Count Data

The count data comes from Poisson:

$$Y \sim P(\mu)$$

In this part, we consider two ways to analyze the data, through Poisson and through Binomial.

Discussion of Poisson and Binomial

Poisson Model

Model Assumption:

Y: the number of events in a Poisson process of rate $\exp(x^{\top}\beta)$ observed for a period T, where $\mu = T \exp(x^{\top}\beta) = \exp(x^{\top}\beta + \log T)$.

Explanation:

- 1. The canonical link of Possion is $\mu = \exp(x^{\top}\beta)$;
- 2. The expected mean increases proportional to the T;
- 3. This is a log-linear model with linear predictor $\eta' = x^{\top} \beta + \log T$, where $\log T$, a fixed part, is a *offset* term.

Note: The offset term can also be the amount of population.

Binomial Model derived by Poission Model

 $Y_i \sim P(\mu_i), i=1,2$ are independent. Then,

$$Y_1|Y_1+Y_2=m\sim \mathrm{Bin}(n,\frac{\mu_1}{\mu_1+\mu_2})$$

Since Y are output of Poission model, we can use the log-linear model discussed above, that is, $\mu_1 = \exp(\gamma + x_1^T \beta)$ and $\mu_2 = \exp(\gamma + x_2^T \beta)$. Then,

$$\pi = \exp\Bigl\{(x_2 - x_1)^\mathrm{T}\beta\Bigr\}/[1 + \exp\Bigl\{(x_2 - x_1)^\mathrm{T}\beta\Bigr\}]$$

In this case, we can use logistic model to estimate β , but we cannot estimate γ .

<u>Note</u>: The analysis of binomial model requires observations, otherwise it will lose some information. Therefore, $se_{Poission}(\beta) \leq se_{Binomial}(\beta)$.

Contingency Tables

There are several sampling schemes for obtaining continegency tables ($R \times C$):

1. No constraints on the row and column totals. For the count in the (r,c) cell, $y_{rc} \sim P(\mu_{rc})$. The likelihood is:

$$\prod_{cc} \left\{ rac{\mu^{ ext{sc}}_{tc}}{y_{yc}!} e^{-\mu_{c_c}}
ight\}$$

2. Fix the total number $\sum_{rc}y_{rc}=m$. Then, the data are multinomially distributed. Denoting $\pi_{rc}=\mu_{rc}/\sum_{s.t}\mu_{st}$, the likelihood is:

$$rac{m!}{\prod_{r,c} y_{rc}!} \prod_{r,c} \pi^{y_{rc}}_{rc}, \quad \sum_{r,c} \pi_{rc} = 1$$

3. Fix the row totals $m_r=\sum_c y_{rc}$. Then, the data are independently multinomial distributions for each row. Denoting $\pi_{rc}=\mu_{rc}/\sum_t \mu_{rt}$, the likelihood is:

$$\prod_r \left\{rac{m_r!}{\prod_c y_{rc}!} \prod_c \pi_{rc}^{y_{rc}}
ight\}, \quad \sum_c \pi_{1c} = \cdots = \sum_c \pi_{Rc} = 1$$

Estimation

Noting that count data is discrete, we use GLM to analyze it. Here, we use a link $\mu_{rc} = \exp(\gamma_r + x_{rc}^{\top}\beta)$ and consider sampling scheme 1 (Poisson) and 2 (Multinomial).

Then, some derivations show that:

$$\widehat{\boldsymbol{\beta}}_{Poiss} = \widehat{\boldsymbol{\beta}}_{Mult}, \widehat{\mathrm{sd}}(\widehat{\boldsymbol{\beta}}_{Poiss}) = \widehat{\mathrm{sd}}(\widehat{\boldsymbol{\beta}}_{Mult})$$

<u>Note</u>: Some softwares only depends on log-linear model. With this result, data comes from sampling method 2 can be analyzed with log-linear model.

Derivation

The relation of the likelihood is shown following:

$$egin{aligned} \ell_{ ext{Poiss}}\left(eta, au
ight) &= \sum_{r,c} \left(y_{rc}\log\mu_{rc} - \mu_{rc}
ight) \ &= \sum_{r} \left(m_{r}\gamma_{r} + \sum_{c} y_{rc}x_{rc}^{ op}eta - e^{\gamma_{r}}\sum_{c} e^{x_{rc}^{ op}eta}
ight) \ &\equiv \sum_{r} \left(m_{r}\log au_{r} - au_{r}
ight) + \sum_{r} \left\{\sum_{c} y_{rc}x_{rc}^{ op}eta - m_{r}\log\left(\sum_{c} e^{x_{r}^{ op}eta}
ight)
ight\}
ight\} \ &= \ell_{ ext{Poiss}}\left(au; m
ight) + \ell_{ ext{Mult}}\left(eta; y \mid m
ight) \end{aligned}$$

where $au_r = \sum_c \mu_{rc} = e^{\gamma_r} \sum_c e^{x_{rc}^r}$.

So that

$$\frac{\partial \ell_{\text{Poiss}}\left(\beta,\tau\right)}{\partial \beta} = \frac{\partial \ell_{\text{Multi}}\left(\beta,\tau\right)}{\partial \beta}$$

This implies the estimation of β are equal.

The expected information for β is:

$$\hat{I}_{Poiss}(eta) = \sum_r \hat{ au}_r rac{\partial^2 \log \left(\sum_c e^{x_{rc}^{
m T} \widehat{eta}}
ight)}{\partial eta \partial eta^{
m T}} = \sum_r m_r rac{\partial^2 \log \left(\sum_c e^{x_{rc}^{
m T} \widehat{eta}}
ight)}{\partial eta \partial eta^{
m T}} \ \hat{I}_{Mult}(eta) = \sum_r m_r rac{\partial^2 \log \left(\sum_c e^{x_{rc}^{
m T} \widehat{eta}}
ight)}{\partial eta \partial eta^{
m T}}$$

So that

$$\widehat{\mathrm{sd}}(\widehat{\boldsymbol{\beta}}_{Poiss}) = \widehat{\mathrm{sd}}(\widehat{\boldsymbol{\beta}}_{Mult})$$

<u>Note</u>: In fact, the expected information matrixes for these two sampling scheme are different. It's interesting to find that if τ_r is unknown and need estimation, the estimated expected information matrixes under the two circumstances are the same.

References

• Statstical Models