Universidade de São Paulo

Instituto de Ciências Matemáticas e de Computação

Fundamentos de Probabilidade e Estatística para Ciência de Dados

Resumo das aulas do Prof. Dr. Francisco Rodrigues

Bruna Zamith Santos

Agosto de 2025

Sumário

Teoria dos Conjuntos	3
Experimento Aleatório	3
Conceitos de Probabilidade	3
3.1 Probabilidade Frequentista	. 4
	. 4
3.4 Partições do Espaço Amostral	
Lei da Probabilidade Total	5
Teorema de Bayes	5
Variáveis Aleatórias	5
Função de Distribuição	6
Esperança	6
	_
8.4 Propriedades	
Momento	7
9.1 Momento Estatístico	. 7
9.2 Momento Central	
0 Variância	7
1 Modelos Probabilísticos (Estocásticos) Discretos	8
11.1 Distribuição Uniforme Discreta	. 8
11.2 Distribuição de Bernoulli	. 9
11.3 Distribuição Binomial	. 9
11.6 Distribuição Geométrica	. 11
11.8 Distribuição Hipergeométrica	
2 Modelos Probabilísticos Contínuos	13
12.1 Distribuição Uniforme Contínua	. 13
12.2 Distribuição Normal	
0	Experimento Aleatório Conceitos de Probabilidade 3.1 Probabilidade Frequentista 3.2 Probabilidade de União de Dois Eventos 3.3 Probabilidade Condicional 3.4 Partições do Espaço Amostral Lei da Probabilidade Total Teorema de Bayes Variáveis Aleatórias Função de Distribuição Esperança 8.1 Variável Aleatória Discreta 8.2 Variável Aleatória Contínua 8.3 Função de uma Variável Aleatória 8.4 Propriedades Momento 9.1 Momento Estatístico 9.2 Momento Central Variância Modelos Probabilísticos (Estocásticos) Discretos 11.1 Distribuição de Bernoulli 11.3 Distribuição de Poisson 11.4 Distribuição Binomial 11.4 Distribuição de Poisson 11.5 Lei dos Eventos Raros 11.6 Distribuição Binomial Negativa 11.7 Distribuição Binomial Negativa 11.8 Distribuição Binomial Negativa 11.8 Distribuição Hipergeométrica Modelos Probabilísticos Contínuos 12.1 Distribuição Hipergeométrica Modelos Probabilísticos Contínuos 12.1 Distribuição Hipergeométrica Modelos Probabilísticos Contínuos 12.1 Distribuição Hipergeométrica

13 Variáveis Aleatórias Multidimensionais	19
13.1 Discretas	 19
13.2 Contínuas	 19
13.3 Distribuição de Probabilidade Marginal	 20
13.4 Probabilidade Condicional Discreta	 20
13.5 Probabilidade Condicional Contínua	 20
13.6 Independência	 20
14 Esperança Multidimensional	2 1
15 Variância Multidimensional	2 1
16 Esperança Condicional	2 1
17 Variância Condicional	2 1
18 Lei da Esperança Total	22
19 Covariância	22
20 Correlação de Pearson	22
21 Modelos Probabilísticos Multidimensionais	23
21.1 Distribuição Normal Multidimensional	 23
22 Simulação de Monte Carlo	23
22.1 Geração de Números Aleatórios	 23
22.2 Cálculo de π	 24
22.3 Cálculo de Integral	 24
22.3.1 Integrais Impróprias	 25
22.3.2 Integrais Múltiplas	 25
22.4 Simulação de Variáveis Aleatórias	 26

1 Teoria dos Conjuntos

Sejam os conjuntos:

$$A = \{1, 2, 4, 9\}, \quad B = \{3, 7, 9\}$$

• União: $A \cup B = \{1, 2, 3, 4, 7, 9\}$

• Interseção: $A \cap B = \{7, 9\}$

• Complementar de $B: B^C = \{1, 2, 4\}$

• Complementar de A: $A^C = \{3, 7\}$

• Espaço amostral (Ω) : É o conjunto de todos os resultados possíveis de um experimento aleatório. Exemplo: $\Omega = \{1, 2, 3, 4, 5, 6\}$, ao lançar um dado.

• Evento (A): É um subconjunto do espaço amostral. Exemplo: $A = \{2, 4, 6\}$

• Evento impossível (\$\emptilde{\psi}\$): É um evento que nunca ocorre.

• Evento certo (Ω) : É o evento que sempre ocorre.

• $A \cup B$: É o evento que ocorre se A ou B (ou ambos) ocorrerem.

• $A \cap B$: É o evento que ocorre se A e B ocorrerem ao mesmo tempo.

• A^C : É o evento que ocorre se A não ocorre.

• Eventos mutuamente exclusivos: Quando $A \cap B = \emptyset$.

2 Experimento Aleatório

Um experimento aleatório é um experimento que pode ser repetido inúmeras vezes sob as mesmas condições, sendo o seu resultado incerto.

3 Conceitos de Probabilidade

Sejam Ω o espaço amostral e A um evento em Ω . Então, uma função $P(\cdot)$ é denominada probabilidade se satisfaz:

• $0 < P(A) < 1, \forall A \in \Omega$

• $P(\Omega) = 1$

• Se A_1, A_2, \ldots forem eventos mutuamente exclusivos, isto é, $A_i \cap A_j = \emptyset$, $\forall i \neq j$, então:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Se um experimento aleatório tiver $n(\Omega)$ resultados mutuamente exclusivos e igualmente possíveis, e se um evento A conter n(A) desses resultados, a probabilidade de ocorrência desse evento é definida por:

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{|A|}{|\Omega|}$$

Sejam A e B eventos em um mesmo espaço amostral, então:

- $P(\emptyset) = 0$
- $P(A) = 1 P(A^C)$
- Se $A \subseteq B$, então $P(A) \le P(B)$

3.1 Probabilidade Frequentista

A probabilidade de um evento é igual à sua frequência de ocorrência em um grande número de experimentos:

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

, onde n_A é o número de vezes que o evento A ocorre em n experimentos.

3.2 Probabilidade de União de Dois Eventos

Para dois eventos A e B em um mesmo espaço amostral:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

3.3 Probabilidade Condicional

Sejam dois eventos A e B em um mesmo espaço amostral Ω . A probabilidade condicional de A dado que B ocorreu é definida por:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \quad \text{com } P(B) > 0$$

Assim, A e B são eventos independentes se, e somente se:

$$P(A \cap B) = P(A) \cdot P(B)$$

Ou equivalentemente:

$$P(A \mid B) = P(A)$$
 e $P(B \mid A) = P(B)$

3.4 Partições do Espaço Amostral

Os eventos B_1, B_2, \dots, B_n formam uma partição do espaço amostral Ω se:

- $B_i \cap B_j = \emptyset$, para $i \neq j$, com $i, j = 1, \dots, n$
- $\bigcup_{i=1}^n B_i = \Omega$
- $P(B_i) \ge 0$, para i = 1, ..., n

Seja A um evento no espaço amostral Ω e seja B_1, \ldots, B_n uma partição amostral de Ω . Podemos escrever A considerando tal partição:

$$A = \bigcup_{i=1}^{n} (A \cap B_i)$$

$$P(A) = P\left(\bigcup_{i=1}^{n} A \cap B_i\right) = \sum_{i=1}^{n} P(A \cap B_i)$$

4 Lei da Probabilidade Total

Sejam B_1, B_2, \ldots, B_n uma partição do espaço amostral Ω . Então, qualquer evento $A \subseteq \Omega$ pode ser escrito como:

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) \cdot P(B_i)$$

5 Teorema de Bayes

Sejam B_1, B_2, \dots, B_n uma partição do espaço amostral Ω , e A um evento com P(A) > 0, então:

$$P(B_i \mid A) = \frac{P(A \mid B_i) \cdot P(B_i)}{\sum_{i=1}^{n} P(A \mid B_i) \cdot P(B_j)}$$

E assim podemos definir:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

6 Variáveis Aleatórias

Suponha que lancemos dois dados. O espaço amostral associado ao experimento, sendo os eventos C: "sai uma cara" e R: "sai uma coroa", é dado por:

$$\Omega = \{CC, CR, RC, RR\}$$

Uma possível variável aleatória associada ao experimento é definida por:

X = "número de caras obtido no experimento"

- Representamos variáveis aleatórias por letras maiúsculas (X, Y, Z), enquanto usamos letras minúsculas para indicar os valores das variáveis (x, y, z).
- Se o número de valores possíveis de uma variável aleatória for finito ou infinito enumerável, dizemos que é uma variável aleatória discreta.
- Caso contrário, é uma variável aleatória contínua.

A função que atribui a cada valor da variável aleatória sua respectiva probabilidade é chamada de distribuição de probabilidade:

$$P(X = x_i) = p(x_i) = p_i, \quad i = 1, 2, 3$$

A distribuição de probabilidade também é chamada de função massa de probabilidade. E temos que:

$$\sum_{i=1}^{n} P(X = x_i) = 1$$

Dizemos que X é uma variável aleatória contínua se existir uma função f denominada função densidade de probabilidade (fdp) que satisfaz:

- $f(x) \ge 0$, $\forall x \in \mathbb{R}$
- $\bullet \int_{-\infty}^{\infty} f(x) \, dx = 1$

- $P(a \le X \le b) = \int_a^b f(x) dx, -\infty < a < b < \infty$
- f(x) é uma função com valores positivos e área unitária.

Seja X uma variável aleatória discreta ou contínua. A probabilidade condicional de que $X \in S$ dado que $X \in V$ é:

$$P(X \in S \mid X \in V) = \frac{P(X \in S \cap V)}{P(X \in V)}$$

, onde S e V são subconjuntos do espaço da variável.

7 Função de Distribuição

A função distribuição acumulada ou simplesmente função de distribuição de uma variável aleatória X é definida por:

$$F(x) = P(X \le x)$$

Se discreta:

$$F(x) = \sum_{x_i \le x} P(X = x_i)$$

Se contínua:

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

Propriedades da função de distribuição:

- $0 \le F(x) \le 1$, F(x) é não decrescente,
- $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$
- Caso discreto: $P(a < X \le b) = F(b) F(a)$
- Caso contínuo: $f(x) = \frac{dF(x)}{dx}$

8 Esperança

8.1 Variável Aleatória Discreta

Seja X uma variável aleatória discreta com distribuição de probabilidade $P(X = x_i)$. O valor esperado (ou esperança matemática) é:

$$E[X] = \sum_{i=1}^{n} x_i \cdot P(X = x_i)$$

8.2 Variável Aleatória Contínua

Seja X uma variável aleatória contínua com função densidade de probabilidade f(x), então:

$$E[X] = \int_{-\infty}^{+\infty} x \cdot f(x) \, dx$$

8.3 Função de uma Variável Aleatória

Seja g(X) uma função de uma variável aleatória discreta X. Então:

$$E[g(X)] = \sum_{i=1}^{n} g(x_i) \cdot P(X = x_i)$$

Seja g(X) uma função de variável contínua com densidade f(x). Então:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx$$

8.4 Propriedades

- $\bullet\,$ Se X=c, onde c é constante, então: E[X]=E[c]=c
- Se c é constante: $E[cX] = c \cdot E[X]$
- Então: $E[aX + b] = a \cdot E[X] + b$

9 Momento

9.1 Momento Estatístico

Seja X uma variável aleatória discreta com valores x_1, x_2, \ldots, x_k . O momento de ordem n de X é:

$$E[X^n] = \sum_{i=1}^k x_i^n \cdot P(X = x_i)$$

Se X for contínua:

$$E[X^n] = \int_{-\infty}^{\infty} x^n f(x) \, dx$$

9.2 Momento Central

Seja X uma variável aleatória.

 $\bullet\,$ Se X é discreta, o momento central de ordem $n\ (n>0)$ de X é:

$$\mu_n = E[(X - E[X])^n] = \sum_{x_i} (x_i - E[X])^n \cdot P(X = x_i)$$

 $\bullet\,$ Se X é contínua, então:

$$\mu_n = E[(X - E[X])^n] = \int_{-\infty}^{\infty} (x - E[X])^n \cdot f(x) dx$$

10 Variância

A variância de uma variável aleatória X é definida por:

$$V(X) = \sigma^2 = E\left[(X - E(X))^2 \right]$$

O desvio padrão é igual à raiz quadrada da variância:

$$\sigma = \sqrt{V(X)}$$

Temos a propriedade de que:

$$V(X) = E[X^{2}] - (E[X])^{2}$$

Seja g(X) uma função da variável aleatória X. Então,

$$V[g(X)] = E[g(X)^{2}] - (E[g(X)])^{2}$$

Seja X uma variável aleatória e a e b constantes. Então,

$$V(aX + b) = a^2 \cdot V(X)$$

11 Modelos Probabilísticos (Estocásticos) Discretos

- Os resultados de cada experimento parecem imprevisíveis, mas quando um grande número de experimentos é analisado, surge um padrão.
- Não podemos determinar o valor exato do resultado de um experimento, mas sim as probabilidades de cada resultado possível.

11.1 Distribuição Uniforme Discreta

Seja X uma variável aleatória discreta assumindo os n valores $\{a, a+c, a+2c, \ldots, b-c, b\}$, com $a, b \in \mathbb{R}$, $c \in \mathbb{R}_{>0}$ e a < b.

Dizemos que X segue o modelo uniforme discreto se atribuímos a mesma probabilidade 1/n a cada um desses valores. Isto é, sua distribuição de probabilidade é dada por:

$$P(X = x) = \frac{1}{n}, \quad x = a, a + c, a + 2c, \dots, b$$

onde:

$$n = 1 + \frac{b-a}{c}$$

Então,

$$E[X] = \frac{a+b}{2},$$

$$V(X) = \frac{c^2(n^2 - 1)}{12}$$

A Figura 1 apresenta um exemplo de Distribuição Uniforme discreta.

Figura 1: Distribuição Uniforme discreta.

11.2 Distribuição de Bernoulli

Dizemos que a variável aleatória X segue o modelo de Bernoulli se atribuímos 0 à ocorrência de um fracasso ou 1 à ocorrência de um sucesso, com p representando a probabilidade de sucesso, $0 \le p \le 1$, e 1-p a probabilidade de fracasso.

A distribuição de probabilidade é dada por:

$$P(X = k) = p^{k}(1 - p)^{1-k}, \quad k = 0, 1$$

$$\begin{array}{c|cccc}
X & 0 & 1 \\
\hline
P(X = k) & 1 - p & p
\end{array}$$

Então,

$$E[X] = p,$$

$$V(X) = p \cdot (1 - p)$$

A Figura 2 apresenta um exemplo de Distribuição de Bernoulli.

Figura 2: Distribuição de Bernoulli.

11.3 Distribuição Binomial

O processo estocástico de Bernoulli possui as seguintes propriedades:

- O experimento consiste de *n* tentativas repetidas;
- Cada tentativa gera um resultado que pode ser classificado como sucesso ou falha;
- A probabilidade de sucesso p se mantém constante de tentativa para tentativa;
- As tentativas são feitas de forma independente uma da outra.

Seja X uma variável aleatória baseada em n repetições de um processo de Bernoulli. Então a probabilidade de obtermos k sucessos em n repetições é dada por:

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, 2, \dots, n$$

, onde:

$$C_n^k = \binom{n}{k} = \frac{n!}{(n-k)! \, k!}$$

é uma combinação de n elementos tomados de k em k.

Então,

$$E[X] = n \cdot p,$$

$$V(X) = n \cdot p \cdot (1 - p)$$

A Figura 3 apresenta um exemplo de Distribuição Binomial.

Figura 3: Distribuição Binomial.

A seguir, apresentamos um exemplo de problema que pode ser modelado por meio da Distribuição Binomial:

"Uma urna tem 20 bolas pretas e 30 brancas. Retiram-se 25 bolas com reposição. Qual a probabilidade de que 2 sejam pretas?"

11.4 Distribuição de Poisson

O processo estocástico de Poisson possui as seguintes propriedades:

- O processo modela a ocorrência de eventos ao longo do tempo ou espaço contínuo;
- Existe uma taxa média constante $\lambda > 0$, que representa o número esperado de eventos por unidade de tempo (ou espaço);
- Os eventos ocorrem de forma independente em intervalos disjuntos;
- A probabilidade acumulada de ocorrência de eventos aumenta com o tempo.

Uma variável aleatória discreta X segue o modelo de Poisson com taxa $\lambda>0$ se:

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

Então,

$$E[X] = \lambda,$$

$$V(X) = \lambda$$

A Figura 4 apresenta um exemplo de Distribuição de Poisson.

Figura 4: Distribuição de Poisson.

A seguir, apresentamos um exemplo de problema que pode ser modelado por meio da Distribuição de Poisson:

"Numa estrada há 2 acidentes para cada $100~\mathrm{km}$. Qual a probabilidade de que em $250~\mathrm{km}$ ocorram pelo menos 3 acidentes?"

11.5 Lei dos Eventos Raros

Seja X uma variável aleatória com Distribuição Binomial e p a probabilidade de sucesso. Então,

$$\lim_{n\to\infty} \binom{n}{k} p^k (1-p)^{n-k} = \frac{e^{-\lambda} \lambda^k}{k!}, \quad k = 0, 1, 2, \dots,$$

onde $\lambda = np$ é constante.

11.6 Distribuição Geométrica

A Distribuição Geométrica modela o número de tentativas necessárias até a ocorrência do primeiro sucesso em uma sequência de experimentos de Bernoulli independentes. Suas principais características são:

- Cada tentativa resulta em um sucesso (com probabilidade p) ou uma falha (com probabilidade 1-p);
- As tentativas são independentes entre si;
- A variável aleatória X representa o número de tentativas até o primeiro sucesso (inclusive o sucesso),
 ou, equivalentemente, o número de falhas antes do primeiro sucesso.

Dizemos que a variável aleatória discreta X segue uma Distribuição Geométrica se:

$$P(X = k) = p(1 - p)^{k-1}, k = 1, 2, ...$$

Então,

$$E[X] = \frac{1}{p},$$

$$V(X) = \frac{1-p}{p^2}$$

A Figura 5 apresenta um exemplo de Distribuição Geométrica.

Figura 5: Distribuição Geométrica.

A seguir, apresentamos um exemplo de problema que pode ser modelado por meio da Distribuição Geométrica:

"Suponha que temos uma urna com 36 bolas, sendo 27 bolas brancas e 9 pretas. Bolas são retiradas até que uma bola preta apareça. Qual é a probabilidade de que precisaremos de mais de 6 retiradas para sortear a primeira bola preta?"

11.7 Distribuição Binomial Negativa

A Distribuição Binomial Negativa é apropriada para modelar situações em que se deseja saber a probabilidade de que um número fixo de sucessos ocorra na k-ésima tentativa, ou seja, quantas falhas ocorrem antes de alcançar um número pré-determinado de sucessos.

- Os experimentos são independentes e possuem apenas dois resultados possíveis: sucesso ou falha;
- \bullet A probabilidade de sucesso p é constante em cada tentativa;
- O processo continua até que um número fixo de sucessos seja alcançado.

Seja X o número de repetições necessárias a fim de que ocorram exatamente r sucessos, de modo que o r-ésimo sucesso ocorra na k-ésima tentativa. Então,

$$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}, \quad k = r, r+1, \dots$$

A Figura 6 apresenta um exemplo de Distribuição Binomial Negativa.

Figura 6: Distribuição Binomial Negativa.

A seguir, apresentamos um exemplo de problema que pode ser modelado por meio da Distribuição Binomial Negativa:

"Em uma série da liga de futebol amador de uma cidade, o time que ganhar quatro jogos em sete será o vencedor. Suponha que o time A tenha probabilidade p = 0, 6 de ganhar do time B. Qual é a probabilidade de que A vença a série em seis jogos?"

11.8 Distribuição Hipergeométrica

A Distribuição Hipergeométrica é semelhante à Distribuição Binomial, porém com uma diferença essencial: as retiradas são feitas sem reposição. Enquanto a Distribuição Binomial assume que cada tentativa é independente e a probabilidade de sucesso permanece constante (devido à reposição), a Distribuição Hipergeométrica modela situações em que a probabilidade de sucesso varia a cada retirada, pois os elementos não são devolvidos ao conjunto.

Considere um conjunto de N objetos, dos quais N_1 são do tipo 1 e $N_2 = N - N_1$ são do tipo 2. Para um sorteio de n objetos (n < N), sem reposição, seja X a variável aleatória que define o número de objetos do tipo 1 sorteados. Então, a probabilidade de sortearmos k objetos do tipo 1 é:

$$P(X = k) = \frac{\binom{N_1}{k} \binom{N-N_1}{n-k}}{\binom{N}{n}}, \quad k = 0, 1, \dots, n$$

A Figura 7 apresenta um exemplo de Distribuição Hipergeométrica.

Figura 7: Distribuição Hipergeométrica.

A seguir, apresentamos um exemplo de problema que pode ser modelado por meio da Distribuição Hipergeométrica:

"Numa urna há 40 bolas brancas e 60 pretas. Retiram-se 20 bolas. Qual a probabilidade de que ocorram no mínimo 2 bolas brancas, considerando extrações sem reposição?"

12 Modelos Probabilísticos Contínuos

12.1 Distribuição Uniforme Contínua

Uma variável aleatória contínua X segue uma Distribuição Uniforme se sua função densidade de probabilidade é dada por:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$$

Então,

$$E[X] = \frac{a+b}{2},$$

$$V(X) = \frac{(b-a)^2}{12}$$

A Figura 8 apresenta um exemplo de Distribuição Uniforme contínua.

Figura 8: Distribuição Uniforme contínua.

12.2 Distribuição Normal

Uma variável aleatória contínua X que tome todos os valores na reta real segue a Distribuição Normal (ou Gaussiana) se sua função densidade de probabilidade é definida por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right], \quad -\infty < x < \infty$$

onde $\mu = E[X] \ e \ \sigma^2 = V(X) > 0.$

A Distribuição Normal apresenta as seguintes propriedades:

- f(x) é simétrica em relação à μ .
- $f(x) \to 0$ quando $x \to \pm \infty$.
- O valor máximo de f(x) ocorre em $x = \mu$.

Se X é uma variável aleatória contínua com distribuição normal, $X \sim \mathcal{N}(\mu, \sigma^2)$, e se Y = aX + b, com a e b constantes, então

$$Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2).$$

Seja $X \sim \mathcal{N}(\mu, \sigma^2)$. Se

$$Z = \frac{X - \mu}{\sigma},$$

então $Z \sim \mathcal{N}(0,1)$.

Assim.

$$\begin{split} P(a \leq X \leq b) &= P\left(\frac{a - \mu}{\sigma} \leq \frac{X - \mu}{\sigma} \leq \frac{b - \mu}{\sigma}\right) \\ &= P\left(\frac{a - \mu}{\sigma} \leq Z \leq \frac{b - \mu}{\sigma}\right) \\ &= P(X \leq b) - P(X \leq a). \end{split}$$

A tabela Normal pode ser acessada através do link https://en.wikipedia.org/wiki/Standard_normal_table#Table_examples.

A Figura 9 apresenta um exemplo de Distribuição Normal. Note que μ define o centro da curva e σ a abertura.

Figura 9: Distribuição Normal.

12.3 Distribuição Exponencial

Uma variável aleatória contínua X segue o modelo exponencial se sua função densidade de probabilidade é dada por:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

onde $\lambda > 0$ e $-\infty < x < \infty$.

Então,

$$E[X] = \frac{1}{\lambda},$$

$$V(X) = \frac{1}{\lambda^2}$$

E a função de distribuição acumulada é dada por:

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

A Distribuição Exponencial é derivada a partir de um processo de Poisson (cadeia de Markov de tempo contínuo). Ela apresenta a propriedade de "ausência de memória", isto é:

$$P(X \ge t + s \mid X \ge s) = P(X \ge t)$$

A Figura 10 apresenta um exemplo de Distribuição Exponencial. Note que λ é onde começa o decaimento no eixo y.

Figura 10: Distribuição Exponencial.

12.4 Distribuição Gama

Uma variável aleatória contínua X tem Distribuição Gama com parâmetros $\lambda>0$ e $\alpha>0$, se sua função densidade de probabilidade é dada por:

$$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

onde Γ é a função gama:

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt.$$

Então,

$$E[X] = \frac{\alpha}{\lambda},$$

$$V(X) = \frac{\alpha}{\lambda^2}$$

Se α for um número inteiro positivo, a distribuição representará uma distribuição Erlang, ou seja, a soma de α variáveis aleatórias independentes distribuídas exponencialmente, cada uma delas com uma média $\theta = 1/\lambda$.

A Distribuição Exponencial é um caso especial da Distribuição Gama onde $\alpha=1.$

A Figura 11 apresenta um exemplo de Distribuição Gama.

Figura 11: Distribuição Gama.

12.5 Distribuição Qui-Quadrado

A variável aleatória contínua X segue a Distribuição Qui-Quadrado (denominada χ^2) se sua função densidade de probabilidade é dada por:

$$f(x) = \begin{cases} \frac{x^{k/2 - 1}e^{-x/2}}{2^{k/2}\Gamma(k/2)}, & x > 0, \\ 0, & x \le 0, \end{cases}$$

A Distribuição Qui-Quadrado é definida pela soma de k distribuições normais padronizadas e independentes. Ou seja, X tem Distribuição Qui-Quadrado com k graus de liberdade se

$$X = \sum_{i=1}^{k} Z_i^2,$$

onde Z_1, Z_2, \dots, Z_k são variáveis aleatórias com distribuição normal padronizada,

$$Z_i \sim \mathcal{N}(\mu = 0, \sigma^2 = 1), \quad i = 1, \dots, k.$$

Para denominar que X segue uma Distribuição Qui-Quadrado, usamos $X \sim \chi^2(k)$ ou $X \sim \chi^2_k$. A Figura 12 apresenta um exemplo de Distribuição Qui-Quadrado.

Figura 12: Distribuição Qui-Quadrado.

12.6 Distribuição Beta

Seja X uma variável aleatória contínua limitada em [0,1]. Dizemos que X segue uma Distribuição Beta se sua função densidade de probabilidade é dada por:

$$f(x) = \begin{cases} \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}, & 0 < x < 1, \\ 0, & \text{caso contrário,} \end{cases}$$

onde $\alpha, \beta > 0$ e

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - u)^{\beta - 1} du,$$

é a função beta, que atua como uma constante de normalização para que a área da função densidade de probabilidade seja igual a um.

A Figura 13 apresenta um exemplo de Distribuição Beta. Note que o limite onde ela é definida no eixo x é de 0 a 1.

Figura 13: Distribuição Beta.

12.7 Distribuição t de Student

A variável aleatória X tem Distribuição t
 de Student com ν graus de liberdade se sua função densidade de probabilidade é dada por:

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\,\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}, \quad -\infty < x < \infty$$

onde Γ é a função gama:

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt$$

Quando aumentamos ν , a distribuição se aproxima da Distribuição Normal.

A Figura 14 apresenta um exemplo de Distribuição t de Student.

Figura 14: Distribuição t de Student.

12.8 Distribuição Weibull

Dizemos que a variável aleatória contínua X segue a Distribuição Weibull se:

$$f(x; \lambda, k) = \begin{cases} \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

Então,

$$E[X] = \lambda \Gamma\left(1 + \frac{1}{k}\right),$$
$$var[X] = \lambda^2 \left[\Gamma\left(1 + \frac{2}{k}\right) - \left(\Gamma\left(1 + \frac{1}{k}\right)\right)^2\right]$$

A Distribuição Exponencial é um caso especial da Distribuição de Weibull onde k=1.

A Figura 15 apresenta um exemplo de Distribuição Weibull.

Figura 15: Distribuição Weibull.

13 Variáveis Aleatórias Multidimensionais

13.1 Discretas

Seja ϵ um experimento aleatório associado a um espaço amostral Ω . Sejam $X_1 = X_1(\omega), X_2 = X_2(\omega), \ldots$, funções que associam um número real a cada resultado $\omega \in \Omega$. Denominamos vetor aleatório o conjunto $\mathbf{X} = [X_1, X_2, \ldots]$.

Sejam X e Y variáveis aleatórias associadas a um espaço amostral Ω . O par (X,Y) será uma variável aleatória discreta bidimensional se os valores possíveis forem finitos ou infinitos enumeráveis. A cada resultado possível (x_i, y_j) , $i, j = 1, 2, \ldots$, associamos um número

$$p(x_i, y_i) = P(X = x_i, Y = y_i)$$

satisfazendo:

• $0 \le P(X = x_i, Y = y_j) \le 1 \quad \forall (x_i, y_j), i, j = 1, 2, \dots$

•
$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = 1$$

13.2 Contínuas

Sejam X e Y variáveis aleatórias associadas a um espaço amostral Ω . O par (X,Y) será uma variável aleatória contínua bidimensional se (X,Y) tomar todos os valores em algum conjunto não enumerável do \mathbb{R}^2 . A esse par, associamos uma função densidade de probabilidade conjunta que satisfaz:

•
$$f(x,y) \ge 0 \quad \forall (x,y) \in \mathbb{R}^2$$

$$\bullet \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx \, dy = 1$$

13.3 Distribuição de Probabilidade Marginal

Seja (X,Y) uma variável aleatória discreta bidimensional. Então, a distribuição de probabilidade marginal de X é definida por:

$$P(X = x_i) = \sum_{j=1}^{\infty} P(X = x_i, Y = y_j)$$
 (1)

e a de Y:

$$P(Y = y_j) = \sum_{i=1}^{\infty} P(X = x_i, Y = y_j)$$
 (2)

Então a função de densidade de probabilidade marginal é dada por: As funções densidade de probabilidade marginais são dadas por:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

Então:

$$P(a \le x \le b) = \int_a^b f_X(x) \, dx$$

$$P(c \le y \le d) = \int_{c}^{d} f_Y(y) \, dy$$

13.4 Probabilidade Condicional Discreta

Seja o vetor aleatório bidimensional (X,Y). A probabilidade condicional de X=x dado que Y=y foi observada é dada por:

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}, \quad P(Y = y) > 0.$$

13.5 Probabilidade Condicional Contínua

Seja (X, Y) um vetor aleatório bidimensional contínuo com função densidade de probabilidade conjunta f(x, y). Sejam $f_X(x)$ e $f_Y(y)$ as funções densidade de probabilidade marginais de X e Y, respectivamente. Então, a função densidade de probabilidade condicional de X dado que Y = y é definida por:

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}, \quad f_Y(y) > 0$$

e a função densidade de probabilidade condicional de Y dado que X=x,

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_{Y}(x)}, \quad f_{X}(x) > 0$$

13.6 Independência

Dizemos que as variáveis aleatórias X e Y são independentes se, e somente se:

• Caso discreto:

$$P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i), \forall i \neq j$$

• Caso contínuo:

$$f(x,y) = f_X(x)f_Y(y), \quad \forall (x,y) \in \mathbb{R}^2.$$

14 Esperança Multidimensional

Sejam X e Y variáveis aleatórias e g(X,Y) uma função de X e Y. Então, a esperança de g(X,Y) é definida por:

• Caso discreto:

$$E[g(X,Y)] = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} g(x_i, y_j) \Pr(X = x_i, Y = y_j)$$

• Caso contínuo:

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$$

Se as variáveis aleatórias X e Y forem independentes, então:

$$E[XY] = E[X] E[Y]$$

15 Variância Multidimensional

Sejam X e Y variáveis aleatórias e g(X,Y) uma função de X e Y. Então, a variância de g(X,Y) é definida por:

$$V[g(X,Y)] = E[g(X,Y)^{2}] - (E[g(X,Y)])^{2}$$

Se as variáveis aleatórias X e Y forem independentes, então:

$$V(X+Y) = V(X) + V(Y)$$

16 Esperança Condicional

A esperança condicional para as variáveis aleatórias X e Y é definida por:

• Caso discreto:

$$E[X \mid Y = y] = \sum_{i=1}^{n} x_i P(X = x_i \mid Y = y)$$

$$E[Y \mid X = x] = \sum_{j=1}^{m} y_j P(Y = y_j \mid X = x)$$

• Caso contínuo:

$$E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x \mid y) dx$$

$$E[Y \mid X = x] = \int_{-\infty}^{\infty} y \, f_{Y|X}(y \mid x) \, dy$$

17 Variância Condicional

A variância condicional para as variáveis aleatórias X e Y é definida por:

$$V(X \mid Y) = E[X^2 \mid Y] - \{E[X \mid Y]\}^2$$

18 Lei da Esperança Total

Sejam X e Y duas variáveis aleatórias. Então:

$$E(X) = E\left[E(X \mid Y)\right]$$

Assim,

$$E[X] = \sum_{y} E[X \mid Y = y] P(Y = y),$$

$$E[Y] = \sum_{x} E[Y \mid X = x] P(X = x).$$

19 Covariância

Sejam X e Y variáveis aleatórias. A covariância de X e Y é definida por:

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

Portanto,

$$Cov(X, Y) = E[XY] - E[X]E(Y)$$

Note que:

$$Cov(X, X) = E[(X - E[X])^2] = V(X)$$

20 Correlação de Pearson

Sejam X e Y duas variáveis aleatórias. A correlação de X e Y é definida por:

$$\rho_{X,Y} = \frac{E[(X - E[X])(Y - E[Y])]}{\sqrt{V(X)V(Y)}} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$

onde V(X) e V(Y) são as variâncias de X e Y, respectivamente.

A correlação de Pearson nada mais é que a covariância normalizada (limitada entre -1 e 1).

O coeficiente de Pearson pode ser definido para uma amostra de dados, onde, nesse caso, usamos os estimadores da covariância e variância. Assim, o coeficiente de Pearson para uma amostra é dado por:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}},$$

onde $-1 \le r \le 1$ e $x_i, y_i, i = 1, 2, \dots, n$, são os valores observados.

Quando a correlação de Pearson é igual a 0, não implica que não tem uma correlação, mas sim que essa correlação não é linear.

21 Modelos Probabilísticos Multidimensionais

21.1 Distribuição Normal Multidimensional

O vetor aleatório \mathbf{X} segue a distribuição normal multidimensional se sua função densidade de probabilidade conjunta é dada por:

$$f(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^{d/2}|\Sigma|^{1/2}}} \exp\left(-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)\right),$$

onde μ é o vetor que armazena a média e Σ é a matriz de covariância. $|\Sigma|$ e Σ^{-1} são o determinante e a inversa de Σ , respectivamente.

A matriz de covariância é uma matriz quadrada cujas entradas são iguais à covariância de cada par de entradas do vetor aleatório. No caso bidimensional, temos

$$\Sigma = \begin{bmatrix} \sigma_{11}^2 & \sigma_{12} \\ \sigma_{12} & \sigma_{22}^2 \end{bmatrix}$$

onde

$$\sigma_{ii}^2 = V(X_i) = E[(X_i - E[X_i])^2], \quad i = 1, 2,$$

é a variância de X_i ; e

$$\sigma_{ij} = \text{cov}(X_i, X_j) = E[(X_i - E[X_i])(X_j - E[X_j])], \quad i \neq j,$$

é a covariância entre X_i e X_j .

22 Simulação de Monte Carlo

Um dos métodos mais populares para simular processos probabilísticos foi proposto por na década de 40 por Stanislaw Ulam, que estava trabalhando no desenvolvimento da bomba atômica, no Los Alamos National Laboratory, nos Estados Unidos. Uma método parecido havia sido proposto por Enrico Fermi no estudo de difusão de neutrons, mas ele não publicou a ideia. A patir do trabalho de Ulam, John von Neumann adaptou o método e programou o ENIAC (Electronic Numerical Integrator and Computer), que foi o primeiro computador programável, de forma geral, da história. John von Neumann chamou o método de Método de Monte Carlo, que, basicamente, é usado para gerar números aleatórios a partir de uma certa distribuição de probabilidades. O nome se deve à cidade de Monte Carlo, no principado de Mônaco, que possui diversos cassinos. O método de Monte Carlo possui as mais diversas aplicações que vão desde o estudo de emissões nucleares até inferência Bayesiana, sendo, nesse caso, é usada uma adaptação do método chamada Markov Chain Monte Carlo (MCMC).

22.1 Geração de Números Aleatórios

O primeiro passo na simulação de processos estocásticos é a geração de números aleatórios, ou seja, gerar números no intervalo [0, 1] onde todos os valores tem a mesma chance de ocorrerem (Distribuição Uniforme).

No método chamada Linear Congruential Generator, nós geramos uma sequência de números pseudoaleatórios através da relação de recorrência:

$$X_{n+1} = (aX_n + c) \mod m$$

onde X_0 é a semente, m, a e c são inteiros maiores do que zero, e mod é o resto da divisão. A sequência obtida satisfaz $0 \le X_i \le m$. Para gerar o número no intervalo [0,1], usamos

$$U_n = X_n/m$$
.

Porém, esse método gera sequências periódicas. Ou seja, não temos um bom gerador de números aleatórios, pois podemos prever o próximo número se descobrir a sequência.

O gerador pseudo-aleatório linear produz uma sequência aperiódica se as seguintes condições forem sastisfeitas:

- $X_{n+1} = (aX_n + c) \mod m$, $U_n = X_n/m$;
- Se q é um número primo que divide m, então ele divide b = a 1;
- Se m é múltiplo de 4, então b = a 1 deve ser múltiplo de 4;
- ullet O único inteiro que divide exatamente m e c é valor um.

22.2 Cálculo de π

$$P((X,Y) \in \text{c\'irculo}) = P(X^2 + Y^2 \le R^2),$$

$$P(X^2+Y^2 \leq R^2) = \frac{\text{\'Area do c\'arculo}}{\text{\'Area do quadrado}} = \frac{\pi R^2}{(2R)^2} = \frac{\pi}{4}.$$

22.3 Cálculo de Integral

Seja a integral:

$$\theta = \int_0^1 g(u) \, du.$$

Vamos considerar a distribuição uniforme em [a, b],

$$f(u) = \begin{cases} \frac{1}{b-a}, & a \le u \le b, \\ 0, & \text{caso contrário.} \end{cases}$$

Se a = 0 e b = 1, temos a distribuição uniforme em [0, 1],

$$f(u) = \begin{cases} 1, & 0 \le u \le 1, \\ 0, & \text{caso contrário.} \end{cases}$$

Assim, podemos escrever θ como:

$$\theta = \int_0^1 1 \cdot g(u) \, du = \int_0^1 f(u) \, g(u) \, du = E[g(U)],$$

onde U é uma variável aleatória com distribuição uniforme em [0,1].

22.3.1 Integrais Impróprias

Podemos ainda usar números aleatórios para calcular integrais impróprias, cujos limites de integração são definidos em $[0, \infty)$, isto é,

$$\theta = \int_0^\infty g(x) \, dx.$$

Fazendo uma mudança de variáveis,

$$y = \frac{1}{x+1} \implies dy = -\left(\frac{1}{x+1}\right)^2 dx = -y^2 dx \implies dx = \frac{dy}{y^2}.$$

Note que:

$$\lim_{x \to 0} \frac{1}{x+1} = 1, \quad \lim_{x \to \infty} \frac{1}{x+1} = 0.$$

Assim,

$$\theta = \int_0^\infty g(x) \, dx = \int_1^0 g\left(\frac{1}{y} - 1\right) \frac{dy}{y^2} = \int_0^1 h(y) \, dy,$$

onde

$$h(y) = \frac{g\left(\frac{1}{y} - 1\right)}{y^2}.$$

22.3.2 Integrais Múltiplas

$$\theta = \int_a^b \int_c^d g(x, y) \, dy \, dx,$$

Fazemos as transformações:

$$z = \frac{x-a}{b-a} \implies x = z(b-a) + a \implies dx = (b-a) dz,$$

$$w = \frac{y-c}{d-c} \implies y = w(d-c) + c \implies dy = (d-c) dw.$$

Assim, temos:

$$\theta = \int_0^1 \int_0^1 h(z, w) \, dz \, dw,$$

onde

$$h(z, w) = (b - a)(d - c) g(z(b - a) + a, w(d - c) + c).$$

Assim:

$$\theta = E[h(Z, W)]$$
,

com $Z, W \sim U(0,1)$ independentes.

22.4 Simulação de Variáveis Aleatórias

X é uma variável aleatória com função de distribuição $F_X(x) = P(X \le x)$. Como F_X é estritamente não-decrescente, então:

$$u \le F_X(x) \iff F_X^{-1}(u) \le x,$$

onde assumimos que a inversa ${\cal F}_X^{-1}$ da função ${\cal F}_X$ existe.

Vamos encontrar a variável aleatória $Y = F_X^{-1}(U)$ que tem a mesma distribuição de X, onde U tem distribuição uniforme em [0,1]. Assim, se $F_X(x) = u$, temos:

$$P(U \le u) = P(U \le F_X(x)) = P(F_X^{-1}(U) \le F_X^{-1}(F_X(x))) = P(F_X^{-1}(U) \le x) = P(Y \le x) = F_X(x).$$

Essa igualdade ocorre apenas se $Y = F_X^{-1}(U)$ tem a mesma distribuição de X.

Portanto, para simularmos a variável aleatória X, geramos n valores u_1, u_2, \ldots, u_n , onde $u_i \sim U(0,1)$, $i=1,2,\ldots,n$, e calculamos $x_i=F_X^{-1}(u_i)$, onde $F_X(x)=P(X\leq x)$ é a função de distribuição de X. O algoritmo geral é dado por:

- Gere um valor u_i a partir da distribuição uniforme em [0,1].
- Calcule $x_i = F_X^{-1}(u_i)$, onde $F_X(x) = P(X \le x)$ é a distribuição acumulada de X.
- \bullet Repita o processo n vezes para simular n valores de X.