.....

28/2/2d
On 1 - A graph C is minimally connected
iff it is a tree.

Boot: Set the Graph G be minimally connected, i.e removal of I edge makes it disconnected.

Therefore, there is no circuit. Hence, graph G is a tree.

Morrespely; let the graph of he a tree i.e there every pois of nextices of he proor that removal of I edge from the path makes the graph disconnected. Hence; graph or is minimally corrected.

in wite a rate on Minese Postman Broblem is travelling talesman's Robben CTSP1 A retwork is a weighted directed graph. # Chinese Postman Problem (Route Impection): - A variation of Eulerian ciecuit peoblem for undirected geophs. An Euler aircuit is a closed walk that coners every edge once starting & ending position are the same. - It is defined for connected & undirected geople the problem is to find the shortest path or want that we're every edge of the graph attent once

- It is put graph contains Eisler ciemit; then a solution of the problem is Euler aicuit. - A directed be connected graphs whos Enterior and if all restricts have even degree."

Some of Euleron tycle

=> The graph has Eulerian cycles

Eg: - "2103402". (all restices have even
degree)

Shirepe lostman Route; if exists ~ is always the some as Eulerian bollen for both weighted or uneighted.

Weighted geaph! Minimum possible weight of lostron tour! him of all edges we obtain through Eulerian creamit

Travelling Salesman Problem (TSP):

" Curier a set of cities & distance between every pair of cities, the peoplem is to find the shortest possible noute that visits every city exactly once & returns to the shorting point.

afficience between Hamiltonian eycle & TSP; without eycle problem is to find if there with a tour that with every city exactly pice.

pue, we know that Hamiltonian tour exists (i graph is complete) & in fact many such tour exists; the problem is to find a minimum weight Hamiltonian eycle.

For eg:

A TSP tour in the graph is:1-2-4-3-1.

- the cost of the tone is:
10+25+30+15

= 80

* pative solution:

O lander city I as starting & ending point

@ beverate all (n-1)! Permitations of cities

I bloubate cost of every permutation be keep track of minimum cost permutation.

Preture the permetation with minimum cost.

If the complaity ! - O(n!)