

acm international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2018

Problem K Living Subgraph

In this problem, you are given a simple undirected graph G=(V,E) of |V|=N nodes and |E|=M edges. An **induced** subgraph of G is defined as a subset of G's nodes together with any edges whose endpoints are both in the subset.

Let $W \subseteq V$ and G[W] be an induced subgraph of G with W as its nodes. G[W] is a **living** subgraph if and only if: (1) It contains at least 3 nodes; (2) It is connected; (3) $G[W \setminus u]$ is connected for all $u \in W$. A graph is *connected* if and only if all nodes are reachable from any node in the graph. $W \setminus u$ denotes a set in which u is removed from W.

Your task is to find a set W with the minimum cardinality such that G[W] is a living subgraph; output only the number of nodes. If G does not contain any living subgraph, then output -1.

Input

Input begins with two integers: N M ($1 \le N \le 20000$; $0 \le M \le 20000$) representing the number of nodes and edges in the given graph, respectively. The next M lines, each contains two integers: u v ($1 \le u < v \le N$) representing an edge connecting node u and v. You may safely assume that each edge appears at most once in the given list.

Output

Output in a line an integer representing the minimum number of nodes in which the induced subgraph is a living subgraph. Output -1 if the given graph contains no living subgraph.

Sample Input #1

5 6			
1 2			
1 3			
1 5			
2 3			
3 4			
4 5			

Sample Output #1

3

Explanation for the sample input/output #1

The induced subgraph G[W] with the set of nodes $W = \{1, 2, 3\}$ is a living subgraph, and it has the minimum number of nodes.

acm international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2018

Sample Input #2

4	3				
1	2				
1	3				
3	3 2 3 4				

Sample Output #2

-1

Explanation for the sample input/output #2

The given graph does not contain any living subgraph.

Sample Input #3

7 8	
1 2	
1 3	
1 6	
2 4	
2 7	
3 5	
4 5	
5 7	

Sample Output #3

4

Explanation for the sample input/output #3

The induced subgraph G[W] with the set of nodes $W=\{2,4,5,7\}$ is a living subgraph, and it has the minimum number of nodes.