ÜBUNGEN ZU "C*-ALGEBREN UND K-THEORIE" ÜBUNGSBLATT 5 ABGABE: 21.11.2016

VL: PD DR. A. ALLDRIDGE; ÜBUNGEN: CH. MAX, MSC, D. OSTERMAYR, MSC

Aufgabe 1. Sei A eine C*-Algebra, I ein abgeschlossenes Ideal in A und J ein (2 Punkte) abgeschlossenes Ideal in I. Zeigen Sie, dass J dann auch ein Ideal in A ist.

Aufgabe 2. Es sei A eine C^* -Algebra. Zeigen Sie folgende Aussagen.

- (4 Punkte)
- (1) Für ein abgeschlossenes Linksideal L in A ist $B := L \cap L^*$ eine erbliche C*-Unteralgebra von A (d.h. B_+ ist ein erblicher Kegel).
 - (2) Für eine erbliche C * -Unteralgebra B von A ist

$$L(B) := \left\{ a \in A \mid a^* a \in B \right\}$$

ein abgeschlossenes Linksideal.

- (3) Die Abbildung $\phi: L \longmapsto L \cap L^*$ ist eine Bijektion von der Menge aller abgeschlossenen Linksideale in A auf die Menge aller erblichen C*-Unteralgebren von A mit Umkehrung $\phi^{-1}: B \longmapsto L(B)$.
- **Aufgabe 3.** Sei ϕ eine positive Linearform auf einer C*-Algebra A und $(\pi_{\phi}, \mathcal{H}_{\phi}, \psi_{\phi})$ (4 Punkte) die zugehörige Darstellung aus der GNS-Konstruktion. Zeigen Sie, dass für jede positive Linearform $\psi \leqslant \phi$ (d.h. $(\phi \psi)(A_+) \subseteq \mathbb{R}_{\geqslant 0}$) ein eindeutiges Element $a \in \pi_{\phi}(A)'$ mit $0 \leqslant a \leqslant 1$ existiert, so dass

$$\psi(x) = \langle \psi_{\phi} \mid \pi_{\phi}(x) a \psi_{\phi} \rangle \quad \forall x \in A.$$