The Thousand-Pulsar-Array programme on MeerKAT XIV: On the high linearly polarized pulsar signals

Simon Johnston, Dipanjan Mitra, Michael J. Keith Lucy Oswald, Aris Karastergiou

Arxiv:2404.10254

Reporter: 曹顺顺 (Shunshun Cao)

2024.5

15 pages in total

I. IntroductionII. Observation & Pulsar SelectionIII. Results & Analysis

Contents

I. Introduction

psr.pku.edu.cn

Rotating Vector Model

(RVM, Radhakrishnan & Cooke 1969): Linearly polarized emission follows dipole magnetic fields.

Noutsos et al. 2012

The physics behind RVM: on radiation mechanisms

Radhakrishnan 1969: ultra-relativistic electrons' curvature radiation $\Rightarrow \tilde{E}//B_0$

Tell $\tilde{E}//B_0$ from $\tilde{E}\perp B_0$ \longleftarrow determine the directions of spin-axis/magnetic-axis.

Chandra X-ray observation of Vela pulsar

 \rightarrow \rightarrow \rightarrow $\widetilde{E} \perp B_0$ more likely for Vela pulsar's case. (Helfand, Gotthelf, Halpern 2001)

Some successful examples:

Orthogonal Polarization Modes (OPM)

Usually on **integrated** pulse profiles.

Some unsuccessful examples:

All **normal** pulsars from Johnston et al. 2023

Class	Number				
RVM	431				
Flat	71				
Non-RVM	352				
Total	854				

Polarization on a continuous train of time-samples (bins): more RVM-like.

Gil & Lyne 1995, on PSR B0329+54.

Stinebring et al. 1984, on PSR B0823+26.

Mitra, Melikidze, Basu 2023a: highly polarized time samples are RVM like.

(d)

Johnston et al. 2024: Try this on more pulsars

II. Observation & Pulsar Selection

MeerKAT observation: 896MHz – 1671MHz 1202 pulsars

1024 bins per rotation period.

Pulsar data selection:

- (a) > 500 pulses recorded
- (b) > 60% pulses having $S/N > 5\sigma$ in Stokes I
- → → 249 pulsars selected.

III. Results & Analysis

(3.1) Highly polarized profiles' formation

Individual pulses - Integrated profiles - set on-pulse window

- \rightarrow select time samples with $L/\sigma_L > 3.5$ and L/I > 80%
- → → calculate PA, integrated profiles and their PA

PSR J1430-6623

-50

30 -

20 -

For some pulsars showing RVM-like PA with OPM in original integrated profiles:

$$PA = PA_0 + \arctan\left(\frac{\sin\alpha\sin(\phi - \phi_0)}{\sin\zeta\cos\alpha - \cos\zeta\sin\alpha\cos(\phi - \phi_0)}\right) \qquad \zeta = \alpha + \beta$$

· OPMs taken into account

· 72 pulsars out of 249 have no enough high L/I samples.

Class	J23	current work
RVM	90	146
Flat	11	9
non-RVM	146	22
No Pol	2	72

p.s. If set criterion L/I > 80% to L/I > 90% \Rightarrow non-RVM number drop from 22 to 9.

J23: Johnston et al. 2023

Whole 1202 pulsars (black) v.s. Selected 249 pulsars (blue) v.s. No high L/I pulsars (red)

- (1) Low E-dot pulsars have brighter single pulses.[because of smaller distances?]
- (2) Low $L/I \rightarrow$ Low E-dot

↑ Maybe pulses are still not enough...

J1534-5334: no L/I > 50%, though very bright (s1400 = 6.8mJy, ATNF)

(3.3) Circular polarization and OPM jumps

- · some highly linearly polarized samples' (HLPS) profile: still significant circular polarized.
 - → possible elliptically polarized normal modes.
- · 35% HLPS profiles show OPM tracks. (J23: 28% in RVM/flat original profiles.)
- · 50% original profiles with OPM show OPM in their HLPS profile.
- · Integrated profiles' PA follow one of OPMs in certain phase regions.
- · No immediate way to tell O/X modes.

(3.4) Tabular description of results

Table A1. Results for 249 pulsars. The first two columns report the pulsar's Jname and the log of the spin-down energy (\dot{E}) . Columns 3 and 4 given the number of single pulses recorded (N_p) and the percentage of those above $5-\sigma$ (N_f) . Columns 5 and 6 give the percentage of linear $(\% L_t)$ and circular $(\% V_t)$ polarization in the integrated profile. Columns 7 and 8 give the mean percentage of all the samples in linear $(\% L_s)$ and circular $(\% V_s)$ polarization. The last two columns give the Class from the RVM fitting according to Johnston et al. (2023) and after formation of the high linear profile. The dagger symbol denotes pulsars which remain non-RVM even after application of a higher linear threshold.

JNAME	$\log(\dot{E})$	N_p	N_f	$\%L_t$	$\%V_t$	$\%L_{S}$	$\%V_{\scriptscriptstyle S}$	Old Class	New Class
J0034-0721	31.3	1042	54.5	15.9	4.4	37.4	4.0	non-RVM	RVM
J0108-1431	30.8	1042	55.6	80.6	12.1	69.5	7.4	flat	flat
J0134-2937	33.1	1110	88.1	51.4	-20.3	47.9	-13.7	RVM	RVM
J0151-0635	30.7	1039	97.6	38.9	0.2	41.0	-1.0	RVM	RVM
J0152-1637	31.9	1047	86.4	15.7	-1.4	25.8	-1.6	non-RVM	No poln
J0255-5304	31.1	1226	81.9	9.2	-5.0	31.3	-4.5	non-RVM	non-RVM
J0302+2252	30.3	1030	57.2	25.4	-0.2	40.9	-0.1	non-RVM	non-RVM
J0304+1932	31.3	1032	89.2	36.8	12.5	45.0	12.6	RVM	RVM
J0401-7608	32.6	1078	98.1	28.8	-2.3	34.8	-2.4	non-RVM	RVM
J0448-2749	31.8	1048	58.1	23.1	-15.3	36.1	-17.3	flat	flat
J0452-1759	33.1	1042	100.0	18.3	-0.0	33.7	0.5	RVM	RVM
J0517+2212	31.6	1036	83.0	21.1	6.1	30.2	6.7	non-RVM	RVM
J0525+1115	31.8	1048	95.1	13.8	9.1	24.5	9.2	non-RVM	No poln
J0536-7543	31.1	1041	92.6	51.5	-11.6	55.3	-10.9	RVM	RVM
J0543+2329	34.6	1033	97.8	53.3	-11.1	61.7	-12.2	RVM	RVM
J0601-0527	32.9	1063	96.9	32.1	1.5	38.4	-0.5	non-RVM	RVM
10614+2229	34 R	1032	100.0	769	16.2	80.5	159	RVM	RVM

High $L/I \leftarrow$ High E-dot

(Though no many selected high E-dot pulsars ---- no strong single pulses)

Conclusion: Highly linearly polarized samples' profiles have more RVM-like PA curves, still with circular polarization and orthogonal modes.

Related to:

- (i) Escape of O/X modes
- (ii) Circular polarization mechanisms
- (iii) Bunching mechanisms (charge solitons...), coherent curvature radiation

Thank you for your attention ©