Diffie-Hellman Key Exchange and El Gamal Encryption

Marcio Woitek

Problem 1

- \triangleright The prime modulus (p)
- \triangleright Bob's public key (Y_B)
- ▷ The primitive root of the prime modulus (a)
- \triangleright The shared key by the protocol (K)

Problem 2

- \triangleright The shared key by the protocol (K)
- \triangleright Bob's private key (X_B) [The instructor used the wrong notation]

Problem 3

Answer: 6

The formula for Alice's public key is

$$Y_A = a^{X_A} \bmod p. \tag{1}$$

Substituting a = 2, p = 11 and $Y_A = 9$ into this equation, we get

$$9 = 2^{X_A} \mod 11 \Rightarrow X_A = \text{dlog}_{2.11} 9 = 6. \tag{2}$$

Problem 4

Answer: 3

To compute the secret key *K*, we can use the following equation:

$$K = Y_B^{X_A} \bmod p. (3)$$

By using the values of Y_B , X_A and p, we obtain

$$K = 3^6 \mod 11 = 729 \mod 11 = 3.$$
 (4)

Problem 5

▷ Diffie-Hellman Key Exchange protocol is vulnerable to MITM attack because of the lack of authentication.

Problem 6

- ▷ El Gamal Encryption includes the message and the key that is used to protect the message, and the key itself is protected against eavesdropping.
- ▷ El Gamal Encryption uses a prime modulus and a primitive root of the modulus.