Eclairage local

Céline Loscos

Objectif

Obtenir une image colorée avec un éclairage cohérent

Image sans éclairage

Les objets sont identifiés en blanc, l'arrière plan en noir

Définitions

- Eclairage local
 - Eclairage résultant de l'intensité lumineuse provenant uniquement des sources de lumière
- Source de lumière
 - Elément de la scène émettant de la lumière
 - Représentée par différents types en synthèse d'image : ponctuelle, directionnelle, surfacique, volumique, spot, ...

- Récepteur/réflecteur
 - Objet/surface de la scène, recevant, absorbant, transmettant, et réfléchissant la lumière
 - Les propriétés du matériau détermine le degré de réflectance, absorption, transmission
- Effets visuels
 - Dégradés de couleurs
 - Tâches lumineuses
 - Transparence...
 - Ombres

Notations

- I_r Intensité radiante depuis un objet (ce que nous allons calculer)
- I_i Intensité normalisée de la source de lumière
- K Proportion de la lumière réfléchie plutôt qu'absorbée par le matériau
 - Caractéristique de la surface
 - Varie selon la longeur d'onde
- 3 Longueurs d'onde : rouge, vert, bleu (RVB)
 - En anglaise : Red, Green, Blue (RGB)
- Eclairage simulé: Ambiant + Diffus + Spéculaire

Eclairage ambiant

- C'est une approximation de l'éclairage global
 - Permet de voir l'objet même s'il n'est pas directement éclairé par une source lumineuse
 - L'éclairage ambient est constant sur un objet/surface

Notations: Eclairage ambiant

- l_a Lumière ambiante utilisée pour l'ensemble de la scène
- k_a Portion de I_a relétée par chaque objet, dépend de la longueur d'onde
- Equation générale de la lumière ambiante

$$I_r = k_a I_a$$

Equations par longueur d'onde

$$I_{r, red} = k_{a, red} I_{a, red}$$
 $I_{r, green} = k_{a, green} I_{a, green}$
 $I_{r, blue} = k_{a, blue} I_{a, blue}$

Eclairage ambient - résultat

La loi de Lambert – surfaces diffuses

- Un réflecteur diffus distribue la lumière
- De façon égale dans toutes les directions
- Ceci est du à l'organisation des microfacettes du matériau
- On appelle cette surface Lambertienne (du nom de Lambert)
- Cependant, l'angle de reception de l'intensité lumineuse est importante

La loi de Lambert – importance de l'angle d'incidence de la lumière

- L'intensité de la lumière est proportionnelle à d
- d est proportionnel à $\cos \Theta = \mathbf{n.l}$
- L'intensité réfléchie est proportionnelle à cos Θ
 - I : direction de la lumière
 - **n**: normale à la surface

Lumière diffuse

Definition :

- Intensité normalisée de la lumière incidente à la surface, associée à un rayon de la source de lumière émettrice,
- Et réfléchie par la loi de Lambert

Notation :

 k_d Proportion de la lumière réfléchie de façon diffuse plutôt qu'absorbée

Formulation

Composant diffus

$$k_dI_i(\mathbf{n}.\mathbf{l})$$

Ajout du diffuse à l'ambient

$$I_{r} = k_{a}I_{a} + k_{d}I_{i}(\mathbf{n}.\mathbf{l})$$

- Attention !
 - k_d dépend aussi de la longueur d'onde de façon indépente
 - Calculs réalisés avec k_{d,red} k_{d,green} et k_{d, blue}
 - n.l ne dépend pas des longueurs d'onde!

Avec plusieurs sources de lumières

- Il suffit d'ajouter les contributions pour chaque lumière
 - Soit pour q sources de lumière

$$I_r = k_a I_a + \sum_{j=1}^{q} k_d I_{i,j} (\mathbf{n.l_j})$$

- ullet $I_{i,j}$ Intensité incidente venant de la source de lumière j
- 1_i vecteur de direction de la surface vers la source de lumière j

Résultat : prise en compte de l'éclairage diffus

Lumière spéculaire

- Lumière réfléchie par effet « mirroir »
- Spécularité parfaite : serait très difficile à observer car le point de vue d'observation serait très restreint

Le modèle de Phong : spécularité imparfaite

Notations :

- e Direction vers l'oeil (position de la camera)
- n normal
- I direction vers la source de lumière
- h vecteur bissecteur de e et l

Equation du composant spéculaire

$k_s I_i (\mathbf{h}_i \cdot \mathbf{n})^m$

- m puissance de la lumière (shininess)
 - m grand implique une petite tâche spéculaire
 - m petit rend la tâche spéculaire plus floue
- k_s Proportion de la lumière réfléchie de façon spéculaire
 - Dépend de la longueur d'onde
 - \bullet k_{s,red}, k_{s,green}, k_{s,blue}

Equation de l'éclairage local

 Equation rassemblant les composants diffus, spéculaire, et ambient pour une source de lumière

$$I_r = k_a I_a + I_i (k_d (\mathbf{n.l}) + k_s (\mathbf{h.n})^m)$$

 Pour plusieurs sources de lumière, réaliser la somme des contributions des sources lumineuses

$$I_r = k_a I_a + \sum k_d I_{i,j}(\mathbf{n.l_j}) + \sum k_s I_{i,j}(\mathbf{h_j.n})^m$$

- Attention !
 - Affichage des valeurs entre 0 et 1: il faut couper les valeurs débordant de l'intervalle [0,1]

Résultat de la prise en compte de l'ensemble des effets (diffus, spéculaire, ambient)

Conclusions

- Nous savons attribuer une couleur aux pixels en fonction des propriétés des matériaux
- Nous pouvons ternir compte des propriétés
 - Lumlière ambiante
 - Réflection diffuse
 - Réflection spéculaire
- Il est possible d'avoir plus de sources de lumières dans la scène

Ce qu'il manque

- Les ombres
- Des modèles plus complexes des comportements des matériaux
 - Modélisés par exemple par la BRDF (Bidirectional Reflectance Distribution Function)
- Simuler l'éclairage global
- Définir des comportements locaux
 - Par exemple, par l'utilisation de textures

