Big O notation:-

f(n) = O(g(n)) means there are positive constants c and n_0 , such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0 > 0$

Ω notation:-

 $f(n) = \Omega(g(n))$ means there are positive constants c and n_0 , such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0 > 0$

O notation:-

 $f(n) = \Theta(g(n))$ means there are positive constants c_1 , c_2 and n_0 , such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0 \ge 0$.

1. $2^{n+1} = O(2^n)$

Solution:-

Let $f(n)=2^{(n+1)}$ and $g(n)=2^n$ $f(n)=2*2^n=2*g(n)$ With c=2 and $n_0=1$, we have $2\times 2^n \ge 2^{n+1}$ for all $n\ge 2$

Therefore, $2^{n+1} = O(2^n)$

$2.(n+1)^5 = O(n^5)$

Solution:- Let $f(n)=(n+1)^5$ and $g(n)=n^5$ $f(n) = (n+1)^5$ $= (n^4 + 4n^3 + 6n^2 + 4n + 1) (n+1)$ $= (n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1)$ $<= (n^5 + 5n^5 + 10n^5 + 10n^5 + 5n^5 + n^5)$ (for $n_0=1$) $<= 32n^5$

So, for c=32 and $n_0=1$, $(n+1)^5 \le cn^5$

3. Let p(n)= $a_k n^k + a_{k-1} n^{k-1} + \dots a_0$ be an asymptotically non-negative polynomial of degree k, k > 0 is a constant, prove that $p(n) \in O(n^k)$

Note:- This is the proof why lower order terms and multiplicative constants don't matter

Solution: $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots a_0$

$$= a_k n^k (1 + (a_{k-1}/a_k)^* (1/n) + (a_{k-2}/a_k)^* (1/n^2) + \dots + (a_0/a_k)^* (1/n^k))$$

$$<= a_k n^k (1 + (|a_{k-1}|/a_k)^* (1/n) + (|a_{k-2}|/a_k)^* (1/n^2) + \dots + (|a_0|/a_k)^* (1/n^k))$$

$$<= a_k n^k (1 + (|a_{k-1}|/a_k)^* (1/n) + (|a_{k-2}|/a_k)^* \dots + (|a_0|/a_k))$$

For
$$n_0=1$$
 and $c=a_k$ ($1+(|a_{k-1}|/a_k)+(|a_{k-2}|/a_k)+.....+(|a_0|/a_k)$), $p(n) <= c*n^k => p(n) \in O(n^k)$

4. $n^3 = O(n^3 \log n)$

Solution:- Let $f(n)=n^3$ and $g(n)=n^3$ logn

for n>=2, we can say 1<=
$$\log_2 n$$

=> n^3 <= $n^3 \log_2 n$
=> n^3 <= $n^3 \log_2 n$, where $n^3 \log_2 n$, where $n^3 \log_2 n$

So, for $n_0=2$ and c=1, $n^3=0$ ($n^3 \log n$)

5. $\max(f(n),g(n))=\Theta(f(n)+g(n))$

Solution:-Let f(n) and g(n) be asymptotically nonnegative functions

By Θ definition, we need to proof following inequations

- (1) $c_1(f(n) + g(n)) \le \max(f(n), g(n))$
- (2) $\max(f(n), g(n)) \le c_2(f(n)+g(n))$
- (1) holds because $\max(f(n), g(n)) \ge f(n)$ and $\max(f(n), g(n)) \ge g(n)$. Thus we get $\max(f(n), g(n)) \ge f(n) + g(n)/2$, obviously, we can choose $c_1 = 1/2$.
- (2) holds because $max(f(n), g(n)) \le f(n) + g(n)$ and $c_2 \ge 1$

6.
$$\sum_{i=1}^{n} i^2 = O(n^3)$$

Solution:-

Let
$$f(n) = \sum_{i=1}^{n} i^{2}$$
 and $g(n) = n^{3}$
 $f(n) = \sum_{i=1}^{n} i^{2}$
 $= n(n+1)(2n+1)/6$
 $= (2n^{3} + 3n^{2} + n)/6$
Using proof 3, we can prove that $f(n) = O(n^{3})$

7. $\sum_{i=1}^{n} (i/2^{i}) = O(1)$

Let $S = \sum_{i=1}^{n} (i / 2^{i})$

Solution:-

$$S = (1/2 + 2/2^2 + 3/2^3 + \dots + n/2^n)$$

$$S/2 = (1/2^2 + 2/2^3 + \dots + (n-1)/2^n + n/2^{n+1})$$

$$S-S/2 = (1/2 + 1/2^2 + 1/2^3 + \dots + 1/2^n) - n/2^{n+1}$$
For gemetric series, if n-> infinity and r<1, the formula for sum is a/(1-r), where a is the first term in the series
$$S/2 = (1/2)/(1 - 1/2) - n/2^{n+1}$$

$$S = 2(1 - n/2^{n+1})$$
Since n>0, n/2ⁿ⁺¹>0
$$=> S = 2 * \text{ (something less than 1)}$$

$$=> S < 2$$

$$=> S = O(1)$$