High Frequency Oscillating Ventilation

Christopher Tebrock MD
12 Oct 2004

Objectives

- Review ALI / Ventilator Induced Lung Injury
- Lung Protective Strategies
- Physiology of HFV
- Management of HFV
- Pediatric/Adult Indications and Outcome
- Conclusion

ALI/ARDS

- "Clinical manifestation of severe respiratory insufficiency caused by mechanical and physiologic disruption of pulmonic integrity"
- Acute onset
- Diffuse bilateral infiltrates
- PaO₂/FiO₂
 - <300 ALI
 - <200 ARDS
- PCWP < 18 mm Hg</p>
 - or the clinical absence of elevated pressure

ALI/ARDS Pathophysiology

- Direct insult
 - Contusion, aspiration, PE, inhalation injury
- Indirect insult
 - Sepsis, other shock states, massive fluid resuscitation
- Mediator release to damage of endothelial layer of capillary
 - Fluid leak

ALI/ARDS Treatment

- Supplemental oxygen
- Mechanical ventilation
 - PEEP
 - Auto PEEP
 - Permissive hypercapnea
 - Pharmacologic support
 - Nutrition
 - Positioning

Ventilator Induced Lung

ARDS Net Trial

- Low tidal volume
 - < 6 ml/kg vs. 12ml/kg
- $< 30 \text{ cm } H_2 0$
- Reduced mortality by 9%
- Despite this survival with ARDS 69%

Lung Protective Strategies

Goal

- Avoid extension of lung injury
- Minimize oxygen toxicity
- Recruit alveoli
- Minimize peak airway pressure
- Prevent atelectasis
- Uses sedation and paralysis judiciously

Lung Protective Strategies

Nonconventional Respiratory Support

- Inverse Ratio Ventilation
- Prone Ventilation
- Liquid Ventilation
- Nitric Oxide
- Proportional Assist
- Open Lung Approach
 - APRV
 - HFV

HFV Strategy

- Deliver very small tidal volume at supra-physiologic ventilatory rates
- Three types
 - High frequency positive pressure ventilation (HFPPV)
 - High frequency jet ventilation (HFJV)
 - High frequency oscillating ventilation (HFOV)
 - Differences are in frequently 3-15 hz

HFV

	f, Breaths/mi		
Ventilator Type	n	Inspiration	Expiration
CV	2- approximat ely 40	Active	Passive
HFPPV	approximat ely 60-100	Active	Passive
HFJV	approximat ely 100-	Active	Passive
HFOV	200 Up to approximat ely 2,400	Active	Active

High Frequency Positive Pressure Ventilation

- Similar to conventional ventilation
- Achieves gas exchange via bulk convection
- Oberg and Sjostrand 1969
 - Introduced to eliminate the effect of respiratory variation in thoracic volume and pressure on carotid sinus reflexes

Oberg PA, Sjostrand U. Studies of blood pressure regulation: I. Common carotid artery clamping in studies of th carotid-sinusbaroreceptor control of the systemic blood pressure. *Acta Physiol Scand*

High Frequency Jet Ventilation

- Tidal volume < dead space</p>
- Sanders introduced HFJV in 1967
 - facilitate gas exchange during rigid bronchoscopy

High Frequency Oscillating Ventilation

- Maintain open lung volume by application of constant mean airway pressure
- High frequency
- Tidal volume < anatomic dead</p>

space

Active

History of HFOV

- 1915 First observed in panting dogs
 - Henderson Y, Chillingsworth F, Whitney J: The respiratory dead space. Am J Physiol 38:1–19, 1915
- 1973 Accidentally found oscillation ventilation
 - Lunkenheimer PP, Anaesthesist 1973;22:232-8
- 1980- Attention to CO₂ removal
 - Bohn, Applied Physiology
- Mid 1980's- First ventilator built by Texas Research
 - Built by F4 fighter pilot / oil field engineer
- 1986 First evaluated for neonatal care
 - Wilford Hall USAF Med Center
- 1990's Adult HFOV built
 - Sensorimatic 3100A 3rd generation

Components of HFV

- Driving system
 - Oscillating pump or diag
- Bias flow system
 - Deliver fresh gas
- Transmission link

Physiology of HFOV

- Sinusoidal wave form
- High mean airway pressure (mPaw)
- Active expiratory phase

Equal positive and negative pressure generation

tilation

HFOV Gas Transport

- 1. Direct alveolar ventilation
- Mixing of high frequency ventilation pendeluft

Gas exchange between adjacent alveolar units

- 3. Convective change
 Asymmetric velocity profiles
- 4. Taylor dispersion

 Mixing at the front of a high velocity flow profile
- 5. Molecular diffusion
- 6. Cardiogenic Mixing

HFOV Alveolar Ventilation

- Facilitated by reversal of flow
- Eddy currents in airways
 - Facilitates gas mixing
- No net displacement of air
 - Results in centrifugal movement of lungs toward the chest wall

HFOV Pulmonary Recruitment

- Intermittently increasing map during HFOV
- Initiate at high mPaw
 - 40-50 cm H₂O
 - 40-60 seconds
 - Unclear if this is effective

Pressure

Variables in HFOV

Table 1. Ventilation	during	high-frequency	oscillatory	ventilation
----------------------	--------	----------------	-------------	-------------

17	4.75		**	
Ven	THE	ator	Facto	ME
1.041		avvi	I acc	113

Oscillatory pressure amplitude (δP) Frequency (Hz) Percentage inspiratory time

Patient Factors

Endotracheal tube size and patency Endotracheal tube cuff leak Lung compliance Airway resistance

HFOV Settings

- Mean Airway Pressure
 - Lung volume
- FiO₂
- Frequency
 - The frequency, which is similar to the rate, is measured in hertz
- Amplitude
 - $-\Delta P$
 - Similar to tidal volume

Mean Airway Pressure

Amplitude

Cuff Leak

- Facilitate secretion clearance
- Washout of CO₂ around the cuff
- Increases tidal volume delivery
- Reduces distal pressure
- Allows for higher frequency and lower power
 - Facilitates lung protection

Indications for Initiation

- Wilford Hall Guidelines
 - FiO₂>60%
 - $\text{ mPaw} > 20 \text{cm H}_20$
 - PEEP > 15
 - Plateau pressure >30

Table 2. Baseline severity of acute respiratory distress syndrome at initiation of high-frequency oscillatory ventilation in clinical trials

Study	Туре	Mean Airway Pressure, cm H ₂ O	Oxygenation Index ^a	F10 ₂ , %
Arnold et al., 1994 (6)	RCT	21	28	84
Fort et al., 1997 (9)	OBS	33	37	90
Arnold et al., 2000 (7)	Survey	19	28	87
Mehta et al., 2001 (27)	OBS	24	32	78
Derdak et al., 2002 (28)	RCT	22	25	71

RCT, randomized controlled trial; OBS, observational trial.

^aOxygenation Index = mean Paw \times Fio₂ \times 100/Pao₂.

Timing of Initiation

Prolonged period receiving CV predicts worse outcome

Preparation for Initiation

- Ensure a patent airway
- Titration of sedative
- Intermittent use of neuromuscular blockade
 - Unnecessary required as long as the patient seems comfortable
- Reassessment of intravascular volume

Table 2. Guidelines for Adjusting Ventilatory Parameters

Parameters	Initial Settings
I. Frequency	10 to 15 Hz
2. I/E ratio	If not fixed 1/2 to 1/1
3. Gas bias flow	If not fixed 15 to 20 I/min (beware of flow influence on P _{MEAN})
4. P _{MEAN}	Starting with a P_{MEAN} of 2-4 cm H_2O above the P_{MEAN} on CMV (adjustment by stepwise of 1-2 cm H_2O). Adjusted to SaO_2
5. Amplitude pressure	Adjusted to the point that chest vibrations can be seen and to $TcCO_2$ or $PaCO_2$ (adjustment by stepwise of 2-4 cm H_2O)
6. FiO ₂	Adjusted to SaO ₂

HFOV and Pulmonary Functions

- Pulmonary compliance is higher than CV when using similar mPaw
- If mPaw exceeds optimal values
 - Can lead to lung over-distention
 - Pneumothorax and circulatory impairment
- Reduces the conversion of surfactant into small aggregate forms in animal model stabilizing alveoli

HFOV and Hemodynamics

- Systemic Effects
 - Similar to CV
 - High mPaw
 - Lung distention → impaired venous return → impaired cardiac output

HFOV and Cerebral Circulation

- Effect of mPaw on cerebral circulation not different in HFOV and CV
- Over distention may contribute to ischemic-hemorrhagic injury in the brain of premature neonate

Table 3. Management of Common Nontechnical Problem with High-frequency Oscillatory Ventilation

Problems	Management	
Hypoxia	Increase P _{MEAN} by stepwise of 2 cm H ₂ O adjusted to SaO ₂ and hemodynamic tolerance.	
Hypercapnia or no chest vibration	Increase amplitude pressure so that chest vibration can be seen and to obtain adequate TcCO ₂ or PaCO ₂ . If not sufficient, reduce frequency.	
Hypocapnia	Decrease amplitude pressure to obtain adequate TcCO ₂ or PaCO ₂ .	
Hypotension	If not related to hypovolemia and/or anesthetics, reduce P _{MEAN} .	
P _{MEAN} = mean airway pressure; PaCO ₂ = a	rterial partial pressure of carbon dioxide; SaO, = arterial oxygen	

saturation; TcCO2 = transcutaneous carbon dioxide

Bouchout et al: High-frequency Oscillatory Ventilation, Anesthesiology vol 100, April 2004 1007-1015

Weaning To Conventional Ventilation

- Goal is FiO₂ 40%
- SPO₂ >88%
- mPaw 20-24
 - Reduce Paw 2-3 cm H₂0 every 4-6 hours
 - When mean paw approaches 20 cm H₂0
 - Transition to CV
 - TV 6 ml/kg
 - PEEP 10 cm H₂0
 - Plateau pressure <30 cm H₂0
 - I:E 1:1
 - Rate 15-25

HFOV Algorithm

Table 3. Algorithm for high-frequency oscillatory ventilation in adult patients

Initial Steps	Oxygenation	Ventilation	Weaning
Adequate analgesia and sedation	Set initial mPaw equal to, or 3–5 cm H ₂ O higher, than on CV (after setting cuff leak); %IT = 33	Goal is highest frequency with lowest ΔP for lung protection	Goal is Fto ₂ of 40%, Spo ₂ of >88%, mPaw of 20-24 cm H ₂ O before CV transition
Neuromuscular blocker as required (if desaturation with movement or spontaneous breathing)	Fio ₂ at 100% during transition period	Set initial endotracheal tube cuff leak (5–8 cm H ₂ O)	If required mPaw of >35 cm H ₂ O, give equal priority to reducing mPaw and Flos
Bronchoscopy to evaluate ET tube patency (especially if prolonged time on CV)	Recruiting maneuvers (40–50 cm H ₂ O × 40–60 secs with piston off)—if severe hypoxemia, desaturation with suction, postbronchoscopy, or circuit disconnection	Set initial ΔP at 20 cm H ₂ O + Paco ₂ or to "chest vibration" (usual range, 60-90 cm H ₂ O)	Reduce mPaw 2-3 cm H ₂ O every 4-6 hrs
Bag-mask with attached PEEP valve at head of bed	If Spo ₂ <88%, increase mPaw 3 cm H ₂ O every 30–60 mins (maximum, 45 cm H ₂ O) and consider additional recruiting maneuvers	Set initial frequency at 5-6 Hz (lower if severe hypercapnea)	When mPaw approaches 20 cm H ₂ O, transition to CV (e.g., TV, 6 mL/kg; PEEP, 10 cm H ₂ O; Pplat, <30 cm H ₂ O; l:E, 1:1; rate, 15–25 breaths/min) or to APRV (e.g., P _{hi} , 20 cm H ₂ O; P _{to} -0 cm H ₂ O; T _{hi} , 4 secs, T _{to} , 0.8 secs)
	Prone position if required, Fio ₂ of >60% or mPaw of >35 cm H ₂ O	ABG 15 min after initiating HFOV: adjust ΔP (10-cm H ₂ O steps) and frequency (1-Hz steps) based on Paco ₂ trends and pH (goal, pH > 7.2) Bronchoscopy if refractory hypercapnea	Conventional weaning progressing to spontaneous breathing trials

mPaw, mean airway pressure; CV, conventional ventilation; ΔP, oscillatory pressure amplitude; ET, endotracheal; PEEP, positive end-expiratory pressure; TV, tidal volume; I:E, inspiratory/expiratory ratio; Pplat, inspiratory pressure plateau; Spo₂, oxygen saturation; P_{hi}, high pressure; P_{low}, low pressure time, T_b, low pressure time, ABG, arterial blood gas, APRV, airway pressure release ventilation; HFOV, high frequency oscillatory ventilation; %IT, percent inspiratory time.

Complications

- Pneumothorax
 - First indication may be hypotension or hypoxemia
 - No evidence that frequency is different between HFOV and CV
 - Air leaks may decrease risk

Complications

- Endotracheal tube obstruction
 - Refractory hypercapnea
- Changes in displayed HFOV variables in response to changing lung mechanics
- Delivery of aerosol drugs
 - limited

Animal Data

Animal Data

- Support the concept of reduced lung injury utilizing HFOV
- Rabbit and primate model
 - improve gas exchange
 - reduce lung injury
 - reduce the frequency rate of hyaline membrane disease
 - reduced inflammatory mediators and granulocytes in lung lavage samples

Troug WE, Standaert TA: Effect of high-frequency ventilation on gas exchange and pulmonary vascular resistance in lambs. J Appl Physiol 1985; 59:1104-1109

Meredith KS, DeLemos RA, Coalson JJ: Role of lung injury in the pathogenesis of hyaline membrane disease in premature baboons. *J Appl Physiol* 1989; 66:2150-2158

DeLemos RA, Coalson JJ, Gerstmann DM: Ventilatory management of infant baboons with hyaline membrane disease: The use of high-frequency ventilation. *Pediatr Res* 1987; 21:594-602

Pediatric HFOV

Pediatric HFOV

- First successful use by Marchant 1981 in neonates with neonatal respiratory distress syndrome
- Multiple clinical trials reviewed in the Cochrane database
- Widely used lung protection strategy in neonatal and pediatric acute lung injury

The Cochrane Library, Issue 1, 2004. Chichester, UK: John Wiley & Sons, Ltd

Pediatric Indications

- Neonatal Respiratory Distress Syndrome
- Persistent Pulmonary Hypertension
- Neonatal Meconium Aspiration Syndrome
- Congenital Diaphragmatic Hernia
- Neonatal Lung Hypoplasia
- Neonatal Air Leak Syndrome
- Pediatric ARDS/Pulmonary Interstitial Edema
- RSV Pneumonia

Pediatric Outcome

- HIFO study group
 - Improved gas exchange
 - Significant reduction in the development of the air leak syndrome in preterm infants
 - 42% vs. 63%
 - Reductions in barotrauma
 - Improved outcome

Pediatric Outcome

- Decreased incidence of chronic lung disease
- Decrease rate of supplemental oxygen at discharge
- Decreased mortality at 30 days
- No increase in the rate of IVH

Adult HFOV

Adult Indications

- ALI/ARDS
- Lung injury with air leaks
 - BP fistula
 - FDA approved
 - Clinical response is unpredictable
 - May worsen the air leak, oxygenation, or hypercapnea
 - Pneumothorax

Adult Outcome- HFJV

- Randomized trial of HFJV
 - No survival benefit compared to conventional ventilation
- Systematic review 1998
 - Insufficient clinical studies to perform meta-analysis
- Nonrandomized trial have noted improvement in oxygenation and decreased FIO₂ requirements
- HFJV commonly used to ventilate pts with ARDS
 - Mainly in Europe

Multicentered Randomized Controlled Trial of Oscillating Ventilation for ARDS

- 148 pts
- Improved early oxygenation
 - Did not persist beyond 24 hours
- Improved oxygen index during first 72 hours

Multicentered Randomized Controlled Trial of Oscillating Ventilation for ARDS

- Trend toward improvement in 30 day mortality
 - 37% vs. 52% (p=0.102)
- and 6 month mortality
 - 47% vs. 59% (P= 0.143)

HFOV in the OR

HFPPV in the OR

HFPPV

- Used primarily in situations requiring minimal upper airway movement
 - Laryngoscopy
 - Bronchoscopy
 - Laryngeal surgery

HFOV in the OR

- Used with preterm newborn or critically ill neonates
 - Esophageal atresia
 - Pulmonary malformation
 - Patent ductus arteriosis
 - Congenital diaphragmatic hernia
 - Abdominal wall defect
- Advantage
 - Minimizing lung movement
 - Minimizing interference with the surgical field
 - Minimizing diaphragmatic movement

HFOV in the OR

- Limitations
 - Can not use inhaled anesthetics
 - TIVA
 - Transportation challenge
 - Unable to perform capnography

Future Research

- Does HFOV provide a safe way to apply higher levels of continuous support?
- What will outcomes studies reveal?
- Selection criteria for operative HFOV?
- Definition of optimal lung volume ?
- How to optimize frequency and tidal volume?

"With favorable and extensive experience in the neonatal intensive care unit (ICU) and the recent positive experience in the adult ICU, high-frequency ventilation has become a valuable alternative to conventional ventilation in acute lung injury"

