A Simple Beamer Template for WP Carey School Affiliated Researchers

Harish Guda¹ X² Y²

¹W.P. Carey School of Business, Arizona State University.

> ²School, University.

An Important Field Conference, July 24, 2023

A Brief Summary

A new idea.

A Brief Summary

A new idea.

We show surprising result.

Introduction

Resources

Customers buy bundles of resources in combination.

Resources

Customers buy bundles of resources in combination.

Example: Airline itinerary.

Nature chooses $\omega \sim p(\cdot)$.

Nature chooses $\omega \sim p(\cdot)$.

For any ω :

Nature chooses $\omega \sim p(\cdot)$.

For any ω :

• Key parameter of agent K: $\kappa \sim f_{\varpi}(\cdot).$

Nature chooses $\omega \sim p(\cdot)$.

For any ω :

- Key parameter of agent K: $\kappa \sim f_{\omega}(\cdot)$.
- Key parameter of agent D: $\delta \sim g_{\omega}(\cdot)$.

Nature chooses $\omega \sim p(\cdot)$.

For any ω :

- Key parameter of agent K: $\kappa \sim f_{\varpi}(\cdot).$
- Key parameter of agent $D\colon\thinspace \delta \sim g_{\varpi}(\cdot).$

Market Clears at all ω : $\mathbf{K} f_{\omega}(\kappa) = \mathbf{D} g_{\omega}(\delta)$.

Results

Key Non-Existence Result

Suppose $\gamma>0.$ There does not exist an outcome where $\delta>0$ and $\Delta>0.$ That is,

$$\gamma>0 \implies \delta\cdot\Delta<0.$$

Key Non-Existence Result

Suppose $\gamma>0.$ There does not exist an outcome where $\delta>0$ and $\Delta>0.$ That is,

$$\gamma>0\implies\delta\cdot\Delta<0.$$

Possible Misinterpretation (Alert)

This is not to be misunderstood with $\delta < 0 \implies \Delta > 0$.

Key Non-Existence Result

Suppose $\gamma>0.$ There does not exist an outcome where $\delta>0$ and $\Delta>0.$ That is,

$$\gamma>0\implies\delta\cdot\Delta<0.$$

Possible Misinterpretation (Alert)

This is not to be misunderstood with $\delta < 0 \implies \Delta > 0$.

An Example

Consider the example a = b.

Implications

Thank You!

Paper available at harishguda.me/research.

