- 1. This is asking for the number of edges in K_{10} . Each vertex (person) has degree (shook hands with) 9 (people). So the sum of the degrees is 90. However, the degrees count each edge (handshake) twice, so there are 45 edges in the graph. That is how many handshakes took place.
- 2. It is possible for everyone to be friends with exactly 2 people you could arrange the 5 people in a circle and say that everyone is friends with the two people on either side of them (so you get the graph C_5). However, it is not possible for everyone to be friends with 3 people - that would lead to a graph with an odd number of odd degree vertices which is impossible - the sum of the degrees must be even.
- 3. This is a question about finding Euler paths. Draw a graph with a vertex in each state, and connect vertices if their states share a border. Exactly two vertices will have odd degree - the vertices for Nevada and Utah. Thus you must start your road trip at in one of those states and end it in the other.
- 4. The first and the third graphs are the same, but the middle graph is different.
- 5. The first (and third) graphs contain an Euler path. All the graphs are planar.
- 6. Yes. For example, both graphs below contain 6 vertices, 7 edges, and have degrees (2,2,2,2,3,3).

- 7. (a) K_4 does not have an Euler path or circuit.
 - (b) K_5 has an Euler circuit (so also an Euler path).
 - (c) $K_{5,7}$ does not have an Euler path or circuit.
 - (d) $K_{2,7}$ has an Euler path but not an Euler circuit.
 - (e) C_7 has an Euler circuit (it is a circuit graph!)
 - (f) P_7 has an Euler path but no Euler circuit.
- 8. When n is odd, K_n contains an Euler circuit. This is because every vertex has degree n-1, so an odd n results in all degrees being even.
- 9. If both m and n are even, then $K_{m,n}$ has an Euler circuit. When both are odd, there is no Euler path or circuit. If one is 2 and the other is odd, then there is an Euler path but not an Euler circuit.
- 10. Three of the graphs are bipartite. The one which is not is C_7 (second from the right).
- 11. C_n is bipartite if and only if n=1 or is even.
- 12. For example, K_5 .
- 13. For example, $K_{3,3}$.

- 14. No. A (connected) planar graph must satisfy Euler's formula: V E + F = 2. Here V E + F = 6 10 + 5 = 1.
- 15. Yes. According to Euler's formula it would have 2 faces. It does. The only such graph is C_{10} .
- 16. G has 10 edges. It could be planar, and then it would have 6 faces.
- 17. 2, since the graph is bipartite. One color for the top set of vertices, another color for the bottom set of vertices.
- 18. For example, K_6 . If the chromatic number is 6, then the graph is not planar the 4-color theorem states that all planar graphs can be colored with 4 or fewer colors.
- 19. The chromatic numbers are 2, 3, 4, 5, and 3 respectively from left to right.
- 20. (a) Only if $n \ge 6$ and is even.
 - (b) None.
 - (c) 12. Such a graph would have $\frac{5n}{2}$ edges. If the graph is planar, then $n-\frac{5n}{2}+F=2$ so there would be $\frac{4+3n}{2}$ faces. Also, we must have $3F\leq 2E$, since the graph is simple. So we must have $3\frac{4+3n}{2}\leq 5n$. Solving for n gives $n\geq 12$.