Clase práctica 1: Lenguajes Lenguajes Formales, Autómatas y Computabilidad

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

Primer cuatrimestre 2025

Temario de la materia

* Primera parte:

- 1. Lenguajes
- 2. Autómatas Finitos
- 3. Determinización
- 4. Pumping para lenguajes regulares
- 5. Expresiones regulares
- 6. Autómatas de Pila y Pumping para lenguajes libres de contexto

⋆ Segunda parte

- 1. Máquinas de Turing, funciones parcialmente computables
- 2. HALT, indecidibilidadd, reducciones y diagonalización
- 3. Conjuntos computablemente enumerables

Parte I

Conceptos básicos: sobre alfabetos, cadenas y definiciones recursivas

Definiciones básicas

Alfabeto

Conjunto finito y no vacío de símbolos.

En general los nombramos con letras griegas mayúsculas (Σ, Γ, Π)

Definiciones básicas

Alfabeto

Conjunto finito y no vacío de símbolos.

En general los nombramos con letras griegas mayúsculas (Σ, Γ, Π)

Cadena

Secuencia finita de símbolos de un alfabeto.

En general los nombramos con letras griegas minúsculas.

Ejemplos sobre
$$\Sigma = \{a, b, c\}$$

$$lpha = abc$$
 $eta = c$
 $eta = abacab$
 $\lambda = cadena vacía$

Potencia de un diccionario y clausuras

Sea Σ un alfabeto:

n-ésima potencia de un alfabeto

 Σ^n denota al conjunto de todas las cadenas de longitud exactamente n sobre Σ .

Potencia de un diccionario y clausuras

Sea Σ un alfabeto:

n-ésima potencia de un alfabeto

 Σ^n denota al conjunto de todas las cadenas de longitud exactamente n sobre Σ .

Clausura de Kleene

 Σ^* denota al conjunto de todas las cadenas sobre Σ . Formalmente:

$$\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$$

Potencia de un diccionario y clausuras

Sea Σ un alfabeto:

n-ésima potencia de un alfabeto

 Σ^n denota al conjunto de todas las cadenas de longitud exactamente n sobre Σ .

Clausura de Kleene

 Σ^* denota al conjunto de todas las cadenas sobre Σ . Formalmente:

$$\Sigma^* = \bigcup_{n \geqslant 0} \Sigma^n$$

Clausura positiva

 Σ^+ denota al conjunto de todas las cadenas *no vacías* sobre Σ excepto. Formalmente:

$$\Sigma^+ = \bigcup_{n \geq 1} \Sigma^n$$

Sea $\Sigma = \{a, b, c\}$, determinar si las siguientes afirmaciones son verdaderas o falsas.

a ∈ Σ

- \star a ∈ Σ (V)
- \star $\lambda \in \Sigma$

- \star a ∈ Σ (V)
- * $\lambda \in \Sigma$ (F)
- \star $\lambda \subseteq \Sigma$

- \star a ∈ Σ (V)
- * $\lambda \in \Sigma$ (F)
- * $\lambda \subseteq \Sigma$ (F)
- $\star \lambda \in \Sigma^0$

- \star a ∈ Σ (V)
- * $\lambda \in \Sigma$ (F)
- * $\lambda \subseteq \Sigma$ (F)
- * $\lambda \in \Sigma^0$ (V)
- \star {ac, bb} ⊆ Σ ²

- \star a ∈ Σ (V)
- * $\lambda \in \Sigma$ (F)
- * $\lambda \subseteq \Sigma$ (F)
- * $\lambda \in \Sigma^0$ (V)
- ★ $\{ac, bb\} \subseteq \Sigma^2$ (V)

Sea Σ un alfabeto, determinar si las siguientes afirmaciones son verdaderas o falsas.

 \star $\lambda \in \Sigma^*$

- ★ $\lambda \in \Sigma^*$ (V)
- \star $\lambda \in \Sigma^+$

- ★ $\lambda \in \Sigma^*$ (V)
- * $\lambda \in \Sigma^+$ (F)
- $\star \Sigma^+ \subsetneq \Sigma^*$

- $\star \lambda \in \Sigma^* (V)$
- * $\lambda \in \Sigma^+$ (F)
- * $\Sigma^+ \subsetneq \Sigma^*$ (V)
- $\star |\Sigma^n| = |\Sigma|^n$

- ★ $\lambda \in \Sigma^*$ (V)
- * $\lambda \in \Sigma^+$ (F)
- * $\Sigma^+ \subsetneq \Sigma^*$ (V)
- $\star |\Sigma^n| = |\Sigma|^n (V)$
- ⋆ Σ* es infinito

- $\star \lambda \in \Sigma^* (V)$
- * $\lambda \in \Sigma^+$ (F)
- * $\Sigma^+ \subsetneq \Sigma^*$ (V)
- $\star |\Sigma^n| = |\Sigma|^n (V)$
- \star Σ^* es infinito (∨)
- \star Existe una función $f: \mathbb{N} \to \Sigma^*$ biyectiva

- $\star \lambda \in \Sigma^* (V)$
- * $\lambda \in \Sigma^+$ (F)
- * $\Sigma^+ \subsetneq \Sigma^*$ (V)
- $\star |\Sigma^n| = |\Sigma|^n (V)$
- \star Σ^* es infinito (∨)
- ★ Existe una función $f: \mathbb{N} \to \Sigma^*$ biyectiva (V)

Concatenación de cadenas

Vamos a contar con una operación para trabajar sobre cadenas, que es la concatenación.

Concatenación

Dadas $\alpha, \beta \in \Sigma^*$ su concatenación es una cadena $\alpha.\beta \in \Sigma^*$ que contiene los símbolos de α seguidos de los símbolos de β .

Concatenación de cadenas

Vamos a contar con una operación para trabajar sobre cadenas, que es la concatenación.

Concatenación

Dadas $\alpha, \beta \in \Sigma^*$ su concatenación es una cadena $\alpha.\beta \in \Sigma^*$ que contiene los símbolos de α seguidos de los símbolos de β .

Propiedades de la concatenación

- 1. Es asociativa: $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$
- 2. Tiene **elemento neutro**: $\alpha . \lambda = \lambda . \alpha = \alpha$
- 3. No es conmutativa

Estructura de las cadenas

Dado un alfabeto Σ , toda cadena de Σ^* corresponde a uno de los siguientes casos:

- * O bien es la cadena vacía λ , o bien
- * es una cadena $x.\alpha$, donde $x \in \Sigma, \alpha \in \Sigma^*$.

Estructura de las cadenas

Dado un alfabeto Σ , toda cadena de Σ^* corresponde a uno de los siguientes casos:

- * O bien es la cadena vacía λ , o bien
- * es una cadena $x.\alpha$, donde $x \in \Sigma, \alpha \in \Sigma^*$.

Esto nos facilita para definir funciones de forma recursiva y demostrar propiedades usando inducción estructural. Por ejemplo, podemos definir la **longitud** de forma recursiva:

Estructura de las cadenas

Dado un alfabeto Σ , toda cadena de Σ^* corresponde a uno de los siguientes casos:

- * O bien es la cadena vacía λ , o bien
- * es una cadena $x.\alpha$, donde $x \in \Sigma, \alpha \in \Sigma^*$.

Esto nos facilita para definir funciones de forma recursiva y demostrar propiedades usando inducción estructural. Por ejemplo, podemos definir la **longitud** de forma recursiva:

Longitud

$$|\lambda| = 0$$

$$|x \cdot \alpha| = 1 + |\alpha|$$

Más definiciones recursivas

Cantidad de apariciones

Dado $x \in \Sigma$, $| \bullet |_x : \Sigma^* \to \mathbb{N}$ denota la cantidad de apariciones de x en una cadena. Se puede definir recursivamente como:

$$|\lambda|_{x} = 0$$

$$|y.\alpha|_{x} = \begin{cases} 1 + |\alpha|_{x} & \text{si } y = x \\ |\alpha|_{x} & \text{si } y \neq x \end{cases}$$

Más definiciones recursivas

Cantidad de apariciones

Dado $x \in \Sigma$, $| \bullet |_x : \Sigma^* \to \mathbb{N}$ denota la cantidad de apariciones de x en una cadena. Se puede definir recursivamente como:

$$|\lambda|_{x} = 0$$

$$|y.\alpha|_{x} = \begin{cases} 1 + |\alpha|_{x} & \text{si } y = x \\ |\alpha|_{x} & \text{si } y \neq x \end{cases}$$

Reversa

Dada $\alpha \in \Sigma^*$, $\bullet^r : \sigma^* \to \Sigma^*$ denota a la reversa de la cadena, que contiene los mismo símbolos que α pero en el orden inverso. Se puede definir recursivamente:

$$\lambda^r = \lambda$$
$$(x.\alpha)^r = \alpha^r.x$$

Enunciado

Sea Σ un alfabeto y $\alpha, \beta \in \Sigma^*$. Demostrar que

$$|\alpha.\beta| = |\alpha| + |\beta|$$

Enunciado

Sea Σ un alfabeto y $\alpha, \beta \in \Sigma^*$. Demostrar que

$$|\alpha.\beta| = |\alpha| + |\beta|$$

Resolución

Hagamos inducción estructural sobre α (podría hacerse también sobre β):

***** Caso base: $\alpha = \lambda$.

$$|\alpha.\beta| = |\lambda.\beta| = |\beta| = 0 + \beta = |\lambda| + |\beta| = |\alpha| + |\beta|$$

Ejercicio 3 continuación

Enunciado

Sea Σ un alfabeto y $\alpha, \beta \in \Sigma^*$. Demostrar que

$$|\alpha.\beta| = |\alpha| + |\beta|$$

Resolución

* Caso inductivo: $\alpha = x \cdot \alpha'$. Suponemos que la propiedad vale para α' :

$$\begin{split} |\alpha.\beta| &= |(x.\alpha').\beta| \quad (\textit{def.} \ \alpha) \\ &= 1 + |\alpha'.\beta| \quad (\textit{def.} \ | \bullet |) \\ &= 1 + |\alpha'| + |\beta| \quad (\textit{HI}) \\ &= |x.\alpha'| + |\beta| \quad (\textit{def.} \ | \bullet |) \\ &= |\alpha| + |\beta| \quad (\textit{def.} \ \alpha) \end{split}$$

Potencia de una cadena

Potencia

Dados $\alpha \in \Sigma^*$, $n \in \mathbb{N}$, la n-ésima potencia de α es una cadena $\alpha^n \in \Sigma^*$ que contiene a α repetida n veces. Podemos definirla recursivamente sobre n:

$$\alpha^0 = \lambda$$

$$\alpha^{n+1} = \alpha.\alpha^n$$

Enunciado

Sea Σ un alfabeto y $\alpha \in \Sigma^*$. Demostrar que

$$|\alpha^n| = n * |\alpha|$$

Enunciado

Sea Σ un alfabeto y $\alpha \in \Sigma^*$. Demostrar que

$$|\alpha^n| = n * |\alpha|$$

Resolución

Por inducción en n:

\star Caso base: n=0:

$$|\alpha^{0}| = |\lambda| = 0 = 0 * |\alpha|$$

Ejercicio 4 continuación

Enunciado

Sea Σ un alfabeto y $\alpha \in \Sigma^*$. Demostrar que

$$|\alpha^n| = n * |\alpha|$$

Resolución

Caso inductivo: n = m + 1, supongo que la propiedad vale para m:

$$\begin{split} |\alpha^n| &= |\alpha^{m+1}| = |\alpha.\alpha^m| \quad (\textit{def.} \ \alpha^n) \\ &= |\alpha| + |\alpha^m| \quad (\textit{ej. anterior}) \\ &= |\alpha| + m * |\alpha| \quad (\textit{HI}) \\ &= (1+m) * |\alpha| \\ &= n * |\alpha| \end{split}$$

Parte II

Lenguajes: sobre sus definiciones, propiedades y operaciones

Definiciones básicas

Lenguaje

Conjunto de cadenas sobre un alfabeto dado Σ . Es decir, es un conjunto $\mathcal{L} \subseteq \Sigma^*$.

Definiciones básicas

Lenguaje

Conjunto de cadenas sobre un alfabeto dado Σ . Es decir, es un conjunto $\mathcal{L} \subseteq \Sigma^*$.

Ejemplos de lenguajes sobre $\Sigma = \{a, b, c\}$

- \star $\mathcal{L}_1 = \emptyset$
- ★ $\mathcal{L}_2 = \{a, aa, aba, ac\}$
- * $\mathcal{L}_3 = \Sigma^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$
- $\star \mathcal{L}_4 = \Sigma^0 = \Lambda = \{\lambda\}$
- $\star \mathcal{L}_5 = \{ \alpha \in \Sigma^* \mid |\alpha| \text{ es par} \}$
- $\star \mathcal{L}_6 = \{ \alpha \in \Sigma^* \mid \alpha = \alpha^r \}$

Operaciones sobre lenguajes

Complemento

 $\mathcal{L}^c = \Sigma^* \backslash \mathcal{L}$. Es decir, es el conjunto de todas las cadenas de Σ^* que no pertenecen a \mathcal{L} .

Unión

Dados $\mathcal{L}_1, \mathcal{L}_2 \subseteq \Sigma^*$, $\mathcal{L}_1 \cup \mathcal{L}_2 = \{ \alpha \in \Sigma^* \mid \alpha \in \mathcal{L}_1 \lor \alpha \in \mathcal{L}_2 \}$.

Intersección

Dados $\mathcal{L}_1, \mathcal{L}_2 \subseteq \Sigma^*$, $\mathcal{L}_1 \cap \mathcal{L}_2 = \{ \alpha \in \Sigma^* \mid \alpha \in \mathcal{L}_1 \land \alpha \in \mathcal{L}_2 \}$.

Notar que para la unión y la intersección, ambos lenguajes deben estar definidos sobre el mismo alfabeto.

Enunciado

Sea $\mathcal{L} = \{a^n \mid n \geqslant 3\}$. Calcular:

- 1. $\mathcal{L}^c \operatorname{con} \Sigma = \{a\}.$
- 2. $\mathcal{L}^c \text{ con } \Sigma = \{a, b\}.$

Enunciado

Sea $\mathcal{L} = \{a^n \mid n \geqslant 3\}$. Calcular:

- 1. $\mathcal{L}^c \operatorname{con} \Sigma = \{a\}.$
- 2. $\mathcal{L}^c \operatorname{con} \Sigma = \{a, b\}.$

Resolución

- 1. $\mathcal{L}^c = \{a^n \mid n < 3\} = \{\lambda, a, aa\}$
- 2. $\mathcal{L}^c = \{a^n \mid n < 3\} \cup \{\alpha \in \Sigma^* \mid |\alpha|_b \geqslant 1\}$

Más operaciones sobre lenguajes

Reverso

Dado $\mathcal{L} \subseteq \Sigma^*, \mathcal{L}^r = \{\alpha^r \mid \alpha \in \mathcal{L}\}$. Es decir, es el conjunto de las reversas de las cadenas de \mathcal{L} .

Más operaciones sobre lenguajes

Reverso

Dado $\mathcal{L} \subseteq \Sigma^*, \mathcal{L}^r = \{\alpha^r \mid \alpha \in \mathcal{L}\}$. Es decir, es el conjunto de las reversas de las cadenas de \mathcal{L} .

Concatenación

Dados $\mathcal{L}_1, \mathcal{L}_2 \subseteq \Sigma^*$, la concatenación es el conjunto de todas las cadenas que se obtienen de concatenar una cadena de \mathcal{L}_1 con una cadena de \mathcal{L}_2 :

$$\mathcal{L}_1.\mathcal{L}_2 = \{\alpha.\beta \mid \alpha \in \mathcal{L}_1 \land \beta \in \mathcal{L}_2\}$$

Más operaciones sobre lenguajes

Reverso

Dado $\mathcal{L} \subseteq \Sigma^*, \mathcal{L}^r = \{\alpha^r \mid \alpha \in \mathcal{L}\}$. Es decir, es el conjunto de las reversas de las cadenas de \mathcal{L} .

Concatenación

Dados $\mathcal{L}_1, \mathcal{L}_2 \subseteq \Sigma^*$, la concatenación es el conjunto de todas las cadenas que se obtienen de concatenar una cadena de \mathcal{L}_1 con una cadena de \mathcal{L}_2 :

$$\mathcal{L}_1.\mathcal{L}_2 = \{\alpha.\beta \mid \alpha \in \mathcal{L}_1 \land \beta \in \mathcal{L}_2\}$$

Potencia

Dado $\mathcal{L} \subseteq \Sigma^*$, su *n*-ésima potencia es el conjunto de todas las cadenas que se pueden obtener concatenando *n* cadenas de \mathcal{L} .

$$\mathcal{L}^{n} = \begin{cases} \Lambda & \text{si } n = 0\\ \mathcal{L}.\mathcal{L}^{n-1} & \text{si } n > 0 \end{cases}$$

★ ¿La unión tiene elemento neutro?

- ⋆ ¿La unión tiene elemento neutro? Sí, Ø
- * ¿La intersección tiene elemento neutro?

- * ¿La unión tiene elemento neutro? Sí, Ø
- * ¿La intersección tiene elemento neutro? Sí, Σ*
- ★ ¿La concatenación tiene elemento neutro?

- ⋆ ¿La unión tiene elemento neutro? Sí, Ø
- * ¿La intersección tiene elemento neutro? Sí, Σ*
- * ¿La concatenación tiene elemento neutro? Sí, Λ
- * ¿La unión tiene elemento absorbente?

- ¿La unión tiene elemento neutro? Sí, Ø
- * ¿La intersección tiene elemento neutro? Sí, Σ*
- * ¿La concatenación tiene elemento neutro? Sí, Λ
- * ¿La unión tiene elemento absorbente? No
- * ¿La intersección tiene elemento absorbente?

- ¿La unión tiene elemento neutro? Sí, Ø
- * ¿La intersección tiene elemento neutro? Sí, Σ*
- * ¿La concatenación tiene elemento neutro? Sí, Λ
- * ¿La unión tiene elemento absorbente? No
- ¿La intersección tiene elemento absorbente? Sí, Ø
- * ¿La concatenación tiene elemento absorbente?

- ¿La unión tiene elemento neutro? Sí, Ø
- * ¿La intersección tiene elemento neutro? Sí, Σ*
- * ¿La concatenación tiene elemento neutro? Sí, Λ
- * ¿La unión tiene elemento absorbente? No
- * ¿La intersección tiene elemento absorbente? Sí, Ø
- * ¿La concatenación tiene elemento absorbente? Sí, Ø
- ⋆ ¿La concatenación es asociativa?

- * ¿La unión tiene elemento neutro? Sí, Ø
- * ¿La intersección tiene elemento neutro? Sí, Σ*
- * ¿La concatenación tiene elemento neutro? Sí, Λ
- * ¿La unión tiene elemento absorbente? No
- * ¿La intersección tiene elemento absorbente? Sí, Ø
- * ¿La concatenación tiene elemento absorbente? Sí, Ø
- ¿La concatenación es asociativa? Sí
- ⋆ ¿La concatenación es conmutativa?

- ¿La unión tiene elemento neutro? Sí, Ø
- * ¿La intersección tiene elemento neutro? Sí, Σ*
- * ¿La concatenación tiene elemento neutro? Sí, Λ
- * ¿La unión tiene elemento absorbente? No
- * ¿La intersección tiene elemento absorbente? Sí, Ø
- * ¿La concatenación tiene elemento absorbente? Sí, Ø
- ⋆ ¿La concatenación es asociativa? Sí
- ⋆ ¿La concatenación es conmutativa? No

Clausuras de lenguajes

Dado $\mathcal{L}\subseteq \Sigma^*$, podemos definir las clausuras del lenguaje de forma similar a como hicimos para alfabetos.

Clausura de Kleene

 \mathcal{L}^* es el conjunto de todas las cadenas que se pueden obtener concatenando cero o más cadenas de \mathcal{L} .

$$\mathcal{L}^* = \bigcup_{n \geq 0} \mathcal{L}^n$$

Clausura positiva

 \mathcal{L}^+ es el conjunto de todas las cadenas que se pueden obtener concatenando una o más cadenas de \mathcal{L} .

$$\mathcal{L}^+ = \bigcup_{n \geqslant 1} \mathcal{L}^n$$

Sean $\mathcal{L}, \mathcal{L}_1, \mathcal{L}_2 \subseteq \Sigma^*$, decidir si las siguientes afirmaciones son verdaderas o falsas:

- 1. $\mathcal{L}^+ \subset \mathcal{L}^*$
- $2. \mathcal{L}^+ \subseteq \mathcal{L}^*$
- 3. Si $\mathcal{L}_1 \subseteq \mathcal{L}_2$, entonces $\mathcal{L}_1^n \subseteq \mathcal{L}_2^n$ para todo $n \geqslant 0$.
- 4. Si $\mathcal{L}_1 \subseteq \mathcal{L}_2$, entonces $\mathcal{L}_1^* \subseteq \mathcal{L}_2^*$.
- 5. $(\mathcal{L}^*)^* = \mathcal{L}^*$
- 6. $(\mathcal{L}_1 \cup \mathcal{L}_2)^* = \mathcal{L}_1^* \cup \mathcal{L}_2^*$
- 7. $(\mathcal{L}^2)^* = \mathcal{L}^*$
- 8. $(\mathcal{L}^*)^r = (\mathcal{L}^r)^*$

1. $\mathcal{L}^+ \subseteq \mathcal{L}^*$

1. $\mathcal{L}^+ \subset \mathcal{L}^*$

Verdadero. Por definición:

$$\mathcal{L}^+ = \bigcup_{n \geqslant 1} \mathcal{L}^n \subseteq \bigcup_{n \geqslant 1} \mathcal{L}^n \cup \mathcal{L}^0 = \bigcup_{n \geqslant 0} \mathcal{L}^n = \mathcal{L}^*$$

2. $\mathcal{L}^+ \subsetneq \mathcal{L}^*$

1. $\mathcal{L}^+ \subset \mathcal{L}^*$

Verdadero. Por definición:

$$\mathcal{L}^{+} = \bigcup_{n \geqslant 1} \mathcal{L}^{n} \subseteq \bigcup_{n \geqslant 1} \mathcal{L}^{n} \cup \mathcal{L}^{0} = \bigcup_{n \geqslant 0} \mathcal{L}^{n} = \mathcal{L}^{*}$$

- 2. $\mathcal{L}^+ \subsetneq \mathcal{L}^*$ **Falso** si $\lambda \in \mathcal{L}$. Por ejemplo, $\{\lambda, a\}^+ = \{\lambda, a\}^*$.
- 3. Si $\mathcal{L}_1 \subseteq \mathcal{L}_2$, entonces $\mathcal{L}_1^n \subseteq \mathcal{L}_2^n$ para todo $n \geqslant 0$.

1. $\mathcal{L}^+ \subset \mathcal{L}^*$

Verdadero. Por definición:

$$\mathcal{L}^+ = \bigcup_{n \geqslant 1} \mathcal{L}^n \subseteq \bigcup_{n \geqslant 1} \mathcal{L}^n \cup \mathcal{L}^0 = \bigcup_{n \geqslant 0} \mathcal{L}^n = \mathcal{L}^*$$

- 2. $\mathcal{L}^+ \subsetneq \mathcal{L}^*$
 - **Falso** si $\lambda \in \mathcal{L}$. Por ejemplo, $\{\lambda, a\}^+ = \{\lambda, a\}^*$.
- 3. Si $\mathcal{L}_1 \subseteq \mathcal{L}_2$, entonces $\mathcal{L}_1^n \subseteq \mathcal{L}_2^n$ para todo $n \ge 0$. **Verdadero**, por inducción en n:
 - *** Caso base:** si n = 0, $\mathcal{L}_1^0 = \mathcal{L}_2^0 = \Lambda$.
 - * Caso inductivo: n = m + 1. Sea $\alpha \in \mathcal{L}_1^n$, esto quiere decir que $\alpha = \beta \gamma$ con $\beta \in \mathcal{L}_1$ y $\gamma \in \mathcal{L}_1^m$. Entonces $\beta \in \mathcal{L}_2$ y $\gamma \in \mathcal{L}_2^m$, pues por hipótesis inductiva $\mathcal{L}_1 \subseteq \mathcal{L}_2$ y $\mathcal{L}_1^m \subseteq \mathcal{L}_2^m$. Luego, $\alpha \in \mathcal{L}_2^{m+1} = \mathcal{L}_2^n$.

4. Si $\mathcal{L}_1 \subseteq \mathcal{L}_2$, entonces $\mathcal{L}_1^* \subseteq \mathcal{L}_2^*$.

4. Si $\mathcal{L}_1 \subseteq \mathcal{L}_2$, entonces $\mathcal{L}_1^* \subseteq \mathcal{L}_2^*$. **Verdadero**, se deduce de la definición de clausura de Kleene y el inciso anterior.

5. $(\mathcal{L}^*)^* = \mathcal{L}^*$

- Si L₁ ⊆ L₂, entonces L₁* ⊆ L₂*.
 Verdadero, se deduce de la definición de clausura de Kleene y el inciso anterior.
- 5. $(\mathcal{L}^*)^* = \mathcal{L}^*$ **Verdadero**, probemos la doble inclusión:
 - * \subseteq) Sea $\alpha \in (\mathcal{L}^*)^*$, entonces $\alpha = \beta_1...\beta_n$, con cada $\beta_i \in \mathcal{L}^*$. Cada $\beta_i \in \mathcal{L}^{m_i}$ para algún $m_i \geqslant 0$. Luego $\alpha \in \mathcal{L}^{m_1}...\mathcal{L}^{m_n} = \mathcal{L}^{m_1+...+m_N} \subseteq \mathcal{L}^*$.
 - **★** \supseteq) Por definición $\mathcal{L} \subseteq \mathcal{L}^*$. Por el inciso anterior, $\mathcal{L}^* \subseteq (\mathcal{L}^*)^*$.
- 6. $(\mathcal{L}_1 \cup \mathcal{L}_2)^* = \mathcal{L}_1^* \cup \mathcal{L}_2^*$

- Si L₁ ⊆ L₂, entonces L₁* ⊆ L₂*.
 Verdadero, se deduce de la definición de clausura de Kleene y el inciso anterior.
- 5. $(\mathcal{L}^*)^* = \mathcal{L}^*$ **Verdadero**, probemos la doble inclusión:
 - * \subseteq) Sea $\alpha \in (\mathcal{L}^*)^*$, entonces $\alpha = \beta_1...\beta_n$, con cada $\beta_i \in \mathcal{L}^*$. Cada $\beta_i \in \mathcal{L}^{m_i}$ para algún $m_i \geqslant 0$. Luego $\alpha \in \mathcal{L}^{m_1}...\mathcal{L}^{m_n} = \mathcal{L}^{m_1+...+m_N} \subseteq \mathcal{L}^*$.
 - **★** \supseteq) Por definición $\mathcal{L} \subseteq \mathcal{L}^*$. Por el inciso anterior, $\mathcal{L}^* \subseteq (\mathcal{L}^*)^*$.
- 6. $(\mathcal{L}_1 \cup \mathcal{L}_2)^* = \mathcal{L}_1^* \cup \mathcal{L}_2^*$ **Falso**, tomando $\mathcal{L}_1 = \{a\}, \mathcal{L}_2 = \{b\}, ab \in (\mathcal{L}_1 \cup \mathcal{L}_2)^*$, pero $ab \notin \mathcal{L}_1^* \cup \mathcal{L}_2^*$.

7.
$$(\mathcal{L}^2)^* = \mathcal{L}^*$$

- 7. $(\mathcal{L}^2)^* = \mathcal{L}^*$ Falso, tomando $\mathcal{L} = \{a\}, a \in \mathcal{L}^*$ pero $a \notin (\mathcal{L}^2)^*$.
- 8. $(\mathcal{L}^*)^r = (\mathcal{L}^r)^*$

- 7. $(\mathcal{L}^2)^* = \mathcal{L}^*$ Falso, tomando $\mathcal{L} = \{a\}, a \in \mathcal{L}^*$ pero $a \notin (\mathcal{L}^2)^*$.
- 8. $(\mathcal{L}^*)^r = (\mathcal{L}^r)^*$ **Verdadero**, por definición, $\alpha \in (\mathcal{L}^*)^r$:

$$\begin{aligned} & sii \ \alpha^r \in \mathcal{L}^* \\ & sii \ \alpha^r \in \mathcal{L}^n \ para \ alg \'un \ n \geqslant 0 \\ & sii \ \alpha^r = \alpha_1...\alpha_n \ con \ \alpha_i \in \mathcal{L} \\ & sii \ \alpha = (\alpha_1...\alpha_n)^r \\ & sii \ \alpha = \alpha_n^r...\alpha_1^r \\ & sii \ \alpha \in (\mathcal{L}^r)^n \subseteq (\mathcal{L}^r)^* \end{aligned}$$

Prefijos, sufijos y subcadenas

Sea $\mathcal{L} \subseteq \Sigma^*$ un lenguaje, definimos:

Prefijos

 $\mathit{Ini}(\mathcal{L})$ es el lenguaje que se obtiene de quitar cero o más símbolos del final de las cadenas de $\mathcal{L}.$

Sufijos

 $Fin(\mathcal{L})$ es el lenguaje que se obtiene de quitar cero o más símbolos del comienzo de las cadenas de \mathcal{L} .

Subcadenas

 $Sub(\mathcal{L})$ es el lenguaje que se obtiene de quitar cero o más símbolos del comienzo y/o del final de las cadenas de \mathcal{L} .

Prefijos, sufijos y subcadenas: definición formal

Sea $\mathcal{L} \subseteq \Sigma^*$ un lenguaje, definimos formalmente:

Prefijos

$$\mathit{Ini}(\mathcal{L}) = \{\alpha \in \Sigma^* \mid \exists \beta \in \Sigma^* \ \mathit{tal que} \ \alpha\beta \in \mathcal{L}\}$$

Sufijos

$$Fin(\mathcal{L}) = \{ \alpha \in \Sigma^* \mid \exists \beta \in \Sigma^* \text{ tal que } \beta \alpha \in \mathcal{L} \}$$

Subcadenas

$$Sub(\mathcal{L}) = \{ \alpha \in \Sigma^* \mid \exists \beta, \gamma \in \Sigma^* \text{ tal que } \beta \alpha \gamma \in \mathcal{L} \}$$

1.
$$\mathcal{L} \subseteq Ini(\mathcal{L}) \subseteq Sub(\mathcal{L}) \subseteq \Sigma^*$$

- 1. $\mathcal{L} \subseteq Ini(\mathcal{L}) \subseteq Sub(\mathcal{L}) \subseteq \Sigma^*$ (V)
- 2. $\mathcal{L} \subseteq Fin(\mathcal{L}) \subseteq Sub(\mathcal{L}) \subseteq \Sigma^*$

- 1. $\mathcal{L} \subseteq Ini(\mathcal{L}) \subseteq Sub(\mathcal{L}) \subseteq \Sigma^*$ (V)
- 2. $\mathcal{L} \subseteq Fin(\mathcal{L}) \subseteq Sub(\mathcal{L}) \subseteq \Sigma^*$ (V)
- 3. $\lambda \in Ini(\mathcal{L}) \cap Fin(\mathcal{L})$

- 1. $\mathcal{L} \subseteq Ini(\mathcal{L}) \subseteq Sub(\mathcal{L}) \subseteq \Sigma^*$ (V)
- 2. $\mathcal{L} \subseteq Fin(\mathcal{L}) \subseteq Sub(\mathcal{L}) \subseteq \Sigma^*$ (V)
- 3. $\lambda \in Ini(\mathcal{L}) \cap Fin(\mathcal{L})$ (F)
- 4. Si $\mathcal{L} \neq \emptyset$, entonces $\lambda \in Ini(\mathcal{L}) \cap Fin(\mathcal{L})$

- 1. $\mathcal{L} \subseteq Ini(\mathcal{L}) \subseteq Sub(\mathcal{L}) \subseteq \Sigma^*$ (V)
- 2. $\mathcal{L} \subseteq Fin(\mathcal{L}) \subseteq Sub(\mathcal{L}) \subseteq \Sigma^*$ (V)
- 3. $\lambda \in Ini(\mathcal{L}) \cap Fin(\mathcal{L})$ (F)
- 4. Si $\mathcal{L} \neq \emptyset$, entonces $\lambda \in Ini(\mathcal{L}) \cap Fin(\mathcal{L})$ (V)
- 5. $Ini(Sub(\mathcal{L})) = Sub(\mathcal{L})$

- 1. $\mathcal{L} \subseteq Ini(\mathcal{L}) \subseteq Sub(\mathcal{L}) \subseteq \Sigma^*$ (V)
- 2. $\mathcal{L} \subseteq Fin(\mathcal{L}) \subseteq Sub(\mathcal{L}) \subseteq \Sigma^*$ (V)
- 3. $\lambda \in Ini(\mathcal{L}) \cap Fin(\mathcal{L})$ (F)
- 4. Si $\mathcal{L} \neq \emptyset$, entonces $\lambda \in Ini(\mathcal{L}) \cap Fin(\mathcal{L})$ (V)
- 5. $Ini(Sub(\mathcal{L})) = Sub(\mathcal{L})$ (V)

FIN

