.4	12.7	19.0	-25.8	18.0
October	-12.1	18.6	20.2	21.4	-24.1	22.6
November	- 5.6	22.1	23.8	- 1.6	-19.0	24.2
December	1.1	20.7	24.9	-34.5	-12.1	27.0
	1910	1911	1912	1913	1914	1915
January	26.7	-17.7	- 8.0	19.5	-22.0	-35.9
February	21.5	-11.0	- 1.0	15. <i>7</i>	-16.7	-27.8
March	19.5	- 5.5	1	10.6	-10.5	-25.0
April	15.8	- 8.2	1.4	13.0	-10.8	-20.1
May	9.4	-17.9	5.4	13.9	-19.7	-16.3
June	8.2	-17.9	7.0	10.6	-21.9	- 6.9
July	2.5	-17.8	5.5	7.7	-20.3	.0
August	- 1.3	-13.6	8.1	5.1	-20.6	6.5
September	- 2.5	-10.1	7.1	4.7	-23.8	10.5
October	- 6.5	-10.3	11.0	.7	-33.6	15.1
November	-10.7	-10.5	12.8	- 7.8	-39.3	16.1
December	-18.1	- 9.8	17.8	-19.3	-40.6	21.0

TABLE III

Per Cent Cycle Series for Theoretical Distribution

	1904	1905	1906	1907	1908	1909
Tanuary	-38.2	6.6	15.5	16.3	-37.5	-12.2
February	-36.7	7.5	15.8	16.2	-38.1	- 7.1
March	-32.4	9.0	16.0	16.0	-39.1	- 2.4
April	-22.4	10.0	16.2	14.6	-39.4	2.1
May	-18.7	11.0	16.4	14.1	-39.4	5.0
June	-13.5	12.0	16.6	12.7	-38.5	10.0
July	- 9.8	13.1	16.6	11.6	-38.0	12.7
August	- 6.4	13.6	16.6	8.0	-36.7	15.6
September	- 3.7	14.1	16.7	5.0	-33.4	17.2
October	.0	14.5	16.6	.0	-29.1	18.4
November	2.3	14.8	16.5	-17.4	-23.8	19.6
December	4.4	15.0	16.5	35.0	-17.0	20.0
	1910	1911	1912	1913	1914	1915
January	20.6	-123	- 7.2	10.8	-14.0	-32.3
February	20.6	-13.4	- 5.0	10.7	-17.0	-28.1
March	20.3	-13.6	- 3.0	10.6	-20.0	-23.6
Ápril	19.5	-13.7	.0	10.0	-23.0	-18.1
May	17.9	-13.7	2.7	9.3	-24.7	-13.0
June	16.4	-13.6	4.8	8.5	-27.5	- 7.4
July	12.4	-13.4	6.9	7.1	-29.8	- 2.8
August	7.1	-12.8	7.9	6.0	32.0	3.5
September	.0	-12.0	8.5	3.6	33 5	9.0
October	- 6.6	-11.2	9.5	n	-35.0	13.8
November	- 8.0	- 9.6	10.0	- 5.0	-36.0	15.7
December	-10.9	- 7.9	10.6	-10.0	-35.0	17.5

TABLE IV Theoretical Trend and Cycle Series, $\psi(x)$

1904	1905	1906	1907	1908	1909
934	1713	1967	2092	1184	1748
962	1736	1981	2100	1178	1857
1032	1 <i>7</i> 69	1994	2105	1164	1959
1191	1 <i>7</i> 94	2007	2089	1163	2057
1254	1819	2020	2089	1168	2124
1342	1845	2032	2073	1190	2234
1406	1872	2042	2061	1205	2298
1467	1889	2051	2003	1235	2366
1517	1907	2062	1956	1305	2408
1583	1922	2070	1871	1395	2443
1628	1937	2077	1552	1505	2477
1669	1949	2087	1227	1646	2495
1910	1911	1912	1913	1914	1915
2517	1914	2115	2632	2125	1738
2527	1897	2173	2638	2058	1851
2530	1900	2226	2644	1990	1973
2523	1905	2303	2639	1921	2122
2498	1912	2373	2631	1885	2261
2476	1921	2430	2620	1820	2414
2400	1932	2488	2595	1768	2542
2295	1952	2519	2577	1718	2715
2151	1977	2542	2527	1686	2868
2017	2002	2574	2447	1653	3003
1994	2046	2595	2332	1633	3063
1938	2092	2618	2217	1663	3120

TABLE V

Theoretical Seasonal Factors

	,	
January .99	May 1.04	September .98
February .93	June .98	October 1.04
March 1.05	July .98	November .99
April 1.02	August 1.00	December 1.00

By multiplying the data of Table IV by the seasonals of Table V, a theoretical series would be obtained which would comprise the elements of trend, cycle and seasonal—lacking only chance or residual errors.

In order to obtain a series of chance factors that might serve as residual error factors, sixty cards were marked with integers totaling 1200. The cards were distributed, after shuffling, into twelve piles of five cards each, and the totals of each pile noted. These were taken as the residual factors for the first year, and the process was repeated for the following years. The chance factors of Table VI resulted.

Making allowance for residual errors as well as the seasonal factors, we obtain finally the theoretical series which we shall attempt to analyze, Table VII.

If the various methods of analyzing time series are sound, they should be able to break up this series into its elementary components—trend, cycle, seasonal and residual errors. A comparison of the results by different methods should indicate to some extent their respective merits. In attacking the ordinary observed time series by different methods and comparing results the difficulty is to tell, when all has been done, which of the methods is best. Unfortunately, if they disagree, we do not know which one is nearest the true. Our theoretical series, however, enables us to compare results obtained by different methods, since we know the answers in advance, and also will serve students as a detailed example of time series synthesis.

TABLE VI

Residual Factors

	1904	1905	1906	1907	1908	1909
January	98	98	98	98	106	99
February	91	98	101	95	96	106
March	105	103	98	94	105	89
April	100	108	99	98	102	99
May	103	100	101	94	99	97
June	94	94	84	103	100	94
July	91	114	102	102	105	103
August	116	93	90	108	108	102
September	98	102	104	118	100	106
October	95	95	107	100	94	104
November	99	8 4	112	96	90	97
December	110	111	104	94	95	104
	1910	1911	1912	1913	1914	1915
January	96	102	98	98	97	98
February	107	99	102	95	93	89
March	91	95	97	92	105	92
April	110	96	106	104	104	83
May	104	109	98	104	110	108
June	102	92	108	105	97	113
July	94	92	109	91	91	103
August	98	103	98	98	96	98
September	100	102	104	96	100	105
October	105	103	94	112	102	107
November	95	107	93	108	98	102
December	98	100	93	97	107	102

TABLE VII

Theoretical Series

	1904	1905	1906	1907	1908	1909
January	906	1662	1908	2030	1242	1714
February	814	1582	1860	1855	1052	1831
March	1138	1913	2052	2077	1283	1831
April	1215	1976	2027	2088	1210	2077
May	1343	1892	2122	2043	1203	2143
June	1236	1700	1672	2093	1166	2058
July	1254	2092	2041	2060	1240	2320
August	1702	1757	1846	2163	1334	2413
September	1457	1906	2102	2262	1279	2502
October	1564	1899	2304	1946	1364	2643
November	1596 [.]	1611	2303	1475	1341	2378
December	1836	2163	2170	1153	1564	2595
Total	16061	22153	24407	23245	15278	26505
	1910	1911	1912	1913	1914	1915
∫anuary	2392	1933	2052	2554	2041	1687
February	2514	1746	2061	2330	1780	1532
March	2417	1895	2267	2554	2194	1906
April	2830	1865	2490	2800	2037	1796
May	2702	2167	2419	2845	2156	2539
June	2475	1732	2571	2696	1730	2674
July	2211	1742	2657	2314	1577	2566
August	2249	2011	2469	2525	1649	2661
September	2108	1976	2591	2377	1652	2952
October	2203	2144	2516	2850	1753	3342
November	1875	2168	2389	2494	1585	3093
December	1899	2092	2435	2150	1 <i>77</i> 9	3182
Total	27875	23471	28917	30489	21933	29930

To obtain the values of the seasonal factors by means of formula (5) and Table I we need only observe that for the theoretical series

 $T_{t} = 16061$ $T_{z} = 22153$ $T_{s} = 24407$ $T_{4} + T_{5} + \dots T_{9} = 145291$ $T_{10} = 30489$ $T_{11} = 21933$ $T_{12} = 29930$

Consequently we have

Seasonals by Interpolation Method

TABLE VIII

Month	Σ. y.	$\sum \psi(x)$	5
January	22121	23587	.938
February	20957	23693	.885
March	23527	23801	.988
April	24411	23911	1.021
May	25574	24023	1.065
June	23803	24135	.986
July	24074	24246	.993
August	24779	24358	1.017
September	25164	24468	1.028
October	26528	24576	1.079
November	24308	24682	.985
December	25018	24785	1.009
Total	290264	290265	11.994

It is interesting to compare the seasonals of Table VIII with the corresponding set obtained by the method of "link relatives." The following table presents the series of link relatives for the theoretical series of Table VII.

TABLE IX

Link Relatives for the Series of Table VII

	1904	1905	1906	1907	1908	1909
January	.898	.952	.975	.914	.847	1.068
February	1.398	1.209	1.103	1.120	1.220	1.000
March	1.068	1.033	.988	1.005	.943	1.134
April	1.105	.957	1.047	.978	.994	1.032
May	.920	.899	.788	1.024	.969	.960
June	1.015	1.231	1.221	.984	1.063	1.127
July	1.357	.840	.904	1.050	1.076	1.040
August	.856	1.085	1.139	1.046	.959	1.037
September	1.073	.996	1.096	.860	1.066	1.056
October	1.020	.848	1.000	.758	.983	.900
November	1.150	1.343	.942	.782	1.166	1.091
December	.905	.882	.935	1.077	1.096	.922
	1910	1911	1912	1913	1914	1915
January	1.051	.903	1.004	.912	.872	.908
February	.961	1.085	1.100	1.096	1.233	1.244
March	1.171	.984	1.098	1.096	.928	.942
April	.955	1.162	.971	1.016	1.058	1.414
May	.916	799	1.063	.948	.802	1.053
June	.893	1.006	1.033	.858	.912	.960
July	1.017	1 154	.929	1.091	1.046	1.037
August	.937	.983	1.049	.941	1.002	1.109
September	1.045	1.085	.971	1.199	1.061	1.132
October	.851	1.011	.950	.875	.904	.925
November	1.013	.965	1.019	.862	1.122	1.029
December	1.018	.981	1.049	.949	.948	

From the above we obtain the following:

TABLE X

Link Relative Seasonal Indices

Months	(1) Medians	(2) Chain Relatives	(3) (2) Adjusted	(4) Seasonal Indices
January	.913	100.0	100.0	97.5
February	1.112	91.3	91.3	89.0
March	1.019	101.5	101.4	98.8
April	1.024	103.5	103.3	100.7
May	.934	105.9	105.7	103.0
June	1.010	98.9	98.7	96.2
July	1.043	99.9	99.7	97.2
August	1.020	104.2	103.9	101.3
September	1.064	106.3	106.0	103.3
October	.914	113.1	112.7	109.9
November	1.024	103.4	103.0	100.4
December	.949	105.9	105.4	102.7
January		100.5	100.0	

The following exhibit of the results obtained by the two methods is interesting.

TABLE XI

Comparison of Interpolation and Link Relative Methods

	Actual	Interpolation	n Method	* Link Re Meth	
Months	Values	Seasonal	Error	Seasonal	Error
January February March April May June July August	.990 .930 1.050 1.020 1.040 .980 .980	.938 .885 .988 1.021 1.065 .986 .993 1.017	052 045 062 .001 .025 .006 .013	.975 .890 .988 .1.007 1.030 .962 .972 1.013	015 040 062 013 010 018 008
September October November	.980 1.040 .990	1.028 1.079 .985	.048 .039 005	1.033 1.099 1.004	.053 .059 .014
December	1.000	1.009	.009	1.027	.027

The mean deviations and the standard deviations of the two methods show that both methods are about equally effective. This advantage of the interpolation method is scarcely worth mentioning. Nevertheless, the fact that the results are obtained with but a trivial amount of labor is important.

	Mean Deviation of Errors	Standard Deviation of Errors
Interpolation Method	.0269	.0337
Link Relative Method	.0277	.0338

STIELTJES INTEGRALS IN MATHEMATICAL STATISTICS

Вy

J. SHOHAT (Jacques Chokhate)

Introduction. Stieltjes integrals, introduced into analysis 1894-51, play an increasingly important role not only in pure ma ematics, but also in theoretical physics and in the theory of probabil In mathematical statistics, however, their use, it seems, still rema very limited. And vet, one of the most remarkable features Stielties integrals is that they represent, as the case may be, an integ proper or a sum of an finite or an infinite number of discrete agg gates. Thus the statistician is enabled to treat in a single formula continuous, as well as a discontinuous distribution. This means more than a mere simplification of writing. In fact, since Stielt integrals have many properties in common with Riemann and Lebes, definite integrals, we can use all known resources of the theory definite integrals (mean-value theorem, various inequalities), a therefore readily obtain general results which, otherwise, requ special (often complicated) proofs. The advantage of such a tre ment is particularly evident in the theory of interpolation, approxis tion, and mechanical quadratures.

Hence, the object of this paper is to present a general exposit of the properties and applications of Stieltjes integrals. Many of results stated below are well known², and the proofs may be omit! Some results are believed to be new (for example, extension of To bycheff and Hölder inequalities) and may prove useful in mathemat statistics. We close, as an illustration, with the theory of interpation, for here, even in recently published books, the continuous a discontinuous cases are treated separately while the underlying id are identical.

Stieltjes: (a) Recherches sur les fractions continues, Oeuvres, v. II, p. 559; (b) Correspondence d'Hermite et de Stieltjes, v. II, p. 272, where t integrals are first mentioned in a letter (No. 351) to Hermite under dat October 25, 1892.

 ⁽a) Hobson, The Theory of Functions of a Real Variable, 2d. ed. (19
 v. I, p. 506-16, 605-09; (b) O. Perron, Die Lehre von den Kettenbrük (1913), p. 362-69.

I. Definition and general properties. Let f(x) be continuous and $\psi(x)$ be bounded monotonic non-decreasing on the finite interval (a, b) (a < b) Then, as is well known, the following limits exist:

$$\psi(x+o) = \lim_{\epsilon \to 0} \left[\psi(x+\epsilon) - \psi(x) \right]$$

$$\psi(x-o) - \lim_{\epsilon \to 0} \left[\psi(x-\epsilon) - \psi(x) \right]$$
(a \le x \le b)

If x is a point of discontinuity of $\psi(x)$, $\psi(x+o) - \psi(x-o)$ (>0) is called "saltus" of $\psi(x)$ at this point. The number of such points is at most denumerably infinite; the points of continuity of $\psi(x)$ are, therefore, everywhere dense in (a,b) $\psi(x)$ is R- integrable, and so is $\psi(x)x^k$ ($k=0, \cdots$). The Riemann-Stieltjes integral (of f(x) with respect to $\psi(x) \int f(x) d \psi(x)$) is defined as follows:

(S)
$$\int_{a}^{b} f(x)d\psi(x) = \lim_{n \to \infty} \sum_{i=0}^{n-i} f(\xi_{i}) \left[\psi(x_{i,i}) - \psi(x) \right]$$

$$a = x_{0} < x_{1} < x_{2} < \dots < x_{n-i} < x_{n} = b$$

$$x_{i} \le \xi_{j} \le x_{i+i} (i > 0, 1, \dots, n-1)$$

The existence of the right-hand limit can be easily established. The continuity of f(x) is here sufficient, but not necessary.

In many phases of mathematical statistics the case of a continuous f(x) is evidently the more important, although many problems arising in the theory of probability require applications of the discontinuous case.

From the very definition (S) one may obtain many properties of Stieltjes integrals in common with the ordinary definite integrals. Thus:

(1)
$$\int_{a}^{b} d\psi(x) = \psi(b) - \psi(a)$$

(a) Hobson, 1-c;
 (b) T. Hildebrandt, On Integrals Related to and Extension of the Lebesque Integrals, Bulletin of the American Mathematical Society (2), V. 24 (1918), p. 177-202;
 (c) Lebesque, Leçon sur l'intégration, 2d ed. (1928), p. 252-313.

(2)
$$\int_{a}^{c} f d\psi + \int_{c}^{b} f d\psi = \int_{a}^{b} f d\psi$$
 (a < c < b)

(3)
$$\int_{a}^{b} (f_{1} \pm f_{2}) d\psi = \int_{a}^{b} f_{1} d\psi \pm \int_{a}^{b} f_{2} d\psi$$

(4)
$$\int Afd\psi = A \int fd\psi \qquad (A = \text{Const.})$$

$$(5) \quad \left| \int_{-\infty}^{\infty} f \, d\psi \right| \leq \int_{-\infty}^{\infty} \left| f \right| \, d\psi$$

(6)
$$\int f d\psi = f(\xi) \int d\psi$$
 (a \(\xi \xi \) is mean-value theorem)

(7)
$$\int_{a}^{b} f_{1} d\psi \leq \int_{a}^{b} f_{2} d\psi , \quad \text{if } f_{1}(x) \leq f_{2}(x) \text{ for } a \leq x \leq b$$

(8)
$$\int_{\mathbf{z}} \sum_{i=1}^{\infty} f_i \, d\psi = \sum_{i=1}^{\infty} \int_{\mathbf{z}} f_i \, d\psi$$

if $\sum_{i=1}^{n} f_i(x)$ converges uniformly in (a, b)

(9)
$$\int_{a}^{b} f d\psi = f \psi \Big|_{a}^{b} - \int_{a}^{b} \psi df$$
 (integration by parts)

(10)
$$\int_a^b f d\psi = \int_a^b f(x)p(x)dx , \quad \text{if } \psi(x) = \int \phi(x)dx + c$$

with $p(x) \ge 0$ in (a, b).

(10-bis)
$$\int f d\psi = \int f(x)\psi'(x)dx$$
, if $\psi'(x)$ exists

and is R - integrable in (a, b).

Let $\psi(x)$ have only a finite number of points of increase in (a, b).

$$(a = x_0 <)x_1 < x_2 < \cdots < x_n (< x_{n+1} = b)$$

with the saltus σ_1 at $x=x_1$ $(i=1,2\cdots n)$, so that $\psi(x)$ remains constant $=\sum_{i}\sigma_i$ for $x_i\leq r< x_{i+1}$, and $\psi(b)\sum_{i}\sigma_i$. Such functions, called *stepwise* functions ("fonction en escalier"), prove

very useful. Here

(11)
$$\int_{a}^{b} f \, d \, \psi = \sum_{i=1}^{n} \sigma_{i} \, f(x_{i}) \qquad \{ \sigma_{i} = f(x_{i} + o) - f(x_{i} - o) \}$$

If the number of points of increase is infinite

(12)
$$\int_{a}^{b} f d\psi = \sum_{i=1}^{\infty} \sigma_{i} f(x_{i}).$$

Conversely, any sum $\sum_{i=1}^{n} u_i v_i$ can be represented as a Stieltjes integral in infinitely many ways. Let us introduce n positive numbers σ_i , σ_2 , \cdots σ_n a certain interval (a, b), n points (a <)x, $< \cdots < x$, < t, and a stepwise function $\psi(x)$ having at $x = x_i$ a saltus σ_i ($i = 1, 2, 3 \cdots n$). Then, writing $u_i = \sigma_i w_i$, we may consider v_i , v_i as values taken respectively by some functions f(x), $\phi(x)$ at $x = x_i$ ($i = 1, 2, \cdots n$). Hence,

(13)
$$\sum_{i=1}^{n} u_i v_i = \int_{a}^{b} f(x) \phi(x) d\psi(x)$$

Formulae (11-13) show clearly the use of Stieltjes integrals for the representation of sums of discrete aggregates.

(14)
$$\int_a^b f d\psi \ge 0, \quad if \ f(x) \ge 0 \quad in(a,b)$$

Here "=" takes place if and only if $\psi(x)$ has a finite or denumerably infinite number of points of increase in (a,b) (not everywhere dense) and f(x) vanishes at all these points, for we exclude, of course, functions f(x) which vanish at all points of continuity of $\psi(x)$ and therefore vanish identically in (a,b). If $\psi(x)$ has infinitely many points of increase, while f(x) vanishes in (a,b) only a finite number of times, without changing sign, then $\int_{a}^{b} f(x) d\psi(x) \neq 0$ and has the sign of f(x)

(15)
$$\int_a^b f(x) x^k d \psi(x) = 0 \quad (k = 0, 1, \dots, n-1) \text{ implies: } f(x)$$

has at least n distinct roots inside (a, b) assuming that $\psi(x)$ has at least n points of increase¹.

^{1.} This is a form of a theorem due to Perron (1-c, p. 368-69). If the number of such points is m < n. (15) shows only that f(x) vanishes at all such points.

(16)
$$\int_a^b x^k d\psi(x) = 0 \quad (k = 0, 1, \dots, \dots) \quad \text{implies}:$$

$$\psi(x)$$
 constant for $(a \le x \le b)^{1}$.

Since in the defition (S) only the differences $\psi(x_{i+1}) - \psi(x_i)$ enter, it follows that a Stieltjes integral does not change its value if we replace $\psi(x)$ by $\psi(x)$ +c. More precisely:

(17)
$$\int_{a}^{b} f d\psi_{i} = \int_{a}^{b} f d\psi_{z}$$

if the two monotonic non-decreasing functions $\psi_{1,2}(x)$ differ by an additive constant only at all points of continuity. Applying the mean-value theorem to $\int \int (x) d\psi(x)$, we conclude:

(18) $F(x) = \int_{a}^{x} f(t)d\psi(t)$ is continuous at all points of continuity of

 $\psi(x)$ and therefore, almost everywhere in (a, b).

(19)
$$\lim_{h\to 0} \frac{F(x+h)-F(x)}{\psi(x+h)-\psi(x)} = f(x) \qquad (a \le x \le b)$$

(20) $F'(x)=f(x) \psi'(x)$ at any point x, in (a,b), where $\psi'(x)$ exists.

One recognizes in (18-20) a generalization of the properties of the ordinary definite integral which is a special case, for $\psi(x) \equiv x$.

(21)
$$\phi t = \int_{a}^{b} f(x,t) d\phi(x)$$
 is continuous in $t(t_{o} \le t \le t_{i})$

if f(x,t), continuous in x, is uniformly continuous with respect to $t(t_0 \le t \le t_1)$ for all values of x in (a,b). Moreover,

(22)
$$\frac{d\phi(t)}{dt} = \int_{a}^{b} \frac{\partial f(x,t)}{\partial t} d\psi(x)$$

if $\frac{\partial f(x,t)}{\partial t}$ exists and is continuous in x and uniformly continuous in $t(a \le x \le b; t_a \le t \le t_a)$.

If \(\psi \) (x) has a finite number, n, of points of increase, then n such relations imply the same conclusion.

Notes. (i) The above results hold, with proper limitations and modifications, if $\psi(x)$ be of bounded variation in (a,b), for such a function can be represented as a difference of two monotonic non-decreasing functions $\psi_{i,s}(x)$ and we define in accordance with (S),

$$\int_{a}^{b} f d\psi = \int_{a}^{b} f d\psi, -\int_{a}^{b} f d\psi_{z} .$$

- (ii) In applications to probability and mathematical statistics $\psi(x)$ stands for the "cumulative law of distribution," so that
- (23) $\psi(x)$ is monotonic non-decreasing from $\psi(a)=0$ to $\psi(b)=1$.

(24) For
$$(a \le c \le d \le b)$$
 the integral $\int_{c}^{b} d\psi(x)$

= probability $P: [c \le x \le d]$; $\int_{a}^{b} d\psi(x) = f(x) d\psi(x) = E(f)$, i. e., the expected value or math-

ematical expectation of f(x).

Let w(x) f(x) be continuous in (a, b), and $\alpha(x)$ be of bounded variation. Then,

(26)
$$\psi(x) = \int_{a}^{b} w(x) d\alpha(x)$$
 is of bounded variation.\frac{1}{2} \int f(x) \dark \psi(x) \dark \psi(x) = \int f(x) \psi(x) \dark \psi(x

Given an infinite sequence of functions $\psi_n(x)$ $(n=1, 2, \cdots)$ of bounded variation in (a,b). If the total variation in (a,b) of all $\psi_n(x)$ does not exceed a fixed quantity M independent of n, and if, in addition, $\lim_{n \to \infty} \psi_n(x) = \psi(x)$ exists for $a \le x \le b$, then²

(27)
$$\lim_{x\to a} \int_{a}^{b} f(x)d\psi_n(x) = \int_{a}^{b} f(x)d\psi(x)$$
, for any continuous $f(x)$.

Notes. (i) (27) holds true if we know that $\lim_{n\to\infty} \psi_n(x) = \psi(x)$ exists at all points of continuity of the sequence $\psi_n(x)$ and at x=a, b.

2. Page 9 of preceding reference.

^{1.} T. Carleman Leçons sur les équations intégrales singulières noyau réel et symétrique (Uppsala) (1923), p. 11-12.

(ii) In applications to probability and statistics (27) is of great importance. In fact, consider $\psi_n(x)$ as a sequence of variable laws of distribution approaching, as a limit, a certain fixed law of distribution $\psi(x)$. Then (by (23), the total variation of any $\psi_n(x)$ in (a, b) is 1; (27) thus becomes applicable and shows that under the said conditions the expected value of any continuous function in the variable law of distribution approached, as $n-\infty$ its expected value in the limiting law of distribution.

II. Sticktjes Integrals Over an Infinite Interval. We define

(28)
$$\int_{a}^{\infty} f d\psi = \lim_{x \to \infty} \int_{a}^{x} f d\psi ; \quad \int_{-\infty}^{\infty} f d\psi = \lim_{x \to -\infty} \int_{a}^{b} f d\psi$$

(similarly \int_{a}^{b}), provided the right-hand limits exist as finite numbers. It is assumed that $\int_{a}^{b} f d\psi$, $\int_{a}^{b} f d\psi$ exist respectively for any finite x>a, and for any finite interval (a,b). For the existence of (28) it is necessary and sufficient that

(29)
$$\left| \int_{x}^{x_2} f d\psi \right| < \epsilon$$
 for $x \ge a$ certain number $x(\epsilon)$, $\epsilon > 0$ - arbitrarily small.

One sees readily that

(30) $\int f d\psi$ exists, if $\int d\psi$ does, and if f(x) is bounded for all real values of x. The first of these conditions is satisfied if $\psi(x)$ is a law of distribution. We notice that any $\int f d\psi$ can be written as $\int f d\psi$, if we agree to take $\psi(x) = \psi(x)$, $\psi(b)$ respectively for $x \le a$, $\ge b$.

The formulae given above hold, in general, for infinite limits as well, with the exception of those which require a double limiting process, like 8, 21, 27, etc., where ordinarily additional precautions must be taken in the form of certain assumptions specifying the behaviour of $\psi(x)$ and of other functions involved at infinity. Thus, (8) is not valid in general for $(x, b)=(-\infty, \infty)$, and requires a more detailed discussion. Furnulae 21, 22 hold true if we assume, for example, the uniform boundedness and continuity with respect to t of the functions involved for all x in $(-\infty, \infty)$, and also the existence of $\int d\psi(x)$, i. e. definite values for $\psi(t\infty)$.

Formula 17 deserves special attention: in general, it is not true

for an infinite interval, as was shown by Stieltjes1.

III. Approximate Evaluation of Stieltjes Integrals. In practice, as in statistical computations, we evaluate $\int_a^b f d\psi$ approximately, replacing it by the right-hand member of (S), for a certain chosen n. The question arises regarding the error r_n of such an approximation. Let $\omega(a)$ represent the modulus of continuity of f(x), i.e.

(31)
$$|f(x)-f(y)| \leq \omega(\delta)$$
 for $|x-y| \leq \delta (a \leq x, y \leq b)$

Then, if $x_{i+1} - x_i < h$ in (S) for $i = 0, 1, \dots, n-1$, we have

$$r_{n} = \int_{a}^{b} f \, d\psi - \sum_{i=0}^{n-1} f(\xi_{i}) \left[\psi(x_{i+1}) - \psi(x_{i}) \right]$$

$$= \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i}} \left[f(x) - f(\xi_{i}) \right] \, d\psi(x)$$

$$(32) \quad |r_{n}| \leq \omega(h) \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i}} d\psi = \omega(h) \left[\psi(b) - \psi(a) \right]$$

$$\left\{ h = \max_{i} \left(x_{i+1} - x_{i} \right) ; \quad i = 0, 1, \dots, n-1 \right\}$$

(32) answers the above question for any continuous f(x).

Special Case: Lipschitz condition²:

$$|f(x)-f(y)| \le \lambda |x-y| \qquad (a \le x, y \le b; |r_n| \le \lambda h [\psi(b)-\psi(a)] \qquad \lambda = const.)$$

In (32, 33) we replace h by h/2, if (ξ_i) in (S) is, as usual, the mid-point of the interval (x_i, x_{i+1}) $(i = 0, 1, \dots, n-1)$.

It must be noticed, however, that the above considerations are

(1. c. p. 73, p. 505-06. (17) is closely related to the so-called "Moments-problem": find a monotonic non-decreasing function ψ(x) in (a, b) with infinitely many points of increase, if all its moments γ_{k=} ^b x^k d ψ (x) [k=0, /···] are given. This problem, for (a, b) infinite, may be "indetermined," i. e. it may admit infinitely many solutions, while it is always "determined," for finite (a, b). Stieltjes gives the following example:
 x^k[/+λ sin (x^k]e^{-x^k} dx = ∫ x^ke^{-x^k} dx

$$\int x^{k} [/+\lambda \sin(x^{2})] e^{-x^{k}} dx = \int x^{k} e^{-x^{k}} dx$$

$$[\lambda : \text{constant}, \ k = 0, /, \cdots] \quad \text{, and} \quad y(x) = 0 = \int_{0}^{x} [/+\lambda \sin x^{k}] e^{-x^{k}} \text{ is monotonic non-decreasing in } 0, \infty \quad \text{, if } |\lambda| \le /.$$

2. If f(x) exists for $a \le x \le b$, then $\lambda^{-\infty}$ can be taken equal to max. |f(x)| in (a, b). If f(x) is given graphically, λ can be found roughly as the maximum of the absolute va^{1} . The slope in (a, b).

not workable in general on an infinite interval, for here, in place of (31), we ordinarily have the more complicated relation

$$|f(x)-f(y)| \leq \omega(x,y,\delta) \qquad (|x-y| \leq \delta)$$

where $\omega(x, y, \delta) + \infty$ with x, y (ex.: $f(x) = x^2$). Thus here, in order to obtain an inequality for the error, we must add to the right member of (32), where a, b are finite numbers properly chosen, two more terms—the upper limits of $\left| \int_{-\infty}^{\infty} f \, dy \right|$ and $\left| \int_{b}^{\infty} f \, dy \right|$, which we obtain by means of a suitable hypothesis concerning the behavior of f(x), $\psi(x)$ at infinity.

IV. Tehebycheff and Hölder Inequalities for Stieltjes Integrals!. Hereafter $\psi(x)$ stands for a monotonic non-decreasing function defined on a certain interval (a, b), finite or infinite. Let $f_i(x)$, $\phi_i(x)[i=1,2,\cdots n]$ be continuous on $(a,b)^2$. Then we have the following fundamental transformation:

(34)
$$\int_{f_{n}}^{g} \phi_{n} d\psi \int_{f_{n}}^{g} \phi_{n} d\psi \cdots \int_{f_{n}}^{g} \phi_{n} d\psi$$

$$\int_{g}^{g} f_{n} \phi_{n} d\psi \cdots \int_{f_{n}}^{g} \phi_{n} d\psi$$

$$\int_{g}^{g} f_{n} \phi_{n} d\psi \cdots \int_{g}^{g} f_{n} \phi_{n} d\psi$$

$$=\frac{1}{n!}\int_{-\infty}^{b}\int_{-\infty}^{b}\left|\begin{array}{c}f_{i}(x_{i})\cdots f_{i}(x_{n})\\\vdots\vdots\vdots\vdots\vdots\\f_{n}(x_{i})\cdots f_{n}(x_{n})\end{array}\right|, \begin{vmatrix}\phi_{i}(x_{i})\cdots\phi_{i}(x_{n})\\\vdots\vdots\vdots\vdots\vdots\\\phi_{n}(x_{n})\cdots\phi_{n}(x_{n})\end{vmatrix}\prod_{i=1}^{n}d\psi(x_{i}).$$

The proof is very simple for n=2, for we can write

$$\int_{a}^{b} u(x)d\psi(x) \cdot \int_{a}^{b} v(x)d\psi(x)$$

$$as \int_{a}^{b} \int_{a}^{b} u(x,)v(x,) d\psi(x,) d\psi(x,)$$

and it may readily be extended to any n. Formula (34) yields many

Cf. my Note: Jacques Chokhate, Sur les intégrales de Stieltjes, Comptes Rendus, v. 189 (1929), p. 618-20.

In case ψ(x) has a finite number of points of increase in (x, b), we require
only definite values of all f_s(x), φ_s(x) at these points.

interesting results by a proper choice of n, f_i , ϕ_i .

Example: (1)
$$n=2$$
; $f_1 \equiv \phi_1$, $f_2 \equiv \phi_2$

35)
$$\int_{a}^{b} f_1^2 d\psi \int_{a}^{b} f_2^2 d\psi - \left(\int_{a}^{b} f_1 f_2 d\psi\right)^2 = \int_{a}^{b} \int_{a}^{b} \left|f_1(x_1) f_1(x_2) f_2(x_2)\right| d\psi(x_1) d\psi(x_2) \ge 0.$$

. Schwarts inequality—("=" only if f_1 , and f_2 are linearly dependent.

(ii)
$$n=2$$
; $f_z = \phi_z = 1$. Write f, ϕ in place of f, ϕ :

$$(36) \int_{a}^{b} f \phi \, d\psi \cdot \int_{a}^{b} d\psi - \int_{a}^{b} f \, d\psi \cdot \int_{a}^{b} \phi \, d\psi$$

$$= \frac{1}{2} \int_{a}^{b} \left[f(x) - f(y) \right] \left[\phi(x) - \phi(y) \right] d\psi(x) \, d\psi(y)$$

$$\int_{a}^{b} d\psi \cdot \int_{a}^{b} f \phi \, d\psi \ge \int_{a}^{b} f \, d\psi \cdot \int_{a}^{b} \phi \, d\psi$$

Tchebycheff inequality (derived by him for the special case $d\psi = dx$), where f, ϕ are any two functions both varying monotonically in (a,b), either in the same sense (sign > in (36) or in the opposite sense (sign <). In (34-37) we may replace $d\psi(x)$ by $p(x)dx \left[p(x) \ge 0 \text{ in } (a,b) \right]_{-1}^{2}$

 Cf. E. Fischer, Ueber den Hadamardschen Determinontensatz, Archiv für Mathematik and Physik (3), v. 13 (1908), p. 32-49, where (34) is derived for the particular case dy (x) x dx The determinant Δ_n plays an important role in the theory of orthogonal Tchebycheff polynomials (see below). Formula (37) gives an upper limit for Δ_n :

(38)
$$|\Delta_n| < \frac{1}{n!} (b-a)^{n(n-1)} M^n \left[\int_a^b d\psi(x) \right]^n$$
$$\left[M = \max \cdot |F(x)| \text{ in } (a, b) \right].$$

Applying (13) to the above formulae, we get:

(39)
$$\left(\sum_{i=1}^{n} u_{i} v_{i}\right)^{2} \leq \sum_{i=1}^{n} u_{i}^{2} \sum_{i=1}^{n} v_{i}^{2}$$

-Cauchy inequality (from (34))

$$(40) \qquad n \sum_{i=1}^{n} a_{i} b_{i} \geq \sum_{i=1}^{n} a_{i} \cdot \sum_{i=1}^{n} b_{i}$$

$$(41) \quad \frac{\sum_{i=1}^{n} u_{i} v_{i}}{\sum_{i=1}^{n} v_{i}} \geq \frac{\sum_{i=1}^{n} u_{i} w_{i}}{\sum_{i=1}^{n} w_{i}} (v_{i}, w_{i} > 0)^{2}$$

Formulae 40, 41 follow from (36) by means of (13), with $\sigma_i = l$ (in (40)), $\sigma_i = v_i$ (in (41)) [$i = l, 2, \dots n$]. The sequences $\{(a_i), (b_i)\}$, $\{(u), (\frac{v_i}{v_i})\}$ are assumed to be either increasing or decreasing, the sign \geq being chosen as in (36). Thus all these (and many similar) inequalities have the same origin-formula (34). Applying (13) to Hölder-Minkowski inequalities².

$$(42) \quad \sum_{i=1}^{n} |a_{i} b_{i}| \leq \left\{ \sum_{i=1}^{n} |a_{i}|^{s} \right\}^{\frac{1}{2}} \left\{ \sum_{i=1}^{n} |b_{i}|^{\frac{9}{2}-1} \right\}^{\frac{5-1}{2}} \quad (5 > 1)$$

$$\left\{ \sum_{i=1}^{n} |a_{i} + b_{i}|^{3} \right\}^{\frac{1}{2}} \leq \left\{ \sum_{i=1}^{n} |a_{i}|^{s} \right\}^{\frac{1}{2}} + \left\{ \sum_{i=1}^{n} |b_{i}|^{3} \right\}^{\frac{1}{2}} \quad (3 > 1)$$

we get:

$$(43) \int_{a}^{b} |f\phi| d\psi \leq \left\{ \int_{a}^{b} |f|^{s} d\psi \right\}^{\frac{s}{s}} \cdot \left\{ \int_{a}^{b} |\phi|^{\frac{3}{3-1}} d\psi \right\}^{s-\frac{s}{s}} (s > 1)$$

^{1.} Cf. 1. c. p. 73, 1-b, pp. 142, 143, 146, 194.

F. Rietz, Ueber Systeme integrierbarer Funktionen, Mathematische Annalen, v. 69 (1911), pp. 449-497; p. 456.

$$(44) \quad \left\{ \int_{a}^{b} |f+\phi|^{2} d\psi \right\}^{1/2} \leq \left\{ \int_{a}^{b} |f|^{2} d\psi \right\}^{1/2} + \left\{ \int_{a}^{b} |\phi|^{2} d\psi \right\}^{1/2} (5 \geq 1) .$$

Formula (43), with $\phi \equiv l$, $s = \frac{s}{s} > l$ and f replaced by $|f|^2$, yields:

$$(45) \quad \left\{ \int_{a}^{b} |f|^{s} d\psi \right\}^{\gamma_{S_{s}}} \leq \left\{ \int_{a}^{b} |f|^{s_{2}} d\psi \right\}^{\gamma_{S_{2}}} \left\{ \int_{a}^{b} d\psi \right\}^{\frac{s_{1}-s_{1}}{3,s_{2}}} \\ (s_{2} > s_{1} > o) \quad .$$

The applications of the above inequalities to the theory of probability and mathematical statistics are many. A few illustrations follow:

(i) Consider even moments $u_{*a} = \int_{-\infty}^{\infty} x^{*a} f(x) dx = 2 \int_{-\infty}^{\infty} x^{*a} f(x) dx$ of a continuous unimodal symmet ' distribution over a finite interval (-a, a). Here (36) gives (with $s_1 < dy(x) f(x) dx < 2 \int_{-\infty}^{\infty} f(x) dx = 1$).

(46)
$$u_{zs} = \int_{a}^{b} x^{2s} f(x) dx < \frac{a^{2s}}{2s+1}$$

$$\left[s = 1, 2, \dots; f(x) = f(-x) \right].$$

(ii) If ξ denotes an arbitrary constant, take in (42) $f(x)=x-\xi$, $\psi(x)=law$ of distribution of x over (a,b), so that $\int_a^b d\psi(x)=1$. We get:

$$(47) \qquad v_{s_{i}}^{s_{s_{i}}} \leq v_{s_{e}}^{s_{s_{e}}} \quad \text{for } s_{i} < s_{e}$$

$$\left(v_{s}^{s_{e}} \equiv \left[\int_{s}^{b} |x - \xi|^{s} d\psi\right]^{s_{s}}\right).$$

Hence, in any distribution over any interval the quantity $v_s = \int_0^1 |x-\xi|^3 d\psi(x)|^{\frac{1}{2}}$ increases with s for any constant ξ and, in particular,

$$u_{2s}^{\frac{1}{2s}} = \left[\int_{a}^{b} x^{2s} d\psi\right]^{\frac{1}{2s}} \qquad \text{also if } a \ge 0.$$

$$u_{s}^{\frac{1}{2s}} = \left[\int_{a}^{b} f d\psi\right]^{\frac{1}{2s}}.$$

^{1.} Paul Levy, Calcul des probabilités (Paris 1925), p. 157-58.

(iii) Apply (36) to the functions f(x), $\phi(x)$ both monotonic in (a,b), $\psi(x)$ the same as in (ii):

(48)
$$E(f\phi) \ge E(f)E(\phi)$$
 (for the choice of \ge see (36)).

The same formula (36) gives for any function $f(x)^2$

(49)
$$E(f^n) > \{E(f)\}^n (n = 2, 3, \dots)^s$$

Formula (45) gives with the same $\psi(x)$:

(50)
$$\left\{ E(|f|^{s_i}) \right\}^{t_{s_i}} \leq \left\{ E(|f|^{s_2}) \right\}^{t_{s_2}} (s_i < s_2)$$
.

V. Application of Stieltjes Integrals to Some Minimum-Problems. Given a number $m \ge l$, M finite points $x \le x \le \cdots x_n$, M positive quantities σ_l , σ_2 , $\cdots \sigma_n$, and a function f(x) with well determined values $f(x_1)(i=l, 2, \cdots M)$. Find a polynomial $P_n(x)$, of degree not exceeding $n(\le M-2)$, minimizing the expression $\sum_{i=1}^{m} \sigma_i |f(x_i) - P_n(x)|^m \qquad Discuss the behavior of <math>P_n(x)$ for $m \ge m$. We introduce a finite interval (a, b), containing in its interior all points x_i and a monotonic non-decreasing step-wise function p(x) with the above properties (saltus σ_1 at $x = x_i$, etc.; see p. 75). Then our problem can be formulated as follows: Find a polynomial $P_n(x)$ of degree not exceeding n, minimizing the integral $\int_a^b |f(x) - P_n(x)|^m dp(x) \quad [m \ge l].$

Here the advantage of Stieltjes integrals is clearly evident, for the latter problem has been discussed by G. Polya³, D. Jackson³ and the writer³. We know that a solution always exists and is unique for m > 1. The behavior of $P_n(x)$, when either or both m and n in

G. Bohlman, Formulierung und Begründung Zweier Hulfssätze der Mathematischen Statistik. Mathematische Annalen, v. 74 (1913), pp. 341-442; p. 374-75.

^{2.} In fact, (36) holds, with sign >, if f(x) - f(y) and $\phi(x) - \phi(y)$ have the same sign for any x, y in a, b, which, of course, is true for $\phi(x) = f(x)$.

 ⁽a) G. Polya. Sur un algorithme toujours convergent . . ., Comptes Rendus, v. 157 (1913) p. 840-43. (b) D. Jackson, On the Convergence of certain polynomial and trigonometric approximations. Transactions of the American Mathematical Society, v. 22 (1921), p. 158-66. (c) Idem, Note on the Convergence of Weighted Trigonometric Series, Bulletin of the American Mathematical Society, v. 29 (1923), p. 259-63. (d) J. Shohat. On the Polynomial and Trigonometric Approximation, Mathematische Annalen, v. 103 (1929), p. 157-75.

crease indefinitely, has also been discussed by the above writers. It was found that, if f(x) be continuous in(a,b), then for n fixed and $m-\omega$, $P_n(x)$ approaches uniformly in(a,b) the polynomial $\Pi_n(x)$, of degree $\leq n$, of the best approximation (in Tchebycheff sense) to f(x), provided, $\psi(x)$ has infinitely many points of increase everywhere dense in (a,b). Furthermore, $\left[\int_{x}^{\infty} |f(x)-P_n(x)|^m d\psi(x)\right]_{x=0}^{\infty}$ the best approximation $E_n(f)=\max |f(x)-T_n(x)|$ for $a\leq x\leq b$.

This result has been supplemented by the writer (in a paper which will appear elsewhere), who showed that the above result holds if $\psi(x)$ has a finite number $M(\ge n+2)$ points of increase. $\Pi_n(x)$ representing here the polynomial (of degree $\le n$) giving the best approximation to f(x) on the aggregate of the said points of increase of $\psi(x)$. The following cases are of special interest.

(a)
$$n=0$$
, i. c. find a constant X_m minimizing the sum
$$\sum_{i=1}^n \sigma_i |f(x_i) - X_m|^m.$$

Very simple considerations show that the best approximation to $\{f(x_i)\}\ (i=1,2,\cdots)$ by means of a constant is $E_o(f)=\frac{1}{2}|f(x_i)-f(x_k)|$, $f(x_1)$, $f(x_k)$ being respectively the largest and the smallest of the $f(x_i)$, so that $|f(x_1)-f(x_k)|$ is the largest possible, and the "constant of the best approximation" is $N_o=\frac{1}{2}[f(x_k)+f(x_i)]$. Thus here

(51)
$$\lim_{m \to \infty} X_m = \frac{f(x_n) + f(x_1)}{2}$$

$$\lim_{m \to \infty} \left\{ \sum_{i=1}^m \sigma_i \left[f(x_i) - X_m \right]^m \right\}^{1/m}$$

$$= \frac{\left| f(x_n) - f(x_1) \right|}{2} = \max \cdot \left| \frac{f(x_i) - f(x_j)}{2} \right| (i, j = 1, 2, \dots n)$$

$$f(x_i) < f(x_2) < \dots < f(x_m) \text{ im plies}:$$

$$\lim_{m \to \infty} X_m = \frac{f(x_m) + f(x_i)}{2}$$

$$\lim_{m \to \infty} \left\{ \sum_{i=1}^m \sigma_i \left| f(x_i) - X_m \right|^m \right\}^{1/m} = \frac{f(x_m) - f(x_i)}{2}$$

^{1.} That is: $E_n(f) \equiv \max_{x} |f(x) - \Pi_n(x)| \leq \max_{x} |f(x) - G_n(x)|$ (as $x \leq b$) where $G_n(x)$ is an arbitrary polynomial of degree $\leq n$, equality implying necessarily: $G_n \equiv \Pi_n$.

and the limiting results do not depend on $x_z, x_s, \dots x_n$, As an illustration $f(x)=x^{2k+1}$ may serve, or, more generally, $f(x)=\sum_i A_i x^{2k_i+1}$ (all $A_i > 0$; all k_i and K are positive integers or zero).

(b) M=n+2, n arbitrary. Here the writer showed (the paper will appear elsewhere):

$$(53) \lim_{m \to \infty} P_{n}(x) = \prod_{n}(x)$$

$$= \frac{f_{n+i} + f_{n+k}}{2} - \frac{1}{2K} \sum_{i,j=i}^{n} (-1)^{i+j} K_{i,j} \frac{f_{i} - f_{i+k}}{x_{i} - x_{i+k}} (x_{n+i}^{j} + x_{n+k}^{j} - 2x^{j})$$

$$(54) \lim_{m \to \infty} \left[\sum_{i=1}^{n} \sigma_{i} \left| f_{i} - P_{n}(x_{j}) \right|^{m} \right]^{1/m} = E_{n}(f)$$

$$= \frac{1}{2} \left| f_{k} - f_{k+i} - \frac{1}{K} \sum_{i,j=i}^{n} (-1)^{i+j} \frac{f_{i} - f_{i+k}}{x_{i} - x_{i+k}} (x_{k}^{j} - x_{k+i}^{j}) \right|$$

$$k = 1, 2, \dots, M$$

$$f_{i} \equiv f(x_{i}) (i = 1, 2, \dots M)$$

where $K, K_{i,j}$ stand respectively for the following determinant and its minors:

(55)
$$K = \begin{bmatrix} \frac{x_1^2 - x_3^2}{x_1 - x_3} & \frac{x_1^3 - x_3^3}{x_1 - x_3} & \frac{x_1^n - x_3^n}{x_1 - x_3} \\ \frac{x_2^2 - x_4^2}{x_2 - x_4} & \frac{x_2^n - x_4^n}{x_2 - x_4} \\ \frac{x_3^n - x_{n+2}^n}{x_n - x_{n+2}} & \frac{x_n^n - x_{n+2}^n}{x_n - x_{n+2}} \end{bmatrix}$$

We proceed now to show the application of Stieltjes integrals to interpolation. This must be preceded by a discussion of

VI. Orthogonal Tchebycheff Polynomials. Theorem. Any

Cf. D. Jackson, Note on the Median of a Set of Numbers, Bulletin of the American Mathematical Society, v. 22 (1920), p. 160-64, where the above results have been obtained for the particular case f (x)=x.

function $\psi(x)$, monotonic non-decreasing on (a,b) —finite or infinite, and having all moments $\gamma_k = \int_a^b x' d\psi(x)$ $(k=0,1,\cdots)$ with $\gamma_0 > 0$ generates a sequence of polynomials $\{\phi_n(x)\}$ of degree $n=0,1,\cdots$ uniquely determined by the relations $\{\phi_n(x)\}$ of $\{$

Proof. Take $\phi_n(x) = x + f_{n-1} + x + f_0 + f_0$. The above relations lead to the following set of equations:

$$\begin{aligned}
f_{o} \gamma_{o} + f_{i} \gamma_{i} + \cdots & \cdots & f_{n-i} \gamma_{n-i} + \gamma_{n} = 0 \\
f_{o} \gamma_{i} + f_{i} \gamma_{2} + \cdots & \cdots & f_{n-i} \gamma_{n} + \gamma_{n+i} = 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
f_{o} \gamma_{n-} + f_{i} \gamma_{n} + \cdots & \cdots & \vdots & \vdots \\
f_{n-i} \gamma_{2n-2} + \gamma_{2n-i} = 0
\end{aligned}$$

The determinant Δ_n of the coefficients γ_i is (see (37)):

(57)
$$\Delta_n = \frac{1}{n!} \int_{a_{n \text{ times}}}^{b} \cdots \int_{a_{n}}^{b} \prod_{i=1}^{n} d\psi(x_i) \prod_{i,j=1,\ i \neq j}^{n} (x_i - x_j)^2 > 0$$

which proves our statement. Add to (56) the identical relation $f_0 + f_1 x + \cdots + f_{n-1} x^n + (x^n + f_n) = 0$, and for $\phi_n(x)$ we obtain the following expression:

(58)
$$\phi(x) = \begin{cases}
\gamma_0 \gamma_1 \cdots \gamma_n \\
\gamma_1 \gamma_2 \cdots \gamma_{n+1} \\
\vdots \\
\gamma_{n+1} \gamma_n \cdots \gamma_{2n-1} \\
\vdots \\
\gamma_{n+1} \gamma_n \cdots \gamma_{2n-1}
\end{cases}$$

$$\gamma_0 \gamma_1 \cdots \gamma_{n-1} \gamma$$

Note. If $\psi(x)$ has in (a,b) only a finite number M of points of increase, then $\Delta_n \equiv 0$ for n > M, and $\Phi_n(x)$ exists only for n = 0, $1, \dots M$ (See below (65), which in this case is a rational fraction).

The following table gives the most known and important Tchebycheff polynomials.

^{1.} We disregard constant factors.

(a, b)	$\partial \psi(x) =$	$\phi(x)$ — polynomial of [Constant factors disregarded]
finste	dx	Legendre: $\frac{d^n}{dx^n} \left[(x-a)^n (b-x)^n \right]$
finite	$(x-\partial)^{4-1}(b-x)^{-1}dx$ $(\alpha,\beta>0)$	Jacobi: $ (x-a)^{n}(b-x)^{-a}\frac{d^{n}}{dx^{n}} [(x-a)^{n-a}(b-x)^{n-a}] $
(0,∞)	$x^{\alpha-1}e^{-kx}dx$ $(\alpha, K>0)$	Laguerre: $x'^{-a}e^{kx}\frac{d^n}{dx^n}[x^{n+a-i}e^{-kx}]$
(-ω, ω)	$e^{-kx^2}dx(K>0)$	l 7 a n/acc - Honne vice :

The polynomials $\phi_n(x)$ can be normalized, by multiplying by constant factors $a_n = /: \int_a^b \phi_n^2(x) d\psi$, so as to obtain an orthogonal and normal system of Tchebycheff polynomials $\{\phi_n(x) = a_n x^n + \cdots \}$ $\{n = 0, /, \cdots; a_n > 0\}$

(59)
$$\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d\psi = O(m \neq n), = I(m = n)$$

$$(m, n = 0, I, 2 \cdots)$$

The following are some of the most important properties of $\phi_n(x)$.

- (a) The roots of $\phi_n(x)$ are real, distinct and lie between a, b.
- (b) If all integrals $\int_{x}^{b} f(x) d\psi(x) \exp(\pi e^{-x})$, then, by (59,) we have the formal development:

(60)
$$f(x) \sim \sum_{i=0}^{\infty} A_i \phi_i(x), \quad \left[A_i = \int_a^b f(x) \phi_i(x) d\psi(x)\right]^2$$

which, regardless of its convergence or divergence, has the following remarkable property: any "section" ("Abschnitt") of (60), i. e. the polynomial $P_n(x) = \sum_{i=1}^n A_i \phi_i(x)$, obtained by taking its first n+1 terms $(n=0,1,\cdots)$; ives the best approximation to f(x) in (o,b), in the scase of least squares, i. e. it minimizes the integral $\int_{-\infty}^{\infty} f(x) P_n(x)^2 d\psi(x)$. Moreover

¹ Cf. W. Romanowsky, Sur quelques classes nouvelles des polynomes orthogonaux, Comptes Rendus, v. 188 (1929), p. 1023-25, where new polynomials are discussed arising from Pearson's frequency curves of type IV, V, VI.

^{2.} In the development $f(x) \Leftrightarrow \sum_{i=1}^{\infty} A_i \phi_i(x)$, where the $\phi_1(x)$ are not normalized, $A_1 = \int_{0}^{x} f \phi_1 d\psi$: $\int_{0}^{x} \phi_1^2 d\psi$.

(61)
$$\int_{a}^{b} \left[f - P_{n} \right]^{z} d\psi = \min \int_{a}^{b} \left[f(x) - G_{n}(x) \right]^{2} d\psi(x)$$
$$= \int_{a}^{b} f^{2} d\psi - \sum_{x=0}^{a} A_{i}^{z},$$

 $G_n(x) = \int_{1-0}^{n} g_x x^x$ denoting hereafter an arbitrary polynomial of degree = n. The proof is very simple. Write $G_n(x)$ as $\sum_{i=0}^{n} H_i \phi_i(x)$ with constant coefficient \underline{H}_i , substitute this expression into $I = \int_{1}^{\infty} [f - G_n] d\psi$, and write down the conditions of minima: $\frac{1}{2} \frac{\partial}{\partial H_i} = 0$, which, by (59), lead to

$$H_i = \int_a^b f \phi_i \ d\psi = A_i \qquad (i = 0, /, 2, \cdots n).$$

These coefficients A_i can be written down as linear combinations of the moments

(62)
$$m_{k} = \int_{a}^{b} f(x) x^{k} d\psi(x) \quad (k=0, 1, \dots).$$

Introduce the symbol

(63)
$$\omega(G_n) = \sum_{i=0}^n m_i \, g_i$$

$$\left(G_n(x) = \sum_{i=0}^n g_i \, x^n; \ n = 0, /, \cdots; g_i \text{ arbitrary}\right)$$

Then evidently,

(64)
$$A_{n} = \int_{a}^{b} f \phi_{n} \, d\psi = \omega \, (\phi_{n})$$
$$f(x) \approx \int_{a=0}^{\infty} \omega \, (\phi_{n}) \, \phi_{n}(x) :$$

in other words, we have the following simple rule: In the expression of $\phi_n(x)$ replace each power x^k by the corresponding moment m_k given in (62)($K=0,1,\cdots n$), and we obtain the coefficient A_n in (60) $(n=0,1,\cdots)$.

(c) $\phi_n(x)$ are denominators of the successive convergents to the continued fraction

(65)
$$\int_{a}^{b} \frac{\partial \psi(y)}{x - y} = \frac{\lambda_{i} \cdot l}{|x - c_{i}|} - \frac{\lambda_{i} \cdot l}{|x - c_{i}|} - \cdots$$
$$(\lambda_{i} \cdot (> 0), \quad c_{i} - const.).$$

Historically, it was the aforesaid minimum property which has lead Tchebycheff to the discovery and investigation of the general class or orthogonal polynomials corresponding to any monotonic non-decreasing function, while before, only isolated special cases of such polynomials have been known (polynomials of Legendre, Jacobi, Laguerre, Laplace, Hermite). Tchebycheff found these polynomials in connection with

VII. Least-squares Interpolation. The problem can be formulated with Tchebycheff¹ as follows: Given the values of a certain function y=F(x) at n+1 real, distinct points $x_1, x_2, \cdots x_{n+1}$, with the corresponding weights σ_1 ?. Find its value at x=X, assuming for y the representation $a+bx+cx^2+\cdots+hx^m$, $(m \le n)$ so that the errors of $F(x_i)$ $[i=1,2,\cdots n+1]$ shall have the least possible influence on the required value F(x).

Using Stieltjes integrals (which greatly simplifies Tchebycheff's analysis), we are lead to the following solution:

(66)
$$F(X) = P_{m}(X) = \sum_{k=0}^{m} A_{k} \phi_{\kappa}(X)$$

$$\left[A_{\kappa} = \int_{a}^{b} F(x) \phi_{\kappa}(x) \partial \psi(x) = \sum_{k=1}^{n} \sigma_{\kappa} F(x_{i}) \phi_{\kappa}(x_{i})\right],$$

where $\psi(x)$ is the stepwise function having at x=x, a saltus $\sigma_i(i=1, 2, \cdots, n+j)$, (a, b) contains in its interior all points x_i , $\{\phi_n(x)\}$ are orthogonal and normal polynomials determined by (59), or which is the same, denominators of the successive convergents to the continued fraction (65) (we disregard constant factors), which here reduces to

(67)
$$\sum_{i=1}^{n+1} \frac{\sigma_i}{x-x_i} = \frac{\lambda_i}{|x-c_i|} - \frac{\lambda_2}{|x-c_2|} - \cdots$$

Tchebycheff, (a) Sur les fractions continues. Journal des Mathématiques, (2),
 v. III (1858), p. 289-323; (b) On the least-squares interpolation, Collected Papers, v. I, p. 473-98; (c) On interpolation with equidistant ordinates, ibid.,
 v. II, p. 219-42 (b, c, in Russian).

^{2.} σ_i is inversely proportional to the mean-square error of $F(x_i)$.

We see that (66) is nothing but the first m+l terms of the development (60). Hence, T chebecheff's solution (66) yields the minimum of $\int_{a}^{b} [F(x)-P_{n}(x)]^{2} d \psi(x) = \sum_{i=1}^{n} \sigma_{i} [F(x_{i})-P_{n}(x)]^{2}$. Moreover, for the meansquare error of (66), we get, by (59):

(68)
$$R^{2} = \int_{a}^{b} F^{2} \partial \psi - \sum_{k=0}^{m} A_{k}^{2}$$

$$= \sum_{\substack{j=1\\2\neq i}}^{n+i} \sigma_{j} F^{2}(x_{j}) - \sum_{k=0}^{m} \left\{ \sum_{\substack{j=1\\2\neq i}}^{n+i} \sigma_{j} F(x_{j}) \phi_{k}(x_{j}) \right\}^{2}.$$

The name "least-squares interpolation" is thus fully justified, and we see the complete identity between the two problems: least-squares interpolation and approximate representation of functions by series of Tchebycheff polynomials. Whether the data are discrete and in a finite number, or the form a continuous set, the underlying principles and the resulting formulae are identical, provided we use Stieltjes integrals. There is no need to treat the two cases separately (as one finds even in recent books on this subject) and to introduce special symbols in the first case. Another very important feature of the above solution has been indicated by Tchebycheff: If we add one more term to the expression $a+bx+\cdots+hx^m$ assumed for y=F(x), we need only add one more term to $P_m(x)$ above, without changing the preceding ones (compare with Lagrange interpolation formula!) Formula (68) enables one to find the number of terms necessary to attain a prescribed accuracy.

Consider two special cases.

(a) The ordinates are equidistant $:x_{1+1}-x_1=h$ $(1=1,2,\dots,n)$ and all weights σ_1 are equal (=1). Here Tchebycheff (1-c. 1-b. p. 91) gives very simple expressions for the polynomials $\phi_k(x)$, as well as for the coefficients A_k of (66):

$$\phi(z) = \Delta^{k} \left[\left(z + \frac{n-J}{2} \right) \left(z + \frac{n-3}{2} \right) \cdot \cdot \cdot \left(z + \frac{n-2k+J}{2} \right) \left(z - \frac{n+J}{2} \right) \right]$$

$$(69) \qquad \cdot \cdot \cdot \left(z - \frac{n+2k-J}{2} \right) \right] \qquad k = 0, \ J, \ 2, \ \cdot \cdot \cdot ; \ z = \frac{x-\frac{J}{2}(x_{1}+x_{n})}{x_{2}-x_{n}};$$

$$\Delta^{k} - k \qquad \text{th} \qquad \text{difference.}$$

$$(70) \qquad \omega(z) = F(x) = \frac{1}{n} \sum_{i=1}^{n} u_{i} \phi_{o}(z) + \frac{3}{n(n^{2}-J^{2})} \sum_{i=1}^{n} \frac{j}{J} \cdot \frac{n-j}{J} \Delta u_{i} \phi_{i}(z) + \cdots$$

$$+ \frac{5}{n(n^{2}-J^{2})(n^{2}-2^{2})} \sum_{i=1}^{n} \frac{i(i+J)}{J \cdot 2} \cdot \frac{(n-i)(n-i-J)}{J \cdot 2} \Delta^{2} u_{i} \phi_{i}(z) + \cdots$$

$$= \left[\left(u_{i} = F(x_{i}) \right]$$

(We have replaced n+/ in our above formulae by n). All ϕ_n (z) can be easily computed by means of the relations:

$$\phi_{o}(z) = \Delta^{o}/= / ; \quad \phi_{i}(z) = 2z,$$

$$(71) \qquad \phi_{z}(z) = 2(2k-l)\phi_{k-1}(z) - (k-l)^{z} \left[n^{z} - (k-l)^{z}\right]\phi_{k-z}(z)$$

$$(k \ge 2)$$

(b)
$$m = /$$
, x_i arbitrary $(i = /$, $2, \dots n)$. We take in (67)
(72) $\lambda_i = \int_a^b d\psi(x) = \int_{i=1}^n \sigma_i$.

We get now (by successive division, for ex.)

(73)
$$c_{i} = \int_{0}^{b} x \, d\psi = \frac{\gamma_{i}}{\gamma_{o}}$$

$$\left(\gamma_{k} = \int_{x}^{b} x^{k} \, d\psi(x) = \int_{z=i}^{n} \sigma_{i} x_{i}^{k}\right)$$

$$\phi_{o}(x) = \frac{1}{\sqrt{\gamma_{o}}}$$
(74)
$$\phi_{i}(x) = \frac{x_{i} - c_{i}}{\sqrt{\gamma_{o}}} = \frac{\gamma_{o} x - \gamma_{i}}{\sqrt{\gamma_{o}^{2} \gamma_{i} - \gamma_{i}^{2}}}$$
(75)
$$P_{i}(x) = A_{o} \phi_{o}(x) + A_{i} \phi_{i}(x)$$

$$= \sum_{i=i}^{n} \frac{\sigma_{i} y_{i}}{\gamma_{o}} + \sum_{i=i}^{n} \frac{\sigma_{i} y_{i} (\gamma_{o} x_{i} - \gamma_{i})}{\gamma_{o}^{2} \gamma_{i} - \gamma_{i}^{2}} (\gamma_{o} x - \gamma_{i})$$

$$\left[y_{i} = F(x_{i})\right]$$

$$R^{2} \text{ (mean-square error)} = \sum_{i=i}^{n} \sigma_{i} \left[F(x_{i}) - P_{n}(x_{i})\right]^{2}$$

$$(76) = \left(\sum_{i=i}^{n} \frac{\sigma_{i} y_{i}}{\sqrt{\sigma_{i} \gamma_{o}}}\right)^{2} + \left(\sum_{i=i}^{n} \frac{\sigma_{i} y_{i} (\gamma_{o} x_{i} - \gamma_{i})}{\sqrt{\gamma_{o}^{2} \gamma_{i}^{2} - \gamma_{i}^{2}}}\right)$$
(See 68)

Let $\psi(x)$ represent a law of distribution. Then, $\gamma_0 = 1, \sqrt{\gamma_0^2 \gamma_2^2 - \gamma_1^2} = 1$ standard deviation σ and the above formulae become:

(77)
$$\phi_{\sigma}(x) = f, \quad \phi_{i}(x) = \frac{x}{\sigma}$$

$$P_{i}(x) = \frac{x \int_{x}^{b} F x \, d\psi}{\int_{x}^{a} x^{2} \, d\psi}$$

$$= \frac{x \int_{x}^{b} \sigma_{i} x_{i} y_{i}}{\int_{x}^{a} \sigma_{i} x_{i}^{2}} \left[(y_{i}) = F(x_{i}) \right]$$

$$R^{2} = \int_{x}^{b} F^{2} \, d\psi \cdot \left(\int_{x}^{b} \phi_{i} \, d\psi \right)^{2}$$

$$= \int_{x}^{a} \sigma_{i} y_{i}^{2} \cdot \left(\int_{x}^{a} \sigma_{i} x_{i} y_{i} \right)^{2}$$

One recognizes in (78, 79) formulae quite similar to those for the line of regression of y on x and for the standard error of estimate of y. Introduce

(80)
$$\sigma_{x}^{z} = \int_{x}^{b} x^{2} d\psi ; \quad \sigma_{y}^{z} = \int_{x}^{y} y^{2} d\psi ,$$
$$\int_{x}^{x} xy d\psi = \sqrt{\int_{x}^{x} x d\psi \cdot \int_{y}^{y} y d\psi}$$

and our formulae become the classical ones:

(81)
$$P_{i}(x)=r\frac{\sigma_{y}}{\sigma_{x}}x$$
; $R=\sigma_{y}(1-r^{2})^{l_{z}}$.

We thus obtained, using Stieltjes integrals, elegant, simple and easily memorizable formulae for α_r , α_r and for the coefficient of correlation r. Moreover, we see by inspection (Schwartz inequality) that $-/ \le r \le l$, equality attainable if and only if x and y are linearly dependent. We see also that the theory of linear regression is but a very special case of the general theory — due to Tchebecheff — of least-squares interpolation.

Cf. D. Jackson. The Elementary Geometry of Function Space, American Mathematical Monthly, v. 31 (1924), p. 461-71.

SIMULTANEOUS TREATMENT OF DISCRETE AND CONTINUOUS PROBABILITY BY USE OF STIELTJES INTEGRALS

By

WILLIAM DOWELL BATEN

The object of this paper is to present several theorems pertaining to the probability that certain functions lie within certain intervals. The first theorem is a generalization of Markoff's Lemma, which is proven for the discrete and continuous cases by use of the accumulative frequency function and Stieltjes integrals. Tchebycheff's Theorem is obtained as a corollary to a very general theorem, the proof of which is based upon the first theorem. Other corollaries are given.

Three theorems, due to Guldberg, which follow are concerned with the probability that a non-negative chance variable be less than certain functions of the expected value of the variable. These are proved for the discrete and continuous cases by employing accumulative frequency functions and Stieltjes integrals. This is the first time, as far as the writer knows, the discrete and continuous cases for these theorems have been included in a single proof.

Theorem 1. If A denotes the expected value of the non-negative variable x and t is any number greater than 1, then the probability that $x \le At^2$ is greater than $1 - \frac{1}{2}t^2$.

Proof: If x is a discrete variable with values at x_v $(i = 1, 2, \dots, n)$ with corresponding probabilities p_i , then it is understood that the probability that x takes other values is zero. If x is a continuous variable having a probability function defined over the interval (x, b), then it is understood that the probability that x lies outside of (x, b) is zero in case (x, b) is different from $(-\infty, +\infty)$. In both cases x is a continuous variable in the interval $(-\infty, +\infty)$. Let the probability that x lies in the interval $(-\infty, x)$ be x, with x lies in the interval x, with x lies in the interval x lies in the interval x, x, is

 $F(x_2) - F(x_1) + \frac{1}{2} \left\{ F(x_2 + 0) - F(x_2 - 0) \right\} + \frac{1}{2} \left\{ F(x_1 + 0) - F(x_2 - 0) \right\}$

where the last two limits are different from zero when there is probability different from zero at x, and x_2 . This exists since F(x) is a non-decreasing function over the interval $(-\infty, +\infty)$. In the special case when $F(x) = \int_{-\infty}^{x} f(x) dx$ where f(x) is summable, f(x) dx represents the probability that x lies in the interval (x, x+dx).

In either case, by definition

$$A = \int_{-\infty}^{\infty} x \cdot dF(x)$$

 $x > At^2$ in the interval $(At^2 + \epsilon, \infty)$, where ϵ approaches 0, hence

$$A > \int_{a}^{b} x \cdot dF(x)$$

But

$$\int_{Ae^{2}+o}^{\infty} x dF(x) = \lim_{\epsilon \to o} \int_{Ae^{2}+\epsilon}^{\infty} x dF(x) = \lim_{\epsilon \to o} \int_{Ae^{2}+\epsilon}^{\infty} dF(x) = \lim_{\epsilon \to o} \int_{Ae^{2}+\epsilon}^{\infty} dF(x)$$

by the first theorem of the mean, which holds for Stieltjes integrals in this case. Here $z > At^2 + e$, hence $\lim_{x \to 0} z_e \ge At^2$, therefore $A > At^2 \int \partial F(x)$ But $\int_{At^2}^{\infty} \partial F(x)$ is the probability P that x is greater that At^2 , hence

where Q is the probability that $x \leq At^2$.

This theorem is a generalization of Markoff's Lemma¹, which he proved for the discrete case. The above proof takes care of the discrete case, the continuous case and the case which is a combination of the discrete and continuous.

Theorem 2 If $f(x_1, x_2, \dots, x_n)$ is a function of n independent variables, then the probability that

$$|f-k| \le t\sqrt{E(f^2)-2kE(f)+k^2}$$

^{1. &}quot;Wahrscheinlichkeitsrechnung," by Markoff. 1912. Page 54.

is greater than $1-\frac{1}{2}$; where \mathcal{E} represents the expected value, k is a constant and t > 1.

Proof: Let

$$y = \left\{ f(x_1, x_2, \dots, x_n) - k \right\}^2 \quad \text{then}$$

$$E(y) = E(f^2) - 2k E(f) + k^2$$

By theorem 1 the probability that

$$|f-k| \le t \sqrt{E(f^2)-2kE(f)+k^2}$$

is greater than /- 1/2.

Corollary: If $f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$ and $k = \sum_{i=1}^n \mathbb{Z}(x_i)$, then theorem 2 becomes the famous Tchebycheff theorem. This theorem is: If x_1, x_2, \dots, x_n be n independent variables, then the probability that

$$\left|\sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} E\left(x_{i}\right) \leq t \sqrt{\sum_{i=1}^{n} E\left(x_{i}^{2}\right) - 2\sum_{\substack{i=1\\i\neq j}}^{n} E\left(x_{i} x_{j}\right) + \left(\sum_{i=1}^{n} E\left(x_{i}\right)\right)^{2}} \right|,$$

is greater than /- /22.

This proof is by far simpler than that given by Tchebycheff, while it is similar to that given by Markoff.

In the corollary if $k = \sum_{i=1}^{n} E(x_i)$, $E(x_i) = \alpha E(x_i^2) = A$ then the probability that

$$\left|\frac{\sum x_i}{n} - a\right| \leq \frac{t}{\sqrt{n}} \sqrt{A - a}$$

is greater than /- //+ .

If $f(x_i, x_2, \dots, x_n) = \sum_{j=1}^n x_i^s$ then the probability that $\left| \sum_{i=1}^n x_i^s - k \right| \le t \sqrt{\sum_{i=1}^n A_{s,2s} + 2\sum_{i=1}^n a_{i,s}} \sum_{i=1}^n a_{i,s} + k^{\frac{n}{2}} a_{i,s} + k^{\frac{n}{2}}$

is greater than $l-l_{t^2}$, where the variables are independent, $\mathcal{E}(x_i^{ss})=A_{i,2s}$; $\mathcal{E}(x_i^s)=a_{i,s}$. If s is negative it is under-

^{1. &}quot;Des Valeurs Moyennes," by Tchebecheff, Journal de Math. 1867 (2). Vol. 12.

stood that x can not take on the value zero, if $s = \frac{a}{b}$, where a is odd and b is even, it is understood that x is non-negative.

Other interesting results may be obtained from this theorem if $f(x_1, x_2, \dots, x_n)$ represents various functions of the n independent variables and k be given different values. If f is the sum of the variables, theorem 2 is a more general theorem than Tchebycheff's theorem because of the constant k which may have values other than $\sum_{k=1}^{n} E(x_k)$.

Let x_i be the result of an individual throw of a coin, $x_i=1$ if a head is thrown and $x_i=0$ if a tail is thrown; then $E(x_i^2)=p\cdot 1+q\cdot 0$, where p is the probability of a head and q is the probability of a tail. Let m represent the number of heads thrown in n throws and let $k=np\pm\sqrt{n-npq}$, then the probability that

$$\left|\frac{m-(np\pm\sqrt{n-npq})\right| \le t\sqrt{n}$$
, or that $\left|\frac{m}{n}-\left(p\pm\sqrt{\frac{1-pq}{n}}\right)\right| \le \frac{t}{\sqrt{n}}$, is greater than $1-\frac{t}{\sqrt{n}}$.

Let $t = \sqrt[4]{n}$, then the probability that

$$-\frac{1}{\sqrt{n}}\pm\sqrt{\frac{1}{n}-\frac{pq}{n}}~\leq~\frac{m}{n}-p\leq\frac{1}{2\sqrt{n}}\pm\sqrt{\frac{1}{n}-\frac{pq}{n}}$$

is greater than $1-\frac{1}{\sqrt{2}}$ or $1-\frac{1}{\sqrt{n}}$, which approaches unity as n increases. It is near unity for large values of n. This shows that the empirical probability approaches the true probability p as the number of throws increases, and the advantage of k.

Theorem 3: Let $u'_{n,x}$ be the expected value of the non-negative variable x raised to the power n and t any number greater than 1, then the probability that $x \le t^n \sqrt{u'_{n,x}}$ is greater than $1 - \frac{1}{2} n$.

Proof: Let $c > \sqrt[n]{u'_{n:x}}$, and let F(x) be the probability that x lies in the interval $(-\infty, x)$, then by definition

$$u'_{nx} = \int_{-\infty}^{\infty} x^n dF(x);$$
 and $\frac{u'_{nx}}{c} = \int_{-\infty}^{\infty} x^n dF(x)/c^n$

Now

$$\frac{\mathcal{U}_{n:x}^{\prime}}{c^{n}} > \int_{-\infty}^{\infty} x^{n} dF(x) c^{n} = \lim_{\epsilon \to 0} \int_{ch\epsilon}^{\infty} x^{n} dF(x) / c^{n}$$

$$= \lim_{\epsilon \to 0} \frac{(z_{\epsilon})^{n}}{c^{n}} \cdot \lim_{\epsilon \to 0} \int_{ch\epsilon}^{\infty} dF(x) > i \cdot \int_{ch\epsilon}^{\infty} dF(x),$$

by the first theorem of the mean, and since $\lim_{n \to \infty} \frac{(z_n)^n}{n} \ge 1$.

Since $\int_{c}^{\infty} dF(x)$ is the probability P that x is greater than C, $\frac{u_{n,x}}{C^n} > p \quad \text{or} \quad Q > /-\frac{u_{n,x}}{C^n}$

where Q is the probability that $x \leq c$.

Let
$$t = \frac{C}{\sqrt{u'_{n/2}}}$$
, then $\frac{1}{t''} = \frac{u'_{n/2}}{C''}$, hence $Q > 1 - \frac{1}{t''}n$.

But Q becomes the probability that $x \le \sqrt[n]{u_{n,x}}$, since c was any number greater than $\sqrt[n]{u_{n,x}}$.

Let y=|x-k|, then theorem 3 becomes: If $u'_{n,y}$ is the expected value of $|x-k|^n$ and t is greater than 1, then the probability that |x-k| does not surpass the multiple $t \sqrt[n]{u'_{n,y}}$, is greater than $1 - \frac{1}{2} \frac$

If $k = \int_{-\infty}^{\infty} x \cdot dF(x)$, then $u'_{n,y}$ becomes $u'_{n,x}$ and theorem 3 states that the difference |x-k| does not surpass the multiple $t'\sqrt[n]{u'_{n,x}}$, is greater than $1-\frac{1}{2}n$. In this special case theorem 3 becomes Guldberg's theorem, but this is more general than his theorem, for it includes the continuous case, the discrete case and the case which is a combination of the discrete and continuous.

If y = |f(x) - k| is used for the variable, a more general theorem is obtained. Here f(x) is a function of x. Of course, the probability law for f(x) must be secure from that of x if the continuous case is under consideration. Certain restrictions must be placed upon f(x) concerning continuity, summability and concerning the inverse.

 [&]quot;Sur un théorèmede M. Markoff," by Alf. Guldberg. Compte Rendue, Vol. 175. (1922) page 679.

Theorem 4. The probability that the difference |x-m| is not greater than the multiple $t u_{r,x}$, t > 1, is greater than $1 - (\sqrt[n]{u_{x}} u_{r,x})^n$ ($1/(e^n)$), where $u_{r,x}$ is the expected value of $|x-m|^n$, and m is the expected value of x.

Theorem 5. The probability that the positive quantity x does not surpass the multiple tm, (t > 1), is greater than $1 - \left(\frac{\sqrt[n]{(t-1)^n}}{m}\right)^n \frac{1}{(t-1)^n}$, where $u_{n/x}$ is the expected value of $|x-m|^n$, and m = E(x).

These last two theorems are due to Guldberg¹ for the discrete case. By the method used in theorem 3 these can be proven for the continuous case, the discrete case, and the case which is a combination of the discrete and continuous.

^{1. &}quot;Sur quelques inéqualités des le calcul de probabilités," by Guldberg. Comp. Rend. Vol. 175 (1922), p. 1382.

[&]quot;Sur le théorème de, Tchebecheff," by Guldberg. Comptes Rendue, Vol. 175 (1922), p. 418.

EDITORIAL

FUNDAMENTALS OF THE THEORY OF SAMPLING

I. SAMPLING FROM & LIMITED SUPPLY

We shall consider first a population of s individuals, in which each individual possesses a common attribute that can be measured quantitatively. The sum of the associated variates may be expressed a follows:

$$x_1 + x_2 + x_3 + \cdots + x_s = \sum_{s=1}^{s} x_s = sM_x$$

From this so-called parent population it is possible to select $\binom{5}{r}$ different samples, each consisting of r individuals, $(r \le 5)$. These amples may be ordered after any fashion, and the algebraic sum of the variates for the respective samples may be designated

Thus, while $\sum_{i=1}^{n} x_i$ represents the sum of all the s variates in the parent population, $\sum_{i=1}^{n} x_i$ designates the sum of the r variates occurring in the i th sample.

We face now the problem of describing adequately, from a statistical point of view, the distribution of these $\binom{3}{p}$ values of z, that is to say, we must express the moments $\mu_{n,z}$ in terms of the moments of the parent population, $\mu_{n,z}$.

By definition
$$M_z = \frac{\sum z}{\binom{s}{2}}$$

Since each value of z will contribute r terms to the value of $\sum z$, this latter expression will consist of r- $\binom{s}{r}$ terms involving each of the s variates of the parent population alike. Therefore, each variate, x_i ($i = 1, 2, 3, \ldots s$), will occur in the expression for $\sum z$ exactly $\frac{s}{r}$. ($\frac{s}{r}$) times. Consequently

(1)
$$M_s = \frac{\sum z}{\binom{s}{s}} = \frac{1}{\binom{s}{s}} \cdot \frac{r}{s} \cdot \binom{s}{r} \left\{ x_1 + x_2 + \cdots x_s \right\} = \frac{r}{s} \cdot \sum x = r M_x$$

We shall now investigate the values of

$$\mu_{nz} = \frac{\sum \overline{z}^n}{\binom{s}{r}}$$

where we choose to represent a deviation from the mean as

$$\bar{z}_1 = z_1 - M_{\bar{z}}$$

Observing that

$$\vec{x}_1 = x_1 - M_x = x_1 + x_2 + \cdots + x_r - rM_x = \vec{x}_1 + \vec{x}_2 + \cdots + \vec{x}_r$$

we note that

$$\begin{split} \boldsymbol{\bar{z}}_{,}^{z} &= \sum_{i}^{r} \boldsymbol{\bar{x}}^{z} + 2 \sum_{i}^{r'} \boldsymbol{\bar{x}}_{i} \, \boldsymbol{\bar{x}}_{j} \\ \boldsymbol{\bar{z}}_{z}^{z} &= \sum_{i}^{r} \boldsymbol{\bar{x}}^{z} + 2 \sum_{i}^{r} \boldsymbol{\bar{x}}_{i} \, \boldsymbol{\bar{x}}_{j} \\ & \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\ \boldsymbol{z}_{,z}^{z} &= \sum_{i}^{r(\underline{z})} \boldsymbol{\bar{x}}^{z} + 2 \sum_{i}^{r(\underline{z})} \boldsymbol{\bar{x}}_{i} \, \boldsymbol{\bar{x}}_{j} \end{split}$$

Therefore

$$\mu_{z\cdot\bar{z}} = \frac{\sum \bar{z}^{z}}{\binom{s}{r}} = \frac{1}{\binom{s}{r}} \left\{ \frac{r\cdot\binom{s}{r}}{s} \sum_{i}^{s} \bar{x}^{2} + 2 \frac{\binom{s}{r}\binom{s}{r}}{\binom{s}{r}} \sum_{i}^{s} \bar{x}_{i} \bar{x}_{j} \right\}$$

or, writing

$$\rho_{1} = \frac{r^{(i)}}{s^{(i)}} = \frac{r(r-l)(r-2)\cdots(r-\overline{i-l})}{s(s-l)(s-2)},$$
(2a)
$$\mu_{2:z} = 2! \left\{ \rho_{1} \frac{\sum_{i=1}^{3} \overline{x}^{2}}{2!} + \rho_{2} \frac{\sum_{i=1}^{3} \overline{x}_{i} \overline{x}_{j}}{(!!)^{2}} \right\}$$

By utilizing further the multinomial theorem, it follows easily that

(3a)
$$\mu_{s:z} = 3! \left\{ \rho_i \frac{\sum_{j=1}^{s} \bar{x}^{s}}{3!} + \rho_z \frac{\sum_{j=1}^{s} \bar{x}_{i}^{2} \bar{x}_{j}}{2! / !} + \rho_s \frac{\sum_{j=1}^{s} \bar{x}_{i} \bar{x}_{j} \bar{x}_{k}}{(/!)^{s}} \right\}$$

(4a)
$$\mu_{4,z} = 4! \left\{ \rho_{1} \frac{\sum_{i}^{s} \bar{x}^{4}}{4!} + \rho_{2} \frac{\sum_{i}^{s} \bar{x}_{2}^{3} \bar{x}_{i}}{3! \ l!} + \rho_{2} \frac{\sum_{i}^{s} \bar{x}_{i}^{2} \bar{x}_{i}^{2}}{(2!)^{s}} + \rho_{3} \frac{\sum_{i}^{s} \bar{x}_{1}^{2} \bar{x}_{i} \bar{x}_{i}}{2! \ (l!)^{s}} + \rho_{4} \frac{\sum_{i}^{s} \bar{x}_{i} \bar{x}_{i} \bar{x}_{i} \bar{x}_{i}}{(l!)^{s}} \right\}$$

The rule for writing down the terms is as follows: The number of terms in the expression for $\mu_{n,\bar{z}}$ equals the number of partitions that can be formed from the integer n. The subscript of ρ equals the number of elements in the corresponding partition, and exponents of \bar{x} and the factorials in the denominators are in fact the elements of the partitions.

Our next problem is to express the summations in terms of moments of the parent population, $\mu_{n,x}$.

First order summation

$$\sum_{x} \bar{x} = s \mu_{xx} = 0$$

Second order summations

$$\sum \bar{x}^z = s \mu_{z \cdot x}$$

$$2 \sum \bar{x}_i \bar{x}_j = -s \mu_{z \cdot x}$$

$$(\sum_{i=1}^{3} \bar{x}_i)^z = 0 = \sum_{i=1}^{3} \bar{x}^z + 2 \sum_{i=1}^{3} \bar{x}_i \bar{x}_j$$

since

Third order summations

$$\sum_{i=1}^{3} \bar{x}^{3} = s_{i} \mu_{3,x}$$

$$\sum_{i=1}^{3} \bar{x}_{i}^{2} \bar{x}_{j} = s_{i} \mu_{3,x}$$

$$\int_{1}^{3} \bar{x}_{i} \bar{x}_{j} \bar{x}_{k} = s_{i} \mu_{3,x}$$

since
$$\sum_{i}^{3} \bar{x}^{i} = \sum_{i}^{3} \bar{x}^{i} = 0 = \sum_{i}^{3} \bar{x}^{i} + \sum_{i}^{3} \bar{x}_{i}^{i} \bar{x}_{i}$$

and $(\sum_{i}^{3} \bar{x}^{i})^{3} = 0 = \sum_{i}^{3} \bar{x}^{i} + 3 \sum_{i}^{3} \bar{x}_{i}^{i} \bar{x}_{i} + 6 \sum_{i}^{3} \bar{x}_{i} \bar{x}_{i} \bar{x}_{i}$

Fourth order summations

$$\sum_{j=1}^{3} \bar{x}_{j}^{4} = 5\mu_{4:x}$$

$$\sum_{j=1}^{3} \bar{x}_{j}^{3} \bar{x}_{j} = -5\mu_{4:x}$$

$$2 \sum_{j=1}^{3} \bar{x}_{j}^{2} \bar{x}_{j}^{2} = -5\mu_{4:x} + 5^{2}\mu_{2:x}^{2}$$

$$2 \sum_{j=1}^{3} \bar{x}_{j}^{2} \bar{x}_{j} \bar{x}_{k} = 25\mu_{4:x} + 5^{2}\mu_{2:x}^{2}$$

$$8 \sum_{j=1}^{3} \bar{x}_{j} \bar{x}_{k} \bar{x}_{j} = -25\mu_{4:x} + 5^{2}\mu_{2:x}^{2}$$

Utilizing these summations, (2a), (3a) and (4a) may be written

(2)
$$\mu_{z:z} = s \mu_{z:z} \{ \rho_i - \rho_z \}$$

(3)
$$\mu_{sit} = 5 \mu_{six} \{ \rho_i - 3\rho_2 + 2\rho_s \}$$

14)
$$\mu_{4z} = 3\mu_{4x} \left(\rho_1 - 7\rho_2 + 12\rho_3 - 6\rho_4 \right) + 35^2 \mu_{2x}^2 \left(\rho_2 - 2\rho_3 + \rho_4 \right)$$
.

Continuing after this fashion, one can show after a lavish use of symmetric functions that

(5)
$$\mu_{s} = s\mu_{s:x} \{ \rho_{s} - 15\rho_{s} + 50\rho_{s} - 60\rho_{s} + 24\rho_{s} \}$$

 $+ 10s^{2}\mu_{s:x}\mu_{z:x} \{ \rho_{z} - 4\rho_{s} + 5\rho_{s} - 2\rho_{s} \}$,
(6) $\mu_{s:x} = s\mu_{g:x} \{ \rho_{s} - 3|\rho_{s} + 180\rho_{s} - 390\rho_{s} + 360\rho_{s} - 120\rho_{s} \}$
 $+ 15s^{2}\mu_{s:x}\mu_{z:x} \{ \rho_{z} - 8\rho_{s} + 19\rho_{s} - 18\rho_{s} + 6\rho_{s} \}$
 $+ 10s^{2}\mu_{s:x}^{2} \{ \rho_{z} - 6\rho_{s} + 13\rho_{s} - 12\rho_{s} + 4\rho_{s} \}$
 $+ 15s^{3}\mu_{s:x}^{3} \{ \rho_{z} - 3\rho_{s} + 3\rho_{s} - \rho_{s} \}$,

(7)
$$\mu_{7.z} = 5\mu_{7.z} \left\{ \rho_{7} - 63\rho_{2} + 602\rho_{3} - 2/00\rho_{4} + 3360\rho_{6} - 2520\rho_{6} + 720\rho_{7} \right\}$$

$$+ 2/5^{2}\mu_{5.x}\mu_{2.x} \left\{ \rho_{2} - /6\rho_{3} + 65\rho_{4} - //0\rho_{5} + 84\rho_{6} - 24\rho_{7} \right\}$$

$$+ 355^{2}\mu_{4.x}\mu_{3.x} \left\{ \rho_{2} - /0\rho_{3} + 35\rho_{4} - 56\rho_{5} + 42\rho_{6} - /2\rho_{7} \right\}$$

$$+ /055^{3}\mu_{3.x}\mu_{2.x}^{2} \left\{ \rho_{3} - 5\rho_{4} + 9\rho_{5} - 7\rho_{6} + 2\rho_{7} \right\},$$

(8)
$$\mu_{8:x} = 5\mu_{8:x} \left\{ \rho_{1} - 127\rho_{2} + 1932\rho_{3} - 10206\rho_{4} + 25200\rho_{5} - 31920\rho_{6} + 20160\rho_{7} - 5040\rho_{8} \right\}$$

$$+285^{2}\mu_{6:x}\mu_{2:x} \left\{ \rho_{2} - 32\rho_{3} + 211\rho_{4} - 570\rho_{5} + 750\rho_{6} - 480\rho_{7} + 120\rho_{8} \right\}$$

$$+565^{2}\mu_{5:x}\mu_{3:x} \left\{ \rho_{2} - 18\rho_{5} + 97\rho_{4} - 240\rho_{5} + 304\rho_{6} - 192\rho_{7} + 48\rho_{8} \right\}$$

$$+355^{2}\mu_{4:x}^{2} \left\{ \rho_{2} - 14\rho_{3} + 73\rho_{4} - 180\rho_{5} + 228\rho_{6} - 144\rho_{7} + 36\rho_{8} \right\}$$

$$+2105^{3}\mu_{4:x}\mu_{2:x}^{2} \left\{ \rho_{3} - 9\rho_{4} + 27\rho_{5} - 37\rho_{6} + 24\rho_{7} - 6\rho_{8} \right\}$$

$$+2805^{3}\mu_{3:x}^{2}\mu_{2:x} \left\{ \rho_{3} - 7\rho_{4} + 19\rho_{5} - 25\rho_{6} + 16\rho_{7} - 4\rho_{8} \right\}$$

$$+1055^{4}\mu_{2:x}^{4} \left\{ \rho_{4} - 4\rho_{5} + 6\rho_{6} - 4\rho_{7} + \rho_{8} \right\}.$$

It is convenient, at this point, to define the "nth sampling polynomial" as follows:

(9)
$$P_n(\rho) = D_x^n \log \left(\rho e^x + / - \rho\right)\Big|_{x=0}$$

If we place $y = log(\rho e^{x} + 1 - \rho)$, then

$$y^{\prime p} \frac{\rho e^x}{\rho e^x + l - \rho}$$
 or $(\rho e^x + l - \rho) y^{\prime p} \rho e^x$

Taking the n th derivative of both sides by utilizing Leibnitz' Theorem, we obtain

$$(\rho e^{x} + (-\rho) y^{(n+1)} + {n \choose 1} \rho e^{x} y^{(n)} + {n \choose 2} \rho e^{x} y^{(n-1)} + \cdots = \rho e^{x}.$$

Placing x = 0 in this equation yields, by definition,

$$P_{n+1}(\rho)+\binom{n}{1}\rho P_n(\rho)+\binom{n}{2}\rho P_{n-1}(\rho)+\cdots=\rho$$

That is, for n=0, $1, 2, \cdots$

$$P_i(\rho) = \rho$$

$$P_2(\rho)+\rho P_j(\rho)=\rho$$

$$P_{2}(\rho)+\rho P_{1}(\rho)=\rho$$

$$P_{3}(\rho)+2\rho P_{2}(\rho)+\rho P_{1}(\rho)=\rho$$

$$P_4(\rho) + 3\rho P_3(\rho) + 3\rho P_2(\rho) + \rho P_1(\rho) = \rho$$

etc.

Thus:

$$P_{1}(\rho) = \rho$$

$$P_{2}(\rho) = \rho - \rho^{2}$$

$$P_{3}(\rho) = \rho - 3\rho^{2} + 2\rho^{3}$$

$$P_{4}(\rho) = \rho - 7\rho^{2} + 12\rho^{3} - 6\rho^{4}$$

$$P_{3}(\rho) = \rho - 15\rho^{2} + 50\rho^{3} - 60\rho^{4} + 24\rho^{6}$$

$$P_{5}(\rho) = \rho - 3\rho^{2} + 180\rho^{3} - 390\rho^{4} + 360\rho^{6} - 120\rho^{6}$$

$$P_{5}(\rho) = \rho - 63\rho^{2} + 602\rho^{3} - 2100\rho^{4} + 3360\rho^{5} - 2520\rho^{6} + 720\rho^{7}$$

$$P_{5}(\rho) - \rho - 127\rho^{2} + 1932\rho^{3} - 10206\rho^{4} + 25200\rho^{6} - 31920\rho^{6}$$

$$[+20/60\rho^{7} - 5040\rho^{6}]$$

The law of formation of the coefficients is obvious: for if $c_{1:n}$ designates the coefficient of p^i in the expression for $P_n(p)$.

$$c_{in} = ic_{in-i} - (i-i)c_{i-i:n-i}$$

Comparing the polynomials of equations (9) with formulae (2) to (8) inclusive, suggests writing the expressions for $\mu_{2,2}$ in the following symbolic form:

$$\mu_{z,z} = 2! \left\{ P_{z} \frac{S\mu_{z,x}}{2!} \right\}$$

$$\mu_{3,z} = 3! \left\{ P_{z} \frac{S\mu_{3,x}}{3!} \right\}$$
(11)
$$\mu_{4;z} = 4! \left\{ P_{z} \frac{S\mu_{4;x}}{4!} + \frac{P_{z}^{2}}{2!} \frac{S\mu_{2,x}^{2}}{(2!)^{2}} \right\}$$

$$\mu_{5;z} = 5! \left\{ P_{z} \frac{S\mu_{5;x}}{5!} + P_{z} P_{z} \frac{S^{2}\mu_{3;x}\mu_{2;x}}{3! \ 2!} \right\}$$

$$\mu_{6,z} = 6! \left\{ P_{e} \frac{S\mu_{6;x}}{6!} + P_{z} P_{z} \frac{S^{2}\mu_{4;x}\mu_{2;x}}{4! \ 2!} + \frac{P_{z}^{2}}{2!} \frac{S^{2}\mu_{2;x}^{2}}{(3!)^{2}} \right\}$$

$$+ \frac{P_{z}^{2}}{3!} \frac{S^{2}\mu_{2;x}^{2}}{(2!)^{2}} \right\}$$

By P_n we understand an expression derived from the sampling polynomial, $P_n(o)$, by writing o^i as o_i . Thus,

$$P_{4}(\rho) = \rho - 7\rho^{2} + 12\rho^{3} - 6\rho^{4}$$
, whereas
 $P_{4} = \rho_{1} - 7\rho_{2} + 12\rho_{3} - 6\rho_{4}$

Again, since

$$P_{s}(\rho) \cdot P_{t}(\rho) \cdot P_{t}(\rho) = (\rho - 3\rho^{2} + 2\rho^{3}) \cdot \rho \cdot \rho = \rho^{3} - 3\rho^{4} + 2\rho^{4}$$

$$P_{s}(\rho) \cdot P_{t}(\rho) \cdot P_{t}(\rho) = (\rho - 3\rho^{2} + 2\rho^{3}) \cdot \rho \cdot \rho = \rho^{3} - 3\rho^{4} + 2\rho^{4}$$

$$P_{s}(\rho) \cdot P_{t}(\rho) \cdot P_{t}(\rho) = (\rho - 3\rho^{2} + 2\rho^{3}) \cdot \rho \cdot \rho = \rho^{3} - 3\rho^{4} + 2\rho^{4}$$

The number of terms in the expression for $\mu_{n,2}$ will equal the number of partitions that can be formed from the integer n. The subscripts of the P and μ factors for any selected term correspond to the elements of the corresponding partition, and the exponent of s equals the number of elements in the partition. The factorials beneath the μ factors agree with the order of these moments, and the factorials appearing occasionally under the P factors depend upon the

number of times that any P is repeated as a factor in that term. All terms arising from a partition in which unity is an element have been neglected, since such terms will contain $\mu_{l,x}$ as a factor and consequently be equal to zero.

Illustration I. For the parent population we shall select the following (it will be noted that graphically the ordinates terminate on the hypotenuse of an isosceles right triangle):

TABLE I	
Parent Population	

x	fx
1	24
2	23
3	22
4	21
5	20
• •	• •
22	3
23	2
24	1
Total	300

The mean, standard deviation and moments about the mean for this distribution are as follows:

$$M_x = 8.666$$
 $\mu_{z:x} = 33.222$
 $\sigma_x = 5.76387$
 $\mu_{s:x} = 108.526$
 $\sigma_{s:x} = 0.56749$
 $\sigma_{s:x} = 0.56749$
 $\sigma_{s:x} = 0.525.2$
 $\sigma_{s:x} = 0.569279$
 $\sigma_{s:x} = 0.525.2$
 $\sigma_{s:x} = 0.525.2$

It may well be remarked at this point that the standard variate corresponding to an observed variate, x_1 is

(12)
$$t_i = \frac{x_i - M_x}{\sigma_x} = \frac{\bar{x}_i}{\sigma_x} ,$$

and is consequently an abstract number. The n th moment of the standard variates is also without unit, i. e.

(13)
$$\alpha_{n,x} = \frac{\sum t^n}{N} = \frac{1}{N\sigma_x^n} \sum \bar{x}_i^n = \frac{\mu_{n,x}}{\sigma_x^n}$$

In dealing with distributions one should always bear in mind that the mean and standard deviation determine merely the position of the centroid vertical and the scale of the distribution, but that the standard moments are influenced by the shape of the distribution alone. Consequently a study of the mathematical representation of frequency distributions is essentially an investigation concerning the standard moments of observed and theoretical distributions.

From the above parent population it would be possible to select (300) samples, each consisting of 25 individuals. To describe the distribution of these sampes, we proceed as follows:

$$\rho_{s} = \frac{24}{299} = .08333$$

$$\rho_{z} = \rho_{s} \cdot \frac{24}{299} = .0066 \quad 8896 \quad 32$$

$$\rho_{z} = \rho_{z} \cdot \frac{23}{298} = .0005 \quad 1626 \quad 226$$

$$\rho_{z} = \rho_{z} \cdot \frac{22}{297} = .0000 \quad 3824 \quad 1649$$

$$\rho_{z} = \rho_{z} \cdot \frac{21}{296} = .0000 \quad 0271 \quad 3090 \quad 0$$

$$\rho_{c} = \rho_{z} \cdot \frac{20}{295} = .0000 \quad 0018 \quad 3938 \quad 31$$

$$P_{z} = .0766 \quad 4437 \quad 0 \qquad P_{c} = -.0450 \quad 5692 \quad 2$$

$$P_{z} = .0642 \quad 9896 \quad 8 \qquad P_{z} = .0032 \quad 3772 \quad 45$$

$$P_{z} = .0424 \quad 7628 \quad 8 \qquad P_{z}^{z} = .0040 \quad 5670 \quad 98$$

$$P_{z}^{z} = .0056 \quad 9468 \quad 03 \qquad P_{z}^{z} = .0004 \quad 0949 \quad 264$$

$$P_{z} = .0065 \quad 8261 \quad 36$$

$$P_{z} = .0048 \quad 0969 \quad 62$$

M ₂ =	216.66		
μ _{2:1} =	<i>7</i> 63.88	$\sigma_{\rm g} = 2$	27.6385
μ _{3.1} =	2093.43	or _{3:4} =	0991550
μ _{4:1} =	1730700	a ==	2.96594
μ _{s:s} =	15647600	¢ _{5:2} =	.970225
$\mu_{\epsilon:g} = 0$	6503500000	$\alpha_{6:n} = 1$	14.5900

As a check on this theory, three hundred Hollerith cards were punched with numbers corresponding to the three hundred variates of the parent population. The cards were thoroughly shuffled and then placed in a tabulating machine. After twenty-five cards had run through this electric tabulator, their total was recorded. By repeating this procedure one thousand samples were readily obtained and the results are presented below.

TABLE II

Distribution of the Totals of Samples of Twenty-five Variates
Selected at Random from the Parent Population of Table I

Class	Frequency
120-	6
140	28
160-	<i>7</i> 8
180	179
200	273
220-	229
240	124
260	56
280	20
300-	7
Total	1000

In this observed distribution it is found that

$$M = 215.84$$
 $\sigma = 30.8505$
 $\alpha_s = .1556 \ 56$ $\alpha_s = 1.39471$
 $\alpha_4 = 3.18939$ $\alpha_6 = 15.8603$

The significance of the differences that exist between these functions and the values of M_z , σ_z and $\alpha_{r,z}$ given above will be considered in a subsequent paper.

The unmodified moments, ν , for the preceding observed distribution were corrected for grouping by means of the following formula:

(14)
$$\mu_{n} = v_{n} \cdot \binom{n}{2} \cdot \frac{1 - \frac{1}{K^{2}}}{12} v_{n-2} + \binom{n}{4} \cdot \frac{(1 - \frac{1}{K^{2}})(7 - \frac{3}{K^{2}})}{240} v_{n-4} - \binom{n}{6} \cdot \frac{(1 - \frac{1}{K^{2}})(3 - \frac{16}{K^{2}} + \frac{3}{K^{4}})}{1344} v_{n-4} + \cdots$$

where k represents the number of different equidistant variates that can appear in each class. In our case, k = 20. Sheppard's corrections will appear as a special case of this formula by permitting k to approac infinity. Thus

(15)
$$\mu_n = v_n - \binom{n}{2} \frac{1}{12} v_{n-2} + \binom{n}{4} \frac{7}{240} v_{n-4} - \binom{n}{6} \frac{31}{1344} v_{n-6} + \cdots + \cdots + \frac{n}{12} \frac{31}{12} v_{n-6} + \cdots + \frac{n}{12} \frac{31}{12} v$$

At first thought one is apt to be surprised in observing that the distribution of samples appearing in Table II is so nearly "normal," whereas the samples were taken from a right-triangular parent population. As an even more extreme case, I may mention that a group of students chose arbitrarily the following most unusual distribution for a parent population:

TABLE III

x	f_x
15	9
3	2
29	43
405	189
1710	37
Total	280

^{*}Compare with formulae (2b), page 94, Handbook of Mathematical Statistics.

and found that the distribution of the totals of 1000 samples of twenty-five variates each was as follows:

Class Freq.

5000- 2

7000- 54

9000- 203

11000- 310

13000- 254

15000- 130

17000- 36

2

1000

TABLE IV

As a matter of fact, if r is fifty or greater and s is at least ten times as large as r, the parent population has relatively little control over the shape of the distribution of samples. But before investigating the limit towards which distributions of samples approach in shape, it is well to present a second illustration of the theory so far developed.

Illustration II. Pearson's Hypergeometric Series.

19000-21000-

Total

If from a bag containing qs black and ps white balls, r balls are withdrawn without replacements, the chances that the r balls withdrawn will contain 0, 1, 2, . . . , x, . . . r white balls are given by the successive terms of the hypergeometric series

$$(16) \quad \frac{1}{\binom{n}{r}} \left\{ \binom{qn}{r} + \binom{qn}{r-1} \binom{pn}{r} + \cdots \binom{qn}{r-2} \binom{pn}{x} + \cdots \binom{pn}{r} \right\}$$

A distribution of this type is equivalent to the simplest case that can arise in accordance with the theory of sampling, that is, by assuming that each variate of the parent population is equal to either zero or one, and that p_denotes the proportion of the_3 variates that have

unit value. The moments of the parent population are found as follows:

 $\label{eq:TABLE V}$ Parent Population for Hypergeometric (and Binomial) Series

x	f_{∞}	xf_x	$x-M_x=\bar{x}$	$(x-M_x)^n f_x = \bar{x}^n f_x$
o /	(/-p)s ps	o ps	-p /-p	$(-1)^n p^n (1-p)s$ $p(1-p)^n \cdot s$
Tota1	s	ps		p(/-p)s{(/-p)"+(-/)" p"*}

Therefore

(17)
$$\mu_{n,\alpha} = p(1-p) \{ (1-p)^{n-1} + (-1)^n p^{n-1} \} = pq \{ q^{n-1} + (-1)^n p^{n-1} \},$$
where $(p+q=1)$

In numerical problems this formula should be used ordinarily as it stands, although for algebraic purposes we may use frequently the forms

$$\mu_{1x} = 0$$

$$\mu_{2x} = pq = p(1-p)$$

$$\mu_{3\cdot x} = pq (q^2 - p^2) = p(-p)(1-2p)$$

$$\mu_{4\cdot x} = pq (q^3 + p^3) = p(1-p)(1-3p+3p^2)$$

etc.

Using formulae 2, . . ., we may write the moments for the hypergeometric series as follows:

$$\mu_{zz} = s\mu_{zz} \{ \rho_i - \rho_z \}$$

$$\mu_{s:z} = s\mu_{sz} \{ \rho_i - 3\rho_z + 2\rho_s \}$$

or if one prefers

$$\mu_{zz} = spq \left\{ \frac{r}{s} - \frac{r^{(2)}}{s^{(2)}} \right\}$$

$$\mu_{3z} = spq \left(q^{2} - \dot{p}^{2} \right) \left\{ \frac{r}{3} - 3 \frac{r^{(2)}}{s^{(2)}} + 2 \frac{r^{(3)}}{s^{(3)}} \right\}$$

$$\mu_{4z} = spq \left(q^{3} + p^{3} \right) \left\{ \frac{r}{3} - 7 \frac{r^{(2)}}{s^{(2)}} + /2 \frac{r^{(3)}}{s^{(3)}} - 6 \frac{r^{(4)}}{s^{(4)}} \right\}$$

$$+ 3s^{2}p^{2}q^{2} \left\{ \frac{r^{(2)}}{s^{(2)}} - 2 \frac{r^{(3)}}{s^{(3)}} + \frac{r^{(4)}}{s^{(4)}} \right\}$$

etc.

These will be found equivalent to those given by Pearson*, namely

$$\mu_{z} = \frac{\alpha \beta (s+\alpha)(s+\beta)}{s^{z}(s-1)}$$

$$\mu_{3} = \frac{\alpha \beta (s+\alpha)(s+\beta)(s+2\alpha)(s+2\beta)}{s^{z}(s-1)(s-2)}$$

$$\mu_{4} = \frac{m_{z} (s^{z}+m_{i}s+m_{z})}{s(s-1)(s-2)(s-3)} \left\{ s^{z}+s^{z} (3m_{z}+6m_{i}+1) + 3s^{z} (m_{i}m_{z}+2m_{z}) + 2m_{z} \right\}$$

$$+3s m_{z} (m_{z}+6m_{i})+10 m_{z}^{z}$$

where

$$\dot{\alpha} = -P$$
 $\beta = -ps$
 $m_1 = \alpha + \beta$
 $m_2 = \alpha + \beta$

II. SAMPLING FROM AN UNLIMITED SUPPLY

Referring to the formula of the first part of this paper, we observe that as a approaches infinity, p remaining finite,

^{*}Lond., Edinburgh and Dublin Phil. Mag., Jan.-June, 1899, page 236:

$$\begin{split} M_{z} &= r M_{x} \\ \mu_{z;z} &= r \mu_{z;x} \\ \mu_{\theta;z} &= r \mu_{3;x} \\ \mu_{4;z} &= r \mu_{4,x} + 3 r^{(z)} \mu_{z,x}^{2} \\ \mu_{\beta;z} &= r \mu_{5,x} + /0 r^{(z)} \mu_{3,x} \mu_{z;x} \\ \mu_{6;z} &= r \mu_{6;x} + /5 r^{(z)} \mu_{4;x} \mu_{2;x} + /0 r^{(z)} \mu_{3,x}^{2} + /5 r^{(s)} \mu_{z,x}^{3} \\ \mu_{7;z} &= r \mu_{7,x} + 2 / r^{(z)} \mu_{4;x} \mu_{2;x} + 35 r^{(z)} \mu_{4;x} \mu_{3,x} \\ \mu_{7;z} &= r \mu_{7,x} + 2 / r^{(z)} \mu_{4;x} \mu_{z;x}^{2} \\ \mu_{8;z} &= r \mu_{8;x} + 28 r^{(z)} \mu_{4;x} \mu_{2;x}^{2} + 56 r^{(z)} \mu_{5;x} \mu_{2;x}^{2} + 35 r^{(z)} \mu_{4;x}^{2} \\ \mu_{2;z} &= r \mu_{8;x} + 28 r^{(z)} \mu_{4;x} \mu_{2;x}^{2} + 280 r^{(s)} \mu_{5;x}^{2} \mu_{2;x}^{2} + 105 r^{(s)} \mu_{2;x}^{2} \end{split}$$

From these the following equations may be obtained:

$$\mu_{z:z} = r\mu_{z:z}$$

$$\mu_{s:z} = r\mu_{z:z}$$

$$\mu_{4:z} = -3\mu_{z:z}^{z} = r\{\mu_{4:z} - 3\mu_{z:z}^{z}\}$$

$$\mu_{6:z} - 10\mu_{s:z} \mu_{z:z} = r\{\mu_{x:z} - 10\mu_{s:z} \mu_{z:z}\}$$

$$\mu_{6:z} - 15\mu_{4:z} \mu_{z:z} = r\{\mu_{x:z} - 10\mu_{s:z}^{z} + 30\mu_{z:z}^{z}\} = r\{\mu_{6:z} - 15\mu_{4:z} \mu_{z}\}$$

$$-10\mu_{3:z}^{z} + 30\mu_{3:z}^{z}\}$$

$$\mu_{7:z} - 2^{1}\mu_{6:z} \mu_{z:z} - 35\mu_{4:z} \mu_{3:z} + 210\mu_{3:z} \mu_{z:z}^{z} = r\{\mu_{z:z} - 7\mu_{z:z}\}$$

$$\mu_{3:z} - 2^{2}\mu_{6:z} \mu_{z:z} - 35\mu_{4:z} \mu_{3:z} + 210\mu_{3:z} \mu_{z:z}^{z}\}$$

$$\mu_{3:z} - 28\mu_{6:z} \mu_{z:z} - 56\mu_{6:z} \mu_{3:z} - 35\mu_{4:z}^{z} + 420\mu_{4:z} \mu_{z:z}^{z}$$

$$+ 560\mu_{sz}^{z} \mu_{z:z} - 630\mu_{z:z}^{z} = r\{\mu_{s:z} - 28\mu_{6:z} \mu_{z:z} + 560\mu_{s:z}^{z} \mu_{z:z} - 630\mu_{x:z}^{z}\}$$

$$+ 560\mu_{s:z}^{z} \mu_{z:z} - 630\mu_{x:z}^{z}$$

In terms of the standard moments of the distributions these equations become

$$\begin{cases} \alpha_{3:x} = \frac{1}{p_{1/2}} \alpha_{3:x} \\ \alpha_{4:x} = 3 = \frac{1}{p} \left\{ \alpha_{4:x} - 3 \right\} \\ \alpha_{5:x} = \frac{1}{p_{1/2}} \left\{ \alpha_{5:x} - 10\alpha_{5:x} \right\} \\ \alpha_{5:x} = \frac{1}{p_{1/2}} \left\{ \alpha_{5:x} - 10\alpha_{5:x} \right\} \\ \alpha_{6:x} = \frac{1}{p_{1/2}} \left\{ \alpha_{5:x} + 30 = \frac{1}{p_{1/2}} \left\{ \alpha_{6:x} - 15\alpha_{4:x} - 10\alpha_{3:x}^{2} + 30 \right\} \right\} \\ (20) \qquad \alpha_{7:x} = \frac{1}{p_{1/2}} \left\{ \alpha_{7:x} - 21\alpha_{3:x} + 30 \right\} \\ \alpha_{7:x} = \frac{1}{p_{1/2}} \left\{ \alpha_{7:x} - 21\alpha_{3:x} + 210\alpha_{3:x} \right\} \\ \alpha_{8:x} = \frac{1}{p_{1/2}} \left\{ \alpha_{8:x} - 28\alpha_{6:x} - 56\alpha_{5:x} \alpha_{3:x} - 35\alpha_{4:x}^{2} + 420\alpha_{4:x} + 56\alpha_{3:x}^{2} - 630 \right\} \\ = \frac{1}{p_{1/2}} \left\{ \alpha_{8:x} - 28\alpha_{6:x} - 56\alpha_{5:x} \alpha_{3:x} - 35\alpha_{4:x} + 420\alpha_{4:x} + 56\alpha_{3:x}^{2} - 630 \right\} \end{cases}$$

If, without reference to subscripts, we write

(21)
$$\lambda_{2} = \mu_{2}$$

$$\lambda_{3} = \mu_{3}$$

$$\lambda_{4} = \mu_{4} - 3\mu_{2}^{2}$$

$$\lambda_{5} = \mu_{5} - 10 \mu_{3}\mu_{z}$$

$$\lambda_{6} = \mu_{6} - 15 \mu_{4}\mu_{z} - 10\mu_{3}^{2} + 30\mu_{2}^{3}$$

$$\lambda_{7} = \mu_{7} - 21 \mu_{5} \mu_{2} - 35\mu_{4} \mu_{3} + 210\mu_{3} \mu_{2}^{2}$$

$$\lambda_{8} = \mu_{8} - 28\mu_{c}\mu_{z} - 56\mu_{5}\mu_{3} - 35\mu_{4}^{2} + 420\mu_{4} \mu_{2}^{2}$$

$$+ 560\mu_{3}^{2}\mu_{z} - 630\mu_{2}^{4}$$
the distribution of samples from an unlimited supply is defined, so far

the distribution of samples from an unlimited supply is defined, so far as moments through the eighth order are concerned, by the relations

(22)
$$\begin{cases} M_z = rM_x \\ \lambda_{n/z} = r\lambda_{n/x} \end{cases}$$

Working along a different line of approach, Thiele was the first to realize the importance of these λ functions. He made an extensive study of their unusual properties and was thus both directly and indirectly responsible for many important contributions to the theory of

mathematical statistics. These values of λ_i are the so-called "semi-Invariants of Thiele.'

Again, we may write

(23)
$$\begin{cases} \gamma_3 = \alpha_3. \\ \gamma_4 = \alpha_4 - 3 \\ \gamma_5 = \alpha_5 - 10 \alpha_3 \\ \gamma_6 = \alpha_6 - 15 \alpha_4 - 10 \alpha_3^2 + 30 \\ \gamma_7 = \alpha_7 - 21 \alpha_5 - 35 \alpha_4 \alpha_3 + 210 \alpha_3 \\ \gamma_8 = \alpha_8 - 28 \alpha_6 - 56 \alpha_5 \alpha_8 - 35 \alpha_4^2 + 420 \alpha_4 + 560 \alpha_3^2 - 630 \end{cases}$$
and observe that the shape of the distribution of samples is determined by the relation

and observe that the shape of the distribution of samples is determined

$$(24) \quad \gamma_{nz} = \frac{1}{p^{n} \gamma_{z}^{-1}} \cdot \gamma_{nz}$$

which follows from equations (20).

The values γ_i are referred to as the 'standardized semiinvariants of Thiele."

If now p be permitted to approach infinity as a limit, we observe that in this limiting situation the shape of the distribution of samples is entirely independent of the shape of the parent population, since

that is

$$d_{sig} = 0$$

$$d_{sig} - 3 = 0$$

$$d_{sig} - |0 d_{sig}| = 0$$

$$d_{sig} - |5 d_{sig}| - |0 d_{sig}| + 30 = 0$$

etc.

Thus the limiting distribution, which is called "the Normal Curve," must have the following properties:

(25)
$$\begin{cases} \alpha_{\theta:\pi}' = 0 \\ \alpha_{d:\pi}' = 1 \cdot 3 \\ \alpha_{\theta:\pi}' = 0 \\ \alpha_{d:\pi}' = 0 \\ \alpha_{f:\pi}' = 0 \\ \alpha_{f:\pi}' = 0 \\ \alpha_{f:\pi}' = 0 \end{cases}$$
$$(25)$$

THE THEOREM OF BERNOULLI

If p denotes the probability that an event will happen in a single trial and q = 1 - p the probability that it will not happen in that trial, then the probability that the event will happen exactly x times during p trials is, by Bernoulli's Theorem

(26)
$$\mathcal{B}_{r,x} = {r \choose x} q^{r-x} p^{x}$$

From our point of view we need only regard the problem as one of sampling in which we withdraw samples of p variates from an infinite parent population, in which as per Table V, p designates the proportion of the variates which are zero in magnitude—the remaining variates being of unit magnitude. Then since

$$\mu_{n:x} = pq \{ q^{n-1} + (-1)^n p^{n-1} \}$$

we see from formulae (18) that

(27)
$$\begin{cases} M_{3} = rp \\ \mu_{2:z} = rpq \\ \mu_{3:z} = rpq \{q^{2}-p^{2}\} \\ \mu_{4:z} = rpq \{q^{3}+p^{3}\} + 3r^{(2)}p^{2}q^{2} \\ \mu_{3:z} = rpq \{q^{4}-p^{4}\} + 10r^{(2)}p^{2}q^{2} \{q^{2}-p^{4}\} \end{cases}$$

Poisson's Exponential Binomial Limit

If the probability that each of 1000 individuals die in one year were .5, then the expected number of deaths in such a group for one year would be 500. On the other hand, if the probability that each of 10,000 die in the year were .05 then the expected number of deaths would also be 500. Again p = 100000 and p = .005 or p = 1000000and p = .0005 would give the same value. If we continue after this fashion to let p approach infinity and p zero, but in such a manner that the product rp = M remains constant, then it can be shown quite readily that (26) becomes

(28)
$$\lim_{\substack{r \to 0 \\ r \neq 0 \\ r \neq 0}} B_{r,x} = \frac{e^{-r}M^{\infty}}{x!}$$

This is known as Poisson's Exponential Binomial Limit. For a Poisson distribution it follows from (27) that

(29)
$$\begin{cases} \mu_{2,z} = M_{g} \\ \mu_{s,z} = M_{g} \\ \mu_{s,z} = M_{g} \\ \mu_{d,x} = M_{g} + 3M_{z}^{2} \\ \mu_{d,x} = M_{g} + 10M_{z}^{2} \\ \mu_{d,z} = M_{s} + 25M_{z}^{2} + 15M_{z}^{3} \\ \mu_{d,z} = M_{g} + 56M_{z}^{2} + 105M_{z}^{3} \\ \mu_{d,z} = M_{g} + 1/9M_{g}^{2} + 409M_{z}^{3} + 105M_{z}^{4} \end{cases}$$
Substituting these values back in the definitions of

Substituting these values back in the definitions of the semi-invariants (formulae 21), we observe that for a Poisson distribution

(30)
$$\lambda_{nz} = M_z \quad (z = 2, 3, \dots, 8)$$

DISCUSSION OF RESULTS

So far as I know, no general method has been worked out which will permit one to express complex summations, such as those on pages

103, 104, in terms of moments. Moreover, I am unable at present to justify the use of the "sampling polynomials" for the moments of the samples of an order higher than the eighth. Laborious computations have established the fact that the apparent law of the sampling polynomials holds for the first eight moments, and hence we have a simple method at our disposal of writing down expressions for these moments of samples withdrawn from finite parent populations. A study of these sampling polynomials should reveal an entirely different approach to the problem. This is but one of many interesting problems of mathematical statistics that require further investigation.

Although we utilized the results of sampling from a limited supply to obtain corresponding formulae for sampling from an unlimited supply, nevertheless it can be shown that for $s=\infty$ a simple method exists for expressing the moments in terms of the moments, μ_{max} , as in formulae (18). Moreover, this law holds for any positive integer, n.

Thus

$$\mu_{2a:x} = \frac{20!}{20!} r^{(i)} \mu_{2a:x} + \frac{20!}{18! \, 2!} r^{(2)} \mu_{18:x} \mu_{2:x} + \cdots$$

$$+ \cdots \frac{20!}{9!7!4!} r^{(3)} \mu_{9:x} \mu_{7:x} \mu_{4:x} + \cdots$$

$$+ \cdots \frac{20!}{(4!)^2 (3!)^4} r^{(6)} \frac{\mu_{9:x}^2 \mu_{3:x}^4}{2! \, 4!} + \cdots$$

Since formulae, such as (3a) and (4a) are based on multinomial considerations, the rule for writing down the values of $\mu_{n:n}$ is valid for any value of n, when $s=\infty$.

Proceeding after this fashion, one can show that corresponding to formulae (25) one can write for the limiting distribution, referred to as the Normal Curve,

(31)
$$\begin{cases} \alpha'_{2n+1:z} = 0 \\ \alpha'_{2n:z} = \frac{(2n)!}{2^n(n!)} \end{cases}$$

And since the function

$$y = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

satisfies the above conditions, we say that (32) is the equation of the Normal Curve. In the Theory of Least Squares this equation is usually* developed on the so-called Hagen's hypothesis, that is "An error is the algebraic sum of an indefinitely great number of small elementary errors which are all equal, and each of which is equally likely to be positive or negative."

From the results that we have obtained it appears that it is not necessary to impose the restrictions that the elementary errors are all equal and that positive and negative values are equally likely. It is necessary only that

- (1) the number of elementary errors be infinite, although of an order less than that of the number of errors in the parent population.
- (2) the errors be independent. This restriction is really involved in our assumption that in evaluating summations, each of the evariates of the parent population occurs exactly as many times as every other variate.

Otherwise, the limiting shape of the distribution of samples is independent of the shape of the parent distribution. The fact that tables II and IV, arising from parent distributions that are so extremely abnormal, exhibit distributions of samples that are fairly normal, seems to bear out our point in spite of the fact that we employed in each instance a small value of $\boldsymbol{\mathcal{P}}$, i. e. twenty-five.

^{*}See Merriman's Method of Least Squares. John Wiley and Sons, New York City.

SUCCESSIVE INTEGRATION AS A METHOD FOR FINDING LONG PERIOD CYCLES

By Ralph W. Powell, C.E.*

Synopsis

A method is developed for finding the period of cycles in statistical data of longer period than can be found by ordinary periodogram method. It consists of computing the progressive summations of the deviations of the observed data from normal. (As a first approximation normal is taken as the mean of the observed data.) Then the progressive summations of these accumulated discrepancies are found, and so on to the third or fourth integration. This process rapidly "irons out" all chance and short period variations and leaves a smooth cycle whose approximate period is obvious. The objection that this is but an extension of the "quadrature" method, which makes cycles appear in data where none are present, is discussed and methods are presented for determining whether the cycle found is real or fictitious.

Successive Integration as a Method for Finding Long Period Cycles

The question of the search for hidden periodicities in statistical data is important for the civil engineer interested in stream flow, the meteorologist and agriculturist interested in rainfall or temperature, the business statistician and probably many others. The ordinary method of periodogram analysis as developed by Schuster¹ and discussed by Whittaker and Robinson² requires a period of record several times as long as the longest cycle considered. A century's record of annual rainfall at any given station or group of stations will enable us to test for the presence of cycles with periods of say from eight to twenty years, and possibly even to 33 or 50 years, but could not reveal a cycle of period of say between fifty and one hundred fifty years if

- Assoc. Member of the Am. Soc. of Civil Engineers and Ass't Prof. of Mechanics at Ohio State University. Columbus, Ohio.
- 1 Pioc. Roy. Soc 77 (1906) p. 136.
- 2. The Calculus of Observations, Chap. XIII. pp. 343-362.

one were present. For the latter purpose the following method has been developed.

Suppose the given data is of the form $y = a + b \cos \frac{k(x-c)}{p} \pm o'$

where

- y = any value of the dependent variable, as for example, the total inches of rainfall at a given station in any given year.
- a=a constant, the normal value about which y fluctuates, as the normal rainfall in inches per year for the given station. If the data contains a straight line trend this term would be replaced by (a + mx), where m measures the rate or slope of the trend.
- b = a constant, the amplitude of the cycle.
- k = 360, to give the angle in degrees, or 2π , to give the angle in radians.
- x= the independent variable or serial number of the particular value y, as for example the date A. D. of the year whose rainfall is y.
- c = a constant specifying the phase of the cycle, as for example the earliest date A. D. when the rainfall is known to have been a maximum.
- p = the period of the cycle (in years, in this example).
- d = a variable—the deviation of each observed value from the value given by the rest of the equation. This term takes care of all variations due to cycles of other periods, or to the form of this cycle not being that of the cosine curve, or the other variations which for want of further knowledge we must consider to be purely fortuitous.

If we subtract a, the normal value, from each of these values u d take the progressive totals or first integral of the differences, we get a series of the form $\frac{bp}{2\pi} \sin \frac{k(x-c)}{p} + \sum d \cos \frac{bp}{2\pi} \cos \frac{k(x-c-p/4)}{p} + \sum d$

The term $\sum a'$ will in general be small, since the plus chance variations tend to balance the minus, as do the variations due to short period cycles which may be present. The second integration will give a series of the form $-b(\frac{P}{2\pi})^2\cos\frac{k(x-c)}{P}$ or $b(\frac{P}{2\pi})^2\cos\frac{k(x-c-P/2)}{P}$ if

we neglect the sums of the $\sum d$ terms, which will, of course, tend to cancel out. The third integral will be of the form $b(\frac{\rho}{2\pi})^2\cos\frac{K(x-c-3\rho_0)}{\rho}$

and the fourth integral of the form $b\left(\frac{P}{2\pi}\right)^2\cos\frac{k(x-c-P)}{P}$. That is, each integration gives a cycle of the same period as existed in the original data, but advanced a quarter period in phase and with the amplitude multiplied by $\frac{P}{2\pi}$.

The way in which this method "irons out" chance variations and short period fluctuations is most amazing to one who has not tried it. Table I and Plate I illustrate the method as applied to the annual rainfall at Boston, Mass., for the years 1818-1928. Although this has been carried to the third integration to illustrate the method, it was unnecessary in this case, as the second integration gives a smooth curve. The first integration changed from minus to plus in 1865 (fractions a year being neglected) and from plus to minus in 1912, giving a half period of 47 years. But by producing the first integration curve backward we see that it would pass through zero in 1814, which gives a whole period of 98 years. As a compromise, 96 years was taken as the value of ρ .

The Weather Bureau gives the rainfall to the hundredth of an inch, but it was found that the results were practically the same if the rainfall were taken to the nearest inch, which was done in this table. The mean rainfall for the 111 years was 43.45 and there seems to be no trend. (From a priori grounds, such as the relative constancy of tlora, lake levels, etc., we are quite sure that the rainfall of New England has changed very slightly in the last few centuries, so that for a period of only 111 years we can assume the normal rainfall as constant. The matter could also be tested statistically by fitting a straight line to the data by least squares, but this was not done.) But the normal rainfall is not necessarily equal to the mean for the period. In fact, a preliminary trial indicated that the period of the most important cycle was a little less than 100 years, and that of the 111 years the portion in excess of a full cycle was below normal, therefore that the observed mean would be below normal. So 44 inches per year was taken as the first approximation to normal.

A second point in Table I which needs explanation is the initial value in each of the summation columns. A preliminary computation was made starting from zero. This was found to give a series of numbers averaging quite a little above zero. But the average of these values cannot be taken as their normal any more than in the case of the observed rainfall themselves. Averaging the maximum and minimum values gave + 46, therefore it was assumed that all values should be reduced 46 (accumulated inches) and a second trial was made using -46 as the value of the first integration for 1817. When the

TABLE I
Search for a Long Period Cycle in the Precipitation Records of Boston, Mass.

	Inches of	Excess or		Summations	
Year	Rainfall	Deficiency From 44"	First	Second	Third
Year 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1845 1848 1849 1850 1841 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870		From 447 From 447 From 447 1	First - 26 - 36 - 36 - 36 - 43 - 60 - 57 - 65 - 74 - 77 - 84 - 81 - 82 - 74 - 71 - 77 - 81 - 87 - 90 - 100 - 101 - 104 - 99 - 96 - 101 - 108 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 101 - 99 - 98 - 75 - 62 - 78 - 32 - 8 - 3 - 32 - 8 - 3	Second 1580 1553 1557 1481 1438 1378 1321 1256 1182 1105 1033 949 868 786 712 641 554 483 396 306 206 105 1 - 98 - 194 - 295 - 393 - 497 - 599 - 715 - 828 - 944 -1064 -1174 -1284 -1390 -1689 -1780 -1689 -1780 -1689 -1780 -1689 -1780 -1689 -1780 -1689 -1780 -1689 -1780 -1689 -1780 -1689 -1780 -1689 -1780 -1689 -1780 -1689 -1780 -1689 -1780 -11864 -1939 -2017 -2145 -2147 -2139 -2147 -2139 -2119 -2079 -21939	Third 10400 11953 13470 14951 16389 17767 19088 20344 2152-/- 2152-/- 2152-/- 2152-/- 2252-/- 22667 22667 226979 27620 28184 28667 29063 29369 29575 29680 29681 29583 29389 29094 28701 28204 227605 26890 26062 25118 24054 22880 21596 20206 13715 17125 15436 13656 11792 9853 7852 5796 3691 1554 - 591 - 2739 - 4886 - 7025 - 9144 -112230 -15179

	Inches of	Excess or Deficiency		Summations	
l'ear	Rainfall	From 44"	First	Second	Third
872	50	6	85	-1775	-18814
873	55	11	96	-1679	-20493
874	43	- 1	95	-1584	-22077
875	50	6	101	-1483	-23560
87 6	49	5 7	106	-1377	-24937
87 7	51	7	113	-1264	-26201
878	66	22	135	-1129	-27330
879	45	1 - 7 9 3 - 9 5 1 - 2 -10	136	- 993	-28323
880	37	- 7	129	- 864	-29187
881	53	1 9	138	- 726	-29913
882	44	Ü	138	- 588	-30501
883	35	- 9	129	- 459	-30960
884	49	5	134	- 325	-31285
885	45	1	135	- 190	-31475
886	42	- 2	133	- 57	-31532
887	34	-10	123	66	-3146
888	46	1 2	125	191	-3127
889	40	- 4 - 5	121	312	-3096
890	39	- 5	116	428	-3053
891	40	1 - 4	112	540	-2999
892	37	- 7	105	645	-2935
893	42	- 2	103	<i>7</i> 48	-2860
894	37	- 7	96	844	-2775
895	40	- 4	92	936	-2682
896	38	- 6	86	1022	-2580
897	41	- 3	83 89	1105	-2469
898	50	6	89	1194	-2350
1899	35	- 9	80	1274	-2222
1900	44	0	80	1354	-2087
1901	49	5	85 75 73	1439	-1943
1902	34	-10	75	1514	-1792
1902	42	- 2	73	1587	-1633
1904	40	- 4	69	1656	-1467
1905	32	-12	57	1713	-1296
1906	41	- 3	54	1767	-1119
1907	38	- 6	48	1815	- 938
1908	30	-14	34	1849	- 753
1909	41	- 3	31	1880	- 56
1910	28	-16	15	1895	- 37: - 18
1911	36	8	7	1902	- 18
1912	35	- 9	15 7 - 2	1900	19
1913	38	- 6	- 8	1892	38
1914	34	-10	- 18	1874	56
1915	39	- 5	- 23	1851	74
1916	37	- 7 - 5	- 30	1821	92
1917	37 39	- 5	- 35	1786	110
1918	34	1 -10	- 45	1741	127
1918	43	- 1	- 46	1695	143
1920	46	2	- 44	1651	159
1920	43	- 1	- 45	1606	175
1921	41	- 3	- 48	1558	190
	35	_ 9	- 57	1501	
1923	35	- 9	- 66	1435	204
1924	41	- 3	- 69	1366	218
1925	40	- 4	- 73	1293	231
1926	41	- 3	- 76	1217	243
1927	38	- 6	- 82	1135	254

Long Period Cycle of Rainfall Variation at Boston, Mass.

second integration was made from these figures it was found that the curve had a general downward slope, and from its slope a correction was estimated for the initial term of the first integration. The initial terms of the other columns were found in a similar manner. The values given are the result of several successive approximations. It is probable that by using a different combination of values for these initial numbers an equally good cycle of a slightly different period might be developed. It is claimed only that this is a method of finding the approximate period of long cycles. If the exact period were important we could, by least square methods, fit cycles of periods slightly less and slightly greater than that found, and see which gave the best fit.

The minimum value of the second summation was -2148 in 1864 and the maximum was +1902 in 1911. Therefore the double amplitude was 4050 and the single amplitude was 2025. Therefore $b\left(\frac{p}{2\pi}\right)^2 = 2025$ and $b = \frac{2025 \times 4\pi^2}{96^2} = 8.67$. A similar use of the values of the third integration gave an amplitude of $b = \frac{30606.5 \times 8\pi^3}{96^3} = 8.60$.

As shown above the maxima of the second integration occur at about 1815 and 1911, therefore maxima of the rainfall itself should have occurred in 1767 and 1863 and c may be taken as 1767. Values of the term 8.60 $\cos \frac{k(x-1767)}{96}$ were computed for each year. The first 96 terms will, of course, add to zero, but the last 15 terms add to -98.35, so that this will shift the 111-year average 0.89 inches below normal. As the average of the original data was 43.45, this indicates that the normal should be 43.45+0.89=44.34 and our equation becomes $y = 44.34+8.52 \cos \frac{k(x-1767)}{96} \pm 0.*$

It is not claimed that this equation as it stands can be used to forecast rainfalls at Boston. The data when examined by the periodogram method reveal several cycles of shorter periods, and even when corresponding terms are added to the formula the fortuitous variations average several inches per year. After this computation was made I found that C. F. Marvin had discussed this particular case (Monthly Weather Review, Aug., 1923, Vol. 51, pp. 383-390, "Concerning Normals, Secular Trends and Climatic Changes). By using data for Boston running back to 1750 (some actual and some "manufactured") he finds that straight line trends, rather than a cosine curve, best fit the data. He finds a normal annual rainfall of 40.06 from 1759 to 1849 and of 44.71 from 1849 to 1904, at which date the normal suddenly dropped again. The average rainfall from 1904 to 1928 inclusive was 37.80. Taking this as the normal for that period and the normals for the other two periods as given by Marvin, the average deviation from the normal for the 111 years was 5.46. The average deviation from the mean for the 111 years was 636. The average dewation from the formula derived above was 4.65. Adding four shorter cycles, we get the formula:

It will probably be urged against this method that the process of progressive summation often gives very misleading results, as has been pointed out by Bullock, Persons and Crum¹ and Simon Kuznets². The latter gives, for example, 50 digits drawn at random, and the progressive totals of the deviations from the average, from which he deduces a pseudo cycle. Plate II shows that an even more striking cycle can be derived from this same random data by getting the second and third integrations. By following the same method as outlined above, a curve was deduced and drawn. The original data fit this curve with a mean deviation of 2.40, while they fit the average line with a mean deviation of 2.48. It may be urged that the cycle derived from the rainfall data is no more real than that derived from the chance data. But actually the cases are quite different, as we will proceed to show.

The test as to whether a time series contains cycles has been developed by Goutereau³, Besson⁴ and Woolard⁵. If the absolute values of the successive first differences of the series are averaged, this average is called the mean variability. The average of the absolue values of the differences of each value from the mean of all the values is called the mean deviation. Goutereau's Ratio, G, equals mean variation divided by mean deviation. For a random series of numbers whose distribution is Gaussian, the expected value of G will be $\sqrt{2}$. But if there is a cycle present, even if concealed by large chance varia-

$$y = 44.22 + 860 \cos \frac{k(x-1767)}{96} + 258 \cos \frac{k(x-1773)}{47}$$

$$+$$
 270 cos $\frac{k(x-/798)}{34}$ + 2.56 cos $\frac{k(x-/8/1)}{18}$ + 188 cos $\frac{k(x-/8/0)}{10}$

which gives an average deviation of 4.28. (Some of these figures were obtained by using the annual rainfall to the nearest inch and would be slightly different if the data to hundredths of an inch were used.) The reality of the four shorter cycles is very doubtful, but they produce a curve which fits the data much closer than the straight mean, or than Marvin's proposed normals, and somewhat closer than the simple 96 year cycle.

 "A Reply to Karl Karsten's 'The Harvard Business Indexes—a New Interpretation'," Review of Economic Statistics, April, 1927, pp. 74-92.

 "Random Events and Cyclical Oscillations." Journ. of the Amer. Statistical Assn., Sept., 1919, pp. 258-275.

 Sur la variabilite de la temperature, Annuaire de la Soc. Met. de France, 54, 122-127, 1906. Summarized by Edgar W. Wooland in Minthly Weather Review. Vol. 49 (1921), pp. 132-3.

 "On the Comparison of Meteorological Data with Results of Chance," (Tranlated by E. W. Woolard) Monthly Weather Review, Vol. 48 (1920), pp. 89-94.

 Edgar W. Woolard, "On the Mean Variability in Random Series," Monthly Weather Review (1925), pp. 107-111.

(1) (2) (3) (4) (5) (6) (7) (8) (9)	/ 4 \			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TABL	E II			
1 2 0 2 -24.5 69.5 98.5	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
2148691.4	2345678901123456789021223425678290312334567839011234456478490	6 6 4 0 0 0	123344443321012334444332101233444433210	4 10 8 12 4 9 11 9 10 4 7 5 1 0 6 1 4 4 1 2 6 3 8 7 12 3 10 10 10 7 3 2 1 1 8 1 1 1 4 3 2 1 1 1 3 3 1 6		2.7 - 0.3 5.7 - 0.3 - 1.3 - 2.7 - 1.3 - 2.7 - 1.3 - 2.3 - 1.3 - 1.3	-24.5 - 26.8 - 24.1 - 24.4 - 18.7 - 15.0 - 7.3 - 7.6 - 2.9 3.8 8.5 14.2 13.9 16.6 17.3 12.0 7.7 9.4 4.1 - 4.2 - 9.8 - 13.1 - 15.4 - 13.7 - 15.0 - 11.3 - 8.6 - 0.9 17.6 16.3 14.0 10.7 7.4 11.1 5.8 0.5 0.2 - 1.1 - 7.4 - 12.7 - 16.0 - 23.3 - 24.6 - 29.9 - 28.2	94.0 69.5 42.7 18.6 - 5.8 -24.5 -39.5 -46.8 -57.3 -53.5 -45.0 -30.8 -16.9 - 0.3 17.0 29.0 36.7 46.1 50.2 46.0 36.5 -41.8 -51.3 -53.5 -45.0 -30.8 -15.5 -30.5 -41.8 -51.3 -50.4 -51.3 -50.4 -51.3 -50.4 -51.3 -50.4 -51.3 -50.5 -40.8 -25.9 -8.3 -8.3 -50.4 -51.3 -50.5 -40.8 -25.9 -8.3 -50.4 -51.3 -50.5 -40.8 -25.9 -8.3 -8.3 -8.3 -8.3 -8.3 -8.3 -8.3 -8.3	- 65.0 29.0 98.1 159.8 141.2 159.8 154.0 129.1 90.0 43.7 - 11.2 - 68.5 - 122.0 - 167.0 - 198.0 - 169.0 - 132.3 - 36.0 10.0 46.1 79.1 43.7 - 43.7 - 44.2 - 273.0 - 243.1 - 243.

PLATE II

Showing How Apparent Cycles May Be Generated by Random Data.

tions superimposed on the cycle, the mean variation will be smaller than otherwise, and G will be less than 1.41. If the distribution is not Gaussian, the expected value of G will no longer be $\sqrt{2}$, but it will still be true that the presence of cycles will make G less than the expected value. Woodard, in the reference cited, gives a method for computing the expected value of G for a random order with any sort of distribution.

For the example of 50 random numbers used in Plate II, the mean deviation was 2.48 and the average variation was 3.45, making G = 1.39. The expected average deviation of numbers drawn from a universe containing equal numbers of each of the digits from 0 to 9 is 2.50 and the expected deviation by Woolard's method is 3.30, making the expected value of $G = 1.32^{1}$. In the data for Boston rainfall, given in Table I, the mean deviation was 6.356 and the mean variability 6.54, or G = 1.03, while Woolard's method would give an expected value of 1.38 ± 0.11 for random succession. The distribution of the "universe" of which this is a sample is not Gaussian, but it is not much different from Gaussian, so that the true value of G is not far from 1.41. An investigation of a much larger sample of rainfall data, which the writer hopes to publish soon, gives $G = 1.386 \pm .027$. It is therefore quite certain that the departure of the value of G from the expected value for random numbers is not accidental but indicates that we have here a real cycle, while in the case of drawn numbers we had only an apparent one.

To test the operation of the method in a case where it was known that there were both chance and cyclic elements present, Table II was prepared. The first two columns give the same random numbers from which Plate II was plotted. Column (3) is an artificial cycle which approximates a sine curve of period 24 and amplitude 4.00. Column (4) gives the algebraic sum of (2) and (3), and column (5) the first differences of column (4). Column (6) gives the deviations of the values in column (4) from the mean (4.30). Columns (7), (8)

The sample of 50 drawings gave by Woolard's method an expected mean variation for random succession of $3.27 \pm .39$ or $G = 1.32 \pm .16$. Thus the observed value fell within the range of the probable error. But the agreement is often much closer. The results of a little experiment made by the writer are as follows. A pack of cards was thoroughly shuffled and the cards turned up and their value recorded in order (Ace=1, Jack=11, Queen=12, King=13). The mean deviation is forced in this case to be 42/13 or 3.231. The observed mean variation was 4.314, making G = 1.335, while the expected value of G as given by Woolard's method for this case of rectangular distribution is 1.333.

and (9) give the first, second and third integrals of these values. These figures are plotted on Plate III. The period of the cycle in the third integral curve is 21.5 and the amplitude is about 200. The original cycle which would give this as a third integral would be $4.30+5.00 \cos \frac{k(x-7.5)}{27.5}$. This curve is plotted on the upper figure of Plate III as a solid line. The cyclic amounts added to the random data are plotted (above or below the line of the mean, 4.30) as crosses and connected by a dotted line. The cycle that emerges from the process is not quite the one that went in—it has been combined with the pseudo-cycle which arises from the fortuitous variations—but it is still a fair approximation of the original cycle. We can then assume that cycles derived by this process from statistical data that contain real cycles will be approximations of true cycles.

Goutereau's ratio gives a means of determining whether real cycles are present. If there are none it is not necessary to search for them. If there are cycles present two courses are open to us. We may first construct a periodogram and find whether there are short cycles present. If not, we can assume that a long-period cycle determined by the method of this paper will be real. If there are short period cycles present, we can eliminate them and test the residue by Goutereau's ratio. If it still contains a cycle, we can assume that there is a real long-period cycle. The other procedure would be to first find the long-period cycle by the method of this paper. If the amplitude of the cycle is large, it is quite certainly a real cycle. If it is very small, it may pe haps be negligible, even if real, and is probably unreal. In doubtful cases the cycle deduced may be subtracted from the given data and the residue tested again by Goutereau's ratio. If G is markedly larger than it was in the original data, we may assume that the cycle is real.

Criteria as to the reality of a given cycle have been proposed by C. F. Marvin¹, H. W. Clough², Dinsmore Alter³, and Sir Gilbert Walker⁴, but they are adapted only to cycles obtained by means of the

- Theory and Use of the Periodocite, Monthly Weather Review, Vol. 49 (1921), pp. 115-124.
- A Statistical Comparison of Meteorological Data with Data of Random Occurrence, Monthly Weather Review, Vol. 49 (1921), pp. 124-132.
- The Criteria of Reality in the Periodogram, Monthly Weather Review, Vol. 54 (1926), pp. 57-58.
- 4. On Periodicity. Quart. Jour. Royal Met'l Soc., 51, No. 216, pp. 337-346.

PI ATE III

Random Data of Plate II (ombined with a Cycle (the Dashed Curve at the Top of This Plate)

,

-periodogram and not very well even to those1.

The question still remains as to how much less than the expected value for random succession G may be before we are to believe that a cycle is present. The writer would hazard 10 per cent as a rough guess. It is to be hoped that some master of mathematical statistics will give us before long a quantitative statement of, say, the relationship between the ratio of the observed mean variation and the expected mean variation for the same numbers arranged in random succession, and the probability of a cycle of given amplitude being present.

It should be added that the germ idea of this paper is a product of the fertile mind of the writer's colleague, Professor P. W. Ott.

Conclusions

- (1) The method of successive integration of discrepancies will reveal the approximate period of long-period cycles if they are present.
- (2) Even if no long-period cycle is present, the method will give a fictitious cycle, but there are tests by which the reality or falsity of the cycle can be investigated.

Halfh W. Vowell

^{1.} For example, Marvin's criterion depends only upon the standard deviations of the sums of the various columns of the tabulation as compared to the standard deviation of all the data, without reference to the order of the columns. Take, for example, the tabulation given on page 353 of Whitaker-Robinson's "Calculus of Observations." It is very evident that there is a real cycle. But suppose that another problem had yielded exactly the same columns of data but in a random order, say the fifth column, then the twentieth, then the third, etc. Are we to suppose that a cycle of period 24 days is equally probable in this case? This objection seems to the writer to make the method of Whitaker and Robinson much inferior to that of Schuster.

EQUIMODAL FREQUENCY DISTRIBUTIONS

By

EDWIN D MOUZON, JR.

The object of this paper is the determination of a set of frequency curves. each of which will give a better fit to the modal neighborhood of the data to which it is applied than is often found in the existing methods. Interest in this subject was aroused in the following way. First, it was discovered that a great number of distributions of data derived from a study of the financial ratios of public utility companies conformed to the same general type of curve. Second, it developed that the type of curve designated by the Pearsonian criterion quite often yielded a very poor fit to the data. The mode determined by the theoretical curve was obviously unsuited to the actual data. Furthermore, in some cases, on the left extremity of the distribution, the rise of the curve to the mode was too steep for a good fit. The accompanying chart (p. 140) presents a particular instance of these conditions, together with the curve fitted by the method developed in this paper.

The curves which were used in this study of financial ratios were those developed by Pearson and Elderton from a consideration of the various cases which arose in the solution of the differential equation

$$\frac{dy}{dx} = \frac{y(x-a)}{F(x)}$$

where F(x) was assumed to be expansible in ascending powers of x. The other assumptions made were that $F(x) = b_0 + b_1 x + b_2 x^2$, and that the constants a, b_0 , b_1 , and b_2 were determined by equating the moments of the raw data to the moments of the theoretical distribution. Here we will modify these assumptions, and under the new conditions determine the principal types of curves which arise when the polynomial in the denominator is of the third or lower degree.

The new assumption is that the value of the constant, a, the mode, is determined first from the observed data, and equated to the value of the mode in the theoretical distribution. This method of procedure is particularly adapted to economic data, as it assures a good

fit about the mode, notwithstanding the fact that in some raw data the mode is a rather vague concept. The fit about the mode is of primary importance in much economic data.

II. We begin with the case of the cubic in the denominator, that is with the differential equation

$$\frac{dy}{dx} = \frac{(x-a)y}{b_o + b_1 x + b_2 x^2 + b_3 x^3}, \text{ or}$$

$$(b_o + b_1 x + b_2 x^2 + b_3 x^3) \frac{dy}{dx} = y (x-a)$$

where a is known. Multiplying both sides by x^n , integrating, and using the notation $\mu_n' = \int y x^n dx$, we have

$$nb_{0}\mu'_{n-1}+(n+1)b_{1}\mu'_{n}+(n+2)b_{2}\mu'_{n+1}+(n+3)b_{3}\mu'_{n+2}=a\mu'_{n}-\mu'_{n+1}$$

Putting n = 0, 1, 2, 3, and changing the origin to the mean, we have

(1)
$$\begin{cases} ob_0 + b_1 + ob_2 + 3\mu_2b_3 = a \\ b_0 + ob_1 + 3\mu_2b_2 + 4\mu_3b_3 = -\mu_2 \\ ob_0 + 3\mu_2b_1 + 4\mu_3b_2 + 5\mu_4b_3 = a\mu_2 - \mu_3 \\ 3\mu_2b_0 + 4\mu_3b_1 + 5\mu_4b_2 + 6\mu_5b_3 = a\mu_3 - \mu_4 \end{cases}$$

Solving these equations for b_0 , b_1 , b_2 , and b_3 , we have

$$b_{1} = \frac{\begin{vmatrix} 0 & \partial & 0 & 3\mu_{2} \\ / & -\mu_{2} & 3\mu_{2} & 4\mu_{3} \\ 0 & \partial\mu_{2} - \mu_{3} & 4\mu_{3} & 5\mu_{4} \\ 3\mu_{2} & \partial\mu_{3} - \mu_{4} & 5\mu_{4} & 6\mu_{5} \end{vmatrix}}{\Delta}$$

$$b_{2} = \frac{\begin{vmatrix} 0 & / & \partial & 3\mu_{2} \\ / & 0 & -\mu_{2} & 4\mu_{3} \\ 0 & 3\mu_{2} & \partial\mu_{2} - \mu_{3} & 5\mu_{4} \\ 3\mu_{2} & 4\mu_{3} & \partial\mu_{3} - \mu_{4} & 6\mu_{5} \end{vmatrix}}{\Delta}$$

$$b_{3} = \frac{\begin{vmatrix} 0 & / & 0 & \partial \\ / & 0 & 3\mu_{2} & -\mu_{2} \\ 0 & 3\mu_{2} & 4\mu_{3} & \partial\mu_{2} - \mu_{3} \\ 3\mu_{2} & 4\mu_{3} & 5\mu_{4} & \partial\mu_{3} - \mu_{4} \end{vmatrix}}{\Delta} = \frac{D}{\Delta}$$

The differential equation then becomes

$$\frac{dy}{y} = \frac{(x-a) dx}{\frac{A}{\Delta} + \frac{Dx}{\Delta} + \frac{Cx^2}{\Delta} + \frac{Dx^3}{\Delta}}$$

The solution of the differential equation depends on the nature of 'w zeros of the denominator of the right hand member, that is on the discriminant of the general cubic,

$$18b_{2}b_{3}b_{5}b_{6}-4b_{2}^{3}b_{6}+b_{2}^{2}b_{6}^{2}-4b_{5}b_{5}^{3}-27b_{5}^{2}b_{6}^{2}$$

The cubic has three distinct real zeros, one real and two inegliary zeros, or at least two real and equal zeros, according as the discriminant is greater than zero, less than zero, or equal to zero. We will expect, therefore, three general types of curves when the integration is effected.

III. If we assume that $b_3 = 0$, we will have only three constants, b_a , b_i , and b_a to determine, and the equations (1) become

(2)
$$\begin{cases} b_{1} & = 3 \\ b_{2} & +3b_{2}\mu_{2} & = -\mu_{2} \\ 3b_{1}\mu_{2} + 4b_{2}\mu_{3} & = -\mu_{3} + 3\mu_{2} \end{cases}$$

Solving these equations simultaneously, we find

$$b_o = \frac{-\mu_z \mu_s + 6\partial \mu_z^2}{4\mu_3}$$

$$b_i = \partial$$

$$b_z = \frac{-\mu_s - 2\partial \mu_z}{4\mu_3}$$

Thus, in the case of the quadratic in the denominator, we have determined the constants in terms of the mode, and the first, second, and third moments of the raw data. In other words, we are calculating the theoretical curve under the assumption that its mode, mean, standard deviation, and skewness are equal respectively to the mode,

mean, standard deviation, and skywness of the raw data. The differential equation then becomes

$$\frac{1}{y} \frac{dy}{dx} = \frac{x-\partial}{-\mu_z \mu_s + 6\partial \mu_z^2 + \partial x + \frac{-\mu_\beta - 2\partial \mu_z}{4\mu_z} x^2}$$

Now, the solution of this differential equation depends on the particular values of the constants in the denominator, i. e., on the quadratic discriminant $b_1^2 - 4b_0 b_2$. Again, we will expect three general types of curves when the integration is effected.

If we assume $b_3 = b_2 = 1$, equa ions (1) become

(3)

and the differential equation is

$$\frac{1}{y} \frac{dy}{dx} = \frac{x - \partial}{\mu_s - \partial x}$$

If we keep only b_o , we have $b_o = -\mu_z$ and s = 0, and our equation is $\frac{1}{y} \frac{dy}{dx} = -\frac{x}{\mu_z}$

We now turn to a discussion of the various types of curves which arise from the solution of the preceding differential equations. The following classification will be made—Class A will include all curves arising from the solution of differential equations in which F(x) has real and unequal zeros. Class B will include all curves arising from the solution of differential equations in which F(x) has complex zeros. Class C will include all curves arising from the solution of differential equations in which F(x) has at least two equal zeros.

Type A-1

IV. When all the zeros are positive, the differential equation may be written in the form

$$\frac{dy}{y} = \frac{(x-\partial) dx}{b_s (x-A_s)(x-A_s)(x-A_s)}$$

where we assume $A_1 > A_2 > A_3$. Separating into partial fractions and integrating, we have

$$log y = \frac{(A_{2} - A_{3})(A_{1} - \theta)}{b_{3}(A_{1} - A_{3})(A_{2} - A_{3})(A_{1} - A_{2})} log (x - A_{1})$$

$$- \frac{(A_{1} - A_{3})(A_{2} - \theta)}{b_{3}(A_{1} - A_{3})(A_{2} - A_{3})(A_{1} - A_{2})} log (x - A_{2})$$

$$+ \frac{(A_{1} - A_{2})(A_{3} - \theta)}{b_{3}(A_{1} - A_{3})(A_{2} - A_{3})(A_{1} - A_{2})} log (x - A_{3})$$

$$+ log k$$

E ponentiating

$$y = \frac{\frac{(A_{2} A_{3})(A_{1} - a)}{b_{3}(A_{1} - A_{2})(A_{3} - A_{3})} \frac{(A_{1} - A_{2})(A_{3} - a)}{b_{3}(A_{1} - A_{3})(A_{2} - A_{3})(A_{1} - A_{3})}}{(A_{1} - A_{3})(A_{2} - A_{3})(A_{2} - A_{3})(A_{2} - A_{3})(A_{2} - A_{3})(A_{2} - A_{3})}}{(A_{2} - A_{3})(A_{2} - A_{3})(A_{2} - A_{3})(A_{2} - A_{3})(A_{2} - A_{3})(A_{2} - A_{3})}}$$

Transferring the origin to the mode, i. e., putting x for x-a we have $x \in a$

$$y = \frac{k(x+a-A)}{(x+a-A_2)} \frac{\frac{c_1 \cdot a_1}{s}}{(x+a-A_2)}$$

$$= \frac{y_{o}(1-x_{\partial_{1}}^{2})^{\frac{c_{1}\partial_{1}}{5}}(1-x_{\partial_{2}}^{2})^{\frac{c_{3}\partial_{3}}{5}}}{(1-x_{\partial_{3}}^{2})^{\frac{c_{3}\partial_{3}}{5}}}$$

u here

$$c_1 = A_2 - A_3$$
 $c_2 = A_1 - A_3$ $c_3 = A_1 - A_2$
 $a_1 = A_1 - a$ $a_2 = A_2 - a$ $a_3 = A_3 - a$
 $c_3 = A_1 - A_2$
 $c_3 = A_1 - A_2$
 $c_3 = A_1 - A_2$
 $c_3 = A_1 - A_2$

Then $c_2 \partial_2 = c_1 \partial_1 + c_3 \partial_3$

Let
$$\frac{C_s}{S} = m_s$$
, $\frac{C_2}{S} = m_2$, $\frac{C_5}{S} = m_3$

Then $m_2 = m_1 - m_3$

The equation now becomes

$$y = \frac{y_o \left(/ - \frac{x}{\partial_z} \right)^{m_z \partial_z} \left(/ - \frac{x}{\partial_z} \right)^{m_z \partial_z}}{\left(/ - \frac{x}{\partial_z} \right)^{m_z \partial_z}}$$

With the exception of y_0 , the values of all the constants in the equation are known in terms of moments. Two methods will be given for its determination.

First—Calculate the area under the curve, using the theoretical ordinates measured in terms of y_o . Let this area equal N, the number of observations, and solve for y_o .

Thus $y = \frac{N}{B_1 + B_2 + \cdots + B_n}$, where $y_0 B_1$ represents the areas calculated from the theoretical ordinates.

Second—Calculate the value of χ^2 (Chi-square) with the theoretical ordinates measured in terms of y_o . Set the first derivative of this expression equal to zero, and determine the value of y_o which makes χ^2 minimum. From the goodness of fit point of view, this gives the best possible value of y_o .

Thus $\chi^2 = \sum_{j} \frac{(y_o B_j - O_j)^2}{y_o B_j}$, where the $y_o B_j$ represent the theoretical areas as before, and the O_i represent the observed areas.

Setting the first derivative of this expression equal to zero, we have

$$\sum B_i - \frac{I}{y_o^2} \sum \frac{O_i^2}{\bar{D}_i} = 0$$

$$y_o^2 = \frac{\sum \frac{O_i^2}{\bar{D}_i}}{\sum B_i}$$

Type A-2

V. When there are two positive zeros and one negative zero, the

equation may be written in the form

$$\frac{dy}{y} = \frac{(x-\partial) dx}{b_s (x-A_s)(x-A_s)(x+A_s)}, \text{ where } A_s > A_s - A_s$$

Proceeding as in Type A-I, we find

$$y = \frac{y_o \left(\left(-\frac{x}{\partial_s} \right) \frac{c_s \partial_s}{s} \right)}{\left(\left(-\frac{x}{\partial_s} \right) \frac{c_s \partial_s}{s} \right) \left(\left(-\frac{x}{\partial_s} \right) \frac{c_s \partial_s}{s} \right)}$$

where

$$c_{,} = A_{z} + A_{s}$$
 $\partial_{,} = A_{,} - \partial$
 $c_{z} = A_{,} + A_{s}$ $\partial_{z} = A_{z} - \partial$ $S = b_{s} c_{s} c_{z} c_{s}$
 $c_{s} = A_{,} - A_{z}$ $\partial_{s} = A_{s} + \partial$

 y_o is calculated as in Type A-I. The origin is at the mode.

Type A-3

VI. When there are two negative zeros and one positive zero, the equation may be written in the form

$$\frac{dy}{y} = \frac{(x-a)dx}{b_3(x-A_1)(x+A_2)(x+A_3)} \quad \text{, where } A_1 > -A_2 > -A_3$$

Using the same method as before, we find

$$y = \frac{y_o \left(\frac{x}{\partial_s} \right) \frac{c_s \frac{\partial_s}{\partial s}}{s} \left(\frac{x}{\partial_s} \right) \frac{c_s \frac{\partial_s}{\partial s}}{s}}{\left(\frac{x}{\partial_s} \right) \frac{c_s \frac{\partial_s}{\partial s}}{s}} \qquad \text{where}$$

$$\partial_{1} = A_{1} - \partial \qquad \qquad C_{2} = -A_{2} + A_{3}$$
 $\partial_{2} = A_{2} + \partial \qquad \qquad C_{2} = A_{1} + A_{3} \qquad \qquad S = b_{3} c, c_{2} c_{3}$
 $\partial_{3} = A_{3} + \partial \qquad \qquad C_{3} = A_{1} + A_{2}$

 y_o is calculated as in the previous cases. The origin is at the mode.

Type A-4

VII. Where all three zeros are negative, the equation may be written in the form

$$\frac{dy}{y} = \frac{(x-\partial) dx}{b_3(x+A_1)(x+A_2)(x+A_3)}, \text{ where } -A_2 > -A_3$$

Proceeding as in the last three cases, we find

$$y = \frac{y_o \left(/ + \frac{x_{/\partial_2}}{5} \right)^{\frac{C_2 \partial_2}{5}}}{\left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}}, \text{ where}$$

$$\frac{C_1 \partial_1}{\partial_2} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_1 \partial_2 \partial_1}{\partial_2 \partial_2} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_2 \partial_2}{\partial_3 \partial_4} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_2 \partial_2}{\partial_3 \partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_2 \partial_2}{\partial_3 \partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_2 \partial_3}{\partial_3 \partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_2 \partial_3}{\partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_2 \partial_3}{\partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_3 \partial_3}{\partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_3 \partial_3}{\partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_3 \partial_3}{\partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_3 \partial_3}{\partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_3 \partial_3}{\partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_3 \partial_3}{\partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_3 \partial_3}{\partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

$$\frac{\partial_2 \partial_3 \partial_3}{\partial_3} \left(/ + \frac{x_{/\partial_3}}{5} \right)^{\frac{C_3 \partial_3}{5}}$$

 y_o is determined as in the previous cases. The origin is at the mode

Type A-5

VIII. In Type A-3, suppose $A_1 = A_2$. Then

$$y = \frac{y_o\left(/-\frac{x/A_i}{A_i}\right)\frac{\frac{(-A_i+A_3)(A_i-\delta)}{5}\left(/+\frac{x}/A_i+\delta\right)}{\left(/+\frac{x}{A_3+\delta}\right)}\frac{\frac{(A_i+A_3)(A_i+\delta)}{5}}{\frac{2A_i(A_3+\delta)}{5}}$$

where $s = b_3 (A_1 + A_2) (-A_1 + A_3) (2A_1)$

Suppose ϑ , the mode, is at the mean, that is, is equal to zero. Then $A = A + \vartheta = \vartheta$.

Then

$$y = \frac{y_o \left(\frac{-x}{a_o} \right) \frac{\left(\frac{-A_o}{3} + \frac{A_s}{3} \right) \frac{\partial_o}{\partial_o}}{\left(\frac{-A_o}{3} + \frac{A_s}{3} \right) \frac{\partial_o}{\partial_o}} \frac{\left(\frac{A_o}{3} + \frac{A_s}{3} \right) \frac{\partial_o}{\partial_o}}{\frac{2A_o \frac{\partial_o}{3}}{5}}$$

yo is calculated as before. The origin is at the mode.

Type A-6

IX. In Type A-3, suppose one of the zeros is zero, say A_{i} . The equation then becomes

$$y = \frac{\frac{(A_z + A_g)(-\partial)}{b_g A_z A_g (-A_z + A_g)} \frac{A_g (A_z + \partial)}{(x + A_z)^{\frac{1}{b_g A_z A_g} (-A_z + A_g)}}}{(x + A_g)^{\frac{1}{b_g A_z A_g} (-A_z + A_g)}}$$

$$= \frac{y_o x^{\frac{-\partial}{b_g A_z A_g}} (/ + \frac{x}{A_g})^{\frac{A_z + \partial}{b_g A_z (-A_z + A_g)}}}{(/ + \frac{x}{A_g})^{\frac{A_z + \partial}{b_g A_g} (-A_z + A_g)}}$$

The values of all the constants except y_o are known, and it may be calculated by either of the formulas given in Type A-1.

The origin is at the mean.

TYPE A-7

X. In case F(x) is quadratic, and its zeros are of like sign, we have

$$\frac{dy}{y} = \frac{(x-\theta)dx}{b_2(x+A_1)(x+A_2)} = \frac{A_1+\theta}{b_2(A_1-A_2)} \frac{dx}{x+A_1} - \frac{A_2+\theta}{b_2(A_1-A_2)} \frac{dx}{x+A_2}$$

Integrating, we have

$$\log y = \frac{A_1 + \partial}{b_2 (A_1 - A_2)} \log(x + A_1) + \frac{-(A_2 + \partial)}{b_2 (A_1 - A_2)} \log(x + A_2) + \log y'$$

Exponentiating,

$$y = y'(x+A)^{\frac{A_1+a}{b_2(A_1-A_2)}} (x+A_2)^{\frac{-(A_2+a)}{b_2(A_1-A_2)}}$$

Changing x to $x - A_2$, we have

$$y = y'(x+A, -A_2)^{\frac{A_1+2}{b_2(A_1-A_2)}} x^{\frac{-(A_2+2)}{b_2(A_1-A_2)}}$$

T et

$$A_1 - A_2 = -m$$
; $\frac{A_1 + \theta}{-b_2 m} = P_1$; $\frac{A_2 + \theta}{b_2 m} = P_2$

Then

$$y = y_o (x-m)^{\rho_i} x^{\rho_2}$$

The constants A_1 and A_2 are given by the zeros of the quadratic in the denominator, and m_1 , ρ_1 , and ρ_2 are given in terms of these above. By integration of this equation between the limits m and ∞ , it has been found that

$$y_o = \frac{N \Gamma (\rho_z) m^{\rho_z - \rho_o - \prime}}{\Gamma(\rho_c + \prime) \Gamma(\rho_z - \rho_o - \prime)}$$

y, may also be determined by finite integration by either of the methods given in Type A-1.

Origin = Mean - A2

TYPE A-8

XI. This type occurs when F(x) is a quadratic and the zeros are real and opposite in sign. The equation then becomes

$$\frac{dy}{y} = \frac{1}{b_2} \frac{x-\delta}{(x+A_1)(x-A_2)}$$

1. Elderton, "Frequency Curves and Correlation," p. 85.

Integrating, we obtain

$$\log y = \frac{1}{b_z} \frac{A_z + \partial}{A_z + A_z} \log (x + A_z) + \frac{1}{b_z} \frac{A_z - \partial}{A_z + A_z} \log (x - A_z) - \log y'$$

Exponentiating,

$$y = y'(x+A_1)^{\frac{1}{b_2}} \frac{A_1+a_2}{A_1+A_2} (x-A_2)^{\frac{1}{b_2}} \frac{A_2-a_2}{A_1+A_2}$$

Now, changing the origin to the mode, i. e., putting x for x-a, we have

$$y = y'(x+A_1+\partial)^{\frac{1}{b_2}\frac{A_1+\partial}{A_1+A_2}}(x-A_2+\partial)^{\frac{1}{b_2}\frac{A_2+\partial}{A_1+A_2}}$$
$$= y_o\left(/+\frac{x}{\partial_1}\right)^{m_1}\left(/-\frac{x}{\partial_2}\right)^{m_2}$$

where

$$\partial_{i} = A_{i} + \delta$$
;
 $\partial_{z} = A_{z} - \delta$

$$m_{i} = \frac{1}{b_{z}} \frac{\partial_{i}}{A_{i} + A_{z}}$$
;
 $m_{z} = \frac{1}{b_{z}} \frac{\partial_{z}}{A_{i} + A_{z}}$

and

$$\frac{m_i}{\partial_i} = \frac{m_2}{\partial_2}$$

The value of yo has been found by integration to be

$$y_{o} = \frac{Nm_{i}^{m_{i}}m_{2}^{m_{2}}\Gamma(m_{i}+m_{2}+2)}{b(m_{i}+m_{2})^{m_{i}+m_{2}}\Gamma(m_{i}+1)\Gamma(m_{2}+1)}$$

Where $b=a_1+a_2$. N= total frequency. y_o may also be calculated by either of the methods given in Type A-1. The origin is at the mode.

^{1.} Elderton, "Frequency Curves and Correlation," p. 59.

TYPE A-9

XII If the zeros of the quadratic are A_1 , and A_2 , the equation may be written

$$\frac{dy}{y} = \frac{1}{b_1} \frac{A_1 - \partial}{2A_1} \frac{dx}{x - A_1} = \frac{1}{b_2} \frac{A_1 + \partial}{2A_1} \frac{dx}{x + A_1}$$

Integrating, we obtain

$$\log y = \frac{1}{b_2} \frac{A_i - \partial}{2A_i} \log (x - A_i) + \frac{1}{b_2} \frac{A_i + \partial}{2A_i} \log (x + A_i) + \log y'$$

Exponentiating,

$$y = y'(x-A_1)^{\frac{1}{b_2}} \frac{A_1-\partial}{2A_1} (x+A_1)^{\frac{1}{b_2}} \frac{A_1+\partial}{2A_1}$$

Changing the origin to the mode, i. e, putting x for x-a, we have

$$y = y'(x + \partial - A_i)^{\frac{1}{b_2} \frac{A_i - \partial}{2A_i}} (x - \partial + A_i)^{\frac{1}{b_2} \frac{A_i + \partial}{2A_i}}$$

$$= y_o \left(1 - \frac{x}{d_i} \right)^{m_i} \left(1 + \frac{x}{c_i} \right)^{m_2}$$

w here

$$\partial_{1} = A_{1} - \partial$$
 $\partial_{1} + 2\partial = A + \partial = C_{1}$

$$\frac{\partial_{1}}{\partial b_{2} A_{1}} = m_{1}$$

$$\frac{C_{1}}{2b_{2} A_{1}} = m_{2}$$

Then, as before,

$$y_{o} = \frac{N}{\partial_{i} + C_{i}} \cdot \frac{m_{i} m_{i} m_{2} m_{2} \Gamma (m_{i} + m_{2} + 2)}{(m_{i} + m_{2})^{m_{i} + m_{2}} \Gamma (m_{i} + 1) \Gamma (m_{2} + 1)}$$

Type A-10

XIII. If F(x) is assumed to be linear, the equation may be written

$$\frac{dy}{y} = \frac{x - a}{b_o + b_i x} dx = \left(\frac{1}{b_i} + \frac{-a - \frac{b_o}{b_i}}{b_i x + b_o}\right) dx$$

Integrating,

$$\log y = \frac{x}{b_i} + \frac{1}{b_i} \left(-\partial - \frac{b_o}{b_i} \right)$$
 $\log (b_i x + b_o) + \log y'$

Exponentiating,

$$y = y' e^{\frac{\pi}{b}} (b, x + b_0)^{-\frac{1}{b}} (a + \frac{b_0}{b})$$

Changing the origin to the mode by putting x for x-a, we have

$$y = y''e^{-\frac{x+\delta}{b_i}} \left(+ \frac{x}{\underline{b_i \delta + b_i}} \right)^{-\frac{1}{b_i} \left(\frac{b \delta + b_i}{b_i} \right)}$$

Now let

$$y''e^{\frac{a}{b_1}} = y_a$$
; $\frac{ab_1 + b_2}{b_1} = m$; $-\frac{1}{b_1} = \gamma$

Then

$$y = y_o e^{-\gamma x} \left(/ + \frac{x}{m} \right)^{\gamma m}$$

The constants may be determined as follows:

When $b_2 = b_3 = 0$, it has been found that

$$b_0 = -\mu_z ; b_1 = a$$

$$\therefore m = \frac{ab_1 + b_2}{b_1} = \frac{a^2 - \mu_z}{a}$$

$$Y = -\frac{1}{b_1} = -\frac{1}{a}$$

The value of y, has been found to be

$$y_o = \frac{Nq^{q+\prime}}{me^{q} \Gamma(q+\prime)}$$

where q = Ym.

y, may also be found by the methods of Type A-1. The origin is at the mode.

Type A-11 (The normal curve)

XIV. Putting $b_1 = b_2 = b_3 = 0$, we have

$$\frac{dy}{y} = \frac{x-a}{b_0} dx$$

Integrating,

$$\log y = \frac{x^2}{2b_0} - \frac{\partial x}{b_0} + \log c = \frac{(x-a)^2}{2b_0} + \log y'$$

Exponentiating,

$$y = v'e^{\frac{(x-\theta)^2}{2b_0}^2}$$

Changing the origin to the mode, and substituting the value for b_0 when $b_1 = b_2 = b_3 = 0$, that is $b_0 = -\mu_2$, we obtain

$$y = y_0 e^{-\frac{x^2}{2\mu_z}}$$

To find the value of y_o , integrate between the limits $-\infty$ and ∞ and find the total frequency N. It has been found² that

$$y_o = \frac{N}{\sqrt{2\pi\mu_z}}$$

^{1.} Elderton, "Frequency Curves and Correlation," p. 68.

^{2.} Elderton, "Frequency Curves and Correlation," p. 91.

y, may also be found by either of the other two methods. The origin is at the mode.

Type B-1

XV. When F(x) is a cubic, and two of the zeros are complex, the differential equation may be written in the form

$$\frac{dy}{y} = \frac{(x-\bar{a}) dx}{b_s (x-A) \left[x^2 - (A_z + A_s) x + A_A\right]}, \text{ where } (A_z - A_s)^2 < 0$$

Separating into partial fractions and integrating,

$$\int \frac{dy}{y} = \frac{A_{,-}a}{b_{s} [A_{,}(A_{,-}A_{2}-A_{3})+A_{2}A_{3}]} \int \frac{dx}{x-A_{,}}$$

$$-\frac{A_{,-}a}{b_{s} [A_{,}(A_{,-}A_{2}-A_{3})+A_{2}A_{3}]} \int \frac{x dx}{x^{2}-(A_{2}+A_{3})x+A_{2}A_{3}}$$

$$+\frac{\partial (A_{,-}A_{2}-A_{3})+A_{2}A_{3}}{b_{s} [A_{,}(A_{,-}A_{2}-A_{3})+A_{2}A_{3}]} \int \frac{dx}{x^{2}-(A_{2}+A_{3})x+A_{2}A_{3}}$$

$$\cdot \text{Now let } x'=x-\frac{A_{2}+A_{3}}{2}; \quad M^{2}=\frac{(A_{2}-A_{3})^{2}}{2}$$

$$\cdot k=a (A_{,-}A_{2}-A_{3})+A_{2}A_{3} - \frac{(A_{,-}a)(A_{2}+A_{3})}{2}$$

$$d=[A_{,}(A_{,-}A_{2}-A_{3})+A_{2}A_{3}]b_{3}$$

Performing the integration, we have

$$log y = \frac{A - a}{d} log (x' + \frac{A_2 + A_3}{2} - A) - \frac{A_1 - a}{2d} log (x' + M^2) + \frac{k}{Md} tan' \frac{x'}{M} + log y_0$$

Exponentiating,

$$y = \frac{y_o \left[x' + \frac{1}{2} (A_z + A_3) - A_1 \right]^{\frac{A-2}{d}} e^{\frac{x}{Md} \tan^{-1} \frac{x'}{M}}}{(x' + M^2)^{\frac{A-2}{2d}}}$$

$$= \frac{y_o \left(x + c \right)^{2m} e^{\frac{x}{Md} \tan^{-1} \frac{x'}{M}}}{(x^2 + M^2)^{m}}$$

where
$$m = \frac{A_1 - \partial}{2d}$$
, $\frac{A_2 + A_3}{2} - A_1 = C$

 y_0 may be determined as in Type A-1. Origin = Mean + $\frac{A_2 + A_3}{2}$

Type B-2

XVI. When two of the zeros are pure imaginaries, the equation may be written:

$$\int \frac{dy}{y} = \frac{A_{,-a}}{b_{s}(A_{,+}^{2}A_{z}^{2})} \int \frac{dx}{x_{-A}} - \frac{A_{,-a}}{2b_{s}(A_{,+}^{2}A_{z}^{2})} \int \frac{2x dx}{x_{-A}^{2}A_{z}^{2}} + \frac{aA_{,+}A_{z}^{2}}{b_{s}(A_{,+}^{2}A_{z}^{2})} \int \frac{dx}{x_{-A}^{2}A_{z}^{2}}$$

Performing the integration, we have

$$\log y = \frac{A_{1} - a}{b_{3} (A_{1}^{2} + A_{2}^{2})} \log (x - A_{1}) - \frac{A_{1} - a}{2b_{3} (A_{1}^{2} + A_{2}^{2})} \log (x^{2} + A_{2}^{2})$$

$$+ \frac{aA_{1} + A_{2}^{2}}{b_{3} A_{2} (A_{1}^{2} + A_{2}^{2})} \tan^{-1} \frac{x}{A_{2}} + \log y_{0}$$

Exponentiating, we have

$$y = \frac{y_{o}(x-A_{i})^{\frac{A_{i}-2}{b_{z}(A_{z}^{2}+A_{z}^{2})}} e^{\frac{-\frac{A_{i}+A_{z}^{2}}{b_{z}(A_{z}^{2}+A_{z}^{2})}fon^{-1}\frac{x}{A_{z}}}}{(x^{2}+A_{z}^{2})^{\frac{A_{i}-a}{2b_{z}(A_{z}^{2}-A_{z}^{2})}}}$$

Let $b_3 (A_1^2 + A_2^2 = d)$; $\frac{A_1 - a}{d} = 2m$; $aA_1 + A_2^2 = k$ Then

$$y = \frac{y_o (x-A_i)^{2m} e^{\frac{k}{A_z \sigma} ten^{-1} \frac{x}{A_z}}}{(x^2 + A_z^2)^m}$$

y, may be determined as in the previous case. The origin is at the mean.

TYPE B-3

XVII. If F(x) is quadratic and the zeros are complex, the equation may be written

$$\int \frac{dy}{y} = \int \frac{(x-a) dx}{b_o + b_i x + b_2 x^2} = \int \frac{(x-a) dx}{b_z \left[(x^2 + \frac{b_i}{b_2} x + \frac{b_i^2}{4b_z^2}) + (\frac{b_o}{b_2} - \frac{b_i^2}{4b_z^2}) \right]}$$
Let $X = x + \frac{b_i}{2b_2}$; $A^2 = \frac{b_o}{b_2} - \frac{b_i^2}{4b_2^2}$

Then
$$x-\partial = X - \frac{b_1}{2b_2} - \partial = X + c$$
, where $c = -(\frac{b_1}{2b_2} + \delta)$

We have then

$$\log y = \int \frac{(X+c) dX}{b_{2}(X^{2}+A^{2})} = \int \frac{XdX}{b_{2}(X^{2}+A^{2})} + \frac{1}{b_{2}} \int \frac{c dX}{X^{2}+A^{2}}$$

$$= \frac{1}{2b_{2}} \log (X^{2}+A)^{2} + \frac{c}{Ab_{2}} t \partial n^{-1} \frac{X}{A} + \log y'$$

Exponentiating,

$$y = y' (X^{2} + A^{2})^{\frac{1}{2b_{z}}} e^{\frac{C}{Ab_{z}} t \partial n^{-1} \frac{X}{A}}$$

$$= y_{o} \left(/ + \frac{X^{2}}{A^{2}} \right)^{\frac{1}{2b_{z}}} e^{\frac{C}{Ab_{z}} t \partial n^{-1} \frac{X}{A}}$$

which may be written

$$y = y_o \left(l + \frac{X^2}{A^2} \right)^n e^{-\gamma t_{\partial n} - l \frac{X}{A}},$$

where
$$n = -\frac{1}{2b_2}$$
; $-\gamma = \frac{c}{Ab_2}$; $A^2 = \frac{4b_0b_2 - b_1^2}{4b_2^2}$

 y_0 may be calculated as in Type A-1. Origin = Mean - $\frac{b_1}{2b_2}$

TYPE C-1

XVIII. When F(x) is cubic, and two zeros of the denominator are equal, the equation may be written in the form

$$\int \frac{dy}{y} = \int \frac{(x-\partial)}{b_{3}(x-A_{1})^{2}(x-A_{2})} = \frac{A_{1}-\partial}{b_{3}(A_{1}-A_{2})} \int \frac{dx}{(x-A_{1})^{2}} - \frac{A_{2}-\partial}{b_{3}(A_{1}-A_{2})} \int \frac{dx}{x-A_{1}} + \frac{A_{2}-\partial}{b_{3}(A_{1}-A_{2})^{2}} \int \frac{dx}{x-A_{2}}$$

Performing the integration, we have

$$\log y = \frac{-(A_1 - \delta)}{b_3 (A_1 - A_2)(x - A_1)} - \frac{A_2 - \delta}{b_3 (A_1 - A_2)^2} \log(x - A_1)$$

$$+ \frac{A_2 - \delta}{b_3 (A_1 - A_2)^2} \log(x - A_2) + \log y'$$

Exponentiating,

$$y = \frac{y'e^{-\frac{A_1-2}{b_3(A_1-A_2)(x-A_1)}(x-A_2)^{\frac{A_1-2}{b_3(A_1-A_2)^2}}}{(x-A_1)^{\frac{A_2-2}{b_3(A_1-A_2)^2}}} = \frac{y'e^{-\frac{M}{2x-A_1}(x-A_2)^{m_2}}}{(x-A_1)^{m_2}}$$

where
$$m_1 = \frac{A_1 - \delta}{b_3 (A_1 - A_2)}$$
; $m_2 = \frac{A_2 - \delta}{b_3 (A_1 - A_2)^2}$

Now, changing the origin to A, i. e., replacing x by x+A, we have

$$y = \frac{y'e^{-\frac{m_1}{x}}(x+A,-A_2)^{m_2}}{x^{m_2}}$$

$$= \frac{y_0 e^{-\frac{m_1}{x}}(1+\frac{x}{k})^{m_2}}{x^{m_3}}$$

where k = A, -A

 y_o may be determined as in the previous case. Origin = Mean + A_1 .

Type C-2

XIX. If all the zeros are equal, the equation may be written

$$\int \frac{dy}{y} = \int \frac{A_r - a}{b_s (x - A_r)^3} dx + \int \frac{dx}{b_s (x - A_r)^2}$$

Integrating.

$$log y = \frac{A_{-}a}{2b_{s}(x-A_{i})^{2}} - \frac{1}{b_{s}(x-A_{i})} + log y_{o}$$

Exponentiating,

$$y = y_o e^{\frac{-(A,-B)}{2b_B(x-A,)^2} - \frac{1}{b_B(x-A)}} = y_o e^{\frac{A,-B-2x}{2b_B(x-A)^2}}$$

where y_o may be determined as before. Origin = Mean.

TYPE C-3

XX. When F(x) is quadratic, and the zeros are real and equal, the equation may be written

$$\int \frac{dy}{y} = \int \frac{1}{b_z} \frac{(x-\partial)dx}{(x+\frac{b_z}{2b_z})^2}$$

$$= \int \frac{\left[\left(x+\frac{b_z}{2b_z}\right)-\left(\partial+\frac{b_z}{2b_z}\right)\right]dx}{b_z\left(x+\frac{b_z}{2b_z}\right)^2}$$

$$= \int \frac{dx}{b_z\left(x+\frac{b_z}{2b_z}\right)} - \int \frac{\left(\partial+\frac{b_z}{2b_z}\right)}{b_z\left(x+\frac{b_z}{2b_z}\right)^2}dx$$

$$\therefore \log y = \frac{1}{b_z} \log\left(x+\frac{b_z}{2b_z}\right) + \frac{\partial+\frac{b_z}{2b_z}}{b_z\left(x+\frac{b_z}{2b_z}\right)} + \log y'$$

Exponentiating,

$$y = y' \left(x + \frac{b_1}{2b_2} \right)^{\frac{1}{b_2}} e^{-\frac{\partial + \frac{b_1}{2b_2}}{b_2 \left(x + \frac{b_1}{2b_2} \right)}}$$
Now let
$$x + \frac{b_1}{2b_2} = x' \; ; \; \frac{1}{b_2} = -\rho \; ; \; \frac{a + \frac{b_1}{2b_2}}{b_2} = -\gamma$$
Then $y = y_0 \; x^{-\rho} e^{-\frac{\gamma}{2}}$

The constants in terms of moments are

$$-\rho = \frac{-4\,\mu_s}{\mu_s + 2\,\bar{a}\,\mu_z} \; ; \; -\gamma = \frac{4\,\mu_s (a\,\mu_s - 2\,a^2\mu_z)}{\mu_s^2 - 4\,a\mu_z\,\mu_s + 4\,a^2\mu_z}$$
It has been found that $y_o = \frac{N\,\gamma'^{-1}}{\Gamma(\rho - 1)}$. Origin = Mean - $\frac{b_s}{2\,b_z}$

XXI. The following example, illustrated in the chart (p. 140), is given to illustrate the method. The data is fitted by Type A-7.

Ratio of Revenue to Net Worth in Traction Companies

Ratio	Observed Frequency	Theoretical Frequency		
.04	7	7.3		
.12	43	31.9		
.20	48	55.6		
.28	<i>7</i> 5	63.6		
.36	53	57.6		
.44	34	45.1		
.52	25	32.2		
.60	22	21.6		
.68	12	14.1		
.76	14	8.6		
.84	5	5.2		
.92	6	3.2		
1.00	7	1.9		

^{1.} Elderton, "Frequency Curves and Correlation, p 82

The constants calculated from the observed frequencies were

$$\mu_z = 6.4354$$
 $\mu_b = 18.0115$
 $\mu_b = 18.0115$
 $\mu_b = -1.2125$
 $\mu_b = 5.3312$
 $\mu_b = -1.2125$
 $\mu_b = -1.21$

Origin at Mean - 30.6287 or 30.4287 to left of 53 group.

Curve starts at 30.4287 - 24.97 = 5.4587 before the center of this group.

EQUATION

$$y = y_0 (x - 24.97)^{635/2} x^{-3527/3}$$

Edura D. Mongor, J.

ON FITTING CURVES TO OBSERVATIONAL SERIES BY THE METHOD OF DIFFERENCES

By

HARRY S. WILL

I. PRELIMINARY STATEMENT

Curve fitting may be technically described as the representation of a series of observations by a mathematical function. Given the observations and the function to be fitted, the problem is to determine the constants of the equation in such a way as to secure a valid representation. The method to be employed in the determination of these constants must take into account the object which the fitting process is intended to serve. If the object is to interpolate for undetermined items between specified ordinates of the series, any method which will give the constants of the equation will suffice, since the representation of the given ordinates is exact. In this case, questions of method will hinge on considerations of convenience. If, however, the object is to secure the representation of all the items of the series by means of a single function, questions of method will hinge on the validity of the representation, which, in this case, can only be approximate.

Functions used as approximate representations of observational series fall into two general classes: first, those which have the force of a law descriptive of a necessary sequence of events; and, second, those which depict a norm as a characteristic trend in growth. These two types of representation merit separate methodological consideration; and, in what is to follow, we shall make an analysis of the problems involved and develop a method, which, it is believed, will place in the hands of the statistician a new and serviceable instrument.

II. FUNDAMENTAL TYPES OF OBSERVATIONAL SERIES

For the purpose of fixing attention on certain characteristics of observational data, let us consider two distinctly different sorts of series. Let us suppose that the first series consists of a set of observations on a comet moving through space, and that the second consists of the record of gold production in the United States.

gg J

For the sake of simplicity, let us further suppose that the movement of both series is properly represented by the function y=f(x). The two sets of observations may then be represented by an equation of the form

$$(1) Y \pm d \pm \varepsilon = f(x) = Y \pm v$$

In this equation, the term ε represents an error of observation due to factors such as faulty judgment, clerical inaccuracies, and lack of precision in the use of instruments. The term d represents the deviation of the fitted function from the true magnitude of the phenomenon undergoing examination, after the series has been corrected for the errors ε . Taken together, d and ε make up the residuals

$$v = f(x) - Y$$

Now it is quite evident that, in the case of the first series, owing to the regularity of the path of the moving body, the deviations d will be negligibly small in comparison with the errors ε , and that, in the case of the second series, owing to the irregularity of production, the deviations d will be large in comparison with the errors ε . In fitting a curve to the first series, we assume that a true value exists and that the observational errors may be defined by the fitting process; while in fitting to the second, we assume a normal value merely, and seek to define the deviations of the observations from this norm.

These considerations suggest that the procedure which is applicable to the determination of constants in the one case may not be applicable in the other. Let us therefore inquire as to the solutions best suited to each case.

III. THE CLASSICAL SOLUTION

It was in 1806 that Legendre formulated his test of the validity attaching to the functional representation of an observational series. This formulation has become known as the principle of least squares and may be stated thus: Where the constants of a mathematical function are to be determined from a set of empirical observations, that solution is best which makes the sum of the squares of the residual errors a minimum.

So far as its mere statement is concerned, this principle is a rule of thumb which may be adopted or discarded at the discretion of the individual. The principal has, however, been placed on a definite logical basis by Gauss and later writers, who have derived it from the normal law of error $\rho(x) = m \int_0^x e^{-z^2} dz$. Under the assumptions of this law, deviations from the most probable value are fortuitous in character, the term fortuitous implying that individual deviations are unanalytic in the sense that the forces operating to bring them about cannot be resolved into more elemental components. All that we can clam to know a priori about the values of such deviations is that they are as likely to be positive as negative and that they must remain within the bounds $\pm \infty$. The function $\rho(x)$ gives the probability for the occurrence of a deviation of magnitude $z = x/\sigma$.

Statisticians generally have accepted the principle of least squares as providing a sufficient theoretical basis for the fitting of curves to all sorts of series. Because of this, it becomes all the more important that certain limitations of the principle and its application to the analysis of statistical series should be carefully noted.

Considering again the case where the observations are made on a body moving through space, we see that the errors of observation committed may properly be regarded as fortuitous in character, for, on the basis of our assumption of precise motion in the path y=f(x), the most probable value of the residuals is clearly defined as zero, so that the errors committed are as likely to be positive as negative; no finite bound can be set as to the possible magnitude of such random errors, and the forces determining their magnitudes cannot be resolved into their components. If our assumption as to the path of the moving body is valid, these errors conform to the normal law in the frequency of their occurrence, and their magnitudes may be accurately ascertained by a least squares determination of constants.

Returning now to the case where the observations consist of a record of gold production, can we claim to have the same basis for an application of least squares to the determination of our line of best fit? Two important considerations would lead us to think otherwise. The first of these is that the magnitude of deviations from trend is definitely restricted; for production is limited both by the capacity of the extractive industries and by the consumers' demand. The second is found in the highly analytic character of these deviations; for it is significant that whenever it becomes possible to resolve the forces determining the values of given deviations of a set into their elemental components, the prediction of the sign and magnitude of specified devia-

tions becomes in some measure possible; and when this occurs, such deviations are removed from the category of the fortuitous and unpredictable and placed in that of the analytic and predictable.

The arguments are supported by the use made of weighted deviations from trend in the forecasting of economic events. A rise in price or fall in production is not explained, in comparison with the normal trend, as a circumstance which is to be expected a certain number of times in a thousand, but rather because analysis shows the rise or fall to be the necessary result of known events. Obviously, a forceast based on unanalytic and purely fortuitous deviations could have no real significance whatever.

Granting that residuals may sometimes be obtained by least squares operations which may be regarded as a random sample of an approximately normal distribution, it must be clearly borne in mind that these residuals are brought into being by the creative act of curve fitting; and the mere marking off of a deviation does not justify our regarding it as being due to the working of forces distinct and different from those effective in producing the remaining part of the ordinate. In the case of the celestial observations which we have assumed, the act of fitting defines, but does not create, the errors.

The argument may be advanced at this point that it is not necessary to regard the principle of least squares as resting on the law of error; for we may obtain the normal equations from which our least squares determination is made by treating the solution as a simple problem in maxima and minima. But if we do, we cannot claim to have determined the *most probable* values of our constants; for this claim must rest on the derivation of the normal equations from the law of error.

The justification for the arbitrary use of the least squares technique that is most likely to be made is that it minimizes extreme deviations from the fitted line. This is unquestionably true; but it appears as a weakness of the method in the present connection rather than as an element of strength; for, in a least squares deduction of normal equations, we may regard each absolute deviation as being weighted with its own magnitude, deviations less than the mean deviation receiving weights less than the mean weight, and vice versa; and why, the query obtrudes, should we, in our determination of constants, overweight the observations most remote from what we term the norm

and underweight those which lie closest?

The argument that the least squares fit will avoid the commission of extreme errors in the projection of the curve beyond the limits of observation, or at least tend in that direction, is fallacious; for the fitting of a line to a given set of observations to secure the minimum sum of the squared residuals is unlikely to effect the same end when new observations are added. At least, we have no logical basis for the expectation of such a result unless we fall back on the position that the fitted curve describes a necessary sequence of events and that the residuals are fortuitous in character; and this is the very assumption we have found to be untenable for most economic and social series.

We may, then, say that fortuitous deviations are properly to be regarded as functions of the observations; while analytic deviations are to be regarded as functions of the hypothesis we set up with reference to the type of curve which is most appropriate to the data. In brief, our reasoning supplies a definite basis for the contention that, for data in which the errors of observation are small in comparison with the analytic deviations from trend, the least squares definitions do not lead to results which are to be regarded as necessarily best for all purposes.

IV. THE METHOD OF DIFFERENCES

The method of curve fitting which is now to be presented was originated by the writer in the spring of 1925. Since that time, it has been put to a wide variety of practical tests and has been found to yield highly satisfactory results. The designation method of differences has been given to it because of the extensive and essential use made of the calculus of finite differences.

Before undertaking the task of deriving the formulas for the determination of constants, let us state the assumptions on which the method is based, as follows:

- (a) The function to be fitted is logically appropriate to the data.
- (b) The data are free of constant and systematic errors.
- (c) Accidental errors of observation are relatively small and unimportant.
- (d) Where a set of secular values is irregular and without sig-

nificant trend, the arithmetic mean is the best representation of the set.

The first of these assumptions is, in a general way, implied in any method of fitting. The effect of the second and third is to qualify the fitted deviations as analytic. The fourth is made use of constantly in the writing of formulas for the determination of parameters.

In the derivation of formulas, the essential steps are as follows: (1) equations defining each constant of the function fitted are developed by a process of differencing; (2) equations are formed from which approximations to the value of the given constant may be obtained; (3) the mean of the several approximations to the value of the given constant is taken as the most plausible value of the constant.

V. NOTATION

To avoid the possibility of misunderstanding, we shall explicitly define certain symbols made use of in this memoir.

The original observations are denoted by the symbol Y_i , $i=0,1,2,\ldots,n-1$; nd other capitals are used to designate empirical functions of the original observations; e. g., $U_i = Y_i - Y_o$. The symbol u_i denotes values of mathematical functions corresponding to the observations Y_i . The argument is denoted by the symbol

$$x_i$$
, $x_i = i\Delta_x$

Summations within the definite bounds a and b is indicated by the symbol $\sum_{i=0}^{n} y_i = y_0 + y_i + \dots + y_{n-1}$.

Finite differences of order r and rank k are defined by the symbol Δ_k : e. g., $\Delta_k y_i = \Delta_k^{r_i} y_{i+k} - \Delta_k^{r_{i'}} y_i$, where the difference of zero order is taken as the quantity undifferenced. In particular, we have $\Delta_k^o y_i = y_i$; $\Delta_k y_i = y_{i+k} - y_i$; $\Delta_k^a y_i = y_{i+2k} - 2y_{i+2k} + y_i$; $\Delta_k^a y_i = y_{i+2k} - 3y_{i+2k} + 3y_{i+k} - y_i$.

In these relations, the values of k and r are integral. The value of y_{i+k} is precisely the value of the function y=f(x) when $x=x_i+k\Delta x$. In the difference operations of the following sections, the usage $\Delta_x^2 = (\Delta_x)^2 \neq \Delta(x^2)$ is adhered to. Note that Δ_x log $y_i = \log y_{i+k} - \log y_i$, and also that $\log \Delta_x y_i = \log (y_{i+k} - y_i)$.

Since, on taking logarithms, ratios resolve themselves into differences between logarithms, we have, analogous to the differences $\Delta_k^r y_i$, the ratios $p_k^r y_i = p_k^{r-1} y_{i+k} : p_k^{r-1} y_i$, where the ratio of order r=0 denotes the specified quantity. In particular, we have $p_k^o y_i = y_i$;

$$P_{\kappa} y_{i} = y_{i+\kappa} : y_{i} ; P_{\kappa}^{2} y_{i} = y_{i+2\kappa} \cdot y_{i} : y_{i+\kappa}^{2} ; P_{\kappa}^{3} y_{i} = (y_{1+3\kappa} \cdot y_{i+\kappa}^{3}) : (y_{i+2\kappa}^{3} \cdot y_{i}).$$

In forming the first differences $\Delta_{\kappa} y_i$, where k is the increment in the y subscript corresponding to the increment $k\Delta x$ in x_i , it will be noted that the first k values of y_i are excluded as minuend; hence we can form but n-k first differences of rank k, that is, when the increment in the y subscript is k. Similarly, in forming the second differences $\Delta_k^2 y_i = \Delta_k y_{i+k} - \Delta_k y_i$, the first k values of $\Delta_k y_i$ are excluded from appearance as minuend; hence we can form but n-k-k=n-2k second differences from n values of y when the rank of differences is k. In general, when the rank of differences is k, we may form n-rk differences of order k from a set of values of k. Evidently, the number of ratios which may be formed from a given number of observations follows the same rule as that which applies to differences.

VI. LINEAR SERIES

Letus write the equation of the linear series in the form

$$(1) y_i = a + bx_i.$$

Giving to x the increment $k\Delta x$, we get

$$(2) y_{i+k} = a + b \left(x_i + k \Delta x \right)$$

Subtracting (1) from (2), we get

$$(3) \qquad \Delta_{\kappa} y_1 = b \, k \Delta x$$

By making the substitution $\Delta_{\kappa} Y_i$ for $\Delta_{\kappa} y_i$ in equation (3), we may form n-k approximations to the value of b, as follows:

$$\begin{array}{rcl}
b_o &=& \Delta_{\kappa} Y_o : k \Delta x \\
b_i &=& \Delta_{\kappa} Y_i : k \Delta x \\
& \ddots & \ddots & \ddots \\
b_{n-\kappa-i} &=& \Delta_{\kappa} Y_{n-\kappa-i} : k \Delta x
\end{array}$$

Similarly, when b is determined, by substituting Y_i for y_i in equation (1), we are able to form n approximations to the value of a, as follows:

$$a_{o} = Y_{o} - bx_{o}$$

$$a_{i} = Y_{i} - bx_{i}$$

$$\vdots$$

$$a_{n-i} = Y_{n-i} - bx_{n-i}$$

By taking mean values of the approximations specified in equations (4) and (5), we arrive at the following formulas for determining the value of the parameters b and a:

$$b = \left[\sum_{i=0}^{j=n-\kappa-i} \Delta_{\kappa} Y_{i}\right] : \left[\kappa (n-\kappa) \Delta x\right].$$

$$a = \left[\sum_{i=0}^{j=n-i} Y_{i} - b\sum_{i=0}^{j=n-i} x_{i}\right] : n.$$
(6)

$$2k=n\pm j$$
 $j=0$ or l .

This arbitrary determination of k will be justified in a later section.

VII. PARABOLIC SERIES

The equation of the quadratic parabola is

$$(1) y_i = a + bx_i + cx_i^2.$$

Giving to x the increment $k\Delta x$, we have

(2)
$$y_{i+k} = 8 + b \left(x_i + k\Delta x\right) + c \left(x_i + k\Delta x\right)^2.$$

Subtracting (1) from (2), we have

(3)
$$\Delta_{k} y_{i} = bk\Delta x + ck\Delta x \left(2x_{i} + k\Delta x\right).$$

Giving to x a second increment $k\Delta x$, we have

(4)
$$\Delta_{\kappa} y_{i+k} = b k \Delta x + c k \Delta x \left(2 x_i + 3 k \Delta x \right)$$

Subtracting (3) from (4), we obtain

(5)
$$\Delta_{\kappa}^{2} y_{2} = 2c \kappa^{2} \Delta x^{2}$$

From equations (5), (3), and (1), we deduce the following approximations to parameters:

$$c_{i} = \Delta_{\kappa}^{2} Y_{i} : (2k^{2} \Delta x^{2}) \quad i = 0, /, \cdots n - 2k - /.$$

$$(6) \qquad b_{i} = [\Delta_{\kappa} Y_{i} - ck\Delta x (2x_{1} + k\Delta x)] : [k\Delta x], \quad i = 0, /, \cdots n - /.$$

$$a_{1} = Y_{i} - bx_{i} - cx_{i}^{2}, \quad i = 0, /, \cdots n - /.$$

Taking mean values of the approximations indicated in equations (6), we have the following formulas for the determination of parameters:

$$c = \left[\sum_{i=0}^{j+n-2k-1} \Delta_{k}^{2} Y_{i}\right] : \left[2k^{2}(n-2k)\Delta x^{2}\right].$$

$$b = \left[\sum_{i=0}^{j+n-k-1} \Delta_{k} Y_{i} - c k\Delta x \sum_{i=0}^{j+n-k-1} (2x_{i} + k\Delta x)\right] : \left[k(n-k)\Delta x\right].$$

$$a = \left[\sum_{i=0}^{j+n-1} Y_{i} - b \sum_{i=0}^{j+n-1} x_{i} - c \sum_{i=0}^{j+n-1} x_{i}^{2}\right] : n.$$

$$3k = n \pm j, \quad j = 0, \ /, \text{ or } 2$$

We shall next write the equation of the cubic parabola, which is

(8)
$$y_i = a + bx_i + cx_i^2 + dx_i^3$$

Giving to x the increment $k\Delta x$, we have

$$(9) y_{i+k} = a + b \left(x_i + k \Delta x \right) + c \left(x_i + k \Delta x \right)^2 + d \left(x_i + k \Delta x \right)^3.$$

Subtracting (8) from (9), we get

(10)
$$\Delta_{k} y_{i} = b k \Delta x + c k \Delta x \left(2 x_{i} + k \Delta x \right) + d k \Delta x \left(3 x_{i}^{2} + 3 x_{i} k \Delta x + k^{2} \Delta x^{2} \right).$$

TABLE I
Production of Gold in the United States
(in units of \$100,000)

 $y = 695.75 + 53.89 x - 2.81 x^2$

Year	Y	У	V	Year	Y	У	V
1900	792	696	96	1911	969	949	20
1901	787	747	40	1912	935	938	- 3
1902	800	792	8	1913	883	921	-38
1903	736	832	96	1914	945	899	46
1904	805	866	-61	1915	1010	872	138
1905	882	895	-13	1916	926	839	87
1906	944	918	26	1917	838	800	38
1907	904	935	-31	1918	686	<i>7</i> 55	-69
1908	946	947	- 1	1919	603	<i>7</i> 05	-102
1909	997	953	44	1920	512	650	-138
1910	963	954	9				
Σ					17863	17863	0

Mean error of estimate 52.6

Again giving to x the increment $k\Delta x$, we have

(11)
$$\Delta_{k} Y_{i+k} = bk\Delta x + ck\Delta x \left(2x_{i} + 3k\Delta x\right) + dk\Delta x \left[3\left(x_{i} + k\Delta x\right)^{2} + 3k\Delta x\left(x_{i} + k\Delta x\right) + k^{2}\Delta x^{2}\right].$$

Subtracting (10) from (11), we obtain

(12)
$$\Delta_{\kappa}^{2} y_{i} = 2c k^{2} \Delta x^{2} + 6dk^{2} \Delta x^{2} \left(x_{i} + k \Delta x \right).$$

Once more increasing x by $k\Delta x$, we have

(13)
$$\Delta_{\kappa}^{2} y_{i+\kappa} = 2ck^{2}\Delta x^{2} + 6dk^{2}\Delta x^{2} \left(x_{i} + 2k\Delta x\right).$$

Subtracting (12) from (13), we obtain finally

(14)
$$\Delta_k^3 y_i = 6 dk^3 \Delta x^3.$$

From equations (14), (12), (10), and (8), we deduce the follow-

ing parametric approximations:

$$d_{i} = \Delta_{k}^{3} Y_{i} : (6k^{3} \Delta x^{3}), \quad i = 0, /, \dots n - 3k - /.$$

$$c_{i} = \left[\Delta_{k}^{2} Y_{i} - 6dk^{2} \Delta x^{2} (x_{i} + k \Delta x) \right] : \left[2k^{2} \Delta x^{2} \right], \quad i = 0, /, \dots n - 2k - /.$$

$$(15) \quad b_{i} = \left[\Delta_{k} Y_{i} - ck \Delta x (2x_{i} + k \Delta x) - dk \Delta x (3x_{i}^{2} + 3x_{i} k \Delta x + k^{2} \Delta x^{2}) \right]$$

$$: \left[k \Delta x \right], \quad i = 0, /, \dots n - k - /.$$

$$a_{i} = Y_{i} - bx_{i} - cx_{i}^{2} - dx_{i}^{3}, \quad i = 0, /, \dots n - /.$$

Taking mean values of the approximations indicated in equations (15), we have the following formulas for the determination of parameters:

$$d = \left[\sum_{i=0}^{j+n-3k-i} \Delta_{k}^{j} Y_{i}\right] : \left[6k^{s} (n-3k)\Delta x^{s}\right].$$

$$c = \left[\sum_{i=0}^{j+n-2k-i} \Delta_{k}^{j} Y_{i} - 6dk^{2}\Delta x^{2} \sum_{i=0}^{j+n-2k-i} (x_{i} - k\Delta x)\right] : \left[2k^{2}(n-2k)\Delta x^{2}\right].$$

$$b = \left[\sum_{i=0}^{j} \Delta_{k}^{n-k-i} Y_{i} - ck\Delta x \sum_{i=0}^{j+n-k-i} (2x_{i} + k\Delta x)\right].$$

$$-dk\Delta x \sum_{i=0}^{j+n-k-i} (3x_{i}^{2} + 3x_{i} - k\Delta x + k^{2}\Delta x^{2})\right] : \left[k(n-k)\Delta x\right].$$

$$a = \left[\sum_{i=0}^{j+n-i} Y_{i} - b \sum_{i=0}^{j+n-i} x_{i} - c \sum_{i=0}^{j+n-i} x_{i}^{2} - d \sum_{i=0}^{j+n-i} x_{i}^{3}\right] : n.$$

$$4k = n^{\pm}j, \qquad j = 0, 1, 2, \text{ or } 3.$$

VIII. HYPERBOLIC SERIES

Let us write the hyperbolic series

$$(1) y_i = a + bx_i + c : (x_i + i)$$

Giving the increment $k\Delta x$ to x, we have

(2)
$$y_{i+k} = a + b (x_i + k\Delta x) + c : (x_i + l + k\Delta x)$$

By subtraction, we have

(3)
$$\Delta_k y_i = b k \Delta x - c k \Delta x : ((x_i + l)(x_i + l + k \Delta x))$$

Giving a second increment $k\Delta x$ to x, we obtain

(4)
$$\Delta_{\kappa} y_{i+\kappa} = b k \Delta x - c k \Delta x : ((x_i + l + k \Delta x) (x_i + l + 2k \Delta x)).$$

By subtraction, we obtain

(5)
$$\Delta_{\kappa}^{2} y_{i} = 2 c \kappa^{2} \Delta x^{2} : \left((x_{i} + 1) (x_{i} + 1 + 2 \kappa \Delta x) \right).$$

Making the substitutions $x'_{i} = (x_{i} + l)(x_{i} + l + k\Delta x)$, and $x''_{i} = (x_{i} + l + 2k\Delta x)$, we have, from equations (5), (3), and (1), the following parametric approximations:

$$c_i = (x_i^* \Delta_k^2 Y_i) : (2k^2 \Delta x^2), i = 0, 1, \dots n-2k-1.$$

(6)
$$b_i = (\Delta_k Y_i + ck\Delta x : x'_i) : (k\Delta x), i = 0, 1, \cdots n - k - 1.$$

$$a_{i} = Y_{i} - bx_{i} - c : (x_{i} + 1), i = 0, 1, \dots, n-1.$$

By taking mean values of the approximations indicated in equations (6), we have the following formulas for determining parameters:

$$c = \left[\sum_{i=0}^{j+n-2k-1} x_{i}^{n} \Delta_{k}^{2} Y_{i}\right] : \left[2k^{2} (n-2k) \Delta x^{2}\right].$$

$$b = \left[\sum_{i=0}^{j+n-k-1} \Delta_{k}^{n} Y_{i} + ck \Delta x \left(\sum_{i=0}^{j+n-k-1} I/x_{i}^{n}\right)\right] : \left[k(n-k) \Delta x\right].$$

$$a = \left[\sum_{i=0}^{j+n-1} Y_{i} - b \sum_{i=0}^{j+n-1} x_{i} - c \sum_{i=0}^{j+n-1} (x_{i}^{i} + I)^{-1}\right] : n.$$

$$3k = n + j, \quad j = 0, \ I, \text{ or } 2.$$

 $i\bar{i}$ the coefficient of \boldsymbol{x} in (1) is zero, we have simply

(8)
$$y_i = a + b : (x_i + 1)$$
.

Formulas (7) now reduce to

$$b = -\left[\sum_{i=0}^{j-n-k-i} x_i' \Delta_{k} Y_i\right] : \left[k \left(n-k\right) \Delta x\right].$$

It is evident that a term in x^2 or x^3 could be added to equation (1) and a solution be obtained by a direct extension of the general method of analysis applied to equation (1).

IX. LOGARITHMIC SERIES

Let us write the logarithmic equation

$$(1) y_i = a + b x_i + c \cdot log(x_i + l).$$

Giving x the increment $k\Delta x$, we have

(2)
$$y_{i+k} = a + b \left(x_i + k\Delta x \right) + c \cdot \log \left(x_i + l + k\Delta x \right).$$

Subtracting (1) from (2), we get

(3)
$$\Delta_{k} y_{i} = b k \Delta x + c \Delta_{k} \log (x_{i} + 1).$$

Giving to x a second increment $k\Delta x$, we get

(4)
$$\Delta_{\kappa} y_{i+k} = bk\Delta x + c\Delta_{\kappa} log(x_i + l + k\Delta x) .$$

TABLE II

Deaths from Typhoid Fever in Greater City of New York
(Number of deaths per 1,000,000 inhabitants)

$$y = 143.899 + 8.695 x - 206.652 \Gamma x$$

Year	Y	У	V	Year	Y	У	V
1911	111.7	152.6	40.9	1919	21.8	25.6	- 3.8
1912	100.5	99,3	1.2	1920	24.2	24.8	- 0.6
1913	72.0	71.7	0.3	1921	21.3	25.1	- 3.8
1914	65.0	54.7	10.3	1922	22.1	26.0	- 3.9
1915	63.5	43.4	20.1	1923	23.6	27.4	- 3.8
1916	40.6	35.8	4.8	1924	30.0	29.6	0.4
1917	42.4	30.7	11.7	1925	31.9	32.1	- 0.2
1918	35.6	27.4	8.2				
Σ					706.2	706.2	0.0

Mean error of estimate 7.6

Subtracting (3) from (4), we obtain

(5)
$$\Delta_{\kappa}^2 y_i = c \Delta_{\kappa}^2 \log(x_i + 1)$$
.

From equations (5), (3), and (1), we have the following approximations to parameters:

$$C_{i} = \Delta_{k}^{2} Y_{i} : \Delta_{k}^{2} \log(x_{i} + l), i = 0, l, \dots n - 2k - l.$$

(6)
$$b_i = \Delta_k Y_i - c\Delta_k \log(x_i + 1), i = 0, 1, \dots, n-k-1$$
.

$$a_i = Y_i - bx_i - c \cdot log(x_i + 1), i = 0, 1, \dots, n-1.$$

Taking mean values of the approximations indicated in equations (6), we have the following formulas for the determination of parameters:

$$C = \left[\sum_{i=0}^{k-n-2k-1} \left(\Delta_{k}^{2} Y_{i} : \Delta_{k}^{2} \log (x_{i}+I) \right) \right] : \left[n-2k \right].$$

$$b = \left[\sum_{i=0}^{j=n-k-l} \Delta_k Y_i - c\sum_{i=0}^{j=n-k-l} \Delta_k \log (x_i + l)\right] : \left[k(n-k)\Delta x\right].$$

(7)
$$\theta = \left[\sum_{i=0}^{i=n-l} Y_i - b \sum_{i=0}^{i=n-l} x_i - c \sum_{i=0}^{i=n-l} \log (x_i + l) \right] : n .$$

$$3k = n \pm j$$
, $j = 0, 1, \text{ or } 2$

If the coefficient of x in equation (1) is zero, we have

(8)
$$y_i = a + b \cdot \log(x_i + 1)$$
.

Formulas (7) then reduce to

$$b = \left[\sum_{i=0}^{j=n-k-1} \left(\Delta_{k} Y_{i} : \Delta_{k} \log \left(x_{j} + I \right) \right) \right] : \left[n - k \right].$$

(9)
$$a = \left[\sum_{i=0}^{i=n-1} Y_i - b\sum_{i=0}^{i=n-1} \log(x_i + 1)\right] : n$$
.

$$2k = n \pm j$$
, $j = 0$ or l

X. GENERAL POLYNOMIAL SERIES

The solutions of polynomials presented in the preceding sections, while best for the series considered, are too specialized in mode of analysis for application to polynomials generally. We shall now develop a solution which is applicable to any polynomial in z=f(x), f(x) being a function of x whose value is known, as for example. x^{-1} , $\log x$, $\tan x$, etc.

We write

(1) $y_i = d + cz_i + bz_i^2 + az_i^3$.

Giving to z_i the increment $\Delta_k z_i$, we have

(2) $y_{i+k} = d + cz_{i+k} + bz_{i+k}^2 + az_{i+k}^3$.

Subtracting (1) from (2), we get

(3) $\Delta_{\kappa} y_i = c \Delta_{\kappa} z_i + b \Delta_{\kappa} z_i^* + a \Delta_{\kappa} z_i^*$.

This is the i^{th} equation $\Delta_{\kappa} y$. We write the $i+k^{th}$ equation as

(4) $\Delta_{\kappa} y_{i+k} = c \Delta_{\kappa} z_{i+k} + b \Delta_{\kappa} z_{i+k}^2 + a \Delta_{\kappa} z_{i+\kappa}^3$

Multiplying (3) by $\Delta_{\kappa} z_{i+\kappa}$ and (4) by $\Delta_{\kappa} z_{i}$ and then subtracting (4) from (3), we obtain

 $(5) \quad \Delta_k' y_i = b \Delta_k' z_i^2 + a \Delta_k' z_i^2 ,$

where
$$\Delta'_{k}y_{i} = \Delta_{k}y_{i} \cdot \Delta_{k}z_{i+k} - \Delta_{k}y_{i+k} \cdot \Delta_{k}z_{i}$$
; $\Delta'_{k}z_{i}^{*} = \Delta_{k}z_{i}^{*} \cdot \Delta_{k}z_{i+k} - \Delta_{k}z_{i+k} \cdot \Delta_{k}z_{i}$

and $\Delta'_{\kappa} Z_i^3 = \Delta_{\kappa} Z_{i+}^5 \cdot \Delta_{\kappa} Z_{i+\kappa} - \Delta_{\kappa} Z_{i+\kappa}^3 \cdot \Delta_{\kappa} Z_i$.

In (5), we have the *i*th equation $\Delta'_{k}y$. We write the $i+k^{th}$ equation as

(6) $\Delta_{\kappa}' y_{i+\kappa} = b \Delta_{\kappa}' z_{i+\kappa}^2 + \delta \Delta_{\kappa}' z_{i+\kappa}^3.$

Multiplying (5) by $\Delta'_{k}z_{i+k}^{z}$ and (6) by $\Delta'_{k}z_{i}^{z}$ and subtract-

ing the latter result from the former, we obtain

(7)
$$\Delta_{k}^{"} y_{i} = a \Delta_{k}^{"} Z_{i}^{3},$$
where
$$\Delta_{k}^{"} y_{i} = \Delta_{k}^{'} y_{i} \cdot \Delta_{k}^{'} Z_{i+k}^{2} - \Delta_{k}^{'} y_{i+k} \cdot \Delta_{k}^{'} Z_{i}^{2};$$
and
$$\Delta_{k}^{"} Z_{i}^{3} = \Delta_{k}^{'} Z_{i}^{3} \cdot \Delta_{k}^{'} Z_{i+k}^{2} - \Delta_{k}^{'} Z_{i+k}^{3} \cdot \Delta_{k}^{'} Z_{i}^{2}.$$

From equations (7), (5), (3), and (1), we are now able to write the following parametric approximations:

$$\partial_{i} = \left[\Delta_{\kappa}^{"} Y_{i} \right] : \left[\Delta_{\kappa}^{"} z_{i}^{s} \right], \quad i = 0, l, \dots n - 3k - l.$$

$$b_{i} = \left[\Delta_{\kappa}^{'} Y_{i} - \partial \Delta_{\kappa}^{'} z_{i}^{s} \right] : \left[\Delta_{\kappa}^{'} z_{i}^{s} \right], \quad i = 0, l, \dots n - 2k - l.$$

$$c_{i} = \left[\Delta_{\kappa} Y_{i} - b \Delta_{\kappa} z_{i}^{s} - c \Delta_{\kappa} z_{i}^{s} \right] : \left[\Delta_{\kappa} z_{i} \right], \quad i = 0, l, \dots n - k - l.$$

$$d_{i} = Y_{i} - c z_{i} - b z_{i}^{s} - \partial z_{i}^{s}, \quad i = 0, l, \dots n - l.$$

When $z_0 = \pm \infty$, i takes the values 1, 2, . . . n-rk-1, r being the number of reductions essential to the approximation.

The mean values of equations (8) give the following determinations:

$$\partial = \left[\partial_{0} + \partial_{1} + \cdots + \partial_{n-3k-1} \right] : \left[n-3k \right].$$

$$b = \left[b_{0} + b_{1} + \cdots + b_{n-2k-1} \right] : \left[n-2k \right].$$

$$c = \left[c_{0} + c_{1} + \cdots + c_{n-k-1} \right] : \left[n-k \right].$$

$$d = \left[\sum_{i=0}^{i} \sum_{j=0}^{n-i} X_{i} - b \sum_{i=0}^{i} X_{i}^{2} - b \sum_{i=0}^{i} X_{i}^{2} - b \sum_{i=0}^{i} X_{i}^{3} \right] : n.$$

If equation (1) is simplified to

$$(10) y_i = c + bz_i + \partial z_i^2,$$

the parametric approximations become the following:

$$a_i = [\Delta'_k Y_i] : [\Delta'_k z_i^2], \quad i = 0, /, \cdots n-2k-1.$$

(11)
$$b_{i} = \left[\Delta_{k} Y_{i} - \partial \Delta_{k} z_{i}^{2} \right] : \left[\Delta_{k} z_{i} \right], \quad i = 0, /, \cdots n - k - l.$$

$$c_{i} = Y_{i} - bz_{i} - \partial z_{i}^{2}, \quad i = 0, /, \cdots n - l.$$

The mean values of these approximations give the parameters sought.

XI. EXPONENTIAL SERIES

We shall now write the equation of the exponential series

(1)
$$y_i = d + cx_i + be^{ax_i}.$$

Giving to x the increment $k\Delta x$, we have

(2)
$$y_{i+k} = d + c \left(x_i + k\Delta x\right) + be^{\theta(x_i + k\Delta x)}.$$

Subtracting (1) from (2), we get

(3)
$$\Delta_{k} y_{i} = ck \Delta x + bhe^{\partial x_{i}},$$

where $h=e^{ak\Delta x}-1$.

Giving to x a second increment $k\Delta x$ we obtain

$$(4) \qquad \Delta_{x} y_{i+k} = c k \Delta x + b h e^{-\sigma(x_{i} + k \Delta x)}.$$

Subtracting (3) from (4), we obtain

$$(5) \qquad \Delta_k^2 y_i = bh^2 e^{\theta x_i}$$

Taking logarithms, we have

(6)
$$\log \Delta_{\kappa}^{2} y_{i} = \log (bh^{2}) + \sigma x_{i}$$

Again giving x the increment $k\Delta x$, we have

(7)
$$\log \Delta_k^2 y_{x+k} = \log (bh^2) + \delta (x_i + k\Delta x)$$
.

176

Subtracting (6) from (7), we obtain

(8)
$$\Delta_{\kappa} \log \Delta_{\kappa}^{2} y_{1} = a k \Delta x$$

From equations (8), (5), (3), and (1), we form the following parametric approximations:

$$\begin{aligned} \partial_{i} &= (\Delta_{\kappa} \log \Delta_{\kappa}^{2} Y_{i}) : (k \Delta x), \quad i = 0, \quad l \cdot \cdot \cdot \cdot n - 3k - l \cdot \\ & \qquad \qquad b_{i} &= (\Delta_{\kappa}^{2} Y_{i}) : (h^{2} e^{4x}), \quad i = 0, \quad l, \quad \cdot \cdot \cdot n - 2k - l \end{aligned}$$

$$(9) \qquad c_{i} &= (\Delta_{\kappa} Y_{i} - bhe^{4x}) : (k \Delta x), \quad i = 0, \quad l, \quad \cdot \cdot \cdot n - k - l \cdot \cdot \cdot \\ d_{i} &= Y_{i} - cx, \quad be^{4x}, \quad i = 0, \quad l \cdot \cdot \cdot \cdot n - l \cdot \cdot \cdot \cdot \end{aligned}$$

Taking mean values of the approximations indicated in equations (9), we have the following formulas for determining parameters:

$$a = \left[\sum_{i=0}^{i=n-3k-1} \Delta_{k}^{i} \log \Delta_{k}^{2} Y_{i}\right] : \left[k (n-3k)\Delta x\right],$$

$$b = \left[\sum_{i=0}^{i=n-2k-1} \left(\Delta_{k}^{2} Y_{i} : e^{3x_{i}}\right)\right] : \left[h^{2} (n-2k)\right],$$

$$c = \left[\sum_{i=0}^{i=n-k-1} \Delta_{k} Y_{i} - oh \sum_{i=0}^{i=n-k-1} e^{3x_{i}}\right] : \left[k (n-k)\Delta x\right]$$

$$d = \left[\sum_{i=0}^{i=n-1} Y_{i} - c \sum_{i=0}^{i=n-1} x_{i} - b \sum_{i=0}^{i=n-1} e^{3x_{i}}\right] : n$$

11, in equation (1), the coefficient of z is zero we have

(11)
$$y_i = c + be^{ax_i}$$
,

and the formulas for determining parameters become

$$a = \left[\sum_{i=0}^{n-2k-1} \Delta_{k} \log \Delta_{k} Y_{i} \right] : \left[k (n-2k) \Delta_{x} X \right].$$

$$(12) \quad b = \left[\sum_{i=0}^{n-k} \left(\Delta_{k} Y_{i} : e^{-2k} \right) \right] : \left[h (n-k) \right].$$

$$c = \left[\sum_{i=0}^{n-1} Y_{i} - b \sum_{i=0}^{n-1} e^{-2kT} \right] : n.$$

XII. LOGISTIC SERIES

Let us write the equation of the logistic series

(1)
$$y_i = [d+cx_i] : [l+be^{\partial x_i}].$$

Multiplying by the denominator on the right and transposing, we get

$$(2) y_i = d + cx_i - by_i e^{\partial x_i}.$$

Giving to z the increment $k\Delta x$, we have

$$(3) y_{i+k} = d + cx_{i+k} - by_{i+k} e^{ex_{i+k}}$$

Subtracting (2) from (3), we get

(4)
$$\Delta_k y_1 = c k \Delta x - b y_{i+k} e^{-bx_{i+k}} + b y_i e^{-bx_i}.$$

Again giving to \boldsymbol{x} the increment $k\Delta \boldsymbol{x}$, we obtain

(5)
$$\Delta_k y_{i+k} = c k \Delta x - b y_{i+2k} e^{\delta x_{i+2k}} + b y_{i+k} e^{\delta x_{i+k}}$$

Subtracting (4) from (5), we have

(6)
$$\Delta_{k}^{2} y_{i} = -b y_{i+2k} e^{sx_{i+2k}} + 2b y_{i+k} e^{sx_{i+k}} - b y_{i} e^{sx_{i}}$$

$$= -b e^{sx_{i}} (y_{i+2k} e^{s2k\Delta x} - 2y_{i+k} e^{sk\Delta x} + y_{i}).$$

If, in (6), we give to x the increment $k\Delta x$, we get

(7)
$$\Delta_{k}^{2} y_{z+k} = -b y_{i+3k} e^{3\pi i + 3k} + 2b y_{i+2k} e^{3\pi z + 2k} - b y_{i+k} e^{3\pi j - k}$$

$$= -b e^{3\pi z} (y_{i+3k} e^{3k\Delta \pi} - 2y_{i+2k} e^{32k\Delta \pi} + y_{i+k} e^{3k\Delta \pi})$$

On dividing (7) by (6) and multiplying the quotient on the right by the parenthetical expression of (3), we have

(8)
$$p_{\kappa} \Delta_{\kappa}^{z} y_{i} \left(y_{i+2\kappa} e^{aZk\Delta_{x}} - 2y_{i+\kappa} e^{ak\Delta_{x}} y_{i} \right)$$

$$= y_{i+3\kappa} e^{aSk\Delta_{x}} - 2y_{i+2\kappa} e^{aZk\Delta_{x}} + y_{i+\kappa} e^{ak\Delta_{x}} .$$

TABLE III

Population of Ohio

U.S. Census Count Interpolated to January 1; Unit, 1.000 persons

 $y = 91.8 \left(1 + e^{6026607 + 29/0267 \log \sin x} \right)$

Year	Y	У	V	Year	Y	У	v
1800 1810 1820 1830 1840 1850 1860	41.2 219.7 560.3 922.9 1495.3 1961.3 2324.5	91.8 319.8 639.3 1005.6 1405.6 1832.8 2282.3	+ 50.6 +100.1 + 79.0 + 82.7 - 89.7 -128.5 - 42.2	1870 1880 1890 1900 1910 1920	2651.8 3175.9 3652.7 4137.4 4749.3 5759.4	2751.3 3237.2 3738.1 4252.5 4778.9 5316.0	+ 99.5 + 61.3 + 85.4 +115.1 + 29.6 -443.4
Σ					31651.7	31651.2	- 0.5

Mean error of estimate 108.2

Predicted Population

Year	1930	1940	1950	1960	1970	1980
Population	6306	6862	7425	7996	85 7 3	9156

Simplifying (8), we have

$$y_{1+3k} e^{a3k\Delta x} - y_{1+2k} (2 + p_k \Delta_k^2 y_1) e^{a2k\Delta x} + y_{2+k} (1 + 2p_k \Delta_k^2 y_1) e^{ak\Delta k} - y_1 p_k \Delta_k^2 y_1 = 0$$
(9)

Equation (9) is evidently cubic in $e^{s\kappa\Delta x}$, and its roots are to be found by conventional methods, care being taken to select the root which will give the parametric approximation most consistent with the hypotheses under which the function is being fitted.

From equations (9), (6), (4), and (1), we are able to form the

following approximations to parameters:

$$a_{i} = \begin{bmatrix} \log e^{ak\Delta x} \end{bmatrix} : \begin{bmatrix} k\Delta x \end{bmatrix} , \quad i = 0, \ l, \dots n-3k-l.$$

$$b_{i} = \begin{bmatrix} \Delta_{k}^{2} Y_{i} \end{bmatrix} : \begin{bmatrix} -Y_{i+2k} e^{aX_{i+2k}} + 2Y_{i+k} e^{aX_{i+k}} - Y_{i} e^{aX_{i}} \end{bmatrix}, \quad i = 0, \ l, \dots n-2k-l.$$

$$(10)$$

$$c_{i} = \begin{bmatrix} \Delta_{k} Y_{i} + bY_{i+k} e^{aX_{i+k}} - bY_{i} e^{aX_{i}} \end{bmatrix} : \begin{bmatrix} k\Delta x \end{bmatrix}, \quad i = 0, \ l, \dots n-k-l.$$

$$d_{i} = Y_{i} + bY_{i} e^{aX_{i}} - cX_{i}, \qquad i = 0, \ l, \dots n-l.$$

The mean values of the indicated approximations give the best values of the parameters sought.

If, in equation (1), the coefficient of x is zero, we have the Verhulst logistic.

(11)
$$y_i = c : (I + be^{-sx_i}).$$

The solution of this equation by the method of analysis applied to equation (1) leads eventually to the following:

(12)
$$y_{i+2k}e^{a2k\Delta x}-y_{i+k}\left(1+p_k\Delta_k y_i\right)e^{ak\Delta x}+y_ip_k\Delta_k y_i=0.$$

which is evidently quadratic in e ** A x.

The parametric approximations take the form

$$s_i = [\log e^{sk\Delta x}] : [k\Delta x], \quad i = 0, 1, \dots, n-2k-1.$$

(13)
$$b_i = -[\Delta_k Y_i] : [Y_{i+k} e^{ax_{i+k}} - Y_i e^{ax_i}], i = 0, i, \dots n-k-i.$$

$$c_i=Y_i+bY_ie^{ax_i}$$
, $i=0, 1, \cdots n-1$.

The mean values of these approximations give the values of parameters.

The Verhulst logistic may also be solved by applying formulas (12), section XI, to the ordinates γ_{γ} , the solution being for γ_{c} ,

180

b/c, and à. Similarly, a solution for the serial equation

$$(14) y_i = d : [I + cx_i + be^{\partial x_i}]$$

may be had by applying formulas (10), section XI, to the ordinates $^{\prime}/_{Y_1}$, the solution giving the values of $^{\prime}/_d$, $^{c}/_d$, $^{b}/_d$, and o .

To solve for certain other series which are of interest, we write

$$(15) y_i = m e^{be^{ax_i}}$$

The solution is obtained by applying formulas (12), section XI, to the ordinates $\log Y_i$.

We have also

(16)
$$y_i = y_o (1 + e^{b + az_i}) = y_o + Be^{az_i}$$

where $B=y_0 e^b$, and the argument $z=\pm f(x)$ is chosen so that $az_0=-\infty$. This condition is met when f(x) takes the form $\frac{1}{2}$, $\log x$, $\cot x$, $\log \sin x$, etc., the sign of a being sometimes plus and sometimes minus.

From (16), by forming the function $u_i = y_i - y_o$, we get

(17)
$$\log u_i = B + \partial z_i$$
.

On taking a first difference of rank k, this becomes

(18)
$$\Delta_{k} \log u_{i} = \partial \Delta_{k} z_{i}^{*}.$$

From equations (18), (17), and (16), we deduce the following parametric approximations:

$$a_i = \Delta_k \log U_i : \Delta_k z_i$$
, $i = 1, 2, \dots, n-k-1$.

(19)
$$\log B_i = \log U_i - \delta z_i$$
, $i=1, 2, \cdots n-1$.

$$Y_{oi} = Y_i - \mathcal{B}e^{\partial x_i}$$
, $i = 0, 1, \dots, n-1$.

The mean values of a_i , B_i , and y_o give the values of the parameters sought.

If a term in x is added to the exponent of equation (16), we have

(20)
$$y_i = y_o \left(/ + e^{c + bx_i + az_i^2} \right)$$
.

The solution for these is obtained by carrying the analysis applied to equation (16) to second order differences and applying formulas (7), section IX, to the ordinates $\log u_i$.

If equation (20) is rewritten as

(21)
$$y = y_o \left(1 + \varepsilon^{c + b s_1 + a s_2^2} \right),$$

The solution is obtained by applying formulas (11), section X, to the ordinates log U_i . This solution holds, it will be noted, only when the signs of b and a are such that $bz_a = \partial z_a^2 = -\infty$.

XIII. DETERMINATION OF THE RANK OF DIFFERENCES

In the writing of formulas for the determination of parameters, the rank of differences has been fixed in a purely arbitrary manner. We shall now give a rational justification for the rank assigned.

In what follows, we shall speak of the process by which one of the parameters is eliminated from the equation of the function y=f(x) as a reduction; and the definition shall be understood to hold whether the reduction takes place through a simple difference Δy , a logarithmic difference Δ log y, a product difference $\Delta' y$, or a ratio ρy , the rank of the reduction being the same as the rank of the difference or ratio involved. In this, we interpret $\Delta'_k \log \Delta'_k y$ and $\Delta'_k \rho'_k y$ as determining reductions of order s+r.

The process by which a first parameter is eliminated we shall call a first reduction; that by which a second is eliminated, a second reduction; and so on to the r th reduction. The process by which the last but one of the parameters of the original function is eliminated we shall term the ultimate reduction; and the parameter definied by the ultimate reduction we shall term the ultimate parameter.

Now, a little thought or experimentation will quickly reveal that, for any ultimate parametric approximation, the value of the approx-

imation will vary with the rank of the reduction from which it results; for, regarding a parameter as a statistical characteristic of a series of observations, when the rank of a parametric approximation is at a minimum, or when k = 1, the given approximation, viewed as a single instance of a number of possible approximations, is least characteristic of the complete series; and when the rank of the given approximation is at a maximum, or when k=n-r, the approximation, again viewed as a single instance of a number of possible approximations, is most characteristic of the complete series.

All this, of course, assumes, as we have always done in writing the equations of parametric approximations, that approximations are written in terms of the observational ordinates Y_i ; for, if approximations are written in terms of the functional ordinates y_i , the value of the parameter is independent of the rank of the reduction, a fact which follows from the manner of deriving the equation defining the ultimate parameter.

Since, then, the value and representative character of an ultimate parameter varies with the rank of the reduction by which it is defined, we may, when the ultimate reduction is of the first order, express the weight of an approximation by the relation

(1)
$$\mathbf{w}_{k} \left(\mathbf{p}_{i} \right) = k \cdot$$

Here ψ_{k} ρ_{i} is used as the arbitrary symbol for the weight of a parametric approximation defined of first order and rank k.

Suppose, now, that the given ultimate parameter is arrived at by two reductions, the first ϵ i rank k and the second of rank h. Clearly, the value of the approximation will, in this case, vary with h as well as k. Under these conditions, the weight of the approximation is expressed by the relation

(2)
$$\mathbf{w}_{k,h}^{2}\left(\rho_{z}\right)=k\cdot h$$

Here, the symbol $w_{k,h}^2(p)$ denotes the weight of a parametric approximation involving a second reduction and the ranks k and h. Similarly, we have

(3)
$$v_{k,h,f}^{3}(\rho) = k \cdot h \cdot f.$$

Evidently, by a direct extension of our method of induction, we arrive at the general relation

(4)
$$\mathbf{w}_{k',k^2,\dots,k^r}^r \left(p_i \right) = k_1 \cdot k_2 \cdot \dots \cdot k_r.$$

In the derivation of all formulas, it has been assumed that k is constant for all reductions; hence, equations (2), (3), and (4) become

(5)
$$w_{k}^{2}(\rho_{i}) = k \cdot k = k^{2}$$

(6)
$$\mathbf{W}_{k}^{s}(p_{i}) = k \cdot k \cdot k = k^{s}$$

(7)
$$\mathbf{w}_{k}^{r} (\rho_{i}) = k^{r}$$

Giving verbal expression to the relation (7), we say that the weight of a parametric approximation involving a reduction of the r th order and k th rank is equal to the r th power of k.

We have already shown, section V, that the number of differences of order r and rank k which can be formed from n observations is n-rk; likewise, the number of parametric approximations which can be formed when reductions are of the r th order, is n-rk; and, since the reliability of a parameter as determined from a formula must vary with the number as well as the weight of the several approximations, we may write the following equation, conditioning the reliability of the ultimate parameter p:

(8)
$$\psi(\rho) = k^r(n-rk).$$

Regarding k as a continuous variable, we may obtain the condition for $\psi(p) = a$ maximum by differentiating ψ with respect to k, thus:

(9)
$$D_{k} \psi(p) = nrk^{r-1} - r(r+1)k^{r}.$$

Setting (9) equal to zero and solving, we have

(10)
$$k=n:(r-1)$$
,

That $\psi(p)$ is a maximum and not a minimum when k is determined from equation (10) is shown by taking the second derivative

of ψ and substituting for k. thus:

$$D_{k}^{2} \psi(\rho) = r(r-l) n k^{r-2} - r^{2}(r+l) k^{r-l} =$$

$$(11) \qquad r k^{r-2} ((r-l) n - r (r+l) n : (r+l)) = -r n k^{r-2},$$

which is negative, since r, n, and k are positive.

Equation (10) may give fractional values of k; but, in practice, k is always integral; hence, we write (10) in the form

(12)
$$k=(n\pm j):(r+l)$$
.

This is the relation from which we have determined the value of k in the writing of formulas.

We may now formulate the following rule for the determination of the rank of differences: When the equation defining an ultimate parameter involves a reduction of order r and rank k, the value of k is to be obtained from the relation $k = (n \pm j) : (r+1)$. j being assigned the smallest integral value that will make $n \pm j$ an exact multiple of k. In case n+j=n-j, that value of k is taken which gives the highest value for $\psi(p)$ when k is substituted in equation (8).

XIV. NUMERICAL COMPUTATIONS

In carrying through the numerical computations prescribed by formulas developed in this memoir, the following abridgments are useful in the summation of differences:

$$(1a) \sum_{i=0}^{i=n-k-l} \Delta_{\kappa} Y_{i} = \sum_{i=0}^{i=n-k-l} (Y_{i+k} Y_{i})$$

$$(1b) = \sum_{i=0}^{i=n-k-l} Y_{i+k} - \sum_{i=0}^{i=n-k-l} Y_{i}$$

$$(1c) = \sum_{i=k}^{i=n-k-l} Y_{i} - \sum_{i=0}^{i=n-k-l} Y_{i}$$

$$(1d) = \sum_{i=k}^{i=n-l} Y_{i} - \sum_{i=0}^{i=n-k-l} Y_{i}$$

$$(2i) \sum_{i=0}^{i=n-2k-l} \Delta_{\kappa}^{2} Y_{i} = \sum_{i=0}^{i=n-2k-l} (Y_{i+2k} - 2Y_{i+k} + Y_{i})$$

$$(2b) = \sum_{i=0}^{i=n-2k-l} Y_{i+2k} - 2\sum_{i=0}^{i=n-2k-l} Y_{i+k} + \sum_{i=0}^{i=n-2k-l} Y_{i}$$

$$(2c) = \sum_{i=0}^{i=n-l} Y_{i} - 2\sum_{i=k}^{i=n-k-l} Y_{i} + \sum_{i=0}^{i=n-2k-l} Y_{i}$$

$$= \sum_{i=n-k}^{i=n-k} Y_i - 2 \sum_{i=n-2k}^{i=2k-l} Y_i + \sum_{i=0}^{i=k-l} Y_i.$$

(3a)
$$\sum_{i=0}^{i=n-3k-1} \Delta_{k}^{-i} Y_{i} = \sum_{i=0}^{i=n-3k-1} Y_{i} (Y_{i+3k} - JY_{i+2k} + J_{i+k} + Y_{i})$$

(3b)
$$= \sum_{i=0}^{i=n-3k-1} Y_{i+3k} - 3\sum_{i=0}^{i=n-3k-1} Y_{i+2k} + 3\sum_{i=0}^{i=n-3k-1} Y_{i+k} - \sum_{i=0}^{i=n-3k-1} Y_{i+k}$$

(3c)
$$= \sum_{i=3k}^{i=n-1} Y_i - 3 \sum_{i=2k}^{i=n-k-l} Y_i + 3 \sum_{i=k}^{i=n-2k-l} Y_i - \sum_{i=n-3k-l}^{i=n-3k-l} Y_i$$

(3d)
$$= \sum_{i=n-k}^{i=n-l} Y_i - 3 \sum_{i=n-2k}^{i=3k-l} Y_i + 3 \sum_{i=n-3k}^{i=2k-l} Y_i - \sum_{i=n}^{i=k-l} Y_i .$$

These relations evidently apply quite generally to the summation of differences. They may also be used to check the accuracy of differences formed. When j is positive in the relation $(r+1)k=n\pm j$ equations (c) are most convenient; when j is negative, equations (d) are most convenient.

A useful check on the product difference Δ' employed in section X is obtained as follows:

(4)
$$\Delta_{\kappa}Y_i + \Delta_{\kappa}z_i + \Delta_{\kappa}z_i^2 + \Delta_{\kappa}z_i^3 - S_i$$
.

(5)
$$\Delta_{\kappa} Y_{i+\kappa} + \Delta_{\kappa} z_{i+\kappa} + \Delta_{\kappa} z_{i+k}^2 + \Delta_{\kappa} z_{i+k}^3 = S_{i+k}$$
.

Multiplying (4) by $\Delta_{k} z_{i+k}$ and (5) by $\Delta_{k} z_{i}$, we have

(6)
$$\Delta_{\kappa}Y_{j}^{-}\Delta_{\kappa}Z_{j+k}^{+}+\Delta_{\kappa}Z_{j}^{-}\Delta_{\kappa}Z_{j+k}^{+}+\Delta_{\kappa}Z_{j}^{2}\cdot\Delta_{\kappa}Z_{j+k}^{-}+\Delta_{\kappa}Z_{j}^{3}\cdot\Delta_{\kappa}Z_{j+k}^{-}=S_{j}^{-}\Delta_{\kappa}Z_{j+k}^{-}$$

(7)
$$\Delta_{\kappa} Y_{i+\kappa} \Delta_{\kappa} z_i + \Delta_{\kappa} z_i$$

(8)
$$\Delta_{\kappa}' Y_j + \Delta_{\kappa}' z_j^2 + \Delta_{\kappa}' z_j^3 = \Delta_{\kappa}' S_j.$$

Evidently, similar relations hold for the product differences Δ'' , etc.

Another check that is constantly useful in the computations is the well known relation $\sum af_i = a\sum f_i$.

TABLE IV

Auxiliary Functions Computed in Fitting to the Ohio Population

U	log U	x	log sın x	a log sın x	<i>B</i> ,	Bioax
0.0	- ∞	0	- &	-∞		
178.5	2.25164	1	- 1.75814	- 2.22212	29769	228.0
519.1	2.71525	2	- 1.45718	- 1.84173	36056	547.5
881.7	2.94532	3	- 1.28120	- 1.61931	36697	913.8
1454.1	3.16259	4	- 1.15642	- 1.46160	+2091	1313.8
1920.1	3.28332	5	- 1.05970	- 1.33935	41944	1741.0
2283.3	3.35856	6	- 0.98077	- 1.23960	39642	2190.5
2610.6	3.41674	7	- 0.91411	- 1.15534	37332	2659.5
3134.7	3.49620	8	- 0.85644	- 1.08246	37902	3145.4
3611.5	3.55769	9	- 0.80567	- 1.01829	37669	3646.3
4096.2	3.61238	10	- 0.76033	- 0.96097	37441	+160.7
4708.I	3.67285	11	- 0.71940	- 0.90924	38202	4687.1
5718.2	3.75726	12	- 0.68212	- 0.86212	41627	5224.2
31116.1	39.22980		-12.43148	-15.71213	456372	30457.8

$\Delta_{\bullet} \log U$	Δ , log sin x	a,
1.16510	0.84403	1.3805
0.78095	0.60074	1.3000
0.61237	0.47553	1.2877
0.44979	0.39609	1.1356
0.38953	0.34030	1.1447
0.39870	0.29865	1.3350
3.79644	2.95534	7.5835

$$a = \frac{1}{6}\Sigma a_i = 1.2639$$
; $B = \frac{1}{12}\Sigma B_i = 38031$; $y_a = \frac{1}{13}(\Sigma Y - \Sigma B R^{2\pi}) = 91.8$; $b = \log B - \log y_o = 2.61730$.

In computing die admates

the telloring formulas are useful.

$$(11) \qquad \Delta y_{2,1} - \Delta y_{2,2} - 2c\Delta x$$

$$(12) y_a = a$$

$$(13) \qquad y_{24} = y_2 + \Delta y_2 .$$

The formulas for \mathbb{Z}_{+} \mathbb{Z}_{+} and \mathbb{Z}_{+} are \mathbb{C}_{+} be found in any standard reference work on stansfield computations.

As must attons of the plantities to be obtained in actual computations, we give, in Table IV, the auxiliaries computed in fitting the curve $y = y_0 (1 + e^{b+\theta})^{\log \theta + n/\pi}$ to the population of Ohio.

XV CRITICAL REVIEW

We have now presented at some length the technique of fitting curves by the method of differences. The term, "method of differences" is doubtless sufficiently descriptive for general purposes; but the designation method of mean difference functions would better convey an idea of the chief features of the technique elaborated, namely, the dependence on functions of finite differences in the derivation of equations defining parameters and the determination of the best value of a given parameter by taking the mean of the several approximations.

The fundamental requirement of this method is that, under the procedure followed, the reliability of the parameters determined shall be a maximum. This requirement results in a sum of absolute residuals which is less than that to be obtained by the Gaussian method of least squares or the Pearsonian method of moments. Rigorous adherence to the Edgeworthian requirement that the sum of the absolute residuals shall be a minimum is, it will be observed, not a demand of the present method. It can be shown that Lipka's method of averages will give the same residuals for a linear series as the method of differ-

ences; but it does not, however, give the same results in general.

The following claims to merit may be advanced for the method of differences:

- (1) The computations involved in the determination of parameters are simple and easily checked.
- (2) The method permits of fitting to a wide variety of functions by the direct application of its fundamental principles.
- (3) The general technique developed may be adapted to special solutions in particular cases; e. g., the solutions of parabolic series given in section VII are special cases of the solution for the general polynomial series given in section X.
- (4) The parametric approximations or some function involved in their determination give a convenient test of fit. If these approximations are nearly constant or fluctuate irregularly about a central value, the implication is that the test function is appropriate to the data; if the approximations show a systematic change or trend in their values, the implication is that the test function is inappropriate.
- (5) The method yields satisfactory results in practice.

That the residuals do register our failure to predict the values of the observations is undeniable; but it does not follow that the least squares definition of residuals leads to the equation of greatest value for predictive purposes; for we can scarcely hope to establish that a set of residuals determined from a small number of observations constitutes a system of normally distributed variates.

Let us now consider the logistic series

$$(2a) y=me^{-be^{-ax}},$$

(3a)
$$y = y_o (/+e^{b+az})$$
,

and

(4a)
$$y = m : [I + be^{-ax}].$$

This last is the Verhulst logistic.

The origin, maximum, and point of inflection of these three functions are determined by the following relations:

$$y_{o} = me^{-b},$$

$$(2b) dy = abme^{-ax}e^{-be^{-ax}}dx,$$

$$d^{2}y = a^{2}bme^{-bx^{-ax}}(be^{-2ax}-e^{-bx})dx^{2}.$$

$$y = y_{o}(l+e^{b-\infty}),$$

$$(3b) dy = abe^{-ax}dz,$$

$$d^{2}y = a^{2}be^{-ax}dz^{2} + abe^{-ax}d^{2}z.$$

$$(4b) dy = abm\left[e^{-ax}:(l+be^{-ax})^{2}\right]dx,$$

$$d^{2}y = 2a^{2}b^{2}me^{-2ax}(l+be^{-ax})^{2}dx^{2} - 2a^{2}b^{2}me^{-2ax}(l+be^{-ax})^{2}dx^{2}.$$

With the origin at $f(x_o)$ and the maximum at $f(x_o)$, these curves show essentially the same properties and, therefore, negate the claim of Professors Pearl and Reed to have discovered in the Verhulst type logistic the unique mathematical expression for the growth of populations. This assertion, of course, makes no statement as to the type of population which is best represented by each curve.

In fitting type (2) to the population of Ohio, we have obtained, while not an ideal fit, certainly one much better than can be obtained by fitting type (3). These results, however, serve to enhance rather than diminish the general usefulness of the logistic hypothesis as an empirical generalization of the growth of populations.

As the writer conceives it, this hypothesis may be stated as follows: When the growth of a population is not known to be correlated with events whose sequence is definitely known, it is best represented by a

curve which proceeds from one horizontal straight line as asymptotic origin, passes through a point of inflection, and approaches a second horizontal straight line as asymptotic terminus. The rate of growth of such a curve may be characterized as proceeding from a minimum to a maximum and then decreasing toward zero as limit, a characterization which is in full accord with our decrease in knowledge concerning the rate of growth as time goes on. It will be noted, in our statement of the logistic hypothesis, that it is not necessary to place any restriction on the chronological direction of growth, interpretation of growth as proceeding forward or backward being equally permissible.

It is, of course, true that the particular function fitted to the Ohio population does not conform rigorously to the logistic type; for at x = 90, the ordinates begin to decline in value. But this is no detriment in the application of the function in the particular case, since no one would place any reliance on a forecast of such date when projected several centuries into the future. The use of such a function as we have employed seems far preferable to fitting the Verhulst function to subpopulations on the ground that the sum of logistics cannot be executed itself to be a logistic, a procedure which is strictly valid only when the growth changes of the subpopulations are mutually independent.

When the growth of a population is known to be definitely correlated with an observed sequence of events, the logistic hypothesis must be modified accordingly. In a region where the population could not be recruited from without, an abrupt increase in the death rate, a decrease in the birth rate, or an emigration to regions outside would necessitate a modification of the growth formula.

Harry S. Will

Note:—In presenting this memoir to the public, the writer desires to make grateful acknowledgement of the invaluable assistance given by his wife. Hazel J. Will, in the preparation of the manuscript.

cf. Pearl and Reed: "The Population of an Area Around Chicago and the Logistic Gurve." J. A. A. S., March, 1929.

TABLES OF PEARSON'S TYPE III FUNCTION

By

LUIS R SALVOSA

Section I.—Development of Pearson's Type III Function Section III.—Areas
Section III.—Ordinates
Section IV.—Derivatives*

It is well recognized that the normal curve of error has played a prominent role in the development of the theory of Mathematical Statistics. Although it can describe more or less accurately many frequency distributions possessing a limited degree of skewness, there are many others in which it fails. To meet this situation two important methods of representing frequency functions have been devised.

One of these methods is due to the English biometrician Karl Pearson, who developed a system of generalized "probability" curves. Among the simplest of these curves is Type III, whose equation is $y = y_o \left(/ + \frac{\omega}{2} t \right)^{\frac{2}{2} - \frac{2}{2} t}$, where y_o and α_o are constants. It will be shown later that this curve approaches the normal curve of error as a limit when α_o approaches zero. Pearson, realizing the importance of this generalized curve, published in 1922 his "Tables of the Incomplete /" Function," from which the areas under the curve can be obtained. Unfortunately, these tables, unlike those of the normal curve of error, are not tabulated with the standard unit as the ordinate. Moreover, they do not contain the ordinates, which are useful in plotting frequency curves and essential to the solution of many problems in the theory of probability.

My object, therefore, is to provide tables of areas and ordinates of Pearson's Type III curve that will enable one to obtain readily an isolated frequency or the sum of the frequencies between any two

^{*}Section IV will appear in the August issue of the Annals.

limits of a theoretical distribution that can be represented by the Type III curve. Furthermore, there will be furnished tables of derivatives of this more effective type of frequency function which will permit its utilization as a generating function in an expansion corresponding to the Gram-Charlier series. In general, the more closely the generating function approximates the function to be graduated, the more rapid the convergence of the derivative series. In the following section there are given two separate developments of the Pearson Type III Function. It is believed that these developments will be of value to those desiring to use this function.

SECTION I.—Development of Pearson's Type III Function

(a) By Means of Bernoulli's Series

One may consider first the Bernoulli series

(1)
$$(q+p)^r = \sum_{x=0}^r {r \choose x} q^{r-x} p^x,$$

where ρ denotes the probability that an event will happen in a single trial and $q=/-\rho$, the probability that it will fail. Representing by $y_x=\binom{r}{x}q^{r-x}\rho^x$ the ordinate corresponding to x successes (x assuming the values of 0, 1, 2), one may plot the (r+/) points (x, y_x). Through these (r+/) points one may imagine a curve that can be represented by an analytic function.

Since
$$y_x = {r \choose x} q^{r-x} p^x$$

and hence
$$y_{x+l} = {r \choose x+l} q^{r-x-l} p^{x+l}$$

one has

$$\frac{y_{x+i}}{y_x} = \frac{pp - px}{q_x + q}$$

This is the difference equation of the continuous curve.

From equation (2) it follows that

(3)
$$\frac{y_{x+1} + y_x}{y_{x+1} + y_x} - \frac{rp - q - x}{rp + q + (q - p)x}$$

The mean of any two ordinates (y_x and y_{x+1}) will be considered as approximately equal to the ordinate ($y_{x+\frac{1}{2}}$) midway between them. The slope of the line joining any two points (x, y_x) and (x+1, y_{x+1}) is also approximately equal to the tangent a the point midway between these two on the continuous curve and the error resulting from this approximation would be zero if the curve were a parabola. Under these two assumptions, equation (3) may be written as

(4)
$$\frac{D_{x} y_{x+k}}{y_{x+k}} = \frac{2(r\rho - q - x)}{r\rho + q + (q - p)x}$$

The right hand member of this equation is, therefore, the derivative of log y at the point $(x + \frac{1}{2}, y_{x+\frac{1}{2}})$. At any point (x, y_x) this derivative is

$$\frac{d}{dx} \log y = \frac{2 \left[rp - q - (x - \frac{1}{2}) \right]}{rp + q + (q - p)(x - \frac{1}{2})} \; ;$$

i. e.

(5)
$$\frac{d}{dx} \log y = \frac{\frac{q-p}{2} + (x-rp)}{rpq + \frac{1}{4} + \frac{(x-rp)(q-p)}{2}}.$$

If one sets

$$\frac{q-p}{\sqrt{rpq}} = \alpha_s$$

$$\frac{x-rp}{\sqrt{rpq}}=t,$$

the above equation reduces to

(6)
$$\frac{d}{dt} \log y = -\frac{\frac{\alpha_s}{2} + t}{/ + \frac{\alpha_s}{2}t + \frac{/}{4r\rho q}}$$

If rpq is so large that $\frac{1}{4rpq}$ is relatively insignificant and may consequently be neglected, equation (6) becomes

(7)
$$\frac{d}{dt} \log y = -\frac{\alpha_{s} + t}{1 + \frac{\alpha_{s}}{2}t},$$

which upon integration yields Pearson's Type III frequency curve,

(8)
$$y = y_o \left(/ + \frac{\alpha_s}{2} t \right)^{\frac{4}{\alpha_s^2}}$$

Trus, equation (8) has been obtained without resorting to the method of moments.

(b) By Means of Differential Equation

Another method* of developing Pearson's Type III curve is by n'eans of the differential equation

(9)
$$\frac{dy}{dt} = \frac{a-t}{f(t)} y,$$

which is suggested by certain characteristics of unimodal frequency distributions. Equation (9) is capable of representing a frequency function of this type, since

- (a) As y approaches zero, the first derivative must also approach zero, and
- (b) If the frequency distribution be unimodal between the limits of the distribution, there must be only one value, say t = a, for which the derivative is zero.

In equation (9) t denotes the abscissae in units of the standard

^{*}Carver's "Frequency Curves," p 92 Handbook of Mathematical Statistics, by Rietz and Others,

deviation, and f(t) is a function that does not vanish at any point within the range of the curve. If it be assumed that f(t) is expressible as a power series, $b_o + b_i t + b_2 t^2 + \dots$, then equation (9) may take the following form:

(10)
$$\frac{dy}{dt} = \frac{(a-t)y}{b_a+b_bt+b_at^2+\cdots},$$

On clearing equation (10) of fractions, multiplying both sides by t^n , and integrating both members with respect to t between the limits $(-1, 1_2)$, one obtains

which can be written in the form

(12)
$$a\alpha_n + nb_0 \alpha_{n-1} + (n+1)b_1 \alpha_n + (n+2)b_2 \alpha_{n+1} + \dots = \alpha_{n+1}$$

since the expression in the first bracket vanishes at the limits, and $\int_{-I_n}^{I_n} t^n y dt = \frac{\mu_n}{\sigma^n} = \alpha_n$ It will be noted here that

$$\alpha_o = 1$$
, $\alpha_i = 0$, and $\alpha_z = 1$.

If the series f(t) be so rapidly convergent that it would be sufficient to retain the first term only, then from equation (12), on placing successively $n = 0, 1, 2 \dots$ one has

$$a = 0$$
 $b_0 = 1$

On substituting these values in equation (10) and then integrating, one obtains

(13)
$$y = y_0 e^{-\frac{t^2}{2}}$$
,

which is the normal curve of error, t being expressed in standard units.

If in the series f(t) the first two terms be retained instead of b_o only, then equation (12) gives

(14)
$$a = -b_{r} = -\frac{\alpha t_{s}}{2}$$

$$b_{o} = 1.$$

If the values given in equations (14) be substituted in equation (10), then upon integration one obtains

(15)
$$y = y_o \left(/ + \frac{\alpha_3}{2} t \right)^{\frac{4}{\alpha_3^2} - l} e^{-\frac{2}{\alpha_3} t}$$

This equation is the same as equation (8) and satisfies the conditions imposed, provided $\alpha_3 < \sqrt{2}$.

The substitution of the constants (14) in equation (12) yields the following recurrence relation of the functional Type III moments:

(16)
$$\alpha_{n+1} = n \left(\alpha_{n-1} + \frac{\alpha_3 \alpha_n}{2} \right).$$

To find the recurrence relation of the functional moments for the normal curve of error, α_j is set equal to zero and hence relation (16) reduces to the simple relation

$$(17) \qquad \alpha'_{n+1} = n \alpha_{n-1}$$

since $\phi_{i} = 0$

it follows from relation (17) that

$$\alpha_{2n+1} = 0$$

For the moments of even order one writes from relation (17)

$$\alpha_{2} = 1$$

$$\alpha_{4} = 3$$

$$\alpha_{6} = 5 \alpha_{4}$$

$$\alpha_{2n} = 1 \cdot 3 \cdot 5 \cdot \cdots (2n-1) = \frac{(2n)!}{2^{n} n!}$$

The normal curve of error has been derived by retaining the first term only in the series f(t). However, it can be shown that this curve is the limit of Type III curve as the skewness approaches zero. For, taking the logarithms of both sides of equation (15), one has

$$log_{e}y = log_{e}y_{0} + \left(\frac{4}{\alpha_{3}^{2}} - I\right) log_{e}\left(I + \frac{\alpha_{3}}{2}t\right) - \frac{2}{\alpha_{3}}t,$$
or
$$log_{e}\left(\frac{y}{y_{0}}\right) = \left(\frac{4}{\alpha_{3}^{2}} - I\right)\left(\frac{\alpha_{3}}{2}t - \frac{I}{2} \cdot \frac{\alpha_{3}^{2}t^{2}}{4} + \frac{I}{3} \cdot \frac{\alpha_{3}^{3}t^{3}}{6} - \cdots\right) - \frac{2}{\alpha_{3}}t$$

$$= -\frac{I}{2}t^{2} + f(\alpha_{3}t).$$

Therefore,

or
$$\lim_{\alpha_1 \to 0} \log_e \left(\frac{y}{y_o} \right) = -\frac{1}{2} t^2,$$
$$y = y_o e^{-\frac{1}{2} t^2},$$

which agrees with equation (13).

The constant y_0 in equations (13) and (15) is determined imposing the condition that

(20)
$$y_o \int_{\frac{\pi}{2}}^{\infty} (1 + \frac{\alpha t_o}{2} t)^{\frac{4}{\alpha t_o^2} - 1} e^{-\frac{2}{\alpha t_o} t} dt = 1.$$

On introducing π by the relation $\pi = \frac{2}{\alpha_s} \left(\frac{2}{\alpha_s} + t \right)$ equation (20) becomes

$$y_o = \frac{1}{\frac{\alpha_s}{Z} \left(\frac{4}{\alpha_s^2}\right)^{\frac{4}{\alpha_s^2} - 1} e^{\frac{4}{\alpha_s^2}} \int_0^{\infty} z^{\frac{4}{\alpha_s^2} - 1} e^{-z} dz}$$

Therefore,

(21)
$$y_{o} = \frac{\left(\frac{4}{G_{s}^{\frac{3}{2}}}\right)^{\frac{3}{G_{s}^{2}} - \frac{1}{2}}}{e^{-\frac{3}{G_{s}^{2}}} \left(\frac{3}{G_{s}^{2}}\right)} = n \frac{n^{n-\frac{1}{2}}}{e^{n} f(n)}$$

where

$$n = \frac{4}{\alpha_3^2} .$$

With the aid of Sterling's formula, equation (21) can be written as

(22)
$$y_{\circ} = \frac{1}{\sqrt{2\pi}} e^{-\frac{\alpha_{s}^{2}}{48} + \frac{\alpha_{s}^{6}}{25040} - \frac{\alpha_{s}^{20}}{1290240} + \cdots}$$

For the normal curve of error, that is, when $\alpha_3 = 0$, equation (22) reduces to

$$(23) y_o = \frac{1}{\sqrt{2\pi}} ,$$

and hence for the foregoing specialization with respect to α_j , equation (15) becomes:

$$y = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}^2}.$$

The intention was to have the Tables correct to six decimal places. To this end all computations of areas, ordinates and derivatives were carried through to eight significant digits of accuracy, which frequently meant ten or twelve decimal places. The results were then cut down to the nearest sixth decimal place, and I believe they possess this degree of accuracy.

Manila, P I

L. R. Dalvosa

IABLE 1

AREAS OF THE STANDARDIZED 'TYPE III FUNCTION

$$y = y_o \left(/ + \frac{\alpha_s}{2} t \right)^{\frac{4}{\alpha_s^2} - 1} e^{-\frac{2}{\alpha_s} t}$$

			SKEW	NESS			
t	0	.1	.2	.3	.4	.5	t
4 99 4.98 4.97 4.96 4.95 4.94 4.93 4.92 4.91 4.90							-4.99 -4.98 -4.97 -4.96 -4.95 -4.94 -4.93 -4.92 -4.91 -4.90
4.89 4.87 4.86 4.85 4.85 4.84 1.83 4.82 4.81 4.80	.00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001	•	•			,	-4.89 -4.88 -4.87 -4.86 -4.85 -4.84 -4.83 -4.82 -4.81 -4.80
-4.79 -4.78 -4.77 -4.76 -4.75 -4.74 -1.73 -4.72 -4.71 -4.70	.00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001						-4.79 -4.78 -4.77 -4.76 -4.75 -4.74 -4.73 -4.72 -4.71 -4.70
-4.69 -4.68 -4.67 -4.65 -4.65 -4.64 -4.63 -4.62 -4.61 -4.60	.000001 .000001 .000002 .000002 .000002 .000002 .000002 .000002 .000002						-4.69 -4.68 -4.67 -4.66 -4.65 -4.64 -4.63 -4.62 -4.61 -4.60
-4.59 -4.58 -4.57 -4.56 -4.55 -4.54 -4.53 -4.52 -4.51 -4.50	.000002 .000002 .000002 .000003 .000003 .000003 .000003 .000003 .000003	.000001					-4.59 -4.58 -4.57 -4.56 -4.55 -4.54 -4.53 -4.52 -4.51 -4.50

			SKEWN	IESS			
t	.6	.7	8	9	1.0	11	t
-4 99 -4 98 -4.97 -1.96 -1.95 -1.94 -4.93 -4.92 -4.91 -4.90				Type and Papers			1 99 4.98 + 97 -4.96 -4.95 -4.94 -4.93 -4.92 -4.91 -4.90
-4.89 -4.88 -4.87 -4.86 -4.85 -4.84 -4.83 -4.82 -4.81 -4.80							-4.89 -4.88 -4.87 -4.86 -4.85 -4.84 -4.83 -4.82 -4.81 -4.80
4.79 4.78 4.77 4.76 4.75 4.73 4.72 4.71 4.70			-				-4.79 -1.78 -4.77 -4.76 -4.75 -4.74 -4.73 -4.72 -4.71 -4.70
-4.69 -4.68 -4.67 -4.66 -4.65 -4.64 -4.63 -4.62 -4.61 -4.60							-4.69 -4.68 -4.67 -4.66 -4.65 -4.64 -4.63 -4.62 -4.61 -4.60
-4.59 -4.58 -4.57 -4.56 -4.55 -4.54 -4.53 -4.52 -4.51 -4.50							-4.59 -4.58 -4.57 -4.56 -4.55 -4.54 -4.53 -4.52 -4.51 -4.50

-	SKEWNESS								
			SKEV	VINESS			ł		
t	0	.1	.2	.3	.4	.5	t		
-4.49	.000004	.000001					-4.49		
-4.48	.000004	.000001		1			-4.48		
-4.47 -4.46	.000004 000004	.000001					-4.47 -4.46		
-4.40 -4.45	.000004	.000001					-4.45		
4.44	.000004	.000001					4.44		
-1.43	.000005	.000001	Ì		i		-4.43		
-4.42	.000005	.000001			İ		-4.42		
-4.41	.000005	.000001		1			-4.41		
-4.40	.000005	.000001		1			-4.40		
-4.39	.000006	.000001			1		-4.39		
-4.38 -4.37	.000006	.000001		l			-4.38		
-4.36	.000007	.000001					-4.37 -4.36		
-4.35	.000007	.000001					-4.35		
-4.34	.000007	.000001		1			-4.34		
-4.33	.000007	.000001					-4.33		
-4.32	000008	.000002					-4.32		
-4.31 -4.30	.000008	.000002					-4.31 -4.30		
-4.29	.000009	.000002	(-4.29		
-4.28 -4.27	.000009	.000002	}				-4.28 -4.27		
-4.26	.000010	.000002					-4.26		
4.25	.000011	.000002					-4.25		
-4,24	.000011	000003					-4.24		
-4.23	.000012	.000003					-4.23		
-4.22 -4.21	.000012	.000003					-4.22		
-4.21 -4.20	.000013	.000003					-4.21 -4.20		
-4.19	.000014	.000003							
-4.18	.000014	.000003					-4.19 -4.18		
-4.17	.000015	.000004					-4.17		
-4.16	.000016	.000004					-4.16		
-4.15	.000017	.000004	.000001				-4.15		
-4.14	.000017	.000004	.000001				-4.14		
-4.13 -4.12	.000018	.000005	.000001 .000001				-4.13		
-4.11	.000020	.000005	.000001				-4.12 -4.11		
-4.10	.000021	.000005	.000001				-4 .10		
-4.09	.000022	.000006	.000001				-4.09		
-4.08	.000023	.000006	.000001		ļ		-4.08		
-4.07	.000023	.000006	.000001				-4.07		
-4.06 4.05	.000025	.000007	.000001		İ	- 1	-4.06		
-4.05 -4.04	.000026 .000027	.000007 .000007	.000001 .000001		1	1	-4.05		
4.03	.000027	.000007	.000001				-4 .04		
-4.02	.000029	.000008	.000001		1		-4.03 -4.02		
-4.01	.000030	.000009	.000001		.		-4 .02		
-4.00	.000032	.000009	.000001				-4.00		

			SKEV	VNESS			
t	.6	.7	.8	.9	10	11	1
-4.49 -4.48 -4.47 -4.46 -4.45 -4.44 -4.43 -4.42 -4.41 -4.40							-4.49 -4.48 4.47 4.46 4.45 -1.44 -1.43 -4.12 -4.41 4.40
-4.39 -4.38 -4.37 -4.36 -4.35 -4.34 -4.33 -4.32 -4.31 -4.30							-4.39 4.38 4.37 1.30 -1.35 4.34 4.33 -4.32 4.31 -4.30
-4.29 -4.28 -4.27 -4.26 -4.25 -4.24 -4.23 -4.22 -4.21 -4.20						•	4.27 -4.26 -4.25 -4.24 -4.23 -4.22 -4.21 -1.20
-4.19 -4.18 -4.17 -4.16 -4.15 -4.14 -4.13 -4.12 -4.11 -4.10							1 10 4 18 -4.17 -4.16 -4.15 -4.14 1.13 -4.12 4.11 4.10
-4.09 -4.08 -4.07 -4.06 -4.05 -4.04 -4.03 -4.02 -4.01 -4.00							1.09 1.08 1.07 4.06 4.05 4.04 4.03 4.02 4.01 4.00

	T		SKEW	/NESS		,	
t	0	.1	.2	.3	.4	.5	t
-3.99 -3.98	.000033	.000010	.000002				-3.99 -3.98
-3.97	.000036	.000011	.000002				-3.97
-3.96	.000037	.000011	.000002				-3.96
-3.95	.000039	.000012	.000002	l			-3.95
-3.94	.000041	.000012	.000002			1	-3.94 -3.93
-3.93 -3.92	.000042	.000013	.000002	l			-3.93 -3.92
-3.92	.000046	.000014	.000003		,		-3.91
-3.90	.000048	.000014	.000003				-3.90 ·
-3.89	.000050	.000016	.000003				-3.89
-3.88	.000052	.000017	.000003				-3.88
- 3.87	.000054	.000018	.000004	1	[.	1	-3.87
-3.86	.000057	.000019	.000004	ł		1	-3.86
-3.85	.000059	.000020	.000004		[1	-3.85
-384	.000062	.000021	.000004	ŀ	Ì		-3.84
-3.83	.000064	.000022	.000005	Į.			-3.83
-3 82 3.81	.000067	.000023	.000005		ł		-3.82 -3.81
-3.80	.000072	.000025	.000006	.000001			-3.80
- 3.79	.900075	.000026	.000006	.000001			-3.79
-3.78	.000078	.000028	.000006	.000001			-3.78
- 3.77	.000082	_000029	.000007	.000001		1	-3.77
-3.76	.000085	.000031~	.000007	.000001			-3.76
-3.75	.000088	.000032	.0000008	.000001	ł	l	-3.75
-3.74	.000092	.000034	.000008	.000001	1	l	-3.74
3.73 -3.72	.000096	.000035	.000009	.000001			-3.73
-3.71	.000104	.000037	.000010	.000001		Ì	-3.72 -3.71
-3 <i>7</i> 0	.000104	.000039	.000010	.000001			-3.70
-3.69	.000112	.000043	.000011	.000001			-3.69
-3 68	.000117	.000045	:000012	000002			-3.68
-3.67	.000121	.000047	.000012	.000002			-3.67
- 3.66	.000126	.000049	.000013	.000002			-3.66
-3 65	.000131	.000052	.000014	.000002]	1	-3.65
-3.64 -3.63	.000136	.000054	.000015	.000002			-3.64
-3.03 -3.62	.000142 .000147	.000057	.000016	.000002			-3.63
-3.61	.000147	.000062	.000017	.000603		l	-3.62
-3.60	.000159	.000065	.000019	.000003			-3.61 -3.60
-3,59	.000165	.000068	.000020	.000003			
-3.58	.000172	.000072	.000021	.000003			-3.59 -3.58
-3.57	.000178	.000075	.000023	.000004		1	-3.57
-3.56	.000185	.000079	.000024	.000004			-3.56
-3.55	.000193	.000082	.000025	.000004			-3.55
-3.54	.000200	.000086.	.000027	.000005			-3.54
-3.53 - 3.52	.000208 .000216	.000090	.000028	.000005			-3.53
351	.000216	.000094	.000032	.000005			-3.52
-3.50	.000233	.000103	.000034	.000006			-3.51 -3.50
							-5.50

			CLEA	VNESS			
t	.6	.7	.8	VNESS	1.0	1.1	t
-3.99 -3.98 -3.97 -3.96 -3.95 -3.94 -3.93 -3.92 -3.91 -3.90	.0		.0		1.0	1.1	-3.99 -3.98 -3.97 -3.96 -3.95 -3.94 -3.93 -3.92 -3.91 -3.90
-3.89 -3.88 -3.87 -3.86 -3.85 -3.84 -3.83 -3.82 -3.81 -3.80							-3.89 -3.88 -3.87 -3.86 -3.85 -3.84 -3.83 -3.82 -3.81 -3.80
-3.79 -3.78 -3.77 -3.76 -3.75 -3.74 -3.73 -3.72 -3.71 -3.70		•					-3.79 -3.76 -3.77 -3.76 3.75 -3.74 -3.73 -3.72 -3.71 -3.70
-3.69 -3.68 -3.67 -3.66 -3.65 -3.64 -3.63 -3.62 -3.61 -3.60							-3.69 -3.68 -3.67 -3.66 -3.65 -3.64 -3.63 -3.62 -3.61 -3.60
-3.59 -3.58 -3.57 -3.56 -3.55 -3.54 -3.53 -3.52 -3.51 -3.50							-3.59 -3.58 -3.57 -3.56 -3.55 -3.54 -3.53 -3.52 -3.51 -3.50

-			SKEV	VNESS			
t	0	.1	.2	.3	.4	.5	t
-3.49 -3.48 -3.47 -3.46 -3.45 -3.44 -3.43 -3.42	.000241 .000251 .000260 .000270 .000280 .000291 .000302	.000108 .000113 .000118 .000123 .000129 .000135 .000141	.000036 .000038 .000040 .000042 .000045 .000047 .000050	.000007 .000007 .000008 .000009 .000009 .000010 .000011	.000001 .000001 .000001 .000001 .000001		-3.49 -3.48 -3.47 -3.46 -3.45 -3.44 -3.43 -3.42
-3.41 -3.40	.000325	.000154 .000161	000056 .000059	.000012	.000001		-3.41 -3.40
-3.39 -3.38 -3.37 -3.36 -3.35 -3.34 -3.33 -3.32 -3.31 -3.30	.000349 .000362 ·.000376 .000390 .000404 .000419 .000434 .000450 .000466	.000168 .000175 .000183 .000191 .000199 .000208 .000217 .000227 .000236	.000062 .000065 .000069 .000073 .000077 .000081 .000085 .000090 .000095	.000014 .000015 .000017 .000018 .000019 .000021 .000022 .000024 .000025	.000001 .000001 .000002 .000002 .000002 .000002 .000003 .000003		-3.39 -3.38 -3.37 -3.36 -3.35 -3.34 -3.33 -3.32 -3.31 -3.30
-3.29 -3.28 -3.27 -3.26 -3.25 -3.23 -3.23 -3.21 -3.20	.000501 .000519 .000538 .000557 .000577 .000598 .000619 .000641 .000664	.000257 .000268 .000280 .000292 .000304 .000317 .000330 .000344 .000359	.000105 .000110 .000116 .000122 .000129 .000135 .000143 .000150 .000158	.000029 .000031 .000035 .000035 .000040 .000043 .000046 .000049	.000004 .00004 .00005 .00005 .00006 .00007 .00007 .00008 .00009		-3.29 -3.28 -3.27 -3.26 -3.25 -3.24 -3.23 -3.22 -3.21 -3.20
-3.19 -3.18 -3.17 -3.16 -3.15 -3.14 -3.13 -3.12 -3.11	.000711 .000736 .000762 .000789 .000816 .000845 .000874 .000904 .000935	.000389 .000405 .000422 .000439 .000457 .000476 .000495 .000516 .000536	.000174 .000183 .000192 .000202 .000212 .000222 .000234 .000245 .000257	.00056 .00059 .00063 .00067 .00072 .00076 .00081 .00087 .00092	.00009 .00010 .00011 .00012 .00014 .00015 .00016 .00018 .00019	.000001 .000001 .000001 .000001 .000001	-3.19 -3.18 -3.17 -3.16 -3.15 -3.14 -3.13 -3.12 -3.11 -3.10
-3.09 -3.08 -3.07 -3.06 -3.05 -3.04 -3.03 -3.02 -3.01 -3.00	.001001 .001035 .001070 .001107 .001144 .001183 .001223 .001264 .001306 .001350	.000580 .000604 .000628 .000653 .000679 .000705 .000733 .000762 .000792 .000823	.000283 .000297 .000311 .000326 .000342 .000358 .000375 .000393 .000411	.000104 .000110 .000117 .000124 .000132 .000140 .000148 .000157 .000167	.000023 .000025 .000027 .000029 .000032 .000034 .000037 .000040 .000043	.000002 .000002 .000002 .000003 .000003 .000003 .000004 .000004	-3.09 -3.08 -3.07 -3.06 -3.05 -3.04 -3.03 -3.02 -3.01 -3.00

			SKEV	VNESS			
t	.6	.7	.8	.9	1.0	1.1	t
-3.49 -3.48 -3.47 -3.46 -3.45 -3.44 -3.43 -3.42 -3.41 -3.40							-3.49 -3.48 -3.47 -3.46 -3.45 -3.44 -3.43 -3.42 -3.41 -3.40
-3.39 -3.37 -3.36 -3.35 -3.34 -3.33 -3.32 -3.31							-3.39 -3.38 -3.37 -3.36 -3.35 -3.34 -3.33 -3.32 -3.31 -3.30
-3.29 -3.28 -3.27 -3.26 -3.25 -3.24 -3.23 -3.22 -3.21 -3.20	:						-3.29 -3.28 -3.27 -3.26 -3.25 -3.24 -3.23 -3.22 -3.21 -3.20
-3.19 -3.18 -3.17 -3.16 -3.15 -3.14 -3.13 -3.12 -3.11							-3.19 -3.18 -3.17 -3.16 -3.15 -3.14 -3.13 -3.12 -3.11 -3.10
-3.09 -3.08 -3.07 -3.06 -3.05 -3.04 -3.03 -3.02 -3.01 -3.00							-3.09 -3.08 -3.07 -3.06 -3.05 -3.04 -3.03 -3.02 -3.01 -3.00

			SKEW	NESS			
t	0	.1	.2	.3	.4	.5	t
-2.99	.001395	.000854	.000450	.000187	.000051	.000006	-2.99
-2.98	.001441	.000888	.000471	.000198	.000055	.000006	-2.98
-2.97	.001489	.000922	.000493	.000209	.000059	.000007	-2.97.
-2.96	.001538	.000957	.000516	.000222	.000064	.000008	-2.96
-2.95	.001589	.000994	.000540	.000234	.000069	.000009	-2.95
-2.94	.001641	.001032	.000564	.000248	.000074	.000010	-2.94 -2.93
-2.93	.001695	.001071	.000590	.000262	.0000080	.000011	-2.93 -2.92
-2.92	.001750	.001111 .001153	.000617	.000277	.000086	.000012	-2.92 -2.91
-2.91	.001807		.000644, .0006 73	.000292	.000092	.000014	-2.90
-2.90	.001866	.001197	.0006/3	.000309	.000099	.00010	-2.90
-2.89	.001926	.001242	.000703	.000326	.000107	.000017	-2.89
-2.88	.001988	.001288	.000735	.000344	.000115	.000019	-2.88
-2.87	.002052	.001336	.000767	.000363	.000123	.000021	-2.87
-2.86	.002118	.001385	.000801	.000383	.000132	.000024	-2.86
-2.85	.002186	.001437	.000836	.000403	.000141	.000026	-2.85
-2.84	.002256	.001489	.000873	.000425	.000152	.000029	-2.84
-2.83	.002327	.001544	.000911	.000448	.000162	.000032	-2.83
-2.82	.002401	.001600	.000950	.000472	.000174	.000036	-2.82
-2.81	.002477	.001659	.000991	.000497	.000186	.000039	-2.81
-2.80	.002555	.001719	.001034	.000523	.000199	.000043	-2.80
-2.79	.002635	.001781	.001078	.000551	.000212	.000048	-2.79
-2.78	.002718	.001845	.001124	.000580	.000227	.000052	-2.78
-2.77	.002803	.001911	.001171	.000610	.000242	.000057	-2.77
-2.76	.002890	.001980	.001220	.000641	.000258	.000063	-2.76
-2.75	.002980	.002050	.001272	.000674	.000.276	.000069	-2.75
-2.74	.003072	.002123	.001325	.000709	.000294	.000076	-2.74
-2.73	.003167	.002198	.001380	.000744	.000313	.000083	-2.73
-2.72	.003264	.002275	.001437	.000782	.000334	.000090	-2.72
-2.71	.003364	.002355	.001496	.000821	.000355	.000099	-2.71
2.70	.003467	.002437	.001557	.000862	.000378	.000108	-2.70
-2.69	.003573	.002522	.001621	.000905	.000402	.000117	-2.69
-2.68	.003681	.002610	.001687	.000949	.000427	.000128	-2.68
-2.67	.003793	.002700	.001755	.000996	.000454	.000139	-2.67
-2.66	.003907	.002793	.001826	.001044	.000482	.000151	-2.66
-2.65 -2.64	.004025	.002889	.001899	.001095	.000512	000164	-2.65
-2.63	.004269	.003089	.001973	.001148	.000543	.000177	-2.64
-2.62	.004396	.003089	.002033	.001203	.000576	.000192	-2.63 2.62
-2.61	.004527	.003302	.002134	.001200	.000647	.000208	-2.61
-2.60	.004661	.003413	.002305	.001382	.000686	.000223	-2.60
-2.59	.004799	.003528	.002395	.001446	.000726	.000263	-2.59
-2.58	.004940	.003645	.002488	.001514	.000768	.000284	-2.58
-2.57	.005085	.003767	.002584	.001584	.000813	.000306	-2.57
-2.56	.005234	.003892	.002683	.001656	.000860	.000330	-2.56
-2.55	.005386	.004020	.002786	.001732	.000909	.000356	-2.55
-2.54	.005543	.004152	.002892	.001811	.000960	.000383	-2.54
-2.53	.005703	.004289	.003001	.001892	.001014	.000411	-2.53
-2.52	.005868	.004429	.003115	.001977	.001071	.000442	-2.52
-2.51	.006037	.004573	.003232	.002066	.001130	.000475	-2.51
-2.50	.006210	.004721	.003352	.002157	.001192	.000509	-2.50

			SKEV	WNESS			
t	.6	.7	.8	.9	1.0	1.1	t
-2.99 -2.98 -2.97 -2.96 -2.95 -2.94 -2.93 -2.92 -2.91 -2.90							-2.99 -2.98 -2.97 -2.96 -2.95 -2.94 -2.93 -2.92 -2.91 -2.90
-2.89 -2.88 -2.87 -2.86 -2.85 -2.84 -2.83 -2.82 -2.81 -2.80	000001 000001 .000001 .000001 .000002 .000002			4			-2.89 -2.88 -2.87 -2.86 -2.85 -2.84 -2.83 -2.82 -2.81 -2.80
-2.79 -2.78 -2.77 -2.76 -2.75 -2.74 -2.73 -2.72 -2.71 -2.70	.00003 .00003 .00004 .00004 .00005 .00006 .00007 .00008 .00010						-2.79 -2.78 -2.77 -2.76 -2.75 -2.74 -2.73 -2.72 -2.71 -2.70
-2.69 -2.68 -2.67 -2.66 -2.65 -2.64 -2.63 -2 62 -2.61 -2.60	.000013 .000015 .000017 .000020 .000023 .000026 .000029 .000033 .000038	.000001 .000001					-2.69 -2.68 -2.67 -2.66 -2.65 -2.64 -2.63 -2.62 -2.61 -2.60
-2.59 -2.58 -2.57 -2.56 -2.55 -2.54 -2.53 -2.52 -2.51 -2.50	.00048 .00054 .00061 .00068 .00076 .00085 .00095 .000106 .000117	.00001 .00001 .00002 .00002 .00003 .00003 .00004 .00005 .00007					-2.59 -2.58 -2.57 -2.56 -2.55 -2.54 -2.53 -2.52 -2.51 -2.50

			SKEW	NESS			
t	0	.1	.2	.3	.4	.5	t
-2.49 -2.48 -2.47 -2.46 -2.45 -2.44 -2.43 -2.42	.006387 .006569 .006756 .006947 .007143 .007344 .007549	.004873 .005030 .005191 .005356 .005527 .005701 .005881 .006066	.003477 .003606 .003739 .003876 .004017 .004163 .004314	.002253 .002351 .002454 .002560 .002671 .002785 .002904 .003027	.001258 .001326 .001397 .001471 .001549 .001631 .001716	.000546 .900585 .000626 .000670 .000716 .000765 .000817	-2.49 -2.48 -2.47 -2.46 -2.45 -2.44 -2.43 -2.42
-2.41 -2.40	.007976 .008198	.006256 .006450	,004629 .004 7 94	.003154 .003286	.001898 .001994	.000930 .000992	-2.41 -2.40
-2.39 -2.38 -2.37 -2.36 -2.35 -2.34 -2.33 -2.32 -2.31	.008424 .008656 .008894 .009137 .009387 .009642 .009903 .010170	.006651 .006856 .007067 .007284 .007506 .007735 .007969 .008209	.004964 .005140 .005320 .005507 .005698 .005896 .006099 .006308	.003423 .003565 .003711 .003863 .004020 .004183 .004351 .004525	.002095 .002201 .002310 .002425 .002544 .002668 .002797 .002932	.001056 .001124 .001196 .001272 .001352 .001435 .001524 .001616	-2.39 -2.38 -2.37 -2.36 -2.35 -2.34 -2.33 -2.32 -2.31
-2.30 -2.29	.010724	.008709	.006745	.004890	.003217	.001816	-2.30 -2.29
-2 28 -2 27 -2 26 -2 25 -2 24 -2 23 -2 22 -2 21 -2 20	.011304 .011604 .011911 .012224 .012545 .012874 .013209 .013553 .013903	.009235 .009508 .009788 .010075 .010369 .010670 .010979 .011296	.007208 .007449 .007698 .007953 .008215 .008485 .008762 .009047	.005280 .005485 .005697 .005915 .006140 .006373 .0066T3 .006860	.003526 .003689 .003859 .004035 .004218 .004407 .004604 .004808 .005020	.002036 .002154 .002277 .002407 .002542 .002684 .002832 .002987 .003149	-2.28 -2.27 -2.26 -2.25 -2.24 -2.23 -2.22 -2.21 -2.20
-2.19 -2.18 -2.17 -2.16 -2.15 -2.14 -2.13 -2.12 -2.11 -2.10	.014262 .014629 .015003 .015386 .015778 .016177 .016586 .017003 .017429 .017864	.011953 .012293 .012642 .012999 .013365 .013739 .014122 .014515 .014916 .015327	.009641 .009950 .010267 .010593 .010927 .011271 .011623 .011984 .012355 .012736	.007379 .007650 .007930 .008218 .008515 .008821 .009135 .009460 .009793 .010136	.005239 .005466 .005702 .005945 006197 .006458 .006728 .007007 .007296 .007594	.003318 .003494 .003679 .003871 .004071 .004279 .004496 .004722 .004958 .005202	-2.19 -2.18 -2.17 -2.16 -2.15 -2.14 -2.13 -2.12 -2.11 -2.10
-2.09 -2.08 -2.07 -2.06 -2.05 -2.04 -2.03 -2.02 -2.01 -2.00	.018309 .018763 .019226 .019699 .020182 .020675 .021178 .021692 .022216 .022750	.015747 .016177 .016617 .017067 .017527 .017997 .018478 .018970 .019472 .019986	.013126 .013526 .013936 .014357 .014788 .015230 .015683 .016147 .016622 .017108	.010490 .010853 .011227 .011611 .012006 .012412 .012829 .013258 .013698 .014150	.007903 .008221 .008550 .008890 .009240 .009602 .009975 .010359 .010756 .011165	.005457 .005721 .005996 .006281 .006577 .006885 .007203 .007534 .007876 .008231	-2.09 -2.08 -2.07 -2.06 -2.05 -2.04 -2.03 -2.02 -2.01 -2.00

			SKEW	NESS		+	
t	.6	.7	.8	.9	1.0	1.1	t
-2.49	.000144	.000010					-2.49
-2.48	.000160	.000012					-2.48
-2.47	.000176	.000015					-2.47
-2.46 -2,45	.000195 .000214	.000018					-2.46 -2.45
-2.4 1	.000214	.000025					2.44
-2.43	.000259	.000030					-2.43
-2.42	.000284	.000036					2.42
-2.41	.000311	.000042					-241
-2.40	.000340	.000049					-2.40
-2.39	.000372	.000057					-2.39
-2.38 -2.37	.000406	.000066	000001				-2.38
-2.36	.000442	.000076	.000001				-2.37
-2.35 -2.35	.000523	.000100	.000001				-2.36 -2.35
-2.34	.000569	.000115	.000002				-2.34
-2,33	.000617	.000131	.000003				-2.33
· 2.32	.000668	.000149	.000004				-2.32
-2.31	.000724	.000169	.000005				-2.31
-2 30	.000783	.000191	.000007			•	-2.30
-2.29	.000845	.000215	.000010				-2.29
-2 28	.000912	.000242	.000013				-2.28
-2.27 -2 26	.000984	.000271	.000017				-2.27
-2.25	.001060	.000304	.000021				-2.26
-2 24	.001226	.000378	.000027				-2.25 -2.24
-2 23	.001317	.000421	.000042				-2.23
-2.22	.001413	.000467	.000051				-2.22
-2.21	.001515	.000517	.000062				-2.21
2,20	.001623	.000571	.000075				-2.20
2.19	.001737	.000631	.000091				-2.19
· 2.18	.001857	.000695	.000108				-2.18
-317 -2.16	.001985 .002119	.000764	.000128				-2.17
-2.10 -215	.002119	.000838	.000151	COUCLY			-2.16 -2.15
-2.14	.002201	.001005	.000207	000002			-2.13
-2.13	.002567	.001097	.000241	.000003		İ	-2 13
-2 12	.002732	.001197	.000279	.000005			-2.12
-2.11	.002906	.001303	.000321	.000008			-2.11
-2.10	.003088	.001417	.000368	.000012			-2.10
-2.09	.003280	.001539	.000421	.000017			-2.09
-2.08	.003481	.001669	.000479	.000024			-2.08
2.07 2.06	.003692	.001807 .001954	.000543	.000033			-2.07
-2.06 2.05	.003912	.001934	.000692	.000043			2.06 2.05
-2.04	.004386	.002277	.000777	.000076			-2.04
-2.03	.004639	.002453	.000870	.000097			-2.03
-2.02	.004903	.002640	.000972	.000123			-2.02
-2.01	.005179	.002838	.001083	.000153		1	-2.01
-2.00	.005468	.003047	.001203	.000189			- 2.00
نصسنا				ب ب ببرا			

			SKEW	NESS			
t	0	.1	.2	.3	.4	.5	t
-1.99 -1.98 -1.97 -1.96 -1.95 -1.94 -1.93 -1.92 -1.91 -1.90	.023295 .023852 .024419 .024998 .025588 .026190 .026803 .027429 .028067 .028717	.020511 .021047 .021595 .022155 .022727 .023310 .023907 .024515 .025137	.017607 .018117 .018639 .019174 .019721 .020281 .020854 .021439 .022039 .022652	.014615 .015091 .015581 .016083 .016598 .017126 .017668 .018223 .018793 .019377	.011586 .012020 .012467 .012927 .013401 .013888 .014390 .014906 .015436 .015982	.008598 .008979 .009372 .009780 .010201 .010636 .011086 .011550 .012030 .012525	-1.99 -1.98 -1.97 -1.96 -1.95 -1.94 -1.93 -1.92 -1.91 -1.90
-1.89 -1.87 -1.87 -1.86 -1.85 -1.84 -1.83 -1.82 -1.81 -1.80	.029379 .030054 .030742 .031443 .032157 .032884 .033625 .034379 .035148 .035930	.026419 .027080 .027754 .028442 .029144 .029859 .030590 .031344 .032093 .032867	.023278 .023919 .024573 .025243 .025926 .026625 .027339 .028068 .028812 .029572	.019975 .020588 .021216 .021859 .022517 .023192 .023882 .024588 .025311 .026050	.016542 .017118 .017710 .018318 .018942 .019582 .020240 .020914 .021606 .022315	.013036 .013564 .014107 .014668 .015245 .015840 .016453 .017084 .017734 .018402	-1.89 -1.88 -1.87 -1.86 -1.85 -1.84 -1.83 -1.82 -1.81 -1.80
-1.79 -1.78 -1.77 -1.76 -1.75 -1.74 -1.73 -1.72 -1.71 -1.70	.036727 .037538 .038364 .039204 .040059 .040059 .041815 .042716 .043633 .044565	.033656 .034461 .035280 .036116 .036967 .037834 .038717 .039617 .040533 .041466	.030349 .031141 .031949 .032775 .033617 .034476 .035352 .036245 .037157	.026806 .027580 .028371 .029179 .030005 .030850 .031713 .032594 .033494 .034414	.023043 .023789 .024553 .025336 .026138 .026960 .027801 .028662 .02° 543 .030445	.019089 .019796 .020522 .021269 .022036 .022823 .023632 .024462 .025314 .026188	-1.79 -1.78 -1.77 -1.76 -1.75 -1.74 -1.73 -1.72 -1.71
-1.69 -1.68 -1.67 -1.65 -1.65 -1.64 -1.63 -1.62 -1.61 -1.60	.045514 .046479 .047460 .048457 .049471 .050503 .051551 .052616 .053699 .054799	.042416 .043384 .044368 .045371 .046390 .047428 .048484 .049559 .050652 .051763	.039033 .039999 .040983 .041985 .043007 .044048 .045108 .046188 .047288 .048407	.035352 .036310 .037288 .038287 .039305 .040344 .041403 .042484 .043586 .044709	.031368 .032311 .033276 .034262 .035270 .036300 .037353 .038428 .039525 .040646	.027084 .028002 .028944 .029909 .030897 .031909 .032946 .034006 .035092 .036202	-1.69 -1.68 -1.67 -1.66 -1.65 -1.64 -1.63 -1.62 -1.61 -1.60
-1.59 -1.58 -1.57 -1.56 -1.55 -1.54 -1.53 -1.52 -1.51 -1.50	.055917 .057053 .058208 .059380 .060571 .061780 .063008 .064255 .065522 .066807	.052893 .054043 .055212 .056400 .057608 .058835 .060083 .061351 .062639 .063947	.049547 .050707 .051887 .053089 .054311 .055555 .056820 .058106 .059414 .060744	.045853 .047020 .048209 .049420 .050653 .051909 .053189 .054491 .055816 .057165	.041791 .042958 .044150 .045365 .046605 .047870 .049159 .050473 .051812 .053176	.037338 .038499 .039687 .040900 .042139 .043405 .044698 .046018 .047366 .048740	-1.59 -1.58 -1.57 -1.56 -1.55 -1.54 -1.53 -1.52 -1.51 -1.50

			SKEWN	ESS			
t	.6	.7	.8	.9	1.0	1.1	t
-1.99 -1.98 -1.97 -1.96 -1.95 -1.94 -1.93 -1.93 -1.91 -1.90	.005769 .006083 .006410 .006751 .007105 .007475 .007859 .008258 .008672 .009103	.003269 .003502 .003748 .004007 .004280 .004567 .004869 .005185 .005518	.001333 .001474 .001625 .001789 .001965 .002153 .002355 .002571 .002801	.000230 .000279 .000334 .000397 .000469 .000551 .000642 .000745 .000859	.000001 .000002 .000004 .000008 .000014 .000024 .000038		-1.99 -1.98 -1.97 -1.96 -1.95 -1.94 -1.93 -1.92 -1.91 -1.90
-1.89 -1.88 -1.87 -1.86 -1.85 -1.84 -1.83 -1.82 -1.81	009550 .010013 .010494 .010992 .011509 .012043 .012596 .013168 .013760	.006230 .006612 .007011 .007428 .007864 .008318 .008792 .009286	.003309 .003587 .003882 .004195 .004526 .004876 .005246 .005637 .006048	.001126 .001280 .001449 .001634 .001836 .002055 .002293 .002550	.000082 .000114 .000155 .000205 .000266 .000339 .000425 .000526	20000	-1.89 -1.88 -1.87 -1.86 -1.85 -1.84 -1.83 -1.82 -1.81
-1.80 -1.79 -1.78 -1.77 -1.76 -1.75 -1.74 -1.73 -1.72 -1.71	.014372 .015003 .015656 .016329 .017024 .017741 .018480 .019242 .020026 .020834	.010334 .010891 .011469 .012070 .012693 .013340 .014011 .014706 .015425 .016170	.006480 .006935 .007413 .007914 .008439 .008989 .009564 .010165 .010793 .011448	.003126 .003446 .003789 .004156 .004548 .004965 .005408 .005879 .006377 .006904 .007461	.000776 .000929 .001101 .001295 .001511 .001752 .002017 .002309 .002629 .002979	.000001 .000006 .000016 .000033 .000062 .000103 .000159 .000233 .000328 .000446	-1.80 -1.79 -1.78 -1.77 -1.76 -1.75 -1.74 -1.73 -1.72 -1.71 -1.70
-1.69 -1.68 -1.67 -1.66 -1.65 -1.64 -1.63 -1.62 -1.61 -1.60	.022522 .023402 .024307 .025238 .026194 .027175 .028183 .029218 .030280 .031368	.017737 .018560 .019410 .020288 .021193 .022127 .023090 .024081 .025102 .026153	.012841 .013580 .014349 .015148 .015978 .016838 .017731 .018655 .019612 .020602	.008048 .008667 .009317 .010001 .010717 .011468 .012254 .013075 .013933 .014827	.003769 .004213 .004691 .005204 .005753 .006340 .006965 .007629 .008334 .009080	.000761 .000962 .001195 .001462 .001766 .002109 .002491 .002916 .003385 .003899	-1.69 -1.68 -1.67 -1.66 -1.65 -1.64 -1.63 -1.62 -1.61 -1.60
-1.59 -1.58 -1.57 -1.56 -1.55 -1.54 -1.53 -1.52 -1.51 1 50	.032485 .033629 .034801 .036002 .037232 .038490 .039778 .041096 .042444 .043821	.027235 .028346 .029489 .030664 .031870 .033108 .034378 .035681 .037018 .038387	.021625 .022683 .023775 .024902 .026064 .027262 .028496 .029766 .031074 .032418	.015759 .016729 .017738 .018786 .019873 .021001 .022170 .023380 .024632 .025926	.009868 .010699 .011574 .012494 .013459 .014470 .015528 .016633 .017786 .018988	.004460 .005069 .005729 .006439 .007202 .008018 .008889 .009816 .010799 .011839	-1.59 -1.58 -1.57 -1.56 -1.55 -1.54 -1.53 -1.52 -1.51 -1.50

			SKEV	/NESS			
t	0	.1	.2	.3	.4	.5	t
-1.49 -1.48 -1.47 -1.46 -1.45 -1.44 -1.43 -1.42 -1.41 -1.40	.068112 .069437 .070781 .072145 .073529 .074934 .076359 .077804 .079270 .080757	.065277 .066627 .067998 .069390 .070804 .072239 .073696 .075174 .076675 .078197	.062096 .063471 .064867 .066287 .067729 .069194 .070682 .072194 .073729 .075288	.058538 .059935 .061355 .062800 .064270 .065764 .067283 .068827 .070398 .071990	.054566 .055982 .057424 .058892 .060387 .061908 .063455 .065030 .066631 .068260	.050143 .051574 .053033 .054520 .056036 .057580 .059154 .060757 .062389 .064051	-1.49 -1.48 -1.47 -1.46 -1.45 -1.44 -1.43 -1.42 -1.41 -1.40
-1.39 -1.38 -1.37 -1.36 -1.35 -1.34 -1.33 -1.32 -1.31 -1.30	.082264 .08379.3 .085343 .086915 .088508 .090123 .091759 .093418 .095098 .096800	079742 .081310 .082899 .084512 .086147 .087806 .089487 .091192 .092920 .094671	.076870 .078476 .080106 .081761 .083439 .085143 .086870 .088623 .090400 .092202	.073609 .075254 .076925 .078622 .080345 .082094 .083869 .085670 .087498 .089353	.069916 .071600 .073312 .075051 .076818 .078613 .080436 .082288 .084168	.065742 .067463 .069214 .070995 .072807 .074649 .076521 .078423 .080357 .082321	-1.39 -1.38 -1.37 -1.36 -1.35 -1.34 -1.33 -1.32 -1.31 -1.30
-1.29 -1.28 -1.27 -1.26 -1.25 -1.24 -1.23 -1.22 -1.21 -1.20	.098525 .100273 .102042 .103835 .105650 .107488 .109349 .111232 .113139 .115070	.096446 .098245 .100068 .101914 .103785 .105679 .107598 .109541 .111508 .113500	.094029 .095881 .097759 .099662 .101590 .103544 .105523 .107528 .109559	.091234 .093142 .095076 .097038 .099027 .101043 .103086 .105156 .107254 .109379	.088014 .089980 .091974 .093997 .096050 .098131 .100241 .102380 .104548 .106746	.084316 .086341 .088398 .090485 .092604 .094754 .096934 .099146 .101389 .103663	-1.29 -1 28 -1.27 -1 26 -1.25 -1.24 -1.23 -1.22 -1.21 -1.20
-1.19 -1.18 -1.17 -1.16 -1.15 -1.14 -1.13 -1.12 -1.11	.117023 .119000 .121000 12302 ³ .125072 .127143 .129238 .131357 .133500 135666	.115516 .117557 .119622 .21713 .123828 125968 .128132 .130322 .132537 .134776	.113698 .115806 .117941 .120101 .122288 124500 .126739 .129004 .131294 .133612	.111531 .113711 .115918 .118153 .120415 .122705 .125022 127367 .129739 .132139	.108972 .111228 .113512 .115826 .118169 120541 .122942 .125172 .127831 .130319	.105968 108304 .110671 .113069 115498 117958 .120448 122970 .125522 .128104	-1.19 -1.18 -1.17 1.16 -1.15 1.14 -1.13 -1.12 -1.11 -1.10
-1 09 -1 08 -1.07 -1.06 -1.05 -1.04 -1.03 -1.02 -1.01 -1.00	.137857 .140071 .142310 .144572 .146859 .149170 .151505 .153864 .156248 .158655	.137041 .139330 .141645 .1+3985 .146350 .148740 .151155 .153595 .156060 .158551	.135955 .138324 .140720 .143142 .145590 .148064 .150564 .153090 .155643 .158221	.134566 .137021 .139503 .142012 .144549 .147112 .149703 .152322 .154967 .157639	.132836 .135381 .137955 .140558 .143190 .145850 .148538 .151255 .154000 .156773	.130717 .133361 .136034 .138738 .141472 .144235 .147029 .149851 .152703 .155584	-1.09 -1.08 -1.07 -1.06 -1.05 -1.04 -1.03 -1.02 -1.01 -1.00

			SKEWN	IESS			
t	.6	.7	.8	.9	1.0	1.1	t
-1.49	.045 22 9	.039790	.033800	.027262	.020239	.012937	-1.49
-1.48	.046668	.041227	.035220	.028641	.021539	.014094	-1,48
-1.47	.048138	.042698	.036678	.030063	.022890	.015311	-1.47
-1.46	.04 9 638	.044203	.038174	.031529	.024290	.016587	-1.46
-1.45	.051170	.045743	.039709	.033039	.025742	.017923	-1.45
-1.44	.u52734	.047317	.041282	.034592	.027244	.019321	-1.44
-1.43	.054329	.048927	.042895	.036190	.028798	.020779	-1.43
-1.42	.055956	.050571	.044547	037833	.030403	.022299	-1.42
-1.41	.057615	.052252	.046239	.039520	.032060	.023880	-1.41
-1.40 -1.39 -1.38 -1.37 -1.36 -1.35 -1.34 -1.33	.059306 .061030 .062786 .064575 .06397 .068251 .070139 .072060	.053967 .055718 .057506 .059329 061188 .063083 .065015 .066983	.047970 .049741 .051551 .053402 .055293 .057225 .059196 .061208	.041252 .043029 .044852 .046719 .048632 .050591 .052595 .054644	.033769 .035530 .037343 .039208 .041126 .043095 .045117 .047191	.027228 .028995 .030824 .032714 .034667 .036681	-1.40 -1.39 -1.37 -1.36 -1.35 -1.34 -1.33
-1.32	.074014	.068987	.063260	056738	.049318	.040893	-1.32
-1.31	.076001	.071028	.065353	.058878	.051496	.043090	-1.31
-1.30	.078021	.073105	.067486	.061064	.053725	.045348	-1.30
-1.29	.080075	.075219	.069659	.063294	.056007	.047667	-1.29
-1.28	.082163	.077370	.071873	.065570	.058339	.050045	-1.28
-1.27	.084284	.079557	.074127	.067891	.060723	.052482	-1.27
-1.26	.086438	.081780	.076422	.070256	.063157	.054978	-1.26
-1.25	.088626	.084040	.078756	.072666	.065642	.057533	-1.25
-1.24	.090847	.086336	.081130	.075121	.068178	.060146	-1.24
-1.23	.093102	.088669	.083545	.077620	.070763	.062816	-1.23
-1.22	.095391	.091038	.085999	.080163	.073397	.065543	-1.22
-1.21	.097712	.093444	.088493	.082749	.076081	.068325	-1.21
-1.20	.100068	.095885	.091026	.085380	.078813	.071164	-1.20
-1.19 -1.17 -1.16 -1.15 -1.14 -1.13 -1.12 -1.11 -1.10	102456 .104878 107 533 .109821 .112342 .114897 .117484 .120103 .122756 .125440	.0º8363 .100876 .103426 .103011 .108631 .111287 .113978 .116704 .119464 .122259	.093598 .096210 .098860 .101549 .104277 .107042 .109846 .112687 .115565 118480	.088053 .090770 .093529 .096330 .099173 .102058 .104984 .107951 .110958 .114005	081594 084422 087298 090221 093189 096204 099264 102368 105517 108708	.074057 .077004 080004 .083057 .086162 .089318 .092525 .095781 .099086 .102438	-1.19 -1.18 -1.17 -1.16 -1.15 -1.14 -1.13 -1.12 -1.11 -1.10
-1.09	.128157	125089	.121433	.117091	.111943	.105838	-1.09
-1.08	.130906	127952	.124421	.120216	.115220	.109283	-1.08
-1.07	.133087	130849	.127445	.123380	.118539	.112774	-1.07
-1.06	.136499	133780	.130505	.126582	.121898	.116310	-1.06
-1.05	.139344	136744	.133600	.129822	.125298	.119888	-1.05
-1.04	.142219	139741	.136731	.133099	.128737	.123510	-1.04
-1.03	.145125	142771	.139895	.136412	.132215	.127173	-1.03
-1.02	.148063	145833	.143094	.139761	.135732	.130877	-1.02
-1.01	.151031	148927	.146326	.143146	.139286	.134621	-1.01
-1.00	.154029	152053	.149592	.146565	.142877	.138404	-1.00

			SKEW	NESS			
t	0	.1	.2	.3	.4	.5	t
99 98 97 96 95 94 93 92 91 90	.161087 .163543 .166023 .168528 .171056 .173609 .176186 .178786 .181411 .184060	.161066 .163606 .166172 .168762 .171377 .174017 .176682 .179371 .182085 .184823	.160825 .163455 .166111 .168792 .171500 .174232 .176990 .179774 .182583 .185416	.160338 .163064 .165816 .168595 .171400 .174232 .177090 .179974 .182883 .185819	.159573 .162402 .165258 .168141 .171052 .173989 .176954 .179945 .182963 .186007	.158494 .161433 .164401 .167396 .170420 .173472 .176551 .179658 .182792 .185953	99 98 97 96 95 94 93 92 91 90
89 88 87 86 85 84 83 82 81	.186733 .189430 .192150 .194895 .197663 .200454 .203269 .206108 .208970 .211855	.187587 .190374 .193186 .196022 .198882 .201766 .204674 .207606 .210561 .213540	.188275 .191159 .194068 .197001 .199959 .202941 .205947 .208977 .212031 .215109	.188780 .191766 .194778 -197814 .200876 .203962 .207073 .210208 .213366 .216549	.189077 .192173 .195295 .198442 .201614 .204812 .208034 .211280 .214551 .217845	.189140 .192354 .195594 .198860 .202151 .205467 .208808 .212174 .215564 .218978	89 88 87 86 85 84 83 82 81 80
79 78 77 76 75 74 73 72 71 70	.214764 .217695 .220650 .223627 .226627 .229650 .232695 .235762 .238852 .241964	216542 219568 .222616 .225687 .228782 .231898 .235038 .238199 .241382 .244588	.218210 .221335 .224483 .227653 .230847 .234063 .237301 .240561 .243843 .247147	.219756 .222985 .226238 .229514 .232812 .236133 .239476 .242840 .246227 .249634	.221163 .224504 .227869 .231256 .234666 .238097 .241551 .245026 .248522 .252039	.222415 .225876 .229359 .232865 .236393 .239943 .243514 .247106 .250719 .254353	79 78 77 76 75 74 73 72 71 70
69 68 67 65 64 63 62 61	.245097 .248252 .251429 .254627 .257846 .261086 .264347 .267629 .270931 .274253	.247815 .251063 .2554333 .257624 .260935 .264267 .267620 .270993 .274385 .277797	250472 253819 257186 260574 263982 267410 270858 274326 277813 281319	.253063 .256512 .259982 .263471 .266981 .270510 .274058 .277625 .281211 .284815	.255577 .259135 .262712 .266310 .269926 .273561 .277214 .280885 .284574 .288281	.258006 .261678 .265370 .269080 .272809 .276555 .280319 .284100 .287897 .291711	69 68 67 66 65 64 63 62 61
59 58 57 56 55 54 53 52 51 50	277595 280957 284339 287740 291160 294599 298056 301532 305026 308538	.281229 284680 .288149 291638 .295144 .298669 .302211 .305771 309349 .312943	284844 288387 :291948 295527 299123 '302737 306368 310015 313678 317357	.288437 .292076 .295732 .299406 .303095 .306801 .310523 .314260 .318012 .321779	.292004 .295743 .299499 .303270 .307057 .310859 .314675 .318506 .322350 .326207	.295540 .299385 .303244 .307118 .311006 .314908 .318822 .322749 .326689 .330640	5958 - 5756555453525150

			SKEWN	F55			
		7			10		
t	.6	.7	.8	.9	1.0	1.1	t
99	.157058	.155211	.152890	.150019	.146503	.142224	99 98
98	.160116 .163204	.158399 .161618	.156221 .159584	.153507 .157028	.150166 .153862	.146082 .149976	96 97
~ .97 96	.166321	.164868	.162978	.160582	.157593	.153905	96
95	.169468	.168147	.166403	.164168	.161357	.157869	95
94	.172643	.171457	.169859	.167785	.165153	.161866	94
93	.175846	.174795	.173345	.171433	.168981	.165895	93
92	.179078	.178162	.176860	.175111	.172840	.169956	92
91	.182337	.181558	.180405	.178819	.176729	.174047	91
90	.185624	.184981	.183978	.182556	.180648	.178168	90
89	.188938	.188433	.187578	.186321	.184595	.182317	89
88	.192279	.191911	.191207	.190114	.188569	.186495	88
87	.195646	.195416	.194862	.193934	.192571	.190699	87
86 85	.199040 .202459	.198948 .202505	.198544	.197781 .201653	.196599 .200653	.194929 .199184	86 85
83 84	.202439	.202303	.205985	.201033	.204731	.203463	84
83	.209372	.209695	.209743	.209473	.208834	.207765	83
82	.212866	,213328	.213525	.213419	.212959	.212089	82
81	.216384	.216984	.217331	.217388	.217107	.216434	81
- ,80	.219926	.220654	.221160	.221379	.221277	.220801	.80
79	.223491	.224366	.225012	.225393	.225468	.225186	79
78	.227079	.228092	.228886	.229428	.229678	.229590	78
77	.230690	.231839	.232781	.233483	.233909	.234012	77
76	.234323	.235608	.236697	.237558	.238157	.238451	76
<u>7</u> 5	.237977	.239399	.240633	.241653	.242424	.242906	75
74	.241653 .245350	.243210 .247040	.244589	.245766 .249897	.246708 .251008	.247376 .251861	74 73
73 72	.249067	.250891	.252558	.254045	.255323	.256359	72
71	.252804	.254761	.256570	.258210	.259654	.260869	- 71
70	.256561	.258649	.260599	.262391	.263998	.265392	70
69	.260336	.262555	.264645	.266587	.268356	.269926	69
68	.264131	.266479	.268708	.270798	.272727	.274469	68
67	.267943	.270420	.272786	.275022	.277110	.279023	67
66	.271773	.274377	.276879	.279260	.281503	.283585	66
65	.275621	.278351	.280986	.283511	.285908	.288154	65
61 63	.279485 .283365	.282340	.285107	.287774	.290322	.292731	64
63 62	.287261	.290361	.293389	.296333	.299177	.301903	62
61	.291173	.294394	297549	.300628	.303616	.306497	- 61
60	.295099	.298439	.301720	.304932	.308063	.311095	60
- ,59	£99040	.302497	.305902	.309246	.312515	.315697	59
- ,58	.302995	.306568	.310095	.313567	.316974	.320301	58
57	.306963	.310650	.314297	.317897	.321437	.324907	57
56	.310944	.314743	.318509	.322233	.325905	.329514	- :56
55	.314938	.318848	.322729	.326575	.330377	.334122	55
-, .54	.318944	.322962	.326958	.330924	.334851	.338730	54
53 52	.322961	.327086	.331194	.335277	.339328	.343338	53
52 51	.331027	.335361	.339686	.343997	.348287	.352548	51
50	.335076	.339511	.343942	.348363	.352768	.357150	50
	1.5555.6	1.505.011	1.3.03.2	1.5.555	1.0025 00	1 .007 200	1 .00

			SKEV	VNESS			
t	0	.1	.2	.3	4	.5	t
49 48 47 46 45 44 43 42 41 40	.312067 .315614 .319178 .322758 .326355 .329969 .333598 .337243 .340903 .344578	.316554 .320181 .323824 .327483 .331157 .334846 .338550 .342269 .346001 .349747	.321051 .324761 .328486 .332225 .335978 .339745 .343525 .347319 .351125 .354944	.325560 .329354 .333163 .336984 .340819 .344665 .348524 .352394 .356275 .360167	.330077 .333960 .337854 .341761 .345678 .349607 .353545 .357494 .361452	.334603 .338576 .342560 .346553 .350557 .354569 .358590 .362619	49 48 47 46 45 44 43 42 41
39 38 37 36 35 34 33 32 31	.348268 .351973 .355691 .359424 .363169 .366928 .370740 .374484 .378280 .382089	.353507 .357280 .361065 .364863 .368673 .372494 .376327 .380171 .384025 .387889	.358774 .362616 .366469 .370333 .374208 .378092 .381986 .385890 .389802	.364070 .367982 .371904 .375835 .379775 .383723 .387680 .391643 .395614	.369395 .373379 .377371 .381370 .385376 .389388 .393407 .397431 .401460	.370699 .374749 .378806 .382869 .386937 .391010 .395087 .399169 .403254 .407342	39 38 37 36 35 34 33 32 31
30 29 27 26 25 24 23 22 21 20	.385908 .385908 .389739 .393580 .397432 .401294 .405165 .409046 .412936 .416834 .420740	.391763 .395647 .399540 .403441 .407351 .411269 .415194 .419126 .423066 .427011	.393723 .397652 .401589 .405533 .409483 .413441 .417404 .421373 .425348 .429327 .433311	.399591 .403575 .407564 .411559 .415559 .419563 .423572 .427584 .431600 .435619 .439640	.405494 .409532 .413575 .417620 .421669 .425720 .429773 .433828 .437884 .441941 .445999	.411432 .415525 .419620 .423716 .427813 .431910 .436008 .440105 .444201 .448296 .452389	30 29 28 27 26 25 24 23 22 21 20
19 18 17 16 15 14 13 12 11	.424655 .428576 .432505 .436441 .440382 .444330 .448283 .452242 .456205 .460172	.430963 .434920 .438882 .442849 .446820 .450796 .454775 .458757 .462742 .466730	.437298 .441290 .445284 .449282 .453282 .457284 .461288 .465293 .469298 .473304	.443663 .447688 .451714 .455740 .459768 .463795 .467822 .471848 .475873 .479896	.450056 .454113 .458170 .462225 .466278 .470329 .474378 .478424 .482466 .486505	.456479 .460568 .464653 .468735 .472813 .476887 .480956 .485020 .489079 .493132	19 18 17 16 15 14 13 12 11 10
09 08 07 06 05 04 03 02 01 .00	.464144 .468119 .472097 .476078 .480061 .484047 .488034 .492022 .496011 .500000	.470719 .474711 .478703 .482696 .486690 .490683 .494676 .498668 .502660 .506649	.477310 .481316 .485321 .485321 .489325 .493327 .497327 .501324 .505319 .509311 .513299	483917 .487936 .491952 .495964 .499973 .503978 .507978 .511974 .515965 .519949	.490540 .494570 .498595 .502615 .506629 .510637 .514639 .518634 .522621 .526602	.497178 .501218 .505251 .509277 .513295 .517310 .521306 .525298 .529282 .533255	09 08 07 06 05 04 03 02 01

			SKEWN	ESS			
t	.6	.7	.8	.9	1.0	1.1	t
- ,49 - ,48 - ,47 - ,46 - ,45 - ,44 - ,43 - ,42 - ,41 - ,40	.339134 .343201 .347277 .351361 .355452 .359551 .363656 .367767 .371884 .376006	.343668 .347833 .352004 .356181 .360363 .364551 .368742 .372938 .377137 .381340	.348202 .352468 .356737 .361011 .365287 .369566 .373847 .378130 .382414 .386698	.352731 .357102 .361474 .365847 .370221 .374595 .378968 .383340 .387711 .392079	.357249 .361729 .366208 .370685 .375160 .379632 .384101 .388565 .393025 .397480	.361748 .366343 .370934 .375519 .380099 .384673 .389240 .393800 .398353 .402897	49 48 47 46 45 44 43 42 41
39 38 37 36 35 34 33 32 31	.380133 .384264 .388398 .392536 .396677 .400820 .404965 .409111 .413259 .417406	.385544 .389751 .393959 .398168 .402377 .406587 .410796 .415004 .419211 .423415	.390982 .395266 .399549 .403830 .408109 .412386 .416660 .420930 .425197 .429459	.396445 .400808 .405167 .409522 .413872 .418217 .422556 .426889 .431216 .435535	.401930 .406373 .410810 .415240 .419662 .424076 .428482 .432878 .437266 .441643	.407432 .411958 .416475 .420981 .425476 .429961 .434434 .438895 .443343 .447779	39 38 37 36 35 34 33 32 31 30
29 28 27 26 25 24 23 22 21 20	.421554 .425701 .429847 .433992 .438136 .442276 .446415 .450550 .454681 .458809	.427618 .431817 .436014 .440206 .444395 .448579 .452758 .456931 .461099 .465260	.433716 .437968 .442214 .446454 .450687 .454914 .459133 .463344 .467546 .471740	.439848 .444152 .448448 .452735 .457012 .461281 .465539 .469786 .474023 .478249	.446010 .450366 .454712 .459046 .463367 .467677 .471974 .476257 .480527 .484784	.452201 .456610 .461004 .465384 .469750 .474100 .478435 .482754 .487056 .491343	29 28 27 26 25 24 23 22 21 20
19 18 17 16 15 14 13 12 11 10	.462932 .467051 .471164 .475271 .479373 .483468 .487556 .491637 .495711 .499776	.469414 .473562 .477702 .481834 .485957 .490072 .494178 .498275 .502362 .506438	.475925 .480100 .484266 .488421 .492566 .496699 .500821 .504932 509030 .513116	.482463 .486665 .490855 .495032 .499196 .503347 .507484 .511607 .515715 .519809	.489026 .493254 .497467 .501665 .505847 .510013 .514164 .518298 .522415 .526515	.495612 .499864 .504099 .508316 .512515 .516696 .520858 .525002 .529126 .533232	19 18 17 16 15 14 13 12 11
09 08 07 06 05 04 03 02 01	.503833 .507882 .511921 .515951 .519970 .523980 .527979 .531968 .535945 .539910	.510504 .514559 .518603 .522635 .526655 .530663 .534659 .538641 .542610 .546566	517189 521249 525296 529329 533348 537353 541343 545318 549278 553222	.523888 .527952 .532000 .536032 .540048 .544048 .548031 .551997 .555946 .559878	.530598 .534664 .538712 .542742 .546753 .550746 .554721 .558676 .562613 .566530	.537317 .541383 .545429 .549455 .553461 .557446 .561410 .565354 .569276 .573177	09 08 07 06 05 04 03 02 01

			SKEW	NESS			
t	0	.1	.2	.3	.4	.5	t
.00	.500000	506649	.513299	.519949	.526602	.533255	.00
.01	.503989	.510637	.517283	.523928	.530574	.537219	.01
.02	.507978	.514622	.521263	.527901	.534537	.541172	.02
.03	.511966	.518604	.525237	.531867	.538493	.545115	.03
.04	.515953	.522583	.529207	.535825	.542439	.549047	.04
.05	.519939	.526559	.533171	.539777	.546375	.552967	.05
.06	.523922	.530531	.537130	.543720	.550302	.556876	.06
.07	.527903	.534498	.541082	.547655	.554219	.560774	.07
.08	.531881	.538460	.545027	.551582	.558126	.564658	.08
.09	.535856	.542418	.548965	.555500	.562021	.568531	.09
.10	.539828	.546370	.552896	.559408	.565906	.572390	.10
.11	.543795	.550316	.556819	.563307	.569779	.576236	.11
.12	.547758	.554255	.560734	.567196	.573641	.580069	.12
.13	.551717	.558189	.564641	.571075	.577490	.583888	.13 .14
.14	.555670	.562115	.568539	.574943	.581327	.587693	.15
.15	.559618 .563559	.566033 .569944	.572427	.578800 .582645	.588963	.595260	.16
.16 .17	.567495	.573847	.580175	.586479	.592761	.599022	.17
.17	.571424	.577741	.584033	.590301	.596546	.602768	.18
.10	.575345	.581626	.587881	.594111	.600317	.606499	.19
				1			
.20	.579260	.585503	.591719	.597909	.604073	.610214	20
.21	.583166	589369	.595545	.601693	.607816	.613913	.21
.22	.587064	.593226	.599359	.605464	.611543	.617596	.22
-23	.590954	.597072	.603161	.609222	.615256	.621263	.23
.24 .25	.594835 .598706	.600908 .604733	.606951	.612966	.618953	.624913	.24
.25 .26	.602568	.608546	.610729 .614493	.616696	.622635	.628546	.25
.27	.606420	.612348	.618245	.620411 .624112	.626301	.632163	.26
.28	.610261	.616138	.621983	.627798	.629951 .633585	.635762 .639343	.27
.29	.614092	.619915	.625707	.631469	.637202	.642907	.28 .29
.30	.617911	.623680	.629417	.635125	.640803	.646453	
.31	.621720	.627432	.633113	.638764	.644386	.649981	.30 .31
.32	.625516	.631170	.636794	.642388	.647953	.653490	.32
.33	.629300	.634895	.640460	.645995	.651502	.656981	.33
.34	633072	.638606	.644111	.649586	.655034	.660454	.34
.35	.636831	.642303	.647746	.653161	.658547	.663907	.35
.36	.640576	.645986	.651366	.656718	.662043	.667342	.36
.37	.644309	.649653	.654970	.660258	.665521	.670757	.37
.38	.648027	.653306	.658557	.663781	.668980	.674153	.38
.39	.651732	.656943	.662128	.667286	.672420	.677530	.39
.40	.655422	.660564	.665682	.670774	.675842	.680887	.40
41	.659097	.664170	.669218	.674243	.679245	.684224	.41
.42	.662757	.667759	.672738	.677694	.682628	.687541	.42
.43	.666402	.671332	.676240	.681127	.685993	.690838	.43
.44	.670031	.674888	.679724	.684541	.689338	.694115	.44
.45	.673645	.678427	.683191	.687936	.692663	.697372	.45
.46	.677242	.681949	.686639	.691312	.695968	.700608	.46
.47	.680822	.685453	.690069	.694669	.699254	.703824	- 47
. 4 8 . 4 9	.684386	688940	.693480	.698006	.702519	.707019	.48
.+9	687933	692408	.696872	.701324	.705765	.710194	.49

			SKEWN	ESS		T	
t	.6	.7	.8	.9	1.0	1.1	t
.00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .11 .12 .13 .14 .15 .16 .17	.539910 .543864 .547805 .551734 .555650 .559553 .563443 .567318 .571180 .575028 .578861 .582649 .590269 .594041 .590269 .594041 .590269 .608967	.546566 .550508 .554436 .558349 .566132 .570001 .573854 .577691 .581512 .585317 .589106 .592877 .596632 .600370 .604090 .607792 .611477 .615144	.553222 .557151 .561064 .564960 .568840 .572703 .576549 .580378 .584190 .587983 .591759 .595517 .599257 .602977 .606680 .610363 .614027 .617672 .621298	.559878 .563791 .567687 .571565 .575425 .579266 .583088 .586892 .590676 .594441 .598186 .601912 .605618 .609304 .612970 .616615 .620241 .623845 .627429	566530 .570427 .574305 .578163 .58201 .585818 .589616 .593392 .597148 .600883 .604597 .608289 .611961 .615611 .619239 .622846 .626431 .629994 .633536	573177 .577057 .580915 .584751 .588566 .592359 .596129 .599878 .603604 .607307 .610988 .614647 .618283 .621896 .625486 .629053 .632598 .636119 .639617	.00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .11 .12 .13 .14 .15 .16
.18 .19 .20 .21 .22 .23 .24 .25 .26 .27 .28 .29	.608967 .612657 .616330 .619986 .623624 .627244 .630847 .634431 .637997 .641545 .645074	.618792 .622422 .626034 .629626 .633200 .636754 .640289 .643805 .647301 .650778	.624904 .624904 .632057 .635603 .639130 .642636 .646121 .649586 .653031 .656455 .659857	.634534 .638055 .641555 .645033 .648491 .651926 .655341 .658733 .662104 .665453	.637055 .6470552 .644027 .647480 .650910 .654318 .657704 .661067 .664408 .667726 .671021	.643092 .646544 .64992 .653377 .656759 .660118 .663453 .666765 .670053 .673318	.16 .19 .20 .21 .22 .23 .24 .25 .26 .27 .28
.30 .31 .32 .33 .34 .35 .37 .37	.652075 .655547 .659000 .662433 .665847 .669241 .672615 .675969 .679302 .682616	.657671 .661087 .664483 .667859 .671214 .674548 .677862 .681155 .684427 .687678	.663239 .666600 .669939 .673258 .676555 .679830 .683085 .686317 .689528	.668780 .672086 .675369 .678630 .681870 .685087 .688282 .691454 .694605 .697733	.674294 .677544 .680771 .683976 .687157 .690316 .693453 .696566 .699657 .702725	.679778 .682973 .686145 .689293 .692417 .695519 .698597 .701652 .704683 .707692	.30 .31 .32 .33 .34 .35 .36 .37 .38 .39
.40 .41 .42 .43 .44 .45 .46 .47 .48	.685909 .689181 .692433 .695664 .698875 .702064 .705232 .708380 .711506 .714611	.690908 .694117 .697304 .700470 .703615 .706739 .709840 .712921 .715979 .719016	.695885 .699031 .702155 .705257 .708337 .711396 .714432 .717446 .720439 .723409	.700839 .703923 .706984 .710023 .713040 .716035 .719007 .721957 .724884 .727789	.705770 .708793 .711792 .714769 .717723 .720655 .723564 .726450 .729314 .732155	.710677 .713639 .716577 .719493 .722386 .725256 .728103 .730927 .733728 .736506	.40 .41 .42 .43 .44 .45 .46 .47 .48 .49

			SKEW	NESS			
t	0	.1	.2	.3	.4	.5	t
.50 .51 .52 .53 .54	.691462 .694974 .698468 .701944 .705401 .708840	.695859 .699290 .702704 .706098 .709473 .712829	.700245 .703599 .706934 .710249 .713544 .716820	.704622 707901 .711159 .714397 .717615	.708990 .712194 .715378 .718541 .721684 .724805	.713347 .716480 .719591 .722681 .725751 .728798	.50 .51 .52 .53 .54
.56 .57 .58 .59	.712260 .715661 .719043 .722405	.716165 .719481 .722778 .726054	.720075 .723310 .726524 .729718	.723989 .727145 .730280 .733394	.727906 .730985 .734043 .737080	.731825 .734830 .737814 .740776	.56 .5 7 .58 .59
.60 .61 .62 .63 .64 .65 .66 .67	.725747 .729069 .732371 .735653 .738914 .742154 .745373 .748571 .751748 .754903	.729311 .732546 .735761 .738955 .742129 .745281 .748411 .751521 .754608 .757674	.732891 .736044 .739175 .742285 .745374 .748441 .751487 .754511 .757514 .760494	.736487 .739559 .742609 .745638 .748646 .751632 .754596 .757539 .760459 .763358	.740096 .743090 .746062 .749013 .751942 .754850 .757736 .760599 .763441 .766261	.743716 .746635 .749532 .752407 .755261 .758093 .760902 .763691 .766457 .769201	.60 .61 .62 .63 .64 .65 .66 .67 .68
.70 .71 .72 .73 .74 .75 .76 .77 .78	.758036 .761148 .764238 .767305 .770350 .773373 .776373 .779350 .782305 .785236	7.60719 7.63741 7.66741 7.69719 7.72674 7.75607 7.78518 7.81406 7.84271 7.87113	.763453 .766390 .769304 .772196 .775067 .777914 .780739 .783542 .786322 .789080	766235 .769090 .771922 .774733 .777521 .780287 .783031 .785752 .788451 .791128	.769060 .771836 .774590 .777322 .78032 .782719 .785385 .788029 .790650 .793249	.771923 .774624 .777302 .779959 .782593 .785206 .787797 .790366 .792913 .795438	.70 .71 .72 .73 .74 .75 .76 .77 .78 .79
.80 .81 .82 .83 .84 .85 .86 .87 .88	.788145 .791030 .793892 .796731 .799546 .802337 .805105 .807850 .810570 .813267	.789933 .792729 .795503 .798254 .800981 .803685 .806366 .809024 .811658 .814269	.791815 .794527 .797217 .799883 .802527 .805148 .807747 .810322 .812875 .815404	.793782 .796414 .799023 .801610 .804175 .806717 .809237 .811734 .814208 .816661	.795826 .798382 .800914 .803425 .805914 .808381 .810825 .813248 .815649 .818027	.797941 .800423 .802883 .805321 .807737 .810132 .812505 .814856 .817186 .819495	.80 .81 .82 .83 .84 .85 .86 .87 .88
.90 .91 .92 .93 .94 .95 .96 .97 .98	.815940 .818589 .821214 .823814 .826391 .828944 .831472 .833977 .836457 .838913	.816856 .819420 .821961 .824478 .826972 .829443 .831889 .834313 .836713 .839089	.817911 .820395 .822856 .825294 .827709 .830101 .832471 .834818 .837142 .839443	.819091 .821498 .823884 .826247 .828587 .830905 .833202 .835476 .837727 .839957	.820384 .822719 .825032 .827324 .829593 .831841 .834068 .836272 .838456 .840618	.821782 .824047 .826291 .828515 .830716 .832897 .835057 .837196 .839314 .841411	.90 .91 .92 .93 .94 .95 .96 .97

			SKEWN	221			Ī
		Τ .	Γ	Γ	Γ		1
t	.6	.7	.8	.9	1.0	1.1	t
.50	.717694	.722031	.726358	.730672	.734974	.739262	.50
.51	.720757	.725025	.729284	.733533	.737770	.741995	.51
.52	.723797	.727997	.732188	.736371	.740544	.744706	.52
.53	.726817	.730947	.735070	.739187	.743296	.747394	.53
.54	.729815	.733875	.737931	<i>.7</i> 41981	.746025	.750060	.54
.55	.732791	.736781	.740769	.744753	.748732	.752704	.55
.56	.735745	.739666	.743585	.747503	.751416	.755325	.56
.57	.738678	.742528	.746379	.750230	.754079	.757924	.57
.58	.741589	.745369	.749152	.752936	.756720	.760501	.58
.59	.744479	.748188	.751902	.755619	.759338	.763056	.59
.60	.747346	.750985	.755130	.758281	.761935	.765590	.60
.61	.750192	.753760	.757337	.760920	.764509	.768101	.61
.62	.753016	.756513	.760021	<i>.7</i> 63538	.767062	<i>.77</i> 0591	.62
.63	. 7 55818	.759245	.762684	.766134	.769593	.773059	.63
.64	. 7 58599	.761954	.765325	.768708	.772103	.775505	.64
.65	761357	.764642	.767944	.771261	<i>.77</i> 4590	. <i>777</i> 930	.65
.66	.764094	.767308	<i>.77</i> 0541	.773792	<i>.777</i> 05 <i>7</i>	.780334	.66
.67	. 7 66809	.769952	<i>77</i> 311 <i>7</i>	<i>.77</i> 6301	.779502	.782717	.67
.68	.769502	.772574	.775671	.778789	.781925	.785078	.68
.69	.772173	.775175	.778203	.781255	.784328	.787418	.69
.70	.774822	.777754	.780714	.783700	.786709	.789738	.70
.71	<i>.777</i> 450	.780311	.783203	.786124	.789069	.792036	.71
.72	.780056	.782847	.785671	.788526	.791408	.794314	.72
.73	.782640	.785361	<i>.7</i> 88118	<i>.7</i> 90908	<i>.</i> 793727	.796571	.73
.74 .75	.785202	.787853	.790543	.793268	.796024	.798808	.74
.75	.787743	.790324	.792947	.795607	.798301	.801024	.75
.76	.790262	.792774	.795330	.797926	.800557	.803220	.76
.77	.792759	.795202	.797692	.800223	.802793	.805396	.77
.78	.795234	.797609	.800033	.802500	.805008	.807551	.78
. 7 9	.797688	.799995	.802352	.804757	.807203	.809687	.79
.80	.800121	.802359	.804651	.806992	.809378	.811803	.80
.81	.802532	.804703	.806929	.809208	.811532	.813899	.81
.82	.804922	.807025	.809187	.811403	.813667	.815975	.82
.83	.80 <i>72</i> 90	.809326	.811424	.813577	.815782	.818032	.83
.84	.809637	.811606	.813640	.815732	.817877	.820070	.84
.85	.811962	.813866	.815835	.817866	.819952	.822088	.85
.86	.814267	.816104	.818011	.819980	.822008	.824087	.86
.87	.816550	.818322	.820166	.822075	.824044	.826067	.87
.88	.818812	.820519	.822301	.824150	.826061	.828028	.88
.89	.821053	.822696	.824415	.826205	.828059	.829971	.89
.90	.823273	.824852	.826510	.828240	.830037	.831894	.90
.91	.825473	.826988	.828585	.830256	.831997	.833799	.91
.92	.827651	.829103	.830640	.832253	.833937	.835686	.92
.93	.829809	.831198	.832675	.834231	.835859	.837554	.93
.94	.831946	.833274	.834690	.836189	.837762	.839404	.94
.95	.834063	.835329	.836686	.838128	.839647	.841236	.95
.96	.836159	.837364	.838663	.840049	.841513	.843050	.96
.97	.838234	.839379	.840620	.841950	.843361	.844846	.97
,98	.840290	.841374	.842558	.843833	.845191	.846625	.98
.99	.842325	.843350	.844477	.845697	.847002	.848386	.99
					<u></u>	<u> </u>	<u></u>

			SKEWI	IESS			
t	0	.1	.2	.3	.4	.5	t
1.00 1.01 1.02 1.03	.841345 843752 .846136 .848495 .850830	.841442 .843772 .846078 .848361 .850620	.841721 .843977 .846210 .848421 .850609	.842165 .844351 .846515 .848657 .850777	.842758 .844877 .846975 .849052 .851108	.843487 .845543 .847578 .849592 .851586	1.00 • 1.01 1.02 1.03 1.04
1.04 1.05 1.06 1.07 1.08 1.09	.853141 .855428 .857690 .859929	.852857 .855070 .857259 .859426 .861570	.852775 .854918 .857039 .859137 .861213	.852876 .852876 .854952 .857008 .859042 .861054	.853142 .855156 .857149 .859121 .861073	.853560 .855514 .857447 .859361 .861254	1.05 1.06 1.07 1.08 1.09
1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18	.864334 .866500 .868643 .870762 .872857 .874928 .876976 .879000 .881000	.863690 .865788 .867862 .869914 .871943 .873949 .875933 .877894 .879832	.863268 .865300 .867310 .869298 .871264 .873208 .875131 .877032 .878912	.863045 .865015 .866964 .868891 .870798 .872583 .874548 .876393 .878216	.863004 .864915 .866805 .866875 .870524 .872354 .874164 .875954 .877724	.863128 .864982 .866816 .868631 .870427 .872203 .873960 .875697 .877416	1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17
1.19 1.20 1.21 1.22 1 23 1.24 1.25 1.26 1.27 1.28 1.29	.882977 .884930 .886861 .888768 .890651 .892512 .894350 .896165 .897958 .899727 .901475	.881748 .883642 .885514 .887363 .889191 .890997 .892780 .894543 .896283 .898002 .899700	.882608 .884423 .886218 .887992 .889745 .891477 .893188 .894879 .896550 .898200	.880019 881802 .883565 .885307 .887029 .888732 .890414 .892077 893720 895344 .896948	.879474 .881205 .882916 .884609 .886281 .887935 .889570 .891186 .892783 .894362 .895922	.879116 .880797 .882460 .884104 .885729 .887336 .888925 .890497 .892050 .893585 .895102	1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29
1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39	.903200 .904902 .906582 .908241 .909877 .911492 .913085 .914657 .916207 .917736	.901376 903032 .904666 .906280 .907873 .909445 .910996 .912528 .914039 .915530	.899030 .901440 .903029 .904600 .906150 .907681 .909192 .910684 .912157 .913611	.898533 .900099 .901646 903174 904683 .906174 .907646 .909100 910536 .911954	897464 898988 .900493 .901980 903450 .904902 .906336 .907753 .909152 .910534	.896602 .898085 .899550 .900998 .902429 .903843 .905241 .906621 .907985 .909333	1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39
1 40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48	.919243 .920730 .922196 .923641 .925066 .926471 .927855 .929219 .930563 .931888	.917001 .918452 .919884 .921296 .922689 .924062 .925417 .926752 .928064 .929367	.915046 .916463 .917860 .919239 .920600 .921943 .923267 .924574 .925863 .927134	.913353 .914735 .916099 .917446 .918775 .920087 .921382 .922660 .973921 .925165	911899 913247 .914579 .915893 .917191 .918473 .919738 .920987 922221 923438	.910664 .911979 .913278 .914561 .915828 .917080 .918316 .919537 .920743 921933	1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49

t 6				SKEWN	ESS			
1.00 .844340 .845306 .846377 .847543 .848796 .850129 1 1.01 .846335 .847243 .848258 .849370 .850572 .851855 1 1.02 .848310 .849161 .850120 .851179 .852330 .853564 1 1.03 .850265 .851059 .851964 .852290 .852938 .853789 .854798 .855595 .856498 .857499 .858589 1 1.06 .856012 .856639 .857383 .858236 .859187 .860230 1 1.07 .857889 .858461 .859153 .8589955 .860859 .861854 1 1.08 .859746 .860249 .862639 .863342 .864150 .865063 1 1.10 .863403 .863815 .864354 .865009 .867375 .868189 1 1.12 .866944 .867293 .867733 .868903 .869909 .870533 .871260 1	t	.6	7			1.0	1.1	t
1.01		844310	845306	846377	847543	848796	850129	1.00
1.02								1.01
1.03								1.02
1.04 8.852200* .852938 .853789 .854743 .855793 .856931 1 1.05 .854116 .854798 .855595 .856498 .857499 .858589 .858589 .856391 .857889 .858461 .859153 .859955 .860859 .861854 .100 .861584 .8602049 .862639 .861557 .862513 .863463 .109 .861584 .862049 .862639 .863342 .864150 .865054 .11 .863403 .863815 .864354 .865009 .865771 .866630 .11 .8658203 .865563 .866052 .866659 .867375 .868189 .11 .866984 .867293 .867733 .868293 .868962 .869733 .11 .11 .874281 .874268 .871260							255256	1.02
1.05								1.04
1.06 .856012 .856639 .857383 .859365 .859187 .860230 1 1.07 .857889 .858461 .859153 .859955 .860859 .861854 1.09 .861584 .862049 .862639 .863342 .864150 .865054 1.10 .863403 .863815 .864354 .865009 .865771 .86630 1.11 .865203 .865563 .866052 .866599 .867375 .868189 1.12 .866984 .867293 .867733 .868293 .868962 .869733 1.13 .866984 .867293 .867733 .868293 .868962 .869733 1.14 .870489 .870698 .871041 .871508 .872088 .872772 1.15 .872214 .872373 .872669 .873090 .873656 .875491 1.17 .875608 .875671 .875874 .876206 .876556 .877214 1 1.18 .872777 .877293 .877								1.05
1.07 .857889 .858461 .859153 .85955 .860859 .861854 1.08 .859746 .860264 .860905 .861657 .862513 .863463 1 1.09 .861584 .862049 .862639 .863342 .864150 .865051 1 1.10 .863403 .863815 .864354 .865009 .867771 .86630 1.11 .865203 .865563 .867333 .868293 .868962 .869733 1 1.12 .866984 .867293 .867733 .868293 .868962 .869733 1 1.13 .868746 .869004 .869396 .869909 .870538 .872216 .872214 .872373 .872669 .873090 .873626 .872214 .872373 .872669 .873090 .873626 .874268 .872712 1 .11 .875608 .875671 .875874 .876206 .875149 .875749 .874268 .87214 .87234 .11 .818278 .877451 .87733								
1.08 .859746 .860264 .86039 .861657 .862513 .863463 1 1.09 .861584 .862049 .862639 .863342 .864150 .865054 1 1.10 .863403 .863815 .864354 .865009 .867375 .868189 1 1.12 .866984 .867293 .867333 .868293 .868962 .869735 1.13 .863746 .869004 .863396 .869999 .870533 .871260 1.14 .870489 .870698 .871041 .871508 .872088 .872772 1 1.15 .872214 .873373 .872669 .873090 .873534 .874268 1 1.16 .873920 .874311 .874280 .876566 .875149 .875474 .876206 .876656 .877214 1 1.18 .877277 .877293 .877451 .877339 .878146 .878664 1 .879221 .880661 .880554 .880756 .881081								1.06
1.09 .861584 .862049 .862639 .863342 .864150 .865054 1 1.10 .863403 .863815 .864354 .865009 .865771 .86630 1 1.11 .865203 .865563 .866052 .866659 .867375 .868189 1 1.12 .866994 .867293 .867333 .868293 .868962 .869733 1 1.13 .868746 .869004 .869396 .869909 .870533 .871260 1.14 .870489 .870698 .871041 .871508 .872088 .8722772 1 1.15 .872214 .872373 .872669 .873090 .873626 .874268 1 1.16 .873920 .874031 .874260 .876656 .877214 .875274 .876206 .876656 .877214 1 1.17 .875802 .878898 .879011 .879373 .878146 .876264 .876761 .878664 1 1 1 .882178<								1.07
1.10 .863403 .863815 .864354 .865009 .865771 .866630 1 1.11 .865203 .865563 .866052 .86659 .867375 .868189 1 1.12 .866984 .867293 .867733 .868293 .868962 .869733 1 1.13 .868746 .869004 .869396 .869909 .870533 .871260 1 1.14 .870489 .870698 .871041 .871508 .872088 .872772 .87214 .87214 .87214 .87214 .87214 .87214 .87214 .87214 .87217 .87214 .87217 .87237 .872669 .873090 .873626 .874268 .875272 .87248 .874280 .874656 .875149 .875749 .87549 .87549 .87549 .87549 .87549 .87549 .87549 .87549 .87549 .87656 .875149 .875749 .87549 .87549 .87549 .876566 .875149 .875749 .877274 .8723 .87233 .87451 .875454 .876506 .876566 .875149 .8754664								1.08
1.11 .865203 .865563 .866052 .866659 .867375 .868189 1.12 .866984 .867293 .867333 .868293 .868962 .869733 1.13 .868746 .869004 .869396 .869909 .870533 .871260 1.14 .870489 .870698 .871041 .871508 .872088 .872772 1 1.15 .872214 .872373 .872669 .873090 .873626 .874268 1 1.16 .873920 .874031 .874280 .874656 .875149 .875749 1 1.17 .875608 .875671 .875874 .876206 .876656 .877214 1.18 .877277 .877293 .877451 .877739 .878146 .878664 1 1.19 .878929 .878898 .879011 .879256 .879622 .880099 1 1.20 .880562 .880486 .880554 .880756 .881081 .881519 1 1 1.28 .882375 .8833591 .883710 .883394 .884314 1 </td <td></td> <td>.861584</td> <td>.862049</td> <td></td> <td></td> <td>.804150</td> <td>.805054</td> <td>1.09</td>		.861584	.862049			.804150	.805054	1.09
1.12 .866984 .867293 .867733 .868293 .868962 .869303 .11 1.14 .870489 .870698 .871041 .871508 .872088 .872772 11 1.15 .872214 .872373 .872669 .873090 .873626 .874268 .872428 .874269 .873090 .873626 .875426 .876566 .875149 .875749 1 .875508 .875571 .875874 .876206 .876566 .877214 .878293 .874551 .877379 .878146 .878664 .878664 1 .8787277 .877293 .877451 .877379 .878146 .878664 1 .878694 .880554 .880566 .880666 .880666 .880666	1.10							1.10
1.13 .868746 .869004 .869396 .869909 .870533 .871260 1 1.14 .870489 .870698 .871041 .871508 .872088 .872772 1 1.15 .872214 .872373 .872669 .873090 .873626 .874268 1 1.16 .873920 .874031 .874280 .874656 .875149 .875749 1.17 .875608 .875671 .875874 .876206 .876656 .877214 1 1.18 .877277 .877293 .877451 .877399 .878146 .878664 1 1.19 .878929 .878898 .879011 .879256 .879622 .880099 1 1.20 .880562 .880486 .880554 .880756 .881081 .881519 1 1.21 .882178 .883699 .883591 .883141 .882525 .882924 1 1.22 .883755 .885145 .885085 .885163 .886563 .8865	1.11							1.11
1.14 .870489 .870698 .871041 .871508 .872088 .872772 1 1.15 .872214 .872373 .872669 .873090 .873626 .874268 1 1.16 .873920 .874031 .874280 .874656 .875149 .875749 1 1.17 .875608 .875671 .875874 .876206 .876656 .877214 1 1.18 .877277 .877293 .877451 .87739 .878146 .878664 1 1.19 .878929 .878898 .879011 .879256 .879622 .880099 1 1.20 .880562 .880486 .880554 .880756 .881081 .881519 1 1.21 .882178 .882056 .882081 .882241 .882525 .882924 1 1.22 .883775 .883609 .833591 .8835163 .885368 .885653 .886563 .886563 .886672 .887051 1 1 .2886918 .887505								1.12
1.15 .872214 .872373 .872669 .873090 .873626 .874268 1 1.16 .873920 .874031 .874280 .874656 .875149 .875749 1 1.17 .875608 .875671 .875874 .876206 .876656 .877214 1 1.18 .877277 .877293 .877451 .877739 .878146 .878664 1 1.19 .8782929 .878898 .879011 .879256 .881081 .881519 1.20 .880562 .880486 .880554 .880756 .881081 .881519 1.21 .882178 .882056 .882081 .882241 .882525 .882924 1.22 .883775 .883609 .883591 .883710 .883568 .885661 1.24 .886918 .886665 .886563 .88601 .886767 .887051 1 1.25 .884463 .889653 .889429 .889519 .889730 1 1.27 .8								1.13
1.16 .873920 .874031 .874280 .874656 .875149 .875749 1.17 1.17 .875608 .875671 .875874 .876206 .876656 .877214 1 1.18 .877277 .877233 .877451 .877739 .878146 .878664 1 1.19 .878929 .878898 .879011 .879256 .879622 .880099 1 1.20 .880562 .880486 .880554 .880756 .881081 .881519 1 1.21 .882178 .882056 .882081 .882241 .88255 .882924 1 1.22 .883775 .833609 .883591 .883954 .884314 1 1 1.23 .885355 .885163 .885663 .886601 .886767 .887051 1 1 1.24 .886918 .886653 .886601 .886767 .887051 1 1.25 .88463 .888167 .888025 .888023 .888150 .887301 1 1.27								1.14
1.17 .875608 .875671 .875874 .876206 .876656 .877214 1 1.18 .877277 .877293 .877451 .877739 .878146 .878664 1 1.19 .878929 .878898 .879011 .879256 .879622 .880099 1 1.20 .880562 .880486 .880554 .880756 .881081 .881519 1 1.21 .882178 .882056 .882081 .882241 .882525 .882924 1 1.22 .883775 .883609 .883591 .883710 .883954 .884141 1 .23 .88463 .886653 .885663 .885667 .887051 1 .24 .886918 .886665 .88653 .886601 .886767 .887051 1 .25 .88463 .88167 .888025 .888023 .88150 .887301 .89121 .89150 .8893730 1 .27 .891501 .89123 .890873 .891048 .891048 .894919 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.15</td></t<>								1.15
1.18 877277 877293 877451 87739 878146 878664 1 1.19 878929 878898 879011 879256 879622 880099 1 1.20 880562 880486 880554 880756 881081 881519 1 1.21 882178 882056 882081 882241 882525 882224 1 1.22 883775 883609 883591 883710 883954 884314 1 1.23 885355 885145 885085 885163 885368 885660 885661 88667 887051 1 1.24 886918 88665 886563 886601 886767 887051 1 1.25 88463 888167 888025 888023 888150 8888397 1 1.27 891501 891123 890900 890821 890873 891048 1 1.28 892995 892576 892314 892197								1.16
1.19 .878929 .878898 .879011 .879256 .879622 .880099 1 1.20 .880562 .880486 .880554 .880756 .881081 .881519 1 1.21 .882178 .882056 .882081 .882241 .882525 .882024 1 1.22 .883775 .883609 .883591 .883710 .883954 .884314 1 1.23 .885355 .885145 .885085 .885163 .885368 .885690 1 1.24 .886918 .886665 .886563 .88601 .886767 .887051 1 1.25 .88463 .889653 .889429 .889429 .889373 .891048 1 1.26 .88991501 .891123 .899900 .890821 .890873 .891048 1 1.28 .892995 .892576 .892314 .892197 .892213 .892352 1 1.30 .895931 .895433 .895095 .894904 .894849 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.17</td>								1.17
1.20 .880562 .880486 .880554 .880756 .881081 .881519 1 1.21 .882178 .882056 .882081 .882241 .882525 .882924 1.22 .883775 .883609 .883591 .883710 .883954 .884314 1 1.23 .885355 .885145 .885085 .885163 .885368 .885690 1 1.24 .886918 .886665 .886563 .886601 .886767 .887051 1 1.25 .88463 .888167 .889429 .889519 .889730 1 1.26 .889991 .899512 .899500 .890821 .890801 .890821 .890821 .890730 .89217 .892213 .892352 1 1.27 .891501 .891123 .890900 .890821 .890821 .890821 .890821 .89213 .892358 .893538 .893538 .893642 1 1.30 .895931 .894012 .893712 .893558								1.18
1.21 .882178 .882056 .882081 .882241 .882525 .882924 1 1.22 .883775 .883609 .883591 .883710 .883954 .884314 1 1.23 .885355 .885145 .885085 .885163 .885368 .885690 1 1.24 .886918 .886656 .886563 .886601 .886767 .887051 1 1.25 .888463 .888167 .888025 .888023 .888150 .887301 1 1.26 .889991 .889653 .889470 .889429 .889150 .887330 1 1.27 .891501 .891123 .890900 .890821 .890873 .891048 1 1.28 .892995 .892576 .892314 .892197 .892213 .892352 1 1.30 .895931 .895433 .895095 .894904 .894849 .894919 1 1.31 .897374 .896838 .896462 .896236 .896146 <td>1.19</td> <td>.878929</td> <td>.878898</td> <td>.879011</td> <td>.879256</td> <td>.879622</td> <td>.880099</td> <td>1.19</td>	1.19	.878929	.878898	.879011	.879256	.879622	.880099	1.19
1.22 .883775 .883609 .883591 .883710 .883954 .884314 1 1.23 .885355 .885145 .885085 .885163 .885368 .885690 1 1.24 .886918 .88665 .886563 .886601 .886767 .887051 1.25 .888463 .888167 .888025 .888023 .888150 .888397 1 1.26 .889991 .889653 .889470 .889429 .889150 .88730 1 1.27 .891501 .891123 .890900 .890821 .890873 .891048 1 1.28 .892995 .892576 .892314 .892197 .892213 .892352 1 1.29 .894471 .894012 .893712 .893558 .893538 .893642 1 1.30 .895931 .895433 .895095 .894904 .894849 .894919 1 1.31 .897374 .896838 .896462 .896236 .896146 .896181 1 1.32 .898800 .898226 .897815 .8975	1.20							1.20
1.23 .885355 .885145 .885085 .885163 .885368 .885690 1 1.24 .886918 .886665 .886563 .886001 .886767 .887051 1 1.25 .888463 .888167 .888025 .888023 .888150 .888397 1 1.26 .889991 .889653 .889470 .89429 .889519 .889730 1 1.27 .891501 .891123 .890900 .890821 .890873 .891048 .891048 .891048 .891048 .891048 .892197 .892213 .892352 1 .29 .894471 .894012 .893712 .893558 .893538 .893642 1 .894849 .894849 .894919 1 .31 .897374 .896838 .896462 .896236 .896146 .896181 1 .32 .898800 .898226 .897815 .897553 .897428 .897430 1 .33 .90210 .899599 .899152 .898855 .88697 .898666 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.21</td>								1.21
1.24 .886918 .886665 .886563 .886601 .886767 .887051 1 1.25 .888463 .888167 .888025 .888023 .888150 .888397 1 1.26 .889991 .889653 .889470 .889429 .889519 .889730 1 1.27 .891501 .891123 .890900 .890821 .890823 .891048 .891048 .891048 .891048 .892197 .892213 .892352 1 1.28 .892995 .892576 .892314 .892197 .892213 .892352 1 1.29 .894471 .894012 .893712 .893558 .893538 .893642 1 1.30 .895931 .895433 .895095 .894904 .894849 .894919 1 1.31 .897374 .896838 .896462 .896236 .896146 .896181 1 1.32 .898800 .898226 .897815 .897553 .897428 .897430 1 1.33 .90210 .899599 .899152 .898855 .898697 <	1.22							1.22
1.25 .888463 .888167 .888025 .888023 .888150 .888397 1 1.26 .889991 .889653 .889470 .889429 .889519 .889730 1 1.27 .891501 .89123 .890900 .890821 .890873 .891048 1 1.28 .892905 .892576 .892314 .892197 .892213 .892352 1 1.29 .894471 .894012 .893712 .893558 .893538 .893642 1 1.30 .895931 .895433 .895095 .894904 .894849 .894919 1 1.31 .897374 .896838 .896462 .896236 .896146 .896181 1 1.32 .898800 .898226 .897815 .897553 .897428 .897430 1 1.33 .900210 .899599 .899152 .89855 .898697 .898666 1 1.34 .901603 .900496 .90444 .90143 .89951 .899888 1 1.35 .90281 .90289 .901781								1.23
1.26 .889991 .889653 .889470 .889429 .889519 .889730 1 1.27 .891501 .891123 .890900 .890821 .890873 .891048 1 1.28 .892995 .892576 .892314 .892197 .892213 .892352 1 1.29 .894471 .894012 .893712 .893558 .893538 .893642 1 1.30 .895931 .895433 .895095 .894904 .894849 .894919 1 1.31 .897374 .896838 .896462 .896236 .896146 .896181 1 1.32 .898800 .898226 .897815 .897553 .897428 .897430 1 1.33 .900210 .899599 .899152 .898855 .898697 .898666 1 1.34 .901603 .900956 .900474 .900143 .899951 .899888 1 1.35 .902981 .902298 .901781 .901416 .901192 .901098 1 1.36 .904342 .903625 .903073 </td <td>1.24</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.24</td>	1.24							1.24
1.27 .891501 .891123 .890900 .890821 .890873 .891048 1 1.28 .892995 .892576 .892314 .892197 .892213 .892352 1 1.29 .894471 .894012 .893712 .893558 .893538 .893642 1 1.30 .895931 .895433 .895095 .894904 .894849 .894919 1 1.31 .897374 .896838 .896462 .896236 .896146 .896181 1 1.32 .898800 .898226 .897815 .897553 .807428 .897430 1 1.33 .900210 .899599 .899152 .898855 .898697 .898666 .898666 1.34 .901603 .900956 .900474 .900143 .899951 .899888 1 1.35 .902981 .902298 .901781 .901416 .901192 .901098 1 1.36 .904342 .903625 .903073 .902676 .902419 .902294 1 1.37 .905687 .904936 .904351 .903633 .90477 1 1.39 .908311 .907512 .906863 .906370 .906200 .905804<		.888463	.888167			.888150	.888397	1.25
1.28 .892995 .892576 .892314 .892197 .892213 .892352 1 1.29 .894471 .894012 .893712 .893558 .893538 .893642 1 1.30 .895931 .895433 .895095 .894904 .894849 .894919 1 1.31 .897374 .896838 .896462 .896236 .896146 .896181 1 1.32 .898800 .898226 .897815 .897553 .897428 .897430 1 1.33 .900210 .899599 .899152 .898855 .898697 .898666 1 1.34 .901603 .900956 .900474 .900143 .899951 .899888 1 1.35 .902981 .902298 .901781 .901416 .901192 .901098 1 1.36 .904342 .903625 .903073 .902676 .902419 .902294 1 1.37 .905687 .904936 .904351 .903921 .903633 .904477 1 1.38 .907017 .906232 .905614 </td <td>1.26</td> <td></td> <td></td> <td></td> <td></td> <td>.889519</td> <td>.889730</td> <td>1.26</td>	1.26					.889519	.889730	1.26
1.29 .894471 .894012 .893712 .893558 .893538 .893642 1 1.30 .895931 .895433 .895095 .894904 .894849 .894919 1 1.31 .897374 .896838 .896462 .896236 .896146 .896181 1 1.32 .898800 .898226 .897815 .897553 .897428 .897430 1 1.33 .900210 .899599 .899152 .898855 .898697 .898666 1 1.34 .901603 .900956 .900474 .900143 .899951 .899888 1 1.35 .902981 .902298 .901781 .901416 .901192 .901098 1 1.36 .904342 .903625 .903073 .902676 .902419 .902294 1 1.37 .905687 .904936 .904351 .903921 .903633 .903477 1 1.38 .907017 .906232 .905614 .905152 .904833 .904647 1 1.39 .908331 .907512 .906863 .906370 .906020 .905804 1 1.40 .909629 .908778 .908098 .907574 .907194	1.27					.890873	.891048	1.27
1.30 .895931 .895433 .895095 .894904 .894849 .894919 1 1.31 .897374 .896838 .896462 .896236 .896146 .896181 1 1.32 .898800 .898226 .897815 .897553 .897428 .897430 1 1.33 .900210 .899599 .899152 .898855 .898697 .898666 1 1.34 .901603 .900956 .900474 .900143 .899951 .899888 1 1.35 .902981 .902298 .901781 .901416 .901192 .901098 1.36 .904342 .903625 .903073 .902676 .902419 .902294 1 1.37 .905687 .904936 .904351 .903921 .903633 .903477 1 1.38 .907017 .906232 .905614 .905152 .904833 .904647 1 1.39 .908331 .907512 .906863 .906370 .906020 .905804 1 1.40 .909629 .908778 .908098 .90	1.28					.892213	.892352	1.28
1.31 .897374 .896838 .896462 .896236 .896146 .896181 1 1.32 .898800 .898226 .897815 .897553 .897428 .897430 1 1.33 .900210 .899599 .899152 .898855 .898697 .898666 1 1.34 .901603 .900956 .900474 .900143 .899951 .899888 1 1.35 .902981 .902298 .901781 .901496 .901192 .901098 1 1.36 .904342 .903625 .903073 .902676 .902419 .902294 1 1.37 .905687 .904936 .904351 .903921 .903633 .903477 1 1.38 .907017 .906232 .905614 .905152 .904833 .904647 1.39 .908331 .907512 .906863 .906370 .906020 .905804 1 1.40 .909629 .908778 .908098 .907574 .907194 .9069	1.29	.894471	.894012	.893712	.893558	.893538	.893642	1.29
1.32 .898800 .898226 .897815 .897553 .897428 .897430 1 1.33 .900210 .899599 .899152 .898855 .898697 .898666 1 1.34 .901603 .900956 .900474 .900143 .899951 .898888 1 1.35 .902981 .902298 .901781 .901416 .901192 .901098 1 1.36 .904342 .903625 .903073 .902676 .902419 .902294 1 1.37 .905687 .904936 .904351 .903921 .903633 .903477 1 1.38 .907017 .906232 .905614 .905152 .904833 .904647 1 1.39 .908331 .907512 .906863 .906370 .906020 .905804 1 1.40 .909629 .908778 .908098 .907574 .907194 .906949 1 1.41 .910912 .910030 .909318 .908764 .908355 .908081 1 1.42 .912179 .911266 .910524 .909941 .900503 .909201 1.43 .913431 .912488 .911771 .911104 .910638 .910308	1.30							1.30
1.33 .900210 .899599 .899152 .898855 .898697 .898666 1 1.34 .901603 .900956 .900474 .900143 .899951 .899888 1 1.35 .902981 .902298 .901781 .901416 .901192 .901098 1 1.36 .904342 .903625 .903073 .902676 .902419 .902294 1 1.37 .905687 .904936 .904351 .903921 .903633 .903477 1 1.38 .907017 .906232 .905614 .905152 .904833 .904647 1 1.39 .908331 .907512 .906863 .906370 .906020 .905804 1 1.40 .999629 .908778 .908098 .907574 .907194 .906949 1 1.41 .910912 .910030 .909318 .908764 .908355 .908081 1 1.42 .912179 .911266 .910524 .909941 .90503 .909201 1.43 .913431 .912488 .911771 .911104 .910638 .910308 1.44 .914669 .913696 .912895 .912254 .911761 .911403								1.31
1.34 .901603 .900956 .900474 .900143 .899951 .899888 1 1.35 .902981 .902298 .901781 .901416 .901192 .901098 1 1.36 .904342 .903625 .903073 .902676 .902419 .902294 1 1.37 .905687 .904936 .904351 .903921 .903633 .903477 1 1.38 .907017 .906232 .905614 .905152 .904833 .904647 1 1.39 .908331 .907512 .906863 .906370 .906020 .905804 1 1.40 .990629 .908778 .908098 .907574 .907194 .906949 1 1.41 .910912 .910030 .909318 .908764 .908355 .908081 1 1.42 .912179 .911266 .910524 .909941 .909503 .909201 1.43 .913431 .912488 .911717 .911104 .910638 .910308 1.44 .914669 .913696 .912895 .912254 .911761 .911403 1.45 .915891 .914889 .914060 .913391 .912870 .912486	1.32				.897553	.897428	.897430	1.32
1.35 .902981 .902298 .901781 .901416 .901192 .901098 1 1.36 .904342 .903625 .903073 .902676 .902419 .902294 1 1.37 .905687 .904936 .904351 .903921 .903633 .903477 1 1.38 .907017 .906232 .905614 .905152 .904833 .904647 1 1.39 .908331 .907512 .906863 .906370 .906020 .905804 1 1.40 .909629 .908778 .908098 .907574 .907194 .906949 1 1.41 .910912 .910300 .909318 .908764 .908355 .908081 1 1.42 .912179 .911266 .910524 .909941 .900503 .909201 1.43 .913431 .912488 .911717 .911104 .910638 .910308 1 1.44 .914669 .913696 .912895 .912254 .911761 .9114	1.33		.899599	.899152	.898855	.898697	.898666	1.33
1.36 .904342 .903625 .903073 .902676 .902419 .902294 .902294 1.37 .905687 .904936 .904351 .903921 .903633 .903477 .903921 1.38 .907017 .906232 .905614 .905152 .904833 .904647 .904833 1.39 .908331 .907512 .906863 .906370 .906020 .905804 .905804 1.40 .909629 .908778 .908098 .907574 .907194 .906949 .90444 1.41 .910912 .910030 .909318 .908764 .908355 .908081 .908081 1.42 .912179 .911266 .910524 .909941 .909503 .909201 1.43 .913431 .912488 .911717 .911104 .910638 .910308 1.44 .914669 .913696 .912895 .912254 .911761 .911403 1.45 .915891 .914889 .914060 .913391 .912870 .912486	1.34	.901603			.900143	.899951	.899888	1.34
1.37 .905687 .904936 .904351 .903921 .903633 .903477 1 1.38 .907017 .906232 .905614 .905152 .904833 .904647 1 1.39 .908331 .907512 .906863 .906370 .906020 .905804 1 1.40 .909629 .908778 .908098 .907574 .907194 .906949 1 1.41 .910912 .910030 .909318 .908764 .908355 .908081 1 1.42 .912179 .911266 .910524 .909941 .90503 .909201 1 1.43 .913431 .912488 .911717 .911104 .910638 .910308 1 1.44 .914669 .913696 .912895 .912254 .911761 .911403 1 1.45 .915891 .914889 .914060 .913391 .912870 .912486 1	1.35	.902981	.902298	.901781	.901416	.901192	.901098	1.35
1.38 .907017 .906232 .905614 .905152 .904833 .904647 1.39 .908331 .907512 .906863 .906370 .906020 .905804 1 1.40 .909629 .908778 .908098 .907574 .907194 .906949 1 1.41 .910912 .910030 .909318 .908764 .908355 .908081 1 1.42 .912179 .911266 .910524 .909941 .90503 .909201 1 1.43 .913431 .912488 .911717 .911104 .910638 .910308 1 1.44 .914669 .913696 .912895 .912254 .911761 .911403 1 1.45 .915891 .914889 .914060 .913391 .912870 .912486 1	1.36	.904342	.903625	.903073	.902676	.902419	.902294	1.36
1.39 .908331 .907512 .906863 .906370 .906020 .905804 1 1.40 .909629 .908778 .908098 .907574 .907194 .906949 1 1.41 .910912 .910030 .909318 .908764 .908355 .908081 1 1.42 .912179 .911266 .910524 .909941 .909503 .909201 1 1.43 .913431 .912488 .911717 .911104 .910638 .910308 1 1.44 .914669 .913696 .912895 .912254 .911761 .911403 1.45 .915891 .914889 .914060 .913391 .912870 .912486	1.37	.905687	.904936	.904351	.903921	.903633	.903477	1.37
1.40 .909629 .908778 .908098 .907574 .907194 .906949 1 1.41 .910912 .910030 .909318 .908764 .908355 .908081 1.42 .912179 .911266 .910524 .909941 .909503 .909201 1 43 .913431 .912488 .911717 .911104 .910638 .910308 1.44 .914669 .913696 .912895 .912254 .911761 .911403 1.45 .915891 .914889 .914060 .913391 .912870 .912486	1.38	.907017	.906232	.905614	.905152	.904833	.904647	1.38
1.41 .910912 .910030 .909318 .908764 .908355 .908081 1 1.42 .912179 .911266 .910524 .909941 .909503 .909201 1 1 43 .913431 .912488 .911717 .911104 .910638 .910308 1 1.44 .914669 .913696 .912895 .912254 .911761 .911403 1 1.45 .915891 .914889 .914060 .913391 .912870 .912486 1	1.39	.908331	.907512	.906863	.906370	.906020	.905804	1.39
1.41 .910912 .910030 .909318 .908764 .908355 .908081 1 1.42 .912179 .911266 .910524 .909941 .909503 .909201 1 1 43 .913431 .912488 .911717 .911104 .910638 .910308 1 1.44 .914669 .913696 .912895 .912254 .911761 .911403 1 1.45 .915891 .914889 .914060 .913391 .912870 .912486 1					.907574	.907194	.906949	1.40
1 43 .913431 .912488 .911717 .911104 .910638 .910308 1.44 .914669 .913696 .912895 .912254 .911761 .911403 1.45 .915891 .914889 .914060 .913391 .912870 .912486			1			.908355	.908081	1.41
1 43 .913431 .912488 .911717 .911104 .910638 .910308 .9130308 1.44 .914669 .913696 .912895 .912254 .911761 .911403 .91403 1.45 .915891 .914889 .914060 .913391 .912870 .912486 .91391					.909941	.909503	.909201	1.42
1.44	1 43	.913431	.912488	.911717	.911104	.910638	.910308	1.43
1.45 .915891 .914889 .914060 913391 .912870 .912486 1	1.44	.914669			.912254			1.44
	1.45	.915891	.914889	.914060	913391			1.45
1,46 .917098 .916068 .915212 .914516 .913968 .913557 :	1.46	.917098	.916068	.915212				1.46
	1.47	.918291	.917233	.916350				1.47
1.48 .919469 .918385 .917474 .916725 .916125 .915664	1.48	.919469	.918385	.917474				1.48
	1.49	.920633	.919522	.918586				1.49

			SKEW	NESS			
t	0	.1	.2	.3	.4	.5	t
1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58	933193 934478 935745 936992 938220 939429 940620 941792 942947 944083	930647 931908 933151 934376 935584 936773 937945 939100 940238 941358	928388 929625 930844 932046 933232 934400 935552 936688 937808 938911	.926393 .927604 .928799 .929978 .931141 .932288 .933419 .934535 .935635	.924639 .925825 .926996 .928151 .929291 .930416 .931526 .932621 .933701 .934767	.923108 .924269 .925415 .926546 .927663 .928765 .929853 .930927 .931987 .933034	1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59
1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69	945201 946301 947384 948449 949497 950529 951543 952540 953521 954486	942462 943548 944619 945673 946710 947732 948737 949727 950701 951660	939998 941070 942126 943166 944191 945201 946195 947175 948140 949191	.937790 .938845 .939885 .940910 .941921 .942918 .943900 .941868 .945822 .946762	.935819 936856 .937879 938888 .939884 .940866 .941834 .942789 .943730 .944658	.934066 .935086 .936091 .937084 .938063 .939029 .939982 .940923 .941851 .942766	1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69
1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79	.955435 .956367 .957284 .958185 .959070 .959941 .960796 .961636 .962462 .963273	.952604 .953532 .954446 .955345 .956229 .957098 .957954 .958795 .959623 .960436	.950027 .950948 .951856 .952750 .953629 .954495 .955348 .956187 .957013 .957826	.947688 .948601 .949500 .950387 .951200 .952120 .952967 .953802 .954624 .955433	.945574 .946476 .947366 .948243 .949107 .949959 .950799 .951627 .952443 .953247	.943669 .944559 .945438 .946304 .947159 .948002 .948833 .949652 .950461 .951258	1.70 1.71 1.72 1.73 1.74 .75 1.76 1.77 1.78 1.79
1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.37 1.88 1.89	.964070 .964852 .965621 .96c375 .967116 .967843 .968557 .969258 .969946 .970621	.961236 .962023 .962796 .9.3556 .964303 .965037 .965759 .66468 .967.65 .967849	958626 9:9413 960188 960950 961699 962:37 963162 963876 964578 965268	.956230 .957015 .957788 .958550 .959299 .960037 .960763 .961479 .962182 .962875	.954040 .974820 .957590 .956348 .957095 .957831 .958555 .957270 .959973	.952044 9 · 2818 .953582 .954335 .955078 .955810 .956531 .9 · 72 · 2 .957943 .958634	1.80 1.81 1.82 1.83 1 84 1.85 1.86 1.87 1.88
1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98	971283 971933 972571 973197 973810 974412 975002 975581 976148 976705	968522 969183 969832 970469 971095 971710 972313 972906 973488 974059	965947 966613 967271 967916 968551 969174 969787 970390 970982 971564	9635=7 .964228 .964889 .965539 .966178 .966808 .967427 .968036 .968635 .959224	.961348 962020 .962682 .963334 .963976 .964608 .965231 .965844 .966447 .967041	.959315 .95)986 960647 .961299 .961941 .962573 .963197 .963811 .964416 .965013	1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1 98 1.99

-			SKEWN	P23			
				r			
t	.6	.7	.8	.9	1.0	1.1	t
1.50	.921782	.920646	.919684	.918884	.918235	.917724	1.50
1.51	.922918	.921756	.920769	,919945	.919271	.918737	1.51
1.52	.924039	.922853	.921842	.920994	.920296	.919738	1.52
1.53	.925146	.923936	.922902	.922030	.921309	.920729	1.53
1.54	.926240	.925006	.923949	.923054	.922311	.921708	1.54
1.55	.927319	.926064	.924983	.924066	.923301	.922676	1.55
1.56	.928386	.927108	.926006	.925067	.924280	.923633	1.56
1.57	.929439	.928139	.927016	,926056	.925247	.924579	1.57
1.58	.930478	.929158	.928014	.927033	.926203	.925515	1.58
1.59	.931504	.930164	.929000	.927998	.927149	.926440	1.59
1.60	.932518	.931158	.929973	.928952	.928083	.927355	1.60
1.61	.933518	.932139	.930936	.929895	.929006	.928259	1.61
1.62	.934506	.933108	.931886	.930827	.929919	.929153	1.62
1.63	.935481	.934065	.932825	.931748	.930821	.930037	1.63
1.64	.936443	.935010	.933752	.932657	.931713	.930910	1.64
1.65	.937393	.935943	.934668	.933555	.932594	.931774	1.65
1.66	.938330	.936865	.935573	.934443	.933465	.932627	1.66
1.67	.939256	.937775	.936467	.935321	.934325	.933471	1.67
1.68	.940169	.938673	.937349	.936187	.935176	.934306	1.68
1.69	.941071	.939560	.938221	937043	.936016	.935130	1.69
1.70 1.71	.941960	.940435	.939082	.937889	.936847	.935945	1.70
1.71	.942838	.941300	.939932	.938725	.937668	.936751	1.71
1.72	.943704	.942153	.940772	.939551	.938479	.937547	1.72
1.73	.944559	.942995	.941601	.940366	.939280	.938334	1.73
1.74 1.75	.945403	.943827	.942420	.941172	.940072	.939112	1.74
1.75	.946235	.944647	.943228	.941967	.940855	.939881	1.75
1.76	.947056	.945457	.944027	.942753	.941628	.940641	1.76
1.77	.947866	.946257	.944815	.943530	.942392	.941392	1.77
1.78	.948665	.947046	.945593	.944296	.943146	.942134	1.78
1.79	.949454	.947825	.946362	.945054	.943892	.942868	1.79
1.80	.950232	.948594	.947121	.945802	.944629	.943593	1.80
1.81	.950999	.949353	.947870	.946541	.945357	.944309	1.81
1.82	.951756	.950101	.948609	.947270	.946076	.945017	1.82
1.83	.952502	.950840	.949339	.947991	.946786	.945717	1.83
1.84	.953239	.951569	.950060	.948702	.947488	.946408	1.84
1.85	.953965	.952289	.950772	.949405	.948181	.947092	1.85
1.86	.954681	.952999	.951474	.950099	.948866	.947767	1.86
1.87	.955388	.953699	.952167	.950785	.949543	.948434	1.87
1.88 1.89	.956085	.954390	.952852 .953527	.951461 .952130	.950211 .950871	.949093	1.88
		1					
1.90 1.91	.957449	.955745	.954191	.952790	.951523	.950389	1.90
	.958117	.956409	.954852	.953441	.952168	.951025	1.91
1.92	.958776	.957064	.955502	.954085	.952804	.951653	1.92 1.93
1.93 1.94	.959426 .960066	.957710 .958347	.956143	.954720	.953432	.952274 .952888	1.93
1.94	.960698	.958975	.956776	.955347	.954053	.952888	1.94
1.95	.961320	.959595	.957400	.955966	.954666	.953494	1.95
1.95	.961320	.959595	.958017 .958645	.956578	.955272 .955870	.954684	1.90
1.98	.962539	.960207		.957181			1.98
1.99	.963135		.959225	.957777	.956460	.955269	1.98
1.97	.503133	.961405	.959817	.958365	.957044	.955847	פלי.ו

====			SKEW	NESS			l
	.0	.1	.2	.3	.4	.5	t
t							
2.00	.977250	974620	.972136	.969804	.967626	.965600	2.00
2.01	.977784	.975170	.972698	970375	.968202	.966179	2.01
2.02	.978308	.975711	.973251	.970936	.968768	.966749	2.02
2.03	.978822	.976241	.973793	.971487	.969326	.967310	2.03
2.04	.979325	.976761	.974326	.972030	.969875	.967863	2.04
2.05	.979818	.977271	.974850	.972563	.970415	.968408	2.05
2.06	.980301	.977772	.975365	.973088	.970947	.968944	2.06
2.07	.980774	.978264	.975870	.973604	.971471	.969473	2.07
2.08	.981237	.978745	976366	.974111	.971986	.969993	2.08
2.09	.981691	.979218	.976854	.974609	.972492	.970505	2.09
2.10	.982136	.979682	.977332	975100	.972991	.971010	2.10
2.11	.982571	.980137	.977802	.975581	.973482	.971507	2.11
2.12	.982997	.980583	.978264	.976055	.973964	.971996	2.12
2.13	.983414	.981020	.978717	.976521	.974439	.972478	2.13
2.14	.983823	.981449	.979162	.976978	.974907	.972952	2.14
2.15	.984222	.981869	.979591	.977428	.975366	.973419	2.15
2.16	.984614	.982281	.980028	.977870	.975818	.973879	2.16
2.17	.984997	.982685	.980449	.978304	.976263	.974332	2.17
2.18	.985371	.983081	.980862	.978731	.976701	.974777	2.18
2.19	.985738	.983469	.98126 7	.979151	.977131	.975216	2.19
2.20	.986097	.983849	.981665	.979563	.977554	.975648	2.20
2.21	.986 14 7	.984222	.982056	.979967	.977970	.976073	2.21
2.22	.986791	.984587	.982439	.980365	.978380	.976491	2.22
2.23	.987126	.984945	.982815	.980756	.978782	.976903	2.23
2.24	.987455	.985296	.983184	.981140	.979178	.977308	2.24
2.25	.987776	.985639	.983546	.981517	.979567	.977707	2.25
2.26	.988089	.985975	.983901	.981887	.979950	.978099	2.26
2,27	.988396	.986305	.984249	.982251	.980326	.978486	2.27
2.28 2.29	.988696	.986627	.984590	.982608	.980696	.978866	2.28
2.29	.988989	.986943	.984925	.982959	.981060	.979240	2.29
2.30	.989276	.987253	.985254	.983303	.981417	.979608	2.30
2.31	.989556	.987556	.985576	.983641	.981768	.979970	2.31
2.32	.989830	.987852	.985892	.983973	.982114	.980326	2.32
2.33	.990097	.988143	.986202	.984299	.982453	.980677	2.33
2.34	.990358	.988427	.986506	.984620	.982787	.981022	2.34
2.35 2.36	.990613 .990863	.988705	.986804	.984934	.983115	.981361	2.35
2.37	.990803	.988977	.987096	.985242	.983438	.981695	2.36
2.38	.991344	.989244	.987382	.985545	.983754	.982023	2.37
2.39	.991576	.989505	.987662	.985843	.984066	.982346	2.38
		.989760	.987937	.986134	.984372	.982664	2.39
2.40	.991802	.990010	.988207	.986421	.984672	.982976	2,40
2.41	.992024	.990254	.988471	.986702	.984968	.983283	2.41
2.42	.992240	.990493	.988730	.986978	.985258	.983586	2.42
2.43	.992451	.990727	.988984	.987249	.985543	.983883	2.43
2.44	.992656	.990955	.989232	.987514	.985823	.984175	2.44
2.45 2.46	.99285 <i>7</i> .993053	.991179	.989476	.987775	.986098	.984463	2.45
2.47		.991398	.989714	.988031	.986369	.984746	2.46
2.47	.993244	.991612	.989948	.988281	.986534	.985024	2.47
2.48 2.49	.993431 .993613	.991821	.990177	.988528	.986895	.985297	2.48
±.79	.550019	.992025	.990401	.988769	987152	.985566	2.49

			SKEWN	ESS			
t	.6	.7	.8	.9	1.0	1.1	t
2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15	963723 964303 964874 965437 965992 966539 967079 967610 968133 968649 969158 969659 970153 970639 971118	961992 962571 963142 963705 964260 964808 965348 965380 966405 966923 967433 967937 968433 968922 969404	960402 960978 961547 962109 962663 963209 963749 964281 964806 965324 965334 966338 966836 967326 967326 967810	.958946 .959519 .960085 .960644 .961196 .961740 .962277 .962808 .963331 .963848 .964358 .964861 .965358 .965848 .966332 .966810	.957620 .958189 .958751 .959306 .959854 .960395 .960929 .961457 .961978 .962492 .963000 .963502 .963997 .964486 .964969 .965446	956417 956981 957538 958088 958632 959169 959699 960223 960740 961252 961757 962256 962748 963235 963716	2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15
2.16	.972056	.970349	.968758	.967281	.965916	.964660	2.16
2.17	.972514	.970811	.969222	.967746	.966381	.965123	2.17
2.18	.972965	.971266	.969680	.968205	.966840	.965580	2.18
2.19	.973410	.971715	.970132	.968658	.967293*	.966032	2.19
2.20	973848	.972158	.970577	.969105	.967740	.966479	2.20
2.21	974280	.972594	.971017	.969546	.968181	.966919	2.21
2.22	974705	.973024	.971450	.969981	.968617	.967355	2.22
2.23	975124	.973448	.971877	.970411	.969047	.967785	2.23
2.24	975536	.973866	.972299	.970834	.969472	.968209	2.24
2.25	975943	.974278	.972714	.971252	.969891	.968628	2.25
2.26	976343	.974684	.973124	.971665	.970305	.969043	2.26
2.27	976737	.975084	.973528	.972072	.970713	.969451	2.27
2.28	977125	.975478	.973927	.972473	.971116	.969855	2.28
2.29	977507	.975866	.974320	.972869	.971515	.970254	2.29
2.30	.977883	.976249	.974708	.973260	.971907	.970648	2.30
2.31	.978254	.976626	.975090	.973646	.972295	.971037	2.31
2.32	.978619	.976998	.975466	.974026	.972678	.971421	2.32
2.33	.978978	.977364	.975838	.974402	.973056	.971800	2.33
2.34	.979332	.977725	.976204	.974772	.973429	.972175	2.34
2.35	.979681	.978081	.976565	.975137	.973797	.972544	2.35
2.36	.980024	.978431	.976921	.975497	.974160	.972909	2.36
2.37	.980361	.978776	.977273	.975853	.974519	.973270	2.37
2.38	.980694	.979116	.977619	.976203	.974872	.973626	2.38
2.39	.981021	.979451	.977960	.976549	.975222	.973977	3.39
2.40	.981343	.979782	.978296	.976891	,975566	.974324	2.40
2.41	.981660	.980107	.978628	.977227	.975907	.974667	2.41
2.42	.981973	.980427	.978955	.977559	.976242	.975005	2.42
2.43	.982280	.980743	.979277	.977886	.976574	.975339	2.43
2.44	.982583	.981054	.979594	.978209	.976900	.975669	2.44
2.45	.982880	.981360	.979908	.978528	.977223	.975995	2.45
2.46	.983174	.981662	.980216	.978842	.977541	.976316	2.46
2.47	.983462	.981959	.980520	.979152	.977856	.976634	2.47
2.48	.983746	.982251	.980820	.979152	.978166	.976947	2.48
2.49	.984026	.982540	.981116	.979759	.978472	.977257	2.49

			SKEWI	NESS			
t	.0	.1	.2	.3	.4	.5	t
2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.60 2.61 2.62 2.63	.993790 .993963 .994132 .994297 .994457 .994614 .994766 .994915 .995060 .995201 .995339 .995473 .995604 .995731	.992225 .992421 .992612 .992799 .992981 .993159 .993671 .993671 .993833 .993992 .994147 .994299 .994447	.990621 .990836 .991047 .991253 .991455 .991653 .991847 .992036 .992222 .992404 .992582 .992756 .992926 .993093	.989006 .989238 .989466 .989690 .989909 .990124 .990335 .990542 .990744 .990943 .99138 .99138 .991516 .991700	.987403 .987650 .987893 .988132 .988366 .988596 .988822 .989043 .989261 .989475 .989685 .989891 .990093 .990291	.985830 .986090 .986346 .986597 .986844 .987326 .987560 .987791 .988018 .988240 .988459 .988675 .988886	2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.60 2.61 2.62 2.63
2.64 2.65 2.66 2.67 2.68 2.69	.995855 .995975 .996093 .996207 .996319 .996427	.994591 .994732 .994870 .995005 .995136 .995264	.993256 .993416 .993571 .993725 .993875 .994021	.991880 .992057 .992230 .992399 .992565 .992728	.990486 .990677 .990865 .991050 .991230 .991408	.989094 .989299 .989499 .989697 .989891 .990081	2.64 2.65 2.66 2.67 2.68 2.69
2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79	.996533 .996636 .996736 .996833 .996928 .997020 .997110 .997197 .997282 .997365	.995389 .995512 .995631 .995747 .995861 .995972 .996080 .996185 .996288 .996388	.994165 .994305 .994442 .994576 .994707 .994835 .994960 .995083 .995203 .995320	.992888 .993044 .993197 .993347 .993638 .993780 .993918 .994053 .994186	.991582 .991753 .991921 .992086 .992247 .992406 .992561 .992714 .992863 .993010	.990268 990452 990633 .990811 .990985 .991156 .991325 .991490 .991653 .991812	2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79
2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89	997445 .997523 .997599 .997673 .997744 .997814 997882 .997948 .998012 .998074	996486 996582 996675 996766 996854 996941 997025 997107 997187 997265	995435 995547 995656 .995763 .995868 .995970 996070 996167 996263 .996356	.994316 .994443 .994568 .994690 .994810 .994927 .995041 .995154 .995264 .995371	.993154 .993295 .993434 .993570 .993703 .993834 .993962 .994088 .994212 .994333	.991969 .992123 .992274 .902422 .992568 .992712 .992852 .992990 .993126	2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89
2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98	.998134 .998193 .998250 .998305 .998359 .998411 .998462 .998511 .998559 .998605	997341 997415 997487 997557 997626 997693 997758 997821 907883 997443	996447 996536 996623 996708 996791 996872 996951 997028 997104 997178	.995477 .995580 .995681 .995780 .995876 .995971 .996064 .996154 .996243 .996330	994451 .994568 .994682 .994794 .994903 .995011 .995116 .995219 .995321 .905420	.993390 993519 .993645 .993768 .993890 994009 .994127 .994242 .994355 .994465	2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99

			SKEWN	IESS			
t	.6	.7	.8	.9	1.0	1.1	t
2.50	.984301	.982824	.981407	.980056	.978774	.977562	2.50
2.51	.984571	.983103	.981694	.980349	.979071	.977864	2.51
2.52	.984838	.983379	.981977	.980638	.979365	.978161	2.52
2.53	.985100	.983650	.982256 .982531	980923	.979655	.978455	2.53
2.54	.985358	.983917	.982802	.981204	.979942	.978745	2.54
2.55 2.56	.985611	.984180	.983069	.981482 .981755	.980224	.979032	2.55
	.985861	.984440	.983332		.980503	.979314	2.56
2.57 2.58	.986107	.984695 .984946	.983591	.982025 .982290	.980777	.979593	2.57
	.986349		.983847	.982553	.981049	.979869	2.58
2.59	.986587	.985193	.963647	.962333	.981316	.980141	2.59
2.60	.986821	.985437	.984098	.982811	.981580	.980409	2.60
2.61	.987051	.985677	.984346	,983066	.981841	.980674	2.61
2.62	.987278	.985913	.984591	.983317	.982098	.980936	2.62
2.63	.987500	.986146	.984832	.983565	.982351	.981194	2.63
2.64	.987720	.986375	.985069	.983810	.982602	.981449	2.64
2.65	.987935	.986600	.985303	.984050	.982848	.981701	2.65
2.66	.988148	.986822	.985533	.984288	.983092	.981949	2.66
2.67	.988356	.987041	.985760	.984522	.983332	.982194	2.67
2.68	.988562	.987256	.985984	.984753	.983569	.982436	2.68
2 69	.988764	.987468	.986204	.984981	.983803	.982675	2.69
- '''				150.502		.502000	2.05
2.70	.988962	.987676	.986422	.985205	.984034	.982911	<i>2.7</i> 0
271	.089157	.987882	.986635	.985426	.984261	.983143	2.71
2.72	989350	.988084	.986846	.985645	.984485	.983373	2.72
273	.989539	.988283	.987054	.985860	.984707	.983600	2.73
2.74	.989724	.988479	.987258	.986072	.984925	.983823	2.74
2,75	.989907	.988671	.987460	.986281	.985140	.984044	2.75
2.76	,990087	.988861	.987658	.986487	.985353	.984262	2.76
2.77	.920264	.989048	.987854	.986690	.985562	.984477	2.77
2 78	.990438	.989232	,988046	.986890	.985769	.984689	2.78
2 7?	.990608	.989413	.988236	.987087	.985973	.984899	2.79
2 80	.990777	.989591	.988423	.987282	.986174	.985105	2.80
2.81	990942	.989766	.988607	.987474	.986373	.985309	2.81
2.82	.991104	,989939	.988789	.987663	.986568	.985511	2.82
2 83	.991264	.990109	.988967	.987849	.986761	.985709	2.83
2.84	.991421	.990276	.989143	.988033	.986951	.985906	2.84
2.85	.991576	.990440	.989316	988214	.987139	.986099	2.85
2.86	991727	.990602	.989487	.988392	.987324	.986290	2.86
2.87	.991877	.990761	.989655	.988568	.987507	.986478	2.87
2.88	.992024	.990918	.989821	.988741	.987687	.986664	2.88
2.89	.992168	.991072	.989984	.988912	.987865	.986848	2.89
2.90	.992310	.991224	.990144	.989080	.988040	.987029	2.90
2.91	.902449	.991373	.990302	.989246	.988213	.987208	2.91
2.92	.992586	.991520	.990458	.989410	.988383	.987384	2.92
2.93	.992721	.991665	.990612	.989571	.988551	.987558	2.93
2.94	.992853	.991807	.990763	.989730	.988717	.987730	2.94
2.95	.992984	.991947	.990911	.989886	.988880	.987899	2.95
2.96	.993112	992085	.991058	.990041	.989041	.988066	2.96
2.97	.993237	.992220	.991202	.990193	.989200	.988231	2.97
2.98	.993361	.992353	.991344	.990343	.989357	.988394	2.98
2.99	.993482	.992485	.991484	.990490	.989512	.988555	2.99

			SKEWN	NESS			
t	.0	.1	.2	.3	4	.5	t
3.00 3.01 3.02 3.03	.998650 .998694 998736 .998777	.998001 .998058 .998114 .998168	.997250 .997320 .997389 .997456 .997521	.996415 .996498 .996580 .996659 .996737	.995517 .995613 .995706 .995798 .995888	.994574 .994681 .994786 .994889 .994990	3.00 3.01 3.02 3.03 3.04
3.04 3.05 3.06 3.07 3.08 3.09	.998817 .998856 .998893 · 998930 998965 .998999	.998220 .998272 .998322 .998370 .998417 .998463	.997585 .997647 .997708 .997767 .997825	.996813 .996888 .995961 .997032 .997102	.995976 .996062 .996147 .996229 .996311	.995089 .995186 .995282 .995376 .995467	3.05 3.06. 3.07 3.08 3.09
3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19	.999032 .999065 .999096 .999126 .999155 .999184 .999211 .999238 .999264 .999289	.998508 .998552 .998594 .998635 .998675 .998714 .998752 .998789 .998825 .998860	.997882 .997937 .997991 .998044 .998095 .998145 .998194 .998241 .998288 .998333	.997170 .997237 .997237 .997306 .997366 .997490 .997550 .997608 .997665	.996390 .996468 .096545 .996619 .996693 .996765 .996835 .996904 .996971	.995558 .995646 .995733 .995819 .995902 .995984 .996065 .996144 .996221 .996298	3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19
3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29	.999313 .999336 .999359 .999381 .999402 .999423 .999443 .999462 .999481 .999499	.998894 .998927 .998959 .998950 .999020 .999050 .999079 .999106 .999134 .999160	.998377 .998462 .998462 .998503 .998543 .998582 .998620 .998657 .998694 .998729	.997775 .997829 .997881 .997932 .997982 .998031 .998078 .998125 .998170 .998215	.997102 .997166 .997228 .997289 .997348 .997407 .997464 .997520 .997575	.996372 .996445 .996517 .996588 .996657 .996725 .996791 .996856 .996920 .996983	3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29
3 30 3.31 3 32 3.33 3.34 3.35 3.36 3.37 3.38 3.39	997517 999534 999550 999566 999581 999596 999610 999624 999038 999651	.999185 .999210 .999234 .999258 .999281 .999303 .999324 .999345 .999365 .999385	.998763 .998797 .998829 .998861 .998892 .998922 .998952 .998980 .999008 999035	.998258 .998300 .998342 .998382 .998422 .998461 .998499 .998535 .998572 .998607	.997681 .997733 .997783 .997832 .997881 .997928 .997974 .998020 .998064 .998107	.997045 .997164 .997222 .997279 .997335 .997390 .997443 .997496	3.30 3.31 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39
3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49	999663 999687 999698 999709 999720 999730 999740 999749 999759	999404 .999441 .999441 .999475 .999475 .999508 .999523 .999538 .999553	.999062 .999088 .999113 .999161 .999185 .999207 .999229 .999251 .999272	.998641 .998675 .998708 .998740 .998771 .998802 .998831 .998861 .998889 .998917	.998150 .998192 .998232 .998272 .998311 .998349 .998423 .998423 .998459 .998494	.997598 .997648 .997696 .997744 .997791 .997837 .997881 .997926 .997969	3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49

====			SKEWN	IESS			
t	.6	.7	.8	.9	1.0	1.1	t
3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.11 3.12	.993602 .993719 .993834 .993948 .994059 .994169 .994276 .994382 .994486 .994588 .994688 .994786 .994883	.992614 .992741- .992865 .992988 .993109 .993228 .993345 .993573 .993684 .993794 .993902 .994008	.991622 .991757 .991891 .992022 .992152 .992279 .992405 .992528 .992650 .992770 .992888 .993004 .993118	.990636990779 .990920 .991060 .991197 .991332 .991465 .991726 .991853 .991979 .992102 .992224	.989664 .989814 .989962 .990109 .990253 .990395 .990535 .990673 .990809 .990943 .991076 .991206 .991335	.988713 · .988869 · .989024 · .989176 · .989326 · .989474 · .989621 · .989765 · .989907 · .990048 · .990186 · .990323 · .990458	3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12
3.13 3.14 -3.15 3.16 3.17 3.18 3.19	.994978 .995072 .995163 .995254 .995342 .995429 .995515	.994112 .994214 .994315 .994414 .994511 .994607 .994702	.993230 .993341 .993450 .993558 .993663 .993767 .993870	.992344 .992463 .992579 .992694 .992807 .992919 .993029	.991462 .991587 .991711 .991832 .991952 .992070 .992187	.990591 .990722 .990851 .990979 .991105 .991229 .991352	3.13 3.14 3.15 3.16 3.17 3.18 3.19
3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29	.995681 .995762 .995842 .995920 .995997 .996072 .996146 .996219	.994885 .994975 .995063 .995150 .995235 .995319 .995401 .995482 .995562	.994070 .994167 .994263 .994358 .994451 .994543 .994633 .994722 .994809	.993243 .993348 .993452 .993554 .993654 .993753 .993850 .993946 .994041	.992415 .992527 .992637 .992746 .992853 .992958 .993062 .993165 .993266	.991592 .991710 .991826 .991941 .992054 .992166 .992276 .992384 .992491	3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29
3.30 3.31 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39	.996360 .996429 .996497 .996563 .996629 .996693 .996756 .996817 .996878 .996938	.995640 .995717 .995793 .995868 .995941 .996013 .996083 .996153 .996221 .996289	.994895 .994980 .995063 .995145 .995226 .995305 .995383 .995460 .995536	.994134 .994226 .994316 .994405 .994492 .994579 .994664 .994748 .994830 .994911	.993365 .993464 .993560 .993656 .993750 .993843 .903934 .904024 .904113 .994200	.992597 .992701 .992804 .992905 .993005 .993103 .993201 .993297 .993391 .993485	3.30 3.31 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39
3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49	.996996 .997054 .997110 997165 .997220 .997273 .997325 .997377 .997427	.996355 .996420 .996483 .996546 .996608 .996669 .996728 .996787 .996844 .996901	.995683 .995755 .995826 .995896 .995965 .996032 .996099 .996164 .996229 .996292	994991 995070 995148 995224 995299 995374 995447 995519 995589 995659	.994287 .994456 .994538 .994620 .994700 .904779 .994857 .994034 .995009	.993577 .993667 .993757 .993845 .993932 .994018 .994103 .994187 .994269 .994350	3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49

			SKEWI	NESS			
t	.0	.1	.2	.3	.4	.5	t
3.50 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58 3.59	999767 .999776 .999784 .999792 .999800 .999807 .999815 .999822 .999828 .999835	.999567 .999581 .999594 .999607 .999632 .999632 .999655 .999666	999292 .999312 .999350 .999368 .999386 .999404 .999420 .999437 .999453	.998944 998971 908996 .999022 .999046 .999070 .999094 .999117 .999139	.998528 .998562 .998595 .998627 .998658 .998689 .998719 .998748 .998777 .998805	.998053 .998093 .998133 .998172 .998210 .998248 .998285 .998351 .998356	3.50 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58 3.59
3.60 3 61 3.62 3.63 3.64 3.65 3.66 3 67 3.68 3.69	.999841 .999847 .999853 .999858 .999864 .999869 .999874 .999879 .999883 .999888	.999688 .999698 .999708 .999717 .999726 .999735 .999744 .999752 .999760 .999768	.999468 .999484 990498 .999513 .999527 .999540 .999553 .999566 .999579 .999591	999183 .999203 .999224 999243 .999263 .090282 .999300 999318 .999336	.998833 998860 .998886 .998912 .998937 .998962 .998986 .999009 .999032	.998425 .998458 .998490 .998522 .998554 .998584 .998614 .998673 .998701	3.60 3.61 3.62 3.63 3.64 3.65 3.66 3.67 3.68 3.69
3.70 3.71 3.72 3.73 3.74 3.75 3.76 3.77 3.78 3.79	.999892 .999896 999900 .999904 .999908 .999912 .999915 .999918 .999922 .999925	999776 999783 999791 999798 999804 999811 999817 999823 999829 999835	.999603 .999614 .999626 .999636 .999617 .999657 .99967 .999686 .999696	.999369 .999386 .999402 .999417 .979432 999447 .999461 .999475 .999489 .999502	.999077 .999098 .999119 .999140 .999160 .999199 .999199 .999236 .999254	.998728 .998756 .998782 .998808 .998834 .998859 .99883 .998907 .998930	3.70 3.71 3.72 3.73 3.74 3.75 3.76 3.77 3.78 3.79
3.80 3.81 3.82 3.83 3.84 3.85 3.86 3.87 3.88 3.89	.999928 .999931 .999936 .99938 .999941 .999943 .999946 .999948 .999950	.999840 999846 .999851 .999856 .999861 .999866 .999870 .999875 .999879	.999705 .999713 .999722 .999730 .999738 .999746 .999753 .999761 .999768 .999775	999515 999528 .999540 .999553 .999564 .999576 .999587 .999598 .999608 .999608	999272 999289 999306 999338 999334 .999369 .999384 999399 .999413	.998976 998988 999041 999041 999061 .999082 999102 .999121 999140	3 80 3.81 3 82 3 83 3 84 3.85 3.86 3 87 3.88 3.89
3.90 3.91 3.92 3.93 3.94 3.95 3.96 3.97 3.98 3.99	.99952 .99954 .99956 .99958 .99959 .99961 .99964 .99966 .99966	.999887 .999891 .999895 .999898 .99902 .99905 .99909 .99912 .999915 .999918	.99781 .99788 .999794 .999800 .999806 .999812 .999818 .999823 .999829 .999834	999629 .999639 .999648 .999658 .999667 .999676 .999684 .999693 999701	.999427 999454 999467 .999480 .999493 999505 .999517 .999528 .999540	999177 999212 999230 999246 999263 999279 999295 999310 999325	3.90 3.91 3.92 3.93 3.94 3.95 3.96 3.97 3.98 3.99

			SKEW	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
3.50	.997526 .997573	.996957 .997011	.996354 .996416	.995728 .995795	.995084 .995128	.994431 .994510	3.50 3.51
3.51	.997620	.997065	.996476	.995862	.995230	.994588	3.52
3.52	.997666	.997118	.996536	.995928		.994665	
3.53		.997170	.996594	.995992	.995302	.994740	3.53 3.54
3.54	.997711				.995372		
3.55	.997756	.997221	.996651	.996056	.995441	.994815	3.55
3.56	.997799	.997271	.996764	.996118	.995510	.994889 .994962	3.56
3.57	.997842	.997369	.996818	.996241	.995577	.994902	3.57
3.58	.997884						3.58
3.59	.997925	.997416	.996872	.996301	.995709	.995104	3.59
3.60	.997965	.997463	.996925	.996359	.995774	.995174	3.60
3.61	.998005	.997509	.996977	.996417	.995837	.995243	3.61
3.62	.998044	.997554	.997028	.996475	.995900	.995311	3.62
3.63	.998082	.997598	.997079	.996531	.995962	.995378	3.63
3.64	.998120	.997642	.997128	.996586	.996022	.995444	3.64
3.65	.998156	.997685	.997177	.996641	.996082	.995509	3.65
3.66	.998192	.997727	.997225	.996694	.996141	.995573	3.66
3.67	.998228	.997768	.997272	.996747	.996200	.995636	3.67
3.68	.998263	.997809	.997319	.996799	.996257	.995699	3.68
3.69	.998297	.997849	.997364	.996850	.996314	.995760	3.69
<i>3.7</i> 0	.998330	.997888	.997409	.996901	.996369	.995821	3.70
3.71	.998363	.997927	.997453	.996950	.996424	.995881	3.71
3.72	.998395	.997964	.997497	.996999	.996478	.995940	3.72
3.73	.998427	.998002	.997540	.997047	.996532	.995998	3.73
3.74	.998458	.998038	.997582	.997095	.996584	.996056	3.74
3.75	.998488	.998074	.997623	.997141	.996636	.996112	3.75
3.76	.998518	.998109	997664	.997187	.996687	.996168	3.76
3.77	.998547	.998144	.997704	.997233	.996737	.996223	3.77
3.78	.998576	.298178	.997743	.997277	.996786	.996277	3.78
3.79	.998604	.998211	.997782	.997321	.996835	.996331	3.79
3.80	.998632	.998244	.997820	.997364	.996883	.996383	3.80
3.81	.998659	998277	.997857	.997406	.996931	.996435	3.81
3.82	.998685	.998308	.997894	.997448	.996977	.996487	3.82
3.83	998712	.958339	.997930	.997489	.997023	.996537	3.83
3.84	.398737	.998370	.997966	.997530	.997068	.996587	3.84
3.85	.998762	.998400	.998001	.997570	.997113	.996636	3.85
3.86	.998787	.998430	.998035	.997609	.997157	.996685	3.86
3.87	.998811	.908459	.998069	.997648	.997200	.996733	3.87
3.88	.998835	.998487	.998102	.997686	.997243	.996780	3.88
3.89	.998858	.998515	.998135	.997723	997285	.996826	3.89
3.90	.998881	.998543	.998167	.997760	.997326	.996872	3.90
3.91	.998903	.998570	.998199	.997796	.997367	.996917	3.91
3.92	.998925	.998596	.998230	.997832	.997407	.996962	3.92
3.93	998947	.998622	.998261	.997867	.997447	.997006	3.93
3.94	.998968	.998648	.998291	.997902	.997486	.997049	3.94
3.95	.998988	.993673	.998320	.997936	.997524	.997092	3.95
3.96	.999009	.998697	.998349	.997969	.997562	.997134	3.96
3.97	.999029	.998722	.998378	.998002	.997600	.997175	3.97
3.98	.999048	.998745	.998406	.998035	997636	.997216	3.98
3.99	.999067	.9 <i>)</i> 8769	.998434	.998067	.997673	.997256	3.99

			SKEW	NESS			
t	.0	.1	.2	.3	.4	.5	t
4.00	.999968	.999921	.999839	999717	.999551	.999340	4.00
4.01	.999970	.999923	.999844	.999724	.999562	.999355	4.01
4.02	.999971	.999926	.999849	.999732	.999572	.999369	4.02
4.03	.999972	.999929	.999853	.999739	.999583	.999383	4.03
4.04	.999973	.999931	.999858	.999746	.999593	.999396	4.04
4.05	.999974	.999934	.999862	.999753	.999603	.999409 .999423	4.05 4.06
4.06	.999975	.999936	.999866	.999760 .999766	.999612	.999423	4.07
4.07	.999977	.999938	.999870 .999874	.999700	.999631	.999448	4.08
4.08 4.09	.999977 .999978	.999943	.999878	.999779	.999640	.999460	4.09
4.09	.999976	.999943	.999076	.333113	.555010	.555100	1.05
4.10	.999979	.999945	.999882	.999785	.999649	.999472	4.10
4.11	.999980	.999947	.999886	.999790	.999657	.999484	4.11
4.12	.999981	.999948	.999889	.999796	.999665	.999495	4.12
4.13	.999982	.999950	.999892	.999802	.999674	.999506	4.13
4.14	.999983	.999952	.999896	.999807	.999682	.999517	4.14
4.15	.999983	.999954	.999899	.999812	.999689	.999528	4.15
4.16	.999984	.999955	.999902	.999818	.999697	.999538	4.16
4.17	.999985	.999957	.999905	.999823	.999704	.999549	4.17
4.18 4.19	.999985	.999959	.999908	.999827 999832	.999712 .999719	.999559 .999569	4.18 4.19
4.19	.999900	.999900	.999911	999032	.999/19	.999309	4.19
4.20	.999987	.999962	.999914	.999837	.999726	.999578	4.20
4.21	.999987	.999963	.999916	.999841	.999732	.999588	4.21
4.22	.999988	.999964	.999919	.999846	.999739	.999597	4.22
4.23	.999988	.999966	.999922	.999850	.999746	.999606	4.23
4.24	.999989	.999967	.999924	.999854	.999752	.999615	4.24
4.25	.999989	.999968	.999926	.999858	999758	.999623	4.25
4.26 4.27	.999990	.999969	.999929	.999862	.999764	.999632	4.26
4.28	.999991	.999971	.999933	.999866	.999770	.999640	4.27
4.29	.999991	.999972	.999935	.999873	.999781	999656	4.29
							7.23
4.30	.999991	.999973	.999937	.999877	.999787	999664	4.30
4.31	.999992	.999974	.999939	.999880	.999792	999671	4.31
4.32	.999992	.999975	.999941	.999883	.999797	.999679	4.32
4.33	.999993	.999976	.999943	.999887	.999802	.999686	4.33
4.34 4.35	.999993	.999977	.999945 .999947	.999890	.999807	.999693	4.34
4.36	.999993	.999979	.999948	.999896	.999812	999700	4.35
4.37	.999994	.999980	.999950	.999899	.999821	.999713	4.36 4.37
4.38	.999994	.999980	.999952	.999902	.999826	.999720	4.38
4.39	.999994	.999981	.999953	.999904	.999830	.999726	4.39
	000005	000000	0000		ł		
4.40	.999995	.999982	.999955	.999907	.999834	.999733	4.40
4.41 4.42	.999995	.999983	.999956	.999910	.999838	.999739	4.41
4.42 4.43	.999995	.999983	.999958	.999912	.999842	.999745	4.42
4.43 4.44	.999996	.999984	.999960	.999917	.999846	.999750	4.43
4.45	.999996	.999985	.999962	.999920	.999850	.999756	4.44
4.46	.999996	.999986	.999963	.999922	.999858	.999762	4.45
4.47	.999996	.999986	.999964	999924	.999861	.999772	4.40
4.48	.999996	.999987	.999965	.999926	999865	.999778	4.47
4.49	.999996	.999987	.999966	.999928	,999868	.999783	4.49
			1.55550	1	1 .222006	1.2224.00	1 7.77

			SKEWN	IESS			
t	.6	.7	.8	.9	1.0	1.1	t
4.00	.999086	.998792	.998461	.998098	.997708	.997296	4.00
4.01	.999105	.998814	.998488	.998129	.997743	.997335	4.01
4.02	.999123	.998836	.998514	.998160	.997778	.997374	4.02
4.03	.999140	.998858	.998540	.998190	.997812	.997412	4.03
4.04	.999158	.998879	.998565	.998219	.997846	.997450	4.04
4.05	.999175	.998900	.998590	.998248	.997879	.997487	4.05
4.06	.999191	.998921	.998615	.998277	.997911	.997523 .997559	4.06
4.07	.999208	.998941	.998639	.998305	.997943 .997975	.997539	4.07 4.08
4.08	.999224	.998961	.998663 .998686	.9983 33 .998360	.998006	.997629	4.09
4.09	.999239	.998980	.998080	.996300	.990000		4.09
4.10	.999255	.999000	.998709	.998387	.998037	.997664	4.10
4 11	.999270	.999018	.998731	.998413	.998067	.997698	4.11
4.12	.999285	.999037	.998754	.998439	.998097	.997731	4.12
4.13	.999299	.999055	.998775	.998465	.998126	.997764	4.13
4.14	.999314	.999073	.998797	.998490	.998155	.997797 .997829	4.14 4.15
4.15	.999328	.999090	.998818	.998514	.998183 .998211	.997829	4.15
4.16	.999341	.999107 .999124	.998839 .998859	.998539	.998239	.997892	4.10
4.17 4.18	.999355 .999368	.999124	.998879	.998586	.998266	.997923	4.18
4.18	.999381	.999157	.998899	.998610	.998293	.997953	4.19
4.20	.999394	.999173	.998918	.998632	.998319	.997983	4.20
4.21	.999406	.999188	.998937	.998655	.998345	.998012	4.21
4.22	.999418	.999204	.998956	.998677	.998371	.998041	4.22 3.23
4.23	.999430	.999219	.998974	.998699	.998396	.998070	
4.24	.999442	.999234	.998992	.998720	.998421 .998445	.998098 .998126	4.24 4.25
4.25 4.26	.999453	.999248	.999010	.998762	.998470	.998153	4.26
	.999464	.999202	.999027	.998782	.998493	.998180	4.27
4.27 4.28	.999486	.999270	.999061	.998803	.998517	.998207	4.28
4.29	.999497	.999304	.999078	.998822	.998540	.998233	4.29
				200010	0.105.0	000050	1 20
4.30	.999507	.999317	.999094	.998842	.998562	.998259	4.30
4.31	.999517	.999330	,999110	.998861	.998585	.998285	4.31
4.32	.999527	.999343	.999126	.998880	.998607		4.33
4.33 4.34	.999537 .999547	.999355	.999157	.998898	.998628	.998335	4.33
4.3 4 4.35	.999556	909379	999172	.998934	.998670	.998383	4.35
4.35 4.36	.999565	.999391	.999186	.998952	.998691	.998407	4.36
4.37	.999574	.999403	.999201	.998969	.998712	.998430	4.37
4.38	.999583	.999414	.999215	.998986	.998732	.998453	4.38
4.39	.999592	.999125	.999229	.999003	.998751	.998476	4.39
4.40	.999600	.999436	.999242	.999020	.998771	.998498	4.40
4.40	.999608	.999447	.999256	.999036	.998790	.998520	4.41
4.42	.999616	.999458	.999269	.999052	.998809	.998542	4.42
4.43	.999624	.999468	.999282	.999068	.998827	.998564	4.43
4.44	.999632	999478	.999295	.999083	.998846	.998585	4.44
4.45	.999640	.999488	.999307	.999098	.998864	.998606	4.45
4.46	.999647	.999498	.999320	.999113	.998881	.998626	4.46
4.47	.999655	.999508	.999332	.999128	.998899	.998646	4.47
4.48	.999662	.999517	.999344	.999143	.998916	.998666	4.48
4.49	.999669	999527	.999355	.999157	.998933	.998686	4.49

4.50 99997 99988 99967 99930 99987 99978 4. 4.51 99997 99988 99968 99932 99987 99979 4. 4.52 99997 99988 99968 99934 99887 99977 4. 4.53 99997 99989 99997 99936 99934 99881 99802 4. 4.54 99997 99989 99997 99936 99938 99988 99997 4. 4.55 99997 99998 99997 99994 99987 99981 4. 4.56 99997 99999 99997 99994 99983 99981 4. 4.57 99998 99991 99997 99994 99988 99982 99997 99994 99988 99982 4. 4.58 99998 99991 99997 99994 99988 99982 4. 4.59 99998 99999 99997 99997 99998 99998 99982 4. 4.60 99998 99992 99997 99997 99996 99983 4. 4.61 99998 99992 99997 99991 99996 99983 4. 4.62 99998 99999 99997 99997 99998 99998 99983 4. 4.64 99998 99999 99999 99998 99991 99998 99998 99998 4. 4.65 99998 99999 99998 99999 99998 99998 99988 4. 4.66 99998 99999 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99999 99998 99999 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 999998 99998 99998 99998 99998 99998 99998 99998 99998 99998 999998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 999998 99998 99998 99998 99998 99998 99998 99998 99998 99998 999998 99999 99999 99999 99999 99999 99999 9999				SKEWI	NESS			
4.50 99997 99988 99967 99930 99872 99987 4.51 99997 99988 99968 99934 99887 99970 4.52 99997 99989 99998 999969 99934 99887 99997 4.52 99997 99989 99997 99998 99997 99936 99938 99988 99997 4.53 99997 99998 99997 99998 99997 99988 99997 99988 99997 99988 99997 99998 99997 99988 99997 99998 99997 99998 99997 99998 99997 99998 99997 99998 99997 99998 99997 99998 99999 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99999 99998 999998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 999998 99998 99998 99998 99998 99998 99998 99998 99998 99998 999998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 999998 99998 99998 99998 99998 99998 99998 99998 99998 99998 999998 99998 99998 99998 999999				_				
4.51 999997 99988 999968 999932 999875 999972 4. 4.52 999997 999989 999990 999936 999881 999802 4. 4.53 999997 99989 999971 999938 999881 999806 4. 4.54 999997 999989 999971 999948 999887 999811 4. 4.55 999998 999991 999974 999943 99983 999815 4. 4.57 99998 999991 999975 999948 99983 999824 4. 5.59 99998 999991 999976 999948 999901 999824 4. 6.50 99998 999992 999977 999948 999901 999832 4. 6.61 999998 999992 999977 999949 999903 999836 4. 6.62 99998 999992 999977 999949 999903 999836 4. 6.63 99998 999992 999977 999949 999903 999836 4. 6.64 999998 999993 999980 999955 999911 999876 4. 6.65 999998 999993 999980 999955 999913 999876 4. 6.66 999998 999994 999980 999955 999913 999867 4. 6.67 999998 999994 999982 999958 999917 999857 4. 6.68 999999 999994 999982 999958 999917 999867 4. 6.70 999999 999994 999982 999980 999955 999918 999867 4. 6.70 999999 999994 999983 999980 999952 999986 4. 6.70 999999 999994 999983 999960 999922 999867 4. 6.71 999999 999994 999983 999960 999922 999867 4. 6.72 999999 999999 999998 999996 999996 999987 4. 6.73 999999 999999 999998 999996 999998 999999 99987 4. 6.74 999999 999999 999998 999998 999999 999988 999999	t	0		.2	.3	.4	.5	t
4.52 999997 99989 999969 999934 999878 999977 4.53 999987 999990 999971 999988 999971 999884 999866 4.55 999977 999999 999999 999973 999940 999887 999811 4.55 999988 999991 999973 999940 999887 99981 4.56 999988 999991 999974 999943 99988 99991 4.58 99998 999991 999976 999945 99986 99982 4.59 99988 999991 999976 999946 999988 99998 999991 999976 999946 99998 99998 999992 999977 999946 99998 99998 99999 999977 999949 99990 99998 99999 999977 999949 99990 99998 99999 99999 99999 99999 99999 99999 9999	4.50	.999997				.999872		4.50
4.53	4.51	.999997	.999988		.999932	.999875	.999792	4.51
4.54 99997 99989 999971 999988 999884 999806 4. 4.55 99997 999990 999973 999941 999890 999815 4. 4.56 99997 999991 999974 999943 99983 999815 4. 4.57 99998 999991 999975 999945 999886 999824 4. 4.58 99998 999991 999976 999946 99988 999828 4. 4.59 99998 999991 999977 999948 999903 999836 4. 4.61 99998 999992 999977 999949 999903 999836 4. 4.62 99998 999992 999977 999949 999906 999836 4. 4.63 99998 999993 999979 999952 999908 999843 4. 4.64 99998 999993 999980 999955 999913 999874 4. 4.65 99998 999993 999980 999955 999913 999874 4. 4.66 99998 999994 999982 999955 999915 999854 4. 4.67 999999 999994 999982 999956 999915 999864 4. 4.68 999999 999994 999982 999956 999915 999864 4. 4.69 999999 999994 999982 999958 999915 999864 4. 4.69 999999 999994 999982 999959 999919 999864 4. 4.70 999999 999994 999983 999960 999922 999864 4. 4.70 999999 999995 999984 999963 999922 999864 4. 4.71 999999 999995 999984 999963 999922 999864 4. 4.72 999999 999995 999984 999963 999922 999864 4. 4.73 999999 999995 999984 999963 999922 999864 4. 4.74 999999 999995 999985 999966 999926 999876 4. 4.75 999999 999995 999984 999963 999924 999876 4. 4.76 999999 999995 999984 999963 999924 999876 4. 4.77 999999 999995 999984 999963 999926 999876 4. 4.78 999999 999996 999988 999966 999926 999887 4. 4.78 999999 999996 999988 999967 999938 999887 4. 4.78 999999 999996 999988 999967 999938 999887 4. 4.78 999999 999996 999998 999997 999984 999990 999990 999996 999998 999996 999998 999996 999999 999999 999999 999999 999999	4.52	.999997	.999989		999934	.999878		4.52
4.55 .99997 .999990 .999972 .999940 .999887 .999811 4. 4.56 .999997 .9999990 .999974 .999980 .999819 4. 4.57 .99998 .999991 .999975 .999945 .99986 .99824 4. 4.59 .99998 .99991 .999976 .99946 .99988 .99824 4. 4.60 .99998 .99992 .99977 .99948 .99901 .99832 4. 4.61 .99998 .99992 .999978 .999951 .999903 .99839 4. 4.62 .99998 .99993 .999979 .99952 .99908 .99839 4. 4.63 .99998 .99993 .99998 .99995 .999911 .99984 4. 4.64 .999998 .999993 .999980 .99995 .999913 .99850 4. 4.67 .99998 .999994 .99988 .99995 .999915 .99860 4.	4.53	.999997	.999989	.999970	.999936	.999881	.999802	4.53
4.56 999997 999990 999973 999941 999980 999815 4, 4, 57 999998 999991 999975 999945 999896 999824 4, 4, 4, 58 4, 59 99998 99991 99976 999946 99988 99824 4, 4, 4, 59 4, 60 999988 99998 99982 4, 60 999988 99998 99982 4, 60 99998 999992 99977 99949 99903 99983 4, 61 99998 99993 99993 99997 99994 99903 99983 4, 61 4, 62 99998 99993 99997 99994 99903 99983 99984 4, 63 99998 99983 99993 99994 99995 99990 99984 4, 63 99998 99998 99984 4, 64 99998 99993 99998 99995 99991 99984 4, 64 99998 999993 99998 99995 99991 99985 99991 99985 4, 63 99991 99985 4, 63 99991 99985 4, 63 99991 99986 4, 63 99991 99986	4.54	.999997	.999989	.999971	.999938		.999806	4.54
4.56 999997 999990 999973 999941 999980 999815 4, 4, 57 999998 999991 999975 999945 999896 999824 4, 4, 4, 58 4, 59 99998 99991 99976 999946 99988 99824 4, 4, 4, 59 4, 60 999988 99998 99982 4, 60 999988 99998 99982 4, 60 99998 999992 99977 99949 99903 99983 4, 61 99998 99993 99993 99997 99994 99903 99983 4, 61 4, 62 99998 99993 99997 99994 99903 99983 99984 4, 63 99998 99983 99993 99994 99995 99990 99984 4, 63 99998 99998 99984 4, 64 99998 99993 99998 99995 99991 99984 4, 64 99998 999993 99998 99995 99991 99985 99991 99985 4, 63 99991 99985 4, 63 99991 99985 4, 63 99991 99986 4, 63 99991 99986	4.55	.999997	.999990	.999972	.999940	.999887	.999811	4.55
4.57 ,99998 ,999991 ,999974 ,999943 ,99986 ,999826 ,999824 4 4.58 ,999998 ,999991 ,999976 ,999946 ,999888 ,999828 4 4.60 ,99998 ,999992 ,999977 ,999948 ,999901 ,999836 4 4.61 ,99998 ,999992 ,999977 ,999949 ,999903 ,99836 4 4.62 ,99998 ,999992 ,999978 ,99991 ,99906 ,99839 4 4.63 ,99998 ,99993 ,999979 ,99952 ,999908 ,999843 4 4.64 ,99998 ,99993 ,999980 ,999955 ,99911 ,99850 4 4.66 ,99998 ,99993 ,99984 ,999955 ,99915 ,99854 4 4.67 ,99998 ,999993 ,999985 ,999915 ,999854 4 4 4.68 ,999998 ,999984 ,999985 ,999919 ,999860 4 4 4 ,0999999 ,999999 ,999860 ,999860		.999997	.999990	.999973	.999941	.999890	.999815	4.56
4.58 999998 999991 999975 999946 999886 999824 4. 4.59 999998 999991 999976 999946 99988 999828 4. 4.60 999998 999992 999977 99948 999901 999832 4. 4.61 99998 999992 999978 999951 999906 99839 4. 4.62 99998 99993 999979 99952 99908 999843 4. 4.63 99998 99993 999980 999954 999911 999847 4. 4.65 99998 999993 999980 999955 999913 99854 4. 4.67 99998 999993 999982 99958 999917 99857 4. 4.69 999999 999994 99982 999958 99917 99867 4. 4.70 999999 999994 99983 999960 999922 99867 4.		999998	.999991	.999974	.999943	.999893		4.57
4.59 .999998 .999991 .999976 .99946 .999888 .999828 4 4.60 .999998 .999992 .999977 .99949 .999903 .999836 4 4.61 .999998 .999992 .999978 .999951 .999906 .999836 4 4.62 .999998 .999993 .999979 .99951 .99991 .999843 4 4.63 .99998 .99993 .999980 .999954 .999911 .999847 4 4.65 .99998 .999993 .999980 .999955 .999913 .999850 4 4.66 .999998 .999994 .999982 .999958 .999917 .999867 4 4.69 .999999 .999994 .999982 .999959 .999919 .999864 4 4.70 .999999 .999994 .999983 .999961 .999867 4 4.71 .999999 .999995 .999984 .999962 .999926 .999870				.999975				4.58
4.61 .999998 .999992 .999977 .999949 .999903 .999836 4. 4.62 .999998 .999993 .999978 .999951 .999908 .999839 4. 4.63 .99998 .999993 .999980 .999952 .999913 .999847 4. 4.65 .99998 .999993 .999980 .99955 .999913 .999850 4. 4.66 .999998 .999993 .999981 .999955 .999915 .999850 4. 4.67 .999998 .999994 .999982 .999955 .999917 .999857 4. 4.68 .999999 .999994 .999982 .999950 .999917 .999867 4. 4.70 .999999 .999994 .99983 .99960 .99922 .999864 4. 4.71 .999999 .999995 .99983 .999961 .999924 .999867 4. 4.72 .999999 .999995 .99984 .999963 .999927 .999876 4. 4.73 .999999 .999995 .999985				.999976	.999946			4.59
4.61 .999998 .999992 .999977 .999949 .999903 .999836 4. 4.62 .999998 .999993 .999978 .999951 .999908 .999839 4. 4.63 .99998 .999993 .999980 .999952 .999913 .999847 4. 4.65 .99998 .999993 .999980 .99955 .999913 .999850 4. 4.66 .999998 .999993 .999981 .999955 .999915 .999850 4. 4.67 .999998 .999994 .999982 .999955 .999917 .999857 4. 4.68 .999999 .999994 .999982 .999950 .999917 .999867 4. 4.70 .999999 .999994 .99983 .99960 .99922 .999864 4. 4.71 .999999 .999995 .99983 .999961 .999924 .999867 4. 4.72 .999999 .999995 .99984 .999963 .999927 .999876 4. 4.73 .999999 .999995 .999985	4.60	999998	999992	.999977	999948	.999901	.999832	4.60
4.62								4.61
4.63								4.62
4.64 .999998 .999993 .999980 .999955 .999913 .999850 4.65 .999998 .999993 .999980 .999955 .999913 .999850 4.66 .999998 .999993 .999981 .999956 .999915 .999857 4.67 .999985 .999915 .999857 4.68 .999999 .999994 .999982 .999959 .999919 .999860 4.69 .999999 .999994 .999983 .999960 .999922 .999864 4.69 .999999 .999994 .999983 .999960 .999922 .999864 4.69 .999999 .999994 .999983 .999961 .999924 .999867 4.69 .999999 .999995 .99984 .999962 .999924 .999867 .999870 4.71 .9999999 .999995 .99984 .999963 .999927 .999873 4.73 .999999 .999995 .999985 .999964 .999929 .999876 4.2 .999933 .999870 .99933 .999870 .99933 .999870 .999882 4.74 .999999 .999996 .999988 .999933 .999882 4.2								4.63
4.65 .999998 .999993 .999980 .999955 .999913 .999850 4. 4.66 .999998 .999994 .999982 .999956 .999917 .999854 4. 4.68 .999999 .999994 .99982 .999959 .999919 .999860 4. 4.69 .999999 .999994 .99983 .99960 .999922 .999864 4. 4.70 .999999 .999994 .999983 .99961 .99924 .999867 4. 4.71 .999999 .999995 .999984 .999962 .99926 .999870 4. 4.71 .999999 .999995 .999984 .999962 .999926 .999870 4. 4.72 .999999 .999995 .999884 .999963 .999929 .999870 4. 4.74 .993999 .999995 .999885 .99965 .999931 .999879 4. 4.75 .999999 .999996 .999986 .999966 .999931 .999882 4. 4.76 .999999 .999996 .99998								4.64
4.66 .999998 .999993 .999981 .999956 .999915 .999854 4.4 4.67 .999998 .999994 .999982 .999958 .999917 .999857 4.4 4.68 .999999 .999994 .999982 .999959 .999919 .999864 4.1 4.70 .999999 .999994 .99983 .999961 .999924 .999867 4.1 4.71 .999999 .999995 .99984 .999962 .999926 .999870 4.2 2.99999 .999995 .999984 .999963 .999964 .999927 .99873 4.2 4.73 .999999 .999995 .999985 .999964 .999929 .999870 4.2 4.74 .999999 .999995 .999985 .999966 .999931 .999879 4.2 4.75 .999999 .999995 .99986 .999931 .99987 .99933 .999887 4.2 4.76 .999999 .999996 .999987 .999938 .999933 .999887 4.2 4.79 .999999								4.65
4.67 .999998 .999994 .999982 .999958 .999917 .999857 4.1 4.68 .999999 .999994 .999982 .999959 .999919 .999860 4.1 4.69 .999999 .999994 .999983 .999961 .999924 .999867 4.1 4.70 .999999 .999995 .99984 .999962 .999926 .999870 4.2 4.71 .999999 .999995 .99984 .999963 .999927 .999873 4.2 4.72 .999999 .999995 .99984 .999963 .999929 .999873 4.2 4.74 .997999 .999995 .99985 .999965 .999931 .999879 4.2 4.75 .999999 .999995 .99986 .999966 .999933 .999882 4.2 4.76 .999999 .999996 .999987 .999968 .999935 .999887 4.3 4.79 .999999 .999996 .999987 .999968 .999938 .999970 .999897 .999887 4.3 4.80							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.66
4.68 .999999 .999994 .999982 .999959 .999919 .999860 4.4 4.69 .999999 .999994 .999983 .999960 .999922 .999864 4.4 4.70 .999999 .999994 .999983 .999961 .999924 .999867 4.4 4.71 .999999 .999995 .999984 .999963 .999927 .999873 4.4 4.73 .999999 .999995 .99985 .999964 .999929 .999876 4.3 4.74 .997999 .999995 .999985 .999965 .999931 .999882 4.3 4.75 .999999 .999995 .999986 .999965 .999933 .99982 4.3 4.74 .997999 .999996 .999986 .999965 .999933 .99982 4.4 4.76 .999999 .999996 .999987 .999968 .999933 .999887 4.4 4.79 .999999 .999996 .999987 .999968 .999938 .999971 .999941 .999897 4.8 4.80								4.67
4.69 .999999 .999994 .999983 .999960 .999922 .999844 4.70 4.70 .999999 .999994 .999983 .999961 .999924 .999867 4.71 4.71 .999999 .999995 .999984 .999962 .999927 .999870 4.73 4.73 .999999 .999995 .999985 .999964 .999929 .999876 4.74 .999999 .999995 .999985 .999966 .999933 .999870 4.75 .999999 .999996 .999986 .999967 .99933 .999882 4.76 .999999 .999999 .999996 .999986 .999966 .999933 .99882 4.77 .999999 .999996 .999987 .999968 .999936 .999938 .999936 .999887 4.77 .999999 .999996 .999987 .999960 .999938 .999970 .999941 .999892 4.77 .999999 .999999 .999999 .999999 .999999 .999999 .999999 .999999 .999999 .999999 .999999								4.68
4,70 .999999 .999994 .999983 .999961 .999924 .999867 4.71 .999999 .999995 .999984 .999962 .999926 .999870 4.72 .999999 .999995 .999985 .999963 .999929 .999876 4.73 .73 .999999 .999995 .99985 .999965 .999931 .999876 4.74 .999999 .999995 .999986 .999966 .999933 .999882 4.75 .999999 .999996 .999986 .999967 .999933 .999884 4.77 .999999 .999996 .999987 .999968 .999936 .999887 4.78 .999999 .999996 .999987 .999969 .999938 .999970 .999989 .999890 4.2 4.80 .999999 .999996 .999988 .999971 .999941 .999895 4.8 4.81 .999999 .999996 .999989 .999972 .999943 .999944 .999900 4.8 .999999 .999999 .999990 .999974 .999944 .9999								4.69
4,71 999999 .999995 .999984 .999962 .999926 .999870 4.72 4,72 .999999 .999995 .999984 .999963 .999927 .999873 4.73 4,73 .999999 .999995 .999985 .999964 .999929 .999876 4.74 .999999 .999995 .999986 .999966 .999933 .999887 .99882 4.76 .999999 .999996 .999986 .999967 .99933 .999884 4.77 .999999 .999996 .999987 .99968 .999936 .999887 4.78 .79 .999999 .999996 .999988 .999970 .999940 .999892 4.79 4.80 .999999 .999996 .99988 .999971 .999941 .999895 4.8 4.81 .999999 .999996 .99988 .999972 .999943 .999904 4.8 4.82 .999999 .999997 .99989 .999973 .999944 .99990 4.8 4.85 .999999 .999997 .999999 .9999								
4.72 9999999 999995 999984 999963 999927 999873 4.73 4.73 999999 999995 999985 999964 999929 999876 4.3 4.74 997999 999995 99986 999966 999931 99987 4.2 4.76 999999 999996 999986 999967 99935 999884 4.2 4.77 999999 999996 99987 999968 99936 999887 4.2 4.79 999999 999996 99987 999969 999938 99990 99989 4.2 4.80 999999 999996 99988 99971 999941 999895 4.3 4.81 999999 999996 99988 99972 999943 999897 4.3 4.82 999999 999997 99989 99973 99944 99990 4.3 4.85 999999 999997 999990 999974 999946 99990 4.3 4.86 999999 999997 999990 99977 9								4.70
4.73 999999 .999995 .999985 .999964 .999929 .999876 4.74 4.74 .999999 .999995 .999985 .999965 .999931 .999879 4.7 4.75 .999999 .999996 .999986 .999967 .999933 .999882 4.7 4.76 .999999 .999996 .999987 .999968 .999936 .999887 4.7 4.78 .999999 .999996 .999987 .999969 .99938 .99990 .999890 4.7 4.80 .999999 .999996 .999988 .999971 .999941 .999855 4.7 4.81 .999999 .999999 .999989 .999972 .999943 .999897 4.8 4.82 .999999 .999997 .99988 .999973 .999944 .999900 4.8 4.83 .999999 .999997 .999990 .999974 .999946 .99990 4.8 4.86 .999999 .999997 .999990 .999975 .999948 .999911 4.8 4.89 .999999								4.71
4.74 .999999 .999995 .999985 .999965 .999931 .999879 4.75 4.75 .999999 .999996 .999986 .999966 .999933 .999882 4.76 .999999 .999996 .999986 .999987 .999988 .999936 .999887 4.79 .999999 .999996 .999987 .999960 .99938 .99980 .999890 .999890 .999890 .999890 .999890 .999890 .999890 .999890 .999890 .999890 .999890 .999890 .99989 .999971 .999941 .99980 .99887 4.8 .999999 .999999 .999989 .999973 .999944 .999900 .99900 4.8 .999994 .99990 .99990 .999974 .999946 .99990 .99990 .999974 .999946 .99990 .99990 .999974 .999947 .999946 .99990 .99990 .999974 .999947 .999947 .999947 .99990 .99990 .999976 .999976 .999976 .999977 .999910 .999977 .999910 .999976 .999976								4.72
4.75 .999999 .999995 .999986 .999966 .999933 .999882 4.76 4.76 .999999 .999996 .999986 .999967 .999935 .999884 4.77 4.77 .999999 .999996 .999987 .999969 .99938 .999890 4.899999 4.79 .999999 .999996 .999988 .999970 .999940 .99989 .999892 4.2 4.80 .999999 .999996 .99988 .999971 .999941 .999855 4.8 4.81 .999999 .999997 .99989 .999973 .999944 .999900 4.8 4.83 .999999 .999997 .999989 .999974 .999946 .999904 4.999904 4.999904 4.8 4.84 .999999 .999997 .999990 .999974 .999948 .999907 4.8 4.90 .4.87 .999999 .999997 .999991 .999979 .999955 .999915 4.9 4.90 .999998 .999999 .999999 .999997 .999998 .999979 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.73</td></t<>								4.73
4.76 .999999 .999996 .999986 .999967 .999935 .999884 4.77 4.77 .999999 .999996 .999987 .999968 .999936 .999887 4.899993 .999988 .999938 .999938 .999880 4.4 .4.79 .999999 .999996 .99988 .999970 .999940 .999892 4.3 4.80 .999999 .999996 .99988 .999971 .999941 .999855 4.3 4.81 .999999 .999996 .99989 .999972 .999943 .999897 .999897 .999944 .999994 .99996 .999975 .999948 .999906 .999975 .999948 .999906 .999976								4.74
4.77 999999 .999996 .999987 .999968 .999936 .999987 4.78 .999999 .999999 .999996 .999987 .999960 .999938 .999930 .999890 .99988 .999970 .999940 .999892 4.2 4.80 .999999 .999996 .999988 .999971 .999941 .999895 4.3 4.81 .999999 .999996 .99989 .999972 .999943 .999897 .999897 4.82 .999999 .999997 .999989 .999973 .999944 .999904 .999902 4.3 4.84 .999999 .999997 .999990 .999974 .999947 .999904 4.4 4.85 .999999 .999997 .999990 .999975 .999948 .999907 4.4 4.86 .999999 .999997 .999990 .999976 .999951 .999911 4.3 4.89 .999999 .999997 .999991 .999977 .999951 .999913 4.3 4.90 .999998 .999998 .9999999 .999997 .999997								4.75
4.78 .999999 .999996 .999987 .999960 .99938 .999880 .999980 .999980 .999980 .999980 .999980 .999980 .999980 .999980 .999980 .999991 .999985 4.2 4.80 .999999 .999996 .999989 .999971 .999941 .999895 4.3 4.81 .999999 .999997 .99989 .999973 .999944 .999900 4.3 4.82 .999999 .999997 .99989 .999974 .999946 .999900 4.3 4.83 .999999 .999997 .999990 .999975 .999946 .999904 4.4 4.85 .999999 .999997 .999990 .999975 .999948 .999907 4.4 4.86 .999999 .999997 .999990 .999976 .999950 .999909 4.3 4.87 .999999 .999997 .999991 .999977 .999952 .999913 4.3 4.89 .999999 .999997 .999991 .999978 .999952 .999915 4.3 4						.999935		4.76
4.79 .999999 .999996 .999988 .999970 .999940 .999882 4.80 4.80 .999999 .999996 .999988 .999971 .999941 .999895 4.81 4.81 .999999 .999996 .999989 .999972 .999943 .999897 4.82 .999999 .999997 .99989 .999974 .999944 .999900 4.83 .999999 .999999 .999990 .999974 .999946 .999902 4.84 .999999 .999997 .999990 .999975 .999948 .99907 4.86 .999999 .999997 .999990 .999976 .999950 .999950 .999950 .999950 .999950 .999950 .999909 .48 .999999 .999999 .999990 .999976 .999950 .999950 .999950 .999911 4.8 .999999 .999991 .999977 .999951 .999911 4.8 .999999 .999999 .999991 .999977 .999952 .999913 4.9 4.9 .999998 .9999999 .999997 .999999 .999997					,			4.77
4.80								4.78
4.81 .999999 .999996 .999989 .999972 .999943 .999897 4.1 4.82 .999999 .999997 .999989 .999973 .999944 .999900 4.1 4.83 .999999 .999997 .99988 .999974 .999946 .999900 4.1 4.84 .999999 .999997 .999990 .999975 .999948 .999907 .99990 4.86 .999999 .999997 .999990 .999976 .999950 .999909 .99990 4.87 .999999 .999997 .999991 .999977 .999951 .999911 4.3 4.89 .999999 .999997 .999991 .999978 .999954 .999915 4.3 4.90 .999998 .999998 .999999 .999979 .999979 .999910 .999910 .999979 .999910 .999979 .999910 4.1 4.91 .999998 .999998 .9999999 .999998 .999998 .9999958 .999957 .999911 4.1 4.93 .999998 .9999999 .999999	4.79	.999999	.999996	.999988	.999970	.999940	.999892	4.79
4.82 .999999 .999997 .999989 .999973 .999944 .999900 4.899944 .999900 .999944 .999946 .999902 4.8 .999999 .999997 .999990 .999974 .999947 .999904 4.8 .999999 .999999 .999990 .999975 .999948 .999909 .999909 4.8 .999999 .999990 .999976 .999950 .999950 .999950 .999950 .999950 .999950 .999950 .999950 .999950 .999950 .999911 .999977 .999951 .999911 .999977 .999952 .999913 4.8 .999999 .999979 .999913 .999978 .999954 .999915 4.9 4.90 .999998 .999998 .9999992 .999979 .999956 .999919 4.9 4.91 .999998 .999992 .999980 .999957 .999957 .999951 4.9 4.92 .999998 .999992 .999980 .999958 .999958 .999923 4.9 4.93 .999998 .9999992 .999980 .999958 .999923 4.9 </td <td></td> <td></td> <td></td> <td></td> <td>.999971</td> <td>.999941</td> <td>.999895</td> <td>4.80</td>					.999971	.999941	.999895	4.80
4.83 .999999 .999997 .999989 .999974 .999946 .999902 4. 4.84 .999999 .999997 .999990 .999974 .999947 .999904 4. 4.85 .999999 .999997 .999990 .999975 .999998 .999907 .999990 .999976 .999950 .999990 .99991 .99997 .999951 .999911 .4 .4 .88 .999999 .999997 .99991 .999977 .999952 .999913 .4 .4 .88 .999999 .999997 .99991 .999978 .999915 .999915 .4 .4 .99998 .999992 .999979 .999955 .999917 .4 .4 .99998 .999992 .999980 .999957 .999956 .999919 .999919 .4 .9 .99998 .999992 .999980 .999957 .999958 .999921 .4 .4 .9 .999988 .999992 .999980 .999958 .999923 .9 .4 .4 .9 .9 .9 .9 .9 .9 .9 .9 .9 <						.999943	.999897	4.81
4.84 .999999 .999997 .999990 .999974 .999947 .999947 .999904 4.899999 .999999 .999997 .999990 .999975 .999948 .999907 .999907 .999990 .999976 .999950 .999909 .999909 .999909 .99991					.999973	.999944	.999900	4.82
4.85 .999999 .999997 .999990 .999975 .999948 .999907 4.999907 4.86 .999999 .999997 .999990 .999976 .999950 .999909 4. 4.87 .999999 .999997 .999991 .999977 .999951 .999911 4. 4.88 .999999 .999997 .99991 .999977 .999952 .999913 4. 4.90 .999998 .999992 .999979 .999955 .999917 4. 4.91 .999998 .999992 .999980 .999957 .999911 4. 4.92 .999988 .999992 .99980 .999958 .999921 4. 4.93 .999988 .999992 .99980 .999958 .999923 4.					.999974	.999946	.999902	4.83
4.86 .999999 .999997 .999990 .999976 .999950 .999909 4.999950 .999909 .999909 4.899999 .999997 .999991 .999977 .999951 .999911 4.899999 .999997 .999991 .999977 .999952 .999913 4.99991 .999978 .999954 .999915 4.999915 4.999915 4.999915 4.999915 4.999915 4.999917 4.999917 4.999917 4.999917 4.999917 4.999918 .999992 .999979 .999956 .999919 4.999918 .999992 .999980 .999957 .999921 4.99992 .999980 .999958 .999923 4.999988 .999923 4.999988 .999928 .999988 .999928 .999988 .999928 .999988 .999928 .999988 .999928 .999988 .999928 .999988 .999928 .999988 .999928 .999988 .999928 .999988 .999928 .999988 .999988 .999988 .999988 .999988 .999988 .999988 .999988 .999988 .999988 .999988 .999988 .999988 .99988 .99988 .9					.999974	.999947	.999904	4.84
4.87 999999 .999997 .999991 .999977 .999951 .999951 .999911 .4.899999 .999999 .999997 .999991 .999977 .999952 .999913 .4.89 .999999 .999997 .999991 .999978 .999954 .999915 .999915 .4.999915 .999915 .999915 .999915 .999915 .999915 .999917 .999917 .999917 .999917 .999917 .999918 .999919 .999919 .999919 .999919 .999919 .999919 .999919 .999919 .999919 .999911					.999975	.999948	.999907	4.85
4.87 .999999 .999997 .999991 .999977 .999951 .999951 .999911 .4.3 4.88 .999999 .999997 .999991 .999977 .999952 .999913 .4.3 4.89 .999999 .999997 .99991 .999978 .999954 .999915 .4.3 4.90 .999998 .999992 .999979 .999955 .999917 .4.9 4.91 .999998 .999992 .999980 .999957 .999951 .4.9 4.92 .99998 .999992 .99980 .999958 .999921 .4.9 4.93 .99998 .999992 .99980 .999958 .999923 .4.9			1	.999990	.999976	.999950	.999909	4.86
4.88 .999999 .999997 .999991 .999977 .999972 .999913 4.3 4.89 .999999 .999997 .999991 .999978 .999954 .999915 4.3 4.90 .99998 .999992 .999979 .999955 .999917 4.9 4.91 .999998 .999992 .999979 .999956 .999919 4.9 4.92 .999998 .999992 .999980 .999957 .999921 4.9 4.93 .999998 .999992 .999980 .999958 .999923 4.9						.999951	.999911	4.87
4.90			.999997	.999991	.999977	.999952	.999913	4.88
4.91 .999998 .999992 .999979 .999956 .999919 4.999919 4.92 .999998 .999992 .999980 .999957 .999921 4.9 4.93 .999998 .999992 .999980 .999958 .999923 4.9	4.89	.999999	.999997	.999991	.999978	.999954	.999915	4.89
4.91 .999998 .999992 .999979 .999956 .999919 4.999998 4.92 .999998 .999992 .999980 .999957 .999921 4.9 4.93 .999998 .999992 .999980 .999958 .999923 4.0	4.90		.999998	.999992	.999979	.999955	.999917	4.90
4.92 .999998 .999992 .999980 .999957 .999921 4.93 .999998 .999992 .999980 .999958 .999923 4.9		l	.999998	.999992	.999979			4.91
4.93 .999998 .999992 .999980 .999958 .999923 4.9	4.92	l	.999998	.999992				4.92
	4.93	l	.999998	.999992	.999980			4.93
	4.94		.999998	.999993	.999981			4.94
405	4.95	1	.999998	.999993				4.95
100	4.96	1	.999998	.999993	.999982			4.96
	4.97	ł	.999998	.999993				4.97
400	4.98	1	.999998	.999994				4.98
4.00	4.99		.999998	.999994				4.99

			SKEWN	IESS			
t	.6	7	.8	.9	1.0	1.1	t
4.50	.999676	.999536	.999367	.999171	.998950	.998705	4.50
4.51	.999683	.999545	.9993 7 8	.999185	.998966	.998724	4.51
4.52	.999689	.999553	.999389	.999198	.998982	.998743	4.52
4.53	.999696	.999562	.999400	.999212	.998998	.998762	4 53
4.54	.999702	.999570	.999411	.999225	.999014	.998780	4.54
4.55	,999708	.999579	.999422	.999238	.999029	.998798	4.55
4.56	.999715	.999587	.999432	.999251	.999045	.998816	4.56
4.57	.999721	.999595	.999442	.999263	.999060	.998833	4.57
4.58	.999726	.999603	.999452	.999275	.999074	.998850	4.58
4.59	.999732	.999610	.999462	.999288	.999089	.998867	4.59
4.60	.999738	.999618	.999472	.999300	.999103	.998884	4.60
4.61	.999743	.999625	.999481	.999311	.999117	.998901	4.61
4.62	.999749	.999632	.999490	.999323	.999131	.998917	4.62
4.63	.999754	.999640	.999499	.999334	.999145	.998933	4.63
4.64	.999759	.999647	.999508	.999345	.999158	.998949	4.64
4.65	.999764	.999653	.999517	.999356	.999171	.998964	4.65
4.66	.999769	.999660	.999526	.999367	.999184	.998980	4.66
4.67	.999774	.999667	.999535	,999378	.999197	.998995	4.67
4.68	.999779	.999673	.999543	.999388	.999210	.999010	4.68
4.69	.999784	.999680	.999551	.999398	.999222	.999024	4.69
4.70	.999788	.999686	.999559	999408	.999235	.999039	4.70
4.71	.999793	.999692	.999567	.999418	.999247	.999053	4.71
4.72	.999797	.999698	.999575	.999428	.999258	.999067	4.72
4.73	.999801	.999704	.999583	.999438	.999270	.999081	4.73
4.74	.999806	.999710	.999590	.999447	.999282	.999095	4.74
4.75	.999810	.999715	.999598	.999457	.999293	.999108	4.75
4.76	.999814	.999721	.999605	.999466	.999304	.999121	4.76
4.77	.999818	.999726	.999612	.999475	.999315	.999134	4.77
4.78	.999822	.999732	.999619	.999484	.999326	.999147	4.78
4.79	.999825	.999737	.999626	.999492	.999337	.999160	4.79
4.80	.999829	.999742	.999633	.999501	.999347	.999173	4.80
4.81	.999833	.999747	.999639	.999509	.999357	.999185	4.81
4.82	.999836	.999752	.999646	.999518	.999368	.999197	4.82
4.83	.999840	.999757	.999652	.999526	.999378	.999209	4.83
4.84	.999843	.999762	.999659	.999534	.999387	.999221	4.84
4.85	.999847	.999766	.999665	.999542	.999397	.999232	4.85
4.86	.999850	.999771	.999671	.999549	.999407	.999244	4.86
4.87 4.88	.999853	.999775	.999677	.999557	.999416	.999255	4.87
4.88	.999856 .999859	.999780 .999784	.999683 .999688	.999564 .999572	.999425 .999434	.999266 .999277	4.88 4.89
4.90	.999862	.999788	.999694	.999579	.999443	.999288	4.90
4.91	.999865	.999793	.999700	.999586	.999452	.999298	4.91
4.92	.999868	.999797	.999705	.999593	.999461	.999309	4.92
4.93	.999871	.999801	.999711	.999600	.999469	.999319	4.93
4.94	.999874	.999805	.999716	.999607	.999478	.999329	4.94
4.95	.999876	.999808	.999721	.999614	.999486	.999339	4.95
4.96	.999879	.999812	.999726	.999620	.999494	.999349	4.96
4.97	.999882	.999816	.999731	.999627	.999502	.999359	4.97
4.98	.999884	.999820	.999736	.999633	.999510	.999369	4.98
4.99	.999887	.999823	.999741	.999639	.999518	.999378	4.99
7.22	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.779020	.777/41	.777007	.777310	.555310	7.77

			SKEW	NESS		===T	
				TESO T			
t	.0	.1	.2	.3	.4	.5	t
5.00		.999998	.999994	.999984	.999965	.999935	5.00
5.01		.999998	.999994	.999985	.999966	.999936	5.01
5.02		.999998	.999994	.999985	.999967	.999938	5.02
5.03		.999999	.999995	.999986	.999968	.999939	5.03
5.04		.999999	.999995	.999986	.999969	.999941	5.04
5.05		.999999	.999995	.999986	.999970	,999942	5.05
5.06		.999999	.999995	.999987	.999971	.999943	5.06
5.07		.999999	.999995	.999987	.999971	.999945	5.07
5.08		.999999	.999996	.999988	.999972	.999946	5.08
5.09		.999999	.999996	.999988	.999973	.999947	5.09
5.10		.999999	.999996	.999988	.999974	.999949	5.10
5.11		.999999	.999996	.999989	.999974	.999950	5.11
5.12		.999999	.999996	.999989	.999975	.999951	5.12
5.13		.999999	.999996	.999989	.999976	.999952	5.13
5.14		.999999	.999996	.999990	.999976	.999953	5.14 5.15
5.15		.999999	.999997 999997	.999990	.999977	.999955	5.15
5.16		.999999	.999997	.999990 .999991	.999978 .999978	.999956 .999957	5.17
5.17 5.18		.999999 .999999	.999997	.999991	.999979	.999958	5.17
5.10		.999999	.999997	.999991	.999979	.999959	5.19
5.20		.999999	.999997	.999991	.999980	.999960	5.20
5.21		.999999	.999997	.999992	.999980	.999961	5.21
5.22		.999999	.999997	.999992	.999980	.999962	5.22
5.23		.999999	.999997	.999992	.999981	.999963	5.23
5.24		.999999	.999997	.999992	.999982	,999963	5.24
5.25		.999999	.999998	.999993 .999993	.999982	.999964	5.25
5.26 5.27		.999999 .999999	.999998 .999998	.999993	.999983	.999965 .999966	5.26 5.27
5.28		.999999	.999998	.999993	.999984	.999967	5.28
5.29			.999998	.999994	.999984	.999968	5.29
5.30			.999998	.999994	.999985	.999968	5.30
5.31			.999998	.999994	.999985	.999969	5.31
5.32 5.33			.999998	.999994 .999994	.999986 .999986	.999970	5.32
5.34		l	.999998	.999994	.999986	.999971 .999971	5.33 5.34
5.35			.999998	.999995	.999987	.999972	5.35
5.36			.999998	.999995	.999987	.999973	5.36
5.37			.999998	.999995	.999987	.999973	5.37
5.38	l	l	.999998	.999995	.999988	.999974	5.38
5.39			.999999	.999995	.999988	,999975	5.39
5.40	1		.999999	.999995	.999988	.999975	5.40
5.41	1		.999999	.999996	.999989	.999976	5.40
5.42	1	1	.999999	.999996	.999989	.999977	5.42
5.43	l		.999999	.999996	.999989	.999977	5.43
5.44	l	İ	.999999	.999996	.999990	.999978	5.44
5.45		1	.999999	.999996	.999990	.999978	5.45
5.46		1	.999999	.999996	.999990	.999979	5.46
5.47		1	.999999	.999996	.999990	.999979	5.47
5.48	1		.999999	.999996	.999991	.999980	5.48
5.49	<u> </u>	<u> </u>	.999999	.999997	.999991	.999980	5.49

			SKEWN	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
5.00	.999889	.999827	.999746	.999645	.999526	.999387	5.00
5.01	.999892	.999830	.999750	.999651	.999533	.999397	5.01
5.02	.999894	.999833	.999755	.99965 7	.999541	.999406	5.02
5.03	.999896	.999837	.999759	.999663	.999548	.999414	5.03
5.04	.999898	.999840	.999764	.999669	.999555	,999423	5.04
5.05	.999901	.999843	.999768	.999674	,999562	.999432	5.05
5.06	.999903	.999846	.999772	.999680	.999569	.999440	5.06
5.07	.999905	.999849	.999776	.999685	.999576	.999449	5.07
5.08	.999907	.999852	.999781	.999691	.999583	.999457	5.08
5.09	.999909	.999855	.999785	.999696	.999590	.999465	5.09
5.10	.999911	.999858	.999788	.999701	.999596	.999473	5.10
5.11	.999913	.999861	.999792	.999706	.999603	.999481	5.11
5 12	.999915	.999864	.999796	.999711	.999609	.999489	5.12
5.13	.99991 <i>7</i>	.999866	.999800	.999716	.999615	.999497	5.13
5.14	.999918	.999869	.999804	.999721	.999621	.999504	5.14
5 1 5	.999920	.999872	,999807	.999726	.99962 7	.999512	5.15
5.16	.999922	.999874	.999811	.999731	.999633	.999519	5.16
5 1 <i>7</i>	.999924	.999877	.999814	.999735	.999639	.999526	5.17
5.18	.999925	.999879	.999818	.999740	.999645	.999533	5.18
5.19	.99992 7	.999882	.999821	.999744	.999651	.999540	5.19
5 20	.999928	.999884	.999824	.999749	.999656	.999547	5.20
5.21	.999930	.999886	.999828	.999753	.999662	.999554	5.21
5.22	.999932	.999888	.999831	.999757	.999667	.999561	5.22
5.23	.999933	.999891	.999834	.999761	.999672	.999567	5.23
5.24	.999935	.999893	.999837	.999765	.999678	.999574	5.24
5.25	.999936	.999895	.999840	.999769	.999683	.999580	5.25
5.26	.999937	.999897	.999843	.999773	.999688	.999587	5.26
5.27	.999939	.999899	.999846	.999777	.999693	.999593	5.27
5.28	.999940 .999941	.999901 .999903	.999849 .999851	.999781 .999785	.999698 .999703	.999599 .999605	5.28 5.29
5.29							
5.30	.999943	.999905	.999854	.999789	.999708	.999611	5.30
5.31	.999944	.999907	.999857	.999792	.999712	.999617	5.31
5.32	.999945	.999909	.999860	.999796	.999717	.999623	5.32
5.33	.999946	.999911	.999862	.999799	.999721	.999628	5.33
5.34	.999948	.999913	.999865	.999803	.999926	.999634	5.34
5.35	.999949	.999914	.999867	.999806	.999730	.999639	5.35
5.36	.999950	.999916	.999870	.999809	.999735	.999645	5.36
5.37	.999951	.999918	.999872	.999813	.999739	.999650	5.37
5.38 5.39	.999952	.999919 .999921	.999874 .999877	.999816 .999819	.999743 .999747	.999656 .999661	5.38 5.39
5.40	.999954	.999923	999879	.999822	.999751	.999666	5.40
5 41	.999955	.999924	.999881	.999825	.999755	.999671	5.41
5,42	.999956	.999926	.999884	.999828	.999759	.999676	5.42
5.43	.999957	.999927	.999886	.999831	.999763	.999681	5.43
5.44	.999958	.999929	.999888	.999834	.999767	.999686	5.44
5.45	.999959	.999930	.999890	.999837	.999771	.999690	5.45
5.46	.999960	.999931	.999892	.999840	.999774	.999695	5.46
5.47	.999961	.999933	.999894	.999843	.999778	.999700	5.47
5 48	.999962	.999934	.999896	.999845	.999782	.999704	5.48
5.49	.999962	999936	.999898	.999848	.999785	.999709	5.49
		<u> </u>		<u> </u>		<u> </u>	

			SKEW	NESS			
t	.0	.1	.2	.3	.4	.5	t
	.0	•1			.,,		
5.50			,999999	.999997	.999991	.999981	5.50
5.51			.999999	.999997	.999991	.999981	5.51
5.52			.999999	.999997	.999992	.999982	5.52
5.53			.999999	.999997	.999992	.999982	5.53
5.54			.999999 .999999	.999997	.999992	.999983	5.54
5.55			.999999	.999997 .999997	.999992 .999993	.999983 .999983	5.55 5.56
5.56	1		.999999	.999997	.999993	.999984	5.57
5.57 5.58	1		.999999	.999997	.999993	.999984	5.58
5.59			,999999	.999997	.999993	.999985	5.59
5.60			.999999	.999998	.999993	.999985	5.60
5.61	1		.999999	.999998	.999994	.999985	5.61
5.62	1	i	.999999	.999998	999994	.999986	5.62
5.63	İ		.999999	999998	.999994	.999986	5.63
5.64	l	i	.999999	999998	.999994	.999986	5.64
5.65			.999999	.999998	.999994	.999987	5.65
5.66	l		999999	.999998	.999994	.999987	5.66
5.67	l		.999999	.999998	.999995	.999987	5.67
5.68	l			.999998	.999995	.999988	5.68
5.69				.999998	.999995	.999988	5.69
5 <i>.</i> 70				.999998	999995	.999988	5. 7 0
5.71	ļ		1	.999998	.999995	.999989	5.71
5.72	1		İ	.999998	.999995	.999989	5.72
5.73	1			.999998	.999995	.999989	5.73
5.74				.999998	.999996	.999989	5.74
5.75	ł		ł	.999999	.999996	.999990	5.75
5.76				.999999	.999996	.999990	5.76
5.77			l	.999999	.999996	.999990	5.77
5.78 5. 7 9	1		l	.999999	.999996 .999996	.999990	5.78
						.999991	5.79
5.80				.999999	.999996	.999991	5.80
5.81			1	.999999	.999996	.999991	5.81
5.82			1	.999999	.999996	.999991	5.82
5.83 5.84				.999999 .999999	.999997	.999992	5.83
5.85 5.85			1	.999999	.999997 .999997	.999992	5.84
5.86			}	.999999	.999997	.999992 .999992	5.85
5.87				.999999	.999997	.999992	5.86 5.87
5.88				.999999	.999997	.999993	5.88
5.89				.999999	.999997	,999993	5.89
5.90			l	.999999	.999997	.999993	5.90
5.91				.999999	.999997	.999993	5.91
5.92				.999999	.999997	.999993	5.92
5.93				.999999	.999997	.999993	5.93
5.94			l	.999999	.999997	.999994	5.94
5.95				.999999	.999998	.999994	5.95
5.96				.999999	.999998	.999994	5.96
5.97				.999999	.999998	.999994	5.97
5.98				.999999	.999998	.999994	5.98
5.99	<u></u>	L <u>.</u>	L	.999999	.999998	.999994	5.99

			SKEWN	ESS			
ť	.6	.7	.8	.9	1.0	1.1	t
5.50	.999963	.999937	.999900	.999851	.999789	.999713	5.50
5.51	.999964	.999938	.999902	999853	.999792	.999717	5.51
5.52	.999965	.999939	.999903	.999856	.999795	.999722	5.52
5.53	.999966	.999941	.999905	999858	.999799	.999726	5.53
5.54	.999966	.999942	.999907	.999861	.999802	.999730	5.54
5.55	.999967	.999943	.999909	.999863	.999805	.999734	5,55
5.56	.999968	.999944	.999910	.999866	.999808	.999738	5.56
5.57	.999969	.999945	.999912	.999868	.999811	.999742	5.57
5.58	.999969 .999970	.999946 .999947	.999914	.999870	.999814 .999817	.999746 .999750	5.58 5.59
5.59						•	
5.60	.999971	.999949	.999917	999875	.999820	.999754 .999758	5.60 5.61
5.61	.999971	.999950	.999919	.999877	.999823	.999761	5.62
5.62	.999972 .999973	.999951	.999920	.999881	.999829	.999765	5.63
5.63	.999973	.999952	.999922	.999883	999832	.999768	5.64
5.64 5.65	.999974	.999954	.999924	.999885	.999835	.999772	5.65
5.66	.999974	.999955	.999926	.999887	.999837	.999775	5.66
5.67	.999975	.999955	999927	.999889	.999840	.999779	5.67
5.68	.999976	.999956	.999929	.999891	.999842	.999782	5.68
5.69	.999976	.999957	.999930	.999893	.999845	.999786	5.69
5.70	.999977	.999958	.999931	.999895	.999848	.999789	5. <i>7</i> 0
5.71	.999977	.999959	999933	.999897	.999850	.999792	5 71
5.72	.999978	.999960	.999934	.999898	.999852	.999795	5.72
5.73	.999978	.999961	.999935	.999900	.999855	.999798	5.73
5.74	.999979	.999961	.999936	.999902	.999857	.999801	5.74
5.75	.999979	.999962	.999938	.999904	.999859	.999804	5 75
5.76	.999980	.999963	.999939	.999905	.999862	.999807	5.76
5.77	.999980	.999964	.999940	999907	.999864 .999866	.999810 .999813	5 <i>7</i> 7 5. 78
5.78 5.79	.999980 .999981	.999965	.999941 .999942	.999910	.999868	999816	5.79
5.80	.999981	.999966	.999943	.999912	,999871	.999819	5.80
5.81	.999982	.999967	.999944 .999945	.999913	999873 .999875	.99822 .999824	5.81 5.82
5.82 5.83	.999982 .999983	.999967 .999968	.999945	900916	.999877	.999827	5.83
5.84	.999983	.999969	.999917	.999918	.999879	.999830	5 84
5.85	.999983	.999969	.999948	999919	.999881	.999832	5.85
5.86	.999984	.999970	.999949	.999921	.999883	.999835	5.86
5.87	.999984	.999971	999950	.999922	.999885	.999837	5.87
5.88	.999984	.999971	.999951	.999923	.999887	.999840	5.88
5.89	.999985	.999972	.999952	.999925	.999888	.999842	5.89
5.90	.999985	.999972	.999953	.999926	.999890	.999845	5.90
5 91	.999985	,999973	.999954	.999927	.999892	.999847	5.91
5.92	.999986	.999973	.999955	.999929	.999894	.999849	5.92
5.93	.999986	.999974	.999956	.999930	.999895	.999852	5.93
5.94	.999986	.999975	.999957	.999931	.999897	.999854	5.94
5.95	.999987	.999975	.999957	.999932	.999899	.999856	5.95
5.96	.999987	.999976	.999958	.999933	.999901	.999858	5.96
5.97	.999987	.999976	.999959	.999935	.999902	.999861	5.97
5.98	.999988	999977	.999960	.999936	.999904	.999863	5.98
5.99	.999988	.999977	.999960	.999937	.999905	.999865	5.99

			SKEW	NESS			
t	.0	.1	.2	.3	.4	.5	t
6.00				.999999	.999998	.999995	6.00
6.01				.999999	.999998	.999995	6.01
6.02			ĺ	.999999	.999998	.999995	6.02
6.03			ļ	.999999	.999998	.999995	6.03
6.04			}	.999999	.999998	.999995	6.04
6.05			1	.999999	.999998	.999995	6.05
6.06				.999999	.999998	.999995	6.06
6.07			1	999999	.999998	.999995	6.07
6.08 6.09				.999999	.999998 .999998	.999996 .999996	6.08 6.09
6.10			!		.999998	.999996	6.10
6.11					.999998	.999906	6.11
6.12					.999998	.999996	6.12
6.13			1		.999999	.999996	6.13
6.14	l				.999999	.999996	6.14
6.15				1	.999999	.999996	6.15
6.16	·			}	.999999	.999996	6.16
6.17				Ì	.999999	.999996	6.17
6.18	ł			l	.999999	.999997	6.18
6.19					.999999	.9 99997	6.19
6.20	Ì				.999999	.999997	6.20
6.21	1		})	.999999	.999997	6.21
6.22	l		1	1	.999999	.999997	6.22
6.23	ł		1	{	.999999	.999997	6.23 6.24
6.24	1			1	.999999	.999997 .999997	6.25
6.25 6.26	1		ì	1	.999999	.999997	6.26
6.27			l	1	.999999	.999997	6.27
6.28	1	1		1	.999999	.999997	6.28
6.29			Ì		.999999	.999997	6.29
6.30					.999999	.999997	6.30
6.31	1	1		i	.999999	.999998	6.31
6.32	1			1	.999999	.999998	6.32
6.33			}		.999999	.999998	6.33
6.34	1	1	1	1	.999999	.999998	6.34
6.35	1	į	1	1	.999999	.999998	6.35
6.36 6.37			1	1	.999999	.999998	6.36 6.37
6.38	l		1	1	.999999	.999998	6.38
6.39	1				.999999	.999998	6.39
6.40					.999999	.999998	6.40
6.41				1	.999999	.999998	6.41
6.42	1	1		1	.999999	.999998	6.42
6.43	1			1	,999999	.999998	6.43
6.44					.999999	.999998	6.44
6.45					.999999	.999998	6.45
6.46	1			1	.999999	.999998	6.46
6.47	1		1	1	.999999	999998	6.47
6.48 6.49			1	i	.999999	.999998	6.48
0.49	<u> </u>	<u> </u>			.999999	.999998	6.49

			SKEWN	IESS			
t	.6	.7	.8	.9	1.0	1.1	ı
6.00	.999988	.999978	.999961	.999938	.999907	.999867	6.00
6.01	.999988	.999978	.9547.2	.999939	.999908	.999869	6.01
6.02	.999989	.999978	.999963	.999940	.999910	.999871	6.02
6.03	.999989	.999979	.999963	.999941	.999911	.999873	6.03
6.04	.999989	.999979	.999964	.999942	.999913	.999875	6.04
6.05	.999989	.999980	.999965	.999943	.999914	.999877	6.05
6.06	.999990	.999920	.999965	.999944	.999916	.999879	6.06
6.07	.999990	.999981	.999966	.999945	.999917	.999881	6.07
6.08	.999990	.999981	.999967	.999946	.999918	.999882	6.08
6.09	.999990	.999981	.999967	.999947	.999920	.999884	6.09
6.10	.999991	.999982	.999968	.999948	.999921	.999886	6.10
6.11	.999991	.999982	.999969	.999949	.999922	.999888	6.11
6.12	.999991	.999983	.999969	.999950	.999924	.999889	6.12
6.13	.999991	.999983	.999970	.990951	.999925	.999891	6.13
6.14	.999991	.999983	.999970	.999952	.999926	.999893	6.14
6.15	.999992	.999984	.999971	.999953	.999927	.999894	6.15
6.16	.999992	.999984	.999971	.999953	.999929	.999896	6.16
6.17	.999992	.999984	999972	.999954	.999930	.999898	6.17
6.18	.999992	.999985	.999973	.999955	.999931	.999899	6.18
6.19	.999992	.999985	.999973	.999956	.999932	.999901	6.19
6.20	.999993	.999985	.999974	.999957	.999933	.999902	6.20
6.21	.999993	.999986	.999974	.999957	.999934	.999904	6.21
6.22	.999993	.999986	.999975	.999958	.999935	.999905	6.22
6.23	.999993	.999986	.999975	.999959	.999936	.999907	6.23
6.24	.999993	.999986	.999976	.999960	.999937	.999908	6.24
6.25	.999993	.999987	.999976	.999960	.999938	.999910	6.25
6.26	.999994	.999987	.999976	.999961	.999939	.999911	6.26
6.27	.999994	.999987	.999977	.999962	.999940	.999912	6.27
6.28	.999994 .999994	.999988	.999977	.999962	.999941 999942	.999914	6.28
6.29	.999994		.999978	.999963	499942	.999915	6.29
6.30	.999994	.999988	.999978	.999964	.999943	.999916	6.30
6.31	.999994	.999988	.999979	.999964	.999944	.999918	6.31
6.32	.999994	.999989	.999979	.999965	.999945	.999919	6.32
6.33	.999994	.999989	.999979	.9999ს6	.999946	.999920	6.33
6.34	.999995	.999989	.999980	.999966	.999947	.999921	6.34
6.35	.999995	999989	.999980	999967	999948	.999923	6.35
6.36	.999995	.999989	.999981	.999967	.999949	.999924	6.36
6.37	.999995	.999990	.999981	.999968	.999950	.999925	6.37
6.38	.999995	.999990	.999981	.999969	.999950	.999926	6.38
6.39	.999995	.999990	999982	.999969	.999951	.999927	6.39
6.40	.999995	.999990	.999982	.999970	.999952	.999928	6.40
6.41	.999995	.999991	.999982	.999970	.999953	.999930	6.41
6.42	.999996	.999991	.999983	.999971	999954	.999931	6.42
6.43	.999996	.999991	.999983	999971	.999954	.999932	6.43
6.44	.999996	.999991	.999983	.999972	.999955	.999933	6.44
6.45	.999996	.999991	.999984	.999972	.999956	.999934	6.45
6.46	.999996	.999991	.999984	.999973	.999957	.999935	6.46
6.47	.99 99 96	.999992	.999984	.999973	.999957	.999936	6.47
6.48	.999996	.999992	.990085	.999974	.999958	.999937	6.48
6.49	.999996	.999992	499485	<i>9</i> 99974	.999959	.999938	6.49

			SKEW	VESS	***************************************		
t	.0	.1	.2	.3	.4	.5	t
6.50 6.51 6.52 6.53 6.54 6.55 6.56 6.57 6.58 6.59						.999999 .999999 .999999 .999999 .999999 .999999	6.50 6.51 6.52 6.53 6.54 6.55 6.56 6.57 6.58 6.59
6.60 6.61 6.62 6.63 6.64 6.65 6.66 6.67 6.68 6.69						.999999 .999999 .999999 .999999 .999999 .999999	6.60 6.61 . 6.62 6.63 6.64 6.65 6.66 6.67 6.68 6.69
6.70 6.71 6.72 6.73 6.74 6.75 6.76 6.77 6.78 6.79						,999999 .999999 .999999 .999999 .999999 .999999	6.70 6.71 6.72 6.73 6.74 6.75 6.76 6.77 6.78 6.79
6.80 6.81 6.82 6.83 6.84 6.85 6.86 6.87 6.88						.999999 .999999 .999999 .999999 .999999 .999999	6.80 6.81 6.82 6.83 6.84 6.85 6.86 6.87 6.88 6.89
6.90 6.91 6.92 6.93 6.94 6.95 6.96 6.97 6.98					117	.999999 .999999	690 6.91 6.92 6.93 6.94 6.95 6.96 6.97 6.98 6.99

			SKEWI	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
6.50	.999996	.999992	.999985	999975	.9 14459	.909939	6.50
6.51	.999996	.999992	.999986	999975	.999960	999940	6.51
6.52	.999996	.999992	.999986	.999976	.999961	.999941	6.52
6.53	.999997	.999993	.999986	0,000,00	000961	999942	6 5 3
6.54	.999997	.999993	.999986	.900076	.999962	999942	6 54
6.55	.999997	.999993	.999987	.999977	.999963	.999943	6.55
0.56	1 599997	.999993	999987	9 KM77	999963	.999944	6.56
6.57	.999997	.999993	.544487	444978	.099964	999945	6.57
6.58	.999997	.999993	.999987	.999978	.409964	.999946	6.58
6.59	.939997	.999994	.999988	999978	999965	999947	6.59
6.60	.999997	.999994	.999988	.909079	.9999bb	.99948	660
6.61	.999997	.999994	999988	999979	.997966	.09948	6.61
6.62	.999997	.994994	.999988	999980	.999907	.999949	6.62
6.63	.999997	.999994	.999989	999980	.090967	.999950	6.63
6.64	.999997	999904	.999989	.999980	.90008	.999951	6.64
6.65	.999997	.999994	.999989	.99981	.999968	.999952	6.65
6.66	.999997	999994	.999989	.999981	.999969	.999952	6.66
6.67	.999498	.999795	(14(1)(81)	999981	999969	999953	6.67
6 68	.999998	.99995	9997900	.439982	9 19 19 70	.999954	668
6.69	.999993	.999995	.449990	944982	.999970	.999954	6.69
6.70	.999998	.999995	.999990	(XXX)982	.999971	.999955	6.70
6.71	.999998	.999995	.999990	0441083	949971	.999956	6.71
6.72	.992998	.999995	.999990	(x x)983	.999972	.999957	672
6.73	.999998	.999995	.049991	979983	.99XX72	.999957	6.73
6.74	.999998	.999995	104840.	.99984	.999973	.9944958	674
6.75	.999998	.95×43-15	.999901	.989(יו יני.	.991973	.999959	6.75
6.76	.999998	.999996	.999991	.999984	.999974	49959	676
6.77	.999998	.999996	.999 191	999984	.(X)(X)74	.999960	677
6.78	.999998	.9900	.095491	V-11/1/285	(XXX)75	000000	678
6.79	.999998	.999996	.999992	.0 4085	.04X4)75	999961	6. 7 9
6 80	.999998	.999996	.999992	.999985	.91X)975	999962	6.80
6.81	.999998	.999996	.999992	.999985	.999976	.999962	6.81
6.82	.999998	.999996	999992	.999986	999976	.099063	6.82
6.83	.909998	.9744976	99999	98049	999977	.000063	6.83
6.84	.992998	`ck/bbb	.999992	.999986	.\$XXXX77	.999964	6.84
6.85	.999998	.994996	5(4444)	999986	.999977	999965	6.85
6.86	.999998	.999996	.99993	95/987	.979978	999965	6.86
6.87	.999998	.999996	ሁ/ሁ/ਮ3	4444187	999978	,00000	6.87
6.88	.999998	.999997	.999993	.999987	999979	.999966	6.88
6.89	.999999	.999997	.999993	.999987	.999979	.999967	6.89
6.90	.999999	.990907	.949993	.986906	.999979	.9 99967	6.90
6.91	.999999	909977	.90 1993	.999988	.999980	.999968	6.91
6.92	.909999	.999997	.999994	.999988	.98000	.999968	6.92
6.93	.999999	.999997	.999994	.999988	.999980	.999969	6.93
6.94	.999999	.999997	.999994	.999989	.999981	.999969	6.94
6.95	.999999	999997	.999994	.999989	.999981	.999970	6.95
6.96	.999999	.999997	.999994	.999989	.999981	.999970	6.96
6.97	.999999	.999997	.999994	.999989	.999982	.999971	6.97
6.98	.999999	.999997	.999994	.999989	.999982	.999971	6.98
6.99	.999999	.99997	.999994	.999990	.999982	.999972	6.99

			SKEWN	ESS			
t	.0	.1	.2	.3	.4	.5	t
7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09							7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09
7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19			,				7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19
7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29							7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29
7.30 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39							7.30 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39
7.40 7.41 7.42 7.43 7.44 7.45 7.46 7.47 7.48 7.49							7.40 7.41 7.42 7.43 7.44 7.45 7.46 7.47 7.48 7.49

*****			SKEWI	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09	.99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999	.99997 .99997 .99997 .99997 .99998 .99998 .99998 .99998 .99998 .99998	.999994 .99995 .99995 .99995 .99995 .99995 .99995 .99995 .99995	.99990 .99990 .99990 .99990 .99990 .99991 .99991 .99991 .99991	.999982 .999983 .999983 .999984 .999984 .999984 .999985 .999985	.99972 .99972 .99973 .99973 .99974 .99974 .99975 .99975 .99976	7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09
7.11 7 12 7.13 7.14 7.15 7.16 7.17 7 18 7.19	.979999 .799999 .799999 .999999 .999999 .909999 .909999 .999999	.999998 .999998 .999998 .999998 .999998 .999998 .999998	.999996 .999996 .999996 .999996 .999996 .999996 .999996	.999992 .999992 .999992 .999992 .999992 .999992 .999993	.999985 .999986 .999986 .999986 .999987 .99987 .99987 .99987	.999976 .999977 .999978 .999978 .999978 .999979 .999979	7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19
7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29	.999999 .999999 .999999 .999999 .999999 .999999	.999998 .999998 .999998 .999998 .999998 .999999 .999999 .999999	.999996 .999996 .999996 .999997 .999997 .999997 .999997 .999997	.999993 .999993 .999993 .999993 .999993 .999994 .999994 .999994	.99988 .99988 .99988 .99988 .99988 .99988 .99989 .99989 .99989	999980 999980 999980 999981 999981 999981 999982 999982	7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29
7.30 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39	.999999 .999999 .999999 .999999	.999999 .999999 .999999 .999999 .999999 .999999	.999997 .999997 .999997 .999997 .999997 .999997 .999997 .999997	.999994 .999994 .999994 .999994 .999995 .999995 .999995 .999995	.999989 .999990 .999990 .999990 .999990 .999990 .999991 .999991	.999983 .999983 .997983 .797983 .999984 .999984 .999984 .999985 .999985	7.30 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39
7.40 7.41 7.42 7.43 7.44 7.45 7.46 7.47 7.48 7.49		.999999 .999999 .999999 .999999 .999999 .999999	.999997 .999998 .999998 .999998 .999998 .999998 .999998 .999998 .999998	.999995 .999995 .999995 .999995 .999995 .999996 .999996 .999996	.999991 .999991 .999992 .999992 .999992 .999992 .999992 .999992	.999985 .999985 .999986 .999986 .999986 .999986 .999987 .999987	7.40 7.41 7.42 7.43 7.44 7.45 7.46 7.47 7.48 7.49

*			SKEWN	ESS			
ŧ	.0	.1	.2	.3	.4	.5	t
7.50 7.51 7.52 7.53 7.54 7.55 7.56 7.57 7.58 7.59							7.50 7.51 7.52 7.53 7.54 7.55 7.56 7.57 7.58 7.59
7.60 7.61 7.62 7.63 7.64 7.65 7.66 7.67 7.68 7.69							7.60 7.61 7.62 7.63 7.64 7.65 7.66 7.67 7.68 7.69
7.70 7.71 7.72 7.73 7.74 7.75 7.76 7.77 7.78 7.79							7.70 7.71 7.72 7.73 7.74 7.75 7.76 7.77 7.78 7.79
7.80 7.81 7.82 7.83 7.84 7.85 7.86 7.87 7.88 7.89							7.80 7.81 7.82 7.83 7.84 7.85 7.86 7.87 7.88 7.89
7.90 7.91 7.92 7.93 7.94 7.95 7.96 7.97 7.98 7.99							7.90 7.91 7.92 7.93 7.94 7.95 7.96 7.97 7.98 7.99

====							i — —
			SKEWN	IESS	,		l
t	.6	7	.8	.9	1.0	1.1	t
7.50		999999	.909908	949946	.999992	.999987	7.50
7 5 1		944999	.999998	.99996	.999993	999987	7.51
7 5∠	1	000000	.999998	.999996	.999993	.999988	7.52
753	1	1991991	.999998	.999996	999993	.999988	7.53
754	1	1991 199	366466	.999910	999900	.999988	7.54
5.55		110(110)	.999998	999996	.999993	.999988	7.55
5 56	ı	999999	.999998	.999996	.999993	.999988	7.56
7.57		r)9999	.999998	.999996	.999993	.999989	7 57
2.58	l	,199909	.999998	.999996	.999993	.999989	7.58
7.50		99/11/19	.199998	.99997	.999994	.999989	7.59
7.60	1	()(((()()()	.99 1948	.949997	.999994	.999989	7.60
7 01	ł	944999	.999998	.999997	.999994	.999989	761
7.62	Ì	פערעוע.	.999998	.9999997	.999994	.999989	762
7.63	1	(Why) h)	804666		.ש ⁹⁴	.999990	7.63
7.64		44.1999	.999998	979997	.999994	.949990	7.64
765	l	9444	.999998	.997997	.99994	.99990	7.65
76,		.909999	.999999	.99997	.999994	999990	7.66
717	l	3848970	יטאיטיע פ.	.799997	.4719194	.999990	7.67
700	1	999999	.909909	999997	.909994	700000	7.68
769		,999999	,999999	.999997	.999995	.999991	7.69
770	1	090009	.990999	.999997	.999995	.999991	7.70
771	l	(9,99,99)	.999999	.999997	.999995	.999991	7 71
7.72		,999999	.999999	.999997	.999995	.999991	7.72
7.73 7.74	l	נוענוווינ	.999999	.999997	.999995	.999991	7.73
774	ŀ	(KHKHK)	00 1000	.999997	,999995	.999991	7 74
1.5	1	(XX 64X)	.999999	.999997	.999995	.999991	7 75
270	l	.999399	.999999	999997	.999995	.999992	7.76
7 77	l	i	.999999	.999997	.999995	300003	7 77
7.78	l	I	.464999	.990098	.9999 15	30000	7 78
7.79	1	1	0.000	.999998	.99995	.999992	7 79
780			.90000	.999998	.999995	.999992	7.80
7.81	1	1	.9)9999	.9998עיע	.9997116	. 199992	7 81
7.62	1	1	99999	.999998	.999996	.900992	7.82
7.83	1	1	149499	. 17998 . 1	.009906	.999992	783
7 84	1	1	991999	.990908	.999996	999993	7 84
785	1		900666	94,3998	.999996	.999993*	7.85
7.80	}		.999999	909998	.99996	.999993	7 86
7.87	}	ł	.994944	.999998	.999996	.999993	787
7.88	1	ł	999999	900008	.999996	.999993	7 88
7.89			.999999	.999998	.999996	.999993	7.89
7.90			999999	.999998	.999996	.999993	790
7.91	1		. (V(((V))),V	.9טפעי	.9999996	.999993	7.91
7.92	1		.999 199	.9999998	.999996	.999993	7.92
793	!	Į.	.999999	.999998	.999996	.909994	7.93
791	}	ſ	.499999	.000908	.999996	999994	7.94
7 95	l	1	.999999	.990098	.999997	.999994	7.95
7.90	l	1	.999999	.9900	.991 (197	.999994	7.96
7.97	l	1	979999	.9999998	.999997	.999994	797
148	l		.000000	999998	.999997	.999994	798
7 (10)			099999	.999998	.999997	999994	7.99
	i	i .	1	1		227777	1 '

	T		SKEWN	22¥			T
t	.0	.1	.2	.3	.4	.5	t
8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09				v			8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09
8.10 8.11 8.12 8.13. 8.14 8.15 8.16 8.17 8.18 8.19		·		·			8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19
8.20 8.21 8.22 8.23 8.24 8.25 8.26 8.27 8.28 8.29		,					8.20 8.21 8.22 8.23 8.24 8.35 8.26 8.27 8.28 8.29
8.30 8.31 8.32 8.33 8.34 8.35 8.36 8.37 8.38 8.39			, ,				8.30 8.31 8.32 8.33 8.34 8.35 8.36 8.37 8.38 8.39
8.40 8.41 8.42 8.43 8.44 8.45 8.46 8.47 8.48 8.49		,					8.40 8.41 8.42 8.43 8.44 8.45 8.46 8.47 8.48 8.49

			SKEWN	IESS			
t	.6	.7	.8	.9	1.0	1.1	t
8.00			.999999	.999998	.999997	.999994	8.00
8.01			.999999	.999998	.999997	.999994	8.01
8.02			.999999	.999998	.999997	.999994	8.02
8.03			.999999	.999998	.999997	.999995	8.03
804			.999999	.999998	.999997	.999995	8.04
8,05			.999999	,999999	.999997	.999995	8.05 8.06
806			.999999	.9999999 .9999999	.999997	.999995	8.07
8.07 8.08			.999999 .999999	.9999999	.999997	.999995	8.08
8.09			.999999	.999999	.999997	.999995	8.09
8.10			.999999	.999999	.999997	.999995	8.10
8.11			.999999	.999999	.999997	.999995	8.11
8.12			.999999	.999999	.999997	.999995	8.12
813			.999999	.999999	.999997	.999995	8.13
8.14			.999999	.999999	.999997	.999995	8.14
8.15			.999999	.999999	.999998	.999995	8.15
8.16			.999999	.999999	.999998	.999996	8.16
8.17			.999999	.999999	.999998	.999996	8.17
8.18			.999999	.999999	.999998	.999996	8.18
8 19			.999999	.999999	.999998	.999996	8.19
8.20				.999999	.999998	.999996	8.20
8.21				.999999	.999998	.999996	8 21
8.22				.999999	.999998	.999996	8.22
8.23				.999999	.999998	.999996	8.23
8.24				.999999	.999998	.999996	8.24
8.25				.999999	.999998	.999996	8.25
8.26				.999999	.9999998	.900096	8.26
8.27 8.28				.999999	.999998 .999998	.999996	8.27 8.28
8.29				.999999	.999998	.999996	8.29
8.30				.999999	.999998	.999996	8.30
8.31				.999999	.999998	.999997	8.31
8.32				.999999	.999998	.999007	8.32
8.33				990999	.999998	.999997	8.33
8.34				999999	.999998	.909997	8.34
8.35				.999999	.999998	.999997	8.35
8.36				.999999	.999998	.999997	8.36
8.37				999999	.999998	.999997	8.37
8.38				999999	929998	.999997	8.38
8.39				.999999	.999998	.999997	8.39
8.40				.999999	.990098	.999997	8.40
8.41				.999999	.999998	.999997	8.41
8.42				.999999	.999998	.999997	8.42
8.43				.999999	.999998	.999997	8.43
8.44				.999999	.999999	.999997	8.44
8.45				.999999	.999999	.999997	8.45
8.46				.999999	.999999	.999997	8.46
8.47				.999999	.999999	.999997	8.47
8.48 8.49				.999999	.999999	.999997	8.48
0.47				.999999	.999999	.999997	8.49

			SKEWN	ESS			Ī
t	.0	.1	.2	.3	.4	.5	t
8.50 8.51 8.52 8.53 8.54 8.55 8.56 8.57 8.58 8.59				,			8.50 8.51 8.52 8.53 8.54 8.55 8.56 8.57 8.58 8.59
8.60 8.61 8.62 8.63 8.64 8.65 8.66 8.67 8.68 8.69				,			8.60 8.61 8.62 8.63 8.64 8.65 8.66 8.67 8.68 8.69
8.70 8.71 8.72 8.73 8.74 8.75 8.76 8.77 8.78 8.79							8.70 8.71 8.72 8.73 8.74 8.75 8.76 8.77 8.78 8.79
8.40 8.81 3.82 8.83 8.84 8.85 8.86 8.87 8.88 3.89							8.80 8.81 8.82 8.83 8.84 8.85 8.86 8.87 8.88 8.89
8.90 8.91 8.92 8.93 8.94 8.95 8.96 8.97 8.98 8.99							8.90 8.91 8.92 8.93 8.94 8.95 8.96 8.97 8.98 8.99

	OWENNECO								
L			SKEWN	ESS					
1	.6	.7	.8	.9	1.0	1.1	t		
8.50				.999999	.999999	.999997	8.50		
8:51		}		.999999	.999999	.999997	8.51		
8.52				.999999	.999999	.999998	8.52		
8,53				.999999	.999999	.999998	8.53		
8.54				.999999	.999999	.999998	8.54		
8.55				.999999	.999999	.999998	8.55		
8.56		}		,999999	.999999	.999998	8.56		
8.57				.999999	.999999	.999998	8.57		
8.58 8.59				.999999 .999999	.999999 .999999	.999998 .999998	8.58 8.59		
8.60				.999999	.999999	.999998	8.60		
8.61				999999	.999999	.999998	8.61		
8.62				.999999	909909	.909998	8.62		
8.63				.999999	.999999	.999998	8.63		
8.64					.999999	.999998	8.64		
8.65					.999999	.999998	8.65		
8.66					.999999	.999998	8.66		
8.67					.999999	999998	8.67		
8.68 8 69					.999999	.999998	8.68 8.69		
8.70	l				999999	.099998	8. <i>7</i> 0		
8.71					.999999	.999998	871		
8.72					999999	.999998	8.72		
873	1				999999	.999998	8.73		
8.74					.999999	.999998	8.74		
8.75	1				.999999	.999998	8.75		
8.76	1				999999	.999998	8.76		
8.77 8.78	i		i		994999	.999998 999998	8.77		
8.79					.999999	.999998	8.78 8.79		
8.80					.999999	.999998	8.80		
8.81	1	ı			.999999	.999998	881		
8.82	l	ĺ		į	.999999	.949998	8.82		
8.83	- 1	1	- 1		909099	.009908	8.83		
8.94					999999	.999999	8.84		
8.85 8.86	İ	l			.990999	.900099	8.85		
8.87	1	ł			.999999	.999999	8.86		
8.88	ł	į	1		,999999 999999	.999999	8 87		
8.89		ĺ			909999	.999999 .999999	8.88 8.89		
8.90					.999999	.999999	8.90		
8.91	1	1	Ì		.999999	.999999	8.91		
8.92	- 1	l	l		.999999	.999999	8.92		
8.93	l				.999999	.999999	8.93		
8.94			1		.999999	.999999	8.94		
8.95	l			1	.999999	.999999	8.95		
8.96	1	1	1	1	.999999	.999999	8.96		
8.97 8.98	I			1	.999999	.999999	8.97		
8.99				1	.999999	.999999	8.98		
0.33					.999999	9)7579	8.99		

			SKEWN	ESS			
t	.0	.1	.2	.3	.4	.5	t
9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09						,	9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09
9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19							9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19
9.20 9.21 9.22 9.23 9.24 9.25 9.26 9.27 9.28 9.29							9.20 9.21 9.22 9.23 9.24 9.25 9.26 9.27 9.28 9.29
9.30 9.31 9.32 9.33 9.34 9.35 9.36 9.37 9.38 9.39							9.30 9.31 9.32 9.33 9.34 9.35 9.36 9.37 9.38 9.39
9.40 9.41 9.42 9.43 9.44 9.45 9.46 9.47 9.48 9.49	·						9.40 9.41 9.42 9.43 9.44 9.45 9.46 9.47 9.48 9.49

			SKEWN	ESS			
t	.6	.7	.8	.9	1.0	1.1	t
9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09					.999999 .999999 .999999 .999999 .999999 .999999	.999999 .999999 .999999 .999999 .999999 .999999	9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09
9.10 9 11 9 12 9 13 9 14 9.15 9.16 9.17 9 18 9 19						.999999 .999999 .999999 .999999 .999999 .999999	9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19
9.20 9.21 9.22 9.23 9.24 9.25 9.27 9.28 9.29	·					999999 999999 999999 990999 990999 900999 910999	9.20 9.21 9.22 9.23 9.24 9.25 9.26 9.27 9.28 9.29
9.30 9.31 9.32 9.33 9.34 9.35 9.36 9.37 9.38 9.39						.999999 .999999 .999999 .999999 .999999 .989999 .989999 .999999 .999999	9.30 9.31 9.32 9.33 9.34 9.35 9.36 9.37 9.38 9.39
9.40 9.41 9.42 9.43 9.44 9.45 9.46 9.47 9.48 9.49						.919999 .999999 .999999 .999999 .999999 .999999	9.40 9.41 9.42 9.43 9.44 9.45 9.46 9.47 9.48 9.49

			SKEWN	NESS			T-
t	.0	.1	.2	.3	.4	.5	t
9.50 9.51 9.52 9.53 9.54 9.55 9.56 9.57 9.58 9.59							9.50 9.51 9.52 9.53 9.54 9.55 9.56 9.57 9.58 9.59
9.60 9.61 9.62 9.63 9.64 9.65 9.66 9.57 9.69							9.60 9.61 9.62 9.63 9.64 9.65 9.66 9.67 9.68 9.69
9.70 9.71 9.72 9.73 9.74 9.75 9.76 9.77 9.78 9.79							9.70 9.71 9.72 9.73 9.74 9.75 9.76 9.77 9.78 9.79
9.80 9.81 9.82 9.83 9.84 9.85 9.86 9.87 9.88 9.89							9.80 9.81 9.82 9.83 9.84 9.85 9.86 9.87 9.88 9.89
9.90 9.91 9.92 9.93 9.94 9.95 9.96 9.97 9.98 9.99	'						9.90 9.91 9.92 9.93 9.94 9.95 9.96 9.97 9.98 9.99

	 	CITIONA	*****			
	 	SKEWN	Ι	Τ	T	1
9.50 9.51 9.52 9.53 9.54 9.55 9.56 9.57 9.58 9.59	 7	.8	9 _	1.0	.999999 .999999	9.50 9.51 9.52 9.53 9.54 9.55 9.56 9.57 9.58 9.59
9.60 9.61 9.62 9.63 9.64 9.65 9.66 9.67 9.68 9.69						9.60 9.61 9.62 9.63 9.64 9.65 9.66 9.67 9.68 9.69
9 70 9 71 9 72 9.73 9.74 9.75 9.76 9.77 9.78 9.79						9.70 9.71 9.72 9.73 9.74 9.75 9.76 9.77 9.78 9.79
9.80 9.81 9.82 9.83 9.84 9.85 9.87 9.87 9.88 9.89						9.80 9.81 9.82 9.83 9.84 9.85 9.86 9.87 9.88 9.89
9.90 9.91 9.92 9.93 9.94 9.95 9.96 9.97 9.98 9.99						9.90 9.91 9.92 9.93 9.94 9.95 9.96 9.97 9.98 9.99

TABLE II

ORDINATES OF THE STANDARDIZED TYPE III FUNCTION

$$y = y_o \left(/ + \frac{\alpha_s}{2} t \right)^{\frac{4}{\alpha_s^2} - \ell} e^{-\frac{2}{\alpha_s} t}$$

	SKEWNESS							
						_		
t	.0	.1	.2	.3	.4	.5	t	
-5.49 -5.48 -5.47 -5.46 -5.45 -5.44 -5.43 -5.42 -5.41							-5.49 -5.48 -5.47 -5.46 -5.45 -5.44 -5.43 -5.42 -5.41 -5.40	
-5.39 -5.38 -5.37 -5.36 -5.35 -5.34 -5.33 -5.32 -5.31 -5.30							-5.39 -5.38 -5.37 -5.36 -5.35 -5.34 -5.33 -5.32 -5.31 -5.30	
-5.29 -5.28 -5.27 -5.26 -5.25 -5.24 -5.23 -5.22 -5.21 -5.20	۵۵۵۵ 1 000001						-5.29 -5.28 -5.27 -5.26 -5.25 -5.24 -5.23 -5.22 -5.21 -5.20	
-5.19 -5.18 -5.17 -5.16 -5.15 -5.14 -5.13 -5.12 -5.11 -5.10	000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001						-5.19 -5.18 -5.17 -5.16 -5.15 -5.14 -5.13 -5.12 -5.11 -5.10	
-5.09 -5.08 -5.07 -5.06 -5.05 -5.04 -5.03 -5.02 -5.01 -5.00	.000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001						-5.09 -5.08 -5.07 -5.06 -5.05 -5.04 -5.03 -5.02 -5.01 -5.00	

-			SKEWN	VESS			
t	.6	.7	.8	.9	1.0	1.1	t
-5.49 -5.48 -5.47 -5.46 -5.45 -5.44 -5.43 -5.42 -5.41 -5.40							-5.49 -5.48 -5.47 -5.46 -5.45 -5.44 -5.43 -5.42 -5.41 -5.40
-5.39 -5.38 -5.37 -5.36 -5.35 -5.34 -5.33 -5.32 -5.31 -5.30							-5.39 -5.38 -5.37 -5.36 -5.35 -5.34 -5.33 -5.32 -5.31 -5.30
-5.29 -5.28 -5.27 -5.26 -5.25 -5.24 -5.23 -5.22 -5.21 -5.20							-5.29 -5.28 -5.27 -5.26 -5.25 -5.24 -5.23 -5.22 -5.21 -5.20
-5.19 -5.18 -5.17 -5.16 -5.15 -5.14 -5:13 -5.12 -5.11							-5.19 -5.18 -5.17 -5.16 -5.15 -5.14 -5.13 -5.12 -5.11 -5.10
-5.09 -5.08 -5.07 -5.06 -5.05 -5.04 -5.03 -5.02 -5.01 -5.00							-5.09 -5.08 -5.07 -5.06 -5.05 -5.04 -5.03 -5.02 -5.01 -5.00

	*		SKEWI	NESS			
t	.0	.1	.2	.3	.4	.5	t
-4.99 -4.98 -4.97 -4.96 -4.95 -4.94 -4.93 -4.92 -4.91 -4.90	.00002 .00002 .00002 .00002 .00002 .00002 .00002 .00002 .00002 .00002					,	-4.99 -4.98 -4.97 -4.96 -4.95 -4.94 -4.93 -4.92 -4.91 -4.90
-4.89 -4.88 -4.87 -4.86 -4.85 -4.84 -4.83 -4.82 -4.81 -4.80	.00003 .00003 .00003 .00003 .00003 .00003 .00003 .00004 .00004	60 J001 000001					-4.89 -4.88 -4.87 -4.86 -4.85 -4.84 -4.83 -4.82 -4.81 -4.80
-4.79 -4.73 -4.77 -4.76 -4.75 -4.74 -4.73 -4.72 -4.71 -4.70	.000004 .000005 .000005 .000005 .000005 .000006 .000006 .000006	000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001	,		•	•	-4 79 -4.78 -4.77 -4.76 -4.75 -4.74 -4.73 -4.72 -4.71 -4.70
4.69 4.68 4.67 4.66 4.65 4.64 4.63 4.62 4.61 4.60	.00007 .00007 .00007 .00008 .00008 .00008 .00009 .00009 .00010	000001 .000001 .000001 .000001 .000001 .000002 .000002 .000002					-4.69 -4.68 -4.67 -4.66 -4.65 -4.64 -4.63 -4.62 -4.61 -4.60
-4.59 -4 58 -4 57 -4.56 -4.55 -4.54 -4.53 -4.51 -4.50	.000011 .000012 .000012 .000013 .000013 .000014 .000015 .000016	.000002 .000002 .000002 .000002 .000003 .000003 .000003 .000003				,	-4.59 -4.58 -4.57 -4.56 -4.55 -4.54 -4.53 -4.52 -4.51 -4.50

			SKEW	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
4.99 4.98 4.97 4.96 4.95 4.94 4.93 4.92 4.91 4.90						,	-4.99 -4.98 -4.97 -4.96 -4.95 -4.94 -4.93 -4.92 -4.91 -4.90
-4.89 -4.88 -4.87 -4.86 -4.85 -4.84 -4.83 -4.82 -4.81 -4.80							-4.89 -4.88 -4.87 -4.86 -4.85 -4.84 -4.83 -4.82 -4.81 -4.80
-4.79 -4.78 -4.77 -4.76 -4.75 -4.74 -1.73 -4.72 -4.71 -4.70							-4.79 -4.78 -4.77 -4.76 -4.75 -4.74 -4.73 -4.72 -4.71 -4.70
-4.69 -4.68 -4.67 -4.65 -4.64 -4.63 -4.62 -4.61 -4.60							-4.69 -4.68 -4.67 -4.66 -4.65 -4.64 -4.63 -4.62 -4.61 -4.60
-4.59 -4.58 -4.57 -4.56 -4.55 -4.54 -4.53 -4.52 -4.51 -4.50	•	-					-4.59 -4.58 -4.57 -4.56 -4.55 -4.54 -4.53 -4.52 -4.51 -4.50

757 O.A.			SKEWI	NESS			
t	.0	.1	.2	.3	.4	.5	t
-4.49	.000017	.000003	•				-4.49
-4.48	.000018	.000004					-4.48
-4.47	.000018	.000004					-4.47
-4.46	.000019	.006004					-4.46
-4.45 -4.44	.000020	.000004					-4.45
-4.4 4	.000021	.000005					-4.44
-4.42	.000022	.000005	.000001				-4.43
-4.41	.000024	.000005	.000001				-4.42 -4.41
-4.40	.000025	.000006	.000001				-4.40
-4.39	000026	.000006	.000001				-4.39
-4.38	.000027	.000006	.000001				-4.38
-4.37	.000028	.000007	.000001				-4.37
-4.36 -4.35	.000030	.000007	.000001				-4.36
-4.35 -4.34	.000031	.000008 800000.	.000001				-4.35
-4.34 -4.33	.000032	.000008	.000001				-4.34
-4.32	.000034	.000009	.000001				-4.33
-4 .31	.000037	.000010	.000001				-4.32
-4.30	.000039	.0000.0	000001				-4.31 -4.30
							-4.50
-4.29	.000040	.000011	.000001				-4.29
-4.28	.000042	.000011	.000001				-4.28
-4.27	.000044	.000012	.000002				-4.27
-4.26 -4.25	.000046	.000012	.000002				-4.26
-4.25 -4.24	.000048	.000013	.000002				-4.25
-4 .24	.000050 .000052	.000014 .000015	.000002 .000002				-4.24
-4.22	.000054	.000015	.000002				-4.23
-4.21	.000057	.000015	.000002				-4.22
-4.20	.000059	.000017	.000002				-4.21 -4.20
-4.19	.000062	000010	000000				
-4.19 -4.18	.000064	.000018	.000003				-4 19
-4 7	000067	.000019	.000003				-4.18
-4 16	000070	.000021	.000003				-4.17 -4.16
-4.15	.00007	000022	.000004				-4.15
-4 14	000076	000023	000004				-4.14
-4.13	000079	.000025	000004				-4.13
-4.12	.000082	.000026	000005				-4 12
-4 11	.000086	.000027	000005				-4.11
-4.10	.000089	.000029	.000005				-4.10
-4.09	.000093	.000030	.000006				-4.09
-4.08	.000097	.000032	.000006				-4.09 -4.08
-4.07	.000101	.000032	.000006				-4.08 -4.07
-4.06	.000105	.000035	.000007				-4.06
-4.05	.000109	.000037	.000007				-4.05
-4.04	.000114	.000039	.000008	.000001			-4.04
-4.03	.000119	.000041	.000008	000001			-4 03
-402	.000124	.000043	.000009	.000001			-4.02
-4 .01	.000129	.000045	.000010	.000001			-4.01
-4.00	.000134	.000048	.000010	.000001		1. 50	-4.00

			SKEWI	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
-4.49 -4.48 -4.47 -4.46 -4.45 -1.44 -4.43 -1.42 -4.41 -4.40				·			-4.49 -4.48 -4.47 -4.46 -4.45 -4.44 -4.43 -4.42 -4.41 -4.40
-4.39 -4.38 -4.37 -4.36 -4.35 -4.34 -4.33 -4.32 -4.31 -4.30							-4.39 -4.38 -4.37 -4.36 -4.35 -4.34 -4.33 -4.32 -4.31 -4.30
-4.29 -4.28 -4.27 -4.26 -4.25 -4.24 -4.23 -4.22 -4.21 -4.20							-4.29 -1.28 -4.27 -4.26 -4.25 -4.24 -4.23 -4.22 -4.21 -4.20
-4.19 -4.18 -4.17 -4.16 -4.15 -4.14 -4.13 -4.12 -4.11 -4.10							-4.19 -4.18 -4.17 -4 16 -4.15 -4.14 -4.13 -4.12 -4.11 -4.10
-4.09 -4.08 -4.07 -4.06 -4.05 -4.04 -4.03 -4.02 -4.01 -4.00							-4.09 -4.08 -4.07 -4.06 -4.05 -4.04 -4.03 -4.02 -4.01 -4.00

			SKEWN	ESS '			
t	.0	1	.2	.3	.4	.5	t
-3.99	.000139	.000050	.000011	.000001		,	-3.99
-3.98	.000144 .000151	.000052 .000055	.000012 .000012	.000001 .000001			-3.98 -3.97
-3.97 -3.96	.000157	.000058	.000012	.000001			-3.96
-3.95	.000163	.000061	.000014	.000001			-3.95
-3.94	.000170	.000064	.000015	.000001			-3.94
-3.93	.000177	.000067	.000016 .000017	.000002 .000002		1	-3.93
-3.92 -3.91	.000184 .000191	.000070 .000074	.000017	.000002			-3.92 -3.91
-3.90	.000199	.000077	.000019	.000002			-3.90
-3.89	.000207	.000081	.000021	.000002			-3.89
-3.88 -3.87	.000215	.000085	.000022	.000002			-3.88 -3.87
-3.86	.000223	.000094	.000025	.000003			-3.86
-3.85	.000241	.000098	.000026	.000003			-3.85
-3.84	.000251	.000103	.000028	.000003			-3.84
-3.83	.000260	.000108	.000030	.000004			-3.83
-3.82	.000271	.000113	.000032	.000004			-3.82
-3.81 -3.80	.000281 .000292	.000118	.000036	.000004			-3.81 -3.80
-3.7 9	.000303	.000130	.000038	.000005			-3.79
-3.78	.000315	.000136 /	.000040	.000006			-3.78
-3.77	.000327	.000142	.000042	.000006			-3.77
-3.76 -3.75	.000340	.000149 .000156	.000045	.000007			-3.76 -3.75
-3.74	.000366	.000163	.000051	.000008			-3.74
-3.73	.000380	.000171	.000054	.000009			-3.73
-3.72	.000394	.000178	.000057	.000009			-3.72
-3.71	.000409	.000187	.000060	.000010			-3.71
-3.70	.000425	.000195	.000064	.000011			-3.70
-3.69 -3.68	.000441	.000204	.000067	()00012	.000000		-3.69
-3.67	.000437	.000213	.000071	.000013	000001		-3.68 -3.67
-3.66	.000492	.000223	.000080	.000015	.000001		-3.66
-3.65	.000510	.000244	.000085	.000016	.000001		-3.65
-3.64	.000529	.000255	.000089	.000017	.000001	İ	-3.64
-3.63 -3.62	.000549	.000266	.000094	.000019	.000001	1	-3.63
-3.62 -3.61	.000590	.000278	.000100	.000022	.000001		-3.62 -3.61
-3.60	.000612	.000303	.000111	.000024	.000001		-3.60
-3.59	.000634	.000317	.000118	.000025	.000002		-3.59
-3.58	.999657	.000331	.000124	.000027	.000002		-3.58
-3.57 -3.56	.000681	.000345	.000131	.000029	.000002		-3.57
-3.55 -3.55	.000732	.000360	.000138	.000032	.000002		-3.56 -3.55
-3.54	.000758	.000370	.000140	.000037	.000003		-3.54
-3.53	.000785	.000409	.000162	000039	.000003		-3.53
-3.52	.000814	.000427	.000171	.000042	.000004	1	-3.52
-3 51 -3.50	.000843	.000445	.000181	.000045	.000004	1	-3.51
-3.30	.000873	.000464	.000190	.000049	.000004	1	-3.50

			SKEW	NESS			П
ť	.6	· .7	.8	.9	1.0	1.1	t
-3.99 -3.98 -3.97 -3.96 -3.95 -3.94 -3.93 -3.92 -3.91							-3.99 -3.98 -3.97 -3.96 -3.95 -3.94 -3.93 -3.92 -3.91 -3.90
-3.89 -3.88 -3.87 -3.86 -3.85 -3.84 -3.83 -3.82 -3.81 -3.80			-				-3.89 -3.88 -3.87 -3.86 -3.85 -3.84 -3.83 -3.82 -3.81 -3.80
-3.79 -3.78 -3.77 -3.76 -3.75 -3.74 -3.73 -3.72 -3.71 -3.70							-3.79 -3.78 -3.77 -3.76 -3.75 -3.74 -3.73 -3.72 -3.71 -3.70
-3.69 -3.68 -3.67 -3.66 -3.65 -3.64 -3.63 -3.62 -3.61 -3.60							-3.69 -3.68 -3.67 -3.66 -3.65 -3.64 -3.63 -3.62 -3.61 -3.60
-3.59 -3.58 -3.57 -3.56 -3.55 -3.54 -3.53 -3.52 -3.51 -3.50							-3.59 -3.58 -3.57 -3.56 -3.55 -3.54 -3.53 -3.52 -3.51 -3.50

			SKEWN	NESS			
t	.0	.1	.2	.3	.4	.5	t
-3.49	.000904	.000484	.000200	.000052	.000005		-3.49
-3.48	.000936	.000504	.000211	.000056	.000006		-3.48
-3.47	.000969	.000526	.000222	.000060	.000006		-3.47
-3.46	.001003	.000548	.000234	.000064	.000007		-3.46
-3.45	.001038	.000571	.000246	.000069	.0000008		-3.45
-3.44	.001075	.000595	.000259	.000074	.0000008		-3.44
-3.43	.001112	.000620	.000273	.000079	.000009		-3.43
-3.42	.001151	.000645	.000287	.000085	.000010		-3.42
-3.41	.001191	.000672	.000302	.000090	.000012		-3.41
-3.40	.001232	.000700	.000317	.000097	.000013		-3.40
-3.39	.001275	.000729	.000333	.000103	.000014		-3.39
-3.38	.001319	.000758	.000350	.000110	.000016		-3.38
-3.37	.001364	.000789	.000368	.000118	.000017		-3.37
-3.36	.001411	.000822	.000387	.000126	.000019		-3.36
-3.35	.001459	.000855	.000406	.000134	.000021		-3.35
-3.34	.001508	.000889	.000427	.000143	.000023		-3.34
-3.33	.001560	.000925	.000448	.000152	.000025	000001	-3.33
-3.32	.001612	.000962	.000470	.000162	.000028	.000001	-3.32
-3.31	.001667	.001001	.000493	.000173	.000030	.000001	-3.31
-3.30	.001723	.001040	.000517	.000184	.000033	.000001	-3.30
×3.29	.001780	.001082	.000542	.000196	.000036	.000001	-3.29
-3.28	.001840	.001124	.000569	.000208	.000040	.000001	-3.28
-3.27	.001901	.001168	.000596	.000221	.000043	.000002	-3.27
-3.26	.001964	.001214	.000625	.000235	.000047	.000002	-3.26
1.3 25 1	.002029	.001262	.000655	.000250	.000052	.000002	-3.25
-3.24	.002096	.001311	.000686	.000265	.000057	.000003	-3.24
-3.23	.002165	.001361	.000719	.000282	.000062	.000003	-3.23
-3.22	.002236	.001414	.000753	.000299	.000067	.000003	-3.22
-3.21	.002309	.001468	.000788	.000317	.000073	.000004	-3.21
-3.20	.002384	.001524	.000825	.000336	.000079	.000005	-3.20
-3.19	.002462	.001583	.000863	.000357	.000086	.000005	-3.19
-3.18	.002541	.001643	.000903	.000378	.000094	.0000006	-3.18
-3.17	.002623	.001705	.000945	.000401	.000102	.000007	-3.17
-3.16	.002707	.001769	.000988	.000424	.000110	.0000008	-3.16
-3.15	.002794	.001836	.001033	.000449	.000119	.000010	-3.15
-3.14	.002884	.001904	.001080	.000475	.000129	.000011	-3.14
-3.13	.002975	.001975	001129	.000503	.000140	.000013	-3.13
-3.12	.003070	.002048	001180	.000532	.000151	.000014	-3.12
-3.11 -3.10	.003167	.002124	001233	.000562	.000163	.000016	-3.11
	.003267	.002202	.001287	.000594	.000176	.000018	-3.10
-3.09	.003370	.002283	.001345	.000628	.000190	.000021	-3.09
-3.08	.003475	.002367	.001404	.000663	.000205	.000024	-3.08
-3.07	.003584	.002453	.001465	.000700	.000221	.000027	-3.07
-3.06	.003695	.002542	.001529	.000739	.000238	.000030	-3.06
-3.05	.003810	.002633	.001596	.000780	.000256	.000034	-3.05
-3.04	.003928	.002728	.001665	.000822	.000275	.000038	-3.04
-3.03	.004049	.002826	.001737	.000867	.000296	.000043	-3.03
-3.02	.004173	.002927	.001811	.000914	.000318	.000048	-3.02
-3.01	.004301	.003031	.001888	.000963	.000341	.000054	-3.01
3.00	.004432	.003138	.001968	.001014	.000366	.000060	-3.00

*			SKEW	MESS			
t	.6	.7	.8	.9	1.0	1.1	
-3.49 -3.48 -3.47 -3.46 -3.45 -3.44 -3.43 -3.42 -3.41 -3.40			.5	.2	1.0	1.1	-3.49 -3.48 -3.47 -3.46 -3.45 -3.44 -3.43 -3.42 -3.41 -3.40
-3.39 -3.38 -3.37 -3.36 -3.35 -3.34 -3.33 -3.32 -3.31 -3.30							-3.39 -3 38 -3.37 -3.36 -3.35 -3.34 -3.33 -3.32 -3.31 -3.30
-3.29 -3.28 -3.27 -3.26 -3.25 -3.24 -3.23 -3.22 -3.21 -3.20							-3.29 -3.28 -3.27 -3.26 -3.25 -3.24 -3.23 -3.22 -3.21 -3.20
-3.19 -3.18 -3.17 -3.16 -3.15 -3.14 -3.13 -3.12 -3.11 -3.10							-3.19 -3.18 -3.17 -3.16 -3.15 -3.14 -3.13 -3.12 -3.11 -3.10
-3.09 -3.08 -3.07 -3.06 -3.05 -3.04 -3.03 -3.02 -3.01 -3.00	.000001	,					-3.09 -3.08 -3.07 -3.06 -3.05 -3.04 -3.03 -3.02 -3.01 -3.00

			SKEWI	NESS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
t	.0	.1	.2	.3	.4	.5	t
-2.99	.004567	.003248	.002051	.001068	.000392	.000067	-2.99
-2.98	.004705	.003363	.002137	.001124	.000420	.000075	-2.98
-2.97	.004847	.003480	.002227	.001183	.000450	.000083	-2.97
-2.96	.004993	.003601	.002319	.001245	.000482	.000092	-2.96
-2.95	.005143	.003726	.002415	.001309	.000515	.000102	-2.95
-2.94	.005296	.003855	.002515	.001376	.000551	.000113	-2.94
-2.93	.005454	.003987	.002618	.001447	.000589	.000125	-2.93
-2.92	.005616	.004124	.002724	.001520	.000629	.000139	-2.92
-2.91	.005782	.004265	.002835	.001596	.000671	.000153	-2.91
-2.90	.005953	.004409	.002949	.001676	.000716	.000168	-2.90
-2.89	.006127	.004559	.003067	.001760	.000763	.000185	-2.89
-2.88	.006307	.004712	.003190	.001847	.000813	.000204	-2.88
-2.87	.006491	.004870	.003316	.001937	.000866	.000224	-2.87
-2.86	.006679	.005033	.003447	.002032	.000922	.000245	-2.86
-2.85	.006873	.005200	.003583	.002130	.000980	.000269	-2.85
-2.84	.007071	.005372	.003723	.002233	.001042	.000294	-2.84
-2.83	.007274	.005550	.003868	.002339	.001108	.000321	-2.83
-2.82	.007483	.005732	.004018	.002450	.001177	.000351	-2.82
-2.81	.007697	.005919	.004172	.002566	.001249	.000382	-2.81
-2.80	.007915	.006112	.004332	.002686	.001326	.000416	-2.80
-2.79	.008140	.006310	.004497	.002812	001406	.000453	-2.79
-2.78	.008370	.006514	.004668	.002942	.001491	.000493	-2.78
-2.77	.008605	.006723	.004844	.003077	.001579	.000535	-2.77
-2.76	.008847	006939	.005026	.003218	.001673	.000580	-2.76
-2.75	.009094	.007160	.005213	003364	.001771	.000629	-2.75
-2.74	.009347	.007387	.005407	003516	.001873	.000681	-2.74
-2.73	.009606	.007620	.005607	.003673	.001981	.000737	-2.73
-2.72	.009871	.007860	.005813	.003837	.002094	.000796	-2.72
-2.71 -2.70	.010143	.008106	.006025	.004006 .004182	.002213 .002337	.000860 .000927	-2.71 -2.70
-2.69	.010706	.008618	.006470	004365	.002467	.001000	-2.69
-2.68	.010997	.008885	.006703	.004554	.002603	.001076	-2.68
-2.67	.011295	.009158	.006942	.004750	.002745	.001158	-2.67
-2.66	.011600	.009439	.007189	.004953 .005164	.002894	.001245	-2.66
-2.65 -2.64	.011912	.010022	.007444	.005164	.003049 .003212	.001337 .001435	-2.65 -2.64
-2.63	.012558	.010324	.007976	005608	.003212	.001433	-2.6 4
-2.62	.012338	.010635	.008254	.005842	.003559	.001539	-2.62
-2.61	.013234	.010954	.008234	.006083	.003743	.001766	-2.61
-2.60	.013583	.011280	.008834	.006333	.003936	.001889	-2.60
-2.59	.013940	.011615	.009136	.006592	.004137	.002020	-2.59
-2.58	.014305	.011958	.009448	.006860	.004347	.002020	-2.58
-2.57	.014678	.012310	.009768	.007136	.004565	.002130	-2.57
-2.56	.015060	.012670	.010097	.007422	.004792	002457	-2.56
-2.55	.015449	.013039	.010436	.007717	.005028	.002619	-2.55
-2.54	.015848	.013417	.010784	.008022	.005274	.002789	-2.54
-2.53	.016254	.013805	.011141	.008336	.005530	.002969	-2.53
-2.52	.016670	.014201	011509	008661	005796	003158	-2.52
-2.51	.017095	014607	.011886	008997	000072	003356	-2.51
-2.50	.017528	.015023	.012274	.009342	.006360	.003565	-2.50
	<u> </u>	1			1		

=7			SKEWN	ESS			
t	.6	.7	.8	.9	1.0	1.1	t
-2 99 -2 98 -2 97 -2 96 -2 95 -2 94 -2 93 -2 92 -2 91 -2 90	.000001 .000001 .000001 .000002 .000003 .000003 .000004 .000006 .000006						-2.99 -2.98 -2.97 -2.96 -2.95 -2.94 -2.93 -2.92 -2.91 -2.90
-2.89 -2.88 -2.87 -2.86 -2.85 -2.84 -2.83 -2.82 -2.81 -2.80	.000008 .000010 .000012 .000015 .000018 .000021 .000025 .000029 .000034		,				-2.89 -2.88 -2.87 -2.86 -2.85 -2.84 -2.83 -2.82 -2.81 -2.80
-2.70 -2.78 -2.77 -2.76 -2.75 -2.74 -2.73 -2.72 -2.71 -2.70	.000047 .000055 000063 .000073 000084 .000097 .000111 .000126 .000144 .000164						-2.79 -2.78 -2.77 -2.76 -2.75 -2.74 -2.73 -2.72 -2.71 -2.70
-2.69 -2.68 -2 67 -2.66 -2.65 -2.64 -2.63 -2 62 -2.61	.000210 .000236 .000266 .000299 .000334 .000374 .000417	.000001 .000002 .000003 .000004 .000005 .000007 .000010 .000013					-2.69 -2.68 -2.67 -2.66 -2.65 -2.64 -2.63 -2.62 -2.61 -2.60
-2.59 -2.58 -2.57 -2.56 -2.55 -2.53 -2.52 -2.52 -2.52	0 .000572 0 .000634 0 .000700 0 .000773 1 .000936 1 .001027 2 .001126 1 .001232	.000027 .000035 .000043 .000054 .000066 .000081 .000099 .000119 .000142					-2.59 -2.58 -2.57 -2.56 -2.55 -2.54 -2.53 -2.52 -2.51 -2.50

			SKEWN	IESS			
t	.0	.1	.2	.3	.4	.5	t
-2.49 -2.48 -2.47 -2.45 -2.45 -2.41 -2.43 -2.42 -2.41 -2.40 -2.39 -2.35 -2.35 -2.35 -2.35 -2.33 -2.32 -2.31	.017971 .018423 .018885 .019837 .020328 .020829 .021341 .021862 .022395 .022937 .023491 .024056 .024631 .025218 .025817 .026426 .027682	.015449 .015884 .016330 .016786 .017253 .017730 .018218 .018717 .019227 .019749 .020282 .020827 .021384 .021953 .022534 .023723 .024352 .024984	.012672 .013080 .013500 .013930 .014372 .014825 .015290 .015766 .016255 .016756 .017269 .017795 .018334 .018886 .019451 .020030 .020623 .021230 .021850	.009699 .010067 .010446 .010837 .011240 .011655 .012082 .012522 .012974 .013919 .014412 .014919 .015976 .016526 .017091 .017672	.006658 .006967 .007288 .007621 .007966 .008324 .008695 .009079 .009476 .009887 .010313 .010753 .011208 .011678 .012163 .012664 .013182 .013716 .014267	.003784 .004014 .004255 .004508 .004773 .005050 .005341 .005644 .005961 .006292 .006637 .006998 .007374 .007765 .008173 .008597 .009039 .0090498	- 2.49 -2.48 -2.47 -2.46 -2.45 -2.44 -2.43 -2.42 -2.41 -2.40 -2.39 -2.37 -2.36 -2.35 +2.33 -2.32 -2.31
-2.30 -2.29 -2.28 -2.27 -2.26 -2.25 -2.24 -2.23 -2.22 -2.21 -2.20	.028327 .028985 .029655 .030337 .031032 .031740 .032460 .033194 .033941 .034701 .035475	025629 .026287 .026959 .027644 .028344 .029057 .029784 .030526 .031282 .032053 .032839	022486 023135 0.23800 0.24480 0.25174 0.25885 0.26611 0.27352 0.28110 0.028884	.018879 019507 .020151 .020812 .021489 .022184 .022896 .023625 .024372 .025138 .025922	014835 .015421 .016025 .016647 .017287 017947 .018625 .019323 .020041 .020780 .021538	010471 .010986 .011520 .012074 .012648 .013242 .013859 .014496 .015156 .015838 .016544	-2.30 -2.29 -2.28 -2.27 -2.26 -2.25 -2.24 -2.23 -2.22 -2.21 -2.20
-2.19 -2.18 -2.17 -2.16 -2.15 -2.14 -2.13 -2.12 -2.11 -2.10	.036262 .037063 .037878 .038707 .039570 .040408 .041280 .042166 .043067 .043984	033640 .034456 035287 036134 036997 037875 038770 .039680 .040607 0+1551	030482 .031307 032148 033006 033883 03477 035688 036017 037565 .038531	026724 .027546 .028386 .029246 .030125 .03 · 025 .0 · 1 · 44 .012884 .03 · 03 · 03 · 03 · 03 · 03 · 03 · 03 ·	.022318 .023119 .023942 .024786 .025652 .026541 .027453 .028387 .029345 .030327	.017272 .018025 .018801 .019603 .020429 .021282 022160 0.23064 023995 0.24953	-2.19 -2.18 -2.17 -2.16 -2.15 -2.14 2.13 2.12 -2.11 -2.10
-2.09 -2.08 -2.07 -2.06 -2.05 -2.04 -2.03 -2.02 -2.01 -2.00	.044915 .045861 .046823 .047800 .048792 .049800 .050824 .051864 .052919	.042511 .043488 .044481 .045492 .046520 .047566 .048628 .049709 .050807 .051923	039516 .040520 .041542 .042584 .043645 .044725 045825 046944 048084 .049243	035827 .036850 .037894 .038960 .040048 .041158 .042290 .043444 .044621 .045820	.031332 .032362 .033416 .034495 .035598 .036727 .037881 .039061 .040267 .041499	025939 026952 027994 .029064 .030164 .031292 .032450 .033638 .034856	-2 09 -2.08 -2.07 -2.06 -2.05 -2.04 -2.03 -2.02 -2.01 -2.00

			CKEW	TECC			T
		T	SKEWN	1E22			-
t	.6	.7	.8	.9	1.0	1.1	t
-2.49	.001470	.000201					-2.49
-2.48	.001601	.000237			ŀ	i	-2.48
-2.47	.001742	.000277	j		ļ		-2.47
-2.46 -2.45	.001893	.000324					-2.46 -2.45
-2.45 -2.44	.002033	.000370	.000001		1		-2.44
-2.43	.002411	.000501	000001	l			-2.43
-2.42	.002606	.000574	.000002	1			-2.42
-2.41	.002814	.000656	000004				-2.41
-2.40	.003035	.000747	.000007				-2.40
-2.39	.003270	.000848	.000012				-2.39
-2.38	.003518	.000959	.000018	1			-2.38
-2.37 -2.36	.003781	.001081	.000027				-2.37 -2.36
-2.35	.004355	.001362	.000054				-2.35
-2.34	.004665	.001523	.000074				-2.34
-2.33	.004993	.001697	.000099				-2.33
-2 32	.005339	.001887	.000130				-2.32
-2.31	.005703	.002093	.000169			1	-2.31 -2.30
-2.30	.006086	.002316	.000216				
-2 29	.006489	.002557	.000272	1		}	-2.29
2 28	.006912	.002816	.000338				-2.28 -2.27
-2 27 -2.26	.007355 007820	.003095	.000417	1			-2.26
-2.25	.008307	.003716	.000500	l	1		-2.25
-2.24	.008817	.004060	.000736				-2.24
-2.23	.009351	.004427	.000875			1	-2.23
-2.22	.009908	.004818	.001032	000001			-2.22
-2.21	.010490	.005235	.001211	.000001			-2.21 -2.20
-2.20	.011097	.005678	.001411	.000001			
-2.19	.011730	.006149	.001634	.000003	Ì		-2.19 -2.18
-2.18 -2.17	.012390 .013077	.006648 .007176	.001883 .002159	.000008			-2.17
-2.16	.013792	.007734	.002139	.000037			-2.16
-2.15	.014535	.008324	.002797	.000064			-2.15
-2.14	.015307	.008945	.003162	.000105			-2.14
-2.13	.016108	.000000	.003561	.000161			-2.13
-2.12	.016940	.010288	.003995	.000236			-2.12
-2.11	.017803	.011012	.004466 .004975	.000334	}		-2.11 -2.10
-2.10	.018696	.011771		.000457			
-2.09	.019622	.012566	.005524	.000609			-2.09 -2.08
-2.08 -2.07	.020580 .021570	.013400 .014271	.006114 .006747	.000793			-2.05
-2.06	.021570	.014271	.007425	.001014			-2.06
-2.05	.023653	.016133	.008148	.001577			-2.05
-2.04	.024745	.017124	.008919	.001926			-2.04
-203	.025872	.018157	.009739	.002325	1		-2.03
-2.02	.027035	.019231	.010608	.002777			-2.02
-201	.028233	.020349	.011529	.003284			-2.01 -2.00
- 2.00	.029467	.021510	.012503	.003831	<u></u>	<u> </u>	1-2.00

			SKEWN	NESS		· · · · · · · · · · · · · · · · · · ·	
t	.0	.1	.2	.3	.4	.5	t
-1.99 -1.98 -1.97 -1.96. -1.95 -1.94 -1.93 -1.92 -1.91	.055079 .056183 .057304 .058441 .059595 .060765 .061952 .063157 .064378 .065616	.053057 .054209 .055379 .056568 .057775 .059001 .060245 .061508 .062790 .064090	.050423 .051623 .052843 .054084 .055346 .056628 .057931 .059255 .060601 .061967	.047043 .048288 .049557 .050849 .052164 .053503 .054866 .056252 .057663 .059097 .	042757 044042 045353 046691 048056 049448 050868 052315 053790 055292	.037383 .038693 .040034 .041407 .042811 .044247 .045715 .047215 .048748 .050313	-1.99 -1.98 -1.97 -1.96 -1.95 -1.94 -1.93 -1.92 -1.91 -1.90
-1.89 -1.88 -1.87 -1.86 -1.85 -1.84 -1.83 -1.82 -1.81	.066871 .068144 .069433 .070740 .072065 .073407 .074766 .076143 .077538 .078950	.065410 .066749 .068107 .069484 .070880 .072295 .073730 .075184 .076658 .078151	.063355 .064764 .066194 .067646 .069119 .070614 .072131 .073669 .075229 .076810	.060556 .062038 .063545 .065076 .066632 .068212 .069817 .071446 .073099 .074777	.056822 .058380 .059965 .061579 .063221 .064891 .066588 .068315 .070069 .071851	.051910 .053540 .055203 .056899 .058628 .060390 .062184 .064012 .065872 .067766	-1.89 -1.88 -1.87 -1.86 -1.85 -1.84 -1.83 -1.82 -1.81 -1.80
-1.79 -1.78 -1.77 -1.76 -1.75 -1.74 -1.73 -1.72 -1.71	.080380 .081828 .083293 .084776 .086277 .087796 .089333 .090887 .092459 .094049	.079664 .081196 .082748 .084319 .085910 .087520 .089150 .090799 .092468 .094156	.078414 .02039 .081685 .083354 .085044 .086755 .088489 .090244 .092020	.076479 .078206 .079957 .081733 .083533 .085358 .087206 .089079 .090976 .092897	.073661 .075500 .077366 .079260 .081182 .083132 .085109 .087114 .089146 .091205	.069692 .071651 .073642 .075666 .077723 .079811 .081932 .084085 .086269	-1.79 -1.78 -1.77 -1.76 -1.75 -1.74 -1.73 -1.72 -1.71 -1.70
-1.69 -1.68 -1.67 -1.66 -1.65 -1.64 -1.63 -1.62 -1.61 -1.60	.095657 .097282 .098925 .100586 .102265 .103961 .105675 .107406 .109155 .110921	.095864 .097591 .099337 .101102 .102887 .104691 .106514 .108355 .110216 .112095	.095637 .097478 .099339 .101222 .103126 .105051 .106996 .108962 .110949 .112956	.094841 .096810 .098802 .100817 .102856 .104918 .107002 .109110 .111240 .113392	.093292 .095405 .097545 .099711 .101903 .104121 .106365 .108635 .110929 .113248	.090732 .093009 .095318 .097657 .100025 .102424 .104851 .107308 .109793 .112306	-1.69 -1.68 -1.67 -1.66 -1.65 -1.64 -1.63 -1.62 -1.61 -1.60
-1.59 -1.58 -1.57 -1.56 -1.55 -1.54 -1.53 -1.52 -1.51 -1.50	.112704 .114505 .116323 .118157 .120009 .121878 123763 .125665 .127583 .129518	.113993 .115909 .117844 .119797 .121768 .123757 .125763 .127787 .129829 .131888	.114983 .117030 .119097 .121184 .123290 .125415 .127559 129722 .131903 .134103	.115567 .117763 .119981 .122220 .124480 .126761 .129062 .131384 .133725 .136086	.115592 .117960 .120352 .122767 .125205 .127666 .130150 .132655 .135181 .137729	.114846 .117414 .120009 .122629 .125275 .127947 .130643 .133363 .136106 .138872	-1.59 -1.58 -1.57 -1.56 -1.55 -1.54 -1.53 -1.52 -1.51 -1.50

			SKEW1	VESS			
t	.6	.7	.8	.9	1.0	1.1	t
-1.99 -1.98 -1.97 -1.96 -1.95 -1.94 -1.93 -1.92 -1.91 -1.90	.030738 .032045 .033390 .034772 .036192 .037650 .039146 .040681 .042255 .043868	.022715 .023965 .025260 .026601 .027988 .029422 .030903 .032432 .034008 .035633	.013530 .014612 .015750 .016945 .018198 .019510 020881 .022313 .023805 .025359	.004479 .005171 .005931 .006761 .007662 .008638 .009690 .010820 .012030 .013320	.00003 .00020 .00068 .000158 .000302 .000511 .000795 .001163 .001624 .002183		-1.99 -1.98 -1.97 -1.96 -1.95 -1.94 -1.93 -1.92 -1.91 -1.90
-1.89 -1.88 -1.87 -1.86 -1.85 -1.84 -1.83 -1.82 -1.81 -1.80	.045520 .047211 .048941 .050711 .052521 .054370 .056259 .058187 .060155 .062162	.037306 .039027 .040797 .042617 .044485 .046403 .048370 .050385 .052450	.026975 .028654 .030395 .032200 .034068 .036000 .037995 .040054 .042177	.014694 016152 .017694 .019322 .021037 .022839 .024729 .026706 .028771 .030925	.002848 .003625 004517 .005530 .006667 .007931 .009325 .010850 .012508 .014300	.000041 .000251	-1 89 -1 88 -1 87 -1 86 -1.85 -1 84 -1.83 -1.82 -1 81 -1.80
-1.79 -1.78 -1.77 -1.76 -1.75 -1.74 -1.73 -1.72 -1.71	.064209 .06.,295 .068420 .070584 .072787 .075028 .077307 .079624 081979 .084371	.056727 .058938 .061198 .063506 .065862 .068265 .070715 .073212 .075755	.046614 .048927 .051302 .053740 .056241 .058802 .061424 .064107 .066848 .069649	.033166 .035494 .037910 .040412 .043000 .045673 .048430 .051270 .054192 .057194	.016226 .018287 .020482 .022811 .025272 .027865 .030587 .033438 .036414 .039514	.000677 .001339 .002249 .003411 .004829 .006502 .008427 .010600 .013018 .015674	-1.79 -1 78 -1.77 -1.76 -1.75 -1.74 -1.73 -1.72 -1.71 -1.70
-1.69 -1.68 -1.67 -1.65 -1.65 -1.64 -1.63 -1.62 -1.61	086800 .089266 .091767 .094304 .096877 .099484 .102125 .104800 .107507 .110248	.080978 .083656 .086379 .089144 .091953 .094803 .097694 .100626 .103597 .106606	072507 .075422 .078393 .081419 .087632 .090817 .094052 .097336 .100668	.060276 .063435 .066671 .07981 .073364 .076819 .080342 .083933 .087589 .091308	.042736 .046076 .049531 .053099 .056776 .060560 .064446 .068431 .072512 .076685	.018562 .021675 .025005 .028545 .032287 .036221 .040341 .044638 .049102 .053726	-1.69 -1.68 -1.67 -1.66 -1.65 -1.64 -1.63 -1.62 -1.61 -1.60
-1.59 -1.58 -1.57 -1.56 -1.55 -1 54 -1.53 -1.52 -1.51 -1.50	.113020 .115823 .118656 .121520 .124412 .127333 .130282 .133257 136258 .139285	.109653 .112737 .115857 .119012 .122201 .125422 .128676 .131960 .135273 138615	.104046 .107470 .110938 .114448 .117999 .121590 .125218 .128883 .132582 .136315	095088 .098927 .102824 .106774 .114830 .118930 .123076 .127264 .131493	.080947 .085292 .089718 .094221 .098796 .103441 .108150 .112920 .117747 .1220.26	.058501 .063419 .068472 .073650 .078946 .084352 .089859 .095461 .101149 .106916	-1.59 -1.58 -1.57 -1.56 -1.55 -1.54 -1.53 -1.52 -1.51 -1.50

~			SKEW	NESS			
t	.0	.1	.2	.3	.4	.5	t
-1.49 -1.48 -1.47 -1.46 -1.45 -1.44 -1.43 -1.42 -1.41	.131468 .133435 .135418 .137417 .139431 .141460 .143505 .145564 .147639 .149727	.133964 .136057 .138166 .140292 .142434 .144592 .146765 .148954 .151158 .153377	.136321 .138556 .140809 .143079 .145366 .147670 .149989 .152325 .154676 .157043	.138466 .140865 .143282 .145718 .148171 .150641 .153128 .155631 .158636 .160686	.140297 .142885 .145492 .148119 .150764 .153427 .156108 .158806 .161520 .164249	.141661 .144471 .147302 .150153 .153024 .155914 .158822 .161747 .164690 .167648	-1.49 -1.48 -1.47 -1.46 -1.45 -1.44 -1.43 -1.42 -1.41
-1.39 -1.38 -1.37 -1.36 -1.35 -1.34 -1.33 -1.32 -1.31	.151831 .153948 .156080 158225 .160383 .162555 .164740 .166937 .169147 .171369	.155611 .157859 .160121 .162397 .164686 .166989 169304 .171632 .173971 .176323	.159424 .161820 164230 .166653 .169090 .171540 .174002 .176477 .178963 .181461	.163235 .165800 .168379 .170971 .173576 .176194 .178825 .181466 .184119 .186782	.166994 .169754 .172528 .175315 .178114 .180926 .183750 .186584 .189428 .192282	.170621 .173609 .176611 .179626 .182653 .185691 .188740 .191799 .194866 .197941	-1.39 -1.38 -1.37 -1.36 -1.35 -1.34 -1.33 -1.32 -1.31 -1.30
-1.29 -1.28 -1.27 -1.26 -1.25 -1.24 -1.23 -1.22 -1.21 -1.20	.173602 .175847 .178104 .180371 .182649 184937 187235 .189543 .191860 .194186	.178686 .181060 .183444 .185839 .188244 .190658 .193081 .195513 .197953 .200401	.183969 .186487 189016 .191554 194100 .196656 .199219 .201789 .204367 .206951	.189455 .192138 .194829 .197529 .200236 .202951 .205671 .208398 .211130 .213866	195144 .198015 .200893 .203777 .206668 .209564 .212464 .215368 .218276 .221185	.201024 .204113 .207207 .210306 .213408 .216514 .219621 .222729 .225838 .228946	-1.29 -1.28 -1.27 -1.26 -1.25 -1.24 -1.23 -1.22 -1.21 -1.20
-1.19 -1.18 -1 17 -1.16 -1.15 -1.14 -1.13 -1.12 -1.11 -1.10	.196520 .198863 201214 .203571 .205936 .208308 .210686 .213069 .215458 .217852	.202857 .205319 207788 .210262 .212743 .215228 217718 .220212 .222710 .225211	.209540 .212135 .214735 .217339 .219947 .222558 .225172 .227788 .230405 .233023	.216607 .219350 .222097 .224845 .227595 .230346 .233097 .235847 .238596 .241343	.224096 .227008 .229019 .232830 .235740 .238647 .241551 .244452 .247347 .250238	232052 235155 238256 241352 244442 247527 250604 253674 256734 259785	-1.19 -1.18 -1.17 -1.16 -1.15 -1.14 -1.13 -1.12 -1.11 -1.10
-1.09 -1.08 -1.07 -1.06 -1.05 -1.04 -1.03 -1.02 -1.01 -1.00	.220251 .222653 .225060 .227470 .229882 .232297 .234714 .237132 .239551 .241971	.227715 .230220 .232728 .235236 .237745 .240254 .242763 .245271 .247777 .250281	235641 238259 240876 243492 246105 248716 251324 253927 256526 259120	244087 246828 249566 252298 255025 257746 260461 263168 265867 268557	253122 255999 258868 261729 264581 267423 270253 273073 275879 278673	262825 .265854 .268871 .271874 .274863 .277836 .280794 .283736 .286659 .289564	-1.09 -1.08 -1.07 -1.06 -1.05 -1.04 -1.03 -1.02 -1.01 -1.00

			SKEWN	IESS			
t	.6	.7	.8	.9	1.0	1.1	t
-1.49	.142336	.141985	.140079	.135760	.127555	.112755	-1.49
-1.48	.145411	.145380	.143873	.140062	.132530	.118658	-1.48
-1.47 -1.46	.148508 .151627	.148801 .152245	.147695 .151544	.144398 .148764	.137545 .142598	.124618	-1.47 -1.46
-1.45	.154767	.155712	.155418	.153158	.147684	.136684	-1.45
-1.44	.157927	.159201 .162709	.159314 .163233	.157578	.152800	.142777	-1.44
-1.43 -1.42	.161106 .164303	.166236	.167170	.162021 .166485	.157942 .163106	.148900 .155049	-1.43 -1.42
-1.41	.167517	.169781	.171126	.170967	.168290	.161218	-1.41
-1.40	.1 <i>7</i> 0748	.173342	.175098	.175465	.173488	.167399	-1.40
-1.39	.173994	.176918 .180508	.179085 .183084	.179977	.178698	.173589	-1.39
-1.38 -1.37	.177254 .180527	.180508	.183084	.184499 .189030	.183916 .189138	.179781	1.38 -1.37
-1.36	.183812	.187724	.191113	.193568	.194362	.192152	-1.36
-1.35	.187109	.191347	.195140 .199173	.198109	.199584	.198321	-1.35
-1.34 -1.33	.190416 .193732	.1949 7 8 .198616	.203210	.202652 .207195	.204801 .210009	.204473 .210604	-1.34 -1.33
-1.32	.197056	.202261	.207249	.211734	.215206	.216708	-1.32
-1.31	.200387	.205909	.211288	.216268	.220389	.222782	-1.31
-1.30	.203724	.209561	.215327	.220795	.225554	.228822	-1.30
-1.29	.207066	.213215	.219362 .223394	.225312	.230699 .235821	.234824	-1.29 -1.28
-1.28 -1.27	.210412 .213 7 61	.216869 .220522	.227419	.234309	.233621	.246700	-1.27
-1.26	.217111	.224173	.231436	.238785	.245985	.252566	-1.26
-1.25	.220462	.227820 .231463	.235444 .239441	.243242 .247680	.251021 .256025	.258381	-1.25 -1.24
-1.24 -1.23	.223813	.235099	.243425	.252095	.260992	.269843	-1.23
-1.22	.230509	.238728	.247394	.256487	.265921	.275484	-1.22
-1.21 -1.20	.233852 .237190	.242348 .245958	.251348 .255285	.260853 .265191	.270810 .275656	.281062 .286574	-1.21 -1.20
-1.19 -1.18	.240522 .243848	.249556 .253142	.259203	.269500 .273777	.280457	.292019	-1.19 -1.18
-1.17	.247165	.256715	.266976	.278022	.289917	.302694	-1.17
-1.16	.250474	.260272	.270828	.282232	.294572	.307920	-1.16
-1.15 -1.14	.253773	.263813	.274655 .278457	.286406 .290541	.299175	.313070 .318142	-1.15 -1.14
-1.13	.260335	.270840	.282231	.294638	.308215	.323134	-1.13
-1.12	.263598	.274325	.285976	.298694	.312650	.328045	-1.12 -1.11
-1.11 -1.10	.266846	.277788	.289690 .293374	.302707	.317026	.337616	-1.10
-1.09	.273295	.284647	.297024	.310601	.325594	.342274	-1.09
-1.09	.276494	.288040	.300641	.314479	.329785	.346846	-1.08
-1.07	.279675	.291408	.304222	.318310	.333910	.351330	-1.07 -1.06
-1.06 -1.05	.282837	.294749	.307768 .311275	.322091	.337970	.355725	
-1.03 -1.04	.289099	.301346	.314744	.329503	.345889	.364246	-1.04
-1.03	.292197	.304600	.318173	.333131	.349746	.368370	-1.03 -1.02
-1.02 -1.01	.295272	.307823	.321562 .324908	.336706	.353533	.372403	
-1.00		.314173	.328212	.343691	.360894	.380193	

			SKEWN	IESS			
t	.0	.1	.2 `	.3	.4	.5	t
99	.244390	.252782	261708	.271238	.281452	.292450	99
98	.246809	.255281	264290	.273908	.284217	.295316	98
97	.249228	.257775	266865	.276568	.286967	.298161	97
96	.251644	.260265	269432	.279216	.289700	.300984	96
95	.254059	.262750	271991	.281852	.292416	.303784	95
94	.256471	.265230	274541	.284475	.295115	.306561	94
93	.258881	.267704	277082	.287084	.297795	.309314	93
92	.261286	.270172	279612	.289679	.300456	.312042	92
91	.263688	.272632	282132	.292259	.303097	.314744	91
90	.266085	.275084	284640	.294824	.305717	.317420	90
89	.268477	.277528	287136	.297372	.308316	320068	89
88	.270864	.279964	289620	.299903	.310893	322689	88
87	.273244	.282389	292090	.302416	.313447	.325281	87
86	.275618	.284805	294547	.304911	.315978	.327843	86
85	.277985	.287210	2996988	.307387	.318484	.330376	85
84	.280344	.289604	299415	.309843	.320966	.332877	84
83	.282694	.291986	301826	.312279	.323422	.335348	83
- 82	.285036	.294356	304220	.314694	.325852	.337786	82
- 81	.287369	.296713	306598	.317087	.328255	.340191	81
80	.289692	.299057	308958	.319458	.330631	.342563	80
78 77 76 75 74 73 72 71 70	.294305 .296595 .298872 .301137 .303389 .305627 .307851 .310060 .312254	.303700 .306000 .308283 .310550 .312800 .315032 .317246 .319442 .321618	.313522 .315925 .318208 .320471 .322712 .324931 .327128 .329302 .331453	.324130 .326431 .328707 .330957 .333181 .335379 .337550 .339693 .341808	.335297 .337586 .339846 .342075 .344273 .346439 .348572 .350673 .352741	.347205 .349473 .351705 .353901 .356061 .358183 .360267 .362313 .364319	78 77 76 75 74 73 72 71
69	.314432	.323774	.333579	.343894	.354775	.366.287	- ,69
68	.316593	.325910	.335680	.345950	.356774	.368214	68
67	.318737	.328025	.337757	.347977	.358739	.370102	67
66	.320864	.330119	.339807	.349974	.360668	.371949	66
65	.322972	.332190	.341831	.351939	.362561	.373754	65
64	.325062	.334239	.343829	.353873	.364419	.375519	64
63	.327133	.336264	.345798	.355775	.366239	.377241	63
62	.329184	.338266	.347740	.357645	.368022	.378922	62
61	.331215	.340244	.349654	.359481	.369768	.380559	61
60	.333225	.342196	.351538	.361285	.371475	.382155	60
59	.335213	.344124	.353393	.363054	.373145	.383707	59
58	.337180	.346026	.355218	.364790	.374775	.385215	58
57	.339124	.347901	.357013	.366490	.376367	.386680	57
56	.341046	.349750	.358777	.368156	.377919	.388101	56
55	.342944	.351571	.360510	.369786	.379431	.389478	55
54	.344818	.353365	.362210	.371380	.380903	.390810	54
53	.346668	.355130	.363879	.372938	.382334	.392098	53
52	.348493	.356867	.365515	.374459	.383725	.393341	52
51	.350292	.358574	.367117	.375943	.385075	.394540	51
50	.352065	.360252	.368687	.377390	.386384	.395693	50

			SKEWN	ESS			
t	.6	.7	.8	.9	1.0	1.1	t
99 98 97 96 95 94 93 92 91	.304350 .307324 .310270 .313188 .316076 .318934 .321762 .324557 .327320 .330050	.317298 .320388 .323442 .326460 .329440 .332382 .335285 .338148 .340970 .343751	.331472 .334688 .337857 .340981 .344057 .347085 .350064 .352993 .355872 .358700	.347099 .350451 .353745 .356979 .360155 .363270 .366325 .369318 .372249 .375117	.364467 .367967 .371393 .374745 .378023 .381226 .384353 .387404 .390379 .393277	.383948 .387610 .391179 .394654 .398035 .401323 .404516 .407616 .410622 .413535	99 98 97 96 95 94 93 92 91 90
89 88 87 86 85 84 83 82 81	.332745 .335406 .338031 .340620 .343173 .345687 .348164 .350601 .352999 .355357	.346490 .349186 .351839 .354447 .357011 .359529 .362001 .364427 .366805 .369136	.361477 .364201 .366872 .369490 .372054 .374563 .377018 .379417 .381760 .384048	.377922 .380664 .383342 .385956 .388505 .390989 .393408 .395762 .398049 .400271	.396099 .398844 .401512 :404103 .406616 .409053 .411412 .413695 .415900 .418028	.416354 .419081 .421715 .424257 .426706 .429065 .431332 .433509 .435596 .437594	89 88 87 86 85 84 83 82 81
79 78 77 76 75 74 73 72 71 70	.357675 .359951 .362186 .364378 .366528 .366528 .370698 .372716 .374691 .376620	.371419 .373654 .375839 .377975 .380062 .382098 .384084 .386019 .387903 .389735	.386278 .388453 .390569 .392629 .394631 .396575 .398462 .400290 .402060 .403771	.402427 .404517 .406541 .408499 .410390 .412215 .413975 .415668 .417295 .418857	.420080 .422056 .423955 .425778 .427526 .429199 .430796 .432319 .433769 .435144	.439504 .441325 .443059 .444707 .446269 .447745 .449138 .450447 .451674 .452819	79 78 77 76 75 74 73 72 71 70
69 68 67 66 65 64 63 62 61	.378505 .380343 382136 .383882 .385582 .387235 .388841 .390399 .391910 .393373	.391516 .393245 .394922 .396547 .398119 .399639 .401106 .402520 .403882 .405191	.405424 .407019 .408555 .410033 .411452 .412813 .414116 .415360 .416546 .417674	.420352 .421783 .423148 .424449 .425684 .426855 .427962 .429006 .429986 .430902	.436447 .437676 .438834 .439920 .440935 .441880 .442755 .443561 .444298 .444968	.453883 .454867 .455773 .456600 .457350 .458024 .458623 .459147 .459598 .459977	,69 68 67 66 65 64 63 62 61 60
59 58 57 56 55 54 53 52 51	.394789 .396156 .397474 .398745 .399966 .401140 .402264 .403340 .404367 .405345	.406446 .407649 .408799 .409896 .410940 .411932 .412871 .413757 .414590 .415372	.418744 .419757 .420712 .421610 .422451 .423235 .423962 .424634 .425249 .425809	.431757 .432548 .433278 .433947 .434555 .435102 .435590 .436018 .436387 .436698	.445570 .446105 .446575 .446980 .447320 .447597 .447811 .447963 .448054 .448084	.460285 .460523 .460691 .460792 .460825 .460792 .460694 .460532 .460307 .460021	59 58 57 56 55 54 53 52 51 50

-			SKEWN	ESS			
t I	.0	.1	.2	.3	.4	.5	t
49 48 47 46 45 44 - 43 42 41 40	.353812 .355533 .357225 .35890 .360527 .362135 .363714 .365263 .366782 .368270	.361899 .363516 .365102 .36557 .368179 .369670 .371128 .372552 .373944 .375301	.370222 .371723 .373189 .374621 .376017 .377377 .378701 .379988 .381239 .382453	.378799 .380170 .381503 .382797 .384052 .385268 .386444 .387581 .388578 .389735	.387651 .388876 .390060 .391201 .392300 .393357 .394370 .395341 .396269 .397154	.396801 .397863 .398880 .399852 .400778 .401658 402493 .403282 .404025 .404722	49 48 47 46 45 44 43 42 41
- 39 - 38 - 37 - 36 - 35 - 34 - 33 - 32 - 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 23 - 21	369728 371154 372548 373911 375240 376537 377801 380226 381388 382515 383606 384663 385683 385683 385688 387617 388529 389404 390242	.376624 .377913 .379167 .380385 .381568 .382715 .383826 .384901 .385938 .386939 .387902 .388828 .389716 .390566 .391378 .392152 .392886 .393582 .394239	.383630 .384768 .384768 .385869 .385932 .387956 .388942 .389889 .390797 .391665 .392494 .394033 .394743 .395413 .395413 .397180 .397688 .397688 .398156	.390751 .391727 .392662 .393556 .394409 .395221 .395991 .396721 .397408 .398054 .398659 .399221 .399742 .400221 .400658 .401054 .401054 .401079 .401719 .401989	.397996 .398795 .399550 .400262 400930 401555 402136 .402674 403169 .403620 .404028 .404392 .404713 .404991 .405226 .405418 .405567 .405673 .405736	.405374 .405980 .406540 .407055 .4077525 .407949 .408327 .408661 .408949 .409193 .409391 .409546 .409722 .409743 .409722 .409656 .409548 .409548 .409396	39 38 37 36 35 34 33 32 31 30 29 27 26 25 24 23 22 21
20 - 1918 17 161514131211100908	.391043 .391806 .392531 .393219 .393868 .394479 .395052 .395585 .396080 .396536 .396953 .397668 .397668 .397966 .398225	.394857 395436 .305975 396475 396975 .397355 .397355 .398076 .398376 .398637 .398857 .399038 .399178 .399278 .399278 .3992338	.398583 .398969 .399315 .399620 .399884 400107 400432 400534 .400594 .400515 .400594 .400533 .400433 .400292	.402217 .402404 .402548 .402652 .402714 .402734 .402652 .402550 .402406 .402222 .401998 .401733 .401429 .401084	.405758 .405736 .405673 .405568 .405421 .405233 .405004 .404733 .404422 .404070 .403678 .403247 .402775 .402264 .401715	.409202 .408966 .408687 .40805 .407602 .407158 .406674 .406149 .405585 .404982 .404339 .403658 .402939 .402182	20 19 18 17 16 15 14 13 12 11 00 08 07 06
06 05 04 03 02 01	.398444 .398623 .398763 .398863 .398922 .398942	.399358 .399338 .399278 .399179 399039 .398859	.400111 399890 .399629 .399329 .398989 .398610	.400700 .400277 .399814 .399313 .398773 .398195	.401126 .400499 .399834 .399132 .398392 .397615	.401388 .400556 .399688 .398784 .397845 .396870	05 04 03 02 01

====			SKEWN	IESS			
t	.6	.7	.8	.9	1.0	1.1	t
49 48 47 46 45 44 43 42 41 40	.406274 .407155 .407987 .408770 .409504 .410190 .410827 .411416 .411957 .412450	.416101 .416778 .417403 .417977 .418500 .418971 .419391 .419761 .420080 .420349	.426314 .426764 .427159 .427500 .427788 .428022 .428204 .428333 .428410 .428435	.436950 .437146 .437285 .437368 .437396 .437368 .437287 .437152 .436964 .436723	.448054 .447965 .447818 .447614 .447354 .447037 .446666 .446241 .445763 .445232	.459673 .459266 .458800 .458276 .457696 .457060 .456370 .455626 .454830 .453982	49 48 47 46 45 44 43 42 41 40
39 38 37 36 35 34 33 32 31 30	.412895 .413292 .413641 .413943 .414198 .414406 .414567 414682 .414751 .414774	.420569 .420739 .420860 .420933 .420957 .420933 .420861 .420743 .420577 .420365	.428410 .428334 .428208 .428032 .427808 .427535 .427214 .426846 .426431 .425970	.436431 .436088 .435695 .435252 .434760 .434220 .433633 .432998 .432318 .431592	.444650 .444017 .443335 .442603 .441823 .440997 .440124 .439205 .438242 .437234	.453084 .452137 .451141 .450098 .459009 .447874 .446695 .445473 .444209 .442903	39 38 37 36 35 34 33 32 31 30
29 28 27 26 25 24 23 22 21 20.	.414751 .414683 .414570 .414412 .414211 .413965 .413675 .413343 .412967 .412550	.420108 .419804 .419456 .419063 .418626 .418146 .417622 .417056 .416448 .415798	.425463 .424912 .424315 .423675 .422991 .422265 .421497 .420687 .419837 .418946	.430821 .430007 .429149 .428248 .427306 .426323 .425299 .424235 .423133 .421993	.436184 .435092 .433958 .432785 .431571 .430319 .429028 .427701 .426338 .424939	.441557 .440171 .438748 .437286 .435788 .434255 .432687 .431085 .429450 .427784	29 28 27 26 25 24 23 22 21 20
19 18 17 16 15 14 13 12 11	.412090 .411588 .411046 .410462 .409839 .409175 .408472 .407730 .406049 .406131	.415107 .414375 .413603 .412792 .411942 .411053 .410127 .409163 .408162 .407125	.418015 .417046 .416038 .414993 .413910 .412791 .411636 .410447 .409222 .407964	.420815 .419600 .418349 .417064 .415743 .414389 .413001 .411582 .410130 .408648	.423505 .422037 .420537 .419004 .417440 .415846 .414221 .412568 .410886 .409176	.426086 .424358 .422601 .420816 .419002 .417162 .415296 .413406 .411490 .409551	19181716151413121110
09 08 07 06 05 04 03 02 01	.405275 .404382 .403452 .402486 .401485 .400448 .399377 .398272 .397134 .395962	.406053 .404945 .403803 .402627 .401418 .400176 .398902 .397596 .396260 .394892	.406673 .405349 .403993 .402606 .401188 .399740 .398263 .396758 .395224 .393663	.407135 .405593 .404022 .402423 .400796 .399143 .397463 .395758 .394029 .392276	.407440 .405678 .403891 .402079 .400243 .398385 .396504 .394601 .392677 .390734	.407590 .405607 .403602 .401577 .399533 .397469 .395387 .393288 .391172 .389040	09 08 07 06 05 04 03 02 01

			SKEWN	NESS			
t	.0	.1	.2	.3	.4	.5	t
.00 .01 .02 .03 .04 .05 .06 .07 .08 .09	.398942 .398922 .398863 .398763 .398623 .398444 .398225 .397666 .397630 .396953 .396953 .396953 .396080 .395585 .395052	.398859 .398640 .398381 .398083 .397745 .397368 .396952 .396498 .396004 .395472 .394902 .394294 .393647 .392963 .392242	.398610 .398192 .397735 .397239 .396705 .396133 .395523 .394875 .394190 .393467 .392708 .391912 .391080 .390212 .389308	.398195 .397579 .396925 .396233 .395505 .394739 .393938 .393100 .392226 .391317 .390373 .389394 .388381 .387334 .386254	397615 .396801 .395952 .395066 .394145 .393189 .392199 .391174 .390116 .389024 .387900 .386743 .385554 .384333 .383081	.396870 .395861 .394817 .393739 .392629 .391485 .390309 .389101 .387862 .386591 .383960 .382600 .381212 .379795	.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
.15 .16 .17 .18 .19	.394479 .393868 .393219 .392531 .391806	.391483 .390688 .389855 .388987 .388082	.388369 .387395 386386 .385344 .384267	.385140 .383994 .382815 .381605 .380363	.381799 .380487 .379145 .377774 376374	.378350 .376877 .375378 .373853 .372302	.15 .16 .17 .18 .19
.20 .21 .22 .23 .24 .25 .26 .27 .28 .29	.391043 .390242 .389404 .388529 .387617 .386668 .385683 .384663 .383606 .382515	.387142 .386166 .385154 .384109 .383028 .381913 .380765 .379583 .378368 .377120	.383157 .382013 .380837 .379628 .378388 .377116 .375812 .374479 .373114 .371720	.379090 .377787 .376453 .375090 .373698 .372277 .370827 .369350 .367846 .366315	.374945 .373490 .372006 .370497 .368961 .367399 .365812 .364200 .362564 .360904	.370725 .369124 .367499 .365850 .364178 .362483 .360767 .359028 .357269 .355489	.20 .21 .22 .23 .24 .25 .26 .27 .28 .29
.30 .31 .32 .33 .34 .35 .36 .37 .38	.381388 .380226 .379031 .377801 .376537 .375240 .373911 .372548 .371154 .369728	.375840 .374529 .373185 .371811 .370405 .368970 .367505 .366010 .364486 .362934	.370297 .368844 .367363 .365854 .364318 .362754 .361163 .359547 .357904 .356237	.364757 .363173 .361564 .359930 .358272 .356590 .354884 .353156 .351405 .349632	.359221 .357515 .355787 .354038 .352267 .350476 .348664 .346833 .344983 .343114	.353689 .351870 .350032 .348176 .346301 .344409 .342501 .340576 .338636 .336680	.30 .31 .32 .33 .34 .35 .36 .37 .38 .39
.40 .41 .42 .43 .44 .45 .46 .47 .48 .49	.368270 .366782 .365263 .363714 .362135 .360527 .358890 .357225 .355533 .353812	.361354 .359746 .358110 .356449 .354761 .353047 .351308 .349544 .347757 .345945	.354545 .352828 .351088 .349324 .347538 .345729 .343899 .342047 .340174 .338282	.347838 .346022 .344187 .342331 .340457 .338563 .336651 .334721 .332774 .330810	.341227 .339323 .337401 .335463 .333509 .331540 .329555 .327556 .325544 .323517	334709 332724 330726 328714 326689 324652 322604 320544 318474 316393	.40 .41 .42 .43 .44 .45 .46 .47 .48 .49

			SKEWN	IESS			
t	.6	.7	.8	.9	1.0	1.1	t
.00 .01 .02 .03 .04 .05 .06 .07 .08	.395962 .394758 .393522 .392255 .390957 .389628 .388270 .386882 .385466 .384021	.394892 .393496 .392069 .390615 .389132 .387621 .386084 .384521 .382932 .381318	.393663 .392075 .390461 .388821 .387157 .385468 .383756 .382021 .380263 .378483	.392276 .390499 .388699 .386878 .385035 .383171 .381288 .379385 .377463 .375523	.390734 .388770 .386788 .384788 .382770 .380735 .378684 .376618 .374536 .372440	.389040 .386893 .384731 .382555 .380366 .378164 .375950 .373724 .371487 .369241	.00 .01 .02 .03 .04 .05 .06 .07
.10 .11 .12 .13 .14 .15 .16 .17 .18	.382549 .381050 .379525 .377973 .376396 .374795 .373169 .371519 .369846 .368151	.379679 .378016 .376330 .374621 .372891 .371138 .369364 .367571 .365757 .363923	.376683 .374862 .373021 .371160 .369281 .367384 .365469 .363537 .361588 .359624	.373565 .371591 .369600 .367593 .365572 .363536 .361485 .359422 .357345 .355257	370331 368208 366073 363926 361768 359598 357419 355230 353032 350826	.366984 .364719 .362445 .360163 .357874 .355577 .353275 .350967 .348653 .346335	.10 .11 12 .13 .14 .15 .16 .17 .18
.20 .21 .22 .23 .24 .25 .26 .27 .28	.366433 .361694 .362934 .361153 .359353 .357533 .355694 .353838 .351963 .350071	.362072 .360201 .358314 .356409 .354488 .352550 .350598 .348630 .346648 .344652	.357645 .355651 .353642 .351620 .349585 .347538 .345478 .343407 .341325 .339233	.353156 351045 .348923 .346791 .344649 .342498 .340339 .338172 .335997 .333816	348611 346389 344160 341924 339683 337436 335184 332927 330667 328403	.344013 .341687 .339357 .337025 .334690 .332353 .330015 .327676 .325336 .322996	.20 .21 .22 .23 .24 .25 .26 .27 .28 .29
.30 .31 .32 .33 .34 .35 .36 .37 .38	.348163 .346239 .344299 .342343 .340374 .338390 .336393 .334383 .332360 .330325	.342643 .340621 .338587 .336541 .334484 .332416 .330338 .328251 .326154 .324048	.337131 .335019 .332898 .330769 .328632 .326488 .324337 .322179 .320015 .317845	.331627 .329433 .327233 .325028 322818 320604 .318387 .316166 .313942 .311716	.326135 .323865 .321593 .315919 .317043 .314766 .312489 .310212 .307934 .305657	.320657 .318317 .315979 .313642 .311307 .308974 .306644 .304316 .30191 .299670	.30 .31 .32 .33 .34 .35 .36 .37 .38
.40 .41 .42 .43 .44 .45 .46 .47 .48	.313675 .311555	.321934 .319812 .317683 .315547 .313405 .311256 .309102 .306943 .304780 .302612	.315671 .313491 .311308 .309120 .306930 .304736 .302540 .300341 .298141 .295939	.309487 .307257 .305026 .302793 .300561 .298328 .296095 .293863 .291632 .289402	.303381 .301107 .298834 .296563 .294294 .292028 .289765 .287505 .285248 .282996	.297352 .295039 .292730 .290426 .288127 .285833 .283544 .281262 .278985 .276715	.40 .41 .42 .43 .44 .45 .46 .47 .48 .49

			SKEWN	NESS			
t	.0	.1	.2	.3	.4	.5	t
.50 .51 .52 .53 .54 .55 .56 .57 .58 .59	.352065 .350292 .348493 .346668 .344818 .342944 .341046 .339124 .337180 .335213	344110 342252 340372 338470 336547 334604 332640 330656 328653 326632	.336369 .334438 .332487 .330519 .328533 .326529 .324509 .322473 .320421 .318354	.328830 .326833 .324822 .322796 .320756 .318701 .316634 .314554 .312461 .310357	.321478 .319426 .317362 .315286 .313200 .311103 .308796 .306879 .304754 .302620	.314302 .312202 .310093 .307976 .305851 .303719 .301579 .299433 .297281 .295124	.50 .51 .52 .53 .54 .55 .56 .57 .58 .59
.60 .61 .62 .63 .64 .65 .66 .67	.333225 .331215 .329184 .327133 .325062 .322972 .320864 .318737 .316593 .314432	.324592 .322535 .320461 .318370 .316264 .314142 .312004 .309853 .307687 .305508	.316273 .314178 .312068 .309946 .307811 .305565 .303507 .301337 .299157 .296968	.308242 .306115 .303979 .301833 .299677 .297513 .295340 .293159 .290971 .288776	.300477 .298327 .296170 .294006 .291836 .289660 .287478 .285292 .283101 .280906	292961 290793 288621 286445 284266 282083 279898 277711 275521 273331	.60 .61 .62 .63 .64 .65 .66 67 .68
.70 .71 .72 .73 .74 .75 .76 .77 .78 .79	312254 310060 307851 305627 303389 301137 298872 296595 294305 292004	303317 301113 298897 296670 294432 292184 289926 287659 285384 283100	294768 292560 290343 288118 285886 283647 281401 279148 276891 274628	.286575 .284368 .282155 .279937 .277714 .275488 .273257 .271023 .268787 .266548	.278707 .276505 .274301 .272094 .269885 .267674 .265462 .263250 .261037 .258824	.271139 .268946 .266754 .264561 .262369 .260177 .257987 .255798 .253611 .251426	.70 .71 .72 .73 .74 .75 .76 .77 .78 .79
.80 .81 .82 .83 .84 .85 .86 .87 .88	289692 287369 285036 282694 280344 277985 275618 273244 270864 268477	280809 278510 276205 273893 271576 269254 266928 264597 262262 259924	272360 270089 267813 265535 263253 260969 258683 256396 254107 251818	.264307 .262064 .259820 .257576 .255331 .253086 .250842 .248598 .246356 .244115	.256612 .254400 .252189 .249980 .247773 .245568 .243365 .241166 .238970 .236777	249244 247065 244888 242716 240547 238382 236222 234066 231915 229770	.80 .81 .82 .83 .84 .85 .86 .87 .88
.90 .91 .92 .93 .94 .95 .96 .97 .98	.266085 .263688 .261286 .258881 .256471 .254059 .251644 .249228 .246809 .244390	257584 255241 252897 250551 248204 245857 243510 241164 238818 236474	.249529 .247240 .244952 .242664 .240378 .238094 .235812 .233533 .231256 .228984	.241876 .239640 .235176 .235176 .232949 .230725 .228506 .226291 .224081 .221876	.234588 .232403 .230223 .228048 .225878 .223713 .221554 .219401 .217254 .215114	.227630 .225496 .223368 .221247 .219132 .217024 .214923 .212829 .210744 .208665	.90 .91 .92 .93 .94 .95 .96 .97 .98

			SKEWI	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
50 51 52 53 .54 .55 .56 .57 .58	307293 305152 303005 300853 298696 296535 294369 292200 290028 287852	300440 .298205 .296087 .293907 .291724 .289539 .287354 .285167 .282979 .280792	.203736 291533 289330 287126 284923 .282721 .280520 .278321 .276124 .273928	287174 284948 282725 280504 278286 276071 .273860 .271653 .269449 .267251	.280748 .278504 .276265 .274031 .271803 .269580 .267363 .265152 .262947 .260749	.274451 .272195 .269945 .267703 .265468 .263241 .261022 .258811 .256608 .254414	.50 .51 .52 .53 .54 .55 .56 .57 .58
60 ,61 ,62 ,63 ,64 ,65 ,66 ,67 ,68	.285675 .283495 .281313 .279131 .276947 .274763 .272578 .270394 .268211 .266028	.278604 .276417 .274231 .272046 .269862 .267680 .265501 .263324 .261150 .258978	.271736 .269546 .267359 .265175 .262996 .260820 .258649 .256482 .254320 .252164	.265057 .262868 .260685 .258506 .256334 .254168 .252008 .249855 .247708 .245568	.258558 .256373 .254196 .252027 .249865 .247711 .245565 .243428 .241299 .239178	.252228 .250052 .247885 .245727 .243578 .241439 .239310 .237190 .235081 .232981	.60 .61 .62 .63 .64 .65 .66 .67
.70 .71 .72 .73 .74 .75 .76 .77 .78 .79	.263847 .201667 .259489 .257314 .255141 .252971 .250805 .248642 .246482 .244327	.256811 .254647 .252487 .250331 .248180 .246034 .243893 .241757 .239627 .237503	.250012 .247867 .245727 .245727 .243593 .241466 .239345 .237231 .235125 .233025 .230933	.243436 .241310 .239193 .237083 .237083 .231981 .232888 .230802 .228726 .226658 .224599	.237066 .234964 .232870 .230786 .228711 .226646 .224590 .222544 .220509 .218483	.230892 .228813 .226745 .224088 .222641 .220605 .218581 .216567 .214564 .212573	.70 .71 .72 .73 .74 .75 .76 .77 .78 .79
.80 .81 .82 .83 .84 .85 .86 .87 .88	.242177 .240031 .237890 .235754 .233624 .231500 .229381 .227269 .225164 .223066	.235385 .233274 .231169 .229071 .226980 .224896 .222820 .220751 .218691 .216638	.228849 .226772 .224704 .222644 .220592 .216515 .214489 .212473 .210466	.222548 .220508 .218476 .216454 .214442 .212439 .210447 .208464 .206492 .204529	.216468 .214463 .212469 .210485 .208512 .206550 .204598 .202658 .200729 .198811	.210593 .208624 .206667 .204722 .202788 .200866 .198955 .197057 .195170 .193295	.80 .81 .82 .83 .84 .85 .86 .87 .88
.90 91 .92 .93 .94 .95 .96 .97 .98		.214594 .212559 .210532 .208514 .206505 .204505 .202515 .200534 198562 .196601	.208469 .206481 .204503 .202534 .200576 .198628 .196690 .194762 192845 .190939	.202578 200637 .198706 .196786 .194877 .192979 .191092 .189216 187351 .185498	.196904 .195009 .193125 .191252 .189391 .187541 .185704 .183878 182063 .180261	.191433 .189582 .187743 .185917 .184103 .182300 .180510 .178733 .176967 .175214	.90 .91 .92 .93 .94 .95 .96 .97

-			SKEWN	TECC			
t	.0	.1	.2	.3	.4	.5	t
1.00	.241971	.234132	.226714	.219676	.212981	.206595	1.00
1.01	.239551	.231792	.224449	.217482	.210854	.204534	1.01
1.02	.237132	.229454	.222189	.215295	.208736	.202480	1.02
1.03	.234714	.227120	.219933	.213113	.206624	.200436	1.03
1.04	.232297	.224789	.217683	.210938	.204521	.198400	1.04
1.05	.229882 .227470	.222462 .220139	.215438 .213199	.208770 .206610	.202426 .200339	.1963 7 3 .194356	1.05
1.06 1.07	.227470	.220139	.213199	.200010	.198260	.194336	1.07
1.08	.222653	.215508	.208739	.202311	.196191	.190350	1.08
1.09	.220251	.213200	.206520	.200174	.194130	.188361	1.09
1.10	.217852	.210898	.204307	.198044	.192079	.186383	1.10
1.11	.215458	.208602	.202102	.195924	.190037	.184414	1.11
1.12	.213069	.206313	.199905	.193812	.188004	.182456	1.12
1.13	.210686	.204031	.197716	.191709	.185982	.180509	1.13
1.14	.208300	.201755	.195535	.189616	.183969	.178572	1.14
1.15	.2059 36	.199488	.193363	.187531	.181967	.176645	1.15
1.16	.203571	.197228	.191200	.185457	.179975	.174730	1.16
1.17 1.18	.201214 .198863	.194977 .192734	.189046 .186901	.183393	.177993 .176023	.172826 .170933	1.17 1.18
1.18	.196520	.192/34	.186901	.181338	.174063	.169051	1.18
1.20 1.21	.194186	.188275	.182641	.177261	.172114	.167180	1.20
	.191860	.186059	.180526	.175239	.170176	.165321	1.21
1.22 1.23	.189543 .187235	.183854 .181658	.178422 .176328	.173227 .171227	.168250 .166335	.163474	1.22 1.23
1.24	.184937	.179473	.174245	.169237	.164432	.161639 .159815	1.23
1.25	.182649	.177298	.172174	.167260	.162541	.158003	1.25
1.26	.180371	.175134	.170113	.165294	.160661	.156203	1.26
1.27	.178104	.172982	.168064	.163339	.158794	.154416	1.27
1.28	.175847	.170840	.166027	.161397	.156938	.152640	1.28
1.29	.173602	.168711	.164002	.159467	.155095	.150877	1.29
1.30	.171369	.166593	.161989	.157549	.153264	.149127	1.30
1.31	.169147	.164487	.159988	.155644	.151446	.147388	1.31
1.32 1.33	.166937	.162394	.158000	.153751	.149640	.145663	1.32
1.33	.164740 .162555	.160313 .158245	.156024 .154062	.151871	.147847	.143949	1.33
1.35	.160383	.156190	152112	.148149	.146067 .144299	.142249 .140561	1.34 1.35
1.36	.158225	.154149	.150175	.146307	.142545	.138886	1.36
1.37	.156080	.152120	.148252	.144479	.140803	.137224	1.37
1.38	.153948	.150105	.146342	.142664	.139074	.135574	1.38
1.39	.151831	.148104	.144445	.140862	.137359	.133938	1.39
1.40	.149727	.146117	.142563	.139074	.135656	.132314	1.40
1.41	.147639	.144144	.140694	.137299	.133967	.130703	1.41
1.42	.145564	.142185	.138839	.135538	.132292	.129106	1.42
1.43	.143505	.140241	.136998	.133790	.130629	.127521	1.43
1.44 1.45	.141460	.138311	.135171	.132057	.128980	.125949	1.44
1.45	.139431 .137417	.136396	.133359	.130337	.127345	.124391	1.45
1.45	.135417	.134496	.131561	.128631	.125723	.122845	1.46
1.48	.133435	.132011	.129777	.126939	124114	.121313	1.47
1.49	.131468	.128886	.126253	125261 .123598	.122519	.119794 .118287	1.48 1.49
****		.120000	.120233	.120070	.120730	.11040/	1.49

			SKEWN	ESS			-
t	.6	.7	.8	.9	1.0	1.1	t
1.00	.200493	.194649	.189043	.183655	.178470	.173473	1.00
1.01	.198493	.192708	187158	.181824	.170691	.171745	1.01
1.02	.196502	.190777	185284	.180005	.174925	.1700.28	1.02
1.03	.194521	.188856	.183421	.178197	.173170	.168324	1.03
1.04	.192549	.186945	.181569	.176401	.171427	.166633	1.04
1.05	.190588	.185046	.179728	.174616	.169696	.164954	1.05
1.06	.188636	.183157	.177898	.172843	.167977	.163287	1.06
1.07	.186695	.181278	.176080	.171082	.166271	.161632	1.07
1.08	.184764	.179411	.174273	.169333	.164576	.159990	1.08
1.09	.182843	.177555	.172478	.167595	.162894	.158360	1.09
1.10	.180933	.175710	.170694	.165870	.161223	.156743	1.10
1.11	.179034	.173876	.168922	.164156	.159565	.155137	1.11
1.12	.177146	.172053	.167161	.162454	.157919	.153545	1.12
1.13	.175268	.170242	.165412	.160764	.156285	.151964	1.13
1.14	.173402	.168442	.163675	.159086	.154664	.150396	1.14
1.15	.171547	.166054	.161950	.157421	.153054	.148840	1.15
1.16	.169703	.164877	.160236	.155767	.151457	.147296	1.16
1.17	.167871	.163112	.158535	.154125	.149872	.145764	1.17
1.18	.166050	.161359	.156845	.152496	.148299	.144245	1.18
1.19	.164241	.159618	.155168	.150878	.146738	.142737	1.19
1.20	.162444	.157889	.153502	.149273	.145189	.141242	1.20
1.21	.160658	.156171	151849	.147679	.143653	.139759	1.21
1.22	.158884	.154466	.150207	.146098	.142128	.138289	1.22
1.23	.157122	.152772	.148578	.144529	.140616	.136830	1.23
1.24	.155372	.151091	.146961	.142972	.139116	.135383	1.24
1.25	.153634	.149422	.145356	.141427	.137627	.133948	1.25
1.26	.151908	.147765	.143763	.139895	.136151	.132526	1.26
1.27	.150195	.140120	.142183	.138374	.134687	.131115	1.27
1.28	.148493	.144487	.140614	.136866	.133235	.129716	1.28
1.29	.146804	.142867	.139058	.135369	.131795	.128328	1.29
1.30	.145127	.141259	.137514	.133885	.130367	.126953	1.30
1.31	.143463	.139663	.135982	.132413	.128951	.125590	1.31
1.32	.141811	.138080	.134462	.130953	.127546	.124238	1.32
1.33	.140172	.136509	.132955	.129505	.126154	.122897	1.33
1.34	.138545	.134950	.131459	.128069	.124773	.121569	1.34
1.35	.136931	.133404	.129976	.126645	.123404	.120252	1.35
1.36	.135329	.131870	.128505	.125232	.122047	.118946	1.36
1.37	.133740	.130348	.127047	.123832	.120702	.117652	1.37
1.38	.132163	.128839	.125600	.122444	.119368	.116370	1.38
1.39	.130599	.127342	.124166	.121068	.118046	.115099	1.39
1.40	.129048	.125858	.122743	.119703	.116736	.113839	1.40
1.41	.127509	.124386	.121333	.118350	.115437	.112590	1.41
1.42	.125983	.122926	.119935	.117009	.114149	.111353	1.42
1.43	.124470	.121479	.118549	.115680	.112873	.110127	1.43
1.44	.122969	.120044	.117175	.114363	.111609	.108912	1.44
1.45	.121482	.118621	.115813	.113057	.110356	.107708	1.45
1.46	.120007	.117211	.114463	.111763	.109114	.106515	1.46
1.47	.118544	.115813	.113125	.110481	.107883	.105333	1.47
1.48	.117094	.114428	.111798	.109210	.106664	.104162	1.48
1.49	.115657	.113054	.110484	.107950	.105456	.103002	1.49

			SKEWN	ESS			
t	.0	.1	.2	.3	.4	.5	t
1.50	.129518	.127046	.124514	.121948	.119370	.116794	1.50
1.51	.127583	.125222	.122789	.120312	.117816	.115314	1.51
1 52	.125665	.123414	.121079	.118691	.116275	.113848	1.52
1.53	.123763	.121621	.119383	.117084	.114748	.112394	1.53
1.54	.121878	.119844	.117703	.115492	.113235	.110953	1.54
1.55	.120009	.118082	.116038	.113913	111736	.109526	1.55
1.56	.118157	.116337	.114388	.112349	.110250	.108112.	1.56
1.57	.116323	.114607	.112753	.110799	.108778	.106710	1.57
1.58	.114505	.112894	.111133	.109264	.107319	.105322	1.58
1.59	.112704	.111196	.109528	.107743	.105874	.10394 <i>7</i>	1.59
1.60	.110921	.109515	.107939	.106237	.104443	.102585	1.60
1.61	109155	.107850	.106365	.104745	.103026	.101236	1.61
1.62	.107406	.106201	.104806	.103267	.101622	.099900	1.62
1.63	.105675	.104569	.103262	.101804	.100232	.098577 .097266	1.63 1.64
1.64	.103961	.102953	.101733	.100355	.098836	095969	1.65
1.65	.102265	.101353	.100220 .098723	.098920	.09/493	.094685	1.66
1.66	.100586	.099769		.09/300	.094808	.093413	1.67
1.67	.098925	098202	,097240	.090094	.093485	.093413	1.68
1.68	.097282	.096652	.095773 .094321	.094703	.093463	.090908	1.69
1.69	.095657	095117					
170	.094049	.093599	092884	091963	090881	.089674	1.70
1.71	.092459	.092098	.091463	.090615	.089599	.088454	1.71
1.72	.090887	.090613	.090057	089280	.088331	.087245	1.72
1.73	.089333	.089144	.088666	.087960	.087076	.086050	1.73
1.74	.087796	.087692	.087290	.086654	.085834	084867	1.74
1.75	086277	.086256	.085930	.085363	.084605	.083696	1.75
1.76	.084776	.084837	.084584	.084085	.083390	.082538	1.76
1.77	.083293	.083433	.083254	.082822	.082187	081392	1.77
1.78	.081828	.082046	.081939	.081572	.080998	.080258	1.78
1.79	.080380	.080676	.080639	.080336	.079822	.079137	1.79
1.80	.078950	079321	079354 078083	0779115	.078659	.078028	1.80 1.81
1.81	.077538	.076661	.076828	076713	.076371	.075845	1.82
1.82 1.83	.074766	.075355	.075587	.075533	.075246	.073643	1.83
1.84	.073407	.074065	.074362	.074366	.074134	.073711	1.84
1.85	.072065	.0, 2791	.073150	.073213	.073035	.072662	1.85
1.86	.070740	071533	071954	072074	071949	.071625	1.86
1.87	.069433	.370291	.070772	.070948	.070875	.070599	1.87
1.88	.068144	.069065	.069605	.069835	.069813	.069585	1.88
1.89	066871	0n7855	.068452	.058736	068764	068582	1.89
1,90	.065616	066660	.067314	067650	067727	067591	190
1.91	.064378	.065480	.066189	.066577	.066703	066612	1.91
1.92	.063157	.064317	.065079	.065518	.065690	.065644	1.92
1.93	061952	.063168	.063984	.064471	.064690	.064687	1.93
1.94	.060765	.062035	.062902	.063438	.063702	.063741	1.94
1.95	.059595	.060917	.061834	.062417	.062726	.062807	1.95
1.96	.058441	.059815	.060780	.061410	.061762	.061883	1.96
1.97	057304	.058727	.059740	.060415	.060809	.060971	1.97
1 98	.056183	.057655	.058714	059432	059868	060069	1.98
1.99	.055079.	.056598	.057701	.058463	.058939	.059179	1.99

			SKEWN	ESS			
t	.6	.7	.8	.9 '	1.0	1.1	t
1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59	.114233 .112821 .111422 .110036 .108662 .107330 .105952 .104616 .103292 .101981	.111693 .110344 .109008 .107683 .106371 .105071 .103782 .102506 .101242 .099990	.109182 .107891 .106612 .105345 .104090 .102846 .101614 .100393 .099184 .097986	.106702 .105466 .104241 .103027 .101824 .100633 .099453 .098284 .097126	.104259 .103073 .101898 .100733 .099580 .098438 .097307 .0°0186 .095076 .093976	.101852 .100714 .099586 .098468 .097361 .096265 .095179 .094103 .093037	1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59
1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68	.100682 .099376 .098122 .096860 .095611 .094374 .093149 .091936 .090735	.098750 .097521 .096305 .095100 .093907 .092725 .091555 .090397 .089251 .088115	.096800 .095625 .094462 .093310 .092169 .091039 .089920 .088813 .087716 .086630	094844 .093719 092605 .091501 .090409 .089327 .088256 .087195 .086145	.092887 .091809 .090741 .089683 .088636 .087599 .080572 .085555 .084548 .083552	.090937 .089902 .088877 .087862 .086857 .085862 .084877 .083901 .082935 .081979	1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69
1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79	.088371 .087206 .080053 .084913 .083784 .082667 .081561 .080468 .079385 .078315	.086992 085879 .084778 .083688 .082610 .081542 080486 .079440 .078406	.085555 .084491 .083438 .082395 .081363 .080342 .079331 .078331 .077341	084076 .083057 .082048 .081050 .080061 .079083 .078114 .077156 .076208 .075269	.082565 .081588 .080621 .079663 .078716 .077777 .076849 .075930 .075020 .074120	.081032 .080094 079166 .078247 .077338 .076437 .075546 .074664 .073790 .072926	1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79
1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88	.077256 .076208 .075171 .074146 .073132 .072129 .071138 .070157 .069187	.070370 .075368 .074376 .073396 .072426 .071466 .070517 .009578 .068650 .067732	.075392 .074432 .073483 .072544 .071615 .070696 .069787 .068887 .067998 .067118	.074340 .073421 .072511 .071611 .070720 .069839 .068967 .068104 .067251 .066407	.073229 .072347 .071474 .070611 .069756 .068910 .068073 .067245 .066426 .065616	.072071 .071224 .070386 .069557 .068736 .067924 .067120 .066324 .065537 .064758	1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88
1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97	.067280 .066342 .065416 .064499 .063594 .062699 .061814 060039 .0670075	.066823 .065926 .065038 064160 .063291 .062433 .061584 .060745 .059916 .059096	.066247 .065386 .064535 .063692 .062860 .062036 .061222 .060416 .059620 .058833	.065571 .064745 .063928 .063120 .062320 .061529 .060747 .059973 .059208 058452	.064814 .064020 .063235 .062459 .061690 .060930 .060179 .059435 .058699 .057972	.063988 .063225 .062471 .061724 .060986 .060255 .059532 .058817 .058109 .057409	1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99

			SKEWN	IESS			
t	.0	.1	.2	.3	.4	.5	t '
2.00	.053991	055555	.056702	057505	.058022	.058299	2.00
2.01	.052919	.054527	.05 57 17	.056560	.057116	.057430	2.01
2.02	.051864	.053513	.0 547 45	055628	.056221	.056571	2.02
2.03	.050824	.052515	.053786	.054708	.055338	.055723	2.03
2.04	.049800	.051530	.052840	.053799	.054466	.054886	2.04
2.05	.048792	.050560	.051907	.052903	.053605	.054059	2.05
2.06	.047800	.049604	.050988	.052019	.052755	.053242	2.06
2.07	.046823	.048662	.050081	.051147	. Q51 916	.052435	2.07
2.08	.045861	.047734	.049187	.050286	.051088	.051638	2.08
2.09	.044915	.046820	.048306	.049437	.050271	.050852	2.09
2.10	.043984	.045920	.047437	.048600	.049464	.050075	2.10
2.11	.043067	.045033	.046581	.047774	.048668	.049308	2.11
2.12	.042166	.044160	.045737	.046960	.047883	.048552	2.12
2.13	.041280	.043300	.044905	.046157	.047108	.047804	2.13
2.14	.040408	.042454	.044086	.045365	.046343	.047067	2.14
2.15	.039550	.041620	.043278	.044584	.045589	.046339	2.15
2.16	.038707	040800	042483	043814	.044845	045620	2.16
2.17	.037878	.039993	041699	.043055	.044111	.044911	2.17
2.18	.037063	.039198	040927	.042307	.043387	.044211	2 18
2.19	.036262	.038416	040167	041569	.042673	043520	2.19
2.20 2.21	.035475	.037647	.039418	.040842	041968	.042838	2.20
2.21	.034701	.036890	.038680	.040126	.041274	.042166	2.21
2.22	.033941	.036145	.037954	.039420	.040589	.041502	2.22
2.23	.033194	.035413	.037239	.038724	.039913	.040847	2.23
2.24	.032460	.034693	.036535	.038038	.039247	.040201	2.24
2.25	.031740	.033984	.035842	.037363	.038591	.039564	2.25
2.26	.031032	.033287	035160	.036698	.037943	.038935	2.26
2.27	.030337	.032602	.034489	.036042	.037305	.038315	2.27
2.28	.029655	.031929	.033828	.035396	.036676	.037703	2.28
2.29	.028985	.031267	.033177	.034760	.036055	.037100	2.29
2.30	.028327	.030616	032537	034134	.035444	.036505	2.30
2.31	.027682	029976	.031908	.033517	.034842	.035918	2.31
2.32	.027048	.029347	.031288	.032909	.034248	.035339	2.32
2.33	.026426	.028730	.030678	.032310	.033663	.034768	2.33
2.34	.025817	.028123	.030079	.031721	.033086	.034205	2.34
2.35	.025218	.027526	.029489	.031141	.032518	.033650	2.35
2.36	.024631	.026940	.028909	030570	.031958	.033103	2.36
2.37	.024056	.026365	.028338	.030008	.031406	.032563	2.37
2.38	.023491	.025799	.027777	.029454	.030862	.032031	2.38
2.39	.022937	.025244	.027225	.028909	.030327	.031507	2.39
2.40	.022395	.024699	.026683	.028373	.029800	.030990	2.40
2.41	.021862	.024163	.026149	.027845	.029280	030480	2.41
2.42	.021341	.023638	.025625	.027326	.028768	.029978	2.42
2.43	.020829.	.023122	.025109	.026815	.028264	.029483	2.43
2.44	.020328	.022615	.024603	.026312	.027768	.028995	2.44
2.45	.019837	.022118	.024105	.025817	.027279	.028514	2.45
2 46	.019356	021630	.023615	025330	.026797	028040	246
2.47	.018885	021151	.023134	024851	.026323	027573	247
2.48	.018423	020681	.022662	024380	.025856	.027113	2.48
2.49	.017971	020220	.022197	023916	.025397	.026659	2 49

			SKEWN	ESS			
t	.6	.7	.8	.9	1.0	1.1	t
2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09	.058376 .057542 .056718 .055903 .055999 .054304 .053518 .052743 .051219	.058.286 .057485 .056693 .055910 .055137 .054373 .053617 .052871 .052134	.058054 .057284 .056523 .055771 .055028 .054293 .053566 .052848 .052138	.057703 .056963 .056232 .055508 .054793 .054086 .053386 .052695 .052011	.057252 .056541 .055837 .055140 .054452 .053771 .053098 .052432 .051773 .051122	.056717 .056032 .055354 .054684 .054021 .053365 .052717 .052075 .051441 .050813	2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2:09
2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21	.050471 .049733 .049003 .048283 .047572 .046869 .046176 .045491 .044814 .044147	.050685 .049973 .049271 .048576 .047890 .047212 .046543 .045842 .045229 .044584	.050743 .050057 .049380 .048710 .048049 .047395 .016749 .046111 .045480 .044857	.0506/7 050007 .049354 .048709 .048071 047440 .046817 .046201 .045592 044990	050478 049842 049842 049212 048590 047975 047366 046765 046170 045582 045001	.050192 0.19579 0.48971 .048371 .047777 .047190 .04610 .046366 .045468 044907	2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21
2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29	.042194 .041560 .040934 .040317 .039707 .039105 038511 .037925	.042696 042682 .041277 ,040878 .040287 .039704 039128 .038559	.043033 .042439 .041853 .041274 .040702 .040137 .039578 .039027	.043227 .042653 .042086 .041525 .040972 .040424 .039884 .039349	043297 .042742 .042194 .041652 .041116 .040586 .040063 .039545	.043260 .042724 .042194 .041669 .041151 .040638 .040131 .039630	2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29
2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39	.033508 .032988	.037998 .037443 .036896 .036350 .035823 .035297 .034777 .034204 .033758 .033259	.038482 .037945 .037413 .036889 .036371 .035859 .035354 .034856 .034363 .033877	.038822 .038300 .037785 037276 036773 .036277 .035786 .035301 .034822 .034350	.039034 .038529 .038029 .037536 .037048 .036566 .036089 .035619 .035154 .034694	.039135 .038645 .038161 .037683 .037210 .036743 .036280 .035824 .035372 .034926	2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39
2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49	.031472 .030981 .030496 .030018 .029546 .029081 .028622 .028170	.032766 .032279 .031799 .031325 .030858 .030397 .029942 .029492 .029049 .028612	.033397 .032923 .032454 .031992 .031536 .031086 .030641 .03020.2 .029769 .029342	033882 033421 032965 032515 032071 031632 031198 030770 030347 029929	034240 033791 033348 032910 032478 032050 031628 031210 030798 030391	034485 034049 033618 033192 032771 032355 031944 031538 031137 030740	2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49

							
			SKEWI	NES <u>S</u>			
t	.0	.1	.2	.3	.4	.5	t
2.50	.017528	.019768	.021741	.023461	.024944	.026212	2.50
2.51	.017095	.019324	.021293	.023012	.024499	.025772	2.51
2.52	.016670	.018888	.020852	.022571	.024060	.025338	2.52
2.53	.016254	.018461	.020420	.022137	.023629	.024911	2.53
2.54	.015848	.018043	.019995	.021711	.023204	.024490	2.54
2.55	.015449	.017632	.019578	.021292	.022785	.024075	2.55
2.56	.015060	.017230	.019168	.020879	.022374	.023666	2.56
2.57 2.58	.014678 .014305	.016835 .016448	.018766 .018371	.020474	.021968	.023264	2.57
2.59	.014303	016068	.016371	019684	.021570 .021177	.022867 .022477	2.58 2.59
2.60	.013583	.015697	.017603	.019298	.020791	.022093	2.60
2.61	.013234	.015332	.017229	.018920	.020411	.021714	2.61
2.62	.012892	.014975	.016862	.018548	.020038	.021341	2.62
2.63	.012558	.014625	.016502	.018182	.019670	.020974	2.63
2.64	.012232	.014282	.016149	.017823	.019308	.020612	2.64
2.65	.011912	.013946	.015802	0174 7 0	.018952	.020256	2.65
2.66	011600	.013617	015462	.017123	018602	.019905	2,66
2.67	.011295	.013295	.015128	.016782	.018257	.019560	2.67
2.68	.010997	.012979	.014800	.016447	017919	019220	2.68
2.69	.010706	.012670	.014479	.016118	.017585	.018886	2.69
2.70	.010421	.012367	.014163	.015795	017258	.018556	2.70
2.71	.010143	.012071	013854	.015477	.016935	.018232	2.71
2.72 2.73	.0098 7 1 .009606	.011780	.013551	.015165	.016619	017913	2.72
2.74	.009347	.011496 .011218	.0132 53 .012961	.014859 .014558	016307	.017599	2.73
2.75	009094	.010945	.012901	.014338	016000 .015699	.01 <i>72</i> 89 .016985	2.74 2.75
2.76	008847	.010679	.012395	.013972	015403	016685	2.75
2.77	.008605	.010418	.012120	.013687	.015112	.016391	2.77
2.78	008370	.010163	.011850	.013408	.014825	.016100	2.78
2.79	.008140	.009913	.011586	.013133	.014544	.015815	2.79
2.80	.007915	.009669	.011326	012863	.014267	.015534	2.80
2.81	.007697	.009430	.011072	.012598	013995	.015258	2.81
2.82	.007483	.009196	.010823	.012338	.013728	.014986	2.82
2.83 2.84	007274 .007071	008967 008743	.010579	.012083	.013465	.014718	2.83
2.85	.006873	.008524	.010340 .010106	.011833	013206	.014455	2 84
2.86	.006679	.008324	.009876	01+587 011346	012953 012.03	014195	2.85
2.87	.006491	.008101	.009651	.011109	.012+58	013911 013690	2.86 2.87
2 88	.006307	007897	009431	01087.	.012438	.013443	2.88
2.89	.006127	.007697	.009215	.010649	011981	.013201	2.89
2.90	005953	.007501	.009003	.010425	011748	.012962	2.90
2.91	.005782	.007310	.008796	010206	.011519	012727	2.91
2.92	.005616	.007123	.008593	.009990	.011295	.012496	2.92
2.93	.005454	.006941	.008394	.009779	.011075	.012269	2.93
2.94 2.95	.005296	.006763	.008199	.009572	.010858	.012046	2.94
2.95	.005143 004993	.006588	.008009	.009368	.010645	.011826	2.95
2.97	.004993	.006418 .006252	.007822 .007639	.009169	.010436	011610	2.96
2.98	.004705	006089	.007639	.0089 7 4 .008 7 82	.010231	.011398	2.97
2.99	.004567	.005930	.007460	.008782	.010029 .009831	.011189	2.98
	.30.007	.505550	.007 203	.000394	1005001	.010984	2.99

			SKEWI	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59	.027285 .026851 .026424 .026002 .025587 .025178 .024774 .024376 .023984 .023597	.028181 .027756 .027336 .026922 .026513 .026110 .025713 .025321 .024935 .024553	.028920 .028503 028092 .027686 027285 .026890 026500 .026115 .025735 .025360	.029517 .029110 .028708 .028311 .027919 .027532 .027149 .026772 .026400 .026032	.029989 .029591 .029199 .028811 .028428 .028049 .027676 .027306 .026942 .026582	.030348 .029960 .029578 .029199 .028825 .028456 .028091 .027730 .027374 .027022	2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59
2.60 2.61 2.62 2.63 2.64 2.65 2.65 2.67 2.68 2.69	.023216 .022841 .022871 .022106 .021747 .021392 .021043 .020700 .020361 .020027	.024177 .023806 .023441 .023080 .022724 .022374 .022028 .021687 .021351 .021019	.024990 .024625 .024265 .023909 .023559 .023213 .022871 .022535 .022202 .021874	.025669 .025310 .024956 .024607 .024262 .023922 .023586 .023254 .022927 .022603	.026226 .025875 .025528 .025185 .024847 .024513 .024183 .023857 .023535 .023217	.026674 .026331 .025991 .025655 .025324 .024996 .024673 .024353 .024038 .023726	2.60 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69
2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79	.019698 .019374 .019055 .018740 .018430 .018125 .017824 .017528 .017237 .016949	.020693 .020370 .020053 .019740 .019431 .019127 .018827 .018531 .018240	.021551 021232 .020917 020607 .020301 .019999 .019701 .019407 .019117 .018831	.022284 .021970 021659 021352 .021049 .020751 .020456 .020165 .019878	.022903 .022593 .022287 .021985 .021687 .021392 .021101 .020814 .020530 .020250	.023418 .023113 .022812 .022515 .022222 .021 332 .021646 .021363 .021084 .020808	2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79
2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89	.016666 .016388 .016113 .0155843 .015577 .015315 .015057 .014803 .014552 .014306	.017669 .017390 .017115 .016844 .016577 .016314 .016054 .015798 .015546 .015298	.018549 .018271 .017907 .017727 .017460 .017197 .016937 .016682 .016430 .016181	.019315 .019039 .018767 .018498 .018233 .017971 .017713 .017459 .017207	.019974 .019701 .019432 .019166 .018903 .018644 .018388 .018135 .017886	.020535 .020266 .020000 .019738 .019478 .019222 .018969 .018719 .018473 .018229	2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89
2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99	.014064 .013825 .013590 .013358 .013130 .012906 .012685 .012468 .012254 .012044	.015054 .014813 .014575 .014341 .014111 .013884 .013660 .013439 .013222 .013008	.015936 .015694 .015456 .015221 .014989 .014760 .014535 .014313 .014094 .013879	.016715 .016474 .016235 .016001 .015769 .015540 .015315 .015092 .014873 .014657	.017397 .017157 .016920 .016687 .016456 .016228 .016003 .015782 .015563 .015347	.017988 .017751 .017516 .017284 .017055 .016829 .016606 .016386 .016168 .015953	2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99

-			SKEWN	NESS			
t	.0	.1	.2	.3	.4	.5	t
3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09	.004432 .004301 .004173 .004049 .003928 .003810 .003695 .003584 .003475 .003370	.005775 .005624 .005476 .005332 .005191 .005053 .004919 .004788 .004660 .004535	.007114 .006946 .006782 .006621 .006464 .006310 .006159 .006012 .005867 .005726	.008409 .008228 .008051 .007877 .007706 .007539 .007375 .007215 .007057 .006903	.009637 .009446 .009258 .009074 .008893 .008716 .008541 .008370 .008202 .008037	.010782 .010583 .010388 .010196 .010007 .009822 .009640 .009460 .009284 .009111	3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09
3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19	.003267 .003167 .003070 .002975 .002884 .002794 .002707 .002623 .002541 .002462	.004413 .004295 .004178 .004065 .003955 .003847 .003742 .003640 .003540	.005588 .005453 .005321 .005192 .005066 .004942 .004821 .004703 .004588 .004475	.006751 .00603 .006458 .006315 .006176 .006039 .005905 .005774 .005645 .005519	.007875 .007716 .007560 .007407 .007257 .007109 .006965 .006823 .006683	.008941 .008773 .008609 .008447 .008289 .008133 .007979 .007829 .007680 .007535	3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19
3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29	.002384 .002309 .002236 .002165 .002096 .002029 .001964 .001901 .001840	.003347 .003255 .003165 .003077 .002991 .002907 .002826 .002746 .002669 .002594	.004365 .004257 .004151 .004048 .003947 .003849 .003753 .003659 .003567 .003477	.005396 .005275 .005157 .005041 .004927 .004816 .004707 .004600 .004496	.006412 .006280 .006151 .006025 .005900 .005778 .005659 .005541 .005426	.007392 .007252 .007114 .006978 .006845 .006714 .006586 .006459 .006335 .006214	3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29
3.30 3.31 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39	.001723 .001667 .001612 .001560 .001508 .001459 .001411 .001364 .001319 .001275	.002520 .002449 .002379 .002311 .002245 .002181 .002118 .002057 .001998 .001940	.003390 .003304 .003220 .003139 .003059 .002981 .002905 .002830 .002758 .002687	.004293 .004195 .004099 .004005 .003914 .003823 .003735 .003649 .003565 .003482	.005202 .005094 .004987 .004883 .004780 .004680 .004581 .004485 .004390 .004297	006094 .005977 .005861 .005748 .005637 .005527 .005420 .005315 .005211 .005110	3.30 3.31 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39
3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49	.001232 .001191 .001151 .001112 .001075 .001038 .001003 .000969 .000936 .000904	.001883 .001829 .001775 .001723 .001673 .001624 .001576 .001529 .001484 .001440	.002618 .002550 .002484 .002420 .002357 .002296 .002236 .002177 .002120	.003401 .003322 .003245 .003169 .003095 .003022 .002952 .002882 .002814	.004206 .004117 .004029 .003944 .003860 .003777 .003696 .003617 .003540	.005010 .004912 .004816 .004721 .004629 .004538 .004448 .004361 .004275	3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49

			SKEWN	IESS			
t	.6	.7	.8	.9	1.0	1.1	t
3.00 3.01	.011836 .011632	.01 <i>27</i> 98 .012590	.013666	.014443	.015133	.015741	3.00
			.013456	.014233	.014923	.015531	3.01
3.02	.011432	.012386	.013249	.014025	.014715	.015324	3.02
3.03	.011234	.012184	.013046	.013820	.014510	.015120	3.03
3.04	.011040	.011986	.012845	.013618	.014308	.014918	3.04
3.05	.010848	.011791	.012647	.013418	.014108	.014719	3.05
3.06	.010660	.011598	.012452	.013222	.013911	.014523	3.06
3.07	.010475	.011409	.012259	.013028	.013717	.014328	3.07
3.08	.010293	.011222	.012070	.012837	.013525	.014137	3.08
3.09	.010113	.01 1038	.011883	.012648	.013335	.013947	3.09
3.10	.009937	.010857	.011699	.012462	.013148	.013761	3.10
3.11	.009763	.010679	.011517	.012279	.012964	.013576	3.11
3.12	.009592	.010503	.011339	.012098	.012782	.013394	3.12
3.13	.009424	.010330	.011162	.011919	.012603	.013214	3.13
3 14	.009259	.010160	.010989	.011743	.012425	.013037	3.14
3.15	.009096	.009992	.010817	.011570	.012251	.012861	3.15
3.16	.008936	.009827	.010649	.011399	.012078	.012688	3.16
3.17	.008779	.009665	.010483	.011230	.011908	.012517	3.17
3.18	.008624	.009505	.010319	.011064	.011740	.012349	3.18
3.19	.008472	.009347	.010157	.010900	.011574	.012182	3.19
3 20	.008322	.009192	.009998	.010738	.011411	.012018	3.20
3 21	.008174	.009039	.009842	.010578	.011250	.011856	3.21
3.22	.008029	.008889	.009687	.010421	.011090	.011696	3.22
3.23	.007887	.008741	.009535	.010266	.010933	.011538	3.23
3.24	.007747	.008595	.009385	.010113	.010778	.011381	3.24
3 25	.007609	.008452	.009237	.009962	.010626	.011227	3.25
3.26	.007473	.008311	.009092	.009814	.010475	.011075	3.26
3.27	.007340	.008172	.008949	.009667	.010326	.010925	3.27
3.28	.007208	.008035	.008807	.009523	.010179	.010777	3.28
3.29	.007080	.007900	.008668	.009380	.010035	.010631	3.29
3.30	.006953	.007767	.008531	.009240	.009892	.010486	3.30
3.31	.006828	.007637	.008396	.009101	.009751	.010344	3.31
3.32	.006705	.007508	.008263	.008965	.009612	.010203	3.32
3.33	.006585	.007382	.008132	.008830	.009475	.010065	3.33
3.34	.006466	.007257	.008003	.008698	.009340	.009927	3.34
3.35	.006350	.007135	.007876	.008567	.009206	.009792	3.35
3.36	.006235	.007014	.007750	.008438	.009075	.009659	3.36
3.37	.006122	.006896	.007627	.008311	.008945	.009527	3.37
3.38	.006011	.006779	.007506	.008186	.008817	.009397	3.38
3.39	.005903	.006664	.007386	.008062	.008690	.009269	3.39
3.40	.005796	.006551	.007268	.007941	.008566	.009142	3.40
3.41	.005690	.006440	.007152	.007821	.008443	.009017	3.41
3.42	.005587	.006330	.007037	.007702	.008322	.008894	3.42
3.43	.005485	.006222	.006925	.007586	.008202	.008772	3.43
3.44	.005385	.006116	.006814	.007471	.008084	.008652	3.44
3.45	.005287	.006012	.006704	.007358	.007968	.008533	3.45
3.46	.005190	.005909	.006597	.007246	.007853	.008416	3.46
3.47	.005095	.005808	.006491	.007136	.007740	.008301	3.47
3.48	.005002	.005709	.006386	.007028	.007629	.008187	3.48
3.49	.004910	.005611	.006284	.006921	.007519	.008074	3.49

			SKEWN	IESS			
t	.0	.1	.2	.3	.4	.5	t
3.50 3.51 3.52 3.53 3.54 3.55	.000873 .000843 .000814 .000785 .000758	.001397 .001356 .001315 .001276 .001238	.002010 .001957 .001906 .001855 .001806 .001758	.002683 .002619 .002557 .002497 .002437 .002379	.003389 .003316 .003245 .003174 .003106 .003038	.004107 (004026 (003946 .003868 .003791 .003715	3.50 3.51 3.52 3.53 3.54 3.55 3.56
3.56 3.57 3.58 3.59	.000706 .000681 .000657 .000634	.001164 .001129 .001095 .001062	.001711 .001666 .001621 .001578	.002322 .002267 .002212 .002159	.002972 .002908 .002845 .002782	.003568 .003497 .003427	3.57 3.58 3.59 3.60
3.61 3.62 3.63 3.64 3.65 3.66 3.67 3.68 3.69	.000590 .000569 .000549 .000529 .000510 .000492 .000474 .000457	.000998 .000967 .000938 .000909 .000881 .000854 .000827 .000802	.001494 .001454 .001415 .001377 .001339 .001303 .001268 .001233	.002057 .002057 .002007 .001959 .001911 .001865 .001820 .001775 .001732	.002662 .002604 .002547 .002491 .002436 .002382 .002330 .002278	.003291 .003225 .003160 .003096 .003034 .002972 .002912 .002853 .002795	3.61 3.62 3.63 3.64 3.65 3.66 3.67 3.68 3.69
3 70 3.71 3.72 3.73 3.74 3.75 3.76 3.77 3.78 3.79	.000425 .000409 .000394 .000380 .000366 .000353 .000340 .000327 .000315 .000303	.000753 .000729 .000706 .000684 .000663 .000642 .000622 .000602 .000583	.001167 .001135 .001104 .001073 .001044 .001015 .000987 .000960 .000933 .000907	.001649 .001608 .001569 .001530 .001493 .001456 .001420 .001385 .001351	.002179 .002130 .002083 .002037 .001991 .001947 .001903 .001861 .001819	.002739 .002683 .002628 .002575 .002522 .002471 .002420 .002371 .002322 .002275	3.70 3.71 3.72 3.73 3.74 3.75 3.76 3.77 3.78 3.79
3.80 3.81 3.82 3.83 3.84 3.85 3.86 3.87 3.88 3.89	.000292 .000281 .000271 .000260 .000251 .000241 .000232 .000223 .000215	.000547 .000529 .000512 .000496 .000480 .000465 .000450 .000435 .000421	.000882 .000857 .000833 .000810 .000787 .000765 .000744 .000723 .000702 .000682	.001284 .001253 .001221 .001191 .001161 .001132 .001104 .001076 .001049	.001738 .001699 .001661 .001624 .001587 .001551 .001516 .001482 .001448	.002228 .002182 .002137 .002093 .002050 .002008 .001966 .001925 .001885 .001846	3.80 3.81 3.82 3.83 3.84 3.85 3.86 3.87 3.88 3.89
3.90 3.91 3.92 3.93 3.94 3.95 3.96 3.97 3.98 3.99	.000199 .000191 .000184 .000177 .000170 .000163 .000157 .000151 .000144	.000394 .000381 .000369 .000357 .000345 .000323 .000312 .000302 .000292	.000663 .000614 .000626 .000608 .000591 .000574 .000557 .000541 .000526	.000997 .000972 .000947 .000923 .000900 .000877 .000855 .000833 .000811	.001383 .001351 .001321 .001290 .001261 .001232 .001204 .001176 .001149 .001123	.001808 .001770 .001733 .001697 .001662 .001627 .001593 .001560 .001527 .001495	3.90 3.91 3.92 3.93 3.94 3.95 3.96 3.97 3.98 3.99

-3			SKEWN	ESS			
				_			
_ t	.6	.7	.8	.9	1.0	1.1	t
3.50	.004820	.005515	.006182	.006815	.007410	.007963	3.50
3.51	004732	.005420	.006083	.006712	.007303	.007854	3.51
3.52	.004645	.005327	.005985	.006600	.007197	.007746	3.52
3 53	.004559	.005236	.005888	.006509	.007093	.007639	3.53
3 54	(X)4475	.005146	.005793	.006409	.006991	.007534	3.54
3,55	.004392	005057	.005699	.006311	.006889	.007430	3.55
3,56	.004311	.004970	.005607	.006215	.006790	.007327	3.56
3 57	.004231	.004884	.005516	.006120	.006691	.007226	3,57
3.58	.001153	()0 (799)	.005426	.006026	006594	.007126	3.58
3 50	.004076	.004716	.005338	.005934	.006498	.007028	3 59
3 60	OOOLOO.	.004635	.005251	.005843	.006404	006931	3.60
3,61	.003926	.004554	.005166	.005753	.006311	.006835	3.61
3.62	.003853	.004475	.005082	.005665	.006219	.006740	3,62
3.63	.003781	004398	.004999	.005578	006128	.006647	3.63
3.04	.003711	004321	.004917	.005492	.006039	.006555	3.64
3,65	.003641	.001246	.004837	005407	.005951	.006464	3.65
3 00	.003573	.004172	.004758	.005324	.005864	006374	3.66
3.67	.003506	(X)+(X)	004680	.005242	.005779	006286	3 67
3.08	.003441	.004028	.004604	.005161	.005694	.006199	3.08
3.69	003376	.003957	.004528	.005082	.005611	006112	3.69
3 70	.003313	.003888	.004454	005003	.005529	006027	3.70
371	.003251	003820	004381	.004926	.005448	.005944	371
372	.003190	.003753	.00+300	.004850	.005368	.005861	3.72
3.73	003129	.003687	.001238	004774	.005290	.005779	373
3.74	,003070	003623	.004169	.004701	.005212	.005699	374
3 75	003013	003559	.004100	004628	005136	005619	3 <i>7</i> 5
3.76	002056	003 197	.004033	.004556	.005060	.005541	3.76
3.77	.002000	.003 135	,003966	.004485	004986	005464	3 77
378	.002815	.003374	.003901	.004415	.004913	.005387	3.78
3 70	.002791	.003315	,003836	.004347	.004840	.005312	3.79
3.80	002738	.003256	.003773	.004279	.004769	.005238	3.80
3.81	002686	.003199	.003711	.004213	004000	005165	3.81
3.82	002635	.003142	003649	004147	004630	005092	3.82
3.83	.002585	.003087	.003589	.004082	004561	005021	3.83
3.84	.002536	.003032	.003529	.004019	.004494	.004951	3.84
3.85	.002487	.002978	()()3471	003956	.004428	004881	3.85
3.86	.002410	.002026	.003 113	.003894	.004362	.004813	3.86 3.87
3.87	.002393	.002874	.003356	.003833	.004234	.004/43	3.88
3.88	.002347	.002823	.003301	.003773	.004234	.004673	3.89
3,89	002303	.002772	003246	003714			1
3,90	.002258	.002723	.003192	003656	004110	.004548	3 90
3.91	.002215	.002674	.003138	.003599	.004049	.004484	3.91 3.92
3.92	.002173	.002627	.003086	.003542	.003989	.004421	3.93
3.93	002131	.002580	.003035	.003487	.003930	.004339	3.94
3.94	.002090	.002534	.002984	.003432	.003872	.004237	3.95
3.95	.002050	.002489	,002934	.003378	.003758	.004237	3.96
3.96	.002010	.002444	.002885	.003325	.003738	.004178	3.97
3.97	.001971	.002400	.002837	.003273	.003/02	.004061	3.98
3.98	,001933	.002357	.002780	.003221	.003593	004003	3 99
3 99	.001896	.002315	.002742	.003170	1,000,090	1 50-1000	<u> </u>

			SKEWI	NESS			
t	.0	.1	.2	.3	.4	.5	t
4.00	.000134	.000282	.000496	.000771	.001097	.001463	4.00
4.01	.000129	.000273	.000482	.000751	.001071	.001433	4.01
4.02	.000124	.000264	.000468	.000732	.001047	.001403	4.02
4.03	.000119	.000255	.000454	.000713	.001022	.001373	4.03
4.04	.000114	.000246	.000441	.000694	.000999	.001344	4.04
4.05	.000109	.000238	.000428	.000676	.000976	.001316	4.05
4.06	.000105	.000230	.000416	.000659	.000953	.001288	4.06
4.07	.000101	.000222	.000404	.000642	.000931	.001260	4.07
4.08	.000097	.000215	.000392	.000625	.000909	.001234	4.08
4.09	.000093	.000208	.000380	.000609	.000888	.001208	4.09
4.10	.000089	.000201	.000369	.000593	.000867	.001182	4.10
4.11	.000086	.000194	.000358	.000578	.000847	.001157	4.11
4.12	.000082	.000187	.000348	.000563	.000827	.001132	4.12
4.13	.000079	.000181	.000337	.000548	.000808	.001108	4.13
4.14	.000076	.000175	.000328	.000534	.000789	.001084	4.14
4.15	.000073	.000169	.000318	000520	.000770	.001061	4.15
4.16	.000070	.000163	.000308	.000506	.000752	.001039	4.16
4.17	000067	000157	.000299	.000493	.000735	.001016	4.17
4.18	.000064	.000152	.000290	.000480	.000717	.000995	4.18
4.19	000062	.000147	.000282	.000468	.000700	.000973	4.19
4.20	.000059	.000142	.000273	000455	.000684	000952	4.20
4.21	.000057	.000137	.000265	.000443	000668	.000932	4.21
4.22	.000054	.000132	.000257	.000432	000652	.000912	4.22
4.23	.000052	.000128	.000250	.000420	000636	.000892	4.23
4.24	.000050	.000123	.000242	.000409	.000621	.000873	4.24
4.25	.000048	.000119	.000235	.000398	.000606	.000854	4.25
4.26	.000046	.000115	.000228	.000388	.000592	.000836	4.26
4.27	.000044	.000111	.000221	.000377	.000578	.000818	4.27
4.28	.000042	.000107	.000214	.000367	.000564	.008000	4.28
4.29	.000040	.000103	.000208	.000357	.000551	.000783	4.29
4.30	.000039	000099	.000201	.000348	.000538	000766	4.30
4.31	.000037	.000096	.000195	.000339	.000525	.000749	4.31
4.32 4.33	000035	.000093	.000189	.000330	.000512	.000733	4.32
4.33	.000034	.000089	.000184	.000321	.000500	.000717	4.33
4.35	000032	000086	.000178	.000312	.000488	.000701	4.34
4.36	.000031	.000083	.000173	.000304	.000476	.000686	4.35
4.37	.000030	.000077	.000167 .000162	000296	.000465	.000671	4.36
4.38	.000028	.000074	.000102	.000288	.000454	.000656	4.37
4.39	.000027	.000074	.000152	.000280	000443 .000432	.000642 .000628	4.38
4.40	.000025	.000069	.000148	.000265	.000421	.000614	4.40
4.41	.000024	.000067	.000143	.000258	.000411	.000601	4.41
4.42	.000023	.000064	.000139	.000251	.000401	.000588	4.42
4.43	.000022	.000062	.000134	.000244	.000392	.000575	4.43
4.44	.000021	.000060	.000130	.000237	.000382	.000562	4.44
4.45	.000020	.000058	.000126	.000231	.000373	.000550	4.45
4.46	.000019	.000056	.000122	.000225	.000364	.000538	4.46
4.47	.000018	.000054	.000119	.000219	.000355	.000526	4.47
4.48	.000018	.000052	.000115	.000213	.000346	.000514	4,48
4.49	.000017	.000050	.000111	.000207	.000338	.000503	4.49

					-		
			SKEWN	ESS			
t	.6	.7	.8	.9	1.0	1.1	t
4.00	001859	.002273	.002696	.003121	.03539	.003947	4.00
4.01	.001823	.002233	.002651	.003071	.003486	.003891	4 01
4.02	.001788	.002192	.002607	.003023	.003434	.003836	4 02
4.03	.001753	.002153	.002563	.002975	.003383	.003782	4 03
4.04	.001719	.002114	.002520	.002928	.003333	.003728	4.04
4.05	.001686	.002076	.002477	.002882	.003283	.003676	4 05
4.06	.001653	.002039	.002436	.002836	.003234	.003624	4.00
4.07	.001621	.002002	.002394	.002791	.003186	.003572	4 07
4.08	.001589	.001966	.002354	.002747	.003138	.003522	4.08
4.09	.001558	.001930	.002314	.002704	.003091	.003472	4(4)
4.10	.001528	.001895	.002275	.002661	.003045	.003423	4.10
4.11	.001498	.001861	.002237	.002618	.002999	.003374	4.11
4.12	.001469	.001827	002199	.002577	.002954	.003326	4.12
4.13	.001-140	.001794	.002162	.002536	.002910	.003279	4.13
4.14	.001412	.001761	.002125	.002496	.002866	.003232	4.14
4.15	.001384	.001 <i>72</i> 9	.002080	.002456	.002823	.003186	4.15
4.16	.001357	.001698	.002054	.002417	.002781	.003141	4.16
4.17	.001330	.001607	.002019	.002378	.002739	.003096	4.17
4.18	.001304	.001637	.001984	.002340	.00.2698	.003052	4.18
4 19	.001.278	001607	.001951	.002303	.002658	.003(X)9	4.19
4.20	.001253	001577	.001918	.002266	.002618	.002066	4.20
4.21	.001228	.001549	.001885	.002230	.002578	.002924	4.21
4.22	.001204	.001520	.001853	.002194	.002539	.002882	4 2.2
4.23	001180	001492	.001821	.002159	.002501	.002841	4.23
4.24	.001157	.001465	.001790	.002125	.002463	.002800	4.24
4.25	001134	001438	.001760	.002091	.002426	.002760	4 25
4.20	.001112	.001412	.001730	.002057	.002390	.002721	4.20
4 27	.001090	.001386	.001700	.002024	.002354	.002682	4.27
4.28	.001068	.001361	.001671	.001992	.002318	.002644	4.28
4.20	.001047	.001336	.001642	.001960	.002283	.002606	4.20
4.30	.001026	001311	.001614	.001929	.002248	.002560	4.30
4.31	.001005	001287	.001586	.001898	.002214	.002532	4 31
4.32	.000985	.001263	.001559	.001867	.002181	.002496	1.32
4.33	.000966	.001240	001533	001837	.002148	.0024(x)	4.33
4.34	.000047	.001217	.001506	.001808	.002115	.002425	1.31
4.35	.000928	.001195	001480	.001778	.002083	.002390	4.35
4.36	.000909	.001173	.001455	.001750	.002052	.002356	4.36
4.37	.000891	001151	.001430	.001722	.002021	.002322	4.37
4.38	.000873	.001130	.001-105	.001694	.001990	.002289	4.38
4.30	.000856	.001109	.001381	.001667	.001960	.002256	4.39
4.40	.000838	.001088	.001357	.001640	.001930	.002223	4.40
4.41	.000822	.001068	.001334	.001613	.001901	.002191	4.41
4.42	.000805	.001048	.001311	.001587	.001872	.002160	14.42
4.43	.000789	.001029	.001288	.001561	.001843	.002129	4 43
4.44	.000773	.001010	.001266	.001536	.001815	.002098	4.44
4.45	.000758	.000991	.001244	.001511	.001788	.002068	4.45
4.46	.0007+2	.000972	.001223	.001487	.001760	.002038	4.46
4.47	.000727	.000954	.001201	.001463	.001733	.002009	4.47
4.48	000713	.000937	.001181	.001439	.001707	.001980	4 48
4.49	.000698	.000919	.001160	.001416	.001681	.001951	14.49

			SKEWN	IESS			
t	.0	.1	.2	.3	.4	.5	t
4.50	.000016	.000048	.000108	.000201	.000330	.000492	4.50
4.51	.000015	.000046	.000104	.000196	.000321	.000481	4.51
4.52	.000015	.000044	.000101	.000190	.000314	.000470	4.52
4.53	.000014	.000043	.000098	.000185	.000306	.000460	4.53
4.54	.000013	.000041	.000095	.000180	.000298	.000450	4.54
4.55	.000013	.000040	.000092	.000175	.000291	.000440	4.55
4.56	.000012	.000038	.000089	.000170	.000284	.000430	4.56
4.57	.000012	.000037	.000086	.000165	.000277	.000420	4.57
4.58	.000011	.000036	.000084	.000161	.000270	.000411	4.58
4.59	.000011	.000034	.000081	.000156	.000263	.000402	4.59
4.60	.000010	.000033	.000078	.000152	.000257	.000393	4.60
4.61	.000010	.000032	.000076	.000148	.000251	.000384	4.61
4.62	.000009	.000031	.000073	.000144	.000244	.000375	4.62
4.63	.000009	.000029	.000071	.000140	.000238	.000367	4.63
4.64	.000008	.000028	.000069	.000136	.000232	.000359	4.64
4.65	.000008	.000027	.000067	.000132	.000227	.000351	4.65
4.66	.000008	.000026	.000065	.000128	.000221	.000343	4.66
4.67	.000007	000025	.000062	.000125	.000216	.000335	4.67
4.68	.000007	.000024	.000060	.000121	.000210	.000328	4.68
4.69	.000007	.000023	.000059	.000118	.000205	000320	4.69
4.70	.000006	.000023	.000057	.000115	.000200	.000313	4.70
4.71	.000006	000022	.000055	.000111	.000195	.000306	4.71
4.72	.000006	.000021	.000053	.000108	.000190	.000299	4.72
4.73	.000006	.000020	.000051	.000105	.000185	.000292	4.73
4.74	.000005	.000019	.000050	.000102	000181	.000286	4.74
4.75	.000005	.000019	.000048	.0000090	.000176	.000279	4.75
4.76	.000005	.000018	.000047	.000097	.000172	.000273	4.76
4.77	.000005	.000017	.000045	.000094	.000167	.000267	4.77
4.78	.000004	.000017	.000044	.000001	.000163	.000261	.478
4. <i>7</i> 9	.000004	.000016	.000042	.000089	.000159	.000255	4.79
4.80	.000004	.000015	.000041	.000086	.000155	.000249	4.80
4.81	.000004	.000015	.000039	.000084	.000151	.000244	4.81
4.82	.000004	.000014	.000038	.000081	.000147	.000238	4.82
4.83	.000003	.000014	.000037	.000079	.000144	.000233	4.83
4.84	.000003	.000013	.000036	.000077	.000140	.000227	4.84
4,85 4,86	.000003	.000013	.000035	.000075	.000136	.000222	4.85
4.87	.000003	.000012	.000033	.000072	.000133	.000217	4.86
4.88		.000011	.000032	.000070	.000130	.000212	4.87
4.89	.000003		.000031	8,0000	.000126	.000207	4.88
	.000003	.000011	.000030	.000056	.000123	.000203	4.89
4.90	.000002	.000010	.000029	.000064	.000120	.000198	4.90
4.91	.000002	.000010	.000028	.000063	.000117	.000193	4.91
4.92 4.93	.000002	.0000010	.000027	.000061	.000114	.000189	4.92
4.93 4.94	.000002	.000009	.000026	.000059	.000111	.000185	4 93
4.94	.000002	.000009	.000026	.000057	.000108	.000180	4.94
4.95 4.96	.000002	.000008	.000025	.000056	.000105	.000176	4.95
4.96 4.97	.000002	.000008	.000024	.000054	.000103	.000172	4.96
4.98	.000002	.000007	000023	.000053	.000100	.000168	4.97
4.99	.000002	.000007	.000022	.000051	.000098	.000164	4.98
T.23	.00002	1.000.07	.000022	.000050	.000095	.000161	4.99

		.000630 .000836 .001063 .001304 .001556 .001814 .000618 .000821 .001044 .001283 .001533 .001788 .000605 .000805 .001026 .001262 .001509 .001702 .000593 .000790 .001008 .001242 .001486 .001737 .000581 .000775 .000991 .001202 .001463 .001712 .000569 .000747 .000956 .001182 .001419 .001663 .000557 .000747 .000956 .001182 .001419 .001663 .000535 .000719 .000923 .001144 .001376 .001615 .000524 .000705 .000907 .001125 .001354 .001591 .000513 .000692 .000891 .001107 .001334 .001568 .000492 .000666 .00860 .001071 .001293 .001523 .000492 .000666 .00845 .001053 .001273 .001501 <						
			SKEWI	NESS				
t	.6	.7	.8	.9	1.0	1.1	t	
4.50	.000684				.001655	.001923	4.50	
4.51							4.51	
4.52							4.52	
4.53							4.53	
4.54							4.54	
4.55							4.55	
4.56							4.56	
4.57							4.57	
4.58							4.58	
4.59	,000569	.000/61	.000973	.001202	.001441	.001687	4.59	
4.60							4.60	
4.61							4.61	
4.62							4.62	
4.63		,000/05					4.63	
4.64 4.65		.000670					4.64	
							4.65	
1.66							4.66	
4.67							4.67	
4.68							4.68	
4.69				.001019	.00123+	001438	4.69	
4.70					.001215		4.70	
+71							4.71	
4.72				.000970			4.72	
473							4.73	
4.74							4.74	
4.75	.000 108	.000561	.000734	000923	.001124	.001335	4.75	
4.76	.000 1000	.000550	.000721	.000908	.001107	.001315	4.76	
4.77	.000392	.000540	.000708	.000893	.001090	001296	4.77	
4.78	000384	.000530	.000696	000878	.001073	.001277	4.78	
4.79	.000376	.000520	.000683	.000863	.001056	.001259	4.79	
4.80	.000368	.000510	.000671	.000849	.001040	.001240	4.80	
4.81	4.000360	000500	.000659	.000835	.001024	,001222	4.81	
4.82	.000353	.000490	.000618	000821	.001008	.001204	4.82	
1.83	.000346	000181	000636	.000808	.000993	001187	4.83	
1.81	000338	(XX)472	.000625	000795	.000977	.001170	4.84	
4.85	()((()331	000463	.000614	000781	.000062	.001152	4.85	
4.80	.000325	000451	.0000603	000769	.000947	.001136	4.86	
4.87	.000318	.000145	.000592	.000756	.000932	.001119	4.87	
1.88	.000311	(300) [37	.000582	.000743	.000018	.001103	4.88	
4.89	000305	000429	.000572	.000731	000904	.001086	4.89	
4.90	000298	000420	.000561	000719	.000890	.001071	4.90	
4.91	.000292	.000412	000551	000707	.000876	.001055	4.91	
4.92	.000286	.000404	.000512	000695	000862	001039	4.92	
4.93 4.94	.000.280	000397	.000532	000084	.000849	.001024	4.93	
4.95	.000274	.000389	.000523	0000661	.000836	.001009	4.94 4.95	
4.95	.000269		.000513	.000661	.000823	.000994	4.95	
4.97	.000263	.000374 000367	.000504	.000650	.000810	000965	4.96	
4.97	.000257	000360	.000495	.000640	.000797	000951	4.97	
4.90	.000252	.000353	000178	()()()()2()	000785	000037	4.98	
4,77	.(1,10,247	LUUUSSS	000478	.000618	.000773	1 000/37	+.27	

			SKEWN	IESS			two.' TA
t	.0	.1	.2	.3	.4	.5	1
5.00	.000001	.000007	.000021	.000048	.000093	.000157	5.00
5.01	.000001	.0000071	.000020	.000047	.000090	.000153	5.01
5.02	.000001	.000006	.000019	.000045	.000088	.000150	5.02
5.03	.000001	.000006	.000019	.000044	.000086	.000146	5.03
5.04	.000001	.000006	.000018	.000043	.000083	.000143	5.04
5.05	.000001	.000006	.000018	.000042	.000081	.000140	5.05 5.06
5.06	.000001	.000005	.000017	.000040	.000079	.000136 .000133	5.07
5.07	.000001	.000005	.000016	.000039	.000077 .000075	000133	5.08
5.08	.000001	.000005	.000016	.000038	.000073	.000130	5.00
5.09	.000001	.000005	.000015	.000037			
5.10	.000001	.000005	.000015	.000036	.000071	.000124	5.10
5.11	.000001	.000004	.000014	.000035	.000070	.000121	5.11
5.12	.000001	.000004	.000014	.000034	.000008 .000066	.000116	5.13
5.13	.000001	.000004	.000013	.000033	.000064	.000110	5.14
5.14	.000001	.000004	.000013	.000032	.000063	.000110	5.15
5.15	.000001	.000004	.000012	.000031	.000063	000108	5.16
5.16	.000001	.000004	.000012	.000030	.000059	.000105	5.17
5.17	.000001	.000003	.000012	.000029	.000058	.000103	5.18
5.18 5.19	.000001	.000003	.000011	000027	000056	.000100	5.19
3.19	.00001	.000003	.000011				1
5.20	.000001	.000003	.000010	000027	000055	80000	5.20
5.21	.000001	000003	000010	000026	.000053	.000096	5.21
5.22		000003	.000010	000025	000052	.000093	5.22
5.23		.000003	.000009	.000024	.000051	.000091	5.23
5.24	1	000003	.000009	000024	.000049	000089	5.24
5.25		000002	.000009	.000023	.000048	.000087	5.25 5.26
5.26	1	000002	.0000008	.000022	000047	000085	5.27
5.27	1	.000002	800000.	000021	.000046	.000083	5.28
5.28 5.29		.000002	800000.	000021	.000044	.000079	5.20
			1		İ		
5.30	1	.000002	000007	000020	000042	000077	5.30
5.31	1	.000002	000007	000019	.000041	.000071	5.32
5.32 5.33	ļ	.000002	000007	.000018	.000039	000072	5.33
5.34		000002	.000007	.000017	.000038	000070	5.34
5.35	1	.000002	000006	.000017	.000037	000069	5.35
5.36	1	.000002	.000006	000016	.000036	000067	5,36
5.37	l	.000001	.000006	.000016	.000035	000065	5.37
5.38	I	.000001	.000006	.000015	.000034	.000064	5.38
5.39	1	.000001	.000005	.000015	.000033	.000062	5.39
5.40						000061	E 40
5.40 5.41	1	.000001	.000005	.000014	.000032	.000061	5.40 5.41
5.42	1	.000001	.000005	.000014	.000031	.000058	5.42
5.43		.000001	.000005	.000014	.000030	.000056	5.43
5.44		.000001	.000004	.000013	.000029	.000055	5.44
5.45		.000001	.000004	.000013	.000028	.000054	5.45
5.46		.000001	.000004	000012	.000027	.000053	5.46
5.47		.000001	.000004	000012	000027	000051	5.47
5.48	1	.000001	.000004	000011	.000026	.000050	5.48
5.49	1	.000001	.000004	.000011	.000025	.000049	5.40
	ı	1 .555551	1 .000001	1 .000011	1.000000	1 .00.0012	Γ "

			SKEWN	IESS			
t	.6	.7	.8 ,	.9	1.0	1.1	t
5.00 5.01	.000242	.000346 .000340	.000469	.000608	.000761	.000924 .000910	5.00 5.01
5.02	.000232	.000333	.000453	.000588	.000737	.000897	5.02
5.03	.000227	000327	.000444	000578	.000726	.000883	5.03
5.04	.000222	.000320	.000437	.000569	.000714	.000870	5.04
5.05	.000217	.000314	000429	.000559	.000703	.000857	5.05
5.06	.000213	.000308	.000421	.000550	.000692	.000845	5.06
5.07	.000208	.000302	000414	.000541	.000681	.000833	5.07
5.08	.000204	.000296	.000406	.000532	.000671	.000820	5.08
5.09	.000199	,000290	.000399	.000523	.000660	.000808	5.09
5.10	.000195	.000285	.000392	.000514	.000650	.000796	5.10
5.11	.000191	.000279	.000385	.000506	.000640	.000785	5.11
5.12 5.13	.000187 .000183	.000274	.000378	.000497	.000630	.000773	5.1.2
5.13	.000183	.000263	.000371	.000489 .000481	.000620	.000762	5.13 5.14
5.15	.000179	.000263	.000358	.000473	.000610	.000750	5 14
5.16	.000173	.000253	.000358	.000465	.000591	.000739 .000728	5.16
5.17	.000172	.000233	.000331	.000403	.000591	000718	5.17
5.18	.000165	.000243	.000343	000437	.000573	000707	5.18
5.19	.000161	.000239	.000333	.000142	.000564	.000697	5.19
5.20	.000158	.000234	.000327	.000434	.000555	.000686	5.20
5.20 5.2 î	.000154	.000230	000321	.000427	.000546	.000676	5.21
5.22	.000151	.000225	.000315	.000420	.000537	.000066	5.22
5.23	.000148	.000221	000309	.000413	.000529	.000656	5 23
5.24	.000145	.000216	.000304	.000406	.000521	000647	5 24
5.25	.000142	.000212	.000298	.000399	.000513	.000637	5 25
5.26	.000139	.000208	.000293	.000392	.000504	.000628	5.26
5.27	.000136	.000204	.000288	.000386	.000497	.000618	5.27
5.28	.000133	.000200	.000282	.000379	.000489	.000609	5 28
5.29	.000130	.000196	.000277	.000373	.000481	.000000	5.29
5.30 5.31	.000127 .000124	.000192	.000272	.000367	.000473	.000591	5.30 5.31
5.32	.000124	.000185	000267	.000354	.000466	.000562	5.32
5.33	.000122	.000183	.000258	.000334	.000451	.000565	5.32
5.34	.000117	.000178	.000253	.000348	.000141	.000557	5.34
5.35	.000114	.000174	.000248	.000337	.000437	.000549	5.35
5.36	.000112	.000171	.000244	.000331	.000430	.000540	5.36
5.37	.000109	.000167	.000240	.000325	.000424	.000532	5.37
5.38	.000107	.000164	.000235	.000320	.000417	.000524	5.38
5 39	.000105	.000161	.000231	.000314	.000410	.000517	5.39
5.40	.000102	.000158	000227	.000309	.000404	.000509	5.40
5.41	.000100	.000154	.000223	.000304	.000397	.000501	5.41
5.42	.000098	.000151	.000219	.000299	.000391	.000494	5.42
5 43	.000096	.000148	.000215	.000294	.000385	.000487	5.43
5.44	.000094	.000146	.000211	.000289	.000379	.000479	5.44
5.45	.000092	.000143	.000207	.000284	.000373	.000472	5.45
5.46	.000090	.000140	.000203	.000279	.000367	.000465	5.46 5.47
5.4 <i>7</i> 5.48	.000088 .000086	.000137	.000199	.000274	.000361	.000458	5.48
5.49	.000084	.000134	.000192	.000275	.000350	.000431	5.49

			SKEWI	VESS			
		I .	T	, 	Τ ,		1
t	.0	.1	.2	.3	.4	.5	<u> </u>
5.50		.000001	.000004	.000011	.000025	.000048	5.50
5.51	ŀ	.000001	.000003	.000010	.000024	.000047	5.51
5.52	l	.000001	.000003	.000010	.000023	.000046	5.52
5.53	I	.000001	.000003	.000010	.000023	.000044	5.53
5 54	1	.000001	.000003	.000009	.000022	.000043	5.54
5.55	1	.000001	.000003	.000009	.000021	.000042	5.55
5.56	ł	.000001	.000003	.000009	.000021	.000041	5.56
5.57	l	.000001	.000003	.000009	.000020	.000040	5.57
5.58	l	.000001	.000003	.000008	.000020	.000039	5.58
5.59		.000001	.000003	.000008	.000019	.000038	5.59
5.60		000001	.000003	.000008	.000019	.000037	5.60
5.61	į.	.000001	.000002	.000008	.000018	.000037	5,61
5,62	i		.000002	.000007	.000018	.000036	5.62
5.63	1	ŧ	.000002	.000007	.000017	.000035	5.63
5.64	İ		.000002	.000007	.000017	.000034	5.64
5.65	ł	1	000002	.000007	.000016	.000033	5.65
5.66	1		.000002	.000006	.000016	.000032	5.66
5.67	1	l	.000002	.000006	.000015	.000032	5.67
5.68			.000002	000006	.000015	.000031	5.68
5.69			.000002	000006	.000015	.000030	5.69
5.70			.000002	.000006	.000014	.000029	5.70
5.71			.000002	.000006	.000014	.000029	5.71
5.72 5.73	l .		.000002	.000005	.000013	.000028	5.72
5.74			.000002	.000005	000013	.000027 .000027	5.73 5.74
5.75	l		.000001	.000005	.000013	.000026	5.75
5.76			.000001	.000005	.000012	.000025	5.76
5.77	l	į	.000001	.000005	.000012	.000025	5.77
5.78	l	į	.000001	.000004	.000011	.000024	5.78
5.79			.000001	.000004	.000011	.000024	5.79
5.80			.000001	.000004	.000011	.000023	5.80
5.81			.000001	000004	.000010	.000022	5.81
5.82			.000001	.000004	.000010	.000022	5.82
5.83	l	l	.000001	.000004	.000010	.000021	5.83
5.84			.000001	.000004	.000010	.000021	5.84
5.85 5.86			.000001	.000004	.000009	.000020	5.85
5.87			100000.	.000003	.000009	.000020	5,86
5.88		1	.000001	.000003	.0000009	.000019	5.87
5.89			.000001 .000001	.000003	.0000009	.000019	5.88
				.000003	.000008	.000018	5.89
5.90 5.91			.000001 .000001	.000003	.000008 800000.	.000018	5.90
5.92			.000001	.000003	.000008	.000017 .000017	5.91
5.93			.000001	.000003	.000007	.000017	5.92 5.93
5.94	'		.000001	.000003	.000007	.000017	5.94
5.95			.000001	.000003	.000007	.000016	5.94
5.96			.000001	.000003	.000007	.000015	5.96
5.97			.000001	.000002	.000007	.000015	5.97
5.98			.000001	.000002	.000007	.000015	5.98
5.99			.000001	.000002	.000006	.000013	5.99
				,	.000000	.000017	2.29

			SKEWN	IESS			
t	۵.	.7	.8	.9	1.0	1.1	t
5.50 5.51 5.53 5.54 5.55 5.56 5.56 5.58 5.59	.000082 .000080 .000079 .000075 .000074 .000072 .000071 .000069	.000129 .000127 .000124 .000122 .000119 .000117 .000114 .000112 .000110	.000189 .000185 .000182 .000178 .000175 .000169 .000166 .000163	.000261 .000256 .000252 .000248 .000243 .000239 .000235 .000231 .000227 .000223	.000344 .000339 .000333 .000328 .000323 .000318 .000313 .000308 .000303	.000438 .000432 .000425 .000419 .000412 .000406 .000394 .000388 .000383	5.50 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.59
5.60 5.61 5.63 5.63 5.65 5.65 5.67 5.68 5.68	.000066 .000065 .000063 .000062 .000069 .000059 .000057 .000057	.000106 .000104 .000101 .000079 .000077 .000076 .000094 .000072 .000070	.000157 .000154 .000151 .000148 .000146 .000143 .000140 .000138 .000135	.000220 .000216 .000212 .000208 .000205 .000201 .000198 .000175 .000191	.000293 .000289 .000284 .000279 .000275 .000271 .000266 .000262 .000258	.000377 .000371 .000366 .000360 .000355 .000349 .000344 .000339 .000334 .000329	5.60 5.61 5.62 5.63 5.64 5.65 5.66 5.67 5.68 5.69
5,70 5,71 5,72 5,73 5,74 5,75 5,77 5,78 5,79	.000053 .000052 .000051 .000050 .000048 .000047 .000046 .000045 .000044	.000086 000084 000083 .000081 .000080 .000078 .000076 .000075 .000073	.000130 .000128 .000125 .000123 .000121 .000119 .000116 .000114 .000112	.000185 .000182 .000179 .000175 .000170 .000167 .000164 .000161	.000250 .000246 .000242 .000238 .000234 .000230 .000227 .000223 .000219	.000324 .000319 .000314 .000310 .000305 .000305 .000296 .000291 .000287 .000283	5.70 5.71 5.72 5.73 5.74 5.75 5.76 5.77 5.78 5.79
5.80 5.81 5.83 5.84 5.85 5.87 5.88 5.88 5.88	.000042 .000041 .000041 .000040 .000039 .000037 .000036 .000035	.000071 .000069 .000068 .000065 .000065 .000064 .000062 .000061 .000060	.000108 .000106 .000104 .000102 .000100 .000098 .000097 .000095 .000093	.000155 .000153 .000150 .000148 .000145 .000143 .000140 .000138 .000135	.000212 .000209 .000206 .000202 .000199 .000196 .000193 .000190 .000187	.000279 .000274 .000270 .000266 .000262 .000258 .000254 .000250 .000247	5.80 5.81 5.82 5.83 5.84 5.85 5.86 5.87 5.88 5.89
5.90 5.91 5.92 5.93 5.94 5.95 5.96 5.97 5.98 5.99	.000034 .000033 .000032 .000031 .000030 .000030 .000029 .000028	.000058 .000056 .000055 .000054 .000053 .000052 .000051 .000050 .000049	.000090 .000088 .000086 .000085 .000083 .000082 .000080 .000079	.000131 .000128 .000126 .000124 .000122 .000120 .000118 .000116 .000114	.000181 .000178 .000175 .000172 .000169 .000167 .000164 .000161 .000159	.000239 .000236 .000232 .000229 .000225 .000222 .000218 .000215 .000212	5.90 5.91 5.92 5.93 5.94 5.95 5.96 5.97 5.98 5.99

			SKEWN	IESS			
t	.0	.1	.2	.3	.4	.5	t
6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09			.000001 .000001 .000001 .000001	.000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002	.000006 .000006 .000006 .000005 .000005 .000005 .000005 .000005	.000014 .000014 .000013 .000013 .000012 .000012 .000012 .000011	6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09
6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19				.000002 .000002 .000001 .000001 .000001 .000001 .000001 .000001	.000005 .000005 .000004 .000004 .000004 .000004 .000004 .000004	.000011 .000010 .000010 .000010 .000010 .000009 .000009 .000009	6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19
6.20 6.21 6.23 6.24 6.25 6.26 6.27 6.28 6.29				.000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001	.000003 .000003 .000003 .000003 .000003 .000003 .000003 .000003	.000008 .000008 .000008 .000008 .000007 .000007 .000007	6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 5.29
6.30 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39				.000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001	.000003 .000003 .000002 .000002 .000002 .000002 .000002 .000002 .000002	.000007 .000006 .000006 .000006 .000006 .000006 .000005 .000005	0.30 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39
6.40 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49				000001 .000001 000001 .000001 .000001	.000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002	.000005 .000005 .000005 .000005 .000005 .000004 .000004 .000004 .000004	6.40 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49

			SKEWN	IESS			
t	.6	.7	.8	.9	1.0	1.1	t
6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09	.000027 .000027 .000026 .000025 .000024 .000024 .000023 .000023	.000047 .000046 .000045 .000044 .000043 .000042 .000041 .000041	.000074 .000073 .000072 .000070 .000069 .000068 .000065 .000064	.000110 000108 .000106 .000104 .000102 .000101 .000099 .000097 .000096	.000154 .000151 .000149 .000146 .000144 .000139 .000137 .000135	.000206 .000202 .000199 .000196 .000193 .000190 .000188 .000185 .000182	6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09
6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19	.000022 .000021 .000021 .000020 .000020 .000019 .000018	.00038 .00037 .00037 .00036 .00035 .00034 .00034 .00033 .00032	.000062 .000060 .00059 .00058 .000057 .00056 .000055	.000094 .000092 .000091 .000089 .000088 .000086 .000085 .000083 .000082	.000133 .000128 .000126 .000124 .000122 .000120 .000118 .000116 .000115	.000176 .000174 .000171 .000169 .000166 .000163 .000161 .000159	6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19
6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29	.00017 .00017 .00016 .00016 .00015 .00015 .00015	.000031 .000030 .000030 .000029 .000029 .000027 .000027 .000027	.000052 .000050 .000049 .000048 .000047 .000046 .000045 .000044	.000077 .000076 .000075 .000073 .000072 .000071 .000070 .000068	.000111 .000109 .000107 .000106 .000104 .000102 .000101 .000099 .000097	.000151 .000149 .000147 .000145 .000142 .000140 .000138 .000136 .000134	6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29
6.30 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39	.000014 .000013 .000013 .000013 .000012 .000012 .000011 .000011	.000025 .000024 .000024 .000023 .000023 .000022 .000022 .000021	.000042 .000041 .000040 .000039 .000038 .000037 .000036	.000065 .000064 .000063 .000062 .000061 .000059 .000058 .000057	.000094 .000093 .000091 .000090 .000088 .000087 .000085 .000084 .000083	.000130 .000128 .000126 .000124 .000122 .000120 .000118 .000117 .000115	6.30 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39
6.40 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49	.000011 .000010 .000010 .000010 .000010 .000010 .000010 .000009 .000009	.000021 .000020 .000020 .000019 .000019 .000018 .000018 .000017	.000035 .000034 .000033 .000033 .000032 .000031 .000030 .000030	.000054 .000053 .000052 .000051 .000050 .000049 .000048 .000047	.00080 .00079 .00077 .000076 .00075 .00074 .00072 .00071 .000070	.000111 .000100 .000108 .000105 .000103 .000102 .000100 .000099 .000097	6.40 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49

		· · · · · · · · · · · · · · · · · · ·	SKEWN	ESS	·		
t	.0	.1	.2	.3	.4	.5	t
6.50					.000001	.000004	6.50
6.51					.000001	.000004	6.51
6.52	-				.000001	.000004	6.52
6.53					.000001	.000004	6.53 6.54
6.54					.000001	.000004	6.55
6.55					.000001	.000003	6.56
6.56 6.57					.000001	.000003	6.57
6.58					.000001	.000003	6.58
6.59					.000001	.000003	6.59
6.60	-				.000001	.000003	6.60
6.61					.000001	.000003	6.61
6.62					.000001	.000003	6.62
6.63					.000001	.000003	6.63
6.64					.000001	.000003	6.64
6.65					.000001	.000003	6.65 6.66
6.66 6.67					.000001	.000003	6.67
6.68					.000001	.000003	6.68
6.69					.000001	.000002	6.69
6.70					.000001	.000002	6 <i>.7</i> 0
6.71					.000001	.000002	6.71
6.72					.000001	.000002	6.72
6.73					.000001	.000002	6.73
6.74		1			.000001	.000002	6.74
6.75 6.76	1				.000001	.000002	6.75 6.76
6.77	1	.			.000001	.000002	6.77
6.78	1	1			.000001	.000002	6.78
6.79					.000001	.000002	6.79
6.80					.000001	.000002	6.80
6.81					000001	000002	6.81
6.82					.000001	000002	6.82
6.83 6.84					000001	.0000002	6.83
6.85		1			.000001	,000002 .000002	6.84 6.85
6.86]				000001	.000002	6.86
6.87					000001	.000002	6.87
6.88						.000001	6.88
6.89						.000001	6.89
6.90						.000001	6.90
6.91 6.92	1					.000001	6.91
6.93	1					.000001	6.92
6.94						.000001	6.93
6.95	1					.000001 .000001	6.94 6.95
6.96		1				.000001	6.96
6.97	1					.000001	6.97
6.98						.000001	6.98
6.99						.000001	6.99
	<u> </u>	<u> </u>			<u></u>		

			SKEWN	VESS			
t	.6	.7	.8	.9	1.0	1.1	t
6.50	.000009	.000017	.000029	.000046	.000068	.000096	6.50
6.51	.000008	.000016	.000028	.000045	.000067	.000094	6.51
6.52	.000008	.000016	.000028	.000044	.000066	.000093	6.52
6.53	.000008	.000016	.000027	.000043	.000065	.000091	6.53
6.54	.000008	.000015	.000027	.000042	.000063	.000090	6.54
6.55	.000008	.000015	.000026	.000042	.000062	.000088	6.55
6.56	.000008	.000015	.000026	.000041	.000061	.000087	6.56
6.57	.000007	.000014	.000025	.000040	.000060	.000086	6.57
6.58	.000007	.000014	.000025	.000040	.000059	.000084	6.58
6.59	.000007	.000014	.000024	.000039	.000058	.000083	6.59
6.60	.000007	.000014	.000024	.000038	.000057	.000082	6.60
6.61	.000007	.000013	.000023	.000038	.000057	.000081	6.61
6.62	.000007	.000013	.000023	.000037	.000056	.000079	6.62
6,63	.000006	.000013	.000022	.000036	.000055	.000078	6.63
6,64	.0000006	.000012	.000022	.000036	.000054	.000077	6.64
6.65	.000006	.000012	.000022	.000035	.000053	.000076	6.65
6.66	.000006	.000012	.000021	.000034	.000052	.000075	6.66
6.67	.000006	.000012	.000021	.000034	.000051	.000073	6.67
6.68	.000006	.000011	.000020	.000033	.000050	.000072	6.68
6.69	.0000006	.000011	.000020	.000033	.000050	.000071	6.69
6.70	.000005	.000011	.000020	.000032	.000049	.000070	6.70
6.71	.000005	.000011	.000019	.000031	.000048	.000069	6.71
6.72	.000005	.000010	.000019	.000031	.000047	.000068	6.72
673	.000005	.000010	.000018	.000030	.000046	.000067	6.73
674	.000005	.000010	.000018	.000030	.000046	.000066	6.74
6.75	.000005	.000010	.000018	.000029	.000045	.000065	6.75
6.76	.000005	.000010	.000017	.000029	.000044	.000064	6.76
6.77	.000005	.0000009	.000017	.000028	.000043	.000063	6.77
6.78	.000005	.000009	.000017	.000028	.000043	.000062	6.78
6.79	.000004	.000009	.000016	.000027	.000042	.000061	6.79
6.80	.000004	.0000009	.000016	.000027	.000041	.000060	6.80
6.81	.000004	.000009	.000016	.000026	.000041	.000059	6.81
6.82	.000004	.000008	.000016	.000026	.000040	.000058	6.82
6.83	.000004	.000008	.000015	.000025	.000039	.000057	6.83
6.84	.000004	.0000008	.000015	.000025	.000039	.000056	6.84
6.85	.000004	.000008	.000015	.000024	.000038	.000056	6.85
6.86	.000004	.000008	.000014	.000024	.000037	.000055	6.86
6.87	.000004	.000008	.000014	.000024	.000037	.000054	6.87
6.88	.000004	.000007	.000014	.000023	.000036	.000053	6.88
6.89	.000004	.000007	.000014	.000023	.000036	.000052	6.89
6.90	.000003	.000007	.000013	.000022	.000035	.000051	6.90
6.91	.000003	.000007	.000013	.000022	.000034	.000051	6.91
6.92	,000003	.000007	.000013	.000022	.000034	.000050	6.92
6.93	.000003	.000007	.000013	.000021	.000033	.000049	6.93
6.94	.000003	.000007	.000012	.000021	.000033	.000048	6.94
6.95	.000003	.000006	.000012	.000020	.000032	.000048	6.95
6.96	.000003	.000006	.000012	.000020	.000032	.000047	6.96
6.97	.000003	.0000006	.000012	.000020	.000031	.000046	6.98
6.98	.000003	.000006	.000011	.000019	.000031	.000045	6.99
6.99	.000003	.000006	.000011	.000019	.000030	.000043	עניט ן

	7		A.T.	maa			
			SKEWN		1		1
t	.0	.1	.2	.3	.4	.5	t .
7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09						.000001 .000001 .000001 .000001 .000001 .000001 .000001	7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09
7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19						.000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001	7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19
7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29						.000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001	7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29
7.30 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39							7.30 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39
7.40 7.41 7.42 7.43 7.44 7.45 7.46 7.47 7.48 7.49	,						7.40 7.41 7.42 7.43 7.44 7.45 7.46 7.47 7.48 7.49

			SKEWN	IESS			
t	.6	.7	.8	.9	1.0	1.1	t
7 .00	.000003	.000006	.000011	.000019	.000036	.000044	7.00
7.01	.000003	.000006	.000011	.000018	.000029	.000043	7.01
7.02	.000003	.000006	.000011	.000018	.000029	.000043	7.02
7.03	.000003	.000005	.000010	.000018	.000028	.000042	7.03
7.04	.000002	.000005	.000010	.000017	.000028	.000041	7.04
7.05	.000002	.000005	.000010	.000017	.000027	.000041	7.05
7.06	.000002	.000005	.000010	.000017	.000027	.000040	7.06
7.07	.000002	.000005	.000010	.000016	.000026	.000039	7.07
7.08	.000002	.000005	.000000	.000016	.000026	.000039	7.08
7.09	.000002	.000005	.000009	.000016	.000025	.000038	7.09
7.10	.000002	.000005	.000009	.000016	.000025	.000038	7.10
7.11	.000002	.000005	.000009	.000015	.000025	.000037	7.11
7.12	.000002	.000004	.000009	.000015	.000024	.000037	7.12
7.13	.000002	.000004	.0000008	.000015	.000024	.000036	7.13
7.14	.000002	.000004	.000008	.000015	.000023	.000035	7.14
7.15	.000002	.000004	.000008	.000014	.000023	.000035	7.15
7.16 7.17	.000002	.000004	.000008	.000014	.000023	.000034	7.16
7.17	.000002	.000004	.000008	.000014	.000022	.000034	7.17
7.18 7.19	,000002	.000004	.000008	,000014	.000022	.000033	7.18
	.000002	.000004	.000008	.000013	.000022	.000033	7.19
7.20	.000002	.000004	.000007	.000013	.000021	.000032	7.20
7.21	.000002	000004	.000007	.000013	.000021	.000032	7.21
7.22	.000002	.000004	.000007	.000013	.000021	.000031	7.22
7.23 7.24	.000002	.000004	.000007	.000012	.000020	.000031	7.23
7.24	.000002	.000003	.000007	.000012	.000020	.000030	7.24
7.25	.000001	.000003	.000007	.000012	.000019	.000030	7.25
7.26	.000001	.000003	.000007	.000012	.000019	.000029	7.26
7.27	.000001	.000003	.000006	.000012	.000019	.000029	7.27
7.28	,000001	.000003	.000006	.000011	.000019	.000028	7.28
7.29	.000001	.000003	.000006	.000011	.000018	.000028	7.29
7.30	.000001	.000003	.000006	.000011	.000018	.000028	7.30
7.31	.000001	.000003	.000006	.000011	.000018	.000027	7.31
7.32	.000001	.000003	.000006	.000011	.000017	.000027	7.32
7.33	.000001	.000003	.000006	.000010	.000017	.000026	7.33
7.34	.000001	.000003	,000006	.000010	.000017	.000026	7.34
7.35	.000001	.000003	.000006	.000010	.000016	.000025	7.35
7.36	.000001	.000003	.000005	,000010	.000016	.000025	7.36
7.37 7.38	.000001	.000003	.000005	.000010	.000016	.000025	7.37
7.38	.000001	.000003	.000005	.000009	.000016	.000024	7.38
7.39	.000001	.000003	.000005	.000009	.000015	.000024	7.39
7.40	.000001	.000002	.000005	.000009	.000015	.000024	7.40
7.41	.000001	.000002	.000005	.000009	.000015	.000023	7.41
7.42	.000001	.000002	.000005	.000009	.000015	.000023	7.42
7.43	.000001	.000002	.000005	.000009	.000014	.000022	7.43 7.44
7.44 7.45	.000001	.000002	.000005	.000008	.000014	.000022	7.44
7.45 7.46	.000001	.000002 .000002	.000005 .000004	800000. 800000.	.000014	.000022	7.46
7.47	.000001	.000002	.000004	.000008	.000014	.000021	7.40
7.48	.000001	.000002	.000004	.000008	.000013	.000021	7.48
7.49	.000001	.000002	.000004	.000008	.000013	.000021	7.49
7.47	'mm'	.00002	.00004			02000.	1/.73

The Fre			SKEWN	NESS			
t	.0	.1	.2	.3	4	.5	t
7.50 7.51 7.52 7.53 7.54 7.55 7.56 7.57 7.58 7.59		•					7.50 7.51 7.52 7.53 7.54 7.55 7.56 7.57 7.58 7.59
7.60 7.61 7.62 7.63 7.64 7.65 7.66 7.67 7.68 7.69							7.60 7.61 7.62 7.63 7.64 7.65 7.66 7.67 7.68 7.69
7.70 7.71 7.72 7.73 7.74 7.75 7.76 7.77 7.78 7.79							7.70 7.71 7.72 7.73 7.74 7.75 7.76 7.77 7.78 7.79
7.80 7.81 7.82 7.83 7.84 7.85 7.86 7.87 7.88 7.89							7.80 7.81 7.82 7.83 7.84 7.85 7.86 7.87 7.88 7.89
7.90 7.91 7.92 7.93 7.94 7.95 7.96 7.97 7.98 7.99	·					<u> </u>	7.90 7.91 7.92 7.93 7.94 7.95 7.96 7.97 7.98 7.99

			CIZETUN	TECC			
			SKEWN	ESS .			
t	.6	.7	.8	.9	1.0	1.1	t
7.50	.000001	.000002	.000004	.000008	.000013	.000020	7.50
7.51	.000001	.000002	.000004	.000007	.000013	.000020	7.51
7.52	.000001	.000002	.000004	.000007	.000012	.000020	7.52
7.53	.000001	.000002	.000004	.000007	.000012	.000019	7.53
7.54	.000001	.000002	.000004	.000007	.000012	.000019	7.54
7.55	.000001	.000002	.000004	.000007	.000012	.000019	7.55
7.56	.000001	.000002	.000004	.000007	.000012	.000018	7.56 7.57
7.57 7.58	.000001	.000002	.000004	.000007	.000011	.000018	7.58
7.59	.000001	.000002	.000004	.000007	.000011	.000017	7.59
7.60	.000001	.000002	.000003	.000006	.000011	.000017	7.60
7.61	.000001	.000002	.000003	.000006	.000011	.000017	7.61
7.62	.000001	.000002	.000003	.0000006	.000010	.000017	7.62 7.63
7.63	.000001	.000001 .000001	.000003	.000006	.000010	.000016	7.64
7.64 7.65	.000001	.000001	.000003	.000006	.000010	.000016	7.65
7.66	.000001	.000001	.000003	.000006	.000010	.000016	7.66
7.67	.000001	.000001	.000003	.000006	.000010	.000015	7.67
7.68	.000001	.000001	.000003	.000005	.000009	.000015	7.68
7.69	.000001	.000001	.000003	000005	.000009	.000015	7.69

7.70	.000001	.000001	.000003	.000005	.000009	.000015	7.70 7.71
7.71		.000001	.000003	.000005	.0000009	.000014	7.72
7.72 7.73		.000001	.000003	.000005	.000009	.000014	7.73
7.74		.000001	.000003	.000005	.000009	.000014	7.74
7.75		.000001	.000002	.000005	.000008	.000014	7.75
7.76		.000001	.000002	.000005	.000008	.000013	7.76
7.77		.000001	.000002	.000005	.000008	.000013	7.77
7.78		.000001	.000002	.000005	.000008	.000013	7.78
7.79		.000001	.000002	.000004	.000008	.000013	7.79
7.80		.000001	.000002	.000004	.000000	.000013	7.)
7.81		.000001	.000002	.000004	.000008	.000012	7.81
7.82		.000001	.000002	.000004	.000007	.000012	7.82
7.83		.000001	.000002	.000004	.000007	.000012	7.83
7.84		.000001	.000002	.000004	.000007	.000012	7.84
7.85		.000001	.000002	.000004	.000007	.000012	7.85
7.86		.000001	.000002	.000004	.000007	.000011	7.86 7.87
7.87		.000001	.000002	.000004	.000007	.000011	7.88
7.88 7.89		.000001	.000002	.000004	.000007	.000011	7.89
)					
7.90		.000001	.000002	.000004	.000007	.000011	7.90
7.91		.000001	.000002	.000004	.000006	.000011	7.91
7.92		.000001	.000002	.000004	.000006	.000010	7.92
7.93 7.94		.000001	.000002	.000003	.000006	.000010	7.93
7.94 7.95		.000001	.000002	.000003	.000006	.000010	7.95
7.96		.000001	.000002	.000003	.000006	.000010	7.96
7.97	İ	.000001	.000002	.000003	.000006	.000010	7.97
7.98		.000001	.000002	.000003	.000006	.000009	7.98
7.99		.000001	.000002	.000003	.000006	.000009	7.99

	7	**************************************	CIZEVIA	TECO			T : -
	-		SKEWN		<u> </u>	T	4
t	.0	.1`	.2	.3	.4	.5	t
8 00 8.01 8 02 8.03 8.04 8.05 8.06 8.07 8.08 8.09							8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09
8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19							8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19
8.20 8.21 8.22 8.23 8.24 8.25 8.26 8.27 8.28 8.29							8.20 8.21 8.22 8.23 8.24 8.25 8.26 8.27 8.28 8.29
8.30 8.31 8.32 8.33 8.34 8.35 8.36 8.37 8.38 8.39							8.30 8.31 8.32 8.33 8.34 8.35 8.36 8.37 8.38 8.39
8.40 8.41 8.42 8.43 8.44 8.45 8.46 8.47 8.48 8.49							8.40 8.41 8.42 8.43 8.44 8.45 8.46 8.47 8.48 8.49

	SKEWNESS						
t	.6.	.7	.8	.9	1.0	1.1	t
8.00 8.01		.000001	.000002 000001	.000003	.000005	.000009	8.00 8.01
8.02	1	.000001	COURSOI.	.000003	.000005	.000000	8 02
8.03	1	.000001	.000001	.000003	.000005	.000009	8.03
8.04		.000001	.000001	.000003	.000005	.000009	8.04
8.05	1	LOOKOOL	COOKED).	.000053	.000005	.000008	8.05
8.06		.000001	.000001	.000003	.000005	.000008	8.06
8.07		.000001	.000001	.000003	.000005	.000008	8.07
8.08		.000001	.000001	000003	.000005	.000008	8.08
8:09		.000001	.000001	.000003	.000005	.000008	8.09
8.10		.000001	.000001	.000003	.000005	.000008	8.10
8 11 8.12		.000001	.000001	.000002	.000005	.000008	8.11
8.13		.000001	.000001	.000002	.000004 .000004	.000008	8.12 8.13
8.14			.000001	.000002	.000004	.000007	8.14
8.15			.000001	.000002	.000004	.000007	8.15
8.10	ì		.000001	.000002	.000004	.000007	8.16
8 17			.000001	,000002	.000004	.000007	8.17
8.18			.000001	.000002	.000004	.000007	8.18
8 19			.000001	.000002	.000004	.000007	8.19
8.20			.000001	.000002	.000004	.000007	8.20
8 21			000001	.000002	.000001	.000007	8.21
8.22			.000001	.000002	.000004	.000006	8.22
8.23 8.21			.000001	000002	.000004	.000006	8.23 8.24
8 25			.000001	000002	.000004	.000000.	8.25
8.26			100000	000002	.000004	1000006	8.26
8 27			.000001	000002	000003	.000006	8.27
8.28			.000001	.000002	.000003	.000006	8.28
8.20			.000001	000002	.000003	.000006	8.29
8,30			.000001	000002	.000003	.000006	8.30
8.31			.000001	000002	.000003	.000006	8.31
8.32			1000001	000005	.000003	.000006	8.32
8.33			1000001	0000012	.000003	,(XXXXXX)5	8.33
8 31 8 35			000001	000003	£000003	.000005	8.34 8.35
836			100000	CLANANI.	ELEKKK)	.000005	8.36
8 37			OCCODE	.000002	.000003	.000005	8.37
8.38			000001	(NKN)>	(XXXXXX	CXXXXX	8.38
8 39			OCCENT	TOXXXXI	(XXXXXX)	.000005	8 39
8 10			000001	000001	000003	,000005	8.40
8 11			1 ,000001	.000001	CAKKK)3	.000005	8.41
8 12	l		1000001	.000001	000003	.000005	8.42
8 43			100000	(KKKKK)	000003	.000005	8.43
8 44	l	1	.000001	.000001	.000003	.000005	8.44
8 45 8.46			1000001	100000, 100000	.000003	.000004	8.46
8.47	l		.000001	.000001	.000003	.000004	8.47
8 48	1	1	000001	000001	000002	.000004	8.48
8,19			000001	.000001	.000,00	.000004	8.49
17. 17	1	L	100001	1	1.00000	1	1

			SKEWN	NESS			
t	.0	.1	.2	.3	.4	.5	l t
8.50 8.51 8.52 8.53 8.54 8.55 8.56 8.57 8.58 8.59							8.50 8.51 8.52 8.53 8.54 8.55 8.56 8.57 8.58 8.59
8.60 8.61 8.62 8.63 8.64 8.65 8.66 8.67 8.68 8.69							8.60 8.61 8.62 8.63 8.64 8.65 8.66 8.67 8.68 8.69
8.70 8.71 8.72 8.73 8.74 8.75 8.76 8.77 8.78							8.70 8.71 8.72 8.73 8.74 8.75 8.76 8.77 8.78 8.79
8.80 8.81 8.82 8.83 8.84 8.85 8.86 8.87 8.88 8.89		•					8.80 8.81 8.82 8.83 8.84 8.85 8.86 8.87 8.88 8.89
8.90 8.91 8.92 8.93 8.94 8.95 8.96 8.97 8.98 8.99							8.90 8.91 8.92 8.93 8.94 8.95 8.96 8.97 8.98 8.99

==	SKEWNESS							
I			SVE M	1622				
t	.6	.7	.8	.9	1.0	1.1	t	
8 50			.000001	.000001	.000002	.000004	8.50	
8 51			.000001	.000001	.000002	.000004	8.51	
8 52			.000001	.000001	.000002	.000004	8.52	
8 53			.000001	.000001	.000002	.000004	8.53	
8.54			.000001	.000001	.000002	.000004	8.54	
8.55			.000001	.000001	.000002	.000004	8.55	
8.56				.000001	.000002 .000002	.000004	8.56 8.57	
8.57 8.58				.000001 .000001	.000002	.000004 .000004	8.58	
8.59	•			.000001	.000002	.000004	8.59	
8.60				.000001	.000002	.000004	8.60	
8.61				.000001	.000002	.000003	8.61	
8.62				.000001	.000002	.000003	8.62	
8.63			l	.000001	.000002	.000003	8.63	
8.64			1	.000001	.000002	.000003	8.64	
8.65			1	.000001	.000002	.000003	8.65	
8.66				.000001	.000002	.000003	8.66	
8.67				.000001	.000002	.000003	8.67	
8.68				.000001	.000002	.000003	8.68	
8.69				.000001	.000002	.000003	8.69	
8. <i>7</i> 0			1	.000001	.000002	.000003	870	
8.71				.000001	.000002	.000003	8.71	
8.72			i	.000001	.000002	.000003	8.72	
8.73			1	.000001	.000002	.000003	8.73 8.74	
8.74			1	.000001	.000002	.000003	8.75	
8.75			l	.000001	.000002	.000003	8.76	
8.76 8.77				.000001	.000001	.000003	8.77	
8.78				.000001	.000001	.000003	8.78	
8.79				.000001	.000001	.000003	8.79	
8.80				.000001	.000001	.000003	8.80	
8.81		}		.000001	.000001	.000003	8.81	
8.82				.000001	.000001	.000002	8.82	
8.83		į	Į	.000001	.000001	.000002	8.83	
8.84				.000001	.000001	.000002	8.84 8.85	
8.85				.000001	.000001	.000002	8.86	
8.86		ľ		.000001	.000001	.000002	8.87	
8.87		ļ	į	.000001	.000001	.000002	8.88	
8.88 8.89				.000001	.000001	.000002	8.89	
8.90				.000001	.000001	.000002	8.90	
8.91	l	İ		.000001	.000001	.000002	8.91	
8.92	l			.000001	.000001	.000002	8.92	
8.93	1	[}	.000001	.000001	.000002	8.93	
8.94	ł	ł		.000001	.000001	.000002	8.94	
8.95		1		.000001	.000001	.000002	8.95	
8.96				.000001	.000001	.000002	8.96	
8.97	1			.000001	.000001	.000002	8.97 8.98	
8.98	1		1	.000001	.000001	.000002	8.99	
8.99		1	j	l	.000001	1.00002	0.33	

			SKEWN	IESS	ţ	,	
t	.0	.1	.2	.3	.4	.5	t
9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09				·			9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09
9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19							9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19
9.20 9.21 9.22 9.23 9.24 9.25 9.26 9,27 9.28 9.29							9.20 9.21 9.22 9.23 9.24 9.25 9.26 9.27 9.28 9.29
9.30 9.31 9.32 9.33 9.34 9.35 9.36 9.37 9.38 9.39							9.30 9.31 9.32 9.33 9.34 9.35 9.36 9.37 9.38 9.39
9.40 9.41 9.42 9.43 9.44 9.45 9.46 9.47 9.48 9.49							9.40 9.41 9.42 9.43 9.44 9.45 9.46 9.47 9.48 9.49

	SKEWNESS						
t	.6	.7	.8	.9	1.0	1.1	t
9 00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09					.00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001	.000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002	9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09
9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19					.000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001	.000002 .000002 .000002 .000002 .000001 .000001 .000001 .000001	9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19
9.20 9.21 9.22 9.23 9.24 9.25 9.26 9.27 9.28 9.29					.000001 .000001 .000001 .000001 .000001 .000001 .000001	.000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001	9 20 9.21 9.22 9.23 9.24 9.25 9.26 9.27 9.28 9.29
9.30 9.31 9.32 9.33 9.34 9.35 9.36 9.37 9.38		•	•		.000001 .000001 .000001 .000001 .000001 .000001 .000001	.000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001	9.30 9.31 9.32 9.33 9.34 9.35 9.36 9.37 9.38 9.39
9.40 9.41 9.42 9.43 9.45 9.45 9.45 9.48	3					.000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001	9.40 9.41 9.42 9.43 9.44 9.45 9.46 9.47 9.48 9.49

-							
	SKEWNESS						
t	.0	.1	.2	.3	.4	.5	t
9.50 9.51 9.52 9.53 9.54 9.55 9.56 9.57 9.58 9.59							9.50 9.51 9.52 9.53 9.54 9.55 9.56 9.57 9.58 9.59
9.60 9.61 9.62 9.63 9.64 9.65 9.66 9.67 9.68 9.69							9.60 9.61 9.62 9.63 9.64 9.65 9.66 9.67 9.68 9.69
9.70 9.71 9.72 9.73 9.74 9.75 9.76 9.77 9.78 9.79					An a		9.70 9.71 9.72 9.73 9.74 9.75 9.76 9.77 9.78 9.79
9.80 9.81 9.82 9.83 9.84 9.85 9.86 9.87 9.88 9.89							9.80 9.81 9.82 9.83 9.84 9.85 9.86 9.87 9.88
9.90 9.91 9.92 9.93 9.94 9.95 9.96 9.97 9.98 9.99							9.90 9.91 9.92 9.93 9.94 9.95 9.96 9.97 9.98 9.99

	SKEWNESS						
t	.6	.7	.8	.9	1.0	1.1	t
9.50 9.51 9.52 9.53 9.54 9.55 9.56 9.57 9.58 9.59						.00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001	9.50 9.51 9.52 9.53 9.54 9.55 9.56 9.57 9.58 9.59
9.60 9.61 9.62 9.63 9.64 9.65 9.66 9.67 9.68 9.69						.000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001	9 60 9.61 9.62 9.63 9.64 9.65 9.66 9.67 9.68 9.69
9.70 9.71 9.72 9.73 9.74 9.75 9.76 9.77 9.78 9.79						.000001 .000001 .000001 .000001 .000001 .000001 .000001 .000001	9.70 9.71 9.72 9.73 9.74 9.75 9.76 9.77 9.78 9.79
9.80 9.81 9.82 9.83 9.84 9.85 9.86 9.87 9.88 9.89						.000001	9.80 9.81 9.82 9.83 9.84 9.85 9.86 9.87 9.88 9.89
9.90 9.91 9.92 9.93 9.94 9.95 9.96 9.97 9.98 9.99							9.90 9.91 9.92 9.93 9.94 9.95 9.96 9.97 9.98 9.99

DISTRIBUTION OF THE MEANS OF SAMPLES OF n DRAWN AT RANDOM FROM A POPULATION REPRESENTED BY A GRAM-CHARLIER SERIES

Bv

G A BAKER

The use of a tream Charlier series for the representation of the frequencies of univariate populations has been recommended for a long time by Gram, Charlier, Thiele, Edgeworth, Bowley and Arne Fisher. In practice it has been found that, in many cases, the first two or three terms give a fairly adequate representation of many populations. The arithmetic mean is one of the most used statistical constants. Thus it is of considerable practical and theoretical interest to be able to specify the distribution of the means of amples of ndr wn from a population represented by a Grain Charlier series. It is the object of this paper to obtain the distributions of the means of such samples exactly.

1 O. Irwin¹ has given a formal development for obtaining the distribution of the totals, i. e. 22 times the mean, of samples of 22 drawn at random from any continuous population as the solution of an integral equation, if a solution exists.

That is, if the population is represented by f(x), $\alpha = x = 0$, f(x)being continuous, then the distribution $\psi(x)$ of the totals of samples of n drawn at random from f(x) is given by the solution of

(1)
$$f(\alpha) = \int_{n_{\mathbf{a}}}^{n_{\mathbf{b}}} \psi(x) e^{-4x} dx$$

where

(2)
$$F(\alpha) = \left[\int_{a}^{b} f(x) e^{\alpha x} dx \right]^{n}$$

Interpretate \alpha as a complex variable and assume that (1) is valid along the ray $\alpha = i\beta$, where β is real, that $X(x) = \psi(x)$ and zero outside of these limits, then an applica $na \leq x \leq nb$

tion of Fourier's Integral Theorem gives

(3)
$$X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\iota \beta) e^{-\iota \beta x} d\beta$$

or

(4)
$$\psi(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(i\beta) e^{-i\beta x} d\beta$$
, $ns = x - nh$,

provided that X(x) can be shown, independently, to vanish na > x > nb. The distribution of the means of sample of na can be obtained from y(x) by means of the transformation

$$(5) X = n\bar{x}$$

After considerable formal computation, the distribution of the means of 22 from a population represented by a Gram Charlier series can be obtained as a solution of (1), and the result may be stated in the tollowing theorem.

THEOREM I. If a populate nombe opteented by the first m / terms of a Gram Charlier series, i e.

(6)
$$f(x) = \partial_{o} \varphi_{o}(x) \quad \partial_{s} \varphi_{s}(x) + \qquad |\partial_{m} \varphi_{m}(x)|$$

where

(7)
$$\emptyset_i(x) \frac{\partial^i(x^{i+1})}{\partial x^i}$$

then the means of samples at a drawn at random from the part tion represented by (6) will be distributed as proportional to

(8)
$$\sum \frac{n'}{V_{b}'V_{3}'V_{mn}'} \mathcal{S}_{o}^{V_{b}} \mathcal{S}_{s}^{V_{b}} \cdot \mathcal{S}_{m}^{V_{m}} \frac{d^{m}\sqrt{m} + (m-1)/m + 1 + \frac{5}{2}/3}{d(n \times 2)^{m}\sqrt{m} + m - \frac{1}{2}\sqrt{m} + 1 + \frac{5}{2}\sqrt{3}}$$

summed for all non-negative integral solutions of

(9)
$$V_b + V_s + V_d + V_m - n$$

The plan of the proof will be to prove (8) for the case m - 3 and then complete the proof by mathematical induction.

Suppose a population may be represented by

(10)
$$f(x) = \partial_{\alpha} e^{-\frac{x^2}{2}x^2} + \partial_{\beta} \left[-x^{\beta} + \Im x \right] e^{-\frac{x^2}{2}x^2}$$
$$-\infty \le x - \infty$$

Then $f(\alpha)$ defined by (2) is

(11)
$$f(x) = \left[\int_{-\infty}^{\infty} \left[a_o + a_g \left(-x^3 + 3x \right) \right] e^{-\frac{1}{2}x^2} e^{-\alpha x} ax \right]^{\frac{1}{2}}$$
Put
$$x = \alpha = \gamma$$

Then

(12)
$$\left[e^{\frac{\alpha^{2}}{2}} \int_{\infty}^{\infty} \left[a_{o} + a_{s} \left(y^{3} - j\alpha y^{2} \right) 3\alpha^{4} y \right]$$

$$\left(\sqrt{2\pi} \right)^{n} e^{\frac{\pi \alpha^{2}}{2}} \left[a_{o} - a_{o} \alpha^{3} \right]^{n}$$

Thus

(13)
$$F(\iota \beta) - (\sqrt{2\pi})^n e^{-\frac{n\beta^2}{2}} \left[a_a + a_{\frac{\alpha}{2}} \iota \beta^{\frac{\alpha}{2}}\right]^n$$

The assumptions leading to (4) are satisfied, when e

(14)
$$\psi(x) = \frac{\sqrt{2\pi}}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{n}{2} \left[a_o + a_s \iota \beta^s\right]^n} e^{-\iota \beta x} d\beta$$

The s+/ 44 term of (14) is

$$(15) \frac{\left(\sqrt{2\pi}\right)^{n} \binom{n}{5} \int_{-\infty}^{\infty} a_{o}^{n-s} a_{s}^{5}(\iota)^{s} \beta^{3s} e^{-\frac{n \beta^{2}}{2} e^{-\frac{\iota \beta^{3}}{2}}} e^{-\frac{\iota \beta^{3}}{2}} d\beta$$

Now

$$(16) \qquad e^{-i\beta x} = \cos\beta x - i\sin\beta x$$

If
$$\underline{s}$$
 is odd, i.e. $s = 2a + l$,
$$\int_{-\infty}^{\infty} \beta^{3s} \cos \beta x e^{-\frac{l}{3}n\beta^{2}} d\beta$$

vanishes, because it is an odd function, and there is left

(17)
$$\frac{\sqrt{2\pi}}{2\pi} \int_{0}^{n} \int_{0}^{\infty} \int_{0}^{\infty} a_{o}^{n-s} a_{s}^{s}(\iota)^{2z+\prime} (-1) \iota \beta^{3(2z+\prime)} e^{-\frac{n\sigma^{2}}{2}} \sin \beta x d\beta$$

It is known that

$$\int_{-\pi}^{\infty} e^{-s^2 x^2} (\sin bx) x^{2c+1} dx = (4)^{c+1} \sqrt{\pi} \frac{d^{2c+1} (e^{-\frac{b^2}{4b^2}})}{db^{2c+1}}$$

Hence (17) becomes

(18)
$$\frac{(\sqrt{2\pi})^{n-1}}{2\pi\sqrt{n}} {n \choose 5} a_s^{n-3} a_s^8 \frac{d^{3s} (e^{-\frac{x^2}{2n}})}{dx^{3s}}$$

If \underline{s} is even, i. e. s = 2a (15) becomes

(19)
$$\frac{\left(\sqrt{2\pi}\right)^n \binom{n}{5} \int_{-\pi}^{\infty} a_s^{n-5} a_s^{s}(\iota)^{\frac{2n}{5}} \beta^{\frac{2n}{5}} e^{-\frac{1}{2}\frac{n}{5} \beta^{\frac{2n}{5}} \cos \beta x d\beta}$$

because the sine is an odd function.

It is known that

(20)
$$\int_{-\infty}^{\infty} e^{-x^2x^2} (\cos bx) x^{2c} dx = (-1)^c \frac{\pi}{a} \frac{d^{2c} (e^{-\frac{b^2}{4a^2}})}{db^{2c}}$$

whence (19) becomes

(21)
$$\frac{\left(\sqrt{2\pi}\right)^{n+1}}{2\pi\sqrt{n}} {n \choose 5} a_o^{n-5} a_s^{s} \frac{d^{35} \left(e^{-\frac{x^2}{2n}}\right)}{dx^{35}}$$

as before.

Thus the totals of samples of <u>12</u> drawn at random from a population represented by (10) are distributed as proportional to

(22)
$$\sum_{s=0}^{s+n} \binom{n}{s} a_s^{n-s} a_s^{s} \frac{d^{ss} \left(e^{-\frac{s^2}{2n}}\right)}{dx^{ss}}$$

or the distribution of the means is proportional to

(23)
$$\sum_{s=s}^{s:n} {n \choose s} \partial_s^{n-s} \partial_s^{s} \frac{d^{2s} (e^{-\frac{n}{2}s^2})}{d(nx)^{3s}}$$

as given by the theorem.

It is apparent from the proof for the case m-3 that to complete the proof for the general case it is only necessary to show that

(24)
$$\int_{-\infty}^{\infty} H_{m}(y+\alpha) \frac{e^{-\frac{1}{2}y^{2}}}{\sqrt{2\pi}} dy = \alpha^{m}$$

if m > 3 it being noted that the negative sign that arises in the differentiation of $\mathscr{A}(x)$ and that is omitted in $\mathscr{H}_m(x)$ (the Hermite polynomial of degree m) is automatically taken care of.

Relation (24) has been proven true for the case m=3. By actual computation, it may be shown to be true m=/ and m=2 also. Assume (24) to be true for m=k-/, then if it can be shown that (24) is true for m=k that will complete the proof.

Thus, it is assumed that

(25)
$$\int_{-\infty}^{\infty} H_{k-1}(y+\alpha) \frac{e^{-\frac{1}{2}y^2}}{\sqrt{2\pi}} dy = \alpha^{k-1}$$

For the moment, assume that (24) is not true for m=k and differentiate it with respect to α , the conditions being sufficient for differentiating under the integral sign. Thus (24) becomes

(26)
$$\int_{-\pi}^{\infty} H_{k}'(y+\alpha) \frac{e^{-\frac{1}{2}y^{2}}}{\sqrt{2\pi}} dy + k\alpha^{k-1}$$

Multiply (25) by k and subtract it from (26), thus

(27)
$$\int_{-\infty}^{\infty} \left[H_{k}'(y+\alpha) - k H_{k-1}(y+\alpha) \right] \frac{e^{-\frac{i}{2}y^{2}}}{\sqrt{2\pi}} dy + 0$$

But
$$H'_{k}(y+\alpha)-kH_{k-1}(y+\alpha)=0$$

Thus there is a contradiction from which it follows that (24) is true for m-k if (25) is true.

BIBLIOGRAPHY

 Irwin, J. O., M.A., M.S. "On the Frequency Distribution of the Means of Samples from a Population Having Any Law of Frequency with Finite Moments, with Special Reference to Pearson's Type II." Biometrika, Vol. 19 (1927), pp. 225.

S. A. Baker

THE USE OF LINEAR FUNCTIONS TO DETECT HIDDEN PERIODS IN DATA SEPARATED INTO SMALL SETS

Вy

EDWARD L. DODD

I.—INTRODUCTION

Readers who have access to the Handbook of Mathematical Statistics¹ will find in chapter XI a synopsis of a periodogram analysis by W. L. Crum, with references to some of the important papers on period testing.

My own interest in this subject was aroused several years ago by Dr. J. A. Udden,² Director of the Bureau of Economic Geology at the University of Texas, who had in his possession measurements of the thicknesses of successive layers of anhydrite (CaSO) taken from a Texas oil well. The material, Dr. Udden noted, was "suggestive of cycles" (p. 351); but one difficulty was mentioned: "Probably 2 per cent of the layers are indistinct." It was not always possible to tell whether the number recorded as the thickness of a layer represents a single deposit or two or more deposits insufficiently separated by the usual bituminous demarcation. The analogous difficulty in distinguishing consecutive rings of big trees was met by comparison of the rings of trees from the same forest. But such companion records were not available for the rock lamina.

A little reflection will show that the usual method of testing

¹ Rietz, Houghton Mifflin Co., 1924.

^{2 &}quot;Laminated Anhydrite in Texas." Bulletin of the Geological Society of America, Vol. 35 (1924), pp. 347-354.

³ A. E. Douglass, "Climatic Cycles and Tree Growth," Carnegie Institution of Washington, Publication No. 289 (1919).

for cycles, from data arranged in columns becomes vitiated if in several instances merging of layers has taken place—not so much because of the exaggerated size of certain items, but because the items get into the wrong columns. When a step is lost, all subsequent items are misplaced.

My purpose is then to explain how tests for periods can be made by first using the data in small sets—thus minimizing the vicious effects of a merger—and then by suitably combining the results obtained from these small sets.

We might as well admit at the start that a demonstration of a periodicity is in general impossible. Perhaps the revolution of the earth on its axis represents a demonstrated periodicity. But for the most part, announced periodicities are merely improbable or probable. There is no absolute proof that they exist. We know that what we call "pure chance," typified by the throws of a coin, will sometimes yield irregularities of oscillation between two states, the minimum and the maximum, which to all appearances is a "periodicity." The question arises: About how often will pure chance thus deceive us? All we can do is to compute certain relative frequencies or probabilities. If the probability found is very, very small, that the apparent periodicity had its origin in pure chance, we assert with some assurance that a real periodicity exists. In this mode of approach, this paper will follow rather closely Arthur Schuster, whose work is fundamental.

Although Schuster's main interest was in the quadratic function, "intensity"—at first, in the square root of intensity, Terrestrial Magnetism, loc. cit.—he pointed out (p. 27) how certain con-

^{1 &}quot;On the investigation of hidden periodicities with application to a supposed 26-day period of meteorological phenomena." Terrestrial Magnetism, Vol. 3 (1898), pp. 13-41. In my paper. "The probability law for the intensity of a trial period, with data subject to the Gaussian law," Bulletin of the American Mathematical Society, Vol. 33 (1927), pp. 681 684, I referred to Schuster's paper in the Proceedings of the Royal Society of London. Reference should have been made also to the above paper in Terrestrial Magnetism, where the probability law is given for the square root of intensity (p. 21), which can easily be thrown into the form given in my paper. Schuster, however, postulated (p. 20) that "2 T p is a submultiple of a right angle"—a condition which would not always be satisfied—also (p. 21) that the vectors be distributed according to the law of errors centered at the origin, an inconvenient restriction, and his method did not bring out the different law of distribution needed for the case when the period is equal to two.

clusions could be reached through integrals—substantially linear functions, if integration is regarded as summation. It is this approach to period testing through linear functions that I am setting forth in his paper. Some special attention must be given to phase in the application of this method.

Most of the methods for detecting periodicities make use of the trigonometric functions, with their well known properties, in particular, use is made of the Sines and cosines of an angle and its multiples, as in harmonic analysis and Fourier series. With the aid of these harmonic multipliers, linear functions are first formed; and from these, by squaring and adding, a quadratic function, which plays the central role, as "intensity." In the method set forth in this paper, however, the linear functions themselves are the most important, not merely for graphical representation, but for determining probabilities.

Suppose, then, that a set of numbers is furnished us—perhaps from an unknown source—for example a set of ten numbers consisting of 5's and 1's alternating:

Has this set of numbers the period two? If this question means: Is there a function of period two which takes on these ten values, the answer is: Yes, namely—

$$3+2\cos \pi r$$
 $r=0,1,2,\ldots,9$

Here, as usual, π means 180°, obtained from a complete revolution of 360° by dividing by two. If, in place of an integer r, we take a continuous variable x, and plot

$$y=3+2\cos\pi z$$

from x = 0 to x = 10, a wave curve is formed with each upper crest at 5, and each depression at 1.

But usually in period testing, something is desired beyond the mere possibility of making a mathematical curve fit the data. Perhaps a farmer on each 10 acres of his farm has raised 5 bales of cotton, 1 bale of cotton, 5 bales of cotton, etc., alternately for 10 years, under apparently the same conditions as to labor, fertilizer, etc. He would like to know whether this is due to mere chance or to some recurrence at two-year intervals of droughts, pests, or adverse conditions. Stranger events do, indeed, occur by pure chance than the foregoing hypothetical yield of cotton. But the regularity postulated above would strike almost anvone as exceptional, and it would be prudent for our farmer to believe that there was some non-fortuitous cause of the regularity, and to try to discover it.

Let us, indeed, set up a chance situation to correspond to the foregoing yield of cotton. If the two faces of a coin are marked 5 and 1, and are recorded as such, the probability for ten throws starting with 5 and alternating between 1 and 5 is only 1/1024. A bet of \$1,023 against \$1 would measure the unusualness of the specified succession of 5's and 1's.

That this occurrence is unusual may be signalized by another test and method of approach. Let X denote the result of the r th trial of an independent chance variable, which with equal likelihood ($\rho_1 = 1/2 = \rho_2$) takes on the values 5 or 1, and can take on no other value. The "mean value" of X is then, by definition,

$$\rho_{1}(5) + \rho_{2}(1) = \frac{1}{2}(5) + \frac{1}{2}(1) = 3$$

This would, indeed, be also the average value of the five 5's and five 1's in the illustration. The "mean error" ε of X_{ε} would be found from

$$\varepsilon^2 = \frac{1}{2} (5-3)^2 + \frac{1}{2} (1-3)^2 = 4$$
, $\varepsilon - 2$

This would be also the standard deviation 6 of the numbers in the illustration—that is

$$\delta^2 = \frac{1}{10} \left[(5-3)^2 + (1-3)^2 + (5-3)^2 + \cdots + (1-3)^2 \right] = 4$$
, $\delta = 2$

Now let

$$X=X-X_2+X_3-\cdots-X_m$$

Since the signs alternate, the mean value of X is zero; since

there are ten terms, the mean error of X is $c\sqrt{10} = 2(3.16) = 6.32$. If now X_r , should take on alternately the values of 5 and 1, then X would become 20. It would thus exceed its mean value zero by more than three times its mean error, or more than four and one-half times its "probable error." This is commonly regarded as "significant."

To see a little more clearly into the mechanism of the above result, let us pass from the numbers X_r to their deviations from their mean value 3.

Let
$$x_i = X_i - 3$$
, $x_2 = X_2 - 3$, \cdots , $x_n = X_n - 3$, \cdots

Then the mean value of x_r is zero, and its mean error is 2. Now let

$$x=x_1-x_2+x_3-\cdots-x_n$$

Then the mean value of x is zero and its mean error is $\varepsilon\sqrt{0}$; in both respects it resembles X. Furthermore it takes on the same value 20 that X takes on when the 5 and 1 alternate; since $x_1, x_2 - (X_1 - 3) - (X_2 - 3) = X_1 - X_2$, etc. And here again 20 is a remarkable value for x since it represents an excess of more than three times its mean error. But let us now find x directly from the values taken on by x_1 , when x_2 alternates between 5 and 1.

$$x=1$$
 (2) -1 (-2) + 1 (2) - ... -1 (-2) = 20

The feature to be noted is that the successive values of x_r and of $\cos \pi (r-1)$ match in sign, for r=1, 2, 3..., 10.

$$x_r = 2, -2, 2, -2, \cdots, -2$$

 $\cos \pi(r-1) = 1, -1, 1, -1, \cdots, -1$

Each product $x_r \cos \pi (r-1)$ is then positive; and this accounts for the large value of x. This matching in sign of the deviations of the data with the successive terms of a test function $\cos 2\pi (r-1)/k$ or perhaps $\cos 2\pi r/k$ when k is given

a particular value—here k-2—is, indeed, fundamental. Also the similarity between the properties of X and x will be found to be maintained in more general cases.

The foregoing illustrates the method of period testing to be set forth in this paper. A general assumption is at first made, that the data contain no periodic constituent, but on the contrary represent mere chance fluctuations. Certain linear functions of the data are found with coefficients which are the cosines or sines of multiples of the angle associated with a given period. For these functions, the fluctuations usually to be expected are to be computed-assuming that the measurements represent chance data. If the actual values which these functions take on are greatly in excess of what is expected of them, the initial assumption that the data are due to chance is called into question. It may be more reasonable to suppose that to some extent the data conform to the period associated with the cosine multipliers involved in the test. These "harmonic" multipliers, indeed, pass through a succession of positive and negative values in a regular way. If the positive and negative fluctuations of the measurements from their average value are well "timed" with those of the harmonic multipliers, we get a sum of products nearly all positive, thus a much larger result than if positive numbers were not matched with positive, negative with negative numbers.

As preliminary to all tests, the data may be divided into fairly large groups of consecutive measurements—say with 120 measurements in a group; for 120 is a multiple of 2, 3, 4, 5, 6, 8 10, 12, 15, 20, 24, 40, 60, numbers quite suitable for trial periods. The arithmetic mean and standard deviation of each such group may be computed. These may usually be accepted as close approximations to the mean value and mean error of the measurements of the group.

To illustrate further the nature of the tests to be applied, let us imagine that the 120 measurements of a group are recorded on slips of papers, these slips put into a bag, drawn at random, and recorded as drawn. This set of numbers would have the same arithmetic mean and standard deviation, noted above, no matter in what order they are drawn and recorded. But periodicities depend upon the order of the measurements. A chance order of measurements x_p , such as established by drawing from a bag, would very seldom match sufficiently well a periodic function like

cos $2\pi r/2$ with period 2, or cos $2\pi r/3$ with period 3, etc., to make a test function $C(k) = \sum X_r$ cos $2\pi r/k$ noticeably large. Thus, if for some particuler k, the function C(k), computed from the data in their actual given order, turns out to be significantly large, the indication is that the data contain a constituent with period k.

We mean here that each measurement of the set may be thought of as the sum of certain constituents, one of which is periodic with period k. Another constituent may perhaps have a different period k'. Still another constituent may be a chance variable with no regularity which can properly be called periodic.

II. Trigonometric Formulas.

Oi considerable use are the simple formulas:

(1)
$$\sin a \sinh b = \frac{1}{2}\cos (a-b) - \frac{1}{2}\cos (a+b)$$

(2)
$$\cos a \cos b = \frac{1}{2} \cos (a - b) + \frac{1}{2} \cos (a + b)$$

Indeed, by using (1) in summing the product $\sin (r\theta + \alpha)$ $\sin \theta/2$ from r=0 to (n-1) there is obtained, in case θ is not a multiple of 360° ,

(3)
$$\sum_{r=0}^{n-r} \sin(r\theta + \alpha) = \sin\left(\frac{(n-1)\theta}{2}\alpha\right) \frac{\sin n\theta/2}{\sin\theta/2}$$

Likewise, for $\theta \neq o \pmod{360^\circ}$; i.e., θ not a multiple of 360°,

(4)
$$\sum_{r=0}^{n-1} \cos |r \theta_{r} \alpha| = \cos \left(\frac{|n-1|\theta}{2} + \alpha \right) \frac{\sin n \theta/2}{\sin \theta/2}$$

As important special cases, we have when $n\theta$ is a multiple of 360 °,

¹ For formulas suitable for period testing and for a historical review of this subject with references, the reader is referred to the article of H. Burkhardt in Encykl padie der Mathematischen Wissenschaften, II A 9a, pp. 642-694.

(5)
$$\sum_{r=0}^{n-r} \operatorname{sin} (r\theta + \alpha) = 0 = \sum_{r=0}^{n-r} \cos(r\theta + \alpha), \quad n\theta \equiv 0 \pmod{360^{\circ}}$$

As an application of (5), let $X_1, X_2, \dots X_n$ be any set of n numbers; let C be any constant. Then

(6)
$$\sum_{r=0}^{n-1} (X_r - C) \cos(r\theta + \alpha) = \sum_{r=0}^{n-1} X_r \cos(r\theta + \alpha), \quad \theta \neq 0 \pmod{360^\circ}$$

$$n\theta \equiv 0 \pmod{360^\circ}$$

Likewise for $\sin (r\theta + \alpha)$.

The above signifies that if the X_r represent data to be subjected to tests with harmonic multipliers, where an integral number of complete cycles is taken, it is immaterial where the origin for the data is taken. In the theory, the C will be usually taken as the arithmetic mean of the data; in computation, the C may be some simple number which will reduce the number of significant figures in the data.

III Chance Data in Distributions with close contact at extremities

Chance data distributed normally will be considered first. Given n numbers or variates X_1, X_2, \ldots, X_n , the arithmetic mean M and standard deviation δ are determined by

(7)
$$M = \frac{1}{n} (X_1 + X_2 + \cdots + X_n) ; \delta^2 = \frac{1}{n} [(X_1 - M)^2 + (X_n - M)^2].$$

Let

(8)
$$\phi(t) = \frac{2}{\sqrt{2\pi}} \int_{a}^{t} e^{-\frac{t^{2}}{2}} dt$$

The data will be said to be normally distributed if the number of variates lying between $M+\lambda$, and $M+\lambda_2$ is approximately

 $\frac{n}{2} \left[\oint (\lambda_2/6) - \oint (\lambda_1/6) \right]$ for all values of $\lambda_1 < \lambda_2$. Here n is supposed to be at least moderately large. To express this in the language of probability, suppose the n numbers X_1 , X_2 , are recorded on slips and put into a bag, and suppose a slip is drawn out. Then, for the X_1 thus drawn—

(9) Probability that
$$\lambda < X_r < \lambda + d\lambda$$
 is $\frac{d\lambda}{6\sqrt{2\pi}} e^{-(\lambda - M)^2/26^2}$

where, if $d\lambda$ is taken rather small, the n is to be thought of as rather large.

The important theorem needed here—substantially explained, if not proven, in most books on probability—is that if sets of k of these variates are drawn at random, and linear functions with fixed coefficients, such as

(10)
$$f(k) = a_1 X_1 + a_2 X_2 + \cdots + a_k X_k$$

are formed, these functions F(k) as determined in sets of drawings will be normally distributed with standard deviation δ_k , where

If, in particular $a_r = cos(r\theta + \alpha)$ making $2a_r^2 - l + cos(2r\theta + 2\alpha)$ and if further $k\theta = 360^\circ$ with k > 2, it follows from (5) that

$$(12) \qquad \qquad \delta_k^2 = k \, \delta^2 / 2$$

Let us now in (6) set C=M; or rather, what amounts to the same thing, change the origin for the data so as to make M=O. Then the "mean value" or "expected value" of F(k) in (10) is zero. Then, with the use of (8) and (12), it follows that

(13) Probability that
$$|F(k)| > 36\sqrt{k/z}$$
 is $1 - \emptyset$ (3) = 0.0027.

This small probability by no means implies impossibility. However, if the computed $|\mathcal{F}(k)|$ exceeds $3 \delta \sqrt{k/2}$, there

is some ground for doubting the original hypothesis that the data under consideration exhibit a chance arrangement. Sometimes such evidence gathered from different sections of the data can be made cumulative. A comparatively large value for F(k) in (10) is likely to result when the signs of the X_r match the signs of the α_r , taken as in (11) and (12) as $\cos(r\theta + \alpha)$, giving a cycle or period of k items.

To what extent evidence is thus afforded for the specific period of k needs further consideration. But, until we have found an adequate number of instances in which ome inequality like (13) is satisfied we have obtained little evidence of any periodicity at all.

Thus far we have considered normally distributed data, conforming to the well-known symmetric bell-shaped probability curve. But this is more restrictive than necessary. Results substantially the same can usually be obtained for distributions—even those not symmetric and not mesokurtic—which at both ends taper off in slender tails. Although the particular numerical value of the probability given in (13) is no longer applicable to these curves, the probability nevertheless is usually very small, as presented geometrically as slices of the two tails.

Moreover, the equations (11) and (12) arise from the general theory of expected values. Suppose that ρ_r is the probability that the chance variable X will take on the value \int_{ℓ} , where $\rho_1 + \rho_2 + \cdots + \rho_s = 1$. Then the expected value of X is, by definition

(14)
$$E(X) = \rho, \, f, +\rho_z \, f_z + \cdots + \rho_e \, f_s = E,$$

and its mean error $\varepsilon(X)$ is defined by

(15)
$$\varepsilon^{2}(X) - \rho_{1}(f_{1} - E_{1})^{2} + \cdots + \rho_{s}(f_{s} - E_{s})^{2} = E(X - E_{s})^{2}$$

It is common to identify expected value and mean error with arithmetic mean and standard deviation as approximations. In applying (6), the supposition was made that the origin be taken so as to make M=0. With this adjustment, we may take $\mathcal{E}(X) = 0 = \mathcal{E}$, in (14) and (15). As the X_j are regarded as independent, the theory of expected values applied to (10) leads first from $\mathcal{E}(X)=0$ to $\mathcal{E}[\mathcal{F}(k)]=0$, as mentioned before;

and then to (11)—noting that when $a \neq j$, $\mathcal{L}(X_i X_j) = 0$, in the expression for $\mathcal{L}[\mathcal{L}(k) - 0]^2$.

IV. Data with Periodic Constituents.

We now consider data of the form

$$(16) \qquad \mathbf{W}_r = X_r + Y_r + Z_r ,$$

where Xr is, as before, a chance variable; but

(17)
$$Y_r = b \cos(r\theta + \beta)$$
; $Z_r = c \cos(r\theta + \gamma)$,

(18)
$$k\theta = 2\pi = 360^{\circ} = k'\theta'$$

Here Y_r and Z_r are periodic with periods k and k', not necessarily integral, amplitudes b an c, phases β and γ , respectively. Dealing first with Y_r , let m and n be whole numbers such that n-mk. Then, in analogy with (10), but applied to n of the Y_s take

(19)
$$f(n) = \sum_{r=0}^{n-1} Y_r \cos(r\theta + \alpha) = \frac{nb}{2} \cos(\alpha - \beta) ; \quad k>2$$

as may be shown from (2) and (5). The magnitude of $\mathcal{F}(n)$ depends materially upon the phase difference $(\alpha - \beta)$. But

(20)
$$|\cos(\alpha-\beta)| > 0.92$$
, if $|\alpha-\beta| \le 22\frac{1}{2}$ °

Thus if the phase α of the test function $\cos(r\theta + \alpha)$ differs from the phase β of the data, taken now as Y, in (17), by not more than $22\frac{1}{2}^{\circ}$, the absolue value of F(n) in (19) will fall below its maximum, nb/2, by less than 8%. The phase β of the Y constituent of data would in general be unknown; but if for α we take eight consecutive multiples of 45°, one of these would fall within $22\frac{1}{2}^{\circ}$ of any designated angle β , (mod 360°). Moreover, if in (19), α is increased by 180°, F(n) merely changes its sign, and thus gives no essentially new information. Hence, instead of eight multiples of

216

45°, the four multiples—90°, 0°, -45°, 45°—will be adequate. These, taken in the above order, give

(21)
$$S = \sum_{r=0}^{n-1} Y_r \sin r\theta \qquad ; \quad C = \sum_{r=0}^{n-1} Y_r \cos r\theta$$

(22)
$$S' = \sum_{r=0}^{n} Y_r \sin(r\theta + 45^\circ); \quad C' = \sum_{r=0}^{n} Y_r \cos(r\theta + 45^\circ).$$

Furthermore, it is not necessary to compute 3' and C' in (22) directly from the data, since

(23)
$$5' \frac{\sqrt{2}}{2} (c+5)$$
; $c' \frac{\sqrt{2}}{2} (c-5)$;

but a direct computation of S or C would serve well as a check upon (21). Thus, if in (19) we assign to α the four values mentioned above, we get S, C, S', C', in (21), (22) such that for one of these quantities (20) is satisfied, which makes F(n) in (19) take a value almost equal to nb/2. This increases as n itself—not merely as the square root of n, an increase typical for $\sum X_r \cos(r\theta + \alpha)$, see (12), (16), with k replaced by n.

Let us now consider the function

(24)
$$G(n) = \sum_{r=0}^{n-1} Z_r \cos(r\theta + \alpha) = C \sum_{r=0}^{n-1} \cos(r\theta + \alpha) \cdot \cos(r\theta + \gamma)$$
.

By (2), the terms above have the form

(25)
$$\frac{C}{2} \cos \left[r \left(\theta + \theta \right) + \alpha + \gamma \right] + \frac{C}{2} \cos \left[r \left(\theta - \theta \right) + \alpha - \gamma \right]$$
.

In order to use (5), we postulate that neither $\theta + \theta'$ nor $\theta - \theta'$ is zero or any other multiple of 360°, in particular $\theta \neq \theta$. With n = mk, as before, (18) gives $n\theta = mk\theta = m(2\pi)$. Hence, it follows that

sin
$$n (\theta + \theta)'/z = \pm \sin n \theta / z = \pm \sin m k \pi / k'$$
.

Likewise,

sin
$$n(\theta-\theta')/2 = \pm \sin mk\pi/k'$$
.

Hence, from (4), (25) it follows that G(n) in (24) contains the factor sin mkn/k. Thus G(n)=0, if

(26)
$$k'=mk$$
, $\frac{mk}{2}$, $\frac{mk}{3}$, \cdots $\frac{mk}{m-1}$, $\frac{mk}{m+1}$, $\frac{mk}{m+2}$,...

This may also be written

(27)
$$qk = mk$$
, $q = \text{any whole number} \neq m$.

Thus, if m cycles of a period k are used as multipliers in the form (24) upon a set of mk numbers Z_r , with period k' = mk/q, where q is any whole number except m, the result is zero. It should be noted that in order to apply (4) to (24) (25), to get (26), it was necessary to require that $k' \neq k$, which would make $q \neq m$ in (27). To illustrate: 3 cycles, each with period k = 4, will "annihilate" a set of 12 numbers if these are the successive terms of $C\cos(\gamma + 2\pi r/k')$ with period k' equal to 12, or 12/2, or 12/4, or 12/5, etc., but not 12/3.

Indeed, G(n), instead of vanishing when k is set equal to k in (24), making $\theta' = \theta$, takes on just about its maximum value nc/2 in this case when the phase α is properly chosen—see (19), (20). Inasmuch as G(n) in (24) is a continuous function of θ' , it follows that if k' is taken very close to k, G(n) would be almost as large as for k' = k. But from (26) we learn that G(n) goes down to zero if k' is allowed to be as small as mk/(m+1) or as large as mk/(m-1).

Thus, if significantly large results are obtained when using the test function $\cos (r\theta + \alpha)$ with period $k = 2\pi/\theta$, the individual period k itself is not necessarily indicated. But rather, the test furnishes evidence that some period close to k is present in the data, this proximity being expressed by the inequality (see 26)

(28)
$$\frac{m}{m+1} k < k' < \frac{m}{m-1} k.$$

The relations involved here can perhaps be set forth in greatest simplicity by using integration to effect summations—cf. (34). In the test function $\cos(r\theta + \alpha)$, set the phase $\alpha = 0$, and take $x = r\theta$, where $\theta = 2\pi/k$. Suppose k is rational, and take an even integer m such that n = mk is an even integer. Consider the test as covering the data, from $x = -m\pi$ to $x = m\pi$. Also, in (24), take y = 0, $\theta = z\theta$, = 1. This leads naturally to

(29)
$$g(t, m) = \frac{1}{m\pi} \int_{-m\pi}^{m\pi} \cos x \cdot \cos tx \, dx$$

where the coefficient $1/m\pi$ is chosen to make g(1, m) = 1. With the aid of (2), it is easily seen that

(30)
$$g(t,m) = \frac{2t \sin m\pi t}{m\pi(t^2/)}, \qquad t \neq 1$$

for a given m, the plot of g(t,m) as a function of t consists of a crest above the interval from t-1-1/m to t-1+1/m, flanked on each side by depressions only about one-fourth or one-fifth as great in size or amplitude followed by waves of still smaller size—a "vibration" strongly "damped" on each side of t-1. It has essentially the same characteristics as curves frequently occurring in periodogram analy, is, 1 Only the interval from t-1-1/m to 1+1/m has in general much significance. Sometimes the two adjacent waves need a little attention. But as $\theta'=t\theta$, the above interval is described by

$$(31) /-\frac{1}{m} < \frac{k}{k'} < /+\frac{1}{m} ,$$

which is another way of writing (28).

As an illustration, suppose that 4 cycles of 12 terms each of cos $(r \ 30^{\circ} + \alpha)$ are used in a test with a significantly large result. Here k=12, m=4. Then (28) would recommend to our consideration periods between 9.6 and 16. Perhaps only those between 10 and 15 would deserve serious attention. Since at points $t=1^{+} \ 34^{\circ} m$, the curve (30) is less than half as high as at t=1. Another interesting form³ of (28) is

¹ Rietz-Handbook Loc cit. p. 172, Figure 17

² Schuster, Terrestrial Magnetism. Vol. 3 (1898), p. 30.

³ Cf. the Schuster criterion, Rietz Loc. cit. p. 173; Schuster, Loc. cit., p. 30.

$$|k-k| < \frac{k'}{m}$$

Before leaving (30), it may be well to note that g(t, m) does not take its maximum exactly at t=1; but at

(33)
$$t = / + \frac{1}{3 + 2m^2 \pi^2}$$

as may be seen by setting t = 1 + T in (30), expanding $\sin m\pi t =$ sin $m\pi \tau$ in powers of τ , and setting the first derivative equal to zero. When m=1, t=1.13; when m=2, t=1.04; when m is moderately large, t is very close to 1. In all cases, however, the test function which yields the largest result, when applied to a cosine function with period k' is not that one which exactly fits, but one with period k=k't, where in the ideal case represented by (29) this value of t is given by (33). Inasmuch as t > 1, there is some danger, then, of overestimating the size of the unknown period k', if the attempt is made to get a close approximation to k' by using several test periods k in the immediate vicinity of k', and selecting the k giving the maximum result. This is not due to the fact that G(n)in (24) is a linear function of the 2,'s. For, if in (29), we should change cos x to sin x, to get the mate of g(t, m), this mate would be zero. Thus, the usual quadratic function would reduce to the square of R(t, m), and would have its maximum at the same place given by (33). If the main purpose of an investigation is merely to locate with fair precision those periods whose existence have high probabilities, it may not be necessary to refer to (33).

Going back to the constituents of W_r in (16) we see that if n terms of ΣW_r cos $(r\theta + \alpha)$ are taken, the Y contribution to this sum increases directly as n; the X contribution, being of chance origin, increases usually about as the square root of n; while the Σ contribution oscillates about zero.

V. Convenient Forms for Test Functions

The main points of the theory needed for testing data for periods with the aid of linear functions have now been set forth. In the first place, it appears impossible to demonstrate a periodicity. At best, we

can merely make certain suppositions appear more or less probable or improbable. The method outlined here starts with the assumption that the order of the sizes exhibited in the data is a charce arrangement, Certain functions are to be computed which under chance conditions would ordinarily keep generally within a certain range these functions show no marked tendency to jump the bounds, then the tests yield no positive evidence of periodicity. On the other hand, if these functions take on extremely high values, it appears reasonable to relinquish the supposition that the order of sizes is a chance arrangement and to suppose, rather, that such a periodicity exists as would naturally make the function large. If the data have as a constituent a cosine fluctuation and this is matched by a test cosine curve of the same period and phase, it is easy to see that the sum of products all positive obtained from similarly placed ordinates may be abnormally large. Any k which gives these large results is to be regarded as approximating a probable period.

That the tests may all be conducted in a systematic and uniform manner, some further properties and details may well be noted.

In the first place, only values of $k \ge 2$ need be considered if the data are regarded as representing a sequence of discrete values, corresponding to values of the time (or other argument) spaced at unit intervals. For suppose that ρ/q , the period of $\cos\left[2\pi rq/\rho\right]$, is less than 2. Then for each integer r, $\cos\left[2\pi rq/\rho\right] = \cos\left[2\pi r(\rho-q)/\rho\right]$, the latter with period $\rho/(\rho-q) > 2$. This applies, indeed to the case where the discrete values are integrated values. In fact, since

(34)
$$/ \cos\left(\frac{2\pi t}{r} + \beta\right) dt = A \cos\left(\frac{2\pi r}{k} + \beta'\right),$$

where $A = (k/\pi) \sin \pi/k$, $\beta = (\pi/k) + \beta$, it follows that if there is growth or deposit of $K + \cos[2\pi t/k + \beta] dt$ in time dt—thus, with period k—then the total deposits in time intervals 0 to 1, 1 to 2, 2 to 3, etc., form a sequence with the same period k.

In the second place, it should be noticed that the case of k=2 is peculiar. In place of (12), we have

$$(35) \qquad \qquad \sigma_s^2 = 2\sigma^2 \cos^2 \alpha$$

as follows directly from the fact that when k=2, $\theta=180^{\circ}$, and $\cos{(180^{\circ}+\alpha)}=-\cos{\alpha}$. With the phase α small, we have approximately $\sigma_{z}=\sigma\sqrt{2}$.

Let us now suppose that the data in given order are divided into sets of convenient size—say sets of 120 measurements. Let the arithmetic mean and standard deviation of each set be found. If these quantities—in particular, the standard deviation—show violent fluctuations as we pass from one set to the next set, it may be necessary to handle the material in different sets. But suppose these fluctuations appear to keep within reasonable bounds.

In (6), the data were represented by X_r . Later, in order to emphasize the possibility of different constituents, W_r was used in (16). But, for simplicity, let us now return to X_r as a symbol for the rth element of the data. In the first tests, let the period k be a whole number. Moreover, in place of the functions (21), (22) let us introduce the following, for k>2.

(36)
$$u = u, (k) = \frac{1}{6} \sqrt{\frac{Z}{k}} \sum_{j,k=k}^{j,k-1} X_r \sin r\theta, \quad j = 1, 2, 3, \dots$$

(37)
$$v = v_{j}(k) - \frac{1}{6} \sqrt{\frac{2}{k}} \sum X_{r} \cos r\theta, \quad k \theta = 360^{\circ}$$

(38)
$$u'=u'_{f}(k)=\frac{1}{6}\sqrt{\frac{2}{k}}\sum X_{r}\sin(r\theta+45^{\circ})$$

(39)
$$v' = v'_j \left(k\right) = \frac{1}{\sigma} \sqrt{\frac{2}{k}} \sum_r X_r \cos\left(r\theta + 45^\circ\right)$$

In the case of k=2, replace the radical by $1/\sqrt{2}$. If tests for fractional k are desirable, replace k in (36) to (39) by n, where n=mk, m and n whole numbers as in (21).

Here for each individual set—say of 120 measurements—it is assumed that each measurement has the same "expected value" or "Probable value," approximated by the arithmetic mean, and the same "mean error," approximated by the standard deviation σ . In this case, u, v, u, and v all have the same expected value, zero, by (5), noting that the distributive law holds for expected values. Moreover,

when k>2—see (11), (12), (14), (15)—the mean error of u, v, u', and v' is in each case unity. This is also true when k=2, if the phase has been properly matched—see (35).

To make the tests, then, the functions u, v, u', and v' are computed for certain values of k—perhaps for the sub-multiples 2, 3, 4, 5, 6, 8, . . . of 120. In this way, for k=6, twenty values would be found for each of the four functions. The information thus found may not be very significant. But if not, we may combine results as follows. Let $s=q^2$, where q is a whole number. Let

(40)
$$U_s = \frac{1}{q} \left(u_s + u_z + \cdots + u_s \right)$$
; $U_z = \frac{1}{q} \left(u_{s+1} + \cdots + u_{ss} \right)$.

etc., and form similar expressions for $V_1, V_2, \dots V_l, V_2, \dots V_l, V_2, \dots$ Each of these functions has expected value zero and mean error unity. To illustrate—suppose that $u_s(6) = 1.8$; $u_s(6) = 2.1$; $u_s(6) = 1.7$; $u_{*}(6) = 1.8$. These results taken individually would not furnish strong evidence for a period of 6. Some statisticians regard a variation equal to three times the "probable error" or two times the standard deviation as "significant"—in which case (6) 2.1 would be significant. But such evidence is not overwhelming. But, by (40), $U_1 = 3.7$. Here U_1 , with mean value zero, has jumped up to an absolute value 3.7 times its standard deviation, unity. On a pure chance basis, in normal distributions, this would happen only about twice in 10,000 trials, on the average. Altho $U_i = 3.7$ affords no demonstration of a period of 6, the result is at least highly significant. If such high values occur repeatedly in using k=6, we would be justified in asserting that the data contain a constituent with period somewhere near 6.

Moreover, the process (40) is subject to iteration—as long as the data hold out. If $5 = q'^2$, then $(U_1 + U_2 + ... + U_5)/q'$ is a function with mean value zero, and mean error unity.

When the change in standard deviation is fairly gradual from set to set, the values of u_1, u_2, \ldots can be computed without interruption, using proper adjustments for those values of u_j whose terms arise partly from two sets, such as u_A (16).

Such a result as $u_2(6) = 2.1$ would furnish evidence only for the six measurements from which it was computed; and in the light of (28), with m = 1, the implication at most would be for some period

greater than 3. But U = 3.7 would furnish strong evidence that in the 24 measurements covered there was a constituent with period between 4.8 and 8—taking m = 4 in (28).

The technique of computation would present a few problems. In some cases (6) would be utilized. Certain tables' of products with the harmonic factors as multiplicands may be of assistance. Or certain tables may be constructed for use with the aid of an adding machine—with complements listed to take the place of negative numbers. Only μ and ν in (36), (37) need be computed directly; for μ and ν may be found at once—see (23). But it would seem advisable to compute μ or ν as a check. Graphs showing the progress of the functions μ , ν , etc., may be constructed.

The interpretation of the results would often be difficult because different sections of the data would frequently give different indications. Again, if two layers of rock are counted as one, an error would be introduced. But this would affect the u_1, v_2, \ldots involved, not the preceding or following u_1, v_2 . Indeed, if an actual period is present, as indicated by the u', an error of merging may merely shift the "burden of proof" to one of the other functions v, u', or v'. Certain cyclic changes, bringing u, u', v, v' into prominence in rotation, may indicate that the test period k is close to an actual period but with a discrepancy large enough to produce a systematic advance of phase. Many similar principles commonly employed in period testing could be used to advantage in the method here outlined.

Edward L. Dodd

¹ E. g., L. W. Pollak. "Rechentafeln zur Harmonischen Analyse."

SYNOPSIS OF ELEMENTARY MATHEMATICAL STATISTICS¹

Rу

B. L. SHOOK

Section IV. The Graphical Representation of Frequency Distributions

25. The investigation of a frequency distribution is greatly facilitated by presenting the data graphically by means of either a Frequency Polygon or a Histogram, depending upon the nature of the distribution.

For a distribution of discrete variates the frequencies are represented by ordinates whose lengths are proportional to the various frequencies and whose abscissae correspond to the variates of the distribution. The shape of the distribution is rendered more apparent by either connecting the tops of the ordinates by straight lines, thus forming a Frequency Polygon, or drawing a Frequency Curve that approximately passes through the vertices of the polygon. Figure I presents the Frequency Polygon derived from the data of Table XI. In addition a curve has been drawn to illustrate the general trend of the distribution.

If the frequency distribution under examination be one of grouped discrete or continuous variates it will be found that the *Histogram* is best suited for graphical representation. A Histogram is a series of rectangles erected on bases that are proportional to the class intervals and with altitudes proportional to the respective class frequencies. Thus, in this case, the frequencies are represented by areas. The shape of the distribution may be emphasized by constructing a continuous fre-

I A continuation of an article bearing the same caption appearing in Vol. I, No. 1, of the Annals.

quency curve such that the areas under the curve between the ordinates at the lower and upper boundaries of the various rectangles should equal approximately the areas of the corresponding rectangles. Two examples are presented, both the distributions are composed of continuous variates, one exhibiting positive skewness and the second negative. The numerical data and corresponding Histograms are presented in Tables XII and XIII and Figures II and III respectively.

TABLE XI

Distribution of Frequency of glands in the right fore-leg of 2,000 female swine¹

v	fv	t	f t
0	15	-2.083	.013
1	209	-1.488	.176
2	365	893	.307
3	482	298 ,	.405
4	414	.297	.348
5	277	.892	.233
6	134	1.487	.113
7	72	2.082	.061
8	22	2.677	.018
9	8	3.272	.007
10	2	3.867	.002
$M_{\nu} = 3$	3.501		N = 2000
o_ =	1.680 <i>77</i>		$\frac{1}{6} = .594965$
∅ _{3, v} −	.508462		$\frac{7}{6} = .594965$ $\frac{6}{N} = .000840385$
≪ _{3, √} -	.508462		$\bar{N} = .000840385$

26. It has previously been stated that the three fundamental statistical functions are the Mean, Standard Deviation, and Skewness. The Mean has been defined as a convenient average, and the Standard

¹ Davenport, "Statistical Methods," page 35.

FIGURE I

Frequency Distribution of glands in the right fore-leg of 2,000 female swine

Deviation measures the concentration of the variates about this average. Skewness has not, however, been so clearly explained. If the variates of a distribution be symmetrically arranged about their mean, then $\mu_{s,v}$ or the third moment about the mean will be zero. Under these conditions $\alpha_{s,v}$, or the coefficient of skewness, must also be zero. Thus $\alpha_{s,v}$ measures the degree to which a frequency distribution is symmetrical. If $\alpha_{s,v}$ is zero, then from the standpoint

TABLE XII

Weights of White Boys - 30 to 33 months
(Correct to nearest pound)

Class Mark	f	t	ft
21	3	-2.90	.009
22	3	-2.50	.009
23	11	-2.09	.032
24	27	-1.69	.079
25	65	-1.28	.191
26	101	88	.297
27	135	47	.397
28	136	07	.400
29	128	.34	.376
30	105	.75	.309
31	59	1.15	.173
32	3 0	1.56	.088
33	15	1.96	.044
34	7	2.37	.021
35	5	2.77	.015
36	8	3.18	.024
37	1	3.58	.003
38	1	3.99	.003

$M_{\nu} = 28.16190$	N = 840
$\delta_{v} = 2.46837$	$\frac{1}{6}$ = .405126
$\alpha_{siv} = .427969$	$\frac{\delta}{N} = .00293854$

of the present synopsis the distribution may be considered normal, for if such a distribution be graphed in standard units it will follow the locus of the well known Normal Curve of Error. Accordingly it would seem logical to expect that for each value of α_3 there is one standard curve which is the locus toward which all distributions with that degree

TABLE XIII

Barometric Heights for Daily Observations During Thirteen Years at Llandudno, England¹

(Original measurements to nearest millimeter)

Class Mark	t	f	fŧ
28.35	-4.38	1	.001
28.55	-3.82	2	.001
28.75	-3.26	8	.005
28.95	-2.71	30	.018
29.15	-2.15	74	.045
29.35	-1.59	166	.102
29.55	-1.04	368	.226
29.75	48	509	.313
29.95	.08	656	.403
30.15	.63	580	.356
30.35	1.19	353	.217
30.55	1.75	140	.086
30.75	2.31	30	.018
30.95	2.86	5	,003

$$M_{\nu} = 29.9221$$
 $N = 2922$
 $\sigma_{\nu} = .359014$ $\frac{d}{d} = 2.78541$
 $M_{\sigma} = -.32919$ $M_{\sigma} = 0.000614329^{2}$

¹ Karl Pearson and A. Lee, "Philosophic Transactions," p. 428 (1897).

² This formula assumes that the class interval is unity, the proper value of $\frac{\sigma}{N}$ is therefore 5 times the value as ordinarily computed.

FIGURE III
Barometric Heights Recorded Daily at Llandudno, England

of skewness approach. The one essential is that the unit of measurement must be removed from the data, that is each distribution should be expressed in terms of the standard variates t and the corresponding frequencies f_t . As before, the standard variate t_i corresponding to v_i is obtained from the following formula:

$$t_1 = \frac{v_i - M_v}{\sigma_v} = \frac{\vec{v}_i}{\sigma_v}$$

Similarly, the frequencies for each of the standard variates is defined as follows:

$$(26) f_t = \frac{\sigma_v}{N} f_v$$

These two formulae will enable one to analyze all distributions entirely independent of the unit involved. In Figure IV the three distributions graphically presented in Figures I, II and III are shown contrasted with the Normal Curve. The numerical values of t and f. for each distribution are given in the corresponding table. The values may be obtained in each case by employing the continuous process described in Section I. It will be noticed that the two distributions with positive skewness of .5 and .4 respectively reach their maxinium in advance of the Normal Curve and approach the zero limit more gradually for positive values of the standard variates. Accordingly, for the distribution exhibiting negative skewness, the positions are reversed and the more gradual approach to the zero limit occurs for the negative values of the standard variates. In general, a distribution having skewness within the limits ± .3 will exhibit very little deviation from the normal curve when presented graphically in this manner.

Summary of Section IV-

It is usually found very advantageous in the investigation of frequency distributions to present the data graphically. A distribution of discrete variates should be represented by a Frequency Polygon and one of continuous variates by a Histogram. In either case a free hand curve may be drawn indicating the general trend of the distribution and is called the Frequency Curve. The Standardized Curve is obtained by plotting the variates and their corresponding frequencies in standard form by means of the following formulae:

$$t_{1} = \frac{v_{i} - M_{v}}{\delta_{v}} = \frac{\vec{v_{i}}}{\delta_{v}}$$
$$f_{t} = \frac{\delta_{v}}{N} \cdot f_{v} .$$

FIGURE IV

SECTION V. THE INVERSE PROBLEM

27. From the standpoint of Elementary Mathematical Statistics we may say that the Mean, Standard Deviation, and Skewness together with its total frequency completely characterize a distribution. If this statement were accurate it would be possible to reproduce any distribution if its three elementary functions and total frequency were known. A tabulation of Pearson's Type III Curves for various degrees of skewness affords, for the purposes of Elementary Statistics, the most satisfactory representation of frequency distributions from the point of view of both effectiveness and facility in using. In order to illustrate the method several numerical examples are included. In Table XIV the illustration is one of discrete variates.

L. R. Salvosa, "Tables of Pearson's Type III Function," The Annals of Mathematical Statistics, May, 1930.

TABLE XIV

Frequency Distribution of Number of Glands in the Right Foreleg
of 2,000 Female Swine

v	t	f ŧ	Predicted Frequency	Observed Frequency
(1)	(2)	(3)	.(4)	(5)
0	-2.08	.026952	32	15
ļ	-1.49	.141661	169	209
2	89	.320068	381	365
3	30	.409193	487	482
4	.30	.353689	421	414
5	89	.229770	2741	27 7
O	1.49	.118287	141	134
7	2.08	.051638	621	72
8	2.68	.019220	23	22
9	3.27	.006459	8	8
10	3.87	.001925	2	2
Total		·	2000	2000

M	= 3.501	N = 2000
б	= 1.68077	$\frac{7}{6} = .594965$
a,	508462	$\frac{N}{\sigma}$ = 1189.93

Explanation. In every case the value of α_j is taken to the nearest tenth and the value of ℓ to the nearest hundredth. In the examples included no interpolation has been made for any value.

Columns (1) and (2) of Table XIV contain the variates and the corresponding values of £ obtained by means of the continuous process. Column (3) is obtained directly from the Table of Ordinates of the Pearson Type III Function. All values may be found in the

I In order to obtain N=2000 it was necessary to increase these frequencies by 1, although the fractional value was slightly less than than the necessary .5.

column with skewness = .5 and opposite the respective value of t. Since these are the Standard Frequencies f_t , the predicted frequencies for each variate may be obtained from the following formula.

$$\therefore f_{t} = \frac{\delta}{N} \cdot f_{v}$$

$$\therefore f_{v} = \frac{N}{\delta} \cdot f_{t}$$
(27)

The predicted frequencies in column (4), therefore, are obtained by multiplying column (3) by the value 1189.93. These values are the graduated frequencies. The actual observed frequencies are given in column (5).

TABLE XV

Distribution of Weights of White Boys - 30 to 33 Months

(Measurements correct to nearest pound)

Lower Limit of Class	t at Lower Limit	Accumulative Percent Frequency	Porcent Frequency	Producted Frequ ncy	Observed Exquency
(1)	(2)	(3)	(4)	(5)	(6)
20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 28.5 29.5 30.5 31.5 32.5 33.5	-3.10 -2.70 -2.29 -1.89 -1.48 -1.08 67 27 .14 .54 .95 1.35 1.76 2.16 2.57	.000021 .000378 .003368 .016542 .055982 .135381 .262712 .417620 .581327 .721684 .831841 .904902 .950799 .975818 .989043	.000357 .002990 .013174 .039440 .079399 .127331 .154908 .163707 .140357 .110157 .073061 .045897 .025019 .013225	0 3 11 33 67 107 130 138 118 93 61 39 21 11	3 3 11 27 65 101 135 136 128 105 59 30 15 7
34.5 35.5	2.57	.989043	.002845	2	8
36.5 37.5 38.5	3.38 3.78 4.19	.998064 .999236 .999719	.001172 .000483 .000218	1 0 0	1 1 0
Total				840	840

$$M = 28.16190$$
 $N = 840$
 $\sigma = 2.46837$ $\frac{1}{\sigma} = .404126$
 $\alpha_s = .427969$

Explanation:

Since Table XV is a distribution of continuous variates, it is necessary to use the Table of Areas of the Pearson Type III Curve. The values in this table are the accumulated percent of the standard curve helow a specified value of ξ . The method of prediction is therefore to estimate the per cent of the distribution lying between the consecutive lower limits of each class. In column (1) of Table XV are given the lower limit of each class and in Column (2) the value of t at this lower limit. Column (3) is taken directly from the Table of Areas of the Pearson Type III Function, 4.= 4, and represent the percent of the distribution lying below the particular value of t. In order to find the percentage of the distribution in each class, it is merely necessary, therefore, to difference column (3). For example, the first value, .000357, is found by subtracting .000021 from .000378. In order to find the predicted frequencies in column (5), N, or the total frequency, should be multiplied by each value in column (4). The observed frequencies are given in column (6).

TABLE XVI

Barometric Heights for Daily Observations During Thirteen Years at Llandudno, England

(Correct to the nearest millemeter)

Lower Limit of Class	t	Accumulative Percent Frequency	Percent Frequency	Predicted Frequency	Observed Frequency
(1)	(2)	(3)	(4)	(5)	(6)
28.25	-4.66	.999956	.000171	1	1
28 45	-4.10	.999785	.000739	2	2
28.65	-3.54	.999046	.002716	8	8
28.85	-2.99	.996330	,009081	27	30
29.05	-2.43	.987249	.025770	75	74
29.25	-1.87	.961479	.061380	179	166
29.45	-1.31	,900099	.117068	342	368
29.65	76	.783031	.185122	541	509
29.85	20	.597909	.222074	649	656
30.05	.36	.375835	.192952	564	580
30.25	.91	.182883	.121528	355	353
30.45	1.47	.061355	.048526	142	140
30.65	2.03	.012829	.011285	33	30
30.85	2.58	.001544	.001468	4	5
31.05	3.14	.000076	.000076	0	0
Total				2922	2922

$$M = 29.92207$$
 $N = 2922$
 $\delta = .359014$ $\frac{1}{\delta} = 2.78541$
 $\delta = -.32919$

Explanation:

29. Although the data of Table XVI is also a distribution of continuous variates, it will be noticed that in this case the coefficient of

skewness is negative. Since the Tables include only positive values of α_3 , it seems desirable to explain the procedure for such a distribution. If a frequency curve having pronounced positive skewness be graphed on rather fine paper and then held to the light or in front of a mirror, it will be seen that the distribution will seem to show negative skewness to the same degree in which it formerly displayed positive. This being true, it is possible to use the Tables for all cases of negative skewness by merely changing the sign of t, and if an area is desired it is necessary to reverse the order of differencing. Three examples are given in order to cover as many different cases.

Illustration 1, $\alpha_s = -.5$, required the percentage of the area of the standardized curve lying between t = -2.43 and t = -1.98. From the tables under the column for skewness = .5.

t = +2.43, percent of area = .983883

t = 1.98, percent of area = .964416

The percentage lying between these two values of t is therefore .983883 - .964416 = .019467.

Illustration 2, if $\alpha_g = -.8$, required the percentage of the area lying between t = -.02 and t = .25. Using the Table of Areas in the column for skewness of .8,

If t=+.02, percent of area = .561064

t=-25, percent of area = .450687

To find the percent of the area merely subtract as before, .561064 - .450687 = .110377.

Illustration 3, if $\alpha_{s} = -.2$, required the percentage of the area lying between t = .52 and t = 1.63. Again referring to the Tables of Areas, we find for $\alpha_{s} = .2$

If t = -0.52, percent of area = .310015

If t = -1.63, percent of area = .045108

Accordingly, the required percentage is .310015 - :045108 = .264907.

Expansion of $(5/6+1/6)^{180}$

TABLE XVII

			r	T
Y	t	fŧ	Pred. Freq.	Obs. Freq.
(1)	(2)	(3)	(4)	(5)
14 15 16 17 18 19 20 12 22 23 24 25 26 27 28 29 30 31 32 33 33 33 33 33 34 34 44 44 47	-3.21 -3.01 -2.81 -2.61 -2.41 -2.21 -2.01 -1.81 -1.60 -1.40 -1.20 -1.00804020 .01 .21 .41 .61 .81 1.01 1.21 1.62 1.82 2.02 2.22 2.42 2.62 2.82 3.02 3.23 3.43	.001468 .003013 .005919 .010954 .019257 .032053 .050807 .076658 .112095 .153377 .200401 .250281 .299057 .342196 .375301 .394857 .398640 .359746 .322535 .278510 .231792 .186059 .144144 .106201 .076661 .053513 .024163 .014975 .009196 .005476 .003077 .001723	0 1 1 2 4 7 10 15 23 14 0 0 69 76 0 80 87 72 56 47 89 22 11 11 7 5 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 12 4 60 16 23 14 11 15 16 97 59 87 77 24 46 46 46 47 29 22 16 11 85 32 11 10

 $M_r = 29.973$ N = 1000 $\sigma_r = 4.96853$ $t_i = .201267 v_i -6.032569$ $\alpha_{sv} = .108097$ $\frac{N}{\sigma} = 201.267$

TABLE XVIII

Expansion	of	(5/6 +	1/6	180
-----------	----	--------	-----	-----

Class	Lower Limit	ŧ	Accumulated Percent Freq.	Percent Freq.	Pred. Freq.	Obs. Freq.
(1)	(2)	(3)	(4)	(5)	(6)	(7)
11-	10.5	-3.92	.000014	.000213	0	0
14-	13.5	-3.32	.000227	.002128	2	2
17-	16.5	-2.71	.002355	.012561	13	12
20-	19.5	-2.11	.014916	.049031	49	49
23_	22.5	-1.50	.063947	.120876	121	123
26-	25.5	90	.184823	.203066	203	205
29-	28.5	30	.387889	.239543	239	236
32-	31.5	.31	.627432	.191988	192	192
35-	34.5	.91	.819420	.112488	112	112
38-	37.5	1.51	.931908	.048675	49	49
41-	40.5	2.12	.980583	.015048	15	16
44-	43.5	2.72	.995631	.003627	4	4
47-	46.5	3.33	.999258	.000742	1	0

$$M_{\nu} = 29.973$$
 $N = 1000$
 $\sigma_{\nu} = 4.96848$ $\frac{1}{\sigma} = .201269$
 $\sigma_{\sigma \nu} = .105899$

30. As further numerical examples the three illustrated problems used in Section III have been graduated. The complete numerical solution will be found in Tables XVII, XVIII and XIX.

Summary of Section V-

Knowing the three fundamental functions and the total frequency of a distribution, it is possible to obtain predicted or graduated frequencies for that distribution with a surprising degree of accuracy. This is accomplished through the use of tables of the standard ordinates and accumulated percentage areas of the Pearson Type III Curves.

TABLE XIX

Weights of 1000 Female Students

(Original measurements to nearest .1 lb.)

Class	Lower Limit	t	Accumulated Percent Freq.	Percent Freq.	Pred. Freq.	Obs. Freq.
(1)	(2)	(3)	(1)	(5)	(6)	(7)
<i>7</i> 0-	69.95	-2.88	.000000	.000000	0	2
80-	<i>7</i> 9.95	-2.29	.000000	.003358	4	16
90-	89.95	-1.70	.003358	.102159	102	82
100-	99.95	-1.11	.105517	.238290	238	231
110-	109.95	52	.343807	.249585	250	248
120-	119.95	.07	.593392	.183665	184	196
130-	129.95	.66	.777057	.111093	111	122
140-	139.95	1.25	.888150	.059338	59	63
150-	149.95	1.84	.947488	.029412	29	23
160-	159.95	2.44	.976900	.013209	13	5
170-	169.95	3.03	.990109	.005791	6	7
180-	179.95	3.62	.995900	.002445	3	1
190-	189.95	4.21	.998345	.001002	1	2
200-	199.95	4.80	.999347	.000400	0	1
210-	209.95	5.39	.999747	.000157	0	1
220-	219.95	5.98	.999904	.000096	0	0

$$M_{\nu} = 118.74$$
 $N = 1000$
 $\sigma_{\nu} = 16.9175$ $\frac{1}{\sigma} = .0591104$
 $\omega_{\nu} = .976424$

It should be remembered that in advanced statistics moments higher than the third are necessary to characterize a distribution, but from the elementary viewpoint, the Mean, Standard Deviation and Skewness are considered to completely characterize a distribution.

SECTION VI. BERNOULLI'S THEOREM

31. Factorials. For convenience, the product of the first n consecutive integers is called "factorial n" and is designated by the symbol $\lfloor n \rfloor$. Thus

$$13=1\cdot 2\cdot 3=6$$
, $15=1\cdot 2\cdot 3$ 4 5=120, $18=8\cdot 7$ 6=336.

Combinations. The number of combinations, each of r things, that can be formed from n things, is represented by the symbol $_nG_r$. Texts on elementary algebra show that

For example, suppose we desire to find the number of different committees, each of three persons, that can be selected from five individuals. If we designate the five individuals by the letters A, B, C, D and E, we observe that committees of three may be systematically enumerated as follows:

The number of committees, which we just enumerated as 10, agrees with the value found by formula (28), for since here n=5, r=3,

$$_{n}C_{r}=_{s}C_{s}=\frac{5}{3!2}=\frac{5}{1\cdot 2}=10$$

Another illustration: The number of different committees, each composed of seven individuals, that can be selected from ten candidates is

$$_{10}C_{7} = \frac{10}{17 \cdot 3} = \frac{10 \cdot 9}{1 \cdot 2} \frac{8}{3} = 120$$

and the number of combinations, each of three, that can be formed from ten items is

$$_{10}C_3 - \frac{10}{5} = 120$$

It should be noted that $C_7 = C_8$, and in general that

$$(29) \qquad {}_{n}C_{r} = {}_{n}C_{n-r}$$

This follows from the fact that the number of ways of selecting r items from n is equal to the number of ways of rejecting (n-r) from n. Thus, every time three are selected from ten, seven are rejected. Therefore the number of ways of selecting three from ten, C_2 , is also equal to C_2 .

We shall have occasion to refer to the following tabulation of values of C_c .

TABLE XX

Values of	, Cr
-----------	------

N	r												
	0	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1											
2	1	2								}			
3	1	3	3	1				1					
4	1	4	6	4	1								
5	1	5	10	10	5	1							
6	1	6	15	20	15	6	1						ŀ
7	1	7	21	35	35	21	7	1					
8	1	8	28	56	70	56	28	8	1				
9	1	9	36	84	126	126	84	36	9	1			
10	1	10	45	120	210	252	210	120	45	10	1		
11	1	11	55	165	330	462	462	330	165	55	11	1	
12	1	12	66	220	495	792	924	792	495	220	66	12	1

32 Binomial Theorem. By repeated multiplication we find that

$$(a+b)' = a+b$$

$$(a+b)^{2} = a^{2} \cdot 2ab+b^{2}$$

$$(a+b)^{3} = a^{2} \cdot 3a^{2}b+3ab^{2}+b^{3}$$

$$(a+b)^{4} = a^{4} \cdot 4a^{3}b+6a^{2}b^{2}+4ab^{3}+b^{4}$$

etc.

By mathematical induction it can be shown that for positive integer values of n

(30)
$$(a+b)^n = a^n + na^{n-b} + \frac{n(n-1)a^{n-2}}{1 \cdot 2}a^{n-2}b^2 + \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3}a^{n-2}b^3 + \cdots$$

This equation is known as the binomial theorem and may be written more compactly, if n is an integer, in the following form:

(31)
$$(a+b)^n = a^n + {}_{n}C, a^{n-1}b + {}_{n}C_{2}a^{n-2}b^{2} + {}_{n}C_{3}a^{n-3}b^{4} + \cdots$$

Using Table XX, we may write down at once that $(a+b)'^2 = a'^2 / 2a'b + 66a''b'^2 + 220a''b'^2 + \cdots + 66a''b'^2 / 2ab'' + b'^2$

Bernoulli's Series. If p denote the probability that an event will happen in a single trial, and q the probability that it will not happen in that trial, p+q=1, then the probability that the event will happen exactly $0, 1, 2, \ldots x$ times during r trials is given by the respective terms of the binomial expansion

$$(32) (q+p)^{r} = q^{r} + {}_{r}C_{r}q^{r-p} + {}_{r}C_{x}q^{r-x}p^{x} + \cdots , C_{x}q^{r-x}p^{x} + \cdots$$

To illustrate. If a coin be tossed, we may assume a priori that the probability that heads will turn up is $\rho = \frac{1}{2}$ and the probability that heads will not turn up is $q = \frac{1}{2}$. If an individual tosses the coin twelve times in succession, it is possible that heads may turn up on no occasion, or heads may turn up exactly 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 times, respectively. By formula (32), these chances are equal respectively to the successive terms of the expansion of $\left(\frac{1}{2} + \frac{1}{2}\right)^{\frac{1}{2}}$, namely $\left(\frac{1}{2}\right)^{\frac{1}{2}} + \frac{1}{2}C_{12}\left(\frac{1}{2}\right)^{\frac{1}{2}} + \frac{1}{2}C_{12}\left(\frac{1}{2}\right)^{\frac{1}{2}} + \frac{1}{2}C_{12}\left(\frac{1}{2}\right)^{\frac{1}{2}} + \frac{1}{2}C_{12}\left(\frac{1}{2}\right)^{\frac{1}{2}}$

Denoting the probability that heads will turn up on exactly x occasions by P_x , and referring to Table XX for values of P_x , we have that

$$P_{12} = \frac{1}{4096}$$
, $P_{11} = \frac{12}{4096}$, $P_{12} = \frac{66}{4096}$, $P_{12} = \frac{220}{4096}$

TABLE XXI

Values of the Terms in the expansion of $\left(\frac{1}{2} + \frac{1}{2}\right)^{2}$

Number of		=.5, <i>p</i> =.5	Observed
Successes	Probability Px	Expected Freq. 4096 Px	Frequencies
(1)	(2)	(3)	(4)
0	1/4096	1	0
1	12/4096	12	7
2	66/4096	66	60
3	220/4096	220	198
4	495/4096	. 495	430
5	792/4096	792	731
6	924/4096	924	948
7	792/4096	792	847
8	495/4096	495	536
9	220/4096	220	257
10	66/4096	66	71
11	12/4096	12	11
12	1/4096	1	0
Total	1	4096	4096

33. Expectation. If ρ denote the probability of success for each of n trials, then ρn is defined as the expected number of successes in n trials. For example, we have just shown that the a priori probability of throwing heads twelve successive times with a coin is equal to $P_{n} = \frac{1}{4096}$. Therefore if twelve coins be tossed simultaneously on 4096 occasions, we expect that all twelve coins will turn up heads on only one occasion. Likewise, the expected number of times that exactly ten heads and two tails would turn up is equal to $4096 \cdot P_0 = 66$, and that exactly half of the coins would turn heads only $4096 \cdot P_6 = 924$ times.

It will be seen that the sum of all the probabilities in column (2) is unity. This follows from the fact that these values are the several terms of the expansion of $(q+p)^r$, and since q+p=1, therefore $(q+p)^r=1$.

Values of the Terms in the Expansion of $\left(\frac{5}{6} + \frac{7}{6}\right)^{2}$

TABLE XXII

Number of	r = 12, q = 5	$\frac{1}{6}$ $p=1/6$	Observed	
Successes (1)	Probability P _x (2)	Expected Freq. (3)	Frequencies (4)	
0 1 2 3 4 5 6 7	.11216 .26918 .29609 .19739 .08883 .02843 .00663 .00114	459 1103 1213 808 364 116 27 5	447 1145 1181 796 380 115 24	
9 10 11 12	.00001 .00000 .00000 .00000	0 0 0 0	0 0 0 0	
Total	1.00000	4096	4096	

A second illustration: Suppose twelve dice are thrown and that only a throw of 6 is to be considered a success. By formula (32), therefore, the expansion of

$$\left(\frac{5}{6} + \frac{1}{6}\right)^{2} = \left(\frac{5}{6}\right)^{2} + \frac{1}{2}C_{1}\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right) + \frac{1}{2}C_{2}\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)^{2} + \cdots$$

are equal respectively to the probabilities that exactly 0, 1, 2, successes will be obtained in a single throw of the twelve dice, or what is the same thing, in twelve successive throws with a single die.

In this case the probabilities P_x are expressed as decimals, since the expansion contains values of $(6)^{12}$ in the denominators. Therefore 6^{12} is the smallest value of N that will produce integer expected frequencies.

We shall now attack a more important problem. Let us consider a hypothetical group of 100,000 individuals, all of the same age and all exposed to the same hazards of life. Moreover, let us assume that the probability that each individual will die within one year is ρ - 008, or that the probability that any specified individual will survive a year is ρ = .99?.

By formula (32), the terms of the expansion of $(q+p)^r$ (.992+.008) $^{\prime 00,000}$, namely, (.992) $^{\prime 00,000}$ (.008) $^{\prime +}$ (.992) $^{\prime 00,000}$ (.008) $^{\prime +}$ (.992) $^{\prime 00,000}$ (.008) $^{\prime 00,000}$ (.008) $^{\prime 00,000}$... represent the probabilities that exactly 0, 1, 2, ..., x, ... individuals will die within the year.

The value of $(.992)^{(00,000)}$ is very small. Thus $(.992)^{(00,000)}$

$$\log 992 = 2.9965117 \qquad \log 992^{\frac{100}{000000}} = 299651.17$$

$$\log 1000 = 3 \qquad \log 1000^{\frac{100}{000000}} = \frac{300000.00}{349.17}$$

Therefore .992 -000,000,000 . . . 15, where 15 is preceded by 348 zeros. The probability that all would die (.008) is far less than this value.

The values of P_x in Table XXIII are given to the nearest fourth

decimal place. Thus to six decimal places $P_{\bullet,\bullet,\circ} = .000005$ and $P_{\circ} + P_{\bullet} + P_{\bullet,\bullet} = ... + P_{\bullet,\bullet,\circ} = ... + P_{\bullet,\bullet,\bullet} = ... +$

- (a) The chance that exactly 800 will die within a year is .0142
- (b) The chance that 800 or less will die within a year is .5094.
- (c) The chance that 850 or less will die within a year is .9625.
- (d) The chance that at least 750 will die within a year is

$$P_{750} + P_{751} + P_{752} + \dots + P_{100,000} = 1 - \sum_{0}^{149} P_{x} = 1 - 0355 = .9645$$

Obviously the sum of all terms from P_0 to $P_{100,000}$ is equal to unity. It is interesting to note that although Q is relatively much greater than P_0 , nevertheless the values of P_{χ} are very symetrically arranged about their mean. For example, the first significant term of P_{χ} is $P_{707} = .0001$, and the last significant term is $P_{896} = .0001$. Thus there are 93 significant terms above and 96 terms below P_{800} . However, there are 707 insignificant terms before P_{707} and 99,104 insignificant terms after P_{896} . We have arbitrarily rejected as insignificant any value less than .0001. Had we taken .000001 as the limit of significance, we would have found that the limiting significant values of P_{χ} are $P_{643} = P_{344} = .0000001$. Here again the significant ranges above and below the expected P_{800} are almost the same.

In general it may be said that unequal values of q and p when associated with large values of r are reflected in an unequal number of insignificant terms in the upper and lower ranges. The significant terms form a distribution which, to the eye, is rather symmetrical.

35. Let us now retrace a few steps. Theoretically, formula (32) enables one to compute the probability that exactly x individuals out of any population of r will die within a year, provided, of course, q and p are known. Actually, however, such computation is very laborious. Thus, it is not easy to show that

TABLE XXIII

Values of P_x and $\sum_{x=0}^{x} P_x$, $P_x = C_x q^{r-x} p^x$ and r = 100,000, q = .999, p = .008

x	Px	Ş́ P,	x	Px	Σ̈́Pχ	x	P _x	Σ̈́Pχ
690 691 692 693 694 695 696 697 698 699	0000 .0000 .0000 .0000 .0000 .0000 .0000	.0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001	730 731 732 733 734 735 736 737 738 739	.0006 .0007 .0007 .0008 .0009 .0010 .0010 .0011 .0012 .0013	.0062 .0059 .0077 .0085 .0093 .0103 .0113 .0125 .0137	770 771 772 773 774 775 776 777 778 779	.0081 .0084 .0087 .0091 .0094 .0097 .0100 .0103 .0106 .0108	.1474 .1558 .1645 .1736 .1830 .1926 .2026 .2128 .2234 .2342
700 701 702 703 704 705 706 707 708 709	.0000 0000 .0000 .0000 .0000 .0000 .0001 .0001	.0002 .0002 .0002 .0003 .0003 .0004 .0004 .0005	740 741 742 743 744 745 746 747 748 749	.0014 .0016 .0017 .0018 .0019 .0021 .0022 .0024 .0026	.0165 .0180 .0197 .0215 .0234 .0255 .0278 .0302 .0327 .0355	780 781 782 783 784 785 786 787 788 789	.0111 .0114 .0117 .0119 .0122 .0124 .0126 .0128 .0130 .0132	.2454 .2568 .2684 .2803 .2925 .3049 .3175 .3303 .3433 .3565
710 711 712 713 714 715 716 717 718 719	.0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002	.0006 .0007 .0008 .0009 .0010 .0012 .0013 .0015 .0017	750 751 752 753 754 755 756 757 758 759	.0029 .0031 .0033 .0035 .0037 .0040 .0042 .0044 .0047	.0384 .0415 .0448 .0484 .0521 .0561 .0603 .0647 .0694 .0744	790 791 792 793 794 795 796 797 798	.0134 .0135 .0137 .0138 .0139 .0140 .0141 .0141 .0141	.3699 .3835 .3971 .4109 .4248 .4388 .4528 .4669 .4811 .4952
720 721 722 723 724 725 726 727 728 729	.0002 .0003 .0003 .0003 .0004 .0004 .0005	.0021 .0023 .0026 .0029 .0033 .0037 .0041 .0046 .0051	760 761 762 763 764 765 766 767 768 769	.0052 .0055 .0058 .0060 .0063 .0066 .0069 .0072 .0075	.0796 .0850 .0908 .0968 .1032 .1098 .1167 .1239 .1314 .1392	800 801 802 803 804 805 806 807 808	.0142 .0141 .0141 .0141 .0140 .0139 .0138 .0137 .0135	.5094 .5235 .5377 .5517 .5657 .5796 .5934 .6070 .6206

TABLE XXIII (Continued)

.7.	Px	ž P*	x	Px	ξPx	x	Px	Σ̈́P	
811 811 811 811 811 811 811 811 811 811	.0132 .0130 .0128 .0126 .0124 .0122 .0119 .0117 .0114	.6472 .6602 .6731 .6857 .6981 .7103 .7222 .7339 .7454 .7565	850 851 852 853 854 855 856 857 858 859	.0029 .0028 .0026 .0024 .0023 .0021 .0020 .0019 .0016	.9625 .9652 .9678 .9702 .9725 .9746 .9766 .9785 .9802 .9818	890 891 892 893 894 895 896 897 808 899	.0001 .0001 .0001 .0001 .0001 .0001 .0000 .0000	.9992 .9993 .9994 .9995 .9996 .9996 .9997 .9997	
820 \$21 \$22 \$23 \$24 \$25 \$25 \$27 \$28 \$29	.0109 .0106 .0103 .0100 .0097 .0094 .0091 .0088 .0085	.7674 .7781 .7884 .7984 .8082 .8176 .8267 .8356 .8441 .8524	861 863 863 864 865 865 866 868 869	.0015 .0014 .0013 .0012 .0011 .0010 .0009 .0009 .0008 .0007	.9833 .9847 .9860 .9872 .9883 .9893 .9902 .9911 .9919	901 901 903 905 905 905 905 906 909	.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	.9998 .9998 .9998 .9999 .9999 .9999 .9999	
830 831 832 833 835 835 837 837 839	.0079 .0076 .0073 .0071 .0068 .0065 .0062 .0059 .0056	.8603 .8680 .8753 .8824 .8991 .8956 .9018 .9077 .9134 .9188	870 871 872 873 874 875 876 877 878 879	.0007 .0006 .0006 .0005 .0005 .0004 .0004 .0003 .0003	.9933 .9939 .9945 .9950 .9955 .9959 .9963 .9967 .9970	910 911 912 913 914 915 916 917 918 919	.0000	.9999 .9999	
840 841 842 844 844 846 848 849	.0051 .0049 .0046 .0044 .9042 .0039 .0037 .0035 .9033	.9239 .9288 .9334 .9378 .9419 .9459 .9496 .9531 .9564 .9595	880 881 882 883 884 885 886 887 888 888 889	.0003 .0002 .0002 .0002 .0002 .0001 .0001	.9976 .9978 .9981 .9983 .9984 .9986 .9988 .9989 .9990	920 921 922 923 924 925 926 927 928 929			

It can be done, provided an extensive table of logarithms are available, by using the so-called Stirling's formula

where
$$\pi = 3.14159 \ 26535 \ 89793 \dots$$

 $e = 2.71828 \ 18284 \ 59045$

We shall now proceed to develop a method which will enable us to find approximately the value of any term of the expansion of $(q+p)^r$ and the sum of any number of consecutive terms of this series.

In Section V we made use of the fact that the mean, standard deviation, and skewness may be regarded as satisfactorily describing any distribution. We shall now show that for any distribution whose frequencies are proportional to the terms of the expansion of (q+p),

(33)
$$\alpha_{s} = \frac{I - Zp}{G}$$

Thus, for the expected distribution of Table XXI, column (3), since r = 12, $\rho = \frac{1}{2}$, $q = \frac{1}{2}$,

$$M = r\rho = \frac{12}{2} = 6$$

$$6 = \sqrt{12 \cdot \frac{1}{2} \cdot \frac{1}{2}} = \sqrt{3} = 1.732$$

$$d = 0$$

Similarly, for the expected distribution of Table XXII, column (3), since r = 12, q = 5/6, $\rho = 1/6$,

$$M = \frac{12}{6} = 2$$

$$G = \sqrt{12 \cdot \frac{1}{6} \cdot \frac{5}{6}} = \sqrt{\frac{5}{3}} = 1.291$$

$$C_3 = \frac{1 - \frac{1}{3}}{1.291} = 516$$

Values for these expected distributions may be calculated from the frequencies $_{4096}$ P_{x} in the usual manner. The results will then be found to agree with those obtained as above by means of formulae (33). Since the P_{x} column in Table XXI is composed of integers they will agree exactly, but since in Table XXII both the probabilities and expected frequencies are approximations, the values of these functions obtained by the two methods may differ slightly. Theoretically those obtained by employing formulae (33) are the more correct.

If, as before, q denote the probability that each individual will die within a year, and P_x the probability that exactly x out of r individuals will die within one year, then the values of P_0 , P_1 , P_2 , ... are equal to the terms of the expansion of $(q+p)^r$ which are shown in frequency distribution form in Table XXIV.

The total of column (2) is obviously equal to N since the values of f_x are merely the expansion of N(q+p). Since q+p=1, therefore $(q+p)^r=1$, and hence $\sum f_x=N$.

If one takes the common factor *Nrp* out of every term in column (3) of the previous table, it is noted that the sum of this column may be written

$$N\Sigma x f_x = Nr p \left[q^{r-1} + (r-1)q^{r-2}p + \frac{(r-1)(r-2)}{\sqrt{2}}q^{r-3}p^2 + \cdots \right]$$

But the expression within the bracket is merely the expansion of the binomial $(q+p)^{r-r}$. Hence $\sum x f_{x} = Nrp$ [/] = Nrp Likewise the sum of the terms in columns (4) and (5) may be factored as follows:

$$\sum_{x} (x-l) f_{x} = Nr(r-l) p^{2} \left[q^{r-2} (r-2) q^{r-3} p + \frac{(r-2)(r-3)}{l \cdot 2} q^{r-4} p^{2} + \cdots \right]$$

$$= Nr(r-l) p^{2} (q+p)^{r-2} = Nr(r-l) p^{3}$$

$$\sum x(x-1)(x-2) f_x = Nr(r-1)(r-2) p^{2} \left[q^{r-2}(r-3)q^{r-2}p + \frac{(r-3)(r-4)}{r-2}q^{r-2} + \cdots \right]$$

$$= Nr(r-1)(r-2) p^{2} (q+p)^{r-2} = Nr(r-1)(r-2) p^{2}$$

TABLE XXIV

ELEMENTARY MATHEMATICAL STATISTICS									
x(x-/)(x-2)fx (5)	0	0	•	Nr(r-1)(r-2) q r. p 3	Nr(r-1)(r-2)(r-3) q r + p 4 Nr(r-1)(r-2)(r-3) q r + p 4 Nr(r-1)(r-2)(r-3) q r + p 4 Nr(r-1)(r-2)(r-3) q r + p 4 Nr (r-1)(r-2)(r-3) r-2)(r-2)(r-2)(r-2)(r-2)(r-2	etc.	$Nr(r-1)(r-2) p^{3}(q+p)^{\frac{r}{2}-3}$ $Nr(r-1)(r-2) p^{3}$		
x (x-1) x.		0	Nr(r-1) q - 2 2	N [(r-1)(r-2) q reps N r (r-1)(r-2) q reps	N ((r-1) (r-2) (r-3) q ng	etc.	Nr(r-1)p2(q+p)^-== Nr(r-1)p2		
يم. بر (8)	0	Nrg."	$N \frac{r(r-l)}{2} q^{r-s} p^{-s}$	N F(F-1)(F-2) q F-3 B	N ((-1)(1-2)(1-3) q -4 4	etc.	Nrp (q+p) "" =Nrp		
f _x (2)	O NQ .	Marp	N Mir.) q r-3 2	3 Nr(r-1)(r-2)q r-3 p3	N r (r-1/(r-2)(r-3) q r 4	etc.	Total $N(Q+D)^{r}-N$		
48	0	`	Ø	e)	4		Tota!		

But we may write

$$x(x-l)f_{x} = x^{2}f_{x} - xf_{x}.$$

$$\therefore \sum x(x-l)f_{x} = \sum x^{2}f_{x} - \sum xf_{x}$$

$$x(x-l)(x-2)f_{x} = x^{2}f_{x} - 3x^{2}f_{x} + 2xf_{x}.$$

$$\therefore \sum x(x-l)(x-2)f_{x} = \sum x^{2}f_{x} - 3\sum x^{2}f_{x} + 2\sum xf_{x}.$$

So we have

$$\begin{split} & \Sigma f_x = N \\ & \Sigma x f_x = N r \rho \\ & \Sigma x (x - l) f_x = \Sigma x^2 f_x - \Sigma x f_x = N r (r - l) \rho^2 \\ & \Sigma x (x - l) (x + l) f_x = \Sigma x^2 f_x - 3 \Sigma x^2 f_x + 2 \Sigma x f_x \\ & = N r (r - l) (r - Z) \rho^2 \end{split}$$

Theref re

Hence

$$M_{z} = \frac{\sum x f_{z}}{\sum f_{z}} = \frac{Nr\rho}{N} = r\rho$$

$$\mu'_{z} = \frac{\sum x^{3} f_{z}}{\sum f_{z}} = r\rho + r^{2}\rho^{2} - r\rho^{2}$$

$$\mu'_{z} = \frac{\sum x^{3} f_{z}}{\sum f_{z}} = r\rho + 3r^{2}\rho^{2} - 3r\rho^{2} + r^{2}\rho^{3} - 3r^{2}\rho^{3} + 2r\rho^{3}$$

$$\mu'_{z} = \frac{\sum x^{3} f_{z}}{\sum f_{z}} = r\rho + 3r^{2}\rho^{2} - 3r\rho^{2} + r^{2}\rho^{3} - 3r^{2}\rho^{3} + 2r\rho^{3}$$

$$\mu'_{z} = \mu'_{z} - M_{x}^{2} = r\rho - r\rho^{2} - r\rho(I - \rho)$$

$$\mu''_{z} = \mu'_{z} - 3M_{x}\mu'_{z} + 2M_{x}^{3} = r\rho - 3r\rho^{2} + 2r\rho^{3}$$

$$= r\rho(I - 3\rho + 2\rho^{2}) = r\rho(I - \rho)(I - 2\rho)$$

The reductions follow since (q+p)=1.

We have finally, that

$$M = rp$$

$$6 = \sqrt{\mu_{2}} = \sqrt{rp(l-p)}$$

$$\alpha_{3} = \frac{\mu_{3}}{\sigma^{3}} = \frac{rp(l-p)(l-2p)}{(\sqrt{l-p})^{3}} = \frac{1-2p}{\sigma}$$

Formulae (33) are therefore established.

The equation $M=r\rho$ shows that for a Bernoulli series the "mean" value is also the "expected" value, since, from our definition of expectation, the expected number of deaths from a group of r individuals is $r\rho$.

36. For the distribution of the values of P_x shown in Table XXIII, since r = 100,000, q = .992, p = .008

$$M_{z} = rp - 800$$

$$\sigma = \sqrt{rp(1-p)} = \sqrt{793.6} = 28.1709$$

$$\frac{1}{6} = .0354976$$

$$\alpha_{z} = \frac{1-2p}{\sigma} = \frac{.992 - .008}{6} = .984(.0354976) = .03493$$

If as before we let $t = \frac{x-M}{\sigma}$, and designate the ordinates of the standard frequency curves by f_t , we can compute any value of P_x with a reasonable degree of accuracy by the formula

$$(34) P_x = \frac{1}{\sigma} f_{\epsilon}$$

For example: Required the probability that exactly 762 individuals will die within one year in a population of 100,000 for which $\rho = .008$.

As before, we must first express the number of deaths under consideration in standard units, that is since $M_x = r\rho = 800$,

$$t = \frac{x - M}{\sigma} = \frac{762 - 800}{\sigma} = -38(.0354976) = -1.3489$$

That is, 762 deaths is 38 less than the mean, or $\frac{-38}{\sigma}$ = -1.3489 standard units less than the mean.

With α_{g^*} 0 and using the Table of Ordinates of the Pearson Type III Curve, the value of f_{ε} corresponding to $\varepsilon = -1.35$ is found to be .160383.

$$f_{z}=.160383$$

$$\therefore \quad f_{74z}=\frac{1}{6}, \quad f_{z}=.0354976(.160383)=.005693$$

We shall now consider the following problem: Required the probability that not more than 780 individuals will die within one year, where as before r - 100,000, $\rho = .008$. This means that we must obtain the sum of the 781 terms. $P_0 + P_1 + P_2 + ... + P_{780}$

Suppose we represent the sum of the probabilities $P_a + P_{a+1} + P_{a+2} + \dots + P_{b}$ by a series of ordinates erected at unit intervals along the x axis, and then construct a series of rectangles having these ordinates as altitudes which bisect the bases of the respective unit bases. Then the area of the first rectangle is $P_a = 1 = P_a$, etc. Thus the sum of the series $P_a + P_{a+1} + \dots + P_b$ is equal to the total area of all the rectangles and is therefore approximately equal to the area under the frequency curve from $x - \frac{1}{2}$ to $x - \frac{1}{2}$. Therefore the sum of all the probabilities, $x - \frac{1}{2} + \frac{1}{2}$ to $x - \frac{1}{2}$ can be computed readily by calculating by means of the Tables of Areas of the Standard Curves, the per cent of the area of the standard curve lying below x = 780.5, that is below x = -19.5, or $x = -\frac{19.5}{6} = -6922$. For x = -69 is 24.5097. Since the sum of all probabilities from x - 12 to x - 12 inclusive is 1, and x - 12 inclusive is 1, and x - 12 inclusive is 1, and x - 12 inclusive is 1, and x - 12 inclusive is 1, and x - 12 inclusive is 1, and x - 12 inclusive is 1, and x - 12 inclusive, therefore we estimate that x - 12 inclusive, therefore we estimate that x - 12 inclusive, therefore we estimate that x - 12 includes the frequency curve, therefore we estimate that x - 12 includes x - 12 include

By Table XXIII the correct value is .2454, or the error of our approximation is .0003. Using the values $\alpha_3 = 0$, the per cent of the area lying below t = -.70 is found to be 24.1964, using straight line interpolation the per cent below t = -.6922 is found to be 24.4408. In the same manner, only using $\alpha_3 = .1$, the per cent of the curve lying below t = -.6922 is found to be 24.7105. By using straight line interpolation again for the value of α_3 , it is found that the per cent of the distribution lying below t = -.6922, skewness = .035, is 24.5352. The error of our approximation is now zero. In general, however, a sufficient degree of accuracy may be obtained without in-

terpolating for either the value of t or α_s .

Next let it be required to find the probability that less than 840 but more than 780 will die within the year, that is, required the value of $P_{781} + P_{782} + \cdots P_{889}$.

We require therefore the per cent of the area of a standard frequency curve lying between x = 780.5 and x = 839.5, that is between x = -19.5 and x = 39.5 or t = -.69 to t = 1.40.

As has just been shown, 24.5097 per cent of the area of the curve lies below t = -.69. Likewise for $\alpha_s = 0$ the per cent lying below t = 1.40 is 91.9243. Consequently 91,9243% - 24.5097%, or 67.4146%, of the area lies between t = -.69 and t = 1.40. Therefore the probability that less than 840 but more than 780 will die within the year is .674146.

By Table XXIII, the correct value is .9188 - .2454 = .6734.

Summary of Section 11.

If p represent the probability that an event will happen in a single trial, then the probability that the event will happen either 0, 1, 2, times during p trials are given by the respective terms of the expansion of $(q + p)^r$. The distribution of these probabilities or the corresponding expected frequencies is adequately described by the three fundamental functions as follows:

$$M = r p$$

$$6 = \sqrt{rp'(1-p)}$$

$$\alpha_s = \frac{1-2p}{4}$$

The probabilities or expected frequencies may be regarded as a distribution that can be reproduced at will by utilizing the Tables of Pearson's Type III Curves, with the fundamental functions computed from the above formulae. In this way the values of isolated probabilities or the sum of any number of consecutive probabilities may be obtained.

EDITORIAL

FUNDAMENTALS OF THE THEORY OF SAMPLING

III. DISTRIBUTION OF SAMPLE m TH MOMENTS ABOUT THE ORIGIN OF THE PARENT POPULATION

As in section I, we shall be concerned with the $\binom{5}{7}$ possible samples, each consisting of r variates, that can be selected from the parent population of s variates $x_1, x_2, \ldots, x_r, \ldots, x_s$. The m th moment of each sample, computed in each case about the origin of the parent population, may be written

$$\left\{ \begin{array}{l} z_{i} = \frac{1}{\Gamma} \left\{ x_{i}^{m} + x_{2}^{m} + x_{3}^{m} + \cdots + x_{r}^{m} \right\} \\ z_{2} = \frac{1}{\Gamma} \left\{ x_{2}^{m} + x_{3}^{m} + x_{4}^{m} + \cdots + x_{r+1}^{m} \right\} \\ \cdots \\ z_{r}^{m} = \frac{1}{\Gamma} \left\{ x_{s,r+1}^{m} + x_{s-r+2}^{m} + x_{s-r+3}^{m} + z + x_{s}^{m} \right\} \end{array} \right.$$

If we write $\frac{x_i'''}{f} = y_i$, it will be observed that the above distribution may be written

$$\begin{cases} z_1 = y_1 + y_2 + y_3 + \dots + y_r \\ z_2 = y_2 + y_3 + y_4 + \dots + y_{r+1} \\ \vdots & \vdots & \vdots \\ z_{\binom{s}{r}} = y_{s-r+1} + y_{s-r+2} + y_{s-r+3} + \dots + y_s \end{cases}$$

and therefore may be regarded as a distribution of the algebraic sums of the respective samples withdrawn from the parent population y_1, y_2, \dots, y_s , i. e. $\frac{x_s}{r}, \frac{x_s}{r}, \dots, \frac{x_s}{r}$. Consequently, since

$$\mu_{ny}' = \frac{\sum y_i}{N} = \frac{1}{N} \sum \frac{x_i^{mn}}{r^n} = \frac{1}{r^n} \mu_{mn:\infty}'$$

it follows from formulae 1, 2, . . . of section I that

(1)
$$M_z = r M_y = \mu'_{m x}$$

(2)
$$\mu_{zz} = s[\rho, -\rho_{z}] \mu_{zy} = s[\rho, -\rho_{z}] [\mu'_{zy} - M'_{y}]$$

$$= s[\rho, -\rho_{z}] \{\frac{\mu'_{zm;z}}{r^{2}} - (\frac{\mu'_{m;z}}{r})^{2}\}$$

$$= \frac{s}{r^{2}} [\rho, -\rho_{z}] \{\mu'_{zm;z} - (\mu'_{m;z})^{2}\}$$

$$(3) \ \mu_{3z} = s \left\{ \rho_{-3} \rho_{z} + 2 \rho_{s} \right\} \mu_{3y} = s \left\{ \rho_{-3} \rho_{z} + 2 \rho_{s} \right\} \left\{ \mu_{3y}^{'} - 3 M_{y} \mu_{2y}^{'} + 2 M_{y}^{3} \right\}$$

$$= \frac{s}{r^{3}} \left\{ \rho_{-3} \rho_{z} + 2 \rho_{s} \right\} \left\{ \mu_{smx}^{'} - 3 \mu_{zmx}^{'} \mu_{mx}^{'} + 2 \left(\mu_{mx}^{'}\right)^{3} \right\}$$

$$(4) \mu_{az} = \frac{5}{r^4} \left\{ \mu'_{amz} - 4\mu'_{amz} \mu'_{mz} + 6\mu'_{zmz} \left(\mu'_{mz}\right)^2 - 3\left(\mu'_{mz}\right)^4 \right\}$$

$$\left\{ \rho_1 - 7\rho_2 + 12\rho_3 - 6\rho_4 \right\} + 3\frac{5^2}{r^4} \left\{ \mu'_{zmz} - \left(\mu'_{mz}\right)^2 \right\} \left\{ \rho_2 - 2\rho_3 + \rho_4 \right\}$$

etc.

For the case of sampling from an unlimited supply, we have, permitting 5 to approach infinity, that corresponding to formulae (18) of section I

$$(5) \begin{cases} M_{z} = \mu'_{m:x} \\ \mu_{z} = \frac{1}{r} \left\{ \mu'_{2m:x} - (\mu'_{m.x})^{2} \right\} \\ \mu_{3:z} = \frac{1}{r^{2}} \left\{ \mu'_{3m:x} - 3\mu'_{2m:x} \mu'_{m:x} + 2(\mu'_{m:x})^{3} \right\} \\ \mu_{4:z} = \frac{1}{r^{2}} \left\{ \mu'_{4m:x} - 4\mu'_{3m:x} \mu'_{m:x} + 6\mu'_{m:x} (\mu'_{m:x})^{2} - 3(\mu'_{m.x})^{4} \right\} \\ + \frac{3r}{r^{4}} \left\{ \mu'_{2m:x} - (\mu'_{m:x})^{2} \right\}$$
 etc.

The distribution of sample means may be obtained by placing m=1, yielding

(6)
$$\begin{cases} M_{x} = M_{x} \\ \mu_{z:z} = \frac{1}{r} \mu_{z:x} \\ \mu_{s:z} = \frac{1}{r^{2}} \mu_{s:x} \\ \mu_{4:z} = \frac{1}{r^{3}} \mu_{4:x} + \frac{3(r-1)}{r^{3}} \mu_{z:x}^{2} \end{cases}$$
 etc

These results may be written corresponding to formulae (19) of section I.

$$\begin{pmatrix}
\mu_{z,z} = \frac{1}{r} \mu_{z,x} \\
\mu_{s,x} = \frac{1}{r} \mu_{s,x}
\end{pmatrix}$$

$$\mu_{4,z} = 3\mu_{2,x}^{2} = \frac{1}{r} \{\mu_{4,x} - 3\mu_{2,x}^{2}\}$$

$$\mu_{s,x} = -10\mu_{s,x} \mu_{x,x} = \frac{1}{r^{4}} \{\mu_{s,x} - 10\mu_{s,x} \mu_{z,x}\}$$

$$\mu_{s,x} = -10\mu_{s,x} \mu_{x,x} = \frac{1}{r^{4}} \{\mu_{s,x} - 10\mu_{s,x} \mu_{z,x}\}$$

$$\mu_{6,x} = -15\mu_{4,x} \mu_{2,x} - 10\mu_{s,x}^{2} + 30\mu_{2,x}^{2} = \frac{1}{r^{5}} \{\mu_{6,x} - 15\mu_{4,x} \mu_{z,x} - 10\mu_{s,x}^{2} + 30\mu_{2,x}^{2}\}$$
etc.

The distribution of sample means withdrawn from an infinite parent population is therefore characterized by means of the semi-invariant relation

(8)
$$\lambda_{n} = \frac{\lambda_{n-1}}{r^{n-1}}$$

and the standard semi-invariants by the relation

$$(8-a) \qquad Y_{n-2} = \frac{Y_{n-2}}{r^{n_2-r}}$$

An interesting result is obtained by considering the special case of formulae (8) for which n-2, and assuming that the parent population is normal. Since for a normal distribution

$$\mu_{2n+7}0$$
 $\mu_{2n}=1.3.5...(2n-1)\sigma^{2n}$

and for any distribution
$$\begin{pmatrix}
\mu'_{4} = \mu_{2} + M^{2} \\
\mu'_{3} = \mu_{3} + 3M\mu_{2} + M^{3}
\end{pmatrix}$$

$$\mu'_{4} = \mu_{4} + 4M\mu_{3} + 6M\mu_{2} + M^{4}$$

etc.

it follows that for a normal distribution

(10)
$$\mu_{s}' = \sigma^{2} + M^{2}$$

$$\mu_{s}' = 3M\sigma^{2} + M^{2}$$

$$\mu_{s}' = 3\sigma^{4} + 6\sigma^{2}M^{2} + M^{4}$$

$$\mu_{s}' = 15M\sigma^{4} + 10M^{2}\sigma^{2} + M^{4}$$

etc.

and therefore for the distribution of sample second moments about a fixed point in the case of withdrawals from an unlimited "normal" supply, we have, from (5)

¹ See formulae 23 and 24, page 117, Vol. I, No. 1, of Annals.

$$\begin{cases} M_{z} = \mu'_{z x} = \sigma_{x}^{2} + M_{x}^{2} \\ \mu_{z \overline{z}} \int_{\Gamma}^{I} (\mu_{a x} - (\mu'_{z x})') \\ = \frac{2\sigma^{2}}{\Gamma} \left\{ \sigma_{x}^{2} + 2M_{x}^{2} \right\} \\ \mu_{1 \overline{z}} \int_{\Gamma^{2}}^{I} \left\{ \mu_{6:x} - 3\mu'_{4:x} \mu'_{2:x} + 2(\mu'_{1:x})^{3} \right\} \\ = \frac{8\sigma_{x}^{4}}{\Gamma^{2}} \left\{ \sigma_{x}^{2} + 3M_{x}^{2} \right\} \\ \mu_{4 \overline{z}} = \frac{48\sigma_{x}^{6}}{\Gamma^{3}} \left\{ \sigma_{x}^{2} + 4M_{x}^{2} \right\} + \frac{12\sigma_{x}^{4}}{\Gamma^{2}} \left\{ \sigma_{x}^{2} + 2M_{x}^{2} \right\}^{2} \\ \mu_{5 \overline{z}} = \frac{384\sigma_{x}^{6}}{\Gamma^{4}} \left\{ \sigma_{x}^{2} + 5M_{x}^{2} \right\} + \frac{160\sigma_{x}^{6}}{\Gamma^{4}} \left\{ \sigma_{x}^{2} + 2M_{x}^{2} \right\} \left\{ \sigma_{x}^{2} + 3M_{x}^{2} \right\} \\ \mu_{6 \overline{z}} = \frac{3840\sigma_{x}^{6}}{\Gamma^{3}} \left\{ \sigma_{x}^{2} + 6M_{x}^{2} \right\} + \frac{160\sigma_{x}^{6}}{\Gamma^{4}} \left\{ 13\sigma_{x}^{4} + 78\sigma_{x}^{2} M_{x}^{2} + 108M_{x}^{4} \right\} \\ + \frac{120\sigma_{x}^{4}}{\Gamma^{3}} \left\{ \sigma_{x}^{2} + 2M_{x}^{2} \right\}^{3}$$
In terms of cemi invariantal

In terms of semi invariants¹

$$\begin{pmatrix}
M_{x} = \sigma_{x}^{2} + M_{x}^{2} \\
\lambda_{zz} = \frac{2\sigma_{x}^{2}}{r^{2}} \left(\sigma_{x}^{2} + 2M_{x}^{2}\right) \\
\lambda_{zz} = \frac{2^{3}2!\sigma_{x}^{4}}{r^{2}} \left(\sigma_{x}^{2} + 3M_{x}^{2}\right)
\end{pmatrix}$$
(12)
$$\lambda_{4:x} = \frac{2^{3}3!\sigma_{x}^{6}}{r^{3}} \left(\sigma_{x}^{2} + 4M_{x}^{2}\right) \\
\lambda_{5:z} = \frac{2^{4}4!\sigma_{x}^{8}}{r^{4}} \left(\sigma_{x}^{2} + 5M_{x}^{2}\right) \\
\lambda_{6:z} = \frac{2^{5}.5!\sigma_{x}^{6}}{r^{4}} \left(\sigma_{x}^{2} + 6M_{x}^{2}\right)$$

¹ Formulae (21), Section I. Page 116, Vol. I, No. 1, of Annals.

Apparently the general expression is

(13)
$$\lambda_{n} = \frac{2^{n-1}(n-1)^{l} \sigma_{x}^{2n}}{r^{n-1}} \left\{ l + n \left(\frac{M_{x}}{\sigma_{x}} \right)^{2} \right\}$$

If the parent population be normal, and if furthermore $M_x=0$, then

(14)
$$\lambda_{n+1} = \frac{2^{n-1}(n-1)/\sigma_{x}^{2n}}{r^{n-1}}$$

and the standardized semi-invariants would likewise be

(15)
$$Y_{n,z} = \frac{\lambda_{n,z}}{(\lambda_{n,z})^{n/2}} = \left(\frac{2}{r}\right)^{\frac{n}{2}-1} \cdot (n-1)!$$

Again, since

$$Y_{3:2} = \alpha_{3:2} = \frac{2^{3/2}}{r^{3/2}}$$

formula (15) may be written

(16)
$$Y_{n:\pi} = \left(\frac{\alpha_s}{2}\right)^{n-2} \cdot (n-1)!$$

On page 196 of Vol. I, No. 2 of the Annals it was shown that the standard moments for Pearson's Type III function

$$y = y_o \left(1 + \frac{\alpha_o}{2} t \right)^{\frac{4}{\alpha_o} - 1} e^{-\frac{3}{\alpha_o} t}$$

are defined by the recurring relation

$$\alpha_{n+1} = n\left(\alpha_{n-1} + \frac{\alpha_n \alpha_n}{2}\right)$$
,

so that
$$\alpha_s = 3\left(/+\frac{\alpha_s^2}{2}\right)$$

$$\alpha_s = 2\alpha_s \left(5 + 3 \frac{\alpha_s^2}{2}\right)$$

$$\alpha_6 = 5\left(3+13\frac{\alpha^2}{2}+6\frac{\alpha^4}{4}\right)$$
 etc.

The standard semi-invariants of Type III are

$$\chi_4 = \left(\frac{\alpha_{10}}{2}\right)^2 \cdot 3^4$$

$$\chi_s = \left(\frac{\alpha_s}{2}\right)^3 \cdot 4!$$

$$\delta_6 = \left(\frac{\alpha_3}{2}\right)^4 \cdot 5!$$

etc.

Comparing these results with formula (16) it appears, therefore, that if the parent population be normal and its mean zero, the distribution of sample second moments computed about the fixed mean of the parent population will be Pearson't Type III, for r finite. As r approaches infinity, the Type III distribution will approach the Normal Curve as a limit.

To illustrate: If from an infinite population of spherical balls whose diameters formed a normal distribution characterized by \mathcal{M}_{x} and σ_{y} , samples of r balls each were withdrawn, then if the average area be determined for the balls in each sample, the distribution of these areas, from formula (13), would be described by the relation

$$\lambda_{n:z} = \frac{2^{n-1}(n-1)! \sigma_x^{2n}}{r^{n-1}} \left\{ 1 + n \left(\frac{M_x}{\sigma_x} \right)^2 \right\}$$

and if one could conceive of negative diameters of the balls so that $M_x = 0$, then the distribution of areas would be Type III.

If one were to succeed in finding the function whose *n* th semi-invariant agrees with the above expression, then the law of distribu-

tion for the sample areas would be available Again by likewise investigating the cases of formulae (5) where m = 3, 4, 5, etc., other semi-invariant relations can be found, and these in turn may lead to the discovery of new and important frequency functions. At all events, such sample moments and semi-invariants will generally permit one to express as an infinite series, such as the Gram-Charlier series, the unknown law of distribution.

SECTION IV

The problem of the distribution of sample moments about the origin of the parent population is unfortunately often confused with the problem of the distribution of sample moments computed about the means of the respective samples. The latter problem is more briefly termed sampling about the mean. If \mathcal{M}_1 and \mathcal{M}_2 designate the means of the first two samples respectively, and \mathcal{Z}_2 and \mathcal{Z}_3 the second moments of these two samples computed about \mathcal{M}_1 and \mathcal{M}_2 respectively, then for $\mathcal{M}_2 = 2$

$$Z_{r} = \frac{\sum_{i=1}^{n} (x - \mathcal{M}_{i})^{2}}{r}$$

$$Z_{z} = \frac{\sum_{i=1}^{n} (x - \mathcal{M}_{z})^{2}}{r}$$

where, as before, \mathcal{E}^{ℓ} indicates that the summation extends over the r variates occurring in the ℓ th sample.

In order to sum all values of z_i and z_i'' it is necessary to obtain first another expression for the second moment about the mean, which, although of value in algebraic manipulations, is practically of no value in arithmetic computation. Thus,

$$z_{i} = \frac{\sum_{i}^{i} (x - M_{i})^{2}}{r}$$

$$= \frac{\sum_{i}^{i} x^{2} - 2M_{i} \sum_{i}^{i} x + rM_{i}^{2}}{r}$$

I Also referred to as the distribution of sample moments about a fixed point.

$$= \frac{\sum_{x}^{i} x^{2} - \left(\sum_{x}^{i} x\right)^{2}}{r}$$

$$= \frac{r\sum_{x}^{i} x^{2} - \left[\sum_{x}^{i} x^{2} + 2\sum_{x}^{i} x, x_{j}\right]}{r^{2}}$$

(17)
$$z_{i} = \frac{1}{\int z^{2}} \left[(r - l) \sum_{i}^{r} x^{2} - 2 \sum_{i}^{r} x_{i} x_{j} \right],$$

where $\sum_{i=1}^{l} x_i$, designnates the sum of all the terms formed by taking the products of all the variates in the i th sample two at a time.

Then
$$M_{z} = \frac{\sum z_{i}}{\binom{5}{5}} = \frac{1}{r^{2}} \left[(r - h) \frac{r}{5} \sum_{i=1}^{5} x^{2} - 2 \frac{r^{(2)}}{s^{(2)}} \sum_{i=1}^{5} x_{i} x_{j} \right]$$

by employing the method employed in section I. The above reduces easily as follows:

(18)
$$M_{x} = \frac{f}{r^{2}} \left[(r-l) \frac{r}{5} \stackrel{g}{\Sigma} x^{2} - \frac{r^{(2)}}{5^{(2)}} \left\{ (\stackrel{g}{\Sigma} x)^{2} - \stackrel{g}{\Sigma} x^{2} \right\} \right]$$
$$= \frac{s(r-l)}{r(s-l)} \cdot \left\{ \frac{\stackrel{g}{\Sigma} x^{2}}{5} - \left(\frac{\stackrel{g}{\Sigma} x}{5} \right)^{2} \right\}$$
$$= \frac{s(r-l)}{r(s-l)} \quad \mu_{z \cdot x}$$

Whereas the expected value of a sample mean is equal to the mean of the parent population and the expected value of a sample a th moment about a fixed point is equal to the a th moment of the parent population, it appears that the expected value of a sample second moment is less than the second moment of the parent population.

A slight digression at this point is desirable. In formula (6) of Section III we found that for the distribution of sample means withdrawn from an infinite parent population,

$$\mu_{zx} = \frac{1}{r} \mu_{zx} .$$

That is, the standard error of the mean

¹ Formula (1), Section III.

(19)
$$\sigma_{n} = \sigma_{z} = \frac{\sigma_{z}}{\sqrt{r}} ,$$

where σ_{∞} denotes the standard deviation of the infinite parent population. By formula (18) above it appears that the expected value of the second sample moment is for $s = \infty$

$$M_z = \frac{r-1}{r} \mu_{z:x} = \frac{r-1}{r} \sigma_x^2$$

Designating the square root of the expected sample moment by σ_x' , we have that

$$\sigma_x' = \sigma_x \sqrt{\frac{r-1}{r}}$$
 , or $\sigma_x = \sigma_x' \sqrt{\frac{r}{r-1}}$

and therefore formula (19) may be written

(20)
$$\sigma_{m} = \frac{\sigma_{x}}{\sqrt{r-\ell}}$$

Since the probable error is defined as .6745 σ , we have that the probable error of the mean

(21)
$$P.E._{R} = .6745 \frac{\sigma_{x}}{\sqrt{P}} = .6745 \frac{\sigma_{x}'}{\sqrt{P+1}}$$

It should be observed that the expressions for both the standard and probable errors of the mean are expected values when σ' is employed. If one obtains but a single sample and computes its mean and standard deviation, he still has no accurate knowledge regarding the true value of the standard deviation of the parent population. Consequently even the expression

is merely an approximation. So far as I know, the true value of the

probable error of the mean has never been found—even upon the assumption that the parent population is normal. Since we have shown that for $s-\infty$ the skewness of the samples is only $\sqrt{}$ times the skewness of the parent population, the fact that the parent population is not normal is of no importance compared to the fact that where only functions of the single sample are available, these must be substituted as the expected values of the corresponding functions of the unknown parent population

Returning to our problem of describing further the distribution of sample second moments about the mean:

Corresponding to formula (17), one can show by employing symmetric functions that

$$Z_{i}^{2} = \frac{1}{r^{4}} \left\{ (r-1)^{2} \tilde{\Sigma} x^{4} - 4(r-1) \tilde{\Sigma} x_{i}^{2} x_{j} + 2(r^{2} 2r+3) \tilde{\Sigma} x_{i}^{2} x_{j}^{2} \right.$$

$$\left. - 4(r-3) \tilde{\Sigma} x_{i}^{2} x_{j} x_{k} + 24 \tilde{\Sigma} x_{i} x_{j} x_{k} x_{\ell} \right\}$$

and therefore

$$\mu_{2:z} = \frac{\sum z_{i}^{2}}{\frac{(s)}{(s)}} - M_{z}^{2}$$

$$= \frac{s (r-1) (s-r)}{r^{3} (s-1)^{2} (s-2) (s-3)} \cdot \left\{ (s-1) (rs-s-r-1) \mu_{4:z} + \left[(3-r)^{2} s-6s+3r+3 \right] \mu_{z:z}^{2} \right\}$$

For 5=\infty this becomes

(24)
$$\mu_{z:z} = \frac{r-l}{r^{3}} \left[(r-l) \mu_{4:x} - (r-3) \mu_{z:x}^{2} \right]$$
$$= \frac{(r-l) \sigma^{4}}{r^{3}} \left[(r-l) \alpha_{4:x} - (r-3) \right]$$

In a thesis, C. H. Richardson¹ has shown that when 3-00

¹ Submitted in 1927 to the University of Michigan. The balance of this section is a synopsis of one part of this thesis.

(25)
$$\mu_{2:z} = \frac{(r-1)\sigma^6}{r^6} \left[(r-1)^2 \alpha_{6:z} - 3(r-1)(r-5) \alpha_{4:z} \right]$$

$$-2 \left(3r^2 - 6r + 5 \right) \alpha_g^2 + 2 \left(r^2 - 12r + 16 \right) \right]$$
(26) $\mu_{4:z} = \frac{(r-1)\sigma^6}{r^7} \left[(r-1)^3 \alpha_{2ig} - 8(r-1)(3r^2 - 6r + 7) \alpha_{4:z} \alpha_{3:z} \right]$

$$+ (3r^4 - 12r^4 + 42r^2 - 60r + 35) \alpha_{4:z}^2 - 4(r-1)^3 (r-7) \alpha_{6:z}$$

$$- 6 \left(r^4 - 7r^3 + 49r^2 - 105r + 70 \right) \alpha_{4:z}$$

$$+ 16 \left(6r^3 - 27r^2 + 50r - 35 \right) \alpha_{3:z}^2$$

$$+ 3 \left(r^4 - 9r^3 + 93r^2 - 265r + 210 \right) \right]$$
(27) $\mu_{6:z} = \frac{(r-1)\sigma^{10}}{r^3} \left[(r-1)^4 \alpha_{10:z} - 5(r-1)^4 (r-9) \alpha_{6:z} \right]$

$$- 40 (r-1)^2 \left(r^2 - 2r + 3 \right) \alpha_{7:z} \alpha_{3:z}$$

$$+ 10 (r-1)(r^4 - 4r^3 + 18r^2 - 28r + 21) \alpha_{6:z} \alpha_{7:z}$$

$$- 20 \left(r - 2 \right) \left(3r^4 - 24r^3 + 80r^2 + 140r + 105 \right) \alpha_{4:z} \alpha_{3:z}^2$$

$$+ 10 \left(5r^4 - 64r^4 + 572r^3 - 2070r^4 + 3255r + 1890 \right) \alpha_{3:z}^2$$

$$- 4 \left(5r^5 - 86r^4 + 1050r^3 - 4620r^2 + 8505r - 5670 \right)$$

$$- 10 \left(r - 1 \right) \left(r^4 - 7r^3 + 65r^2 - 161r + 126 \right) \alpha_{6:z} \alpha_{7:z}^2$$

$$- 2 \left(15r^4 - 60r^3 + 130r^2 - 140r + 63 \right) \alpha_{7:z}^2$$

-80 (6r - 36r + 97r 2 - /26r+65) ds:x d3:x

$$(28)_{\mu_{6,12}} \frac{(r-1)^{5}}{r^{\prime\prime\prime}} \frac{\alpha_{12:3}}{[(r-1)^{5}} \frac{\alpha_{12:3}}{38r^{3}} - 54r^{2} + 50r^{3} - 70r^{2} + 45r - 11) \alpha_{142}$$

$$- 20(3r^{5} - 15r^{4} + 38r^{3} - 54r^{2} + 39r - 11) \alpha_{142} \alpha_{142} \alpha_{142}$$

$$+ 15(r^{6} - 6r^{5} + 31r^{4} - 84r^{4} + 127r^{2} - 102r + 33) \alpha_{6:3} \alpha_{4:3} \alpha_{4:3}$$

$$+ 15(r^{6} - 6r^{5} + 31r^{4} - 84r^{4} + 127r^{2} - 102r + 33) \alpha_{6:3} \alpha_{4:3} \alpha_{4:2}$$

$$+ 15(r^{6} - 9r^{5} + 96r^{4} - 394r^{3} + 729r^{2} - 621r + 198) \alpha_{6:2} \alpha_{4:2} \alpha_{4:2}$$

$$+ 2(5r^{6} - 30r^{5} + 165r^{4} - 460r^{5} + 735r^{6} - 630r + 231) \alpha_{6:2} \alpha_{4$$

+429030 r-249480)

If the parent population be normal, that is if

$$\alpha_{2n+1} = 0$$

$$\alpha_{2n} = \frac{(2n)!}{2^n \cdot n!}$$

the preceding formulae yield on reduction

(29)
$$\mu_{z:z} = \frac{2(r-1)}{r^2} \mu_{zx}^2$$

(30)
$$\mu_{s,\pi} = \frac{8(r-1)}{r^3} \mu_{s,\pi}^3$$

(31)
$$\mu_{4:x} = \frac{/2(r-1)(r+3)}{r^4} \mu_{2:x}^4$$

(32)
$$\mu_{s:z} = \frac{32(r-1)(5r+7)}{r^5} \mu_{s:z}^5$$

(33)
$$\mu_{6:z} = \frac{40(r-1)(3r^2+46r+47)}{r^6}\mu_{z:z}^6$$

These may be written in turn

(34)
$$\begin{cases} \alpha_{g,g} = \frac{4}{\sqrt{2(r-1)}} \\ \alpha_{4;g} = \frac{3(r+3)}{r-1} \\ \alpha_{5;g} = \frac{8(5r+7)}{\sqrt{2(r-1)^{3/3}}} \\ \alpha_{6;g} = \frac{5(3r^{2}+46r+47)}{(r-1)^{2}} \end{cases}$$

For the corresponding standard semi-invariants

$$\gamma_3 = \alpha_3 = \frac{4}{\sqrt{2(r-1)}}$$
 $\gamma_4 = \alpha_4 = 3 = \frac{12}{r-1} = \left(\frac{\alpha_3}{2}\right)^2 \cdot 3!$

$$\gamma_{s} = \alpha_{s} - 10\alpha_{s} = \frac{96}{\sqrt{2}(r-1)^{3}}, z = \left(\frac{\alpha_{s}}{2}\right)^{3} \cdot 4!$$

$$\gamma_{s} = \alpha_{s} - 15\alpha_{s} - 10\alpha_{s}^{2} + 30 = \frac{480}{(r-1)^{2}} = \left(\frac{\alpha_{s}}{2}\right)^{4} \cdot 5!$$

These results show that so far as the sixth standard semi-invariant the distribution of sample second moments about the mean is Type III, irrespective of the mean of the parent population.

It is to be regretted that many of the results presented here have never been generalized for moments of any order. The methods presented have been chosen for two reasons: first, they permit one with no knowledge of calculus to achieve somewhat of an understanding into the theory of sampling; and secondly, they yield results of sampling from a finite parent population—a problem of considerable practical importance.

The results of sampling from an infinite population may be obtained more readily and with far greater elegance and rigor by employing the method of semi-invariants.

H. C. C.

TABLE III

DERIVATIVES OF THE STANDARDIZED TYPE III FUNCTION

$$y=y_o\left(/+\frac{\alpha_s}{2}t\right)^{\frac{4}{\alpha_s^2}-/}e^{-\frac{4}{\alpha_s}t}$$

			SKEW	NESS			
t	0	1	2	3	.4	.5	t
-9.90 -9.80 -9.76 -9.60 -9.50 -9.40 -9.30 -9.20 -9.00		•					-9.90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00
-850 -870 -850 -850 -840 -830 -820 -810 -800							-8 90 -8 80 -8 70 -8 60 -8 40 -8 30 -8 20 -8 10 -8 .00
-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00							-7 90 -7 80 -7.70 -7.60 -7.50 -7.40 7 30 -7 20 7 10 -7.00
-690 -680 -670 -660 -650 -630 -630 -630 -600					V		690 680 670 640 640 630 620 660
-5 90 -5 80 -5 70 -5 60 -5 50 -5 40 -5 30 -5 20 -10	000001 .000001 .000002 000003 000005	000001					-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 5.10 -5.00

			SKEW	NECC			-
	.6	.7	.8	9	1.0	1.1	t
-9.90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00	.0	.,	.0	9	1.0	1.1	-9.90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00
-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.30 -8.20 -8.10 -8.00							-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.30 -8.20 -8.10 -8.00
-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00		ı				,	-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00
-6 90 -6.80 -6.70 -6.60 -6.50 -6 40 -6 30 -6 20 -6.10 -6.00							-6.90 -6.80 -6.70 -6.60 -6.50 -6.40 -6.30 -6.20 -6.10 -6.00
-5 90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.00		-					-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00

t 0 .1 .2 .3 A .5 t 4.90 .000012 .000002				SKEWN	IESS			
4,80	t	.0	.1	.2	.3	.4	.5	t
-4.70								
4.66					I	1	ŀ	
-4.50				000001	l	}		
-4.40					1	l		
-4.30					1	}		
4.20								
-4.00			.000090	.000019	.000001	l		-4.20
-3.90	4.10	.000366	.000147			i	ļ	
-3.80	-4.00	.000535	.000235	.000066	.000008			-4.00
-3.70	-3.90	.000775	.000370					
-3.60								
-3.50								-3.70
-3.40								
-3.30							22222	
-3.20								
-3.10								
-3.00								
-2.90							1 , ,	
-2.80								
-2.70							10000	
-2.60	-2.80							
-2.50								
-2.40 .053747 .052738 .050708 .047251 .041831 .033818 -2.40 -2.31 .065152 .065158 .064244 .061970 .057693 .050508 -2.30 -2 20 .078044 .079330 .079895 .079313 .076923 .050508 -2.30 -2.10 .092366 .095172 .097548 .099136 .099346 .097186 -2.10 -2.00 .107982 .112500 .116952 .121097 .124495 .126364 -2.00 -1.80 .142110 .150291 .159241 .169016 .179627 .190976 -1.80 -1.70 .159883 .169790 .180854 .193275 .207285 .223136 -1.70 -1.60 .177473 .188856 .201707 .216340 .233159 .252688 -1.60 -1.50 .104276 .206743 .220876 .237054 .255782 .27745 -1.50 -1.30 .222779 .235726 .250291								
-2.30								
-2 20 .078044 .079330 .079895 .079313 .076923 .071689 -2 20 -2.10 .092366 .095172 .097548 .099136 .099346 .097186 -2.10 -2.00 .107982 .112500 .116952 .121097 .124495 .126364 -2.00 -1.90 .124670 .131014 .137704 .144643 .151607 .158125 -1.90 -1.80 .142110 150291 .159241 .169016 .179627 .190976 -1.80 -1.70 .159883 .169790 .180854 .193275 .207285 .223136 -1.70 -1.60 .177473 .188856 .201707 .216340 .233159 .252788 -1 60 -1.50 .290618 .222645 .237390 .254249 .273749 .29608 -1.40 1.30 .222779 .235726 .250291 .266832 .285824 .307909 -1.30 -1.00 .239637 .250235 .261823								
-2.10 .092366 .095172 .097548 .099136 .099346 .097186 -2.10 -2.00 .107982 .112500 .116952 .121097 .124495 .126364 -2.10 -1.90 .124670 .131014 .137704 .144643 .151607 .158125 -1.90 -1.80 .142110 .150291 .159241 .169016 .179627 .190976 -1.80 -1.70 .159883 .169790 .180854 .193275 .207285 .223136 -1.70 -1.60 .177473 .188856 .201707 .216340 .233159 .252688 -1.60 -1.50 .194276 .206743 .220876 .237054 .255782 .277745 -1.50 -1.10 .209018 .222645 .237390 .254249 .273749 .29608 -1.40 -1.20 .233023 .245172 .258688 .273853 .291033 .310712 -1.20 -1.10 .239637 .250281 .259120								
-2.00 .107982 .112500 .116952 .121097 .124495 .126364 -2.00 -1.90 .124670 .131014 .137704 .144643 .151607 .158125 -1.90 -1.80 .142110 150291 .159241 .169016 .179627 .190976 -1.80 -1.70 .159883 .169790 .180854 .193275 .207285 .223136 -1.70 -1.60 .177473 .188856 .201707 .216340 .233159 .252688 -1.60 -1.50 .194276 .206743 .220876 .237054 .255782 .277745 -1.50 -1.10 .209018 .222645 .237390 .254249 .273749 .296608 -1.40 1.30 .222779 .235726 .250291 .266832 .285824 .307909 -1.30 -1.20 .239637 .250235 .261823 .274582 .288736 .304576 -1.10 -1.00 .241971 .250281 .259120	-2.10							
-1.80	-2.00				,			
-1 70					.144643	.151607	.158125	-1.90
-1.60						.179627	.190976	-1.80
-1.50								
-1 10								
1 30 .222779 .235726 .250291 .266832 .285824 .307909 -1.30 -1 20 .233023 .245172 .258688 .273853 .291033 .310712 -1.20 -1.10 .239637 .250235 .261823 .274582 .288736 .304576 -1.10 -1.00 .241971 .250281 .259120 .268557 .278673 .289564 -1.00 - 90 .239477 .244839 .250233 .255628 .260978 .266223 90 .80 .231753 .233633 .235076 .235963 .236165 .235512 80 - 70 .218578 .216634 .213840 .210049 .205082 .198720 70 - 50 .176033 .166270 .155237 .142796 .128795 .113055 50 - 40 .147308 .134036 .119517 .103653 .086338 .067454 40								
-1.20 .233023 .245172 .258688 .273853 .291033 .310712 -1.20 -1.10 .239637 .250235 .261823 .274582 .288736 .304576 -1.10 -1.00 .241971 .250281 .259120 .268557 .278673 .289564 -1.00 90 .239477 .244839 .250233 .255628 .260978 .266223 90 .80 .231753 .233638 .235076 .235963 .236165 .235512 80 70 .218578 .216634 .213840 .210049 .205082 .198720 70 60 .199935 .194029 .186988 .178657 .168852 .157358 60 50 .176033 .166270 .155237 .142796 .128795 .113055 50 40 .147308 .134036 .119517 .103653 .086338 .067454 40								~1.40
-1.10								
-1.00 .241971 .250281 .259120 .268557 .278673 .289564 -1.00 .239477 .244839 .250233 .255628 .260978 .266223 90 .231753 .233638 .235076 .235963 .236165 .235512 80 .218578 .216634 .213840 .210049 .205082 .198720 70 .19935 .194029 .186988 .178657 .168852 .157358 60 .50 .176033 .166270 .155237 .142796 .128795 .113055 50 .40 .147308 .134036 .119517 .103653 .086338 .067454 40								
90 239477 244839 .250233 .255628 .260978 .266223 90 .80 .231753 .233638 .235076 .235963 .236165 .235512 80 70 .218578 .216634 .213840 .210049 .205082 .198720 70 60 .199935 .194029 .186988 .178657 .168852 .157358 60 50 .176033 .166270 .155237 .142796 .128795 .113055 50 40 .147308 .134036 .119517 .103653 .086338 .067454 40								
.80	00	220477	244020	250722				
- 70 .218578 .216634 .213840 .210049 .205082 .198720 - 70 60 .199935 .194029 .186988 .178657 .168852 .157358 - 60 50 .176033 .166270 .155237 .142796 .128795 .113055 50 40 .147308 .134036 .119517 .103653 .086338 .067454 40								
60								
50								
+0 .147308 134036 .119517 .103653 .086338 .067454 40								
20 114456 000000 000000 1000000 100754 = .40								
	30	.114416	.098208	.080927	.062522	.042938	.022119	40 30
.30 .078209 .059827 .040672 .020733 .000000 .021537 .20	.20							
) .039(1)5 .020043 .000000 -020417 041192 062305 10	•							
	(4)	.0000000	019943	039861	059729			

			SKEW	NESS			
t	.6	.7	.8	.9	1.0	1.1	ŧ
-4.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10 -4.00							-4.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10 -4.00
-3,90 -3,80 -3,60 -3,50 -3,40 -3,30 -3,20 -3,10 3,00	.000000.						-3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00
-2.90 -2.80 -2.70 -2.50 -2.50 -2.30 -2.10 -2.00	.000137 000628 .002066 .005395 .011851 022763 039266 .062013 090955 .125234	.000036 .000536 .002918 .009573 .023160 .045673 .077731 .118306	.000364 .005119 .021161 .052860 .100022	.000121 .013697 .059683			-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00
-1.9) -1.80 -1.70 -1.55 -1.40 -1.30 -1.20 -1.10 -1.00	.163228 .202703 .241060 .275619 .303895 .323832 .333974 .333548 .322482 .301350	.164867 .213833 .261146 .302858 .335595 .356881 .365290 360455 .342963 .314173	.158494 .221819 282948 .335559 .374866 .397950 .403738 .392746 366717 .328212	.133204 .219728 .304226 .375014 .424825 .450518 .452231 .432376 .394732 .343691	.061132 .185902 .316115 .421770 .490506 .520464 .515552 .482398 .428455 .360894	.031381 .277318 .470105 .580401 .618649 .602164 .547863 .470099 .380193	- 1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10
- 886 - 886 - 584 - 889 - 880 - 880 - 880 - 880 - 880 - 880 - 880 - 880 - 880	.271274 .233788 .190094 .143917 .095375 .046869 .000000 043888 083738 118789	.276005 .230710 .180672 .128225 .075522 .024439 023484 067064 105473 138212	.280235 .225910 .168238 .109914 .053226 .00000 048406 091075 127489 157465	.283702 .218898 .152867 .088542 .028174 026629 074843 115932 149766 176524	.2860.20 .2090.14 .133.891 .063.567 .000000 055.654 102.879 141.646 17.22.85 1953.67	.286608 .195355 .110444 .034327 031726 087304 132606 168230 195025 213972	90 80 70 60 50 40 30 20 10

			SKEW	NESS			
			JALLYY.	1 2 2 2	ı	r	
t	.0	.1	.2	.3	.4	.5	t
.00	.000000	019943	039861	059729	079523	099218	.00
.10	039695	058941	077764	096151	114088	131563	.10
.20	078209	095827	112693	128817	144210	158882	.20
.30	114416	129600	143805	157072	169444	180957	.30
.40	147308	159421	170454	180482	189571	197783	.40
.50	176033	184644	192211	198827	204577	209535	.50
.60	199935	204840	208859	212093	214627	216536	.60
.70	218578	219795	220388	220442	220032	219219	.70 .80
.80 .90	231753 239477	229507 234167	226967 228926	224189 223762	221217 218684	218089 213694	.80 .90
1.00	241971	234132	226714	219676	212981	206595	1.00
1.10	239637	229889	220873	- 212494	204674	- 197346	1.10
1.20 1.30	233023	222022	211994	202799	194322 182458	186470 174450	1.20 1.30
1.40	222779 209618	211174	200694	191168 178152	169571	161717	1.40
1.50	194276	198009 183183	187582 173236	164256	156099	101717 148647	1.50
1.60	177473	167315	158186	149931	142423	135559	1.60
1.70	159883	150967	142899	135563	128862	-,122712	1.70
1.80	142110	134628	127773	121475	115674	110315	1.80
1.90	124670	118709	113132	107924	103063	098523	1.90
•							
2.00	107982	103534	099229	095105	091177	087449	2.00
2.10	- 092366	089346	086249	083156	080118	077165	2.10
2.20 2.30	078044	076312	074312	072165	069947	067712	2.20
2.40	065152 053747	0645 <i>27</i> 0540 <i>2</i> 9	063487 053795	062176 053200	060692 052351	059103 051327	2.30 2.40
2.50	043821	034029	035795	033200 045215	032331	031327	2.50
2.60	035316	036811	037720	038180	038300	038160	2.60
2.70	028136	029964	031226	032039	- 032498	-032681	2.70
2.80	022163	024172	025661	026723	027436	027870	2.80
2.90	017262	019326	020937	022158	023050	- 023670	2.90
3.00	013 <i>2</i> 96	015318	016964	018268	019273	020023	3.00
3.10	010127	012037	013651	014978	016042	016874	3.10
3.20	007629	009379	010911	012214	013293	014168	3.20
3.30	005684	007247	008665	009908	-010969	011854	3.30
3.40	004190	005554	006837	007996	009013	009884	3.40
3.50	003054	004222	005361	006422	007376	008214	3.50
3.60	002203	003184	004178	005132	006013	006805	3.60
3.70	001572	002382	003236	004082	004883	005620	3.70
3.80	001109	001768	002492	003232	003951	004627	3.80
3.90	000 <i>77</i> 5	001303	001908	002547	003185	003799	3.90
4.00	000535	000952	001452	001999	002559	003110	4.00
4.10	000366	000691	001100	001561	002049	-,002539	4.10
4.20	000248	000498	000828	001215	001635	002067	4.20
4.30 4.40	000166	000356	000620	000941	001301	001679	4.30
4.40	000110	000253	000462	000726	001031	001360	4.40
4.60	000072 000047	000178 000125	000342	000558	000815	001099	4.50
4.70	000030	000125	000252 000185	000428 000326	000642 000505	000886	4.60
4.80	000030	000060	000185	000326	000305	000713	4.70
4.90	000013	000041	000133	000248	000399	000572	4.80
- 1,701	00012	00011	0.0036	-:001081	000309	000458	4.90

			SKEWI	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
.00	118789	138212	157465	176524	195367	213972	.00
.10	148563	165078	181098	196613	211618	226104	.10
.20	172846	186112	198692	210598	221843	232441	.20
.30	191649	<i>2</i> 01555	210707	219137	226877	233955	.30
.40	205174	211799	217704	222936	227536	231545	.40
.50	213769	217340	220302	222707	224598	226019	.50
.60	217887	218739	219142	219142	218780	218092	.60
. 7 0	218055	216587	214854	212890	210726	208386	.70
.80	214834	211479	208044	2045-18	201006	197431	.80
.90	208794	203987	199272	194648	190114	185671	.90
1.00	200493	194649	189043	- 183655	178470	÷.173473	1.00
1.10	190456	183956	177806	171972	166424	161137	1.10
1.20	179166	172343	165948	159935	154263	148900	1.20
1.30	16 7 053	160191	153798	147823	142218	136946	1.30
1.40	154494	147820	141627	135859	130469	125416	1.40
1.50	141806	135497	129653	124221	119153	114410	1.50
1.60	129254	123437	118049	113049	108368	103997	1.60
1.70	117047	111807	106944	102415	098185	094223	1.70
1.80	105348	100733	096431	092411	088645	085109	1.80
1.90	094278	090302	086573	083069	079770	076660	1.90
2.00	083916	080572	077405	074407	071565	068870	2.00
2.10	074314	071572	068944	066428	064021	061721	2.10
2.20	065493	063313	061186	059120	057120	055189	2.20
2.30	057456	055786	054116	052462	050835	049243	2.30
2.40	050187	048971	047709	046425	045135	043849	2.40
2.50	043655	042835	041933	040977	039985	038973	2.50
2.60	037824	037342	036750	036078	035348	03+578	2.60
2.70	032648	032449	032119	031691	031187	030627	2.70
2.80	028079	028110	027999	027776	027464	027084	2.80
2.90	024066	024280	024346	024293	024143	023915	2.90
3.00	020558	020913	021120	021204	021187	021087	3.00
3.10	01 <i>75</i> 05	017965	018279	018472	018563	018568	3.10
3.20	014860	015393	015787	016063	016238	016329	3.20
3.30	012578	013156	013606	013944	014184	014342	3.30
3.40	010616	011218	011703	012084	012373	012582	3.40
3.50	008935	009543	010046	010455	010778	011026	3.50
3.60	007501	008100	008609	009032	009377	009652	3.60
3.70	006280	006862	007364	007791	008148	008440	3.70
3.80	005246	005800	006288	006711	007071	007374	3.80
3.90	004371	004893	005361	005773	006130	006436	3.90
4.00	003634	004120	004563	004959	005309	005612	4.00
4.10	003014	003463	003878	004255	004592	004889	4.10
4.20	002495	002906	003291	003646	003969	004256	4.20
4.30	~.002061	002434	002789	003121	003426	003702	4.30
4.40	001699	002035	002360	002669	002955	003218	4.40
4.50	001397	001699	001995	002279	002547	002795	4.50
4.60	001147	001416	001684	001944	002193	002425	4.60
4.70	000940	001179	001420	001657	001886	002104	4.70
4.80	000769	000979	001195	001411	001621	001823	4.80
4.90	000628	000813	001005	001200	001393	001579	4.90

	SKEWNESS								
t	.0	.1	.2	.3	.4	.5	t		
5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90	000007 000005 000003 000002 000001	00028 00019 00013 00008 00006 00004 00002 00002 00001	00071 00051 00036 00026 00018 000013 00009 00006 00004 00003	000142 000106 000080 000060 000044 000013 000013 000013	000241 000187 000145 000112 000087 000051 000039 000030 000023	000366 000292 000232 000184 000146 000116 000091 000072 000057 000044	5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90		
6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 5.90			00002 00001 00001 00001	00007 00005 00004 00003 00002 00001 00001 00001	00017 00013 00010 00008 00004 00003 00002 00002 00002	00035 -00027 00021 00013 00013 00008 00006 00005 00004	6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90		
7.00 7 10 7 20 7 30 7.40 7.50 7.70 7.80 7 90					000001 000001 000001	00003 00002 00002 00001 00001 00001	7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90		
\$ 00 \$ 10 \$ 20 \$ 30 \$ 40 \$ 50 \$ 50 \$ 70 \$ 80 8 90							8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90		
9.00 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90							9.00 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90		

			SKEWI	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
5.00	000512	000674	000845	001020	001195	001367	5.00
5.10	000417	00055 <i>7</i>	000709	000866	001025	001182	5.10
5.20	000339	000461	000594	000735	000878	001022	5.20
5.30	000275	000380	000497	000623	000752	000883	5.30
5.40	000223	000314	000416	000527	000644	000763	5.40
5.50	000180	000258	000348	000446	000551	000658	5.50
5.60	000145	000212	000290	000377	000471	000568	5.60
5.70	000117	000174	000242	000319	000402	000490	5.70
5.80	000094	000143	000202	000269	000343	000422	5.80 5.90
5.90	000076	000117	000168	000227	000293	000364	
6.00	000061	000096	000140	000191	000250	000313	6.00
6.10	000049	000079	000116	000161	000213	000269	6.10
6.20	-,000039	000064	000097	000136	000181	000232	6.20
6.30	000031	000052	000080	000114	000154	000199	6.30
6.40	000025	000043	000066	000096	000131	0001 <i>7</i> 1 00014 <i>7</i>	6.40 6.50
6.50	000020	000035 000028	000055 000046	000081 000068	000112 000095	000147	6.60
6.60	000016 000013	000028	000038	000057	000093	000120	6.70
6.70	000013	000023	000038	000037	000069	000109	6.80
6.80 6.90	000008	000015	000031	000040	000058	000080	6.90
7.00	000006	000012	000021	000034	000049	000069	7.00
7.10	000005	000010	000018	000028	000042	000059	7.10
7.20	000004	000008	000014	000024	000035	000050	7.20
7.30	000003	000007	000012	000020	000030	000043	7.30
7.40	000003	000005	000010	000016	000025	000037	7.40
7.50	000002	000004	000008	000014	000022	000032	7.50
7.60	000002	000003	000007	000012	000018	000027	7.60
7.70	000001	000003	000005	000010	000015	000023	7.70
7.80	000001	000002	000005	000008	000013	000020	7.80
7.90	000001	000002	000004	000007	000011	000017	7.90
8.00	000001	000001	000003	000006	~.000009	000014	8.00
8.10	1	000001	000002	000005	000008	000012	8.10
8.20	l	000001	000002	000004	000007	000011	8.20
8.30	l	000001	000002	000003	~.000006	000009	8.30
8.40	l	000001	000001	000003	000005	000008	8.40
8.50	l		000001	000002	000004	000007	8.50
8.60	1	1	000001	000002	000003	000006	8.60
8.70			000001	000002	000003	000005	8.70
8.80	}		000001	000001	-000002	000004	8.80
8.90			000001	000001	000002	000003	8.90
900				000001	000002	000003	9.00
9.10		1		000001	000001	000003	9.10
9.20	l	,		000001	000001	000002	9.20
9.30	l	1		000001	000001	000002	9.30
9.40	I	1			000001	000002	9.40
9.50					000001	000001	9.50 9.60
9.60	l				000001	000001	9.60
9.70	l				000001	000001 000001	9.80
9.80						000001	9.90
9.90	<u> </u>	L				100001	7.70

			SKEW	NESS			
t	.0	.1	2	.3	.4	.5	t
10.00 10.10 10.20 10.30 10.40 10.50 10.70 10.70 10.80 10.90							10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90
11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90							11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.60 11.80 11.90
12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90							12 00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.70
13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90							13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90
14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90							14.00 14.10 14.20 14.30 14.40 11.50 14.60 14.70 11.80 14.90

	SKEWNESS								
.	.6	7	SKEWI	SESS	1.0	1.1	t		
10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90		•	J	•		000001 000001	10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90		
11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90							11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90		
12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90	,						12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90		
13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90							13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90		
14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90							14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90		

	T						
	 -	T	SKEW	NESS			_
t	.0	.1	.2	.3	4	.5	t
-9.90 9.80 -9.70 -9.60 -0.30 -9.40 -0.30 -9.20 -1.10	I		1				- 9 90 -9.80 -9.60 -9.50 -9.40 -0.30 -9.20 -9.00
480 480 480 480 480 480 480 480 480 480						ļ	-890 -880 -870 -875 -840 -830 -820 -810 -800
-7 90 -7.80 -7.50 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00							-7.90 -7.80 -7.70 -7.60 -7.40 -7.30 -7.30 -7.10 -7.00
-6.90 -6.80 -6.70 -6.50 -6.40 -6.30 -6.20 -6.10 -6.00	1						-6.90 -6.80 -6.70 -6.50 -6.50 -6.30 -6.20 -6.10 -6.00
-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00	.00001 .00001 .00002 .00003 .00005 .00005 .00014 .00022 .00036	,000001 ,201000, ,200000, ,200000,					-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00

			SKEWN	NESS		_	
t	. 6 ·	.7	.8	.9	1.0	1.1	t
-9.90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00							-9.90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00
-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.30 -8.20 -8.10 -8.00							-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.30 -8.20 -8.10 -8.00
-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00							-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00
-6.90 -6.80 -6.70 -6.60 -6.50 -6.40 -6.30 -6.20 -6.10 -6.00							-6.90 -6.80 -6.70 -6.60 -6.50 -6.40 -6.30 -6.20 -6.10 -6.00
-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00							-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00

			SKEW	NESS			
t	.0	.1	.2	.3	.4	.5	t
-4.90 -4.80 -4.70 -4.60 -4.50 -4.30 -4.20 -4.10	.000087 .000134 .000204 .000308 .000458 .000674 .000981	.000020 .000036 .000061 .000103 .000171 .000279 .000446 .000702	.00001 .00002 .00004 .00008 .00017 .00034 .00066 .000124	.000001 .000004 .000011 .000029			-4.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10
-4.00 -3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00		.001650 .002465 .003622 .005233	.000404 .000698 .001174 .001921 .003063 .004759 .007210 .010658 .015376 .021661	.000068 .000151 .000318 .000638 .001216 .002213 .003855 .006445 .010360 .016039	.000001 .000005 .000020 .000065 .000190 .000493 .001157 .002482 .004921 .009087	.000008 .000056 .000259 .000914 .002622 .006377	-4.00 -3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00
-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00	.044108 .054142 .065547 .078238 .092024 .106598 .121523 .136222 .149984 .161973	.042977 .054254 .067309 .082041 .098208 .115397 .133016 .150286 .166250 .179808	.040072 .052649 .067607 .081853 .104081 .124739 .146010 .166813 .185835 .201589	.034578 .048276 .065269 .085530 .108701 .134041 .160398 .186228 .209664 .228635	.025682 .039717 .058421 .082005 .110147 .141874 .175522 .208791 .238900 .262822	.013553 .025751 .044473 .070719 .1(4574 .144908 .189277 .234060 .274831 .306883	-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00
-1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10	.171257 .176848 .177753 .173036 .161897 .143738 .118244 .085442 .045749	.189761 .194883 .193997 .186074 .170327 .146302 .113955 .073710 .026480 026345	.212507 .217043 .213810 .201707 .180042 .148634 .107884 .058793 .002942 057582	.241024 .244859 .238508 .220856 .191456 .150619 .099440 .039758 025961 094785	.277610 .280668 .270098 .244914 .205187 .152083 .087784 .015318 061696 139336	.325833 .328187 .311788 .276085 .222196 .152768 .071082 016353 106262 193043	-1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1.00
90 80 70 60 50 40 30 20 10	050556 104289 159250 213264 264049 309347 347063 375401 392983 398942	082945 141156 198588 252765 301276 341929 372891 392803 400862 396865	120304 182513 241433 294407 339069 373489 396290 406717 404661 390638	163523 228950 288031 338118 377114 403584 416811 416794 404202 380276	-213693 -281149 -338624 -383756 -415005 -431690 -433951 -422664 -399307 -365806	272169 339887 3393425 431081 452220 457186 447153 -,423938 389805 347261	90 80 70 60 50 40 30 20 10

			SKEW	NESS	•		
t	.6	.7	.8	.9	1.0	1.1	t
-4.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10 -4.00							-4.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10 -4.00
-3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00	.000008 .00036 .000442						-3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00
-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00	.002377 .008378 .021975 .046701 .084682 .135492 .195696 .259189 .318205 .364653	.001288 .011088 .040658 .097040 .178156 .273180 .366237 .440957	.014364 .093291 .235123 .398395 .537617	.0156%0 .290543 .618006			-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00
-1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10	.391464 .393656 .368970 .318022 .244037 .152272 .049275 057908 162444 258300	.484203 .488248 .451364 .377196 .273391 .149950 .017638 113328 234218 338340	.620767 .633769 .578139 .466054 .315228 .144709 028037 188820 327426 437616	.826786 .878055 .792281 .611436 .379697 .134579 096151 -294517 450951 562403	1.056709 1.344215 1.211776 .881883 .490506 .115659 202538 447941 618879 721788	2.171541 2.318708 1 511052 .715683 .079111 380314 681730 854725 929360	-1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1.00
90 80 70 60 50 40 30 20 10	340641 406052 452596 479724 488097 479345 455795 420207 375528 324689	421241 480646 516205 529131 521789 497304 459186 411038 356312 298144	516683 564776 584160 578496 552221 510042 456554 395979 332002 267691	630449 659627 656102 626664 578022 516352 447036 374550 302445 233404	767053 766385 731248 671992 597445 514799 429670 346246 267495 195367	932389 886072 808124 712150 608256 503678 403375 310536 227013 153671	90 80 70 60 50 40 30 20 10

-					-		т	
	SKEWNESS							
t	.0	.1	.2	.3	.4	.5	t	
.00	398942	396865	390638	380276	365806	347261	.00	
10	392983	381208	365722	346712	324368	298881	.10	
.20	375401	354845	331450	305516	277327	247150	.20	
30	347063	319212	289703	258865	226991	194347	.30	
.40	- 309347	276121	242569	- 208963	175528	- 142459	.40	
.50	- 264049	277632	- 192211	157924	124871	093127	.50	
.60	213264	175927	140741	107668	- 076652	047627	.60	
.70	- 159250	- 123170	090112	059849	032168	006874	.70	
.80	104289	071396	- 042031	-0158C3	.007628	.028559	80	
90	- 050556	022408	.002100	.023470	.042119	.058401	.90	
1.00	.0000000	022298	041221	057307	.070994	.082638	100	
1.10	.045749	061582	.074619	.085362	.094207	.101468	1 10	
1.20	.085442	.094674	101920	.107574	.111937	.115246	1 20	
1.30	.118244	.121175	123055	124117	.124535	124440	1 30	
1 40	.143738	.141025	138219	135360	.1324/7	129592	1.40	
1 50	161897	.154462	.147816	.141807	.136322	.131273	1.50	
1 60	173036	.161963	.152411	.144058	.136668	130063	1.60	
1 70	.177753	.164185	152670	142759	134125	.126521	170	
1.80	.176848	161901	149315	.138570	129283	121170	1 80	
1.90	171257	.155944	143079	.132127	.122694	114484	190	
2.00	161973	.147151	134668	124028	.114859	.106882	2.00	
2.10	.149984	136328	122839	.114809	.106219	.098724	2.10	
2.20	136222	124207	113878	.104940	.097149	090313	2.20	
2.30	121523	.111433	.102586	.094814	.087962	.081894	2.30	
2.40	106598	.098547	.091279	084754	.078907	.073662	2.40	
2.50	.092024	.085981	.080285	075012	070177	065763	2 50	
2.60	078238	.074064	.069851	.065773	061913	.058305	2.60	
2.70	065547	.063024	.060152	057169	.054212	051357	2.70	
2 80	054142	053008	.051295	.049280	.047134	044963	2.80	
2.90	.044108	014085	043335	.042146	040707	.039139	2.90	
3.00	035455	.036269	036285	035776	.034933	.033885	300	
3 10	028127	029527	030122	.030152	.029797	029186	3 10	
3.20	.022029	023795	.024799	.025238	025271	025017	3 20	
3 30	017036	018986	020254	.020987	.021315	.021343	3.30	
3 40	013012	015004	016415	017341	017883	.018129	3.40	
3.50	.009818	.011746	.013204	.014242	014928	015334	3.50	
3.60	.007318	009111	010544	.011628	.012402	.012917	3.60	
3.70	.005390	007004	.008361	009440	010254	.010839	3. <i>7</i> 0	
3 80	003924	005336	.006585	.007621	.008441	.009061	3.80	
3.90	.002823	004031	005151	006120	006918	.007548	3.90	
4.00 4.10	002007	.003019	.004003	.004890	.005646	006266	4.00	
4.10	.000981	.002242	003091	.003887	.004590	.005184	4.10	
4.30	.000981	.001652	.002372	003075	.003716	.004275	4.20	
4.40	000458	.001207	001810	002421	.002997	003515	4.30	
4.50	.000308	.000875	.001372	.001897	.002409	002881	4.40	
4 60	.000204	.000449	.001034	.001480	001929	002355	4.50	
4.70	.000204	.000318	.000778	.001150	.001539	.001919	4.60	
480	000087	000224	.000378	.000685	.001224	001560	4.70	
490	.000056	.000156	.000428	.000525	.000976° .000767	001265	4.80	
		.001001	.00010	.00323	.000/0/	.001023	4.90	

			SKEWI	NESS			T
t	.6	.7	.8	.9	1.0	1.1	t
.00 .10 .20 .30 .40 .50 .60 .70 .80	- 32 1689 - 270442 215242 161173 109915 062736 020517 .016219 .047251 .072612	298144 - 239243 - 181842 127682 078031 033730 004757 .037278 063932 .085008	267691 205476 147179 094065 046919 006120 .028276 .056460 .078805	233404 169332 111467 060496 016670 020094 050122 .073908 .092047 .105187	195367 131001 074908 027127 .012641 .044920 .070377 .089753 .103816 .113319	153671 090672 037693 .005906 .040955 .068375 .089119 .104118 .114254 .120340	.00 .10 .20 .30 .40 .50 .60 .70 .80
1.00 1 10 1 20 1.30 1.40 1.50 1 60 1.70 1.80 1 90	.092535 .107400 .117687 .123938 .126718 .126593 124106 .119760 .114013 .107270	.100929 .112210 .119411 .123108 .123868 122229 .118689 .113697 .107646 .100878	.108025 .116068 .120537 .122015 .121049 .118138 .113730 .108217 .101936	.113903 .119113 .121163 .120710 .118266 .114285 .109161 .103232 .096780 .090039	.118080 .121463 .121369 .119234 .115524 .110642 .104928 .098668 092094 .085395	.123110 .123215 .121222 .117620 .112825 .107185 .100987 .004466 .087811 .081170	1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90
2 (X) 2 10 2 20 2 30 2 40 2 50 2 70 2 70 2 80 2 90	.099878 092132 084273 076495 06647 11 .05497 11 .05497 12 .042828 037523	.093681 086292 078905 .071668 064697 .058075 .051859 .046084 .040705 033908	.088156 .081084 .074104 .074104 .060854 .054730 .049200 .013686 .038706 .034327	.083198 .076109 .069787 .063418 .057366 .051072 .041446 .036927 .032797	078722 .072189 .065884 .059870 .054190 .048870 .043925 .039357 .035163 .031330	.074658 .068360 .062340 .050640 .051288 .046297 .041672 037410 .033501 .020931	2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90
3 00 3 10 3 20 3 30 3 10 3 50 3 60 3 70 3 80 3 90	032722 028411 024505 021156 018152 .015519 .013222 011229 .009506 .008024	0.3150.3 0.275.35 0.230.80 0.2081.5 .0180.09 0155.35 .013.36.2 .011.461 .0098.04	030268 026693 023311 ,020367 ,017747 015424 ,013372 011566 000081 008596	020043 .025048 .022590 .019848 .017399 .015218 .013283 .011570 .010060 .008731	027845 .024689 .021843 019284 016991 014942 013118 011497 010060 008789	026685 .023743 .021085 .018092 .016543 .014618 .012897 .011363 .009998 .008785	3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90
4.00 4 10 4.20 4.30 4.40 1 50 4.60 4.70 4.80 4.90	006753 .005668 .004745 .003961 .003299 .002712 .002273 .001880 .001552 .001278	.007122 .006049 .005126 .004334 .003058 .003080 .002589 .002173 .001820 .001522	.007387 .006336 .005425 .004636 .003955 .003369 .002865 .002433 .002062 .001746	.007564 006543 .005651 .004873 004196 .003608 .003098 .002657 .002276 .001947	007668 006680 .005813 005051 .004384 .003800 .003291 .002847 .002460	007711 .006760 .005919 .005178 .004525 .003950 .003446 .003003 .002614 .002274	4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90

			SKEWN	IESS			
t	.0	.1	.2	.3	.4	.5	t
5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90	.000036 .000022 .000014 .000009 .000005 .000003 .000002 .000001	.000108 .000074 .000051 .000034 .000023 .000015 .000010 .000007 .000004 .000003	.000232 .000169 .000123 .000089 .000064 .000046 .000032 .000023 .000016 .000011	.000401 .000305 .000232 .000175 .000132 .000099 .00074 .000055 .00011	.000604 .000474 .000371 .000290 .000226 .000175 .000136 .000105 .000081	.000825 .000664 .000533 .000427 .000341 .000272 .000216 .000172 .000136 .000108	5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90
6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90		.000002 .000001 .000001	.000008 .000006 .000004 .000003 .000002 .000001 .000001	.000022 .000016 .000012 .000009 .000006 .000005 .000003 .000002 .000001	.000048 .000036 .000028 .000021 .000016 .000012 .000009 .000007 .000035	.000085 .000067 .000053 .000041 .000032 .000025 .000020 .000015 .000012	6 00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90
7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90				000001 .000001	.000003 .000002 .000002 .000001 .000001 .000001	.000007 .000006 .000003 .000003 .000002 .000002 .000001 .000001	7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90
8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90						.000001	8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90
9.00 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90							9.00 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90

	SKEWNESS							
t	.6	.7	.8	.9	1.0	1.1	t	
5.00	.001051	.001270	.001476	.001664	.001832	.001977	5.00	
5.10	.000862	.001059	.001247	.001421	.001578	.001717	5.10 5.20	
5.20 5.30	.000706 .000577	.000881 .000732	.001051 .000885	.001032	.001359	.001491 .001293	5.30	
5.40	.000377	.000607	.000745	.000878	.001004	.001233	5.40	
5.50	.000383	.000503	.000626	.000747	.000863	.000971	5.50	
5.60	.000312	.000416	.000525	.000634	.000740	.000840	5.60	
5.70	.000253	.000344	.000440	000538	.000635	.000727	5.70	
5.80	.000205	.000284	.000369	.000456	.000544	.000629	5.80	
5.90	.000166	.000234	.000309	.000387	.000466	.000543	5.90	
6.00	.000134	.000193	.000258	.000327	.000399	.000469	6.00	
6.10	.000108	.000158	.000215	.000277	.000341	.000405	6.10	
6.20	.000087	.000130	.000180	.000234	.000291	.000349	6 20	
6.30	.000070	.000107	.000150	000198	.000249	.000301	6.30 6.40	
6.40 6.50	.000036	.000087	.000125	.000167 .000141	.000212	.000260	6.50	
6.60	.000036	.000058	.000086	.000141	.000154	.000224	6.60	
6.70	.000029	.000048	.000072	.000100	.000134	.000166	6.70	
6.80	.000023	.000039	000059	.000084	.000112	.000143	6.80	
6.90	.000018	.000032	.000049	.000071	.000095	.000123	6.90	
7.00	.000015	.000026	.000041	.000059	.000081	.000105	7.00	
7.10	.000012	.000021	.000034	.000050	.000069	.000091	7.10	
7.20	.000009	000017	.000028	.000042	.000059	.000078	7.20	
7.30	.000007	.000014	.000023	.000035	.000050	.000067	7.30	
7.40	.000006	.000011	.000019	.000029	.000042	.000057	7.40	
7.50	.000005	.000009	.000016	.000025	.000036	.000049	7.50	
7.60 7.70	.000004	.000007	.000013	.000021 .000017	.000030	.000042	7.60 7.70	
7.80	.000003	.000005	.000009	.000017	.000026	.000036	7.80	
7.90	.000002	.000004	.000007	.000012	.000019	.000037	7.90	
8.00	,000001	.000003	.000006	.000010	.000016	.000023	8.00	
8.10	.000001	.000003	.000005	.000008	.000013	.000019	8.10	
8.20	.000001	.000002	.000004	.000007	.000011	.000017	8.20	
8 30	000001	.000002	.000003	.000006	.000010	.000014	8.30	
8.40	.000001	.000001	.000003	.000005	.000008	.000012	8.40	
8.50		.000001	.000002	.000004	.000007	.000010	8.50	
8.60		.000001	.000002	.000003	.000006	.000009	8.60	
8.70		.000001	.000002	.000003	.000005	.000008	8.70	
8.80 8.90		.000001	.000001	.000002	.000004	.000007	8.80 8.90	
9.00			.000001	.000002	.000003	.000005	9.00	
9.00			.000001	.000002	.000002	.000004	9.10	
9.20	1	l	.000001	.000001	.000002	.000003	9.20	
9.30		1		.000001	.000002	.000003	9.30	
9.40			1	000001	.000001	.000003	9.40	
9.50				.000001	.000001	.000002	9.50	
9.60		1	1	.000001	.000001	.000002	9.60	
9.70	ŀ	l	1		.000001	.000002	9.70	
9.80		1	1		.000001	.000001	9.80	
9.90		<u></u>			.000001	.000001	9.90	

00000000000000000000000000000000000000		
	ö	
	.1	
	ы	SKEWNESS
	'n	ESS
	4	
	is	
11.00 10.00	•	

0000000000 111111111111111111111111111	-	_
	۵	
	7	-
	œ	SKEWNESS
	9	ESS
000001	1.0	T
000001 000001	1.1	
00000000000000000000000000000000000000	-	

5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	4444444 88583486558	-7.90 -7.80 -7.70 -7.50 -7.50 -7.30 -7.30 -7.10	88585888888888888888888888888888888888	885684666666666666666666666666666666666		
.00002 .00004 .00006 .00016 .00016 .00042 .00042 .00067 .000164	.000001				ö	
.000002 .000003 .000003 .000021 .000021					.1	
. 0000u3					is	SKEWNESS
					ဃ	ESS
•					.4	
,					5.	
5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	656666666666666666666666666666666666666	7.20 -	888888	88699999999999999999999999999999999999	-	

03000000000000000000000000000000000000	-	
	۵	
	7	
	òo	SKEWNESS
	• •	NESS
	10	
	E	
00000000000000000000000000000000000000	+	

			SKEWI	ALEGG.			
		Γ		т			
t	.0	.1	.2	.3	.4	.5	t
-4.90	.000251	.000067	.000006				-4.90
-4.80	.000381	.000116	.000014		ĺ		-4.80
-4.70	.000572	.000196	.000029	1	}		-4.70 -4.60
-4.60	.000847	.000326	.0000060				-4.50
-4.50 -4.40	.001241 .001 <i>7</i> 95	.000531	.000120	.000016			-4 .40
-4.40 -4.30	.001793	.001336	.000230	.000018			-4 .30
-4.20	.003624	.002060	.000768	.000109			-4.20
-4 .10	.005054	.002000	.001340	.000255			-4.10
-4.00	.006959	.004637	.002267	.000563	.000018		-4.00
-3,90	.009460	.006766	.003724	.001168	.000073		-3.90
-3.80	.012692	.009694	.005942	.002293	.000251		-3.80
-3.70	.016801	.013632	.009213	.004267	.000740		-3.70
-3.60	.021940	.018816	.013889	.007556	.001917		-3.60
-3.50	.028253	.025486	.020368	.012760	.004442	.000178	-3.50
- 3 40	.035863	.033867	.029060	.020595	.009325	.000949	-3.40 -3.30
3 30	.044851	.044140 .056401	.040347 .054515	.031834 .047196	.017934	.010507	-3.20 -3.20
-3.20 -3.10	.055235	.070617	.054515	.047196	.052709	.025309	-3.20 -3.10
-3.10	.079773	.086578	.091666	.091968	.081588	.052096	-3.00
290	.093389	.103848	.113982	.121059	.118728	.094158	-2.90
-2.80	.107270	.121725	.137680	.153273	.162975	.152364	-2.80
-2.70	.120705	.139216	.161342	.186568	.211485	.223811	-2.70
-2.60	.132787	.155031	.183074	.218055	.263099	.301307	-2.60
-2.50	.142417	.167610	.200569	.244130	.301543	.373931	-2.50
-2.40	.148341	.175189	.211232	.260747	.330213	.428654	-2.40
-2.30	.149198	.175896	.212378	.263811	.338890	.452620	-2.30
-2.20	.143601	.167894	.201481	.249661	.321821	.435578	-2.20
-2.10 -2.00	.130235 .107982	.149545 .119605	.176464 .135996	.215583 .160271	.275271 .198270	.371893 .261753	-2.10 -2.00
-1.90 -1.80	.076048	.077409	.079756	.084193	.093031	.111349	-1.90
-1.50 -1.70	.034106 017587	.023049 042496	.008637 075148	010236 118678	035083 1 <i>77</i> 972	067918 260996	-1.80 -1.70
-1.60	017387	042496	168089	235127	177972 325592	451173	-1.60
-1.50	145707	198427	265531	352360	466992	622148	-1.50
-1.40	218003	282164	361956	462545	591433	759871	-1.40
-1.30	291841	36-1068	451376	557937	689459	853914	-1.30
-1.20	363516	439306	527799	631571	753783	898261	-1.20
-1.10	428951	502977	561923	677890	<i>77</i> 9897	891507	-1.10
-1.00	483941	550479	531037	693231	<i>7</i> 66350	836520	-1.00
90	524454	577893	629285	676116	714713	739705	90
80 7 0	546938 548630	582320 562167	610227 563714	627340	629237	610023	80
60	527828	50216/ 517322	563/14 491807	549840 448387	516310 383756	457901	70
50	484090	449217	491807 398197	329133	240099	294180 129206	60 50
40	418355	360770	287898	199071	093846	.027898	30 40
30	332952	256192	166859	065468	.047137	.169710	30
20	231497	140701	041502	.064673	.176110	.290779	20
10	118689	020144	.081750	.185082	.287793	.387675	10
.00	.000000	.099416	.196913	.290583	.378529	.458881	.00

			SKEW	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
-4.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10 -4.00							-4.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10 -4.00
-3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00	.000428 .001108 .008908						-3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00
-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00	.034461 .091644 .186439 .11828 .47156 .563261 .630460 .626233 .540369 .376624	.037335 .179031 .424944 .699116 .904484 ,968743 .864479	.412736 1.154771 1.606671 1.580220 1.150250	1.308533 3.463876 2.823381			-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00
-1.90 -1.89 -1.70 -1.60 -1.50 -1.30 -1.20 -1.10	.151178 111123 381520 631967 838850 985394 -1.062686 -1.069482 -1.011123 897900	.244293 166161 565200 905133 -1.154030 -1.296626 -1.332423 -1.272258 -1.134368 940660	.489790 226346 865030 -1.346380 -1.637910 -1.743088 -1.688081 -1.510562 -1.251236 948168	1.298782 -233321 -1.409161 -2.132746 -2.439060 -2.417049 -2.167842 -1 783859 -1.340054 891892	6.008392 .314604 -2.599172 -3.776760 -3.924047 -3.508310 -2.830276 -2.076035 -1.354128 721788	26.296986 -6.749225 -8.464687 -7.246598 -5.465547 -3.758660 -2.320434 -1.190123 -347336	-1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10
90 80 70 60 50 40 30 20 10	743216 561803 368188 175509 .005280 .165834 .300524 .406299 .482370 .529797	713610 473971 239300 023216 .164776 .319034 .437271 .519904 .569371	633538 332221 061661 .167459 .350128 .485754 .576943 .628401 .646021 .636159	476810 117191 .176251 .401253 .561253 .663162 .715691 .728128 .709516 .668143	203287 .197402 .488027 .682370 .796593 .846984 .848660 .814903 .756908 .683784	.249654 .647237 .889156 1.013589 1.052338 1.031034 .969782 .883974 .785099 .681502	90 80 70 60 50 40 30 20 10

/			SKEWN	NESS			
t	.0	.1	.2	.3	.4	.5	t
.00	.000000	.099416 .212123	.196913	.290583	.378529 .446308 .490655	.458881 .504560 .526245	.00 .10 .20
.20 .30 .40	.231497 .332952 .418355	.312723 .396892 .461478	.383442 .447991 .491064	.442932 .486405 .508096	.512433	.526493	.30 .40
.50	.484090	.504634	.512563	.509471	.496829	.475980	.50
.60	.527828	.525849	.513571	.492878	.465389	.432494	.60
.70	.548630	.525878	.496156	.461276	.422704	.381621	.70
.80	.546938	.506577	.463119	.417974	.372202	.326592	.80
.90	.524454	.470682	.417735	.366379	.317109	.270225	.90
1.00	.483941	.421543	.363493	.309789	.260310	.214859	1.00 1.10
1.10	.428951	.362844	.303855	.251224	.204259	.114009	1.10
1.20	.363516	.298335	.242061	.193306	.150934		1.20
1. 3 0	.291841	.231592	.180974	.138185	.101825		1.30
1.40	.218003	.165822	.122976	.087512	.057959	.033194	1.40
1.50	.145707	.103725	.069917	.042440	.019940		1.50
1.60 ⁻¹	.078088	047402	.023097	.003664	011988	024665	1.60
1.70	.017587	001667	016702	028531	037884	045300	1.70
1.80	034106	042615	049166	054198	058037	060934	1.80
1.90	076048 107982	075129 099370	074377	073658 087429	072905 083057	072092 079351	1.90
2.10 2.20	130235 143601	115877 125462	092732 101088 111534	096161 100572	089123 091752	083300 084515	2.10 2.20
2.30	149198	129110	113618	101402	091579	083537	2.30
2.40	148341	127891	111985	099375	089202	080863	2.40
2.50	142417	122878	107484	095167	085165	076931	2.50
2.60	132787	115092	100896	089387	079949	072122	2.60
2.70	120705	105455	092916	- 082565	073964	066758	2.70
2.80	107270	094763	084134	075151	067554	061105	2.80
2.90	093389	083674	075038	067508	060996	055373	2.90
3.10	079773	072706	066010	059925	054507	049728	3.00
3.10	066940	062242	057337	052617	048251	044293	3.10
3.20	055235	052547	049222	045738	042343	039155	3.20
3.30	044851	043785	041793	039388	036861	034374	3.30
3.40	035863	036031	035120	033623	031849	029982	3.40
3.50	028253	029301	029225	028467	027326	025994	3.50
3.60	021940	023558	024094	023915	023 <i>2</i> 91	022409	3.60
3.70	016801	018734	019688	019942	019729	019217	3.70
3.80	012692	014741	015951	016514	016613	016396	3.80
3.90	009460	011481	012818	013583	013911	013924	3.90
4.00	006959	008854	010220	011101	011586	01-1771	4.00
4.10	005054	006762	008087	009017	009601	009908	4.10
4.20 4.30 4.40	003624 002567 001795	005116 003835 002849	006352 004954 003837	007281 005845	007917 006498	008306 006936	4.20 4.30
4.50 4.60	001241 000847	002098 001532	003837 002952 002257	004667 003707 002929	005309 004320 003500	005770 004783 003952	4.40 4.50 4.60
4.70	000572	001109	001714	002303	002824	003254	4.70
4.80	000381	000797	001294	001802	002270	002671	4.80
4.90	000251	000567	000971	001403	001818	002185	4.90

			SKEW	NESS			
•			<u> </u>		I	·	
t	.6	.7	.8	.9	1.0	1.1	t
.00	.529797	.589476	.636159	.668143	.683784	.681502	.00
.10	.55103 <i>7</i>	.584817	.605109	.611252	.60.2702	.579038	.10
.20	.549488	.560304	.558735	.544926	.519119	.481635	.20
.30	.5?9089	.520796	502242	.474090	.437027	.391754	.30
.40	.493903	.470827	.440067	.402580	.359212	.310764	.40
.50	.448147	.414435	.375840	.333257	.287486	.239240	.50
.60	.395381	.355065	.312408	.268145	.222809	.177193	.60
.70	.338975	.295532	.251902	.208570	.165921	.124257	.70
.80	.281727	.238034	.195818	.1552"1	.116596	.079819	.80
.90	.225895	.184190	.145114	.108629	.074664	.043126	.90
1.00	.173207	.135106	.100308	.068570	.039660	.013358	1.00
1.10	.124896	.091451	.061567	.034861	.010997	010321	1.10
1.20	.081756	.053530	.028789	.007081	- 011981	028724	1.4)
1.30	.041204	.021359	.001684	.015290	0_9950	012615	1 0
1.40	.012349	0052n0	020175	032830	043577	052703	1.40
1.50	013930	026683	037291	046132	053497	059624	1.50
1.60	034971	043367	050211	-055782	060300	003043	1.60
1.70	051180	055831	059489	-062338	.004522	066158	1.70
1.80 1 90	003078	064616	005666	.006316	066611	060699	1.80
1.40	071211	070262	069251	068187	~.0o7079	065933	1.90
2.00	.076134	073284	070716	068369	~.066198	064171	2.00
2.10	078386	074165	070483	007227	064311	061674	2.10
2.20	078470	.073341	008926	Un5U77	- 001682	058657	2.20
2.30	076847	071200	066369	062188	058529	0552)5	2.30
2.40	073926	068078	063089	058785	055032	051731	2.40
2.50	.070062	064265	059318	055052	.051338	048078	2.50 2.60
260	065560	060001	055245	.051139	047563 043798	014124 010837	2.70
2.70 2.80	060571 055c00	055484	05102 7 046785	047167 - 043228	040113	037306	2.80
2.90	050510	05087 <i>2</i> 046291	042614	039394	036558	031019	2.90
2.90	030310	~ 040291	042014				
3.00	045527	041835	038585	035715	- 033172	030010	3.00
3.10	040742	037573	034748	-032229	-020979	.027964	3.10
3.20	036222	033553	.031138	-028759	026994	025220	3.20
3.30	.032010	~.029807	027777	025918	.024233	022679	3.30 3.40
3.40	-,028130	026350	024674	-023113	.021670	020340 018198	3.50
3.50	~.024591	023190	021833	.020542	019329 017196	016243	3.60
3.60 3.70	021394 018527	020323 017741	019249 - 016913	016200	015259	010243	3.70
3.80	-015976	015430	014814	014165	013509	012861	3.80
3.60 3.90	013720	013430	- 012936	012447	011933	011411	3.90
3.90	013720	3/100/0	-012,30				
4.00	011738	011552	011264	-010911	010519	010107	4 00
4.10	010005	009948	009783	000543	.009255	.008937	4.10
4.20	008499	008542	008475	008328	008127	007890	4.20 4.30
4.30	007196	.007314	.007324	007253	007125 006236	006955 006123	4.40
4.40	006073	00n246	- 006315	006305 005471	005449	005383	4.50
4.50	005110	~.005320	005433	005471	004754	003363	4.60
4.60	004288	004520 003832	004665 003998	004/38	004734	004726	4.70
4.70	003588	003241	003419	003537	003604	003631	4.80
4.80	-,002994	003241	003419	003049	003132	003177	4.90
4.90	002492	002/30	002313			1	

		-	_ SKEW	NESS]
_ t_	.0	1	.2	.3	.4	.5	t
5.00 5.10 5.20 5.30 5.40 5.50	000164 000105 000067 .000042 000026 000016	000401 000281 000196 000135 000092 .000063	000724 000537 .000396 000291 000212 000154	001028 000840 000645 000494 000377 000286	001450 001153 000914 000722 000568 000446	001783 001450 001177 000952 000768 000619	5.00 5.10 5.20 5.30 5.40 5.50
5.60 520 5.80 5.90 6.00	000010 - 000004 000002 600001	000042 - 000019 000013	-000111 00020 -00057 -000011	000?t6 00012? 000091 000068	000349 000272 000212 000164 000127	000497 - 000398 000318 000254 000202	5.60 5.70 5.80 5.90
610 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90		00005 00003 000002 000001 000001		000051 000028 000020 000015 000008 000006 000004	000075 000075 000058 000044 000034 000026 000020 000011	000160 000127 000101 000079 000063 000049 000039 000030	6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90
7.00 7.10 7.20 7.30 7.40 7.59 7.61 7.70 7.80 7.90			000001	60003 00002 00002 00001 00001	-,000000 -;000005 -,000004 -,000003 -,000002	00018 00014 000011 00009 00007 00004 00004 00003 00002 00002	7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90
8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80						000001 000001 00001 00001	8.00 8.10 8.30 8.30 8.40 8.50 8.60 8.70 8.80 8.90
9.06 9.19 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90	,		1				9.00 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90

- 1	SKEWNESS						
t	.6	.7	.8	.9	1.0	1.1	t
5.00	002069	002304	002488	002624	002719	002777	5.00
5.10	001714	001937	002117	002256	002357	002425	5.10
5.20	001417	001625	001 <i>7</i> 98	001936	002041	002116	5.20
5.30	001169	001361	001526	001660	001765	001844	5.30
5.40	000962	001138	001292	001421	001525	001606	5.40
5.50	000790 1	000950	~.001093	001215	001317	001397	5.50
5.60	000647	000792	000923	001038	001135	001215	5.60
5 70	000530	000659	000 <i>77</i> 9	000886	000978	001055	5.70
5 80	000432	00054 <i>7</i>	000656	000 <i>7</i> 55	000842	000916	5.80
5.90	000353	000454	000552	000643	000724	000 <i>7</i> 95	5.90
	000287	- 000376	000464	000547	000622	000689	6.00
6 10	000233	000311	000389	000465	000534	000597	6.10
0.20	- 000189	000257	000326	000395	000459	000517	6.20
	000153	000212	000273	000335	000393	000447	6.30
6.40	000124	000174	000229	000284	000337	000387	6.40
6.50	000100	000144	000191	000240	000288	000334	6.50
6 60	000080	000118	000160	000203	000247	000289	6.60
6.70	000065	000097	000133	000172	000211	000249	6.70
6.80	000052	000079	000111	000145	000180	000215	6.80
6.90	000042	000065	000092	000123	000154	000185	6.90
7.00	000033	000053	000077	000103	000131	000160	<i>7</i> .00
7.10	000027	- 000044	000064	000087	000112	000138	7.10
7.20	000021	000036	000053	000073	000095	000118	7.20
7.30	000017	000029	000044	000062	000081	000102	<i>7</i> .30
7.40	000014	000024	000037	000052	000069	000088	7.40
7.50	000011	000019	000030	000044	000059	000075	7.50
7.60	000009	000016	000025	000037	000050	000065	7.60
7.70	000007	000013	000021	000031	000043	000056	<i>7.7</i> 0
7.80	000005	000010	000017	000026	000036	000048	<i>7</i> .80
7.90	000004	000008	000014	000022	000031	000041	7.90
8.00	000003	000007	000012	000018	000026	000035	8.00
8.10	000003	000005	000010	000015	000022	000030	8.10
8 20	000002	000004	000008	000013	000019	000026	8.20
8.30	000002	000004	000007	000011	000016	000022	8.30
8.40	000001	000003	000005	000009	000014	000019	8.40
8.50	000001	000002	000004	000007	000011	000016	8.50
8.60	000001	000002	000004	000006	000010	000014	8.60
870	000001	000002	000003	000005	000008	000012	8.70
8.80	000001	000001	000002	000004	000007	000010	8.80
8.90		000001	000002	000004	000006	000009	8.90
9.00	•	000001	000002	000003	000005	000008	9.00
9.10		000001	000001	000003	000004	000006	9.10
9.20		000001	000001	000002	000004	000005	9.20
9.30		ł	000001	000002	000003	000005	9.30
9.40		i	000001	000001	000003	000004	9.40
9.50			000001	000001	000002	000003	9.50
960		1	000001	000001	000002	000003	9.60
9.70		1	1	000001	000002	000002	9.70
9.80		1		000001	000001	000002	9.80
9.90				000001	000001	000002	9.90

			SKEW	'NESS			
t	.0	.1	.2	.3	.4	.5	t
10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90							10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90
11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90							11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90
12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90							12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90
13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90							13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90
14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90							14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90

			SKEW	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90					00001 00001 00001 00001	00002 00001 00001 00001 00001 00001 00001	10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90
11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90							11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90
12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90							12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90
13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90							13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90
14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90							14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90

			SKEW:	NESS			
t	.6	7	.8	.9	1.0	1.1	t
-9.90 -9.80 -9.70 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00							-9.90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00
-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.30 -8.20 -8.10 -8.00							-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.30 -8.20 -8.10 -8.00
-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00							-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00
-6.90 -6.80 -6.70 -6.50 -6.40 -6.30 -6.20 -6.10 -6.00							-4,90 -0.70 -6.60 -6.50 -6.40 -6.30 -6.20 -6.10 -6.00
-5.90 -5.80 -5.70 -5.50 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00			Į.				-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00

			SKEW	NESS			
				1			
t	.0	.1	.2	.3	.4	.5	t
-4.90	.001062	.000373	.000050				-4.90
-4.80	.001567	.000621	.000106		l	l	-4.80 -4.70
-4.70	.002283	.001014	.000216		1		4.60
-4.60 -4.50	.003263	.001623	.000424	1		1	-4.50
-4.40	.004000	.003919	.001461	.000165			-4.40
-4.30	.009015	.005910	.002576	.000414	l	1	-4.30
-4.20	.012280	.008735	.004392	.000965	l	1	-4.20
-4.10	.016488	.012652	.007249	.002098			-4.10
-4.00	.021814	.017953	.011585	.CU1275	.000270		-4.00
-3.90	.028424	.024952	.017935	.008198	.000964		-3.90
-3.80	.036456	.033952	.026904	.014839	.002892	l	-3.80
-3.70	.045994	.045210	.039109	.025429	.007498	1	-3.70
-3.60 -3.50	.057030	.058872	.055089	.041352	.017134	.003363	-3.60 -3.50
-3.40	.082896	.093028	.099316	.003929	.055043	.003363	-3.40
-3.30	.096898	.112599	.126916	.131914	.109964	.042678	-3.30
-3.20	.110664	.132568	.156637	.176212	.171459	.101860	-3.20
-3.10	.123133	.151405	.186283	.224065	.247286	.201253	-3.10
-3.00	.132955	.167089	.212736	.270631	.330741	.340245	-3.00
-2.90	.138504	.177145	.232029	.309206	.410203	.502693	-2.00
-2.80	.137931	.178748	.239565	.331680	.470001	.650676	-2.80
-2.70	.129262	.168916	.230499	.329387	.492520	.760190	-2.70
-2.60 -2.50	.110533	.144769	.145268	.294297	.468964	.771242	-2.60
-2.30 -2.40	.079973	.044574	.063483	.220393	.364364	.659133	-2.50 -2.40
-2.30	021415	033521	044820	049946	033760	.048415	-2.30
-2.20	092745	129292	176631	- 237650	313972	398860	-2.20
-2.10	176458	239792	325968	-446158	618703	874547	-2.10
-2.00	269955	360149	483969	659320	917573	-1.317793	-2.00
-1.90	369279	483634	639366	858210	-1.178217	-1.671021	-1.90
-1.80	469154	601945	779314	-1.023098	-1,370447	-1.888901	-1.80
-1.70 -1.60	563157 6 14 051	705722 785244	870510	-1.135663	-1.470408	-1.941452	-1.70
-1.50 -1.50	704252	831283	950510 979070	-1.181176 -1.150310	-1.463555 -1.346367	-1.831597 -1.564257	-1.60 -1.50
-1.40	736420	836023	939371	-1.040370	-1.126539	-1.172695	-1.40
-1.30	734126	793947	838954	855748	821731	698106	-1.30
-1.20	692545	702593	680247	607581	457192	186561	-1.20
-1.10	609093	563089	451878	312649	062669	.316737	-1.10
-1.00	483941	380366	221798	.008309	.330924	.772172	-1.00
90	320340	163025	.050847	.332640	.694644	1.149001	90
80 70	124683	.077163	.329834	.637935	1.004102	1.427081	80
~ .70 ~ .60	.093707 .323095	.326094	.596972	.904033	1.241282	1.597145	70
50	.550102	.568419 .788781	.834958 1.028829	1.114676 1.258656	1.395475 1.463382	1.659900	60
40	.760699	.973094	1.167154	1.330391	1.403362	1.624302	50 40
30	.941303	1.109698	1.208438	1.329919	1.359877	1.321796	30
20	1.079904	1.190311	1.253522	1.262385	1.210756	1.093886	20
10	1.167080	1.210653	1.201474	1.137122	1.016802	.841546	~ .10
.001	1.196827	1.170712	1.093148	.966479	.794593	.582903	.00

			SKEWI	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
-4.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10							-4.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10 -4.00
-3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00	.020824 .028526 .147081						-3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00
-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00	.395781 .759352 1.124906 1.347521 1.309026 .962273 .343284 445103 -1.265630 -1.981650	.812211 2.017497 2.763730 2.549975 1.433681 193679 -1.862554 -3.194250	7.177420 6.605834 2.155290 -2.531723 -5.763751	47.637462 3.046070 –12.89341			-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00
-1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10	-2.485037 -2.712264 -2.648307 -2.320871 -1.788663 -1.127406 416546 .271442 .878276 1.363543	-3.971531 -4.138399 -3.762105 -2.983216 -1.969634 882058 .147390 1.024888 1.695880 2.140438	-7.147354 -6.952061 -5.640392 -3.883787 -1.954736 -1.94341 1.230284 2.251319 2.871243 3.136250	-16 21020 -13.86402 -9.514587 -5.027707 -1.253452 1.521847 3.306926 4.247538 4.536417 4.364950	-75.41929 -40.95566 -19.03718 -5.674726 1.962024 5.860034 7.396594 7.511627 6.834117 5.774305	-1703.342 -55.10019 4.547146 16.717548 17.978712 15.872761 12.840068 9.805846 7.121962	-1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1 00
90 80 70 60 50 40 30 20 10	1.705324 1.898524 1.951749 1.883508 1.718347 1.483373 1.205400 .908852 .614408 .338310	2.365735 2.397668 2.273015 2.032867 1.717661 1.363810 1.001743 .655086 .340679 .069165	3.114882 2.882507 2.511075 2.063195 1.589403 1.127644 .704131 .334973 .028099 214782	3.899959 3.275111 2.590410 1.915738 1.296049 .756864 .309331 045445 312925 502446	4.590501 3.437122 2.398938 1.515225 .796593 .236529 -180839 -475651 669095 781467	4.896272 3.128725 1.773397 .768222 .049368 442085 757437 939707 -1.023989 -1.038291	90 80 70 - 60 50 40 30 20 10

			SKEWI	JESS			
t	.0	.1	.2	.3	.4	.5	t
00 .10 20 .30 .40 50 .60 .70	1.196827 1.167080 1.079904 .941303 .760699 .550102 323095 .093707 124683	1.170712 1.074614 .930144 .747971 .540662 .321613 .103981 100271 281142	1 093148 .938367 .749299 .539336 .321978 .109835 086178 257417 397824	.966479 .764534 .545828 .324239 .112068 080603 246284 380193 480139	.794593 .560223 .328197 .110656 083069 246603 376418 471536 533110	.582903 .333295 104721 094324 258707 386303 477487 534582 561286	.00 .10 .20 .30 .40 .50 .60 .70
.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90	320340 483941 609093 692545 734126 736420 704252 644051 563157 460154 360279	431125 545473 622220 661971 067522 643356 595087 528901 451048 367406 283159	501121	- 516236 - 580507 - 586411 - 58366 - 531300 - 480250 - 420037 - 355027 - 288969 - 224909 - 165165	563934 567948 514257 .460219 -410109 -349867 -288813 229601 174230 124086	562147 542106 506123 458890 404633 346993 288967 232901 180529 133032	.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70
2 00 2 10 2 20 2 30 2 40 2 50 2 60 2 70 2 80 2 90	269955 176458 092745 021415 .036225 .079973 .110533 .129262 .137931 .138504	202581 128927 064425 010335 .032924 .065624 .088555 .102860 109882 .111035	151207 095701 - 042334 00806 032034 .056680 .073917 .084711 .090113	- 111359 - 061481 - 064481 - 024976 - 007156 - 007252 - 050897 - 063826 - 071857 - 075826 - 076544	- 080012 - 042394 - 011244 .013705 .032923 .047011 .056636 .062491 .065250 .065547	091107 055060 024879 000317 .019042 .033717 .044288 .051348 .055483 .057241 .057123	1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90
3 00 3 10 3 20 3 30 3 40 3.50 3.60 3.70 3.80 3.90	.132955 .123133 .11064 .02698 .082896 .082896 .08433 .057030 .045964 .036456 .028424	107697 101141 .092480 082650 (72391 .062277 052701 643925 .036097 029271	088906 .084210 077881 070581 062845 .055085 047604 .040610 .034233 .028537	.074760 .071145 .066276 .060636 .054615 .048518 .042570 .036935 .031718	.063956 .060979 .057048 052522 .047688 .042774 .037951 .033342 .029031 .025070	.055574 .052981 .049668 .045906 .041010 .037852 .033860 .030027 .026420 .023080	3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90
4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90	.021814 .016488 012280 .009015 .006526 .004660 .003283 .002283 .001567 .001062	.023440 .018546 .014507 011224 .008592 .006510 .004884 .003629 .002671 .001948	.023543 .019233 .015566 .012487 .009933 .007837 .006136 .004768 .003678 .002818	.022747 .019020 .015781 .012997 .010630 .008636 .006972 .005594 .004463	.021485 .018283 .015455 .012982 .010842 .009004 .007438 .006113 .005000 .004071	.020029 .017274 .014813 .012634 .010722 .009056 .007615 .006375 .005316 .004416	4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90

t .6 .7 .8 .9 1.0 1.1 t .00 .338310 .069165 -214782 502446 -781467 -1.038291 .00 .10 .092212 154102 396402 625246 831115 -1.004521 .10 .30 284508 454578 600057 717270 803289 855884 .30 .40 411246 538066 637395 708191 750026 762993 .40 .50 498817 584031 642121 67916 682779 667508 .50 .70 492063 588715 589678 622683 662131 08279 667508 .50 .70 492063 588315 584965 55132 531294 485705 .70 .70 492060 448086 433353 338781 339911 .90 .70 586662 464476 417768 368259				SKEW	NESS			
10	t	.6	7	.8	.9	1.0	1.1	t
20		.338310	.069165	214782	502446	- 781467	-1.038291	.00
30		.092212	154102		625246	831115	-1.004521	.10
.40								
50								
.00 5509/63 5986/8 622683 625131 608205 574058 .60 .70 492063 588315 584965 565132 531294 485703 .70	.40							
70 -492063 - 588315 584965 565132 531294 485703 .70 80 545052 516090 478086 433353 383781 330911 .90 1.00 506662 464476 417768 366259 317280 265855 1.00 1.10 458242 408129 357245 306646 257083 251529 1.10 1.20 403880 350288 288798 249826 203605 160241 1.20 1.30 34695 293466 244031 198567 156889 118778 1.30 1.40 290326 239514 193988 153216 116712 084036 1.40 1.50 185405 144850 110070 080131 054280 031903 1.60 1.70 139641 105337 076391 051849 030973 013117 1.70 1.80 099226 071267								
80 -568715 -558962 .535134 -4°0924 -455656 -404319 .80 .303011 .00 .506662 .464476 .417768 .368259 .317280 .256355 .100 .100 .458242 .408129 .357245 .306646 .2257033 .251529 1.10 .20 .403890 .350288 .298798 .249826 .203605 .160241 1.20 .403890 .239514 .19388 .153216 .116712 .084036 .140 .193988 .153216 .116712 .084036 .140 .150 .2355962 .189710 .149257 .113803 .082677 .055313 1.50 .150 .139641 .105337 .076391 .051849 .030957 .013117 .70 .170 .040367 .042504 .024507 .00608 .002780 .013113 .190 .190 .006038 .002780 .013113 .190 .220 .008421 .015432 .021088 .025602 .029244 .032158 .220 .220 .008421 .015432 .021088 .025602 .029244 .03118 .220 .230 .048012 .034472 .035112 .035610 .035506 .036170 .036664 .250 .240 .043337 .044203 .041681 .039598 .037517 .036664 .250 .240 .047337 .044203 .041681 .039598 .037517 .036664 .250 .250 .050547 .045324 .041104 .037639 .035751 .036664 .250 .250 .050547 .045324 .041104 .037639 .035751 .036664 .250 .250 .037609 .03809 .037833 .033388 .280 .290 .050547 .046145 .042202 .038969 .036272 .033988 .280 .290 .050547 .046145 .042202 .038969 .036272 .033988 .280 .290 .037699 .036272 .033988 .280 .290 .037699 .036272 .033988 .280 .290 .037699 .036272 .033988 .280 .290 .037699 .036272 .033988 .280 .290 .036079 .036664 .250 .2440 .037699 .036272 .033988 .280 .29067 .03869 .036373 .036375 .026616 .024970 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250 .036664 .250	.00							
1.00								
1.00								
1.10	90	545052	516090	478086	433353	383781	~.330911	.90
1.20								
1 30 _336/95 _293466 _244031 19368 153216 084036 140 1.50 _235962 _189710 149257 113203 082677 055313 150 1.60 185405 _144850 110070 080131 054280 031903 160 1.70 13641 105337 076391 051849 030957 013117 170 1.80 099226 071267 047991 028508 002128 001690 180 1.90 064367 042504 024507 008008 002780 013113 190 2.00 035003 018750 005495 095372 014313 021689 200 2.20 08421 015432 021088 02502 029244 032158 220 2.30 023361 026834 029607 031802 033518 0344838 30 2.50 042290 040	1.10							
1.40								
1.50								
1.60 -,185405 -,144850 -,110070 -,080131 -,054280 -,031903 1,60 1.70 -,139641 -,105337 -,051849 -,032957 -,013117 1,70 1.80 -,099226 -,042504 -,024507 -,09608 ,002780 ,013113 1,80 1.90 -,04367 -,042504 -,024507 ,09608 ,002780 ,013113 1,90 200 -,035003 -,018750 -,005495 ,075372 ,014313 ,021689 2,00 210 -,010873 ,00404 ,009531 ,016944 ,022980 ,027897 2 10 2.20 ,008421 ,015432 ,021068 025602 ,029244 ,032158 2,20 2.40 ,034472 ,035112 ,035610 ,035960 ,036170 ,036251 2,40 2.50 ,042290 ,040751 ,039506 ,038450 ,037813 ,036664 2,50 2.70 ,050105 ,045878 ,042480 ,039690	1.40							
1.70 139(41) 105337 076391 951849 030957 013117 1.70 1.80 099226 071267 047991 028508 012128 .001690 1.80 1.90 064367 042504 024507 .009608 .002780 .013113 1.90 2.00 035033 018750 005495 .005372 .014313 .021689 2.00 2.10 010873 .00404 .009531 .016944 .022980 .027897 2 10 2.20 .008421 .015432 .021068 .025602 .029244 .032158 2.20 2.40 .034472 .035112 .035610 .035960 .036170 .036251 2.40 2.50 .042290 .047337 .044203 .041681 .039508 .037517 .036642 2.50 2.70 .050105 .045878 .042480 .039690 .037353 .035361 2.27 2.80 .051042 .046145								
1.80 -0.99226 -071267 -04791 -028508 -012128 .001690 1.80 1.90 -064367 042504 024507 .009608 .002780 .013113 1.90 2.00 -035003 018750 005495 .005372 .014313 .021689 2.00 2.10 -010873 .000404 .009531 .016944 .022980 .027897 2.10 2.20 .008421 .015432 .021068 025602 .029244 .032158 2.20 2.40 .0334172 .035112 .035610 .035960 .03318 .034838 2.30 2.50 .042290 .040751 .039506 .038450 .037517 .036664 2.50 2.70 .050105 .045878 .042480 .039690 .037833 .035351 2.270 2.80 .051042 .046145 .042202 .038969 .034753 .032315 2.90 3.00 .048971 .043689 .039402 .0358								
1.90 -064367 042504 024507 .009608 .002780 .013113 1.90 2 00 -035003 018750 005495 .005372 .014313 .021689 2.00 2 10 -010873 .000404 .009531 .016944 .022980 .027897 2 10 2 2.90 .008421 .015432 .021068 025602 .029244 .032158 2.20 2 40 .034472 .035112 .035610 .035960 .036170 .036251 2.40 2 50 .042290 .040751 .039506 .038450 .037833 .036305 2.60 2 70 .050105 .045878 .042480 .039690 .037353 .035361 2.70 2 80 .051042 .046145 .042202 .038969 .036272 .033888 2.80 2 90 .050547 .045324 .041104 .037639 .034733 .032315 2.90 3 .00 .0448971 .043689 .034881 .0								
2 00 -035003 -018750 005495 .005372 .014313 .021689 2.00 2 10 -010873 .000404 .009531 .016944 .022980 .027897 2 10 2.20 .008421 .015432 .021068 025602 .029244 .032158 2.20 2.30 .023361 .026834 .029607 .031802 .033518 .034838 2.30 2.40 .034472 .035112 .035610 .035960 .036170 .036251 2.40 2.50 .042290 .040751 .039506 .038450 .037517 .036664 2.50 2.70 .050105 .045878 .042480 .039690 .037353 .035361 2.70 2.80 .051042 .046145 .042202 .038969 .036272 .033988 2.80 2.90 .050547 .043689 .039402 .035873 .032930 .030444 3.00 3.10 .046611 .041474 .037099 .033881 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2 10 -010873 .000404 .009531 .016944 .022980 .027877 2 10 2.20 .008421 .015432 .021068 0.25602 .029244 .032158 2.20 2.40 .0234472 .035112 .035610 .035960 .036170 .036251 2.40 2.50 .042290 .040751 .039506 .038450 .037517 .036664 2.50 2.70 .047337 .044203 .041681 .039598 .037833 .036305 2.60 2.70 .050105 .045878 .042480 .039690 .037533 .035361 2.70 2.80 .051042 .046145 .042202 .038969 .036272 .033988 2.80 2.90 .050547 .043689 .039402 .035873 .032930 .030444 3.00 3.10 .046611 .041474 .037229 .033811 .030911 .023459 3.10 3.20 .043716 .038869 .034871 .03631 </td <td>1.90</td> <td>- 00+30/</td> <td>042504</td> <td>024507</td> <td>.009008</td> <td>.002/80</td> <td>.013113</td> <td>1.90</td>	1.90	- 00+30/	042504	024507	.009008	.002/80	.013113	1.90
2.20 .008421 .015432 .021068 0.25602 .029244 .032158 2.20 2.30 .023361 .026834 .029607 .031802 .033518 .034838 2.30 2.40 .034472 .035112 .035610 .035960 .036170 .0366251 2.40 2.50 .042290 .040751 .039506 .038450 .037833 .036305 2.60 2.70 .050105 .045878 .042480 .039690 .037353 .035361 2.70 2.80 .051042 .046145 .042202 .038969 .036272 .033988 2.80 2.90 .050547 .045324 .041104 .037639 .034753 .032315 2.90 3.00 .048971 .043689 .039402 .035873 .032930 030444 3.00 3.10 .046611 .041474 .037279 .033811 .030911 .028459 3 10 3.20 .043716 .038869 .034881 .031567 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2.30 .023361 .026834 .029607 .031802 .033518 .034838 2.30 2.40 .034472 .035112 .035610 .035960 .036170 .036251 2.40 2.50 .042290 .040751 .039506 .038450 .037517 .036664 2.50 2.70 .050105 .045878 .042480 .039690 .037353 .035361 2.70 2.80 .051042 .046145 .042202 .038969 .036272 .033988 2.80 2.90 .050547 .045324 .041104 .037639 .034753 .032315 2.90 3.00 .048971 .043689 .039402 .035873 .032930 030444 3.00 3.10 .046611 .041474 .037279 .033811 .030911 .028459 3 10 3.20 .043716 .038869 .034881 .031567 .028784 .0264124 3.20 3.30 .040491 .036031 .032329 .022931 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2.40 .034472 .035112 .035610 035960 .036170 .036251 2.40 2.50 .042290 .040751 .039506 .038450 .037517 .036664 2.50 2.70 .047337 .044203 .041681 .039598 .037833 .036305 2.60 2.70 .050105 .045878 .042480 .039690 .037233 .035361 2.70 2.80 .051042 .046145 .042202 .038969 .036272 .033988 2.80 2.90 .050547 .045324 .041104 .037639 .034753 .032315 2.90 3.00 .048971 .043689 .039402 .035873 .032930 030444 3.00 3.10 .046611 .041474 .037279 .033811 .030911 .028459 3 10 3.20 .043716 .038869 .034881 .031567 .028784 .026424 3.20 3.30 .040491 .036031 .032732 .02231	2.20							
2.50 .042290 .040751 .039506 .038450 .037517 036644 2.50 2.40 .047337 .044203 .041681 039598 .037833 .036305 2.60 2.70 .050105 .045878 .042480 .039690 .037353 .035361 2.70 2.80 .051042 .046145 .042202 .038969 .036272 .033988 2.80 2.90 .050547 .045324 .041104 .037639 .034753 .032315 2.90 3.00 .048971 .043689 .039402 .035873 .032930 .030444 3.00 3.10 .046611 .041474 .037279 .033811 .030911 .028459 3 10 3.20 .043716 .038869 .034881 .031567 .028784 .026424 3.20 3.30 .040491 .036031 .032329 .029231 .026616 .024391 3.30 3.40 .037099 .033084 .029716 .026875 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
240 .047337 .044203 .041681 039598 .037833 .036305 2.60 2.70 .050105 .045878 .042480 .039690 .037353 .035361 2.70 2.80 .051042 .046145 .042202 .038969 .036272 .033988 2.80 2.90 .050547 .045324 .041104 .037639 .034753 .032315 2.90 3.00 .048971 .043689 .039402 .035873 .032930 .030444 3.00 3.10 .046611 .041716 .038869 .034881 .031567 .028784 .026424 3.20 3.30 .040491 .036031 .032329 .029231 .026616 .024391 3.30 3.40 .037099 .033084 .029716 .026875 .024461 .022396 3.40 3.50 .033670 .030124 .027115 .024552 .022358 .020470 3.50 3.60 .030299 .027226 .024581 <td>2.40</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2.40							
2.70 .050105 .045878 .042480 .039690 .037353 .035361 2.70 2.80 .051042 .046145 .042202 .038969 .036272 .033988 2.80 2.90 .050547 .045324 .041104 .037639 .034753 .032315 2.90 3.00 .048971 .043689 .039402 .035873 .032930 030444 3.00 3.10 .046611 .041474 .037279 .033811 .030911 .023459 3.10 3.30 .040491 .036031 .032329 .029231 .026616 .024391 3.30 3.40 .037099 .033084 .029716 .026875 .024461 .022396 3.40 3.50 .033670 .030124 .027115 .024552 .022358 .020470 3.50 3.60 .030299 .027226 .024581 .022303 .020336 018631 3.60 3.70 .027659 .024443 .0226154 .020157 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2.80 .051042 .046145 .042202 .038969 .036272 .033988 2.80 2.90 .050547 .045324 .041104 .037639 .034753 .032315 2.90 3.00 .048971 .043689 .039402 .035873 .032930 030444 3.00 3.10 .046611 .041474 .037279 .033811 .030911 .028459 3 10 3.20 .043716 .038869 .034881 .031567 .028784 .026124 3.20 3.30 .040491 .036031 .032329 .02231 .026616 .024391 3.30 3.40 .037099 .033084 .029716 .026875 .024461 .022396 3.40 3.50 .033670 .030124 .027115 .024552 .022358 .020470 3.50 3.60 .030299 .027226 .024581 .020157 .018416 .016894 3.70 3.80 .024000 .021812 .019861 .018134 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2.90 .050547 .045324 .041104 .037639 .034753 .032315 2.90 3.00 .048971 .043689 .039402 .035873 .032930 030444 3.00 3.10 .046611 .041474 .037279 .033811 .030911 .028459 3.10 3.20 .043716 .038869 .034881 .031567 .028784 .026424 3.20 3.30 .040491 .036031 .032329 .029231 .026616 .024391 3.30 3.40 .037099 .033084 .029716 .026875 .024461 .022396 3.40 3.50 .033670 .030124 .027115 .024552 .022358 .020470 3.50 3.60 .030299 .027226 .024581 .022303 .020336 018631 3.60 3.70 .024000 .021812 .019861 .018134 .016610 .015266 3.80 3.90 .021152 .019356 .017719 .016245 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
3.00								
3.10 .046611 .041474 .037279 .033811 .030911 .028459 3 10 3.20 .043716 .038869 .034881 .031567 .028784 .026424 3.20 3.30 .040491 .036031 .03329 .029231 .026616 .024391 3.30 3.40 .037099 .033084 .029716 .026875 .024461 .022396 3.40 3.50 .033670 .030124 .027115 .024552 .022358 .020470 3.50 3.60 .030299 .027226 .024581 .022303 .020336 018631 3.60 3.70 .027059 .024443 .022154 .020157 .018416 .016894 3.70 3.80 .024000 .021812 .019861 .018134 .016610 .015266 3.80 3.90 .021152 .019356 .017719 .016245 .014927 .013752 3.90 4.00 .018534 .017090 .015738 .014497 <td>2.90</td> <td>.050547</td> <td>.045324</td> <td>.041104</td> <td>.037639</td> <td>.034753</td> <td>.032315</td> <td>2.90</td>	2.90	.050547	.045324	.041104	.037639	.034753	.032315	2.90
3.20 .043716 038869 .034881 .031567 .028784 026424 3.20 3.30 .040491 .036031 .032329 .029231 .026616 024391 3.30 3.40 .037099 .033084 .024716 .026875 .024461 .022396 3.40 3.50 .033670 .030124 .027115 .024552 .022358 .020470 3.50 3.60 .030299 .027226 .024581 .022303 .020336 .016831 3.60 3.70 .027059 .024443 .022154 .022157 .018416 .016894 3.70 3.80 .024000 .021812 .019861 .018134 .016610 .015266 3.80 3.90 .021152 .019356 .017719 .016245 .014927 .013752 3.90 4.00 .018534 .017090 .015738 .014497 .013370 012353 4.00 4.10 .016154 .015018 .013921 .001289								
3.30 .040491 .036031 .032329 .029231 .026616 024391 3.30 3.40 .037099 .033084 .029716 .026875 .024461 .022396 3.40 3.50 .033670 .030124 .027115 .024552 .022358 .020470 3.50 3.60 .030299 .027226 .024581 .022303 .020336 018631 3.60 3.70 .027059 .024443 .022154 .0220157 .018416 .016894 3.70 3.80 .024000 .021812 .019861 .018134 .016610 .015266 3.80 3 90 .021152 .019356 .017719 .016245 .014927 .013752 3.90 4.00 .018534 .017090 .015738 .014497 .013370 012353 4.00 4.10 .016154 .015018 .013921 .001289 .011938 011067 4.10 4.20 .014009 013141 .012268 .011425								
3.40 .037099 .033084 .029716 .026875 .024461 .022396 3.40 3.50 .033670 .030124 .027115 .024552 .022358 .020470 3.50 3.60 .030299 .027226 .024581 .022303 .020336 018631 3.60 3.70 .027059 .024443 .022154 .020157 .018416 .016894 3.70 3.80 .024000 .021812 .019861 .018134 .016610 .015266 3.80 4.00 .018534 .017090 .015738 .014497 .013370 012353 4 00 4.10 .016154 .015018 .013°21 .001289 .011938 011067 4 10 4.20 .014009 013141 .012268 .011425 .010629 .009890 4 20 4.30 .012093 .011452 .010773 .010095 .009439 .00819 3 30 4.40 .010393 .009942 .00827 .007815								
3.50 .033670 .030124 .027115 .024552 .022358 .020470 3.50 3.60 .036299 .027226 .024581 .022303 .020336 .018631 3.60 3.70 .027059 .024443 .022154 .020157 .018416 .016694 3.70 3.80 .024000 .021812 .019861 .018134 .016610 .015266 3.80 3.90 .021152 .019356 .017719 .016245 .014927 .013752 3.90 4.00 .018534 .017090 .015738 .014497 .013370 .012353 4 00 4.10 .016154 .015018 .013°21 .001289 .011938 011067 4 10 4.20 .014009 .013141 .012268 .011425 .010629 .009890 4 20 4.30 .012093 .011452 .010773 .010095 .009439 .008819 3 30 4.40 .010393 .009942 .009429 .008894 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
3.60 .030299 .027226 .024581 .022303 .020336 018631 3.60 3.70 .027059 .024443 .022154 .020157 .018416 .016894 3.70 3.80 .024000 .021812 .019861 .018134 .016610 .015266 3.80 3.90 .021152 .019356 .017719 .016245 .014927 .013752 3.90 4.00 .018534 .017090 .015738 .014497 .013370 012353 4.00 4.10 .016154 .015018 .013921 .001289 .011933 011067 4.10 4.20 .014009 013141 .012268 .011425 .010629 .008890 4.20 4.30 .012093 .011452 .010773 .010095 .009439 .008819 3.30 4.40 .010393 .009942 .009429 .008894 .008361 .007847 4.40 4.50 .008896 .008600 .008227 .007815								
3.70 .027059 .024443 .022154 .020157 .018416 .016894 3.70 3.80 .024000 .021812 .019861 .018134 .016610 .015266 3.80 3.90 .021152 .019356 .017719 .016245 .014927 .013752 3.90 4.00 .018534 .017090 .015738 .014497 .013370 012353 4.00 4.10 .016154 .015018 .013921 .001289 .011938 011067 4.10 4.20 .014009 013141 .012268 .011425 .010629 .009890 4.20 4.30 .012093 .011452 .010773 .010095 .009439 .008819 3.30 4.40 .010393 .009942 .009429 .008894 .008361 .007847 4.40 4.50 .008896 .008600 .008227 .007815 .007390 .006166 4.60 4.70 .006443 .006373 .006211 .005990								
3,80 .024000 .021812 .019861 .018134 .016610 .015266 3.80 3 90 .021152 .019356 .017719 .016245 .014927 .013752 3.90 4.00 .018534 .017090 .015738 .014497 .013370 012353 4 00 4.10 .016154 .015018 .01321 .001289 .011938 011067 4 10 4.20 .014009 013141 .012268 .011425 .010629 .009890 4 20 4.30 .012093 .011452 .010773 .010095 .009439 .00819 3 30 4.40 .010393 .009942 .009429 .008894 .008361 .007847 4.40 4.50 .008896 .008600 .008227 .007815 .007390 .006968 4.50 4.60 .007585 .007415 .007158 .006950 .005517 .005465 4.70 4.80 .005455 .005462 .005375 .005226								
3 90 .021152 .019356 .017719 .016245 .014927 .013752 3.90 4.00 .018534 .017090 .015738 .014497 .013370 012353 4 00 4.10 .016154 .015018 .013921 .001289 .011938 011067 4 10 4.20 .014009 013141 .012268 .011425 .010629 .009890 4 20 4.30 .01293 .011452 .010773 .010095 .009439 .008819 3 30 4.40 .010393 .009942 .009429 .008894 .008361 .007847 4.40 4.50 .008896 .008600 .008227 .007815 .007390 .006968 4.50 4.60 .007585 .007415 .007158 .006850 .006517 .006176 4.60 4.70 .006443 .006373 .006211 .005900 .005736 .005465 4.70 4.80 .005455 .005462 .005375 .005226								
4.00 .018534 .017090 .015738 .014497 .013370 012353 4 00 4.10 .016154 .015018 .013921 .001289 .011938 011067 4 10 4.20 .014009 013141 .012268 .011425 .010629 .009890 4 20 4.30 .012093 .011452 .010773 .010095 .009439 .008819 3 30 4.40 .010393 .009942 .009429 .008894 .008361 .007847 4.40 4.50 .008896 .008600 .008227 .007315 .007390 .006968 4.50 4.60 .007585 .007415 .007158 .006850 .006517 .006176 4.60 4.70 .006443 .006373 .006211 .005900 .005736 .005465 4.70 4.80 .005455 .005462 .005375 .005226 .005038 .004828 4.80								
4.10 .016154 .015018 .013021 .001289 .011938 011067 4 10 4.20 .014009 013141 .012268 .011425 .010629 .009890 4 20 4.30 .012093 .011452 .010773 .010095 .009439 .008819 3 30 4.40 .010393 .009942 .008429 .008894 .008361 .007847 4.40 4.50 .008896 .008600 .008227 .007815 .007390 .006968 4.50 4.60 .007585 .007415 .007158 .006850 .006517 .006176 4.60 4.70 .006443 .006373 .006211 .005990 .005736 .005465 4.70 4.80 .005455 .005462 .005375 .005226 .005038 .004828 4.80	3 90	.021152	.019336	.017719	.010245	.014927	.013/32	3.90
4,20 .014009 013141 .012268 .011425 .010629 .009890 4 20 4,30 .012993 .011452 .010773 .010095 .009439 .00819 3 30 4,40 .010393 .009942 .009429 .008894 .008361 .007847 4.40 4,50 .008896 .008600 .008227 .007815 .007390 .006968 4.50 4,60 .007585 .007415 .007158 .006850 .006517 .006176 4.60 4,70 .006443 .006373 .006211 .005990 .005736 .005465 4.70 4,80 .005455 .005462 .005375 .005226 .005038 .004828 4.80								
4.30 .012093 .011452 .010773 .010095 .009439 .008819 3 30 4.40 .010393 .009942 .009429 .008894 .008361 .007847 4.40 4.50 .008896 .008600 .008227 .007815 .007390 .006968 4.50 4.60 .007585 .007415 .007158 .006850 .006517 .006176 4.60 4.70 .006443 .006373 .005211 .005990 .005736 .005465 4.70 4.80 .005455 .005462 .005375 .005226 .005038 .004828 4.80								
4.40 .010393 .009942 .009429 .008894 .008361 .007847 4.40 4.50 .008896 .008600 .008227 .007815 .007390 .006968 4.50 4.60 .007585 .007415 .007158 .006850 .006517 .006176 4.60 4.70 .006443 .006373 .006211 .005990 .005736 .005465 4.70 4.80 .005455 .005462 .005375 .005226 .005038 .004828 4.80								
4.50 .008896 .008600 .008227 .007815 .007390 .006968 4.50 4.60 .007585 .007415 .007158 .006850 .006517 .006176 4.60 4.70 .006443 .006373 .006211 .005990 .005736 .005465 4.70 4.80 .005455 .005462 .005375 .005226 .005038 .004828 4.80								
4.60 .007585 .007415 .007158 .006850 .006517 .006176 4.60 4.70 .006443 .006373 .006211 .005990 .005736 .005465 4.70 4.80 .005455 .005462 .005375 .005226 .005038 .004828 4.80								
4.70 .006443 .006373 .006211 .005990 .005736 .005465 4.70 4.80 .005455 .005462 .005375 .005226 .005038 .004828 4.80								
4.80 .005455 .005462 .005375 .005226 .005038 .004828 4.80	4.00							
	4.90	.003433	.003462	.003373	.003220	.003038		4.90

	·		SKEWN	IESS			
t	۵	.1	.2	3	.4	.5	t
5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90 6.10 6.20 6.30 6.40 6.50 6.60 6.70	.000711 .000470 .000307 .000198 .000126 .000079 .000049 .000030 .000018 .000011	.001408 .001009 .000717 .000505 .000353 .000245 .000168 .000115 .000052 .000052 .000035 .000015 .000010 .000006 .000004	.002144 .001621 .001217 .000909 .000674 .000497 .000365 .000139 .000139 .000100 .000071 .000036 .000025 .000018 .000012	.002794 .002193 .001713 .001331 .001030 .000793 .000608 .000464 .000352 .000267 .000113 .000113 .000084 .000063 .000046	.003300 .002664 .002142 .001715 .001368 .001087 .000861 .000680 .000535 .000419 .000328 .000256 .000199 .000154	.003654 .003014 .002477 .002029 .001657 .001349 .001095 .000887 .000716 .000577 .000463 .000371 .000297 .000237 .000188 .000150 .000119	5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90 6.10 6.20 6.30 6.40 6.50 6.60 6.70
6.80 6.90 7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90			.00006 .00004 .00003 .00002 .00001 .00001	.00018 .00014 .00010 .00007 .00005 .00004 .00003 .00002 .00001	.000041 .000032 .000024 .000018 .000014 .000010 .000008 .000004 .000003 .000003	.000074 .000058 .000046 .000036 .000028 .000022 .000017 .000013 .000010 .000008 .000006	7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90
8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80 9.90					.000001 .000001 .000001 .000001	.000004 .00003 .000002 .000002 .000001 .000001 .000001	8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90
9.00 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80							9.00 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90

			SKEWN	NESS			
t	.6	7	.8	.9	1.0	1.1	t
5.00	.003872	.003977	003997	.003954	.003867	.003750	5 00
5.10	.003247	.003381	.003436	.003430	.003380	.003299	5.10
5.20	.002715	.002867	.002947	002970	.002949	002897	5.20
5.30	.002265	.002426	.002522	00256.7	002570	.002542	5.30
5 40	.001884	002048	002155	002215	002236	002227	5 40
5.50 5 60	001563	.001725	.001838 001545	.001908	.001943 001686	.001930 001705	5 50
5.70	.001294	.001450 .001217	.001330	.001110	.001462	.001703	5.00 5.70
5.80	000880	.001217	.001330	.001210	.001462	.001489	5 80
5.90	.000724	.000852	.000956	.01037	.001200	001133	5 90
6.00	.000594	.000711	.000809	.000887	.000946	.000987	600
6.10	.000486	.000592	.000684	.000758	.000816	.000859	6 10
6.20	000397	.000493	000577	.000648	.000704	000747	6 20
6.30	.000324	.000409	.000186	.000552	.000006	000049	6.30
6.40	.000264	.000339	.000400	000470	000522	.000563	6.40
6.50	.000215	.000281	.000344	.000400	.000449	.000489	6.50
660	000174	.000232	.000282	.000340	.000386	.000424	6 60
6.70 6.30	.000141	000192 .000158	.000242	.000289	000331	.000367	670
6.90	.000114	.000130	.000203	000245 .000208	.000284	.000318 .000275	6.80
7.00	.000074	.000107	000142	000176	.000209	.000238	7.00
7.10	000060	.000088	000118	.000170	.000179	.000206	7.10
7.20	.000048	.000072	.00009	000126	.000153	.000177	7.20
7.30	.000039	000059	.000082	.000107	000131	.000153	7.30
7 40	.000031	.000048	.000069	.000090	.000112	.000132	7.40
7.50	.000025	.000040	.000057	.000076	.000095	.000114	7.50
7.60	000020	.000032	.000047	.000064	.000081	.000098	7.60
<i>77</i> 0	.000016	.000026	.000039	000054	.000069	000085	7 70
7.80	.000013	.000022	.000933	000045	.000059	.000073	7.80
7.90	.000010	.000018	.000027	.000038	.000050	.000063	7 90
8.00	800000	000014	000022	.000032	.000043	.000054	800
8.10	000006	000012	000019	.000027	.000036	000046	8.10
8 20 8 30	.000005	.000009	.000015	.000023	.000031	.000040	8.20
8.40	.000004	.000006	.000013	.000019 .000016	.000026	.000034	8.30 8.40
8.50	.000002	.000005	.000009	.000013	.000019	.000025	8.50
8.60	.000002	.000004	000007	.000013	.000016	.000023	8.60
8.70	000002	000003	.000006	.000009	.000014	000019	8.70
8.80	.000001	.000003	.000005	.000008	.000912	000016	8.80
8.90	.000001	.000002	.000004	.000007	.000010	.000014	8.90
9.00	.000001	.000002	000003	.000006	.000008	.000012	9.00
9.10	.000001	.000001	.000003	000005	.000007	.000010	9.10
9.20		.000001	.000002	.000004	.000006	.000009	9.20
9.30		.000001	.000002	.000003	000005	.000007	9.30
9.40		.000001	.000002	.000003	.000004	000006	9.40
9 50		.000001	000001	000002	000004	000005	9.50
9.60 9.70			.000001	000002 000002	.000003	.000005	9.60 9.70
9.80			.000001	.000002	.000003	000003	9.70
9.90			.000001	000001	000002	000003	9.90
9.90			.00001	00001	00002	1 000003	7.70

	SKEWNESS							
t	.6	.7	.8	9	1.0	1.1	t	
10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90							10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90	
11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90							11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90	
12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90							12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90	
13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90							13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90	
14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90							14.00 14.10 14.20 14.30 14.40 14.59 14.60 14.70 14.80 14.90	

			SKEWN	IESS			
ŧ	.6	7	.8	.9	1.0	1.1	t
10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90				.000001 .000001 .000001 .00000	.00002 .00001 .00001 .00001 .00001 .00001	.00002 .00002 .00002 .00001 .00001 .00001 .00001 .00001	10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90
11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90						.000001	11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90
12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90							12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90
13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80	of designation of the control of the						13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90
14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80							14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90

	T						
			SKEW				-
t	.0	.1	.2	.3	.4	.5	t
-9.90 -9.80 -9.70 -9.60 -9.50 -9.30 -9.20 -9.10 -9.00							-9.90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00
-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.30 -8.20 -8.10 -8.00							-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.30 -8.20 -8.10 -8.00
-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00							-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00
-6.90 -6.80 -6.70 -6.60 -6.50 -6.40 -6.30 -6.20 -6.10 -6.00	.000035						-6.90 -6.80 -6.70 -6.60 -6.50 -6.40 -6.30 -6.20 -6.10 -6.00
-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00	.000057 .00093 .000149 .00037 .000372 .000575 .000879 .001326 .001974 .002899	.000073 .000134 .000238 .000415 .000709 .001185	.000185				-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00

		Skewness								
t	.6	7	4	.9	1.0	1.1	1			
-9.90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.80							-9.90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00			
\$90 \$80 \$70 \$85 \$85 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30							-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.30 -8.20 -8.10 -8.00			
-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00							-7.50 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00			
4.90 4.80 4.70 4.60 4.30 4.30 4.10 4.00							-6.90 -6.80 -6.70 -6.60 -6.50 -6.40 -6.30 -6.20 -6.10 -6.00			
-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00							-5.90 -5.80 -5.70 -5.60 -5 50 -5.40 -5.30 -5.20 -5.10 -5.00			

			SKEW	MESS			
						.5	t
t	.0	.1	.2	.3	.4		
-4.90	.004199	.001939	.000387				-4.90 -4.80
-4.80 -4.70	.005998 .008445	.003107 .004872	.000775 .001494				-4.70
-4.60	.011715	.007477	.002771				-4.60
-4.50	.016008	.011228	.004953				-4.50
-4.40	.021533	.016492	.008532	.001582			-4.40.,
-4.30	.028497	.023686	.014175	.003653			-4.30
-4.20	.037077	.033246	.022723	.007821 .015601			-4.20 -4.10
-4.10	.047385 .059421	.0455 <i>77</i> .060973	.035150 .052467	.013601	.003698		-4 .00
-4.00							
-3.90	.073016	.079514	.075548	.050964	.011373 .029557		-3.90 -3.80
-3.80 -3.70	.087768 .102971	.100934 .124473	.140154	.130216	.066481		-3.70
-3.60	.117547	.148727	.180029	.190495	.131709		-3.60
-3.50	.130002	.171523	.221615	.262656	.232800	.054837	-3.50
-3.40	.138396	.189842	.260269	.340701	.370353	.176319	-3.40
-3.30	.140362	.199841	.289515	.413951	.532885	.418003	-3.30
-3.20	.133185	.196991	.301268	.467184	.693686	.782995	-3.20
-3.10	.113952	.176376	.286440	.481803	.811755	1.204809 1.548187	-3.10 -3.00
-3.00	.079773	.133159	.235965	.438269	.837828		
-2.90	.028105	.063208	.142169	.319573	.724933	1.646581	-2.90
-2.80	042873	036154	.000387	.115261	.441138	1.361310	-2.80
-2.70	133814 243764	165339 321742	189409 421241	174737 537330	018815 629273	.637016 468718	-2.70 -2.60
-2.60 -2.50	243/04 369738	499140	682317	945332	-1.319247	-1.791490	-2.50
-2.40	506424	687411	953041	-1.358873	-2.008265	-3.097791	-2.40
-2.30	646042	872660	-1.208037	-1.729252	-2.591569	-4.140341	-2.30
-2.20	<i>77</i> 8443	-1.037858	-1.418202	-2.004833	-2.971517	-4.713838	-2.20
-2.10	891503	-1.163872	-1.553678	-2.138166	-3.071825	-4.696711	-2.10
-200	971838	1 231866	-1.587421	-2.093193	-2.851085	-4.070717	2.00
-1.90	-1.005825	-1.223902	-1.498933	-1.851350	-2.310517	-2.917258	-1.90
-1.80	990903	-1.126606	-1.277630 925326	-1.415493	-1.493788	-1.394949	-1.80
-1.70 -1.60	887018 718128	932582 642320	925326 -457386	810963 - 083541	480907 .623876	.293881 1.939386	-1.70 -1.60
-1.50	473549	265293	.097713	.705429	1.706836	3.356043	-1.50
-1.40	158975	.179815	.700455	1.486002	2.659884	4.405508	-1.40
-1.30	.212999	.665911	1.303840	2.187685	3.393671	5.008519	-1.30
-1.20	.623011	1.159322	1.857979	2.747403	3.846966	·5.146248	-1.20
-1.10	1 045802	1.622521	2.220861	3.116326	3.991435	4.853130	-1.10
-1.00	1.4518?4	2.017519	2.635041	3.264706	3.831751	4.204047	-1.00
90	1.809510	2.309533	2.788437	3.184231	3.401691	3.298929	90
80	2.088004	2.470542	2.760718	2.887791	2.757297	2.247383	80
~ .70	2.260116	2.482291	2.552957	2.406880	1.968436	1.155361	70
~ .60 ~ .50	2.305168 2.211410	2.338384 2.045193	2.181623 1.676618	1.787195	1.110037 .254115	.115043 801603	60 50
~ .40	1.977699	1.621472	1.077996	.351751	536640	-1.545714	40
30	1.614197	1.096704	.438916	352453	-1.213257	-2.091401	30
20	1.141970	.508372	214335	982478	-1.742756		20
10	.591463	101530		-1.501985		-2.583054	10
.00	.0000000	690340	-1.334227	-1.887190	-2.308710	-2.564153	.00
							<u> </u>

			SKEW	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
988 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.							-4.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10 -4.00
-3.90 -3.80 -3.60 -3.50 -3.40 -3.30 -3.10 -3.00	.842257 .588693 1 849903						-3.90 3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00
-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10	-4 953572 -7.249070 -8.283837 7.834204	'1.313829 11.097192 2.984160 -7.118615 -14.50980 -17.22664 -15.50871 -10.76401	30.500628 -32.96668 -49.96355 -41.08784 -23.00499	761.6006 -260.2257 -80.70170			-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00
-1,90 -1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10	.802582 2.033508 4.414962 6.100725 6.990201 7.105003 6.557023 5.512210	1.237087 6.046683 9.245487	5.185098 8.199275 16.148280 19.275092 18.822519 16.111270 12.273179 8.156143 4.322899 1.094040		274.10548 170.84286 101.07146 54.936664 25.290674 6.986257	1305.4169 238 57941 46 225475 10.47424	-1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1.00
90 70 60 50 40 30 20 10	1.208217 112213 -1.211125 -2.046433 -2.608007 -2.910524 -2.985855 -2.875929	530420 1.893330 -2.841685 -3 401428 -3.624745 -3.577221 -3.327957 -2.942594	-4.461008 -3.982722 -3.387561 -2.747366	-5.643201 -6.687731 -6.890713 -6.528740 -5.823350 -4.952497 -4.006892 -3.098185 -2.267305 -1.542070	-8.012009 -6.372745 -4.855811 -3.525641 -2.406236 -1.496634	-15.51779 -11.69445 -8.516467 -5.959217 -3.955431 -2.423242 -1.280497 451666	90 80 70 60 50 40 30 20 10

	_						
			SKEW	NESS			
t	.0	.1	.2	.3	.4	.5	t
.00	.0000000	690340	-1.334227	-1.887190	-2.308710	-2.564153	.00
.10	591463	-1.218512	-1.740924	-2.127279	-2.354389	-2.407989	.10
.20	-1.141970	-1.652927	-2.01 7 921	-2.223557	-2.265822	-2.149357	.20
.30	-1.614197	-1.969413	-2.158675	-2 187627	-2.069421	-1.823040	.30
.40	-1.977699	-2.154258	-2.167343	-2 038926	-1 794478	-1.4611 7 2	.40
.50	-2.211410	-2.204630	-2 057225	-1.801983	-1.470374	-1.091458	.50
.60	-2.305168	-2.127944	-1.848575	-1.503696	-1.124365	736196	.60
.70	-2.260116	-1.940344	-1.566096	-1 170883	780005	411955	.70
.80	-2 088004	-1.664529	-1.236393	828287	456215	129776	.80
.90	-1.809510	-1.327212	885638	- 407116	166914	104257	.90
1.00	-1.451824	956507	537636	194147	.078882	.288242	1.00
1.10	-1.045802	579507	212395	.068637	276614	.423568	1.10
1.20	623011	220265	.074750	.283975	.425507	.514034	1.20
1.30	212999	.101683	.313476	.448891	.527781	.565021	1.30
1.40	.158975	.372194	.498548	.564042	.587834	.582781	1.40
1.50	.473549	.582793	.628327	.632916	.611467	.573849	1.50
1.60	718128	.730424	.706022	.661016	.605202	.544590	1.60
1.70	.887018	.816786	.736813	,655060	.575716	.500885	1.70
1.80	.980903	.847379	.727921	.622290	.529406	.447918	1.80
1.90	1.005825	.830419	.687550	569897	.472079	.390073	1.90
2.00	.971838	.775717	.624121	.504581	.408762	.330901	2.00
2.10	.891503	.693655	.539812	.432255	.343601	.273145	2.10
2 20	.778443	.594315	.459374	.357869	.279854	.218807	2.20
2.30	.646042	.486812	.371323	.285342	.219924	.169238	2.30
2.40	.506424	.378852	.286324	.217579	.165452	.125239	2.40
2.50	.369738	.276486	.207918	.156549	.117416	.087165	2.50
2.60	.243764	.184060	.138447	.103403	.076253	.055028	2.60
2.70	.133814	.104303	.079202	.058616	.041973	.028582	2.70
2.80	.042873	.038519	.030597	.022127	.014271	.007408	2.80
2.90	028105	013156	007636	006517	007374	009025	2.90
3.00	079773	051472	036256	028035	023621	021303	3.00
3.10	113952	077795	056342	043304	035192	030026	3.10
3.20	133185	093851	069144	053270	042824	.035779	3.20
3.30	140362	101518	075965	058881	047229	039110	3.30
3.40	138396	102660	078070	-061034	049067	040516	3.40
3.50	130002	099010	076622	060545	048929	040438	3.50
3.60	117547	092091	072649	058132	047331	039253	3.60
3.70	102971	083181	067016	054399	044709	037282	3.70
3.80	087768	073300	060432	049848	041420	034789	3.80
3.90	073016	063224	053446	044873	037754	031983	3.90
4.00	059421	053504	046473	039778	033935	029033	4.00
4:10	047385	044506	039802	034788	030132	026066	4.10
4.20	037077	036442	033627	030057	026465	023173	4.20
4.30	028497	029405	028056	025686	023019	020423	4.30
4.40	021533	023405	023139	021731	019844	017856	4.40
4.50	016008	018390	018880	018216	016969	015501	4.50
4.60	011715	014274	015250	015138	014402	013367	4.60
4.70	008445	010951	012201	012480	012138	011456	4.70
4.80	005998	008308	009674	010210	010164	009763	4.80
4.90	004199	006235	-,007605	008294	008459	008277	4.90

W-12.20			SKEW	NESS			\$
ť	.6	.7	.8	.9	1.0	1.1	t
.00	-2.626655	-2.478942	-2.115071	-1.542070	781467	.129203	.00
.10	-2.283191	-1.984713	-1.526917	933664	238010	518231	.10
.20	-1.886598	-1.496838	-1.005251	441900	.159245	.761246	.20
.30	-1 471780	1.041901	561462	059315	.435740	.895647	.30
.40	-1.066503	.637251	198726	.225751	.615190	.951124	.40
.50	091263	292484	.085577	.426932	.718714	.950936	.50
.60	359748	011045	.297857	.558300	.76 14 93	.913025	.60
.70	2259 <i>2</i> 0	.208228	.446717	.633354	.767747	.851009	.70
.80	.146078	.369701	.541745	.664415	.740914	.775038	.80
.90	.318539	.479757	.592641	.652309	.693932	.692521	.90
1.00	.441406	.545840	.608622	,636249	.634; 61	.608725	1.00
1 10	.520183	.575713	.598052	.593860	.568717	.577633	1.10
1 20	.551301	.576925	.568240	.541282	.500789	.450516	1 20
1.30	.5/177/	.556451	.525374	.483328	.433725	.379892	1.30
1.40	.558132	.520476	.474525	.423655	.370284	.316137	1.40
1.50	.526650	.474288	.419728	.364948	.311256	.259494	1.50
1.60	.48285-	.÷22255	.364054		.257638	.209867	1.60
1.70	.431504	.367861	.309384		.209788	.166927	1.70
1.80	.376+65	.313731	.259737	.210344	.157745	.130204	1 80
1.90	.320823	.261975	.211694	.:68529	.131325	.09148	1.90
2.00	.266905	.213795				.073173	2.00
2.10		.170080		.100359		.051692	2.10
<i>2,2</i> 0		.:31304			.052040	.034138	2.20
2.30	.129359	.097575				.019978	2.30
2.40	.093758	.06\$803				008722	2.40
2.50		.044730				000c73	2 50
2.60		.024986				006804	2.60
<i>2.7</i> 0	.017813	.609140				011818	2.70
2.80	.001587					015421	2.80
2.90	010892	012701	014329	015735	≐.016912	017873	2.90
3.00						019401	3.00
3.10						-020195	3.10
3.20	03090o					020415	3.20
3.30	033325	029108				020194	3.30
3.40	034291	029671				.019613	3.40
3.50	034138					018853	3.50
3.60	033150	028481	024861			017898	3.60
3.70	031565	-027125	023639			-016835	3.70
3.80	029578	025466	022178	019576	017452	015712	3.80
3.90	- 027346	023624	020624	018192	016204	014566	3.90
4.00	024995					013424	400
4.10	022619	019739	017345			01.7307	4.10
4.20		017823				011232	4.20
4.30			014182	012643		010208	4.30
4.40					010235	009243	4.40
4.50				/010205		008341	4.50
4.60				4009111		007504	4.60
4.70	010621				007381	006732	4.70
4.80						006023	4.80
4.90		1				005377	4.90
	1.55.5.5						

			CIZELL	VECC			
			SKEW	NESS			
t	.0	.1	.2	.3	.4	.5	t
5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80	002899 001974 001326 000879 000575 000372 000237 000149 000093	004632 003406 002481 001790 001279 000906 000637 000443 000306	005930 004587 003522 002685 002032 001528 001141 000847 000625	006692 005365 004275 003386 002667 002090 001629 001263	007000 005761 004717 003843 003117 002516 002023 001620 001292	006981 005861 004899 004078 003381 002793 002298 001885 001541	5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80
5.90	000057	~.000210	000458	000749	001026	001256	5.90
6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.70 7.10 7.30 7.40 7.50	000035	000142 00096 00064 00043 000028 00018 00012	000334 000242 000174 000125 000089 000045 000015 000015 000011 000007 000005 000003 000002	000572 000436 000330 000149 000105 000078 000058 000043 000031 000012 000012 000006 000005	000812 000641 000504 000395 000308 000240 000111 000086 000050 000050 000022 000022 000017	001020 000826 000668 000538 000432 000277 000221 000140 000111 00087 00069 000043 000043 000034	6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20 7.30 7.45 7.50 7.60
7.70° 7.80 7.90				000003 000002 000002	000010 000007 000005	000021 000016 000012	7.70 7.80 7.90
8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80				000001	000004 000003 000002 000001	000010 -000007 000006 000005 000004 000003 000002 000001 000001	8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90
9.00 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90						000001	9.00 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90

			SKEWI	NESS			
t	.6	.7	8.	.9	1.0	1.1	t
5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90 6.00 6.10	006755 005760 004893 004141 003493 002937 002461 002057 001714 001425	006411 005534 004761 004083 003491 002977 002531 002147 001817 001534 001292 001086	006010 005239 004553 003946 003411 002942 002531 002173 001862 001592	005592 004913 004305 003763 003282 002857 002482 002151 001862 001387 001387	005180 004580 004040 003557 003125 002741 002400 002097 001830 001595 001388 001206	004788 004256 003775 003343 002955 002608 002298 002022 001777 001559 001367 001197	5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90 6.00 6.10
6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90	000806 000663 000545 000447 000365 000298 000243 000198	000911 000763 000638 000532 000443 000368 000306	000984 000835 000708 000599 000506 000427 000360 000303	001027 003882 000756 000648 000554 000473 000404	001046 000907 000785 000679 000587 000506 000437 000376	001047 000914 000798 000696 000606 000528 000459 000399	6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90
7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.90	000160 000130 000105 000085 000069 000055 000044 000036 000029 000023	000210 000173 000143 000118 000097 000080 000066 000054 000014 000036	000255 000214 000180 000150 000126 000105 000088 000073 000061 000051	000293 000249 000212 000180 000153 000129 000109 000093 000078 00066	000324 000278 000239 000205 000176 000129 000111 000095 000081	000346 000300 000261 000226 000195 000169 000126 000109 000094	7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90
8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80	00018 00015 000012 00009 000007 000006 000005 000004 000003 000002	00029 00024 00020 00016 00013 00001 00009 00007 00006 00005	000042 00035 00029 00024 00020 00017 000014 00009 00008	00056 00047 00040 00033 00028 00024 00020 00017 00014 00012	00069 00059 00050 00043 00037 00031 00026 00023 00019 00016	000081 000070 00060 00052 00045 00039 00033 000029 00025 000021	8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90
9.00 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80	000001 000001	00004 00003 00002 00002 00001 00001 00001 00001	00006 00005 00004 00003 00002 00002 00002 00001 00001	00010 00008 00007 00006 00005 00004 00003 00003 00002 00002	000014 000012 000008 000007 000006 000005 000004 000004 000003	00018 00016 00013 00011 00010 00008 00007 00006 00005	9.00 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90

000 000 000 000 000 000 000 000 000 00	-	
	ю	
•	i	
	2	SKEWNESS
	ü	NESS
	*	
	ia	
80000000000000000000000000000000000000	-	

12.80 12.80 13.00 14.00	+ + + + + + + + + + + + + + + + + + +
	8
	7
	1.0 -,000003 -,000003 -,000003 -,000001 -,000001 -,000001 -,000001 -,000001 -,000001 -,000001 -,000001
	1.1
12.80 12.20 12.20 13.00 13.20 13.20 13.20 13.20 13.50 13.50 13.50 14.00	**************************************

****			SKEW	NESS			
t	.0	.1	.2	.3	.4	.5	t
-9.90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00							-9.90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00
-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.20 -8.10 -8.00							-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.30 -8.20 -8.10 -8.00
-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00							-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00
-6.90 -6.80 -6.70 -6.60 -6.50 -6.40 -6.30 -6.20 -6.10	.000175					٠	-6.90 -6.80 -6.70 -6.60 -6.50 -6.40 -6.30 -6.20 -6.10 -6.00
-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00	,000282 ,000447 ,000700 ,001081 ,001648 ,002477 ,003672 ,005364 ,007720 ,010942	.000447 .000786 .001349 .002265 .003718 .005964	.001401				-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00

			SKEW	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
-9 90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00							-9.90 -9.80 -9.70 -9.60 -9.50 -9.40 -9.30 -9.20 -9.10 -9.00
-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.30 -8.20 -8.10 -8.00							-8.90 -8.80 -8.70 -8.60 -8.50 -8.40 -8.30 -8.20 -8.10 -8.00
-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00							-7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30 -7.20 -7.10 -7.00
-6.90 -6.80 -6.70 -6.60 -6.50 -6.40 -6.30 -6.20 -6.10 -6.00							-6.90 -6.80 -6.70 -6.60 -6.50 -6.40 -6.30 -6.20 -6.10 -6.00
-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5 30 -5.20 -5.10						•	-5.90 -5.80 -5.70 -5.60 -5.50 -5.40 -5.30 -5.20 -5.10 -5.00

			SKEW	NESS			-
t	.0	.1	.2	.3	.4	.5	t
-1.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10 -4.00	.015267 .020954 .028274 .037474 .048736 .062116 .077464 .094326 .111837 .128611	009347 .014312 .021396 .031216 .044414 .061567 .083049 .108841 .138280 .169792	.002766 .005236 .009515 .016605 .027840 .044852 .069421 .103173 .147080 .200769	.013863 .029156 .056718 .102430 172160	.045017		-4.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10 -4.00
-3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00	.142641 .151238 .151024 .138020 .107844 .056066 021297 127125 262416 425457	.200610 .226551 .241913 .239563 .211314 .148638 .043742 109010 311448 559902	.261691 .324272 .379259 .413503 .410184 .351775 .219572 .000159 312050 710518	.269650 .393475 .533619 .668647 .764762 .778218 .661208 .372046 112822 786892	.117666 .259945 .495046 .822975 1.200746 1.531759 1.674232 1.472443 .805005 364035	.742856 1.764469 3.080073 4.108961 4.095235 2.484221	-3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00
-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00	611017 809701 -1.007607 -1.186451 -1.324208 -1.396544 -1.378834 -1.248851 989868 593901	843721 -1.144331 -1.435140 -1.682587 -1.848487 -1.893676 -1.782727 -1.489294 -1.001128 326029	-1.173459 -1.662462 -2.123635 -2.491694 -2.696991 -2.674851 -2.376055 -1.776879 886935 .246817	-1.605106 -2.481732 -3.296576 -3.909747 -4.183196 -4.005451 -3.314841 -2.116465 -489062 1.420125	-1.949117 -3.736776 -5.414832 -6.720425 -7.073686 -6.533877 -4.966528 -2.502962 .567018 3.844994	-757276 -5.045593 -9.343178 -12.49085 -13.56574 -12.13850 -8.363173 -2.900863 3.273070 9.107213	-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00
-1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10	064672 .580144 1.307853 2.071248 2.810937 3.459534 3.947529 4.210340 4.195847 3.871531	.508204 1.450348 2.429501 3.360003 4.149259 4.707433 4.957908 4.847185 4.352868 3.488518	1.541012 2.882212 4.138184 5.172815 5.862695 6.113044 5.870642 5.131842 3.786317 2.403342	3.412172 5.262389 6.751069 7.693951 7.937495 7.525126 6.402253 4.709910 2.618573 .335208	11.128417	13.691811 16.410943 17.010500 15.586539 12.514059 8.342962 3.687149 872959 -4.861982 -7.950511	-1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10
90 80 70 60 50 40 30 20 10	3.230259 2.293820 1.113544 232372 -1.644805 -3.012214 -4.222257 -5.171124 -5.776254 -5.984135	2.304551 .884850 660680 -2.206781 -3.625505 -4.799309 -5.632987 -6.063022 -6.063275 -5.646455	.639885 -1.192420 -2.935015 -4.441265 -5.591378 -6.303511 -6.308038 -5.656056 -4.665204	-1.922775 -3.952789 -5.588315 -6.713777 -7.271912 -7.263647 -6.741491 -5.798132 -4.552304 -3.133923	-8.327546 -7.405560 -6.071759 -4.490653 -2.821126	-8.365606	90 80 70 60 50 40 30 20 10

			SKEW	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
-4.90 -4.80 -4.70 -4.60 -4.50 -4.30 -4.20 -4.10 -4.00							-4.90 -4.80 -4.70 -4.60 -4.50 -4.40 -4.30 -4.20 -4.10 -4.00
-3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00	26 875960 8.895339 14.844781						-3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00
-2.90 -2 80 -2.70 -2.60 -2 50 -2.40 -2.30 -2.10 -2 00	-31.55201 -27.79824 -17.22889 -3.200061 10.702406	49.586240 -50.43212 -100.9999 -93.03413 -51.64289 -3.279440 35 142528 56.825503	-897 1775 -371.6563 -6.531180 156.15605	14261.298 2561.9104 1209.5822			-2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00
1.90 -1 80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1 10	29.481130 26 608535 20 618004 12.932907 4.898190 -2.409460 -8.267851 -12.31332	62.079701 54 921276 40.473714 23 393943 7 147980 -6.141522 -15 52843 -20 94228 -22.86993 -22.08158	138.10092 106.57407 53 588006 11.107951 -17.91647 -34.40810 -40.94149 -40.46917 -35.67140 -28.68817	540.76774 232.57201 5 612894 -75.76662 -102.2365 -100.0908 -84.79357 -65.13526 -45 81429 -29.06763	-1793,994 -1241 483 -846,0655 -565 6321 -368 8605 -232,5508 -139,5989 -77,45935 -36,98463 -11,54861	-21843131 -27894.86 -3569 339 -953.1063 -304.3152 -81.95704 4 106084 36.888914 46.646847	-1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1.00
90 80 70 60 50 40 30 20 10	-14.08005 -12.19660 -9.712425 -6.978085 -4.279153 -1.825508 .247988 1.873235	3.277084 4.333462	-21 06770 -13.82424 -7 541844 -2.484734 1.301813 3.909282 5.503477 6.280186 6.435881 6.150084	-15.70089 -5.732500 1.210768 5.659817 8.169192 9.248079 9.329346 8.761196 7.811120 6.675819	3.611887 11.890584 15.680242 16.646714 15 931861 14.303076 12.262853 10.128576 8.090226 6.251738	46.164258 41.340786 35.022093 28.587090 22.674434 17.539966 13.241811 9.739410 6.947384 4.764787	90 80 70 - 60 50 40 30 20 10

			SKEW	NESS			
t	.0	.1	.2	.3	.4	.5	t
00	-5.984135	-5.646455	-4.665204	-3.133923	-1.202514	.931715	.00
.10	-5.776254	-4.861356	-3.438799	-1.670337	.254500	2.132985	.10,
20	-5.171124	-3.786395	-2.090353	274980	1 472275	2.981242	.20
.30	-4 222257	-2.520401	<i>7</i> 31916	.960727	2.406462	3.491248	.30
.40	-3 012214	-1.171892	.536015	1.971948	3.043064	3.699785	.40
.50	-1.644805	.151841	1.632165	2.721665	3.393319	3.657272	.50
.60	232372	1.354605	2.499227	3.199050	3.487452	3.420390	.60
<i>.7</i> 0	1.113544	2.359129	3.105617	3.4157.27	3.368150	3.046137	.70
.80	2.293820	3.112206	3.444507	3.400697	3.084467	2.587429	.80
.90	3.230259	3.586870	3.530678	3.194705	2.686604	2.090218	.90
1.00	3 871531	3.781737	3.395867	2.844710	2.221834	1.591942	1.00
1.10	4.195847	3.717924	3.083342	2.398951	1.731648	1.121050	1.10
1.20	4.210340	3.434203	2.642373	1.902952	1.250054	.697352	1.20
1.30	3.947529	2 981144	2.123169	1.396604	.802892	.332911	1.30
1.40	3.459534	2.414999	1.572664	.912359	.407952	.033260	1.40
1.50	2.810937	1.792005	1.031410	.474437	.075673	201246	1.50
1.60	2.071248	1.163611	.531626	.098868	189775	374091	1.60
1.70	1 307853	.572967	.096362	- 205823	389234	491358	1.70
1 80	.580144	.052784	260397	437511	527257	560670	1.80
1.90	064672	375458	532887	599134	610882	590313	1.90
2.00	593901	<i>7</i> 01132	722234	697299	648554	- 588568.	2.00
210	989868	-,913199	809084	740958	649236	563231	2.10
2 <i>2</i> 0	-1.248851	-1.048345	880804	740237	621724	521293	2.20
2 30	-1.378834	-1.088823	872200	<i>7</i> 05481	574151	- 468771	2.30
2.40	-1,396544	-1.060287	821890	646523	-,513679	410636	2.40
2.50	-1.324208	9 <i>7</i> 9805	742355	572181	446329	350831	2.50
260	-1.186451	864201	644933	489957	376936	÷.292338	2.60
2.70	-1.007607	728816	539310	405909	309189	237290	2.70
2.80	809701	586683	433276	324649	245729	-,187092	2.80
2.90	611017	448101	332680	249447	188292	142554	2.90
3.00	425457	320545	241545	182391	137856	104005	3.00
3 10	-262416	208830	162278	124581	094796	071429	3.10
3.20	- 127125	115450	095950	076334	059035	044545	3.20
3 30	021297	041016	042586	037380	030168	022905	3.30
3.40	.056066	.015276	001451	007041	007579	005958	3 40
3.50	.107844	.055191	.028687	.015614	.009469	.006895	3.50
3 60	.138020		.049341	.031649	.021765	.016260	3.60
3.70	.151024	.095440	.062130	.042162	.030093	.022718	3.70
3.80	.151238	.100881	.068649	.048214	.035196	026809	3.80
3.90	.142641	.099734	.070375	.050783	.037750	.029018	3.90
4.00	.128611	.094057	.068614	.050736	.038353	.029771	4.00
410	.111837	.085556	.064474	.048815	.037518	.029431	4.10
4.20	.094326		.058859	.045636	.035673	.028304	4.20
4 30	.077464		.052475	.041691	.033167	.026640	4.30
4.40	.062116		.045856	.037366	.030277	.024639	4.40
4.50	.048736		.039380	.032946	.027214	.022458	4.50
460	.037474		.033302	.028639	.024137	.020216	4.60
470	.028274		.027773	.024583	.021160	.018002	4.70
480	.020954	1	.022872	.020863	.018359	.015877	4.80
4.90	.015267	.018220	.018617	.017524	.015780	.013884	4.90

			SKEWI	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
.00	3.036428	4.859952	6.150084	6.675819	6.251738	4.764787	.00
.10	3.764079	4.963167	5.576252	5 493291	4.660385	3.090633	.10
.20	4.109449	4.750215	4.838542	4.354939	3.327388	1.831652	.20
.30	4.140621	4.319865	4.032352	3.316558	2.242176	.905655	.30
.40	3 930837	3.757417	3.227075	2.407733	1.382071	203484	.40
.50	3.551296	3.132436	2.469942	1.639509	.718714	216483	.50
.60	3.066280	2.498523	1.790194	1.010443	,222193	5191 <i>7</i> 8	.60
.70	2 500095	1.894408	1.203125	.511222	136437	704349	.70
.80	1.986914	1.345841	.713700	.128065	383710	802822	.80
.90	1.468665	.867818	.319643	154839	543055	838819	.90
1.00	.997981	.466872	.013947	353672	634561	831126	1.00
1.10	.588480	.143223	213162	483906	675048	799963	1.10
1.20	.246555	107330	372754	559657	678305	738617	1.20
1.30	027004	291823	476136	593360	655415	672661	1 30
1.40	235490	-418856	534137	595648	615113	602070	1 40
1.50	384920	497630	556659	575384	564151	530962	1.50
1.60	482913	537238	552429	539782	507631	462145	1.60
1.70	537788	546198	528908	494574	449308	397442	1.70
1.80	557885	532154	492291	-44 1 204	391863	337936	1.80
1.90	551088	501728	447585	- 392019	322869	284173	1.90
2.00	524515	- 460475	398722	340461	- 286261	236315	2.00
2.10	- 484347	412908	348694	- 291231	~.239949	194255	2.10
2 2 0	435762	362581	- 299695	245447	- 198488	.157714	2 20
2 30	382945	312187	253259	203769	161911	126298	2.30
2.40	329152	<i>2</i> 63683	210383	166512	130066	099556	2.40
2.50	276808	218407	171645	133735	102677	077009	2.50
2.60	227620	177197	137300	105316	079392	058182	2.60
2.70	182699	140495	107364	-081012	059819	042614	2.70
2.80	142668	108440	081682	060501	043554	029872	2.80
2.90	107778	080951	059987	043420	030199	019560	2.90
3.00	077994	057791	041940	029389	019371	011318	3.00
3.10	053083	038624	027165	018032	010715	004823	3.10
3.20	032678	023053	015273	008988	~.003906	.000208	3.20
3.30	016331	010658	005883	001918	.001348	.004024	3.30
3 40	003556	.001017	.001367	.003485	.005306	.006839	3.40
J 50	.006139	.006275	.006814	00749b	.008195 .01021 <i>2</i>	008839	3 50
3.60	.013228	.011598 .015297	.010761 .013480	.010367 .012305	.010212	.010180 .010996	3.60 3.70
3.70 3.80	.018156 .021325	.017679	.015207	.012303	.011327	.010390	3.80
3.90	.021325	.017679	.015207	.013490	.012263	.011399	3.90
	1						
4.00	.023772	.019527	.016476	.014245	.012583	.011321	4.00
4.10	.023625	.019421	.016338	.014045	.012312	.010980	4.10
4.20	022874	.018856	.015856	.013591	.011857	.010510	4.20
4.30	.021701	.017966	.015129	012956	.011272	.009952	4.30
4.40	.020251	.016860	.014238	.012200	.010603	.009339	4.40 4.50
4.50	.018642	.015623	.013246	.011372	.009885	.008046	4.60
4.60	.016962	.014323	.012204 .011150	.010508 .009636	.009143	.907401	4.70
4 70	.015279	.013010 .011722	.010112	.009030	.007679	.006773	4.80
4.80 4.90	.013042	.010486	.009111	.007951	.006980	.006170	4.90
+,50	1 .012003	1 .010+00	.007111	.00/931	.000300	.000170	T.JU

			SKEWN	IESS			
t	.0	.1	.2	.3	.4	.5	c
5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90	.010942 .007720 .005364 .003672 .002477 .001648 .001081 .000700 .000447	.014005 .010635 .007983 .005926 .004352 .003164 .002277 .001623 .001146 .000802	.014991 .011950 .009436 .007384 .005729 .004409 .003367 .002552 .001920	.014581 .012026 .009839 .007988 .006439 .005155 .004101 .003242 .002543	.013449 .011373 .009549 .007964 .006601 .005439 .004457 .003634 .002948	.012048 .010381 .008888 .007564 .006402 .005391 .004518 .003769 .003130	5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90
5.90 6.00 6.10 6.20 6.30 6.40 6.50 6.80 6.70 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80 9.10 9.10 9.20 9.30	.000175	.000556 .000382 .000261 .000176 .000118 .000079 .000052	.001455 .000786 .000786 .000420 .000304 .000219 .000157 .000112 .000079 .000056 .000039 .000027 .000013 .000009	.001549 .001198 .000922 .000706 .000538 .000409 .000309 .000174 .000130 .000097 .000053 .000039 .000021 .000015 .000011 .000016	.001913 .001531 .001220 .000969 .000766 .000604 .000474 .000371 .000290 .000225 .000175 .000135 .000104 .000080 .000061 .000047 .000036 .000027 .000016	.002134 .001753 .001434 .001170 .000951 .000771 .000623 .000502 .000403 .000323 .000259 .00026 .000164 .000130 .000103 .000082 .00064 .000051 .000040 .000015 .000012 .000009 .000007 .000003 .000003 .000003	6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90 7.10 7.20 7.30 7.40 7.50 7.60 7.70 8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 9.00 9.10 9.20
9.30 9.40 9.50 9.60 9.70 9.80 9.90							9.30 9.40 9.50 9.60 9.70 9.80 9.90

			SKEWN	ESS			
t	.6	.7	.8	.9	1.0	1.1	t
5.00	.010631	.009320	.008162	007164	.006315	.005598	5.00
5.10	.009292	.008236	.007273	.006424	.005690	.005061	5.10
5.20	.008075	.007240	.006451	.005737	005107	.004550	5.20 5.30
5.30	.006980 .006004	.006334 .005517	005697 .005010	.005103 .004523	.004568 .004074	.004096 .003670	5.40
5.40 5.50	.005140	.003317	.004391	.003996	.003622	.003279	5.50
5.60	.003140	.004135	.003835	.003520	.003212	.002923	5.60
5.00 5.70	.003721	.003560	.003339	.003091	.002841	.002600	5.70
5.80	.003148	.003055	.002898	.002708	.002507	.002308	5.80
5.90	.002654	.002614	.002509	.CC2366	.002 <i>2</i> 07	.002045	5.90
6.00	.002230	.002230	.002166	.002063	.001940	.001809	6.00
6.10	.001867	.001897	.001865	.001795	.001701	.001597	6.10 6.20
6.20	.001559	.001609	.001603	.001558	.001490	.001408	6.30
6.30	.001298	.001362	.001374	.001350	.001302	.001090	6.40
6.40 6.50	.001078	.001150	.001176 .001004	.001108	.000130	.000957	6.50
6.60	.000893	.000814	.000856	.000869	.000920	.000839	6.60
6. <i>7</i> 0	.000608	.000683	.000728	.000748	.000749	.000735	6.70
6.80	.000500	.000572	.000618	.000643	.000650	.000643	6.80
6.90	.000410	.000478	.000524	.000552	.000563	.000562	6.90
7.00	.000336	.000398	.000444	.000473	.000487	.000490	7.00
7 10	.000274	.000332	.000375	.000405	.000421	.000428	7.10
7.20	.000224	.000276	.000317	.000346	.000364	.000373	7.20
7.30	.000182	.000229	.000267	.000295	.000314	.000324	7.30
7.40	.000148	.000190	.000225	.000252	.000271	.000282	7.40 7.50
7.50	.000120	.000157	.000189	.000215	.000233	.000243	7.60
7.60	.000097	.000130	.000159	.000155	.000201	.000213	7.70
7.70 7.80	.0000/8	.000107	.000112	.000133	.000172	.000160	7.80
7.90	.000051	.000073	.000093	.000112	.000127	.000139	7.90
8.00	.000041	.000060	.000078	.000095	.000109	.000120	8.00
8.10	.000033	.000049	.000065	.000080	.000093	.000104	8.10
8.20	.000026	.000040	.000054	.000068	.000080	.000090	8.20
8.30	.000021	.000033	.000045	.000057	.000068	.000078	8.30
8.40	.000017	.000027	.000038	.000049	.000059	.000067	8.40 8.50
8.50	.000014	.000022	.000031	.000041	.000050	.000058	8.60
8.60	.000011	.000018	.000026	.000029	.000036	.000043	8.70
8.70 8.80	.000007	.000013	.000022	.000025	.000031	.000037	8.80
8.90	.000005	.000012	.000015	.000023	.000027	.000032	8.90
9.00	.000004	.000008	.00012	.000017	.000023	.000028	9.00
9.10	.000003	.000006	.000010	.000015	.000019	.000024	9.10
9.20	.000003	.000005	.000008	.000012	.000016	.000020	9.20
9 30	.000002	.000004	.000007	.000010	.000014	.000018	9.30
9.40	.000002	.000003	.000006	.000009	.000012	.000015	9.40
9.50	.000001	.000003	.000005	.000007	.000010	.000013	9.50
9.60	.000001	.000002	.000004	.000006	.000009	.000011	9.50
970	1	.000002	.000003	.000005	.000007	.000008	9.80
9.80		.000001	000002	000004	.000005	.000007	9.90
9.90		00001	1 00002	1 000007	1.00000	.00000	1

			CIZETI	MECC			
			SKEW			_	
t	.0	.1	.2	.3	.4	.5	t
10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90							10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90
11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90							11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90
12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90							12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90
13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90							13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90
14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80							14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90

			SKEWI	NESS			
t	.6	.7	.8	.9	1.0	1.1	t
10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90		.000001 .000001 .000001	.00002 .00001 .00001 .00001 .00001 .00001	.00003 .00002 .00002 .00002 .00001 .00001 .00001 .00001	.00004 .00004 .00003 .00003 .00002 .00002 .00002 .00001	.00006 .00005 .00004 .00004 .00003 .00003 .00002 .00002 .00002	10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90
11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90					.000001 .000001 .000001 .000001	.000001 .000001 .000001 .000001 .000001	11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90
12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90							12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90
13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90							13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90
14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90							14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.70 14.80 14.90

THE SAMPLING VARIABILITY OF LINEAR AND CURVILINEAR REGRESSIONS

A FIRST APPROXIMATION TO THE RELIABILITY OF THE RESULTS SECURED BY THE GRAPHIC "SUC-CESSIVE APPROXIMATION" METHOD

Вν

MORDECAI EZEKIEL¹

Many statistical problems involve determining the change in one varial with changes in each of several others, all operating at the same time. Linear multiple correlation provides a method of making this determination, on the assumption that all the relations are linear. In many problems this assumption is not valid. To determine curvilinear relations without making assumptions as to the type of each curve except that it be a continuous function, a method of successive approximations by graphic fitting was presented six years ago; and it was demonstrated empirically that in cases of high correlation this method successfully determined the underlying curves.² It was also pointed out that multiple regression curves could be fitted by the least-squares method, if specific parabolae or other first-degree equations were assumed for each variable, following methods previously sugsuggested by Yule.³

- Formerly Senior Agricultural Economist, United States Department of Agriculture.
- 2 Ezekiel, Mordecai. A Method of Handling Curvilinear Correlation for any Number of Variables. Quart. Pub., Amer. Stat. Assoc., XIX, No. 148, Dec., 1924.
- Yule, G. U. "On the Theory of Correlation," Jour. Roy. Sta. Soc., Vol L.X, p. 817 (1897). Apparently Wicksell had also suggested fitting regression curves to several variables simultaneously. Wicksell, S. D., Annals of Math. Stat., Vol. I. No. 1, pp. 3-15. Feb., 1930.

The advantage claimed for the successive approximation method was that it did not require assumptions as to the specific type of each curve, but instead permitted each regression to be indicated by the observations themselves.

A new measure, the "index of multiple correlation," was suggested to measure correlation for curvilinear regressions in the same way that the coefficients of multiple correlation measured it for linear regressions.

No measure of the reliability of the net regression curves or of the index of correlation, was provided in the initial article. The usefulness of the results secured by this method has therefore been limited by the inability to state the confidence that could be placed in them even when based on a random sample, or to judge how large a sample would be necessary to infer, within any stated limits of precision and probability, the relations existing in the universe from which that sample was drawn.

This paper reports an attempt to determine the sampling error of multiple regression curves and indexes of correlation obtained by the successive approximation process, under conditions of simple sampling. The experimental method has been used to investigate the variability of results from successive samples drawn from the same universe under specified conditions and to establish error formulae inductively. These experiments, representing the solution of over 150 multiple curvilinear correlation problems, indicate the possibility of establishing approximate expressions for the reliability of multiple regression curves and indexes of multiple correlation. The results, however, are not fully consistent, and the error formulae are not completely satisfactory. The experimental results are therefore given in full, in the hope that the attention of mathematicians may be attracted to this problem, and that the tentative formulae may be modified to provide more rigorous and exact measures of the reliability of the curvilinear regressions and correlations.

The extensive computations involved in this investigation were carried through by Helen L. Lee and Della E. Merrick, and by others of the staff of the Division of Farm Management, U. S. Department of Agriculture. Credit is due them for their intelligent and loyal assistance.

PART I.—COEFFICIENTS AND INDEXES OF CORRELATION.

1 The Reduction of the "Degrees of Freedom" by Free-hand Smoothing.

When a line is fitted to a series of paired observations by the use Y=a+bX, the assumption is made that the or the formulae straight regression line is adequate to describe the relation. Two parameters, one giving position to the line and the other slope, are required. For that reason, this equation will give a perfect fit to any two pairs of observations of X and Y. Furthermore, if the line is fitted to four pairs of observations, the determination of two parameters from four observations reduces the degree of freedom in obtaining the line from four to two; and the standard errors of the parameters must be determined with the number of degrees of freedom, N , equal to 2 instead of 4. Similarly, if a cubic parabola $Y=a+bX+cX^2+dX^3$ were fitted to ten observations, there would be only 6 degrees of freedom after determining the four parameters, and the standard errors would be based on N=6. In this case the four parameters determine position, slope, rate of change, and change in the rate of change 1

If instead of fitting a curve by the method of least squares or some other exact method, a free-hand curve is drawn by eye through the series of observations, it is necessary to make certain assumptions in drawing the curve, analogous to those represented in the parameters when more rigid methods are used. In addition to the basic assumption of continuity, these conditions may include:

- (1) Whether the origin for X = 0 will be at Y = 0 or at some ordinate to be indicated by the data.
- (2) Whether a straight line will be fitted (by ruler or thread) or whether a curve will be permitted.

^{1.} The treatment of standard errors for small samples by "Student" and R. A. Fisher, as set forth in the latter's "Statistical Methods for Research Workers," give full recognition to these facts. Least square theory has always recognized that, for small samples, the number of parameters determined reduced the number of observations. See Wright, Thomas Wallace, and John Fillmore Hayford, "Adjustments of Observations," 1905, pp. 24-40, 132-133, and Merriman, Mansfield, "Method of Least Squares," 1911, pp. 80-82.

(3) If a curve, whether it will be limited (a) to a continuous arc of even curvature, (b) to a continuous parabola-like curve, (c) whether one or more inflections will be permitted, (d) whether the line will be so drawn as to minimize departures on the Y-axis, the X-axis, or at right-angles to the line itself.

It is evident that if a curve is drawn free-hand with its initial ordinate as indicated by the observations, with a continuous changing rate of curvature, and with no inflection, at least the three parameters of position, slope, and rate of change of curvature are represented, as shown by the corresponding equation for a parabola.

$$Y = a + bX + cX^2$$

It is true that the free-hand curve may involve still more parameters, but three is the minimum. While the number of parameters represented in any free-hand curve cannot be exactly determined, it can be roughly estimated by a process of reasoning similar to that indicated above; and any measure of the sampling reliability of such free-hand curves would be more reliable if it allowed for the number of parameters assumed than if it ignored this reduction of the degrees of freedom.

It should be noted that while the process of fitting curves freehand involves the "taste" of the investigator, represented in the conditions he places on himself as previously mentioned, and on his skill in drawing the line under those conditions, the process of fitting a curve by a mathematical formula also involves "taste" in deciding what formula to use If the conditions placed on the free-hand fitting are the same as those represented in the mathematical equation, the results may agree within the significant limits of error, and, therefore, either may be satisfactory for practical purposes.¹

When coefficients of correlation or coefficients of multiple correlation are obtained from samples with a limited number of cases, the reduction in the number of degrees of freedom by the two or more parameters in the regression equation makes the observed correlation

Note the witty discussion of free-hand versus mathematical curves in the presidential address by E. B. Wilson, Proceedings: American Statistical Association, March, 1930.

tend to exceed the true correlation in the universe from which the sample was obtained. Accordingly, even the usual linear correlation coefficients, if obtained from small samples, tends to exceed the true values. Adjustments to correct for this factor will be considered before going to the more complicated problem of adjustments in observed indexes of correlation.

2. BIAS IN COEFFICIENTS OF CORRELATION

Determining a coefficient of correlation from a finite sample reduces by 2 the number of degrees of freedom present. As a consequence, there is a tendency for the computed correlation to exceed the true correlation in the universe, and a corresponding tendency for the computed standard error of estimate to fall below the true value. Exact measures of the "most likely" value of the correlation coefficient were given by Soper and others in 1917¹ and an elaborate method was provided for estimating it.²

Where a coefficient of multiple correlation for n_2 independent variables is determined from a finite sample of n' independent observations, the degrees of freedom are reduced by the $n_2 + 1$ parameters represented in the regression equation. If $n' = n_2 + 1$, the number of observations exactly equals the number of parameters to be obtained, the least square solution reduces to a simultaneous solution of the n' observation equations, and the coefficient of multiple correlation comes out 1.00 regardless of the presence or absence of correlation in the universe.

R. A Fisher called attention to this problem in 1924 and suggested an approximate adjustment of the observed correlation from limited samples by the equation

(1)
$$I - \bar{R}^2 = \frac{n' - I}{n' - n_z - I} \left(I - R^2 \right)$$

- Soper, H. E., Young, A. W., Cave, B. M. Lee, A., and Pearson, K. On the Distribution of the Correlation Coefficient in Small Samples. A cooperative Study. Biometrika. Vol XI, Part IV, May, 1917, pages 352-359.
- 2. Locus, Cit., pp. 374-375.

where n' and n_2 have the same meanings as above, R is the correlation observed in the sample, and \bar{R} is the most probable correlation in the universe.¹ This correction is very similar to that deduced independently by B. B. Smith in 1925, directly from the least square adjustment for number of constants.² In the same notation as above, Smith's adjustment:

$$\bar{R}^2 = I - \frac{I - R^2}{I - \frac{\Omega_z}{\Omega_z}}$$

may be stated

(2)
$$/-\bar{R}^2 = \frac{n'}{n'-n_2} (-R^2)$$

which differs from Fisher's formula only by the omission of the -1/2 from both numerator and denominator. In restating this formula a year ago³ the present author modified it to the form

$$\overline{R}^2 = 1 - \frac{1 - R^2}{1 - \frac{\Omega_2 + 1}{\Omega_1}}$$

or, stated in the same form as (1) and (2)

(3)
$$I - \bar{R}^2 = \frac{n'}{n' - n_2 - I} (I - R^2)$$

This differs from both the previous equations in including the -1 term in the denominator but not in the numerator. The effect is thus to make the correction most severe; i. e., the corrected value departs still more from the uncorrected value than in either of the other forms.

- Fisher, R A., The Influence of Rainfall on the Yield of Wheat at Rothamstead—Phil. Trans. B. ccxiii, 89-142; 1924.
- Smith, B. B. Forecasting the Acreage of Cotton. Jour. Amer. Stat. Assoc., March, 1925. Footnote on p. 41.
- Ezekiel, Mordecai. Application of the Theory of Error to Multiple and Curvilinear correlation. Jour. Amer. Stat. Assoc., Supp., pp. 99-104; Vol. XXIV, No. 165-A. March, 1929.

The interpretation of correlation coefficients adjusted by any one of the three equations (1), (2), or (3) has been difficult because of lack of a definite explanation of the meaning of the adjusted coefficients. To determine their exact meaning, and to decide which one of the three forms of adjustment is most satisfactory, a study has been made of the relation of the adjusted values to the distribution of simple correlation coefficients when computed from random samples of various sizes drawn from universes with specified correlations. The "Cooperative Study" gives tables showing the exact theoretical frequency curves for zero order correlation coefficients, computed from samples of from 3 to 25, and 50, 100, and 400 observations, for true correlations ranging from 0 to .9, by tenths. Ordinates of the distributions of observed correlations are given for each value from r=-1.00 to 1.00 by .05 steps. With the frequency curve thus defined by as many as 41 ordinates, a rough integral of the curve was constructed by a cumulative summary of the ordinates. Then dividing by the total area, the proportion below any particular value was determined. When p (the true correlation in the universe) = 0, the summation was made from 0 in both directions to show the proportion of all samples showing correlations falling below the particular r, either plus or minus. When exceeds 0, the summation was made from -1.00 to increasing values, to show the proportion of all the samples which show correlations falling below any particular value.

For each size sample investigated as described, more than 50 % of the theoretical observed correlations exceeded the true correlation. Thus for $\rho=.40$, with samples of 4, over 55 per cent of the samples showed r in excess of 40:53 per cent with samples of 9; and about 51 per cent with samples of 50. But with $\rho=.80$, over 61 per cent of the samples showed r above .80 with samples of 4, 56 per cent with samples of 9, and 53 per cent with samples of 25. If we define the value which will be exceeded by exactly half the samples as the value which is most likely to be observed in any given sample, this "most likely" observed correlation is evidently in excess of the true value. The problem is to determine the adjustment equation, similar to eq. (1), (2), or (3), which will reduce the observed value to the correlation which exists in the universe from which it is most probable that that sample was drawn.

Frequency ogives (on a percentage basis) were constructed from the tables in the "Cooperative Study for $\rho = 0$, 0.2, 0.4, 0.6, 0.8, and 0.9, for $\rho = 4$, 5, 9, 17, 25, 50, and 100. Equation (1) was then

tested against these ogives, to determine what was the significance of the adjustment. For zero order correlations, equation (1) becomes

Hence, with $\rho=0$ and n'=9, (r) would have to equal at least ± 0.35 for \bar{r} to be 0. Comparing this value, 0.35, with the frequency ogive for $\rho=0$, n'=9, it was found that only 35 per cent of the samples would give observed correlations larger than 0.35, or smaller than -0.35. Similarly for $\rho=0.6$ and n'=17, r would have to be 0.63 for \bar{r} to be .60. For these conditions, 49 per cent of the samples would give observed correlation in excess of .63. Carrying out this same comparison for all of the ogives constructed gives results as shown in the following tabulation.

Size of		When correlation in sample is								
sample (n')	0.0	0.2	0.4	06	0.8	0.9				
4	0.42	0.29	0.36	0.42	0.49	0 51				
5	.39	29	.37	.43	.48	.50				
9	.35	.30	.38	.44	.48	.49				
17	.33	.32	.40	.45	.48	.49				
25	.32	.34	.42	.46	.48	.49				
50	.31	.37	'44	.47	.48	.50				
100	.31	.40	.46	.48	.49	.50				

Proportion of samples, of specified sizes, drawn from universes of specified correlations, which show correlations in excess of the true value in the universe, even after adjusting the observed correlation by the formula $r^2 = -\frac{n'-1}{n'-1}(1-r^2)$

These values are determined from the graphs based on a rough integration by successive summations, and slight errors may have entered in making the graphic interpolations. Hence the values cannot be regarded as precise. The error probably does not exceed .01 or .02 in any case, however, so the results are sufficiently exact to interpret the general effect of the correction formula.

It is evident from the table that when the true correlation is high, .80 or above, the probability of a value as large as that implied by

the use of adjustment formula (1) is practically .50 Tests by the tables given in the "Cooperative Study" for the most probable value show that the probability becomes almost exactly .50 for larger samples and still higher correlations, the adjusted values by those tables and by the correction formula agreeing to the third or fourth decimal place.

Where the true correlation is low, however, the table indicates that the adjustment is too severe-that is, the probability of the true correlation in the universe being as high as the correlation shown after the adjustment is more than .50, and may be as high as .70 (for n'=4or 5 and $\rho = 0.2$). Even with this variation in the meaning of the adjusted value, however, equation (1) gives a valuable adjustment, since it indicates the probable correlation with almost exactly a .50 probability where the correlation is high, whereas it indicates the probable correlation with a higher probability—between .50 and .70—for those cases where the correlation is low and the standard error of the coefficient is correspondingly large.

Comparison of equations (2) and (3) with the frequency ogives showed that where n' was small, the adjustment was more severe in the case of (3), and less severe in the case of (2), and did not in either case tend to approximate the 50 per cent probability, except where n' was very large. In some cases equation (2) gives corrected values so low that such cases are likely to occur more than 50 per cent of the time, and accordingly the probability would be even less than .50 that the correlation is really as high as shown by the adjusted coefficient.

It may be concluded that equation (1) gives the most satisfactory simple method for adjusting coefficients of simple or multiple correlation to remove the positive bias. The adjusted value thus obtained may be defined as the value that most probably exists in the true universe, in the case of a high correlation, or a value slightly below the probable true value, in the case of a low correlation.

The adjustment of the standard error of estimate may next be considered. When a standard deviation, σ_s , is calculated from the items in a sample of n' cases, the probable standard deviation of the items in the universe, σ_x , may be computed (following Fisher) as $\sigma_x^2 = \frac{n'\sigma_x^2}{\sigma'-1}$

So if the standard error of estimate is calculated by the usual formula

$$S_e^2 = \sigma_x \left(/ - R^2 \right)$$

but the adjusted correlation, \bar{R} , is substituted for R, and the value just shown is used for σ_x , the equation becomes

(4)
$$S_e^2 = \frac{n'\sigma_s^2}{n'-l} \left[\frac{n'-l}{n'-n_z-l} \left(l - R^2 \right) \right]$$
$$S_e^2 = \frac{n'\sigma_s^2}{n'-n_z-l} \left(l - R^2 \right)$$

This is identical with the equation given by Fisher¹, though in different form.

Correcting for Bias with Indexes of (Curvilinear) Correlation

Where correlation is measured with respect to curvilinear regressions, the greater number of parameters represented in the regression curve increases the tendency for the observed correlation to exceed the actual and requires a more drastic correction of the observed values. Where the regression curve is determined by a definite equation, the number of parameters is known, and the observed correlation may be adjusted to the most probable true correlation by the use of equation (1), as before. Since the number of parameters, rather than the number of independent variables, now becomes of moment, the equation may be restated for curvilinear correlation

$$1-\bar{\rho}^2 = \frac{n'-1}{n'-m} (1-\rho^2)$$

using m to designate the number of parameters, and ρ and $\bar{\rho}$ to designate the observed and the adjusted index of correlation. This formula may be used either for simple or for multiple curvilinear correlation. Thus if the regression equation

$$X_{1} = a + b_{2}X_{2} + b'_{2}(X_{2}^{2}) + b_{3}X_{3} + b'_{3}(X_{3}^{2})$$

1. Fisher, R. A., Statistical Methods for Research Workers. 1928. P. 117, first equations; page 135, 2nd equation.

had been fitted, m would equal 5. For a sample of 20 observations and an observed multiple correlation of 0.80, the most probable true correlation would be but 0.74.

Where the regression curve or curves have been fitted free-hand, the observed correlation may be even more in need of adjustment than where a definite equation has been employed ¹

It is true that the number of parameters which it would take to duplicate the free-hand curve by a definite mathematical function cannot be exactly determined without finding some equation which will exactly represent the curve. On the other hand, even an approximate estimate of the number of parameters which would be required provides a better basis for judging the probable true correlation than does the observed correlation taken alone. Such an approximate estimate may be made by considering how many degrees of position, change, or movement are represented in the graphic curve. The following list suggests some of these:

- (a) Position
- (b) Direction
- (c) Change of direction
- (d) Change in the change of direction

Where several different free-hand regression curves have been obtained by the method of successive approximation, the number of parameters represented by each one must be estimated separately. Only a single "position" parameter is required, since the origin of each regression is purely arbitrary, depending upon the constant in the regression equation, and the origin assumed for each of the other curves. That is, in the curvilinear regression equation

$$X_1 = a + f(X_2) + f(X_3) + f(X_4)$$

the value of a depends upon the origin used in graphing each of the functions.

Once the number of parameters represented in the regression

 Ezekiel, Mordecai. Application of the Theory of Error to Multiple and Curvilinear Correlations. Jour. Amer. Stat. Assoc., March, 1929, Supp., pp. 99-104. Vol. XXIV, No. 165-A. equation has been estimated, equation (4) may be used to adjust the observed correlation. Until more exact information is available, the explanation of the precise meaning of the adjusted value which has just been developed for the coefficient of linear correlation, may be assumed (by analogy) to apply to the adjusted index of (curvilinear) correlation as well.¹

4. Sampling Accuracy in Coefficients of Correlation

Although equations (1) and (4) may be used to find the most probable correlation in the universe from which a given sample has been drawn, they do not give any measure of the range within which the true value probably lies, for any specified degree of probability.

It has long been recognized that coefficients of correlation, computed from small samples drawn from a universe in which some correlation exists, show a very skew distribution. Even for samples of a size most used in actual research—up to n = 100 or larger—the distribution is so skewed that the computed standard error of the correlation coefficient is of relatively little value. Even with fairly large samples the chances of the observed value departing from the true value by four or five times its standard error are very much greater than any interpretation based upon the normal curve would indicate.²

Recent investigations by "Student" and by R. A. Fisher have developed means of determining the reliability of correlation coefficients

- 1. The adjusted correlation corresponding to a given observed correlation, for any size of sample and value of m, may be more readily determined from a graphic chart, instead of eq. (1) or (4). Such a chart is shown in the appendix to "Methods of Correlation Analysis," by the present author, page 404. (John Wiley and Sons, 1930.)
- "Student," On the Probable Error of a Correlation Coefficient. Biometrika, Vol. VI., p. 302, 1908
 - Soper, H. E., On the Probable Error of the Correlation Coefficient to a Second Approximation. Biometrika, Vol. IX, p. 91, 1913.
 - Fisher, R. A., Distribution of the Correlation Coefficients of Samples, Biometrika, 10, p. 507, 1915.
 - Soper, H. E., A. W. Young, B. M. Cave, A. Lee, K. Pearson. Distribution of Correlation Coefficients in Small Samples. Appendix 11, to the papers of "Student" and R. A. Fisher. Biometrika, XI, p. 328-413.

while allowing for the skewness of their distribution. That phase of the subject will not be developed in this article; it is referred to here merely to call attention to the fact that even after the most probable value for the true correlation has been determined, it may still be necessary to take account of how much confidence can be placed in that value—of how far the correlation obtained from the sample, even after adjusting as suggested, is likely to vary from the true correlation of the universe for any stated odds of probability.¹

It must be recognized that the interpretation of the reliability of a correlation merely serves to indicate the significance that may be attached to the observed correlation, in view of the possibility of variation of the observed value from the true value in the universe due solely to random variation in sampling. If the conditions under which the sample is obtained do not fulfill the assumptions of simple sampling, then obviously Fisher's methods cannot be used unless the necessary reservations or modifications are added.

 Fisher, R. A. On the "Probable Error" of a Coefficient of Correlation Deduced from a Small Sample. Metron, 1, No. 4, p 3, 1921.—Statistical Methods for Research Workers, pp. 159-175, 2nd edition, 1928.—The General Sampling Distribution of the Multiple Correlation Coefficient. Proc. Roy. Soc., A. Vol. 121, pp. 654-673. 1928.

The methods developed by Fisher in the last of these articles have been made more readily available by the construction of graphic charts, both for simple and multiple correlations, which are given in the present author's "Methods of Correlation Analysis," pp. 400-403.

PART II.—LINEAR AND CURVILINEAR REGRESSIONS

1. Sampling Variability of Linear Regressions

Relatively little attention has been given in practical research work to the reliability of the regressions determined. Many correlation studies. especially where multiple correlation has been employed, have been misinterpreted because proper attention has not been given to the standard errors of the regression coefficients. As was pointed out recently, this sampling variation may readily be so great in practical work as to invalidate the conclusions as to the effect of various variables, even when samples of considerable size are employed.

Fortunately, regression coefficients, derived from finite samples selected by random sampling, tend to be distributed in a normal distribution in the same way as does the arithmetic mean. so that elaborate devices necessary to allow for skewed distribution are not necessary. If the necessary corrections are made for the failure of the distribution to be normal when the number of degrees of freedom falls below 30. the standard error of a linear coefficient of gross regression or of partial regression may be employed with only the same restrictions as apply in the case of the arithmetic mean. More recently the formula for regression errors has been extended by Working, Hotelling, and Schultz to develop the standard errors of each constant for curves fitted by least-square methods.²

Where the regression is represented only by a plotted curve instead of by a definite equation, the reliability of the curve has been unknown. Obviously, it cannot be estimated from the constants represented in the curve, for they are unknown, and only their number

- Ezekiel, Mordecai. The Application of the Theory of Error to Multiple and Curvilinear Correlations. Jour, Amer. Stat. Assoc. Proceedings, 19th annual meeting, Vol. XXIV, No 165-A, pp. 99-104, March, 1929.
- Working, Holbrook, and Hotelling, Harold Applications of the Theory of Error to the Interpretation of Trends. Jour. Amer. Stat. Assoc. Proc., Vol. XXIV, 165-A, pp. 73-85, March, 1929

Schultz, Henry. Discussion of above paper. pp. 86-88.

Schultz, Henry. The Standard Error of a Forecast from a Curve. Jour. Amer Stat. Assoc., June, 1930.

may be roughly estimated. Some knowledge of the variability of such regression curves may, however, be obtained experimentally.

2. Outline and Summary of Experimental Study of Sampling Variability of Multiple Curvilinear Correlation Results

The study was conducted by first constructing a set of data in which a dependent variable, X,, was related to several independent variables according to known curvilinear regressions, and in which a certain known portion of the variance of X, was not related to any of the independent variables. A second universe was then constructed with the same underlying functions, but with a different proportion of random variation in the dependent variable. Successive samples of various sizes were drawn at random from both "universes" and net (partial) regression curves and indexes of multiple correlation were computed separately for each sample The net regression curves obtained in successive samples of the same size were compared with the true curves and with each other to see how far the results determined from the samples differed from the true values, and how much variance there was among them. The variability of the curves, for samples of different size, different true correlations, and different points along the curves, was then studied, and it was found possible to construct an error formula to estimate the standard error of the regression curves from the values obtained in the individual samples. Checking this formula by applying it to each of the samples previously determined, the actual errors were found to be in fair agreement with the estimated errors.

For a more rigorous test of the new error formula for regression curves, two new synthetic universes were constructed. Samples of various sizes were drawn from them, net regression curves computed separately for each sample, and the actual departures of the computed curves from the true curves checked against the error indicated by the new formula. The agreement in this test was not so good as in the previous case, although 66.5 per cent of the ordinates of the curves showed errors no greater than their computed standard errors, only 20.3 per cent fell between 1 and 2 times the computed values, while 7.5 per cent fell between 2 and 3 times, as compared to 68.3, 27.2 and 4.3, the proportions to be expected if the distribution were normal.

On the other hand, 5.8 per cent of the ordinates had errors exceeding 3 times the computed standard error, and some departures in excess of 5 times the computed standard error were obtained. It is evident from these results that either (a) the tentative formula is not adequate to estimate the standard errors of regression curves determined by the free-hand method, or (b) that net regression curves obtained by the successive approximation process are so unstable that their errors cannot be represented by a normal curve, and possibly may be impossible of estimation by any mathematical process. In the hope that the attention of others may be drawn to this problem, and a more satisfactory error formula be obtained, the experimental study is given subsequently in as full detail as possible.

The indexes of multiple correlation obtained from successive samples of the same size, were studied with respect to (1) bias and (2) variability. As has been previously reported, the indexes of multiply correlation show an average positive bias even larger than that of coefficients of multiple correlation. Indexes of multiple correlation apparently require a correction which takes into account both the number of observations and the estimated number of constants represented in the regression curves, according to equation (4) already discussed. Further study of the variability of the correlations showed that as far as could be judged from the relatively small number of replications of each size sample (5 to 16) they tend to have a standard error of the order of

(5)
$$\sigma_{p} = \frac{\left(l - p^{2}\right)}{n' - m}$$

where n' and m have the same meaning as for equation (4), and where ρ represents the observed index of multiple correlation. If this very rough approximation for their sampling errors is found adequate, it would seem logical to expect Fisher's determination for the sampling error of multiple correlation coefficients to apply equally well to indexes of multiple correlation.

In concluding this summary, it must be reiterated that these conclusions are only tentativhe. They provide at least some indication of the reliability of curvilinear correlation results, for which previously

1. Loc. Cit., Proc. Amer. Stat. Assoc., March 1929, p. 100.

nothing had been known. The error formulae are only first approximations, however, and in the case of the error of net regression curves, are such a poor approximation that much more work remains to be done before the results of such analyses can be used with anything like the degree of confidence that can be felt in older and more well-established statistical procedures.

DETAILS OF EXPERIMENTAL STUDY

3 CONSTRUCTION OF SYNTHETIC UNIVERSES

Ine set of data used in the initial sampling was constructed as follows:

- 1. Values for χ_z were obtained by taking the sum of values from two dice. The throws were repeated 500 times, giving 500 values.
- 2. To insure some curvilinear correlation between X_2 and X_3 , values of X_3 were computed for each value of X_2 , according to the following function.

Value of X2	Value of X's	Value of X2	Value of X's
2	3	8	6
3	4	9	6
4	5	10	7
5	5	11	8
6	6	12	9
<i>j</i>	6		

One die was then thrown, and the value for X_3 computed as the die reading $+X_3'$ $\left[\Sigma = \text{die reading } + f(X_2)\right]$.

3. Values for X_4 were then computed for each value of X_3 , according to the following function:

Value of X ₃	Value of X₄′	Value of X 3	Value of
3	4	10	0
4	3	11	0
5	2	12	0
6	1	13	0
7	1	14	0
8	1	15	0
9	1		

Again, one die was thrown, and the reading of the die added to the X'_4 value to get X_4 . This gave a set of 500 values of X_2 , X_3 , and X_4 , fairly normally distributed, with positive correlation between X_2 and X_3 (r = +.534); with a negative correlation between X_4 and X_2 (r = -.489); and between X_3 and X_4 (r = -.234); and with all of the inter-correlations more or less curvilinear.

4. Values for a dependent variable, X, were then calculated according to the relation

$$X_1 = f(X_2) + f(X_3) + f(X_4) + e$$
,

where the values for each of the functions were read from the assumed regression curves tabled below, and where e was obtained by throwing two dice, and taking the sum of the readings.

X ₂	$f(\chi_2)$	Xg	$f(X_3)$	X ₄	f(X)
2	2.6	4	2.0	1	0.0
3	3.4	5	1.5	2	0.2
4	4.0	6	1.3	3	0.7
5	4.4	7	1.0	4	1.7
6	4.7	8	1.0	5	3.0
7	5.0	9	1.3	6	4.1
8	5.0	10	1.7	7	5.0
9	5.0	11	2.1	8	5.0
10	5.0	12	2.8	9	4.5
11	5.0	13	3.6	10	3.3
12	5.0	14	4.4	11	2.5
		15	5.2		

VALUES FOR ASSUMED REGRESSION CURVES

Values for a second dependent variable, Y, were obtained by using the same assumed regressions, but obtaining the value for e by throwing a single die, rather than two dice. This gave two sets of 500 observations, both identical as to the independent variables, but with different dependent variables, and with the true correlation higher in one universe than in the other, since the dependent variable included a smaller proportion of random variation in one case than in the other. The complete set of 500 paired observations are shown in Table A.

4. Drawing Random Samples

Thirty-one separate samples were drawn from each of the 2 "universes"; 5 samples of 100 observations each; 10 samples of 50 observations; and 16 samples of 30 observations. In making the drawings, slips numbered from 1 to 500 were mixed in a box, and drawn at random. They were stirred afresh between each drawing. In making the drawings for the X, universe, the slips were not returned to the box until each sample was completed; so that the same set of data would appear only once in each sample. In making the drawings for the Y universe, each slip was returned to the box as soon as its number was noted. In a few cases this resulted in the same observations appearing twice in the same sample. While 500 is not an "infinite" universe as

compared to a sample of 100, the difference in the method of drawing appeared to make no practical difference in the variability in the two sets of samples. However, the fact that the samples made an appreciable proportion of the "universe" would mean that the variability in the observed results would not be quite as large as if drawn from an infinite universe. Using Bowley's statement of this the maximum effect, however, which would be for the samples of 100, would make the of the observed deviations about one-tenth smaller than it would have been if determined by drawings from an infinite universe of similar characteristics.

For, following Bowley,

$$\sigma_{s'} = \sigma_{s} \sqrt{I - n_{s}/n_{b}}$$

Where, $\sigma_{s'} = \sigma$ of actual sample, from a finite universe

 $\sigma_s - \sigma$ of a similar sample, from an infinite universe

 n_{\bullet} = number of cases in sample

 n_{ν} - number of cases in the finite universe

Hence where $n_u = 500$, $n_s = 100$, then $\sigma_{s'} = .894 \sigma_s$

Since the effect of the limited universe on the variation in the results can thus be estimated, the results can be transformed to what they would probably have been had a much larger universe been available for study.

5. Curvilinear Regressions Determined from the Samples

Net regression curves were determined for each sample by the method of successive graphic approximations, and indexes of multiple correlation were computed for each set of curves. Each sample was carried through successive approximations until no further significant increase in correlation was found by further modifications of the curves. From 2 to 4 approximations were necessary, in various cases. The multiple correlation found for each sample at the first (linear) solution,

 Bulletin Int. Institute Statistics, Proceedings, Rome, 1925. Annex by A. L. Bowley, Cambridge Univ. Press. and for each successive set of curves, are shown in Table B. For the Y universe, a multiple correlation was run to adjust, by least squares, the slope of each regression curve according to the formula.¹

$$Y=a+b_2'\left[f(X_2)\right]+b_3'\left[f(X_3)\right]+b_4'\left[f(X_4)\right]$$

The indexes of multiple correlation (necessarily higher than the previous indexes) as found by this process are also shown in Table B. The further study of the sampling variability of the regression curves was based on the set of regression curves for each individual sample which showed the highest correlation for that sample.

6. Errors in Regression Curves from the Samples

The net regression curves determined from each successive sample were all put on a comparable basis by adding a constant to each so that the central ordinate of each would equal the central ordinate of the corresponding true regression curve. The differences between the adjusted ordinates at other points along the curves and the true ordinates would then show the errors in the curves. That is, the difference between ordinates at the central value and the ordinates at other points along the curve, as shown for the curves determined from the samples, were compared with the same differences for the true curves.

This procedure centered attention on the reliability of the slope and shape of the curves, rather than on the accuracy of their position. It is true that in linear correlation, the a as well as the b of the formula Y = a + bx, is subject to sampling errors, and formulae have been devised to compute its standard error. In the present case, however, it seemed desirable to first solve the problem of the shape and slope of the curve, before attacking the further problem of its position.

The departures of the curves found in the several samples from the true values for each curve are shown in Table C, for selected ordinates. The central point of reference (and therefore the point of 0 error) was taken at approximately the mean value of each independent variable.

The individual samples were studied to see if there was any relation between the correlation observed in individual samples and the

See pages 445-447, Dec. 1924, Jour. Amer. Stat. Assoc., for the original discussion of this process.

errors in the regression curves. No relation whatever was found between the size of the correlation in the individual sample and the size of the errors for the sample so long as samples of the same size and drawn from the same universe were compared.

Standard errors for the linear partial regression coefficients were computed for each sample by the standard formula given by Yule, and, modified, by R. A. Fisher:

$$\sigma_{b_{/2,34}}^2 = \frac{\sigma_{,}^2 (I - \bar{R}_{,234}^2)}{n' \sigma_{,2}^2 (I - \bar{R}_{,2,34}^2)}$$

When the actual errors in the regression curves for individual samples were compared with these standard errors, again no relation was found for samples of the same size and drawn from the same universe. For that reason it was decided to abandon further study of the characteristics of individual samples, and instead study the characteristics of each entire set of samples of the same size and from the same universe.

7. Derivation of Tentative Error Formula

Study of the errors showed that, so far as could be judged from the limited number of observations, they had a marked tendency to a normal distribution. However, to prevent undue weighting of single extreme cases, the average deviation was used instead of the standard deviation as a basis for summarizing the results shown by different samples of the several sizes. These average deviations are shown in Table 1 (page 298).

Each of these results would be expected. The true standard error of estimate for Universe X is 2.39, and for Universe Y is 1.80, or 75.3 per cent as large. It would therefore be reasonable to expect that, other things being the same, the errors in the ordinates of the regressions for Universe Y would average only three-quarters as large as the corresponding errors for Universe X. Stating each mean error (Table 1) in Universe Y as a percentage of the corresponding mean error in Universe X, and taking the geometric mean of these percentages, it appears that on the average the errors in Universe Y are 78.5 per cent as large as in Universe X, or in fair agreement with the

proportion expected. The extent to which average error shown in Table 1 for the selected ordinates in Universe X are correlated with the average error for the corresponding ordinate in Universe Y are shown graphically in Figure 1. It is evident that the individual group averages agree fairly well with the expected relation. Accordingly, it was concluded that any formula for the standard error of net regression curves would have, for one component, $\bar{s}_{\mu,234}$, the standard error of estimate for the dependent variable, just as does the formula for the probable error of a linear net regression coefficient, which is

$$\sigma_{b_{12,34}}^{2} = \frac{\tilde{S}_{1,234}^{2}}{n'\sigma_{2}^{2}(I-R_{234}^{2})}$$

TABLE 1.

Average deviation of errors in net regression curves, at selected ordinates for various sizes of sample.

		τ	Iniverse	X	Universe Y			
X 2	f(X2)	16 samples of 30	10 samples of 50	5 samples of 100	16 samples of 30	10 samples of 50	5 samples of 100	
3	11.4	1.66	1.19	0.34	0.90	0.82	0.50	
5	12.4	0.93	0.63	0.24	0.48	0.50	0.26	
7	12.9	0.00	0.00	0.00	0.00	0.00	0.00	
9	13.0	0.72	0.56	0.34	0.38	0.32	0.24	
11	13.0	1.48	1.09	0.77	0.71	0.58	0.50	
X ₃	<i>F(X₃)</i> 12.5	1.65	1.25	1.04	1.38	0.52	1.10	
7	12.0	0.84	0.44	0.38	0.38	0.18	0.16	
9	12.3	0.00	0.00	0.00	0.00	0.00	0.00	
11	13.1	0.61	0.47	0 24	0.41	0.56	0.52	
13	15.6	1.35	0.93	0.82	1.56	1.24	0.88	
X ₄	f(X ₄) 10.2	0.69	0.80	0.38	0.58	0.80	0.50	
3	10.7	0.52	0.54	0.48	0.39	0.36	0.34	
4	11.7	0.35	0.36	0.40	0.30	0.16	0.22	
5	13.0	0.00	0.00	0.00	0.00	0.00	0.00	
6	14.1	0.28	0.29	0.12	0.34	0.54	0.22	
7	15.0	0.72	0.67	0.40	0.68	0.68	0.54	
8	15.0	1.50	1.09	0.76	1.14	0.92	0.66	
9	14.5	2.26	1.60	1.00	1.34	1.25	0.74	

^{1.} This and subsequent figures will be found at the conclusion of the paper.

It is evident from Table 1 and from Figure A, which shows the data graphically for Universe X, (a) that in general the larger the sample the smaller the average error; (b) that the further from the center ordinate, the larger the error; and (c) since the errors in Universe X were usually larger than in Universe Y, that the lower the true correlation, the larger the error.

The influence of sample size may next be considered. The number of observations is involved in two ways in the results shown in Table 1. In the first place, the average error tends to vary somewhat inversely with the size of sample. But in addition, it tends to vary with the distance from the central ordinate. Since the independent variables were composed of elements derived from dice readings, their distribution was roughly normal. As a result, the number of observations upon which the regression curves were based was largest toward the center portions, and thinned out toward the extremes. In the graphic approximation method of determining the curves, each portion of the curve is determined from the cases falling within that portion, rather than from all the cases as a whole. Accordingly, it seems logical to try to relate the observed differences in the average deviation of the errors to differences in the number of cases from which they were determined, rather than to the total size of sample.

There is no precise range within which the observations can be said to be considered in free-hand fitting. Instead of trying to measure the exact number of cases within any specified range, therefore, it seemed desirable to establish a measure of the concentration of observations at any point along the curve. Thus, for example, if within a given interval of X_i , with a group interval of u units, there are n_u observations, we can express the concentration of observations at the mid-point of that group by the relation

$$n_{k} = n_{u} \left(\frac{\sigma_{x}}{u_{x}} \right)$$

If the group-interval is taken equal to the standard-deviation of the variable, n_k will be simply the number of cases falling within that group. If, however, the group-interval is made either larger or smaller than the standard-deviation, this equation will measure the concentration of observations in terms of the number per standard-deviation range. In a rectangular distribution, changing the value of u_x

would change the size of n_{ν} to a corresponding extent, so the value of n_{ν} would be independent of the group-interval selected. In a normal distribution, however, n_{ν} would be only an approximation of the true value which would be secured from the theoretical distribution when the total number of cases was made very large and ν_{ν} was made infinitely small.

On the basis of the foregoing reasoning, it was thought that the differences in the average deviations within each universe as shown in Table 1, might be explained by differences in the number of cases which each portion of each curve was based upon. In sampling theory the dispersion of values of a constant determined from successive samples ordinarily varies with $\frac{1}{\sqrt{n}}$, rather than with $\frac{1}{n}$, hence, in this case, it was tentatively assumed that the value $\frac{1}{\sqrt{n}}$ would be a component of the formula for the error of ordinates of regression curves. This hypothesis was tested by adjusting the average shown in Table 1 by multiplying each of these by the factor $\frac{1}{\sqrt{n_k}}$, determining the n_k in each case from the true distribution of that variable in the whole universe, and from the total number of cases in the samples. These average differences would presumably reflect the true distribution of each independent variable in the original universe, since the variations in distribution in different samples would tend to cancel out. We may therefore use the distribution of the entire universe to indicate the average distribution within samples of specified sizes drawn from that universe. The calculation of n_k for each ordinate in accordance with this method is shown in Table 2.

TABLE 2

Calculation of n_k values for selected ordinates and various sizes of samples.

	N	umber of	cases (r		Value of n	k 1	
Group	In entire Universe	30	50	100	30	50	100
X							
X ₂	32	1.92	3.2	6.4	2.171	2.803	3.964
5	55	3.30	5.5	11.0	2.846	3.674	5.197
9	53	3.18	5.3	10.6	2.794	3.607	5.102
11	38	2.28	3.8	7.6	2.366	3.055	4.370
X,		0.54	00	1.0	1 001	1 200	1074
5	9	0.54	0.9	1.8	1.081	1.396	1.974
7	70	4.20	7.0	14.0	3.015	3.892	5.505
11	91	5.46	9.1	18.2	3.437	4.437	6.276
13	18	1.08	1.8	3.6	1.529	1.974	2.792
X4							
2	62	3.66	6.2	12.2	2.771	3. 577	5.060
3	<i>7</i> 6	4.56	7.6	15.2	3.093	3.993	5.648
4	<i>7</i> 9	4.74	7.9	15.8	3.153	4.071	5.757
6	91	5.46	9.1	18.2	3.385	4.370	6.181
7	55	3.30	5.5	11.0	2.631	3.397	4.804
8	26	1.56	2.6	5.2	1.809	2.335	3.303
9	16	0.96	1.6	3.2	1.419	1.832	2.591

^{1.} Computed from formula $n_{\kappa} = n_{\sigma} \left(\frac{\sigma_{x}}{\sigma_{x}} \right)$, with $\sigma_{x} = 1$, $\sigma_{z} = 2.455$; $\sigma_{3} = 2.164$; $\sigma_{4} = 2.098$, $\sigma_{5} = 1$, since the frequencies for 3 include 2.5 to 3.5; for 5, 45 to 5.5, etc.

TABLE 3

Average deviation of errors in net regression curves, at selected ordinates, adjusted to error per unit observation per standard-deviation range

Group	1	Universe X		υ	niverse Y	
X2	1 30	50	100	30	50	100
3	3.60	3.34	1.35	1.95	2.30	1.98
5	2.65	2.31	1.25	1.37	1.84	1.35
7	0.00	0.00	0.00	0.00	0.00	0.00
9	2.01	2.02	1.73	1.06	1.15	1.22
11	3.50	3.33	3.33	1.68	1.77	2.16
X 5	1.70	1 77	205	1.40	0.72	217
5	1.78	1.75	2.05	1.49	0.73	2.17
7	2.53	1.71	2.09	1.15	0.70	0.88
9	0.00	0.00	0.00	0.00	0.00	0.00
11	2.10	2.09	1.51	1.41	2.48	3.26
13	2.06	1.84	2.29	2.39	2.45	2.46
X 2	1.01	206	1.02	1.61	206	252
2	1.91	2.86	1.92	1.61	2.86	2.53
3	1.61	2.16	2.71	1.21	1.44	1.92
4	1.10	1.47	2.30	0.95	0.65	1.27
5	0.95	1.27	0.74	1.15	2.36	1.36
6	0.00	0.00	0.00	0.00	0.00	0.00
7	1.89	2.28	1.92	1.79	2.31	2.59
8	2.71	2.55	2.51	2.06	2.15	2.18
9	3.21	2.93	2.59	1.90	2.29	1.92

When the values in Table 1 are multiplied by the corresponding n_{κ} values, from Table 2, the adjusted values shown in Table 3 are obtained. Averaging together all the values in Table 3, average adjusted errors of 1.89 are secured for samples of 300 cases, 2.04 for samples of 50, and 1.98 for samples of 100 cases. It is evident that most of the difference due to different sizes of samples has been eliminated. However, even after this adjustment, the errors tend to increase as the ordinate departs from the assumed point of origin at the center. This same relation holds for linear regression lines. The standard error of any point on a regression line (in relation to the origin at $M_{\nu}=0$) is σ_{b} x, and hence increases directly as x increases. A line

^{1.} Number of observations in each of the successive samples.

continues out with the slope given it by b, and any error in b has a progressive influence on the accuracy of the line. The free-hand curve, on the contrary, is more flexible, and does not continue in any determinate direction. Hence it would hardly be supposed that the errors in the ordinates of the curve would increase with increasing values of λ so rapidly as does the standard error of the straight line. The errors shown in Table 3 may be tested with respect to this hypothesis by averaging, for each universe, the errors shown by the three sizes of samples for the several selected ordinates and relating the resulting averages to the departures from the assumed means. To put these departures in comparable terms for the three variables, they may be stated in terms of standard deviation units. Carrying these operations through, the data appear as shown in Table 4.

TABLE 4

Average adjusted deviation of errors at selected ordinates, contrasted with departure from origin

Group	Departure from origin	De- parture	$\sqrt{\frac{d}{6}}$	Average adj Universe	usted errors Universe
	08		V 0	X	Y
X ₂	4	1.63	1.06	2.76	2.08
5	2	0.81	0.90	2.07	1.52
7	0				
9	2	0.81	0.90	1.92	1.14
11 X, 5	4	1.63	1.06	3.39	1.87
Xa		1.05	1.20	100	1.46
5	4	1.85	1.36	1.86	1.46
7	2	.92	0.96	2.11	91
9	0			ĺ	
11	2	.92	0.96	1.90	2.38
13	4	1.85	1.36	2.06	2.43
X ₄ 2 3	,	1 41	1.20	2.22	2 22
2	3	1.41	1.20	2.23	2.33
	2	.95	0.97	2.16	1.52
4	1	.48	0.69	1.62	.96
4 5	0				
6	1	.48	0.69	.99	1.62
7	2	.95	0.97	2.03	2.23
8	3	1.43	1.20	2.59	2.13
9	4	1.91	1.38	2.91	2.04

It is evident from Table 4 that the average error, adjusted for size of sample, increased as the departure from the origin increased. This is shown more clearly in Figure 2, where the average error is plotted against the departures from the origin. This figure, however, indicates that the relation is not linear, as the errors do not increase in proportion. When the average errors are plotted against the departures on semi-log paper, however, as shown in Figure 3, the relation is substantially linear, and is of such an order as to suggest that the errors vary with the square-root of the departures, rather than the departures themselves. The line drawn in on each chart, with such a slope as to coincide with the square roots, parellels the relation fairly well, so from this it may be concluded that another constituent of the error formula will be

$$\sqrt{\frac{\text{Units departure from origin}}{\sigma_{x}}}$$

If the origin is made at the mean of X, the independent factor, X_2 , X_3 , etc., this segment of the error formula may be stated (using $x = X - M_T$)

$$\sqrt{\frac{x}{\sigma_x}}$$

Each of the adjusted errors shown in Table 4 may be further adjusted by dividing each one by $\sqrt{\frac{\sigma e p}{\sigma_x}}$, the value shown in the third column. They may also be adjusted to allow for the difference in the original standard errors of estimate in the two universes, as noted earlier. The standard error in Universe Y was 1.80 and Universe X, 2.39, so the errors may be made comparable by dividing those from each universe by the corresponding standard error of estimate. Performing these two operations, the average deviations of the errors appear as shown in Table 5. These average deviations are now so adjusted as to eliminate differences due to (1) number of observations in each portion of the distribution, (2) departure from origin, and (3) standard error of estimate in the universe. As stated in Table 5, the average deviations are in per cent of the deviations that would have been estimated from an equation representing the three elements discussed.

TABLE 5

Average deviation of errors at selected ordinates adjusted for n_k , $\sqrt{\frac{\pi}{\sigma_r}}$ and \mathbf{S}_{ϵ}

		. 0,		
Grou	p	Universe X	Universe Y	Average
Average X2 -	3	1.09	1.09	
	5	0.96	0.94	
	9	0.89	0.70	
1	1	1.33	0.98	
Average >	(₂	1.07	0.93	1.00
X _a -	5	0.57	0.60	
	7	0.92	0.53	
11	l	0.83	1.38	
13	3	0.63	0.99	
Average)	(ع	0.74	0.88	0.81
$X_A - 2$	2	0.78	1.08	,
$X_4 - 2$	3	0.93	0.97	
4	4	0.98	0.77	
	5	0.60	1.30	
;	7	0.83	1.28	
. 8		0 90	0.99	
9		0.88	0.82	
Average)	(₄	0.84	1.03	0.94

Averaging all values for each variable, as shown in Table 5, there still remains some difference in the average errors. The errors for $f(X_3)$ are smaller on the average than the errors for either of the other variables, while those for $f(X_2)$ are larger. This suggests that some element other than those already considered influences the errors, and that it differs with individual independent variables.

The formula for the standard error of a linear net regression coefficient contains the term

$$\sqrt{I-R_{234}^2}$$

which allows for the intercorrelation between the independent variables. The more closely an independent variable may be estimated from the other independent variables, the less accurately its net regression line can be determined. The same relation might be expected to hold true of multiple regression curves. We can test this by comparing the average adjusted errors, just computed, with the intercorrelation, as follows:

Regression	Mean Adjusted Error	$\sqrt{I-R^2}$	Mean Error
f(X2)	1.00	VI-R2,34=0.757	0.76
$f(X_s)$	0.81	-VI-R3.24 = 0:844	0.68
$f(X_4)$	0.94	VI- R2 20.876	0.82

It is evident that the means vary somewhat inversely with the $\sqrt{-R^2}$ values. They may therefore each be multiplied by the corresponding $\sqrt{-R^2}$ value to secure the final adjusted values, as shown in the last column. This column now shows the average deviation of the errors actually observed stated in per cent of an estimated error computed from a theoretical equation composed of the four elements developed separately.

The average deviations of the observed errors varies from 68 to 82 per cent of the estimated error in each case, as contrasted to the value of 80 per cent to be expected if the equation gave the standard error. This is consistent with the fact that the standard error of estimate is included as the initial value in the equation. Furthermore, since the samples were drawn from a limited universe, the variation observed would tend to be slightly less than if they were drawn from an infinite universe with the same characteristics, which is consistent

^{1.} This demonstration is by no means convincing proof of the need of including this adjustment. After this final adjustment, the discrepancy between the smallest and largest average errors, 0.68 and 0.82, is still as great as it was between the smallest and largest before, 0.81 and 1.00. On logical grounds, however, some such adjustment for the closeness of inter-relation between the independent variables is necessary, and by analogy, this method seems a possibility. It may be, however, that the index of (curvilinear) multiple correlation, $P_{2,34}$, should be used in the adjustment, rather than the coefficient of multiple correlation.

with the observed values falling mostly a little below the expected value of 0.80. The elements considered in estimating the error may therefore be said to give the standard error of the regression curves.

By a combination of induction and deduction, of which the foregoing is a condensed re-statement, a tentative formula for the standard error of the ordinates of a net regression curve was constructed from the four elements developed separately. They may be combined as follows¹:

I.
$$e_{f(\chi_2)} = \left(\overline{5}_{1234}\right) \left(\frac{1}{\overline{n}_k}\right) \sqrt{\frac{x}{\sigma_k}} \left(\sqrt{\frac{1}{R_{234}^2}}\right)$$

or writing nk out in full,

II.
$$= \left(\overline{S}_{1234}\right) \left(\frac{u}{\sigma_x n_w}\right) \sqrt{\frac{x}{\sigma_x}} \left(\frac{1}{\sqrt{1-R_{2334}^2}}\right)$$

Hence

III.
$$e_{f(X_2)}^2 - \frac{\overline{S}_{I,234}^2 u_{\infty} x}{n_u \sigma_x^2 (I - R_{2,34}^2)}$$

"8. TESTING TENTATIVE FORMULA BY SAMPLES DRAWN FROM THE ORIGINAL UNIVERSE

The formula which has just been shown was derived from the average errors shown by all the samples, using the known facts about each universe—the standard error of estimate, the frequency distributions and the standard deviations of each independent variable, and the inter-correlations among the independent factors in working out the estimated errors. But for practical use in estimating the reliability of regressions determined from a single sample all that would be known about the universe would be what could be inferred from that sample,

^{1.} Equation (III) may be restated in a simpler form for practical computation, and the operations of working out the standard error for selected ordinates along the net regression curves may be organized in a systematic manner, as shown in the author's "Methods of Correlation Analysis," pages 384 to 389

and the standard errors of the regression curves would have to be computed from the values so obtained. The next step of the experiment, therefore, was to calculate the standard error separately for each sample in turn, using only the values obtained from each one. These computations were made for each independent variable for each abscissa listed in Table C. The actual error of the regression curve at that point was then compared to the calculated standard error, and the ratio

 $\frac{\text{Observed error}}{\text{Calculated standard error}} = T$

computed for each selected abscissa. If the computed error was the true standard error of the regression curve, these ratios should then be distributed according to the normal curve, and should have a standard deviation of 1.00.

The test was first applied to all the samples from both universes without including the term $1 - R_{2,34}^2$ in the error formula.

The standard deviation of the ratios σ_{τ} was calculated separately for each selected abscissa of each independent variable with results as follows:

Standard Deviation of Ratios of Actual Errors to Calculated Errors, as shown by 62 separate samples

TABLE 6

Value of independent variable	Errors in $\mathcal{F}(X_2)$	Errors in $f(X_3)$	Errors in $f(X_4)$
2 3	1.13		0.96 1.06
4			0.98
5	1.10	0.81	
6			1.19
7		0.82	1.21
8			1.23
9	0.89		1.11
11		1.13	
13	1.34	0.87	
All values	1.19	0.94	1.10

It is evident (1) that σ_7 does not tend to increase appreciably as the abscissa departs from the mean of the independent variable; and (2) that the results based on the errors computed from individual samples are on the average quite consistent with those based on the facts from the universe. This is shown more fully in the following comparison:

Regression	Error ındividus	Errors from entire universe; mean	
	σ_T	080 5,	adjusted error
$f(X_z)$	1.19	0.95	1.00
$f(X_{\mathbf{s}})$	0.94	0.75	0.81
$f(X_a)$	1.10	0.88	0.94

Taking 0.80 of the σ_{τ} gives an approximate measure of the average deviations of the T values, to compare with the average deviation of the adjusted errors as calculated in Table 5. The average deviation of the T values ranges from 93 to 95 per cent of the average adjusted errors, showing the same average differences from variable to variable as were shown in Table 5 and suggesting the need of some element in the error formula to allow for the inter-correlation among the independent variables.

For the next step in the test, the term $1 - R_{2.34}^2$ was included in the error formula for $f(X_2)$ and the corresponding terms were included in the other formulas, using, in each case, the R values shown by each individual sample. Calculating the T values by comparing the actual errors with these revised estimates, and calculating their standard deviations, results were secured as follows:

Regression	σ_r , using full error formula
F (X 2)	0.77
F (X 3)	0.76
£ (X 4)	0.90

The σ_{τ} is calculated from 0 as origin, disregarding differences in the average error from zero. It is evident that in these sample results the errors, on the average, are somewhat less than would be expected from the formula, as σ_{τ} falls below the unity. The distribution of the errors is also important. Figure 4 shows the distributions of the T values and compares it with the corresponding normal distribution. The extent of the agreement with the normal distribution may be judged from the following comparison:

	Per cent of total frequencies in range						
Value of	£(X2)	£(X₃)	$f(X_4)$	Normal distribution			
Over 3.00			0.5	0.14			
2.00 to 2.99	0.9		2.6	2.14			
1.00 to 1.99	6.5	4.4	11.9	13.59			
0.00 to 0.99	46.1	40.1	31.3	34.13			
0.00 to0.99	38.3	46.2	43.2	34.13			
-1.00 to -1.99	6.5	8.4	10.5	13.59			
-2.00 to -2.99	1.7	0.9		2.14			
-3.00 and larger				0.14			

Although the distributions are not exactly normal, they agree fairly well. The different variables give slightly different distributions, however. For $f(X_3)$, in farticular, the distribution of the errors appears to be skewed, with more negative errors than positive ones. This may be due to a slight bias in the free-hand method of fitting the curve, which in this instance, for a very peculiarly-shaped regression curve, led to a slight but persistent error in the fitted curve. This possible individual bias in fitting the curve free-hand will be taken up again subsequently.

The test of the error formula described above was not a complete proof of the adequacy of the formula, since it used the same samples as those from which the original formula was constructed. For a more rigorous test the formula would have to be tried out on completely new samples secured from a different universe. Such a test was made in the next phase of the investigation.

9. Testing Tentative Formula by Samples Drawn from a New Universe

A new "universe" was constructed for testing purposes, by methods parallel to those described before. In this case only two independent variables were used. There were 328 observations in the universe and 45 samples were selected at random—15 of 10 observations, 15 of 20 and 15 of 40. (The number of observations was taken as small as 10 so as to make an extreme test of the value of the sampling formula.) Multiple curvilinear regressions were determined for $f(X_2)$

and $f(X_3)$, and the standard error of selected ordinates was computed by equation (III). The value of \mathcal{T} was then computed by dividing the actual errors by the expected. The distribution of these errors is shown in Figure 5, as contrasted with the normal curve.

When the standard deviations of \mathcal{T} are computed separately for each size of sample, the results are as follows:

		Size of Sampl	e
	10	20	40
$f(\chi_2) f(\chi_3)$	1.29 1.46	1.30 1.80	1.23 1.79

Combining the distribution for both $f(X_2)$ and $f(X_3)$, the distributions of the errors for each size of sample are as follows:

		Normal		
Value of <i>T</i>	10	20	40	Distribution
	Per cent	Per cent	Per cent	Per cent
	of total	of total	of total	of total
Over 3.00	2.0	2.4	2.9	0.14
2.00 to 2.99	3.3	4.5	3.2	2.14
1.00 to 1.99	10.7	9.2	12.8	13.59
0.00 to 0.99	34.2	30.8	31.1	34.13
0.00 to -0.99	35.8	34.4	33.3	34.13
-1.00 to -1.99	8.3	11.5	7.8	13.59
-2.00 to -2.99	2.4	3.6	5.5	2.14
-3.00 and larger	3 3	3.6	3.4	0.14

There were many more wide departures—of 3.00 or larger—than would be expected if the errors had a normal distribution, with σ = the estimated standard error. Instead of only 5 per cent of the errors exceeding twice the estimated standard errors, from 11 to 15 per cent were this large. Yet the general distribution of the errors (Figure 5) was in fair agreement with a normal distribution.

Two elements may contribute to the greater variation in the actual errors than in the estimated. With samples of the size involved—10 to

40 cases—the shape of various portions of the curve is determined by much less than 30 observations, and in some cases, by 10 or 1'ss. With such small samples, Student and Fisher have shown that for arithmetic means and other constants, the distribution of actual error ÷ estimated error does not follow the normal curve and has a or in excess of unity. It may be that some modification needs to be introduced into equation (III) to take account of this tendency before it can be correctly applied to small samples. From Student's table for small samples¹, 15 per cent of the errors would be expected to exceed twice the standard error if there were 3 degrees of freedom in the sample, and 10 per cent if there were 5. This indicates a reasonable number of cases, as compared with the size of the samples used in these tests. But whether $\frac{n_u \sigma}{u}$, or some other fraction of the total number of observations, would give the proper number of cases to use in entering the table, has not been determined, and more work needs to be done on this phase of the problem.

A second element of error appears to lie in using $\frac{7}{7-R_{2.24}^2}$ as one element of the error formula, instead of using the index of correlation. $\frac{7}{7-R_{2.24}^2}$. Substituting the index of correlation for the coefficient in the error formula was tried in two of the samples where the T values were the highest, and in both cases it much improved the accuracy of the estimated error—reducing values of T from 5.0 to 3.0, from 8.3 to 4.7, from 6.7 to 3.8, etc. It would appear that wherever the inter-correlation between the independent factors is markedly curvilinear, the accuracy of the estimate of the error could be much improved by measuring that curvilinear inter-correlation, and using it in computing the standard error of the function.

In view of the two sources of variation mentioned above, the fact that the variation of the actual errors ranges from 23 per cent to 79 per cent in excess of the variation of the estimated errors does not necessarily mean that the suggested formula (eq. III) is entirely inadequate, but may mean only that the necessary reservations in the use of the formula have not been applied. On the other hand, the fact that the actual results do vary as widely as this from the expected suggests that the formula can be used only as a very tentative approx-

^{1.} This table is reproduced, in abridged form, in the author's "Methods of Correlation Analysis," on pages 19 and 392.

imation to the standard error of the regression curves until its possibilities and limitations have been more definitely determined.

10. Free-hand versus Mathematical Net Regression Curves

It was noted earlier that there appeared to be some tendency toward bias in fitting the first set of curves. The errors from the second universe, as shown in the last set of results showed a little of the same tendency, with the average error not falling exactly at 0. To test whether determination of the regression curves mathematically would eliminate this bias, mathematical partial regression curves were fitted by least squares to one set of samples from the second universe. The 15 samples of 20 observations were used, and two types of curves were fitted—the parabola and the cubic parabola. The regression equations were therefore:

(1)
$$X_1 = a + b_2 X_2 + b_2' X_2'' + b_2 X_3 + b' X_3''$$

(2)
$$X = a + b_2 X_2 + b_2' X_2^2 + b_2'' X_2^3 + b_3 X_3 + b' X_3^2 + b_3'' X_3^3$$

The estimated error was calculated for selected ordinates, using the same equation (III) as derived for free-hand methods, and \mathcal{T} and $\sigma_{\mathcal{T}}$ computed. The values of $\sigma_{\mathcal{T}}$ were as follows:

	Simple parabola	Cubic parabola
$f(X_2)$	0.77	0.95
$f(X_3)$	0.90	1.13

It would appear, therefore, that equation (III) gives about as good results in estimating the reliability of net regression curves mathematically determined as it does in estimating the reliability of those secured by free-hand fitting.

Even with the curves fitted by least squares, however, there was some tendency to bias, as is illustrated in Figures 6 and 7. It is evident from these figures that neither the free-hand curve nor the mathematical curve exactly reproduced the true curve, even on the average of the fifteen samples. The average amount of bias is shown in the following statement:

AVERAGE B	IAS	IN	FITTING	REGRESSION	CURVES
-----------	-----	----	---------	------------	---------------

Value of	Avera	ge error¹ in	$f(X_2)$	Avera	ge error ¹ in	$f(x_3)$
independent		Cubic	Free-hand		Cubic	Free-hand
variable	Parabola	parabola	curve	parabola	parabola	curve
2	0.16	0.09	0.62	-0.35	-0.31	0.69
3	-0.06	-0.03	0.21	-0.10	-0.20	-0.31
4	0.05	0.00	0.05	-0.06	0.09	-0.15
5				0.04	0.00	-0.02
6	0.11	0.02	-0.05			
7	0.11	-0.04	07	0.00	0.05	-0.05
8	0.13	-0.07	-0.10	-0.05	0.05	-0.07
9				-0.06	0.07	-0.18
10	0.23	0.43	-0.16	-0.09	0.09	-0.25
12	0.42	0.46	-0.24	-0.13	-0.09	-0.50
14				-0.27	-0.35	-0.79

In this particular, where the true curve is of such a slope as to be fairly well represented by a parabola or cubic parabola, the mathematical curves appear to give a slightly more accurate fit, on the aver age, than do the free-hand curves. The standard deviation of the errors, however, is only slightly greater for the free-hand curves than for those fitted by the cubic parabolae, as shown by the following tabulation:²

^{1.} Taken with regard to sign.

^{2.} At first glance it seems strange that the regressions fitted by the cubic parabola should have, on the average, larger errors than those fitted by the simple parabola. The explanation may be that the extra constant allowed the cubic parabola to follow more closely the individual characteristics of each sample; but that in fitting those (partly random) relations more closely, the regressions were distorted from the true underlying relation.

Standard	deviation	of	errors (absolute	values'	١.

	Free-hand	Parabolic	Cubic .
$f(X_2)$	0.98	0.70	0.84
$f(X_3)$	0.91	0.65	0.89

Where the true regression is of such shape that it could not be represented by any simple equation, it seems likely that the free-hand method would give a more accurate fit than would a mathematical equation which was not capable of representing the particular relation involved. Since, in practical investigations, the shape of the net regression curve is usually unknown to start with, the most satisfactory procedure would seem to be to use the free-hand method to determine the approximate shape of the curves, and then, if their shape appeared to follow any definite types by least-squares as a final check on the shape of the curves.

CONCLUSION

This article is only a progress report. The experiments reported here suggest that it may be possible to develop a formula for the standard error of net regression curves fitted free-hand. The problem has not been completely solved: the tentative formula which is developed has given only fair results in experimental tests; and several points are in need of further study. I hope at some future time to carry this investigation further, but my present plans make it necessary to lay it aside for a year or more. I am, therefore, publishing this preliminary report now, in the hope that others may be led to attack the same problem.

FIGURE A $\label{eq:AVERAGE} \text{AVERAGE ERRORS OF REGRESSION CURVES}$ Universe X

FIGURE 1

CORRELATION BETWEEN CORRESPONDING AVERAGE ERRORS IN UNIVERSES WITH DIFFERENT STANDARD ERRORS OF ESTIMATE

FIGURE 3

RELATION OF AVERAGE ERRORS ADJUSTED FOR \mathcal{N}_{κ} , TO DEPARTURE FROM CENTER

FIGURE 4
FREQUENCY DISTRIBUTIONS OF ERRORS

FIGURE 5
FREQUENCY DISTRIBUTIONS OF ERRORS

FIGURE 7 AVERAGE CURVES FITTED BY THREE METHODS $f(X_{\hspace{-0.5em}s\hspace{-0.5em}s})$

TABLE A-SYNTHETIC DATA FOR SAMPLING STUDY

No. X ₂ 1 5 2 6 3 8 4 7 5 10	6	X4	Χ,	Y	No.	Y	~	v	~	
1 5 2 6 3 8 4 7	6					X ₂	Χ ₃	X4	Х,	Y
6 7 8 9 10 11 11 4 12 13 7 7 10 11 15 16 11 17 11 18 19 20 21 22 23 24 11 22 23 24 25 6 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 48 44 45 46 47 48	9 c 123 100 11 4 4 131 110 9 9 8 11 9 9 111 13 8 12 7 9 10 10 8 11 9 8 7 12 10 8 5 11 11 8 11 9 8 7 12 10 8 5 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	324526402387342562333435432223523496717334642624537	9.4 14.2 16.0 16.8 14.8 18.5 13.8 9.9 10.8 17.7 14.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15	10.4 9.2 11.0 12.8 14.8 9.9 11.8 9.8 15.7 10.3 16.4 13.3 15.3 9.4 14.5 10.4 12.1 11.0 8.7 7.6 9.4 10.0 11.9 7.4 15.5 11.8 13.7 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	51 52 53 54 55 56 61 62 63 64 66 66 67 68 69 70 71 72 73 74 77 77 78 80 81 82 88 88 88 99 99 99 99 99 99 99 99 99 99	8979890114798383946725891155766378682751177777611862710	7 11 12 11 11 11 11 11 11 11 11 11 11 11	433243158722779292604525872246334734632466575666	12.7 14.8 19.5 15.3 12.0 20.1 18.1 21.1 15.2 14.3 12.4 17.0 17.6 14.9 16.9 14.6 17.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21	13.7 10.8 10.5 10.3 9.0 11.7 11.0 12.1 12.1 12.1 12.2 8.3 10.4 15.0 11.9 16.6 10.9 16.9 17.6 11.4 15.2 9.5 7.7 10.7 9.4 15.8 16.1 10.8 15.8 16.1 10.8 16.4 10.8 11.9 11.0 11.0 11.0 11.0 11.0 11.0 11.0
49 10 50 5	13 7	4	17.3 12.1	12.3 8.1	100	10	8 13	6	11.7 20.7	16.7

TABLE A—SYNTHETIC DATA FOR SAMPLING STUDY (Continued)

										·	
No.	Xz	Xa	X ₄	Х,	Y	No.	X ₂	X,	<i>X</i> ₄	Х,	Y
101	6378641393297761157677358067646115301287306858896511	12 5 10	48236569686632456442205637344237564669532465638	17.2 17.9 13.9 14.7 19.8 12.7 20.5 16.2	15.2 15.9 11.9 7.7 11.8 11.7	151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 167 168 169 170 171 172 173 174 175 180 181 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 198 199 199 199 199 199 199 199 199 199	7 9 7 7 8 3 12 12 7 2 8 9 6 7 6 9 6 9 7 5 4 8 6 6 12	9	5 5 3 6 7	17.3	11.3
102	3	5	8	17.9	15.9	152	9	8	5	12.0 13.5	11.0
103	7	10	2	13.9	11.9	153	7	12	3	13.5	14.5
104	8	7	3	14.7	7.7	154	7	10	6	14.8	11.0 14.5 11.8
105	6	7	6	19.8	11.8	155	8	8	7	17.0	14.0
106	4	10	5	12.7	11.7	156	3	9	6	17.0 12.8	13.8
107	11	14	6	20.5	16.5	157	12	12	1	14.8	12.8
108	3	9	9	16.2	16.5 11.2	158	12	12	3	14.8 20.5	9.5
109	9	9	6	18.4	15.4	159	7	7	3	16.7	10.7
110	3	5	8	18.4 17.9 20.5	12.9	160	2	8 12 10 8 9 12 12 7 6 12	9	17.4	14.4
111	12	14	6	20.5	14.5	161	8	12	3	13.5	11.5
112	9	8	6	12.1	16.1	162	9	11	7	21.1	14.0 13.8 12.8 9.5 10.7 14.4 11.5 17.1
113	7	7	3	10.7	10.7	163	6	12	4	18.2	10.2
114	7	8	2	14.2	7.2	164	7	9	3	13.0	9.0
115	6) ğ	4	13.7	10.7	165	6	10	5	21.4	15.4
116	11	9	5	19.3	15.4 12.9 14.5 16.1 10.7 7.2 10.7 13.3	166	9	10	5	15.7	11.7
117	5	8	6	17.5	10.5	167	6	11 12 9 10 10	7	15.5	18.5
118	7	11	4	14.8	14.8	168	9	11	2	15.3	11.3
119	6	9	4	11.7	13.7	169	7	11	6	16.7 17.4 13.5 21.1 18.2 13.0 21.4 15.7 15.5 15.3 21.2 17.4 20.6 17.1	12.2
1 <i>2</i> 0	7	8	2	15.2	11.2	170	5	8 11	8	17.4	12.4
121	7	7	2	14.2	7.2	171	4	11	9	20.6	15.6
122	3	7	10	13.7	9.7	172	8	1 7	6	17.1	15.1
123	5	6	5	15.7	9.7	173	6	9	3	127	7.7
124	. 8	8	6	12.1 10.7 14.2 13.7 19.3 17.5 14.8 11.7 15.2 14.2 13.7 15.7 18.1	10.5 14.8 13.7 11.2 7.2 9.7 9.7 16.1	174	12	9 14	6	22.5	14.5
125	10	14 9 9 5 14 8 7 8 9 9 8 8 11 9 8 7 7 6 8 8 8 8 11 9 8 8 11 11 11 11 11 11 11 11 11 11 11 11	3	14.7 19.7 13.5 16.1 16.0	9.7 13.7 12.5	1 7 5	7 4 7 .7 10 11 9	7 7 7	133937435572689636226465561434	12 7 22.5 12.2 14.2 16.1 17.8 16.8 16.1 14.8	7.2
126	6	8	7	19.7	13.7	176	7	7	2	14.2	8.2
127	7	12	3	13.5	12.5	177	4	7	6	16.1	15.1
128	6	10	4	16.1	9.1	178	7	11 10 11	4	17.8	13.8
129	4	6 12 9 11	4	16.0	10.0	179	.7	10	6	16.8	12.8
130	6	12	2	9.7 13.0 15.5 15.4 21.9	9.7	180	10	11	5	16.1	16.1
131	11	9	3	13.0	13.0	181	11	12 12 9	5	14.8	14.8
132	5	11	7	15.5	12.5	182	9	12	6	20.9	12.9
133	3	8 12	5	15.4	8.4 16.9	183	10	9	1	13.3	10.3
134	10	12	6	21.9	16.9	184	7	11	4	16.8	9.8
135	12	10	4	18.4 19.2 19.2 17.9 17.3 15.4 10.5	11.4	185	9	12 12	3	20.9 13.3 16.8 18.5 17.5	9.5
136	8	11	0	19.2	15.2	186	8	12	4	17.5	14.5
13/	1 4	11	0	19.2	13.2	18/	17	11 9 7 7 7	4	12.8	14.8
138	13	8	2	17.9	12.9 13.3	188	3	1 2	4	12.4	12.4
139	10	9	3	17.3	13.3	100	0	1 /2	4	11.4	12.4
140		0	3	10.5	8.4 12.5	190	4	1 /2	11	12.1	10.1
141	0	9	4	16.4	10.4	191	1 5	11	0	12.8 12.4 11.4 12.1 17.5	10.5
142	0	111	1 6	23.2	12.2	102	7	11] 7	12.5	11.5
143	0	8 9 8 9 9 11 11 12	1 5	23.2 17.1	13.2 12.1	104	10 7 9 8 11 5 6 2 5 7 9 11 9 7	8 11	6 5 7 5 6 4	12.5 18.0 13.1 23.7 13.4 15.5	15.0
145	0	12	6	23.0	14.9	105	11	13	5	13.1	13.1
146	6	111	3	175	135	196	1 7	10	1	13.4	13./
147	5	1 7	8	17.7	13.7	190	7	12	4	15.5	15.4
148	111	11 9 14	4	181	13.5 13.7 17.1	198	6	8	4	12.3	11.4
149	8	11	6	23.9 17.5 17.7 18.1 21.2	13.2	100	1 4	6	4	12.4 9.0	120
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 137 138 139 140 141 142 143 144 145 146 147 148 149 149 149 149 149 149 149 149 149 149	10	12	1	16.8	13.2	200	6 4 3	10	10	18.4	10.2 9.0 15.4 11.7 18.5 11.3 12.2 12.4 15.6 15.1 14.5 7.2 15.1 13.8 12.9 10.3 9.8 14.8 12.9 14.8 12.4 10.1 11.5 11.5 11.5 11.5 11.5 11.5 11.5
				1 - 5.5		200		1.0	10	10.7	7.4

TABLE A-SYNTHETIC DATA FOR SAMPLING STUDY (Continued)

No.	X ₂	X,	X4	Х,	Y		No.	X ₂	X ₃	X4	Х,	Y
201	4	10	7	17.7	14.7 12.4		251	11 5 4	14	5 8 5 7	18.4	13.4
202	2	6	11	9.4	12.4		252	5	6	8	20.7	13.7
202 203 204 205 206 207 208 209 210	2 6 7 3	11 9 10	6	17.9	11.9		252 253 254 255	4	9	5	15.3 15.9	11.3
204	7	9	4	16.0 16.2	14.0		254	3	5	7	15.9	15.9
205	3	10	6	16.2	14.2		255	9	11	4	14.8 15.1	9.8
206	ğ	8	5 8	17.0	12.0 12.1		256	11	11	1	15.1	8.1
207	3	10	8	16.1	12.1		257	9	7	6	13.1	11.1
208	8 5 4 8 7	11 11	8 5 6	17.1 16.1	13.1 16.1		257 258 259	3 9 11 9 7 6 6 5 9 7 2 9 7 11	9	3 7	14.0 18.4 15.4	15.9 9.8 8.1 11.1 13.0 16.4 8.4
209	8	11	3	13.1	10.1		259	0	10	7	18.4	16.4
210	11	8	1	13.1	11.1		260	Ď	8	4	15.4	8.4
211 212 213 214 215	11 8	11 12	6	14.1 17.9	13.1 15.9		261 262 263 264 265	2	8	4	14.1	9.1
212	7	10	2	10.9	15.9		262	2	8 11	3	11.7	10.0
213	6	11	6 2 2 1	19.8 17.0	15.8 12.0		264	3	4	6	18.8 15.7	14.7
215	8	12	2	17.0	14.0		265	0	11	2	17.8	13.0
216	10	10	1	13.7	77		266	7	8	1	15.7	11.7
210 217	10	10 13	3	13.7 19.3	7.7 15.3		267	11	11	1 3	14.1	15.1
212	6	130	4	17.7	10.7		268	1 5	ii	R	15.7 14.1 20.5	17.5
216 217 218 219	8	10	6	17.8	12.8		266 267 268 269	6	12	2	157	97
220	6	12	5	14.5	10.7 12.8 15.5 12.3 13.1 13.0		270 271 272 273	6	8	2	13.9 13.8 13.1	7.9
221	6 8 8	10	5 5 6	18.3	12.3		271	8	8	4	13.8	10.8
222	Ř	7	6	14.1	13.1		272	8	. 7	6	13.1	15.1
221 222 223	7	7	7	17.0	13.0		273	5	7 7	3	9.1	7.1
224	10	8	2	14.2	11.2		274	5	10	5	20.1	10.1
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240	7	9 10 12 9 7 7 8 9 8 7	7 2 7	18.3	11.2 12.3 7.0 12.7 12.2		274 275 276 277	5 6 6 8 8 5 5 1 7 5 6 5 8 5 10 7	10 12	4 6 3 4 5 8 2 2 4 6 3 5 1	148	9.1 8.7 10.8 14.7 13.8 11.7 15.1 17.5 9.7 7.9 10.8 15.1 7.1 10.1 11.8
226	10	8		90	7.0		276	7	9 7	7	22.3 18.4	17.3 11 4 10.8 15.8 13.5 7.8 14.8 12.9 9.1 15.2
227	6	7	1 5	19.7	12,7		277	5	7	8	18.4	114
228	5	11	4	16.2	12.2		278	6	7	6	138	10.8
229	10	10 12	3 6 4	19.7 16.2 13.4	13.4 13.9		278 279 280 281 282	5	7 6 12 10	7 8 6 6 3 4	15.8 14.5	15.8
230	7	12	6	17.9	13.9		280	8	12	' 3	14.5	13.5
231	6	7	4	16.4 16.9	8.4 14.9 11.2		281	5	10	3	14.8	7.8
232	3	6	8	16.9	14.9		282	10	11 12	4	17.8	14.8
233	3	10	6	13.2	11.2		283 284	7	12	6	21.9	12.9
234	9 10	7	5	16.0	10.0		284	3	8	3	18.1	9.1
235	10	8	8 6 5 6 5 7	18.1	10.0 12.1 9.9 13.0		285 286 287	5 12 4	8 15 11	3 5 4	21.2 10.8	9.8
236	3	1 2	5	12.9 20.0	12.0		200 207	4	111	4	19.1	14.1
23/	8	10 7 8 5 7 11 10	6	16.2	13.2		207	3 8	10 10	5	20.8	14.1 16.8
230	7	110	2	11.4	12.4		288 289 290	11	13	5	20.6	16.6
239	2	10	7	151	12.4		200	11 10	13	1 3	15.3	16.6 8.3
240 241	3 8 9 7 3 4	111	ξ.	11.4 15.1 18.1	12.4 13.1 15.1		291	4	10	9	20.2	13.2
242		111	2	13.3	8.3		292	7	7	5	19.0	15.0
241 242 243	7 9	8	3	11.7	8.3 11.7		291 292 293	8	7	5	19.0 16.0	13.2 15.0 14.0
244	4	10	5	12.7	14.7		294	1 3	7	5 2 9 5 5 8	17.4	19.4
244 245	5	7	3	12.7 15.1	14.7 12.1		205	6	10 11	16	17.5	19.4 15.5 10.8 12.4 17.0
246	7	8	5	18.0	13.0 11.2 14.6		296	4	11	4	10.8	10.8
247	4	11	6	13.2	11.2		297	4 5 8 2	6	3	17.4 22.0	12.4
248	3	10	9	16.6	14.6		298	8	7	17	22.0	17.0
249	5 7 4 3 8 5	7	63752355356928	14.2	9.2 17.1		296 297 298 299	2	10	2	13.9	11.9
249 250	5	7 10	8	18.1	17.1		300	4	8	9	13.5	115
	<u> </u>					:						

TABLE A-SYNTHETIC DATA FOR SAMPLING STUDY (Continued)

No.	Xz	X3	X4	Χ,	Y		No.	Xz	Xg	X ₄	Х,	Y
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 327 328 329 331 331 332 333 334 335 337 338 339 340 341 342 343 344 345 346 347 348 348 349 349 349 349 349 349 349 349 349 349	66827389577347362911775795821586838977771147423711897117	11 11	62663577425864777337742747165256637332935866652443	20.9 13 0	16.9 90		351 352 353 354 355 356 357 358 259 360 361 362 363 364 365 367 368 369 370 371 372 373 374 375 377 378 381 382 383 384 385 386 387 388 389 389 389 389 389 389 389 389 389	47796997552686680752743796785511983455908887109	9 7 12 11	74335542362273663734687364345325789736646372245325	12.3 15.7 16.5 17.8 14.7 19.7 19.7 11.5 13.4 15.5 21.4 17.7 20.0	12.3 9.7 9.5 12.8 11.7 10.7 10.5 9.4 12.5 15.4 13.7 17.0 13.2 14.1 13.1 8.7 14.7
303	8	11 7 15 9 5 11 8	6	13 0 19.1 23.3 14.0 10.9 18.1 19.0 13.8 12.5 12.0 18.4 16.4	90 16.1 19.3 11.0		353 354	7	12 11	3	16.5 17.8	9.5
305	7	9	3	14.0	11.0		355	6	8 10	5	14.7	11.7
306 307	8	11	7	18.1	17.1		357	9	8	4	19.7	10.7
308 309	9	10	7	19.0	17.0		358 259	5	9	2	11.5	10.5
310	7	9	2	12.5	9.5		360	5	8	6	155	12.5
312	3	8	8	18.4	15.4		362	6	12	2	17.7	13.7
313 314	7	6	6	16.4 19.0	13.4		363 364	6	12	3	20.0	17.0 13.2
315	3	5	7	17.9	15.9		365 366	6	9	6	12.1	14.1
317	2	9 7 8 6 9 5 8 11 10	7	12.6	10.6		367	10	8	3	9.7	8.7
319	11	10	3	19.0 17.9 16.7 12.6 14.8 18.4 22.3 20.7	11.9 17.1 17.0 12.8 9.5 11.0 15.4 13.4 90 15.7 10.6 12.8 11.4 12.3 14.7 9.1 8.2 17.1		369	5	8 9 6 8 15 12 7 12 9 8 8 10 9 14 8 7	3	10.4	11.4
320 321	7	9	7	22.3	12.3 14.7		370 371	12	14	6	19 1 15.1	14.1 15.1
322	5	7 8 11	4	141	9.1		372 373	4	7	8	16.0	11.0
324	9	11	7	22.1	17.1	•	374	7	7	3	12.7	9.7
325 326	8	6 10	7	17.4	8.4 16.7 10.1 14.5 13.0 7.9 10.0 11.5 12.4 7.7 17.0		375 376	6	6 7 8 9 7 8 10 11	4	17.1 11.7	12.1 13.7
327 328	12	11	1 6	12.1	10.1 14.5		377 378	7	7	3	15.7	9.7 8.7
329	8	8	5	13.0	13.0		379	5	10	5	13.1	15.1
331	8	7	5	13.0	10.0		381	11	13	2	20.8	9.8
33.2 333	8	8	6	13.5 18.4	11.5 12.4		382 383	9	11	5 7	18.1 18.3	11.1
334 535	9	7	3	12.7	7.7		384	3	7	8	16.4	12.4
336	7	10 11 8 8 7 7 8 9 7 8 9	3	14.0	8.0 12.4		386	5	13 11 9 7 7 8 7	7	15.4	13.4
338	11	14	2	17.6	14.6		387 388	9	7 11	3 6	11.2 12.1 21.1 9.7 18.7 10.4 19.1 15.1 16.0 18.7 17.1 11.7 15.7 11.7 19.2 20.8 18.1 18.3 16.4 11.5 15.4 15.1 16.2 14.1 12.7 15.1 12.7 15.1	8.1 13.2
339 340	7	11 7	9	18.6 17.7	16.6 7.7		389 390	10	8	6	14.1	11.1
341	4	6	5	12.3	14.3		391	8	7	6	15.1	16.1
343	3	5	6	16.0	12.0		393	7	10	7	21.7	11.0 17.7
3 44 345	11	7 6 4 5 8 11 12	6	14 1 14.2 22.1 17.4 19.7 12.1 16.5 13.0 14.9 13.0 14.0 12.4 17.6 18.6 17.7 12.3 16.6 16.0 17.1 18.2 16.9 15.7	14.6 16.6 7.7 14.3 14.6 12.0 13.1 14.2 11.8 8.9 12.7 14.4		394 395	10	8 12	2 2	14.2 14.0	8.2 9.0
346 347	8	12	5 2	16.8	11.8		396 307	4	6	4	16.0	9.0
348 340	7	10 8	4	15.7	12.7		398	10	9	3	13.0	8.0
350	7	10 7	3	17.4 13.7	14.4 9.7		399 400	7	11 10	2 5	14.0 16.0 11.0 13.0 13.3 16.7	11.4 14.1 15.1 11.0 14.7 12.1 13.7 9.7 15.1 12.2 9.8 11.1 12.3 12.4 12.5 13.4 13.2 11.1 9.7 16.1 17.7 8.0 9.0 9.0 9.0 13.3 11.7

TABLE A-SYNTHETIC DATA FOR SAMPLING STUDY (Continued)

No.	X _z	Xa	Χ ₄	Χ,	Y		No.	X2	X3	X4	Х,	Y
401	7258766698407184638547531174	12 6	6	14.9 18.9 15.8 19.0	13.9 13.9		451 452 453 454 455 456 457 458 460 461 463 464 465 466 467 467 477 478 480 481 482 483 484 485 486 487 489 491 492 493	6 7 5 9 3 9 12 8 11	12 8	7 5	20.5 17.0	18.5
402 403	5	10 12	842764673836179555583651	15.8	13.8		453	5	7	8	14.4	13.0 14.4 15.4 10.7 16.0 9.1 9.7 11.6 9.2 14.7 12.9 13.3 13.1 17.8 14.7 12.0 10.4 13.3 15.8 15.8 15.7 14.4 12.1 15.7 10.8 15.2 14.5 15.2 14.5 15.2 14.5 15.6 15.2 14.5 15.6 15.6 16.6 16.6 16.6 16.6 16.6 16
404 405 406 407 408 409	8	12	2	19.0	9.0 12.0		454	9	9	86071312592225775336257654676444655965512444	20.4	15.4
405 406	6	8 9	6	21.0 16.1	11.1		456	9	7	7	16.0	16.0
407	6	11	4	14.5	13.5		457	12	11	1	9.1	9.1
408 400	6	11 12 12 7 11 9 12 10	6	21.6 22.8 15.7 17.1 19.0 17.9 13.7	11.1 13.5 14.6 18.8 11.7 12.1 9.0 13.9 11.7 18.1 11.6 12.7 9.1 11.0 12.7 12.1 13.4 13.8 12.7 10.1 12.2 13.1 14.0		458 459	11	8 13	3	14.7	9.7
410	8	7	3	15.7	11.7		460	6	9	2	8.2	9.2
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 430 431 432 433 434 435 436 437 438 439 440 441 442 443	4	11	8	17.1	12.1		461	66367119897910711755124999655118612454712711	9 8 5	5	15.7	14.7
412 413	7	12	6	17.9	13.9		462 463	6	12	2	18.7	9.7
414	11	10	1	13.7	11.7		464	7	10	2	13.9	12.9
415	8	11	7	19.1	18.1		465 466	11	11 11	2	11.3	13.3
417	6	8	5	14.7	12.7		467	8	12	7	17.8	17.8
418	3	11 8 10 7	5	13.1	9.1		468	9	10	7	20.7	14.7
419 420	8	1 6	5	10.0	12.7		469 470	9	8 10	3	18.0	10.4
-121	4	11	8	18.1	12.1		471	10	13 10	3	15.3	13.3
422	7	10	3	11.4	13 1		472	7	10	6	14.8	15.8
423 424	3	11 10 6 6.	5	13.6 14.7 13.1 16.0 13.7 18.1 11.4 13.8 17.7	12.7		473 474	7	11 12 8 13	5	12.8	15.8
-125	11	11	1	13.1	10.1		475	5	8	7	20.4	16.4
426	7	11 11 11 9 9	6	22.2 18.1 16.0 13.7 9.5 15.1 18.5 16.8 21.3 12.8	12.2		476 477	12	13	5	17.7	15.7
427 428	7	9	4	16.0	14.0		478	9	10	4	19.4	14.4
429	6	9	3	13.7	11.7 10.5 12.1 11.5 14.8 13.3 13.8 10.4 12.7		479	9	10 7 10	6	18.1	12.1
430	8	9	2	9.5	10.5		480 481	9	10	6	16.7	15.7
432	6	14 12 6	5	18.5	11.5		482	5	8 8 10	4	9.1	12.1
433	5	6	6	16.8	14.8		483	11	10	4	16.4	12.4
134 135	9	9 11 10	3	12.3	13.3		484 485	8	7 8 15	6	168	10.8
136	7	îô	4	16.4	10.4		486	12	15	5	16.2	15.2
137	5	6 8	7	13.7	12.7		487	4	7	9	16.5	14.5
438 439	7	11	2	20.4	164 13.3		488 489	4	6	5	15.3	12.3
440	3	11 8	10	14.3	12.7		490	7	6	5	16.1	13.1
441	12	14	3	16.1	15.1		491	12	13	1	16.6	13.6
443	7	10 11	6	23.2	17.2		492 493	111	10 14	4	15.1	14.1
411	8	11	3	13.8	11.8		494	6 7	12	4	18.2	10.2
445 446	4	6	6 8 4 3 2 3 5 6 7 3 4 4 7 8 2 10 3 2 6 3 9 7 7	16.1 14.9 23.2 13.8 19.8 17.7	13.3 12.7 15.1 12.9 17.2 11.8 14.8 14.7		495 496 497 498 499	7	11 12	4 4	12.7 16.0 9.1 14.7 16.6 8.2 15.7 15.4 18.7 11.3 16.1 17.8 20.7 18.0 14.4 17.8 20.7 18.0 14.4 17.8 10.3 12.8 20.4 17.1 16.7 16.7 16.8 16.2 16.6 16.9 15.3 16.1 16.6 16.9 15.3 16.1 16.6 16.9 15.3 16.1 16.6 16.9 15.3 16.1 16.6 16.9 15.3 16.1 16.6 16.9 15.3 16.1 16.6 16.6 16.6 16.6 16.9 15.3 16.1 16.6 16.6 16.6 16.6 16.6 16.6 16	13.8
440 447	5	9	7	17.7	14.7		497	10	10	4	19.4	14.4
448	5	7	6	17.7 18.5	14.5		498	9	10	2 8	19.4 16.9 17.7	8.9
444 445 446 447 448 449 450	768165997557328784955711	9	6 2 5	14.5 21.6	14.7 14.5 9.5 15.6		499 500	7 10 9 5	9	8	17.7 13.0	9.9 14.1 10.2 13.8 12.5 14.4 8.9 11.2 11.0
+50	111	113	1 3	21.0	13.0	•	300	7	<u> </u>	1 7	13.0	11.0

TABLE B—COEFFICIENTS AND INDEXES OF MULTIPLE COR

(uncorrected for num

	1		JNIVERSE X		
Sample No.	R	1st curves	2nd curves	3rd curves	4th curves
		Sample	es of 30		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	.620 .705 .510 .463 .741 .486 .681 .532 .608 .469 .745 .614 .771 .586 .551	.689 .737 .545 .487 .614 .688 .777 .589 .649 .539 .792 .590 .741 .742 .569	.714 .754 .703 .516 .679 .720 .787 .659 .598 .597 .813 .628 .815 .794 .574	.751 .756 .775 .508 .736 .731 .801 .696 .659 .743 .818 .752 .790 .798 .578	.548
		Sample	es of 50		
17 18 19 20 21 22 23 24 25 26	.529 .507 .418 .512 .526 .704 .666 .517 .703 .609	.473 .536 .493 .686 .686 .721 .724 .650 .723	.545 .621 .541 .693 .721 .730 .747 .659 .721	.543 .622 .534 .702 .733 .727 .756 .679 727 .677	.510 .655 .536 .706 .745 .726 .753 .684 .729 .699
		Sample	s of 100		L
27 28 29 30 31	.543 .679 .557 .565 .576	.629 .685 .649 .590 .650	.671 .699 .673 .656 .682	.684 .699 .673 .675 .682	.673 .678 .686

RELATION FOUND AT EACH SUCCESSIVE APPROXIMATION ber of variables)

		T	UNIV	ERSE Y		
				P		
Sample No.	R	1st curves	2nd curves	3rd curves	4th curves	
	<i></i>		Samples of	30		
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	.697 .588 .639 .659 .643 .668 .837 .677 .505 .707 .594 .580 .684 .825 .461	.698 .781 .800 .782 .812 .745 .877 .736 .679 .767 .639 .660 .762 .880 .621	.705 .787 .836 .797 .829 .722 .895 .697 .702 .778 .665 .661 .779 .876 .619			.715 .794 .858 .801 .851 .746 .898 .737 .720 .782 .676 .669 .785 .881 .642 .819
			Samples of 5	60		
37 38 39 40	.721 .649 .705 .679	.786 .686 .730 .786	.803 .731 .736 .797	.793 .713 .738 .796	.804 .703	.804
41 42 43	.764 .725 .721 .688	.773 .764 .772 .749	.804 .759 .798 .781	.723 .799 .777	.800	.805 .800
44 45 46	.647 564	.676 .672	.691 .731	.695 .733	.699 .736	.699 . 73 6
		Ş	Samples of 10)0		
32 33 34	.710 .482 .668	.764 .644 .755 .794	.769 .656 .760 .799	.769 .644 .762 .802	.650	
35 36	.760 .555	.663	.673	.687	.684	

TABLE C-FOR UNIVERSE X: SAMPLING ERRORS IN NET

(The errors are observed or-

Or-	True Re-							SAN	ĮPLE	s o	F 80						
din- ate	gres- sion	1	2	3	4	5	6	7	8	9	10	11	12	18	14	15	16
X.	F(X2)				T-	1	1		1	1	†	1	1	1	_	 	-
3	11.4	.8	1	1.3	1.5	.3	8.0	1.1	1.5	1.8	2.1	2.4	2.1		8.0	.1	2.8
5	12.4	.6	1.4	.9	.4	.0	1.5	1.8	.2	.7	1.1	1.1	.7	8.4	.7	.1	.8
7	12.9	1			}		1		1		ł	Ì	l		1		
9	13.0	1.0	.4	1.3	.4	.4	.4	1.8	1.5	.7	.9	.5	.1	1.0	.7	.2	.8
11	13.0	2.2	1.3	1.3	8.	1.1	.6	8.1	3.6	1.1	2.1	1.9	.4	1.0	.9	.4	1.8
X ₃	£(X)	1				l		l		1		İ	İ				1
5 ้	12.5	2.1	l	1.8	.5	1.2	2.4	l	2.7	2.6	1.2	1.1		İ	.2	1	2.3
7	12.0	.5	.2	1.8	.6	.8	1.8	1.0	1.5	1.7	.2	.7	.4	.6	.7	1.0	1.5
9	12.3	"	_		"	"		7.0			-			٠.٠		1.0	1.0
11	18.1	.9	.2	.8	.4	.0	.0	2.1	.1	.5	.2	1.8	1.5	.0	1.1	.4	.8
13	15.6		2.2	1.8	1.6	1.4	.8	2.8		1.9	.3	2.0	1.8	.4	.4	.8	.7
X ₄	f(X4)					l			1					'-	ļ '-	~	"
2	10.2	.7	.4	.1	1.0	.6	1.1	.8	.5	1.4	.6	.5	.1	1.4	1.8	.1	
3	10.7	.0	.6	.3	.1	.7	1.2	.7	.7	1.1	.3	.5	.2	1.2	.2	.5	.1
4	11.7	.2	.3	.8	.2	.4	.7	.8	.5	.5	.0	.7	.1	.7	.1	.5	.1
5	13.0				_	1		"				١	·*		· -		••
6	14.1	.1	.0	.1	.1	.2	.1	.8	.3	.7	.8	.4	4	.4	.0		
7	15.0	.8	.5	1.2	.0	1	1.0	.5	.3	1.9	.7	.3	.4 1.2	1.8	.1	.6	.2 .5
8	15.0	2.8	1.9	1.8	.2	1.0	2.7	.7	.8	2.7	1.6	1.0	2.7	1.0	.9	.0	
9	14.5	2.0		.6	1.3	2.9		.9	2.9	3.7	8.7	2.1,	8,8		1.4	1.1	1.6
										٠	L	2	0.0		T-4	7.1	8.0

TABLE C (Continued)—FOR UNIVERSE Y

Or-	True Re-							SAN	IPLE	s oi	F 80						
ate	sion	47	48	49	50	51	52	58	54	55	56	57	58	59	60	61	62
X ₂ 8 5	11.4 12.4	2.1 1.0	.5 .2	.9 .3	.2 .1	2.6 .8	1.0	.2	1.0	1.2	.7	.0	.5	.8	1.8	1.0	.4
7 9 11	12.9 13.0 13.0	.7 1.3	.0 .0	.0 .1	.3 .9	1.3	.9 .9	.3 .2	.0	.3 .5	.2	.1	.4	.8 .1	1.5 8.1	1 .1	.6 1.0
X ₃ 5 7 9	f(X ₂) 12.5 12.0 12.3	.2	.3	.1	1.5 .0	.2	1.8	.3	.5	.2	.6 .4	.7	.6	.9	.1	1.6	1.9 .6
11 13 X-	13.1 15.6 f(X ₄)	.6 8.4	.1 1.7	1.3 1.4	.9	1.2 1.6	.3 2.2	.4	.0 1.7	.0 2.0	.1	.3 .9	.2 2.0	.2	.4 2.5	.8 .9	.8 .9
2 3 4 5	10.2 10.7 11.7 13.0	.5 .4 .5	1.1 .2 .1	.5 .8 .6	.1 .2 .1	.0 .1 .1	.6 .1 .2	.3 .0 .0	.4 .7 .5	1.2 1.2 .7	.0 .4 .3	1.2 .1 .3	.7 .0 .1	.6 .6 .2	.8 .6 .5	.4 .7 .5	.9 .1 .1
6 7 8 9	14.1 15.0 15.0 14.5	.2 .5 .1	.3 .8 1.4 1.8	.1 .0 .6 1.0	.1 .0 .8 1.3	.5 .7 .4 .1	.1 .1 .4 .5	.5 1.2 3.5	.4 .4 .2 1.0	.0 .6 1.2	.0 .3 1.8 3.7	.4 .9 .4	.0 .8 1.2 1.1	.9 1.2 1.7 2.0	1.8 1.8 2.4 3.1	.5 1.1 1.0 .5	.1 .5 1.1 1.4

REGRESSION CURVES, FOR SELECTED ORDINATES dinates minus true ordinates)

	,	,	SA	MPLE	S OF	50					SA	MPLE	s of	100
17	18	19	20	21	22	28	24	25	26	27	28	29	80	81
1.4	.5 .8	.0 .0	2.6 1.3	.8 1.1	1.3 .4	1.5 1.2	2.7 .9	.9 .4	.2 .1	.6 .2	.5 .3	.2 .1	.4	.0 .5
.9 1.7	1.1 1.8	.2 .4	.8 .6	.4 1.8	.6 1.2	.7 .1	.8 1.5	.5 1.2	.1 1.1	.2 .1	.1 .8	.1	.4 1.8	.9 .9
.2 .5	.4 .2	.1 .3	.9	.3	5.4 1.0	.6 .6	1.0 .3	.1 .2	2.2	1.4	.2 .2	1.1 .5	2.8 .5	.2 .2
.2 1.8	.2 1.2	1.1 .7	.4 1.8	.0	.4 1.0	.2 .7	.4 1.0	.6 .7	1.1	.7 .1	.2 .8	.2 1.6	.1 .4	.0 1.2
1.2 1.2 .7	1.3 1.1 .5	1.9 1.6 .9	.1 .2 .2	.8 .1 .1	.8 .6 .4	.5 .2 .2	.7 .0 .1	.8 .3 .2	.4 .1 .3	.2 .4 .8	.5 .7 .5	.4 .8 .4	.6 .9 .6	.2 .1 .2
.1 .4 .9	.7 1.0 .3 1.8	.8 .4 .3 1.6	.4 .7 1.7	.0 .3 .4 1.4	.1 .7 1.9 2.7	.1 .7 1.2 1.7	.6 1.3 1.8 1.8	.4 .7 1.6 2.5	.2 .5 .8 1.1	.0 .7 .4 .1	.1 .2 1.3 2.7	.2 .1 .8 .2	.1 .7 .9	.2 .3 .9 1.8

	SAMPLES OF 50 37 38 39 40 41 42 43 44 45 46 3											MPLI	es of	100
37	38	89	40	41	42	48	44	45	46	82	38	84	85	86
1.2 .1	1.4 1.3	1.1 .7	.6 .5	.9 1.0	.1 .2	.7	2.2 .6	.5 .3	.7 .4	.9 .8	.5 .1	.0 .2	1.1	.0
.6 1.6	.3 .7	.8 .5	.4 .2	.4	.1 .2	.1 .3	.4 .7	.0 .2	.5 .7	.8 .6	.1 .8	.3 .8	.2 .8	.8 .5
.2	1.0 .5	.5 .1	.4 .3	.1	.7 .3	.1	.1	.0 .1	.4	.4 .2	.1	.1 .1	1.1	2.8 .3
.4 1.0	.1 2.1	.0 1.2	.2	.5 .6	.6 .5	1.6 1.2	.1 1.5	.0 1.1	.3 2.8	.8 .7	.1 1.8	.9 .1	.4 .8	.4 1.0
.5 .3 .0	.8 .7 .4	.2 .3 .3	1.3 .6 .1	1.1 .1 .4	1.3 1.1 .6	1.0 .2 .0	.9 .5 .0	.1 .2 .1	1.8 1.0 .8	.2 .3 .3	1.0 .7 .8	.8 .0 .1	.6 .1 .1	.4 .6 .3
.9 .8 1.2	.1 .0 1.0	.0 .0 .6	.2 .0 .3	.6 1.1 .8	.3 .8 1.9	.3 .7	1.4 1.0 1.2	.0 .4	.9 1.2 1.5	.3 .9 .8	.1 .3 1.2	.8 .2 .6	.2 1.2 .6	.2 .1
2.1	2.5	1.1	.4	.2	3.2	<u> </u>	1.7	1.0	1.7	.2	1.8	.9	.4	.4

TRANSFORMATIONS OF BIMODAL DISTRIBUTIONS

By By

G. A. BAKER

I. INTRODUCTION

Several men have concerned themselves extensively with the transformation of frequency distributions, for instance, Edgeworth, Kapteyn, Arne Fisher, and H. L. Reitz (see 1, bibliography). The first three of these men have been concerned with transformations as a means of extending the scope of the normal distribution and Gram-Charlier system as a method of description. Rietz has been more interested in the properties of the transformed distributions.

There are three types of transformations that are of particular importance:

- (1) $u = x^n$ because it has a physical interpretation.
- (2) $u \log x$ because Arne Fisher and others find it useful.
- (3) $u e^x$ because it is the inverse of (2).

These three transformations will be discussed in some detail for bimodal frequency distributions. It is interesting to note that it is possible to transform a bimodal distribution into a unimodal distribution and vice versa by means of these transformations. The general scheme of the first part of the following is that of H. L. Heitz (see 1, bibliography).

The latter part of this paper consists of a few remarks on transformations in general.

II. THE TRANSFORMATION $u=x^n$

In the following theorems it will be understood that one means ar least one and that a frequency function is to have a total area of unity.

The transformation $u-x^n$ has a very clear physical interpretation, for if the diameters of oranges are distributed as f(x) then the distribution of the volumes of these oranges would be obtained by making the transformation $u = kx^3$.

Theorem 1.

Given a continuous bimodal frequency function of positive variates y=f(x) with a range 0 < a < x < e with modes at x=b, x=d and antimode at x=c, (a < b < c < d < e) f(a)=f(e)=0 and with a continuous derivative, then the frequency distribution $v=\emptyset(u)$, $\left[\emptyset(u)\right] \equiv \frac{1}{n} u^{\frac{l-n}{n}} f(u^{\frac{l}{n}})\right]$ of positive variates, $u=x^n$ has modes as follows:

Case I. n > 1

(1) one mode $a^n < u \le b^n$ always, and (2) one mode and one antimode $c^n < u \le d^n$ if $\left| (/-n) f(u^{\frac{1}{n}}) \right| < u^{\frac{1}{n}} f'(u^{\frac{1}{n}})$ somewhere in this interval.

Case II: O < n < I

(1) always one mode $b \stackrel{n}{\leq} u < c^n$, (2) a mode and antimode $d^n \leq u < e^n$ if $\left| u^{\frac{1}{n}} f'(u^{\frac{1}{n}}) \right| > (1-n) f'(u^{\frac{1}{n}})$ somewhere in this interval.

Case III. n < 0

(1) One mode $d^n \le u < e^n$ (2) one mode and one antimode $b^n \le u < c^n$ if $|u^{\frac{1}{h}} f'(u^{\frac{1}{h}})| > (l-n) f(u^{\frac{1}{h}})$ somewhere in this interval.

Proof:

Since $u^{\frac{1}{2}}$ is taken to be positive, then if $\frac{dv}{du}$ is to be zero we must have

(1)
$$(I-n) f(u^{\frac{1}{n}}) + u^{\frac{1}{n}} f'(u^{\frac{1}{n}}) = 0$$

Also we have by hypothesis

(2)
$$f(a) = f(e) = 0$$

(3)
$$f'(b) = f'(c) = f'(d) = 0$$

and that f'(x) is continuous.

From these considerations the proof of the theorem follows quite simply; for instance:

Case I n > 1

In the interval $e^n > u \ge d^n$ (1) is negative. At $u - c^n$ (1) is negative. In the interval $c^n < u < d^n$, $u^{i_n} f'(u^{i_n})$ is positive and hence from continuity there is a maximum and minimum or not according as $u^{i_n} f'(u^{i_n}) < |(l-n) f(u^{i_n})|$ or not for every u in this interval At a^n (1) is $u^{i_n} f'(a)$ which is zero or positive, while at b^n (1) is negative. If f(a) is positive there is clearly a maximum at the point where the sign of the continuous derivative changes from positive to negative in the interval $a^n < u \le b^n$. If f'(a) is zero it follows that there is also a maximum, since v = 0 at $u = a^n$ and then increases before decreasing at $u = b^n$.

The other cases follow from exactly similar reasoning

Theorem II.

In case the bimodal continuous frequency function y=f(x) (of Theorem I) is symmetrical about the antimodal line x=c, then the mean value of u in the frequency distribution $v=\phi(u)$ of $u=x^n(n=0 \text{ nor } l)$ less or greater than its median value according as the value of n lies between 0 and 1 or outside of these bounds.

The first moment of the transformed distribution is given by $u = \frac{1}{n} \int_{a}^{c} u^{\frac{1}{n}} f(u^{\frac{1}{n}}) du = \int_{a}^{c} x^{n} f(x) dx$ i. e., we have $\overline{\mu} = \mu'_{n}$ where μ'_{n} is the *n* th moment about the origin of the original frequency distribution y = f(x). Denoting the mean value of x by x.

it is known for every set of positive values that $u_n' < \bar{x}''$, when u lies between 0 and 1, and that $\mu_n' > \bar{x}''$ when u lies outside this interval.

Since $\overline{x} - c$ when y = f(x) is symmetrical about this line, the theorem follows. This follows Rietz exactly.

Theorem III.

In case the continuous bimodal frequency function y-f(x) (of Theorem I) is symmetrical about the antimodal line x=c, the frequency distribution $y-\emptyset(u)$ of $u-x^n$ (n+0 nor l) has the following relations between its modes and its median.

Case I. n > 1

One mode \leq median, in any case, and one greater if $|(-n)f(\hat{u}^{\frac{1}{n}})|$ somewhere in the interval $c \sim u \leq d$

Case II. 0 < n < l

One mode \leq median, in any case, and one greater if $|u^{\frac{1}{n}}f'(u^{\frac{1}{n}}) > (l-n) f(u^{\frac{1}{n}})$

at some point d'' = u = e''

Case III. n < 0

One mode \geq median, in any case, and one less if $|u^{\frac{1}{n}} f'(u^{\frac{1}{n}})| > (l-n) f(u^{\frac{1}{n}})$

at some point $b'' \le u \le c''$.

As an example of a transformation $u=x^n$ which transforms a bimodal frequency function satisfying the conditions of the previous theorems into a unimodal distribution consider the following.

Take
$$n = 37$$
 and $f(x) = -x^4 + 12 x^3 - 50 x^2 + 84x - 44$, $0 < \infty \le x \le \beta < 6$
If $\frac{d^2 v}{du} = 0$, then
$$(1) \qquad (1-n) f(u^{\frac{1}{2}}) + u^{\frac{1}{2}} f'(u^{\frac{1}{2}}) = 0$$

1. See J. L. W. V. Jensen, Acta Mathematica, Vol. 30. (1906), pp. 180-187.

Instead of the variable $\omega^{\frac{1}{2}}$ we may just as well write an x. Hence (1) becomes

(2)
$$f(x) = 32 x^4 - 396 x^5 + 1700 x^2 - 2940x + 1984$$

Calculating Sturm's functions for (2), it is easily seen that the transformed distribution has only one mode and that in the interval $0 < u < 2^{37}$

III. TRANSFORMATION $u = \log x$

Theorem IV.

Given a continuous bimodal frequency function (of Theorem 1) with a range $/ < a \le x \le e$, then the frequency distribution $v = \emptyset$ (u) $\left[\emptyset (u) = e^{u} f(e^{u}) \right]$ of positive variates $u = \log x$ has one mode, in any case, $\log d \le u < \log e$ and has a mode and antimode in the interval $\log b \le u < \log c$ if $\left| e^{u} f'(e^{u}) \right| f(e^{u})$ somewhere in this interval.

This follows very simply from considering $\frac{d'v}{du}$, which is $e^{2u} f'(e'') + e'' f(e'')$

Theorems similar to those stated under the transformation $u = x^n$ concerning the relative position of the modes and median of the transformed distribution may be stated here.

As an example of a bimodal frequency distribution satisfying our hypothesis and which is transformed into a unimodal distribution by the transformation $u = \log x$ consider

$$f(x)=-x^4+16x^3-92x^3+224x-148, <\infty \le x \le 1000$$

The condition for the vanishing of the derivative of the transformed distribution takes the form

$$f(x)=-5x^4+64x^3-276x^2+448x-148$$

By calculating Sturm's functions for F(x) it is easily seen that

the transformed distribution has but one mode and that in the interval $\log 6 < u < \log 7$.

IV. TRANSFORMATION $\mu = e^{x}$

Theorem V.

Given a continuous bimodal frequency function (of Theorem 1), then the frequency distribution $v = \emptyset(u)$, $\left[\emptyset(u) = \frac{1}{u}f(\log u)\right]$ of positive variates $u = e^{\pi}$ has one mode $e^{\theta} < u \le e^{\theta}$ and has a mode and antimode in the interval $e^{\theta} < u \le e^{\theta}$ if $f(\log u) = f(\log u)$ at some point in this interval.

For
$$\frac{dy}{du} = \frac{1}{\mu^2} \left[f'(\log u) - f(\log u) \right]$$

from this the theorem follows.

Theorems similar to those stated concerning the relative positions of the median and modes of the transformed distribution in the case of the transformation $u = x^n$ may be stated here also.

As an example of a bimodal frequency distribution that satisfies our hypothesis and is transformed into a unimodal distribution by the transformation $u - e^{x}$ consider

$$f(x) = x^4 + 16x^2 - 92x^2 + 224x - 148, \ 1 < x \le x \le \beta < 7$$

The condition that the derivative of the transformed distribution vanish takes the form

$$F(x) = x^4 - 20 x^3 + 140 x^2 - 408 x + 372$$

By calculating Sturm's functions for F(x) it is easily seen that the transformed distribution has only one mode and that in the interval $e' < u < e^s$.

V. TRANSFORMATIONS IN GENERAL

Suppose that we have a frequency distribution the distribution of whose parameters due to random sampling we know. If we transform this distribution what will happen to the distributions of the estimates of the parameters? It appears that, in view of the fact that bimodal and possibly multimodal distributions may be transformed by fairly simple transformations into unimodal distributions, there will be no simple relation between the change in the frequency distribution and the corresponding changes in the distributions of the estimates of the parameters by means of random samples. As a specific example of these general remarks consider the following.

If the normal curve

(1)
$$f(x) - \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

is transformed by the transformation

$$(2) \qquad \qquad u = x^2$$

giving

(3)
$$F(u) = \frac{r}{2\sqrt{2u}} \quad \frac{e^{-\frac{r}{2}u}}{u}$$

Then, applying a general method for finding the distribution of the means of samples, first developed by J. O. Irwin (2, bibliography), the mean values of the u's are found to be distributed as proportional to

(4)
$$\frac{\left(\frac{n}{2}\right)^{\frac{n}{2}}x^{\frac{n-2}{2}}e^{-\frac{i}{2}nx}}{\sqrt{n}\left(\frac{n}{2}\right)}$$

Then

(5)
$$u'_{m} = \frac{(n+2) - - - - (n+2m-2)}{n^{m-1}}$$
If $m \ge 1$

Whence
$$\mu_{o} = 1$$

$$\beta_{1} = \frac{8}{n}$$

$$\mu_{1} = 1$$

$$\beta_{2} = 3 + \frac{12}{n}$$

$$\mu_{2} = \frac{2}{n}$$

$$\mu_{3} = \frac{8}{n^{2}}$$

$$\mu_{4} = \frac{12n + 48}{n^{3}}$$

Thus we see that, although the sampled population is J-shaped, the distribution of the estimates of the means ultimately approaches the normal distribution but that this approach is rather slow.

It has been shown (see 3) that (4) is also the distribution of the estimates of the second moment by means of samples of n drawn from (1), the second moment of the sample being taken about the mean of (1). This is a special example of a general consideration that is of considerable interest in this connection.

It has been shown (see 3) that, formally, the distribution of the estimates by means of samples of n of the mth moment of a population represented by $f(x), a \le x \le b$, the mth moment of the sample being taken about the mean of f(x) is given by the solution of the integral equation

(6)
$$F(z) = \int_{-\infty}^{\infty} \psi(x) e^{zx} dx$$

where ψ (x) is the unknown distribution of n times the estimates of the m th moment of the population about the mean of the population and

 $F(z) = \left(\int_{B}^{b} f(x) e^{zx^{m}} dx\right)^{n}$

and if m is even

$$\beta$$
 = larger of $n \pi^m$, $n b^m$

if m is odd

Now, the formal development for finding the distribution of the means of samples of n drawn from a population represented by f(x) transformed by the transformation $u = x^n$ leads to a relation equivalent to (6) (see 2). This result may be stated as

Theorem VI.1

If the distribution of the estimates of ρ times the m th moment

1. This theorem permits of an obvious generalization to the case of the k th moment of the transformed distribution.

of a population represented by f(x), $a \le x \le b$ about the mean of f(x) exists as a solution of (6) it is identical with the distribution of the estimates by means of samples of n of n times the mean, measured from the mean of f(x), of the population represented by f(x) transformed by the transformation $u = x^m$.

This enables us to formally identify these two problems so that anything that is true of one distribution is also true of the other.

With other transformations the relation between the distribution of the means of random samples from the transformed distribution and the distribution of the estimates of the parameters of the original distribution become much more complicated.

Further, we might say a few words with regard to the possibility of transforming various types of distributions into various other types.

Suppose that f(x) is a continuous frequency function of positive variates, $a \le x \le b$, and that f'(x) is continuous in this closed interval. Now make the transformation

(7)
$$u = \emptyset (x)$$

and suppose that $\phi(x)$ is such that (7) can be solved explicitly for x, i. e.,

(8)
$$x = \psi(u)$$

Then f(x) dx becomes, assuming $\psi'(u)$ is continuous, $f \left[\psi(u) \right] \psi'(u) du$

$$(9) \quad U(u) = f \left[\psi(u) \right] \psi'(u)$$

Supposing that f is known, what can we do towards fixing the form of U by a suitable choice of ψ ?

Now, the simplest of all possible frequency distributions, from the

standpoint of description by means of a continuous function, is one in which the probabilities of all values of the variate are equal. Hence we will suppose for illustration that

(10)
$$U(u) = f[\psi(u)]\psi'(u) = k$$

whence, putting $\psi(\omega) = \gamma$

we have

(11)
$$\int f(y) dy = k u + c$$

Suppose that

$$(12) f(x) = \alpha x + \beta$$

Then

(13)
$$\psi(u) = \frac{-\beta}{\alpha} = \sqrt{\beta^2 + 2\alpha (ku+c)}$$

From this it is apparent that if f(x) is any polynomial whose degree is less than four and which is positive $a \le x \le b$ may, conceivably, be transformed into a rectangular distribution.

If in place of k we were to put a specified function, say the normal function, we would run into considerable difficulty.

In (9) we may regard ψ as known and then ask what forms of f may be transformed into certain specified forms. For instance, let us take

$$u = log x$$

 $x = e^u$

Then
$$U(u) = f(e^u) e^u$$

(14)
$$U'(u) = e^{u} \left[f(e^{u}) - e^{u} f(e^{u}) \right]$$

Now, since u>0, it is apparent that if f(x)=c that (14) has no zero.

Let us put, for illustration, U'(u) - O or U(u) = k

Then
$$f(x) = \frac{k}{x}$$

However, if we were to suppose that (14) vanished at only one point, at exactly two points, etc., instead of identically it would be very difficult to express this in terms of the form of .

VI. SUMMARY

It has been shown that unimodal distributions may be transformed into bimodal distributions by means of rather simple transformations. This suggests that bimodal distributions are not necessarily the result of heterogeneity.

The fact that a badly misshapen distribution may be transformed into something that is approximately normal does not seem to be of much aid in determining the distribution of the estimates of the constants of the original distribution.

The problem of transforming a specified distribution into another specified distribution is very difficult in gneral but could, perhaps, be handled to an adequate degree of approximation in special cases.

J. A. Baker

BIBLIOGRAPHY

- Rietz, H. L. On Certain Properties of Frequency Distributions of the Powers and Roots of the Variates of a Given Distribution. Proceedings of the National Academy of Science, vol. 13, No. 12 (Dec. 1927), pp. 817-820.
- Irwin, J. O., M.A., M.S. On the Frequency Distribution of the Means of Samples from a Population Having Any Law of Frequency with Finite Moments, with Special Reference to Pearson's Type II. Biometrika, vol. 19 (1927), pp. 225.
- Baker, G. A. Random Sampling from Non-Homogeneous Populations. Metron, vol. VIII, Part 3 (Feb. 28, 1930), page 1.

ERROR AND UNRELIABILITY IN SEASONALS

By

EDGAR Z. PALMER

An article in the Annals of Mathematical Statistics for February, 1930, entitled "A Mathematical Theory of Seasonals," by the Statistical Department of the Detroit Edison Company, has three objects. It presents a mathematical version of the time series analysis, suggests the "interpolation" method of computing seasonals, and constructs a theoretical time series as a test of the new method. The mathematical analysis and the theoretical series are based upon the assumption that the trend, cycle, and seasonal are proportional to each other, while the "errors" or residuals are additive in nature. The reasoning is not necessarily valid for series where the cycle or the seasonal is additive rather than proportional to the trend.

The interpolation method as proposed consists in (1) finding the total of the items for each of the twelve months, and (2) dividing each total by a function which theoretically contains the trend and the cycle insofar as they influence the particular month. In practice this twelvemonth function turns out to be a smooth trend curve, and the method of its calculation inspires little confidence that it can reflect much cyclical influence. The function for each month is simply a weighted sum of the annual totals, the weights varying for different months. The early years are weighted more heavily in finding the values of the function which apply to the first half of the year, while the later years are given a greater weight in the second half of the year. The function is influenced almost solely by trend, or rather, by the difference between the first year and the last year of the data, since these two years are the only ones whose weights vary considerably from month to month. It is certain that no cyclical movement, however violent, can have the proper effect upon this function unless it affects the two extreme years.

Since the interpolation method involves dividing the monthly totals (for which may be substituted the monthly means) by a function which is mainly composed of trend, we are justified in considering it a variation of the well-known monthly-means method. In the theoretical series of the Detroit Edison article, the means of each month, corrected for trend by the Davies method, yield a seasonal index almost identical with that obtained by the interpolation method (see Table I). It should be noted that we used the very easily computed semi-means line to correct the monthly means for trend. The semi-means trend in this series is not as steep as the theoretical trend used in the con-

TABLE I

SEASONALS OF THE THEORETICAL SERIES

As Obtaind	bу	Five	Methods
------------	----	------	---------

			1	2	8	4 Ratio to t	f rend-cycle With
Month	Theoretical index*	True index	Monthly means	Interpola- tion*	Link relative*	Moving mean	free-hand
January	.990	.978	.931	.938	.975	.978	.989
February	.930	.908	.880	.885	.890	.918	.905
March	1.050	1.020	.984	.988	.988	1.003	1.037
April	1.020	1.028	1.018	1.021	1.007	1.051	1.035
May	1.040	1.063	1.062	1.065	1.030	1,069	1.064
June	.980	.969	.986	.986	.962	.982	.957
July	.980	.978	.994	.993	.972	.986	.976
August	1.000	1.007	1 019	1.017	1.013	1.024	1.016
September	.980	1.009	1.031	1.028	1.033	1.004	.995
October	1.040	1.056	1.084	1.079	1.099	1.049	1.055
November	.990	.974	.990	.985	1.004	.955	.958
December	1.000	1.013	1.016	1.009	1.027	.982	1.014

^{*} From the Detroit Edison article.

^{1.} Davies, Economic Statistics (1922), p. 117.

struction of the series. For the purposes of this quick and easy seasonals method, however, the semi-means trend is accurate enough.

Any one series used in the comparison of methods should, of course, be viewed merely as an illustration, or at most as a sample, of their results. A thousand such series, constructed upon a thousand variations in assumptions, is necessary for determinative comparisons. Long and short series, large and small seasonals, cycles, trends, and irregulars, regular and irregular seasonals, curved and straight trends, additive and proportional combination of the factors: each of these attributes introduces some elements of error into the computation of sasonals, and the errors are not necessarily constant as between different methods.

An instance of the danger of using any single theoretical series occurs in the Detroit Edison article. If we test the residual factor, we find that it also contains some seasonal variation. The true seasonal index of the series, then, is the theoretical seasonal modified by whatever seasonal is to be found in the residuals. There is, as might be expected, some seasonal inequality in the cyclical factor as well, but since it is the task of the method used to eliminate this cyclical influence, we do not consider it a part of the true seasonal. No method, however, can be expected to distinguish between a seasonal arbitrarily designated as the theoretical, and one which is added as part of the residual factor. In Table I, the first column gives the theoretical, and the second column the true seasonal, of the series.

The authors compare their results with those by the link-relative method, and find that the interpolation method gives an index slightly closer to the theoretical seasonal. For further test, we have computed the seasonal by the somewhat more logical ratio-to-trend-cycle method. We used the twelve-month moving mean, centered on the sixth month, to represent the combined trend and cyclical factors. Then we found the ratios of each monthly item in the series to the corresponding moving mean figure, and, after arraying the ratios for each of the twelve months, we found the modified median of each array. This is approximately the method suggested by the Federal Reserve Board, and gives a seasonal with very much less error than the previously mentioned

Joy and Thomas, The Use of Moving Averages in the Measurement of Seasonal Variations, Journal of the American Statistical Association, vol. 23, p. 241.

methods. (See Table II)

The ratios to the moving mean may be expected to be free from both trend and cyclical influence. However, the moving mean has its faults, especially in its tendency to cut corners when the true cycle makes a sharp change of direction, and in its failure to extend to the ends of the series. For this reason we made another computation, using a corrected moving mean. The data and the moving mean were graphed together, and a free-hand curve was drawn (without reference to the theoretical trend-cycle curve given in the article), correct-

TABLE II

ERROR OF SEASONALS

	(1) fean deviation om theoretical seasonal	(2) Mesn deviation from true seasonal	(8) Mean deviation from 1.0000	(4) Ratio of (2) to (8)
Theoretical seasonal		.0158	.0258	.612
True seasonal	.0158		.0324	.012
Monthly means	.0291	.0197	.0388	.508
Interpolation	.0269*	.0170	.0378	.450
Link relative	.0277*	.0198	.0355	.558
Ratio to trend-cycle:		.0150	.0055	.330
Moving mean	.0208	.0132	.0344	.384
With free-hand correction	n .0164	.0078	.0328	.239

^{*} From the Detroit Edison article.

ing the moving mean in three places and extending it to the limits of the series. The seasonal index computed from the ratios to the new trend-cycle curve had an error about half that of the interpolation method. (See Table II)

When W. I. King1 first proposed the use of a free-hand curve in

^{1.} King, An Improved Method for Measuring the Seasonal Factor, Journal of the American Statistical Association, vol. 19, p. 301.

this connection, objection was raised that this introduced the personal equation into what should be mechanically determinable. In many series, however, any experienced statistician would draw a curve which would fit the data better than the moving mean. There is not as much discretion involved in drawing the curve as there is in choosing between two mechanical methods. The possible error due to the personal factor is very much less than the error made certain by the use of any more mechanical method.

An important test of the reliability of the methods of finding seasonals, which may be applied to actual series where the true seasonal is unknown, consists in an examination of the monthly arrays. The monthly-means and the interpolation methods depend for their reliability upon the distribution of the arrays of the original data from the means of each month. Similarly, the link-relative method depends upon the scatter of the link relatives about their medians, and the ratio-to-trend-cycle methods upon the arrays of ratios. We measured the dispersion for each month for any method by the mean deviation of its array about its central tendency. This should be divided by the central tendency itself to obtain a relative dispersion measure for that month. Then the mean of all twelve dispersion measures was taken,

TABLE III

UNRELIABILITY OF SEASONALS

Method	Relative mean deviation of monthly arrays
Monthly means	.1838
Interpolation	.1838
Link relative	.0734
Ratio to trend-cycle:	
Moving mean	.0621
With free-hand correction	.0492

to give an indication of the unreliability of the method as a whole. The great unreliability of any method based on the monthly means is apparent from Table III, as well as the superiority of the ratio-to-trend-cycle method with free-hand correction.

Some question may arise concerning the propriety of submitting the link relatives to this test of reliability, because the manipulations to which the medians are subjected before they emerge as a seasonal index may decrease the error inherent in the spread of the monthly arrays. We have not been able to derive the algebraic relationship between the mean deviation of the link relatives and the corresponding unreliability of the final seasonal indexes based upon them. In erratic series, the process of computing link relatives tends to heighten the spreading effects of rapid changes in direction; conversely, cumulative multiplication of the median link relatives possibly decreases the error. If so, the link-relative method is not as unreliable as Table III would seem to show it.

The penalty which the computer pays for accuracy and reliability is, of course, a longer time of computation. The time required for the application of each method to the given series is shown in Table IV. The time allowed is for each operation to be performed twice, and the results checked against each other. In addition to the five methods used throughout this article, the time is given for a short cut to the best method, involving much more of the personal equation. The short

TABLE IV

COMPUTING TIME OF SEASONALS					
Method	Time in minutes				
Monthly means	60				
Interpolation	110				
Link relative	160				
Ratio to trend-cycle:					
Moving mean	285				
With free-hand correction	495				
All free-hand curve	371				

cut consists in not computing the moving mean at all, but drawing the trend-cycle curve altogether free-hand.

This timing, of course assumes that the seasonal index is the whole object of the computation. If we were finding the seasonal only as a part of a general statistical analysis of the series, the seasonal

should not be charged with the full time for the steps which are useful for other parts of the analysis. The trend cycle curve, for instance, has other uses than in computing seasonals. In considering the question of speed, it should also be recognized that the various methods do not have the same relative time for series of different length, nor when more elaborate calculating equipment is available than we used.

High speed of computation is not as necessary in seasonals as it is, shall we say, in index numbers. The calculation of a seasonal is a task that does not have to be repeated often for any one series. It is more in the nature of a capital expenditure than a current routine For student theses, and for investigations where the computation of seasonals is merely incidental or can be roughly done, the monthly-means method is adequate. But for a positive study of actual seasonal influences, and for the elimination of the seasonal factor from indexes published currently by research bureaux, the best method should be used regardless of the longer time needed.

Edgar Z Palmer

MODIFICATIONS OF THE LINK RELATIVE AND INTERPOLATION METHODS OF DETERMINING SEASONAL VARIATION

By

RICHARD A. ROBB

In a recent paper the statistical department of the Detroit Edison Company have introduced a new method of calculating seasonal variation in a time series. Briefly, the time series u_x is represented by the function $u_x - f(x) c(x) s(x) + \varepsilon_x$ where f(x) represents secular trend, c(x) cycle, s(x) seasonal, and ε_x residual errors, and by the Method of Least Squares the seasonal variation for any one month will be given by

(A)
$$S_i = \frac{\sum_{\sigma} u_{\infty} f(x) c(x)}{\sum_{\sigma} [f(x) c(x)]^2} \qquad i = 1, 2, 3, \dots 12.$$

where s(i) represents the seasonal variation in the i th month and the summations in the right hand member of the equation are taken over the years covered by the time series.

If the Method of Moments be used

(B)
$$s_i = \frac{\sum_{\sigma} u_{x\sigma}}{\sum \left[f(x) c(x) \right]}$$

The trouble lies in the determination of the denominator $\mathcal{L}[f(x) \ c(x)]^2$ or $\mathcal{L}[f(x) \cdot c(x)]$. The Detroit Edison have overcome this difficulty by smoothing the observed time series with a sixth degree parabola, keeping the total population for each year unchanged over a period of seven years. In this way seasonal

^{1.} A Mathematical Theory of Seasonals, Annals of Math. Stat., I, p. 57.

variation is obtained from (A) or (B), (B) being much easier to handle than (A).

There appears to be an objection in fitting a curve over a period of seven years and thus for successive seven year intervals obtaining smoothed values for a time series of any given length. The ordinates of the smoothed curve are not equally weighted as, for example, in fitting curves over a ten-year period, the first smoothed ordinate for a year is given by one curve, the second by two curves, the third by three curves, the fourth, fifth sixth and seventh by four curves, the eighth by three, the ninth by two and the tenth by one. To overcome this I decided that my smoothed curve should have the same zero, first and second moments as the observed curve over a period of twelve months. This simply means that a parabola of 2nd degree was fitted to the successive twelve month intervals, and as above a smoothed curve will be obtained for any length of time.

If the observed values u_x are plotted against the corresponding values of x and a parabola of second degree fitted to the points

$$u_{-n}$$
, u_{-n+1} , \cdots , u_{n} , \cdots , u_{n}

determining the constants by the Method of Least Squares, the ordinate of the curve at x=0 is taken as the graduated value of u_a . If n=6 this would involve thirteen observed ordinates, whereas I desire twelve. This difficulty, however, is easily removed by finding a first approximation to my graduated value by using thirteen ordinates; having found the corresponding seasonal variation by (A) or (B), the thirteenth ordinate is divided by this seasonal factor. The parabola which is to represent the smoothed curve given by trend x cycle is then found from the twelve ordinates subject to seasonal , trend and cycle influences, and a thirteenth from which seasonal has been eliminated.

The graduated ordinate at x=0 corresponding to u_* is (first approximation)

(C)
$$u_{o}' - \frac{1}{143} \left[25 u_{o} + 24 (u_{1} u_{1}) - 2 (u_{2} \cdot u_{-3}) + 16 (u_{3} + u_{-3}) + 9 (u_{4} + u_{-4}) - 11 (u_{-6} + u_{6}) \right] - [c]$$

For example, if we take thirteen ordinates, commencing at January, 1904, and finishing at January, 1905, the first approximation for July is

$$July = \frac{1}{143} \begin{bmatrix} -11 \text{ (Jan.) } 1904 + 9 \text{ (Mar.) } + 16 \text{ (Apr.) } + 21 \text{ (May)} \\ +24 \text{ (June) } + 25 \text{ (July) } + 24 \text{ (Aug.) } + 21 \text{ (Sept.)} \\ +16 \text{ (Oct.) } + 9 \text{ (Nov.) } -11 \text{ (Jan.) } 1905 \end{bmatrix}$$

where (1) I have designated the production for any one month by the corresponding name of the month, and (2) the formula is rearranged in a form suitable for the calculating machine.

If formula (B) is used it is readily seen that to obtain the seasonal variation for any month we must

(1) Sum together all the Januaries, then all the Februaries, etc. It should be noted that, as the first six months and the last six months of a time teries are not weighted equally with the others, no graduated points were found for these periods. In consequence, as will be seen in practice, two sets of summations of the different months are required, the first including every year except the last, and the second excluding the first year. Then apply formula (C). This gives

$$\Sigma[f(x) c(x)]$$

(2) Divide
$$\Sigma u_x$$
 by $\Sigma [f(x) c(x)]$

Having obtained a first approximation to the seasonal factors, $\Sigma[f(x) \ c(x)]$ is recomputed as explained above. In practice this is quickly executed, as will be seen in an example completely worked out below.

To illustrate this method I have taken the theoretical time series given by the Detroit Edison. Summing the productions for the various months, we have Table I.

To find the seasonal for July, for example, we have to find the value of

$$\Sigma[f(\mathbf{x})\cdot c(\mathbf{x})] = \frac{1}{143} \begin{bmatrix} -11(20434) + 9(21621) + 16(22615) + 21(23035) \\ +24(21129) + 25(21508) + 24(22118) + 21(22212) \\ +16(23186) + 9(21215) - 11(21215) \end{bmatrix}$$

Using formula (B) the seasonal for July is $s_{=} \frac{21508}{22280}$ 0.965

Month	1904-1914	1905-1915	1st approx.	2nd approx
January	20,434	21,215	.971	.973
February	19,425	20,143	.918	.919
March	21,621	22,389	1.015	1.014
April	22,615	23,196	1.045	1.039
May	23,035	24,231	1.061	1.062
June	21,129	22,567	.974	.974
July	21,508	22,820	.965	.967
August	22,118	23,077	.98 7	.993
September	22,212	23,707	1.011	1.010
October	23,186	24,964	1.071	1.067
November	21,215	22,712	.987	.982
December	21,836	23,182	1.002	1.005
			1200.07	1200.05

TABLE I

In this way the seasonals in Column 4 of Table I were obtained.

The second approximation is obtained with little extra trouble; for July, on account of the thirteenth ordinate, in this case the January of the following year, which has a seasonal of .971, we have to replace the last term in 143 $\mathcal{E}[f(x) \ c(x)]$ given above by $\frac{-11(21215)}{.971}$, i. e., the recomputed $\mathcal{E}[f(x) \ c(x)]$ is now $\frac{3186016-11(21215)(0.0299)}{143}$, the reciprocal of 0.971 being 1.0299.

The seasonals obtained with these corrections are given in Column 5 of Table I.

Comparing the seasonals with actual values, we have the following table.

	Jan.	Feb.	March	April	May	June
Actual Seasonal	.990	.930	1.050	1.020	1.040	.980
Computed Seasonal	.973	.919	1.014	1.039	1.062	.974
Error	017	011	-,036	+.019	+.022	006
	July	Aug.	Sept.	Oct.	Nov.	Dec.
Actual Seasonal	.980	1.000	.980	1.040	.990	1.000
Computed Seasonal ,	.967	.993	1.010	1.067	.982	1.005
Error	013	007	+.030	+.027	008	+.005

The mean and standard deviations are compared with the Interpolation Method of the Detroit Edison.

	Mean Deviation of Errors	Standard Deviation of Errors	
	.0168	.0194	
Interpolation Method	.0269	.0337	

It will be noticed that the new method of smoothing yields a standard deviation which is roughly a little greater than half that obtained by the Interpolation Method.

To test whether any actual difference in Seasonals would be obtained by using formula (A), the ordinates of the smoothed curve were found by formula (C) and are given in Table II. The seasonals were as follows:

Jan.	Feb.	March	April '	May	June	
.967	.988	1.009	1.072	.986	1.005	
July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
.971	.906	1.007	1.042	1.062	.980	11.995

figures practically identical with those previously obtained.

In Figure I, I have plotted against the various months (1) the actual Seasonal Indices, (2) those given by the Detroit Edison Inter-

TABLE II

	1904	1905	1906	1907	1908	1909
January		1724	1916	2105	1306	1656
February		1765	1968	2092	1180	1765
March		1824	1955	2041	1121	1889
April		1855	1956	2049	1141	2007
May		1885	1956	2093	1187	2129
June		1854	1954	2148	1218	2216
July	1405	1880	2019	2127	1223	2310
August	1490	1882	2063	2064	1253	2370
September	1522	1859	2078	1917	1307	2458
October	1569	1867	2099	1772	1376	2462
November	1634	1890	2122	1618	1465	2502
December	1 <i>7</i> 09	1939	2139	1454	1566	2538
	1910	1911	1912	1913	1914	1915
January	2565	1919	2157	2521	2233	1699
February	2574	1872	2222	2562	2123	1803
March•	2571	1861	2293	2590	2022	1920
Aprıl	2544	1852	2370	2592	1900	2057
May	2529	1869	2441	2609	1863	2248
June	2461	1900	2514	2645	1821	2449
July	2382	1935	2540	2640	1774	
August	2275	1972	2554	2624	1735	
September	2167	1993	2536	2511	1645	
October	2036	2008	2488	2405	1634	
November	1950	2048	2477	2314	1586	
December	1931	2113	2464	2271	1613	

polation Method, and (3) those given by the method of this paper.

As it will be interesting to note how the smoothed values of the ordinates of the time series agree with the actual, I have given below the Mean Deviation of errors from actual for the various months.

Month	Jan.	Feb.	March	April	May	June
M. D	58	41	50	43	32	34
Month	July	Aug.	Sept.	Oct.	Nov.	Dec.
M. D.	23	24	23	37	42	67

For the whole period the Mean Deviation is 39.5.

The Deviations are small, the January Mean Deviation being roughly 3 per cent of the mean production for January; for December it is 3.4 per cent.

On the assumption that the Seasonal Index for any one month is constant for a given time series, it will be seen that I east Squares can be used in several ways to yield Seasonals. I give one example of its use, obtaining Seasonals by a method closely allied to the Link Relative method.

In the Link Relative method link relatives are formed for all the different months. This involves the greater part of the calculation, and it seemed feasible that instead of calculating link relatives and finding median values one could assume that the production for any one month with reference to that for the previous month is given by

where, as before, the name of the month stands for the production for that month, and a_1, a_2, \ldots, a_{12} are constants which can be determined by the Method of Least Squares. For February $-a_1$, Januare, we have

$$a_{r} = \frac{\sum (\text{February})(\text{January})}{\sum (\text{January})^{2}}$$

the summations extending over the years of the time series.

Considering our time series to be $u_1, u_2, u_3, \dots u_n$, ...

$$a_{i} = \frac{u_{i}u_{2} + u_{i2}u_{i4} + u_{25}u_{26} + \cdots}{u_{i}^{2} + u_{i5}^{2} + u_{25}^{2}} \cdots$$

FIGURE I

Actual Seasonals

New Interpolation Method. Detroit Edison Interpolation

i e., the observed productions for two successive months are multiplied together and summed and the whole divided by the sum of the squares of the production of the first of the months.

These coefficients a_1 , a_2 , . . . correspond to the median link relatives, and the procedure is then similar to that used in that method, i. e., January is assumed to be 100.0, etc. We thus get the following table.

	(1)	(2)	(3)	(4)	(5)
Month	a,	Chain Relative	(2) Adjusted	Seasonal Indices	Error from Actual divided by 100
January	.951	100.0	100.0	95.5	035
February	1.106	95.1	94.8	90.5	025
March	1.043	105.2	104.3	99.6	054
April	1.037	109.6	108.3	103.4	+.014
May	934	113.7	111.9	106.8	+.028
June	.997	1062	104.1	99.4	+.014
July	1.018	1060	103 5	98.8	+.008
August	1.019	107.9	105.0	100.3	+.003
September	1 056	110.0	106.6	101.8	- 038
October	.915	116.2	112.2	107.1	+.031
November	1.020	106.3	102.2	97.6	- 014
December	.967	108.4	103.9	99.2	008
January		104.8	100.0		

TABLE III

The Standard Deviation of the Errors of column (5) is found to be ± 0.0269, which is considerably less than that of the Link Relative Method.

If we assume that u_x can be represented by the points on a theoretical curve $u_x = s(x) f(x) c(x) + \varepsilon_x$ as given by the Detroit Edison Statistical Department, it will be seen that February a, (January) gives

$$a_{t} = \frac{s(2)}{s(1)} \frac{\sum \left[f(x) c(x)\right] \left[f(x+1) c(x+1)\right]}{\sum \left[f(x) c(x)\right]^{2}}$$

where, if x-1 corresponds to the first January of time series, x-1, 13, 25, etc.

can therefore be found as soon as a value can be obtained for the adjustment factor $\frac{\sum \psi(x) \psi(x+1)}{\sum |\psi(x)|^2}$ where $\psi(x) = f(x) c(x)$ If the time series is smoothed by the method already discussed, satisfactory values of $\psi(x)$ are obtained and the adjustment factors easily computed. The smoothed values of the ordinates of the theoretical time series are given in Table II. As logarithmic correction, which has already been employed, assumes a constant adjustment factor for any pair of consecutive months, it will be interesting to find whether the assumption of a theoretical curve for the time series yields better adjustment factors than the constant one used in logarithmic correction.

TABLE IV

Month	Adjustment (1)	Chain Relative (2)	(2) adjusted (3)	Seasonal (4)	Error from actual/100
January		100.0	100.0	97.2	018
February	.994	94 5	94.4	91.8	012
March	.993	103.8	103.6	100.7	043
April	.991	107 3	107.1	104.1	+.021
May	.980	1090	108.7	105.7	+.017
June	.984	100.2	98.8	96.0	020
July	.996	99.5	99.0	96.2	018
August	1.000	101.3	100.8	98.0	020
September	1.015	104.7	104.1	101.2	+.032
October	1.016	112.3	111.6	108.5	+.045
November	1.006	103.3	102.5	99.6	+.006
December	.995	104.8	,104.0	101.1	÷.011
January	.996	100.9	100.0		

The adjustment factors are given in column (1) of Table IV, and the corresponding seasonal indices in column (4). The standard deviation of errors, \pm .0248, is less than that obtained with the adjustment as used in the link relative, but in this particular case the adjustment factor, using logarithmic correction, would be .996 for each month, differing little from the factors using smoothed ordinates. It will be noted that, owing to accidental errors, the chain relative for January is 100.9, not 100, and an arithmetical correction has to be applied.

From this one sees that, taking accidental errors into account, logarithmic correction is well adapted for reduction purposes.

Finally, I found the Seasonal Indices by the Variate Difference Method. In this method the trend is removed and second differences taken, which are treated by Fourier Analysis. For the second differences I obtained

$$\Delta^{3}u = +0.02 + 0.822 \cos (\theta - 339^{\circ}52') + 3.958 \cos (2\theta - 314^{\circ}53') + 3.902 \cos (3\theta - 39^{\circ}34') + 4.374 \cos (4\theta - 25^{\circ}58') + 9.942 \cos (5\theta - 293^{\circ}39') + 0.775 \cos 6\theta.$$

yielding the seasonal indices:

Jan. 96.9	Мау 105.б	Sept. 101.9
Feb. 89.2	June 99.4	Oct. 106.3
Mar. 100.8	July 98.3	Nov. 97.8
Apr. 103.4	Aug. 102.2	Dec. 98.3

Dividing the seasonals by 100 and comparing with Actual values, Mean and Standard Deviation of errors from the actual seasonals are

TABLE V
SEASONAL INDICES

Month	Actual Values	Interpolation Detroit Edison Robb		Link Relative	Modified Link Relative Log. Corec- Theoretical tion Correction		Variate Differ- ence
						-	
January	.990	.938	.973	.975	.955	.972	.969
February	.930	.885	.919	.890	.905	.918	.892
March	1.050	.988	1.014	.988	,996	1.007	1.008
April	1.020	1.021	1.039	1.007	1.034	1.041	1.034
May	1.040	1.065	1.062	1 030	1.068	1.057	1.056
June	.980	.986	.974	.962	,994	.960	.994
July	.980	.993	.967	.972	.988	.962	.983
August	1.000	1.017	.993	1.013	1.003	980	1.022
September	.980	1.028	1.010	1.033	1.018	1.012	1.019
October	1.040	1.079	1.067	1.099	1.071	1.085	1.063
November	.990	.985	.982	1.004	.976	.996	.978
December	1.000	1.009	1.005	1.027	.992	1.011	.983
S. D.		.0337	.0194	.0338	.0269	.0248	.0246

given by \pm 0.022 and \pm 0.0246, which are still considerably less than those obtained by Link Relative or Detroit Edison Interpolation. For reference I have put in Table V the results obtained from all the methods mentiond in this paper, together with their Standard Deviation (S. D.) of errors.

As the time taken to determine the Seasonal Indices by the various methods is important, I took the time series of Merchandise Imports for a period of ten years, and calculated the Seasonal Indices. Denoting the Link Relative method by \mathcal{R} , Modified Link Relative (Log. correction) by \mathcal{R}_2 , Interpolation (as given in this paper) by I, I found that as regards the time taken for one determination completely checked \mathcal{R} , : \mathcal{R}_2 : I :: 11:8:7

For the particular example taken, it took 1.75 hours to transcribe the material and to determine the Indices, completely checked, by the Interpolation method. For the Link Relative method, 7.75 hours were taken. It is desirable, if possible, to have two independent determinations, and the above times would consequently have to be doubled. The Variate Difference method roughly takes the same time as the Link Relative method, when the trend has been removed from the time series

Richard a. Robb.

Glasgow, Scotland.

I. A. R. I. 75

IMPERIAL AGRICULTURAL RESEARCH INSTITUTE LIBRARY NEW DELHI.

Date of issue.	Date of issue.	Date of issue.
Н. Л. ИН 16. 2.16. 3.2. Вы	*** *** ***	
, m'	1111497 11111 11	
*** ***********	1 4841111111111111111111111111111111111	
***************************************	***************************************	
10111 11 111 1111		
************	. +1111+1	
***************************************	4 (1) 11144 /	
1 11 11 11 1 11 11 11 11 11 11 11 11 11		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		