

CLAIMS

What is claimed is:

1. A mixture of reaction products of

$$x(Ti-(OR^{1})_{4}) + y(HO-R^{2}-OH) + z((HO)-C(R^{3})(R^{4})-W-C(R^{5})(R^{6})-(OH)),$$

the mixture being substantially free from di-functional diols other than HO-R²-OH, wherein

each R¹ is independently a C₁-C₁₀ alkyl group;

R² is a C₂-C₆ alkylene group;

each of R³, R⁴, R⁵, and R⁶ is independently a hydrogen atom or a C₁-C₄ alkyl group except that

at least one of R^3 and R^4 is a C_1 - C_4 alkyl group, and at least one of R^5 and R^6 is a C_1 - C_4 alkyl group;

W is an oxygen atom, a sulfur atom, a nitrogen-containing group, a phosphoruscontaining group, or a C₁-C₄ alkylene group;

each of x and y is greater than 0; and

y > z.

- 2. The mixture of claim 1 wherein y = 2x z and each of x, y, z is a number greater than 0.
- 3. The mixture of claim 1 wherein z = 0 and y/x > 2.
- 4. The mixture of claim 1 where W is a C_1 - C_4 alkylene group.
- 5. The mixture of claim 4 wherein R¹ is an isopropyl group; R² is a butylene group; each of R³, R⁴, and R⁵ is a methyl group; and R⁶ is a hydrogen atom.
- 6. The mixture of claim 1 wherein the mixture of reaction products is substantially free from all mono- and di-functional alcohols.
- 7. A mixture of reaction products of

$$n(Ti-(OR^{1})_{4}) + (2n-m)((HO-R^{2}-OH) + m((HO)-C(R^{3})(R^{4})-W-C(R^{5})(R^{6})-(OH)),$$

the mixture being substantially free from di-functional diols, wherein each R^1 is independently a C_1 - C_{10} alkyl group;

•

R² is a C₂-C₆ alkylene group;

each of R³, R⁴, R⁵, and R⁶ is independently a hydrogen atom or a C₁-C₄ alkyl group except that

at least one of R^3 and R^4 is a C_1 - C_4 alkyl group, and at least one of R^5 and R^6 is a C_1 - C_4 alkyl group;

W is an oxygen atom, a sulfur atom, a nitrogen-containing group, a phosphoruscontaining group, or a C₁-C₄ alkylene group; and each of m and n is greater than 0.

- 8. The mixture of claim 7 where W is a C_1 - C_4 alkylene group.
- 9. The mixture of claim 7 wherein R¹ is an isopropyl group.
- 10. The mixture of claim 7 wherein R² is a butylene group.
- 11. The mixture of claim 7 wherein R^1 is an isopropyl group; R^2 is a butylene group; each of R^3 , R^4 , and R^5 is a methyl group; R^6 is a hydrogen atom; and W is a methylene group.
- 12. The mixture of claim 7 wherein m/2n is between about 0.1 to about 0.5.
- 13. The mixture of claim 12 wherein m/2n is between about 0.15 to about 0.25.
- 14. The mixture of claim 7 further comprising an organic solvent.
- 15. The mixture of claim 7 wherein the mixture is obtained from a reaction conducted in an organic solvent.
- 16. The mixture of claim 15 wherein the organic solvent is a chlorohydrocarbon.
- 17. The mixture of claim 16 wherein the organic solvent is o-dichlorobenzene.
- 18. The mixture of claim 7 wherein the mixture of reaction products is substantially free from all mono- and di-functional alcohols.
- 19. A mixture of reaction products of

$$n(Ti-(OR^1)_4) + m(HO-R^2-OH),$$

wherein

each R^1 is independently a C_1 - C_{10} alkyl group; R^2 is a C_2 - C_6 alkylene group; and each of m and n is greater than 0, and m/n > 2.

20. The mixture of claim 19 wherein R¹ is an isopropyl group.

- 21. The mixture of claim 19 wherein R^2 is a butylene group.
- 22. The mixture of claim 19 wherein R^1 is an isopropyl group and R^2 is a butylene group.
- 23. The mixture of claim 19 wherein 5 > m/n > 3.
- 24. The mixture of claim 19 wherein the mixture is obtained from a reaction conducted without a solvent.
- 25. The mixture of claim 19 substantially free of all mono- and di-functional alcohols.
- 26. A method for depolymerizing a polyester comprising the step of contacting, in the presence of heat, a mixture comprising: a polyester, an organic solvent which is substantially free of oxygen and water, and the mixture of claim 1, to produce macrocyclic oligoesters substantially free from macrocyclic co-oligoesters.
- 27. The method of claim 26 wherein the polyester comprise poly(1,4-butylene terephthalate).
- 28. A method for depolymerizing a polyester comprising the step of contacting, in the presence of heat, a mixture comprising: a polyester, an organic solvent which is substantially free of oxygen and water, and the mixture of claim 7, to produce macrocyclic oligoesters substantially free from macrocyclic co-oligoesters.
- 29. A method for depolymerizing a polyester comprising the step of contacting, in the presence of heat, a mixture comprising: a polyester, an organic solvent which is substantially free of oxygen and water, and the mixture of claim 19, to produce macrocyclic oligoesters substantially free from macrocyclic co-oligoesters.