# Learning Neural Representations of Human Cognition across Many fMRI Studies





Arthur Mensch<sup>(1)</sup>

Julien Mairal<sup>(2)</sup>

Danilo Bzdok<sup>(3)</sup>

Bertrand Thirion (1)

Gaël Varoquaux<sup>(1)</sup>



 $^{(1)}$ Inria, CEA, Université Paris-Saclay, Gif-sur-Yvette, France  $^{(2)}$ Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France  $^{(3)}$ Department of Psychiatry, RWTH, Aachen, Germany

## Functional MRI decoding



#### Relate brain activation to cognitive stimuli

- Many small studies with  $\neq$  psychological paradigms
- A few large scale studies (1000s subjects)

How to aggregate heterogeneous fMRI data into a common cognitive model?

#### Learning setting

- First level GLM  $\rightarrow$  **z-score maps**
- One map / record / base-condition
- Condition prediction on new subjects
- Baseline: Multinomial regression



# Model



## Dimension reduction $W_{\varphi}$

- Sparse dictionaries from HCP resting-state [2]
  - $\mathbf{X}_{rs} = \mathbf{D}\mathbf{A} \in \mathbb{R}^{p imes g} imes g imes n, \qquad \mathbf{D}$  sparse
- Orthogonal projection o 1 time-serie / component
- Unsupervised setting → number of components ?
- → Multi-scale dictionaries

## Regularization

Latent space embedding

Finding a common representation of brain images

 $\forall d \in D, \ \mathbf{W}_d = \mathbf{W}_e \mathbf{W}_d' \in \mathbb{R}^{g \times l} \times \mathbb{R}^{l \times k_d}$ 

That is easy to classify for multiple datasets

• Factorized linear model (with 2 layers, l < g)

• W<sub>e</sub> is shared: multi-task/transfer learning

[1] A. Mensch, J. Mairal, D. Bzdok, B. Thirion, and G. Varoquaux. Learning neural representations of human cognition across many fmri studies. In *Advances in Neural Information Processing Systems*, 2017.

References

- [2] A. Mensch, J. Mairal, B. Thirion, and G. Varoquaux. Stochastic Subsampling for Factorizing Huge Matrices. *IEEE Transactions on Signal Processing*, 66(1):113–128, 2018.
- We allow l > k: not a reduced rank regression
- Trivial with  $\ell_2$  regularization: no transfer
- **Dropout** allows transfer despite  $\mathbf{W}_d$  full rank: (training)  $\hat{\mathbf{y}} = \mathbf{x}\mathbf{W}_e\mathbf{M}\mathbf{W}_d'$ ,  $\mathbf{M}$  masking matrix

#### **Performance**



- **Dimension reduction** using resting state data is efficient regularization (and  $\downarrow$  train cost)
- Extra efficient **latent layer** + **Dropout** (explains 2-layer  $\rightarrow$  3-layer improvement)
- ullet **Transfer learning** occurs, and is stronger with more datasets (one o two o five datasets )

#### Transfer improves learning curves



### Cognitive space visualization



Meaningful template images associated to multi-dataset predictions (one color per dataset)

## Interpretability



 $Model \rightarrow Higher-level regions (e.g. FFA)$ 

#### Conclusion and future work

- Scalable and paradigm-agnostic model
- With evidence of transfer learning
- Dictionaries + python code available
  - github.com/arthurmensch/cogspaces
- Model to be tested on the whole openFMRI repository