A Classifying Model for Dysgraphia-Written Numbers

Germán E. Baltazar Reyes

■▶ Definition

Dysgraphia

 A learning disorder that affects people's written communication skills^{1,2}.

- Illegible writing
- Inconsistencies on irregular sizes and spacing between words and letters

Definition

 A learning disorder that affects people's written communication skills^{1,2}.

Symptoms

- Unfinished words or letters
- Cramped writing

Dysgraphia

Why is it relevant?

There are **no current federal laws** that enforce proper treatment and ensure proper learning environments.

10-30% In the US³

Children with some level of writing difficulties

7-15% Globally⁴

Are actually diagnosed with dysgraphia

Use a classification algorithm to analyze hand-written symbols and determine its real representation

MNIST Dataset

Compound of 70,000 images of 28x28 pixels representing numbers from 0 to 9

Bayes Classification

Use of naive and non-naive (Gaussian) version of a Bayes classification model

Tuning of epsilon for better accuracy

Results

	Epsilon	Training accuracy	Testing accuracy
Naive Bayes model	0.01514286	0.8024	0.8148
Gaussian Bayes model	0.03332653	<u>0.9597</u>	<u>0.9563</u>

Conclusions

Gaussian Bayes classifier is capable of correctly interpreting handwritten numbers into their corresponding values.

Could be used as a first approach for improving the expressive capabilities of children with dysgraphia.

The model can be finetuned for detecting alphanumeric characters

Thank you!

Any Questions?

Appendix

References

- International Dyslexia Association.
 https://dyslexiaida.org/understanding-dysgraphia/#:~:text=Thus%2C%20dysgraphia%20is%20the%20condition,and%20speed%20of%20writing%20text.
- 2. https://tourette.org/resources/overview/tools-for-educators/classroom-strategies-techniques/disgraphia/
- 3. Chung, Peter J et al. "Disorder of written expression and dysgraphia: definition, diagnosis, and management." Translational pediatrics vol. 9,Suppl 1 (2020): S46-S54. doi:10.21037/tp.2019.11.01
- 4. Döhla, Diana, and Stefan Heim. "Developmental Dyslexia and Dysgraphia: What can We Learn from the One About the Other?." Frontiers in psychology vol. 6 2045. 26 Jan. 2016, doi:10.3389/fpsyg.2015.02045

Naive Bayes finetuning

- Epsilon = [0.001 to 0.1]
- 50 equally-separated values
- Selected the one with the highest accuracy

Naive Bayes confusion matrix

- Training accuracy = 80.24%
- Test accuracy = 81.48%
- Problems evaluating 4s and 9s

- 1000

- 800

- 600

- 400

- 200

Gaussian Bayes finetuning

- Epsilon = [0.001 to 0.1]
- 50 equally-separated values
- Selected the one with the highest accuracy

Gaussian Bayes confusion matrix

- Training accuracy = 95.97%
- Test accuracy = 95.63%
- Problems evaluating 7s and 9s

- 1000

- 800

- 600

400

- 200