A. DIODE

1. Mạch hạn chế nối tiếp

a. Hạn chế mức dưới dương

b. Hạn chế mức dưới âm

c. Hạn chế mức trên dương

d. Hạn chế mức trên âm

2. Mạch hạn chế song song

a. Hạn chế mức dưới dương

b. Hạn chế mức dưới âm

c. Hạn chế mức trên dương

d. Hạn chế mức trên âm

e. Hạn chế trên – dưới

3. Mạch dịch mức

a. Mạch dịch mức dương

b. Mạch dịch mức âm

4. Diode Zener

Công thức tổng quát cho mạch:

$$I_{Z} = \frac{U_{vao} - U_{Z} \left(1 + \frac{R}{R_{t}}\right)}{R + r_{Z} + \frac{R. r_{Z}}{R_{t}}}$$

Mạch hạn chế dùng diode Zener

1. Mắc BJT

Base chung (BC)	Collector chung (CC)	Emittor chung (EC)
IN OUT) V+ OUT	IN OUT
 Tín hiệu ra cùng pha tín hiệu vào Ku khá lớn, Ki < 1 	 Tín hiệu ra cùng pha tín hiệu vào Ku xấp xỉ 1, Ki > 1 	- Tín hiệu ra ngược pha tín hiệu vào - Ku lớn, Ki lớn

2. Phân cực BJT

Đường tải một chiều: $E_C = I_C R_C + U_{CE}$

a. Phân cực base

$$\begin{split} V_{CC} &= V_{R_B} + V_{BE} = I_B R_B + V_{BE} \\ I_B &= \frac{V_{CC} - V_{BE}}{R_B}, I_C = \beta I_B = \beta \frac{V_{CC} - V_{BE}}{R_B} \\ U_{CE} &= V_{CC} - I_C R_C \end{split}$$

$$\begin{split} V_{CC} &= V_{R_B} + V_{BE} + V_{R_E} = I_B R_B + V_{BE} + I_E R_E \\ I_B &= \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1) R_E}, I_C = \beta I_B = \beta \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1) R_E} \\ U_{CE} &= V_{CC} - I_C R_C - I_E R_E \approx V_{CC} - I_C (R_C + R_E) \end{split}$$

$$\begin{split} V_{CC} &= V_{R_B} + V_{R_C} + V_{BE} = I_B R_B + I_C R_C + V_{BE} \\ I_B &= \frac{V_{CC} - V_{BE}}{R_B + \beta R_C}, I_C = \beta I_B = \beta \frac{V_{CC} - V_{BE}}{R_B + \beta R_C} \\ U_{CE} &= V_{CC} - I_C R_C \approx V_{CC} - \beta \frac{V_{CC} - V_{BE}}{R_B + \beta R_C} R_C \end{split}$$

d. Phân cực bằng phân áp

e. Phân cưc Emitter

 $+V_{\rm CC}$

$$V_{EE} = V_{R_B} + V_{R_E} + V_{BE} = I_B R_B + I_E R_E + V_{BE}$$

$$I_B = \frac{V_{EE} - V_{BE}}{R_B + (\beta + 1)R_E}, I_C = \beta I_B = \beta \frac{V_{EE} - V_{BE}}{R_B + (\beta + 1)R_E}$$

$$U_{CE} = V_{CC} + V_{EE} - I_C R_C - I_E R_E$$

$$\approx V_{CC} + V_{EE} - I_C (R_C + R_E)$$

Bazo	Hồi tiếp Emitơ	Hồi tiếp Colecto	Phân áp	Emito
Kém ổn định, chỉ dùng cho mạch đóng cắt +V _{CC} R _B V _{CE}	On định tốt V_{CC} R_{B} R_{E}	On định tốt $ \begin{array}{c c} & +V_{CC} \\ & +V_{CC$	Ôn định rất tốt, độ đồng đều cao, thông dụng nhất	Ôn định tốt, cần thêm nguồn âm Vcc Ic Rc IR P RE IR P IR P

C. FET

MOSFET kênh sẵn

MOSFET kênh cảm ứng

1. JFET

Phân cực cho JFET

a. Phân cực bằng điện áp cố định

$$U_{GSQ} = -E_{GS}, U_{DSQ} = E_{DS} - I_D R_D$$

c. Phân cực bằng phân áp

Điện áp cố định	Tự phân cực	Phân áp
Kém ổn định	Ôn định khá	Ôn định tốt
R _D D R _G U _{GS} E _{GS} +	$I_{D} \downarrow R_{D}$ $R_{D} \downarrow R_{D}$ $R_{G} \downarrow U_{GS}$ $R_{G} \downarrow U_{GS}$ $R_{S} \downarrow R_{S}$	$\begin{array}{c c} & +E_{DS} \\ \hline R_1 & I_D & R_D \\ \hline D & D \\ \hline R_2 & U_{GS} & R_S \\ \hline I_S & R_S \\ \hline \end{array}$

JFET		BJT
$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \Leftarrow$	⇒	$I_C = \beta I_B$
$I_D = I_S$ \Leftarrow	⇒	$I_C \cong I_E$
$I_G \cong 0 \text{ A}$	⇒	$V_{BE} \cong 0.7 \text{ V}$

2. MOSFET

• +E_{DS}

Phân cực cho MOSFET

a. Phân cực bằng điện áp cố định

D-MOSFET kênh N

E-MOSFET kênh N

b. Tự phân cực (Không áp dụng cho E-MOSFET)

c. Phân cực bằng phân áp (D-MOSFET như JFET) Với E-MOSFET:

$$U_{DSQ} = E_{DS} - I_{DQ}(R_D + R_S)$$
Phương trình: $aU_{GS}^2 + bU_{GS} + c = 0$

$$\begin{cases} a = kR_S \\ b = (1 - 2kR_SU_T) \\ c = (kR_SU_T^2 - U_G) \end{cases}$$

d. Phân cực bằng hồi tiếp điện áp

 $+E_{DS}$

D. OP – AMP

• KĐTT lý tưởng:

• KĐTT thực tế:

1. Mắc tín hiệu vào

a. Single - ended

b. Double - ended

$$V_d = U_{VVS} = U_{V1} - U_{V2}$$

Tỉ số nén mode chung: $CMRR = \frac{K_{VS}}{K_C} = 20 \log \frac{K_{VS}}{K_C} (dB)$

2. KDTT có vòng hồi tiếp

a. Mạch khuếch đại thuận

$$V_{out} = V_{in} \frac{R_i + R_f}{R_i}$$

$$A_{cl} = K_u = \frac{V_{out}}{V_{in}} = \frac{R_i + R_f}{R_i}$$

Tín hiệu ra cùng pha tín hiệu vào

b. Mạch khuếch đại đảo

$$V_{out} = -V_{in} \frac{R_f}{R_i}$$

$$A_{cl} = K_u = \frac{V_{out}}{V_{in}} = -\frac{R_f}{R_i}$$

Tín hiệu ra ngược pha tín hiệu vào

c. Mạch khuếch đại cộng đảo

$$V_{out} = -R_f \sum_{i=1}^n \frac{V_{IN(i)}}{R_i}$$

d. Mạch khuếch đại cộng không đảo

$$V_{out} = \frac{R_i + R_f}{R_i} \sum_{i=1}^{n} \frac{V_{IN(i)}}{n}$$

e. Mạch tích phân

$$V_{out} = -\frac{1}{RC} \int_0^t V_{in} dt$$

f. Mạch vi phân

$$V_{out} = -RC \frac{dV_{in}}{dt}$$

3. Mạch khuếch đại vi sai

$$V_{out} = \frac{V_2 R_4}{R_4 + R_2} \left(1 + \frac{R_3}{R_1} \right) - \frac{V_1 R_3}{R_1}$$

4. Mạch khuếch đại đo

5. VI MẠCH SỐ

1. Mức logic vào/ra của IC số

a. Ho TTL

b. Ho CMOS (5V)

c. Họ CMOS (10V)

Khả năng chống nhiễu:

- Nhiễu mức cao: $U_{noise} \ge U_{IHmin} U_{OHmin}$ Nhiễu mức thấp: $U_{noise} \le U_{ILmax} U_{OLmax}$
- Mức logic điện áp của các vi mạch số điển hình

Tham số	4000/14000	74C/HC	74НСТ	74AC	74ACT	74AHC	74AHC
U _{IH(min)}	3.5V	3.5V	2V	3.5V	2V	3.85V	2V
$U_{IL(max)}$	1.5V	1.0V	0.8V	1.5V	0.8V	1.65V	0.8V
$U_{OH(min)}$	4.95V	4.9V	4.9V	4.9V	4.9V	4.4V	3.15V
U _{OL(max)}	0.05V	0.1V	0.1V	0.1V	0.1V	0.44V	0.1V
U_{NH}	1.45V	1.4V	2.9V	1.4V	2.9V	0.55V	1.15V
U_{NL}	1.45V	0.9V	0.7V	1.4V	0.7V	1.21V	0.7V

Mức logic dòng của một số vi mạch số điển hình

			CMOS				TTL		
Parameter	4000B	74НС/НСТ	74AC/ACT	74АНС/АНСТ	74	74LS	74AS	74ALS	74F
I _{IH(max)}	lμA	lμA	lμA	lμA	40µА	20μΑ	20µА	20μΑ	20µА
I _{IL(max)}	lμA	lμA	lμA	1µА	1.6mA	0.4mA	0.5mA	100µА	0.6mA
I _{OH(max)}	0.4mA	4mA	24mA	8mA	0.4mA	0.4mA	2mA	400mA	lmA
I _{OL(max)}	0.4mA	4mA	24mA	8mA	16mA	8mA	20mA	8mA	20mA

2. Các cổng logic cơ bản

a. Cổng AND

A	В	F
0	0	0
0	1	0
1	0	0
1	1	1

b. Cổng OR

A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

c. Cổng NOT

3. Các cổng logic thông dụng

 $a. \ \mathring{Cong} \ NAND = NOT + AND$

$b. \ \mathring{Cong} \ NOR = NOT + OR$

c. Cổng XOR

d. Cổng XNOR

Α	F
1	0
0	1

Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

Ā	Α .	В	F
_()	0	1
(0	1	0
	1	0	0
	1	1	0

Α	В	f
0	0	0
0	1	1
1	0	1
1	1	0

Α	В	f
0	0	1
0	1	0
1	0	0
1	1	1