Teorie míry a integrálu

Kateřina Ševčíková, podle učebního textu profesora Jana Rataje

Poslední úprava: 14. října 2024

	1	•
<i>,</i> ,	haa	h
. ,	bsa	

1	Základní pojmy teorie míry	2
2	Měřitelné funkce	3

Úvod

Připomenutí: Riemannův, Newtonův integrál, geometrický význam plochy pod grafem. (Riemannův integrál lze použít k výpočtu míry = integrálu, ale jen na uzavřeném intervalu a pro omezenou funkci.) ((

Ne všechny funkce jsou "integrovatelné", ne všechny množiny "měřitelné".

 $\acute{u}plnost$: Na prostoru Riemannovsky integrovatelných funkcí na intervalu I definujme skalární součin vztahem $\langle f,g \rangle := \int_I f \cdot g$. Indukovaný metrický prostor není úplný.

aditivita: V teorii pravděpodobnosti potřebujeme, aby pravděpodobnostní míra byla spočetně aditivní, tedy aby pro po dvou disjunktní náhodné jevy $A_1, A_2, ...$ platilo $Pr(\bigcup_i A_i) = \sum_i Pr(A_i)$. Toto by pro míru definovanou pomocí Riemannova integrálu neplatilo.

Obecná konstrukce: nejprve míra (množinová funkce), z ní je odvozen integrál (aproximace po částech konstantními funkcemi). Vlastnosti, které chceme po "míře":

- 1. $\mu(\emptyset) = 0, \mu(A) \ge 0 \ \forall A$
- 2. $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$ pro po dvou disjunktní množiny A_1, A_2, \dots

))

Banachův - Tarského paradox: u míry chceme moct rozdělit množinu na několik částí, každou posunout, zrotovat, tak ať jou stále disjunktní, a chceme mít staále stejnou míru. To ale vždy nefunguje, tento paradox ukazuje, že je možné rozdělit jednotkovou kouli v \mathbb{R}^3 na 5 částí, posunout je, a získat 2 stejné koule, tedy nezachováme míru. Tedy ne každá množina je měřitelná.

1 Základní pojmy teorie míry

Definice. Buď X libovolná neprázdná množina. Symbolem $\mathcal{P}(X) = \{A : A \subset X\}$ značíme **potenční** množinu množiny X, neboli systém všech podmnožin množiny X.

Definice. $A \subset \mathcal{P}(X)$ je σ -algebra na X, jestliže

- (i) $\emptyset, X \in A$;
- (ii) $A \in \mathcal{A} \Rightarrow X \setminus A \in \mathcal{A}$
- (iii) $A_i \in \mathcal{A}_i, i \in \mathbb{N} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

 $A \subset \mathcal{P}(X) jealgebra, spluje - li(1), (2)a$

 $(iii')A, B \in \mathcal{A} \Rightarrow A \cup B \in A.$

Pozn.: To sjednocení je sice nekonečný, ale můžeme to doplnit prázdnýma množinama, takže je povolený i konečný sjednocení.

Pozn.: Z tohoto plyne i uzavřenost na (konečné/) spočetné průniky, protože $\bigcap_{k=1}^{\infty} A_k = X \setminus \bigcup_{k=1}^{\infty} (X \setminus A_k)$ **Pozn.:** Algebra je uzavřená na konečné množinové operace (průnik, sjednocení, rozdíl), σ -algebra na spočetné množinové operace.

Příklad. • $\{\emptyset, X\}$ - nejmenší σ -algebra na X

- $\mathcal{P}(X)$ největší $\sigma\text{-algebra na } \mathbf{X}$
- $A = \{\emptyset, \{1\}, \{2,3\}, \{1,2,3\}\}$ je σ -algebra na $X = \{1,2,3\}$.
- $A = \{A \subset X : A \text{ spoetnnebo } X \setminus A \text{ spoetn}\}$ je σ -algebra

Věta 1.1. Existence nejmenší σ -algebry

Důkaz. viz zápisky mobil

Definice. borelovskou σ -algebrou

Definice. měřitelný prostor míra prostor s mírou

Věta 1.2. Spojitost míry

 $D\mathring{u}kaz$. viz mobil.

Definice. Nechť $a=(a_1,...,a_n),\ b=(b_1,...,b_n)\in\mathbb{R}^n$. Množina

$$W = \{x = (x_1, ..., x_n) \in \mathbb{R}^n : a_i < x_i < b_i \ \forall i \in \{1, ..., n\}\}\$$

a také každou množinu, která vznikne záměnou libovolného znaménka < za \le , nazveme n-buňka . Objem n-buňky definujeme jako 0, je-li $W=\emptyset$ a jako $vol(W)=\prod_{i=1}^n (bi-ai)$, je-li $W\neq\emptyset$.

Věta 1.3. Rozšíření elementárního objemu

Existuje právě jedna míra \mathcal{L}_n na $\mathcal{B}(\mathbb{R}^n)$ taková, že pro každou n-buňku W platí $\mathcal{L}_n(W) = vol(W)$.

 $D\mathring{u}kaz$. Náznak: Lze ukázat, že je-li $G \in \mathbb{R}$ otevřená, pak existují po dvou disjunktní n-buňky takové, že $G = \bigcup_{i=1}^{\infty} W_i$. Definujeme $Z_n(G) = \sum_{i=1}^{\infty} vol(W_i)$. (nezáleží na volbě rozkladu). Dále pak $A \in \mathcal{B}(\mathbb{R}^n)$ definujeme $Z_n(A) = \inf\{Z_n(G) : G \text{ otevřená}, \ G \in \mathbb{R}^n, A \subset G\}$.

Poznámka. • Z konstrukce míry Z_n plyne, že je-li $A \subset \mathbb{R}^n$ borelovská a $\epsilon < 0$, potom existuje otrevřená množina $G \in \mathbb{R}^n takov, eA \subset GaZ_n(G \setminus A) < A$

• Míra Z_n je invariantní vůči posunutí - pro všechna $x \in \mathbb{R}^n$ a $A \in \mathcal{B}(\mathbb{R}^n)$ platí $\mathcal{L}_n(x+A) = \mathcal{L}_n(A)$

Definice. Nechť (X, \mathcal{A}, μ) je prostor s mírou. Řekneme, že μ je úplná míra, jestliže platí: je-li $A \in \mathcal{A}$ splňující $\mu(A) = 0$ a $A^I \in \mathcal{A}$, pak $A^I \in \mathcal{A}$.

Poznámka. V takovém případě nutně $\mu(A') = 0$

Věta 1.4. Zúplnění míry (bez důkazu)

Nechť (X, \mathcal{A}, μ) je prostor s mírou. Nechť \mathcal{A}_0 je systém všech množin EsubsetX, pro něž existují $A, B \in \mathcal{A}$ takové, že $A \subset E \subset Ba\mu(B \setminus A) = 0$. Potom \mathcal{A}_0 je σ -algebra obsahující \mathcal{A} . Definujeme $\mu_0(E) = \mu(A) \forall E \in \mathcal{A}_0$. Potom $\mu = \mu_0$ na \mathcal{A} a $(X, \mathcal{A}_0, \mu_0)$ je prostor s úplnou mírou.

Definice. Prostor $(X, \mathcal{A}_0, \mu_0)$ z předchozí věty nazýváme zúplněním prostoru (X, \mathcal{A}, μ) , A_0 se nazývá zúplnění σ-algebry A vzhledem k míře μ a μ_0 se nazývá zúplnění míry μ .

Definice. Zúplnění σ-algebry $\mathcal{B}(\mathbb{R}^n)$ vzhledem i Z_n značíme $\mathcal{B}_0(\mathbb{R}^n)$ a nazýváme ji σ-algebrou lebesgueovsky měřitelných množin. Odpovídající zúplnění míry Z_n značíme opět Z_n a nazýváme je hldefLebesgueovou mírou.

2 Měřitelné funkce

Definice. Nechť (X, \mathcal{A}) je měřitelný prostor a (Y, τ) je metrický prostor. Řekneme, že zobrazení f: X->Y je měřitelné, jestliže $f^{-1} \in \mathcal{A}$ pro každou $V \subset Y$ otevřenou. Je-li navíc (X, ρ) metrický prostor a $\mathcal{A} = \mathcal{B}(X)$, pak F nazýváme borelovské.

Poznámka. Nechť $(X, \rho), (Y, \tau)$ jsou MP. Pak zobrazení $g: X \to Y$ je spojité právě tehdy, když $g^{-1}(V)$ je otevřená v X pro každou V otevřenou v Y. Tedy každé spojité zobrazení je borelovké.

Příklad. Nechť (X, \mathcal{A}) je měřitelný prostor, $A \subset X$. Potom charakteristická funkce množiny A je definovaná předpisem $\chi_A(x) = 1$, pokud $x \in A, 0$, pokud $x \notin A$ je měřitelné práve tehdy, když $A \in \mathcal{A}$

 $D\mathring{u}kaz$. "⇒" Je-li χ_A měřitelná, pak $A=\chi_A^{-1}((1/2,3/2))$ je vzor otevřené množiny, a tehdy $A\in\mathcal{A}$ " \Leftarrow " Nechť $A\in\mathcal{A},A\subset\mathbb{R}$ otevřená. Pak $\chi_A^{-1}=$

- X, pokud $0, 1 \in B$,
- A, pokud $0 \notin B, 1 \in B$,

Dle vlastností σ -algebry patří všechny tyto množiny do \mathcal{A} , a tedy χ_A je měřitelná.

Věta 2.1. Měřitelnost složení zobrazení Nechť $(Y,\tau), (Z,\sigma)$ jsou M.P. a (X,\mathcal{A}) je měřitelný prostor. Nechť $g:Y\to Z$ je spojité a $f:X\to Y$ je měřitelné. Potom $gof:X\to Z$ je měřitelné.

Důkaz. obrázkem