投稿類別:地球科學類

篇名:

室內溫度與鐵皮顏色之研究

作者:

陳悅馨。國立永靖高工。室內空間設計科三年級 林沛蓁。國立永靖高工。室內空間設計科三年級 胡炳隆。國立永靖高工。室內空間設計科三年級

指導老師:

江菁菁老師

壹●前言

一、研究動機

在生活經驗中發現,市面上一般看到的陽傘都以淺色系為主,因為淺色系比深色系不容易吸熱,就如同深色車子(圖一)停在陽光下比會淺色車子(圖二)更容易吸熱,造成深色車內溫度會高於淺色車內溫度。從上述的例子發現顏色會影響到溫度的高低,然而這個發現是否也能應用在建築物的鐵皮屋頂上面呢?顏色的吸熱度是否和一般大眾的觀念一致?這些問題都引起了我們的研究興趣。

從地理、物理和色彩這三個觀點來研究,台灣屬於高日照國家為了不讓陽光 直射屋頂,以及空間使用上的增加,所以一般大眾會在房子上加蓋一層鐵皮的屋 頂,但鐵皮屋容易有悶熱高溫的問題,因此若能研究出房屋鐵皮的顏色的吸熱度 是否會影響屋內的溫度,便能改善鐵皮屋的缺點,讓室內溫度降低,達到隔熱效 果。且在空間上也更可以善加利用。

(圖一) 國內鐵皮屋範例

(圖二)鐵皮屋頂的形式範例

二、研究目的

因鐵皮屋頂表面顏色不同明度色相不同,造成吸熱效果的差異。在一般人的 觀念裡,深色(明度低-黑色)通常較容易吸熱,淺色(明度低-白色或黃色)通常較不 容易。藉著測量不同顏色鐵皮的溫度,來分析室內溫度會不會隨著顏色吸熱度的 多寡而使室內溫度上升或下降,因此本研究主要目的有下列幾項:

- (一)透過實驗研究一,比較不同顏色的鐵皮屋頂對於室內溫度的差異影響。
- (二)透過實驗研究二及實驗研究一的結果,分析開窗與否對室內溫度的影響。

三、研究方法

(一) 測量室內外溫度:

- 1、於每日9:00~16:00 整點時間,測量屋頂與模擬建物箱內之溫度。
- 2、在各個顏色的鐵皮上找出固定點,利用固定點為基準使用紅外溫 度計測量各個鐵皮的溫度,以求得最準確值。
- 3、於模擬建物內放置溫度計,測量並紀錄各個時間點之溫度。
- 4、將每次測量數據紀錄至下表中,作為研究分析之參考。

表 1 溫度紀錄表範例

日期 單位:℃ 時間 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 顏色 紅 黃 藍 綠 黑 灰 白

貳●正文

- 一、實驗研究一:鐵皮屋頂顏色與室內外溫度之影響研究。
 - (一) 分析模擬建物屋頂與室內溫度的變化,可以發現下列幾點:
 - 1、從表 2 及表 3 可以發現,一天當中 11 點到 13 點為屋頂與室內 溫度最高時刻,之後開始逐漸下降。
 - 2、從表 2 中可以發現,屋頂溫度最高溫為黑色,最低溫為白色;而 顏色溫差最大在早上 11 點時,兩者溫差高達 21℃,由此可知黑 色屋頂較其他顏色更為吸熱,因此溫度最高。
 - 3、從表 3 可以發現,室內溫度最高溫多集中在屋頂顏色黑色者,最低溫多集中在屋頂顏色黃色者,而顏色溫差最大仍在早上 11 點時,兩者溫差達 5.4℃,由此可知黃色屋頂隔熱效果最佳。
 - 4、將表 2 及表 3 做比較,藉以了解各個顏色在屋頂與室內溫度之差 異性,將結果記錄在下表 4。結果發現以屋頂顏色為黑色者,室 內外溫度差距最多,尤其在早上 11 點時,黑色屋頂之溫度與室內 溫度差高達 23.5℃。

表 2 屋頂溫度紀錄表(不開窗)

12月17日 單位:℃

顏色時間	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00
紅	22.8	38.6	45.2	36.1	38.6	34.1	30.9	22.9
黄	22.8	37.4	41.2	33.1	36.1	33	29.9	22.5
藍	22.8	47.6	52.4	40.6	44.9	40.1	34.9	24
綠	22.8	43.3	49	40.1	42	37.6	33.8	23.6
黑	22.8	50.8	57.4	45.8	48.5	43.6	36.3	24.2
灰	22.8	47.9	53.5	45.1	47.6	43.1	35.7	24.1
白	22.4	33.7	36.4	32.1	35	31.9	29.3	22.3

(橘色標註為同時段之最高溫度,藍色標註最低溫度)

圖 1 屋頂溫度曲線圖(不開窗)

表 3 室內溫度紀錄表(不開窗)

顏色時間	10:00	11:00	12:00	13:00	14:00	15:00	16:00
紅	27.2	30.2	31.1	29.9	28.7	28.7	26
黄	26.4	28.5	29.4	28.2	28.8	28.8	26.1
藍	29.6	32.9	33.2	32	31.4	30.2	27.8
綠	29.9	32	32.3	31.7	31.1	30.2	27.2
黑	30.9	33.9	34.2	33.3	32.1	30.6	27.6
灰	29.8	31.9	32.8	32.2	32.2	30.4	28
白	28.4	30.5	31.7	31.7	31.7	30.5	30.5

(橘色標註為同時段之最高溫度,藍色標註最低溫度)

室內溫度與鐵皮顏色之研究

圖 2 室內溫度曲線圖(不開窗)

表 4 屋頂與室內溫度差異表

顏色 時間	10:00	11:00	12:00	13:00	14:00	15:00	16:00
紅	-11.4	-15	-5	-8.7	-5.4	-3.3	3.1
黄	-11	-12.7	-3.7	-7.9	-4.2	-3.7	3.6
藍	-18	-7.5	-7.4	-12.9	-8.7	-4.2	3.8
綠	-13.4	-17	-7.8	-10.3	-6.5	-3.8	3.6
黑	-19.9	-23.5	-11.6	-15.2	-11.5	-3.7	3.4
灰	-18.1	-21.6	-12.3	-15.4	-10.9	-4.5	3.9
白	-5.3	-5.9	-0.4	-3.3	-0.2	-3.1	8.2

(表中數據+者,代表室內溫度高於屋頂溫度;數據-者,代表室內溫度低於屋頂溫度) 頂溫度)

- 二、實驗研究二:鐵皮屋開窗與否與室內溫度影響之研究。 分析表 5 及表 6,觀察其模擬建物屋頂與室內溫度的變化,可以發現下列幾 點;
 - (一)從表5可以發現,屋頂最高溫在早上11點鐘,其顏色溫差達13.5℃, 最高溫顏色為藍色,最低為黃色,但以平均值來看最高溫之屋頂顏 色仍為黑色。
 - (二)從表6可以發現,以室內溫度來看,最高溫及最低溫不再固定於某個 特定顏色。

將表 3 及表 6 做比較,藉以了解各個顏色在開窗與否和室內溫度間的影響,將結果記錄在下表 7,結果發現所有數據皆顯示,有開窗之室內溫度皆低於未開窗之室內溫度,顯示建物開窗確實能有效降低室內溫度。

表 5 屋頂溫度紀錄表(開窗)

1月7日 單位: ℃

顏色時間	10:00	11:00	12:00	13:00	14:00	15:00	16:00
紅	24.1	30.6	29	32.1	26.9	26.7	20.3
黄	25.7	29	27.1	30.9	26	24.6	19.2
藍	30.1	42.5	30.1	38.7	29.6	29.7	21.4
綠	28.8	35.2	28.8	35.7	28.8	28.8	20.6
黑	33.7	39	32	41.5	30.6	31.5	21.4
灰	34.6	42.1	36.6	30.5	29.5	27.7	21.4
白	24.5	30.6	26.5	32	25.3	25	20.3

(橘色標註為同時段之最高,藍色標註最低溫度)

圖 3 屋頂溫度曲線圖(開窗)

表 6 室內溫度紀錄表(開窗)

1月7日 單位:℃

顏色 時間	10:00	11:00	12:00	13:00	14:00	15:00	16:00
紅	23.6	26.2	25.4	26.9	25.1	29.5	25.5
黄	23.6	27	25.7	26.6	25.1	25.7	26.7
藍	24	26.9	25.8	27	25.2	24.9	23.1
綠	24.5	26.9	26.3	27.8	26	25.4	23
黑	24.8	26.1	26.9	28.4	26	26	23
灰	24.9	25.7	26.7	28.5	26.4	26.7	24
白	24.1	26.3	25.9	27.4	25.3	25	22.6

(橘色標註為同時段之最高,藍色標註最低溫度)

圖4室內溫度曲線圖(開窗)

表7開窗與未開窗之室內溫度差異表

顏色 時間	10:00	11:00	12:00	13:00	14:00	15:00	16:00
紅	-3.6	-4	-5.7	-3	-3.6	0.8	-0.5
黄	-2.8	-1.5	-3.7	-1.6	-3.7	-3.1	0.6
藍	-5.6	-6	-7.4	-5	-6.2	-5.3	-4.7
綠	-5.4	-5.1	-6	-3.9	-5.1	-4.8	-4.2
黑	-6.1	-7.8	-7.3	-4.9	-6.1	-4.6	-4.6
灰	-4.9	-6.2	-6.1	-3.7	-5.8	-3.7	-4
白	-4.3	-4.2	-5.8	-4.3	-6.4	-5.5	-7.9

(表中數據+者,代表開窗溫度高於未開窗溫度;數據-者,代表開窗溫度低於 未開窗溫度)

參●結論

綜合實驗研究一到實驗研究二之結果,可以發現一天當中室內外溫度最高溫 集中在早上 11 點到下午 2 點鐘之間,和一般大眾認知紫外線最強之時段相同。

由實驗研究一之結果分析,可以發現屋頂溫度最高溫為顏色黑色,最低溫為顏色白色,由此可知黑色顏色屋頂最為吸熱,而白色顏色屋頂反射性最佳。而以室內溫度而言,室內溫度最高者為依然為黑色屋頂建物,而室內溫度最低溫者,則變為黃色屋頂建物,由此可推論,雖白色屋頂反射性為最佳,但黃色屋頂隔熱效果更優於其他顏色。

由實驗研究二之結果可以得知,將建物前後開窗,利用空氣對流之原理,能有效降低室內溫度。

台灣位屬亞熱帶地區,四季溫度多為炎熱,因此在鐵皮屋的運用上,常因其 悶熱之缺點造成困擾,若能有效改善並降低其室內溫度,能使鐵皮屋的使用上更 為舒適便利,因此本研究基於以上目的設計實驗並分析結果,可以建議建造鐵皮 屋時,若能以黃色屋頂設計建物,並於前後牆壁皆開設窗戶,能有效降低室內溫 度,隔絕戶外高溫,為鐵皮屋最佳形式。

肆●引註資料

- 1. 太田昭雄、河原英介原著(2006)。色彩與配色。台北縣:北星圖書。2006 年 第 12~15 頁
- 2. 賴一輝(民 82 年)。色彩計畫。台北縣:新形象。民國 82 年 28~31 頁
- 3. 鐵皮屋顏色的禁忌。取自http://tw.knowledge.yahoo.com/question/question?qid=1510012101555 Yahoo!奇摩知識 2013 年 10 月 26 日
- 4. 鐵武士-屋頂養護專。取自 http://www.t54.com.tw/t54-material-1.htm 2013 年 10 月 25 日
- 5. 材料世界網 http://www.materialsnet.com.tw/DocView.aspx?id=6338 2013 年 10 月 29 日