

DIPARTIMENTO DI MECCANICA

MECHANICAL SYSTEM DYNAMICS

Finite Elements Method (FEM) in structural dynamics: software implementation in Matlab environment

M. Vignati

- 1. Mesh generation [USER INPUT: *.inp]
- 2. Definition of the global and local reference systems [USER INPUT: *.inp]
- 3. Removal of external constraints and introduction of corresponding constraint forces [USER INPUT: *.inp]
- 4. Energy functions formulation in the local nodal coordinates of each element [FEM PROGRAM: loadstructure()]
- Coordinate transformation from the local to the global reference system [FEM PROGRAM: assem(), calling el_tra()]
- 6. Matrix assembling, for the entire structure [FEM PROGRAM: assem()]

```
Main.m
  % structure data
  m = ...
  % check max element length
  Lmax = ...
  % build *.inp file (mesh, constraints)

loadstructure()
        % nodes definition
        % elements definition

  % draw structure
  dis_stru()

  % build and assemble matricies
  assem()
        el_tra() % build M and K local ref.
  % assemble total M and K
```

Must consider

- **Discontinuities**
- Element lenght:

The element must work in quasi-static region!

The element first natural frequency is

$$\omega_k^{(1)} = \left(\frac{\pi}{L_k}\right)^2 \sqrt{\frac{EJ_k}{m_k}}$$

Given the problem frequency range of interest (Ω_{max})

$$\omega_k^{(1)} > \eta \Omega_{max}$$

with η safety coefficient (e.g. 1.5), thus

$$L_{max} = \sqrt{\frac{\pi^2}{\eta \Omega_{max}} \sqrt{\left(\frac{EJ}{m}\right)_{min}}}$$

Example - properties of the system

A simple supported aluminum beam with rectangular constant cross-section

Parameter	symbol	unit	value
Lenght	L	mm	1200
Thickness	h	mm	8
Width	b	mm	40
Density	ho	${ m kg/m^3}$	2700
Young's Modulus	E	GPa	68

$$\Omega_{max} = 100 \cdot 2\pi, \quad \eta = 1.5 \quad \to \quad L_{max} = \sqrt{\frac{\pi^2}{\eta \Omega_{max}} \sqrt{\left(\frac{EJ}{m}\right)_{min}}} = 348 \,\mathrm{mm}$$

4 beam elements (300 mm) and 5 nodes

Input file: FE1_exe01.inp File extension

```
Start comments with «!», compiler ignores following characters
 FEM (1)
 1st Exercise
! list of nodes :
                                                  *NODES start definition of nodes
*NODES
! n. of node - constraint code (x,y,theta) - x coordinate- y coordinate.
          0.0 0.0
    1 1 0
          0.3 0.0
    0 0 0
          0.6 0.0
   0 0 0
4 0 0 0 0.9 0.0
          1.2 0.0
    1 1 0
! end card *NODES
                                             *ENDNODES end definition of nodes
*ENDNODES
! list of elements :
                                   *BEAMS start definition of beam finite elements
*BEAMS
! n. of elem. - n. of input node - n. of output node - n. of prop.
             1
                               *ENDBEAMS end definition of beam finite elements
*ENDBEAMS
! List of properties
                                   *PROPERTIES start definition of element properties
*PROPERTIES
! N. of prop. - m - EA - EJ
            2.176e7 1.1605e3
                                    *FNDPROPERTIES end definition of beam finite
ENDPROPERTIES
                                    elements properties
```

loadstructure()

Processes the *.inp file and return some usefull variables

```
[file_i,xy,nnod,sizew,idb,ngdl,incid,l,gamma,m,EA,EJ,posiz,nbeam]=loadstructure;
```

assem()

Taking info from previous function outputs, assemble M and K matricies

```
[M,K]=assem(incid,l,m,EA,EJ,gamma,idb);
```

The final matrices M and K are of the whole system (free and constrained), as we'll see in the following.

loadstructure() function

Call

[file i,xy,nnod,sizew,idb,ngdl,incid,l,gamma,m,EA,EJ,posiz,nbeam]=loadstructure;

Outputs

file_i name of the *.inp file analysed

xy $N \times 2$ matrix cointainng the coordinates of the nodes

nnod total number of nodes of the structrure

sizew maximum dimension of the structure

idb $N \times 3$ matrix, numbering each degree of freedom (free and constrained)

with different progressive numbers. N is the number of nodes, 3 are the

degrees of freedom for each node $(1, 2, 3) = (x, y, \theta)$

ndof number of total degrees of freedom

loadstructure() function

Outputs

incidence matrix $N \times 6$, same idea as for idb, but with N number of

elements and 6 the degrees of freedom of each element: (1, 2, 3, 4, 5, 6) =

 $(x1, y1, \theta1, x2, y2, \theta2)$

vector containing the length of each element

alpha angle of rotation of each element with respect to the global

m vector containing the mass per unit length of each element

EA, **EJ** vectors containing EA and EJ for each elements

posit $N \times 2$ containing the xy positions defined of the elements

nbeam number of elements

Input file processing: loadstructure()

... what are **idb** and incidence matrix **incid** for? Considering the simple example

$$idb = \begin{bmatrix} 6 & 7 & 1 \\ 2 & 3 & 4 \\ 8 & 9 & 5 \end{bmatrix}$$

$$\mathtt{incid} = \begin{bmatrix} 6 & 7 & 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 8 & 9 & 5 \end{bmatrix}$$

If we wanted to know which is the index of the row, in the assembled matrices, corresponding to the θ DoF of the second node (mid span), we use **idb** matrix as:

$$index = idb(2,3) = 4$$

Whereas if we wanted to know which is the index of the row corresponding to the y DoF of the second node of the second element (II), we would type:

$$index = incid(2,3+2) = 9$$

which, in this case, is constrained!

Example: main code

Going back to the example

```
clear all
close all
clc
L = 1.2;
E = 68e9;
b = 40e-3;
h = 8e-3;
r = 2700;
m = r*b*h; % [kg/m]
J = 1/12*b*h^3;
A = b*h;
EA = E*A;
EJ = E*J;
Omax = 100*2*pi;
a = 1.5;
Lmax = sqrt(pi^2/a/Omax * sqrt(EJ/m));
% build the inp file
[file i,xy,nnod,sizew,idb,ngdl,incid,l,gamma,m,EA,EJ,posit,nbeam]=loadstructure;
figure();
dis stru(posit, l, gamma, xy);
[M,K] = assem(incid, l, m, EA, EJ, gamma, idb);
```

Outputs matricies M and K

= 0.0018	0	0.0096	-0.0013	0	0	0.0163	0	0
0	0.3456	0	0	0	0.0864		0.0864	0
0.0096	0	0 V 851	0	-0.0096	0	0.06 k/1 FC	0	0.0667
-0.0013	0	0 № 851 0	0.0036	-0.0013	0	-0.0096	0	0.0096
0	0	-0.0096	-0.0013	0.0018	0	0	0	-0.0163
0	0.0864	0	0	0	0.1728	0	0	0
0.0163	0	0 0667 M _{CF} 0	-0.0096	0	0	0.1925	0	0
0	0.0864		0	0	0		0.1728	0
		0 0 6 6 7	0 0000	-0.0163	0	0	0	0.1925
0	0	0.0667	0.0096	-0.0163	U	0	0	0.1923
= 1.0e+10	*							0.1923
= 1.0e+10 [0.0774	*	-0.1934	0.0387	0	0	0.1934	0	0.1923
= 1.0e+10 [0.0774 0	* 0 0.0073	-0.1934	0.0387	0	0	0.1934	0	0
= 1.0e+10 [0.0774 0 -0.1934	* 0 0.0073 0	-0.1934	0.0387	0 0 0.1934	0	0.1934 0 -0.64	0-0.0036	0 0 -0.6447
= 1.0e+10 [0.0774 0 -0.1934 0.0387	* 0 0.0073 0 0	-0.1934 0 1K ²⁸⁹⁴ FF 0	0.0387 0 0 0	0 0 0.1934 0.0387	0 -0.0036 0	0.1934 0 -0.64 K 7 0.193 4 C	0 -0.0036 0	0 0 -0.6447 -0.1934
= 1.0e+10 [0.0774 0 -0.1934 0.0387 0	* 0.0073 0 0.0070	-0.1934 0 1K2894 FF 0 0.1934	0.0387	0 0 0.1934 0.0387 0.0774	0 -0.0036 0 0	0.1934 0 -0.64	0 -0.0036 0 0	0 0 -0.6447
= 1.0e+10 [0.0774 0 -0.1934 0.0387 0	* 0.0073 0 0.0076	-0.1934 0 1K ²⁸⁹⁴ FF 0 0.1934	0.0387 0 0 0.1547 0.0387	0 0 0.1934 0.0387 0.0774	0 -0.0036 0 0 0	0.1934 0 -0.64 K 7 0.1934 0	0 -0.0036 0 0	0 0 -0.6447 -0.1934
= 1.0e+10 [0.0774 0 -0.1934 0.0387 0 0.1934	* 0.0073 0 0.0073 0 0 0 -0.0036	-0.1934 0 1K2894 FF 0 0.1934 0 -0.6447	0.0387 0 0 0.1547 0.0387 0	0 0.1934 0.0387 0.0774	0 -0.0036 0 0 0 0	0.1934 0 -0.64 K 7 0.1934 0 0	0 -0.0036 0 0 0	0 0 -0.6447 -0.1934
= 1.0e+10 [0.0774 0 -0.1934 0.0387 0	* 0.0073 0 0.0073 0 0 0 -0.0036	-0.1934 0 1K2894 FF 0 0.1934 0 -0.6447 KCF 0	0.0387 0 0 0.1547 0.0387 0 0.1934	0 0.1934 0.0387 0.0774	0 -0.0036 0 0 0	0.1934 0 -0.64 K 7 0.1934 0	0 -0.0036 0 0	0 0 -0.6447 -0.1934