Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US05/011292

International filing date: 01 April 2005 (01.04.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/558,119

Filing date: 01 April 2004 (01.04.2004)

Date of receipt at the International Bureau: 12 May 2005 (12.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

'4'(d) Anil (100) Vancoda (na 12812; preus ben'is; salanti, codias:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

May 04, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/558,119

FILING DATE: April 01, 2004

RELATED PCT APPLICATION NUMBER: PCT/US05/11292

Certified by

Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

လွ	This is	This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).								
70	Expres	press Mail Label No. < <text>></text>								
O INVENTOR(S)									- L	
Given Name (first and middle [if any])				Family Name or Sumame		Residenc (City and either State or			U.S 581	
Barry W. Byron K.				Townsen Claudino	-	Bakersfield, California Bakersfield, California			9249 60/5	
Additional inventors are being named on the < <text>> separately numbered sheets attached hereto</text>										
TITLE OF THE INVENTION (500 characters max)										
LOWER EXTREMITY PROSTHESIS REPLICATING FUNCTION OF HUMAN MUSCULATURE										
Direct all correspo	ondence	to:		CORRESPONDENCE ADDRESS						
Customer Number			02045)457						
OR										
Firm or Individual Name Antonelli, Terry, Stout & Kraus, LLP										
Address	dress 1300 North Seventeenth Street									
Address Suite 1800										
City Arlington			on		State	VA	Zip	22209		
Country USA					Telephone	703-312-6600	Fax	703-312-6666		
ENCLOSED APPLICATION PARTS (check all that apply)										
Specification Number of Pages 30 CD(s), Number										
Drawing(s) Number of Sheets 41 Other (specify) Credit Card Payment Form										
Application Data Sheet. See 37 CFR 1.76										
METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT										
Applicant claims small entity status. See 37 CFR 1.27.										
I I A shook or manay arder is analoged to cover the filing tage								FILING FEE Amount\$		
The Commissioner is hereby authorized to charge										
filing fees or credit any overpayment to Deposit Account Number: 01-2135									į.	
Payment by credit card. Form PTO-2038 is attached.										
The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.										
No										
Yes, the name of the U.S. Government agency and the Government contract number are:										
		···············	-		[Page 1 of 1]	Date 04/01/04				
Respectfully submitted,										
SIGNATURE WILLIAM						REGISTRATION NO (if appropriate)	28,57	L		
		V .	Docket Number:	183.4	3731L00					
TYPED or PRINTED NAME Ronald J. Shore										
TELEPHONE 703-312-6600										

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is required by 37 CFR 1.51. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Mail Stop Provisional Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Artificial Muscle Form and Function

- Design concept intro = problem 14% (long) -26% (short). Solution ١. needed...windlass, human and prosthetic comparison.
 - a. Energy
 - i. PE
 - ii. EE

b. Foot, ankle, calf, shank, posterior artificial muscle.

c. Artificial muscle = Uscorunger and de linere

- d. Increased PE = 1/kE = 1/2 mV^2
 - i. CAM post calf
 - ii. Foot shell
 - iii. Windlass
- Artificial muscle = VISCORLASTIC PASSINE DEVICE 11.
 - a. Max tension, max unloading.
 - i. Mass, length, width, cross-sectional area

ii.

- b. Form and function, monolithic and integral
 - i. Strap solid
 - ii. Fusiform
 - Bi-pinnate
 - iv. Multi-pinnate

- v. Combination of design
 - 1. strap to muscle
- c. Function
- **III**. Cams, Pads, Bladders
 - a. Cams
 - i. Worm gear
 - Bolt adjustment
 - iii. Sylinoid
 - b. Pads
 - i. Posterior calf
 - ii. Longitudinal arch
 - iii. Bladders
 - 1. Calf
- IV. Foot Shell
- ٧. Claims

Background and Field of Invention

+ A COASSPAIRS DEVKE Our invention is a device that replicates the function of human musculature. A device that adds potential energy to a prosthetic system which results in an increase in the prosthetic systems kinetic power generation potential. Wherein, the increase in kinetic power generation can be manipulated by the user to facilitate functional outcomes as required by the users activities.

Provisional Patent move to top of PASE 3

I. Design Concept - Background, Intro

The prosthesis as shown in our high performance foot patent # <u>US 6,562,075</u> as represented by figures 1,1,12, \(\), and \(\) have been pathokinesiology (641) tested) tested (3D motion analyzed) on two unilateral transtibial amputees at Stanford University and the University of Southern California (USC). The test results indicate see figure 13 1 (jack KP) that the prosthesis does not produce equal amounts of ankle joint sagittal plane/power as/the unaffected side limb creating inequalities in gait. Figure 3 (jack KP) shows that a 14% gap exists between the prosthetic ankle joint sagittal plane kinetic power and his unaffected "normal" side. Fig $\frac{9}{2}$ (average KP) indicates that the average of two subjects prosthetic side sagittal plane ankle joint kinetic power wherein one subject had an 8" inch long calf shank ____fig__ and the other test subject had a 4" long calf shank as shown in figure 3 # that a 26% gap exists between "normal" unaffected and affected (prosthetic side) ankle joint sagittal plane kinetic power. This sagittal plane ankle joint kinetic power generation has been identified as the propulsive force needed to propel the trailing limb and body forward for the next step.

The scientific literature suggests that even though all prior art prosthetic feet have varied mechanical designs they all function (in creating sagittal plane ankle joint power) about the same. For example, US patent # ____ (Seattle Lite Foot) and Safe Foot US patent # ____ create approximately 25% of "normal" ankle joint sagittal plane kinetic power. This represents a 76% gap between the affected and unaffected sides.

The problem of generating "normal" human ankle joint sagittal plane kinetic power with a prosthetic foot, ankle, and calf...?

Van Phillips US patent # _______ shows a prior art prosthetic foot, ankle, and calify shows a prior art prosthetic foot, and calify shows a prio

The 14% gap in ankle joint sagittal plane kinetic power generation that exists between our prosthetic foot system and the human foot and ankle system can be bridged by adding a posterior east device that adds potential and elastic energy storage capacity to our prosthetic system.

Design Concept

Through the proper application of mechanical design a prosthetic structure, in this case a foot, ankle, calf, and posterior artificial muscle design, has been created, which for the first time efficiently transforms potential elastic stored energy into kinetic energy and measurably improves the terminal stance phase propulsive force, at the

ankle, allowing for normalized advancement of the trailing limb and forward movement during amputee gait.

Design Theory

The foundation for the Phase I prototype designs (P1 and P2 - both of which incorporate a resilient longitudinal foot keel, rigid ankle coupler, resilient anterior facing convexly curved parabolic calf shank, and posterior calf-artificial muscle device) were the mechanical structures of the human foot, ankle, and calf and their respective responses to ground reaction force throughout the stance phase of gait. By better understanding the biomechanical processes in the human foot, ankle, and calf we believe that we can create a lower extremity prosthesis, which is purely mechanical, that will be capable of replicating normal human function.

Over the past 5 years our Phase I prototypes have evolved to achieve an accurate representation of the known biomechanical processes, as they occur in human gait.

The primary focus of the design is to use resilient structures that have the capacity to store elastic energy which can be transformed into kinetic energy. This mechanical energy concept was taken one step further by creating a posterior salf showled artificial muscle device which has the capability of storing its own potential energy, wherein the potential energy is created by the work required to load the muscle with energy. A simple illustration, conceptually, of potential and kinetic energy can be explained by the stretch and release of a rubber band. When the rubber band is stretched it stores potential energy via its elasticity and when the rubber band is released the elastic stored energy is transformed into kinetic energy or the contraction

BEASTLE EXCUST STONASE CAPPLITIES

of the rubber band. This same principle applies to the capacity of the resilient longitudinal foot keel and parabolic call shank. In the stance phase of gait mechanical energy is created by the multi-segment system. This mechanical energy through the gait cycle creates potential energy by "loading" the elastic call shank and foot keel. The stored elastic potential energy is released/transformed via the mechanical structures of the Phase I prototype into kinetic energy which creates a propulsive force. Moreover, during gait, the body's center of gravity rises and falls creating potential and kinetic energy, respectively. These alternating energy events contribute to the efficiency of human locomotion, through the cyclic nature of energy absorption and generation, and enhance the loading properties of the elastic prosthetic foot.

The second major design theory incorporates a variable geometric mechanical design concept, wherein, through the orchestration of one radius next to another, wherein, the radii orientation are manipulated in the sagittal, frontal and transverse planes. This radii orchestration was further developed by arranging the radii to respond to a single ground reaction force by compressing and/or expanding. This compression and/or expansion of the radius relates directly to the angular velocity of the resilient structure going down or up respectively. Further development of this radii concept includes that the angular velocity potential is a function of the radius size and is a function of the distance from a point of rotation. A larger radius has greater angular velocity potential.

Our current prosthetic system which includes a resilient foot, ankle, and calfshank needs a boost of potential energy. Herein, lies our patent. A posterior and/or dorsal device and/or devices that not only adds potential energy but increases the

elastic energy storage capacity of the whole system. Wherein, each separate component, i.e. the longitudinal foot keel caff shank posterior or dorsal device contributes a percentage to the total kinetic power generation value. (Our invention is to replicate the function of the human posterior calf musculature and the windlass action of the foot. Campbell Childs, US Patent #, achieved this foot windlass effect, however, our windlass design is more simplistic and effective with increased elastic energy storage capacity. Ron I don't know if a patent subcategory exists on this subject. Talso don't + OR MULTIAC LCAR'S PRIM know of a prior art invention that incorporates the multitude of designs embodied in this

provisional patent.)

The posterior calf device could be a simple leaf spring figure 6 and/or (elastic/resilient) strap. Or it could be an elastic artificial muscle representation, VISCO ELASTIC DEVICE Figure 8 19. The artificial muscle could include a simple solid elastic strap (figure) 10 and/or multiple layers of straps. However, its form characteristics dictating specific UISCORLASTR DOUGLE motion characteristics. The artificial muscle further including a device that adds VISCOBLASTIC DEVICE potential energy by pre-stretching and/or pre-loading the artificial muscle with potential energy. This posterior device #1 could be a pad, figure, and/or pads, figure, of different thicknesses, or it could be an air or hydraulic bladder, figure, or it could be a cam, figure, wherein, the user of the prosthesis manipulates the device #1 to increase and/or decrease the amount of potential energy added to the prosthetic system. Our prosthetic foot shell incorporates an elastic strap system that originates in the posterior plantar and inserts in the anterior plantar regions of a foot shell. This elastic plantar foot system is not limited to being part of a foot shell system. It can be attached to the posterior and anterior ends of our longitudinal foot keel. This elastic windlass system will increase the

elastic energy storage capacity of our foot keel system which when added to our prosthetic system will increase our elastic energy storage capacity. This elastic energy will be transformed into kinetic power.

Our elastic windlass foot system can be manipulated by the user to increase and/or decrease the amount of potential energy. This manipulation is achieved by a longitudinal arch pad system of various thicknesses and forms. Each form/shape dictating a pre-determined stretch on the windlass system. In use the user can change the longitudinal pad to a thicker, thinner, wider, and/or narrower form, wherein a thicker longitudinal arch pad increases the length by stretching/preloading the windlass elastic material.

The need exists for device #1 and the windlass system because as the users activity level increases the prosthetic system should be able to be manipulated by the user to increase and/or decrease the kinetic power generation. This will allow our prosthesis to be utilized by the amputee for a wide variety of activities including walking, running, and jumping.

VISCOBERSTIC DUNCE

II. Artificial Muscle Section

Human muscles exhibits specific form and function characteristics. For example, a muscle can be fusiform and/or multi-pinnate formed each dictating different functional motion outcomes. A muscles mass as represented by a cross sectional area times length dictates its power potential. A larger muscle mass will create an increase in power potential. Two muscles of equal mass that are either long and narrower cross-section, figure of short and larger cross sectional areas create different motion outcomes. (Ass). For example, a long and narrow cross sectional area muscle has

increase range of motion potential as compared to a short large cross sectional muscle. P16 F16 A short and large cross sectional muscle of the same mass creates greater tension values in a shorter time frame. However, a long narrow muscle has greater unloading potential. In human walking the posterior calf muscle group in response to ground reaction force loads eccentrically and an eccentrically contracting muscle has increased tension capabilities. Therefore a short wider cross sectional area muscle will replicate this function better than a long narrow muscle of the same mass. Different muscle configurations can be layered one on top of another creating many different motion outcomes. Each motion outcome potential having range of motion tension, unloading and timing characteristics.

JISCO RUASTIL + ROSILIENT STWOTURE move mis certere Our patent creates a prosthetic artificial muscle based on these simple biomechanical VILED ELASTIC + RECEIVER OF PORCES DEVICES functions.) Our artificial muscles are generally monolithically formed out of an elastic material such as rubber, however, anybody skilled in the art would know that elastic materials other than rubber could be utilized and that varying densities and durometers VICCOBLASTIC DELTES , MCCOELASTE DULLE could be employed in the manufacture of our muscles. Our muscles could also be a biomechanical elastic structure incorporating resilin at the top end of the elastic spring VICLOBLASTIC PENICES efficiency scale. A hybrid of biological and mechanical forms. Our muscles can be integrally formed. Wherein, a material with different and/or the same elastic rating can be attached to the terminal ends wherein different mechanical forms are fastened VISCOELAKTIK POVICE together. Each artificial muscle having two terminal ends usually a proximal and distal orientation, however, as in the human they could be oriented medial to lateral and/or anterior to posterior or any combination thereof.

JISCORLARTIC DEVICES

Our muscles can be manufactured by injection molding, machining or any combination USCOBLASTLI thereof. Our musele forms can be a simple elastic strap where in the cross sectional area and length can be varied to achieve different functional motion outcomes. The length can be varied to achieve different functional motion outcomes. The length to cross sectional area of the muscle dictating specific elastic storage capacity, max VISCOBLASTIC PENICES tension, max unloading and power potential. Our muscles can be solid, fusiform, bi-VISCOPLASTIC DEVIC pinnate and/or multi-pinnate formed with each muscle configuration dictating specific JUSTOBLATTIC DEVICE VISLOPLASTICPENKE motion outcomes. Our muscles can be single and/or multilayered. Our muscles can be VISCOBEASTIC 1SCOBEHATE NON ELAKTIC a combination of muscle and/or strap or any combination thereof. Our muscles elastic energy storage capacity being derived from the elastic properties of the material in the VISCOPLASTIC VISCOPLASTIC Muscles are made of and its mass. Our muscles form and mass dictate specific motion VISCOBLAMPL DEVICES outcomes. Our muscles can be attached to the proximal end of our calf shank, below. knee prosthetic socket, and/or thigh cuff on any combination thereof. Our muscles distal attachment could be the distal end of the calf shank, posterior 1/3rd of the foot VICE ELACTICACUS keel, and/or foot keel or any combination thereof. Our muscles are not specifically meant for the foot, ankle, and calf shank but can be utilized at the hip knee, ankle, toes, elbow, wrist, fingers, shoulder, trunk, neck, eyes, ears, mouth, thumb, and/or any VISICO REASTIC DEVICES combination thereof. Our prosthetic muscle can be cross sectional shaped as a: Plance rectangle, square, oblong, flat, round, triangular, or any poly angular structure, and

tubular. The elongated shapes can be (see figures): -

VISCO REASTIC PENICES

Our artificial muscles elastic and form characteristics can be manipulated by design form to replicate the function of any muscle in the human body. Wherein every human muscle has a specific motion and function capability. Our muscles can be a hybrid of bio-mechanical forms wherein biological tissues are interfused with mechanical elements to create structures capable of contracting, i.e. shortening with electrical input.

V(SCO PLASTE PLYCE*)

Our muscles** can be a hybrid of elastic mechanical elements capable of responding to an electrical stimulus wherein the electrical stimulus makes the mechanical elements shorten in length causing a shortening of the muscles length. Our muscles are beyond simple synthetic rubber.

aforementioned designs. Our muscles can be made of a fibrous elastic element that can be expanded to produce movements for the joints they cross and/or for the human

//(column) bodice
structure they are intended to mimic. Our muscles can bebrainstorm here _____.

VICOBLASTIC + ON COMPS STRIP

Artificial muscle resilient leaf spring design, see figure 21, this muscle design.

incorporates a single and/or multiple leaf springs. The leaf springs can be made of rubber, plastic, alloy and/or composite the resiliency of the material and form dictating its functional motion outcomes. The leaf spring can be single and/or multilayered and they can be of the same and/or different lengths. The general shape of the leaf spring is curvilinear with a straight section and/or curvilinear throughout. The leaf springs can respond to a force by compressing and/or expanding. Our leaf springs can be made in a variety of lengths, they can be layered in multiple layers. The strap material for our leaf spring muscle can be single or multilayered. The strap can be non-stretching and/or stretchable. The function of our leaf spring muscle is to replicate the function of a human muscle. Our leaf springs can be made of a resilient material and/or resilient materials or any combination thereof to facilitate the same and/or different spring rates. Our leaf springs can be monolithically and/or integrally formed. Our leaf spring can be fusiform, bi-pinnate, and/or multi-pinnate. Our leaf springs can be formed with a middle section single and/or multiple cutouts.

Our cutouts can be rectangular, square, triangular, poly angular, round/circular, half moon, crescent moon in shape (see half with drawn shape). The leaf springs can be bar stock and/or non-bar stock in shape, see figure below (m,n,o,p,q,r,s). M M O P Q Q R S

Our leaf springs can have symmetry and/or asymmetrical form. Our leaf spring can have varied spring rates within the monolithic form, wherein, the spring rate can be

softer and/or firmer depending on the curvilinear forms. For example (see drawing en 290). X+Y and A-C can be the same or different widths, the spring rate of each section of the leaf spring being related to the width and thickness of the leaf spring in (figure R on 230) was the same from top to bottom, the width of X, Y, A, B, and C would dictate spring rates for that area of the structure. This varied width design allows a single structure to have varied spring rates wherein the spring rates can be firmer and/or softer. For example, X would be softer than Y, and C softer than B, and B softer than A. This allows us to create a varied spring rate with one structure. This varied spring rate can be appreciated by the amputee because waried force loading of the prosthetic system which occurs during walking, running, and jumping activities, the spring rate would ramp up. The leaf spring below is an example. Figure S (233) section 1 would have less spring rate than section 2 and 3. As a consequence the small force loading section 1 would respond as the forces go up; sections 2 and 3 would be utilized giving us a mechanical structure that ramps up its spring rate proportional to its force load.

Another varied embodiment would be to have a leaf spring that has a raised middle section that would engage as force loading increases. For example T1-4 (234-236). This particular leaf spring design does not have to be rectilinear in form but could be curvilinear in form combining both curvilinear and/or rectilinear forms. Anybody skilled in the prior art would know that our basic design principles could be combined to achieve a desired motion outcome.

Rimary objective of our prosthetic system/design is to have a foot keel, ankle, and shank that is highly flexible yet during the late mid-stance phase of gait the system becomes more rigid or when force loading goes up in running and jumping activities our structure becomes more rigid. This has been accomplished with our longitudinal foot keel and monolithically formed ankle and shank wherein the longitudinal arch area of the longitudinal foot keel and the parabolic shaped calf shank respond to the late mid-stance ground reaction force by expanding which increases the angular velocity potential of both structures which has proven to improve the ankle joints sagittal plane kinetic power generation value. The human ankle joint has two primary, muscle groups which influence its ability to create torque and they are the anterior pretibial and posterior triceps surae muscle groups. The scientific literature suggests that an 11 to 1 torque ratio exists between these two muscle groups with the posterior group being 11.

artificial muscle and/or windlass allows us to achieve this 11 to 1 posterior to anterior torque ratio. ANTER OFTERNIC 1,000,000

By preloading our shank and foot keel with our windlass and calf shank, and/or calf shank and foot keel devices we can fabricate more flexible foot keel and calf shank units which are highly mobile yet become more rigid on force loading further replicating the human structures movement and motion characteristics.

PATENT) SPAN NO N POUCENT. WELL LEY

PATENT, SPAN NO N POUCENT.

Traditional cosmetic foot shells are simply cosmetic in nature not adding any degree of biomechanical function. Our windlass foot shell cover adds potential energy (PE) to the longitudinal foot keel, this increase in (PE), functions to increase the kinetic energy potential. Our windlass foot shell incorporates a single and/or multilayer of plantar elastic straps/bands which originate on the plantar surface posteriorly and insert on the plantar surface anteriorly. These elastic bands can be integrally and/or monolithically formed (see figure 1997. These plantar bands can be molded into the foot shell when the foot shell is manufactured, by injection molding (see figure 7. These plantar bands can be solid bands, fusiform, and/or multi-pinnate formed. Any combination thereof can be utilized in our windlass foot shell system. For example a solid band can be layered with a fusiform and/or multi-pinnate formed bands. By varying the elastic band forms varied motion outcomes are created. Our windlass effect is not limited to the foot shell system. It can be created by attaching the elastic plantar bands to the anterior and posterior ends of the longitudinal foot keel of our prosthetic system. These plantar bands anterior and posterior attachments can be fastened by a fastener (2) really I would have never guessed - its all so clear!) and/or slipped over the terminal ends of the longitudinal foot keel (see-figures rivets and glebs). Varied potential energy can be added to this system by the use of variable thickness longitudinal arch pads. Wherein, the user of the device would change the thickness the thickness of the longitudinal arch pad for higher or lower functioning activities such as walking, running, and jumping. For example, the user of our prosthetic system would use a thinner longitudinal arch pad for walking. When the user of our prosthetic system wants to run he/she would remove the thin longitudinal arch pad from their shoe and exchange it with a thicker longitudinal arch pad: this thicker longitudinal arch pad would increase the tension on the plantar band. This increase in tension preload is accomplished because the longitudinal foot keel is more rigid than the plantar elastic bands and the distance the plantar elastic bands must travel from their terminal ends is larger. Therefore a thicker pad will increase the tension preload stretch on the plantar bands. In practice the user of our prosthetic system can add one and/or multipads to achieve a tension (preload) that suites their activity. A thicker longitudinal arch pad for increased activities.

IV. Cams, Pads, Bladders (Potential energy manipulating devices).

A device which functions to prestretch/preload or otherwise increase tension on our VICORUNC PEULLE artificial muscle is needed to allow the user of the prosthesis to add potential energy (PE) to his prosthetic system. An increase in P.E. will increase the kinetic energy which increases the propulsive force to propel the trailing limb and body forward for the next cycle. This cycle can be walking, running, and/or jumping activities. This preloading of VICORUNIO ONLE and windlass bands also functions to increase the ratio of posterior to anterior ankle joint torque values.

These potential energy devices can be air bladders, cams, and/or pads. For example figure () shows several thicknesses of pads which can be utilized as previously discussed with our elastic bands an windlass device. Similar pads can be attached to the posterior and/or anterior aspect of a prosthetic device. For example figure () shows a pad added to the posterior aspect of a below knee socket. However, any one

skilled in the art would know that these pads could be used on the thigh, forearm, upper arm, hand, finger, neck, and/or any other prosthetic part to increase tension on our y(well) artificial muscle device.

Air Bladders

Pneumatic and hydraulic bladders can also be used to increase tension on our windlass VISCO BLASTR and artificial muscle devices For example figure (13) shows a pneumatic bladder which is attached to the posterior aspect of below knee socket wherein the bladder is worked. VISCORLAGIC DEVICE sandwiched between the socket and artificial muscles and/or muscles. In practice this pneumatic is inflated increasing the tension on our artificial muscles. This increase in tension preloading adds potential energy (PE) to our system. This (PE) is variable with a direct relationship to the volume of air and expansion of the device. To facilitate expansion of our air bladder in one direction for example the pneumatic bladder is encapsulated in a cloth sheath that has rigidity on the sides which is achieved by the weave and flexibility in the anterior and posterior direction for example. The cloth sheath can be made of Kevlar, composites, cotton, nylon, and/or synthetic materials. Our pneumatic bladder can also be formed monolithically wherein the medial and lateral sides of the bladder are made more rigid and thicker than the anterior and posterior sides for example. The objective of our pneumatic bladder is to increase the width of the anterior and posterior dimension while keeping the medial and lateral width narrow. For Example. The pneumatic bladder when used in our windlass system would increase the plantar to dorsal width while not increasing the medial and lateral dimension.

Cams

VIS CO BLUASTIC PULICES Another (PE) embodiment for our artificial musele system uses a cam device wherein the user of our prosthetic system can manipulate the cam by adjusting the cam to VICCOBLASTIC DEVICE increase tension preload our artificial muscle. These cam devices as shown in figures can use a worm gear and/or a single or multiple screws to cause the cam to lower and/or raise to tension preload our muscles. These cam devices can be attached to the proximal and/or distal end of our monolithically formed calf shank, however, as previously discussed they can be utilized on any prosthetic part that uses our artificial muscle device. The operation of our cam devices is straight forward. For example, our worm gear drive cam device allows the user to screw the worm gear in or out which transfers this rotating motion and power from the worm gear to the gear which is attached to the cam. Other gear types can be used in our cam such as helical,

shows a cam device that does not use a gear operation but rather a simple single and/or multiple adjustment screw. This adjustment screw engages the lower end of the cam and by screwing the screw in and out the motion of the cam is affected. In operation this style of cam device uses the pressure of the artificial muscle to keep the cam engaged with the adjustment screw and/or screws.

herringbone, bevel, and/or rack and pinion gears.

Our cams can be made in several different embodiments figure, shows two rotating VICCOBLAGAC PENICES spindles wherein one or multiple muscles can be thread through and/or over the spindles. Figure 146 shows a different style of cam wherein the spindles can be free

to rotate and/or be fixed. Still figure 14 h shows a solid cam wherein spindles are not used. This solid cam design can be made with sides that are longer than the middle to Illico Bustic Device facilitate our artificial muscle tracking. Our cams can be made using any combination of the aforementioned embodiment without straying from our teachings. These cam devices can be made of plastic, alloy, composites and/or any other suitable material. The cam units can be made so they are not solid, they can be made with cutouts and hollows to decrease weight. Howe 23 Shows 4 cam points mountain on A Shark.

-Alternate Embodiment

Cylinder - SYLINOTO ESTATE

Another embodiment for our cam device is a pneumatic, hydraulic, and/or electric cylinder (solenoid) system wherein two cylinders are employed. One cylinder (solenoid) is located in our rigid ankle device and the other is located in our cam device see figure

______. This cylinder (solenoid) system is activated by the motion created in the calf shank during physical activity of the user. As the user force loads our prosthetic system anterior longitudinal foot keel the distal end of our calf shank engages the lower cylinder (solenoid) push rod which causes the upper cylinder (solenoid) push rod to engage the cam of the cam device (see figure) in operation as anterior force loading increases the pressure on the lower cylinder increases proportionally which engages the upper cylinder proportionally which causes the cam to engage the muscle creating a proportional tension preload on the artificial muscle. As the force loading increases and/or decreases the tension on the muscle is similarly affected. This creates an

opportunity to allow anterior foot keel variable force loads to dictate variable tension on the artificial muscle. As such this cylinder device creates variable motion outcomes of our calf shank system proportional to the users activites.

PIGURE 25 Shows A female muscle Attachment

PENICE ATTACHED TO A LEATHER TOK PLASTIC TOPO

WEE, KINGE AME ATTACHED TO BOTH THE THICH CUFF

ALLOY OF PLASTIC

AND A BOLOW KNEE SOCKET. THIS ATTACHMENT

AND A BOLOW KNEE SOCKET. THIS ATTACHMENT

PLATE LOVER ALSO BE LOCATED OF THE BACK OF THE

PLATE LOVER ALSO BE LOCATED SOCKET.

TUBUNE 26 shows on ACTERNATIVE WINNESS Delice which is similar to F1627 WIMMUSS CABLE UISCORLASTIC + OR LEAFSPRING DEVICE TO De principal Eligith Evenor (tona6e CAPACITY. The words unoloss Mr Bc A STRAP NOW STRETCHAME ATTAChes The Proximing PHATE BESTER FOREFOOT RESION Poot Keel, MIS Perice CAN INCOMPORAT ALL PREVIOUS DISCUSSED VISCOPLASTIC & LEAT SPAINS DEUCES Blyppins & PADS

SHULED IN The ANT WORD Know to HERCOSE THE PE + EE OF THIS Pelle to Improve Mreth Buen Generalton. P16 28 shows top TUD CABLE SINGLE CABLE SYSTEM MAT RUNS THROUGH THE POSTERIOR ASPECT OF The POOT KEEL MIS AMER CAT INCLUDE TWO ROller wheely SIMILAN IN DESIGN TO The Roller uneel PROXIMAL to This Ancis. Another Esopiones worden be to kun me course mouse The Holes IL The POOT Keel which Are Colleted more Attendary.

MAT 15

Sample 29 shows wothen siteenstre EMBORIMENT to our ANTIFICAL MUSICE PEULCE FEB SINGLE ON MUCTI SPAINS OP VANUAG ELASTICITY cours he Pemployeed in mis Desibor. The Strings CAR BE MADE OF ALLOX, PLANTE composites, or not over suribace MATERIAL WIT OUT VAMING From In Teachinds BO OF MIS PATENT.

ATTACHMENT (A)

C. $\Theta_3 = 170^{\circ}$ B. $\Theta_2 = 155^{\circ}$ A. $\Theta_1 = 140^{\circ}$

to RUNTER SUPPORT OUR contention That the ANGUIAN Velocity OF A CURVILINGAN MECHANICAL STRUCTURE CARBE POSITIVELY (INCREASED) + OR NEGATIVELS (DECREASED) BY The DIRECTION movement where in movement SOR CURUILINEAR STRUCTURE The RADI OF TO INCREASE + OR DECREASE IN RESPONCE TO A FORCE F16. A B + C Represent Three curvilinear STRUCTURES THAT HAVE BEEN CHATTER BY ANTICULATING 6 SEPERATE LINK Se 6 Ments, which These Selengte Unn Serments Anticulate At (1)+0

BUT EQUAL) Seperate O Anbles Per STRUCTURE. O, Andle OP 140° HAS @ STRUCTURE B+C Have Protest O2; O3 Andles OF 1550 + 170° Respectively. Three structures Represent DIFFERENT RADI CUNVILINGAR STRUCTURES A HAVING A SMALLER NAMUS Smyllen Than QC. Velocity Defined AS 15 chance over time. If STAUCTURE WAS Charles Over time to 02 Change in O2-0, Represents 6 A 150 INCREASE IN ANGUAR CHANGE This ANGLE.

A MECHANICAL STRUCTURES ANSULAR Velocity can be AFFECTED (increased) OVER Time AND ITS ANGUAN VICOCATS POTENTIAL IS PINECTLY & ROLATED TO The SIZE OF THE RADI CUNUILINEAR STRUCTURE. SIMILARILY IF STRUCTURE C WAS Chanbed (over FAGSAME TIME FRAME) TO STRUCTURE A IT Decreuse vollo Représent à charte in O (O3 170° MINUS 0, 140°) OF 30° Stace The D Anble 15 Getting smaller A ANGUMAN VELOCITY POTENTIAL CHEMPER OFF EACH STATE OFF

As PREDIOUS 4 DISCUSSED OUR PROTOTYPES PI + P2 TRESPOUND RESPOND TO LATE MIOSTANCE Phase OF BATT BY EXPANDING This Works Redresent Amaknews OF FIGURE_A TOWARDS FIGURE_

CO OF The OTEN HAMS THE PLEXPOSTS Morolicthicacy Shaped Footkeel ANKE AND ShANK WOULD MOVE Prom P16Vnc_C 8170° TO F16_ A 0140° 1400 100 0140 A DECKENC IN ANGUIM CHARGE. AS A CONSCIPERCE The Affarcine of mototifes structures thanh An increase It Anovan Valocity where As me & PLEX POOT PROSTESIS HAS A PT

Vecnesse in Anduan Vecocity Potenting. As mentioned earlier in this PhoPosAC KINCTIC Power Equals MOMENTS OF BE ANKLE SOIT PONCE (which me vens similar in MAGNITHE FOR THE PLEX POOT AND @ Projotypes Times Anbulyon Velocity, AN ENCHASE SINCE Petto ANGLIAN VOLOCITY IS A PROPUCT OF MOMENTS OF PORCE P Ar Increase in Anduran VelocITY WILL PIRECTLY + POSTIVELY In KINETIC Power where A DECREASE IN ANSWAR

Velocité VIII NébATIVELS AFFECT In KIVETIC Power Generation.

This is Albort as BOD AS IT

Another OBJECTIVE OF OUR BY VIGCORLASTIC + LEAR SPRING FOR ELASTIC STOMME DEVICES 15 REASTIC RACKET STONAGE CAPACITY ENTINE SEE PROSPERIC SYSTEM. WITH De eight sellingte component FOOT Ked Shann Dosterno of VISCOPLASTIC + LEAF SPRING Device. HAVING ITS OWN ELASTIC FENERSY STORAGE CAPACATY, Whene IN The O COMPONENTS Unhe Tired to Reflicite Homas vanied activities.

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

F(6 3

9

40H

Average **Ankle Power** Generation Curve of the Triplanair vs. the Flex-Foot

----triplanair ---- ff

FIGURE 6

FIGURE 7

R16Une 10

Elbure 11

F16 12

P16 UNE 13

F18 12

F6 20

Prevnatic or Hyraulico-ELECTRIE E160ne 24

F16 Unc 25

P160ne 26

Shaped choisespources as a:>
Shaped choisespources as a:>
Shaped choisespources as a:> , Obland, - pur, ,) O Romo, A Transvian, QUADRANGUISES OCT, Part, FTC. 0 = 0 + TUBULIAR DE PLEVE A PROVE Shappes to D. The Elongated shapes for example CAS BE II, ,) ,], O, I, ETC. FIGNE B

M CUTOUTS FOR A SINGLE CONFSPRIN EARTE muxt/1shyped OF CUTUATS 0 PARASPRANGS CORVICINGAN 1 Des MA Bhi

our LEAT-SPRINGS CAN FINE STMETRY On A STYLETHICAL FORM, OUR LEAFTIRMS CAN HAVE YAMSED SPRING RATES WITH The monofic Tricator pormas, when in SPRING RATE CHAR SOFTER + FIRMER Dependent on the CURVICINESS FORMS. FUN EXAMPLE

R16 5 A megnaphere strycom prop reporter of 175 spring page Logo. 233 ANoten Ferris Vanied Emporment De/TO HAVE A LEAFSPRING HAS A RAISED MIDDLE SECTION would to ENGAGE AS Ponce 60es UP. Pan EXAMPLE TI-4 · Sind DOMERAGE ACCUMENT

This panticular confishing Design Does HAVE TORE RECTIVER RETTLEMENT FURM BUT KOULD BE QURUILINEAN It popular confirm Both conviguen + ON RECTHEMENT ACCTIFEMENT RORMS. ATT BOOK SKICKED IN THE Ant ward Know MAT OUR BASIC Pasion Principles could be combined

