Campo electrostático

Método e recomendacións

 $(E_{\rm c} + E_{\rm p})_{\rm A} = (E_{\rm c} + E_{\rm p})_{\rm B}$

• Cargas puntuais

- 1. En dous dos vértices dun triángulo equilátero de 2 cm de lado sitúanse dúas cargas puntuais de +10 μC cada unha. Calcula:
 - a) O campo eléctrico nun dos vértices.
 - b) A forza que actúa sobre a carga situada nese vértice.

Principio da conservación da enerxía entre dous puntos A y B

- c) A carga que habería que colocar no centro do triángulo para que o conxunto quede en equilibrio.
- d) O potencial electrostático en calquera vértice, tendo en conta a carga no centro.
- e) A enerxía potencial electrostática do conxunto das catro cargas.
- f) A enerxía posta en xogo para que o triángulo rote 45° arredor dun eixo que pasa polo centro e é perpendicular ao plano do papel.
- g) O traballo necesario para levar a carga situada no centro ata o punto medio dun lado.
- h) Se a masa da carga é de 0,250 g, e sóltase sen velocidade no centro do lado, calcula a súa velocidade cando pasa polo centro do triángulo.

Datos: $K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$. Problema modelo baseado en P.A.U. Xuño 08, Xuño 11 e Set. 14 **Rta.:** a) $\overline{E} = 1,17\cdot10^8 \text{ N/C}$, na bisectriz cara ao exterior; b) $\overline{F} = 351 \text{ N}$; c) $q = -1,73 \mu\text{C}$

d) $V = 1.35 \cdot 10^6 \text{ V}$; e) $E_p = 0$; f) $\Delta E = 0$; g) W(ext.) = -0.097 J; h) v = 28 m/s cara ao vértice oposto.

Datos	Cifras significativas: 3
Valor de cada carga fixa	$Q = 3,00 \ \mu\text{C} = 3,00 \cdot 10^{-6} \ \text{C}$
Lonxitude do lado do triángulo equilátero	L = 2,00 cm = 0,0200 m
Masa da carga que se despraza	$m = 0.250 \text{ g} = 2.50 \cdot 10^{-4} \text{ kg}$
Constante eléctrica	$K = 9.00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Incógnitas	_
Vector intensidade do campo eléctrico nun vértice	$\overline{\overline{E}}_{F}$
Vector forza que actúa sobre a carga situada nese vértice	\overline{F}
Carga que equilibre ás outras tres	$q \ V$
Potencial electrostático nun vértice	V
Enerxía potencial do conxunto das catro cargas	$E_{ m p}$
Enerxía para que o triángulo rote 45°	ΔE
Traballo para levar a carga do centro ata o punto medio dun lado	$W_{ ext{O} o ext{D}}$
A velocidade cando pasa polo centro do triángulo	ν
Outros símbolos	
Distancia entre dous puntos A e B	$r_{ m AB}$
Ecuacións	
Ecuacións Intensidade do campo electrostático nun punto creado por unha carga puntual, Q , situada a unha distancia, r	$\vec{F} = K \frac{Q}{\vec{I}} \vec{I} - \vec{F}$
tual, Q , situada a unha distancia, r	$\mathbf{L} = \mathbf{K} \frac{\mathbf{q}}{r^2} \mathbf{u}_r = \frac{\mathbf{q}}{q}$
Principio de superposición	$\vec{F} - \nabla \vec{F}$
Potencial electrostático nun punto creado por unha carga puntual, Q, situado a unha distancia r	$V - K \frac{Q}{Q}$
da a unha distancia, <i>r</i>	r
Potencial electrostático nun punto debido a varias cargas	$V = \sum V_i$
Traballo que fai a forza do campo cando se move unha carga, q , desde un	$W_{A\rightarrow B}=q\left(V_{A}-V_{B}\right)$
punto A hasta outro punto B	$v_{A\rightarrow B}-q(v_A-v_B)$
Enerxía potencial electrostática dunha carga, q, nun punto A	$E_{\rm p A} = q \cdot V_{\rm A}$
Enerxía potencial electrostática dunha interacción entre dúas cargas pun-	$E_{\rm p} = K \frac{Q \cdot q}{r}$
tuais, Q e q , a unha distancia, r , unha da outra	$L_{\rm p} = K_{\rm r}$
Enerxía potencial electrostática dun conxunto de cargas	$E_{\rm p} = \sum E_{\rm p \ i} = \frac{1}{2} \sum E_{\rm p \ q}$
Enerxía cinética dun corpo de masa m que se despraza con velocidade v	$E_{\rm c} = \frac{1}{2} m \cdot v^2$

Solución:

a) Faise un debuxo situando as cargas nos vértices A e B do lado horizontal e o punto C será o outro vértice.

Debúxase un vector por cada carga, prestando atención ao sentido. As intensidades de campo electrostático creadas polas cargas nos puntos A e B son de repulsión (porque as cargas son positivas) e os seus valores son iguais

Debúxase o vector suma vectorial, que é o vector intensidade de campo electrostático, \overline{E}_C , resultante.

Como os vectores intensidade de campo electrostático creados polas cargas de A e B son do mesmo valor, as súas compoñentes horizontais anúlanse e a resultante será vertical e estará dirixida cara o sentido positivo do eixe *Y*. O valor da resultante será a su-

ma das compoñentes verticais de cada carga, e, como son dous, o dobre da compoñente vertical dunha delas.

Para determinar a intensidade de campo electrostático nun punto, calcúlase a intensidade de campo electrostático creado por cada carga nese punto, e despois súmanse os vectores.

A ecuación do vector intensidade de campo electrostático creado por unha carga puntual, *Q*, situada a unha distancia, *r*, é:

$$\vec{E} = K \frac{Q}{r^2} \vec{u}_r$$

A distancia entre os puntos A e C é o lado del triángulo: r = L = 2,00 cm = 0,0200 m. O vector unitario do punto C, $\overline{\boldsymbol{u}}_{AC}$ respecto de A é:

$$\vec{u}_{AC} = \cos 60^{\circ} \vec{i} + \sec 60^{\circ} \vec{j} = 0,500 \vec{i} + 0,866 \vec{j}$$

A intensidade de campo electrostático $\overline{\textbf{\textit{E}}}_{CA}$ no punto C, debida á carga de 3 μ C situada en A, é:

$$\vec{E}_{CA} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0200 \left[\text{m} \right])^{2}} (0,500 \vec{\mathbf{i}} + 0,866 \vec{\mathbf{j}}) = = (3,38 \cdot 10^{7} \vec{\mathbf{i}} + 5,85 \cdot 10^{7} \vec{\mathbf{j}}) \text{ N/C}$$

A intensidade de campo electrostático no punto C, debida á carga de 3 μ C situada no punto B é simétrica á do punto A. Os valores das súas compoñentes son os mesmos, pero o signo da compoñente horizontal é oposto, porque está dirixido en sentido contrario:

$$\overline{E}_{CB} = (-3.38 \cdot 10^7 \, \overline{\mathbf{i}} + 5.85 \cdot 10^7) \, \overline{\mathbf{j}} \, \text{N/C}$$

Polo principio de superposición, a intensidade de campo electrostático resultante no punto C é a suma vectorial das intensidades de campo debidas a cada carga.

$$\overline{\boldsymbol{E}}_{C} = \overline{\boldsymbol{E}}_{CA+} \overline{\boldsymbol{E}}_{CB} = (3,38 \cdot 10^{7} \, \overline{\boldsymbol{i}} + 5,85 \cdot 10^{7} \, \overline{\boldsymbol{j}}) \, [\text{N/C}] + (-3,38 \cdot 10^{7} \, \overline{\boldsymbol{i}} + 5,85 \cdot 10^{7} \, \overline{\boldsymbol{j}}) \, [\text{N/C}] = 1,17 \cdot 10^{8} \, \overline{\boldsymbol{j}} \, \, \text{N/C}$$

Análise: A dirección do campo resultante é vertical cara arriba, como se ve no debuxo.

Unha resposta xeral independente de como se elixiron os vértices sería: O campo eléctrico no terceiro vértice vale $1,17\cdot10^8$ N/C e está dirixido segundo a bisectriz do ángulo cara ao exterior do triángulo.

b) Como a intensidade do campo electrostático nun punto é a forza sobre a unidade de carga positiva colocada nese punto, podemos calcular a forza electrostática sobre a carga de 3 μ C a partir do vector intensidade de campo electrostático:

$$\overline{\mathbf{F}} = q \cdot \overline{\mathbf{E}} = 3,00 \cdot 10^{-6} \text{ [C]} \cdot 1,17 \cdot 10^{8} \, \overline{\mathbf{j}} \, [\text{N/C}] = 351 \, \overline{\mathbf{j}} \, \text{N}$$

Unha resposta xeral independente de como se elixiron os vértices sería: A forza electrostática sobre a carga situada nun vértice vale 351 N e está dirixido segundo a bisectriz do ángulo cara ao exterior do triángulo.

c) Para calcular a carga que habería que colocar no centro O do triángulo para que o conxunto quede en equilibrio, buscamos a carga que, situada no centro do triángulo, exerza un campo eléctrico no vértice que anule o que producen as cargas situadas nos outros vértices.

$$\overline{E}_{CO} = -(\overline{E}_{CA} + \overline{E}_{CB})$$

Calcúlase primeiro a distancia do centro do triángulo ao vértice:

$$\cos 30^{\circ} = \frac{1 [\text{cm}]}{d}$$

$$d = \frac{1 \text{ [cm]}}{0.866} = 1,15 \text{ cm} = 0,0115 \text{ m}$$

Chamando q á carga situada no centro O, debe cumprirse que o vector intensidade do campo electrostático creado por ela sea oposto ao que producen as cargas situadas nos outros vértices:

$$\vec{E}_{CO} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{q}{(0,0115 \left[\text{m} \right])^2} \vec{j} = -1,17 \cdot 10^8 \vec{j} \left[\text{N/C} \right]$$

$$q = \frac{-1.17 \cdot 10^8 \left[\text{N/C} \right] \cdot \left(0.0115 \left[\text{m} \right] \right)^2}{9.00 \cdot 10^9 \left[\text{N·m}^2 \cdot \text{C}^{-2} \right]} = -1.73 \cdot 10^{-6} \text{ C}$$

d) Para calcular o potencial electrostático nun punto, calcúlase cada un dos potenciais creados nese punto por cada carga situada nos vértices e deseguido súmanse.

A ecuación do potencial, V, electrostático nun punto creado por unha carga puntual, Q, situada a unha distancia, r, é:

$$V = K \frac{Q}{r}$$

Calcúlanse os potenciais electrostáticos no vértice C, debidos a cada unha das cargas:

$$V_{\text{CA}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0200 \left[\text{m} \right])} = 1,35 \cdot 10^6 \text{ V}$$

$$V_{\rm CB} = V_{\rm CA} = 1,35 \cdot 10^6 \,\rm V$$

$$V_{\text{CO}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{-1,73 \cdot 10^{-6} \left[\text{C} \right]}{\left(0,0115 \left[\text{m} \right] \right)} = -1,35 \cdot 10^6 \text{ V}$$

O potencial electrostático nun punto debido á presenza de varias cargas, é a suma alxébrica dos potenciais debidos a cada carga.

$$V_{\rm C} = V_{\rm CA} + V_{\rm CB} + V_{\rm CO} = 1,35 \cdot 10^6 \, [{\rm V}] + 1,35 \cdot 10^6 \, [{\rm V}] - 1,35 \cdot 10^6 \, [{\rm V}] = 1,35 \cdot 10^6 \, {\rm V}$$

e, f) A enerxía potencial de cada interacción entre dúas cargas vén dada pola expresión:

$$E_{\rm pi} = K \frac{Q \cdot q}{r}$$

A enerxía total electrostática é a suma das enerxías das seis interaccións: A \leftrightarrow B, A \leftrightarrow C, B \leftrightarrow C, e A \leftrightarrow O, B \leftrightarrow O e C \leftrightarrow O.

A tres primeiras valen o mesmo, porque as cargas e as distancias son iguais:

$$E_{A \to B} = E_{A \to C} = E_{B \to C} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right] \cdot 3,00 \cdot 10^{-6} \left[\text{C} \right]}{0,0200 \left[\text{m} \right]} = 4,05 \text{ J}$$

E as tres últimas tamén valen o mesmo, porque as cargas e as distancias volven ser iguais:

$$E_{\text{A}\to\text{O}} = E_{\text{B}\to\text{O}} = E_{\text{C}\to\text{O}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right] \cdot \left(-1,73 \cdot 10^{-6} \right) \left[\text{C} \right]}{0,0115 \left[\text{m} \right]} = -4,05 \text{ J}$$

$$E = E_{A \leftrightarrow B} + E_{A \leftrightarrow C} + E_{B \leftrightarrow C} + E_{A \leftrightarrow O} + E_{B \leftrightarrow O} + E_{C \leftrightarrow O} = 3 \cdot 4,05 \text{ [J]} + 3 \cdot (-4,05 \text{ [J]}) = 0$$

Análise: Se se calculase a enerxía total como a suma das enerxías potenciais das seis cargas, o resultado daría o dobre, porque estaríanse a contar as interaccións dúas veces. Por exemplo a interacción $A \leftrightarrow B$ aparece no cálculo da enerxía potencial da carga en A e tamén no cálculo da enerxía potencial da carga en B.

Como ao xirar 45°, as distancias relativas non cambian, a enerxía da nova disposición é a mesma, e a enerxía total requirida é cero.

$$\Delta E = E_{p'T} - E_{pT} = 0$$

g) Chámase punto D ao centro do lado AB.

O traballo realizado polas forzas do campo electrostático cando se move unha carga q desde o punto O centro do triángulo ao punto D centro dun lado, é a diminución da enerxía potencial entre os puntos O e D. Como o potencial electrostático é a enerxía potencial da unidade de carga, o traballo realizado polas forzas do campo é igual ao valor da carga, q, que se despraza, multiplicado pola diferencia de potencial entre os puntos de partida, O, e de chegada, D:

$$W_{\text{campo}} = W_{\text{O} \to \text{D}} = -(E_{\text{p D}} - E_{\text{p O}}) = E_{\text{p O}} - E_{\text{p D}} = q(V_{\text{O}} - V_{\text{D}})$$

Calcúlanse os potenciais no punto O debidos a cada carga, excepto a que se move. Son todos iguais, porque as cargas e as distancias son iguais:

$$V_{\text{OA}} = V_{\text{OB}} = V_{\text{OC}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0115 \left[\text{m} \right])} = 2,34 \cdot 10^6 \text{ V}$$

O potencial electrostático no punto O é a suma:

$$V_{\rm O} = V_{\rm OA} + V_{\rm OB} + V_{\rm OC} = 3 \cdot 2,34 \cdot 10^6 \, [\rm V] = 7,01 \cdot 10^6 \, \rm V$$

Calcúlanse os potenciais no punto D, debidos a cada carga, excepto a que se move. O potencial no punto D, debido a cada unha das cargas do lado AB é:

$$V_{\rm DA} = V_{\rm DB} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0100 \left[\text{m} \right])} = 2,70 \cdot 10^6 \text{ V}$$

A distancia do vértice C ao centro D do lado oposto vale:

$$h = \sqrt{(2,00 \text{ [cm]})^2 - (1,00 \text{ [cm]})^2} = \sqrt{3,00 \text{ [cm]}^2} = 1,73 \text{ cm} = 0,0173 \text{ m}$$

Calcúlase o potencial no punto D, debido á carga situada no vértice C:

$$V_{\rm DC} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0173 \left[\text{m} \right])} = 1,56 \cdot 10^6 \text{ V}$$

O potencial electrostático no punto D é a suma:

$$V_{\rm D} = V_{\rm DA} + V_{\rm DB} + V_{\rm DC} = 2 \cdot 2,70 \cdot 10^6 \, [{\rm V}] + 1,56 \cdot 10^6 \, [{\rm V}] = 6,96 \cdot 10^6 \, {\rm V}$$

O traballo realizado polas forzas do campo electrostático cando se move unha carga q = -1,73 μ C desde o punto O ao D é:

$$W_{O \to D} = q (V_O - V_D) = -1.73 \cdot 10^{-6} [C] \cdot (7.01 \cdot 10^6 - 6.96 \cdot 10^6) [V] = -0.08 J$$

Análise: <u>Pérdense dúas cifras significativas ao restar</u>. Se empregásemos 6 cifras significativas, o resultado sería: $W_{O\rightarrow D} = q (V_O - V_D) = -1,73205 \cdot 10^{-6} \cdot (7,01481 \cdot 10^6 - 6,95885 \cdot 10^6) = -0,09693 \text{ J}$

Supoñendo que salga de O e chegue a D coa mesma velocidade, o traballo da forza resultante, igual á variación de enerxía cinética, será nulo, e o traballo que hai que facer é o oposto ao da forza do campo:

$$W(\text{exterior}) = W(\text{resultante}) - W(\text{campo}) = 0 - W(\text{campo}) = -W(\text{campo})$$

O traballo necesario para mover unha carga $q = -1.73 \,\mu\text{C}$ desde o punto O ao D, supoñendo que chegue a D coa mesma velocidade que tiña en O, é:

$$W(\text{exterior}) = -W(\text{campo}) = 0.08 \text{ J}$$

h) Como a forza electrostática é unha forza conservativa, a enerxía mecánica consérvase.

$$(E_{\rm c}+E_{\rm p})_{\rm O}=(E_{\rm c}+E_{\rm p})_{\rm D}$$

$$\frac{1}{2} m v^2_{\text{O}} + q \cdot V_{\text{O}} = \frac{1}{2} m v^2_{\text{O}} + q \cdot V_{\text{D}}$$

$$-1.73 \cdot 10^{-6} [C] \cdot (7.01 \cdot 10^{6} [V]) = (2.50 \cdot 10^{-4} [kg] \cdot v_{D}^{2}) / 2 + (-1.73 \cdot 10^{-6} [C]) \cdot (6.96 \cdot 10^{6} [V])$$

$$v_{\rm D} = \sqrt{\frac{2 \cdot \left(-1,73 \cdot 10^{-6} \ [{\rm C}]\right) \cdot \left(7,01 \cdot 10^{6} - 6,96 \cdot 10^{6}\right) [{\rm V}]}{2,50 \cdot 10^{-4} \ [{\rm kg}]}} = \sqrt{\frac{2 \cdot 0,09 \ [{\rm J}]}{2,50 \cdot 10^{-4} \ [{\rm kg}]}} = 3 \cdot 10^{1} \ {\rm m/s}$$

Análise: <u>Pérdense dúas cifras significativas ao restar</u>. Se empregásemos 6 cifras significativas, o resultado sería: $v_D = 27.8 \text{ m/s}$.

Como a velocidade é un vector, hai que deducir a dirección e sentido.

Do feito de que pase pola orixe, pódese deducir que a aceleración ten a dirección do eixo Y en sentido positivo. Se un móbil parte do repouso, e a aceleración ten dirección constante, o movemento será rectilíneo na liña da aceleración. Por tanto, a dirección da velocidade é a do eixo Y en sentido positivo

$$\overline{\mathbf{v}}_{\mathrm{D}} = 3.10^{1} \, \overline{\mathbf{j}} \, \mathrm{m/s}$$

En xeral, o vector velocidade valerá $3\cdot10^1\,\mathrm{m/s}$ na dirección entre o centro do lado e o centro do triángulo, no sentido do vértice oposto ao lado do que sae.

Algunhas das respostas e o seu cálculo poden verse coa folla de cálculo <u>Electrostática (gal)</u>, aínda que hai que ir por partes.

Primeiro habería que calcular as coordenadas na pestana «Coords». Escriba os datos nas celas de cor branca e bordo azul, e faga clic e elixa as magnitudes e unidades nas celas de cor salmón:

Seleccione as celas coas coordenadas e cópieas (pulsando ao tempo as teclas Ctrl e C). Faga clic na pestana «Enunciado» e faga clic á dereita de Q_1 . Elixa no menú: Editar \rightarrow Pegado especial \rightarrow Pegar só números.

Escriba os datos restantes nas celas de cor branca e bordo azul, e faga clic e elixa as magnitudes e unidades nas celas de cor salmón:

Os resultados son:

Respostas	Cifras significativas: 6		
Compoñente x Compoñente y	Módulo Unidades	S.I.	

$$F'(C) = 0$$
 1,16913·10⁸ 1,16913·10⁸ N/C
 $F' = 0$ 350,740 350,740 N

 $V(C) = 2,70000\cdot10^6$ V

Puntos do traballo non definidos

$$Conxunto E_p = 12,1500 \text{ J}$$
Carga que equilibra $Q = -1,73205\cdot10^{-6} \text{ C}$
en Coordenada x Coordenada y

M 0 0 0 m

Para o apartado d), haberá que escribir o valor da carga que equilibra e poñer as súas coordenadas na pestana «Enunciado»

Enunciado Datos: K	9,00·10°		ε' =	1			
Dada a seguinte distribució	n de cargas, (en	μС)		Coord X (cm)	Coord Y (cm)	Carga (μC)
(0	coordenadas en	cm)	$Q_{\scriptscriptstyle 1}$	-1	-0,57735 026 919	3
e os puntos D e G, calcula:			_	Q_2	1	-0,57735026919	3
a) O vector campo eléctrico n	punto	С		Q_3	0	1,15470 053 838	3
b) O vector forza sobre				Q_4	0	0,000000000000	-1,7320507
unha partícula de carga q :	=						
e masa m :	=				Coord X (cm)	Coord Y (cm)	
situada nese punto.				С	0	1,15470 053 838	

O novo resultado sería:

6	Cifras significativas: 6		Respostas	
	lódulo Unidades	Compoñente x Compoñente y		
	0 N/C	0	0	E →(C) =
	V		1,35000·106	<i>V</i> (C) =
		U		V(C) =

Para os restantes apartados, haberá que escribir a masa e a carga da partícula que se despraza, poñer as coordenadas dos puntos medio G e D(centro da base del triángulo) e elixir os puntos inicial e final nos apartados d) traballo y e) velocidade. Pestana «Enunciado»

Enunciado Datos: K =	9,00.109	,	ε' =	1			
Dada a seguinte distribución	de cargas, (en	μC)		Coord X (cm)	Coord Y (cm)	Carga (μC)
(cc	ordenadas en	cm)	Q_1	-1	-0,57735026919	3
e los puntos D e G, calcula:				Q_2	1	-0,57735026919	3
a) El vector campo eléctrico en	el punto	D		Q_3	0	1,15470 053 838	3
b) O vector forza sobre				Q_4	0	0,000000000000	-1,7320507
unha partícula de carga q =	-1,7320507	μC					
e masa m =	0,25	g			Coord X (cm)	Coord Y (cm)	
situada nese punto.				D	0	-0,57735026919	

Os novos resultados son:

$$V(D) = 6,95885 \cdot 10^6$$
 $V(G) = 7,01481 \cdot 10^6 \text{ V}$
 $W(\text{ext.}) = -W(\text{campo D} \rightarrow G) = -0,0969256 \text{ J}$
 $E_c(D) = 0$ $E_c(G) = 0,0969256 \text{ J}$
 $V(G) = 27,8461 \text{ m/s}$
 $Conxunto E_p = 0 \text{ J}$

- 2. Dúas cargas eléctricas positivas (q_1 e q_2) están separadas unha distancia de 1 m. Entre as dúas hai un punto, situado a 20 cm de q_1 , onde o campo eléctrico é nulo. Sabendo que q_1 é igual a 2 μ C, calcula:
 - a) O valor de q_2 .
 - b) O potencial no punto no que se anula o campo.
 - c) O traballo realizado pola forza do campo para levar unha carga de $-3~\mu\text{C}$ desde o punto no que se anula o campo ata o infinito.

Dato: $K = 9 \cdot 10^9 \text{ N·m}^2 \cdot \text{C}^{-2}$. (A.B.A.U. Set. 18) **Rta.**: a) $q_2 = 32 \,\mu\text{C}$; b) $V = 4.5 \cdot 10^5 \,\text{V}$; c) $W = -1.4 \,\text{J}$.

Cifras significativas: 3 Datos d = 1,00 mDistancia entre as cargas q_1 e q_2 Distancia do punto P á carga q_1 $d_{\rm P1}$ = 20,0 cm = 0,200 m $q_1 = 2,00 \,\mu\text{C} = 2,00 \cdot 10^{-6} \,\text{C}$ Valor da carga situada no punto 1 Valor da carga situada no punto P $q = -3,00 \,\mu\text{C} = -3,00 \cdot 10^{-6} \,\text{C}$ $|\overline{\boldsymbol{E}}_{\mathrm{P}}| = 0$ Campo eléctrico no punto P $K = 9.00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$ Constante eléctrica Incógnitas q_2

Valor da carga q_2 q_2 Potencial electrostático no punto P V_P Traballo para trasladar unha carga de $-3~\mu\text{C}$ desde P ata o infinito $W_{P\to\infty}$ Outros símbolos

Distancia entre dous puntos A e B *Ecuacións*

Intensidade do campo electrostático nun punto creado por unha carga puntual Q situada a unha distancia, r $\vec{E} = K \frac{Q}{r^2} \vec{u}_r$

Principio de superposición $\vec{E}_{A} = \sum_{i} \vec{E}_{Ai}$ Potencial electrostático nun punto creado por unha carga puntual, Q, situa-

da a unha distancia r

Potencial electrostático nun punto debido a varias cargas $V = \sum V_i$ Traballo que fai a forza do campo cando se move unha carga q desde un

Traballo que fai a forza do campo cando se move unha carga q desde un punto A ata outro punto B

 $W_{A\rightarrow B} = q (V_A - V_B)$

 r_{AB}

Solución:

a) Faise un debuxo do vector intensidade de campo electrostático creado pola carga q_1 . Como a carga é positiva, o vector intensidade de campo electrostático está dirixido no sentido positivo do eixe X.

Para determinar a intensidade de campo electrostático nun punto, calcúlase a intensidade de campo electrostático creado por cada carga nese punto, e despois súmanse os vectores.

A ecuación do vector intensidade de campo electrostático creado por unha carga puntual, Q, situada a unha distancia, r, é:

$$\vec{E} = K \frac{Q}{r^2} \vec{u}_r$$

A distancia entre os puntos 1 e P é: d_{P1} = 20,0 cm = 0,200 m.

O vector unitario do punto P respecto ao punto 1, é o vector unitario do eixe X, $\bar{\mathbf{i}}$.

A intensidade de campo electrostático no punto P, debido á carga de 2 μC situada no punto 1, é:

$$\vec{E}_{P_1} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{2,00 \cdot 10^{-6} \left[\text{C} \right]}{\left(0,200 \left[\text{m} \right] \right)^2} \vec{i} = 4,50 \cdot 10^5 \vec{i} \text{ N/C}$$

A intensidade de campo electrostático no punto P debida á carga q_2 situada no punto 2, a 1 m de distancia da carga q_1 , ten que ser oposta, para que a intensidade de campo electrostático no punto P sexa nula.

$$\overline{E}_{P2} = -4,50 \cdot 10^5 \, \overline{i} \, \text{N/C}$$

Tendo en conta que a distancia de q_2 ao punto P é $d_{P2} = 1,00$ [m] – 0,200 [m] = 0,80 m, pódese escribir para o módulo da intensidade do campo electrostático:

$$|\vec{E}| = K \frac{q}{r^2} \Rightarrow 4.50 \cdot 10^5 = 9.00 \cdot 10^9 \frac{q_2}{0.80^2}$$

Despéxase o valor da carga q_2 :

$$q_2 = 3.2 \cdot 10^{-5} \text{ C} = 32 \mu\text{C}$$

Análise: Como a distancia de q_2 ao punto P é 4 veces maior que a da carga q_1 , o valor da carga terá que ser 4^2 = 16 veces maior.

b) Para calcular o potencial electrostático nun punto, calcúlase cada un dos potenciais creados nese punto por cada carga situada nos vértices e deseguido súmanse.

A ecuación do potencial, V, electrostático nun punto creado por unha carga puntual, Q, situada a unha distancia, r, é:

$$V = K \frac{Q}{r}$$

Calcúlanse os potenciais electrostáticos no punto P, debidos a cada unha das cargas:

$$V_{\rm P}_{\rm 1} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{2,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,20 \left[\text{m} \right])} = 9,00 \cdot 10^4 \text{ V}$$

$$V_{\text{P2}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{32 \cdot 10^{-6} \left[\text{C} \right]}{(0,80 \left[\text{m} \right])} = 3,6 \cdot 10^5 \text{ V}$$

O potencial electrostático dun punto debido á presenza de varias cargas, é a suma alxébrica dos potenciais debidos a cada carga.

$$V_{\rm P} = V_{\rm P1} + V_{\rm P2} = 9,00 \cdot 10^4 \, [{\rm V}] + 3,6 \cdot 10^5 \, [{\rm V}] = 4,5 \cdot 10^5 \, {\rm V}$$

c) O traballo realizado polas forzas do campo electrostático cando se move unha carga, q, desde o punto P, onde se anula o campo, ao infinito, é a diminución da enerxía potencial entre eses puntos.

A enerxía potencial electrostática do infinito é nula, por definición. Como o potencial electrostático é a enerxía potencial da unidade de carga, o traballo realizado polas forzas do campo é igual ao valor da carga, q, que se despraza, multiplicado polo potencial do punto de partida P:

$$W_{\text{campo}} = W_{\text{P} \to \infty} = -(E_{\text{p} \infty} - E_{\text{p} P}) = E_{\text{p} P} - E_{\text{p} \infty} = q \cdot V_{\text{P}}$$

O traballo que fai a forza do campo para levar a carga de -3 μC desde o punto P ata o infinito é:

$$W_{P\to\infty} = q \cdot V_P = -3.00 \cdot 10^{-6} [C] \cdot 4.5 \cdot 10^5 [V] = -1.4 J$$

- Unha carga puntual Q ocupa a posición (0, 0) do plano XY no baleiro. Nun punto A de o eixe X o potencial é V = -100 V e o campo eléctrico é E = -10 i N/C (coordenadas en metros):
 - a) Calcula a posición do punto A e o valor de Q.
 - b) Determina o traballo necesario para levar un protón desde o punto B(2, 2) ata o punto A.
 - c) Fai unha representación gráfica aproximada da enerxía potencial do sistema en función da distancia entre ambas as cargas. Xustifica a resposta.

Dato: Carga do protón: $1,6 \cdot 10^{-19} \text{ C}$; $K = 9 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$.

(P.A.U. Set. 11)

 r_{AB}

Rta.: a) $\vec{r}_A = (10,0,0)$ m; $Q = -1,11 \cdot 10^{-7}$ C; b) $W = -4,05 \cdot 10^{-17}$ J.

Cifras significativas: 3 **Datos** Posición da carga Q $r_0 = (0, 0) \text{ m}$ Potencial no punto A V = -100 VCampo eléctrico no punto A $\overline{E} = -10.0 \, \overline{i} \, \text{N/C}$ $r_{\rm B} = (2,000, 2,000) \, \text{m}$ Posición do punto B $q_p = 1,60 \cdot 10^{-19} \text{ C}$ Carga do protón $K = 9.00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$ Constante eléctrica Incógnitas Posición do punto A $r_{\rm A}$ Valor da carga Q $W_{\mathrm{B} o \mathrm{A}}$ Traballo necesario para levar un protón de B a A

Outros símbolos

Distancia entre dous puntos A e B

Ecuacións

 $\vec{E} = K \frac{Q}{r^2} \vec{u}_r$ Campo eléctrico creado por unha carga puntual Q a unha distancia r

Potencial electrostático dun un punto que dista unha distancia r dunha carga Q

Traballo que fai a forza do campo cando se move unha carga q desde un punto A $W_{\text{A}\rightarrow\text{B}} = q (V_{\text{A}} - V_{\text{B}})$ ata outro punto B

Enerxía potencial electrostática dunha carga q nun punto A $E_{pA} = q \cdot V_{A}$

Solución:

a) Substitúense os datos nas ecuacións do campo:

$$\vec{E} = K \frac{Q}{r^2} \vec{u}_r$$

$$-10.0 \, \vec{i} \, [\text{N/C}] = 9.00 \cdot 10^9 \, [\text{N·m}^2 \cdot \text{C}^{-2}] \frac{Q}{r^2} \, \vec{u}_r$$

Tomando só o módulo, queda:

10,0 [N/C]=9,00 · 10⁹ [N·m²·C⁻²]
$$\frac{|Q|}{r^2}$$

Substitúese tamén na ecuación de potencial electrostático:

$$V = K \frac{Q}{r}$$

$$-100 [V] = 9,00 \cdot 10^{9} [N \cdot m^{2} \cdot C^{-2}] \frac{Q}{r}$$

Como na ecuación do campo aparece o valor absoluto da carga |Q|, aplicamos valores absolutos á ecuación do potencial, que queda:

100 [V]=9,00 ·10⁹ [N·m²·C⁻²]
$$\frac{|Q|}{r}$$

Resólvese o sistema:

$$\begin{cases} 10,0 = 9,00 \cdot 10^9 \frac{|Q|}{r^2} \\ 100 = 9,00 \cdot 10^9 \frac{|Q|}{r} \end{cases}$$

Dividindo a segunda ecuación entre a primeira, obtense:

$$r = 10.0 \text{ m}$$

Despexando o valor absoluto da carga |Q| da segunda ecuación:

$$Q = 1,11 \cdot 10^{-7} \text{ C}$$

O potencial é negativo, por tanto, a carga debe ser negativa:

$$Q = -1.11 \cdot 10^{-7} \text{ C}$$

Como a intensidade do campo electrostático no punto é negativa, $\overline{E}_r = -10,0$ \overline{i} (N/C), o punto ten que estar no semieixe positivo:

$$\bar{r}_{A=}$$
 (10,0,0) m

b) O traballo realizado polas forzas do campo electrostático cando se move unha carga, q, desde o punto B ao punto A, é a diminución da enerxía potencial entre os puntos B e A. Como o potencial electrostático é a enerxía potencial da unidade de carga, o traballo realizado polas forzas do campo é igual ao valor da carga, q, que se despraza, multiplicado pola diferencia de potencial entre os puntos de partida B e chegada A:

$$W_{\text{campo}} = W_{\text{B}\to \text{A}} = -(E_{\text{p A}} - E_{\text{p B}}) = E_{\text{p B}} - E_{\text{p A}} = q(V_{\text{B}} - V_{\text{A}})$$

O traballo que fai a forza do campo é

$$W_{B\rightarrow A} = q (V_B - V_A)$$

Calcúlase a distancia do punto B á carga Q:

$$r_{\text{OB}} = \sqrt{(2,00 \text{ [m]})^2 + (2,00 \text{ [m]})^2} = 2,83 \text{ m}$$

Calcúlase o potencial no punto B:

$$V_{\rm B} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{\left| -1,11 \cdot 10^{-7} \left[\text{C} \right] \right|}{2.83 \left[\text{m} \right]} = -353 \text{ V}$$

O traballo da forza do campo é:

$$W_{\rm B \to A} = q \, (V_{\rm B} - V_{\rm A}) = 1,60 \cdot 10^{-19} \, [{\rm C}] \cdot (-353 - (-100)) \, [{\rm V}] = 4,05 \cdot 10^{-17} \, {\rm J}$$

Supoñendo que salga de B e chegue a A coa mesma velocidade, o traballo da forza resultante, igual á variación de enerxía cinética, será nulo, e o traballo que hai que facer é o oposto ao da forza do campo:

$$W(\text{exterior}) = W(\text{resultante}) - W(\text{campo}) = 0 - W(\text{campo}) = -W(\text{campo})$$

O traballo necesario para levar un protón desde o punto B ao A, supoñendo que chegue a A coa mesma velocidade que tiña en B, é:

$$W(\text{exterior}) = -W(\text{campo}) = 4.05 \cdot 10^{-17} \text{ J}$$

c) A enerxía potencial de dúas cargas vén dada pola expresión:

$$E_{p} = q \cdot V = K \frac{Q \cdot q}{r}$$

É inversamente proporcional á distancia entre ambas as cargas. Como as cargas son de signo oposto a enerxía potencial é negativa e aumenta coa distancia ata ser nula a unha distancia infinita.

• Campo uniforme

- 1. Dúas láminas condutoras con igual carga e signo contrario están colocadas horizontalmente e separadas 5 cm. A intensidade do campo eléctrico no seu interior é 2,5·10⁵ N·C⁻¹. Unha micropinga de aceite cuxa masa é 4,90·10⁻¹⁴ kg, e con carga negativa, está en equilibrio suspendida nun punto equidistante de ambas as placas.
 - a) Razoa cal das dúas láminas está cargada positivamente.
 - b) Determina a carga da micropinga.
 - c) Calcula a diferenza de potencial entre as láminas condutoras.

Dato: $g = 9.8 \text{ m} \cdot \text{s}^{-2}$.

(P.A.U. Set. 15)

Cifus simifostius 2

Rta.: b) $q = 1.92 \cdot 10^{-18} \text{ C}$; c) $\Delta V = 1.25 \cdot 10^4 \text{ V}$.

Datos	Cifras significativas: 3
Intensidade do campo eléctrico	$ \overline{\boldsymbol{E}} = 2,50 \cdot 10^5 \text{ N/C}$
Distancia entre as láminas condutoras	d = 5,00 cm = 0,0500 m
Masa da micropinga	$m = 4,90 \cdot 10^{-14} \text{ kg}$
Valor do campo gravitacional terrestre	$g = 9.80 \text{ m/s}^2$
Incógnitas	
Carga da micropinga	q
Diferenza de potencial entre as láminas condutoras	ΔV
Ecuacións	
Forza sobre unha carga puntual q nun campo electrostático uniforme $\overline{\pmb{E}}$	$\overline{\pmb{F}}_{\!\scriptscriptstyle E} = q \cdot \overline{\pmb{E}}$
Valor da forza peso	$P = m \cdot g$
Diferencia de potencial nun campo eléctrico constante	$\Delta V = \overline{\boldsymbol{E}} \cdot d$

Solución:

a, b) Peso:

$$P = m \cdot g = 4,90 \cdot 10^{-14} \text{ [kg]} \cdot 9,80 \text{ [m} \cdot \text{s}^{-2}] = 4,80 \cdot 10^{-13} \text{ N}$$

Cando a micropinga alcanza o equilibrio, a forza eléctrica equilibra á forza peso.

$$F_E = q \cdot E = 4,80 \cdot 10^{-13} \text{ N}$$

Carga eléctrica:

$$q = \frac{F_E}{E} = \frac{4,80 \cdot 10^{-13} [\text{N/C}]}{2,5 \cdot 10^5 [\text{N}]} = 1,92 \cdot 10^{-18} \text{ C}$$

Análise: A carga eléctrica da micropinga é só lixeiramente maior que a do electrón. Corresponde á de $1,92\cdot10^{-18}$ C / $1,6\cdot10^{-19}$ C = 12 electróns. Este resultado parece razoable.

A forza eléctrica está dirixida cara arriba, en sentido contrario ao peso. Como a carga da micropinga é negativa, o campo eléctrico debe estar dirixido cara abaixo: a lámina superior é a positiva e a inferior a negativa.

c) A diferenza de potencial vale:

$$\Delta V = |\overline{E}| \cdot d = 2,50 \cdot 10^5 \text{ [N/C]} \cdot 0,0500 \text{ [m]} = 1,25 \cdot 10^4 \text{ V}$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>FisicaBachGl.ods</u>
Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela

<u>Partícula cargada movéndose nun campo eléctrico uniforme</u>

del capítulo

Electromagnetismo Parabolico

Partícula cargada movéndose nun campo eléctrico uniforme

Faga clic nas celas de cor salmón e elixa as opcións como se mostra. Escriba os datos nas celas de cor branca e bordo azul.

(A.B.A.U. Xuño 17)

Intensidade de d	campo eléctrico	<i>E</i> =	2,5·10 ⁵	N/C	Sentido \
Distancia	entre as placas	<i>d</i> =	5	cm	
Lonxitude del d	campo eléctrico	L =		cm	
Partícula	Carga	<i>q</i> =			
	Masa	<i>m</i> =	$4,90\cdot10^{-14}$	kg	
Velocidade	Módulo	$ \mathbf{v}_0 =$		m/s	
	Dirección	φ =			
Altura do pu	ınto de entrada	$h_o =$		cm	
Despraz	amento vertical	$\Delta y =$	0	cm	
Aceleració	on da gravidade	g =	9,8	m/s²	

Os resultados son:

b)	Carga (12 e)	<i>q</i> =	−1,92·10 ⁻¹⁸ C
c)	ΔV placas	$\Delta V =$	1,25·10 ⁴ V

- 2. Unha esfera pequena, de masa 2 g e carga +3 μC, colga dun fío de 6 cm de lonxitude entre dúas placas metálicas verticais e paralelas separadas entre si unha distancia de 12 cm. As placas posúen cargas iguais pero de signo contrario. Calcula:
 - a) O campo eléctrico entre as placas para que o fío forme un ángulo de 45° coa vertical.
 - b) A tensión do fío nese momento.
 - c) Se as placas se descargan, cal será a velocidade da esfera ao pasar pola vertical? Dato: $g = 9.81 \text{ m} \cdot \text{s}^{-2}$.

Rta.: a) $E = 6.54 \cdot 10^3$ N/C; b) T = R = 0.0277 N; c) v = 0.587 m/s.

Datos Masa da esfera Carga da esfera Lonxitude do fío	Cifras significativas: 3 $m = 2,00 \text{ g} = 2,00 \cdot 10^{-3} \text{ kg}$ $q = 3,00 \mu\text{C} = 3,00 \cdot 10^{-6} \text{ C}$ L = 6,00 cm = 0,0600 m
Ángulo que forma o fío coa vertical	$\alpha = 45^{\circ}$
Valor do campo gravitatorio terrestre	$g = 9.81 \text{ m/s}^2$
Incógnitas	
Valor do campo eléctrico	E
Tensión do fío	T
Velocidade da esfera ao pasar pola vertical	ν
Ecuacións	
Forza sobre unha carga puntual q nun campo electrostático uniforme $\overline{m{E}}$	$\overline{m{F}}_{\!E} = q \cdot \overline{m{E}}$
Valor da forza peso	$P = m \cdot g$
Enerxía potencial da forza peso	$E_{\rm p} = m \cdot g \cdot h$
Enerxía cinética	$E_{\rm c} = \frac{1}{2} m \cdot v^2$

Solución:

a) Debúxase un esquema de forzas:

Cando a esfera alcanza o equilibrio, a tensión equilibra á resultante das forzas peso e eléctrica.

Calcúlase a forza peso:

$$P = m \cdot g = 2,00 \cdot 10^{-3} \text{ [kg]} \cdot 9,81 \text{ [m} \cdot \text{s}^{-2} \text{]} = 0,0196 \text{ N}$$

Como o ángulo entre a resultante e a vertical é de 45° e tan 45° = 1,00, a forza eléctrica vale o mesmo que o peso:

$$F_E = P = 0.0196 \text{ N}$$

Calcúlase o campo eléctrico:

Como son perpendiculares, a forza $E = \frac{F_E}{q} = \frac{0.0196 \text{ [N]}}{3.00 \cdot 10^{-6} \text{ [C]}} = 6.54 \cdot 10^3 \text{ N/C}$ resultante vale:

$$|\vec{R}| = \sqrt{(0.0196[N])^2 + (0.0196[N])^2} = 0.0277 \text{ N}$$

b) O valor da tensión é o mesmo que o da forza resultante:

$$T = R = 0.0277 \text{ N}$$

c) Ao descargarse as láminas só actúa a forza peso, que é unha forza conservativa. A enerxía mecánica consérvase entra a posición inicial e o punto máis baixo da traxectoria.

A altura do punto de equilibrio respecto do punto máis baixo pode calcularse do triángulo:

$$h = L - L \cos \alpha = L (1 - \cos \alpha) = 0,0600 \text{ [m]} (1 - \cos 45^\circ) = 0,0176 \text{ m}$$

A enerxía potencial do peso no punto de partida é:

$$E_p = m \cdot g \cdot h = 2,00 \cdot 10^{-3} \text{ [kg]} \cdot 9,81 \text{ [m} \cdot \text{s}^{-2}] \cdot 0,00240 \text{ [m]} = 3,45 \cdot 10^{-4} \text{ J}$$

Como a enerxía cinética é nula nese punto, a enerxía mecánica valerá o mesmo.

$$E = E_p = 3,45 \cdot 10^{-4} \text{ J}$$

No punto máis baixo a enerxía mecánica é a mesma, e como non hai enerxía potencial, ese será o valor da enerxía cinética. Por tanto, a velocidade valerá:

$$v = \sqrt{\frac{2E_c}{m}} = \sqrt{\frac{2 \cdot 3,45 \cdot 10^{-4} [\text{J}]}{2,00 \cdot 10^{-3} [\text{kg}]}} = 0,587 \text{ m/s}$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>FisicaBachGl.ods</u> Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela <u>Péndulo en campo eléctrico</u>

do capítulo

Electromagnetismo Pendulo Elec

Péndulo en campo eléctrico

Faga clic nas celas de cor salmón e elixa as opcións como se mostra. Escriba os datos nas celas de cor branca e bordo azul.

Os resultados son:

a)	Campo eléctrico	E =	$6,54 \cdot 10^3 \text{ N/C}$
	Diferencia de potencial	ΔV =	785 V
b)	Tensión do fío	T =	0,0277 N
c)	Velocidade máxima	ν =	0,587 m/s

Esferas

- Unha esfera condutora de raio 4 cm ten unha carga de +8 μC en equilibrio electrostático. Calcula canto valen en puntos que distan 0, 2 e 6 cm do centro da esfera:
 - a) O módulo da intensidade do campo electrostático.
 - b) O potencial electrostático.
 - c) Representa as magnitudes anteriores en función da distancia ao centro da esfera.

DATO: $K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$ **Rta.**: a) $|\overline{E}_1| = |\overline{E}_2| = 0$; $|\overline{E}_3| = 2,00 \cdot 10^7 \text{ N/C}$; b) $V_1 = V_2 = 1,80 \cdot 10^6 \text{ V}$; $V_3 = 1,20 \cdot 10^6 \text{ V}$ (A.B.A.U. Xuño 18)

Datos		Cifras significativas: 3
Carga da esfera		$Q = 8,00 \ \mu\text{C} = 8,00 \cdot 10^{-6} \ \text{C}$
Radio da esfera		R = 4,00 cm = 0,0400 m
Distancias ao centro da esf	era: punto interior 1	$r_1 = 0 \text{ cm} = 0 \text{ m}$
	punto interior 2	$r_2 = 2,00 \text{ cm} = 0,0200 \text{ m}$
	punto exterior	$r_3 = 6,00 \text{ cm} = 0,0600 \text{ m}$
Constante eléctrica		$K = 9.00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$

Incógnitas

 \overline{E}_1 , \overline{E}_2 , \overline{E}_3 V_1 , V_2 , V_3 Intensidade do campo electrostático nos puntos 1, 2 e 3 Potencial electrostático nos puntos 1, 2 e 3

Ecuacións

Intensidade do campo electrostático nun punto creado por unha carga pun- $\vec{E} = K \frac{Q}{L^2} \vec{u}_r$ tual *Q* situada a unha distancia *r*

Potencial electrostático nun punto creado por unha carga puntual Q situada $V = K \frac{Q}{Q}$ a unha distancia r

Solución:

a) A intensidade de campo electrostático en o puntos 1 e 2, que se atopan no interior a 0 e 2 cm do centro da esfera, é nulo porque o condutor atópase en equilibrio e todas as cargas atópanse na superficie da esfera. A potencial electrostático en o puntos 1 e 2 é o mesmo que na superficie da esfera:

$$V_1 = V_2 = 9,00 \cdot 10^9 \left[\text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{8,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0400 \left[\text{m} \right])} = 1,80 \cdot 10^6 \text{ V}$$

b) O módulo da intensidade de campo electrostático no punto 3 a 6 cm do centro da esfera é o mesmo que se a carga fose puntual

$$|\vec{E}_3| = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{8,00 \cdot 10^{-6} \left[\text{C} \right]}{\left(0,0600 \left[\text{m} \right] \right)^2} = 2,00 \cdot 10^7 \text{ N/C}$$

 $\underbrace{\bigcirc}_{\geq 20}^{30}$ A potencial electrostático no punto 3 é o mesmo que se a $\stackrel{\text{\tiny II}}{=}$ 15

carga fose puntual

$$V_3 = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{8,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0600 \left[\text{m} \right])} = 1,20 \cdot 10^6 \text{ V}$$

c) A gráfica da variación da intensidade do campo elec-

50 45 5 0 0 10 20 30 40 50 60 70 r (mm)

trostático dá un valor 0 para distancias inferiores ao raio da esfera, faise máxima para o raio e diminúe inversamente proporcional ao cadrado da distancia ao centro da esfera.

A gráfica da variación do potencial electrostático da unha valor constante para distancias inferiores ao raio da esfera e diminúe inversamente proporcional á distancia ao centro da esfera.

A maior parte das respostas pode calcularse coa folla de cálculo <u>FisicaBachGl.ods</u>

Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela

Esferas concéntricas

do capítulo

Electromagnetismo Esferas

Esferas concéntricas

Faga clic nas celas de cor salmón e elixa as opcións como se mostra. Escriba os datos nas celas de cor branca e bordo azul.

Constante	<i>K</i> =	9,00.109	$N \cdot m^2/C^2$	$\varepsilon' =$	1
Esfera		Interior	Exterior		
Carga da esfera	Q =		8		μC
Radio da esfera	R =		4		cm
Distancia	<i>r</i> =	0	2	6	cm
ao centro do punto		A	В	С	

Os resultados son:

	Punto	A	В	С
a)	Campo	0	0	2,00·10 ⁷ N/C
b)	Potencial	$1,80 \cdot 10^6$	$1,80 \cdot 10^6$	1,20·10 ⁶ V

Cuestións e problemas das <u>Probas de avaliación do Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha <u>folla de cálculo</u> de <u>LibreOffice</u> ou <u>OpenOffice</u> do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión <u>CLC09</u> de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de <u>traducindote</u>, de Óscar Hermida López. Procurouse seguir as <u>recomendacións</u> do *Centro Español de Metrología* (CEM)

Actualizado: 11/10/22

Sumario

CAMPO ELECTROSTÁTICO

Carg	as puntuais1
1.	En dous dos vértices dun triángulo equilátero de 2 cm de lado sitúanse dúas cargas puntuais de +10 μC cada unha. Calcula:
	a) O campo eléctrico nun dos vértices
	b) A forza que actúa sobre a carga situada nese vértice
	c) A carga que habería que colocar no centro do triángulo para que o conxunto quede en equili- brio
	d) O potencial electrostático en calquera vértice, tendo en conta a carga no centro
	e) A enerxía potencial electrostática do conxunto das catro cargas
	f) A enerxía posta en xogo para que o triángulo rote 45° arredor dun eixo que pasa polo centro e é perpendicular ao plano do papel
	g) O traballo necesario para levar a carga situada no centro ata o punto medio dun lado
	h) Se a masa da carga é de 0,250 g, e sóltase sen velocidade no centro do lado, calcula a súa velocidade cando pasa polo centro do triángulo
2.	Dúas cargas eléctricas positivas (q_1 e q_2) están separadas unha distancia de 1 m. Entre as dúas hai
	un punto, situado a 20 cm de q ₁ , onde o campo eléctrico é nulo. Sabendo que q ₁ é igual a 2 μC, cal- cula:
	a) O valor de q ₂
	b) O potencial no punto no que se anula o campo
	c) O traballo realizado pola forza do campo para levar unha carga de −3 μC desde o punto no que se anula o campo ata o infinito
3.	Unha carga puntual Q ocupa a posición (0, 0) do plano XY no baleiro. Nun punto A de o eixe X o
	potencial é V = -100 V e o campo eléctrico é E = -10 i N/C (coordenadas en metros):9 a) Calcula a posición do punto A e o valor de Q
	b) Determina o traballo necesario para levar un protón desde o punto B(2, 2) ata o punto A
	c) Fai unha representación gráfica aproximada da enerxía potencial do sistema en función da distancia entre ambas as cargas. Xustifica a resposta
Cam	po uniforme
	Dúas láminas condutoras con igual carga e signo contrario están colocadas horizontalmente e separadas 5 cm. A intensidade do campo eléctrico no seu interior é 2,5·10 ⁵ N·C ⁻¹ . Unha micropinga de aceite cuxa masa é 4,90·10 ⁻¹⁴ kg, e con carga negativa, está en equilibrio suspendida nun punto
	equidistante de ambas as placas11
	a) Razoa cal das dúas láminas está cargada positivamente
	b) Determina a carga da micropinga
	c) Calcula a diferenza de potencial entre as láminas condutoras
2	Unha esfera pequena, de masa 2 g e carga +3 µC, colga dun fío de 6 cm de lonxitude entre dúas pla-
	cas metálicas verticais e paralelas separadas entre si unha distancia de 12 cm. As placas posúen cargas iguais pero de signo contrario. Calcula:
	a) O campo eléctrico entre as placas para que o fío forme un ángulo de 45° coa vertical
	b) A tensión do fío nese momento
	c) Se as placas se descargan, cal será a velocidade da esfera ao pasar pola vertical?
Fofor	
Esjer	Unha cofera condutora de mio 4 con ton unha compa de 18 10 con aquilibrio electrostática Calquila
1.	Unha esfera condutora de raio 4 cm ten unha carga de $+8~\mu\text{C}$ en equilibrio electrostático. Calcula canto valen en puntos que distan 0, 2 e 6 cm do centro da esfera:
	b) O potencial electrostático
	c) Representa as magnitudes anteriores en función da distancia ao centro da esfera