# Question 4: Collaborative filtering recommender system for recommending aisles

#### **MECE:**

**Shubham Bhavsar:** Model building, Evaluation and Aisle Recommendations for Top 5 Banana Buyers

Palash Lalani: Data Preprocessing, Rolling Cross Validation and Report Creation

## **Status Update Table:**

| Model   | Task                                                               | Comment/Score                                                         |  |  |
|---------|--------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| Model 4 | Collaborative filtering recommender system for recommending aisles | Run-time = <b>41.80 seconds</b>                                       |  |  |
|         | Strong Generalization                                              | MAP@5 = <b>0.35579837902969114</b>                                    |  |  |
|         | Ottong Ceneralization                                              | Recall: <b>0.07855490828189576</b>                                    |  |  |
|         | Weak Generalization                                                | MAP@5 = <b>0.047336184386920645</b>                                   |  |  |
|         | Weak Generalization                                                | Recall: 0.07075051890727846                                           |  |  |
|         |                                                                    | Recommendations = [User 1: <b>189425</b> , User 2: <b>194931</b> ,    |  |  |
|         | Top 5 users who buy most bananas                                   | User 3: <b>178107</b> , User 4: <b>99707</b> , User 5: <b>69919</b> ] |  |  |
|         |                                                                    | See Aisle Recommendations section for more info.                      |  |  |
|         | Non Charlet ibrarias Hood                                          | Library: time                                                         |  |  |
|         | Non-Spark Libraries Used                                           | Used for measuring training runtime                                   |  |  |



## **Initial Setup:**

Imported required libraries

Set up a PySpark environment with adequate memory allocation for the driver and executor.

Loaded the datasets (products, orders, order\_products, and aisles) from Google Cloud Storage.

## **Data Preprocessing**

#### What we did?

- Filtered the dataset for users who purchased bananas by identifying the product\_id corresponding to bananas.
- Extracted user-aisle interaction data by aggregating the count of purchases per user per aisle.
- Normalized the interaction strengths to scale the values between 0 and 1.

## Why we did?

• To focus the recommendation system on banana buyers and create a meaningful representation of user-aisle interactions that can be used as input for the ALS model.

#### Code:

```
20 # ------Data Preprocessing-----
21 # Limiting Data for Banana Buyers Only
    banana_product_id = products.filter(col("product_name") == "Banana").select("product_id").first()["product_id"]
23 banana_buyers = order_products.join(orders, "order_id") \
       .filter(col("product_id") == banana_product_id) \
24
        .select("user_id").distinct()
25
26
27
   filtered_orders = orders.join(banana_buyers, "user_id")
28
   filtered_order_products = order_products.join(filtered_orders, "order_id")
29
30 # Aggregate User-Aisle Interactions
31 filtered_order_products = filtered_order_products.join(products, "product_id").join(aisles, "aisle_id")
32 user_aisle_interactions = filtered_order_products.groupBy("user_id", "aisle_id") \
        .agg(count("*").alias("interaction_strength"))
33
34
35 # Normalize Interaction Strengths
36 interaction_stats = user_aisle_interactions.agg(
37
        min("interaction_strength").alias("min_interaction"),
        max("interaction_strength").alias("max_interaction")
38
39 ).collect()
40
41 min_interaction = interaction_stats[0]["min_interaction"]
42 max_interaction = interaction_stats[0]["max_interaction"]
43
44 normalized_user_aisle_interactions = user_aisle_interactions.withColumn(
45
       "normalized_strength",
46
        (col("interaction_strength") - min_interaction) / (max_interaction - min_interaction)
47
48
```

#### **Results:**

```
Normalized User-Aisle Interaction Data:
```

```
+----+
|user_id|aisle_id|interaction_strength| normalized_strength|
+----+
82545
        99 l
                     63 | 0.058161350844277676 |
143423
        84
                     31 0.028142589118198873
79601
                      2|9.380863039399625E-4|
        87
33071
        24
                     15 | 0.013133208255159476 |
22599
                     51 0.04690431519699812
        16
+----+
```

only showing top 5 rows



# **Model Training**

Trained an ALS model using the interaction data.

```
53 # Prepare data in RDD format for ALS modeling
   als_data_raw = user_aisle_interactions.rdd.map(
55
        lambda row: Rating(row["user_id"], row["aisle_id"], row["interaction_strength"])
56
57
58
   # Data Splitting
    train_data_raw, test_data_raw = als_data_raw.randomSplit([0.8, 0.2], seed=42)
60
61 # ------Model Training-----
62
63
   start time = time.time()
64
65 als_model = ALS.train(
66
       train_data_raw,
       rank=20,
67
68
       iterations=20,
69
       lambda_=0.01
70
71
72 end_time = time.time()
73
74 # Calculate runtime
75 training_runtime = end_time - start_time
    print(f"Training runtime: {training_runtime:.2f} seconds")
```

# **Training time:**

```
24/12/01 19:06:16 INFO GoogleHadoopOutputStream: hflush(): No-op due to rate limit Training runtime: 41.80 seconds
```

#### **Model Evaluation:**

- Model Evaluation on Strong and Weak Generalization
- Evaluation on 1000 Random Users

```
78 # ------Model Evaluation Strong and Weak Generalization-----
79
80 unique_users = user_aisle_interactions.select("user_id").distinct()
    _, test_users = unique_users.randomSplit([0.8, 0.2], seed=42)
81
82
     test_users_df = test_users
83 test_data_strong = user_aisle_interactions.join(test_users_df, "user_id")
84
85 recommendations = als_model.recommendProductsForUsers(5)
87 # Weak Generalization
88 test_data_weak = test_data_raw
89 predicted_ranking_weak = recommendations.mapValues(lambda recs: [rec.product for rec in recs])
90 actual_ranking_weak = test_data_weak.map(lambda x: (x.user, int(x.product))).groupByKey().mapValues(list)
91 formatted_ranking_weak = predicted_ranking_weak.join(actual_ranking_weak).map(lambda x: (x[1][0], x[1][1]))
93 metrics weak = RankingMetrics(formatted ranking weak)
94
   map_at_5_weak = metrics_weak.meanAveragePrecisionAt(5)
95 recall_at_5_weak = metrics_weak.recallAt(5)
96
97 # Strong Generalization
98 predicted_ranking_strong = recommendations.mapValues(lambda recs: [rec.product for rec in recs])
    actual\_ranking\_strong = test\_data\_strong.rdd.map(lambda \ x: \ (x["user\_id"], \ int(x["aisle\_id"]))).groupByKey().mapValues(list))
101
102 metrics_strong = RankingMetrics(formatted_ranking_strong)
103 map_at_5_strong = metrics_strong.meanAveragePrecisionAt(5)
104 recall_at_5_strong = metrics_strong.recallAt(5)
106 # Print Generalization Results
106 # Print Generalization Results
     print("Weak Generalization - MAP@5:", map_at_5_weak)
108 print("Weak Generalization - Recall@5:", recall_at_5_weak)
109 print("Strong Generalization - MAP@5:", map_at_5_strong)
110 print("Strong Generalization - Recall@5:", recall_at_5_strong)
111
112
     # -----Model Evaluation for 1000 Random Users-----
113
114 random_users_sample = test_data_raw.map(lambda x: x.user).distinct().takeSample(False, 1000, seed=42)
115 random_users_sample_broadcast = spark.sparkContext.broadcast(set(random_users_sample))
117 # Filter for Random Users
     filtered_recommendations_sample = recommendations.filter(lambda x: x[0] in random_users_sample_broadcast.value)
119
     filtered_test_data_sample = test_data_raw.filter(lambda x: x.user in random_users_sample_broadcast.value)
121 predicted_ranking_sample = filtered_recommendations_sample.mapValues(lambda recs: [rec.product for rec in recs])
     actual_ranking_sample = filtered_test_data_sample.map(lambda x: (x.user, int(x.product))).groupByKey().mapValues(list)
122
formatted_ranking_sample = predicted_ranking_sample.join(actual_ranking_sample).map(lambda x: (x[1][0], x[1][1]))
124
125 metrics_sample = RankingMetrics(formatted_ranking_sample)
126
     map_at_5_sample = metrics_sample.meanAveragePrecisionAt(5)
127 recall_at_5_sample = metrics_sample.recallAt(5)
128
129 # Print Results
130 print("1000 Random Users - MAP@5:", map_at_5_sample)
131 print("1000 Random Users - Recall@5:", recall_at_5_sample)
```

## **Output:**

```
Weak Generalization - MAP@5: 0.047336184386920645
Weak Generalization - Recall@5: 0.07075051890727846
Strong Generalization - MAP@5: 0.35579837902969114
Strong Generalization - Recall@5: 0.07855490828189576
1000 Random Users - MAP@5: 0.05071726391706108
1000 Random Users - Recall@5: 0.07061208130143817
```



## **Aisle Recommendations for Top Banana Buyers**

- Identified the top 5 users who purchased the most bananas.
- Generated aisle recommendations for these users using the trained ALS model.

#### Code:

```
# -----Aisle Recommendations for Top Bannana Buyers------
133
134
     top_banana_buyers = filtered_order_products.filter(col("product_id") == banana product id) \
135
136
         .groupBy("user_id") \
137
         .count() \
         .orderBy(col("count").desc()) \
138
139
         .limit(5)
140
141
     top_banana_buyers_ids = [row["user_id"] for row in top_banana_buyers.collect()]
142
     top banana buyers broadcast = spark.sparkContext.broadcast(top banana buyers ids)
143
144
     recommendations\_top\_users = recommendations.filter(lambda \ x: \ x[\emptyset] \ in \ top\_banana\_buyers\_broadcast.value).collect()
145
146
     print("\nAisle Recommendations for Top Banana Buyers:")
147
     if not recommendations_top_users:
148
         print("No Recommendations Found for Top Banana Buyers")
149
     else:
150
         for user_id, recs in recommendations_top_users:
             recommendations_list = [(r.product, r.rating) for r in recs]
151
152
             print(f"User ID: {user id}, Recommendations: {recommendations list}")
153
     recommendations_top_users_df = spark.createDataFrame([
154
155
         (user_id, r.product, r.rating)
156
         for user_id, recs in recommendations_top_users
157
         for r in recs
     ], schema=["user_id", "aisle_id", "score"])
158
159
160
     # Join recommendations with aisle names
     recommendations with names df = recommendations top users df.join(
161
          aisles.withColumnRenamed("aisle_id", "aisle_key"),
162
          recommendations_top_users_df["aisle_id"] == col("aisle_key"),
163
          "left"
164
165
     ).select(
          "user_id"
166
          "aisle_id",
167
          "score",
168
          "aisle"
169
170
171
172
      print("Aisle Recommendations for Top Banana Buyers:")
173
      recommendations_with_names_df.show(25, truncate=False)
174
175
      recommendations with names df = recommendations with names df.limit(10000) # Limit to 10,000 rows
176
177
     output path = "gs://toolsforai//recommendations with aisle names.csv"
178
179
     # Save the recommendations
     recommendations with names df.write.csv(output path, header=True, mode="overwrite")
180
     print(f"Results saved to {output path}")
181
182
183
```

# **Output:**

```
Aisle Recommendations for Top Banana Buyers:
User ID: 189425, Recommendations: [(24, 728.3893534714425), (27, 266.4023978993389), (41, 238.60388996587523), (123, 152.39037838925225), (112, 106.40643105090045)]
User ID: 194931, Recommendations: [(92, 225.40927276666253), (41, 90.7100916706811), (24, 54.299381035619085), (84, 51.608830003173004), (96, 45.4860273381789)]
User ID: 178107, Recommendations: [(24, 491.17290341125045), (124, 182.58793796080604), (112, 156.7947784964831), (27, 144.53500755617353), (40, 136.17117579131263)]
User ID: 99707, Recommendations: [(121, 302.0609085213249), (24, 282.07614083542325), (107, 260.04587887844514), (38, 193.66713873690688), (120, 142.94361472167836)]
User ID: 69919, Recommendations: [(24, 125.76807668715483), (92, 46.244957012269694), (41, 42.10873020151328), (27, 42.065170240550714), (124, 36.15767915125299)]
```

Aisle Recommendations for Top Banana Buyers:

| +       | +        | +                  | ++                         |
|---------|----------|--------------------|----------------------------|
| user_id | aisle_id | score              | aisle                      |
| 189425  | 24       | 728.3893534714425  | fresh fruits               |
| 189425  | 27       | 266.4023978993389  | beers coolers              |
| 189425  | 41       | 238.60388996587523 | cat food care              |
| 189425  | 123      | 152.39037838925225 | packaged vegetables fruits |
| 189425  | 112      | 106.40643105090045 | bread                      |
| 194931  | 92       | 225.40927276666253 | baby food formula          |
| 194931  | 41       | 90.7100916706811   | cat food care              |
| 194931  | 24       | 54.299381035619085 | fresh fruits               |
| 194931  | 84       | 51.608830003173004 | milk                       |
| 194931  | 96       | 45.4860273381789   | lunch meat                 |
| 178107  | 24       | 491.17290341125045 | fresh fruits               |
| 178107  | 124      | 182.58793796803604 | spirits                    |
| 178107  | 112      | 156.7947784964831  | bread                      |
| 178107  | 27       | 144.53500755617353 | beers coolers              |
| 178107  | 40       | 136.17117579131263 | dog food care              |
| 99707   | 121      | 302.0609085213249  | cereal                     |
| 99707   | 24       | 282.07614083542325 | fresh fruits               |
| 99707   | 107      | 260.04587887844514 | chips pretzels             |
| 99707   | 38       | 193.6671387369668  | frozen meals               |
| 99707   | 120      | 142.94361472167836 | yogurt                     |
| 69919   | 24       | 125.76807668715483 | fresh fruits               |
| 69919   | 92       | 46.244957012269694 | baby food formula          |
| 69919   | 41       | 42.10873020151328  | cat food care              |
| 69919   | 27       | 42.065170240550714 | beers coolers              |
| 69919   | 124      | 36.15767915125299  | spirits                    |
| _       |          |                    |                            |



#### **Entire Code:**

```
order products = spark.read.csv('gs://toolsforai/order products.csv',
header=True, inferSchema=True)
aisles = spark.read.csv('gs://toolsforai/aisles.csv', header=True,
inferSchema=True)
# ------Data Preprocessing-----
# Limiting Data for Banana Buyers Only
banana product id = products.filter(col("product name") ==
"Banana").select("product id").first()["product id"]
banana buyers = order products.join(orders, "order id") \
    .filter(col("product id") == banana product id) \
    .select("user id").distinct()
filtered orders = orders.join(banana buyers, "user id")
filtered order products = order products.join(filtered orders,
"order id")
# Aggregate User-Aisle Interactions
filtered order products = filtered order products.join(products,
"product id").join(aisles, "aisle id")
user aisle interactions = filtered order products.groupBy("user id",
"aisle id") \
    .agg(count("*").alias("interaction_strength"))
# Normalize Interaction Strengths
interaction stats = user aisle interactions.agg(
   min("interaction strength").alias("min_interaction"),
   max("interaction strength").alias("max interaction")
).collect()
min interaction = interaction stats[0]["min interaction"]
max interaction = interaction stats[0]["max interaction"]
normalized user aisle interactions =
user aisle interactions.withColumn(
    "normalized strength",
```

```
(col("interaction strength") - min interaction) / (max interaction
- min interaction)
# Preview Normalized Interactions
print("Normalized User-Aisle Interaction Data:")
normalized user aisle interactions.show(5)
# Prepare data in RDD format for ALS modeling
als data raw = user aisle interactions.rdd.map(
   lambda row: Rating(row["user id"], row["aisle id"],
row["interaction strength"])
)
# Data Splitting
train_data_raw, test_data_raw = als_data_raw.randomSplit([0.8, 0.2],
seed=42)
# ------Model Training------
start time = time.time()
als model = ALS.train(
   train data raw,
   rank=20,
   iterations=20,
   lambda =0.01
)
end_time = time.time()
# Calculate runtime
training runtime = end time - start time
print(f"Training runtime: {training runtime:.2f} seconds")
# ------Model Evaluation Strong and Weak Generalization------
unique users = user aisle interactions.select("user id").distinct()
```

```
, test users = unique users.randomSplit([0.8, 0.2], seed=42)
test users df = test users
test data strong = user aisle interactions.join(test users df,
"user id")
recommendations = als model.recommendProductsForUsers(5)
# Weak Generalization
test data weak = test data raw
predicted ranking weak = recommendations.mapValues(lambda recs:
[rec.product for rec in recs])
actual ranking weak = test data weak.map(lambda x: (x.user,
int(x.product))).groupByKey().mapValues(list)
formatted ranking weak =
predicted ranking weak.join(actual ranking weak).map(lambda x:
(x[1][0], x[1][1])
metrics weak = RankingMetrics(formatted ranking weak)
map at 5 weak = metrics weak.meanAveragePrecisionAt(5)
recall at 5 weak = metrics weak.recallAt(5)
# Strong Generalization
predicted ranking strong = recommendations.mapValues(lambda recs:
[rec.product for rec in recs])
actual ranking strong = test data strong.rdd.map(lambda x:
(x["user id"], int(x["aisle id"]))).groupByKey().mapValues(list)
formatted ranking strong =
predicted ranking strong.join(actual ranking strong).map(lambda x:
(x[1][0], x[1][1])
metrics strong = RankingMetrics(formatted ranking strong)
map at 5 strong = metrics strong.meanAveragePrecisionAt(5)
recall at 5 strong = metrics strong.recallAt(5)
# Print Generalization Results
print("Weak Generalization - MAP@5:", map_at_5_weak)
```

```
print("Weak Generalization - Recall@5:", recall at 5 weak)
print("Strong Generalization - MAP@5:", map at 5 strong)
print("Strong Generalization - Recall@5:", recall at 5 strong)
# ------Model Evaluation for 1000 Random Users------
random users sample = test data raw.map(lambda x:
x.user).distinct().takeSample(False, 1000, seed=42)
random users sample broadcast =
spark.sparkContext.broadcast(set(random users sample))
# Filter for Random Users
filtered recommendations sample = recommendations.filter(lambda x:
x[0] in random users sample broadcast.value)
filtered test data sample = test data raw.filter(lambda x: x.user in
random users sample broadcast.value)
predicted ranking sample =
filtered recommendations sample.mapValues(lambda recs: [rec.product
for rec in recs])
actual ranking sample = filtered test data sample.map(lambda x:
(x.user, int(x.product))).groupByKey().mapValues(list)
formatted ranking sample =
predicted ranking sample.join(actual ranking sample).map(lambda x:
(x[1][0], x[1][1])
metrics sample = RankingMetrics(formatted ranking sample)
map at 5 sample = metrics sample.meanAveragePrecisionAt(5)
recall at 5 sample = metrics sample.recallAt(5)
# Print Results
print("1000 Random Users - MAP@5:", map at 5 sample)
print("1000 Random Users - Recall@5:", recall at 5 sample)
# -----Aisle Recommendations for Top Bannana Buyers-----
top banana buyers = filtered order products.filter(col("product id")
== banana product id) \
```

```
.groupBy("user id") \
    .count() \
    .orderBy(col("count").desc()) \
    .limit(5)
top banana buyers ids = [row["user id"] for row in
top banana buyers.collect()]
top banana buyers broadcast =
spark.sparkContext.broadcast(top banana buyers ids)
recommendations top users = recommendations.filter(lambda x: x[0] in
top banana buyers broadcast.value).collect()
print("\nAisle Recommendations for Top Banana Buyers:")
if not recommendations top users:
    print("No Recommendations Found for Top Banana Buyers")
else:
    for user id, recs in recommendations top users:
        recommendations list = [(r.product, r.rating) for r in recs]
        print(f"User ID: {user id}, Recommendations:
{recommendations list}")
recommendations top users df = spark.createDataFrame([
    (user id, r.product, r.rating)
    for user id, recs in recommendations top users
    for r in recs
], schema=["user id", "aisle id", "score"])
# Join recommendations with aisle names
recommendations with names df = recommendations top users df.join(
    aisles.withColumnRenamed("aisle id", "aisle key"),
    recommendations top users df["aisle id"] == col("aisle key"),
    "left"
).select(
    "user_id",
    "aisle id",
```

```
"score",
    "aisle"
)
print("Aisle Recommendations for Top Banana Buyers:")
recommendations with names df.show(25, truncate=False)
recommendations with names df =
recommendations with names df.limit(10000) # Limit to 10,000 rows
output path = "gs://toolsforai//recommendations with aisle names.csv"
# Save the recommendations
recommendations with names df.write.csv(output path, header=True,
mode="overwrite")
print(f"Results saved to {output_path}")
Cross Validation Code:
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, row_number
from pyspark.sql.window import Window
from pyspark.ml.recommendation import ALS
from pyspark.ml.evaluation import RegressionEvaluator
# Initialize Spark Session
spark =
SparkSession.builder.appName("RecommenderSystem").getOrCreate()
# Load the datasets
aisles = spark.read.csv("gs://dataproc-staging-us-central1-
116615940763-tcdeaetb/retail/aisles.csv", header=True,
inferSchema=True)
```

```
departments = spark.read.csv("gs://dataproc-staging-us-central1-
116615940763-tcdeaetb/retail/departments.csv", header=True,
inferSchema=True)
orders = spark.read.csv("gs://dataproc-staging-us-central1-
116615940763-tcdeaetb/retail/orders.csv", header=True,
inferSchema=True)
products = spark.read.csv("gs://dataproc-staging-us-central1-
116615940763-tcdeaetb/retail/products.csv", header=True,
inferSchema=True)
order products = spark.read.csv("gs://dataproc-staging-us-central1-
116615940763-tcdeaetb/retail/order products.csv", header=True,
inferSchema=True)
# Join datasets to create a unified DataFrame for analysis
data = order products.join(orders, on="order id", how="inner") \
                     .join(products, on="product id", how="inner") \
                     .join(aisles, on="aisle id", how="inner") \
                     .join(departments, on="department id",
how="inner")
# Select relevant columns
data = data.select("order_id", "product_id", "user_id",
"add to cart order", "reordered")
# Assign row numbers to simulate timestamps for rolling cross-
validation
window spec = Window.orderBy("order id")
data = data.withColumn("row num", row number().over(window spec))
# Define rolling splits
def create rolling splits(data, num splits=3):
    total rows = data.count()
    split size = total rows // (num splits + 1)
    splits = []
    for i in range(num splits):
```

```
train = data.filter(col("row num") <= split size * (i + 1))</pre>
        test = data.filter((col("row num") > split size * (i + 1)) &
                           (col("row num") <= split size * (i + 2)))</pre>
        splits.append((train, test))
    return splits
rolling splits = create rolling splits(data)
# Inspect each train-test split
for i, (train, test) in enumerate(rolling splits):
    print(f"Fold {i+1}:")
    # Print train and test split counts
    print(f"Train count: {train.count()}, Test count: {test.count()}")
    # Show first few rows of train set
    print("Train Split:")
    train.show(5)
    # Show first few rows of test set
    print("Test Split:")
    test.show(5)
    # Check overlap between train and test
    train users = train.select("user id").distinct()
    test users = test.select("user id").distinct()
    common users = train users.intersect(test users).count()
    train products = train.select("product id").distinct()
    test products = test.select("product id").distinct()
    common products = train products.intersect(test products).count()
    print(f"Common users: {common users}, Common products:
{common_products}")
    print("-" * 50)
```

```
# Configure ALS
als = ALS(userCol="user id", itemCol="product id",
ratingCol="reordered",
          rank=10, maxIter=10, regParam=0.1, coldStartStrategy="drop")
# Initialize RMSE evaluator
evaluator = RegressionEvaluator(metricName="rmse",
labelCol="reordered", predictionCol="prediction")
# Train and evaluate on each split
rmse scores = []
for i, (train, test) in enumerate(rolling splits):
    print(f"Fold {i+1}:")
    # Train the ALS model
    model = als.fit(train)
   # Make predictions on the test set
    predictions = model.transform(test)
    # Check if predictions are not empty
    if predictions.count() > 0:
        # Evaluate RMSE
        rmse = evaluator.evaluate(predictions)
        rmse scores.append(rmse)
        print(f"Fold {i+1} RMSE: {rmse}")
    else:
        print(f"Fold {i+1}: No predictions generated. Skipping RMSE
evaluation.")
    print("-" * 50)
# Calculate average RMSE
if len(rmse scores) > 0:
    average rmse = sum(rmse scores) / len(rmse scores)
    print(f"Average RMSE across all folds: {average rmse}")
```

## else:

print("No valid predictions generated for any fold.")

# Results:

#### For Fold-1

Train count: 8108621, Test count: 8108621

## Train Split:

| +                       | +        | +       | +       | +                 | +-          | +      |
|-------------------------|----------|---------|---------|-------------------|-------------|--------|
| orde                    | r_id pro | duct_id | user_id | add_to_cart_order | reordered r | ow_num |
| +                       | +        | +       | +       | +                 | +-          | +      |
|                         | 2        | 33120   | 202279  | 1                 | 1           | 1      |
|                         | 2        | 28985   | 202279  | 2                 | 1           | 2      |
| 1                       | 2        | 9327    | 202279  | 3                 | 0           | 3      |
|                         | 2        | 45918   | 202279  | 4                 | 1           | 4      |
|                         | 2        | 30035   | 202279  | 5                 | 0           | 5      |
| +                       | +        | +       | +       | +                 | +-          | +      |
| only showing top 5 rows |          |         |         |                   |             |        |

## Test Split:

| ++         | +           | +       | +                 | +                 |
|------------|-------------|---------|-------------------|-------------------|
| order_id   | product_id  | user_id | add_to_cart_order | reordered row_num |
| ++         | +           | +       | +                 | +                 |
| 855943     | 13631       | 174676  | 8                 | 1 8108622         |
| 855943     | 22169       | 174676  | 9                 | 1 8108623         |
| 855943     | 14462       | 174676  | 10                | 0 8108624         |
| 855943     | 6849        | 174676  | 11                | 0 8108625         |
| 855943     | 45445       | 174676  | 12                | 1 8108626         |
| ++         | +           | +       | +                 | +                 |
| only showi | ng top 5 ro | WS      |                   |                   |

Common users: 156604, Common products: 46506

Fold 1 RMSE: 0.46764134162378995

# For Fold-2

Train count: 16217242, Test count: 8108621

Train Split:

| +    | er idlor | oduct idluse | r idladd i | +<br>to_cart_order reor | dered row | numl |
|------|----------|--------------|------------|-------------------------|-----------|------|
| +    | +        |              |            | +                       | -         |      |
|      | 2        | 33120 20     | 2279       | 1                       | 1         | 1    |
|      | 2        | 28985 20     | 2279       | 2                       | 1         | 2    |
|      | 2        | 9327 20      | 2279       | 3                       | 0         | 3    |
|      | 2        | 45918 20     | 2279       | 4                       | 1         | 4    |
|      | 2        | 30035 20     | 2279       | 5                       | 0         | 5    |
| +    | +        | +            | +          | +                       | +         | +    |
| only | showing  | ton E rows   |            |                         |           |      |

only showing top 5 rows

# Test Split:

| +                       | +        | +       | +                 | +                 |  |
|-------------------------|----------|---------|-------------------|-------------------|--|
| order_id pr             | oduct_id | user_id | add_to_cart_order | reordered row_num |  |
| +                       | +        | +       |                   | +                 |  |
| 1711047                 | 44683    | 159337  | 12                | 0   16217243      |  |
| 1711048                 | 39812    | 36017   | 1                 | 1   16217244      |  |
| 1711048                 | 24964    | 36017   | 2                 | 1   16217245      |  |
| 1711048                 | 2966     | 36017   | 3                 | 1   16217246      |  |
| 1711048                 | 45007    | 36017   | 4                 | 1   16217247      |  |
| +                       | +        | +       | +                 | +                 |  |
| only showing top 5 rows |          |         |                   |                   |  |

..., ......

Common users: 174350, Common products: 47662

Fold 2 RMSE: 0.46176252481905483

#### For Fold-3

Train count: 24325863, Test count: 8108621

Train Split:

| +    | er_id pr | oduct_id | user_id | <br>add_to_cart_order | reordered | row_num |
|------|----------|----------|---------|-----------------------|-----------|---------|
| +    | +        | +        | +       | +                     | +         | ++      |
| 1    | 2        | 33120    | 202279  | 1                     | 1         | 1       |
|      | 2        | 28985    | 202279  | 2                     | 1         | 2       |
| 1    | 2        | 9327     | 202279  | 3                     | 0         | 3       |
|      | 2        | 45918    | 202279  | 4                     | 1         | 4       |
| 1    | 2        | 30035    | 202279  | 5                     | 0         | 5       |
| +    | +        | +        | +       | +                     | +         | +       |
| only | showing  | top 5 ro | VS      |                       |           |         |

Test Split:

| +                       | +-         | +-       |                   | ++                |  |  |
|-------------------------|------------|----------|-------------------|-------------------|--|--|
| order_id pr             | oduct_id u | ser_1d a | add_to_cart_order | reordered row_num |  |  |
| 0555544                 |            | +-       |                   | 4   0422224       |  |  |
| 2565514                 | 44098      | 85474    | /1                | 1 24325864        |  |  |
| 2565514                 | 12144      | 85474    | 8                 | 1 24325865        |  |  |
| 2565514                 | 3849       | 85474    | 9                 | 1 24325866        |  |  |
| 2565514                 | 18370      | 85474    | 10                | 1 24325867        |  |  |
| 2565514                 | 24852      | 85474    | 11                | 1 24325868        |  |  |
| ++                      |            |          |                   |                   |  |  |
| only showing top 5 rows |            |          |                   |                   |  |  |

Common users: 178624, Common products: 47848

Fold 3 RMSE: 0.45927021393916434

Average RMSE across all folds: 0.46289136012733634

### **Jobs Screenshot:**





Average RMSE across all folds: 0.46289136012733634