

Nom:	
Cognoms :	

Memòria cau (5 punts)

1. El nostre computador està format per la CPU, una memòria cau i la memòria principal. Assumiu que, en la nostra arquitectura, el miss penalty és de 70 ns. Per tal de millorar el rendiment del nostre computador, provem les següents memòries cau:

	Mida L1	Miss rate L1	L1 hit time
P1	2 KiB	8.0 %	0.66 ns
P2	4 KiB	4.0 %	0.90 ns

- a) Si l' "L1 hit time" determina el temps de cicle per a les memòries P1 i P2, quines són les seves respectives freqüències de rellotge? (0.25 punts)
- b) Quin és el temps mig d'accés en ambdós sistemes ? (0.5 punts)
- c) Quina memòria cau posaríeu per millorar el rendiment? Argumenteu breument. (0.25 punts)

a)
$$P1 \Rightarrow f1 = 1/0.66 \text{ ns o } 1.515 \text{ GHz}$$

 $P2 \Rightarrow f2 = 1/0.9 \text{ ns o } 1.111 \text{ GHz}$

b)
$$T = h1Tac + (1-h1)MissP =>$$

 $T1 = 0.92*0.66 \text{ ns} + 0.08*70 \text{ ns} = 6.25 \text{ ns}$
 $T2 = 0.96*0.90 \text{ ns} + 0.04*70 \text{ ns} = 3.66 \text{ ns}$

c) Clarament triaria la P2. Té més capacitat i a més, tot i tenir un temps d'accés més lent, el temps mig és més baix que la P1

Nom:	
Cognoms:	

2. Considerem un computador format per una CPU, una memòria cau i una memòria principal. La mida de les paraules és de 64 bits i la memòria principal és adreçable byte a byte. La caché s'organitza mitjançant mapejat directe. El bus d'adreces és de 64 bits i s'organitza de la següent manera:

TAG	Index	Offset
63-10	9-5	4-0

- a) Quina és la mida dels blocs de la caché ? (0.5 punts)
- b) Quantes línies té la caché ? (0.25 punts)
- c) Quin és el ratio entre els bits dedicats a emmagatzemar dades i el nombre total d'informació que ha d'emmagatzemar la caché si considerem que, a més, tenim 1 bit d'status ? (0.5 punts)
 - a) Sé que offset inclou W i B. Sé que les paraules són de 64 bits (8 B) i que cada direccionalment a MP em retorna 1 B, per tant, per aconseguir la paraula sencera necessitem 8 direccions => B = log₂ 8 = 3 => W = 2 => els blocs contenen 2² paraules
 - b) Tinc caché mapejat directe i 5 bits d'index (i), això vol dir que tinc 2⁵ línies (32 línies)
 - c) Cada línia de caché guarda 4 paraules de 64 bits, per tant, cada línia guarda 256 bits. Sabem que la caché té 32 línies, per tant podem emmagatzemar 32 * 256 bits (= 8192 bits) de dades ÚTILS.

Tot i així la caché també necessita guardar el TAG i un bit d'status per cada línia. Això vol dir 54 bits de TAG + 1 bit d'status per línia. En total, 32 * 55 bits (= 1760 bits) de dades NO útils.

El nombre total d'informació a emmagatzemar és 8192 + 1760 bits = 9952 bits, per tant, el ratio és igual a 8192 / 9952 bits (si heu fet el càlcul a l'inversa també ho consideraré correcte)

	••••	
Nom:		
Cognoms :		

3. Descriu breument els algoritmes de reemplaçament que es poden emprar en una memòria caché organitzada amb mapejat directe? Ordena de més eficient a menys els algoritmes de reemplaçament. (0.25 punts)

No cal algoritme de reemplaçament en MD

Nom:		
Cognoms :		

4. La memòria cau és important per proporcionar una jerarquia de memòria d'alt rendiment als processadors. A continuació, es mostra una llista de referències d'adreces de memòria de 64 bits, donades com a adreces de paraules (per ordre d'esquerra a dreta):

0x03, 0xb4, 0x2b, 0x02, 0xbf, 0x58, 0xbe, 0x0e, 0xb5,0x2c, 0xba, 0xfd

d) Per a cadascuna d'aquestes referències, identifiqueu l'adreça de paraula binària, l'etiqueta i l'índex amb una memòria cau mapejada directament amb 16 blocs d'una paraula. Indiqueu també si cada referència és un hit o un miss, assumint que la memòria cau és inicialment buida.

Ompliu la següent taula: (0.75 punt) (TAG 28 bits, només mostrem 4. Index 4 bits)

Word Address	Binary Address	TAG	Index	Offset	Hit/Miss
0x03		0	3	_	M
0xb4		b	4	_	M
0x2b		2	ь	_	M
0x02		0	2	_	M
0xbf		b	f	_	M
0x58		5	8	_	M
0xbe		b	e	_	M
0x0e		0	e	_	M
0xb5		b	5	_	M
0x2c		2	c	_	M
0xba		b	a	_	M
0xfd		f	d	_	M

e) Per a cadascuna d'aquestes referències, identifiqueu l'adreça de paraula binària, l'etiqueta, l'índex i l'offset donada una memòria cau mapejada directament amb blocs de dues paraules i una mida total de vuit blocs. Indiqueu també si cada referència és un hit o un miss, assumint que la memòria cau és inicialment buida.

Ompliu la següent taula: (0.75 punt) (TAG 28 bits, només mostrem 4. Index 3 bits, offset 1 bit)

Word Address	Binary Address	TAG	Index	Offset	Hit/Miss
0x03		0	1	1	M
0xb4		b	2	0	M
0x2b		2	5	1	M
0x02		0	1	0	Н
0xbf		b	7	1	M
0x58		5	4	0	M
0xbe		b	6	0	Н
0x0e		0	7	0	M
0xb5		b	2	1	Н
0x2c		2	6	0	M
0xba		ь	5	0	M
0xfd		f	6	1	M

f) Optimitzeu un disseny de memòria cau per a les referències indicades. Hi ha tres dissenys de memòria cau mapejada directament, tots amb un total de vuit paraules de dades:

Nom:	
Cognoms :	

- 1) C1 té blocs d'una paraula,
- 2) C2 compta amb blocs de dues paraules, i
- 3) C3 té blocs de 4 paraules.

CALCULEU HIT/MISS RATES PER A CADA CACHÉ EN FUNCIÓ DE LES REFERÈNCIES DONADES.

Ompliu la següent taula: (1 punt)

(Com en l'anterior cas, el TAG es manté igual i només canviem el nombre de bits de l'index segons el nombre de bits que tindrem a l'offset)

Word	Binary	TAG	Ca	aché 1	Ca	iché 2	Cac	ehé 3
Address	Address	IAG	Index	Hit/Miss	Index	Hit/Miss	Index	Hit/Miss
0x03		0x00	3	M	1	M	0	M
0xb4		0x16	4	M	2	M	1	M
0x2b		0x05	3	M	1	M	0	M
0x02		0x00	2	M	1	M	0	M
0xbf		0x17	7	M	3	M	1	M
0x58		0x0b	0	M	0	M	0	M
0xbe		0x17	6	M	3	Н	1	Н
0x0e		0x01	6	M	3	M	1	M
0xb5		0x16	5	M	2	Н	1	M
0x2c		0x05	4	M	2	M	1	M
0xba		0x17	2	M	1	M	0	M
0xfd		0x1f	5	M	2	M	1	M

- 1) Quin és el miss rate de C1?:
- 2) Quin és el miss rate de C2?:
- 3) Quin és el miss rate de C3?:

Cache 1 miss rate = 100%

Cache 2 miss rate = 10/12 = 83%

Cache 3 miss rate = 11/12 = 92%

Nom:	
Cognoms :	

Memòria principal (2.5 punts)

5. A l'etiqueta d'un mòdul de memòria RAM que hem d'instal·lar a un ordinador trobem la següent informació: DDR4-2400 (16-18-18-36). (1.25 punts)

Freqüència real del BUS?	1200 MHz
Ample banda teòric de cada mòdul de M.P.?	19200 MB/s
Quants cicles de bus es necessiten per fer la	Trcd + CL + 1 clock = 35 clocks
transferència de 8 Bytes?	
Quants cicles de bus es necessiten per fer la	35 clocks (8 B per flanc)
transferència de 16 Bytes contigus?	
Amb quina altra nomenclatura podríem	PC4-19200
trobar les dades a l'etiqueta de la memòria?	

6. A la següent figura es pot veure la lectura de dades d'una memòria tipus DDR (DQ és el bus de dades). (1.25 punts)

- b) De les dades que veiem a la imatge, sembla que el temps de pre-càrrega no és visible. Per què a la imatge no ens apareix aquest temps ?
 - b) Quan llegim una cel·la DRAM ens emportem la càrrega. Com volem que la memòria recordi els valors guardats independentment si hem llegit o no, hem de tornar a posar el valor que hi havia en aquella cel·la. Això es fa mitjançant els amplificadors de càrrega.
 - c) No es pot eliminar, és inherent a la DRAM. El que podem fer és minimitzar el seu efecte mitjantçant l'entrellaçat de memòria, o dit d'una altra forma, treballant amb bancs.

Nom:	
Cognoms:	

Qüestions (2.5 punts)

NOTA: cada pregunta val 0.25 punts, si és errònia resta 0.1 punts

- 1. Si una cache detecta mitjançant el "bus-snooping" que una dada que té en estat "S" és llegida per un altre dispositiu a la memòria principal, En quin estat acabarà a aquesta caché?
 - a. M.
 - b. E.
 - c. S.
 - d. I.
- 2. Com s'aconsegueix augmentar l'ample de banda a les memòries DDR3 respecte a les DDR2?
 - a. Augmentant l'amplada del bus d'adreces intern amb més registres d'E/S el doble de ràpid.
 - b. Augmentant l'amplada del bus de dades intern amb més registres d'E/S el doble de ràpids.
 - c. Augmentant la freqüència del bus de memòria.
 - d. Fent transferències a més flancs del senyal de rellotge.
- 3. Quan queden definits les pistes i sectors en un disc dur?
 - a. Quan es formata a alt nivell.
 - b. Quan es formata a baix nivell.
 - c. A instal·lar el sistema operatiu.
 - d. Quan es defineix la FAT.
- 4. Si volem llegir una dada de memòria a una arquitectura IA-32 (on la seva entrada està a la TLB, que es fa servir paginació i que la dada NO està a caché) Quants accessos a memòria es necessiten per obtenir la dada? (teniu en compte els accessos necessaris per llegir les diferents taules)
 - a. 1.
 - b. 2.
 - c. 3.
 - d. cap.
- 5. Com gestiona l'arquitectura IA-32 la traducció d'adreces lògiques a físiques?
 - a. Paginació.
 - b. Segmentació.
 - c. Paginació i opcionalment Segmentació.
 - d. Segmentació i opcionalment Paginació.
- 6. Quan es genera una interrupció vectoritzada, On es troben les adreces de les diferents rutines d'atenció a les interrupcions (IHR)?:
 - a. Les genera el processador a partir del senyal d'interrupció.
 - b. Són el propi vector d'interrupció.
 - c. Estan a una taula a memòria.
 - d. La dóna el interfície E/S que demana la interrupció.
- 7. Com gestionen els sistemes d'interrupcions que funcionen per sondeig (polling) les prioritats?
 - a. Mitjançant hardware específic
 - b. Mitjançant software
 - c. La interficie d'entrada sortida té un registre per gestionar la prioritat.
 - d. Mitjançant un controlador d'interrupcions.

Nom:	
Cognoms :	

- 8. Quin avantatja té fer servir transferències DMA dos cicles en comptes d'un cicle?:
 - a. Permeten fer transferències de blocs de dades entre dispositius diferents.
 - b. Permeten fer transferències de blocs de dades al mateix dispositiu.
 - c. Velocitat.
 - d. Seguretat.
- 9. Com es fa als busos asíncrons per sincronitzar les transferències entre els dispositius?:
 - a. Mitjançant un senyal de rellotge comú als dispositius que es comuniquen.
 - b. Mitjançant senyals de control i protocols de validació-reconeixement.
 - c. Codificant el senyal de rellotge a la mateixa línia de dades.
 - d. No cal, el fet de ser asíncron ja significa que no s'han de sincronitzar els dispositius per fer les transferències.
- 10. Quin dels següents dispositius es connecta al Southbridge?
 - a. Disc Durs SATA
 - b. Memòria DRAM
 - c. Bus AGP
 - d. Bus PCI Express