Question 1

max
$$2x_1 + x_2 - 3x_3 + 5x_4$$

S.t. $x_1 + 2x_2 + 2x_3 + 4x_4 + x_5 = 40$
 $2x_1 - x_2 + x_3 + 2x_4 + x_6 = 8$
 $4x_1 - 2x_2 + x_3 - x_4 + x_7 = 10$
 $x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 10$

$$\mathcal{B} = \{ \alpha_{5}, \alpha_{6}, \alpha_{7} \}, \quad \mathcal{N} = \{ \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \}.$$

$$2 = 0 + 2\alpha_{1} + \alpha_{2} - 3\alpha_{3} + 5\alpha_{4}$$

$$\alpha_{5} = 40 - \alpha_{1} - 2\alpha_{2} - 2\alpha_{3} - 4\alpha_{4} \quad \min \{ \frac{40}{4}, \frac{8}{2} \} = 4$$

$$+ \alpha_{6} = 8 - 2\alpha_{1} + \alpha_{2} - \alpha_{3} - 2\alpha_{4}$$

$$\alpha_{7} = 10 - 4\alpha_{1} + 2\alpha_{2} - \alpha_{3} + \alpha_{4}$$

$$\mathcal{B} = \{ x_5, x_4, x_7 \}, \quad \mathcal{N} = \{ x_1, x_2, x_3, x_6 \}.$$

$$2 = 20 - 3x_1 + 7/2 x_2 - \frac{1}{2}x_3 - \frac{5}{2}x_6$$

$$x_5 = 24 + 3x_1 - 4x_2 + 2x_6$$

$$x_4 = 4 - x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_6$$

$$x_7 = 14 - 5x_1 + \frac{5}{2}x_2 - \frac{3}{2}x_3 - \frac{1}{2}x_6$$

$$G = \{x_2, x_4, x_7\}$$

$$N = \{x_1, x_5, x_3, x_6\}$$

$$2 = 41 - \frac{3}{8} \times 1 - \frac{7}{8} \times 5 - \frac{1}{2} \times 3 - \frac{3}{4} \times 6$$

$$\alpha_2 = 6 + 3/4 \alpha_1 - 1/4 \alpha_5$$

$$x_4 = 7 - \frac{5}{8}x_1 - \frac{1}{8}x_5 - \frac{1}{2}x_3 - \frac{1}{4}x_6$$

$$x_7 = 23 - \frac{31}{8}x_1 - \frac{3}{8}x_5 - \frac{3}{2}x_3 + \frac{1}{4}x_6$$

optimal solution =
$$(0, 6, 0, 7)$$

optimal value = 41

2. In standard equality form

the slack variables form a basic feasible solution so no Phase 1 is required.

$$S_1 = 2 + \chi_1 - \chi_2$$

 $S_2 = 2 - \chi_1 + \chi_2$ Initial dictionary
 $Z_2 = \chi_1 + \chi_2$

Choose x, to enter the basis (arbitrarily). Sz must leave the basis.

$$S_1 = 4 - S_2$$

 $X_1 = 2 - S_2 + X_2$
 $Z_2 = 2 - S_2 + 2X_2$

As x_2 increases from zero, z increases, improving the objective value, while s_1 and x_2 remain nonnegative, and hence the solution remains feasible. Indeed, taking $x_2 = t$, $x_1 = 2+t$ is feasible for any $t \ge 0$, with objective $z = 2+2t \rightarrow \infty$ as $t \rightarrow \infty$.

:. The LP is unbounded.

Phase 1 S.t. $x_1 + x_2 + x_3 + s_1$ = 4 $2x_1 + x_2 - x_3 - s_2 + a_1 = 1$ $-x_2 + x_3 - s_3 + a_2 = 1$ $x_1, x_2, x_3, s_1, s_2, s_3, a_1, a_2 \ge 0$ $S_1 = 4 - x_1 - x_2 - x_3$ $a_1 = 1 - 2x_1 - x_2 + x_3 + 5_2$ Thirial $a_2 = 1 + x_2 - x_3 + 5_3$ $w = -2 + 2x_1 - x_3 - 5_2 - 5_3$ Thirial $x = -2 + 2x_1 - x_3 + 5_3$ Thirial $x = -2 + 2x_1 - x_3 + 5_3$ Thirial $x = -2 + 2x_1 - x_3 + 5_3$ Thirial x, enters, a, leaves since $\frac{1}{2} < 4$ $S_1 = \frac{1}{2} + \frac{1}{2} q_1 - \frac{1}{2} \chi_2 - \frac{3}{2} \chi_3 - \frac{1}{2} S_3$ $x_1 = \frac{1}{2} - \frac{1}{2}a_1 - \frac{1}{2}x_2 + \frac{1}{2}x_3 + \frac{1}{2}s_2$ $\alpha_2 = 1 + \chi_2 - \chi_3$ +53 $W = -1 - q_1 - \chi_2 + \chi_3$ X3 enters, 92 leaves $S_1 = 2 + \frac{1}{2}a_1 - 2x_2 + \frac{3}{2}a_2 - \frac{1}{2}S_2 - \frac{3}{2}S_3$ $x_1 = 1 - \frac{1}{2} a_1 - \frac{1}{2} a_2 + \frac{1}{2} s_2 + \frac{1}{2} s_3$ $x_3 = 1 + x_2 - a_2 + s_3$ $W = 0 - a_1 \qquad -92$ This is optimal with w=0: Initial feasible

basis is $\{x_1, x_2, s, \}$, and basic feasible solution is $x = (1,0,1)^T$

3(b)
$$z = 5 + x_1 + \frac{2}{2}s_2 + \frac{1}{2}s_3$$

 $s_3 = 4s_3 - \frac{1}{3}x_1 - \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $x_3 = \frac{2}{3} - \frac{1}{3}x_1 - \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $x_4 = \frac{5}{3} - \frac{2}{3}x_1 + \frac{1}{3}s_1 - \frac{1}{3}s_1$
 $z_4 = \frac{29}{3} - \frac{11}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_5 = \frac{29}{3} - \frac{11}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_5 = \frac{29}{3} - \frac{11}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_5 = \frac{29}{3} - \frac{11}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{11}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{11}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{11}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{29}{3} - \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{1}{3}x_2 + \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{1}{3}x_2 + \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{1}{3}s_1$
 $s_7 = \frac{1}{3}x_2 + \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{2}{3}s_1$
 $s_7 = \frac{1}{3}x_2 + \frac{1}{3}x_2 + \frac{1}{3}s_2 - \frac{1}{3}s$

Fig. + 22 xam

value: 7 = 11

Ophil

Skerch the LP leasible rogios. Now sketch a line of overstant objective functions Graphs

Question +

 $min 3x_1$

s.t.
$$2x_1 + x_2 + x_3 - x_4 = 6$$

$$3x_1 + 2x_2 + x_3 = 4$$

$$\alpha_1, \alpha_2, \alpha_3, \alpha_4 \geq 0$$

Phase 1 LP:

$$-x_5-x_6$$

s.t.
$$2x_1 + x_2 + x_3 - x_4 + x_5 = 6$$

$$3x_1+2x_2+x_3$$
 $+x_6=4$

$$+x_6 = 4$$

$$B = \{x_5, x_6\}, N = \{x_1, x_2, x_3, x_4\}.$$

$$W = -10 + 5x_1 + 3x_2 + 2x_3 - x_4$$

$$\chi_5 = 6 - 2\chi_1 - \chi_2 - \chi_3 + \chi_4$$

$$- x_6 = 4 - 3x_1 - 2x_2 - x_3$$

$$\mathcal{B} = \{ x_5, x_i \}$$
 $\mathcal{N} = \{ x_6, x_2, x_3, x_4 \}$

$$W = -\frac{19}{3} - \frac{5}{3} x_6 - \frac{1}{3} x_2 + \frac{1}{3} x_3 - x_4$$

$$x_5 = \frac{19}{3} + \frac{2}{3}x_6 + \frac{1}{3}x_2 - \frac{1}{3}x_3 + x_4$$

$$- x_1 = \frac{4}{3} - \frac{1}{3} x_6 - \frac{2}{3} x_2 - \frac{1}{3} x_3$$

min
$$\left\{\frac{1\%}{\frac{1}{3}}, \frac{4/3}{\frac{1}{3}}\right\} = 4$$

$$\mathcal{B} = \{ x_5, x_3 \}$$
 $\mathcal{N} = \{ x_6, x_2, x_1, x_4 \}$

$$W = -2 - 2x_6 - x_2 - x_1 - x_4$$

$$x_5 = 2 + x_6 + x_2 + x_1 + x_4$$

$$x_3 = 4 - x_6 - 2x_2 - 3x_1$$

Optimal solution is reached.

Since optimal value $\neq 0$, that means that

$$x_5 = x_6 = 0$$
 is not a feasible solution for Phase 1 LP

Therefore the original LP is infeasible.