Assignment 3 - Quantifiers, Asymptotics, and NFAs

CS 234

Daniel Lee

1 Quantifiers and NFAs on Paper

Write the following as English statements with no mathematical notation.

$$3.47. \ \forall n \in \mathbb{N}, 2n \in \mathbb{N}$$

For all natural number n, two times n is also a natural number.

3.50.
$$\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}, m < n$$

For all integer n, there exists an integer m such that m is smaller than n.

3.52.
$$\forall n \in \mathbb{N}, \exists s \in \{0,1\}^*, |s| = n$$

For all natural number n, there exists a string s that is in the set of all strings formed by 0s or 1s or both 0s and 1s or the empty string such that the length of string s is n.

3.53.
$$\forall s \in \{0,1\}^*, \exists q, r \in \{0,1\}^*, s = qr$$

For all string s that is in the set of all strings formed by 0s or 1s or both 0s and 1s or the empty string, there exist strings q and r that are in the set of all strings formed by 0s or 1s or both 0s and 1s or the empty string such that string s is equivalent with string s.

Show the following Big-O relationships by giving constants c and n_0 in each case and showing that they work.

3.55.
$$7n - 2 \in O(n)$$

The function f(n) = 7n - 2 is O(n) using c = 8 and $n_0 = 4$, that is, $7n - 2 \le 8n$ for all $n \ge 4$. This is true because $-2 \le n$ for all $n \ge 4$, so $7n - 2 \le 7n + n = 8n$ for all $n \ge 4$.

$$3.56. \ 2n^2 + 4 \in O\left(n^2\right)$$

The function $f(n) = 2n^2 + 4$ is $O(n^2)$ using c = 6 and $n_0 = 1$, that is, $2n^2 + 4 \le 6n^2$ for all $n \ge 1$. This is true because $4 \le 4n^2$ for all $n \ge 1$, so $2n^2 + 4 \le 2n^2 + 4n^2 = 6n^2$ for all $n \ge 1$.

$$3.57. \ 3n^2 - 2n + 4 \in O(n^2)$$

The function $f(n)=3n^2-2n+4$ is $O\left(n^2\right)$ using c=9 and $n_0=1$, that is, $3n^2-2n+4\leq 9n^2$ for all $n\geq 1$. This is true because $-2n\leq 2n^2$ for all $n\geq 1$ and $4\leq 4n^2$ for all $n\geq 1$, so $3n^2-2n+4\leq 3n^2+2n^2+4n^2=9n^2$ for all $n\geq 1$.

3.58.
$$n^3 - n^2 + n - 1 \in O(n^3)$$

The function $f(n) = n^3 - n^2 + n - 1$ is $O(n^3)$ using c = 4 and $n_0 = 1$, that is, $n^3 - n^2 + n - 1 \le 4n^3$ for all $n \ge 1$. This is true because $-n^2 \le n^3$ for all $n \ge 1$, $n \le n^3$ for all $n \ge 1$, and $-1 \le n^3$ for all $n \ge 1$, so $n^3 - n^2 + n - 1 \le n^3 + n^3 + n^3 + n^3 = 4n^3$ for all $n \ge 1$.

Negate the following quantified statements.

$$3.65. \ \forall n \in \mathbb{R}, 2n \in \mathbb{R}$$

$$\exists n \in \mathbb{R}, 2n \notin \mathbb{R}$$

3.69.
$$\forall n \in \mathbb{N}, \exists s \in \{0,1\}^*, |s| = n$$

$$\exists n \in \mathbb{N}, \forall s \in \{0,1\}^*, |s| \neq n$$

$$3.71.\exists w \in \Sigma^*, \forall x, y \in \Sigma^*, \exists z \in \Sigma^*, (|wx| \le |yz|) \lor (|zx| \le |yw|)$$

$$\forall w \in \Sigma^*, \exists x, y \in \Sigma^*, \forall z \in \Sigma^*, (|wx| > |yz|) \land (|zx| > |yw|)$$

Give a sequence of states that show that the following strings are accepted by the following NFAs:

 $4.5.\ 101010$ for the NFA in Example 4.6

$$q_0 \rightarrow q_2 \rightarrow q_3 \rightarrow q_2 \rightarrow q_3 \rightarrow q_2 \rightarrow q_3$$

4.7. baaab for the NFA in Example 4.8

$$q_0 \rightarrow q_0 \rightarrow q_0 \rightarrow q_0 \rightarrow q_1 \rightarrow q_2$$

Draw nondeterministic finite automata (that are not also deterministic ones) with no λ transitions for the following languages:

4.8. $\{w \in \{0,1\}^* : w \text{ ends in } 00\}$

4.10. $\{w \in \{0,1\}^* : w \text{ has } 01 \text{ or } 10 \text{ as a substring } \}$

4.13. $\{w \in \{0,1\}^* : w \text{ starts with } 00 \text{ and ends with } 11\}$

4.14. $\{a\}^* \cup \{(ab)^n : n \ge 1\}$

4.16. $\{0^p1^q0^r: p \ge 1, q \ge 0, r \ge 1\}$

4.18. $\{w\in\{0,1\}^*:$ at least one of the last three characters from the end is a $0\}$

4.19. $\{w \in \{0,1\}^* : w \text{ does not have } 01 \text{ as a substring } \}$

Convert the following NFAs to DFAs using the Subset Construction algorithm:

4.20. The NFA in Example 4.4

4.22. The NFA in Example 4.8

