9. Fólgin föll og Taylor-nálganir Stærðfræðigreining IIB, STÆ205G

2. febrúar 2015

Sigurður Örn Stefánsson, sigurdur@hi.is Verkfræði- og náttúruvísindasvið Háskóli Íslands

Upprifjun 9.1

Skoðum feril sem gefinn er með jöfnu F(x,y)=0 og gerum ráð fyrir að báðar fyrsta stigs hlutafleiður F séu samfelldar. Látum (x_0,y_0) vera punkt á ferlinum. Ef $F_2(x_0,y_0)\neq 0$ þá má skoða y sem fall af x í grennd við punktinn (x_0,y_0) og fallið y=y(x) er diffranlegt í punktinum x_0 og afleiðan er gefin með formúlunni

$$y'(x_0) = -\frac{F_1(x_0, y_0)}{F_2(x_0, y_0)}.$$

Sagt að jafnan F(x,y) = 0 skilgreini y sem fólgið fall af x í grennd við (x_0, y_0) .

Setning 9.2

Látum F vera fall af n-breytum x_1,\ldots,x_n og gerum ráð fyrir að allar fyrsta stigs hlutafleiður F séu samfelldar. Látum (a_1,\ldots,a_n) vera punkt þannig að $F(a_1,\ldots,a_n)=0$. Ef $F_n(a_1,\ldots,a_n)\neq 0$ þá er til samfellt diffranlegt fall $\varphi(x_1,\ldots,x_{n-1})$ skilgreint á opinni kúlu B utan um (a_1,\ldots,a_{n-1}) þannig að

$$\varphi(a_1,\ldots,a_{n-1})=a_n$$

og

$$F(x_1,...,x_{n-1},\varphi(x_1,...,x_{n-1}))=0$$

fyrir alla punkta (x_1, \ldots, x_{n-1}) í B. Ennfremur gildir að

$$\varphi_i(a_1,\ldots,a_{n-1})=-\frac{F_i(a_1,\ldots,a_n)}{F_n(a_1,\ldots,a_n)}.$$

Jacobi-ákveða tveggja falla u = u(x, y) og v = v(x, y) með tilliti til breytanna x og y er skilgreind sem

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}.$$

Ef F og G eru föll af breytum x, y, z, \ldots þá skilgreinum við, til dæmis,

$$\frac{\partial(F,G)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} \end{vmatrix} \quad \text{og} \quad \frac{\partial(F,G)}{\partial(y,z)} = \begin{vmatrix} \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial G}{\partial y} & \frac{\partial G}{\partial z} \end{vmatrix}.$$

Ef við höfum föll F, G, H af breytum x, y, z, w, ... þá skilgreinum við, til dæmis,

$$\frac{\partial(F,G,H)}{\partial(w,z,y)} = \begin{vmatrix} \frac{\partial F}{\partial w} & \frac{\partial F}{\partial z} & \frac{\partial F}{\partial y} \\ \frac{\partial G}{\partial w} & \frac{\partial G}{\partial z} & \frac{\partial G}{\partial y} \\ \frac{\partial H}{\partial w} & \frac{\partial H}{\partial z} & \frac{\partial H}{\partial y} \end{vmatrix}.$$

Setning 9.4 (Upprifjun á reglu Cramers.)

Látum A vera andhverfanlegt $n \times n$ fylki og \mathbf{b} vigur í \mathbf{R}^n . Gerum ráð fyrir að $\mathbf{x} = (x_1, x_2, \dots, x_n)$ sé lausn á $A\mathbf{x} = \mathbf{b}$. Skilgreinum B_i sem $n \times n$ fylkið sem fæst með því að setja vigurinn \mathbf{b} í staðinn fyrir dálk i í A. Pá er

$$x_i = \frac{\det B_i}{\det A}.$$

Setning 9.5 (Setningin um fólgin föll)

Skoðum jöfnuhneppi

$$F_{(1)}(x_1, \dots, x_m, y_1, \dots, y_n) = 0$$

$$F_{(2)}(x_1, \dots, x_m, y_1, \dots, y_n) = 0$$

$$\vdots$$

$$F_{(n)}(x_1, \dots, x_m, y_1, \dots, y_n) = 0.$$

Látum $P_0=(a_1,\ldots,a_m,b_1,\ldots,b_n)$ vera punkt sem uppfyllir jöfnurnar. Gerum ráð fyrir að allar fyrsta stigs hlutafleiður fallanna $F_{(1)},\ldots,F_{(n)}$ séu samfelldar á opinni kúlu umhverfis P_0 og að

$$\frac{\partial(F_{(1)},\ldots,F_{(n)})}{\partial(y_1,\ldots,y_n)}\bigg|_{P_0}\neq 0.$$

Pá eru til föll $\varphi_1(x_1,\ldots,x_m),\ldots,\varphi_n(x_1,\ldots,x_m)$ á opinni kúlu B umhverfis (a_1,\ldots,a_m) þannig að

$$\varphi_1(a_1,\ldots,a_m)=b_1,\ldots,\varphi_n(a_1,\ldots,a_m)=b_n$$
 og

$$F_{(1)}(x_1,...,x_m,\varphi_1(x_1,...,x_m),...,\varphi_n(x_1,...,x_m) = 0$$

$$F_{(2)}(x_1,...,x_m,\varphi_1(x_1,...,x_m),...,\varphi_n(x_1,...,x_m) = 0$$

$$F_{(n)}(x_1,\ldots,x_m,\varphi_1(x_1,\ldots,x_m),\ldots,\varphi_n(x_1,\ldots,x_m)=0$$

fyrir alla punkta (x_1, \ldots, x_m) í B. Ennfremur fæst að

$$\frac{\partial \varphi_i}{\partial x_j} = \frac{\partial y_i}{\partial x_j} = -\frac{\frac{\partial (F_{(1)}, \dots, F_{(n)})}{\partial (y_1, \dots, y_j, \dots, y_n)}}{\frac{\partial (F_{(1)}, \dots, F_{(n)})}{\partial (y_1, \dots, y_n)}}.$$

Setning 9.6 (Setningin um staðbundna andhverfu) Látum

$$\mathbf{f}(x_1,\ldots,x_n)=(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$$

vera vörpun af n breytistærðum sem tekur gildi í \mathbf{R}^n og er skilgreind á opnu mengi í \mathbf{R}^n . Gerum ráð fyrir að allar fyrsta stigs hlutafleiður fallanna f_1,\ldots,f_n séu samfelld föll. Ef Jacobi-fylkið $D\mathbf{f}(\mathbf{x}_0)$ er andhverfanlegt í punkti \mathbf{x}_0 á skilgreiningarsvæði \mathbf{f} þá er til opin kúla $B_{\mathbf{X}}$ utan um \mathbf{x}_0 og opin kúla $B_{\mathbf{y}}$ utan um $\mathbf{y}_0 = f(\mathbf{x}_0)$ og vörpun $\mathbf{g}: B_{\mathbf{y}} \to B_{\mathbf{x}}$ þannig að $\mathbf{g}(\mathbf{f}(\mathbf{x})) = \mathbf{x}$ fyrir alla punkta $\mathbf{x} \in B_{\mathbf{x}}$ og $\mathbf{f}(\mathbf{g}(\mathbf{y})) = \mathbf{y}$ fyrir alla punkta $\mathbf{y} \in B_{\mathbf{y}}$.

Upprifjun 9.7 (Taylor-regla í einni breytistærð.)

Látum f vera n+1-diffranlegt fall af einni breytistærð. Margliðan

$$P_{(n)}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

kallast n-ta stigs Taylor-margliða f með miðju i a. Til er punktur s á milli a og x þannig að

$$E_{(n)}(x) = f(x) - P_{(n)}(x) = \frac{f^{(n+1)}(s)}{(n+1)!}(x-a)^{n+1}.$$

Fáum svo að

$$f(x) = P_{(n)}(x) + E_{(n)}(x)$$

$$= f(a) + f'(a)(x-a) + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(s)}{(n+1)!}(x-a)^{n+1},$$

sem er kallað n-ta stigs Taylor-formúla.

Látum f(x,y) vera fall þannig að fyrsta stigs hlutafleiður f eru skilgreindar og samfelldar. Margliðan

$$P_{(1)}(x,y) = f(a,b) + f_1(a,b)(x-a) + f_2(a,b)(y-b)$$

kallast fyrsta stigs Taylor-margliða f með miðju í (a, b).

Látum f(x, y) vera fall þannig að fyrsta og annars stigs hlutafleiður f eru skilgreindar og samfelldar. Margliðan

$$P_{(2)}(x,y) = f(a,b) + f_1(a,b)(x-a) + f_2(a,b)(y-b) + \frac{1}{2}(f_{11}(a,b)(x-a)^2 + 2f_{12}(a,b)(x-a)(y-b) + f_{22}(a,b)(y-b)^2)$$

kallast annars stigs Taylor-margliða f með miðju í (a, b).

Skilgreining og athugasemd 9.10

Skilgreinum tvo diffurvirkja D_1 og D_2 þannig að

$$D_1 f(a, b) = f_1(a, b)$$
 og $D_2 f(a, b) = f_2(a, b)$.

Athugið að ef hlutafleiður f af nógu háum stigum eru allar skilgreindar og samfelldar þá er $D_1D_2=D_2D_1$, þ.e.a.s. ekki skiptir máli í hvaða röð er diffrað, bara hve oft er diffrað með tilliti til hvorrar breytu.

Upprifjun 9.11(Tvíliðuregla)

Skilgreinum

$$\binom{n}{j} = \frac{n!}{j!(n-j)!}.$$

Talan $\binom{n}{j}$ (lesið n yfir j) er j+1 talan í n+1 línu Pascals-þríhyrningsins. Höfum að

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^j y^{n-j}.$$

Regla 9.12

Ef f(x, y) er fall þannig að allar hlutafleiður af n-ta og lægri stigum eru samfelldar þá gildir að

$$(hD_1 + kD_2)^n f(a,b) = \sum_{i=0}^n {n \choose j} h^j k^{n-j} D_1^j D_2^{n-j} f(a,b).$$

Fyrir fall f(x,y) þannig að allar hlutafleiður af n-ta og lægri stigum eru samfelldar þá er n-ta stigs Taylor-margliða f með miðju i punktinum (a,b) skilgreind sem margliðan

$$\begin{split} P_{(n)}(x,y) &= \sum_{m=0}^{n} \frac{1}{m!} ((x-a)D_1 + (y-b)D_2)^m f(a,b) \\ &= \sum_{m=0}^{n} \sum_{j=0}^{m} \frac{1}{m!} {m \choose j} D_1^j D_2^{m-j} f(a,b) (x-a)^j (y-b)^{m-j} \\ &= \sum_{m=0}^{n} \sum_{j=0}^{m} \frac{1}{j!(m-j)!} D_1^j D_2^{m-j} f(a,b) (x-a)^j (y-b)^{m-j}. \end{split}$$

Setning 9.14

Fyrir fall f(x,y) þannig að allar hlutafleiður af n+1-ta og lægri stigum eru samfelldar þá gildir um skekkjuna í n-ta stigs Taylor-nálgun að til er tala θ á milli 0 og 1 þannig að ef h=x-a og k=y-b þá er

$$f(x,y) - P_{(n)}(x,y) = \frac{1}{(n+1)!} (hD_1 + kD_2)^{n+1} f(a+\theta h, b+\theta k).$$