Lecture Notes: 9 Jan. 2012

GDCB 511

Course notes

- TA: Rebecca Weeks (rlmauton@iastate.edu)
- Purpose of textbook: learn how to draw conclusions from experimental results

Central dogma

Our course will focus on the central dogma of molecular biology; specifically, we will look at:

- the imporant processes in molecular detail
- the related regulatory mechanisms

Biomolecular structures

DNA structure

- phosphodiester bonds between 5' phosphate and 3' carbon
- double helical structure
 - most binding on major groove
 - .34 nm (3.4 Å) between nucleotides
 - -3.4 nm (34 Å) period in the helix (10 bp = 1 turn of the helix)

Protein structure

- I need to memorize the peptide bond
- reactivity at the peptide bond (especially the double-bonded oxygen and the hydrogen) is responsible for protein secondary structure
- secondary structure elements: α helix, β sheet, loops (especially near prolines)

Molecular cloning

- molecular recombination using restriction enzymes, DNA ligase
- alkaline phosphatase method can be used for screening out vectors that have re-ligated to themselves (vs vectors successfully transformed with recombinant DNA)