

Rechner Architektur I (RAI) Informationsverarbeitung

Prof. Dr. Akash Kumar Chair for Processor Design

Inhalt

- Zahlensysteme
- Umrechnung zwischen Stellenwertsysteme
- Zahlendarstellung im Computer
- Vorzeichenlose natürliche Zahlen
- Vorzeichenbehaftete ganze Zahlen

Zahlensysteme (Stellenwertsysteme)

Polyadische Zahlensysteme (Positional Number System)

Ziffernfolge (Vor- und Nachkomma): $\sum_{k=-\infty}^{n} a_k B^k$ mit $B \ge 2$, $0 \le a_k < B$, $a_k \in N$

Stellenwertsysteme sind gekennzeichnet durch:

- Darstellung einer Zahl durch eine Ziffernfolge (Aneinanderreihung).
- Der Wert einer Ziffer hängt von der Stellung innerhalb der Ziffernfolge ab.
- Die Wertebildung erfolgt zu einer einheitlichen Basis B.
- Die Basis ist die kleinste, nicht mehr durch eine Ziffer darstellbare Zahl.
- Der Wert der Zahl ergibt sich durch Aufsummierung ihrer Ziffernwerte.
- Dezimalsystem (B=10), Dualsystem (B=2), Hexadezimalsystem (B=16)

Zahlenbereiche

Menge von Zahlen, in der eine Ordnung erklärt ist und gewisse mathematische Verknüpfungen, Operationen uneingeschränkt ausführbar sind (keine natürliche Ordnung für komplexe Zahlen).

$$N \subset Q^* \subset Q \subset R \subset C \quad \text{ bzw.} \quad N \subset Z \subset Q \subset R \subset C$$

Zahlenbereiche

- Die Menge der natürlichen Zahlen N dient dem Abzählen.
- Die Menge der ganzen Zahlen Z entsteht aus N indem man negative Zahlen als Inverse bzgl. der Addition konstruiert.
- Die Menge der nichtnegativen Brüche Q^* entsteht aus N indem man Bruchzahlen als Inverse der Multiplikation konstruiert.
- Die Menge der Brüche oder rationalen Zahlen Q entsteht aus Q^* durch Hinzunahme der Inversen bzgl. der Addition oder aus Z durch Hinzunahme der Inversen bzgl. der Multiplikation.
- Die Menge der reellen Zahlen R entsteht aus Q durch topologische Vervollständigung (z.B. Werte für e, π).
- Die Menge der komplexen Zahlen C besteht aus Paaren reeller Zahlen (a, b), die in der Schreibweise a + bi mit $i^2 = -1$ den üblichen Rechengesetzen genügen

Zahlenbereiche

	Zahlenbereich	Definition	uneing. Operation
\overline{N}	natürliche Zahlen	$N = \{0, 1, 2, \ldots\}$	+,.,<
Z	ganze Zahlen	$Z = \{ m - n, m, n \in \mathbb{N} \}$	+,-,;<
Q^*	gebrochene Zahlen	$Q^* = \{ \frac{m}{n}, m, n \in \mathbb{N}, n \neq 0 \}$	+, ;/,<
Q	reelle Zahlen	$Q = \{ \frac{a}{b}, \ a, b \in \mathbb{Z}, \ b \neq 0 \}$	+,-,-,/,<
R	rationale Zahlen	$a_0, a_1 a_2 \dots \infty$ -Dezimalbruch	+,-, -, -, lim
\boldsymbol{C}	komplexe Zahlen	$C = [a;b], a,b \in P$ (Paare)	+,-, -, lim

Zahlenstrahl natürliche Zahlen (Ordnung: Nachfolger der Zahl n ist n+1)

Useful link:

http://www.montereyinstitute.org/courses/DevelopmentalMath/COURSE_TEXT2_RESOUR $CE/U09_L1_T3_text_final.html$

Vier wichtige Nummernsysteme Four Important Number Systems

System	Warum? Why?	Anmerkungen Remarks
Dezimal Decimal	10 Finger fingers	
Binär Binary	AN/AUS Systeme ON/OFF systems	3 mal mehr Ziffern als dezimal 3 times more digits than decimal
Oktal	Kurzschreibweise für die Arbeit mit Binärdateien Shorthand notation for working with binary	3 mal weniger Ziffern als dezimal 3 times less digits than binary
Hex	do	4 mal weniger Ziffern als dezimal 4 times less digits than binary

Positionsnummernsysteme

Positional Number Systems

- □ Habe ein radix r (Base) mit Ihnen assoziiert
- \square Have a radix r (base) associated with them.
- \square Im Dezimalsystem ist r = 10 und es gibt 10 Symbole, 0 9
- \square In the decimal system, r = 10, and there are 10 symbols, 0 9.
- Was bedeutet 642.391₁₀??
- □ What does 642.391₁₀ mean??

$$6 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0}$$
 . $3 \times 10^{-1} + 9 \times 10^{-2} + 1 \times 10^{-3}$

Zunehmend +ve Krafte von radix

Increasingly +ve powers of radix

Radix Punkt

Radix point

Rechnerarchitektur I

Zunehmend –ve
Krafte von radix
Increasingly -ve
powers of radix
© Akash Kumar

Positionsnummernsysteme

Positional Number Systems

- □ Was bedeutet 642.391₁₀??
- □ What does 642.391₁₀ mean??

100 (10 ²)	10 (10¹)	1 (10°)	0.1 (10 ⁻¹)	0.01 (10-2)	0.001 (10-3)
6	4	2	3	9	1
600	40	2	0.3	0.09	0.001
= 600 + 40 + 2 + 0.3 + 0.09 + 0.001 = 642.391					

- Multiplizieren Sie jede Ziffer mit der entsprechenden Potenz der Basis -10 und fügen Sie sie zusammen
- Multiply each digit by appropriate power of base 10 and add them together

Ganze Zahlen im Stellenwertsystem

Die Zifferndarstellung einer n-stelligen ganzen Zahlen Z_B lautet im Stellwertsystem der Basis B:

$$Z_B = \pm (z_{n-1} \dots z_1 z_0)_B.$$

Der Wert von Z_B bestimmt sich durch :

$$Z_B = \pm \sum_{i=0}^{n-1} z_i \cdot B^i = \pm (z_{n-1} \cdot B^{n-1} + \cdots + z_1 \cdot B^1 + z_0 \cdot B^0)$$

Beispiele:

$$Z_2 = 1010011010_2 = \sum_{i=0}^{9} z_i \cdot 2^i = 1 \cdot 2^1 + 1 \cdot 2^3 + 1 \cdot 2^4 + 1 \cdot 2^7 + 1 \cdot 2^9 = 666_{10}$$

$$Z_8 = -4321_8 = \sum_{i=0}^{3} z_i \cdot 8^i = -(1 \cdot 8^0 + 2 \cdot 8^1 + 3 \cdot 8^2 + 4 \cdot 8^3) = -2257_{10}$$

Echt gebrochene Zahlen im Stellenwertsystem

Die Zifferndarstellung einer gebrochenen Zahl R_B , die kleiner als 1 ist (Nachkommazahl), lautet im Stellenwertsystem der Basis B:

$$R_B = \pm (0, z_{-1}z_{-2}...z_{-m})_B.$$

Der Wert von R_B bestimmt sich durch :

$$R_B = \pm \sum_{i=1}^m z_{-i} \cdot B^{-i} = \pm (z_{-1} \cdot B^{-1} + z_{-2} \cdot B^{-2} + \cdots + z_{-m} \cdot B^{-m})$$

Beispiele zu gebrochenen Zahlen:

$$R_{10} = -0.5362_{10} = -\sum_{i=1}^{n} z_{-i} \cdot 10^{-i} = -(5 \cdot 10^{-1} + 3 \cdot 10^{-2} + 6 \cdot 10^{-3} + 2 \cdot 10^{-4})$$

$$R_2 = 0,110_2 = \sum_{i=1}^{3} z_{-i} \cdot 2^{-i} = 1 \cdot 2^{-1} + 1 \cdot 2^{-2} = 0,75_{10}$$

Positionsnummernsysteme

Positional Number Systems

Number system	Radix	Symbols
Binär Binary	2	{0,1}
Oktal Octal	8	{0,1,2,3,4,5,6,7}
Dezimal Decimal	10	{0,1,2,3,4,5,6,7,8,9}
Hexadecimal	16	{0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f}

There are 10 kinds of people in the world – those who understand binary and those who don't.

Umrechnung zwischen Stellenwertsystemen Conversion between Number Systems

Konvertierung von natürlichen Zahlen (1)

Beispiel: Konvertierung einer Dualzahl $X_2 = 1\ 0011\ 1010_2$ in die wertgleiche Dezimalzahl X_{10}

$$1\ 0011\ 1010_2 = \sum_{i=0}^{n-1} z_i \cdot 2^i$$

$$X_2 = 1$$
 0 0 1 1 1 0 1 0₂

$$X_{10} = 1 \cdot 2^8 + 0 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$$

$$X_{10} = 314_{10}$$

Konvertierung von natürlichen Zahlen (2)

Beispiel: Konvertierung einer Dezimalzahl $X_{10}=314$ in die wertgleiche Dualzahl X_2

Sukzessive Division der Dezimalzahl durch 2 und notieren des Restes.

Mit dem Ergebnis der Division ist solange in gleicher Weise weiter zu verfahren, bis das Resultat 0 erreicht ist.

Der Rest, der nur die Werte 0 und 1 annehmen kann, bildet, mit dem letzten Rest der Division als MSB beginnend, die äquivalente Dualzahl.

```
Rest 0
314:2 = 157
157:2 =
         78
              Rest 1
                    Reste in
78:2 =
          39
              Rest 0
                    umgekehrter
39:2 = 19
              Rest 1
                    Reihenfolge
 19:2 = 9
                    anordnen
              Rest 1
 9:2 =
              Rest 1
              Rest 0
 2:2 =
              Rest 0
              Rest 1
```

$$314_{10} = 100111010_2$$

Konvertierung: Binary to Decimal

Binary \longrightarrow Decimal 1101.011₂ \longrightarrow (??)₁₀

8 (23)	4 (22)	2 (2 ¹)	1 (20)	0.5 (2-1)	0.25 (2-2)	0.125 (2-3)
1	1	0	1	0	1	1
8	4	0	1	0	0.25	0.125
= 8 + 4 + 1 + 0.25 + 0.125 = 13.375						

$$1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$
. $0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} = 13.375_{10}$

Binary point

Konvertierung: Decimal to Binary

Dezimal Decimal → Binär Binary (Real)

Nummer	/2	Reste	•
number		Remainder	
27	13		1
13	6		1
6	3		0
3	1		1
1	0		1

$2 \times 0.375 = 0.75$	Ó	Anordnen
$2 \times 0.75 = 1.5$	1	
$2 \times 0.5 = 1.0$	1	Arrange

int part

Reste in umgekehrter Reihenfolge anordnen

Arrange remainders in reverse order: $11011 \Longrightarrow 27.375_{10} = 11011.011_2$

Konvertierung: Octal to Binary

Octal
$$\longrightarrow$$
 Binary $345.5602_8 \longrightarrow (??)_2$

$$345.5602_8 = 11100101.101110000010_2$$

Konvertierung: Binary to Octal

 $11001110.0101101_2 = 316.264_8$

Add leading zeros if necessary

hinzu Add trailing zeros if necessary

Konvertierung: Binary to Hex

Konvertierung: Hex to Binary

Hex
$$\longrightarrow$$
 Binary B9A4.E6C₁₆ \longrightarrow (??)₂

$$\underbrace{101110011010}_{B} \underbrace{1010}_{9} \underbrace{1010}_{A} \underbrace{0100}_{4} \quad . \quad \underbrace{1110}_{E} \underbrace{0110}_{6} \underbrace{1100}_{C}$$

1011100110100100.111001101100₂

Konvertierung: Hex to Decimal

Hex
$$\longrightarrow$$
 Decimal B63.4C₁₆ \longrightarrow (??)₁₀

16 ²	16 ¹	16º	16 -1	16-2		
B (=11)	6	3	4	C (=12)		
= 2816 + 96 + 3 + 0.25 + 0.046875 = 2915.296875						

$$11 \times 16^{2} + 6 \times 16^{1} + 3 \times 16^{0}$$
, $4 \times 16^{-1} + 12 \times 16^{-2} = 2915.296875_{10}$

Umrechnung ganzer Zahlen zwischen Stellenwertsystemen

$Z_D = Z_B = \pm (z_{n-1} \cdot B^{n-1} + z_{n-2} \cdot B^{n-2} \cdot \cdots + z_1 \cdot B^1 + z_0 \cdot B^0)$	DivRest
$Q_0 = Z_D = \pm ((((z_{n-1} \cdot B + z_{n-2}) \cdot B \dots) \cdot B + z_1) \cdot B + z_0)$	
$Q_1 = \frac{Q_0 - z_0}{B} = \pm (((z_{n-1} \cdot B + z_{n-2}) \cdot B \dots) \cdot B + z_1)$	z_0
$Q_2 = \frac{Q_1-z_1}{B} = \pm ((z_{n-1} \cdot B + z_{n-2}) \cdot B) \dots$	z_1
$O_{n-2}-z_{n-2}$	
$Q_{n-1} = \frac{Q_{n-2} - z_{n-2}}{B} = \pm z_{n-1}$ $Q_{n-1} = \frac{Q_{n-1} - z_{n-1}}{B} = \pm 0$	z_{n-2}
$Q_n = \frac{Q_{n-1} - Z_{n-1}}{B} = \pm 0$	Z_{n-1}
$Z_B = \pm \sum_{i=0}^{n-1} z_i \cdot B^i = \pm (z_{n-1} \dots z_1 z_0)_B$	

Fortlaufende ganzzahlige Division durch B bis $Q_n=0 \to \text{Divisions}$ reste z_μ Z_D - Ist-System (dezimal), Z_B - Ziel-System , Q_ν - ganzzahlige Quotienten

Umrechnung echt gebrochener Zahlen zwischen Stellenwertsystemen

$$R_{D} = R_{B} = \pm (z_{-1} \cdot B^{-1} + \cdots + z_{-m+1} \cdot B^{-m+1} + z_{-m} \cdot B^{-m}) \text{ ganzz.}$$

$$P_{0} = R_{D} = \pm ((((z_{-m} \cdot \frac{1}{B} + z_{-m+1}) \cdot \frac{1}{B} \cdot \cdots) \cdot \frac{1}{B} + z_{-1}) \cdot \frac{1}{B})$$

$$P_{1} = P_{0} \cdot B - z_{1} = \pm (((z_{-m} \cdot \frac{1}{B} + z_{-m+1}) \cdot \frac{1}{B} \cdot \cdots) \cdot \frac{1}{B})$$

$$\vdots$$

$$P_{m-1} = P_{m-2} \cdot B - z_{m-1} = \pm z_{-m} \cdot \frac{1}{B}$$

$$P_{m} = P_{m-1} \cdot B - z_{m} = \pm 0$$

$$z_{-m+1}$$

$$R_{B} = \pm \sum_{i=1}^{m} z_{-i} \cdot B^{-i} = \pm (0, z_{-1}z_{-2} \cdot \cdots z_{-m})_{B}$$

Fortlaufende Multiplikation mit B bis $P_m=0 \rightarrow \text{ganzzahliger Anteil } z_v$ R_D - Ist-System (dezimal), R_B - Ziel-System , P_v - echt gebrochene Produkte

Quizzeit!

- Frage 1: Was ist (10111100.00001110)b in Octal form?
 - A. (274.034)o
 - B. (570.016)o
 - c. (270.014)o
 - D. (574.034)o

www.menti.com

Code: ...

Signierte Binärzahlen Signed Binary Numbers

Negative Zahlen Darstellung Negative numbers representation

- Drei Arten von Darstellungen sind üblich
- □ Three kinds of representations are common
- Signierte Grösse Signed Magnitude (SM)
- 2. Eins Komplement One's Complement
- 3. Zwei Komplement Two's Complement

Signierte Magnituden-Darstellung (n bits)

Signed magnitude representation (n bits)

```
[0,1] {......}

Sign bit (n-1) (left most) magnitude bits
```

- □ 0 indicates +ve
- □ 1 indicates -ve

8 bit representation for +13 is 0 0001101

8 bit representation for -13 is 1 0001101

1's Complement notation (n bits)

Sei N eine *n*-bit-Zahl und $\tilde{N}(1)$ sei das 1-C der Zahl. Dann, Let N be an *n* bit number and $\tilde{N}(1)$ be the 1's C of the number. Then,

$$\tilde{N}(1) = 2^n - 1 - N$$

- Die Idee ist, positive Zahlen so zu belassen, wie sie sind, aber negative
 Zahlen durch die 1 von K ihrer Grösse darzustellen.
- □ The idea is to leave positive numbers as is, but to represent negative numbers by the 1's C of their magnitude.
- □ Beispiel: Sei n = 4. Wie Gross ist die 1-K-Darstellung für +6 und -6?
- \square Example: Let n=4. What is the 1's C representation for +6 and -6?
 - □ +6 ist repräsentiert als is represented as 0110 (wie üblich in binär as usual in binary)
 - -6 wird durch das 1-Komplement seiner Grösse dargestellt is represented by 1's complement of its magnitude (6)

1's Complement notation (n bits)

- □ Die C-Repräsentation von 1 kann auf zwei Arten berechnet werden:
- □ 1's C representation can be computed in 2 ways:
 - <u>Method 1</u>: 1's C representation of -6 is $2^4 1 |N| = (16 1 6)_{10} = (9)_{10} = (1001)_2$
 - Method 2: For -6, the magnitude = $6 = (0110)_2$
 - Die C-Darstellung von 1 wird durch Komplementieren der Bits der Grösse erhalten:
 - The 1's C representation is obtained by complementing the bits of the magnitude: (1001)₂
 - $2^{4} 1 |N| = (16)_{10} 1 |N| = (15)_{10} |N|$ $= (11111)_{2} |N|$

2's Complement notation (n bits)

Sei N eine *n*-bit-Zahl und $\tilde{N}(2)$ sei das 2-C der Zahl. Dann, Let N be an *n* bit number and $\tilde{N}(2)$ be the 2's C of the number. Then,

$$\tilde{N}(2) = 2^n - N$$

- Wiederum ist die Idee, positive Zahlen so zu belassen, wie sie sind, aber negative Zahlen durch die 2 von C ihrer Grösse darzustellen.
- Again, the idea is to leave positive numbers as is, but to represent negative numbers by the 2's C of their magnitude.
- Bespiel: Sei n = 5. Wie Gross ist die 2-C-Darstellung für +11 und -13?
- □ Example: Let n = 5. What is the 2's C representation for +11 and -13?
 - +11 ist repräsentiert als is represented as 0110 (wie üblich in binär as usual in binary)
 - -13 wird durch das 2-Komplement seiner Grösse dargestellt is represented by 1's complement of its magnitude (13)

2's Complement notation (n bits)

- Die C-Repräsentation von 1 kann auf zwei Arten berechnet werden:
- □ 2's C representation can be computed in 2 ways:
 - <u>Method 1</u>: 2's C representation of -13 is $2^5 |N| = (32 13)_{10} = (19)_{10} = (10011)_2$
 - <u>Method 2</u>: For -13, the magnitude = $13 = (01101)_2$
 - Die C-Darstellung von 2 wird durch Komplementieren der Bits der Grösse erhalten:
 - The 2's C representation is obtained by adding 1 to the 1's C of the magnitude:

■
$$2^{5} - |N| = (2^{5} - 1 - |N|) + 1 = 1$$
's C + 1
 $01101 \xrightarrow{1's C} 10010 \xrightarrow{add 1} 10011$

Vergleichen aller signierten Notationen

Comparing all Signed Notations (4-bit)

4-bit No.	SM	1's C	2's C
0000	+0	+0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

- In allen 2 Darstellungen hat eine -ve-Nummer eine 1 in MSB Position
- □ In all 3 representations, a —ve number has a 1 in MSB location
- Um -ve Zahlen mit n Bits zu behandeln,
- \square To handle –ve numbers using n bits,

 - $\cong 2^{n-1}$ symbols can be used for negative umbers
- In der 2-C-Notation wird nur 1Kombination für 0 verwendet
- In 2's C notation, only 1 combination used for 0

Vorzeichenlose natürliche Zahlen

unsigned binary numbers

Die Darstellung erfolgt als n-stellige Dualzahl.

Eine Darstellung von negativen Zahlen ist nicht direkt möglich.

Wertebereich: $0 \le x \le 2^n - 1$

Beispiel für Dualzahlen-Darstellung (n = 8):

dezimal		dual	dezimal		dual
+0	_	0000 0000	128	_	1000 0000
+3		0000 0011	131	_	1000 0011
+127	_	0111 1111	255	_	1111 1111

Anwendung: Speicheradresse

Zahlenkreis für 4-Bit-Zahlen als vorzeichenlose Dualzahl

Vorzeichenbehaftere ganze Zahlen

signed binary numbers

Die Darstellung erfolgt als n-stellige Dualzahl, wobei das Vorzeichen durch verschiedene Verfahren realisiert wird:

- Vorzeichen-Wert-Darstellung
- Basiswert-Darstellung
- 1-Komplement-Darstellung
- 2-Komplement-Darstellung

Die Wertebereiche der Darstellungen unterscheiden sich je nach der Realisierung des Vorzeichens.

Anwendung: Integer-Arithmetik

Vorzeichen-Wert-Darstellung

Das höchstwertigste Bit (MSB) der Dualzahl wird für die Darstellung des Vorzeichens genutzt: (0-positiv, 1-negativ), die restlichen Stellen als n-1 Bit lange vorzeichenlose ganze Zahl.

Wertebereich: $-2^{n-1} + 1 \le x \le 2^{n-1} - 1$

Es gibt zwei Darstellungen für die Zahl 0: +0 und -0

Beispiel für Vorzeichen-Wert-Darstellung (n = 8):

dezimal		dual	dezimal		dual
+0	_	0000 0000	-0	_	1000 0000
+3	_	0000 0011	-3	_	1000 0011
+127	_	0111 1111	-127	_	1111 1111

Zahlenkreis für 4-Bit-Zahlen in Vorzeichen-Wert-Darstellung

Basiswert-Darstellung (biased)

Darstellung vorzeichenbehafteter ganzer Zahlen x als positive Dualzahl d mit einer festen Basiswertverschiebung B.

$$x = d - B \quad \to \quad d = x + B \ge 0$$

Eindeutige Darstellungen der 0

Wertebereich: $-B \le x \le 2^n - 1 - B$

(symmetrisch für $B = 2^{n-1} - 1$)

Beispiel für Vorzeichen-Wert-Darstellung (n=8, B=127):

dezimal		dual	dezimal		dual
+0	_	0111 1111	-0	_	_
+3	_	1000 0010	-3	_	0111 1100
+128	_	1111 1111	-127	_	0000 0000

Zahlenkreis für 4-Bit-Zahlen in Basiswert-Darstellung

1-Komplement-Darstellung (1)

Darstellung negativer ganzer Zahlen x durch das 1-Komplement $^{(1)}x$.

$$^{(1)}x = (2^n - 1) - x \rightarrow ^{(1)}x + x = (2^n - 1) = 0$$

Wertebereich: $-2^{n-1} + 1 \le x \le 2^{n-1} - 1$

Es gibt zwei Darstellungen für die Zahl 0: +0 und -0

Negative Zahlen sind durch eine 1 im höchstwertigen Bit (MSB) gekennzeichnet.

Beispiel für 1-Komplement-Darstellung (n = 8):

dezimal	dual	dezimal		dual
+0	 0000 0000	-0	_	1111 1111
+3	 0000 0011	-3	_	1111 1100
+127	 0111 1111	-127		1000 0000

1-Komplement-Darstellung (2)

Bildungsvorschrift für das 1-Komplement (Stellenkomplement):

Stelleweise Negation von x: (1)_{χ} \rightarrow (\bar{x}_{ν} für $\nu = 1 \dots n-1$)

Daraus folgt:

$$(1)_{x+x} = x_{n-1}x_{n-2}...x_0 + \overline{x}_{n-1}\overline{x}_{n-2}...\overline{x}_0$$

$$= 1_{n-1}1_{n-2}...1_0 = 2^n - 1$$

$$x_v + \overline{x}_v = 1$$

$$(1)_{(1)_x} = x \rightarrow -(-x) = x$$

Hin- und Rücktransformation (positive Zahl → negative Zahl) sind identisch.

Beim Rechnen mit dem 1-Komplement kann ein Fehler auftreten. Ist bei s=a+b der auslaufende Übertrag 1 so wird s=a+b+1 korrigiert.

Zahlenkreis für 4-Bit-Zahlen in 1-Komplement-Darstellung

2-Komplement-Darstellung (1)

Darstellung negativer ganzer Zahlen x durch das 2-Komlement (2)x.

$$(2)x = (2^n) - x \rightarrow (2)x + x = 2^n = 0$$

Wertebereich: $-2^{n-1} \le x \le 2^{n-1} - 1$

Eindeutige Darstellungen für die Zahl 0 (2^n ausserhalb des Darstellungsbereiches)

Negative Zahlen sind durch eine 1 im höchstwertigen Bit (MSB) gekennzeichnet.

Beispiel für 2-Komplement-Darstellung (n = 8):

dezimal	dual	dezimal	dual
+0	- 0000 0000	-0 -	_
+3	- 0000 0011	-3 -	1111 1101
+127	- 0111 1111	-128 -	1000 0000

2-Komplement-Darstellung (2)

Bildungsvorschrift für das 2-Komplement (echtes Komplement):

Stelleweise Negation von x (1-Komplement) und anschliessende Inkrementierung (1-Addition): (2)x = (1)x + 1

Daraus folgt:

$$(2)_{x+x} = x_{n-1}x_{n-2}...x_0 + \overline{x}_{n-1}\overline{x}_{n-2}...\overline{x}_0 + 1$$

$$= 1_{n-1}1_{n-2}...1_0 + 1 = 2^n$$

$$x_v + \overline{x}_v = 1$$

$$(2)((2)_x) = x \rightarrow -(-x) = x$$

Hin- und Rücktransformation (positive Zahl ↔ negative Zahl) sind identisch.

Die 2-Komplementdarstellung für negative ganze Zahlen wird in der Computertechnik am häufigsten angewendet.

Zahlenkreis für 4-Bit-Zahlen in 2-Komplement-Darstellung

2-Komplement-Darstellung (3)

Addition und Subtraktion

- Die Darstellung negativer Dualzahlen erfolgt durch das 2-Komplement.
- Die Konvertierung positiver Dualzahlen in negative und umgekehrt erfolgt am einfachsten durch bitweise Negation der Dualzahl und anschließender Inkrementierung (1-Addition).
- Negative Zahlen sind durch die 1 im MSB gekennzeichnet.
- Die Subtraktion entspricht einer Addition mit einer negativen Zahl.

$$a - b = a + (-b)$$

- Die Addition wird analog zur Addition vorzeichenloser ganzer Zahlen durchgeführt (bitweise modulo-2 Addition mit Übertrag).
- Ein Überlauf (Wertebereichsüberschreitung) liegt vor, wenn beim höchstwertigsten Bit (MSB) der einlaufende und der auslaufende Übertrag unterschiedlich sind.

2-Komplement-Darstellung (3) Beispiele

dezimal (n = 2)1 6₁₀ = 40 8_{10} 8 5₁₀ $= 1^{1} 2^{0} 8_{10}$ $= 6^{0} 2_{10}$

OV - Überlauf (Wertebereichsüberschreitung, overflow)

2-Komplement-Darstellung (4) Beispiele

dezimal
$$(n = 2)$$

$$-1 \quad 1 \quad 5_{10}$$

$$- \quad 1 \quad 6_{10}$$

$$= -1^{0} \quad 3^{1} \quad 1_{10}$$

$$- \quad 1 \quad 5_{10}$$

$$- \quad 1 \quad 3_{10}$$

$$= -1^{0} \quad 2^{1} \quad 8_{10}$$

$$- \quad 3 \quad 2_{10}$$

$$= -1^{1} \quad 6_{10}$$

$$= -1^{1} \quad 6_{10}$$

OV - Überlauf (Wertebereichsüberschreitung, overflow)

2-Komplement-Darstellung (5)

Multiplikation und Division (Rückführung auf Vorzeichen-Wert-Darstellung)

- 1. Überführung der 2-Komplement-Darstellung negativer Zahlen in die Vorzeichen-Wert-Darstellung.
- 2. Multiplikation bzw. Division der vorzeichenlosen Beträge analog zu vorzeichenlosen ganzen Zahlen.
- 3. Gesonderte Bestimmung des Vorzeichens (gleiche Vorzeichen positives Ergebnis, unterschiedliche Vorzeichen negatives Ergebnis).
- 4. Überführung der Vorzeichen-Wert-Darstellung negtiver Ergebnisse in die 2-Komplement-Darstellung.

Booth-Recording: Direkte Verarbeitung von Zweierkomplement-Darstellungen bei der Multiplikation.

B-Komplement ganzer Zahlen im Stellenwertsystem (1)

Das B-Komplement ${}^{(B)}Z_B$ einer ganzen Zahl Z_B im Stellenwertsystem der Basis B ist definiert durch (n Anzahl der Ziffern):

$$Z_B + {}^{(B)}Z_B = B^n$$
 mit $Z_B = \sum_{i=0}^{n-1} z_i B^i$ und $B^n = 1 + \sum_{i=0}^{n-1} (B-1)B^i$

Der Wert dieses Komplements berechnet sich zu:

$$(B)Z_B = B^n - Z_B = 1 + \sum_{i=0}^{n-1} (B-1)B^i - \sum_{i=0}^{n-1} z_i B^i = 1 + \sum_{i=0}^{n-1} (B-1-z_i)B^i$$

Die beim B-Komplement auftretende Summe heißt (B-1)-Komplement:

$$^{(B-1)}Z_B = \sum_{i=0}^{n-1} (B-1-z_i)B^i$$
 und das B-Komplement damit: $^{(B)}Z_B = ^{(B-1)}Z_B + 1$

B-Komplement ganzer Zahlen im Stellenwertsystem (2)

Beispiele zum B-Komplement:

Zehn-Komplement von
$$Z_{10}=51$$
 $\qquad (n=2): \ ^{(10)}Z_{10}=10^2-51$ $\qquad = 100-51=49$ Neun-Komplement von $Z_{10}=51$ $\qquad (n=2): \ ^{(9)}Z_{10}=10^2-1-51$ $\qquad = 99-51=48$ Zwei-Komplement von $Z_2=0101$ $\qquad (n=4): \ ^{(2)}Z_2=10000-0101=1011$ (dezimal: $2^4-5=11$) Eins-Komplement von $Z_2=0101$ $\qquad (n=4): \ ^{(1)}Z_2=10000-0001-0101$ (dezimal: $2^4-5-1=10$) $\qquad = 1111-0101$ $\qquad = 1010$

Nummernsystem und Computer

Number System and Computers

- Some tips
 - Binary numbers often grouped in fours for easy reading
 - In computer programs (e.g. VHDL, C) by default decimal is assumed
 - To represent other number bases use

System	Representation	Example for 20
Hexadecimal	0x	0x14
Binary	0b	0b10100
Octal	0o (zero and 'O')	0o24

Nummernsystem und Computer

Number System and Computers

- Addresses often written in Hex
 - Most compact representation
 - Easy to understand given their hardware structure
 - □ For a range 0x000 0xFFF, we can immediately see that 12 bits are needed, 4K locations
 - □ Tip: 10 bits = 1K

Zusammenfassung

- □ Binärzahlsystem ist am nützlichsten für Computerarithmetik
- □ Binary number system is most useful for computer arithmetic
- Oktal und Hex bieten eine praktische Kurzhandnotation
- Octal and Hex provide a convenient short-hand notation
- Zweierkomplement die häufigste Notation für vorzeichenbehaftete Zahlen
- □ 2's complement most common notation for Signed numbers

Anhang Appendix

Binärzahlen

Binary Numbers

How many distinct numbers can be represented by n bits?

No. of bits	Distinct nos.
1	2 {0,1}
2	4 {00, 01, 10, 11}
3	8 {000, 001, 010, 011, 100, 101, 110, 111}
n	2 ⁿ

- Number of permutations double with every extra bit
- \square 2ⁿ unique numbers can be represented by n bits

Speicherorte

Memory Locations

- Most memories are byteaddressable
 - Each unique combination on the address line refers to a byte
- □ If we have 12-bit addresses
 - We can have 4096 unique combinations
 - We can address 4096 bytes of memory

Address	DATA
0x000	01010101
0x001	01010101
0x002	01010101
0x003	10101010
•••	•••
•••	•••
0xFFD	10101010
OxFFE	01001110
OxFFF	11110000
L	Υ
	C' 41/ 1

Size: 4K bytes

Speicherorte

Memory Locations

- ☐ Start address: 0x1000
- End address: 0x13FF
- How many bytes of memory is addressed?
 - Consider how many unique combinations are there in this range.
- How many bits are needed for the address?
 - Consider the size of address

DATA
01010101
01010101
01010101
10101010
•••
•••
10101010
01001110
11110000
Υ

Size: ?? bytes

Quizzeit!!!

- □ Frage 2: The final address location if there are 9K locations starting from 0x3400 is
 - A. 0x4499
 - B. 0x5799
 - c. 0x5800
 - D. None of the above
- □ SMS ELE2020b <Response> to 77577
- e.g. ELE2020b C