BỘ GIÁO DỰC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỰC

ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2008 Môn: TOÁN, khối B (Đáp án - Thang điểm gồm 04 trang)

Câu		Nội dung	Điểm
I			2,00
	1	Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm)	
		• TXĐ : \mathbb{R} .	0.25
		• Sự biến thiên : $y' = 12x^2 - 12x$, $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1. \end{bmatrix}$	0,25
		• $y_{CD} = y(0) = 1$, $y_{CT} = y(1) = -1$.	0,25
		Bång biến thiên : The state of the s	
		<u>x</u> -∞ 0 1 +∞	
		y' + 0 - 0 +	0,25
		1 → +∞	0,23
		y	
		• Đồ thị : y∱	
		$\frac{1}{O}$ $\frac{1}{x}$	0,25
	2	Viết phương trình tiếp tuyến với đồ thị hàm số (1)(1,00 điểm)	
		Đường thẳng Δ với hệ số góc k và đi qua điểm $M(-1;-9)$ có phương trình :	
		y = kx + k - 9.	
		Δ là tiếp tuyến của đồ thị hàm số (1) khi và chỉ khi hệ phương trình sau có	
		nghiệm: $\begin{cases} 4x^3 - 6x^2 + 1 = k(x+1) - 9 & (2) \\ 12x^2 - 12x = k & (3) \end{cases}$	
		$12x^2 - 12x = k \tag{3}$	0,50
		Thay k từ (3) vào (2) ta được: $4x^3 - 6x^2 + 1 = (12x^2 - 12x)(x+1) - 9$	
		` '	
		$\Leftrightarrow (x+1)^{2} (4x-5) = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = \frac{5}{4}. \end{bmatrix}$	
		$\lfloor \frac{x-\overline{4}}{4} \rfloor$	
		• Với $x = -1$ thì $k = 24$, phương trình tiếp tuyến là : $y = 24x + 15$.	
		• Với $x = \frac{5}{4}$ thì $k = \frac{15}{4}$, phương trình tiếp tuyến là : $y = \frac{15}{4}x - \frac{21}{4}$.	0,50
		15 21	0,50
		Các tiếp tuyến cần tìm là : $y = 24x + 15$ và $y = \frac{15}{4}x - \frac{21}{4}$.	
II			2,00
	1	Giải phương trình lượng giác (1,00 điểm)	
		Phương trình đã cho tương đương với $\sin x(\cos^2 x - \sin^2 x) + \sqrt{3}\cos x(\cos^2 x - \sin^2 x) = 0$	0.50
		$\Leftrightarrow \cos 2x(\sin x + \sqrt{3}\cos x) = 0.$	0,50
	l .		J

		π k π	
		• $\cos 2x = 0 \Leftrightarrow x = \frac{\pi}{4} + \frac{k\pi}{2}$.	
		• $\sin x + \sqrt{3}\cos x = 0 \Leftrightarrow x = -\frac{\pi}{3} + k\pi$.	0,50
		Nghiệm của phương trình là $x = \frac{\pi}{4} + \frac{k\pi}{2}, x = -\frac{\pi}{3} + k\pi \ (k \in \mathbb{Z}).$	
	2	Giải hệ phương trình (1,00 điểm)	
		Hệ phương trình đã cho tương đương với	
		$\begin{cases} (x^2 + xy)^2 = 2x + 9 \\ xy = 3x + 3 - \frac{x^2}{2} \end{cases} \Rightarrow \left(x^2 + 3x + 3 - \frac{x^2}{2}\right)^2 = 2x + 9$	0,50
		$\Leftrightarrow x^4 + 12x^3 + 48x^2 + 64x = 0 \iff x(x+4)^3 = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = -4. \end{bmatrix}$	
		• $x = 0$ không thỏa mãn hệ phương trình.	
		• $x = -4 \Rightarrow y = \frac{17}{4}$.	0.50
		4	0,50
		Nghiệm của hệ phương trình là $(x;y) = \left(-4; \frac{17}{4}\right)$.	
III			2,00
	1	Viết phương trình mặt phẳng đi qua ba điểm A, B, C (1,00 điểm)	
		Ta có $AB = (2; -3; -1)$, $AC = (-2; -1; -1)$, tích có hướng của hai vecto	0,50
		\overrightarrow{AB} , \overrightarrow{AC} là $n = (2;4;-8)$.	
		Mặt phẳng đi qua ba điểm A, B, C nhận n làm vecto pháp tuyến nên có phương trình $2(x-0)+4(y-1)-8(z-2)=0 \iff x+2y-4z+6=0.$	0,50
	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		Ta có $\overrightarrow{AB}.\overrightarrow{AC} = 0$ nên điểm M thuộc đường thẳng vuông góc với mặt phẳng (ABC) tại trung điểm I(0;-1;1) của BC.	0,50
		Tọa độ của điểm M thỏa mãn hệ phương trình $\begin{cases} 2x + 2y + z - 3 = 0 \\ \frac{x}{1} = \frac{y+1}{2} = \frac{z-1}{-4}. \end{cases}$	0,50
		Suy ra $M(2;3;-7)$.	
IV			2,00
	1	Tính tích phân (1,00 điểm)	
		$\int \cot t = \sin x + \cos x \implies dt = (\cos x - \sin x) dx = -\sqrt{2} \sin \left(x - \frac{\pi}{4}\right) dx.$	0,25
		Với $x = 0$ thì $t = 1$, với $x = \frac{\pi}{4}$ thì $t = \sqrt{2}$.	
		Ta có $\sin 2x + 2(1 + \sin x + \cos x) = (t+1)^2$.	
		Suy ra $I = -\frac{\sqrt{2}}{2} \int_{1}^{\sqrt{2}} \frac{dt}{(t+1)^2} = \frac{\sqrt{2}}{2} \frac{1}{t+1} \Big _{1}^{\sqrt{2}}$	0,50
		$=\frac{\sqrt{2}}{2}\left(\frac{1}{\sqrt{2}+1}-\frac{1}{2}\right)=\frac{4-3\sqrt{2}}{4}.$	0,25

	2	Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức (1,00 điểm)	
		$P = \frac{2(x^2 + 6xy)}{1 + 2xy + 2y^2} = \frac{2(x^2 + 6xy)}{x^2 + y^2 + 2xy + 2y^2}.$	
		• Nếu $y = 0$ thì $x^2 = 1$. Suy ra $P = 2$.	
		• Neu $y = 0$ till $x = 1$. Suy la $y = 2$. • Xét $y \neq 0$. Đặt $x = ty$, khi đó	
		$P = \frac{2t^2 + 12t}{t^2 + 2t + 3} \iff (P - 2)t^2 + 2(P - 6)t + 3P = 0 (1).$	0,50
		- Với P = 2, phương trình (1) có nghiệm $t = \frac{3}{4}$.	
		 Với P≠2, phương trình (1) có nghiệm khi và chỉ khi 	
		$\Delta' = -2P^2 - 6P + 36 \ge 0 \Leftrightarrow -6 \le P \le 3.$	
		P = 3 khi x = $\frac{3}{\sqrt{10}}$, y = $\frac{1}{\sqrt{10}}$ hoặc x = $-\frac{3}{\sqrt{10}}$, y = $-\frac{1}{\sqrt{10}}$. P = -6 khi x = $\frac{3}{\sqrt{13}}$, y = $-\frac{2}{\sqrt{13}}$ hoặc x = $-\frac{3}{\sqrt{13}}$, y = $\frac{2}{\sqrt{13}}$.	0,50
		Giá trị lớn nhất của P bằng 3, giá trị nhỏ nhất của P bằng -6.	
V.a			2,00
	1	Chứng minh công thức tổ hợp (1,00 điểm)	
		Ta có: $\frac{n+1}{n+2} \left(\frac{1}{C_{n+1}^k} + \frac{1}{C_{n+1}^{k+1}} \right) = \frac{n+1}{n+2} \cdot \frac{k!(n+1-k)! + (k+1)!(n-k)!}{(n+1)!}$	0,50
		$= \frac{1}{n+2} \cdot \frac{k!(n-k)!}{n!} [(n+1-k)+(k+1)]$	
		$= \frac{k!(n-k)!}{n!} = \frac{1}{C^k}.$	0,50
		$-\frac{1}{n!}-\frac{1}{C_n^k}$	
	2	Tìm tọa độ đỉnh C(1,00)	
		 Ký hiệu d₁: x-y+2=0, d₂: 4x+3y-1=0. Gọi H'(a;b) là điểm đối xứng của H qua d₁. Khi đó H' thuộc đường thẳng AC. 	
		• $\vec{u} = (1;1)$ là vecto chỉ phương của d_1 , $\overrightarrow{HH'} = (a+1;b+1)$ vuông góc với \vec{u}	
			0.50
		và trung điểm I $\left(\frac{a-1}{2}; \frac{b-1}{2}\right)$ của HH' thuộc d ₁ . Do đó tọa độ của H' là	0,50
		nghiệm của hệ phương trình $\begin{cases} 1(a+1)+1(b+1)=0\\ \frac{a-1}{2}-\frac{b-1}{2}+2=0 \end{cases} \Rightarrow \mathrm{H}'(-3;1).$	
		• Đường thẳng AC đi qua H' vuông góc với d_2 nên có vecto pháp tuyến là $\vec{v} = (3; -4)$ và có phương trình $3(x+3) - 4(y-1) = 0 \Leftrightarrow 3x - 4y + 13 = 0$.	
		• Tọa độ của A là nghiệm của hệ phương trình $\begin{cases} 3x - 4y + 13 = 0 \\ x - y + 2 = 0 \end{cases} \Rightarrow A(5;7).$	
		• Đường thẳng CH đi qua H $\left(-1;-1\right)$ với vectơ pháp tuyến $\frac{1}{2}\overrightarrow{HA} = (3;4)$	0,50
		nên có phương trình $3(x + 1) + 4(y + 1) = 0 \iff 3x + 4y + 7 = 0$.	
		• Tọa độ của C là nghiệm của hệ phương trình $\begin{cases} 3x + 4y + 7 = 0 \\ 3x - 4y + 13 = 0. \end{cases}$	
		Suy ra $C\left(-\frac{10}{3}; \frac{3}{4}\right)$.	

V.b		,	2,00
	1	Giải bất phương trình (1,00 điểm)	
		Bất phương trình đã cho tương đương với	
		$\log_6 \frac{x^2 + x}{x + 4} > 1 \iff \frac{x^2 + x}{x + 4} > 6$	0,50
		$\Leftrightarrow \frac{x^2 - 5x - 24}{x + 4} > 0 \Leftrightarrow \frac{(x+3)(x-8)}{x+4} > 0.$	0,50
		Tập nghiệm của bất phương trình là : $(-4;-3) \cup (8;+\infty)$.	
	2	Tính thể tích và tính cosin của góc giữa hai đường thẳng (1,00 điểm)	
		Gọi H là hình chiếu của S trên AB, suy ra SH \((ABCD) \). Do đó SH là	
		đường cao của hình chóp S.BMDN.	
		Ta có: $SA^2 + SB^2 = a^2 + 3a^2 = AB^2$ nên tam giác SAB vuông tại S, suy ra	
		$SM = \frac{AB}{2} = a$. Do đó tam giác SAM đều, suy ra $SH = \frac{a\sqrt{3}}{2}$.	
		Diện tích tứ giác BMDN là $S_{BMDN} = \frac{1}{2}S_{ABCD} = 2a^2$.	
		Thể tích khối chóp S.BMDN là $V = \frac{1}{3}SH.S_{BMDN} = \frac{a^3\sqrt{3}}{3}$ (đvtt).	
		B N C	0,50
		Kẻ ME∥DN (E∈ AD)	
		suy ra $AE = \frac{a}{2}$. Đặt φ là góc giữa hai đường thẳng SM và DN. Ta có	
		$\widehat{(SM, ME)} = \varphi$. Theo định lý ba đường vuông góc ta có $SA \perp AE$	
		Suy ra SE = $\sqrt{SA^2 + AE^2} = \frac{a\sqrt{5}}{2}$, ME = $\sqrt{AM^2 + AE^2} = \frac{a\sqrt{5}}{2}$.	0,50
		Tam giác SME cân tại E nên $\widehat{SME} = \varphi$ và $\cos \varphi = \frac{\frac{a}{2}}{\frac{a\sqrt{5}}{2}} = \frac{\sqrt{5}}{5}$.	

Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được đủ điểm từng phần như đáp án quy định.

-----Hết-----