CENTRAL ELEMENTS, CELL DECOMPOSITIONS, AND PARTIAL SPRINGER RESOLUTIONS

MINH-TÂM QUANG TRINH AND NATHAN WILLIAMS

ABSTRACT. For any finite Weyl group W and parabolic subgroup W_J , arising from a finite reductive group G and parabolic subgroup P_J , we prove identities relating the partial Springer resolutions of type J to central elements in the Hecke algebra, given by certain sums over minimal- or maximal-length representatives of cosets of W_J in W. We thereby obtain formulas for Hecke traces arising from these central elements, generalizing work of Lascoux and Wan–Wang beyond type A, and cell decompositions of new braid varieties involving J, generalizing work of Shende–Treumann–Zaslow. From the latter, we construct noncrossing sets that interpolate between rational Catalan and parking objects, generalizing our work with Galashin–Lam, and new formulas for arbitrary a-degrees of the HOMFLYPT polynomials of positive braid closures.

1. Introduction

1.1. Fix a finite Coxeter system (W,S) and a subset $J \subseteq S$ generating a subgroup $W_J \subseteq W$. Let H_W and H_{W_J} be the Hecke algebras over $\mathbf{Z}[q^{\pm 1}]$ corresponding to W and W_J . We take the convention where the Hecke operators $T_s \in H_W$, for $s \in S$, obey the relations $T_s^2 = (q-1)T_s + q$. We identify H_{W_J} with the subalgebra of H_W generated by the elements T_s with $s \in J$.

Under this embedding, the center $Z(H_{W_J})$ need not embed into the center $Z(H_W)$. Nonetheless, Hoefsmit–Scott constructed an injective, linear relative norm map

$$N_J^S: Z(H_{W_J}) \to Z(H_W),$$

that they, and L. K. Jones, used to study induction from H_{W_J} to H_W [Jon90]. To define N_J^S , recall that each right coset of W_J in W contains a unique representative of minimal Bruhat length. Let W^J be the set of such representatives. Then

$$N_J^S(\alpha) = \sum_{v \in W^J} \boldsymbol{q}^{-\ell(v)} T_{v^{-1}} \alpha T_v \quad \text{for all } \alpha \in Z(H_{W_J}),$$

where T_v and $\ell(v)$ denote the Hecke operator for and Bruhat length of v.

When W is crystallographic, we can interpret it as the Weyl group of a split finite reductive group G. We can then interpret the above algebras geometrically, as convolution algebras of functions on the flag variety of G or its square. The main observation of this paper is that in the geometric framework, the relative norm N_J^S is related to the two partial Springer resolutions for J, defined in (1.1).

From this relationship, we obtain applications to traces on H_W , generalizing work of Lascoux [Las06] and Wan–Wang [WW15]; cell decompositions of partial braid

Steinberg varieties, which we expect to generalize work of Shende-Treumann-Zaslow [STZ17]; and the rational parking combinatorics of (W, S), generalizing our prior work with Galashin-Lam [GLTW24].

1.2. **Partial Resolutions.** Let \mathbf{F} be a finite field of order q. Let \mathbf{G} be a connected reductive algebraic group over $\bar{\mathbf{F}}$, equipped with a Frobenius map $F: \mathbf{G} \to \mathbf{G}$. We assume that the characteristic of \mathbf{F} is a good prime for \mathbf{G} [Car93, 28].

Fix an F-stable maximal torus in an F-stable Borel: $\mathbf{T} \subseteq \mathbf{B} \subseteq \mathbf{G}$. Let $\mathbf{W} = N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$. We now take W to be the finite Coxeter group \mathbf{W}^F . Similarly, we write G, B, etc. for the groups formed by the F-fixed points of $\mathbf{G}, \mathbf{B}, etc.$

The G-invariant, $\mathbf{Z}[q^{\pm 1}]$ -valued functions on $(G/B)^2$ form a convolution algebra H_B^G . If G is split, meaning $W = \mathbf{W}$, then H_B^G is the specialization at $\mathbf{q} \to q$ of the algebra H_W presented earlier. Explicitly, T_w specializes to the indicator function on the set of pairs (hB, gB) such that $Bh^{-1}gB = BwB$. In Section 2, we review the presentation of H_B^G for general G. In the rest of this introduction, we assume that G is split, for simplicity.

We take S to be the system of simple reflections arising from \mathbf{B} . Let $\mathbf{P}_J = \mathbf{B}W_J\mathbf{B}$, a parabolic subgroup of \mathbf{G} . Let \mathbf{U}_J be its unipotent radical and \mathbf{V}_J the variety of all unipotent elements in \mathbf{P}_J . If $J = \emptyset$, then $\mathbf{P}_J = \mathbf{B}$ and $\mathbf{U}_J = \mathbf{V}_J$; otherwise, \mathbf{V}_J is larger than \mathbf{U}_J . At the level of points, the two partial Springer resolutions of type J are defined by

(1.1)
$$\mathbf{Spr}_{J}^{+} = \{(u, y\mathbf{P}_{J}) \in \mathbf{G} \times \mathbf{G}/\mathbf{P}_{J} \mid u \in y\mathbf{V}_{J}y^{-1}\}, \\ \mathbf{Spr}_{J}^{-} = \{(u, y\mathbf{P}_{J}) \in \mathbf{G} \times \mathbf{G}/\mathbf{P}_{J} \mid u \in y\mathbf{U}_{J}y^{-1}\}.$$

The + case is a partial resolution of singularities of the unipotent variety $\mathbf{V} \subseteq \mathbf{G}$, while the - case is a resolution of the closure of the Richardson orbit for J.

It will be convenient to set $\mathbf{E}_J^{\pm} := \mathbf{G}/\mathbf{B} \times \mathbf{Spr}_J^{\pm}$ and $E_J^{\pm} = (\mathbf{E}_J^{\pm})^F$. There is a natural left G-action on E_J^{\pm} , under which the map $f: E_J^{\pm} \to (G/B)^2$ defined by

$$f(hB, u, yP_I) = (hB, uhB)$$

is equivariant. For any set E equipped with a G-action and an equivariant map $f: E \to (G/B)^2$, we write $f_! \delta_E \in H_B^G$ to denote the function whose value at a point in $(G/B)^2$ is the size of its preimage in E.

Let w_{\circ} and $w_{J\circ}$ respectively denote the longest elements of W and W_{J} . For convenience, we set $\ell_{S} = \ell(w_{\circ})$ and $\ell_{J} = \ell(w_{J\circ})$. Recall that $w_{\circ}, w_{J\circ}$ are involutions, and that $T^{2}_{w_{J\circ}}$ is central in $H_{W_{J}}$ [BMR98]. We can now state the split case of our main result, proven for general G in Section 3.

Theorem 1.1. For any $J \subseteq S$, we have

$$\begin{split} &f_!\delta_{E_J^-}=q^{\ell_S-\ell_J}N_J^S(1)|_{\boldsymbol{q}\to\boldsymbol{q}},\\ &f_!\delta_{E_J^+}=q^{\ell_S-\ell_J}N_J^S(T_{w_{J^\circ}}^2)|_{\boldsymbol{q}\to\boldsymbol{q}}. \end{split}$$

Let $W^{J,-} = W^J$, and by analogy, let $W^{J,+}$ of maximal-length representatives for the right cosets of W_J in W, so that multiplication by $w_{J\circ}$ interchanges $W^{J,-}$ with $W^{J,+}$. Then the identities above can be rewritten as:

$$\begin{split} f_! \delta_{E_J^-} &= q^{\ell_S - \ell_J} \sum_{w \in W^{J,-}} q^{-\ell(v)} T_{v^{-1}} T_v, \\ f_! \delta_{E_J^+} &= q^{\ell_S} \sum_{w \in W^{J,+}} q^{-\ell(v)} T_{v^{-1}} T_v. \end{split}$$

We emphasize that the + case is deeper than the - case. The - case only uses standard results about Bruhat decomposition. Under the assumption that G is split, we can refine it to an algebro-geometric statement about \mathbf{E}_J^- : See Proposition 3.3. By contrast, the + case relies on a difficult theorem of Kawanaka [Kaw75]. We expect that it can only be refined to a statement at the level of cohomology. This issue is related to the sheafification of Kawanaka's work discussed in [Tri22].

Theorem 1.1 suggests some compatibility between N_J^S and parabolic induction from the Levi quotient of P_J up to G, which we will study in future work.

1.3. **Traces.** Recall that a *trace* on an algebra is a linear map that vanishes on commutators. We write $R(H_W)$ to denote the vector space of $\mathbf{Q}(q)$ -valued traces on H_W . Our first application of Theorem 1.1 is to identify certain elements of $R(H_W)$ arising from $N_J^S(1)$ and $N_J^S(T_{w_{I_S}}^2)$.

Let $e \in W$ be the identity. Let $\tau : H_W \to \mathbf{Z}[q^{\pm 1}]$ be the trace given by $\tau(T_e) = 1$ and $\tau(T_w) = 0$ for all $w \neq e$. Then any central element $\zeta \in Z(H_W)$ gives rise to a trace $\tau[\zeta] : H_W \to \mathbf{Z}[q^{\pm 1}] \subseteq \mathbf{Q}(q)$: namely,

$$\tau[\zeta](\beta) = \tau(\beta\zeta).$$

These traces are best understood when W is a symmetric group.

Let S_n , the symmetric group on n letters, and let Λ_n be the vector space of symmetric functions over $\mathbf{Q}(q)$ of degree n in variables $X=(X_1,X_2,\ldots,X_n)$. Then $R(H_{S_n})$ is isomorphic to Λ_n , as both of these vector spaces have bases indexed by the integer partitions of n. Let $ch_q: R(H_{S_n}) \xrightarrow{\sim} \Lambda_n$ be the q-deformed Frobenius characteristic isomorphism that sends the irreducible character χ_q^{λ} to the Schur function $s_{\lambda}(X)$, for any partition $\lambda \vdash n$.

For $W = S_n$, we take $S = \{s_1, \ldots, s_{n-1}\}$, where $s_i = (i, i+1)$. This choice sets up a bijection between subsets $J \subseteq S$ and integer compositions ν of n. Let $e_{\nu}(X)$ and $h_{\nu}(X)$ respectively denote the elementary and complete homogeneous symmetric functions in Λ_n indexed by ν . Wan–Wang [WW15], recasting work of Lascoux [Las06], show that if J corresponds to ν , then

$$ch_{\mathbf{q}}(\tau[N_J^S(1)]) = (\mathbf{q} - 1)^n e_{\nu} \left(\frac{X}{\mathbf{q} - 1}\right),$$

$$ch_{\mathbf{q}}(\tau[N_J^S(T_{w_{J\circ}}^2)]) = \mathbf{q}^{\ell_J}(\mathbf{q} - 1)^n h_{\nu} \left(\frac{X}{\mathbf{q} - 1}\right).$$

Using these formulas, they show that the maps N_J^S give rise to a ring structure on the direct sum of the centers $Z(\mathbf{Q}(q) \otimes H_{S_n})$, isomorphic to the ring of symmetric functions over $\mathbf{Q}(q)$. We will generalize the formulas to any crystallographic W.

Recall that Springer constructed a W-action on the étale cohomologies of the fibers of his resolution of the unipotent variety, now called $Springer\ fibers$. In [Tri21], the first author used this action to construct a trace on H_W valued in $\mathbf{Q}(q)$ -linear traces on W, or equivalently, a bitrace

$$\tau_G: \mathbf{Q}W \otimes H_W \to \mathbf{Q}(\mathbf{q}),$$

which refines the Markov traces on H_W studied by Gomi [Gom06] and Webster-Williamson [WW11]. These, in turn, were motivated by the traces used by Ocneanu to construct the HOMFLYPT link polynomial [Jon87].

In this paper, we use a normalization for τ_G characterized by the formula

$$\tau_G(z \otimes T_w)|_{q \to q} = \frac{1}{|G|} \sum_{\substack{u \in G \\ \text{unipotent}}} |O(w)_u| \chi_u(z) \text{ for all } z, w \in W,$$

where χ_u is the total Springer character for u, reviewed in §4.3, and $O(w)_u$ is the set of pairs (hB, gB) such that $h^{-1}gB = BwB$ and gB = uhB. Let $e_{J,-}$, resp. $e_{J,+}$, denote the antisymmetrizer, resp. symmetrizer, in $\mathbf{Q}W_J$, reviewed in §4.4. By combining Theorem 1.1 with work of Borho–MacPherson [BM83], we show the following theorem, and how it recovers (1.2) when $G = \mathrm{GL}_n(\mathbf{F})$.

Theorem 1.2. For any $J \subseteq S$, we have

$$\tau[N_J^S(1)] = (\mathbf{q} - 1)^{\text{rk}(G)} \tau_G(e_{J,-} \otimes -),$$

$$\tau[N_J^S(T_{w_{J_0}}^2)] = \mathbf{q}^{\ell_J} (\mathbf{q} - 1)^{\text{rk}(G)} \tau_G(e_{J,+} \otimes -)$$

as traces on H_W , where rk(G) is the rank of the (split) maximal torus T.

1.4. **Cell Decompositions.** Our second application of Theorem 1.1 is to provide point-counting formulas for new kinds of braid varieties through Deodhar-type decompositions. In what follows, $h\mathbf{B} \xrightarrow{w} g\mathbf{B}$ will mean $\mathbf{B}h^{-1}g\mathbf{B} = \mathbf{B}w\mathbf{B}$.

Let $\vec{s} = (s^{(1)}, s^{(2)}, \dots, s^{(\ell)})$ be a word in S. Recall that in [Deo85], Deodhar showed how to decompose a certain *Richardson variety* for \vec{s} into subvarieties of the form $\mathbf{A}^{\mathbf{d}} \times \mathbf{G}_m^{\mathbf{e}}$, now called *Deodhar cells*. As in [GLTW24], we will work with a variant definition depending on an element $v \in W$:

$$\mathbf{R}^{(v)}(\vec{s}) = \{ \vec{g}\mathbf{B} = (g_i\mathbf{B})_i \in (\mathbf{G}/\mathbf{B})^{\ell} \mid vw_{\circ}\mathbf{B} \xrightarrow{s^{(1)}} g_1\mathbf{B} \xrightarrow{s^{(2)}} \cdots \xrightarrow{s^{(\ell)}} g_{\ell}\mathbf{B} \xleftarrow{vw_{\circ}} \mathbf{B} \}.$$

To describe the cell decomposition, recall that a *subword* of \vec{s} is a sequence $\vec{\omega}$ of the same length with $\omega^{(i)} \in \{e, s^{(i)}\}$ for all i. We set $\omega_{(i)} := \omega^{(1)} \cdots \omega^{(i)}$. For any $v \in W$, a v-distinguished subword of \vec{s} is a subword $\vec{\omega}$ such that

$$v\omega_{(i)} \le v\omega_{(i-1)}s^{(i)}$$
 for all i .

Let $\mathcal{D}^{(v)}(\vec{s})$ be the set of v-distinguished subwords $\vec{\omega}$ for which $\omega_{(\ell)} = e$. Then the Deodhar cells of $\mathbf{R}^{(v)}(\vec{s})$ are indexed by $\mathcal{D}^{(v)}(\vec{s})$. The cell for a given element $\vec{\omega}$ is isomorphic to $\mathbf{A}^{\mathsf{d}_{\vec{\omega}}} \times \mathbf{G}_m^{\mathsf{e}_{\vec{\omega}}}$ for certain disjoint subsets $\mathsf{d}_{\vec{\omega}}, \mathsf{e}_{\vec{\omega}} \subseteq \{1, 2, \dots, \ell\}$, allowing us to count $R^{(v)}(\vec{s}) := \mathbf{R}^{(v)}(\vec{s})^F$:

(1.3)
$$|R^{(v)}(\vec{s})| = \sum_{\vec{\omega} \in \mathcal{D}^{(v)}(\vec{s})} q^{|\mathsf{d}_{\vec{\omega}}|} (q-1)^{|\mathsf{e}_{\vec{\omega}}|}.$$

We give further detail in Section 5.

Using Theorem 1.1, we relate the disjoint union of the sets $R^{(v)}(\vec{s})$ for $v \in W^{J,\mp}$ to the set $Z_J^{\pm}(\vec{s}) := \mathbf{Z}_J^{\pm}(\vec{s})^F$ for a certain variety

$$\mathbf{Z}_{J}^{\pm}(\vec{s}) = \{ (\vec{g}\mathbf{B}, u, y\mathbf{P}_{J}) \in (\mathbf{G}/\mathbf{B})^{\ell} \times \mathbf{Spr}_{J}^{\pm} \mid u^{-1}g_{\ell}\mathbf{B} \xrightarrow{s^{(1)}} g_{1}\mathbf{B} \xrightarrow{s^{(2)}} \cdots \xrightarrow{s^{(\ell)}} g_{\ell}\mathbf{B} \}.$$

Note the sign flip above, which arises because the element w_{\circ} in the formula for $\mathbf{R}^{(v)}(\vec{s})$ interchanges $W^{J,-}$ with $W^{J,+}$. We obtain identities of point counts:

Theorem 1.3. For any word \vec{s} , we have

$$\begin{split} \frac{|Z_J^-(\vec{s})|}{|G|} &= \frac{1}{q^{\ell_J}(q-1)^{\mathrm{rk}(G)}} \sum_{v \in W^{J,+}} \sum_{\vec{\omega} \in \mathcal{D}^{(v)}(\vec{s})} q^{|\mathsf{d}_{\vec{\omega}}|} (q-1)^{|\mathsf{e}_{\vec{\omega}}|}, \\ \frac{|Z_J^+(\vec{s})|}{|G|} &= \frac{1}{(q-1)^{\mathrm{rk}(G)}} \sum_{v \in W^{J,-}} \sum_{\vec{\omega} \in \mathcal{D}^{(v)}(\vec{s})} q^{|\mathsf{d}_{\vec{\omega}}|} (q-1)^{|\mathsf{e}_{\vec{\omega}}|}. \end{split}$$

(Note the sign flip between the left and right sides of each identity.)

Note that $\mathbf{Z}_{\emptyset}^{+}(\vec{s})$ and $\mathbf{Z}_{\emptyset}^{-}(\vec{s})$ coincide: They match the *braid Steinberg variety* introduced in [Tri21]. At the other extreme, $\mathbf{Z}_{S}^{+}(\vec{s})$ and $\mathbf{Z}_{S}^{-}(\vec{s})$ are the varieties respectively denoted $\mathcal{U}(\vec{s})$ and $\mathcal{X}(\vec{s})$ in *ibid*.

For $G = \operatorname{PGL}_n(\mathbf{F})$, the variety $\mathcal{X}(\vec{s})$ was studied earlier by Shende–Treumann–Zaslow [STZ17], who used contact geometry to construct a decomposition of $\mathcal{X}(\vec{s})$ resembling Deodhar's. For general J, we exhibit a decomposition of $\mathbf{Z}_J^-(\vec{s})$ into varieties equivariantly cohomologous to Deodhar cells: See Corollary 5.9. It appears to specialize to the decomposition in [STZ17], as we explain in Remark 5.10.

1.5. Combinatorics. Our third application of Theorem 1.1, by way of Theorem 1.2, is to construct noncrossing sets of interest in the Catalan combinatorics of (W, S). In the rest of this introduction, W is irreducible with Coxeter number h.

Let $d_1, \ldots, d_{|S|}$ be the fundamental degrees of the action of W on its (irreducible) reflection representation. For each i, let $e_i = d_i - 1$. For any positive integer p coprime to h, the rational Catalan number of (W, p) is

$$Cat_{W,p} := \prod_{i} \frac{p + e_i}{d_i},$$

while the rational parking number of (W, p) is $p^{|S|}$. These numbers enumerate disparate families of combinatorial objects. Most are constructed from root-theoretic

data generalizing nonnesting partitions and parking functions, respectively. The collective study of these families and the bijections between them is the "nonnesting" side of rational Catalan/parking combinatorics. In [GLTW24], we instead sought, and constructed, "noncrossing" families: those depending on a chosen ordering of S, or $Coxeter\ word$.

For any word \vec{s} in S, let $\mathcal{M}^{(v)}(\vec{s}) \subseteq \mathcal{D}^{(v)}(\vec{s})$ be the subset of elements $\vec{\omega}$ such that $|\mathbf{e}_{\vec{\omega}}| = |S|$, the minimum possible value [GLTW24, Cor. 4.9]. Let \vec{c} be a Coxeter word for (W, S), and \vec{c}^p its p-fold concatenation. The main results of [GLTW24] are the identities

$$\operatorname{Cat}_{W,p} = |\mathcal{M}^{(e)}(\vec{c}^p)| \quad \text{and} \quad p^{|S|} = \sum_{v \in W} |\mathcal{M}^{(v)}(\vec{c}^p)|,$$

proved by way of q-deformed identities involving $\mathcal{D}^{(v)}(\vec{c}^p)$ and taking $q \to 1$.

In Section 6, we prove an identity that interpolates between the two above. Let $d_1^J, \ldots, d_{|J|}^J$ be the fundamental degrees of W_J . Let $e_1^J, \ldots, e_{|J|}^J$ be the exponents of the W_J -action on the reflection representation of W. We define the *rational parabolic parking numbers* of (W, p, J) to be

$$\operatorname{Park}_{W,p}^{J,\pm} = \prod_{i} \frac{p \pm e_i^J}{d_i^J}.$$

Then $\operatorname{Park}_{W,p}^{S,+} = \operatorname{Cat}_{W,p}$ and $\operatorname{Park}_{W,p}^{\emptyset,+} = \operatorname{Park}_{W,p}^{\emptyset,-} = p^{|S|}$. We relate these numbers to τ_G via a result from [Tri21], which describes $\tau_G(-\otimes T_{\vec{c}}^p)$ for a certain $T_{\vec{c}} \in H_W$ as the graded character of a *rational parking space* for (W,p), in the sense of [ARR15] and [ALW16]. Ultimately, we obtain:

Corollary 1.4. For any Coxeter word \vec{c} , integer p > 0 coprime to h, and subset $J \subseteq S$, we have

$$\operatorname{Park}_{W,p}^{J,\pm} = \sum_{v \in W^{J,\mp}} |\mathcal{M}^{(v)}(\vec{c}^p)|.$$

(Note the sign flip.) That is, $\coprod_{v \in W^{J,\pm}} \mathcal{M}^{(v)}(\vec{c}^p)$ is a \vec{c} -noncrossing set enumerated by the \mp -rational parabolic parking number of (W, p, J).

1.6. a-Degrees in Markov Traces. In Section 7, we prove results about Markov traces and rational Kirkman numbers that are respectively parallel to Theorem 1.2 and Corollary 1.4.

First, for any $v \in W$, recall the *left ascent set* $\mathsf{Asc}(v) = \{s \in S \mid \ell(sv) > \ell(v)\}$ and $\mathsf{descent}\ \mathsf{set}\ \mathsf{Des}(v) = \{s \in S \mid \ell(sv) < \ell(v)\}$. Observe that $W^{J,-}$, resp. $W^{J,+}$, consists of those v such that $\mathsf{Asc}(v) \supseteq J$, resp. $\mathsf{Des}(v) \supseteq J$. Hence, $N_J^S(1)$ and $q^{-\ell_J} N_J^S(T_{w_{J\circ}}^2)$ decompose as sums, over supersets $I \supseteq J$, of elements

$$\zeta_I^+ := \sum_{\mathsf{Asc}(v) = I} q^{-\ell(v)} T_{v^{-1}} T_v \quad \text{and} \quad \zeta_I^- := \sum_{\mathsf{Des}(v) = I} q^{-\ell(v)} T_{v^{-1}} T_v.$$

Note that $\zeta_S^+ = \zeta_\emptyset^- = 1$ and $\zeta_\emptyset^+ = \zeta_S^- = q^{-\ell_S} T_{w_0}^2$. By inclusion-exclusion, the elements ζ_I^\pm are again central in H_W .

Question 1.5. For general W and I, is there a more familiar description of the traces on H_W of the form $\tau[\zeta_I^{\pm}]$?

We now take $W = S_n$ and $S = \{s_1, \ldots, s_{n-1}\}$. The HOMFLYPT Markov trace on H_{S_n} can be written as a $\mathbf{Q}(\mathbf{q}^{1/2})[a^{\pm 1}]$ -valued trace μ_n . For $0 \le k \le n-1$, let $\mu_n^{(k)}: H_W \to \mathbf{Q}(\mathbf{q}^{1/2})$ be the coefficient of the kth highest power of a in μ_n , and let

$$I_k = \{s_1, s_2, \dots, s_{n-1-k}\}.$$

Using work of Bezrukavnikov–Tolmachov [BT22, Cor. 6.1.2], we show:

Theorem 1.6. For integer k, we have

(1.4)
$$\tau[\zeta_{I_{k}}^{-}] = (\mathbf{q} - 1)^{n-1} \mu_{n}^{(k)}$$

as traces on H_{S_n} .

Let $e_{\wedge^k} \in \mathbf{Q}W$ be the Young symmetrizer of the hook partition $(n-k, 1, \ldots, 1) \vdash n$, which indexes the kth exterior power of the reflection representation of S_n . By combining (1.4) with the result in [Tri21] relating the Markov trace to τ_G , we deduce this analogue of Theorem 1.2:

Corollary 1.7. For G split semisimple of type A_{n-1} , and any integer k, we have

$$\tau[\zeta_{I_k}^-] = (\boldsymbol{q} - 1)^{n-1} \, \tau_G(e_{\wedge^k} \otimes -)$$

as traces on H_{S_n} .

For general W and $0 \le k \le |S| - 1$, we can use the rational parking space for (W, p) mentioned earlier to define rational generalizations $\operatorname{Kirk}_{W,p}^{(k)}$ of the Kirkman numbers studied in [ARR15]. For $W = S_n$, the preceding result implies this analogue of Corollary 1.4:

Corollary 1.8. Take $W = S_n$ and $S = \{s_1, \ldots, s_{n-1}\}$. Then for any Coxeter word \vec{c} , any integer p > 0 coprime to n and integer k, we have

$$\operatorname{Kirk}_{W,p}^{(k)} = \sum_{\operatorname{\mathsf{Asc}}(v) = I_k} |\mathcal{M}^{(v)}(\vec{c}^p)|.$$

That is, $\coprod_{\mathsf{Asc}(v)=I_k} \mathcal{M}^{(v)}(\vec{c}^p)$ is a \vec{c} -noncrossing set enumerated by the kth rational Kirkman number of (W, p).

1.7. **Acknowledgments.** We thank our prior collaborators, Pavel Galashin and Thomas Lam, for helpful discussions. During part of our work, MT was supported by an NSF Mathematical Sciences Research Fellowship, Award DMS-2002238, and NW was supported by an NSF standard grant, Award DMS-2246877. ???

2. The Geometric Hecke Algebra

2.1. In this section, we review the general definition of the convolution algebra H_B^G without assuming G to be split, following [Car95, §3.3]. At the end, we explain how to adapt N_J^S to this generality. Along the way, we review Bruhat decomposition and related facts about Borel subgroups. Our geometric setup is essentially Kawanaka's in [Kaw75]. See also [Car93, Car95].

We keep \mathbf{F} , q, \mathbf{G} , \mathbf{B} , \mathbf{T} , \mathbf{W} as in §1.2. Let $S_{\mathbf{B}}$ be the system of simple reflections of \mathbf{W} arising from \mathbf{B} , and let $\ell_{\mathbf{B}}$ be the Bruhat length function on \mathbf{W} defined by $S_{\mathbf{B}}$.

2.2. **Bruhat Decomposition.** Note that $w\mathbf{B}$ and $\mathbf{B}w$ are well-defined for any $w \in \mathbf{W}$. Bruhat decomposition says that as we run over all w, the double cosets $\mathbf{B}w\mathbf{B}$ are pairwise disjoint and partition \mathbf{G} .

Let **U** be the unipotent radical of **B**, so that $\mathbf{B} = \mathbf{T} \times \mathbf{U}$. Let \mathbf{U}_{-} be the unipotent radical of the opposed Borel \mathbf{B}_{-} . Note that $w\mathbf{U}w^{-1}$ and $w\mathbf{U}_{-}w^{-1}$ are well-defined for all $w \in \mathbf{W}$. Let

$$\mathbf{U}_w = \mathbf{U} \cap w \mathbf{U} w^{-1},$$

$$\mathbf{U}_w^- = \mathbf{U} \cap w \mathbf{U}_- w^{-1}.$$

Then $\mathbf{U}_w, \mathbf{U}_w^-$ are stable under the conjugation action of \mathbf{T} on \mathbf{U} . The following results are proved in [Car93, §2.5]:

Lemma 2.1. For all $w \in \mathbf{W}$:

- (1) If $\ell_{\mathbf{B}}(wv) = \ell_{\mathbf{B}}(w) + \ell_{\mathbf{B}}(v)$, then $\mathbf{U}_{wv}^- = \mathbf{U}_w^- \mathbf{U}_v^-$, and $\mathbf{U}_w^- \cap \mathbf{U}_v^- = \{1\}$.
- (2) $\mathbf{U} = \mathbf{U}_w \mathbf{U}_w^- = \mathbf{U}_w^- \mathbf{U}_w$, and $\mathbf{U}_w \cap \mathbf{U}_w^- = \{1\}$.
- (3) $\mathbf{B}w\mathbf{B} = \mathbf{U}_w^- w\mathbf{B}$, and the map $\mathbf{U}_w^- \to \mathbf{U}_w^- w\mathbf{B}/\mathbf{B}$ is an isomorphism.
- (4) As an algebraic variety (but not group), \mathbf{U}_{w}^{-} is the product of the root subgroups inverted by w, hence an affine space of dimension $\ell_{\mathbf{B}}(w)$.
- 2.3. Bott-Samelson Varieties. The double cosets of **B** in **G** are in bijection with the set of diagonal **G**-orbits on $(\mathbf{G}/\mathbf{B})^2$. As in the introduction, we write $h\mathbf{B} \xrightarrow{w} g\mathbf{B}$ to mean $\mathbf{B}h^{-1}g\mathbf{B} = \mathbf{B}w\mathbf{B}$. Such pairs $(h\mathbf{B}, g\mathbf{B})$ form the points of the **G**-orbit of $(\mathbf{G}/\mathbf{B})^2$ corresponding to w, which we will denote by $\mathbf{O}(w)$.

More generally, for any sequence of elements $\vec{w} = (w^{(1)}, w^{(2)}, \dots, w^{(k)})$ in **W**, let $\mathbf{O}(\vec{w})$ be the subvariety of $(\mathbf{G}/\mathbf{B})^{1+k}$ defined on points by

$$\mathbf{O}(\vec{w}) = \{ \vec{g}\mathbf{B} = (g_0\mathbf{B}, g_1\mathbf{B}, \dots, g_k\mathbf{B}) \mid g_0\mathbf{B} \xrightarrow{w^{(1)}} g_1\mathbf{B} \xrightarrow{w^{(2)}} \dots \xrightarrow{w^{(k)}} g_m\mathbf{B} \}.$$

The Zariski closure of $\mathbf{O}(\vec{w})$ is called the *Bott-Samelson variety* of \vec{w} . For this reason, $\mathbf{O}(\vec{w})$ may be called the *open Bott-Samelson variety*.

For any subset $I \subseteq \{1, ..., k\}$, we write $pr_I : \mathbf{O}(\vec{w}) \to (\mathbf{G}/\mathbf{B})^I$ to denote the map that sends $pr_I(\vec{g}\mathbf{B}) = (g_i\mathbf{B})_{i\in I}$. When writing out \vec{w} , resp. I, explicitly, we will omit the parentheses, resp. brackets, where convenient.

Lemma 2.1 implies that if $\ell_{\mathbf{B}}(wv) = \ell_{\mathbf{B}}(w) + \ell_{\mathbf{B}}(v)$, then $pr_{0,2}$ induces an explicit isomorphism $\mathbf{O}(w,v) \xrightarrow{\sim} \mathbf{O}(wv)$. By induction, any variety of the form $\mathbf{O}(\vec{w})$ is explicitly isomorphic to one of the form $\mathbf{O}(\vec{s})$, where \vec{s} is a word in $S_{\mathbf{B}}$.

2.4. **Frobenius Maps.** For algebraic varieties over $\bar{\mathbf{F}}$ equipped with Frobenius maps, we use italics to denote the corresponding sets of Frobenius-fixed points.

As in §1.2, we fix a Frobenius map $F: \mathbf{G} \to \mathbf{G}$ arising from an **F**-form, such that **B** and **T** are F-stable. Then **W** and $S_{\mathbf{B}}$ are also F-stable. The group $W := \mathbf{W}^F$ is again a Coxeter group, which can be identified with $N_G(T)/T$.

Remark 2.2. When **G** is almost-simple, the options for G and W are listed in [Car95, §1.5–1.6]. Notably, W is crystallographic except when it has factors of type ${}^{2}F_{4}$.

There is a system of simple reflections for W, which we will denote S, indexed by the F-orbits on $S_{\mathbf{B}}$: Each element $s \in S$ is the product of all the elements in the given F-orbit, which pairwise commute and form a reduced word in $S_{\mathbf{B}}$ in any order. Let ℓ be the Bruhat length function on W defined by S.

By Lang's theorem, $g\mathbf{B}$ is F-stable if and only if $g \in G$, and in this case, $gB = (x\mathbf{B})^F$. Similarly, $\mathbf{B}w\mathbf{B}$ is F-stable if and only if $w \in W$, and in this case, $BwB = (\mathbf{B}w\mathbf{B})^F$. Thus, the double cosets BwB for $w \in W$ partition G, while the G-orbits on $(G/B)^2$ are the sets O(w) for $w \in W$. As explained in [Car93], parts (1)–(3) of Lemma 2.1 have exact analogues with \mathbf{W} replaced by W. See also [Kaw75, §1].

Lemma 2.3. For all $w \in W$:

- $(1) \ \textit{If} \ \ell(wv) = \ell(w) + \ell(v), \ \textit{then} \ U_{wv}^- = U_w^- U_v^-, \ \textit{and} \ U_w^- \cap U_v^- = \{1\}.$
- (2) $U = U_w U_w^- = U_w^- U_w$, and $U_w \cap U_w^- = \{1\}$.
- (3) $BwB = U_w^- wB$, and the map $U_w^- \to U_w^- wB/B$ is a bijection.

The one point where caution is needed concerns the sizes of U_w and U_w^- , as they involve $\ell_{\mathbf{B}}(w)$, not $\ell(w)$ [Car93, 74]:

Lemma 2.4. For all $w \in W$, we have $|U_w^-| = q^{\dim(\mathbf{U}_w^-)} = q^{\ell_{\mathbf{B}}(w)}$.

2.5. **Operations on Functions.** For any finite set X equipped with the action of a finite group G, we write $\mathcal{C}_G(X)$ to denote the free module of **Z**-valued, G-invariant functions on X. For any G-stable subset $Y \subseteq X$, we write $\delta_Y \in \mathcal{C}_G(X)$ to denote the indicator function on Y.

For a G-equivariant map $f: Y \to X$, the pullback of functions along f is the linear map $f^*: \mathcal{C}_G(X) \to \mathcal{C}_G(Y)$ given by $f^*(\varphi)(y) = \varphi(f(y))$. The pushforward, or integral, of functions along f is the linear map $f_!: \mathcal{C}_G(Y) \to \mathcal{C}_G(X)$ given by

$$f_!(\psi)(x) = \sum_{y \in f^{-1}(x)} \psi(y).$$

When f can be understood from context, we omit $f_!$ from our notation.

Let * denote the convolution product on $\mathcal{C}(X \times X)$ defined in terms of the three projection maps $pr_{i,j}: X^3 \to X^2$ by

$$\varphi_1 * \varphi_2 = pr_{1,3,!}(pr_{1,2}^*(\varphi_1) \cdot pr_{2,3}^*(\varphi_2)),$$

where \cdot denotes pointwise multiplication. Explicitly,

$$(\varphi_1 * \varphi_2)(y, x) = \sum_{z \in X} \varphi_1(y, z) \varphi_2(z, x).$$

The indicator function of the diagonal $X \subseteq X^2$ is the identity element for this operation. If X is equipped with a G-action, and G acts on X^2 diagonally, then * restricts to an operation on $\mathcal{C}_G(X \times X)$ with the same identity element.

Iwahori proved that the ring formed by $C_G(G/B \times G/B)$ under convolution is freely generated by the elements $\delta_w := \delta_{O(w)}$ for $w \in W$ modulo the following relations for all $w \in W$ and $s \in S$:

$$\delta_s * \delta_w = \begin{cases} \delta_{sw} & \ell(sw) > \ell(w), \\ |U_s^-| \delta_{sw} + (|U_s^-| - 1) \delta_w & \ell(sw) < \ell(w). \end{cases}$$

See [Car95, §3.3] or [Kaw75, Thm. 2.6]. We define H_B^G to be the $\mathbf{Z}[\frac{1}{a}]$ -algebra

$$H_B^G = \mathcal{C}_G(G/B \times G/B)[\frac{1}{q}].$$

If G is *split*, meaning $W = \mathbf{W}$, then $\ell_{\mathbf{B}}(s) = \ell(s) = 1$ and $|U_s^-| = q$ for all $s \in S$. This is the case on which the introduction focused. Here, W is crystallographic, and H_B^G is a specialization of the $\mathbf{Z}[q^{\pm 1}]$ -algebra H_W freely generated by elements T_w for $w \in W$ modulo the following relations for all $w \in W$ and $s \in S$:

$$T_s T_w = \begin{cases} T_{sw} & \ell(sw) = \ell(w) + 1, \\ \mathbf{q} T_{sw} + (\mathbf{q} - 1) T_w & \ell(sw) = \ell(w) - 1. \end{cases}$$

2.6. **Parabolic Subgroups.** Fix an F-stable subset $J_{\mathbf{B}} \subseteq S_{\mathbf{B}}$, corresponding to a subset $J \subseteq S$. Let $\mathbf{W}_J \subseteq \mathbf{W}$, resp. $W_J \subseteq W$, be the subgroup generated by $J_{\mathbf{B}}$, resp. J. Then \mathbf{W}_J is F-stable and $W_J = \mathbf{W}_J^F$.

Let $\mathbf{P}_J = \mathbf{B}\mathbf{W}_J\mathbf{B} \subseteq \mathbf{G}$. We can write $\mathbf{P}_J = \mathbf{L}_J \ltimes \mathbf{U}_J$, where \mathbf{L}_J is reductive with Weyl group \mathbf{W}_J and \mathbf{U}_J the unipotent radical of \mathbf{P}_J . These subgroups are F-stable, and on F-fixed points, we have $P_J = L_J \ltimes U_J$.

By construction, $\mathbf{B}_J = \mathbf{L}_J \cap \mathbf{B}$ is a Borel subgroup of \mathbf{L}_J . The inclusion $L_J \subseteq P_J$ descends to an L_J -equivariant bijection $L_J/B_J \simeq P_J/B$, which in turn yields an isomorphism of algebras

$$C_{L_J}(L_J/B_J \times L_J/B_J) \simeq C_{L_J}(P_J/B \times P_J/B).$$

Once we adjoin $\frac{1}{q}$, the left-hand side becomes $H_{B_J}^{L_J}$, and the right-hand side becomes the subalgebra of H_B^G generated by the elements δ_w with $w \in W_J$. Henceforth, we identify these $\mathbf{Z}[\frac{1}{q}]$ -algebras with each other.

As in the introduction, let $W^{J,-} \subseteq W$ be the set of minimal-length right coset representatives for W_J . By Lemma 2.1(4) and Lemma 2.4, the split case of the definition below recovers the $q \to q$ specialization of the relative norm map in §1.1.

Definition 2.5. The *relative norm* map $N_J^S: H_{B_J}^{L_J} \to H_B^G$ is defined by

$$N_J^S(\alpha) = \sum_{v \in W^{J,-}} \frac{1}{|U_v^-|} \, \delta_{v^{-1}} * \alpha * \delta_v.$$

We have implicitly used Lemma 2.4 to ensure that $|U_v^-|$ is a power of q.

2.7. Let w_{\circ} and $w_{J_{\circ}}$ respectively denote the longest elements of W and W_{J} with respect to S. Then $U = U_{w_{\circ}}$ and $U_{J} = U_{w_{J_{\circ}}}$. The following fact will be useful:

Lemma 2.6. For any $J \subseteq S$ and $v \in W^{J,-}$, we have

$$U_J \cap U_v = U_{w_{J \circ} v}$$
 and $U_J \cap U_v^- = U_v^-$.

In particular, $U_J = U_{w_{J\circ}v}U_v^- = U_v^-U_{w_{J\circ}v}$ and $U_{w_{J\circ}v} \cap U_v^- = \{1\}$. In the split case, the analogous identities hold with \mathbf{U}_J , \mathbf{U}_v , etc. in place of U_J , U_v , etc..

Proof. To show $U_J \cap U_v = U_{w_{J} \circ v}$: In general, if $w, v \in W$ satisfy $\ell(wv) = \ell(w) + \ell(v)$, then $U_{wv}^- = U_w^- U_v^-$ and $U_w^- \cap U_v^- = \{1\}$ by Lemma 2.3(1), which implies that $U_{wv} = U_w \cap U_v$ by Lemma 2.3(2).

To show $U_J \cap U_v^- = U_v^-$, meaning $U_v^- \subseteq U_J$: In general, if $w \in W_J$ and $v \in W^{J,-}$, then the F-orbits of root subgroups of \mathbf{U}_J inverted by wv are precisely those inverted by w. Taking w = e gives the result.

In the split case, $\ell_{\mathbf{B}} = \ell$, and thus, v minimizes $\ell_{\mathbf{B}}$ in $\mathbf{W}_J v$. So we can repeat all the arguments above with the varieties in place of the sets.

3. Partial Springer Resolutions

3.1. Recall the partial Springer resolutions $\mathbf{Spr}_J^{\pm} \subseteq \mathbf{G} \times \mathbf{G}/\mathbf{P}_J$ and the varieties $\mathbf{E}_J^{\pm} = \mathbf{G}/\mathbf{B} \times \mathbf{Spr}_J^{\pm}$ from §1.2. The latter are stable under the left **G**-action on $\mathbf{G}/\mathbf{B} \times \mathbf{G} \times \mathbf{G}/\mathbf{P}_J$ defined by

(3.1)
$$g \cdot (h\mathbf{B}, u, y\mathbf{P}_J) = (gh\mathbf{B}, gug^{-1}, gy\mathbf{P}_J).$$

Let $f: \mathbf{G}/\mathbf{B} \times \mathbf{G} \times \mathbf{G}/\mathbf{P}_J \to (\mathbf{G}/\mathbf{B})^2$ be the **G**-equivariant map defined by

$$f(h\mathbf{B}, u, y\mathbf{P}_J) = (h\mathbf{B}, uh\mathbf{B}).$$

On F-fixed points, it restricts to G-equivariant maps $f: E_J^{\pm} \to (G/B)^2$. These recover the maps f in §1.2. The goal of this section is to prove the identities

(3.2)
$$\begin{split} f_! \delta_{E_J^-} &= |U_J| \, N_J^S(1), \\ f_! \delta_{E_J^+} &= |U_J| \, N_J^S(\delta_{w_{J\circ}}^2), \end{split}$$

where N_J^S is now given by Definition 2.5. They recover Theorem 1.1 in the split case.

3.2. Reduction to Strata. Observe that \mathbf{E}_J^{\pm} is a union of **G**-stable subvarieties \mathbf{E}_{Jv}^{\pm} for $\mathbf{W}_J v \in \mathbf{W}_J \backslash \mathbf{W}$, where on points,

$$\mathbf{E}_{J,v}^{\pm} = \{ (h\mathbf{B}, u, y\mathbf{P}_J) \in \mathbf{G}/\mathbf{B} \times \mathbf{Spr}_J^{\pm} \mid \mathbf{P}_J y^{-1} h \mathbf{B} = \mathbf{P}_J v \mathbf{B} \}.$$

From §2.4, we see that $\mathbf{P}_J v \mathbf{B}$ is F-stable if and only if $v \in W$, and in this case, $P_J v B = (\mathbf{P}_J v \mathbf{B})^F$. Therefore, E_J^{\pm} is the union of its G-stable subsets $E_{J,v}^{\pm}$ as v runs over a full set of right coset representatives for W_J : for instance, $W^{J,-}$. As Lemma 2.6 shows that $U_J \simeq U_{W_{J^\circ}v} \times U_v^-$, we reduce (3.2) to:

Theorem 3.1. If $v \in W^{J,-}$, then:

- (1) $f_! \delta_{E_{J,v}^-} = |U_{w_{J} \circ v}| \delta_{v^{-1}} * \delta_v.$
- (2) $f_! \delta_{E_{Lv}^+}^+ = |U_{w_{J\circ}v}| \, \delta_{v^{-1}} * \delta_{w_{J\circ}}^2 * \delta_v.$

3.3. Reduction to the Borel. Let $\check{\mathbf{E}}_{J,v}^{\pm} \subseteq \mathbf{G}/\mathbf{B} \times \mathbf{G} \times \mathbf{G}/\mathbf{B}$ be the subvariety defined on points by

$$\check{\mathbf{E}}_{J,v}^{\pm} = \{ (h\mathbf{B}, u, y\mathbf{B}) \mid (u, y\mathbf{B}) \in \mathbf{Spr}_J^{\pm} \text{ and } y\mathbf{B} \xrightarrow{v} h\mathbf{B} \}$$

The forgetful map $\mathbf{G}/\mathbf{B} \to \mathbf{G}/\mathbf{P}_J$ induces a map $\check{\mathbf{E}}_{J,v}^{\pm} \to \mathbf{E}_{J,v}^{\pm}$.

Lemma 3.2. If $v \in W^{J,-}$, then $\check{E}^{\pm}_{J,v} \to E^{\pm}_{J,v}$ is a bijection. In the split case, this bijection arises from an isomorphism $\check{\mathbf{E}}^{\pm}_{J,v} \to \mathbf{E}^{\pm}_{J,v}$.

Proof. The first claim is just the fact that if v minimizes ℓ in $W_J v$, then there are compatible bijections from U_v^- to the Schubert cells BvB/B and BvP_J/P_J .

For the second claim: As in the proof of Lemma 2.6, v minimizes $\ell_{\mathbf{B}}$ in $\mathbf{W}_{J}v$. So we can repeat the argument above, but with the varieties \mathbf{U}_{v}^{-} , \mathbf{B} , \mathbf{P}_{J} in place of the sets U_{v}^{-} , B, P_{J} , and isomorphisms in place of bijections.

The varieties $\check{\mathbf{E}}_J^{\pm}$ are stable under the **G**-action on $\mathbf{G}/\mathbf{B} \times \mathbf{G} \times \mathbf{G}/\mathbf{B}$ analogous to (3.1). Let $\check{f}: \mathbf{G}/\mathbf{B} \times \mathbf{G} \times \mathbf{G}/\mathbf{B} \to (\mathbf{G}/\mathbf{B})^3$ be the equivariant map defined by

$$\check{f}(h\mathbf{B}, u, y\mathbf{B}) = (h\mathbf{B}, y\mathbf{B}, uh\mathbf{B}).$$

The proofs of the two parts of Theorem 3.1 will use \check{f} in different ways.

3.4. **Proof of (1).** In the notation of Section 2,

$$pr_{0,2,!}\delta_{O(v^{-1},v)} = \delta_{v^{-1}} * \delta_v.$$

This suggests comparing $\mathbf{E}_{J,v}^-$ to a bundle over $\mathbf{O}(v^{-1},v)$. It turns out that $\check{\mathbf{E}}_{J,v}^-$ is the bundle we seek.

Observe that if $(h\mathbf{B}, u, y\mathbf{B})$ is a point of $\check{\mathbf{E}}_{J,v}^-$, then $\mathbf{B}y^{-1}uh\mathbf{B} = \mathbf{B}y^{-1}h\mathbf{B} = \mathbf{B}v\mathbf{B}$. Therefore, \check{f} restricts to a map from $\check{\mathbf{E}}_{J,v}^-$ into $\mathbf{O}(v^{-1}, v)$, giving an equivariant commutative diagram:

By Lemma 3.2 and this diagram, we reduce case (1) of Theorem 3.1 to:

Proposition 3.3. If $v \in W^{J,-}$, then

$$\check{f}_! \delta_{\check{E}_{Jv}^-} = |U_{w_{J\circ}v}| \, \delta_{O(v^{-1},v)}$$

in $C_G(O(v^{-1}, v))$. In the split case, this identity arises from $\check{f}: \check{\mathbf{E}}_{J,v}^- \to \mathbf{O}(v^{-1}, v)$ being a smooth fiber bundle that restricts to a $\mathbf{U}_{w_{J\circ}v}$ -torsor over the subvariety of $\mathbf{O}(v^{-1}, v)$ where $(g_0\mathbf{B}, g_1\mathbf{B}) = (v\mathbf{B}, \mathbf{B})$.

Proof. For the first claim: Recall that the G-action on pairs $(g_0B, g_1B) \in O(v^{-1})$ is transitive. So by equivariance of \check{f} and homogeneity, it suffices to compute \check{f} over a subset of $O(v^{-1}, v)$ where these coordinates are fixed.

We take $(g_0B, g_1B) = (vB, B)$. Over this pair, the fiber of \check{E}_J^- consists of (vB, u, B) with $u \in U_J$, the fiber of $O(v^{-1}, v)$ consists of (vB, B, gB) with $gB \in BvB/B$, and \check{f} is given by $u \mapsto uvB$. Therefore, under the bijections $U_J \simeq U_{w_{J\circ}v} \times U_v^-$ of Lemma 2.6 and $BvB/B \simeq U_v^-$ of Lemma 2.3(3), \check{f} corresponds to the projection $U_{w_{J\circ}v} \times U_v^- \to U_v^-$. This proves the claim.

For the second claim: As in the proof of Lemma 2.6, we observe that v minimizes $\ell_{\mathbf{B}}$ in $\mathbf{W}_{J}v$. So we can repeat the arguments above with the varieties \mathbf{G} , $\mathbf{O}(v)$, etc. in place of the sets G, O(v), etc., and Lemma 2.1 in place of Lemma 2.3.

3.5. **Proof of (2).** In the notation of Section 2 (nota bene §2.7),

$$pr_{0,4,!}\delta_{O(v^{-1},w_{J\circ},w_{J\circ},v)} = \delta_{v^{-1}} * \delta_{w_{J\circ}}^2 * \delta_v.$$

This suggests comparing $\mathbf{E}_{J,v}^+$ to a bundle over $\mathbf{O}(v^{-1}, w_{J\circ}, w_{J\circ}, v)$. But unlike the situation in case (1), there is no obvious map from $\check{\mathbf{E}}_{J,v}^+$ into the latter variety.

We do know that \check{f} restricts to a map from $\check{\mathbf{E}}_{J,v}^+$ into $\mathbf{O}(v^{-1}) \times \mathbf{G}/\mathbf{B}$, giving an equivariant commutative diagram:

At the same time, we have a map

$$\mathbf{O}(v^{-1}, w_{J\circ}, w_{J\circ}, v) \xrightarrow{pr_{0,1,4}} \mathbf{O}(v^{-1}) \times \mathbf{G/B}.$$

So by Lemma 3.2 and this discussion, we reduce case (2) of Theorem 3.1 to:

Proposition 3.4. If $v \in W^{J,-}$, then

$$\check{f}_! \delta_{E_{J,v}^+} = |U_{w_{J} \circ v}| \ pr_{0,1,4,!} \delta_{O(v^{-1},w_{J} \circ,w_{J} \circ,v)}$$

in $C_G(O(v^{-1}) \times G/B)$.

Proof. Since the O(w) partition $(G/B)^2$, it suffices to fix $w \in W$ and restrict to

$$O(v^{-1}) \times_w G/B = \{(hB, yB, gB) \in O(v^{-1}) \times G/B \mid Bh^{-1}gB = BwB\},\$$

the preimage of O(w) along $pr_0 \times id$. Recall that the G-action on O(w) is transitive. So by equivariance and homogeneity, the fibers of $\check{E}_{J,v}^+$ and $O(v^{-1}, w_{J^{\circ}}, w_{J^{\circ}}, v)$ have constant size over $O(v^{-1}) \times_w G/B$. So it suffices to compare them over a subvariety of $O(v^{-1}) \times_w G/B$ where the coordinates (hB, gB) are fixed. Moreover, to do this, it suffices to fix hB and average over $gB \in hBwB/B$.

We take hB = B. Then we must compare the preimages of

$$\{(B, yB, gB) \in O(v^{-1}) \times_w G/B\}$$

in \check{E}_J^+ and $O(v^{-1}, w_{J\circ}, w_{J\circ}, v)$. Since $v \in W^{J,-}$, we can trade the latter set and the map $pr_{0,1,4}$ for the set $O(v^{-1}, w_{J\circ}, w_{J\circ}v)$ and the map $pr_{0,1,3}$.

The preimage of (3.3) in \check{E}_J^+ consists of (B, u, yB) such that $u \in yV_Jy^{-1}$ and $u \in BwB$. Hence it has size

$$(3.4) |yV_J y^{-1} \cap BwB|.$$

The preimage of (3.3) in $O(v^{-1}, w_{J\circ}, w_{J\circ}v)$ consists of (B, yB, zB, gB) such that

$$yB \stackrel{w_{J\circ}}{\longleftarrow} zB \xrightarrow{w_{J\circ}v} gB$$

and $gB \in BwB/B$. Observe that $yB \in Bv^{-1}B/B$, so homogeneity under left multiplication by B lets us count the preimage for a given yB by averaging over the preimages for all $yB \in Bv^{-1}B/B$. Since $v \in W^{J,-}$, Lemma 2.3(1) shows that the union of these preimages is parametrized by (zB, gB) such that

$$(3.5) B \xleftarrow{w_{J_0}v} zB \xrightarrow{w_{J_0}v} gB$$

and $gB \in BwB/B$. It also shows that there is a bijection from $U^-_{(w_{J\circ}v)^{-1}} \times U^-_{w_{J\circ}v}$ to the set of pairs (zB, gB) satisfying (3.5), given by

$$(u, u') \mapsto (u(w_{J \circ} v)^{-1} B, u(w_{J \circ} v)^{-1} u' w_{J \circ} v B).$$

So the set of (zB, gB) satisfying (3.5) and $gB \in BwB/B$ is parametrized by

$$(U^-_{(w_{J\circ}v)^{-1}}(w_{J\circ}v)^{-1}U^-_{w_{J\circ}v}w_{J\circ}v)\cap BwB.$$

Since $U^-_{(w_{I_0}v)^{-1}}\subseteq B$, this last set can be identified with

$$U_{(w_{J\circ}v)^{-1}}^{-} \times ((w_{J\circ}v)^{-1}U_{w_{J\circ}v}^{-}w_{J\circ}v \cap BwB).$$

By Lemma 2.3(3), we have $|U_{v^{-1}}^-|$ many choices for $yB \in Bv^{-1}B/B$, and since $v \in W^{J,-}$, we also have $|U_{(w_{J\circ}v)^{-1}}^-| = |U_{w_{J\circ}}^-||U_{v^{-1}}^-|$. Altogether, we conclude that the size of the preimage of (3.3) in $O(v^{-1}, w_{J\circ}, w_{J\circ}v)$ is

$$(3.6) |U_{w_{J\circ}}^-||(w_{J\circ}v)^{-1}U_{w_{J\circ}v}^-w_{J\circ}v\cap BwB|.$$

Finally, we compare (3.4) and (3.6). Theorem 4.1 of [Kaw75] says

$$|yV_Jy^{-1} \cap BwB| = |U_{v^{-1}}||(w_{J\circ}v)^{-1}U_{w_{J\circ}v}^-w_{J\circ}v \cap BwB|.$$

Again using $|U_{(w_{J\circ}v)^{-1}}^{-}| = |U_{w_{J\circ}}^{-}||U_{v^{-1}}^{-}|$, we see that $|U_{v^{-1}}| = |U_{(w_{J\circ}v)^{-1}}||U_{w_{J\circ}}^{-}| = |U_{w_{J\circ}v}||U_{w_{J\circ}}^{-}|$, giving the desired identity.

Remark 3.5. The asymmetry of the variety $\mathbf{O}(v^{-1}) \times \mathbf{G}/\mathbf{B}$ may seem defective. To make the geometry more symmetrical, one might try to replace the diagram

$$\mathbf{E}_{J}^{+} \xrightarrow{\check{f}} \mathbf{O}(v^{-1}) \times \mathbf{G}/\mathbf{B} \xleftarrow{pr_{0,1,4}} \mathbf{O}(v^{-1}, w_{J\circ}, w_{J\circ}, v)$$

with the diagram

$$\mathbf{E}_{J}^{+} \xrightarrow{\check{f}'} \mathbf{O}(v^{-1}) \times \mathbf{O}(v) \xleftarrow{pr_{0,1,3,4}} \mathbf{O}(v^{-1}, w_{J\circ}, w_{J\circ}, v)$$

in which $\check{f}'(h\mathbf{B}, u, x\mathbf{B}) = (h\mathbf{B}, x\mathbf{B}, ux\mathbf{B}, uh\mathbf{B})$. Then one would hope that

$$\check{f}'_! \delta_{E_{J,v}^+} = |U_J| \, pr_{0,1,3,4,!} \delta_{O(v^{-1},w_{J\circ},w_{J\circ},v)}$$

in $C_G(O(v^{-1}) \times O(v))$. However, Kawanaka's work does not seem to establish this stronger identity.

4. Traces on the Hecke Algebra

- 4.1. The goal of this section is to prove a form of Theorem 1.2 for general G, and also, to prove that it recovers (1.2) when $G = GL_n$. We keep the general setup of Section 2.
- 4.2. Traces from Relative Norms. As in §1.3, let $\tau: H_B^G \to \mathbf{Z}[\frac{1}{q}]$ be the trace given by $\tau(\delta_e) = 1$ and $\tau(\delta_w) = 0$ for all $w \neq e$, and for any central element $\zeta \in Z(H_B^G)$, let $\tau[\zeta]: H_B^G \to \mathbf{Z}[\frac{1}{q}]$ be the trace given by $\tau[\zeta](\beta) = \tau(\beta * \zeta)$.

Lemma 4.1. For all $J \subseteq S$ and $w \in W$ and $\alpha \in Z(H_{B_J}^{L_J})$, we have

$$\frac{1}{|B|} \tau[N_J^S(\alpha)](\delta_w) = \frac{1}{|G|} \sum_{(hB,gB) \in O(w)} N_J^S(\iota(\alpha))(hB,gB),$$

where ι is the additive anti-involution of $H_{B_J}^{L_J}$ given by $\iota(\delta_w)=\delta_{w^{-1}}.$

Proof. For any $\beta \in H_B^G$ and $xB \in G/B$, we have $\tau(\beta) = \beta(xB, xB)$. Moreover, |G/B| = |G|/|B|. So for any $\zeta \in Z(H_B^G)$, we have

$$\frac{|G|}{|B|}\tau[\zeta](\beta) = \sum_{xB \in G/B} (\beta * \zeta)(xB, xB).$$

Next, for any $w, v, z \in W$, observe that there is a bijection

$$\{(x_0B, x_1B, x_2B, x_3B, x_4B) \in O(w, v^{-1}, z, v) \mid x_0B = x_4B\}$$

$$\xrightarrow{\sim} \{(g_0B, g_1B, g_2B, g_3B) \in O(v^{-1}, z^{-1}, v) \mid g_0B \xrightarrow{w} g_3B\}$$

given by $(g_0B, g_1B, g_2B, g_3B) = (x_4B, x_3B, x_2B, x_1B)$. This shows the identity

$$\sum_{gB \in G/B} (\delta_w * \delta_{v^{-1}} * \delta_z * \delta_v)(gB, gB) = \sum_{(hB, gB) \in O(w)} (\delta_{v^{-1}} * \delta_{z^{-1}} * \delta_v)(hB, gB).$$

By expanding α in the basis $(\delta_z)_{z\in W_J}$ for $H_{B_J}^{L_J}$, and summing over all $v\in W^{J,-}$, we deduce that

$$\sum_{xB \in G/B} (\beta * N_J^S(\alpha))(xB, xB) = \sum_{(hB, gB) \in O(w)} N_J^S(\iota(\alpha))(hB, gB),$$

concluding the proof.

4.3. **Springer Fibers.** A reference for this subsection is [Sho88]. In order to work with étale cohomology, we fix a prime ℓ invertible in \mathbf{F} . The notation $\mathrm{H}^*(-,\bar{\mathbf{Q}}_\ell)$ will always mean étale cohomology with coefficients in the constant $\bar{\mathbf{Q}}_\ell$ -sheaf. Henceforth, let $\mathbf{V} = \mathbf{V}_\emptyset$ and

$$\mathbf{Spr} = \mathbf{Spr}_{\emptyset}^+ = \mathbf{Spr}_{\emptyset}^- \subseteq \mathbf{V} \times \mathbf{G}/\mathbf{B}.$$

By the *Springer resolution*, we mean either **Spr** or the projection map from **Spr** onto **V**. For any $u \in \mathbf{V}$, the *Springer fiber* over u is the (reduced) fiber of this map over u, viewed as a subvariety \mathbf{Spr}_u of \mathbf{G}/\mathbf{B} . On points,

$$\mathbf{Spr}_u = \{y\mathbf{B} \in \mathbf{G}/\mathbf{B} \mid u \in y\mathbf{U}y^{-1}\}.$$

Springer showed that this is a projective variety with no odd cohomology. For $u \in V := \mathbf{V}^F$, he constructed an action of W on $H^*(\mathbf{Spr}_u)$ through a type of Fourier transform. Later, other authors gave independent constructions, generalizing to other base fields like the complex numbers.

In this paper, we use the W-action on $H^*(\mathbf{Spr}_u)$ constructed through perverse sheaf theory, which differs from Springer's original action by a sign twist. Let $\chi_u: \mathbf{Q}W \to \bar{\mathbf{Q}}_\ell$ be the trace defined by

$$\chi_u(w) = \operatorname{tr}(Fw \mid \operatorname{H}^*(\mathbf{Spr}_u)).$$

For our choice of action, the sign character of W only occurs in χ_1 .

As reviewed in [Sho88, §15], it is now known χ_u arises from the specialization at $\mathbf{q} \to q$ of a $\mathbf{Z}[\mathbf{q}]$ -valued trace on $\mathbf{Z}W$. In particular, $\chi_u(w) \in \mathbf{Z}$ for all $w \in W$.

4.4. Partial Springer Fibers. For all $J \subseteq S$, the symmetrizer and antisymmetrizer in $\mathbf{Q}W_J$ are respectively defined by

$$e_{J,+} = \frac{1}{|W_J|} \sum_{w \in W_J} w$$
 and $e_{J,-} = \frac{1}{|W_J|} \sum_{w \in W_J} (-1)^{\ell(w)} w$.

These are central elements of $\mathbf{Q}W_J$, such that $\mathbf{Q}W_Je_{J,+}$ and $\mathbf{Q}W_Je_{J,-}$ respectively afford the trivial and sign representations of W_J .

Borho-MacPherson related $e_{J,-}$ and $e_{J,+}$ to the partial Springer fibers

$$\mathbf{Spr}_{J,u}^{-} = \{ y\mathbf{P}_{J} \in \mathbf{G}/\mathbf{P}_{J} \mid u \in y\mathbf{U}_{J}y^{-1} \},$$

$$\mathbf{Spr}_{J,u}^{+} = \{ y\mathbf{P}_{J} \in \mathbf{G}/\mathbf{P}_{J} \mid u \in y\mathbf{V}_{J}y^{-1} \}.$$

By §2.4, the set of F-fixed points $Spr_{J,u}^-$, resp. $Spr_{J,u}^+$, is the set of $yP_J \in G/P_J$ such that $u \in yU_Jy^{-1}$, resp. $u \in yV_Jy^{-1}$. For our choice of Springer action, the main result of [BM83] implies that for all $J \subseteq S$ and $u \in V$, we have

(4.1)
$$\frac{1}{|U_{w_{J\circ}}^-|} \chi_u(e_{J,-}) = |Spr_{J,u}^-|,$$

$$\chi_u(e_{J,+}) = |Spr_{J,u}^+|.$$

More precisely, these results come from transferring Borho–MacPherson's arguments from sheaves in the analytic topology over \mathbf{C} to sheaves in the étale topology over $\bar{\mathbf{F}}$, and keeping track of Tate twists arising from the \mathbf{F} -structure. The factor of $|U_{w_{J\circ}}^-| = q^{\dim(\mathbf{L}_J/\mathbf{B}_J)}$ in the – case arises from a Tate twist of order $2\dim(\mathbf{L}_J/\mathbf{B}_J)$ that accompanies the cohomological shift in case (b) of [BM83, §3.4].

4.5. **The Bitrace.** As in §1.3, let $O(w)_u$ be the subset of O(w) of pairs taking the form (hB, uhB). Let $\tau_G : \mathbf{Q}W \otimes H_B^G \to \mathbf{Q}$ be defined by

$$\tau_G(z \otimes \delta_w) = \frac{1}{|G|} \sum_{u \in V} |O(w)_u| \chi_u(z).$$

The framework of [Tri21] shows that this is, indeed, a bitrace, meaning $\tau_G(z \otimes -)$ and $\tau_G(-\otimes \delta_w)$ are traces for all $z, w \in W$. In the split case, it recovers the $\mathbf{q} \to \mathbf{q}$ specialization of the trace denoted τ_G in the introduction.

Lemma 4.2. For all $J \subseteq S$ and $w \in W$, we have

$$\frac{1}{|U_{w_{J\circ}}^-|} \tau_G(e_{J,-} \otimes \delta_w) = \frac{1}{|G|} \sum_{(hB,gB) \in O(w)} f_! \delta_{E_J^-}(hB,gB),$$
$$\tau_G(e_{J,+} \otimes \delta_w) = \frac{1}{|G|} \sum_{(hB,gB) \in O(w)} f_! \delta_{E_J^+}(hB,gB),$$

where E_J^{\pm} and f are defined as in Section 3.

Proof. Apply (4.1) to the formula for τ_G . Then observe that

$$\coprod_{u \in V} O(w)_u \times Spr_{J,u}^{\pm} = \{ (hB, u, yP_J) \in E_J^{\pm} \mid (hB, uhB) \in O(w) \}
= \coprod_{(hB, gB) \in O(w)} f^{-1}(hB, gB).$$

The split case of the following result is the $q \to q$ specialization of Theorem 1.2. Since it amounts to a family of identities of Laurent polynomials in q, which hold for infinitely many q, we can lift it from q to q.

Theorem 4.3. For any $J \subseteq S$, we have

$$\tau[N_J^S(1)] = |T| \, \tau_G(e_{J,-} \otimes -),$$

$$\tau[N_J^S(\delta_{w_{J,-}}^2)] = |B_J| \, \tau_G(e_{J,+} \otimes -)$$

as traces on H_W .

Proof. Combine Lemmas 4.1–4.2 with (3.2), noting that 1 and $\delta_{w_{J_0}}^2$ are invariant under ι . Doing so gives

$$\frac{1}{|B|} \tau[N_J^S(1)] = \frac{1}{|U_J||U_{w_{J\circ}}^-|} \tau_G(e_{J,-} \otimes -) = \frac{1}{|U|} \tau_G(e_{J,-} \otimes -),$$
$$\frac{1}{|B|} \tau[N_J^S(\delta_{w_{J\circ}}^2)] = \frac{1}{|U_J|} \tau_G(e_{J,+} \otimes -).$$

Then recall that $B = T \ltimes U = B_J \ltimes U_J$.

4.6. Recovering Lascoux-Wan-Wang. In this subsection, we assume that $G = GL_n$ and F is the standard Frobenius that raises each matrix coordinate to its qth power. Then $G = GL_n(\mathbf{F})$ and $W = \mathbf{W} = S_n$.

As in §1.3, we take $S = \{s_1, \ldots, s_{n-1}\}$, where $s_i \in S_n$ is the transposition swapping i and i+1. We will use the bijection between integer compositions of n and subsets of S that matches $\nu = (\nu_1, \nu_2, \ldots) \vdash n$ with

$$J = S \setminus \{s_{\nu_1}, s_{\nu_1 + \nu_2}, \ldots\}$$

For this J, we find that $W_J \subseteq W$ is the Young subgroup $S_{\nu} \simeq S_{\nu_1} \times S_{\nu_2} \times \dots$

Proposition 4.4. If the subset J corresponds to the integer composition ν , then

$$ch_{\mathbf{q}}(\tau_G(e_{J,-}\otimes -)) = e_{\nu}\left(\frac{X}{\mathbf{q}-1}\right),$$

$$ch_{\mathbf{q}}(\tau_G(e_{J,+}\otimes -)) = h_{\nu}\left(\frac{X}{\mathbf{q}-1}\right).$$

Thus, Theorem 1.2 (hence also Theorem 4.3) recovers (1.2).

As preparation, let $R(S_n)$ be the vector space of $\mathbf{Q}(q)$ -valued traces on $\mathbf{Q}S_n$. For any partition $\lambda \vdash n$, let $\chi^{\lambda} \in R(S_n)$ be the irreducible character indexed by λ . Let $ch: R(S_n) \xrightarrow{\sim} \Lambda_n$ be the *(undeformed) Frobenius characteristic* isomorphism that sends χ^{λ} to the Schur function $s_{\lambda}(X)$. It sends the multiplicity pairing on $R(S_n)$ to the Hall pairing $\langle -, - \rangle$ on Λ_n .

Proof. In [Tri21], the first author gave a character-theoretic formula for the trace on H_W corresponding to the bitrace τ_G . For $G = GL_n(\mathbf{F})$, it specializes to the formula

(4.2)
$$\tau_G(z \otimes -) = \sum_{\lambda \vdash n} \frac{\chi^{\lambda}(z)}{\det(\mathbf{q} - z \mid \mathsf{V}_n)} \cdot \chi_{\mathbf{q}}^{\lambda},$$

where V_n denotes the permutation representation of S_n on \mathbf{Q}^n . Above, recall that $\chi_q^{\lambda} \in R(H_{S_n})$ corresponds to χ^{λ} under Tits deformation [GP00, Ch. 7].

The map ch sends $\chi^{\lambda}/\det(q-(-)|V_n)$ to a plethystically transformed Schur:

$$ch\left(\frac{\chi^{\lambda}}{\det(\boldsymbol{q}-(-)\mid\mathsf{V}_n)}\right)=s_{\lambda}\left(\frac{X}{\boldsymbol{q}-1}\right).$$

At the same time, since $W_J = S_\lambda$, it sends the induced character of $W = S_n$ arising from the trivial, resp. sign, character of W_J to the symmetric function $h_{\nu}(X)$, resp. $e_{\nu}(X)$. Using Frobenius reciprocity, we get

$$\frac{\chi^{\lambda}(e_{J,+})}{\det(\mathbf{q} - e_{J,+} \mid \mathsf{V}_n)} = \left\langle h_{\nu}(X), s_{\lambda}\left(\frac{X}{\mathbf{q} - 1}\right) \right\rangle$$
$$= \left\langle h_{\nu}\left(\frac{X}{\mathbf{q} - 1}\right), s_{\lambda}(X) \right\rangle,$$

and similarly with $e_{J,-}$, e_{ν} in place of $e_{J,+}$, h_{ν} . So we arrive at

$$\begin{split} ch_{\mathbf{q}}(\tau_{G}(e_{J,+}\otimes -)) &= \sum_{\lambda \vdash n} \left\langle h_{\nu}\left(\frac{X}{\mathbf{q}-1}\right), s_{\lambda}(X) \right\rangle s_{\lambda}(X) \\ &= h_{\nu}\left(\frac{X}{\mathbf{q}-1}\right), \end{split}$$

and similarly with $e_{J,-}$, e_{ν} in place of $e_{J,+}$, h_{ν} .

Remark 4.5. The generalization of (4.2) beyond $W = S_n$ involves the exotic Fourier transform: a certain pairing introduced by Lusztig to relate irreducible characters of W to unipotent irreducible characters of G. This pairing remains fairly mysterious; notably, its definition in [Lus84] is case by case. For this reason, it seems that

Theorem 4.3 is the closest we can get to a uniform generalization of Proposition 4.4 to Weyl groups.

5. Braid Varieties and Cell Decompositions

5.1. For the rest of the paper, we assume that G is split. In this section, we prove Theorem 1.3, relating partial braid Steinberg varieties to the cell decompositions of open braid Richardson varieties. In fact, we prove a refinement that respects individual cells.

We will freely use the terminology from Coxeter combinatorics that we reviewed in §1.4. Throughout, we fix a word $\vec{s} = (s^{(1)}, \dots, s^{(\ell)})$ in S.

5.2. Richardson Varieties. Recall that for any $v \in W$, we defined the *v*-twisted open Richardson variety of \vec{s} on points by

$$\mathbf{R}^{(v)}(\vec{s}) = \{\vec{g}\mathbf{B} \in \mathbf{O}(\vec{s}) \mid g_0\mathbf{B} = vw_\circ\mathbf{B} \text{ and } \mathbf{B} \xrightarrow{vw_\circ} g_\ell\mathbf{B}\}.$$

Below, we give further detail about the cell decomposition mentioned in §1.4. For any v-distinguished subword $\vec{\omega}$ of \vec{s} , let $\mathbf{R}^{(v)}(\vec{s})_{\vec{\omega}} \subseteq \mathbf{R}^{(v)}(\vec{s})$ be the subvariety

$$\mathbf{R}^{(v)}(\vec{s})_{\vec{\omega}} = \{ \vec{g}\mathbf{B} \in \mathbf{R}^{(v)}(\vec{s}) \mid \mathbf{B} \xrightarrow{v\omega_{(i)}w_{\circ}} g_i\mathbf{B} \}.$$

As before, let $\mathcal{D}^{(v)}(\vec{s})$ be the set of v-distinguished subwords $\vec{\omega}$ of \vec{s} such that $\omega_{(\ell)} = e$. For any $\vec{\omega} \in \mathcal{D}^{(v)}(\vec{s})$, let

$$\mathbf{d}_{\vec{\omega}} = \{ i \mid v\omega_{(i)} < v\omega_{(i-1)} \},$$

$$\mathbf{e}_{\vec{\omega}} = \{ i \mid \omega^{(i)} = e \},$$

The main results of [Deo85] show that for any word \vec{s} in S:

(1) $\mathbf{R}^{(v)}(\vec{s})_{\vec{\omega}}$ is nonempty if and only if $\omega \in \mathcal{D}^{(v)}(\vec{s})$. In this case,

(5.1)
$$\mathbf{R}^{(v)}(\vec{s})_{\vec{\omega}} \simeq \left\{ \vec{t} \in \mathbf{A}^{\ell} \middle| \begin{array}{l} t_i \neq 0 & \text{for } i \in \mathbf{e}_{\vec{\omega}}, \\ t_i = 0 & \text{for } i \notin \mathbf{d}_{\vec{\omega}} \cup \mathbf{e}_{\vec{\omega}} \end{array} \right\}$$

from which $R^{(v)}(\vec{s})_{\vec{\omega}} := \mathbf{R}^{(v)}(\vec{s})_{\vec{\omega}}^F$ satisfies

(5.2)
$$|R^{(v)}(\vec{s})_{\vec{\omega}}| = q^{|\mathbf{d}_{\vec{\omega}}|}(q-1)^{|\mathbf{e}_{\vec{\omega}}|}.$$

(2) The subvarieties $\mathbf{R}^{(v)}(\vec{s})_{\vec{\omega}}$ are pairwise disjoint and partition $\mathbf{R}^{(v)}(\vec{s})$ as we run over $\vec{\omega} \in \mathcal{D}^{(v)}(\vec{s})$.

In light of (5.1), the varieties $\mathbf{R}^{(v)}(\vec{s})_{\vec{\omega}}$ are called *Deodhar cells*.

5.3. Change of Structure Group. To compare them to the geometry in previous sections, we need a more symmetrical version of the open Richardson varieties. Let

 $\mathbf{X}^{(v)}, \mathbf{X}_{\Box}^{(v)}, \mathbf{R}^{(v)}$ be the varieties defined on points by

$$\mathbf{X}^{(v)} = \{ (h\mathbf{B}, x\mathbf{B}, g\mathbf{B}) \in (\mathbf{G}/\mathbf{B})^3 \mid h\mathbf{B} \stackrel{vw_o}{\longleftarrow} x\mathbf{B} \xrightarrow{vw_o} g\mathbf{B} \}$$

$$\simeq \mathbf{O}((vw_o)^{-1}, vw_o),$$

$$\mathbf{X}_{\square}^{(v)} = \{ (h\mathbf{B}, g\mathbf{B}) \in (\mathbf{G}/\mathbf{B})^2 \mid h\mathbf{B} \stackrel{vw_o}{\longleftarrow} \mathbf{B} \xrightarrow{vw_o} g\mathbf{B} \},$$

$$\mathbf{R}^{(v)} = \{ vw_o\mathbf{B} \} \times \mathbf{B}vw_o\mathbf{B}/\mathbf{B}.$$

By construction, $\mathbf{R}^{(v)}(\vec{s})$ is the preimage of $\mathbf{R}^{(v)}$ along $\mathbf{O}(\vec{s}) \xrightarrow{pr_{0,\ell}} (\mathbf{G}/\mathbf{B})^2$. We will relate the varieties above to one another, thereby relating $\mathbf{R}^{(v)}(\vec{s})$ and its Deodhar cells to analogous varieties built from $\mathbf{X}^{(v)}$, $\mathbf{X}^{(v)}_{\square}$.

Observe that $\mathbf{X}^{(v)}$ is stable under the **G**-action on $(\mathbf{G}/\mathbf{B})^3$. The action of **G** on $\mathbf{X}^{(v)}$ restricts to an action of **B** on $\mathbf{X}_{\square}^{(v)}$, which in turn restricts to an action of

$$\mathbf{B}_v^- := \mathbf{B} \cap v\mathbf{B}_-v^{-1} = \mathbf{B} \cap (vw_\circ)\mathbf{B}(vw_\circ)^{-1}$$

on $\mathbf{R}^{(v)}$. By Lemma 2.1(2), $\mathbf{B} = \mathbf{B}_v^- \mathbf{U}_v = \mathbf{U}_v \mathbf{B}_v^-$ and $\mathbf{B}_v^- \cap \mathbf{U}_v = \{1\}$.

Lemma 5.1. For any $v \in W$, let **B** act on $\mathbf{G} \times \mathbf{X}_{\square}^{(v)}$ from the left by

$$b \cdot (x, h\mathbf{B}, g\mathbf{B}) = (xb^{-1}, bh\mathbf{B}, bg\mathbf{B}).$$

Then:

- (1) The map $(\mathbf{G} \times \mathbf{X}_{\square}^{(v)})/\mathbf{B} \to \mathbf{X}^{(v)}$ that sends $[x, h\mathbf{B}, g\mathbf{B}] \mapsto (xh\mathbf{B}, x\mathbf{B}, xg\mathbf{B})$ is an isomorphism.
- (2) The quotient $\mathbf{X}_{\square}^{(v)}/\mathbf{U}_v$ forms an algebraic variety. The composition of maps

$$\mathbf{R}^{(v)} \to \mathbf{X}_{\square}^{(v)} \to \mathbf{X}_{\square}^{(v)}/\mathbf{U}_v$$

is an isomorphism.

Proof. (1): $\mathbf{X}_{\square}^{(v)}$ is the closed subvariety of $\mathbf{X}^{(v)}$ cut out by the condition $x\mathbf{B} = \mathbf{B}$. The **G**-action on $\mathbf{X}^{(v)}$ is transitive on the coordinate $x\mathbf{B}$, and the stabilizer of the point **B** is itself.

(2): $\mathbf{R}^{(v)}$ is the closed subvariety of $\mathbf{X}_{\square}^{(v)}$ cut out by the condition $h\mathbf{B} = vw_{\circ}\mathbf{B}$. By Lemma 2.1(3), the **B**-action on $\mathbf{X}_{\square}^{(v)}$ restricts to an action of $\mathbf{U}_{vw_{\circ}}^{-} = \mathbf{U}_{v}$ that is simply transitive on the coordinate $h\mathbf{B}$.

Corollary 5.2. The maps $(G \times X_{\square}^{(v)})/B \to X^{(v)}$ and $R^{(v)} \to X_{\square}^{(v)}/U_v$ on F-fixed points induced by the isomorphisms above are bijections.

Proof. Immediate from Lang's theorem, since **B**, resp. \mathbf{U}_v , is connected and acts freely on $\mathbf{G} \times \mathbf{X}_{\square}^{(v)}$, resp. $\mathbf{X}_{\square}^{(v)}$.

Let $\mathbf{X}^{(v)}(\vec{s}) = \mathbf{O}(\vec{s}) \times_{(\mathbf{G}/\mathbf{B})^2} \mathbf{X}^{(v)}$ and $\mathbf{X}_{\square}^{(v)}(\vec{s}) = \mathbf{O}(\vec{s}) \times_{(\mathbf{G}/\mathbf{B})^2} \mathbf{X}_{\square}^{(v)}$, where the fiber products are formed with respect to the maps $pr_{0,\ell}$ on the left factors and the

coordinate pairs $(h\mathbf{B}, g\mathbf{B})$ on the right factors. On points,

$$\mathbf{X}^{(v)}(\vec{s}) = \{ (\vec{g}\mathbf{B}, x\mathbf{B}) \in \mathbf{O}(\vec{s}) \times \mathbf{G}/\mathbf{B} \mid g_0\mathbf{B} \stackrel{vw_o}{\longleftrightarrow} x\mathbf{B} \xrightarrow{vw_o} g_\ell\mathbf{B} \},$$

$$\mathbf{X}_{\square}^{(v)}(\vec{s}) = \{ \vec{g}\mathbf{B} \in \mathbf{O}(\vec{s}) \mid g_0\mathbf{B} \stackrel{vw_o}{\longleftrightarrow} \mathbf{B} \xrightarrow{vw_o} g_\ell\mathbf{B} \}.$$

These varieties can respectively be partitioned into subvarieties

$$\mathbf{X}^{(v)}(\vec{s})_{\vec{\omega}} = \{ (\vec{g}\mathbf{B}, x\mathbf{B}) \in \mathbf{O}(\vec{s}) \times \mathbf{G}/\mathbf{B} \mid x\mathbf{B} \xrightarrow{v\omega_{(i)}w_{\circ}} g_{i}\mathbf{B} \},$$

$$\mathbf{X}_{\square}^{(v)}(\vec{s})_{\vec{\omega}} = \{ \vec{g}\mathbf{B} \in \mathbf{X}^{(v)}(\vec{s}) \mid \mathbf{B} \xrightarrow{v\omega_{(i)}w_{\circ}} g_{i}\mathbf{B} \}$$

as $\vec{\omega}$ runs over $\mathcal{D}^{(v)}(\vec{s})$. Note that $\mathbf{X}^{(v)}(\vec{s})_{\vec{\omega}}$ is stable under the **G**-action on $\mathbf{X}^{(v)}(\vec{s})$, as are $\mathbf{X}_{\square}^{(v)}(\vec{s})_{\vec{\omega}}$, resp. $\mathbf{R}^{(v)}(\vec{s})_{\vec{\omega}}$, under **B**, resp. $\mathbf{B}_{vw_{\circ}}$. Pulling back Lemma 5.1 along $pr_{0,\ell}: \mathbf{O}(\vec{s})_{\vec{\omega}} \to (\mathbf{G}/\mathbf{B})^2$, we see:

Corollary 5.3. For any \vec{s} and $\vec{\omega} \in \mathcal{D}^{(v)}(\vec{s})$, the analogues of Lemma 5.1 and Corollary 5.2 hold with $\diamondsuit(\vec{s})_{\vec{\omega}}$ replacing \diamondsuit for each $\diamondsuit \in \{\mathbf{X}^{(v)}, \mathbf{X}_{\square}^{(v)}, \mathbf{R}^{(v)}\}$. Thus,

$$|X^{(v)}(\vec{s})_{\vec{\omega}}| = \frac{|G||X_{\square}^{(v)}(\vec{s})_{\vec{\omega}}|}{|B|},$$
$$|X_{\square}^{(v)}(\vec{s})_{\vec{\omega}}| = |U_v||R^{(v)}(\vec{s})_{\vec{\omega}}|.$$

5.4. Steinberg Varieties. Fix $J \subseteq S$. As in §1.4, we define the *partial Steinberg* varieties of \vec{s} of type J on points by

$$\mathbf{Z}_{J}^{\pm}(\vec{s}) = \{ (\vec{g}\mathbf{B}, u, y\mathbf{P}_{J}) \in \mathbf{O}(\vec{s}) \times \mathbf{Spr}_{J}^{\pm} \mid g_{\ell}\mathbf{B} = ug_{0}\mathbf{B} \}.$$

We let \mathbf{G} act on $\mathbf{Z}_J^{\pm}(\vec{s})$ via its actions on \mathbf{Spr}_J^{\pm} and $\mathbf{O}(\vec{s})$. The coordinate triple $(g_{\ell}\mathbf{B}, u, y\mathbf{P}_J)$ defines an equivariant map $\mathbf{Z}_J^{\pm}(\vec{s}) \to \mathbf{E}_J^{\pm}$. Pulling back the partition of \mathbf{E}_J^{\pm} by subvarieties $\mathbf{E}_{J,v}^{\pm}$ in Section 3, we get a partition of $\mathbf{Z}_J^{\pm}(\vec{s})$ into subvarieties

$$\mathbf{Z}_{J,v}^{\pm}(\vec{s}) = \{ (\vec{g}\mathbf{B}, u, y\mathbf{P}_J) \in \mathbf{Z}_J^{\pm}(\vec{s}) \mid \mathbf{P}_J y^{-1} g_{\ell} \mathbf{B} = \mathbf{P}_J v \mathbf{B} \}$$

as $W_J v$ runs over $W_J \setminus W$. Note that the points of $\mathbf{Z}_{J,v}^{\pm}(\vec{s})$ also satisfy the condition $\mathbf{P}_J y^{-1} g_0 \mathbf{B} = \mathbf{P}_J v \mathbf{B}$.

Proposition 5.4. If $v \in W^{J,-}$, then:

(1)
$$|Z_{J,v}^-(\vec{s})| = |U_{w_{J\circ}v}||X^{(vw_\circ)}(\vec{s})|.$$

(2)
$$|Z_{J,v}^+(\vec{s})| = |U_{w_{J} \circ v}||X^{(w_{J} \circ vw_\circ)}(\vec{s})|.$$

Proof. For any $v \in W$, we have

(5.3)
$$|Z_{J,v}^{\pm}(\vec{s})| = \sum_{\vec{g}B \in O(\vec{s})} f_! \delta_{E_{J,v}^{\pm}}(g_0 B, g_{\ell} B),$$

(5.4)
$$|X^{(vw_{\circ})}(\vec{s})| = \sum_{\vec{g}B \in O(\vec{s})} (\delta_{v^{-1}} * \delta_{v})(g_{0}B, g_{\ell}B).$$

(The second identity used the involutivity of w_{\circ} .) Now apply Theorem 3.1.

Since multiplication by w_{\circ} or $w_{J\circ}$ swaps $W^{J,-}$ with $W^{J,+}$, the following result implies Theorem 1.3.

Corollary 5.5. If $v \in W^{J,-}$, then

$$\frac{|Z_{J,v}^-(\vec{s})|}{|G|} = \frac{1}{q^{\ell_J}(q-1)^{\mathrm{rk}(G)}} \sum_{\vec{\omega} \in \mathcal{D}^{(v)}(\vec{s})} q^{|\mathbf{d}_{\vec{\omega}}|} (q-1)^{|\mathbf{e}_{\vec{\omega}}|},$$

$$\frac{|Z_{J,v}^+(\vec{s})|}{|G|} = \frac{1}{(q-1)^{\operatorname{rk}(G)}} \sum_{\vec{\omega} \in \mathcal{D}^{(v)}(\vec{s})} q^{|\mathsf{d}_{\vec{\omega}}|} (q-1)^{|\mathsf{e}_{\vec{\omega}}|}.$$

Proof. We only do the - case, as the + case is similar. Observe that

$$\frac{|U_{w_{J\circ}v}||X^{(vw_{\circ})}(\vec{s})|}{|G|} = \frac{|U_{w_{J\circ}v}||U_v||R^{(vw_{\circ})}(\vec{s})|}{|B|} = \frac{|U_J||R^{(vw_{\circ})}(\vec{s})|}{|B|} = \frac{|R^{(vw_{\circ})}(\vec{s})|}{|B_J|}$$

by Corollary 5.3 and Lemma 2.6. Then apply Proposition 5.4 on the left and (5.2) on the right.

Remark 5.6. It is not always the case that $|Z_{J,v}^-(\vec{s})/G| = |Z_{J,v}^-(\vec{s})|/|G|$. Indeed, the **G**-action on $\mathbf{Z}_{J,v}^{\pm}(\vec{s})$ need not be free, so we cannot apply Lang's theorem.

5.5. Traces as Point Counts. Let $\delta_{\vec{s}} = \delta_{s^{(1)}} * \cdots * \delta_{s^{(\ell)}}$. Then summing (5.3) over $W_J v$ yields

$$\tau_G(e_{J,\pm} \otimes \delta_{\vec{s}}) = \frac{|Z_J^{\pm}(\vec{s})|}{|G|}.$$

Similarly, for any $v \in W$, (5.4) yields

(5.5)
$$\frac{1}{|B|} \tau(\delta_{\vec{s}} * \delta_{v^{-1}} * \delta_v) = \frac{|X^{(vw_\circ)}(\vec{s})|}{|G|}.$$

For the purpose of proving Theorem 1.3, we do not actually need these formulas. It is nonetheless useful to record the identity

(5.6)
$$q^{-\ell(v)}\tau(\delta_{\vec{s}} * \delta_{v^{-1}} * \delta_v) = |R^{vw_{\circ}}(\vec{s})|$$

that follows from combining (5.5), Corollary 5.3, and Lemma 2.4. This is a simpler version of Corollary 5.3 in [GLTW24].

Let $T_{\vec{s}} = T_{s^{(1)}} \cdots T_{s^{(\ell)}}$. Combining (1.3) and (5.6) gives an identity of Laurent polynomials in $\delta_{\vec{s}}$ and q that holds for infinitely many q, so we can lift it to

(5.7)
$$\boldsymbol{q}^{-\ell(v)} \tau(T_{\vec{s}} T_{v^{-1}} T_v) = \sum_{\vec{\omega} \in \mathcal{D}^{(vw_{\circ})}(\vec{s})} \boldsymbol{q}^{|\mathsf{d}_{\vec{\omega}}|} (\boldsymbol{q} - 1)^{|\mathsf{e}_{\vec{\omega}}|},$$

an identity in $T_{\vec{s}}$ and q.

5.6. **Decomposing Steinberg Varieties.** We can significantly refine case (1) of Proposition 5.4. For any $\vec{\omega} \in \mathcal{D}^{(vw_\circ)}(\vec{s})$, let $\mathbf{Z}_{J,v}^{\pm}(\vec{s})_{\vec{\omega}}$ be the **G**-stable subvariety of $\mathbf{Z}_{J,v}^{\pm}(\vec{s})$ defined by

$$\mathbf{Z}_{J,v}^{\pm}(\vec{s})_{\vec{\omega}} = \{(\vec{g}\mathbf{B}, u, y\mathbf{P}_J) \in \mathbf{Z}_{J,v}^{\pm}(\vec{s}) \mid \mathbf{P}_J y^{-1} g_i \mathbf{B} = \mathbf{P}_J v w_\circ \omega_{(i)} w_\circ \mathbf{B}\}.$$

This subvariety only depends on $W_J v w_o$, even though $\vec{\omega}$ depends on $v w_o$ itself. Let $\check{\mathbf{Z}}_{J,v}^-(\vec{s})_{\vec{\omega}}$ be the analogue of $\mathbf{Z}_{J,v}^-(\vec{s})_{\vec{\omega}}$ with $y\mathbf{B}$ in place of $y\mathbf{P}_J$. By pulling back Lemma 3.2 and Proposition 3.3 along $pr_{0,\ell}: \mathbf{O}(\vec{s})_{\vec{\omega}} \to (\mathbf{G}/\mathbf{B})^2$, we obtain:

Proposition 5.7. If $v \in W^{J,-}$ and $\vec{\omega} \in \mathcal{D}^{(vw_\circ)}(\vec{s})$, then the maps $\check{\mathbf{E}}_{J,v}^- \xrightarrow{\sim} \mathbf{E}_{J,v}^-$ and $\check{f} : \check{\mathbf{E}}_{J,v}^- \to \mathbf{O}(v^{-1},v) = \mathbf{X}^{(vw_\circ)}$ of §3.3 fit into a cartesian diagram:

(5.8)
$$\mathbf{Z}_{J,v}^{-}(\vec{s})_{\vec{\omega}} \longrightarrow \mathbf{E}_{J,v}^{-} \\
\uparrow^{\downarrow} \qquad \uparrow^{\downarrow} \\
\check{\mathbf{Z}}_{J,v}^{-}(\vec{s})_{\vec{\omega}} \longrightarrow \check{\mathbf{E}}_{J,v}^{-} \\
\downarrow \qquad \qquad \downarrow \check{f} \\
\mathbf{X}^{(vw_{\circ})}(\vec{s})_{\vec{\omega}} \longrightarrow \mathbf{X}^{(vw_{\circ})}$$

Hence, $\check{\mathbf{Z}}_{J,v}^{-}(\vec{s})_{\vec{\omega}} \to \mathbf{X}^{(vw_{\circ})}(\vec{s})_{\vec{\omega}}$ forms a smooth fiber bundle that restricts to a $\mathbf{U}_{w_{J\circ}v^{\circ}}$ torsor over the subvariety $(h\mathbf{B}, x\mathbf{B}) = (v\mathbf{B}, \mathbf{B})$.

Corollary 5.8. If $v \in W^{J,-}$, then the $\mathbf{Z}_{J,v}^{\pm}(\vec{s})_{\vec{\omega}}$ are pairwise disjoint and partition $\mathbf{Z}_{J,v}^{\pm}(\vec{s})$ as $\vec{\omega}$ runs over $\mathcal{D}^{(vw_{\circ})}(\vec{s})$.

Proof. Proposition 5.7 shows that if $v \in W^{J,-}$, then $\mathbf{Z}_{J,v}^-(\vec{s})_{\vec{\omega}}$ arises from $\mathbf{X}^{(vw_\circ)}(\vec{s})_{\vec{\omega}}$ by pullback. This establishes the statement for the - case. But the condition defining $\mathbf{Z}_{J,v}^{\pm}(\vec{s})_{\vec{\omega}} \subseteq \mathbf{Z}_{J,v}^{\pm}(\vec{s})$ does not involve the coordinate u by which $\mathbf{Z}_{J,v}^-(\vec{s})$ and $\mathbf{Z}_{J,v}^+(\vec{s})$ differ. So we also get the statement for the + case.

Corollary 5.9. If $v \in W^{J,-}$ and $\vec{\omega} \in \mathcal{D}^{vw_{\circ}}(\vec{s})$, then

$$\begin{split} |Z_{J,v}^-(\vec{s})_{\vec{\omega}}| &= |U_{w_{J\circ v}}||X^{(vw_\circ)}(\vec{s})|, \\ &= |G|\,q^{|\mathsf{d}_{\vec{\omega}}|-\ell_J}(q-1)^{|\mathsf{e}_{\vec{\omega}}|-\mathrm{rk}(G)}, \end{split}$$

refining the - cases of Proposition 5.4 and Corollary 5.5.

Moreover, the **G**-equivariant étale cohomology of $\mathbf{Z}_{J,v}^-(\vec{s})_{\vec{\omega}}$ with $\bar{\mathbf{Q}}_{\ell}$ -coefficients is isomorphic to the **T**-equivariant étale cohomology of $\mathbf{R}^{(vw_\circ)}(\vec{s})_{\vec{\omega}}$. The analogous statement for compactly-supported cohomology holds up to a shift of degree ℓ_J .

Proof. The first claim follows from Proposition 5.7 by taking F-fixed points. As for the second, let H_c^* denote compactly-supported étale cohomology. Then

$$\begin{split} & \operatorname{H}_{c,\mathbf{G}}^{*}(\mathbf{Z}_{J,v}^{-}(\vec{s})_{\vec{\omega}}) \\ & \simeq \operatorname{H}_{c,\mathbf{G}}^{*}(\mathbf{X}^{(vw_{\circ})}(\vec{s})_{\vec{\omega}})[\dim \mathbf{U}_{w_{J\circ}v}] & \text{by Proposition 5.7} \\ & \simeq \operatorname{H}_{c,\mathbf{B}}^{*}(\mathbf{R}^{(vw_{\circ})}(\vec{s})_{\vec{\omega}})[\dim \mathbf{U}_{w_{J\circ}v} + \dim \mathbf{U}_{vw_{\circ}}] & \text{by Corollary 5.3} \\ & \simeq \operatorname{H}_{c,\mathbf{T}}^{*}(\mathbf{R}^{(vw_{\circ})}(\vec{s})_{\vec{\omega}})[\dim \mathbf{U}_{w_{J\circ}v} + \dim \mathbf{U}_{vw_{\circ}} - \dim \mathbf{U}] & \text{since } \mathbf{B} = \mathbf{T} \ltimes \mathbf{U}. \end{split}$$

Finally, dim $\mathbf{U}_{w_{J}\circ v}$ + dim $\mathbf{U}_{vw_{\circ}}$ - dim $\mathbf{U} = -\ell_{J}$ by Lemma 2.1. The statements for ordinary cohomology are the same, except there are no shifts.

Remark 5.10. For J = S, we require v = e in (5.8) and the vertical arrows become trivial, giving isomorphisms $\mathbf{E}_S^- \simeq \check{\mathbf{E}}_S^- \simeq \mathbf{G}/\mathbf{B}$ and $\mathbf{Z}_S^-(\vec{s}) \simeq \mathbf{X}^{(w_\circ)}(\vec{s})$.

When $G = \operatorname{PGL}_n(\mathbf{F})$, so that $W = S_n$, and β is the positive braid on n strands defined by \vec{s} , the stack denoted $\mathcal{M}(\beta^{\circ})$ in [STZ17] is precisely $[\mathbf{X}^{(w_{\circ})}(\vec{s})/\mathbf{G}]$. Their Proposition 6.31 gives a decomposition of another stack $\mathcal{M}(\beta^{\succ})$ into substacks indexed by rulings of a Legendrian link β^{\succ} . At the same time,

$$\mathcal{M}(\beta^{\succ}) \simeq \mathcal{M}((\Delta\beta\Delta)^{\circ}) \simeq \mathcal{M}((\beta\Delta^{2})^{\circ}),$$

where Δ is the *half-twist*: the minimal positive braid that lifts $w_0 \in S_n$. (Note that $\mathcal{M}((\Delta \beta \Delta)^{\circ})$ is also isomorphic to $[\mathbf{X}^{(e)}(\vec{s})/\mathbf{G}]$.)

In this way, the varieties in our work generalize the stacks $\mathcal{M}(\beta^{\circ})$ and $\mathcal{M}(\beta^{\succ})$ in [STZ17]. The Deodhar-type decomposition of $\mathbf{Z}_{J,v}^{-}(\vec{s})$ into subvarieties $\mathbf{Z}_{J,v}^{-}(\vec{s})_{\vec{\omega}}$ seems to recover the ruling decomposition of $\mathcal{M}(\beta^{\succ})$ in [STZ17]. We leave the precise relationship to future work.

Remark 5.11. In §5.3, the passage from $\mathbf{X}^{(v)}$ to $\mathbf{X}_{\square}^{(v)}$ to $\mathbf{R}^{(v)}$ encoded a passage from \mathbf{G} -symmetry to \mathbf{B} -symmetry to \mathbf{B} -symmetry. Instead of relating the Steinberg varieties and their strata to the \mathbf{B} -varieties $\mathbf{X}^{(v)}$, we could have used \mathbf{B} -varieties

$$\mathbf{Z}_{J,\square}^{-}(\vec{s}) = \{ (\vec{g}\mathbf{B}, u) \in \mathbf{O}(\vec{s}) \times \mathbf{U}_{J} \mid g_{\ell}\mathbf{B} = ug_{0}\mathbf{B} \},$$

$$\mathbf{Z}_{J,\square}^{+}(\vec{s}) = \{ (\vec{g}\mathbf{B}, u) \in \mathbf{O}(\vec{s}) \times \mathbf{V}_{J} \mid g_{\ell}\mathbf{B} = ug_{0}\mathbf{B} \}$$

and corresponding strata cut out by conditions of the form $\mathbf{P}_J h \mathbf{B} = \mathbf{P}_J v \mathbf{B}$. This is the approach in our FPSAC 2025 abstract.

Analogues of Proposition 5.7 and Corollary 5.9 hold for the \square versions. In fact, the **G**-equivariant cohomology of $\mathbf{Z}_{J,v}^{-}(\vec{s})_{\vec{\omega}}$ matches the **B**-equivariant cohomology of its \square version, by construction.

6. Parking Numbers

6.1. In this subsection and the next, (W, S) denotes an arbitrary irreducible, finite Coxeter system with Coxeter number h. We write V to denote the irreducible reflection representation of W, and χ_{V} to denote its character.

For any integer p, let V_p denote the *Galois conjugate* of V that has the same underlying vector space but character given by $\chi_{V_p}(w) = \chi_V(w^p)$. If W is crystallographic and p is coprime to h, then $V_p \simeq V$.

For any integer $k \geq 0$, we set $[k]_q = 1 + q + \cdots + q^{k-1}$. Generalizing the formula in §1.5 for the crystallographic case, we define the rational parabolic q-parking numbers of (W, p, J) to be

(6.1)
$$\operatorname{Park}_{W,p}^{J,\pm}(q) = \prod_{i=1}^{|J|} \frac{[p \pm e_i^{J,p}]_q}{[d_i^J]_q},$$

where $d_1^J, \ldots, d_{|J|}^J$ are the fundamental degrees of W_J , and $e_1^{J,p}, \ldots, e_{|J|}^{J,p}$ are the exponents or fake degrees of the W_J -action on V_p^* , as defined in [BR11].

Recall that a Coxeter word in S is a word \vec{c} formed by placing the elements of S in any order. We write \vec{c}^p for the concatenation of p copies of \vec{c} . The goal of this section is the following identity, which implies Corollary 1.4 in the $q \to 1$ limit.

Theorem 6.1. If W is crystallographic, then for any Coxeter word \vec{c} in S, integer p > 0 coprime to h, and subset $J \subseteq S$, we have

$$\operatorname{Park}_{W,p}^{J,\pm}(\boldsymbol{q}) = \frac{1}{(\boldsymbol{q}-1)^{|S|}} \sum_{v \in W^{J,\mp}} \sum_{\vec{\omega} \in \mathcal{D}^{(v)}(\vec{c}^p)} \boldsymbol{q}^{|\mathsf{d}_{\vec{\omega}}|} (\boldsymbol{q}-1)^{|\mathsf{e}_{\vec{\omega}}|}.$$

(Note the sign flip.)

Conjecture 6.2. Theorem 6.1 generalizes to any irreducible finite Coxeter system when $\operatorname{Park}_{W,n}^{J,\pm}(q)$ is defined using (6.1).

6.2. From Products to Traces. We continue to allow non-crystallographic W. Let \mathbf{K} be a splitting field for W, so that V_p is defined over \mathbf{K} . When W is crystallographic, we can take $\mathbf{K} = \mathbf{Q}$.

There is a graded representation $\mathsf{L}_{p/h} = \bigoplus_i \mathsf{L}_{p/h}^i$ of W that may be called the rational parking space for (W,p), in the spirit of [ARR15, ALW16], as its graded dimension is $[p]_q^r$. Explicitly, $\mathsf{L}_{p/h}$ is the representation of W underlying the simple spherical module of the rational Cherednik algebra of W at parameter p/h, equipped with a shift of the W-stable grading arising from the Euler element.

We view the graded character of $\mathsf{L}_{p/h}$ as a $\mathbf{K}[q]$ -valued trace on $\mathbf{K}W$. To describe it explicitly, let $\mathsf{S} = \bigoplus_i \mathsf{S}^i$ and $\bigwedge_p = \bigoplus_j \bigwedge_p^j$, where

$$S^i := \operatorname{Sym}^i(V^*)$$
 and $\bigwedge_p^j := \bigwedge^j(V_p^*)$.

Then for all $w \in W$, we have

(6.2)
$$\sum_{i} \mathbf{q}^{i} \operatorname{tr}(w \mid \mathsf{L}_{p/h}^{i}) = \left[\sum_{i,j} \mathbf{q}^{i} t^{j} \operatorname{tr}(w \mid \mathsf{S}^{i} \otimes \mathsf{\Lambda}_{p}^{j}) \right] \Big|_{t \to -\mathbf{q}^{p}}$$
$$= \frac{\det(1 - \mathbf{q}^{p} w \mid \mathsf{V}_{p}^{*})}{\det(1 - \mathbf{q} w \mid \mathsf{V}^{*})}.$$

This formula arises from a so-called BGG-resolution of $L_{p/h}$ by Verma modules for the rational Cherednik algebra, whose underlying W-representations take the form $S \otimes \bigwedge^j$.

Proposition 6.3. For any integer p > 0 coprime to h and subset $J \subseteq S$, we have

$$\operatorname{Park}_{W,p}^{J,\pm}(\boldsymbol{q}) = \sum_{i} \boldsymbol{q}^{i} \operatorname{tr}(e_{J,\pm} \mid \mathsf{L}_{p/h}^{i}).$$

Proof. We only do the + case, as the - case is similar.

Set $U = V_p$. Using the reflecting hyperplanes for S, we can decompose the W_J -action on V as a direct sum $V \simeq V_J \oplus V_J^{\mathsf{T}}$, where V_J^{T} is a (|S| - |J|)-fold power of the trivial representation. Applying the Galois twist and grading shift that take V to

 $\mathsf{U}(-p)$, we get a direct sum $\mathsf{U}(-p) \simeq \mathsf{U}_J(-p) \oplus \mathsf{U}_J^\intercal(-p)$, where $\mathsf{U}_J(-p) \simeq (\mathsf{V}_J)_p(-p)$ and $\mathsf{U}_J^\intercal(-p)$ remains a (|S| - |J|)-fold power of the trivial representation.

Therefore, the fake degrees for $\mathsf{U}(-p)$ as a representation of W_J are formed by taking the |J| fake degrees for $(\mathsf{V}_J)_p$, appending |S|-|J| zeroes, and shifting everything up by p. In particular, $\mathsf{U}(-p)$ satisfies the hypothesis in Theorem 3.1 and Corollary 3.2 of [OS80] that the sum of the fake degrees is equal to the fake degree for its |S|th exterior power. We deduce that $(\mathsf{S} \otimes \bigwedge \mathsf{U}(-p))^{W_J}$ remains isomorphic to an exterior algebra over S^{W_J} . So we arrive at the formula

$$\sum_{i,j} \boldsymbol{q}^i t^j \dim (\mathsf{S}^i \otimes \bigwedge_p^j)^{W_J} = \prod_i \frac{1 + t \boldsymbol{q}^{p + e_i^J}}{1 - \boldsymbol{q}^{d_i^J}},$$

which gives the desired product formula at $t \to -1$.

Example 6.4. Taking $J = \emptyset$ and J = S in Proposition 6.3, we recover the formulas

$$\operatorname{Cat}_{W,p}(q) = \sum_{i} q^{i} \dim (\mathsf{L}_{p/h}^{i})^{W} \quad \text{and} \quad [p]_{q}^{r} = \sum_{i} q^{i} \dim \mathsf{L}_{p/h}^{i},$$

respectively.

6.3. From Traces to Cells. Recall the notation $T_{\vec{c}} \in H_W$ from §5.5. In [Tri21], the first author showed that the value at $T_{\vec{c}}$ of the trace on H_W corresponding to τ_G is the graded character of $\mathsf{L}_{p/h}$ up to a shift. In our notation, this is the identity

(6.3)
$$\tau_G(w \otimes T_{\vec{c}}^p) = \sum_i q^i \operatorname{tr}(w \mid \mathsf{L}_{p/h}^i).$$

Now assume that W is crystallographic. Pick split semisimple G with Weyl group W. In this case,

$$\operatorname{Park}_{W,p}^{J,\pm}(\boldsymbol{q}) = \sum_{i} \boldsymbol{q}^{i} \operatorname{tr}(e_{J,\pm} \mid \mathsf{L}_{p/h}^{i}). \qquad \text{by Proposition 6.3}$$

$$= \tau_{G}(e_{J,\pm} \otimes T_{\vec{c}}^{p}) \qquad \text{by (6.3)}$$

$$= \frac{1}{(\boldsymbol{q}-1)^{|S|}} \sum_{v \in W^{J,\pm}} \boldsymbol{q}^{-\ell(v)} \tau(T_{\vec{c}}^{p} T_{v^{-1}} T_{v}) \qquad \text{by Theorem 1.2.}$$

Applying (5.7) to the last expression, we get Theorem 6.1.

7. Markov Traces and Kirkman Numbers

- 7.1. In this section, we prove Theorem 1.6 and Corollary 1.8. Along the way, we review Markov traces, the HOMFLYPT polynomial, and rational Kirkman polynomials. Unless otherwise specified, $W = S_n$ and $S = \{s_1, \ldots, s_{n-1}\}$, as in §4.6.
- 7.2. Markov Traces and HOMFLYPT. As explained in [Jon87] (in a different normalization), there is a unique family of traces

$$\mu_n: H_{S_n} \to \mathbf{Q}(q^{1/2})[a^{\pm 1}]$$

satisfying these conditions:

- (1) $\mu_1(1) = 1$.
- (2) For all $\beta \in H_{S_{n-1}}$, we have

$$\mu_{n+1}(\beta T_{s_n}^{\pm 1}) = (-a^{-1} \mathbf{q}^{1/2})^{\pm 1} \mu_n(\beta).$$

In particular, $\mu_{n+1}(\beta) = \frac{a-a^{-1}}{q^{1/2}-q^{-1/2}} \mu_n(\beta)$, due to the quadratic relation on T_{s_n} .

These traces give rise to an isotopy invariant of (tame) topological links.

Namely: Any topological braid on n strands β defines an element of H_{S_n} , which we again denote by β , via the map from the braid group to H_{S_n} that sends the ith positive simple twist σ_i to the element $q^{-1/2}T_{s_i}$. For instance, if $\vec{s}=(s_{i_1},\ldots,s_{i_\ell})$, then this map sends the positive braid $\sigma_{i_1}\cdots\sigma_{i_\ell}$ to the element $q^{-\ell}T_{\vec{s}}$. At the same time, closing up β by wrapping it around a solid torus, then embedding it into 3-space, defines a link $\hat{\beta}$ up to isotopy, called the *closure* of β . Ocneanu showed that if $e(\beta) \in \mathbf{Z}$ is the *writhe* of β , meaning its length with respect to positive simple twists, then

$$\mathbf{P}(\hat{\beta}) := (-a)^{e(\beta)} \mu_n(\beta) \in \mathbf{Q}(q^{1/2})[a^{\pm 1}]$$

only depends on $\hat{\beta}$.

The Laurent polynomial $\mathbf{P}(\hat{\beta})$ is now called its reduced HOMFLYPT polynomial, after its discoverers. (The "O" stands for Ocneanu; the adjective "reduced" means that the normalization satisfies $\mathbf{P}(\text{unknot}) = 1$.) The traces μ_n are called Markov traces, as condition (2) in their definition corresponds to the so-called second Markov move on braids. For further details, see [Jon87].

In [Gom06], Y. Gomi introduced a uniform generalization of the traces μ_n to finite Coxeter groups W. In [WW15], Webster–Williamson gave a construction of Gomi's traces from weight filtrations on the cohomology of mixed sheaves. Building on their work, the main result of [Tri21] relates a categorification of Gomi's traces to a Springer-type action of W on the weight-filtered, G-equivariant cohomology of the Steinberg varieties $\mathbf{Z}_{\emptyset}^-(\vec{s}) = \mathbf{Z}_{\emptyset}^+(\vec{s})$.

7.3. **Individual** a-**Degrees.** Induction on $|e(\beta)|$ shows that if $\beta \in H_{S_n}$ arises from a topological braid, then the only exponents of a that can occur in $\mu(\beta)$ are

$$-n+1, -n+3, \ldots, n-1.$$

For $0 \le k \le n-1$, we define $\mu_n^{(k)}: H_{S_n} \to \mathbf{Q}(q^{1/2})$ by

$$\mu_n^{(k)}(\beta) = \mathbf{Q}(q^{1/2})$$
-coefficient of $a^{-n+1+2k}$ in $\mu_n(\beta)$.

By linearity, this is still a trace.

When G is (split) semisimple of type A_{n+1} , the formula for categorified traces in [Tri21] decategorifies to a formula relating $\mu_n^{(k)}$ to τ_G . To state it, let $e_{\wedge^k} \in \mathbf{Q}S_n$ be the symmetrizer for the kth exterior power of the reflection representation $\mathsf{V} \simeq \mathsf{V}^*$.

For any finite, irreducible Coxeter group W of rank r = |S|, such elements $e_{\wedge^k} \in \mathbf{Q}W$ may be defined for $0 \le k \le r$ through the formal identity

(7.1)
$$\frac{1}{|W|} \sum_{w \in W} \det(1 + tw \mid V) = \sum_{k=0}^{r} t^k e_{\wedge^k}.$$

Note that $e_{\wedge^0} = e_{S,+}$ and $e_{\wedge^{n-1}} = e_{S,-}$, in the notation of §4.4. For G (split) semisimple of type A_{n+1} , we have:

(7.2)
$$\mu_n^{(k)} = (q-1)^{n-1} \tau_G(e_{\wedge^k} \otimes -).$$

To summarize the proof: One starts from the analogue of (4.2) with G, V in place of GL_n , V_n , then rearranges terms using (7.1) to arrive at the character-theoretic formula for $\mu_n^{(k)}$ in [Gom06, §4.3].

Meanwhile, in [BT22], Bezrukavnikov–Tolmachov gave a formula that (in our normalization) relates $\mu_n^{(k)}$ to $\mu_n^{(n-1)}$. To state it, we need the *multiplicative Jucys–Murphy elements* $JM_k \in H_{S_n}$ defined by

$$JM_k = q^{1-k}T_{s_{k-1}\cdots s_2s_1}T_{s_1s_2\cdots s_{k-1}}$$
 for $1 \le k \le n$.

Let $e_i(X_1, ..., X_{n-1})$ be the elementary symmetric polynomial of degree i in variables $X_1, ..., X_{n-1}$. Then [BT22, Cor. 6.1.1] is the identity

(7.3)
$$\mu_n^{(k)}(\beta) = \mu_n^{(n-1)}(\beta e_{n-1-k}(JM_1, \dots, JM_{n-1})).$$

It turns out that $\mu_n^{(n-1)}$ is precisely the trace denoted τ in §1.3, as one can also deduce from (7.2) and Theorem 1.2.

Remark 7.1. Jucys–Murphy elements were originally defined in the context of the group rings $\mathbf{Z}S_n$. One can show [IO05, (3)] that

$$\frac{JM_k - 1}{q - 1} = \sum_{i=1}^{k-1} q^{i-k} T_{s_{k-1} \cdots s_{i+1}} T_{s_i} T_{s_{i+1} \cdots s_{k-1}}.$$

At $q \to 1$, the right-hand side specializes to the kth classical Jucys–Murphy element in $\mathbf{Z}S_n$. These elements generate a maximal commutative subalgebra of $\mathbf{Z}S_n$. Similarly, the JM_k generate a maximal commutative subalgebra of H_{S_n} [IO05, Prop. 1].

7.4. **Jucys–Murphy Products.** From (7.3), we reduce Theorem 1.6 to:

Theorem 7.2. For all k, we have

$$e_{n-1-k}(JM_1,\ldots,JM_{n-1}) = \sum_{\mathsf{Des}(v)=I_k} q^{-\ell(v)} T_{v^{-1}} T_v,$$

where $I_k = \{s_1, ..., s_{n-1-k}\} \subseteq S$.

Example 7.3. Taking k = 0 above, we get

$$JM_1\cdots JM_{n-1}=\mathbf{q}^{-\ell_S}T_{w_o}^2.$$

Through this identity, (7.3) implies that the "lowest" and "highest" a-degrees of μ_n are related by the full twist $\Delta^2 := q^{-\ell_S} T_{w_0}^2$: explicitly,

$$\mu_n^{(0)}(\beta) = \mu_n^{(n-1)}(\beta \Delta^2),$$

an identity originally discovered by Kálmán [Kál09]. Compare to Remark 5.10.

The proof of Theorem 7.2 amounts to Lemmas 7.4–7.6 below. As preparation, for any subset $I \subseteq \{1, \ldots, n-1\}$, let

$$JM(I) = \prod_{i \in I}^{\downarrow} JM_i \in H_{S_n}$$
 and $c(I) = \prod_{i \in I}^{\downarrow} (s_1 \cdots s_i) \in S_n$,

where the notation $\prod_{i\in I}^{\downarrow}$ means the product over I in decreasing order.

Lemma 7.4. For any subset $I \subseteq \{1, ..., n\}$, we have

$$JM(I) = q^{-\ell(c(I))} T_{c(I)^{-1}} T_{c(I)}.$$

Proof. Let $i_1 < i_2 < \cdots < i_j$ be the elements of I. For any i, k with $1 \le k < i \le n-1$, we have the relations

$$T_{s_k}T_{s_i\cdots s_2s_1} = T_{s_i\cdots s_2s_1}T_{s_{k+1}}$$
 and $T_kT_{s_1s_2\cdots s_i} = T_{s_1s_2\cdots s_i}T_{s_{k-1}}$,

as one can check from braid diagrams. Using these relations, we can move the prefixes $T_{s_1s_2\cdots s_i}$ in each factor JM_{i_k} of JM(I) from right to left, through each of $JM_{i_{k+1}}$, ..., JM_{i_j} , giving the result.

Example 7.5. In what follows, we omit brackets from I for clarity. When n = 4 and |I| = 2, we have

$$JM(1,2) = \mathbf{q}^{-3}T_2T_1^2T_2 \cdot T_1^2, \qquad c(1,2) = (s_1s_2) \cdot s_1,$$

$$JM(1,3) = \mathbf{q}^{-4}T_3T_2T_1^2T_2T_3 \cdot T_1^2, \qquad c(1,2) = (s_1s_2s_3) \cdot s_1,$$

$$JM(2,3) = \mathbf{q}^{-5}T_3T_2T_1^2T_2T_3 \cdot T_2T_1^2T_2, \qquad c(2,3) = (s_1s_2s_3) \cdot (s_1s_2),$$

Lemma 7.4 says that

$$JM(1,2) = q^{-3}(T_1T_2T_1) \cdot (T_1T_2T_1),$$

$$JM(1,3) = q^{-4}T_1 \cdot (T_3T_2T_1) \cdot (T_1T_2T_3) \cdot T_1,$$

$$JM(2,3) = q^{-5}(T_2T_1) \cdot (T_3T_2T_1) \cdot (T_1T_2T_3) \cdot (T_1T_2).$$

Lemma 7.6. For $1 \le j \le n$. we have

$$\{c(I) \mid |I| = j\} = \{v \in S_n \mid \mathsf{Des}(v) = \{s_1, \dots, s_j\}\}.$$

Proof. Let $J = \{s_1, \ldots, s_{j-1}\}$ and $J' = J \cup \{s_{j+1}, \ldots, s_{n-1}\}$ in what follows. We claim that any element $v \in W$ with $\mathsf{Des}(v) = J$ must take the form $w_{J\circ}v'$, where v' is a minimal-length right coset representative of $W_{J'} \simeq S_j \times S_{n-j}$. Indeed, $\mathsf{Des}(v) \supseteq J$ forces $w_{J\circ}$ to be a left factor of v, and if $v = w_{J\circ}v'$, then the reverse inclusion $\mathsf{Des}(v) \subseteq J$ forces the condition on v'.

Note that there are exactly $\binom{n}{j}$ elements of the form $w_{J\circ}v'$ with $v' \in W^{J',-}$. We claim that they are exactly the elements c(I) with |I| = j. Indeed, if we write $i_1 < i_2 < \cdots < i_j$ to denote the elements of I, then c(I) has the inversion set illustrated in Figure 1. This calculation shows that $\prod_{i \in I}^{\downarrow}$ is reduced and that $\mathsf{Des}(c(I)) = J$. As there are $\binom{n}{j}$ choices for I such that |I| = j, the corresponding elements c(I) exhaust the elements v such that $\mathsf{Des}(v) = J$.

FIGURE 1. The inversions of c(I), where I consists of $i_1 < \cdots < i_j$ and $J = \{1, \ldots, j\}$. The ith diagonal from bottom left to top right consists of the transpositions $(i, i+1), (i, i+2), \ldots, (i, n+1)$. The inversions in the bottom left triangle are the inversions of $w_{J\circ}$. The remaining inversions take the form $(k, j+2), (k, j+3), \ldots, (k, i_k+j-k+1)$. ???

Corollary 7.7. For any word \vec{s} in $S = \{s_1, \ldots, s_{n-1}\}$, we have

$$\mu_n^{(k)}(T_{\vec{s}}) = \frac{1}{(q-1)^{n-1}} \sum_{\mathsf{Asc}(v) = I_k} \sum_{\vec{\omega} \in \mathcal{D}^{(v)}(\vec{s})} q^{|\mathbf{d}_{\vec{\omega}|}|} (q-1)^{|\mathbf{e}_{\vec{\omega}|}|}.$$

Proof. Combine (7.3), Theorem 7.2, and (5.7).

7.5. **Kirkman Numbers.** For any finite, irreducible Coxeter group W of rank r and Coxeter number h, and integer p > 0 coprime to h, we define the *rational Kirkman polynomials* of (W, p) to be

$$\operatorname{Kirk}_{W,p}^{(k)}(\boldsymbol{q}) = \frac{\det(1 - \boldsymbol{q}^p e_{\wedge^k} \mid \mathsf{V}_p^*)}{\det(1 - \boldsymbol{q} e_{\wedge^k} \mid \mathsf{V}^*)} \quad \text{for } 0 \le k \le r.$$

Equivalently, by (7.1),

$$\sum_{k=0}^{r} t^k \operatorname{Kirk}_{W,p}^{(k)}(\boldsymbol{q}) = \frac{1}{|W|} \sum_{w \in W} \frac{\det(1 + tw \mid \mathsf{V}^*) \det(1 - \boldsymbol{q}^p w \mid \mathsf{V}_p^*)}{\det(1 - \boldsymbol{q}w \mid \mathsf{V}^*)}.$$

When p = h + 1, this definition recovers the Kirkman polynomials of W introduced in [ARR15, §9.2]. We define the rational Kirkman numbers of (W, p) by $\operatorname{Kirk}_{W,p}^{(k)} := \operatorname{Kirk}_{W,p}^{(k)}(1)$. Now the following identity implies Corollary 1.8 in the $q \to 1$ limit:

Theorem 7.8. Take $W = S_n$ and $S = \{s_1, \ldots, s_{n-1}\}$. Then for any Coxeter word \vec{c} , integer p > 0 coprime to n, and integer k, we have

$$\operatorname{Kirk}_{W,p}^{(k)}(\boldsymbol{q}) = \frac{1}{(\boldsymbol{q}-1)^{n-1}} \sum_{\operatorname{\mathsf{Asc}}(v) = I_k} \sum_{\vec{\omega} \in \mathcal{D}^{(v)}(\vec{c}^p)} \boldsymbol{q}^{|\mathsf{d}_{\vec{\omega}}|} (\boldsymbol{q}-1)^{|\mathsf{e}_{\vec{\omega}}|}.$$

Proof. Observe that

$$\begin{aligned} \operatorname{Kirk}_{W,p}^{(k)}(\boldsymbol{q}) &= \tau_G(e_{\wedge^k} \otimes T_{\vec{c}}^p) & \text{by (6.2) and (6.3)} \\ &= \frac{1}{(\boldsymbol{q}-1)^{n-1}} \, \tau[\zeta_{I_k}^-](T_{\vec{c}}^p) & \text{by Theorem 1.6} \\ &= \frac{1}{(\boldsymbol{q}-1)^{n-1}} \sum_{\mathsf{Des}(v)=I_k} \boldsymbol{q}^{-\ell(v)} \, \tau(T_{\vec{c}}^p T_{v^{-1}} T_v). \end{aligned}$$

In the expression above,

$$\sum_{\mathsf{Des}(v)=I_k} \mathbf{q}^{-\ell(v)} \, \tau(T_{\vec{c}}^p T_{v^{-1}} T_v) = \sum_{\mathsf{Des}(v)=I_k} \sum_{\vec{\omega} \in \mathcal{D}^{(vw_{\circ})}(\vec{c}^p)} \mathbf{q}^{|\mathsf{d}_{\vec{\omega}}|} (\mathbf{q} - 1)^{|\mathsf{e}_{\vec{\omega}}|} \quad \text{by (5.7)}$$

$$= \sum_{\mathsf{Asc}(v)=I_k} \sum_{\vec{\omega} \in \mathcal{D}^{(v)}(\vec{c}^p)} \mathbf{q}^{|\mathsf{d}_{\vec{\omega}}|} (\mathbf{q} - 1)^{|\mathsf{e}_{\vec{\omega}}|},$$

where the last step is the fact that $\ell(sv) < \ell(v)$ if and only if $\ell(svw_{\circ}) > \ell(svw_{\circ})$. \square

References

- [ALW16] Drew Armstrong, Nicholas A. Loehr, and Gregory S. Warrington. Rational parking functions and Catalan numbers. *Ann. Comb.*, 20(1):21–58, 2016. doi:10.1007/s00026-015-0293-6.
- [ARR15] Drew Armstrong, Victor Reiner, and Brendon Rhoades. Parking spaces. Adv. Math., 269:647–706, 2015. doi:10.1016/j.aim.2014.10.012.
- [BM83] Walter Borho and Robert MacPherson. Partial resolutions of nilpotent varieties. In Analysis and topology on singular spaces, II, III (Luminy, 1981), volume 101-102 of Astérisque, pages 23–74. Soc. Math. France, Paris, 1983.
- [BMR98] M. Broué, G. Malle, and R. Rouquier. Complex reflection groups, braid groups, Hecke algebras. J. Reine Angew. Math., 500:127–190, 1998.
- [BR11] David Bessis and Victor Reiner. Cyclic sieving of noncrossing partitions for complex reflection groups. Ann. Comb., 15(2):197–222, 2011. doi:10.1007/s00026-011-0090-9.
- [BT22] Roman Bezrukavnikov and Kostiantyn Tolmachov. Monodromic model for Khovanov-Rozansky homology. *J. Reine Angew. Math.*, 787:79–124, 2022. doi:10.1515/crelle-2022-0008.
- [Car93] Roger W. Carter. Finite groups of Lie type. Wiley Classics Library. John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters, Reprint of the 1985 original, A Wiley-Interscience Publication.
- [Car95] R. W. Carter. On the representation theory of the finite groups of Lie type over an algebraically closed field of characteristic 0 [MR1170353 (93j:20034)]. In *Algebra, IX*, volume 77 of *Encyclopaedia Math. Sci.*, pages 1–120, 235–239. Springer, Berlin, 1995. doi:10.1007/978-3-662-03235-0\ 1.
- [Deo85] Vinay V. Deodhar. On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells. *Invent. Math.*, 79(3):499–511, 1985. doi:10.1007/BF01388520.

- [GLTW24] Pavel Galashin, Thomas Lam, Minh-Tâm Trinh, and Nathan Williams. Rational non-crossing Coxeter-Catalan combinatorics. *Proc. Lond. Math. Soc.* (3), 129(4):Paper No. e12643, 50, 2024. doi:10.1112/plms.12643.
- [Gom06] Yasushi Gomi. The Markov traces and the Fourier transforms. J. Algebra, 303(2):566–591, 2006. doi:10.1016/j.jalgebra.2005.09.034.
- [GP00] Meinolf Geck and Götz Pfeiffer. Characters of finite Coxeter groups and Iwahori-Hecke algebras, volume 21 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000.
- [IO05] A. P. Isaev and O. V. Ogievetsky. On representations of Hecke algebras. Czechoslovak J. Phys., 55(11):1433-1441, 2005. doi:10.1007/s10582-006-0022-9.
- [Jon87] V. F. R. Jones. Hecke algebra representations of braid groups and link polynomials. *Ann. of Math.* (2), 126(2):335–388, 1987. doi:10.2307/1971403.
- [Jon90] Lenny K. Jones. Centers of generic Hecke algebras. Trans. Amer. Math. Soc., 317(1):361–392, 1990. doi:10.2307/2001467.
- [Kál09] Tamás Kálmán. Meridian twisting of closed braids and the Homfly polynomial. Math. Proc. Cambridge Philos. Soc., 146(3):649-660, 2009. doi:10.1017/S0305004108002016.
- [Kaw75] Noriaki Kawanaka. Unipotent elements and characters of finite Chevalley groups. Osaka Math. J., 12(2):523-554, 1975. URL: http://projecteuclid.org/euclid.ojm/ 1200757873.
- [Las06] Alain Lascoux. The Hecke algebra and structure constants of the ring of symmetric polynomials, 2006. arXiv:0602379.
- [Lus84] George Lusztig. Characters of reductive groups over a finite field, volume 107 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1984. doi:10.1515/ 9781400881772.
- [OS80] Peter Orlik and Louis Solomon. Unitary reflection groups and cohomology. *Invent. Math.*, 59(1):77–94, 1980. doi:10.1007/BF01390316.
- [Sho88] Toshiaki Shoji. Geometry of orbits and Springer correspondence. Number 168, pages 9, 61–140. 1988. Orbites unipotentes et représentations, I.
- [STZ17] Vivek Shende, David Treumann, and Eric Zaslow. Legendrian knots and constructible sheaves. *Invent. Math.*, 207(3):1031–1133, 2017. doi:10.1007/s00222-016-0681-5.
- [Tri21] Minh-Tâm Quang Trinh. From the Hecke category to the unipotent locus, 2021. v2. arXiv:2106.07444.
- [Tri22] Minh-Tâm Quang Trinh. Unipotent elements and Kálmán-Serre duality, 2022. v2. arXiv:2210.09051.
- [WW11] Ben Webster and Geordie Williamson. The geometry of Markov traces. Duke Math. J., 160(2):401-419, 2011. doi:10.1215/00127094-1444268.
- [WW15] Jinkui Wan and Weiqiang Wang. Frobenius map for the centers of Hecke algebras. *Trans. Amer. Math. Soc.*, 367(8):5507–5520, 2015. doi:10.1090/S0002-9947-2014-06211-9.

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, PO Box 208283, New Haven, CT 06520 *Email address*: minh-tam.trinh@yale.edu

University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080 $\it Email\ address:\ nathan.f.williams@gmail.com$