Package 'MTA'

June 24, 2021

Title Microbial Trend Analysis for Common Dynamic Trend, Group Comparison, and Classification in Longitudinal Microbiome Study
Version 0.1.0
Date 2021-06-23
Author Chan Wang, Jiyuan Hu, Martin J. Blaser, Huilin Li.
Maintainer Chan Wang <chan. wang@nyulangone.org=""> and Huilin Li <huilin.li@nyulangone.org></huilin.li@nyulangone.org></chan.>
Description Microbial trend analysis (MTA) framework is proposed for the high-dimensional and phylogenetic longitudinal microbiome data. The MTA framework can describe microbial dynamics, differential group difference, extract key taxa driving the microbial temporal trend, and classify the subjects, is a highly in-time and attractive analytical tool to study the dynamics of microbiome composition and identify key bacterial species that affect susceptibility to complex diseases.
Depends R (>= $4.0.0$)
Imports adephylo, fda, ggplot2, reshape2, toOrdinal, MASS, stats, utils
License GPL (>= 2)
Encoding UTF-8
LazyData true
<pre>URL https://github.com/chanw0/MTA</pre>
BugReports http://github.com/chanw0/MTA/issues
RoxygenNote 7.1.1
R topics documented:
MTA-package
Index 7

MTA-package	Microbial Trend Analysis for Common Dynamic Trend, Group Com-
, 0	parison, and Classification in Longitudinal Microbiome Study

Description

Microbial trend analysis (MTA) framework is an attractive and effective tool in investigating the dynamic microbial pattern in the longitudinal microbiome study. In particular, MTA can perform three tasks: 1) MTA can capture the common and major community level microbial dynamic trends for a given group of subjects and identify the dominant taxa; 2) MTA can examine whether the microbial overall dynamic trends are significantly different or not in groups; 3) MTA can classify a given subject based on its longitudinal microbial profiling. Both simulations and real data applications showed that MTA framework is robust and powerful in hypothesis testing, taxon identification, and subject classification.

Details

Package: MTA
Type: Package
Version: 1.0

Date: 2021-06-23 License: GPL (>= 2)

Author(s)

Chan Wang, Jiyuan Hu, Martin J. Blaser, Huilin Li.

Maintainer: Chan Wang < Chan. Wang @nyulangone.org>, Huilin Li < Huilin.Li@nyulangone.org>

References

Wang C, Hu J, Blaser M J, Li H (2021). Microbial Trend Analysis for Common Dynamic Trend, Group Comparison, and Classification in Longitudinal Microbiome Study.

MTA The overall function in MTA framework

Description

This overall function performs three tasks: 1) capturing the common and major community level microbial dynamic trends for a given group of subjects and identifying the dominant taxa; 2) examining whether the microbial overall dynamic trends are significantly different or not in groups; 3) classifying a given subject based on its longitudinal microbial profiling.

Usage

Arguments Y1

Y_new

Y1 can be an N*P*T numeric array containing compositional microbiome data for N subjects having P taxa across T time points, or a list, in which each element represents a group of subjects having P taxa across T time points. The number of groups is equal to or larger than 2. The list's name can be assigned as the group labels, otherwise, it is 1:length(Y1) by default. If Y1 is an N*P*T numeric array, MTA gives the microbial dynamics for Y1 and identifies the key taxa. If Y1 is a list, MTA provides the group comparison or classification.

An optional N*P*T numeric array containing compositional microbiome data for N subjects having P taxa across T time points. Y_new represents the subjects

who need to be classified based on the training set Y1. Default=NULL, no

calculation for the classification part.

phy.tree The phylogenetic tree (phylo-class) object for P taxa. Default=NULL, no Lapla-

cian penalty dealing with the phylogenetical correlation among taxa.

timevec An optional numeric vector of the continuous time point with length = T.

transf A character value, which represents the transformation technique one wants to

take. "None" represents MTA analyzes the microbial relative abundance directly; "Log", "ALR", and "CLR" represent the corresponding log, additive log-ratio transformation and centered log-ratio transformation respectively. De-

fault="None".

M The number of top common trends one wants to select. Default=NULL.

proportion.explained

A numeric value used to determine the number of top common trends as an

alternative. Default=0.85.

k A numeric value represents k-fold cross-validation to determine the tuning pa-

rameters. Default=5.

lambda1.set A numeric vector containing the candidate tunning parameters for the smoothing

technique to deal with the smoothness of the extracted trends. Default=c(0.01,0.1,1,10).

lambda2.set A numeric vector containing the candidate tunning parameters for the Lasso

penalty to deal with the high dimensionality of taxa. Default=seq(0,1,0.005).

lambda3.set A numeric vector containing the candidate tunning parameters for the Laplacian

penalty to deal with the phylogenetical correlation. Default=c(0).

num.sam An integer value, the number of resampling for the group comparison. De-

fault=10.

alpha An numeric value, the signficance level for the group comparison. Default=0.05.

Value

When Y1 is an N*P*T numeric array, MTA performs the first task: capturing the common and major community level microbial dynamic trends and identifying the dominant taxa based on the Y1. A list which contains two elements:

Trend Plot The extracted common trends extracted from all subjects Y1

Factor Score The estimated factor scores for all key taxa which contribute to the extracted common trends.

When Y1 is a list involving two or more than two groups, but Y_new is NULL, MTA performs the second task: examining whether the microbial overall dynamic trends are significantly different or not in groups and provides a list which contains comparing results between any two groups. The comparing results between any two groups contains five elements:

P value P value for the common trends representing the difference in the microbial dynamic pattern between these two groups

Trends The extracted common trends among R resamplings

Discover rate The discover rates for all taxa among R resamplings. This item is provided when the common trend is significant, otherwise, on this item.

Factor Score The estimated factor scores for all taxa which contribute to the common trends. This item is provided when the common trend is significant, otherwise, on this item.

Standard error The standard error of the estimated factor scores for all taxa among R resamplings. This item is provided when the common trend is significant, otherwise, on this item.

When Y1 is a list involving two or more than two groups, and Y_new is an N*P*T numeric array, MTA performs the third task: classifying the subjects in Y_new based on the training set Y1. The result contains an N*2 matrix, in which the first column is the subject's ID and the second column is its group label accordingly.

Author(s)

Chan Wang, Jiyuan Hu, Martin J. Blaser, Huilin Li.

Maintainer: Chan Wang Chan.Wang@nyulangone.org, Huilin Li Huilin Li <a href="mailto:Huilin.Li <a href="mailto:Hu

References

Wang C, Hu J, Blaser M J, Li H (2021). Microbial Trend Analysis for Common Dynamic Trend, Group Comparison, and Classification in Longitudinal Microbiome Study.

Examples

```
# ########## generation data
# library(dirmult)
# ## sample size
# N=20;
# ## time point
# T=10;
# ##number of taxa
# P=30;
#
# beta0=abs(rnorm(P,10,20))
# ## key taxa
# causal.ind=sample(1:20,3)
#
# #### generating two groups
# group1=array(NA, dim = c(N,P,T))
# for(t in 1:T) group1[, ,t] = rdirichlet(N,(beta0))
```

```
# group2=array(NA, dim = c(N,P,T))
# for(t in 1:T){
# betaT=rep(0,P)
   effect.size1=c(-1,2, -1)/2*min(beta0[causal.ind])*sin(t)
  betaT[causal.ind]=effect.size1
   group2[, ,t] = rdirichlet(N,(beta0+betaT))}
# ######## MTA captures the common trends shared by all subjects in group1
# ### extracting the common trend from a group of subjects with explained variation >=85%
# MTA(Y1=group1)
# ### extracting the common trend from a group of subjects with 2 common trends
# MTA(Y1=group1,M=2)
#
# ###### comparing between group1 and group2
# MTA(list(group1,group2))
# ####### classifying subjects based on the training set
# MTA(list(group1,group2),group2[1:5,,])
#
####### Real data analysis
####### The results has a slight difference due to different random seeds
# library(ggpubr)
# library(plyr)
# library(reshape2)
# Control=Realdata[[1]]
# STAT=Realdata[[2]]
# phy.tree=Realdata[[3]]
# ### Group comparison
# aa=MTA(list(Control,STAT),phy.tree=phy.tree,k=10,lambda1.set = 1,
          lambda2.set=seq(0,0.3,0.001),num.sam=50)$`Comparison between group 1 and group 2`
# aa1=aa[[4]]
# aa2=aa[[5]]
# for(i in 1:nrow(aa2)) {
   bb1=aa1[i,-1];bb2=aa2[i,-1]
#
   bb=order(bb1^2/sum(bb1^2),decreasing =TRUE)
# bb1[-c(bb[1:which(cumsum(cumsum(sort(bb1^2/sum(bb1^2),decreasing =TRUE))>0.99)==1)])]=0
   bb1[((bb1+1.96*bb2)>=0 & (bb1-1.96*bb2)<=0)]=NA
#
   aa1[i,-1]=bb1
# }
# effect1=aa1
```

6 Realdata

```
# colnames(effect1)=c("trend",unlist(dimnames(Control)[2]))
# effect1=data.frame(effect1,check.names =FALSE)
# effect1=melt(effect1,id.vars = 1,variable.name = "taxa",value.name = "score")
# effect1$trend=revalue(as.character(effect1$trend), c("1"="1st common trend"))
# effect1=na.omit(effect1)
# pp1=ggbarplot(effect1, x = "taxa", y = "score",
                ylab = "Estimated factor score", xlab="", facet.by = "trend",
                add = "mean")+
  facet_wrap(~trend, scales="free")+theme(axis.text.x = element_text(angle = 90, hjust = 1))
# ####### trend figure
# trend1=aa[[2]]
# trend1$time=mapvalues(as.character(trend1$time), from = as.character(1:4), to = as.character(c(3,6,10,13)))
# trend1$time=as.numeric(trend1$time)
# pp2=ggline(trend1, x = "time",y = "Escore",
             ylab = "Common trend", xlab="Week", facet.by = "trend",
#
             add = "mean")+
#
   facet_wrap(~trend, scales="free_y")
# ggarrange(pp2,pp1,labels = c("(A)", "(B)"), ncol = 2)
```

Realdata

Real data used in the Real data analysis section

Description

Realdata is a list with the length=3.

Usage

Realdata

Format

A list with the length=3 with names Control, STAT, and phy.tree:

Control A 20 * 35 * 4 Array of relative abundances for 20 Controls

STAT A 17 * 35 * 4 Array of relative abundances for 17 STAT

phy.tree The phylogenetic tree (phylo-class) object for 35 taxa

Index

```
* MTA

MTA, 2

* datasets

Realdata, 6

* package

MTA-package, 2

MTA, 2

MTA-package, 2

Realdata, 6
```