Exercise sheet 2

Max Wisniewski, Alexander Steen

Problem 1 Convexity

1. 2.

Problem	1 Convexity
1.	Let $\{C_i\}_{i\in I}$ be a set of convex sets. Show that $\bigcap_{i\in I} C_i$ is convex.
	Proof : Since each C_i is convex, it holds that the line \overline{pq} , for $p,q \in C_i$, is completely contained in C_i . Since for all $p,q \in \bigcap_{i \in I} C_i$, the segment \overline{pq} is contained in each C_i , it holds that $\overline{pq} \in \bigcap_{i \in I} C_i$. $\Rightarrow \bigcap_{i \in I} C_i$ is convex.
	A similar property can be found for unions of convex sets: Claim: For any non-decreasing series of convex sets $(C_i)_{i \in I}$ (with respect to set inclusion), the set $\bigcup_{i \in I} C_i$ is convex. Proof: For all $p, q \in \bigcup_{i \in I} C_i$ there exists a $\tilde{i} \in I$ such that $p, q \in C_{\tilde{i}}$, hence $\overline{pq} \in C_{\tilde{i}}$. Since $(C_i)_{i \in I}$ is non-decreasing, $\overline{pq} \in \bigcup_{i \in I} C_i$.
2.	Let P be a finite point set in the plane. Show that the boundary of the convex hull $CH(P)$ of P is a convex polygon whose vertices are points of P .
	TBA
3.	Show that the segment between two points $p, q \in P$ is an edge of $CH(P)$ if and only if all points of P lie on the same side of the line through p and q .
	Proof : "\$\Rightarrow\$": By contraposition. Let \tilde{p} a point on the one side of the line through p and q and \tilde{q} a point on the other side. Let $s \in \overline{pq}$. Then, one of $\overline{s\tilde{p}}$ and $\overline{s\tilde{q}}$ is not contained in P . Hence, \overline{pq} cannot be an edge of $CH(P)$. "\$\Rightarrow\$": TBA
Problem	2 Computing the tangents to a polygon
TBA	
Problem	3 Chan's algorithm and superexponential search