Analysing Mass Spec Data

This is an R Markdown document to show how I have analysed my mass spectroscopy data. Author: Catherine Truman Date: 25/10/2019

First, we: (1) import the libraries we need (2) set up our directory (replace this text with the directories and file paths of your files) (3) read in our data and databases we will reference later on

Note, we change the names of columns - make sure the right names are called for your database

```
library(tidyverse)
## -- Attaching packages -----
## v ggplot2 3.2.1
                      v purrr
                                 0.3.2
                       v dplyr
## v tibble 2.1.3
                                 0.8.3
            1.0.0
## v tidyr
                      v stringr 1.4.0
                       v forcats 0.4.0
## v readr
            1.3.1
## -- Conflicts -----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library(ggplot2)
library(dplyr)
library(readr)
library(ggalluvial)
library(ggrepel)
#BiocManager::install("hpar")
library(hpar)
## This is hpar version 1.26.0,
## based on the Human Protein Atlas
     Version: 18.1
     Release data: 2018.11.15
##
    Ensembl build: 88.38
## See '?hpar' or 'vignette('hpar')' for details.
require(knitr)
## Loading required package: knitr
WD <- paste("C:/Users/Greye/Dropbox/DPHIL PHD UPDATED/DATA/MASS SPECTRONOMY/REPLICATES/",
            "USING REP 1 AND 2", sep="")
knitr::opts_knit$set(root.dir = normalizePath(WD)) # change this to show your own working
#directory
NCBI_DB <- read.csv(file.path(WD, "NCBI_HIV_INT_DB.csv"), stringsAsFactors = F)</pre>
# NCBI HIV database
MS_Data <- read.csv(file.path(WD, "RawData.csv"), stringsAsFactors = F, header = T)
# MS database
MS_Data <- MS_Data %>% rename("AdjPValue" = "adj.P.Val", "Significance" = "sig",
                              "LogFC" = "logFC", "GeneNames" = "Row.names")
# Give common column names
```

Let's count how many hits we have of significance and summarise in a table

```
SigHits <- (MS_Data$GeneNames[MS_Data$Significance == "+"])
NoSigHits <- length(SigHits)

DoubleSigHits <- (MS_Data$GeneNames[MS_Data$Significance == "++"])
NoDoubleSigHits <- length(DoubleSigHits)

OtherHits <- (MS_Data$GeneNames[MS_Data$Significance == ""| MS_Data$Significance == "-" ])
NoOtherHits <- length(OtherHits)

Total = NoSigHits + NoDoubleSigHits + NoOtherHits

Summary <- cbind(NoOtherHits, NoSigHits, NoDoubleSigHits, Total)
colnames(Summary)[1:4] <- c('Other', '+','++', 'Total')
Summary</pre>
```

```
## Other + ++ Total
## [1,] 1096 225 100 1421
```

Now let's make a volcano plot. Let's apply a log10 p-value to suit the scale. We also need to feed the function our variables. Replace these with your viral genes, IP protein and conditions of interest. (!) Make sure your protein names match what is in the MS table exactly

Next, we make a function to produce a volcano plot. Study it carefully. You give it your MS_Data, list of proteins and conditions and it colours points based on sigificance. You can comment out or in (using hash) the things you want labelled

```
MakeVPTable <- function(Database, Viral_Proteins, Bait_Proteins, Positive, Negative){</pre>
  ### COLOURING
  Database$"Colouring" <- "" # In this column, we'll add labels to points we want coloured
  Database $Colouring [Database $GeneNames %in% DoubleSigHits] <- 'P Value < 0.01'
  Database $Colouring [Database $GeneNames %in% SigHits] <- 'P Value < 0.1'
  Database $Colouring [Database $GeneNames %in% OtherHits] <- 'Host'
  Database$Colouring[Database$GeneNames %in% Viral_Proteins] <- 'Viral'
  Database$Colouring[Database$GeneNames %in% Bait_Protein] <- 'Bait'
  Point_Colours <- c('#A7AFB540',"#FF0000", "#000000", "#005AB540", "#008E8040")
  Database $Colouring <- factor(Database $Colouring, levels=c('Host',
                                                              'Viral', 'Bait',
                                                              'P Value < 0.1', 'P Value < 0.01'))
  ### LABELLING
  Database$"Labelling" <- "" # In this column, we add labels to points we want labelled
  # Label P < 0.01, viral and IP proteins
 # Database$Labelling[Database$GeneNames %in% DoubleSigHits] <-
  #Database$GeneNames[Database$GeneNames %in% DoubleSigHits]
# Database$Labelling[Database$GeneNames %in% Viral_Proteins] <-</pre>
```

```
#Database$GeneNames[Database$GeneNames %in% Viral_Proteins]
# Database$Labelling[Database$GeneNames %in% Bait Protein] <-
  #Database$GeneNames[Database$GeneNames
                                            %in% Bait_Protein]
  # Label P < 0.1
# Database$Labelling[Database$GeneNames %in% SigHits] <-</pre>
  #Database$GeneNames[Database$GeneNames %in%
                                                  SigHits]
  # Remove RPS/RPL proteins
 # Database$Labelling[grep("RPL/RPS", Database$Labelling)] <- ""</pre>
  # Remove viral proteins
  Matches <<- paste(unique(grep(paste(Viral_Proteins,collapse="\\b|\\b"),</pre>
                                 Database$Labelling, value=TRUE, ignore.case=FALSE)),
                    collapse="|")
 \# \ \ Database \$ Labelling <- \ if else (grepl (Matches, \ Database \$ Labelling), \ '', \ Database \$ Labelling) 
  # Label only viral proteins
 Database$Labelling <- ifelse(grep1(Matches, Database$Labelling), Database$Labelling, '')
  # Label only RPS/RPL proteins
 \#Database \$Labelling \leftarrow ifelse(grepl("RPL|RPS", Database \$Labelling), Database \$Labelling, '')
  Database <<- Database
  VP = ggplot(Database, aes(LogFC, Difference, color = Database$Colouring)) +
    geom point(shape = 16, size = 3, show.legend = TRUE) + theme classic() +
    theme(text = element_text(size = 10)) + scale_colour_manual(values = Point_Colours) +
    ggrepel::geom_text_repel(label=Database$Labelling, size = 3,
                             box.padding = unit(0.1, "lines"),
    point.padding = unit(0.1, "lines"), segment.size = 0.5,
    segment.color="black", colour="black") +
    geom_hline( yintercept=0, linetype="dashed", size=0.3, colour="black") +
    geom_vline( xintercept=0, linetype="dashed", size=0.3, colour="black") +
    ggtitle(paste0(Positive, " versus ", Negative)) +
    theme(plot.title = element_text(hjust=0.5)) +
    xlab("log2 Fold Change") + ylab("-log10 P Value") +
    geom_hline( yintercept=1, linetype="dashed", size=0.3, colour="grey") +
    geom_hline( yintercept=2, linetype="dashed", size=0.3, colour="grey") +
    theme(legend.position = c(0.9, 0.18)) +
                                               theme(legend.title = element_blank()) +
    theme(legend.text=element_text(size=9))
return(VP)
```

Finally, let's run the function with our parameters. We should get back a plot.

```
MakeVPTable(MS_Data, Viral_Proteins, Bait_Proteins, "Rev-FLAG-3xMyc", "mCherry-Nef")
```


What the code originally made was a little.. overcrowded. You might notice some lines of code which are modifiable. These can be commented out using a hashtag, meaning they will not be processed. This can allow you to label more specifically.

Finally, let's save.

```
ggsave('Volcano_P001Cellular_NoLabel.pdf', plot=last_plot(), path = WD, dpi=700)
```

Saving 6.5×4.5 in image

Now we have a lot of hits, but we need a candidate list. How do we select? We have three parameters: -P Value -Fold Change -Rev intensity

Let's remind ourselves what our data looks like at a glance.

Summary

```
## Other + ++ Total
## [1,] 1096 225 100 1421
```

Looks like we have 100 proteins identified at a P Value of <0.01. In my case, lots of these are ribosomal. We don't care about those. Let's segment our list by P Value < 0.01 and remove ribosomal hits. Then let's calculate the average Rev intensity. if you have a different number of replicates, change the code! Finally, we select only the columns we're interested in and sort by intensity.

```
MS_DataP001 <- MS_Data[MS_Data$Significance == '++', ]
MS_DataP001 <- MS_DataP001[!grepl("RPL|RPS", MS_DataP001$GeneNames), ]
MS_DataP001 <- MS_DataP001[!grepl(Positive, MS_DataP001$GeneNames), ]
MS_DataSig <- MS_Data[MS_Data$Significance == '+' | MS_Data$Significance == '++' , ]
#MS_DataSig <- MS_DataSig[!grepl("RPL|RPS", MS_DataSig$GeneNames), ]</pre>
```

```
##
       GeneNames
                      LogFC
                              AdjPValue Significance
                                                         Means
                                                   ++ 33.98500
## 1
           ELMO1 13.237358 0.002531002
## 2
          ERGIC3 11.207816 0.002531002
                                                   ++ 31.95546
## 3
                  5.040164 0.004679567
                                                   ++ 31.20564
             NCL
                  4.410919 0.009027623
## 4
       HNRNPA2B1
                                                   ++ 31.08732
## 5
         HNRNPA1
                  4.496173 0.006436298
                                                   ++ 30.97058
                  4.300902 0.009510799
                                                   ++ 30.57319
## 6
            NPM1
## 7
                  9.784672 0.002531002
           SRP72
                                                   ++ 30.53232
## 8
          PABPC1
                  4.249331 0.009027623
                                                   ++ 30.04502
                  7.263803 0.009383212
                                                   ++ 29.17770
## 9
      MATRIX-p17
## 10
           SRP68
                  7.883068 0.003646752
                                                   ++ 29.15195
## 11
         SYNCRIP
                  6.349835 0.004679567
                                                   ++ 28.93985
## 12
                  8.028737 0.003347656
                                                   ++ 28.77638
          CA-p24
## 13
            DHX9
                  6.302005 0.003879966
                                                   ++ 28.76236
## 14
         HNRNPA3
                  7.908034 0.002531002
                                                   ++ 28.65568
## 15
            RBMX
                  4.538991 0.009027623
                                                   ++ 28.49899
          P6-GAG
                  6.089904 0.009027623
                                                   ++ 27.61885
## 16
## 17
             SSB
                  4.520697 0.005871785
                                                   ++ 27.60243
## 18
           SRP19
                  6.787682 0.003879966
                                                   ++ 27.53533
## 19
          HNRNPR
                  6.407519 0.003879966
                                                   ++ 27.45876
## 20
                  6.646146 0.003064925
                                                   ++ 27.39379
           MITD1
## 21
                  6.615494 0.003835257
                                                   ++ 27.36314
           MTCL1
## 22
                  6.064054 0.003706303
                                                   ++ 26.81170
          CHCHD1
## 23
        HIST1H1C
                  6.006282 0.003879966
                                                   ++ 26.75393
## 24
           LARP7
                  5.530760 0.006436298
                                                   ++ 26.68516
                  5.595874 0.003964471
## 25
          HNRNPL
                                                   ++ 26.68088
## 26
                  5.887285 0.005587352
                                                   ++ 26.63493
            YBX3
## 27
            UPF1
                  5.023016 0.008503033
                                                   ++ 26.62454
## 28
            H1FX
                  5.635593 0.004679567
                                                   ++ 26.38324
## 29
         ZC3HAV1
                  5.499019 0.005871785
                                                   ++ 26.24666
## 30
            UTS2
                  5.444846 0.004054848
                                                   ++ 26.19249
## 31
                  5.431179 0.008695255
                                                   ++ 26.17882
             FBL
## 32
           NOP56
                  5.183590 0.005871785
                                                   ++ 25.93123
## 33
                  5.069536 0.004679567
                                                   ++ 25.81718
            TOP1
## 34
          PABPC4
                  5.060279 0.005871785
                                                   ++ 25.80792
## 35
         FAM120A
                  5.036649 0.006250957
                                                   ++ 25.78429
## 36
           TMED1
                  4.989796 0.009510799
                                                   ++ 25.73744
## 37
                  4.806712 0.008834485
                                                   ++ 25.55436
           DDX21
## 38
                  4.763614 0.005587352
                                                   ++ 25.51126
           SRRM1
## 39
           MOV10
                  4.759745 0.005587352
                                                   ++ 25.50739
## 40
        HIST1H1D
                  4.536912 0.006436298
                                                   ++ 25.28456
```

You'll see we've included our IP protein, which is a good reference for intensity. These are our top hits! But

maybe some of these are already top interactors. Let's look at the data at a bigger glance. We'll take all significant interactors and get some data about them. First, we extract all annotation types from the NCBI HIV database attributed to Rev and get a list of lists

```
MS_DataSig <- MS_Data[MS_Data$Significance == '++' | MS_Data$Significance == '++', ]
'%!in%' <- function(x,y)!('%in%'(x,y))
Interaction <- c("binds", "interacts with")</pre>
RevBinders <- unique(NCBI DB %>% select(HIV.1 Prot Name, Keyword, Human GeneSymbol) %>%
                                         filter(HIV.1 Prot Name == "Rev", Keyword %in% Interaction) %>%
                                         select(Human GeneSymbol))
RevAffiliated <- unique(NCBI_DB %>% select(HIV.1_Prot_Name, Keyword, Human_GeneSymbol) %>%
                                              filter(HIV.1 Prot Name == "Rev") %>% select(Human GeneSymbol))
RevAffiliated <- RevAffiliated$Human_GeneSymbol[!RevAffiliated$Human_GeneSymbol %in%
                                                                                        RevBinders$Human_GeneSymbol]
MS_DataSig$RevBinder <- ""
MS_DataSig$RevAffiliated <- ""
MS_DataSig$HIVAffiliated <- ""
MS_DataSig$RevBinder[MS_DataSig$GeneNames %in% RevBinders$Human_GeneSymbol] <- '+'
NoRevBinders <- length(MS_DataSig$RevBinder[MS_DataSig$GeneNames %in% RevBinders$Human_GeneSymbol])
MS_DataSig$RevAffiliated[MS_DataSig$GeneNames %in% RevAffiliated] <- '+'
NoRevAff <- length(MS_DataSig$RevAffiliated[MS_DataSig$GeneNames %in% RevAffiliated])
HIVAffiliated <- NCBI DB %>% filter(!HIV.1 Prot Name == "Rev") %>%
   select(HIV.1 Prot Name, Keyword, Human GeneSymbol)
HIVAffiliated <- unique(HIVAffiliated[c("Human_GeneSymbol", "Keyword", "HIV.1_Prot_Name")])</pre>
HIVAffiliated <- HIVAffiliated $\text{$\text{Human_GeneSymbol}!} HIVAffiliated $\text{$\text{$\text{Human_GeneSymbol}} \text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\ext{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\exitt{$\ext{$\exit{$\text{$\text{$\exitt{$\ext{$\ext{$\exitt{$\exitt{$\exitt{$\ext{$\exitt{$\ext{$\ext{$\exitt{$\ext{$\exitt{$\exitt{$\ext{$\exitt{$\ext{$\exitt{$\ext{$\ext{$\exitt{$\ext{$\exitt{$\ext{$\exitt{$\exitt{$\ext{$\exitt{$\ext{$\ext{$\exitt{$\ext{$\exitt{$\ext{$\exitt{$\ext{$\exitt{$\exitt{$\ext{$\exitt{$\exitt{$\ext{$\exitt{$\ext{$\exitt{$\ext{$\exitt{$\exitt{$\ext{$\exitt{$\ext{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$
                                                                                        RevBinders$Human GeneSymbol]
HIVAffiliated <- HIVAffiliated[!HIVAffiliated %in% RevAffiliated]</pre>
MS_DataSig$HIVAffiliated[MS_DataSig$GeneNames %in% HIVAffiliated] <- '+'
NoHIVAff <- length(MS_DataSig$HIVAffiliated[MS_DataSig$GeneNames %in% HIVAffiliated])
print(paste0("Of ",length(MS_DataSig$GeneNames),
                       " significantly enriched proteins in my ", Positive,
                       " IP, there are ", NoHIVAff, " proteins previously linked to HIV-1 and ",
                      NoRevAff," which have been linked to Rev, with a final ", NoRevBinders,
                       " having a direct interaction with ", Positive, "."))
## [1] "Of 325 significantly enriched proteins in my REV-FLAG-3xMyc IP, there are 144 proteins previous
Let's make this into a Sankey diagram
SankeyRevAffiliated <- NCBI_DB %>% select(HIV.1_Prot_Name, Keyword, Human_GeneSymbol) %>%
   filter(HIV.1_Prot_Name == "Rev") %>% select(Human_GeneSymbol, Keyword)
er <- SankeyRevAffiliated[SankeyRevAffiliated$Human_GeneSymbol %in% MS_DataSig$GeneNames,]
results <- as.data.frame(summarise(group by(er, Human GeneSymbol, Keyword), count =n()))
results$KeywordFactor <- as.factor(results$Keyword)</pre>
results$KeywordFactor <- relevel(results$KeywordFactor, c("binds"))</pre>
results$KeywordFactor <- relevel(results$KeywordFactor, c("interacts with"))</pre>
levels(results$KeywordFactor)
## [1] "interacts with"
                                                  "binds"
                                                                                     "activates"
```

"inhibited by"

"co-localizes with" "cooperates with"

"inhibits"

[4] "associates with"

[7] "enhanced by"

```
## [10] "modulated by" "phosphorylated by" "regulated by"
## [13] "requires" "stimulated by" "stimulates"
## [16] "upregulated by"
```

results[results\$GeneLevels <- factor(results\$Human_GeneSymbol),]</pre>

##		Human_GeneSymbol	Keyword	count	KeywordFactor
##	1	ABCF1	interacts with	1	interacts with
##	2	ACIN1	interacts with	1	interacts with
##	3	C1QBP	binds	3	binds
##	3.1	C1QBP	binds	3	binds
##	4	C1QBP	inhibits	1	inhibits
##	5	CALR	interacts with	1	interacts with
##	6	CAPRIN1	interacts with	1	interacts with
##	7	CDC5L	interacts with	1	interacts with
##	8	CHCHD1	interacts with	1	interacts with
##	8.1	CHCHD1	interacts with	1	interacts with
##	8.2	CHCHD1	interacts with	1	interacts with
##	8.3	CHCHD1	interacts with	1	interacts with
##	8.4	CHCHD1	interacts with	1	interacts with
##	9	CSNK2A2	activates	1	activates
##	9.1	CSNK2A2	activates	1	activates
##	9.2	CSNK2A2	activates	1	activates
##	9.3	CSNK2A2	activates	1	activates
##	9.4	CSNK2A2	activates	1	activates
##	10	CSNK2A2	binds	1	binds
##	11	CSNK2A2	interacts with	1	interacts with
##	11.1	CSNK2A2	interacts with	1	interacts with
##	12	CSNK2A2	modulated by	1	modulated by
##	12.1	CSNK2A2	modulated by	1	modulated by
##	13	CSNK2A2	${\tt phosphorylated}\ {\tt by}$	2	phosphorylated by
##	14	CSNK2B	activates	1	activates
##	14.1	CSNK2B	activates	1	activates
##	15	CSNK2B	binds	1	binds
##	16	CSNK2B	interacts with	1	interacts with
##	16.1	CSNK2B	interacts with	1	interacts with
##	17	CSNK2B	modulated by	1	modulated by
##	18	CSNK2B	phosphorylated by	2	phosphorylated by
##	19	CSTF2	interacts with	1	interacts with
##	19.1	CSTF2	interacts with	1	interacts with
##	19.2	CSTF2	interacts with	1	interacts with
	20	DDX21	enhanced by	1	enhanced by
##	21	DDX21	interacts with	1	interacts with
##		DDX5	enhanced by	2	enhanced by
##		DDX5	interacts with	2	interacts with
	24	DHX36	interacts with	1	interacts with
##		DHX9	interacts with	2	interacts with
##		DHX9	regulated by	1	regulated by
##		DNAJB6	inhibited by	1	inhibited by
##		EIF5A	binds	3	binds
	28.1	EIF5A	binds	3	binds
##		EIF5A	interacts with	3	interacts with
##		FAU	interacts with	1	interacts with
##		HIST2H2BE	interacts with	1	interacts with
##	32	HNRNPA1	interacts with	3	interacts with

	32.1	HNRNPA1	interacts with	3	interacts with
##	32.2	HNRNPA1	interacts with	3	interacts with
##	33	HNRNPA1	modulated by	1	modulated by
##	34	HNRNPA1	stimulates	1	stimulates
##	35	HNRNPA2B1	interacts with	1	interacts with
##	35.1	HNRNPA2B1	interacts with	1	interacts with
##	35.2	HNRNPA2B1	interacts with	1	interacts with
##	36	HNRNPA3	interacts with	1	interacts with
##	37	HNRNPC	interacts with	1	interacts with
##	38	HNRNPD	interacts with	1	interacts with
##	39	HNRNPF	interacts with	1	interacts with
##	40	HNRNPH1	interacts with	1	interacts with
##	41	HNRNPH3	interacts with	1	interacts with
##	41.1	HNRNPH3	interacts with	1	interacts with
##	41.2	HNRNPH3	interacts with	1	interacts with
##	41.3	HNRNPH3	interacts with	1	interacts with
##	41.4	HNRNPH3	interacts with	1	interacts with
##	42	HNRNPM	interacts with	1	interacts with
##	43	HNRNPR	binds	1	binds
##	44	HNRNPR	interacts with	1	interacts with
##	44.1	HNRNPR	interacts with	1	interacts with
##	45	HNRNPU	interacts with	2	interacts with
##	46	IK	interacts with	1	interacts with
##	47	ILF2	interacts with	1	interacts with
##	48	ILF3	inhibited by	1	inhibited by
##	49	ILF3	interacts with	2	interacts with
##		ILF3	regulated by	2	regulated by
##		KPNA1	interacts with	1	interacts with
##		MITD1	interacts with	1	interacts with
##		MOV10	interacts with	1	interacts with
##		MOV10	requires	1	requires
##		MOV10	upregulated by	1	upregulated by
##		MRPL11	interacts with	1	interacts with
##		MYBBP1A	interacts with	1	interacts with
##		NAP1L1	interacts with	2	interacts with
	59	NAP1L4	interacts with	1	interacts with
##		NOP58	interacts with	1	interacts with
##		NPM1	associates with	1	associates with
##		NPM1	binds	2	binds
##			co-localizes with		co-localizes with
	64	NPM1	interacts with	2	interacts with
##		NPM1	stimulated by		stimulated by
##		PABPC1	•	2	interacts with
##		PPIB	interacts with	1	interacts with
##			co-localizes with		co-localizes with
##		PURA	interacts with	1	interacts with
##		PURB	interacts with	1	interacts with
	70.1	PURB	interacts with	1	interacts with
##		RBM39	interacts with	1	interacts with
##				1	
##		RPL17	interacts with	1	interacts with
	73 73.1	RPL23	interacts with	1	interacts with
		RPL23	interacts with		interacts with
	73.2	RPL23	interacts with	1	interacts with
##	14	RPL27	interacts with	1	interacts with

class(results\$GeneLevels)


```
ggsave('Sankey2.pdf', plot=last_plot(), path = WD, dpi=1700)
```

```
## Saving 6.5 \times 4.5 in image
```

Let's make a doughnut

```
data <- data.frame(
   category=c("Rev Binders", "Rev Affiliated", "HIV Affiliated", "Other"),
   count=c(NoRevBinders, NoRevAff, NoHIVAff, 107)
)
data$fraction = data$count / sum(data$count)
data$ymax = cumsum(data$fraction)
data$ymin = c(0, head(data$ymax, n=-1))</pre>
```

```
data$labelPosition <- (data$ymax + data$ymin) / 2
#data$label <- pasteO(data$category, "\n value: ", data$count)

doughnut <- ggplot(data, aes(ymax=ymax, ymin=ymin, xmax=4, xmin=3, fill=category)) +
    geom_rect() +
    scale_fill_brewer(palette=4) +
    coord_polar(theta="y") +
    # geom_label( x=3.5, aes(y=labelPosition, label=label), size=3) +
    xlim(c(2, 4)) +
    theme_void() + theme(legend.position="bottom")</pre>
```



```
category HIV Affiliated Other Rev Affiliated Rev Binders
```

Let's save

```
MS_DataSig$ID <- ""
MS_DataSig$Localisation <- ""
for(i in 1:length(MS_DataSig$GeneNames)){
  if(MS DataSig$GeneNames[i] %in% Loc$Gene.name){
    x <- match(MS_DataSig$GeneNames[i], Loc$Gene.name)</pre>
    MS_DataSig$ID[i] <- Loc$IDs[x]</pre>
    MS_DataSig$Localisation[i] <- as.vector(str_remove_all(droplevels(Loc$GO.id[x]),
                                                               "\\WGO:\\d\\d\\d\\d\\d\\\d\\\W"))
Nuclear_Membrane <- 0 #</pre>
Nuclear_Speckles <- 0 #
Nuclear_Bodies <- 0 #</pre>
Lipid_Droplets <- 0 #</pre>
Peroxisomes <- 0 #
Nucleoli <- 0 #
Nucleoplasm <- 0 #
Actin filaments <- 0 #
Centrosome <- 0 #
Cytosol <- 0 #
Mitochondria <- 0 #
Microtubules <- 0 #
Golgi_apparatus <- 0 #</pre>
Endoplasmic_reticulum <- 0 #</pre>
Vesicles <- 0 #
Aggresome <- 0 #
Cytoplasmic_Bodies = 0 #
for(i in 1:length(MS_DataSig$Localisation)){
  ifelse(grepl("Mitochondria", MS_DataSig$Localisation[i]),
         Mitochondria <- Mitochondria + 1, "Mitochondria" == "Mitochondria")</pre>
  ifelse(grepl("Nucleoplasm", MS_DataSig$Localisation[i]),
         Nucleoplasm <- Nucleoplasm + 1, "Nucleoplasm" == "Nucleoplasm")</pre>
  ifelse(grepl("Cytosol", MS_DataSig$Localisation[i]),
         Cytosol <- Cytosol + 1, "Cytosol" == "Cytosol")</pre>
  ifelse(grepl("Nucleoli", MS_DataSig$Localisation[i]),
         Nucleoli <- Nucleoli + 1, "Nucleoli" == "Nucleoli")</pre>
  ifelse(grepl("Centrosome", MS_DataSig$Localisation[i]),
         Centrosome <- Centrosome + 1, "Centrosome" == "Centrosome")</pre>
  ifelse(grepl("Vesicles", MS_DataSig$Localisation[i]),
         Vesicles <- Vesicles + 1, "Vesicles" == "Vesicles")</pre>
  ifelse(grepl("Endoplasmic", MS_DataSig$Localisation[i]),
         Endoplasmic_reticulum <- Endoplasmic_reticulum + 1,</pre>
         "Endoplasmic_reticulum" == "Endoplasmic_reticulum")
```

```
ifelse(grepl("Actin", MS_DataSig$Localisation[i]),
           Actin_filaments <- Actin_filaments + 1, "Actin_filaments" == "Actin_filaments")
    ifelse(grepl("Golgi", MS DataSig$Localisation[i]),
           Golgi_apparatus <- Golgi_apparatus + 1, "Golgi_apparatus" == "Golgi_apparatus")</pre>
    ifelse(grep1("Microtubule", MS_DataSig$Localisation[i]),
           Microtubules <- Microtubules + 1, "Microtubules" == "Microtubules")
    ifelse(grep1("Nuclear membrane", MS_DataSig$Localisation[i]),
           Nuclear_Membrane <- Nuclear_Membrane + 1, "Nuclear_Membrane" == "Nuclear_Membrane")</pre>
    ifelse(grepl("Nuclear speckles", MS_DataSig$Localisation[i]),
Nuclear_Speckles <- Nuclear_Speckles + 1, "Nuclear_Speckles" == "Nuclear_Speckles")</pre>
    ifelse(grepl("Nuclear bodies", MS_DataSig$Localisation[i]),
           Nuclear_Bodies <- Nuclear_Bodies + 1, "Nuclear_Bodies" == "Nuclear_Bodies")</pre>
    ifelse(grepl("Aggresome", MS_DataSig$Localisation[i]),
           Aggresome <- Aggresome + 1, "Aggresome" == "Aggresome")
   ifelse(grepl("Cytoplasmic bodies", MS_DataSig$Localisation[i]),
          Cytoplasmic Bodies <- Cytoplasmic Bodies + 1, "Cytoplasmic Bodies" == "Cytoplasmic Bodies")
   ifelse(grepl("Lipid droplets", MS_DataSig$Localisation[i]),
          Lipid_Droplets <- Lipid_Droplets + 1, "Lipid_Droplets" == "Lipid_Droplets")</pre>
   ifelse(grepl("Peroxisomes", MS_DataSig$Localisation[i]),
          Peroxisomes <- Peroxisomes + 1, "Peroxisomes" == "Peroxisomes")
}
Total_Localisation <- sum(!is.na(MS_DataSig$Localisation))</pre>
Localisation_Summary <- cbind(Centrosome, Vesicles, Nuclear_Membrane,
                              Golgi_apparatus, Microtubules, Nuclear_Speckles,
                              Nuclear_Bodies, Nucleoplasm, Cytosol, Nucleoli,
                              Lipid Droplets, Peroxisomes, Endoplasmic reticulum,
                              Cytoplasmic Bodies, Aggresome, Mitochondria,
                              Actin_filaments, Total_Localisation)
colnames(Localisation_Summary)[1:18] <- c('Centrosome', 'Vesicles',</pre>
                                           'Nuclear Membrane', 'Golgi Apparatus',
                                           'Mirotubules', 'Nuclear Speckles',
                                           'Nuclear Bodies', 'Nucleoplasm', 'Cytosol',
                                           'Nucleoli', 'Lipid_Droplets', 'Peroxisomes',
                                           'Endoplasmic Reticulum', 'Cytoplasmic Bodies',
                                           'Aggresome', 'Mitochondria', 'Actin Filaments', 'Total')
Localisation_Summary
##
        Centrosome Vesicles Nuclear Membrane Golgi Apparatus Mirotubules
## [1.]
        Nuclear Speckles Nuclear Bodies Nucleoplasm Cytosol Nucleoli
## [1,]
                                       5
                                                  79
                                                         116
                      11
```

```
Lipid_Droplets Peroxisomes Endoplasmic Reticulum Cytoplasmic Bodies
## [1,]
##
        Aggresome Mitochondria Actin Filaments Total
## [1,]
Comparing to Manuel's dataset...
capsid <- read.delim('C:/Users/Greye/Dropbox/DPHIL PHD UPDATED/DATA/MASS SPECTRONOMY/REPLICATES/USING R</pre>
capsid$Genes <- sapply(strsplit(as.character(capsid$Genes), ";"), "[", 1)</pre>
MS_DataSig$Capsid = ""
MS_DataSig$Capsid[MS_DataSig$GeneNames %in% capsid$Genes] <- '+'
Manuel <- unique(MS_DataSig$GeneNames[MS_DataSig$Capsid == '+'])</pre>
```

##