

USED CAR PRICE PREDICTION PROJECT

Submitted by: Benjamin Emmanuel

ACKNOWLEDGMENT

I'd like to express my heartfelt gratitude to my SME (Subject Matter Expert) Mohd. Kashif, as well as Flip Robo Technologies, for allowing me to work on this project on Used Car Price Prediction and for assisting me in conducting extensive research, which allowed me to learn a lot of new things, particularly in terms of data collection.

In addition, I used a few outside resources to help me finish the project. I made sure to learn from the samples and adjust things to fit my project's needs. The following are all of the external resources that were utilised to create this project:

- 1) https://www.google.com/
- 2) https://www.youtube.com/
- 3) https://scikit-learn.org/stable/user-guide.html
- 4) https://github.com/
- 5) https://www.kaggle.com/
- 6) https://medium.com/
- 7) https://towardsdatascience.com/
- 8) https://www.analyticsvidhya.com/

INTRODUCTION

Business Problem Framing

COVID-19's impact on the Indian automotive industry: Before the Covid-19 crisis, the Indian automotive sector was already in trouble. It had an almost 18% decline in overall growth. The commencement of the Covid-19 outbreak, as well as ongoing lockdowns across India and the rest of the world, aggravated the issue. Slow economic growth, negative consumer mood, BS-VI transition, changes to axle load norms, liquidity constraint, low capacity utilisation, and potential bankruptcies are all posing challenges for the Indian automotive business in the coming two years (FY20 and FY21). The restoration to near-normalcy of daily life and manufacturing activity in China and South Korea, as well as India's extended shutdown, provide promise for a U-shaped economic revival. According to our analysis, the Indian automobile sector will begin to revive in the third quarter of FY21. In FY21, we anticipate a 15% to 25% decrease in industry demand. OEMs, dealers, and suppliers with large cash reserves and easy access to finance will be better positioned to weather the storm. The auto industry has been hampered by a combination of demand and supply issues. There are, however, certain good results that we will examine.

- The car sector will suffer as India's GDP growth rate for FY21 is reduced from 5% to 0% and then to (-5%). Job creation and income levels are highly correlated with auto demand, and both have been impacted. The revenue impact on India's auto industry, according to the CII, is expected to be \$2 billion each month.
- The supply chain could be the hardest hit. Supply chain difficulties are expected to continue even after China recovers. Problems on the Indo-China border in Ladakh are making matters worse. Domestic providers are pitching in, but demand remains sluggish, resulting in an inventory surplus.

- The release of the Unlock 1.0 will correspond with the application of the BS-VI standards, which will result in greater reductions for both dealers and customers. Even if automakers manage their expenses, discounts will have a significant influence on profits.
- In the post-COVID-19 scenario, the true pain may be felt by dealers, who are likely to be dealing with surplus inventory and a lack of finance options. The BS-VI price hikes are also expected to have an impact on auto demand. COVID-19 has brought about two beneficial developments. The "Make in India" movement is being forced to invest heavily due to the China supply chain shock. The COVID-19 dilemma has exposed flaws in the automobile business paradigm, and it may be the catalyst for a major shift to electric automobiles (EVs). That might be a huge plus for the auto industry.

Conceptual Background of the Domain Problem

The expanding world of e-commerce includes everything you'd expect to find at a general store, not just electronics and clothing. Putting aside the ordinary retail perspective and looking at the big picture, the digital marketplace sees thousands, if not millions, of transactions every day. The vehicle industry, which involves the purchasing and selling of used cars, is one of the most expanding markets in the digital arena. We may need to approach the dealer or individual sellers to obtain information. Get a quotation on a

used automobile. However, when it comes to used car appraisal, or second-hand car valuation, buyers and sellers confront a huge stumbling block. In the past, you would visit a dealership and have your automobile inspected before learning the price. So, rather than doing all of these things, we may create a machine learning model that uses various attributes of used automobiles to forecast the exact and valuable car price.

Review of Literature

- This project focuses on the data's exploration, feature engineering, and classification capabilities. We can do better data exploration and extract some interesting characteristics utilising the available columns because we scrape a large amount of data that includes more automobile related variables.
- The purpose of this project is to create an application that can forecast automobile prices using various features. In the long run, this would allow consumers in an increasingly digital society to better discuss and review their purchases with one another.

Motivation for the Problem Undertaken

I realised how each independent feature helped me grasp the data based on the issue statement and real-time data scraped from the OLX and Cars24 websites, as each feature delivers a distinct kind of information. Working with many forms of real-time data in a single data set and performing root cause analysis to anticipate the price of a used car is quite exciting. I would be able to model the price of a used automobile based on an examination of the car model, kilometres travelled, transmission type, fuel type, and other characteristics, and this model would then be used by the client to understand how the costs change with the variables. They can work on it properly and devise some ways to sell the used car for a profit. Furthermore, the model will assist the client in comprehending the pricing dynamics of a used vehicle.

Analytical Problem Framing

Mathematical/ Analytical Modeling of the Problem
 In our scrapped dataset, our target variable "Used Car Price" is a continuous variable. Therefore, we will be handling this modelling problem as regression.

This project is done in two parts:

- Data Collection phase
- Model Building phase

Data Collection phase:

You have to scrape at least 5000 used cars data. You can scrape more data as well, it's up to you. More the data better the model. In this section You need to scrape the data of used cars from websites (OLX, OLA, Car Dekho, Cars24 etc.) You need web scraping for this. You have to fetch data for different locations. The number of columns for data doesn't have limit, it's up to you and your creativity. Generally, these columns are Brand, model, variant, manufacturing year, driven kilometres, fuel, number of owners, location and at last target variable Price of the car. This data is to give you a hint about important variables in used car model. You can make changes to it, you can add or you can remove some columns, it completely depends on the website from which you are fetching the data. Try to include all types of cars in your data for example- SUV, Sedans, Coupe, minivan, Hatchback.

Model Building phase:

After collecting the data, you need to build a machine learning model. Before model building do all data pre-processing steps. Try different models with different hyper parameters and select the best model. Follow the complete life cycle of data science. Include all the below steps mentioned:

- 1. Data Cleaning
- 2. Exploratory Data Analysis (EDA)
- 3. Data Pre-processing and Visualisation
- 4. Model Building
- 5. Model Evaluation
- 6. Selecting the best model

Data Sources and their formats

The dataset is in the form of CSV (Comma Separated Value) format and consists of 6 columns (5 features and 1 label) with 10000 number of records as explained below:

- Used Car Model This shows the car model names
- Year of Manufacture Gives us the year in which the car was made
- Kilometres Driven Number of kilometres the car the driven reflecting on the Odometer
- Fuel Type Shows the fuel type used by the vehicle
- Transmission Type Gives us the manual or automatic gear shifting mechanism
- Used Car Price Lists the selling price of the used cars

Our dataset comprises a column with the target label "Utilized Car Price," and the remaining feature columns can be used to determine or assist in forecasting the price of used cars. Due to the

fact that price is a continuous variable, this is a regression problem!

df = pd.read_csv(r"C:\Users\swrai\Desktop\Used_Car_Data.csv")

I am importing the collected dataset comma separated values file and storing it into our dataframe for further usage.

df # checking the first 5 and last 5 rows

	Used Car Model	Year of Manufacture	Kilometers Driven	Fuel Type	Transmission Type	Used Car Price
0	Hyundai	2017	2,200 km	Petrol	Manual	5,25,000
1	Hyundai	2013	91,500 km	Diesel	Manual	5,95,000
2	Ford	2017	36,000 km	Diesel	Manual	7,75,000
3	Honda	2015	90,000 km	Diesel	Manual	4,00,000
4	Maruti Suzuki	2010	40,000 km	Petrol	Manual	2,30,000
9995	Hyundai	2012	65,000 km	Petrol	Manual	3,25,000
9996	Maruti Suzuki	2018	85,000 km	CNG & Hybrids	Manual	2,90,000
9997	Maruti Suzuki	2010	72,000 km	Petrol	Manual	3,20,000
9998	Tata	2012	70,000 km	Diesel	Manual	1,85,000
9999	Ford	2018	53,764 km	Diesel	Manual	8,75,000

10000 rows × 6 columns

Data Preprocessing Done

For the data pre-processing step, I checked through the dataframe for missing values, imputed records with "-" using various imputing techniques to handle them.

Checked the datatype details for each column to understand the numeric ones and its further conversion process.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 6 columns):
     Column
                          Non-Null Count
                                          Dtype
 0
     Used Car Model
                          10000 non-null
                                          object
     Year of Manufacture 10000 non-null
                                          object
 1
     Kilometers Driven
                          10000 non-null
                                          object
 3
     Fuel Type
                          10000 non-null
                                          object
     Transmission Type
                          10000 non-null
                                          object
 5
     Used Car Price
                          10000 non-null
                                          object
dtypes: object(6)
memory usage: 468.9+ KB
```

I also took a look at all the unique value present in each of the columns and then decided to dealt with the imputation part accordingly.

```
Unique Values

Unique Values

Transmission Type 3

Fuel Type 6

Year of Manufacture 31

Used Car Price 940

Kilometers Driven 1094

Used Car Model 2056
```

The various data imputation performed on our data set are shown below with the code.

```
# Data pre processing

df["Kilometers Driven"]=df["Kilometers Driven"].apply(lambda x: x.replace(',','') if x!='-' else '-')
df["Kilometers Driven"]=df["Kilometers Driven"].apply(lambda x: int(x.split(' ')[0]) if x!='-' else 0)
df

df["Year of Manufacture"]=df["Year of Manufacture"].apply(lambda x: int(x.strip()[0:4]) if x!='-' else 0)
median_val_year=df["Year of Manufacture"].median()
df["Year of Manufacture"]=df["Year of Manufacture"].apply(lambda x: x if x!=0 else median_val_year)
df["Year of Manufacture"]=df["Year of Manufacture"].astype(int)
df
```

```
try:
    df["Used Car Price"]=df["Used Car Price"].apply(lambda x: x.split(' ')[1] if x!='-' else '0,0')
except IndexError:
    pass

try:
    df["Used Car Price"]=df["Used Car Price"].apply(lambda x: str(x.replace(',', '')))
except ValueError:
    pass

df["Used Car Price"]=df["Used Car Price"].str.strip() # removing extra white space from the column records
df["Used Car Price"]=pd.to_numeric(df["Used Car Price"].str.replace('-','0'), errors='coerce')
df["Used Car Price"]=df["Used Car Price"].astype(float) # converting object to float data type
df
```

```
df["Fuel Type"]=df["Fuel Type"].apply(lambda x: x if x!='.' else 'Petrol') # replacing with common fuel type in india df["Transmission Type"]=df["Transmission Type"].apply(lambda x: x if x!='.' else 'Manual') # common transmission is manual df["Used Car Model"]=df["Used Car Model"].apply(lambda x: x if x!='-' else 'Hyundai') # common used car model df["Kilometers Driven"]=df["Kilometers Driven"].apply(lambda x: x if x!='-' else 'None') avg_usedcar_price=df["Used Car Price"].mean() df["Used Car Price"]=df["Used Car Price"].apply(lambda x: x if x!='-' else avg_usedcar_price) # average used car prices df
```

I then used the "describe" method to check the count, mean, standard deviation, minimum, maximum, 25%, 50% and 75% quartile data.

df.describe(include="all")

	Used Car Model	Year of Manufacture	Kilometers Driven	Fuel Type	Transmission Type	Used Car Price
count	10000	10000.00000	1.000000e+04	10000	10000	1.000000e+04
unique	2055	NaN	NaN	5	2	NaN
top	Maruti Suzuki	NaN	NaN	Diesel	Manual	NaN
freq	602	NaN	NaN	5345	8598	NaN
mean	NaN	2013.69860	6.914651e+04	NaN	NaN	6.608371e+05
std	NaN	4.02124	5.868048e+04	NaN	NaN	1.204508e+06
min	NaN	1983.00000	0.000000e+00	NaN	NaN	0.000000e+00
25%	NaN	2011.00000	3.500000e+04	NaN	NaN	2.549990e+05
50%	NaN	2014.00000	6.000000e+04	NaN	NaN	4.500000e+05
75%	NaN	2017.00000	9.000000e+04	NaN	NaN	6.770000e+05
max	NaN	2021.00000	2.360457e+06	NaN	NaN	6.300000e+07

Took a visual on just the numeric part as well and saw just the maximum value for Used Car Price column at a higher scale.

Data Inputs- Logic- Output Relationships

The input data were initially all object datatype so had to clean the data by removing unwanted information like "km" from Kilometres Driven column and ensuring the numeric data are converted accordingly. I then used Ordinal Encoding method to convert all the categorical feature columns to numeric format.

```
# Ordinal Encoder

oe = OrdinalEncoder()
def ordinal_encode(df, column):
    df[column] = oe.fit_transform(df[column])
    return df

column=["Transmission Type", "Fuel Type", "Used Car Model"]
df=ordinal_encode(df, column)
df
```

Made use of Z score method to remove outliers that were present on our dataset.

```
# Using Z Score to remove outliers

z = np.abs(zscore(df))
threshold = 3
df1 = df[(z<3).all(axis = 1)]

print ("Shape of the dataframe before removing outliers: ", df.shape)
print ("Shape of the dataframe after removing outliers: ", df1.shape)
print ("Percentage of data loss post outlier removal: ", (df.shape[0]-df1.shape[0])/df.shape[0]*100)

df=df1.copy() # reassigning the changed dataframe name to our original dataframe name

Shape of the dataframe before removing outliers: (10000, 6)
Shape of the dataframe after removing outliers: (9660, 6)
Percentage of data loss post outlier removal: 3.400000000000000000</pre>
```

To handle the skewness, I made use of Log transformation technique ensuring that at least a bell shape curve closer to normal distribution is achieved.

```
# Using Log Transform to fix skewness

df_log=df.copy()
for col in df_log.columns:
    if df_log.skew().loc[col]>0.55:
        df_log[col]=np.log1p(df_log[col])
```

Hardware and Software Requirements and Tools Used

Hardware technology being used.

RAM:8GB

CPU : AMD Ryzen 5 3550H with Radeon Vega Mobile Gfx 2.10 GHz

GPU : AMD Radeon ™ Vega 8 Graphics and NVIDIA GeForce GTX

1650 Ti

Software technology being used.

Programming language : Python

Distribution : Anaconda Navigator

Browser based language shell : Jupyter Notebook

Libraries/Packages specifically being used.

Pandas, NumPy, matplotlib, seaborn, scikit-learn, pandas-profiling, missingno

Model/s Development and Evaluation

- Identification of possible problem-solving approaches (methods)
 - 1. Clean the dataset from unwanted scraped details.
 - 2. Impute missing values with meaningful information.
 - 3. Encoding the categorical data to get numerical input data.
 - 4. Compare different models and identify the suitable model.
 - 5. R2 score is used as the primary evaluation metric.
 - 6. MSE and RMSE are used as secondary metrics.
 - 7. Cross Validation Score was used to ensure there are no overfitting our underfitting models.
- Testing of Identified Approaches (Algorithms)

Libraries and Machine Learning Regression models that were used in this project are shown below.

```
import warnings
warnings.simplefilter("ignore")
warnings.filterwarnings("ignore")
import joblib
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import missingno
import pandas_profiling
from sklearn import metrics
from scipy.stats import zscore
from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
```

All the regression machine learning algorithms used are:

- Linear Regression Model
- Ridge Regularization Model
- Lasso Regularization Model
- Support Vector Regression Model
- Decision Tree Regression Model
- Random Forest Regression Model
- K Neighbours Regression Model
- Gradient Boosting Regression Model
- Ada Boost Regression Model
- Extra Trees Regression Model

Run and Evaluate selected models

I created a Regression Machine Leaning Model function incorporating the evaluation metrics so that we can get the required data for all the above models.

Code:

Machine Learning Model for Regression with Evaluation Metrics

```
# Regression Model Function
def reg(model, X, Y):
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=251)
   # Training the model
    model.fit(X_train, Y_train)
    # Predicting Y_test
    pred = model.predict(X_test)
    # RMSE - a lower RMSE score is better than a higher one
    rmse = mean squared error(Y test, pred, squared=False)
    print("RMSE Score is:", rmse)
    # R2 score
    r2 = r2_score(Y_test, pred, multioutput='variance_weighted')*100
    print("R2 Score is:", r2)
    # Cross Validation Score
    cv_score = (cross_val_score(model, X, Y, cv=5).mean())*100
   print("Cross Validation Score:", cv_score)
    # Result of r2 score minus cv score
    result = r2 - cv_score
    print("R2 Score - Cross Validation Score is", result)
```

```
# Linear Regression Model

model=LinearRegression()
reg(model, X, Y)

RMSE Score is: 0.6055563352393261
R2 Score is: 57.550268240713386
Cross Validation Score: 52.8753376052149
R2 Score - Cross Validation Score is 4.674930635498484
```

 Key Metrics for success in solving problem under consideration

RMSE Score:

Root Mean Square Error (RMSE) is the standard deviation of the residuals (prediction errors). Residuals are a measure of how far from the regression line data points are; RMSE is a measure of how spread out these residuals are. In other words, it tells you how concentrated the data is around the line of best fit.

R2 Score:

The R2 score is a very important metric that is used to evaluate the performance of a regression-based machine learning model. It is pronounced as R squared and is also known as the coefficient of determination. It works by measuring the amount of variance in the predictions explained by the dataset.

Cross Validation Score:

Cross-validation is a statistical method used to estimate the skill of machine learning models. It is commonly used in applied machine learning to compare and select a model for a given predictive modelling problem because it is easy to understand, easy to implement, and results in skill estimates that generally have a lower bias than other methods. The k-fold cross validation is a procedure used to estimate the skill of the model on new data. There are common tactics that you can use to select the value of k for your dataset (I have used 5-fold validation in this project). There are

commonly used variations on cross-validation such as stratified and repeated that are available in scikit-learn.

Hyper Parameter Tuning:

In machine learning, hyperparameter optimization or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process. By contrast, the values of other parameters (typically node weights) are learned.

Code:

Final model score after plugging in the best parameter values:

```
Final_Model = ExtraTreesRegressor(criterion='mse', n_estimators=300, n_jobs=-1, random_state=42)
Model_Training = Final_Model.fit(X_train, Y_train)
fmod_pred = Final_Model.predict(X_test)
fmod_r2 = r2_score(Y_test, fmod_pred, multioutput='variance_weighted')*100
print("R2 score for the Best Model is:", fmod_r2)
```

R2 score for the Best Model is: 73.45479082360302

Visualizations

I used the pandas profiling feature to generate an initial detailed report on my dataframe values. It gives us various information on the rendered dataset like the correlations, missing values, duplicate rows, variable types, memory size etc. This assists us in further detailed visualization separating each part one by one comparing and research for the impacts on the prediction of our target label from all the available feature columns.

Code:

pandas-profiling is an open-source Python module with which we can quickly do an exploratory data analysis with just a few lines of code. It generates interactive reports in web format that can be presented to any person, even if they don't know programming. It also offers report generation for the dataset with lots of features and customizations for the report generated. In short, what pandasprofiling does is save us all the work of visualizing and understanding the distribution of each variable. It generates a report with all the information easily available.

I generated count plots, bar plots, pair plots, heatmap and others to visualise the datapoint present in our column records.

Code:

```
try:
    x = 'Transmission Type'
    k=0
    plt.figure(figsize=[5,7])
    axes = sns.countplot(df[x])
    for i in axes.patches:
        ht = i.get height()
        mr = len(df[x])
        st = f"{ht} ({round(ht*100/mr,2)}%)"
        plt.text(k, ht/2, st, ha='center', fontweight='bold')
        k += 1
    plt.ylim(0,10000)
    plt.title(f'Count Plot for {x} column\n')
    plt.ylabel(f'total number of rows covered\n')
    plt.show()
except Exception as e:
    print("Error:", e)
    pass
```

Output:

Code:

```
y = 'Transmission Type'
x = 'Year of Manufacture'
plt.figure(figsize=[15,7])
sns.barplot(x,y,data=df,orient='h')
plt.title(f"Barplot for {x} column vs {y} column")
plt.show()
x = 'Kilometers Driven'
plt.figure(figsize=[15,7])
sns.barplot(x,y,data=df,orient='h')
plt.title(f"Barplot for {x} column vs {y} column")
plt.show()
x = 'Used Car Price'
plt.figure(figsize=[15,7])
sns.barplot(x,y,data=df,orient='h')
plt.title(f"Barplot for {x} column vs {y} column")
plt.show()
```

Output:


```
plt.figure(figsize=[15,7])
purchased_car_per_year = df['Year of Manufacture'].value_counts()
purchased_car_per_year.plot(kind='bar')
plt.xlabel("\nPurchase Year")
plt.ylabel("Purchased Cars")
plt.title("Purchase Year vs Number of Purchased Cars")
plt.show()
```



```
print("Pair Plot with Transmission Type legend")
sns.pairplot(df, hue='Transmission Type', diag_kind="kde", kind="scatter", palette="Set2", height=3.5)
plt.show()
print("Pair Plot with Fuel Type legend")
sns.pairplot(df, hue='Fuel Type', diag_kind="kde", kind="scatter", palette="tab10", height=3.5)
plt.show()
```

```
Manual = df[df['Transmission Type']=='Manual']
Automatic = df[df['Transmission Type']=='Automatic']

print('Manual transmission type used car fuel details')
sns.pairplot(Manual, hue='Fuel Type', diag_kind="kde", kind="scatter", palette="tab10", height=3.5)
plt.show()

print('Automatic transmission type used car fuel details')
sns.pairplot(Automatic, hue='Fuel Type', diag_kind="kde", kind="scatter", palette="hls", height=3.5)
plt.show()
```



```
plt.style.use('seaborn-bright')

df.hist(figsize=(20,20))
plt.show()
```


Code:

```
df_corr = df.corr()
plt.figure(figsize=(14,7))
df_corr['Used Car Price'].sort_values(ascending=False).drop('Used Car Price').plot.bar()
plt.title("Correlation of Feature columns vs Label\n", fontsize=16)
plt.xlabel("\nFeatures List", fontsize=14)
plt.ylabel("Correlation Value", fontsize=14)
plt.show()
```

Output:

Outliers and Skewness before and after treating them:


```
rf=RandomForestRegressor()
rf.fit(X_train, Y_train)
importances = pd.DataFrame({'Features':X.columns, 'Importance':np.round(rf.feature_importances_,3)})
importances = importances.sort_values('Importance', ascending=False).set_index('Features')
plt.rcParams["figure.figsize"] = (14,7)
importances.plot.bar(color='teal')
importances
```


Interpretation of the Results

We can see from the visuals that the features are impacting the price of used cars. There were categorical columns which I encoded using the ordinal encoder method instead of the one hot encoding to avoid the generation of large number of columns. Also, I our target label stored continuous numeric data and therefore label encoder was out of the picture to be used.

CONCLUSION

Key Findings and Conclusions of the Study

We gained knowledge into how to collect data, pre-process the data, analyse the data, and construct a model after completing this project. First, we used Web Scraping to acquire data on used automobiles from several websites such as OLX, Car Dekho, Cars 24, OLA, and others. Beautiful Soup and Selenium were utilised for web scraping, which provides the advantage of automating our data collection process. We gathered about 10,000 pieces of information, including the selling price of used autos and other relevant details. The scraped data was then integrated into a single data frame and stored as a csv file, which we could read and analyse. We cleaned the data and performed data pre-processing tasks such as discovering and handling null values, removing words from numbers, converting objects to int types, data visualisation, and handling outliers and skewness, among other things. We started testing multiple machine learning regression techniques to discover the best performing model after separating our train and test data. According to their r2 score and cross validation scores, the Extra Tree Regressor Algorithm performed well. Then, using Grid Search CV, we used the Hyperparameter Tuning approach to find the optimal parameters and improve the score. Although the Extra Tree Regressor Algorithm did not do as well as the defaults, we decided to keep it for future forecasts because it was still better than the rest. After receiving a dataframe containing anticipated and real used car price details, we stored the final model in pkl format using the joblib package.

 Learning Outcomes of the Study in respect of Data Science

The data visualisation section assisted me in understanding the data by providing a graphical depiction of large amounts of data. It helped me comprehend the value of characteristics, discover outliers/skewness, and compare independent and dependent features. Because data cleaning is the most critical element of model construction, I made sure the data was cleaned and scaled before starting. I created several regression machine learning models in order to find the best one, and Extra Trees Regressor Model was the best based on the metrics I utilised.

Limitations of this work and Scope for Future Work

The limitations we faced during this project were:

The website was badly constructed because scraping took a long time and getting the next page was difficult. In addition, I need more practise with various web scraping approaches. There were more negative connected data than positive correlated data. Outliers and skewness were found, and we had to lose some valuable data while dealing with them. Because no instructions for dealing with these fast-paced websites were supplied, the web scraping process took longer.

Future Work Scope:

The current model is confined to used car data, but by training the model appropriately, it can be enhanced for various types of automobiles. By training the model with more precise data, the overall score can be increased even more.

