Exploração de Dados

Prof. Dr. Leandro Balby Marinho

Ciência de Dados Preditiva

Roteiro

1. Análise Exploratória de Dados

2. Relacionamento entre os dados

3. Amostragem de Dados

Introdução

Objetivo: entender melhor os dados para obter insights e ajudar na tomada de decisão.

As tarefas para atingir esse objetivo envolvem:

- Coleta de dados.
- ▶ Pré-processamento dos dados.
- Sumarização
- Análise
- Interpretação

Estatística Descritiva (ou Exploração de Dados): sumarização de dados com números ou figuras.

Sumário com 5 números

Considere as notas de uma disciplina abaixo:

Aluno	Nota	
1	1,0	
2	2,5	
3	2,5	
4	6,4	
5	0	
6	4,7	
7	7,2	
8	7,8	
9	2,4	
10	8,9	
Ė	:	
62	0	

Como sumarizar esses dados com poucos números?

Ideia 1: Scatter Plot

Ideia 2: Scatter Plot com Valores Ordenadas

Ideia 3: Box Plot

Min.	1st Qu.	Median	3rd Qu.	Max.
0	1.093	3.875	6.265	8.780

Valores Extremos

Considere os salários dos jogadores do Barcelona em 2015.

Jogador	Salário (libras esterlinas)	
1	55.000	
2	33.500	
3	15.500	
4	130.000	
5	130.000	
6	90.000	
7	40.000	
8	55.500	
9	75.000	
10	60.000	
11	60.000	
12	50.000	
13	120.000	
14	35.000	
15	120.000	
16	150.000	
17	75.000	
18	85.000	
19	37.500	
20	20.000	
21	5.000	
22	150.000	
23	256.000	
24	60.000	
25	200.000	
26	5.000	
27	2.500	

2.500 36.250 60.000 120.000 256.000	Min.	1st Qu.	Median	3rd Qu.	Max.
	2.500	36.250	60.000	120.000	256.000

Box Plots com Valores Extremos (Outliers)

- Outliers são valores muito maiores ou menores que o resto dos dados.
- ► Boxplots podem ser usados para identificar outliers.
- ▶ Primeiro calcula-se o IQR (Inter Quartile Range), i.e., Q3 — Q1.
- Um outlier é considerado qualquer valor maior ou menor que 1,5 vezes o IQR, i.e,
 - ► Maior que Q3 + 1,5×IQR ou
 - ► Menor que Q1 $1,5 \times IQR$.

Valores Extremos

Considere novamente os salários dos jogadores do Barcelona em 2015.

Jogador	Salário (libras esterlinas)	
1	55.000	
2	33.500	
3	15.500	
4	130.000	
5	130.000	
6	90.000	
7	40.000	
8	55.500	
9	75.000	
10	60.000	
11	60.000	
12	50.000	
13	120.000	
14	35.000	
15	120.000	
16	150.000	
17	75.000	
18	85.000	
19	37.500	
20	20.000	
21	5.000	
22	150.000	
23	256.000	
24	60.000	
25	200.000	
26	5.000	
27	2.500	

Min.	1st Qu.	Median	3rd Qu.	Max.
2.500	36.250	60.000	120.000	256.000
				= .004

Média

Seja x_i o valor da i-ésima observação, a média amostral é calculada por:

$$\bar{x} = \sum_{1}^{n} \frac{x_i}{n}$$

Considerando o exemplo do slide passado a média é:

- a) Maior que a mediana.
- b) Menor que a mediana.
- c) Igual a mediana.

Sumarização

A média (li

Média

A média (linha vermelha) é bem maior que a mediana pois o outlier a puxa para cima.

A média não é uma estatística robusta pois é afetada por valores extremos.

Média Aparada

A média aparada é a média retirando-se os X% maiores e menores valores. Ela ameniza o efeito de outliers e portanto é considerada uma estatística robusta.

Na tabela abaixo temos a mediana, média e média aparada retirando-se os 10% maiores e menores salários.

Mediana	Média	a Média Aparada (10%)		
60.000	78.351,85	71.826,09		

Média Aparada

Moda, Média e Mediana

Dispersão dos Dados

Como medimos a dispersão dos dados em relação aos valores centrais?

- ► Ideia 1: Valor máximo Valor mínimo.
- ► Ideia 2: IQR
- ► Ideia 3: Desvio Padrão

Variância (populacional):

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Desvio padrão (populacional):

$$\sigma = \sqrt{\sigma^2}$$

Dispersão dos Dados

Considerando novamente o exemplo dos salários do Barcelona:

		dados originais	aparados	robusta?
Mediana Média		60.000	60.000	Sim
		78.351,85	72.826,09	Não
	range	253.500	145.000	Não
IQR d.p.		83.750	66.250	Sim
		61.835	43.139	Não

Distribuição dos Dados

- ► Podemos visualizar a distribuição de variáveis quantitativas por meio de histogramas.
- → O eixo x é composto por intervalos de valores (também chamados de bins).
- O eixo y contém a quantidade de observações que caem dentro de cada bin.
- O histograma abaixo mostra a distribuição das expectativas de vida (em ano) de 197 países.

O que podemos aprender com os histogramas?

- ▶ Quantidade de picos: unimodal, bimodal, etc.
- ► Simetria: simétricos, enviesados para a direita ou esquerda.
- ▶ Dispersão dos dados e outliers.

Distribuição dos Dados

Considere novamente o histograma de expectativa de vida. Ele é enviesado à direita, esquerda ou é simétrico?

Distribuição dos Dados

Considere novamente o histograma de expectativa de vida. Ele é enviesado à direita, esquerda ou é simétrico?

				3rd Qu.	
47.79	64.67	73.24	69.86	76.65	83.39

Variáveis Categóricas (ou qualitativas)

- ► Exemplos: Sexo (M,F), Cor (Azul, Vermelho, etc.) e Nacionalidade (Brasileiro, Chileno, etc.)
- Não podemos realizar operações matemáticas com essas variáveis (e.g. máximo, mínimo e média).
- Podemos contar quantas observações ocorrem em cada nível da variável.

Exemplo Variável Quantitativa vs Qualitativa

Considere os dados sobre as 50 cidades mais violentas do mundo por número de homícidios:

Cidade	País	Nr. Homícidios
Caracas	Venezuela	120
San Pedro Sula	Honduras	111
San Salvador	El Salvador	109
Acapulco	México	105
Maturín	Venezuela	86
Distrito Central	Honduras	74
Valencia	Venezuela	72
Palmira	Colômbia	71
Cidade do Cabo	África do Sul	66
Cali	Colômbia	64
Ciudade Guayana	Venezuela	62
Fortaleza	Brasil	61
i i	:	:
Obregón	México	28

Visualizando a Variável Quantitativa

Para summarizar a parte quantitativa dos dados podemos usar histogramas e boxplots.

Visualizando Variáveis Categóricas

Qual o número de cidades no ranking por país?

Ideia 1: Contar a quantidade de cidades no ranking por país.

Visualizando Variáveis Categóricas

Qual a porcentagem de cidades no ranking por país?

Ideia 2: Dividir a contagem pelo total de cidades.

Exercícios

- a) Calcule a média, mediana, moda e desenhe o boxplot do seguinte conjunto de dados: (1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 15, 16, 16)
- b) A distribuição acima é enviesada? Para que lado?
- c) Considere os salários no Brasil como um todo. Como você acha que é a distribuição? Desenhe um histograma e boxplot que captura sua intuição.
- d) Considere as idades dos alunos dessa turma. Como você acha que é a distribuição? Desenhe um histograma e boxplot que captura sua intuição.

Roteiro

1. Análise Exploratória de Dados

2. Relacionamento entre os dados

3. Amostragem de Dados

Relação entre variáveis qualitativas e quantitativas Ideia: Visualizar a distribuição da variável quantitativa para cada valor da variável qualitativa.

Relação entre variáveis categóricas

Ideia 1: Construir uma tabela de contingência contendo as frequências de cada nível das variáveis.

Gênero		frequência	frequência relativa
	Masculino	5.457	0,545
Feminino	4.543	0,454	
	Total	10.000	1,000

	Saiu frequência		cia frequência relativa	
	Sim	2.037	0,203	
_	Não	7.963	0,796	
	Total	10.000	1,000	

Os dados acima se referem aos dados de clientes de um banco onde "Saiu" indica se um cliente saiu ou continua no banco.

Relação entre variáveis categóricas

Ideia 1: Construir uma tabela de contingência contendo as frequências de cada nível das variáveis.

	Gênero		
Saiu	Masculino	Feminino	
Sim	898	1.139	
Não	4.559	3.404	

	Gênero		
Saiu	Masculino	Feminino	
Sim	0,089	0,113	
Não	0,455	0,340	

Relação entre variáveis categóricas

Ideia 2: Usar barplots com vários níveis.

Quem mais deixou o banco homens ou mulheres?

Usando proporções

Distribuição marginal é a distribuição de apenas uma variável em uma tabela de contingência.

	Sexo			
Saiu	Masculino	Feminino	Total	
Sim	898	1.139	2.037	
Não	4.559	3.404	7.963	
	5.457	4.543	10.000	

A distribuição fica nas margens da tabela.

Distribuição condicional de uma variável categórica é sua distribuição com um valor fixo da segunda variável.

	Sexo		
Saiu	Masculino	Feminino	
Sim	0,164	0,250	
Não	0,835	0,749	

Distribuição condicional de *Saiu* dado *Gênero*.

Usando proporções

Note que usando a distribuição condicional fica mais fácil comparar as variáveis.

Quem mais deixou o banco homens ou mulheres?

Relação entre variáveis quantitativas Ideia: Verificar como as variáveis variam em conjunto.

Correlação

- ► Variável 1: x_1, x_2, \dots, x_n
- ► Variável 2: y_1, y_2, \dots, y_n

Correlação =
$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

- ▶ Se $x_i = y_i$ ou $y_i = ax_i + b(a > 0)$ então correlação = +1.
- ► Se $y_i = ax_i + b$ (a < 0) então correlação = -1.

Correlação

Roteiro

1. Análise Exploratória de Dados

2. Relacionamento entre os dados

3. Amostragem de Dados

Amostragem de Dados

Inferência Estatística: tirar conclusões com base nos dados.

- População: grupo que estamos interessados em tirar conclusões.
- Censo: coleção de dados de toda população.
- Amostra: Um subconjunto da população.
- ► Estatística: valor calculado dos dados observados. Usado para estimar uma caracaterística (parâmetro) da população.

De forma a garantir uma boa estimativa do parâmetro (boa generalização) precisamos de uma amostra **representativa**.

Amostragem Randômica

Como selecionar uma amostra representativa? Randomização

Alguns métodos importantes de amostragem randômica são:

- Amostra Randômica Simples (ARS): Cada amostra possível de tamanho *n* da população tem a mesma probabilidade de ser escolhida.
- Amostra Estratificada: Divide a população em subgrupos não sobrepostos e escolhe uma ARS dentro de cada subgrupo.