ARTIFICIAL INTELLIGENCE

Assignment I

- 1. [20 pts.] Suppose we have an agent who works for the Hunt Library. The agent is assigned a task of transferring a set of boxes one-by-one by lifting them from location A and placing them in location B inside the building. Sensors can tell it whether the agent is near its destination or not. The rooms have stationary obstacles whose locations are not initially known. If the agent bumps into an obstacle, it will drop the box it is carrying. Some boxes contain fragile contents which will break if dropped. The environment contains obstacle-free paths of various lengths. Answer the following questions about the agent.
 - 1. Define a PEAS specification for the agent.

Following	are the	PEAS	specifications	for the	agent:

Performance Measure (P):

a) Avoid Obstacles
b) Reach Destination
c) Minimum Distance Covered
d) Safety
e) Transfer the boxes
Environment (E):

- a) Boxes
- b) Rooms
- c) Obstacles
- d) Freeways

Actuators / Actions (A):

- a) Move forward or backward
- b) Wheel / Rotate
- c) Pickup and Place boxes
- d) Pedals / Accelerate and brake
- e) Robotic arms

Sensors (S):

- a) GPS
- b) Accelerometer
- c) Gauges
- d) Camera / Video
- 2. Is it sufficient for the agent to be simple reflex? Why or why not? And if not what level is necessary?

No, it is not sufficient for the agent to be a simple reflex. In this scenario, even though the agent just needs to follow simple set of rules, it need to keep track of the obstacles. As the agent does not know about the obstacles location initially, it needs to learn and remember over the period of time. In order to support this Model-Based Reflex Agent could be helpful since it maintains the internal representation of the external world and learns about the environment over the period of time. This could help agent to become more efficient as it continues to learn.

3. Would the ability to move randomly help agent performance or not? Identify possible disadvantages to this sort of movement.

No, the ability to move randomly won't help agent performance. Due to randomness, the agent may try to move the direction which could possibly contain more previously faced obstacles. Hence, randomness in the movement would not allow the agent to improve and take heuristic decisions.

4. Suggest one improvement to the agent design. Since every improvement carries drawbacks, what are the drawbacks to yours?

One improvement in the agent design could be the ability to accelerate and decelerate. Ability to decelerate when obstacle is visible could help prevent agent from bumping into the obstacles and breaking objects. Deceleration could increase the time while traversing.

2. [20 pts.] Fill in the following table with proper description of the agent's environment.

	Fully Vs	Determinist	Episodic	Static Vs	Discrete	Multiagent
	Partially	ic Vs	Vs	Dynamic	Vs	Vs Single
	Observable	Stochastic	Sequential	-	Continuous	Agent
Vacuum	Partially	Determinist	Sequential	Static -	Discrete -	Single
Cleaner	Observable	ic - Since	- Since the	Since the	Since the	Agent -
Agent	- Since it	agent does	agent must	environme	vacuum	Since there
	need to	know if the	not	nt	cleaner can	are no
	clean only	already the	vacuum	surroundin	only move	external
	the locally	surface area	already	g the agent	n specific	agents.
	visible	gets	vacuumed	does not	pre-	
	surface	cleansed	surface.	change by	programme	
	areas and	after	This	external	d	
	need not	vacuuming	would	factors if	directions.	
	worry		prevent	inside a		
	about		agent from	closed		
	distant		doing	room.		
	areas.		unnecessar			
			y work.			
Google	Partially	Stochastic -	Sequential	Dynamic -	Continuous	Multi agent
Car	Observable	Since the	- Since the	Since the	- Since the	- Since
	- Since It	state of	direction	environme	car is not	there can

	only need to view the nearby road.	environmen t does not change based on action taken.	to move on depends on when the direction was changes previously	nt changes by multiple cars.	confined by any set of points or movements	be multiple cars present on the road.
Search and Rescue Robots	Partially Observable - Since robot need require to know entire environme nt at the beginning but discover later on.	Stochastic - Since it does not matter for robot what was the previous state.	by it. Sequential Inorder to reach the rescue scenes, it needs to search and gradually reach the location. Also rescuing requires certain set of procedures	Dynamic - Since between state of the environme nt changes when robot takes actions to rescue.	Continuous - Since the robot is not confined by any set of points or movements .	Multi agent - Since there can be multiple agents in the environmen t.
Document Categoriz er	Partially Observable - Since it just need to view the single document to be categorize d at any single moment.	Determinist ic - Since it knows that the category in which the document is assigned to is correct.	Episodic - Since it does not matter what was the previous state of the agent.	Static - Since there are no external factors influencing agent's procedure.	Discrete - Since the input and output location of the document is fixed.	Single Agent - Since there are no other agents.

3. [10	pts.] Answer the following questions.
1.	Describe a PEAS (R&N Ch. 2) specification for Watson.
	Performance Measure:
	Buzzing before other players
	Giving correct answers to questions
	Giving answers to questions before time runs out
	Environment:
	Host of the game
	Human Competitors
	Computer asking questions
	Audiences
	Actions / Actuators:
	Buzzing the buzzer
	Text to voice conversion
	Sensors:
	Listening to questions
	Voice to text translation
	Identifying the type of question

2. Describe Watson's environment (Full/Partially Observable, Deterministic/Stochastic etc.).

Following is the Watson's environment:

Partially Observable:

Since at a give point of time, Watson just knows category of questions to be asked, and not the question itself or other categories remaining.

Deterministic:

Since Watson, knows the confidence levels of each answer to the question. This confidence level is directly related the determinism of the correctness of the answer.

Sequential:

Since Watson is aware about the state of the game at any given point. For example, it knows the category of the question being asked or the score it has received by far in the game.

Dynamic

Since the state of environment changes as and when game progresses. For example, the score changes, the categories of questions change, etc.

Continuous

Since there can be infinite questions asked in the game, and approach to find answers is different for each question.

Multiagent

Since there are other agents involve in the game (environment) which change the state (score) of the environment as and when game progresses.

3. Discuss at least three separate aspects of the Jeopardy problem domain together with the hardware and/or software design choices in Watson that are rational given those problem aspects.

Following are three aspects of the Jeopardy problem:

The Categories

In Jeopardy there are total five clues each of which have different categories. Categories can be like history, science, politics, etc. Depending on the categories and clues, Watson identifies the answer for the question.

The Questions

The questions can be of one of the following types: Decomposition and Puzzles.

Watson must first be able to identify the type of question in the clue. After identifying the type, it must parse the question differently based on these types. For example, in decomposition, Watson must break the clue into two or more sub-types. Then find the answers to sub-types to get the final answer. In puzzle, Watson must first be able to identify the type of puzzle from types like, before-after, rhyme, sounds like, math problems, etc. After identifying the type of puzzle, it must find answer to the clue.

The Domain

In this case, Lexical answer type is used to find the answer from the clue. The clues can indicate lexical answer type directly or indirectly.

4. Describe the DeepQA approach developed for Jeopardy and name the six architectural roles that are designed in this model.

DeepQA is a massively parallel probabilistic evidence-based architecture having principles such as many experts, pervasive confidence estimation, and integration of shallow and deep knowledge. For Jeopardy, more than 100 different techniques were used for analysing natural language, identifying sources, finding and generating hypotheses, finding and scoring evidence, and merging and ranking hypotheses. All these techniques were combined to improve accuracy, confidence and speed. [1] Following are architectural roles that are designed in this model:

Content Acquisition

Question Analysis

Hypothesis Generation

Soft Filtering

Hypothesis and Evidence Scoring

Final Merging and Ranking

4.

1. In following case the path from A to B is different from that of B to A. Also the number of explored nodes are different in both cases:

A*

explored nodes: keyWest, tampa, lakeCity, orlando, daytonaBeach, tallahassee, jacksonville, albanyGA, savannah, augusta, macon, atlanta, chattanooga, pensacola, nashville, charlotte, greensboro, westPalmBeach, raleigh, miami, newOrleans, memphis, batonRouge, lafayette, norfolk, richmond, littleRock, washington, beaumont, baltimore, houston, philadelphia, mexia, dallas, pittsburgh, tulsa, cleveland, newYork, austin, columbus, dayton, kansasCity, stLouis, cincinnati total explored nodes: 44

nodes in path: keyWest, tampa, lakeCity, tallahassee, albanyGA, macon, atlanta, chattanooga, nashville, memphis, littleRock, tulsa, kansasCity, stLouis, indianapolis total nodes in path: 15

total distance : 2647.0

explored nodes: indianapolis, cincinnati, dayton, columbus, stLouis, cleveland, pittsburgh, kansasCity, buffalo, tulsa, rochester, littleRock, wichita, toronto, philadelphia, baltimore, washington, richmond, memphis, oklahomaCity, norfolk, albanyNY, newYork, ftWorth, raleigh, nashville, greensboro, chattanooga, atlanta, charlotte, macon, augusta, albanyGA, boston, providence, savannah, tallahassee, jacksonville, newHaven, daytonaBeach, orlando, lincoln, lakeCity, ottawa, tampa, stamford, omaha, westPalmBeach, miami, desMoines, montreal, pensacola, saultSteMarie

total explored nodes: 53

nodes in path: indianapolis, cincinnati, dayton, columbus, cleveland, pittsburgh, philadelphia, baltimore, washington, richmond, norfolk, raleigh, greensboro, charlotte, augusta, savannah, jacksonville, daytonaBeach, orlando, tampa, keyWest

total nodes in path :21 total distance : 2647.0

3. Following is the path wherein the path from A to B is longer in Greedy as compared to A* algorithm.

Greedy

explored nodes: miami, westPalmBeach, orlando, tampa, lakeCity, tallahassee, pensacola, newOrleans, batonRouge, lafayette, beaumont, houston, mexia, dallas, denver, grandJunction, provo, coloradoSprings, santaFe, albuquerque, elPaso, tucson, phoenix, yuma, sanDiego, losAngeles, sanLuisObispo, salinas, sanJose, oakland, sanFrancisco, sacramento, reno, pointReyes, redding, medford, eugene, salem, portland, seattle

total explored nodes: 40

nodes in path: miami, westPalmBeach, orlando, tampa, lakeCity, tallahassee, pensacola, newOrleans, batonRouge, lafayette, beaumont, houston, mexia, dallas, denver, coloradoSprings, santaFe, albuquerque, elPaso, tucson, phoenix, yuma, sanDiego, losAngeles, sanLuisObispo, salinas, sanJose, oakland, sanFrancisco, sacramento, pointReyes, redding, medford, eugene, salem, portland, seattle, vancouver

total nodes in path :38 total distance : 5505.0

 A^*

explored nodes: miami, westPalmBeach, orlando, daytonaBeach, jacksonville, tampa, lakeCity, savannah, tallahassee, pensacola, augusta, albanyGA, macon, atlanta, charlotte, newOrleans, chattanooga, batonRouge, nashville, lafayette, beaumont, greensboro, houston, memphis, mexia, dallas, austin, littleRock, tulsa, raleigh, denver, sanAntonio, oklahomaCity, coloradoSprings, grandJunction, kansasCity, keyWest, elPaso, provo, norfolk, richmond, laredo, albuquerque, wichita, washington, santaFe, baltimore, tucson, phoenix, ftWorth, philadelphia, lincoln, omaha, yuma, pittsburgh, cleveland, stLouis, newYork, sanDiego, losAngeles, bakersfield, fresno, modesto, columbus, stockton, desMoines, sacramento, sanLuisObispo, dayton, salinas, sanJose, oakland, cincinnati, reno, sanFrancisco, lasVegas, buffalo, pointReyes, indianapolis, minneapolis, toronto, redding, medford, rochester, eugene, salem, portland, seattle total explored nodes: 88

nodes in path: miami, westPalmBeach, orlando, tampa, lakeCity, tallahassee, pensacola, newOrleans, batonRouge, lafayette, beaumont, houston, austin, sanAntonio, elPaso, tucson, phoenix, yuma, sanDiego, losAngeles, bakersfield, fresno, modesto, stockton, sacramento, pointReyes, redding, medford, eugene, salem, portland, seattle, vancouver

total nodes in path :33 total distance : 4509.0

There are no such paths wherein the total number of explored nodes in Greedy is greater than A* algorithm.

5. There is no such path wherein the total cost to traverse from A to B in A* is greater than Dynamic algorithm.

Following is a path when the total number of explored nodes while traversing from A to B in Dynamic is greater than A* algorithm.

dynamic:

explored nodes: miami, westPalmBeach, orlando, daytonaBeach, tampa, jacksonville, lakeCity, savannah, tallahassee, augusta, pensacola, albanyGA, keyWest, charlotte, macon, atlanta, greensboro, raleigh, newOrleans, chattanooga, batonRouge, lafayette, nashville, norfolk, beaumont, richmond, houston, washington, memphis, baltimore,

mexia, austin, littleRock, philadelphia, dallas, sanAntonio, newYork, laredo, tulsa, pittsburgh, oklahomaCity, cleveland, kansasCity, ftWorth, columbus, elPaso, buffalo, dayton, wichita, rochester, cincinnati, toronto, stLouis, denver, indianapolis, albanyNY, coloradoSprings, albuquerque, mexico, tucson, lincoln, ottawa, boston, santaFe, omaha, phoenix, grandJunction, providence, montreal, desMoines, newHaven, saultSteMarie, yuma, stamford, provo, minneapolis, sanDiego, losAngeles, thunderBay, bakersfield, greenBay, sanLuisObispo, fresno, lasVegas, milwaukee, salinas, modesto, winnipeg, sanJose, stockton, chicago, oakland, sanFrancisco, sacramento, pointReyes, reno, midland, redding, toledo, saltLakeCity, medford, eugene, boise, salem, calgary, portland, seattle

total explored nodes: 107

nodes in path: miami, westPalmBeach, orlando, tampa, lakeCity, tallahassee, pensacola, newOrleans, batonRouge, lafayette, beaumont, houston, austin, sanAntonio, elPaso, tucson, phoenix, yuma, sanDiego, losAngeles, bakersfield, fresno, modesto, stockton, sacramento, pointReyes, redding, medford, eugene, salem, portland, seattle, vancouver

total nodes in path :33 total distance : 4509.0

A^*

explored nodes: miami, westPalmBeach, orlando, daytonaBeach, jacksonville, tampa, lakeCity, savannah, tallahassee, pensacola, augusta, albanyGA, macon, atlanta, charlotte, newOrleans, chattanooga, batonRouge, nashville, lafayette, beaumont, greensboro, houston, memphis, mexia, dallas, austin, littleRock, tulsa, raleigh, denver, sanAntonio, oklahomaCity, coloradoSprings, grandJunction, kansasCity, keyWest, elPaso, provo, norfolk, richmond, laredo, albuquerque, wichita, washington, santaFe, baltimore, tucson, phoenix, ftWorth, philadelphia, lincoln, omaha, yuma, pittsburgh, cleveland, stLouis, newYork, sanDiego, losAngeles, bakersfield, fresno, modesto, columbus, stockton, desMoines, sacramento, sanLuisObispo, dayton, salinas, sanJose, oakland, cincinnati, reno, sanFrancisco, lasVegas, buffalo, pointReyes, indianapolis, minneapolis, toronto, redding, medford, rochester, eugene, salem, portland, seattle total explored nodes: 88

nodes in path: miami, westPalmBeach, orlando, tampa, lakeCity, tallahassee, pensacola, newOrleans, batonRouge, lafayette, beaumont, houston, austin, sanAntonio, elPaso, tucson, phoenix, yuma, sanDiego, losAngeles, bakersfield, fresno, modesto, stockton, sacramento, pointReyes, redding, medford, eugene, salem, portland, seattle, vancouver

total nodes in path :33 total distance : 4509.0

6. Lets consider output of traversal from Vancouver to Miami:

explored nodes: vancouver, seattle, portland, salem, boise, calgary, eugene, saltLakeCity, medford, winnipeg, redding, minneapolis, desMoines, thunderBay, greenBay, pointReyes, milwaukee, chicago, sacramento, stockton, modesto, reno, omaha, fresno, lincoln, bakersfield, lasVegas, sanFrancisco, oakland, saultSteMarie, sanJose, salinas, losAngeles, sanLuisObispo, sanDiego, yuma, wichita, phoenix, midland, toledo, tucson, toronto, elPaso, buffalo, kansasCity, sanAntonio, stLouis, rochester, cleveland, austin, houston, beaumont, lafayette, columbus, batonRouge, newOrleans, pittsburgh, tulsa, dayton, cincinnati, littleRock, albanyNY, laredo, pensacola, tallahassee, indianapolis, memphis, albuquerque, lakeCity, santaFe, oklahomaCity, tampa, ottawa, mexia, jacksonville, daytonaBeach, orlando, nashville, boston, albanyGA, westPalmBeach

total explored nodes: 81

nodes in path: vancouver, seattle, portland, salem, eugene, medford, redding, pointReyes, sacramento, stockton, modesto, fresno, bakersfield, losAngeles, sanDiego, yuma, phoenix, tucson, elPaso, sanAntonio, austin, houston, beaumont, lafayette, batonRouge, newOrleans, pensacola, tallahassee, lakeCity, tampa, orlando, westPalmBeach, miami

total nodes in path :33 total distance : 4509.0

Greedy

explored nodes: vancouver, calgary, winnipeg, minneapolis, desMoines, greenBay, milwaukee, chicago, midland, toledo, omaha, lincoln, wichita, kansasCity, stLouis, indianapolis, cincinnati, dayton, columbus, cleveland, pittsburgh, philadelphia, baltimore, washington, richmond, norfolk, raleigh, greensboro, charlotte, augusta, savannah, jacksonville, daytonaBeach, orlando, westPalmBeach total explored nodes: 35

nodes in path: vancouver, calgary, winnipeg, minneapolis, desMoines, omaha, lincoln, wichita, kansasCity, stLouis, indianapolis, cincinnati, dayton, columbus, cleveland, pittsburgh, philadelphia, baltimore, washington, richmond, norfolk, raleigh, greensboro, charlotte, augusta, savannah, jacksonville, daytonaBeach, orlando, westPalmBeach, miami

total nodes in path :31 total distance : 5657.0

Dynamic

explored nodes: vancouver, seattle, portland, salem, eugene, medford, calgary, redding, boise, pointReyes, sacramento, saltLakeCity, stockton, modesto, sanFrancisco, oakland, reno, sanJose, salinas, fresno, bakersfield, sanLuisObispo, winnipeg, losAngeles, lasVegas, sanDiego, yuma, thunderBay, minneapolis, phoenix, tucson, desMoines, greenBay, omaha, saultSteMarie, milwaukee, lincoln, elPaso, chicago, wichita, albuquerque, midland, santaFe, toronto, toledo, kansasCity, buffalo, rochester, sanAntonio, coloradoSprings, ottawa, austin, cleveland, tulsa, stLouis, albanyNY, denver, laredo, montreal, oklahomaCity, columbus, pittsburgh, houston, boston, dayton, beaumont, providence, indianapolis, cincinnati, grandJunction,

littleRock, ftWorth, mexia, newHaven, lafayette, batonRouge, dallas, memphis, stamford, philadelphia, newOrleans, provo, newYork, baltimore, washington, nashville, richmond, pensacola, chattanooga, mexico, norfolk, tallahassee, atlanta, macon, lakeCity, albanyGA, raleigh, greensboro, jacksonville, tampa, charlotte, daytonaBeach, savannah, orlando, augusta, westPalmBeach

total explored nodes: 106

nodes in path: vancouver, seattle, portland, salem, eugene, medford, redding, pointReyes, sacramento, stockton, modesto, fresno, bakersfield, losAngeles, sanDiego, yuma, phoenix, tucson, elPaso, sanAntonio, austin, houston, beaumont, lafayette, batonRouge, newOrleans, pensacola, tallahassee, lakeCity, tampa, orlando, westPalmBeach, miami

total nodes in path :33 total distance : 4509.0

In all cases dynamic algorithm and A* gives least cost to travel from source to destination. Since dynamic algorithm explored all the possible path to traverse from source to destination, the number of explored nodes will be greater. However in case of A*, it adds heuristic aspect while selecting frontier, this helps in minimizing number of explored nodes. In case of Greedy, it calculates least path cost required to reach destination at every node. That is, it finds locally optimal solution in the hope to find globally optimum result. However, this is not always the case. Therefore in most cases cost to traverse from source to destination is always greater in Greedy as compared to that of dynamic.

References:

[1] Building Watson: An Overview of the DeepQA Project. (pg. 68)