Heterogeneity and Monetary Policy Transmission: Empirical Exercises Using Local Projection

Wentao (Eric) Zhou

Short talk in ECON 718 Fall 2019, UW-Madison

Introduction

- Traditionally, we estimate the effect of monetary policy shock in a multivariate VAR system
 - Aggregate data on I,C, Y, CPI and so on, from FRED or FoF.
 - ▶ Identifying monetary policy shocks by SVAR.
 - ► See Christiano et al. (1999).

SVAR restricts us to aggregate data, however, households /firms/sectoral heterogeneity might be very important for the transmission of monetary policy \Longrightarrow You might want to work with micro-level panel data

- A recent trend:
 - Micro-level panel data (COMPUSTAT or CEX)
 - Externally identified monetary policy shocks (eg. HFI shocks)
 - Estimating IRFs using local projection

Today

- ▶ Briefly introducing some recent papers that emphasizing heterogeneity in monetary policy transmission.
- Discussing two specifications in details.
- How I use them in my field paper.
- ► Tips: how to get a quick start

Heterogeneity and Monetary Policy Transmission

The effect on consumption:

- Mainly driven by households with mortgages (and outright home-owners do not adjust expenditure at all) ⇒ Cloyne et al. (RES, 2019)
- ► Young people who refinance their mortgages ⇒ Wong (R&R AER,2019)

The effect on fixed capital investment:

smaller fixed capital accumulation/capital expenditure for

- ► Firms with more existing bank loans ⇒ Ippolito et al. (JME, 2018)
- ► Firms with higher default probability ⇒ Ottonellow and Winberry (R&R ECMA,2019)
- ➤ Young firms that do not pay dividends ⇒ Cloyne et al.(NBER WP, 2018)
- ► Firms with lower liquidity ⇒ Jeenas(2019)

Empirical Specification 1:

- Estimating the differences in how firms respond to monetary policy shocks conditional on their firm characteristics before the shock.
- Ottonello and Winberry(2019): looking at heterogeneous responses of capital accumulation across firms with default probability before the shock.

$$\log k_{jt+h} - \log k_{jt} = \alpha_{jh} + \alpha_{sth} + \beta_h x_{jt-1} \epsilon_t^m + \Gamma_h' Z_{jt-1} + e_{jt}$$

- ▶ j for firms, t for quarters, h for horizons
- α_{ih}: firm fixed effect
- $ightharpoonup \alpha_{sth}$: sector-by-quarters firm fixed effect
- $ightharpoonup \epsilon_t^m$: HFI monetary policy shock
- \triangleright x_{it-1} : firm characteristics before the shock
- $ightharpoonup Z_{jt-1}$: x_{jt-1} and other firm-level controls
- ► Two-way clustered standard errors (by firm and time)
- \triangleright β_h : heterogeneous effect over h horizons

Ottonello and Winberry (2019)

- Considering expansionary monetary policy shocks (interest rate goes down)
- Default probability: two proxies, leverage ratio and Distance to Default
- ▶ High leverage or low Distance-to-Default ⇒ high default probability

Figure 1: Dynamics of Differential Response to Monetary Shocks

- High leveraged firms experience lower capital accumulation.
- ▶ High Distance-to-Default firms experience higher capital accumulation.

Empirical Specification 2:

- ► Estimating IRFs of different types of firms
- ► Cloyne et al. (2018): young firms paying No dividends are driving the aggregate effect of monetary policy on capital expenditure (I)

$$\log I_{jt+h} - \log I_{jt} = \alpha_{i,h} + \sum_{g=1}^{G} \beta_h^g \cdot I[x_{i,t-1} \in g] \cdot \epsilon_t^M + \sum_{g=1}^{G} \gamma_h^g \cdot I[x_{i,t-1} \in g] + \mu_{i,t+h}$$

- $\triangleright \alpha_{i,h}$: firm fixed effect
- $ightharpoonup \epsilon_t^m$: HFI monetary policy shock
- ▶ Sorting firms into different groups g based on their types $x_{i,t-1}$.
- Running local projection separately.

Cloyne et al. (2018)

- Considering contractionary monetary policy (interest rate goes up)
- ► Sorting firms into four different groups

Pretty easy to see that decrease in capital expenditure mainly happens among yound firms that do not pay dividends.

My field paper

- Interested in how product market frictions affect monetary policy transmission.
- ► Focusing on a particular type of frictions: $\frac{SG\&A}{SALES}$
 - ► SG&A is considered as fixed cost of production.(relative to variable costs)
 - ► High $\frac{SG\&A}{SALE}$ ratio means it is much more expensive for a firm to sell one dollar good.
 - ▶ High $\frac{SG\&A}{SALE}$ ratio \Longrightarrow low operating efficiency, as in Gilchrist et al.(AER, 2017)
- ► Focusing on the effect of finished-goods inventories (a part of output).

Equation 1

- One-period ahead version of equation 1
- ▶ After contractionary MP shock, firms with high SG&A ratio adopt a higher inventory-to-sales ratio than firms with low SG&A ratio.
- ▶ Robust to a variety of firm-level heterogeneity.

Heterogeneous Responses to a Contractionary MP Shock (Retail and Wholesale)								
Dep. Variable IS ratio	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\frac{XSGA}{SALE} \times \epsilon_t^M$	0.011** (2.071)	0.011** (2.070)	0.011** (2.037)	0.011** (2.078)	0.012** (1.984)	0.011** (2.061)	0.011** (1.986)	0.011** (1.984)
Leverage× ϵ_t^M	(2.5.1)	-0.001 (-0.292)	(2.001)	(2.5.5)	(1.001)	(2.001)	(1.000)	-0.001 (-0.293)
$\text{Log Size} \times \epsilon_t^M$			$0.000 \ (0.115)$					
Liquidity× ϵ_t^M				0.008 (0.509)				
Cash Flow× ϵ_t^M Asset Growth× ϵ_t^M					0.027 (0.707)	-0.004		
Sales Growth× ϵ_t^M						(-0.272)	-0.009	-0.009
Suice Stawark c _t							(-1.063)	(-1.061)

Equation 2

- ▶ Still, high SG&A ratio firms adopt a higher IS ratio.
- ➤ Sorting firms into efficient firms (below median *SG&A* ratio) and inefficient firms (above median *SG&A* ratio).

Figure 1: Heterogeneous Responses to Monetary Policy by Operating Efficiency

Tips: how to get started quickly if you are interested

- ▶ Replication files of Ramey(2016): on her websites
- ► Monetary policy shocks : Romer and Romer (2004) and HFI monetary policy
- ► Transforming her STATA codes for location projection (OLS) into panel regression version.
- ▶ Jorda's website also provides codes for different versions of LP.