

IN THE CLAIMS:

1. A single-chip microcomputer comprising:
a non-volatile memory having a plurality of
memory block pairs as a combination of a plurality of
memory blocks each formed of a user region for storing a
program code by a user and a region for storing a boot
area designation flag indicating that a boot program to
be executed first at the time of system booting is
stored in said user region, in which the boot program is
stored in a user region of a memory block of a specific
pair of memory blocks at an initial state where no boot
region switching processing is conducted,

10
15 a region switching flag for indicating in which
memory block pair the boot program is stored in the user
region among said plurality of pairs of memory blocks,
and

20
25 a control element for, when designating other
pair of memory blocks not designated as a boot region as
a new boot region, storing a value obtained by
subtracting a predetermined value from an initial value
set at said boot area designation flag of the memory
block of all said memory block pairs in the boot area
designation flag of each memory block of said other
memory block pair and at the time of booting the system,
if the values of the boot area designation flags in the
memory blocks of said other memory block pair are equal

and not the initial value, determining that the boot program is stored in said other memory block pair to set said region switching flag.

2. The single-chip microcomputer as set forth in claim 1, wherein

said control element,

when the values of the boot area designation

5 flags in the memory blocks of said other memory block pair are different or the initial value, determines that the boot area designation flag in question is invalid to determine that the boot program is stored in the user region of the memory block of said specific memory block
10 pair.

3. The single-chip microcomputer as set forth in claim 1, wherein

said control element,

when the values of the boot area designation

5 flags in the memory blocks of said other memory block pair are equal and not the initial value,
if values of the boot area designation flags in the memory blocks of said specific memory block pair are different, determines that the boot area designation
10 flag in the memory block of said specific memory block pair is invalid to determine that the boot program is stored in said other memory block pair.

4. The single-chip microcomputer as set forth in
claim 1, wherein

 said control element,

 when the values of the boot area designation
5 flags in the memory blocks of said other memory block
pair are equal and not the initial value, if values of
the boot area designation flags in the memory blocks of
said specific memory block pair are equal, determines
that the boot program is stored in a memory block of a
10 memory block pair which stores a boot area designation
flag whose value is smaller.

5. The single-chip microcomputer as set forth in
claim 1, wherein

 said control element,

 when the values of the boot area designation
5 flags in the memory blocks of said other memory block
pair are equal and not the initial value or "0",
determines that the boot program is stored in said other
memory block pair.

6. The single-chip microcomputer as set forth in
claim 1, wherein

 at the time of erasure, each memory block of said
memory block pairs of said non-volatile memory has said
5 user region and said boot area designation flag erased

simultaneously.

7. A single-chip microcomputer comprising:

a non-volatile memory having a plurality of
memory block pairs as a combination of a plurality of
memory blocks each formed of a user region for storing a
program code by a user and a region for storing a boot
area designation flag indicating that a boot program to
be executed first at the time of system booting is
stored in said user region, in which the boot program is
stored in a user region of a memory block of a specific
memory block pair at an initial state where no boot
region switching processing is conducted,

10 a region switching flag for indicating in which
memory block pair the boot program is stored in the user
region among said plurality of pairs of memory blocks,

15 and

a control element for setting said region
switching flag, wherein

said control element

when designating other memory block pair not

20 designated as a boot region as a new boot region, stores
a value obtained by subtracting a predetermined value
from an initial value set at said boot area designation
flag of the memory block of all said memory block pairs
in the boot area designation flag of each memory block
of said other memory block pair and at the time of
25

booting the system, if the values of the boot area designation flags in the memory blocks of said other memory block pair are equal and not the initial value, determines that the boot program is stored in said other
30 memory block pair,

when the values of the boot area designation flags in the memory blocks of said other memory block pair are different or the initial value, determines that the boot area designation flag in question is invalid to determine that the boot program is stored in the user region of the memory block of said specific memory block pair,
35

when the values of the boot area designation flags in the memory blocks of said other memory block pair are equal and not the initial value, if values of the boot area designation flags in the memory blocks of said specific memory block pair are different, determines that the boot area designation flag in the memory block of said specific memory block pair is invalid to determine that the boot program is stored in
40 said other memory block pair, and
45

when the values of the boot area designation flags in the memory blocks of said other memory block pair are equal and not the initial value, if the values of the boot area designation flags in the memory blocks of said specific memory block pair are equal, determines that the boot program is stored in a memory block of a
50

memory block pair which stores a boot area designation flag whose value is smaller.

55

8. In a single-chip microcomputer including a non-volatile memory having a plurality of memory block pairs as a combination of a plurality of memory blocks each formed of a user region for storing a program code by a user and a region for storing a boot area designation flag indicating that a boot program to be executed first at the time of system booting is stored in said user region, in which the boot program is stored in a user region of a memory block of a specific pair of memory blocks at an initial state where no boot region switching processing is conducted, and a CPU, a boot region designating method of the single-chip microcomputer of, when a user region of a memory block of a specific memory block pair is designated as a boot region in which the boot program is stored, switching a region of other memory block pair as a new boot region, comprising the steps of:

10

when designating other memory block pair not designated as a boot region as a new boot region, storing a value obtained by subtracting a predetermined value from an initial value set at said boot area designation flag of the memory block of all said memory block pairs in the boot area designation flag of each memory block of said other memory block pair, and

25 at the time of booting the system, if the values
of the boot area designation flags in the memory blocks
of said other memory block pair are equal and not the
initial value, determining that the boot program is
stored in said other memory block pair.

30

9. The boot region designating method of the single-
chip microcomputer as set forth in claim 8, comprising
the step of,

5 when the values of the boot area designation
flags in the memory blocks of said other memory block
pair are different or the initial value, determining
that the boot area designation flag in question is
invalid to determine that the boot program is stored in
the user region of the memory block of said specific
10 memory block pair.

10. The boot region designating method of the single-
chip microcomputer as set forth in claim 8, comprising
the step of,

5 when the values of the boot area designation
flags in the memory blocks of said other memory block
pair are equal and not the initial value, if values of
the boot area designation flags in the memory blocks of
said specific memory block pair are different,
determining that the boot area designation flag in the
10 memory block of said specific memory block pair is

invalid to determine that the boot program is stored in said other memory block pair.

11. The boot region designating method of the single-chip microcomputer as set forth in claim 8, comprising the step of,

when the values of the boot area designation flags in the memory blocks of said other memory block pair are equal and not the initial value, if values of the boot area designation flags in the memory blocks of said specific memory block pair are equal, determining that the boot program is stored in a memory block of a memory block pair which stores a boot area designation flag whose value is smaller.

12. The boot region designating method of the single-chip microcomputer as set forth in claim 8, comprising the step of,

when the values of the boot area designation flags in the memory blocks of said other memory block pair are equal and not the initial value or "0", determining that the boot program is stored in said other memory block pair.

13. In a single-chip microcomputer including a non-volatile memory having a plurality of memory block pairs as a combination of a plurality of memory blocks each

formed of a user region for storing a program code by a
5 user and a region for storing a boot area designation
flag indicating that a boot program to be executed first
at the time of system booting is stored in said user
region, in which the boot program is stored in a user
region of a memory block of a specific pair of memory
10 blocks at an initial state where no boot region
switching processing is conducted, and a CPU, a boot
region designating method of the single-chip
microcomputer of, when a user region of a memory block
of a specific memory block pair is designated as a boot
15 region in which the boot program is stored, switching a
region of other memory block pair as a new boot region,
comprising the steps of:

when designating other memory block pair not
designated as a boot region as a new boot region,
20 storing a value obtained by subtracting a predetermined
value from an initial value set at said boot area
designation flag of the memory block of all said memory
block pairs in the boot area designation flag of each
memory block of said other memory block pair,

25 at the time of booting the system, if the values
of the boot area designation flags in the memory blocks
of said other memory block pair are equal and not the
initial value, determining that the boot program is
stored in said other memory block pair,

30 when the values of the boot area designation

35 flags in the memory blocks of said other memory block pair are different or the initial value, determining that the boot area designation flag in question is invalid to determine that the boot program is stored in the user region of the memory block of said specific memory block pair,

40 when the values of the boot area designation flags in the memory blocks of said other memory block pair are equal and not the initial value, if values of the boot area designation flags in the memory blocks of said specific memory block pair are different, determining that the boot area designation flag in the memory block of said specific memory block pair is invalid to determine that the boot program is stored in 45 said other memory block pair, and

50 when the values of the boot area designation flags in the memory blocks of said other memory block pair are equal and not the initial value, if values of the boot area designation flags in the memory blocks of said specific memory block pair are equal, determining that the boot program is stored in a memory block of a memory block pair which stores a boot area designation flag whose value is smaller.

14. A boot region switching method of a microcomputer including a non-volatile memory having a first memory block and a second memory block formed of a program

region and a boot area designation flag region, of the
5 microcomputer, comprising the steps of:

when storing a new boot program in said non-volatile memory instead of said boot program,
erasing data of said second memory block,
storing said new boot program in said program
10 region of said second memory block,
storing data which are different from data stored in said boot area designation flag region of said first memory block in said boot area designation flag region of said second memory block, and
15 erasing data of said first memory block.

15. A boot region switching method of a microcomputer as set forth in claim 14, wherein

when reading said boot program,
reading said boot area designation flag from said
5 first memory block and said second memory block,
executing said boot program stored in said first memory block or said new boot program stored in said second memory block based on a comparison result of said boot area designation flag.

10

16. A boot region switching method of a microcomputer as set forth in claim 14, wherein

said boot area designation flag region of said second memory block including a first boot area

5 designation flag region and a second boot area
designation flag region,
 instead of said step of storing data which are
different from data stored in said boot area designation
flag region of said first memory block in said boot area
10 designation flag region of said second memory block,
 storing data which are different from data stored
in said boot area designation flag region of said first
memory block in said first boot area designation flag
region of said second memory block,
15 storing same data as data of said boot area
designation flag region of said first memory block in
said second boot area designation flag region of said
second memory block.