Ciencia de Datos y Políticas Públicas

Una introducción a la exploración, análisis y visualización de datos $Antonio\ Vazquez\ Brust$ 2019-04-22

Contents

	Ant	es de empezar	5 5
1		ué es la ciencia de datos?	7
_	1.1	¿Qué significa hacer ciencia de datos?	7
2	Una	a presentación a toda marcha de R	9
	2.1	Nuestro primer proyecto en R	9
	2.2	Un ejemplo de análisis paso a paso	12
	2.3	Visualización: la exploración gráfica de la información	14
	2.4	El resultado final	19
3	Por	niendo los datos en forma	21
	3.1	Primeros pasos al examinar un conjunto de datos nuevo	21
	3.2	Cruzando variables: la operación join	23
	3.3	Transformando los datos	25
4	Vis	ualización	37
	4.1	Una buena visualización para empezar: el $scatterplot$	37
	4.2	Ajustando color y tamaño	44
	4.3	Facetado	48
	4.4	Gráficos de barras	50
	4.5	Histogramas	57
	4.6	Preparando una visualización para compartir	60
	4.7	Otras visualizaciones	62
5	Mo	delado estadístico	65
	5.1	Regresión lineal simple	66
	5.2	Regresión con múltiples variables	80
6	Info	ormación geográfica y mapas	85
	6.1	Los datos georreferenciados	85
	6.2	Formatos de archivo	88
	6.3	Explorando un archivo con información geográfica	88
	6.4	Visualizando información geográfica	89
	6.5	Volcando en el mapa información de múltiples fuentes	98
	6.6	Combinando capas geográficas	104

4 CONTENTS

Éste manual es una "bifurcación" de Ciencia de Datos para Gente Sociable.

Su antecesor fue escrito para urbanistas, sociólogos, politólogas y otros entusiastas que se acercan al tema desde las Ciencias Sociales; éste manual también, pero ajustado a una audiencia en particular: empleados y funcionarios del Gobierno de la Ciudad de Buenos Aires.

Antes de empezar

Para practicar los ejemplos que se explicarán a lo argo del libro no hace falta ningún conocimiento previo de programación; todas las herramientas necesarias serán explicadas sobre la marcha.

Sólo es necesario instalar el lenguaje de programación R, y la interfaz gráfica RStudio Desktop.

6 CONTENTS

Chapter 1

¿Qué es la ciencia de datos?

La Big Data ha llegado para quedarse, y asumimos que su efecto en la sociedad será permanente. Así como pasó con la escritura, los medios de comunicación o tantos otros inventos humanos de inmenso impacto cultural, el incremento en la producción y análisis computacional de grandes volúmenes de datos está transformando cada una de nuestras actividades. Algunas profesiones se ven en crisis, otras se benefician, y también se crean algunas nuevas.

Big data es un término impreciso, que se usa cuando queremos hablar de los datos que nuestra sociedad crea y procesa en forma digital, con cada vez más creciente velocidad, volumen, y variedad.

En forma acorde, data scientist o "científico de datos" es también una profesión, o una actividad, que aún no está definida con toda claridad. El término, que abarca a quienes en forma cotidiana aplican técnicas de programación para analizar datos, no existía antes del 2008. Sólo cuatro años después la publicación Harvard Business Review agitó las aguas al declarar que quienes se desempeñan como científicos de datos pueden presumir de la profesión "más sexy del siglo XXI" [^1]. Títulos exagerados aparte, lo que es seguro es que la discipina ofrece un conjunto cada vez más maduro de saberes orientados a explotar datos para extraer conocimiento. Las técnicas y principios que la comunidad de la ciencia de datos ha desarrollado pueden ser aprovechados en muchos ámbitos. Entre ellos, el de las ciencias sociales, que también están en una etapa de transformación e incorporan la programación analítica como un recurso cada vez extendido.

Avanzar las fronteras de la ciencia de datos, crear los algoritmos y técnicas informáticas que abren nuevas posibilidades de análisis es una tarea compleja, llevada a cabo por especialistas con profundos conocimientos de matemática. Y sin embargo "usar" la ciencia de datos, aplicar sus principios para resolver problemas complejos, es bastante más fácil. Para empezar sólo necesitamos paciencia para aprender algunos conceptos fundamentales de programación y estadística, empleándolos para entender y comunicar con datos. De eso se trata este libro.

1.1 ¿Qué significa hacer ciencia de datos?

Ya dijimos que la ciencia de datos se trata de emplear técnicas de programación para analizar datos. Pero no es sólo eso; la ciencia de datos aplicada requiere el desarrollo de habilidades en cuatro áreas:

• Programación. Según la definición que hemos aceptado, todo científico de datos utiliza la programación para explicar a las computadoras lo que necesita de ellas. Al hacerlo, emplea el "pensamiento computacional": la habilidad de reducir una tarea compleja a una serie de pasos que pueden resolverse con código interpretado por una computadora. Aclaremos por si hiciera falta que no todos los problemas son solubles por medios computacionales, pero muchos lo son, al menos en parte. El científico de datos pone en práctica algunas técnicas de programación (o muchas, según el grado de especialización) para resolver problemas que sería impráctico abordar de otro modo.

El proceso del análisis de datos

Figure 1.1: etapas en la aplicación de ciencia de datos

- Estadística. ¡Inescapable! También poderosa, a veces anti-intuitiva, cuando tenemos suerte reveladora. La estadística es muchas cosas, pero -a pesar de su mala fama- aburrida jamás. Sólo es cuestión de amigarse con ella. Vamos a necesitarla para extraer conocimiento de los datos. Es sorprendente lo mucho que puede lograrse con sólo unos rudimentos (media, mediana, desvío estándar y cuartiles) y de allí en más sólo es cuestión de profundizar paso a paso.
- Comunicación. Un científico de datos combina habilidades "duras" con otras que requieren empatizar con los demás: las que se relacionan con la comunicación y la colaboración interdisciplinaria. Encontrar la forma de explicar procesos complejos, de llevar las revelaciones de un modelo estadístico a términos que tengan sentido para un público amplio, crear visualizaciones que permitan a terceros "leer" los datos y sacar conclusiones por su cuenta. Parte de hacer ciencia de datos es saber cómo discutir los datos usados y los resultados obtenidos con un interlocutores muy diversos: audiencia general, funcionarios públicos, colegas, especialistas de otras disciplinas, etcétera.
- Conocimiento de dominio. El conocimiento de dominio es la experiencia acumulada en un campo particular de actividad humana: agricultura, relaciones públicas, física cuántica, crianza de niños. Complementa de forma imprescindible a las habilidades analíticas. El conocimiento de dominio no sólo ayuda a discernir si las respuestas obtenidas mediante un sofisticado análisis estadístico tienen sentido. También es necesario para saber cuáles son las preguntas que deberíamos estar haciendo.

Las cuatros habilidades entran en acción en cada proyecto que involucra ciencia de datos, en mayor o menor medida de acuerdo a la etapa de análisis. Hablando de etapas, Hadley Wickham, uno de los referentes actuales en el campo, las define así:

Y todo ello llevado a cabo mediante la programación, por supuesto.

A lo largo de los capítulos de este libro vamos a aprender técnicas de programación que nos permitan atravesar cada uno de los pasos del proceso, y al hacerlo estaremos ejercitando las cuatro habilidades que la ciencia de datos involucra.

Allá vamos.

Chapter 2

Una presentación a toda marcha de R

R es un lenguaje de programación especializado en análisis y visualización de datos. Es un producto de código abierto, lo cual significa que cualquier persona puede usarlo y modificarlo sin pagar licencias ni costos de adquisición de ningún tipo.

Expertos de todo el mundo colaboran en forma activa con el proyecto, no sólo desarrollando el lenguaje en sí (llamado "R base"), sino también extendiéndolo con nuevas habilidades que pueden ser incorporadas por los usuarios finales en forma de "paquetes" instalables.

La calidad del lenguaje en sí, de los paquetes instalables que le agregan un sinfín de funciones (desde algoritmos de inteligencia artificial hasta mapas interactivos) y de la comunidad de usuarios que comparte información en foros y blogs, ha hecho de R uno de los lenguajes de programación más populares del mundo. En el campo del análisis de datos, es la herramienta por excelencia en muchas universidades, empresas de tecnología, y redacciones de periodismo de datos.

2.1 Nuestro primer proyecto en R

A continuación reproduciremos un ejercicio paso a paso, para ilustrar la potencia de una herramienta de análisis como R. Que nadie se preocupe si algunas de las operaciones parecen no tener sentido, o resultan arbitrarias. ¡Es normal! Nadie aprende un lenguaje en 10 minutos, sea R o esperanto. La idea es tener exposición temprana a un caso de uso interesante, usando datos reales. Y que nos sirva como motivación para practicar luego ejercicios básicos que son muy necesarios pero, a veces, no tan emocionantes.

2.1.1 Crear un proyecto en RStudio

El primer paso es ejecutar RStudio, que ya deberíamos tener disponible en nuestro sistema.

Una vez abierta la interfaz gráfica, creamos un proyecto nuevo, cliqueando en File -> New Project... -> New Directory -> New Project. En la ventana que surge, elegir un nombre para el proyecto (por ejemplo, "Practicando R") y finalizar la operación cliqueando en Create project.

Utilizar proyectos nos permite continuar otro día desde donde dejamos la tarea al terminar una sesión. Es sólo cuestión de recuperar el proyecto deseado la próxima vez que abrimos RStudio, cliqueando en File -> Recent Projects -> "nombre de mi proyecto".

Por ahora, sigamos trabajando. Vamos a crear un "script". Un script, como su nombre en inglés lo indica, es un guión; una serie de pasos que escribimos para que nuestra computadora ejecute en secuencia. Cliqueamos en File -> New File -> R Script. De inmediato se abre una ventana con un editor de texto. ¡Ahora empieza la acción!

Figure 2.1: La interfaz de RStudio

2.1.2 Escribiendo un script

Aprovechemos para dar un nombre a los áreas que vemos en RStudio:

Vamos a escribir nuestro código (las instrucciones que R entiende) en el panel de edición. Los resultados van a aparecer en la consola (cuando se trate de texto) o en el panel de salida (cuando produzcamos gráficos)

Por ejemplo, podemos escribir el panel de edición la instrucción para mostrar el resultado de una operación matemático:

```
sqrt(144)
```

sqrt() es una función. En el mundo de la programación, las funciones son secuencias de código ya listas para usar, que realizan tareas útiles. Por ejemplo, mostrar algo en pantalla. En nuestro caso, completamos la función con algo más: un parámetro, pues así se le llama a los valores que una función espera de parte del usuario para saber que hacer. La función sqrt() espera que le demos un número para el cual calcular su raíz cuadrada (square root en inglés), y eso hicimos: le pasamos cómo parámetro 144, un número. Los parámetros siempre se escriben entre paréntesis, a continuación del nombre de la función.

Ahora vamos a aprender la combinación de teclas más importante al usar RStudio: Ctrl + Enter. Presionar Ctrl + Enter al terminar de escribir una instrucción hace que RStudio la ejecute de inmediato, y espere en la siguiente instrucción, si la hubiera.

También podemos buscar una línea que deseemos ejecutar, posicionando el cursor de texto (que luce como

una barra vertical que titila, en el panel de edición) sobre ella. Si a continuación pulsamos Ctrl + Enter, la línea será ejecutada y el cursor se moverá sólo hasta la siguiente línea, listo para repetir el proceso.

La modalidad de ejecución línea por línea es muy útil para lo que se llama "análisis interactivo". Uno ejecuta un comando, observa el resultado, y en base a eso decide su próxima acción: cambiar parámetros e intentarlo de nuevo, dar por buenos los resultados y usarlos para una tarea subsiguiente... etc.

Por ejemplo, si escribimos las siguientes líneas:

```
sqrt(144)
mensaje <- "Hola mundo"
mensaje</pre>
```

...y posicionamos el cursor en cualquier posición de la primera línea, para luego pulsar Ctrl + Enter tres veces, veremos que las instrucciones son ejecutadas línea a línea.

```
sqrt(144)
## [1] 12
mensaje <- "Hola mundo"
mensaje</pre>
```

```
## [1] "Hola mundo"
```

Dos de ellas (la primera y la última) mostraron una salida en pantalla, y la del medio, no. Esto es porque algunas funciones entregan algo como resultado algo -un número, un texto, un gráfico, u otros tipos de salida que ya veremos- mientras que otras hacen su tarea silenciosamente sin expresar nada. En este caso, la función silenciosa fue la de asignación: mensaje <- "Hola mundo" es una instrucción que le pide a R que cree una variable llamada "mensaje" (o que la encuentre si ya existe) y que le asigne como valor el texto "Hola mundo". ¿Cómo sabemos que la instrucción se llevó a cabo, a pesar de no producir una salida? En general, es un tema de confianza. Si una instrucción no genera un mensaje de error, si es silenciosa, se asume que pudo cumplir su cometido. En este caso, además lo hemos verificado. La línea final, mensaje pide a R que busque la variable, y muestre en pantalla su contenido (esa es una característica muy práctica del lenguaje: para saber el contenido de una variable, basta con escribirla y ejecutar la línea). Y al hacerlo, comprobamos que la variable contiene precisamente lo que hemos tipeado.

De paso, hay que mencionar que la creación y manipulación de variables es un concepto clave en programación. Trabajar con variables nos permite almacenar valores para usarlos después, además de hacer nuestro código más fácil de leer y compartir con otros, en especial cuando usamos nombre de variable auto-explicativos. Como ejemplo de ésto ultimo comparemos

```
x <- 8 * 6
x
## [1] 48
... con
ancho_habitacion_m <- 8
profundiad_habitacion_m <- 6
superficie_habitacion_m2 <- ancho_habitacion_m * profundiad_habitacion_m
superficie_habitacion_m2</pre>
```

[1] 48

En su resultado ambas expresiones son iguales, dado que producen lo mismo. Pero la segunda esta escrita de

una forma mucho más clara para un ser humano, que hace más fácil interpretar su lógica... ¡está calculando la superficie en metros cuadrados de una habitación!. Es muy importante escribir nuestro código de la forma más explícita posible, aunque requiera tipear un poco más. Con ello, le hacemos la vida más fácil a otras personas que interpreten nuestros programas. Y también a nosotros mismos en el futuro, cuando debamos lidiar con un programa que escribimos tiempo atrás y del que a duras penas recordamos su lógica.

2.2 Un ejemplo de análisis paso a paso

Imaginemos por un momento que trabajamos en un área del Gobierno de la Ciudad encargada de analizar los reclamos y solicitudes que realizan los vecinos. Para abordar el tema, algunas preguntas que de inmediato vienen a la mente son ¿Qué tipo de solicitudes hacen los ciudadanos, en qué cantidad, y en dónde?

Disponiendo de los datos necesarios, podemos usar R para encontrar las respuestas.

Vamos a cargar datos provenientes de los registros del Sistema Único de Atención Ciudadana (o SUACI), la plataforma del Gobierno de la Ciudad que administra los contactos iniciados por ciudadanos. En el portal de datos abiertos de la Ciudad se publica cada uno de los contactos recibidos por SUACI año a año. El tipo de archivo con el que se publican es ".csv" (o "comma separated values") un formato muy popular en el mundo de la ciencia de datos, ya que es muy fácil de manipular y compartir entre sistemas. Es posible abrir un archivo .csv hasta con el humilde block de notas. Al igual que los archivos .xls, los .csv se utilizan para guardar información tabular: un rectángulo con filas y columnas. R incluye una función que lee archivos .csv, que se llama read.csv. La usamos así:

```
suaci2018 <- read.csv('https://bitsandbricks.github.io/data/gcba_suaci_2018.csv')</pre>
```

Obsérvese que los datos están alojados en un servidor de internet (accesibles vía https://bitsandbricks...). Eso no es problema para la función read.csv, que con la misma soltura lee archivos guardados en nuestra PC o publicados en un sitio web. Para ver el contenido de la variable donde guardamos el resultado de leer la data, suaci2018, sólo hace falta escribir su nombre:

suaci2018

		2.222	~~~~
##		BARRIU	CONTACTOS
##	1	AGRONOMIA	7378
##	2	ALMAGRO	31420
##	3	BALVANERA	28616
##	4	BARRACAS	23106
##	5	BELGRANO	46936
##	6	BOCA	11495
##	7	B0ED0	12926
##	8	CABALLITO	50301
##	9	CHACARITA	11076
##	10	COGHLAN	8920
##	11	COLEGIALES	18637
##	12	CONSTITUCION	7569
##	13	FLORES	38462
##	14	FLORESTA	13589
##	15	LINIERS	17606
##	16	MATADEROS	19771
##	17	MONSERRAT	10716
##	18	MONTE CASTRO	15459
##	19	NUEVA POMPEYA	11762
##	20	NUÑEZ	26556
##	21	PALERMO	75068
##	22	PARQUE AVELLANEDA	14914

```
## 23
       PARQUE CHACABUCO
                              16560
##
  24
             PARQUE CHAS
                               8948
                              13559
##
   25
       PARQUE PATRICIOS
##
  26
                               7255
                PATERNAL
##
   27
           PUERTO MADERO
                               1939
  28
##
                RECOLETA
                              30339
  29
##
                  RETIRO
                              10646
##
  30
                SAAVEDRA
                              18232
##
   31
           SAN CRISTOBAL
                              11050
##
   32
             SAN NICOLAS
                              12526
##
   33
               SAN TELMO
                               5281
   34
        VELEZ SARSFIELD
                              11586
##
##
   35
               VERSALLES
                               5835
            VILLA CRESPO
                              25748
##
   36
##
   37
       VILLA DEL PARQUE
                              25224
##
   38
            VILLA DEVOTO
                              34361
      VILLA GRAL. MITRE
##
   39
                              11417
##
   40
            VILLA LUGANO
                              24853
              VILLA LURO
                              11485
##
   41
##
   42
           VILLA ORTUZAR
                              11150
##
   43
       VILLA PUEYRREDON
                              18985
  44
              VILLA REAL
                               5496
##
        VILLA RIACHUELO
##
  45
                               5311
       VILLA SANTA RITA
                              13265
##
   46
## 47
           VILLA SOLDATI
                                9811
## 48
           VILLA URQUIZA
                              40146
```

Vemos que la tabla tiene 48 filas (una por cada barrio de la ciudad) y 2 columnas (una con el nombre del barrio, y otra con la cantidad total de contactos registrados en 2018).

En R, las tablas son llamadas dataframes. El dataframe es el objeto por excelencia del análisis de datos. En concepto, es muy similar a una tabla de excel; al fin y al cabo, ambos formatos guardan información en celdas identificadas por fila y columna.

Algunas funciones útiles para explorar un dataframe que no conocemos son dim(), que nos da las dimensiones del dataframe (cantidad de filas y columnas), names() que nos dice como se llaman sus columnas (que en general representan variables), y head() que nos permite echar un vistazo rápido al contenido, mostrando sólo las seis primeras filas (ésto es útil porque con frecuencia trabajamos con dataframes que contienen miles o millones de filas, con lo que no tiene sentido tratar de volcar todas en pantalla).

```
dim(suaci2018)

## [1] 48 2
names(suaci2018)

## [1] "BARRIO" "CONTACTOS"
head(suaci2018)
```

```
##
        BARRIO CONTACTOS
## 1 AGRONOMIA
                     7378
## 2
       ALMAGRO
                    31420
  3 BALVANERA
                    28616
##
  4
      BARRACAS
                    23106
      BELGRANO
                    46936
## 5
## 6
          BOCA
                    11495
```

2.3 Visualización: la exploración gráfica de la información

Ahora es vamos a pisar el acelerador. Insisto: nadie debe preocuparse si algunos conceptos parecen ser demasiado complejos. En las próximas secciones practicaremos de forma gradual las técnicas que vamos a usar ahora, y todo tendrá sentido -¡lo prometo!. Pero antes, seamos un poquito irresponsables con el poder de R y empleemos un arsenal sofisticado de herramientas para ver de que somos capaces.

En la introducción hablamos de los paquetes, conjuntos de programas que extienden la funcionalidad de R. Vamos a cargar uno de los paquetes más usados, tidyverse. Tidyverse incluye una gran cantidad de funciones diseñadas por y para practicantes de la ciencia de datos. Estas funciones comparten una filosofía y una sintaxis común, por lo que al aprender una en cierto modo aprendemos a usar todas. El valor que aportan es que, sin dudas, ayudan a realizar de manera más fácil las tareas típicas de la ciencia de datos: importar, limpiar, comprender y comunicar datos.

Si acabamos de instalar R y RStudio, el paquete aún no estará disponible en nuestro sistema. Para instalarlo, usamos la función install.packages() y le pasamos el nombre del paquete deseado, "tidyverse", entre comillas.

```
install.packages("tidyverse")
```

De aquí en más, podremos activar el conjunto de funciones que provee tidyverse cada vez que queramos. Para eso, lo invocamos con la función library():

```
library(tidyverse)
```

... y listo para usar. La razón por la cual activamos tidyverse es que en este momento nos vienen bien dos de sus funciones: mutate() para modificar valores, y ggplot() para hacer gráficos.

Bien, llega la hora presentar información en forma visual. Vamos a llamar a la función ggplot(), una auténtica navaja suiza para la visualización.

Por ejemplo, veamos cuantos contactos sumó cada barrio durante 2018:

```
ggplot(suaci2018) +
  geom_col(aes(x = BARRIO, y = CONTACTOS)) +
  coord_flip()
```


Para realizar una visualización con ésta herramienta, siempre se comienza con la función ggplot(), que crea un eje de coordenadas sobre el cual se pueden agregar capas. El primer parámetro que recibe ggplot() es el dataset que queremos usar para el gráfico; en nuestro caso, ggplot(suaci2018). Ejecutar sólo ggplot(suaci2018) nos devuelve un gráfico vacío; la gracia está en agregar una o más capas especificando cómo queremos mostrar los datos. Estas capas se agregan con un signo +.

En nuestro ejemplo, geom_col() crea columnas cuya posición en el eje vertical depende de la variable "BARRIO", mientas que la extensión (posición en el eje horizontal) depende del valor de la variable "CONTACTOS". Existen muchas funciones del tipo "geom_XXX", que agregan distintas clases de capas al gráfico: geom_point, geom_polygon, geom_text y muchos, muchos más que iremos viendo más adelante.

Cada función "geom_" toma como parámetro un conjunto de definiciones "estéticas" que le indican una variable a graficar ("CANTIDAD" en nuestro caso), cómo representar los valores (por color, tamaño, etc) y en dónde (posición en el eje x, posición en el eje y). Estos parámetros van siempre dentro de una función auxiliar, aes(). En nuestro ejemplo, "aes(x = BARRIO, y = contactos)". La última línea, "coord_flip()", cambia la disposición de los ejes; en lugar de las x en horizontal y las y en vertical, al revés. ¿Porqué es útil a veces trastocar la posición de los ejes? Prueben correr la función sin agregar esa línea, ggplot(suaci2018) + geom_col(aes(x = BARRIO, y = CONTACTOS)), y verán.

No se preocupen que iremos practicando el uso de ggplot, y su uso se volverá familiar.

En cuanto al gráfico que hemos creado, podemos observar que entre las 48 barrios de la ciudad la cantidad de contactos en 2018 varió bastante. Si escudriñamos las líneas podemos arriesgar que van de de un par de miles en Puerto Madero a unos 75000 en Palermo. Lo que no nos muestra son patrones espaciales: ¿Cómo es la distribución geográfica de las solicitudes? ¿Los barrios con mayor demanda son los de una región de la ciudad en particular? Para responde esas preguntas, necesitamos un mapa.

2.3.1 Haciendo mapas

Vamos a presentar un paquete más, el último para éste capítulo: sf. Quizás algunos tengan experiencia con sistemas de información geográfica (GIS por sus siglas en inglés), al estilo de QGIS o ArcGIS, que permiten crear, manipular y combinar archivos con datos espaciales para producir mapas que pueden ser simples o en extremo sofisticados. En R, el paquete sf brinda herramientas que permiten realizar tares similares.

Nuestro objetivo es obtener un mapa de la ciudad de Buenos Aires con sus comunas.

Primero, instalamos sf en caso de que aún no lo hayamos hecho.

```
install.packages("sf")
```

Vale la pena insistir: Sólo es necesario instalar los paquetes una vez. De aquí en más, cada vez que querramos echar mano a las funciones incluidas en sf, sólo necesitamos activarlo pues ya estará listo en nuestro sistema. Pedimos a R que active el paquete así:

```
library(sf)
```

Luego, cargamos un archivo georeferenciado con las comunas de la Ciudad Autónoma de Buenos Aires, disponible online en formato geojson, un estándar de representación de datos geográficos que es fácil de usar:

```
barrios <- st_read('https://bitsandbricks.github.io/data/CABA_barrios.geojson')</pre>
```

```
## Reading layer `CABA_barrios' from data source `https://bitsandbricks.github.io/data/CABA_barrios.geo
## Simple feature collection with 48 features and 4 fields
## geometry type: POLYGON
## dimension: XY
## bbox: xmin: -58.53152 ymin: -34.70529 xmax: -58.33514 ymax: -34.52754
## epsg (SRID): 4326
## proj4string: +proj=longlat +datum=WGS84 +no_defs
```

Al igual que cuando usamos read.csv() para leer un archivo .csv y cargarlo como un dataframe, el comando st_read() hace lo propio con archivos de información geográfica, conocidos en la jerga como "shapefiles". El resultado también es un dataframe, por lo cual podemos practicar el uso de las funciones que ya aprendimos, como dim(), names() y head().

```
dim(barrios)
## [1] 48 5
names(barrios)
## [1] "BARRIO"
                   "COMUNA"
                                "PERIMETRO" "AREA"
                                                        "geometry"
head(barrios)
## Simple feature collection with 6 features and 4 fields
## geometry type:
                   POLYGON
## dimension:
                   XΥ
## bbox:
                   xmin: -58.50617 ymin: -34.63064 xmax: -58.41192 ymax: -34.57829
## epsg (SRID):
## proj4string:
                   +proj=longlat +datum=WGS84 +no_defs
```

```
BARRIO COMUNA PERIMETRO
##
                                          AREA
                                                                     geometry
## 1
            CHACARITA
                         15 7725.695 3118101 POLYGON ((-58.45282 -34.595...
## 2
            PATERNAL
                          15 7087.513 2229829 POLYGON ((-58.46558 -34.596...
         VILLA CRESPO
                          15 8132.699 3613584 POLYGON ((-58.42375 -34.597...
## 3
## 4 VILLA DEL PARQUE
                             7705.390 3399596 POLYGON ((-58.49461 -34.614...
                           5 8537.901 4050752 POLYGON ((-58.41287 -34.614...
## 5
              ALMAGRO
## 6
            CABALLITO
                           6 10990.964 6851029 POLYGON ((-58.43061 -34.607...
```

Podemos ver que el dataframe contiene 48 filas y 5 columnas. Una fila por barrio, y una columnas por cada variable disponible: "BARRIO", "COMUNA", "PERIMETRO", "AREA" y "geometry". Nuestro vistazo mediante head() permite asumir que "BARRIO" contiene los nombres, COMUNA indica la unidad administrativa, y PERIMETRO y AREA informan sobre las dimensiones del polígono cubierto por cada barrio. La columna "geometry" aparece en todos los dataframes de tipo espacial, y es la que contiene los datos con sus coordenadas geográficas.

Y hablando de coordenadas, generar un mapa a partir de un dataframe espacial creado por sf es muy fácil con la ayuda de ggplot():

```
ggplot(barrios) +
  geom_sf()
```


Si queremos agregar una levenda al mapa que identifique la comuna a la que pertenece cada barrio, usamos:

```
ggplot(barrios) +
  geom_sf(aes(fill = factor(COMUNA)))
```


Dentro de "aes()" usé el parámetro "fill" (relleno en inglés) para pedirle a ggplot() que llene cada polígono con un color distinto de acuerdo al campo "COMUNA". Lo mismo podríamos hacer para ver la distribución de solicitudes registradas en SUACI, pintando los barrios con una escala de colores que indique el nivel de solicitudes que les corresponde. Pero antes de hacer eso, pensemos: es de esperarse que los barrios más poblados representen un mayor número de solicitudes que los más pequeños, ya que al fin y al cabo tienen más gente viviendo dentro. Nos interesa la cantiad de contactos per cápita, lo cuál debería darnos una mejor idea acerca de las diferencias entre barrios en lo que respecta a cuánta interacción hay entre vecinos y gobierno.

Sumemos pues datos de población.

2.3.2 Agregando datos

Cuando tenemos una identificador en común, R hace muy fácil cruzar datos de fuentes distintas. Traigamos los datos de población en cada barrio de la Ciudad de Buenos Aires, de acuerdo al censo nacional de 2010:

```
poblacion <- read.csv("https://bitsandbricks.github.io/data/caba_pob_barrios_2010.csv")</pre>
```

Veamos el contenido del dataframe:

head(poblacion)

```
## BARRIO POBLACION
## 1 AGRONOMIA 13912
## 2 ALMAGRO 131699
## 3 BALVANERA 138926
## 4 BARRACAS 89452
## 5 BELGRANO 126267
```

```
## 6 BOCA 45113
```

Bien, tenemos el nombre de cada barrio y su población. Como nuestro dataframe de contactos a SUACI tiene una columna con el mismo nombre que contiene las mismas categorías, sumarle la información de población es tan fácil como:

```
suaci2018 <- left_join(suaci2018, poblacion)</pre>
```

Más adelante aprenderemos más de las funciones de "join", que nos permiten cruzar información. Por ahora sólo miremos el resultado:

```
head(suaci2018)
```

```
BARRIO CONTACTOS POBLACION
##
## 1 AGRONOMIA
                     7378
                               13912
## 2
       ALMAGRO
                    31420
                              131699
## 3 BALVANERA
                    28616
                              138926
      BARRACAS
                    23106
                               89452
## 5
      BELGRANO
                    46936
                              126267
## 6
          BOCA
                    11495
                               45113
```

Todo en orden. Ahora usemos una operación similar para sumar los datos de SUACI y de pobación al dataframe con información espacial, el que nos permite dibujar los barrios. Teniendo toda la información allí, podremos visualizar el mapa que queremos.

```
barrios <- left_join(barrios, suaci2018)</pre>
```

2.4 El resultado final

Habrán notado que llegar hasta aquí tomó una buena cantidad de operaciones. En contraste, lo que estamos a punto de hacer -generar un mapa con los barrios de la ciudad que muestre la cantidad de solicitudes de la ciudadanía per cápita- va a ser mucho más breve. Esa vendría a ser la lección central de éste capítulo: la mayor parte del tiempo empleado en la labor de la ciencia de datos se insume en la poco glamorosa tarea de recopilar, limpiar y combinar los registros necesarios para el análisis. Como consuelo, podemos pensar en que el esfuerzo necesario para llegar a este punto nos ha dado un conocimiento de los datos (su estructura, su contenido, atributos en común, etc) que no teníamos antes.

Aprovechemos entonces nuestra data limpia y ordenada, para producir un mapa que indique por color el grado en que los vecinos de cada barrio interactúan con los canales de atención del gobierno de la Ciudad. Con ggplot dibujaremos los barrios, y pintaremos su interior ("fill") de acuerdo a la cantidad de contactos, dividida por la población local. Por último, definiremos la paleta de colores a usar en el fill, eligiendo una escala llamada "Spectral", que va del azul al rojo y es muy usada cuando se quiere resaltar la divergencia de una variable.

```
ggplot(barrios) +
  geom_sf(aes(fill = CONTACTOS / POBLACION)) +
  scale_fill_distiller(palette = "Spectral")
```


¡Y hemos hallado un patrón! La zona caliente de contactos se asienta en el sector noroeste de la Ciudad.

Por supuesto, con esto no puede darse por cerrado el tema; hay muchas facetas que deberíamos analizar para comenzar a entender éste fenómeno social o cualquier otro.

En los siguientes capítulos practicaremos varias técnicas que nos permitirán profundizar nuestros análisis, en la nunca finalizada misión de entender un poco más.

Chapter 3

Poniendo los datos en forma

Cómo ya hemos mencionado, es normal que la mayor parte del tiempo dedicado a un proyecto de análisis se nos vaya en la limpieza y orden de los datos disponibles. Aún cuando nuestros datos provengan de fuentes oficiales (un gobierno nacional, el Banco Mundial, etc) en muy rara ocasión podremos usarlos para nuestros fines sin antes procesarlos. Y aún si los datos llegaran en perfectas condiciones, no tenemos forma de saberlo hasta haber realizado una exploración para verificarlo.

Ésta inevitable etapa de preparación es llamada data wrangling en inglés, algo así como el proceso de "domar los datos". El término hace referencia, en clave de humor, al esfuerzo que requiere la puesta en orden cuando los datos son cuantiosos, de muchas fuentes distintas, o en particular desprolijos. Para que la experiencia sea lo menos tediosa posible, y podamos pasar rápido al momento de extraer conocimiento, vamos a practicar algunas técnicas muy útiles de wrangling.

3.1 Primeros pasos al examinar un conjunto de datos nuevo

Si no lo hicimos aún en la sesión en la que estamos trabajando, cargamos tidyverse.

```
library(tidyverse)
```

Vamos a practicar usando los registros del Sistema Único de Atención Ciudadana (SUACI) de la Ciudad Autónoma de Buenos Aires. El SUACI es el repositorio donde se integran las solicitudes y reclamos que los ciudadanos presentan a la ciudad por distintos canales: en persona, por teléfono o usando la aplicación BA 147. Vamos a trabajar con una versión de los datos que ha sido simplificada para hacer más ameno el trabajo con ella. Quién quiera acceder a los datos en su esplendor de complejidad original, puede encontrarlos en el portal de datos abiertos de la ciudad: https://data.buenosaires.gob.ar/

Comenzamos por acceder al archivo con los registros para cargarlo en R como un dataframe. Tendremos que ejercitar un poco la paciencia porque es un archivo de varios megas, que podría tardar unos minutos en ser descargado.

```
atencion_ciudadano <- read.csv("http://bitsandbricks.github.io/data/gcba_suaci_barrios.csv")
```

Lo primero que deberíamos hacer con un dataframe que no conocemos es usar la función str(), que nos indica su estructura (por *structure* en inglés):

```
str(atencion_ciudadano)
```

```
## $ TIPO_PRESTACION: Factor w/ 5 levels "DENUNCIA","QUEJA",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ BARRIO : Factor w/ 51 levels " ","AGRONOMIA",..: 2 3 4 5 6 7 8 9 10 11 ...
## $ total : int 6 172 92 45 79 10 38 109 20 45 ...
```

Para empezar, nos enteramos que el objeto que estamos analizando es un dataframe ("data.frame"). Eso ya lo sabíamos, pero como str() puede usarse con cualquier clase de objeto en R, en ocasiones resultará que estamos ante un vector, una lista u otra clase de criatura. A continuación aparecen las dimensiones del dataframe: 57.432 observaciones (filas) con 5 variables (columnas). Los nombres de las columnas son PERI-ODO, RUBRO, TIPO_PRESTACION, BARRIO y total. Con eso ya podemos inferir que cada observación en el dataframe contiene la cantidad total de solicitudes según concepto, rubro y tipo de prestación (aunque no sepamos bien de que se tratan esas variables), en un período dado y en cada barrio.

Con str() también obtenemos el tipo de datos representados pro cada variable, y un ejemplo de los valores contenidos en las primeras filas. PERIODO y total son variables de tipo "int", es decir, números enteros o integers en inglés. El resto de las variables son de tipo "Factor"; en R las variables categóricas reciben el nombre de factores. ¿Y cómo sabe R que RUBRO o BARRIO son categorías? La culpable es la función read.csv() que usamos al principio. Si no se le aclara lo contrario, read.csv() interpreta como factores a todas las columnas que contienen texto. Para avisarle que no lo haga, hay que usar el parámetro stringsAsFactors, así: misdatos <- read.csv("archivo_con_mis_datos", stringsAsFactors = FALSE). En general es buena idea evitar que los campos de texto se asuman como factores, pero en éste caso está bien: todas las columnas de texto, en efecto, contienen variables categóricas. (Ante la duda, una variable es categórica cuando es razonable considerar que se elige entre un conjunto finito de variables posibles; por ejemplo, los barrios de Buenos Aires son un conjunto finito y predeterminado).

La siguiente función a utilizar cuando estamos conociendo el contenido de un set de datos es summary(), que nos dará un resumen en forma de estadísticas descriptivas para las variables numéricas (cuartiles y mediana) y un vistazo a las categorías más representadas par los factores.

summary(atencion ciudadano)

```
##
       PERIODO
                                         RUBRO
                                                       TIPO_PRESTACION
           :201301
                                                      DENUNCIA:21606
##
   Min.
                      SANEAMIENTO URBANO
                                             : 4589
##
    1st Qu.:201309
                      TRANSPORTE Y TRANSITO: 4580
                                                      QUEJA
                                                                : 3914
##
    Median :201404
                      ARBOLADO
                                             : 3122
                                                      RECLAMO
                                                               :21038
           :201401
                      ALUMBRADO
                                                      SOLICITUD: 9662
##
    Mean
                                             : 2918
##
    3rd Qu.:201503
                      PAVIMENTO
                                             : 2411
                                                      TRAMITE: 1211
           :201512
                      ESPACIO PUBLICO
##
    Max.
                                             : 1918
##
                      (Other)
                                             :37893
##
            BARRIO
                             total
    PALERMO
                : 2154
                                      1.00
##
                         Min.
##
    BALVANERA
               : 1961
                         1st Qu.:
                                      1.00
##
    FLORES
                : 1959
                         Median:
                                      4.00
##
   CABALLITO
               : 1872
                         Mean
                                     34.85
    SAN NICOLAS: 1748
                         3rd Qu.:
                                     16.00
    RECOLETA
                                 :19221.00
##
                : 1729
                         Max.
    (Other)
                :46008
```

Las categorías posibles para un factor son llamadas "niveles" (levels). Para ver todos los niveles del factor BARRIO, es decir todos los barrios representados en la columna con la variable BARRIO, podemos usar la función levels()

levels(atencion_ciudadano\$BARRIO)

```
## [1] " " "AGRONOMIA" "ALMAGRO"

## [4] "BALVANERA" "BARRACAS" "BELGRANO"

## [7] "BOCA" "BOEDO" "CABALLITO"

## [10] "CHACARITA" "COGHLAN" "COLEGIALES"
```

```
## [13] "CONSTITUCION"
                                "ERRORNOHAYRESULTA"
                                                         "ERRORNOHAYRESULTADOS"
   [16] "FLORES"
                                "FI.ORESTA"
                                                         "I.TNTERS"
  [19] "MATADEROS"
                                                         "MONTE CASTRO"
                                "MONSERRAT"
  [22] "NUEVA POMPEYA"
                                "NUÑEZ"
                                                         "PALERMO"
   [25] "PARQUE AVELLANEDA"
                                "PARQUE CHACABUCO"
                                                         "PARQUE CHAS"
  [28]
       "PARQUE PATRICIOS"
                                "PATERNAL"
                                                         "PUERTO MADERO"
       "RECOLETA"
                                "RETIRO"
                                                         "SAAVEDRA"
## [34] "SAN CRISTOBAL"
                                "SAN NICOLAS"
                                                         "SAN TELMO"
   [37]
        "VELEZ SARSFIELD"
                                "VERSALLES"
                                                         "VILLA CRESPO"
   [40] "VILLA DEL PARQUE"
                                "VILLA DEVOTO"
                                                         "VILLA GRAL. MITRE"
   [43] "VILLA LUGANO"
                                "VILLA LURO"
                                                         "VILLA ORTUZAR"
   [46] "VILLA PUEYRREDON"
                                "VILLA REAL"
                                                         "VILLA RIACHUELO"
                                                         "VILLA URQUIZA"
   [49] "VILLA SANTA RITA"
                                "VILLA SOLDATI"
```

Para acceder en forma rápida al contenido de la columna BARRIO, hemos utilizado por primera vez un "truco" muy práctico. Para obtener el contenido de cualquier columna en particular, basta con el nombre del dataframe seguido del símbolo \$ y el nombre de la columna a extraer: atencion_ciudadano\$BARRIO, o atencion_ciudadano\$total, etc.

3.2 Cruzando variables: la operación join

Al realizar un análisis "en la vida real", es decir, usando datos salvajes en lugar de los prolijos datasets de práctica, es muy habitual encontrar que nos falta una variable que necesitamos. Si tenemos suerte, la información que necesitamos también está disponible en forma de tabla, con algún campo en común, y podemos llevar el cabo un cruce de datos para traérnosla.

Para expresarlo con un ejemplo concreto: hemos visto que los registros de atención al ciudadano incluyen una columna con el barrio, que es la única variable relacionada con la geografía. Si nuestra unidad de análisis fuera la columna en lugar del barrio, necesitaríamos agrega la columna correspondiente. En este caso, estamos de suerte porque una tabla con los barrios de la Ciudad de Buenos Aires y la comuna a la que pertenecen es fácil de conseguir. Con esa tabla en nuestro poder, ya tenemos las piezas necesarias para el cruce de datos. En cada registro en el dataframe de atención al ciudadano, tenemos un barrio; podemos buscarlo en la tabla de barrios y comunas, tomar nota de la comuna asociada, y copiarla en nuestro dataset original. Por supuesto, hacerlo a mano para cada uno de las 57.432 filas en nuestro dataframe tardaría una eternidad, amén de que quizás perderíamos la cordura antes de terminar. ¡Nada de eso! Vamos a resolverlo en meros instantes escriviendo unas pocas líneas de código. Antes de continuar hagamos una pausa para conmiserar a los investigadores de eras pasadas, antes de la popularización de la computadora personal, que realizaban tareas de esta escala con lápiz, papel y paciencia.

Existe una gran variedad de funciones que permiten combinar tablas relacionadas entre sí por una o varias variables en común. Para nuestro propósito, alcanza con conocer una: left_join(). La funcion toma como parámetros dos dataframes (que son tablas al fin y al cabo) busca las variables que tengan el mismo nombre y usandolas como referencia completa la primera de ellas, la de la izquierda, con los datos nuevos que aporta la segunda. left join devuelve un dataframe nuevo con los datos combinados.

Manos a la obra. Descargamos el dataframe con barrios y comunas,

```
barrios_comunas <- read.csv("http://bitsandbricks.github.io/data/barrios_comunas.csv")</pre>
```

echamos un vistazo, comprobando que existe BARRIOS, una columna en común que lo relaciona con el dataframe de atención al ciudadano,

```
barrios_comunas
```

```
## BARRIO COMUNA
## 1 AGRONOMIA 15
```

```
## 2
                 ALMAGRO
                               5
## 3
               BALVANERA
                               3
## 4
                BARRACAS
                               4
                BELGRANO
## 5
                              13
## 6
                    BOCA
                               4
## 7
                               5
                   BOEDO
## 8
               CABALLITO
                               6
## 9
               CHACARITA
                              15
## 10
                 COGHLAN
                              12
                              13
## 11
              COLEGIALES
## 12
           CONSTITUCION
                               1
                               7
## 13
                  FLORES
                              10
## 14
                FLORESTA
## 15
                 LINIERS
                               9
## 16
               MATADEROS
                               9
## 17
               MONSERRAT
                               1
## 18
           MONTE CASTRO
                              10
## 19
          NUEVA POMPEYA
                               4
## 20
                   NUÑEZ
                              13
## 21
                 PALERMO
                              14
## 22 PARQUE AVELLANEDA
                               9
## 23
       PARQUE CHACABUCO
                               7
## 24
             PARQUE CHAS
                              15
## 25
       PARQUE PATRICIOS
                               4
## 26
                PATERNAL
                              15
##
  27
          PUERTO MADERO
                               1
##
  28
                RECOLETA
                               2
##
  29
                               1
                  RETIRO
## 30
                SAAVEDRA
                              12
          SAN CRISTOBAL
## 31
                               3
## 32
             SAN NICOLAS
                               1
## 33
               SAN TELMO
                               1
##
   34
        VELEZ SARSFIELD
                              10
                              10
##
  35
               VERSALLES
##
   36
           VILLA CRESPO
                              15
##
  37
       VILLA DEL PARQUE
                              11
## 38
           VILLA DEVOTO
                              11
## 39 VILLA GRAL. MITRE
                              11
## 40
           VILLA LUGANO
                               8
## 41
                              10
              VILLA LURO
## 42
          VILLA ORTUZAR
                              15
## 43
       VILLA PUEYRREDON
                              12
## 44
              VILLA REAL
                              10
## 45
        VILLA RIACHUELO
                               8
## 46
       VILLA SANTA RITA
                              11
## 47
          VILLA SOLDATI
                               8
          VILLA URQUIZA
## 48
                              12
```

y lo unimos (de allí el término "join", unir en inglés) a nuestra data:

```
atencion_ciudadano <- left_join(atencion_ciudadano, barrios_comunas)</pre>
```

Admiremos nuestra obra:

```
head(atencion_ciudadano)
```

##		PERIODO	RUBRO	TIPO_PRESTACION	BARRIO	total	COMUNA
##	1	201301	ACERAS	RECLAMO	AGRONOMIA	6	15
##	2	201301	ACERAS	RECLAMO	ALMAGRO	172	5
##	3	201301	ACERAS	RECLAMO	${\tt BALVANERA}$	92	3
##	4	201301	ACERAS	RECLAMO	BARRACAS	45	4
##	5	201301	ACERAS	RECLAMO	BELGRANO	79	13
##	6	201301	ACERAS	RECLAMO	BOCA	10	4

Es así de fácil. Bueno, no tanto... este fue un caso sencillo, pero hay todo tipo de datos y cruces allí afuera, y a veces se necesitan operaciones más complehas. Por eso hay toda una familia de funciones de *join* - right_join(), inner_join(), full_join, anti_join(), y alguna más. Pero podemos dejarlas en paz; para nuestras necesidades, con left_join() podemos areglarnos muy bien.

Satisfechos con la mejora, si queremos guardar el dataframe "mejorado" para usarlo en otra ocasión, podemos hacerlo con write.csv(), que lo convierte en un archivo de texto que queda en nuestra PC.

```
write.csv(atencion_ciudadano, "atencion_ciudadano.csv", row.names = FALSE)
```

Podemos seguir siempre ese formato para guardar nuestros datos. El primer parámetro es el dataframe que vamos a guardar, el segundo -siempre entre comillas- es el nombre de archivo, y la opcion final, row.names = FALSE sirve para evitar que R le agregue una columna al principio con numeros consecutivos (1, 2, 3, y así), cosa que quizás fue útil alguna vez pero en general no necesitamos.

Para volver a leer los datos en otra ocasión, usamos read.csv() tal como ya hemos hecho.

```
atencion_ciudadano <- read.csv("atencion_ciudadano.csv")</pre>
```

Y si queremos saber exactamente dónde ha guardado R nuestros datos, por ejemplo para abrirlos con otro programa, usamos la función getwd (por get working directory)

```
getwd()
```

[1] "/home/havb/Dropbox/Work/GCBA/curso_DS/Ciencia de Datos y Políticas Públicas"

El resultado será la dirección (la ubicacion de la la carpeta), donde estamos trabajando y hemos guardado los datos; por ejemplo /home/antonio/Practicando R/.

3.3 Transformando los datos

Habiendo revisado el contenido de un dataframe (y agregado alguna variable si hiciera falta), comenzamos a hacernos idea de los ajustes que necesita para que los datos tomen el formato que necesitamos. Estos ajustes pueden ser correcciones (por ejemplo, de errores de tipeo cuando se cargaron los datos), la creación de nuevas variables derivadas de las existentes, o un reordenamiento de los datos para simplificar nuestro trabajo.

Para hacer todo esto, y mucho más, vamos a aprender funciones que representan cinco verbos básicos para la transformación de datos:

- select(): seleccionar -elegir- columnas por su nombre
- filter(): filtrar, es decir quedarse sólo con las filas que cumplan cierta condición
- arrange(): ordenar las filas de acuerdo a su contenido o algún otro índice
- mutate(): mutar -cambiar- un dataframe, modificando el contenido de sus columnas o creando columnas (es decir, variables) nuevas
- summarise(): producir sumarios -un valor extraído de muchos, por ejemplo el promedio- con el contenido de las columnas

Estas funciones tienen una sintaxis, una forma de escribirse, uniforme. El primer argumento que toman siempre es un dataframe; los siguientes indican qué hacer con los datos. El resultado siempre es un nuevo

dataframe.

Las funciones son parte de dplyr, uno de los componentes de la familia de paquetes Tidyverse. Ya tenemos disponible todo lo necesario, activado cuando invocamos library(tidiverse) al comienzo.

Manos a la obra.

3.3.1 Selectionar columnas con select()

Muchas veces tendremos que lidiar con datasets con decenas de variables. Alguna que otra vez, con centenas. En esos casos el primer problema es librarnos de semejante cantidad de columnas, reteniendo sólo aquellas en las que estamos interesados. Para un dataset como el de reclamos de los ciudadanos, que tiene pocas columnas, select() no es tan importante. Aún así, podemos usar select() con fines demostrativos.

Sabemos que el dataset tiene 5 columnas:

```
names(atencion_ciudadano)
```

```
## [1] "PERIODO" "RUBRO" "TIPO_PRESTACION" "BARRIO" "## [5] "total" "COMUNA"
```

Si quisiéramos sólo las que contienen el período y el total, las seleccionamos por nombre, a continuación del nombre del dataframe:

```
seleccion <- select(atencion_ciudadano, PERIODO, total)
head(seleccion)</pre>
```

```
## PERIODO total
## 1 201301 6
## 2 201301 172
## 3 201301 92
## 4 201301 45
## 5 201301 79
## 6 201301 10
```

También podemos seleccionar por contigüidad, por ejemplo "todas las columnas que van de RUBRO a BARRIO":

```
seleccion <- select(atencion_ciudadano, RUBRO:BARRIO)
head(seleccion)</pre>
```

```
##
      RUBRO TIPO_PRESTACION
                                BARRIO
## 1 ACERAS
                    RECLAMO AGRONOMIA
## 2 ACERAS
                    RECLAMO
                               ALMAGRO
## 3 ACERAS
                    RECLAMO BALVANERA
## 4 ACERAS
                    RECLAMO BARRACAS
## 5 ACERAS
                    RECLAMO
                              BELGRANO
## 6 ACERAS
                    RECLAMO
                                  BOCA
```

Y podemos seleccionar por omisión. Si nos interesara todo el contenido del dataset menos la variable RUBRO, usaríamos

```
selection <- select(atencion_ciudadano, -RUBRO)
head(selection)</pre>
```

```
## PERIODO TIPO_PRESTACION BARRIO total COMUNA
```

```
## 1
      201301
                      RECLAMO AGRONOMIA
                                             6
                                                    15
## 2
      201301
                      RECLAMO
                                                     5
                                 ALMAGRO
                                           172
## 3
      201301
                      RECLAMO BALVANERA
                                            92
                                                     3
                                                     4
## 4
      201301
                      RECLAMO
                               BARRACAS
                                            45
## 5
      201301
                      RECLAMO
                                BELGRANO
                                            79
                                                    13
## 6 201301
                      RECLAMO
                                    BOCA
                                            10
                                                     4
```

Al igual que con las selección por inclusión, podemos seleccionar por omisión de un rango de columnas contiguas (escritas entre paréntesis), o de varias columnas nombradas:

```
selection <- select(atencion_ciudadano, -(TIPO_PRESTACION:total))</pre>
head(seleccion)
##
     PERIODO RUBRO COMUNA
## 1 201301 ACERAS
                         15
## 2 201301 ACERAS
## 3
      201301 ACERAS
                          3
      201301 ACERAS
                          4
## 5
     201301 ACERAS
                         13
## 6 201301 ACERAS
seleccion <- select(atencion_ciudadano, -RUBRO, -BARRIO)</pre>
head(seleccion)
##
     PERIODO TIPO_PRESTACION total COMUNA
## 1
      201301
                      RECLAMO
                                  6
                                         15
## 2
      201301
                      RECLAMO
                                          5
                                172
                                          3
## 3
      201301
                      RECLAMO
                                 92
                                          4
## 4 201301
                      RECLAMO
                                 45
## 5 201301
                      RECLAMO
                                 79
                                         13
```

3.3.2 Filtrar filas con filter()

RECLAMO

10

4

6 201301

Una de las tareas más frecuentes en el análisis de datos es la de identificar observaciones que cumplen con determinada condición. filter() permite extraer subconjuntos del total en base a sus variables.

Por ejemplo, para seleccionar registros que correspondan a Retiro, ocurridos en el primer mes de 2014 (período 201401):

```
seleccion <- filter(atencion_ciudadano, BARRIO == "RETIRO", PERIODO == 201401)
head(seleccion)</pre>
```

##		PERIODO	RUBRO	TIPO_PRESTACION	BARRIO	total	COMUNA
##	1	201401	ACERAS	RECLAMO	RETIRO	10	1
##	2	201401	ALUMBRADO	RECLAMO	RETIRO	34	1
##	3	201401	ALUMBRADO	SOLICITUD	RETIRO	2	1
##	4	201401	ARBOLADO	RECLAMO	RETIRO	10	1
##	5	201401	ARBOLADO	SOLICITUD	RETIRO	3	1
##	6	201401	ATENCION AL PUBLICO	QUEJA	RETIRO	3	1

3.3.2.1 Comparaciones

Aquí hemos usado un recurso nuevo, la comparación. R provee una serie de símbolos que permite comparar valores entre sí:

```
* == igual a
* != no igual a
* > mayor a
* >= mayor o igual a
* < menor a
* <= menor o igual a</pre>
```

Atención especial merece el símbolo que compara igualdad, ==. Un error muy común es escribir BARRIO = "RETIRO", (un sólo símbolo =) que le indica a R que guarde el valor "RETIRO" dentro de la variable BARRIO, en lugar de verificar si son iguales. Para ésto último, lo correcto es BARRIO == "RETIRO", tal como lo usamos en el ejemplo de filter().

También hay que tener en cuenta el uso de comillas. Para que R no se confunda, cuando queramos usar valores de texto (de tipo *character*) los rodeamos con comillas para que quede claro que no nos referimos a una variable con ese nombre, si la hubiera, sino en forma literal a esa palabra o secuencia de texto. En el caso de los números, no hace falta el uso de comillas, ya que en R ningún nombre de variable puede comenzar con o estar compuesta sólo por números.

Filtrando los registros de períodos para los cuales se registran más de 100 incidentes:

```
seleccion <- filter(atencion_ciudadano, total > 100)
head(seleccion)
```

##		PERIODO	RUBRO	TIPO_PRESTACION	BARRIO	total	COMUNA
##	1	201301	ACERAS	RECLAMO	ALMAGRO	172	5
##	2	201301	ACERAS	RECLAMO	CABALLITO	109	6
##	3	201301	ACERAS	RECLAMO	FLORES	111	7
##	4	201301	ACERAS	RECLAMO	PALERMO	113	14
##	5	201301	${\tt ALUMBRADO}$	RECLAMO	ALMAGRO	130	5
##	6	201301	ALUMBRADO	RECLAMO	BARRACAS	118	4

3.3.2.2 Operadores lógicos

Cuando le pasamos múltiples condiciones a filter(), la función devuelve las filas que cumplen con todas.

Por ejemplo, con

```
seleccion <- filter(atencion_ciudadano, PERIODO == 201508, RUBRO == "SALUD")
head(seleccion)</pre>
```

```
BARRIO total COMUNA
##
    PERIODO RUBRO TIPO_PRESTACION
## 1 201508 SALUD
                             QUEJA BARRACAS
                                                 1
                             QUEJA CABALLITO
## 2 201508 SALUD
                                                        6
                                                 1
## 3 201508 SALUD
                             QUEJA
                                     COGHLAN
                                                 1
                                                       12
## 4 201508 SALUD
                             QUEJA RECOLETA
                                                 1
                                                        2
```

obtenemos todos los registros cuyo rubro es "SALUD", y cuyo período es 20108, agosto de 2015.

Siguiendo el mismo formato, si intentamos

```
seleccion <- filter(atencion_ciudadano, BARRIO == "RETIRO", BARRIO == "PALERMO")
head(seleccion)</pre>
```

```
## [1] PERIODO RUBRO TIPO_PRESTACION BARRIO
## [5] total COMUNA
## <0 rows> (or 0-length row.names)
```

obtenemos un conjunto vacío. ¿Por qué? Es debido a que ninguna observación cumple con todas las condiciones; el ningún registro el barrio es Retiro y es Palermo. ¡Suena razonable!. Para obtener registros ocurrido en Retiro ó en Palermo, usamos el operador lógico | que significa... "ó".

```
seleccion <- filter(atencion_ciudadano, BARRIO == "RETIRO" | BARRIO == "PALERMO")
head(seleccion)</pre>
```

##		PERIODO		RUBRO	TIPO_PRESTACION	BARRIO	total	COMUNA
##	1	201301		ACERAS	RECLAMO	PALERMO	113	14
##	2	201301		ACERAS	RECLAMO	RETIRO	15	1
##	3	201301		ACERAS	SOLICITUD	PALERMO	2	14
##	4	201301	ACTOS DE	CORRUPCION	DENUNCIA	PALERMO	4	14
##	5	201301		ALUMBRADO	RECLAMO	PALERMO	74	14
##	6	201301		ALUMBRADO	RECLAMO	RETIRO	15	1

```
* a & b a y b

* a | b a ó b

* a & !b a, y no b

* !a & b no a, y b

* !(a & b) no (a y b)
```

Hemos visto ejemplos de a & b (PERIODO == 201508, RUBRO == "SALUD", que filter toma como un &) y de a | b (BARRIO == "RETIRO" | BARRIO == "PALERMO")

Un ejemplo de a & !b, filas en las que el tipo de prestación sea "TRAMITE", y en las que el rubro no sea "REGISTRO CIVIL":

```
filter(atencion_ciudadano, TIPO_PRESTACION == "TRAMITE" & !(RUBRO == "REGISTRO CIVIL"))
```

Y como ejemplo de !(a & b), todas las filas excepto las de tipo "DENUNCIA", y rubro "SEGURIDAD E HIGIENE":

```
seleccion <- filter(atencion_ciudadano, !(TIPO_PRESTACION == "DENUNCIA" & RUBRO == "SEGURIDAD E HIGIENE
head(seleccion)</pre>
```

##		PERIODO	RUBRO	TIPO_PRESTACION	BARRIO	total	COMUNA
##	1	201301	ACERAS	RECLAMO	AGRONOMIA	6	15
##	2	201301	ACERAS	RECLAMO	ALMAGRO	172	5
##	3	201301	ACERAS	RECLAMO	${\tt BALVANERA}$	92	3
##	4	201301	ACERAS	RECLAMO	BARRACAS	45	4
##	5	201301	ACERAS	RECLAMO	BELGRANO	79	13
##	6	201301	ACERAS	RECLAMO	BOCA	10	4

3.3.3 Ordenar filas con arrange()

La función arrange () cambia el orden en el que aparecen las filas de un dataframe. Como primer parámetro toma un dataframe, al igual que el resto de los verbos de transformación que estamos aprendiendo. A continuación, espera un set de columnas para definir el orden.

Por ejemplo, para ordenar por total de registros:

```
ordenado <- arrange(atencion_ciudadano, total)
head(ordenado)
```

##		PERIODO	RUBRO	TIPO_PRESTACION		BARRIO	total	COMUNA
##	1	201301	ACERAS	RECLAMO	PUERTO	MADERO	1	1
##	2	201301	ACERAS	SOLICITUD	BA	ARRACAS	1	4
##	3	201301	ACERAS	SOLICITUD		BOCA	1	4
##	4	201301	ACERAS	SOLICITUD		B0ED0	1	5
##	5	201301	ACERAS	SOLICITUD		COGHLAN	1	12
##	6	201301	ACERAS	SOLICITUD	CONSTI	TUCION	1	1

Si agregamos más columnas, se usan en orden para "desempatar". Por ejemplo, si queremos que las filas con el mismo valor en *total* aparezcan en el orden alfabético del barrio que les corresponde, sólo necesitamos agregar esa columna:

```
ordenado <- arrange(atencion_ciudadano, total, BARRIO)
head(ordenado)</pre>
```

##		PERIODO	RUBRO	TIPO_PRESTACION	BARRIO	total	COMUNA
##	1	201301	ALUMBRADO	SOLICITUD	AGRONOMIA	1	15
##	2	201301	ATENCION SOCIAL	RECLAMO	AGRONOMIA	1	15
##	3	201301	ESPACIO PUBLICO	RECLAMO	${\tt AGRONOMIA}$	1	15
##	4	201301	QUEJA	QUEJA	${\tt AGRONOMIA}$	1	15
##	5	201301	RECUPERADORES	RECLAMO	${\tt AGRONOMIA}$	1	15
##	6	201301	SEGURIDAD	RECLAMO	AGRONOMIA	1	15

Si no se aclara lo contrario, el orden siempre es ascendente (de menor a mayor). Si quisiéramos orden de mayor a menor, usamos desc():

```
ordenado <- arrange(atencion_ciudadano, desc(total))
head(ordenado)</pre>
```

##		PERIODO		RUBRO	TIPO_PRESTACION	BARRIO	total	COMUNA
##	1	201502	REGISTRO	CIVIL	TRAMITE	MONSERRAT	19221	1
##	2	201403	REGISTRO	CIVIL	TRAMITE	SAN NICOLAS	19209	1
##	3	201402	REGISTRO	CIVIL	TRAMITE	SAN NICOLAS	17032	1
##	4	201504	REGISTRO	CIVIL	TRAMITE	MONSERRAT	16746	1
##	5	201503	REGISTRO	CIVIL	TRAMITE	MONSERRAT	16730	1
##	6	201506	REGISTRO	CIVIL	TRAMITE	MONSERRAT	14674	1

3.3.3.1 Valores faltantes

En el último ejemplo, aparecen varias filas cuyo valor para la columna BARRIO es NA. R representa los valores ausentes, desconocidos, con NA ("no disponible", del inglés *Not Available*). Hay que tener cuidado con los valores NA, porque la mayoría de las comparaciones y operaciones lógicas que los involucran resultan indefinidas. En la práctica:

¿Es 10 mayor a un valor desconocido?

```
10 > NA
```

[1] NA

R no sabe. (Nadie lo sabe, para ser justos)

¿A cuanto asciende la suma de 10 más un valor desconocido?

```
NA + 10
```

[1] NA

Y en particular... ¿es un valor desconocido igual a otro valor desconocido?

```
NA == NA
```

```
## [1] NA
```

Por supuesto, la respuesta es desconocida también. La insistencia de R en no definir operaciones que involucran NA's podría parecer irritante a primera vista, pero en realidad nos hace un favor. Al evitar extraer conclusiones cuando trata con datos faltantes, nos evita caer en errores garrafales en los casos en que analizamos y comparamos datos incompletos. Además, podemos preguntar a R si un valor es desconocido, y allí si contesta con seguridad. La función requerida es is.na().

```
desconocido <- NA
is.na(desconocido)</pre>
```

```
## [1] TRUE
```

Algo más a tener en cuenta con los valores desconocidos es cómo son interpretados cuando usamos funciones de transformación de datos. Por ejemplo, filter() ignora las filas que contienen NA's en la variable que usa para filtrar. arrange() muestra las filas con NA's en el campo por el que ordena, pero todas al final.

3.3.4 Agregar nuevas variables con mutate()

Recurrimos a la función mutate() cuando queremos agregarle columnas adicionales a nuestro dataframe, en general en base a los valores de las columnas ya existentes. Vamos a ilustrarlo con un ejemplo sencillo. Imaginemos que tenemos el siguiente dataset:

```
## nombre tamaño radio
## 1 Círculo 1 Pequeño 1
## 2 Círculo 2 Mediano 3
## 3 Círculo 3 Grande 5
```

Podemos agregar una columna con el área de cada círculo con mutate():

```
mutate(circulos, area = 3.1416 * radio^2)
```

```
## nombre tamaño radio area
## 1 Círculo 1 Pequeño 1 3.1416
## 2 Círculo 2 Mediano 3 28.2744
## 3 Círculo 3 Grande 5 78.5400
```

Usando mutate(), definimos la columna "area", indicando que su contenido será el valor de la columna "radio" en cada registro puesto en la fórmula del área de un círculo. Los operadores aritméticos (+, -, *, /, ^) son con frecuencia útiles para usar en conjunto con mutate().

Volvamos ahora a nuestro dataframe con datos de reclamos. Supongamos que nos interesa agregar columnas con el mes y el año de cada registro. La columna período, con valores del tipo "201301", contiene la información necesaria para derivar estas dos nuevas variables. Para separar la parte del año de la parte del

mes, la función substr(), que extrae porciones de una variable de texto, nos va a dar una mano. La usamos así: el primer parámetro es una secuencia de caracteres, y los dos siguientes indican donde queremos que empiece y termine la porción a extraer.

```
BARRIO total COMUNA AÑO MES
    PERIODO RUBRO TIPO PRESTACION
## 1 201301 ACERAS
                        RECLAMO AGRONOMIA 6
                                                15 2013 01
## 2 201301 ACERAS
                        RECLAMO ALMAGRO 172
                                                  5 2013 01
## 3 201301 ACERAS
                        RECLAMO BALVANERA 92
                                                   3 2013 01
## 4 201301 ACERAS
                         RECLAMO BARRACAS
                                            45
                                                   4 2013 01
                                            79
## 5 201301 ACERAS
                         RECLAMO BELGRANO
                                                  13 2013 01
## 6 201301 ACERAS
                         RECLAMO
                                     BOCA
                                            10
                                                   4 2013 01
```

3.3.5 Extraer sumarios con summarise()

Llegamos al último de los verbos fundamentales para transformar datos. summarise() (por "resumir" en inglés) toma un dataframe completo y lo resume un una sola fila, de acuerdo a la operación que indiquemos. Por ejemplo, el promedio de la columna "total":

```
summarise(atencion_ciudadano, promedio = mean(total))
```

```
## promedio
## 1 34.8478
```

Por si sola, summarise() no es de mucha ayuda. La gracia está en combinarla con group_by(), que cambia la unidad de análisis del dataframe completo a grupos individuales. Usar summarise() sobre un dataframe al que antes agrupamos con group_by resulta en resúmenes "por grupo".

```
agrupado <- group_by(atencion_ciudadano, AÑO)
summarise(agrupado, promedio_totales = mean(total))</pre>
```

Podemos agrupar por múltiples columnas, generando más subgrupos; por ejemplo, promedios por por año y mes...

```
agrupado <- group_by(atencion_ciudadano, AÑO, MES)
sumario <- summarise(agrupado, promedio = mean(total))
head(sumario)</pre>
```

```
## # A tibble: 6 x 3
## # Groups: AÑO [1]
## AÑO MES promedio
## <chr> <chr> <dbl>
```

<chr> <chr> <chr>

01

```
## 1 2013 01
                      25.1
## 2 2013 02
                      26.1
## 3 2013
           03
                      26.9
## 4 2013
                      29.5
           04
## 5 2013
           05
                      28.0
## 6 2013 06
                      28.9
... o por año, mes y barrio:
agrupado <- group_by(atencion_ciudadano, AÑO, MES, BARRIO)
sumario <- summarise(agrupado, promedio = mean(total))</pre>
head(sumario)
## # A tibble: 6 x 4
                AÑO, MES [1]
## # Groups:
     AÑO
           MES
                  BARRIO
                            promedio
```

Con summarise() podemos usar cualquier función que tome una lista de valores y devuelva un sólo resutado. Para empezar, algunas de las que más podrian ayudarnos son:

```
* `mean()`: Obtiene el promedio de los valores
* `sum()`: Obtiene la suma
* `min()`: Obtiene el valor más bajo
* `max()`: Obtiene el valor más alto
```

AGRONOMIA

BALVANERA

BARRACAS

BELGRANO

BOCA

ALMAGRO

<dbl>

14.6

29.5

23.6

19.4

24.4

9.97

3.3.6 ¡BONUS! El operador "pipe": %>%

Antes de terminar, vamos a presentar una herramienta más: el operador *pipe* (pronúnciese "paip", es el término en inglés que significa "tubo").

El pipe es un operador: un símbolo que relaciona dos entidades. Dicho en forma más simple, el pipe de R, cuyo símbolo es %>% está en familia con otros operadores más convencionales, como +, - o /. Y al igual que los otros operadores, entrega un resultado en base a los operandos que recibe. Ahora bien... ¿Para qué sirve? En resumidas cuentas, hace que el código necesario para realizar una serie de operaciones de transformación de datos sea mucho más simple de escribir y de interpretar.

Por ejemplo, si quisiéramos obtener el top 5 de los barrios que más reclamos y denuncias de los ciudadanos han registrado durante 2015, la forma de lograrlo en base a lo que ya sabemos sería así:

```
1. Filtramos los datos para aislar los registros del 2014;
```

- 2. agrupamos por Barrio;
- 3. hacemos un sumario, creando una variable resumen que contiene la suma de los registros para cada bar
- 4. los ordenamos en forma descendiente,
- 5. mostramos sólo los primeros 5 (esto se puede hacer con la función `head()`, aclarando cuantas filas

En código:

##

1 2013 01

2 2013 01

3 2013 01

5 2013 01

6 2013 01

4 2013

```
solo2014 <- filter(atencion_ciudadano, AÑO == 2014)
```

```
solo2014_agrupado_barrio <- group_by(solo2014, BARRIO)

total_por_barrio_2014 <- summarise(solo2014_agrupado_barrio, total = sum(total))

total_por_barrio_2014_ordenado <- arrange(total_por_barrio_2014, desc(total))

head(total_por_barrio_2014_ordenado, 5)</pre>
```

¡Funciona! Pero... el problema es que hemos generado un puñado de variables ("solo2014", "solo2014_agrupado_barrio", etc) que, es probable, no volveremos a usar. Además de ser inútiles una vez obtenido el resultado buscado, estas variables intermedias requieren que las nombremos. Decidir el nombre de estas variables que no nos importan toma tiempo (sobre todo cuando producimos muchas), y nos distrae de lo importante, que es el análisis.

El pipe, %>%, permite encadenar operaciones, conectando el resultado de una como el dato de entrada de la siguiente. La misma secuencia que realizamos antes puede resolverse con pipes, quedando así:

```
atencion_ciudadano %>%
  filter(AÑO == 2014) %>%
  group_by(BARRIO) %>%
  summarise(total = sum(total)) %>%
  arrange(desc(total)) %>%
  head(5)
```

```
## # A tibble: 5 x 2

## Chr> chr> cint>

## 1 SAN NICOLAS 180956

## 2 PALERMO 22569

## 3 CABALLITO 19706

## 4 FLORES 15919

## 5 VILLA DEVOTO 15720
```

Una manera de pronunciar %>% cuando leemos código es "y luego...". Algo así como "tomamos el dataframe"atencion_ciudadano" y luego filtramos los registros del año 2014, y luego agrupamos por barrio, y luego calculamos el total de registros para cada grupo, y luego los ordenamos en forma descendente por total, y luego vemos los cinco primeros".

El uso de pipes permite concentrarse en las operaciones de transformación, y no en lo que está siendo transformado en cada paso. Esto hace al código mucho más sencillo de leer e interpretar. En el ejemplo con pipe, sólo tuvimos que nombrar un dataframe con el cual trabajar un única vez, al principio.

```
Detrás de escena, x %>% f(y) se transforma en f(x, y). Por eso,
```

```
filter(atencion_ciudadano, AÑO == 2014)
```

es equivalente a

atencion_ciudadano %>% filter(AÑO == 2014)

Trabajar con pipes es una de las ventajas que hacen de R un lenguaje muy expresivo y cómodo para manipular datos, y a partir de aquí lo usaremos de forma habitual.

Con esto cerramos la sección de transformación de datos. Las técnicas para examinar un dataframe, como sumamry() nos permiten entender de forma rápida con que clase de variables vamos a trabajar. Los cinco verbos de manipulación que aprendimos, usados en conjunto, brindan una enorme capacidad para adaptar el formato de los datos a nuestras necesidades. Y el operador pipe nos ayuda a escribir nuestro código de forma sucinta y fácil de interpretar.

A medida que vayamos progresando en nuestra familiaridad con las funciones -y agregando técnicas nuevasvamos a ser capaces de procesar grandes cantidades de datos con soltura. Y obtener en pocos minutos lo que de otra forma, sin herramientas computacionales, tardaría días o sería inviable por lo tedioso.

Chapter 4

Visualización

La visualización de información es una de las técnica más poderosas, y a la vez más accesibles, de las que disponemos como analistas de datos. La visualización es el proceso de hacer visibles los contrastes, ritmos y eventos que los datos expresan, que no podemos percibir cuando vienen en forma de áridas listas de números y categorías.

Vamos a aprender a realizar las visualizaciones más usadas, y las opciones de ajuste con las que podemos lograr que luzcan tal como queremos.

4.1 Una buena visualización para empezar: el scatterplot

Los gráficos de dispersión, o *scatterplots*, son quizás el tipo de visualización más conocido. Consisten en puntos proyectados en un eje de coordenadas, donde cada punto representa una observación. Son útiles para mostrar la correlación entre dos variables numéricas.

Por ejemplo, podríamos asumir que existirá una correlación positiva entre la cantidad de habitantes de una comuna y la cantidad de contactos anuales que sus habitantes hacen a las líneas de atención al ciudadano. Es decir, cuantas más personas vivan en una comuna, es de esperarse que sea mayor la cantidad de quejas, denuncias, etc. que se originan allí.

Activamos el paquete tidyverse, si aún no lo habíamos hecho.

```
library(tidyverse)
```

Y si no lo tenemos ya cargado, leemos de nuevo el dataframe con los registros de atención al ciudadano (esta versión incluye la columna "COMUNA").

```
atencion_ciudadano <- read.csv("http://bitsandbricks.github.io/data/gcba_suaci_comunas.csv")</pre>
```

Usando los verbos de transformación que aprendimos, es fácil obtener un dataframe resumen con los totales anuales por comuna. Vamos a expresar los totales en miles de contactos, para evitar trabajar con números tan grandes.

```
contactos_por_comuna <- atencion_ciudadano %>%
   group_by(COMUNA) %>%
   summarise(miles_contactos = sum(total) / 1000 )

contactos_por_comuna
```

```
## # A tibble: 16 x 2
## COMUNA miles contactos
```

```
##
        <int>
                           <dbl>
##
    1
                         685.
            1
##
    2
            2
                          48.8
    3
            3
                          71.2
##
##
    4
            4
                           94.5
    5
            5
##
                          77.1
    6
            6
                          82.8
##
    7
            7
                          95.8
##
##
    8
            8
                          61.3
    9
            9
##
                          91.2
## 10
           10
                         114.
                         139.
##
   11
           11
## 12
           12
                         123.
## 13
           13
                         106.
## 14
           14
                          99.3
## 15
           15
                         107.
## 16
           NA
                            5.78
```

Lo que nos falta ahora es la cantidad de habitantes en cada comuna. *No problem*. El dato es fácil de conseguir, otra vez cortesía de la Dirección General de Estadística y Censos de la Ciudad de Buenos Aires. Traemos la proyección al año 2017 de la cantidad de habitantes por comuna.

```
habitantes <- read.csv("http://bitsandbricks.github.io/data/gcba_pob_comunas_17.csv")
habitantes
```

```
##
      COMUNA POBLACION
## 1
            1
                 253271
            2
## 2
                 149720
## 3
            3
                 192763
## 4
            4
                 238809
## 5
            5
                 186956
            6
## 6
                 184846
## 7
            7
                 240607
## 8
            8
                 226649
## 9
            9
                 170605
           10
## 10
                 170282
## 11
           11
                 189986
## 12
           12
                 213914
                 235967
## 13
           13
## 14
           14
                 226944
           15
## 15
                 182409
```

Por suerte, ya sabemos como combinar tablas usando left_join()

```
contactos_por_comuna <- contactos_por_comuna %>% left_join(habitantes)
contactos_por_comuna
```

```
## # A tibble: 16 x 3
      COMUNA miles_contactos POBLACION
##
##
       <int>
                         <dbl>
                                    <int>
                                  253271
    1
##
           1
                        685.
##
    2
           2
                         48.8
                                  149720
    3
           3
##
                         71.2
                                  192763
##
    4
           4
                         94.5
                                  238809
           5
                         77.1
##
    5
                                  186956
```

##	6	6	82.8	184846
##	7	7	95.8	240607
##	8	8	61.3	226649
##	9	9	91.2	170605
##	10	10	114.	170282
##	11	11	139.	189986
##	12	12	123.	213914
##	13	13	106.	235967
##	14	14	99.3	226944
##	15	15	107.	182409
##	16	NA	5.78	NA

!Preparativos terminados! Hagamos por fin nuestro scatterplot. Tal como en el capítulo de introducción a R, continuaremos usando ggplot() para visualizar:

ggplot(contactos_por_comuna)

```
¿Un gráfico vacío? Recordemos que ggplot funciona por capas. Primero uno declara el dataframe que va a usar, y luego agrega una o más capas con representaciones de la información. La forma de agregar una capa con un scatterplot, en la práctica dibujar puntos, es con geom_point:

ggplot(contactos_por_comuna) + geom_point(aes(x = POBLACION, y = miles_contactos))
```


Lo que hicimos fue pedirle a ggplot que dibuje un punto por cada fila (representando a cada comuna), con la posición en el eje de las x según su población, y en el eje de las y según la cantidad de contactos registrados. Estas referencias estéticas (aesthetics en inglés) son las que van dentro de la función aes() en geom_point(aes(x = POBLACION, y = miles_contactos))

Primer sorpresa: ¡en el extremo superior derecho hay una comuna que se sale de la norma! Su relación población/reclamos es muy diferente a la de todas las demás. Podemos identificarla, pidiendo a ggplot que agregue una variable más a la visualización -la comuna. Siendo un gráfico en dos dimensiones, ya no podemos usar la posición para representar un valor; tanto la posición horizontal como la vertical están siendo usadas por población y total. Nuestras opciones son codificar la comuna por color, forma o tamaño del punto. A pesar de que son identificadas con números, las comunas son una variable categórica: no tiene sentido decir que la comuna 1 es "menor" que la comuna 7. Par las variables categóricas, el color suele ser una buena opción de codificación.

Lo hacemos agregando un parámetro color dentro de aes(). Tal como hicimos en el capítulo 2, usamos factor(COMUNA) en lugar de COMUNA a secas para indicarle a R que queremos que trate a la variable como categórica:

```
ggplot(contactos_por_comuna) +
    geom_point(aes(x = POBLACION, y = miles_contactos, color = factor(COMUNA)))
```


En ese caso, no es tan fácil discernir cuál es cuál, pero mirando con cuidado descubrimos que la comuna 1 es el *outlier*, el valor fuera de lo común. Lo que nos pasa aquí es que tenemos demasiadas categorías, con lo cual cada una tiene su propio color pero el rango cromático no alcanza para darle a cada una un tono bien distinto al de las demás.

Si necesitamos generar un gráfico que no deje lugar a dudas, lo resolvemos usando un método alternativo para el scatterplot. En lugar de dibujar puntos, podemos poner etiquetas con el nombre de cada comuna.

En lugar de

```
ggplot(contactos_por_comuna) +
   geom_point(aes(x = POBLACION, y = miles_contactos, color = factor(COMUNA)))
```

usamos

```
ggplot(contactos_por_comuna) +
    geom_label(aes(x = POBLACION, y = miles_contactos, label = factor(COMUNA)))
```


Volvamos a nuestros puntos para practicar dos codificaciones estéticas que no hemos probado, color y tamaño.

Para dejar aún más clara la diferencia de reclamos entre comunas, podríamos usar el tamaño (size) de cada punto para representar esa variable, además de su altura en el gráfico.

```
ggplot(contactos_por_comuna) +
    geom_point(aes(x = POBLACION, y = miles_contactos, size = miles_contactos))
```


Y para distinguir cuál es cuál, podemos pedirle a g
gplot que cambie la forma (shape) de cada punto según la comuna a la que corresponde.

```
ggplot(contactos_por_comuna) +
   geom_point(aes(x = POBLACION, y = miles_contactos, shape = factor(COMUNA)))
```


¡Hey, sólo aparecen seis de las comunas! ggplot() usa cómo máximo 6 formas distintas, debido a que una cantidad mayor sería de veras muy difícil de discernir para nuestros pobres ojos. Moraleja: la estética shape sirve sólo cuando manejamos pocas categorías. De todas formas -en mi opinión- es el método de codificación que menos gracia tiene, así que no es grave que su utilidad sea limitada.

4.2 Ajustando color y tamaño

Hemos visto que especificando atributos estéticos y las variables que representan dentro de aes() podemos ajustas posición, tamaño, color y hasta la forma de los puntos de acuerdo a sus valores. Pero, ¿qué pasa si queremos usar un tamaño o un color arbitrario para nuestros puntos? Es decir, si no nos gusta el color negro y queremos que sean todos azules, o si nos parece que se ven pequeños y queremos que sean todos un poco más grandes. Fácil: definimos el color o size que queremos por fuera de las función aes(), y será aplicado a todos los puntos.

```
ggplot(contactos_por_comuna) +
   geom_point(aes(x = POBLACION, y = miles_contactos), color = "blue")
```


Obsérvese que color = "blue" está escrito por fuera de los paréntesis de aes(). De paso, hicimos uso de una característica muy práctica de R: reconoce un montón de colores por su nombre, siempre que los escribamos entre comillas. Si le decimos color = "blue", color = "red", color = "yellow", etc., sabe de que hablamos. Una lista de todos los colores que R reconoce, ideal como referencia, se puede encontrar en http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf; json más de 600!.

Tras un vistazo a la lista, me decido por "darkolivegreen4":

```
ggplot(contactos_por_comuna) +
   geom_point(aes(x = POBLACION, y = miles_contactos), color = "darkolivegreen4")
```


Bellísimo.

En cuanto al tamaño, la fórmula es la misma:

```
ggplot(contactos_por_comuna) +
  geom_point(aes(x = POBLACION, y = miles_contactos), size = 5)
```


El valor de **size** se da en píxeles. Es una medida difícil de estimar antes de ver el resultado, pero es cuestión de probar algunos valores distintos hasta encontrar el que nos va bien. Por supuesto, podemos ajustar varios, o todos, los atributos a la vez

4.3 Facetado

Ya sabemos como representar variables usando atributos estéticos. Con esa técnica podemos mostrar con claridad dos o tres variables en un plano bidimensional (nuestro gráfico). Pero cuando si queremos agregar más atributos para codificar variables adicionales, la visualización pierde legibilidad de inmediato. Por suerte existe otra técnica, que podemos usar en combinación con la estética, para agregar aún más variables: el facetado.

Las facetas son múltiples gráficos contiguos, con cada uno mostrando un subconjunto de los datos. Son útiles sobre todo para variables categóricas.

Practiquemos con un ejemplo. Sabemos que en la comuna 1 se registra una cantidad de contactos de la ciudadanía mucho mayor que en las demás. ¿La diferencia será igual para todas las categorías de contacto, o existe alguna en particular que es la que inclina la balanza?

En nuestro dataframe original, el tipo de contacto aparece en la columna "TIPO_PRESTACION". El nombre que eligieron no es del todo informativo, pero summary() (recuerden siempre lo usamos para explorar un dataset que no conocemos) nos da una pista:

summary(atencion_ciudadano)

##	PERIODO	RUBRO	TIPO_PRESTACION
##	Min. :201301	SANEAMIENTO URBANO : 45	89 DENUNCIA:21606
##	1st Qu.:201309	TRANSPORTE Y TRANSITO: 45	80 QUEJA : 3914
##	Median :201404	ARBOLADO : 31	22 RECLAMO :21038
##	Mean :201401	ALUMBRADO : 29	18 SOLICITUD: 9662
##	3rd Qu.:201503	PAVIMENTO : 24	11 TRAMITE : 1211

4.3. FACETADO 49

```
:201512
                      ESPACIO PUBLICO
                                            : 1918
##
    Max.
##
                                            :37893
                      (Other)
                                                                  AÑO
##
       BARRIO
                            total
                                                COMUNA
                                                   : 1.000
   Length: 57431
                                    1.00
                                                              Length: 57431
##
                        Min.
                                            Min.
##
    Class : character
                        1st Qu.:
                                    1.00
                                            1st Qu.: 4.000
                                                              Class : character
   Mode :character
                                    4.00
                                            Median : 9.000
                                                              Mode :character
##
                       Median :
                                   34.85
##
                        Mean :
                                            Mean : 8.119
##
                        3rd Qu.:
                                   16.00
                                            3rd Qu.:12.000
##
                        Max.
                               :19221.00
                                            Max.
                                                   :15.000
##
                                            NA's
                                                   :63
##
        MES
    Length: 57431
##
##
    Class : character
##
   Mode :character
##
##
##
##
```

"TIPO_PRESTACION" es la categoría más general, con sólo cinco niveles - "DENUNCIA", "QUEJA", "RECLAMO", "SOLICITUD" y "TRAMITE". Las otras variables categóricas, asumimos, representan subtipos.

Agrupamos entonces nuestra data por comuna y por tipo de contacto, sin olvidar agregar luego los datos de población

```
contactos_por_comuna_y_tipo <- atencion_ciudadano %>%
    group_by(COMUNA, TIPO_PRESTACION) %>%
    summarise(miles_contactos = sum(total) / 1000 ) %>%
    left_join(habitantes)
head(contactos_por_comuna_y_tipo)
```

```
## # A tibble: 6 x 4
## # Groups:
               COMUNA [2]
##
     COMUNA TIPO_PRESTACION miles_contactos POBLACION
##
      <int> <fct>
                                        <dbl>
                                                   <int>
## 1
          1 DENUNCIA
                                         22.9
                                                  253271
## 2
          1 QUEJA
                                         17.4
                                                  253271
## 3
          1 RECLAMO
                                         55.7
                                                  253271
## 4
          1 SOLICITUD
                                         20.9
                                                  253271
                                        568.
## 5
          1 TRAMITE
                                                  253271
## 6
          2 DENUNCIA
                                         10.2
                                                  149720
```

Listos para facetar. Producimos un scatterplot igual que antes, y le agregamos una capa adicional con facet_wrap(). La variable a "facetar", la que recibirá un gráfico por cada una de sus categorías, siempre se escribe a continuación del signo ~; en nuestro caso, queda como ~TIPO_PRESTACION. El simbolillo en cuestión denota lo que en R se denomina una fórmula y ya nos lo cruzaremos de nuevo, pero por ahora no le prestamos más atención.

```
ggplot(contactos_por_comuna_y_tipo) +
  geom_point(aes(x = POBLACION, y = miles_contactos)) +
  facet_wrap(~TIPO_PRESTACION)
```


Los culpables de la anomalía son los trámites; en ninguna otra categoría la comuna 1 se separa del resto. Sabiendo que la base de donde provienen los datos combina información de distintos sistemas de atención, mi interpretación es que una gran cantidad de "TRAMITES" proviene de algún sistema administrativo que no guarda direcciones. Si ese fuera el caso, parece que a todos los trámites huérfanos de origen se les asigna una dirección en la Comuna 1 (sede histórica del Gobierno de la Ciudad) y nosotros terminamos haciendo estas elucubraciones.

Pero valga el ejemplo para mencionar algo fundamental: por más ciencia de datos que apliquemos, siempre vamos a llegar a un punto en que nuestros hallazgos no tendrán sentido sin combinarlos con lo que se llama "conocimiento de dominio". El conocimiento de dominio es el saber especializado sobre el tema que estamos tratando, sea el ciclo reproductivo de la gaviota austral o la organización administrativa del Gobierno de la Ciudad Autónoma de Buenos Aires. Esto no debería desanimarnos, ¡al contrario!. El análisis de datos como profesión conlleva un constante aprendizaje sobre los más variados temas. Y a la inversa: si somos expertos en cualquier campo, aún con un puñado de técnicas básicas de R podemos extraer conocimiento de nuestros datos que jamas encontraría un experto programador que no conoce el paño.

4.4 Gráficos de barras

Si hay un tipo de visualización que compite en popularidad con el *scatterplot*, son los gráficos de barras (*bar charts* en inglés). Solemos encontrarlos acompañando artículos en diarios y revistas, sin duda porque son fáciles de leer de un vistazo. Los gráficos de barras se usan mucho para hacer comparaciones: quién tiene más y quién tiene menos de alguna variable continua cómo ingresos, edad, altura o similares.

Comparemos la suma total de registros que alcanza cada barrio. Con geom_bar podemos agregar una capa de visualizacón con gráficos de barras. Los parámetros a definir dentro de aes() son x, donde va una variable categórica, y en forma opcional weight, que indica la variable a sumar para determinar la altura de cada barra. Si no especificamos un weight, simplemente se cuenta cuantas veces aparece cada categoría en el

dataframe, en la práctica un conteo o frecuencia de aparición. En nuestro dataset cada fila incluye un período y un total de contactos recibidos. Nosotros no estamos interesados en cuantas veces aparece cada barrio, sino en la suma de la columna total para cada uno de ellos, así que vamos a usar weight = total.

```
ggplot(atencion_ciudadano) +
  geom_bar(aes(x = BARRIO, weight = total))
```


Tenemos dos problemas. El primero es que los valores en el eje de las y son grandes, y R nos quiere hacer un favor expresándolos en notación científica. La notación científica es práctica para ahorrar espacio, pero no queda vien en visualizaciones. Para pedirle que no lo haga mas, usamos esta función

```
options(scipen = 999)
```

y por el resto de la sesión nos libramos de la notación científica. Listo.

El segundo problema es que los nombres de los barrios resultan del todo ilegibles porque no tienen espacio. En un gráfico, el eje horizonatal es un muy mal lugar para poner muchas categorías con nombre, ya que el solapamiento se vuelve inevitable. Sería mejor tener los nombre en el eje vertical, donde se pueden escribir uno encima del otro sin pisarse ¡La solución es invertir los ejes de de coordenadas! Sólo necesitamos agregar coord_flip:

```
ggplot(atencion_ciudadano) +
  geom_bar(aes(x = BARRIO, weight = total)) +
  coord_flip()
```


Ahora si podemos interpretar el gráfico. San Nicolás y Monserrat son los barrios a la cabeza, lo cual no sorprende sabiendo que pertenecen a la ya legendaria comuna 1.

Los gráficos de barras, además de comparar, también son buenos para mostrar la composición interna de las cosas: que "hay dentro", que componentes contribuye a un determinado total. Vamos a mostrar entonces cuanto contribuye cada tipo de trámite al toal por barrio, usando el parámetro estético fill (relleno). geom_bar realiza un segmentado automático de cada barra, con la proporción que le corresponde a cada subcategoría:

```
ggplot(atencion_ciudadano) +
  geom_bar(aes(x = BARRIO, weight = total, fill = TIPO_PRESTACION)) +
  coord_flip()
```


!Esos trámites otra vez! En cierto modo, estamos recorriendo las mismas conclusiones a las que arribamos usando scatterplots, pero mostrando la información de otra manera. De más está decirlo, hay muchas maneras de contar las cosas.

En lugar de relleno podríamos haber usado color, tal como hicimos con los puntos, pero los resultado es un poco menos legible y no luce tan bien. La variable color modifica la silueta de las barras, pero no su interior:

```
ggplot(atencion_ciudadano) +
  geom_bar(aes(x = BARRIO, weight = total, color = TIPO_PRESTACION)) +
  coord_flip()
```


También podemos cambiar las categorías. Si qusiéramos ver el total de registros por cada tipo de trámite:

```
ggplot(atencion_ciudadano) +
  geom_bar(aes(x = TIPO_PRESTACION, weight = total))
```


Notamos que las quejas y denuncias son eventos poco frecuentes en comparación con las otras clases de contacto entre ciudadanos y ciudad. En esta ocasión no recurrimos a coord_flip, ya que las categorías son pocas y tienen espacio suficiente en el eje horizontal.

```
¿Y si mostramos el aporte de cada barrio al total global de cada tipo de contacto?
```

```
ggplot(atencion_ciudadano) +
geom_bar(aes(x = TIPO_PRESTACION, weight = total, fill = BARRIO))
```


 Hemos obtenido una visualización indigerible. Quizás con un facetado por barrio...

```
ggplot(atencion_ciudadano) +
  geom_bar(aes(x = TIPO_PRESTACION, weight = total)) +
  facet_wrap(~BARRIO)
```

4.5. HISTOGRAMAS 57

Esta opción es un poco mejor, ya que al menos permite identificar pronto los barrios salientes, y discernir diferencias generales si se la mira con paciencia. Una visualización tan densa en información puede resultar ideal para "uso personal", explorando de forma rápida datos con los que estamos familiarizados, pero es poco recomendable para compartir con otros.

En general, para evitar la confusión asociada a variables con docenas de categorías se busca simplificar definiendo menos grupos. Por ejemplo, como hicimos al comienzo al separar por comunas, que son sólo quince, en lugar de por barrios.

4.5 Histogramas

Los histogramas son usados para mostrar la distribución de una variable continua. El histograma permite decir si los valores que toma cada observación se agrupan en torno a un valor "típico" o medio -como en el caso de la llamada distribución normal-, o en torno a dos valores frecuentes (distribución bimodal), o con dispersión sin picos ni valles, donde no hay valores típicos ni atípicos - distribución uniforme.

Por ejemplo, analicemos la distribución de resgistros mensuales (la columna PERIODO en nuestro datset representa el lapso de un mes). Tenemos que agrupar por mes, y hacer un resumen (summarise()) que extraiga el gran total:

```
contactos_por_mes <- atencion_ciudadano %>%
    group_by(PERIODO) %>%
    summarise(gran_total = sum(total))
head(contactos_por_mes)
```

A tibble: 6 x 2

```
##
     PERIODO gran_total
##
       <int>
                   <int>
## 1
      201301
                   43826
##
      201302
                   43666
##
      201303
                   47405
      201304
                   50768
## 5
      201305
                   52761
                   48344
## 6
      201306
```

Hacer un histograma es simple con geom_histogram(): sólo hay que elegir una variable y asignarla a las x.

```
ggplot(contactos_por_mes) +
  geom_histogram(aes(x = gran_total))
```


geom_histogram() divide el rango de valores en una cantidad arbitraria de segmentos iguales ("bins" en inglés) y cuenta cuantas observaciones caen en cada uno, cantidad que se representa con la altura de la columna en el eje de las y.

En nuestro ejemplo, vemos que un mes mes en el que la cantidad de resgitros tiende a agurparse en torno a un valor típico de poco más de 60.000 por mes. En apenas un caso hubo mennos de 40.000 o más de 80.000

No sería raro que la agregación que hicimos nos oculte patrones en los datos. Que pasa si contamos los registros por mes y por tipo de contacto, y mostramso los histogramas mensuales en facetado por tipo?

Hacemos el agrupado y sumario de rigor

```
contactos_por_mes_y_tipo <- atencion_ciudadano %>%
   group_by(PERIODO, TIPO_PRESTACION) %>%
   summarise(gran_total = sum(total))
```

4.5. HISTOGRAMAS 59

head(contactos_por_mes_y_tipo)

```
## # A tibble: 6 x 3
## # Groups:
               PERIODO [2]
##
     PERIODO TIPO_PRESTACION gran_total
##
       <int> <fct>
                                    <int>
## 1
      201301 DENUNCIA
                                    2740
##
      201301 QUEJA
                                     889
## 3
      201301 RECLAMO
                                   16011
      201301 SOLICITUD
                                   15325
      201301 TRAMITE
## 5
                                    8861
      201302 DENUNCIA
                                    2463
```

y creamos el facetado como ya sabemos:

```
ggplot(contactos_por_mes_y_tipo) +
   geom_histogram(aes(x = gran_total)) +
   facet_wrap(~TIPO_PRESTACION)
```


Aparecen las diferencias. Los reclamos tienen una dispersión mínima, con casi todas las observaciones apiladas en torno a unos 1000 contactos mensuales; siempre son bajas. La cantidad mensual de denuncias, reclamos y solicitudes muestra una dispersión mayor, pero aún así tendencia a rondar un valor típico. Los trámites son el extremo opuesto a las qeujas, ya que muestran una gran dispersión, pudiendo tomar cualquier valor de menos de 10.000 a más de 40.000 registros de forma bastante pareja.

4.6 Preparando una visualización para compartir

Lo último que nos queda por decir en este capítulo es que los gráficos que hemos producido hasta aquí están pensandos para nuestro propio consumo. Son parte, y parte dundamental, de lo que llamamos análisis exploratorio de datos. En el contexto de la exploración, lo importante es trabajar en forma rápida, probando una u otra técnica de visuzalización y refinando nuestros resultados hasta hallar patrones interesantes, o sacarnos dudas acerca de los datos. No necesitamos ponerle título a las visualizaciones, porque ya sabemos de que tratan (¡acabamos de escribirlas!). No nos preocupa que los nombres de los ejes indiquen en forma clara la variable representan, porque ya lo sabemos de antemano.

Pero cuando queremos guardar un gráfico para compartir con otros, sea publicándola en un paper, o enviándola por mail a un amigo, necesitamos tener más cuidado. Hemos pasado del ámbito de la exploración al de la comunicación. Ahora si debe preocuparnos la claridad, porque no sabemos el grado de familiaridad que tiene con los datos la eventual audiencia.

Si bien la comunicación clara es un arte cuyas reglas dependen del contexto, y además cada quien tiene su estilo, podemos decretar al menos tres elementos que no deberían faltar en un gráfico destinado a comunicar algo a los demás:

- Un título descriptivo, pero breve
- Etiquetas claras (no ambiguas) en los ejes
- Nombres descriptivos en las leyendas

y ya que estamos, dos opcionales:

- Un subtítulo donde poner detalles importantes que no entran en un título breve
- Una nota al pie con infromación adicional: fuente de los datos, cita académica, advertencias, etc.

Con ggplot () podemos encargarnos de todo dentro de una sola función, labs () (por labels, etiquetas)

Tomemos un gráfico de los que hicimos antes para pulirlo un poco y que sirva de ejemplo. El original:

```
ggplot(atencion_ciudadano) +
  geom_bar(aes(x = BARRIO, weight = total, fill = TIPO_PRESTACION)) +
  coord_flip()
```


versus la versión pulida usando labs():

```
ggplot(atencion_ciudadano) +
    geom_bar(aes(x = BARRIO, weight = total, fill = TIPO_PRESTACION)) +
    coord_flip() +
    labs(title = "Contactos realizados al Sistema Único de Atención Ciudadana",
        subtitle = "Ciudad Autónoma de Buenos Aires, 2013 - 2015",
        caption = "Fuente: portal de datos abiertos de la Ciudad - http://data.buenosaires.gob.ar",
        x = "barrio",
        y = "cantidad",
        fill = "Motivo del contacto")
```


Fuente: portal de datos abiertos de la Ciudad - http://data.buenosaires.gob.ar

Ahora si, a compartir.

4.7 Otras visualizaciones

Por supuesto, las opciones que hemos repasado son apenas una fracción de la enorme variedad de técnicas de visualización que existen. Para empezar, nos falta hablar de los mapas, una categoría tan importante que tiene un capítulo completo dedicado más adelante.

Y aún quedan tantas por discutir, que sería imposible hacerles justicia en un libro introductorio. Con nombres tan variopintos como waffle charts, violin plots, o tree maps, existen quizás un centenar o más de métodos bien documentados para explorar información en forma visual.

El sitio web from Data to Viz (https://www.data-to-viz.com/) es un recurso excelente para investigar opciones. Contiene un compendio visual e interactivo de técnicas de visualización con sus nombres y características generales. También explica a que familia corresponde cada una, y para qué suele usarse (mostrar relaciones, distribuciones, cambio a través del tiempo, etc).

Y lo más interesante: Para todas y cada una de las visualizaciones se incluye el código en R que permite reproducirlas. A partir de allí sólo es cuestión de adaptar los ejemplos a nuestros datos para realizar de forma fácil la visualización que nos interesa.

Figure 4.1: from Data to Viz - www.data-to-viz.com/

Chapter 5

Modelado estadístico

Llegamos a un tema de gran interés para quienes realizan investigaciones formales. La posición central que tiene el modelado en la investigación científica se debe a que cuantifica relaciones: permite pasar de decir "La luz solar abundante mejora el crecimiento de las plantas" a "por cada hora adicional de exposición mensual a la luz solar, los cultivos aumentaron su rinde en un 1%". La cuantificación permite realizar comparaciones, algo clave para entender un fenómeno estudiado: antes y después, con o sin tratamiento, en un lugar o en otro.

Este capítulo le debe mucho a *ModernDive: An Introduction to Statistical and Data Sciences via R* por Chester Ismay y Albert Y. Kim, disponible en forma gratuita en http://moderndive.com/. ModernDive es un recurso muy recomendable para quienes quieran continuar profundizando su conocimiento más allá de los temas que veremos a continuación.

En términos matemáticos, se habla de "modelar" debido a que estamos creando un modelo, una reconstrucción simplificada (¡simplificada en extremo!) de cómo funciona un proceso observado en el mundo real. En un modelo de datos, siempre tenemos al menos

- Una variable resultante, siempre una sola, también llamada variable "dependiente",
- Una o más variables predictoras, también llamadas "explicativas"

El modelado de datos puede ser utilizado para dos propósitos:

- 1. **Predecir** el valor de una variable resultante en base a valores conocidos de las variables predictoras. Aquí no interesa tanto entender cómo es que las variables interactúan entre sí, o por qué lo hacen. Mientras las predicciones sean acertadas, o se acerquen lo suficiente, el modelo cumple su cometido. Los modelos predictivos se emplean en una enorme variedad de aplicaciones: inversión en bolsa, prevención de fraude, publicidad online, fijación de primas en seguros de riesgo, etc.
- 2. Explicar la relación entre una variable dependiente y todas las demás (las explicativas), buscando determinar si la relación es significativa. Los modelos explicativos son los que se favorecen en investigación académica, ya que ayudan a entender el fenómeno modelado.

Existen muchísimas técnicas para modelar datos, algunas de ellas simples como la regresión lineal, y otras mucho más complejas, como las redes neuronales. Por supuesto, vamos a practicar con las primeras.

La humilde regresión lineal, fácil de explicar y muy fácil de resolver con la ayuda de una computadora, es el caballito de batalla del modelado estadístico. A pesar de que no es adecuada para ciertos tipo de datos, y de que existen métodos más modernos que explotan con intensidad el potencial de las computadoras, la regresión lineal sigue siendo la herramienta más común. Un poco por costumbre, y otro porque es el método más fácil de interpretar, lo que favorece entender y comunicar sus resultados.

5.1 Regresión lineal simple

La encarnación más sencilla de la regresión lineal es la simple o univariada. Tenemos nuestra variable y, numérica, y una sola variable predictora x, que puede ser numérica o categórica.

Para poner en práctica los conceptos repasados en este capítulo, vamos a tomarnos un recreo de los datos de Buenos Aires, haciendo un *zoom out* hacia las escalas de país, continente y el planeta entero. Contamos con un dataset muy prolijo e interesante recopilado por Gapminder (www.gapminder.org), una organización que busca "hacer comprensible al mundo en base a estadísticas confiables".

Descarguemos el dataset y echémosle un vistazo como ya sabemos hacer:

```
data_mundial <- read.csv("https://bitsandbricks.github.io/data/gapminder.csv")
summary(data_mundial)</pre>
```

```
##
             pais
                           continente
                                             año
                                                          expVida
##
    Afghanistan:
                                               :1952
                                                               :23.60
                  12
                        Africa :624
                                       Min.
                                                       Min.
##
    Albania
                  12
                        Americas:300
                                       1st Qu.:1966
                                                       1st Qu.:48.20
##
   Algeria
                                       Median:1980
                                                       Median :60.71
                  12
                        Asia
                                :396
##
   Angola
                  12
                               :360
                                               :1980
                                                       Mean
                                                               :59.47
                        Europe
                                       Mean
                                                       3rd Qu.:70.85
##
    Argentina
                  12
                        Oceania: 24
                                       3rd Qu.:1993
               :
                  12
##
    Australia
                                       Max.
                                               :2007
                                                       Max.
                                                               :82.60
##
    (Other)
               :1632
         pobl
                              PBI_PC
##
##
    Min.
                 60011
                         Min.
                                     241.2
               2793664
                                    1202.1
##
    1st Qu.:
                          1st Qu.:
##
   Median:
               7023596
                          Median :
                                    3531.8
                                    7215.3
##
   Mean
              29601212
                          Mean
##
    3rd Qu.:
              19585222
                          3rd Qu.:
                                    9325.5
##
           :1318683096
                                 :113523.1
    Max.
                          Max.
##
```

Con el poder de summary(), podemos decir unas cuantas cosas acerca de nuestros dataset. Las observaciones son de un país, su continente, un año determinado y su expectativa de vida, población y... ¿PBI_PC?. Esa última es PBI per cápita. Que, según parece, hay 12 observaciones por país. Que el rango de años es de 1952 a 2007. Que a lo largo de esos años, la menor expectativa registrada ha sido de 23 años (¡uf!) y la mayor de 82. Que el país menos poblado en el dataset ha tenido apenas más de 60.000 habitantes, mientras que el más populoso ha alcanzado los 1300 millones.

5.1.1 Regresión con una variable numérica

Hagamos nuestra pregunta: ¿Cómo ha se relaciona el paso del tiempo (variable explicativa) con la expectativa de vida en la Argentina?

Para contestar, primero filtremos los datos que nos interesan:

```
data_arg <- data_mundial %>%
    filter(pais == "Argentina")

data_arg
```

```
## pais continente año expVida pobl PBI_PC
## 1 Argentina Americas 1952 62.485 17876956 5911.315
## 2 Argentina Americas 1957 64.399 19610538 6856.856
## 3 Argentina Americas 1962 65.142 21283783 7133.166
```

```
## 4
      Argentina
                  Americas 1967
                                 65.634 22934225
                                                   8052.953
## 5
      Argentina
                                 67.065 24779799
                                                   9443.039
                  Americas 1972
## 6
      Argentina
                  Americas 1977
                                 68.481 26983828 10079.027
      Argentina
                  Americas 1982
                                 69.942 29341374
                                                   8997.897
## 7
## 8
      Argentina
                  Americas 1987
                                 70.774 31620918
                                                   9139.671
## 9
     Argentina
                                 71.868 33958947
                                                   9308.419
                  Americas 1992
## 10 Argentina
                                 73.275 36203463 10967.282
                  Americas 1997
## 11 Argentina
                                 74.340 38331121
                                                   8797.641
                  Americas 2002
## 12 Argentina
                  Americas 2007
                                 75.320 40301927 12779.380
```

Como dijimos en el capítulo de visualización, los scatterplots son útiles para mostrar la relación entre dos variables. Usemos uno para visualizar la relación entre año y expectativa de vida en Argentina, para intentar anticipar los resultados de la regresión lineal.

Correlación entre tiempo y expectativa de vida Argentina

Bien, no necesitamos recurrir a la matemática para saber que tiempo y expectativa de vida están correlacionadas en forma positiva. Esto es, el incremento de una unidad de tiempo en general (o siempre, en este caso) resulta en el incremento de la expectativa de vida. Una correlación negativa sería lo opuesto: que el incremento de la variable explicativa estuviera asociado a un decremento de la variable explicada. Además del signo de una correlación, otra medida importante es su intensidad. La intensidad de una correlación va de -1 (correlación negativa total) a 1 (correlación positiva total). Una correlación de cero significa que las dos variables son por completo independientes. En en ese caso, saber cuánto vale una no nos ayuda a estimar el valor de la otra.

Obtener la correlación entre dos variables es fácil. La función cor() toma dos vectores dos secuencias de valores, y los compara para determinar su grado de correlación. Recurriendo al truco que ya usamos alguna vez, usamos el formato "dataframe\$columna" para extraer las columnas de nuestro dataframe que necesitamos:

```
cor(data_arg$año, data_arg$expVida)
```

```
## [1] 0.9977816
```

¿A partir de qué valor consideramos que existe una correlación apreciable? La verdad es que no hay una regla a seguir, pero inventemos una. Si el valor absoluto de la correlación es..

```
- de 0,7 a 1: de fuerte a total
- de 0,5 a 0,7: de moderada a fuerte
- de 0,3 a 0,7: de débil a moderada
- menor a 0,3: de nula a débil
```

El valor que obtuvimos se acerca mucho a 1, la correlación casi total. OK, el paso de los años y la expectativa de vida en la Argentina están correlacionados de forma intensa, pero aún desconocemos algo quizás más importante: un valor preciso del "efecto" que el paso de cada año tiene sobre la expectativa de vida. Eso es lo que vamos a determinar con la regresión lineal. Usamos la palabra "efecto" entre comillas para aclarar una de las limitaciones del modelado estadístico: podemos probar correlación, pero no causalidad. Es decir, no podemos probar que una variable causa a la otra; en todo caso, probamos que se mueven juntas y en base a ello podríamos diseñar un experimento que permita comprobar causalidad.

Vamos a la regresión lineal entonces, para medir de una buena vez la correlación entre tiempo y expectativa de vida. Usamos la función lm() (por "linear model"), así:

```
modelo_exp <- lm(expVida ~ año, data = data_arg)</pre>
```

¡Eso es todo! Hemos construido un modelo estadístico; ahora tenemos que aprender a usarlo. Obsérvese que volvió aparecer el simbolillo que denota una fórmula, \sim . Usado como primer argumento de lm(), significa "exp Vida vs $a\tilde{n}o$ ", es decir "estimar el efecto en la variable exp Vida cuando incrementa el valor de $a\tilde{n}o$ ", usando los datos contenidos en el dataframe $data_arg$.

El resultado de lm(), que hemos guardado dentro de la variable modelo_exp es un tipo de objecto con el que no hemos trabajado hasta ahora. No es un dataframe, sino una lista que contiene distintos atributos del modelo estadístico. No hace falta preocuparnos por eso ahora.

Retomando nuestra pregunta... ¿cuál es el efecto? Nos lo dice el modelo cuando lo escribimos.

modelo_exp

```
##
## Call:
## lm(formula = expVida ~ año, data = data_arg)
##
## Coefficients:
## (Intercept) año
## -389.6063 0.2317
```

Ahí está. En nuestro modelo, el *coeficiente* de la variable "año" es 0.2317. Significado: incrementando en una unidad la variable año, la variable expectativa de vida se incrementa en 0.2317. Dicho de otra manera, por cada año que pasa la expectativa de vida en la Argentina aumenta casi 3 meses.

El otro coeficiente que aparece, "(Intercept)" es la intersección. En términos de interpretado del modelo, la intersección rara vez tiene utilidad. Para lo que sí sirve es para trazar la línea que permite "predecir" valores para años en los que no tenemos observaciones. Recordemos la fórmula que define una línea recta:

A cada punto en x le corresponde un valor en y que se obtiene multiplicando a x por la pendiente, b, y sumando la intersección, a. Se le llama "intersección" u "ordenada al origen" porque es el valor donde la recta intersecta con el eje de las y: cuando x vale 0, la fórmula nos da y = b.

En una regresión lineal, el "modelo" que creamos es precisamente eso: una línea. Tan simple como eso. Lo que hace a esta linea tan potente, es que la podemos usar bola de cristal: para saber cuanto valdría la variable dependiente ante un valor determinado de la variable predictora, revisamos por donde pasa la línea.

Lo podemos visualizar con ayuda de <code>ggplot()</code>, que por supuesto incluye una función para trazar líneas. Parámetros necesarios: <code>intercept</code> (intersección) y <code>slope</code> (pendiente). Usamos los respectivos valores que nos indica el modelo, <code>-389.6063</code> y <code>o.2317</code>.

```
ggplot(data = data_arg) +
    geom_point(aes(x = año, y = expVida)) +
    labs(title = "Correlación entre tiempo y expectativa de vida",
        subtitle = "Argentina",
        y = "expectativa de vida",
        caption = "con línea de regresión") +
    geom_abline(aes(intercept = -389.6063, slope = 0.2317), color = "blue")
```

Correlación entre tiempo y expectativa de vida Argentina

con línea de regresión

Aquí no vemos más que los datos que ya teníamos. Pero proyectemos la línea hacia el futuro. Con xlim() e ylim() podemos definir a mano los límites de nuestro gráfico, haciéndolo ir más allá del rango de los datos que tenemos. La línea sigue siendo la misma, sólo que ahora podemos ver hacia donde va.

```
ggplot(data = data_arg) +
  geom_point(aes(x = año, y = expVida)) +
  labs(title = "Correlación entre tiempo y expectativa de vida",
      subtitle = "Argentina",
      y = "expectativa de vida",
```

```
caption = "con línea de regresión") +
geom_abline(aes(intercept = -389.6063, slope = 0.2317), color = "blue") +
xlim(c(1950, 2030)) +
ylim(c(60, 85))
```

Correlación entre tiempo y expectativa de vida Argentina

Ahí está la predicción. Según nuestro modelo, para el año 2030 la expectativa de vida en la Argentina habrá superado los 80 años.

Es hora de dar una definición oficial para una regresión lineal, y es esta: es la línea que describe la ecuación:

$$\hat{y} = b_0 + b_1 \times x$$

Obsérvese que se trata de la ecuación de una recta, $y = a + b \times x$, con otros nombres. En voz alta, se leería así "Cada predicción del valor de y, llamada \hat{y} , se obtiene multiplicando a la variable predictora x por su coeficiente b_1 y sumándole el valor de la intersección b_0 ". En otras palabras, a cada valor de x (las observaciones de la variable explicativa) le corresponde un punto en la recta trazada por el modelo. La altura sobre la recta de las y para ese punto es el valor predicho para la variable dependiente.

Ya que estamos, aprendamos otro truco. ggplot() puede agregar a nuestros scatterplots una capa con la línea de la regresión lineal, en forma automática. La función geom_smooth() se usar para explicitar patrones en los datos. Tal como otras de la familia ggplot, espera que se le diga que variables asignar a x e y, más un parámetro method con el método solicitado para trazar una línea de tendencia. Aquí usamos method = "lm" por linear model, el modelo lineal.

```
ggplot(data = data_arg) +
   geom_point(aes(x = año, y = expVida)) +
   labs(title = "Correlación entre tiempo y expectativa de vida",
        subtitle = "Argentina",
```

```
y = "expectativa de vida",
    caption = "con línea de regresión vía geom_smooth()") +
geom_smooth(aes(x = año, y = expVida), method = "lm")
```

Correlación entre tiempo y expectativa de vida Argentina

con línea de regresión vía geom_smooth()

Hacer una regresión lineal se trata de encontrar la línea que atraviesa nuestra nube de puntos de modo tal que la suma de las distancias de cada punto a la línea sea la menor posible. Es un problema matemático que puede resolverse con distintas técnicas (algebra lineal, geometría, etc) que no vamos a discutir aquí. Confiaremos en R para hacer los cálculos.

En la relación año - expectativa de vida las distancias entre los puntos (las observaciones) y la línea (el modelo) son muy pequeñas. Eso indica que el modelo describe con gran precisión la dinámica de la relación entre las variables analizadas.

En general, es inusual encontrar una correlación tan nítida entre variables "en la vida real", sobre todo cuando estudiamos procesos complejos cuyo comportamiento describe patrones más complejos que una relación lineal pura. No hace falta ir demasiado lejos para encontrar un ejemplo. Usando el mismo dataset, visualicemos un scatterplot de PBI vs año, agregando la línea de regresión para:

Correlación entre PBI y expectativa de vida Argentina

Sigue siendo evidente una fuerte tendencia lineal, pero las observaciones ya no se ciñen de forma tan estrecha a la línea idealizada de la regresión.

Obtengamos el modelo del PBI per cápita de la Argentina en relación al paso del tiempo:

```
modelo_PBI <- lm(PBI_PC ~ año, data = data_arg)
modelo_PBI

##
## Call:
## lm(formula = PBI_PC ~ año, data = data_arg)</pre>
```

##
Coefficients:
(Intercept) año

-162888.14

Tal como indicaba el scatterplot, obtuvimos un coeficiente positivo. Según el modelo, cada año que pasa resulta en un incremento de 86 dólares en el PBI per cápita del país. Sin embargo, sabemos que no en todos los años se cumple al pie de la letra tal incremento. ¿Debería preocuparnos eso? Una parte importante del análisis basado en regresiones es revisar los desvíos, y decidir si ameritan buscar una explicación. Para ello, lo mejor es empezar por prestar atención a los residuos.

5.1.2 Revolviendo los residuos

86.81

Los residuos, en la jerga estadística, no son otra cosa que las diferencias encontradas entre el valor que predice un modelo para una variable y el valor observado en la práctica. Es decir, el valor para cada punto de $y - \hat{y}$. Los residuos representan el desvío de cada observación respecto al valor "esperado" por el modelo.

Cuando los desvíos son pequeños, es decir cuando los residuos son pequeños, decimos que nuestro modelo se ajusta bien a los datos observados. Cuando los residuos son grandes ocurre lo contrario, y quizás deberíamos buscar otra forma de describir, de modelar, la relación entre las variables.

Prestemos atención a los residuos de nuestro modelo de PBV vs. tiempo. Podemos extraer los residuos usando la función residuals(),

```
residuos <- residuals(modelo PBI)
residuos
##
                                                            5
                                                               1340.5021
##
    -656.9180
                -145.4351
                            -303.1836
                                        182.5450
                                                   1138.5722
##
                        8
                                               10
                                                           11
    -174.6855
                -466.9699
                            -732.2809
                                        492.5240 -2111.1755
                                                               1436.5051
```

agregarlos a nuestro dataframe,

```
data_arg <- data_arg %>% mutate(residuo_ml = residuos)
```

y visualizarlos comparados con una línea que indica el cero, trazada por geom_hline(). Los residuos cercanos a ese valor son los que corresponden a observaciones a las que el modelo se ajusta bien.

```
ggplot(data_arg) +
  geom_point(aes(x = año, y = residuo_ml)) +
  geom_hline(yintercept = 0, col = "blue") +
  labs(x = "año", y = "residuo del modelo lineal")
```


Siempre podemos esperar una cierta divergencia entre las predicciones y los valores observados, por lo que los residuos siempre tendrán (en general) un valor distinto a cero. Lo que quisiéramos ver en un gráfico como

este es que los residuos se distribuyan al azar, sin indicios de patrones sistemáticos. Si así fuere, podemos considerar que nuestro modelo es adecuado.

¿Cómo determinamos que no exhiben patrones sistemáticos? Una vez mas, se trata de una evaluación bastante subjetiva, y cada quien estará conforme dependiendo del contexto y la experiencia previa. Aún así podemos argumentar en favor de la adecuación del modelo cuando:

- 1. El promedio de los residuos se aproxima a cero; es decir, que los residuos positivos se cancelan con los negativos, promediando cerca de cero.
- 2. El valor de los residuos no depende del valor de x; es decir, no se observa un crecimiento (o decrecimiento) sistemático de la magnitud de los residuos a medida quex crece

Por lo visto, nuestro modelo cumple con 1. pero no con 2, ya que la magnitud de los residuos parece crecer con el paso de los años. Entre todos los puntos, los mayores transgresores son los últimos y corresponden a los años 2002 y 2007. El valor del PBI per cápita observado en 2002 año resultó ser más de 2000 dólares menor al esperado por el modelo, todo un derrumbe. ¿A qué se debe tanta discrepancia? Nuestro modelo no tiene la culpa, es que la realidad tiene sus bemoles. A fines del 2001 la Argentina sufrió la peor crisis financiera de su historia, factor que explica la brusca caída del PBI que revirtió la tendencia al crecimiento de décadas anteriores. Una función que aún no habíamos usado, geom_line(), nos va a permitir trazar una línea que siga el PBI a lo largo de los años, y otra novedad, geom_vline(), se encargará de agregar una línea vertical que señale el año de la crisis:

Evolución del PBI en la Argentina

La línea roja indica la ocurrencia de la crisis del 2001

Es claro que el modelo se beneficiaría de poder tener en cuenta la irrupción de las crisis en el país. Esto se lograría agregando una variable categórica para cada año, que indique si se trata de un período de crisis. En ese caso, seria un modelo de regresión lineal múltiple (con más de una variable explicativa), incorporando una variable explicativa numérica y otra categórica. Que lástima que nuestro dataset no incluye la variable de las crisis financieras. Si quisiéramos mejorar nuestro modelo con esa información, no nos quedaría mas remedio que salir a buscar los datos. Con suerte, alguien los habrá recopilado por nosotros, y si no, tendríamos que hacerlo por nuestra cuenta. ¡La investigación es un sacerdocio!

En aras de la simplicidad, sigamos practicando con los datos disponibles.

5.1.3 Regresión con una variable categórica

El dataset con datos del mundo provisto por Gapminder incluye dos variables categóricas: país y continente. Con 142 países representados, podemos descartar a la primera como variable para realizar un modelo - recordemos que para entender la interrelación de variables, cuantas menos involucremos mejor. Los cinco continentes habitados representan un conjunto mucho más práctico, por lo que la pregunta será "¿Cuánto incide el continente en la expectativa de vida de los países?"

Comencemos por explorar los datos tomando las observaciones más recientes, las de 2007.

Expectativa de vida por continente

Ya podemos vislumbrar que el continente incide en la expectativa de vida, con África sufriendo los números

más bajos. La profusión de puntos hace que muchos terminen superpuestos, haciendo imposible determinar cuántos ocupan cada posición (un problema llamado *overplotting* en inglés). Una variante de <code>geom_point()</code> llamada <code>geom_jitter()</code> resuelve este problema al "sacudir" los puntos, sumando a cada uno un pequeño valor al azar para que se separe de los que comparten su posición. Es un buen ejemplo de la paradoja por la cual reducir la precisión de la información a veces permite entender mejor lo que está ocurriendo. Usamos <code>geom_jitter()</code> igual que <code>geom_point()</code>:

Expectativa de vida por continente

Algún ojo avizor habrá notado que la clasificación por color no es necesaria, ya que el continente ya está señalado por su posición en el eje de las x. El color cumple aquí una función más que nada cosmética, en pos de hacer al gráfico mas atractivo a la vista.

También podemos visualizar la diferencia de distribución de expectactiva de vida de los países, con un histograma facetado por continente:

```
ggplot(data = data_mundial_2007) +
    geom_histogram(aes(x = expVida, fill = continente)) +
    facet_wrap(~continente) +
    labs(title = "Expectativa de vida por continente",
        subtitle = "histogramas",
        x = "expectativa de vida",
        y = "cantidad")
```

Expectativa de vida por continente histogramas

Bien, estamos convencidos de que hay una relación entre continente y expectativa de vida, aunque no la hemos cuantificado. Para eso, recurrimos a una regresión lineal con variable expicativa categórica. Se obtiene de la misma manera que antes, no hay cambios en la forma de invocar lm() por el hecho de que la variabe ahora sea categórica en vez de numérica.

```
modelo_exp_continente <- lm(expVida ~ continente, data = data_mundial_2007)
modelo_exp_continente
##
##
  lm(formula = expVida ~ continente, data = data_mundial_2007)
##
   Coefficients:
##
##
          (Intercept)
                        continenteAmericas
                                                 continenteAsia
                54.81
                                                           15.92
##
                                      18.80
##
     continenteEurope
                         continenteOceania
##
                22.84
                                      25.91
```

¿Qué ocurrió aquí? 1m() inspeccionó el contenido de la variable "continente" y encontró cinco niveles o categorías. Tomó el primero en orden alfabético, "Africa" como línea de base. El primer coeficiente de la regresión (la intersección) es el promedio de la expectativa de vida en África. Para cada una de las categorías restantes, el coeficiente representa la diferencia respecto a África de la expectativa de vida promedio en cada uno de los otros continentes. He allí la cuantificación: para un país en las Américas, podemos esperar -en promedio- una expectativa de vida que supera en 18.8 años la de los paises africanos. Para un país en Asia, son 15.92 los años adicionales, y así.

Prestemos atención a los residuos. Agregamos al dataframe una columna con el residuo para cada obser-

vación,

```
data_mundial_2007 <- data_mundial_2007 %>%
  mutate(residuo_ml = residuals(modelo_exp_continente))
```

y graficamos la dispersión de los residuos en torno a cero, el valor ideal:

```
ggplot(data_mundial_2007) +
   geom_jitter(aes(x = continente, y = residuo_ml), width = 0.1) +
   geom_hline(yintercept = 0, col = "blue") +
   labs(x = "año", y = "residuo del modelo lineal")
```


Notamos que:

- 1. Los residuos están repartidos en forma pareja entre positivos y negativos. Eso indica que su promedio será cercano a cero, lo cual es bueno.
- 2. En Asia hay un país cuyo valor observado está muy por debajo del esperado por el modelo. Se separa tanto de los demás que debemos considerarlo un *outlier*, un valor tan inusual que amerita ser revisado.

Con la magia de los verbos de transformación que sabemos, aislemos a los países en Asia con menor expectativa de vida para identificar al *outlier*.

```
data_mundial_2007 %>%
  filter(continente == "Asia") %>%
  arrange(expVida) %>%
  head()
```

```
## 4 Myanmar Asia 2007 62.069 47761980 944.0000 -8.659485
## 5 Yemen, Rep. Asia 2007 62.698 22211743 2280.7699 -8.030485
## 6 Nepal Asia 2007 63.785 28901790 1091.3598 -6.943485
```

Se trata de Afganistán. Como explicación, uno piensa de inmediato en las largas guerras libradas en ese territorio, y en particular la invasión por parte de los Estados Unidos en 2001 -¡otra vez ese año!-. Podemos verificarlo con un gráfico que muestre la evolución de la expectativa de vida según los años.

Expectativa de vida en Afganistán

Vaya sopresa. A pesar de ser en extremo baja comparada con el resto de Asia, la expectativa de vida en Afganistán en el 2007 es la más alta de la historia, y no sólo eso: ha aumentado con rapidez después del año de la invasión. ¿A qué podemos atribuir entonces la bajísima expectativa de vida? Teniendo en cuenta que el país ha sufrido conflictos bélicos en forma continua desde fines de los '70, podría tratarse de una tragedia histórica: los años que faltan son los que el país habría alcanzado si las guerras no hubieran alterado su ritmo de progreso.

Dependiendo del esfuerzo que requiera determinar la causa de un *outlier*, una alternativa razonable es dejarlo de lado. Es un poco cruel, pero realista: cuando tenemos cientos, miles o millones de observaciones, hacer una "poda" de los valores extremos que nuestros modelos no pueden explicar termina siendo la opción más razonable. Dedicar recursos limitados a la caza de una explicación o a complejizar el modelo agregando variables hasta lograr predecir los *outliers* no tiene sentido cuando se trata de casos aislados y fortuitos. Por otra parte, eliminarlos antes de tiempo podría hacernos ignorar los casos más interesantes de un dataset, los que más información podrían revelar. Existen tratados completos dedicados a la cuestión de como manejar

los *outliers*, pero el conocimiento de dominio es la principal herramienta para decidir que hacer ante casos inusuales... como siempre.

5.2 Regresión con múltiples variables

Hasta aquí hemos usado la regresión lineal para hacer explícita la relación entre una variable resultante y una única variable predictiva o explicativa x. En algunos de nuestros resultados pudimos intuir que el agregado de alguna variable explicativa adicional podría mejorar nuestras predicciones. De eso se trata la regresión lineal múltiple: incorporar una cantidad arbitraria de variables al modelo, buscando representar las múltiples dinámicas que inciden en el fenómeno estudiado.

Una buena noticia es que, en general, agregar variables a nuestro modelo estadístico no requiere mucho esfuerzo adicional. En la época en que los cálculos matemáticos debían hacerse sin la ayuda de una computadora, sumar variables sin ton ni son debía tener poca gracia, debido a la creciente cantidad de cálculos a resolver. Para nosotros que dejamos la tarea en manos de software especializado, el problema es el opuesto. Es tan fácil sumar variables al modelo, que debemos evitar la tentación de arrojar todo dentro de la fórmula de regresión líneal y decidir luego que parece importante y que no.

Pasemos a la práctica. Vamos a modelar la expectativa como resultante de la población y del PBI per cápita de los países, usando los datos más reciente (tomados en 2007). La única difrerencia respecto a una regresión lineal simple es que usamos + para agregar variables en la fórmula de lm()

```
modelo_exp_multiple <- lm(expVida ~ pobl + PBI_PC, data = data_mundial_2007)
modelo_exp_multiple</pre>
```

```
##
## Call:
## lm(formula = expVida ~ pobl + PBI_PC, data = data_mundial_2007)
##
## Coefficients:
## (Intercept) pobl PBI_PC
## 59.205198140717 0.0000000007001 0.000641608517
```

¿Cómo interpretamos esos resultados? Más o menos de la misma manera que con la regresión simple. Como antes, tenemos un coeficiente para la intersección, al que no prestamos mucha atención porque no nos dice nada de la relación entre las variables. Lo que cambia es que esta vez tenemos dos variables predictoras en lugar a una, cada una con su coeficiente. Los coeficientes positivos indican que la relación de la población con la expectativa de vida es de correlación positiva (cuando una crece la otra tiende a crecer también), y lo mismo ocurre con el PBI. La magnitud de los coeficientes es pequeña (minúscula en el caso de la población), lo cual dificulta "narrar" los resultados, pero podemos hacerlo así:

- Cuando las demás variables se mantienen constantes (es decir, en países con PBI similar) el incremento de una unidad de población -un habitante- está asociado a un incremento de 0,000000007 años en la expectativa de vida del país... unas dos décimas de segundo.
- Cuando las demás variables se mantienen constantes (es decir, en países con población similar) el incremento de una unidad de PBI -un dólar per cápita- está asociado a un incremento de 0,00064 años en la expectativa de vida del país... un poco más de cinco horas y media.

Pensemos un poco si los resultados tienen sentido. La correlación positiva entre PBI y longevidad es de lo más razonable. No nos extraña que los países de mayores ingresos tiendan a ser aquellos cuyos habitantes viven más tiempo. La correlación con la población es quizás inesperada. Si la longevidad se incrementa junto a la cantidad de habitantes, ¿acaso no deberíamos encontrar a varios de los países más populosos entre los más longevos?

Veamos el top ten de países más poblados:

```
data_mundial_2007 %>%
    arrange(desc(expVida)) %>%
    head(n = 10)
```

```
##
                  pais continente
                                   año expVida
                                                              PBI PC residuo ml
                                                      pobl
## 1
                  Japan
                              Asia 2007
                                          82.603 127467972 31656.07
                                                                        11.87452
## 2
      Hong Kong, China
                              Asia 2007
                                          82.208
                                                   6980412 39724.98
                                                                        11.47952
## 3
                            Europe 2007
                                          81.757
                                                    301931 36180.79
                                                                         4.10840
               Iceland
## 4
           Switzerland
                            Europe 2007
                                          81.701
                                                   7554661 37506.42
                                                                         4.05240
             Australia
## 5
                           Oceania 2007
                                          81.235
                                                  20434176 34435.37
                                                                         0.51550
                            Europe 2007
                                          80.941
                                                  40448191 28821.06
## 6
                 Spain
                                                                         3.29240
## 7
                 Sweden
                            Europe 2007
                                          80.884
                                                   9031088 33859.75
                                                                         3.23540
## 8
                 Israel
                              Asia 2007
                                          80.745
                                                   6426679 25523.28
                                                                        10.01652
## 9
                 France
                            Europe 2007
                                          80.657
                                                  61083916 30470.02
                                                                         3.00840
## 10
                 Canada
                          Americas 2007
                                          80.653
                                                  33390141 36319.24
                                                                         7.04488
```

y el de países con mayor expectativa de vida:

```
data_mundial_2007 %>%
    arrange(desc(pobl)) %>%
    head(n = 10)
```

```
##
               pais continente año expVida
                                                    pobl
                                                            PBI_PC
                                                                    residuo_ml
## 1
              China
                           Asia 2007
                                      72.961 1318683096
                                                          4959.115
                                                                    2.23251515
              India
## 2
                                      64.698 1110396331
                                                          2452.210 -6.03048485
                           Asia 2007
## 3
      United States
                      Americas 2007
                                      78.242
                                               301139947 42951.653
                                                                    4.63388000
## 4
          Indonesia
                           Asia 2007
                                      70.650
                                              223547000
                                                          3540.652 -0.07848485
                      Americas 2007
## 5
             Brazil
                                      72.390
                                              190010647
                                                          9065.801 -1.21812000
## 6
           Pakistan
                           Asia 2007
                                      65.483
                                              169270617
                                                          2605.948 -5.24548485
## 7
         Bangladesh
                           Asia 2007
                                      64.062
                                              150448339
                                                          1391.254 -6.66648485
                                                          2013.977 -7.94703846
## 8
            Nigeria
                         Africa 2007
                                      46.859
                                              135031164
## 9
                                      82.603
                                              127467972 31656.068 11.87451515
              Japan
                           Asia 2007
## 10
             Mexico
                      Americas 2007
                                      76.195
                                              108700891 11977.575
                                                                   2.58688000
```

El único país presente en ambas listas es Japón. Ni nuestro conocimiento del mundo, ni los datos parecen apoyar la noción de que población y longevidad van juntos. Ya hemos usado cor() para obtener una medida de la intensidad de la correlación entre dos variables. Veamos que pasa con longevidad vs. población:

```
cor(data_mundial_2007$expVida, data_mundial_2007$pobl)
```

[1] 0.04755312

Recordemos que la intensidad de una correlación es su valor absoluto, que toma un máximo de 1, mientras que el signo (positivo o negativo) indica si la relación entre variables es directa o inversa. Aquí obtuvimos un valor bien bajo, cercano a cero: la correlación es nula. Entonces ¿Por qué aparece en nuestro modelo de regresión lineal?

En resumidas cuentas, aparece porque nosotros le pedimos que aparezca. Es decir, instruimos en forma específica a lm() para que incorpore a la población en el modelo. El caso es que población no es un buen predictor de longevidad (la correlación es bajísima), pero si lo pedimos, lo tenemos: el coeficiente nos indica el valor que minimiza las discrepancias entre valores observado y valores predichos trazando una línea recta. Lo que no indica por si solo es el grado en el cual podemos confiar en esa variable para darnos buenas predicciones o estimados.

Sería muy util que el resultado de lm() indique cuáles variables son buenas predictoras y cuáles no. Y por suerte, lo hace cuando lo interrogamos con summary(), la misma función que hemos estado usando para obtener el resumen de un dataframe. Cuando la usamos con un objeto de R que contiene un modelo estadístico, lo que obtenemos son sus detalles:

summary(modelo_exp_multiple)

```
##
## Call:
## lm(formula = expVida ~ pobl + PBI_PC, data = data_mundial_2007)
##
## Residuals:
##
       Min
                1Q
                    Median
                                30
                                       Max
##
   -22.496
           -6.119
                     1.899
                             7.018
                                    13.383
##
## Coefficients:
##
                                    Std. Error t value
                                                                   Pr(>|t|)
                      Estimate
## (Intercept) 59.205198140717
                                                56.906 < 0.00000000000000000
                                1.040398672164
                0.00000007001
                               0.00000005068
                                                                      0.169
                                                 1.381
## PBI PC
                                0.000058176209 11.029 < 0.00000000000000002
                0.000641608517
##
## (Intercept) ***
## pobl
## PBI PC
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.87 on 139 degrees of freedom
## Multiple R-squared: 0.4679, Adjusted R-squared: 0.4602
## F-statistic: 61.11 on 2 and 139 DF, p-value: < 0.00000000000000022
```

El resumen incluye los parámetros que definieron al modelo, los valores por cuartil de los residuos, y una tabla con variables numéricas. En esa tabla, bajo la columna Estimate tenemos el "efecto" estimado de cada variable explicativa sobre la dependiente. Es decir, los coeficientes que ya conocemos. Luego aparecen tres columnas con atributos estadísticos: Std. Error, t value, y Pr(>|t|). En castellano las llamaríamos, respectivamente, error estándar, valor t y valor p. Interpretar estos valores cae fuera de nuestros objetivos, pero podemos señalar que el más famoso entre ellos es el valor p, porque se usa como medida: si vale menos de 0,5, se considera que la capacidad de predicción de la variable asociada es significativa. Para interpretar todo esto de manera sencilla, una vez más vamos a confiar en R para guiarnos. He aquí la curiosa forma de determinar si una variable es buena predictora o no: contar estrellitas. Junto a cada fila aparecen, a veces, de uno a tres asteriscos. Son la forma de R de decirnos cuales son las variables explicativas que muestran una relación "estadísticamente significativa" con nuestra variable dependiente. Cuanto más bajo el valor p, más significativa es la relación y más estrellitas aparecen:

- . o nada: No se encuentra una relación entre esta variable y la que queremos predecir.
- *: Es muy probable que esta variable tenga una relación con la que queremos predecir. Ya podemos publicar estos resultados en un paper científico.
- **: Es muy, pero muy probable que esta variable tenga una relación con la que queremos predecir. 99% seguro.
- ***: Juramos que las variables estan relacionadas. Más no se puede pedir.

Lo de un asterisco/estrella (*) indicando que los resultados ya alcanzan rigor científico no es broma. El asterisco solitario indica que, a nivel estadístico, se supera el 95% de confianza en que la relación existe en la realidad y no es producto de una casualidad en los datos. Pasando ese umbral se considera que los datos son "estadísticamente significativos", y desde hace muchos años encontrar un valor p menor a 0,05 es la meta dorada de los investigadores que emplean análisis estadístico. ¿Porqué un 95% de confianza alcanza? ¿Porqué no relajar el límite a 90%, o quizás mejor, exigir al menos un 99 o 99,9% de seguridad? La verdad es que no hay ninguna razón trascendental. El 95% de certeza es tan sólo un umbral arbitrario que en algún momento se volvió estándar. Es importante aclarar que en los últimos años ha crecido una reacción de rechazo a esta norma arbitraria, dentro de la propia comunidad científica. Quienes siguen confiando en los

 $valores\ p$ son llamados "frecuentistas"; los que proponen cuantificar de otra forma nuestro grado de certeza son llamados "bayesianos". Google mediante, quien quiera saber más sobre la apasionante rivalidad tendrá horas de diversión aseguradas.

En lo que a nosotros respecta, por ahora vamos a aceptar el enfoque frecuentista, y cuando veamos una estrella diremos que la variable asociada es un buen predictor. O para ser más precisos, que su relación con la variable dependiente es estadísticamente significativa.

Volvamos a nuestros modelos. Cuando hicimos regresiones simples no sabíamos aún de valores p, y no revisamos la significancia de las variables predictoras. Hagamoslo ahora con el modelo de expectativa de vida en Argentina vs. PBI :

```
summary(modelo_exp)
```

```
##
## Call:
## lm(formula = expVida ~ año, data = data_arg)
## Residuals:
##
                 1Q
                      Median
                                   3Q
  -0.53006 -0.13516 -0.01219 0.14228
                                      0.55202
##
## Coefficients:
##
                 Estimate Std. Error t value
                                                       Pr(>|t|)
## (Intercept) -389.606345
                             9.677730
                                      -40.26 0.00000000002140 ***
                 0.231708
                             0.004889
                                       47.40 0.000000000000422 ***
## año
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2923 on 10 degrees of freedom
## Multiple R-squared: 0.9956, Adjusted R-squared:
## F-statistic: 2246 on 1 and 10 DF, p-value: 0.000000000004216
```

Las tres estrellitas, distintión máxima, indican que sin dudas el año está relacionado con la expectativa de vida. Esto no es una sopresa: la linea de la regresión lineal se ajusta con tanta precisión a los valores observados, que no podía ser de otra manera.

Continuando con las regresiones múltiples, intentemos un modelo con tres variables predictoras. A población y PBI, las que ya teníamos en cuenta, vamos a agregar una variable categórica: el continente.

```
modelo_exp_multiple <- lm(expVida ~ pobl + PBI_PC + continente, data = data_mundial_2007)
summary(modelo_exp_multiple)</pre>
```

```
##
## Call:
## lm(formula = expVida ~ pobl + PBI_PC + continente, data = data_mundial_2007)
##
## Residuals:
##
       Min
                  1Q
                       Median
                                     30
                                             Max
## -22.8199 -2.8905
                       0.1574
                                2.9046
                                        20.0585
##
## Coefficients:
##
                              Estimate
                                              Std. Error t value
## (Intercept)
                      53.7141900516204  0.9355709763972  57.413
                       0.000000009586 0.000000039259
## pobl
                                                           0.244
## PBI PC
                       0.0003479123814 0.0000571704015
                                                           6.086
```

```
## continenteAmericas 16.0313726693021
                                        1.6713252557392
                                                          9.592
## continenteAsia
                      12.5640427449841 1.6209815371922
                                                          7.751
## continenteEurope
                      15.1989177617593
                                       1.9662500363509
                                                          7.730
  continenteOceania
                     16.6222095573924 4.9925674316223
                                                          3.329
##
                                  Pr(>|t|)
                      < 0.000000000000000 ***
## (Intercept)
## pobl
                                   0.80747
## PBI PC
                          0.0000001127738 ***
## continenteAmericas < 0.000000000000000 ***
## continenteAsia
                          0.0000000000197 ***
                          0.00000000000220 ***
## continenteEurope
## continenteOceania
                                   0.00112 **
##
## Signif. codes:
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.597 on 135 degrees of freedom
## Multiple R-squared: 0.7141, Adjusted R-squared: 0.7014
## F-statistic: 56.2 on 6 and 135 DF, p-value: < 0.000000000000000022
```

Observamos que la variable categórica es significativa. Con las demas variables fijas -es decir, en paises de similar PBI y población- el continente de origen explica en gran medida las diferencias en expectativa de vida en cada país, y con un efecto estimado enorme - ¡de 12 a 16 años!-. Notemos de todos modos que el coeficiente de la variable continente había sido mayor en el modelo simple, llegando a casi 26 años para Oceanía. ¿Porqué es menor ahora? Porque nuestro modelo es más completo, y tiene en cuenta más variables. Cuando lo único que teníamos para comparar países era su continente, era era la única variable a la que atribuir diferencias. Ahora que consideramos mútiples variables para explicar las diferencias, notamos la parte de la influencia que se lleva el PBI, reduciendo la del contintente.

Chapter 6

Información geográfica y mapas

Hemos llegado al capítulo final, dedicado al análisis y visualización de información geográfica. Aquí incursionaremos en el dominio de los SIG ("Sistemas de Información Geográfica") también conocidos como GIS por sus siglas en inglés.

Hasta hace poco tiempo, labores como la producción de mapas y el análisis espacial estaban reservadas para especialistas, debido a la complejidad de las tareas y al alto costo de producción y adquisición de datos geográficos. Pero durante las dos últimas décadas la tecnología digital cambió el panorama. Una dramática caída en el costo asociado a adquirir y procesar información geográfica (pensemos en satélites y computadoras multiplicándose y bajando de precio) dio paso al mapa digital como herramienta universal. El consumo de sofisticados mapas y otros productos geográficos se volvió masivo y cotidiano, con Google Maps como el exponente más conocido. Apenas había pasado la novedad de disponer de mapas en alta resolución de todo el mundo accesibles al instante desde nuestros escritorios, cuando la llegada de los *smartphones* popularizó el acceso en cualquier momento y lugar.

El mismo proceso que nos convirtió a todos en consumidores constantes de información geográfica también nos da la oportunidad de ser los productores. Sin dudas, hacer mapas se ha vuelto más fácil que nunca antes. Existen cada vez más repositorios con información georreferenciada de acceso publico -datasets que incluyen información precisa sobre su ubicación geográfica. Al mismo tiempo, maduran y se hacen más fáciles de usar las herramientas para análisis y visualización espacial.

En los procesos sociales, el "dónde" suele ser un aspecto clave. Es central para quienes estudiamos -por ejemplo- las ciudades o las dinámicas de la política, siempre tan arraigadas a lo territorial. Esto vuelve al mapa una de las herramientas de visualización más importantes que podemos emplear.

En R contamos con varios paquete de funciones que permiten manipular información espacial con facilidad. A continuación vamos a aprender a combinarlos con las herramientas que ya hemos aprendido, para hacer análisis geográfico y crear nuestros propios mapas.

6.1 Los datos georreferenciados

El atributo que distingue a los datos georreferenciados, lo que los hace merecer ese nombre, es que representan ubicaciones exactas sobre la superficie de la Tierra. Representar en forma precisa una posición sobre la superficie terrestre es un todo un reto. Para empezar, la Tierra tiene una forma irregular. A pesar de cómo solemos imaginarla y dibujarla, no es una esfera perfecta sino que está "achatada" en los polos, dificultando la matemática necesaria para comparar posiciones y medir distancias. Luego, está el problema de cómo mostrar sobre papel impreso, o en una pantalla digital, -superficies planas- rasgos geográficos que pertenecen a una superficie tridimensional esférica. La solución a estos problemas toma la forma de sistemas de coordenadas de referencia (CRS por sus siglas en inglés), y de proyecciones cartográficas.

Figure 6.1: Distintos sistemas de proyección cartográfica (cortesía Daniel R. Strebe 2011)

Los CRS son un sistema de números que definen ubicaciones sobre la superficie de la Tierra; funcionan como direcciones. El tipo de CRS más conocido es el que usa latitud y longitud, para definir posiciones en los ejes norte-sur y este-oeste.

Las proyecciones cartográficas son instrucciones para traducir a un plano la disposición de puntos ubicados en la esfera terrestre. Algo así como las instrucciones para dibujar en dos dimensiones las disposición de fronteras, accidentes geográficos, calles o cualquier otro objeto que se extiende sobre la superficie curva del planeta. Como en toda traducción, hay algo que se pierde en el proceso. Todo los mapas "mienten", en el sentido en que presentan una versión distorsionada de la superficie de terrestre. Esto es inevitable; no existe forma de pasar de la esfera al plano sin distorsionar la forma, la superficie, la distancia o la dirección de los rasgo geográficos. Existen muchísimas proyecciones distintas, cada una pensada para minimizar alguno de los tipos de distorsión, o para encontrar una solución de compromiso que los balancee.

La proyección más famosa es la Mercator, diseñada para asistir la navegación marítima y en uso desde el siglo XVI. Su fuerte es que no distorsiona las direcciones, por lo que permite fijar el rumbo de navegación consultando el mapa. Su principal problema es que produce una distorsión notable en las áreas cercanas a los polos: Groenlandia aparenta el mismo tamaño que toda África, cuando en realidad tiene sólo un quinceavo de su superficie. Por esa razón perdió la proyección popularidad en el siglo XX cuando comenzaron a preferirse proyecciones que respetan las áreas, como las de la Figura 6.1. Sin embargo, en el siglo XXI la proyección Mercator recuperó protagonismo. Google la eligió para sus mapas en línea, y por razones de compatibilidad otros proveedores de mapas digitales la adoptaron también. Así, y para inconsolable irritación de los geógrafos, Mercator se convirtió en el estándar de facto para aplicaciones geográficas en la web.

En la práctica, si trabajamos en forma frecuente con archivos georreferenciados vamos a sufrir tarde o temprano de problemas de coordenadas o proyección. El más común de ellos: tener una fuentes de datos geográficos que no podemos comparar con otras, porque desconocemos el sistema de coordenadas que se usó para crearla; es decir, no podemos saber a que posición sobre el planeta corresponde cada observación en los datos.

Figure 6.2: La inescapable proyección Mercator (cortesía Jecowa)

6.2 Formatos de archivo

Otro problema asociado a trabajar con datos geográficos es el de los formatos de archivo. El formato más común es el denominado "shapefile", inventado por la empresa ESRI (los creadores del software ArcGIS). Es un formato incómodo porque guarda la información en varios archivos distintos, que suelen ser combinados en un archivo zip para su distribución. Un inconveniente aún mayor es que los nombres de las variables en un shapefile deben tener 10 caracteres o menos, lo que facilita el uso de abreviaturas ininteligibles. A pesar de éstos y otros detrimentos, el formato es tan común que se ha vuelto sinónimo de archivo con información geográfica, y resiste a pesar de los esfuerzos por reemplazarlo con alternativas más modernas. Una de ellas es "GeoJSON", un estándar abierto que corrige los dos inconvenientes mencionados antes. Para nuestros ejercicios usaremos datos geográficos en esta último formato.

6.3 Explorando un archivo con información geográfica

Como hemos hecho antes, practicaremos con datos tomados del portal de datos abiertos de la Ciudad de Buenos Aires. En esta ocasión se trata de los radios censales de la ciudad. Los radios censales son particiones de la superficie de la ciudad que contienen una cantidad similar de hogares. Fueron definidos por el Instituto Nacional de Estadística y Censos (INDEC) para facilitar la labor durante la jornada del Censo Nacional de Población que se realiza cada diez años. La idea es asignar a cada censista un radio censal, estimando que puede recorrer todos los hogares incluidos durante el día. Los radios censales son la unidad de análisis espacial por excelencia, debido a que combinan alta granularidad con abundante información asociada de acceso público, producida como resultado del Censo.

A trabajar entonces. Si no lo hicimos aún, carguemos las librerías sf y tidyverse

radios <- st_read("https://bitsandbricks.github.io/data/CABA_rc.geojson")

```
library(sf)
library(tidyverse)
```

Y leemos los datos directo desde internet:

```
## Reading layer `CABA_rc' from data source `https://bitsandbricks.github.io/data/CABA_rc.geojson' usin
## Simple feature collection with 3554 features and 8 fields
## geometry type:
                  MULTIPOLYGON
```

dimension: XY

bbox: xmin: -58.53092 ymin: -34.70574 xmax: -58.33455 ymax: -34.528

epsg (SRID):

proj4string: +proj=longlat +datum=WGS84 +no_defs

Dediquemos un momento para describir la información que apareció al leer el archivo.

- Simple feature collection with 3554 features and 8 fields: Cargamos una colección de "simple features" (entidades geométricas en la jerga de la cartografía digital), compuesta por 3554 rasgos y 8 campos, que se traduce como 3554 observaciones/filas con 8 variables/columnas.
- geometry type: MULTIPOLYGON: los archivos con información geográfica contienen colecciones de puntos, de líneas, o de polígonos. En éste caso son polígonos; tiene sentido para la información que esperamos, que es la de la superficie de Buenos Aires dividida en sus radios censales.
- XY: la información es "plana", en dos dimensiones X e Y. No incluye información de • dimension: alturas, que estaría en la dimensión Z. Es lo típico, rara vez trabajaremos con archivos tridimensionales.
- xmin: -58.53092 ymin: -34.70574 xmax: -58.33455 ymax: -34.528: nos da cuatro valores que forman una "caja" (bounding box), el rectángulo que contiene todos los datos. Estos valores son la latitud mínima, la longitud mínima, la latitud máxima y la longitud máxima del conjunto de datos. Sólo es útil cuando tenemos mucha práctica y ya reconocemos lugares por sus coordenadas.

• epsg (SRID): 4326 y proj4string: +proj=longlat +datum=WGS84 +no_defs significan lo mismo, que nuestros datos usan el sistema de coordenadas WGS84, también conocido por su código EPSG 4326. Es el mismo que usan los sistemas GPS, Google Maps, y las aplicaciones de internet en general. Es importante prestar atención al sistemas de coordenadas, o CRS, ya que para comparar datos geográficos de distintas fuentes todas deben usar el mismo.

Como con cualquier otro dataset, comenzamos nuestra exploración pidiendo su resumen:

```
summary(radios)
```

```
COMUNA
                                                         POBLACION
##
       RADIO_ID
                           BARRIO
                                              : 329
##
    1_{1}1_{1}:
                1
                    PALERMO: 295
                                      1
                                                       Min.
                                                              •
                                                                   0.0
##
    1_10_1 :
                1
                    CABALLITO: 215
                                      13
                                              : 305
                                                       1st Qu.: 646.2
    1_10_10:
                    RECOLETA: 198
                                                295
                                                       Median: 786.0
##
                                      14
                1
##
    1_10_11:
                1
                    BALVANERA: 191
                                      3
                                                254
                                                       Mean
                                                              : 813.2
##
    1 10 12:
                    FLORES
                                      4
                                              : 252
                                                       3rd Qu.: 928.0
                1
                              : 183
##
    1 10 13:
                    BELGRANO: 170
                                              : 250
                                                       Max.
                                                              :3945.0
    (Other):3548
                             :2302
                                       (Other):1869
##
                    (Other)
##
      VIVIENDAS
                         HOGARES
                                          HOGARES NBI
                                                              AREA KM2
                                                : 0.00
##
                                  0.0
                                                                   :0.004468
                0.0
                                        Min.
                      Min.
                                                           Min.
    1st Qu.: 311.2
                      1st Qu.: 259.0
                                         1st Qu.:
                                                   2.00
                                                           1st Qu.:0.018626
##
    Median : 377.0
                      Median : 310.0
                                                           Median: 0.035548
##
                                         Median :
                                                   6.00
##
    Mean
           : 401.4
                      Mean
                              : 323.6
                                         Mean
                                                : 19.35
                                                           Mean
                                                                   :0.057350
##
    3rd Qu.: 462.0
                      3rd Qu.: 371.0
                                         3rd Qu.: 23.00
                                                           3rd Qu.:0.062847
           :1405.0
                              :1093.0
##
    Max.
                      Max.
                                         Max.
                                                :403.00
                                                           Max.
                                                                   :3.804422
##
##
             geometry
##
    MULTIPOLYGON: 3554
##
    epsg:4326
##
    +proj=long...:
##
##
##
##
```

Podemos sacar en limpio varias cosas. RADIO_ID, por su nombre, debe ser el código que identifica cada radio censal. Tenemos columnas representando barrio y comuna de cada radio. Tenemos una columna para la población, y vemos que así como algún radio está deshabitado, el más poblado alcanza los 3945 habitantes. En cantidad de viviendas, el máximo es de 1405, y el de hogares 1093: eso significa que existe al menos un radio censal donde hay viviendas desocupadas; tomamos nota para revisarlo luego. "HOGARES_NBI" representa la cantidad de hogares donde se registró que al menos una de las necesidades básicas no estaba satisfecha, con mínimo de 0 por radio, y máximo nada menos que de 403. También tenemos una columna con el área en km^2, que muestra que en general los radios censales abarcan alrededor de medio kilómetro cuadrado, pero existe alguno que es casi 8 veces mayor al promedio. Por último queda la columna geometry, que contiene una serie de puntos que permiten trazar la silueta de cada radio (sus polígonos). Nosotros no vamos a prestarle atención, pero para R es fundamental, ya que le permite proyectar mapas y hacer cálculos geométricos cuando se lo pidamos.

6.4 Visualizando información geográfica

La visualización de información geográfica por excelencia es el mapa, por supuesto!

Nuestro aliado ggplot() se encarga de ello.

ggplot() + geom_sf(data = radios)

Ademas de encontrarnos con la reconocible silueta de la ciudad, comprobamos lo que el resumen de la data había sugerido: la mayoría de los radios censales tiene un tamaño similar, pero existe un puñado que es considerablemente más extenso que el promedio. Los "mega radios" seguramente corresponden a zonas poco habitadas, por lo que se asume que un censista puede terminar de encuestar a todos los residentes en un día.

Podemos analizar eso mismo: ¿cuántas viviendas hay por radio?

```
ggplot() + geom_sf(data = radios, aes(fill = VIVIENDAS))
```


EL grosor de la línea que traza las fronteras entre radios hace difícil determinar el color de relleno. Esto suele pasar cuando se grafica información geográfica intrincada como la de los radios censales. Una solución es definir el color de la línea como NA, que para ggplot significa "ninguno". Lo hacemos así:

```
ggplot() + geom_sf(data = radios, aes(fill = POBLACION), color = NA)
```


Así esta mejor. Nótese que definimos el color por fuera de aes(). Cuando queremos asignar un valor fijo a alguno de los atributos estéticos (y no dependiente de una variable) siempre va fuera de la función aes().

En cuanto al gráfico, observamos que los radios censales más grandes tienden a ser poco poblados, con algunas excepciones, en particular el gran radio censal al oeste. ¿A qué barrio corresponde?

```
ggplot() + geom_sf(data = radios, aes(fill = BARRIO), color = NA)
```


Hemos logrado otro de nuestros gráficos ilegibles, intentando mostrar demasiadas variables categóricas a la vez. Una forma de resolver el dilema es filtrando los datos para aislar los casos de interés. Del menú de visualizaciones que aprendimos en el capítulo 2, podemos elegir el histograma para mostrar la distribución de tamaños de nuestros radios censales.

ggplot() + geom_histogram(data = radios, aes(x = AREA_KM2))

Cómo había anticipado el resumen vía summary(), la gran mayoría de los radios tiene menos de medio km^2. Unos pocos superan los 2 km^2, así que vamos a aislar esos para saber a que barrio corresponden.

```
filtrados <- radios %>%
    filter(AREA_KM2 > 2)

ggplot() +
    geom_sf(data = filtrados, aes(fill = BARRIO)) +
    labs(title = "Radios censales de mayo tamaño")
```

Radios censales de mayo tamaño

este, con población considerable, corresponde a Puerto Madero.

Nuestro gran radio censal al

Llevemos ahora nuestra atención al tema de la cantidad de viviendas superando a la de hogares. Tal situación implica que hay una tasa de vacancia alta en el radio censal. Podemos verla en el mapa graficando la intensidad de la relación entre viviendas y hogares, expresándola como la división de una por otra.

ggplot() + geom_sf(data = radios, aes(fill = VIVIENDAS/HOGARES), color = NA)

Hay un radio censal que parece brillar, destacándose entre los demás. ¿Dónde está? Esta vez lo resolvemos en forma analítica en lugar de visual, usando los verbos de transformación de datos. Vamos a definir una variable nueva, con la tasa entre viviendas y hogares que ya usamos para el gráfico. Luego vamos a ordenar el dataframe por orden descendiente de la tasa, y usando head() nos quedamos sólo con los primeros valores, que corresponden a los más altos:

```
radios %>%
    mutate(viv_vs_hogares = VIVIENDAS / HOGARES) %>%
    arrange(desc(viv_vs_hogares)) %>%
    head()
## Simple feature collection with 6 features and 9 fields
## geometry type:
                   MULTIPOLYGON
## dimension:
                   XY
## bbox:
                    xmin: -58.38038 ymin: -34.62205 xmax: -58.35869 ymax: -34.60085
## epsg (SRID):
                    4326
## proj4string:
                    +proj=longlat +datum=WGS84 +no_defs
                      BARRIO COMUNA POBLACION VIVIENDAS HOGARES HOGARES_NBI
##
     RADIO_ID
      1_13_15 PUERTO MADERO
## 1
                                             0
                                                       6
                                                                0
                                                                            0
       1_13_3 PUERTO MADERO
                                            45
                                                     473
                                                               20
                                                                            0
## 2
                                  1
##
       1_9_19
                SAN NICOLAS
                                  1
                                           119
                                                     405
                                                               61
                                                                            6
                SAN NICOLAS
                                           296
                                                     629
                                                                            1
## 4
     1_12_10
                                  1
                                                              101
      1 12 12
                SAN NICOLAS
                                           499
                                                     471
                                                               90
                                                                           17
                                  1
                SAN NICOLAS
                                                     608
## 6
       1_9_15
                                           238
                                                              118
                                                                           13
##
       AREA_KM2 viv_vs_hogares
                                                       geometry
## 1 0.07899011
                            Inf MULTIPOLYGON (((-58.36131 -...
## 2 0.05698617
                      23.650000 MULTIPOLYGON (((-58.36094 -...
## 3 0.06236044
                      6.639344 MULTIPOLYGON (((-58.37606 -...
```

```
## 4 0.04438025 6.227723 MULTIPOLYGON (((-58.37879 -...
## 5 0.03108456 5.233333 MULTIPOLYGON (((-58.37879 -...
## 6 0.03287564 5.152542 MULTIPOLYGON (((-58.37473 -...
```

Otra vez Puerto Madero, que contiene un radio censal con una vacancia notable, el segundo de la lista: con 473 viviendas disponibles, se asentaron allí sólo 20 hogares. El que se llevó el primer puesto, también en Puerto Madero, obtuvo una tasa de "Inf", o infinito. Esto ocurre porque allí tenemos 0 hogares, y al dividir por esa cantidad no se obtiene un número. Conociendo al barrio, podemos sospechar que la especulación inmobiliaria es la causa de las viviendas vacías. El resto de los radios censales del ranking corresponde a San Nicolás, el barrio más céntrico de la ciudad, donde la gran cantidad de departamentos dedicados a uso comercial o profesional explicaría la baja cantidad de hogares.

Algo importante que no hemos mencionado aún es la importancia de "normalizar" las variables antes de mostrarlas en un mapa. Con esto me refiero a que, en general, no interesan tanto los valores absolutos sino puestos en contexto. Ejemplos típicos:

- En lugar de mostrar "número de crímenes por barrio" es más instructivo mostrar el número de crímenes per cápita; de lo contrario es de esperar que los lugares más poblados siempre estén a la cabeza, lo cual no agrega demasiada información.
- En lugar de mostrar "cantidad de habitantes por radio censal", suele preferirse mostrar la densidad de población, es decir la cantidad de habitantes dividida por la extensión del área. Los mapas de densidad muestran mucho mejor la distribución espacial de la población.

Con nuestros datos, podemos visualizar la densidad de la población así:

```
ggplot() +
  geom_sf(data = radios, aes(fill = POBLACION/AREA_KM2), color = NA) +
  scale_fill_viridis_c() +
  labs(title = "Densidad de población",
      subtitle = "Ciudad Autónoma de Buenos Aires",
      fill = "hab/km2")
```

Densidad de población Ciudad Autónoma de Buenos Aires

Este último gráfico representa de forma mucho mas precisa la distribución de habitantes en la ciudad, haciendo saltar a la vista los núcleos con mayor densidad de población. De paso, aprendimos un truco nuevo: agregando scale_fill_viridis_c() le pedimos a ggplot que utilice la escala de colores conocida como "viridis", diseñada por expertos en visualización para ser fácil de leer... y lucir bien.

6.5 Volcando en el mapa información de múltiples fuentes

En algunos casos, un archivo con información geográfica contiene todos los datos que necesitamos. Pero lo habitual es que el archivo sólo brinde la ubicación y fronteras de nuestras unidades de análisis, de manera que necesitamos agregarle los datos que hemos obtenido de otras fuentes y queremos proyectar en un mapa.

En el capítulo 2 aprendimos a usar la función left_join() para combinar tablas. Dado que los datos espaciales cargados vía sf() son dataframes -tablas-, podemos usarla para agregar variables a nuestros radios censales. Por ejemplo, las del dataset de interacciones de la ciudadanía con la ciudad.

Lo cargamos,

atencion_ciudadano <- read.csv("http://bitsandbricks.github.io/data/gcba_suaci_comunas.csv")

y recordamos que sus variables son:

```
names(atencion_ciudadano)

## [1] "PERIODO" "RUBRO" "TIPO_PRESTACION" "BARRIO"

## [5] "total" "COMUNA" "AÑO" "MES"
```

Un momento. Las variables que identifican el lugar de un reclamo son las de barrio y comuna, pero la unidad de análisis de nuestro archivo espacial es el radio censal. ¿Cómo podemos cruzar los datos? Por suerte para nosotros, el dataset con los radios censales incluye columnas con barrio y comuna, así que las

podemos usar para el cruce. Si no dispusiéramos de esa información, hubiéramos tenido que tomar el camino largo. Este consiste en conseguir un archivo espacial que contenga los límites de los barrios (o comunas) y hacer una operación llamada spatial join para cruzar los datos en base a sus coordenadas geográficas. La "unión espacial" permite poner condiciones como "unir los datos X con los datos Y en caso de que X esté adentro de Y". Nosotros no vamos a necesitar recurrir a un spatial join, pero es bueno saber que la opción existe (la función es st_join()) en caso de que la necesitemos en el futuro.

Para poder cruzar las tablas de atención ciudadana y la de datos espaciales, necesitamos que la unidad de observación (la entidad que representa cada fila) sea la misma. Cómo el dataset de atención es el menos detallado a nivel espacial, corresponde hacer un agregado de los radios censales para calcular sus datos a nivel barrio o comuna. Vamos con los barrios, usando a nuestros viejos amigos group_by y summary.

Recordemos los nombres de columna de radios:

```
names(radios)
```

```
## [1] "RADIO_ID" "BARRIO" "COMUNA" "POBLACION" "VIVIENDAS"
## [6] "HOGARES" "HOGARES_NBI" "AREA_KM2" "geometry"
```

Todas las unidades numéricas representan valores absolutos (no proporciones) así que es fácil pasarlas a un agregado por barrio; basta con sumarlas.

Y esto es lo lindo de trabajar con datos geográficos en forma de tabla: la columna geometry, la que guarda la información espacial, se crea en forma automática al hacer el summarise, y contiene la fronteras de la unidad de agregación - los barrios.

```
ggplot() + geom_sf(data = barrios_geo)
```


Como efecto secundario de la operación (que en la jerga del GIS se conoce como "disolver polígonos") podemos ver algunas líneas internas que han quedado como residuo de la unión de los radios censales. Es un problema muy común al trabajar con datos geográficos, dependiendo de la calidad de la fuente. Por suerte, en este caso el pequeño desperfecto no afecta nuestros planes. En pos de la prolijidad, podríamos realizar un ajuste fino y eliminar esas líneas internas, ya que hay varias técnicas para ello. Pero la complejidad de la tarea haría demasiado larga la explicación, así que vamos a dejarlo así... un recordatorio de que al trabajar con datos "reales" pasan estas cosas.

Ahora hagamos también un agregado por barrio de los datos de atención al ciudadano,

```
atencion_por_barrio <- atencion_ciudadano %>%
    group_by(BARRIO) %>%
    summarise(total = sum(total))
head(atencion_por_barrio)
```

```
# A tibble: 6 x 2
##
     BARRIO
                total
##
     <chr>>
                <int>
## 1 " "
                 5722
## 2 AGRONOMIA
                9604
## 3 ALMAGRO
                54190
## 4 BALVANERA 49540
## 5 BARRACAS
               31752
## 6 BELGRANO
               56522
```

Ya tenemos las piezas necesarias: dos datasets con una columna en común que los relaciona ("BARRIO") permitiendo cruzar los datos. Queremos conservar todas las observaciones del dataset geográfico, agregando los datos contenidos en el dataset de atención en donde la variable BARRIO sea la misma.

```
barrios_geo <- barrios_geo %>% left_join(atencion_por_barrio)
```

¡Ahora podemos hacer un mapa de cantidad de contactos por barrio!

```
ggplot() + geom_sf(data = barrios_geo, aes(fill = total))
```


Tal como habíamos verificado cuando hicimos la exploración del dataset en el capítulo 2, en los barrios céntricos se registra la mayoría de los contactos. Podemos mejorar un poco el mapa, normalizando los datos para mostrar valores per cápita.

```
ggplot() +
   geom_sf(data = barrios_geo, aes(fill = total/POBLACION)) +
   labs(title = "Contactos a atención ciudadana per cápita",
        subtitle = "Barrios de Ciudad Autónoma de Buenos Aires",
        fill = "contactos/habitante")
```

Contactos a atención ciudadana per cápita Barrios de Ciudad Autónoma de Buenos Aires

Normalizar los datos hace evidente que los barrios son parejos en su grado de demanda por habitante, exceptuando los casos salientes que mencionamos antes.

Hasta ahora hemos mostrado sobre un mapa variables numéricas, pero es igual de fácil representar variables categóricas. Imaginemos que quisiéramos mostrar el principal rubro por el cual se comunican los ciudadanos en cada barrio.

Usando los verbos de transformación que conocemos, la receta sería:

- 1. Agrupar los datos por barrio y por rubro
- 2. Crear un resumen con el total de contactos por rubro en cada barrio
- 3. Por cada grupo, filtrar los datos para conservar sólo el rubro que tiene la cantidad más grande de contactos

```
atencion_por_barrio_principal_rubro <- atencion_ciudadano %>%
    group_by(BARRIO, RUBRO) %>%
    summarise(contactos = sum(total)) %>%
    filter(contactos == max(contactos))

head(atencion_por_barrio_principal_rubro)
```

```
## # A tibble: 6 x 3
## # Groups:
               BARRIO [6]
     BARRIO
               RUBRO
                                  contactos
##
     <chr>>
               <fct>
                                       <int>
## 1 " "
               REGISTRO CIVIL
                                       5004
## 2 AGRONOMIA SANEAMIENTO URBANO
                                       4691
## 3 ALMAGRO
               SANEAMIENTO URBANO
                                       22429
## 4 BALVANERA SANEAMIENTO URBANO
                                      16840
```

```
## 5 BARRACAS SANEAMIENTO URBANO 10138
## 6 BELGRANO SANEAMIENTO URBANO 21060
```

Como funciona esta cadena de verbos?

- 1. group_by() agrupa los datos por barrio, y para cada barrio agrupa los datos por rubro.
- 2. summarise() "pela" una capa de agrupamiento, la más externa que es rubro, y deja para cada barrio una sola fila por rubro, con la suma de sus totales.
- 3. El paso final en la cadena de transformación, filter(contactos == max(contactos)) funciona porque todos los verbos de transformación respetan el agrupamiento. Es decir, si los datos fueron agrupados en forma previa, la función filter() aísla la fila con la cantidad máxima de contactos en cada uno de los grupos. En este caso, el agrupamiento que le llega a filter() es sólo por "BARRIOS", porque la función summarise() borró la capa "RUBRO". Resultado final: por cada barrio, una única fila que contiene el rubro que sumó más contactos

Agregamos la información al dataset geográfico vía left_join()

```
barrios_geo <- barrios_geo %>% left_join(atencion_por_barrio_principal_rubro)
```

Y mostramos el rubro principal por barrio en un mapa

```
ggplot() +
   geom_sf(data = barrios_geo, aes(fill = RUBRO)) +
   labs(title = "Principal categoría de las solicitudes/reclamos")
```

Principal categoría de las solicitudes/reclamos

6.6 Combinando capas geográficas

Comentamos al principio de capítulo que los archivos con datos espaciales pueden representar áreas (polígonos), líneas o puntos. Hasta ahora hemos hecho mapas con polígonos, pero según el caso podríamos querer mostrar otros tipos de geometría.

Un ámbito donde es común utilizar toda la variedad de geometrías es el transporte: Polígonos para representar distritos, líneas para el recorrido de un sistema de transporte, y puntos para la ubicación de las estaciones.

Una vez más, el portal de datos abiertos de la Ciudad de Buenos Aires nos provee los datos necesarios para practicar. De allí he descargado, y preparado para su uso, datos espaciales con

```
las líneas de transporte subterráneo (SUBTE) de la ciudad
subte_lineas <- st_read("http://bitsandbricks.github.io/data/subte_lineas.geojson")</pre>
## Reading layer `subte_lineas' from data source `http://bitsandbricks.github.io/data/subte_lineas.geoj
## Simple feature collection with 80 features and 2 fields
## geometry type: MULTILINESTRING
## dimension:
                  XY
                 xmin: -58.48639 ymin: -34.64331 xmax: -58.36993 ymax: -34.55564
## bbox:
## epsg (SRID):
                  4326
## proj4string:
                  +proj=longlat +datum=WGS84 +no_defs
y los puntos con las ubicaciones de las estaciones de SUBTE
subte estaciones <- st read("http://bitsandbricks.github.io/data/subte estaciones.geojson")
## Reading layer `subte_estaciones' from data source `http://bitsandbricks.github.io/data/subte_estacion
## Simple feature collection with 86 features and 3 fields
## geometry type: POINT
## dimension:
                  XY
## bbox:
                  xmin: -58.48639 ymin: -34.64331 xmax: -58.36993 ymax: -34.55564
## epsg (SRID):
                  4326
## proj4string:
                  +proj=longlat +datum=WGS84 +no_defs
```

Combinar capas mostrado distintas geometrías es simple usando sf() y ggplot(). Sólo es cuestión de sumar capas de geom_sf() con cada fuente de datos:

```
ggplot() +
    geom_sf(data = barrios_geo) +
    geom_sf(data = subte_lineas, color = "yellow") +
    geom_sf(data = subte_estaciones, color = "orange") +
    labs(title = "Sistema de transporte subterráneo (SUBTE)",
        subtitle = "Ciudad de Buenos Aires")
```

Sistema de transporte subterráneo (SUBTE) Ciudad de Buenos Aires

¡Voilà! Podríamos también aprovechar el lienzo en blanco de la superficie de los barrios para hacer un mapa temático que muestre la cantidad de incidentes en la base de atención ciudadana relacionados con el SUBTE.

Para revisar todos los rubros de atención, podemos usar summary(atencion_ciudadano\$RUBRO); en lugar de pedir un resumen del dataframe completo, le estamos indicando a R que nos interesa el detalle de la columna "RUBRO". Entre las 346 categorías, una es "EMERGENCIAS EN SUBTE". Suena interesante.

¿Dónde se han registrado más incidentes con emergencias? Lo responderemos con un mapa. A priori asumimos que no vamos a encontrar casos en en los barrios por donde no pasa el SUBTE, lo cual también podremos comprobar.

Primero creamos un subconjunto de los datos con la suma, por barrio, de emergencias reportadas

```
emergencias_en_subte <- atencion_ciudadano %>%
  filter(RUBRO == "EMERGENCIAS EN SUBTE") %>%
  group_by(BARRIO) %>%
  summarise(emergencias = sum(total))
```

... luego lo cruzamos con nuestro archivo geográfico

```
barrios_geo <- barrios_geo %>% left_join(emergencias_en_subte)
```

... y creamos un mapa temático mostrando la suma de emergencias por barrio:

```
ggplot() +
    geom_sf(data = barrios_geo, aes(fill = emergencias)) +
    geom_sf(data = subte_lineas, color = "yellow") +
    geom_sf(data = subte_estaciones, color = "orange") +
    labs(title = "Emergencias relacionadas con el SUBTE",
        subtitle = "Registros de atención al ciudadano, Ciudad de Buenos Aires (2015 - 2017)",
        fill = "emergencias reportadas")
```

Emergencias relacionadas con el SUBTE Registros de atención al ciudadano, Ciudad de Buenos Aires (2015 – 2017)

Aquí se cumplen las expectativas: la cantidad de emergencias reportadas sigue en forma clara un patrón relacionado con la cantidad de estaciones ubicadas en cada barrio. Y como era de esperarse, en barrios donde el SUBTE no ofrece cobertura la cantidad de emergencias es nula.

Con eso cerramos el capítulo, y el libro. Hemos llegado al brusco final... al menos brusco por ahora. Continuaré puliendo el texto, y más adelante quisiera agregar un breve capítulo de consideraciones finales.

Mientras tanto, mi mensaje final es fácil de resumir. Espero que "Ciencia de Datos para Gente Sociable" haya sido una introducción satisfactoria al análisis, modelado y visualización de información, y tan sólo el inicio de un largo y gratificante recorrido.

¡Gracias por haber leído hasta aquí!