PS04-01

January 29, 2018

a. When $i \neq 1$, the number of bs and cs is not important. However, if i = 1, then the DFA must output a^nb^n , which is not possible, as illustrated by the DFA below. The state bad is where the machine must, but cannot calculate a^nb^n .

- b. Given $w \in F$ and w = xyz, if |xy| = 1, the $x = \varepsilon$ and y = a. If you were to pump y any number of times, then the $w = xy^tz \in F$.
- c. The Pumping Lemma is a requirement for a language to be regular but not a guarantee. Let P be a predicate meaning that language A passes the pumping lemma. We know that $\neg P \Rightarrow \neg \operatorname{regular}(A)$, but the equation is not biconditional, as proven by parts a and b above. $P \Rightarrow \operatorname{regular}(A)$.