VIP Cheatsheet: Probability

Afshine Amidi and Shervine Amidi

September 8, 2020

Introduction to Probability and Combinatorics

- \square Sample space The set of all possible outcomes of an experiment is known as the sample space of the experiment and is denoted by S.
- \square Event Any subset E of the sample space is known as an event. That is, an event is a set consisting of possible outcomes of the experiment. If the outcome of the experiment is contained in E, then we say that E has occurred.
- \square Axioms of probability For each event E, we denote P(E) as the probability of event E occurring. By noting $E_1,...,E_n$ mutually exclusive events, we have the 3 following axioms:

(1)
$$\boxed{0 \leqslant P(E) \leqslant 1}$$
 (2) $\boxed{P(S) = 1}$ (3) $\boxed{P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i)}$

 \square **Permutation** – A permutation is an arrangement of r objects from a pool of n objects, in a given order. The number of such arrangements is given by P(n,r), defined as:

$$P(n,r) = \frac{n!}{(n-r)!}$$

□ Combination – A combination is an arrangement of r objects from a pool of n objects, where the order does not matter. The number of such arrangements is given by C(n, r), defined as:

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$$

Remark: we note that for $0 \le r \le n$, we have $P(n,r) \ge C(n,r)$.

Conditional Probability

 \square Bayes' rule – For events A and B such that P(B) > 0, we have:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Remark: we have $P(A \cap B) = P(A)P(B|A) = P(A|B)P(B)$.

 \square Partition – Let $\{A_i, i \in [\![1,n]\!]\}$ be such that for all $i, A_i \neq \emptyset$. We say that $\{A_i\}$ is a partition if we have:

$$\forall i \neq j, A_i \cap A_j = \emptyset$$
 and $\bigcup_{i=1}^n A_i = S$

Remark: for any event B in the sample space, we have $P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$.

□ Extended form of Bayes' rule – Let $\{A_i, i \in [\![1,n]\!]\}$ be a partition of the sample space. We have:

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

 \square Independence – Two events A and B are independent if and only if we have:

$$P(A \cap B) = P(A)P(B)$$

Random Variables

- \square Random variable A random variable, often noted X, is a function that maps every element in a sample space to a real line.
- \square Cumulative distribution function (CDF) The cumulative distribution function F, which is monotonically non-decreasing and is such that $\lim_{x\to-\infty} F(x)=0$ and $\lim_{x\to+\infty} F(x)=1$, is defined as:

$$F(x) = P(X \leqslant x)$$

Remark: we have $P(a < X \le B) = F(b) - F(a)$.

- \square Probability density function (PDF) The probability density function f is the probability that X takes on values between two adjacent realizations of the random variable.
- \square Relationships involving the PDF and CDF Here are the important properties to know in the discrete (D) and the continuous (C) cases.

Case	$\mathbf{CDF}\ F$	$\mathbf{PDF}\ f$	Properties of PDF
(D)	$F(x) = \sum_{x_i \leqslant x} P(X = x_i)$	$f(x_j) = P(X = x_j)$	$0 \leqslant f(x_j) \leqslant 1 \text{ and } \sum_j f(x_j) = 1$
(C)	$F(x) = \int_{-\infty}^{x} f(y)dy$	$f(x) = \frac{dF}{dx}$	$f(x) \geqslant 0$ and $\int_{-\infty}^{+\infty} f(x)dx = 1$

 \square Variance – The variance of a random variable, often noted Var(X) or σ^2 , is a measure of the spread of its distribution function. It is determined as follows:

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$

 \square Standard deviation – The standard deviation of a random variable, often noted σ , is a measure of the spread of its distribution function which is compatible with the units of the actual random variable. It is determined as follows:

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

□ Expectation and Moments of the Distribution – Here are the expressions of the expected □ Marginal density and cumulative distribution – From the joint density probability value E[X], generalized expected value E[q(X)], k^{th} moment $E[X^k]$ and characteristic function function f_{XY} , we have: $\psi(\omega)$ for the discrete and continuous cases:

Case	E[X]	E[g(X)]	$E[X^k]$	$\psi(\omega)$
(D)	$\sum_{i=1}^{n} x_i f(x_i)$	$\sum_{i=1}^{n} g(x_i) f(x_i)$	$\sum_{i=1}^{n} x_i^k f(x_i)$	$\sum_{i=1}^{n} f(x_i)e^{i\omega x_i}$
(C)	$\int_{-\infty}^{+\infty} x f(x) dx$	$\int_{-\infty}^{+\infty} g(x)f(x)dx$	$\int_{-\infty}^{+\infty} x^k f(x) dx$	$\int_{-\infty}^{+\infty} f(x)e^{i\omega x}dx$

Remark: we have $e^{i\omega x} = \cos(\omega x) + i\sin(\omega x)$.

 \square Revisiting the k^{th} moment – The k^{th} moment can also be computed with the characteristic

$$E[X^k] = \frac{1}{i^k} \left[\frac{\partial^k \psi}{\partial \omega^k} \right]_{\omega = 0}$$

 \square Transformation of random variables – Let the variables X and Y be linked by some function. By noting f_X and f_Y the distribution function of X and Y respectively, we have:

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$$

 \square Leibniz integral rule – Let g be a function of x and potentially c, and a, b boundaries that may depend on c. We have:

$$\boxed{\frac{\partial}{\partial c} \left(\int_a^b g(x) dx \right) = \frac{\partial b}{\partial c} \cdot g(b) - \frac{\partial a}{\partial c} \cdot g(a) + \int_a^b \frac{\partial g}{\partial c}(x) dx}$$

 \Box Chebyshev's inequality – Let X be a random variable with expected value μ and standard deviation σ . For $k, \sigma > 0$, we have the following inequality:

$$P(|X - \mu| \geqslant k\sigma) \leqslant \frac{1}{k^2}$$

Jointly Distributed Random Variables

 \square Conditional density – The conditional density of X with respect to Y, often noted $f_{X|Y}$, is defined as follows:

$$f_{X|Y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

 \square Independence – Two random variables X and Y are said to be independent if we have:

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

Case	Marginal density	Cumulative function
(D)	$f_X(x_i) = \sum_j f_{XY}(x_i, y_j)$	$F_{XY}(x,y) = \sum_{x_i \leqslant x} \sum_{y_j \leqslant y} f_{XY}(x_i, y_j)$
(C)	$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy$	$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(x',y')dx'dy'$

 \square Distribution of a sum of independent random variables – Let $Y = X_1 + ... + X_n$ with $X_1, ..., X_n$ independent. We have:

$$\psi_Y(\omega) = \prod_{k=1}^n \psi_{X_k}(\omega)$$

 \square Covariance – We define the covariance of two random variables X and Y, that we note σ_{XY}^2 or more commonly Cov(X,Y), as follows:

$$Cov(X,Y) \triangleq \sigma_{XY}^2 = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

 \square Correlation – By noting σ_X , σ_Y the standard deviations of X and Y, we define the correlation between the random variables X and Y, noted ρ_{XY} , as follows:

$$\rho_{XY} = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y}$$

Remarks: For any X, Y, we have $\rho_{XY} \in [-1,1]$. If X and Y are independent, then $\rho_{XY} = 0$.

☐ Main distributions – Here are the main distributions to have in mind:

Type	Distribution	PDF	$\psi(\omega)$	E[X]	Var(X)
(D)	$X \sim \mathcal{B}(n, p)$ Binomial	$P(X = x) = \binom{n}{x} p^x q^{n-x}$ $x \in [0,n]$	$(pe^{i\omega}+q)^n$	np	npq
	$X \sim \text{Po}(\mu)$ Poisson	$P(X = x) = \frac{\mu^x}{x!}e^{-\mu}$ $x \in \mathbb{N}$	$e^{\mu(e^{i\omega}-1)}$	μ	μ
	$X \sim \mathcal{U}(a, b)$ Uniform	$f(x) = \frac{1}{b-a}$ $x \in [a,b]$	$\frac{e^{i\omega b} - e^{i\omega a}}{(b-a)i\omega}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
(C)	$X \sim \mathcal{N}(\mu, \sigma)$ Gaussian	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ $x \in \mathbb{R}$	$e^{i\omega\mu - \frac{1}{2}\omega^2\sigma^2}$	μ	σ^2
	$X \sim \operatorname{Exp}(\lambda)$ Exponential	$f(x) = \lambda e^{-\lambda x}$ $x \in \mathbb{R}_+$	$\frac{1}{1 - \frac{i\omega}{\lambda}}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

VIP Cheatsheet: Statistics

Afshine AMIDI and Shervine AMIDI

September 8, 2020

Paramater estimation

 \square Random sample – A random sample is a collection of n random variables $X_1, ..., X_n$ that are independent and identically distributed with X.

 \square Estimator – An estimator $\hat{\theta}$ is a function of the data that is used to infer the value of an unknown parameter θ in a statistical model.

 \square Bias – The bias of an estimator $\hat{\theta}$ is defined as being the difference between the expected value of the distribution of $\hat{\theta}$ and the true value, i.e.:

$$\operatorname{Bias}(\hat{\theta}) = E[\hat{\theta}] - \theta$$

Remark: an estimator is said to be unbiased when we have $E[\hat{\theta}] = \theta$.

 \Box Sample mean and variance – The sample mean and the sample variance of a random sample are used to estimate the true mean μ and the true variance σ^2 of a distribution, are noted \overline{X} and s^2 respectively, and are such that:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $s^2 = \hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

□ Central Limit Theorem – Let us have a random sample $X_1,...,X_n$ following a given distribution with mean μ and variance σ^2 , then we have:

$$\overline{X} \underset{n \to +\infty}{\sim} \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

Confidence intervals

 \Box Confidence level – A confidence interval $CI_{1-\alpha}$ with confidence level $1-\alpha$ of a true parameter θ is such that $1-\alpha$ of the time, the true value is contained in the confidence interval:

$$P(\theta \in CI_{1-\alpha}) = 1 - \alpha$$

 \square Confidence interval for the mean – When determining a confidence interval for the mean μ , different test statistics have to be computed depending on which case we are in. The following table sums it up:

Distribution	Sample size	σ^2	Statistic	$1-\alpha$ confidence interval
$X_i \sim \mathcal{N}(\mu, \sigma)$	any	known	$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0, 1)$	$\left[\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$
	small	unknown	$\frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$	$\left[\overline{X} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right]$
$X_i \sim \text{any}$	large	known	$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0, 1)$	$\left[\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$
		unknown	$\frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} \sim \mathcal{N}(0,1)$	$\left[\overline{X} - z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \overline{X} + z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right]$
$X_i \sim \text{any}$	small	any	Go home!	Go home!

□ Confidence interval for the variance – The single-line table below sums up the test statistic to compute when determining the confidence interval for the variance.

Distribution	Sample size	μ	Statistic	$1-\alpha$ confidence interval
$X_i \sim \mathcal{N}(\mu, \sigma)$	any	any	$\frac{s^2(n-1)}{\sigma^2} \sim \chi_{n-1}^2$	$\left[\frac{s^2(n-1)}{\chi_2^2}, \frac{s^2(n-1)}{\chi_1^2}\right]$

Hypothesis testing

 \square Errors – In a hypothesis test, we note α and β the type I and type II errors respectively. By noting T the test statistic and R the rejection region, we have:

$$\alpha = P(T \in R|H_0 \text{ true})$$
 and $\beta = P(T \notin R|H_1 \text{ true})$

 \square p-value – In a hypothesis test, the p-value is the probability under the null hypothesis of having a test statistic T at least as extreme as the one that we observed T_0 . We have:

Case	Left-sided	Right-sided	Two-sided
$p ext{-value}$	$P(T \leqslant T_0 H_0 \text{ true})$	$P(T \geqslant T_0 H_0 \text{ true})$	$P(T \geqslant T_0 H_0 \text{ true})$

 \square Sign test – The sign test is a non-parametric test used to determine whether the median of a sample is equal to the hypothesized median. By noting V the number of samples falling to the right of the hypothesized median, we have:

Statistic when $np < 5$	Statistic when $np \geqslant 5$
$V \underset{H_0}{\sim} \mathcal{B}\left(n, p = \frac{1}{2}\right)$	$Z = \frac{V - \frac{n}{2}}{\frac{\sqrt{n}}{2}} \underset{H_0}{\sim} \mathcal{N}(0,1)$

☐ Testing for the difference in two means — The table below sums up the test statistic to compute when performing a hypothesis test where the null hypothesis is:

$$H_0$$
 : $\mu_X - \mu_Y = \delta$

Distribution of X_i, Y_i	n_X, n_Y	σ_X^2, σ_Y^2	Statistic
	any	known	$\frac{(\overline{X} - \overline{Y}) - \delta}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}} \underset{H_0}{\sim} \mathcal{N}(0,1)$
Normal	large	unknown	$\frac{(\overline{X} - \overline{Y}) - \delta}{\sqrt{\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}}} \underset{H_0}{\sim} \mathcal{N}(0, 1)$
	small	unknown $\sigma_X = \sigma_Y$	$\frac{(\overline{X} - \overline{Y}) - \delta}{s\sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}} \approx t_{n_X + n_Y - 2}$
Normal, paired	any	unknown	$rac{\overline{D} - \delta}{rac{s_D}{\sqrt{n}}} \mathop{\sim}\limits_{H_0} t_{n-1}$
$D_i = X_i - Y_i$	$n_X = n_Y$		Vn.

 \square χ^2 goodness of fit test – By noting k the number of bins, n the total number of samples, p_i the probability of success in each bin and Y_i the associated number of samples, we can use the test statistic T defined below to test whether or not there is a good fit. If $np_i \ge 5$, we have:

$$T = \sum_{i=1}^{k} \frac{(Y_i - np_i)^2}{np_i} \underset{H_0}{\sim} \chi_{df}^2 \quad \text{with} \quad \boxed{df = (k-1) - \#(\text{estimated parameters})}$$

□ Test for arbitrary trends – Given a sequence, the test for arbitrary trends is a nonparametric test, whose aim is to determine whether the data suggest the presence of an increasing trend:

$$H_0$$
: no trend vers

versus

 H_1 : there is an increasing trend

If we note x the number of transpositions in the sequence, the p-value is computed as:

$$p$$
-value = $P(T \leqslant x)$

Regression analysis

In the following section, we will note $(x_1, Y_1), \dots, (x_n, Y_n)$ a collection of n data points. \square Simple linear model – Let X be a deterministic variable and Y a dependent random variable. In the context of a simple linear model, we assume that Y is linked to X via the regression coefficients α, β and a random variable $e \sim \mathcal{N}(0, \sigma)$, where e is referred as the error. We estimate Y, α, β by \hat{Y}, A, B and have:

$$Y = \alpha + \beta X + e$$
 and $\hat{Y}_i = A + Bx_i$

 \square Notations – Given n data points (x_i, Y_i) , we define S_{XY}, S_{XX} and S_{YY} as follows:

$$S_{XY} = \sum_{i=1}^{n} (x_i - \overline{x})(Y_i - \overline{Y}) \quad \text{and} \quad S_{XX} = \sum_{i=1}^{n} (x_i - \overline{x})^2 \quad \text{and} \quad S_{YY} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

□ Sum of squared errors – By keeping the same notations, we define the sum of squared errors, also known as SSE, as follows:

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - (A + Bx_i))^2 = S_{YY} - BS_{XY}$$

 \Box Least-squares estimates – When estimating the coefficients α, β with the least-squares method which is done by minimizing the SSE, we obtain the estimates A, B defined as follows:

$$A = \overline{Y} - \frac{S_{XY}}{S_{XX}} \overline{x}$$
 and $B = \frac{S_{XY}}{S_{XX}}$

 \square Key results – When σ is unknown, this parameter is estimated by the unbiased estimator s^2 defined as follows:

$$\boxed{s^2 = \frac{S_{YY} - BS_{XY}}{n-2}} \quad \text{and we have} \quad \boxed{\frac{s^2(n-2)}{\sigma^2} \sim \chi_{n-2}^2}$$

The table below sums up the properties surrounding the least-squares estimates A, B when σ is known or not:

Coeff	σ	Statistic	$1-\alpha$ confidence interval
α	known	$\frac{A - \alpha}{\sigma \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}}}} \sim \mathcal{N}(0, 1)$	$\left[A - z_{\frac{\alpha}{2}}\sigma\sqrt{\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}}}, A + z_{\frac{\alpha}{2}}\sigma\sqrt{\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}}}\right]$
	unknown	$\frac{A-\alpha}{s\sqrt{\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}}}} \sim t_{n-2}$	$\left[A - t_{\frac{\alpha}{2}} s \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}}}, A + t_{\frac{\alpha}{2}} s \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}}}\right]$
	known	$\frac{\frac{B-\beta}{\sigma}}{\sqrt{S_{XX}}} \sim \mathcal{N}(0,1)$	$\left[B - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{S_{XX}}}, B + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{S_{XX}}}\right]$
β	unknown	$\frac{B-\beta}{\sqrt{S_{XX}}} \sim t_{n-2}$	$\left[B - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{S_{XX}}}, B + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{S_{XX}}}\right]$

Correlation analysis

□ Sample correlation coefficient – The correlation coefficient is in practice estimated by the sample correlation coefficient, often noted r or $\hat{\rho}$, which is defined as:

$$\boxed{r = \hat{\rho} = \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}} \quad \text{with} \quad \boxed{\frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \underset{H_0}{\sim} t_{n-2}} \text{ for } H_0: \rho = 0$$

 $\square \textbf{ Correlation properties} - \text{By noting } V_1 = V - \frac{z_{\frac{\alpha}{2}}}{\sqrt{n-3}}, \ V_2 = V + \frac{z_{\frac{\alpha}{2}}}{\sqrt{n-3}} \text{ with } V = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right),$ the table below sums up the key results surrounding the correlation coefficient estimate:

Sample size	Standardized statistic	$1-\alpha$ confidence interval for ρ
large	$\frac{V - \frac{1}{2} \ln \left(\frac{1+\rho}{1-\rho}\right)}{\frac{1}{\sqrt{n-3}}} \underset{n \gg 1}{\sim} \mathcal{N}(0,1)$	$\left[\frac{e^{2V_1}-1}{e^{2V_1}+1}, \frac{e^{2V_2}-1}{e^{2V_2}+1}\right]$