Определение. Пусть A – произвольное множество. Последовательностью элементов множества A, называется произвольное отображение из множества \mathbb{N} в A

Последовательность с n-ым членом x_n обозначают следующим образом $\{x_n\}_{n=1}^{\infty}$. Например, последовательность $\{2n+1\}_{n=1}^{\infty}$.

Определение. Предел числовой последовательности.

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \ \forall n \ge N \colon \ |x_n - a| < \varepsilon$$

Словами сказать $\lim_{n\to\infty} x_n = a$ можно несколькими способами: a является пределом x_n, x_n сходится к a, x_n стремится к a.

Не любая последовательность имеет хоть какой-то предел. Если последовательность имеет предел, она называется *сходящаяся*. Говорят также: эта последовательность сходится. Если последовательность ни к чему не сходится, она называется *расходящаяся*. Говорят также: эта последовательность расходится.

Задача 1. Доказать, что последовательность не может иметь два различных предела одновременно.

Задача 2. Доказать, что если последовательности $\{a_n\}_{n=1}^{\infty}$ и $\{b_n\}_{n=1}^{\infty}$ стремятся соответсвенно к a и b, то последовательность $\{a_n+b_n\}_{n=1}^{\infty}$ стремится к a+b

Если $\lim_{n\to\infty} a_n = a$ и $\lim_{n\to\infty} b_n = b$, то $\lim_{n\to\infty} a_n + b_n = a + b$.

Доказать соответствующие утверждения для остальных арифметических действий

Определение. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется ограниченной, если

$$\exists M \in R : \forall n \in \mathbb{N} : |x_n| < M$$

Задача 3. Доказать, что сходящаяся последовательность является ограниченной. Доказать, что обратное вообще говоря неверно.

Задача 4. Доказать, что последовательность $\{1/n\}_{n=1}^{\infty}$ стремится к 0.

Задача 5. Доказать, что $\lim_{n\to\infty}\frac{n+1}{n}=1$

Определение. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется возрастающей, если каждый следующий член больше предыдущего: $\forall n \in \mathbb{N} : x_{n+1} > x_n$. Аналогично определяется убывающая последовательность.

Если каждый следующий член *больше либо равен* предыдущего, последовательность называется *неубывающей*. Аналогично определяется *невозрастающая* последовательность.

Объединение всех этих 4 классов последовательностей дает класс *монотонных* последовательностей.

Определение. Пусть $\{x_n\}_{n=1}^{\infty}$ последовательность действительных чисел $\{x_n\}_{n=1}^{\infty}: \mathbb{N} \to \mathbb{R}$. Рассмотрим произвольную возрастающую последовательность натуральных чисел $\{n_k\}_{k=1}^{\infty}: \mathbb{N} \to \mathbb{N}$.

Выберем из последовательности $\{x_n\}_{n=1}^{\infty}$ элементы с номерами n_k . Получим последовательность $\{x_n\}_{k=1}^{\infty}$.

вательность $\{x_{n_k}\}_{k=1}^{\infty}$. Последовательность $\{x_{n_k}\}_{k=1}^{\infty}$ называется подпоследовательностью исходной последовательности $\{x_n\}_{n=1}^{\infty}$.

Формально $\{x_{n_k}\}_{k=1}^\infty$ – это композиция двух отображений $\{n_k\}_{k=1}^\infty:\mathbb{N}\to\mathbb{N}$ и $\{x_n\}_{n=1}^\infty:\mathbb{N}\to\mathbb{R}$

Задача 6. Доказать, что любая подпоследовательность сходящийся последовательности сходится к тому же самому пределу.

Задача 7. Доказать, что $\lim_{n \to \infty} \frac{1}{n^2} = 0$

 $\mathbf{3}$ адача 8. Доказать, что $\lim_{n o \infty} rac{n+1}{n^2} = 0$

Задача 9. Доказать, что $\lim_{n \to \infty} \frac{3n+4}{2n^2+3n-1} = 0$

Задача 10. Доказать, что $\lim_{n\to\infty} \frac{3n^2+4}{2n^2+3n-1} = 3/2$

Задача 11. Доказать, что $\lim_{n \to \infty} \frac{2n^3 + 3n^2 + 4}{4n^3 - 2n^2 + 3n - 1} = 1/2$