

Process for producing tenside-stabilized colloids of mono- and bimetals of the group VIII and Ib of the periodic system in the form of precursors for catalysts which are isolable and water soluble at high concentration

Patent number:

DE4443705

Publication date:

1996-06-13

Inventor:

BOENNEMANN HELMUT PROF DIPL CH [DE]; BRIJOUX WERNER DIPL PHYS DR IN [DE]; BRINKMANN RAINER DIPL ING [DE]; RICHTER

JOACHIM DIPL CHEM DR [DE]

Applicant:

STUDIENGESELLSCHAFT KOHLE MBH [DE]

Classification:

- international:

B22F9/24; B01J37/18; B01J32/00; C07B41/00; C07C13/20; C07C5/11; C07C5/08; B01J37/18; B01J23/70; B01J23/38; B01J21/18; B01J105/12; C07C215/08; C07C219/08; C07C233/46; C07C69/22

- european:

B01J35/00C; B01J37/02B2; B01J37/02B12; C07C5/11;

C07C215/40; C07C219/08

Application number: DE19944443705 19941208 Priority number(s): DE19944443705 19941208

Also published as:

WO9617685 (A1) EP0796147 (A1) US6090746 (A1) EP0796147 (B1)

Abstract of DE4443705

The invention relates to a process for producing tenside-stabilized colloids of mono- and bimetals of the group VIII and Ib of the periodic system which are isolable in the form of powder and which are soluble at a concentration of at least 100 mg atom of metal/I of water, from metal salts in the presence of strongly hydrophilic tensides with hydrotriorganoborates in THF, or with simple chemical reduction agents like hydrogen or alkali formate in water and alcohols, respectively. Furthermore, the subject matter of the invention is the use of the tenside-stabilized colloids which are produced according to this process as precursor for supported catalysts for the selective cis-hydrogenation of C-C triple bonds, for the selective hydrogenation of functional groups at the aromatic nucleus, for the selective hydrogenation of benzene to cyclohexene, for the partial oxidation of the primary alcohol functionality in carbohydrates, as well as for use as a precursor for electrocatalysts in fuel cells.

Data supplied from the esp@cenet database - Worldwide

(51) Int. Cl.6:

B 22 F 9/24

_® Offenlegungssch**ri**ft

DEUTSCHES PATENTAMT n DE 44 43 705 A 1

Aktenzeichen:

P 44 43 705.6

Anmeldetag:

8. 12. 94

Offenlegungstag:

13. 6.96

B 01 J 37/18 B 01 J 32/00 C 07 B 41/00 C 07 C 13/20 C 07 C 5/11 C 07 C 5/08 // (B01J 37/18,23:70, 23:38) (B01J 21/18, 105:12)C07C 215/08, 219/08,233/46,69/22

(71) Anmelder:

Studiengesellschaft Kohle mbH, 45481 Mülheim, DE

Patentanwälte von Kreisler, Selting, Werner et col., 50667 Köln

(72) Erfinder:

Bönnemann, Helmut, Prof. Dipl.-Chem. Dr.rer.nat., 45470 Mülheim, DE; Brijoux, Werner, Dipl.-Phys. Dr.-Ing., 45470 Mülheim, DE; Brinkmann, Rainer, Dipl.-Ing., 45470 Mülheim, DE; Richter, Joachim, Dipl.-Chem. Dr., 45529 Hattingen, DE

- (§) Verfahren zur Herstellung von tensidstabilisierten Mono- und Bimetallkolloiden der Gruppe VIII und Ib des Periodensystems als isolierbare und in hoher Konzentration wasserlösliche Precursor für Katalysatoren
- Die Erfindung betrifft ein Verfahren zur Herstellung von tensidstabilisierten Mono- und Bimetallkolloiden der Gruppe VIII und Ib des Periodensystems, die in Pulverform isolierbar und in einer Konzentration von mindestens 100 mg Atom Metall/I Wasser löslich sind aus Metalisalzen in Gegenwart von stark hydrophilen Tensiden mit Hydrotriorganoboraten in THF oder mit einfachen chemischen Reduktionsmitteln wie Wasserstoff oder Alkaliformiat in Wasser bzw. Alkoholen. Gegenstand der Erfindung ist außerdem die Verwendung der nach diesem Verfahren hergestellten tensidstabilisierten Metalikolloide als Precursor für trägergestützte Katalysatoren zur selektiven cis-Hydrierung von C-C-Dreifachbindungen, zur Selektivhydrierung von funktionellen Gruppen am aromatischen Kern, zur Selektivhydrierung von Benzol zu Cyclohexen, zur Partialoxidation der primären Alkoholfunktion in Kohlenhydraten sowie die Verwendung als Precursor für Elektrokatalysatoren in Brennstoffzellen.

Beschreibung des Verfahrens Die Verwendung von kolloidal stabilisierten ein- und mehrmetallischen Nanopartikeln als separat isolierte Vorstufe (Precursor) zur Hersteilung trägergestützter Metallkatalysatoren ist eine neue, wirtschaftlich vorteilhafte Alternative zur traditionellen in-situ-Formierung aktiver Metallkomponenten auf Trägeroberflächen H. Bönnemann et al., J. Mol. Catal. 86 (1994) 129-177]. Das besondere Kennzeichen des erfindungsgemäßen Verfahrens liegt in der Präformierung kolloidal stabilsierter ...

Bevorzugtes Lösungsmittel in dieser Katalysatortechnologie ist aus wirtschaftlichen und ökologischen Gründen Wasser. Gegenstand der vorliegenden Erfindung ist ein Verfahren, das es gestattet, in Pulverform isolierbare mono- und bimetallische Nanopartikel derart in hydrophiler Form zu stabilisieren, daß in Wasser ohne nennenswerte Metallausscheidungen hochkonzentrierte kolloidale Lösungen der entsprechenden mono- und bimetallischen Katalysator-Precursor bereitet werden können. Durch Fixierung der Precursor aus wäßriger Lösung auf organischen oder anorganischen Trägermaterialien werden erfindungsgemäß neuartige Heterogenkatalysatoren z. B. für selektive Hydrierungen, Partialoxidationen oder Elektrokatalysatoren für Brennstoffzellen hergestellt

Nach dem Stand der Technik lassen sich einige Nanometalle in Wasser kolloidal stabilisieren [T. Sato, S. Kuroda, A. Takami, Y. Yonezawa, H. Hada, Appl. Organomet. Chem. 1991, 5, 261; T. Sato et al., J. Appl. Phys. 1990, 68, 1297; T. Sato et al., J. Chem. Soc., Faraday Trans. 1,1987, 83, 1559; T. Sato, S. Kuroda, A. Takami, Y. Yonezawa, H. Hada, Appl. Organomet. Chem. 1991, 5, 261; J. H. Fendler, "Membrane-Mimetic Approach to Advanced Materials", Springer-Verlag, Berlin, 1994; J. S. Bradley in "Clusters and Colloids", (Hrsg. G. Schmid), VCH, Weinheim 1994; H. Hirai, Y. Nakao, N. Toshima, Chem. Lett. 1978, 5, 545; M. Ohtaki, M. Komiyama, H. Hirai, N. Toshima, Macromolecules 1991, 24, 5567; N. Toshima et al. J. Phys. Chem., 1991, 95, 7448; N. Toshima, T. Yonezawa, Makromol. Chem., Macromol. Symp., 1992, 59, 327; N. Toshima et al., J. Phys. Chem. 1992, 96, 9927; K. Torigoe, K. Esumi, Langmuir 1993, 9, 1664; J. S. Bradley et al., Chem. Mater. 1993, 5, 254; H. Hirai, Y. Nakao, N. Toshima, Chem. Lett. 1976, 9, 905; M. Ohtaki, M. Komiyama, H. Hirai, N. Toshima, Macromolecules 1991, 24, 5567, N. Toshima, M. Ohtaki, T. Teranishi, Reactive Polym. 1991, 15, 135; C. Larpent, F. Brisse-Le Menn, H. Patin, Mol. Catal. 1991, 65, L35; N. Toshima, T. Takahashi, Bull. Chem. Soc. Jpn. 1992, 65, 400-9].

Die beschriebenen Metallkolloide sind jedoch nicht isolierbar und in Wasser nur in hoher Verdünnung löslich. Sie sind damit als Katalysator-Precursor ungeeignet.

Einige Autoren konnten in Gegenwart hydrophiler P- oder N-Donatoren wasserlösliche Nanometallkolloide isolieren [J. S. Bradley in "Clusters and Colloids", (Hrsg. G. Schmid), VCH, Weinheim 1994; G. Schmid, Chem. Rev. 1992, 92,1709; G. Schmid, Chem. Rev. 1992, 92,1709; H. Liu, N. Toshima, J. Chem. Soc., Chem. Commun. 1992, 1095; G. Schmid, Chem. Rev. 1992, 92, 1709; C. Paal, C. Amberger, Ber. 1904, 37,124; C. Paal, C. Amberger, Ber. 1905, 38,1398].

25

Da P— oder N-Donatoren als Lewisbasen mit Übergangsmetallen definierte Metallkomplexbindungen eingehen, was bekanntermaßen die katalytische Wirkung der Metalle beeinträchtigt, ist der Einsatz der genannten Komplexbildner zur Herstellung von wasserlöslichen Katalysator-Precursom im Sinne der vorliegenden Erfindung ungeeignet. Außerdem ist die Synthese dieser Komplexbildner vielstufig und unwirtschaftlich.

Zur kolloidalen Stabilisierung von Nanometallen in Wasser sind einsetzbare Hilfsstoffe bekannt. Dazu sind von verschiedenen Autoren auch grenzflächenaktive Stoffe (Tenside) vorgeschlagen worden [H. G. Petrow und R. J. Allen (Prototech Company), US-PS 4,044,193 (1977); G. V. Lisichkin, A. Ya. Yuffa und V. Yu. Khinchagashvii, Russ. J. Phys. Chem., 50 (1976) 1285; V. M. Deshpande, P. Singh und C. S. Narasimhan, J. Mol. Cat., 53(1989) L21; V. M. Deshpande, P. Singh und C. S. Narasimhan, J. Chem. Soc., Chem. Commun., 1990,1181; Y. Nakao und K. Kaeriyama, J. Coll. and Surf. Sci., 110(1) (1986) 82; C. Larpent, F. Brisse-Le Menn und H. Patin, NewJ. Chem. 15 (1991) 361; K. Esumi, M. Shiratori, H. Ihshizuka, T. Tano, K. Torigoe und K. Meguro, Langmuir 7 (1991) 457; N. Toshima, T. Takahashi und H. Hirai, Chemistry Letters, 1985, 1245; N. Toshima und T. Takahashi, Chemistry Letters, 1988, 573; J. Kiwi und M. Grätzel, J. Am. Chem. Soc. 101 (1979) 7214]. Die kolloidalen Lösungen der betreffenden Metalle in Wasser sind jedoch nur in äußerst geringer Konzentration stabil, nicht isolierbar und scheiden daher für die erfindungsgemäße Verwendung als Precursor für technische Katalysatoren von vornherein aus.

Einen wesentlichen Fortschritt bei der Erzeugung wasserlöslicher Metallkolloide erzielten Reetz und Helbig [M.T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 7401] durch Einsatz eines LiCl-Salzes des Sulfobetains 3-(Dimethyldodecyl-ammonio)propansulfonat in einem elektrochemischen Reduktionsprozeß. Nach diesem elektrochemischen Verfahren wurde z. B. ein gut wasserlösliches, mit Sulfobetain stabilisiertes Palladiumkolloid von 8 nm Größe isoliert.

Eine wirtschaftliche Alternative zur elektrochemischen Erzeugung von Nanometallen besteht in der chemischen Reduktion von Metallsalzen [H. Bönnemann et al., Angew. Chem. Int. Ed. Engl. 29 (1990) 273; H. Bönnemann et al., J. Mol. Catal. 86 (1994) 129-177.]

Dem Stand der Technik und herrschenden Lehre war der Einsatz von handelsüblichen Tensiden zur Stabilisierung chemisch-reduktiv erzeugter Nanometall-Kolloide in hochkonzentrierter wäßriger Lösung nicht zu entnehmen. Grenzflächenaktive Substanzen gelten im Gegenteil als Hilfsstoffe zum Ausfällen von Metallen aus wäßriger Lösung. Es wurde nun überraschend gefunden, daß die chemische Reduktion von Metallsalzen in Gegenwart von extrem hydrophilen Tensiden zu isolierbaren Nanometallkolloiden führt, die in Wasser in einer Menge von mindestens 100 mg Atom Metall/I langzeitstabile Lösungen bilden. Den erfindungsgemäßen Vorteil von extrem wasserlöslichen Tensiden zur Kolloidstabilisierung veranschaulicht folgender Vergleich: Während das schlecht wasserlösliche Tensid C₁₆H₃₃Me₃NBr (Löslichkeit laut Fluka-Katalog 1993/94, CAS Nr. 57-09-0 = 0,1 Mol/I H₂O) nach dem Stand der Technik [G. V. Lisichkin, A. Ya. Yuffa und V. Yu. Khinchagashvii, Russ. J. Phys. Chem., 50 (1976)1285] keine Stabilisierung von Metallkolloiden in Wasser erlaubt, resultiert beim erfindungsgemäßen Einsatz von 3-(Dimethyldodecyl)ammoniopropansulfonat (Löslichkeit laut Fluka-Katalog 1993/94, CAS Nr. 14933-08-5 = 1,2 Mol/I H₂O) eine Löslichkeit der stabilen Metallkolloide von mindestens 100 mg Atom/I Wasser.

Anorganische oder organische Salze eines oder mehrerer Metalle aus den Gruppen VIII und Ib des Periodensystems werden in Gegenwart eines extrem hydrophilen Tensids in Wasser oder stark solvatisierenden organi-

schen Lösungsmitteln (h. THF, Alkohole) gelöst bzw. suspendiert und zwesch 0°C und 100°C bei Umgebungsdruck ggfs. unter Zusatz von Alkalicarbonat mit chemischen Reduktionsmitteln umgesetzt. Als solche dienen z. B. Wasserstoff, Alkaliformiat, komplexe Hydride und andere zur Reduktion technisch verfügbare Stoffe. Die Auswahl des Reduktionsmittels wird jeweils nach der für das betreffende Metallsalz notwendigen Reduktionskraft sowie anhand der Stabilität der eingesetzten Reagenzien in protischen/aprotischen Lösungsmitteln bestimmt. Als extrem hydrophile Tenside können erfindungsgemäß zur chemisch-reduktiven Herstellung von Mono- und Bimetallkolloiden der Gruppe VIII und Ib des Periodensystems in Form isolierbarer, in hoher Konzentration wasserlöslicher (> 100 mg Atom/l) Pulver folgende hydrophile Tensidtypen eingesetzt werden: Amphiphile Betaine (A), kationische Tenside (B), Fettalkohol-Polyglykolether (C), Polyoxyethylen-Kohlenhydrat-Fettalkylester (D), anionische Tenside (E) und amphiphile Zuckertenside (F).

Die erfindungsgemäß als Katalysator-Precursor hergestellten Metallkolloide lassen sich zur Erzeugung von technisch vorteilhaften mono- und bimetallischen Heterogenkatalysatoren aus wäßriger Lösung auf organische oder anorganische Trägermaterialien (z. B. Aktivkohle, graphitierter Ruß, Metalloxide) aufziehen. Diese erfindungsgemäß hergestellten Heterogenkatalysatoren eignen sich für die selektive cis-Hydrierung von C—C-Dreifachbindungen (mono- und bimetallische Pd-Kolloidkatalysatoren auf A-Kohle, Selektivhydrierung funktioneller Gruppen z. B. —NO₂, an aromatischen Kernen (z. B. mono- und bimetallisches Pt-Kolloid auf A-Kohle), zur Selektivhydrierung von Benzol zu Cyclohexen (z. B. Ru-Kolloid auf La₂O₃), zur Partialoxidation der primären Alkoholfunktion in Kohlenhydraten (z. B. Pd-, Pt-, Pd/Pt-Kolloide auf A-Kohle) oder als Elektrokatalysatoren für Brennstoffzellen (z. B. Pt-Kolloid auf graphitiertem Ruß).

BEISPIELE

Folgende Tensidtypen können erfindungsgemäß zur Nanometall-Stabilisierung eingesetzt werden (Tabelle 1). Die Beispiele erläutern die Erfindung ohne sie zu beschränken.

Tabelle 1

5	hydrophiler Tensidtyp	Bezeichnung .	Tensi	d Name, Formel HANDELSNAME
	A	Amphiphile Betaine	A1	3-(N,N-Dimethyldodecylammonio)-
10			•	propansulfonat (SB12)
			A2	Lauryldimethylcarboxymethyl- ammoniumbetain, REWO
15			A3	Cocoamidopropylbetain, DEHYTON K,
			A4	Cocoamidopropylbetain, AMPHOLYT JB130
	. B	Kationische	B1	
20		Tenside		$C1^{-}CH_{3} \xrightarrow{\begin{subarray}{c} C_{18}H_{37} & OH & C1 \\ +& +& & & \\$
25				QUAB 426
			B2	•
30				(R COCH2CH2) N (CH2CH2OH)3-1 CH3
35				R = teilhydrierter Palmfettalkylrest
				ESTERQUAT AU35
40	С	Fettalkohol- Polyglykolether	C1	Polyoxyethylenlaurylether, BRIJ 35
40	D	Polyoxyethylen-	D1	Polyoxyethylensorbitanmonolaurat,
•		Kohlenhydrat-		TWEEN 20
45	•	Fettalkylester		
	E	Anionische Tenside	E1	Na-Cocoamidoethyl-N-hydroxyethyl-glycinat
				DEHYTON G
50	F	Amphiphile Zuckertenside	F1	Alkylpolyglycosid, APG 600

Tensid-stabilisierte Metall-Kolloide der Gruppen VIII und Ib des Periodensystems durch Reduktion mit AlkaliBEt₃H in THF (siehe Tabelle 2)

55

60

Beispiel 1

Ru-Kolloid (Tabelle 2, No. 4)

2,43 g (7,23 mmol) 3-(N, N-Dimethyldodecylammonio)-propansulfonat (Tensid A1) werden unter Schutzgas (Argon) in 100 ml THF suspendiert und bei 20°C mit 5,60 ml 1,29 molarer LiBEt₃H-Lösung in THF versetzt, wobei eine klare Tensid-Reduktionsmittel-Lösung resultiert. Diese klare Tensid-Reduktionsmittel-Lösung wird innerhalb von 4 h bei 40°C unter Rühren zu einer Suspension von 0,5 g (2,41 mmol) RuCl₃ in 100 ml THF getropft und weitere 16 h bei 20°C gerührt. Es bildet sich ein grauschwarzer Niederschlag und eine nahezu farblose, überstehende Lösung. Nach 2h Absitzen hebert man die überstehende Lösung ab, versetzt mit 5 ml Aceton und 100 ml THF. Man rührt ca. 10 min und läßt erneut den Niederschlag 1h absitzen. Die überstehende

klare Lösung wird abgestert und der Niederschlag im Hochvakuum (10⁻³ ar, 40°C, 1 h) getrocknet. Man erhält 0,65 g Ru-Kolloid in Form eines schwarzen Feststoffes mit einem Ru-Gehalt von 12,62%. Teilchengröße laut TEM (Transmissions-Elektronenmikroskopie): 1–2 nm.

Physikalische Charakterisierung

Die Kolloide aus Versuch Nos. 5 und 26, Tabelle 2, wurden mittels UV-Spektroskopie charakterisiert.

Das XPS-Spektrum von Kolloid No. 19, Tabelle 2, zeigt metallisches Platin Die mittlere Teilchengröße wurde mittels TEM von folgenden Kolloiden bestimmt: No. 19: 2 nm, No. 20: 2,8 nm, No. 21: 3,7 nm (Tabelle 2).

Tensid-stabilisierte Bimetallkolloide der Gruppen VIII und Ib des Periodensystems durch Reduktion mit AlkaliBEt₃H in THF (siehe Tabelle 3)

Beispiel 2

Pt-Co-Kolloid (Tabelle 3, No. 3)

2,62 g (7,8 mmol) 3-(N,N-Dimethyldodecylammonio)-propansulfonat (Tensid A1) werden unter Schutzgas (Argon) in 1 ml THF suspendiert und bei 20°C mit 6 ml 1,29 molarer LiBEt3H -Lösung in THF versetzt, wobei eine klare Tensid-Reduktionsmittel-Lösung resultiert. Diese klare Tensid-Reduktionsmittel-Lösung wird innerhalb von 20 h bei 20°C unter Rühren zu einer Suspension von 0,78 g (2,93 mmol) PtCl2 und 0,13 g (0,98 mmol) CoCl2 in 120 ml THF getropft und weitere 67 h bei 20°C gerührt. Es bildet sich ein dunkelgraubrauner Niederschlag. Man versetzt mit 10 ml Aceton, rührt ca. 1 h und läßt den Niederschlag absitzen. Die überstehende klare Lösung wird abgehebert und der Niederschlag 2 mal mit ca. 50 ml THF gewaschen. Nach Trocknen im Hochvakuum (10-3 mbar, 20°C, 1 h) erhält man 2,84 g Pt—Co-Kolloid in Form eines schwarzen Feststoffes mit einem Metallgehalt von 17,6% Pt und 1,5% Co. Teilchengröße laut TEM: 2—6 nm.

Physikalische Charakterisierung

Die Kolloide aus Versuch Nos. 4 und 6, Tabelle 3, wurden mittels UV-Spektroskopie charakterisiert.

Tensid-stabilisierte Metallkolloide der Gruppen VIII und Ib des Periodensystems durch Reduktion mit Alkalimetallborhydriden in H₂O bzw. Alkoholen (siehe Tabelle 4)

Beispiel 3

Pt-Kolloid (Tabelle 4, No. 7)

2,7 g (5,3 mmol) H₂PtCl₆ × 6 H₂O und 3,6 g (10,6 mmol) 3-(N,N-Dimethyldodecylammonio)-propansulfonat 40 (Tensid A1) werden unter Schutzgas Argon in 100 ml H₂O gelöst und bei 20°C innerhalb 2h mit einer Lösung von 1,2 g (31,8 mmol) NaBH₄ in 50 ml H₂O versetzt. Die resultierende, tiefschwarze Reaktionsmischung wird über eine D4-Glasfritte filtriert und die tiefschwarze, klare Lösung im Hochvakuum (10⁻³ mbar, 40°C) bis zur Trockene eingeengt. Man erhält 6,39 g Pt-Kolloid in Form eines schwarzen Feststoffes mit einem Pt-Gehalt von 12,1%. Mittlere Teilchengröße laut TEM: 4,6 nm.

Physikalische Charakterisierung

Das Kolloid aus Versuch No. 2, Tabelle 4, wurden mittels UV-Spektroskopie charakterisiert.

Tensid-stabilisierte Bimetallkolloide der Gruppen VIII und Ib des Periodensystems durch Reduktion mit Alkalimetallborhydriden in H₂O bzw. Alkoholen (siehe Tabelle 5)

Beispiel 4

Pt-Cu-Kolloid (Tabelle 5, No. 1)

1,35 g (2,65 mmol) H₂PtCl₆ × 6 H₂O und 0,11 g (0,66 mmol) CuCl₂ x H₂O werden mit 4,3 g (12,7 mmol) 3-(N,N-Dimethyl-dodecylammonio)-propansulfonat (Tensid A1) unter Schutzgas (Argon) in 100 ml H₂O gelöst und bei 20°C innerhalb 2h mit einer Lösung von 0,38 g (17,0 mmol) LiBH₄ in 50 ml H₂Q versetzt. Die resultierende, tiefschwarze Reaktionsmischung wird über eine D4-Glasfritte filtriert und die tiefschwarze, klare Lösung im Hochvakuum (10⁻³ mbar, 40°C) bis zur Trockene eingeengt. Man erhält 7,05 g Pt—Cu-Kolloid in Form eines schwarzen Feststoffes mit einem Metallgehalt von 7,02% Pt und 0,52% Cu. Teilchengröße laut TEM: 2,5-4,5 nm. EDX-Analyse: Pt: Cu = 1:0,2.

Physikalische Charakterisierung: Von Kolloid No. 6, Tabelle 5, wurde mittels TEM die Teilchengröße bestimmt: 3-5 nm, EDX-Analyse: Pt: Ru = 1:1,05

5

5

10

15

30

35

50

55

Tensid-stabilisierte Blkolloide der Gruppen VIII und Ib des Perioden was durch Reduktion mit Wasserstoff in H₂O (siehe Tabelle 6)

Beispiel 5

5

Pt-Kolloid (Tabelle 6, No. 15)

1,4 g (5,3 mmol) PtCl₂, 7,2 g (21,2 mmol) 3-(N,N-Dimethyldodecylammonio)-propan-sulfonat (Tensid A1) und 0,4 g (5,3 mmol) Li₂CO₃ werden unter Schutzgas (Argon) in 100 ml H₂O aufgenommen und durch diese Mischung wird bei 20°C 3 h lang H₂-Gas geleitet. Nach ca. 30 min bildet sich eine klare schwarze Lösung, von der im Hochvakuum (10⁻³ mbar, 40°C) alles Flüchtige abgetrennt wird. Man erhält 8,4 g Pt-Kolloid in Form eines schwarzen Feststoffes mit einem Pt-Gehalt von 10,7%. Mittlere Teilchengröße laut TEM: 2.2 nm.

Anmerkungen zur Reaktionsführung

15

Der Versuch No. 17, Tabelle 6, wurden abweichend von obigen Versuchsbeschreibungen unter Luft durchgeführt.

Physikalische Charakterisierung

20

25

Die Kolloide aus Versuch Nos.1, 4, 5 und 6, Tabelle 6, wurden mittels UV-Spektroskopie charakterisiert. Die mittlere Teilchengröße wurde mittels TEM von folgenden Kolloiden bestimmt: No. 10:2,2 nm, No. 11:3,1 nm (Tabelle 6).

Tensid-stabilisierte Bimetallkolloide der Gruppen VIII und Ib des Periodensystems durch Reduktion mit Wasserstoff in H₂O

Beispiel 6

30

Pt-Pd-Kolloid

1,35 g (2,65 mmol) $H_2PtCl_6 \times 6$ H_2O und 0,7 g (2,65 mmol) $Pd(NO_3)_2 \times H_2O$ werden zusammen mit 7 g Polyoxyethylenlaurylether (Tensid C1) und 1,0 g (13,25 mmol) Li_2CO_3 unter Schutzgas (Argon) in 100 ml H_2O_3 gelöst und bei 20°C wird 4h lang H_2 -Gas durchgeleitet. Die resultierende, tiefschwarze Reaktionsmischung wird über eine D4-Glasfritte filtriert und die tiefschwarze, klare Lösung im Hochvakuum (10⁻³ mbar, 40°C) bis zur Trockene eingeengt. Man erhält 11,2 g Pt—Pd-Kolloid in Form eines schwarzen Feststoffes mit einem Metallgehalt von 4,3% Pt und 2,3% Pd.

Tensid-stabilisierte Bimetallkolloide der Gruppen VIII und Ib des Periodensystems durch Reduktion mit Li-Formiat in H₂O

Beispiel 7

45

40

Pt-Rh-Kolloid

1,35 g (2,65 mmol) $H_2PtCl_6 \times 6$ H_2O und 0,7 g (2,65 mmol) $RhCl_3 \times H_2O$ werden mit 7 g Polyoxyethylenlaurylether (Tensid C1) unter Schutzgas (Argon) in 150 ml H_2O gelöst und bei 60°C innerhalb 20 h mit einer Lösung von 2,86 g (55,0 mmol) Li-Formiat in 50 ml H_2O versetzt. Die resultierende, tiefschwarze Reaktionsmischung wird über eine D4-Glasfritte filtriert und die tiefschwarze, klare Lösung im Hochvakuum (10⁻³ mbar, 40°C) bis zur Trockene eingeengt. Man erhält 12,5 g Pt-Rh-Kolloid in Form eines schwarzen Feststoffes mit einem Metallgehalt von 4,0% Pt und 2,0% Rh.

Trägerfixierung

55

Beispiel 8

Präparation eines Pd-Tensid A1/Aktivkohle-Katalysators zur Partialoxidation von Kohlenhydraten (5 Gew.-% Pd/C)

60

1.254 g einer mikroporösen (<5 nm), pulverförmigen Aktivkohle mit einer Korngröße von 20 um werden in 50 ml deoxygeniertem H_2O suspendiert und mit 64.7 ml einer Lösung von Pd-Kolloid No. 16, Tabelle 2, in deoxygeniertem H_2O (1.02 mg Pd/ml) innerhalb von 16 h unter Rühren versetzt. Die belegte Aktivkohle wird über eine Glasfilterfritte abgetrennt; man erhält ein farbloses Filtrat. Es wird zweimal mit je 25 ml deoxygeniertem H_2O gewaschen und 16 h im Vakuum (10^{-3} mbar) getrocknet. Anschließend wird der Katalysator 16 h bei 0.1 mbar (ca. 0.2% O_2) oxygeniert. Der erhaltene Katalysator kann an Luft gehandhabt werden.

44 43 705 A1

Zu 2.00 g Aktivkohle (Degussa Trägermaterial 101, Charge 514), die in 40 ml destilliertem Wasser unter Argon 5 suspendiert vorgelegt wurde, wird eine Lösung von 0.7885 g (entspricht 0.1053 g Pd) Kolloid No. 16, Tabelle 2, in 40 ml destilliertem Wasser unter Argon innerhalb von 16 h zugetropft. Dabei zieht das Kolloid vollständig auf die Aktivkohle auf, erkennbar an der Entfärbung der Lösung. Der Katalysator wird filtriert, 16 h bei 20°C im HV (103mbar) getrocknet und 16 h bei 20°C bei 0.1 mbar (ca. 0.2% O₂) oxygeniert.

Beispiel 10

Präparation eines Ru-Tensid A1/Lanthanoxid-Katalysators zur selektiven Hydrierung von Benzol (1 Gew.-% Ru/La_2O_3)

5.505 g La₂O₃ (BET-Oberfläche 59 m²/g) werden in 100 ml deoxygeniertem H₂O unter Schutzgas suspendiert. Innerhalb von 30 min läßt man 50 ml einer Lösung von Ru-Kolloid No. 4, Tabelle 2, in deoxygeniertem H2O (440 mg, EA: 12.62% Ru) unter Rühren zutropfen. Dabei färbt sich der weiße oxidische Träger grau. Die vollständige Adsorption ist aus der Entfärbung der schwarzen Lösung zu erkennen. Man läßt den belegte Träger vollständig absitzen und hebert die überstehende, klare wäßrige Lösung ab. Nach Trocknen im Vakuum (10⁻³ mbar, 3h) erhält man ein graues, an Luft stabiles Pulver.

Katalyse

Beispiel 11

Verwendung eines Pd-Katalysators zur Oxidation von Glucose zu Gluconsäure

100 ml einer wäßrigen Glucoselösung mit 16 g Glucose (99gew.-%ig) (88 mmol) und 0,24 g des in Beispiel 8 beschriebenen Katalysators (1,5 Gew.-% Katalysator bezogen auf die Glucosemenge) werden in einem 250 ml Rührreaktor mit Begasungsrührer, Thermometer, Alkalidosierung, pH-Elektrode und Sauerstoffzufuhr überführt. Bei einer Reaktionstemperatur von 56°C wird der Sauerstoff unter Normaldruck durch den Begasungsrührer in der Lösung verteilt. Die entstehende Gluconsäure wird durch Zutropfen von 10gew.-%iger Natronlauge neutralisiert. Der pH-Wert der Suspension beträgt dabei 10,0. Der Katalysator wird abfiltriert und das Filtrat mittels Ionenchromatographie und HPLC analysiert: Umsatz (120 min): 49%.

Selektivität (120 min): 92%.

Aktivität (120 min): 327 g [Gluconsäure]/g [Pd] × Stunde.

Beispiel 12

Einsatz eines Pd-Katalysators zur selektiven Hydrierung von 3-Hexin-1-ol zu cis-3-Hexen-1-ol (Blätteralkohol)

30.0 mg des Pd-Kolloid/Aktivkohle-Katalysators, hergestellt nach Beispiel 9, werden in einen 100 ml Tropftrichter eingewogen. Die Selektivitätsmessung wird in einem Reaktor durchgeführt, der auf -10°C thermostatisiert wird. Der Tropftrichter wird auf den Reaktor aufgesetzt, die gesamte Apparatur mehrmals evakuiert und mit Wasserstoff gespült. Anschließend wird der Katalysator im Wasserstoffgegenstrom mit 100 ml abs. unvergälltem Ethanol unter Argon in 2 Portionen zu je 50 ml in den Reaktor eingebracht. Der Tropftrichter wird abgenommen und durch ein Septum ersetzt. Man spritzt 10 ml 3-Hexin-1-ol durch das Septum ein. Nach Thermostatisierung der Suspension auf - 10°C und Druckausgleich wird der Weg zu einer quecksilbergedichte- 50 ten 11-Präzisionsbürette geöffnet. In regelmäßigen Abständen werden bis zur stöchiometrischen Wasserstoffaufnahme GC-Proben durch das Septum mit einer Spritze mit Filtrierhilfe und Stahlkanüle entnommen. Selektivität laut GC: 94.9%.

Beispiel 13

Verwendung eines Ru-Katalysators zur partiellen Hydrierung von Benzol zu Cyclohexen

In einen 100 ml Edelstahlautoklaven werden 10 ml Benzol, 40 ml Wasser mit 3 g NaOH, und 500 mg des in Beispiel 10 beschriebenen Katalysators (1 Gew.-%Ru/La₂O₃, 6.25 Gew.-% Katalysator bezogen auf die Benzolmenge) eingefüllt. Der Inhalt wird mit einem Keulenrührer gerührt und auf 150°C erhitzt. Nun wird auf 50 bar Wasserstoff aufgepreßt. Nach 30 min wird der Autoklav aus dem Heizmantelgestell genommen und die Rührung unterbrochen. Dabei wird eine H2-Aufnahme von 18 bar festgestellt. Nach Abkühlen läßt man den restlichen H2-Druck ab und nimmt aus der oberen, organischen Phase eine Probe, die gaschromatographisch untersucht wird.

Umsatz (Benzol) = 8.5%. Selektivität (Cyclohexen) = 78.5%. 65

7

10

15

25

35

40

DE 44 43 705 A1

		eit H ₂ 0																	•	
5		Wasserlöslichkeit mgAt Metall / I H ₂ O			110		120		300		310		150		320		350		370	
10	THE	Produktmenge Metaligehalt isoliert		%	Ni: 2,9		Co: 3,1		Cn: 3,5		Ru: 12,62		Ru: 13,52		Rh: 25,21		Rh: 11,50		Rh: 20,4	
15	llBEt ₃ H in	iktmenge 1			•															
20	mit Alka	Produkt isoliert		В	8,5		6, 8		9,02		0,65		0,23		_හ ග		1,91		1,08	
25	Reduktion	Reaktions- bedingungen	-	ę	20		20		48		4		Ø		58		8		34	
	durch F		۳	ပ္	22		20		20		9		9 .		92		4		4	
30	III - Ib PSE	Losungsmittel		E	뀲	200	Ή	200	雅	200	托	200	THF	100	推	009	ŦŁ	105	托	105
35	Gruppen V	Reduktionsmittel			Ŧ.		Ę,		I,		Hg.		3H		Æ		H _e		Hg	
40	olde der	Reduk		mmol	LIBEI3H	10,6	LIBEtgH	10,6	LIBEI3H	10,6	LIBEt3H	7,23	LIBEtgH	3,13	LIBEtgH	30,78	LIBEtgH	6,45	LIBEt3H	6,45
45	rte Metalikoli	Metalisalz/ Tensid	molares	Verhältnis	ı		•		4:4		1:3		6.		1:3		11		.	
50	Tensid-stabilisierte Metallkollolde der Gruppen VIII - Ib PSE durch Reduktion mit AlkallBEt3H in THF	Tensid		oww/6	<u>5</u>	1/-	5	11	F4	7,2/21,2	¥	2,43/7,23	8	0,85/3,13	¥	9,86/29,38	A1	1,443/4,3	¥	0,721/2,15
55		Metalisatz		g/mmol	NBr ₂	6,7/6,3	CoCl2	6'2//2'0	CuCl2	0,71/5,3	Rucl ₃	0,5/2,41	RuCl ₃	0,21/1,04	RhCl ₃	2,05/9,7	RhCl ₃	0,45/2,15	RhCl ₃	0,45/2,15
60	Tabelle 2	Š			-		Ø		က		4		ß		φ		7		ω	

DE 44 43 705 A1

)								
8	Metalisalz	Tensid	Metalisalz/ Tensid	Reduktionsmittel	Losungsmittel	Reaktions- bedingungen	gen	Produktmenge Metallgehalt isollert	Metallgehalt	Wasserlöslichkelt mgAt Metail / I H ₂ O
			molares			 	+			
	g/mmol	g/mmol	Verhältnis	mmol	ml	ပ္စ	۳	6	%	
თ	RhC ₁₃	Ą	1:0,75	LIBEI3H	THF	40	8	0,87	Rh: 25,2	410
	0,45/2,15	0,541/1,61		6,45	105					
5	RhCl ₃	¥	1:0,5	LIBEtgH	THF.	40	\$	29'0	Rh: 32,9	440
	0,45/2,15	0,361/1,075		6,45	105					
Ŧ	PhCl ₃	4 2	1:3	LIBEIGH	THF	8	91	2,0	Rh: 10,1	180
	0,45/2,15	1,745/6,45		6,45	120					
12	RhCl ₃	¥S	<u>;;</u>	. HEE13H	THF	09	9	1,60	Rh:13,1	170
	0,45/2,15	1,164/4,3		6,45	120					
13	RhCl ₃	Ş	1:3	LIBEIGH	雅	09	16	2,0	Rh:10,1	140
	0,45/2,15	1,745/6,45		6,45	120					'
4	RhCl ₃	A3	1:2	LIBER3H	표	9	16	1,30	Rh: 16,2	110
	0,45/2,15	0,855/4,3		6,45	120		•			
15	PdCl2	જ્	13	LIBEt3H	뀲	52	91	2,64	Pd: 14,8	160
	0,71/4	2,17/8		5,6	300					
16	PdCl2	¥	1:2	LIBEI3H	THF	52	16	3,13	Pd: 13,35	280
	1,37/7,75	6,2/15,5		10,8	. 009					
60	55	50	45	35 40	30	25		15	10	5

Tabelle 2 Fortsetzung 1

60	55	50	45	35 40	30	25		15 20	10	5
Tab	Tabelle 2 Fo	Fortsetzung 2								
8	No Metalisalz Tensid	Tensid	Metalisalz/ Tensid	Reduktionsmittel	Lõsungsmittel	Reaktions- bedingungen	gen gen	Produktmenge Metallgehalt Isoliert	Metallgehait	Wasserlôslichkelt mgAt Metall / 1 H2O
			molares				***			
	g/mmol	g/mmol	Verhältnis	mmol	m	ပ္စ	£		%	
11	PdCl ₂	A1	1:2	LIBЕІЗН	표	25	22	2,99	Pd: 13,7	260
	0,71/4	2,68/8		9'9	300					
18	<u>iči</u>	A1	5:5	LIBEt ₃ H	THF	9	16	2.10	ir. 8,99	370
	0,51/1,71	1,72/5,13		5,16	100					
6	Ptci ₂	A1	<u>5;</u>	LIBEI3H	THF	8	24	1,96	Pt: 68,93	420
	2,74/10,3	6,94/20,68		20,69	1100					
80	PtCl ₂	A 1	<u>:</u>	LIBEI3H	THF	80	27		Pt: 32,64	350
	1,03/3,87	1,31/3,9		7,74	240					
2	PtCl ₂	. A1	1:0,5	LIBEt ₃ H	TH	50	27	1,46	Pt: 51,50	320
	1,03/3,87	0,655/1,95		7,74	240					
22	PtCl ₂	A 2	2 .	LIBEI3H	THF	52	16	16,24	Pt: 22,09	160
	5,5/20,67	11,3/41,7		41,7	1200					
23	PtCl ₂	. 2	÷	LIBEIGH	THF	20	9	0,43	Pt: 22,6	170
	0,133/0,5	0,138/0,5		1,0	80					
24	PtCl ₂	A2	1:0,5	LIBEtgH	표표	20	. 91	0,35	Pt: 27,7	180
	0,133/0,5	0,068/0,25		1,0	80					

DE 44 43 705 A1

೦							
mgAt Metall / I H2O			110		130		
Metallgehaft		%	Pt: 19,60		Ag:11,52		
Produktmenge Metallgehatt Isollert		6	2,0		2,82		
ns- ngen	-	£	108		24		
Reaktions- bedingungen	; —	ပ္	20		20		
Lõsungsmittel		Ē	托	200	TH:	550	
Reduktionsmittel Lösungsmittel Reaktions- bedingunge		mmol	LIBER ₃ H	6,45	LIBEI3H	10,2	
Metailsaiz/ Tensid	molares	Verhältnis	1:2		<u>;</u>		
Tensid		g/mmol	A3	2,35/6,45	W W	3,5/10,2	
No Metalisaiz Tensid		g/mmol	PtCl ₂	0,857/3,23	AgBr	1,36/5,1	
2			5 9		56		·

65

Tabelle 2 Fortsetzung 3

	55 60	50	45	35 40	30	25	05	20	10 15	5	
Tab	Tabelle 3 Tensid-	stabilisierte Bin	netalikolloide de	Tensid-stabilislerte Bimetalikolloide der Gruppen VIII - Ib PSE durch Reduktion mit AlkallBEtgH In THF	lb PSE durch R	eduktion	n mit Alk	IIBEt3H In THF			
Š	No. Metalisalze	Tensid	Metalisalze/ Tensid	Reduktionsmittel Lösungsmittel	Lõsungsmittel	Reaktions- bedingungen	ns- ingen	Produktmange Isollert	Metaligehait	Wasserlöslichkeit mgAt Metall / 1 H ₂ O	
			molares			-	•	٠	· .		
	g/mmol	g/mmol	Verhältnis	lomm	lm!	၁့	þ	Ö	. %		4
-	Rucla - Fecla	¥.	1:3	LIBEtgH	THF	. 09	. 4	2,60	Ru: 8,84	210	
	0,5/2,41 - 0,039/0,24	24 2,67/7,95		7,95	200			· · · ·	Fe: 0,38		
Ø	Rucig - Fecig	¥	1:3	LIBEIGH	표	8	4	2,45	Ru: 8,52	170	
	0,5/2,41 - 0,078/0,48	48 2,91/8,67	. •	8,67	200				Fe: 0,71		
က	PtCl ₂ - CoCl ₂	Ą	1:5	LIBEIGH	THF	20	20	2,84	Pt: 17,6	280	
	0,78/2,93 - 0,13/0,98	98 2,62/7,8	•	7,74	220				Co: 1,5		
4	PtCl ₂ - CoBr ₂	V	;	LIBEIGH	THF	20	20	4,18	Pt: 12,4	200	
	0,86/3,23 - 0,7/3,2	3,5/12,9		12,9	300				Co: 3,76		
Ŋ	PtCl ₂ - CoBr ₂	¥	1	LIBEtgH .	摧	20	20	3,1	Pt: 20,1	210	
	0,86/3,23 - 0,08/0,36	,36 1,95/7,18		7,2	300				Co: 0,68		4
9	CODPICI2 - CoBr2	S S	<u>4</u>	LIBEt ₃ H	开	50	8	1,92	Pt: 14,5	190	
	0,6/1,6 - 0,35/1,61	1,75/6,45		6,45	300				Co: 4,4	•	
7	PtCl ₂ - NiBr ₂	. Z	<u>;</u>	LIBEtgH	뀲	8	80	3,0	Pt: 20,9	185	
	0,68/3,23 - 0,08/0,36	,36 1,97/7,18	_	7,2	300				NI: 0,7		
Φ	PICI ₂ - RhCl ₃	A	1:2,25	LIBEtgH	王	40	24	2,66	Pt: 43,6	405	
	2,31/8,72 - 0,61/2,91	,91 8,78/26,17	21	26,16	1200				Rh: 7,55		

DE 44 43 705 A1

Produktmenge Metaligehalt Wasserlöslichkeit isollert mgAt Metali / 1 H2O 5 40 190 6 430 370 350 380 10 Pt: 13,89 Pt: 15,3 Pt: 8,42 Pt: 17,3 Pt: 25,0 Rh:11,1 Rh:16,3 Pd: 4,45 lr: 13,0 lr: 1,87 Pt: 8,8 Pt: 1,4 lr: 1,6 lr: 8,6 % 15 16,03 18,22 10,65 5,13 14,4 3,60 4,4 20 Ġ Metalisalze/ Reduktionsmittel Lösungsmittel Reaktions-Tensid bedingungen 24. 9 16 9 28 24 ጷ _ 25 8 8 8 ပ္စ 8 ន 8 20 30 1100 1200 1200 出 1200 1200 井 王 부 Ħ 土 **光**· 550 99 Ē 35 LIBEIGH LIBEt3H LIBEtgH LIBEt3H LIBEtgH LIBEt3H LIBER3H 46,17 mmo 16,5 35,0 39,5 34,0 35,0 40 Verhältnis molares 1:2,55 1:2,5 1:2,9 1:2,8 1:2,1 1:2.1 45 ; 11,56/34,45 11,74/35,0 13,62/40,6 11,74/35,0 15,5/46,19 9,48/35,0 5,2/15,5 g/mmol Tensid 50 \$ ¥ ¥ ¥ ¥ ¥ ¥ 0,88/3,32 - 2,76/13,18 1,03/3,88 - 0,68/3,88 3,99/15,0 - 0,49/1,67 3,99/15,0 - 0,49/1,67 1,80/6,79 - 1,41/6,74 0,37/1,4 - 3,76/12,6 1,86/7,0 - 2,09/7,0 55 PtCl₂ - RhCl₃ PICI₂ - PdCI₂ Ptcl₂ - Rhcl₃ PtCl₂ - IrCl₃ PICI₂ - IrCi₃ PICI₂ - IrCl₃ PtCl₂ - IrCl₃ No. Metalisaize g/mmol 60 7 2 F 잗 5 5 6 65

Fortsetzung

Tabelle 3

DE 44 43 705 A1

65	60	50	45	35	30	25		20	10	5
Tab	Tabelle 4 Tensid-	Tensid-stabilisierte Metalikolioide der Gruppen VIII - Ib PSE durch Reduktion mit Alkalimetaliborhydriden in H20 bzw. Alkoholen	lloide der Gru	ppen VIII - Ib PSE	durch Redukt	lon mit	Alkalime	stallborhydride	ı in H ₂ 0 bzw. All	koholen
Š	No. Metalisaize	Tensid	Metalisalz/ Tensid	Reduktionsmittel	Lõsungsmittel	Reaktlons- bedingungen	. uegur	Produktmenge Isollert	ge Metaligehalt	Wassertôslichkeit mgAt Metall / I H ₂ O
			molares			-				•
	g/mmol	g/mmol	Verhältnis	g/mmol	Æ	၁့	£	B	%	
_	RuclaxaH2O	A1 - NH4CI	1:3	NaBH4	Н20	6	8	1,24	Ru: 7,65	430
	0,36/1,74	1,75/5,21 - 0,28/5,21		0,2/5,21	150					
Ø	Ruclgx3H2O	A1 - NH4CI	6:	LIBH4	H ₂ 0	6	Q 1	0,42	Ru: 9,87	425
	0,31/1,17	1,18/3,51 - 0,19/3,51		0,08/3,51	160					
ო	RhCl ₃ x 3H ₂ O	A1 - NH4CI	6:	NaBH4	H ₂ 0	8	01	1,14	Rh: 8,25	450
	0,30/1,43	1,44/4,3 - 0,23/4,3		0,17/4,3	100					
4	RhCl ₃ x 3H ₂ O	A 1	4:	LIBH4	Ethanol	0	24	7,3	Rh: 5,5	110
	1,4/6,3	7,2/21,2		0,34/15,9	150		•		•	,
S	PtCl ₂	A 1	1:4	NaBH4	H ₂ 0	8	24	0,92	Pt: 9,8	355
	0,126/0,48	0,669/1,99		0,037/1,0	80					
9	PICI ₂	A1 - NH4CI	1:2	NaBH ₄	H ₂ O	8	ო	4,8	Pt.: 10,2	096
	1,4/5,3	3,6/10,6 - 0,4/7,9		0,4/10,6	100					
7	H2PtCl ₆ x 6 H2O	A1	1:2	NaBH ₄	H ₂ 0	8	01	66,39	Pt: 12,1	320
	2,7/5,3	3,6/10,6		1,2/31,8	150				••	
©	H2PtCl ₆ x 6 H ₂ O	A1	7.	UBH4	Ethanol	0	24	8,1	Pt: 9,5	120
	2,7/5,3	7,2/21,2		1,2/31,8	150					

Tensid-stabilisierte Bimetalikolioide der Gruppen VIII - Ib PSE durch Reduktion mit Alkalimetaliborhydriden in H20 bzw. Alkoholen Tabelle 5

Š	No. Metallsalze	Tensid	Metalisalze/ Tensid	Reduktionsmittel	Lõsungsmittel	Reaktions- bedingungen	ueßur	Produktmenge Metallgehalt isoliert	Metallgehalt	Wasserlöslichkelt mgAt Metall / I H ₂ 0
			molares			-	· ~			
	g/ mmol	g/mmol	Verhältnis	g/mmol	Ē	ပ္စ	æ	·.		
-	H2PtClg - CuCl2 x H20	A 1	1:3,84	LIBH4	0 ² H	82	8	7,05	Pt: 7,02	390
	1,35/2,65 - 0,11/0,66	4,3/12,7		0,38/17,0	150				Cu: 0,52	
Ø	H2PICIB - CuCl2 x H20	V S	8:	LIBH4	H ₂ 0	20	01	8,5	Pt: 6,0	170
	1,35/2,65 - 0,05/0,295	6,4/23,6		0,38/17	150				Cu: 0,2 .	
ო	RhCl ₃ x H ₂ 0 - IrCl ₃ x H ₂ 0	A 1	1:4	UBH₄	H ₂ 0	20	Q	7,08	Rh: 2,7	340
	0,7/2,65 0,8/2,65	7,2/21,2		0,3/13,25	200				lr: 5,0	
4	RhCl ₃ x H ₂ 0 - RuCl ₃ x H ₂ 0	A	4:1	пвн₄	H ₂ 0	20	લ	., 10,52	Rh: 2,3	410
	0,7/2,65 - 0,7/2,65	7,2/21,2		0,35/15,9	200			٠.	Ru: 2,3	
9	Ruci ₃ x H ₂ 0 - Irci ₃ x H ₂ 0	A1	1:4	UBH₄	H20.	80	લ	8,7	Ru: 2,6	450
	0,7/2,65 - 0,8/2,65	7,2/21,2		0,35/15,9	200				lr: 4,9	
ဖ	H2PtClg - RuCl3 x H20	A1	4:4	LiBH4	H ₂ 0	8	8	10,36	Pt: 4,5	380
	1,35/2,65 - 0,7/2,65	7,2/21,2		0,53/23,85	200				Ru: 2,2	
7	H2PICI6 - RuCl3 x H20	¥	1:4	LIBH4	Ethanol	0	24	8,02	Pt: 4,7	120
	1,35/2,65 - 0,7/2,65	7,2/21,2		0,53/23,85	200				Ru: 2,3	
ထ	H2PtCl ₆ - RhCl ₃ x H ₂ 0	Ą	1:4	Na9H ₄	H ₂ 0	50		12,1	Pt: 4,3	360
	1,35/2,65 - 0,7/2,65	7,2/21,2		0,9/23,85	200				Rh: 2,0	
65	55 60	50	45	35 40	30		25	20	10	5

	•													
5		Wasserlöslichkeit mgAt Metall / I H ₂ 0			355		310		140		400		420	•
10														
15		Metaligehal			Pt: 4,5	Rh: 2,2	Pt:4,5	Pd: 2,6	Pt: 2,0	Pd: 4,3	Pt: 4,3	lr: 4,4	Pt: 4,4	lr: 4,5
20		Produktmenge Metaligehalt isoliert		•	10,58		11,1		10,2	·	. 10,34		10,2	
25		Reaktlons- bedingungen	-	ų	2		લ		67		Ø		Ø	
		Real bedir	-	ပွ	20		20		20		80		8	
30		Lõsungsmittei		ml	H ₂ O	200	H ₂ 0	150	H ₂ 0	160	Н2О	200	H ₂ 0	200
35 40		Metalisalze/ Reduktionsmittel Lõsungsmittel Reaktions- Tensid		g/mmol	LIBH4	0,53/23,85	LIBH4	0,47/21,2	LIBH4	0,33/14,8	LIBH4	0,47/21,2	LIBH4	0,53/23,85
45		Metalisalze/ Tensid	molares	Verhältnis	1:4		4:4		. •		4:4	•	1:4	
50		Tensid		g/mmol	¥	7,2/21,2	¥	7,2/21,2	5	-/0'-	¥	7,2/21,2	¥	7,2/21,2
55	Fortsetzung				3×H20	2,65	2 x 2 H ₂ 0	2,65	103)2 x H ₂ 0	4,24	1× H ₂ 0	,2,65	1× H ₂ 0	72,65
60		No. Metalisaize		g/ mmol	H2PtCl6 - RhCl3 x H20	1,35/2,65 - 0,7/2,65	10 H2PtClg - PdCl2 x 2 H20	1,35/2,65 - 1,0/2,65	H2PtClg - Pd(NO3)2 x H20	0,55/1,06 - 1,1/4,24	12 H2PtCl6 - IrCl3 x H20	1,35/2,65 - 0,8/2,65	13 H2PtCl6 - IrCl3 x H20	1,35/2,65 - 0,8/2,65
	Tabelle 5.	Σ.		B	= "	-	I	- -		o	ᄯ		E E	_
65	۳	ž			∞		7		Ξ		#=		~	

Tensid-stabilisierte Metalikolloide der Gruppen VIII - ib PSE durch Beduktion mit Wasserstoff in Hoo Tabelle 6

No Metallsatz Tansid Tansid Metallsatz Tansid Tan												
g/mmol Variatinis ml °C h pc RucigaSHb2O A1 1:3 H2 H2O 60 10 1 0,43 PucigaSHb2O A1 1:3 H2 H2O 60 16 10 1 0,43 Puciga A1 1:3 H2 H2O 60 16 60 16 60 62 60 62 60 62 60 62 60 <th>Š.</th> <th>Metalisaiz</th> <th>Tensid</th> <th>Metalisalz/ Tensid</th> <th>dions-</th> <th>Lõsungsmittel</th> <th>Reakti beding</th> <th>ons- Junger</th> <th>_</th> <th>Produktmenge Isollert</th> <th>Metallgehalt</th> <th>Wasserlöslichkeit mgAt Metall / I H₂O</th>	Š.	Metalisaiz	Tensid	Metalisalz/ Tensid	dions-	Lõsungsmittel	Reakti beding	ons- Junger	_	Produktmenge Isollert	Metallgehalt	Wasserlöslichkeit mgAt Metall / I H ₂ O
g/mmol g/mmol ventitinis ml °C h bar g RuClgxSHyO A1 1:3 H2 H2O 60 10 1 0.43 RuClgxSHyO A1 1:3 H2 H2O 60 16 60 10 1 0.43 RuClgxSHyO A2-K2CO3 1:3 H2 H2O 60 16 60 0.22 0.22 RuClgxSHyO A2-K2CO3 1:3 H2 H2O 60 16 60 41 9.8 RuClgxSHyO A1 1:3 H2 H2O 60 16 60 41 1.02 Ru(Acac)3 A1 1:3 H2 H2O 60 16 60				molares			;—		۵.			
Rucigadilyo A1 1:3 H2 H2O 60 10 1 0,43 O.2E60,65 0,9802,839 1:3 H2 H2O 60 16 50 0,22 Bucigadilyo A2 -K2CO3 1:3 H2 H2O 60 16 50 0,22 Bucigadilyo A2 -K2CO3 1:3 H2 H2O 60 16 60 41 0,38 Bucigadilyo A1 1:3 H2 H2O 60 16 60 41 60 41 1,02 4		g/ mmol	g/mmol	Verhältnis		E	ပ္စ	£	bar		%	
Ruciga 41 H2 60 16 16 <th< td=""><td>-</td><td>RuclaxaH2O</td><td>A1</td><td>1:3</td><td>H₂</td><td>H2O</td><td>8</td><td>2</td><td>-</td><td>0,43</td><td>10,98</td><td>370</td></th<>	-	RuclaxaH2O	A1	1:3	H ₂	H2O	8	2	-	0,43	10,98	370
Ruciga A1 1:3 H2 H2O 60 16 60 22 0,180/78 0,792,34 1:3 H2 100 3 1 6.28 Rucio,34H2O A2-K2CO3 1:3 H2 H2O 60 3 1 0.38 0,2200,84 0,68P,253-0,2241,67 1 1:8 H2O 60 16 60 41 0.38 Rucioacia 41 1:8 H2 H2O 60 16 60 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41 </td <td></td> <td>0,25/0,95</td> <td>0,96/2,89</td> <td>•</td> <td></td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0,25/0,95	0,96/2,89	•		100						
Ruclax3H2O A2-K2CO3 1:3 H2 H2O 60 3 1 0,38 0,220,044 0,68R_533-0,2371,67 1:8 H2 H2O 60 16 5 1 0,38 Puc/Chol,44 41 1:8 H2 H2O 60 16 60 44 Puc/Chol,62 1,25/3,7 1 1:8 H2 H2O 60 16 60 60 64 60 <	Q	RuCl ₃	. A1	1:3	Ŧ	H ₂ 0	09	16	50	0,22	9,41	375
Ruclgx3H2O A2 -KgCO3 1:3 H2 H2O 60 3 1 0.38 0,220(344) 0,68/2,53 -0,2241,67 1:6 H2 H2O 60 16 60 41 60 <t< td=""><td></td><td>0,16/0,78</td><td>0,79/2,34</td><td></td><td></td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		0,16/0,78	0,79/2,34			100						
Ru2(OAs)4 A1 1:8 H2 H2O 60 16 60 41 60 41 60 41 60 41 60 41 60 41 60 41 60 41 60 41 60 41	თ	RuCl ₃ x3H ₂ O	A2 -K2CO3	1:3	Ŧ Z	H20	09	ø	_	96,0	7,1	160
Rug(OAo)4 A1 1:6 H2 H2O 60 16 60 43 60 43 60 60 43 60 43 60 43 60		0,22/0,84	0,68/2,53 - 0,23/1,67			80						
Ru(Aoao)3 A1 1:3 Hg H2O 60 16 60 0.35 0,399/37 0,982,91 1.3 Hg H2O 20 2 1 1,02 RhCl3x 3H2O A1 1.624,81 1.6 1.5 1 1,02 RhCl3x 3H2O A2 1.3 H2 H2O 20 2 1 0,05 PdBr2 1,244,57 1.3 H2 H2O 20 2 1 0,85 PdBr2 1,445,3 1.4 H2 H2O 20 2 1 9,6 8 8 8 8 8 8 8 8 8 8	4	Ru ₂ (OAc) ₄	A 1	1:6	H ₂	H20	09	9	20	0,41	8,78	210
But/Acaol3 A1 1:3 H2 H2O 60 16 60 0.35 0,390,37 0,398,2,91 1:3 H2 100 20 2 1 1,02 BhCi3x 3H2O A1 1,624,811 A6 H2O 20 2 1 1,02 BhCi3x 3H2O A2 1:3 H2 H2O 20 2 1 0,85 9,40/1,62 1,244,67 A1 H2 H2O 20 2 1 0,85 PdBr2 A1-Li2Co3 1:4 H2 H2O 20 3 1 9,6 8 5 5 5 5 5 8 5 8 5		0,27/0,62	1,25/3,7			100						
RhCl3x 3H2O A1 1:3 H2 H2O 20 2 1 1,02 0,42/1,6 1,62/4,81 60 2 1 1,02 RhCl3x 3H2O A2 1:3 H2 H2O 20 2 1 0,85 RhCl3x 3H2O A2 1:3 H2 H2O 20 2 1 0,85 PdBr2 A1 - Ll2CO3 1:4 H2 H2O 20 3 1 9,6 PdBr2 A1 - Ll2CO3 1:4 H2 H2O 20 3 1 9,6 8 5 5 5 5 5 5 5 5 5	ß	Ru(Acac)3	¥	1;3	Н ₂	H ₂ 0	9	91	20	0,35	9,37	340
RhCl3x 3H2O A1 1:3 H2 H2O 20 2 1 1,02 0,42/1,6 1,624,81 60 2 1 0,85 RhCl3x 3H2O A2 1:3 H2 H2O 20 2 1 0,85 0,40/1,52 1,244,67 1 100 1 1 9,6 PdBr2 A1 - Ll2C03 1:4 H2 H2O 20 3 1 9,6 3 7,221;2 - 0,445,3 1 6 5 5 5 5 5 5 5		26'0/66'0	0,98/2,91			100						
0,42/1,6 1,62/4,81 60 RhCl3x3H2O A2 1:3 H2 H2O 20 2 1 0,85 0,40/1,52 1,24/4,67 1 100 1 1 9,6 PdBr2 A1 - Ll ₂ C03 1:4 H2 H2O 20 3 1 9,6 1,446,3 7,221,2 - 0,445,3 100 3 5 8 5 8 5	9	RhCl ₃ x 3H ₂ O	A1	1:3	H ₂	H ₂ 0	ଷ	Ø		1,02	11,40	330
RhCl3x3H2O A2 1:3 H2 H2O 20 2 1 0,85 0,40/1,52 1,24/4,67 100 1 1 9,6 PdBr2 A1 - Ll ₂ C03 1:4 H2 H2O 20 3 1 9,6 1,4/6,3 7,2/21,2 - 0,4/6,3 100 5 <		0,42/1,6	1,62/4,81			09						
0,40/1,62 1,24/4,67 100 PdBr2 A1 - Ll ₂ C03 1:4 H ₂ H ₂ O 20 3 1 9,6 1,446,3 7,2/21,2 - 0,4/5,3 100 1 1 8 5<	7	RhCl ₃ x 3H ₂ O	A2	1;3	₽ 2	H ₂ 0	20	84	-	0,85	10,73	150
PdBr ₂ A1-Ll ₂ C0 ₃ 1:4 H ₂ H ₂ O 20 3 1 9,6 1,4/5,3 7,2/21,2-0,4/5,3 100 8 \$ \$ \$ \$ \$ \$		0,40/1,52	1,24/4,57			100						
7,2/21,2 - 0,4/5,3	∞	PdBr2	A1 - Ll ₂ C0 ₃	4:	H2	H ₂ 0	50	တ	-	9'6	5,3	290
20 25 30 40 45 50		1,4/5,3	7,2/21,2 - 0,4/5,3			100					•	
								25			10	5

5		Wasserlöslichkelt mgAt Metall / I H ₂ O			360		330		310		350		370		450	•	380	·	440	
10		Metaligehalt		%	7,1		2'6		10,1		10,8		10,3		17,9		10,7		16,4	•
20		Produktmenge Isoliert		Co	12,6		8,79		8,5		0'6		140		73,7		8,4		6,1	
		S	م	bar	-		-		-		-		₩.		-		-		-	
25		Reaktlons- bedingungen	-	_	4		1,5		ო		1,5		α		8		က		01	
			H	ပ္စ	80		20		50		8		8		20		20		20	
30 35		Lõsungsmittei		Ē	H ₂ 0	100	H ₂ 0	100	H ₂ 0	100	H ₂ 0	100	H ₂ 0	1500	H ₂ 0	1500	H ₂ 0	100	Н20	
40	•	Reduktions- mittel			H ₂		ξ,		H 2		£ 2		£		12 23		H ₂		H ₂	
45		Metailsalz/ Tensid	molares	Verhältnis	1.4		7.		7.		4.		4:4		1 .		4.		53	
50	ng 1	Tensid		g/mmol	H2PtCl6 x 6 H2O A1 - Na2CO3	7,2/21,2 - 3,4/31,8	· A1 - K2C03	7,2/21,2 - 0,73/5,3	A1 - K ₂ C0 ₃	7,2/21,2 - 0,73/5,3	A1 - Na ₂ C0 ₃	7,2/21,2 - 0,56/5,3	A1 - Ll ₂ C03	108/318 - 6/79,5	A1 - Ll ₂ C0 ₃	54/159 - 3/39,75	A1 - Ll ₂ C0 ₃	7,2/21,2 - 0,4/5,3	A1 - Li ₂ C0 ₃	
55	Fortsetzung 1				x6H2O A	. 7,	∢	7	∢	7	∢	7	∢		⋖		•	7		
60	9 9	No. Metalisaiz		g/ mmol	H2PtCle	2,7/5,3	PtCl ₂	1,4/5,3	PtCl ₂	1,4/5,3	PtCl ₂	1,4/5,3	PICI2	21/79,5	PtCl ₂	21/79,5	PtC1 ₂	1,4/5,3	PtCl ₂	
	Tabelle 6	Š.			6		6		=		22		5		4		δ		9	

Tat	Tabelle 6 Fo	Fortsetzung 2	8									•
ģ	No. Metalisafz	Tensk		Metallsalz/ Tensid	Reduktions- mittel	Lősungsmittel		Reaktions- bedingungen	·. =	Produktmenge isoliert	Metallgehalt	Wasserlöslichkelt mgAt Metall / I H ₂ O
				molares			-	-	۵.			
	g/ mmol	g/mmol	noi	Verhältnis		Ē	ပ္စ	£	bar	D 3	%	
17	PtCl ₂	A1 -	A1 - Ll2C03	1:4	Н2	H ₂ O	8	1,5	-	9'6	10,4	380
	1,4/5,3	7,2/2	7,2/21,2 - 0,4/5,3			100				•		
8	PtCl ₂	· A1 - LIBr	LIBr	1:4	H ₂	H ₂ 0	20	თ	· -	2'6	8,6	360
	1,4/5,3	7,2/2	7,2/21,2 - 0,5/5,3			100						
19	PICI ₂	A1-	A1 - LIBr	1	¥	H ₂ 0	8	ო	-	6,1	16,9	370
	1,4/5,3	3,6/1	3,6/10,6 - 0,25/2,65			100						
20	PtCl ₂	8	A2 - LI ₂ CO ₃	1:8	H ₂	H ₂ 0	80	တ	-	14,1	7,1	160
	1,4/5,3	11,5	11,5/42,4 - 0,8/10,6			100						
2	PtCl ₂	A4 -	A4 - Ll ₂ CO ₃	1:8	Ŧ2	H ₂ 0	20	თ	-	17,3	2'9	110
	1,4/5,3	14,6	14,6/42,4 - 0,8/10,6			100						
22	PtCl ₂	-19	81 - Ll ₂ CO ₃	4:4	Н 2	H ₂ 0	8	თ	-	26,1	4,1	105
	1,4/5,3	21,7,	21,7/21,2 - 0,4/5,3			100						
83	PICI ₂	D1.	D1 - Ll ₂ CO ₃	•	H ₂	H ₂ O	80	4	-	9'6	10,6	130
	1,4/5,3	%	7/ 0,4/5,3			100						-
24	PICI2	בֹ	C1 - Ll ₂ CO ₃	ŧ	H2	H ₂ 0	20	Ø	-	2'6	10,6	145
	1,4/5,3	-//	- 0,4/5,3			. 00						
	60	55	50	45	40	30 35		25		20	10	5

5 10 15 20		s- Produktmenge Metaligehalt Wasserlöslichkelt gen isbilert	۵.	bar g ' %	1 11,5 8,9 110		1. 13,7 . 6,8 110		1 10,8 9,1 105	
		Reaktions- bedingungen	- -	ာ့ မ	20 4		20 3		20 3	
30 35		Reduktions- Lösungsmittel Reaktions- mittel		m	H ₂ O	100	Н20	200	H ₂ 0	
40		Reduk			H ₂		£		Ŧ	
45		Metalisatz/ Tensid	molares	Verhältnls	1:4		•		4:	
50	e gun	Tensid		g/mmol	E1 - Ll ₂ CO ₃	8,3/21,2 - 0,4/5,3	F1 - Ll ₂ CO ₃	7,2/ 0,4/5,3	B2 - Ll ₂ CO ₃	!
55 60	6 Fortsetzung 3	No. Metalisalz		g/ mmol		1,4/5,3	PICI ₂	1,4/5,3	PICI2	
J.	Tabelle 6	No.		B	25 PICI ₂	- -	28 P	- -	27 P	

Patentansprüche

^{1.} Verfahren zur Herstellung von tensidstabilisierten Mono- und Bimetallkolloiden der Gruppe VIII und Ib

des Periodensysteht unt Teilchengrößen von 1-10 nm, dadurch geken Lachnet, daß man Metallsalze in Gegenwart von stark hydrophilen Tensiden aus der Reihe der amphiphilen Betaine, kationische Tenside, Fettalkohol-Polyglykolether, Polyoxyethylen-Kohlenhydrat-Fettalkylester, und/oder an ionische Tenside und/oder amphiphile Zuckertenside in THF, Alkoholen oder direkt in Wasser mit chemischen Reduktionsmitteln, wie Hydriden, Wasserstoff oder Alkaliformiat, zwischen 0°C und 100°C bei Normaldruck, ggfs. unter Zusatz von Alkalicarbonaten und/oder Ammoniumchlorid umsetzt, und aus so hergestellten Lösungen von > 100 mg Atom Metall/I die Precursor isoliert.

2. Verfahren zur Herstellung von trägerfixierten Metallkolloidkatalysatoren unter Verwendung von vorgeformten, tensidstabilisierten mono- oder bimetallischen Kolloiden von Metallen aus den Gruppen VIII und Ib des Periodensystems nach Anspruch 1, dadurch gekennzeichnet, daß die durch Tenside stabilisierten 10 Kolloide in Form von Lösungen zur adsorptiven Belegung von Trägern eingesetzt werden.

3. Tensidstabilisierte Mono- und Bimetallkolloide der Gruppe VIII und Ib des Periodensystems mit Teilchengrößen von 1—10 nm, gekennzeichnet durch eine Oberflächenbelegung mit stark hydrophilen Tensiden aus der Reihe der amphiphilen Betaine, kationische Tenside, Fettalkohol-Polyglykolether, Polyoxyethylen-Kohlenhydrat-Fettalkylester, und/oder anionische Tenside und/oder amphiphile Zuckertenside erhältlich durch chemische Reduktion mit Reduktionsmitteln, wie Hydride, Wasserstoff oder Alkaliformiat von Metallsalzen in Gegenwart der Tenside zwischen 0°C und 100°C bei Normaldruck, ggfs. unter Zusatz von Alkalicarbonaten und/oder Ammoniumchlorid und Isolierung der Precursor aus so hergestellten Lösungen von > 100 mg Atom Metall/l.

4. Kolloide nach Anspruch 3, dadurch gekennzeichnet, daß die stark hydrophilen Tenside ausgewählt sind 20 aus insbesondere nichtionischen Tensiden mit HLB-Werten von > 8.

5. Verwendung der gemäß Ansprüche 1 und 2 erhältlichen tensidstabilisierten Mono- und Bimetallkolloide als Precursor zur Herstellung von Metallkolloid-Heterogenkatalysatoren durch Adsorption aus wäßriger Lösung auf anorganische oder organische Trägermaterialien.

6. Verwendung nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Metallkolloide in Konzentrationen bis zu 25 Gew.-% Metallgehalt bezogen auf das Gesamtgewicht der Lösung eingesetzt werden.

7. Verwendung für die gemäß Anspruch 5 zugänglichen Metalikolloid-Heterogenkatalysatoren Pt—A-Kohle, Pd—A-Kohle, Pd/Pt—A-Kohle- für die Partialoxidation primärer Alkoholfunktionen in Kohlenhydraten.

8. Verwendung nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß als Träger Kohlenstoffträger, Oxidkeramiken, Carbonate, Sulfate oder Zeolithe in Form von Pulvern oder geformten Körpern verwendet werden.

9. Verwendung für die gemäß Anspruch 5 erhältlichen Palladiumkolloid-A-Kohlekatalysatoren bzw. Pd-Kolloid-CaCO₃-Katalysatoren für die selektive cis-Hydrierung von C,C-Dreifachbindungen.

10. Verwendung für die gemäß Anspruch 5 hergestellten Heterogenkatalysatoren auf Oxiden der Metalle der Oxide der Lanthanoide als Träger für die Selektivhydrierung von Benzol zu Cyclohexen.

35

55

65

11. Verwendung für die gemäß Anspruch 10 erhältlichen Ruthenium-Lanthanoidoxid-Heterogenkatalysatoren für die Selektivhydrierung von Benzol zu Cyclohexen.

12. Mono- und Bimetallkolloide (Partikelgröße 1-10 nm) aus Cu, Ru, Rh, Pd, Ir, Pt, Ag, Ru/Fe, Pt/Co, Pt/Rh, Pt/Pd, Pt/Ir, Pt/Cu, Pt/Ru, Rh/Ir, Rh/Ru, Ru/Ir, die mit 3-(N,N-Dimethyldodecylammonio)propansulfonat alkalifrei hydrophil stabilisiert und in einer Konzentration von > 100 mg Atom Metall/l in Wasser löslich 40 sind.

13. Mono- und Bimetallkolloide (Partikelgröße 1-10 nm) aus Ru, Rh, Pd, Pt, Pt/Co, Pt/Ni, Pt/Ir, Pt/Cu, die mit Lau ryldimethylcarboxymethylammoniumbetain hydrophil stabilisiert und in einer Konzentration von > 100 mg Atom Metall/l in Wasser löslich sind.

14. Ru und Pt-kolloide (Partikelgröße 1-10 nm), die mit Cocoamidopropylbetainen hydrophil stabilisiert 45 und in einer Konzentration von > 100 mg Atom Metall/l in Wasser löslich sind.

15. Platinkolloide (Partikelgröße 1 – 10 nm), die mit

hydrophil stabilisiert und in einer Konzentration von > 100 mg Atom Metall/l Wasser löslich sind. 16. Platinkolloide (Partikelgröße 1 – 10 nm), die mit

R = teilhydrierter Palmfettalkylrest

hydrophil stabilisiert und in einer Konzentration von > 100 mg Atom Metall/I Wasser löslich sind.

17. Mono- und Bimetallkolloide (Partikelgröße 1-10 nm) aus Ni, Co, Pt, Pt/Pd, die mit Polyoxyethylenlau-

rylether hydrophil stagesiert und in einer Konzentration von > 100 mg A Metall/I Wasser löslich sind.

18. Platinkolloide (Partikelgröße 1-10 nm), die mit Polyoxyethylensorbitanmonolaurat hydrophil stabilisiert und in einer Konzentration von > 100 mg Atom Metall/I Wasser löslich sind.

19. Platinkolloide (Partikelgröße 1-10 nm), die mit Na-Cocoamidoethyl-N-hydroxiethyl-glycinat hydrophil stabilisiert und in einer Konzentration von > 100 mg Atom Metall/I Wasser löslich sind.

20. Platinkolloide (Partikelgröße 1-10 nm), die mit Alkylpolyglycosid hydrophil stabilisiert und in einer Konzentration von > 100 mg Atom Metall/I Wasser löslich sind.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.