

Mise en œuvre de solutions de reproductibilité à l'aide des principaux notebook et d'un système de workflow

Antoine COSSA

Marine FIGAROL

Cécile MOUREAUX

Christelle VIGUIER

Using 0 bytes

2 4

Notebooks

- Interface web + Kernel
- Combine texte formaté / code
- Multi-langage
- Portabilité / Reproductibilité

Installation

Installation rapide sous Windows et Linux

python3 -m pip install -upgrade pip python3 -m pip install jupyter

Lancement facile et rapide

jupyter notebook

Python nécessaire pour installer Jupyter Notebook

- Téléchargement : https://www.rstudio.com/products/rstudio/download/
- Plusieurs installations possibles. Assez rapide sous Linux ; très compliquée sous Windows

JAVA, Hadoop, Spark, Git, Scala, Maven nécessaires

Lancement facile et rapide sous Linux et Windows

bin/zeppelin-daemon.sh start bin\zeppelin.cmd

Dataset1: Cancer du sein

Variable d'intérêt : rechute

<u>Co variables</u>: niveau d'expression de gènes

But : prédire la rechute ou non-rechute des patientes

Rechute	Non Rechute		
1	-1		

Dataset2 : Spam (test de la reproductibilité)

Variable d'intérêt: type

<u>Co variables</u>: fréquence de certains mots et caractères

But : prédire si il s'agit d'un spam ou non

Spam	Non spam
spam	nonspam

Présentation générale

Interface

Exemple

Jupyter avec Python

Sélection dataset

Clé de la reproductibilité : les inputs

Indiquez le nom de la variable d'intérêt :

```
input2 = input("Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : ")
# Passage en minuscule si l'utilisateur écrit en majuscule
input2 = input2.lower();
# Tant que l'utilisateur n'a pas rentré quelque chose de correct
while not (input2 == 'tabulation' or input2 == 'espace' or input2 == ';') :
    input2 = input("Veuillez entrer tabulation, espace ou ; : ")
    input2 = input2.lower()
```

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) :

```
reponse = input("Indiquez le nom de la variable d'intérêt : ")
while (reponse not in title) :
   reponse = input("Cette variable n'existe pas ! Veuillez vérifier son nom et essayer à nouveau : ")
```

Statistiques descriptives

Entrée [4]: dataset.head()

Out[4]:

	x10006_at	x10007_at	x100129361_at	x100130449_at	x100130633_at
0	8.44	7.84	9.23	2.20	4.93
1	7.93	8.47	7.77	2.48	6.70
2	7.53	7.49	9.49	5.66	5.99
3	7.72	8.38	8.03	5.22	6.95
4	7.89	7.75	6.99	2.20	7.06

5 rows × 101 columns

Répartition de la variable d'intérêt

Entrée [8]: sns.countplot(x = reponse, data = dataset, palette = 'hls')
plt.show()

Dimension de votre dataset

```
print(dataset.shape)
(148, 101)
```

Visualisation du résumé de la variable d'intérêt

```
y.describe()
classe = list(set(y))
nb_classe = len(list(set(y)))

print("Différentes classes de la variable d'intérêt : ", classe)
print("Nombre de classes : ", nb_classe)
```

Différentes classes de la variable d'intérêt : [1, -1] Nombre de classes : 2

Analyses statistiques

Random Forest

```
Entrée [14]: rf model = RandomForestClassifier()
             # Etablissement des différents paramètres à tester
             parameter_grid = {'n_estimators': [10, 25, 50, 100],
                                'criterion': ['gini', 'entropy'],
                                'max features': [1, 2, 3, 4]}
             # Cross Validation (on fait tourner 10 fois le modele sur differents découpage)
             cross validation = StratifiedKFold(n splits=10)
             # Sélection des meilleurs paramètres
             grid search = GridSearchCV(rf model,
                                        param grid=parameter grid,
                                        cv=cross validation)
             grid search.fit(XTrain, yTrain )
             # Visualisation des meilleurs paramètres
             print('Best parameters: {}'.format(grid search.best params ))
             # Stockage des meilleurs paramètres
             nestim best = grid search.best params ['n estimators']
             criterion best = grid search.best params ['criterion']
             max features best = grid search.best params ['max features']
```

Affichage des résultats

Précision de la Régression Logistique : 57.1429 %

Précision du Random Forest : 57.1429 %

Précision de l'arbre CART : 55.102 %

Précision de SVM : 57.1429 %

Matrice de confusion de la Régression Logistique:

Matrice de confusion de CART:

Matrice de confusion du Random Forest:

Matrice de confusion SVM :

Prédiction sur fichier à traiter


```
# On cherche la méthode sélectionné et on effectue la prédiction à partir de ce modèle
if ind == 0 :
    pred = logit_model.predict(dataset2)
elif ind == 1 :
    pred = rf_model.predict(dataset2)
elif ind == 2 :
    pred = cart_model.predict(dataset2)
else :
    pred = svm_model.predict(dataset2)
```

Reproductible ? Visualisation des résultats avec spam

Précision de la Régression Logistique : 90.3614 %

Précision du Random Forest : 95.1807 %

Précision de l'arbre CART : 81.3253 %

Précision de SVM : 93.3735 %

Matrice de confusion de la Régression Logistique:

Matrice de confusion de CART:

Matrice de confusion du Random Forest:

Matrice de confusion SVM :

Jupyter avec R

Installation IR Kernel

```
update.packages()
install.packages('IRkernel')
IRkernel::installspec(user = FALSE)
```

Installation IR Kernel

Script interactif : boîtes de dialogue

Script interactif: inputs

Importation des donnees :

```
Entrée [*]: M
filepath = file.choose(new = FALSE)
sep = readline(prompt = "Enter the type of separator (;/,/tab/space) :")
sep = str_to_lower(sep)
while (sep != 'tab' && sep != 'space' && sep != ';' && sep != ',') {
    sep = readline(prompt = "Enter the type of separator (;/,/tab/space) :")
    sep = str_to_lower(sep)
}
if (sep == 'tab') {
    sep = '\t'
} else if (sep == 'space') {
    sep = ' '
}
print(sep)
Enter the type of separator (;/,/tab/space) : space
```

Analyse descriptive

Entrée [76]:	head(da	ata)									
	x10006_at	x10007_at	x100129361_at	x100130449_at	x100130633_at	x100133941_at	x10014_at	x10016_at	x100188893_at	x10019_at .	x10226_at
	8.44	7.84	9.23	2.20	4.93	10.31	7.85	9.91	11.37	3.48	10.55
	7.93	8.47	7.77	2.48	6.70	11.03	3.33	9.53	10.91	4.28	9.00
	7.53	7.49	9.49	5.66	5.99	8.87	3.48	8.02	10.73	4.07	9.61
	7.72	8.38	8.03	5.22	6.95	2.73	4.06	9.26	10.90	7.40	9.91
	7.89	7.75	6.99	2.20	7.06	11.38	3.65	9.22	10.37	3.89	9.60
	8.37	8.43	8.32	2.20	7.02	10.70	3.17	7.73	11.18	4.41 .	8.76
	<										

Répartition de la variable d'intérêt

Entrée [80]:) tbl <- with(data, table(y))
barplot(tbl, beside = TRUE, col = c("#F5A9A9", "#A9D0F5"), xlab = y, ylab = "count")</pre>

Courbes ROC

Avantages/inconvénients

- Portabilité
- Possibilité d'exporter le code R mais pas RMD
- Variables en mémoire non visibles

Présentation générale

Interface

RStudio avec R

Avantages/Inconvénients

Rstudio avec Python

Inconvénient des inputs

```
'``{python}
input2 = input("Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : ")

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : **

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;)
```

```
44 * ```{python}|
45
46  # Importation du fichier
47  file = open("train.txt", "r")
48  dataset = pd.read_csv(file, sep=" ")
49
50  # Récupération du noms des différentes variables
51  title = list(dataset.columns)
52
53  # Variable d'intérêt
54  reponse = 'y'
55
```

Autre inconvénient

```
```{python}
x = 5
print(x)
5
```{python}
print(x)
Traceback (most recent call last):
  File "C:\Users\marin\AppData\Local\Temp\RtmpI1mbbh\chunk-code-3bd07a3d62d.txt", line 1, in <module>
    print(x)
NameError: name 'x' is not defined
```

« Solution »

```
print("Nombre de classes : ", nb_classe)

## Nombre de classes : 2

sns.countplot(x = reponse, data = dataset, palette = 'hls')
plt.show()
```


Apache Zeppelin

Présentation générale

Interface

Exemple

Zeppelin avec Python

Inconvénient des inputs

```
%python
input1 = z.input("Indiquez le chemin de votre fichier d'entrée : ")
#/home/tp-home008/mfigaro/Downloads/train.txt
```

Indiquez le chemin de votre fichier d'entrée :

/home/tp-home008/mfigaro/Downloads/train.txt

Took 0 sec. Last updated by anonymous at January 09 2019, 2:53:27 PM.

```
%python
input2 = z.input("Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : ") # ici espace
# Passage en minuscule si l'utilisateur écrit en majuscule
input2 = input2.lower();
```

Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) :

espace

Took 0 sec. Last updated by anonymous at January 09 2019, 2:53:27 PM.

```
%python
y.describe()
classe = list(set(y))
nb_classe = len(list(set(y))) # Taille de la liste contenant la variable d'intérêt sans doublon
print "Differentes classes de la variable d'interet : ", classe
print "Nombre de classes : ", nb_classe
```

Differentes classes de la variable d'interet : [1, -1] Nombre de classes : 2

```
%python
sns.countplot(x = reponse, data = dataset, palette = 'hls')
plt.show()
```


%python dataset.head() x10006_at x10007_at x100129361_at x100130449_at x100130633_at \ 8.44 7.84 9.23 2.28 4.93 2.48 6.70 7.93 8.47 7.77 2 9.49 5.66 5.99 7.53 7.49 3 5.22 6.95 7.72 8.38 8.03 7.89 7.75 6.99 2.20 7.06 x100133941 at x10014 at x10016 at x100188893 at x10019 at ... \ 0 10.31 3.48 ... 7.85 9.91 11.37 11.03 3.33 9.53 10.91 4.28 ... 2 4.07 ... 8.87 3.48 8.02 10.73 2.73 7.40 ... 3 4.06 9.26 10.90 11.38 3.65 9.22 10.37 3.89 ... x10226_at x10227_at x1022_at x10231_at x10234_at x10236_at x10237_at \ 10.55 9.61 12.82 7.82 7.87 2.97 4.48 9.00 9.50 7.99 7.88 7.38 3.31 6.69 - --2 00 2 00 . .. - --

Zeppelin avec R

%spark.r
tbl <- with(data, table(y))
barplot(tbl, beside = TRUE, col = c("#FSA9A9", "#A9D0FS"), xlab = y, ylab = "count")</pre>

FINISHED ▷ ※ III @

%spark.r head(data) summary(data)

X.	10006_at x1000	7_at x10012	29361_at x	100130449_at x	100130633_a	t
1	8.44	7.84	9.23	2.20	4	.93
2	7.93	8.47	7.77	2.48	6	.70
3	7.53	7.49	9.49	5.66	5	.99
4	7.72	8.38	8.03	5.22	6	.95
5	7.89	7.75	6.99	2.20	7	.06
6	8.37	8.43	8.32	2.20	7	.02
	x100133941_at	x10014_at	x10016_at	x100188893_at	x10019_at	x1001_at
1	10.31	7.85	9.91	11.37	3.48	4.89
2	11.03	3.33	9.53	10.91	4.28	5.81
3	8.87	3.48	8.02	10.73	4.07	5.21
4	2.73	4.06	9.26	10.90	7.40	3.27
5	11.38	3.65	9.22	10.37	3.89	7.18
6	10.70	3.17	7.73	11.18	4.41	8.40
	x10020_at x100	926_at x100	9272147_at	x100287025_at	x100287552	_at
1	5.61	5.61	8.64	6.15	5	.71
-		c 00	7 04	F 43	-	0.0

Conclusion

	Jupyter	RStudio	Zeppelin	
Type d'application	Web	Web, Logiciel	Web	
Nombre langages supportés	+++	+	++	
Installation	Facile Facile		Difficile	
Prise en main	Facile	Facile	Facile	
Documentation	+++	+	-	
Support	+++	++	+	
Format d'export	++	+	-	