

10. PEAK EXCURSION RATIO

10.1 Operating environment

Temperature : $24 \, ^{\circ}\text{C}$

Relative humidity : 48 % R.H.

10.2 Test set-up for conducted measurement

The spectrum analyzer was connected to the antenna terminal while the EUT was operating in the continuous transmission mode at the appropriate center frequencies. The largest permissible difference between the modulation envelope (measured using a peak hold function) and the maximum conducted output power 13 dB/MHz.

10.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 30, 2014 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W153R-D014

HEAD OFFICE: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) **EMC Testing Div.**: 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

10.4 Test data for 802.11a RLAN Mode

10.4.1 Test data for Antenna 0

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) EMC Testing Div. : 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

It should not be reproduced except in full, without the written approval of ONETECH.

CF 5.2 GHz

EMC-003 (Rev.1)

Span 25.0 MHz

: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) EMC Testing Div.: 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

1001 pts

Middle Channel (5 200 MHz)

10.5 Test data for 802.11n_HT20 RLAN Mode

10.5.1 Test data for Antenna 0

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) EMC Testing Div.: 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) EMC Testing Div.: 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

Middle Channel (5 200 MHz)

10.6 Test data for 802.11n_HT40 RLAN Mode

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) EMC Testing Div.: 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

11. FREQUENCY STABILITY WITH TEMPERATURE VARIATION

11.1 Operating environment

Temperature : $24 \, ^{\circ}\text{C}$ Relative humidity : $48 \, ^{\circ}\text{R.H.}$

11.2 Test set-up

Turn EUT off and set chamber temperature to -30 °C and then allow sufficient time (approximately 20 min to 30 min after chamber reach the assigned temperature) for EUT to stabilize. Turn on the EUT and measure the EUT operating frequency and then turn off the EUT after the measurement. The temperature in the chamber was raised 10 °C step from 0 °C to +65 °C. Repeat above method for frequency measurements every 10 °C step and then record all measured frequencies on each temperature step.

11.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul 30, 2014 (1Y)
■ -	SSE-43CI-A	Samkun Tech	Humidity Chamber	060712	May 15, 2014 (1Y)
■ -	DRP-305DN	DIGITAL Elec.	DC Power supply	4030195	Sep. 03, 2014 (1Y)

All test equipment used is calibrated on a regular basis.

Report No. : W153R-D014

11.4 Test Data for 5 150 MHz ~ 5 250 MHz Band

-. Test Date : March 11, 2015

-. Result : Pass

Temperature (°C)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
0		5 179 994 234	-5.766
10		5 179 989 131	-10.869
20		5 179 982 793	-17.207
30	£ 100 000 000	5 179 970 336	-29.664
40	5 180 000 000	5 179 971 521	-28.479
50		5 179 973 033	-26.967
60		5 179 973 984	-26.016
65		5 179 974 224	-25.776
0		5 199 994 264	-5.736
10		5 199 989 167	-10.833
20	5 200 000 000	5 199 982 837	-17.163
30		5 199 970 370	-29.630
40	5 200 000 000	5 199 971 559	-28.441
50		5 199 973 078	-26.922
60		5 199 974 025	-25.975
65		5 179 989 131 -10.80 5 179 982 793 -17.20 5 179 970 336 -29.60 5 179 971 521 -28.4' 5 179 973 033 -26.90 5 179 973 984 -26.0 5 179 974 224 -25.7' 5 199 984 264 -5.73 5 199 982 837 -17.10 5 199 970 370 -29.6' 5 199 971 559 -28.4* 5 199 974 025 -25.9' 5 199 974 256 -25.7' 5 239 984 281 -5.71 5 239 982 825 -17.1' 5 239 970 366 -29.6' 5 239 971 555 -28.4* 5 239 973 082 -26.9 5 239 974 031 -25.90	-25.744
0		5 239 994 281	-5.719
10	5 179 974 2 5 199 994 2 5 199 989 1 5 199 982 8 5 199 970 3 5 199 971 5 5 199 973 0 5 199 974 0 5 199 974 2 5 239 982 8 5 239 982 8 5 239 970 3 5 239 971 5	5 239 989 176	-10.824
20		5 239 982 825	-17.175
30	5 240 000 000	5 239 970 366	-29.634
40	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-28.445	
50		-26.918	
60		5 239 974 031	-25.969
65		5 239 974 267	-25.733

Tested by: Tae-Ho, Kim / Senior Engineer

Report No. : W153R-D014

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

11.5 Test Data for 5 250 MHz ~ 5 350 MHz Band

-. Test Date : March 11, 2015

-. Result : Pass

Result	: Pass		1	
Temperature (°C)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)	
0		5 259 994 283	-5.717	
10		5 259 989 177	-10.823	
20		5 259 982 825	-17.175	
30	5.260,000,000	5 259 970 380	-29.620	
40	5 260 000 000	5 259 971 563	-28.437	
50		5 259 973 064	-26.936	
60		5 259 974 018	-25.982	
65		5 259 974 257	-25.743	
0		5 299 994 280	-5.720	
10		5 299 989 179	-10.821	
20	5 300 000 000	5 299 982 825	-17.175	
30		5 299 970 385	-29.615	
40		5 299 971 569	-28.431	
50		5 299 973 077	-26.923	
60		5 299 974 015	-25.985	
65		5 299 974 266	-25.734	
0		5 319 994 279	-5.721	
10		5 319 989 168	-10.832	
20		5 319 982 830	-17.170	
30		5 319 970 382	-29.618	
40	5 320 000 000	5 319 971 553	-28.447	
50		5 319 973 074	-26.926	
60		5 319 974 027	-25.973	
65		5 319 974 264	-25.736	

Tested by: Tae-Ho, Kim / Senior Engineer

11.6 Test Data for 5 470 MHz ~ 5 725 MHz Band

-. Test Date : March 11, 2015

-. Result : Pass

Result	. 1 455		
Temperature (°C)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
0	5 500 000 000	5 499 986 881	-13.119
10		5 499 980 984	-19.016
20		5 499 974 824	-25.176
30	5 499 967 764	-32.236
40	5 500 000 000	5 499 968 142	-31.858
50		5 499 968 842	-31.158
60		5 499 969 545	-30.455
65		5 499 970 548	-29.452
0		5 599 986 929	-13.071
10		5 599 981 019	-18.981
20		5 599 974 869	-25.131
30		5 599 967 813	-32.187
40	5 600 000 000	5 599 968 189	-31.811
50		5 599 968 872	-31.128
60		5 599 969 591	-30.409
65		5 599 970 579	-29.421
0		5 699 986 922	-13.078
10		5 699 981 018	-18.982
20		5 699 974 855	-25.145
30		5 699 967 804	-32.196
40	5 700 000 000	5 699 968 186	-31.814
50		5 699 968 882	-31.118
60		5 699 969 588	-30.412
65		5 699 970 597	-29.403

Tested by: Tae-Ho, Kim / Senior Engineer

11.7 Test Data for 5 725 MHz ~ 5 850 MHz Band

-. Test Date : March 11, 2015

-. Result : Pass

Result	: Fass	1	1
Temperature (°C)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
0		5 744 986 923	-13.077
10		5 744 981 014	-18.986
20		5 744 974 855	-25.145
30	5.745.000.000	5 744 967 799	-32.201
40	5 745 000 000	5 744 968 178	-31.822
50		5 744 968 876	-31.124
60		5 744 969 577	-30.423
65		5 744 970 592	-29.408
0		5 784 986 925	-13.075
10		5 784 981 025	-18.975
20		5 784 974 868	-25.132
30	5 785 000 000	5 784 967 797	-32.203
40		5 784 968 172	-31.828
50		5 784 968 883	-31.117
60		5 784 969 592	-30.408
65		5 744 981 014 5 744 974 855 5 744 967 799 5 744 968 178 5 744 968 876 5 744 969 577 5 744 970 592 5 784 986 925 5 784 981 025 5 784 968 876 5 784 967 797 5 784 968 172 5 784 968 883	-29.418
0		5 824 986 923	-13.077
10		5 824 981 014	-18.986
20		5 824 974 872	-25.128
30		5 824 967 809	-32.191
40	5 825 000 000	5 824 968 178	-31.822
50		5 824 968 891	-31.109
60		5 824 969 590	-30.410
65		5 824 970 590	-29.410

Tested by: Tae-Ho, Kim / Senior Engineer

12. FREQUENCY STABILITY WITH VOLTAGE VARIATION

12.1 Operating environment

Temperature : $24 \, ^{\circ}\text{C}$

Relative humidity : 48 % R.H.

12.2 Test set-up

An external DC power supply was connected to the input of the EUT. The voltage of EUT set to 115 % of the nominal value and then was reduced to 85 % of nominal voltage. The output frequency was recorded at each step.

12.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul 30, 2014 (1Y)
■ -	DRP-305DN	DIGITAL Elec.	DC Power supply	4030195	Sep. 03, 2014 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W153R-D014

12.4 Test Data for 5 150 MHz ~ 5 250 MHz Band

-. Test Date : March 11, 2015

-. Result : Pass

Voltage (Vdc)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
5.75		5 179 970 318	-29.682
5.00	5 180 000 000	5 179 970 309	-29.691
4.25		5 179 970 312	-29.688
5.75		5 199 970 354	-29.646
5.00	5 200 000 000	5 199 970 347	-29.653
4.25		5 199 970 346	-29.654
5.75		5 239 970 368	-29.632
5.00	5 240 000 000	5 239 970 355	-29.645
4.25		5 239 970 357	-29.643

Tested by: Tae-Ho, Kim / Senior Engineer

12.5 Test Data for 5 250 MHz ~ 5 350 MHz Band

-. Test Date : March 11, 2015

-. Result : Pass

Voltage (Vdc)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
5.75		5 259 970 377	-29.623
5.00	5 260 000 000	5 259 970 366	-29.634
4.25		5 259 970 367	-29.633
5.75		5 299 970 347	-29.653
5.00	5 300 000 000	5 299 970 336	-29.664
4.25		5 299 970 334	-29.666
5.75		5 319 970 366	-29.634
5.00	5 320 000 000	5 319 970 352	-29.648
4.25		5 319 970 358	-29.642

Tested by: Tae-Ho, Kim / Senior Engineer

Report No. : W153R-D014

12.6 Test Data for 5 470 MHz ~ 5 725 MHz Band

-. Test Date : March 11, 2015

-. Result : Pass

Voltage (Vdc)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
5.75		5 499 967 751	-32.249
5.00	5 500 000 000	5 499 967 742	-32.258
4.25		5 499 967 737	-32.263
5.75		5 599 967 794	-32.206
5.00	5 600 000 000	5 599 967 788	-32.212
4.25		5 599 967 781	-32.219
5.75		5 699 967 748	-32.252
5.00	5 700 000 000	5 699 967 742	-32.258
4.25		5 699 967 737	-32.263

Tested by: Tae-Ho, Kim / Senior Engineer

12.6 Test Data for 5 725 MHz ~ 5 850 MHz Band

-. Test Date : March 11, 2015

-. Result : Pass

Voltage (Vdc)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
5.75		5 744 967 777	-32.223
5.00	5 745 000 000	5 744 967 766	-32.234
4.25		5 744 967 764	-32.236
5.75		5 784 967 805	-32.195
5.00	5 785 000 000	5 784 967 796	-32.204
4.25		5 784 967 794	-32.206
5.75		5 824 967 795	-32.205
5.00	5 825 000 000	5 824 967 788	-32.212
4.25		5 824 967 789	-32.211

Tested by: Tae-Ho, Kim / Senior Engineer

13. RADIATED SPURIOUS EMISSIONS

13.1 Operating environment

Temperature : $20 \, ^{\circ}\text{C}$ Relative humidity : $45 \, ^{\circ}\text{R.H.}$

13.2 Test set-up for conducted measurement

The radiated emissions measurements were performed on the 3 m, open-field test site. The EUT was placed on a non-conductive turntable above the ground plane.

The frequency spectrum from 30 MHz to 40 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

13.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 30, 2014 (1Y)
■ -	ESCI	Rohde & Schwarz	Test Receiver	101012	Nov. 03, 2014 (1Y)
■ -	310N	Sonoma Instrument	Pre-Amplifier	312544	Apr. 28, 2014 (1Y)
■ -	SCU-18	Rohde & Schwarz	Pre-Amplifier	10041	Nov. 25, 2014 (1Y)
■ -	DT3000	Innco System	Turn Table	930611	N/A
■	MA4000-EP	Innco System	Antenna Master	3320611	N/A
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-421	Jul. 10, 2014 (2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D294	Sep. 05, 2013 (2Y)
I -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Sep. 05, 2013 (2Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W153R-D014

13.4 Test data for 5 150 MHz ~ 5 250 MHz Band

13.4.1 Test data for 802.11a RLAN Mode

13.4.1.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 42.2 % R.H. Temperature: 22.0 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Wi-Fi module Date: March 11, 2015

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-.Ant0, Ant1 and Multiple transmit with Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP F	ANT ACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizontal -									
1 2 3 4	147.370 199.750 239.520 480.081	50.3	9.3 12.3 13.3 18.1	8.4 8.8 9.1 10.5	33.1 33.0 33.0 33.1	38.2 38.4 39.8 36.8	43.5 43.5 46.0 46.0	5.3 5.1 6.2 9.2	200 100 100 100	173 359 359 89
Vertical										
5 6	59.100 377.260	36.7 42.6	14.2 16.4	7.5 9.9	33.1 33.0	25.3 35.9	40.0 46.0	14.7 10.1	100 100	0 215

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Page 224 of 292 Report No. : W153R-D014

13.4.1.2 Test data for Below 30 MHz

-. Test Date : March 11, 2015

: 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz) -. Resolution bandwidth

: 9 kHz ~ 30 MHz -. Frequency range

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	_	Ant. Height (m)	O	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Margin (dB)

It was not observed any emissions from the EUT.

13.4.1.3 Test data for above 1 GHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

: 1 GHz ~ 40 GHz -. Frequency range

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	_		Height (m)	U	(dB/m)		Level(dBµV/m)		0

It was not observed any emissions from the EUT.

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH. : 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

EMC Testing Div. : 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

13.4.2 Test data for 802.11n_HT20 RLAN Mode

13.4.2.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 42.2 % R.H. Temperature: 22.0 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Wi-Fi module Date: March 11, 2015

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Ant0, Ant1 and Multiple transmit with Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP I	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
Н	orizontal -									
1 2 3 4	160.950 178.410 239.520 720.634	53.8 53.7 49.3 37.8	9.4 9.7 13.3 21.1	8.5 8.7 9.1 11.7	33.0 33.0 33.0 33.3	38.7 39.1 38.7 37.3	43.5 43.5 46.0 46.0	4.8 4.4 7.3 8.7	200 100 100 100	0 159 359 359
V	ertical									
5 6	62.980 377.260	35.8 42.9	12.9 16.4	7.6 9.9	33.1 33.0	23.2 36.2	40.0 46.0	16.8 9.8	100 100	0 201

Page 226 of 292 Report No. : W153R-D014

13.4.2.1 Test data for Below 30 MHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	Reading (dBμV)	Ant. Height (m)	U	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Limits (dBµV/m)	Margin (dB)

It was not observed any emissions from the EUT.

13.4.2.3 Test data for above 1 GHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	_		Height (m)	U	(dB/m)		Level(dBµV/m)		0

It was not observed any emissions from the EUT.

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

13.4.3 Test data for 802.11n_HT40 RLAN Mode

13.4.3.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 42.2 % R.H. Temperature: 22.0 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Wi-Fi module Date: March 11, 2015

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Ant0, Ant1 and Multiple transmit with Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP F	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizontal -									
1 2 3	165.800 214.300 232.730	42.8	9.5 12.7 13.1	8.6 8.9 9.1	33.0 33.0 33.0	31.4 31.4 31.7	43.5 43.5 46.0	12.1 12.1 14.3	200 100 100	0 215 359
Ve	ertical									
4 5 6	65.890 374.350 664.376		11.8 16.3 20.6	7.6 9.9 11.4	33.1 33.0 33.3	21.8 38.6 29.2	40.0 46.0 46.0	18.2 7.4 16.8	100 100 100	0 207 0

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W153R-D014

Page 228 of 292 Report No. : W153R-D014

13.4.3.2 Test data for Below 30 MHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	Reading (dBμV)	Ant. Height (m)	O	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Limits (dBµV/m)	Margin (dB)
				·			

It was not observed any emissions from the EUT.

13.4.3.3 Test data for above 1 GHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	_		Height (m)	U	(dB/m)		Level(dBµV/m)		0

It was not observed any emissions from the EUT.

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

Page 229 of 292 Report No. : W153R-D014

13.5 Test data for 5 250 MHz ~ 5 350 MHz Band

13.5.1 Test data for 802.11a RLAN Mode

13.5.1.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 42.2 % R.H. Temperature: 22.0 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Wi-Fi module Date: March 11, 2015

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Ant0, Ant1 and Multiple transmit with Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizontal -									
1 2 3	165.800 199.750 231.760	46.3 43.3 42.5	9.5 12.3 13.1	8.6 8.8 9.1	33.0 33.0 33.0	31.4 31.4 31.7	43.5 43.5 46.0	12.1 12.1 14.3	200 200 200	348 0 0
V	ertical	COD								
4 5 6	65.890 340.400 373.380	36.6 45.8 45.9	11.8 15.6 16.3	7.6 9.7 9.9	33.1 33.0 33.0	22.9 38.1 39.1	40.0 46.0 46.0	17.1 7.9 6.9	100 100 100	0 0 208

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Page 230 of 292 Report No. : W153R-D014

13.5.1.2 Test data for Below 30 MHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	O	Ant. Height (m)	O	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Limits (dBµV/m)	Margin (dB)

It was not observed any emissions from the EUT.

13.5.1.3 Test data for above 1 GHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	_		Height (m)	U	(dB/m)		Level(dBµV/m)		0

It was not observed any emissions from the EUT.

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

Page 231 of 292

13.5.2 Test data for 802.11n_HT20 RLAN Mode

13.5.2.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 42.2 % R.H. Temperature: 22.0 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Wi-Fi module Date: March 11, 2015

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Ant0, Ant1 and Multiple transmit with Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP F	ANT ACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
Ho	orizontal -									
1 2 3 4	155.130 237.580 480.081 720.634		9.4 13.2 18.1 21.1	8.5 9.1 10.5 11.7	33.0 33.0 33.1 33.3	38.7 43.8 38.9 36.7	43.5 46.0 46.0 46.0	4.8 2.2 7.1 9.3	200 100 100 100	0 359 359 359
Ve	ertical									
5 6	59.100 382.110	37.6 47.8	14.2 16.5	7.5 9.9	33.1 33.0	26.2 41.2	40.0 46.0	13.8 4.8	100 100	250 0

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W153R-D014

Page 232 of 292 Report No. : W153R-D014

13.5.2.2 Test data for Below 30 MHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

	Frequency (MHz)	_	Ant. Pol. (H/V)		O	Ant. Factor (dB/m)		Emission Level(dBμV/m)	Limits (dBµV/m)	Margin (dB)
--	-----------------	---	-----------------	--	---	--------------------	--	---------------------------	-----------------	-------------

It was not observed any emissions from the EUT.

13.5.2.3 Test data for above 1 GHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	_		Height (m)	U	(dB/m)		Level(dBµV/m)		0

It was not observed any emissions from the EUT.

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH. EMC-003 (Rev.1) **HEAD OFFICE**: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

13.5.3 Test data for 802.11n_HT40 RLAN Mode

13.5.3.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 42.2 % R.H. Temperature: 22.0 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Wi-Fi module Date: March 11, 2015

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Ant0, Ant1 and Multiple transmit with Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP F	ANT ACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBu√]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizontal -									
1 2 3 4	153.190 236.610 480.081 723.544		9.3 13.2 18.1 21.1	8.4 9.1 10.5 11.7	33.0 33.0 33.1 33.3	39.2 42.0 38.4 37.9	43.5 46.0 46.0 46.0	4.3 4.0 7.6 8.1	200 100 200 100	0 201 271 222
Ve	ertical									
5 6	59.100 380.170	37.7 46.8	14.2 16.5	7.5 9.9	33.1 33.0	26.3 40.2	40.0 46.0	13.7 5.8	100 100	242 193

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Page 234 of 292 Report No. : W153R-D014

13.5.3.2 Test data for Below 30 MHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	Reading (dBµV)	Ant. Height (m)	O	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Margin (dB)

It was not observed any emissions from the EUT.

13.5.3.3 Test data for above 1 GHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

E	D !!	A 4 D . 1	A 4	A I -	A - A E - A	Calda	E	T !!4	M !
Frequency	Reading	Ant. Pol.	Ant.	Angie	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	Height (m)	(°)	(dB/m)	Loss	Level(dBµV/m)	(dBµV/m)	(dB)

It was not observed any emissions from the EUT.

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH. EMC-003 (Rev.1) **HEAD OFFICE**: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

Page 235 of 292 Report No. : W153R-D014

13.6 Test data for 5 470 MHz ~ 5 725 MHz Band

13.6.1 Test data for 802.11a RLAN Mode

13.6.1.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 42.2 % R.H. Temperature: 22.0 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Wi-Fi module Date: March 11, 2015

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Ant0, Ant1 and Multiple transmit with Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP F	ANT ACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
Н	orizontal -									
1 2 3 4 5	149.310 172.590 234.670 480.081 720.634	53.3 51.9 43.2	9.3 9.6 13.2 18.1 21.1	8.4 8.6 9.1 10.5 11.7	33.1 33.0 33.0 33.1 33.3	38.4 38.5 41.2 38.7 34.0	43.5 43.5 46.0 46.0 46.0	5.1 5.0 4.8 7.3 12.0	200 100 100 100 100	151 167 201 125 359
V	ertical	<u> </u>								
6	59.100	38.1	14.2	7.5	33.1	26.7	40.0	13.3	100	0

It should not be reproduced except in full, without the written approval of ONETECH.

Page 236 of 292 Report No. : W153R-D014

13.6.1.2 Test data for Below 30 MHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	_		O	Ant. Factor (dB/m)	Emission Level(dBµV/m)	Limits (dBµV/m)	Margin (dB)
	•	•		•			

It was not observed any emissions from the EUT.

13.6.1.3 Test data for above 1 GHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	_		Height (m)	U	(dB/m)		Level(dBµV/m)		0

It was not observed any emissions from the EUT.

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

13.6.2 Test data for 802.11n_HT20 RLAN Mode

13.6.2.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 42.2 % R.H. Temperature: 22.0 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Wi-Fi module Date: March 11, 2015

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Ant0, Ant1 and Multiple transmit with Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP I	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizontal -									
1 2 3	177.440 251.160 480.081		9.7 13.6 18.1	8.7 9.2 10.5	33.0 33.0 33.1	37.2 38.5 33.8	43.5 46.0 46.0	6.3 7.5 12.2	200 100 100	1 359 237
Ve	ertical									
4 5 6	93.050 647.887 720.634	43.8 41.4 38.6	12.0 20.5 21.1	7.9 11.3 11.7	33.1 33.3 33.3	30.6 39.9 38.1	43.5 46.0 46.0	12.9 6.1 7.9	100 100 100	0 341 0

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Page 238 of 292 Report No. : W153R-D014

13.6.2.2 Test data for Below 30 MHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	Reading (dBµV)	Ant. Height (m)	O	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Margin (dB)

It was not observed any emissions from the EUT.

13.6.2.3 Test data for above 1 GHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	_		Height (m)	U	(dB/m)		Level(dBµV/m)		0

It was not observed any emissions from the EUT.

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

13.6.3 Test data for 802.11n_HT40 RLAN Mode

13.6.3.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 42.2 % R.H. Temperature: 22.0 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Wi-Fi module Date: March 11, 2015

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Ant0, Ant1 and Multiple transmit with Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP F	ANT ACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
Но	orizontal -									
1 2 3	178.410 239.520 480.081		9.7 13.3 18.1	8.7 9.1 10.5	33.0 33.0 33.1	35.5 38.3 39.2	43.5 46.0 46.0	8.0 7.7 6.8	100 100 200	355 359 0
Ve	ertical									
4 5 6	68.800 328.760 708.995		10.7 15.4 20.9	7.6 9.6 11.6	33.1 33.0 33.3	25.1 32.4 37.0	40.0 46.0 46.0	14.9 13.6 9.0	100 100 100	358 0 0

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W153R-D014

Page 240 of 292 Report No. : W153R-D014

13.6.3.2 Test data for Below 30 MHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	_	Ant. Pol. (H/V)	U	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Limits (dBµV/m)	Margin (dB)

It was not observed any emissions from the EUT.

13.6.3.3 Test data for above 1 GHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

F	requency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
		0			O	(dB/m)		Level(dBμV/m)		O

It was not observed any emissions from the EUT.

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH. EMC-003 (Rev.1) **HEAD OFFICE**: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

13.7 Test data for 5 470 MHz ~ 5 725 MHz Band

13.7.1 Test data for 802.11a RLAN Mode

13.7.1.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 42.2 % R.H. Temperature: 22.0 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Wi-Fi module Date: March 11, 2015

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Ant0, Ant1 and Multiple transmit with Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP F	ANT ACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
Ho	orizontal -									
1 2 3 4	119.240 168.710 239.520 480.081	51.4	11.5 9.6 13.3 18.1	8.1 8.6 9.1 10.5	33.1 33.0 33.0 33.1	29.2 36.6 35.9 37.4	43.5 43.5 46.0 46.0	14.3 6.9 10.1 8.6	200 100 100 200	345 0 0 259
Ve	ertical									
5 6	59.100 662.436	34.8 38.5	14.2 20.6	7.5 11.4	33.1 33.3	23.4 37.2	40.0 46.0	16.6 8.8	100 100	359 300

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W153R-D014

Page 242 of 292 Report No. : W153R-D014

13.7.1.2 Test data for Below 30 MHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	Reading (dBμV)	Ant. Height (m)	O	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Margin (dB)

It was not observed any emissions from the EUT.

13.7.1.3 Test data for above 1 GHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	_		Height (m)	U	(dB/m)		Level(dBµV/m)		0

It was not observed any emissions from the EUT.

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

DUELECH

13.7.2 Test data for 802.11n_HT20 RLAN Mode

13.7.2.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 42.2 % R.H. Temperature: 22.0 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Wi-Fi module Date: March 11, 2015

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Ant0, Ant1 and Multiple transmit with Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP F	ANT	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizontal -									
1 2 3 4	119.240 168.710 239.520 480.081	42.8 51.3 45.8 42.8	11.5 9.6 13.3 18.1	8.1 8.6 9.1 10.5	33.1 33.0 33.0 33.1	29.3 36.5 35.2 38.3	43.5 43.5 46.0 46.0	14.2 7.0 10.8 7.7	300 100 100 200	0 18 0 2
Ve	ertical									
5 6	59.100 434.491	35.9 38.9	14.2 17.4	7.5 10.3	33.1 33.0	24.5 33.6	40.0 46.0	15.5 12.4	100 100	67 40

Report No. : W153R-D014

Page 244 of 292 Report No. : W153R-D014

13.7.2.2 Test data for Below 30 MHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	Reading (dBμV)	Ant. Height (m)	O	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Limits (dBµV/m)	Margin (dB)

It was not observed any emissions from the EUT.

13.7.2.3 Test data for above 1 GHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	_		Height (m)	U	(dB/m)		Level(dBµV/m)		U

It was not observed any emissions from the EUT.

Tested by: Tae-Ho, Kim / Project Engineer

EMC-003 (Rev.1)

It should not be reproduced except in full, without the written approval of ONETECH.

DUELECH

13.7.3 Test data for 802.11n_HT40 RLAN Mode

13.7.3.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 42.2 % R.H. Temperature: 22.0 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Wi-Fi module Date: March 11, 2015

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Ant0, Ant1 and Multiple transmit with Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP F	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizontal -									
1	168.710		9.6	8.6	33.0	35.1	43.5	8.4	200	180
2	237.580	45.2	13.2	9.1	33.0	34.5	46.0	11.5	100	0
3	365.620	35.8	16.2	9.8	33.0	28.8	46.0	17.2	100	0
1 2 3 4	480,081	42.9	18.1	10.5	33.1	38.4	46.0	7.6	100	0
V	ertical									
5	128.940		10.4	8.2	33.1	34.0	43.5	9.5	200	0
6	662.436	36.8	20.6	11.4	33.3	35.5	46.0	10.5	100	359

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W153R-D014

Page 246 of 292 Report No. : W153R-D014

13.7.3.2 Test data for Below 30 MHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	_		O	Ant. Factor (dB/m)	Emission Level(dBµV/m)	Limits (dBµV/m)	Margin (dB)
	•	•		•			

It was not observed any emissions from the EUT.

13.7.3.3 Test data for above 1 GHz

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	_		Height (m)	U	(dB/m)		Level(dBµV/m)		U

It was not observed any emissions from the EUT.

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

15. RADIATED RESTRICTED BAND EDGE MEASUREMENTS

15.1 Operating environment

Temperature : $24 \, ^{\circ}\text{C}$ Relative humidity : $48 \, ^{\circ}\text{R.H.}$

15.2 Test set-up for conducted measurement

The radiated emissions measurements were performed on the 3 m, open-field test site. The EUT was placed on a non-conductive turntable above the ground plane.

The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

15.3 Test equipment used

■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 30, 2014 (1Y)
■ -	ESCI	Rohde & Schwarz	Test Receiver	101012	Nov. 03, 2014 (1Y)
■ -	310N	Sonoma Instrument	Pre-Amplifier	312544	Apr. 28, 2014 (1Y)
■ -	SCU-18	Rohde & Schwarz	Pre-Amplifier	10041	Nov. 25, 2014 (1Y)
■ -	DT3000	Innco System	Turn Table	930611	N/A
■ -	MA4000-EP	Innco System	Antenna Master	3320611	N/A
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-421	Jul. 10, 2014 (2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D294	Sep. 05, 2013 (2Y)
I -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Sep. 05, 2013 (2Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W153R-D014

15.4 Test data for Frequency 5 150 band

15.4.1 Test data for 802.11a RLAN Mode

15.4.1.1 Test data for Antenna 0

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	40.61	Peak	Н				40.91	74.00	33.09
	29.85	Average	Н				30.15	54.00	23.85
5 150.00	45.03	Peak	V	31.00	11.50	42.20	45.33	74.00	28.67
	33.98	Average	V				34.28	54.00	19.72

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

Report No. : W153R-D014

Page 249 of 292 Report No. : W153R-D014

15.4.1.2 Test data for Antenna 1

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	39.69	Peak	Н				39.99	74.00	34.01
	29.73	Average	Н				30.03	54.00	23.97
5 150.00	44.44	Peak	V	31.00	11.50	42.20	44.74	74.00	29.26
	35.75	Average	V				36.05	54.00	17.95

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

Page 250 of 292 Report No. : W153R-D014

15.4.1.3 Test data for Multiple transmit

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	40.25	Peak	Н				40.55	74.00	33.45
	30.18	Average	Н				30.48	54.00	23.52
5 150.00	44.21	Peak	V	31.00	11.50	42.20	44.51	74.00	29.49
	35.00	Average	V				35.30	54.00	18.70

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

15.4.2 Test data for 802.11n_HT20 RLAN Mode

15.4.2.1 Test data for Antenna 0

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	40.13	Peak	Н				40.43	74.00	33.57
	30.81	Average	Н				31.11	54.00	22.89
5 150.00	45.72	Peak	V	31.00	11.50	42.20	46.02	74.00	27.98
	34.07	Average	V				34.37	54.00	19.63

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

Report No. : W153R-D014

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Page 252 of 292 Report No. : W153R-D014

15.4.2.2 Test data for Antenna 1

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	39.37	Peak	Н				39.67	74.00	34.33
	29.08	Average	Н				29.38	54.00	24.62
5 150.00	44.41	Peak	V	31.00	11.50	42.20	44.71	74.00	29.29
	35.16	Average	V				35.46	54.00	18.54

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

Page 253 of 292 Report No. : W153R-D014

15.4.2.3 Test data for Multiple transmit

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	40.27	Peak	Н				40.57	74.00	33.43
	30.68	Average	Н				30.98	54.00	23.02
5 150.00	44.16	Peak	V	31.00	11.50	42.20	44.46	74.00	29.54
	34.38	Average	V				34.68	54.00	19.32

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

15.4.3 Test data for 802.11n_HT40 RLAN Mode

15.4.3.1 Test data for Antenna 0

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	43.92	Peak	Н				44.22	74.00	29.78
	33.13	Average	Н				33.43	54.00	20.57
5 150.00	58.11	Peak	V	31.00	11.50	42.20	58.41	74.00	15.59
	44.87	Average	V				45.17	54.00	8.83

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

Report No. : W153R-D014

It should not be reproduced except in full, without the written approval of ONETECH.

Page 255 of 292 Report No. : W153R-D014

15.4.3.2 Test data for Antenna 1

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	44.98	Peak	Н				45.28	74.00	28.72
	32.77	Average	Н				33.07	54.00	20.93
5 150.00	57.15	Peak	V	31.00	11.50	42.20	57.45	74.00	16.55
	44.87	Average	V				45.17	54.00	8.83

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

Page 256 of 292 Report No. : W153R-D014

15.4.3.3 Test data for Multiple transmit

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	44.05	Peak	Н				44.35	74.00	29.65
	32.92	Average	Н				33.22	54.00	20.78
5 150.00	56.89	Peak	V	31.00	11.50	42.20	57.19	74.00	16.81
	44.46	Average	V				44.76	54.00	9.24

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

15.5 Test data for Frequency 5 250 band

15.5.1 Test data for 802.11a RLAN Mode

15.5.1.1 Test data for Antenna 0

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	40.57	Peak	Н				41.37	73.98	32.61
	29.77	Average	Н				30.57	53.98	23.41
5 350.00	40.76	Peak	V	31.30	11.70	42.20	41.56	73.98	32.42
	30.15	Average	V				30.95	53.98	23.03

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

Report No. : W153R-D014

Page 258 of 292 Report No. : W153R-D014

15.5.1.2 Test data for Antenna 1

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	39.53	Peak	Н				40.33	73.98	33.65
	28.92	Average	Н				29.72	53.98	24.26
5 350.00	40.16	Peak	V	31.30	11.70	42.20	40.96	73.98	33.02
	29.52	Average	V				30.32	53.98	23.66

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

Page 259 of 292 Report No. : W153R-D014

15.5.1.3 Test data for Multiple transmit

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	39.03	Peak	Н				39.83	73.98	34.15
	29.62	Average	Н				30.42	53.98	23.56
5 350.00	41.11	Peak	V	31.30	11.70	42.20	41.91	73.98	32.07
	29.84	Average	V				30.64	53.98	23.34

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

15.5.2 Test data for 802.11n_HT20 RLAN Mode

15.5.2.1 Test data for Antenna 0

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	40.53	Peak	Н				41.33	73.98	32.65
	29.19	Average	Н				29.99	53.98	23.99
5 350.00	39.75	Peak	V	31.30	11.70	42.20	40.55	73.98	33.43
	29.87	Average	V				30.67	53.98	23.31

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

Report No. : W153R-D014

Page 261 of 292 Report No. : W153R-D014

15.5.2.2 Test data for Antenna 1

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	40.30	Peak	Н				41.10	73.98	32.88
	30.43	Average	Н				31.23	53.98	22.75
5 350.00	39.96	Peak	V	31.30	11.70	42.20	40.76	73.98	33.22
	30.03	Average	V				30.83	53.98	23.15

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

Page 262 of 292 Report No. : W153R-D014

15.5.2.3 Test data for Multiple transmit

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	39.88	Peak	Н				40.68	73.98	33.30
	30.07	Average	Н				30.87	53.98	23.11
5 350.00	39.69	Peak	V	31.30	11.70	42.20	40.49	73.98	33.49
	29.53	Average	V				30.33	53.98	23.65

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

15.5.3 Test data for 802.11n_HT40 RLAN Mode

15.5.3.1 Test data for Antenna 0

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	45.89	Peak	Н				46.69	73.98	27.29
	31.67	Average	Н				32.47	53.98	21.51
5 350.00	51.13	Peak	V	31.30	11.70	42.20	51.93	73.98	22.05
	35.52	Average	V				36.32	53.98	17.66

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

Report No. : W153R-D014

Page 264 of 292 Report No. : W153R-D014

15.5.3.2 Test data for Antenna 1

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	45.18	Peak	Н				45.98	73.98	28.00
	30.57	Average	Н				31.37	53.98	22.61
5 350.00	52.43	Peak	V	31.30	11.70	42.20	53.23	73.98	20.75
	35.76	Average	V				36.56	53.98	17.42

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

Page 265 of 292 Report No. : W153R-D014

15.5.3.3 Test data for Multiple transmit

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	46.73	Peak	Н				47.53	73.98	26.45
	30.72	Average	Н				31.52	53.98	22.46
5 350.00	50.89	Peak	V	31.30	11.70	42.20	51.69	73.98	22.29
	34.97	Average	V				35.77	53.98	18.21

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

15.6 Test data for Frequency 5 725 MHz Band

15.6.1 Test data for 802.11a RLAN Mode

15.6.1.1 Test data for Antenna 0

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
				Low Ch	annel				
	45.89	Peak	Н				47.69	74.00	26.31
	33.75	Average	Н				35.55	54.00	18.45
5 725.00	48.65	Peak	V	31.90	12.10	42.20	50.45	74.00	23.55
	35.12	Average	V				36.92	54.00	17.08
				High Ch	annel				
	38.52	Peak	Н				40.62	74.00	33.38
	28.82	Average	Н				30.92	54.00	23.08
5 850.00	45.89	Peak	V	32.10	12.20	42.20	47.99	74.00	26.01
	33.05	Average	V				35.15	54.00	18.85

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

Report No. : W153R-D014

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

15.6.1.2 Test data for Antenna 1

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
				Low Ch	annel				
	45.97	Peak	Н				47.77	74.00	26.23
	32.57	Average	Н				34.37	54.00	19.63
5 725.00	47.44	Peak	V	31.90	12.10	42.20	49.24	74.00	24.76
	35.40	Average	V				37.20	54.00	16.80
				High Cl	annel				
	39.99	Peak	Н				42.09	74.00	31.91
	29.90	Average	Н				32.00	54.00	22.00
5 850.00	45.97	Peak	V	32.10	12.20	42.20	48.07	74.00	25.93
	34.36	Average	V				36.46	54.00	17.54

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

Report No. : W153R-D014

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Page 268 of 292 Report No. : W153R-D014

15.6.1.3 Test data for Multiple transmit

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
				Low Ch	annel				
	46.43	Peak	Н				48.23	74.00	25.77
	32.85	Average	Н				34.65	54.00	19.35
5 725.00	48.71	Peak	V	31.90	12.10	42.20	50.51	74.00	23.49
	34.58	Average	V				36.38	54.00	17.62
				High Cl	annel				
	38.73	Peak	Н				40.83	74.00	33.17
	29.68	Average	Н				31.78	54.00	22.22
5 850.00	46.43	Peak	V	32.10	12.20	42.20	48.53	74.00	25.47
	34.40	Average	V				36.50	54.00	17.50

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

15.6.2 Test data for 802.11n_HT20 RLAN Mode

15.6.2.1 Test data for Antenna 0

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
				Low Ch	annel				
	46.49	Peak	Н				48.29	74.00	25.71
	32.95	Average	Н				34.75	54.00	19.25
5 725.00	48.92	Peak	V	31.90	12.10	42.20	50.72	74.00	23.28
	34.14	Average	V				35.94	54.00	18.06
				High Ch	annel				
	39.90	Peak	Н				42.00	74.00	32.00
	29.17	Average	Н				31.27	54.00	22.73
5 850.00	46.49	Peak	V	32.10	12.20	42.20	48.59	74.00	25.41
	33.25	Average	V				35.35	54.00	18.65

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

Report No. : W153R-D014

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

15.6.2.2 Test data for Antenna 1

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
				Low Ch	annel				
	46.08	Peak	Н				47.88	74.00	26.12
	32.77	Average	Н				34.57	54.00	19.43
5 725.00	48.24	Peak	V	31.90	12.10	42.20	50.04	74.00	23.96
	35.28	Average	V				37.08	54.00	16.92
				High Cl	annel				
	38.58	Peak	Н				40.68	74.00	33.32
	28.67	Average	Н				30.77	54.00	23.23
5 850.00	46.08	Peak	V	32.10	12.20	42.20	48.18	74.00	25.82
	32.58	Average	V				34.68	54.00	19.32

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

Report No. : W153R-D014

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Page 271 of 292 Report No. : W153R-D014

15.6.2.3 Test data for Multiple transmit

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
				Low Ch	annel				
	45.59	Peak	Н				47.39	74.00	26.61
	34.47	Average	Н				36.27	54.00	17.73
5 725.00	47.84	Peak	V	31.90	12.10	42.20	49.64	74.00	24.36
	34.62	Average	V				36.42	54.00	17.58
				High Cl	annel				
	40.04	Peak	Н				42.14	74.00	31.86
	30.45	Average	Н				32.55	54.00	21.45
5 850.00	45.59	Peak	V	32.10	12.20	42.20	47.69	74.00	26.31
	32.72	Average	V				34.82	54.00	19.18

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

15.6.3 Test data for 802.11n_HT40 RLAN Mode

15.6.3.1 Test data for Antenna 0

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
				Low Ch	annel				
	46.19	Peak	Н				47.99	74.00	26.01
	32.69	Average	Н				34.49	54.00	19.51
5 725.00	47.68	Peak	V	31.90	12.10	42.20	49.48	74.00	24.52
	35.19	Average	V				36.99	54.00	17.01
				High Ch	annel				
	39.27	Peak	Н				41.37	74.00	32.63
	29.88	Average	Н				31.98	54.00	22.02
5 850.00	46.19	Peak	V	32.10	12.20	42.20	48.29	74.00	25.71
	33.73	Average	V				35.83	54.00	18.17

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

Report No. : W153R-D014

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

15.6.3.2 Test data for Antenna 1

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
				Low Ch	annel				
	45.79	Peak	Н				47.59	74.00	26.41
	33.72	Average	Н				35.52	54.00	18.48
5 725.00	47.46	Peak	V	31.90	12.10	42.20	49.26	74.00	24.74
	35.85	Average	V				37.65	54.00	16.35
				High Cl	annel				
	39.06	Peak	Н				41.16	74.00	32.84
	29.05	Average	Н				31.15	54.00	22.85
5 850.00	45.79	Peak	V	32.10	12.20	42.20	47.89	74.00	26.11
	33.56	Average	V				35.66	54.00	18.34

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

Report No. : W153R-D014

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Page 274 of 292 Report No. : W153R-D014

15.6.3.3 Test data for Multiple transmit

-. Test Date : March 11, 2015

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)	
Low Channel										
	46.08	Peak	Н		12.10	42.20	47.88	74.00	26.12	
5 725.00	33.79	Average	Н	31.90			35.59	54.00	18.41	
	47.73	Peak	V				49.53	74.00	24.47	
	34.70	Average	V				36.50	54.00	17.50	
High Channel										
	38.22	Peak	Н	32.10	12.20	42.20	40.32	74.00	33.68	
5 850.00	29.86	Average	Н				31.96	54.00	22.04	
	46.08	Peak	V				48.18	74.00	25.82	
	33.19	Average	V				35.29	54.00	18.71	

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Tae-Ho, Kim / Project Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

16. CONDUCTED EMISSION TEST

16.1 Operating environment

Temperature : $27 \, ^{\circ}\text{C}$ Relative humidity : $46 \, ^{\circ}\text{R.H.}$

16.2 Test set-up

The EUT was placed on a wooden table, 0.8 m height above the floor. Power was fed to the EUT through a 50 Ω / 50 μ H + 5 Ω Artificial Mains Network (AMN). The ground plane was electrically bonded to the reference ground system and all power lines were filtered from ambient.

16.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
■ -	ESPI	Rohde & Schwarz	EMI Test Receiver	101278	Nov. 03, 2014 (1Y)
□-	ESHS10	Rohde & Schwarz	EMI Test Receiver	834467/007	Jul. 15, 2014 (1Y)
	NSLK8128	Schwarzbeck	AMN	8128-216	Apr. 11, 2014 (1Y)
■	NSLK8126	Schwarzbeck	AMN	8126-404	Jul. 11, 2014 (1Y)
□-	3825/2	EMCO	AMN	9109-1869	Apr. 29, 2014 (1Y)
■	3825/2	EMCO	AMN	9109-1867	Apr. 29, 2014 (1Y)

All test equipment used is calibrated on a regular basis.

Report No. : W153R-D014

16.4 Test data

-. Test Date : March 11, 2015

-. Resolution bandwidth : 9 kHz

-. Frequency range : 0.15 MHz ~ 30 MHz

-. Tested Line : HOT LINE

NO	FREQ	READING		C.FACTOR	RESULT		LIMIT		MARGIN		PHASE
	[MHz]	QP [dBuV]	AV [dBuV]	[dB]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]	
1	0.16700	47.4		9.9	57.3		65.1		7.8		H(QP)
2	0.48900	33.1		9.9	43.0		56.2		13.2		H(QP)
3	0.91900	30.7		10.0	40.7		56.0		15.3		H(QP)
4	4.49600	26.7		10.0	36.7		56.0		19.3		H(QP)
5	15.91000	29.0		10.5	39.5		60.0		20.5		H(QP)
6	29.35000	21.8	***	10.7	32.5		60.0		27.5		H(QP)
7	0.16700		24.1	9.9		34.0		55.1		21.1	H(CAV)
8	0.48900		21.9	9.9		31.8		46.2		14.4	H(CAV)
9	0.91900		15.0	10.0		25.0		46.0		21.0	H(CAV)
10	4.49600		15.8	10.0		25.8		46.0		20.2	H(CAV)
11	15.91000		17.4	10.5		27.9		50.0		22.1	H(CAV)
12	29.35000		5.5	10.7		16.2		50.0		33.8	H(CAV)

Report No. : W153R-D014

FREQ			C.FACTOR					20010000		PHASE
[MHz]	120000000000000000000000000000000000000		[dB]	Carlotte Control of the Control of t		1. (a) (a) (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b				
0.17900	45.5		9.9	55.4		64.5		9.1		N(QP)
0.49400	33.6		9.9	43.5		56.1		12.6		N(QP)
1.41200	29.2		10.0	39.2		56.0		16.8		N(QP)
4.15600	26.7		10.0	36.7		56.0		19.3		N(QP)
15.75000	28.8		10.5	39.3		60.0		20.7		N(QP)
23.40000	24.8		10.7	35.5		60.0		24.5		N(QP)
0.17900		32.3	9.9		42.2		54.5		12.3	N(CAV)
0.49400		17.2	9.9		27.1		46.1		19.0	N(CAV)
1.41200		15.7	10.0		25.7		46.0		20.3	N(CAV)
4.15600		15.6	10.0		25.6		46.0		20.4	N(CAV)
15.75000		15.1	10.5		25.6		50.0		24.4	N(CAV)
23,40000		14.6	10.7		25.3		50.0		24.7	N(CAV)
	[MHz] 0.17900 0.49400 1.41200 4.15600 15.75000 23.40000 0.17900 0.49400 1.41200 4.15600 15.75000	QP [MHz] [dBuV] 0.17900 45.5 0.49400 33.6 1.41200 29.2 4.15600 26.7 15.75000 28.8 23.40000 24.8 0.17900 0.49400 1.41200 4.15600 15.75000	QP AV [dBuV] [dBuV] 0.17900 45.5 0.49400 33.6 1.41200 29.2 4.15600 26.7 15.75000 28.8 23.40000 24.8 0.17900 32.3 0.49400 17.2 1.41200 15.7 4.15600 15.6 15.75000 15.1	QP AV [dBuV] [dBuV] [dB] 0.17900 45.5 9.9 0.49400 33.6 9.9 1.41200 29.2 10.0 4.15600 26.7 10.0 15.75000 28.8 10.5 23.40000 24.8 10.7 0.17900 32.3 9.9 0.49400 17.2 9.9 1.41200 15.7 10.0 4.15600 15.6 10.0 15.75000 15.1 10.5	QP AV QP [dBuV] [dBuV] [dB] [dBuV] 0.17900 45.5 9.9 55.4 0.49400 33.6 9.9 43.5 1.41200 29.2 10.0 39.2 4.15600 26.7 10.0 36.7 15.75000 28.8 10.5 39.3 23.40000 24.8 10.7 35.5 0.17900 32.3 9.9 0.49400 17.2 9.9 1.41200 15.7 10.0 4.15600 15.6 10.0 15.75000 15.1 10.5	QP AV [dBuV] [dBuV] QP AV [dBuV] [dBuV] QP AV [dBuV] [dBuV] 0.17900 45.5 9.9 55.4 0.49400 33.6 9.9 43.5 1.41200 29.2 10.0 39.2 4.15600 26.7 10.0 36.7 15.75000 28.8 10.5 39.3 23.40000 24.8 10.7 35.5 0.17900 32.3 9.9 42.2 0.49400 17.2 9.9 27.1 1.41200 15.7 10.0 25.7 4.15600 15.6 10.0 25.6 15.75000 15.1 10.5 25.6	QP [MHz] AV [dBuV] QP [dBuV] AV [dBuV] QP [dBuV] AV [dBuV] QP [dBuV] <th< td=""><td>QP [MHz] AV [dBuV] QP [dBuV] AV [dBuV] QP AV [dBuV] AV [dBuV] Quality AV [dBuV] AV [dBuV</td><td>QP [MHz] AV [dBuV] QP [dBuV] <th< td=""><td>QP [MHz] AV [dBuV] QP [dBuV] <th< td=""></th<></td></th<></td></th<>	QP [MHz] AV [dBuV] QP [dBuV] AV [dBuV] QP AV [dBuV] AV [dBuV] Quality AV [dBuV] AV [dBuV	QP [MHz] AV [dBuV] QP [dBuV] AV [dBuV] QP [dBuV] <th< td=""><td>QP [MHz] AV [dBuV] QP [dBuV] <th< td=""></th<></td></th<>	QP [MHz] AV [dBuV] QP [dBuV] AV [dBuV] QP [dBuV] <th< td=""></th<>

Remark: Margin (dB) = Limit - Level (Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.

Tested by: Tae-Ho, Kim / Project Engineer

17 DYNAMIC FREQUENCY SELECTION (DFS)

17.1 Operating environment

Temperature : $24 \, ^{\circ}\text{C}$

Relative humidity : 45 % R.H.

17.2 Test set-ups

The FCC 06-96 and RSS-210 A9.3 describes a conducted test setup. A conducted test setup was user this testing. Figure 1 shows the typical test setup. Each one channel selected between 5 250 MHz and 5 350 MHz, 5 470 MHz and 5 725 MHz is chosen for the testing.

Figure 1. Setup for Client with injection at the Master

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W153R-D014

HEAD OFFICE: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) **EMC Testing Div.**: 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

17.3 DFS Test Signals

Table 5 - Short Pulse Radar Test Waveforms

Table 5 - Short Fuise Radar Test Wavelorius								
Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum			
Type	Width	(µsec)		Percentage of	Number			
	(µsec)			Successful	of			
				Detection	Trials			
0	1	1428	18	See Note 1	See Note			
					1			
1	1	Test A: 15 unique PRI values	$\left[\left(\begin{array}{c}1\end{array}\right)\right]$	60%	30			
		randomly selected	(360)					
		from the list of 23	Roundup $\{19.10^6\}$					
		PRI values in						
		Table 5a	$\left(\left(\left. \mathrm{PRI}_{\mu sec} \right) \right) \right)$					
		Test B: 15 unique						
		PRI values						
		randomly selected						
		within the range						
		of 518-3066						
		μ sec, with a						
		minimum						
		increment of 1						
		μ sec,						
		excluding PRI						
		values						
		selected in						
		Test A						
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4	11-20	200-500	12-16	60%	30			
Aggregate	(Radar Types	80%	120					

Table 6 - Long Pulse Radar Test Waveform

Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of
105/10-	(µsec)	(MHz)	W453 100X	per Burst		Successful	Trials
	N. C.	32 31				Detection	
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

Report No. : W153R-D014

17.4 Technical Requirement Specification

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode				
	Master	Client (without DFS)	Client (with DFS)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode			
	Master	Client (without DFS)	Client (with DFS)	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	Yes	

17.5 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 30, 2014 (1Y)
■	D-05180-2	RLC Electronis Inc.	Combiner	0813	Apr. 29, 2014 (1Y)
■ -	11636B	Hewlett Packard	Combiner	12268	Nov. 08, 2014 (1Y)
■ -	SMJ100A	R/S	Signal Generator	101038	Nov. 08, 2014 (1Y)
■	DRP-305DN	DIGITAL Elec.	DC Power supply	4030195	Sep. 03, 2014 (1Y)
	AIR-AP1252AG-K-K9	CISCO	AP	FGL1439Z0KE	N/A

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W153R-D014

HEAD OFFICE: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) **EMC Testing Div.**: 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

17.6 Test data for 5 250 MHz ~ 5 350 MHz Band

-. Test Date : March 11, 2015

E OMI	Channel me	ove time(s)	Channel closing transmission time(ms)		
Frequency (MHz)	Measured	Limit	Measured	Limit	
5 300	0.352 6	10	1.101	60	

Note. Channel closing transmission time: 4 * 275.36 us = 1.101 ms

17.6.1 Plot of Radar waveform type1

Note: The calibrated conducted DFS detection threshold level is set to -59.5 dBm (-62+1+1.5=-59.5)

Report No. : W153R-D014

Center 5.3 GHz

17.6.5 Non occupancy period

Associate test: During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the in-Service Monitoring

17.6.6 Non-Associated test

Master was off. During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after

17.6.7 Non-Co-Channel Test

The UUT was investigated after radar was detected the channel and mode sure no co-channel operation with radars.

Report No. : W153R-D014

17.7 Test data for 5 470 MHz ~ 5 725 MHz Band

-. Test Date : March 11, 2015

Towns (MII)	Channel me	ove time(s)	Channel closing transmission time(ms)		
Frequency (MHz)	Measured	Limit	Measured	Limit	
5 600	0.352 6	10	1.101	60	

Note. Channel closing transmission time: 4 * 275.36 us = 1.101 ms

Note: The calibrated conducted DFS detection threshold level is set to -59.5 dBm (-62+1+1.5=-59.5)

Center 5.6 GHz

17.7.5 Non occupancy period

Associate test: During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the in-Service Monitoring

17.7.6 Non-Associated test

Master was off. During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after

17.7.7 Non-Co-Channel Test

The UUT was investigated after radar was detected the channel and mode sure no co-channel operation with radars.