MIN or Single Link

Inter-cluster distance

- The distance between two clusters is represented by the distance of the <u>closest pair of data objects</u> belonging to different clusters.
- Determined by one pair of points, i.e., by one link in the proximity graph

$$d_{\min}(C_i, C_j) = \min_{p \in C_i, q \in C_j} d(p, q)$$

MIN

Nested Clusters

Dendrogram

Strength of MIN

Original Points

Two Clusters

• Can handle non-elliptical shapes

Limitations of MIN

• Sensitive to noise and outliers

MAX or Complete Link

Inter-cluster distance

 The distance between two clusters is represented by the distance of the <u>farthest pair of data objects</u> belonging to different clusters

$$d_{\min}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)$$

MAX

Nested Clusters

Dendrogram

Strength of MAX

• Less susceptible to noise and outliers

Limitations of MAX

Tends to break large clusters

Limitations of MAX

Biased towards globular clusters

Group Average or Average Link

Inter-cluster distance

- The distance between two clusters is represented by the <u>average</u> distance of <u>all pairs of data objects</u> belonging to different clusters
- Determined by all pairs of points in the two clusters

$$d_{\min}(C_i, C_j) = \underset{p \in C_i, q \in C_j}{avg} d(p, q)$$

Group Average

Nested Clusters

Dendrogram

Group Average

 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Centroid Distance

Inter-cluster distance

- The distance between two clusters is represented by the distance between <u>the centers of the clusters</u>
- Determined by cluster centroids

$$d_{mean}(C_i, C_j) = d(m_i, m_j)$$