# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-220665

(43)Date of publication of application: 10.08.1999

(51)Int.Cl.

H04N 5/38

H04B 1/38

H04B 7/15

H04H 1/00

HO4N 5/455

HO4N 5/50

H04N 7/24

H04N 7/20

(21)Application number: 10-020020

(71)Applicant: SONY CORP

(22) Date of filing:

30.01.1998

(72)Inventor: FUKUDA KUNIO

# (54) COMMUNICATION METHOD, RADIO BASE STATION DEVICE AND RADIO TERMINAL EQUIPMENT



# (57) Abstract:

PROBLEM TO BE SOLVED: To satisfactorily receive various data in digital broadcasting or Internet broadcasting by the terminal of a mobile object.

SOLUTION: At least one designated signal among plural broadcast signals and communication signals transmitted in different configurations is received and demodulated, and the demodulated received data are converted into a prescribed radio transmission format, and radio transmitted. Then, at least one designated signal among the plural broadcast signals or communication signals is relay transmitted to a

communication terminal 300 suited to the radio transmission format. Thus, the broadcast signals or the communication signals transmitted in the various formats can be commonly received by one communication terminal.

#### **CLAIMS**

# [Claim(s)]

[Claim 1]Receive at least one signal with which it was specified of two or more broadcasting signals or signal transmission which are transmitted with a gestalt different, respectively, and it gets over, A correspondence procedure which relays at least one signal with which it was specified of two or more above-mentioned broadcasting signals or the signal transmission as a communication terminal which changed into a predetermined radio transmission format the received data to which it restored, carried out wireless transfer, and suited the above-mentioned radio transmission format.

[Claim 2]A correspondence procedure which carries out wireless transfer of the data which specified a signal which is received [ above-mentioned ], and to which it restores in the correspondence procedure according to claim 1 with the above-mentioned communication terminal, and was specified with the communication terminal to a relay station.

[Claim 3]A correspondence procedure which codes by a different method from the original encoding method of the data, and changes and carries out wireless transfer of the received data to which it restored [ above-mentioned ] to a predetermined radio transmission format in the correspondence procedure according to claim 1.

[Claim 4]A correspondence procedure to which transmitting [ a broadcasting signal of one of the above or signal transmission ] origin carries out authenticating processing of the communication terminal in the correspondence procedure according to claim 1 with a signal transmitted by a predetermined circuit from the above-mentioned communication terminal.

[Claim 5]A correspondence procedure to which transmitting [ a broadcasting signal of one of the above or signal transmission ] origin transmits data for the Internet in the correspondence procedure according to claim 1 using a broadcasting signal or signal transmission of one of the above by demand with a signal transmitted by a predetermined circuit from the above-mentioned communication terminal.

[Claim 6]A radio base station apparatus comprising:

Two or more receive sections which receive two or more broadcasting signals or signal transmission which are transmitted with a gestalt different, respectively.

A control section which makes a broadcasting signal or signal transmission of one of the above receive in at least one receive section by which it was specified of two or more above-mentioned receive sections.

A transmission section which changes into a predetermined radio transmission format received data which the above-mentioned receive section received by control of the above-mentioned control section, and does wireless transmission.

[Claim 7]A radio base station apparatus to which a signal which the above-mentioned control section makes receive is made to set by a specification signal which was provided with a specification signal receive section which receives a specification signal from a partner with which the above-mentioned transmission section transmits a signal in the radio base station apparatus according to claim 6, and the above-mentioned specification signal receive section received.

[Claim 8]A radio base station apparatus with which the above-mentioned transmission section transmits a signal which was provided with a coding process-conversion part which changes received data which the above-mentioned receive section received, and to which it restored in the radio base station apparatus according to claim 6 into different coding processing from coding processing to which it was given at the data, and was changed in the above-mentioned coding process-conversion part.

[Claim 9]A radio terminal comprising:

A transmission section of a specification signal which specifies a broadcasting signal or signal transmission which receives.

A receive section which receives a broadcasting signal or signal transmission transmitted based on a specification signal transmitted from the above-mentioned transmission section, and gets over.

[Claim 10]A radio terminal which transmitted data for performing authenticating processing of a local station from the above-mentioned transmission section in the radio terminal according to claim 9.

[Claim 11]A radio terminal which constituted the above-mentioned transmission section and the above-mentioned receive section in the radio terminal according to claim 9 as a card with which a card slot of a predetermined standard can be equipped.

# **DETAILED DESCRIPTION**

[Detailed Description of the Invention]

## [0001]

[Field of the Invention] This invention relates to the radio base station apparatus and radio terminal with which it applies when receiving the signal transmission which applied, for example to various broadcasting signals, such as digital satellite broadcasting and land-based digital broadcasting, or it correspondingly, and a suitable correspondence procedure and this correspondence procedure are applied.

## [0002]

[Description of the Prior Art] Conventionally, the transmitting side of the digital broadcasting which performs television broadcasting, a radio broadcast, etc. by transmission of digital data was performed with the composition shown in drawing 9. The broadcast center 1 here is considered as the composition which performs the both sides of sending out of digital satellite broadcasting, and sending out of land-based digital broadcasting, Coding processing of the data which corresponded the video source 1a supplied by the content provider etc., respectively in the image encoding part 1c, the audio coding section 1d, and the attached data part 1e in the source-coding part 1b is performed, and multiplexing processing of the data coded by each is carried out by the multiplexing part 1f. Coding processing here about image data and voice data. For example, coding processing is carried out by MPEG-2 method (one of the coding modes with which video was standardized) (image data is the processing specified by MPEG-VIDEO ISO/IEC 13818-2, and specifically). Arbitrary coding is made about attached data, such as processing as which voice data was specified by MPEG-2 AUDIO ISO/IEC 13818-3. The multiplexing processing in the multiplexing part 1f is changed into the transport stream (TS is called below) of this MPEG-2 method, when it is carried out according to a prescribed method (ISO/IEC 13818-3), for example, MPEG-2 System, and MPEG-2 method is followed. In the following explanation, it carries out as what was processed by this MPEG-2 method.

[0003]The signal (TS) coded in the source-coding part 1b is supplied to the channel coding part 1g, and is changed into the signal format actually transmitted. That is, scramble processing for energy dispersal is performed by the scramble processing section 1h, and generation and addition of an error correcting code are performed in the error correcting code-ized part 1i. As an error correcting code here, the concatenated code which combined the block code with outside numerals and combined the convolutional code with the inner code is used. As outside numerals, the blowout chad numerals of a variable coding rate are used, for example as a Reed Solomon code and an inner code, for example. After error correcting code processing is performed, interleave processing is carried out by the interleave part 1j.

[0004]And in the case of terrestrial broadcasting, the output of the channel coding part 1g, A modulation process is carried out with an OFDM system (orthogonal frequency division multiplex method) in the OFDM modulation part 1k, transmitting processing of the modulated signal is carried out by the RF converter 1n at the radio signal of a predetermined transmission band, and wireless transmission is carried out from the terrestrial antenna 2. In the case of satellite broadcasting, the output of the channel coding part 1g, A modulation process is carried out with a QPSK method (quadrature phase shift keying method) in the QPSK modulation part 1m, transmitting processing of the modulated signal is carried out by the RF converter 1o at the radio signal of a predetermined transmission band, and wireless transmission is carried out from the antenna 3 for satellites to a broadcasting satellite (or communications satellite).

[0005]And it had composition conventionally shown in <u>drawing 10</u> as composition of the side which receives the digital broadcasting signal transmitted with this composition. In the set top box 5 which performs reception of a broadcasting signal. The receiving antenna 4 for terrestrial waves and the receiving antenna 7 for satellites which receives the broadcast wave from the broadcasting satellite 6 are connected, and it has connected with the tuner 5a for terrestrial waves, and the receiving antenna 4 for terrestrial waves restores to the signal received with this tuner 5a by the OFDM demodulation section 5b, and obtains received data. It has connected with the tuner 5c for satellites, and the receiving antenna 7 for satellites restores to the signal received with this tuner 5c by QPSK demodulation part 5d, and obtains received data.

[0006]DEINTA reeve processing in the DEINTA reeve part 5e, error correction processing in the error correcting section 5f, and descrambling processing in the descrambling part 5g are performed, and, as for the digital broadcasting data to which it restored by each demodulation sections 5b and 5d, original TS is restored. And separation of the picture image data and voice data of MPEG-2 method is carried out in the demultiplexing part 5h from this TS, and it is decoded by MPEG2 decoder 5i. Picture image data decoded by this decoder 5i is made into the video signal of NTSC system with NTSC encoder 5j, Voice data decoded by the decoder 5i is made into an analog voice signal with the digital/analog converter 5k, and these video signals and audio signals are supplied and televised by the monitor receiving set 8 (or the usual television receiver) etc. which were connected to the set top box 5.

[0007] Thus, by connecting the device called a set top box to a receiving set, viewing and listening of digital broadcasting is attained for the usual receiving set.

[0008]Here, although the composition of transmission and reception of the digital broadcasting by terrestrial broadcasting and satellite broadcasting waves was shown, it only differs in that also in the case of cable television (what is called a CATV) the channel coding in the transmitting side is the same, and a characteristic thing is used by the modulation process and RF conversion process.

[0009]On the other hand, what is called a multimedia move access system (MMAC:MultimediaMobile Access System) is proposed as a system completely different from the viewing system of such television broadcasting. This access system is a connectable high-speed wireless local loop seamlessly to a fiber-optic network (BISDN). As a frequency band, comparatively high frequency bands, such as 5 GHz, are used, and, as for a transmission rate, TDMA/TDD system (Time Division Multiple Access) is used as an access method by about 30 Mbps.

<u>Drawing 11</u> is a figure showing the entire configuration of this multimedia move access system, and is the composition in the case of offering service called IP (Internet Protocol) connection connected to an Internet network here.

The various contents servers 11 connected to Internet network 12 and the MMAC base station 15 where communication is performed by ISDN(or general telephone line) 13 or fiber-optic network 14 course are formed.

This base station 15 is connected to ISDN13 or the fiber-optic network 14 by the predetermined User Network Interface (UNI).

[0010] The MMAC base station 15 performs Personal Digital Assistant 16 and radio with the transmission system mentioned above, and the base station 15 relays communication with the circuits 13 and 14 and the terminal 16 which were connected to the base station 15.

[0011] Drawing 12 is a figure showing the composition of an MMAC base station by which the conventional proposal is made, and is made into the example when the fiber-optic network 14 to which communication is performed here by an Asynchronous Transfer Mode (Asynchronus Transfer Mode: ATM is called below) is connected, The data (ATM cell) transmitted by ATM and the interface part 15a which performs a User Network Interface (UNI) are connected to the fiber-optic network 14, and the base station 15 here multiplexes an ATM cell. In the ATM network line control part 15b connected to this interface part 15a, line control, such as call connection with a net, is performed. In the ATM cell decomposition / assembly part 15c connected to the ATM network line control part 15b, the assembly of the ATM cell sent out to the decomposition and net side of the ATM cell from the net side is performed.

[0012] The received data from the net side disassembled by ATM cell decomposition / assembly part 15c, It is sent to MMAC channel coding / decoding part 15d, After it is changed into the radio transmission format of MMAC and the modulation process of

this changed data is carried out by the modulation part 15g by QPSK modulation etc., transmitting processing of frequency conversion, amplification, etc. is performed in the transmission section 15h, and wireless transmission is carried out from the antenna 15i to a terminal.

[0013]After receptions, such as frequency conversion, were performed in the receive section 15j by which the signal transmitted from the terminal side was connected to the antenna 15i, The recovery of received data is performed by the demodulation section 15k, the received data to which it restored are supplied to MMAC channel coding / decoding part 15d, and decoding processing is performed. And it is sent out to the fiber-optic network 14 which assembled as an ATM cell by ATM cell decomposition / assembly part 15c, and was connected by control of the ATM network line control part 15b from the interface part 15a.

[0014] These processings in the MMAC base station 15 are performed by the control which passed the bus line 15f from the prime controller (CPU) 15e.

[0015]As composition of Personal Digital Assistant 16 which is an MMAC terminal, As shown in drawing 13, after receptions, such as frequency conversion, were performed in the receive section 16b connected to the antenna 16a, The recovery of received data is performed by the demodulation section 16c, the received data to which it restored are supplied to MMAC channel coding / decoding part 16d, and the conversion process from the radio transmission format of MMAC is performed. This changed data is supplied to 16 g of prime controllers (CPU) of this terminal 16, After separation is carried out to picture image data and voice data, the digital signal processing part (DSP) 16k is supplied, After decoding based on MPEG-2 method is performed and picture image data is processed for a display, the liquid crystal driver 16i is supplied and an image is displayed on the liquid crystal display 16j based on control of the prime controller 16g. Voice data contained in received data is made into an analog voice signal by the digital signal processing part 16k, and is outputted from 16 m of loudspeakers.

[0016] The send data generated based on operation etc. of the final controlling element 16h connected to the prime controller 16g, MMAC channel coding / decoding part 16d is supplied, After it is changed into the radio transmission format of MMAC and the modulation process of this changed data is carried out by the modulation part 16e by QPSK modulation etc., transmitting processing of frequency conversion, amplification, etc. is performed in the transmission section 16f, and wireless transmission is carried out from the antenna 16a to a base station.

[0017] The Internet broadcasting from various contents servers, etc. are receivable with the terminal unit 16 by preparing the base station and terminal unit as a system of such MMAC, and connecting with an Internet network etc. In this case, it is possible in the case of the system of MMAC, to receive and display a video data etc. with a terminal unit, since high speed wireless access is possible.

[0018]

[Problem(s) to be Solved by the Invention]By the way, if the terminal unit for the systems of MMAC is a range which the signal from a base station reaches, reception and transmission while moving are possible for it, and it can receive and display Internet broadcasting etc. at arbitrary places, but. It was difficult to build the receiving system for digital broadcasting signals as shown in <u>drawing 10</u> into the terminal unit for this MMAC.

[0019]That is, high gain and an antenna with high directivity are required for the antenna which receives digital broadcasting, especially digital satellite broadcasting, and since it is necessary to turn a beam to a certain direction, reception with a portable terminal is difficult. There is a limit in the miniaturization of the reception device of digital broadcasting called the set top box 5 shown in drawing 10, and including in a portable terminal has unreasonableness. In the case of the device which receives the both sides of satellite broadcasting and terrestrial broadcasting as especially shown in drawing 10, necessity has a circuit which carries out reception of each signal, and it has become a factor which obstructs a miniaturization and low-cost-izing of a terminal. Though it was natural, it was also impossible to have received the digital broadcasting sent out on cable television with a moving terminal.

[0020]Although the Internet getting down in recent years and carrying out via the circuit and the terrestrial empty circuit from a broadcasting satellite (communications satellite) as a circuit was proposed, also when making a terminal unit receive the Internet transmitted by these circuits, there was same problem.

[0021]Although distributing by performing an Internet access by mobile communications according Internet broadcasting and mass contents to the system of MMAC is also considered, In order for many users to have done concurrent access, the backbone of the network [ broadband at high speed ] was required, and the burden to the server was also heavy, and there was a limit in distributing high-speed large capacity data only in the network of the present ground system.

[0022]An object in view of this point of this invention is to enable it to receive various data of the digital broadcasting in a mobile terminal, Internet broadcasting, etc. good. [0023]

[Means for Solving the Problem]A correspondence procedure of this invention receives at least one signal with which it was specified of two or more broadcasting signals or signal transmission which are transmitted with a gestalt different, respectively, and gets over, Those received data to which it restored are changed into a predetermined radio transmission format, wireless transfer is carried out, and it is made to carry out relay transmission of at least one signal with which it was specified of two or more above-mentioned broadcasting signals or the signal transmission as a communication terminal which suited this radio transmission format.

[0024]According to this invention, arbitrary signals in a broadcasting signal or signal transmission which can receive by a base station side can be chosen, and it can transmit to the communication terminal side.

[0025]A radio base station apparatus of this invention is characterized by comprising:

Two or more receive sections which receive two or more broadcasting signals or signal transmission which are transmitted with a gestalt different, respectively.

A control section which makes one of broadcasting signals or signal transmission receive in at least one receive section by which it was specified of two or more receive sections.

A transmission section which changes into a predetermined radio transmission format received data which a receive section received by control of a control section, and does wireless transmission.

[0026]According to this invention, wireless transmission of the arbitrary signals in a broadcasting signal or signal transmission which can receive with this device can be chosen and carried out.

[0027]A radio terminal of this invention is provided with a receive section which receives a broadcasting signal or signal transmission transmitted based on a specification signal transmitted from a transmission section of a specification signal which specifies a broadcasting signal or signal transmission which receives, and a transmission section, and gets over.

[0028]According to this invention, arbitrary broadcasting signals or signal transmission selected by specification by the side of a terminal unit are receivable.

[0029]

[Embodiment of the Invention]Hereafter, a 1st embodiment of this invention is described with reference to <u>drawing 1</u> - <u>drawing 7</u>.

[0030]It is the thing which enabled it to treat various broadcasting signals and signal transmission in this example in the multimedia move access system (MMAC is called below) which performs radio between a base station and a terminal unit, It is the system same about the fundamental system of MMAC as MMAC explained by the conventional example. That is, as a frequency band, comparatively high frequency

bands, such as 5 GHz, are used, and, as for a transmission rate, TDMA/TDD system (Time Division Multiple Access) is used as an access method by about 30 Mbps.

[0031]The entire configuration of the system of this example is shown in <u>drawing 1</u>. The system of this example receives the various broadcasting signals transmitted from the broadcast center 100 etc., and signal transmission in the media conversion relay station (base station) 200 which is an MMAC base station, and enables it for Personal Digital Assistant 300 which is an MMAC terminal to receive them.

[0032] First, explanation of the composition of the broadcast center 100 will control sending out of the broadcasting signal (digital-television-broadcasting signal) from the public address system 101 by the network control unit 102. In this case, it has the various contents 104 for broadcast, and the access server (or router) 105 with external Internet. And it transmits to the broadcasting satellite (or communications satellite) 111 with the parabolic antenna 103, and the broadcasting signal for satellites sent out from the public address system 101 is made to transmit from the broadcasting satellite 111. The broadcasting signal for terrestrial waves sent out from the public address system 101 is made to transmit from the terrestrial antenna 106. In the case of cable television broadcasting, the cable transmission which uses the coaxial cable 107 for CATV is performed. The Internet 108 is accessed and the access server 105 is relayed by WWW server 109 with which the Internet 108 is dotted. It is the data by which formatting was carried out by the method called MPEG-2 about the picture image data and voice data which are sent out as terrestrial broadcasting, satellite broadcasting waves, and a cable television broadcasting wave here.

[0033]Next, when the composition of the media conversion base station 200 is explained, the base station 200, Have the antenna 201 which receives terrestrial broadcasting, and the antenna 202 which receives satellite broadcasting waves, and. It has connected also about the coaxial cable 107 for CATV, and has connected also with the BISDN network 110 by the optical fiber further, and the Internet 108 is also accessed via this BISDN network 110.

[0034]Here, if the detailed composition of the media conversion base station 200 is explained with reference to <u>drawing 2</u>, the tuner 203 connected to the antenna 201 will receive the terrestrial broadcasting of a desired channel, it will restore to the input signal by the demodulation section 204, and received data will be obtained. A desired channel carries out satellite-broadcasting-waves \*\*\*\*\*\* with the tuner 205 connected to the antenna 202, it restores to the input signal by the demodulation section 206, and received data are obtained. The tuner 207 connected to the coaxial cable 107 for CATV receives the cable television broadcasting wave of a desired channel, it restores to the

input signal by the demodulation section 208, and received data are obtained. About the channel received with each tuner 203,205,207, it is set up with the control data supplied via the bus line 231 from the prime controller (CPU) 230.

[0035]Each received data DEINTA reeve processing in the DEINTA reeve part 209, Error correction processing (for example, correction according outside numerals to a Reed Solomon code, decoding according an inner code to a Viterbi decoder) in the error correcting section 210 and descrambling processing in the descrambling part 211 are performed, and TS (transport stream) specified by MPEG-2 method is restored.

[0036]When the composition of the TS packet specified by MPEG-2 method and TS packet streams is shown in drawing 4 here, as the TS packet of one unit is shown in A of drawing 4, it comprises 188 bytes, 4 bytes of a head are a header unit, and the remaining 184 bytes are a data division. The field called the adaptation field which transmits the system information of the base period meter for data synchronizations, etc. in addition to data to a data division can be provided, and it is properly used by the purpose. There are 1 byte of header synchronizing signal and a 13-bit packet identifier (PID) in a header unit. As TS packet streams are shown in B of drawing 4, it is eight TS packets and 1 transmission frame is constituted. Although the data of the image generally coded or a sound is the data which continued in time, it is divided by the convenient length for signal processing at the time of coding, or the information presentation in a receiver, and constitutes a data group signal as a variable length packet which added the header to this. Division transmission of the data-group-ized signal is carried out by a TS packet with the same packet identifier.

[0037]If it returns to explanation of <u>drawing 2</u>, processing which chooses and outputs the desired picture image data and voice data of a program in demultiplexing and the program selection part 212 from TS constituted in this way will be performed. As a selection process of a program here, the data of the program made into the purpose is distinguished from distinction of the packet identifier given to the TS packet, for example.

[0038]And the picture image data and voice data which were outputted in demultiplexing and the program selection part 212, It sends to MMAC channel coding / decoding part 213, After changing into the radio transmission format of MMAC and carrying out the modulation process of this changed data by QPSK modulation by the modulation part 214, wireless transmission is carried out from a transmitting processing deed of frequency conversion, amplification, etc. and the antenna 216 to a terminal in the transmission section 215. About processing in the descrambling part 211, and the program chosen in demultiplexing and the program selection part 212, it is

controlled by the prime controller 230. It is controlled by the prime controller 230 also about processing in MMAC channel coding / decoding part 213.

[0039]Here, the radio transmission format changed in MMAC channel coding / decoding part 213 is explained. Drawing 5 is a figure showing the example of an MMAC radio transmission format, if the composition of one frame specified in the format of MMAC is shown in A of drawing 5, one frame is constituted in 5 ms and 30 bytes of 800 slots exist in it. In the system of MMAC, since it is what is called ping-pong transmission by TDMA/TDD system, the slot 1 of the 800 slots - the slot 400 are the slots T for transmission, and the slot 401 - the slot 800 are the slots R for reception. However, all one frames may be used only for transmission, in this case, the slot 401 - the slot 800 are also assigned as the slot T for transmission, and communication with twice as many access speed as this of a uni directional can be performed. Each slot comprises 8 bytes of header units (a synchronized signal, a control signal, etc.), 20 bytes of an user datum, and 2 bytes of a correction code part, as shown in B of drawing 5.

[0040]If the amount of information which can be transmitted with this composition is explained, the minimum transmission rate of the user datum of one slot will be set to 32k bit / s and all 800 slots will be used, a 32kx800=25.6M bit/s transmission rate can be attained. In communication of the usual TDMA/TDD system, it becomes with the 12.8M bit/s transmission rate of this half.

[0041]Distributed mapping is carried out in MMAC channel coding / decoding part 213 at the section of the user datum of each slot, and the picture image data and voice data of a program which were chosen from the TS packet in demultiplexing and the program selection part 212 are transmitted to the terminal side. Generally, the information rate of the picture image data of the quality about a motion-picture film is about 3M bit/s, is assigning about 100 slots in one frame, and can be transmitted.

[0042]If it returns to explanation of <u>drawing 2</u> again, the signal transmitted from the terminal side, After performing receptions, such as frequency conversion, in the receive section 217 connected to the antenna 216, it restores to received data by the demodulation section 218, the received data to which it restored are supplied to MMAC channel coding / decoding part 213, and decoding processing is performed. About the data which needs to be sent out to the BISDN network 110 among this data by which decoding processing was carried out. ATM cell decomposition / assembly part 219 is supplied, and it assembles as an ATM cell for communicating by an Asynchronous Transfer Mode (ATM), and is made to send out to the BISDN network 110 connected by control of the ATM network line control part 220 from the interface part 221. This sending control is performed by the prime controller 230.

[0043] The inside of the data by which was transmitted from the terminal side and decoding was carried out in MMAC channel coding / decoding part 213, About the signal which specifies the channel to which it views and listens, a program, etc., the prime controller 230 is supplied, it is judged and the channel received with each tuner 203,205,207, the program chosen in demultiplexing and the program selection part 212, etc. are set as the state where the channel 230 corresponded.

[0044]When are specified by the specification signal by which two or more channels, programs, etc. are transmitted and the slot of the format of MMAC mentioned above has a margin, it may be made to transmit the picture image data, voice data, etc. of two or more channels or a program which were directed to the terminal side.

[0045]Next, the composition of Personal Digital Assistant 300 which performs this base station 200 and radio is shown in drawing 3. After performing receptions, such as frequency conversion, in the receive section 302 which Personal Digital Assistant 300 was provided with the antenna 301 for transmission and reception, and was connected to this antenna 301, It restores to received data by the demodulation section 303, the received data to which it restored are supplied to MMAC channel coding / decoding part 304, and the conversion process from the radio transmission format of MMAC is performed. This changed data is supplied to the prime controller (CPU) 307 of this terminal 300, After carrying out separation to picture image data and voice data, the digital signal processing part (DSP) 310 is supplied, After performing decoding based on MPEG-2 method and processing picture image data to a display, the liquid crystal driver 311 is supplied and an image is displayed on the liquid crystal display 16j based on control of the prime controller 307. The voice data contained in received data is made to output from the loudspeaker 313 as an analog voice signal by the digital signal processing part 310.

[0046]The send data generated based on operation etc. of the final controlling element 309 connected to the prime controller 307 is supplied to MMAC channel coding / decoding part 304, It changes into the radio transmission format of MMAC, and after [ this ] changing and carrying out the modulation process of the data by QPSK modulation etc. by the modulation part 305, transmitting processing of frequency conversion, amplification, etc. is performed in the transmission section 306, and wireless transmission is carried out from the antenna 301 to a base station. In this wireless transmission processing, the specification signal which specifies the channel to which it views and listens, for example, a program, etc. is transmitted to the base station 200. The memory 308 is connected to the prime controller 307, and at the time of control management, when the memory of data is required, this memory 308 is used.

[0047]Personal Digital Assistant 300 of this example is considered as the composition equipped with IC card 315, The IC card interface part 314 which performs the data input/output of this IC card 315 with which it was equipped is formed, and input and output of the data of IC card 315 are performed by control of the prime controller 307. The card with which the accounting information about viewing and listening of paid broadcasting, etc. is stored as IC card 315 with which it is equipped in this example is used, for example, a viewing history uploads to the broadcast center side by a month unit etc. When performing authenticating processings, such as upload processing of this viewing history, and paid broadcasting based on the data memorized by IC card 315, in the case of the terminal 300 of this example, Wireless transmission of these data is carried out from the terminal 300 by the system of MMAC to the base station 200, and it is transmitted to the broadcast center 100 etc. by predetermined circuits, such as the BISDN network 110, from the base station 200.

[0048]Next, the system constituted in this way explains the processing at the time of receiving, viewing and listening to digital television broadcasting with Personal Digital Assistant 300 with reference to <u>drawing 1</u>. Here, it performs with the procedure of \*\* shown in <u>drawing 1</u> - \*\*. If that procedure is explained in order, the system of MMAC performs the base station 200 and radio from \*\* Personal Digital Assistant 300, and it goes via the BISDN network 110 and the Internet 108 from this base station 200, A dialup connection is performed to the network control unit 102 in the broadcast center 100.

- \*\* The connected circuit performs the negotiation for user authentication and service attestation between the network control unit 102 and Personal Digital Assistant 300.
- \*\* Notify service permission to the base station 200 and Personal Digital Assistant 300 by the connected circuit.
- \*\* Personal Digital Assistant 300 transmits the signal which specifies the program which wishes to receive to the base station 200.
- \*\* Carry out reception of the base station 200 with the tuner which can receive the specified program, and change it into the radio format of MMAC after dissociating from the TS packet which received the program specified from Personal Digital Assistant 300.
- \*\* The base station 200 acts as intermediary by performing transmission processing of MMAC on the frequency assigned to the base station.
- \*\* Personal Digital Assistant 300 receives the relayed signal, decodes MPEG-2, and performs reception of broadcast data.
- \*\* When accounting information, such as paid broadcasting, is required, make accounting information upload from Personal Digital Assistant 300 to the broadcast

center 100 side by MMAC communication, a dialup connection, etc. periodically.

[0049]By being processed in this way, Personal Digital Assistant 300 which is a mobile terminal enabled it to view and listen to digital broadcasting, such as satellite broadcasting, easily. In this case, Personal Digital Assistant 300 does not need to be provided with treating parts, such as a tuner which suited each broadcasting format, and the terminal which can receive the broadcasting signal of two or more methods can constitute it from small size and low cost.

[0050]From other Personal Digital Assistants (the composition as the terminal 300 with this fundamentally same terminal) other than terminal 300 in the service area of the base station 200. In being specification of the program same when there is transmission of the specification signal which requires broadcast reception as the program which has transmitted to present Personal Digital Assistant 300, it assigns the same communication channel transmitted by MMAC to other terminals. When the specified programs differ, another communication channel is assigned and the data of the program is made to transmit similarly by the processing of \*\* - \*\* mentioned above.

[0051]When there is a margin in bandwidth, the number of channels, etc., all the TS packets which can receive are relayed and it may be made to transmit to the terminal side in the format of MMAC applied, although it was made to carry out wireless transfer only of the program specified from the terminal 300 side by MMAC in this embodiment. And by the operation by the side of the terminal 300, a desired program is extracted out of the transmitted data, and a display etc. are processed. It becomes unnecessary to transmit the signal which specifies the program which wishes to receive from Personal Digital Assistant 300 to the base station 200 as that at the time of doing in this way, and the separation of the program in the base station 200 becomes unnecessary.

[0052]When carrying out wireless transfer of the picture image data etc. between the base station 200 and Personal Digital Assistant 300, compression processing is carried out and it may be made to transmit data efficiently. Namely, as shown, for example in drawing 6, as media conversion base station 200', The data (or all the data contained in the TS packet of MPEG-2 method) of the program chosen from the TS packet of MPEG-2 method in demultiplexing and the program selection part 212, Compression processing is changed and carried out by the MPEG-4 converter 240 which performs coding processing to MPEG-4 method, and the data changed into MPEG-4 method is constituted so that it may code in MMAC channel coding / decoding part 213. The composition of others of media conversion base station 200' is constituted like the media conversion base station 200 shown in drawing 2.

[0053]And in the Personal Digital Assistant 300 side, it has composition which can

restore to the picture image data of MPEG-4 received method, and voice data by a digital signal processing part etc. With constituting in this way, can perform wireless transfer of the low bit rate about 64k bit / s, for example, and a communication resource is utilized effectively, and it comes to be able to perform transmitting two or more programs simultaneously easily.

[0054]At the embodiment mentioned above, although it could be made to carry out in Personal Digital Assistant 300 simple substance reception, it may constitute from other gestalten as a terminal which communicates by the system of the base station 200 and MMAC. For example, as shown in drawing 7, it may constitute as the card shape MMAC wireless module 400 of PCMCIA specification. That is, the MMAC wireless module 400 is constituted as a card of PCMCIA specification with which the card slot 501 of the note type personal computer 500 can be equipped. As an internal configuration of the wireless module 400, it has the antenna 401 (it may be made to project from a card about this antenna) for transmission and reception, After performing receptions, such as frequency conversion, in the receive section 402 connected to this antenna 401, restore to received data by the demodulation section 403, and the received data to which it restored are supplied to MMAC channel coding / decoding part 404, The conversion process from the radio transmission format of MMAC is performed. This changed data is supplied to the prime controller (CPU) 407 of this MMAC wireless module 400, After carrying out separation to picture image data and voice data, the digital signal processing part (DSP) 408 is supplied, decoding based on MPEG-2 method etc. is performed, and the picture image data and voice data which were decoded are made to output from the PCMCIA interface part 409.

[0055]The send data generated based on the data etc. which are supplied to the PCMCIA interface part 409 is supplied to MMAC channel coding / decoding part 404, It changes into the radio transmission format of MMAC, and after [ this ] changing and carrying out the modulation process of the data by QPSK modulation etc. by the modulation part 405, transmitting processing of frequency conversion, amplification, etc. is performed in the transmission section 406, and wireless transmission is carried out from the antenna 401 to a base station. The memory 410 is connected to the prime controller 407, and at the time of control management, when the memory of data is required, this memory 410 is used.

[0056] Thus, \*\* which can be received, viewed and listened to desired broadcast etc. by the apparatus equipped with this card 400 with having constituted as a card connected to computer paraphernalia, various portable devices, etc.

[0057] Next, a 2nd embodiment of this invention is described with reference to drawing 8.

In this <u>drawing 8</u>, identical codes are given to the portion corresponding to the 1st <u>drawing 1</u> - <u>drawing 7</u> of an embodiment that were mentioned above, and that detailed explanation is omitted.

[0058]Like the case of a 1st embodiment, in the multimedia move access system (MMAC is called below) which performs radio between a base station and a terminal unit, it is the thing which enabled it to treat various broadcasting signals and signal transmission, and the composition of the whole system is shown in <u>drawing 8</u> in this example. In this example, about the composition of the broadcast center 100, the media conversion base station (relay station) 200, and Personal Digital Assistant 300, it is completely the same as that of a 1st embodiment, and is the same as a 1st embodiment also about the format of the signal transmitted to it, and explanation is omitted in it here.

[0059]And in this example, the broadcast center 100 uses the empty zone (or zone prepared for exclusive use) in the circuit prepared for transmission of the broadcasting signal by the demand from a user, and is considered as the composition which transmits information, including Internet broadcasting, various contents, etc. Desired Internet broadcasting etc. are made to transmit by the demand from Personal Digital Assistant 300, and it is made to make the terminal 300 receive in this example here.

[0060]Hereafter, the processing to which the contents of the Internet of the request are made to transmit is explained with reference to <u>drawing 8</u>. Here, it performs with the procedure of \*\* shown in <u>drawing 8</u> - \*\*. If that procedure is explained in order, the system of MMAC performs the base station 200 and radio from \*\* Personal Digital Assistant 300, and it goes via the BISDN network 110 and the Internet 108 from this base station 200, A dialup connection is performed to the network control unit 102 in the broadcast center 100.

- \*\* The connected circuit performs the negotiation for user authentication and service attestation between the network control unit 102 and Personal Digital Assistant 300.
- \*\* Notify access point URL of Personal Digital Assistant 300 to the network control unit 102 by the connected circuit.
- \*\* The network control unit 102 collects information from specified WWW server 109 in the Internet 108 via the access server 105.
- \*\* The network control unit 102 edits collected data into the TS packet of MPEG-2, and transmits by predetermined media (a satellite wave, a terrestrial wave, or a cable) from the transmitting equipment 101.
- \*\* The base station 200 carries out reception of the transmitted signal, restores to data, and change the decoded TS packet into the radio format of MMAC.
- \*\* Act as intermediary by performing transmission processing of MMAC on the

frequency to which the changed signal was assigned by the base station from the base station 200.

\*\* Personal Digital Assistant 300 receives the relayed signal, decodes MPEG-2, and performs reception of Internet data.

When the information on the Internet is sent out with a broadcasting signal etc. by being processed in this way, a personal digital assistant can receive the information. In this case, Personal Digital Assistant 300 does not need to be provided with treating parts, such as a tuner which suited each broadcasting format, and the terminal which can receive the Internet data transmitted with a broadcasting signal can constitute it from small size and low cost. By a thing easily receivable [ the information on the Internet transmitted with a broadcasting signal etc. in this way ]. Can perform reception with the mobile terminal of Internet information, and can ease the burden of an internet server without using a ground system public network, and high capacity transmission is attained, and it leads also to reduction of communication cost.

[0061]Although each embodiment mentioned above explained the processing in the case of transmitting the data coded with the coding mode called MPEG-2 method, also when transmitting the data coded with other coding modes, processing of this invention can be applied. Although it receives in a base station and the broadcasting signal sent out from the broadcast center side was relayed in each embodiment mentioned above, the signal transmission sent out from a certain communications center side is received in a base station, and it may be made to act as intermediary to a radio terminal.

[0062]Although applied also to the wireless transfer between a base station and a terminal unit by the embodiment which mentioned the system of MMAC above, of course, other wireless transfer processing systems may be applied.

## [0063]

[Effect of the Invention] According to the correspondence procedure indicated to claim 1, the arbitrary signals in the broadcasting signal or signal transmission which can receive by the relay station side can be chosen, and it can transmit to the communication terminal side, and has the effect that the broadcasting signal or signal transmission transmitted in various formats is receivable in common by one set of a communication terminal.

[0064]According to the correspondence procedure indicated to claim 2, in the invention indicated to claim 1, selection of the signal received by the communication terminal side is attained by carrying out wireless transfer of the data which specified the signal to which it receives and restores with the communication terminal, and was specified with the communication terminal to a relay station.

[0065]It is coding the original encoding method of the data by a different method, and changing and carrying out wireless transfer of the received data to which it restored in the invention indicated to claim 1 according to the correspondence procedure indicated to claim 3 to a predetermined radio transmission format, Even if it does not have the receiving processing part corresponding to each radio transmission format by the communication terminal side, reception can be carried out in common.

[0066]According to the correspondence procedure indicated to claim 4, in the invention indicated to claim 1, transmitting [ one of broadcasting signals or signal transmission ] origin by performing authenticating processing of the communication terminal with the signal transmitted by a predetermined circuit from a communication terminal. Also about the broadcasting signal and signal transmission which need authenticating processing by the transmitting agency side, it can receive now by the communication terminal side.

[0067]In the invention which was indicated to claim 1 according to the correspondence procedure indicated to claim 5, By demand with the signal transmitted by a predetermined circuit from a communication terminal, transmitting [ one of broadcasting signals or signal transmission ] origin the data for the Internet by transmitting using one of broadcasting signals or signal transmission. It gets down from a broadcast wave etc. and the data for the Internet can be transmitted to the moving terminal side as a circuit.

[0068]According to the radio base station apparatus indicated to claim 6, wireless transmission of the arbitrary signals in the broadcasting signal or signal transmission which can receive with this device can be chosen and carried out, and various broadcasting signals or signal transmission can be transmitted to this base station device and the terminal unit which performs radio.

[0069]According to the radio base station apparatus indicated to claim 7, in the invention indicated to claim 6, the relay transmission of the broadcasting signal or signal transmission based on a demand from the terminal unit side can be carried out by making the broadcasting signal or signal transmission which a control section makes receive set up by the specification signal which the specification signal receive section received.

[0070]In the invention which was indicated to claim 6 according to the radio base station apparatus indicated to claim 8, The coding processing given the received data which the receive section received, and to which it restored at the data is having had the coding process-conversion part changed into different coding processing, If it can respond by the converter, even if it is the broadcasting signal and signal transmission

which are transmitted in what kind of form, it can transmit to the terminal unit side as data of the unified form.

[0071]According to the radio terminal indicated to claim 9, arbitrary broadcasting signals or signal transmission selected by the specification by the side of a terminal unit can be received, and the broadcasting signal and signal transmission in which a terminal unit cannot carry out direct reception can be received now.

[0072]According to the radio terminal indicated to claim 10, in the invention indicated to claim 9, it also becomes possible to receive the broadcasting signal which needs authenticating processing, and signal transmission by having transmitted the data for performing authenticating processing of a local station from the transmission section.

[0073]According to the radio terminal indicated to claim 11, in the invention indicated to claim 9, with having constituted the transmission section and the receive section as a card with which the card slot of a predetermined standard can be equipped. It becomes possible to operate the various personal digital assistant devices provided with the card slot which suited this standard as a radio terminal of this invention.

#### **DESCRIPTION OF DRAWINGS**

[Brief Description of the Drawings]

[Drawing 1]It is a lineblock diagram showing the whole system by a 1st embodiment of this invention.

[Drawing 2] It is a block diagram of the base station by a 1st embodiment.

[Drawing 3] It is a block diagram of the terminal unit by a 1st embodiment.

[Drawing 4]It is an explanatory view showing the packet composition transmitted by a 1st embodiment of this invention.

[Drawing 5] It is an explanatory view showing the frame structure of the radio transmission format in a 1st embodiment of this invention.

[Drawing 6] It is a block diagram of the example in the case of performing MPEG-4 conversion in the base station of a 1st embodiment of this invention.

[Drawing 7]It is a block diagram at the time of constituting the terminal unit of a 1st embodiment of this invention from a card of PCMCIA specification.

[Drawing 8] It is a lineblock diagram showing the whole system by a 2nd embodiment of this invention.

[Drawing 9] It is a block diagram showing the composition of the conventional digital broadcasting transmitting side.

[Drawing 10] It is a block diagram showing the composition of the conventional digital

broadcasting receiver.

[Drawing 11] It is a lineblock diagram showing the conventional multimedia move access system.

[Drawing 12]It is a block diagram showing the composition of the conventional MMAC base station.

[Drawing 13] It is a block diagram showing the composition of the conventional MMAC terminal unit.

[Description of Notations]

100 [ -- A WWW server, 111 / -- A broadcasting satellite (or communications satellite), 200 / -- A media conversion base station, 300 / -- Personal Digital Assistant ] -- A broadcast center, 106 -- A terrestrial antenna, 108 -- The Internet, 109

### \* NOTICES \*

# JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

# (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平11-220665

(43)公開日 平成11年(1999)8月10日

|                           |       | <del></del>        | · · · · · · · · · · · · · · · · · · · |          |             |        |      |               |          |
|---------------------------|-------|--------------------|---------------------------------------|----------|-------------|--------|------|---------------|----------|
| (51) Int.Cl. <sup>6</sup> |       | 識別記号               |                                       | ŖΙ       |             |        |      | -             |          |
| H04N                      | 5/38  |                    |                                       | H04      | N           | 5/38   |      |               |          |
| H04B                      | 1/38  |                    |                                       | H04      | В           | 1/38   |      |               |          |
|                           | 7/15  |                    |                                       | H 0 4    | Н           | 1/00   |      | Н             |          |
| H 0 4 H                   | 1/00  |                    |                                       | H04      | N           | 5/455  |      |               |          |
| H04N                      | 5/455 |                    |                                       |          |             | 5/50   |      | В             |          |
|                           |       |                    | 審査請求                                  | 未請求      |             |        | OL   | (全 21 頁)      | 最終頁に続く   |
| (21)出願番号                  |       | <b>特願平10-20020</b> |                                       | (71) 出   | 頭人          | 000002 | 185  |               |          |
| ()                        |       | 1400 1 10 2000     |                                       | (1.7)    | 11047       | ソニー    |      | <del>} </del> |          |
| (22)出願日                   |       | 平成10年(1998) 1 月30日 |                                       | 1        |             |        |      | 上<br>化品川 6 丁目 | 7 卷35号   |
|                           |       | 1,0000, 1,000      |                                       | (72)発    | 明者          | 福田     |      | танали о т    | . щоо-3  |
|                           |       |                    |                                       | (1.5/)   | 171 H       |        |      | 化基川6丁目        | 7番35号 ソニ |
|                           |       |                    |                                       |          |             | 一株式    |      |               | ГЩ00-1   |
|                           |       |                    |                                       | (74)代    | 理人          |        |      | 悉成            |          |
|                           |       |                    |                                       | (, 2, 1) | (- <u>-</u> | 71     | 1414 | 75 III.       |          |
|                           |       | •                  |                                       |          |             |        |      |               |          |
|                           |       |                    |                                       |          |             |        |      |               |          |
|                           |       |                    |                                       |          |             |        |      |               |          |
|                           |       |                    |                                       |          | •           |        |      |               |          |
|                           |       |                    |                                       |          |             |        |      |               |          |
|                           |       |                    |                                       |          |             |        |      |               |          |
|                           |       |                    | •                                     |          |             |        |      |               |          |

# (54) 【発明の名称】 通信方法、無線基地局装置及び無線端末装置

# (57)【要約】

【課題】 移動体端末でのデジタル放送やインターネット放送などの種々のデータの受信が良好に行えるようにする。

【解決手段】 それぞれ異なる形態で伝送される複数の放送信号又は通信信号の内の指定された少なくとも1つの信号を受信して復調し、その復調された受信データを、所定の無線伝送フォーマットに変換して無線伝送し、この無線伝送フォーマットに適合した通信端末300に、複数の放送信号又は通信信号の内の指定された少なくとも1つの信号を中継伝送するようにした。



#### 【特許請求の範囲】

【請求項1】 それぞれ異なる形態で伝送される複数の 放送信号又は通信信号の内の指定された少なくとも1つ の信号を受信して復調し、

その復調された受信データを、所定の無線伝送フォーマットに変換して無線伝送し、

上記無線伝送フォーマットに適合した通信端末に、上記 複数の放送信号又は通信信号の内の指定された少なくと も1つの信号を中継する通信方法。

【請求項2】 請求項1記載の通信方法において、 上記受信して復調する信号の指定を、上記通信端末で行い、

その通信端末で指定されたデータを、中継局に無線伝送 する通信方法。

【請求項3】 請求項1記載の通信方法において、 上記復調された受信データを、そのデータの元の符号化 方法とは異なる方法で符号化して、所定の無線伝送フォ ーマットに変換して無線伝送する通信方法。

【請求項4】 請求項1記載の通信方法において、 上記いずれかの放送信号又は通信信号の送信元が、上記 20 通信端末から所定の回線で伝送される信号により、その 通信端末の認証処理を行う通信方法。

【請求項5】 請求項1記載の通信方法において、

上記通信端末から所定の回線で伝送される信号での要求 により、上記いずれかの放送信号又は通信信号の送信元 が、インターネット用データを、上記いずれかの放送信 号又は通信信号を利用して送信する通信方法。

【請求項6】 それぞれ異なる形態で伝送される複数の放送信号又は通信信号を受信する複数の受信部と、

上記複数の受信部の内の指定された少なくとも1つの受 30 信部で、上記いずれかの放送信号又は通信信号を受信させる制御部と、

上記制御部の制御により上記受信部が受信した受信データを、所定の無線伝送フォーマットに変換して無線送信する送信部とを備えた無線基地局装置。

【請求項7】 請求項6記載の無線基地局装置において、

上記送信部が信号を送信する相手からの指定信号を受信 する指定信号受信部を備え、

上記指定信号受信部が受信した指定信号で、上記制御部 40 が受信させる信号を設定させる無線基地局装置。

【請求項8】 請求項6記載の無線基地局装置において、

上記受信部が受信して復調された受信データを、そのデータに施された符号化処理とは異なる符号化処理に変換する符号化処理変換部を備え、

上記符号化処理変換部で変換された信号を上記送信部が 送信する無線基地局装置。

【請求項9】 受信する放送信号又は通信信号を指定する指定信号の送信部と、

上記送信部から送信される指定信号に基づいて伝送される放送信号又は通信信号を受信して復調する受信部を備えた無線端末装置。

【請求項10】 請求項9記載の無線端末装置において、

自局の認証処理を行うためのデータを、上記送信部から 送信するようにした無線端末装置。

【請求項11】 請求項9記載の無線端末装置において、

10 上記送信部と上記受信部とを、所定の規格のカードスロットに装着可能なカードとして構成した無線端末装置。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えばデジタル衛星放送、デジタル地上波放送などの各種放送信号又はそれに準じた通信信号を受信する場合に適用して好適な通信方法と、この通信方法が適用される無線基地局装置及び無線端末装置に関する。

[0002]

【従来の技術】従来、テレビジョン放送やラジオ放送な どを、デジタルデータの伝送により行うデジタル放送の 送信側は、図9に示す構成で行われていた。ここでの放 送センタ1は、デジタル衛星放送の送出とデジタル地上 波放送の送出の双方を行う構成としてあり、コンテンツ プロバイダなどから供給される映像源1aを、ソースコ ーディング部1 b内の画像符号化部1 c と音声符号化部 1 d と付属データ部1 e とで、それぞれ対応したデータ の符号化処理を行い、それぞれで符号化されたデータ を、多重化部 1 f で多重化処理する。ここでの符号化処 理は、画像データと音声データについては、例えばMP EG-2方式(動画像の標準化された符号化方式の1 つ)で符号化処理され(具体的には例えば画像データは MPEG-VIDEO ISO/IEC 13818-2で規定された処理で、音声データはMPEG-2 A UDIO ISO/IEC 13818-3で規定され た処理など)、付属データについては任意のコーディン グがなされる。多重化部 1 f での多重化処理は、所定の 方式、例えばMPEG-2 System (ISO/I EC 13818-3) に従って行われ、MPEG-2 方式に従った場合には、このMPEG-2方式のトラン スポートストリーム(以下TSと称する)に変換され る。以下の説明では、このMPEG-2方式で処理され たものとして行う。

【0003】ソースコーディング部1bで符号化された信号(TS)は、チャンネルコーディング部1gに供給され、実際に送信される信号フォーマットに変換される。即ち、スクランブル処理部1hでエネルギー拡散のためのスクランブル処理が行われ、誤り訂正符号化部1iで誤り訂正符号の生成及び付加が行われる。ここでの誤り訂正符号としては、外符号にブロック符号、内符号

に畳み込み符号を組み合わせた連接符号が用いられる。 外符号としては、例えばリードソロモン符号、内符号と しては、例えば可変符号化率のパンクチャド符号が使用 される。誤り訂正符号処理が行われた後は、インターリ ーブ部1 i でインターリーブ処理される。

【0004】そして、地上波放送の場合には、チャンネルコーディング部1gの出力を、OFDM変調部1kでOFDM方式(直交周波数分割多重方式)により変調処理し、その変調された信号をRF変換部1nで所定の伝送帯域の無線信号に送信処理し、地上波アンテナ2から無線送信させる。また、衛星放送の場合には、チャンネルコーディング部1gの出力を、QPSK変調部1mでQPSK方式(4相位相偏移変調方式)により変調処理し、その変調された信号をRF変換部1oで所定の伝送帯域の無線信号に送信処理し、衛星用アンテナ3から放送衛星(又は通信衛星)に対し無線送信させる。

【0005】そして、この構成にて送信されるデジタル放送信号を受信する側の構成として、従来図10に示す構成としてあった。放送信号の受信処理を行うセットトップボックス5には、地上波用受信アンテナ4と、放送 20 衛星6からの放送波を受信する衛星用受信アンテナ7とが接続してあり、地上波用受信アンテナ4は地上波用チューナ5 aに接続してあり、このチューナ5 aで受信した信号を、OFDM復調部5bで復調して受信データを得る。また、衛星用受信アンテナ7は衛星用チューナ5cに接続してあり、このチューナ5cで受信した信号を、QPSK復調部5dで復調して受信データを得る。

【0006】各復調部5b, 5dで復調されたデジタル放送データは、デインターリーブ部5eでのデインターリーブ処理と、誤り訂正部5fでの誤り訂正処理と、デ 30スクランブル部5gでのデスクランブル処理とが行われて、元のTSが復元される。そして、このTSからMPEG-2方式の映像データと音声データとが多重分離部5hで分離処理され、MPEG2デコーダ5iでデコードされた映像データが、NTSCエンコーダ5jでNTSC方式の映像信号とされ、デコーダ5iでデコードされた音声データが、デジタル/アナログ変換器5kでアナログ音声信号とされ、これらの映像信号及び音声信号が、セットトップボックス5に接続されたモニタ受像機8(或いは通常 40のテレビジョン受像機)などに供給されて受像される。

【0007】このようにセットトップボックスと称される装置を受像機に接続することで、デジタル放送の視聴が通常の受像機で可能になる。

【0008】ここでは、地上放送波と衛星放送波によるデジタル放送の送受信の構成を示したが、ケーブルテレビジョン(いわゆるCATV)の場合にも、送信側でのチャンネルコーディングまでは同じで、変調処理及びRF変換処理で特有のものが使用される点が異なるだけである。

【0009】一方、このようなテレビジョン放送の視聴 システムとは全く別のシステムとして、マルチメディア 移動アクセスシステム (MMAC: Multimedi a Mobile Access System)と称さ れるものが提案されている。このアクセスシステムは、 光ファイバ網(BISDN)にシームレスに接続可能な 高速無線アクセスシステムであり、周波数帯としては5 GHzなどの比較的高い周波数帯が使用され、伝送レー トは30Mbps程度で、アクセス方式としては、TD MA/TDD方式(時分割多元接続方式)が使用され る。図11は、このマルチメディア移動アクセスシステ ムの全体構成を示す図で、ここではインターネット網に 接続させるIP(Internet Protoco 1)接続と称されるサービスを行う場合の構成であり、 インターネット網12に接続された各種コンテンツサー バ11と、ISDN (又は一般の電話回線) 13或いは 光ファイバ網14経由で通信が行われるMMAC基地局 15を設ける。この基地局15は、所定のユーザネット ワークインターフェース (UNI) により ISDN 13 又は光ファイバ網14に接続される。

【0010】MMAC基地局15は、上述した伝送方式により、携帯情報端末16と無線通信を行い、基地局15に接続された回線13,14と端末16との通信の中継を基地局15が行う。

【0011】図12は、従来提案されているMMAC基地局の構成を示す図で、ここでは非同期転送モード(Asynchronus Transfer Mode:以下ATMと称する)で通信が行われる光ファイバ網14が接続された場合の例としてあり、ここでの基地局15は、ATMで伝送されるデータ(ATMセル)とユーザネットワークインターフェース(UNI)を行うインターフェース部15aが、光ファイバ網14に接続してあり、ATMセルの多重化を行う。このインターフェース部15aに接続されたATM網回線制御部15bでは、網との呼接続などの回線制御を行う。ATM網回線制御部15bに接続されたATMセル分解/組立部15cでは、網側からのATMセルの分解及び網側に送出するATMセルの組立が行われる。

【0012】A T Mセル分解/組立部15cで分解された網側からの受信データは、MMACチャンネルコーディング/デコーディング部15dに送られ、MMACの無線伝送フォーマットに変換され、この変換されたデータが変調部15gによりQPS K変調などで変調処理された後、送信部15hで周波数変換や増幅などの送信処理が行われて、アンテナ15iから端末に対して無線送信される。

【0013】また、端末側から送信される信号は、アンテナ15iに接続された受信部15jで周波数変換などの受信処理が行われた後、復調部15kで受信データの復調が行われ、復調された受信データをMMACチャン

ネルコーディング/デコーディング部15dに供給して、デコーディング処理を行う。そして、ATMセル分解/組立部15cでATMセルとして組み立て、ATM網回線制御部15bの制御で接続された光ファイバ網14に、インターフェース部15aから送出される。

【0014】なお、MMAC基地局15でのこれらの処理は、中央制御装置(CPU)15eからバスライン15fを介した制御で実行される。

【0015】MMAC端末である携帯情報端末16の構 成としては、図13に示すように、アンテナ16aに接 10 続された受信部16 bで周波数変換などの受信処理が行 われた後、復調部16 c で受信データの復調が行われ、 復調された受信データをMMACチャンネルコーディン グ/デコーディング部16dに供給して、MMACの無 線伝送フォーマットからの変換処理を行う。この変換さ れたデータは、この端末16の中央制御装置(CPU) 16gに供給されて、映像データと音声データとに分離 処理された後、デジタル信号処理部(DSP)16kに 供給されて、MPEG-2方式に基づいたデコード処理 が行われ、映像データが表示用に処理された後、液晶ド ライバ16 i に供給されて、中央制御装置16gの制御 に基づいて、液晶ディスプレイ16jに映像が表示され る。また、受信データに含まれる音声データが、デジタ ル信号処理部16kでアナログ音声信号とされて、スピ ーカ16mから出力される。

【0016】また、中央制御装置16gに接続された操作部16hの操作などに基づいて生成された送信データが、MMACチャンネルコーディング/デコーディング部16dに供給されて、MMACの無線伝送フォーマットに変換され、この変換されたデータが変調部16eによりQPSK変調などで変調処理された後、送信部16fで周波数変換や増幅などの送信処理が行われて、アンテナ16aから基地局に対して無線送信される。

【0017】このようなMMACのシステムとしての基地局と端末装置を用意して、インターネット網などに接続することで、各種コンテンツサーバからのインターネット放送などを、端末装置16で受信することができる。この場合、MMACのシステムの場合には、高速無線アクセスが可能であるので、端末装置では動画データなども受信して表示させることが可能である。

### [0018]

【発明が解決しようとする課題】ところで、MMACのシステム用の端末装置は、基地局からの信号が届く範囲であれば、移動しながらの受信や送信が可能であり、インターネット放送などを任意の場所で受信して表示させることが可能であるが、このMMAC用の端末装置に、図10に示したようなデジタル放送信号用の受信システムを組み込むことは困難であった。

【0019】即ち、デジタル放送、特にデジタル衛星放送を受信するアンテナは、高利得、高指向性を持つアン 50

テナが必要であり、かつビームを一定方向に向けておく 必要があるため、携帯用の端末での受信は困難である。 また、図10に示したセットトップボックス5と称されるデジタル放送の受信処理装置の小型化には限度があり、携帯用の端末に組み込むのには無理がある。特に、図10に示したような衛星放送と地上波放送との双方の 受信を行う装置の場合には、それぞれの信号を受信処理 する回路が必要があり、端末の小型化や低コスト化を阻 む要因になっている。また、当然ながら、ケーブルテレビジョンで送出されるデジタル放送を、移動端末で受信

【0020】また、近年インターネットの下り回線として、放送衛星(通信衛星)からの回線や、地上波の空き回線を介して行うことが提案されているが、これらの回線で送信されるインターネットを端末装置で受信させる場合にも、同様の問題があった。-

することも不可能であった。

【0021】また、インターネット放送や大容量コンテンツをMMACのシステムによる移動体通信でインターネットアクセスを行い配信することも考えられるが、多くのユーザが同時アクセスするには、高速広帯域なネットワークのバックボーンが必要であり、またサーバへの負担も大きく、現状の地上系のネットワークだけで高速大容量データの配信を行うのには限界があった。

【0022】本発明はかかる点に鑑み、移動体端末でのデジタル放送やインターネット放送などの種々のデータの受信が良好に行えるようにすることを目的とする。

#### [0023]

【課題を解決するための手段】本発明の通信方法は、それぞれ異なる形態で伝送される複数の放送信号又は通信信号の内の指定された少なくとも1つの信号を受信して復調し、その復調された受信データを、所定の無線伝送フォーマットに変換して無線伝送し、この無線伝送フォーマットに適合した通信端末に、上記複数の放送信号又は通信信号の内の指定された少なくとも1つの信号を中継伝送するようにしたものである。

【0024】この発明によると、基地局側で受信できる 放送信号又は通信信号の中の任意の信号を選択して、通 信端末側に伝送することができる。

【0025】また本発明の無線基地局装置は、それぞれ 異なる形態で伝送される複数の放送信号又は通信信号を 受信する複数の受信部と、複数の受信部の内の指定され た少なくとも1つの受信部で、いずれかの放送信号又は 通信信号を受信させる制御部と、制御部の制御により受 信部が受信した受信データを、所定の無線伝送フォーマ ットに変換して無線送信する送信部とを備えたものであ る。

【0026】この発明によると、この装置で受信できる 放送信号又は通信信号の中の任意の信号を選択して、無 線送信することができる。

【0027】また本発明の無線端末装置は、受信する放

送信号又は通信信号を指定する指定信号の送信部と、送信部から送信される指定信号に基づいて伝送される放送信号又は通信信号を受信して復調する受信部を備えたものである。

【0028】この発明によると、端末装置側での指定で選択された任意の放送信号又は通信信号を受信できる。 【0029】

【発明の実施の形態】以下、本発明の第1の実施の形態を、図1~図7を参照して説明する。

【0030】本例においては、基地局と端末装置との間で無線通信を行うマルチメディア移動アクセスシステム(以下MMACと称する)において、各種放送信号や通信信号を扱えるようにしたもので、MMACの基本的なシステムについては、従来例で説明したMMACと同じシステムである。即ち、周波数帯としては5GHzなどの比較的高い周波数帯が使用され、伝送レートは30Mbps程度で、アクセス方式としては、TDMA/TDD方式(時分割多元接続方式)が使用される。

【0031】図1に本例のシステムの全体構成を示す。 本例のシステムは、放送センタ100などから送信され 20 る各種放送信号や通信信号を、MMAC基地局であるメ ディア変換中継局(基地局)200で受信して、MMA C端末である携帯情報端末300で受信できるようにし たものである。

【0032】まず、放送センタ100の構成について説 明すると、放送設備101からの放送信号(デジタルテ レビジョン放送信号) の送出が、ネットワーク制御装置 102により制御される。この場合、放送用の各種コン テンツ104や、外部インターネットとのアクセスサー バ(又はルータ)105を備える。そして、放送設備1 01から送出される衛星用の放送信号を、パラボラアン テナ103で放送衛星(又は通信衛星)111に対して 送信し、放送衛星111から送信させる。また、放送設 備101から送出される地上波用の放送信号を、地上波 アンテナ106から送信させる。また、ケーブルテレビ ジョン放送の場合には、САТ V 用の同軸ケーブル10 7を使用した有線伝送を行う。アクセスサーバ105 は、インターネット108に接続され、そのインターネ ット108に点在するWWWサーバ109で中継され る。なお、ここで地上放送波,衛星放送波,ケーブルテ 40 レビジョン放送波として送出される映像データ及び音声 データについては、MPEG-2と称される方式でフォ ーマット化されたデータである。

【0033】次に、メディア変換基地局200の構成について説明すると、基地局200は、地上放送液を受信するアンテナ201と、衛星放送液を受信するアンテナ202を備えると共に、CATV用の同軸ケーブル107についても接続してあり、さらに光ファイバによりBISDN網110を経由してインターネット108にも接続され

る。

【0034】ここで、メディア変換基地局200の詳細な構成を、図2を参照して説明すると、アンテナ201に接続されたチューナ203で所望のチャンネルの地上放送波を受信し、その受信信号を復調部204で復調して受信データを得る。また、アンテナ202に接続されたチューナ205で所望のチャンネルの衛星放送波わ受信し、その受信信号を復調部206で復調して受信データを得る。さらに、CATV用の同軸ケーブル107に接続されたチューナ207で所望のチャンネルのケーブルテレビジョン放送波を受信し、その受信信号を復調部208で復調して受信データを得る。各チューナ203、205、207で受信されるチャンネルについては、中央制御装置(CPU)230からバスライン231を介して供給される制御データにより設定される。

【0035】各受信データは、デインターリーブ部209でのデインターリーブ処理と、誤り訂正部210での誤り訂正処理(例えば外符号をリードソロモン符号による訂正,内符号をビタビデコーダによる復号)と、デスクランブル部211でのデスクランブル処理とが行われて、MPEG-2方式で規定されたTS(トランスポートストリーム)が復元される。

【0036】ここで、MPEG-2方式で規定されたT Sパケット及びTSパケットストリームの構成を図4に 示すと、1単位のTSパケットは、図4のAに示すよう に、188バイトで構成され、先頭の4バイトがヘッダ 部で、残りの184バイトがデータ部である。データ部 には、データ以外にデータ同期用基準時計などのシステ ム情報を伝送するアダプテーションフィールドと呼ばれ る領域を設けることができ、目的により使い分けられ る。ヘッダ部には、1バイトのヘッダ同期信号と、13 ビットのパケット識別子(PID)が有る。TSパケッ トストリームは、図4のBに示すように、8個のTSパ ケットで、 1 伝送フレームが構成される。なお、一般に 符号化された映像や音声のデータは、時間的に連続した データであるが、符号化時の信号処理や受信側での情報 提示に都合の良い長さで区切り、これにヘッダを付加し た可変長パケットとしてデータグループ信号を構成す る。データグループ化された信号は、同じパケット識別 子を持つTSパケットで分割伝送されてくる。

【0037】図2の説明に戻ると、このように構成されるTSから多重分離・番組選択部212で所望の番組の映像データと音声データを選択して出力する処理を行う。ここでの番組の選択処理としては、例えばTSパケットに付与されたパケット識別子の判別から、目的とする番組のデータを判別する。

【0038】そして、多重分離・番組選択部212で出力された映像データと音声データを、MMACチャンネルコーディング/デコーディング部213に送り、MM50 ACの無線伝送フォーマットに変換し、この変換された

データを変調部214でQPSK変調により変調処理した後、送信部215で周波数変換や増幅などの送信処理行い、アンテナ216から端末に対して無線送信する。なお、デスクランブル部211での処理や、多重分離・番組選択部212で選択される番組については、中央制御装置230により制御される。また、MMACチャンネルコーディング/デコーディング部213での処理についても中央制御装置230により制御される。

【0039】ここで、MMACチャンネルコーディング /デコーディング部213で変換される無線伝送フォー 10 マットについて説明する。図5は、MMAC無線伝送フ オーマットの例を示す図で、MMACのフォーマットで 規定された1フレームの構成を図5のAに示すと、1フ レームは5msで構成され、その中に30バイトのスロ ットが800個存在する。MMACのシステムでは、T DMA/TDD方式によるいわゆるピンポン伝送である ので、800スロットの内のスロット1~スロット40 Oが送信用スロットTであり、スロット401~スロッ ト800が受信用スロットRである。但し、1フレーム 全てを送信だけに使用する場合もあり、この場合には、 スロット401~スロット800も送信用スロットTと して割当てられ、2倍の伝送速度を持つ片方向の通信が できる。それぞれのスロットは、図5のBに示すよう に、8バイトのヘッダ部(同期信号、制御信号など) と、20バイトのユーザデータと、2バイトの訂正符号 部とで構成される。

【0040】この構成で伝送できる情報量について説明すると、1スロットのユーザデータの最小伝送レートを32 k  $\mathbb{C}$   $\mathbb{C}$ 

【0041】TSパケットから多重分離・番組選択部212で選択された番組の映像データや音声データは、MMACチャンネルコーディング/デコーディング部213で各スロットのユーザデータの区間に分散マッピングされて、端末側に送信される。一般に、映画フィルム程度の品質の映像データの情報レートは3Mビット/s程度であり、1フレーム内の約100スロットを割当てることで、伝送可能である。

【0042】再び図2の説明に戻ると、端末側から送信される信号は、アンテナ216に接続された受信部217で周波数変換などの受信処理を行った後、復調部218で受信データを復調し、復調された受信データをMMACチャンネルコーディング/デコーディング部213に供給して、デコーディング処理を行う。このデコーディング処理されたデータの内、BISDN網110に送出する必要があるデータについては、ATMセル分解/組立部219に供給して、非同期転送モード(ATM)

で通信を行うためのATMセルとして組み立て、ATM 網回線制御部220の制御で接続されたBISDN網110に、インターフェース部221から送出させる。この送出制御は、中央制御装置230により実行される。【0043】また、端末側から伝送されて、MMACチャンネルコーディング/デコーディング部213でデコーディングされたデータの内、視聴するチャンネル、番組などを指定する信号については、中央制御装置230に供給されて判断され、各チューナ203,205,207などで受信するチャンネルや、多重分離・番組選択部212で選択される番組などを、チャンネル230が対応した状態に設定する。

【0044】なお、複数のチャンネルや番組などが伝送される指定信号で指定されたとき、上述したMMACのフォーマットのスロットに余裕がある場合には、その指示された複数のチャンネルや番組の映像データや音声データなどを、端末側に伝送するようにしても良い。

【0045】次に、この基地局200と無線通信を行う 携帯情報端末300の構成を、図3に示す。携帯情報端 末300は、送受信用のアンテナ301を備え、このア ンテナ301に接続された受信部302で周波数変換な どの受信処理を行った後、復調部303で受信データを 復調し、復調された受信データをMMACチャンネルコ ーディング/デコーディング部304に供給して、MM A Cの無線伝送フォーマットからの変換処理を行う。 こ の変換されたデータは、この端末300の中央制御装置 (CPU) 307に供給して、映像データと音声データ とに分離処理した後、デジタル信号処理部(DSP)3 10に供給して、MPEG-2方式に基づいたデコード 処理を行い、映像データを表示用に処理した後、液晶ド ライバ311に供給して、中央制御装置307の制御に 基づいて、液晶ディスプレイ16十に映像を表示させ る。また、受信データに含まれる音声データを、デジタ ル信号処理部310でアナログ音声信号として、スピー カ313から出力させる。

【0046】また、中央制御装置307に接続された操作部309の操作などに基づいて生成された送信データを、MMACチャンネルコーディング/デコーディング部304に供給して、MMACの無線伝送フォーマットに変換し、この変換してデータを変調部305によりQPSK変調などで変調処理した後、送信部306で周波数変換や増幅などの送信処理を行い、アンテナ301から基地局に対して無線送信する。この無線送信処理では、例えば視聴するチャンネル、番組などを指定する指定信号を基地局200に対して送信する。なお、中央制御装置307にはメモリ308が接続してあり、制御処理時にデータの一時記憶が必要なとき、このメモリ308が使用される。

【0047】また本例の携帯情報端末300は、ICカ 50 ード315が装着される構成としてあり、この装着され た I Cカード 3 1 5 のデータ入出力を行う I Cカードインターフェース部 3 1 4 が設けてあり、中央制御装置 3 内の端の 7 の制御により、I Cカード 3 1 5 のデータの入出力が行われる。本例の場合には、装着される I Cカード 3 1 5 として、有料放送の視聴などに関する課金情報が格納されるカードが使用され、例えば視聴履歴が、月単位などで放送センタ側にアップロードされる。本例の端末3 0 0 の場合には、この視聴履歴のアップロード処理や、I Cカード 3 1 5 に記憶されたデータに基づいた有料放送などの認証処理を行う際には、これらのデータがが、対した。は、これらのデータがが、対した。は、これらのデータがが、は、これらのデータがが、といて無線送信され、基地局 2 0 0 から B I S D N網 1 1 にされて無線送信され、基地局 2 0 0 から B I S D N網 1 1 にされている。

【0048】次に、このように構成されるシステムにて、携帯情報端末300でデジタルテレビジョン放送を受信して視聴する際の処理を、図1を参照して説明する。ここでは、図1に示した $\mathbf{0}$ ~ $\mathbf{8}$ の処理手順で実行される。その手順を順に説明すると、

- 携帯情報端末300からMMACのシステムで基地 20局200と無線通信を行い、この基地局200からBISDN網110及びインターネット108を経由して、放送センタ100内のネットワーク制御装置102にダイヤルアップ接続を行う。
- ② 接続された回線により、ネットワーク制御装置10 2と携帯情報端末300との間で、ユーザ認証,サービス認証のためのネゴシエーションを行う。
- ② 接続された回線で、基地局200と携帯情報端末300に対してサービス許可を通知する。
- 携帯情報端末300は、基地局200に対して受信 30 を希望する番組を指定する信号を伝送する。
- ⑤ 基地局200は、指定された番組を受信できるチューナで受信処理し、携帯情報端末300から指定された番組を受信したTSパケットから分離した後、MMACの無線フォーマットに変換する。
- ⑤ 基地局200は、その基地局に割当てられた周波数でMMACの伝送処理を行い、中継する。
- ⑦ 携帯情報端末300は、中継された信号を受信し、 MPEG-2のデコードを行って、放送データの受信処理を行う。
- ⑤ 有料放送などの課金情報が必要な場合には、定期的にMMAC通信とダイヤルアップ接続などで、携帯情報端末300から放送センタ100側に課金情報をアップロードさせる。

【0049】このように処理されることで、移動体端末である携帯情報端末300で、容易に衛星放送などのデジタル放送を視聴することが可能になった。この場合、携帯情報端末300は各放送方式に適合したチューナなどの処理部を備える必要がなく、複数の方式の放送信号を受信できる端末が、小型かつ低コストで構成できる。

【0050】なお、もし基地局200のサービスエリア内の端末300以外の他の携帯情報端末(この端末は端末300と基本的に同じ構成)から、放送受信を要求する指定信号の伝送があった場合には、現在携帯情報端末300に対して送信している番組と同じ番組の指定である場合には、MMACで伝送される同一の通信チャンネルを、その他の端末に対して割当てる。指定された番組が異なる場合には、別の通信チャンネルを割当てて、上述した①~⑤の処理で同様にその番組のデータを伝送させる。

【0051】この実施の形態では、端末300側から指定された番組だけを、MMACで無線伝送するようにしたが、適用されるMMACのフォーマットで、帯域幅、チャンネル数などに余裕がある場合には、受信できる全てのTSパケットを中継して端末側に伝送するようにしても良い。そして、端末300側の操作で、伝送されたデータの中から所望の番組を抽出して、表示などの処理を行う。このようにした場合のには、携帯情報端末300から基地局200に対して受信を希望する番組を指定する信号を伝送する必要がなくなると共に、基地局200での番組の分離処理が必要なくなる。

【0052】なお、基地局200と携帯情報端末300との間で映像データなどを無線伝送する際には、データを圧縮処理して効率良く伝送するようにしても良い。即ち、例えば図6に示すように、メディア変換基地局200′として、多重分離・番組選択部212でMPEG-2方式のTSパケットから選択された番組のデータ(或いはMPEG-2方式のTSパケットに含まれる全データ)を、MPEG-4方式への符号化処理を行うMPEG-4変換部240で変換して圧縮処理し、MPEG-4方式に変換されたデータを、MMACチャンネルコーディング/デコーディング部213でコーディングするように構成する。メディア変換基地局200′のその他の構成は、図2に示したメディア変換基地局200′のその他の構成は、図2に示したメディア変換基地局200と同様に構成する。

【0053】そして、携帯情報端末300側では、受信したMPEG-4方式の映像データ、音声データをデジタル信号処理部などで復調できる構成とする。このように構成することで、例えば64kビット/s程度の低ビットレートの無線伝送が行え、通信資源が有効に活用されると共に、複数の番組などを同時に伝送することが容易にできるようになる。

【0054】また、上述した実施の形態では、携帯情報端末300単体で受信処理できるようにしたが、基地局200とMMACのシステムで通信を行う端末として、他の形態で構成しても良い。例えば、図7に示すように、PCMCIA規格のカード型MMAC無線モジュール400として構成しても良い。即ち、ノート型パーソナルコンピュータ500のカードスロット501に装着50可能なPCMCIA規格のカードとして、MMAC無線

モジュール400を構成する。無線モジュール400の 内部構成としては、送受信用のアンテナ401(このア ンテナについてはカードから突出させても良い)を備 え、このアンテナ401に接続された受信部402で周 波数変換などの受信処理を行った後、復調部403で受 信データを復調し、復調された受信データをMMACチ ャンネルコーディング/デコーディング部404に供給 して、MMACの無線伝送フォーマットからの変換処理 を行う。この変換されたデータは、このMMAC無線モ ジュール400の中央制御装置(CPU) 407に供給 して、映像データと音声データとに分離処理した後、デ ジタル信号処理部(DSP)408に供給して、MPE G-2方式などに基づいたデコード処理を行い、そのデ コードされた映像データ及び音声データをPCMCIA インターフェース部409から出力させる。

【0055】また、PCMCIAインターフェース部4 09に供給されるデータなどに基づいて生成された送信 データを、MMACチャンネルコーディング/デコーデ ィング部404に供給して、MMACの無線伝送フォー マットに変換し、この変換してデータを変調部405に よりOPSK変調などで変調処理した後、送信部406 で周波数変換や増幅などの送信処理を行い、アンテナ4 01から基地局に対して無線送信する。なお、中央制御 装置407にはメモリ410が接続してあり、制御処理 時にデータの一時記憶が必要なとき、このメモリ410 が使用される。

【0056】このようにコンピュータ装置や各種携帯機 器などに接続されるカードとして構成したことで、この カード400を装着した機器で、所望の放送などを受信 して視聴することが可能なる。

【0057】次に、本発明の第2の実施の形態を、図8 を参照して説明する。この図8において、上述した第1 の実施の形態の図1~図7に対応する部分には同一符号 を付し、その詳細説明は省略する。

【0058】本例においては、第1の実施の形態の場合 と同様に、基地局と端末装置との間で無線通信を行うマ ルチメディア移動アクセスシステム(以下MMACと称 する) において、各種放送信号や通信信号を扱えるよう にしたもので、図8にシステム全体の構成を示す。本例 の場合には、放送センタ100,メディア変換基地局 (中継局) 200, 携帯情報端末300の構成について は、第1の実施の形態と全く同一であり、伝送される信 号のフォーマットについても第1の実施の形態と同じで あり、ここでは説明を省略する。

【0059】そして本例においては、放送センタ100 がユーザからの要求により、放送信号の伝送用に用意さ れた回線の中の空き帯域(又は専用に用意された帯域) を使用して、インターネット放送や各種コンテンツなど の情報を伝送する構成としてある。ここで、この例では 携帯情報端末300からの要求で、所望のインターネッ 50 放送センタ側から送出される放送信号を基地局で受信し

ト放送などを伝送させて、端末300で受信させるよう にしたものである。

【0060】以下、その所望のインターネットのコンテ ンツを伝送させる処理を、図8を参照して説明する。こ こでは、図8に示した①~❸の処理手順で実行される。 その手順を順に説明すると、

- 携帯情報端末300からMMACのシステムで基地 局200と無線通信を行い、この基地局200からBI SDN網110及びインターネット108を経由して、 放送センタ100内のネットワーク制御装置102にダ イヤルアップ接続を行う。
- ② 接続された回線により、ネットワーク制御装置10 2と携帯情報端末300との間で、ユーザ認証、サービ ス認証のためのネゴシエーションを行う。
- ③ 接続された回線で、携帯情報端末300のアクセス 先URLをネットワーク制御装置102に通知する。
- ④ ネットワーク制御装置102は、アクセスサーバ1 05を経由してインターネット108内の指定されたW WWサーバ109から情報を収集する。
- **⑤** ネットワーク制御装置102は、収集したデータを MPEG-2のTSパケットに編集し、送信設備101 から所定のメディア(衛星波、地上波又はケーブル)で 送信する。
  - ◎ 基地局200は、送信された信号を受信処理してデ ータを復調し、デコードされたTSパケットをMMAC の無線フォーマットに変換する。
  - ⑦ 変換された信号を、基地局200からその基地局に 割当てられた周波数でMMACの伝送処理を行い、中継 する。
- 30 ❷ 携帯情報端末300は、中継された信号を受信し、 MPEG-2のデコードを行って、インターネットデー タの受信処理を行う。

このように処理されることで、インターネットの情報 が、放送信号などと共に送出される場合に、その情報を 携帯端末で受信できる。この場合、携帯情報端末300 は各放送方式に適合したチューナなどの処理部を備える 必要がなく、放送信号で伝送されるインターネットデー タを受信できる端末が、小型かつ低コストで構成でき る。また、このように放送信号などで伝送されるインタ 40 ーネットの情報を容易に受信できることで、地上系公衆 網を使用しないで、インターネット情報の移動体端末で の受信ができ、インターネットサーバの負担を軽減で き、高容量伝送が可能になると共に、通信コストの削減 にもつながる。

【0061】なお、上述した各実施の形態では、MPE G-2方式と称される符号化方式で符号化されたデータ を伝送する場合の処理について説明したが、他の符号化 方式で符号化されたデータを伝送する場合にも本発明の 処理は適用できる。また、上述した各実施の形態では、

15

て、中継するようにしたが、何らかの通信センタ側から 送出される通信信号を基地局で受信して、無線端末に対 して中継するようにしても良い。

【0062】また、基地局と端末装置との間の無線伝送についても、MMACのシステムを上述した実施の形態では適用したが、他の無線伝送処理システムを適用しても良いことは勿論である。

#### [0063]

【発明の効果】請求項1に記載した通信方法によると、 でき中継局側で受信できる放送信号又は通信信号の中の任意 10 る。 の信号を選択して、通信端末側に伝送することができ、 【位 をのフォーマットで伝送される放送信号又は通信信号 と、 を、1台の通信端末で共通に受信できる効果を有する。 を行

【0064】請求項2に記載した通信方法によると、請求項1に記載した発明において、受信して復調する信号の指定を通信端末で行い、その通信端末で指定されたデータを、中継局に無線伝送することで、通信端末側で受信する信号の選択が可能になる。

【0065】請求項3に記載した通信方法によると、請求項1に記載した発明において、復調された受信データを、そのデータの元の符号化方法とは異なる方法で符号化して、所定の無線伝送フォーマットに変換して無線伝送することで、通信端末側でそれぞれの無線伝送フォーマットに対応した受信処理部を備えてなくても、共通に受信処理できる。

【0066】請求項4に記載した通信方法によると、請求項1に記載した発明において、いずれかの放送信号又は通信信号の送信元が、通信端末から所定の回線で伝送される信号により、その通信端末の認証処理を行うことで、送信元側で認証処理を必要とする放送信号や通信信号についても、通信端末側で受信できるようになる。

【0067】請求項5に記載した通信方法によると、請求項1に記載した発明において、通信端末から所定の回線で伝送される信号での要求により、いずれかの放送信号又は通信信号の送信元が、インターネット用データを、いずれかの放送信号又は通信信号を利用して送信することで、放送波などを下り回線として、移動端末側にインターネット用データを伝送できる。

【0068】請求項6に記載した無線基地局装置によると、この装置で受信できる放送信号又は通信信号の中の任意の信号を選択して、無線送信することができ、この基地局装置と無線通信を行う端末装置に対して、各種放送信号又は通信信号を伝送できる。

【0069】請求項7に記載した無線基地局装置によると、請求項6に記載した発明において、指定信号受信部が受信した指定信号で、制御部が受信させる放送信号又は通信信号を設定させることで、端末装置側からの要求に基づいた放送信号又は通信信号を中継伝送できる。

【0070】請求項8に記載した無線基地局装置によると、請求項6に記載した発明において、受信部が受信し 50

て復調された受信データを、そのデータに施された符号 化処理とは異なる符号化処理に変換する符号化処理変換 部を備えたことで、その変換部で対応できれば、どのよ うな形式で伝送される放送信号や通信信号であっても、 統一した形式のデータとして端末装置側に伝送できる。

【0071】請求項9に記載した無線端末装置によると、端末装置側での指定で選択された任意の放送信号又は通信信号を受信でき、端末装置が直接受信することのできない放送信号や通信信号を、受信できるようになる。

【0072】請求項10に記載した無線端末装置によると、請求項9に記載した発明において、自局の認証処理を行うためのデータを、送信部から送信するようにしたことで、認証処理を必要とする放送信号や通信信号を受信することも可能になる。

【0073】請求項11に記載した無線端末装置によると、請求項9に記載した発明において、送信部と受信部とを、所定の規格のカードスロットに装着可能なカードとして構成したことで、この規格に適合したカードスロットを備えた各種携帯端末装置を、本発明の無線端末装置として機能させることが可能になる。

## 【図面の簡単な説明】

【図1】本発明の第1の実施の形態によるシステム全体を示す構成図である。

【図2】第1の実施の形態による基地局のブロック図である。

【図3】第1の実施の形態による端末装置のブロック図である。

【図4】本発明の第1の実施の形態で伝送されるパケット構成を示す説明図である。

【図5】本発明の第1の実施の形態での無線伝送フォーマットのフレーム構成を示す説明図である。

【図6】本発明の第1の実施の形態の基地局でMPEG -4変換を行う場合の例のブロック図である。

【図7】本発明の第1の実施の形態の端末装置をPCMCIA規格のカードで構成した場合のブロック図である。

【図8】本発明の第2の実施の形態によるシステム全体 を示す構成図である。

① 【図9】従来のデジタル放送送信側の構成を示すブロック図である。

【図10】従来のデジタル放送受信側の構成を示すブロック図である。

【図11】従来のマルチメディア移動アクセスシステム を示す構成図である。

【図12】従来のMMAC基地局の構成を示すブロック 図である。

【図13】従来のMMAC端末装置の構成を示すブロック図である。

【符号の説明】

18

100…放送センタ、106…地上波アンテナ、108 …インターネット、109…WWWサーバ、111…放\*

17

\*送衛星(又は通信衛星)、200…メディア変換基地 - 局、300…携帯情報端末

# 【図1】



第1の実施の形態のシステム構成

【図2】





MMAC端末の構成



TSパケット及びTSパケットストリームの構成

【図5】



MMAC無線フォーマットの構成



従来のマルチメディア移動アクセスシステムの構成

【図6】





P CMCIAカード型MMAC無線モジュールの構成



第2の実施の形態のシステム構成



従来のデジタル放送送信側構成



従来のデジタル放送受信側構成

【図12】



従来のMMAC基地局の構成

【図13】



従来のMMAC端末の構成

| フロントペー                    | ジの続き |      |         |      |   |
|---------------------------|------|------|---------|------|---|
| (51) Int.Cl. <sup>6</sup> |      | 識別記号 | FΙ      |      |   |
| · H O 4 N                 | 5/50 |      | H O 4 N | 7/20 |   |
|                           | 7/24 |      | H O 4 B | 7/15 | Z |
|                           | 7/20 |      | H 0 4 N | 7/13 |   |