ВЕКТОРИЗАЦИЯ ТЕКСТОВ

о бейзлайне для Harry Potter and the Action Prediction Challenge from Natural Language

Есть текст фанфика по Поттеру. В фанфике иногда происходят заклинания

Задача: по тексту, предшествующему заклинанию, угадать, какое заклинание сейчас будет.

Задача:

по тексту, предшествующему заклинанию, угадать, какое заклинание сейчас будет.

Наивный бейзлайн:

простой BoW вектор текста запихнуть в простой классификатор простой BoW: count vectorizer

Кусок статьи про датасет

3.1 Machine learning model

The input sentence $w_{1:n}$ is encoded as a one-hot vector, \mathbf{v} (total occurrence weighting scheme).

Multinomial Logistic Regression Let $\mathrm{MLR}_{\theta}(\mathbf{v})$ be an abstraction of a multinomial logistic regression parametrized by θ , the output for an input \mathbf{v} is computed as the $\arg\max_{a\in A}P(y=a|\mathbf{v})$, where $P(y=a|\mathbf{v})$ is a softmax function, i.e, $P(y=a|\mathbf{v})=\frac{e^{W_a\cdot\mathbf{v}}}{\sum_{a'}^A e^{W_{a'}\cdot\mathbf{v}}}.$

простой классификатор

как вообще давать тексты в модели

как вообще давать тексты в модели

Подход, основанный на BoW превращении текстов в векторы

Подход, основанный на использовании готовых векторов — эмбеддингов

BoW

Bag of words представление корпуса

```
D — корпус, d_i — документ, t_{ij} — токен, |X| — количество элементов в X, RN — пространство, элементы которого — упорядоченные наборы из N вещественных чисел (i.e. векторы в RN)
```

D состоит из документов d1, .., di, .., d|D|, документ di состоит из токенов ti1, ., tij, ., ti|di|

BoW (e.g.Tf-ldf и Count (частоты)) переводят элементы корпуса D в элементы пространства RN, где N — кол-во уникальных слов в корпусе

OHE

Есть токенизированный, лемматизированный текст на русском Есть словарь русского языка с пронумерованными словарными статьями

OHE(слово) = V1 = (0, 0, 0, ..., 0, 1, 0...),

- |V1|=размер словаря,
- 1 на позиции, соответствующей номеру слова в словаре

MHE

для текста. МНЕ(текст)=V2(текст), |v2|=|v1|, V2(текст) = (0, 1, 0, .., 0, 1, 0..), для каждого слова текста поставлена величина на позиции токена в словаре

Один из способов получения МНЕ(текст): сложить ОНЕ каждого его токена.

Beierof dua arenation: u. Sonte (0, ..., 0, 1, ...,) u. Sonte u. 1

crob l' crobape

Beieros dina mercina: (O, ..., O, 1, ...,) UR 1 A, напр. Tf-Idf-вес слова в тексте # crob & crobabe

101- mero 200-6 6 nopryce

w — слово D — корпус, коллекция текстов

V — словарь,

1dw1 - uncro don.6 e crobon w Tfw - nactiota croba w 6 gok-78.

Векторные пространства

Векторное пространство неформально — куча штук (векторов)

- Векторы друг с другом можно складывать, получая векторы
- Векторы можно умножать на числа.
- Описанное работает привычно (v1+v2 = v2+v1, 1*v1 = v1 и т.д.)

Вектор в Rn можно записать столбцом из n чисел

• Е.g. документ в Tf-Idf матрице — это такой вектор в R|D|

Последовательность из m векторов в Rn можно записать в табличку-матрицу nxm (n строк, m столбцов)

Е.д. корпус в Tf-Idf представлении такая матрица в R|D|

В Rn можно делать арифметику а ещё ввести расстояние между векторами

аксиомы ^{36кт.} пр-в проблемы BoW векторов **О** D2 (d1) payreb L2) ropuyce di-gou-7 y ropupa P

проблемы BoW векторов , Они очень уж большие D2 (d1) payret Laz) payret Kopnyca di- gove-7 y ropupa P

BoW векторы большие, что делать?

Хранить их разреженно

Брать в вектор только самые частотные слова

Снижать размерность

Сингулярное разложение

Пусть есть матрица А

Известно, что её можно представить в виде Р = L · Л · R причём магриза магриза

- Л диагональная матрица, элементы которой упорядочены по убыванию
- Зануление наименьших элементов ∧ приводит к понижению размерности с минимальным потерями в дисперсии

Методы снижения размерности

LSI

Пусть корпус представлен BOW матрицей

Подход LSI заключается в том, чтобы

- сингулярно разложить BOW матрицу корпуса
- оставляя только k наибольших lambda в срединной матрице разложения, делать снижение размерности
- получатся мЕньшие векторы документов

PCA

Сначала центрируем векторы документов из корпуса, затем делаем LSI PCA - Eigenvectors Shown

t-SNE

- Не строит линейное отображение
- Смотрит на отношения между точками для обработки нелинейностей
- Итеративно подбирает параметры

UMAP

Kaк tSNE, но

- Моделирует распределение расстояний в оригинальном пространстве с помощью другого распределения
- По-другому предобрабатывает расстояния
- Моделирует оригинальное распределение расстояний не распределением Стьюдента
- Быстрее работает

pLSI

Вероятности из 3БЧ и начальных приближений

Начальные приближения берутся из категориальных распределений, параметры которых подбираются итеративно.

$$P(D, W) = P(D) \sum_{Z} P(Z|D)P(W|Z)$$

$$P(D, W) = \sum_{Z} P(Z)P(D|Z)P(W|Z)$$

$$A \approx U_{t}S_{t}V_{t}^{T}$$

LDA

Как pLSI, только начальные распределения генерируются из распределения Дирихле. Параметры распределения подбираются итеративно.

LDA

Как pLSI, только начальные распределения генерируются из распределения Дирихле. Параметры распределения подбираются итеративно.

BigARTM

Настраиваемое тематическое моделирование, SoTA

Как ещё можно?

Эмбеддингами.

Эмбеддинги

Какой способ нахождения расстояния между эмбеддингами

лучше справится с похожестью текстов "кот, кот и кот" и "кот и кот"?

. Dal + 1001

CHUTATO PECCI-E metaly fectobleurami