

Transmisión Asimétrica de Precios en el sector de la palta en Chile: Evidencia desde un modelo TVECM

Autor: Héctor Garrido Henríquez $Profesor(es) \ Guia(s)$:

Dr. Sergio Contreras Espinoza

Dra. Monia Ben Kaabia

Tesis para optar al grado de Magíster en Matemática con mención en Estadística

Departamento de Estadística

Departamento de Matemática

3 de septiembre de $2017\,$

Índice general

1.	Intr	oducci	ón	13
	1.1.	introd	ucción	13
	1.2.	justific	cación del trabajo	13
2.	Aná	álisis u	nivariante de las series de precios	15
	2.1.	Fuente	es de información	15
		2.1.1.	Imputación de valores perdidos	15
	2.2.	Anális	is del orden de integración de las series	16
		2.2.1.	Análisis gráfico	16
	2.3.	Contra	astes de raíz unitaria	18
		2.3.1.	Contraste de Dickey-Fuller Aumentado	18
		2.3.2.	Contraste de Phillips Perron (1992)	19
		2.3.3.	Contraste Kiatkowsky, Pesaran, Schmidt & Shin (1992)	20
		2.3.4.	Contraste de Elliot, Rothenberg & Stock (1993)	20
		2.3.5.	Contraste de Canova & Hansen (1995) para estacionalidad	
			estable	20
	2.4.	Result	ados de los contrastes de raíz unitaria	20
3.	Aná	álisis d	e cointegración	25
	3.1.		egración y análisis de las relaciones de largo plazo	25
	3.2.		ación basada en la verosimilitud para el modelo VAR irrestricto	
		3.2.1.	Contraste de razón de verosimilitud	29
		3.2.2.	Modelo Vectorial de Corrección del Error (VECM)	30
		3.2.3.	El contraste de cointegración de Johansen	32
	3.3.	Result	ados	33
		3.3.1.	Determinación del rango de cointegración	33
4.	Pro	cesos o	le transmisión asimétricos	37
	4.1.	Model	o de vectores de corrección del error por umbrales (TVECM) .	37
			El contraste de Hansen & Seo (2002)	
		4.1.2.	Contrastes de linealidad	38
			Estimación del modelo	38
		4.1.4.	Relaciones dinámicas a corto plazo	38
	4.2.	Result	ados de la aplicación	38
		4.2.1.	Análisis de las relaciones asimétricas	38
		4.2.2.	Especificación del sistema	38
		4.2.3.	-	38

			Funciones de impulso respuesta	
5.	Con	clusion		43
6.	Bib	liografi	ía	45
7.	Ane	exo		47
	A.	Desarr	rollos adicionales	47
		A.1.	Mínimos cuadrados multivariados	47
		A.2.	Regresión de Rango Reducido	48
	В.	Código	o R	49
		B.1.	Información de la sesión	
		B.2.	Importación y depurado de los datos	50
		B.3.	Comparación entre las funciones VECM y cajolrs	50
		B.4.	Selección modelo VAR	50
		B.5.	Función normalidad	50

Índice de figuras

2.1.	Evolución de precios del palta de larga vida de primera calidad, 2008-	
	2016	15
2.2.	Imputación de valores perdidos a través del filtro de Kalman	16
2.3.	Evolución del logaritmo del precio mayorista de la palta ,2008-2016 .	17
2.4.	Evolución del logaritmo del precio en supermercado de la palta ,2008-	
	2016	18
3.1.	Número de Rezagos para el contraste de Independencia	34
4.1.	Modelo de corrección del error por umbrales	39

Índice de cuadros

2.1.	Hipótesis del contraste de Dickey-Fuller	19
2.2.	Contraste de Dickey-Fuller aumentado (con tendencia determinista) .	20
2.3.	Contraste de Dickey-Fuller aumentado (con drift)	20
2.4.	Contraste Phillips & Perron a (con tendencia determinista)	21
2.5.	Contraste Phillips & Perron a (con tendencia determinista)	21
2.6.	Contraste KPSS (con tendencia determinista)	21
2.7.	Contraste KPSS (sin tendencia determinista)	21
2.8.	Contraste de Elliot, Rothenberg & Stock (con tendencia determinista)	22
2.9.	Contraste de Elliot, Rothenberg & Stock (con constante)	22
2.10.	Contraste de Canova & Hansen a	23
3.1.	Contraste de la <i>la traza</i> de cointegración de Johansen	35
3.2.	Contraste del máximo autovalor de cointegración de Johansen	36

Agradecimientos

Abstract

Capítulo 1

Introducción

- 1.1. introducción
- 1.2. justificación del trabajo

Capítulo 2

Análisis univariante de las series de precios

2.1. Fuentes de información

2.1.1. Imputación de valores perdidos

Figura 2.1: Evolución de precios del palta de larga vida de primera calidad,2008-2016

Figura 2.2: Imputación de valores perdidos a través del filtro de Kalman

2.2. Análisis del orden de integración de las series

2.2.1. Análisis gráfico

Figura 2.3: Evolución del logaritmo del precio mayorista de la palta ,2008-2016

Figura 2.4: Evolución del logaritmo del precio en supermercado de la palta ,2008-2016

2.3. Contrastes de raíz unitaria

2.3.1. Contraste de Dickey-Fuller Aumentado

El contraste más utilizado en la investigación aplicada, dada su simplicidad, es el contraste propuesto por [fuller1976] y [dickey1981]. Para aplicar este contraste existen dos posibles modelos

Si y_t satisface la siguiente ecuación

$$y_t = \alpha + \rho y_{t-1} + \epsilon_t \qquad (t = 1, ..., n)$$
 (2.3.1)

Donde $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$.

Si y_t satisface la siguiente ecuación

Como puede observarse en el cuadro 2.1, existen 3 estadísticos, Φ_1 , Φ_2 y Φ_3 , y sus respectivas hipótesis que pueden ser utilizados. Mientras Φ_1

$$y_t = \alpha + \beta \left(t - 1 - \frac{1}{2} n \right) + \rho y_{t-1} + \epsilon_t \qquad (t = 1, ..., n)$$
 (2.3.2)

Donde $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$.

Cuadro 2.1: Hipótesis del contraste de Dickey-Fuller

Estadístico	\mathcal{H}_0	\mathcal{H}_a
$\begin{array}{c} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{array}$	$(\alpha, \rho) = (0, 1)$ $(\alpha, \beta, \rho) = (0, 0, 1)$ $(\alpha, \beta, \rho) = (\alpha, 0, 1)$	$(\alpha, \rho) \neq (0, 1)$ $(\alpha, \beta, \rho) \neq (0, 0, 1)$ $(\alpha, \beta, \rho) \neq (\alpha, 0, 1)$

Fuente: Elaboración propia basado en Dickey y Fuller (1981)

2.3.2. Contraste de Phillips Perron (1992)

De manera similar al contraste anterior [phillips1988] proponen

- 2.3.3. Contraste Kiatkowsky, Pesaran, Schmidt & Shin (1992)
- 2.3.4. Contraste de Elliot, Rothenberg & Stock (1993)
- 2.3.5. Contraste de Canova & Hansen (1995) para estacionalidad estable

2.4. Resultados de los contrastes de raíz unitaria

Cuadro 2.2: Contraste de Dickey-Fuller aumentado (con tendencia determinista)

	Est	Valores críticos			
\mathcal{H}_0	$Mayorista^a$	Supermercado b	90 %	95%	99%
$\overline{ au_3}$	-3.1822	-2.0437	-3.13	-3.42	-3.98
ϕ_2	3.393	1.5448	4.05	4.71	6.15
ϕ_3	5.0686	2.0907	5.36	6.30	8.34

^a: Con un rezago, de acuerdo a criterio BIC.

Cuadro 2.3: Contraste de Dickey-Fuller aumentado (con drift)

	Est	Valores críticos			
\mathcal{H}_0	$Mayorista^a$ Supermercado ^b		90 %	95%	99 %
$ \frac{\overline{\tau_2}}{\phi_1} $	-2.7628 3.8373	-1.7114 1.6909	-2.57 1.6909		0.11

^a: Con un rezago, de acuerdo a criterio BIC.

^b: Con un rezago, de acuerdo a criterio BIC.

^b: Con un rezago, de acuerdo a criterio BIC.

Cuadro 2.4: Contraste Phillips & Perron^a (con tendencia determinista)

	$Z - \alpha$	$Z - \tau - \mu$	$Z - \tau - \beta$
Mayorista	-22.122		1.7097
Supermercado	-11.1245		1.4522

 $[^]a$: Con cinco rezagos de acuerdo a la siguiente regla $\sqrt[4]{4\times(n/100)}.$

Cuadro 2.5: Contraste Phillips & Perron^a (con tendencia determinista)

	$Z - \alpha$	$Z-\tau-\mu$
Mayorista Supermercado	-16.0952 -7.2938	

^a: Con cinco rezagos de acuerdo a la siguiente regla $\sqrt[4]{4 \times (n/100)}$.

Cuadro 2.6: Contraste KPSS (con tendencia determinista)

	Estadístico			Valores críticos				
\mathcal{H}_0	Mayorist	a^a Sup	erm	ercado^b	90	%	95%	99%
$\overline{ au_3}$	0.26	57 0.32	246		0.	119	0.146	0.216
	on cinco							
	$\frac{(n/100)}{\text{on cinco}}$ $\frac{(n/100)}{(n/100)}$	rezagos	de	acuerdo	a	la	siguiente	regla

Cuadro 2.7: Contraste KPSS (sin tendencia determinista)

	Estadístico			Valores críticos				
\mathcal{H}_0	Mayorista	a^a Sup	erm	$ercado^b$	90	%	95%	99%
$\overline{\tau_3}$	2.559	2.94	97		0.3	347	0.463	0.739
	$\frac{\text{fon cinco}}{(n/100)}$	rezagos	de	acuerdo	a	la	siguiente	regla

 $[\]sqrt[4]{4 \times (n/100)}$.

b: Con cinco rezagos de acuerdo a la siguiente regla $\sqrt[4]{4 \times (n/100)}$.

Cuadro 2.8: Contraste de Elliot, Rothenberg & Stock (con tendencia determinista)

Est	Estadístico			Valores críticos			
$Mayorista^a$	${\bf Supermercado}^b$	90 %	95%	99%			
-3.1558	-2.0504	-2.57	-2.89	-3.48			

 $[^]a\colon {\rm Con}$ un rezago, de acuerdo a criterio BIC.

Cuadro 2.9: Contraste de Elliot, Rothenberg & Stock (con constante)

Est	Estadístico			Valores críticos			
$Mayorista^a$	${\bf Supermercado}^b$	90 %	95%	99%			
-2.3519	-0.8837	-1.62	-1.94	-2.57			

 $[^]a$: Con un rezago, de acuerdo a criterio BIC.

^b: Con un rezago, de acuerdo a criterio BIC.

^b: Con un rezago, de acuerdo a criterio BIC.

Cuadro 2.10: Contraste de Canova & Hansen^a

	Estadístico	valor-p
$2\pi/52,14$	0.227	0.6999
$4\pi/52,14$	0.2603	0.6133
$6\pi/52,14$	0.32	0.4755
$8\pi/52,14$	0.2532	0.6312
$10\pi/52,14$	0.3436	0.4287
$12\pi/52,14$	0.2876	0.547
$14\pi/52,14$	0.2109	0.7432
$16\pi/52,14$	0.2976	0.5239
$18\pi/52,14$	0.2948	0.5304
$20\pi/52,14$	0.383	0.3595
$22\pi/52,14$	0.306	0.5052
$24\pi/52,14$	0.3091	0.4985
$26\pi/52,14$	0.2195	0.7199
$28\pi/52,14$	0.4032	0.3282
$30\pi/52,14$	0.3891	0.3498
$32\pi/52,14$	0.1906	0.7979
$34\pi/52,14$	0.2511	0.6367
$36\pi/52,14$	0.2742	0.5789
$38\pi/52,14$	0.6599	0.0982
$40\pi/52,14$	0.2673	0.5959
$42\pi/52,14$	0.2401	0.6652
$44\pi/52,14$	0.1919	0.7945
$46\pi/52,14$	0.5093	0.2012
$48\pi/52,14$	0.303	0.5119
$50\pi/52,14$	0.2531	0.6314
$52\pi/52,14$	0.476	0.235
joint	5.1191	1

 $[^]a\colon \text{El contraste}$ utiliza términos trigonométricos

Capítulo 3

Análisis de cointegración

3.1. Cointegración y análisis de las relaciones de largo plazo

Apuntes de Juselius

- The time series describing cumulated trend-adjusted shocks is usually called a stochas- tic trend. It is a cumulation of random shocks with zero mean and constant variance. If
- with a linear deterministic trend component. Thus, the difference between a stochastic and deterministic trend is that the increments of a stochastic trend change randomly, whereas those of a deterministic trend are constant over time.
- It is easy to see that if inflation rate is I(1) with a non-zero mean, then prices will contain a integrated twice cumulated of order stochastic two, or in trend, t s=1 notation i=1 s i . pt We say I(2). that trend-adjusted prices are
- We shall argue below that, unless a unit root is given a structural interpretation, the choice of one representation or the other is as such not very important, as long as there is consistency between the economic analysis and the choice. However, from an econometric point of view the choice between the two representations is usually crucial for the whole empirical analysis and should therefore be carefully considered.
- variable. Because a cointegrating relation does not necessarily correspond to an interpretable economic relation, we make a further distinction between the

statistical concept of a 'cointegration relation' and the economic concept of a 'long-run equilibrium relation'.

• say second that stochastic the distinction trend, between u2i, as a long-run a long-run and structural medium-run trend stochastic or not. trend Thus,in one this might case is between an I(1) stochastic trend with no linear trend and a near I(1) stochastic trend with a linear trend.

Definición 3.1.1. Sea $\{\mathbf{x}_t\}$ un proceso estocástico para t = ..., -1, 0, 1, 2, ... Si

$$\mathbb{E}[\mathbf{x}_t] = -\infty < \mu < \infty \tag{3.1.1}$$

$$\mathbb{E}[\mathbf{x}_t - \mu]^2 = \mathbf{\Sigma}_0 < \infty \qquad \forall t \tag{3.1.2}$$

$$\mathbb{E}[(\mathbf{x}_t - \mu)(\mathbf{x}_{t+h} - \mu)] = \mathbf{\Sigma}_h \qquad \forall t \ y \ h \tag{3.1.3}$$

Entonces \mathbf{x}_t es debilmente estacionario. La estacionariedad estricta requiere que la distribución de $(x_{t1},...,x_{tk})$ es la misma que $(x_{t1+h},...,x_{tk+h})$ para h = ..., -1, 0, 1, 2, ...

for time t based on the available information at time t 1. For example, a VAR model with autocorrelated and or heteroscedastic residuals would describe agents that do not use all information in the data as efficiently as possible. This is because by including the

For example, a VAR model with autocorrelated and or heteroscedastic residuals would describe agents that do not use all information in the data as efficiently as possible.

Simulation studies have shown that valid statistical inference is sensitive to violation of some of the assumptions, such as parameter non-constancy, autocorrelated residu- als (the higher, the worse) and skewed residuals, while quite robust to others, such as excess kurtosis and residual heteroscedasticity. This will be discussed in more detail in

• the use of intervention dummies to account for significant political or institutional events during the sample; • conditioning on weakly or strongly exogenous variables; • checking the measurements of the chosen variables; • changing the sample period to avoid fundamental regime shift or splitting the sample into more homogenous periods.

and the model has been extended to contain Dt , a vector of deterministic components, such as a constant, seasonal dummies and intervention dummies. The autoregressive for- mulation is useful for expressing hypotheses on economic behaviour, whereas the moving average representation is useful when examining the properties of the proces.

Si asumimos un modelo VAR(2) bi-dimensional

$$(\mathbf{I} - \mathbf{\Pi}_1 L - \mathbf{\Pi}_2 L^2) \mathbf{x}_t = \mathbf{\Phi} \mathbf{D}_t + \varepsilon_t \tag{3.1.4}$$

La función características es entonces

$$\mathbf{\Pi}(z) = \mathbf{I} - \begin{bmatrix} \pi_{1,11} & \pi_{1,12} \\ \pi_{1,21} & \pi_{1,22} \end{bmatrix} z - \begin{bmatrix} \pi_{2,11} & \pi_{2,12} \\ \pi_{2,21} & \pi_{2,22} \end{bmatrix} z^2$$
(3.1.5)

$$= \mathbf{I} - \begin{bmatrix} \pi_{1,11}z & \pi_{1,12}z \\ \pi_{1,21}z & \pi_{1,22}z \end{bmatrix} - \begin{bmatrix} \pi_{2,11}z^2 & \pi_{2,12}z^2 \\ \pi_{2,21}z^2 & \pi_{2,22}z^2 \end{bmatrix}$$
(3.1.6)

$$= \begin{bmatrix} (1 - \pi_{1,11}z - \pi_{2,11}z^2) & (-\pi_{1,12}z - \pi_{2,12}z^2) \\ (-\pi_{1,21}z - \pi_{2,21}z^2) & (1 - \pi_{1,22}z - \pi_{2,22}z^2) \end{bmatrix}$$
(3.1.7)

y

$$|\mathbf{\Pi}(z)| = (1 - \pi_{1,11}z - \pi_{2,11}z^2)(1 - \pi_{1,22}z - \pi_{2,22}z^2) - (\pi_{1,12}z + \pi_{2,12}z^2)(\pi_{1,21}z + \pi_{2,21}z^2)$$
(3.1.8)

$$=1-a_1z-a_2z^2-a_3z^3-a_4z^4 (3.1.9)$$

$$= (1 - \rho_1 z)(1 - \rho_2 z)(1 - \rho_3 z)(1 - \rho_4 z)$$
(3.1.10)

El determinante entrega información valiosa sobre el comportamiento dinámico del proceso.

Luego

$$\mathbf{x}_{t} = \frac{\mathbf{\Pi}^{a}(L)(\mathbf{\Phi}\mathbf{D}_{t} + \varepsilon_{t})}{(1 - \rho_{1}z)(1 - \rho_{2}z)(1 - \rho_{3}z)(1 - \rho_{4}z)} + \tilde{\mathbf{X}}^{0}, \qquad t = 1, ..., T$$

$$= \left(\frac{\mathbf{\Pi}_{1}^{a}L + \mathbf{\Pi}_{2}^{a}L^{2}}{(1 - \rho_{2}z)(1 - \rho_{3}z)(1 - \rho_{4}z)}\right) \left(\frac{\varepsilon_{t} + \mathbf{\Phi}D_{t}}{(1 - \rho_{1}L)}\right) + \mathbf{X}^{0}, \qquad t = 1, ..., T \quad (3.1.12)$$

3.2. Estimación basada en la verosimilitud para el modelo VAR irrestricto

Cuando el modelo no tiene restricciones sobre sus parámetros (como las que pueden surgir debido a la presencia de raíces unitarias) el modelo puede estimarse por MCO, caso que coincide con el estimador de *Full information maximum likelihood*

Si escribimos el modelo en su versión apilada

$$\mathbf{x}_t = \mathbf{B}' \mathbf{Z}_t + \varepsilon_t, \qquad t = 1, .., T \tag{3.2.1}$$

$$\varepsilon_t \sim IN_p(\mathbf{0}, \mathbf{\Omega})$$
 (3.2.2)

Donde:

$$lacksquare B' = [\mu_0, \Pi_1, \Pi_2, ..., \Pi_k]$$

$$\bullet \ \mathbf{Z'}_t = \begin{bmatrix} 1, \mathbf{x'_{t-1}}, \mathbf{x'_{t-2}}, ..., \mathbf{x'_{t-k}} \end{bmatrix}$$

$$\quad \blacksquare \ \, \mathbf{X}^0 = \left[\mathbf{x}_0', \mathbf{x}_{-1}', ..., \mathbf{x}_{-k+1}' \right]$$

La función de verosimilitud será la siguiente:

$$\log L(\boldsymbol{B}, \boldsymbol{\Omega}, \boldsymbol{X}) = -T \frac{p}{2} \log(2\pi) - T \frac{1}{2} \log |\boldsymbol{\Omega}| - \frac{1}{2} \sum_{t=1}^{T} (\mathbf{x_t} - \mathbf{B'Z_t})' \boldsymbol{\Omega}^{-1} (\mathbf{x_t} - \mathbf{B'Z_t})$$
(3.2.3)

Si calculamos $\frac{\partial \log L}{\partial \mathbf{B}}$, tendremos

$$\sum_{t=1}^{T} \mathbf{x_t} \mathbf{Z_t'} = \mathbf{ ilde{B}'} \sum_{t=1}^{T} \mathbf{Z_t} \mathbf{Z_t'}$$

Entonces, el estimador de máxima verosimilitud es

$$\tilde{\mathbf{B}}' = \sum_{t=1}^{T} (\mathbf{x_t} \mathbf{Z}_t') \left(\sum_{t=1}^{T} \mathbf{Z_t} \mathbf{Z}_t' \right)^{-1} = \mathbf{M}_{xZ} \mathbf{M}_{ZZ}^{-1}$$
(3.2.4)

Luego calculando $\frac{\partial \log L}{\partial \Omega} = \mathbf{0}$

$$\hat{\mathbf{\Omega}} = T^{-1} \sum_{t=1}^{T} (\mathbf{x_t} - \hat{\mathbf{B}}' \mathbf{Z_t}) (\mathbf{x_t} - \hat{\mathbf{B}}' \mathbf{Z_t})' = T^{-1} \sum_{t=1}^{T} \hat{\boldsymbol{\varepsilon}_t} \hat{\boldsymbol{\varepsilon}_t}'$$
(3.2.5)

El valor máximo de la función de Verosimilitud, será el siguiente:

$$\log L_{\text{máx}} = -\frac{P}{2}T\log(2\pi) - \frac{1}{2}T\log|\hat{\mathbf{\Omega}}| - \frac{1}{2}\sum_{t=1}^{T}(\mathbf{x_t} - \hat{\mathbf{B}}'\mathbf{Z_t})'\hat{\mathbf{\Omega}}^{-1}(\mathbf{x_t} - \hat{\mathbf{B}}'\mathbf{Z_t})$$
(3.2.6)

Mostraremos que $\log L_{\text{máx}} = -\frac{1}{2}T\log|\hat{\Omega}| + K, \qquad K \in \mathbb{R}$

$$(\boldsymbol{x}_{t} - \hat{\boldsymbol{B}}'\boldsymbol{Z}_{t})\hat{\boldsymbol{\Omega}}^{-1}(\mathbf{x}_{t} - \hat{\mathbf{B}}'\mathbf{Z}_{t}) = \hat{\boldsymbol{\varepsilon}}_{t}'\hat{\boldsymbol{\Omega}}^{-1}\hat{\boldsymbol{\varepsilon}}_{t}$$

$$= \sum_{ij} \hat{\boldsymbol{\varepsilon}}_{t,i}(\hat{\boldsymbol{\Omega}}^{-1})_{ij}\hat{\boldsymbol{\varepsilon}}_{t,j} \qquad (3.2.7)$$

$$= \sum_{ij} (\hat{\boldsymbol{\Omega}}^{-1})_{ij}\hat{\boldsymbol{\varepsilon}}_{t,i}\hat{\boldsymbol{\varepsilon}}_{t,j}$$

$$= \operatorname{traza}\{\hat{\boldsymbol{\Omega}}^{-1}\hat{\boldsymbol{\varepsilon}}_{t}\hat{\boldsymbol{\varepsilon}}_{t}'\} \qquad (3.2.8)$$

Luego, se tiene que

$$\sum_{t=1}^{T} (\mathbf{x_t} - \hat{\mathbf{B}}' \mathbf{Z_t}) \hat{\boldsymbol{\Omega}}^{-1} (\mathbf{x_t} - \hat{\mathbf{B}}' \mathbf{Z_t})' = \sum_{t=1}^{T} \operatorname{traza} \{ \hat{\boldsymbol{\Omega}}^{-1} \hat{\boldsymbol{\varepsilon}_t} \hat{\boldsymbol{\varepsilon}_t'} \}$$
(3.2.9)

$$= T \sum_{t=1}^{T} \operatorname{traza} \{ \hat{\Omega}^{-1} \hat{\boldsymbol{\varepsilon}}_{t} \hat{\boldsymbol{\varepsilon}}_{t}' / T \}$$
 (3.2.10)

$$= T \operatorname{traza} \{ \hat{\Omega}^{-1} \hat{\Omega} \} \tag{3.2.11}$$

$$= T \operatorname{traza}\{\mathbf{I}_p\} = Tp \tag{3.2.12}$$

De donde se desprende que

$$\log L_{\text{máx}} = -T\frac{1}{2}\log|\hat{\Omega}|\underbrace{-T\frac{p}{2} - T\frac{p}{2}\log(2\pi)}_{+K}$$
 (3.2.13)

NOTA PARA RECORDAR: si las variables del modelo están formuladas en logaritmo la desviación estándar de cada una de estas puede ser interpretada como un porcentaje de error

3.2.1. Contraste de razón de verosimilitud

$$-2\log Q(\mathcal{H}_k/\mathcal{H}_{k+1}) = T(\log |\hat{\Omega}_k| - \log |\hat{\Omega}_{k+1}|) \sim \chi_{p^2}^2$$
 (3.2.14)

Criterios de selección

$$AIC = \log |\hat{\Omega}| + (p^2 k) \frac{2}{T}$$
(3.2.15)

$$SC = \log |\hat{\Omega}| + (p^2 k) \frac{\log T}{T}$$
(3.2.16)

Hannah-Quinn =
$$\log |\hat{\Omega}| + (p^2 k) \frac{2 \log \log T}{T}$$
 (3.2.17)

Todos los criterios en común están basados en el máximo valor que alcanza la función de verosimilitud del modelo, más un factor que penaliza por el número de parámetros estimados.

Al momento de la determinación del número de rezagos, volver a revisar tabla 4.5 de la página 92

Trace correlation =
$$1 - \text{traza}(\hat{\Omega}[\text{Cov}(\Delta \mathbf{x_t})]^{-1})/p$$
 (3.2.18)

El contraste de Ljung-Box

Ljung-Box =
$$T(T+2)\sum_{h=1}^{T/4} (T-h)^{-1} \operatorname{traza}(\hat{\Omega}'_{h}\hat{\Omega}^{-1}\hat{\Omega}'_{h}\hat{\Omega}^{-1})$$
 (3.2.19)

Donde $\hat{\Omega}_h = T^{-1} \sum_{t=1}^T \hat{\varepsilon}_t \hat{\varepsilon}'_{t-h}$. El estadístico se considera distribuido aproximadamente según una χ^2 con $p^2(T/4-k+1)-p^2$ grados de libertad.

También puede utilizarse un contraste propuesto por Godfrey(1988), el cual consiste en regresar los residuos del modelo VAR estimado, $\hat{\boldsymbol{\varepsilon}}_t$, sobre k variables rezagadas, $\mathbf{x_{t-1}}, \mathbf{x_{t-2}}, ..., \mathbf{x_{t-k}}$ y el j-ésimo residuo rezagado

$$\hat{\varepsilon}_t = \mathbf{A_1} \mathbf{x_{t-1}} + \mathbf{A_2} \mathbf{x_{t-2}} + \dots + \mathbf{A_k} \mathbf{x_{t-k}} + \mathbf{A_{\varepsilon}} \hat{\varepsilon}$$
 (3.2.20)

3.2.2. Modelo Vectorial de Corrección del Error (VECM)

Suponga que cada componente de una serie de tiempo K-dimensional y_t es I(1). Entonces, la ecuación (VAR) no será una formulación adecuada de este modelo debido a que los términos $y_t, y_{t-1}, ..., y_{t-p}$ son todos no estacionarios. De todas formas, sustituyendo

$$\mathbf{A}_1 = \mathbf{I}_k + \mathbf{\Gamma}_1 \tag{3.2.21}$$

$$\mathbf{A}_i = \mathbf{\Gamma_i} - \mathbf{\Gamma_{i-1}} \qquad i = 1, ..., p - 1 \tag{3.2.22}$$

$$\mathbf{A}_{p} = -\Gamma_{p-1} \tag{3.2.23}$$

En la ecuación (2.8), reagrupando términos y utilizando que $\Delta \mathbf{y}_i = \mathbf{y}_i - \mathbf{y}_{i-1} \quad \forall i$, podemos reescribir esta ecuación como

$$\Delta \mathbf{y}_t = \mu + \Gamma_1 \Delta \mathbf{y}_{t-1} + \Gamma_2 \Delta \mathbf{y}_{t-2} + \dots + \Gamma_{p-1} \Delta \mathbf{y}_{t-p+1} + \mathbf{u}_t$$
 (3.2.24)

Naturalmente, ambas ecuaciones describen el mismo modelo, pero preferimos usar la ecuación (3.2.24) cuando \mathbf{y}_t es I(1), debido a que cada término es estacionario en este caso. Entonces, cuando \mathbf{y}_t es I(1), podemos encontrar un modelo apropiado para y_t diferenciando cada componente de \mathbf{y}_t una vez, y llevando a cabo la regresión basada en la ecuación (3.2.24). De todas formas, entonces no podremos tomar en cuenta que podría haber dependencias entre algunos de los componentes de \mathbf{y}_t . Por ejemplo, dos de los componentes podrían tener una tendencia en común, o podría existir una combinación lineal de los componente de y_t la cual fuera estacionaria. Este problema suele resolverse utilizando incluyendo un término de corrección del error $\Pi \mathbf{y}_{t-1}$ en la ecuación (3.2.24), donde Π es una matriz $K \times K$ de cuyo rango $rank(\Pi) < K$, debido a que si Π tuviera rango completo, entonces Π es invertible, de manera que la variable no estacionaria \mathbf{y}_{t-1} puede ser escrita como la suma de términos estacionarios, lo que es una contradicción. Entonces, $rank(\Pi) = r < K$ lo cual implica que existen $(K \times r) - matrices \alpha y \beta$ de rango r tales que $\Pi = \alpha \beta'$. Entonces, cada una de las r filas de $\beta' y_{t-1}$ es una combinación lineal estacionaria de los componentes de y_t y es llamada una relación de cointegración. El número r, el cual es igual al número de relación de cointegración es llamado el **rango de** cointegración. Como la matriz β contiene todos los coeficiente de las relaciones de cointegración, es llamada la matriz de cointegración. La matriz lpha, la cual es la matriz de coeficientes de los términos estacionarios $\beta' y_{t-1}$ en la ecuación (3.2.25), es llamada la matriz de carga.

Definición 3.2.1. Un modelo **VECM** de orden p se define como

$$\Delta \mathbf{y}_{t} = \mu + \alpha \beta' \mathbf{y}_{t-1} + \Gamma_{1} \Delta \mathbf{y}_{t-1} + \dots + \Gamma_{p-1} \Delta \mathbf{y}_{t-p+1} + u_{t} \quad t = 1, \dots, T \quad (3.2.25)$$

Donde $\mathbf{y}_t = [y_{1t}, ..., y_{Kt}]'$ es un vector aleatorio de $K \times 1$, $\boldsymbol{\mu}$ es un vector constante de $(K \times 1)$, $\boldsymbol{\alpha}$ y $\boldsymbol{\beta}$ son matrices $(K \times r)$ tales que $rank(\boldsymbol{\alpha}) = rank(\boldsymbol{\beta}) < K$,

3.2.3. El contraste de cointegración de Johansen

Considere el siguiente modelo

$$\Delta \mathbf{y}_t = \Pi \mathbf{y}_{t-1} + \Gamma_1 \Delta \mathbf{y}_{t-1} + \dots + \Gamma_{p-1} \Delta \mathbf{y}_{t-p+1} + u_t$$
 (3.2.26)

Donde \mathbf{y}_t es un proceso K-dimensional y $rk(\Pi) = r$ con $0 \le r \le K$.

$$\mathcal{H}_0: rk(\mathbf{\Pi}) = r_0 \qquad versus \qquad \mathcal{H}_1: r_0 < rk(\mathbf{\Pi}) \le r_1 \qquad (3.2.27)$$

Lütkepohl(2005, pp. 294) Lütkepohl(2005, pp.340) Tso (1981) Para regresión de rango reducido

Proposición 3.2.1. Sea $M:=I_T-\Delta \mathbf{X}'(\Delta \mathbf{X}\Delta \mathbf{X}')^{-1}\Delta \mathbf{X},\ R_0:=\Delta \mathbf{Y}M\ y\ R_1=\mathbf{Y}_{-1}M$. Además

$$S_{ij} := R_i R_i' / T, \qquad i = 0, 1,$$
 (3.2.28)

 $\lambda_1 \geq ... \geq \lambda_K$ los autovalores de $S_{11}^{-1/2} S_{10} S_{00}^{-1} S_{01} S_{11}^{-1/2}$, y $\mathbf{v}_1, ..., \mathbf{v}_K$, los correspondientes autovectores ortonormales

$$\log l = -\frac{KT}{2} \log 2\pi - \frac{T}{2} \log |\mathbf{\Sigma}_{u}|$$

$$-\frac{1}{2} tr[(\Delta \mathbf{Y} - \boldsymbol{\alpha} \boldsymbol{\beta}' Y_{-1} - \boldsymbol{\Gamma} \Delta \mathbf{X}) \boldsymbol{\Sigma}_{\mathbf{u}} (\Delta \mathbf{Y} - \boldsymbol{\alpha} \boldsymbol{\beta}' Y_{-1} - \boldsymbol{\Gamma} \Delta \mathbf{X})] \qquad (3.2.29)$$

Desde el resultado anterior puede plantearse el siguiente estadístico de razón de verosimilitud (LRT) para contrastar (3.2.27)

$$\lambda_{LR}(r_0, r_1) = 2[\log l(r_1) - \log l(r_0)]$$

$$= T \left[-\sum_{i=1}^{r_1} \log(1 - \lambda_i) + \sum_{i=1}^{r_0} \log(1 - \lambda_i) \right]$$

$$= -T \sum_{i=r_0+1}^{r_1} \log(1 - \lambda_i)$$
(3.2.30)

Cabe destacar que bajo la hipótesis nula, el estadístico no sigue una distribución

estándar por lo que lo que sus valores críticos deben obtenerse mediante simulación. En particular, depende del número de relaciones de cointegracón y del tipo de hipótesis alterna a utilizar. Dos especificaciones son las más utilizadas en la literatura:

$$\mathcal{H}_0: rk(\Pi) = r_0 \qquad versus \qquad \mathcal{H}_1: r_0 < rk(\Pi) \le K \qquad (3.2.31)$$

у

$$\mathcal{H}_0: rk(\Pi) = r_0 \qquad versus \qquad \mathcal{H}_1: rk(\Pi) = r_0 + 1 \qquad (3.2.32)$$

El estadístico $\lambda_{LR}(r_0, K)$ para contrastar (3.2.31) se denomina comunmente como el estadístico de la traza para testear el rango de cointegración, mientras que $\lambda_{LR}(r_0, r_0 + 1)$ es llamado estadístico de máximo autovalor.

3.3. Resultados

3.3.1. Determinación del rango de cointegración

```
## $L01
## [1] 8.398186
##
## $df
## [1] 4
##
## $`p-value`
## [1] 0.07803415
```

```
## ############
## ###Model VECM
## #############
## Full sample size: 494 End sample size: 491
## Number of variables: 2 Number of estimated slope parameters 10
## AIC -5462.592 BIC -5416.431 SSR 4.514969
## Cointegrating vector (estimated by ML):
      mayorista supermercado
##
## r1
              1
                   -1.168669 1.778087
##
##
##
                         ECT
                                             mayorista -1
```

```
## Equation mayorista
                         -0.1155(0.0249)*** 0.1992(0.0469)***
## Equation supermercado 0.0533(0.0134)*** 0.0585(0.0252)*
##
                         supermercado -1
                                             mayorista -2
## Equation mayorista
                         0.2295(0.0824)**
                                             0.0547(0.0476)
                                             0.0703(0.0256)**
## Equation supermercado -0.0270(0.0443)
##
                         supermercado -2
## Equation mayorista
                         0.1593(0.0816).
## Equation supermercado 0.0182(0.0439)
```


Figura 3.1: Número de Rezagos para el contraste de Independencia

##			ECT	mayorista -1
##	Equation	mayorista	-0.1371(0.0297)***	0.2053(0.0495)***
##	Equation	supermercado	0.0241(0.0158)	0.0734(0.0263)**
##			supermercado -1	mayorista -2
##	Equation	mayorista	0.2011(0.0890)*	0.0628(0.0503)
##	Equation	supermercado	-0.0728(0.0473)	0.0873(0.0267)**
##			supermercado -2	mayorista -3
##	Equation	mayorista	0.1627(0.0886).	0.0333(0.0500)
##	Equation	supermercado	-0.0183(0.0471)	0.0405(0.0266)
##			supermercado -3	mayorista -4
##	Equation	mayorista	0.0460(0.0888)	-0.0487(0.0493)
##	Equation	supermercado	0.0356(0.0472)	0.0227(0.0262)
##			supermercado -4	mayorista -5
##	Equation	mayorista	0.0771(0.0872)	-0.0381(0.0490)
##	Equation	supermercado	0.0823(0.0463).	-0.0309(0.0260)
##			supermercado -5	mayorista -6
##	Equation	mayorista	0.0163(0.0866)	0.0742(0.0487)
##	Equation	${\tt supermercado}$	-0.0314(0.0460)	0.0445(0.0259).
##			supermercado -6	mayorista -7
##	Equation	mayorista	0.0195(0.0844)	0.0337(0.0488)
##	Equation	supermercado	0.0131(0.0448)	0.0743(0.0259)**
##			supermercado -7	
##	Equation	mayorista	0.1745(0.0828)*	
##	Equation	supermercado	-0.0192(0.0440)	

	Estadístico	Valo	res crít	icos
\mathcal{H}_0	p = 2	90 %	95%	99%
$r \le 1$	2.66	6.50	8.18	11.65
r = 0	49.54	15.66	17.95	23.52

Cuadro 3.1: Contraste de la $la\ traza$ de cointegración de Johansen

90%	95%	99 %
6.50	8.18	11.65 19.19
		6.50 8.18

Cuadro 3.2: Contraste del $m\'{a}ximo$ autovalor de cointegración de Johansen

Procesos de transmisión asimétricos

4.1. Modelo de vectores de corrección del error por umbrales (TVECM)

Definición 4.1.1. Una serie de tiempo K-dimensional \mathbf{y}_t se dice que sigue un modelo TVECM de k-regímenes de orden p si satisface

$$\Delta y_{t} = c_{j} + \mathbf{\Pi}_{j} \mathbf{y}_{t-1} + \mathbf{\Gamma}_{1j} \Delta \mathbf{y}_{t-1} + \dots + \mathbf{\Gamma}_{(p-1),j} \Delta \mathbf{y}_{t-p+1} + u_{tj}, \quad si \quad \gamma_{j-1} \le y_{t-d-1} \le \gamma_{j}$$
(4.1.1)

4.1.1. El contraste de Hansen & Seo (2002)

Cuando estimamos un modelo TVECM resulta vital discernir si este modelo no lineal tiene una performance superior a la que tendría un modelo lineal VECM. Hansen & Seo (2002) propusieron un contraste

- 4.1.2. Contrastes de linealidad
- 4.1.3. Estimación del modelo
- 4.1.4. Relaciones dinámicas a corto plazo
- 4.2. Resultados de la aplicación
- 4.2.1. Análisis de las relaciones asimétricas
- 4.2.2. Especificación del sistema
- 4.2.3. Estimación del modelo TVECM
- 4.2.4. Funciones de impulso respuesta
- 4.2.5. Diagnósticos del modelo

Figura 4.1: Modelo de corrección del error por umbrales

$$\begin{pmatrix} \Delta X_t^1 \\ \Delta X_t^2 \end{pmatrix} = \begin{cases} \begin{pmatrix} -0.1563 \\ 0.1116 \end{pmatrix} ECT_{-1} + \begin{pmatrix} -0.0193 \\ 0.0138 \end{pmatrix} + \begin{pmatrix} 0.0979 & 0.2550 \\ 0.0250 & -0.0168 \end{pmatrix} \begin{pmatrix} \Delta X_{t-1}^1 \\ \Delta X_{t-1}^2 \end{pmatrix} + \begin{pmatrix} 0.0759 & 0.2788 \\ 0.0428 & -0.0330 \end{pmatrix} \begin{pmatrix} \Delta X_{t-2}^1 \\ \Delta X_{t-2}^2 \end{pmatrix} & \text{if } T_{t-1} \\ \begin{pmatrix} -0.2379 \\ -0.0612 \end{pmatrix} ECT_{-1} + \begin{pmatrix} 0.00208 \\ 0.0154 \end{pmatrix} + \begin{pmatrix} 0.2802 & 0.1576 \\ 0.1009 & -0.1198 \end{pmatrix} \begin{pmatrix} \Delta X_{t-1}^1 \\ \Delta X_{t-1}^2 \end{pmatrix} + \begin{pmatrix} 0.06000 & -0.0507 \\ 0.1142 & 0.0542 \end{pmatrix} \begin{pmatrix} \Delta X_{t-2}^1 \\ \Delta X_{t-2}^2 \end{pmatrix} & \text{if } T_{t-1} \end{pmatrix}$$

$$(4.2.1)$$


```
## $JB
##
## JB-Test (multivariate)
##
## data: Residuals of VAR object mono
## Chi-squared = 758.79, df = 4, p-value < 2.2e-16
##
##</pre>
```

```
## $Skewness
##
## Skewness only (multivariate)
##
## data: Residuals of VAR object mono
## Chi-squared = 33.819, df = 2, p-value = 4.531e-08
##
##
## $Kurtosis
##
## Kurtosis only (multivariate)
##
## data: Residuals of VAR object mono
## Chi-squared = 724.97, df = 2, p-value < 2.2e-16
## $multi
        E df P(Chi > E)
##
## 1 261.0274 4 2.738934e-55
##
## $univ
                       E df P(Chi > E)
##
## mayorista 87.69408 2 9.067181e-20
## supermercado 173.33336 2 2.296880e-38
```

Conclusiones

Bibliografía

Anexo

Desarrollos adicionales

A.1. Mínimos cuadrados multivariados

Considere el siguiente modelo lineal multivariado

$$\mathbf{y}_k = \mathbf{C}\mathbf{x}_k + \boldsymbol{\varepsilon}_k, \quad k = 1, ..., T, \tag{A.1}$$

Donde $\mathbf{y}_k = (y_{1k}, ..., y_{mk})'$ es un vector de variables respuesta de dimensión $m \times 1$, $\mathbf{x}_k = (x_{1k}, ..., x_{nk})'$ es un vector de $n \times 1$ de predictores¹, \mathbf{C} es una matriz de coeficienes de $m \times n$ y $\boldsymbol{\varepsilon}_k$ es un vector de $m \times 1$ errores aleatorios, con media $\mathbb{E}(\boldsymbol{\varepsilon}_k) = \mathbf{0}$ y matriz de covarianzas $\text{Cov}(\boldsymbol{\varepsilon}_k) = \boldsymbol{\Sigma}_{\varepsilon\varepsilon}$, una matriz de $m \times n$ definida positiva. Los elementos del vector $\boldsymbol{\varepsilon}_k$ son asumidos independientes para diferentes k. Asumiendo que se dispone de T observaciones, podemos definir las siguientes matrices

$$\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_T]_{m \times T} = \begin{bmatrix} y_{11} & \dots & y_{1T} \\ \vdots & \ddots & \vdots \\ y_{m1} & \dots & y_{mT} \end{bmatrix}$$
(A.2)

 $^{^{1}}$ pudiendo ser éstos tanto valores rezagados de \mathbf{y}_{k} o variables exógenas

$$\mathbf{X} = \left[\mathbf{x}_{1}, ..., \mathbf{x}_{T}\right]_{n \times T} = \begin{bmatrix} x_{11} & \dots & x_{1T} \\ \vdots & \ddots & \vdots \\ x_{m1} & \dots & x_{mT} \end{bmatrix}$$
(A.3)

Si se asume $m + n \leq T$ y que \mathbf{X} es de rango completo $n = rank(\mathbf{X}) < T$. Se apilan los vectores de errores para formar una matriz $m \times T$ $\boldsymbol{\varepsilon} = [\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, ..., \boldsymbol{\varepsilon}_T]$. De esta forma puede escribirse el modelo de manera compacta como

$$\underbrace{\mathbf{Y}}_{m \times T} = \underbrace{\mathbf{C}}_{m \times n} \underbrace{\mathbf{X}}_{n \times T} + \underbrace{\boldsymbol{\varepsilon}}_{m \times T} \tag{A.4}$$

Otra forma de tratar la matriz de errores es a través del operador $vec, T : \mathbb{R}^{m \times T} \to \mathbb{R}^{mT \times 1}$. $e = (\varepsilon_{(1)}, \varepsilon_{(2)}, ..., \varepsilon_{(m)})'$. Se formulan entonces los siguientes supuestos

$$\mathbb{E}(e) = \mathbf{0} \qquad \qquad \operatorname{Cov}(e) = \mathbf{\Sigma}_{\varepsilon\varepsilon} \otimes \mathbf{I}_{T} \qquad (A.5)$$

Donde \otimes denota el producto de Kronecker²

A.2. Regresión de Rango Reducido

La regresión de rango reducido (RRR) es una técnica. Para el modelo descrito en (A.1) se tiene que

$$rank(\mathbf{C}) = r \le min(n, m) \tag{A.7}$$

$$\mathbf{A} \otimes \mathbf{B} = \left[\tag{A.6} \right]$$

²Sean **A** una matriz $n \times p$ y **B** una matriz $m \times q$. Entonces la matriz $mn \times pq$

Código R

B.1. Información de la sesión

```
## R version 3.4.0 (2017-04-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.2 LTS
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.6.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
## locale:
## [1] LC_CTYPE=es_CL.UTF-8
                               LC_NUMERIC=C
## [3] LC_TIME=es_CL.UTF-8 LC_COLLATE=es_CL.UTF-8
## [5] LC_MONETARY=es_CL.UTF-8 LC_MESSAGES=es_CL.UTF-8
## [7] LC_PAPER=es_CL.UTF-8
                               LC_NAME=C
## [9] LC_ADDRESS=C
                                LC_TELEPHONE=C
## [11] LC_MEASUREMENT=es_CL.UTF-8 LC_IDENTIFICATION=C
## attached base packages:
## [1] tcltk stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] asbio_1.3-4
                   plot3D_1.1
                                         RColorBrewer_1.1-2
## [4] reshape2_1..
## [7] lmtest_0.9-35 strucchange_1..
MASS_7.3-47
## [4] reshape2_1.4.2
                                          vars_1.5-2
                        strucchange_1.5-1 sandwich_2.3-4
                                          uroot_2.0-9
                       forecast_8.0
## [13] urca_1.3-0
                                          bindrcpp_0.1
## [16] dplyr_0.7.0
                       purrr_0.2.2.2 readr_1.1.1
## [19] tidyr_0.6.3
                       tibble_1.3.3
                                        ggplot2_2.2.1
## [22] tidyverse_1.1.1 data.table_1.10.4 knitr_1.17
## loaded via a namespace (and not attached):
## [1] tseries_0.10-41 httr_1.2.1
                                             jsonlite_1.5
## [4] foreach 1.4.3
                         modelr_0.1.0
                                             assertthat_0.2.0
## [7] TTR_0.23-1
                         highr_0.6
                                             pixmap_0.4-11
                                            glue_1.0.0
                          lattice_0.20-35
## [10] cellranger_1.1.0
## [13] quadprog_1.5-5
                          digest_0.6.12
                                             rvest_0.3.2
                                            plyr_1.8.4
## [16] colorspace_1.3-2
                          Matrix_1.2-10
                          timeDate_3012.100 pkgconfig_2.0.1
## [19] psych_1.7.5
                         misc3d_0.8-4 haven_1.0.0
## [22] broom_0.4.2
## [25] mvtnorm_1.0-6
                         scales_0.4.1
                                            mgcv_1.8-17
## [28] tseriesChaos_0.1-13 nnet_7.3-12
                                             lazyeval_0.2.0
## [31] quantmod_0.4-10 mnormt_1.5-5
                                            magrittr_1.5
## [34] readxl_1.0.0
                          evaluate_0.10.1
                                            nlme_3.1-131
## [37] forcats_0.2.0
                         xts_0.9-7
                                             xml2_1.1.1
## [40] foreign_0.8-67
                          tools_3.4.0
                                             hms_0.3
```

```
## [43] stringr_1.2.0 munsell_0.4.3 plotrix_3.6-5
## [46] compiler_3.4.0 multcompView_0.1-7 rlang_0.1.1
## [49] grid_3.4.0 iterators_1.0.8 gtable_0.2.0
## [52] codetools_0.2-15 fracdiff_1.4-2 deSolve_1.14
## [55] R6_2.2.1 lubridate_1.6.0 bindr_0.1
## [58] stringi_1.1.5 parallel_3.4.0 Rcpp_0.12.12
## [61] scatterplot3d_0.3-40
```

- B.2. Importación y depurado de los datos
- B.3. Comparación entre las funciones VECM y cajolrs
- B.4. Selección modelo VAR
- B.5. Función normalidad