Machine Learning for Mathematicians

Daniel Mckenzie

Tuesday March 6th, 2018

Why should we care about Machine Learning

- 1 Necessary for non-academic jobs.
- 2 Can be useful in your research.
- 3 Your (future) students will need to know about it.

An outline of this talk

- 1 Disambiguation of buzzwords.
- 2 Simple (yet effective) approaches.
- 3 Deep approaches.
- 4 Survey of applications.
- 5 Current research trends.

What do we mean by Data?

- Could be images, audio signals, stock prices, results of surveys etc.
- 2 Can always vectorize

Example (Greyscale Images)

Suppose each I_a is a 28×28 array of pixel values. Each pixel value is a number between 0 and 256 with 0 = black and 256 = white. Can think of each I_a as a 28×28 matrix A_{ij}^a . Can make this a vector by stacking: $\mathbf{x}^a = [A_{11}, \dots, A_{1,28}, A_{2,1}, \dots, A_{2,28}, \dots, A_{28,28}]$

More sophisticated approaches uses Fourier Transform or Wavelets (Applied Harmonic Analysis). Each entry of vector is called a **feature**.

3 Three V's of Big Data: **V**ariety, **V**olume and **V**elocity.

Data Science, Machine Learning, and Artificial Intelligence¹

- 1 Data Science: Produce insights from data for humans.
- **2 Machine Learning:** Find a function f that predicts y from input x. Eg f(Image) = cat. How f is doing this is often unclear.
- **Artificial Intelligence:** Produce or recommend an action from data. Eg AlphaGo, self-driving cars.

Caution: Distinction between 'general' Al (long way off/impossible) and 'single purpose' Al (AlphaGo, self-driving cars).

¹Robinson 2018.

Data Science

Data Scientists use

- Statistical know how to 'wrangle' complex data in a variety of formats into a clean, usable (vectorized) data set X.
- 2 Algorithms (Regression, Data Clustering, Neural Networks etc) to extract insights from X. E.g.: identify a trend/correlation, find outliers (fraud prevention), compute quantities of interest (likelihood of certain type of consumer to renew cable contract).
- 3 Domain-specific knowledge to evaluate appropriateness of the above.

to produce easily interpretable summaries (pie charts, reports, visualizations) to inform decision-making of other parties (management, sales team, R& D, government).

(Supervised) Machine Learning

- Model Problem: Identify people from pictures.
- **2 Key assumption:** Let **D** be domain of interest (e.g. all possible 28×28 pictures). Let **C** be codomain of interest (e.g. the names of people we wish to identify). We assume there exists a continuous function $f^* : \mathbf{D} \to \mathbf{C}$ mapping all photos of Dan to 'Dan' $\in \mathbf{C}$.
- **3 Goal of Machine Learning:** function approximation. Find an approximation $f^{\#}$ to f^{*} .
- **4 Learning** $f^{\#}$: Given training set $X = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \subset \mathbf{D}$ and known labels $Y = \{y_1, \dots, y_n\} \subset \mathbf{C}$. Find function $f^{\#}$ such that $f^{\#}(\mathbf{x}_i) \approx y_i$ for all i.

Caution: Generalizability very important. Need to be confident that given $\mathbf{x} \notin X$ $f^{\#}(\mathbf{x}) \approx f^{*}(\mathbf{x})$

Artificial Intelligence

This slide intentionally left blank

Simple Approaches to Machine Learning²

1 Let \mathcal{P} be a class of 'easy functions' (e.g. piecewise polynomial). Find $f^{\#}$ as:

$$f^{\#} = \operatorname{argmin}\{L(f, X): f \in \mathcal{P}\}$$

Think $L(f, X) = \sum_{i=1}^{n} ||f(\mathbf{x}_i) - y_i||_2$. Regression, Splines, Finite Elements.

- 2 *K*-Nearest Neighbours. Let $\mathcal{N}^K(\mathbf{x}) = \{\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_K} \text{ nearest to } \mathbf{x}\}$. Compute $f^\#(\mathbf{x}) = \frac{1}{K} \sum_{j=1}^K y_{i_j}$.
- 3 Support Vector Machine.
- Decision trees.

²Goodfellow et al. 2016.

Simple Approaches: Logistic Regression

Suppose $|\mathbf{C}| = 2$ e.g. $\mathbf{C} = \{\text{'Dan'}, \text{'Not Dan'}\}$. Define $sigmoid/logistic function <math>g(u) = 1/(1 + e^{-u})$. Look for $f^{\#}$ of the form:

$$\mathit{f}_{\mathbf{w}}(\mathbf{x}) = \left\{ \begin{array}{c} \text{`Dan' if } g(\mathbf{w}^{\top}\mathbf{x}) \approx 1 \\ \text{`not Dan' if } g(\mathbf{w}^{\top}\mathbf{x}) \approx 0 \end{array} \right.$$

That is, $f^{\#} = \operatorname{argmin}\{L(f_{\mathbf{w}}, X) : \mathbf{w} \in \mathbb{R}^n\}$. Can think of $z = g(\mathbf{w}^{\top}\mathbf{x})$ as probability that the image contains Dan.

Figure: Schematic depiction of Perceptron

(Shallow) Neural Networks

Essentially iterated Logistic Regression:

Figure: Schematic depiction of 2-layer Neural Network

(Shallow) Neural Networks cont.

Notation: $f_{\mathbf{W}}$ denotes Neural Network with weights

 $\boldsymbol{W} = \{\boldsymbol{w}^1, \dots, \boldsymbol{w}^5\}. \ \textit{f}_{\boldsymbol{W}}(\boldsymbol{x}) = \boldsymbol{z}.$

Typically, $z_1 = \text{probability } \mathbf{x} \text{ in class } 1, z_2 = \text{probability } \mathbf{x} \text{ in class } 2.$

Architecture: Choice of number of layers and neurons per layer.

Activation function: *g*. Many other choices, but *must be non-linear*!.

These layers are fully connected.

Need to find good \mathbf{W} . will vectorize: $\mathbf{w} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^5]$.

Need to solve $f^{\#} = \operatorname{argmin}\{L(f_{\mathbf{w}}, X) : \mathbf{w} \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \dots \mathbb{R}^{n_5}\}$

Gradient Descent

- **1 The problem:** Find minimum of $F : \mathbb{R}^m \to \mathbb{R}$. Can assume that F is differentiable.
- 2 Know that $-\nabla F(\mathbf{w}) \subset \mathbb{R}^m$ points in direction of steepest decrease of F at \mathbf{x} .
- **3** Gradient Descent Algorithm: $\mathbf{w}^{k+1} = \mathbf{w}^k \epsilon \nabla F(\mathbf{w}^k)$.
- **4 For Neural Networks:** $F(\mathbf{w}) = L(f_{\mathbf{w}}, X)$ (Think: $L(f_{\mathbf{w}}, X) = \sum_{i=1}^{n} \|f_{\mathbf{w}}(\mathbf{x}_i) y_i\|_2$). Randomly initialize \mathbf{w}^0 . Compute \mathbf{w}^{k+1} using gradient descent until 'good enough'.
- **Issue 1:** Computing ∇L can be costly (typically use Stochastic Gradient Descent).
- **6 Issue 2:** *L* is usually (highly) non-convex. No guarantee that Gradient Descent will converge.

Skills necessary for ML

For Undergrads

- Coursework: Multivariable calculus, Linear Algebra, Numerical Analysis, Probability.
- Online resources: http://cs229.stanford.edu/, https://www.coursera.org/learn/machine-learning

Additional resources for Grads

- Coursework: Harmonic Analysis, Image Processing, Statistics.
- 2 Some programming.
- 3 Deep learning book: http://www.deeplearningbook.org/
- 4 18.657: Graduate Course on Mathematics of Machine Learning taught at MIT (all materials/lecture notes available online)
- 5 Blogs: http://nuit-blanche.blogspot.com/

Deep Neural Networks

- **Key Insight:** Vectorizing/ feature extraction is the most important step.
- 2 Many techniques from Applied Harmonic Analysis (e.g. Wavelets, Curvelets,...) could be used.
- 3 Deep Learning: Use many convolutional layers to extract good, problem specific features. Then use a few, fully connected layers to classify.
- 4 Hinton, Osindero, and Teh 2006 ³ was first to show this was feasible.
- 5 Krizhevsky, Sutskever, and Hinton 2012 presented a Deep NN halving previous error rate for image classification
- **Key Drivers of DL:** Increased processing power (GPU's). Large training sets (sourced from the internet).

³Geoff Hinton is the great-grandson of George Boole, inventor of Boolean logic.

Deep Neural Networks 4

⁴Figure from:

Prototypical Applications of Machine Learning

- Handwritten Digit Classification State-of-the-art algorithms are > 99.75% accurate.
- 2 Automated Captioning: Given an image, algorithm should output brief sentence describing what is going on .
- 3 Natural Language Processing: Alexa, Siri et. al. Sentiment Analysis.

baseball player is throwing ball in game."

"a horse is standing in the middle of a road."

Figure: First two pictures from Karpathy and Fei-Fei 2015

Current Research Trends

- 1 Dealing with Data scarcity.
- 2 Regularization and priors.
- Transfer Learning: Getting a neural network trained to do one thing (e.g. play 'Pong') to learn to do another thing quickly (e.g. play 'Seaquest') (see Fernando et al. 2017).
- 4 What the hell is actually going on here? Still not clear how deep neural networks do what they do. This leaves them susceptible to manipulation (adversarial attacks).

An Adversarial Patch⁵

⁵Brown et al. 2017.

Applications to Mathematics: Data Driven Dynamical Systems⁶

- 1 For many physical/ biological systems of interest: $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t))$.
- 2 Can usually collect historical data via observation:

$$X = \{ \mathbf{x}(t_1), \mathbf{x}(t_2), \dots, \mathbf{x}(t_n) \}$$
 and $Y = \{ \dot{\mathbf{x}}(t_1), \dot{\mathbf{x}}(t_2), \dots, \dot{\mathbf{x}}(t_n) \}$

- **Model:** Assume that $f(\mathbf{x}(t))$ is a sparse linear combination of elementary functions $\varphi_1, \ldots, \varphi_N$ (e.g. polynomials, trig. functions etc)
- 4 Use Machine Learning to find an optimal $f^{\#} = \sum_{i=1}^{N} a_i \varphi_i$. (Strong connections with Compressive Sensing).

⁶Brunton, Proctor, and Kutz 2016.

Application to Mathematics: Predicting Hodge Numbers

- **1** Let \mathbb{WP}^4 be weighted projective space.
- 2 Large finite number of 3-dim Calabi Yau $M^a \subset \mathbb{WP}^4$. Each cut out by a degree $w = \sum_{i=0}^4 w_i$ homogeneous polynomial.
- \blacksquare Of interest to string theorists to compute Hodge numbers $h^{i,j}$
- 4 To each M^a associate the data vector \mathbf{x}^a of coefficients of defining polynomial⁷.
- 5 Training set: $X = \{\mathbf{x}^1, ..., \mathbf{x}^m\}$ and $Y = \{h^{2,1}(M^1), ..., h^{2,1}(M^m)\}.$
- of In (He 2017), Neural Network was trained in above dataset to predict whether $h^{2,1}(M)$ large (> 50) or not large (≤ 50) given M.
- 7 They report 94.4% accuracy on unseen data.

 $^{^7}$ Plus possibly some side info like χ

Thanks! Any questions?

Figure: Neural Style Transfer from Johnson, Alahi, and Fei-Fei 2016

References I

- Brown, Tom B et al. (2017). "Adversarial patch". In: arXiv preprint arXiv:1712.09665.
 - Brunton, Steven L, Joshua L Proctor, and J Nathan Kutz (2016). "Discovering governing equations from data by sparse identification of nonlinear dynamical systems". In: *Proceedings of the National Academy of Sciences* 113.15, pp. 3932–3937.
- Fernando, Chrisantha et al. (2017). "Pathnet: Evolution channels gradient descent in super neural networks". In: arXiv preprint arXiv:1701.08734.
- Goodfellow, lan et al. (2016). *Deep learning*. Vol. 1. MIT press Cambridge.
- He, Yang-Hui (2017). "Deep-learning the landscape". In: arXiv preprint arXiv:1706.02714.

References II

- Hinton, Geoffrey E, Simon Osindero, and Yee-Whye Teh (2006). "A fast learning algorithm for deep belief nets". In: *Neural computation* 18.7, pp. 1527–1554.
- Johnson, Justin, Alexandre Alahi, and Li Fei-Fei (2016). "Perceptual losses for real-time style transfer and super-resolution". In: European Conference on Computer Vision. Springer, pp. 694–711.
 - Karpathy, Andrej and Li Fei-Fei (2015). "Deep visual-semantic alignments for generating image descriptions". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3128–3137.

References III

