

Lecture 2: Electric Circuit Variables

ELEC1111 Electrical and Telecommunications Engineering

Never Stand Still

Faculty of Engineering

School of Electrical Engineering and Telecommunications

CONTENTS

- 1. Introduction
- 2. Systems of Units
- 3. Charge
- 4. Current
- 5. Voltage
- 6. Power & Energy
- 7. Measuring Voltage & Current

1. INTRODUCTION

- Electricity the physical phenomenon arising from the existence and interaction of electric charge.
- ✓ Charge cannot be created or destroyed we do build electrical devices to manipulate the charge in many different ways, so that they do things like convey electrical energy or information → Electrical Engineering.
- Practical electrical devices are made up from an interconnection (network) of many simple electrical components.
- ✓ Usually, the network contains at least one closed path (loop) so that an electric current may flow → such a network is called an electric circuit

1. INTRODUCTION

- For analysis, we need to be able to describe a circuit's behaviour. This is done by creating mathematical models for the various components in the circuit. Models can be simple or complex and complicated.
- A basic circuit element i.e. resistor, capacitor, inductor, voltage source, current source, has 2 terminals.
- Characteristic is described by the voltage/current relationship

Interconnections in a circuit allow the elements to share currents and voltages so they can interact with each other.

2. SYSTEMS OF UNITS

- ✓ Need a consistent system of units to describe electrical quantities (e.g. voltage, current) in the circuit.
- ✓ SI Units International System of Units, built upon the seven base or fundamental units below.

Quantity	Unit Name	Unit Symbol
Length	Metre	m
Mass	Kilogram	kg
Time	Second	S
Temperature	Kelvin	K
Electric current	Ampere	Α
Amount of substance	Mole	mol
Luminous intensity	candela	Cd

2. SYSTEMS OF UNITS

✓ Units for other physical quantities by combining base units.

Quantity	Unit Name	Formula	Symbol
Frequency	hertz	S ⁻¹	Hz
Force	newton	kg.m/s²	N
Energy (work)	joule	N.m	J
Power	watt	J/s	W
Electric Charge	coulomb	A.s	С
Electric potential	volt	W/A	V
Resistance	ohm	V/A	Ω
Conductance	siemens	A/V	S
Capacitance	farad	C/V	F
Magnetic flux	weber	V.s	Wb
Inductance	henry	Wb/A	Н

2. SYSTEMS OF UNITS

✓ Multiples/prefixes

Factor	Name	Symbol
10-1	deci	d
10-2	centi	С
10 -3	milli	m
10 -6	micro	μ
10 -9	nano	n
10 ⁻¹²	pico	р
10 ⁻¹⁵	femto	f

Factor	Name	Symbol
10 ¹⁵	peta	Р
10 ¹²	tera	Т
10 ⁹	giga	G
10 ⁶	mega	M
10 ³	kilo	k
10 ²	hecto	h
10 ¹	deka	da

3. CHARGE

- ✓ Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).
- ✓ Charge can be positive or negative.
 - ✓ Proton most elementary positive charge
 - ✓ Electron most elementary negative charge
- ✓ The charge e on one electron is <u>negative</u> and equal in magnitude to 1.602×10^{-19} C which is called electronic charge. The charges that occur in nature are integral multiples of the electronic charge.

3. CHARGE

- ✓ Charge = quantity of electricity
- ✓ Unit: coulomb, C
- ✓ Symbol:

```
Q = constant quantity
q(t) or q = instantaneous value
```


✓ Electric charge is mobile – movement of charge from one place to another results in a transfer of energy.

✓ Electric current is defined as the time rate of change of charge past a given point.

- ✓ Measured in amperes, A.
- ✓ Symbol for current \rightarrow *i* or *I*
- Y By definition: $i \triangleq \frac{dq}{dt}$

So 1 ampere is 1 coulomb per second

Example: The current flows through the point B of the electrical cable below is 2A. How many electrons pass through B in 1 second?

Direction of Current

Valence Orbit

✓ **Convention** – despite current flow in a metallic conductor being due to electron (negative charge) motion, the flow of current is represented as a flow of **positive** charge.

✓ Current needs to be described by a value as well as a direction.

So, if i = 5A, then it means a net positive charge of 5 C is moving from terminal a to terminal b every second.

If i_1 is +3 Amps then we have:

If i_1 is -6 Amps then we have:

Direct Current (DC)

✓ A current that remains constant with time: I

Time-varying current

 \checkmark Represented by the symbol *i* or *i*(*t*)

Alternating Current (AC)

✓ A time-varying current that varies sinusoidally

✓ To determine charge from current:

$$i \triangleq \frac{dq}{dt} \rightarrow q = \int_{-\infty}^{t} i \, d\tau = \int_{0}^{t} i \, d\tau + q(0)$$

where q(0) is the charge at t = 0 and i(t) = 0 for $t \le 0$.

Example:

Determine the total charge transferred over the time interval of $0 \le t \le 10s$ when the current i(t) = 0.5t

Solution

$$q = \int_{0}^{10} i \, d\tau =$$

✓ The voltage (or potential difference) across a circuit element is defined as a measure of the energy (work) involved when moving charge through the element.

$$v \triangleq \frac{dw}{dq}$$

v – voltage; *w* – energy; *q* – charge; (joules/coulomb)

- ✓ So Voltage is the force or push of electricity, also Electro-Motive Force (EMF)
- ✓ Units of volts, V.
- ✓ Symbol for voltage $\rightarrow v$ or V

- ✓ We need to distinguish between the energy supplied to an element and energy that is supplied by the element.
 - > So we assign one terminal of the element positive with respect to the other.

✓ Convention:

- ✓ If terminal *a* is positive with respect to terminal *b*, and a positive current enters terminal *a*, then an external source must expend energy to establish this current.
 - ✓ We say that the device between a and b dissipates energy

- ✓ Thus to fully describe a voltage across an element, we require assigning:
 - ✓ A "+ terminal" and a "- terminal", as well as
 - ✓ A value (or variable name) this denotes the voltage at the "+ terminal" with respect to the "- terminal"

- ✓ Example: if $V_{ab} = 7V$, then we say terminal a is 7V positive with respect to terminal b. Or the voltage drop from a to b is 7V.
- $\checkmark V_{ba} = ?$

$$V_{12} = V_1 - V_2$$

 $V_1 = V_1 - V_0$
 $V_2 = V_2 - V_0$

Example: A question in lab 2 - Measure the voltages V_{12} , V_{23} , V_{34} and V_1 , V_2 , V_3 , V_4 , at laboratory

Note: The value of V_1 , V_2 , V_3 , V_4 , V_{12} , V_{23} , V_{34} should be computed and reported in lab book before lab time

6. POWER & ENERGY

✓ Power – time rate of change of expending or absorbing energy

$$p \triangleq \frac{dw}{dt}$$

But also:

$$\frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt} \to v \cdot i$$

✓ Power is product of voltage across the element and the current flowing through it.

- ✓ Units of watts, W.
- ✓ Symbol for power $\rightarrow p$ or P

6. POWER & ENERGY

✓ **Passive sign convention** – defined when current enters the positive terminal of an element and p = +v.i. If current enters through the negative terminal, p = -v.i.

6. POWER & ENERGY

✓ Energy – assuming passive convention

$$w = \int_{-\infty}^{\infty} p \ d\tau = \int_{0}^{\infty} p \ d\tau$$

if element only receives power for $t \geq 0$.

- ✓ Unit of energy is Joule, J.
- ✓ Symbol, w or W.
- ✓ Alternatively, electricity utilities use kilowatthour

$$1 \, kWh = \left(\frac{10^3 J}{s}\right) (3600s) = 3.6 MJ.$$

6. POWER - ABSORB OR SUPPLY

$$P = I \times V_{ab} = 1 \times 3 = 3W > 0$$

The circuit element <u>absorbed</u> the power of 3W OR the power <u>dissipated</u> on the circuit element is 3W

$$P = -1 \times V_{ab} = -1 \times 3 = -3W < 0$$

The circuit element <u>supplies</u> (or <u>generates</u>) the power of 3W

$$P =$$

Is the circuit element absorbs or generates power?

7. MEASURING VOLTAGE & CURRENT

- ✓ Voltmeter instrument for measuring voltage.
 - ✓ Voltage is measured across its terminals.
 - ✓ Current *through* its terminals is negligible.

- ✓ Ammeter instrument for measuring current.
 - ✓ Current is measured *through* its terminals.
 - √ Voltage across its terminals is negligible.

- ✓ **Multimeter** a multi-function instrument to voltage, current, resistance,
- ✓ Refer to video lectures at for multimeter operations http://eemedia.ee.unsw.edu.au/Laboratory/index.htm

Analogy

- WaterCharge
- Flow rate

 Current
- Water pressure ————— Potential energy (Voltage)

Analogy

The same thing occurs in an Electrical Wire

Flow of Current

Current Moves from High Voltage

To Low Voltage

