Algorithms

GALE - SHAPEUEY ALGORITHM

- Initially, each a; eA, and each b; eB, is FREE
- While there exists some FREE a; that has not yet proposed to each b; $\in B$
 - Let a; be a FREE person that has not proposed to each b; e B
 - Let B' & B be the set of b; such that a; 2
 has not yet proposed to
 - Let b; & B' be the person from B' that a; likes the most

 $a_1: b_1>b_2>b_3$ b_2 is the most preferred in the $B'=\{b_2,b_3\}$ b' set

- IF b; is FREE: 3
- MATCH UP a; and b; // a; & b; get empaged
 - · a; and b, are not free augmore
 - ELSE:
 - suppose that by is eugaged to ak (3)
 - IF by likes ax more than a; 4
 - ai remains free
 - ELSE:
 - the motion between b, and ax is broken
 - a; and b; are motioned up
 - ak becomes FREE

(P)	Identify a free a;	
2	Identify the bj that is highest eist, that a hasn't yet peopo	in ai's preference sed to
3	Given b; , determine whether sh	ne's free, and - if not
	identify her current poutner ax.	
(4)	Determine whether by likes ai	more than ak
To tin	implement each of the 4 open he, we use the following a	ations in O(1) ata structures:
	A APREF, A nxn away, such the contains the index of the eth min a;'s ranking.	nat APREF [i][e]
	Ex: if $a_i : b_{i_1} > b_{i_2} > \cdots > b_{i_n}$	e3: b2> b4 > b3
	then APREF[i][e] = ie	APREF [3][1] = 2 APREF [3][2] = 1 APREF [3][3] = 3
	B NEXT, an averay of site n, such contains the rank of the next that a; is going to propose	that next[i] b; in a;'s eist, to.
	At the outset, next $[i] = 1$	√i.
	When a; is about to propose, b; for j = APREF [i][next[i]] proposed, next[i] t = 1 thus	2 can be solved
	in o	
	C CURRENT, an away of size n, surcontains the index j of the aj engaged to j if b; is currently currently [i] = None (1) =	that b; is currentey Gree, then simbolo per due None
	Thus, 3 can be solved in	

Now, we only need to attach to the list some a; that is rejected by bj. Whenever b; has to choose between a; and ak, the "UNCHOSEN" one (let us say it is a, for t & \(\) i, \(\) i) will be added back to the list. HEAD NONE AFRICATEM. NEXT Next Prev N = List() None A N. PREV = NON Next Prev N. NEXT - HEAD N. V. = A √ome HEAD HEAD PREV = N HEAD = N PREV NEXT NEXT Next Prev N None Next Prev THU: G-S can be implemented to run in O(n2) time