

Infrared Segmentation

Presentation By: MANISH SONI

Dataset:

Dataset used in this assignment for training is

Dataset 01: OSU Thermal Pedestrian Database

- Training Directory: 00010.zip (24 images)
- Test Directory: 00004.zip (18 images)

Objective

- Segmentation based on Thresholding.
- Find a method to only detect required objects without any clutter.
- Try to maximize the detected object.
- Try to minimize the False positive.
- Tabulation of detected object vs actual objects.

Method for thresholding

- Global Thresholding
- Local Thresholding
- Adaptive thresholding

Challenges

- Lightening condition.
- Grouped object.
- Unnecessary objects reflecting ir light.
- Part of the body not showing in infrared image.

Method used

- 1. Use the images from training directory to learn the scene.
- 2. Use image averaging to get the background.
- 3. Use this background image and subtract it from each image having that background.
- 4. Get the Difference Image.
- 5. Get the Histogram and set the threshold value at 30 (Based on Histogram).
- 6. Get the Binary image based on threshold value of 30.
- 7. Use Dilation and erosion to treat an object.
- Get all the Labels for the object and show them.
- 9. Once trained use this algorithm for testing on another directory.

Original Image #5 of training directory

Results (Average image of 5 images)

Difference image

Histogram of difference image

Threshold image

Labeled image

Remove small region (need to be cautious)

Dilation

Erosion

Labeled image

Two people passing by (Output)

A case of over detection:

A case of over detection:

Interesting case

Detected region 5:

Test Directory

Result for image 15 (test directory)

No False positive but needed better dilation

Image	Detected	Actual
1	6	6
2	6	6
3	5	5
4	5	5
5	6	6
6	6	6
7	4	4
8	3	3
9	3	3
10	2	2
11	4	3
12	4	3
13	4	3
14	4	3
15	4	3
16	5	3
17	5	4
18	3	3
19	5	5
20	5	5
21	5	5
22	4	4
23	5	5
24	5	5

Conclusion

- Achieved around full accuracy in Test directory properly finding perfect object detection.
- No false positive detected at all.
- Seven cases were there which had over detection for the same object because of the less IR body reflectance. (Need better dilation and erosion structuring element).