Estadística 1

Andrea Gomez Vargas

Table of contents

1	Prin	nera pa	rte: Evaluación conceptual y teórica	2
	1.1	Consi	gne las definiciones de Población, muestra y unidad de análisis	2
	1.2	Consi	gne, defina y ejemplifique los niveles de medición de Stevens	2
	1.3	Consi	gne las principales propiedades de la distribución normal	2
	1.4	Conce	epto y elementos constitutivos de las pruebas de hipótesis	3
2	Seg	unda p	arte: Evaluación práctica	3
	2.1	Para o	cada una de las preguntas definir:	3
3	Tero	cera pa	rte: Análisis estadístico descriptivo	4
	3.1	•	tar los datos a R	4
	3.2	Utiliza	ando la función table() y sus funciones anexas, calcular	4
		3.2.1	Las tablas de frecuencias absolutas para las variables ocio, genero,	
			colegio, amor, religión	4
		3.2.2	Las tablas de frecuencias relativas para las variables ocio, genero, cole-	
			gio, amor, religión	6
	3.3	Realiz	car gráficos de barras para cada una de las variables anteriores	8
		3.3.1	Gráfico 1: frecuencia absoluta y porcentual por variable género	8
		3.3.2	Gráfico 2: frecuencia absoluta y porcentual por variable ocio	9
		3.3.3	Gráfico 3: frecuencia absoluta y porcentual por variable amor	10
		3.3.4	Gráfico 4: frecuencia absoluta y porcentual por variable colegio	12
		3.3.5	Gráfico 5: frecuencia absoluta y porcentual por variable religión	13
	3.4	Calcu	lar las tablas de contingencia para los siguientes cruces de variables	15
		3.4.1	Ocio y genero	15
		3.4.2	Ocio y colegio	16
		3.4.3	Amor y religión	16
		3.4.4	Colegio y religión	17
4	Спа	rta nar	te: Contrastes de hinótesis	17

1 Primera parte: Evaluación conceptual y teórica

1.1 Consigne las definiciones de Población, muestra y unidad de análisis

- **Población:** es un conjunto de *todos* los elementos que estamos estudiando, acerca de los cuales intentamos sacar conclusiones. Debemos definir esa población de modo que quede claro cuándo cierto elemento pertenece o no a la población.¹
- Muestra: Colección de algunos elementos —no todos—, de la población bajo estudio, utilizada para describir poblaciones.
 - Muestra representativa: Muestra que contiene las características importantes de la población en las mismas proporciones en que están contenidas en la población.
- Unidad de Análisis: o la unidad de estudio u objeto/sujeto de estudio (los elementos que van a ser estudiados), mientras que la unidad de recolección es la fuente proveedora de la información requerida, son los elementos que funcionan como informantes

1.2 Consigne, defina y ejemplifique los niveles de medición de Stevens

Nivel	Definición
Nominal	Se caracteriza por datos que consisten exclusivamente en nombres, etiquetas o categorías. Lo
Ordinal	Las categorías están ordenadas, pero no hay diferencias o estas carecen de significado.
De intervalo	Las diferencias tienen un significado, pero no hay punto de partida cero natural, y las razone
De razón	Hay un punto de partida cero natural y las razones tienen significado.

Ta

1.3 Consigne las principales propiedades de la distribución normal

La distribución normal, también conocida como distribución gaussiana o curva de campana, es una de las distribuciones de probabilidad más importantes en estadística.

Esta distribución tiene las siguientes características clave:

- Simetría: Es simétrica alrededor de la media (μ) , lo que significa que las colas izquierda y derecha de la distribución son idénticas.
- Unimodal: Tiene un solo pico en la media (μ) (punto por el que pasa el eje de simetría).
- Forma de Campana: La función de densidad de probabilidad forma una curva en forma de campana.

¹Levin, Richard I. y Rubin, David S. Estadística para Administración y Economía, México, 2004

$$X \sim N(\mu, \sigma)$$

donde:

- (X) es la variable aleatoria
- (μ) es la media (promedio) de la distribución.
- (σ) es la desviación estándar, que mide la dispersión de los datos.

- Regla Empírica: Aproximadamente el 68% de los datos caen dentro de una desviación estándar de la media, el 95% dentro de dos desviaciones estándar y el 99.7% dentro de tres desviaciones estándar.
- El área bajo la curva es igual a 1
- La desviación estándar (σ) es la distancia entre el eje de simetría y el punto donde cambia la curvatura.

1.4 Concepto y elementos constitutivos de las pruebas de hipótesis

2 Segunda parte: Evaluación práctica

Se ha realizado una encuesta a jóvenes españoles en el año 2000. Se muestran a continuación las 16 preguntas que contenía el cuestionario.

2.1 Para cada una de las preguntas definir:

- a. Las variables que contienen información a analizar estadísticamente.
- o. Identificar, para cada una de ellas el nivel de medición y las modalidades/categorías qu

Pregunta

OCIO

¿Cuál es la actividad que mas te gusta hacer fuera de tu casa cuando dispones de tiempo libre? ¿Cuántas horas libres tienes a la semana para tu ocio o diversión?

¿Cuántas horas semanales dedicas a ver televisión?

FAMILIA

¿Cómo dirías que ha sido tu infancia, la definirías como.....?

¿cuál es el grado de dedicación en las siguientes tareas de tu hogar?

¿Cuántos hijos crees que llegarás a tener?

¿Cuántos hijos te gustaría llegar a tener?

¿En cual de las siguientes situaciones te encuentras?

CULTURA

¿En que centro realizaste la totalidad o la mayor parte de tus estudios?

¿Cuántos libros has leído en los últimos 12 meses?

ACTITUDES

¿Cómo te definirías en materia religiosa?

Cuando se habla de política se utilizan normalmente las expresiones izquierda y derecha ¿ En que casilla te u

INGRESOS

¿Qué cantidad aproximadamente de dinero (en miles de pesetas) ingresas al mes por cada uno de los conceptos. Actualmente entre todos los miembros de tu hogar y por todos los conceptos ¿ De cuántos ingresos netos (sin

DATOS

Sexo

¿Cuántos años cumpliste en tu último cumpleaños?

3 Tercera parte: Análisis estadístico descriptivo

En esta actividad se trabajará con el archivo de datos "cuestionario.xlsx".

3.1 Importar los datos a R.

```
cuestionario <- openxlsx::read.xlsx("EVALUACION/cuestionario.xlsx")</pre>
```

- 3.2 Utilizando la función table() y sus funciones anexas, calcular
- 3.2.1 Las tablas de frecuencias absolutas para las variables ocio, genero, colegio, amor, religión

3.2.1.1 Ocio

addmargins(table(cuestionario\$ocio,useNA = "always")) %>% kbl()

Var1	Freq
	28
1	195
2	166
3	109
4	169
5	32
6	18
NA	0
Sum	717

3.2.1.2 Género

addmargins(table(cuestionario\$genero,useNA = "always")) %>% kbl()

Var1	Freq
1	346
2	371
NA	0
Sum	717

3.2.1.3 Colegio

addmargins(table(cuestionario\$colegio,useNA = "always")) %>% kbl()

Var1	Freq
	3
1	475
2	59
3	180
NA	0
Sum	717

3.2.1.4 Amor

addmargins(table(cuestionario\$amor,useNA = "always")) %>% kbl()

Var1	Freq
	68
1	294
2	138
3	149
4	68
NA	0
Sum	717

3.2.1.5 Religión

addmargins(table(cuestionario\$religion, useNA = "always")) %>% kbl()

Var1	Freq
1	177
2	317
3	12
4	108
5	99
99999	4
NA	0
Sum	717

3.2.2 Las tablas de frecuencias relativas para las variables ocio, genero, colegio, amor, religión

3.2.2.1 Ocio

kbl(round(prop.table(table(cuestionario\$ocio))*100,2))

Var1	Freq
	3.91
1	27.20
2	23.15
3	15.20
4	23.57
5	4.46
6	2.51

3.2.2.2 género

kbl(round(prop.table(table(cuestionario\$genero))*100,2))

Var1	Freq
1	48.26
2	51.74

3.2.2.3 colegio

kbl(round(prop.table(table(cuestionario\$colegio))*100,2))

Var1	Freq
	0.42
1	66.25
2	8.23
3	25.10

3.2.2.4 amor

kbl(round(prop.table(table(cuestionario\$amor))*100,2))

Var1	Freq
	9.48
1	41.00
2	19.25
3	20.78
4	9.48

3.2.2.5 religión

kbl(round(prop.table(table(cuestionario\$religion))*100,2))

Var1	Freq
1	24.69
2	44.21
3	1.67
4	15.06
5	13.81
99999	0.56

3.3 Realizar gráficos de barras para cada una de las variables anteriores

- a. Con la frecuencia relativa
- b. Con la frecuencia porcentual

3.3.1 Gráfico 1: frecuencia absoluta y porcentual por variable género

```
par(mfrow = c(1, 2))
g1 <- barplot(table(cuestionario$genero),</pre>
        main="frecuencia absoluta por género",
        xlab="género",
        ylab="frecuencia absoluta",
        border="#386641",
        col="#386641",
        density=100,
        ylim = c(0, 400))
text(x = g1,
     y = table(cuestionario$genero),
     label = table(cuestionario$genero),
     pos = 3,
     cex = 0.8,
     col = "black")
p1 <- round(prop.table(table(cuestionario$genero))*100,2)
g2 <- barplot(p1,
        main="frecuencia porcentual por género",
        xlab="género",
        ylab="frecuencia porcentual",
        border="#003554",
        col="#003554",
        density=80,
ylim = c(0,60))
text(x = g2,
     y = p1,
     label = p1,
     pos = 3,
     cex = 0.8,
     col = "black")
```

frecuencia absoluta por génífrecuencia porcentual por gér

3.3.2 Gráfico 2: frecuencia absoluta y porcentual por variable ocio

```
par(mfrow = c(1, 2))
g3 <- barplot(table(cuestionario$ocio),
        main="frecuencia absoluta por ocio",
        xlab="ocio",
        ylab="frecuencia absoluta",
        border="#386641",
        col="#386641",
        density=100,
        ylim = c(0,250)
text(x = g3,
     y = table(cuestionario$ocio),
     label = table(cuestionario$ocio),
     pos = 3,
     cex = 0.8,
     col = "black")
p2 <- round(prop.table(table(cuestionario$ocio))*100,2)</pre>
```

frecuencia absoluta por oci frecuencia porcentual por oci

3.3.3 Gráfico 3: frecuencia absoluta y porcentual por variable amor

```
xlab="amor",
        ylab="frecuencia absoluta",
        border="#386641",
        col="#386641",
        density=100,
        ylim=c(0, 350))
text(x = g5,
     y = table(cuestionario$amor),
     label = table(cuestionario$amor),
     pos = 3,
     cex = 0.8,
     col = "black")
p3 <- round(prop.table(table(cuestionario$amor))*100,2)
g6 <- barplot(p3,
        main="frecuencia porcentual por amor",
        xlab="amor",
        ylab="frecuencia porcentual",
        border="#003554",
        col="#003554",
        density=80,
        ylim=c(0, 50))
text(x = g6,
     y = p3,
     label = p3,
     pos = 3,
     cex = 0.8,
     col = "black")
```

frecuencia absoluta por am frecuencia porcentual por an

3.3.4 Gráfico 4: frecuencia absoluta y porcentual por variable colegio

```
par(mfrow = c(1, 2))
g7 <- barplot(table(cuestionario$colegio),
        main="frecuencia absoluta por colegio",
        xlab="colegio",
        ylab="frecuencia absoluta",
        border="#386641",
        col="#386641",
        density=100,
        ylim = c(0,600)
text(x = g7,
     y = table(cuestionario$colegio),
     label = table(cuestionario$colegio),
     pos = 3,
     cex = 0.8,
     col = "black")
p4 <- round(prop.table(table(cuestionario$colegio))*100,2)
```

frecuencia absoluta por colefrecuencia porcentual por cole

3.3.5 Gráfico 5: frecuencia absoluta y porcentual por variable religión

```
ylab="frecuencia absoluta",
        border="#386641",
        col="#386641",
        density=100,
ylim = c(0,350))
text(x = g9,
     y = table(cuestionario$religion),
     label = table(cuestionario$religion),
     pos = 3,
     cex = 0.8,
     col = "black")
p5 <- round(prop.table(table(cuestionario$religion))*100,2)
g10 <- barplot(p5,
        main="frecuencia porcentual por religion",
        xlab="religion",
        ylab="frecuencia porcentual",
        border="#003554",
        col="#003554",
        density=80,
ylim = c(0,50))
text(x = g10,
    y = p5,
    label = p5,
    pos = 3,
    cex = 0.8,
    col = "black")
```

frecuencia absoluta por religfrecuencia porcentual por relig

3.4 Calcular las tablas de contingencia para los siguientes cruces de variables

3.4.1 Ocio y genero

```
# absoluta
addmargins(table(cuestionario$ocio, cuestionario$genero,useNA = "always")) %>% kbl()
# relativa
kbl(round(prop.table(table(cuestionario$ocio, cuestionario$genero))*100,2))
```

	1	2	NA	Sum
	13	15	0	28
1	84	111	0	195
2	130	36	0	166
3	38	71	0	109
4	52	117	0	169
5	23	9	0	32
6	6	12	0	18
NA	0	0	0	0
Sum	346	371	0	717

	1	2
	1.81	2.09
1	11.72	15.48
2	18.13	5.02
3	5.30	9.90
4	7.25	16.32
5	3.21	1.26
6	0.84	1.67

3.4.2 Ocio y colegio

```
# absoluta
addmargins(table(cuestionario$ocio, cuestionario$colegio,useNA = "always")) %>% kbl()
# relativa
kbl(round(prop.table(table(cuestionario$ocio, cuestionario$colegio))*100,2))
```

		1	2	3	NA	Sum
	0	18	2	8	0	28
1	1	135	11	48	0	195
2	1	112	19	34	0	166
3	0	70	12	27	0	109
4	1	106	13	49	0	169
5	0	23	1	8	0	32
6	0	11	1	6	0	18
NA	0	0	0	0	0	0
Sum	3	475	59	180	0	717

		1	2	3
	0.00	2.51	0.28	1.12
1	0.14	18.83	1.53	6.69
2	0.14	15.62	2.65	4.74
3	0.00	9.76	1.67	3.77
4	0.14	14.78	1.81	6.83
5	0.00	3.21	0.14	1.12
6	0.00	1.53	0.14	0.84

3.4.3 Amor y religión

```
# absoluta
addmargins(table(cuestionario$amor, cuestionario$religion,useNA = "always")) %>% kbl()
```

	1	2	3	4	5	99999	NA	Sum
	14	17	3	16	16	2	0	68
1	70	149	2	40	32	1	0	294
2	32	64	3	17	21	1	0	138
3	40	63	3	22	21	0	0	149
4	21	24	1	13	9	0	0	68
NA	0	0	0	0	0	0	0	0
Sum	177	317	12	108	99	4	0	717

```
# relativa
```

kbl(round(prop.table(table(cuestionario\$amor, cuestionario\$religion))*100,2))

	1	2	3	4	5	99999
	1.95	2.37	0.42	2.23	2.23	0.28
1	9.76	20.78	0.28	5.58	4.46	0.14
2	4.46	8.93	0.42	2.37	2.93	0.14
3	5.58	8.79	0.42	3.07	2.93	0.00
4	2.93	3.35	0.14	1.81	1.26	0.00

3.4.4 Colegio y religión

```
# absoluta
addmargins(table(cuestionario$colegio, cuestionario$religion,useNA = "always")) %>% kbl()
```

	1	2	3	4	5	99999	NA	Sum
	1	2	0	0	0	0	0	3
1	114	225	7	64	62	3	0	475
2	13	15	3	18	10	0	0	59
3	49	75	2	26	27	1	0	180
NA	0	0	0	0	0	0	0	0
Sum	177	317	12	108	99	4	0	717

```
# relativa
kbl(round(prop.table(table(cuestionario$colegio, cuestionario$religion))*100,2))
```

	1	2	3	4	5	99999
	0.14	0.28	0.00	0.00	0.00	0.00
1	15.90	31.38	0.98	8.93	8.65	0.42
2	1.81	2.09	0.42	2.51	1.39	0.00
3	6.83	10.46	0.28	3.63	3.77	0.14

4 Cuarta parte: Contrastes de hipótesis

Utilizando los datos del archivo cuestionario y técnicas paramétricas y no paramétricas,

- a) Determinar con un nivel de significación del 5% si el promedio de horas libres a la semana para ocio o diversión en los hombres es mayor a la de las mujeres. Concluir en términos del problema
- b) Determinar si hay diferencias en la cantidad promedio de libros leídos si tenemos en cuenta la asistencia de los jóvenes a colegio estatal o privado. Utilizar un nivel de significación del 5%. Concluir en términos del problema
- c) Determinar en cada caso, cuál es el test más adecuado. Justificar.