Documentation - MD_Evaluation

Program to evaluate MD output files of bulk simulations Notes:

- · usable for LAMMPS simulations in metal units
- · required files provided by specific LAMMPS scripts

1. Overview

Programm evaluates three different simulation types:

- Evaluation of single run simulations for transport properties (single_run)
- Time decomposition method (TDM) for transport properties (tdm)
- Evaluation of VLE simulations (two phase simulations) (vle)

Single run simulations

Required Folder structure:

- SIM_1 [contains all output files of a EMD simulation of one state point]
- ...

TDM

Required Folder structure:

- STATE_1 [contains all simulations of one state point]
 - o Sim_001
 - o Sim_002
 - o ...
- ...

VLE simulations

Required Folder structure:

- FOLDER_1 [contains all simulations done for one substance]
 - Sim_T1 [VLE simulation at temperature T1]
 - Sim_T2 [VLE simulation at temperature T2]
 - ۰ ..
- ...

2. Input File

Name: 'INPUT.txt' (has to be in same folder as 'Master' file)

General structure:

- first line: '#' + 'keyword'
- second line: value assigned to keyword

Keywords:

Name	Type {standard value}	Modes	Description
mode	string [single_run, tdm, vle]	all	defines the mode of the simulations/evaluation
folder	string	all	path to main folder containing all simulation data (see chapter 1)
ensemble	string [NVT, NVE, NpT]	single_run, tdm	ensemble to evaluate
timesteps_EQU	interger (≥ 0)	all	number of timesteps to ignore at the start of each simulation
DO_single	integer [0,1]	tdm	1 - evaluate single folders, 0 - single folders already evaluated
DO_state	integer [0,1]	tdm	1 - evaluate complete thermodynamic state (main folder)
N_boot	integer (≥ 0)	tdm	number of bootstrapping repetitions
corr_length	integer (≥ 0)	single_run	length (timesteps) of correlation function
span_corr_fun	integer (≥ 0)	single_run	timesteps between single correlation functions
DO_structure	integer [0,1] { <i>0</i> }	all	1 - do structure evaluation, 0 - skip structure evaluation
N_bin	integer (≥ 0) { <i>100</i> }	all	number of bins for rdf calculation
r_cut	float (unit: Å) {10 Å}	all	cut-off radius for rdf calculation
units	string [real, reduced] {real}	all	units of simulation (real: LAMMPS SI units, reduced: reduced by LJ parameters)

Example single:

```
# Mode
mode = single_run

# Folder
folder = C:/path2simulations/sim_1
folder = C:/path2simulations/sim_*

# Ensemble and equilibration
ensemble = NVT
timesteps_EQU = 0

# Settings for acf
corr_length = 100000
span_corr_fun = 20000
```

Example TDM:

```
# Mode
mode = tdm

# Folder
folder = C:/path2simulations/sim_1
folder = C:/path2simulations/sim_*

# Ensemble and equilibration
ensemble = NVT
timesteps_EQU = 0

# TDM Settings
```

DO_single = 1 DO_state = 1 N_boot = 100

Output

Units:

Length: [L] = mMass: [m] = g/molTime: [t] = s

Temperature: [T] = K
Pressure: [p] = MPa
Density: [p] = g/ml
Energy: [E] = eV

Viscosity: [η] = Pa*s

Diffusion Coefficient: [D] = m²/s
 Thermal Conductivity: [λ] = W/(m*K)