MA 108 - Ordinary Differential Equations

Suresh Kumar

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 76 suresh@math.iitb.ac.in

May 14, 2022

Outline of the lecture

- Integrating factors
- Bernoulli equation
- Orthogonal Trajectories
- Lipschitz continuity

Warm up!

- 1 The value of b that makes $(xy^2 + bx^2y)dx + (x + y)x^2dy = 0$ exact is
- **3** The solution of $-ydx + (x + \sqrt{xy})dy = 0$ is

Integrating Factors

In the last Lecture we looked at the ODE

$$(3x + y^2)dx + (x^2 + xy)dy = 0$$

and found that ODE is not exact.

Question is how to solve first order ODEs which are not in exact form?

Integrating Factors

Suppose the first order ODE

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$

is not exact; that is, $M_y \neq N_x$. In this situation, we try to find a function $\mu(x,y)$ such that

$$\mu \cdot M + \mu \cdot N \frac{dy}{dx} = 0$$

is exact; i.e.,

$$(\mu \cdot M)_y = (\mu \cdot N)_x.$$

Thus,

$$\mu_{y}M + \mu M_{y} = \mu_{x}N + \mu N_{x}.$$

That is, $\mu(x, y)$ satisfies the DE

$$\mu_y M - \mu_x N + (M_y - N_x)\mu = 0.$$

Such a function $\mu(x, y)$ is called an integrating factor of the given ODE.

Integrating Factor - function of x alone

In practice, we start by looking for an IF which depends only on one variable x or y, because it may be difficult to solve the PDE $\mu_y M - \mu_x N + (M_y - N_x)\mu = 0$.

Case 1:

Suppose μ is a function of x alone. That is, $\mu = \mu(x), \mu_y = 0$. Then, the PDE above reduces to

$$\mu_{\mathsf{x}}\mathsf{N}=\left(\mathsf{M}_{\mathsf{y}}-\mathsf{N}_{\mathsf{x}}\right)\mu.$$

Thus,

$$\frac{d\mu}{dx} = \left(\frac{M_y - N_x}{N}\right)\mu.$$

If further, $\frac{M_y - N_x}{N}$ is a function of x then the above DE is separable & we try to solve it to find $\mu(x)$.

$$\mu(x) = e^{\int \frac{M_y - N_x}{N} dx}.$$

Integrating Factor - function of y alone

Case 2:

If we assume $|\mu$ to be a function of y alone | in the PDE

$$\mu_y M - \mu_x N + (M_y - N_x)\mu = 0,$$

then we get an analogous equation:

$$\frac{d\mu}{dy} = \left(\frac{N_x - M_y}{M}\right)\mu.$$

If further, $\frac{N_x - M_y}{M}$ is a function of y then the above DE is separable & we try to solve it to find $\mu(y)$.

$$\mu(y) = e^{\int \frac{N_x - M_y}{M} \, dy}.$$

Example 1

Solve the ODE:

$$(8xy - 9y^2) + (2x^2 - 6xy)\frac{dy}{dx} = 0.$$

Let $M = 8xy - 9y^2$ and $N = 2x^2 - 6xy$.

Thus, $M_y = 8x - 18y$ and $N_x = 4x - 6y$. As $M_y \neq N_x$, the given ODE is not exact.

We first try to find an IF depending only upon one variable.

Note that

$$\frac{M_y - N_x}{N} = \frac{4x - 12y}{2x(x - 3y)} = \frac{2}{x}, \text{ a function of } x \text{ alone.}$$

Hence by the earlier discussion, we have:

$$\frac{d\mu}{dx} = \frac{2}{x}\mu.$$

Solving this separable ODE, we get $\ln |\mu| = \ln x^2$. Hence,

$$\mu(x)=x^2$$
 can be chosen as an IF for the given ODE.

Integrating Factors

Multiplying the given ODE by $\mu(x) = x^2$, we get:

$$(8x^3y - 9x^2y^2) + (2x^4 - 6x^3y)\frac{dy}{dx} = 0.$$

Check that this is an exact ODE. (How?)

To solve this exact ODE, we need to find u(x, y) such that

$$8x^3y - 9x^2y^2 = u_x \& 2x^4 - 6x^3y = u_y.$$

To find u(x, y):

Step I: $u(x, y) = 2x^4y - 3x^3y^2 + k(y)$.

Step II: $2x^4 - 6x^3y = u_y = 2x^4 - 6x^3y + k'(y)$.

Thus, k'(y) = 0. Hence,

$$u(x,y) = 2x^4y - 3x^3y^2 = c$$

is a solution of the given ODE.

Example 2

Solve the DE: $-y + x \frac{dy}{dx} = 0$.

Check that this is not an exact DE.

Let M(x, y) = -y and N(x, y) = x.

To find a possible IF μ : note that $\frac{N_x - M_y}{M} = -\frac{2}{V}$, a function of y alone.

By the earlier discussion, we obtain:

$$\frac{d\mu}{dy} = -\frac{2}{y}\mu.$$

Thus, $\ln |\mu| = -2 \ln |y|$.

So we choose

$$\mu(y) = \frac{1}{v^2}$$

as an IF. Then,
$$\frac{-y+x\frac{dy}{dx}}{y^2}=0$$
 is exact. Thus, $d\left(-\frac{x}{y}\right)=0$.

Therefore, solution is given by $\frac{x}{c} = c$.

Bernoulli equation

Consider

$$\frac{dy}{dx} + P(x)y = Q(x)y^n \qquad (n = 0, 1 \text{ yields linear equations!})$$

For n = 0, one can verify that

$$\mu(x) = e^{\int P(x)dx}$$

is an integrating factor.

Now multiply be the integrating factor and solve we get

$$y = e^{-\int P(x)dx} \Big(\int Q(x)e^{\int P(x)dx}dx + c \Big).$$

For n = 1 a similar analysis

Bernoulli equation - (non-linear reduced to linear)

Claim: Let $n \neq 0, 1$.

Then the transformation $v = y^{1-n}$ reduces the Bernoulli equation to a linear equation in v. [Leibniz (1696)]

Justification:

 $\overline{\text{Let } v = y^{1-n}}.$

$$\frac{dv}{dx} = (1 - n) y^{1-n-1} \frac{dy}{dx}$$

That is,

$$\frac{dy}{dx} = \frac{1}{1-n} y^n \frac{dv}{dx}.$$

Bernoulli equation - Contd..

Substituting in the DE,

$$\frac{1}{1-n}y^n\frac{dv}{dx} + P(x)y = Q(x)y^n$$

$$\frac{1}{1-n}\frac{dv}{dx} + P(x)v = Q(x) \text{ (assuming } y \neq 0\text{)}$$

Hence,

$$\frac{dv}{dx} + (1-n)P(x)v = Q(x)(1-n), \text{ which is a linear DE in } v.$$

Example - Bernoulli

Solve:
$$\frac{dy}{dx} + y = xy^3$$
.

Let
$$v = y^{-2}$$

Let
$$v = y^{-2}$$
.
 $\frac{dv}{dx} = -2y^{-3}\frac{dy}{dx} \Longrightarrow -\frac{1}{2}\frac{dv}{dx} + v = x$
That is, $\frac{dv}{dx} - 2v = -2x$ (linear equation in v)

Integrating factor is e^{-2x} .

$$ve^{-2x} = -\int 2xe^{-2x} dx + C$$

$$= \frac{2xe^{-2x}}{-2} - \int 2\frac{e^{-2x}}{2} + C$$

$$= xe^{-2x} + \frac{e^{-2x}}{2} + C$$

$$\implies \frac{1}{v^2} = x + \frac{1}{2} + Ce^{2x}$$
.

Equations reducible to linear equations

Consider

$$\frac{d}{dy}(f(y))\frac{dy}{dx}+P(x)f(y)=Q(x),$$

where f is an unknown function of y.

Set
$$v = f(y)$$
.

Then,

$$\frac{dv}{dx} = \frac{dv}{dy} \cdot \frac{dy}{dx} = \frac{d}{dy}(f(y))\frac{dy}{dx}.$$

Hence the given equation is

$$\frac{dv}{dx} + P(x)v = Q(x)$$
, which is linear in v.

Remark: Bernoulli DE is a special case when $f(y) = y^{1-n}$.

Example

Solve:
$$\cos y \frac{dy}{dx} + \frac{1}{x} \sin y = 1$$
.

Set
$$v = \sin y$$
.

Then,

$$\frac{dv}{dx} = \frac{dv}{dy} \cdot \frac{dy}{dx} = \cos y \frac{dy}{dx}.$$

Hence the given equation is

$$\frac{dv}{dx} + \frac{1}{x}v = 1$$
, which is linear in v.

That is,

$$e^{\int \frac{1}{x} dx} v(x) = \int e^{\int \frac{1}{x} dx} dx + C$$

$$\implies x v(x) = \frac{x^2}{2} + C$$

$$\sin y = \frac{x}{2} + \frac{C}{x}.$$

Orthogonal Trajectories

If two families of curves always intersect each other at right angles, then they are said to be orthogonal trajectories of each other.

Working Rule

To find the OT of a family of curves

$$F(x,y,c)=0.$$

An example:

$$F(x, y, c) = x^2 - 4cy = 0$$

defines a family of parabolas given in the previous slide.

$$G(x, y, c) = x^2 + 2y^2 - 2c^2 = 0$$

defines the family of ellipses given in the previous slide.

Working Rule

OT of a family of curves F(x, y, c) = 0.

- Find the DE $\frac{dy}{dx}=f(x,y)$. How ? Differentiate F(x,y,c)=0 and elliminate the parameter c
- Slopes of the OT's are given by

$$\frac{dy}{dx} = -\frac{1}{f(x,y)}.$$

(Only for those (x, y) for which $f(x, y) \neq 0$)

- Obtain a one parameter family of curves G(x, y, c) = 0 as solutions of the above DE.
- (Leaving a part certain trajectories that are vertical lines!)

Example

Find the set of OT's of the family of circles $x^2 + y^2 = c^2$.

$$x + y \frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = -\frac{x}{y}$$

The slope of OT's are $\frac{dy}{dx} = \frac{y}{x} (x \neq 0) \Longrightarrow y = kx$.

Hence the orthogonal trajectories are given by y = kx.

Definitions

• Let f be a real function defined on D, where D is either a region (or termed as domain) or a closed region of the xy plane. The function f is said to be bounded in D if there exists a positive number M such that

$$|f(x,y)| \leq M$$

for all (x, y) in D.

- 2 Let f be defined and continuous on a closed rectangle $R: a \le x \le b, \ c \le y \le d$. Then, f is bounded in R.
- Set f be defined on D, where D is either a domain or a closed domain of the xy- plane. The function f is said to satisfy Lipschitz condition (with respect to y) in D if ∃ a constant M > 0 such that

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|$$

for every $(x, y_1), (x, y_2)$ which belong to D. The constant M is called the Lipschitz constant.

21/2

Understanding the Lipschitz condition - y = g(x)

Consider

$$|g(x_2) - g(x_1)| \le M|x_2 - x_1| \ \forall x_1, x_2 \text{ in the domain of } g.$$

This condition in the form $\frac{|g(x_2)-g(x_1)|}{|x_2-x_1|} \leq M$ can be interpreted as follows :

At each point (a, g(a)), the entire graph of g lies between the lines

$$y = g(a) - M(x - a) \& y = g(a) + M(x - a).$$

Understanding Lipschitz condition - z = f(x, y)

- Let (x, y_1) and (x, y_2) be any two points in D having the same abscissa x.
- Consider the corresponding points

$$P_1(x, y_1, f(x, y_1)) \& P_2(x, y_2, f(x, y_2))$$

on the surface z=f(x,y), and let α ($0 \le \alpha \le \pi/2$) denote the angle that the chord joining P_1 and P_2 makes with the xy-plane.

Then if the condition

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|$$

holds in D, then $\tan \alpha$ is bounded in absolute value.

- That is, the chord joining P_1 and P_2 is bounded away from being perpendicular to the xy- plane.
- Further, this bound is independent of the points (x, y_1) and (x, y_2) belonging to D.

Lipschitz condition \Longrightarrow Continuity?

If f satisfies Lipschitz condition with respect to y in D, then for each fixed x, the resulting function of y is a continuous function of y, for all (x, y) in D.

Example : Let f(x, y) = y + [x] where g(x) = [x] is the greatest

integer function. For fixed x,

$$f(x, y_1) - f(x, y_2) = y_1 + [x] - y_2 - [x]$$

= $y_1 - y_2$

That is, $|f(x, y_1) - f(x, y_2)| = |y_1 - y_2| \le 1 \cdot |y_1 - y_2|$ But we know that f is discontinuous w.r.t. x for every integral value of x.

Note that the condition of Lipschitz continuity implies nothing concerning the continuity of f with respect to x.

Does Continuity w.r.t. second variable ⇒ Lipschitz condtn. w.r.t. second variable?

Continuity w.r.t. second variable DOES NOT imply Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y=0 as for $y_1=0,\ y_2>0$, we have

$$\frac{|f(x, y_1) - f(x, y_2)|}{|y_1 - y_2|} = \frac{\sqrt{y_2}}{|y_2|} = \frac{1}{\sqrt{y_2}}$$

which can be made as large as we want by making y_2 smaller. The Lipschitz condition requires that the quotient should be bounded by a fixed constant M.