Q1 Team Name

0 Points

Enciphered

Q2 Commands

10 Points

List the commands used in the game to reach the ciphertext

go/enter, enter, pluck, c, back, give, back, back, thrnxxtzy, read

Q3 Analysis

50 Points

Give a detailed analysis of how you figured out the password? (Explain in less than 500 words)

```
\mathsf{Prime}\ p = 455470209427676832372575348833
```

Given pair:

(429, 431955503618234519808008749742)(1973, 176325509039323911968355873643)(7596, 98486971404861992487294722613)

Mathematical expression behind this:

$$x=g^{a_i}*password$$
 ($i\in\{1,2,3\}$)

Given pair can be expressed as:

$$g^{429}*password=$$

$$431955503618234519808008749742 = x_1 \quad (1)$$

$$g^{1973}*password =$$

$$176325509039323911968355873643 = x_2 \quad (2)$$

$$g^{7596}*password=$$

$$98486971404861992487294722613 = x_3$$
 (3)

Using three equation we get

=> Dividing (2) by (1)
$$g^{1973-429} = g^{1544} = x_2/x_1 \mod p = y_1$$
 (say) (4)

=> Dividing (3) by (2)
$$g^{7596-1973} = g^{5623} = x_3/x_2 \mod p = y_2$$
(say) (5)

=> Dividing (3) by (1)
$$g^{7596-429} = g^{7167} = x_3/x_1 \mod p = y_3$$
 (say) (6)

Compute Modular Inverse: As per Fermat Little Theorem $g^{p-1}=1 \mod p$. This implies $g^{-1}=g^{p-2} \mod p$. So, inverse computation converts to exponentiation. Square and multiply algorithm will help to perform exponentiation operations. It will takes $O(\log m)$ time to compute g^m . So efficient.

Let $m=(m_{s-1},m_{s-2},...,m_1,m_0)_2$ be the binary expression of the exponent m, where m_i belongs to $\{0,1\}.$

Algorithm:

```
initialize t=1 \mod p for (i=s-1; i\geq 0; i--)\{ set t=t^2 \mod p if (m_i=1) set t=t*g \mod p \} return t:
```

We try it two different manner. Let us illustrates the first technique. It is clearly observed that $1544,\,5623,\,7167$ are coprime to each other and 5623 is a prime. So, by Bezout identity,

$$1544u_2 + 7167v_2 = 1$$
 where $u_2 = -2929, v_2 = 631$ $\ (8)$

$$5623u_3 + 7167v_3 = 1$$
 where $u_3 = 2929, v_3 =$

```
-2298 \hspace{0.1in} (9) We compute these u_i,v_i using Extended Euclidean Algorithm.
```

Choose equation (7) (you can choose anyone of them),

$$g^{1544u_1 + 5623v_1} = g \mod p$$

$$(g^{1544})^{-2298} \times (g^{5623})^{631} = g \mod p$$

Running time is $O(\log \min(u_i, v_i))$.

Now from equations (1, 2 or 3) we can write

$$password = x_i * (g^{a_i})^{-1} \mod p$$
 For $i=1,$

password =

 $431955503618234519808008749742 * (g)^{429} \mod p$

Now, we perform the computation using GP-PARI calculator. Other freely available number theoretic libraries are NTL, GMP library. We put the GP-PARI command to find \boldsymbol{g} and password.

```
-----
```

```
p=455470209427676832372575348833;
```

x1= 431955503618234519808008749742;

x2= 176325509039323911968355873643;

x3= 98486971404861992487294722613;

```
y1=Mod(x2/x1,p);
```

y2=Mod(x3/x2,p);

y3=Mod(x3/x1,p);

 $z1=Mod(y1^{\ }(-2298),p) \quad //z1=63673345919111482928118052957$

 $z2 = Mod((y2)^631,p)$

//z2=347267008389877298374017667230

z3=z1*z2:

g=z3;

t=Mod(g^429,p);

password=Mod(x1/t,p);

At the end of computation we got

```
g = 52565085417963311027694339;
password: 134721542097659029845273957;
```

Another Way: Using these above relation (4, 5, and 6) goal is to find g. Following computations help to find g.

$$egin{aligned} z_1 &= y_2/(y_1)^3 = g^{5623-3*1544} = g^{991} \ z_2 &= y_3/(z_1)^7 = g^{7167-7*991} = g^{230} \ z_3 &= z_1/(z_2)^4 = g^{991-4*230} = g^{71} \ z_4 &= z_2/(z_3)^3 = g^{230-3*71} = g^{17} \ z_5 &= z_1/(z_3)^{14} = g^{991-14*71} = g^{-3} \ z_6 &= z_4*(z_5)^5 = g^{17+5*(-3)} = g^2 \ z_7 &= z_5*(z_6)^2 = g^{-3+2*2} = g \end{aligned}$$

Hence $z_7 = g$. Modular reduction carried out after each step.

Like above from equation (1), compute

password =

 $431955503618234519808008749742 * (g)^{429} \mod p$

We put the GP-PARI command to find g and password.

```
p=455470209427676832372575348833;
x1= 431955503618234519808008749742;
x2= 176325509039323911968355873643;
x3= 98486971404861992487294722613;
y1=Mod(x2/x1,p);
y2=Mod(x3/x2,p);
y3=Mod(x3/x1,p);
```

z1=Mod(y2/(y1^3),p); z2=Mod(y3/(z1^7),p); z3= Mod(z1/(z2^4),p); z4=Mod(z2/(z3^3),p); z5=Mod(z1/(z3^14),p); z6=Mod(z4*z5^5,p); z7=Mod(z6^2*z5,p);

q=z7;

t=Mod(g^429,p); password=Mod(x1/t,p);

At the end of computation we got

g = 52565085417963311027694339; password: 134721542097659029845273957;

So, in two different approach we got the same result.

Reference:

- 1. Das, Abhijit. Computational number theory. CRC Press, 2016.
- 2. Kawamoto, Fuminori, and Koshi Tomita. "GP/PARI calculator GP/PARI calculator." Journal of the Mathematical Society of Japan 60.3 (2008): 865-903.

Note: Please go through the attached LaTexed pdf of this assignment (can be found in code section).

Q4 Password

10 Points

What was the final command used to clear this level?

Password: 134721542097659029845273957;

Q5 Codes

0 Points

Upload any code that you have used to solve this level

▼ Enciphered_Assignment3.pdf

▲ Download

Gargi Sarkar Anindya Ganguly View or edit group **TOTAL POINTS** 70 / 70 pts **QUESTION 1 0** / 0 pts Team Name **QUESTION 2 10** / 10 pts Commands QUESTION 3 **50** / 50 pts **Analysis QUESTION 4 10** / 10 pts Password QUESTION 5 **0** / 0 pts Codes Correct