

مقدمة في الكيمياء _

المادة:- حمى حل ماله خله وحمد

- ◄ حالات المادة: 1- الملية .
- الاله -2
 - 3- العازية

تتكون من المادة — جزيئات ضك خرات

• الجزئ :- هو أصغر جزء من المادة يمكن أن يوجد في حالة انفراد وتتضح فيه خواص المادة.

وينشأ الجزئ غالباً من اتحاد خرتين أو أكثر.

الجزئ "ينقسم إلى"

مرکب 👉

ينتج من اتحاد ذرات مختلفة

H₂O , NH₃ ,NaCl , H₂SO₄

KNO₃, CaCO₃

عنصر 👉

ینتج من اتحاد ذرات متشابههٔ 🖊

 F_2 , N_2 , O_2 , CI_2 , Br_2 , P_4 , S_8

عناصر تتكون من ذرة واحدة سي

الغازات الخاملة), Na , K

العاجرالملة

2H 5 40

ملاحظات هامة :

1- أي عنصر صلب يتكون من ذرة واحدة .

2- الغازات الخامله ذرتها منفرده (أي تتكون من ذرة واحدة)

He

Ne

AY

xe

Rn

الـذرة

هم أصدو حدة ساء للمادة لانوحد عالمًا هي حالة إساد/ ونسترك عي المتماعل الكيميائي. سم

تتركب الذرة من:-

- 1- نواه موجبة الشحنة.
- 2- إلكترونات سالبة تدور حول النواه.

علل لما يأتي

1- النواة موجبة الشحنة.

منظرًا لِرِمتوانها على مروتونات موصف التعف + وسوترونات متعادلة التعمد ±

2- الذرة متعادلة كهربياً.

لذه عدد السروتونات السوصة ت عدد البركترونات السالة داحل السواة السواة

• العناصــر 📗

کل عنصر له رمز کیمیائي مکون من حرف واحد أو حرفین إذا کان مکوناً من حرف واحد یکتب Capital وإذا کان مکوناً من حرفین یکتب الأول Capital والثاني Small.

• <u>العدد الذري</u>: حوعدد الروتونات الموصف دامل السواة

العدد الذرى ـــــ

العدد الكتلي

معرف مكونات الدرة. سروتونات د الكرونات سوترون • العدد الكتلي: كومعبوع اعداد كل مد الدروتونات والسوترزيا داطل الدراق الدواة.

مثال

P+N العدد الكتلى

35 CI

17

P

العدد الذري

17 P, 17e

18 N

- تتكون ذرة الكلور من :
- 1) 17 بروتون موجب
- 2) 17 إلكترون سالب
- 3) 18 نیوترون متعادل 🚤

مثال

Fe

26

العدد الذري

26 P⁺, 26e

30 N

- تتكون ذرة الحديد من :
 - 1) 26 بروتون موجب
 - 2) 26 إلكترون سالب
 - 3) 30 نیوترون متعادل

<u>تنقسم العناصر إلى أربعة أقسام رئيسية</u>:-"سرنيلوب

تم تقسيم العناصر إعتماداً على خواصها وليس على تركيبها الإلكتروني

2- اللافلزات

4- الغازات الخاملة

1- الفلزات 🖊

3- أشباه الفلزات

مى عبا حريبتان غالا ف تحادزها بأقل سر نصف السعة

خواصها: 1- لما برب معدي

2- حيدة التومل للعرارة والكوباد.

3- خالمة للمرد والت والتى.

كىرىپ

الفلزات هي عناصر غير مستقرة تدخل في التفاعل الكيميائي لكي تستقر حيث " تميل الفلزات إلى فقد إلكترونات غلاف التكافؤ متحولة إلى أيونات موجبة (كاتيونات) "

2-اللافلزات هي عياصريتان غلاف تحادوها باكتر مه نصف السعة .

ح خواصها:1- ليه ليا تربي معدن

2- عير خالمة للصرد والتعموالتي .

3- ردينة التومل للعرارة والكهراء.

معرس

اللافلزات هي عناصر غير مستقرة تدخل في التفاعل الكيميائي لكي تستقر حيث " تميل لإكتساب إلكترونات متحولة إلى أيونات سالبة (أنيونات)

3-الغازات الخاملة (المجموعة الصفرية) َ

4-أشباه الفلزات

عامرلها مظهرالعلرات.

ومعظم والدولرات.

* لايمكن التعرف عليها من توزيعها الإلكتروني ولكن يتم التعرف عليها من خصائصها.

 B
 بورون

 Ge
 جرمانیوم

 Sb
 أنتیمون

 Te
 غنیمون

. حرعدد الدلكترونات المعقردة

أوالمكتسة أتنأ د النفاعل الكسمار

Al ec

- التكافؤ صفة مميزه لذرات العناصر.

أى أن الذرة يكون لها تكافؤ خاص بها الجزئ ليس له تكافؤ (أي أن مجموع

ِ شحنِاته يساوي صفر)

Al Clz. Nacl

التكافؤ

P

المجموعة الذرية

★ مجموعات ذرية أحادية التكافؤ:-

کلوریت	سیانات
هیبو کلوریت	ثيوسيانات
ھيدروكسيد	أمونيوم
نیترات	ألومنيات
نيتريت	بیرکلورات
	کلورات

بيكربونات أو كربونات هيدروجينية

بیکبریتات أو کبریتات هیدروجینیة

بيربرومات

برومات

برومیت

هيبوبروميت

★ مجموعات ذرية ثنائية التكافؤ:-

ثیوکبریتات	کربونات	
کرومات	كبريتات	
ثاني كرومات	كبريتيت	
بيفوسفات		

★ مجموعات ذرية ثلاثية التكافؤ:-

فوسفات

ملاحظة هامة

مجموعة ذرات مرتبطة لها شحنه → مجموعة ذرية .

مجموعة ذرات مرتبطه ليس لها شحنه → مركب .

" رموز العناصر و تكافؤات بعضها "

هیدروجین	صوديوم	حدید	
ھیلیوم	ماغنيسيوم	نحاس	
ليثيوم	ألومينيوم	خارصین	
بريليوم	سيليكون	رصاص	
بورون	فوسفور	فضة	6
کربون	كبريت	ذهب	
نِيتروجين	کِلور		
أكسجين	أرجون		
فلور	بوتاسيوم		
نیون	كالسيوم		
	هیلیوم لیثیوم بریلیوم بورون کربون نیتروجین أکسجین فلور	ماغنیسیوم هیلیوم ألومینیوم لیثیوم سیلیکون بریلیوم فوسفور بورون کبریت کربون کلور نیتروجین أرجون أکسجین بوتاسیوم فلور	نحاس ماغنیسیوم هیلیوم خارصین الومینیوم بریلیوم رصاص سیلیکون بورون فضة فوسفور بورون ذهب کبریت کربون کلور نیتروجین أرجون أرجون بوتاسیوم فلور

" كتابة الصيغة الكيميائية للمركبات غير العضوية "

* يتكون أي مركب من شقين أحدهما موجب والآخر سالب. * M+ X

1- يكتب الشق الموجب يساراً والسالب يميناً

2- تكتب التكافؤات بالتبادل

3- تختصر التكافؤات إن أمكن

أمثلة

1- أكسيد كالسيوم

2- أكسيد ألومنيوم

3- كلوريد ماغنسيوم

4- كبريتيد بوتاسيوم

5- هیدروکسید صودیوم

6- ھيدروكسيد كالسيوم "ماء جير رائق (جير مطفأ) "

7- كبريتات ألومينيوم

8- بيكربونات ماغنسيوم

9- فوسفات كالسيوم

10- حمض كبريتيك

ملاحظة هامة

تنتهى الأحماض التي تحتوي على نسبة أعلى من ذرات الأكسجين بمقطع (يك)

، الأحماض التي تحتوي على نسبة أقل من ذرات الأكسجين تنتهي بمقطع (وز)

أنواع المركبات الكيميائية :

أولًا ؛ الأحماض ؛

- هي مواد عند تأينها في الماء تعطى أيونات الهيدروجين الموجبة (البروتون) .
 - تحمر ورقة عباد الشمس .
 - مواد ذات طعم لاذع
 - تتفاعل مع القلويات لتعطى أملاح .
- تتفاعل مع المعادن والفلزات النشطة التى تسبق الهيدروجين فى متسلسلة النشاط الكيميائى .
 - تتفاعل مع الأكاسيد القاعدية .

 $\mathsf{H}_2\mathsf{SO}_4$ مثلة : حمض الهيدروكلوريك ا HC_1 مثلة : حمض الكبريتيك

يمكن تصنيف الأحماض حسب عدد القاعدية إلى :

1-أحادية القاعدية :

2-ثنائي القاعدية :

3-ثلاثى القاعدية :

- يمكن تصنيف الأحماض تبعاً لقوتها (درجة تأينها في الماء) إلى :

" الأحمـاض "

ضعيفة ضعيفة التأين في الماء

قوية تامة التأين في الماء

تصنف أيضاً الأحماض إلى

أحماض هالوجينية

أحماض أكسجينية .

الأحماض الأكسجينية :

وتعتمد " قوة الأحماض الأكسجينية " على:-

" عدد ذرات الأكسجين غير المرتبطة بالهيدروجين في جزئ الحمض"

■ تمثل الأحماض الأكسجينية بالصيغة الهيدروكسيلية (OH) (OH)

الأحماض الهالوجينية :

ثانياً: القلويات :

- •هي مواد عند تأينها في الماء تعطى أيون الهيدروكسيد السالب
 - تزرق ورقة عباد الشمس
 - •ذات طعم قابض
 - تتفاعل مع الأحماض لتعطى أملاح
 - تتفاعل مع الأكاسيد الحامضية
- $Ca(OH)_2$ هيدروكسيد الصوديوم NaOH مثلة : هيدروكسيد الكالسيوم ،

- تصنف القلويات حسب قوتها (درجة تأينها في الماء) إلى ·

" القلويات "

ضعيفة ضعيفة التأين في الماء قويـة تامة التأين في الماء

ثالثاً : الأملاح :- (ناتج تفاعل الأحماض مع القواعد) .

- أمثلة : كلوريد الصوديوم NaCl ، نترات الصوديوم ₃

رابعاً : الأكاسيد : (ناتج إتحاد العناصر مع الأكسجين)

-تنقسم الأكاسيد إلى : ﴿ رَا حُاسِيدٍ حَامِضِيةً : ﴿

- أكاسيد لافلزات
- تذوب في الماء مكونه احماض
- تتفاعل مع القلويات مكونه ملح وماء

2- أكاسيد قاعدية :

- أكاسيد فلزات :

- منها ما يذوب في الماء مكونه قلويات

ومنها لايذوب في الماء تعرف بالقواعد

- تتفاعل مع الأحماض مكونه ملح وماء

_3 أكاسيد مترددة :

- أمثلة :

/4- أكاسيد متعادلة :

- أمثلة :

المعادلة الكيميائية

هي مجموعة من الرموز والصيغ توضح كل من المواد الداخلة في التفاعل والناتجة عنه.

مواد متفاعلة _____ مواد ناتجة

" <u>خطوات كتابة المعادلة</u> "

1- تكتب المتفاعلات يساراً والنواتج يميناً.

2- تكتب الحالة الفيزيائية للمتفاعلات والنواتج.

3- وزن المعادلة

4-كتابة شروط التفاعل من ضغط P أو حرارة ∆ أو عامل حفاز Catalyst

1- ماغنسيوم + غاز الأكسجين → أكسيد ماغنسيوم

يفضل عدم وجود كسر في المعادلة لذا نضرب المعادلة × 2 لتصبح

2-ألومينيوم + غاز الأكسجين 🖰 أكسيد ألومينيوم

التفاعل الكيميائي

- ➤ انواع التفاعلات الكيميائية :
 - 1- تفاعلات الإتحاد المباشر
 - 2- تفاعلات الإحلال
- 3- تفاعلات الأكسدة والإختزال .
 - 4- تفاعلات الإنحلال الحراري

1- تفاعلات الإتحاد المباشر:

امثله - عنصر + عنصر

- مرکب + مرکب

- مرکب +عنصر

2- تفاعلات الإحلال :

تنقسم تفاعلات الإحلال إلى : 1- تفاعلات الإحلال البسيط

2- تفاعلات الإحلال المزدوج

1- تفاعلات الإحلال البسيط :

وتتم عملية الإحلال تبعاً لموقع العنصر في متسلسلة النشاط الكيميائي.

Na	الصوديوم
Ва	الباريوم
Ca	الكالسيوم
Mg	الماغنسيوم
ΑI	الألومنيوم
Zn	الخارصين
Fe	الحديد
Sn	القصدير
Pb	الرصاص
H_2	الهيدروجين
Cu	النحاس

Hg

Ag

Pt

Au

K

البوتاسيوم

- *أنواع تفاعلات الإحلال البسيط :
- 1- إحلال فلز محل هيدروجين الماء :

2- إحلال فلز محل هيدروجين الحمض :

3-إحلال فلز محل فلز أخر في محلول أحد أملاحه :

2-الإحلال المزدوج :

🖊 أنواع تفاعلات الإحلال المزدوج :

1-تفاعل حمض مع قلوى يعرف بإسم تفاعل التعادل :

2-تفاعل حمض مع ملح ويتوقف الناتج على نوع كل من الملح والحمض :

3-تفاعل محلول ملح مع محلول ملح أخر :

3- تفاعلات الأكسدة والإختزال :

√ الأكسدة:-

-المادة التي تحدث لها أكسدة تكون عامل مختزل

√ الإختزال : -

-المادة التي تحدث لها إختزال تكون عامل مؤكسد

◄ ملاحظات على أعداد التأكسد :

1- عدد تأكسد عناصر 1A , 2A في مركباتها

3+	2+	1+
Al	Be	Li
Ga	Mg	Na
In	Са	K

- 2- عدد تأكسد الأكسجين في معظم حالاته 2- عدا حالتي:
 - فوق الأكسيد1- <mark>مثل</mark>
 - سوبر الأكسيد $\frac{1}{2}$ مثل

ولا يعطى الأكسجين عدد تأكسد 2+ إلا عند اتحاده مع الفلور حيث أن الفلور أعلى سالبية من الأكسجين.

3- عدد تأكسد الهيدروجين في مركباته 1+ . عدا حالة " هيدريد الفلز " يكون 1-.

مثل : 1- هيدريد الصوديوم. ⁻Na+H

2- ھيدريد كالسيوم. <mark>CaH₂</mark>

4- عدد تأكسد الكلور 1- إلا إذا إتحد مع الأكسجين يكون عدد تأكسده موجباً

(+7, +5, +3, +1)

5- عدد تأكسد الفلور دائماً -1 لأنه أعلى العناصر سالبية.

6- عدد تأكسد أي مجموعة ذرية = شحنة المجموعة.

7- عدد تأكسد ذره أي عنصر في حالته الذرية = صفر.

8- مجموع شحنات أي مركب يساوى صفر

≥ احسب عدد تأكسد كل من:-

KCIO₄

أ- الكلور

K₂Cr₂O₇

ب- الكروم

FeCl₃

ج- الحديد

 MnO_4^{-2}

د- المنجنيز

(PO₄) -3

هـ- الفوسفور

🗵 وضح الأكسدة والاختزال في التفاعل الاتي: -

$$\Rightarrow$$
 Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂

 \Rightarrow K₂Cr₂O₇ + 6FeCl₂ + 14HCl \rightarrow 2KCl + 2CrCl₃ + 6FeCl₃ + 7H₂O

 \Rightarrow 5KNO₂ + 2KMnO₄ + 3H₂SO₄ \rightarrow 5KNO₃ + K₂SO₄ + 2MnSO₄ + 3H₂O

≥ ملاحظات هامه:

- الأكسدة والاختزال عمليتان متلازمتان متعاكستان متكاملتان.
- تفاعلات الإحلال المزدوج لا يحدث بها أكسدة أو اختزال لعدم حدوث انتقال
 للإلكترونات.

$$\overrightarrow{AB} + \overrightarrow{CD} \rightarrow \overrightarrow{AD} + \overrightarrow{CB}$$

" تبادل الأيونات "

4- تفاعلات الإنحلال الحراري :

🗕 انواع تفاعلات الإنحلال الحراري :

1-إنحلال بعض أكاسيد الفلزات إلى الفلز ويتصاعد غاز الأكسجين :

2-إنحلال بعض هيدروكسيدات الفلزات إلى أكسيد الفلز وبخار الماء :

3-إنحلال معظم كربونات الفلزات إلى أكسيد الفلز ويتصاعد غاز ثاني أكسيد الكربون :

4-إنحلال معظم كبريتات الفلزات إلى أكسيد الفلز ويتصاعد غاز ثالث أكسيد الكبريت :

5-إنحلال بعض نترات الفلزات إلى نيتريت الفلز ويتصاعد غاز الأكسجين :

يلزم لتحديد طاقة الإلكترون في الذرة معرفة أعداد الكم الأربعة : مستويات رئيسية

- 1. عدد الكم الرئيسي (n)
 - 2. عدد الكم الثانوي (۱)
- 3. عدد الكم المغناطيسي (m_l)
 - 4. عدد الكم المغزلي (m_s)

مستويات فرعية

أوربيتالات

إلكترونات

عدد الكم الرئيسي (n)

يمكن حساب عدد الإلكترونات التى تتشبع بها المستويات الرئيسية الأربعة الأولى من العلاقة 2n²

ِ عدد الكم الثانوي (۱)

عدد الكم المغناطيسي (m_l)

المستوى الفرعي	S	р	d	f
عدد الأوربيتالات	1	3	5	7
السعة الإلكترونية	2	6	10	14

عدد الكم المغزلى (m_s)

" قواعد توزيع الإلكترونات "

1- مبدأ البناء التصاعدي

2- قاعدة هوند

أولًا: مبدأ البناء التصاعدي:-

1s/2s, 2p/3s, 3p/4s, 3d, 4p/5s, 4d, 5p/6s, 4f, 5d, 6p/7s, 5f, 6d, 7p

يتشبع بـ	أوربيتال واحد	ai	S	المستوى الفرعي
یتشبع بـ	3 أوربيتالات	ai	р	المستوى الفرعي
پتشبع بـ	5 أوربيتالات	αi	d	المستوى الفرعي
يتشبع بـ	7 أوربيتالات	αi	f	المستوى الفرعي

أمثلة

<u>أكتب التوزيع الإلكتروني لكل من :-</u>

₇N

₁₂Mg

17**CI**

₂₆Fe

₂₀Ca⁺²

₉F -

ملاحظة هامة

عند توزيع العناصر إذا انتهى توزيع العنصر بالمستوى الفرعي d وكان المستوى d يحتوي على 4 أو 9 إلكترونات يتم سحب الإلكترون من المستوى الفرعي s ويوضع في d حتى يصبح ممتلئ أو نصف ممتلئ وهما حالتي استقرار".

₂₄Cr :

₂₉Cu :

علل لما يأتي

يشذ التوزيع الإلكتروني لكل من : الكروم 24Cr والنحاس 29Cu

🌢 " عند توزيع الإلكترونات في المستويين السادس والسابع فإنه يتم وضع

إلكترونين في المستوى s ثم إلكترون في d ثم يتتابع ملء المستوى الفرعي f "

التوزيع لأقرب غاز خامل:-

يوزع العنصر لأقرب غاز خامل يسبقه حيث يمثل كل غاز نهاية مستوى رئيسي

کریبتون ھیلیوم

زينون نيون

أرجون رادون

أمثلة

أكتب التوزيع الإلكتروني لكل من :-

₁₃**A**I

₂₀Ca

₂₈Ni

53

87Fr

₅₄Xe

ثانياً: قاعدة هوند:-

 p_x p_y p_z \uparrow 1s² / 2s² , 2p³ \uparrow \uparrow

 $_{8}$ O: 1s² / 2s² , 2p⁴

 $_{27}$ Co : $_{18}$ Ar / $4s^2$, $3d^7$

 $_{30}$ Zn : $_{18}$ Ar / $4s^2$, $3d^{10}$

علل لما يأتي

تشغل الإلكترونات في الأوربيتالات فرادي أولًا

PERIODIC TABLE CHART

12.011

Si 28.085

Ge 72,630

Ne 20,1797

Ar 39.948

Kr 83.798

Na

Mo

Pd 106,42

Ga

B 10.81 Boron

14.007

P 30.973761998

As 74,921595 Arsenic

15,999

S 32.06

Se 78.971

103

Rh

Br 79,904

Ti

Zr

Lr

Actinide Series

الجدول الدورى :

﴿ الأساس العلمي الذي بني عليه الجدول الدوري :

1-ترتيب العناصر تصاعدياً حسب الزيادة في العدد الذري .

بحيث يزيد كل عنصر عن الذي يسبقه بمقدار بروتون

2-طريقة ملء المستويات الفرعية بالإلكترونات (مبدأ البناء التصاعدي)

فئات الجدول الدورى :

يتكون الجدول الدورى من 4 فئات :

1- عناصر الفئة s:

2 -عناصر الفئة p:

3- عناصر الفئة b:

4-عناصر الفئة f:

يتكون الجدول الدوري من 7 دورات أفقية ، 18 عمود رأسي

يحدد موقع العنصر في الجدول الدوري عن طريق :-

♦ رقم الدوره ← رقم المستوى الرئيسى الموجود بجانب المستوى s أو p

♦ رقم المجموعة ← بجمع الإلكترونات الموجوده فى غلاف التكافؤ p g g متبوعاً
 بحرف A إذا كان من العناصر الممثله عدا الصفرية .

أما إذا كان من العناصر الإنتقالية الرئيسية بجمع إلكترونات d و b متبوعاً بحرف B عدا مجموعتي B , 2B والمجموعة الثامنه .

أمثلة :

- حدد رقم الدورة ورقم المجموعة للعناصر التالية :

₂₀Ca -1

₁₁Na -2

₁₃AI -3

33**As**-4

₂₁Sc -5

₄₂Mo -6

