Notes of "Definition and Properties of the Limit of a Sequence"

Jinxin Wang

1 Overview

2 Definition of the Limit of a Sequence

Definition 1 (A Sequence). A function $f: \mathbb{N} \to X$ is called a sequence.

Definition 2 (The Limit of a Numerical Sequence). A number $A \in \mathbb{R}$ is called the limit of the numerical sequence $\{x_n\}$ if for every neighborhood V(A) of A there exists an index N (depending on V(A)) such that all terms of the sequence having index larger than N belong to the neighborhood V(A).

Remark 1 (An Equivalent Definition of the Limit of a Numerical Sequence with $\epsilon - N$). Another equivalent definition of the limit of a numerical sequence is:

A number $A \in \mathbb{R}$ is called the limit of the numerical sequence $\{x_n\}$ if for every $\epsilon > 0$ there exists an index N (depending on ϵ) such that $|x_n - A| < \epsilon$ for all n > N.

Proof of equivalence: (TODO)

Remark 2 (Formulation of definitions of the limit of a numerical sequence in symbolic logic).

$$(\lim_{n \to \infty} x_n = A) := (\forall V(A) \exists N \in \mathbb{N} \forall n > N(x_n \in V(A)))$$
$$(\lim_{n \to \infty} x_n = A) := (\forall \epsilon > 0 \exists N \in \mathbb{N} \forall n > N(|x_n - A| < \epsilon))$$

Definition 3 (A convergent/divergent sequence). If $\lim_{n\to\infty} x_n = A$, we say that the sequence $\{x_n\}$ converges to A or tends to A and write $x_n \to A$ as $n \to \infty$.

A sequence having a limit is said to be convergent. A sequence that does not have a limit is said to be divergent.

3 Properties of the Limit of a Sequence

3.1 General Properties

The word "general" means that the properties in this section are possessed not only by numerical sequences, but by other kinds of sequences as well.

Definition 4 (An ultimately constant sequence). If there exists a number A and an index N such that $x_n = A$ for all n > N, the sequence $\{x_n\}$ will be called ultimately constant.

Definition 5 (A bounded sequence). A sequence $\{x_n\}$ is bounded if there exists M such that $|x_n| < M$ for all $n \in \mathbb{N}$.

Theorem 1. T1 An ultimately constant sequence converges.

- **T2** Any neighborhood of the limit of a sequence contains all but a finite number of terms of the sequence.
- **T3** A convergent sequence cannot have two different limits.
- **T4** A convergent sequence is bounded.

证明. Pf of T1

3.2 Properties Involving Arithmetic Operations

Definition 6 (The sum, product and quotient of two numerical sequences). If $\{x_n\}$ and $\{y_n\}$ are two numerical sequences, their sum, product, and quotient are the sequences

$$\{(x_n + y_n)\}, \{(x_n \cdot y_n)\}, \{(\frac{x_n}{y_n})\}$$

The quotient is defined only when $y_n \neq 0$ for all $n \in \mathbb{N}$.

Theorem 2. Let $\{x_n\}$ and $\{y_n\}$ be numerical sequences. If $\lim_{n\to\infty} x_n = A$ and $\lim_{n\to\infty} y_n = B$, then

T1
$$\lim_{n\to\infty} (x_n + y_n) = A + B$$

T2
$$\lim_{n\to\infty} (x_n \cdot y_n) = AB$$

T3
$$\lim_{n\to\infty}\left(\frac{x_n}{y_n}\right)=\frac{A}{B}$$
, provided $y_n\neq 0 (n=1,2,\ldots)$ and $B\neq 0$

证明. Pf of T1

Pf of T2

Pf of T3

3.3 Properties Involving Inequalities

Theorem 3. T1 (保序性) Let $\{x_n\}$ and $\{y_n\}$ be two convergent sequences with $\lim_{n\to\infty} x_n = A$ and $\lim_{n\to\infty} y_n = B$. If A < B, then there exists an index $N \in \mathbb{N}$ such that $x_n < y_n$ for all n > N.

T2 (夹通性) Suppose the sequences $\{x_n\}$, $\{y_n\}$, and $\{z_n\}$ are such that $x_n \leq y_n \leq z_n$ for all $n > N \in \mathbb{N}$. If the sequences $\{x_n\}$ and $\{z_n\}$ both converge to the same limit, then the sequence $\{y_n\}$ also converges to that limit.

证明. Pf of T1

Pf of T2

Corollary 1. Suppose $\lim_{n\to\infty} x_n = A$ and $\lim_{n\to\infty} y_n = B$. If there exists N such that for all n > N we have

4 INFINITY 3

- C1 $x_n > y_n$, then $A \ge B$.
- C2 $x_n \geq y_n$, then $A \geq B$.
- C3 $x_n > B$, then $A \ge B$.
- C4 $x_n \geq B$, then $A \geq B$.

Remark 3. Notice that strict inequality in terms may become equality in the limit. Example: $\frac{1}{n} > 0$ for all $n \in \mathbb{N}$ but $\lim_{n \to \infty} \frac{1}{n} = 0$.

4 Infinity

4.1 Definition of Infinity

Definition 7 (Infinity, Positive Infinity, Negative Infinity).

Corollary 2 (Relation between Infinity and Infinitesimal).

Definition 8 (Not an Infinity).

4.2 Operations Involving Infinity