Correction TD3 HLMA101

1 Echauffement

Question 1

- (a) Faux. $2 \in A$ n'est pas relié à un élément de B.
- (b) Faux. L'application est définie de A dans B. Donc $c \mapsto 2$ ne convient pas car c appartient à l'espace d'arrivé et non de départ.
- (c) Faux. $1 \in A$ est relié à deux éléments de B.
- (d) Vrai. Tout élément de A est relié à un unique élément de B.

Question 2

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$

- (a) $\exists x \in \mathbb{R}, \exists x' \in \mathbb{R}, f(x) = f(x') \text{ et } x \neq x'$
- (b) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, f(x) \neq f(y)$
- (c) $\forall M \in \mathbb{R}, \exists x \in [50; +\infty[, f^{-1}(x) > M])$

Question 3

- [−1;0[
 - $-\sup = 0$ car l'ensemble des majorants est : $[0; +\infty[$
 - $-\inf$ = −1 car l'ensemble des minorants est :] $-\infty$; −1]
 - p.g.é = \times car $0 \notin [-1; 0[$
 - p.p.é = -1 car -1 est le plus grand des minorants et $-1 \in [-1; 0[$
-] $-2; +\infty[$
 - $\sup = \times$
 - $-\inf = -2$

```
- p.g.\acute{e} = \times
        - p.p.\acute{e} = x
• \mathbb{N} = [0; +\infty[
        - \sup = \times
         -\inf = 0
         - p.g.\acute{e} = \times
         - p.p.\acute{e} = 0
• A = \{x \in \mathbb{R} \mid \exists \ n \in \mathbb{N}^*, \ x = \frac{1}{n}\}
        -\sup = 1
         -\inf = 0
         – p.g.é = 1 car 1 <br/> \in Aet \forall \ n\geqslant 1,\ \frac{1}{n}\leqslant 1
```

Montrons que $\inf(A) = 0$.

 $- p.p.\acute{e} = \times$

Soit M un minorant de A. Alors $M \leqslant \frac{1}{n} \ \forall \ n \geqslant 1$. D'où en faisant tendre n vers $+\infty[$, on a : $M \le 0$ L'ensemble des minorants de A est : $]-\infty;0]$. Le plus grand des minorants de A est 0 d'où $\inf(A) = 0$.

Montrons qu'il n'existe pas de p.p.é dans A. En raisonnant par l'absurde: On suppose qu'il existe $\alpha = \text{p.p.\'e}$ de A. Puisque α est le p.p.\'e de A, $\frac{1}{n} \geqslant \alpha \ \forall n \in \mathbb{N}^*$. Quand $n \longrightarrow \infty$, on a alors : $0 \geqslant \alpha$.

D'autre part, puisque α est le p.p.é de A alors $\alpha \in A$. Donc \exists n_0 tel que $\alpha = \frac{1}{n_0}$. D'où $\alpha = \frac{1}{n_0} > 0$. Contradiction. Conclusion : il n'existe pas de p.p.é de A.

Question 4

- (a) Faux. La borne sup d'un ensemble A est par définition le plus petit élément de l'ensemble des majorants de A. Donc, si A admet une borne sup Xalors X majore A, i.e. A est majoré.
- (b) Faux. Contre-exemple: A = [2; 4]A admet une borne sup qui vaut 4 mais A n'admet pas de plus grand élément $(4 \notin A)$.
- (c) Faux. Contre-exemple : $A =]-\infty; 18]$ A est infini et A admet une borne sup qui vaut 18.
- (d) Faux. Contre-exemple : A = [1; 2]A est borné mais A n'est pas fini (i.e. A est infini).

Feuille3 _ Exor de TD 1 à 5. (conigë de L. Guieu)

EX1: Soit $x \in \mathbb{R}$, la quantité $f(x) = x^2 - 3$ est toujour définie. En revanche la quantité $g(x) = \sqrt{x+3}$ n'et définie que pour $x+3 \gg 0$, ie: $10 \text{ our } x \in \mathbb{Z}$ où \mathbb{Z} en l'intervalle $[-3, +\infty)[$. On peut dans définire :

$$\S: \mathbb{R} \to \mathbb{R} : \varkappa \mapsto \varkappa^2 - 3 \qquad \text{el} \quad g: \mathbb{I} \to \mathbb{R} : \varkappa \mapsto \sqrt{\varkappa + 3} .$$

(Mais on journait droisir d'autres eusembles de déjant et d'anivée ...).

Dans ce cas gof n'en pas définie car l'ensemble d'anivée de 8 ne coincide pas avec l'ensemble de départ de g. Par coulse log en bien définie:

on a alus:
$$\forall x \in \mathbb{I}$$
, $(\log | (x) = \beta (g(x)))$
= $g(x)^2 - 3$
= $(\sqrt{2} + 3)^2 - 3$
= $x + 3 - 3$

Mais la question: gog=gop n'a par ici de seur.

Modifians un peu \S en remarquant que : $\forall x \in \mathbb{R}$, $x^2 - 3 \geqslant -3$ (var $x^7 \geqslant 0$) authorized dit : $x^2 - 3 \in \mathbb{I}$ pour vous $x \in \mathbb{R}$. On pour alas :

 $\stackrel{\sim}{g}$: $\stackrel{\sim}{R} \rightarrow \mathbb{I}$: $\stackrel{\sim}{x} \longmapsto x^2 - 3$. Altertian: $\stackrel{\sim}{g} \neq
\stackrel{\circ}{g}$!

Cette Pois au peut composer pet g dans les deux reus:

$$\mathbb{R} \xrightarrow{\widetilde{g} \cdot \widetilde{p}} \mathbb{R}$$

$$(g \circ \hat{\beta} (x) = g(\hat{\beta}(x)) = g(x^2 - 3) = \sqrt{(x^2 - 3) + 3} = \sqrt{x^2} = |x|$$

Danc: se méfier du produit de camposition: fog n'existe pas toujours,

poy peut exister sans que gofi n'existe. Encore pire: fog et gof peuvent roexister
et ne par étre égales (e qui avive en fait très souvent!).

EX2: Soir g. R -> R: 21 -> 23-32.

Avant vouves dones, étudious les variations de g. g et dérivable (phynôme) et $g'(z) = 3z^2 - 3 = 3(z - 1)(z + 1)$ pour tout $z \in \mathbb{R}$. On arrive ainsi our tableur de variations ruivant: (on remarquera aussi que g est impaire)

. Déverminus la préimage p(R^{*}): Soit r∈R, alus x e \(\(\gamma(\mathbb{R}^{\mu})\) (=> \(\gamma(\alpha) < 0\) (\(\alpha\) \(\alpha^3 - 3\alpha < 0\)

$$c \in \mathcal{C}(\mathbb{R}^{-}) \iff f(u) < 0 \iff 2^{-3}$$

(=) x (x-V3)(x+V3)<0

(=)
$$\times (x-\sqrt{3})(x+\sqrt{3})<0$$

Un plit tableur de signe va mous aider:
$$f(x) = 0 + 0 + 0 + 0$$

Danc x e P(m-) (=> x e]-00,-53 [U]0,53 [

 $\vec{p}(\mathbf{R}'') =]-\infty, -\sqrt{3}[0]0, \sqrt{3}[$

Déberminais $\S^2(]-2,+\infty[)$. On pouvoirait essayer une méthode grafique: \(\begin{array}{ll} (]-2,+\int() \) est l'ensemble des viels \(\int \) les que \(\gamma(\alpha) > -2 \). L'idée est de dessiner le graphe de g dans un rejoire, de dessiner la droite honizantale d'équaliar y=-2 et de me considérer que la justie du graphe de l'située ovidence au-dersus de cette droite. On dresdo das les x tels que le point (2, Pas) voit su cette partie du graghe... (Exo de dessiu!)

Aubre méthode: $g(x) > -2 \iff x^3 - 3x + 2 > 0$. On remarque que p(x)

adud 1 pour racue évidente. En utilisent la methode des coefficients inclétermines, p(x) re rééail ainsi: $p(x) = (x-1)(x^2+x-2)$. Puis avec un calcul de disniminant sur le second facteur, on avraire à p(x) = (x-1)(x-1)(x+2) = (x-1)(x+2). Il vient dans:

x ∈ \(]-2,+∞[) (=) p(x) 0 (=) (u-1)2(u+2)>0 (=> x≠1 et x>-2 (=) x ∈]-2,+ ∞ [el x ≠ 1 (=) 7 €]-2,1[0]1,+∞[

- . La Parchian β n'ent pas imjedive, puisque $f(-\sqrt{3}) = f(\sqrt{3}) = 0$.
- · La fonction & est en revouche surjective:

. La Pardiar of med par bijedire, car mon injedire.

E
$$\frac{1}{90}$$
 G (1) Supposans gog injective.

Flankmans que g l'est aussi. Soient donc « et x dans F et myosans que $\frac{1}{90}$ et myosans que $\frac{1}{$

(ii) Supposes gof nujertive. Montreus que g l'est également, cad: que tout élément z de G parrède un antécédent & E = par g.

Soit $z \in G$. Comme gold nujedire, on put thouser se dans E tel que $z = (g \circ f)(x)$. Donc z = g(y) over $y = f(x) \in F$. capt D

Autre mittrode: come gof en rujedive, (gof)(E)=G; ce qui n'éail auxsi: g(f(E))=G. De plus $f(E)\subset F$ dance $g(f(E))\subset g(F)$. Finalement $G\subset g(F)$. If and d'autre jour dair que $g(F)\subset G$. On en carellel que g(F)=G. \Box

Ex4: Ici g: E -> F est une application. And Azont des justies de E et B,1Bz des jouries de F.

D'une joul: { A, CA, UA, => P(A,) C & (A, UA2) A2 C A, UA2 => P(A2) C & (A, UA2)

Donc : g(A,) u g(A2) = g(A, UA2) V

Réciproquement: Soit $y \in \mathcal{S}(A_1 \cup A_2)$. Alors $y = \mathcal{S}(a)$ avec $a \in A_1 \cup A_2$.

Danc: $y = \mathcal{S}(a)$ avec $a \in A_1 \cup a$ $y = \mathcal{S}(a_1)$ avec $a_2 \in A_2$.

5

Ainsi y e g(Ax) v g(Az). I

(b) (8(A, nA2) = 8(A2) n8(A2)

 $A_{\lambda} \cap A_{\lambda} \subset A_{\lambda}$ of $A_{\lambda} \cap A_{\lambda} \subset A_{\lambda}$ denied: $P(A_{\lambda} \cap A_{\lambda}) \subset P(A_{\lambda})$ of $P(A_{\lambda} \cap A_{\lambda}) \subset P(A_{\lambda}) \cap P(A_{\lambda}) \subset P(A_{\lambda})$.

Remarque: Si f et injective, l'inclusion nécipaque et vnaie. En effet, ni y \in $\S(A_1) \cap \S(A_2)$, dus $y = \S(a_1) = \S(a_2)$ avec $a_1 \in A_2$ et $a_2 \in A_2$. Conne l'injective, ceci entraîte $a_1 = a_2 = a$ et $a_1 \in A_2 \cap A_2$.

Due $y \in \S(A_1 \cap A_2)$. \square

Coulte-execuse à: $g(A_1 \cap A_2) = g(A_2) \cap g(A_2)$ (dans le car général) On veul vouver un g vel que $g(A_1 \cap A_2) \subseteq g(A_2) \cap g(A_2)$. D'agnés nouve remarque, un tel g doit être mon injectif. Considérans denc la function valeur absolue: $g: R \to R: x \mapsto |x|$ of choisissans $A_1 = [-1,0]$ $A_2 = [0,1]$, on a:

P(AnA2) = P({0}) = {0}

 $\beta(A_{\lambda}) \cap \beta(A_{2}) = \beta([-1,0]) \cap \beta([0,1]) = [0,1] \cap [0,1] = [0,1].$

cen a bien f(A, nAz) + f(A, nf(Az) dans a cas. 1

(c) $\tilde{\rho}'(B_{\lambda} \cup B_{2}) = \tilde{\rho}'(B_{\lambda}) \cup \tilde{\rho}'(B_{2})$

On put raisonner directement par équivalence: soit $x \in E$ $x \in \overline{P}(B_1 \cup B_2) := f(x_1 \in B_2 \cup B_2) := f(x_1 \in B_2) = f(x_$

Pour établi [p(B, NB2) = p(B,) Np(B2), le naisonnement et analogue (en semplagant U par N et "ou" par "et").

Ex5: Hyp: Adr B sait des julies nouvides de IR et majorées.

Donc: sup(A) et sup(B) existent dans $A \cup B$. De flus $A \cup B$ est monvide (car A, muvide, est indus dans $A \cup B$) et $A \cup B$ est majorité: Soit H_A un majorant de A et H_B un majorant de B, alors $max(H_A, H_B)$ obt un majorant de $A \cup B$: $\forall a \in A$, $a \in H_A$ $\Rightarrow \forall x \in A \cup B$, $x \in Hax(H_A, H_B)$. $\forall b \in B$, $b \in H_B$

Danc Sup (AUB) existe aussi.

On utilisera les notations reivantes: { $\delta_A = \sup(A)$ $\delta_B = \sup(B)$ $\sigma = \sup(A \circ B)$ $\sigma = \sup(A \circ B)$

On vent mather: 0= M.

Fragel: DA majore A el DB majore B, danc M majore AUB.
Mais o et le plus petit des majorants de AUB. Danc OKM.

Etape 2: On va uviliser le résultat mivant que l'an démanthère à la fin: "Si A et A' sont deux publies mon vider et majories de R, alas: $A \subset A' \implies \sup(A) \leqslant \sup(A')'' \qquad (**)$

(on jeul altèger les hypothèses en ruporal renlement: A = s et A majorée)

Reveraus à l'exo:

$$A \subset A \cup B \implies mp(A) \leq mp(A \cup B)$$
 $donc: max(A_1 A_1 A_1) \leq \sigma$
 $B \subset A \cup B \implies mp(B) \leq mp(A \cup B)$ $cad: M \leq \sigma$

condusion: 5= 17. capel.

Aunexe: Démandrais \oplus . Sup(A') majore A', danc en judiculier \underline{A} : $\forall a \in A$, $a \in A'$ danc $a \leqslant \sup(A')$. Mais $\sup(A)$ et le + plit des majorants de A, d'où $\sup(A) \leqslant \sup(A')$. \square

- Etude de sup (AAB): hyp suplementaine: AAB # \$

 AABCA et A et majorée. danc AAB œussi. Commo AAB et
 majorée, van vide, sup (AAB) existe. Notaus le S.
 - (1) S & mim (OAIDB)

 $A \cap B \subset A \implies sup(A \cap B) \leqslant sup(A)$ $A \cap B \subset B \implies sup(A \cap B) \leqslant sup(B)$ $A \cap B \subset B \implies sup(A \cap B) \leqslant sup(B)$

(11) On jour Mouver un A et un B tels que S < min (SA, SB)

Prenous: A = [0,1] v [2,3] et B = [0,1] v [4,5]. On a alors:

 $A_{B} = 3$ $A_{B} = 5$ $A_{B} = 5$

S=1 < 3 = min (nA, NB).

Moralité: En général, il n'y a pas égalité de sup (ANB) et min (SA,SB) Se méfier des généralisations abusives!