Mobility-Traffic Correlations

Tim Bohne

26. August 2019

Bachelor-Seminar: Mobility and Traffic in Computer Networks

Übersicht

- Motivation / Fragestellungen
- **2** FLAMeS-Framework

Phase I: Datensammlung & Preprocessing

Phase II: Analyse der erhobenen Daten

Phase III: Korrelationen und integrierte Modelle

3 Fazit / Ausblick

Motivation

"Analyzing Mobility-Traffic Correlations in Large WLAN Traces: Flutes vs. Cellos" [1]

Isolierte Betrachtung

Aktuelle Modelle erfassen nicht das Zusammenspiel von Mobilität und Datenverkehr

Veraltete Daten

Trace-basierte Modelle verwenden i.d.R. Datensätze aus der Prä-Smartphone-Ära

Fragestellungen¹

- Wie unterscheiden sich Mobilitäts- und Datenverkehr-Charakteristiken zwischen unterschiedlichen Gerätetypen, Zeiten und Orten?
- Wie stehen diese Charakteristiken zueinander in Beziehung?
- Sollten neue Modelle entwickelt werden, die diese Unterschiede berücksichtigen?

Intuitive Beispiele [3]

FLAMeS-Framework: Analyse realer Netzwerkaktivität

Datengetriebene Analysen (30TB von 300K Geräten)

Framework for Large-scale Analysis of Mobile Societies [1]

Phase I [1]

User IP	User MAC	AP name	AP MAC	Lease begin time	Lease end time
10.130.90.3	00:11:22:33:44:55	b422r143-win-1	00:1d:e5:8f:1b:30	1333238737	1333238741

Quelle 1: WLAN-AP-Logs [1]

Start time		Finish time		Duration	Source IP	Destination IP
1334332274.912 13343		1334332	276.576	1.664	173.194.37.7	10.15.225.126
Protocol	Sou	rce port	Destin	ation port	Packet coun	t Flow size
TCP		80	6	0482	157	217708

Quelle 2: NetFlow-Logs [1]

Datenbasis:

- Quelle 1 + Quelle 2 (DHCP MAC-to-IP-Mapping)
- Externe Informationen z.B. durch rDNS und OUI

Heuristik zur Geräteklassifizierung

- Hersteller mittels *OUI* identifizieren
- Kontakt zu admob.com prüfen

WLAN-Adresse

D0:28:20:C7:44:84

Wireshark OUI Lookup Tool \implies Apple, Inc.

Ergebnis: 86% der Geräte in den AP-Logs und 97% der NetFlow-Traces klassifiziert

Kombinierte WLAN-AP- und NetFlow-Traces [1]

Phase II: Analyse der erhobenen Daten

Phase II [1]

Phase II: Zeitliche und räumliche Analyse der Mobilität

- WLAN-Sessions \approx Startzeiten von Vorlesungen
- Aktivität von Laptops fällt nach Ende der Vorlesungszeiten
- Abend-Sessions vermehrt in sozialen Einrichtungen / Bib.
- Vorlesungen geben Wochentagen Struktur
- Eingeschränktere Gesamtmobilität bei Laptops
- ullet Smartphones "Always-on-Devices" \Longrightarrow leichter zu erfassen
- Laptops besitzen längere Aufenthaltszeiten

Phase II: Zeitliche und räumliche Analyse des Datenverkehrs

- Smartphone-Flows und Pakete größer
- Laptops verursachen Ø 3.7 (#Smartphone-Flows)
 - Ø 1.6 (#Smartphone-Pakete)
 - \implies Ø **2.7** (Smartphone-Traffic)
- Wochenenden: Verbleibende Geräte besonders aktiv
- Smartphones mehr extreme Phasen der Inaktivität
- Laptops (78.5% TCP), Smartphones (98.2% TCP)
- Großteil der APs an Wochenenden nicht verwendet

Phase II: Zeitliche und räumliche Analyse des Datenverkehrs

	Laptops	Smartphones
AP-Volumen (GB)	< 5	< 3
Datenkonsum (MB)	< 700	< 200
Aktivitätszeit (Std.)	< 3.5	< 1

Smartphones:

- Bursty Traffic mit größeren Flows und kleinerer aktiver Dauer
- Für insgesamt deutlich weniger Last verantwortlich
- Besitzen hohe Scores bei Mobilitätsmetriken

Phase III: Korrelationen und integrierte Modelle

Phase III [1]

Exkurs: Feature-Engineering

Feature-Selection Beispiel [4]

- Correlation Feature Selection (CFS)
- ullet "Pearson-Correlation"-Methode [-1,1]

Phase III: Isolierte Korrelationen

${ m CFS}$ selektiert 5/8 Mobilitäts- und 11/19 Traffic-Features

Mobilität [1] Traffic [1]

Phase III: Korrelationen zwischen Mobilität und Datenverkehr

Korrelationen zwischen Mobilitäts- und Traffic-Features [1]

Unterschiede der Mobilitäts- und Traffic-Charakteristiken zwischen den Gerätetypen signifikant?

- Supervised Classification (SVM): Kombiniert \approx 81% (Mobilität \approx 65%, Traffic \approx 79%)
- Genauigkeit erhöht sich auf $\approx 86\%$, wenn zwischen Wochenenden und Wochentagen differenziert wird
- Unsupervised Clustering (k-Means): Kombiniert \approx 81.5% (Mobilität \approx 60%, Traffic \approx 81.2%)

Phase III: Kombinierte Modelle

- Generierung erster Traces: GMM mit kombinierten Features
- Vergleich der generierten Samples mit Echtdaten
- Samples bilden Verhalten beider Gerätetypen ab

Vergleich zu isolierten Modellen:

- Realistischer in Bezug auf Traffic-Features
- Keine Verbesserung in Bezug auf Mobilitäts-Features

Zusammenfassung / Fazit

- Signifikante Unterschiede zwischen den Gerätetypen
- Korrelationen zwischen beiden Dimensionen
- Kombinierte Modelle potenziell realistischer
- Anstoß für Entwicklung zukünftiger kombinierter Modelle
- Konzeption und Validierung konkreter Modelle wird zukünftiger Forschung überlassen

Erweiterung

Nutzergruppen

- Mobilität und Datenverkehr nicht nur zwischen Gerätetypen unterschiedlich
- Alter und Geschlecht eines Nutzers berücksichtigen
- Kulturellen Kontext aufgezeichneter Daten berücksichtigen

Ausblick

"Practical Prediction of Human Movements Across Device Types and Spatiotemporal Granularities" [2]

- Vorhersagbarkeit menschlicher Mobilität
- Bewegung von "sit-to-use"-Geräten besser vorhersagbar
- Signifikante Korrelationen zwischen Vorhersagegenauigkeit, Mobilitäts- und Traffic-Features
- Vorhersagegenauigkeit als Feature in integrierten Modellen
- Realistische Modellierung der Netzwerkaktivität ist aktives Forschungsfeld

B. Alipour, L. Tonetto, A.Y. Ding, R. Ketabi, J. Ott, and A. Helmy.

Flutes vs. cellos: Analyzing mobility-traffic correlations in large wlan traces.

pages 1637-1645, 04 2018.

B. Alipour, L. Tonetto, R. Ketabi, A. Y. Ding, J. Ott, and A. Helmy.

Practical prediction of human movements across device types and spatiotemporal granularities.

03 2019.

Dennis Shinault.

The surprising dangers of cell phone distractions:

Distracted walking.

```
https://www.protectiveinsurance.com/blog/blog-post/blog/2016/04/21/the-surprising-dangers-of-cell-phone-distractions-distractions-distractions-distractions-distractions-distractions-distractions-distractions-distractions
```

Abgerufen am: 21.08.2019.

Mehul Ved.

Feature Selection and Feature Extraction in Machine Learning: An Overview.

```
https://medium.com/@mehulved1503/feature-selection-and-feature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-in-machine-leature-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extraction-extracti
```

Abgerufen am: 21.08.2019.