Algebra II Winter 2021 Frank Sottile

19 April Thirteenth Homework

Write your answers neatly, in complete sentences, and prove all assertions. Start each problem on a new page (this makes it easier in Gradescope). Revise your work before handing it in, and submit a .pdf created from a LaTeX source to Gradescope. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Due Monday 26 April.

- 1. Prove Fermat's little theorem. For $a \in \mathbb{Z}$ and p a prime, $a^p \equiv a \mod p$, using the structure of $\mathbb{Z}/p\mathbb{Z}$. (Hint: show that $a^{p-1} \equiv 1 \mod p$.)
- 2. Suppose that F is a field of (prime) characteristic p>0. Show that for $a,b\in F$, $(a+b)^p=a^p+b^p$. (If you use binomial coefficients, some care is needed in going from characteristic 0 to characteristic p). Deduce that the map $\phi\colon F\to F$ defined by $a\mapsto a^p$ is a field homomorphism.
- 3. Show that every element of a finite field may be written as the sum of two squares.
- 4. Show that the algebraic closure of a finite field F is Galois over F.
- 5. Show that the transcendence degree of \mathbb{C} over \mathbb{Q} is $|\mathbb{C}|$. What is the cardinal number of the Galois group of the extension \mathbb{C}/\mathbb{Q} ?
- 6. Let I be a nonzero ideal of a principal ideal domain R. Show that R/I is both Noetherian and Artinian.
- 7. Prove that an Artinian integral domain is a field.