Lecture 8: Energy, Work, and Potential

ECE221: Electric and Magnetic Fields

Prof. Sean V. Hum

Winter 2019

Conservative Property of the Electrostatic Field

Potential Gradient

- ullet We have seen how to go from E to V; we now wish to do the reverse.
- Consider the E-field between two opposite point charges:

Equipotential Surfaces

Draw the *equipotential* surfaces associated with a point charge.

$$V = \frac{Q}{4\pi\epsilon_0 I}$$

Contour Plots

- \bullet Recall our plot of f(x,y) in 2D, using $\it contours$ to denote points where f is constant
- If f represents elevation, this is equivalent to a *topographic* (topo) map, where contours show lines of constant elevation

Gradient Example

- ullet ∇f evaluated along a grid of points is superimposed on the contour plot of f
- Vectors illustrate direction and magnitude of the gradient vector (by arrow length)

Steepest Descent

- \bullet Follow the longest arrows down $-\nabla f$
- \bullet Notice ∇f always points perpendicular to contour lines!
- The steepest ways up/down is to follow a line perpendicular to the contours when they are closest together

Electric Dipole

Let's revisit the example of two opposite charges separated by a distance. What is \boldsymbol{E} and V at P?

Electric Dipole E-field and Equipotential Surfaces

Total Work in Positioning Discrete Charges

Total Energy Associated with Continuous Charge Densities

