الصفحة 1

**

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2019 - الموضوع-

المركز الوطني للتقويم والامتحانات والتوجيه

*****	RS24	
180 T.A.		

4	مدة الانجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية: (أ) و (ب)	الشعبة أو المسلك

- مدة إنجاز الموضوع هي أربع ساعات. - يتكون الموضوع من أربعة تمارين مستقلة فيما بينها. - يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.

لا يسمح باستعمال الآلة الحاسبة كيفما كان نوعها لا يسمح باستعمال اللون الأحمر بورقة التحرير

فحة	الصا
/	2

RS24

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2019 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و(ب)

التمرين 1: (3.5 نقطة)

ليكن α عددا عقديا غير منعدم.

 $\left(E_{lpha}
ight)$: $z^2-ilpha\sqrt{3}z-lpha^2=0$: المعادلة ذات المجهول $\mathbb C$ المعادلة $\mathbb C$ المعادلة نات المعادلة أعداد العقدية المعادلة أعداد العقدية المعادلة أعداد أعدا

$$\Delta=lpha^2$$
 :هو (E_lpha) هميز المعادلة (E_lpha) هو (0.25

$$(E_{\alpha})$$
 المعادلة (ب) حل في \mathbb{C} المعادلة (0.5

الأسي. الشكل الأسي (
$$\lambda\in\mathbb{R}$$
) على الشكل الأسي. المعادلة (E_lpha على الشكل الأسي.

 M_1 و Ω نعتبر النقط Ω و المستوى العقدي منسوب إلى معلم متعامد ممنظم مباشر $O; \vec{u}, \vec{v}$). نعتبر النقط Ω

$$C$$
و و يكن R ذات الألحاق على التوالي α و α و $z_1=\frac{1+i\sqrt{3}}{2}$ و $z_2=\frac{-1+i\sqrt{3}}{2}$ و يكن $z_1=\frac{1+i\sqrt{3}}{2}$

 $\frac{\pi}{3}$ و زاویته

$$R(M_1) = M_2$$
 و أن $R(\Omega) = M_1$ بين أن (1 - 1) و 0.5

ب) استنتج أن المثلثين
$$\Omega M_1$$
 و ΩM_1 متساويا الأضلاع.

$$z_1 - z_2 = \alpha$$
 :نحقق أن (-2 0.25

بين أن المستقيمين
$$(\Omega M_1)$$
و (ΩM_2) متعامدان.

معين. ج
$$O\Omega M_1 M_2$$
 معين. (ح

$$Z = \frac{z_2 - \alpha}{z_1 - \alpha} \div \frac{z_2 - |\alpha| e^{i\theta}}{z_1 - |\alpha| e^{i\theta}}$$
 عدد حقیقي θ ، العدد θ عدد حقیقي θ ، العدد θ عدد حقیقي θ

التمرين 2: (3 نقط)

يحتوي كيس على n كرة مرقمة من 1 إلى n ($n \in \mathbb{N}^*, n \geq 3$). نسحب، الواحدة تلو الأخرى و بدون إحلال، جميع الكرات من هذا الكيس. لا يمكن التمييز بين الكرات باللمس.

1 | 1- ما هو احتمال الحصول على الكرات 1 و 2 و 3 بالتتابع و في هذا الترتيب؟

1 2- ما هو احتمال الحصول على الكرات 1 و 2 و 3 في هذا الترتيب (سواء كانت متتابعة أم غير متتابعة)؟

 X_n الذي يساوي العدد الضروري من السحبات المصول على الكرات 1 و 2 و 3. حدد قانون احتمال المتغير X_n .

الصفحة	
3	RS2

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2019 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و(ب)

التمرين 3: (3.5 نقطة)

نعتبر الفضاء المتجهي $(V_2,+,.)$ الذي بعده 2.

$$\overrightarrow{e_2} = \frac{1}{2}\overrightarrow{i} - \frac{1}{2}\overrightarrow{j}$$
 و $\overrightarrow{e_1} = \frac{1}{2}\overrightarrow{i} + \frac{1}{2}\overrightarrow{j}$ نضع: V_2 نضع: نضع الفضاء يكن $(\overrightarrow{i}, \overrightarrow{j})$

ليكن * قانون التركيب الداخلي المعرف في V_2 بما يلي:

$$\forall (x, y, x', y') \in \mathbb{R}^4 \ (x\vec{i} + y\vec{j}) * (x'\vec{i} + y'\vec{j}) = (xx' + yy')\vec{i} + (xy' + yx')\vec{j}$$

$$V_2$$
 أساس الفضاء $(\overrightarrow{e_1}, \overrightarrow{e_2})$ أبين أن أ $(1 - 1)$

$$\vec{e_1} * \vec{e_2} = \vec{e_2} * \vec{e_1} = \vec{0}$$
 و $\vec{e_2} * \vec{e_2} = \vec{e_2}$ و $\vec{e_1} * \vec{e_1} = \vec{e_1}$ نحقق أن: $\vec{e_1} * \vec{e_2} = \vec{e_2}$ و $\vec{e_1} * \vec{e_1} = \vec{e_1}$ نحقق أن:

$$\forall (X, X', Y, Y') \in \mathbb{R}^4 \ (X\vec{e_1} + Y\vec{e_2}) * (X'\vec{e_1} + Y'\vec{e_2}) = XX'\vec{e_1} + YY'\vec{e_2}$$
 عين أن: (0.25)

0.25

د) بین أن
$$(V_2, +, *)$$
 حلقة تبادلیة و احدیة.

$$E_{ec{u}} = \left\{\lambda \vec{u} \, / \, \lambda \in \mathbb{R}
ight\}$$
 نعتبر: $\vec{u} \in V_2 - \left\{ \vec{0}
ight\}$ عرب -3

$$(V_{2},+)$$
 أ) بين أن $(E_{\overline{i}},+)$ زمرة جزئية للزمرة (0.25)

$$(V_2,+,.)$$
 بين أن $(E_{i},+,.)$ فضاء متجهي جزئي للفضاء $(E_{i},+,.)$

ج) بين أن:
$$E_{\vec{u}}$$
 مستقر بالنسبة للقانون $* \Leftrightarrow || \vec{u} \cdot \vec{u} \cdot \vec{u} \cdot \vec{u} ||$ مقيدة.

$$\varphi\colon \ \mathbb{R}^* o E_{\overrightarrow{u}}$$
 نعتبر التطبيق . $(\exists lpha\in\mathbb{R}^*)$; $\overrightarrow{u}*\overrightarrow{u}=lpha\overrightarrow{u}:$ 4-

$$x \mapsto \frac{x}{\alpha} u$$

$$(E_{\vec{n}},*)$$
 أ) بين أن ϕ تشاكل تقابلي من (\mathbb{R}^*,\times) نحو أ

التمرين 4 : (10 نقط)

$$g(x) = 1 + x^2 - 2x(1+x)\ln(1+x)$$
 : بما يلي: $I =]-1, +\infty[$ المعرفة على المعر

$$\lim_{x \to -1^+} g(x) = 2$$
 بین أن: 2 = 0.25

$$\lim_{x \to \infty} g(x) = -\infty : (0.5)$$

الصفحة	
4	RS2

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2019 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و(ب)

$$(\forall x\in I)$$
 $g'(x)=-2(1+2x)\ln(1+x)$ و أن: g قابلة للاشتقاق على I ، و أن:

3- نعطي جدول تغيرات الدالة g:

0.5

0.5

1

x	-1	$-\frac{1}{2}$		0	+∞
g'(x)	-	0	+	0	-
g(x)	2	$\frac{5}{4} - \frac{\ln 2}{2}$		1	

$$g(\alpha)=0$$
 بين أنه يوجد عدد حقيقي موجب قطعا وحيد α بحيث:

$$(\ln 2 = 0.7 : 1.3)$$
 (ناخذ: $\alpha < 1$) (ناخذ: 0.25

$$(\forall x \in]\alpha, +\infty[)$$
 $g(x) < 0$ و أن: $0 < g(x)$ و أن: $0 < g(x)$ استنتج أن $(\forall x \in]-1, \alpha[)$

$$f(x) = \frac{\ln(1+x)}{1+x^2}$$
 بما يلي: $I =]-1,+\infty[$ المعرفة على الم

$$\left(O;\vec{i},\vec{j}\right)$$
المنحنى الممثل للدالة f في معلم متعامد ممنظم المثل الدالة الدالة المثل الدالة الدال

المحصل عليها.
$$\lim_{x\to -1^+} f(x)$$
 احسب (1-1) احسب (1-1) أحسب أول مبيانيا النتيجة المحصل عليها.

ب) احسب
$$f(x)$$
 أول مبيانيا النتيجة المحصل عليها. $\lim_{x\to +\infty} f(x)$

$$(\forall x \in I)$$
 $f'(x) = \frac{g(x)}{(1+x)(1+x^2)^2}$ و أن $f(x) = \frac{g(x)}{(1+x)(1+x^2)^2}$ و أن $f(x) = \frac{g(x)}{(1+x)(1+x^2)^2}$ 0.75

$$I$$
 ب) اعط جدول تغیرات الدالة f على ا

$$(\forall x \in I)$$
 $f(x) \le \frac{1}{2\alpha(1+\alpha)}$ او آن: $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ جن تحقق آن: $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$

$$(C)$$
 للمنحنى ((C) في النقطة ذات الأفصول (T) للمنحنى ((C) في النقطة ذات الأفصول (D)

$$(\forall x > 0)$$
 $f(x) < x$: שמניד לי: 0.25

$$\left(\left\|\vec{i}\right\| = \left\|\vec{j}\right\| = 2cm\right)$$
 و $\alpha = 0.8$ (نأخذ: $\alpha = 0.8$ و $\alpha = 0.8$) (نأخذ: $\alpha = 0.8$

الصفحة	
5	RS24

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2019 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و(ب)

 $J = \int_0^1 f(x) dx$ نضع: III الجزء

$$J = \frac{\pi}{8} \ln 2$$
 ، بين أن: $t = \frac{1-x}{1+x}$ بين أن: 1

$$(T)$$
 ب) حدد، بالسنتمر مربع، مساحة الحيز المستوي المحصور بين المنحنى (C) و المستقيمات (T)

x = 1 و x = 0

$$K = \int_0^1 \frac{arc\tan(x)}{1+x} dx$$
: حباستعمال طریقة المکاملة بالأجزاء، احسب -2

انتهى

الصفحة 1 4

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2019 - عناصر الإجابة -

**

المركز الوطني للتقويم والامتحانات والتوجيه

****** RR24

4	مدة الانجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية: (أ) و (ب)	الشعبة أو المسلك

سلم التنقيط	عناصر الإجابة		ين1	التمر
0.25	$\Delta=lpha^2$:هو $\left(E_lpha ight)$ التحقق من أن مميز			-I
0.5	$rac{-1+i\sqrt{3}}{2}lpha$ و ما $rac{1+i\sqrt{3}}{2}lpha$ عدا E_lpha عدا	ب)	-1	
0.5	$\frac{1+i\sqrt{3}}{2}\alpha = \alpha e^{i(\lambda+\frac{\pi}{3})} ; \qquad \frac{-1+i\sqrt{3}}{2}\alpha = \alpha e^{i(\lambda+\frac{2\pi}{3})}$	2		
0.25x2	$R(M_1) = M_2$ $g(\Omega) = M_1$	(-1	II
0.25	استنتاج.	ب)	•	
0.25	التحقق.	(1		
0.5	$\left(OM_{1} ight)$ و $\left(\Omega M_{2} ight)$ تعامد	ب)	-2	
0.25	استنتاج.	(ج		
0.5	$\forall \theta \in \mathbb{R}, \frac{z_2 - \alpha}{z_1 - \alpha} \div \frac{z_2 - \alpha e^{i\theta}}{z_1 - \alpha e^{i\theta}} \in \mathbb{R}$	-3		

سلم التنقيط	عناصر الإجابة	التمرين2
1	نعتبر الحدث A : " الحصول على الكرات 1 و 2 و 3 بالتتابع و في هذا الترتيب " $P(A) = \frac{\operatorname{Card} A}{\operatorname{Card} \Omega} = \frac{(n-2)(n-3)!}{n!} = \frac{1}{n(n-1)}$	-1
1	نعتبر الحدث B:" الحصول على الكرات 1 و 2 و 3 في هذا الترتيب (سواء كانت متتابعة أم غير متتابعة) " $P(B) = \frac{\operatorname{Card} B}{\operatorname{Card} \Omega} = \frac{C_n^3 (n-3)!}{n!} = \frac{1}{3!}$	-2

ä	ىقد	الص
/		2
4	/	_

RR24

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2019 - عناصر الإجابة - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و(ب)

	$X_n(\Omega) = \{3, \dots, n\}$	
1	$\forall k \in X_n(\Omega) P(X_n = k) = \frac{\operatorname{Card}(X_n = k)}{\operatorname{Card}\Omega} = \frac{C_3^1 C_{k-1}^2 2 A_{n-3}^{k-3} (n-k)!}{n!}$ $= \frac{3(k-1)(k-2)}{n!}$	-3
	n(n-1)(n-2)	

سلم التنقيط	عناصر الإجابة	ين3	التمر
0.25	V_2 اساس الفضاء $(\overrightarrow{e_1}, \overrightarrow{e_2})$	(1	
0.25	التحقق.	ب)	-1
0.25	$\forall (X, X', Y, Y') \in \mathbb{R}^4 \ (X\overrightarrow{e_1} + Y\overrightarrow{e_2}) * (X'\overrightarrow{e_1} + Y'\overrightarrow{e_2}) = XX'\overrightarrow{e_1} + YY'\overrightarrow{e_2}$	ج)	
0.25	تبادلية القانون *	(1	
0.25	تجميعية القانون *	ب)	_
0.25	$*$ هو العنصر المحايد بالنسبة للقانون $\stackrel{\longrightarrow}{e_1} + \stackrel{\longrightarrow}{e_2}$	ج)	-2
0.25	حلقة تبادلية واحدية. $(V_2,+,*)$	(7	
0.25	$(V_2,+)$ زمرة جزئية للزمرة $(E_{ec{u}},+)$	(أ	
0.25	$(V_2,+,.)$ فضاء متجهي جزئي للفضاء $(E_{ec{u}},+,.)$	ب)	-3
0.5	الاستاز ام المباشر	(ح	
0.5	$(E_{ec{u}},*)$ نحو (\mathbb{R}^*,\times) نحو و (\mathbb{R}^*,\times) نحو (\mathbb{R}^*,\times)	(أ	-4
0.25	جسم تبادلي $(E_{ec{u}},+,*)$	ب)	

عناصر الإجابة سلم التنقي			ن4	التمري	
0.25		$\lim_{x\to -1^+} g(x) = 2$	(أ	-1	-I

نحة	الصا
/	3
4	/

RR24

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2019 - عناصر الإجابة - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و(ب)

0.5	$\lim_{x \to +\infty} g(x) = -\infty$	ب)		
0.5	0.25	-2		
0.5	lpha وجود $lpha$	(1		
0.25	التحقق.	ب)	-3	
0.5	$0.25 (\forall x \in]-1, \alpha[) \qquad 0 < g(x)$ $0.25 (\forall x \in]\alpha, +\infty[) \qquad g(x) < 0$	(ج		
0.5	$\lim_{x \to -1^+} f(x)$ حساب 0.25 $\lim_{x \to -1^+} f(x)$ التأويل المبياني للنتيجة	([†]	-1	-II
0.5	$\lim_{x \to +\infty} f(x)$ حساب التأويل المبياني للنتيجة.	ب)		
0.75	0.25 قابلية اشتقاق f على I على I على I وقابلية اشتقاق f الله الله الله $f'(x) = \frac{g(x)}{\left(1+x\right)\left(1+x^2\right)^2}$	(Î		
0.5	I على f على f	ب)		
0.75	0.5 $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ التحقق: $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ $f(\alpha) \le \frac{1}{2\alpha(1+\alpha)}$	(হ	-2	
0.25	معادلة مماس (T) للمنحنى (C) في النقطة ذات الأفصول (T)	(f	-3	
0.5	$(\forall x > 0) \ln(1+x) < x$	ب)		

الصفحة		
4	RR24	
	141427	1

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2019 - عناصر الإجابة - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و(ب)

0.25	$(\forall x > 0)$ $f(x) < x$ וلاستنتاج:	ج)		
1	التمثيل المبياني للمستقيم (T)	(2		
1	$J = \frac{\pi}{8} \ln 2$: تغيير المتغير	(1		
0.5	$A = (\int_0^1 f(x) - x dx) \times u.a = (\int_0^1 (x - f(x)) dx) \times 4cm^2$ $= (2 - \frac{\pi \ln 2}{2})cm^2$	ب)	-1	-III
1	$K = \frac{\pi \ln 2}{8}$ باستعمال مكاملة بالأجزاء، نحصل على:	-2		