Álgebra Linear e Geometria Analítica

Exame final - Grupo I

07/01/2013

Jomes		Cotação	50
ivoine.		Classificação	

N.º mecanográfico:

Esta folha será recolhida após 45 minutos.

$E \setminus C$	0	1	2	3	4	5
0	00	10	20	30	40	50
1	-2,5	7,5	17,5	27,5	37,5	
2	-05	05	15	25		
3	-7,5	2,5	12,5			
4	-10	00				
5	-12,5					

Este grupo é constítuido por 5 questões de escolha múltipla. Cada questão tem uma só opção correta que deve assinalar com uma \times no \square correspondente.

Uma resposta correta é cotada com 10 pontos, uma resposta em branco com 0 pontos e uma resposta errada com -2.5 pontos.

- 1. Para toda a matriz A satisfazendo $P^{-1}AP = D$ com P invertível e D diagonal, tem-se
 - $\Box \quad A^T = (P^T)^{-1} D P^T;$
 - $\Box A^2 = P^2 D^2 (P^2)^{-1};$
 - $\Box A^{-1} = P D P^{-1};$
 - $\Box \quad A = P^{-1}DP.$
- 2. Para quaisquer matrizes $A, B \in M_{4\times 4}$ com $\det(A) = 2$ e $\det(AB) = 3$, tem-se
 - $\Box \det\left(-B^{-1}\right) = \frac{2}{3};$
 - $\Box \det (AB A) = 1;$
 - $\Box \det (A^2 B^{-1}) = 6$
 - $\Box \det (AB^T) = -3.$
- 3. O conjunto $\mathcal S$ é um subespaço vetorial de $\mathcal V$ quando
 - $\square \quad \mathcal{S} = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in M_{2\times 2} : ab > 0 \right\} \in \mathcal{V} = M_{2\times 2};$
 - $\square \quad \mathcal{S} = \left\{ at^2 + bt + c \in \mathcal{P}_2 : c = 1 \right\} \text{ e } \mathcal{V} = \mathcal{P}_2;$
 - \square $S = \{(x,y) \in \mathbb{R}^2 : x + 2y = 0\} \text{ e } \mathcal{V} = \mathbb{R}^2;$
 - $\square \quad \mathcal{S} = \{(1,0,0), (0,1,0), (0,0,1)\} \text{ e } \mathcal{V} = \mathbb{R}^3.$
- 4. A quádrica definida pela equação $x^2 + 9y^2 z^2 = 9$ é
 - □ um cilindro hiperbólico;
 - □ um parabolóide hiperbólico;
 - □ um hiperbolóide de duas folhas;
 - □ um hiperbolóide de uma folha.
- 5. Seja $L: \mathcal{P}_2 \to \mathcal{P}_3$ definida por $L(at^2+bt+c) = at^3+bt^2+c$. Então
 - \Box L não é aplicação linear;
 - \Box L é sobrejetiva;
 - \Box L é injetiva;
 - \square L não é injetiva.