Федеральное государственное бюджетное образовательное учреждение
высшего образования
"Уфимский государственный авиационный технический университет"

Кафедра Высокопроизводительных вычислительных технологий и систем

Дисциплина: Математическое моделирование

Отчет по лабораторной работе $N_{\!\scriptscriptstyle 2}$ 2

Тема: «Моделирование движения заряженных частиц в электромагнитных полях»

Группа ПМ-453	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Шамаев И.Р.			
Принял	Лукащук В.О.			

Цель: получить навык численного моделирования движения заряженных частиц в электромагнитных полях.

Теоретическая часть

Сила Кулона – сила, которая действует между любыми двумя электрическими точечными зарядами. Вычисляется по формуле:

$$\vec{F}_{12} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{|\vec{r}_1 - \vec{r}_2|^3} (\vec{r}_1 - \vec{r}_2),$$

где $q_{\rm i},\ i=\overline{1,2}$ — заряд i-ой частицы, $r_{\rm i},\ i=\overline{1,2}$ — длина радиус-вектора до i-ой частицы, ε_0 — диэлектрическая постоянная.

Сила, действующая на заряженную частицу в электрическом поле:

$$\vec{F} = q(\vec{E}),$$

где q — заряд рассматриваемой частицы, E — вектор напряженности электрического поля.

Сила Лоренца — сила, действующая на заряженную точечную частицу со стороны электромагнитного поля. Вычисляется по формуле:

$$\vec{F} = q \ (\vec{v} \times \vec{B}),$$

где q — заряд рассматриваемой частицы, \vec{v} — скорость рассматриваемой частицы, \vec{E} — вектор напряженности электрического поля, \vec{B} — вектор индукции магнитного поля.

Практическая часть

1. Моделирование опыта Резерфорда

Задание: α -частица с кинетической энергией 4 МэВ, массой $1.39 \bullet 10^{-27}$ кг и зарядом $3.2 \bullet 10^{-19}$ Кл, рассеиваются тонкой золотой фольгой. Построить траектории движения частицы, приближающейся к ядру с расстояния $L=10^{-12}$ м, в зависимости от прицельного расстояния p_0 . Считать ядро атома золота неподвижным и имеющим заряд $1.26 \bullet 10^{-17}$ Кл. Принять время расчёта 10^{-19} с. Определить угол рассеяния θ .

Таблица 1.

Номер	$ ho_0,10^{-15}$ M					
варианта	Частица 1	Частица 2	Частица 3	Частица 4	Частица 5	
2	2	20	40	80	200	

Ход работы

1. Вычислим начальную скорость через заданную кинетическую энергию:

$$v_0 = \sqrt{\frac{2E}{m}}$$

2. Используем силу Кулона, вычисляемой по формуле:

$$\vec{F}_{12} = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{|\vec{r}_1 - \vec{r}_2|^3} (\vec{r}_1 - \vec{r}_2),$$

для составления системы ОДУ, в которой координаты частицы являются неизвестными:

$$\begin{cases} \ddot{x} = \frac{1}{4\pi\varepsilon_0 m} \frac{q_\alpha q_{Au}}{(x^2 + y^2)^{3/2}} x \\ \ddot{y} = \frac{1}{4\pi\varepsilon_0 m} \frac{q_\alpha q_{Au}}{(x^2 + y^2)^{3/2}} y \end{cases}$$

3. Определим угол рассеивания как тангенс угла наклона кривой относительно оси OX:

$$\theta = arctg \frac{y_2 - y_1}{x_2 - x_1}$$

4. Результаты расчётов внесём в таблицу 2 (Рис.1).

Таблица 2 Результаты расчётов значений угла рассеивания.

$ ho_0, 10^{-15} { m M}$	2	20	40	80	200
θ, °	171.69	108.04	69.09	37.95	15.54

Рис.1 Траектория движения α -частицы при различных значениях прицельного расстояния p_0 (Задача 1).

Таким образом, угол отклонения частицы обратно зависит от прицельного расстояния p_0 . Возникающая в результате взаимодействий одноименно заряженных альфа-частицы и ядра атома золота сила Кулона увеличивается при уменьшении радиус-вектора, изменяя траекторию полета частицы.

2. Моделирование опыта Резерфорда с моделью Томпсона

Задание: Пусть положительный заряд ядра атома золота располагается внутри диэлектрического шара радиусом $R=10^{-13}\,$ м. Тогда он создает электрическое поле с напряженностью, вычисляемой по формуле

$$\vec{E} = \begin{cases} \frac{q\vec{r}}{4\pi\varepsilon_0 R^3} & npu \ r < R, \\ \frac{q\vec{r}}{4\pi\varepsilon_0 |\vec{r}|^3} & npu \ r > R, \end{cases}$$

где q — заряд ядра атома золота, \vec{r} — радиус-вектор α -частицы. Вычислить траектории и углы рассеяния θ α -частиц при различных значениях прицельного расстояния p_0 .

Ход работы

1. По гипотезе Томпсона используем силу, действующую на заряженную частицу в электрическом поле:

$$\vec{F} = q(\vec{E}) = q_{\alpha} \cdot \begin{cases} \frac{q\vec{r}}{4\pi\varepsilon_{0}R^{3}} & npu \, r < R, \\ \frac{q\vec{r}}{4\pi\varepsilon_{0}|\vec{r}|^{3}} & npu \, r > R, \end{cases}$$

2. Результаты расчётов внесём в таблицу 3 (Рис.2).

Таблица 3 Результаты расчётов значений угла рассеивания.

$ ho_0,10^{-15}$ M	2	20	40	80	200
θ , °	5.08	37.81	47.73	37.95	15.54

Рис.2 Траектория движения lpha-частицы при различных значениях прицельного расстояния p_0 (Задача 2).

Сила, которая действует на частицы внутри диэлектрического шара, меньше, чем сила, действующая при столкновении с ядром атома золота. Из Рис.2 следует, что углы отклонения частиц при действии напряженности электрического поля меньше или совпадают с углами в предыдущем задании, в котором рассматривалось действие силы Кулона.

3. Моделирование движения частиц в стационарном магнитном поле Задание: Построить траектории движения заряженных частиц, влетающих в стационарное магнитное поле под разными углами α ($\alpha=0^{\circ}$, $\alpha=30^{\circ}$, $\alpha=60^{\circ}$, $\alpha=90^{\circ}$). Сделать вывод о зависимости формы траектории частицы от угла α . Модуль вектора магнитной индукции B, заряд q, масса m и начальная скорость V_0 заданы в таблице 4.

Таблица 4.

Вариант	В	q	m	V_0
2	1	1	1	1

Ход работы

1. Движущиеся заряженные частицы попадают в магнитное поле и начинают испытывать действие силы Лоренца, вычисляемой по формуле:

$$\vec{F} = q \ (\vec{v} \times \vec{B})$$

2. Составим систему ОДУ, которая описывает траекторию частицы по второму закону Ньютона, учитывая силу Лоренца:

$$m\ddot{r}(t) = q \ [\vec{v} \times \vec{B}],$$

где m - масса частицы, r(t) - радиус-вектор α -частицы, q - заряд частицы, \vec{B} - вектор магнитного индукции, $\vec{v}=\dot{r}(t)$ - скорость частицы.

3. Результаты расчётов представлены на Рис.3.

Рис. 3 Траектории движения заряженной частицы в однородном магнитном поле при различных углах α

- 4. По Рис.3 делаем выводы:
- При $\alpha=0^\circ$ (синий цвет) на частицу не оказывается никакого влияния со стороны магнитного поля, вектора скорости и магнитной индукции совпадают. Частица продолжает двигаться прямолинейно.
- При $\alpha=30^\circ$ и $\alpha=60^\circ$ (желтый и зеленый цвет соответственно) частица движется по винтовой траектории. При увеличении угла наклона влетающей частицы действие силы Лоренца увеличивается, что приводит к увеличению радиуса траектории, по которой движется частица.
- При \(\alpha = 90 \) (красный цвет) движение происходит по окружности, так как сила Лоренца и ускорение частицы будут постоянными по модулю.
 Направление движения частицы зависит от ее заряда.

4. Моделирование движения электрона, находящегося на первой боровской орбите атома водорода

Задание: Построить траекторию движения электрона, находящегося на первой боровской орбите атома водорода, если атом водорода находится в магнитном поле с индукцией B. Вектор B направлен параллельно плоскости, в которой начальный момент времени находилась орбита электрона. Скорость электрона $V=2 \bullet 10^6$ м/с, первый боровский радиус $a=5.29 \bullet 10^{-11}$ м. Заданы: время движения электрона $T=10^{-15}$ с, масса электрона $T=10^{-15}$ кг, заряд электрона $T=10^{-15}$ Кл, значение модуля вектора магнитной индукции $T=10^{-15}$ кг, заряд электрона $T=10^{-15}$ кг, заряд электрона $T=10^{-15}$ кл, значение модуля вектора

Ход работы

1. Используем силу Кулона, вычисляемой по формуле:

$$\vec{F}_{12} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{|\vec{r}_1 - \vec{r}_2|}$$

и силу Лоренца:

$$\vec{F} = q(\vec{v} \times \vec{B})$$

для составления системы ОДУ, представляющей собой второй закон Ньютона, которая описывает траекторию движения частицы:

$$m\ddot{r}(t) = q\left[\vec{v} \times \vec{B}\right] + \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{|\vec{r}(t)|^3} \vec{r}(t),$$

где m-масса электрона, r(t) - радиус-вектор электрона, q - заряд электрона, $\vec{v}=\dot{r}(t)$ - скорость электрона, \vec{B} - вектор индукции магнитного поля.

2. Результаты расчётов представлены на Рис.4 и Рис.5.

Рис. 4 Траектория движения электрона.

y

Рис. 5 Траектория движения электрона (YOZ).

Таким образом, электрон движется по круговой наклоняющейся орбите.

Вывод

В ходе лабораторной работы был усвоен навык численного моделирования движения заряженных частиц в электромагнитных полях.

В первой задаче был смоделирован опыт Резерфорда. Наблюдается, что частица отклоняется сильнее при уменьшении прицельного расстояния. Можно сделать вывод о том, что весь положительный заряд атома сосредоточен в малом объеме.

Во второй задаче был смоделирован опыт Резерфорда, но уже с моделью Томпсона. В этом случае углы отклонения частицы больше, чем ближе прицельное расстояние к радиусу атома золота. Когда частица пролетает через атом, уменьшение прицельного расстояния приводит к уменьшению угла отклонения частицы. Таким образом, напряженность электрического поля убывает к центру шара.

В третьей задаче моделировалось движение частиц в стационарном магнитном поле. В результате расчетов, было получено, что под действием силы Лоренца частица, влетающая под углом 90° движется по окружности. Радиус окружности возрастает с увеличением угла. Если частица влетает под углом 0°, то ее траектория параллельна силовым линиям магнитного поля, а значит частица движется равномерно и прямолинейно. Частица, влетающая под углами 30° и 60°, движется по винтовой линии, вследствие суперпозиции поступательного движения, которое параллельно оси ОZ, и движения по окружности.

В последней задаче рассматривалось движение электрона, находящегося на первой боровской орбите атома водорода. Электрон движется по круговой наклоняющейся орбите под действием двух сил: силы Лоренца и силы Кулона. Причиной такого движения является суперпозиция движения по окружности, которое возникает из-за воздействия силы Кулона, и наклоном орбиты вследствие действия силы Лоренца. Электрон движется против часовой стрелки в плоскости ХОУ, так как вектор магнитной индукции

противоположно направлен оси OX. В плоскости XOZ сила Лоренца направлена наружу из центра окружности.