Results

Debadatta Kar Cryptography Research Lab Indian Institute of Science Education and Research Bhopal

July 21, 2025

Lecture 6

- 1. Two bases B_1 , B_2 generating the same lattice \mathcal{L} are related by $B_2 = B_1 U$ where U is an unimodular matrix.
- 2. If $B = {\tilde{b}_1, \tilde{b}_2, \cdots, \tilde{b}_n}$ is the GSO basis then $\det(\mathcal{L}) = \prod_{i=1}^n ||\tilde{b}_i||$
- 3. (Hadamard's Inequality) If $B = \{b_1, b_2, \dots b_n\}$ is the basis of lattice \mathcal{L} then

$$\det(\mathcal{L}) \le ||b_1|| \times ||b_2|| \times \cdots \times ||b_n||$$

4. Let B be a rank-n lattice basis, and B^* be its Gram-Schmidt orthogonalisation, then

$$\lambda_1(B) \ge \min_{1 \le i \le n} \{||b_j^*||\}$$

- 5. (Blichfield) For a full rank lattice \mathcal{L} and a measurable set $S \subseteq \mathbb{R}^n$ such that $vol(S) > \det(\mathcal{L})$ there exist $x, y \in S$ such that $x y \in \mathcal{L}$
- 6. (Minkowski's Convex Body Theorem) For a full rank lattice \mathcal{L} and a centrally convex and symmetric set S with $Vol(S) > 2^n \det(\mathcal{L})$, S contains at least one non-zero lattice point.
- 7. (Minkowski's First Theorem) For any full rank lattice \mathcal{L} of rank n

$$\lambda_1(\mathcal{L}) \le \sqrt{n} (\det \mathcal{L})^{1/n}$$

8. (Minkowski's Second Theorem) For a full rank lattice \mathcal{L}

$$\left(\prod_{i=1}^{n} \lambda_i\right)^{1/n} \le \sqrt{n} \cdot (\det(\mathcal{L}))^{1/n}$$

9. In a 2-dimensional lattice \mathcal{L} with rank 2. If λ is the length of the shortest vector in the lattice, then

$$\lambda \le \sqrt{\frac{2}{\sqrt{3}} \det\left(\mathcal{L}\right)}$$

10. Let b_1, b_2 be the initial vectors of an iteration of the algorithm and let $b'_1 = b_2 - mb_1$ and $b'_2 = b_1$ be next set of vectors considered in the GLRA. Then except for possibly the last two iterations

$$||b_1'|| < \frac{||b_1||^2}{3}$$

11. If b_1, b_2 are some iterations of vectors in the **GLRA** with $||b_1|| \leq ||b_2||$ and $m = \left\lfloor \frac{\langle b_2, b_1 \rangle}{\langle b_1, b_1 \rangle} \right\rfloor$ then for all $k \in \mathbb{Z}$ we have

$$||b_2 - mb_1|| \le ||b_2 - kb_1||$$

- 12. If b_1, b_2 are some iterations of vectors in the **GLRA** with $||b_1|| \le ||b_2||$ and $m = \left\lfloor \frac{\langle b_2, b_1 \rangle}{\langle b_1, b_1 \rangle} \right\rfloor$ with $b_1' = b_2 mb_1$ and $b_2' = b_1$ then $||b_1'|| \le ||k'b_2' + b_1'||$ for all $k \in \mathbb{Z}$
- 13. If $m = \pm 1$ then the GLRA algorithm terminates in the next step.
- 14. Let $\mathcal{L} \subset \mathbb{R}^2$ be a two dimensional lattice basis with vectors b_1, b_2
 - (a) The **GLRA** terminates and yields a good basis.
 - (b) Final vector b_1 is the shortest vector in the lattice \mathcal{L} , so the algorithm solves the shortest vector problem in two dimensions.
 - (c) The angle θ between b_1, b_2 satisfies $|\cos \theta| \le \frac{||b_1||}{2||b_2||}$
- 15. Let $b_1, b_2, \dots b_n \in \mathbb{R}^n$ be a δ LLL reduced basis. Then

$$||b_1|| \le \left(\frac{2}{\sqrt{4\delta - 1}}\right)^{n-1} \lambda_1(\mathcal{L})$$

References

- [1] Oded Regev, Lecture Notes on Lattices in Computer Science, Tel Aviv University, Fall 2009.
- [2] Vinod Vaikuntanathan, Advanced Topics in Cryptography: From Lattices to Program Obfuscation, MIT, Fall 2024.
- [3] Deng, Xinyue An Introduction to Lenstra-Lenstra-Lovasz Lattice Basis Reduction Algorithm, Massachusetts Institute of Technology, 2016
- [4] Galbraith, S. D. Mathematics of public key cryptography Cambridge University Press, 2012