KADI SARVA VISHWAVIDHYALAYA,

Gandhinagar

BE Semester-III (NOV 2013)

Mathematics -III (CC301A)

(DIFFERENTIAL EQUATION & INTEGRAL TRANSFORM)

Max Marks: 70 Duration: 3 hr.

[5]

[5]

Instruction: 1) Answer each section in separate Answer sheet.

- 2) Use of Scientific calculator is permitted.
- 3) All questions are compulsory.
- 4) Indicate clearly, the options you attempt along with its respective question number.
- 5) Use the last page of main supplementary for rough work.

Section I

Q.1 (i) Solve following differential equations:
(a)
$$(x^2-y^2)dx=2xy$$
 dy (b) $(1+y^2)dx=(\tan^{-1}y-x)$ dy

(ii) Find Laplace transform of (i) $f(t)=t$ cost (ii) $f(t)=e^{at}\cosh bt$ [5]

(iii) Solve partial differential equation $\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial^2 z}{\partial x \partial y} = sinx \cos 2y$ [5]

(iii) Solve differential equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{2x}sinx$. [5]

Q.2 (i) Solve by the method of undetermined coefficient $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^x sinx$.

(ii) Obtain the Fourier series for the function $f(x)=2x+1$, $-\pi < x < \pi$ [5]

OR

(i) Solve by the method of variation of parameter $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$

(ii) Find Z-transform of the function $f(x)=\cos \alpha k$. [5]

OR

Using Convolution theorem, find $L^{-1}\left\{\frac{1}{s^2(s-1)}\right\}$.

Solve Cauchy Euler differential equation

 $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = x^3$

(i)

(ii)

Q.3

- Find the Fourier transform of $f(t) = \begin{cases} e^{-at} & for \ t > 0, & a > 0 \\ 0 & for \ t < 0, & a > 0 \end{cases}$ [5] (i) [5] (ii) Form PDE from z=y+f(x+ln, y). Section II Q.4 (i) Find the orthogonal trajectories of the family of rectangular [5] hyperbolas $x^2-y^2=a^2$. Find Laplace transform of $f(t)=(1-e^{-t})/t$. [5] (ii) Solve $y'' + 4y' + 3y = 4e^{-x}$ given that y=0, y'=2 when x=0. (iii) [5] [5] (iii) If $Z\{f(k)\}=F(z)$ then Prove that (i) $Z\{k \ f(k)\}=-z(d/dz)F(z)$ (ii) $Z\{a^k \ f(k)\}=-F(z/a)$ [5] Solve by Exactness method $x^2 e^y dx + \frac{x^3 e^y}{3} dy = 0$ Q.5 (i) Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 3y = 3x^2$. [5] (ii) Define Laplace transform and write any two properties of it. [5] (i) Find the Fourier cosine and sine transform of $f(x)=e^{-ax}$, a>0. [5] (ii) [5] Q.6 (i) Solve by the general method $\frac{d^2y}{dx^2} + y = \csc x$. Find the Fourier series of $f(x) = \begin{cases} x, & -\frac{\pi}{2} < x < -\frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \frac{3\pi}{2} \end{cases}$ [5] (ii)
 - (i) Solve $xy^2p + x^2y q = (x^2 y^2)z$ [5]
 - (ii) Solve (a) $L^{-1} \left[\frac{s+10}{s^2-s-2} \right]$ [5]

BEST OF LUCK