Sentiments

George-Marios Angeletos Jennifer La'O

April 27, 2012

Motivation

- fluctuations hinge on expectations
- but are these driven by preference and technology shocks?

S&P/Case-Shiller house price index, US Jan2000-Oct2011

This paper

- stay within the core of the neoclassical paradigm
 - competitive, convex, RE, unique equilibrium
- 2 dispense with aggr shocks in technologies, preferences, etc
- 3 yet, obtain rich fluctuations in beliefs, allocations, prices

Key insights

- 1 decentralization \rightarrow imperfect communication
 - → extrinsic shocks in expectations of "aggregate demand"

- **2** trade \rightarrow communication \rightarrow propagation
 - → fads, waves, boom-and-bust cycles

Roadmap

- baseline model: clean theorems, simple examples
- broader insights
- extension 1: waves, boom-and-bust cycles
- extension 2: quantitative potential
- conclusion

The Model

- continuum of islands
 - repres. household and firm on each island
 - produce and trade differentiated goods
- fundamentals fixed and common knowledge
- trading via random matching

The Model: preferences and technologies

$$y_{it} = A_i F(K, n_{it})$$

$$\mathcal{U}_i = \sum_{t=0}^{\infty} \beta^t \left[U(\mathbf{c}_{it}, \mathbf{c}_{it}^*) - V(\mathbf{n}_{it}) \right]$$

$$F(k,n) = k^{1-\theta} n^{\theta}$$
 $U(c,c^*) = c^{1-\eta} c^{*\eta}$ $V(n) = \frac{1}{\epsilon} n^{\epsilon}$

The Model: matching, trade, and communication

at each t, each island i is randomly matched to some j

info dynamics:
$$\omega_i^t = (\omega_i^{t-1}, \omega_i^{t-1}, x_{it})$$

employment and production:

$$V'(n_{it}) = w_{it} = \mathbb{E}_{it}[p_{it}] \frac{\partial y_{it}}{\partial n_{it}}$$

employment and production:

$$V'(n_{it}) = w_{it} = \mathbb{E}_{it} \left[\mathbf{p}_{it} \right] \frac{\partial y_{it}}{\partial n_{it}}$$

trading:

$$p_{it} = P \begin{pmatrix} y_{jt}, & y_{it} \\ + & - \end{pmatrix} \equiv \begin{pmatrix} \frac{y_{jt}}{y_{it}} \end{pmatrix}^{\eta}$$

employment and production:

$$V'(n_{it}) = w_{it} = \mathbb{E}_{it} \left[\frac{\rho_{it}}{\partial n_{it}} \right] \frac{\partial y_{it}}{\partial n_{it}}$$

trading:

$$p_{it} = P \begin{pmatrix} y_{jt}, & y_{it} \\ + & - \end{pmatrix} \equiv \begin{pmatrix} \frac{y_{jt}}{y_{it}} \end{pmatrix}^{\eta}$$

"aggregate demand externality" = p_i increases with y_i

- equil: fixed point in allocations and beliefs of prices (Lucas)
- equil : also PBE of fictitious game (Morris-Shin)

$$\log y_{it} = (1 - \alpha) f_i + \alpha \mathbf{E}_{it} [\log y_{jt}]$$

Walrasian trade \rightarrow as if strategic complementarity

■ contraction mapping y = Ty

Theorem

The equilibrium exists and is unique, for arbitrary info structure.

Communication, beliefs, and fluctuations

- \blacksquare communication \rightarrow coordination of beliefs
- "perfect communication" \equiv prior to trading, i and j share same beliefs about prices (p_{it}) and/or allocations (y_{it}, y_{jt})

Communication, beliefs, and fluctuations

- \blacksquare communication \rightarrow coordination of beliefs
- "perfect communication" \equiv prior to trading, i and j share same beliefs about prices (p_{it}) and/or allocations (y_{it}, y_{jt})

Theorem

Extrinsic fluctuations along unique equilibrium if and only if communication is imperfect.

What drives beliefs?

■ in general:

$$y_i = f(A_i, B_i)$$
 $y_j = f(A_j, B_j)$

 A_i is TFP, \mathcal{B}_i is expected terms of trade

What drives beliefs?

in general:

$$y_i = f(A_i, B_i)$$
 $y_j = f(A_j, B_j)$

 A_i is TFP, \mathcal{B}_i is expected terms of trade

perfect communication: $\mathcal{B}_i = \mathcal{B}_j$

$$\Rightarrow \qquad (y_i, y_j, \mathcal{B}_i, \mathcal{B}_j) = f(A_i, A_j)$$

 \Rightarrow beliefs pinned down by fundamentals

What drives beliefs?

■ in general:

$$y_i = f(A_i, B_i)$$
 $y_j = f(A_j, B_j)$

 A_i is TFP, B_i is expected terms of trade

• imperfect communication: $\mathcal{B}_i \neq \mathcal{B}_j$

$$\Rightarrow \qquad (y_i, y_j, \mathcal{B}_i, \mathcal{B}_j) \neq f(A_i, A_j)$$

⇒ beliefs may vary with extrinsic shocks ("sentiments")

Sentiment shocks: simple example

$$x_{it} = (x_{it}^1, x_{it}^2)$$

$$x_{it}^1 = \log A_{jt} + \varepsilon_{it} \qquad x_{it}^2 = x_{jt}^1 + \xi_t$$

Sentiment shocks: simple example

$$x_{it} = (x_{it}^1, x_{it}^2)$$

$$x_{it}^1 = \log A_{jt} + \varepsilon_{it} \qquad x_{it}^2 = x_{jt}^1 + \xi_t$$

Proposition

 ξ_t does not impact either fundamentals or beliefs of fundamentals.

Yet, it causes variation in expected and actual economic activity:

$$Y_t = \Phi \xi_t \qquad \overline{\mathbb{E}_{it} Y_t} = \Psi \xi_t$$

Sentiment shocks = demand shocks

Sentiment shocks: richer example

$$\log A_{it} = \bar{a}_t + a_i$$

$$x_i = (x_i^1, x_i^2, ..., x_i^H)$$

$$x_{it}^1 = \log A_{jt} + \varepsilon_{it}^1 \qquad x_{it}^h = x_{it}^{h-1} + \varepsilon_{it}^h \qquad \varepsilon_{it}^h = \xi_t^h + u_{it}^h$$

Sentiment shocks: richer example

$$\log A_{it} = \bar{a}_t + a_i$$

$$x_i = (x_i^1, x_i^2, ..., x_i^H)$$

$$x_{it}^1 = \log A_{jt} + \varepsilon_{it}^1 \qquad x_{it}^h = x_{jt}^{h-1} + \varepsilon_{it}^h \qquad \varepsilon_{it}^h = \xi_t^h + u_{it}^h$$

Proposition

$$\begin{array}{ll} \exists \; \overline{\xi}_t = \Xi(\xi_t^1,...,\xi_t^h) \; \text{and} \; v_t \bot (\bar{a}_t,\bar{\xi}_t) \; \text{such that} \\ \\ Y_t &= \; \Phi \, \bar{a}_t + \bar{\xi}_t \\ \overline{\mathbb{E}}_{it} y_{jt} &= \; \Phi \, \bar{a}_t + \Psi \, \bar{\xi}_t \\ \overline{\mathbb{E}}_{it} \, \overline{Y}_t &= \; \Phi \, \bar{a}_t + \Lambda \, \bar{\xi}_t + v_t \end{array}$$

Broader insights (1)

- Arrow-Debreu / standard macro
 - expectations perfectly aligned across agents
 - expectations and outcomes pinned down by fundamentals

- imperfect communication
 - extrinsic variation in expectations
 - "coordination failure" and "animal spirits" along unique equil

Broader insights (2)

which kind of expectations are we talking about?

first-order beliefs of endog outcomes (GDP, inflation, etc)
 not higher-order beliefs of exog fundamentals

only the former matter / can be estimated

What's next

 $\begin{tabular}{ll} \textbf{1} & communication \rightarrow waves / boom-and-bust cycles \\ \end{tabular}$

2 RBC-like extension \rightarrow quantitative potential

Contagion and boom-and-bust cycles

- two regions: "North" and "South"
- TFP differs across regions, info differs both across and within
 - uninformed: know only local TFP
 - partially informed: signals about the other region
 - fully informed: know entire state of nature
- lacksquare sentiment shock hits only few islands and only at t=0
- lacktriangle communication \rightarrow propagation \rightarrow fads, waves, boom-bust

Contagion and boom-and-bust cycles

Quantitative potential

- extension with investment and utilization
- baseline RBC, but sentiment shocks instead of TFP shocks

	The Model		U.S.	Data
	std. dev.	corr(X,Y)	std. dev.	corr(X,Y)
output Y	1.73	1.00	1.74	1.00
employment N	1.47	1.00	1.34	0.87
consumption C	1.26	0.98	1.19	0.79
investment I	4.30	0.96	4.98	0.76
labor productivity Y/N	0.27	0.99	0.87	0.66
labor wedge <i>LW</i>	5.14	-1.00	4.47	-0.82

Conclusion

contribution:

- imperfect communication ightarrow extrinsic fluctuations
- within otherwise conventional unique-equil DSGE models

interpretation:

- shocks to expectations
- animal spirits, news shocks, uncertainty shocks
- demand shocks