6.1

ANGLES: EXERCICE RÉDIGÉ

I) ÉNONCÉ

Dans la figure ci-dessous, ABC est un triangle tel que $\widehat{ACB} = 60^{\circ}$. Les points I et J appartiennent respectivement à [AB] et [AC] et sont tels que (IJ) est parallèle à (BC), et que [JB) est la bissectrice de \widehat{IJC} .

D est un point tel que $\widehat{CAD} = 60^{\circ}$

- 1) Calculer \widehat{AJI} .
- 2) Calculer \widehat{BJC} .
- 3) Déterminer la nature du triangle BJC.
- 4) Montrer que ABCD est un trapèze.

(Remarque : Il n'est pas demandé de reproduire la figure)

II) RÉDACTION

Hypothèses:

ABC est un triangle tel que $\widehat{ACB} = 60^{\circ}$ $I \in [AB], J \in [AC]$ et (IJ) // (BC)[JB) est la bissectrice de \widehat{IJC} .

1) Calcul de \widehat{AJI}

Par hypothèses, (IJ) // (BC)

et (AC) est sécante à ces deux droites

donc \widehat{AJI} et \widehat{ACB} sont correspondants.

Or deux droites parallèles forment avec une sécante des angles correspondants de même mesure

donc: $\widehat{AJI} = \widehat{ACB}$

Et comme, par hypothèses, $\widehat{ACB} = 60^{\circ}$ on a donc $|\widehat{AJI} = 60^{\circ}|$

2) Calcul de \widehat{BJC}

Par hypothèses, $J \in [AC]$

donc \widehat{AJI} et \widehat{IJC} sont supplémentaires

donc $\widehat{AJI} + \widehat{IJC} = 180$

or d'après 1), $\widehat{AJI} = 60^{\circ}$

donc $60+\widehat{IJC}=180$

donc $\widehat{IJC} = 180 - 60$

donc $\widehat{IJC} = 120^{\circ}$

Or, par hypothèses, [JB) est la bissectrice de \widehat{IJC}

3) Nature de BJC

Dans le triangle *BJC*, on a :

- D'après ce qui précède, $\widehat{BJC} = 60^{\circ}$
- Par hypothèses $\widehat{ACB} = 60^{\circ}$ donc $\widehat{JCB} = 60^{\circ}$

Or un triangle qui a deux angles de même mesure est isocèle

donc le triangle BJC est isocèle en B

De plus, un triangle isocèle qui a un angle de 60° est équilatéral

donc *BJC* est un triangle équilatéral

4) Montrer que ABCD est un trapèze

(AC) est sécante à (AD) et (BC),

donc \widehat{ACB} et \widehat{CAD} sont alternes-internes.

Or, par hypothèses, $\widehat{ACB} = 60^{\circ}$ et $\widehat{CAD} = 60^{\circ}$

Or deux droites formant avec une sécante des angles alternes-internes de même mesure sont parallèles

donc: (AD) // (BC)

donc ABCD est un trapèze de bases [BC] et [AD]