Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники Направление системного и прикладного программного обеспечения

ОТЧЁТ ПО ДОМАШНЕЙ РАБОТЕ

курса «Математика»

по теме: «Пределы» Вариант № 24

Выполнил студент:

Тюрин Иван Николаевич

группа: Р3110

Преподаватель:

Холодова С. Е.

Содержание

Домашняя работа. Пределы	
1. Задание 1	
2. Задание 2	
3. Задание 3	
4. Задание 4	
5. Задание 5	
6. Задание 6	
7. Задание 7	
8. Задание 8	
9. Задание 9	
10. Задание 10	
11. Задание 11	
12. Задание 12	
13. Задание 13	
14. Задание 14	
15. Задание 15	
16. Задание 16	
17. Задание 17	
18. Задание 18	
19. Задание 19	
20. Задание 20	
21 Вывол	

Домашняя работа Пределы

Задание 1

1.24. Доказать, что $\lim_{n\to\infty} a_n = a$ (указать $N(\varepsilon)$.

$$a_n = \frac{5n+1}{10n-3}, a = \frac{1}{2}$$

Доказательство: по определению предела:

$$\forall \varepsilon > 0 : \exists N(\varepsilon) \in \mathbb{N} : \forall n : n \geqslant N(\varepsilon) : |a_n - a| < \varepsilon.$$
 $\text{T.e.} \left| \frac{5n+1}{10n-3} - \frac{1}{2} \right| < \varepsilon; \Rightarrow \left| \frac{2(5n+1) - (10n-3)}{2(10n-3)} \right| < \varepsilon \Rightarrow \left| \frac{5}{2(10n-3)} \right| < \varepsilon$
 $\Rightarrow \frac{5}{2(10n-3)} < \varepsilon \Rightarrow n > \frac{1}{10} \left(\frac{5}{2\varepsilon} - 3 \right).$ Значит по определению предела, при $N(\varepsilon) = \left[\frac{1}{10} \left(\frac{5}{2\varepsilon} - 3 \right) \right] + 1$ ряд имеет предел.

$$\lim_{n \to \infty} \frac{(n+1)^4 - (n-1)^4}{(n+1)^3 + (n-1)^3} = \lim_{n \to \infty} \frac{((n+1)^2 - (n-1)^2)((n+1)^2 + (n-1)^2)}{(n+1)^3 + (n-1)^3} = \lim_{n \to \infty} \frac{\frac{8n(n^2+1)}{(n+1)^3 + (n-1)^3}}{(n+1)^3 + (n-1)^3} = \lim_{n \to \infty} \frac{\frac{1}{n^3}8n(n^2+1)}{\left(\frac{(n+1)^3}{n^3} + \frac{(n-1)^3}{n^3}\right)} = \lim_{n \to \infty} \frac{8\left(1 + \frac{1}{n^2}\right)}{\left(1 + \frac{1}{n}\right)^3 + \left(1 - \frac{1}{n}\right)^3} = \frac{8}{2} = 4.$$

3.24. Вычислить предел
$$\lim_{n\to\infty}\frac{\sqrt[3]{n^2+2}-5n^2}{n-\sqrt{n^4-n+1}}=\lim_{n\to\infty}\frac{\frac{\sqrt[3]{n^2+2}-5n^2}{n-\sqrt{n^4-n+1}}}{\frac{1}{n^2}\sqrt[3]{1+\frac{2}{n^2}-5}}=\frac{-5}{-1}=5.$$

Задание 4

$$\mathbf{4.24.} \lim_{n \to \infty} \left(n - \sqrt{n(n-1)} \right) = \lim_{n \to \infty} \frac{\left(n - \sqrt{n(n-1)} \right) \left(n + \sqrt{n(n-1)} \right)}{n + \sqrt{n(n-1)}} = \lim_{n \to \infty} \frac{\frac{1}{n}n}{n + \sqrt{n(n-1)}} = \lim_{n \to \infty} \frac{\frac{1}{n}n}{\frac{1}{n} \left(n + \sqrt{n(n-1)} \right)} = \lim_{n \to \infty} \frac{1}{1 + \sqrt{1 - \frac{1}{n}}} = \frac{1}{2}.$$

Задание 5

5.24.
$$\lim_{n \to \infty} \frac{2+4+6+\ldots+2n}{1+3+5+\ldots+(2n-1)} = \lim_{n \to \infty} \frac{\frac{(2+2n)n}{2}}{\frac{2n \cdot n}{2}} = \lim_{n \to \infty} \frac{2n+2n^2}{2n^2} = \lim_{n \to \infty} \left(\frac{1}{n}+1\right) = 1.$$

Задание 6

6.24.
$$\lim_{n \to \infty} \left(\frac{n+4}{n+2} \right)^n = \lim_{n \to \infty} \left(1 + \frac{2}{n+2} \right)^n = \lim_{n \to \infty} \left(1 + \frac{2}{n+2} \right)^{\frac{n+2}{2} \cdot \frac{2}{n+2} \cdot n} = \lim_{n \to \infty} e^{\frac{2n}{n+2}} = (e)^{\frac{2n}{n+2}} = (e)^{\frac{2n}{n+2}} = (e)^{\frac{2n}{n+2}} = e^2.$$

Задание 7

7.24. Доказать $\lim_{x\to -1} \frac{7x^2+8x+1}{x+1} = -6$ Доказательство: по определению предела функции в точке:

$$\forall \varepsilon > 0 : \exists \delta = \delta(\varepsilon) > 0 : \forall x : (0 < |x - (-1)| < \delta) \Rightarrow \left(\left| \frac{7x^2 + 8x + 1}{x + 1} - (-6) \right| < \varepsilon \right)$$
 Тогда
$$\left| \frac{7x^2 + 8x + 1}{x + 1} + 6 \right| < \varepsilon \Rightarrow \left| \frac{7x^2 + 7x + x + 1}{x + 1} + 6 \right| = |7x + 1 + 6| = 7|x + 1| < \varepsilon \Rightarrow |x + 1| < \frac{\varepsilon}{7} (|x + 1| = |x - (-1)| < \delta) \Rightarrow \delta(\varepsilon) = \frac{\varepsilon}{7}$$
 Следовательно функция имеет приедел равный -6 при $x \to -1$.

8.24. Доказать, что функция $f(x) = -5x^2 - 7$ непрерывна в точке $x_0 = 1$ (найти $\delta(\varepsilon)$): Чтобы доказать, что функция непрерывна в точке, нужно доказать что она имеет предел в этой точке и ее значение в этой точке равно пределу. f(1) = -12

По определению предела функции в точке:

$$\lim_{x \to 1} (-5x^2 - 7) = -12 \Leftrightarrow \forall \varepsilon > 0 : \exists \delta = \delta(\varepsilon) > 0 : \forall x : (0 < |x - 1| < \delta) \Rightarrow (|-5x^2 - 7 - (-12)| < \varepsilon)$$

Тогда
$$\left| -5x^2 - 7 + 12 \right| < \varepsilon \Rightarrow 5|x^2 - 1| < \varepsilon \Rightarrow |(x - 1)(x + 1)| < \frac{\varepsilon}{5}$$

$$\Rightarrow |(x - 1)(x - 1 + 2)| < \frac{\varepsilon}{5} \Rightarrow |(x - 1)^2 + 2(x - 1)| < \frac{\varepsilon}{5} \xrightarrow{(x - 1)^2 \geqslant 0} |x - 1|^2 + 2|x - 1| < \frac{\varepsilon}{5}$$

$$\Rightarrow |x - 1|^2 + 2|x - 1| - \frac{\varepsilon}{5} < 0 \xrightarrow{D = 4 + 4\frac{\varepsilon}{5}} -1 - \sqrt{D} < |x - 1| < -1 + \sqrt{D} \Rightarrow |x - 1| < -1 + \sqrt{$$

Функция имеет предел в точке равный ее занчению в не, значит функция непрерывна в точке x=1.

$$\mathbf{9.24.} \lim_{x \to -1} \frac{x^2 + 3x + 2}{x^3 + 2x^2 - x - 2} = \lim_{x \to -1} \frac{(x+2)(x+1)}{(x+2)(x+1)(x-1)} = \lim_{x \to -1} \frac{1}{x-1} = \frac{1}{-2} = -0, 5.$$

Задание 11

11.24.
$$\lim_{x\to 0} \frac{1+\cos(x-\pi)}{(e^{3x}-1)^2} = \lim_{x\to 0} \frac{1-\cos(x)}{(3x)^2} = \lim_{x\to 0} \frac{\frac{x^2}{2}}{(3x)^2} = \lim_{x\to 0} \frac{x^2}{2\cdot 9x^2} = \frac{1}{18}.$$

Задание 12

12.24.
$$\lim_{x \to \pi} \frac{1 - \sin\left(\frac{x}{2}\right)}{\pi - x} \stackrel{\underbrace{x = t + \pi}}{\Longrightarrow} \lim_{t \to 0} \frac{1 - \sin\left(\frac{t + \pi}{2}\right)}{-t} = \lim_{t \to 0} \frac{1 - \cos\left(\frac{t}{2}\right)}{-t} = \lim_{t \to 0} \frac{1 - \cos\left(\frac{t}{2}\right)}{-t} = \lim_{t \to 0} \frac{t}{-t} = \lim_{t \to 0} \frac{t}{-t} = 0.$$

$$13.24. \lim_{x \to -1} \frac{\operatorname{tg}(x+1)}{e^{\sqrt[3]{x^3 - 4x^2 + 6}} - e} \xrightarrow{\frac{x=y-1}{y \to 0}} \lim_{y \to 0} \frac{\operatorname{tg} y}{e^{\sqrt[3]{(y-1)^3 - 4(y-1)^2 + 6}} - e} = \lim_{y \to 0} \frac{\operatorname{tg} y}{e^{\sqrt[3]{y^3 - 7y^2 + 11y + 1}} - e} = \lim_{y \to 0} \frac{y}{e(e^{\sqrt[3]{y^3 - 7y^2 + 11y + 1} - 1})} = \lim_{y \to 0} \frac{y}{e(\sqrt[3]{(y^3 - 7y^2 + 11y + 1} - 1)})$$

$$\lim_{y \to 0} \frac{y}{e(\sqrt[3]{(y^3 - 7y^2 + 11y + 1)^2} + \sqrt[3]{y^3 - 7y^2 + 11y + 1} + 1)}}{e(y^3 - 7y^2 + 11y)} = \frac{3}{11e}.$$

14.24.
$$\lim_{x\to 0} \frac{e^x - e^{3x}}{\sin 3x - \tan 2x} = \lim_{x\to 0} \frac{(e^x - 1) - (e^{3x} - 1)}{\sin 3x - \tan 2x} = \lim_{x\to 0} \frac{x - 3x}{3x - 2x} = \lim_{x\to 0} \frac{-2x}{x} = -2.$$

Задание 15

15.24.
$$\lim_{x \to \frac{\pi}{6}} \frac{2\sin^x + \sin x - 1}{2\sin^2 x - 3\sin x + 1} = \lim_{x \to \frac{\pi}{6}} \frac{2(\sin - \frac{1}{2})(\sin + 1)}{2(\sin - \frac{1}{2})(\sin - 1)} = \lim_{x \to \frac{\pi}{6}} \frac{\sin + 1}{\sin - 1} = \frac{\frac{1}{2} + 1}{\frac{1}{2} - 1} = -3.$$

Задание 16

$$\mathbf{16.24.} \quad \lim_{x \to 0} \left(2 - e^{x^2} \right) \frac{1}{1 - \cos \pi x} = \lim_{x \to 0} \left(e^{\ln(2 - e^{x^2})} \right) \frac{1}{1 - \cos \pi x} = \lim_{x \to 0} \frac{\ln(2 - e^{x^2})}{1 - \cos \pi x} = \lim_{x \to 0} \frac{\ln(1 - (e^{x^2} - 1))}{1 - \cos \pi x} = \lim_{x \to 0} \frac{-(e^{x^2} - 1)}{\frac{(\pi x)^2}{2}} = \lim_{x \to 0} \frac{-(e^{x^2} - 1)}{\frac{(\pi x)^2}{2}} = e^{-\frac{2}{\pi^2}}.$$

Задание 17

17.24.
$$\lim_{x \to 0} \left(\frac{\arctan 3x}{x} \right)^{x+2} = \lim_{x \to 0} \left(\frac{3x}{x} \right)^{0+2} = 3^2 = 9.$$

18.24.
$$\lim_{x \to \frac{\pi}{2}} \left(\operatorname{ctg} \left(\frac{x}{2} \right) \right)^{\frac{1}{\cos x}} \stackrel{x=2y+\frac{\pi}{2}}{\Longrightarrow} \lim_{y \to 0} \left(\operatorname{ctg} \left(\frac{2y+\frac{\pi}{2}}{2} \right) \right)^{\frac{1}{\cos(2y+\frac{\pi}{2})}} = \lim_{y \to 0} \left(\operatorname{ctg} \left(y + \frac{\pi}{4} \right) \right)^{-\frac{1}{\sin 2y}} = \lim_{y \to 0} \left(\operatorname{ctg} \left(y + \frac{\pi}{4} \right) \right)^{-\frac{1}{\sin 2y}} = \lim_{y \to 0} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = (e)^{\frac{1}{y \to 0}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = (e)^{\frac{1}{y \to 0}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}(y+\frac{\pi}{4})} \right)^{-\frac{1}{\sin 2y}} = \lim_{x \to \infty} \left(\operatorname{e}^{\ln \operatorname{ctg}($$

$$\lim_{(e)^{y\to 0}} -\frac{1}{\sin 2y} \ln \left(1 - \frac{2 \operatorname{tg} y}{\operatorname{tg} y + 1} \right) = \lim_{(e)^{y\to 0}} -\frac{1}{2y} \ln \left(1 - \frac{2y}{y+1} \right) = \lim_{(e)^{y\to 0}} -\frac{1}{2y} \left(\frac{-2y}{y+1} \right) = \lim_{(e)^{y\to 0}} \frac{1}{y+1} = e.$$

$$\mathbf{19.24.} \quad \lim_{x \to 1} \left(\frac{e^{\sin \pi x} - 1}{x - 1} \right)^{x^2 + 1} = \lim_{x \to 1} \left(\frac{e^{\sin \pi x} - 1}{x - 1} \right)^2 \xrightarrow{\frac{x = y + 1}{y}} \left(\lim_{y \to 0} \frac{e^{\sin \pi (y + 1)} - 1}{y} \right)^2 = \left(\lim_{y \to 0} \frac{e^{-\sin \pi y} - 1}{y} \right)^2 = \left(\lim_{y \to 0} \frac{-\sin \pi y}{y} \right)^2 = \pi^2.$$

Задание 20

$$20.24. \qquad \lim_{x \to 0} \sqrt{(e^{\sin x} - 1)\cos\left(\frac{1}{x}\right) + 4\cos x} \qquad \xrightarrow{(|\cos\frac{1}{x}| \leqslant 1) \ \lor \ (e^{\sin x} \to 1)}$$

$$\lim_{x \to 0} \sqrt{0 + 4\cos x} = \sqrt{4} = 2.$$

Вывод

Повторил определение пределов числовой последовательности и функции в точке. Научился вычислять пределы числовых последовательностей и функций, укрепил знание об эквивалентных функциях при $x \to 0$.