

UNIVERSITÄT BERN

Whole genome assembly using long read sequences

Heidi Tschanz-Lischer, Interfaculty Bioinformatics Unit (IBU)

11.06.2019

Why do we need whole genome sequences?

UNIVERSITÄT BERN

- Sequencing the genome is an important step towards understanding it
- Better understand variations within and between species
- Makes it easier to study
 - Cause of diseases
 - Morphological variation
 - Environmental adaptation
 - Genomic basis for evolutionary speciation
 - Gene expression divergence
 - Epigenetic modifications
 - ...

Lower coverage required → population genomic or genome wide association studies

Simplify bioinformatics analyses

Genome sequencing costs dropped

UNIVERSITÄT BERN

Next-Generation Sequencing

- Highly parallelized sequencing
- Reduces cost and time

→ main challenge in genome sequencing has shifted from data generation to reconstruction of genomes

Illumina

UNIVERSITÄT BERN

Sequencing by synthesis (termination)

- 50-300 bp length (PE)
- Error rate: 0.1%
- Less susceptible to homopolymer errors
- Under-representation in AT-rich and GC-rich regions
- Tendency towards substitution errors
 - High troughput: 15-3000 Gb

UNIVERSITÄT BERN

- Slowed down DNA polymerase
- Measure colored light emission

Single-molecule real-time (SMRT), PacBio

UNIVERSITÄT BERN

- Average read length (Sequel II): ~50 kb (up to reads of 175 kb length)
- Error rate: 10-15%
- Bias towards indel errors
- Errors are supposed to be random
 - → high coverage can overcome high error rate
- Higher cost
- Unique circular template
 - → allows each template to be sequenced multiple times
 - → create a circular consensus sequence (HiFi reads)
 - → reduces error rate to <1% (10 passes: ~99.8% accuracy)

Oxford Nanopore sequencing

UNIVERSITÄT BERN

Nano-scale pores

- Drag DNA/RNA through the pore
- Electrical current flows through the hole
 - → disruption is measured if DNA pass through
- Shifts in voltage
 - → characteristic for particular sequence in pore (k-mer)
 - → Modifications to the primary DNA or RNA (e.g. cytosine methylation) can be detected directly
- Problem:
 Multiple bases influence the current passing through the pore

Oxford Nanopore sequencing

UNIVERSITÄT BERN

MinION: a portable sequencing device

- 512 channels
- Small (USB based device), runs off a personal computer
- real-time sequencing data (~150bp per seconds; 500bps fast mode)
 → no fixed run time: Run until... sufficient data (15-30 Gb)
- Long reads >6 kb (up to 2mb) → DNA molecule length dependent
- Error rate: 5-12% (dominated by indels, homopolymers)

PromethION: small benchtop system

contains docking for 48 flow cells, each with 3000 nanopores
 → Total: 144,000 nanopores (< 4.8-8.6 Tb)

VolTRAX v2: programmable, portable device for automatic sample and library preparation

Accuracy %

UNIVERSITÄT BERN

De novo assembly:

- Reconstructing the original DNA sequence from fragmented reads
- is like a big and complicated jigsaw puzzle
 - Millions of small pieces
 - Missing pieces
 - Some pieces have mistakes (sequencing errors)
 - Polymorphisms (diploid)
 - Long repetitive parts
 - → Different algorithms and assemblers developed (e.g. ABySS, SOAPdenovo2, ALLPATHS-LG, Falcon, Canu, ...)

De novo assembly

UNIVERSITÄT BERN

What is needed for a good assembly?

- Low heterozygosity DNA
- High coverage
- High read lengths
- Good read quality

Current sequencing technologies do not have all

- Illumina: good quality reads, but short
- PacBio / Nanopore: very long reads, but lower quality

→ Genome assembly is still a difficult problem and requires high computational resources

Choosing assembly strategy

UNIVERSITÄT BERN

The choice of algorithms depends on

- how much long reads (PacBio/Nanopore) can be obtained
- how much short read data are available

ABySS,	>80x	short reads		
SOAPdenovo2, ALLPATHS-LG, IDBA, Unicycler	Short read de novo assembly		(assembly polishing)	Pilon
		Hybrid assembly		
PBJelly 2, LINKS	Gap filling, scaffolding, Assembly upgrade	hybridSPAdes, dbg2olc, pacBioToCA, PBcR, ALLPATHS-LG, Unicycler	Long reads de novo assembly	HGAP4, Shasta Miniasm, Unicycler, Flye, Falcon, Canu
	<5x	Long reads	>50x	

UNIVERSITÄT BERN

HGAP: Hierarchical Genome Assembly Process (https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP)

- PacBio, included in the SMART Analysis software (GUI based)
- developed to allow the complete and accurate assembly of bacterial sized genomes (<100 Mb)
- 3 step process
 - Preassembly: generate long and highly accurate reads
 - Assembly: Overlap-layout-consensus (OLC)
 - Consensus polishing: reduce remaining Indels and SNP errors (Quiver)

UNIVERSITÄT BERN

Shasta (https://github.com/chanzuckerberg/shasta)

- Nanopore reads
- Very fast and simple to use
- Default parameters optimized for coverage ~60x
- Output assembly in FASTA and GFA 1.0 (assembly graphs)
- RAM requirements: around 5-8 bytes per input base
- Early indications are that Shasta accuracy is at least comparable to alternative assemblers
- Designed for de novo assembly of human genomes
 - RAM: 1 TB (60x coverage)
 - Runtime: 6 hours (128 virtual CPUs)

UNIVERSITÄT BERN

Miniasm (https://github.com/lh3/miniasm)

- Very fast OLC-based (overlap-layout-consensus) de novo assembler for noisy long reads
- Outputs only assembly graphs (GFA format) → no consensus calling

Unicycler (https://github.com/rrwick/Unicycler)

- Illumina-only (SPAdes optimizer), hybrid or long-read-only (miniasm + Racon) assemblies
- Can cope with very repetitive genomes
- Not especially fast, but circularizes genomes without a separate tool (e.g. Circlator)

Both: → for bacterial genomes

- → PacBio or Nanopore reads
- → easy and straight forward to use

UNIVERSITÄT BERN

Flye (https://github.com/fenderglass/Flye)

- PacBio or Nanopore
- from small bacterial projects to large mammalian-scale assemblies
 - E. coli (4.6 Mb) 50x PacBio: 2h CPU time, 2 Gb RAM
 - Human (2.9 Gb) 30x PacBio: 900h CPU time, 300 Gb RAM
 - Human (2.9 Gb) 35x Nanopore: 5000h CPU time, 600 Gb RAM
- complete pipeline: raw reads → polished contigs
- Include special mode for metagenome assembly
- Easy and straight forward to use

b UNIVERSITÄT BERN

FALCON / pb-assembly (https://github.com/PacificBiosciences/pb-assembly)

- PacBio Assembly tool Suite
- diploid-aware assembler → follows HGAP
- optimized for large genome assembly
- >30-50x per haplotype (highly heterozygous diploid → require the double)
- extensive configuration file required
 - not easy to understand parameters
 - A few example files → can be used as a basis for modification

FALCON-Unzip

- phase the genome and perform phased-polishing with Arrow
- partially-phased primary contigs and fully-phased haplotigs (haplotypes)

UNIVERSITÄT BERN

Canu (fork of Celera Assembler; https://canu.readthedocs.io/en/latest/index.html)

- PacBio or Nanopore
- 3 phases: correction → trimming (get high-quality sequences) → assembly
- follows the hierarchical genome assembly process (HGAP)
- >30-60x
- automatically takes full advantage of grid systems (cluster) → submitting itself for execution
- · consensus sequences:
 - >99% identity for PacBio
 - >98% identity for Nanopore (accuracy varies depending on pore and basecaller version)
- Easy and straight forward to use
 - Good manual with recommendations for parameter values (PacBio, Nanopore, low coverage data)

Post-assembly correction

> improves quality and removes errors

UNIVERSITÄT BERN

Polish assembly with long reads

- Nanopore → Nanopolish:
 - calculates an improved consensus sequence
 - nanopolish call-methylation: predict methylated genomic bases
 - nanopolish variants: detect SNPs and indels
- PacBio → Arrow (former Quiver):
 - Get improved consensus → based on a hidden Markov model approach
 - get variant calls

Polish assembly with **Illumina reads**:

- Pilon.
 - Automatically improve draft assemblies (SNPs, small/large indels, gap filling, local misassemblies)
 - Find variations, including large event detection

Genome annotation

UNIVERSITÄT BERN

Bacteria

Prokka

- rapid prokaryotic genome annotation
- quickly annotate bacterial, archaeal and viral genomes
- Outputs standard-compliant files

RAST

- Rapid Annotation using Subsystem Technology
- fully-automated service for annotating complete or nearly complete bacterial and archaeal genomes
- Webservice (http://rast.theseed.org/FIG/rast.cgi)

Genome annotation

Eukaryotes

UNIVERSITÄT BERN

- RepeatMasker: screens genome for interspersed repeats and low complexity DNA sequences
- MAKER
 - Genome annotation pipeline → allow smaller projects to independently annotate their genomes
 - identifies repeats
 - aligns ESTs and proteins to a genome
 - produces ab-initio gene predictions
 - especially useful for projects with minimal bioinformatics expertise and computer resources
- PASA (Program to Assemble Spliced Alignments):
 - exploits spliced alignments of transcripts to automatically model gene structures and splice variations
- Augustus
 - find genes and their structures
 - can be used as an ab initio program → bases its prediction purely on the sequence.
 - also incorporate hints from extrinsic sources (e.g.: EST, MS/MS, protein alignments, ...)

Example

21

UNIVERSITÄT BERN

~2 My

Cichlid genome assembly

 Cichlid lineage of the East African Great Lakes is famous for forming large adaptive radiations in exceptionally short time

• Recently, several cichlid genomes were published (Brawand et al. 2014, Feulner et al. 2018)

→ Improved genome will be useful for future studies of adaptation and speciation of Lake Victoria cichlids

Cichlid genome resources

Pundamilia nyererei

UNIVERSITÄT BERN

PunNye1.0 (Broad Institute):

Nb scaffolds: 7,236

N50: 2.5 Mb

• Total length: 830.1 Mb

• Total length: 698.8 Mb (without N)

- → 126x Illumina read
- → ALLPATHS-LG

PunNye2.0 (FeuIner et al.):

• Nb scaffolds: 6,876

• N50: 29.8 Mb

• Total length: 856.2 Mb

• Total length: 698.8 Mb

(without N)

- → Linkage map 1,597 SNP markers
- → ALLMAPS

Raw data

UNIVERSITÄT BERN

PacBio (Sequel)

• Nb reads: 4,020,155

• Min length: 50 bp

• Max length: 143,514 bp

Mean length: 10,538 bp

Total length: 42.35 Gb → estimated coverage 42.7x

Illumina reads

4 closely related samples (380bp insertion):

• Nb reads: 520,955,224

Total length: 78.14 Gb → estimated coverage ~78.7x (each sample 15-20x)

SRA samples (used in original PunNye1.0 assembly):

• 3 kb libraries: 709,783,284 (72.2x coverage)

• 6-14 kb libraries: 721,087,418 (51.2x coverage)

• 40 kb FOSILLs4: 36,341,216 (3.7x coverage)

Pipeline – genome assembly

UNIVERSITÄT BERN

Nb reads: 4,020,155 Mean length: 10,538 bp

Total length: 42.36 Gb (~42.7x)

Nb reads: 2,228,798 Mean length: 13,505 bp

Total length: 30.10 Gb (~30.3x)

Nb contigs: 6,732 N50: 0.920 Mb Total length: 1.111 Gb

Nb contigs: 6,584 N50: 0.908 Mb

Total length: 1.083 Gb

24

Pipeline – genome assembly

UNIVERSITÄT BERN

Nb contigs: 6,584 N50: 0.908 Mb Total length: 1.083 Gb

Nb scaffolds: 6,250 N50: 1.212 Mb Total length: 1.085 Gb

Nb scaffolds: 5,753 N50: 27.607 Mb Total length: 1.130 Gb (without N: 1.083 Gb)

Nb contigs: 3,694 N50: 1.023 Mb Total length: 1.033 Gb

Nb scaffolds: 3,335 N50: 1.324 Mb Total length: 1.036 Gb

Nb scaffolds: 2,832 N50: 29.594 Mb Total length: 1.074 Gb (without N: 1.033 Gb)

Assembly comparison

UNIVERSITÄT BERN

Assembly comparison

UNIVERSITÄT BERN

Assembly comparison

UNIVERSITÄT BERN

	Stats	Pnyererei2	canu	falcon
QUAST				
	nb scaffolds	6'876	5'753	2′832
	N50	29'830'996	27'606'787	29'593'783
	NG50	27'967'145	28'136'703	31'084'370
	max length	60'199'168	62'610'257	55'908'494
	total length	856'242'559	1′130′373′166	1'073'822'959
	total length without N	698'778'000	1′083′432′443	1'032'560'317
	N's per 100kb	18'390	4′153	3′843
BUSCO	USCO			
	complete	2'498	2'485	2'527
	complete single copy	2'469	2′255	2′391
	complete duplicated	29	230	136
	fragmented	58	38	37
	missing	30	63	22

28

Conclusion

UNIVERSITÄ[.] BERN

- Long read sequences are important for high quality draft genomes
- >50x coverage is required for long reads only assemblies
 - → still expensive for large genomes, but prices will come down even more in near future
- No single best assembly strategy/program, depends on
 - Input data (quality, coverage)
 - Species (heterozygosity, complexity)
- Assembly evaluations are not straight forward
 - Longer assembles (higher N50/NG50) are not always the best assemblies
 - Always use a combination of metrics
 - Only a few tools work without a known reference (e.g.: BUSCO (Waterhouse et al. 2017), QUAST (Gurevich et al. 2013), ALE (Clark et al. 2013), REAPR (Hunt et al. 2013))