1) Exercícios análise de complexidade de algoritmos:

- a) Mostre que a função $5n^2 + n$ é $O(n^2)$. Para tal, mostre que existem duas constantes positivas c e m tais que $g(n) \le cf(n)$, para todo $n \ge m$.
- b) Mostre que a função $2n^4 + 2n^2$ é $\Omega(n^4)$. Para tal, mostre que se existirem duas constantes c e m tais que $g(n) \ge cf(n)$, para todo $n \ge m$.
- c) É verdade que $2^{n+1} = O(2^n)$? É verdade que $2^{2n} = O(2^n)$
- d) Ordene as funções a seguir por ordem de crescimento:

$$n*2^n$$
 (log n)! (n+1)! 1 2^{2n} 4n 2n log n

- e) A pesquisa binária é um algoritmo que busca um elemento em uma sequência ordenada, dividindo ao meio o tamanho do vetor, eliminando cada vez metade da sequência. Faça um algoritmo para pesquisa binária e analise sua complexidade.
- 2) Faça um resumo sobre análise de complexidade.