Coordinate Theorem

let V be a VS/F with basis $\mathbb{B} = \{v_1 \dots v_n\}$, and $v \in V$. Then $\exists ! \alpha_1 \dots \alpha_n \in F$ s.t. $v = \alpha_1 v_1 + \dots \alpha_n v_n$. $(\exists ! \to \text{exists unique})$

Proof. span $\{\mathbb{B}\} = V$;

 \mathbb{B} satisfies span $\{\mathbb{B}\} = V, u, v \in \text{Span}(\mathbb{B})$

 $\alpha_1 \dots \alpha_n$ unique

Suppose $\alpha_1 v_1 \dots \alpha_n v_n = v = \beta_1 v_1 + \dots + \beta_n v_n, \ \beta_1 \dots \beta_n \in F$

So, $(\alpha_1 - \beta_i)v_1 + ... + (\alpha_n - \beta_n)v_n = 0$

Hence $\alpha_i = \beta_i$, $\forall i$ as \mathbb{B} is linearly independent.

Question: is theorem true if V is a VS/F with basis \mathbb{B} ?

Important Exercise: let V be a VS/F, $v_1, \ldots, v_n \in V$.

Then $\operatorname{span}\{v_1 \dots v_n\} = \operatorname{span}\{v_2 \dots v_n\}$ iff $v_1 \in \operatorname{span}\{v_2 \dots v_n\}$

Induction

To prove a statement by induction, let P(n) be statement for any $n \in \mathbb{Z}^+$ that is either true of false for each n

To show P(n) is true $\forall n$

To do that you first prove P(1) is true

Now suppose P(n) is true (the induction hypothesis)

Then, show $P(n) \to P(n+1)$

[Note: n must be arbitrary]

[Note: can stand at any n e.g. n = 0]]

Toss Out: let V be a VS/F and suppose that V can be spanned by a finite number of vectors, then V is a fdvs/F

More precisely, if $v_1 \dots v_n \in V$ s.t. $\{v_1 \dots v_n\}$ spans V, then a subset of $\{v_1 \dots v_n\}$ is a basis for V

Proof. If V = 0, done by definition

So we may assume $V \neq 0$ and $V = \operatorname{span}\{v_1 \dots v_n\}$

We prove the theorem by induction on n

$$n=1$$
 as $V \neq 0, v_1 \neq 0$

Hence $\{v_1\}$ is a basis for V since $\alpha v_1 = 0 \to \alpha = 0$

hence n = 1 is true

Induction hypothesis: suppose span $(w_1 \dots w_n) = v$ then a subset of $\{w_1 \dots w_n\}$ is a basis

To show the result holds if $V = \text{span}\{v_1 \dots v_{n+1}\}$

if $\{v_1 \dots v_{n+1}\}$ is linearly independent, then a basis by definition and done

Suppose $\{v_1 \dots v_{n+1}\}$ is linearly dependent

Then $\exists \alpha_1 \dots \alpha_{n+1} \in F$ not all zero

s.t.
$$\alpha_1 v_1 + \ldots + \alpha_{n+1} v_{n+1} = 0$$

Changing notation, we may assume that $\alpha_{n+1} \neq 0$ so α_{n+1}^{-1} exists Then $v_{n+1} = -\alpha_{n+1}^{-1}\alpha_1v_1 - \dots + \alpha_{n+1}^{-1}\alpha_nv_n \in \operatorname{span}\{v_1\dots v_n\}$

By important exercise

$$V = \operatorname{span}\{v_1 \dots v_{n+1}\} = \operatorname{span}\{v_1 \dots v_n\}$$

By the case n, $\{v_1 \dots v_n\}$. Hence $\{v_1 \dots v_{n+1}\}$ contains a basis for V. \square

Example

- 1. let $e_i = (0, \dots, 0, 1, 0, \dots, 0) \in F^n$ & $S_n := \{e_1 \dots e_n\} \subset F^n$ let $V \in F^n$ then $\exists \alpha_1 \dots \alpha_n \in F$ s.t. $v = (\alpha_1 \dots \alpha_n) = \alpha_1 e_1 \dots \alpha_n e_n$ So $V = \operatorname{span}\{S\}$ if $0 = \alpha_1 e_1 + \dots + \alpha_n e_n = (\alpha_1 \dots \alpha_n) = (0, \dots, 0)$ $\Rightarrow \alpha_i = 0 \,\forall i$
 - $\therefore S_n$ is a basis called Standard Basis for F^n

More generally, let $e_{ij} \in F^{m \times n}$ be the matrix with 0's in all entries, except the ijth place where it is 1.

Then $S = S_{m,n} = \{e_{ij} | 1 \le i \le m, 1 \le j \le n\}$ is a basis for $F^{m \times n}$ Called standard basis for $F^{m \times n}$

- 2. let V = F[t] if $f \in V$, then $\exists \alpha_0 \dots \alpha_n \in F$ s.t. $f = \alpha_0 + \alpha_1 t + \dots + \alpha_n t^n$ So, span $\{1, t, t^2, \dots\} = F[t]$ & $\{1, t, t^2, \dots\}$ is linearly independent hence a basis for F[t] $\alpha_0 + \alpha_1 t + \dots + \alpha_n t^n = 0$, then $\alpha_i = 0 \ \forall i$
- 3. $F[t]_n = \{f \in F[i] \mid \text{degree } f \leq n \text{ or } f = 0\} \subset F[t]$ $F[t]_n = \text{span}\{1, t, \dots, t^n\} \& \{1, t, \dots, t^n\} \text{ is linearly independent on } \{1, t, t^2, \dots\}$
- 4. $V=\mathbb{C}$ as a VS/R then $\{1,\sqrt{-1}\}$ is a basis for \mathbb{C} as a VS/R $\alpha 1+\beta \sqrt{-1},\ \alpha,\beta\in\mathbb{R}$ uniquely $V=\mathbb{C}$ as a VS/ \mathbb{C} then $\{1\}$ is a basis of \mathbb{C} as a VS/ \mathbb{C}

More generally, F is a field F is a VS/F with basis $\{V\}$ if $V \neq 0$ if $\alpha \in F$ then $\alpha = \alpha v^{-1}v$ as v has a mult inverse e.g. $\{\pi\}$ is a basis for $\mathbb R$ as a VS/R

- 5. $\{e^{-x}, e^{3x}\}$ is a basis for $V = \{f \in \mathbb{C}^2 \mid f'' 2f' 3f = 0\}$
- 6. Given $v_1, \ldots, v_m \in F^n$, know how to find span $\{v_1, \ldots, v_m\}$ and a basis for the span

1 Replacement Theorem

Let V be a VS/F & $\{v_1 \dots v_n\}$ is a basis for VSuppose $v \in V$ and $v = \alpha_1 v_1 + \dots + \alpha_n v_n$, $\alpha_1 \dots \alpha_n \in F$ with $\alpha_i \neq 0$, then $\{v_1, \dots, v_{i-1}, v_i, v_{i+1}, \dots, v_n\}$ is a basis for V