ASAHI GROUP HOLDINGS - projekt 4-

Zmienna ryzyka

USD/JPY

Metody parametryczne i historyczne

ROZKŁAD LAPLACE'A Z PARAMETRAMI:

średnia **m**

0.01768

skala **b**

0.36177

odchylenie **σ**

0.51161

TEST KOŁMOGOROWA-SMIRNOWA:

statystyka

0.02377

pvalue

0.85504

Rozkład USD/JPY

Histogram częstotliwości

oraz gęstość teoretyczna

Metoda parametryczna a zwykła historyczna

Porównanie dystrybuant

Metoda historyczna ważona

METODA	Parametryczna	Historyczna zwykła	Historyczna ważona
VaR _{95%}	0.85068	0.74478	$\lambda = 0.95 \ 1.16753$ $\lambda = 0.99 \ 1.16200$
VaR _{99%}	1.43292	1.37165	$\lambda = 0.95 \ 1.31250$ $\lambda = 0.99 \ 1.93763$

Porównanie dystrybuant dla λ =0.99 i λ =0.95

Filtrowanie szeregiem GARCH

GARCH (1, 1)

$$L_i = \epsilon_i \sqrt{c_0 + c_1 L_{i-1} + b_1 \sigma_{i-1}} + \mu$$

 $c_0 = 0.0045$

 $c_1 = 0.0812$

 $b_1 = 0.9027$

 $\mu = 0.0019$

GARCH (1, 1)

$$L_i = \epsilon_i \sqrt{c_0 + c_1 L_{i-1} + b_1 \sigma_{i-1} + \mu}$$

VaR_{95%}

1.62882

VaR_{99%}

2.72478

METODA	Parametryczna	Historyczna zwykła	Historyczna ważona	GARCH
VaR _{95%}	0.85068	0.74478	$\lambda = 0.95 \ 1.16753$ $\lambda = 0.99 \ 1.16200$	1.14082
VaR _{99%}	1.43292	1.37165	$\lambda = 0.95 \ 1.31250$ $\lambda = 0.99 \ 1.93763$	1.90824

Metoda Monte Carlo

MODEL ARMA(2,2)

WSPÓŁCZYNNIKI

$$X_t - 0.3341X_{t-1} + 0.9831X_{t-2} = \epsilon_t - 0.3478\epsilon_{t-1} + 0.9720\epsilon_{t-2} + 0.0181$$

WARIANCJA

$$\sigma^2=0.2610$$

ILOŚĆ DANYCH

1304

ADFULLER TEST:

pval = 0.0

Wysymulowana trajektoria modelu

MODEL ARMA(2,2) - co by było gdyby?

WSPÓŁCZYNNIKI

$$X_{t} - 0.3793X_{t-1} + 0.9851X_{t-2} = \epsilon_{t} - 0.4184\epsilon_{t-1} + 0.9951\epsilon_{t-2} + 0.0504$$

WARIANCJA

$$\sigma^2=0.5444$$

ILOŚĆ DANYCH

304

ADFULLER TEST:

pval = $3.92 \cdot 10^{-30}$

Wysymulowane trajektorie modeli

Podsumowanie

METODA	Parametryczna	Historyczna zwykła	Historyczna ważona	GARCH	Monte Carlo
VaR _{95%}	0.85068	0.74478	$\lambda = 0.95 \ 1.16753$ $\lambda = 0.99 \ 1.16200$	1.14082	Podst: 0.85010 Rozsz: 1.27959
VaR _{99%}	1.43292	1.37165	$\lambda = 0.95 \ 1.31250$ $\lambda = 0.99 \ 1.93763$	1.90824	Podst: 1.22325 Rozsz: 1.88118

Oryginalne dane

USD/JPY

Mądre przejście VaR na oryginalne dane

METODA VARODA	Parametryczna	Historyczna zwykła	Historyczna ważona	GARCH	Monte Carlo
VaR _{95%}	132.8879	132.7484	$\lambda = 0.95 133.3054$ $\lambda = 0.99 133.2981$	133.2701	Podst: 132.8871 Rozsz: 133.4531
VaR _{99%}	133.6551	133.5744	$\lambda = 0.95 133.4964$ $\lambda = 0.99 134.3202$	134.2816	Podst: 133.3788 Rozsz: 134.2458

$$VaR_{\alpha}^{P_t} = (1 + VaR_{\alpha}^{r_t})P_{t-\Delta t}$$

Backtesting

TEST KUPCA VaR_{95%}

METODA	$L(\pi)$	STATYSTYKA	WYNIK TESTU	
PARAMETRYCZNA	0.9354839	2.6560873	brak podstaw do odrzucenia H0	
HISTORYCZNA ZWYKŁA	0.9170507	12.5230353	odrzucamy H0	
HISTORYCZNA WAŻONA	0.9324117	3.83758543	brak podstaw do odrzucenia H0	$(\lambda = 0.99)$
GARCH	0.9370199	2.14114860	brak podstaw do odrzucenia H0	
MONTE CARLO	0.9293395	5.214143914	odrzucamy H0	

H0:
prawdopodobieństwo
sukcesu w wektorze
przekroczeń jest
równe 0.95

WARTOŚĆ KRYTYCZNA NA POZIOMIE UFNOŚCI 0.95: 3.841459

TEST KUPCA VaR,99%

METODA	$L(\pi)$	STATYSTYKA	WYNIK TESTU
PARAMETRYCZNA	0.9815668	3.7445118	brak podstaw do odrzucenia H0
HISTORYCZNA ZWYKŁA	0.9831029	2.59158156	brak podstaw do odrzucenia H0
HISTORYCZNA WAŻONA	0.9846390	1.62384576	brak podstaw do odrzucenia H0
GARCH	0.9846390	1.62384576	brak podstaw do odrzucenia H0
MONTE CARLO (podst)	0.960061	33.6227975	odrzucamy H0

H0:
prawdopodobieństwo
sukcesu w wektorze
przekroczeń jest
równe 0.99

GARCH / ważona historyczna

parametryczna/ zwykła

Monte Carlo

Dziękujemy za uwagę!

