

Why

1

Definition

Let X be a set and let A be a finite set. We denote the set of all finite sequences (strings) in A by $\mathcal{S}(A)$. We read $\mathcal{S}(A)$ aloud as "the strings in A."

A code for X in A is a function from X to S(A). In this context, we refer to the finite set A as an alphabet. The length of $x \in X$, with respect to a code $c: X \to S(A)$, is the length of the sequence c(x). We call a code nonsingular if it is injective.

Examples

Define
$$c : \{\alpha, \beta\} \to \{0, 1\}$$
 by $c(\alpha) = (0, 1)$ and $c(\beta) = (1, 1)$.

Code extensions

Let $s, t \in \mathcal{S}(A)$ of length m and n respectively. The concatenation of s with t is the length m + n string $u \in \mathcal{S}(A)$ defined by $u_1 = s_1, \ldots, u_m = s_m$ and $u_{m+1} = t_1, \ldots, u_{m+n} = t_n$. We denote the concatenation of s and t by st. Note, however, that $st \neq ts$, although s(tr) = (st)r.

Given a code $c: X \to \mathcal{S}(A)$, we can produce a code for $\mathcal{S}(X)$ in a natural way. The *extension* of c is the function

¹Future editions will include, with perhaps discussion of encoding a representing text.

$$C: \mathcal{S}(X) \to \mathcal{S}(A)$$
 defined, for $\xi = (\xi_1, \dots, \xi_n) \in \mathcal{S}(X)$, by
$$C(\xi) = c(\xi_1) \cdots c(\xi_n).$$

We call an code uniquely decodable if its extension is injective. In other words, given the code $C(\xi)$ for a sequence $\xi \in \mathcal{S}(X)$, we can recover ξ . We call $C(\xi)$ the encoding of ξ . We call ξ the decoding of $C(\xi)$.

Prefix-free codes

We call a string $s \in \mathcal{S}(A)$ of length m a prefix of a string $t \in \mathcal{S}(A)$ of length n if $m \leq n$ and $s_i = t_i$ for all $i \in \{1, 2, ..., m\}$.

We call a code $c: X \to \mathcal{S}(A)$ prefix-free if, for all $x \in X$, c(x) is not a prefix of c(x') for all $x' \neq x$, $x' \in X$. Otherwise, we call the code prefixed. All prefix-free codes are uniquely decodable, but the converse is false.

Proposition 1. There exists a set X, alphabet A, and prefixed code $C: X \to \mathcal{A}$ such that C is uniquely decodable.

Proof. Let α and β be objects. Try $X = \{\alpha, \beta\}$, $A = \{0, 1\}$ and $c: X \to \mathcal{S}(A)$ defined by $c(\alpha) = (0, 1)$, $c(\beta) = (0, 1)$. We proceed by induction on the length of encodings. Consider a length one encoding. It must be (0, 1), which decodes as (A, 1). Consider a length two encoding. It is either (0, 0), which decodes as (A, A), or it is (0, 1) which decodes as (B, 1). Now assume the cases k - 1 and k - 2. Now consider a length k code $a \in \mathcal{S}(A)$. It consists of $(a_{1:k-1}, a_k)$. If $a_k = 0$, then

the the code must be (y, α) where y is the decoding of $a_{1:k-1}$. By the induction hypothesis, $a_{1:k-1}$ is of length k-1 and so uniquely decodable. Otherwise, $(a_{k-1}, a_k) = (0, 1)$ and so the code must be (y', β) where y' is the decoding of $a_{a:k-2}$. By the induction hypothesis, $a_{1:k-2}$ is of length k-2 and so uniquely decodable.

In other words, the prefix-free codes are a strict subset of the uniquely decodable codes.

