Lecture 10 Donliner classifiers & Kernels	Kerny SVM
Lower classifiers - TUM, LR, percaption, etc.	Comile flow SUM Las poblem, not replace to 5 400)
collect of the data is nonlinearly separable?	Trains max Zdi- ZZZdik; yin; (Ki) T(Ki) s.t. Zdiy; =0, di>0 K(Ki,Ki)
They - (COSC	S.E. Zdiyi=0, dizo
- learn linur classifier in new space.	Decirum Bounday: w= Zdiy; I(xi) (w is in some space as I
-if new dimension is large enough, the data becomes liberty separate.	Bias form $b = \frac{1}{ sv } \sum_{i \in Sv} (y_i - \omega^T \Phi(x_i)) = \frac{1}{ sv } \sum_{i \in Sv} (y_i - \sum_{i \in Sv} y_i)$ Decision function. ((C(x_i)))
1 (2) -1 (0)	Decision function $y^* = styn(f(x^*))$ $f(x^*) = w^T \overline{f}(x^*) + b = \overline{f}(x_i)^T \overline{f}(x_i)^T \overline{f}(x^*) + \overline{f}(x_i)^T \overline{f}(x$
hill-dan	$\frac{k(x_1x^*)}{k(x_1x^*)}$
"high-dram forbre space"	10000 611112 41 1
To the land due (2) -> 00	Define Function: K(xi,xi,) = \(\overline{\pi}(xi)\)^T \(\overline{\pi}(xi)\) = \(\overline{\pi}(xi)\), \(\overline{\pi}\) The deal TVM can be rewritten at this kernel function
- we are mapping each point xi into a trackon	. The dual TVM can be rewritten w/ this kernel fourth
$\overline{Q}(x) \to \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \to \phi(x_1 + x_2)$	· Just before K(xi,xi) directly w/o explicitly calcula
•	- had: Saugs time computation of the
CS5487 Lecture Notes (2022B)	- Bad need o(n2) terms of k(xi,xi), Store . Kornel Montrix
Prof. Antoni B. Chan Dept of Computer Science	K = [K& x3)];;

Frairy MAX Zdi- { ZZ dix; y; y; \(\frac{1}{2}\) \(\frac{1}{2}\ ectum Boundary: w*= Zdiyi (w is in some space as (w) Bias form $b = \frac{1}{|sv|} \sum_{i \in SV} (y_i - \omega^T \overline{\Phi}(x_i)) = \frac{1}{|sv|} \sum_{i \in SV} (y_i - \sum_{i \in SV} y_i \overline{\Phi}(x_i)^T \overline{\Phi}(x_i))$ recessor function 4 = sigh (f(x =)) f(x*)= WT I(x*) +b = Zx(y) I(x) I(x*) +b <u>Note:</u> entire algorithm depends only on $\overline{\Phi}(x_i)^T \overline{\Phi}(x_j)$. Dobne furtim: K(x; x;) = \(\bar{D}(x;) = \(\bar{D}(x;) \) = \(\bar{D}(x;) \) . The dual SVM can be rewritten w/ this kernliftenchen - nonlino-

* Just before K(xi,xi) directly w/o explicitly calculating \$(x) ("Kerny trick") - God: saves time/computation of calculating \$(x) - Bad: need o(n2) terms of k(xi,xi,), Store this korner, motrix. K= [K(0,4)]:

City University of Hong Kong

ample (x.)	J 6
synamial Kernul: X= (x,)	1
$V(\mathbf{x}') = (\mathbf{x}^{T}\mathbf{x}')^2 = (\mathbf{z}^{X}\mathbf{x}_{i}\mathbf{x}_{i}')^2$	
$= \sum_{i=1}^{2} \sum_{j=1}^{2} \chi_{i} \chi_{i}' \chi_{j} \chi_{j}' : \sum_{i=1}^{2} \sum_{j=1}^{2} (\chi_{i} \chi_{j}) (\chi_{i}' \chi_{j}')$	1
ن الما الما الما الما الما الما الما الم	
= [x,x, x,x2 x2x] [x,x,']	•
$\overline{\mathfrak{g}}(x)^{T}$	
$= \begin{bmatrix} x_1 x_1 & x_1 x_2 & \dots & x_2 x_2 \\ \hline \underline{J}(x)^T & & & \vdots \\ x_n x_n & & & \end{bmatrix} \underbrace{J}_{x_n}(x_n)$	
$= \underline{\mathcal{Q}}(x)_{\perp}\underline{\mathcal{Q}}(x,)$	K
ence, ΦG , $\mathbb{R}^3 \to \mathbb{R}^{4^2}$	D
$K(x,x') = \mathcal{J}(x)^{T}\mathcal{J}(x') = (x^{T}x')^{T}$	
columbra: O(d2) O(d) & efficient	
ook SUM decision function:	,,
C() Supplemental	H-
= {\(\chi_{\chi} \chi_{\chi} \	D
= x ^T (¿x;x; ^T) x + b	
A	
gudate fuction	
to the kernel specifies the class of Guchins that are used.	

Caussian Kernel / Radial Basis Function (RBF) Kernel $K(x_1x^1) = e^{-\frac{1}{62}||x-x'||^2}$ $K(x_1x^1) = e^{-\frac{1}{62}||x-x'||^2}$ Gaussian centered at x'Ts it a bot product kernel?

What is the $\overline{\Phi}(x)$?

K(x,x')=<(E(x), I(x'))>

call Functions

where \$1:2 > H , H is a cuch space

(,,) is dot product in H

How to check w/o knowing \$\overline{\text{T}}(4) \tau <.,.)?

[Defin) k(x,x') is a positive definite knowld

if You & \text{Y}(x,-,\text{xn}\rightarrow \text{Xi},-,\text{xn}\rightarrow \text{Xi} \text{Exi} (all datasets of all sizes)

 Given a posself kernel, what is the high-dim xform \$\overline{\infty} \cdot \c eg. Gaussian Kornel $x \rightarrow e^{-\frac{1}{62}||.-x||^2}$ Let 4 = space of all linear combos of function (c,x) #= { f() | f() = 2 x; k(., xi), &m, xx; ex} finds the polynumial kernel $\chi \to \tau_{xx}$. eg. use Gaussian kernel $f(\cdot, \kappa_0) = e^{-\frac{1}{62}||\cdot - \kappa_0||^2}$ E(.) = Surk(.1x:) lok f(.)= = x; k(.,x;), g(.)= = x; k(.,x;) Can show the dot-product blun them in 24 is: e.g. Gaussian korael $(x, y) = \frac{1}{6^2} ||x_i - x_j||^2$ (like a non-linear similarity function in \mathcal{X}) <f,9>= \(\frac{2}{5}\) \(\k(x_{i,1}x_{i})\) Spacial case: di=0, di=0, di=0 $\Rightarrow \langle \underline{k(\cdot,x_0)}, \underline{k(\cdot,x_0)} \rangle = \underline{k(x_0,x_0)}$ Hence, $k(x_i, x_i) = \langle \Phi(x_i), \Phi(x_i) \rangle$ where $\Phi: \mathcal{X} \to \mathcal{U}$ to a very higher $x_i \to \Phi(x_i) = k(\cdot, x_i)$ space (infinite—dim space).

Final Note $f(\cdot) = \sum_{i} \alpha_{i} k(\cdot, x_{i})$ $f(\cdot) = \sum_{i} \alpha_{i} k(\cdot, x_{$

epresenter Ihm
Empirical Risk: Remp = ? L(y;, f(x;))
Regularizar: D(f p), D20 a Strictly monotonically increasing
k(x,x') = RKHS
<u>ne for:</u>
S*=argmin Remp(f) + $\lambda D(f _p)$
=) 5+ has the form 5*(x)= Zaik(x,xi), 5+6 RKHS
optim over inf. Lim space of functions - finite charages of xis
many M algorithms fit this framework -) they can be kernelize
and functions
Kernuls on \mathbb{R}^{d} : linear kernul: $k(x,x') = x^{T}Ax'$, A is ported
poly kernel $\xi(x,x')=(x^Tx')^{\frac{1}{2}}$ puely d order $\xi(x,x')=(x^Tx')^{\frac{1}{2}}$ get all terms with order 2 d.
$-\frac{1}{6^2} [(x-x')]^2$
$a \times an \text{ mintal} : b(x \times 1) = e^{-62}$
Combine Kernels: $K(x,x') = \frac{x^Tx'}{ x-x' ^2}$ Liner RBF wiggly straight line.

```
Correlation knowls E(x,x') = x^Tx' = \sum_{i=1}^{n} x_i x_i'
 Bhattachoryya Kernel: K(x,x') = 2 1x: 1x:
  \chi^2 - RBF Kernel: k(x,x') = e^{-\frac{1}{62}\chi^2(x,x')}
                        \chi^{2}(x_{i}x') = \frac{z}{i} \frac{(x_{i} - x_{i}')^{2}}{\frac{1}{2}(x_{i} + x_{i}')}
  Histogram intersection: k(x_i x') = \sum_{i=1}^{n} min(x_{i,i} x_{i,i}')
 Kernels on sets: X: [x,..,x,3] 1 n=m
                     2 = 2 xi ... , xin 3
     pairwise distance: k(x,x') = e^{-\frac{1}{62}} \sum_{j=1}^{2} J(x_{ij}x_{j})
       pyram2 match learnel: approx to sum of min. Listances been points.
Kernels on Strings /trees/graphs
      K(x,x') = Z \omega, \phi_s(x) \phi_s(x'), \phi_s(x) = \# of times
substry s appears in x.
                                                Ws 20, coefficient (weight)
Kermis in probability densities: p(x), g(x)
     corr. Kerny: k(p,g) = \p(x)g(x)dx
    prob product Kornel. K(p,q) = 5 p(x) 5 q(x) 2 1x
```

Kernels on histogram

Fisher Kervel,