

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Dipartimento di Informatica

Metodi Matematici per l'Informatica

Autore:

Simone Lidonnici

Indice

1	Cor	Combinatoria 1							
	1.1	Disposizioni	1						
	1.2	Principio additivo	2						
	1.3	Rapporti tra insiemi	2						
	1.4	Combinazioni	3						
		1.4.1 Combinazioni con ripetizioni	3						
		1.4.2 Insieme potenza	4						
	1.5	Principio di inclusione-esclusione	4						
2	Fun	zioni	5						
3	Relazioni								
	3.1	Matrici	6						
		3.1.1 Invertire una relazione	7						
	3.2	Composizione di relazioni	7						
	3.3	Moltiplicazione tra matrici	7						
	3.4	Relazioni transitive	8						
		3.4.1 Unione e intersezione tra relazioni	8						
	3.5	Relazioni di equivalenza	8						
		3.5.1 Totalità e parzialità di relazioni	8						
4	Ind	uzione	9						
5	Log	ica proposizionale	10						
	5.1	Assegnamento	11						
	5.2	Soddisfacibilità	12						

Combinatoria

La combinatoria permette di capire quanti accoppiamenti si possono fare con delle caratteristiche ben precise.

Esempi:

Ci sono 5 volpi e 4 gatti, quanti accoppiamenti si possono fare? Quante targhe di auto esistono con il formato italiano?

Principio moltiplicativo

Se abbiamo k gruppi, ognuno con $n_1, n_2, ..., n_k$ elementi e dobbiamo scegliere un elemento da ogni gruppo, il numero di combinazioni possibili è:

$$N_1 \cdot N_2 \cdot \ldots \cdot N_k$$

Esempio: Quanti menù completi posso fare con 5 antipasti, 6 primi, 7 secondi e 5 dolci? Risultato= $5 \cdot 6 \cdot 7 \cdot 5$

1.1 Disposizioni

Disposizioni

Le **disposizioni** indicano in quanti modi posso ordinare n elementi in k posti. Nel caso ci siano ripetizioni la formula è (' indica ripetizioni):

$$D'_{n,k} = n^k$$

Nel caso non ci siano ripetizioni:

$$D_{n,k} = \frac{n!}{(n-k)!} = n \cdot n - 1 \cdot \dots \cdot (n - (k-1))$$

Nel caso in cui k = n si chiamano **permutazioni**.

Esempi:

Quanti numeri binari si possono scrivere con 7 bit:

$$D'_{2.7} = 2^7$$

Quanti possibili podi ci possono essere se ad una gara partecipano 8 atleti?

$$D_{8,3} = \frac{8!}{(8-3)!} = \frac{8!}{5!} = 8 \cdot 7 \cdot 6$$

Se negli elementi ci sono alcuni che si ripetono più di una volta bisogna dividere per il numero di disposizioni possibili di quegli elementi, cioè scrivendo r la cardinalità del gruppo di duplicati la formula diventa:

$$D_{n,k} = \frac{n!}{(n-k)! \cdot r!}$$

Esempi: Quanti anagrammi della parola "NONNA" sono possibili? $D_{5,5} = \frac{5!}{3!}$

Quanti anagrammi della parola "NONNA" sono possibili? $D_{5,5} = \frac{5!}{3!\cdot 2!}$

1.2 Principio additivo

Un insieme A può essere creato dalla somma dei suoi sottoinsiem $B_1, B_2, ..., B_k$ a patto che questi sottoinsiemi siano:

- Disgiunti: cioè non devono avere nessun elemento in comune
- Esaustivi: cioè che qualsiasi elemento di A deve appartenere ad uno dei sottoinsiemi

Viene chiamata **Partizione di A** la somma dei sottoinsiemi che hanno queste caratteristiche. **Esempio:**

Quante targhe esistono che contengono una sola C?

 $A = \{ targhe con una C \} è composto dai 4 sottoinsiemi:$

- 1. $B_1 = \{ targhe con C al 1^{\circ} posto \}$
- 2. $B_2 = \{ targhe con C al 2^{\circ} posto \}$
- 3. $B_3 = \{ targhe con C al 6^{\circ} posto \}$
- 4. $B_4 = \{ targhe con C al 7^{\circ} posto \}$

$$|B_1| = |B_2| = |B_3| = |B_4| = 25^3 \cdot 10^3 \implies |A| = 25^3 \cdot 10^3 \cdot 4$$

1.3 Rapporti tra insiemi

I rapporti tra insiemi sono diversi e si scrivono:

Scrittura	Nome	Descrizione
A = B	Uguaglianza	$A \in B$ hanno gli stessi elementi
$A \subseteq B$	Sottoinsieme	Ogni elemento di A è contenuto anche in B
$A \cap B$	Intersezione	Insieme formato dagli elementi contenuti sia in A che in B
$A \cup B$	Unione	Insieme formato dagli elementi contenuti in A oppure in B
Ø	Insieme vuoto	Insieme senza elementi
$x \in A$	Appartenenza	L'elemento x fa parte dell'insieme A
#A oppure $ A $	Cardinalità	Numero di elementi nell'insieme A

1. Combinatoria 1.4. Combinazioni

Metodo inverso

Il **metodo inverso** dice che se ci interessa conoscere la cardinalità di un insieme A e conosciamo un sovrainsieme C, possiamo sottrarre a C il complementare di A (ora lo chiameremo B).

$$|A| = |C| - |B|$$

Esempio:

Quante targhe contengono almeno una B?

$$C = \{\text{totale targhe}\} \implies |C| = 26^4 \cdot 10^3$$

$$B = \{\text{targhe senza B}\} \Longrightarrow |B| = 25^4 \cdot 10^3$$

$$|A| = |C| - |B| = (26^4 \cdot 10^3) - (25^4 \cdot 10^3) = 10^3 (26^4 - 25^4)$$

1.4 Combinazioni

Definizioni di combinazioni

Le **combinazioni** sono disposizioni di n elementi in k posti, in cui non interessa l'ordine (per esempio un insieme [3,4,5] è uguale a [5,4,3]). Le combinazioni contano i sottoinsiemi possibili di k elementi partendo da un insieme di n elementi:

$$C_{n,k} = \frac{D_{n,k}}{k!} = \frac{n!}{(n-k)! \cdot k!} = \binom{n}{k}$$

Esempi:

Ci sono 80 studento, 40 maschi e 40 femmine, quanti gruppi di 4 rappresentanti possono esserci? $C_{80,4} = \frac{80!}{76! \cdot 4!}$

Se i rapresentanti devono essere 2 maschi e 2 femmine?

$$C_{tot} = C_{40,2} \cdot C_{40,2} = (\frac{40!}{38! \cdot 2!})^2$$

Se uno dei rappresentanti fosse più importante (bisogna sapere esattamente che è)?

$$C_{tot} = 80 \cdot C_{79,3} = 80 \cdot \frac{79!}{76! \cdot 3!} = \frac{80!}{76! \cdot 3!}$$

1.4.1 Combinazioni con ripetizioni

Le combinazioni con ripetizioni di n elementi in k posti descrivono concettualmente il numero di possibili combinazioni lunghe n + k - 1 con n palline uguali e k - 1 righe uguali:

$$C'_{n,k} = \binom{n+k-1}{k-1} = \binom{n+k-1}{n} = \frac{(n+k-1)!}{n! \cdot (k-1)!}$$

Esempio:

In quanti modi posso distribuire 25 caramelle a 7 bambini?

$$C'_{25,7} = \frac{31!}{25! \cdot 6!}$$

1.4.2 Insieme potenza

L'insieme potenza è l'insieme che preso un insieme di cardinalità n contiene tutti i suoi possibili sottoinsiemi.

Si scrive dato un insieme A: P(A).

$$|P(A)| = \sum_{i=0}^{n} \binom{n}{i} = 2^n$$

1.5 Principio di inclusione-esclusione

Principio di inclusione-esclusione

Il **principio di inclusione-esclusione** è una formula per calcolare la cardinalità dell'unione di insiemi non disgiunti.

- 2 insiemi: $|A \cup B| = |A| + |B| |A \cap B|$
- 3 insiemi:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Nel caso generico di n insiemi bisogna:

- 1. Sommare la cardinalità degli insiemi singoli
- 2. Sottratte tutte le possibili intersezioni con numero di insiemi pari
- 3. Sommare tutte le possibili intersezioni con numero di insiemi dispari

2 Funzioni

Definizione di funzione

Una **funzione** è un'associazione di elementi tra un insieme di partenza (**dominio**) e un insieme di arrivo (**codominio** o **immagine**), tale che ad ogni elemento del dominio sia associato un unico elemento del codominio.

$$f:A\to B$$

Una funzione può essere identificata tramite il suo grafico insiemistico, cioè l'insieme delle coppie (argomento, valore). La definizione insiemistica di una funzione è il prodotto cartesiano (\times) tra il dominio e il codominio:

$$A \times B = \{(a, b) | a \in A, b \in B\}$$
$$f \subseteq A \times B | \forall A \exists! b \in B | (a, b) \in f$$

Tipi di funzioni

Una funzione $f: A \to B$ è:

- Iniettiva: se $\exists g: B \to A | (f \circ g): B \to B$ è identità su B, cioè $\forall n \in B \ f \circ g(n) = n$
- Suriettiva: se $\exists g: B \to A | (g \circ f): A \to A$ è identità su A, cioè $\forall n \in A \ g \circ f(n) = n$
- Biettiva: se è sia iniettiva che suriettiva

Relazioni

Definizione di relazione

Una **relazione** è un'associazione, come le funzioni, da un insieme di partenza ad uno di arrivo, ma a differenza delle funzioni ogni elemento del dominio non deve per forza essere associato ad un solo elemento del codominio. Da un determinato elemento del dominio possono partire da A fino |B|.

Un'associazione tra gli insiemi A e B si scrive aRb oppure R(a, b).

3.1 Matrici

Matrice per rappresentare relazioni

Una **matrice** è un modo di rappresentare una relazione sottoforma di tabella. Presa una relazione R tra due insiemi generici $A = \{a_1, a_2, \dots\}$ e $B = \{b_1, b_2, \dots\}$, la matrice corrispondente si scrive:

	b_1	b_2	•••	b_i
a_1	$m_{1,1}$	$m_{1,2}$		$m_{1,i}$
a_2	$m_{2,1}$	$m_{2,2}$		$m_{2,i}$
a_j	$m_{j,1}$	$m_{j,2}$		$m_{j,i}$

In cui ogni cella della tabella:

$$m_{i,j} = \begin{cases} 1 & (i,j) \in R \\ 0 & (i,j) \notin R \end{cases}$$

Esempio:

$$R = \{(1, 2), (2, 4), (3, 2), (4, 2), (4, 4)\}$$

$$M_R = \begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{vmatrix}$$

3.1.1 Invertire una relazione

Per invertire una relazione basta invertire gli elementi all'interno delle coppie. La matrice della relazione inversa sarà specchiata rispetto alla diagonale principale.

Esempio:

$$R = \{(1,2), (2,4), (3,2), (4,2), (4,4)\} \implies M_R = \begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{vmatrix}$$

$$R^{-1} = \{(2,1), (4,2), (2,3), (2,4), (4,4)\} \implies M_{R^{-1}} = \begin{vmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{vmatrix}$$

3.2 Composizione di relazioni

Date due relazioni $R \subseteq A \times B$ e $S \subseteq B \times C$, la loro composta è una relazione $S \circ R \subseteq A \times C$.

$$S \circ R = \{(a, c) | \exists b | aRb \wedge bSc \}$$

Esempio:

$$R = \{(1, x), (1, z), (3, y), (4, h)\}$$

$$S = \{(x, a), (x, c), (z, b)\}$$

$$S \circ R = \{(1, a), (1, c), (1, b)\}$$

Possiamo rappresentare anche le relazioni composte come matrici, trattandole come relazioni singole.

3.3 Moltiplicazione tra matrici

Una moltiplicazione tra matrici due matrici R e S da come risultato un'altra matrice M in cui ogni cella: $M_{i,j} = R_{i,1} \cdot S_{1,j} + R_{i,2} \cdot S_{2,j} + \dots$

Esempio:

$$R = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix}$$

$$S = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{vmatrix}$$

$$R \cdot S = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

 $|0 \ 0 \ 1$

3.4 Relazioni transitive

Definizione di transitività

Data una relazione $R \subseteq A \times A$, la relazione è **transitiva** se:

$$aRb \wedge bRc \implies aRc \, \forall a, b, c \in A$$

Chiusura transitiva

Data una relazione R, la **chiusura transitiva** di R è la più piccola relazione che estende R ed è transitiva. La chiusura transitiva di una relazione può essere ottenuta componendo R con se stessa varie volte.

Scrivendo $R^2 = R \circ R$ e $R^{n+1} = R^n \circ R$, la chiusura transitiva corrisponde a $\lim_{n \to +\infty} R^n$.

3.4.1 Unione e intersezione tra relazioni

Date due relazioni transitive R e S:

- $R \cup S = \{(a,b)|(a,b) \in R \lor (a,b) \in S\}$
- $R \cup S = \{(a, b) | (a, b) \in R \land (a, b) \in S\}$

Entrambe queste relazioni ottenute sono a loro volta transitive.

3.5 Relazioni di equivalenza

Definizione di relazione di equivalenza

Una relazione $R \subseteq A \times A$ è una **relazione di equivalenza** se è:

- 1. Riflessiva: $aRa \ \forall a \in A$
- 2. Simmetrica: $aRb \implies bRa \ \forall a,b \in A$
- 3. Transitiva: $aRb \wedge bRc \implies aRc \, \forall a,b,c \in A$

3.5.1 Totalità e parzialità di relazioni

Relazione totale

Una relazione R è una **relazione totale** se:

$$\forall a, b \in A \; \exists aRb \lor bRa$$

Induzione

Come funziona una dimostrazione per induzione

Una dimostrazione per induzione di una proposizione P(n) si esegue per passaggi:

- 1. Caso base: Dimostrare che funziona per un caso base n=1
- 2. Passo induttivo: Si assume P(n) vera per ogni n generico e si dimostra che è vera anche per n+1

Esempio:

La somma dei primo n numeri naturali vale $\frac{n(n+1)}{2}$

- 1. Caso base: $n=1 \implies \frac{1(1+1)}{2}=1 \implies \text{vera}$
- 2. Passo induttivo: $n \implies \frac{n(n+1)}{2}$ $1 + \dots + n + 1 = \frac{n(n+1)}{2} + n + 1 = (n+1)(\frac{n}{2} + 1) = \frac{(n+1)(n+2)}{2}$

Logica proposizionale

Argomento logico

Un argomento logico è formato da 3 proposizioni:

1. Argomento iniziale: premessa \rightarrow conclusione

2. Negazione della conclusione

3. Negazione della premessa

In cui la 3 è una derivazione delle prime 2.

I simboli che vengono usati nella logica proposizionale sono:

• $\neg = not$

• $\vee = or$

 $\bullet \land = and$

 $\bullet \implies = implica$

• \iff = se e solo se

Esempio:

1. Se a=0 o b=0 allora ab=0

2. $ab \neq 0$

3. $a \neq 0$ e $b \neq 0$

Fomalizzando in logica proposizionale in cui:

 $A = \{a=0\}, B = \{b=0\}, C = \{ab=0\}$

 $1. \ A \vee B \implies C$

 $2. \neg C$

3. $\neg A \land \neg B$

5.1 Assegnamento

Funzione assegnamento

L'assegnamento è una funzione del tipo:

$$v: VAR \rightarrow \{0, 1\}$$

Questa funzione associa ad ogni proposizione 0 se è falsa e 1 se è vera.

Questa funzione ha diverse regole:

•
$$v(\neg A) = \begin{cases} 0 & v(A) = 1\\ 1 & v(A) = 0 \end{cases}$$

•
$$v(A \lor B) = \begin{cases} 0 & v(A) = v(B) = 0 \\ 1 & \text{altrimenti} \end{cases}$$

•
$$v(A \wedge B) = \begin{cases} 0 & \text{altrimenti} \\ 1 & v(A) = v(B) = 1 \end{cases}$$

•
$$v(A \implies B) = \begin{cases} 0 & v(A) = 1 \land v(B) = 0 \\ 1 & \text{altrimenti} \end{cases}$$

•
$$v(A \iff B) = \begin{cases} 0 & v(A) \neq v(B) \\ 1 & v(A) = v(B) \end{cases}$$

Possiamo scrivere qualsiasi funzione composta secondo queste regole in una tabella di verità. **Esempio:**

$$A = (P \lor Q) \implies (R \lor (R \implies Q)))$$

$II = ((I \lor \emptyset) \longrightarrow (It \lor (It \longrightarrow \emptyset)))$								
Р	Q	R	$R \Longrightarrow Q$	$R \lor (R \Longrightarrow Q)$	$P \lor Q$	Α		
0	0	0	1	1	0	1		
0	0	1	0	1	0	1		
0	1	0	1	1	1	1		
0	1	1	1	1	1	1		
1	0	0	1	1	1	1		
1	0	1	0	1	1	1		
1	1	0	1	1	1	1		
1	1	1	1	1	1	1		

5.2 Soddisfacibilità

Una proposizione A è **soddisfacibile** se esiste almeno un assegnamento che la soddisfa.

Viene definito SAT l'insieme delle proposizioni soddisfacibili, cioè $A \in SAT$ se ha almeno una soluzione.

Viene definito UNSAT l'insieme delle proposizioni insoddisfacibili, cioè A∈UNSAT se non ha nesuna soluzione.

Scriviamo B|=A se ogni assegnamento che soddisfa B soddisfa anche A.

Se una proposizione è sempre vera allora è una **tautologia**, cioè $A \in SAT$, $\neg A \in UNSAT$ e $\models A$.