Analysis

```
In [1]:
         import pandas as pd,\
           seaborn as sns, \
           matplotlib.pyplot as pypl,\
           numpy as np
         # plotly.express as px,\
In [2]:
         pypl.style.use('bmh')
In [3]:
         df_historical_pulls = pd.read_csv(
           '../dba5101_gp3/data/pulls_output.csv',
           header='infer',
           index col=False
In [4]:
         ## add uniform algo
         df_uniform_pulls_input = pd.read_json(
           '../dba5101_gp3/data/uniform_pulls_1.json',
           orient='records',
           lines=True
```

```
In [5]:
          ## add greed algo
          df greedy pulls input = pd.read json(
            '../dba5101 gp3/data/greedy pull 3.json',
            orient='records',
            lines=True
In [6]:
          df greedy pulls input['index pull'] = df greedy pulls input['Pull'].rank() - 1
          df uniform pulls input['index pull'] = df uniform pulls input['Pull'].rank() - 1
In [7]:
          df greedy pulls = df greedy pulls input[df greedy pulls input['index pull'] >= 1]
 In [8]:
          df uniform pulls = df uniform pulls input[df uniform pulls input['index pull'] >= (24*3)]
 In [9]:
          df ucb1 exploit = df historical pulls[df historical pulls['global pull'] >= 24 ]
In [ ]:
In [10]:
          df uniform pulls['local pull'] = df uniform pulls['Pull'].rank() - 1
         /var/folders/88/st0km2xx06b1nm8trg753ngm0000gn/T/ipykernel 19265/1785843218.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#return
         ing-a-view-versus-a-copy
           df_uniform_pulls['local_pull'] = df_uniform_pulls['Pull'].rank() - 1
```

```
In [ ]:
In [11]:
          df greedy pulls['local pull'] = df greedy pulls['Pull'].rank() - 1
         /var/folders/88/st0km2xx06b1nm8trg753nqm0000gn/T/ipykernel 19265/3050684879.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#return
         ing-a-view-versus-a-copy
           df greedy pulls['local pull'] = df greedy pulls['Pull'].rank() - 1
In [12]:
          df greedy pulls['rolling sum'] = df greedy pulls['Reward'].cumsum()
          df uniform pulls['rolling sum'] = df uniform pulls['Reward'].cumsum()
          df_historical_pulls['rolling_sum'] = df_historical_pulls['arm reward'].cumsum()
         /var/folders/88/st0km2xx06b1nm8trg753ngm0000gn/T/ipykernel 19265/4265629572.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user quide/indexing.html#return
         ing-a-view-versus-a-copy
           df greedy pulls['rolling sum'] = df greedy pulls['Reward'].cumsum()
         /var/folders/88/st0km2xx06b1nm8trg753ngm0000gn/T/ipykernel 19265/4265629572.py:3: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#return
         ing-a-view-versus-a-copy
           df uniform pulls['rolling_sum'] = df_uniform_pulls['Reward'].cumsum()
In [13]:
          df ucb1 exploit['rolling sum'] = df ucb1 exploit['arm reward'].cumsum()
```

```
/var/folders/88/st0km2xx06b1nm8trg753ngm0000gn/T/ipykernel 19265/3231549739.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#return
         ing-a-view-versus-a-copy
           df ucb1 exploit['rolling sum'] = df ucb1 exploit['arm reward'].cumsum()
In [14]:
          df comparative = df ucb1 exploit.merge(
            right=df uniform pulls,
            left on ='global pull',
            right on = 'local pull',
            how='left' ,
            suffixes=('_ucb1', '_uniform')
          df comparative = df comparative.merge(
            right=df greedy pulls,
            left on ='global pull',
            right on = 'local pull',
            how='left' ,
            suffixes=('', '_greedy')
In [15]:
          df comparative
```

Out[15]:		global_pull	arm	arm_pull	arm_reward	next_chosen_arm	rolling_sum_ucb1	Arm	NetReward	Pull	Reward	index_pull	local_pu
	0	24.0	3.0	1.0	17.0	NaN	17.0	0	194485	8959	27	96.0	24.
	1	25.0	8.0	1.0	24.0	NaN	41.0	1	194501	8960	16	97.0	25.
	2	26.0	8.0	2.0	19.0	NaN	60.0	2	194509	8961	8	98.0	26.
	3	27.0	0.0	1.0	18.0	NaN	78.0	3	194533	8962	24	99.0	27.
	4	28.0	8.0	3.0	20.0	NaN	98.0	4	194541	8963	8	100.0	28.
	•••												
	1995	2019.0	0.0	1821.0	22.0	NaN	48414.0	0	242273	10954	22	2091.0	2019.
	1996	2020.0	0.0	1822.0	27.0	NaN	48441.0	0	242295	10955	22	2092.0	2020.
	1997	2021.0	0.0	1823.0	31.0	NaN	48472.0	0	242315	10956	20	2093.0	2021.
	1998	2022.0	0.0	1824.0	20.0	NaN	48492.0	0	242337	10957	22	2094.0	2022.
	1999	2023.0	0.0	1825.0	29.0	NaN	48521.0	0	242366	10958	29	2095.0	2023.

2000 rows × 20 columns

```
In [19]:
          df comparative [df comparative['global pull'] <= 2000 ] [</pre>
            ['global_pull','rolling_sum_ucb1','rolling_sum_uniform','rolling_sum']
          ].rename(columns={'rolling sum':'greedy_epsilon','rolling_sum_uniform':'uniform','rolling_sum_ucb1':'ucb1'}) .plot
            kind ='line',
            x = 'global pull'
          pypl.title("Comparision of UCB1 + Uniform MAB + Greedy Episilon - Exploitation Phase Cumulative Reward")
          pypl.gcf().set_size_inches(17, 10)
          pypl.ylabel('Cumulative Reward')
          pypl.xlabel('Pull')
          #pypl.show()
          pypl.savefig(fname='./model cumulative sum.png')
          pypl.close('all')
 In [ ]:
 In [ ]:
```

14/11/21, 11:06 PM

```
In [4]:
         # Add in historical pulls over all time
         df_total_pulls = df_historical_pulls.groupby(['arm'])['global_pull'].count().reset_index()
         df total pulls.rename(columns={"global pull": "total pulls"},inplace=True)
         df historical pulls = df historical pulls.merge(right =df total pulls , how ='left', on ='arm')
In [5]:
         df_arms = pd.DataFrame( {'arm': df_historical_pulls['arm'].unique().tolist() } )
         df pulls = pd.DataFrame( {'global pull': df historical pulls['global pull'].unique().tolist() } )
         df cartesian = df arms.merge(right=df pulls, how='cross')
         df cartesian= df cartesian.merge( right=df historical pulls, on=['global pull', 'arm'] ,how='left' )
         df cartesian['arm reward'].fillna(value=0,inplace=True)
         df cartesian['cumulative reward'] = df cartesian.groupby(['arm'])['arm reward'].cumsum(skipna=True)
         df_cartesian['arm_pull'].ffill(inplace=True)
In [6]:
         df cartesian = df cartesian[df cartesian['global pull'] >= 24]
```

analysis

```
In [7]:
         #df cartesian['ucb index'] =
         df_cartesian['contemporary_linucb'] = (df_cartesian['cumulative_reward'] / (df_cartesian['arm_pull'] + 1) ) + np.
           (2 * np.log( df_cartesian['global_pull'] )) / (df_cartesian['arm_pull'] + 1)
         df cartesian['ucb mean'] = (df cartesian['cumulative reward'] / (df cartesian['arm pull'] + 1) )
         df cartesian['penalty'] = np.sqrt(
           (2 * np.log( df_cartesian['global_pull'] ) ) / (df_cartesian['arm_pull'] + 1)
In [8]:
         sns.lineplot(
           x='global pull',
           y='contemporary linucb',
           hue='arm',
           data=df cartesian[
            (df cartesian['global pull'] <= 220)</pre>
             & (df cartesian['global pull'] >= 24)
             & (df cartesian['arm'].isin([0,3,8,23]) )
         pypl.title("UCB Over Time")
         pypl.gcf().set size inches(17, 10)
         pypl.ylabel('UCB Index')
         pypl.xlabel('Pull')
         #pypl.show()
         pypl.savefig(fname='./ucb_exploitation_line.png')
         pypl.close('all')
```

```
df_cartesian[
    df_cartesian['global_pull'] == 2020
].sort_values(
    by=['contemporary_linucb'],
    ascending=False
)[['arm','arm_pull','cumulative_reward','contemporary_linucb','ucb_mean','penalty']].head(n=5)
```

Out[9]:		arm	arm_pull	cumulative_reward	contemporary_linucb	ucb_mean	penalty
	2020	0.0	1822.0	44651.0	24.584520	24.493143	0.091377
	16188	7.0	0.0	19.0	22.901500	19.000000	3.901500
	42500	20.0	0.0	19.0	22.901500	19.000000	3.901500
	20236	9.0	0.0	19.0	22.901500	19.000000	3.901500
	36428	17.0	10	40.0	22 758777	20 000000	2 758777

```
In [10]:
          sns.lineplot(
           x='global_pull',
            y='contemporary_linucb',
            hue='arm',
          # color='b',
            data=df cartesian[
              (df cartesian['global pull'] >= 24)
              & (df cartesian['arm'].isin([0,7,17]) )
          pypl.title("UCB Over Time - Candidates For Next Arm, Due To Uncertainity")
          pypl.gcf().set_size_inches(17, 10)
          pypl.ylabel('UCB Index')
          pypl.xlabel('Pull')
          #pypl.show()
          pypl.savefig(fname='./ucb_future_line.png')
          pypl.close('all')
```

```
In [11]:
          f, ax = pypl.subplots(figsize=(17, 10))
          sns.lineplot(
            x='global pull',
            y='ucb mean',
            hue='arm',
          # color='b',
            data=df cartesian[
              (df cartesian['global pull'] >= 24)
              & (df_cartesian['arm'].isin([0,7,17]) )
          sns.lineplot(
            x='global pull',
            y='penalty',
            hue='arm',
            data=df cartesian[
              (df cartesian['global pull'] >= 24)
              & (df cartesian['arm'].isin([0,7,17]) )
          pypl.title("Arm Mean & Penalty Term Over Time")
          pypl.ylabel('UCB Index Component Quantity')
          pypl.xlabel('Pull')
          #pypl.show()
          pypl.savefig(fname='./ucb penalty line.png')
          pypl.close('all')
```

```
In [12]:
          #Create combo chart
          fig, ax1 = pypl.subplots(figsize=(17,10))
          #bar plot creation
          ax1.set title('UCB Index & Reward - Exploitation Phase', fontsize=16)
          ax1.set xlabel('Pull')
          ax1.set ylabel('Reward')
          ax1 = sns.scatterplot(x='global pull', y='arm reward', hue='arm', data = df historical pulls[
          (df historical pulls['global pull'] <= 250)</pre>
          & (df historical pulls['global pull'] >= 24)
          #& (df historical pulls['arm'].isin([0,3,8,23]) )
          1)
          ax1.tick params(axis='y')
          #specify we want to share the same x-axis
          ax2 = ax1.twinx()
          #line plot creation
          ax2.set ylabel('UCB Index')
          ax2 = sns.lineplot(
            x='global pull',
            y='contemporary linucb',
            hue='arm',
            data=df cartesian[
              (df cartesian['global pull'] <= 250)</pre>
              & (df cartesian['global pull'] >= 24)
             & (df cartesian['arm'].isin([0,3,8,23]) )
          #show plot
          #pypl.show()
          pypl.savefig(fname='./ucb index reward line.png')
          pypl.close('all')
```

```
In [48]: #sns.scatterplot( x='global_pull', y='arm_reward', hue='arm',
    # data = df_historical_pulls[ (df_historical_pulls['global_pull'] <= 250)
    # & (df_historical_pulls['global_pull'] >= 24) ])

#pypl.gcf().set_size_inches(17, 10)

#pypl.show()

#pypl.close('all')

In [47]: #sns.displot( data=df_historical_pulls[ df_historical_pulls['global_pull'] >= 24] ,

# x="arm_reward", hue="arm", kind="kde")

#pypl.gcf().set_size_inches(17, 10)

#pypl.show()

#pypl.close('all')
```

```
In [13]:
    sns.violinplot(
        cut=0,
        inner='quartiles',
        data=df_historical_pulls[ (df_historical_pulls['global_pull'] >= 24) & (df_historical_pulls[ 'total_pulls'] > 2
        x='arm',
        y='arm_reward',
    )

    pypl.gcf().set_size_inches(17, 10)
    pypl.ylim([0,45])

    pypl.ylabel("Arm Reward Violinplot, Exploitation Phase - With Quartiles")
    pypl.ylabel('Reward')
    pypl.xlabel('Arm')

#pypl.show()
    pypl.savefig(fname='./reward_violin.png')
    pypl.close('all')
```