⑩公開特許公報(A) 昭62 - 192849

Mint Cl. 1

ı

識別記号

庁内整理番号

④公開 昭和62年(1987)8月24日

G 06 F 15/16

3/06

301

J-2116-5B 6711-5B

審査請求 未請求 発明の数 1 (全5頁)

計算機ネットワークにおけるコマンド実行方式 和発明の名称

> ②特 頭 昭61-34900

> > 隆

頭 昭61(1986)2月19日 23出

砂発 明 者 木 本 砂発 明 中 村 者

芳 弘 惠 급

川崎市中原区上小田中1015番地 富士通株式会社内 川崎市中原区上小田中1015番地 富士通株式会社内

川崎市中原区上小田中1015番地 富士通株式会社内

藤 砂発 明 佐 貞 冿 深 66発 明

川崎市中原区上小田中1015番地 富士通株式会社内 雄 川崎市中原区上小田中1015番地 富士通株式会社内 信 雄

②発 明 者 渡 部 富士通株式会社 ①出 頭 人

川崎市中原区上小田中1015番地

弁理士 山谷 皓榮 绝代 理

計算機ネットワークにおける 1. 発明の名称 コマンド実行方式

2. 特許請求の範囲

複数のコンピュータをネットワークで接続する とともにそのうちの少くとも1つのコンピュータ に外部記憶装置を接続してこれをあたかも自コン ピュータの外部記憶装置であるように使用するこ とのできるシステムにおいて、

複数のコマンドにより構成されるとともに各コ マンドのプログラムが記入されたコマンドファイ ルが格納された外部記憶手段(Fo) と、

コマンドファイルのコマンド名やパイト数を職 別する識別手段(3、3′)を具備する複数のコ ンピュータ (Bo、Co) を有し、

コンピュータで前記コマンドファイルを実行す るときに前記外部記憶手段(Fo) よりそのコマ ンドファイルのデータを連続的に転送させてこれ

をコマンドファイルとコマンドに区分し、コンピ ュータでこの区分したコマンドを実行するように したことを特徴とする計算機ネットワークにおけ るコマンド実行方式。

3. 発明の詳細な説明

(目次)

概要

産業上の利用分野

従来の技術

発明が解決しようとする問題点

問題点を解決するための手段

作用

実施例

発明の効果

(概要)

本発明は、複数のコンピュータをネットワーク で投続してその1台に外部記憶装置を授続しこれ を他のコンピュータがあたかも自コンピュータの

外部記憶であるかの如く使用できる機能を育するシステムにおいて、前記外部記憶装置に予めコマンドファイルとその中で使用するコマンドすってを1つのファイルにまとめておき、コマンドファイルを実行するコンピュータは実行に先立ち前記ファイルを読み、これをコマンドファイルとコマンドに分解し、自主記憶上に登録し、それからこれを実行するものである。

(産業上の利用分野)

本発明は、計算機ネットワークにおけるコマンド実行方式に係り、特にファイルサーバを育するコンピュータ網において、コマンドファイルを実行するとき、必要なファイルを一体化したものをファイルサーバ上に用意しておき、実行側のコンピュータはこれを自主記憶上に展開することにより実行するようにしたものに関する。

〔従来の技術〕

コンピュータでは主記憶の容量不足を補うため

そして、第4図に示すシステムでは、このコマン ドファイルは外部配憶装置下に格納されている。

ところで、外部配信装置下に格納されている、 第5図に示すコマンドファイルを、例えばコンピュータBが実行する場合、第6図に示す如き動作 シーケンスとなる。

① コンピュータBにおいて使用者がそのコマンドファイルのファイル名(FN)をキーインする。これによりコンピュータBよりファイルチーバに対してコマンドファイルに対するOPEN要求が行われる。ファイルサーバはこのコマンドファイル(FN)に対するOPEN処理を行い、COMFILEの内容(データ①)をコンピュータBに転送する。

② コンピュータBではこの転送されたCOMFILEの内容よりこのコマンドファイルがコマンドCOMI、COM2、COM3により構成されていることを認識する。そしてまずコマンドCOM1に対してOPEN要求を行う。ファイルサーバではこれによりOPEN処理を行い、またC

ところでコンピュータがデータ処理を行う場合、 使用者がしばしば行うようなある特定の処理をコマンド列としてファイルに登録し、簡単に実行できるようにしている。この登録されたファイルはコマンドファイルと呼ばれている。

第 5 図に、このコマンドファイルCOMFIL Eの1例を示す。これは、コマンドCOM1、C OM 2 、COM 3 により構成されたものであって コマンドファイル名(FN)が付与されている。

OMIの内容つまりCOMIのプログラムをデータ②としてコンピュータBに転送する。コンピュータBではこれをその主記徳上に展開してこのCOMIのプログラムを実行する。そしてそのあとCOMIのファイルに対するCLOSE要求を行ない、ファイルサーバはこのCOMIに対するCLOSE処理を行う。

② ところでコンピュータBは前記COM1のCLOSB要求に続いてコマンドCOM2のファイルに対するOPEN要求を行う。これに対してファイルサーバでは前記COM1に対すると同様な処理が行われる。このようなことがCOM3に対しても遠行される。そしてCOM3が実行された後にコンピュータBからCOM3に対するCLOSB要求が行われてCOMFILEに対するCLOSB要求が行われてCOMFILEががCLOSB処理される。このようにしてCOMFILE(FN)に対する処理が終了する。

(党別が解決しようとする問題点)

このような従来の方式においては、コマンドファイルおよびそのコマンドの個数だけのOPEN、CLOSE処理が必要となる。ところでこのOPEN処理は外部記憶装置下において必要とするデークをアクセスしたり、外部記憶装置下から読み出したデータを一時保持するため主記憶の領域を確保したりすることになるので、その処理時間が長く、このようなOPEN、CLOSE処理数が増加するとデータ処理速度がおそくなる。

また第6図に示す動作シーケンスを選行するOPEN、CLOSEOハゲットと、各コマンドファイルに対するOPEN、に対するバケットと、各コマンド研究に、対するバケットを対する。サールをは、カールが使用できないことがあり、デールが増える。第6図においずったので、カールの内容が小さい、野人ので、日本ので、最大長とはならない。また、野

6 図においてデータ②として示すCOM1のプログラムのデータパケットは、COM1の内容であるプログラム転送の際に最大長のパケットを使用したとしても、その最終のデータは通常パケットの最大長ではない。このようにデータ転送の際に少なくとも必要となる最小パケット数(次式)最小パケット数=(コマンドファイルのパイト数・コマンドのバイト数の合計)+(最大パケット長)

よりも、パケットが多くなる。このようにパケット数が増加すると、コンピュータとして処理速度の遅いもの(パソコン等)を使用した場合などは、パケット処理のオーバーヘッドのために、非常に 転送効率が低下し、コマンドファイルの実行が遅くなってしまう。

本発明の目的は、前記の問題点を解決するため、 OPEN回数も少なく、パケット数も少ない計算 機ネットワークにおけるコマンド実行方式を提供 することである。

(問題点を解決するための手段)

前記目的を達成するため、本発明では、第1図に示す如く、コマンドファイルと必要なすべてのコマンドを一体化した新しいコマンドファイルをファイルサーバ上に作成しておく。

コンピュータの使用者がこのコマンドファイルの実行を指示すると、このコマンドファイルをファイルサーバから挑取り、主記位上にコマンドファイル、コマンドと分解してロードする。以後、コンピュータはファイルサーバを使用せず自主記位でコマンドファイルを処理する。

(作用)

コマンドファイルに対するOPBN要求を行うと、これに対するデータ転送を、第1図のCOMFILEのパイト数からCOM3の内容まで連続的に転送するので、各コマンドCOM1、COM2、COM3毎のOPEN要求は不必要となる。しかも連続的に転送されるので、パケット数を少なくすることができる。

(宮藤(例)

本発明の一実施例を第2図、第3図にもとづき 他図を参照して説明する。

第2図は本発明の一実施例構成図、第3図は本 発明における動作シーケンスを示す。

第2図において、コンピュータBoはプロセッサ l および主記憶 2 より構成され、識別部 3 を具備している。またコンピュータCoはプロセッサ l ′ および主記憶 2 ′ および仮想的に外部記憶とみなした主記憶(通常RAM Diakと呼ばれる) 4 ′ より構成され、識別部 3 ′ を具備している。

ここで識別部3、3′はファイルサーバから伝達された、第1図に示す如き、コマンドファイルの区切り部分を識別するものであって、COMFILEの区分のバイト数、COM3のバイト数、СОM2のバイト数、СОM3のバイト数…を認識してそれぞれの区分で区別するものである。

ファイルサーバを構成する外部記憶Foは、第

4 図の外部記憶Fに対応するものであるが、第5 図に示す如くコマンドCÓM1~COM3により 構成されるコマンドファイルが格納されるもので はなく、第1図に示す如く、COM1、COM2、 COM3については、それらを構成する具体的な プログラムが記入されたコマンドファイルとして 格納されている。本発明におけるコマンドファイ ルは、そのコマンドファイルの構成を示すCOM F「LE部分は、従来のものと同様に、そのCO MFILE部分のバイト数と、COMFILEの 内容(この例ではCOMI~COM3より構成さ れていることの指示)が記入されているが、それ に続いて、COMIのパイト数、ファイル名記入 部およびCOMIの内容であるプログラム記入部、 COM2のパイト数、ファイル名記入部およびC OM2のプログラム紀入部、COM3のパイト数、 ファイル名記入部およびCOM3のプログラム記 入郎が存在する。この新しいコマンドファイルは コマンドファイル生成時に、ファイルサーバ上に 作製されるものである。

3

いま、コンピュータBoの使用者が、そのコマンドファイル名(FN)をキーインしてその実行を指示すると、第3図に示す如きシーケンスが遂行される。

① 前記コマンドファイル名をキーインしその 実行を指示すると、プロセッサ l よりファイルサーバに対してそのコマンドファイルに対する O P E N 要求が行われる。ファイルサーバはこのコマンドファイル (FN) に対する O P E N 処理を行ない、それからこのコマンドファイルをデータとしてコンピュータ B o に転送する。

② この転送データは、識別部3によりまずものCOMPILEのバイト数とCOMPILEの内容から、コマンドがCOM1~COM3よりなるものであることを認識する。そして次にCOM1の内容の終わりを検出する。以下同様にしてCOM2のバイト数、ファイル名を検出する。このようにしてコマンドファイルとコマンドCOM1~COM3に識別し

てこれらをもとどおりに区分して、その主記憶2 上にロードする。

③ コンピュータBoではこのようにして主記 徳2上に登録されたコマンドファイルを解釈して、 主記憶2上に登録されているコマンドCOM1~ COM3のプログラムを使用してこれらを順次実 行する。そして実行終了後、プロセッサ1は、ファイルサーバに対しそのコマンドファイルに対す るCLOSE要求が行われ、ファイルサーバでは これによりこのコマンドファイルのCLOSE処 理を行う。

前記のにおいてもともとのファイルのパイト数と、ファイル名を付加してあるので、これを受信したコンピュータ例では主記憶上にコマンドファイルやコマンドに分解しなおすことができる。

ところで、コンピュータのオペレーテング・システムによっては、主記憶上にコマンド等のロードができない場合がある。第2 図におけるコンピュータ Co のオペレーテング・システムがこのようなものであるとき、そのオペレーテング・シス

テムに主記憶の一部を仮想的に外部記憶 4 ′ とみなし仮想的に使用する機能を付加する。そして一般にRAMDISKと呼ばれるこの仮想的な外部記憶上に分解したファイルを置き、この上で実行することになる。

本発明では、予め、第1図に示す如き、新しいコマンドファイルを作り出さなければならないので、例えばIPL時のSTART UP FILBの実行とか、コンパイルを行うときのコマンドファイルの実行のように、頻繁に行われるコマンドファイルの実行に適している。

〔発明の効果〕

本発明によればファイルサーバでのファイルの OPEN、CLOSEが各1回でよいので、ファ イルチーバのファイルアクセスの負荷を大幅に減 少させることができる。

また、コマンドファイルをコマンド毎に区分せずに連続的に転送するため、パケットの最大転送・ 長を最大限度利用することができるため、パケッ ト数が最低限必要な数とほぼ同じになるため、従来の場合に比較して、パケットの処理のオーバー ヘッドを非常に少なくできる。

4. 図面の簡単な説明

第1図は本発明の原理説明図であって本発明において使用されるコマンドファイル例、

第2図は本発明の一実施例構成図、

第3図は本発明における動作シーケンス、

第4図はコンピュータ・ネットワーク例、

35 図はコマンドファイル例、

第6図はコマンドファイルを実行するときの動作シーケンスである。

1、1 ′ …. アロセッサ 2、2 ′ …. 主記憶

3、3 ' … 衛別部

特許出願人 富士通株式会社 代理人弁理士 山 谷 晧 榮

本発明の原理説明図

第1図

本発明の一実施例構成 第 2 図

本発明による動作シーケンス

第3図

-301-