Hypothesis Tests for Variances and for two means

8.2

Today's topics

Review:

Hypothesis test steps

New:

- Hypothesis test for variances
- Hypothesis test for two means

Note for 8.1, 8.3

In all the examples from Tuesday's lecture, we are assuming that these samples are coming from distributions that are **approximately normal** for these methods to work.

(Otherwise, with small sample sizes, the CLT would not hold)

Hypothesis Testing (Steps)

- 1. Formulate H_0 and H_A (based on the scenario)
- 2. Identify a test statistic to use and its distribution under H₀
- 3. Evaluate the test statistic
- 4. Calculate a p-value, compare to α. RU##ghqwli #l#hrhfwlrq#hj lrq
- 5. Make a decision
 - if $p < \alpha$, reject H_0 . Otherwise, (if $p > \alpha$), do not reject H_0 .
- 6. State conclusion in the context of the original question.
 - "There is/isn't enough evidence to show that..."

General Form of CI for mean (review)

Estimate \pm (Critical Value * SE of estimate) e.g. if σ is known:

$$\bar{x} \pm z_{\alpha/2} * \frac{\sigma}{\sqrt{n}}$$

if σ is unknown:

$$\bar{x} \pm t_{n-1,\alpha/2} * \frac{s}{\sqrt{n}}$$

Confidence Interval for σ^2 (review)

Confidence Interval for σ^2 :

$$\left(\frac{(n-1)\cdot s^2}{\chi_{\alpha/2}^2}, \frac{(n-1)\cdot s^2}{\chi_{1-\alpha/2}^2}\right)$$

Hypothesis Tests for Variance (or SDs)

Test statistic:

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{(n-1)}$$

Rejection Region:

Left-tailed:

$$\begin{array}{lll} \mathsf{H}_0: \sigma^2 \geq \sigma_0^2 & \mathsf{vs} & \mathsf{H}_1: \sigma^2 < \sigma_0^2 \\ \mathsf{H}_0: \sigma & \geq \sigma_0 & \mathsf{vs} & \mathsf{H}_1: \sigma & < \sigma_0 \end{array}$$

Rejection Region:

Right-tailed:

$$\begin{array}{lll} \mathsf{H_0:}\ \sigma^2 \leq \sigma_0^2 & \mathsf{vs} & \mathsf{H_1:}\ \sigma^2 > \sigma_0^2 \\ \mathsf{H_0:}\ \sigma & \leq \sigma_0 & \mathsf{vs} & \mathsf{H_1:}\ \sigma & > \sigma_0 \end{array}$$

$$H_1: \sigma^2 > \sigma_0^2$$

$$H_0: \sigma \leq \sigma_0$$
 vs

$$H_1: \sigma > \sigma_0$$

Two-tailed:

$$H_0: \sigma^2 = \sigma_0^2 \text{ vs}$$
 $H_1: \sigma^2 \neq \sigma_0^2$
 $H_0: \sigma = \sigma_0 \text{ vs}$ $H_1: \sigma \neq \sigma_0$

$$H_0$$
: $\sigma = \sigma_0$ vs

$$H_1: \sigma^2 \neq \sigma_0^2$$

$$H_1: \sigma \neq \sigma_0$$

Hypothesis Tests for Variance (or SDs)

Left-tailed:

$$H_0: \sigma^2 \ge \sigma_0^2$$
 vs $H_1: \sigma^2 < \sigma_0^2$

$$H_1: \sigma^2 < \sigma_0^2$$

$$H_0: \sigma \geq \sigma_0$$
 vs $H_1: \sigma < \sigma_0$

Right-tailed:

$$H_0$$
: $\sigma^2 \le \sigma_0^2$ vs H_1 : $\sigma^2 > \sigma_0^2$

$$H_1: \sigma^2 > \sigma_0^2$$

$$H_0: \sigma \leq \sigma_0$$

$$H_0: \sigma \leq \sigma_0$$
 vs $H_1: \sigma > \sigma_0$

Two-tailed:

$$H_0$$
: $\sigma^2 = \sigma_0^2$ vs H_1 : $\sigma^2 \neq \sigma_0^2$

$$H_1: \sigma^2 \neq \sigma_0^2$$

$$H_0: \sigma = \sigma_0$$
 vs $H_1: \sigma \neq \sigma_0$

$$H_1: \sigma \neq \sigma_0$$

Example

A sample of 12 random exam scores from the final exam was collected: 78, 81, 82,77, 86, 79, 84, 87, 86, 91, 88, 88. (s = 4.48). Last year's final had σ = 7. Is there enough evidence to suggest that the population standard deviation for this year is lower than 7?

Two Sample tests for means

Say we have two populations: with mean μ_1 , variance σ_1^2 , and mean μ_2 , variance σ_2^2 .

Let $X_1, X_2, ..., X_{n1}$ and $Y_1, Y_2, ..., Y_{n2}$ be two independent samples from each of these populations.

If n_1 and n_2 are large, or these populations are both approximately normal then a confidence interval for μ_1 - μ_2 is:

$$(\bar{X} - \bar{Y}) \pm z\alpha/2\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Review – Functions of Normal Distributions

Assuming i.i.d:

If each $X_i \sim N(\mu, \sigma^2)$, what is the distribution of \overline{X} ?

If each X_i has mean μ_1 , and variance σ_1^2 , $\overline{X}\sim ?$

If each Y_i has mean μ_2 , and variance σ_2^2 , $\overline{Y} \sim ?$

$$\bar{X} - \bar{Y} \sim ?$$

General form of CI for mean

Estimate <u>+</u> Critical Value * SE(estimate)

$$(\bar{X} - \bar{Y}) \pm z\alpha/2\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

2-sample confidence interval

$$(\bar{X} - \bar{Y}) \pm t\alpha/2\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Two approaches for df:

- 1. Conservative $df = min(n_1, n_2) -1$
- 2. Welch's T:

df =
$$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{s_2^2}{n_2}\right)^2}$$

Two sample means – pooled variance

If we can assume that population 1 and population 2 standard deviations are equal, we can use s_{pooled} as an estimator for both.

$$(\overline{X} - \overline{Y}) \pm t_{\alpha/2} \cdot s_{\text{pooled}} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

where

$$s_{\text{pooled}}^2 = \frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2}$$

and df = $n_1 + n_2 - 2$

Two sample means – Matched pairs

Assume that the differences $D_i = X_i - Y_i$ are a random sample from normal distribution with mean δ_D and standard deviation $\sigma_{D.}$

A confidence interval for δ_{D} is

$$\overline{D} \pm t_{\alpha/2} \frac{s_D}{\sqrt{n}}$$
. df = n-1

The test statistic for testing H_0 : $\delta = \delta_0$ is

$$T = \frac{\overline{D} - \delta_0}{s_D / \sqrt{n}}$$

Pair			Difference
1	\mathbf{x}_1	Y ₁	$D_1 = X_1 - Y_1$
2	\mathbf{X}_{2}	Y_2	$D_2 = X_2 - Y_2$
	•	•	
	•	•	•
	•	•	•
n	X_n	\mathbf{Y}_{n}	$D_n = X_n - Y_n$

Hypothesis test for 2 means

Steps

- Determine which statistic to use t/z
- Are the data paired?
- Can the variances be pooled?
- Follow the usual procedures for hypothesis testing:
 - Come up with H₀ and H_A.
 - Create and evaluate test statistic, identify the null distribution
 - Find p-value (or rejection region)
 - Make decision and conclusion.

Example

Among the data collected for the World Health Organization air quality monitoring project is a measure of suspended particles, in $\mu g/m^3$. Let X and Y equal the concentration of suspended particles in $\mu g/m^3$ in the city centers of Melbourne and Houston, respectively. Using n=13 observations of X and m=16 observations of Y, we obtain $\bar{x}=72.9$, $s_x=25.6$, $\bar{y}=81.7$, $s_Y=28.3$. Perform a test to see if Houston has worse air quality at 0.05 significance and state the result.

$$H_0$$
: $\mu_X = \mu_Y$

$$H_1$$
: $\mu_X < \mu_Y$.

Continued:

 \bar{x} =72.9, s_x = 25.6, \bar{y} =81.7, s_y = 28.3. Perform a test to see if Houston has worse air quality at 0.05 significance and state the result.

$$H_0$$
: $\mu_X = \mu_Y$

$$H_1: \mu_X < \mu_Y.$$

$$(\overline{X} - \overline{Y}) \pm t_{\alpha/2} \cdot s_{\text{pooled}} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$s_{\text{pooled}}^2 = \frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2}$$

What if we want to pool the variance?

 \bar{x} =72.9, s_x = 25.6, \bar{y} =81.7, s_y = 28.3. Perform a test to see if Houston has worse air quality at 0.05 significance and state the result.

$$H_0$$
: $\mu_X = \mu_Y$

$$H_1$$
: $\mu_X < \mu_Y$.