

Course > Week 2 > Home... > hw1_se...

hw1_search_q6_hive_minds_swarm_movement

Question 6: Hive Minds: Swarm Movement

9/9 points (ungraded)

You control K insects, each of which has a specific target ending location X_k . No two insects may occupy the same square. In each time step all insects move **simultaneously** to a currently free square (or stay in place); adjacent insects cannot swap in a single time step.

Which of the following is a minimal correct state space representation?

- K tuples $((x_1,y_1),(x_2,y_2),\ldots,(x_K,y_K))$ encoding the x and y coordinates of each insect. \checkmark
- K tuples $((x_1, y_1), (x_2, y_2), \ldots, (x_K, y_K))$ encoding the x and y coordinates of each insect, plus K boolean variables indicating whether each insect is next to another insect.

0	K tuples $((x_1,y_1),(x_2,y_2),\dots,(x_K,y_K))$ encoding the x and y coordinates of each insect, plus MN booleans indicating which squares are currently occupied by an insect.
0	MN booleans (b_1,b_2,\ldots,b_{MN}) encoding whether or not an insect is in each square.
Wha	t is the size of the state space?
0	MN
0	2^{MN}
0	KMN
•	$(MN)^K \checkmark$
0	$(MN)^K 2^K$
	$(MN)^K 2^{MN}$
0	$2^K MN$
0	2^{MNK}
Whic	th of the following heuristics are admissible (if any)?
	Sum of Manhattan distances from each insect's location to its target location.
	Sum of costs of optimal paths for each insect to its goal if it were acting alone in the environment, unobstructed by the other insects.
•	Max of Manhattan distances from each insect's location to its target location.

Max of costs of optimal paths for each insect to its goal if it were acting alone in the environment, unobstructed by the other insects.
Number of insects that have not yet reached their target location.
•
Submit
✓ Correct (9/9 points)

© All Rights Reserved