Technical Documentation

1. System Architecture

Main Pipeline:

- Module 1 : Audio capture with silence detection.
- Module 2 : Speech recognition (Speech-to-Text).
- Module 3 : Translation (Text-to-Text).
- Module 4 : Speech synthesis (Text-to-Speech).
- Inter-module communication via a queue.

2. Technologies Used

Google APIs:

- speech_v1p1beta1.SpeechClient: Speech recognition.
- translate_v2.Translate.Client: Translation.
- texttospeech.TextToSpeechClient: Speech synthesis

Complementary Libraries:

- sounddevice: Audio capture and playback.
- numpy: Audio data manipulation.
- html: Decoding entities in translated texts.

3. Architecture Diagram

....

4. Deployment

Step 1: Google Cloud Configuration

- Enable the required APIs in the Google Cloud project.
- Download the JSON service keys from Google Cloud.

Step 2: Dependency Installation

pip install google-cloud-speech google-cloud-translate google-cloud-texttospeech sounddevice numpy

Step 3: Run the Script

python translator.py

5. Testing Plan

Unit Tests:

- Verify the transcription of short and long sentences.
- Test translation quality with complex sentences.

Integration Tests:

- Measure the total latency of the pipeline.
- Simulate network interruptions and validate recovery.

User Tests:

• Collect user feedback on translation clarity and smoothness.

6. Future Applications

- Leverage Gemini to enhance translation contextualization.
- Deploy on portable or embedded devices.
- Add an online collaborative transcription mode.