计算物理 hw18

PB18020616 李明达

December 2020

摘要

这是计算物理第 18 次作业,作业题目是进行单中心 DLA 模型的模拟 (可以用圆形边界,也可以用正方形边界),并用两种方法计算模拟得到的 DLA 图形的分形维数,求分形维数时需要作出双对数图.

1 算法和程序

1.1 DLA 模拟

DLA 图形一般是先在中心置放一个粒子。再在远处置放一个粒子,经过布朗运动随机行走后,与中心的粒子粘合;然后在远处置放下一个粒子,当随机行走多步碰到下一个粒子后粘合。持续下去,最后不断有粒子在远处生成,并碰到 DLA 图形后与其粘合,就等效于在 DLA 图形周围生长。

我的程序是 DLA(),功能是做 DLA 模拟,生成"point.txt" 文件,其行就是 x 轴,列就是 y 轴。这个程序包含四个部分: 1. 定义 DLA 的格子为601*601,取奇数是为了找中心点方便,此时中心点是 DLA_lattice[300][300],对于初始值:中心点是 1,其余点都是 0; 2.随机产生初值部分,这部分用Schrage 随机数产生器在四个边上产生初值,从而让随机游走分布更均匀; 3.随机游走部分,这部分通过让粒子随机游走,如果其 4 个近邻有一个是占据的,则吸附,此点从 0 变为 1; 4. 写入文件部分,此时把所得到的二维画布存储到文件"point.txt" 里,其行为 x,列为 y,由此可以把图画出来。

1.2 盒计数法

为了减少误差,我们将大的含粒子网格每一边等分成 1/v=2,4,6,10,15,20,40,100,200份来划分大网格,来统计有粒子的网格个数 N。分形维数 D=ln(N)/ln(1/v).

2 实验结果 2

对应的函数是 BoxCounting(), 其内部是一对 for 循环, 用于求出所有 有像素的盒子数, 并且 printf 出来。

1.3 Sandbox 法

这个算法是在图的中心建立很多边长为 r 的盒子, 我们取 r=20,40,60,80, 100,120,140,160,180,200,计算盒子中的像素数,从而得到分形维数 D=ln(N)/ln(r)

对应的函数是 Sandbox(), 它通过计算计算边长 20, 40, ……, 200 的 矩形内的点的个数, 进而得出分形维数。

2 实验结果

3 DLA 模拟结果

实验采用 Schrage 随机数产生器,种子值是 261715390,随机行走的初始值从 x, y 分别为 50, 550 的四个边上等概率选取,DLA 图如图 1所示。

3.1 盒计数法结果

盒计数法的结果如表 1所示,可以看到,随着分的盒子数增加,分形维数在 1.5 左右,通过进一步的图像拟合(舍去第一个点,因为没啥意义),可以得到分形维数是 1.518(见图 2)。这基本是对的,但与理论值有小偏差。我猜测的原因如下:由于所研究的范围内是 [0,600],但 DLA 图像出现的点在 [50,500] 之间,两个区间并不是那么匹配,所以导致有一些盒子被"浪费"掉了,所以结果偏小。初步估算,优化后,结果基本在 1.6 左右,这时与理论符合的比较好!

3.2 Sandbox 法结果

盒计数法的结果如表 1所示,通过双对数图 (见图 3)可以计算出来,分形维数在 1.663 左右,这与讲义所提到的理论范围 [1.6,1.7] 符合的非常好!实验很成功!

图 1: DLA 图, 很漂亮

表 1: 盒计数法的结果

This is BoxCounting method		
分的个数	有值的盒子数	分形维数
2	4	2
4	9	1.584963
6	14	1.472886
10	26	1.414973
15	54	1.47301
20	83	1.475045
40	264	1.511556
100	1088	1.518314
200	2861	1.502161

图 2: 盒计数法, 此时斜率是-1.518, 可知分形维数约为 1.518

表 2: SandBox 法结果

This is Sandbox method		
边长	像素点数	分形维数
20	130	1.624823
40	430	1.643801
60	900	1.661412
80	1385	1.65071
100	1964	1.646571
120	2626	1.644539
140	3455	1.648759
160	4341	1.650359
180	5188	1.647251
200	6017	1.642473

4 总结 5

图 3: SandBox 法的双对数图,斜率为 1.663, 所以计算出的分形维数为 1.663

4 总结

本次实验我首先进行单中心 DLA 模型的模拟 (使用正方形边界),并用两种方法 (分别是盒计数法和 Sandbox 法) 计算模拟得到的 DLA 图形的分形维数,在求分形维数时我作出了两个双对数图,盒计数法给出的分形维数为 1.518, Sandbox 方法给出的分形维数为 1.663,前者略小于理论值,是因为"浪费"了一些格子;而后者与理论值 [1.6,1.7] 复合的非常好。综上,本次实验完美结束!