بسم الله الرحمن الرحيم

درس نظریه زبانها و ماشینها

تمرینات سری 2: زبانهای مستقل از متن

مدرس: جعفر الماسي زاده

ترم دوم سال تحصيلي 90 - 89

 ${f 1}$ برای زبانهای زیرگرامر مستقل از متن ارائه دهید.

$$L_1 = \{ w \in \{a, b\}^* : n_a(w) = 2n_b(w) + 1 \}$$
 (iii)

$$L_2 = \{a^i b^j c^k d^l : i + 2k = j + 3l\}$$

$$L_3 = \{a^i b^j : i \neq j , 2i \neq j\}$$

$$L_4 = \{ w \in \{a, b, c\}^* : |w| = 3n_a(w) \}$$

 $\mathbf{2}$ برای زبانهای زیر اتوماتان پوشدان (PDA) طراحی کنید.

$$L_1 = \{ w \in \{a, b\}^* : 3n_a(w) \le 5n_b(w) \le 4n_a(w) \}$$
 (ibi)

$$L_2 = \{w_1 c w_2 : w_1, w_2 \in \{a, b\}^*, w_1 \neq w_2^R\}$$

3- نشان دهید که زبانهای زیر مستقل از متن نیستند.

$$L_1 = \{a^i b^j c^k : i < j \text{ or } k < j\}$$
 (لف

$$L_2 = \{ w \in \{a, b, c\}^* : n_a^2(w) + n_b^2(w) = n_c^2(w) \}$$

4- دو عملیات زیر را برای زبان دلخواه L روی الفبای Σ ، تعریف می کنیم:

 $head(L) = \{w : wu \in L \text{ for some } u \in \Sigma^*\}$

 $min(L) = \{ w \in L : \text{there is no } u \in L, v \in \Sigma^+ \text{ , such that } w = uv \}$

مشخص کنید که خانوادهی زبانهای مستقل از متن تحت کدام یک از این عملیاتها بسته است.

5- گرامر مستقل از متن زیر را در نظر بگیرید:

$$S \rightarrow 0A0 \mid 1B1 \mid BB$$

$$A \rightarrow C$$

$$B \rightarrow S \mid A$$

$$C \rightarrow S \mid \lambda$$

و مراحل زیر را به ترتیب انجام دهید:

الف) تولیدات λ را حذف کنید.

ب) تولیدات واحد را حذف کنید.

پ) تولیدات بیفایده را حذف کنید.

ت) گرامر را (بعد از حذف تولیدات) به شکل نرمال چامسکی تبدیل کنید.

ه. گرامر مستقل از متن G با قواعد تولید زیر را در نظر بگیرید:

 $S \rightarrow AaSbB \mid \lambda$

 $A \rightarrow aA \mid a$

 $B \rightarrow bB \mid \lambda$

الف) نشان دهید G یک گرامر مبهم است.

 $m{\psi}$) گرامر $m{\hat{G}}$ معادل با گرامر $m{G}$ است اگر داشته باشیم: $L(G) = L(\hat{G})$ ؛ یک گرامر نامبهم $m{\hat{G}}$ معادل با گرامر مبهم $m{G}$ پیدا کنید.

7- فرض کنید G یک گرامر مستقل از متن و w یک رشته با طول n در زبان L(G) باشد. ثابت کنید: m الف) اگر گرامر m قاعدهی تولید m نداشته باشد (طرف راست هیچ قاعدهی تولیدی m نباشد) و رشته m نیز یک اشتقاق با m گره خواهد داشت.

w و رشته w اگرگرامر w قاعده تولید λ داشته باشد (طرف راست بعضی از قواعد تولید ممکن است λ باشد) و رشته m+2m-1 نیز یک اشتقاق با w گام داشته باشد، آنگاه رشته $w\neq\lambda$ w یک درخت تجزیه با حداکثر w گره خواهد داشت.

8- یک گرامر مستقل از متن در شکل دو - استاندارد است اگر همهی قواعد تولید آن به صورت زیر باشند:

$$A \rightarrow aBC$$

$$A \rightarrow aB$$

$$A \rightarrow a$$

 $a \in T$ و $A,B,C \in V$ که در اینجا

ثابت کنید برای هر گرامر مستقل از متن G = (V,T,S,P) و با فرض $\lambda \not\in L(G)$ ، یک گرامر معادل در شکل دو – استاندارد وجود دارد.

9- فرض کنید (PDA) باشد. یک تعریف برای $M=(Q,\Sigma,\Gamma,\delta,q_0,z,F)$ باشد. یک تعریف برای زبان پذیرفته شده توسط M به صورت زیر است:

$$L(M) = \{ w \in \Sigma^* : (q_0, w, z) \vdash_M^* (p, \lambda, u), p \in F, u \in \Gamma^* \}$$

طبق این تعریف، زبان پذیرفته شده توسط M مجموعه ی همه ی رشته هایی است که M را در پایان پردازش رشته در حالت پذیرش قرار می دهند. در این تعریف از پذیرش زبان، محتوی نهایی پشته اهمیت ندارد.

تعریف دیگر برای پذیرش یک زبان توسط M فرض می کند که پشته در پایان پردازش رشته خالی می شود. به بیان دقیق تر، M زبان N(M) را در حالت پشته خالی می پذیرد اگر

$$N(M) = \{ w \in \Sigma^* : (q_0, w, z) \vdash_M^* (p, \lambda, \lambda) \}$$

که در اینجا p یک حالت دلخواه در مجموعهی p است.

نشان دهید که این دو تعریف (پذیرش با حالت نهایی و پذیرش با پشته خالی) برای پذیرش یک زبان توسط $L(M) = N(\widehat{M})$ معادل هستند؛ یعنی برای هر PDA M یک PDA وجود دارد به طوری که PDA معادل هستند؛ بعنی برای هر