6月13日作业考试化解析版

一、单选题								
1. 若 $zi + z = 1 + 3i$,则 $zz = ($)								
	A. 2	B. 1	C. $\sqrt{5}$	D. 5				
2.	2. 数据 2, 3, 5, 6, 7, 7, 8, 10 的上四分位数为 ()							
	A. 7.5	B. 8	C. 7	D. 4				
3.	3. 已知向量 $\vec{a} = (1,2)$, $ \vec{b} = 3$, $ \vec{a} - 2\vec{b} = \sqrt{17}$,则向量 \vec{a} 在向量 \vec{b} 上的投影向量的模长为()							
	A. 6	B. 3	C. 2	D. $\frac{6\sqrt{5}}{5}$				
4.	在 $\triangle ABC$ 中, \overline{AB} 」	$ \overrightarrow{AC} $, $ \overrightarrow{AB} = \overrightarrow{AC} = \sqrt{ \overrightarrow{AC} }$	$\sqrt{5}$, $M \in BC$ 的中点,	O是线段 AM 的中点,				
则 $\overrightarrow{OA} \cdot (\overrightarrow{OB} + \overrightarrow{OC})$ 的值为 ()								
	A. 0	B. $-\frac{\sqrt{5}}{4}$	C. $-\frac{5}{4}$	D. $-\frac{5}{8}$				
5. 已知一个直四棱柱的高为 4, 其底面 ABCD 水平放置的直观图 (斜二测画法) 是边长为 2								
的正方形,则这个直四棱柱的表面积为()								
	A. 40	B. $32+16\sqrt{2}$	C. $64+16\sqrt{2}$	D. $64 + 16\sqrt{3}$				
6. 从甲队 60 人、乙队 40 人中,按照分层抽样的方法从两队共抽取 10 人,进行一轮答题.相								
关统计情况如下: 甲队答对题目的平均数为 1, 方差为 1; 乙队答对题目的平均数为 1.5, 方								
差为 0.4,则这 10 人答对题目的方差为 ()								
	A. 0.8	B. 0.675	C. 0.74	D. 0.82				
7. 在 $\triangle ABC$ 中,内角 A 、 B 、 C 的对边长分别为 a 、 b 、 c ,已知 $\frac{3\cos A}{\cos C} = \frac{a}{c}$,且 $a^2 - c^2 = 2b$,								
则 $b = ($)								
	A. 4	B. 3	C. 2	D. 1				
二、多选题								

8. 如图,正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 1, E, F, G分别为BC, CC_1 , BB_1 的中点,则下

列说法正确的是()

- A. 直线 D_1D 与直线AF垂直
- B. 直线 A_1G 与平面 AEF 平行
- C. 平面 AEF 截正方体所得的截面面积为 $\frac{9}{8}$
- D. 点 C 与点 G 到平面 AEF 的距离相等
- 9. 某灯具配件厂生产了一种塑胶配件,该厂质检人员某日随机抽取了 100 个该配件的质量指标值(单位:分)作为一个样本,得到如下所示的频率分布直方图,则(同一组中的数据用该组区间的中点值作代表)()

- A. m = 0.030
- B. 样本质量指标值的平均数为75
- C. 样本质量指标值的众数小于其平均数
- D. 样本质量指标值的第75百分位数为85

三、填空题

- 10. 已知向量 $\overrightarrow{BC} = (3,1), \overrightarrow{AC} = (2,3), \overrightarrow{AD} = (m,-3)$,若 B, C, D 三点共线,则 m =_____.
- 11. 设一组样本数据 x_1, x_2, \cdots, x_{10} 的平均值是 1,且 $x_1^2, x_2^2, \cdots, x_{10}^2$ 的平均值是 3,则数据

 x_1, x_2, \dots, x_{10} 的方差是_____.

四、解答题

12. 如图,在斜三棱柱 $ABC-A_1B_1C_1$ 中, $AB\perp BC, M$ 为 AC 的中点, $MB_1\perp AB$.

(1)证明: $MC_1 \perp AB$.

(2)若 $AB=BC=2,BB_1=4,MB_1=\sqrt{14}$,求直线 B_1C 与平面 MB_1C_1 所成角的正弦值.

1. D

【分析】根据复数的四则运算得到z,再计算 $z\overline{z}$ 即可.

【详解】因为
$$zi+z=1+3i$$
,所以 $z=\frac{1+3i}{1+i}=\frac{(1+3i)(1-i)}{(1+i)(1-i)}=2+i$,

所以 $\overline{z} = 2 - i$,所以 $z\overline{z} = 5$.

故选: D.

2. A

【分析】根据题意,结合百位数的定义和计算方法,即可求解.

【详解】由题意,上四分位数是75%分位数,又由8×75%=6,

所以75%分位数为 $\frac{7+8}{2}$ =7.5.

故选: A.

3. C

【分析】由条件结合向量的数量积的性质可求 $\vec{a}\cdot\vec{b}$,再根据投影向量,向量的模的定义求解即可.

【详解】因为 $\vec{a} = (1,2)$, 所以 $|\vec{a}| = \sqrt{5}$,

因为
$$\left|\vec{a}-2\vec{b}\right|=\sqrt{17}$$
,所以 $\left(\vec{a}-2\vec{b}\right)^2=17$,

所以
$$\vec{a} \cdot \vec{a} - 4\vec{a} \cdot \vec{b} + 4\vec{b} \cdot \vec{b} = 17$$
, 又 $|\vec{b}| = 3$,

所以 $\vec{a} \cdot \vec{b} = 6$,

所以向量 \vec{a} 在向量 \vec{b} 上的投影向量的模的值为 $\frac{|\vec{a}\cdot\vec{b}|}{|\vec{b}|} = \frac{6}{3} = 2$,

故选: C.

4. C

【分析】建系求出各点的坐标, 进而应用数量积的坐标运算即可.

【详解】如图,以A为原点,AB,AC所在直线分别为x轴,Y轴建立直角坐标系,

则
$$A(0,0)$$
, $B(\sqrt{5},0)$, $C(0,\sqrt{5})$,

因为M是BC的中点,所以 $M\left(\frac{\sqrt{5}}{2},\frac{\sqrt{5}}{2}\right)$,

因为O是线段AM的中点,所以 $O\left(\frac{\sqrt{5}}{4}, \frac{\sqrt{5}}{4}\right)$,

所以
$$\overrightarrow{OB} = \left(\frac{3\sqrt{5}}{4}, -\frac{\sqrt{5}}{4}\right), \quad \overrightarrow{OC} = \left(-\frac{\sqrt{5}}{4}, \frac{3\sqrt{5}}{4}\right), \quad \overrightarrow{OA} = \left(-\frac{\sqrt{5}}{4}, -\frac{\sqrt{5}}{4}\right),$$

所以
$$\overrightarrow{OB} + \overrightarrow{OC} = \left(\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2}\right)$$
,

所以
$$\overrightarrow{OA} \cdot \left(\overrightarrow{OB} + \overrightarrow{OC} \right) = -\frac{\sqrt{5}}{4} \times \frac{\sqrt{5}}{2} + \left(-\frac{\sqrt{5}}{4} \right) \times \frac{\sqrt{5}}{2} = -\frac{5}{4}$$
.

故选: C.

【点睛】关键点点睛:本题解决的关键是建立直角坐标系,将问题转化为向量的坐标运算,从而得解.

5. C

【分析】分别求出侧面积和底面积,即可得到表面积.

【详解】由于直观图是正方形,所以 ABCD 是两邻边分别为 2 与 6,高为 $4\sqrt{2}$ 的平行四边形, 其周长是 2+6+2+6=16,面积是 $2\times 4\sqrt{2}=8\sqrt{2}$,

所以直四棱柱的表面积是 $16 \times 4 + 8\sqrt{2} \times 2 = 64 + 16\sqrt{2}$.

故选: C

6. D

【分析】根据分层抽样的均值与方差公式计算即可.

【详解】根据题意,按照分层抽样的方法从甲队中抽取 $10 \times \frac{60}{100} = 6$ 人,

从乙队中抽取 $10 \times \frac{40}{100} = 4$ 人,

这10人答对题目的平均数为 $\frac{1}{10}$ (6×1+4×1.5)=1.2,

所以这10人答对题目的方差为 $\frac{1}{10}$ $\left[6\left(1+\left(1-1.2\right)^2\right)+4\left(0.4+\left(1.5-1.2\right)^2\right)\right]=0.82$.

故选: D.

7. A

【分析】根据正弦定理及余弦定理可求解.

【详解】 $\frac{3\cos A}{\cos C} = \frac{a}{c}$,即为 $3c\cos A = a\cos C$,

即有
$$3c \cdot \frac{b^2 + c^2 - a^2}{2bc} = a \cdot \frac{a^2 + b^2 - c^2}{2ab}$$
,

即有
$$a^2 - c^2 = \frac{1}{2}b^2$$
,

又
$$a^2 - c^2 = 2b$$
,则 $2b = \frac{1}{2}b^2$,

解得 b=4.

故选: A.

8. BC

【分析】A 选项根据正方体的性质判断;B 选项根据面面平行的判定定理和性质定理判断;C 选项根据基本事实得到平面 AEF 截正方体的截面为 $AEFD_1$,然后求面积;D 选项根据点 C 和点 G 与平面 AEF 的位置判断.

【详解】

A 选项: $ABCD-A_1B_1C_1D_1$ 为正方体,所以 DD_1 // CC_1 ,直线AF 与直线 CC_1 不垂直,所以直线 AF 与直线 DD_1 不垂直,故 A 错;

B 选项: 取 B_iC_i 中点 H ,连接 A_iH , GH , 因为 H , E , G 分别为 B_iC_i , BC , BB_i 中点, 所以 GH // EF , A_iH // AE ,又 GH , A_iH ⊄ 平面 AEF , AE , EF ⊂ 平面 AEF , 所以 GH , A_iH // 平面 AEF ,

因为GH I AH = H, $GH, AH \subset$ 平面AGH, 所以平面AGH // 平面AEF,

因为AG \subset 平面AGH, 所以AG // 平面AEF, 故 B 正确;

C 选项: 连接 AD_1 , D_1F , 因为 E,F 为 BC,CC_1 的中点, 所以 $EF//AD_1$, 所以平面 AEF 截正

方体的截面为
$$AEFD_1$$
,
$$S_{AEFD_1} = \frac{\left(\sqrt{2} + \frac{\sqrt{2}}{2}\right) \times \frac{3\sqrt{2}}{4}}{2} = \frac{9}{8}$$

故 C 正确;

D选项: 连接CG 交EF 于点M, 延长FE 交 B_iB 的延长线于点Q,

因为E,F为 BC,CC_1 的中点,所以BQ=FC,GQ=2FC,又 $VFMC \sim VQMG$,所以 $\frac{MC}{GM}=\frac{1}{2}$,即M为CG的三等分点,M不是CG的中点,所以点C和点G到平面AEF的距离不相等,故 D 错.

故选: BC.

9. ACD

【分析】运用频率分布直方图中所有频率之和为1及平均数、众数、百分位数公式计算即可.

【详解】对于 A 项,由题意知(0.010+0.015+m+0.035+0.010)×10=1,解得m=0.030,故 A 项正确;

对于 B 项,样本质量指标值的平均数为 $55 \times 0.1 + 65 \times 0.15 + 75 \times 0.35 + 85 \times 0.3 + 95 \times 0.1 = 76.5$,故 B 项错误;

对于 C 项, 样本质量指标值的众数是 $\frac{70+80}{2}$ = 75 < 76.5, 故 C 项正确;

对于 D 项, 前 3 组的频率之和为 $(0.010+0.015+0.035)\times10=0.60$, 前 4 组的频率之和为 $0.60+0.030\times10=0.90$,

故第 75 百分位数位于第 4 组,设其为t,

则 $(t-80)\times0.030+0.60=0.75$,解得t=85,

即第75百分位数为85,故D项正确.

故选: ACD 项.

10. -16

【分析】求出 \overrightarrow{CD} , 再利用共线向量的坐标表示求出m.

【详解】依题意, $\overrightarrow{CD} = \overrightarrow{AD} - \overrightarrow{AC} = (m-2,-6)$, 由 B, C, D 三点共线, 得 \overrightarrow{BC} / $|\overrightarrow{CD}|$,

则m-2=-18, 所以m=-16.

故答案为: -16

11. 2

【分析】根据平均数以及方差的定义,代入公式计算即可得结果.

【详解】由题意得 $x_1 + x_2 + \dots + x_{10} = 10, x_1^2 + x_2^2 + \dots + x_{10}^2 = 30$,

所以数据
$$x_1, x_2, \dots, x_{10}$$
 的方差 $s^2 = \frac{(x_1 - 1)^2 + (x_2 - 1)^2 + \dots + (x_{10} - 1)^2}{10}$

$$=\frac{\left(x_1^2+x_2^2+\cdots+x_{10}^2\right)-2\left(x_1+x_2+\cdots+x_{10}\right)+10}{10}=\frac{30-20+10}{10}=2.$$

故答案为: 2.

12. (1)证明见解析

 $(2)\frac{1}{4}$

- 【分析】(1) 取 AB 的中点 N , 连接 NB_1 , NM , 将 $MC_1 \perp AB$ 转换为线面 $AB \perp$ 平面 MNB_1C_1 , 通过线面垂直的判断定理证明即可;
- (2) 先通过线面证明 $MB_1 \perp$ 平面 ABC,并求出 $B_1C=4$, BN=1,直线 B_1C 与平面 MB_1C_1 所成角的正弦值为 $\frac{BN}{B.C}$.
- 【详解】(1) 取 AB 的中点 N, 连接 NB_1 , NM, 如图所示.

因为M为AC的中点,所以NM //BC.

又 $AB \perp BC$, 所以 $AB \perp MN$,

因为 $B_1C_1//BC$, 所以 $B_1C_1//MN$,

所以 M,N,B_1,C_1 四点共面,

因为 $AB \perp MN$, $MB_1 \perp AB$, $MB_1 \cap MN = M$, 且都在面 MNB_1C_1 ,

所以 $AB \perp$ 平面 MNB_1C_1 , 又因为 $MC_1 \subset$ 平面 MNB_1C_1 ,

所以 $MC_1 \perp AB$.

(2) 因为 $AB \perp$ 平面 MNB_1C_1 , $NB_1 \subset$ 面 MNB_1C_1 , 所以 $AB \perp NB_1$.

又 AB = BC = 2, $BB_1 = 4$, 由 $NB_1^2 + NB^2 = BB_1^2$, 即 $NB_1 = \sqrt{15}$,

因为 $MN = \frac{BC}{2} = 1, MB_1 = \sqrt{14}$,

所以 $MB_1^2 + MN^2 = B_1N^2$, 则 $MB_1 \perp MN$.

由题设知 $AB \perp MB_1$, 因为 $MN \cap AB = N$, 且都在 ABC 内,

所以 MB_1 上 平面 ABC , MC \subset 面 ABC , 所以 MB_1 \bot MC , 且 $B_1C = \sqrt{14+2} = 4$ 设 C 到 平面 MB_1C_1 的距离为 d ,

由 $AB \perp NB_1$, $AB \perp MB_1$, $NB_1 \cap MB_1 = B_1$, 且都在面 MB_1C_1 内, 故 $AB \perp$ 面 MB_1C_1 ,

因为BC//MN, $BC \subset \mathbb{Y}$ 面 MB_1C_1 , $MN \subset \mathbb{Y}$ 面 MB_1C_1 , 所以 $BC//\mathbb{Y}$ 平面 MB_1C_1 ,

综上,d = BN = 1

设直线 B_1C 与平面 MB_1C_1 所成的角为 θ ,则 $\sin \theta = \frac{d}{B_1C} = \frac{1}{4}$.

所以直线 B_1C 与平面 MB_1C_1 所成角的正弦值为 $\frac{1}{4}$.

