ДЗ по дискретной математике 9 Смирнов Тимофей 236 ПМИ

ДЗ9.1 Рассмотрим бесконечные последовательности из 0, 1 и 2, в которых никакая цифра не встречается два раза подряд. Верно ли, что мощность множества таких последовательностей имеет мощность континуум?

Решение: Чтобы доказать, что множество имеет мощность континуум, то необходимо построить биекцию между этим множеством континуумом.

Пусть A - множество бесконечных последовательностей из $0,\,1$ и 2 без повторяющихся символов.

- 1). Построим инъективную функцию $f:\{0,1\}^{\mathbb{N}}\to A$. В ней после каждого символа последовательности нулей и единиц мы допишем двойку, если две последовательости 0 и 1 не были равны, то и послучившиеся последовательности не будут равны. Получившиеся последовательности будут принадлежать множеству А. Получаем, что функция f- инъекция.
- 2). Построим инъективную функцию $f: A \to \{0,1\}^{\mathbb{N}}$. В ней каждую 2 можно заменить на 111, каждый 0 на 10 и каждую единицу на 10. Это будет взаимооднозначным соответствием, в таком случае все строки из A войдут в множество $\{0,1\}^{\mathbb{N}}$, это будет инъекцией.

Мы доказали, что мы можем построить инъекцию из A в $\{0,1\}^{\mathbb{N}}$ и наоборотм. То есть по теореме Бернштейна между этими множествами существует биекция. То есть A имеет мощность континуума. ЧТД.

ДЗ9.2 Рассмотрим множество пар различных действительных чисел, то есть

$$D = \{(x, y) : x \neq y, x, y \in \mathbb{R}\}$$

Является ли множество D континуальным?

Решение: На лекции мы доказывали, что множество действительных чисел равномощно континууму. Так же на лекции мы доказали, что $|\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}| = |\{0,1\}^{\mathbb{N}}|$.

Рассмотрим множество A - подмножество множества D. Пусть $A = \{(x,1) : x \in (\mathbb{R} \setminus 1)\}$. Это множество очевидно равно по мощности множеству действительных чисел (мы просто удалили

один элемент из бесконечного множества). То есть А континуально.

 $A \subset D$, следовательно, так как множество A имеет мощность континуум, то мы имеем инъекцтивную функцию $f: \{0,1\}^{\mathbb{N}} \to D$. Аналогично D является подмножеством $\mathbb{R} \times \mathbb{R}$ (что тоже континуум), то есть мы так же имеем инъекцтивную функцию $g: D \to \{0,1\}^{\mathbb{N}}$.

Мы построили инъекцию в обе стороны, следовательно, по теореме Бернштейна, мы имеем биекцию между множествами D и $\{0,1\}^{\mathbb{N}}$. То есть D имеет мощность континуум.

 $\mathbf{Д}\mathbf{39.3}$ Является ли множество всех тотальных функций $\mathbb{R} \to \mathbb{R}$ континуальным?

Решение: на лекции мы доказали, что множество подмножеств некоторого множетсва по мощности больше этого множества.

Из этого мы знаем, что $|\mathbb{R}| < |\{0,1\}^{\mathbb{R}}|$, так как множество подмножеств действительных чисел можно представить в виде $|\{0,1\}^{\mathbb{R}}|$

 $|\{0,1\}^{\mathbb{R}}|<|\mathbb{R}^{\mathbb{R}}|$, так как тут просто на каждой позиции может стоять не 0 или 1, а любое действительное число.

Так же мы знаем, что $|\{0,1\}^{\mathbb{N}}| = |\mathbb{R}|$, следовательно, получаем неравенство:

$$|\{0,1\}^{\mathbb{N}}| = |\mathbb{R}| < |\{0,1\}^{\mathbb{R}}| < |\mathbb{R}^{\mathbb{R}}|$$

Из этого следует, что $|\{0,1\}^{\mathbb{N}}|<|\mathbb{R}^{\mathbb{R}}|$. То есть тотальных функций из \mathbb{R} в \mathbb{R} больше, чем континуум.

ДЗ9.4 Функция периодическая, если для некоторого числа T>0 (периода) и любого x выполняется f(x+T)=f(x). Счётно ли множество множество периодических функций $f:\mathbb{Q}\to\mathbb{Q}$? Период считайте рациональным.

Решение: Заметим, что для подсчета количества периодических функций с периодом T нам достаточно посчитать количество функций $f:[0,T]\to \mathbb{Q}$, так как их значения будут повторяться с периодом T.

Из лекции мы знаем, что количество действительных чисел на отрезке [0,T] равно континууму. То есть $|[0,T]| = |\mathbb{Q}|$. То есть для каждого T нам нужно посчитать количество функций $f:\mathbb{Q} \to \mathbb{Q}$.

На лекции мы доказали, что $\mathbb{N}^{\mathbb{N}}$ несчетно, но $|\mathbb{N}|=|\mathbb{Q}| \ \Rightarrow \ \mathbb{Q}^{\mathbb{Q}}$ тоже несчетно.

Количество функций $f:\mathbb{Q}\to\mathbb{Q}$ равно $\mathbb{Q}^\mathbb{Q}$ (вообще это количество тотальных функций, но, если мы добавим в \mathbb{Q} еще один элемент, то ничего не изменится, так что это количество всех функций). Следовательно, уже для какого-то одного T мы имеем несчетное (континуальное) множество таких функций, а у нас счетное количество различных T.

Получаем, что таких функций у нас несчетное количетсво.