# Assignment 1

# $Computational\ Intelligence,\ SS2017$

| Team Members |            |                      |  |
|--------------|------------|----------------------|--|
| Last name    | First name | Matriculation Number |  |
| Reeh         | Lucas      | 00630128             |  |

# Contents

| 1            | Line           | ear Regression                                                        | 2 |  |  |  |
|--------------|----------------|-----------------------------------------------------------------------|---|--|--|--|
|              | 1.1            | Derivation of Regularized Linear Regression                           | 2 |  |  |  |
|              | 1.2            | Linear Regression with polynomial features                            | 2 |  |  |  |
|              | 1.3            | Linear Regression with radial basis functions                         | 5 |  |  |  |
| 2            | Log            | istic Regression                                                      | 9 |  |  |  |
|              | 2.1            | Derivation of Gradient                                                | 9 |  |  |  |
|              | 2.2            | Logistic Regression training with gradient descent and scipy.optimize |   |  |  |  |
|              |                | 2.2.1 Gradient descent                                                | 9 |  |  |  |
|              |                | 2.2.2 Adaptative gradient descent                                     | 9 |  |  |  |
|              |                | 2.2.3 Scipy optimizer                                                 | 9 |  |  |  |
|              |                |                                                                       |   |  |  |  |
| $\mathbf{L}$ | $\mathbf{ist}$ | of Figures                                                            |   |  |  |  |
|              | 1              | Training, validation and testing errors                               | 2 |  |  |  |
|              | 2              | Linear Regression (Polynomial, Degree 1)                              | 2 |  |  |  |
|              | 3              | Linear Regression (Polynomial, Degree 2)                              | 3 |  |  |  |
|              | 4              | Linear Regression (Polynomial, Degree 5)                              | 3 |  |  |  |
|              | 5              | Linear Regression (Polynomial, Degree 20)                             | 4 |  |  |  |
|              | 6              | Linear Regression (Polynomial, Degree 21)                             | 4 |  |  |  |
|              | 7              | Linear Regression (Polynomial, Degree 13)                             | 5 |  |  |  |
|              | 8              | Training, validation and testing errors                               | 5 |  |  |  |
|              | 9              | Linear Regression (Bias, Center 1)                                    | 6 |  |  |  |
|              | 10             | Linear Regression (Bias, Center 2)                                    | 6 |  |  |  |
|              | 11             | Linear Regression (Bias, Center 5)                                    | 7 |  |  |  |
|              | 12             | Linear Regression (Bias, Center 20)                                   | 7 |  |  |  |
|              | 13             | Linear Regression (Bias, Center 21)                                   | 8 |  |  |  |
|              | 14             | Linear Regression (Polynomial, Degree 13)                             | 8 |  |  |  |

## 1 Linear Regression

## 1.1 Derivation of Regularized Linear Regression

### 1.2 Linear Regression with polynomial features



Figure 1: Training, validation and testing errors



Figure 2: Linear Regression (Polynomial, Degree 1)



Figure 3: Linear Regression (Polynomial, Degree 2)



Figure 4: Linear Regression (Polynomial, Degree 5)



Figure 5: Linear Regression (Polynomial, Degree 20)

• Lowest training error when using degree 21



Figure 6: Linear Regression (Polynomial, Degree 21)

• Lowest validation error occurs when using degree 13



Figure 7: Linear Regression (Polynomial, Degree 13)

#### • Discussion

Validation sets help to estimate performance of algorithms used for predictions and also to select a hypothesis (lowes error on set data). According to the error in the test set no over-fitting occurred up to a degree of 13 (but would on higher degrees as can clearly be seen in Figure for degree 21, outliers and lesser data).

#### 1.3 Linear Regression with radial basis functions



Figure 8: Training, validation and testing errors



Figure 9: Linear Regression (Bias, Center 1)



Figure 10: Linear Regression (Bias, Center 2)



Figure 11: Linear Regression (Bias, Center 5)



Figure 12: Linear Regression (Bias, Center 20)

• Lowest training error when using center 40



Figure 13: Linear Regression (Bias, Center 40)

• Lowest validation error occurs when using center 9



Figure 14: Linear Regression (Polynomial, Degree 9)

#### • Discussion

Bias function is better because it fits natural phenomen better. Overfitting occurs very early on parameter center 10.

# 2 Logistic Regression

- 2.1 Derivation of Gradient
- 2.2 Logistic Regression training with gradient descent and scipy.optimize
- 2.2.1 Gradient descent
- 2.2.2 Adaptative gradient descent
- 2.2.3 Scipy optimizer