Preuves assistées par ordinateur de non-atteignabilité pour des problèmes linéaires de contrôle sous contraintes

Ivan Hasenohr

Doctorat sous la direction de Camille Pouchol, Yannick Privat et Christophe Zhang

Université Paris Cité

Groupe de Travail des Éphémères

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité : approche géométrique
- 3 Preuve assistée par ordinateur
 - Erreurs de discrétisation
 - Erreurs d'arrondis
 - \bullet Minimisation de J
- 4 Résultats numériques
- Conclusion

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité : approche géométrique
- 3 Preuve assistée par ordinateur
 - Erreurs de discrétisation
 - Erreurs d'arrondis
 - Minimisation de J
- 4 Résultats numériques
- Conclusion

Système contrôlé

Définition

On appelle système contrôlé le système :

$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) & \forall t \in [0, T] \\ y(0) = y_0 \in \mathbb{R}^n \\ u(t) \in \mathcal{U}_0 \subset \mathbb{R}^m & \forall t \in [0, T]. \end{cases}$$
 (S)

On note:

- $y(\cdot; y_0, u) : [0, T] \to \mathbb{R}^n$ la solution de (S)
- *U* l'ensemble des contraintes sur le contrôle
- L_T l'application entrée-sortie :

$$L_T: u \mapsto \int_0^T e^{(T-t)A} Bu(t) dt,$$

on a:

$$y(T; y_0, u) = e^{TA}y_0 + L_T u.$$

Soit $y_f \in \mathbb{R}^n$ une cible, soit \mathcal{U} un ensemble de contraintes sur le contrôle.

Définition

 y_f est dit U-atteignable pour (S) de y_0 en temps T si:

$$\exists u \in \mathcal{U}, \quad y(T; y_0, u) = y_f.$$

On appelle ensemble atteignable l'ensemble des points U-atteignables.

Définition

 y_f est dit U-atteignable pour (S) de y_0 en temps T si :

$$\exists u \in \mathcal{U}, \quad y(T; y_0, u) = y_f.$$

On appelle ensemble atteignable l'ensemble des points U-atteignables.

Par la suite, U_0 sera convexe et compact, $y_0 = 0$, l'ensemble atteignable sera noté $L_T U$.

Exemple : le tram

Considérons le système

$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) \\ y(0) = 0 \in \mathbb{R}^2 \\ u(t) \in [-M, M] \quad \forall t \in [0, T], \end{cases}$$

avec

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Exemple : le tram

Pour ce système, avec T = M = 1:

Exemple : le tram

Par exemple, la cible $y_f = \begin{pmatrix} 0.4 \\ 0.6 \end{pmatrix}$ est atteignable :

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité : approche géométrique
- 3 Preuve assistée par ordinateur
 - Erreurs de discrétisation
 - Erreurs d'arrondis
 - \bullet Minimisation de J
- 4 Résultats numériques
- 6 Conclusion

Fonction support

Pour A convexe, fermé et non-vide dans un espace de Hilbert H, on appelle fonction support :

$$\sigma_A: \begin{cases} H & \to \mathbb{R} \cup \{+\infty\} \\ y & \mapsto \sup_{x \in A} \langle x, y \rangle. \end{cases}$$

En particulier:

$$\forall p_f \in \mathbb{R}^n, \quad \sigma_{L_T U}(p_f) = \sigma_U(L_T^* p_f).$$

Fonction support

Théorème de non-atteignabilité

On note:

$$J: \begin{cases} \mathbb{R}^n & \to \mathbb{R} \\ p_f & \mapsto \sigma_{\mathcal{U}}(L_T^* p_f) - \langle p_f, y_f \rangle. \end{cases}$$

Théorème

S'il existe $p_f \in \mathbb{R}^n$ tel que $J(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Ce résultat est également valable en dimension infinie.

Théorème de non-atteignabilité

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité : approche géométrique
- 3 Preuve assistée par ordinateur
 - Erreurs de discrétisation
 - Erreurs d'arrondis
 - \bullet Minimisation de J
- 4 Résultats numériques
- 6 Conclusion

Principe

Théorème

S'il existe $p_f \in \mathbb{R}^n$ tel que $J(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Principe

Théorème

S'il existe $p_f \in \mathbb{R}^n$ tel que $J(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Pour vérifier numériquement l'hypothèse $J(p_f) < 0$, il faut :

- créer $J_d \simeq J$ évaluable
- 2 trouver p_f tel que $J_d(p_f) < 0$
- vérifier que $J(p_f) < 0.$

Principe

Théorème

S'il existe $p_f \in \mathbb{R}^n$ tel que $J(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Pour vérifier numériquement l'hypothèse $J(p_f) < 0$, il faut :

- **1** créer $J_d \simeq J$ évaluable
- ② trouver p_f tel que $J_d(p_f) < 0$
- vérifier que $J(p_f) < 0$.

Pour vérifier que $J(p_f) < 0$ à partir de $J_d(p_f) < 0$, il faut :

- borner les erreurs de discrétisation $e_d(p_f)$
- borner les erreurs d'arrondis $e_a(p_f)$.

Théorème assisté par ordinateur

Théorème

Soit $J_d: \mathbb{R}^n \to \mathbb{R}$ une discrétisation de J, et $e_d: \mathbb{R}^n \to \mathbb{R}^*_+$ tels que

$$\forall p_f \in \mathbb{R}^n, \quad J_d(p_f) - e_d(p_f) < J(p_f) < J_d(p_f) + e_d(p_f),$$

et soit $e_a : \mathbb{R}^n \to \mathbb{R}_+^*$ une majoration des erreurs d'arrondis commises lors du calcul de J_d .

Alors s'il existe $p_f \in \mathbb{R}^n$ tel que $J_d(p_f) + e_d(p_f) + e_a(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Discrétisation de la fonctionnelle

Comme on suppose \mathcal{U} de la forme :

$$\mathcal{U} = \left\{ u \in L^2(0, T; \mathbb{R}^m), \forall t \in [0, T], u(t) \in \mathcal{U}_0 \right\},\,$$

et on suppose connaître explicitement $\sigma_{\mathcal{U}_0}$. Dans ce cas, il faut évaluer :

$$J: egin{cases} \mathbb{R}^n & o \mathbb{R} \ p_f & \mapsto \int_0^T \sigma_{\mathcal{U}_0}(B^*e^{(T-t)A^*}p_f)\,\mathrm{d}t - \langle p_f, y_f
angle, \end{cases}$$

autrement dit évaluer :

- une intégrale, $\int_0^T \dots dt$ une fonction, $p: t \mapsto e^{(T-t)A^*} p_f.$

Discrétisation de la fonctionnelle

Comme on suppose \mathcal{U} de la forme :

$$\mathcal{U} = \left\{ u \in L^2(0, T; \mathbb{R}^m), \forall t \in [0, T], u(t) \in \mathcal{U}_0 \right\},\,$$

et on suppose connaître explicitement $\sigma_{\mathcal{U}_0}$. Dans ce cas, il faut évaluer :

$$J: egin{cases} \mathbb{R}^n & o \mathbb{R} \ p_f & \mapsto \int_0^T \sigma_{\mathcal{U}_0}(B^*e^{(T-t)A^*}p_f)\,\mathrm{d}t - \langle p_f, y_f
angle, \end{cases}$$

autrement dit évaluer :

Discrétisation de la fonctionnelle

Comme on suppose \mathcal{U} de la forme :

$$\mathcal{U} = \left\{ u \in L^2(0, T; \mathbb{R}^m), \forall t \in [0, T], u(t) \in \mathcal{U}_0 \right\},\,$$

et on suppose connaître explicitement $\sigma_{\mathcal{U}_0}$. Dans ce cas, il faut évaluer :

$$J: egin{cases} \mathbb{R}^n & o \mathbb{R} \ p_f & \mapsto \int_0^T \sigma_{\mathcal{U}_0}(B^*e^{(T-t)A^*}p_f)\,\mathrm{d}t - \langle p_f, y_f
angle, \end{cases}$$

autrement dit évaluer :

- $\begin{array}{ll} \bullet \ \ \text{une intégrale,} & \int_0^T \dots \, \mathrm{d}t & \Longrightarrow \ \ \text{il faut discrétiser} \\ \bullet \ \ \text{une fonction,} & p: t \mapsto e^{(T-t)A^*} p_f & \Longrightarrow \ \ \text{deux cas \'etudi\'es.} \end{array}$

Cas 1 : décomposition de Dunford

Si $A = PDP^{-1} + N$, avec P inversible, D diagonale, N nilpotente commutant avec PdP^{-1} , alors

$$\forall t \in [0,T], \quad e^{tA^*}p_f = Pe^{tD}P^{-1}Q(tN)p_f,$$

avec $Q(X) = \sum_{i=0}^{d} \frac{X^i}{i!}$. En utilisant d'autre part la méthode des rectangles pour

l'approximation de la valeur de l'intégrale, on obtient alors la majoration d'erreurs de discrétisation sur ${\cal J}$:

Théorème

Pour $p_f \in \mathbb{R}^n$,

$$e_d(p_f) = |J(p_f) - J_d(p_f)| \le \frac{1}{2} \Delta t M T ||B|| ||A^* p_f|| \kappa(P) e^{\mu T} Q(||N||T),$$

où $\mu := \max(\text{Re}(\lambda_i), i \in \{0, ..., n\})$ est l'abscisse spectrale de A, et $\kappa(P) = ||P|| ||P^{-1}||$ le conditionnement de P.

Cas 2 : discrétisation de l'EDO adjointe

Si la décomposition de Dunford n'est pas connue, on suppose en plus que *A* est semi-définie *négative*. Dans ce cas, on discrétise l'EDO adjointe

$$\begin{cases} \dot{p}(t) + A^* p(t) = 0 & \forall t \in [0, T] \\ p(T) = p_f, \end{cases}$$

avec le schéma d'Euler implicite

$$\begin{cases} (\operatorname{Id} - \Delta t A^*) p_n = p_{n+1} & \forall n \in \{0, \dots, N_t\} \\ p_{N_t} = p_f. \end{cases}$$

Cas 2 : discrétisation de l'EDO adjointe

On obtient donc $\forall n \in \{0, \dots, N_t\}$,

$$p(n\Delta t) = e^{(T-n\Delta t)A^*} p_f \simeq (\operatorname{Id} - \Delta t A^*)^{-(Nt-n)} = p_n,$$

et la majoration de l'erreur :

Théorème

$$\forall n \in \llbracket 0, N_t
rbracket,$$

$$||p(t_n)-p_n|| \leq \frac{1}{2}\Delta t ||A^*p_f||.$$

Cas 2 : discrétisation de l'EDO adjointe

En combinant les erreurs de discrétisation de l'intégrale via la méthode des rectangles et de l'EDO adjointe, on obtient finalement :

Théorème

$$\forall p_f \in \mathbb{R}^n$$

$$e_d(p_f) = ||J(p_f) - J_d(p_f)|| \le \Delta t ||A^*p_f|| \left(TM||B|| + \frac{1}{2}||y_0||\right).$$

Arithmétique d'intervalles

Pour gérer les erreurs d'arrondis effectuées par l'ordinateur, il faut considérer la potentielle erreur et en tenir compte à chaque calcul :

Arithmétique d'intervalles

Pour gérer les erreurs d'arrondis effectuées par l'ordinateur, il faut considérer la potentielle erreur et en tenir compte à chaque calcul :

Arithmétique d'intervalles

Pour gérer les erreurs d'arrondis effectuées par l'ordinateur, il faut considérer la potentielle erreur et en tenir compte à chaque calcul :

Arithmétique d'intervalles

Pour gérer les erreurs d'arrondis effectuées par l'ordinateur, il faut considérer la potentielle erreur et en tenir compte à chaque calcul :

En pratique, le package Intlab (sur Matlab) de Siegfried M. Rump s'en charge parfaitement.

Théorème avec erreurs

Théorème

Soit:

- $J_d: \mathbb{R}^n \to \mathbb{R}$ une discrétisation de J
- $e_d: \mathbb{R}^n \to \mathbb{R}_+^*$ l'erreur totale de discrétisation
- $e_a: \mathbb{R}^n \to \mathbb{R}^*_+$ l'erreur totale d'arrondis lors du calcul de J_d .

On a alors:

$$\forall p_f \in \mathbb{R}^n$$
, $J_d(p_f) - e_d(p_f) - e_d(p_f) < J(p_f) < J_d(p_f) + e_d(p_f) + e_d(p_f)$,

et s'il existe $p_f \in \mathbb{R}^n$ tel que $J_d(p_f) + e_d(p_f) + e_a(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Méthode

Pour montrer numériquement la non-atteignabilité de y_f , on doit donc :

- créer $J_d \simeq J$ évaluable \Longrightarrow discrétisation totale ou partielle
- ② trouver p_f tel que $J_d(p_f) < 0 \implies minimisation$ de J_d
- $\qquad \qquad \text{$ \text{ontrôle d'erreurs de discrétisation} $} \\ \text{$ \text{ontrôle d'erreurs de discrétisation} $} \\ \text{$ \text{arithmétique d'intervalles} $} \\$

Minimisation de J

Dualité

On rappelle le problème de contrôle originel : trouver $u \in \mathcal{U}$ tel que $y(T) = y_f$, avec

$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) & \forall t \in [0, T] \\ y(0) = y_0 \in \mathbb{R}^n. \end{cases}$$

Ce problème se reformule sous la forme :

$$\inf_{u\in L^2(0,T;\mathbb{R}^m)} \delta_{\mathcal{U}}(u) + \delta_{\{y_f\}}(y(T)) < +\infty,$$

où, pour C un ensemble convexe fermé non-vide :

$$\delta_C(x) = \begin{cases} 0 & \text{si } x \in C \\ +\infty & \text{si } x \notin C. \end{cases}$$

Dualité de Fenchel

En calculant le problème dual au sens de Fenchel, on retombe sur

$$\inf_{p_f \in \mathbb{R}^n} J(p_f) > -\infty,$$

avec de plus, sous des hypothèses assez faibles :

$$\inf_{u\in L^2(0,T;\mathbb{R}^m)} \delta_{\mathcal{U}}(u) + \delta_{\{y_f\}}(L_T u) = -\inf_{p_f\in\mathbb{R}^n} J(p_f).$$

Cette structure primal-dual permet l'utilisation d'algorithmes efficaces pour la recherche de minimiseurs. Par exemple, l'algorithme de Chambolle-Pock.

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité : approche géométrique
- 3 Preuve assistée par ordinateur
 - Erreurs de discrétisation
 - Erreurs d'arrondis
 - \bullet Minimisation de J
- A Résultats numériques
- Conclusion

Non-atteignabilité d'une cible

Théorème

Pour
$$y_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $M = 1$, $T = 1$, $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, pour le système contrôlé
$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) & \forall t \in [0, T] \\ y(0) = y_0 \\ u(t) \in [-M, M] & \forall t \in [0, T], \end{cases}$$

le point
$$y_f = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$$
 n'est pas atteignable. En effet, pour $p_f = \begin{pmatrix} -0.8 \\ 0.6 \end{pmatrix}$, on a $J(p_f; y_f) \in [-0.0513, -0.0483].$

Non-atteignabilité d'une cible

Tram

Rendez-vous spatial

Prenons l'exemple suivant, linéarisation d'un système d'équations modélisant le déplacement d'une station spatiale en orbite terrestre :

$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) & \forall t \in [0, T] \\ y(0) = y_0 \in \mathbb{R}^4 \\ u(t) \in \mathbb{R}^2 \\ \|u(t)\|_2 \le 1.15 & \forall t \in [0, T] \\ \|u(t)\|_{\infty} \le 1, \end{cases}$$

avec

$$A = \begin{pmatrix} 0 & 0 & 10 \\ 0 & 0 & 0 & 1 \\ 3 & 0 & 0 & 2 \\ 0 & 0 & -2 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Approximation garantie de temps minimal

Dans certains cas, il existe un temps minimal d'atteignabilité T^* : à cible y_f fixée, $\forall T > T^*, \exists \ u \in \mathcal{U}, y(T;u) = y_f$ et $\forall T < T^*, \forall u \in \mathcal{U}, y(T;u) \neq y_f$.

Dans ce cadre là, prouver que y_f est non-atteignable en temps $t_f > 0$ implique que $T^* > t_f$. On peut donc garantir une borne inférieure sur le temps minimal d'atteignabilité.

Rendez-vous spatial

Approximation garantie de temps minimal

Borne inférieure certifiée des temps minimaux

Approximation non certifiée des temps minimaux

Non-atteignabilité de zone dangereuse

On peut appliquer la même méthode pour montrer la non-atteignabilité en temps T d'une zone entière \mathcal{Y}_f de l'espace avec une nouvelle fonctionelle :

$$J_2: egin{cases} \mathbb{R}^n &
ightarrow \mathbb{R} \ p_f & \mapsto \sigma_{\mathcal{U}}(L_T^*p_f) + \sigma_{\mathcal{Y}_f}(-p_f) \end{cases}$$

Non-atteignabilité de zone dangereuse

On peut appliquer la même méthode pour montrer la non-atteignabilité en temps T d'une zone entière \mathcal{Y}_f de l'espace avec une nouvelle fonctionelle :

Non-atteignabilité de zone dangereuse

On peut appliquer la même méthode pour montrer la non-atteignabilité en temps T d'une zone entière \mathcal{Y}_f de l'espace avec une nouvelle fonctionelle :

$$J_2: egin{cases} \mathbb{R}^n &
ightarrow \mathbb{R} \ p_f & \mapsto \sigma_{\mathcal{U}}(L_T^*p_f) + \sigma_{\mathcal{Y}_f}(-p_f) \end{cases}$$

Theorem

 $\mathcal{Y}_f = \{x \in \mathbb{R}^4, \quad \|(x_1, x_2)\|_2 \le 0.1, x_3 = x_4 = 0\}$ n'est pas atteignable en temps T = 1. En effet,

$$J_2\left(\begin{pmatrix} 0.62\\0.78\\0\\0\end{pmatrix}\right) \in [-0.1146, -0.0717].$$

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité : approche géométrique
- 3 Preuve assistée par ordinateur
 - Erreurs de discrétisation
 - Erreurs d'arrondis
 - \bullet Minimisation de J
- 4 Résultats numériques
- Conclusion

Conclusion

Contributions :

- Méthode générale assistée par ordinateur pour la preuve de non-atteignabilité de systèmes de contrôle linéaires
- Estimées fines d'erreurs de discrétisation avec constantes explicites

• Perspectives:

- Extension à la dimension infinie (en cours pour l'équation de la chaleur avec conditions Dirichlet nulles au bord)
- Approximations externes et internes certifiées de l'ensemble atteignable

Merci pour votre attention!