

Georg- August-Universität Göttingen Wirtschaftswissenschaftliche Fakultät Professur für Statistik und Ökonometrie

Statistische und Betriebswirtschaftliche Analyse von Windkraft auf Basis verschiedener Windkraftanlagentypen in Süddeutschland

Zwölfwöchige Abschlussarbeit im Rahmen der Prüfung im Studiengang Bachelor in Betriebswirtschaftslehre an der Georg- August- Universität Göttingen

1. Prüfer: Prof. Dr. Thomas Kneib

2. Prüfer: Dipl. Volkswirt Jan- Christian Schlüter

Vorgelegt am: 15. Oktober 2018 Von: Lisa Müller [11580200]

Aus: Barnstorf

Inhaltsverzeichnis

1	Lini	eitung		1
2	Vors	stellung	g der Datenlage und Vorgehensweise	3
3	Leis	tungsre	echnung	6
	3.1	Altern	native Anlagen	7
		3.1.1	Mögliche alternative Leistungen und Wahl der Einzelanlage	8
		3.1.2	Flächenbedarf und Turbinendichte im Anlagenverbund	8
4	Ertr	agsrecl	ınung	12
	4.1	Einspe	eisevergütung nach EEG	12
	4.2	Erträg	ge der alternativen Anlagen	14
		4.2.1	Erträge Einzelanlage	14
		4.2.2	Erträge Anlagenverbund	16
5	Kos	tenrech	nnung	17
	5.1	Zusan	nmensetzung der Kostenparameter	17
	5.2	Koste	n der alternativen Anlagen	18
		5.2.1	Kosten Einzelanlage	18
		5.2.2	Kosten Anlagenverbund	20
	5.3	Trend	s in der Kostenentwicklung	21
6	Aus	wertun	g	22
	6.1	Gewin	nnvergleichs-, und Rentabilitätsrechnung	22
	6.2	Amor	tisation	25
	6.3	Trans	ponierung der Gewinne	26
	6.4	Disku	ssion der Ergebnisse	31
7	7115	ammen	fassung und kritische Wiirdigung	33

Abkürzungsverzeichnis

- Erneuerbare Energien Gesetz (EEG)
- Megawatt (MW)
- Kilowatt (kW)
- Quadratkilometer (km^2)
- Deutscher Wetterdienst (DWD)
- Meter (m)
- Meter pro Sekunde (m/s)
- Kilogramm pro Kubikmeter (kg/ m^3)
- Kilowatt pro Stunde (kWh)
- Stunde (h)
- Hektar (ha)
- Cent (ct)
- Euro (EUR)

Abbildungsverzeichnis

1	Weibull-Verteilung der Windgeschwindigkeiten 2017 in Schwarzwald-Hornisgrind	le
	nach Maximum- Likelihood Methode. Der Graph zeigt die relative Häufig-	
	keit auf der y-Achse für die jeweilige Windgeschwindigkeit [m/s] auf der	
	x-Achse als Histogramm auf Basis der 8670 gemessenen Werte und die	
	geschätzte Verteilung als angepasste Kurve. Die Schätzung ergab für den	
	scale- Parameter der Kurve einen Wert von 7.7 und für die shape- Para-	
	meter einen Wert von 2.0. Letzterer bestätigt somit eine für Deutschland	
	typische Verteilung des Windes [32]	4
2	Darstellung der theoretische Leistungen und der sich errechnende Nut-	
	zungsgrad der fünf Windkraftanlagen mit den höchsten errechneten Werten	
	sowie der installierten Anlage Enercon E70. Letztere erreicht nur etwa $1/3$	
	der theoretischen Leistung der alternativen Turbinen.	8
3	Darstellung der theoretischen Leistungen der Windkraftanlagen insgesamt	
	unter Berücksichtigung der errechneten maximalen Turbinendichte pro	
	km^2 . Die Berechnungen ergaben für den Verbund eine von den Einzelan-	
	lagen unterschiedliche optimale Turbinenwahl	0
4	Informationen zu den der optimalen Anlagen zugehörigen Rotordurchmes-	
	ser, der Nennleistung und errechnete Turbinendichte. Letztere ergab für	
	die Siemens SWT 3.15 142 eine potenzielle Dichte von 5 Anlagen pro km^2 . 1	0
5	Gebote der letzten drei Ausschreibungsrunden der Monate Februar, Mai	
	und August des Jahres 2018. Es sind pro Monats jeweils der Wert des	
	niedrigsten Gebotes und höchsten Gebotes, welche eine Förderung nach	
	EEG erhalten haben, sowie der mengengewichtete Durchschnittswert aller	
	erhaltenen Gebote angegeben. Den Zuschlag erhalten haben laut Bundes-	
	netzagentur rund 100 Bewerber pro Ausschreibungsrunde. [5] 1	4
6	Darstellung der Erträge der Einzelanlagen, welche identisch mit den leis-	
	tungsstärksten Einzelanlagen sind. Für jede betrachtete Vergütung von	
	Minimum 3,80 [ct/kWh], Maximum 6,30 [ct/kWh] und Durchschnitt 5,67	
	[ct/kWh] sind in der oberen Tabelle die Erträge pro Jahr und in der	
	unteren Tabelle die Erträge über die Lebensdauer von 20 Jahren kumuliert	
	angegeben	5

7	Darstellung der Erträge der Anlagen und jeweilige Dichte im Verbund,	
	welche identisch mit den leistungsstärksten Anlagen im Verbund sind.	
	Für jede betrachtete Vergütung von Minimum 3,80 [ct/kWh], Maximum	
	$6{,}30~[{\rm ct/kWh}]$ und Durchschnitt $5{,}67~[{\rm ct/kWh}]$ sind in der oberen Tabelle	
	die Erträge pro Jahr und in der unteren Tabelle die Erträge über die	
	Lebensdauer von 20 Jahren kumuliert angegeben	16
8	Darstellung der Hauptinvestitionskosten der leistungsstärksten Einzel-	
	anlagen. Es liegen Informationen zu der jeweiligen Nennleistung sowie	
	errechneten Jahresleistung, sowie die Kosten auf Basis der minimalen	
	Kosten von 1100 [EUR/kW] und maximalen Investitionskosten von 1500	
	[EUR/kW] vor	18
9	Darstellung der jährlichen Betriebskosten der leistungsstärksten Anlagen je	
	betrachteter Hauptinvestitionskosten für die Einzelanlagen. Diese ergeben	
	sich aus den Berechnungen von 1.5% für die erste Dekade und 2.5% für	
	die zweite Dekade auf Basis von minimalen Kosten von 1100 $[\mathrm{EUR}/\mathrm{kW}]$	
	und maximalen Kosten von 1500 [EUR/kW]	19
10	Hochrechnung der insgesamt errechneten Betriebskosten der Einzelanlagen	
	aus Abbildung 9 auf die Lebensdauer von 20 Jahren unter Einzug der	
	jeweiligen Prozentsätze pro Dekade	19
11	Darstellung Hauptinvestitionskosten der leistungsstärksten Anlagen nach	
	Hochrechnung mit der jeweiligen Turbinendichte. Es liegen Informationen	
	zu der jeweiligen Nennleistung sowie errechneten Jahresleistung, sowie	
	die Kosten auf Basis der minimalen Kosten von 1100 [EUR/kW] und	
	maximalen Kosten von 1500 [EUR/kW] vor	20
12	Darstellung der jährliche Betriebskosten der leistungsstärksten Anlagen	
	im Verbund je betrachteter Hauptinvestitionskosten für die Einzelanlagen.	
	Diese ergeben sich bei aus den Berechnungen von 1.5% für die erste Dekade	
	und 2.5 % für die zweite Dekade auf Basis von minimalen Kosten von 1100	
	[EUR/kW] und maximalen Kosten von 1500 [EUR/kW]	20
13	Hochrechnung der insgesamt errechneten Betriebskosten für die Anlagen	
	im Verbund aus Abbildung 12 auf die Lebensdauer von 20 Jahren unter	
	Einzug der jeweiligen Prozentsätze pro Dekade	20

14	Darstellung der Einzelanlagen mit dem geringsten Amortisationszeitraum	
	je betrachtetem Kostenszenario. Dieser weist der Tabelle nach für die	
	meisten Anlagen einen ähnlichen Wert auf. Die Anlagen im Verbund sowie	
	die besten Anlagen weisen mit eine Abweichung von 1 -2 Jahren ähnliche	
	Werte auf. Die genauen Ausführungen sind der Tabelle in Anhang 6 zu	
	entnehmen.	26
15	Jährlicher Ertrag [EUR] der Top-Anlagen bei ändernden Windgeschwin-	
	digkeiten [m/s]. Der Graph zeigt den jeweiligen jährlichen Ertrag [EUR]	
	auf der y-Achse als Verlauf in Abhängigkeit der Windgeschwindigkeit $[\mathrm{m/s}]$	
	auf der x-Achse auf Basis der Berechnungen des Ertragsrechner für die	
	mittleren gerundeten Geschwindigkeiten. Die rote Linie entspricht den	
	tatsächlichen Verhältnissen in Schwarzwald-Hornisgrinde. Der Ertrag der	
	Siemens SWT 3.15 142 entspricht dem Ertrag / km^2	29
16	Gewinn je Szenario [EUR] der Top-Anlagen bei ändernden Windgeschwin-	
	digkeiten $[\mathrm{m/s}]$ insgesamt über einer Lebensdauer von 20 Jahren. Jährlicher	
	Gewinn [EUR] der Top-Anlagen bei ändernden Windgeschwindigkeiten	
	$[\mathrm{m/s}].$ Der Graph zeigt den jeweiligen Gewinn $[\mathrm{EUR}]$ auf der y-Achse als	
	Verlauf in Abhängigkeit der Windgeschwindigkeit $[\mathrm{m/s}]$ auf der x-Achse	
	auf Basis der Berechnungen des Ertragsrechner. Die rote Linie entspricht	
	den tatsächlichen Verhältnissen in Schwarzwald-Hornisgrinde. Der Gewinn	
	der Siemens SWT 3.15 142 entspricht dem Gewinn / km^2 . Die rote Linie	
	entspricht den tatsächlichen Verhältnissen in Schwarzwald-Hornisgrinde.	
	Der Gewinn der Siemens SWT 3.15 142 entspricht dem Gewinn $/km^2$.	30

Abstract

Das Ziel der vorliegenden Studie im Rahmen der Bachelorarbeit war es, das betriebswirtschaftliche Potenzial von Windkraft in Süddeutschland anhand eines statistischen Vergleiches verschiedener Windkraftanlagentypen zu überprüfen. Hierzu wurde neben der Aufbereitung der Daten zu den Windgeschwindigkeiten die theoretische Leistung von 82 Windkraftanlagen für das Jahr 2017 in der Region Schwarzwald-Hornisgrinde bestimmt. Eine anschließende Ertrags-, und Kostenanalyse anhand der aktuellen Vergütungssätze und durchschnittlichen Kosten zeigte auf, dass die leistungsstärksten Anlagen auch am rentabelsten sind.

1 Einleitung

Der Ertrag aus der Leistung von Windkraftanlagen ist Strom, dessen Preise an der Strombörse in Leipzig gehandelt werden. Diese haben somit direkten Einfluss auf die Erträge der Betreiber von Anlagen sowie die Ausgaben der Endverbraucher. Als wirtschaftspolitischer Marktansatz trat im Jahr 2000 das "Erneuerbare-Energien-Gesetz" (EEG) in Kraft, welches Erneuerbare Energien die Abnahme zu einem festen Strompreis garantiert. [23] So kam es durch die Energiewende und EEG-Umlage zu einer vermehrten Einspeisung von Erneuerbarer Energien an der Strombörse, welches durch sichere Vergütungen die Wirtschaftlichkeit für die Betreiber der Anlagen gewährleisten soll, aber auch höhere Preise für die Abnehmer zufolge hat. Allerdings sorgt nicht allein die EEG-Umlage, sondern die generelle Komplexität in der Preisbildung für Undurchsichtigkeit bei den Abnehmern. Dies begünstigt die aktuelle Kontroverse um den Nutzen von Windenergie. Das Ansteigen des Preises für Strom für die Haushalte ist daher unter anderem mit einem Anstieg der EEG-Umlage verbunden, von welchem wiederum die Wirtschaftlichkeit der Windenergieprojekte abhängig ist. [19] Aktuell kann die Windenergie im Strommarkt noch nicht zur Deckung ihrer eigenen Kosten beitragen. Auch Punkte der technischen Realisierbarkeit, Wirtschaftlichkeit und Sozial-, sowie Umweltverträglichkeit müssen berücksichtigt werden, um eine adäquate Aussage über das Potenzial von Windkraft für sowohl den gesamtwirtschaftlichen, als auch betriebswirtschaftlichen Nutzen treffen zu können. Die jüngste Vergangenheit hat derweil gezeigt, dass zukünftiges Lernpotenzial durch Lernkurven, Innovationen und neuen Techniken, auch Kostensenkungspotenzial mit sich bringt. [31]

Kontinuierlich wird dort die Windkraft ausgebaut, wo die Windhöffigkeit Aufschluss über die betriebswirtschaftliche Attraktivität bietet. Laut Bundesverband Windenergie [30] sind aktuell rund 28.675 Windkraftanlagen in Deutschland installiert, wovon sich 37% aller Anlagen allein in Niedersachsen befinden. Lediglich rund 5% (1.422 Anlagen) sind in Baden-Württemberg und rund 9% (2.493 Anlagen) in Bayern installiert. Die Quantität der Windenergienutzung in Süddeutschland fällt somit insbesondere im Vergleich zu Norddeutschland gering aus. Als primärer Grund wird hierbei meist das mangelnde Windaufkommen im Süden im Vergleich zu den Küstenregionen, sowie die erschwerte Installation der Anlagen in den Bergregionen aufgeführt [31]. Der stetige Neubau von Windenergienutzung im Süden zeigt jedoch, dass durchaus wirtschaftliches Potenzial besteht. So wurden in Baden-Württemberg im Jahr 2017 128 neue Windkraftanlagen erbaut, welche eine Leistung von rund 401 Megawatt [MW] generieren können. [30]

Ergänzend fand im vergangen Jahr eine Erneuerung des Gesetzes statt, welches fortan die Förderung von Windenergie des EEG über Ausschreibungen ermitteln lässt. In den beiden ersten Ausschreibungsrunden 2018 fiel dabei jedoch noch immer nur ein vergleichsweise geringer Anteil von 19 Anlagen auf das Bundesland Baden-Württemberg. [14]

Das Ziel der vorliegenden Arbeit ist es, eine statistische und betriebswirtschaftliche Analyse der potenziellen Nutzung von Windenergie auf Basis verschiedener Windkraftanlagentypen in Süddeutschland zu geben und die ertragstheoretische Attraktivität zu bewerten. Dabei soll im ersten Abschnitt anhand einer generellen Darstellung der Leistungsrechnung der betrachteten Windkraftanlagen das wirtschaftliche Potenzial an einem Standort in Baden-Württemberg aufgezeigt werden. Für die Berechnungen werden die Ergebnisse des R-Projektseminars [25] zur Region Schwarzwald-Hornisgrinde genauer betrachtet. Es folgt die Ermittlung der potenziellen Leistung verschiedener auf dem Markt erhältlicher Windkraftanlagen, dessen Nutzungsgrade und das damit einhergehende Leistungspotenzial zur Wahl der Anlage mit dem höchsten technischen Nutzen. Im zweiten Abschnitt zeigt dann eine genauere Betrachtung der Ertragsvergütung den Zusammenhang mit dem ökonomischen Nutzen von Windkraftanlagen auf. Es soll im dritten Abschnitt Antwort auf die Frage gegeben werden, wie sich die Kosten der Anlagen abschätzen lassen. Auf Basis der Daten aus dem R- Projektseminars [25], in welchem die Attraktivität von Schwarzwald-Hornisgrinde durch Berechnungen der deskriptiven Statistik aufgezeigt wurde, folgt im Rahmen der vorliegenden Bachelorarbeit im letzten Abschnitt der Analyse eine betriebswirtschaftliche Kosten-, und Ertagsrechnung nachfolgend der statistischen Auswertung der Leistung verschiedener Windkraftanlagen alleine und im Verbund pro km^2 . So soll der Gewinn pro Kilowatt [kW] und Gewinn pro Quadratmeter $[km^2]$ sowie die Amortisation für verschiedene Parametereinstellungen aufgezeigt werden. Die Ergebnisse werden abschließend zusammengefasst und ihre Validität auf Basis der Faktenlage kritisch hinterfragt.

2 Vorstellung der Datenlage und Vorgehensweise

Im ersten Kapitel sollen zunächst die zugrunde liegenden Informationen und Daten vorgestellt werden, anhand welcher die nachfolgenden statistischen und betriebswirtschaftlichen Berechnungen durchgeführt wurden. Aus diesen Faktoren ergebt sich die Darstellung der einzelnen Schritte der Analyse.

Es ist festzustellen, dass die betriebswirtschaftliche Analyse von Windkraft als Investitionsobjekt in Hinblick auf die Wirtschaftlichkeit der Anlagen meist projektspezifisch von Unternehmen durchgeführt und die Ergebnisse daher unter Beschluss gehalten werden. Infolgedessen beläuft sich die monetäre Analyse auf Basis von in Publikationen hingewiesene Durchschnittswerte. Die errechneten Ergebnisse sind darum lediglich als theoretische Abschätzung und nicht als bindende Prognose zu betrachten. Es kann aber aufgrund der Aktualität der Informationen eine weitestgehend adäquate Empfehlung für den optimalen Turbineneinsatz gegeben werden. Darüber hinaus belaufen sich die Berechnungen über verschiedene Parametereinstellungen der Investitionsrechnung und Abschätzungen derer Zusammensetzung. Als Basis für die schematische Vorgehensweise wird auf eine Veröffentlichung der Stadtwerke Viernheim [10] für ein Windparkvorhaben in Birkenau im südlichen Hessen zurückgegriffen.

Im Rahmen des R- Projektseminars [25] wurde die Windhöffigkeit in der Bergregion Schwarzwald- Hornisgrinde auf Basis der stündlichen Messdaten zu den Windgeschwindigkeiten im Jahr 2017 des Deutschen Wetterdienstes [DWD] [29] untersucht. Diese bestimmt die Sensibilität verschiedener Parameter für eine installierte Windkraftanlage, denn besonders die Volatilität der Windgeschwindigkeiten gibt Aufschluss darüber, ob die Region für die Implementierung von Windkraft geeignet ist. Der Windatlass Baden-Württemberg [24] weist darauf hin, dass insbesondere im Nachlauf eines Berges die Windströmungen nicht ad hoc in die ursprünglichen Höhen absinken und dadurch meist noch weiter zunehmen. Dies weist generell auf gute Windverhältnisse hin. Aus diesem Grund sind im Schwarzwald ab einer Höhe von 140 Metern [m] Windgeschwindigkeiten von mehr als 6 Metern pro Sekunde [m/s] zu identifizieren, wobei allerdings an manchen Standorten schon 100m Differenz zu diesem Punkt ausreichen, um deutlich schwächere Winde zu messen. Die vorangegangene statistische Analyse konnte für Hornisgrinde jedoch durchaus Potenzial für eine wirtschaftlich attraktive Windhöffigkeit ausmachen. So liegt die mittlere Windgeschwindigkeit bei 6.85 [m/s] und somit über den kritischen Wert von 5 [m/s] für die gängige Einschaltgeschwindigkeit der Anlagen. Die Zeitreihe

für das Jahr 2017 mit 8670 gemessenen Werten zeigt in den ersten Differenzen und der Standardabweichungen keine großen Ausschläge, was in der Theorie eine stetige Leistungserzeugung begünstigt. [25] Für eine generelle Abschätzung der jährlichen Erträge wurden zudem die Weibull-Verteilung und - Parameter anhand der Maximum-Likelihood Methode geschätzt:

rel. Häufigkeitsverteilung der Windgeschwindigkeiten

Abbildung 1: Weibull-Verteilung der Windgeschwindigkeiten 2017 in SchwarzwaldHornisgrinde nach Maximum- Likelihood Methode. Der Graph zeigt die
relative Häufigkeit auf der y-Achse für die jeweilige Windgeschwindigkeit
[m/s] auf der x-Achse als Histogramm auf Basis der 8670 gemessenen
Werte und die geschätzte Verteilung als angepasste Kurve. Die Schätzung
ergab für den scale- Parameter der Kurve einen Wert von 7.7 und für die
shape- Parameter einen Wert von 2.0. Letzterer bestätigt somit eine für
Deutschland typische Verteilung des Windes [32].

Die Weibull- Verteilung ist derweil typisch für das Winddargebot in Süddeutschland. Die Parameter werden benötigt, um eine passende Abschätzung des Windaufkommens bei einer theoretischen Verschiebung des arithmetischen Mittels zu generieren. [1] In Hornisgrinde ist derzeit eine Anlage der Marke Enercon E70 installiert, welche gewerblich betrieben wird. Die Berechnungen des Projektes [25] ergaben, dass anhand der vorliegenden Daten und der Weibull- Verteilung der Windgeschwindigkeiten im Jahr 2017, der von den Betreibern versprochene Leistungsertrag von 5 Millionen kWh im Jahr durchaus realisierbar ist.

Es werden weiterführend in dieser Studie nun 82 alternative Windkraftanlagen herangezogen und jeweils mit den Windgeschwindigkeiten in Schwarzwald-Hornisgrinde der letzten 364 Tage abgestimmt. Anschließend kann so die Windkraftanlage bestimmt werden, die in dieser Zeit die höchste Leistung generiert hätte. Bei den Berechnungen blieb das Rau-

higkeitsgesetz nach Hellmann [2] unberücksichtigt. Für die Daten der 82 Leistungskurven wird auf den Angaben der Hersteller vertraut und diese sind zwei öffentlich zugänglichen Datenprovidern im Web [20, 3] entnommen. Bezüglich der Angaben der Leistung von Windkraftanlagen ist die Nettoleistung, das heißt die Leistungsabgaben abzüglich der Verluste für den Eigenbedarf, in den Daten angegeben. Dabei bleiben jedoch weitere Einflüsse wie Umwelt oder Ausfälle bei der Leistungsrechnung unberücksichtigt. Dies betrifft auch den Leistungsverlust des Netztransformators, da dieser ortsabhängig und schwer abzuschätzen ist. Die tatsächliche Lage wäre zudem entscheidend, wenn man Einflüsse wie die vorliegende Luftdichte und andere wetterbedingte Aspekte betrachtet. Die Leistungskurven sind angegeben für eine vorliegende Luftdichte von 1.225 Kilogramm pro Kubikmeter $[kg/m^3]$ auf einem Niveau von 0 Meter über Normalhöhennull. [20]

Eine Kopie der Exceltabelle mit den aufbereiteten Leistungsangaben ist dem Anhang zu entnehmen. Anhand der tabellarischen Gegenüberstellung der Leistungen zu den jeweiligen ganzzahligen Windgeschwindigkeiten wurde nach Rundung der gemessenen Werte die jeweilige theoretische Leistung der Turbine zum Messzeitpunkt für alle Messwerte bestimmt und kumuliert. So liegt der theoretische Gesamtbetrag, die jede Turbine in 364 Tagen des Jahres 2017 insgesamt hätte erzielen können, vor. Im Verhältnis zum technischen Potenzial auf Basis der Volllaststunden bei Nenngeschwindigkeit wurde außerdem der Nutzungsgrad der Anlage bestimmt. Weiterführend werden die daraus genommenen Werte dafür genutzt, dass die monetäre Ertrags-, und Kostenrechnung durchgeführt werden kann. Die herangezogene Vergütung pro Kilowattstunde [kWh] beruht auf Angaben der Bundesnetzagentur [6]. Die verwendeten Werte für die Ertrags-, und Kostenrechnung werden in Kapitel 4 und 5 genauer erläutert. Im Rahmen dieser Arbeit beschränkt sich der Standort weiterhin auf das Beispiel Schwarzwald-Hornisgrinde.

Für alle nachfolgenden Berechnungen wurde das Open Source Programm R-Studio [27] verwendet.

3 Leistungsrechnung

Im ersten Schritt der Analyse des statistischen wie betriebswirtschaftlichen Potenzials der Windkraft in Schwarzwald-Hornisgrinde soll in diesem Kapitel eine Leistungsrechnung für die 82 Turbinen auf Basis derer Leistungsangaben und der ausgewerteten Windgeschwindigkeiten durchgeführt werden. Nachfolgend einer kurzen Aufbereitung der Informationen zu den Anlagen wird die theoretische Leistung pro Anlage für das vergangene Jahr berechnet. Ebenfalls wird die Turbinendichte und somit die Leistung mehrerer installierter Anlagen im Verbund betrachtet. Die Leistungsrechnung gilt als Basis für die Ertragsrechnung, indem die vom Wind abhängige, erbrachte Leistung Grundlage für die monetäre Vergütung darstellt.

Bezüglich der Leistung einer Windkraftanlage ist es von Vorteil, zunächst die physikalischen Grundlagen zu erläutern. Diese stellen den Zusammenhang zwischen der Windgeschwindigkeit, der kinetischen Energie, und das durch die Rotorfläche strömende Luftvolumen dar. Die Formel (1) für den Energieertrag P ist gegeben durch [31]:

$$P = \frac{1}{2} \left(A \cdot P \cdot v^3 wind \right) \tag{1}$$

Der Energieertrag P ist somit in der dritten Potenz abhängig von der Windgeschwindigkeit v, welche wiederum vom Standort abhängig ist. Eine Minderung der Windgeschwindigkeit um 10% hat somit eine Einbuße der Leistung von 30% zur Folge. Daraus ergibt sich die zuvor genannte These, dass eine stabile und ausreichende Windgeschwindigkeit für die Leistungserbringung und somit dem sich errechnenden Ertrag notwendig ist. Den zweitgrößten Einfluss hat die Rotorfläche A. Damit gibt die Formel an, dass mit zunehmendem Rotordurchmesser der Energieertrag ebenfalls steigt [24]. Beides gilt es bei der Wahl der optimalen Turbine am vorliegenden Standort zu berücksichtigen.

Die durchströmte Fläche bestimmt sich unter Anderem durch die Verteilung der Windkraftanlagen über die bebaute Fläche und den umgebenden Turbulenzen, was in Kapitel 3.1.2 genauer betrachtet wird. Denn ein Hindernis bis zu einer Entfernung von der vierzig-fachen Höhe der Anlage hat Einfluss auf die horizontale Strömung, weshalb auch die Nabenhöhe der Windkraftanlage mindestens dreimal der Höhe der Bäume entsprechen sollte, wobei ein waldfreier Standort den größten Nutzen mit sich bringen würde [24]. Generell wird meist der Zusammenhang zwischen den Windgeschwindigkeiten und dem jährlichen Energieertrag anhand der Weibull-Parameter und der Luftdichte

(hier: Nullniveau 1.255 kg/m^3) berechnet. Der Ertragsrechner schätzt dann die jährliche Stromproduktion für einen Standort, wobei von einer Verfügbarkeit des Windes von 100% ausgegangen wird. Leistungsverluste durch Vereisung oder Abschattung bleiben dabei unberücksichtigt. [1]

3.1 Alternative Anlagen

Als Grundlage für die betriebswirtschaftliche Ertrags-, und Kostenplanung wird nun die optimale Turbine für die vorliegenden Windgeschwindigkeiten bestimmt und schließlich mit der aktuell installierten Anlage Enercon E70 in Hinblick auf den potenziellen Leistungsoutput verglichen. Dabei gilt es zu berücksichtigen, dass für einen passenden Vergleich der Anlagen eine gleiche Nabenhöhe für diese verfügbar sein muss. Bei Nabenhöhen über 100m ist die Relevanz der Berechnungen des logarithmischen Höhenprofils nach Hellmann geringer, da der Wind nur noch bedingt durch Bodenrauhigkeit beeinflusst wird. [24] Wie den Herstellerangaben im Anhang entnommen werden kann, sind mit einer Differenz von $\pm 10m$ fast alle Anlagen in einer Nabenhöhe von rund 100m verfügbar. Besonders in den kürzlichen Entwicklungen zeigt sich, dass die Tendenz für Onshore Anlagen allgemein Richtung höherer Nabenhöhe und größerem Rotordurchmesser geht, was gemäß der zuvor genannten Formel einen höheren Leistungsoutput zur Folge hat. Durchschnittlich liegt die Nabenhöhe bei 120m im Binnenland, während die höchsten Werte mit 144m in Baden-Württemberg und 140m in Bayern liegen. Allerdings steigen mit großer Nabenhöhe auch die Kosten, was es in Bezug auf die Rentabilität später zu berücksichtigen gilt. [24]

In den Entwicklungen auf dem deutschen Markt zeichnet sich ein Trend ab: Besonders in den vergangenen Jahren wurde der Fokus vermehrt auf Onshore Anlagen gelegt, mit einem Durchschnitt von 2-3 MW Leistung und einem Rotordurchmesser von 70-120m [15]. Generell sollten für Schwachwindstandorte wie Baden-Württemberg (hier: Schwarzwald-Hornisgrinde) Anlagen mit einem großen Rotordurchmesser gewählt werden, um mittels der Fläche dem Wind möglichst viel Energie zu entziehen. In der ersten Hälfte des Jahres 2018 wurden in Baden-Württemberg lediglich 19 neue Windkraftanlagen erbaut, was einen Nettozubau von 65,45 MW entspricht. Der Durchschnittswert lag bei einer Anlagenleistung von 3.445 kW, einem Rotordurchmesser von 124m und einer Nabenhöhe von 147m. [14]

3.1.1 Mögliche alternative Leistungen und Wahl der Einzelanlage

Hinsichtlich der in den vorangegangenen Kapiteln ermittelten Ergebnisse lässt sich die passende Turbine ermitteln, wenn man die verschiedenen Leistungsangaben mit den gerundeten Windgeschwindigkeiten verrechnet. Hierbei sind vor allem die Ein-, und Abschaltgeschwindigkeit sowie die Nennleistung tragend.

Die ermittelten theoretischen Leistungen [kWh] und der Nutzungsgrad [Angaben in Prozent %] aller 82 Turbinen für die Windgeschwindigkeiten des Jahres 2017 in Hornisgrinde kann dem Anhang entnommen werden. Im Folgenden werden nur vier Turbinen in Betracht gezogen, die eine Leistung von über 20 Millionen kWh erzielt hätten. Diese beinhalten separat aufgelistet die folgenden Turbinen (absteigend sortiert):

Anlage	Leistung 2017	Nutzungsgrad
GE Wind 4.8 - 158	17.143.987 kWh	27.06%
E 126 7.5	16.286.600 kWh	16.28%
Vestas V 150 4.2	15.563.183 kWh	28.07%
Gamesa G 1325 MW	14.709.982 kWh	22.29%
Siemens SWT DD 142	14.224.328 kWh	26.63%
E 70	5.267.322 kWh	26%

Abbildung 2: Darstellung der theoretische Leistungen und der sich errechnende Nutzungsgrad der fünf Windkraftanlagen mit den höchsten errechneten Werten sowie der installierten Anlage Enercon E70. Letztere erreicht nur etwa 1/3 der theoretischen Leistung der alternativen Turbinen.

Im Vergleich mit den herangezogenen 82 Anlagen von 11 verschiedenen Herstellern lässt sich die Aussage treffen, dass eine alternative Anlagenwahl als der installierten Enercon E70 den dreifachen Ertrag in den letzten 364 Tagen erbracht hätte. Die Nutzungsgrade liegen insgesamt zwischen 20% und 30%, somit wäre keine der Alternativanlagen voll ausgelastet. Die Anlage vom Typ GE Wind 4.8-158 ergab die höchsten theoretische Leistungserbringung von 17.2 Millionen kWh in den 364 Tagen bei einer Ausnutzung des technischen Potenzials von etwa 27%.

3.1.2 Flächenbedarf und Turbinendichte im Anlagenverbund

Für die Installation eine Windparks müssen die einzelnen Turbinen aufeinander abgestimmt sein, weshalb nun zunächst der Flächenbedarf und die Turbinendichte ermittelt wird, ehe die vorherigen Berechnungen erneut angewendet werden.

Betrachtet man weiterführend die physikalischen Gesetze als Grundlage für die Leistung von Windkraftanlagen gilt, dass die leistungsproduzierende "Arbeit"einer Anlage auf das "Drehmoment" der Anlage beruht. Dieses wiederum setzt sich zusammen aus dem Radius des Rotordurchmessers und der senkrecht zu diesem Radius wirkenden "Kraft". Die Höhe des Betrages der "Kraft"ist somit maßgeblich dafür, wie viel Energie der jeweiligen Anlage zur Verfügung steht. Der Rotordurchmesser und dessen Fläche bestimmt somit auch, wie viel Energie dem Wind entzogen werden kann. Insgesamt kann laut Betzschem Gesetz nur circa 60% der Windenergie in Leistung umgesetzt werden. Damit alle Kräfte an einem Windrad wirken können und es nicht zu weiteren Energieverlusten durch Parkwirkungsgraden kommt, ist eine optimale Verteilung der Windenergieanlagen unabdingbar. Dabei ist zu beachten, dass eine vergleichsweise hohe Turbinendichte zu aerodynamischen Verlusten führen kann, weshalb ein Mindestabstand gegeben sein muss. [31] Generell empfohlene Abstände unter den einzelnen Windanlagen sind beispielsweise das Achtfache des Rotordurchmessers [m] in Hauptwindrichtung oder das Dreifache in Nebenwindrichtung. Aus der Fläche F einer Ellipse in Hektar [ha] ließe sich so der Platzbedarf [ha] pro Megawatt berechnen, wenn man F mit der Nennleistung der Turbinen multipliziert (siehe Anhang). [21]

Übliche Anlagen der vergangenen Jahre haben bereits einen Rotordurchmesser von über 100 m und somit eine durchströmte Fläche von mehr als $7.999 \text{ } m^2$. [13, 31] Die errechnende Anlagendichte gibt Aufschluss über die bauliche Auslastung, somit die Anzahl zu bauender Windenergieanlagen je Quadratkilometer. Laut Dena- Netzstudie [11] liegt das Ausbaupotenzial der Windenergie in den Binnenländern Süd, Baden-Württemberg und Bayern, bei einem noch nutzbaren Anteil von 64 beziehungsweise 65,2%. Weitere Studien [35] kamen zu einem ähnlichen Ergebnis. Demzufolge liegt in Süddeutschland genug Platz vor, um Windparks zu installieren.

In dieser Forschungsarbeit wird auf den laut $Dena\ Netzstudie\ von\ 2010\ [12]$ ermittelten durchschnittlichen Flächenbedarf von 7 Hektar [ha] zurückgegriffen, wobei der individuell errechnete Parkwirkungsgrad unberücksichtigt bleibt. Daraus ergibt sich eine installierbare Leistung von 14 MW/ km^2 . Alternativ errechnete Das $Bundesinstitut\ f\"ur\ Bau$ -, Stadt-, $und\ Raumforschung\ [9]$ f\"ur\ den Platzbedarf einen Durchschnittswert von 8 Anlagen je km^2 auf einem Mittel je Plan von 2113 ha (21,13 km^2). Dabei sind allerdings Offshore-Windparks hinzugezogen worden, in denen oft Starkwindanlagen installiert sind. Diese haben mit einem Rotordurchmesser von 104m bei einer Nabenhöhe von maximal 100m einen geringeren Platzbedarf. Da in Baden-Württemberg und Bayern, wie oben erwähnt, im Vergleich etwas schwächere Winde vorliegen, sind hier oft Schwachwindanlagen mit

einem größeren Rotordurchmesser (ab 115m) und einer höheren Nabenhöhe (ab 140m) installiert, die einen größeren Abstand benötigen. [9].

Führt man die im Anhang angeführten Berechnungen für alle 82 Anlagen aus dem vorangegangenen Kapitel durch, so ergeben durch die Addition der Leistung bei optimaler Turbinendichte die höchsten Leistungen für folgende Alternativanlagen:

Anlage	Potenzielle Gesamtleistung 2017
Siemens SWT 3.15 142	62.666.740 kWh
GE Wind 2.5 120	58.073.766 kWh
Siemens SWT DD 142	56.897.312 kWh
Nordex N 131 3.0 MW	56.645.350 kWh
Gamesa G 114 2 MW	56.584.024 kWh

Abbildung 3: Darstellung der theoretischen Leistungen der Windkraftanlagen insgesamt unter Berücksichtigung der errechneten maximalen Turbinendichte pro km^2 . Die Berechnungen ergaben für den Verbund eine von den Einzelanlagen unterschiedliche optimale Turbinenwahl.

Anlage	Rotordurchmesser	Nennleistung	Turbinenanzahl
Siemens SWT 3.15 142	142 m	3.150 kWh	$5/km^2$
GEWind 2.5 120	120 m	2.530 kWh	$6/km^2$
Siemens SWT DD 142	142 m	3.900 kWh	$4/km^2$
Nordex N 131 3.0 MW	131 m	3.000 kWh	$5/km^2$
Gamesa G 114 2 MW	114 m	2.000 kWh	$7/km^2$

Abbildung 4: Informationen zu den der optimalen Anlagen zugehörigen Rotordurchmesser, der Nennleistung und errechnete Turbinendichte. Letztere ergab für die Siemens SWT 3.15 142 eine potenzielle Dichte von 5 Anlagen pro km^2 .

Auffällig ist hier der bei allen Turbinen weit über 100m liegende Rotordurchmesser. Somit handelt es sich, mit Ausnahme der Gamesa G 114 2 MW, um Schwachwindanlagen, und die Top-Anlage Siemens SWT 3.15 142 entspricht mit 142m Rotordurchmesser der aktuellen Marktsituation. Die Enercon E70 hingegen hat einen kleineren Rotordurchmesser von nur 70m und eine Nennleistung von 2.300 kW. Errechnet man die Turbinenanzahl pro km^2 auf Basis der Rotordurchmesser der installierten Enercon E70, ergibt sich für diese eine Turbinenanzahl von 3 Turbinen pro km^2 . Drei installierte Anlagen hätten somit in 2017 auf Basis der angegebenen Windverhältnisse eine Leistung von 15.806.966 kWh erzielt. Dies entspricht nur etwa 1/4 der potenziellen Leistung der Alternativturbinen. Die zugrunde liegenden Berechnungen können dem Anhang entnommen werden.

Die aufgelisteten Anlagen weisen ein Dichteverhältnis der Turbinen aus, das die für die Fläche pro km^2 kumulierte Leistung begünstigt. Die Ergebnisse unterstützen somit die Relevanz der für Windkraft ausgewiesene Fläche für die optimale Turbinenwahl. Denn die leistungsstärksten Anlagen im Verbund unterscheiden sich von den optimalen Einzelanlagen. Die nun optimale Anlage, Siemens SWT 3.15 142, war im Einzelvergleich schon in der ersten Hälfte der absteigend sortierten Ergebnisse, die anderen Anlagen hingegen lagen im Mittelfeld (siehe Anhang). Damit einhergehend weisen die Ergebnisse generell auf die Vorteile bei der Installation eines Windparks anstelle von Einzelanlagen hin. Inwiefern dies realisierbar ist, hängt einmal mehr von den Projektplänen und zuständigen Behörden ab.

Weiterhin gilt zu berücksichtigen, dass Windkraftanlagen an das elektrische Netz angeschlossen werden müssen. Die Generatoren von großen, modernen Windkraftanlage weisen normalerweise eine Spannung von 680 Volt auf, die ein Transformator in Hochspannung umwandeln würde. Darüber hinaus sollte das Netz in der Nähe der Windkraftanlage imstande sein, die elektrische Leistung auch aufzunehmen. Windkraftanlagen benötigen auch Fundamente und Zufahrtsstraßen für schwere Lastwagen, somit ist der infrastrukturelle Einfluss beim Bau ebenfalls zu berücksichtigen. [31] In Bezug auf die Turbinendichte eines potenziellen Windparks ist somit jede weitere Anlage mit höheren Kosten verbunden, was es bei einer konkreten Projektplanung zu berücksichtigen gilt. Im Rahmen dieser Arbeit wird jedoch davon ausgegangen, dass in Schwarzwald-Hornisgrinde ausreichend Freileitungen im Hoch-, und Mittelgebirge sowie finanzielle Möglichkeiten vorhanden sind.

4 Ertragsrechnung

Es folgt nun auf Basis der Ergebnisse aus dem vorherigen Kapitel die Berechnung der monetären Erträge der Anlagen, welche von deren Leistungsoutput abhängig sind. Die Erträge sollen dann in Kapitel 6 im Rahmen der Ertrags-, und Kostenanalyse beziehungsweise Investitionsrechnung ausgewertet werden. In den folgenden Kapiteln wird auf den direkten Vergleich der Anlagen mit der in Schwarzwald-Hornisgrinde installierten Enercon E70 verzichtet, da nur die leistungsstärksten Anlagen betrachtet werden. Die für diese Anlage ermittelten Ergebnisse können jedoch dem Anhang entnommen werden.

4.1 Einspeisevergütung nach EEG

Die Vergütung für die Erträge aus Windkraft errechnet sich grundsätzlich aus der Marktprämie der Förderungen des EEG und dem aktuellen Börsenstrompreis. Diese werden seit dem 1. Januar 2017 durch Ausschreibungen ermittelt. Anders als im EEG 2014 gibt es somit keine feste Einspeisevergütung mehr. Stattdessen müssen alle Anlagen, die ab 2017 in Betrieb genommen werden, an einer Ausschreibung teilnehmen, um einen Vergütungsanspruch zu erhalten.

Die Fachagentur Windenergie an Land [23] veröffentlichte ein offizielles Hintergrundpaper zum EEG 2017. Für die nachfolgende Datenerhebung ist es von Vorteil, die wichtigsten Fakten zur Ausschreibungsermittlung der Förderungen kurz zu erläutern. Die Teilnahme am Ausschreibungswettbewerb ist demnach für Anlagen ab einer installierten Leistung von 750 kW verpflichtend. Sie hat unter anderem zum Ziel, den Windenergieausbau kosteneffizienter zu gestalten und so dessen Akzeptanz für die Energiewende zu wahren. Das Ausbauziel von 40-45% des Bruttostroms durch Erneuerbare Energien im Jahr 2025 der Bundesregierung steht dabei im Vordergrund, allerdings wurde der jährliche Ausbaukorridor von 2,3 Gigawatt in den letzten Jahren überschritten. Um die Übergangsnetze zu entlasten, enthält das EEG 2017 zugunsten der südlichen Binnenregionen eine Obergrenze von 902 MW pro Jahr für den Netzausbau im Norden. [23] Auch waren die letzten beiden Ausschreibungsrunden leicht unterzeichnet, was die Chance auf den Erhalt eines Zuschlags im ersten Anlauf in Zukunft erhöhen könnte [13]. Für die Betreiber gelten durch das EEG 2017 außerdem strengere Form-, und Fristvorschriften, die beispielsweise die Bereitstellung einer immissionsschutzrechtlichen Genehmigung bei Gebotsabgabe beinhalten. Die Ausschreibungsregelungen sollen laut Bundesministerium für Energie zu einer höheren Akteursvielfalt beitragen und im Wettbewerb nachhaltig die Kosten senken. [34]

Die Förderungen erfolgen in der Regel durch die Inanspruchnahme einer erhaltenen Marktprämie oder alternativ anhand einer Einspeisevergütung bei einem Übergangsnetzbetreiber oder der Großhandelbörse. Eine sonstige Direktvermarktung ist dem Anlagenbetreiber in anderen Fällen freigestellt, denn die Förderung verbietet beispielsweise eine Eigenstromeinspeisung. Standardmäßig wird jedoch der Direktvermarktungspreis an der Strombörse mit der Marktprämie aufgestockt, wo die Summe aus beiden den "Anzulegenden Wert"entsprechend des individuellen Gebotes darstellt. Die Prämie wird vom Netzbetreiber rückwirkend auf den letzten Monat ausgezahlt, somit passt sich der Förderbetrag der Marktprämie stets an. Der anzulegende Wert zur Berechnung der Prämie ist nach §30 Abs. 1 Nr. 5 EEG 2017 ähnlich dem EEG 2014 nach dem Referenzstandort, also der Güte des Anlagentypes, und dem sich errechnenden Korrekturfaktor zu kalkulieren. Der Korrekturfaktor erhöht den anzulegenden Wert, was Anlagenbetreibern von windschwächeren Standorten einen Vorteil verschaffen soll. Der Referenzertrag ist nach Anlage 2 Nr. 2 zum EEG 2017 "die anlagentypbedingte Strommenge, die dieser Typ bei Errichtung an einem Referenzstandort rechnerisch auf Basis einer vermessenen Leistungskennlinie in fünf Betriebsjahren erbringen würde"[8]. Es gilt, diesen Wert alle 5 Jahre zu überprüfen und bei andauernder Abweichung von $\pm 2\%$ zu korrigieren. [23, 22] Die Anlagen mit den niedrigsten Fördergebot erhalten dann den Zuschlag, allerdings sieht das Gesetz seit 2018 einen Höchstwert von 6,30 Cent[ct] pro kWh vor. Mit einem höherem Gebot sinkt somit die Zuschlagswahrscheinlichkeit, würde allerdings mehr Gewinn / kWh bedeuten. [4] Generell muss mit Erhalt der Förderung die Leistungserbringung innerhalb der nachfolgenden 30 Monate beginnen und hat eine Höchstdauer von 20 Jahre. Eine Übertragung der Förderung ist nicht möglich, ebenso kommt es bei nicht-Einhaltung der versprochenen Leistung zu zusätzlichen Pönalzahlungen. [23]

Festgelegt sind bis 2019 drei jährliche Gebotstermine mit einem Volumen von je 2.800 Gigawatt. Die Ergebnisse der letzten drei Ausschreibungsrunden des Jahres 2018 sind der folgenden Übersicht zu entnehmen [5]:

Monat	min	max	Ømengengewichtet
Februar	3,80 [ct/kWh]	5,28 [ct/kWh]	4,73 [ct/kWh]
Mai	4,65 [ct/kWh]	6,28 [ct/kWh]	5,73 [ct/kWh]
August	4,00 [ct/kWh]	6,30 [ct/kWh]	6,16 [ct/kWh]

Abbildung 5: Gebote der letzten drei Ausschreibungsrunden der Monate Februar, Mai und August des Jahres 2018. Es sind pro Monats jeweils der Wert des niedrigsten Gebotes und höchsten Gebotes, welche eine Förderung nach EEG erhalten haben, sowie der mengengewichtete Durchschnittswert aller erhaltenen Gebote angegeben. Den Zuschlag erhalten haben laut Bundesnetzagentur rund 100 Bewerber pro Ausschreibungsrunde. [5]

Die Ergebnisse der ersten Ausschreibungsrunden des vergangen Jahres sind ergänzend Anhang 4 zu entnehmen. Für die Berechnungen der Erträge der alternativen Anlagen auf Basis der errechneten Leistungen für das Jahr 2017 wird vereinfachend von einem einem Referenzstandort von 100% und einem Korrekturfaktor von 1.00 für alle Anlagen ausgegangen, um die Erträge auf einer einheitlichen monetären Basis bestimmen zu können. Es wird einmal eine Ertragsrechnung mit einer hohen Vergütung von 6,30 [ct/kWh] und zum anderen mit einer niedrigen Vergütung von 3,80 [ct/kWh] betrachtet. Der erste Wert stellt dabei das maximal mögliche Gebot dar, während der niedrige Wert auf den in den letzten Ausschreibungen am niedrigsten erhaltenen Fördersatz beruht. Der durchschnittliche Wert aller Ausschreibungsrunden von 5,67 [ct/kWh] wird ergänzend als weiteres Szenario herangezogen. Die Werte erscheinen auf Grundlage der oberen Ausführungen realistisch. ¹ [5]

4.2 Erträge der alternativen Anlagen

Für die Berechnung der Erträge der alternativen Anlagen einzeln und im Verbund wird die im vorherigen Kapitel errechnete jährliche Leistung der jeweiligen Anlage je mit den drei Sätzen minimale Vergütung (3,80 [ct/kWh]), maximale Vergütung (6,30 [ct/kWh]) und durchschnittliche Vergütung (5,67 [ct/kWh]) multipliziert. Anschließend wird der Betrag in Euro umgerechnet und auf die Förder-, beziehungsweise angegebene Lebensdauer der Windkraftanlage von 20 Jahre hochgerechnet.

4.2.1 Erträge Einzelanlage

Da alle Leistungen mit den gleichen Faktoren multipliziert wurden, sind die Anlagen mit den höchsten Erträgen identisch mit den Anlagen der höchsten Leistungen. Der monetäre Ertrag je Szenario ist der folgenden Abbildung zu entnehmen:

¹siehe ergänzend: schriftlichen digitalen Verkehr (e-Mail) mit der Bundesnetzagentur in Anhang 4

Anlage	nlage Minimum Vergütung		Durchschnittliche Vergütung	
	Ertrag / Jahr	Ertrag / Jahr	Ertrag / Jahr	
GE Wind 4.8 158	651.471,51 [EUR]	1.080071,18 [EUR]	972.064,06 [EUR]	
E 126.75	618.890,80 [EUR]	1.026.055,80 [EUR]	923.450,22 [EUR]	
Vestas V 150 4.2	591.400,95 [EUR]	980.480,53 [EUR]	882.432,48 [EUR]	
Gamesa G 132 5 MW	558.979,32 [EUR]	926.728,87 [EUR]	834.055,98 [EUR]	
Siemens SWT DD 142	540.524,46 [EUR]	896.132,66 [EUR]	806.519,40 [EUR]	

Anlage	Minimum Vergütung	Maximum Vergütung	Durchschnittliche Vergütung	
	Ertrag / Gesamt	Ertrag / Gesamt	Ertrag / Gesamt	
GE Wind 4.8 158	13.029.430 [EUR]	21.601.424 [EUR]	19.441.281 [EUR]	
E 126.75	12.377.816 [EUR]	20.521.116 [EUR]	18.269.004 [EUR]	
Vestas V 150 4.2	11.828.019 [EUR]	19.609.611 [EUR]	17.648.650 [EUR]	
Gamesa G 132 5 MW	11.179.586 [EUR]	18.534.577 [EUR]	16.681.120 [EUR]	
Siemens SWT DD 142	10.810.489 [EUR]	17.922.653 [EUR]	16.130.388 [EUR]	

Abbildung 6: Darstellung der Erträge der Einzelanlagen, welche identisch mit den leistungsstärksten Einzelanlagen sind. Für jede betrachtete Vergütung von Minimum 3,80 [ct/kWh], Maximum 6,30 [ct/kWh] und Durchschnitt 5,67 [ct/kWh] sind in der oberen Tabelle die Erträge pro Jahr und in der unteren Tabelle die Erträge über die Lebensdauer von 20 Jahren kumuliert angegeben.

Es lässt sich erkennen, dass sich mit der leistungsstärksten Anlage GE Wind 4.8 - 158 einen Gesamtertrag über die Lebensdauer von bis zu 21.601.424 Euro [EUR] generieren lässt. Wie der Gesamtübersicht im Anhang zu entnehmen ist, würde im Vergleich die leistungsschwächste Anlage Nordex N 131 3.9 MW bei Höchstvergütung lediglich einen Gesamtertrag von 1.697.273 [EUR] erbringen. Zwischen den oben aufgeführten leistungsstärksten Anlagen liegt der kleinste Ertrag über 20 Jahre bei der bei einer Vergütung von 3,80 [ct/kWh] 540.524 [EUR] (Siemens SWT DD 142) im Vergleich zu einem Ertrag 651.471 [EUR] (GE Wind 4.8 - 158). Zwischen der leistungsstärksten Anlage, der GE Wind 4.8 -158, und der zweitstärksten Anlage E 126 7.5, liegt ein entgangener jährlicher Ertrag von 48.614 [EUR] im Falle der Durchschnittsvergütung vor, während die Differenz im Falle der Minimalvergütung auf 32.581 [EUR] sinkt und im Fall der Maximalvergütung auf 55.016 [EUR] steigt.

Die Untersuchung der Erträge zeigt die Sensibilität der Erträge von der Höhe der Vergütung und der Leistung der Anlagen. Es gilt somit im nächsten Schritt zu überprüfen, wie die Kosten der leistungsstärksten Anlagen liegen und wie sie sich auf die anschließende Gewinnrechnung auswirken.

4.2.2 Erträge Anlagenverbund

Der monetäre Ertrag je Szenario für die leistungsstärksten Anlagen im Verbund, also die Leistung in Zusammenhang mit der errechneten optimalen Turbinendichte pro km^2 für ein Jahr und über die Lebensdauer, ist der folgenden Abbildung zu entnehmen:

Anlage	Turbinendichte	Minimum Vergütung	Maximum Vergütung	Durchschnittliche
				Vergütung
		Ertrag / Jahr	Ertrag / Jahr	Ertrag / Jahr
Siemens SWT 3.15 142	5	2.381.336 [EUR]	3.948.005 [EUR]	3.553.204 [EUR]
GE Wind 2.5 120	6	2.206.803 [EUR]	3.658.647 [EUR]	3.292.783 [EUR]
Siemens SWT DD 142	4	2.162.098 [EUR]	3.584.531 [EUR]	3.226.078 [EUR]
Nordex N 131 3.0 MW	5	2.152.523 [EUR]	3.568.657 [EUR]	3.211.791 [EUR]
Gamesa G 114 2 MW	7	2.150.193 [EUR]	3.564.794 [EUR]	3.298.314 [EUR]

Anlage	Minimum Vergütung Maximum Vergütu		Durchschnittliche Vergütung
	Ertrag / Gesamt	Ertrag / Gesamt	Ertrag / Gesamt
Siemens SWT 3.15 142	47.626.722 [EUR]	78.960.092 [EUR]	71.064.083 [EUR]
GE Wind 2.5 120	44.136.062 [EUR]	73.172.945 [EUR]	65.855.651 [EUR]
Siemens SWT DD 142	43.241.957 [EUR]	71.690.613 [EUR]	64.521.552 [EUR]
Nordex N 131 3.0 MW	43.050.466 [EUR]	71.373.141 [EUR]	64.235.827 [EUR]
Gamesa G 114 2 MW	43.003.858 [EUR]	71.295.870 [EUR]	64.166.283 [EUR]

Abbildung 7: Darstellung der Erträge der Anlagen und jeweilige Dichte im Verbund, welche identisch mit den leistungsstärksten Anlagen im Verbund sind. Für jede betrachtete Vergütung von Minimum 3,80 [ct/kWh], Maximum 6,30 [ct/kWh] und Durchschnitt 5,67 [ct/kWh] sind in der oberen Tabelle die Erträge pro Jahr und in der unteren Tabelle die Erträge über die Lebensdauer von 20 Jahren kumuliert angegeben.

Auch hier sind Unterschiede in Abhängigkeit von der Vergütungshöhe zu erkennen: Bei der minimalen Vergütung in Höhe von 3,80 [ct/kWh] ist zwischen der leistungsstärksten Anlage Siemens SWT 3.15 142 und der zweitstärksten Anlage GE Wind 2.5 120 eine vergleichsweise kleine Differenz von 174.5533 [EUR] pro Jahr zu erkennen, was allerdings auf 20 Jahre verrechnet ein Verlust von 3.490.660 [EUR] bedeutet. Bei der höchsten Vergütung von 6,30 [ct/kWh] steigt dieser auf 289.357 [EUR] beziehungsweise 5.787.197 [EUR] an. Wie der Tabelle zu entnehmen ist, ist von der zweiten Anlage allerdings für die optimale Turbinendichte eine weniger zu installieren. Allein zwischen den Top-Anlagen Gamesa G 114.2 MW (Platz 5) und Siemens SWT DD 142 (Platz 3) ist ein Unterschied von 3 Anlagen / km^2 zu erkennen, wobei der Leistungsoutput ähnlich ist.

Ob somit eine Anlage mit einer geringeren Leistung, aber auch geringeren Dichte, für den Gewinn von Vorteil ist, wird der spätere Ertrags-, und Kostenvergleich entscheiden.

5 Kostenrechnung

Für die Analyse des Gewinnpotenzials der in Kapitel 3 und 4 für die Region Schwarzwald-Hornisgrinde betrachteten leistungs-, und ertragsstärksten Turbinen, sowie aller 82 alternativen Anlagen alleine und im Verbund, wird in diesem Kapitel eine Kostenabschätzung durchgeführt. So soll anhand der Zusammensetzung der Parameter die Investitionskosten für die Gewinnanalyse in Kapitel 6 bestimmt werden. Auch wird hier kurz auf die zukünftige Entwicklung der Kosten eingegangen.

5.1 Zusammensetzung der Kostenparameter

Die Kosten für die Berechnung eines Cash-Flow-Modells setzten sich übergreifend zusammen aus den anfänglichen Investitions-, und anschließenden Betriebskosten. Für Windkraftanlagen gilt, wie auch im EEG berücksichtigt wird, eine kalkulierte Lebensdauer von 20 Jahre. Mit Inbetriebnahme der Anlage sollten Wartungen rund alle 2 Jahre durchgeführt werden, welches in den Betriebskosten berücksichtigt wird. Letztere können als prozentualer Anteil an den Anschaffungskosten hinzugezogen werden und umfassen laut Windatlass Baden-Württemberg [24] für das Bundesland Baden-Württemberg in der ersten Dekade rund 1.5%, in der zweiten Dekade steigen sie auf rund 2.5%. [24] Die Hauptinvestitionskosten setzten sich zusammen aus Gondel, Turm, Rotorblatt, Transport und Installation. Die Nebenkosten umfassen die Planung, Erschließung, Netzanbindung, und das Fundament sowie Sonstiges. [17] Auf die Anschaffungskosten der Windkraftanlage ist eine errechnende Einlage für den Rückbau von 5% vorteilhaft. In den Betriebskosten sollten anschließend Pachtkosten, Versicherungen, Reperaturrückstellungen, allgemeine Verwaltungskosten, Steuern, Fremdkapitalzinsen und Sonstige hinzugezogen werden. Die hierbei hinzugezogene Höhe der Zinskosten ist abhängig von dem Verhältnis von Eigen-, zu Fremdkapital. Kumuliert man alle erforderlichen Kostenparamter, errechnet sich das aufzubringende Mindestkapital. [10]

Die Deutsche WindGuard GmbH errechnete für das Jahr 2016 durchschnittliche nominale Investitionskosten in Höhe von 1100 [EUR/kW] [13]. Der Windatlass Baden-Württemberg gab an, dass hier die durchschnittlichen Kosten für eine 2 MW Anlage bei 3 Millionen Euro lagen, was sich in rund 1500 [EUR/kW] umrechnet. Die Kosten sind projektspezifisch: Parameter wie die Geländeerschließungskosten sind beispielsweise im Flachland geringer als im Mittelgebirge, ebenso bestehen Vorteile bei naheliegenden Netzanschlusspunkten und günstige Bodenbedingungen [24]. Sie sind auch abhängig von Turmhöhe, Anlagentechnologie, kalkulierbare Risiken für Finanzierung, und Sicherung. [31]

Die Kostenrechnung soll in der Erfolgsrechnung Aufschluss über den Gewinn und die Amortisation der Anlagen geben und somit aufzeigen, ob die Anlage mit der höchsten theoretischen Leistung auch am lukrativsten ist. Es wird pro Anlage für die Abschätzung der Kosten nun auf Basis der in den Studien angegebenen Werte gearbeitet.

5.2 Kosten der alternativen Anlagen

Für die Analyse der Kosten der alternativen Anlagen wird zunächst anhand der Hauptinvestitionskosten von 1100 [EUR/kW] beziehungsweise 1500 [EUR/kW] und der Nennleistung (installierte Leistung) zuzüglich 5% Rückbaukosten die primären Investitionskosten bestimmt, bevor für die verschiedenen Szenarien die jährlichen Betriebskosten pro Jahr von 1.5% in der ersten Dekade beziehungsweise 2.5% Dekade der primären Investitionskosten bestimmt werden. Diese werden anschließend auf die Lebensdauer von 20 Jahren hochgerechnet und schließlich verglichen.

5.2.1 Kosten Einzelanlage

Zunächst sind die primären Investitionskosten aller Anlagen dem Anhang zu entnehmen. Für die leistungsstärksten Anlagen errechnen sich diese in Höhe von:

Anlage	Nennleistung	Leistung / Jahr	Kosten min	Kosten max
GE Wind 4.8 158	4.800 [kW]	17.143.987 [kWh]	5.544.000 [EUR]	7.560.000 [EUR]
E 126 7.5	7.580 [kW]	16.286.600 [kWh]	8.754.900 [EUR]	11.938.500 [EUR]
Vestas V 150 4.2	4.200 [kW]	15.563.183 [kWh]	4.851.000 [EUR]	6.615.000 [EUR]
Gamesa G 132 5 MW	4.999 [kW]	14.709.982 [kWh]	5.773.845 [EUR]	7.873.425 [EUR]
Siemens SWT DD 142	3.900 [kW]	14.224.328 [kWh]	4.504.500 [EUR]	6.142.500 [EUR]

Abbildung 8: Darstellung der Hauptinvestitionskosten der leistungsstärksten Einzelanlagen. Es liegen Informationen zu der jeweiligen Nennleistung sowie errechneten Jahresleistung, sowie die Kosten auf Basis der minimalen Kosten von 1100 [EUR/kW] und maximalen Investitionskosten von 1500 [EUR/kW] vor.

Insgesamt schwanken die Investitionskosten hier zwischen 4.5 Millionen [EUR] und 11 Millionen [EUR]. Alleine die Hauptinvestionskosten sind bei der Anlage auf Rang 2, der E 126 7.5, deutlich höher als bei der leistungsstärksten GE Wind 4.8 158. Diese sind im kostenminmalen Szenario bereits um 3 Millionen Euro höher, im kostenmaximalen Szenario sind es sogar 10.6 Millionen [EUR] mehr. Die kostengünstigsten Anlagen erreichen Investitionskosten von nur knapp 2 Millionen [EUR], wie dem Anhang zu entnehmen ist.

Die Hauptinvestionskosten stellen das aufzubringende Mindestkapital dar, um die Windkraftanlage in einen einsatzbereiten Zustand zu bringen. Wie eingangs erwähnt, kommen während der Laufzeit noch jährliche Betriebskosten hinzu. Diese Errechnen sich pro Jahr mit 1.5% beziehungsweise 2.5% der pro Anlage errechneten Investitionskosten. Die entstehenden Kosten für die leistungsstärksten Turbinen sind der nachfolgenden Tabelle zu entnehmen:

Anlage	BK 1. Dekade	BK 2. Dekade	BK 1. Dekade	BK 2. Dekade	
	Kosten min	Kosten min	Kosten max	Kosten max	
GE Wind 4.8 158	83.160 [EUR]	138.600 [EUR]	113.400 [EUR]	189.000 [EUR]	
E 126 7.5	131.324 [EUR]	218.873 [EUR]	179.078 [EUR]	298.463 [EUR]	
Vestas V 150 4.2	72.765 [EUR]	121.275 [EUR]	99.225 [EUR]	165.375 [EUR]	
Gamesa G 132 5 MW	86.608 [EUR]	144.346 [EUR]	118.101 [EUR]	196.836 [EUR]	
Siemens SWT DD 142	67.567 [EUR]	112.613 [EUR]	92.138 [EUR]	153.563 [EUR]	

Abbildung 9: Darstellung der jährlichen Betriebskosten der leistungsstärksten Anlagen je betrachteter Hauptinvestitionskosten für die Einzelanlagen. Diese ergeben sich aus den Berechnungen von 1.5% für die erste Dekade und 2.5% für die zweite Dekade auf Basis von minimalen Kosten von 1100 [EUR/kW] und maximalen Kosten von 1500 [EUR/kW].

Anlage	Minimale Betriebkosten	Maximale Betriebskosten	
	Insgesamt	Insgesamt	
GE Wind 4.8 158	2.217.600 [EUR]	3.024.000 [EUR]	
E 126 7.5	3.501.960 [EUR]	4.775.400 [EUR]	
Vestas V 150 4.2	1.940.400 [EUR]	2.646.000 [EUR]	
Gamesa G 132 5 MW	2.309.538 [EUR]	3.149.370 [EUR]	
Siemens SWT DD 142	1.801.900 [EUR]	2.457.000 [EUR]	

Abbildung 10: Hochrechnung der insgesamt errechneten Betriebskosten der Einzelanlagen aus Abbildung 9 auf die Lebensdauer von 20 Jahren unter Einzug der jeweiligen Prozentsätze pro Dekade.

Es lässt sich erkennen, dass zu den Gesamtinvestionskosten noch Betriebskosten von 1.8-4.7 Millionen [EUR] über die Lebensdauer von 20 Jahren hinzukommen. Dies entspricht im Falle der leistungsstärksten Anlage GE Wind 4.8 - 158 Betriebskosten von 83.160 - 113.400 [EUR] in der ersten Dekade, und 138.600 - 189.00 [EUR] in der zweiten Dekade. Es lässt sich auch hier erkennen, dass die Werte im Allgemeinen schwanken und einmal mehr eine projektspezifische Ermittlung der Kosten notwendig ist. Aus diesem Grund ist ein genauer Abgleich der Kosten mit den Erträgen über das Betriebsjahr wie auch die Lebensdauer hinweg unabdingbar.

5.2.2 Kosten Anlagenverbund

Die Errechnungen der Kosten bei optimaler Turbinendichte erfolgt analog, jedoch mit der zusätzlichen Berücksichtigung der Anzahl der installierbaren Turbinen. Die Ergebnisse können der nachfolgenden Tabelle entnommen werden:

Anlage	Nennleistung	Leistung / Jahr	Kosten min	Kosten min	
Siemens SWT 3.15 142	3.150 [kW]	62.666.740 [kWh]	18.191.250 [EUR]	24.806.250 [EUR]	
GE Wind 2.5 120	2.580 [kW]	58.073.766 [kWh]	17.532.900 [EUR]	23.908.500 [EUR]	
Siemens SWT DD 142	3.900 [kW]	56.897.312 [kWh]	18.018.000 [EUR]	23.625.000 [EUR]	
Nordex N 131 3.0 MW	3.000 [kW]	56.645.350 [kWh]	17.325.000 [EUR]	23.625.000 [EUR]	
Gamesa G 114 2 MW	2.000 [kW]	56.584.024 [kWh]	16.170.000 [EUR]	22.050.000 [EUR]	

Abbildung 11: Darstellung Hauptinvestitionskosten der leistungsstärksten Anlagen nach Hochrechnung mit der jeweiligen Turbinendichte. Es liegen Informationen zu der jeweiligen Nennleistung sowie errechneten Jahresleistung, sowie die Kosten auf Basis der minimalen Kosten von 1100 [EUR/kW] und maximalen Kosten von 1500 [EUR/kW] vor.

Anlage	BK 1. Dekade BK 2. Deka		BK 1. Dekade	BK 2. Dekade	
	Kosten min	Kosten min	Kosten max	Kosten max	
Siemens SWT 3.15 142	272.869 [EUR]	454.781 [EUR]	372.094 [EUR]	620.156 [EUR]	
GE Wind 2.5 120	262.994 [EUR]	438.323 [EUR]	358.628 [EUR]	597.713 [EUR]	
Siemens SWT DD 142	270.270 [EUR]	450.450 [EUR]	368.550 [EUR]	614.250 [EUR]	
Nordex N 131 3.0 MW	259.875 [EUR]	433.125 [EUR]	354.375 [EUR]	590.625 [EUR]	
Gamesa G 114 2 MW	242.550 [EUR]	404.250 [EUR]	330.750 [EUR]	551.250 [EUR]	

Abbildung 12: Darstellung der jährliche Betriebskosten der leistungsstärksten Anlagen im Verbund je betrachteter Hauptinvestitionskosten für die Einzelanlagen. Diese ergeben sich bei aus den Berechnungen von 1.5% für die erste Dekade und 2.5 % für die zweite Dekade auf Basis von minimalen Kosten von 1100 [EUR/kW] und maximalen Kosten von 1500 [EUR/kW].

Anlage	Minimale Betriebskosten	Maximale Betriebskosten	
	Insgesamt	Insgesamt	
Siemens SWT 3.15 142	7.276.500 [EUR]	9.922.500 [EUR]	
GE Wind 2.5 120	7.013.160 [EUR]	9.563.400 [EUR]	
Siemens SWT DD 142	7.207.200 [EUR]	9.828.000 [EUR]	
Nordex N 131 3.0 MW	6.930.000 [EUR]	9.450.000 [EUR]	
Gamesa G 114 2 MW	6.468.000 [EUR]	8.820.000 [EUR]	

Abbildung 13: Hochrechnung der insgesamt errechneten Betriebskosten für die Anlagen im Verbund aus Abbildung 12 auf die Lebensdauer von 20 Jahren unter Einzug der jeweiligen Prozentsätze pro Dekade.

Es zeigt sich hier, dass die Errichtung eines leistungsstarken Windparks in der Region Schwarzwald-Hornisgrinde mit primären Investitionskosten von über 14 Millionen [EUR] verbunden ist. Die leistungsstärkste Anlage im Verbund, Siemens SWT 315 142, ist beispielsweise mit Hauptinvestitionskosten von 18.191.250 - 14.806.250 [EUR] erkenntlich, was über eine Lebensdauer von 20 Jahren 7.276.500 - 9.922.500 [EUR] Betriebskosten zufolge hat. Dabei fallen jährlich in der ersten Dekade 272.868 - 372.043 [EUR] und in der zweiten Dekade 454.781 - 620.156 [EUR] an. Es zeigt sich, dass die Errichtung eines Windparks mit höheren Kosten verbunden ist und somit genauere Kalkulationen der Gewinngenerierung und besonders der Amortisation voraussetzt. Darüber hinaus steigt mit jeder zusätzlich installierten Turbine das Risiko des gebundenen Kapitals, wodurch ebenfalls die Anzahl der installierten Turbinen für eine Investition entscheidend ist.

5.3 Trends in der Kostenentwicklung

Eine Parameteranalyse der WindGuard GmbH bezüglich des Kostendrucks in der Windbranche zeigte, dass mit einer Kostenreduktion um 10% die Stromgestehungskosten um 5% sinken. Investitions-, und Betriebskosten ceteris paribus einzeln betrachtet haben einen weniger relevanten Einfluss, vielmehr bewirkt eine Steigerung des Energieertrages um beispielsweise 10% eine potenzielle Kostensenkung von 8%. Die größte Parameterkomponente stellen die Pachtkosten dar, als auch die in den letzten Jahren gestiegenen Eigenkapitalanteile und Zinsen. Die Studie kam zu dem Ergebnis, dass sich die Kosten der Technologien trotz größerer Anlagen im Zeitverlauf kaum veränderten. [13] Denn durch die Innovationen der Technologie in den letzten Jahren wurden die Anlagen zwar größer in Bezug auf ihr Rotordurchmesser und die Nabenhöhe, was aber durch höhere Erträge pro bebauter Fläche ausgeglichen wird. Aufgrund dieses Trends sind die Kosten pro km^2 in den letzten Jahren bereits gesunken. Mit Repowering Maßnahmen, das heißt dem Ersatz alter Windkraftanlagen durch technologisch fortschrittlichere, erhält der Anlagenbetreiber auch einen durch das EEG festgelegten Bonus. Wenn der Ertrag im Verhältnis zur installierten Leistung hoch ist, entstehen geringere Stromgestehungskosten [EUR/kWh]. Damit steigert sich auch der Gewinn. [15]

Inwieweit die vorliegenden Trends Auswirkungen auf die hier angegebenen Kosten haben bleibt abzuwarten. Es lässt sich aber die Aussage treffen, dass der Trend Richtung des geringeren Kostenszenarios in Höhe von 1100 [EUR/kW] verläuft.

6 Auswertung

Auf Grundlage der vorangegangen Ertrags-, und Kostenrechnung wird abschließend eine Investitionsrechnung und somit der direkte monetäre Vergleich der Anlagen durchgeführt. Windkraftanlagen sind aus Sicht der Teilhaber als längerfristige Kapitalanlage und somit Finanzinvestition zu betrachten, womit jährliche Rückflüsse von dem eingesetzten Kapital erwartet werden. Aufgrund der limitierten Datenlage kann im Rahmen der vorliegenden Studie lediglich eine Statische Investitionsrechnung für die einzelnen Anlagen sowie den Anlagenverbund durchgeführt werden. Gerechtfertigt wird dies durch die in Kapitel 4 und 5 errechneten relativ festen und konstanten Erlöse und Kosten der Windkraftanlagen und somit klaren Finanzstruktur. Um die Anlagen als Investitionsprojekte zu bewerten, wird eine Gewinnvergleichs-, und Rentabilitätsrechnung durchgeführt sowie der Amortisationszeitraum bestimmt. Bei den Berechnungen werden vereinfachend mögliche anfallende Steuern und Zinszahlungen ignoriert. Auch wird in diesem Kapitel eine Transponierung der Ergebnisse auf sich ändernde Windverhältnisse vor einer Diskussion der Ergebnisse durchgeführt.

6.1 Gewinnvergleichs-, und Rentabilitätsrechnung

Die Gewinnvergleichsrechnung vergleicht die erwarteten Gewinne der Anlagen alleine und im Verbund, um die Anlage mit dem höchsten Gewinn zu identifizieren. Dieser wird berechnet, indem von den Erlösen die Gesamtkosten abgezogen werden. Die zugrunde liegende Rechnung für die Gewinnvergleichsrechnung kann der folgenden Formel (2) (Vergleich [26]) entnommen werden:

$$Gewinn/GesamterZeitraum = Erloese/GesamterZeitraum - Gesamtkosten$$
 (2)

Die Rentabilitätsrechnung vergleicht die Gewinne mit den bei jeder Anlage unterschiedlichen Kapitaleinsatz beziehungsweise Investitionskosten. Im Normalfall gibt diese Aufschluss über die Investition mit der höchsten Rendite im Vergleich zur Mindestrendite. Letztere liegt hier nicht vor, da keine Unterscheidung zwischen Eigen-, und Fremdfinanzierung gemacht wird. Außerdem wird das durchschnittlich gebundene Kapital rechnerisch ermittelt aus der Hälfte der Differenz aus Anfangs-, und Restbuchwert. Da die Formel auf die komplette Lebensdauer des Investments angegeben und bereits 5% Rückbaukos-

ten berücksichtigt wurden, entspricht hier das durchschnittlich gebundene Kapital dem eingesetzten Kapital und daher den Kosten. In dieser Studie gibt die Rentabilität also Aufschluss über den Gewinn im Vergleich zum Kapitaleinsatz.

Die angepasste Formel (3) (Vergleich [26]) zeigt die Berechnung der Rentabilität:

$$Rentabilitaet = \frac{Gewinn \quad vor \quad Steuern}{Gebundenes \quad Kapital} * 100$$
 (3)

Im Rahmen der Gewinnvergleichsrechnung und der Rentabilitätsrechnung werden zunächst die insgesamt über 20 Jahre anfallenden Betriebskosten für die jeweiligen zwei errechneten Hauptinvestitionskosten zusammengerechnet. Es ergeben sich insgesamt sechs Szenarien für die jeweilige Anlage, für die die Kosten mit den Erträgen verrechnet werden. Die Tabelle mit den Ergebnissen für alle Anlagen sind dem Anhang zu entnehmen. Die jeweilige optimale Anlagenwahl zeigt die folgende Auflistung:

• Szenario 1: Vergütung von 3,80 [ct/kWh] bei Kosten von 1100 [EUR/kW]

In Szenario 1, welches die geringste Vergütung zu minimalen Kosten darstellt, ist die Anlage GE Wind 4.8 - 158 die Anlage mit dem vergleichsweise höchsten Gewinn in Höhe von 5.267.830 [EUR]. Die höchste Rentabilität mit 189.96% hingegen hat die Anlage Gamesa G 114 2 MW.

Bei Errichtung eines Windparks würden 5 Anlagen / km^2 der Anlage Siemens SWT 3.15 142 errichtet werden, welche einen Gewinn von 22.158.972 [EUR] / km^2 generieren würden. Die höchste Rentabilität erreicht die Anlage Gamesa G 114 2 MW mit 189.96%. Von dieser Anlage müssten 7 Anlagen / km^2 installiert werden.

• Szenario 2: Vergütung von 3,80 [ct/kWh] bei Kosten von 1500 [EUR/kW]

In Szenario 2, welches die geringste Vergütung zu maximalen Kosten darstellt, ist die Anlage Siemens SWT 3.15~142 die Anlage mit dem vergleichsweise höchsten Gewinn in Höhe von $2.579.594~[{\rm EUR}]$. Die höchste Rentabilität mit 139.30% hingegen hat die Anlage Gamesa G $114~2~{\rm MW}$.

Bei Errichtung eines Windparks würden 5 Anlagen / km^2 der Anlage Siemens SWT 3.15 142 errichtet werden, welche einen Gewinn von 12.897.972 [EUR] / km^2 generieren würden. Die höchste Rentabilität erreicht die Anlage Gamesa G 114 2 MW mit 139.30%. Von dieser Anlage müssten 7 Anlagen / km^2 installiert werden.

• Szenario 3: Vergütung von 6,30 [ct/kWh] bei Kosten von 1100 [EUR/kW]

In Szenario 3, welches die höchste Vergütung zu minimalen Kosten darstellt, ist die Anlage GE Wind 4.8 - 158 die Anlage mit dem vergleichsweise höchsten Gewinn in Höhe von 13.839.824 [EUR]. Die höchste Rentabilität mit 314.94% hingegen hat die Anlage Gamesa G 114 2 MW.

Bei Errichtung eines Windparks würden 5 Anlagen / km^2 der Anlage Siemens SWT 3.15 142 errichtet werden, welche einen Gewinn von 53.492.342 [EUR] / km^2 generieren würden. Die höchste Rentabilität erreicht die Anlage Gamesa G 114 2 MW mit 314.94%. Von dieser Anlage müssten 7 Anlagen / km^2 installiert werden.

• Szenario 4: Vergütung von 6,30 [ct/kWh] bei Kosten von 1500 [EUR/kW]

In Szenario 4, welches die höchste Vergütung zu maximalen Kosten darstellt, ist die Anlage GE Wind 4.8 - 158 die Anlage mit dem vergleichsweise höchsten Gewinn in Höhe von 11.017.424 [EUR]. Die höchste Rentabilität mit 230.96% hingegen hat die Anlage Gamesa G 114 2 MW.

Bei Errichtung eines Windparks würden 5 Anlagen / km^2 der Anlage Siemens SWT 3.15 142 errichtet werden, welche einen Gewinn von 22.158.972 [EUR] / km^2 generieren würden. Die höchste Rentabilität erreicht die Anlage Gamesa G 114 2 MW mit 189.96%. Von dieser Anlage müssten 7 Anlagen / km^2 installiert werden.

• Szenario 5: Vergütung von 5,67 [ct/kWh] bei Kosten von 1100 [EUR/kW]

In Szenario 5, welches die mengen-gewichtete durchschnittliche Vergütung zu minimalen Kosten darstellt, ist die Anlage GE Wind 4.8 - 158 die Anlage mit dem vergleichsweise höchsten Gewinn in Höhe von 11.679.681 [EUR]. Die höchste Rentabilität mit 283.45% hingegen hat die Anlage Gamesa G 114 2 MW.

Bei Errichtung eines Windparks würden 5 Anlagen / km^2 der Anlage Siemens SWT 3.15 142 errichtet werden, welche einen Gewinn von 44.231.342 [EUR] / km^2 generieren würden. Die höchste Rentabilität erreicht die Anlage Gamesa G 114 2 MW mit 283.45%. Von dieser Anlage müssten 7 Anlagen / km^2 installiert werden.

• Szenario 6: Vergütung von 5,67 [ct/kWh] bei Kosten von 1500 [EUR/kW]

In Szenario 6, welches die mengen-gewichtete durchschnittliche Vergütung zu maximalen Kosten darstellt, ist die Anlage GE Wind 4.8 - 158 die Anlage mit dem vergleichsweise höchsten Gewinn in Höhe von 8.857.281 [EUR]. Die höchste Rentabilität mit 207.86% hingegen hat die Anlage Gamesa G 114 2 MW.

Bei Errichtung eines Windparks würden 5 Anlagen / km^2 der Anlage Siemens SWT 3.15 142 errichtet werden, welche einen Gewinn von 45.596.333 [EUR] / km^2 generieren würden. Die höchste Rentabilität erreicht die Anlage Gamesa G 114 2 MW mit 207.86%. Von dieser Anlage müssten 7 Anlagen / km^2 installiert werden.

6.2 Amortisation

Die Amortisationsrechnung ist ergänzend zu den obigen Rechnungen aufzuführen. Sie beinhaltet die Zeitdauer, in der die Investitionskosten erstmals durch die bis zu diesem Zeitpunkt abgelaufenen jährlichen Erträge abgedeckt sind. Somit wird nach Ablauf des Amortisationszeitraumes die Gewinnschwelle erreicht. Damit wird das Investitionsrisiko bewertet, welches mit längerer Amortisationsdauer steigt. Insbesondere in Hinblick auf die Volatilität der Windkraft und der Abhängigkeit vom Wind als einziger Produktionsfaktor ist ein frühes erreichen der Gewinnschwelle von Vorteil. Die Rechnung der Amortisation ist dennoch separat zu betrachten, da hier keine Beurteilung des Gewinnes ermöglicht wird. Die Statische Berechnung der Amortisation (4) (Vergleich [26]) ergibt sich aus:

$$Amortisationszeit(Jahren) = \frac{Anschaffungskosten}{Gewinn pro Jahr}$$
(4)

Die Betriebskosten der Anlage wurden in der Kostenrechnung als prozentualer Anteil der Hauptinvestitionskosten hinzugezogen, wobei die jährlichen Kosten in der zweiten Dekade um 1% steigen. Um die Betriebskosten in der Amortisation zu berücksichtigen, wurde in den Berechnungen zunächst der Durchschnittswert der zwei Betriebskosten gebildet und dieser von den Jahreserträgen der Anlagen abgezogen. Anschließend wurde auf Grundlage der Formel die Hauptinvestitionskosten durch den subtrahierten Ertrag pro Jahr dividiert. Diese Rechnung wurde demnach für alle Szenarien sowohl für die Einzelanlage als auch den Anlagenverbund durchgeführt.

Die Ergebnisse für alle Anlagen können dem Anhang entnommen werden. Für die einzelnen Szenarien sind die geringsten Amortisationszeiträume der Anlagen in der folgenden Tabelle zu erkennen:

Anlage	Szenario 1	Szenario 2	Szenario 3	Szenario 4	Szenario 5	Szenario 6
Gamesa G 114 2 MW	9 [Jahre]	13 [Jahre]	5 [Jahre]	7 [Jahre]	6 [Jahre]	8 [Jahre]
Siemens SWT 3.15 142	9 [Jahre]	13 [Jahre]	5 [Jahre]	7 [Jahre]	6 [Jahre]	8 [Jahre]
Siemens SWT 2.3 113	9 [Jahre]	14 [Jahre]	5 [Jahre]	7 [Jahre]	6 [Jahre]	8 [Jahre]
GE Wind 2.5 120	9 [Jahre]	14 [Jahre]	5 [Jahre]	8 [Jahre]	6 [Jahre]	8 [Jahre]
E1152.5 10 [Jahre]	14 [Jahre]	5 [Jahre]	8 [Jahre]	6 [Jahre]	9 [Jahre]	

Abbildung 14: Darstellung der Einzelanlagen mit dem geringsten Amortisationszeitraum je betrachtetem Kostenszenario. Dieser weist der Tabelle nach für die meisten Anlagen einen ähnlichen Wert auf. Die Anlagen im Verbund sowie die besten Anlagen weisen mit eine Abweichung von 1 -2 Jahren ähnliche Werte auf. Die genauen Ausführungen sind der Tabelle in Anhang 6 zu entnehmen.

Auffällig ist, dass für Szenario 2 der Amortisationszeitraum für alle Anlagen größer als 10 Jahre ist. Außerdem kann der Tabelle entnommen werden, dass sowohl in der Einzelbetrachtung als auch im Verbund erneut die Anlage mit der höchsten Rentabilität, Gamesa G 114 2 MW, die geringste Amortisation aufweist. Die Ergebnisse decken sich also weitestgehend mit den Ergebnissen der Rentabilitätsrechnung. Die Anlage Siemens SWT 3.15 142 erreicht hingegen auch ähnliche Werte. Darüber hinaus wurde in Kapitel 6.1 diese Anlage für alle Szenarien als gewinnstärkste Anlagenwahl für den Verbund identifiziert. Die gewinnstärkste Einzelanlage GE Wind 4.8 - 158 erreicht den geringen Wert der Amortisation nicht ganz, allerdings liegt sie mit etwa einem Jahr längerer Amortisation in jedem Szenario nur leicht hinter den genannten Anlagen.

6.3 Transponierung der Gewinne

Die vorangegangenen Berechnungen lassen die Frage offen, wie sich die Gewinne der Anlagen bei verschiedenen durchschnittlichen Windgeschwindigkeiten [m/s] entwickeln würden. Wie in Kapitel 2 dargestellt, wurde anhand des arithmetischen Mittels von 6.85 [m/s] und den stündlich gemessenen Windgeschwindigkeiten in Schwarzwald-Hornisgrinde für das Jahr 2017 eine Weibull- Verteilung erstellt und der Skale-, und Shape-Parameter geschätzt. [25] Insbesondere letzterer entspricht mit 2.0 dem europäischen Durchschnitt und weist auf die Rayleigh-Verteilung des Windes hin [32]. Die durchschnittliche Windgeschwindigkeit der betrachteten Verteilung hat jedoch Einfluss auf den Skale- Parameter, welcher sich mit änderndem arithmetischen Mittel neu berechnet. Der Windatlass Baden-Württemberg [24] gibt für das Bundesland einen durchschnittlichen Skale-Parameter von 6.77 und ein arithmetisches Mittel von 6 [m/s] an. Nicht zuletzt der in Hornisgrinde ermittelte Wert von 7.7 zeigt jedoch einmal mehr, wie volatil und standortabhängig Windgeschwindigkeiten sind und das die Verteilung nur als Annäherung gesehen werden kann. Daher wird für die Ermittlung der Leistungsschwankungen im Folgenden ein

Ertragsrechner [1] herangezogen, welcher den Skalen-Parameter in Abhängigkeit von dem jeweiligen arithmetischen Mittel errechnet und anhand der sich ergebenen Häufigkeitsverteilung die jährlichen Leistung durch die Kennlinie der Anlage bestimmt. Der Shape-Parameter bleibt dabei konstant gesetzt auf 2.0, welches mit den Berechnungen aus dem R-Projektseminar [25] und dem Windatlass Baden-Württemberg [24] übereinstimmt. Darüber hinaus werden die Werte der Schätzung in den Berechnungen auf eine Nachkommastelle und die Windgeschwindigkeiten ganzzahlig gerundet. Auch sei darauf hingewiesen, dass sich die Berechnungen erneut auf eine Luftdichte von 1.225 kg/m^3 beziehen, um die Bedingungen der Leistungskennlinien der Anlagen beizubehalten. [20]

Die durchschnittlichen, ganzzahligen Windgeschwindigkeiten [m/s] wurden manuell eingetragen und der ermittelte Jahresertrag pro arithmetischem Mittel abgelesen. So wurden Daten für die ungefähre theoretische jährliche Leistung der Top-Einzelanlage GE Wind 4.8 158 und Top-Anlage im Verbund Siemens SWT DD 142 auf Basis der sich errechnenden Verteilungen generiert. Im Anschluss wurden diese mit den drei Vergütungssätzen von 3,80 [ct/kWh], 6,30 [ct/kWh] und 5,67 [ct/kWh] der Ertragsanalyse verrechnet und den Kosten der Anlagen von 1100 [EUR/kW] und 1500 [EUR/kW] der sechs Szenarien gegen gerechnet. Die Ergebnisse können den Grafiken 16 und 17 am Ende des Kapitels entnommen werden.

Die jährlichen Leistungen der Anlagen GE Wind 4.8 158 und der 5 Anlagen / km^2 installierten Siemens SWT 3.15 142 für die verschiedenen arithmetischen Mittel können dem Anhang entnommen werden. In Abbildung 16 sind die Erträge pro Jahr dargestellt, die diese Anlagen mit den drei Vergütungssätzen erbringen würden. In Abbildung 17 zeigen die Graphiken die Gewinne der beiden Anlagen für alle Szenarien über die Lebensdauer von 20 Jahren in Abhängigkeit vom arithmetischen Mittel der Windgeschwindigkeiten [m/s] auf. Es lässt sich erkennen, dass die Einzelanlage GE Wind 4.8 158 einen Gewinn von maximal rund 25 Millionen [EUR] in Szenario 3 und einen maximalen Verlust von -10 Millionen [EUR] bei durchschnittlich 2 [m/s] in Szenario 5, 6 und 2 erwirtschaftet. Die Gewinnschwelle liegt bei einem arithmetischen Mittel zwischen 4-6 [m/s] und zeigt die Abhängigkeit von der Parametereinstellung im Szenario. Der Zeitpunkt ist gleich dem der arithmetischen Mittel, zu welchem die Erträge am höchsten sind (siehe Abbildung 16). Außerdem steigt der Verlauf von Szenario 5 und 6 bei einem Mittel der Windgeschwindigkeiten von circa 4.5 [m/s] abrupt an, sodass die Gewinne hier die des Szenario 1 fortan übertreffen. Alle Szenarien haben zwischen 11-12 [m/s] ihren maximalen Gewinn erreicht, bevor die Gewinne abnehmen. Dies liegt daran, dass ab diesem Zeitpunkt meist

die Hälfte der Weibull-Verteilung ab 12 [m/s] bei den Windgeschwindigkeiten liegt, die zu einer konstanten Nennleistung produzieren. Diese liegt bei der Anlage bei 12 [m/s], wobei die Anlage ab 25 [m/s] abgeschaltet wird, sodass die Gewinne danach wieder sinken. Die Anlage im Verbund, Siemens SWT 3.15 142, zeigt in Abbildung 17 einen etwas verschobenen Verlauf. Hier liegt zunächst der maximale Gewinn durch die hinzugerechnete Turbinendichte bei etwa 47 Millionen [EUR] und ein maximaler Verlust von -37 Millionen [EUR] bei durchschnittlich 2 [m/s]. Der maximale Gewinn wird bei dieser Anlage bei einer im Vergleich zur Einzelanlage geringeren mittleren Windgeschwindigkeit zwischen 7-8 [m/s] erreicht, wobei die Erträge hier ab 17 [m/s] in Szenario 2 wieder negativ werden. Bei der GE Wind 4.8 158 ist dieser Zeitpunkt nicht in der Grafik zu erfassen, da der Punkt bei gleichbleibenden Verlauf bei über 20 [m/s] liegen würde und ein so hohes arithmetisches Mittel aufgrund von Unwahrscheinlichkeit in der Realität nicht berechnet wurde. Die Siemens SWT 4.15 142 erreicht die Gewinnschwelle hingegen ebenfalls bei 4-6 [m/s]. Hier wird die Nenngeschwindigkeit laut Leistungsangaben auch bei 12 [m/s] erreicht, allerdings ist der exponentielle Verlauf der Leistungen vorher stärker, weshalb der maximale Ertrag beziehungsweise Gewinn früher erreicht werden kann.

Der direkte Vergleich von Abbildung 16 und 17 zeigt den ähnlichen Verlauf der Erträge und der Gewinne. Dies liegt daran, dass die Erträge abhängig von der Leistung sind, welche wiederum Abhängig von den Windgeschwindigkeiten und der Leistungskurve der Anlagen sind. Die Kosten der Anlagen sind ein konstanter Faktor, sodass die Gewinne ebenso volatil sind wie die Windgeschwindigkeiten. Insbesondere die Umrechnung der Leistung beziehungsweise Gewinne der Anlagen auf Basis verschiedener Windhöffigkeiten zeigt deutlich die Standortspezifität der Windenergieprojekte und optimalen Anlagenwahl beziehungsweise der Parametereinstellung der Vergütung und der Hauptinvestitionskosten.

Abbildung 15: Jährlicher Ertrag [EUR] der Top-Anlagen bei ändernden Windgeschwindigkeiten [m/s]. Der Graph zeigt den jeweiligen jährlichen Ertrag [EUR] auf der y-Achse als Verlauf in Abhängigkeit der Windgeschwindigkeit [m/s] auf der x-Achse auf Basis der Berechnungen des Ertragsrechner für die mittleren gerundeten Geschwindigkeiten. Die rote Linie entspricht den tatsächlichen Verhältnissen in Schwarzwald-Hornisgrinde. Der Ertrag der Siemens SWT 3.15 142 entspricht dem Ertrag / km^2 .

variable — Vergtung 6.30 [ct/kWh] — Vergtung 3.80 [ct/kWh] — Vergtung 5.67 [ct/kWh]

Abbildung 16: Gewinn je Szenario [EUR] der Top-Anlagen bei ändernden Windgeschwindigkeiten [m/s] insgesamt über einer Lebensdauer von 20 Jahren. Jährlicher Gewinn [EUR] der Top-Anlagen bei ändernden Windgeschwindigkeiten [m/s]. Der Graph zeigt den jeweiligen Gewinn [EUR] auf der y-Achse als Verlauf in Abhängigkeit der Windgeschwindigkeit [m/s] auf der x-Achse auf Basis der Berechnungen des Ertragsrechner. Die rote Linie entspricht den tatsächlichen Verhältnissen in Schwarzwald-Hornisgrinde. Der Gewinn der Siemens SWT 3.15 142 entspricht dem Gewinn / km^2 . Die rote Linie entspricht den tatsächlichen Verhältnissen in Schwarzwald-Hornisgrinde. Der Gewinn der Siemens SWT 3.15 142 entspricht dem Gewinn / km^2 .

6.4 Diskussion der Ergebnisse

Nach Abschluss der Auswertung gilt es nun die Ergebnisse zu bewerten. Die vorliegende Analyse hat zeigt, dass für die betrachteten Szenarien fast alle Anlagen in Schwarzwald-Hornisgrinde gewinnbringend wären (siehe Anhang). Betrachtet man die aufgeführten Ergebnisse des Optimierungsproblems der Gewinn-, und Rentabilitätsrechnung, so sind die Anlagen GE Wind 4.8 158 als installierte Einzelanlage und Siemens SWT 3.15 142 für die Errichtung eines Windparks als optimale Anlagenwahl für die Region zu identifizieren. Damit lässt sich die These bestätigen, dass die leistungsstärksten Turbinen auch den höchsten Gewinn generieren. Eine Ausnahme allerdings stellt das vorgestellte Szenario 2 dar, in welchem die geringste Vergütung in Zusammenhang mit den höheren Kosten bewirkt, dass die Siemens SWT 3.15 142 in diesem Fall auch die optimale Wahl als Einzelanlage darstellt. Auch ist hier Auffällig, dass der Amortisationszeitraum für alle Anlagen größer als 10 Jahre ist. Betriebswirtschaftlich ist das pessimistische Szenario somit risikobehaftet und eine Durchführung sollte bei dieser Parametereinstellung genauer bedacht werden.

Listet man die Ergebnisse der höchsten Gewinn in absteigender Reihenfolge wird außerdem deutlich, dass die gewinnstärksten Anlagen im Mittelfeld je Szenario variieren. Zwar liegen die Gewinne beziehungsweise die Rentabilität dieser Anlagen stets unterhalb der oben genannten optimalen Anlagen, jedoch sind diese ebenfalls als gute Alternativen auszumachen. Die Anlage GE 114 2 MW lässt sich derweil als Anlage mit der höchsten Rentabilität und dem kürzesten Amortisationszeitraum in allen betrachteten Szenarien identifizieren. So liegt die höchste Rentabilität mit etwa 280 % in Szenario 5 vor, während mit 5 Jahren der kürzeste ermittelte Amortisationszeitraum die Anlage in Szenario 3 aufweist. Somit ermöglicht diese Anlage den bestmöglichen Ertrag im Verhältnis zu dem notwendigen Kapitaleinsatz. Allerdings, zeigen die beiden identifizierten optimalen Anlagen im Vergleich ähnliche Werte (siehe Anhang).

Die Bundesnetzagentur ² gab an, dass beim derzeitigen Wettbewerb die höchst mögliche Gebotsmenge von 6,30 [ct/kWh] als durchaus realistischer Zuschlagswert gesehen werden kann. Dies liegt zum einen daran, dass die letzten beiden Ausschreibungsrunden unterzeichnet waren und es derzeit keine Anzeichen für einen Rückgang dieses Trends auf dem Markt gibt. Die mengengewichteten Zuschlagswerte wie in den Daten der Bundesnetzagentur angegeben können demnach als Richtwerte den Berechnungen zugrunde gelegt werden. Die Nähe des ermittelten durchschnittlichen Wertes von 5,67 [ct/kWh]

²siehe ergänzend: schriftlichen digitalen Verkehr (e-Mail) mit der Bundesnetzagentur in Anhang 4

aller bisherigen Ausschreibungsrunden beziehungsweise 5,30 [ct/kWh] der letzten Ausschreibungsrunden an der Höchstgebotmenge bestätigt diese Annahme weiter. Hinzu kommt, dass die anzulegenen Werte noch nach §30h EEG [7] modifiziert werden. Die Bundesnetzagentur³ sieht für süddeutsche Anlagen einen hohen Gütefaktor von 70% und ein sich damit errechnender Korrekturfaktor von 1,29 als durchaus realistisch an, womit sich die geringste Vergütung von 3,80 [ct/kWh] sogar auf 4,90 [ct/kWh] erhöhen würde. Damit ist die Wahrscheinlichkeit, dass Szenario 2 eintritt, recht niedrig. Dies wird auch damit unterstützt, dass die Kosten von 1.500 [EUR/kW] recht hoch angesetzt sind und, wie in Kapitel 5.1 und 5.3 dargestellt, eine Reduktion der verschiedenen Kostenparamter durchaus möglich und eine Degression der generellen Stromgestehungskosten [EUR/kW] bewirken würde. Damit und auch mit der Anwendung des Gütefaktors auf den mengengewichteten Durchschnittswert sind abschließend Szenario 5 und 6 als wahrscheinlichste Szenarien zu bewerten. Die Kostenstruktur hängt, die bereits erwähnt, von dem spezifischen Projekt ab. In Abhängigkeit von den vorherrschenden Windgeschwindigkeiten ergibt sich nach Abbildung 17 für diese beiden Szenarien ab einem arithmetischen Mittel von 5 [m/s] positive Erträge.

 $^{^3}$ siehe ergänzend: schriftlichen digitalen Verkehr (e-Mail) mit der Bundesnetzagentur in Anhang 4

7 Zusammenfassung und kritische Würdigung

Abschließend der vorangegangenen Analyse in Kapitel 3-6 sollen die Ergebnisse nun zusammengefasst und kritisch hinterfragt werden.

Die vorliegende Studie hatte zum Ziel, das betriebswirtschaftliche Potenzial für Windkraft in Süddeutschland am Beispiel einer statistischen Analyse der Region Schwarzwald-Hornisgrinde in Baden-Württemberg zu bewerten. Dabei sollte neben der Untersuchung der vorliegenden Windhöffigkeit die optimale Anlagenwahl alleine und im Verbund ermittelt werden. Dazu wurde zunächst eine Leistungs-, und anschließende Ertragsanalyse anhand von 82 auf dem Markt befindlicher Turbinen durchgeführt. Als mögliche Erträge wurden drei Vergütungssätze von 3,80 [ct/kWh], 5,67 [ct/kWh] und 6,30 [ct/kWh] nach EEG 2017 gewählt. Die sich ergebenen Erträge wurden daraufhin mit Investitionskosten von 1100 und 1500 [EUR/kWh] und 1,5% Betriebskosten in der ersten Dekade beziehungsweise 2,5% in der zweiten Dekade verrechnet. Im Rahmen einer abschließenden Gewinnvergleichs-, und Rentabilitätsanalyse wurden die Messzahlen betriebswirtschaftlich untersucht sowie der Amortisationszeitraum der Windkraftanlage als Kapitalanlage bestimmt. Für die sechs Szenarien ergaben die Rechnungen, dass die optimale Einzelanlagenwahl eine GE Wind 4.8 158 wäre. Die Windkraftanlage geniere auf Basis der Winddaten des Jahres 2017 einen theoretischen Ertrag von 17.143.987 [kWh] und ein Gewinn zwischen 5 und 13 Millionen Euro im Betriebszeitraum von 20 Jahren. Für die Errichtung eines Windparks wäre die Anlage Siemens SWT 3.15 142 mit einem theoretischen Ertrag von 62.666.740 [kWh] und einer Dichte von 5 Turbinen / km^2 die optimale Wahl. Im Verbund generieren die Anlagen einen potenziellen Gewinn von 53.491.392 -12.897.972 Euro / km^2 . Als Anlage mit der höchsten Rentabilität des Gewinnes zum eingesetzten Kapital ist die Anlage Gamesa G 114 2 MW zu identifizieren. Der Amortisationszeitraum aller Anlagen liegt ähnlich, mit Werten zwischen 6 und 9 Jahren.

Damit ist festzustellen, dass die Installation von Windkraftanlagen in Süddeutschland am Beispiel der Region Schwarzwald-Hornisgrinde durchaus betriebswirtschaftlichen Nutzen hat. Eine Bewertung der Ergebnisse ergab weiterhin, dass die Szenarien mit der geringen Vergütung von 3,80 [ct/kWh] auf Grundlage der aktuellen Marktsituation keine hohe Wahrscheinlichkeit besitzen und somit die Realisierbarkeit zu einem der höheren Gewinne tendiert. Die Bundesnetzagentur weist darauf hin, dass in der aktuellen Wettbewerbssituation in Zusammenhang mit den höheren Referenzwerten in Baden-Württemberg ein

⁴siehe ergänzend: schriftlichen digitalen Verkehr (e-Mail) mit der Bundesnetzagentur in Anhang 4

Zuschlag entsprechend des Höchstgebotwertes von 6,30 [ct/kWh] realistisch ist.

Darüber hinaus zeigt die WindGuard GmbH in einer Marktanalyse auf, dass der Markt sich aktuell in einer Konsolidierungsphase befindet und als nächstes der breite Einstieg in die 4 MW Klasse der Windkraftanlagen erwartet wird. Der Trend hin zu Empowering-Maßnahmen und dem Plattformgedanken unterstützt außerdem die Beurteilung, dass mit der neuen Technologieentwicklung die vorgelegten Ergebnisse überprüft und modifiziert werden müssten. Dies hängt damit zusammen, dass mit den neuen Anlagen zwar mehr Leistung erbringt werden kann, aber durch die Größe auch die Kosten in den ersten Jahren steigen könnten. Konsolidierungs-, und Entwicklungsphase wechseln tendenziell alle 4 Jahre, wobei in Bezug auf die Erhöhung der Nabenhöhe bei technischer Realisierbarkeit und kaum Zeitverzug anzunehmen ist. Daher wird auch bei diesem Trend eine Neuberechnung der Werte nötig sein. [13]

Auch ist die Volatilität in den Windgeschwindigkeiten und den Leistungen zu berücksichtigen, welche generell, insbesondere mit höherer Nabenhöhe, überproportional steigt. Auch im Zuge des Klimawandels sind Änderungen im Winddargebot zu erwarten, sodass die zugrunde liegende statistische Auswertung der Geschwindigkeiten in regelmäßigen Abständen ebenfalls erneuert werden müsste. Auch gilt es, für genauere Messwerte die Luftdichte zu berücksichtigen. Die Messstation des Deutschen Wetterdienstes [28, 29] in Schwarzwald-Hornisgrinde liegt auf 1.119 Höhenmetern. Da die Luftdichte mit zunehmenden Höhenmetern abnimmt, müssten die Leistungskennlinien für den am Standort ermittelten Wert korrigiert werden, da die Luftdichte sich zur Leistung des Windes in proportionalen Zusammenhang verhält. [24] Andererseits lag in den Berechnungen eine standortbezogene Häufigkeitsverteilung vor, was die Validität der Messergebnisse begünstigt. So wurden außerdem die Windgeschwindigkeiten auf einer Fläche von 1 km^2 gemessen, wodurch die breite Fläche nicht die Aussagekraft der Leistung / km^2 beeinträchtigt. Für eine genauere Messung sollten dennoch bei einer konkreten Projektplanung Kennzahlen wie Hindernis-Korrekturfaktoren, die Rauhigkeit, sowie die Interpolation auf Nabenhöhe der Turbine herangezogen werden. [24]

Das Land Baden-Württemberg gibt außerdem an, bis 2020 einen Anteil von 10% der Stromversorgung durch Windenergie decken zu wollen. Die vorliegende Analyse hat gezeigt, dass der Ausbau der Windkraft im Schwarzwald durchaus Sinn ergibt und die Umsetzung konkreter Projekte auch gewerblichen Gewinn mit sich bringen würde. Dabei hängt die Projektwirtschaftlichkeit allerdings von der eingesetzten Anlagentechnologie ab, und der konkreten Ausgestaltung der Kostenstruktur ab. [15] Diese sind aufgrund der mangelnden Erfahrungswerte in Baden-Württemberg nur bedingt einzuschätzen, was

bei einer konkreten Projektplanung zu anderen als den in dieser Studie angegebenen Werten führen könnte. Die Separation von Eigen-, und Fremdkapital und damit entstehenden Zinskosten und Risiken der Beteiligten stehen in der Realität vermehrt im Fokus. Damit sei einmal mehr betont, dass es sich bei den vorliegenden Angaben lediglich um theoretische Werte auf Basis von Annahmen handelt. Auch sind die Ergebnisse auf die Windgeschwindigkeiten der Region Schwarzwald-Hornisgrinde beschränkt und die gesamte Analyse müsste für weitere Standorte erweiterte werden, um eine adäquate Aussage über das Gewinnpotenzial des gesamten Bundeslandes treffen zu können. An Standorten mit geringerem Winddargebot reagieren die einzelnen Parameter und insbesondere die Rentabilität sensibel [15].

Eine Studie zur Volatilität der Stromkosten [19] zeigte, dass die Variabilität der Windgeschwindigkeit das Preisniveau senkt aber dessen Volatilität steigert. Dies ist insbesondere auf die EEG-Umlage und dem Merit-Order-Effekt zurückzuführen, nach welchem günstigsten Stromquellen zunächst, aber Strom aus erneuerbaren Energien bevorzugt an der Börse eingespeist wird. Auf Bundesebene ist anzuführen, dass besonders das Strompreisniveau starken Einfluss auf die Förderkosten hat. Der durchschnittliche Spotpreis am Day Ahead Markt liegt bei knapp über 30 [EUR/MWh] [18]. Aus einer Vergütung von 6.30 [ct/kWh] errechnen sich 63 [EUR/MWh] und somit eine Marktprämie von etwa 30 [EUR] an die Anlagenbetreiber. Um die Windkraft als zweitstärkste Energiequelle nach Braunkohle zu erhalten, ist die anhaltende Ausweitung der Förderkosten vorauszusetzen. [33] Die Anlagenbetreiber sind von der Stabilität des Absatzes für eine klare Finanzstruktur abhängig, um die Volatilität in den Windgeschwindigkeiten abzufangen. Mit einem sinkenden Strompreis erhöht sich die Gefahr, dass zu wenig Fördergelder für die Windkraft zur Verfügung stehen. Dies würde die Installation neuer Anlagen aus betriebswirtschaftlicher Perspektive erschweren.

Eine genaue Abschätzung der Wahrscheinlichkeit der betrachteten Szenarien ist für eine reale Projektplanung unabdingbar. Darum ist abschließend festzustellen, dass durch die mangelnde Literatur für eine weitreichende Implementierung und die Einhaltung der Ausbauziele weitere detaillierte Studien zur Ertrags-, und Kostenlage von Windkraftanlagen von Vorteil wären. Eine Offenlegung von Informationen zu den Gewinnpotenzialen der Windkraft aus offiziellen Quellen würde die monetäre Bewertung dieser als Investition unterstützen und sowohl den Betreibern, als auch den Abnehmer durch besserer Transparenz zu einer auf Fakten basierende Bewertung verhelfen.

Literatur

- [1] ENCO Energie-Consulting AG. Ertragsrechner. 2018. URL: https://wind-data.ch/tools/powercalc.php (besucht am 15.09.2018).
- [2] M. Bartelmann u.a. *Theoretische Physik 3 | Quantenmechanik*. Springer Berlin Heidelberg, 2018. ISBN: 9783662560723. URL: https://books.google.de/books?id=IXZZDwAAQBAJ.
- [3] Lucas Bauer. wind-turbine-models.com Dein Portal für Windkraftanlagen und Modelle. 2018. URL: https://www.wind-turbine-models.com/turbines (besucht am 08.08.2018).
- [4] Bundesnetzagentur. Ausschreibungen zur Ermittlung zur finanziellen Förderung von Windenergie an Land. 2017. URL: https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Ausschreibungen/Wind_Onshore/Wind_Onshore_node.html (besucht am 15.09.2018).
- [5] Bundesnetzagentur. Beendete Ausschreibungen 2018. 2018. URL: https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Ausschreibungen/Wind_Onshore/BeendeteAusschreibungen/Ausschreibungen2018/Ausschreibungen2018_node.html (besucht am 21.09.2018).
- [6] Bundesnetzagentur. "Jahresbericht 2014 Netze ausbauen. Zukunft sichern. Infrastrukturausbau in Deutschland". In: Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen: Presse und Öffentlichkeitsarbeit (2014).
- [7] beck- online Die Datenbank. EEG 2017 §30 Anforderungen an die Gebote. 2018. URL: https://beck-online.beck.de/Dokument?vpath=bibdata%2Fges%2Feeg% 2Fcont%2Feeg.p30.htm&anchor=Y-100-G-EEG-P-30 (besucht am 27.09.2018).
- [8] beck- online Die Datenbank. *EEG 2017 Anlage 2.* 2018. URL: https://beck-online.beck.de/?vpath=bibdata%2Fges%2FEEG%2Fcont%2FEEG%2EANL2%2Ehtm (besucht am 27.09.2018).
- [9] Dr. Brigitte Einig Klaus; Zaspel. "Windenergieanlagen und Raumordnungsverteilungen". In: Bauinsititut für Bau-, Stadt-, und Raumforschung. BBSR-Analysen Kompakt 01/2014 (2014).
- [10] Due Diligence & Project Engineering. "Wirtschaftlichkeit eines Windpark-Planungsvorhabens in Birkenau (Oberwald)". In: *Stadtwerke Viernheim* (2012).

- [11] Dena Deutsche Energie-Agentur GmbH. "Energiewirtschaftliche Planung für die Netzintegration von Windenergie in Deutschland an Land und Offshore bis zum Jahr 2020". In: Dena- Deutsche Energie-Agentur GmbH (2005).
- [12] Dena Deutsche Energie-Agentur GmbH. "Integration erneuerbarer Energien in die deutsche Stromversorgung im Zeitraum 2015-2020 mit Ausblick auf 2025". In: Dena- Deutsche Energie-Agentur GmbH (2010).
- [13] Deutsche Windguard GmbH. "Kostendruck und Technologieentwicklung im Zuge der ersten Ausschreibungsphase für Windenergie an Land". In: Bundesministerium für Wirtschaft und Energie (2017).
- [14] Deutsche Windguard GmbH. "Status des Windenergieausbaus an Land in Deutschland". In: Bundesministerium für Wirtschaft und Energie (2018).
- [15] Deutsche Windguard GmbH. "Wirtschaftlichkeit von Standorten für die Windenergienutzung". In: Bundesministerium für Wirtschaft und Energie (2012).
- [16] Mathias Heidinger. Neues Hornisgrinde-Windrad erfüllt bisher alle Erwartungen. 2016. URL: https://www.bo.de/lokales/achern-oberkirch/neues-hornisgrinde-windrad-erfuellt-bisher-alle-erwartungen (besucht am 14.10.2018).
- [17] Frauenhofer ISE. Onshore Investitionskosten. 2015. URL: http://windmonitor.iee.fraunhofer.de/windmonitor_de/3_Onshore/5_betriebsergebnisse/3_investitionskosten/ (besucht am 15.09.2018).
- [18] Frauenhofer ISE. Stromproduktion und Börsenstrompreise in Deutschland. 2018. URL: https://www.energy-charts.de/price_de.htm (besucht am 03.10.2018).
- [19] Janina C. Ketterer. "The impact of wind power generation on the electricity price in Germany". In: *Energy Economics* 44 (2014), S. 270–280.
- [20] Stephan Kopp. Windenergie im Binnenland. 2018. URL: http://www.windenergie-im-binnenland.de/powercurve.php (besucht am 08.08.2018).
- [21] Stephan Kopp. Windenergie im Binnenland. 2018. URL: http://www.windenergie-im-binnenland.de/flaechenverbrauch.php (besucht am 08.08.2018).
- [22] Next Kraftwerke. Was ist die Marktprämie? 2018. URL: https://www.next-kraftwerke.de/wissen/direktvermarktung/marktpraemie (besucht am 21.09.2018).
- [23] Fachagentur Windenergie an Land. "EEG 2017: Ausschreibungsbedingte Neuerungen für Windenergieanlagen an Land". In: Fachagentur Windenergie an Land (2017).

- [24] Klima und Energiewirtschaft Baden-Württemberg Ministerium für Umwelt. "Wintatlas Baden-Württemberg". In: Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Webpage: www.um.baden-württemberg.de (2014).
- [25] Lisa Müller. "Statistische Analyse von Windkraft und dessen Leistung auf Basis einer installierten Windenergieanlage in Süddeutschland". Working paper. 2018.
- [26] Kay Poggensee. *Investitionsrechnung Grundlagen Aufgaben Lösungen*. Gabler Verlag, 2011. ISBN: 9783834930149.
- [27] RStudio Team. RStudio: Integrated Development Environment for R. RStudio, Inc. Boston, MA, 2015. URL: http://www.rstudio.com/.
- [28] Deutscher Wetterdienst. CDC Datenbank. 2018. URL: ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/wind/historical/ (besucht am 08.08.2018).
- [29] Deutscher Wetterdienst. Datensatzbeschreibung: Historische stündliche Stationsmessungen der Windgeschwindigkeit und Windrichtung für Deutschland. 2018. URL: ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/wind/historical/ (besucht am 08.08.2018).
- [30] Bundesverband Windenergie. Zahlen und Fakten Statistische Kennziffern zur Erfolgsgeschichte Windenergie. 2018. URL: https://www.wind-energie.de/themen/zahlen-und-fakten/(besucht am 01.09.2018).
- [31] Bundesverband für Windenergie. "Unterrichtseinheit Physik: Windenergie". In: Bundesverband für Windenergie; UFU.e.V./BWE e.V. 2. Erweiterte Auflag (2013).
- [32] Verband der dänischen Windindustrie. Beschreibung des Windes: Weibull Verteilung. 2003. URL: http://www.windpower.org/de/tour/wres/weibull.html (besucht am 08.08.2018).
- [33] Institut der deutschen Wirtschaft Köln. "EEG 2017: Eine Kostenabschätzung Mögliche Entwicklungen der Förderkosten bis 2020 und 2025". In: *Institut der deutschen Wirtschaft Köln* (2016).
- [34] Bundesministerium für Wirtschaft und Energie. Nationale Ausschreibungen und Ergebnisse. 2018. URL: https://www.erneuerbare-energien.de/EE/Redaktion/DE/Dossier/nationale-ausschreibungen-und-ergebnisse.html?cms_docId=577134 (besucht am 21.09.2018).

[35] Dr. Brigitte Zaspel. "Welcher Raum bleibt für den Ausbau der Windenergie? Analyse des bundesweiten Flächenpotenzials in Deutschland. Informationen zur Raumentwicklung". In: Bauinsititut für Bau-, Stadt-, und Raumforschung. BBSR-Analysen Kompakt Heft 6 (2015).

Anhang

Anhang Kapitel 3

Herstellerangaben zu den Windkraftanlagen

	WKA	Rotordurchmesser [m]	Nennleistung [kWh]	Nabenhöhe [m]
1	E 101 3050	101	3050	99/124/135/149
2	E 101 E2 3.5	101	3500	74
3	E 112 4.5	114	4500	99/153/159
4	E 115 2.5	115	2500	99/122/135/139
5	E 115 TES 3	115	3000	99/122/135/139
6	E 115 TES 3.2	115	3200	99/122/135/139
7	E 126 EP4 TES 4.2	127	4200	135
8	E 126 7.5	127	7580	135
9	E 141 4.2	141	4200	99/129/135/159
10	eno 100 2200	100	2200	99/125
11	eno 114 3500	115	3500	91/127.5/142
12	eno 126 3500	126	3500	117/137
13	FL MD 77	77	1525	61.5/85/100/114.5
14	FL 2000 93	93	2050	70(85)/100/117(141
15	FL 2000 100	93	2050	85/100/117/141
16	FL 2500 100	100	2530	85/100/117/141
17	FL 2500 104	100	2530	85/100/117/141
18	FL 3000 120	120	3000	90/100/117/141
19	Gamesa G 97 2MW	97	2000	92/127.5/142
20	Gamesa G 114 2MW	114	2000	80/93/106/125
21	Gamesa G 114 2.5MW	114		
22			2500	80/93/125
	Gamesa G 128 4.5MW	128	4500	92/127.5/142
23	GamesaG 128 5MW	128	5000	81/95/120/140
24	GamesaG 132 3.3MW	132	3300	84/97/114/134
25	GamesaG 132 5MW	132	4999	95/120/140
26	GE Wind 2.5 120	120	2530	85/98.3/110/139
27	GE Wind GE 2.75 - 120	120	2780	85/98.3/110/120/139
28	GE Wind GE 3.2 - 130	130	3230	85/110/164.5
29	GE Wind GE 3.8 - 130	130	3830	?
30	GE Wind GE 3.4 - 137	137	3430	110/131.4
31	GE Wind GE 3.6 - 137	137	3600	110/155/164.5
32	GE Wind GE 4.8 - 158	158	4800	101/120.9/161
33	Nordex N 90 2500 LS	90	2500	65/70/80
34	Nordex N 149 4.5 MW	149	4500	105/125/164
35	Nordex N 131 3.9MW	131	3900	114/120/134
36	Nordex N 100 2500	100	2500	75/80/100
37	Nordex N 117 3.6 MW	117	3600	91/120/141
38	Nordex N 100 3300	100	3300	75/85/100
39	Nordex N 131 3.0MW	131	3000	99/114/134
40	Nordex N 117 2.4MW	117	2400	91/120/141
41	Nordex N 131 3.3MW	131	3300	134/164
42	Nordex N 117 3MW	117	3000	91/120/141
43	Nordex N 131 3.6MW	131	3600	114/120/141
44	Senvion MM 100 2000	100	2000	75/80/100
45	Senvion 3.2M 114 VG	114	3200	93/123/143
46	Senvion 3.4M NES 114	114	3400	93/119
47	Senvion 3.6M 114	114	3600	93/119
48	Senvion 3.00M 122	122	3000	89/119/139
49	Senvion 3.2M 122 NES	122	3200	89/119/139
50	Senvion 3.4M 140 EBC	140	3400	110/130
51	Senvion 3.6M 140 EBC	140	3600	110/130/160
52	Siemens SWT 2.3 113	113	2300	?
53	Siemens SWT 3.2 113 2A	132	3200	83.5/88/92.5/115/127.5
54	Siemens SWT 3.2 113 2B	132	3200	79.5/92.5/99.5
55	Siemens SWT 3.3 130	130	3300	85/115/135
56	Siemens SWT $3.3~130~\mathrm{LN}$	130	3300	85/115/135
57	Siemens SWT 3.6 120	120	3600	85
58	Siemens SWT 3.6 130	130	3600	85/117/135
			3150	109/129/135

60	Siemens SWT DD 130	130	4200	85/115/135
61	Siemens SWT DD 142	142	3900	109/129/165
62	Vensys 77 1500 kW	77	1500	100
63	Vensys 82 1500 kW	82	1500	85
64	Vensys 100 2500 kW	100	2500	100
65	Vensys 109 2500 kW	109	2500	95/140
66	Vensys 112 2500 kW	112	2500	112
67	Vensys 120 3000 kW	120	3000	?
68	Vestas V 90 2000 GS	90	2030	?
69	Vestas V 100 1.8	100	1800	80/95/120
70	Vestas V 100 1.8 GS	100	1835	80/95/120
71	Vestas V 112 3075	112	3075	80/91.5/116.5
72	Vestas V 112 3.3	112	3300	69/94
73	Vestas V 112 3.45	112	3450	69/94
74	Vestas V 117 3.3	117	3300	80/91.5/116.5
75	Vestas V 117 3.45	117	3450	80/91.5/116.5
76	Vestas V 117 3.6	117	3600	80/91.5/116.5
77	Vestas V 126 3.0	126	3000	87/117/137/147
78	Vestas V 126 3.3	126	3300	87/117/137/147
79	Vestas V 126 3.45	126	3450	87/117/137/147
80	Vestas V 136 3.45	136	3450	82/112/132/142/149
81	Vestas V 136 4.0 4.2	136	4200	112
82	Vestas V 150 4.2	150	4200	82/112/132/142/149

Theoretische Leistung [kWh] im Jahr 2017 und Nutzungsgrad [%]der verschiedenen Anlagen

	WKA	Leistung [kW]	Nutzungsgrad [%]
1	E1013050	9081200.00	33.99
2	E101E23.5	9285395.00	30.29
3	E1124.5	11497540.00	29.17
4	E1152.5	9305663.50	42.49
5	E115TES3	10134345.50	38.56
6	E115TES3.2	10284907.00	36.69
7	E126EP4TES4.2	12641616.00	34.36
8	E1267.5	16286600.00	24.53
9	E1414.2	14154525.00	38.47
10	eno1002200	7361847.00	38.20
11	eno1143500	4168550.00	13.60
12	eno1263500	11667266.00	38.05
13	FLMD77	4551291.00	34.02
14	FL200093	6738772.20	37.42
15	FL2000100	6975069.20	38.84
16	FL2500100	8028038.81	36.22
17	FL2500104	8028038.81	36.22
18	FL3000120	10447085.40	39.75
19	GamesaG972MW	6950089.00	39.67
20	GamesaG1142MW	8083432.00	46.14
21	GamesaG1142.5MW	9043201.00	41.29
22	GamesaG1284.5MW	13547319.00	34.37
23	GamesaG1285MW	14159726.00	32.33
24	GamesaG1323.3MW	12024771.00	41.60
25	GamesaG1325MW	14709982.00	33.59
26	GEWind2.5120	9678961.00	43.67
27	GEWindGE2.75-120	10088561.00	41.43
28	GEWindGE3.2-130	11593524.00	40.97
29	GEWindGE3.8-130	12479941.00	37.20
30	GEWindGE3.4-137	12566417.00	41.82
31	GEWindGE3.6-137	12781487.00	40.53
32	GEWindGE4.8-158	17143987.00	40.77
33	NordexN902500LS	7068141.00	32.27
34	NordexN1494.5MW	1756422.54	0.00
35	NordexN1313.9MW	1347042.19	0.00
36	NordexN1002500	8011297.00	36.58
37	NordexN1173.6MW	11063281.00	35.08

38	NordexN1003300	8687920.00	20.05
38 39	NordexN1313.0MW	11329070.00	30.05 43.11
40	NordexN1313.0MW NordexN1172.4MW	9082515.00	43.11
41	NordexN1172.4MW NordexN1313.3MW	1351644.33	0.00
42	NordexN1173MW	10094431.00	38.41
43	NordexN1173WW NordexN1313.6MW	1397003.04	0.00
44	SenvionMM1002000	7110086.00	40.58
45	Senvion3.2M114VG	10324685.00	36.83
46	Senvion3.4MNES114	10585045.00	35.54
47	Senvion3.6M114	10752513.00	34.10
48	Senvion3.0M122	10560615.00	40.18
49	Senvion3.2M122NES	10845609.00	38.69
50	Senvion 3.4M140EBC	12813636.00	43.02
51	Senvion 3.4M140EBC	13177331.00	41.79
52	SiemensSWT2.3113	8834989.00	43.85
53	SiemensSWT3.21132A	10428581.00	37.20
54	SiemensSWT3.21132B	10424119.00	37.19
55	SiemensSWT3.3130	11786777.00	40.77
56	SiemensSWT3.3130LN	11851495.00	41.00
57	SiemensSWT3.6120	11677896.00	37.03
58	SiemensSWT3.6130	12383336.00	39.27
59	SiemensSWT3.15142	125333348.00	45.42
60	SiemensSWTDD130	13288940.60	36.12
61	Siemens SWTDD142	14224328.00	41.64
62	Vensys771500kW	4576678.20	34.83
63	Vensys821500kW	5030714.60	38.29
64	Vensys1002500kW	7586901.10	34.64
65	Vensys1092500kW	8383763.00	38.28
66	Vensys1122500kW	8626926.60	39.39
67	Vensys1203000kW	10397600.00	39.56
68	VestasV902000GS	6154090.00	34.61
69	VestasV1001.8	6705576.00	42.53
70	VestasV1001.8GS	6704551.00	41.71
71	VestasV1123075	9770820.00	36.27
72	VestasV1123.3	10012255.00	34.63
73	VestasV1123.45	10390740.00	34.38
74	VestasV1173.3	10531314.00	36.43
75	VestasV1173.45	10934127.00	36.18
76	VestasV1173.6	11100389.00	35.20
77	VestasV1263.0	10901266.00	41.48
78	VestasV1263.3	11434777.00	39.56
79	VestasV1263.45	11803680.00	39.06
80	VestasV1363.45	12769059.00	42.25
81	$VestasV1364.0\ 4.2$	13901609.00	37.78
82	VestasV1504.2	15563183.00	42.30

Berechnung Turbinendichte Beispiel Anlage 1

Platzbedarf: 7,54 ha/MW

Turbinendichte: 1 MW = 0,0754 km^2 <-> 14,2857 MW = 1 km^2 <-> 14.285,4 kW/ km^2 Beispiel Anlage Enercon E 70: $\frac{14.295,4}{4.800(Nennleistung)}$ = 3 Turbinen / km^2

Theoretische Leistung [kWh] im Jahr 2017 auf Basis der errechneten Turbinendichte [Anzahl / $km^2]$ der verschiedenen Anlagen in Verbund

	WKA	Dichte [Anlagen / km^2]	Leistung [kW]
1	E1013050	5.00	45406000.00
2	E101E23.5	4.00	37141580.00
3	E1124.5	3.00	34492620.00
4	E1152.5	6.00	55833981.00
5	E115TES3	5.00	50671727.50
6	E115TES3.2	4.00	41139628.00
7	E126EP4TES4.2	3.00	37924848.00
8	E1267.5	2.00	32573200.00
9	E1414.2	3.00	42463575.00
10	eno1002200	6.00	44171082.00
11	eno1143500	4.00	16674200.00
12	eno1263500	4.00	46669064.00
13	FLMD77	9.00	40961619.00
14	FL200093	7.00	47171405.40
15	FL2000100	7.00	48825484.40
16	FL2500100	6.00	48168232.86
17 18	FL2500104 FL3000120	6.00	48168232.86
19	GamesaG972MW	5.00	52235427.00 48650623.00
20	GamesaG972MW GamesaG1142MW	7.00	56584024.00
21	GamesaG1142.5MW	7.00 6.00	54259206.00
22	GamesaG1284.5MW	3.00	40641957.00
23	GamesaG1285MW	3.00	42479178.00
24	GamesaG1323.3MW	4.00	48099084.00
25	GamesaG1325MW	3.00	44129946.00
26	GEWind2.5120	6.00	58073766.00
27	GEWindGE2.75-120	5.00	50442805.00
28	GEWindGE3.2-130	4.00	46374096.00
29	GEWindGE3.8-130	4.00	49919764.00
30	GEWindGE3.4-137	4.00	50265668.00
31	GEWindGE3.6-137	4.00	51125948.00
32	GEWindGE4.8-158	3.00	51431961.00
33	NordexN902500LS	6.00	42408846.00
34	NordexN1494.5MW	3.00	5269267.63
35	NordexN1313.9MW	4.00	5388168.76
36	NordexN1002500	6.00	48067782.00
37	NordexN1173.6MW	4.00	44253124.00
38	NordexN1003300	4.00	34751680.00
39	NordexN1313.0MW	5.00	56645350.00
40	NordexN1172.4MW	6.00	54495090.00
41	NordexN1313.3MW	4.00	5406577.34
42	NordexN1173MW	5.00	50472155.00
43	NordexN1313.6MW	4.00	5588012.16
44	SenvionMM1002000	7.00	49770602.00
45 46	Senvion3.2M114VG Senvion3.4MNES114	4.00 4.00	41298740.00 42340180.00
40	Senvion3.6M114	4.00	43010052.00
48	Senvion3.0M122	5.00	52803075.00
49	Senvion3.2M122NES	4.00	43382436.00
50	Senvion 3.4M140EBC	4.00	51254544.00
51	Senvion 3.4M140EBC	4.00	52709324.00
52	SiemensSWT2.3113	6.00	53009934.00
53	SiemensSWT3.21132A	4.00	41714324.00
54	SiemensSWT3.21132B	4.00	41696476.00
55	SiemensSWT3.3130	4.00	47147108.00
56	SiemensSWT3.3130LN	4.00	47405980.00
57	SiemensSWT3.6120	4.00	46711584.00
58	SiemensSWT3.6130	4.00	49533344.00
59	SiemensSWT3.15142	5.00	62666740.00
60	SiemensSWTDD130	3.00	39866821.80
61	Siemens SWTDD142	4.00	56897312.00
62	Vensys771500kW	10.00	45766782.00
63	Vensys821500kW	10.00	50307146.00
64	Vensys1002500kW	6.00	45521406.60

65	Vensys1092500kW	6.00	50302578.00
66	Vensys1122500kW	6.00	51761559.60
67	Vensys1203000kW	5.00	51988000.00
68	VestasV902000GS	7.00	43078630.00
69	VestasV1001.8	8.00	53644608.00
70	VestasV1001.8GS	8.00	53636408.00
71	VestasV1123075	5.00	48854100.00
72	VestasV1123.3	4.00	40049020.00
73	VestasV1123.45	4.00	41562960.00
74	VestasV1173.3	4.00	42125256.00
75	VestasV1173.45	4.00	43736508.00
76	VestasV1173.6	4.00	44401556.00
77	VestasV1263.0	5.00	54506330.00
78	VestasV1263.3	4.00	45739108.00
79	VestasV1263.45	4.00	47214720.00
80	VestasV1363.45	4.00	51076236.00
81	VestasV1364.0 4.2	3.00	41704827.00
82	VestasV1504.2	3.00	46689549.00

Anhang Kapitel 4

Gebote der ersten drei Ausschreibungsrunden 2017. Angaben in [ct/ kWh]. Mittelwert aller durchschnittlichen, mengengewichteten Gebote (auch 2018): 5.67 [ct/kWh]

Monat	min	max	$\varnothing mengengewichtet$
Mai	4,20	5,78	5,71
August	3,50	4,29	4,28
November	3,80	3,82	3,82

AW: Vergütung EEG

ee-ausschreibungen@BNetzA.DE Sent: Tuesday, September 25, 2018 8:24 AM To: Mueller, Lisa

Sehr geehrte Frau Müller,

der höchste mögliche Gebotswert ist 6,3 ct/kWh. Dies ist beim derzeitigen Wettbewerb ein durchaus realistischer Zuschlagswert.

In unserer Statistik-Tabelle

https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen Institutionen/Ausschreibungen/Hintergrundpapiere/Statisti blob=publicationFile&v=3 finden Sie die mengengewichteten Zuschlagswerte. Ein solcher könnte auch den Berechnungen zugrunde gelegt werden.

Hinzu kommt, dass die Werte (es sind die "anzulegenden Werte") noch nach § 36h EEG modifiziert werden. Da Sie süddeutsche Anlagen betrachten, ist ein hoher Gütekfaktor von 70% durchaus realistisch und damit ein Korrekturfaktor von 1,29.

Ich hoffe, Ihnen geholfen zu haben und verbleibe mit freundlichen Grüßen im Auftrag

Dr. Philipp Wolfshohl

Dr. Philipp Leander Wolfshohl Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen Referat 605: IT-gestützte Datenverarbeitung, Wahrnehmung der Aufgaben nach dem EEG Tulpenfeld 4 53113 Ronn E-Mail: Philipp.Wolfshohl@BNetzA.de

---Ursprüngliche Nachricht----

Internet: www.bundesnetzagentur.de

Von: 605-EEG Gesendet: Montag, 24. September 2018 12:48

An: 605-ee-ausschreibungen Betreff: WG: Vergütung EEG

-----Ursprüngliche Nachricht-----

Von: Mueller, Lisa [mailto:lisa.mueller@ds.mpg.de] Gesendet: Freitag, 21. September 2018 11:26

An: 605-EEG

Betreff: Vergütung EEG

Sehr geehrte Damen und Herren,

leider konnte ich sie mehrfach telefonisch nicht erreichen und komme nun doch auf ihr Angbebot der E-Mail zurück. Ich schreibe derzeit hier am MPI DS meine Bachelorarbeit zum Thema "Betriebswirtschaftliche Analyse von Windkraftanlagen in Süddeutschland". Hierzu habe ich auf Basis von Winddaten zur Region Schwarzwald-Hornisgrinde zunächst die statistische Windhöffigkeit des Jahres 2017 untersucht, und schließlich 82 Windkraftanlagen herangezogen und dessen thereotische Leistung errechnet. Ich arbeite mit dem Statistik Program R. Nun werde ich eine Ertragsanalyse (und Kostenanalyse) hinzuziehen, das heißt ich müsste die errechnete Leistung mit einem Vergütungsatz ct/kWh multipilizieren.

Ihrer Seite kann ich unter ("https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Ausschreibungen/Wind_Onshore/BeendeteAusschreibung die Ausschreibungsergebnisse nach EEG 2017 der letzten drei Ausschreibungsrunden entnehmen.

Nun überlege ich, eine konservative Rechnung mit einem Wert von 3,80 ct/kWh (das niedrigste Gebot) und eine optimistische Rechnung mit einem Wert von 6,80 ct/kWh (höchstmögliche Gebotsmenge) durchzuführen. Halten sie dies für sinnvoll? Die Gebote stellen, wenn ich es richtig verstanden habe, den "anzulegenen Wert" da, der auf Basis des Referenzwertes die fixe Summe aus Marktprämie und monatlich erzieltem Börsenerlös darstellt. Eine einzelne Berechnung des anzulegenen Wertes für alle 82 Anlagen wird mir nicht möglich sein. Primär steht die Frage im Vordergrund, ob ich mit den oben angegebenen Vergütungswerten realistisch bin oder nicht.

Ich würde mich enorm freuen, wenn sie mir weiterhelfen können. Sehr gerne können sie mich auch anrufen, ich bin täglich von 10:00- 17:00 Uhr am Institut erreichbar (Nummer siehe unten).

Mit freundlichen Grüßen,

Lisa Müller

Kontakt: Next Generation Mobility Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstraße 10 37073 Göttingen

Postanschrift: Am Faßberg 37077 Göttingen

Tel. 0551 5176 510

E-Mail: lisa.mueller@ds.mpg.de

Web: www.ds.mpg.de

Ein Institut der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Hofgartenstraße 8, 80539 München. Die Max-Planck-Gesellschaft ist im Vereinsregister des Amtsgerichts Berlin-Charlottenburg unter der Registernummer VR 13378 B eingetragen.

Erträge [EUR] je Vergütungssatz pro Jahr und Insgesamt der Einzelanlagen

	WKA	Min Ertrag/Jahr [EUR]	Max Ertrag/Jahr [EUR]	Durchschnitt Ertrag/ Jahr [EUR]	Min Gesamt [EUR]	Max Gesamt [EUR]	Durchschnitt Gesamt [EUR]
1	E1013050	345085.60	572115.60	514904.04	6901712.00	11442312.00	10298080.80
2	E101E23.5	352845.01	584979.89	526481.90	7056900.20	11699597.70	10529637.93
3	E1124.5	436906.52	724345.02	651910.52	8738130.40	14486900.40	13038210.36
4	E1152.5	353615.21	586256.80	527631.12	7072304.26	11725136.01	10552622.41
ъ	E115TES3	385105.13	638463.77	574617.39	7702102.58	12769275.33	11492347.80
9	E115TES3.2	390826.47	647949.14	583154.23	7816529.32	12958982.82	11663084.54
7	E126EP4TES4.2	480381.41	796421.81	716779.63	9607628.16	15928436.16	14335592.54
œ	E1267.5	618890.80	1026055.80	923450.22	12377816.00	20521116.00	18469004.40
6	E1414.2	537871.95	891735.07	802561.57	10757439.00	17834701.50	16051231.35
10	eno1002200	279750.19	463796.36	417416.72	5595003.72	9275927.22	8348334.50
11	eno1143500	158404.90	262618.65	236356.79	3168098.00	5252373.00	4727135.70
12	eno1263500	443356.11	735037.76	661533.98	8867122.16	14700755.16	13230679.64
13	FLMD77	172949.06	286731.33	258058.20	3458981.16	5734626.66	5161163.99
14	FL200093	256073.34	424542.65	382088.38	5121466.87	8490852.97	7641767.67
15	FL2000100	265052.63	439429.36	395486.42	5301052.59	8788587.19	7909728.47
16	FL2500100	305065.47	505766.45	455189.80	6101309.50	10115328.90	9103796.01
17	FL2500104	305065.47	505766.45	455189.80	6101309.50	10115328.90	9103796.01
18	FL3000120	396989.25	658166.38	592349.74	7939784.90	13163327.60	11846994.84
19	$_{ m GamesaG972MW}$	264103.38	437855.61	394070.05	5282067.64	8757112.14	7881400.93
20	GamesaG1142MW	307170.42	509256.22	458330.59	6143408.32	10185124.32	9166611.89
21	GamesaG1142.5MW	343641.64	569721.66	512749.50	6872832.76	11394433.26	10254989.93
22	${\tt GamesaG1284.5MW}$	514798.12	853481.10	768132.99	10295962.44	17069621.94	15362659.75
23	$_{ m GamesaG1285MW}$	538069.59	892062.74	802856.46	10761391.76	17841254.76	16057129.28
24	GamesaG1323.3MW	456941.30	757560.57	681804.52	9138825.96	15151211.46	13636090.31
25	$_{ m GamesaG1325MW}$	558979.32	926728.87	834055.98	11179586.32	18534577.32	16681119.59
26	GEWind2.5120	367800.52	609774.54	548797.09	7356010.36	12195490.86	10975941.77
27	GEWindGE2.75-120	383365.32	635579.34	572021.41	7667306.36	12711586.86	11440428.17
28	GEWindGE3.2-130	440553.91	730392.01	657352.81	8811078.24	14607840.24	13147056.22
29	GEWindGE3.8-130	474237.76	786236.28	707612.65	9484755.16	15724725.66	14152253.09
30	GEWindGE3.4-137	477523.85	791684.27	712515.84	9550476.92	15833685.42	14250316.88
31	GEWindGE3.6-137	485696.51	805233.68	724710.31	9713930.12	16104673.62	14494206.26
32	GEWindGE4.8-158	651471.51	1080071.18	972064.06	13029430.12	21601423.62	19441281.26
33	NordexN902500LS	268589.36	445292.88	400763.59	5371787.16	8905857.66	8015271.89
34	NordexN1494.5MW	66744.06	110654.62	99589.16	1334881.13	2213092.40	1991783.16
35	NordexN1313.9MW	51187.60	84863.66	76377.29	1023752.07	1697273.16	1527545.84
36	NordexN1002500	304429.29	504711.71	454240.54	6088585.72	10094234.22	9084810.80
37	NordexN1173.6MW	420404.68	696986.70	627288.03	8408093.56	13939734.06	12545760.65
38	NordexN 1003300	330140.96	547338.96	492605.06	6602819.20	10946779.20	9852101.28
39	NordexN1313.0MW	430504.66	713731.41	642358.27	8610093.20	14274628.20	12847165.38
40	NordexN1172.4MW	345135.57	572198.44	514978.60	6902711.40	11443968.90	10299572.01
41	NordexN1313.3MW	51362.48	85153.59	76638.23	1027249.69	1703071.86	1532764.68
42	NordexN1173MW	383588.38	635949.15	572354.24	7671767.56	12718983.06	11447084.75
43	NordexN1313.6MW	53086.12	88011.19	79210.07	1061722.31	1760223.83	1584201.45
44	${\tt SenvionMM1002000}$	270183.27	447935.42	403141.88	5403665.36	8958708.36	8062837.52
45	Senvion3.2M114VG	392338.03	650455.16	585409.64	7846760.60	13009103.10	11708192.79

47		T - T O T T O F	000000	0007		0.001.0001	12003441.03
,	Senvion3.6M114	408595.49	677408.32	609667.49	8171909.88	13548166.38	12193349.74
84	Senvion3.0M122	401303.37	665318.74	598786.87	8026067.40	13306374.90	11975737.41
49	Senvion3.2M122NES	412133.14	683273.37	614946.03	8242662.84	13665467.34	12298920.61
20	Senvion 3.4M140EBC	486918.17	807259.07	726533.16	9738363.36	16145181.36	14530663.22
51	Senvion3.6M140EBC	500738.58	830171.85	747154.67	10014771.56	16603437.06	14943093.35
52	SiemensSWT2.3113	335729.58	556604.31	500943.88	6714591.64	11132086.14	10018877.53
53	SiemensSWT3.21132A	396286.08	657000.60	591300.54	7925721.56	13140012.06	11826010.85
54	SiemensSWT3.21132B	396116.52	656719.50	591047.55	7922330.44	13134389.94	11820950.95
52	SiemensSWT3.3130	447897.53	742566.95	668310.26	8957950.52	14851339.02	13366205.12
26	SiemensSWT3.3130LN	450356.81	746644.19	671979.77	9007136.20	14932883.70	13439595.33
22	SiemensSWT3.6120	443760.05	735707.45	662136.70	8875200.96	14714148.96	13242734.06
80	SiemensSWT3.6130	470566.77	780150.17	702135.15	9411335.36	15603003.36	14042703.02
59	SiemensSWT3.15142	476267.22	789600.92	710640.83	9525344.48	15792018.48	14212816.63
09	SiemensSWTDD130	504979.74	837203.26	753482.93	10099594.86	16744065.16	15069658.64
61	Siemens SWTDD142	540524.46	896132.66	806519.40	10810489.28	17922653.28	16130387.95
62	Vensys771500kW	173913.77	288330.73	259497.65	3478275.43	5766614.53	5189953.08
63	Vensys821500kW	191167.15	316935.02	285241.52	3823343.10	6338700.40	5704830.36
64	Vensys1002500kW	288302.24	477974.77	430177.29	5766044.84	9559495.39	8603545.85
65	Vensys1092500kW	318582.99	528177.07	475359.36	6371659.88	10563541.38	9507187.24
99	Vensys1122500kW	327823.21	543496.38	489146.74	6556464.22	10869927.52	9782934.76
29	Vensys1203000kW	395108.80	655048.80	589543.92	7902176.00	13100976.00	11790878.40
89	VestasV902000GS	233855.42	387707.67	348936.90	4677108.40	7754153.40	6978738.06
69	VestasV1001.8	254811.89	422451.29	380206.16	5096237.76	8449025.76	7604123.18
20	VestasV1001.8GS	254772.94	422386.71	380148.04	5095458.76	8447734.26	7602960.83
7.1	VestasV1123075	371291.16	615561.66	554005.49	7425823.20	12311233.20	11080109.88
72	VestasV1123.3	380465.69	630772.07	567694.86	7609313.80	12615441.30	11353897.17
73	VestasV1123.45	394848.12	654616.62	589154.96	7896962.40	13092332.40	11783099.16
74	VestasV1173.3	400189.93	663472.78	597125.50	8003798.64	13269455.64	11942510.08
75	VestasV1173.45	415496.83	688850.00	619965.00	8309936.52	13777000.02	12399300.02
92	VestasV1173.6	421814.78	699324.51	629392.06	8436295.64	13986490.14	12587841.13
22	VestasV1263.0	414248.11	686779.76	618101.78	8284962.16	13735595.16	12362035.64
78	VestasV1263.3	434521.53	720390.95	648351.86	8690430.52	14407819.02	12967037.12
79	VestasV1263.45	448539.84	743631.84	669268.66	8970796.80	14872636.80	13385373.12
80	VestasV1363.45	485224.24	804450.72	724005.65	9704484.84	16089014.34	14480112.91
81	VestasV1364.0 4.2	528261.14	875801.37	788221.23	10565222.84	17516027.34	15764424.61
82	VestasV1504.2	591400.95	980480.53	882432.48	11828019.08	19609610.58	17648649.52

Erträge [EUR] je Vergütungssatz pro Jahr und Turbinendichte der Anlagen im Verbund

	WKA	Dichte[Anzahl pro km ²]	Min Ertrag/Jahr [EUR]	Max Ertrag/Jahr [EUR]	Durchschnitt Ertrag/ Jahr [EUR]
1	E1013050	5.00	1725428.00	2860578.00	2574520.20
2	E101E23.5	4.00	1411380.04	2339919.54	2105927.59
3	E1124.5	3.00	1310719.56	2173035.06	1955731.55
4	E1152.5	6.00	2121691.28	3517540.80	3165786.72
ro	E115TES3	5.00	1925525.65	3192318.83	2873086.95
9	E115TES3.2	4.00	1563305.86	2591796.56	2332616.91
7	E126EP4TES4.2	3.00	1441144.22	2389265.42	2150338.88
œ	E1267.5	2.00	1237781.60	2052111.60	1846900.44
6	E1414.2	3.00	1613615.85	2675205.23	2407684.70
10	eno1002200	0.00	1678501.12	2782778.17	2504500.35
11	eno1143500	4.00	633619.60	1050474.60	945427.14
12	eno1263500	4.00	1773424.43	2940151.03	2646135.93
13	FLMD77	00.6	1556541.52	2580582.00	2322523.80
14	FL200093	7.00	1792513.41	2971798.54	2674618.69
15	FL2000100	7.00	1855368.41	3076005.52	2768404.97
16	FL2500100	6.00	1830392.85	3034598.67	2731138.80
17	FL2500104	6.00	1830392.85	3034598.67	2731138.80
18	FL3000120	5.00	1984946.23	3290831.90	2961748.71
19	GamesaG972MW	7.00	1848723.67	3064989.25	2758490.32
20	GamesaG1142MW	7.00	2150192.91	3564793.51	3208314.16
21	GamesaG1142.5MW	0.00	2061849.83	3418329.98	3076496.98
22	GamesaG1284.5MW	3.00	1544394.37	2560443.29	2304398.96
23	GamesaG1285MW	3.00	1614208.76	2676188.21	2408569.39
24	GamesaG1323.3MW	4.00	1827765.19	3030242.29	2727218.06
25	GamesaG1325MW	3.00	1676937.95	2780186.60	2502167.94
26	GEWind2.5120	00.9	2206803.11	3658647.26	3292782.53
27	GEWindGE2.75-120	5.00	1916826.59	3177896.71	2860107.04
28	GEWindGE3.2-130	4.00	1762215.65	2921568.05	2629411.24
29	GEWindGE3.8-130	4.00	1896951.03	3144945.13	2830450.62
30	GEWindGE3.4-137	4.00	1910095.38	3166737.08	2850063.38
31	GEWindGE3.6-137	4.00	1942786.02	3220934.72	2898841.25
32	GEWindGE4.8-158	3.00	1954414.52	3240213.54	2916192.19
33	NordexN902500LS	00.9	1611536.15	2671757.30	2404581.57
34	NordexN1494.5MW	3.00	200232.17	331963.86	298767.47
32	NordexN1313.9MW	4.00	204750.41	339454.63	305509.17
36	${\bf NordexN1002500}$	00.9	1826575.72	3028270.27	2725443.24
37	NordexN1173.6MW	4.00	1681618.71	2787946.81	2509152.13
38	${\tt NordexN1003300}$	4.00	1320563.84	2189355.84	1970420.26
39	NordexN1313.0MW	5.00	2152523.30	3568657.05	3211791.35
40	NordexN1172.4MW	0.00	2070813.42	3433190.67	3089871.60
41	NordexN1313.3MW	4.00	205449.94	340614.37	306552.94
42	NordexN1173MW	5.00	1917941.89	3179745.77	2861771.19
43	NordexN1313.6MW	4.00	212344.46	352044.77	316840.29
44	SenvionMM1002000	7.00	1891282.88	3135547.93	2821993.13
45	Senvion $3.2M114VG$	4.00	1569352.12	2601820.62	2341638.56

Senvion3.6M114 Senvion3.0M122 Senvion3.0M122NES Senvion3.4M140EBC Senvion3.4M140EBC Senvion3.4M140EBC Senvion3.4M140EBC SiemensSWT2.3113 SiemensSWT3.2132A SiemensSWT3.3130LN SiemensSWT3.3130LN SiemensSWT3.3130LN SiemensSWT3.3130LN SiemensSWT3.3130LN SiemensSWT3.3130LN SiemensSWTDD130 SiemensSWTDD130 SiemensSWTDD130 SiemensSWTDD130 SiemensSWTDD130 SiemensSWTDD130 SiemensSWTDD130 SiemensSWTDD130 SiemensSWTDD142 SiemensSWTDD142 SiemensSWTDD142 SiemensSWTDD140 SiemensSWTD140	1634381.98 2006516.85 1648532.57 1947672.67 2002954.31 2014377.49 1585144.31 1585144.31 1585144.31 175040.19 1775040.19 1882267.07 2381336.12 1514939.23	2709633.28 3302593.73 2733093.47 3229036.27 3329687.41 3339625.84 2628877.99 2970267.80 2940267.4 2942829.79 3120600.67 3948004.62 2511609.77 3584530.66	2438669.95 2293394.35 2495784.12 2906132.64 2988618.67 3005663.26 2365202.17 2364190.19 2873241.02 2887919.07 2687919.07 2687919.07 2687919.07 2687919.07 2687919.07 2687919.07 2687919.07 2687919.07 3723241.16 3723241.16 372260448.80
5.00 4.00 4.00 6.00 6.00 4.00 4.00 4.00 5.00 3.00 10.00 6.00	2006516.85 1648523.57 1947672.67 2002954.31 2014377.49 1585144.31 1584466.09 1791590.10 1801427.24 1775040.19 1882267.07 2381336.12 1514939.23	3355593.73 2733093.47 3229036.27 3329687.41 2628002.41 2628877.99 2970267.80 2986576.74 294282.79 3120600.67 354530.66 2885307.27	2993934.35 2459784.12 2906132.64 298618.67 3005663.26 2365202.17 2364190.19 2673241.02 2887919.07 2687919.07 2687919.07 2263448.80 33532044.16 2260448.80
4.00 4.00 6.00 6.00 4.00 4.00 4.00 5.00 10.00 6.00	1648532.57 1947672.67 2002954.31 2014377.49 1585144.31 1584466.09 1791590.10 1801427.24 177540.19 1882267.07 2381336.12 1514939.23	2733093.47 3220036.27 332087.41 33306.55.84 2628002.41 2658877.99 2970267.80 2986576.74 2942829.79 3120600.67 3548030.66 2888330.26	2459784.12 2206132.64 2206132.65 2365202.17 2364190.19 2673241.02 2687919.07 2648546.81 2808540.60 3553204.16 2260448.80 3226077.59
4.00 4.00 6.00 4.00 4.00 4.00 5.00 5.00 10.00 6.00	1947672.67 200254.31 2010354.31 1585144.31 158466.09 1791590.10 1801427.24 1775040.19 1882267.07 2381336.12 1514939.23	3229036.27 3320687.41 3339625.84 2628002.41 2628877.99 2970267.80 2986576.74 2942829.79 3120600.67 3548004.62 2511609.77 3584530.66	2906132.64 2988618.67 3005663.26 2365202.17 2264190.19 2673241.02 2687919.07 2248546.81 2808540.60 3553204.16 2260448.80 3226077.59
4.00 6.00 4.00 4.00 4.00 4.00 5.00 5.00 10.00 6.00	2002954.31 2014377.49 1585144.31 1585466.09 1791590.10 1801427.24 1775040.19 1882267.07 2381336.12 1514939.23	3320687.41 3330687.41 2628002.41 2626877.99 2970267.80 2986576.74 2942829.79 3120600.67 3948004.62 2511609.77 3584530.66	2988618.67 3005663.26 236520.17 2364190.19 2673241.02 2687919.07 2687519.07 2687519.07 2588540.60 3553204.16 2260448.80 3226077.59
6.00 4.00 4.00 4.00 4.00 5.00 5.00 10.00 6.00	2014377.49 1585144.31 1585146.09 1791590.10 1801427.24 1775040.19 1882267.07 2381336.12 1514939.23	3339625.84 2628002.41 2628877.99 2970267.80 2942829.79 3120600.67 3948004.62 2511609.77 354530.66 2888307.27	3005663.26 2365202.17 2364190.19 2673241.02 2687919.07 2648546.81 2808540.60 3553204.16 2260448.80 3226077.59
4.00 4.00 4.00 4.00 5.00 3.00 10.00 6.00	1585144.31 158466.09 1791590.10 1801427.24 1775040.19 1882267.07 2381336.12 1514939.23 2162097.86	2628002.41 2628877.99 2970267.80 2986576.74 294282.79 3120600.67 3948004.62 2511609.77 3584530.66	2365202.17 2364190.19 2673241.02 2687319.07 2648546.81 2808540.60 3553204.16 2260448.80 3226047.59
4.00 4.00 4.00 4.00 5.00 3.00 10.00 10.00 6.00	1584466.09 1791590.10 1801427.24 1775040.19 1882267.07 2381336.12 1514039.23 2162097.86	2626877.99 2970267.80 2986576.74 2942829.79 3120600.67 3948004.62 2511609.77 3584530.66 2883337.27	2364190.19 2673241.02 2687919.07 2648546.81 2808540.60 3553204.16 2260448.80 3226047.59
4.00 4.00 4.00 5.00 3.00 10.00 10.00 6.00	1791590.10 1801427.24 1775040.19 1882267.07 2381336.12 1514939.23 2162097.86	2970267.80 2986576.74 2942829.79 3120600.67 3948004.62 2511609.77 3584530.66 28883477.27	2673241.02 2687919.07 2688546.81 2808540.60 3553204.16 2260448.80 3226077.59
4.00 4.00 5.00 3.00 10.00 6.00	1801427.24 1775040.19 1882267.07 2381336.12 1514939.23	2986576.74 2942829.79 3120600.67 3948004.62 2511609.77 3584530.66 2888330.27	2687919.07 2648546.81 2808540.60 3553204.16 2260448.80 3226077.59
4.00 4.00 5.00 3.00 4.00 10.00 6.00	1775040.19 1882267.07 2381336.12 1514939.23 2162097.86	2942829.79 3120600.67 3948004.62 2511609.77 3584530.66 28853377.27	2648546.81 2808540.60 3553204.16 2260448.80 3226077.59
4.00 5.00 3.00 4.00 10.00 10.00 6.00	1882267.07 2381336.12 1514939.23 2162097.86	3120600.67 3948004.62 2511609.77 3584530.66 28883377.27	2808540.60 3553204.16 2260448.80 3226077.59
5.00 3.00 4.00 10.00 10.00 6.00	2381336.12 1514939.23 2162097.86	3948004.62 2511609.77 3584530.66 2883307.27	3553204.16 2260448.80 3226077.59
3.00 4.00 10.00 10.00 6.00	$1514939.23 \\ 2162097.86$	2511609.77 3584530.66 2883307.27	2260448.80 3226077.59
4.00 10.00 10.00 6.00	2162097.86	3584530.66 2883307.27	3226077.59
10.00 10.00 6.00		2883307.27	
10.00	1739137.72		2594976.54
0.00	1911671.55	3169350.20	2852415.18
	1729813.45	2867848.62	2581063.75
00.9	1911497.96	3169062.41	2852156.17
00.9	1966939.26	3260978.25	2934880.43
5.00	1975544.00	3275244.00	2947719.60
7.00	1636987.94	2713953.69	2442558.32
8.00	2038495.10	3379610.30	3041649.27
8.00	2038183.50	3379093.70	3041184.33
5.00	1856455.80	3077808.30	2770027.47
4.00	1521862.76	2523088.26	2270779.43
4.00	1579392.48	2618466.48	2356619.83
4.00	1600759.73	2653891.13	2388502.02
4.00	1661987.30	2755400.00	2479860.00
4.00	1687259.13	2797298.03	2517568.23
5.00	2071240.54	3433898.79	3090508.91
4.00	1738086.10	2881563.80	2593407.42
4.00	1794159.36	2974527.36	2677074.62
4.00	1940896.97	3217802.87	2896022.58
3.00	1584783.43	2627404.10	2364663.69
3.00	1774202.86	2941441.59	2647297.43

Erträge [EUR] der Anlagen im Verbund Gesamt

	WKA	Min Gesamt [EUR]	Max Gesamt [EUR]	Durschnitt Gesamt [EUR]
1	E1013050	34508560.00	57211560.00	51490404.00
2	E101E23.5	28227600.80	46798390.80	42118551.72
3	E1124.5	26214391.20	43460701.20	39114631.08
4	E1152.5	42433825.56	70350816.06	63315734.45
5	E115TES3	38510512.90	63846376.65	57461738.98
6	E115TES3.2	31266117.28	51835931.28	46652338.15
7	E126EP4TES4.2	28822884.48	47785308.48	43006777.63
8	E1267.5	24755632.00	41042232.00	36938008.80
9	E1414.2	32272317.00	53504104.50	48153694.05
10	eno1002200	33570022.32	55655563.32	50090006.99
11	eno1143500	12672392.00	21009492.00	18908542.80
12	eno1263500	35468488.64	58803020.64	52922718.58
13	FLMD77	31130830.44	51611639.94	46450475.95
14	FL200093	35850268.10	59435970.80	53492373.72
15	FL200033	37107368.14	61520110.34	55368099.31
16	FL2500100	36607856.97	60691973.40	54622776.06
17	FL2500100 FL2500104			54622776.06
		36607856.97	60691973.40	
18	FL3000120	39698924.52	65816638.02	59234974.22
19	GamesaG972MW	36974473.48	61299784.98	55169806.48
20	GamesaG1142MW	43003858.24	71295870.24	64166283.22
21	GamesaG1142.5MW	41236996.56	68366599.56	61529939.60
22	GamesaG1284.5MW	30887887.32	51208865.82	46087979.24
23	GamesaG1285MW	32284175.28	53523764.28	48171387.85
24	GamesaG1323.3MW	36555303.84	60604845.84	54544361.26
25	GamesaG1325MW	33538758.96	55603731.96	50043358.76
26	GEWind2.5120	44136062.16	73172945.16	65855650.64
27	GEWindGE2.75-120	38336531.80	63557934.30	57202140.87
28	GEWindGE3.2-130	35244312.96	58431360.96	52588224.86
29	GEWindGE3.8-130	37939020.64	62898902.64	56609012.38
30	GEWindGE3.4-137	38201907.68	63334741.68	57001267.51
31	GEWindGE3.6-137	38855720.48	64418694.48	57976825.03
32	GEWindGE4.8-158	39088290.36	64804270.86	58323843.77
33	NordexN902500LS	32230722.96	53435145.96	48091631.36
34	NordexN1494.5MW	4004643.40	6639277.21	5975349.49
35	NordexN1313.9MW	4095008.26	6789092.64	6110183.38
36	NordexN1002500	36531514.32	60565405.32	54508864.79
37	NordexN1173.6MW	33632374.24	55758936.24	50183042.62
38	NordexN1003300	26411276.80	43787116.80	39408405.12
39	NordexN1313.0MW	43050466.00	71373141.00	64235826.90
40	NordexN1172.4MW	41416268.40	68663813.40	61797432.06
41	NordexN1313.3MW	4108998.78	6812287.45	6131058.70
42	NordexN1173MW	38358837.80	63594915.30	57235423.77
43	NordexN1313.6MW	4246889.24	7040895.32	6336805.78
44	SenvionMM1002000	37825657.52	62710958.52	56439862.67
45	Senvion3.2M114VG	31387042.40	52036412.40	46832771.16
46	Senvion3.4MNES114	32178536.80	53348626.80	48013764.12
47	Senvion3.6M114	32687639.52	54192665.52	48773398.97
48	Senvion3.0M122	40130337.00	66531874.50	59878687.05
49	Senvion3.2M122NES	32970651.36	54661869.36	49195682.42
50	Senvion 3.4M140EBC	38953453.44	64580725.44	58122652.90
51	Senvion3.6M140EBC	40059086.24	66413748.24	59772373.42
52	SiemensSWT2.3113	40287549.84	66792516.84	60113265.16
53	SiemensSWT3.21132A	31702886.24	52560048.24	47304043.42
54	SiemensSWT3.21132B	31689321.76	52537559.76	47283803.78
55	SiemensSWT3.3130	35831802.08	59405356.08	53464820.47
56	SiemensSWT3.3130LN	36028544.80	59731534.80	53758381.32
57	SiemensSWT3.6120	35500803.84	58856595.84	52970936.26
58	SiemensSWT3.6130	37645341.44	62412013.44	56170812.10
59	SiemensSWT3.15142	47626722.40	78960092.40	71064083.16
60	SiemensSWTDD130	30298784.57	50232195.47	45208975.92
61	Siemens SWTDD142	43241957.12	71690613.12	64521551.81
62	Vensys771500kW	34782754.32	57666145.32	51899530.79
63	Vensys821500kW	38233430.96	63387003.96	57048303.56
64	Vensys1002500kW	34596269.02	57356972.32	51621275.08
65	Vensys1092500kW	38229959.28	63381248.28	57043123.45

66	Vensys1122500kW	39338785.30	65219565.10	58697608.59
67	Vensys1203000kW	39510880.00	65504880.00	58954392.00
68	VestasV902000GS	32739758.80	54279073.80	48851166.42
69	VestasV1001.8	40769902.08	67592206.08	60832985.47
70	VestasV1001.8GS	40763670.08	67581874.08	60823686.67
71	VestasV1123075	37129116.00	61556166.00	55400549.40
72	VestasV1123.3	30437255.20	50461765.20	45415588.68
73	VestasV1123.45	31587849.60	52369329.60	47132396.64
74	VestasV1173.3	32015194.56	53077822.56	47770040.30
75	VestasV1173.45	33239746.08	55108000.08	49597200.07
76	VestasV1173.6	33745182.56	55945960.56	50351364.50
77	VestasV1263.0	41424810.80	68677975.80	61810178.22
78	VestasV1263.3	34761722.08	57631276.08	51868148.47
79	VestasV1263.45	35883187.20	59490547.20	53541492.48
80	VestasV1363.45	38817939.36	64356057.36	57920451.62
81	VestasV1364.0 4.2	31695668.52	52548082.02	47293273.82
82	VestasV1504.2	35484057.24	58828831.74	52945948.57

Anhang Kapitel 5

Primäre Investitionskosten [EUR / Anlage] der Einzelanlagen

	WKA	Nennleistung [kWh]	Leistung [kW]	Kosten Min [EUR]	Kosten Max [EUR]
1	E1013050	3050	9081200.00	3522750.00	4803750.00
2	E101E23.5	3500	9285395.00	4042500.00	5512500.00
3	E1124.5	4500	11497540.00	5197500.00	7087500.00
4	E1152.5	2500	9305663.50	2887500.00	3937500.00
5	E115TES3	3000	10134345.50	3465000.00	4725000.00
6	E115TES3.2	3200	10284907.00	3696000.00	5040000.00
7	E126EP4TES4.2	4200	12641616.00	4851000.00	6615000.00
8	E1267.5	7580	16286600.00	8754900.00	11938500.00
9	E1414.2	4200	14154525.00	4851000.00	6615000.00
10	eno1002200	2200	7361847.00	2541000.00	3465000.00
11	eno1143500	3500	4168550.00	4042500.00	5512500.00
12	eno1263500	3500	11667266.00	4042500.00	5512500.00
13	FLMD77	1525	4551291.00	1761375.00	2401875.00
14	FL200093	2050	6738772.20	2367750.00	3228750.00
15	FL2000100	2050	6975069.20	2367750.00	3228750.00
16	FL2500100	2530	8028038.81	2922150.00	3984750.00
17	FL2500104	2530	8028038.81	2922150.00	3984750.00
18	FL3000120	3000	10447085.40	3465000.00	4725000.00
19	GamesaG972MW	2000	6950089.00	2310000.00	3150000.00
20	GamesaG1142MW	2000	8083432.00	2310000.00	3150000.00
21	GamesaG1142.5MW	2500	9043201.00	2887500.00	3937500.00
22	GamesaG1284.5MW	4500	13547319.00	5197500.00	7087500.00
23	GamesaG1285MW	5000	14159726.00	5775000.00	7875000.00
24	GamesaG1323.3MW	3300	12024771.00	3811500.00	5197500.00
25	GamesaG1325MW	4999	14709982.00	5773845.00	7873425.00
26	GEWind2.5120	2530	9678961.00	2922150.00	3984750.00
27	GEWindGE2.75-120	2780	10088561.00	3210900.00	4378500.00
28	GEWindGE3.2-130	3230	11593524.00	3730650.00	5087250.00
29	GEWindGE3.8-130	3830	12479941.00	4423650.00	6032250.00
30	GEWindGE3.4-137	3430	12566417.00	3961650.00	5402250.00
31	GEWindGE3.6-137	3600	12781487.00	4158000.00	5670000.00
32	GEWindGE4.8-158	4800	17143987.00	5544000.00	7560000.00
33	NordexN902500LS	2500	7068141.00	2887500.00	3937500.00
34	NordexN1494.5MW	4500	1756422.54	5197500.00	7087500.00
35	NordexN1313.9MW	3900	1347042.19	4504500.00	6142500.00
36	NordexN1002500	2500	8011297.00	2887500.00	3937500.00
37	NordexN1173.6MW	3600	11063281.00	4158000.00	5670000.00
38	NordexN1003300	3300	8687920.00	3811500.00	5197500.00
39	NordexN1313.0MW	3000	11329070.00	3465000.00	4725000.00
40	NordexN1172.4MW	2400	9082515.00	2772000.00	3780000.00
41	NordexN1313.3MW	3300	1351644.33	3811500.00	5197500.00

42	NordexN1173MW	3000	10094431.00	3465000.00	4725000.00
43	NordexN1313.6MW	3600	1397003.04	4158000.00	5670000.00
44	SenvionMM1002000	2000	7110086.00	2310000.00	3150000.00
45	Senvion3.2M114VG	3200	10324685.00	3696000.00	5040000.00
46	Senvion3.4MNES114	3400	10585045.00	3927000.00	5355000.00
47	Senvion3.6M114	3600	10752513.00	4158000.00	5670000.00
48	Senvion3.0M122	3000	10560615.00	3465000.00	4725000.00
49	Senvion3.2M122NES	3200	10845609.00	3696000.00	5040000.00
50	Senvion 3.4M140EBC	3400	12813636.00	3927000.00	5355000.00
51	Senvion3.6M140EBC	3600	13177331.00	4158000.00	5670000.00
52	SiemensSWT2.3113	2300	8834989.00	2656500.00	3622500.00
53	SiemensSWT3.21132A	3200	10428581.00	3696000.00	5040000.00
54	SiemensSWT3.21132B	3200	10424119.00	3696000.00	5040000.00
55	SiemensSWT3.3130	3300	11786777.00	3811500.00	5197500.00
56	SiemensSWT3.3130LN	3300	11851495.00	3811500.00	5197500.00
57	SiemensSWT3.6120	3600	11677896.00	4158000.00	5670000.00
58	SiemensSWT3.6130	3600	12383336.00	4158000.00	5670000.00
59	SiemensSWT3.15142	3150	12533348.00	3638250.00	4961250.00
60	SiemensSWTDD130	4200	13288940.60	4851000.00	6615000.00
61	Siemens SWTDD142	3900	14224328.00	4504500.00	6142500.00
62	Vensys771500kW	1500	4576678.20	1732500.00	2362500.00
63	Vensys821500kW	1500	5030714.60	1732500.00	2362500.00
64	Vensys1002500kW	2500	7586901.10	2887500.00	3937500.00
65	Vensys1092500kW	2500	8383763.00	2887500.00	3937500.00
66	Vensys1122500kW	2500	8626926.60	2887500.00	3937500.00
67	Vensys1203000kW	3000	10397600.00	3465000.00	4725000.00
68	VestasV902000GS	2030	6154090.00	2344650.00	3197250.00
69	VestasV1001.8	1800	6705576.00	2079000.00	2835000.00
70	VestasV1001.8GS	1835	6704551.00	2119425.00	2890125.00
71	VestasV1123075	3075	9770820.00	3551625.00	4843125.00
72	VestasV1123.3	3300	10012255.00	3811500.00	5197500.00
73	VestasV1123.45	3450	10390740.00	3984750.00	5433750.00
74	VestasV1173.3	3300	10531314.00	3811500.00	5197500.00
75	VestasV1173.45	3450	10934127.00	3984750.00	5433750.00
76	VestasV1173.6	3600	11100389.00	4158000.00	5670000.00
77	VestasV1263.0	3000	10901266.00	3465000.00	4725000.00
78	VestasV1263.3	3300	11434777.00	3811500.00	5197500.00
79	VestasV1263.45	3450	11803680.00	3984750.00	5433750.00
80	VestasV1363.45	3450	12769059.00	3984750.00	5433750.00
81	VestasV1364.0 4.2	4200	13901609.00	4851000.00	6615000.00
82	VestasV1504.2	4200	15563183.00	4851000.00	6615000.00

Betriebskosten in der 1. und 2. Dekade je Kostenszenario für die Einzelanlagen

	WKA	BK min 1. Dekade [EUR]	BK min 2. Dekade [EUR]	BK max 1. Dekade [EUR]	BK max 2. Dekade [EUR]
-	E1013050	52841.25	88068.75	72056.25	120093.75
2	E101E23.5	60637.50	101062.50	82687.50	137812.50
3	E1124.5	77962.50	129937.50	106312.50	177187.50
4	E1152.5	43312.50	72187.50	59062.50	98437.50
ю	E115TES3	51975.00	86625.00	70875.00	118125.00
9	E115TES3.2	55440.00	92400.00	75600.00	126000.00
7	E126EP4TES4.2	72765.00	121275.00	99225.00	165375.00
œ	E1267.5	131323.50	218872.50	179077.50	298462.50
6	E1414.2	72765.00	121275.00	99225.00	165375.00
10	eno1002200	38115.00	63525.00	51975.00	86625.00
11	eno1143500	60637.50	101062.50	82687.50	137812.50
12	eno1263500	60637.50	101062.50	82687.50	137812.50
13	FLMD77	26420.62	44034.38	36028.12	60046.88
14	FL200093	35516.25	59193.75	48431.25	80718.75
15	FL2000100	35516.25	59193.75	48431.25	80718.75
16	FL2500100	43832.25	73053.75	59771.25	99618.75
17	FL2500104	43832.25	73053.75	59771.25	99618.75
18	FL3000120	51975.00	86625.00	70875.00	118125.00
19	GamesaG972MW	34650.00	57750.00	47250.00	78750.00
20	GamesaG1142MW	34650.00	57750.00	47250.00	78750.00
21	GamesaG1142.5MW	43312.50	72187.50	59062.50	98437.50
22	GamesaG1284.5MW	77962.50	129937.50	106312.50	177187.50
23	GamesaG1285MW	86625.00	144375.00	118125.00	196875.00
24	GamesaG1323.3MW	57172.50	95287.50	77962.50	129937.50
22	GamesaG1325MW	86607.68	144346.12	118101.38	196835.62
56	GEWind2.5120	43832.25	73053.75	59771.25	99618.75
27	GEWindGE2.75-120	48163.50	80272.50	65677.50	109462.50
28	GEWindGE3.2-130	55959.75	93266.25	76308.75	127181.25
59	GEWindGE3.8-130	66354.75	110591.25	90483.75	150806.25
30	GEWindGE3.4-137	59424.75	99041.25	81033.75	135056.25
31	GEWindGE3.6-137	62370.00	103950.00	85050.00	141750.00
32	GEWindGE4.8-158	83160.00	138600.00	113400.00	189000.00
33	NordexN902500LS	43312.50	72187.50	59062.50	98437.50
34	NordexN1494.5MW	77962.50	129937.50	106312.50	177187.50
35	NordexN1313.9MW	67567.50	112612.50	92137.50	153562.50
36	NordexN1002500	43312.50	72187.50	59062.50	98437.50
37	NordexN1173.6MW	62370.00	103950.00	85050.00	141750.00
38	NordexN1003300	57172.50	95287.50	77962.50	129937.50
39	NordexN1313.0MW	51975.00	86625.00	70875.00	118125.00
40	NordexN1172.4MW	41580.00	69300.00	56700.00	94500.00
41	NordexN1313.3MW	57172.50	95287.50	77962.50	129937.50
42	NordexN1173MW	51975.00	86625.00	70875.00	118125.00
43	NordexN1313.6MW	62370.00	103950.00	85050.00	141750.00
44	SenvionMM1002000	34650.00	57750.00	47250.00	78750.00
45	Senvion3.2M114VG	55440.00	92400.00	75600.00	126000.00

133875.00	141750.00	118125.00	126000.00	133875.00	141750.00	90562.50	126000.00	126000.00	129937.50	129937.50	141750.00	141750.00	124031.25	165375.00	153562.50	59062.50	59062.50	98437.50	98437.50	98437.50	118125.00	79931.25	70875.00	72253.12	121078.12	129937.50	135843.75	129937.50	135843.75	141750.00	118125.00	129937.50	135843.75	135843.75	165375.00	165375.00
80325.00	85050.00	70875.00	75600.00	80325.00	85050.00	54337.50	75600.00	75600.00	77962.50	77962.50	85050.00	85050.00	74418.75	99225.00	92137.50	35437.50	35437.50	59062.50	59062.50	59062.50	70875.00	47958.75	42525.00	43351.88	72646.88	77962.50	81506.25	77962.50	81506.25	85050.00	70875.00	77962.50	81506.25	81506.25	99225.00	99225.00
98175.00	103950.00	86625.00	92400.00	98175.00	103950.00	66412.50	92400.00	92400.00	95287.50	95287.50	103950.00	103950.00	90956.25	121275.00	112612.50	43312.50	43312.50	72187.50	72187.50	72187.50	86625.00	58616.25	51975.00	52985.62	88790.62	95287.50	99618.75	95287.50	99618.75	103950.00	86625.00	95287.50	99618.75	99618.75	121275.00	121275.00
58905.00	62370.00	51975.00	55440.00	58905.00	62370.00	39847.50	55440.00	55440.00	57172.50	57172.50	62370.00	62370.00	54573.75	72765.00	67567.50	25987.50	25987.50	43312.50	43312.50	43312.50	51975.00	35169.75	31185.00	31791.38	53274.38	57172.50	59771.25	57172.50	59771.25	62370.00	51975.00	57172.50	59771.25	59771.25	72765.00	72765.00
Senvion3.4MNES114	Senvion3.6M114	Senvion3.0M122	Senvion3.2M122NES	Senvion 3.4M140EBC	Senvion3.6M140EBC	SiemensSWT2.3113	SiemensSWT3.21132A	SiemensSWT3.21132B	SiemensSWT3.3130	SiemensSWT3.3130LN	SiemensSWT3.6120	SiemensSWT3.6130	SiemensSWT3.15142	SiemensSWTDD130	Siemens SWTDD142	Vensys771500kW	Vensys821500kW	Vensys1002500kW	Vensys1092500kW	Vensys1122500kW	Vensys1203000kW	VestasV902000GS	VestasV1001.8	VestasV1001.8GS	VestasV1123075	VestasV1123.3	VestasV1123.45	VestasV1173.3	VestasV1173.45	VestasV1173.6	VestasV1263.0	VestasV1263.3	VestasV1263.45	VestasV1363.45	VestasV1364.0 4.2	VestasV1504.2
46	47	48	49	20	51	52	53	54	55	26	22	28	29	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75	92	22	78	79	80	81	85

Betriebskosten Insgesamt je Kostenszenario für die Einzelanlagen

	WKA	DIV C t : [BHD]	DIV C [ELID]
		BK Gesamt min [EUR]	BK Gesamt max [EUR]
1	E1013050	1409100.00	1921500.00
2	E101E23.5	1617000.00	2205000.00
3	E1124.5	2079000.00	2835000.00
4	E1152.5	1155000.00	1575000.00
5	E115TES3	1386000.00	1890000.00
6	E115TES3.2	1478400.00	2016000.00
7	E126EP4TES4.2	1940400.00	2646000.00
8	E1267.5	3501960.00	4775400.00
9	E1414.2	1940400.00	2646000.00
10	eno1002200	1016400.00	1386000.00
11	eno1143500	1617000.00	2205000.00
12	eno1263500	1617000.00	2205000.00
13	FLMD77	704550.00	960750.00
14	FL200093	947100.00	1291500.00
15	FL2000100	947100.00	1291500.00
16	FL2500100	1168860.00	1593900.00
17	FL2500104	1168860.00	1593900.00
18	FL3000120	1386000.00	1890000.00
19	GamesaG972MW	924000.00	1260000.00
20	GamesaG1142MW	924000.00	1260000.00
21	GamesaG1142.5MW	1155000.00	1575000.00
22	GamesaG1284.5MW	2079000.00	2835000.00
23			
	GamesaG1285MW	2310000.00	3150000.00
24	GamesaG1323.3MW	1524600.00	2079000.00
25	GamesaG1325MW	2309538.00	3149370.00
26	GEWind2.5120	1168860.00	1593900.00
27	GEWindGE2.75-120	1284360.00	1751400.00
28	GEWindGE3.2-130	1492260.00	2034900.00
29	GEWindGE3.8-130	1769460.00	2412900.00
30	GEWindGE3.4-137	1584660.00	2160900.00
31	GEWindGE3.6-137	1663200.00	2268000.00
32	GEWindGE4.8-158	2217600.00	3024000.00
33	NordexN902500LS	1155000.00	1575000.00
34	NordexN1494.5MW	2079000.00	2835000.00
35	NordexN1313.9MW	1801800.00	2457000.00
36	NordexN1002500	1155000.00	1575000.00
37	NordexN1173.6MW	1663200.00	2268000.00
38	NordexN1003300	1524600.00	2079000.00
39	NordexN1313.0MW	1386000.00	1890000.00
40	NordexN1172.4MW	1108800.00	1512000.00
41	NordexN1313.3MW	1524600.00	2079000.00
42	NordexN1173MW	1386000.00	1890000.00
43	NordexN1313.6MW	1663200.00	2268000.00
44	SenvionMM1002000	924000.00	1260000.00
45	Senvion3.2M114VG	1478400.00	2016000.00
46	Senvion3.4MNES114	1570800.00	2142000.00
47	Senvion3.6M114	1663200.00	2268000.00
48	Senvion3.0M122	1386000.00	1890000.00
49	Senvion3.2M122NES	1478400.00	2016000.00
50	Senvion 3.4M140EBC	1570800.00	2142000.00
51	Senvion 3.4M140EBC	1663200.00	2268000.00
52			
	SiemensSWT2.3113	1062600.00	1449000.00
53	SiemensSWT3.21132A	1478400.00	2016000.00
54	SiemensSWT3.21132B	1478400.00	2016000.00
55	SiemensSWT3.3130	1524600.00	2079000.00
56	SiemensSWT3.3130LN	1524600.00	2079000.00
57	SiemensSWT3.6120	1663200.00	2268000.00
58	SiemensSWT3.6130	1663200.00	2268000.00
59	SiemensSWT3.15142	1455300.00	1984500.00
60	SiemensSWTDD130	1940400.00	2646000.00
61	Siemens SWTDD142	1801800.00	2457000.00
62	Vensys771500kW	693000.00	945000.00
63	Vensys821500kW	693000.00	945000.00
64	Vensys1002500kW	1155000.00	1575000.00
65	Vensys1092500kW	1155000.00	1575000.00

66	Vensys1122500kW	1155000.00	1575000.00
67	Vensys1203000kW	1386000.00	1890000.00
68	VestasV902000GS	937860.00	1278900.00
69	VestasV1001.8	831600.00	1134000.00
70	VestasV1001.8GS	847770.00	1156050.00
71	VestasV1123075	1420650.00	1937250.00
72	VestasV1123.3	1524600.00	2079000.00
73	VestasV1123.45	1593900.00	2173500.00
74	VestasV1173.3	1524600.00	2079000.00
75	VestasV1173.45	1593900.00	2173500.00
76	VestasV1173.6	1663200.00	2268000.00
77	VestasV1263.0	1386000.00	1890000.00
78	VestasV1263.3	1524600.00	2079000.00
79	VestasV1263.45	1593900.00	2173500.00
80	VestasV1363.45	1593900.00	2173500.00
81	VestasV1364.0 4.2	1940400.00	2646000.00
82	VestasV1504.2	1940400.00	2646000.00

Primäre Investitionskosten [EUR / Anlage] je Kostenszenario für die Anlagen im Verbund

	WKA	Nennleistung [kW]	Leistung [kW]	Kosten min [EUR]	Kosten max [EUR]
	E1013050	3050	45406000.00	17613750.00	24018750.00
2	E101E23.5	3500	37141580.00	16170000.00	22050000.00
3	E1124.5	4500	34492620.00	15592500.00	21262500.00
4	E1152.5	2500	55833981.00	17325000.00	23625000.00
5	E115TES3	3000	50671727.50	17325000.00	23625000.00
6	E115TES3.2	3200	41139628.00	14784000.00	20160000.00
7	E126EP4TES4.2	4200	37924848.00	14553000.00	19845000.00
8	E1267.5	7580	32573200.00	17509800.00	23877000.00
9	E1414.2	4200	42463575.00	14553000.00	19845000.00
10	eno1002200	2200	44171082.00	15246000.00	20790000.00
11	eno1143500	3500	16674200.00	16170000.00	22050000.00
12	eno1263500	3500	46669064.00	16170000.00	22050000.00
13	FLMD77	1525	40961619.00	15852375.00	21616875.00
14	FL200093	2050	47171405.40	16574250.00	22601250.00
15	FL2000100	2050	48825484.40	16574250.00	22601250.00
16	FL2500100	2530	48168232.86	17532900.00	23908500.00
17	FL2500104	2530	48168232.86	17532900.00	23908500.00
18	FL3000120	3000	52235427.00	17325000.00	23625000.00
19	GamesaG972MW	2000	48650623.00	16170000.00	22050000.00
20	GamesaG1142MW	2000	56584024.00	16170000.00	22050000.00
21	GamesaG1142.5MW	2500	54259206.00	17325000.00	23625000.00
22	GamesaG1284.5MW	4500	40641957.00	15592500.00	21262500.00
23	GamesaG1285MW	5000	42479178.00	17325000.00	23625000.00
24	GamesaG1323.3MW	3300	48099084.00	15246000.00	20790000.00
25	GamesaG1325MW	4999	44129946.00	17321535.00	23620275.00
26	GEWind2.5120	2530	58073766.00	17532900.00	23908500.00
27	GEWindGE2.75-120	2780	50442805.00	16054500.00	21892500.00
28	GEWindGE3.2-130	3230	46374096.00	14922600.00	20349000.00
29	GEWindGE3.8-130	3830	49919764.00	17694600.00	24129000.00
30	GEWindGE3.4-137	3430	50265668.00	15846600.00	21609000.00
31	GEWindGE3.6-137	3600	51125948.00	16632000.00	22680000.00
32	GEWindGE4.8-158	4800	51431961.00	16632000.00	22680000.00
33	NordexN902500LS	2500	42408846.00	17325000.00	23625000.00
34	NordexN1494.5MW	4500	5269267.63	15592500.00	21262500.00
35	NordexN1313.9MW	3900	5388168.76	18018000.00	24570000.00
36	NordexN1002500	2500	48067782.00	17325000.00	23625000.00
37	NordexN1173.6MW	3600	44253124.00	16632000.00	22680000.00
38	NordexN1003300	3300	34751680.00	15246000.00	20790000.00
39	NordexN1313.0MW	3000	56645350.00	17325000.00	23625000.00
40	NordexN1172.4MW	2400	54495090.00	16632000.00	22680000.00
41	NordexN1313.3MW	3300	5406577.34	15246000.00	20790000.00
42	NordexN1173MW	3000	50472155.00	17325000.00	23625000.00
43	NordexN1313.6MW	3600	5588012.16	16632000.00	22680000.00
44	SenvionMM1002000	2000	49770602.00	16170000.00	22050000.00
45	Senvion3.2M114VG	3200	41298740.00	14784000.00	20160000.00
46	Senvion3.4MNES114	3400	42340180.00	15708000.00	21420000.00
47	Senvion3.6M114	3600	43010052.00	16632000.00	22680000.00
48	Senvion3.0M122	3000	52803075.00	17325000.00	23625000.00
49	Senvion3.2M122NES	3200	43382436.00	14784000.00	20160000.00
50	Senvion 3.4M140EBC	3400	51254544.00	15708000.00	21420000.00
51	Senvion3.6M140EBC	3600	52709324.00	16632000.00	22680000.00
52 52	SiemensSWT2.3113	2300	53009934.00	15939000.00	21735000.00
53 54	SiemensSWT3.21132A	3200	41714324.00	14784000.00	20160000.00
54 55	SiemensSWT3.21132B SiemensSWT3.3130	3200	41696476.00	14784000.00 15246000.00	20160000.00 20790000.00
	SiemensSWT3.3130LN	3300	47147108.00	15246000.00	
56 57	SiemensSWT3.3130LN SiemensSWT3.6120	3300 3600	47405980.00 46711584.00	16632000.00	20790000.00 22680000.00
58		3600	49533344.00		22680000.00
	SiemensSWT3.6130		49533344.00 62666740.00	16632000.00	24806250.00
59 60	SiemensSWT3.15142	3150	39866821.80	18191250.00	
60	SiemensSWTDD130	4200		14553000.00 18018000.00	19845000.00 24570000.00
61 62	Siemens SWTDD142	3900 1500	56897312.00		23625000.00
	Vensys771500kW	1500	45766782.00	17325000.00 17325000.00	
63 64	Vensys821500kW Vensys1002500kW	1500 2500	50307146.00 45521406.60	17325000.00	23625000.00 23625000.00
65	Vensys1002500kW Vensys1092500kW	2500	50302578.00	17325000.00	23625000.00
00	vensys1092000kW	2500	50502578.00	17320000.00	23023000.00

66	Vensys1122500kW	2500	51761559.60	17325000.00	23625000.00
67	Vensys1203000kW	3000	51988000.00	17325000.00	23625000.00
68	VestasV902000GS	2030	43078630.00	16412550.00	22380750.00
69	VestasV1001.8	1800	53644608.00	16632000.00	22680000.00
70	VestasV1001.8GS	1835	53636408.00	16955400.00	23121000.00
71	VestasV1123075	3075	48854100.00	17758125.00	24215625.00
72	VestasV1123.3	3300	40049020.00	15246000.00	20790000.00
73	VestasV1123.45	3450	41562960.00	15939000.00	21735000.00
74	VestasV1173.3	3300	42125256.00	15246000.00	20790000.00
75	VestasV1173.45	3450	43736508.00	15939000.00	21735000.00
76	VestasV1173.6	3600	44401556.00	16632000.00	22680000.00
77	VestasV1263.0	3000	54506330.00	17325000.00	23625000.00
78	VestasV1263.3	3300	45739108.00	15246000.00	20790000.00
79	VestasV1263.45	3450	47214720.00	15939000.00	21735000.00
80	VestasV1363.45	3450	51076236.00	15939000.00	21735000.00
81	VestasV1364.0 4.2	4200	41704827.00	14553000.00	19845000.00
82	VestasV1504.2	4200	46689549.00	14553000.00	19845000.00

Betriebskosten in der 1. und 2. Dekade je Kostenszenario für die Anlagen im Verbund

	WKA	BK min 1. Dekade [EUR]	BK min 2. Dekade [EUR]	BK max 1. Dekade [EUR]	BK max 2. Dekade [EUR]
_	E1013050	264206.25	440343.75	360281.25	600468.75
2	E101E23.5	242550.00	404250.00	330750.00	551250.00
3	E1124.5	233887.50	389812.50	318937.50	531562.50
4	E1152.5	259875.00	433125.00	354375.00	590625.00
ъ	E115TES3	259875.00	433125.00	354375.00	590625.00
9	E115TES3.2	221760.00	369600.00	302400.00	504000.00
7	E126EP4TES4.2	218295.00	363825.00	297675.00	496125.00
œ	E1267.5	262647.00	437745.00	358155.00	596925.00
6	E1414.2	218295.00	363825.00	297675.00	496125.00
10	eno1002200	228690.00	381150.00	311850.00	519750.00
11	eno1143500	242550.00	404250.00	330750.00	551250.00
12	eno1263500	242550.00	404250.00	330750.00	551250.00
13	FLMD77	237785.62	396309.38	324253.12	540421.88
14	FL200093	248613.75	414356.25	339018.75	565031.25
15	FL2000100	248613.75	414356.25	339018.75	565031.25
16	FL2500100	262993.50	438322.50	358627.50	597712.50
17	FL2500104	262993.50	438322.50	358627.50	597712.50
18	FL3000120	259875.00	433125.00	354375.00	590625.00
19	GamesaG972MW	242550.00	404250.00	330750.00	551250.00
20	GamesaG1142MW	242550.00	404250.00	330750.00	551250.00
21	GamesaG1142.5MW	259875.00	433125.00	354375.00	590625.00
22	GamesaG1284.5MW	233887.50	389812.50	318937.50	531562.50
23	GamesaG1285MW	259875.00	433125.00	354375.00	590625.00
24	GamesaG1323.3MW	228690.00	381150.00	311850.00	519750.00
22	GamesaG1325MW	259823.02	433038.38	354304.12	590506.88
56	GEWind2.5120	262993.50	438322.50	358627.50	597712.50
27	GEWindGE2.75-120	240817.50	401362.50	328387.50	547312.50
58	GEWindGE3.2-130	223839.00	373065.00	305235.00	508725.00
59	GEWindGE3.8-130	265419.00	442365.00	361935.00	603225.00
30	GEWindGE3.4-137	237699.00	396165.00	324135.00	540225.00
31	GEWindGE3.6-137	249480.00	415800.00	340200.00	567000.00
32	GEWindGE4.8-158	249480.00	415800.00	340200.00	567000.00
33	NordexN902500LS	259875.00	433125.00	354375.00	590625.00
34	NordexN1494.5MW	233887.50	389812.50	318937.50	531562.50
32	NordexN 1313.9 MW	270270.00	450450.00	368550.00	614250.00
36	${\tt NordexN1002500}$	259875.00	433125.00	354375.00	590625.00
37	NordexN1173.6MW	249480.00	415800.00	340200.00	567000.00
38	NordexN1003300	228690.00	381150.00	311850.00	519750.00
39	NordexN1313.0MW	259875.00	433125.00	354375.00	590625.00
40	NordexN1172.4MW	249480.00	415800.00	340200.00	567000.00
41	NordexN1313.3MW	228690.00	381150.00	311850.00	519750.00
42	NordexN1173MW	259875.00	433125.00	354375.00	590625.00
43	NordexN1313.6MW	249480.00	415800.00	340200.00	567000.00
44	SenvionMM1002000	242550.00	404250.00	330750.00	551250.00
45	Senvion3.2M114VG	221760.00	369600.00	302400.00	504000.00

535500.00	567000.00	590625.00	504000.00	535500.00	567000.00	543375.00	504000.00	504000.00	519750.00	519750.00	567000.00	567000.00	620156.25	496125.00	614250.00	590625.00	590625.00	590625.00	590625.00	590625.00	590625.00	559518.75	567000.00	578025.00	605390.62	519750.00	543375.00	519750.00	543375.00	567000.00	590625.00	519750.00	543375.00	543375.00	496125.00	496125.00
321300.00	340200.00	354375.00	302400.00	321300.00	340200.00	326025.00	302400.00	302400.00	311850.00	311850.00	340200.00	340200.00	372093.75	297675.00	368550.00	354375.00	354375.00	354375.00	354375.00	354375.00	354375.00	335711.25	340200.00	346815.00	363234.38	311850.00	326025.00	311850.00	326025.00	340200.00	354375.00	311850.00	326025.00	326025.00	297675.00	297675.00
392700.00	415800.00	433125.00	369600.00	392700.00	415800.00	398475.00	369600.00	369600.00	381150.00	381150.00	415800.00	415800.00	454781.25	363825.00	450450.00	433125.00	433125.00	433125.00	433125.00	433125.00	433125.00	410313.75	415800.00	423885.00	443953.12	381150.00	398475.00	381150.00	398475.00	415800.00	433125.00	381150.00	398475.00	398475.00	363825.00	363825.00
235620.00	249480.00	259875.00	221760.00	235620.00	249480.00	239085.00	221760.00	221760.00	228690.00	228690.00	249480.00	249480.00	272868.75	218295.00	270270.00	259875.00	259875.00	259875.00	259875.00	259875.00	259875.00	246188.25	249480.00	254331.00	266371.88	228690.00	239085.00	228690.00	239085.00	249480.00	259875.00	228690.00	239085.00	239085.00	218295.00	218295.00
Senvion3.4MNES114	Senvion3.6M114	Senvion3.0M122	Senvion3.2M122NES	Senvion 3.4M140EBC	Senvion3.6M140EBC	SiemensSWT2.3113	SiemensSWT3.21132A	SiemensSWT3.21132B	SiemensSWT3.3130	SiemensSWT3.3130LN	SiemensSWT3.6120	SiemensSWT3.6130	SiemensSWT3.15142	SiemensSWTDD130	Siemens SWTDD142	Vensys771500kW	Vensys821500kW	Vensys1002500kW	Vensys1092500kW	Vensys1122500kW	Vensys1203000kW	VestasV902000GS	VestasV1001.8	VestasV1001.8GS	VestasV1123075	VestasV1123.3	VestasV1123.45	VestasV1173.3	VestasV1173.45	VestasV1173.6	VestasV1263.0	VestasV1263.3	VestasV1263.45	VestasV1363.45	VestasV1364.0 4.2	VestasV1504.2
46	47	48	49	20	51	25	53	54	55	26	22	28	29	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75	92	77	78	79	80	81	82

Betriebskosten Insgesamt je Kostenszenario für die Anlagen im Verbund

	11/1/ 4	DIV G [DUD]	DIA C : [DIID]
	WKA	BK Gesamt min [EUR]	BK Gesamt max [EUR]
1	E1013050	7045500.00	9607500.00
2	E101E23.5	6468000.00	8820000.00
3	E1124.5	6237000.00	8505000.00
4	E1152.5	6930000.00	9450000.00
5	E115TES3	6930000.00	9450000.00
6	E115TES3.2	5913600.00	8064000.00
7	E126EP4TES4.2	5821200.00	7938000.00
8	E1267.5	7003920.00	9550800.00
9	E1414.2	5821200.00	7938000.00
10	eno1002200	6098400.00	8316000.00
11	eno1143500	6468000.00	8820000.00
12	eno1263500	6468000.00	8820000.00
13	FLMD77	6340950.00	8646750.00
14	FL200093	6629700.00	9040500.00
15	FL2000100	6629700.00	9040500.00
16	FL2500100	7013160.00	9563400.00
17	FL2500104	7013160.00	9563400.00
18	FL3000120	6930000.00	9450000.00
19	GamesaG972MW	6468000.00	8820000.00
20	GamesaG1142MW	6468000.00	8820000.00
21	GamesaG1142.5MW	6930000.00	9450000.00
22	GamesaG1284.5MW	6237000.00	8505000.00
23	GamesaG1285MW	6930000.00	9450000.00
24	GamesaG1323.3MW	6098400.00	8316000.00
25	GamesaG1325MW	6928614.00	9448110.00
26	GEWind2.5120	7013160.00	9563400.00
27	GEWindGE2.75-120	6421800.00	8757000.00
28	GEWindGE3.2-130	5969040.00	8139600.00
29	GEWindGE3.8-130	7077840.00	9651600.00
30	GEWindGE3.4-137	6338640.00	8643600.00
31	GEWindGE3.6-137	6652800.00	9072000.00
32	GEWindGE4.8-158	6652800.00	9072000.00
33	NordexN902500LS	6930000.00	9450000.00
34	NordexN1494.5MW	6237000.00	8505000.00
35	NordexN1313.9MW	7207200.00	9828000.00
36	NordexN1002500	6930000.00	9450000.00
37	NordexN1173.6MW	6652800.00	9072000.00
38	NordexN1003300	6098400.00	8316000.00
39	NordexN1313.0MW	6930000.00	9450000.00
40	NordexN1172.4MW	6652800.00	9072000.00
41	NordexN1313.3MW	6098400.00	8316000.00
42	NordexN1173MW	6930000.00	9450000.00
43	NordexN1313.6MW	6652800.00	9072000.00
44	SenvionMM1002000	6468000.00	8820000.00
45	Senvion3.2M114VG	5913600.00	8064000.00
46	Senvion3.4MNES114	6283200.00	8568000.00
47	Senvion3.6M114	6652800.00	9072000.00
48	Senvion3.0M122	6930000.00	9450000.00
49	Senvion3.2M122NES	5913600.00	8064000.00
50	Senvion 3.4M140EBC	6283200.00	8568000.00
51	Senvion3.6M140EBC	6652800.00	9072000.00
52	SiemensSWT2.3113	6375600.00	8694000.00
53	SiemensSWT3.21132A	5913600.00	8064000.00
54	SiemensSWT3.21132B	5913600.00	8064000.00
55	SiemensSWT3.3130	6098400.00	8316000.00
56	SiemensSWT3.3130LN	6098400.00	8316000.00
57	SiemensSWT3.6120	6652800.00	9072000.00
58	SiemensSWT3.6130	6652800.00	9072000.00
59	SiemensSWT3.15142	7276500.00	9922500.00
60	SiemensSWTDD130	5821200.00	7938000.00
	Siemens SWTDD142	7207200.00	9828000.00
61			
62 63	Vensys771500kW Vensys821500kW	6930000.00 6930000.00	9450000.00 9450000.00
63 64	*	6930000.00	
	Vensys1002500kW		9450000.00
65	$\rm Vensys1092500kW$	6930000.00	9450000.00

66	Vensys1122500kW	6930000.00	9450000.00
67	Vensys1203000kW	6930000.00	9450000.00
68	VestasV902000GS	6565020.00	8952300.00
69	VestasV1001.8	6652800.00	9072000.00
70	VestasV1001.8GS	6782160.00	9248400.00
71	VestasV1123075	7103250.00	9686250.00
72	VestasV1123.3	6098400.00	8316000.00
73	VestasV1123.45	6375600.00	8694000.00
74	VestasV1173.3	6098400.00	8316000.00
75	VestasV1173.45	6375600.00	8694000.00
76	VestasV1173.6	6652800.00	9072000.00
77	VestasV1263.0	6930000.00	9450000.00
78	VestasV1263.3	6098400.00	8316000.00
79	VestasV1263.45	6375600.00	8694000.00
80	VestasV1363.45	6375600.00	8694000.00
81	VestasV1364.0 4.2	5821200.00	7938000.00
82	VestasV1504.2	5821200.00	7938000.00

Anhang Kapitel 6

Szenario 1 - Einzelanlagen

	WKA	Gewinn [EUR]	Rentabilität [%]	Rentabel?
1	E1013050	1969862.00	139.94	win
2	E101E23.5	1397400.20	124.69	win
3	E1124.5	1461630.40	120.09	win
4	E1152.5	3029804.26	174.95	win
5	E115TES3	2851102.58	158.77	win
6	E115TES3.2	2642129.32	151.06	win
7	E126EP4TES4.2	2816228.16	141.47	win
8	E1267.5	120956.00	100.99	win
9	E1414.2	3966039.00	158.40	win
10	eno1002200	2037603.72	157.28	win
11	eno1143500	-2491402.00	55.98	loose
12	eno1263500	3207622.16	156.68	win
13	FLMD77	993056.16	140.27	win
14	FL200093	1806616.87	154.50	win
15	FL2000100	1986202.59	159.92	win
16 17	FL2500100	2010299.50	149.14	win
	FL2500104	2010299.50	149.14	win
18 19	FL3000120 GamesaG972MW	3088784.90 2048067.64	163.67 163.33	win win
20	GamesaG972MW GamesaG1142MW	2048067.64	189.96	win win
21	GamesaG1142.5MW	2830332.76	170.01	win
22	GamesaG1284.5MW	3019462.44	141.50	win
23	GamesaG1285MW	2676391.76	133.10	win
24	GamesaG1323.3MW	3802725.96	171.26	win
25	GamesaG1325MW	3096203.32	138.30	win
26	GEWind2.5120	3265000.36	179.81	win
27	GEWindGE2.75-120	3172046.36	170.56	win
28	GEWindGE3.2-130	3588168.24	168.70	win
29	GEWindGE3.8-130	3291645.16	153.15	win
30	GEWindGE3.4-137	4004166.92	172.20	win
31	GEWindGE3.6-137	3892730.12	166.87	win
32	GEWindGE4.8-158	5267830.12	167.87	win
33	NordexN902500LS	1329287.16	132.88	win
34	NordexN1494.5MW	-5941618.87	18.35	loose
35	NordexN1313.9MW	-5282547.93	16.23	loose
36	NordexN1002500	2046085.72	150.61	win
37	NordexN1173.6MW	2586893.56	144.44	win
38	NordexN1003300	1266719.20	123.74	win
39	NordexN1313.0MW	3759093.20	177.49	win
40	NordexN1172.4MW	3021911.40	177.87	win
41	NordexN1313.3MW	-4308850.31	19.25	loose
42	NordexN1173MW	2820767.56	158.15	win
43	NordexN1313.6MW	-4759477.69	18.24	loose
44	SenvionMM1002000	2169665.36	167.09	win
45	Senvion3.2M114VG	2672360.60	151.65	win
46	Senvion3.4MNES114	2546834.20	146.32	win
47	Senvion3.6M114	2350709.88	140.38	win
48	Senvion3.0M122	3175067.40	165.45	win
49	Senvion3.2M122NES	3068262.84	159.30	win
50	Senvion 3.4M140EBC	4240563.36	177.13	win
51	Senvion3.6M140EBC	4193571.56	172.04	win
52	SiemensSWT2.3113	2995491.64	180.54	win
53	SiemensSWT3.21132A	2751321.56	153.17	win
54	SiemensSWT3.21132B	2747930.44	153.11	win
55	SiemensSWT3.3130	3621850.52	167.87	win
56	SiemensSWT3.3130LN	3671036.20	168.80	win
57	SiemensSWT3.6120	3054000.96	152.46	win
58	SiemensSWT3.6130	3590135.36	161.67	win
59	SiemensSWT3.15142	4431794.48	187.01	win
60	SiemensSWTDD130	3308194.86	148.71	win
61	Siemens SWTDD142	4504189.28	171.42	win
62 63	Vensys771500kW	1052775.43	143.40 157.63	win
63	Vensys821500kW	1397843.10	157.03	win

64	Vensys1002500kW	1723544.84	142.64	win
65	Vensys1092500kW	2329159.88	157.62	win
66	Vensys1122500kW	2513964.22	162.19	win
67	Vensys1203000kW	3051176.00	162.90	win
68	VestasV902000GS	1394598.40	142.49	win
69	VestasV1001.8	2185637.76	175.09	win
70	VestasV1001.8GS	2128263.76	171.73	win
71	VestasV1123075	2453548.20	149.34	win
72	VestasV1123.3	2273213.80	142.60	win
73	VestasV1123.45	2318312.40	141.56	win
74	VestasV1173.3	2667698.64	149.99	win
75	VestasV1173.45	2731286.52	148.96	win
76	VestasV1173.6	2615095.64	144.92	win
77	VestasV1263.0	3433962.16	170.79	win
78	VestasV1263.3	3354330.52	162.86	win
79	VestasV1263.45	3392146.80	160.81	win
80	VestasV1363.45	4125834.84	173.96	win
81	VestasV1364.0~4.2	3773822.84	155.57	win
82	VestasV1504.2	5036619.08	174.16	win

Szenario 2 - Einzelanlagen

	WKA	Gewinn [EUR]	Rentabilität [%]	Rentabel?
1	E1013050	176462.00	102.62	win
2	E101E23.5	-660599.80	91.44	loose
3	E1124.5	-1184369.60	88.06	loose
4	E1152.5	1559804.26	128.30	win
5	E115TES3	1087102.58	116.43	win
6	E115TES3.2	760529.32	110.78	win
7	E126EP4TES4.2	346628.16	103.74	win
8	E1267.5	-4336084.00	74.06	loose
9	E1414.2	1496439.00	116.16	win
10	eno1002200	744003.72	115.34	win
11	eno1143500	-4549402.00	41.05	loose
12	eno1263500	1149622.16	114.90	win
13	FLMD77	96356.16	102.87	win
14	FL200093	601216.87	113.30	win
15	FL2000100	780802.59	117.27	win
16	FL2500100	522659.50	109.37	win
17	FL2500104	522659.50	109.37	win
18	FL3000120	1324784.90	120.03	win
19	GamesaG972MW	872067.64	119.77	win
20	${\rm GamesaG1142MW}$	1733408.32	139.31	win
21	${\rm GamesaG1142.5MW}$	1360332.76	124.68	win
22	${\tt GamesaG1284.5MW}$	373462.44	103.76	win
23	${\rm GamesaG1285MW}$	-263608.24	97.61	loose
24	${\rm GamesaG1323.3MW}$	1862325.96	125.59	win
25	GamesaG1325MW	156791.32	101.42	win
26	GEWind 2.5120	1777360.36	131.86	win
27	GEWindGE2.75-120	1537406.36	125.08	win
28	GEWindGE3.2-130	1688928.24	123.71	win
29	GEWindGE3.8-130	1039605.16	112.31	win
30	GEWindGE3.4-137	1987326.92	126.28	win
31	GEWindGE3.6-137	1775930.12	122.37	win
32	GEWindGE4.8-158	2445430.12	123.10	win
33	NordexN902500LS	-140712.84	97.45	loose
34	NordexN1494.5MW	-8587618.87	13.45	loose
35	NordexN1313.9MW	-7575747.93	11.90	loose
36	NordexN1002500	576085.72	110.45	win
37	NordexN1173.6MW	470093.56	105.92	win
38	NordexN1003300	-673680.80	90.74	loose
39	NordexN1313.0MW	1995093.20	130.16	win
40	NordexN1172.4MW	1610711.40	130.44	win
41	NordexN1313.3MW	-6249250.31	14.12	loose
42	NordexN1173MW	1056767.56	115.98	win
43	NordexN1313.6MW	-6876277.69	13.38	loose
44	SenvionMM1002000	993665.36	122.53	win
45	Senvion3.2M114VG	790760.60	111.21	win
46	Senvion3.4MNES114	547634.20	107.30	win
47	Senvion3.6M114	233909.88	102.95	win
48	Senvion3.0M122	1411067.40	121.33	win
49	Senvion3.2M122NES	1186662.84	116.82	win
50	Senvion 3.4M140EBC	2241363.36	129.90	win
51	Senvion3.6M140EBC	2076771.56	126.16	win
52	SiemensSWT2.3113	1643091.64	132.40	win
53	${\tt SiemensSWT3.21132A}$	869721.56	112.33	win
54	${\tt SiemensSWT3.21132B}$	866330.44	112.28	win
55	SiemensSWT3.3130	1681450.52	123.11	win
56	SiemensSWT3.3130LN	1730636.20	123.78	win
57	SiemensSWT3.6120	937200.96	111.81	win
58	SiemensSWT3.6130	1473335.36	118.56	win
59	SiemensSWT3.15142	2579594.48	137.14	win
60	SiemensSWTDD130	838594.86	109.06	win
61	Siemens SWTDD142	2210989.28	125.71	win
62	Vensys771500kW	170775.43	105.16	win
63	Vensys821500kW	515843.10	115.60	win
64	Vensys1002500kW	253544.84	104.60	win
65	Vensys1092500kW	859159.88	115.59	win
	•			

66	Vensys1122500kW	1043964.22	118.94 win	
67	Vensys1203000kW	1287176.00	119.46 win	
68	VestasV902000GS	200958.40	104.49 win	
69	VestasV1001.8	1127237.76	128.40 win	
70	VestasV1001.8GS	1049283.76	125.93 win	
71	VestasV1123075	645448.20	109.52 win	
72	VestasV1123.3	332813.80	104.57 win	
73	VestasV1123.45	289712.40	103.81 win	
74	VestasV1173.3	727298.64	110.00 win	
75	VestasV1173.45	702686.52	109.24 win	
76	VestasV1173.6	498295.64	106.28 win	
77	VestasV1263.0	1669962.16	125.25 win	
78	VestasV1263.3	1413930.52	119.43 win	
79	VestasV1263.45	1363546.80	117.92 win	
80	VestasV1363.45	2097234.84	127.57 win	
81	VestasV1364.0 4.2	1304222.84	114.08 win	
82	VestasV1504.2	2567019.08	127.72 win	

Szenario 3 - Einzelanlagen

	WKA	Gewinn [EUR]	Rentabilität [%]	Rentabel?
1	E1013050	6510462.00	232.01	win
2	E101E23.5	6040097.70	206.72	win
3	E1124.5	7210400.40	199.09	win
4	E1152.5	7682636.01	290.05	win
5	E115TES3	7918275.33	263.23	win
6	E115TES3.2	7784582.82	250.44	win
7	E126EP4TES4.2	9137036.16	234.54	win
8	E1267.5	8264256.00	167.43	win
9	E1414.2	11043301.50	262.61	win
10	eno1002200	5718527.22	260.75	win
11	eno1143500	-407127.00	92.81	loose
12	eno1263500	9041255.16	259.75	win
13	FLMD77	3268701.66	232.55	win
14	FL200093	5176002.97	256.15	win
15	FL2000100	5473737.19	265.13	win
16	FL2500100	6024318.90	247.26	win
17	FL2500104	6024318.90	247.26	win
18	FL3000120	8312327.60	271.35	win
19	GamesaG972MW	5523112.14	270.78	win
20	GamesaG1142MW	6951124.32	314.94	win
21	GamesaG1142.5MW	7351933.26	281.87	win
22	GamesaG1284.5MW	9793121.94	234.59	win
23	GamesaG1285MW	9756254.76	220.67	win
24	GamesaG1323.3MW	9815111.46	283.94	win
25	GamesaG1325MW	10451194.32	229.29	win
26	GEWind2.5120	8104480.86	298.10	win
27	GEWindGE2.75-120	8216326.86	282.78	win
28	GEWindGE3.2-130	9384930.24	279.69	win
29	GEWindGE3.8-130	9531615.66	253.91	win
30	GEWindGE3.4-137	10287375.42	285.48	win
31	GEWindGE3.6-137	10283473.62	276.66	win
32	GEWindGE4.8-158	13839823.62	278.31	win
33	NordexN902500LS	4863357.66	220.31	win
34	NordexN1494.5MW	-5063407.60	30.41	loose
35	NordexN1313.9MW	-4609026.84	26.91	loose
36	NordexN1002500	6051734.22	249.70	win
37	NordexN1173.6MW	8118534.06	239.46	win
38	NordexN1003300	5610679.20	205.15	win
39	NordexN1313.0MW	9423628.20	294.26	win
40	NordexN1172.4MW	7563168.90	294.89	win
41	NordexN1313.3MW	-3633028.14	31.92	loose
42	NordexN1173MW	7867983.06	262.19	win
43	NordexN1313.6MW	-4060976.17	30.24	loose
44	SenvionMM1002000	5724708.36	277.02	win

45	Senvion3.2M114VG	7834703.10	251.41	win
46	Senvion3.4MNES114	7839356.70	242.59	win
47	Senvion3.6M114	7726966.38	232.74	win
48	Senvion3.0M122	8455374.90	274.30	win
49	Senvion3.2M122NES	8491067.34	264.10	win
50	Senvion 3.4M140EBC	10647381.36	293.67	win
51	Senvion3.6M140EBC	10782237.06	285.22	win
52	SiemensSWT2.3113	7412986.14	299.32	win
53	SiemensSWT3.21132A	7965612.06	253.94	win
54	SiemensSWT3.21132B	7959989.94	253.83	win
55	SiemensSWT3.3130	9515239.02	278.32	win
56	SiemensSWT3.3130LN	9596783.70	279.85	win
57	SiemensSWT3.6120	8892948.96	252.77	win
58	SiemensSWT3.6130	9781803.36	268.04	win
59	SiemensSWT3.15142	10698468.48	310.04	win
60	SiemensSWTDD130	9952665.16	246.55	win
61	Siemens SWTDD142	11616353.28	284.20	win
62	Vensys771500kW	3341114.53	237.75	win
63	Vensys821500kW	3913200.40	261.34	win
64	Vensys1002500kW	5516995.39	236.47	win
65	Vensys1092500kW	6521041.38	261.31	win
66	Vensys1122500kW	6827427.52	268.89	win
67	Vensys1203000kW	8249976.00	270.07	win
68	VestasV902000GS	4471643.40	236.23	win
69	VestasV1001.8	5538425.76	290.28	win
70	VestasV1001.8GS	5480539.26	284.70	win
71	VestasV1123075	7338958.20	247.60	win
72	VestasV1123.3	7279341.30	236.42	win
73	VestasV1123.45	7513682.40	234.69	win
74	VestasV1173.3	7933355.64	248.67	win
75	VestasV1173.45	8198350.02	246.96	win
76	VestasV1173.6	8165290.14	240.27	win
77	VestasV1263.0	8884595.16	283.15	win
78	VestasV1263.3	9071719.02	270.01	win
79	VestasV1263.45	9293986.80	266.60	win
80	VestasV1363.45	10510364.34	288.40	win
81	VestasV1364.0 4.2	10724627.34	257.91	win
82	VestasV1504.2	12818210.58	288.74	win

Szenario 4 - Einzelanlagen

	WKA	Gewinn [EUR]	Rentabilität [%]	Rentabel?
1	E1013050	4717062.00	170.14	win
2	E101E23.5	3982097.70	151.60	win
3	E1124.5	4564400.40	146.00	win
4	E1152.5	6212636.01	212.70	win
5	E115TES3	6154275.33	193.04	win
6	E115TES3.2	5902982.82	183.66	win
7	E126EP4TES4.2	6667436.16	171.99	win
8	E1267.5	3807216.00	122.78	win
9	E1414.2	8573701.50	192.58	win
10	eno1002200	4424927.22	191.22	win
11	eno1143500	-2465127.00	68.06	loose
12	eno1263500	6983255.16	190.49	win
13	FLMD77	2372001.66	170.54	win
14	FL200093	3970602.97	187.84	win
15	FL2000100	4268337.19	194.43	win
16	FL2500100	4536678.90	181.32	win
17	FL2500104	4536678.90	181.32	win
18	FL3000120	6548327.60	198.99	win
19	GamesaG972MW	4347112.14	198.57	win
20	GamesaG1142MW	5775124.32	230.96	win
21	${\rm GamesaG1142.5MW}$	5881933.26	206.70	win
22	GamesaG1284.5MW	7147121.94	172.03	win
23	GamesaG1285MW	6816254.76	161.83	win

24	GamesaG1323.3MW	7874711.46	208.22	
25	GamesaG1325MW	7511782.32	168.15	win win
26	GEWind2.5120	6616840.86	218.61	win
27	GEWind2.5120 GEWindGE2.75-120	6581686.86	207.37	win
28				
	GEWindGE3.2-130	7485690.24	205.10	win
29	GEWindGE3.8-130	7279575.66	186.20	win
30	GEWindGE3.4-137	8270535.42	209.35	win
31	GEWindGE3.6-137	8166673.62	202.88	win
32	GEWindGE4.8-158	11017423.62	204.10	win
33	NordexN902500LS	3393357.66	161.56	win
34	NordexN1494.5MW	-7709407.60	22.30	loose
35	NordexN1313.9MW	-6902226.84	19.74	loose
36	NordexN1002500	4581734.22	183.12	win
37	NordexN1173.6MW	6001734.06	175.61	win
38	NordexN1003300	3670279.20	150.44	win
39	NordexN1313.0MW	7659628.20	215.79	win
40	NordexN1172.4MW	6151968.90	216.25	win
41	NordexN1313.3MW	-5573428.14	23.41	loose
42	NordexN1173MW	6103983.06	192.27	win
43	NordexN1313.6MW	-6177776.17	22.17	loose
44	SenvionMM1002000	4548708.36	203.15	win
45	Senvion3.2M114VG	5953103.10	184.37	win
46	Senvion3.4MNES114	5840156.70	177.90	win
47	Senvion3.6M114	5610166.38	170.67	win
48	Senvion3.0M122	6691374.90	201.15	win
49	Senvion3.2M122NES	6609467.34	193.67	win
50	Senvion 3.4M140EBC	8648181.36	215.36	win
51	Senvion3.6M140EBC	8665437.06	209.16	win
52	SiemensSWT2.3113	6060586.14	219.50	win
53	SiemensSWT3.21132A	6084012.06	186.22	win
54	SiemensSWT3.21132B	6078389.94	186.14	win
55	SiemensSWT3.3130	7574839.02	204.10	win
56	SiemensSWT3.3130LN	7656383.70	205.22	win
57	SiemensSWT3.6120	6776148.96	185.36	win
58	SiemensSWT3.6130	7665003.36	196.56	win
59	SiemensSWT3.15142	8846268.48	227.36	win
60	SiemensSWTDD130	7483065.16	180.80	win
61	Siemens SWTDD142	9323153.28	208.42	win
62	Vensys771500kW	2459114.53	174.35	win
63	Vensys821500kW	3031200.40	191.65	win
64	Vensys1002500kW	4046995.39	173.41	win
65	Vensys1092500kW	5051041.38	191.63	win
66	Vensys1122500kW	5357427.52	197.19	win
67	Vensys1203000kW	6485976.00	198.05	win
68	VestasV902000GS	3278003.40	173.23	win
69	VestasV1001.8	4480025.76	212.88	win
70	VestasV1001.8GS	4401559.26	208.78	win
71	VestasV1123075	5530858.20	181.57	win
72	VestasV1123.3	5338941.30	173.37	win
73	VestasV1123.45	5485082.40	172.10	win
74	VestasV1173.3	5992955.64	182.36	win
75	VestasV1173.45	6169750.02	181.10	win
76	VestasV1173.6	6048490.14	176.20	win
77	VestasV1263.0	7120595.16	207.64	win
78	VestasV1263.3	7131319.02	198.00	win
79	VestasV1263.45	7265386.80	195.51	win
80	VestasV1363.45	8481764.34	211.50	win
81	VestasV1364.0 4.2	8255027.34	189.14	win
82	VestasV1504.2	10348610.58	211.74	win

Szenario 5 - Einzelanlagen

	WKA	Gewinn [EUR]	Rentabilität [%]	Rentabel?
1	E1013050	5366230.80	208.81	win
2	E101E23.5	4870137.93	186.05	win
3	E1124.5	5761710.36	179.18	win
4	E1152.5	6510122.41	261.04	win
5	E115TES3	6641347.80	236.91	win
6	E115TES3.2	6488684.54	225.40	win
7	E126EP4TES4.2	7544192.54	211.08	win
8	E1267.5	6212144.40	150.68	win
9	E1414.2	9259831.35	236.35	win
10	eno1002200	4790934.50	234.68	win
11	eno1143500	-932364.30	83.53	loose
12	eno1263500	7571179.64	233.78	win
13	FLMD77	2695238.99	209.30	win
14	FL200093	4326917.67	230.53	win
15	FL2000100	4594878.47	238.61	win
16	FL2500100	5012786.01	222.53	win
17	FL2500104	5012786.01	222.53	win
18	FL3000120	6995994.84	244.22	win
19	GamesaG972MW	4647400.93	243.70	win
20	GamesaG1142MW	5932611.89	283.45	win
21	${\rm GamesaG1142.5MW}$	6212489.93	253.68	win
22	${\rm GamesaG1284.5MW}$	8086159.75	211.13	win
23	${\rm GamesaG1285MW}$	7972129.28	198.60	win
24	GamesaG1323.3MW	8299990.31	255.54	win
25	GamesaG1325MW	8597736.59	206.36	win
26	GEWind2.5120	6884931.77	268.29	win
27	GEWindGE2.75-120	6945168.17	254.50	win
28	GEWindGE3.2-130	7924146.22	251.72	win
29	GEWindGE3.8-130	7959143.09	228.52	win
30	GEWindGE3.4-137	8704006.88	256.93	win
31	GEWindGE3.6-137	8673006.26	248.99	win
32	GEWindGE4.8-158	11679681.26	250.48	win
33	NordexN902500LS	3972771.89	198.28	win
34	NordexN1494.5MW	-5284716.84	27.37	loose
35	NordexN1313.9MW	-4778754.16	24.22	loose
36	NordexN1002500	5042310.80	224.73	win
37	NordexN1173.6MW	6724560.65	215.52	win
38	NordexN1003300	4516001.28	184.63	win
39	NordexN1313.0MW	7996165.38	264.84	win
40	NordexN1172.4MW	6418772.01	265.40	win
41	NordexN1313.3MW	-3803335.32	28.72	loose
42	NordexN1173MW	6596084.75	235.97	win
43	NordexN1313.6MW	-4236998.55	27.21	loose
44	SenvionMM1002000	4828837.52	249.31	win
45	Senvion3.2M114VG	6533792.79	226.27	win
46	Senvion3.4MNES114	6505641.03	218.33	win
47	Senvion3.6M114	6372149.74	209.46	win
48	Senvion3.0M122	7124737.41	246.87	win
49	Senvion3.2M122NES	7124520.61	237.69	win
50	Senvion 3.4M140EBC	9032863.22	264.30	win
51	Senvion3.6M140EBC	9121893.35	256.70	win
52	SiemensSWT2.3113	6299777.53	269.39	win
53	SiemensSWT3.21132A	6651610.85	228.55	win
54	SiemensSWT3.21132B	6646550.95	228.45	win
55	SiemensSWT3.3130	8030105.12	250.49	win
56	SiemensSWT3.3130LN	8103495.33	251.86	win
57	SiemensSWT3.6120	7421534.06	227.49	win
58	SiemensSWT3.6130	8221503.02	241.23	win
59	SiemensSWT3.15142	9119266.63	279.04	win
60	SiemensSWTDD130	8278258.64	221.89	win
61	Siemens SWTDD142	9824087.95	255.78	win
62	Vensys771500kW	2764453.08	213.97	win
63	Vensys821500kW	3279330.36	235.20	win
64	Vensys1002500kW	4561045.85	212.83	win
65	Vensys1092500kW	5464687.24	235.18	win
30			200.10	

66	Vensys1122500kW	5740434.76	242.00 win	
67	Vensys1203000kW	6939878.40	243.06 win	
68	VestasV902000GS	3696228.06	212.60 win	
69	VestasV1001.8	4693523.18	261.26 win	
70	VestasV1001.8GS	4635765.83	256.23 win	
71	VestasV1123075	6107834.88	222.84 win	
72	VestasV1123.3	6017797.17	212.78 win	
73	VestasV1123.45	6204449.16	211.22 win	
74	VestasV1173.3	6606410.08	223.81 win	
75	VestasV1173.45	6820650.02	222.26 win	
76	VestasV1173.6	6766641.13	216.24 win	
77	VestasV1263.0	7511035.64	254.83 win	
78	VestasV1263.3	7630937.12	243.01 win	
79	VestasV1263.45	7806723.12	239.94 win	
80	VestasV1363.45	8901462.91	259.56 win	
81	$VestasV1364.0\ 4.2$	8973024.61	232.12 win	
82	VestasV1504.2	10857249.52	259.87 win	

Szenario 6 - Einzelanlagen

W	VKA	Gewinn [EUR]	Rentabilität [%]	Rentabel?
1 E	1013050	3572830.80	153.13	win
2 E	101E23.5	2812137.93	136.44	win
3 E	1124.5	3115710.36	131.40	win
4 E	1152.5	5040122.41	191.43	win
5 E	115TES3	4877347.80	173.73	win
6 E	115TES3.2	4607084.54	165.29	win
7 E	126EP4TES4.2	5074592.54	154.80	win
8 E	1267.5	1755104.40	110.50	win
9 E	1414.2	6790231.35	173.32	win
10 ei	no1002200	3497334.50	172.10	win
11 er	no1143500	-2990364.30	61.25	loose
12 er	no1263500	5513179.64	171.44	win
13 F	LMD77	1798538.99	153.49	win
14 F	L200093	3121517.67	169.06	win
15 F	L2000100	3389478.47	174.98	win
16 F	L2500100	3525146.01	163.19	win
17 F	L2500104	3525146.01	163.19	win
18 F	L3000120	5231994.84	179.09	win
19 G	amesaG972MW	3471400.93	178.72	win
20 G	amesaG1142MW	4756611.89	207.86	win
21 G	amesaG1142.5MW	4742489.93	186.03	win
22 G	amesaG1284.5MW	5440159.75	154.83	win
23 G	amesaG1285MW	5032129.28	145.64	win
24 G	amesaG1323.3MW	6359590.31	187.40	win
25 G	amesaG1325MW	5658324.59	151.33	win
26 G	EWind2.5120	5397291.77	196.75	win
27 G	EWindGE2.75-120	5310528.17	186.63	win
28 G	EWindGE3.2-130	6024906.22	184.59	win
29 G	EWindGE3.8-130	5707103.09	167.58	win
30 G	EWindGE3.4-137	6687166.88	188.42	win
31 G	EWindGE3.6-137	6556206.26	182.59	win
32 G	EWindGE4.8-158	8857281.26	183.69	win
33 N	ordexN902500LS	2502771.89	145.40	win
34 N	ordexN1494.5MW	-7930716.84	20.07	loose
	ordexN1313.9MW	-7071954.16	17.76	loose
36 N	ordexN1002500	3572310.80	164.80	win
	ordexN1173.6MW	4607760.65	158.05	win
	ordexN1003300	2575601.28	135.40	win
	ordexN1313.0MW	6232165.38	194.21	win
	ordexN1172.4MW	5007572.01	194.63	win
	ordexN1313.3MW	-5743735.32	21.06	loose
	ordexN1173MW	4832084.75	173.05	win
	ordexN1313.6MW	-6353798.55	19.96	loose
	envionMM1002000	3652837.52	182.83	win

45	Senvion3.2M114VG	4652192.79	165.93	win
46	Senvion3.4MNES114	4506441.03	160.11	win
47	Senvion3.6M114	4255349.74	153.61	win
48	Senvion3.0M122	5360737.41	181.04	win
49	Senvion3.2M122NES	5242920.61	174.30	win
50	Senvion 3.4M140EBC	7033663.22	193.82	win
51	Senvion3.6M140EBC	7005093.35	188.25	win
52	SiemensSWT2.3113	4947377.53	197.55	win
53	SiemensSWT3.21132A	4770010.85	167.60	win
54	SiemensSWT3.21132B	4764950.95	167.53	win
55	SiemensSWT3.3130	6089705.12	183.69	win
56	SiemensSWT3.3130LN	6163095.33	184.70	win
57	SiemensSWT3.6120	5304734.06	166.83	win
58	SiemensSWT3.6130	6104703.02	176.90	win
59	SiemensSWT3.15142	7267066.63	204.63	win
60	SiemensSWTDD130	5808658.64	162.72	win
61	Siemens SWTDD142	7530887.95	187.57	win
62	Vensys771500kW	1882453.08	156.91	win
63	Vensys821500kW	2397330.36	172.48	win
64	Vensys1002500kW	3091045.85	156.07	win
65	Vensys1092500kW	3994687.24	172.47	win
66	Vensys1122500kW	4270434.76	177.47	win
67	Vensys1203000kW	5175878.40	178.24	win
68	VestasV902000GS	2502588.06	155.91	win
69	VestasV1001.8	3635123.18	191.59	win
70	VestasV1001.8GS	3556785.83	187.90	win
71	VestasV1123075	4299734.88	163.41	win
72	VestasV1123.3	4077397.17	156.04	win
73	VestasV1123.45	4175849.16	154.89	win
74	VestasV1173.3	4666010.08	164.12	win
75	VestasV1173.45	4792050.02	162.99	win
76	VestasV1173.6	4649841.13	158.58	win
77	VestasV1263.0	5747035.64	186.88	win
78	VestasV1263.3	5690537.12	178.20	win
79	VestasV1263.45	5778123.12	175.96	win
80	VestasV1363.45	6872862.91	190.35	win
81	VestasV1364.0 4.2	6503424.61	170.22	win
82	VestasV1504.2	8387649.52	190.57	win

Szenario 1 - Anlagen im Verbund

	WKA	Gewinn [EUR]	Rentabilität [%]	Rentabel?
1	E1013050	9849310.00	139.94	win
2	E101E23.5	5589600.80	124.69	win
3	E1124.5	4384891.20	120.09	win
4	E1152.5	18178825.56	174.95	win
5	E115TES3	14255512.90	158.77	win
6	E115TES3.2	10568517.28	151.06	win
7	E126EP4TES4.2	8448684.48	141.47	win
8	E1267.5	241912.00	100.99	win
9	E1414.2	11898117.00	158.40	win
10	eno1002200	12225622.32	157.28	win
11	eno1143500	-9965608.00	55.98	loose
12	eno1263500	12830488.64	156.68	win
13	FLMD77	8937505.44	140.27	win
14	FL200093	12646318.10	154.50	win
15	FL2000100	13903418.14	159.92	win
16	FL2500100	12061796.97	149.14	win
17	FL2500104	12061796.97	149.14	win
18	FL3000120	15443924.52	163.67	win
19	GamesaG972MW	14336473.48	163.33	win
20	GamesaG1142MW	20365858.24	189.96	win
21	GamesaG1142.5MW	16981996.56	170.01	win
22	${\rm GamesaG1284.5MW}$	9058387.32	141.50	win
23	GamesaG1285MW	8029175.28	133.10	win

24	CC1222 2MW	15010002 04	171 96	
$\frac{24}{25}$	GamesaG1323.3MW GamesaG1325MW	15210903.84 9288609.96	171.26 138.30	win win
26 26	GEWind2.5120			
27	GEWind2.5120 GEWindGE2.75-120	19590002.16	179.81	win win
28	GEWINGGE2.75-120 GEWindGE3.2-130	15860231.80	170.56	
		14352672.96	168.70	win
29 30	GEWindGE3.8-130	13166580.64	153.15	win
	GEWindGE3.4-137	16016667.68	172.20	win
31	GEWindGE3.6-137	15570920.48	166.87	win
32	GEWindGE4.8-158	15803490.36	167.87	win
33	NordexN902500LS	7975722.96	132.88	win
34	NordexN1494.5MW	-17824856.60	18.35	loose
35	NordexN1313.9MW	-21130191.74	16.23	loose
36	NordexN1002500	12276514.32	150.61	win
37	NordexN1173.6MW	10347574.24	144.44	win
38	NordexN1003300	5066876.80	123.74	win
39	NordexN1313.0MW	18795466.00	177.49	win
40	NordexN1172.4MW	18131468.40	177.87	win
41	NordexN1313.3MW	-17235401.22	19.25	loose
42	NordexN1173MW	14103837.80	158.15	win
43	NordexN1313.6MW	-19037910.76	18.24	loose
44	SenvionMM1002000	15187657.52	167.09	win
45	Senvion3.2M114VG	10689442.40	151.65	win
46	Senvion3.4MNES114	10187336.80	146.32	win
47	Senvion3.6M114	9402839.52	140.38	win
48	Senvion3.0M122	15875337.00	165.45	win
49	Senvion3.2M122NES	12273051.36	159.30	win
50	Senvion 3.4M140EBC	16962253.44	177.13	win
51	Senvion3.6M140EBC	16774286.24	172.04	win
52	SiemensSWT2.3113	17972949.84	180.54	win
53	SiemensSWT3.21132A	11005286.24	153.17	win
54	SiemensSWT3.21132B	10991721.76	153.11	win
55	SiemensSWT3.3130	14487402.08	167.87	win
56	SiemensSWT3.3130LN	14684144.80	168.80	win
57	SiemensSWT3.6120	12216003.84	152.46	win
58	SiemensSWT3.6130	14360541.44	161.67	win
59	SiemensSWT3.15142	22158972.40	187.01	win
60	SiemensSWTDD130	9924584.57	148.71	win
61	Siemens SWTDD142	18016757.12	171.42	win
62	Vensys771500kW	10527754.32	143.40	win
63	Vensys821500kW	13978430.96	157.63	win
64	Vensys1002500kW	10341269.02	142.64	win
65	Vensys1092500kW	13974959.28	157.62	win
66	Vensys1122500kW	15083785.30	162.19	win
67	Vensys1203000kW	15255880.00	162.90	win
68	VestasV902000GS	9762188.80	142.49	win
69	VestasV1001.8	17485102.08	175.09	win
70	VestasV1001.8GS	17026110.08	171.73	win
71	VestasV1123075	12267741.00	149.34	win
72	VestasV1123.3	9092855.20	142.60	win
73	VestasV1123.45	9273249.60	141.56	win
74	VestasV1173.3	10670794.56	149.99	win
75	VestasV1173.45	10925146.08	148.96	win
76	VestasV1173.6	10460382.56	144.92	win
77	VestasV1263.0	17169810.80	170.79	win
78	VestasV1263.3	13417322.08	162.86	win
79	VestasV1263.45	13568587.20	160.81	win
80	VestasV1363.45	16503339.36	173.96	win
81	VestasV1364.0 4.2	11321468.52	155.57	win
82	VestasV1504.2	15109857.24	174.16	win

Szenario 2 - Anlagen im Verbund

	WKA	Gewinn [EUR]	Rentabilität [%]	Rentabel?
1	E1013050	882310.00	102.62	win
2	E101E23.5	-2642399.20	91.44	loose
3	E1124.5	-3553108.80	88.06	loose
4	E1152.5	9358825.56	128.30	win
5	E115TES3	5435512.90	116.43	win
6	E115TES3.2	3042117.28	110.78	win
7	E126EP4TES4.2	1039884.48	103.74	win
8	E1267.5	-8672168.00	74.06	loose
9	E1414.2	4489317.00	116.16	win
10	eno1002200	4464022.32	115.34	win
11	eno1143500	-18197608.00	41.05	loose
12	eno1263500	4598488.64	114.90	win
13	FLMD77	867205.44	102.87	win
14	FL200093	4208518.10	113.30	win
15	FL2000100	5465618.14	117.27	win
16	FL2500100	3135956.97	109.37	win
17	FL2500104	3135956.97	109.37	win
18	FL3000120	6623924.52	120.03	win
19	GamesaG972MW	6104473.48	119.77	win
20	GamesaG1142MW	12133858.24	139.31	win
21	GamesaG1142.5MW	8161996.56	124.68	win
22	GamesaG1284.5MW	1120387.32	103.76	win
23	GamesaG1285MW	-790824.72	97.61	loose
24	GamesaG1323.3MW	7449303.84	125.59	win
25	GamesaG1325MW	470373.96	101.42	win
26	GEWind2.5120	10664162.16	131.86	win
27	GEWindGE2.75-120	7687031.80	125.08	win
28	GEWindGE3.2-130	6755712.96	123.71	win
29	GEWINGGE3.2-130 GEWindGE3.8-130	4158420.64	112.31	win
30	GEWINGES.8-130 GEWindGE3.4-137	7949307.68	126.28	win
31	GEWINGGE3.4-137 GEWindGE3.6-137			
32	GEWINGGE3.6-157 GEWindGE4.8-158	7103720.48 7336290.36	122.37 123.10	win win
33	NordexN902500LS	-844277.04		
34	NordexN1494.5MW		97.45 13.45	loose loose
		-25762856.60		
35	NordexN1313.9MW	-30302991.74	11.90	loose
36	NordexN1002500	3456514.32	110.45	win
37	NordexN1173.6MW	1880374.24	105.92	win
38	NordexN1003300	-2694723.20	90.74	loose
39	NordexN1313.0MW	9975466.00	130.16	win
40	NordexN1172.4MW	9664268.40	130.44	win
41	NordexN1313.3MW	-24997001.22	14.12	loose
42	NordexN1173MW	5283837.80	115.98	win
43	NordexN1313.6MW	-27505110.76	13.38	loose
44	SenvionMM1002000	6955657.52	122.53	win
45	Senvion3.2M114VG	3163042.40	111.21	win
46	Senvion3.4MNES114	2190536.80	107.30	win
47	Senvion3.6M114	935639.52	102.95	win
48	Senvion3.0M122	7055337.00	121.33	win
49	Senvion3.2M122NES	4746651.36	116.82	win
50	Senvion 3.4M140EBC	8965453.44	129.90	win
51	Senvion3.6M140EBC	8307086.24	126.16	win
52	SiemensSWT2.3113	9858549.84	132.40	win
53	SiemensSWT3.21132A	3478886.24	112.33	win
54				
55	SiemensSWT3.21132B	3465321.76	112.28	win
56	${\tt SiemensSWT3.3130}$	6725802.08	123.11	win
57	SiemensSWT3.3130 SiemensSWT3.3130LN		123.11 123.78	
	${\tt SiemensSWT3.3130}$	6725802.08	123.11	win
58	SiemensSWT3.3130 SiemensSWT3.3130LN	6725802.08 6922544.80	123.11 123.78	win win
58 59	SiemensSWT3.3130 SiemensSWT3.3130LN SiemensSWT3.6120	6725802.08 6922544.80 3748803.84	123.11 123.78 111.81	win win win
	SiemensSWT3.3130 SiemensSWT3.3130LN SiemensSWT3.6120 SiemensSWT3.6130	6725802.08 6922544.80 3748803.84 5893341.44	123.11 123.78 111.81 118.56	win win win win
59	SiemensSWT3.3130 SiemensSWT3.3130LN SiemensSWT3.6120 SiemensSWT3.6130 SiemensSWT3.15142	6725802.08 6922544.80 3748803.84 5893341.44 12897972.40	123.11 123.78 111.81 118.56 137.14	win win win win win
59 60	SiemensSWT3.3130 SiemensSWT3.3130LN SiemensSWT3.6120 SiemensSWT3.6130 SiemensSWT3.15142 SiemensSWTDD130	6725802.08 6922544.80 3748803.84 5893341.44 12897972.40 2515784.57	123.11 123.78 111.81 118.56 137.14 109.06	win win win win win win
59 60 61	SiemensSWT3.3130 SiemensSWT3.3130LN SiemensSWT3.6120 SiemensSWT3.6130 SiemensSWT3.15142 SiemensSWTDD130 Siemens SWTDD142	6725802.08 6922544.80 3748803.84 5893341.44 12897972.40 2515784.57 8843957.12	123.11 123.78 111.81 118.56 137.14 109.06 125.71	win win win win win win win win
59 60 61 62	SiemensSWT3.3130 SiemensSWT3.3130LN SiemensSWT3.6120 SiemensSWT3.6130 SiemensSWT3.15142 SiemensSWTDD130 Siemens SWTDD142 Vensys771500kW	6725802.08 6922544.80 3748803.84 5893341.44 12897972.40 2515784.57 8843957.12 1707754.32	123.11 123.78 111.81 118.56 137.14 109.06 125.71	win

66	Vensys1122500kW	6263785.30	118.94 win	
67	Vensys1203000kW	6435880.00	119.46 win	
68	VestasV902000GS	1406708.80	104.49 win	
69	VestasV1001.8	9017902.08	128.40 win	
70	VestasV1001.8GS	8394270.08	125.93 win	
71	VestasV1123075	3227241.00	109.52 win	
72	VestasV1123.3	1331255.20	104.57 win	
73	VestasV1123.45	1158849.60	103.81 win	
74	VestasV1173.3	2909194.56	110.00 win	
75	VestasV1173.45	2810746.08	109.24 win	
76	VestasV1173.6	1993182.56	106.28 win	
77	VestasV1263.0	8349810.80	125.25 win	
78	VestasV1263.3	5655722.08	119.43 win	
79	VestasV1263.45	5454187.20	117.92 win	
80	VestasV1363.45	8388939.36	127.57 win	
81	VestasV1364.0 4.2	3912668.52	114.08 win	
82	VestasV1504.2	7701057.24	127.72 win	

Szenario 3 - Anlagen im Verbund

	WKA	Gewinn [EUR]	Rentabilität [%]	Rentabel?
1	E1013050	32552310.00	232.01	win
2	E101E23.5	24160390.80	206.72	win
3	E1124.5	21631201.20	199.09	win
4	E1152.5	46095816.06	290.05	win
5	E115TES3	39591376.65	263.23	win
6	E115TES3.2	31138331.28	250.44	win
7	E126EP4TES4.2	27411108.48	234.54	win
8	E1267.5	16528512.00	167.43	win
9	E1414.2	33129904.50	262.61	win
10	eno1002200	34311163.32	260.75	win
11	eno1143500	-1628508.00	92.81	loose
12	eno1263500	36165020.64	259.75	win
13	FLMD77	29418314.94	232.55	win
14	FL200093	36232020.80	256.15	win
15	FL2000100	38316160.34	265.13	win
16	FL2500100	36145913.40	247.26	win
17	FL2500104	36145913.40	247.26	win
18	FL3000120	41561638.02	271.35	win
19	GamesaG972MW	38661784.98	270.78	win
20	GamesaG1142MW	48657870.24	314.94	win
21	GamesaG1142.5MW	44111599.56	281.87	win
22	GamesaG1284.5MW	29379365.82	234.59	win
23	GamesaG1285MW	29268764.28	220.67	win
24	GamesaG1323.3MW	39260445.84	283.94	win
25	GamesaG1325MW	31353582.96	229.29	win
26	GEWind2.5120	48626885.16	298.10	win
27	GEWindGE2.75-120	41081634.30	282.78	win
28	GEWindGE3.2-130	37539720.96	279.69	win
29	GEWindGE3.8-130	38126462.64	253.91	win
30	GEWindGE3.4-137	41149501.68	285.48	win
31	GEWindGE3.6-137	41133894.48	276.66	win
32	GEWindGE4.8-158	41519470.86	278.31	win
33	NordexN902500LS	29180145.96	220.31	win
34	NordexN1494.5MW	-15190222.79	30.41	loose
35	NordexN1313.9MW	-18436107.36	26.91	loose
36	NordexN1002500	36310405.32	249.70	win
37	NordexN1173.6MW	32474136.24	239.46	win
38	NordexN1003300	22442716.80	205.15	win
39	NordexN1313.0MW	47118141.00	294.26	win
40	NordexN1172.4MW	45379013.40	294.89	win
41	NordexN1112.4MW NordexN1313.3MW	-14532112.55	31.92	loose
42	NordexN1173MW	39339915.30	262.19	win
43	NordexN1113MW NordexN1313.6MW	-16243904.68	30.24	loose
44	SenvionMM1002000	40072958.52	277.02	win

45	Senvion3.2M114VG	31338812.40	251.41	win
46	Senvion3.4MNES114	31357426.80	242.59	win
47	Senvion3.6M114	30907865.52	232.74	win
48	Senvion3.0M122	42276874.50	274.30	win
49	Senvion3.2M122NES	33964269.36	264.10	win
50	Senvion 3.4M140EBC	42589525.44	293.67	win
51	Senvion3.6M140EBC	43128948.24	285.22	win
52	SiemensSWT2.3113	44477916.84	299.32	win
53	SiemensSWT3.21132A	31862448.24	253.94	win
54	SiemensSWT3.21132B	31839959.76	253.83	win
55	SiemensSWT3.3130	38060956.08	278.32	win
56	SiemensSWT3.3130LN	38387134.80	279.85	win
57	SiemensSWT3.6120	35571795.84	252.77	win
58	SiemensSWT3.6130	39127213.44	268.04	win
59	SiemensSWT3.15142	53492342.40	310.04	win
60	SiemensSWTDD130	29857995.47	246.55	win
61	Siemens SWTDD142	46465413.12	284.20	win
62	Vensys771500kW	33411145.32	237.75	win
63	Vensys821500kW	39132003.96	261.34	win
64	Vensys1002500kW	33101972.32	236.47	win
65	Vensys1092500kW	39126248.28	261.31	win
66	Vensys1122500kW	40964565.10	268.89	win
67	Vensys1203000kW	41249880.00	270.07	win
68	VestasV902000GS	31301503.80	236.23	win
69	VestasV1001.8	44307406.08	290.28	win
70	VestasV1001.8GS	43844314.08	284.70	win
71	VestasV1123075	36694791.00	247.60	win
72	VestasV1123.3	29117365.20	236.42	win
73	VestasV1123.45	30054729.60	234.69	win
74	VestasV1173.3	31733422.56	248.67	win
75	VestasV1173.45	32793400.08	246.96	win
76	VestasV1173.6	32661160.56	240.27	win
77	VestasV1263.0	44422975.80	283.15	win
78	VestasV1263.3	36286876.08	270.01	win
79	VestasV1263.45	37175947.20	266.60	win
80	VestasV1363.45	42041457.36	288.40	win
81	VestasV1364.0 4.2	32173882.02	257.91	win
82	VestasV1504.2	38454631.74	288.74	win

Szenario 4 - Anlagen im Verbund

	WKA	Gewinn [EUR]	Rentabilität [%]	Rentabel?
1	E1013050	23585310.00	170.14	win
2	E101E23.5	15928390.80	151.60	win
3	E1124.5	13693201.20	146.00	win
4	E1152.5	37275816.06	212.70	win
5	E115TES3	30771376.65	193.04	win
6	E115TES3.2	23611931.28	183.66	win
7	E126EP4TES4.2	20002308.48	171.99	win
8	E1267.5	7614432.00	122.78	win
9	E1414.2	25721104.50	192.58	win
10	eno1002200	26549563.32	191.22	win
11	eno1143500	-9860508.00	68.06	loose
12	eno1263500	27933020.64	190.49	win
13	FLMD77	21348014.94	170.54	win
14	FL200093	27794220.80	187.84	win
15	FL2000100	29878360.34	194.43	win
16	FL2500100	27220073.40	181.32	win
17	FL2500104	27220073.40	181.32	win
18	FL3000120	32741638.02	198.99	win
19	GamesaG972MW	30429784.98	198.57	win
20	GamesaG1142MW	40425870.24	230.96	win
21	${\rm GamesaG1142.5MW}$	35291599.56	206.70	win
22	GamesaG1284.5MW	21441365.82	172.03	win
23	GamesaG1285MW	20448764.28	161.83	win

24	GamesaG1323.3MW	31498845.84	208.22	win
25	GamesaG1325MW	22535346.96	168.15	win
26	GEWind2.5120	39701045.16	218.61	win
27	GEWindGE2.75-120	32908434.30	207.37	win
28	GEWindGE3.2-130	29942760.96	205.10	win
29	GEWindGE3.8-130	29118302.64	186.20	win
30	GEWindGE3.4-137	33082141.68	209.35	win
31	GEWindGE3.6-137	32666694.48	202.88	win
32	GEWindGE4.8-158	33052270.86	204.10	win
33	NordexN902500LS	20360145.96	161.56	win
34	NordexN1494.5MW	-23128222.79	22.30	loose
35	NordexN1313.9MW	-27608907.36	19.74	loose
36	NordexN1002500	27490405.32	183.12	win
37	NordexN1173.6MW	24006936.24	175.61	win
38	NordexN1003300	14681116.80	150.44	win
39	NordexN1313.0MW	38298141.00	215.79	win
40	NordexN1172.4MW	36911813.40	216.25	win
41	NordexN1313.3MW	-22293712.55	23.41	loose
42	NordexN1173MW	30519915.30	192.27	win
43	NordexN1313.6MW	-24711104.68	22.17	loose
44	SenvionMM1002000	31840958.52	203.15	win
45	Senvion3.2M114VG	23812412.40	184.37	win
46	Senvion3.4MNES114	23360626.80	177.90	win
47	Senvion3.6M114	22440665.52	170.67	win
48	Senvion3.0M122	33456874.50	201.15	win
49	Senvion3.2M122NES	26437869.36	193.67	win
50	Senvion 3.4M140EBC	34592725.44	215.36	win
51	Senvion3.6M140EBC	34661748.24	209.16	win
52	SiemensSWT2.3113	36363516.84	219.50	win
53 54	SiemensSWT3.21132A SiemensSWT3.21132B	24336048.24 24313559.76	186.22	win win
54 55	SiemensSWT3.21132B SiemensSWT3.3130	30299356.08	186.14 204.10	win win
56	SiemensSWT3.3130LN	30625534.80	204.10	win
57	SiemensSWT3.6120	27104595.84	185.36	win
58	SiemensSWT3.6130	30660013.44	196.56	win
59	SiemensSWT3.15142	44231342.40	227.36	win
60	SiemensSWTDD130	22449195.47	180.80	win
61	Siemens SWTDD142	37292613.12	208.42	win
62	Vensys771500kW	24591145.32	174.35	win
63	Vensys821500kW	30312003.96	191.65	win
64	Vensys1002500kW	24281972.32	173.41	win
65	Vensys1092500kW	30306248.28	191.63	win
66	Vensys1122500kW	32144565.10	197.19	win
67	Vensys1203000kW	32429880.00	198.05	win
68	VestasV902000GS	22946023.80	173.23	win
69	VestasV1001.8	35840206.08	212.88	win
70	VestasV1001.8GS	35212474.08	208.78	win
71	VestasV1123075	27654291.00	181.57	win
72	VestasV1123.3	21355765.20	173.37	win
73	VestasV1123.45	21940329.60	172.10	win
74	VestasV1173.3	23971822.56	182.36	win
75	VestasV1173.45	24679000.08	181.10	win
76	VestasV1173.6	24193960.56	176.20	win
77	VestasV1263.0	35602975.80	207.64	win
78	VestasV1263.3	28525276.08	198.00	win
79	VestasV1263.45	29061547.20	195.51	win
80	VestasV1363.45	33927057.36	211.50	win
81	VestasV1364.0 4.2	24765082.02	189.14	win
82	VestasV1504.2	31045831.74	211.74	win

Szenario 5 - Anlagen im Verbund

	WKA	Gewinn [EUR]	Rentabilität [%]	Rentabel?
1	E1013050	26831154.00	208.81	win
2	E101E23.5	19480551.72	186.05	win
3	E1124.5	17285131.08	179.18	win
4	E1152.5	39060734.45	261.04	win
5	E115TES3	33206738.98	236.91	win
6	E115TES3.2	25954738.15	225.40	win
7	E126EP4TES4.2	22632577.63	211.08	win
8	E1267.5	12424288.80	150.68	win
9	E1414.2	27779494.05	236.35	win
10	eno1002200	28745606.99	234.68	win
11	eno1143500	-3729457.20		loose
12	eno1263500	30284718.58	83.53 233.78	win
13		24257150.95	209.30	
	FLMD77	30288423.72		win
14	FL200093 FL2000100		230.53	win
15		32164149.31	238.61	win
16	FL2500100	30076716.06	222.53	win
17	FL2500104	30076716.06	222.53	win
18	FL3000120	34979974.22	244.22	win
19	GamesaG972MW	32531806.48	243.70	win
20	GamesaG1142MW	41528283.22	283.45	win
21	GamesaG1142.5MW	37274939.60	253.68	win
22	GamesaG1284.5MW	24258479.24	211.13	win
23	GamesaG1285MW	23916387.85	198.60	win
24	GamesaG1323.3MW	33199961.26	255.54	win
25	GamesaG1325MW	25793209.76	206.36	win
26	GEWind2.5120	41309590.64	268.29	win
27	GEWindGE2.75-120	34725840.87	254.50	win
28	GEWindGE3.2-130	31696584.86	251.72	win
29	GEWindGE3.8-130	31836572.38	228.52	win
30	GEWindGE3.4-137	34816027.51	256.93	win
31	GEWindGE3.6-137	34692025.03	248.99	win
32	GEWindGE4.8-158	35039043.77	250.48	win
33	NordexN902500LS	23836631.36	198.28	win
34	NordexN1494.5MW	-15854150.51	27.37	loose
35	NordexN1313.9MW	-19115016.62	24.22	loose
36	NordexN1002500	30253864.79	224.73	win
37	NordexN1173.6MW	26898242.62	215.52	win
38	NordexN1003300	18064005.12	184.63	win
39	NordexN1313.0MW	39980826.90	264.84	win
40	NordexN1172.4MW	38512632.06	265.40	win
41	NordexN1313.3MW	-15213341.30	28.72	loose
42	NordexN1173MW	32980423.77	235.97	win
43	NordexN1313.6MW	-16947994.22	27.21	loose
44	SenvionMM1002000	33801862.67	249.31	win
45	Senvion3.2M114VG	26135171.16	226.27	win
46	Senvion3.4MNES114	26022564.12	218.33	win
47	Senvion3.6M114	25488598.97	209.46	win
48	Senvion3.0M122	35623687.05	246.87	win
49	Senvion3.2M122NES	28498082.42	237.69	win
50	Senvion 3.4M140EBC	36131452.90	264.30	win
51	Senvion3.6M140EBC	36487573.42	256.70	win
52	SiemensSWT2.3113	37798665.16	269.39	win
53	SiemensSWT3.21132A	26606443.42	228.55	win
54	SiemensSWT3.21132B	26586203.78	228.45	win
55	SiemensSWT3.3130	32120420.47	250.49	win
56	SiemensSWT3.3130LN	32413981.32	251.86	win
57	SiemensSWT3.6120	29686136.26	227.49	win
58	SiemensSWT3.6130	32886012.10	241.23	win
59	SiemensSWT3.15142	45596333.16	279.04	win
60	SiemensSWTDD130	45596333.16 24834775.92	279.04	win win
61	Siemens SWTDD142	39296351.81	255.78	win
62	Vensys771500kW	27644530.79	213.97	win
63	Vensys821500kW	32793303.56	235.20	win
64	Vensys1002500kW	27366275.08	212.83	win
65	Vensys1092500kW	32788123.45	235.18	win

66	Vensys1122500kW	34442608.59	242.00 win	
67	Vensys1203000kW	34699392.00	243.06 win	
68	VestasV902000GS	25873596.42	212.60 win	
69	VestasV1001.8	37548185.47	261.26 win	
70	VestasV1001.8GS	37086126.67	256.23 win	
71	VestasV1123075	30539174.40	222.84 win	
72	VestasV1123.3	24071188.68	212.78 win	
73	VestasV1123.45	24817796.64	211.22 win	
74	VestasV1173.3	26425640.30	223.81 win	
75	VestasV1173.45	27282600.07	222.26 win	
76	VestasV1173.6	27066564.50	216.24 win	
77	VestasV1263.0	37555178.22	254.83 win	
78	VestasV1263.3	30523748.47	243.01 win	
79	VestasV1263.45	31226892.48	239.94 win	
80	VestasV1363.45	35605851.62	259.56 win	
81	VestasV1364.0 4.2	26919073.82	232.12 win	
82	VestasV1504.2	32571748.57	259.87 win	

Szenario 6 - Anlagen im Verbund

	WKA	Gewinn [EUR]	Rentabilität [%]	Rentabel?
1	E1013050	26831154.00	208.81	win
2	E101E23.5	19480551.72	186.05	win
3	E1124.5	17285131.08	179.18	win
4	E1152.5	39060734.45	261.04	win
5	E115TES3	33206738.98	236.91	win
6	E115TES3.2	25954738.15	225.40	win
7	E126EP4TES4.2	22632577.63	211.08	win
8	E1267.5	12424288.80	150.68	win
9	E1414.2	27779494.05	236.35	win
10	eno1002200	28745606.99	234.68	win
11	eno1143500	-3729457.20	83.53	loose
12	eno1263500	30284718.58	233.78	win
13	FLMD77	24257150.95	209.30	win
14	FL200093	30288423.72	230.53	win
15	FL2000100	32164149.31	238.61	win
16	FL2500100	30076716.06	222.53	win
17	FL2500104	30076716.06	222.53	win
18	FL3000120	34979974.22	244.22	win
19	GamesaG972MW	32531806.48	243.70	win
20	GamesaG1142MW	41528283.22	283.45	win
21	GamesaG1142.5MW	37274939.60	253.68	win
22	GamesaG1284.5MW	24258479.24	211.13	win
23	GamesaG1285MW	23916387.85	198.60	win
24	GamesaG1323.3MW	33199961.26	255.54	win
25	GamesaG1325MW	25793209.76	206.36	win
26	GEWind2.5120	41309590.64	268.29	win
27	GEWindGE2.75-120	34725840.87	254.50	win
28	GEWindGE3.2-130	31696584.86	251.72	win
29	GEWindGE3.8-130	31836572.38	228.52	win
30	GEWindGE3.4-137	34816027.51	256.93	win
31	GEWindGE3.6-137	34692025.03	248.99	win
32	GEWindGE4.8-158	35039043.77	250.48	win
33	NordexN902500LS	23836631.36	198.28	win
34	NordexN1494.5MW	-15854150.51	27.37	loose
35	NordexN1313.9MW	-19115016.62	24.22	loose
36	NordexN1002500	30253864.79	224.73	win
37	NordexN1173.6MW	26898242.62	215.52	win
38	NordexN1003300	18064005.12	184.63	win
39	NordexN1313.0MW	39980826.90	264.84	win
40	NordexN1172.4MW	38512632.06	265.40	win
41	NordexN1313.3MW	-15213341.30	28.72	loose
42	NordexN1173MW	32980423.77	235.97	win
43	NordexN1313.6MW	-16947994.22	27.21	loose
44	SenvionMM1002000	33801862.67	249.31	win

45	Senvion3.2M114VG	26135171.16	226.27	win
46	Senvion3.4MNES114	26022564.12	218.33	win
47	Senvion3.6M114	25488598.97	209.46	win
48	Senvion3.0M122	35623687.05	246.87	win
49	Senvion3.2M122NES	28498082.42	237.69	win
50	Senvion 3.4M140EBC	36131452.90	264.30	win
51	Senvion3.6M140EBC	36487573.42	256.70	win
52	SiemensSWT2.3113	37798665.16	269.39	win
53	SiemensSWT3.21132A	26606443.42	228.55	win
54	SiemensSWT3.21132B	26586203.78	228.45	win
55	SiemensSWT3.3130	32120420.47	250.49	win
56	SiemensSWT3.3130LN	32413981.32	251.86	win
57	SiemensSWT3.6120	29686136.26	227.49	win
58	SiemensSWT3.6130	32886012.10	241.23	win
59	SiemensSWT3.15142	45596333.16	279.04	win
60	SiemensSWTDD130	24834775.92	221.89	win
61	Siemens SWTDD142	39296351.81	255.78	win
62	Vensys771500kW	27644530.79	213.97	win
63	Vensys821500kW	32793303.56	235.20	win
64	Vensys1002500kW	27366275.08	212.83	win
65	Vensys1092500kW	32788123.45	235.18	win
66	Vensys1122500kW	34442608.59	242.00	win
67	Vensys1203000kW	34699392.00	243.06	win
68	VestasV902000GS	25873596.42	212.60	win
69	VestasV1001.8	37548185.47	261.26	win
70	VestasV1001.8GS	37086126.67	256.23	win
71	VestasV1123075	30539174.40	222.84	win
72	VestasV1123.3	24071188.68	212.78	win
73	VestasV1123.45	24817796.64	211.22	win
74	VestasV1173.3	26425640.30	223.81	win
75	VestasV1173.45	27282600.07	222.26	win
76	VestasV1173.6	27066564.50	216.24	win
77	VestasV1263.0	37555178.22	254.83	win
78	VestasV1263.3	30523748.47	243.01	win
79	VestasV1263.45	31226892.48	239.94	win
80	VestasV1363.45	35605851.62	259.56	win
81	VestasV1364.0 4.2	26919073.82	232.12	win
82	VestasV1504.2	32571748.57	259.87	win

Amortisationszeiträume je Szenario der Einzelanlagen

	WKA	Amortisatation.S1Jahre.	Amortisatation.S2Jahre.	Amortisatation.S3Jahre.	Amortisatation.S4Jahre.	Amortisatation.S5Jahre.	Amortisatation.S6Jahre.	e .
	E1013050	13.00	19.00	7.00	10.00	8.00	11.0	00
2	E101E23.5	15.00	23.00	8.00	12.00	00.6	13.00	90
က	E1124.5	16.00	24.00	8.00	12.00	9.00	14.00	00
4	E1152.5	10.00	14.00	5.00	8.00	0.00	9.00	00
rO	E115TES3	11.00	16.00	0.00	0.00	7.00	10.00	00
9	E115TES3.2	12.00	17.00	00.9	0.00	7.00	10.00	00
7	E126EP4TES4.2	13.00	19.00	7.00	10.00	8.00	11.00	00
œ	E1267.5	20.00	31.00	10.00	15.00	12.00	17.00	00
6	E1414.2	11.00	16.00	00.9	0.00	7.00	10.00	00
10	eno1002200	11.00	16.00	00.9	0.00	7.00	10.00	00
11	eno1143500	52.00	114.00	22.00	36.00	26.00	44.00	00
12	eno1263500	11.00	17.00	00.9	0.00	7.00	10.00	00
13	FLMD77	13.00	19.00	7.00	10.00	8.00	11.00	00
14	FL200093	11.00	17.00	00.9	0.00	7.00	10.00	00
15	FL2000100	11.00	16.00	00.9	0.00	7.00	10.0	00
16	FL2500100	12.00	18.00	7.00	0.00	7.00	11.00	00
17	FL2500104	12.00	18.00	7.00	0.00	7.00	11.00	00
18	FL3000120	11.00	16.00	00.9	8.00	7.00	00.6	00
19	GamesaG972MW	11.00	16.00	00.9	8.00	7.00	10.00	00
20	GamesaG1142MW	00.6	13.00	5.00	7.00	0.00	8.00	00
21	GamesaG1142.5MW	10.00	15.00	00.9	8.00	0.09	00.6	00
22	GamesaG1284.5MW	13.00	19.00	7.00	10.00	8.00	11.00	00
23	$_{ m GamesaG1285MW}$	14.00	21.00	7.00	11.00	8.00	12.00	00
24	GamesaG1323.3MW	10.00	15.00	6.00	8.00	0.09	9.00	00
25	$_{ m GamesaG1325MW}$	13.00	20.00	7.00	10.00	8.00	12.0	00
26	GEWind2.5120	00.6	14.00	5.00	8.00	0.00	8.00	00
27	GEWindGE2.75-120	10.00	15.00	00.9	8.00	0.09	00.6	00
28	GEWindGE3.2-130	10.00	15.00	00.9	8.00	0.00	0.6	00
29	GEWindGE3.8-130	11.00	17.00	00.9	0.00	7.00	10.00	00
30	GEWindGE3.4-137	10.00	15.00	00.9	8.00	6.00).6	00
31	GEWindGE3.6-137	10.00	15.00	00.9	8.00	0.09).6	00
32	GEWindGE4.8-158	10.00	15.00	00.9	8.00	00.9	00.6	00
33	NordexN902500LS	14.00	21.00	7.00	11.00	8.00	12.0	00
36	NordexN1002500	12.00	17.00	00.9	9.00	7.00	10.00	00
37	NordexN1173.6MW	12.00	18.00	7.00	10.00	8.00	11.00	00
38	NordexN1003300	15.00	23.00	8.00	12.00	00.6	13.00	00
39	NordexN1313.0MW	10.00	14.00	5.00	8.00	00.9	00.6	00
40	NordexN1172.4MW	10.00	14.00	5.00	8.00	00.9	0.6	00
42	NordexN1173MW	11.00	16.00	00.9	00.6	7.00	10.00	00
44	${\tt SenvionMM1002000}$	10.00	15.00	00.9	8.00	00.9	00.6	00
45	Senvion3.2M114VG	12.00	17.00	00.9	00.6	7.00	10.00	00
46	Senvion3.4MNES114	12.00	18.00	7.00	10.00	8.00	11.00	00
47	Senvion3.6M114	13.00	19.00	7.00	10.00	8.00	11.00	00
48	Senvion3.0M122	10.00	15.00	00.9	8.00	7.00	00.6	00
49	Senvion3.2M122NES	11.00	16.00	00.9	9.00	7.00	10.0	00

)	00:4	00.0	00.0	00.00	9.00
Senvion3.6M140EBC	10.00	15.00	00.9	8.00	00.9	00.6
SiemensSWT2.3113	00.6	14.00	5.00	7.00	00.9	8.00
SiemensSWT3.21132A	11.00	17.00	00.9	9.00	7.00	10.00
SiemensSWT3.21132B	11.00	17.00	6.00	9.00	7.00	10.00
SiemensSWT3.3130	10.00	15.00	00.9	8.00	00.9	00.6
SiemensSWT3.3130LN	10.00	15.00	00.9	8.00	00.9	00.6
SiemensSWT3.6120	12.00	17.00	00.9	9.00	7.00	10.00
SiemensSWT3.6130	11.00	16.00	00.9	9.00	7.00	10.00
SiemensSWT3.15142	00.6	13.00	5.00	7.00	6.00	8.00
SiemensSWTDD130	12.00	18.00	7.00	9.00	7.00	11.00
Siemens SWTDD142	10.00	15.00	00.9	8.00	6.00	00.6
Vensys771500kW	12.00	19.00	7.00	10.00	8.00	11.00
$V_{ m ensys}821500{ m kW}$	11.00	16.00	00.9	9.00	7.00	10.00
Vensys1002500kW	13.00	19.00	7.00	10.00	8.00	11.00
Vensys1092500kW	11.00	16.00	00.9	9.00	7.00	10.00
Vensys1122500kW	11.00	16.00	6.00	8.00	7.00	10.00
Vensys1203000kW	11.00	16.00	00.9	8.00	7.00	10.00
VestasV902000GS	13.00	19.00	7.00	10.00	8.00	11.00
VestasV1001.8	10.00	14.00	5.00	8.00	00.9	9.00
VestasV1001.8GS	10.00	15.00	00.9	8.00	00.9	00.6
VestasV1123075	12.00	18.00	7.00	9.00	7.00	11.00
VestasV1123.3	13.00	19.00	7.00	10.00	8.00	11.00
VestasV1123.45	13.00	19.00	7.00	10.00	8.00	11.00
VestasV1173.3	12.00	18.00	00.9	9.00	7.00	11.00
VestasV1173.45	12.00	18.00	7.00	9.00	7.00	11.00
VestasV1173.6	12.00	18.00	7.00	10.00	8.00	11.00
VestasV1263.0	10.00	15.00	00.9	8.00	00.9	00.6
VestasV1263.3	11.00	16.00	0.00	8.00	7.00	10.00
VestasV1263.45	11.00	16.00	0.00	9.00	7.00	10.00
VestasV1363.45	10.00	14.00	5.00	8.00	00.9	00.6
VestasV1364.0 4.2	11.00	17.00	00.9	9.00	7.00	10.00
VestasV1504.2	10.00	14.00	5.00	8.00	6.00	00.6

Amortisationszeiträume je Szenario der Anlagen im Verbund

	14/15/ A	Amoutientation C1 Tahua	Amountinotation CO Tohun	Amontiontotion C9 Tohno	Amountinototion CA Tohno	Amountinotation Of Tohno	Amounting to Tohun	
-	WINT.	19 00	10 00	A CO	10.00	. Sime concentration of o	ramor ersected anne.	
٦ (E1013030	13:00	19.00	00.7	00.01	0.00	00.11	
7	E101E23.5	15.00	23.00	8.00	12.00	9.00	13.00	
က	E1124.5	16.00	24.00	8.00	12.00	00.6	14.00	
4	E1152.5	10.00	14.00	5.00	8.00	0.00	00.6	
IJ	E115TES3	11.00	16.00	0.09	00.6	7.00	10.00	
9	E115TES3.2	12.00	17.00	0.00	0.00	7.00	10.00	
7	E126EP4TES4.2	13.00	19.00	7.00	10.00	8.00	11.00	
œ	E1267.5	20.00	31.00	10.00	15.00	12.00	17.00	
6	E1414.2	11.00	16.00	6.00	9.00	7.00	10.00	
10	eno1002200	11.00	16.00	6.00	9.00	7.00	10.00	
11	eno1143500	52.00	114.00	22.00	36.00	26.00	44.00	
12	eno1263500	11.00	17.00	6.00	9.00	7.00	10.00	
13	FLMD77	13.00	19.00	7.00	10.00	8.00	11.00	
14	FL200093	11.00	17.00	6.00	0.00	7.00	10.00	
15	FL2000100	11.00	16.00	0.00	9.00	7.00	10.00	
16	FL2500100	12.00	18.00	7.00	0.00	7.00	11.00	
17	FL2500104	12.00	18.00	7.00	9.00	7.00	11.00	
18	FL3000120	11.00	16.00	0.00	8.00	7.00	00.6	
19	GamesaG972MW	11.00	16.00	0.09	8.00	7.00	10.00	
20	GamesaG1142MW	9.00	13.00	5.00	7.00	0.00	8.00	
21	GamesaG1142.5MW	10.00	15.00	6.00	8.00	0.00	00.6	
22	${\tt GamesaG1284.5MW}$	13.00	19.00	7.00	10.00	8.00	11.00	
23	GamesaG1285MW	14.00	21.00	7.00	11.00	8.00	12.00	
24	GamesaG1323.3MW	10.00	15.00	0.09	8.00	0.00	00.6	
25	$_{ m GamesaG1325MW}$	13.00	20.00	7.00	10.00	8.00	12.00	
26	GEWind2.5120	00.6	14.00	5.00	8.00	00.9	8.00	
27	GEWindGE2.75-120	10.00	15.00	0.00	8.00	00.9	00.6	
28	GEWindGE3.2-130	10.00	15.00	6.00	8.00	0.00	00.6	
29	GEWindGE3.8-130	11.00	17.00	0.00	0.00	7.00	10.00	
30	GEWindGE3.4-137	10.00	15.00	6.00	8.00	0.00	00.6	
31	GEWindGE3.6-137	10.00	15.00	0.00	8.00	0.00	0.00	
32	GEWindGE4.8-158	10.00	15.00	6.00	8.00	0.00	00.6	
33	NordexN902500LS	14.00	21.00	7.00	11.00	8.00	12.00	
36	NordexN1002500	12.00	17.00	00.9	00.6	7.00	10.00	
37	NordexN1173.6MW	12.00	18.00	7.00	10.00	8.00	11.00	
38	NordexN1003300	15.00	23.00	8.00	12.00	00.6	13.00	
39	NordexN1313.0MW	10.00	14.00	5.00	8.00	00.9	00.6	
40	NordexN1172.4MW	10.00	14.00	5.00	8.00	00.9	00.6	
42	NordexN1173MW	11.00	16.00	00.9	00.6	7.00	10.00	
44	SenvionMM1002000	10.00	15.00	6.00	8.00	0.00	00.6	
45	Senvion3.2M114VG	12.00	17.00	0.09	00.6	7.00	10.00	
46	Senvion3.4MNES114	12.00	18.00	7.00	10.00	8.00	11.00	
47	Senvion3.6M114	13.00	19.00	7.00	10.00	8.00	11.00	
48	Senvion3.0M122	10.00	15.00	00.9	8.00	7.00	00.6	
49	Senvion3.2M122NES	11.00	16.00	00.9	00.6	7.00	10.00	

	0)	14.00	00.6	00.0	00.00	9.00
Senvion3.6M140EBC	10.00	15.00	00.9	8.00	00.9	00.6
SiemensSWT2.3113	9.00	14.00	5.00	7.00	00.9	8.00
SiemensSWT3.21132A	11.00	17.00	00.9	9.00	7.00	10.00
SiemensSWT3.21132B	11.00	17.00	6.00	00.6	7.00	10.00
SiemensSWT3.3130	10.00	15.00	00.9	8.00	00.9	00.6
SiemensSWT3.3130LN	10.00	15.00	00.9	8.00	00.9	00.6
SiemensSWT3.6120	12.00	17.00	6.00	9.00	7.00	10.00
SiemensSWT3.6130	11.00	16.00	6.00	9.00	7.00	10.00
SiemensSWT3.15142	9.00	13.00	5.00	7.00	00.9	8.00
SiemensSWTDD130	12.00	18.00	7.00	9.00	7.00	11.00
Siemens SWTDD142	10.00	15.00	6.00	8.00	00.9	00.6
Vensys771500kW	12.00	19.00	7.00	10.00	8.00	11.00
Vensys821500kW	11.00	16.00	6.00	9.00	7.00	10.00
Vensys1002500kW	13.00	19.00	7.00	10.00	8.00	11.00
Vensys1092500kW	11.00	16.00	00.9	9.00	7.00	10.00
Vensys1122500kW	11.00	16.00	6.00	8.00	7.00	10.00
Vensys1203000kW	11.00	16.00	00.9	8.00	7.00	10.00
VestasV902000GS	13.00	19.00	7.00	10.00	8.00	11.00
VestasV1001.8	10.00	14.00	5.00	8.00	00.9	00.6
VestasV1001.8GS	10.00	15.00	00.9	8.00	00.9	00.6
VestasV1123075	12.00	18.00	7.00	9.00	7.00	11.00
VestasV1123.3	13.00	19.00	7.00	10.00	8.00	11.00
VestasV1123.45	13.00	19.00	7.00	10.00	8.00	11.00
VestasV1173.3	12.00	18.00	00.9	9.00	7.00	11.00
VestasV1173.45	12.00	18.00	7.00	9.00	7.00	11.00
VestasV1173.6	12.00	18.00	7.00	10.00	8.00	11.00
VestasV1263.0	10.00	15.00	00.9	8.00	00.9	00.6
VestasV1263.3	11.00	16.00	00.9	8.00	7.00	10.00
VestasV1263.45	11.00	16.00	00.9	9.00	7.00	10.00
VestasV1363.45	10.00	14.00	5.00	8.00	00.9	00.6
VestasV1364.0 4.2	11.00	17.00	00.9	9.00	7.00	10.00
VestasV1504.2	10.00	14.00	5.00	8.00	6.00	00.6

Leistung [kWh] / Jahr der Top-Anlagen bei ändernden Windgeschwindigkeiten [m/s] insgesamt über einer Lebensdauer von 20 Jahren. Die rote Linie entspricht den tatsächlichen Verhältnissen in Schwarzwald-Hornisgrinde.

Ergebnisse für die installierte Enercon E70. Weitere Angaben siehe R-Code.

 $\frac{\text{Ertrag:}}{\text{Kosten:}} \ 200.518 \ \text{-} \ 298.657 \ [\text{EUR}] \ / \ \text{Jahr}$

Betriebskosten: 40.021 - 90.956 [EUR] / Jahr

<u>Gewinn:</u> -1.090.358 [EUR] (Szenario 2) - +2.901.556 [EUR] (Szenario 3) / Insgesamt

<u>Rentabilität:</u> 5.8 - 107 %

Aus einem Zeitungsartikel der Mittelbadische Presse [16] liegen abgeschätzte Angaben zu den Kosten der Anlage in Höhe von 3.5 Millionen [EUR] und einer Vergütung von 8.5 [ct/kWh] in den ersten fünf, und 4.5 [EUR/kWh] in den weiteren Betriebsjahren vor. Hieraus ergibt sich ein ungefährer Gewinn von 2 Millionen Euro, welcher in Szenario 3, 4 und 5 erreicht werden kann.

Eidesstattliche Erklärung

"Ich versichere, dass ich die Arbeit selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen oder anderen Quellen entnommen sind, sind als solche kenntlich gemacht. Die schriftliche und elektronische Form der Arbeit stimmen überein. Ich stimme der Überprüfung der Arbeit durch eine Plagiatssoftware zu."

Ort, Datum

Unterschrift