1. Use the rnorm function in R to generate 3 random samples of size 30 from a normal distribution with mean 15, and standard deviation 3. Plot these as histograms, each on the same X scale. Write down the mean and standard deviation for each.

Histogram of random sample 1

Mean: 14.70; Standard deviation: 3.32

Histogram of random sample 2

Mean: 15.06; Standard deviation: 3.32

Histogram of random sample 3

Mean: 14.28; Standard deviation: 3.93

2. 141, q.7

The probability is 0.014. (0.035×0.40)

3. 146, q.31

a. Yes. The two events are mutually exclusive because it is impossible to randomly choose a colony with the diameter falling into both the range of 4 to 6 and 8 to 12.

b. $P(\text{diameter is between 4 and } 6 \cup \text{diameter is between 8 and } 12) = 0.14 + 0.48 = 0.62.$

c. $P(\text{diameter} \ge 10) = P(\text{diameter is between } 10 \text{ and } 12) + P(\text{diameter is between } 12 \text{ and } 14) = 0.12 + 0.02 = 0.16.$

d. P(diameter is between 8 and 10) = P(diameter is between 8 and 12) - <math>P(diameter is between 10 and 12) = 0.48 - 0.14 = 0.34.

e. $P(\text{diameter is between 8 and } 12 \cup \text{diameter} \ge 10) = P(\text{diameter is between 8 and } 12) + P(\text{diameter } \ge 10) - P(\text{diameter is between } 10 \text{ and } 12) = 0.16 + 0.48 - 0.14 = 0.50.$

4. 226, q.4. conduct a test for independence of goals.

H₀: The goals are independent, following a Poisson distribution.

H₁: The goals are not independent, not following a Poisson distribution.

Decision rule: $P < \alpha = 0.05$; $\bar{X} = 1.22$ (used as the approximated mean of Poisson distribution.)

Goals	Observed	Expected	X^2
0	37	32.96	0.50
1	44	40.32	1.11
2	31	24.66	0.22
3	10	10.05	0.86
4	4	3.07	0.38
5	1	0.75	0.08
>5	0	0.15	0.15

Chi-square Goodness-of-fit test: (degree of freedom = 7-1-1)

$$X^2 = 3.299 < X_{0.05.5}^2 = 11.07; P > \alpha = 0.05.$$

Observation is not significantly different from expectation. Fail to reject the null hypothesis. The goals are independent, following a Poisson distribution.