What Are Collapsible Pushdown Automata Good For?

Model-Checking, Logical Reflection & Selection

Olivier Serre

LIAFA (CNRS & Université Paris Diderot – Paris 7)

5th of Décembre 2011

based on joint works with C. Broadbent, A. Carayol, M. Hague, A. Meyer, A. Murawski & L. Ong [LICS08a, LICS08b, LICS10,xxx]

Model-Checking

Input:

- An infinite tree t described by a finite object (recursion scheme or a collapsible pushdown automaton in this talk).
- An MSO / μ-calculus formula φ.
- A node *u* in *t*.

Question: Is φ true in t at node u?

Global Model-Checking

Input:

- An infinite tree t described by a finite object (recursion scheme or a collapsible pushdown automaton in this talk).
- An MSO formula $\varphi(x)$ with a first-order free variable.

Question: Provide a description of the set of nodes u in t such that $\varphi[x \leftarrow u]$ is true?

Remark. More general than standard model-checking.

Selection

Input:

- An infinite tree t described by a finite object (recursion scheme or a collapsible pushdown automaton in this talk).
- An MSO formula $\varphi(X)$ with a second-order free variable.

Question: If exists, provide a description of a set U of nodes in t such that $\varphi[X \leftarrow U]$ is true at the root of t?

Remark. More general than global model-checking w.r.t some ψ . Indeed take

$$\phi(\textbf{\textit{X}}) = \textbf{\textit{x}} \in \textbf{\textit{X}} \Leftrightarrow \psi(\textbf{\textit{x}})$$

This talk

We will present two (equi-expressive) ways to define a very rich family of trees for which the model-checking / global model-checking / selection problems are decidable:

- Recursion schemes: rewriting systems for simply typed terms (*i.e.* simply typed λ -calculus with recursion).
- Collapsible pushdown automata: machines with a finite control and using a stack of stacks of stack... as an auxiliary storage.

This talk

We will present two (equi-expressive) ways to define a very rich family of trees for which the model-checking / global model-checking / selection problems are decidable:

- Recursion schemes
- Collapsible pushdown automata

Theorem

Given a recursion scheme $\mathcal S$ (generating a tree t) and an MSO formula $\phi(X)$ with a second-order free variable, if $\exists X \ \phi(X)$ holds at the root of t then one can construct a scheme $\mathcal S_\phi$ generating a tree t_ϕ s.t.

- t and t_{φ} have the same domain;
- $t_{\varphi}(u) = (t(u), x_u)$ with $x_u \in \{0, 1\}$;
- $U = \{u \mid x_u = 1\}$ is such that $\varphi[X \leftarrow U]$ is true at the root of t.

Higher-Order Recursion Schemes

$$\begin{array}{ccc} I & \to & Fc \\ Fx & \to & a(F(bx))(bx) \end{array}$$

- Terminals: a, b, c.
- Non-terminals: I, F.
- Variable: x.

$$\begin{array}{ccc} I & \rightarrow & F c \\ F x & \rightarrow & a (F (b x)) (b x) \end{array}$$

$$I & & \downarrow \\ \Rightarrow & & c \end{array}$$

$$\begin{array}{ccc} I & \to & Fc \\ Fx & \to & a(F(bx))(bx) \end{array}$$

$$\begin{array}{ccc} I & \to & Fc \\ Fx & \to & a(F(bx))(bx) \end{array}$$

$$\begin{array}{ccc} I & \to & Fc \\ Fx & \to & a(F(bx))(bx) \end{array}$$

$$\begin{array}{ccc} I & \rightarrow & Fc \\ Fx & \rightarrow & a(F(bx))(bx) \end{array}$$

$$\begin{array}{ccc}
I & \to & Fc \\
Fx & \to & a(F(bx))(bx)
\end{array}$$

Applying the rules ad infinitum leads a tree whose branch language is the (context-free) language

$$\{a^nb^nc\mid n>1\}$$

[Digression] Simple types

Built from the based (aka ground) type o using the \rightarrow constructor (and \rightarrow associate to the left).

Every type can uniquely be written as $\tau_1 \to \cdots \to \tau_n \to o$.

Examples:

$$\bullet \ \Delta: o \rightarrow o \rightarrow o \rightarrow o$$

$$\Delta(a, b, c) = b^2 - 4ac$$

$$Apply(f, x) = f(x)$$

$$\bullet \ \text{Apply} : (o \to o) \to o \to o$$

Order of a type:

$$Ord(o) = 0$$
 and $Ord(\tau_1 \to \cdots \to \tau_n \to o) = 1 + \max_i \{Ord(\tau_i)\}.$

$$\bullet \ \ \textit{Ord}(o \rightarrow o) = \textit{Ord}(o \rightarrow o \rightarrow o \rightarrow o) = 1$$

•
$$Ord((o \rightarrow o) \rightarrow o \rightarrow o) = 2$$
.

$$\begin{array}{ccc} I & \to & Fc \\ Fx & \to & a(F(bx))(bx) \end{array}$$

Everything in a scheme is (simply) typed!

- ar(a) = 2, ar(b) = 1, ar(c) = 0(i.e. $a: o \rightarrow o \rightarrow o$, $b: o \rightarrow o$, c: o)
- $I: o, F: o \rightarrow o$
- x:0
- Terms appearing on both sides of the rules are (applicative terms) of ground type o.

Order of a scheme = highest order of its non-terminals.

The previous example has order 1.

Formal Definition

Higher-order recursion scheme: $S = \langle \Sigma, \mathcal{N}, \mathcal{R}, I \rangle$

Σ: Ranked alphabet of terminals;

 $\{a:o\rightarrow o\rightarrow o,b:o\rightarrow o,c:o\}$

 $\{F: o \rightarrow o, I: o\}$

- N: Set of typed non-terminals;
 I ∈ N: Initial symbol of type o;
- \mathcal{R} : Set of rewriting rules, one for each non-terminal $F: \tau_1 \to \cdots \to \tau_n \to o$ of the form

$$F\xi_1\cdots\xi_n\to e$$

 ξ_i variable of type τ_i , and e is an applicative ground type term over $\Sigma \cup \mathcal{N} \cup \{\xi_1, \dots, \xi_n\}$.

Example 1

$$\begin{array}{ccc}
I & \to & Fc \\
Fx & \to & a(F(bx))(bx)
\end{array}$$

Semantics: Associated Tree

Tree associated with $S = \langle \Sigma, \mathcal{N}, \mathcal{R}, I \rangle$:

- [|S|]: tree obtained by applying the rewriting rules from I ad infinitum. Rules are applied following an a Outermost-Innermost (OI) policy.
- More formally: supremum for the prefix ordering of trees derivable from I (which is well defined thanks to Church-Rosser property of schemes).

Semantics: Associated Tree

Tree associated with $S = \langle \Sigma, \mathcal{N}, \mathcal{R}, I \rangle$:

- [|S|]: tree obtained by applying the rewriting rules from I ad infinitum. Rules are applied following an a Outermost-Innermost (OI) policy.
- More formally: supremum for the prefix ordering of trees derivable from I (which is well defined thanks to Church-Rosser property of schemes).

Order of a recursion scheme: highest order of its non-terminals.

Semantics: Associated Tree

Tree associated with $S = \langle \Sigma, \mathcal{N}, \mathcal{R}, I \rangle$:

- [|S|]: tree obtained by applying the rewriting rules from I ad infinitum. Rules are applied following an a Outermost-Innermost (OI) policy.
- More formally: supremum for the prefix ordering of trees derivable from I (which is well defined thanks to Church-Rosser property of schemes).

Order of a recursion scheme: highest order of its non-terminals.

 $RecTrees_n(\Sigma) = \{[|S|] \mid S \text{ recursion scheme of ordrer } n\}$

$$\begin{array}{ccc} I & \rightarrow & \textit{Fbc} \\ \textit{F} \, \phi \, \psi & \rightarrow & \textit{a} \, (\textit{F} \, (\textit{C}_{\textit{p}} \, \textit{b} \, \phi) \, (\textit{C}_{\textit{p}} \, \textit{c} \, \psi)) \, (\phi \, (\psi \, \textit{d})) \\ \textit{C}_{\textit{p}} \, \phi \, \psi \, x & \rightarrow & \phi \, (\psi \, x) \end{array}$$

- Terminals:
 - ightharpoonup a: o
 ightharpoonup o
 ightharpoonup o
 - \triangleright b, c: o \rightarrow o
 - ▶ d:o
- Non-terminals:
 - I: 0
 - $F:(o\rightarrow o)\rightarrow (o\rightarrow o)\rightarrow o$
 - $ightharpoonup C_o: (o o o) o (o o o) o o o o$

Compose and apply

- Variable:
 - ► X:0
 - \bullet $\phi, \psi : o \rightarrow o$

$$\begin{array}{ccc}
I & \to & Fbc \\
F\phi\psi & \to & a(F(C_pb\phi)(C_pc\psi))(\phi(\psi d)) \\
C_p\phi\psi x & \to & \phi(\psi x)
\end{array}$$

$$\begin{array}{ccc} \textit{I} & \rightarrow & \textit{Fbc} \\ \textit{F}\,\phi\,\psi & \rightarrow & \textit{a}\,(\textit{F}\,(\textit{C}_{\textit{p}}\,\textit{b}\,\phi)\,(\textit{C}_{\textit{p}}\,\textit{c}\,\psi))\,(\phi\,(\psi\,\textit{d})) \\ \textit{C}_{\textit{p}}\,\phi\,\psi\,x & \rightarrow & \phi\,(\psi\,x) \end{array}$$

$$\begin{array}{ccc} I & \rightarrow & \textit{Fbc} \\ \textit{F}\,\phi\,\psi & \rightarrow & \textit{a}\,(\textit{F}\,(\textit{C}_{\textit{p}}\,\textit{b}\,\phi)\,(\textit{C}_{\textit{p}}\,\textit{c}\,\psi))\,(\phi\,(\psi\,\textit{d})) \\ \textit{C}_{\textit{p}}\,\phi\,\psi\,x & \rightarrow & \phi\,(\psi\,x) \end{array}$$

$$\begin{array}{ccc} I & \rightarrow & \textit{Fbc} \\ \textit{F}\,\phi\,\psi & \rightarrow & \textit{a}\,(\textit{F}\,(\textit{C}_{\textit{p}}\,\textit{b}\,\phi)\,(\textit{C}_{\textit{p}}\,\textit{c}\,\psi))\,(\phi\,(\psi\,\textit{d})) \\ \textit{C}_{\textit{p}}\,\phi\,\psi\,x & \rightarrow & \phi\,(\psi\,x) \end{array}$$

$$\begin{array}{ccc} \textit{I} & \rightarrow & \textit{Fbc} \\ \textit{F}\,\phi\,\psi & \rightarrow & \textit{a}\,(\textit{F}\,(\textit{C}_{\textit{p}}\,\textit{b}\,\phi)\,(\textit{C}_{\textit{p}}\,\textit{c}\,\psi))\,(\phi\,(\psi\,\textit{d})) \\ \textit{C}_{\textit{p}}\,\phi\,\psi\,x & \rightarrow & \phi\,(\psi\,x) \end{array}$$

$$\begin{array}{ccc} \textit{I} & \rightarrow & \textit{Fbc} \\ \textit{F}\,\phi\,\psi & \rightarrow & \textit{a}\,(\textit{F}\,(\textit{C}_{\textit{p}}\,\textit{b}\,\phi)\,(\textit{C}_{\textit{p}}\,\textit{c}\,\psi))\,(\phi\,(\psi\,\textit{d})) \\ \textit{C}_{\textit{p}}\,\phi\,\psi\,x & \rightarrow & \phi\,(\psi\,x) \end{array}$$

$$\begin{array}{ccc} \textit{I} & \rightarrow & \textit{Fbc} \\ \textit{F}\,\phi\,\psi & \rightarrow & \textit{a}\,(\textit{F}\,(\textit{C}_{\textit{p}}\,\textit{b}\,\phi)\,(\textit{C}_{\textit{p}}\,\textit{c}\,\psi))\,(\phi\,(\psi\,\textit{d})) \\ \textit{C}_{\textit{p}}\,\phi\,\psi\,x & \rightarrow & \phi\,(\psi\,x) \end{array}$$

$$\begin{array}{ccc} \textit{I} & \rightarrow & \textit{Fbc} \\ \textit{F}\,\phi\,\psi & \rightarrow & \textit{a}\,(\textit{F}\,(\textit{C}_{\textit{p}}\,\textit{b}\,\phi)\,(\textit{C}_{\textit{p}}\,\textit{c}\,\psi))\,(\phi\,(\psi\,\textit{d})) \\ \textit{C}_{\textit{p}}\,\phi\,\psi\,x & \rightarrow & \phi\,(\psi\,x) \end{array}$$

$$\begin{array}{ccc} I & \rightarrow & \textit{Fbc} \\ \textit{F}\,\phi\,\psi & \rightarrow & \textit{a}\,(\textit{F}\,(\textit{C}_{\!\textit{p}}\,\textit{b}\,\phi)\,(\textit{C}_{\!\textit{p}}\,\textit{c}\,\psi))\,(\phi\,(\psi\,\textit{d})) \\ \textit{C}_{\!\textit{p}}\,\phi\,\psi\,x & \rightarrow & \phi\,(\psi\,x) \end{array}$$

$$\begin{array}{ccc} \textit{I} & \rightarrow & \textit{Fbc} \\ \textit{F}\,\phi\,\psi & \rightarrow & \textit{a}\,(\textit{F}\,(\textit{C}_{\textit{p}}\,\textit{b}\,\phi)\,(\textit{C}_{\textit{p}}\,\textit{c}\,\psi))\,(\phi\,(\psi\,\textit{d})) \\ \textit{C}_{\textit{p}}\,\phi\,\psi\,x & \rightarrow & \phi\,(\psi\,x) \end{array}$$

Applying the rules ad infinitum leads a tree whose branch language is the (indexed) language

$$\{a^nb^nc^nd\mid n>1\}$$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{\!p}\,\textbf{b}\,\textbf{b}) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{\!p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{\!p}\,\phi\,\psi\,\textbf{x} & \rightarrow & \phi\,(\psi\,\textbf{x}) \end{array}$$

- Terminals:
 - ightharpoonup a: o
 ightharpoonup o
 ightharpoonup o
 - ▶ $b: o \rightarrow o$
 - d ⋅ 0
- Non-terminals:
 - I: 0
 - $F:(o\rightarrow o)\rightarrow o$
 - $ightharpoonup C_o: (o o o) o (o o o) o o o o$

Compose and apply

- Variable:
 - ► X:O
 - \bullet $\phi, \psi : o \rightarrow o$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{p}\,\textbf{b}\,\textbf{b}) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{p}\,\phi\,\psi\,\textbf{x} & \rightarrow & \phi\,(\psi\,\textbf{x}) \end{array}$$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{p}\,b\,b) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{p}\,\phi\,\psi\,\textbf{x} & \rightarrow & \phi\,(\psi\,\textbf{x}) \end{array}$$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{\!p}\,\textbf{b}\,\textbf{b}) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{\!p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{\!p}\,\phi\,\psi\,\textbf{x} & \rightarrow & \phi\,(\psi\,\textbf{x}) \end{array}$$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{p}\,\textbf{b}\,\textbf{b}) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{p}\,\phi\,\psi\,\textbf{x} & \rightarrow & \phi\,(\psi\,\textbf{x}) \end{array}$$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{\!p}\,\textbf{b}\,\textbf{b}) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{\!p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{\!p}\,\phi\,\psi\,\textbf{x} & \rightarrow & \phi\,(\psi\,\textbf{x}) \end{array}$$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{p}\,b\,b) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{p}\,\phi\,\psi\,\textbf{X} & \rightarrow & \phi\,(\psi\,\textbf{X}) \end{array}$$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{\!p}\,\textbf{b}\,\textbf{b}) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{\!p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{\!p}\,\phi\,\psi\,\textbf{x} & \rightarrow & \phi\,(\psi\,\textbf{x}) \end{array}$$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{p}\,\textbf{b}\,\textbf{b}) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{p}\,\phi\,\psi\,\textbf{x} & \rightarrow & \phi\,(\psi\,\textbf{x}) \end{array}$$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{p}\,\textbf{b}\,\textbf{b}) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{p}\,\phi\,\psi\,\textbf{x} & \rightarrow & \phi\,(\psi\,\textbf{x}) \end{array}$$

$$\begin{array}{ccc} I & \rightarrow & F(C_p \, b \, b) \\ F \, \phi & \rightarrow & a \, (F \, (C_p \, \phi \, \phi)) \, (\phi \, d) \\ C_p \, \phi \, \psi \, x & \rightarrow & \phi \, (\psi \, x) \end{array}$$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{p}\,b\,b) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{p}\,\phi\,\psi\,\textbf{x} & \rightarrow & \phi\,(\psi\,\textbf{x}) \end{array}$$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{p}\,b\,b) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{p}\,\phi\,\psi\,x & \rightarrow & \phi\,(\psi\,x) \end{array}$$

$$\begin{array}{ccc} \textbf{I} & \rightarrow & \textbf{F}(\textbf{C}_{\!p}\,\textbf{b}\,\textbf{b}) \\ \textbf{F}\,\phi & \rightarrow & \textbf{a}\,(\textbf{F}\,(\textbf{C}_{\!p}\,\phi\,\phi))\,(\phi\,\textbf{d}) \\ \textbf{C}_{\!p}\,\phi\,\psi\,\textbf{x} & \rightarrow & \phi\,(\psi\,\textbf{x}) \end{array}$$

Applying the rules ad infinitum leads a tree whose branch language is the language

$$\{a^nb^{2^n}d \mid n \ge 1\}$$

The Safety Constraint [Damm'82,KNU'01]

Quoting [KNU'02]:

A term of order k is unsafe if it contains an occurrence of a variable of order < k, otherwise the term is safe. An occurrence of an unsafe term t as a subexpression of a term t' is safe if it is in the context ... (ts) ..., otherwise the occurrence is unsafe. A scheme is safe if no unsafe term has an unsafe occurrence at a right-hand side of any rewriting rule.

 $RecSafeTrees_n(\Sigma) = \{[|G|] \mid S \text{ safe } recursion \text{ scheme of order } n\}$

Related works:

- Derived type constraint [Damm'82].
- Safe- λ -calculus [AdMO'04,BO'07]: fragment of the λ -calculus in which there is no variable captured by some external λ when performing a substitution (hence no need for α -conversion when performing some β -reduction).

Some results

- [Damm'82] level-n tree grammars (\approx safe grammars).
- [Greibach'69,Maslov'74] higher-order pushdown automata / generalized indexed languages.
- [Damm&Goerdt'86] OI-languages ≡ higher-order pushdown automata
- [Knapik,Niwiński,Urzyczyn'01&'02] RecSafeTrees ≡ languages accepted by hopda (⇒ internal repr.) + MSO decidability.
- [Caucal'02] transformational representation + MSO decidability.
- [Knapik,Niwiński,Urzyczyn,Walukiewicz'05] [Aehlig, de Miranda,Ong'05]
 MSO decidability for RecTrees₂(Σ) + internal repr.
- [Ong'06] MSO decidability for $RecTrees(\Sigma)$.
- [Hague, Murawski, Ong, Serre'08] Internal repr. for RecTrees(Σ), parity games + corollaries (in particular [Ong'06]).
- [Carayol, Hague, Meyer, Ong, Serre'08] Global Model-checking for RecSafeTrees.
- [Broadbent, Carayol, Ong, Serre'10] Global Model-checking RecTrees.

Collapsible Pushdown Automata

$$\mathcal{A} = (Q, A \cup \{\epsilon\}, \Gamma, q_0, \Delta)$$

$$\Delta: Q \times \Gamma \times (\textit{A} \cup \{\epsilon\}) \rightarrow 2^{Q \times \{\textit{rew}(\alpha), \textit{pop}, \textit{push}(\alpha) | \alpha \in \Gamma\}}$$

$$\mathcal{A} = (Q, A \cup \{\varepsilon\}, \Gamma, q_0, \Delta)$$

$$(q, push(\beta))$$
: p , $\begin{bmatrix} \alpha \\ \vdots \\ \gamma \\ \bot \end{bmatrix}$ \xrightarrow{a} q , $\begin{bmatrix} \beta \\ \alpha \\ \vdots \\ \gamma \\ \bot \end{bmatrix}$

$$\Delta: \mathsf{Q} \times \Gamma \times (\mathsf{A} \cup \{\epsilon\}) \to 2^{\mathsf{Q} \times \{rew(\alpha), pop, push(\alpha) | \alpha \in \Gamma\}}$$

$$\mathcal{A} = (Q, A \cup \{\varepsilon\}, \Gamma, q_0, \Delta)$$

$$(q, pop)$$
: $p, \begin{bmatrix} \alpha \\ \vdots \\ \gamma \\ \bot \end{bmatrix} \xrightarrow{a} q, \begin{bmatrix} \vdots \\ \gamma \\ \bot \end{bmatrix}$

$$\Delta: \mathsf{Q} \times \Gamma \times (\mathsf{A} \cup \{\epsilon\}) \to 2^{\mathsf{Q} \times \{rew(\alpha), pop, push(\alpha) | \alpha \in \Gamma\}}$$

$$\mathcal{A} = (Q, A \cup \{\varepsilon\}, \Gamma, q_0, \Delta)$$

$$(q, rew(\beta))$$
: $p, \begin{bmatrix} \alpha \\ \vdots \\ \gamma \\ \bot \end{bmatrix}$ $\xrightarrow{a} q, \begin{bmatrix} \beta \\ \vdots \\ \gamma \\ \bot \end{bmatrix}$

$$\Delta: \mathsf{Q} \times \Gamma \times (\mathsf{A} \cup \{\epsilon\}) \to 2^{\mathsf{Q} \times \{rew(\alpha), pop, push(\alpha) | \alpha \in \Gamma\}}$$

Pushdown automaton: finite control + stack.

$$\mathcal{A} = (Q, A \cup \{\epsilon\}, \Gamma, q_0, \Delta)$$

$$\Delta: \mathsf{Q} \times \Gamma \times (\mathsf{A} \cup \{\epsilon\}) \to 2^{\mathsf{Q} \times \{\mathit{rew}(\alpha), \mathit{pop}, \mathit{push}(\alpha) | \alpha \in \Gamma\}}$$

A is deterministic iff

 Δ takes value in singletons + empty set.

 ε moves are possible only if no letter can be read.

Transition Graph & Tree Generated. Back to Ex. 1

$\mathcal A$	а	b	С
$q_0, _{-}$	q_0 , $push(\alpha)$	q_b , pop	_
q_b, α		q_b , pop	_
q_b, \perp	_	_	$q_c, rew(\perp)$

Transition graph:

$$(q_0, \perp) \xrightarrow{a} (q_0, \alpha \perp) \xrightarrow{a} (q_0, \alpha \alpha \perp) \xrightarrow{a} (q_0, \alpha \alpha \alpha \perp) \xrightarrow{a} \cdots$$

$$\downarrow b \downarrow \qquad \qquad \downarrow b \downarrow \qquad \downarrow b \downarrow \qquad \downarrow b \downarrow \qquad \qquad \qquad \downarrow b$$

Transition Graph & Tree Generated. Back to Ex. 1

$$(q_0, \perp) \xrightarrow{a} (q_0, \alpha \perp) \xrightarrow{a} (q_0, \alpha \alpha \perp) \xrightarrow{a} (q_0, \alpha \alpha \alpha \perp) \xrightarrow{a} \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Unfolding:

$$(q_{0}, \perp) \xrightarrow{a} (q_{0}, \alpha \perp) \xrightarrow{a} (q_{0}, \alpha \alpha \perp) \xrightarrow{a} (q_{0}, \alpha \alpha \alpha \perp) \xrightarrow{a} \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Transition Graph & Tree Generated. Back to Ex. 1

$$(q_0, \perp) \xrightarrow{a} (q_0, \alpha \perp) \xrightarrow{a} (q_0, \alpha \alpha \perp) \xrightarrow{a} (q_0, \alpha \alpha \alpha \perp) \xrightarrow{a} \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Unfolding + Labelling:

Tree Associated with a Deterministic Pushdown Automaton

* Fix a deterministic pushdown $\mathcal{A} = \langle Q, A \cup \{\epsilon\}, \Gamma, \delta, q_0, F \rangle$ Forbidden pattern:

Tree Associated with a Deterministic Pushdown Automaton

- * Fix a deterministic pushdown $\mathcal{A} = \langle Q, A \cup \{\epsilon\}, \Gamma, \delta, q_0, F \rangle$
- * Let G(A) be its configuration graph and $G_{\varepsilon}(A)$ its ε -closure.

Tree Associated with a Deterministic Pushdown Automaton

- * Fix a deterministic pushdown $\mathcal{A} = \langle Q, A \cup \{\epsilon\}, \Gamma, \delta, q_0, F \rangle$
- * Let G(A) be its configuration graph and $G_{\varepsilon}(A)$ its ε -closure.
- * Unfold $G_{\varepsilon}(A)$ from the initial configuration.

Tree Associated with a Deterministic Pushdown Automaton

- * Fix a deterministic pushdown $A = \langle Q, A \cup \{\epsilon\}, \Gamma, \delta, q_0, F \rangle$
- * Let G(A) be its configuration graph and $G_{\varepsilon}(A)$ its ε -closure.
- * Unfold $G_{\varepsilon}(A)$ from the initial configuration.
- * Pick some $\tau: Q \times \Gamma \to \Sigma$ and label the vertices of the unfolding using $\tau.$
- ⋆ Use the edge labels to define directions.

Order-*n* pushdown automaton: finite control + order-*n* stack.

Order-*n* pushdown automaton: finite control + order-*n* stack.

Order-*n* pushdown automaton: finite control + order-*n* stack.

Order-*n* pushdown automaton: finite control + order-*n* stack.

Order-*n* pushdown automaton: finite control + order-*n* stack.

push₂:

Order-*n* pushdown automaton: finite control + order-*n* stack.

Order-*n* pushdown automaton: finite control + order-*n* stack.

push₃:

Higher-order pushdown automata. Back to Ex. 2

 $a: push_1(\alpha), b: push_2; pop_1/pop_1, c: pop_2; pop_1/pop_1$

Higher-order pushdown automata. Back to Ex. 2

$$q_{0}, \left[\begin{array}{c} [\bot] \end{array}\right] \xrightarrow{a} q_{a}, \left[\begin{array}{c} [\alpha\bot] \end{array}\right] \xrightarrow{a} q_{a}, \left[\begin{array}{c} [\alpha\alpha\bot] \end{array}\right] \xrightarrow{a} q_{a}, \left[\begin{array}{c} [\alpha\alpha\alpha\bot] \end{array}\right] \xrightarrow{a} q_{a}, \left[\begin{array}{c} [\alpha\alpha\alpha\bot] \end{array}\right] \xrightarrow{b} q_{b}, \left[\begin{array}{c} [\alpha\bot] \\ [\alpha\alpha\alpha\bot] \end{array}\right] \qquad q_{b}, \left[\begin{array}{c} [\alpha\bot] \\ [\alpha\alpha\alpha\bot] \end{array}\right] \qquad q_{b}, \left[\begin{array}{c} [\alpha\Delta\bot] \\ [\alpha\alpha\alpha\bot] \end{array}\right] \qquad q_{b}, \left[\begin{array}{c} [\alpha\bot] \\ [\alpha\alpha\alpha\bot] \end{array}\right] \qquad q_{b}, \left[\begin{array}{c} [\alpha\alpha\alpha\bot] \\ [\alpha\alpha\alpha\alpha\bot] \end{array}\right] \qquad q_{b}, \left[\begin{array}{c} [\alpha\alpha\alpha\bot] \\ [\alpha\alpha\alpha\alpha\bot] \end{array}\right] \qquad q_{b}, \left[\begin{array}{c} [\alpha\alpha\alpha\bot] \\ [\alpha\alpha\alpha\bot] \end{array}\right] \qquad q_{b}, \left[\begin{array}{c} [\alpha\alpha\alpha\bot] \\ [\alpha\alpha\alpha\alpha\bot] \\ [\alpha\alpha\alpha\alpha\bot] \end{array}\right] \qquad q_{b}, \left[\begin{array}{c} [\alpha\alpha\alpha\bot] \\ [\alpha\alpha\alpha\alpha\bot] \\ [\alpha\alpha\alpha\alpha\bot] \end{array}\right] \qquad q_{b}, \left[\begin{array}{c} [\alpha\alpha\alpha\bot] \\ [\alpha\alpha\alpha\alpha\bot] \\ [\alpha\alpha\alpha\alpha\bot] \qquad q_{b}, \left[\begin{array}{c} [\alpha\alpha\alpha\bot] \\ [\alpha\alpha\alpha\alpha\bot] \qquad q_{b}, \left[\begin{array}{c} [\alpha\alpha\alpha\bot] \\ [\alpha\alpha\alpha\alpha\bot] \qquad q_{b}, \left[\begin{array}{c} [\alpha\alpha\alpha\bot] \\ [\alpha\alpha\alpha\alpha\bot] \qquad q_{b}, \left[\begin{array}{c}$$

Can You Get Example 3?

Follows the idea in [Woehrle'05]

$$q_0, [[\varepsilon]] \xrightarrow{aaa} q_1, [[000]] \xrightarrow{\varepsilon} q_2 \begin{bmatrix} [0] \\ [00] \\ [000] \end{bmatrix}$$

$$\overset{b}{\sim} q_2 \begin{bmatrix} [1] \\ [00] \\ [000] \end{bmatrix} \overset{b}{\sim} q_2 \begin{bmatrix} [0] \\ [10] \\ [000] \end{bmatrix} \overset{b}{\sim} q_2 \begin{bmatrix} [1] \\ [10] \\ [000] \end{bmatrix}$$

$$\overset{b}{\sim} q_2 \begin{bmatrix} [0] \\ [00] \\ [100] \end{bmatrix} \overset{b^4}{\sim} q_2 \begin{bmatrix} [1] \\ [10] \\ [100] \end{bmatrix} \overset{\varepsilon}{\sim} q_f, [[\varepsilon]]$$

Do we need more?

Theorem (Equi-expressivity, KNU'02 Caucal'03)

- * Let $\mathcal S$ be an order-n safe recursion scheme over Σ and let t be its value tree. Then there is an order-n PDA $\mathcal A=\langle\ \mathsf Q,A\cup\{\epsilon\},\Gamma,\delta,q_0,F\ \rangle$, and $\tau:\ \mathsf Q\times\Gamma\to\Sigma$ such that t is the tree generated by $\mathcal A$ and τ .
- * Let $\mathcal{A} = \langle Q, A \cup \{\epsilon\}, \Gamma, \delta, q_0, F \rangle$ be an order-n PDA, and let t be the Σ -labelled tree generated by \mathcal{A} and a given map $\tau : Q \times \Gamma \to \Sigma$. Then there is an order-n safe recursion scheme over Σ whose value tree is t.

Moreover, the transformations from scheme to PDA and vice versa are computable in polynomial time.

Something more is needed for the unsafe case

Collapsible Pushdown Automaton: finite control + stack with links

Collapsible Pushdown Automaton: finite control + stack with links

Collapsible Pushdown Automaton: finite control + stack with links

q,

Collapsible Pushdown Automaton: finite control + stack with links

collapse:

q,

Collapsible Pushdown Automaton: finite control + stack with links

Collapsible Pushdown Automaton: finite control + stack with links

Collapsible Pushdown Automaton: finite control + stack with links

push₃:

q,

Collapsible Pushdown Automaton: finite control + stack with links

collapse:

q,

Equi-Expressivity Theorem

Theorem (Equi-expressivity, HMOS'08, CS)

- * Let $\mathcal S$ be an order-n recursion scheme over Σ and let t be its value tree. Then there is an order-n CPDA $\mathcal A=\langle\ Q,A\cup\{\epsilon\},\Gamma,\delta,q_0,F\ \rangle$, and $\tau:Q\times\Gamma\to\Sigma$ such that t is the tree generated by $\mathcal A$ and τ .
- * Let $\mathcal{A} = \langle \ Q, A \cup \{ \epsilon \}, \Gamma, \delta, q_0, F \rangle$ be an order-n CPDA, and let t be the Σ -labelled tree generated by \mathcal{A} and a given map $\tau : Q \times \Gamma \to \Sigma$. Then there is an order-n recursion scheme over Σ whose value tree is t.

Moreover, the transformations from scheme to CPDA and vice versa are computable in polynomial time.

Do You Really Need the Collapse? safe vs unsafe

The Urzyczyn language *U*

One considers finite words over the alphabet $\{(,),\star\}$. A word in U must we of the following form:

$$(\cdots (\cdots (\cdots ((\cdots)\cdots (\cdots)\star \cdots \star$$

- The blue part is the prefix of a well-bracketed word and ends by an unmatched (.
- The red part is a well-bracketed word.
- The green part consists of *k* stars, where *k* is the number of (in the blue segment.

For instance $(()(()(()(()()))\star\star\star\star\star$

Do You Really Need the Collapse? safe vs unsafe

A 2-CPDA recognizing U:

- reading (: push₂; push₁²(a)
- reading): pop1
- reading *: collapse (first occurence) / pop₂ (others)

Run over $(()(()\star\star\star\in U)$

$$\begin{bmatrix} [\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \\ [\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{2}a^{1}\bot] \\ [a^{1}\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \\ [a^{1}\bot] \end{bmatrix}$$

$$\xrightarrow{(} \begin{bmatrix} [a^{4}a^{3}a^{1}\bot] \\ [a^{3}a^{1}\bot] \\ [a^{1}\bot] \\ [a^{1}\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{3}a^{1}\bot] \\ [a^{1}\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \\ [a^{1}\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \\ [a^{1}\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \\ [L] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \\ [L] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \\ [L] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \\ [L] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \\ [L] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \\ [L] \end{bmatrix} \xrightarrow{(} \begin{bmatrix} [a^{1}\bot] \end{bmatrix} \xrightarrow{(} \begin{bmatrix}$$

Do You Really Need the Collapse? safe vs unsafe

Theorem (Parys'11)

There is no 2-DPDA accepting U. Hence $RecSafeTree_2 \subseteq RecTree_2$.

Logical Consequences

Schemes CPDAs

Global Model-Checking

$$\begin{cases} I & \rightarrow Fg(ga) \\ F\varphi x & \rightarrow f(F\varphi(\varphi x))x \end{cases}$$
$$\varphi = p_g \land \mu X. (\diamond_1 p_a \lor \diamond_1 \diamond_1 X)$$

Global Model-Checking

* Exogeneous approach : $|t|_{\varphi} = \{1^n 21^k \mid n+k \text{ is odd}\}$

Global Model-Checking

- * Exogeneous approach : $|t|_{\varphi} = \{1^n 21^k \mid n+k \text{ is odd}\}$
- \star Endogeneous approach : t_{φ}

$$\begin{cases} I \rightarrow H\underline{g}a \\ Hz \rightarrow f(\underline{H}gz)z \\ \underline{H}z \rightarrow f(H\underline{g}z)z \end{cases}$$

Reflection (Global Model-Checking)

Theorem (µ-Calculus Reflection)

Let t be a Σ -labelled tree generated by an order-n recursion scheme $\mathcal S$ and ϕ be a μ -calculus formula.

- * There is an algorithm that transforms (S, φ) to an order-n CPDA A such that $L(A) = |t|_{\varphi}$.
- * There is an algorithm that transforms (S, φ) to an order-n recursion scheme that generates t_{φ} .

Reflection (Global Model-Checking)

Theorem (µ-Calculus Reflection)

Let t be a Σ -labelled tree generated by an order-n recursion scheme $\mathcal S$ and ϕ be a μ -calculus formula.

- * There is an algorithm that transforms (S, φ) to an order-n CPDA A such that $L(A) = |t|_{\varphi}$.
- * There is an algorithm that transforms (S, φ) to an order-n recursion scheme that generates t_{φ} .

Corollary (MSO Reflection)

Recursion schemes are reflective with respect to monadic second order logic.

 \star Input: Order-n recursion scheme S + a μ -calculus formula φ

- * Input: Order-*n* recursion scheme $S + a \mu$ -calculus formula φ
- * Build \mathcal{A} and τ s.t. $t_{\mathcal{S}} = \tau(Unfold(G_{\varepsilon}(\mathcal{A})))$ [Equi-expr. Th]

- * Input: Order-*n* recursion scheme S + a μ-calculus formula φ
- \star Build \mathcal{A} and τ s.t. $t_{\mathcal{S}} = \tau(\textit{Unfold}(\textit{G}_{\epsilon}(\mathcal{A})))$ [Equi-expr. Th]
- * Build the μ -calculus model-checking parity game \mathbb{G} for ϕ vs $G_{\epsilon}(\mathcal{A})$ [Cartesian product with a finite structure]

- * Input: Order-n recursion scheme $S + a \mu$ -calculus formula φ
- * Build \mathcal{A} and τ s.t. $t_{\mathcal{S}} = \tau(\textit{Unfold}(\textit{G}_{\epsilon}(\mathcal{A})))$ [Equi-expr. Th]
- * Build the μ -calculus model-checking parity game \mathbb{G} for ϕ vs $G_{\epsilon}(\mathcal{A})$ [Cartesian product with a finite structure]
- ★ Compute a finite representation of Eve's winning region in G

- * Input: Order-*n* recursion scheme S + a μ-calculus formula φ
- * Build \mathcal{A} and τ s.t. $t_{\mathcal{S}} = \tau(\textit{Unfold}(\textit{G}_{\epsilon}(\mathcal{A})))$ [Equi-expr. Th]
- * Build the μ -calculus model-checking parity game \mathbb{G} for ϕ vs $G_{\epsilon}(\mathcal{A})$ [Cartesian product with a finite structure]
- ★ Compute a finite representation of Eve's winning region in G
- \star Incorporate this representation into ${\cal A}$ and get ${\cal A}'$

- * Input: Order-*n* recursion scheme S + a μ-calculus formula φ
- * Build \mathcal{A} and τ s.t. $t_{\mathcal{S}} = \tau(Unfold(G_{\varepsilon}(\mathcal{A})))$ [Equi-expr. Th]
- * Build the μ -calculus model-checking parity game \mathbb{G} for ϕ vs $G_{\epsilon}(\mathcal{A})$ [Cartesian product with a finite structure]
- ★ Compute a finite representation of Eve's winning region in G
- \star Incorporate this representation into ${\cal A}$ and get ${\cal A}'$
- \star Output: \mathcal{S}' s.t. $\tau'(\mathit{Unfold}(G_{\epsilon}(\mathcal{A}'))) = t_{\mathcal{S}'} = t_{\mathcal{S},\phi}$ [Equi-expr. Th]

- * Input: Order-*n* recursion scheme S + a μ-calculus formula φ
- * Build \mathcal{A} and τ s.t. $t_{\mathcal{S}} = \tau(Unfold(G_{\varepsilon}(\mathcal{A})))$ [Equi-expr. Th]
- * Build the μ -calculus model-checking parity game \mathbb{G} for ϕ vs $G_{\epsilon}(\mathcal{A})$ [Cartesian product with a finite structure]
- ★ Compute a finite representation of Eve's winning region in G
- \star Incorporate this representation into ${\cal A}$ and get ${\cal A}'$
- \star Output: \mathcal{S}' s.t. $\tau'(\mathit{Unfold}(G_{\epsilon}(\mathcal{A}'))) = t_{\mathcal{S}'} = t_{\mathcal{S},\phi}$ [Equi-expr. Th]

Hard work is on CPDA parity games

Regular Sets of Stacks with Links

A stack with link is a well bracketed word with a binary relation:

$$[[[\bot\alpha]]][[\bot][\bot\alpha\beta\gamma]]]$$

Regular Sets of Stacks with Links

A stack with link is a well bracketed word with a binary relation:

$$[[[\bot\alpha]][[\bot][\bot\alpha\beta\gamma]]]$$

Automaton

A (deterministic) automaton is a tuple $\langle Q, A, q_{in}, F, \delta \rangle$ where $\delta : (Q \times A) \cup (Q \times A \times Q) \rightarrow Q$:

- On reading a position without a link the state is updated wrt the current state and current symbol;
- On reading a position with a link the state is updated wrt the current state, the current symbol and the state the automaton was after the targeted position;

Regular Sets of Stacks with Links

A stack with link is a well bracketed word with a binary relation:

$$[[[\bot\alpha]][[\bot][\bot\alpha\beta\gamma]]]$$

Automaton

A (deterministic) automaton is a tuple $\langle Q, A, q_{in}, F, \delta \rangle$ where $\delta : (Q \times A) \cup (Q \times A \times Q) \rightarrow Q$:

- On reading a position without a link the state is updated wrt the current state and current symbol;
- On reading a position with a link the state is updated wrt the current state, the current symbol and the state the automaton was after the targeted position;

A set of stacks *L* is regular iff there is an automaton that decide for any stack in input whether it is in *L*.

Winning Regions in CPDA Games and Logical Reflection

Theorem

The winning regions in CPDA pushdown parity games are regular sets of configurations.

Theorem

CPDA are closed under regular test.

Corollary

Recursion Schemes are logically reflective w.r.t u-calculus.

A Nice Consequence of Logical Reflection

Theorem

Let t be a Σ -labelled tree given by some order-n recursion scheme S and let \mathcal{I} be an MSO-interpretation. The unfolding of $\mathcal{I}(t)$ from any vertex u can be generated by an order-(n+1) recursion scheme.

* Input: Order-n recursion scheme S + an MSO formula $\varphi(X)$

- ★ Input: Order-*n* recursion scheme S + an MSO formula $\varphi(X)$
- * Build \mathcal{A} and τ s.t. $t_{\mathcal{S}} = \tau(Unfold(G_{\varepsilon}(\mathcal{A})))$ [Equi-expr. Th]

- \star Input: Order-*n* recursion scheme S + an MSO formula $\varphi(X)$
- \star Build $\mathcal A$ and τ s.t. $t_{\mathcal S} = \tau(\mathit{Unfold}(G_{\varepsilon}(\mathcal A)))$ [Equi-expr. Th]
- * Build an nondeterministic parity tree automaton \mathcal{A}_{φ} that accepts marked trees satisfying $\varphi[X \leftarrow \text{marked}]$

- * Input: Order-*n* recursion scheme S + an MSO formula $\varphi(X)$
- \star Build $\mathcal A$ and τ s.t. $t_{\mathcal S} = \tau(\mathit{Unfold}(G_{\varepsilon}(\mathcal A)))$ [Equi-expr. Th]
- * Build an nondeterministic parity tree automaton \mathcal{A}_{φ} that accepts marked trees satisfying $\varphi[X \leftarrow \text{marked}]$
- \star Consider the acceptance game of t_S by \mathcal{A}_{ϕ} where Eve is also in charge of giving the marking
- Compute a winning strategy in the game that is synchronised with the underlying CPDA defining the game

- ★ Input: Order-*n* recursion scheme S + an MSO formula $\varphi(X)$
- \star Build $\mathcal A$ and τ s.t. $t_{\mathcal S} = \tau(\mathit{Unfold}(G_{\varepsilon}(\mathcal A)))$ [Equi-expr. Th]
- * Build an nondeterministic parity tree automaton \mathcal{A}_{φ} that accepts marked trees satisfying $\varphi[X \leftarrow \text{marked}]$
- \star Consider the acceptance game of t_S by \mathcal{A}_{ϕ} where Eve is also in charge of giving the marking
- Compute a winning strategy in the game that is synchronised with the underlying CPDA defining the game
- * Incorporate this strategy into the game and get a new CPDA \mathcal{A}' (forget about the run component)

- * Input: Order-*n* recursion scheme S + an MSO formula $\varphi(X)$
- \star Build $\mathcal A$ and τ s.t. $t_{\mathcal S} = \tau(\mathit{Unfold}(G_{\varepsilon}(\mathcal A)))$ [Equi-expr. Th]
- * Build an nondeterministic parity tree automaton \mathcal{A}_{φ} that accepts marked trees satisfying $\varphi[X \leftarrow \text{marked}]$
- \star Consider the acceptance game of t_S by \mathcal{A}_{ϕ} where Eve is also in charge of giving the marking
- Compute a winning strategy in the game that is synchronised with the underlying CPDA defining the game
- * Incorporate this strategy into the game and get a new CPDA \mathcal{A}' (forget about the run component)
- * Output: S' s.t. $\tau'(Unfold(G_{\varepsilon}(A'))) = t_{S'}$ [Equi-expr. Th]

- ★ Input: Order-*n* recursion scheme S + an MSO formula $\varphi(X)$
- \star Build $\mathcal A$ and τ s.t. $t_{\mathcal S} = \tau(\mathit{Unfold}(G_{\varepsilon}(\mathcal A)))$ [Equi-expr. Th]
- * Build an nondeterministic parity tree automaton \mathcal{A}_{ϕ} that accepts marked trees satisfying $\phi[X \leftarrow \text{marked}]$
- \star Consider the acceptance game of t_S by \mathcal{A}_{ϕ} where Eve is also in charge of giving the marking
- Compute a winning strategy in the game that is synchronised with the underlying CPDA defining the game
- \star Incorporate this strategy into the game and get a new CPDA \mathcal{A}' (forget about the run component)
- \star Output: \mathcal{S}' s.t. $\tau'(\mathit{Unfold}(G_{\varepsilon}(\mathcal{A}'))) = \mathit{t}_{\mathcal{S}'}$ [Equi-expr. Th]

Hard work is to build a synchronised strategy in a CPDA parity games

CPDA Parity Games

Ingredients:

⋆ A graph.

- * A graph.
- \star Two players : Eve (\bigcirc) and Adam (\square).

- * A graph.
- \star Two players : Eve (\bigcirc) and Adam (\square).
- * Play: moving a token.

- * A graph.
- \star Two players : Eve (\bigcirc) and Adam (\square).
- * Play: moving a token.

- * A graph.
- \star Two players : Eve (\bigcirc) and Adam (\square).
- * Play: moving a token.

- * A graph.
- \star Two players : Eve (\bigcirc) and Adam (\square).
- * Play: moving a token.

- * A graph.
- \star Two players : Eve (\bigcirc) and Adam (\square).
- * Play: moving a token.

Ingredients:

- * A graph.
- \star Two players : Eve (\bigcirc) and Adam (\square).
- * Play: moving a token.
- * A winning condition: reachability.

Eve wins iff a final vertex is visited.

Ingredients:

- * A graph.
- \star Two players : Eve (\bigcirc) and Adam (\square).
- * Play: moving a token.
- * A winning condition: Büchi.

Eve wins iff final vertices are visited infinitely often.

Ingredients:

- * A graph.
- \star Two players : Eve (\bigcirc) and Adam (\square).
- ⋆ Play: moving a token.
- * A winning condition: parity.

Eve wins iff the smallest infinitely repeated colour is even.

$$\Delta: Q \times \Gamma \longrightarrow 2^{Q \times \{rew(\alpha), pop, push(\alpha) | \alpha \in \Gamma\}}$$

$$\Delta: Q \times \Gamma \rightarrow 2^{Q \times \{rew(\alpha), pop, push(\alpha) | \alpha \in \Gamma\}}$$

$$\Delta: Q \times \Gamma \rightarrow 2^{Q \times \{rew(\alpha), pop, push(\alpha) | \alpha \in \Gamma\}}$$

$$\Delta: Q \times \Gamma \rightarrow 2^{Q \times \{rew(\alpha), pop, push(\alpha) | \alpha \in \Gamma\}}$$

Abstract Pushdown Automata: finite control + stack over a (possibly) infinite alphabet.

$$\Lambda: Q \times \Gamma \rightarrow 2^{Q \times \{rew(\alpha), pop, push(\alpha) | \alpha \in \Gamma\}}$$

Pushdown automata: abstract pushdown automata whose stack alphabet is finite

Order-*n* pushdown automata: finite control + order-*n* stack.

Order-*n* pushdown automata: finite control + order-*n* stack.

Order-*n* pushdown automata: finite control + order-*n* stack.

Order-*n* pushdown automata: finite control + order-*n* stack.

Order-*n* pushdown automata: finite control + order-*n* stack.

push₂:

Order-*n* pushdown automata: finite control + order-*n* stack.

Order-n pushdown automata: finite control + order-n stack.

push₃:

Order-*n* pushdown automata: finite control + order-*n* stack.

Order-*n* pushdown automata $\mathcal{P} = (Q, \Sigma, \Delta)$

Define $\mathcal{P}' = (Q, \Gamma, \Delta')$ as:

★ Γ = set of all order-(n-1) stacks

Order-*n* pushdown automata: finite control + order-*n* stack.

Order-*n* pushdown automata $\mathcal{P} = (Q, \Sigma, \Delta)$

Define $\mathcal{P}' = (Q, \Gamma, \Delta')$ as:

- ★ Γ = set of all order-(n-1) stacks
- $\star (q, pop) \in \Delta'(p, \gamma) \text{ iff } (q, pop_n) \in \Delta(q, top_1(\gamma))$
- $\star (q, push(\gamma)) \in \Delta'(p, \gamma) \text{ iff } (q, push_n) \in \Delta(q, top_1(\gamma))$
- * $(q, rew(op(\gamma))) \in \Delta'(p, \gamma)$ iff $(q, op) \in \Delta(q, top_1(\gamma))$ with op order k < n action.

Order-*n* pushdown automata: finite control + order-*n* stack.

Order-*n* pushdown automata $\mathcal{P} = (Q, \Sigma, \Delta)$

Define $\mathcal{P}' = (Q, \Gamma, \Delta')$ as:

- ★ Γ = set of all order-(n-1) stacks
- $\star (q, pop) \in \Delta'(p, \gamma) \text{ iff } (q, pop_n) \in \Delta(q, top_1(\gamma))$
- $\star (q, push(\gamma)) \in \Delta'(p, \gamma) \text{ iff } (q, push_n) \in \Delta(q, top_1(\gamma))$
- * $(q, rew(op(\gamma))) \in \Delta'(p, \gamma)$ iff $(q, op) \in \Delta(q, top_1(\gamma))$ with op order k < n action.

Remark. The same works for order-*n* CPDA without *n*-links.

Playing with Abstract Pushdown Automata

```
Q = \{p, q, r\}
\Gamma = \{\alpha, \beta, \bot\}
\Delta(p, \alpha) = \{pop(q), push(r, \alpha)\}
\Delta(q, \alpha) = \{pop(p), push(r, \alpha)\}
\Delta(r, \alpha) = \{pop(p), push(r, \alpha)\}
\Delta(r, \alpha) = \{pop(p), push(p, \alpha)\}
\Delta(p, \beta) = \{pop(p), push(p, \alpha)\}
\Delta(q, \beta) = \{pop(p), push(r, \alpha)\}
\Delta(r, \beta) = \{pop(p), push(r, \alpha)\}
\Delta(r, \beta) = \{pop(p), push(r, \alpha)\}
\Delta(p, \bot) = \{push(p, \alpha), push(r, \beta)\}
\Delta(q, \bot) = \{push(q, \alpha), push(r, \alpha)\}
\Delta(r, \bot) = \{push(q, \beta), push(r, \alpha)\}
```


Playing with Abstract Pushdown Automata

$$Q = \{p, q, r\}$$

$$\Gamma = \{\alpha, \beta, \bot\}$$

$$\Delta(p, \alpha) = \{pop(q), push(r, \alpha)\}$$

$$\Delta(q, \alpha) = \{pop(p), push(r, \alpha)\}$$

$$\Delta(q, \alpha) = \{pop(p), push(r, \alpha)\}$$

$$\Delta(r, \alpha) = \{pop(p), push(p, \alpha)\}$$

$$\Delta(p, \beta) = \{pop(p), push(p, \alpha)\}$$

$$\Delta(q, \beta) = \{pop(p), push(r, \alpha)\}$$

$$\Delta(r, \beta) = \{pop(p), push(r, \alpha)\}$$

$$\Delta(r, \beta) = \{pop(p), push(r, \alpha)\}$$

$$\Delta(p, \bot) = \{push(p, \alpha), push(r, \beta)\}$$

$$\Delta(q, \bot) = \{push(q, \alpha), push(r, \alpha)\}$$

$$\Delta(r, \bot) = \{push(q, \beta), push(r, \alpha)\}$$

Associated parity game:

$$Q_F = \{p, q\} \text{ and } Q_A = \{r\}$$

Playing with Abstract Pushdown Automata

$$\begin{aligned} Q &= \{p,q,r\} \\ \Gamma &= \{\alpha,\beta,\bot\} \\ \Delta(p,\alpha) &= \{pop(q),push(r,\alpha)\} \\ \Delta(q,\alpha) &= \{pop(p),push(r,\alpha)\} \\ \Delta(q,\alpha) &= \{pop(p),push(r,\alpha)\} \\ \Delta(r,\alpha) &= \{pop(p),push(r,\alpha)\} \\ \Delta(p,\beta) &= \{pop(p),push(p,\alpha)\} \\ \Delta(q,\beta) &= \{pop(p),push(r,\alpha)\} \\ \Delta(q,\beta) &= \{pop(p),push(r,\alpha)\} \\ \Delta(r,\beta) &= \{pop(p),push(r,\alpha)\} \\ \Delta(r,\beta) &= \{push(p,\alpha),push(r,\beta)\} \\ \Delta(q,\bot) &= \{push(q,\alpha),push(r,\alpha)\} \\ \Delta(r,\bot) &= \{push(q,\beta),push(r,\alpha)\} \end{aligned}$$

Associated parity game:

$$Q_E = \{p, q\} \text{ and } Q_A = \{r\}$$

 $\rho(p) = 0, \ \rho(q) = 2, \ \rho(r) = 1$

Eve wins iff the smallest infinitely often visited color is even

$$(p, \alpha, \overrightarrow{R}, \theta)$$

If $\exists (r, pop) \in \Delta(p, \alpha)$, s.t. $r \in R_{\theta}$ $(p', \beta, \overrightarrow{S}, \rho(p'))$ $\forall (p', push(\beta)) \in \Delta(p, \alpha)$ $(p, \alpha, \overrightarrow{R}, \theta) \longrightarrow ((p, \alpha, \overrightarrow{R}, \theta, p', \beta))$ \rightarrow $(p, \alpha, \overrightarrow{R}, \theta, p', \beta, \overrightarrow{S})$ $\forall \, \overrightarrow{S} \in \mathcal{P}(Q)^{d+1} \quad (s, \alpha, \overrightarrow{R}, \min(\theta, \rho(s), j))$ $\forall j, \ \forall s \in S_i$ If $\exists (r, pop) \in \Delta(p, \alpha)$, s.t. $r \notin R_{\theta}$

Theorem

Eve wins from (p, \perp) in $\mathbb G$ iff she wins from $(p, \perp, (\emptyset, \ldots, \emptyset), \rho(p))$ in $\widetilde{\mathbb G}$.

Special Case of Higher-Order Pushdown Games

Remark

If the abstract pushdown automaton is an order-n pushdown automaton then one always has $\alpha = \beta$. Hence, the new game is an order-(n-1) pushdown game.

Special Case of Higher-Order Pushdown Games

Theorem

Deciding whether Eve wins in an order-n pushdown parity game is n-ExpTIME-complete.

How to Solve a CPDA Game?

Input: an order-n CPDA game

k=n

Do

- (1) Get rid of the k-links
- (2) Build the simulation game using the reduction for abstract pushdown games

k=k-1

Until k=0

The plays goes as in the original game...

 q_{in} ,

The plays goes as in the original game...

The plays goes as in the original game...except when a $push_1^n(\alpha)$ occurs

The plays goes as in the original game...except when a $push_{1}^{n}(\alpha)$ occurs

The plays goes as in the original game...except when a $push_{1}^{n}(\alpha)$ occurs

First case:

Great! Don't wait for the collapse! For and go to $r \in R$

The plays goes as in the original game...except when a $push_{1}^{n}(\alpha)$ occurs

First case:

Great! Don't wait for the collapse! Fop. and go to $r \in R$

γ		1 1	1
α		$ \gamma $	α
α	β	$ \gamma $	β
β	β	β	lγ
ά	$ \dot{\gamma} $	$ \dot{\gamma} $	iά

The plays goes as in the original game...except when a $push_{1}^{n}(\alpha)$ occurs

Second case:

The plays goes as in the original game...except when a $push_1^n(\alpha)$ occurs

The plays goes as in the original game...except when a $push_1^n(\alpha)$ occurs

When simulating a collapse (involving an n-link).

* If the state reached is consistent with \overrightarrow{R} ,

- Eve wins.
- * Otherwise Odam wins.

The plays goes as in the original game...except when a $push_1^n(\alpha)$ occurs

When simulating a collapse (involving an n-link).

* If the state reached is consistent with \overrightarrow{R} ,

- Eve wins.
- * Otherwise Jodam wins.

How to check consistency???

Definition

An n CPDA is rank-aware if it stores in its control state the smallest colour visited since the creation of the n-link (if exists) in the top_1 element.

Lemma

For every CPDA one can construct an "equivalent" rank-aware CPDA.

How to Solve a CPDA Game?

Input: an order-n CPDA game

k=n

Do

- (0) Make the underlying CPDA rank-aware
- (1) Get rid of the k-links
- (2) Build the simulation game using the reduction for abstract pushdown games

k=k-1

Until k=0

Theorem

Deciding whether Eve wins in an order-n CPDA parity game is n-ExpTIME-complete.

Complexity Issues

Theorem

The overall complexity of deciding the winner in an n-CPDA parity game is:

- n-times exponential in the number of states of the CPDA;
- (n+1)-times exponential in the number of colours;
- polynomial in the stack alphabet of the CPDA.

Complexity Issues

Theorem

The overall complexity of deciding the winner in an n-CPDA parity game is:

- n-times exponential in the number of states of the CPDA;
- (n+1)-times exponential in the number of colours;
- polynomial in the stack alphabet of the CPDA.

Corollary

Model-checking μ -calculus against a scheme is polynomial if one bounds the alternation depth of the formula, the order of the scheme and the arity of the tree generated by it.

Conclusion

Summary

- Recursion schemes and CPDA are equi-expressive for generating trees.
- Algorithmic on CPDA (in particular games) are useful to answer questions on schemes. In particular because CPDA come with a lot of structure that allows precise analysis.
- Correspondence between logic and games:
 - ▶ Model-checking ⇔ Deciding the winner;
 - ► Global Model-checking + Reflection

 Computing the winning region + embedding a description of it into the model of CPDA;
 - Selection

 → Computing a winning strategy + embedding a description of it into the model of CPDA.

Extra, Perspectives

Not discussed here:

- On transition graphs of CPDA, the logical story is not that nice...
- CPDA are useful to understand safety betterly

Perspectives (work in progress)

- What can you do directly on schemes?
- Move to a practice with a toy language
- And much more...