Functions

Informally, mapping between two sets

Informally, mapping between two sets

 $f: A \rightarrow B$

A = Domain; B = Co-Domain

If f(a) = b

b = image of a

a = pre-image of b

Range, R = Images of A

Examples of functions

Suppose that each student in a discrete mathematics class is assigned a letter grade from the set $\{A, B, C, D, F\}$. And suppose that the grades are A for Adams, C for Chou, B for Goodfriend, A for Rodriguez, and F for Stevens.

A function from A to B is an assignment of exactly one member of B to each element of A

Multiplication and addition of functions

```
f1: A \to \mathbb{R}
f2: A \to \mathbb{R}
f1 f2: A \to \mathbb{R}
(f1f2)(x) = f1(x) f2(x)
```

$$f1 + f2: A \to \mathbb{R}$$

 $(f1+f2)(x) = f1(x) + f2(x)$

One to One(Injective) functions

A function f is said to be one-to-one, or an injunction, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of $f(a) = f(b) \rightarrow a = b$

One to One(Injective) functions

$$f(x) = x^2 \text{ from } \mathbb{N} \text{ to } \mathbb{Z}$$

```
To show that f is injective Show that if f(x) = f(y) for arbitrary x, y \in A with x = y, then x = y.
```

One to One(Injective) functions

$$f(x) = x^2 \text{ from } \mathbb{Z} \text{ to } \mathbb{Z}$$

```
To show that f is injective Show that if f(x) = f(y) for arbitrary x, y \in A with x = y, then x = y.
```

Onto(Surjective) Functions

A function f from A to B is called onto if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

$$\forall y \exists x f(x) = y$$

Onto(Surjective) functions

$$f(x) = x^2 \text{ from } \mathbb{N} \text{ to } \mathbb{Z}$$

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

Onto(Surjective) functions

$$f(x) = x+1 \text{ from } \mathbb{Z} \text{ to } \mathbb{Z}$$

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

Bijective Functions

A function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto.

Inverse Functions

Let f be a bijective function from the set A to the set B. The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b.

The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

Inverse Functions

Inverse functions

 $f:\mathbb{Z}$ to \mathbb{Z} such that f(x) = x + 1. Find if f is invertible and if invertible what's the inverse

Composition of functions

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by $(f \circ g)(a) = f(g(a))$