Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів

розгалуженяя»

Варіант 15

Виконав студен	т 111-12, Кириченко Владислав Сергіиович
•	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота № 3

Назва роботи: Дослідження ітераційних циклічних алгоритмів

Мета: Дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 15

Умова задачі:

3 точністю $\varepsilon = 10^{-6}$ обчислити значення функції Ln x:

Ln(1+x) =
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$
 при $|x| < 1$.

Постановка задачі: Задана змінна "**x**", обчислити значення функції Ln(1+x) із заданою точністю е. Результатом розв'язку задачі є змінна Ln.

Побудова математичної моделі: Маємо змінну "х", в залежності від якої ми повинні знайти значення натурального логарифму числа (x+1) (змінна Ln) із заданою точністю. Для цього скористаємося циклом передумови while і введемо змінну n у якості лічильника. Точність обчислення знаходться за формулою $abs(X_n - X_{n+1})$. Також нам буде потрібні функції pow(a,n) - піднесення числа a у степінь n, та abs(a) - модуль числа a.

Складемо таблицю змінних:

Змінна	Тип	Ім'я	Призначення
Значення е	Дійсний	e	Початкові дані
Значення n	Натуральний	n	Початкові дані
Значення х	Дійсний	X	Початкові дані
Значення	Дійсний	InPrevious	Проміжкове
InPrevious			значення
Значення Ln	Дійсний	Ln	Результат

```
3. Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді
блок-схеми.
Крок 1. Визначимо основні дії.
Крок 2. Деталізація обчислення першого наближеного значення Ln(x+1).
Крок 3. Деталізація обчислення другогонаближеного значення Ln(x+1).
Крок 4. Деталізаці знаходження значення Ln(x+1) з точністю е.
Псевдокод:
Крок 1.
початок
  введення х,е,п
  обчислення значення In
  обчислення значення InPrevious
  знаходження значення ln з точністю е
кінець
Крок 2.
початок
  введення х,е,п
  InPrevious = pow(-1,(n-1)) * float(pow(x,n))/n
  n++
  обчислення значення InPrevious
  знаходження значення ln з точністю e
кінець
Крок 3.
початок
  введення х,е,п
  InPrevious = pow(-1,(n-1)) * float(pow(x,n))/n
  ln = lnPrevious + pow(-1,(n-1)) * float(pow(x,n))/n
  n++
  знаходження значення ln з точністю е
```

кінець

Крок 4.

```
початок

введення x,e,n

InPrevious = pow(-1,(n-1)) * float(pow(x,n))/n

n++

In = InPrevious + pow(-1,(n-1)) * float(pow(x,n))/n

n++

поки (abs(In - InPrevious) > e) повторити

InPrevious = In

In += pow(-1,(n-1)) * float(pow(x,n))/n

n++

все повторити
кінець
```

Блок схема:

4. Перевірка алгоритму

Блок	Дія	Дія
	Початок	Початок
1	Введення	Введення
	$ \mathbf{x} = 0.2, \mathbf{n} = 1, \mathbf{e} = 0.2$	x=-0.3, n=1,
	0.000001	e=0.000001
2	InPrevious = 0.2	InPrevious =-0.3
3	ln = 0.18	ln = -0.345
4		
4	виконання циклу	виконання циклу
	(результат =>	(результат =>
	ln = 0.182322)	ln= -0.356675
5	Вивід: 0.182322	Вивід: -0.356675
	Кінець	Кінець

Висновок - Було досліджено подання операторів повторення дій та набуто практичних навичок їх використання під час складання циклічних програмних специфікацій.