Матанализ, 1 курс Красносельский Формула оценки: $\frac{4P+6S+5K+5E}{20}$, где P,S,K,E — оценки за листки, семинары, коллоквиум и экзамен соответственно.

Вещественные числа

Определение 1. Бинарная операция на мн-ве G — функция $(a,b) \in G \times G \mapsto a \oplus b \in G$, т.е. каждую упорядоченную пару элементов G переводит в какой-то элемент G.

Определение 2. Коммутативная группа — множество G с операцией \oplus со следующими свойствами:

- $\exists e \in G \forall x \in G : e \oplus x = x \oplus e = x$.
- $\forall x \in G \exists y \in G : x \oplus y = y \oplus x = e$.
- $\forall a, b, c \in G : (a \oplus b) \oplus c = a \oplus (b \oplus c)$ (ассоциативность).
- $\forall a, b \in G : a \oplus b = b \oplus a$ (коммутативность).

Определение 3. Поле — множество $(G, \oplus, \odot, 0)$ со следующими свойствами:

- (G, \oplus) аддитивная группа;
- $(G \setminus \{0\}, \odot)$ мультипликативная группа;
- $\forall a, b, c \in G : (a \oplus b) \odot c = a \odot c \oplus b \odot c$.

Определение 4. Отношение на множестве G — подмножество $G \times G$. Например, отношение (a < b) в множестве $\{1, 2, 3\}$ — это $\{(1, 2), (1, 3), (2, 3)\}$.

Определение 5. Отношение порядка — отношение ≤ со следующими свойствами:

- $\forall a : a \leq a$.
- $\forall a, b : (a \leqslant b \cap b \leqslant a) \implies a = b.$
- $\forall a, b, c : (a \leq b \cap b \leq c) \implies a \leq c$.
- $\forall a, b : (a \leq b \cup b \leq a)$.

Определение 6. Упорядоченное поле — множество F со следующими свойствами:

- F поле.
- На F есть отношение порядка.
- $\forall a, b, c \in F : a \leq b \implies a + c \leq b + c$.
- $\forall a, b \in F : 0 \leqslant a \cap 0 \leqslant b \implies \leqslant a \cdot b$.

Примеры упорядоченных полей: $\mathbb{Q}, \mathbb{R}, \mathbb{Q}(\sqrt{3})$, алгебраические числа, кроме того, рациональные функции над \mathbb{R} со следующим отношением порядка: $f_1 \leqslant f_2$, если у $f_1 - f_2$ отношение старших членов числителя и знаменателя меньше или равен 0.

Аксиома непрерывности. Пусть F — упорядоченное поле, и $A \neq \emptyset, B \neq \emptyset \subset F$. Кроме того, $\forall a \in A, b \in B : a \leq b$. Тогда $\exists c \in F : \forall a \in A, b \in B : a \leq c \leq b$.

Определение 7. Множество вещественных чисел — упорядоченное поле с аксиомой непрерывности.

 Π ример. $\mathbb{Q} \neq \mathbb{R}$, т.к. у множеств $\{r \in \mathbb{Q}: r>0, r^2<2\}$ и $\{r \in \mathbb{Q}: r>0; r^2>2\}$ нет разделителя.

Примеры моделей действительных чисел

- 0, 123 · · · ·
- Прямая с 0 и 1.
- Классы эквивалентности фундаментальных последовательностей из Q.
- Сечения Дедекинда.