Lecture notes Einführung in die Logik 2024W

This is a summary of the material discussed in the lecture "Mathematische Logik". It is still a work in progress and there **may be mistakes** in this work. If you find any, feel free to let me know and I will correct them

The content of this script is intended for educational purposes only. It relies on the book [1] for which all rights belong to their respective owners and I do not claim ownership over this content. However the LATEX code I wrote is entirely my own work and is open source under the MIT-Licence. Dieses Skript ist noch nicht vollständig und wird regelmäßig aktualisiert.

Contents

1	\mathbf{Pro}	positional logic		2
	1.1	Truth assignments		3
	1.2	A parsing algorithm		4
	1.3	Induction and recursion		6
	1.4	Sentential connectives		8
	1.5	Compactness Theorem		10
2	Pre	dicate - / first order logic	1	1
	2.1			12
	2.2	Semantics of first order logic		13
	2.3	Logical implication		15
	2.4	definability in a structure		16
	2.5	Homomorphisms of structures		16
	2.6	Unique readability for terms		18
	2.7	A parsing algorithm for first order logic		19
	2.8	Deductions (formal proofs)		19
	2.9	Generalization and deduction theorem		22
	2.10	Soundness and completeness		24
		2.10.1 Sizes of models		28
		2.10.2 Completness for uncountable lar		29
3	Model Theory 30			
U	3.1	Löwenheim-Skolem-Theorem	-	30
	3.2	Theories and completeness		30
	3.3	Theory of algebraic closed fields		32
	3.4	Nonstandard Analysis		33
	$\frac{3.4}{3.5}$	o-minimality		36
	3.6	o-minimal ordered groups and rings		36
4	Boo	olean Algebra	4	13
5		Theory		18
	5.1	Axioms of ZFC		18
			fla formula	3
			TV - truth value	3
T,	ist	of Abbreviations	taut tautological	4
List of Hobicviations			w/ - with	4
			lp / rp - left / right parenthesis	5
	prop		-, -	9
	exp.	- ()		
	sent	()		19
	seq.	- sequence 3		20
	TA	- truth assignment 3	WMA - We may assume :	38

CHAPTER 1

Propositional logic

Language **Definition 1.1. Language of PL:** The Language of Propositional logic is a set containing

- logical symbols: consisting of the sentential connective symbols $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$ and parenthesis (,)
- non-logical symbols: A_1, A_2, A_3, \ldots (also called sentential atoms, variables)

from which we assume (for unique readability) that no symbol is a finite sequence of any other symbols.

Note:

- 1. The role of the logical symbols doesn't change, the sentential atoms we see as variables, they function as placeholders or variables.
- 2. we assumed the set of non-logical symbols is countable, for most of our conclusions you could use any set of prop. atoms of any size

expression

Definition 1.2. Expression / prop. sentence: An expression is a any finite sequence of symbols We define grammatically correct exp. recursively

- 1. every prop. atom is a prop. sentence
- 2. if α, β are prop. sentences, then also $(\neg \alpha), (\alpha \land \beta), (\alpha \lor \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta)$
- 3. nothing else (in particular \emptyset is not a prop. fla.)

prop. fla. prop. sentence

and call them **prop.** sentences or **prop.** fla. Equivalently stated every prop. sentence is built up by applying finitely many formula building operations on atoms and the prop. sent. returned from building operations.

$$\mathcal{E}_{\neg}, \mathcal{E}_{\neg}(\alpha) := (\neg \alpha)$$
 for any prop. fla. α and similarly for $\mathcal{E}_{\wedge}, \mathcal{E}_{\vee} \mathcal{E}_{\rightarrow}, \mathcal{E}_{\leftrightarrow}$

This allows us to symbolize the expression tree (Here for example for $((\neg(A_1 \to A_2)) \lor A_3))$

We will return to these construction trees in 1.2, where we answer the question of what truth value a given prop. sentence might have.

Definition 1.3. Construction sequence: Given a prop. sentence α a **construction sequence** of α is a finite sequence $\langle \alpha_1, \dots \alpha_{n-1}, \alpha \rangle$ such that for all $i \leq n$ the following holds

construction sequence

- α_i is a sentential atom
- or $\alpha_i = \mathcal{E}_{\neg}(\alpha_i)$ for some j < i
- or $\alpha_i = \mathcal{E}_{\square}(\alpha_j, \alpha_k)$ for some j, k < i and $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$

Definition 1.4. Closedness of a set: Let S be a set. We say S is **closed** under closure an n-ary operational symbol f iff for all $s_1, s_2, \ldots s_n \in S$ it holds $f(s_1, s_2, \ldots s_n) \in S$

Induction principle: Suppose S is a set of prop. sentences containing all prop. atoms and closed under the 5 formula building operations, then S is the set of all prop. sentences.

Proof. let PS = set of all prop. sent.

 $S \subseteq PS$: is clear

 $S \supseteq PS$: let $\alpha \in PS$ then α has a construction seq. $\langle \alpha_1, \dots \alpha_{n-1}, \alpha \rangle$ and $\alpha_1 \in S$. Let's assume that for $i \le k < n$ each α_i is in S. Then α_{k+1} is either an atom and therefore in S or its obtained by one of the formula building operations and therefore $\alpha_{k+1} \in S$

1.1 TRUTH ASSIGNMENTS

The interpretation of a prop. atom is either true or false, denoted by 0/1 or T/F or \top/\bot . A truth assignment is simply any map $\nu: S \mapsto \{0,1\}$, where S is a map of propositional atoms. Our goal is going to be to extend any truth assignment v to a function $\overline{v}: \overline{S} \mapsto \{0,1\}$, where \overline{S} is the closure of S under the 5 fla. building operations.

Definition 1.5. Truth assignment: Let $\{0,1\}$ be the set of truth values. A truth assignment (TA) for a set S of prop. atoms is a map $\nu: S \to \{0,1\}$

Truth assigment TA

We now want to extend ν to $\overline{\nu}: \overline{S} \to \{0,1\}$, where \overline{S} is the closure of S under the 5 fla. building operations such that for all propositional atoms $A \in S$ and propositional formulas α, β in \overline{S}

- 1. $\overline{\nu}(A) = \nu(A)$
- 2. $\overline{\nu}(\neg \alpha) = 1 \nu(\alpha)$
- 3. $\overline{\nu}(\alpha \wedge \beta) = \begin{cases} 1 & \text{iff } \overline{\nu}(\alpha) = 1 = \overline{\nu}(\beta) \\ 0 & \text{otherwise} \end{cases}$
- 4. $\overline{\nu}(\alpha \vee \beta) = \begin{cases} 1 & \text{iff } \overline{\nu}(\alpha) = 1 \text{ or } \overline{\nu}(\beta) = 1 \\ 0 & \text{otherwise} \end{cases}$
- 5. $\overline{\nu}(\alpha \to \beta) = \begin{cases} 1 & \text{iff } \overline{\nu}(\alpha) = 0 \text{ or } \overline{\nu}(\beta) = 1 \\ 0 & \text{otherwise} \end{cases}$
- 6. $\overline{\nu}(\alpha \leftrightarrow \beta) = \begin{cases} 1 & \text{iff } \overline{\nu}(\alpha) = \overline{\nu}(\beta) \\ 0 & \text{otherwise} \end{cases}$

We also want the extention to be unique, that is

Proposition 1.2. Unique readability: For all TA ν for a set $S \exists ! \overline{\nu} : \overline{S} \to \{0,1\}$ satisfying the above properties

We will prove this later

satisfy satisfiable **Definition 1.6. Satisfaction:** A TA ν satisfies a prop. sent. α if $\overline{\nu}(\alpha) = 1$ (that is, provided that everery atom of α is in the domain of ν). We call α satisfiable if there exists a TA that satisfies it.

taut. implication

Definition 1.7. Tautological implication: Let Σ be a set of prop. sent. and α a prop. sent. then we say: Σ tautologically imlies α if for all TA that satisfy Σ , α is also satisfied and we write $\Sigma \models \alpha$. If $\Sigma = \{\beta\}$, we simply write $\beta \models \alpha$ If $\Sigma = \emptyset$ then α is called a **tautology** and we write $\models \alpha$ instead of $\varnothing \models \alpha$

 α, β are called tautologically equivalent iff $\alpha \models \beta$ and $\beta \models \alpha$, we then write $\alpha \models \beta$

Note: In other words, tautological implication $\Sigma \models \alpha$ means that you can not find a TA, that satisfy all members of Σ but not α . A tautology is satisfied by every TA. Suppose there is no TA that satisfies Σ , then we have $\Sigma \models \alpha$ for every prop. sent. α

Example 1.1.: $\{\neg A \lor B\} = \models A \to B$

Note: In order to check if a prop. sent. is satisfiable we need to check 2^N TAs, where N=# of atoms. It is unknown if this can be done by an algorithm in polynomial time. Answering this would settle the debate whether P=NP

However we can find a way to reduce satisfiability of an infinite set Σ of prop. sent. to all finite subsets of Σ . There later will be a more elementary proof of the compactness theorem, this proof is not part of the exam.

Proposition 1.3. Compactness theorem: Let Σ be an infinite set of prop. sent. such that

 $\forall \Sigma_0 \subseteq \Sigma, \Sigma_0 \text{ finite } \exists TA \text{ satisfying every member of } \Sigma_0$ (finite satisfiability)

then there is a TA satisfying every member of Σ .

Proof. using topology: We have our infinite set of prop. sent. which satisfies above condition. One way to look at TA is as a sequence of 0 and 1. Let $\mathcal{A} = \{A_0, A_1, \ldots\}$ be the set of all prop. atoms. We are going to identify the truth assignments on \mathcal{A} with elements in $\{0,1\}^{\mathcal{A}} := \{f : \mathcal{A} \to \{0,1\}\}$ (the set of all TAs) This is a topological space with product topology, on which the basic open sets (called cylinders) are: $U \subseteq \{0,1\}^{\mathcal{A}}$ is a cylinder, such that $p_n(U) = \{0,1\}$ for all but finite many n, where p_n is the n-th projection. This means U is a cylinder if the truth values of its elements are at finitely many places fixed, and are arbitrary on everything else.

Note: These basic open sets are also closed. The open sets are unions of basic open sets. The idea is to use Tychonoffs Theorem which tells us that $\{0,1\}^A$ is compact. i.e. the intersection of a family of closed subsets w/ the finite intersection property (FIP) is non-empty. Finite intersection property means the intersection of finitely many sets is non-empty.

For $\alpha \in \Sigma$ let $T_{\alpha} \subseteq \{0,1\}^{\mathcal{A}}$ be the set of TA that satisfy α . This T_{α} is a finite union of cylinders, hence T_{α} is closed. For the family $\{T_{\alpha} : \alpha \in \Sigma\}$ of closed sets we have (FIP). Tychonoff tells us, that $\bigcup_{\alpha \in \Sigma} T_{\alpha} \neq \emptyset$ so there is a TA satisfying Σ .

For a list of tautologies: useful might be book p. 26-27

1.2 A PARSING ALGORITHM

To prove 1.2 We essentially need to show that we have enough parenthesis to make the reading of a prop. sent. unique. That is given a TA v there is at most one truth value we can assign to a prop. sent.

Lemma 2.2. Every prop. sent. has the same number of left and right parenthesis.

Proof. Let M= set of prop. sent. w/ # left parenthesis = # right parenthesis and PS= set of all prop. sent. We have $M\subseteq PS$. Since atoms have no parenthesis, they are in M, we just need to show that M is closed under the 5 construction operations. $\mathcal{E}_{\neg}=(\neg\alpha)\ldots$

Lemma 2.3. No proper initial segment of a prop. sent. is itself a prop. sent.

Proof. Let $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ be a prop. sent. By proper initial segment we understand $\beta = \alpha_1 \dots \alpha_i$ for $1 \leq i < n$. We will prove that every proper initial segment has an excess of left parenthesis, then we use the previous lemma. Let PS = set of all prop. sent. and PF = set of prop. sent. s.t. no proper initial segment has # left parenthesis = # right parenthesis, we will prove that these sets are the same.

Let $\alpha \in PF$. By induction on the fla. building operations

- Atoms: since the empty sequence is not a prop. sent. they have no proper initial segment.
- If the above is true for α, β then the proper initial segments of $(\neg \alpha)$ are of the form

$$(\neg \alpha)$$

 $(\neg \alpha')$ where α' is a propper initial segment of α
 (\neg)

Therefore \mathcal{E}_{\neg} preserves this property and under $\mathcal{E}_{\wedge}, \mathcal{E}_{\vee}, \mathcal{E}_{\rightarrow}, \mathcal{E}_{\leftrightarrow}$ this is also the case.

Parsing algorithm

We now give a parsing algorithm procedure. For input we take some expression τ and the algorithm will determine if τ is a prop. sent. If so, it will generate a unique construction tree (in form of a rooted tree) for τ . (i.e. the construction tree gives us unique readability) That there is a unique way to perform the algorithm is implied by 2.3

- 0. create the root and label it τ
- 1. HALT if all leaves are labled w/ prop. atom and return: " τ is a prop. sent."
- 2. select a leaf of the graph which is not labled w/ prop. atom
- 3. if the first symbol of label under consideration is not a left parenthesis, then halt and return: " τ is not a prop. sent."
- 4. if the second symbol of the label is "¬" then GOTO 6.
- 5. scan the expression from left to right if we reach a proper initial segment of the form " (β) " where $\#lp(\beta) = \#rp(\beta)$ and β is followed by one of the five sentential connectives $\land, \lor, \rightarrow, \leftrightarrow$ and the remainder of the expression is of the form β , where $\#lp(\beta) = \#rp(\beta)$

Then: create two child nodes (left,right) to the selected element and label them (left $:= \beta$, right $:= \beta'$) GOTO 1.

Else: HALT and return " τ is not a prop. sent."

6. if the expression is of the form $(\neg \beta)$ where $\#lp(\beta) = \#rp(\beta)$

Then: construct one childnode and label it β and GOTO 1.

Else: HALT and return: " τ is not a prop. sent."

Example 1.2.: The parsing algorithm applied to $((\neg(A_1 \to A_2)) \lor A_3)$ returns the following construction tree.

Correctness of the parsing algorithm

- The algorithm always halts, because a child's label is shorter than the label of a parent.
- If the algorithm halts with the conclusion that τ is a prop. sent. then we can prove inductively (starting from the leaves) that each label is a prop. sent
- Unique way to make choices in the algorithm: in particular β, β' in step 5. If there was a shorter choice for β it would be a proper initial segment of β but such prop. sent. cannot exist. (This also works under the assumption that a longer choice exists).
- rejections are made correctly

Back to proving the existence and uniqueness of $\overline{\nu}$ in 1.2. Let α be a prop. sent. of \overline{S} . We apply the parsing algorithm to α to get a unique construction tree For the leaves, use ν go get the truth values then work our way up using the conditions (1-6) in 1.5.

1.3 INDUCTION AND RECURSION

Generalization of induction principle:

Let U be a set and $B \subseteq U$ our initial set. $\mathcal{F} = \{f, g\}$ a class of functions containing just f and g, where

$$f: U \times U \to U, \qquad g: U \to U$$

We want to construct the smallest subset $C \subseteq U$ such that $B \subseteq C$ and C is closed under all elements of \mathcal{F} .

Definition 1.8. Closedness, Inductiveness: We say $S \subseteq U$ is

closed

- closed under f and g iff for all $x, y \in \mathcal{S}$ it holds $f(x, y) \in \mathcal{S}$ and $g(x) \in \mathcal{S}$
- inductive
- inductive if $B \subseteq \mathcal{S}$ and \mathcal{S} is closed under \mathcal{F}

One way is from the top down

$$C^* := \bigcap_{\substack{B \subseteq S \\ \text{inductive}}} S$$

Another is from bottom up: We call $C_1 := B$,

$$C_i := C_{i-1} \cup \{f(x,y) : x, y \in C_{i-1}\} \cup \{g(x) : x \in C_{i-1}\}$$

and $C_* := \bigcup_{n \ge 1} C_n$ Exercise: show that $C^* = C_* =: C$.

Example 1.3.:

- 1. Let U be the set of all expressions, B the set of atoms and $\mathcal{F} = \{\mathcal{E}_{\square} : \square \in \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}\}$ Then C would be the set of all propositional formulas.
- 2. Let U be \mathbb{R} , B the set containing 0 and $\mathcal{F} = \{S\}$, S(x) = x + 1 Then C would be the set of the natural numbers.

Induction principle

C generated from B by use of elements of \mathcal{F} if $S\subseteq C$ such that $B\subseteq S$ and S is closed under all elements of \mathcal{F} , then S=C

Proof.
$$S \subseteq C$$
 is clear. S is inductive, so $C \subseteq S$.

Question: under what conditions do we get "generalized unique readability?" The goal would be to define a function on C recursively i.e. to have rules for computing $\overline{h}(x)$ for $x \in B$ with some rules of computing $\overline{h}(f(x,y))$ and $\overline{h}(g(x))$ from $\overline{h}(x)$ and $\overline{h}(y)$.

Example 1.4.: Suppose that G is some additive group, generated from B (the set of generators), $h = B \to H$ where $(H, \cdot, ^{-1}, 1)$ a group. When is there an extention \overline{h} of h s.th. $\overline{h}: G \to H$ is a grouphomomorphism.

- $\overline{h}(0) = 1$
- $\overline{h}(a+b) = \overline{h}(a) \cdot \overline{h}(b)$
- $\overline{h}(-a) = \overline{h}(a)^{-1}$

This is not always possible. **Note:** that it is possible if G is generated freely by the elements of B and the set of atoms is independent (one element of B cannot be generated in finitely many steps by other elements of B).

Definition 1.9. Freely generated set: C is freely generated from B by f,g if freely generated

- C is generated from B by f, g
- $f|_{C^2}$ and $g|_C$ are such that
 - 1. $f|_{C^2}$ and $g|_C$ are one-to-one (injective)
 - 2. $ran(f|_{C^2})$ and $ran(g|_C)$ and B are p.w. disjoint

Proposition 3.2. Recursion Theorem: $C \subseteq U$ freely generated from B by f, g and V a set and $h: B \to V$, $F: V^2 \to V$, $G: V \to V$ Then $\exists ! \overline{h}: C \to V$ s.that

- for all a in B it holds $\overline{h}(a) = h(a)$
- for all x, y in C it holds
 - 1. $\overline{h}(f(x,y)) = F(\overline{h}(x), \overline{h}(y))$
 - 2. $\overline{h}(g(x)) = G(\overline{h}(x))$

Note: if given conditions are satisfied then h extends uniquely to a homomorphism

$$(C, f, g) \rightarrow (V, F, G)$$

Before we proof the recursion theorem, we will show how unique readability easily follows from it.

Note: Recusion Theorem implies unique readability for propositional formulas. What we need to check is that the Assumptions of recursion theorem are satisfied.

Claim: The formula building operations are one-to-one. proof of claim. \mathcal{F}_{\vee} is one to one, suppose $(\alpha \vee \beta) = (\delta \vee \gamma)$ then $\alpha \vee \beta) = \delta \vee \gamma$ And α, δ are prop. formulas, so they equal to each other (else one is an initial segment of the other, hence not a prop. fla.) By the same argument we get β is equal to γ .

Claim: Disjointment of ranges proof of claim. \bullet if $(\alpha \vee \beta) = A$ then A starts with (which can not be the case

- if $(\alpha \vee \beta) = (\gamma \to \delta)$ then by the same argument α is γ but \vee and \to are different
- if $(\alpha \vee \beta) = (\neg \gamma)$, then $\alpha \vee \beta) = \neg \gamma$, so α would start with a \neq , -no For all other connectives the proof is similar.

Proof of the Rec Thm.

 $v: C \rightharpoonup V$ is called acceptable if $\forall x, y \in C$

acceptable

 \boxtimes

- 1. if $x \in B \cap dom(v)$ then v(x) = h(x)
- 2. if $f(x,y) \in dom(v)$ then $x,y \in dom(v)$ and similarly for g
 - v(f(x,y)) = F(v(x),v(y))
 - v(g(x)) = G(v(x))

And when $U = \{\Gamma_v : v \text{ acceptable}\}\$, we define $\overline{h} := \text{ function w/ graph } \bigcup \Gamma_v$

 \boxtimes

 \boxtimes

 \boxtimes

Claim 1: \overline{h} is a function. proof of claim.

$$S := \{x \in C : \exists \text{at most one } y \text{ with } (x, y) \in \bigcup \Gamma_v \}$$

We want S = C, we have $S \subseteq C$, it is enough to show that S is inductive.

- $x \in B \cap \text{dom}(v)$ for some v acceptable. then v(x) = h(x) by 1. also $x \notin \operatorname{ran}(f|_{C^2})$ and $x \notin \operatorname{ran}(g|_C)$
- $x, y \in \mathcal{S}$ We want $f(x, y), g(x) \in S$ there are v_1, v_2 acceptable s.t. $f(x, y) \in \text{dom}(v_1) \cap \text{dom}(v_2)$

Claim 2: \overline{h} is acceptable. proof of claim. $\overline{h}: C \to V$ by definition. if $x \in B \cap \text{dom } \overline{h}$ then there is a v acceptable, s.t. $x \in dom(v)$ then $\overline{h}(x) = v(x) = h(x)$ if $f(x,y) \in dom \overline{h}$ then $f(x,y) \in dom(v)$ form some v acceptable. Hence $x, y \in \text{dom}(v)$ and therefore $x, y \in \text{dom}(\overline{h})$ and we have

$$\overline{h}(f(x,y)) = v(f(x,y)) = F(v(x),v(y)) = F(\overline{h}(x),\overline{h}(y))$$

Claim 3: The domain of \overline{h} equals C.

proof of claim. it is enough to show that the domain of \overline{h} is inductive. $B \subseteq \text{dom}(\overline{h})$ bc. $B \subseteq \text{dom}(h)$ where h is acceptable. Now we need to show closure under f, g. suppose $x', y' \in \text{dom}(\overline{h})$ then $x' \in \text{dom}(v_1)$ for some acceptable v_i lets assume $f(x', y') \notin \text{dom}(\overline{h})$ then we extend \overline{h} to a function with the same graph as \overline{h} . Then $\Gamma \cup \{(f(x',y'),F(\overline{x'},\overline{y'}))\}$ is the graph of an acceptable function.

Claim $4:\overline{h}$ is uniquely constructed

proof of claim. Suppose both $\overline{h}, \overline{h}$ work, we schow that $S = \{x \in C : \overline{h}(x) = \overline{h}(x)\}$ is the whole set C. it is enough to show that S is inductive. Let $x \in B$ then $\overline{h}(x) = h(x) = \overline{h}(x)$. Then for $x, y \in S$

$$\overline{h}(f(x,y)) = F(\overline{h}(x), \overline{h}(y)) = F(\overline{\overline{h}}(x), \overline{\overline{h}}(y)) = \overline{\overline{h}}(f(x,y))$$
$$\overline{h}(g(x)) = G(\overline{\overline{h}}(x)) = G(\overline{\overline{h}}(x)) = \overline{\overline{h}}(g(x))$$

and $f(x,y), g(x) \in S$, therefore S is inductive.

1.4 SENTENTIAL CONNECTIVES

tautological equivalence Definition 1.10. Tautological equivalence relation: For α, β prop. sent. we iff $\alpha = \models \beta$ (alternative notation: $\models = \mid$). This defines an equivalent define $\alpha \sim \beta$ relation.

 $\exists \vdash$

Example 1.5.: $A \rightarrow B = \models \neg A \lor B$

A k-place boolean function is a function of the form $f:\{0,1\}^k \to \{0,1\}$ and we define 0, 1 as the 0-place boolean functions.

If α is a prop. sent. then it determines a k-place boolean function, where k is the number of atoms, α is built up from. If α is $(A_1 \vee \neg A_2)$ then $B_{\alpha} : \{0,1\}^2 \to \{0,1\}$ and asign its values corresponding a truth value of α . That is for any TA $v:\{A_1,A_2\}\to\{0,1\}$ we define $B_{\alpha}(v(A_1), v(A_2)) = \overline{v}(\alpha)$

Proposition 4.2. If α, β are prop. sent. with at most n prop. Atoms (combined), then

1.
$$\alpha \models \beta$$
 iff $\forall x \in \{0,1\}^n$ it holds $B_{\alpha}(x) \leq B_{\beta}(x)$

2.
$$\alpha = \beta$$
 iff $\forall x \in \{0,1\}^n$ it holds $B_{\alpha}(x) = B_{\beta}(x)$

3.
$$\models \alpha \text{ iff } \forall x \in \{0,1\}^n \text{ it holds } B_{\alpha}(x) = 1$$

Proposition 4.3. Realisation: Let G be an n-ary boolean function for $n \ge 1$. Then *n*-ary boolean func. there is a prop. sent. α such that. $B_{\alpha} = G$. We say α realizes G.

> Seite 8 von 52 J.Petermann: LogicNotes [V0.5.1-2024-12-11 at 19:12:51]

Proof. 1. if G is constantly equal to 0 then set α to $A_1 \wedge \neg A_1$.

2. Otherwise the set of inputs $\{\vec{x}_1, \vec{x}_2, \dots \vec{x}_k\}$ for which $G(\vec{x}_i) = 1$ holds is not empty. We denote $\vec{x}_i = (x_{i1}, x_{i2}, \dots x_{in})$ and define a matrix $(x_{ij})_{k \times n}$ We further set

$$\beta_{ij} = \begin{cases} A_j & \text{iff } x_{ij} = 1\\ \neg A_j & \text{iff } x_{ij} = 0 \end{cases}$$

Example:

$$(x_{ij}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \leadsto \begin{pmatrix} \neg A_1 & A_2 & \neg A_3 \\ A_1 & A_2 & \neg A_3 \end{pmatrix} = (\beta_{ij})$$

We define γ_i as $\beta_{i1} \wedge \beta_{i2} \wedge \dots \beta_{in}$ for $1 \leq i \leq k$ and α as $\gamma_1 \vee \gamma_2 \vee \dots \gamma_k = \vee_{i=1}^k \gamma_i$ Then $B_{\alpha} = G$ is fulfilled.

Note: α as constructed in the proof is in the so-called Disjunctive normal form (DNF).

Corollary 4.3-A. Every prop. sent. is tautologically equivalent to a sentence in DNF

Corollary 4.3-B. $\{\neg, \land, \lor\}$ is a complete set of logical connectives, i.e. every prop. sent. is tautologically equivalent to a sentence built up from atoms and \neg, \land, \lor .

Proposition 4.4. Both $\{\neg, \land\}$ and $\{\neg, \lor\}$ are complete.

Proof. Its sufficient to show that every k-place boolean function is realisable by a prop. sent. built up using only \neg and \land . This is, because $\alpha \land \beta = \models \neg(\neg \alpha \lor \neg \beta)$ We prove this by induction on the number of disjuctions of a prop. sent. α in DNF. Suppose the statement is true for $k \le n$. For n+1 and $\alpha = \bigvee_{j=1}^{n+1} \gamma_j$ there exists an $\alpha' = \bigvee_{j=1}^{n} \gamma_j$ and

$$\alpha = \bigvee_{j=1}^{n+1} \gamma_j = \models \alpha' \vee \gamma_{n+1} = \models \neg(\neg \alpha' \wedge \neg \gamma_{n+1})$$

Note: We used the observation that, if $\alpha = \mid = \beta$ and we replace a subsequence of α by a so called tautological equivalence then the result is also tautologically equivalent to β

Example 1.6. $\{\rightarrow, \land\}$ is not complete.: Let $\alpha \in PS$ built up from only \rightarrow, \land from the atoms $A_1, \ldots A_n$ then we claim

$$A_1 \wedge A_2 \wedge \cdots \wedge A_n \models \alpha$$

We can also say $\{\rightarrow, \land\}$ is not complete bc. $\neg A$ is not tautological equivalent to a sent. built up from \rightarrow, \land

Proof. Let $C := \{ \alpha \in PS \text{ built up from } \to, \land \text{ and } A_1, \dots A_n \text{ for which } \bigwedge_{i=1}^n A_i \models \alpha \}$ we want to show that $C = \{ \alpha \in PS \text{ built up from } \to, \land \text{ and } A_1, \dots A_n \}$

- We have $\{A_1, A_2, \ldots, A_n\} \subseteq C$
- for $\alpha, \beta \in C$ it holds
 - (1) $A_1 \wedge \cdots \wedge A_n \models \alpha \rightarrow \beta$
 - (2) $A_1 \wedge \cdots \wedge A_n \models \alpha \wedge \beta$

Therefore C is closed under the fla. building operations and we have proven our claim. \Box

Note: $\{\land, \lor, \rightarrow, \leftrightarrow\}$ is still not complete.

Note: The number of n-ary boolean functions existing is 2^{2^n} We define a notation for n=0: \bot (for TV = 0) and \top (for TV = 1) We can conclude that $\{\neg, \rightarrow\}$ and $\{\rightarrow, \bot\}$ are both complete, it holds $\neg A \models A \rightarrow \bot$

Definition 1.11. Satisfiability: A set of prop. sent. Σ is called **satisfiable** if there—satisfiable exists a TA that satisfies every member of Σ .

DNF

Disjunctive normal form

complete

1.5 COMPACTNESS THEOREM

finitely satisfiable

Proposition 5.2. Compactness Theorem: Σ is satisfiable iff every finite subset $\Sigma_0 \subseteq \Sigma$ is satisfiable. (i.e. Σ is finitely satisfiable)

Proof. Let Σ be a finitely satisfiable set of prop. sent. Outline of the proof:

- 1. extend Σ to a maximal finitely satisfiable set Δ of prop. sent.
- 2. construct a thruth assignment using Δ
- 1. Let $\alpha_1, \alpha_2, \ldots$ be an enumeration of all prop. sent. and define Δ_n inductively by $\Delta_0 := \Sigma$

$$\Delta_{n+1} := \begin{cases} \Delta_n \cup \{\alpha_{n+1}\} & \text{if satisfiable} \\ \Delta_n \cup \{\neg \alpha_{n+1}\} & \text{otherwise} \end{cases}$$

Claim: Δ_n is finitely satisfiable for each n

proof of claim. By regular induction over n. Δ_0 is finitely satisfiable. Let us assume Δ_n is finitely satisfiable. If $\Delta_{n+1} = \Delta_n \cup \{\alpha_{n+1}\}$ then we are finished. Otherwise let $\Delta' \subseteq \Delta_n$ be a finite set that $\Delta' \cup \{\alpha_{n+1}\}$ is not satisfiable. It holds $\Delta' \models \neg \alpha_{n+1}$. We assume that $\Delta_n \cup \{\neg \alpha_{n+1}\}$ is not finitely satisfiable. Then there exists a finite subset $\Delta'' \subseteq \Delta_n$ such that $\Delta'' \cup \{\neg \alpha_{n+1}\}$ is (finite and) not satisfiable. It therefore holds $\Delta'' \models \alpha_{n+1}$ But $\Delta' \cup \Delta''$ is a finite subset of Δ_n and by above observations $\Delta' \cup \Delta'' \models \alpha_{n+1}$ and $\Delta' \cup \Delta'' \models \neg \alpha_{n+1}$ A contradiction to the assumption that Δ_n is finitely satisfiable.

We set $\Delta := \bigcup_{i \in \mathbb{N}} \Delta_i$ and get

- (a) $\Sigma \subseteq \Delta$
- (b) (Maximality): for every prop. sent. α it holds $\alpha \in \Delta$ or $\neg \alpha \in \Delta$
- (c) (Satisfiability): Δ is finitely satisfiable. For every finite subset there exists a Δ_n which is a superset.
- 2. Let ν be a TA for the prop. atoms A_1,A_2,\ldots such that $\nu(A)=1$ iff $A\in\Delta$

Claim: For every prop. sent. φ it holds $\overline{\nu}(\varphi) = 1$ iff $\varphi \in \Delta$. proof of claim. Let $S = \{ \varphi \in PS \text{ s.t. } \overline{\nu}(\varphi) = 1 \text{ iff } \varphi \in \Delta \}$.

- $PS \supset S$ is clear.
- $PS \subseteq S$
 - (a) $\{A_1, A_2 \dots\} \subseteq S$ by definition of ν
 - (b) closure under ϵ_{\neg} : Let $\varphi \in S$ then we get by maximality and satisfiability of Δ :

$$\overline{\nu}(\neg \varphi) = 1$$
 iff
$$\overline{\nu}(\varphi) = 0$$
 iff
$$\varphi \notin \Delta$$
 iff
$$(\neg \varphi) \in \Delta$$

closure under ϵ_{\rightarrow} : Let $\varphi_1, \varphi_2 \in S$ similarly

$$\begin{split} \overline{\nu}(\varphi_1 \to \varphi_2) &= 0 \\ \text{iff} \quad \overline{\nu}(\varphi_1) &= 1 \text{ and } \overline{\nu}(\varphi_2) = 0 \\ \text{iff} \quad \varphi_1 \in \Delta \text{ and } \varphi_2 \notin \Delta \\ \text{iff} \quad (\varphi_1 \to \varphi_2) \notin \Delta \end{split}$$

 \boxtimes

The closure under the other fla. building operations are similar.

By this claim $\overline{\nu}$ satisfies Σ .

Corollary 5.2-A. If $\Sigma \models \tau$ then there exists a finite subset $\Sigma' \subseteq \Sigma$ s.t. $\Sigma' \models \tau$

Proof. Recall: $\Sigma \models \tau$ iff $\Sigma \cup \{\neg \tau\}$ is not satisfiable. Suppose $\Sigma \models \tau$ but no finite subset does.

Then $\forall \Sigma' \subseteq \Sigma$ finite $\Sigma' \cup \{\neg \tau\}$ is satisfiable. By the compactness theorem $\Sigma \cup \{\neg \tau\}$ is satisfiable which is a contradiction to $\Sigma \models \tau$.

Note: 5.2 and 5.2-A are equivalent.

CHAPTER 2

Predicate - / first order logic

Definition 2.1. A First order Language: consists of infinetely many distinct symbols such that no symbol is a proper initial segment of another symbol and the symbols are divided into 2 groups:

1. logical symbols (These elements have a fixed meaning and the equivalence symbol = is optional)

$$(,), \neg, \to, v_1, v_2, \ldots, =$$

- 2. parameters
 - rameters parameters
 - \bullet quantifier symbol: \forall (the range is subject of interpretation)
 - $\bullet\,$ predicate symbols: for every n>0 we have a set of n-ary predicates P
 - constant symbols: Some set of constants (could also be \emptyset)
 - function symbols: for every n > 0 we have a set of n-ary function symbols

Note:

- We could drop constants and instead introduce 0-ary function symbols
- to specify language we need to specify the parameters and say if = is included
- In the book [1] they assume that some n-place predicate symbol is present for some n.

Example 2.1.:

- $\mathcal{L}_{set} = \{ \in \},$ = included and the binary predicate symbol \in "element in"
- $\mathcal{L}_{arith} = \{<, 0, S, E, +, \cdot\}$
 - = included
 - < is a binary rel. symbol
 - 0 is a constant
 - S is a unary function symbol
 - E exponentiation function symbol
 - $+, \cdot$ binary function symbols
- $\mathcal{L}_{ring} = \{=, +, \cdot, -, 0, 1\}$
 - = included
 - 0,1 are constants
 - is a unary function symbol (additive inverse)
 - $+, \cdot$ binary function symbols

logical symbols

2.1 FORMULAS

Definition 2.2. Expression: An expression is any finite sequence of symbols. There exist two kinds of expressions that makes sense "grammatically"

Terms: – points to an object

- they are built up from variables and constants using function symbols

Formulas: - They express assertions about objects,

- they are built up from atomic formulas
- atomic formulas these are built up from terms using predicate symbols and
 if included

Definition 2.3. Term Building Operations: For every n > 0 and for every n-place function symbol f let \mathcal{F}_f be an n-place term building operation, that is $\mathcal{F}_f(t_1, \ldots t_n) := ft_1, \ldots t_n$ (polish notation for $f(t_1, \ldots t_n)$). The Set of terms we then define as the set of expressions that are built up from variables and constants by applying the term building operations finitely many times.

Example 2.2.: Let $\mathcal{L} = \mathcal{L}_{arith}$ then the set of terms will contain 0, v_{42} , S0, SSS0, Sv_1 , $+SOv_1$

Definition 2.4. Atomic formula: Any expression of the form

 $= t_1 t_2$ or $Pt_1, \ldots t_n$, where $t_1, \ldots t_n$ are terms and P is an n-ary predicate symbol

Note: Atomic formulas are not defined inductively.

Example 2.3.: cont. = v_1v_{42} , < S0SS0 are atomic formulas, but $\neg = v_1v_{42}$ is not.

Definition 2.5. Formulas: We define ε_{\neg} , $\varepsilon_{\rightarrow}$, Q_i to be the fla. building operations, defined as follows $\varepsilon_{\neg}(\alpha) := (\neg \alpha)$, $\varepsilon_{\rightarrow} := (\alpha \rightarrow \beta)$ and $Q_i(\gamma) := \forall v_i \gamma$. The set of formulas is the set of expressions built up from atomic formulas by applying the fla. building operations finitely many times.

Example 2.4.: $cont. \ \forall v_1 (= Sv_1 0)$ is a formula we get by applying Q_1 on the atomic formula $= Sv_1 0$.

Free variables

∃ quantifier

bounded variable

Example 2.5.: We introduce the \exists quantifier by defining $\exists y \alpha$ means $\neg \forall y \neg \alpha$.

"Every non-zero natual number is a successor" $\forall x(x \neq 0 \rightarrow \exists y S(y) = x)$ is different then "if a number is not 0, then it is a successor" $x \neq 0 \rightarrow \exists y S(y) = x$. x occurs bounded in the first formula, for the latter x occurs free in the fla.

If you have an expression without free variables, it is either true or false, on the other hand if a variable occurs free in a formula, the truth value of it depends on the variable itself.

Definition 2.6. Free variables: Let x be a variable. x occurs free in φ is defined inductively as follows:

- 1. If φ is an atomic fla. then x occurs free in φ iff x occurs in φ
- 2. If $\varphi = (\neg \alpha)$ then x occurs free in φ iff x occurs free in α
- 3. If $\varphi = (\alpha \to \beta)$ then x occurs free in φ iff x occurs free in α or β
- 4. If $\varphi = \forall v_i \alpha$ then x occurs free in φ iff x occurs free in α and $x \neg v_i$

sentence A formula α is called a sentence, if no variable occurs free in α

 $_{\rm term}$

Note: The above definition makes sense thanks to the recursion theorem. define the function h on the set of atoms: $h(\alpha) =$ the set of var occ in fla α , which is the set of all variables v_i that occur free in α . we now want to extend h to \overline{h} , which is the set of all formulas.

- $\overline{h}(\neg \alpha) = \overline{h}(\alpha)$
- $\overline{h}(\alpha \to \beta) = \overline{h}(\alpha) \cup \overline{h}(\beta)$
- $\overline{h}(Q_i(\alpha)) = \overline{h}(\alpha) \setminus \{v_i\}$

We say x occurs free in α iff $x \in \overline{h}(\alpha)$.

Note: We will now use $\neg, \land, \lor, \rightarrow, \leftrightarrow, \exists v_i$ (all can be expressed in terms of \neg, \rightarrow, Q_i .) We will sometimes drop the (,) and not always be using polish notation.

2.2 SEMANTICS OF FIRST ORDER LOGIC

The equivalent scheme to our TA in predicate logic. The meaning of formulas is given by structures, which also determine the scope of the quantifier \forall , the meaning of all parameters.

Definition 2.7. structure: A structure \mathcal{A} for a first order language \mathcal{L} is a non-empty set set A called **universe** or **underlying set of** \mathcal{A} together with an interpretation of each parameters of \mathcal{L} i.e.

- \forall ranges over the universe A
- for an n-ary pred. symbol $P \in \mathcal{L}$ its interpretation $P^{\mathcal{A}}$ is a subset of A^n

interpretation

- for a constant $c \in \mathcal{L}$ its interpretation $c^{\mathcal{A}}$ is an element of A
- for an n-ary function symbol $f \in \mathcal{L}$ its interpretation $f^{\mathcal{A}}$ is a total function

$$f^{\mathcal{A}}:A^n\to A$$

Note: $A \neq \emptyset$, and all functions $f^{\mathcal{A}}$ are total.

Example 2.6.: Let $\mathcal{L} = \{\in\}$ where \in is a binary relation "An example of an \mathcal{L} structure is $(\mathbb{N}, \in^{\mathbb{N}})$ where $\in^{\mathbb{N}} = \{(x, y) \in \mathbb{N}^2 : x < y\}$

Definition 2.8. Assignent: Let φ be a \mathcal{L} -fla. and \mathcal{A} a \mathcal{L} -structure. Let V be the set of all variables in \mathcal{L} and $s:V\to A$ an assignment. We define the extention \overline{s} of s to the set assignment of all \mathcal{L} -terms by

- if $x \in V$ then $\overline{s}(x) := s(x)$
- for $c \in \mathcal{L}$ a constant symbol, then $\overline{s}(c) := c^{\mathcal{A}}$
- for $t_1, \ldots t_n$ \mathcal{L} -terms and $f \in \mathcal{L}$ an n-ary function symbol, then

$$\overline{s}(ft_1 \dots t_n) := f^{\mathcal{A}}(\overline{s}(t_1), \dots \overline{s}(t_n))$$

Note: in the previous definition point 3. for n = 1 yields a commutative diagram.

Proposition 2.2. For any given assignment s there exists a unique extention \overline{s} as in the previous definition.

Proof. will follow from recursion theorem and unique decomposition of terms. \Box

Definition of truth

- $\models_{\mathcal{A}}$ Definition 2.9. Satisfy: We define ' \mathcal{A} satisfies φ with s' and write $\mathcal{A} \models \varphi[s]$ or $\models_{\mathcal{A}} \varphi[s]$ inductively over the complexity of the formula φ
 - 1. if φ is atomic:
 - $\mathcal{A} \models = t_1, t_2 [s] \text{ iff } \overline{s}(t_1) = \overline{s}(t_2)$
 - $\mathcal{A} \models Pt_1, \dots t_n [s] \text{ iff } (\overline{s}(t_1), \dots \overline{s}(t_2)) \in P^{\mathcal{A}}$
 - 2. suppose $\mathcal{A} \models \varphi[s]$ and $\mathcal{A} \models \psi[s]$ are defined, then
 - $\mathcal{A} \models \neg \varphi [s] \text{ iff } \mathcal{A} \not\models \varphi [s]$
 - $\mathcal{A} \models \varphi \rightarrow \psi [s] \text{ iff } \mathcal{A} \models \psi [s] \text{ or } \mathcal{A} \not\models \varphi [s]$
 - $\mathcal{A} \models \forall x \varphi [s]$ iff for all $a \in A$ $\mathcal{A} \models \varphi[s(x|a)]$ where

$$s(x|a)(v) = \begin{cases} s(v) \text{ if } v \neq x \\ a \text{ if } v = x \end{cases}$$

Example 2.7.: $\mathcal{L} = \{ \forall, \leq, S, 0 \}$ a \mathcal{L} -structure then could be $\mathcal{N} = (\mathbb{N}, \leq^{\mathcal{N}}, S^{\mathcal{N}}, 0^{\mathcal{N}})$ together with an assignment $s : v_n \mapsto n-1$ then:

- $s(v_1) = 0$
- $\overline{s}(0) = 0^{\mathcal{N}}$ (a constant is always mapped to its realisation, the interpretation of constant 0 in the structure \mathcal{N})
- $\overline{s}(Sv_1) = S^{\mathcal{N}}(\overline{s}(v_1)) = S^{\mathcal{N}}(0) = 1$
- $\mathcal{N} \models \forall v_1(S(v_1) \neq v_1) [s]$ iff for all $a \in \mathbb{N}$ we have that $\mathcal{N} \models (S(v_1) \neq v_1)[s(v_1|a)]$ iff

iff for all $a \in \mathbb{N}$ we have $S^{\mathcal{A}}(a) \neq a$, which is true in our structure of the natural numbers.

• Is it true in \mathcal{N} that $\mathcal{N} \models S(0) \leq S(v_1)$ [s]? Yes because

$$\mathcal{N} \models S(0) \le S(v_1) [s]$$
 iff $1 \le 1$

Note: To know wheter $\mathcal{A} \models \varphi[s]$ it suffices to know where s maps the variables that are free in φ

Proposition 2.3. Coincidence Lemma: Suppose $s_1, s_2 : V \to A$ agree on all variables that occur free in φ then

$$\mathcal{A} \models \varphi [s_1] \text{ iff } \mathcal{A} \models \varphi [s_2]$$

Proof. By complexity of φ

- 1. if φ is $Pt_1, \ldots t_n$ note: any var that occur in φ occur free in φ , so s_1, s_2 agree on all variables that occur in the terms $t_1, \ldots t_n$.
 - So we Claim: for t a term, s_1, s_2 assignments that agree on all variables of t then $\overline{s}_1(t) = \overline{s}_2(t)$

 $proof\ of\ claim.$ By complexity of t

- $t = v_m$ then $\overline{s}_1(t) = s_1(v_m) = s_2(v_m) = \overline{s}_2(t)$
- t = c then $\overline{s}_1(t) = c^{\mathcal{A}} = \overline{s}_2(t)$
- $t = ft_1 \dots t_n$ inductively, assume $\overline{s}_1(t_i) = \overline{s}_2(t_i)$ for all $1 \le i \le n$ then TODO

 \boxtimes

- 2. if φ is = t_1, t_2 is similar
- 3. if φ is $\neg \alpha$ then $\mathcal{A} \models \neg \alpha [s_1]$ iff $\mathcal{A} \not\models \alpha [s_1]$ iff $\mathcal{A} \not\models \alpha [s_2]$ iff $\mathcal{A} \models \neg \alpha [s_1]$

- 4. if φ is $\alpha \to \beta$ then $\mathcal{A} \models \alpha \to \beta [s_1]$ iff .. or .. iff for s2 iff ... or ..
- 5. if φ is $\forall x\alpha$ then the assumption is that s_1, s_2 .. the free variables of α are the free variables of φ except for x. but because $s_1(x|a) = s_2(x|a)$ they both agree on all free variables of α .

$$\mathcal{A} \models \forall x \varphi \ [s_1] \text{ iff for all } a \in A \mathcal{A} \models \varphi \ [s_1(x|a)]$$
$$\text{iff for all } a \in A \mathcal{A} \models \varphi \ [s_2(x|a)]$$
$$\text{iff } \mathcal{A} \models \forall x \varphi \ [s_2]$$

Notation: $\mathcal{A} \models \varphi \text{TODO}$ means that all free variables of φ are among $v_1, \ldots v_n$ and $\mathcal{A} \models \varphi[s]$ whenever $s(v_i) = a_i$ for all $1 \leq i \leq n$.

Corollary 2.3-A. If σ is a sentence then $\mathcal{A} \models \sigma[s]$ for all $s : V \to A$ or $\mathcal{A} \not\models \sigma[s]$ for all $s : V \to A$.

Notation: $A \models \sigma$ and we say " σ is true in A, A is a model of σ or σ holds in A."

Note: If σ is a sentence then we can not have $\mathcal{A} \models \sigma$ and $\mathcal{A} \not\models \sigma$ because $A \neq \emptyset$.

Definition 2.10. Model: \mathcal{A} is a model of a set of sentences Σ iff for every sentence $\sigma \in \Sigma$ it holds $\mathcal{A} \models \sigma$

Example 2.8.: $\mathcal{L} = \{0, 1, +, -, \cdot\}$ A realisation could be $\mathcal{R} = (\mathbb{R}, 0, 1, +, -, \cdot)$ or $\mathcal{C} = (\mathbb{C}, 0, 1, +, -, \cdot)$ then the sentence $\sigma : \exists x (x \cdot x = -1)$ then $\mathcal{R} \not\models \sigma$ but $\mathcal{C} \models \sigma$

Note: $\land, \lor, \leftrightarrow, \exists$ work as expected. That is $\mathcal{A} \models (\alpha \land \beta)$ [s] iff $\mathcal{A} \models \alpha$ [s] and $\mathcal{A} \models \beta$ [s] $\mathcal{A} \models (\alpha \lor \beta)$ [s] iff $\mathcal{A} \models \alpha$ [s] or $\mathcal{A} \models \beta$ [s] $\mathcal{A} \models \exists x \alpha$ [s] iff $\mathcal{A} \models \neg \forall x \neg \alpha$ [s] iff $\mathcal{A} \not\models \forall x \neg \alpha$ [s]

iff it is not true that for all $a \in A$ $A \models \neg \alpha[s(x|a)]$

iff there is $a \in A$ such that $\mathcal{A} \models \alpha[s(x|a)]$

2.3 LOGICAL IMPLICATION

Let Γ be a set of \mathcal{L} -formulas, φ a \mathcal{L} -formula.

Definition 2.11. Logical implication: $\Gamma \models \varphi$ " Γ logically implies φ " if for every L-structure A and for every $s: V \to A$ if $A \models \gamma$ [s] for every $\gamma \in \Gamma$ then $A \models \varphi$ [s]

Definition 2.12. Logical equivalence: φ, ψ are called logically equivalent if $\varphi \models \psi$ and $\psi \models \varphi$.

Definition 2.13. Valid: φ is called valid iff $\models \varphi$ i.e. $\varnothing \models \varphi$ i.e. for every \mathcal{L} -structure \mathcal{A} and every $s: V \to A$ it is $\mathcal{A} \models \varphi[s]$

Example 2.9.:

- 1. $\forall x_1 P x_1 \models P x_2$ Suppose $\mathcal{A} \models \forall x_1 P x_1 [s]$. then for all $a \in A$ it is $\mathcal{A} \models P x_1 [s(x_1|a)]$ in particular, $a \in P^{\mathcal{A}}$ for $a = s(x_2)$
- 2. $\forall Px_2 \not\models \forall x_1Px_1$ We need a counterexample to $\forall Px_2 \models \forall x_1Px_1$. Let $A = \{a_1, a_2\}$ $s(x_2) = a_1$ and $P^{\mathcal{A}} = \{a_1\}$ then $\mathcal{A} \models Px_2 [s]$.
- 3. Is the following valid? $\models \exists x(Px \rightarrow \forall yPy)$ yes
- 4. $\Gamma, \alpha \models \varphi$ iff $\Gamma \models \alpha \rightarrow \varphi$. (on next problem set, quite impointant)

2.4 DEFINABILITY IN A STRUCTURE

Definition 2.14. definability in a structure: We say that a general n-ary relation P on A (we will just call it P, it does not have to be in the language) is definable in A, if there is a \mathcal{L} -formula φ with free variables among $\{v_1, \ldots, v_n\}$ such that

$$P = \{(a_1, \dots a_n) : \mathcal{A} \models \varphi \llbracket a_1, \dots a_n \rrbracket \}$$

We also say that φ defines P in the structure \mathcal{A} .

Example 2.10. :

- 1. x = x would define the entire universe.
- 2. $\neg x = x$ would define the empty set.

Example 2.11. :

- 1. TODO
- 2. $\mathcal{R} = (\mathbb{R}, 0, 1, +, -, \cdot)$ Q: is $[0, \infty)$ definable in \mathcal{R} Yes because $\exists y(y \cdot y = x)$ Indeed we can even define the \leq relation on \mathbb{R}^2 by $x \leq z : \Leftrightarrow \exists y(x + y \cdot y = z)$

Definition 2.15. definability of classes of structures: Let Σ be a set of sentences. τ a sentence. We will say that the class of models of Σ is the class $\operatorname{Mod} \Sigma = \{\mathcal{A} : \mathcal{A} \models \Sigma\}$. Let K be a class of structures. We are going to call K an elementary class (EC) if there is a single sentence τ such that $K = \operatorname{Mod} \tau$. K is called an elementary class in the wider sence $(\operatorname{EC}_{\Delta})$ if there is a set of sentences Σ such that $K = \operatorname{Mod} \Sigma$

Example 2.12. : $\mathcal{L} = \{0, 1, +, \cdot\}$ τ is a sentence that expresses the field axioms (the unary inverse functions are not in our language but are definable.) Mod τ is the class of all the fields, which is EC. the class of all fields of characteristic 0. Let $\sigma_p : \neg(1 + \cdots + 1 = 0)$ then $\Sigma = \{\tau\} \cup \{\sigma_p : p \in \mathbb{P}\}$ yields Mod Σ is the class of fields with characteristic 0, therefore EC_{Δ} , we will later see that it is not EC.

Example 2.13.: Let E be a binary relation, $\mathcal{L} = \{E\}$ then a graph is a realisation $\mathcal{G} = (V, E^{\mathcal{G}})$ such that $v \neq \emptyset$, $E^{\mathcal{G}}$ is irreflexive and symmetric. By definition the universe is not empty, we still have to check irreflexive and symmetric.

- irreflexive: $\forall x(\neg xEx)$
- symmetric: $\forall x \forall y (xEy \rightarrow yEx)$

We take τ to be $\forall x \forall y ((\neg x E x) \land (x E y \rightarrow y E x))$ Then Mod τ is the class of all graphs and is EC Note: the class of all finite graphs is neither EC nor EC_{\Delta}, proof later.

We want to have some notion that tells us when two graphs are the same or at least similar.

2.5 Homomorphisms of structures

Definition 2.16. Homomorphism: Suppose that \mathcal{A}, \mathcal{B} are two \mathcal{L} -structures. then a Homomorphism of \mathcal{A} into \mathcal{B} is a map $h: A \to B$ that satisfy the below conditions

- for every *n*-ary predicate $P \in \mathcal{L}$ it is $(a_1, \ldots a_n) \in P^{\mathcal{A}}$ iff $(h(a_1), \ldots h(a_n)) \in P^{\mathcal{B}}$ (this def. a strong Homomorphism, other textbooks maybe only reqire \to direction)
- for every n-ary function $f \in \mathcal{L}$ and for all $\underline{a} = (a_1, \dots a_n) \in A^n$ it holds $h(f^{\mathcal{A}}(\underline{a})) = f^{\mathcal{B}}(h(a_1), \dots h(a_n))$
- for every constant symbol $c \in \mathcal{L}$ it is $h(c^{\mathcal{A}}) = c^{\mathcal{B}}$ (could also skip this if we consider constants as 0-ary functions)

Note: Intuatively a Homomorphism of \mathcal{A} into \mathcal{B} is a map $A \to B$ that preserve all function and relation symbols in some sense, (imp: not the definable relations)

Definition 2.17. Isomorphism:

- $h: A \to B$ is called isomorphism of \mathcal{A} into \mathcal{B} if h is a Homomorphism and injective (in other textbooks: an isomorphic embedding of \mathcal{A} into \mathcal{B})
- $h:A\to B$ is called isomorphism of $\mathcal A$ onto $\mathcal B$ if h is a Homomorphism and bijective $A\to B$

isomorphic

• \mathcal{A} and \mathcal{B} are called isomorphic if there is an isomorphism of \mathcal{A} onto \mathcal{B}

Note:

Example 2.14.:
$$\mathcal{L} = \{+,\cdot\}$$
 $\mathcal{N} = (\mathbb{N}, +^{\mathbb{N}}, \cdot^{\mathbb{N}})$ and $\mathcal{B} = (B, +^{\mathcal{B}}, \cdot^{\mathcal{B}})$ where $B = \{0, 1\}$ and $\frac{+^{\mathcal{B}}}{e} = 0$ and $\frac{-^{\mathcal{B}}}{e} =$

need at first that $h(m+n) = h(m) + {}^{\mathcal{B}} h(n)$ and $h(m \cdot n) = h(m) \cdot {}^{\mathcal{B}} h(n)$. it is indeed a Homomorphism.

Definition 2.18. Substructure: Suppose we have two \mathcal{L} structures and $A \subseteq B$ hen \mathcal{A} is a substructure of \mathcal{B} (notation: $\mathcal{A} \subseteq \mathcal{B}$ or we might say \mathcal{B} is an extention of \mathcal{A}) if

- for every *n*-ary relation $P^{\mathcal{A}} = P^{\mathcal{B}}|_{A}$
- for every *n*-ary function $f^{\mathcal{A}} = f^{\mathcal{B}}|_{A}$
- for every constant symbol c in \mathcal{L} it is $c^{\mathcal{A}} = c^{\mathcal{B}}$

Example 2.15. : $\mathcal{L} = \{\leq\}$ then $\mathcal{N} = (\mathbb{N}, \leq)$ and $\mathcal{P} = (\mathbb{N}^+, \leq^{\mathcal{P}})$ where $\leq^{\mathcal{P}}$ is the restriction of \leq to the positive natual numbers. $\mathcal{P} \subseteq \mathcal{N}$ and there exists a isomorphic embedding $id : \mathbb{N}^+ \to \mathbb{N}$ from \mathcal{P} into \mathcal{N} They are even isomorphic $(h : \mathbb{N} \to \mathbb{N}^+, h(n) = n+1)$ so in fact $\mathcal{P} \cong \mathcal{N}$.

Example 2.16. : $(\mathbb{O}, +) \subset (\mathbb{C}, +)$

Note: If $A \subseteq \mathcal{B}$ then in particular A is closed under all constant and functions in \mathcal{B} So suppose that \mathcal{B} is a substructure and $A \subseteq \mathcal{B}$ and $A \neq \emptyset$ and A is closed under $f^{\mathcal{B}}$, $c^{\mathcal{B}}$ Can then A be made into a substructure A of \mathcal{B} . f^{A} would be the restriction of $f^{\mathcal{B}}$ to A^{n} , constants $c^{A} = c^{\mathcal{B}}$ and if $P \in \mathcal{L}$ is an n-ary predicate then P^{A} should be $P^{\mathcal{B}} \cap A^{n}$. If \mathcal{L} has no const. or fuction symbols then any subset can be made into a substructure of a structure on \mathcal{L} .

Our next question will be: what is the relation of the above notions with truth and satisfiability The answer will be given by the so called Homomorphism theorem.

Proposition 5.2. Homomorphism theorem: h homomorphism of \mathcal{A} into $\mathcal{B}, s: V \to A$ then

- 1. for all terms t it is $h(\overline{s}(t)) = \overline{(h \circ s)}(t)$
- 2. φ a fla. that is quantifier free and does not include = then $\mathcal{A} \models \varphi[s]$ iff $\mathcal{B} \models \varphi[h \circ s]$
- 3. if h is additionally injective then we can drop the requirement " no =".
- 4. if h is homomorphism of A onto B then we can drop the requirement "q.f." in (b)

Proof. 1. problem set

- 2. φ : Pt then $\mathcal{A} \models Pt$ [s] iff $\overline{s}(t) \in P^{\mathcal{A}}$ iff $h(\overline{s}(t)) \in P^{\mathcal{B}}$ iff $\overline{(h \circ s)}(t) \in P^{\mathcal{B}}$ iff $\mathcal{B} \models Pt$ $[h \circ s]$
 - $\varphi : \neg \psi \ \mathcal{A} \models \neg \psi \ [s] \text{ iff } \mathcal{A} \not\models \psi \ [s] \text{ iff } \mathcal{A} \not\models \psi \ [s] \text{ iff}$
 - $\varphi:\psi\to\alpha$
- 3. $\mathcal{A} \models = t_1 t_2 [s] \text{ iff } \overline{s}(t_1) = \overline{s}(t_2) \text{ iff } h(\overline{s}(t_1)) = h(\overline{s}(t_2)) \text{ iff } (\text{by (a)}) \overline{(h \circ s)}(t_1) = \overline{(h \circ s)}(t_2) \text{ iff } \mathcal{B} \models = t_1 t_2 [h \circ s]$

4. $\varphi \ \forall s : V \to A \ \mathcal{A} \models \varphi [s] \ \text{iff} \ \mathcal{B} \models \varphi [h \circ s], \ \text{want} \ \mathcal{A} \models \forall x \varphi [s] \ \text{iff} \ \mathcal{B} \models \forall x \varphi [h \circ s] \ 1. \ \mathcal{B} \models \forall x \varphi [(h \circ s)] \ \text{iff for all} \ s : V \to A, \ a \in A \ (\text{req. surjectivity}) \ \text{it is} \ \mathcal{B} \models \varphi [(h \circ s)(x|h(a))] \ \text{iff} \ (\text{inductive assumption}) \mathcal{A} \models \varphi [s(x|a)] \ \text{because} \ a \ \text{was} \ \text{arbitrary} \ \text{it is} \ \mathcal{A} \models \forall x \varphi [s] \ 2. \ \text{Suppose} \ \mathcal{B} \not\models \forall x \varphi [(h \circ s)] \ \text{then there exists} \ a \ b \in B \ \text{such that} \ \mathcal{B} \models \neg \varphi [(h \circ s)(x|b)] \ \text{by surjectivity} \ \text{we can find} \ a \in A \ \text{such that} \ h(a) = b \ \text{and it is} \ \mathcal{B} \models \neg \varphi [(h \circ s)(x|h(a))] \ \text{By the inductive assumption} \ \mathcal{A} \models \neg \varphi [s(x|a)] \ \text{and} \ \mathcal{A} \not\models \forall x \varphi [s]$

Note: $\mathcal{A} \cong \mathcal{B}$ then \mathcal{A} and \mathcal{B} satisfy exactly the same sentences.

Definition 2.19. elementarily equivalent: \mathcal{A} and \mathcal{B} are called elementarily equivalent ($\mathcal{A} \equiv \mathcal{B}$) if \mathcal{A} and \mathcal{B} satisfy the same sentences.

Note: If $\mathcal{A} \cong \mathcal{B}$ implies $\mathcal{A} \equiv \mathcal{B}$ The converse is not true. For instance DLO (dence linear order) w/o endpoints is complete, so two structures on DLO are equivalent $(\mathbb{Q}, <) \equiv (\mathbb{R}, <)$ but they are not isomorphic because the universes have diffrent cardinality.

Example 2.17. : $\mathcal{N} = (\mathbb{N}, \leq)$ and $\mathcal{P} = (\mathbb{N}^{>0}, \leq)$ $h: n \mapsto n-1: \mathcal{P} \to \mathcal{N}$ isom. so in part $\mathcal{N} \equiv \mathcal{P}$. but $id: \mathcal{P} \to \mathcal{N}$ is only isom embedding, so for example $\forall y(x \neq yx \leq y) \ \mathcal{P} \models \alpha \ [1]$ but $\mathcal{N} \not\models \alpha \ [1]$ but $\mathcal{N} \models \alpha \ [h(1)]$

Definition 2.20. Automorphism: An automorphism is an isomorphism of the form $h:A\to A$ from $\mathcal A$ onto $\mathcal A$

Note: Every structure has a trivial automorphism $id: A \to A$

Definition 2.21. Rigid: If the only automorphism on \mathcal{A} is the trivial automorphism, then \mathcal{A} is called rigid.

Example 2.18.: If every element is definable then the structure is rigid. For example $(\mathbb{N}, 0, S)$ and $(\mathbb{N}, <)$ every element is definable, therefore the structures are rigid.

Corollary 5.2-A. Let h be atutom of A, $R \subseteq A^n$ definable in A then $\forall a \in A^n a \in R$ iff $(h(a_1), \ldots h(a_n)) \in R$ Suppose φ defines R in A we want $A \models \varphi[a]$ iff $A \models \varphi[h(a_1), \ldots h(a_n)]$ which is true by the homom. thm.

Note: Corol can be used to show that some $R \subseteq A^n$ is not definable in A

Example 2.19.: $\mathcal{R} = (\mathbb{R}, <)$ then \mathbb{N} is not definable in \mathcal{R} . What do automorphisms of \mathcal{R} look right? $h : \mathbb{R} \to \mathbb{R}$ is a bijection and x < y iff h(x) < h(y) so h is strictly increasing. for example $x \mapsto x + \frac{1}{2}$ or $x \mapsto x^3$.

2.6 UNIQUE READABILITY FOR TERMS

Definition 2.22.: We define K on symbols from which terms are built up (variables, constants, function symbols). K(s) = 1 - n where s is a symbol and n is the number of terms that need to follow s in order to obtain a term. K(x) = 1 = K(c) and K(f) = 1 - n where f is an n-ary function symbol We now extend K to the set of all expressions which are built up from above symbols (variables, constants, function symbols): $K(s_1, \ldots s_n) = K(s_1) + \cdots + K(s_n)$ (unique because no symbol is a finite sequence of other symbols)

Lemma 6.2. t a term then K(t) = 1

Proof. K(x) = 1 = K(c) and $K(ft_1, ...t_n) = 1 - n + n = 1$

Definition 2.23.: A terminal segment of string of symbols $(s_1, \ldots s_n)$ is $(s_k, s_{k+1}, \ldots s_n)$ for some $1 \le k \le n$.

Lemma 6.3. Any terminal segment of terms is a concatenation of one or more terms.

Proof. True for variables and constants. $ft_1 \dots t_n$ the only non trivial case is $t'_k t_{k+1} \dots t_m$ where t_k is $t''_k t'_k$

Corollary 6.3-A. If t_1 is a proper initial segment of a term t then its $K(t_1) < 1$. proof: let t be t_1t_2 where t_1 is a proper initial segment then K(t) = 1 and $K(t_2) \ge 1$ therefore $K(t_1) \le 0$

Unique readability for terms

The set of terms is freely generated from the set of variables (Var), the set of constant symbols (Const) by the term building operations \mathcal{F}_f for the function symbols f.

Proof. • disjointment of ranges: Let f and g be two distinct function symbols then $\operatorname{ran} \mathcal{F}_f \cap \operatorname{ran} \mathcal{F}_g = \emptyset \operatorname{ran} \mathcal{F}_f \cap Var = \emptyset \operatorname{ran} \mathcal{F}_f \cap Const = \emptyset$

• $\mathcal{F}_f|_{\text{terms}}$ are 1-1: assume $ft_1 \dots t_n = ft'_1 \dots t'_n$ and assume $t_1 \neq t'_1$ then one is an initial segment of the other. Then its K-value has to be less than 1 so it is not a term. $t_1 = t'_1 \dots t_n = t'_n$.

Definition 2.24.: Extend K as follows: $K(() = -1 K()) = 1 K(\forall) = 1 K(\neg) = 0$ $K(\rightarrow) = -1 K(P) = 1 - n$ for an n-ary rel. symb. P. K(=) = -1. Extend K to the set of all expressions by $K(s_1, \ldots s_n) = K(s_1) + K(s_n)$ The idea is that K tells us the number of symbols that at least need to follow to obtain a formula.

Lemma 6.4. for every formula φ it is $K(\varphi) = 1$

Proof. induction on φ

Lemma 6.5. for every proper initial segment α' of a fla. α we have $K(\alpha') < 1$

Corollary 6.5-A. No proper initial segment of a fla. is a fla.

The set of flas. is freely generated from the set of atomic flas. by operations $\mathcal{E}_{\neg}, \mathcal{E}_{\rightarrow}, Q_i$

Proof. • \mathcal{E}_{\neg} , Q_i are one to one

- $\mathcal{E}_{\rightarrow}|_{\mathrm{Flas.}}$ then itemwise and use of prev. lemmas
- p.w. disjointness of ranges

2.7 A PARSING ALGORITHM FOR FIRST ORDER LOGIC

2.8 DEDUCTIONS (FORMAL PROOFS)

Definition 2.25. Modus Ponens: We will use one rule of interference, Modus Ponens(MP).

Our notation will be:

 $\frac{\alpha,\alpha\to\beta}{\beta}$

And it reads as follwos: "If α and $\alpha \to \beta$ then β ." This rule is the formalisation of the rather informal statement: "If we know a statement α is true, and this statement implies another statement β , then β must also be true."

Definition 2.26. Deduction: A formal proof (decuction) of a fla φ from a set of formulas Σ is a finite sequence of formulas $(\alpha_0, \alpha_1, \ldots, \alpha_n)$ such that $\alpha_n = \varphi$ and for every i < n α_i is either a logical axiom or $\alpha_i \in \Sigma$ or α_i is obtained from α_k and α_l where $0 \le k, l < i$ by the use of MP, in particular $\alpha_k = \beta \to \alpha_i$ and $\alpha_l = \beta$. If a deduction of φ from Σ exists, we say " φ is deducible from Σ " or " φ is a theorem of Σ ".

Note: Deductions are not unique. However we do have an induction principle: If a set of formulas contains all logical axioms and all of Σ and is closed under MP, then it contains all theorems of Σ .

MP

Seite 19 von 52

Logical axioms

Definition 2.27. Generalization: ψ is a generalization of φ if $\psi = \forall x_{i_1} \dots \forall x_{i_k} \varphi$

Definition 2.28. Logical axioms: Let x, y be variables and α, β formulas. then the logical axioms are generalizations of the following formulas:

- 1. tautologies
- 2. $\forall x \alpha \to \alpha_t^x$ where t is substitutable for x in α
- 3. $\forall x(\alpha \to \beta) \to (\forall x\alpha \to \forall x\beta)$
- 4. $\alpha \to \forall x \alpha$ where x does not occur free in α

if our language contains = then

- 1. x = x
- 2. $x = y \to (\alpha \to \alpha')$ where α' is obtained from α by replacing some of the occurrences of x with y.

Ad axiom group (2), Substitution:

Definition 2.29. Substitution: Let α, β be formulas, x a variable and t a term then α_t^x is expression obtained from α by substituting t for x We define substitution inductive as follows:

- 1. if α is atomic then α = expression obtained from α by replacing all x's by t's
- 2. $(\neg \alpha)_t^x = \neg (\alpha_t^x)$
- 3. $(\alpha \to \beta)_t^x = (\alpha_t^x) \to (\beta_t^x)$
- 4. $(\forall y\alpha)_t^x = \begin{cases} \forall y(\alpha_t^x) & \text{iff } x \neq y \\ \forall x\alpha & \text{iff } x = y \end{cases}$

Example 2.20. :

- $\alpha_x^x = \alpha$
- Let $\alpha = \neg \forall yx = y$ what is $\forall x\alpha \to \alpha_z^x$?

$$\forall x \neg \forall yx = y \leadsto \neg \forall yz = y$$

What is $\forall x \alpha \to \alpha_y^x \ \forall x \neg \forall y x = y$ is true in all structures with a universe A with $|A| \ge 2$.

$$\forall x \neg \forall yx = y \leadsto \neg \forall yy = y$$

and $\neg \forall yy = y$ is an antitautology (it is always false).

•

So we have to define substitutable

Definition 2.30. substitutable: Let x be a variable, t a term. Then t is substitutable for x in α if

- 1. α atomic then t is SUB for x in α
- 2. then t is SUB for x in $\neg \alpha$ iff then t is SUB for x in α
- 3. then t is SUB for x in $\alpha \to \beta$ iff then t is SUB for x in α and β
- 4. then t is SUB for x in $\forall y\alpha$ iff either
 - x does not occur free in $\forall y \alpha$ or
 - y does not occur in t and t is SUB for x in α

Example 2.21.: For instance the following is a logical axiom.

$$\forall x_3(\forall x_1(Ax_1 \rightarrow \forall x_2Ax_2) \rightarrow (Ax_2 \rightarrow \forall x_2Ax_2))$$

It is a generalization of $\forall x_1(Ax_1 \to \forall x_2Ax_2) \to (Ax_2 \to \forall x_2Ax_2)$ which is by point two a substitution with $\alpha = Ax_1 \to \forall x_2Ax_2$. Then $\alpha_{x_2}^{x_1} = Ax_2 \to \forall x_2Ax_2$ And x_2 is indeed substitutable for x_1 in α because it does not get bounded.

$$\forall x_1(\forall x_2 B x_1 x_2 \rightarrow \forall x_2 B x_2 x_2)$$

is a generalization of point (2), but x_2 is not substitutable for x_1 in $\alpha =$, therefore it is not a logical axiom.

Ad (1): tautologies

Definition 2.31. Tautologies of first order language: Tautologies are the formulas obtained from tautologies of propositional logic by replacing all propositional atoms by formulas of first order logic.

An alternative definition is: Divide all formulas of first order logic into two groups:

- 1. atomic formulas and generalizations of first order formulas (these are called prime formulas)
- 2. all other formulas i.e. of the form $\neg \alpha$ and $\alpha \to \beta$ (non-prime formulas)

So any first order formula is built up from the prime formulas using finitly many times the formula building operations. \mathcal{E}_{\neg} We have unique readability because the set of formulas is freely generated.

Example 2.22. :

$$\neg(\forall y (Px \to Py)) \to (Px \to \forall y \neg Py)$$

is built up from $\neg(\forall y(Px \to Py))$ and $Px \to \forall y \neg Py$. which itself $\forall y(Px \to Py)$ and Px and $\forall y \neg Py$ where they are all prime formulas.

Example 2.23.: Is the following a tautology?

$$(\forall y(\neg Py) \rightarrow \neg Px) \rightarrow (Px \rightarrow \neg \forall y \neg Py)$$

We construct the construction tree into prime formulas and then assign truth values to them and evalue the truth value of the whole formula. It is indeed a tautology.

Note:

- $\forall x(Px \to Px)$ is a prime formula which corresponds to a propositional atom, and therefore not a tautology. But it is a generalization of a tautology and therefore by (1) a logical axiom.
- $\forall x Px \to Px$ is not a tautology but is a logical axiom by group (2).

Note: $\Gamma \models_{\text{taut}} \varphi$ from propositional logic can be translated to first order logic.

Lemma 8.2. If
$$\Gamma \models_{taut} \varphi$$
 then $\Gamma \models \varphi$

Proof. Problem set.
$$\Box$$

Note: The converse fails. For instance $\forall xPx \models Pc$. However Pc is a diffrent propositional atom then $\forall xPx$ they have no connection between them when viewed in propositional logic.

We will prove $\Gamma \models \varphi$ iff $\Gamma \vdash \varphi$ (the first direction is completeness and the converse soundness.)

Proposition 8.3. $\Gamma \vdash \varphi \text{ iff } \Gamma \cup \Lambda \models_{taut} \varphi$

Proof. • Let $\Gamma \vdash \varphi$ and v be a truth assignment that satisfies every element in $\Gamma \cup \Lambda$. Induction on deduction of φ from Γ .

- if $\varphi \in \Gamma \cup \Lambda$ then we are done

П

- if φ is obtained from α , $\alpha \to \varphi$ by MP then v satisfies α and $\alpha \to \varphi$ $\{\alpha, \alpha \to \varphi\} \models_{\text{taut}} \varphi$
- Assume $\Gamma \cup \Lambda \models_{\text{taut}} \varphi$. Then by the compactness theorem for propositional logic there are $\gamma_1 \dots, \gamma_n \in \Gamma$ and $\lambda_1, \dots \lambda_m \in \Lambda$ such that

$$\gamma_1 \to \gamma_2 \to \cdots \to \gamma_n \to \lambda_1 \to \cdots \to \lambda_m$$

is a tautology (always grouped to the left) because $\Gamma \cup \{\alpha\} \models_{\text{taut}} \beta \text{ iff } \Gamma \models_{\text{taut}} (\alpha \to \beta)$

2.9 GENERALIZATION AND DEDUCTION THEOREM

Note: Intuatively if Γ does not assume anything about x and Γ proves φ then Γ proves $\forall x \varphi$

Proposition 9.2. Generalization theorem: If $\Gamma \vdash \varphi$ and x does not occur free in Γ , then $\Gamma \vdash \forall x \varphi$

Proof. We use axiom group 4, $\alpha \to \forall x\alpha$ if x is not occuring free in α . Since x does not occur free in $\sigma \in \Gamma$, if $\varphi \in \text{Thm }\Gamma$ then $\forall x\varphi \in \text{Thm }\Gamma$. Induction principle: S the set of flas. If $\Lambda \cup \Gamma \subseteq S$ and S is closed under MP then S contains $\text{Thm}(\Gamma)$. It is enough to show that $\{\varphi : \Gamma \vdash \forall x\varphi\}$ contains $\Gamma \cup \Lambda$. and is closed under MP.

- 1. if φ is a logical axiom then $\forall x \varphi$ is a generalization and therefore also a logical axiom, so $\Gamma \vdash \forall x \varphi$
- 2. Lets assume $\varphi in\Gamma$. then x does not occur free in any element of Γ , then $\varphi \to \forall x\varphi$ is a logical axiom and $\Gamma \vdash \forall x\varphi$ by MP.
- 3. Closedness under MP. suppose φ is obtained from $\psi, \psi \to \varphi$ by MP. Then by induction hyphothesis $\Gamma \vdash \forall x \psi$ and $\Gamma \vdash \forall x (\psi \to \varphi)$ Then $\forall x (\psi \to \varphi) \to (\forall x \psi \to \forall x \varphi)$ is a logical axiom in group 3. Then by MP $\Gamma \vdash \forall x \psi \to \forall x \varphi$ By MP again $\Gamma \vdash \forall x \varphi$

Note: Suppose x has free occurrence in Γ for example $Px \not\models \forall xPx$ so we can not have $Px \vdash \forall xPx$ (want \models iff \vdash)

Note: Proof of Generalization theorem can be used to obtain a deduction of $\forall x \varphi$ from Γ from a deduction of φ from Γ .

Lemma 9.3. Rule T: If $\Gamma \vdash \alpha_1, \ \Gamma \vdash \alpha_2, \dots \Gamma \vdash \alpha_n \ and \{alpha_1, \alpha_2, \dots \alpha_n\} \models_{taut} \beta \ then \Gamma \vdash \beta$.

Proof. $\alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \beta$ is a logical axiom because it is a tautology. Apply MP n-times.

Proposition 9.4. Deduction theorem: If $\Gamma \cup \{\gamma\} \vdash \varphi \text{ then } \Gamma \vdash (\gamma \rightarrow \varphi)$

Proof. Assume $\Gamma \cup \{\gamma\} \vdash \varphi$. $\Gamma \cup \{\gamma\} \vdash \varphi$ iff $\Gamma \cup \{\gamma\} \cup \Lambda \models_{\text{taut}} \varphi$ iff $\Gamma \cup \Lambda \models_{\text{taut}} \gamma \to \varphi$ (exercise sheet 1, ex 7) iff $\Gamma \vdash (\gamma \to \varphi)$

Note: Deduction theorem is an equivalence. $\Gamma \vdash \gamma \to \varphi$ then $\Gamma \cup \{\gamma\} \vdash \gamma$. the statement follows by MP.

Corollary 9.4-A. (Contraposition): If $\Gamma \cup \{\varphi\} \vdash \neg \psi$ then $\Gamma \cup \{\psi\} \vdash \neg \varphi$

Proof. Suppose $\Gamma \cup \{\varphi\} \vdash \neg \psi$ then by deduction theorem $\Gamma \vdash \varphi \rightarrow \neg \psi$ We observe that $\{\varphi \rightarrow \neg \psi\} \models_{\text{taut}} \psi \rightarrow \neg \varphi$.

By rule T: $\Gamma \vdash \psi \to \neg \varphi$ and by the converse of the deduction theorem, by MP we have $\Gamma \cup \{\psi\} \vdash \neg \varphi$

Seite 22 von 52

Definition 2.32. Inconsistence: A set of flas. Γ is called inconsistent, if for some (euqivalent to all) fla. β it is β , $\neg \beta \in \text{Thm } \Gamma$.

Note: If Γ is inconsistent, then for $\alpha \in \text{Thm }\Gamma$. Then $(\beta \to (\neg \beta \to \alpha))$ is a tautology. Use β from definition of inconsistence and use MP twice.

Corollary 9.4-B. (Reductio ad absurdum): If Γ ; φ inconsistent, then $\Gamma \vdash \neg \varphi$.

Proof. Suppose that $\Gamma; \varphi$ is inconsistent. then for any β $\Gamma; \varphi \vdash \beta$ and $\Gamma; \varphi \vdash \neg \beta$ By the deduction theorem $\Gamma \vdash \varphi \to \beta$ and $\Gamma \vdash \varphi \to \neg \beta$, therefore $\{\varphi \to \beta, \varphi \to \neg \beta\} \models_{\text{taut}} \neg \varphi$ By Rule T: $\Gamma \vdash \neg \varphi$.

Note: strategies for finding deductions can be found in the textbook [1].

Proposition 9.5. Generalization on constants: Suppose $\Gamma \vdash \varphi$ and c is a constant symbol that does not occur in Γ . Then there is a variable y (y does not occur in φ) s.th. $\Gamma \vdash \forall y(\varphi)^c_y$ and moreover also there is a deduction of $\forall y(\varphi)^c_y$ in which c does not occur.

Proof. We will take a deduction $\langle \alpha_1, \dots \alpha_n \rangle$ of φ from Γ . Pick the variable y as the first variable in any α_i for each i. Claim: $\langle (\alpha_1)_y^c, \dots (\alpha_n)_y^c \rangle$ is a deduction of $(\varphi)_y^c$ from Γ . proof of claim. We need to verify that every member $(\alpha)_y^c$ is actually provable from Γ .

- if $\alpha_k \in \Gamma$ then c does not occur in α_k then $(\alpha)_y^c = \alpha_k$
- if $\alpha_k \in \Lambda$ then $(\alpha_k)_y^c$ is also a logical axiom.
- lets say α_k was obtained by α_i , $\alpha_i \to \alpha_k$ i < k by MP. Now take $(\alpha_i \to \alpha_k)_y^c = (\alpha_i)_y^c \to (\alpha_k)_y^c$. (induction hyphothesis) $(\alpha_k)_y^c$ is obtained from $(\alpha_i)_y^c$ nad $(\alpha_i \to \alpha_k)_y^c$. by MP.

 \boxtimes

Because formal proofs are finite, there is a $\Gamma_0 \subseteq \Gamma$ finite such that Γ_0 consists of the elements of Γ used in our deduction $\langle (\alpha_1)_y^c, \dots (\alpha_n)_y^c \rangle$ (is therefore deduction of $(\varphi)_y^c$ from Γ_0). And because we assumed that y does not occur in Γ_0 , so we can use the generalization theorem on $\Gamma_0 \vdash (\varphi)_y^c$ and yield $\Gamma_0 \vdash \forall y(\varphi)_y^c$

Alphpabetic Variants

We will formalize and proof the statement "You can always rename your bound variables". Why is that impointant? Suppose we want to proof that it is provable that $\forall x \forall y P(x,y) \rightarrow \forall y P(y,y)$ If we want to use a logical axiom of group 2, we would need to check if y is actually SUB for x. We obviously do not have that because y would get bounded. $\vdash \forall x \forall y P(x,y) \rightarrow \forall x \forall z P(x,z) \vdash \forall x \forall z P(x,z) \rightarrow \forall y P(y,y)$

Proposition 9.6. Existence of alphabetic variants: Let φ be a fla., x a variable, t a term. Then there exists a fla. φ' such that φ differs from φ only in the choice of names of the bound variables. And

- 1. $\varphi' \vdash \varphi$ as well as $\varphi \vdash \varphi'$
- 2. t is SUB for x in φ'

Proof. Define φ' inductively on complexity of φ .

- if φ is atomic, then $\varphi' = \varphi$
- $(\neg \varphi)' = \neg \varphi'$
 - 1. $\varphi' \vdash \varphi$ and $\varphi \vdash \varphi'$, we want: $\neg \varphi' \vdash \neg \varphi$ as well as $\neg \varphi \vdash \neg \varphi'$ Ok by Contraposition.
 - 2. ok by definition of SUB
- $(\varphi \to \psi)' = \varphi' \to \psi'$
 - 1. By assumption: We want $(\varphi \to \psi) \vdash (\varphi \to \psi)'$, it is enough to show $\varphi \to \psi; \varphi' \vdash \psi'$ We have

$$\varphi \to \psi; \varphi' \vdash \varphi$$

$$\varphi \to \psi; \varphi' \vdash \psi$$

- 2. ok by definition of SUB
- $(\forall y\varphi)'$
- Case 1: No occurrence of y in t. or x=y (that is, t is substitutable for x in φ). We define $(\forall y\varphi)'=\forall y\varphi'$. All we need to check is part (a). We have that $\forall y\varphi\vdash\varphi$ because $\forall y\varphi\to\varphi$ is an axiom group 2. So $\forall y\varphi\vdash\varphi'$ and therefore by the generalization theorem $\forall x\varphi\vdash\forall y\varphi'$
- Case 2: If y does occur in t and $x \neq y$. let z be the variable that is the first variable that does not occur in φ', x, t then set $(\forall y \varphi)' = \forall z (\varphi')_z^y$
 - 2. want t SUB for x in $(\forall y\varphi)'$ z does not occur in t (choice of z) t is SUB for x in φ' . (ind assumption) Then t is SUB für x in $\forall z(\varphi')_z^y$ iff t is SUB for x in $(\varphi')_z^y$ because $x \neq z$.
 - 1. $\varphi \vdash \varphi'$ (by ind. assumption) Then $\forall y \varphi \vdash \forall y \varphi'$, because

$$\vdash \forall y(\varphi \to \varphi') \to (\forall y\varphi \to \forall y\varphi') (\text{axiom of group } 3)$$

then

$$\forall y(\varphi \to \varphi')$$
gen thm

and by MP:

$$\forall y\varphi \to \forall y\varphi'$$

We have $\forall y\varphi' \vdash (\varphi')_z^y$ (axiom of group 2, z does not occur in φ') By Gen Thm. $\forall y\varphi' \vdash \forall z(\varphi')_z^y$ Then

Want $\forall z(\varphi')_z^y \vdash \forall y\varphi$

 $\forall z(\varphi')_z^y \vdash ((\varphi')_z^y)_z^z$ (ax of group 2.), y is SUB for z in $(\varphi')_z^y$ bc. φ' does not contain z so all occurences of z in $(\varphi')_z^y$ are free. (we substituted z for free occ of y.) (Re-replacement lemma $((\varphi')_z^y)_z^y = \varphi'$, see problem set.) So we have $\forall z(\varphi')_z^y \vdash \varphi$ We also know that $\varphi' \vdash \varphi$ by the inductive hyphothesis. So $\forall z(\varphi')_z^y \vdash \varphi$ So $\forall z(\varphi')_z^y \vdash \forall y \varphi$ (Gen Thm.)

Note: φ' constructed in proof is also called an alphabetic variant of φ if our language contains equality:

- 1. $\vdash \forall xx = x \text{ (ax 5.)}$
- 2. $\vdash \forall x \forall y (x = y \rightarrow y = x) \text{ p.122}$
- 3. $\vdash \forall x \forall y \forall z (x = y \rightarrow (y = z \rightarrow x = z))$ (Exercise 11. in [1])
- 4. $\vdash \forall x_1 \forall x_2 \forall y_1 \forall y_2 (x_1 = y_1 \rightarrow (x_2 = y_2 \rightarrow (Px_1x_2 \rightarrow Py_1y_2)))$, similarly for any *n*-ary predicate. p.128
- 5. $\vdash \forall x_1 \forall x_2 \forall y_1 \forall y_2 (x_1 = y_1 \rightarrow (x_2 = y_2 \rightarrow (fx_1x_2 = fy_1y_2)))$, similarly for *n*-ary formula symbol, p.122

2.10 SOUNDNESS AND COMPLETENESS

In first order logic it holds:

- soundness: If $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$
- completeness: If $\Gamma \models \varphi$ then $\Gamma \vdash \varphi$

For the proof of soundness we will have to show that all our axioms are valid. For this we will need the following two lemmas.

Lemma 10.2. pre-substitution lemma: Let be a map TODO

Lemma 10.3. Substitution lemma: If t SUB x in φ then $A \models \varphi_t^x[s]$ iff $A \models \varphi[s(x|\overline{s}(t))]$

Proof. 1. φ atomic: use pre-substitution lemma.

2. φ is of the form $\neg \psi$ or $\psi \rightarrow \theta$ - use induction

- 3. φ is of the form $\forall y\psi$ and x does not occur free in φ $\varphi_t^x = \varphi$ wts. $\mathcal{A} \models \varphi_t^x [s]$ iff $\mathcal{A} \models \varphi [s(x|\overline{s}(t))]$ By 2.3, this is indeed the case, so the lemma holds.
- 4. φ is $\forall y\psi$ where x occurs free in φ and t is SUB for x in φ . Then it must be: y does not occur in t and t is SUB for x in ψ .

then $\overline{s}(t) = \overline{s(y|a)}(t)$ for every $a \in A$. Moreover we also have, that $\varphi_t^x = \forall y \psi_t^x$ bc. $x \neq y$

Then $\mathcal{A} \models \varphi_t^x[s]$ iff $\mathcal{A} \models \forall y \psi_t^x[s]$

iff $\mathcal{A} \models \psi_t^x [s(y|a)]$ and for all $a \in A$.

iff $A \models \psi \left[s(y|a)(x|s(y|a)(t)) \right]$ (inductive assumption) and for all $a \in A$

By above: iff $A \models \psi [s(y|a)(x|\overline{s}(t))]$ for all $a \in A$

iff $\mathcal{A} \models \forall y \psi \left[s(x|\overline{s}(t)) \right]$

Proposition 10.4. *If* $\Gamma \vdash \varphi$ *then* $\Gamma \models \varphi$

Proof. Proof by induction on φ . We have to show:

- 1. that every logical axiom is valid
- 2. logical implication is preserved by MP
- 2. Assume 1. we have to show that if $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$
 - $\varphi \in \Lambda$ by 1.
 - $\varphi \in \Gamma$ then $\Gamma \models \varphi$
 - φ follows by MP from $\psi, \psi \to \varphi$ then by assumption $\Gamma \models \psi$ and $\Gamma \models \psi \to \varphi$ Therefore $\Gamma \models \varphi$
- 1. Exercise 6 in section 2.2 consists in showing that if a logical axiom is valid, then also its generalization. So generalizations of valid formulas are valid, we therefore may only consider logical axioms that are not generalizations of another logical axiom.
- Ax of 1. exercise 3, section 2.3
 - 3. exercise 3, section 2.2
 - 4. exercise 4, section 2.2
 - 5. x = x: $A \models x = x[s]$ because s(x) = s(x)
 - 6. $x = y \to (\alpha \to \alpha')$ where α is atomic fla, and α' is obtained from α by remplacing some occurances of x's with y's. By the deduction theorem, is enough to show that the set of formulas $\{x = y, \alpha\} \models \alpha'$. Let \mathcal{A} be a structure, s an assignment such that $\mathcal{A} \models x = y[s]$

Claim: for every term t if t' is obtained from t by replacing some x's by y's, then $\overline{s}(t) = \overline{s}(t')$.

proof of claim. Induction on terms.

- α of the form $t_1 = t_2$ then α' is $t'_1 = t'_2$, use prev. claim.
- α of the form $Pt_1 \dots t_n$ similar
- 2. wts. $\forall x \varphi \to \varphi_t^x$ is valid, where t is SUB for x in φ . simple case: $\forall x P x \to P t$ is valid. Let $\mathcal{A} \models \forall x P x[s]$ then $\mathcal{A} \models \forall x P x[s(x|a)]$ for every $a \in A$. so i.p. for $a = \overline{s}(t)$ this means $\overline{s}(t) \in P^A$ that is $\mathcal{A} \models P t$. In more generality we will need the substitution lemma: We have $\mathcal{A} \models \forall x \varphi[s]$ this is equivalent to $\forall a \in A$ we have $\mathcal{A} \models \varphi[s(x|\overline{s}(t))]$ and by the substitution lemma we have the equivalence to $\mathcal{A} \models \varphi_t^x[s]$

Corollary 10.4-A. $\vdash \varphi \leftrightarrow \psi$ then φ, ψ are logically equivalent.

Corollary 10.4-B. φ' an alphabetic variant of φ then φ, φ' are logically equivalent.

Definition 2.33.: A set of formulas Γ is called satisfiable, whenever there is a structure \mathcal{A} with an assignment into A that for all $\sigma \in \Gamma$ $\mathcal{A} \models \sigma[s]$

Corollary 10.4-C. If Γ is satisfiable then Γ is consistent

Note: This corollary is equivalent to Soundness (Exercise)

Seite 25 von 52

completeness

Proposition 10.5. *Completness Theorem:* $\Gamma \models \varphi \implies \Gamma \vdash \varphi$

Proposition 10.6. Completness Theorem': Every consistent set of formulas is satisfiable.

Note:

- The completeness Theorem is equivalent to completeness theorem'
- The completeness Theorem holds for language of any cardinality.
- We will assume for simplicity that the Language is countable.

Proof. Let Γ be a consistent set of flas in some language \mathcal{L} The idea of the proof:

- 1.-3. build a new set of formulas Δ
 - $-\Gamma\subseteq\Delta$
 - $-\Delta$ consistent and maximal
 - For every fla φ and every variable x there is constant $c \neg \forall x \varphi \rightarrow \neg \varphi_c^x \in \Delta$
- 4. Build \mathcal{A} by A is the set of terms (in expanded language) such that Every fla in Δ w/o. equality (=) is satisfiable in \mathcal{A}
- \bullet accomodate =
- 1. Add a countable infinite set of new constant symbols to the language \mathcal{L} and call it \mathcal{L}' Claim: Γ is a consistent set of flas. in \mathcal{L}' .

proof of claim. Why? If not, then $\Gamma \vdash \beta \land \neg \beta$ where deduction is in \mathcal{L}' and there occurs finitly many new constant symbols in this deduction. By generalization on constants the new constants in the proof can be replaced by new variables. We get a deduction in the old language \mathcal{L} and that contradicts the assumption that Γ is consistent.

2. Want to add for every formula φ and every variable $x \neg \forall x \varphi \rightarrow \varphi_c^x$ and need to stay consistent. Fix enumeration of pairs (φ, x) where φ' is a \mathcal{L}' -fla., x variable.

$$\theta_1 := \forall x_1 \varphi_1 \to \neg \varphi_1_{c_1}^{x_1}$$

where c_1 is the first new constant that does not occur in φ_1 :

$$\theta_n := \forall x_n \varphi_n \to \neg \varphi_n {}_{c_n}^{x_n}$$

where c_n is the first new constant that does not occur in φ_n and does not occur in θ_k for k < n.

$$\Theta = \{\theta_1, \dots\}$$

Claim: $\Gamma \cup \Theta$ is consistent.

proof of claim. Suppose it is not. Then let m be minimal such that $\Gamma \cup \{\theta_1 \dots \theta_{m+1}\} \vdash \beta \land \neg \beta$. Then by (Raa) $\Gamma \cup \{\theta_1 \dots \theta_m\} \vdash \neg \theta_{m+1} \theta_{m+1}$ is of the form

$$\forall x_m \varphi_m \to \neg \varphi_n^{x_m}$$

then by (Rule T)

$$\Gamma \cup \{\theta_1 \dots \theta_m\} \vdash \neg \forall x \varphi$$

and

$$\Gamma \cup \{\theta_1 \dots \theta_m\} \vdash \varphi_c^x$$

(star..TODO)

star: $\Gamma \cup \{\theta_1, \dots \theta_m\} \vdash \forall x \varphi$ By generalization on constants: $\Gamma \cup \{\theta_1, \dots \theta_m\} \vdash \forall x (\varphi_c^x)_x^c$ since c does not occur on the left. also $(\varphi_c^x)_x^c = \varphi$ be c does not occur in φ . Now we have

$$\Gamma \cup \{\theta_1 \dots \theta_m\} \vdash \neg \forall x \varphi$$

and

$$\Gamma \cup \{\theta_1, \dots \theta_m\} \vdash \forall x (\varphi_c^x)_x^c$$

which is a contradiction to minimality of m or the consistentness of Γ .

 \boxtimes

3. Extend $\Gamma \cup \Theta$ to maximal consistent set. Λ is the set of logical axioms in \mathcal{L}' we know that $\Gamma \cup \Theta$ is consistent. so we know that there is no β

$$\Gamma \cup \Theta \cup \Lambda \models_{\text{taut}} \beta \wedge \neg \beta$$

So we find v a truth assignment on prime flas. that satisfies $\Gamma \cup \Theta \cup \Lambda$ and we are going to use this truth assignment to find the maximal set

$$\Delta := \left\{ \varphi : \overline{v}(\varphi) = 1 \right\}$$

Then for every φ either $\varphi \in \Delta$ or $\neg \varphi \in \Delta$ so we have maximality and we also have consistency bc. $\Delta \vdash \varphi$ then $\Delta \models_{\text{taut}} \varphi$ because $\Lambda \subseteq \Delta$ and that means $\overline{v}(\varphi) = 1$ so $\varphi \in \Delta$. So we have that Δ is consistent. and we say that Δ is deductively closed i.e. $\Delta \vdash \varphi$ then $\varphi \in \Delta$.

4. Construction of an \mathcal{L}' structure \mathcal{A} from Δ . We will firstly replace = with E bin. predicate symbol. $A = \operatorname{set}$ of all \mathcal{L}' -terms

 $E^{\mathcal{A}}$ def. by $uE^{\mathcal{A}}t$ iff $u=t\in\Delta$

$$f^{\mathbf{A}}$$
 def by $f^{\mathbf{A}}(t_1, \dots t_n) = ft_1 \dots t_n$

 $c^{\mathcal{A}} := c$

 $P^{\mathcal{A}}$ then $P^{\mathcal{A}}t_1, \ldots t_n$ iff $Pt_1 \ldots t_n \in \Delta$ We take the assignment $s: Var \to A$ by s(x) = x

Claim 1: $\overline{s}(t) = t$ for every term t Claim 2: for every φ let φ^* be obtained from φ by replacing each = with E then $\mathcal{A} \models \varphi^*$ [s] iff $\varphi \in \Delta$

proof of claim. • φ atomic then φ is Pt

$$\mathcal{A} \models \varphi^* [s] \text{ iff } \mathcal{A} \models Pt [s] \text{ iff } \overline{s}(t) \in P^{\mathcal{A}} \text{ iff } t \in P^{\mathcal{A}}$$

 φ is uEt then

$$\mathcal{A} \models \varphi^* [s] \text{ iff } \mathcal{A} \models uEt [s] \text{ iff } \overline{s}(u)E\overline{s}(t) \text{ iff } u = t \in \Delta$$

¬φ

$$\mathcal{A} \models \neg \varphi^* [s] \text{ iff } \mathcal{A} \not\models \varphi [s] \text{ iff } \varphi \notin \Delta \text{ iff } \neg \varphi \in \Delta$$

• $\varphi \to \psi$

$$\mathcal{A} \models \varphi^* \to \psi^*[s] \text{ iff } \mathcal{A} \not\models \varphi^*[s] \text{ or } \mathcal{A} \models \psi^*[s] \text{ iff } \mathcal{A} \models \neg \varphi^*[s] \text{ or } \mathcal{A} \models \psi^*[s] \text{ iff } \neg \varphi \in \Delta \text{ or } \psi \in \Delta \text{ iff}(\varphi \to \psi) \in \Delta$$

• $\forall x \varphi$ wts. $\mathcal{A} \models \forall x \varphi^* [s]$ iff $\forall x \varphi \in \Delta$ Suppose $\mathcal{A} \models \forall x \varphi^* [s]$ then $\mathcal{A} \models \varphi^* [s(x|c)]$ where c is such that $\neg \forall x \varphi \to \neg \varphi_c^x \in \Delta$ Provided that we have substitutability we have by substitution lemma we know $\mathcal{A} \models (\varphi_c^x)^* [s]$ By the inductive hyphothesis $\varphi_c^x \in \Delta$ and $\neg \varphi_c^x \notin \Delta$ so we do not have $\neg \forall x \varphi \notin \Delta$ and by maximality of Δ we have $\forall x \varphi \in \Delta$.

Suppose $\mathcal{A} \not\models \forall x \varphi^*[s]$ then $\mathcal{A} \not\models \varphi^*[s(x|t)]$ for some t. By the substitution lemma (providet that t is SUB for x in φ) we can replace x by t in the formula.

 $\mathbf{A} \not\models (\varphi_t^x)^* [s]$ by the inductive hyphothesis $\varphi_t^x \notin \Delta$ then $\forall x \varphi \notin \Delta$ becasue Δ is deductively closed. If t is not SUB for x in φ , we know that there exists a logically equivalent alphabetic variant φ' of φ such that t is SUB for x in φ' .

 \boxtimes

So at this point we have: If \mathcal{L} does not contain = then take \mathcal{A} reduction to \mathcal{L} and \mathcal{A} w/s satisfies Δ .

5. Define A/E and assignment

Claim: $E^{\mathcal{A}}$ is a congruence on the structure \mathcal{A} compatible with the predicates and formulas.

- $E^{\mathcal{A}}$ is equivalence relation
- $P^{\mathcal{A}}$ compatible w/ $E^{\mathcal{A}}$ i.e. $P^{\mathcal{A}}t_1, \dots t_n$ iff $P^{\mathcal{A}}s_1, \dots s_n$ whenever $t_i E^{\mathcal{A}}s_i$ for all $1 \leq i \leq n$.
- $f^{\mathcal{A}}$ compatible w/ $E^{\mathcal{A}}$ i.e. $f^{\mathcal{A}}(t)E^{\mathcal{A}}f^{\mathcal{A}}(s)$ iff $tE^{\mathcal{A}}s$

Definition 2.34.: A/E is the structure w/ universe A/E and $([t_1], \ldots [t_n]) \in P^{A/E}$ iff $(t_1, \ldots t_n) \in P^A$ $f^{A/E}([t_1], \ldots [t_n]) = [f^A(t_1, \ldots t_n)]$ Let $h: A \to A/E: t \mapsto [t]$ quotient map. note h is surjective. $E^{A/E}$ realized by equality on $A/E: [t]E^{A/E}[s]$ iff tE^As iff [t] = [s]

Claim: A/E satisfies $\Delta \le h \circ s$.

proof of claim. Let $\varphi \in \Delta$, $\mathcal{A} \models \varphi^*[s]$ by (4) Want to show $\mathcal{A} \models \varphi^*[s]$ iff $\mathcal{A}/_E \models \varphi^*[h \circ s]$ by Homomorphism Thm.(φ^* has no occurence of =, surjectivity) realisation of E in $A/_E$ is the equality in $A/_E$. Take the reduct of $\mathcal{A}/_E$ to \mathcal{L} .

Exam exam

Corollary 10.6-A. compactness statements

- 1. $\Gamma \models \varphi$ then there is a finite subset $\Gamma_0 \subseteq \Gamma$ s.th. $\Gamma_0 \models \varphi$
- 2. every finitly satisfiable set of formulas is satisfiable

Proof. 1. $\Gamma \models \varphi$ then by completeness $\Gamma \vdash \varphi$ where the deduction uses only formulas from some $\Gamma_0 \subseteq \Gamma$ finite. By soundness, $\Gamma_0 \models \varphi$

2. Γ finitly satisfiable. Suppose Γ is not satisfiable then by completeness Γ is not consistent. So there has to be some $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \vdash \beta \land (\neg \beta)$ so Γ is not finitly satisfiable (by soundness).

2.10.1 Sizes of models

Let Γ be a consistent set of formulas. Is it possible to

Example 2.24. :

- 1. For each $n \in \mathbb{N}$ there is Γ such that all models of Γ that have size n.
- 2. DLO (Dense liniear order) w/o endpoints: no finite models

Lemma 10.7. Γ such that all models are finite. Then there has to be $m \in \mathbb{N}$ such that $|\mathcal{A}| \leq m$ for every model $\mathcal{A} \in \operatorname{Mod} \Gamma$

Suppose Γ has models of arbitrarily large finite size.

Idea: Expand language by new constant symbols c_0, c_1, \ldots

$$\theta_1 := c_0 \neq c_1$$

$$\theta_2 := c_0 \neq c_1 \land c_1 \neq c_2 \land c_0 \neq c_2$$

$$\theta_n := \bigwedge_{i,j=0}^n c_i \neq c_j$$
$$\Theta := \{\theta_1, \theta_2 \dots\}$$

 $\Gamma \cup \theta$ finitely satisfiable. By the compactness theorem there exists a $\Theta_0 \subseteq \Theta$ finite TODO. then there is a maximal element θ_k By the compactness theorem reduct to language of Γ is an infinite models of Γ which is a contradiction to all models of Γ are finite.

Note: There is no sentence in the language of groups / rings /...that would be satisfied in all finite groups/rings/... and not satisfied in all infinite groups/rings/...

Lemma 10.8. 1. FIN, the class of all finite \mathcal{L} -structures is not EC_{Δ}

2. INF, the class of infinite \mathcal{L} -structures is EC_{Δ} but not EC.

Seite 28 von 52

Proof. 1. Suppose FIN is EC_{Δ} . By definition there is a set of formulas Γ such that

$$\operatorname{Mod}\Gamma = \{ \text{ the collection of all finite } \mathcal{L}\text{-structures} \} = \operatorname{FIN}$$

But then Γ has only finite models, but of arbitrarily large size. That contradicts our previous lemma.

2.

$$\varphi_1 \quad \exists xx = x$$

$$\varphi_2 \quad \exists x_1 \exists x_2 x_1 \neq x_2$$

$$\vdots \quad \vdots$$

$$\varphi_n \exists x_1 \dots \exists x_n \bigwedge_{i,j=0i \neq j}^n x_i \neq x_j$$

and $\Gamma := \{\varphi_1, \dots\}$ and INF is indeed EC_{Δ} . Suppose INF = $Mod(\tau)$ then $Mod(\neg \tau)$ would be FIN, a contradiction to (a).

Recall the proof of completeness theorem. \mathcal{L} , $|\mathcal{L} = \aleph_0 \Gamma$ consistent set of \mathcal{L} -formulas. $\mathcal{A}/_E$ countable.

2.10.2 Completness for uncountable languages

Use (AC) in the form of Zorn's Lemma and Zermelo's Theorem

Proposition 10.9. Zorn's Lemma: P partially ordered set such that every chain has an upperbound in P then P contains a maximal element.

Proposition 10.10. Zermelos's Theorem: Every set can be well-ordered. That is linearly ordered such that every non-empty set has a smallest element.

 ω is the first infinite ordinal. then it is also a cardinal and is called \aleph_0

$$A_0 = \{ (\varphi_\alpha, x_\alpha) : \alpha < \lambda \}$$

:

$$|\mathcal{A}/_E| \le \lambda$$

CHAPTER 3

Model Theory

3.1 LÖWENHEIM-SKOLEM-THEOREM

Proposition 1.2. Suppose Γ is a set of \mathcal{L} -formulas. $|\mathcal{L}| = \lambda$ and lets assume Γ is satisfiable in some infinite structure.

Then for every cardinal $\kappa \geq \lambda$, Γ is satisfiable in a structure of cardinality κ .

Proof. add κ many new constants to the language \mathcal{L} .

$$\mathcal{L}' = \mathcal{L} \cup \{ c_{\alpha} : \alpha < \kappa \}$$

$$\Sigma = \{ c_{\alpha} \neq c_{\beta} : \alpha \leq \beta, \ \alpha, \beta \leq \kappa \}$$

Then $\Gamma \cup \Sigma$ is finitly satisfiable in \mathcal{L}' . This is because Γ is satisfiable in some infinite structure. By compactness $\Gamma \cup \Sigma$ is satisfiable. We have $\mathcal{A} \models \Gamma \cup \Sigma$ then $|\mathcal{A}| \geq \kappa$.

By the proof of completeness theorem, $\Gamma \cup \Sigma$ has a model of size $\leq \kappa$. Hence it is exactly of size κ . Take reduct TODO

Example 3.1.: Language of ZFC $\mathcal{L} = \{\in\}$ is countable. Löwenheim-Skolem guaranties that ZFC has a countable model. called skolems paradox. ZFC knows that there are uncountable sets. explanation: some bijections are missing

Example 3.2.:

- 1. $\overline{\mathbb{R}}$ real field. Thm($\overline{\mathbb{R}}$) has a countable model. \mathbb{R}_{alg}
- 2. $\mathcal{N} = (\mathbb{N}, 0, S, +, \cdot)$

Claim: there exists a countable structure \mathcal{M} such that $\mathcal{N} \equiv \mathcal{M}$ but $\mathcal{N} \ncong \mathcal{M}$ One way is to add new constant c to language $\Sigma = \{0 < c, S0 < c, ...\}$ is fin satisfiable. So $\Sigma \cup Th(\mathcal{N})$ is fin satisfiable by compactness it is satisfiable

Take the reduct to original language. \mathcal{M} . and \mathcal{M} not isomorphic to \mathcal{N} , bc A bijection of $M \to \mathbb{N}$ would have to map c somewhere but for every $S^k 0 < c$ for every k wont be preserved by any map.

3.2 Theories and completeness

Definition 3.1. Theory: A theory T is a set of sentences that is closed under logical implication.

$$T \models \sigma \implies \sigma \in T$$

Note: If \mathcal{L} is a language. Then

- there is a smallest \mathcal{L} -theory. The set of all valid \mathcal{L} -sentences.
- \bullet and also a largest $\mathcal L\text{-theory}.$ The set of all $\mathcal L\text{-sentences}.$

Definition 3.2. Theory of structures: Let \mathcal{K} some class of \mathcal{L} - structures. Then

$$\operatorname{Th}(\mathcal{K}) = \{ \sigma : \sigma \text{ \mathcal{L}-sentence and for every } K \in \mathcal{K} \text{ } \sigma \in \operatorname{Th}(K) \}$$

Note: $Th(\mathcal{K})$ is a theory.

if
$$Th(\mathcal{K}) \models \sigma$$
 then $\sigma \in Th(\mathcal{K})$

Example 3.3.:

• $\mathcal{L} = \{0, 1, +, \cdot, -\}$ \mathcal{F} the class of fields then $\mathrm{Th}(\mathcal{F})$ is the set of sentences true every field

Recall $\operatorname{Mod}(\Sigma)$ is the class of all models of Σ . Th $(\operatorname{Mod}\Sigma)$ might not be the set Σ but it is the set of all sentences true in all models of Σ .

The set of all sentences that are logically implied by Σ

The set of all consequences of $\Sigma =: C_n(\Sigma)$

Note: Σ is a theory iff $C_n(\Sigma) = \Sigma$

Definition 3.3.: We say that a theory T is complete, if for every sentence σ either $\sigma \in T$ or $\neg \sigma \in T$.

Example 3.4.: \mathcal{A} a \mathcal{L} -structure, then Th(\mathcal{A}) is complete.

Note: Th(\mathcal{K}) is complete, iff any $K_1, K_2 \in \mathcal{K}$ are elementarily equivalent. A theory T is complete iff any to models are elementarily equivalent.

Example 3.5.:

- The theory of fields is not complete.
- The theory of algebraically closed fields of characteristic 0 is complete (That is non-trivial)

Definition 3.4. axiomatizability:

- A theory T is finitely axiomatizable if there is a sentence σ such that $C_n(\sigma) = T$.
- A theory T is axiomatizable, if there is a decidable set Σ such that $C_n(\Sigma) = T$.

Example 3.6.:

- The theory of fields (common theory of all fields) is finitely axiomatizable.
- Theo theory of fields of characteristic 0 is axiomatizable. $\Psi \cup \{1+1 \neq 0, 1+1+1 \neq 0, \ldots\}$ It is however not finitely axiomatizable. If $\Psi_0 \subseteq \Psi \cup \{1+1 \neq 0, 1+1+1 \neq 0, \ldots\}$ finite, then Ψ_0 has a model of characteristic p for some sufficiently large p.

Proposition 2.2. If $C_n(\Sigma)$ is finitlely axiomatizable then there exists a finite subset $\Sigma_0 \subseteq \Sigma$ such that $C_n(\Sigma_0) = C_n(\Sigma)$

Proof. Suppose $C_n(\Sigma)$ is finitely axiomatizable. So $C_n(\sigma) = C_n(\Sigma)$. Then there is a finite subset $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \models \sigma$. And we get $C_n(\Sigma_0) = C_n(\Sigma)$

Definition 3.5.: A theory T is \aleph_0 -categorical, if any two infinite countable models of T are isomorphic. Furthermore for some infinite cardinal κ a theory T is called κ -categorical, if every two models of cardinality κ are isomorphic.

Proposition 2.3. Los-Vaught test: For a theory T in a countable language with only infinite models it holds

If T is κ -categorical for some infinite cardinality κ then T is complete.

Proof. Let T be κ -categorical. Want: If $\mathcal{A}, \mathcal{B} \models T$ then $\mathcal{A} \equiv \mathcal{B}$. Note: both \mathcal{A} and \mathcal{B} are infinite. By LST there exists structures \mathcal{A}' and \mathcal{B}' with $\mathcal{A} \equiv \mathcal{A}'$ and $\mathcal{B} \equiv \mathcal{B}'$ and $|\mathcal{A}'|, |\mathcal{B}'| = \kappa$. By κ -categorical we have $\mathcal{A}' \cong \mathcal{B}'$ so $\mathcal{A} \equiv \mathcal{B}$

Note: completness does not imply categorical.

- The theory of natural numbers is not \aleph_0 -categorical. See Example 3.2
- RCF not κ -categorical for all infinite cardinalities κ Not \aleph_0 categorical real clo of $\mathbb{Q}(\pi)$, real closure of \mathbb{Q} not uncountable categorical $\overline{\mathbb{R}}$, $\overline{\mathbb{R}(\varepsilon)}$, $0 < \varepsilon < \frac{1}{n}$ for every $n \in \mathbb{N}$.

3.3 THEORY OF ALGEBRAIC CLOSED FIELDS

Proposition 3.2. The theory of algebraic closed fields of characteristic p ACF_p , where p is either 0 or prime is complete.

Proof. Note that we have a

- countable language
- with no finite models

Let $K_1, K_2 \models ACF_p$ such that $|K_1| = |K_2| = \kappa$ uncountable. F_1 prime field of K_1 , F_2 prime field of K_2 .

Note F_1, F_2 are determined by p if p = 0 then $F_1 = F_2 = \mathbb{Q}$ and if p prime then $F_1 = F_2 = \mathbb{F}_p$

Define $F := F_1 = F_2$. B_1 transendence base of \mathcal{K}_1 over F B_2 transendence base of \mathcal{K}_2 over F

- B is transendence base of K over F if B is a \subseteq -maximal subset of K which is algebraically closed then
- $B \subseteq K$ is algebraically TODO

 $F(B_1), F(B_2)$ subfields of $\mathcal{K}_1, \mathcal{K}_2$

- alg cl $F(B_1) = \mathcal{K}_1$
- alg cl $F(B_2) = \mathcal{K}_2$

Fact: Let F subfield of K. if F is countable and K uncountable, then any transe basis B of K oer F is of cardinality |K|, hence uncountable.

Steinitz: Two ACF are isomorphic iff they have the same characteristic and there trancendence spaces have the same cardinality.

Lefschetz Principle

Proposition 3.3. Lefschetz Principle: Let $C = (\mathbb{C}, 0, 1, +, \cdot, -)$ For a sentence in the language of C Then the following are equivalent:

- $\mathcal{C} \models \sigma$
- $\mathcal{A} \models \sigma \text{ for every } \mathcal{A} \models ACF_0$
- $ACF_0 \models \sigma$
- for all sufficiently large primes $p \ ACF_p \models \sigma$
- For infinitely many primes p ACF_p $models \sigma$

Proof. Sketch:

- (a), (b), (c) are equivalent by completeness of ACF₀
- (c) \Longrightarrow (d) $ACF_0 \models \sigma$ so there is $T_0 \subseteq ACF_0$ such that $T_0 \models \sigma$ therefore there exists a sufficiently large prime p such that $ACF_p \models \sigma$.
- $(d) \implies (e) \text{ TODO}$
- (e) \implies (c) If $ACF_0 \models \sigma$ than $ACF_0 \models \sigma$

Example of the Lefschetz Principle:

Proposition 3.4. Ax: Let $f: \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial map. If f is injective, then f is surjective.

Proof. Our language is $\mathcal{L} = \{0, 1, +, -, \cdot\}$. Note that there is an \mathcal{L} -sentence Φ_d such that a Field F

 $F \models \Phi_d$ iff for every polynomial map $f: F^n \to F^n$ whose TODO coord. function is of degree at most d, if f is injective then f is surjective.

By Lefschetz principle it is enough to show for sufficiently large primes p, $ACF_p \models \Phi_d$ for all $d \in \mathbb{N}$. Since ACF_p is complete, it is enough to show that every injective polynomial map $f: K^n \to K^n$ is surjective, where K = TODO Let $f: K^n \to K^n$ be a polynomial map.

Then there is a finite subfield K_0 of K such that all coefficients of f come from K_0 . Let $y \in K^n$. Then there is a finite subfield K_1 of K such that $y \in K_1$ and $K_0 \subseteq K_1 \subseteq K$. Since $f: K_1^n \to K_1^n$ is injective and K_1 finite, $f|_{K_1}$ is surjective onto K_1 . So there is $x \in K_1^n$ such that f(x) = y.

Note: Later, a purely geometric proof was found by Borel. Another use of Łoś-Vaught

Proposition 3.5.

$$(\mathbb{Q},<_{\mathbb{Q}})\equiv (\mathbb{R},<_{\mathbb{R}})$$

Proof. $\mathcal{L} = \{<\}$ and note that both $(\mathbb{Q}, <_{\mathbb{Q}}), (\mathbb{R}, <_{\mathbb{R}})$ are DLO without endpoints, i.e. they satisfy the following axioms

- 1. $\forall x \forall y (x < y \lor x = y \lor y < x)$
- 2. $\forall x \forall y (x < y \rightarrow \neg (y < x))$
- 3. $\forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z)$
- 4. $\forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y))$
- 5. $\forall x \exists y \exists z (y < x \land x < z)$

TODO

3.4 Nonstandard Analysis

- 1. Language \mathcal{L} : =, \forall ranging over \mathbb{R} ,
 - P_R TODO
- 2. standard structure for \mathcal{L} : \mathcal{R} with universe \mathbb{R} , $c_r^{\mathcal{R}} = r$, $P_R^{\mathcal{R}} = R$, $f_F^{\mathcal{R}} = F$.
- 3. Nonstandard structure for \mathcal{L} : \mathcal{R}^* , which is constructed using the compactness theorem

$$\Gamma := \operatorname{Th}(\mathcal{R}) \cup \{c_r P_{<} v_1 : r \in \mathbb{R}\}\$$

Compactness theorem \implies there exists a \mathcal{L} -structure \mathcal{R}^* with $\mathcal{R}^* \models \Gamma[(v_1|a)]$ for some $a \in \mathcal{R}^*$. We have $\mathcal{R} \equiv \mathcal{R}^*$. Moreover, $h : \mathbb{R} \to \mathcal{R}^*$ defined by $r \mapsto c_r^*$ is an isomorphism of \mathcal{R} into \mathcal{R}^*

- *h* is injective:
- TODO

Note: WMA \mathcal{R} substructure of \mathcal{R}^* (se PS)

Notation: We will write *B instead of $P_B^{\mathcal{R}^*}$.

Example 3.7.: what is ${}^*\mathbb{R}$? We have that $\mathcal{R} \models \forall x P_{\mathbb{R}}$, hence $\mathcal{R}^* \models \forall x^*\mathbb{R}$, so ${}^*\mathbb{R} = R^* = \text{universe of } \mathcal{R}^*$. Note: Let F be an n-ary operator on \mathbb{R} . Then F is the restriction of *F to \mathbb{R} . ${}^*c_r = r$.

Idea: If we want to show that R or F has certain property, then we show

- R or F have that property.
- property can be expressed in \mathcal{L}

TODO

 $\mathcal{R}^* \supseteq \mathcal{R}$ such that $\mathcal{R}^* \equiv \mathcal{R}$. $\mathcal{F} = \{x \in \mathcal{R}^* : \exists r \in \mathbb{R} \ ^* |x|^* \le r\}$ $\mathcal{I} = \{x \in \mathcal{R}^* : \forall r \in \mathbb{R} \ ^* |x|^* < r\}$

Proposition 4.2. 1. \mathcal{F} is a subring of \mathcal{R}^*

2. \mathcal{I} is an ideal in $\mathcal{R}*$

Proof. 1. Let $x, y \in \mathcal{F}$ then there exists $a, b \in \mathbb{R}^{>0}$ such that $^*|x|^* \leq a$ and $^*|y|^* \leq b$. then

*
$$|x \pm^* y|^* \le |x|^* + |y|^* \le a + b \in \mathbb{R}^{>0}$$
* $|x \cdot^* y|^* = |x|^* \cdot^* |y|^* \le a \cdot b \in \mathbb{R}^{>0}$

2. $x, y \in \mathcal{I}$ then $\forall a \in \mathbb{R}^{>0}$ we have $|x| < \frac{a}{2}$ Then

$$|x \pm y| \le \frac{a}{2} + \frac{a}{2} = a$$

Let z be finite then $|z| < b \in \mathbb{R}^{>0}$ Let $a \in \mathbb{R}^{>0}$ then $|x| < \frac{a}{b}$ so

$$|xz| < \frac{a}{b}b = a$$

 \simeq **Definition 3.6. infinitely close:** x,y are called to be infinitely close $(x\simeq y)$, if $y-x\in\mathcal{I}$

Proposition 4.3. 1. \simeq is an equivalence relation

2. \simeq is congruent with *+,* ·,* -

Lemma 4.4. Suppose $\neg x \simeq y$ and at least one of x, y is finite then there exists $q \in \mathbb{R}$ such that q is between x and y

Proof. $y - x \notin \mathcal{I}$, wlog. x < y then there exists $b \in \mathbb{R}$ such that 0 < b < y - x and by the archimedian property there is $m \in \mathbb{N}^{>0}$ such that x < mb. Let m be the smallest such. i.e. $(m-1)b \le x < mb$. And mb < y.

Proposition 4.5. For every $x \in \mathcal{F}$ there is exactly one $r \in \mathbb{R}$ such that $x \sim r$

Proof. Let $S := \{r \in \mathbb{R} : r < x\}$. S is bounded in \mathbb{R} because $|x| < r_0$ for some $r_0 \in \mathbb{R}^{>0}$. Then $r := \sup S$. Claim: $r \simeq x$. Lets assume by contradiction that this is not the case. By the previous lemma, there is $q \in \mathbb{R}$ such that r < q < x or x < q < r. but neither of this things can happen.

- r < q < x is contradiction to r not being an upper bound.
- x < q < r is contradiction to r is not the least upper bound.

A concequence of that:

Corollary 4.5-A. for each $x \in \mathcal{F}$ there is a unique way of writing of x in the form r + i where $r \in \mathbb{R}$ and $i \in \mathcal{I}$

Note: If x = r + i then we also write st(x) = r.

Proposition 4.6. • st : $\mathcal{F} \rightarrow \mathbb{R}$

- $\operatorname{st}(x) = 0$ iff $x \in \mathcal{I}$
- $\operatorname{st}(x^* + y) = \operatorname{st}(x) + \operatorname{st}(y)$
- $\operatorname{st}(x^* \cdot y) = \operatorname{st}(x) \cdot \operatorname{st}(y)$

Note: this says that st is a homomorphism of \mathcal{F} onto field $\overline{\mathbb{R}}$ with $\ker(\operatorname{st}) = \mathcal{I}$ and $\mathcal{F}/_{\mathcal{I}} \cong \overline{\mathbb{R}}$

П

7.2

Definition 3.7. Convergence (non-standard definition): F converges at a to b if whenever $x \simeq a$ and $x \neq a$ then $^*F(x) \simeq b$.

Note: This definition is equivalent to $\varepsilon - \delta$ definition of convergence in Analysis.

• Suppose F converges to b at a in $\varepsilon - \delta$ -sense

$$\mathcal{R} \models \forall \varepsilon > 0 \exists \delta > 0 \forall z (|z - a| < \delta \implies |F(z) - b| < \varepsilon)$$

$$\mathcal{R}^* \models \forall \varepsilon > 0 \exists \delta > 0 \forall z (|z - a| < \delta \implies |F(z) - b| < \varepsilon)$$

Let $\varepsilon > 0$ and $\delta > 0$ corresponding to ε . Let $x \simeq a$ then |x - a| < r for all positive $r \in \mathbb{R}^{>0}$ so in particular $|x - a| < \delta$, therefore $|F(x) - b| < \varepsilon$ but ε was arbitrarily, so st(F(x)) = b.

• Suppose F convergences to b at a in the non-standard-sense. Then $\forall \varepsilon \in \mathbb{R}^{>0}$

$$\mathcal{R}^* \models \exists \delta > 0 \forall x (|x - a| < \delta \rightarrow |F(x) - b| < \varepsilon)$$

Because $\delta \in \mathcal{I}$ works. But then

$$\mathcal{R} \models \exists \delta > 0 \forall x (|x - a| < \delta \rightarrow |F(x) - b| < \varepsilon)$$

Note: If F converges to b at a then b is unique such that for every $i \in \mathcal{I}$ the standard part $\operatorname{st}(F(a+i)) = b$. And we use the general notation $\lim_{x \to a} F(x) = b$

Corollary 4.6-A. F continuous at a then $x \simeq a \implies {}^*F(x) \simeq {}^*F(a)$ Derivatives From Analysis: If $F: \mathbb{R} \to \mathbb{R}$ then $F'(a) = \lim_{h \to 0} \frac{F(a+h) - F(a)}{h}$

Definition 3.8.: We will say that F'(a) = b iff $\forall dx \in \mathcal{I}, dx \neq 0$ then

$$\operatorname{st}\left(\frac{F(a+dx)-F(a)}{dx}\right)=b$$

dF := F(a + dx) - F(a) then F'(a) = b iff $\forall dx \in \mathcal{I}, dx \neq 0$ we have $\operatorname{st}(\frac{dF}{dx}) = b$ is an actual division.

Example 3.8. : $F(x) = x^2$

$$\frac{dF}{dx} = \frac{(a+dx)^2 - a^2}{dx} = \frac{2dxa + (dx)^2}{dx} = 2a + dx$$

and st $\frac{dF}{dx} = 2a$

Proposition 4.7. (standard) If F'(a) exists, then F is continuous at a.

Proof. Assume F'(a) (in the standard sense) exist, then F'(a) is a finite number and $F'(a) \simeq \frac{F(a+dx)-F(a)}{dx}$. Therefore F(a+dx)-F(a) has to be infinitesimal $(\in \mathcal{I})$. Which means $F(a+dx) \simeq F(a)$.

Proposition 4.8. Chain rule: Suppose G'(a) and F'(G(a)) exist then $(F \circ G)'(a) = F'(G(a)) \cdot G'(a)$

Proof. Note: ${}^*(F \circ G) = {}^*F \circ {}^*G$ because $\mathcal{R} \models \forall x F_{f \circ g}(x) = (F_f \circ F_g)(x)$

$$dG :=^* G(a + dx) -^* G(a)$$

$$dF :=^* (F \circ G)(a + dx) -^* (F \circ G)(a)$$

$$=^* F(^*G(a + dx)) -^* F(^*G(a))$$

$$=^* F(^*G(a) + dG)) -^* F(^*G(a))$$

We know that G(a) exists so G is continuous at a and therefore $dG \simeq 0$

• case $dG \neq 0$ then $\frac{dF}{dG} \simeq F'(G(a))$. We can re-write

$$\frac{dF}{dx} = \frac{dF}{dG}\frac{dG}{dx} = F'(G(a)) \cdot G'(a)$$

• case dG = 0 then dF = 0 and $G'(a) = \frac{dG}{dx} = 0$ and therefore $(dx \neq 0)$

$$\frac{dF}{dx} = 0 = F'(G(a))\frac{dG}{dx}$$

3.5 O-MINIMALITY

Example 3.9.: $\overline{\mathbb{R}} = (\mathbb{R}, +, -, \cdot, 0, 1, \leq) \overline{\mathbb{R}} = (\mathbb{R}, \leq)$ TODO or at least in a very similar language, then by quantifier elimination (QE, Tarski) all the definable sets of \mathbb{R} are finite unions of points and intervals.

Definition 3.9. o-minimality: Let $\mathcal{L} = \{\leq, \dots\}$, \mathcal{M} is an \mathcal{L} -structure such that $\mathcal{M} \models \mathsf{DLO}$ and the only definable subsets of M are finite union of points and intervalls. Then \mathcal{M} or equivalent $\mathsf{Th}(\mathcal{M})$ is called o-minimal.

o-minimal is not a first order property so to say that a theory is o-minimal is non trivial. Note: Cell decomposition means Suppose X is definable in an o-minimal structure \mathcal{M} , $X\subseteq M^n$ then X is a finite union of cells (in dimension 1 these are points or intervalls) in M^2 it is either the graph of a continuous function or everything inbetween two graphs of continuous functions. (its an inductive definition)

Note: Have Dedekind complete for definable subets of M: For $X \subseteq M$ definable then $\inf X, \sup X$ exist in $M_{\pm \infty}$.

Note: If M contains infinitely small elements, for example $M = {}^*\mathbb{R}$ then $(0,1) \subseteq M$ is not connected. $O_1 = \{x : \forall n \in \mathbb{N}^* 0 < x < \frac{1}{n}\}$ is open and so is its complement in (0,1). We have

Note that O_1 is however not definable in M. If O_1 would be definable it would be a finite union of points and intervals. It is convex, and not a point. But it is also not an interval, because then it would have by Dedekind completness that $\sup O_1$ exists in $M_{\pm\infty}$, a contradiction. TODO:

Definition 3.10. definably connectedness: $X \subseteq M^m$ is said to be definably connected, if X is definable and X is not the disjoint union of two definable, non-empty open sets.

Lemma 5.2. 1. The definably connected subsets of M are the intervalls (including singletons) and \varnothing .

- 2. The image of a definable connected subset $X \subseteq M^n$ under a definable continuous map $f: X \to M^n$ is definably connected. (f is called to be definable, if its graph $\Gamma f \subseteq M^{mn}$ is).
- 3. (IVP) If $f:[a,b] \to M$ definable and continuous, then f assumes all values between f(a) and f(b).

Proof. Exercise

3.6 O-MINIMAL ORDERED GROUPS AND RINGS

Definition 3.11. ordered group: A ordered group is a group with a linear order such that

$$\forall x \forall y \forall z x < y \to (zx < zy \land xz < yz)$$

Example 3.10. :

- $(\mathbb{R}, <, +)$
- $(\mathbb{R}^{>0}, <, \cdot)$
- non-example: $(\mathbb{R}^*, \cdot, <)$

Recall:

- (G,\cdot) is divisible, if $\forall n \forall g \exists xg = x^n$, equivalent to $\forall nG^n = G$.
- (G, \cdot) is torsion-free, if no element has finite order except for 1.

Proposition 6.2. $(M, <, \cdot, ...)$ o-minimal such that $(M, <, \cdot)$ ordered group, then $(M, <, \cdot)$ abelian, divisible and torsion-free.

Lemma 6.3. If G is a definable subgroup of M then G is convex.

Proof. Suppose G is not convex, then there exists 1 < a < g for some $g \in G$ and $a \in M \backslash G$. Then

$$1 < a < g < ag < g^2 < ag^2 < g^3 < \dots$$

but elements alternate being in G and outside of G so G is not definable (finite union). \square

Lemma 6.4. The only definable subsets of M that are subgroups are $\{1\}$ and M.

Proof. Suppose $G \neq \{1\}$ wts. G = M. From the previous lemma we know that G is convex. The idea is $s := \sup G$ then 1 < s and $(1, s) \subseteq G$. If $s = +\infty$ then G = M. Suppose $s \neq +\infty$ then Take 1 < g < s then $g^{-1}s \in (1, s)$ So $s = gg^{-1}s \in G$ and s < sg thats a contradiction with $s = \sup G$.

Proof. of Proposition.

- (M, \cdot) abelian: For any $a \in M$ we can look at $C_a = \{x \in M : xa = ax\}$ it is a definable subgroup and contains a it therefore is non-trivial and we have $C_a = M$ for every $a \in M$, so abelian.
- For any $n \in \mathbb{N}^{>0}$ look at $\{x^n : x \in M\}$ non trivial definable subgroup of M, hence = M.
- Every ordered group is torsion-free.

Definition 3.12. Ordered ring: A ring (assumed to always be associative, with 1) equipped with a linear order such that

- $1. \ 0 < 1$
- 2. < translation invariant
- 3. < invariant under multiplication by positive elements

Note:

- The additive group (R, <, +) of an ordered ring is a ordered group.
- Ordered rings have no zero-divisors $\forall x \forall y x y = 0 \rightarrow (x = 0 \lor y = 0)$
- $x^2 > 0$
- $k \mapsto k \cdot 1 : \mathbb{Z} \to \text{ring}$ is a strictly increasing embedding with respect to the usual ordering on \mathbb{Z} that means our characteristic is 0.

Note:

• A division ring is a field without commutativity of multiplication, so

$$\forall xx \neq 0 \rightarrow \exists yxy = 1$$

• Suppose ordered ring is also a division ring. Then such y are unique and yx = 1. Further, $x > 0 \rightarrow y > 0$.

Also the additive group is divisible, the underlying set is DLO w/o endpoints and $(x, y) \to x \cdot y$ $x \to x^{-1}$ are continuous with respect to itervall topology.

Definition 3.13. ordered field: An ordered field is an ordered division ring with commutative multiplication.

Definition 3.14. real closed field: ordered field R such that if $f(X) \in R[X]$ and RCF a < b are such that f(a) < 0 < f(b) then there exists a $c \in (a,b)$ such that f(c) = 0

Example 3.11. :

- $(\mathbb{R}, +, \cdot, <)$ is RCF
- $(\mathbb{Q}, +, \cdot, <)$ is not a RCF

Proposition 6.5. $(M, <, +, \cdot, ...)$ o-minimal such that $(M, <, +, \cdot)$ is ordered ring then $(M, <, +, \cdot)$ is RCF.

- *Proof.* wts. $(M; <, +, \cdot)$ is ordered division ring. For all $a \in M$ aM is additive subgroup of (M, +) hence aM = M if $a \neq 0$.
 - wts. commutativity of \cdot . Pos $(M) := \{a \in M : a > 0\}$ is a subgroup of the multiplicative group of M. Let $a \in M$ then be M = aM we have $b \in M$ such that $1 = a \cdot b$ and by note 0 < a then $0 < a^{-1}$, so multiplication is commutative on M
 - IVP property for polynomials: The ring operations are continuous, see note and use lemma about IVP (c).

Cell decomposition

Base step:

Proposition 6.6. Monotonicity Theorem: Suppose $f:(a,b) \to M$ definable, then there are $a < c_1 < \cdots < c_k < b$ such that for (a,c_1) , (c_i,c_{i+1}) , (c_k,b) subsets of (a,b) we have: f is either constant or strictly monotinic and continuous.

Lemma 6.7. \exists subinterval on which f is const or injective.

Lemma 6.8. If f injective, then strictly monotone on a subinterval.

Lemma 6.9. If f strictly monotone, then f continuous on a subinterval.

Proof. Proof of Monotonicity theorem: Consider

$$X := \left\{ x \in (a,b) : \begin{array}{l} \text{on some subinterval containing } x, \\ f \text{ is either constant or strictly monotone and continuous} \end{array} \right\}$$

remark: X is a definable set. Look at (a,b) - X is finite. If not, it would contain subinterval use lemma to get contradiction. WMA: X = (a,b) in particular we may assume f continuous. By subdividin (a,b) further WMA that we are in one of the following cases

Case 1: $\forall x \in (a,b)$ f constant on some neighborhood of x

Case 2: $\forall x \in (a,b)$ f is strictly monotone increasing on some neighborhood of x

Case 3: $\forall x \in (a,b)$ f is strictly monotone decreasing on some neighborhood of x

Case 1: $x_0 \in (a, b)$ then $s := \{x : x_0 < x < b \land f \text{ cont. on } [x_0, x)\}$ wts s = b suppose s < b then f constant on neighborhood of s contradiction with definition of s so f continuous on $[x_0, b)$. f constant on $[a, x_0]$ similar.

Case 2: $x_0 \in (a,b)$ then $s := \{x : x_0 < x < b \land f$ strictly incr. on $[x_0,x)\}$. wts: s = b assume s < b then f is strictly increasing on some neighborhood of s so f strictly increasing on $[x_0, s + \delta)$ for some $\delta > 0$, a contradiction to definition of s.

Case 3: similar to Case 2.

Proof of Lemma 1:

Proof. Statement: "There exists a subinterval on which f is constant or injective."

• If $y \in R$ so that f^{-1} is infinite (it has to be a finite union of points and intervals), then $f^{-1}(y)$ contains an interval and f(x) = y on that interval.

Seite 38 von 52 J.Petermann: LogicNotes [V0.5.1-2024-12-11 at 19:12:51]

• Suppose $f^{-1}(y)$ is finite for every $y \in R$. f(I) is infinite and is definable because f is definable, so it contains an interval J. We can define an inverse to f on J $g: J \to I$, g(y) is the first $x \in I$ such that f(x) = y < (this is definable). g is necessarily injective. g(J) infinite, so contains a subinterval on which f is injective.

Proof of Lemma 2:

Proof. Statement: "If f injective, then strictly monotone on a subinterval."

Suppose f is injective. $f: I = (a,b) \to R$ pick $x \in (a,b)$ then $(a,x) = \{y \in (a,x) : f(y) < f(x)\} \uplus \{y \in (a,x) : f(x) < f(y)\}$ is definable disjoint union of definable sets, so one of the subsets has to contain an interval (c,x) with $a \le c$, similarly for (x,d). So for all $x \in I$ we have x satisfies one of the following:

- $\Phi_{++}(x)$ iff $\exists c_1, c_2(c_1 < x < c_2 \land \forall c \in (c_1, x) f(c) > f(x) \land \forall c \in (x, c_2) f(c) > f(x)$
- Φ___(x)
- $\Phi_{+-}(x)$
- $\Phi_{-+}(x)$

The set of all x that satisfy each Φ is definable, it therefore is a finite union of points and intervalls. After passing to subinterval (a,b) of I WMA that each $x \in I$ satisfies the same $\Phi_{\pm\pm}$.

• $\Phi_{-+}(x)$, on the left everybody is smaller, on the right everybody is bigger.

$$\forall x \in Is(x) := \sup\{s \in (x, b) : f(x) < f(s)\}\$$

If s(x) < b then $\Phi_{-+}(s(x))$, and therefore there is an element s' > s(x) such that $f(x) \le f(s(x)) < f(s')$ so $s(x) \ge s'$ which is a contradiction to definition to s(x), therefore s(x) = b for every $x \in (a, b)$. Then f has to be strictly increasing on (a, b).

- $\Phi_{+-}(x)$ similar (monotinic decreasing)
- $\Phi_{++}(x) \ \forall x \in I$.

$$B := \{ x \in I : \forall y \in I (x < y \to f(y) > f(x)) \}$$

B is definable, if B is infinite, it has to contain a subinterval on which f is strictly increasing.

WMA B is finite. We restrict ourselves to subinterval and may assume $B = \emptyset$. So by injectivity:

$$\circledast \quad \forall x \in I \exists y \in I x < y \land f(x) > f(y)$$

Let $c \in I$. Claim: for every large enough $y \in I$ we have f(y) < f(c).

proof of claim. By contradiction, suppose we can not find a neighborhood of b such that for all elements in this neighborhood f(y) < f(c) otherwise f(y) > f(c) for all large enough y. Let d < b be minimal such that

$$\forall y \in (d,b) f(y) > f(c)$$

- case f(d) > f(c): $\Phi_{++}(d)$, contradiction with minimality of d.
- case f(d) < f(c): By ⊛ there has to be an e with d < e < b and f(e) < f(d). So f(e) < f(c) which is a contradiction to $\Phi_{++}(d)$

Define y(c) to be the least element of [c, b) for which

$$\forall yy(c) < y < b f(c) > f(y)$$

c satisfies Φ_{++} , therefore c < y(c) and f(y(c)) < f(c) if y(c) < y < b. The minimality of y(c) implies that y(c) satisfies Ψ_{+-} , where

$$\Psi_{+-}(v)$$
 iff $\exists v_1, v_2 \in I(v_1 < v < v_2 \land \forall z_1, z_2(v_1 < z_1 < v \land v < z_2 < v_2) \rightarrow f(z_1) > f(z_2))$

But c was arbitrarily so $\forall x \in I \exists v \in I (x < v \land \Psi_{+-}(v))$ On subinterval Ψ_{+-} we have a contradiction with Φ_{++} , similarly on subinterval for Ψ_{-+} .

Seite 39 von 52

 \boxtimes

• Φ_{--} similar to above

Proof of Lemma 3:

Proof. Statement: "If f strictly monotone, then f continuous on a subinterval."

WMA: $f:(a,b) \to R$ strictly monotone increasing. f(I) infinite and definable, so f(I) contains an interval J. Let $r, s \in J$ r < s and $d, e \in I$ with d < e and f(d) = r and f(e) = s. restrict f to (d,e) and we get an increasing bijection $(d,e) \to (r,s)$. Our topology is the order topology, so f is continuous on (d,e)

So we have proved the monotonicity Theorem. Note: If $f:(a,b)\to R$ is definable, then $\lim_{x\to c^-} f(x)$ exists in R_∞ for $c\in(a,b]$. And further $\lim_{x\to c^+} f(x)$ exists in R_∞ for $c\in[a,b]$ If furthermore $f:[a,b]\to R$ is continuous and definable, then f assumes a minimum and maximum on [a,b]

On of the important tools in o-minimality theory is the cell cecomposition theorem:

Definition 3.15. Cell: Let $(i_1, \ldots i_n)$ a sequence in $\{0, 1\}$. An $(i_1, \ldots i_n)$ -cell is defined inductively:

- (0)-cell: $\{r\} \subseteq R$,
- (1)-cell: $(a, b) \subseteq R, a < b, a, b \in R$.
- $(i_1, \ldots i_k, 0)$ -cell: $\Gamma f \subseteq \mathbb{R}^{k+1}$, where f is definable and continuous function f:TODO
- $(i_1, \ldots i_k, 1)$ -cell: is a the set

$$(f,g) = \{(\underline{x}, x_{k+1}) \in R^{k+1} : f(\underline{x}) < x_{k+1} < g(\underline{x})\}\$$

 $f: X \to R, g: X \to R, f < g f, g$ are definable and continuous on X, which is a (i_1, \ldots, i_k) -cell. f may be constantly $-\infty$ and g may be constantly ∞ .

Note Cells have nice topological properties:

- every $(1, \ldots 1)$ -cell are precisely the cells that are open in their ambient space. continuity of the functions is important.
- The union of finitlely many non-open cells has empty interior.
- Each cells is cocally closed i.e. open in its closure.
- Each cell is homeomorphic to an open cell under a coordinate projection Example (1,0,0,1)-cell or (1,0)-cell with $(x_1,x_2)\mapsto x_2$
- If $A \subseteq R^{n+1}$, then $\pi A \subseteq R^n$ cell $\pi(x_1, \dots x_{n+1}) \mapsto (x_1, \dots x_n)$
- Every cell is definably connected. You can proof this by induction on the cell. $\{r\}$ and open intervals are definably connected. If the projection of a cell is definably connected, then the fibre above it is either an open interval or a single point. It is even definable path connected. If there would exist an open disjoint cover there exists an open disjoint cover of the fibre, which is not possible.

Definition 3.16. decomposition: A decomposition of R^m is a finite partition of R^m into cells defined inductively:

• decomposition of $R^1 = R$:

$$\{(-\infty, a_1), \{a_1\}, (a_1, a_2) \dots (a_k, \infty)\}$$

• A decomposition of R^{n+1} is a finite partition of R^{n+1} into cells C such that the collection of πC is a decomposition of R^n .

Theorem 6.10. Cell decomposition:

 (I_m) Let $A_1, \ldots A_k \subseteq R^m$ definable sets. Then there is a decomposition of R^m partitioning each A_i .

Seite 40 von 52

(II_m) Given a definable function $f: A \to R$, $A \subseteq R^m$ there is a decomposition \mathcal{D} of R^m partitioning A such that for every $B \in \mathcal{D}$ $f|_B: B \to R$ is continuous.

Proof. By induction on m. Base step:

- (I_1) o-minimality
- (II₁) monotonicity theorem.

Proof idea: Suppose we have

$$\begin{cases} (\mathbf{I}_1) \dots (\mathbf{I}_m) \\ (\mathbf{II}_1) \dots (\mathbf{II}_m) \end{cases} \} \implies (\mathbf{I}_{m+1}), (\mathbf{II}_{m+1})$$

Definition 3.17.: A definably connected component of a non-empty definable Subset $X \subseteq \mathbb{R}^m$ is a definably-connected subset of X which is maximal wrt being definably connected

Example 3.12. : $X \subseteq \mathbb{R}^m$ definable. Then it is definably connected iff X definably path connected i.e.

$$\forall x, y \in X \exists f : [0,1] \to X$$
 definable and continuous with $f(0) = x \land f(1) = y$

Proposition 6.11. Suppose $X \subseteq \mathbb{R}^m$ is definable and non-empty, then X has only finitlely many definably connected components. The components are both open and closed in X and they form a finite partition of X.

Proof. Let $\{C_1, \ldots C_k\}$ be a partition of X into cells. $I \subseteq \{1, \ldots k\}$ then $C_I := \bigcup_{i \in I} C_i$. Let C' be the maximal among the C_I that is definable connected. Claim: For $Y \subseteq X$ definable connected such that $Y \cap C' \neq \emptyset$ then $Y \subseteq C'$.

proof of claim. $C_Y := \bigcup \{C_i : C_i \cap Y \neq \emptyset\}$ Then $Y \subseteq C_Y$. and C_Y is definably (finite union) connected union of definably connected set Y and finitly meny cells that have non-empty intersection with Y. Then $C_Y \cap C'$ contains $Y \cap C' \neq \emptyset$. So if we take $C_Y \cup C'$ has to be again definably connected. By maximality $C_Y \cup C' = C'$ and $Y \subseteq C_Y \subseteq C'$.

Hence

- C' definably connected component of X
- The sets C' form a finite partition of X
- C' are the only definable connected components of X

The closure in X of a definably connected subset of X is definable connected. (see topology) So the C' are closed in X. They are also open because the complement in X is a finite union of closed subsets.

Note: The above Proposition is not true if we drop the requirement "definable"

Definition 3.18. Definable families: Let $S \subseteq \mathbb{R}^{m+n}$ definable. For $a \in \mathbb{R}^m$ we put

$$S_a = \{\underline{x} \in R^n : (a,\underline{x}) \in S\} \subseteq R^n$$

S describes the family of sets $(S_a)_{a \in \mathbb{R}^m}$. And the sets S_a are called the fibers of S.

Example 3.13. : $\mathcal{R} = (\mathbb{R}, <, +, \cdot)$

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$

defines $S \subseteq R^6 \times R^2$. The fibers are:

- points, circles, ellipse, hyperbola, parabola
- and the limiting cases: \emptyset , 2 lines intersecting each other, 2 parallel lines, one line, RR^2

Seite 41 von 52

Note: In o-minimal structures there are only finitly many homomorphism types in a definably family. (If there are infinitely many fibres, then only finitlely many are not homeomorphic to each other).

Proposition 6.12. 1. $C \text{ cell in } R^{m+n}, a \in \pi_m^{m+n} C \text{ (where } \pi_m^{m+n}(x_1, \dots x_{m+n}) = (x_1, \dots x_m))$ Then C_a is a cell in R^n

2. \mathcal{D} decomposition of R^{m+n} , and $a \in R^m$ then

$$\mathcal{D}_a = \{ C_a : C \in \mathcal{D} \land a \in \pi_m^{m+n}(C) \}$$

is a decomposition of \mathbb{R}^m .

Proof. 1. induction on n. If n = 1, $a \in \pi_m^{m+1}C$ Then C_a is one of the below

- If C is a $(i_1, \ldots i_m, 0)$ -cell then $C = \Gamma f$, $f: \pi_m^{m+1}C \to R$ definalby continuous. $a \in \pi_m^{m+1}C$ then $C_a = \{f(a)\} \subseteq R$
- If C is a $(i_1, ..., i_m, 1)$ -cell then $C = (f, g), C_a = (f(a), g(a))$

Suppose the statement holds for some n then let $C \subseteq R^{m+n+1}$ be a cell. Consider the two projections $\pi_{m+n}^{m+n+1}, \pi_m^{m+n}$ and

$$\pi_m^{m+n} \circ \pi_{m+n}^{m+n+1} : R^{m+n+1} \to R^m$$

Two options: Either $C = \Gamma f$, then

$$C_a = \Gamma f_a$$
 where $f_a : (\pi_{m+n}^{m+n+1}C)_a \to R$

and
$$f_a(x) = f(a, x)$$

Or $C = (f, g)_D$ i.e. $f, g: D \to R$, $D \subseteq R^{m+n}$ cell, $D = \pi_{m+n}^{m+n+1}$ Then $C_a = (f_a, g_a)_E$, $E = D_a$. in both cases, C_a is a cell.

2. Exercise.

Corollary 6.12-A. Let $S \subseteq R^m \times R^n$ a definable family then there exists $M_S \in \mathbb{N}$ such that for all $a \in R^m$ $S_a \subseteq R^m$ has a partition into M_S many cells.

Proof. $S \subseteq R^m \times R^n$ \mathcal{D} decomposition of $R^m \times R^n$ that partions S. Then S is a finite union of cells from \mathcal{D} , each fiber S_a is a finite union of $C_a, C \in \mathcal{D}$ but C_a is a cell by Proposition. A bound: $|\mathcal{D}|$.

Note: There is a uniform bound on # of definable connected somponents of sets in definable family.

Theorem 6.13. $\mathcal{R} = (R; <, ...)$ o-minimal \mathcal{L} -structure, R' = (R'; <, ...) \mathcal{L} -structure. If $R \equiv R'$ then R' is o-minimal.

Proof. $S \subseteq R$ definable, $S = \{r \in R : \mathcal{R} \to \varphi(x)[r]\}$ might use parameters from R. If φ is a \mathcal{L} -fla. over \emptyset . Then

$$\mathcal{R} \models \exists x_1, x_2, x_3 (x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3 \\ \land \forall c ((x_1 < c < x_2 \rightarrow \varphi(c)) \land (c = x_3 \rightarrow \varphi(c)) \\ \land \neg (x_1 < c < x_2 \lor c = x_3) \rightarrow \neg \varphi(c)))$$

But if φ uses parameters, we TODO For all $S \subseteq R^{m+1}$ need formula $\forall \underline{a} \in R^m$ " S_a is finite union of points and intervals" Idea: Subset of R definable formula w/ param is just a fiber in a definable family that is parameter-free definable. $S_a \subseteq R$ definable. By the note, there is some number M_S that only depends on the TODO Such that for each $\underline{a} \in R^m$ S_a is a finite union of at most M_S cells.

Then

$$\mathcal{R} \models \forall \underline{z} \exists x_1 \dots \exists x_{M_S+1} \big(\forall y (y < x_1 \to \varphi_{\underline{z}}(y)) \lor \forall y (y < x_1 \to \neg \varphi_{\underline{z}}(y)) \big) \\ \land \big(\forall y (x_1 < y < x_2 \to \varphi_{\underline{z}}(y)) \lor \forall y (x_1 < y < x_2 \to \neg \varphi_{\underline{z}}(y)) \big)$$

By elementarily equivalence: $\mathcal{R}' \models \dots$

Seite 42 von 52 J.Petermann: Log

CHAPTER 4

Boolean Algebra

Our language in this chapter will be $\mathcal{L} = \{0, 1, +, \cdot, -\}$, where $+, \cdot$ are binary operations and - is a unary operation.

The axioms for boolean algebras are

- 1. (Associativity of $+,\cdot$) $\forall x,y,z(x+(y+z)=(x+y)+z\wedge x\cdot (y\cdot z)=(x\cdot y)\cdot z)$
- 2. (Commutativity of $+,\cdot$) $\forall x,y(x+y=y+x \land x \cdot y=y \cdot x)$
- 3. (Idempotence) $\forall x(x+x=x \land x \cdot x=x)$
- 4. (Distributivity) +, $\forall x, y, z(x \cdot (y+z) = x \cdot y + x \cdot z \wedge x + (y \cdot z)) = TODO$
- 5. (Absorbtion) $\forall x, y (x \cdot (x \cdot y) = x \cdot y \wedge x \cdot (x + y) = x)$
- 6. (De Morgan's Laws) $\forall x, y (\overline{x+y} = \overline{x} \cdot \overline{y} \wedge \overline{x \cdot y} = \overline{x} + \overline{y})$
- 7. (Laws of 0, 1 and $\overline{}$)

$$\forall x \Big(x + 0 = x \land x \cdot 0 = 0 \land x + 1 = 1 \land x \cdot 1 = x \\ \land x + \overline{x} = 1 \land x \cdot \overline{x} = 0 \land \overline{\overline{x}} = x \Big)$$

Definition 4.1. Boolean Algebra: The theory of boolean algebras is the deductive closure of (1)-(7) above.

Note: Every boolean algebra \mathcal{B} can be partially ordered by

$$x \le y$$
 iff $x + y = y$

It is easy to see that \leq is reflexive, antisymmetric and transitive. In this ordering the smallest set is 0 and the largest one is 1. In this notion the supremum and infimum of two elements are equal to

$$\sup\{x,y\} = x + y$$
, $\inf\{x,y\} = x \cdot y$ (Exercise)

Definition 4.2. Alternative Def: Boolean Algebra: A boolean algebra is a set B with

- distinguished elements 0, 1 (called zero and unit of B)
- \bullet a unary operation ' on B (called **complementation**)
- two binary operations \vee called **join** and \wedge called **meet** s.t. for all $x, y, z \in B$
 - $1. \ x \lor 0 = x \qquad x \land 1 = x$
 - $2. \ x \lor x' = 1 \qquad x \land x' = 0$
 - 3. $x \lor y = y \lor x$ $x \land y = y \land x$
 - 4. $(x \lor y) \lor z = x \lor (y \lor z)$ $(x \land y) \land z = x \land (y \land z)$
 - 5. $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ $x \land (y \lor z) = (x \land y) \lor (x \land z)$

Example 4.1.: Let $X \neq \emptyset$ be a set, $B := \mathcal{P}(X)$ the power set of $X, 0 := \emptyset$ and 1 := S,

$$': \mathcal{P}(S) \to \mathcal{P}(S), x' := S \backslash x \qquad x \vee y := x \cup y, \quad x \wedge y := x \cap y \text{ for } x, y \in \mathcal{P}(S)$$

J.Petermann: LogicNotes [V0.5.1-2024-12-11 at 19:12:51] Seite 43 von 52

Example 4.2.: $X \neq \emptyset$ and $S \subseteq \mathcal{P}(X)$ such that

- $\varnothing \in S$
- X ∈ S
- S is closed under (finite) intersections and unions and complements.

Then $(S; \emptyset, X, \cup, \cap, -)$ is called a boolean algebra of sets and \leq corresponds to \subseteq .

Conversly, every boolean algebra is isom. to a boolean algebra of sets. (it can be embedded in)

Definition 4.3.: Suppose $\mathcal{B} \models BA$ A non-empty $F \subseteq B$ is called a filter of \mathcal{B} if

- 0 ∉ F
- $\forall a \forall ba \in F \land b \in F \rightarrow a \cdot b \in F$
- $\forall a \forall ba \in F \land a \leq b \rightarrow b \in F$

Ultrafilter of \mathcal{B} is a filter \mathcal{F} such that $\forall a \in Ba \in \mathcal{F} \vee \overline{a} \in \mathcal{F} S(B) := \text{the set of all ultrafilters}$ of \mathcal{B} (stonespace of \mathcal{B})

 $\mathcal{B} \models BA$ then for a filter F.

- 1. $1 \in F$
- 2. $F \subseteq B$ satisfying TODO
- 3. $\langle a \rangle = \{x \in S(B) : a \in x\}$ where a runs through B forms a basis for a topology on the stonespace of \mathcal{B}

Recall: $(X, \tau), \tau \subseteq \mathcal{P}(X)$ is called a topological space, if

T1 $\varnothing, X \in \tau$

T2 $\forall I \forall (\sigma_i)_i \in \tau^I : \bigcup_{i \in I} (\sigma_i) \in \tau$

T3 $\forall n \in \mathbb{N} \forall (\sigma_i)_i \in \tau^{\{1, \dots n\}} : \bigcup_{1 \le i \le n} (\sigma_i) \in \tau$

And $\tau' \subseteq \mathcal{P}(X)$ is a base for the topology τ on X, if every open set in τ is the union of sets in τ' . Back on $\langle a \rangle = \{x \in S(B) : a \in x\}$:

• $\varnothing = <0>$, S(B) = <1>, $<a> \cap = <a \cdot b>$

Every filter on B can be extended to an ultrafilter on \mathcal{B} (Zorn's Lemma).

In fact, suppose $\mathcal{F} \subseteq B$ has FIP. i.e. for any $n \in \mathbb{N} \ \forall f_1, \dots f_n \in \mathcal{F}$ it is $f_1 \cdot \dots \cdot f_n \neq 0$. (Exercise)

Definition 4.4. Stone space: A stone space is a non-empty topological space which

- 1. has a basis of clopen sets
- 2. is compact (every open cover contains a finite subcover)
- 3. and hausdorff (every two distinct points can be separated by open sets)

$$\forall x \forall y x \neq y \to \exists \sigma_x \exists \sigma_y x \in \sigma_x \land y \in \sigma_y \land \sigma_x \cap \sigma_y = \varnothing$$

Theorem 1.1. Stone Representation Theorem:

- 1. $\mathcal{B} \models BA \ then \ S(B) \ is \ a \ Stone-space$
- 2. If S is a Stone space then the clopen subsets of S form a boolean algebra denoted by $\mathcal{B}(S)$.
- 3. Every boolean algebra \mathcal{B} is isomorphic to the boolean algebra $\mathcal{B}(S(B))$ with $a \mapsto \langle a \rangle$. Hence \mathcal{B} is isomorphic to a subalgebra of boolean algebra P(S(B))
- 4. Every stonespace S is homeomorphic to the stonespace $S(\mathcal{B}(S))$

$$x \mapsto \{a \in S(B) : x \in a\}$$

1. We have the base for a topology $\langle a \rangle = \{x \in S(B) : a \in x\}$. $\langle a \rangle$ is clopen: It is Proof. clearly open.

$$\langle a \rangle^c = \overline{\langle a \rangle} = \{ x \in S(B) : a \notin x \} = \{ x \in S(B) : \overline{a} \in x \} = \langle \overline{a} \rangle$$

hausdorff: Let $x, y \in S(B)$ such that $x \neq y$. then $\exists a \in Ba \in x \land \overline{a} \in y$ then $x \in \langle a \rangle, y \in \langle \overline{a} \rangle$.

compact: Fact X is topological space then $T_{\rm FAE}$

Every open cover of X contains a finite subcover if any family of closed sets which has FIP, has non-empty intersection.

Supposed $(F_i)_{i\in I}$ a family of closed subsets of S(B) such that $I\neq\emptyset$ and $\bigcap_{i\in I}F_i=\emptyset$. we want to show that there is a finite intersection $\exists i_1, \dots i_k \in I \cap_{1 \leq m \leq k} F_{i_m}$

WMA that $F_i = \langle a_i \rangle$ for some $a_i \in B$. Assume $\bigcap_{i \in I} \langle a_i \rangle = \emptyset$.

If $a_i \cdots i_k \neq 0$ For all $\{i_1, \dots i_k\} \subseteq I$ Then $\{a_i : i \in I\} \subseteq B$ has FIP, so it extends to an ultrafilter on \mathcal{B} (using Zorns lemma).

 $\mathcal{F}\subseteq\mathcal{P}(X)$ s.th. If \mathcal{F} has FIP then \mathcal{F} has FIP, then \mathcal{F} extends to UF \mathcal{U} of \mathcal{B} extends to UF

 ${\mathcal B}$ boolean algebra, then a filter / ultrafil-

X set, a filter / ultrafilter on X is some ter of \mathcal{B} is a subset $\mathcal{F} \subseteq B$ s.th. If $\mathcal{F} \subseteq B$ i.e. $\forall i \in Ia_i \in \mathcal{U} \text{ so } \mathcal{U} \in \bigcap_{i \in I} F_i \text{ but we}$ assumed $\bigcap_{i \in I} \langle a_i \rangle = \emptyset$

So there exists some $i_1 \dots i_k$ such that $\bigcap_{1 \le i \le k} \langle a_{i_j} \rangle = \emptyset$

Definition 4.5. Atomic, Atomless: An atom is an element of a boolean algebra such that $a \neq 0$ and there is no element in the boolean algebra that is strictly inbetween 0 and a.

$$\forall y (0 \le y \le a \to (y = 0 \lor y = a))$$

A boolean algebra \mathcal{B} is called atomic, if

$$\forall a (a \neq 0 \rightarrow \exists y (y \leq a \land y \text{ is atomic}))$$

A boolean algebra is atomless if it contains no atoms

Note: There exists boolean algebras that are neither atomic nor atomless.

Note: Axioms for atomic boolean algebras: add

$$\forall a(a \neq 0 \rightarrow \exists y(y \leq x \land y \neq 0 \land \forall z(0 \leq z \leq y \rightarrow (z = 0 \lor z = y))))$$

Axioms for atomless: add

$$\forall yy \neq 0 \rightarrow \exists z (0 < z < y)$$

From here on are the lecture notes of last year

As they are in a diffrent notation than this year I will rephrase them after we have discussed them in the lecture.

Lemma 1.2. Let $(B, ', \vee, \wedge, 0, 1)$ be a boolean algebra. Then it holds

- a) 0' = 1, 1' = 0
- b) $x \lor x = x$, $x \land x = x$
- c) (x')' = x
- d) $(x \vee y)' = x' \wedge y', (x \wedge y)' = x' \vee y'$
- e) $x \lor y = y$ iff $x \land y = x$

a) $x \leq y :\Leftrightarrow x \vee y = y$ defines a partial ordering on B (inclusion) and it Lemma 1.3. holds

Seite 45 von 52

- b) $x \lor y$ is the least upper bound of $\{x, y\}$ in B $x \land y$ is the greatest lower bound of $\{x, y\}$ in B
- c) $0 \le x \le 1$ for all $x \in B$

Note: A boolean algebra is a complemented distributive lattice.

Definition 4.6. Opposite of boolean algebra: Let $(B,',\vee,\wedge,0,1)$ be a boolean algebra. The boolean algebra B^{op} is defined by

 $B^{\mathrm{op}} := B, \quad 0^{\mathrm{op}} := 1, \quad 1^{\mathrm{op}} := 0, \quad ' \text{ stayes the same as for } B, \quad \vee^{\mathrm{op}} := \wedge, \quad \wedge^{\mathrm{op}} := \vee$

Note: $(B^{op})^{op} = B$

Definition 4.7. Subalgebra: A subalgebra of B is a subset $A \subseteq B$ s.t. $0, 1 \in A$ and A is closed under $', \land, \lor$. The subalgebra generated by $P \subseteq B$ is defined to be the smallest subalgebra containing P. Equivalently it is the intersection of all Subalgebras of B that contain P.

Example 4.3. Power set algebra: Let S be a set then $\mathcal{P}(S)$ defines a boolean algebra on S. $B := \{x \in \mathcal{P}(S) : x \text{ is finite or cofinite}\}$ is a subalgebra of $\mathcal{P}(S)$ w/ set of generators $\{s\} : s \in S\}$

Note: We will prove the Tarski-Stone Theorem: every boolean algebra is isomorphic to an algebra on a set.

Example 4.4. Lindenbaum Algebra of Σ : Let A be a set of prop. atoms, $\operatorname{Prop}(A)$ the set of prop. generated by A. Further let $\Sigma \subseteq \operatorname{Prop}(A)$ and p,q,r range over $\operatorname{Prop}(A)$. We say p is Σ -equivalent to q iff $\Sigma \models_{\text{taut}} p \leftrightarrow q$ Σ -Equivalence is an equivalent relation on $\operatorname{Prop}(A)$ and $\operatorname{Prop}(A)/\Sigma$ is a boolean algebra with

$$0 := \bot/\Sigma, \quad 1 := \top/\Sigma, \quad (p/\Sigma)' := (\neg p)/\Sigma, \quad (p/\Sigma \vee q/\Sigma) := (p \vee q)/\Sigma, \quad (p/\Sigma \wedge q/\Sigma) := (p \wedge q)/\Sigma$$

a set of generators is $\{a/\Sigma : a \in A\}$

Definition 4.8. Homomorphisms of boolean algebras: Let B, C be boolean algebras. A map $\phi: B \to C$ is a (homo)morphism of boolean algebras iff $\forall x, y \in B$ it holds

- $\phi(0_B) = 0_C$
- $\phi(x') = \phi(x)'$
- $\phi(x \vee y) = \phi(x) \vee \phi(y)$
- $\phi(x \wedge y) = \phi(x) \wedge \phi(y)$

If $\phi: B \to C$ is bijective too , we call ϕ an isomorphism and $\phi^{-1}: C \to B$ is also a morphism of boolean algebras.

Note: $\phi(B)$ is subalgebra of C

Example 4.5.: Let S,T be sets then a function $f:S\to T$ induces a morphism of boolean algebras $\mathcal{P}(T)\to\mathcal{P}(S):y\mapsto f^{-1}(y)$ If $S\subseteq T$ and f the inclusion map $S\hookrightarrow T$ then we get a boolean algebra morphism $Y\to Y\cap S$.

• $id_B: B \to B \bullet x \mapsto x': B \to B^{op}$ are both isomorphism

Note: A boolean algebra morphism $\phi: B \to C$ is injective iff ker $f = 0_B$

Lemma 1.4. Let $X_1, ... X_m \subseteq S$ and A a boolean algebra on S generated by $\{X_1, ... X_m\}$. Then A is finite and isomorphic to $P(\{1, 2, ... n\})$ for some $n \leq 2^m$.

Proof. TODO

Definition 4.9. Trivial algebras:

• B is trivial if |B| = 1 (equivalently $0 = 1 \in B$) according to 1.4 B is isomorphic to $\mathcal{P}(\emptyset)$

• If |S| = 1 then $|\mathcal{P}(S)| = 2$ TODO

Definition 4.10. Ideal: An ideal of B is a subset of $I \subseteq B$ s.t.

- (I1) $0 \in I$
- $(\mathrm{I2}) \ \forall a,b \in B \ \mathrm{it} \ \mathrm{holds} \qquad a \leq b \ \mathrm{and} \ b \in I \implies a \in I \qquad \mathrm{and} \qquad a,b \in I \implies a \vee b \in I$

Example 4.6.: $F_{\text{in}} = \{F \subseteq S : F \text{ finite}\}\ \text{is ideal in } \mathcal{P}(S).$

Note: If I is an ideal of B then $I \lor b := \{x \in B : x = a \lor b \text{ for some } a \in I\}$ is the smallest ideal w/respect of \subseteq of B that contains $I \cup \{b\}$.

Example 4.7.:

- For a boolean algebra morphism $\phi: B \to C$ the kernel $\ker(\phi)$ is an ideal in B.
- If I is an ideal in B then $a =_I b :\Leftrightarrow a \vee x = b \vee x$ for some $x \in I$ defines an equivalent relation and $B/_{=_I}$ is a boolean algebra w/

$$0 := 0/_{=_I} \quad 1 := 1/_{=_I} \quad (a/_{=_I})' := a'/_{=_I} \quad a/_{=_I} \lor b/_{=_I} := (a \lor b)/_{=_I} \quad a/_{=_I} \land b/_{=_I} := (a \land b)/_{=_I}$$

Then $\phi:B\to B/_{=_I}:b\mapsto b/_{=_I}$ is a boolean algebra morphism w/ $\ker(\phi)=I$

CHAPTER 5

Set Theory

Example 5.1. Russel's paradox: Let $A = \{a : a \notin a\}$. If any collection of elements is a set, then A would be a set. Question: is $A \in A$? if yes, then $A \notin A$, if not then $A \in A$

Trying to resolve this, we will introduce the ZFC (Zermelo-Frankel axioms w/ choice) System. Let $\mathcal{L} = \{\in\}$ be a Language of first order, where $\in \ldots$ binary relation "beeing element of" For (\mathcal{U}, \in) If $(\mathcal{U}, \in) \models$ ZFC, then the elements of the universe \mathcal{U} are called sets. TODO

5.1 AXIOMS OF ZFC

Definition 5.1. Axiom of extensionality:

$$\forall x \forall y (x = y \leftrightarrow \forall u (u \in x \leftrightarrow u \in y))$$

Definition 5.2. Pairing Axiom: for any two sets a, b one can form a set whose elements are precicely a, b

$$\forall x \forall y \exists z (u \in z \leftrightarrow (u = x \lor u = y))$$

Our notation will be $z = \{x, y\}$

Note: $\{x, y\}$ is unique by 5.1

Lemma 1.2. Let x, y be sets. We define $(x, y) := \{\{x\}, \{x, y\}\}\}$. Then it holds (x, y) = (a, b) iff x = a and y = b

Proof. • if x = y, then $(x, y) = \{\{x\}\}$ therefore a = b and by 5.1 it holds x = a.

• if $x \neq y$, then $\{\{x\}, \{x, y\}\} = \{\{a\}, \{a, b\}\}$ iff $\{x\} = \{a\}$ and $\{x, y\} = \{a, b\}$. That is, iff x = a and y = b.

TODO oredered n-tuples

Definition 5.3. Union Axiom: For every set x there is a set z consisting of all elements of the elements of x.

$$\forall x \exists z \forall y (y \in z \leftrightarrow (\exists uu \in x \land y \in u))$$

We call z the union of x, notation: $\bigcup_x := z$

Definition 5.4. Power set Axiom: Let $x \subseteq y$ be the abbreviation for $\forall z (z \in x \to z \in y)$ The **Powerset Axiom** states, that for every set x there exists a set z consisting of all subsetes $y \subseteq x$ that are themselve sets.

$$\forall x \exists z \forall y (y \in z \leftrightarrow y \subseteq x)$$

Notation: $\mathcal{P}(x) := z$.

TODO class relations

Definition 5.5. Axiom of replacement / substitution: Let $\varphi(x, y, \underline{\mathbf{a}})$ a \mathcal{L} -fla., w/ free variables among x, y and set-parameters $\underline{\mathbf{a}}$. Suppose φ defines a class function on \mathcal{U} , than the following is an axiom:

$$\forall u \exists z \forall y (y \in z \leftrightarrow \exists x (x \in u \land \varphi(x, y, \underline{\mathbf{a}})))$$

i.e. the image of a set under a class function is a set.

Definition 5.6. Axiom scheme of comprehension: TODO

Seite 48 von 52 J.Petermann: LogicNotes [V0.5.1-2024-12-11 at 19:12:51]

List of definitions		Def. 2.27 Generalization	19 20 20 20 21 23 25 28
Propositional logic	2	Model Theory 3	30
Def. 1.1 Language of PL	2		30
Def. 1.2 Expression / prop. sentence	$\overline{2}$	· · · · · · · · · · · · · · · · · · ·	30
Def. 1.3 Construction sequence	3		31
Def. 1.4 Closedness of a set	3	· ·	31
Def. 1.5 Truth assignment	3		31
Def. 1.6 Satisfaction	4	· ·	34
Def. 1.7 Tautological implication	4	9 (35
Def. 1.8 Closedness, Inductiveness	6		$\frac{35}{36}$
Def. 1.9 Freely generated set	7	· · · · · · · · · · · · · · · · · · ·	36
Def. 1.10 Tautological equivalence relation	8	· ·	36 36
Def. 1.11 Satisfiability	9	<u> </u>	37
Predicate - / first order logic	11	<u> </u>	31 37
Def. 2.1 A First order Language	11		37
Def. 2.2 Expression	12		40
Def. 2.3 Term Building Operations	12		40
Def. 2.4 Atomic formula	12		41
Def. 2.5 Formulas	12		$^{-1}$
Def. 2.6 Free variables	12		
Def. 2.7 structure	13	Boolean Algebra 4	43
Def. 2.8 Assigment	13		43
Def. 2.9 Satisfy	14	Def. 4.2 Alternative Def: Boolean Algebra 4	43
Def. 2.10 Model	15	Def. 4.3	44
Def. 2.11 Logical implication	15	*	44
Def. 2.12 Logical equivalence	15	,	45
Def. 2.13 Valid	15		46
Def. 2.14 definability in a structure	16	9	46
Def. 2.15 definability of classes of structures	16		46
Def. 2.16 Homomorphism	16	9	46
Def. 2.17 Isomorphism	17	Def. 4.10 Ideal	47
Def. 2.18 Substructure	17	Cat Thansa	4 Ω
Def. 2.19 elementarily equivalent	18	· ·	48 10
Def. 2.20 Automorphism	18	· ·	48 18
Def. 2.21 Rigid	18 18	9	48 48
Def. 2.22	18		48
Def. 2.24	19		48
Def. 2.25 Modus Ponens	19	- '	48
201. 2.20 1110440 1 0110110	10	201. 0.0 Timom continue of comprehension	-0

Bibliography	52	Prop. 9.5 Existence of alphabetic variants	23
		Soundness and completeness	24
		Lemma 10.1 pre-substitution lemma	24
		Lemma 10.2 Substitution lemma	24
		Prop. 10.3	25
List of Theorems		Prop. 10.4 Completness Theorem	26
		Prop. 10.5 Completness Theorem'	26
		Lemma 10.6	28
		Lemma 10.7	28
		Prop. 10.8 Zorn's Lemma	29
Propositional logic	2	Prop. 10.9 Zermelos's Theorem	29
Truth assignments	3		
Prop. 1.1 Unique readability	3	Model Theory	30
Prop. 1.2 Compactness theorem	4	Löwenheim-Skolem-Theorem	30
A parsing algorithm	4	Prop. 1.1	30
Lemma 2.1	4	Theories and completeness	30
Lemma 2.2	5	Prop. 2.1	31
Induction and recursion	6	Prop. 2.2 Los-Vaught test	31
Prop. 3.1 Recursion Theorem	7	Theory of algebraic closed fields	32
Sentential connectives	8	Prop. 3.1	32
Prop. 4.1	8	Prop. 3.2 Lefschetz Principle	32
Prop. 4.2 Realisation	8	Prop. 3.3 Ax	32
Prop. 4.3	9	Prop. 3.4	33
Compactness Theorem	10	Nonstandard Analysis	33
Prop. 5.1 Compactness Theorem	10	Prop. 4.1	34
		Prop. 4.2	34
Predicate - / first order logic	11	Lemma 4.3	34
Formulas	12	Prop. 4.4	34
Semantics of first order logic	13	Prop. 4.5	34
Prop. 2.1	13	Prop. 4.6	35
Prop. 2.2 Coincidence Lemma	14	Prop. 4.7 Chain rule	35
Logical implication	15	o-minimality	36
definability in a structure	16	Lemma 5.1	36
Homomorphisms of structures	16	o-minimal ordered groups and rings	36
Prop. 5.1 Homomorphism theorem	17	Prop. 6.1	36
Unique readability for terms	18	Lemma 6.2	37
Lemma 6.1	18	Lemma 6.3	37
Lemma 6.2	18	Prop. 6.4	38
Lemma 6.3	19	Prop. 6.5 Monotonicity Theorem	38
Lemma 6.4	19	Lemma 6.6	38
A parsing algorithm for first order logic	19	Lemma 6.7	38
Deductions (formal proofs)	19	Lemma 6.8	38
Lemma 8.1	21	Thm. 6.9 Cell decomposition	40
Prop. 8.2	21	Prop. 6.10	41
Generalization and deduction theorem	22	Prop. 6.11	42
Prop. 9.1 Generalization theorem	22	Thm. 6.12	42
Lemma 9.2 Rule T	22		
Prop. 9.3 Deduction theorem	22	Boolean Algebra	43
Prop. 9.4 Generalization on constants	23	Thm. 1.0 Stone Representation Theorem.	44

LIST OF THEOREMS

Logic Lecture N	Votes 2	2024W
-----------------	---------	-------

۲n
 48
 48

J.Petermann: LogicNotes [V0.5.1-2024-12-11 at 19:12:51]

Bibliography

[1] Herbert B Enderton and Herbert Enderton. A Mathematical Introduction to Logic. eng. United States: Elsevier Science and Technology, 2001. ISBN: 0122384520.

		satisfy	4	Chapter $2 \ldots \ldots$	11
		satisfiable	4	logical symbols	11
		taut. implication \models	4	parameters	11
		closed \dots	6	$\mathrm{term}\ \ldots\ldots\ldots$	12
		inductive	6	formula \dots	12
List of Outernotes		freely generated	7	\exists quantifier	12
		acceptable	7	bounded variable	12
		tautological equiva-		sentence	12
		lence	8	interpretation	13
Cl 4 1	0	$\sim \dots \dots \dots \dots$	8	assigment \dots	13
$ \text{Chapter 1} \ \dots \ .$	2	⊨⊨	8	$\models_{\mathcal{A}}$	14
Language	2	≓⊨	8	isomorphic	17
expression	2	n-ary boolean func	8	MP	19
prop. fla	2	DNF		Chapter $3 \ldots \ldots$	30
prop. sentence	2	Disjunctive		\simeq	34
construction sequence	3	$normal\ form\ .\ .$	9	RCF	37
closure	3	$complete \dots \dots$	9	Chapter $4 \ldots \ldots$	43
Truth assigment	3	satisfiable	9	Chapter $5 \ldots \ldots$	48
TA	3	finitely satisfiable	10	Chapter $5 \ldots \ldots$	52