Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (previously amended) A discharge lamp comprising a ceramic discharge vessel enclosing a discharge space, said discharge vessel including within said discharge space an ionizable material comprising a mixture of metal halides, a first and second discharge electrode feedthrough means, and a first and second current conductor connected to said first and second discharge electrode feedthrough means, respectively;

said discharge vessel having a fill containing a salt mixture comprised of sodium iodide, calcium iodide, thallium iodide and one or more rare earth iodides;

said lamp having a power range of about 150W to about 1000W and exhibiting (a) one or more of a characteristic selected from the group consisting of a CCT (correlated color temperature) of about 3800 to about 4500K, a CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about ± 10 , and (b) a luminous efficacy up to about 85-95 lumens/watt.

- 2. (original) A lamp as claimed in Claim 1 retrofit with ballasts and lighting fixtures designed for high pressure sodium or quartz metal halide lamps.
- 3. (previously amended) A discharge lamp having a power range of about 150W to about 1000W, exhibiting (a) one or more of a characteristic selected from the group consisting of a CCT (correlated color temperature) of about 3800 to about 4500K, a

CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about ±10, and (b) a luminous efficacy up to about 85-95 lumens/watt, and comprising a ceramic discharge vessel enclosing a discharge space, said discharge vessel including within said discharge space an ionizable material comprising a mixture of metal halides, a first and second discharge electrode feedthrough means, and a first and second current conductor connected to said first and second discharge electrode feedthrough means, respectively,

wherein the ceramic discharge vessel comprises: an arc tube comprising a cylindrical barrel having a central axis; a pair of opposed end walls; and a pair of ceramic end plugs extending from respective end walls along said axis; and

wherein the electrode feedthrough means each extends through a respective end plug and each comprises: a lead-in of niobium which is hermetically sealed into the arc tube, a central portion of molybdenum/aluminum cermet, a molybdenum rod portion and an electrode comprising a tungsten rod having a winding of tungsten.

- 4. (original) A lamp as claimed in Claim 3, wherein the arc tube has a molybdenum coil attached to its surface.
- 5. (original) A lamp as claimed in Claim 4, wherein the discharge space contains an ionizable filling of an inert gas, a mixture of metal halides, and mercury.
- 6. (original) A lamp as claimed in Claim 5 wherein, said discharge vessel has a ceramic wall and is closed by a ceramic plug, said electrode feedthrough means including at least one c:\PROFESSIONAL\PhilipsAMDS2003\PHUS010247final2.doc

tungsten electrode which is connected to a niobium electric current conductor by means of a leadthrough element which projects into the ceramic plug with a tight fit, is connected thereto in a gas-tight manner by means of a sealing ceramic and has a part formed from aluminum oxide and molybdenum which forms a cermet at the area of the gas-tight connection.

- 7. (original) A lamp as claimed in Claim 5, wherein, said discharge vessel has a ceramic wall and is closed by a ceramic plug, said electrode feedthrough means including at least one tungsten electrode which is connected to a niobium electric current conductor by means of a leadthrough element which projects into the ceramic plug with a tight fit, is connected thereto in a gas-tight manner by means of a sealing ceramic and has a first part formed from aluminum oxide and molybdenum which forms a cermet at the area of the gas-tight connection and a second part which is a metal part and extends from the cermet in the direction of the electrode.
- 8. (original) A lamp as claimed in Claim 7, wherein the metal part is a molybdenum rod.
- 9. (original) A lamp as claimed in Claim 5, wherein the arc tube has an aspect ratio (IL/ID) in the range of about 3.3 to about 6.2.
- 10. (original) A lamp as claimed in Claims 6 and 7, wherein the electrode has a tip extension in the range of about 0.2 to about 1mm; the cermet contains at least about 35 wt.% Mo with the remainder being Al_2O_3 , and the as sealing ceramic flow completely covers the Nb connector.

11. (original) A lamp as claimed in Claim 10, wherein the arc tube and the electrode feedthrough means have the following characteristics for a given lamp power:

Powe	r IL	ID	IL/ID	Wall	Wall	Rod	Rod
			Aspect	Loading	Thickness	Diameter	Length
W	mm	mm F	Ratio, mm	W/cm^2	mm	mm	mm
150	26-32	5-7	3.3-6.2	20-35	0.8-1.1	0.4-0.6	3-6
200	27-32	6.5-7.5	3.3-6.2	25-30	0.85-1.2	0.4-0.6	4-8
250	28-34	7.5-8.5	3.3-6.2	25-35	0.9-1.3	0.7-1.0	6-10
300	30-36	8-9	3.3-6.2	25-37	0.92-1.4	0.7-1.0	6-10
350	33-40	8.5-10	3.3-6.2	24-40	0.98-1.48	0.7-1.1	6-11
400	36-45	8.5-11	3.3-6.2	22-40	1.0-1.5	0.7-1.1	6-11

- 12. (original) A lamp as claimed in Claim 11, wherein said metal halide mixture comprises the following salts of 6-25 wt% NaI, 5-6 wt% TlI, 34-37 wt% CaI_2 , 11-18 wt% DyI_3 , 11-18 wt% HoI₃, and 11-18 wt% TmI_3 .
- 13. (original) A lamp as claimed in Claim 12, wherein the ionizable filling is a mixture of about 99.99% of Xenon and a trace amount of ⁸⁵Kr radioactive gas.
- 14. (original) A lamp as claimed in Claim 12, wherein the ionizable filling is a mixture of Argon (and/or Krypton), Xenon and a trace amount of 85 Kr radioactive gas.
- 15. (original) A lamp as claimed in Claim 12, wherein the ionizable filling is Xenon (and/or Krypton).

- 16. (previously amended) A lamp as claimed in Claim $\frac{1}{7}$ - 5_7 and 13, having a power range of about 150W to about 1000W and nominal voltage of 100V to 260V, and one or more of the following characteristics: a lumen maintenance of >80%, a color temperature shift <200K from 100 to 10,000 hours, and lifetime of about 10,000 to about 25,000 hours.
- 17. (previously amended) A discharge lamp having a power range of about 150W to about 1000W and comprising a ceramic discharge vessel enclosing a discharge space, said discharge vessel including within said discharge space an ionizable material comprising a metal halide mixture, a first and second discharge electrode feedthrough means, and a first and second current conductor connected to said first and second discharge electrode feedthrough means, respectively, the said lamp exhibiting characteristics defined by a design space of parameters comprising at least one of the following parameters:
- (i) the arc tube length, diameter and wall thickness limits of said discharge lamp correlated to and expressed as functions of lamp power, and/or color temperature, and/or lamp voltage; and
- (ii) the electrode feedthrough structure limits used to conduct electrical currents with minimized thermal stress on the arc tube correlated to and expressed as a function of lamp current.
- 18. (previously amended) A lamp as claimed in Claim 17, wherein the design space parameters also include:
- (i) a general aspect ratio of the inner length (IL) to the inner diameter (ID) of the arc tube body that is higher than that of ceramic metal halide lamps having a power of less than C:\PROFESSIONAL\PhilipsAMDS2003\PHUS010247final2.doc

Appl. No. 09/850,960
Amendment/Response
Reply to FINAL Office action of 9 September 2003

about 150W;

- (ii) the upper and lower limits of electrode rod diameter correlated to and expressed as a function of lamp current; and
- (iii) a composition range of the salts correlated to color temperature and lamp voltage.
- 19. (previously amended) A Lamp as claimed in Claim 18 wherein the design space parameters include the following characteristics for the design of an arc tube and electrode feedthrough means for a given lamp power:

Powe	r IL	ID	IL/ID	Wall	Wall	Rod	Rod
			Aspect	Loading	Thickness	Diameter	Length
M	mm	mm I	Ratio, mm	W/cm ²	mm	mm	mm
150	26-32	5-7	3.3-6.2	20-35	0.8-1.1	0.4-0.6	3-6
200	27-32	6.5-7.5	3.3-6.2	25-30	0.85-1.2	0.4-0.6	4-8
250	28-34	7.5-8.5	3.3-6.2	25-35	0.9-1.3	0.7-1.0	6-10
300	30-36	8-9	3.3-6.2	25-37	0.92-1.4	0.7-1.0	6-10
350	33-40	8.5-10	3.3-6.2	24-40	0.98-1.48	0.7-1.1	6-11
400	36-45	8.5-11	3.3-6.2	22-40	1.0-1.5	0.7-1.1	6-11

20. (withdrawn) A method for the design and construction of a discharge lamp having a power range of about 150W to about 1000W and comprising a ceramic discharge vessel enclosing a discharge space, said discharge vessel including within said discharge space an ionizable material comprising a metal halide mixture, a first and second discharge electrode feedthrough means, and a first and second current conductor connected to said first and second discharge electrode feedthrough means, respectively;

which method comprises the steps of determining the dimensions of the arc tube of the discharge vessel and the electrode feedthrough means structure using a design space of Claim 17. C:\PROFESSIONAL\PhilipsAMDS2003\PHUSO10247final2.doc

21. (withdrawn) A method for the design and construction of a discharge lamp having a power range of about 150W to about 1000W and comprising a ceramic discharge vessel enclosing a discharge space, said discharge vessel including within said discharge space an ionizable material comprising a metal halide mixture, a first and second discharge electrode feedthrough means, and a first and second current conductor connected to said first and second discharge electrode feedthrough means, respectively;

Which method comprises the steps of determining the dimensions of the arc tube of the discharge vessel and the electrode feedthrough means structure using a design space of Claim 18.

22. (withdrawn) A method for the design and construction of a discharge lamp having a power range of about 150W to about 1000W and comprising a ceramic discharge vessel enclosing a discharge space, said discharge vessel including within said discharge space an ionizable material comprising a metal halide mixture, a first and second discharge electrode feedthrough means, and a first and second current conductor connected to said first and second discharge electrode feedthrough means, respectively;

Which method comprises the steps of determining the dimensions of the arc tube of the discharge vessel and the electrode feedthrough means structure using a design space of Claim 19.

23. (withdrawn) A method as claimed in Claim 22, including the further design parameter that the metal halide comprises the following salts of 6-25 wt% NaI, 5-6 wt% TlI, 34-37 wt% CaI_2 , 11-18 wt% DyI_3 , 11-18 wt% HoI_3 , and 11-18 wt% TmI_3 . C:\PROFESSIONAL\PhilipsAMDS2003\PHUS010247final2.doc

- 24. (withdrawn) A method as claimed in Claim 23, including the further design parameter that the ionizable filling is a mixture of about 99.99% of Xenon and a trace amount of 85 Kr radioactive gas.
- 25. (withdrawn) A method as claimed in Claim 24, including the further design parameter that the discharge vessel has a ceramic wall and is closed by a ceramic plug, said electrode feedthrough means including at least one tungsten electrode which is connected to a niobium electric current conductor by means of a leadthrough element which projects into the ceramic plug with a tight fit, is connected thereto in a gas-tight manner by means of a sealing ceramic and has a part formed from aluminum oxide and molybdenum which forms a cermet at the area of the gas-tight connection.
- 26. (withdrawn) A method as claimed in Claim 24, including the further design parameter that the discharge vessel has a ceramic wall and is closed by a ceramic plug, said electrode feedthrough means including at least one tungsten electrode which is connected to a niobium electric current conductor by means of a leadthrough element which projects into the ceramic plug with a tight fit, is connected thereto in a gas-tight manner by means of a sealing ceramic and has a first part formed from aluminum oxide and molybdenum which forms a cermet at the area of the gas-tight connection and a second part which is a metal part and extends from the cermet in the direction of the electrode.
- 27. (withdrawn) A method as claimed in Claim 26, wherein the c:\PROFESSIONAL\PhilipsAMDS2003\PHUS010247final2.doc

metal part is a molybdenum rod.

- 28. (withdrawn) A method as claimed in Claims 25 and 26, wherein the electrode has a tip extension in the range of about 0.2 to about 1mm; the cermet contains at least about 35 wt. % Mo with the remainder being Al_2O_3 , and the as sealing ceramic flow completely covers the Nb connector.
- 29. (withdrawn) A method as claimed in Claims 20 wherein the lamp produced has a power range of about 150W to about 1000W and nominal voltage of 100V to 260V, and one or more of the following characteristics: a lumen maintenance of >80%, a color temperature shift <200K from 100 to 8,000 hours, and lifetime of about 10,000 to about 25,000 hours.
- 31. (previously added) A discharge lamp comprising a ceramic discharge vessel enclosing a discharge space, said discharge vessel including within said discharge space an ionizable material comprising a mixture of metal halides, a first and second discharge electrode feedthrough means, and a first and second current conductor connected to said first and second discharge electrode feedthrough means, respectively;

said lamp having a power range of about 150W to about 1000W and exhibiting the characteristics of a CCT (correlated color temperature) of about 3800 to about 4500K, a CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about ± 10 , and a luminous efficacy up to about 85-95 lumens/watt.

32. (previously added) A discharge lamp comprising a ceramic discharge vessel enclosing a discharge space, said discharge c:\PROFESSIONAL\PhilipsAMDS2003\PHUS010247final2.doc

vessel including within said discharge space an ionizable material comprising a mixture of metal halides, a first and second discharge electrode feedthrough means, and a first and second current conductor connected to said first and second discharge electrode feedthrough means, respectively;

said lamp having a power range of about 150W to about 1000W and exhibiting the characteristics of a lumen maintenance >80%, a color temperature shift <200K at 10,000 hours, a lifetime of about 20,000 hours, and a luminous efficacy >90 lumens/watt.

33. (previously added) A discharge lamp comprising a ceramic discharge vessel enclosing a discharge space, said discharge vessel including within said discharge space an ionizable material comprising a mixture of metal halides, a first and second discharge electrode feedthrough means, and a first and second current conductor connected to said first and second discharge electrode feedthrough means, respectively;

said lamp exhibiting the characteristics of a lumen maintenance >80%, a color temperature shift <200K from 100 to 8000 hours, and a lifetime of about 10,000 to about 25,000 hours regardless of the rated power.

34. (previously added) A discharge lamp having a power range of about 150W to about 1000W, exhibiting (a) one or more of a characteristic selected from the group consisting of a CCT (correlated color temperature) of about 3800 to about 4500K, a CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about +10, and (b) a luminous efficacy up to about 85-95 lumens/watt, and comprising a ceramic discharge vessel enclosing a discharge C:\PROFESSIONAL\PhilipsAMDS2003\PHUSO10247final2.doc

Page 12 of 17

space, said discharge vessel including within said discharge space an ionizable material comprising a mixture of metal halides, a first and second discharge electrode feedthrough means, and a first and second current conductor connected to said first and second discharge electrode feedthrough means, respectively,

wherein the arc tube has an aspect ratio (IL/ID) in the range of about 3.3 to about 6.2.

- 35. (previously added) A discharge lamp having a power range above 150W and exhibiting (a) one or more of a characteristic selected from the group consisting of a CCT (correlated color temperature) of about 3800 to about 4500K, a CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about ±10, and (b) a luminous efficacy up to about 85-95 lumens/watt, and comprising a ceramic discharge vessel enclosing a discharge space, said discharge vessel including within said discharge space an ionizable material comprising a mixture of metal halides, a first and second discharge electrode feedthrough means, and a first and second current conductor connected to said first and second discharge electrode feedthrough means, respectively, wherein the aspect ratio (IL/ID) is in the range of about 3.3 to about 6.2mm.
- 36. (previously added) A lamp as claimed in Claim 1, having a power range of about 150W to about 1000W and nominal voltage of 100V to 260V, and one or more of the following characteristics: a lumen maintenance of >80%, a color temperature shift <200K from 100 to 10,000 hours, and lifetime of about 10,000 to about 25,000 hours.