Dualita

Zadání

- 1. At $f: D_f \subseteq \mathbb{R}^n \to \mathbb{R}$ a $g: D_g \subseteq \mathbb{R}^m \to \mathbb{R}$.
 - (a) Ukažte, že je-li m=n a $M\subseteq D_f\cap D_g$, pak

$$\inf_{x \in M} f(x) + \inf_{x \in M} g(x) \le \inf_{x \in M} f(x) + g(x).$$

(b) Ukažte, že jsou-li $M\subseteq D_f$ a
 $N\subseteq D_g$ neprázdné, pak

$$\inf_{x \in M} f(x) + \inf_{y \in N} g(y) = \inf_{(x,y)^T \in M \times N} f(x) + g(y).$$

2. Je dána úloha

minimalizujte
$$x_1 + 2x_2$$

za podmínek $x_1 + x_2 \ge 1$,
 $x_1, x_2 \ge 0$.

- (a) Nalezněte k ní duální úlohu, jestliže $x_1, x_2 \geq 0$ bereme jako přímé omezení.
- (b) Nalezněte k ní duální úlohu, jestliže přímé omezení bereme ve tvaru $x \in \mathbb{R}^2$.
- 3. Je dána úloha

minimalizujte
$$x_1^2 + x_2^2$$

za podmínek $x_1 + x_2 \ge 4$,
 $x_1, x_2 \ge 0$.

- (a) Nalezněte k ní duální úlohu, jestliže $x_1, x_2 \geq 0$ bereme jako přímé omezení. Řešte duální úlohu a tento výsledek použijte k nalezení řešení původní úlohy.
- (b) Nalezněte k ní duální úlohu, jestliže přímé omezení bereme ve tvaru $x \in \mathbb{R}^2$. Řešte duální úlohu a tento výsledek použijte k nalezení řešení původní úlohy.
- 4. Nalezněte duální úlohu k úloze

minimalizujte
$$x_1 - 4x_2 + x_3^4$$
 za podmínek $x_1 + x_2 + x_3^2 \le 2$, $x_1, x_2 \ge 0$.

Přímé omezení uvažujte ve tvaru $x_1, x_2 \ge 0$.

5. V \mathbb{R}^n jsou dány množiny bodů $A = \{a_1, \dots, a_k\}$ a $B = \{b_1, \dots, b_l\}$. Ař $w \in \mathbb{R}^n$ a $\lambda \in \mathbb{R}$. K úloze

minimalizujte
$$h(w, \lambda) = \frac{1}{2} \|w\|^2$$
 za podmínek $\langle a_i, w \rangle + \lambda \geq 1$ pro všechna $i = 1, \dots, k$, $\langle b_j, w \rangle + \lambda \leq -1$ pro všechna $j = 1, \dots, l$.

zkonstruujte úlohu duální (přímé omezení je $w \in \mathbb{R}^n, \ \lambda \in \mathbb{R}$).

Výsledky

 $2. \quad (a)$

maximalizujte
$$\mu$$
 za podmínky $\mu \leq 1$ $\mu > 0$.

(b)

maximalizujte
$$\mu_1$$

za podmínek $1 - \mu_1 - \mu_2 = 0$, $2 - \mu_1 - \mu_3 = 0$ $\mu_1, \mu_2, \mu_3 \ge 0$.

3. (a)

maximalizujte
$$-\frac{\mu^2}{2} + 4\mu$$
 za podmínky $\mu \ge 0$.

(b)

maximalizujte
$$4\mu_1 - \frac{(\mu_1 + \mu_2)^2}{4} - \frac{(\mu_1 + \mu_3)^2}{4}$$

za podmínek $\mu_1, \mu_2, \mu_3 \ge 0$.

4.

$$\label{eq:maximalizujte} \begin{split} \text{maximalizujte} & -2\mu \\ \text{za podmínky} & \mu \geq 4. \end{split}$$

5. Ať

$$\varphi(y_1, \dots, y_k, z_1, \dots, z_l) = -\frac{1}{2} \sum_{i=1}^k \sum_{j=1}^k \langle a_i, a_j \rangle y_i y_j + \sum_{i=1}^k \sum_{j=1}^l \langle a_i, b_j \rangle y_i z_j - \frac{1}{2} \sum_{i=1}^l \sum_{j=1}^l \langle b_i, b_j \rangle z_i z_j + \sum_{i=1}^k y_i + \sum_{i=1}^l z_i.$$

Duální úloha je

maximalizujte
$$\varphi(y_1, \dots, y_k, z_1, \dots, z_l)$$

za podmínek
$$\sum_{i=1}^k y_i - \sum_{i=1}^l z_i = 0,$$
$$y_1, \dots, y_k, z_1, \dots, z_l \ge 0.$$