Seminari 3: Compacitat i successions

Arnau Mas

11 de desembre de 2018

Problema 1

- (a) Considerem una successió (x_n) a un espai Hausdorff X convergent a dos punts x i y. Si U és un entorn de x i V un entorn de y aleshores tots dos entorns contenen una cua de la successió i per tant no poden tenir intersecció nul·la. Així x i y no són separables i per tant han de ser el mateix punt.
- **(b)** Sigui (x_n) una successió a un espai de Hausdorff i $(x_{n_k}$ una parcial de la successió. Per definició de successió parcial, la successió (n_k) és estrictament creixent. Si $x_n \to x$, tenim que per tot entorn U de x, existeix un $N \in \mathbb{N}$ tal que $x_n \in U$ quan n > N. Com que n_k és estrictament creixent, existeix $K \in \mathbb{N}$ tal que $n_K > N$, i per tant, si k > K, $n_k > n_K > N$ de manera que $x_{n_k} \in U$. Concloem que (x_{n_k}) també convergeix a x.

Problema 2

(a) Per veure que \mathbb{N} amb aquesta topologia no és Hausdorff és suficient veure que tots els oberts no buits tenen intersecció no buida. Si denotem $\{0,1,\ldots,n\}$ per U_n tenim que els oberts no buits de la topologia són o bé el total o bé U_n per algun $n \in \mathbb{N}$. És clar que si $n \leq m$,

$$U_n \subset U_m$$

de manera que no hi ha oberts no trivials amb intersecció no buida, i per tant l'espai no pot ser Hausdorff.

(b) La successió donada no convergeix a 0 ja que $\{0\}$ és un entorn de 0 que no conté cap punt de la successió. Tampoc convergeix a 1 ja que $\{0,1\}$ és un entorn de 1 i si $x_n \in \{0,1\}$ aleshores $x_n = 1$. Així $x_{n+1} = 2 \notin \{1,2\}$, de manera que hi ha un entorn de 1 que no conté cap cua de la successió, i per tant aquesta no convergeix a 1.

Tenim que tots els termes de la successió són a U_2 i per tant a U_m per tot $m \geq 2$. És clar que qualsevol entorn d'un punt $m \in \mathbb{N}$ conté U_m , ja que U_m és l'obert més petit que conté m. Així tots els termes de la successió estan continguts a qualsevol entorn de $m \geq 2$, i per tant aquesta convergeix a tot m més gran o igual que 2. (c) Si fem servir la notació de l'apartat anterior, tenim que

$$\bigcup_{n=0}^{\infty} U_n = \mathbb{N},$$

de manera que $\{U_n\}_{n\in\mathbb{N}}$ és un recobriment de \mathbb{N} . Veurem que no en podem extreure un subrecobriment finit, i per tant que \mathbb{N} no és compacte. En efecte, si $\{U_{n_1},\ldots,U_{n_k}\}$ és un subrecobriment finit aleshores, si $N=\max_{1\leq i\leq k}n_k$

$$\bigcup_{i=1}^k U_{n_i} = U_N \subset \mathbb{N}.$$

Per tant no podem recobrir \mathbb{N} amb un subrecobriment finit de $\{U_n\}_{n\in\mathbb{N}}$, ergo \mathbb{N} no és compacte amb aquesta topologia.

Problema 3

(a) Aquest és el teorema de Bolzano-Weierstraß que se segueix immediatament de l'apartat (d).

Per veure que (0,1] no és compacte per successions, considerem la successió $\left(\frac{1}{n}\right)$. Sabem que, mirada a \mathbb{R} , és convergent a 0. I per tant qualsevol parcial també convergeix a 0. Això vol dir que per tot $\epsilon > 0$ existeix $N \in \mathbb{N}$ tal que si n > N, $x_n \in B(0,\epsilon) = (-\epsilon,\epsilon)$. Si ens ho mirem amb la topologia subespai a (0,1], tenim que per tot $\epsilon > 0$ existeix $N \in \mathbb{N}$ tal que si n > N, $x_n \in (0,\epsilon)$. Això ens dóna que la successió ni cap de les seves parcials no poden convergir a cap punt de (0,1]. Efectivament, per tot $a \in (0,1]$, $\left(\frac{1}{2}a,1\right]$ és un entorn d'a. Com hem vist, existeix $N \in \mathbb{N}$ tal que si n > N, $x_n \in \left(0,\frac{1}{2}a\right)$, i per tant $x_n \notin \left(\frac{1}{2}a,1\right]$ i per tant $\left(\frac{1}{n}\right)$ no té cap parcial convergent a (0,1].

(b) Suposem, buscant una contradicció, que S és un subconjunt infinit d'un espai topològic compacte X que no té punts d'acumulació. Això vol dir que tot $x \in X$ té un entorn N_x tal que N_x no té punts de S tret de possiblement x. Considerem U_x l'obert tal que $x \in U_x \subseteq N_x$, que existeix per la definició d'entorn. És clar que

$$X = \bigcup_{x \in X} U_x,$$

i per tant $\{U_x\}_{x\in X}$ és un recobriment de X. Aquest recobriment, però, no té cap subrecobriment finit. En efecte, si $\{U_{x_1},\ldots,U_{x_N}\}$ és un subrecobriment finit, aquest no pot recobrir X. Això és perquè cada U_{x_k} conté, com a màxim, un punt de S, i per tant no pot ser que la seva unió contingui S, puix que és infinit. Però X és compacte, de manera que hauria de ser possible trobar un subrecobriment finit, de manera que hem arribat a contradicció.

(c) Denotem per S el conjunt imatge d'una successió (x_n) a un espai mètric. Hem de veure que si x és un punt d'acumulació d'S aleshores (x_n) té una parcial convergent a x.

Observem primer que per tot $\epsilon > 0$ la bola $B(x, \epsilon)$ conté infinits termes de la successió. Com que $B(x, \epsilon)$ és un entorn de x, ha de contenir almenys un terme de la successió diferent de x. Posem que $B(x, \epsilon)$ conté un conjunt finit d'aquests punts, $\{x_{n_1}, \ldots, x_{n_k}\}$. Aleshores

$$d = \max_{1 \le i \le k} d(x, x_{n_i}) > 0$$

de manera que B(x,d) és un entorn de x. Així ha de contenir almenys un terme de la successió diferent de x, posem $x_{n_{k+1}}$, tal que $d(x,x_{n_{k+1}}) < d$, i que per tant és diferent dels altres x_{n_i} —observem que els x_{n_i} poden ser iguals, però $x_{n_{k+1}}$ ha de ser diferent de tots ells—. Així, si $B(x,\epsilon)$ conté un nombre finit de termes de la successió, sempre en podem trobar un altre de diferent i concloem que en conté infinits.

Amb aquest resultat previ podem construir una parcial de (x_n) convergent a x iterativament. Com que B(x,1) és un entorn de x conté un terme de la successió diferent de x, posem x_{n_1} . Aleshores $d_1 = d(x_{n_1}, x) > 0$. Així $B(x, d_1)$ és un entorn de x que per tant conté infinits termes de la successió diferents de x, i per tant infinits termes x_n amb $n \ge n_1$. Sigui n_2 el primer $n \ge n_1$ tal que $x_n \in B(x, d_1)$. Aleshores $0 < d_2 = d(x, x_{n_2}) < d_1$. Ja veiem, doncs, quin és el procés iteratiu que genera aquesta parcial: donat el terme x_{n_k} , construïm el terme $x_{n_{k+1}}$ considerant el primer n tal que $n \ge n_k$ tal que $x_{n_{k+1}} \in B(x, d_k)$, on $d_k = d(x, x_k)$, que sempre existeix pel que hem argumentat abans.

Només queda veure que aquesta successió efectivament convergeix a x. Per veure això n'hi ha prou amb veure la convergència pels oberts bàsics, que en aquest cas són les boles ja que estem en un espai mètric. Considerem la successió $d_k = d(x, x_{n_k})$, que és decreixent. Veiem que no està fitada inferiorment per cap real positiu: si existeix a > 0 tal que $d_k \ge a$ per tot $k \in \mathbb{N}$ aleshores $x_{n_k} \notin B(x, a)$. Com que a > 0, B(x, a) és obert i per tant conté algun terme de la successió diferent de x, x_l . Però això no pot ser ja que, com que (x_{n_k}) és una parcial, (n_k) és creixent, i per tant excedeix l en algun punt i per tant hi hauria algun x_{n_i} a B(x, a), una contradicció. Això vol dir que per tot $\epsilon > 0$, existeix $K \in \mathbb{N}$ tal que $d_K < \epsilon$. Per tant, si k > K, $d(x_{n_k}, x) < d_K < \epsilon$ i per tant $x_{n_k} \in B(x, \epsilon)$, i concloem que (x_{n_k}) convergeix a x.

(d) Sigui K un espai mètric compacte. Si K és finit és immediat que és compacte. Efectivament, si $K = \{y_1, \ldots, y_n\}$ i (x_n) és una successió a K, pel principi del colomar, existeix $1 \le i \le N$ tal que $x_n = y_i$ per infinits n. És clar que la parcial formada per aquests termes convergeix a y_i .

Si K és infinit, per l'apartat **(b)** té un punt d'acumulació. Si (x_n) és una successió a K té, per l'apartat **(c)**, una parcial convergent al punt d'acumulació, i per tant K és compacte per successions.

Problema 4

Considerem l'espai $X = \{0,1\}^{[0,1]}$. Aquest espai és un producte de $\{0,1\}$ indexat a [0,1], o, equivalentment, el conjunt de funcions de [0,1] a $\{0,1\}$. La topologia a X és la topologia producte, que té per oberts bàsics productes infinits d'oberts de $\{0,1\}$ on només un nombre finit dels factors pot diferir del total. Equivalentment, com que $\{0,1\}$

amb la topologia discreta només té dos oberts no trivials: $\{0\}$ i $\{1\}$, els oberts bàsics són conjunts de funcions que coincideixen en un nombre finit de punts, és a dir, conjunts de la forma

$$\{f: [0,1] \to \{0,1\} \mid f(a_1) = \dots = f(a_n) = 0 \text{ i } f(b_1) = \dots = f(b_m) = 1\}.$$

X és compacte pel teorema de Tychonoff, ja que és el producte de compactes — $\{0,1\}$ és trivialment compacte amb qualsevol topologia per ser finit—.

Observem que, en general, la noció de convergència que dóna la topologia producte és precisament la de convergència puntual. És a dir, una successió (f_n) a Y^X convergeix a $f \in Y^X$ respecte la topologia producte si i només si per tot $x \in X$ $f_n(x)$ convergeix a f(x) en la topologia de Y. Efectivament, si f_n convergeix a puntualment f i considerem un un entorn obert bàsic de f a Y^X ,

$$U = \{g \colon X \to Y \mid g(x_1) \in U_1, \dots, g(x_n) \in U_n \},\$$

sent U_1, \ldots, U_n oberts de Y, aleshores per cada U_k existeix $N_k \in \mathbb{N}$ tal que $f_n(x_k) \in U_k$ quan $n \geq N_k$. Prenem N el màxim d'aquests N_k i tenim que per tot $n \geq N$, $f_n(x_k) \in U_k$ per tot $1 \leq k \leq n$, i per tant $f_n \in U$ per tot $n \geq N$. Així tenim que f_n convergeix a f respecte la topologia producte. Recíprocament, suposem que f_n convergeix a f respecte la topologia producte. Per tot $x \in X$ i $U \subseteq Y$ obert que conté f(x),

$$\{g\colon X\to Y\mid g(x)\in U\}$$

és un entorn obert de f, que per hipòtesi conté una cua de (f_n) . Equivalentment, existeix $N \in \mathbb{N}$ tal que si n > N, $f_n(x) \in U$. Per tant la successió $(f_n(x))$ convergeix a f(x) per tot $x \in X$.

Per veure que X no és seqüencialment compacte hem de produir una successió de X que no tingui cap parcial convergent. Per fer això farem ús de la representació binària dels elements de [0,1]. Per cada $x \in [0,1]$ existeixen $x_n \in \{0,1\}$ tals que

$$x = \sum_{n=0}^{\infty} \frac{x_n}{2^n}.$$

I si excloem cues infinites d'uns, els x_n són únics. Aleshores definim $f_n : [0, 1] \to \{0, 1\}$ per $f_n(x) = x_n$. És a dir, $f_n(x)$ és l'n-èssim dígit en la representació binària d'x. Necessitem excloure les cues d'uns precisament per garantir que f_n estigui ben definida. Veurem que cap parcial d'aquesta successió és convergent.

Per tota parcial (f_{n_k}) existeix $a \in [0, 1]$ tal que $f_{n_k}(a) = \frac{1}{2}(1 + (-1)^k)$, és a dir, tal que les seves imatges per la successió alternen de 0 a 1. Per exemple

$$a = \frac{1}{2} \sum_{k=0}^{\infty} \frac{1 + (-1)^k}{2^{n_k}},$$

que és simplement l'element que té totes les seves xifres iguals a 0 tret de les de les posicions n_k , que alternen entre 0 i 1, com volem. És clar que la successió $(f_{n_k}(a))$ no pot convergir a $\{0,1\}$ amb la topologia discreta. Així, per tot $f \in X$, $f_{n_k}(a)$ no convergeix a f(a), independenment el valor de f(a). Així f_{n_k} no convergeix puntualment a cap element de X. I pel que hem argumentat anteriorment, això és equivalent a dir que no convergeix respecte la topologia producte, tal i com volíem.