MATH 525 Section 3.5: The Extended Golay Code

October 24, 2020

Section 3.5 October 24, 2020 1 / 11

The Extended Golay Code

Marcel Golay

• In 1949 Marcel Golay noticed that

$$\binom{23}{0} + \binom{23}{1} + \binom{23}{2} + \binom{23}{3} = 2^{11},$$

so he started to look for a perfect (23, 12, 7)-linear code, and succeeded. We will study this code, now known as the Golay code, in the next section.

Section 3.5 October 24, 2020 2 / 11

• The extended Golay code, C_{24} , is the linear code of length 24, dimension 12, and distance 8, whose generator matrix is:

$$G = [I_{12}|B]$$

where B is the 12×12 matrix

$$B = \begin{bmatrix} B_1 & j^T \\ \hline j & 0 \end{bmatrix}$$
 where $j = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1]$

and B_1 is displayed on the next slide.

• The following concept will be used on the next slide: The left-cyclic shift of the vector $(v_1, v_2, v_3, \dots, v_n) \in K^n$ is the vector

$$(v_2, v_3, \ldots, v_n, v_1).$$

For example, the left-cyclic shift of 1011 is 0111.

October 24, 2020 3 / 11

Each row of the 11×11 submatrix B_1 is a left-cyclic shift of the previous row.

The generator matrix $G = [I_{12}|B]$ of C_{24} :

October 24, 2020 5 / 11

Properties of C_{24}

- $|C| = 2^{12} = 4096.$
- 2 A parity-check matrix for C_{24} is $\begin{bmatrix} B \\ I_{12} \end{bmatrix}$.
- 3 Another parity-check matrix is $H = \begin{bmatrix} I_{12} \\ B \end{bmatrix}$.

Proof.

This follows from the observation that

$$G \cdot H = [I_{12}|B] \cdot \left[\frac{I_{12}}{B} \right] = I_{12} + B^2 = I_{12} + BB^T$$

(because $B = B^T$). By direct inspection, $\mathbf{b}_1 \cdot \mathbf{b}_1 = 1$ and $\mathbf{b}_1 \cdot \mathbf{b}_i = 0$ for all i > 1. From the cyclic structure of B_1 , it follows that $\mathbf{b}_i \cdot \mathbf{b}_j = 0$ whenever $i \neq j$ (note that if j > i, then $\mathbf{b}_i \cdot \mathbf{b}_j = \mathbf{b}_1 \cdot \mathbf{b}_{j-i}$). Therefore, $I_{12} + BB^T = I_{12} + I_{12} = \mathbf{0}$, i.e., $G \cdot H = \mathbf{0}$.

October 24, 2020 7 / 11

- **4** C_{24} is self-dual, i.e., $C_{24}^{\perp} = C_{24}$.
- **5** $d(C_{24}) = 8$.

Proof.

The proof of the last statement is divided into two parts:

- Part 1) Show that the weight of any codeword in C_{24} is congruent to zero modulo 4.
- Part 2) Show that there is no word of weight 4.

Set $H = \left| \frac{I_{12}}{B} \right|$ as the parity-check matrix for C_{24} .

Algorithm for Decoding the Extended Golay Code C_{24} :

- Input: The received vector $r = (r_1, r_2, \dots, r_{24}) \in K^{24}$.
- The output will be u, the estimated error vector.
 - 1) Compute $s = r \cdot H$.
 - 2) If $wt(s) \le 3$ then u = [s, 0]. EXIT.
 - 3) If $\operatorname{wt}(s+b_i) \leq 2$ for row i of B then $u = [s+b_i, e_i]$. EXIT.
 - 4) Compute sB.
 - 5) If $\operatorname{wt}(sB) \leq 3$ then u = [0, sB]. EXIT.
 - 6) If $\operatorname{wt}(sB + b_i) \leq 2$ for row i of B then $u = [e_i, sB + b_i]$. EXIT.
 - 7) Request retransmission or declare failure.

October 24, 2020 9 / 11

Example

Decode the following received words, assuming the code being used is C_{24} :

- (a) $r = (0000\ 0100\ 0101\ 1000\ 1111\ 0001)$.
- (b) $r = (1000\ 0100\ 1010\ 1100\ 1100\ 1000)$.
- (c) $r = (1000\ 0110\ 1010\ 1000\ 1100\ 1000)$.

Helpful calculations:

In (a),
$$s_1 = rH = (0101\ 0010\ 0000)$$
.

In (b),
$$s_1 = rH = (1111\ 0101\ 0001)$$
.

In (c),
$$s_1 = rH = (0100 \ 1111 \ 1010)$$
 and $s_2 = s_1B = (1111 \ 1000 \ 1111)$.

To see an example of how syndromes are calculated, turn to the next slide.

Example

Calculate the syndrome of $r = (\underbrace{0000\ 0100\ 0101}_{\text{left half}}\ \underbrace{1000\ 1111\ 0001}_{\text{right half}})$ in part (a) of

the previous example. Recall:

$$s = r \cdot H = r \cdot \left[\frac{I_{12}}{B} \right],$$

and observe that the right half of r has 1s in positions 1, 5, 6, 7, 8, and 12. It follows that s is equal to:

$$\begin{array}{cccccc} & \text{left half of } r \rightarrow & & 0000 \ 0100 \ 0101 \\ & \boldsymbol{b_1} \rightarrow & & 1101 \ 1100 \ 0101 \\ & \boldsymbol{b_5} \rightarrow & & 1100 \ 0101 \ 1011 \\ & \boldsymbol{b_6} \rightarrow & & 1000 \ 1011 \ 0111 \\ & \boldsymbol{b_7} \rightarrow & & 0001 \ 0110 \ 1111 \\ & \boldsymbol{b_8} \rightarrow & & 0010 \ 1101 \ 1101 \\ & \boldsymbol{b_{12}} \rightarrow & & 1111 \ 1111 \ 1110 \\ & \boldsymbol{s} \rightarrow & & 0101 \ 0010 \ 0000 \end{array}$$

ection 3.5 October 24, 2020 11 / 11