Modele Wyceny Ryzyka Kredytowego Credit Risk Assessment Models

Jakub Szotek

State Street Bank GmbH

Plan Prezentacji

- Ryzyko Kredytowe
- Model CreditRisk+
 - Założenia
 - ② Etapy
 - Open Przykład
 - Operation of the property o
- Inne modele

© Randy Glasbergen / glasbergen.com

Credit Counseling

Ryzyko kredytowe przejawia się możliwością:

- niewywiązania się dłużnika z umowy kredytowej
- nieterminowej spłaty zobowiązań

"The government is trillions of dollars in debt. Being in debt is how I show my patriotism."

- Efektywne zarządzanie ryzykiem banku
- Wyznaczanie ceny kredytu
- Maksymalizacja wartości banku

- Efektywne zarządzanie ryzykiem banku
- Wyznaczanie ceny kredytu
- Maksymalizacja wartości banku

- Efektywne zarządzanie ryzykiem banku
- Wyznaczanie ceny kredytu
- Maksymalizacja wartości banku

- Efektywne zarządzanie ryzykiem banku
- Wyznaczanie ceny kredytu
- Maksymalizacja wartości banku

Ryzyko musi być mierzalne!

Prawdopodobieństwo niewypłacalności dłużnika Wielkość kredytów

ROZKŁAD PRAWDOPODOBIEŃSTWA

- Duża liczba dłużników w portfelu kredytów
- Niskie prawdopodobieństwo bankructwa dłużnika (niemożliwość spłaty zobowiązań)
- 8 Bankructwa dłużników są zdarzeniami niezależnymi

- Duża liczba dłużników w portfelu kredytów
- Niskie prawdopodobieństwo bankructwa dłużnika (niemożliwość spłaty zobowiązań)
- Bankructwa dłużników są zdarzeniami niezależnymi

- Duża liczba dłużników w portfelu kredytów
- Niskie prawdopodobieństwo bankructwa dłużnika (niemożliwość spłaty zobowiązań)
- 8 Bankructwa dłużników są zdarzeniami niezależnymi

- Duża liczba dłużników w portfelu kredytów
- Niskie prawdopodobieństwo bankructwa dłużnika (niemożliwość spłaty zobowiązań)
- Bankructwa dłużników są zdarzeniami niezależnymi

- Duża liczba dłużników w portfelu kredytów
- Niskie prawdopodobieństwo bankructwa dłużnika (niemożliwość spłaty zobowiązań)
- 8 Bankructwa dłużników są zdarzeniami niezależnymi

Etapy analizy:

- Wyznaczenie rozkładu prawdopodobieństwa dla ilości przypadków niewypłacalności
- Wyznaczenie rozkładu prawdopodobieństwa straty z całego portfela kredytów

Etapy analizy:

- Wyznaczenie rozkładu prawdopodobieństwa dla ilości przypadków niewypłacalności
- Wyznaczenie rozkładu prawdopodobieństwa straty z całego portfela kredytów

Portfel:

Dłużnik	p_i	Kredyt
A	13,2%	500 000
В	13,7%	380 000
С	1,7%	300 000
D	13,2%	250 000
E	13,1%	120 000
F	13,7%	120 000
G	17,3%	100 000
Н	9,5%	80 000
I	7,0%	50 000
J	5,3%	20 000

Funkcja generująca prawdopodobieństwa

$$F(z) = \sum_{n=0}^{\infty} q_n z^n,$$

gdzie q_n - prawdopodobieństwo niewypłacalności dokładnie n dłużników.

$$F(z) = \sum_{n=0}^{\infty} \frac{e^{-\mu} \mu^n}{n!} z^n,$$

gdzie $\mu = \sum_{i=1}^{N} p_i$

Rozkład Poissona

Funkcja generująca prawdopodobieństwa

$$F(z) = \sum_{n=0}^{\infty} q_n z^n,$$

gdzie q_n - prawdopodobieństwo niewypłacalności dokładnie n dłużników.

$$F(z) = \sum_{n=0}^{\infty} \frac{e^{-\mu} \mu^n}{n!} z^n,$$
gdzie $\mu = \sum_{i=1}^{N} p_i$

Rozkład Poissona

Funkcja generująca prawdopodobieństwa

$$F(z) = \sum_{n=0}^{\infty} q_n z^n,$$

gdzie q_n - prawdopodobieństwo niewypłacalności dokładnie n dłużników.

$$F(z) = \sum_{n=0}^{\infty} \frac{e^{-\mu} \mu^n}{n!} z^n,$$
gdzie $\mu = \sum_{i=1}^{N} p_i$

Rozkład Poissona

Rozkład prawdopodobieństwa wielkości strat

Podział na przedziały

Dolna granica	Górna granica	Ilość	Wartość dla przedziału	v_j
0	100 000	4	50 000	1
100 000	200 000	2	150 000	3
200 000	300 000	2	250 000	5
300 000	400 000	1	350 000	7
400 000	500 000	1	450 000	9

L - jednostka pieniężna (50 000),

 v_j - wielkość straty dla j-tego przedziału (w jednostkach L),

$$\begin{cases} p_0 = \exp\left(-\sum_{j=1}^m \mu_j\right), \\ p_n = \sum_{j:v_j \leqslant n}^m \frac{\mu_j v_j}{n} p_{n-v_j}. \end{cases}$$
 (1)

 p_n - prawdopodobieństwo wystąpienia straty wielkości n jednostek L.

Rozkład prawdopodobieństwa wielkości strat

Podział na przedziały

Dolna granica	Górna granica	Ilość	Wartość dla przedziału	v_j
0	100 000	4	50 000	1
100 000	200 000	2	150 000	3
200 000	300 000	2	250 000	5
300 000	400 000	1	350 000	7
400 000	500 000	1	450 000	9

L - jednostka pieniężna (50 000),

 v_j - wielkość straty dla j-tego przedziału (w jednostkach L),

$$\begin{cases} p_0 = \exp\left(-\sum_{j=1}^m \mu_j\right), \\ p_n = \sum_{j:v_j \leqslant n}^m \frac{\mu_j v_j}{n} p_{n-v_j}. \end{cases}$$
 (1)

 p_n - prawdopodobieństwo wystąpienia straty wielkości \boldsymbol{n} jednostek L.

Rozkład prawdopodobieństwa dla wielkości straty

Miary rozkładu prawdopodobieństwa dla wielkości straty

E(X)	204 243,26 (4,08 L)
$D^2(X)$	1 193 300,95 (23,87 L)
D(X)	244 264,30 (4,89 L)

VaR (Value at Risk)

Poziom	Wartość straty
90%	500 000 (10 L)
95%	700 000 (14 L)
99%	1 050 000 (21 L)

VaR dla poziomu 0,9

- umożliwia analityczne wyznaczenie rozkładu całkowitej straty dla portfela
- pozwala na znalezienie parametrów rozkładu
- istnieje możliwość wyznaczenia wielkości kapitału ekonomicznego koniecznego do pokrycia nieoczekiwanej straty

- umożliwia analityczne wyznaczenie rozkładu całkowitej straty dla portfela
- pozwala na znalezienie parametrów rozkładu
- istnieje możliwość wyznaczenia wielkości kapitału ekonomicznego koniecznego do pokrycia nieoczekiwanej straty

- umożliwia analityczne wyznaczenie rozkładu całkowitej straty dla portfela
- pozwala na znalezienie parametrów rozkładu
- istnieje możliwość wyznaczenia wielkości kapitału ekonomicznego koniecznego do pokrycia nieoczekiwanej straty

- umożliwia analityczne wyznaczenie rozkładu całkowitej straty dla portfela
- pozwala na znalezienie parametrów rozkładu
- istnieje możliwość wyznaczenia wielkości kapitału ekonomicznego koniecznego do pokrycia nieoczekiwanej straty

CreditMetrics

- umożliwia wyznaczenie rozkładu wartości portfela wierzytelności
- punktem wyjścia jest ocena ratingowa dłużnika oraz prawdopodobieństwo jej zmiany w jednostce czasu

Model Jarrowa-Lando-Turnbulla

- umożliwia wyznaczenia rozkładu spreadów kredytowych dla portfela wierzytelności oraz instrumentów finansowych charakteruzyjących się ryzykiem niewypłacalności kontrahenta
- wykorzystuje się w nim łańcuchy Markowa

CreditMetrics

- umożliwia wyznaczenie rozkładu wartości portfela wierzytelności
- punktem wyjścia jest ocena ratingowa dłużnika oraz prawdopodobieństwo jej zmiany w jednostce czasu

Model Jarrowa-Lando-Turnbulla

- umożliwia wyznaczenia rozkładu spreadów kredytowych dla portfela wierzytelności oraz instrumentów finansowych charakteruzyjących się ryzykiem niewypłacalności kontrahenta
- wykorzystuje się w nim łańcuchy Markowa

Dziękuję za uwagę!