This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER: ______

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

L	Hits	Search Text	DB	Time stamp
Number 1	22	perlin-kenneth.in.	USPAT;	2004/10/06
•	24	perim-kenneth.in.	US-PGPUB;	08:32
			EPO; JPO;	00.3E
			DERWENT	
2	12	"perlin noise"	USPAT:	2004/10/06
2	12	periin noise	US-PGPUB;	08:33
			EPO; JPO;	00.00
			DERWENT	
3	1	345/581.ccls. and (grid adj artifacts)	USPAT;	2004/10/06
3	•	343/36 LCCIS. Allu (griu auj altitacts)	US-PGPUB;	09:50
			EPO; JPO;	09.30
			DERWENT	
	4	245/504 calc and (bit adi maninulat\$2) and	USPAT;	2004/10/06
4	1	345/581.ccls. and (bit adj manipulat\$3) and	US-PGPUB;	09:03
		pattern	EPO; JPO;	09:03
			DERWENT	
_	_	0.45/504		2004/10/06
5	4	345/581.ccls. and (bit near3 manipulat\$3)	USPAT;	08:38
		and pattern	US-PGPUB;	06:36
			EPO; JPO; DERWENT	
				2004/10/06
6	16	345/581.ccls. and (noise and bit and	USPAT;	
		pattern)	US-PGPUB;	08:38
			EPO; JPO;	
			DERWENT	2004/40/06
7	546	(bit adj manipulat\$3) and pattern	USPAT;	2004/10/06
			US-PGPUB;	09:03
			EPO; JPO;	
_		47.44	DERWENT	2004/40/06
8	232	((bit adj manipulat\$3) and pattern) and	USPAT;	2004/10/06
		noise	US-PGPUB;	09:06
			EPO; JPO;	
			DERWENT	2004/40/00
11	28	(((bit adj manipulat\$3) and pattern) and	USPAT;	2004/10/06
		noise) and (345/\$.ccls. or 382/\$.ccls. or	US-PGPUB;	09:07
İ		348/\$.ccls. or 358/\$.ccls. or 463/\$.ccls.)	EPO; JPO;	
			DERWENT	0004/40/00
13	0	345/582.ccls. and (grid adj artifacts)	USPAT;	2004/10/06
			US-PGPUB;	09:51
1			EPO; JPO;	
			DERWENT	
12	22	345/582.ccls. and (noise and bit and	USPAT;	2004/10/06
		pattern)	US-PGPUB;	09:57
			EPO; JPO;	
			DERWENT	
14	131	345/643.ccls.	USPAT;	2004/10/06
			US-PGPUB;	09:51
			EPO; JPO;	
			DERWENT	

15	0	345/643.ccls. and "integer lattice"	USPAT;	2004/10/06
		3	US-PGPUB;	10:29
			EPO; JPO;	10.20
			DERWENT	
16	61	"into nov lottico"		2004/10/06
10	01	"integer lattice"	USPAT;	
			US-PGPUB;	10:29
			EPO; JPO;	
			DERWENT	
17	0	345/428.ccls. and "grid artifact"	USPAT;	2004/10/06
			US-PGPUB;	10:40
			EPO; JPO;	
			DERWENT	
18	70	345/428.ccls. and artifact	USPAT;	2004/10/06
			US-PGPUB;	10:41
			EPO; JPO;	
			DERWENT	
19	1	(345/582.ccls. or 345/581.ccls. or	USPAT;	2004/10/06
		345/428.ccls.) and "simplicial grid"	US-PGPUB;	10:41
			EPO; JPO;	
			DERWENT	
20	o	(skew adj point) same grid	USPAT;	2004/10/06
			US-PGPUB;	10:41
			EPO; JPO;	
			DERWENT	
21	7	(skew adj3 point) same grid	USPAT;	2004/10/06
2.1	•	(skew aujs point) same grid	US-PGPUB;	10:43
			EPO; JPO;	10143
			DERWENT	
22	24	hypercube same (simplices or simplex)		2004/10/06
22	24	nypercube same (simplices of simplex)	USPAT; US-PGPUB;	10:45
			•	10:45
			EPO; JPO; DERWENT	
	400			2004/40/06
23	192	hypercube and (simplices or simplex)	USPAT;	2004/10/06
			US-PGPUB;	10:45
			EPO; JPO;	
			DERWENT	
24	29	(hypercube and (simplices or simplex)) and	USPAT;	2004/10/06
		noise	US-PGPUB;	10:48
			EPO; JPO;	
			DERWENT	
25	1	((hypercube and (simplices or simplex)) and	USPAT;	2004/10/06
		noise) and (345/\$.ccls. or 382/\$.ccls. or	US-PGPUB;	10:49
	1	348/\$.ccis. or 358/\$.ccis. or 463/\$.ccis.)	EPO; JPO;	
			DERWENT	
-	17	perlin-kenneth.in.	USPAT;	2004/10/06
			US-PGPUB;	08:32
			EPO; JPO;	
			DERWENT	
	8	"perlin noise"	USPAT;	2004/10/06
		•	US-PGPUB;	08:32
		i	, ,	·
			EPO; JPO;	

	T			T
-	1	345/581.ccls. and (grid adj artifacts)	USPAT;	2004/10/06
			US-PGPUB;	08:34
			EPO; JPO;	
			DERWENT	
-	54	345/581.ccls. and (grid)	USPAT;	2003/07/23
			US-PGPUB;	09:13
			EPO; JPO;	
			DERWENT	
-	98	345/582.ccls. and (grid)	USPAT;	2004/10/06
			US-PGPUB;	09:50
			EPO; JPO;	
			DERWENT	
-	0	345/582.ccls. and (grid adj artifact)	USPAT;	2003/07/14
			US-PGPUB;	10:34
			EPO; JPO;	
			DERWENT	
-	17	grid adj artifact	USPAT;	2003/07/14
			US-PGPUB;	10:39
			EPO; JPO;	
			DERWENT	
-	110	345/643.ccls.	USPAT;	2004/10/06
			US-PGPUB;	09:51
			EPO; JPO;	
			DERWENT	
-	0	345/643.ccls. and "integer lattice"	USPAT;	2004/10/06
			US-PGPUB;	10:29
			EPO; JPO;	
			DERWENT	
-	386	345/428.ccls.	USPAT;	2003/07/23
			US-PGPUB;	08:47
			EPO; JPO;	
			DERWENT	
-	86	345/428.ccls. and grid	USPAT;	2003/07/23
			US-PGPUB;	08:47
			EPO; JPO;	
	_	045/400	DERWENT	0004/46/55
-	0	345/428.ccls. and "grid artifact"	USPAT;	2004/10/06
			US-PGPUB;	10:40
			EPO; JPO;	
		245/400	DERWENT	0000/07/00
-	43	345/428.ccls. and noise	USPAT;	2003/07/23
			US-PGPUB;	08:47
			EPO; JPO;	
			DERWENT	0004/40/00
-	55	345/428.ccls. and artifact	USPAT;	2004/10/06
			US-PGPUB;	10:40
			EPO; JPO;	
			DERWENT	0000/07/05
	37	345/581.ccls. and noise	USPAT;	2003/07/23
			US-PGPUB;	09:13
			EPO; JPO;	
			DERWENT	

•	36	345/582.ccls. and noise	USPAT;	2003/07/23
			US-PGPUB;	09:19
			EPO; JPO;	
			DERWENT	
_	10	"2177577"	USPAT;	2003/07/23
			US-PGPUB;	09:59
			DERWENT	
-	80	(345/\$.ccls. or 382/\$.ccls.) and	USPAT;	2003/07/23
		("stochastic" adj sampl\$3)	US-PGPUB;	10:01
		, , , , , , , , , , , , , , , , , , , ,	EPO; JPO;	
			DERWENT	
-	0	GB2177577	USPAT;	2003/07/23
			US-PGPUB;	10:01
			EPO; JPO;	
			DERWENT	
_	52	(345/\$.ccls. or 382/\$.ccls.) and "stochastic	USPAT;	2003/07/23
		sampling"	US-PGPUB;	10:52
			DERWENT	
-	6	("4343037" "4615013" "4782387"	USPAT	2003/07/23
		"4965667" "5034814" "5043810").PN.		10:14
-	1	(345/\$.ccls. or 382/\$.ccls.) and "visually	USPAT;	2003/07/23
		isotropic"	US-PGPUB;	14:07
			EPO; JPO;	
			DERWENT	
-	663	(345/\$.ccls. or 382/\$.ccls.) and "isotropic"	USPAT;	2003/07/23
			US-PGPUB;	15:02
			EPO; JPO;	
			DERWENT	
-	1	(345/\$.ccls. or 382/\$.ccls.) and "simplicial	USPAT;	2004/10/06
		grid"	US-PGPUB;	10:41
			EPO; JPO;	
			DERWENT	
-	41	(345/\$.ccls. or 382/\$.ccls.) and "simplicial"	USPAT;	2003/07/23
			US-PGPUB;	15:04
			EPO; JPO;	
			DERWENT	

US Patent & Trademark Office

Subscribe (Full Service) Register (Limited Service, Free) Login

Search:

The ACM Digital Library

C The Guide

+perlin +noise +lattice +bit +pattern

12.60

THE ACM DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

Terms used perlin noise

Found 152 of 143,484

Sort results by

relevance

Save results to a Binder 3 Search Tips

Try an Advanced Search Try this search in The ACM Guide

Display results

expanded form

Open results in a new window

Relevance scale ...

Results 1 - 20 of 152

Result page: 1 2 3 4 5 6 7 8

Perlin noise pixel shaders

John C. Hart

August 2001 Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on **Graphics hardware**

Full text available: pdf(919.41 KB)

Additional Information: full citation, abstract, references, citings, index terms

While working on a method for supporting real-time procedural solid texturing, we developed a general purpose multipass pixel shader to generate the Perlin noise function. We implemented this algorithm on SGI workstations using accelerated OpenGL PixelMap and PixelTransfer operations, achieving a rate of 2.5 Hz for a 256x256 image. We also implemented the noise algorithm on the NVidia GeForce2 using register combiners. Our register combiner implementation required 375 passes, but ran at 1.3 H ...

Keywords: Perlin noise function, hardware shading, pixel shaders, register combiners

² Algorithms for solid noise synthesis

J. P. Lewis

July 1989 ACM SIGGRAPH Computer Graphics, Proceedings of the 16th annual conference on Computer graphics and interactive techniques, Volume 23 Issue 3

Full text available: pdf(4.69 MB)

Additional Information: full citation, abstract, references, citings, index terms

A solid noise is a function that defines a random value at each point in space. Solid noises have immediate and powerful applications in surface texturing, stochastic modeling, and the animation of natural phenomena. Existing solid noise synthesis algorithms are surveyed and two new algorithms are presented. The first uses Wiener interpolation to interpolate random values on a discrete lattice. The second is an efficient sparse convolution algorithm. Both algorithms are developed for model-dir ...

Improving noise

Ken Perlin

July 2002 ACM Transactions on Graphics (TOG), Proceedings of the 29th annual conference on Computer graphics and interactive techniques, Volume 21 Issue 3

Full text available: pdf(394.25 KB)

Additional Information: full citation, abstract, references, citings, index terms

Two deficiencies in the original Noise algorithm are corrected: second order interpolation discontinuity and unoptimal gradient computation. With these defects corrected, Noise both looks better and runs faster. The latter change also makes it easier to define a uniform mathematical reference standard.

Keywords: procedural texture

4 Procedural texture mapping on FPGAs

Andy G. Ye, David M. Lewis

February 1999 Proceedings of the 1999 ACM/SIGDA seventh international symposium on Field programmable gate arrays

Full text available: pdf(1.05 MB)

Additional Information: full citation, references, index terms

Procedural modeling & animation: Advected textures

Fabrice Nevret

July 2003 Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation

Full text available: pdf(5.56 MB)

Additional Information: full citation, abstract, references, citings

Game and special effects artists like to rely on textures (image or procedural) to specify the details of surface aspect. In this paper, we address the problem of applying **textures** to **animated fluids**. The purpose is to allow artists to increase the details of flowing water, foam, lava, mud, flames, cloud layers, etc.Our first contribution is a new algorithm for **advecting textures**, which compromises between two contradictory requirements: continuity in space and time and pres ...

Spot noise texture synthesis for data visualization

Jarke J. van Wijk

July 1991 ACM SIGGRAPH Computer Graphics , Proceedings of the 18th annual conference on Computer graphics and interactive techniques, Volume 25 Issue 4

Full text available: pdf(8.67 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms

The use of stochastic texture for the visualization of scalar and vector fields over surfaces is discussed. Current techniques for texture synthesis are not suitable, because they do not provide local control, and are not suited for the design of textures. A new technique, *spot noise*, is presented that does provide these features. Spot noise is synthesized by addition of randomly weighted and positioned spots. Local control of the texture is realized by variation of the spot. The spot is ...

Keywords: flow visualization, fractals, particle systems, scientific visualization, texture synthesis

7 The synthesis and rendering of eroded fractal terrains

F. K. Musgrave, C. E. Kolb, R. S. Mace

July 1989 ACM SIGGRAPH Computer Graphics, Proceedings of the 16th annual conference on Computer graphics and interactive techniques, Volume 23 Issue 3

Full text available: pdf(5.83 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms

In standard fractal terrain models based on fractional Brownian motion the statistical character of the surface is, by design, the same everywhere. A new approach to the synthesis of fractal terrain height fields is presented which, in contrast to previous techniques, features locally independent control of the frequencies composing the surface, and thus local control of fractal dimension and other statistical characteristics. The new technique, termed *noise synthesis*, is intermediate in ...

Sampling procedural shaders using affine arithmetic Wolfgang Heidrich, Philipp Slusallek, Hans-Peter Seidel July 1998 ACM Transactions on Graphics (TOG), Volume 17 Issue 3

Full text available: pdf(590.82 KB)

Additional Information: full citation, abstract, references, citings, index terms

Procedural shaders have become popular tools for describing surface reflectance functions and other material properties. In comparison to fixed resolution textures, they have the advantage of being resolution-independent and storage-efficient. While procedural shaders provide an interface for evaluating the shader at a single point, it is not easily possible to obtain an average value of the shader together with accurate error bounds over a finite

area. Yet the ability to compute ...

Keywords: affine arithmetic

9 Real-time bump map synthesis

Jan Kautz, Wolfgang Heidrich, Hans-Peter Seidel

August 2001 Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware

Full text available: pdf(764.07 KB) Additional Information: full citation, abstract, references, index terms

In this paper we present a method that automatically synthesizes bump maps at arbitrary levels of detail in real-time. The only input data we require is a normal density function; the bump map is generated according to that function. It is also used to shade the generated bump map.

The technique allows to infinitely zoom into the surface, because more (consistent) detail can be created on the fly. The shading of such a surface is consistent when displayed at different distances to the ...

10 <u>Procedural modeling & animation: A real-time cloud modeling, rendering, and animation system</u>

Joshua Schpok, Joseph Simons, David S. Ebert, Charles Hansen

July 2003 Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation

Full text available: pdf(1.18 MB) Additional Information: full citation, abstract, references

Modeling and animating complex volumetric natural phenomena, such as clouds, is a difficult task. Most systems are difficult to use, require adjustment of numerous, complex parameters, and are non-interactive. Therefore, we have developed an intuitive, interactive system to artistically model, animate, and render visually convincing volumetric clouds using modern consumer graphics hardware. Our natural, high-level interface models volumetric clouds through the use of qualitative cloud attributes ...

Keywords: cloud animation, cloud modeling, procedural animation, volume rendering

11 A cellular texture basis function

Steven Worley

August 1996 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques

Full text available: pdf(66.92 KB) Additional Information: full citation, references, citings, index terms

12 Antialiased parameterized solid texturing simplified for consumer-level hardware implementation

John C. Hart, Nate Carr, Masaki Kameya, Stephen A. Tibbitts, Terrance J. Coleman

July 1999 Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics

hardware

Full text available: pdf(1.86 MB) Additional Information: full citation, references, citings, index terms

Keywords: antialiasing, hardware, procedural texturing, solid texturing

13 Rendering II: Second order image statistics in computer graphics

Erik Reinhard, Peter Shirley, Michael Ashikhmin, Tom Troscianko

August 2004 Proceedings of the 1st Symposium on Applied perception in graphics and visualization

Full text available: pdf(586.77 KB) Additional Information: full citation, abstract, references

The class of all natural images is an extremely small fraction of all possible images. Some of the structure of natural images can be modeled statistically, revealing striking regularities. Moreover, the human visual system appears to be optimized to view natural images. Images that do not behave statistically as natural images are harder for the human visual system to interpret. This paper reviews second order image statistics as well as their implications for computer graphics. We show that th ...

14 Shading and shaders: Shader metaprogramming

Michael D. McCool, Zheng Oin, Tiberiu S. Popa

September 2002 Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on **Graphics hardware**

Full text available: pdf(630.20 KB)

Additional Information: full citation, abstract, references, citings, index terms

Modern graphics accelerators have embedded programmable components in the form of vertex and fragment shading units. Current APIs permit specification of the programs for these components using an assembly-language level interface. Compilers for high-level shading languages are available but these read in an external string specification, which can be inconvenient. It is possible, using standard C++, to define a high-level shading language directly in the API. Such a language can be nearly indist ...

15 Motion texture: a two-level statistical model for character motion synthesis

Yan Li, Tianshu Wang, Heung-Yeung Shum

July 2002 ACM Transactions on Graphics (TOG), Proceedings of the 29th annual conference on Computer graphics and interactive techniques, Volume 21 Issue 3

Full text available: pdf(5.06 MB)

Additional Information: full citation, abstract, references, citings, index

In this paper, we describe a novel technique, called motion texture, for synthesizing complex human-figure motion (e.g., dancing) that is statistically similar to the original motion captured data. We define motion texture as a set of motion textons and their distribution, which characterize the stochastic and dynamic nature of the captured motion. Specifically, a motion texton is modeled by a linear dynamic system (LDS) while the texton distribution is represented by a transition matrix indicat ...

Keywords: linear dynamic systems, motion editing, motion synthesis, motion texture, texture synthesis

¹⁶ Comparing LIC and spot noise

Wim de Leeuw, Robert van Liere

October 1998 Proceedings of the conference on Visualization '98

Publisher Site

Full text available: pdf(1.23 MB) Additional Information: full citation, references, citings, index terms

Keywords: flow visualization, texture synthesis

17 Multi-frequency noise for LIC

Ming-Hoe Kiu, David C. Banks

October 1996 Proceedings of the 7th conference on Visualization '96

Publisher Site

Full text available: pdf(8.50 MB) Additional Information: full citation, references, citings, index terms

18 Structural modeling of flames for a production environment

Arnauld Lamorlette, Nick Foster

July 2002 ACM Transactions on Graphics (TOG), Proceedings of the 29th annual conference on Computer graphics and interactive techniques, Volume 21 Issue 3 Full text available: pdf(812.38 KB) Additional Information: full citation, abstract, references, citings, index terms

In this paper we describe a system for animating flames. Stochastic models of flickering and buoyant diffusion provide realistic local appearance while physics-based wind fields and Kolmogorov noise add controllable motion and scale. Procedural mechanisms are developed for animating all aspects of flame behavior including moving sources, combustion spread, flickering, separation and merging, and interaction with stationary objects. At all stages in the process the emphasis is on total artistic a ...

Keywords: animation systems, convection, fire, flames, kolmogorov spectrum, physically-based modeling, wind fields

19 Global illumination using local linear density estimation
Bruce Walter, Philip M. Hubbard, Peter Shirley, Donald P. Greenberg
July 1997 ACM Transactions on Graphics (TOG), Volume 16 Issue 3

Full text available: pdf(22.31 MB)

Additional Information: full citation, abstract, references, citings, index terms

This article presents the density estimation framework for generating view-independent global illumination solutions. It works by probabilistically simulating the light flow in an environment with light particles that trace random walks origination at luminaires and then using statistical density estimation techniques to reconstruct the lighting on each surface. By splitting the computation into separate transport and reconstruction stages, we gain many advantages including reduced memory u ...

Keywords: decimation, density estimation, particle tracing, realistic image synthesis, regression

20 Real-time procedural textures

John Rhoades, Greg Turk, Andrew Bell, Andrei State, Ulrich Neumann, Amitabh Varshney June 1992 Proceedings of the 1992 symposium on Interactive 3D graphics

Full text available: pdf(822.02 KB) Additional Information: full citation, references, citings, index terms

Results 1 - 20 of 152 Result page: **1** 2 3 4 5 6 7 8 next

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2004 ACM, Inc.

<u>Terms of Usage Privacy Policy Code of Ethics Contact Us</u>

Useful downloads: Adobe Acrobat QuickTime WMIndows Media Player Real Player

US Patent & Trademark Office

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: The ACM Digital Library O The Guide

+perlin +noise +lattice +bit +pattern

3.230

THE ACM DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

Terms used perlin noise lattice bit pattern

Found 3 of 143,484

Sort results

results

relevance bv Display

expanded form

Save results to a Binder ? Search Tips Open results in a new

window

Try an Advanced Search Try this search in The ACM Guide

Results 1 - 3 of 3

Relevance scale 🔲 📟 📟

¹ Perlin noise pixel shaders

John C. Hart

August 2001 Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware

Full text available: pdf(919.41 KB)

Additional Information: full citation, abstract, references, citings, index terms

While working on a method for supporting real-time procedural solid texturing, we developed a general purpose multipass pixel shader to generate the Perlin noise function. We implemented this algorithm on SGI workstations using accelerated OpenGL PixelMap and PixelTransfer operations, achieving a rate of 2.5 Hz for a 256x256 image. We also implemented the noise algorithm on the NVidia GeForce2 using register combiners. Our register combiner implementation required 375 passes, but ran at 1.3 H ...

Keywords: Perlin noise function, hardware shading, pixel shaders, register combiners

² A cellular texture basis function

Steven Worley

August 1996 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques

Full text available: pdf(66.92 KB)

Additional Information: full citation, references, citings, index terms

3 Sculpting: an interactive volumetric modeling technique

Tinsley A. Galyean, John F. Hughes

July 1991 ACM SIGGRAPH Computer Graphics, Proceedings of the 18th annual conference on Computer graphics and interactive techniques, Volume 25 Issue 4

Full text available: pdf(8.21 MB)

Additional Information: full citation, abstract, references, citings, index terms

We present a new interactive modeling technique based on the notion of sculpting a solid material. A sculpting tool is controlled by a 3D input device and the material is represented by voxel data; the tool acts by modifying the values in the voxel array, much as a "paint" program's "paintbrush" modifies bitmap values. The voxel data is converted to a polygonal surface using a "marching-cubes" algorithm; since the modifications to the voxel data are local, we accelerate this computation by an in ...

Keywords: 3D interaction, antialiasing, free-form modeling, sculpting, volumetric data

Results 1 - 3 of 3

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library • The Guide

US Patent & Trademark Office

+lattice +bit +pattern +gradient

THE ACM DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

Terms used lattice bit pattern gradient

Found 46 of 143,484

Sort results by

Display

results

relevance expanded form

Save results to a Binder 3 Search Tips

Try an Advanced Search Try this search in The ACM Guide

☐ Open results in a new window

Results 1 - 20 of 46

Result page: 1 2 3 next

Relevance scale ...

Second-generation image coding: an overview

M. M. Reid, R. J. Millar, N. D. Black

March 1997 ACM Computing Surveys (CSUR), Volume 29 Issue 1

Full text available: pdf(12.23 MB)

Additional Information: full citation, abstract, references, index terms, review

This article gives an overview of a diverse selection of currently used second-generation image coding techniques. These techniques have been grouped into similar categories in order to allow a direct comparison among the varying methods. An attempt has been made, where possible, to expand upon and clarify the details given by the original authors. The relative merits and shortcomings of each of the techniques are compared and contrasted.

Keywords: MRi, compression, image coding

² HPFBench: a high performance Fortran benchmark suite

Y. Charlie Hu, Guohua Jin, S. Lennart Johnsson, Dimitris Kehagias, Nadia Shalaby March 2000 ACM Transactions on Mathematical Software (TOMS), Volume 26 Issue 1

Full text available: 📆 pdf(274.52 KB) Additional Information: full citation, abstract, references, index terms

The high performance Fortran (HPF) benchmark suite HPFBench is designed for evaluating the HPF language and compilers on scalable architectures. The functionality of the benchmarks covers scientific software library functions and application kernels that reflect the computational structure and communication patterns in fluid dynamic simulations, fundamental physics, and molecular studies in chemistry and biology. The benchmarks are characterized in terms of FLOP count, memory usage, communi ...

Keywords: benchmarks, compilers, high performance Fortran

3 Element order and convergence rate of the conjugate gradient method for data parallel stress analysis

K. K. Mathur, S. L. Johnsson

August 1989 Proceedings of the 1989 ACM/IEEE conference on Supercomputing

Full text available: mpdf(614.54 KB) Additional Information: full citation, abstract, references, index terms

A data parallel formulation of the finite element method is described. The data Structures and the algorithms for stiffness matrix generation and the solution of the equilibrium equations are presented briefly. The generation of the elemental stiffness matrices requires no communication, even though each finite element is distributed over several processors. The conjugate gradient method with a diagonal preconditioner has been used for the solution of the resulting sparse linear system. Thi ...

What have we learnt from using real parallel machines to solve real problems?

G. C. Fox

January 1989 Proceedings of the third conference on Hypercube concurrent computers and applications - Volume 2

Full text available: pdf(4.08 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms

We briefly review some key scientific and parallel processing issues in a selection of some 84 existing applications of parallel machines. We include the MIMD hypercube transputer array, BBN Butterfly, and the SIMD ICL DAP, Goodyear MPP and Connection Machine from Thinking Machines. We use a space-time analogy to classify problems and show how a division into synchronous, loosely synchronous and asynchronous problems is helpful. This classifies problems into those suitable for SIMD or MIMD ...

Rendering and simulation: Physically-based visual simulation on graphics hardware Mark J. Harris, Greg Coombe, Thorsten Scheuermann, Anselmo Lastra September 2002 Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware

Full text available: pdf(2.65 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms

In this paper, we present a method for real-time visual simulation of diverse dynamic phenomena using programmable graphics hardware. The simulations we implement use an extension of cellular automata known as the coupled map lattice (CML). CML represents the state of a dynamic system as continuous values on a discrete lattice. In our implementation we store the lattice values in a texture, and use pixel-level programming to implement simple next-state computations on lattice nodes and their nei ...

Keywords: CML, coupled map lattice, graphics hardware, multipass rendering, reaction-diffusion, visual simulation

6 Supercomputing and transputers

Falk Langhammer, Francis Wray

August 1992 Proceedings of the 6th international conference on Supercomputing

Full text available: pdf(1.72 MB)

Additional Information: full citation, abstract, references, index terms

It will be studied which degree parallel supercomputers can be scaled to. Necessary measures to achieve a maximum scalability will be discussed, and a case-study be presented. To this purpose, a new class of "supermassively parallel architectures" is introduced, and the notation of scalable architectures will be extended to reflect the impact of technological progress onto cost-functions. For systems in this class, the performance efficiency of applications is discussed and two ...

Load balancing loosely synchronous problems with a neural network
 G. C. Fox, W. Furmanski

January 1988 Proceedings of the third conference on Hypercube concurrent computers and applications: Architecture, software, computer systems, and general issues - Volume 1

Full text available: pdf(2.90 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms

Hopfield and Tank have introduced the use of neural networks for the solution of optimization problems such as the traveling salesman problem. Here we show how to generalize this method to decompose loosely synchronous problems onto parallel machines and in particular the hypercube. In this case, decomposition or load balancing can be formulated graph theoretically in terms of optimal partitioning of the computational graph into N=2

8 A special purpose LSI processor using the DDA algorithm for image transformation Katsura Kawakami, Shigeo Shimazaki

January 1984 ACM SIGARCH Computer Architecture News, Proceedings of the 11th annual international symposium on Computer architecture, Volume 12 Issue 3

Full text available: pdf(772.26 KB) Additional Information: full citation, abstract, references, index terms

A new special purpose processor, named MN8614, has been developed for the high speed

execution of binary image transformations. The processor carrys out the processing based on a new extension of the DDA algorithm to reduce the number of multiplications required for image processing. In addition, a machine instruction set has been developed which makes optimal use of the new method. The processor is fabricated on a single LSI chip with 16-bit data paths. Although the basic chip design is th ...

From Electron Mobility to Logical Structure: A View of Integrated Circuits
Wesley A, Clark

September 1980 ACM Computing Surveys (CSUR), Volume 12 Issue 3

Full text available: pdf(3.29 MB) Additional Information: full citation, references, citings, index terms

Nonlinear optimization framework for image-based modeling on programmable graphics hardware

Karl E. Hillesland, Sergey Molinov, Radek Grzeszczuk
July 2003 ACM Transactions on Graphics (TOG), Volume 22 Issue 3

Full text available: pdf(1.32 MB)

Additional Information: full citation, abstract, references, citings, index terms

Graphics hardware is undergoing a change from fixed-function pipelines to more programmable organizations that resemble general purpose stream processors. In this paper, we show that certain general algorithms, not normally associated with computer graphics, can be mapped to such designs. Specifically, we cast nonlinear optimization as a data streaming process that is well matched to modern graphics processors. Our framework is particularly well suited for solving image-based modeling problems s ...

Keywords: image-based modeling, nonlinear optimization, programmable graphics hardware

Sparse matrix solvers on the GPU: conjugate gradients and multigrid Jeff Bolz, Ian Farmer, Eitan Grinspun, Peter Schröoder July 2003 ACM Transactions on Graphics (TOG), Volume 22 Issue 3

Full text available: pdf(753.59 KB)

Additional Information: full citation, abstract, references, citings, index terms

Many computer graphics applications require high-intensity numerical simulation. We show that such computations can be performed efficiently on the GPU, which we regard as a full function *streaming* processor with high floating-point performance. We implemented two basic, broadly useful, computational kernels: a *sparse matrix conjugate gradient solver* and a regular-grid *multigrid solver*. Real time applications ranging from mesh smoothing and parameterization to fluid solvers ...

Keywords: GPU computing, Navier-Stokes, conjugate gradient, fluid simulation, mesh smoothing, multigrid, numerical simulation

12 <u>Topological considerations in isosurface generation</u>
Allen van Gelder, Jane Wilhelms

October 1994 ACM Transactions on Graphics (TOG), Volume 13 Issue 4

Full text available: pdf(4.25 MB)

Additional Information: full citation, abstract, references, citings, index terms, review

A popular technique for rendition of isosurfaces in sampled data is to consider cells with sample points as corners and approximate the isosurface in each cell by one or more polygons whose vertices are obtained by interpolation of the sample data. That is, each polygon vertex is a point on a cell edge, between two adjacent sample points, where the function is estimated to equal the desired threshold value. The two sample points have values on opposite sides of the threshold, and the interp ...

Keywords: ambiguity, isosurface extraction, scientific visualization, surface fitting, surface topology

13 Routing: Routing using potentials: a dynamic traffic-aware routing algorithm Anindva Basu, Alvin Lin, Sharad Ramanathan

Full text available: pdf(529.83 KB) Additional Information: full citation, abstract, references, index terms

We present a routing paradigm called PBR that utilizes steepest gradient search methods to route data packets. More specifically, the PBR paradigm assigns scalar potentials to network elements and forwards packets in the direction of maximum positive force. We show that the family of PBR schemes are loop free and that the standard shortest path routing algorithms are a special case of the PBR paradigm. We then show how to design a potential function that accounts for traffic conditions at a node ...

Keywords: congestion, gradient, potential, routing, steepest, traffic aware

14 Gross motion planning—a survey

Yong K. Hwang, Narendra Ahuja

September 1992 ACM Computing Surveys (CSUR), Volume 24 Issue 3

Full text available: pdf(6.40 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms, review

Motion planning is one of the most important areas of robotics research. The complexity of the motion-planning problem has hindered the development of practical algorithms. This paper surveys the work on gross-motion planning, including motion planners for point robots, rigid robots, and manipulators in stationary, time-varying, constrained, and movable-object environments. The general issues in motion planning are explained. Recent approaches and their performances are briefly described, a ...

Keywords: collision detection, computational geometry, implementation, motion planning, obstacle avoidance, path planning, spatial representation

15 QCDSP: a Teraflop scale massively parallel supercomputer

Dong Chen, Ping Chen, Norman H. Christ, Robert G. Edwards, George Fleming, Alan Gara, Sten Hansen, Chulwoo Jung, Adrian Kahler, Stephen Kasow, Anthony D. Kennedy, Greg Kilcup, Yu Bing Luo, Catalin Malureanu, Robert D. Mawhinney, John Parsons, Jim Sexton, ChengZhong Sui, Pavlos Vranas

November 1997 Proceedings of the 1997 ACM/IEEE conference on Supercomputing (CDROM)

Full text available: pdf(85.03 KB)

Additional Information: full citation, abstract, references

We discuss the work of the QCDSP collaboration to build an inexpensive Teraflop scale massively parallel computer suitable for computations in Quantum Chromodynamics (QCD). The computer is a collection of nodes connected in a four dimensional toroidial grid with nearest neighbor bit serial communications. A node is composed of a Texas Instruments Digital Signal Processor (DSP), memory, and a custom made communications and memory controller chip. An 8192 node computer with a peak speed of 0.4 Ter ...

Keywords: QCD, digital signal processor, parallel, supercomputer

16 A cellular texture basis function

Steven Worley

August 1996 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques

Full text available: pdf(66.92 KB)

Additional Information: full citation, references, citings, index terms

17 Introduction & overview of "artificial life"—evolving intelligent agents for modeling &

	simulation A. Martin Wildberger November 1996 Proceedings of the 28th conference on Winter simulation	
	Full text available: pdf(987.66 KB) Additional Information: full citation, references	
18	Representation of Three-Dimensional Digital Images Sargur N. Srihari December 1981 ACM Computing Surveys (CSUR), Volume 13 Issue 4	
	Full text available: pdf(2.36 MB) Additional Information: full citation, references, citings, index terms	
19	Making faces Brian Guenter, Cindy Grimm, Daniel Wood, Henrique Malvar, Fredric Pighin July 1998 Proceedings of the 25th annual conference on Computer graphics and interactive techniques Full text available: pdf(1.70 MB) Additional Information: full citation, references, citings, index terms	
20	Rendering II: Subband encoding of high dynamic range imagery Greg Ward, Maryann Simmons August 2004 Proceedings of the 1st Symposium on Applied perception in graphics and visualization Full text available: pdf(1.14 MB) Additional Information: full citation, abstract, references, index terms	
	The transition from traditional 24-bit RGB to high dynamic range (HDR) images is hindered by excessively large file formats with no backwards compatibility. In this paper, we propose a simple approach to HDR encoding that parallels the evolution of color television from its	

The transition from traditional 24-bit RGB to high dynamic range (HDR) images is hindered by excessively large file formats with no backwards compatibility. In this paper, we propose a simple approach to HDR encoding that parallels the evolution of color television from its grayscale beginnings. A tone-mapped version of each HDR original is accompanied by restorative information carried in a subband of a standard 24-bit RGB format. This subband contains a compressed *ratio image*, which whe ...

Keywords: high dynamic range image formats, image processing, lossy compression

Results 1 - 20 of 46 Result page: 1 2 3 next

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2004 ACM, Inc.

<u>Terms of Usage Privacy Policy Code of Ethics Contact Us</u>

Useful downloads: Adobe Acrobat QuickTime Windows Media Player Real Player

US Patent & Trademark Office

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library • The Guide

+lattice +bit +pattern +gradient +noise

1221.1023

THE ACM DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

Terms used lattice bit pattern gradient noise

Found 15 of 143,484

Sort results by

relevance

Save results to a Binder 到 Search Tips

Try an Advanced Search Try this search in The ACM Guide

Display results

expanded form

Open results in a new window

Results 1 - 15 of 15

Relevance scale

Second-generation image coding: an overview

M. M. Reid, R. J. Millar, N. D. Black

March 1997 ACM Computing Surveys (CSUR), Volume 29 Issue 1

Full text available: pdf(12.23 MB)

Additional Information: full citation, abstract, references, index terms, review

This article gives an overview of a diverse selection of currently used second-generation image coding techniques. These techniques have been grouped into similar categories in order to allow a direct comparison among the varying methods. An attempt has been made, where possible, to expand upon and clarify the details given by the original authors. The relative merits and shortcomings of each of the techniques are compared and contrasted.

Keywords: MRi, compression, image coding

² A cellular texture basis function

Steven Worley

August 1996 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques

Full text available: pdf(66.92 KB)

Additional Information: full citation, references, citings, index terms

Load balancing loosely synchronous problems with a neural network

G. C. Fox, W. Furmanski

January 1988 Proceedings of the third conference on Hypercube concurrent computers and applications: Architecture, software, computer systems, and general issues - Volume 1

Full text available: pdf(2.90 MB)

Additional Information: full citation, abstract, references, citings, index

Hopfield and Tank have introduced the use of neural networks for the solution of optimization problems such as the traveling salesman problem. Here we show how to generalize this method to decompose loosely synchronous problems onto parallel machines and in particular the hypercube. In this case, decomposition or load balancing can be formulated graph theoretically in terms of optimal partitioning of the computational graph into N = 2

System architectures for computer music

John W. Gordon

June 1985 ACM Computing Surveys (CSUR), Volume 17 Issue 2

Full text available: pdf(4.61 MB)

Additional Information: full citation, abstract, references, index terms, <u>review</u>

Computer music is a relatively new field. While a large proportion of the public is aware of computer music in one form or another, there seems to be a need for a better

understanding of its capabilities and limitations in terms of synthesis, performance, and recording hardware. This article addresses that need by surveying and discussing the architecture of existing computer music systems. System requirements vary according to what the system will be used for. Common uses for co ...

What have we learnt from using real parallel machines to solve real problems?
G. C. Fox

January 1989 Proceedings of the third conference on Hypercube concurrent computers and applications - Volume 2

Full text available: pdf(4.08 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms

We briefly review some key scientific and parallel processing issues in a selection of some 84 existing applications of parallel machines. We include the MIMD hypercube transputer array, BBN Butterfly, and the SIMD ICL DAP, Goodyear MPP and Connection Machine from Thinking Machines. We use a space-time analogy to classify problems and show how a division into synchronous, loosely synchronous and asynchronous problems is helpful. This classifies problems into those suitable for SIMD or MIMD ...

Sparse matrix solvers on the GPU: conjugate gradients and multigrid Jeff Bolz, Ian Farmer, Eitan Grinspun, Peter Schröoder July 2003 ACM Transactions on Graphics (TOG), Volume 22 Issue 3

Full text available: pdf(753.59 KB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> <u>terms</u>

Many computer graphics applications require high-intensity numerical simulation. We show that such computations can be performed efficiently on the GPU, which we regard as a full function *streaming* processor with high floating-point performance. We implemented two basic, broadly useful, computational kernels: a *sparse matrix conjugate gradient solver* and a regular-grid *multigrid solver*. Real time applications ranging from mesh smoothing and parameterization to fluid solvers ...

Keywords: GPU computing, Navier-Stokes, conjugate gradient, fluid simulation, mesh smoothing, multigrid, numerical simulation

Quadrature prefiltering for high quality antialiasing Brian Guenter, Jack Tumblin October 1996 ACM Transactions on Graphics (TOG), Volume 15 Issue 4

Full text available: pdf(2.09 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms

This article introduces quadrature prefiltering, an accurate, efficient, and fairly simple algorithm for prefiltering polygons for scanline rendering. It renders very high quality images at reasonable cost, strongly suppressing aliasing artifacts. For equivalent RMS error, quadrature prefiltering is significantly faster than either uniform or jittered supersampling. Quadrature prefiltering is simple to implement and space-efficient; it needs only a small two-dimensional lookup table, even w ...

Keywords: antialiasing, prefiltering

8 Introduction & overview of "artificial life"—evolving intelligent agents for modeling & simulation

A. Martin Wildberger

November 1996 Proceedings of the 28th conference on Winter simulation

Full text available: pdf(987.66 KB) Additional Information: full citation, references

Making faces Brian Guenter, Cindy Grimm, Daniel Wood, Henrique Malvar, Fredric Pighin

July 1998 Proceedings of the 25th annual conference on Computer graphics and interactive techniques

Full text available: pdf(1.70 MB)

Additional Information: full citation, references, citings, index terms

10 Rendering II: Subband encoding of high dynamic range imagery

Greg Ward, Maryann Simmons

August 2004 Proceedings of the 1st Symposium on Applied perception in graphics and visualization

Full text available: pdf(1.14 MB)

Additional Information: full citation, abstract, references, index terms

The transition from traditional 24-bit RGB to high dynamic range (HDR) images is hindered by excessively large file formats with no backwards compatibility. In this paper, we propose a simple approach to HDR encoding that parallels the evolution of color television from its grayscale beginnings. A tone-mapped version of each HDR original is accompanied by restorative information carried in a subband of a standard 24-bit RGB format. This subband contains a compressed ratio image, which whe ...

Keywords: high dynamic range image formats, image processing, lossy compression

11 Session 4: video processing and transformation: Painting with looks; photographic images from video using quantimetric processing

Steve Mann, Corey Manders, James Fung

December 2002 Proceedings of the tenth ACM international conference on Multimedia

Full text available: pdf(861.14 KB) Additional Information: full citation, abstract, references, citings

When we ask the fundamental question "What does a camera measure?", we arrive at the concept of quantimetric imaging, which uses a new quantimetric unit, q, characteristic of a particular camera (e.g. each kind of camera defines its own quantimetric unit q based on its spectral response, etc.). Fluctuations in interframe exposures, along a sequence of images, give rise to a comparametric relationship between successive pairs of images. This allows us to estimate the response ...

Keywords: comparametric equations, comparametrics, image processing, multiple exposures, video

12 Interval volume: a solid fitting technique for volumetric data display and analysis I. Fujishiro, Y. Maeda, H. Sato

October 1995 Proceedings of the 6th conference on Visualization '95

Full text available: pdf(1.15 MB) Additional Information: full citation, abstract

Proposes as a generalization of isosurfaces, the 'interval volume', which is a new type of geometric model representing 3D subvolumes with field values belonging to a closed interval. A dominant surface fitting algorithm called 'marching cubes' is extended to obtain a solid fitting algorithm, which extracts from a given volumetric dataset a high-resolution polyhedral solid data structure of the interval volume. Rendering methods for the interval volume and principal related operations are also p ...

Keywords: 3D subvolumes, 4D simulated data, atomic collisions, closed interval, data analysis, data visualisation, dominant surface fitting algorithm, field values, geometric model, high-resolution polyhedral solid data structure extraction, interval volume, isosurfaces, marching cubes algorithm, physics computing, rendering (computer graphics), rendering methods, solid fitting technique, solid modelling, surface fitting, volumetric data analysis, volumetric data display, volumetric dataset

13 Bibliography of recent publications on computer communication Martha Steenstrup

January 1998 ACM SIGCOMM Computer Communication Review, Volume 28 Issue 1

Full text available: pdf(2.02 MB)

Additional Information: full citation, abstract, index terms

The quantitative results presented in our SIGCOMM '97 paper [1] include numerous minor errors. These errors were caused by programming bugs that led to faulty analyses and simulations, and by inaccurate transcriptions during the preparation of the paper. Here we present corrected figures and tables, as well as corrections to values that appeared in the text of the original paper. The effect of correcting the errors is to reduce the differences between the results based on the proxy trace and tho ...

14 Sculpting: an interactive volumetric modeling technique

Tinsley A. Galyean, John F. Hughes

July 1991 ACM SIGGRAPH Computer Graphics, Proceedings of the 18th annual conference on Computer graphics and interactive techniques, Volume 25 Issue 4

Full text available: pdf(8.21 MB)

Additional Information: full citation, abstract, references, citings, index terms

We present a new interactive modeling technique based on the notion of sculpting a solid material. A sculpting tool is controlled by a 3D input device and the material is represented by voxel data: the tool acts by modifying the values in the voxel array, much as a "paint" program's "paintbrush" modifies bitmap values. The voxel data is converted to a polygonal surface using a "marching-cubes" algorithm; since the modifications to the voxel data are local, we accelerate this computation by an in ...

Keywords: 3D interaction, antialiasing, free-form modeling, sculpting, volumetric data

15 Session 6: Estimating differential quantities using polynomial fitting of osculating jets F. Cazals, M. Pouget

June 2003 Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry processing

Full text available: pdf(2.62 MB)

Additional Information: full citation, abstract, references

This paper addresses the pointwise estimation of differential properties of a smooth manifold S---a curve in the plane or a surface in 3D--- assuming a point cloud sampled over S is provided. The method consists of fitting the local representation of the manifold using a jet, by either interpolating or approximating. A jet is a truncated Taylor expansion, and the incentive for using jets is that they encode all local geometric quantities---such as normal or curvatures. On the way to using jets, t ...

Keywords: approximation, differential geometry, interpolation, meshes, point clouds

Results 1 - 15 of 15

The ACM Portal is published by the Association for Computing Machinery. Copyright @ 2004 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Windows Media Player Real Player

US Patent & Trademark Office

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: The ACM Digital Library O The Guide

+hypercube +simplex +vertex +decompos

32333

THE ACM DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

Terms used hypercube simplex vertex decompos

Found 1 of 143,484

Sort results

by

Display

results

relevance expanded form

Save results to a Binder 3 Search Tips

Open results in a new

Try an Advanced Search Try this search in The ACM Guide

Results 1 - 1 of 1

Relevance scale

1 Shallow excluded minors and improved graph decompositions

window

Serge Plotkin, Satish Rao, Warren D. Smith

January 1994 Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms

Full text available: pdf(894.68 KB)

Additional Information: full citation, references, citings, index terms

Results 1 - 1 of 1

The ACM Portal is published by the Association for Computing Machinery, Copyright © 2004 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Windows Media Player

Real Player

Membership Publications/Services Standards Conferences Careers/Jobs

Welcome United States Patent and Trademark Office

Help FAQ Terms IEEE Peer Review

Quick Links

» Search Results

ľ	۲	٦	Э	ø	r	ä	Ą	μ	¥	ĸ,	8	Ų	И	ü	7	٦	ř	Ģ		ľ		k	7	ë		3	Ü	٩	2	×	ų	1	۲	Ų	Я	P	
k	a	ï	ż	ş	ě	ŝ	۲	,	0	3	ł	٤	ž	ă	ź	4	3	ij			I	d,	•	4	٠	얭	r	3	ŗ	ş	ĵ	í	٢	ú	ţ	ê	
Ľ	W	è	á	M	à	à	ĸ	×	۵	۵	ŝ	й	И	8	8	ò	ä	g	Ш	×	k	k	u	Ю	ŭ	а	ì	а	'n	×	Ē,	a	ü	ш	а	и	á

O- Home

O- What Can I Access?

O- Log-out

Tables of Contents

O- Journals & Magazines

O- Conference Proceedings

()- Standards

Search

O- By Author

O- Basic

O- Advanced

()- CrossRef

Aprilar Services

O- Join IEEE

C Establish IEEE
Web Account

O- Access the IEEE Member Digital Library

O- Access the IEEE Enterprise File Cabinet

Print Format

Your search matched 7 of 1076880 documents.

A maximum of **500** results are displayed, **15** to a page, sorted by **Relevance** in **Descending** order.

Refine This Search:

You may refine your search by editing the current search expression or entering a new one in the text box.

Search

(perlin <and> noise)

. . .

☐ Check to search within this result set

Results Key:

JNL = Journal or Magazine CNF = Conference STD = Standard

1 Real time responsive animation with personality

Perlin, K.;

Visualization and Computer Graphics, IEEE Transactions on , Volume: 1 , Issue: 1 , March 1995

Pages: 5 - 15

[Abstract] [PDF Full-Text (956 KB)] IEEE JNL

2 Optimizing the noise performance of broad-band WDM systems with distributed Raman amplification

Perlin, V.E.; Winful, H.G.;

Photonics Technology Letters, IEEE, Volume: 14, Issue: 8, Aug. 2002

Pages:1199 - 1201

[Abstract] [PDF Full-Text (235 KB)] IEEE JNL

$_{\rm 3}$ On distributed Raman amplification for ultrabroad-band long-haul WDM systems

Perlin, V.E.; Winful, H.G.;

Lightwave Technology, Journal of, Volume: 20, Issue: 3, March 2002

Pages:409 - 416

[Abstract] [PDF Full-Text (308 KB)] IEEE JNL

4 Efficient design method for multi-pump flat-gain fiber Raman amplifiers

Perlin, V.E.; Winful, H.G.;

Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002 , 17-22 March 2002

Pages: 57 - 59

[Abstract] [PDF Full-Text (351 KB)] IEEE CNF

5 On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification

Perlin, V.E.; Winful, H.G.;

Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002, 17-22

March 2002 Pages:178 - 180

[Abstract] [PDF Full-Text (352 KB)] IEEE CNF

6 Ultra-broadband Raman amplification with spatially diverse pumps

Perlin, V.E.; Winful, H.G.;

Lasers and Electro-Optics, 2002. CLEO '02. Technical Digest. Summaries of Papers Presented at the , 19-24 May 2002

Pages:432 - 433 vol.1

[Abstract] [PDF Full-Text (320 KB)] IEEE CNF

7 Non-photorealistic rendering using watercolor inspired textures and illumination

Lum, E.B.; Kwan-Liu Ma;

Computer Graphics and Applications, 2001. Proceedings. Ninth Pacific Conference

on , 16-18 Oct. 2001 Pages:322 - 330

[Abstract] [PDF Full-Text (1044 KB)] IEEE CNF

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Copyright © 2004 IEEE - All rights reserved

Publications/Services Standards Conferences Careers/Jobs

Welcome **United States Patent and Trademark Office**

» Search Results

Help	FAQ	Terms	IEEE	Peer	Reviev

Quick Links

\circ	- Lo	g-ot	Ŕ	
(0)	es n	Par	(41)	(3)

— What Can

()- Home

Welcome to IEEE Aplace

| Access?

Journals & Magazines

()- Conference **Proceedings**

— Standards

Search

O- By Author

Basic C Advanced

CrossRef

Alphabel Services

O- Join IEEE

🕽 Establish IEEE Web Account

)- Access the IEEE Member Digital Library

()- Access the IEEE Enterprise File Cobinet

Your search matched 0 of 1076880 documents.

A maximum of 500 results are displayed, 15 to a page, sorted by Relevance in Descending order.

Refine This Search:

You may refine your search by editing the current search expression or entering a new one in the text box.

Search

(perlin <and> noise <and> lattice <and> bit <and> patte

☐ Check to search within this result set

Results Key:

JNL = Journal or Magazine CNF = Conference STD = Standard

Results:

No documents matched your query.

Print Format

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Copyright © 2004 IEEE - All rights reserved

Publications/Services Standards Conferences Careers/Jobs

Welcome **United States Patent and Trademark Office**

elp FAQ Terms IE	EEE Peer Review Quick Links	» Search Results
elcome to IEEE <i>Xolore</i> — Home — What Can I Access?	Your search matched 0 of 1076880 documents. A maximum of 500 results are displayed, 15 to a page, sorted by Rele Descending order.	evance in
C- Log-out Tables of Contents	Refine This Search: You may refine your search by editing the current search expression or new one in the text box.	rentering a
Journals & Magazines Conference Proceedings	(lattice <and> bit <and> pattern <and> gradient <and> n Search ☐ Check to search within this result set</and></and></and></and>	
- Standards	Results Key: JNL = Journal or Magazine CNF = Conference STD = Standard	
O- By Author O- Basic O- Advanced O- CrossRef	Results: No documents matched your query.	
fumburSopriess Or Join IEEE Or Establish IEEE		

🖴 Print Format

Web Account

O- Access the IEEE Member Digital Library

Access the IEEE Enterprise File Cabinet

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ| Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

Membership Publications/Services Standards Conferences Careers/Jobs

emark Office

» Search Results

JEEE Xplore®	Welcome United States Patent and Trade
--------------	---

Help FAQ Terms IEI	EE Peer Review Quick Links	arch Re
Welcome to IEEE <i>Xplare*</i> — Home — What Gan I Access?	Your search matched 1 of 1076880 documents. A maximum of 500 results are displayed, 15 to a page, sorted by Relevance Descending order.	: in
Chapter Contents	Refine This Search: You may refine your search by editing the current search expression or enterinew one in the text box.	ng a
O- Journals & Magazines O- Conference	(lattice <and> bit <and> pattern <and> gradient) ☐ Check to search within this result set</and></and></and>	
Proceedings - Standards	Results Key: JNL = Journal or Magazine CNF = Conference STD = Standard	
Search - By Author - Basic - Advanced - CrossRef	Magnetostatic interactions between sub-micrometer patterned mag elements Janesky, J.; Rizzo, N.D.; Savtchenko, L.; Engel, B.; Slaughter, J.M.; Tehrani, Magnetics, IEEE Transactions on , Volume: 37 , Issue: 4 , July 2001 Pages: 2052 - 2054	
Momber Services Or Join IEEE	[Abstract] [PDF Full-Text (58 KB)] IEEE JNL	

Print Format

)- Establish IEEE Web Account

O- Access the **IEEE Member** Digital Library

ad Congress () Access the

> IEEE Enterprise File Cabinet

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ| Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

Standards Conferences Careers/Jobs Publications/Services

Welcome **United States Patent and Trademark Office**

Help	FAQ	Terms	IEEE Peer	Review
Help	174	1011113	TELE LEGI	LEALEN

Quick Links

» Search Results

	ne to IEEE Xotores
0-	Home
Ö	What Can

Access? ()- Log-out

Tables of Contents

Journals & Magazines

Conference **Proceedings**

— Standards

Search

()- By Author

O-Basic

— Advanced

()- CrossRef

Member Services

()~ Join IEEE

()- Establish IEEE Web Account

Access the IEEE Member Digital Library

Or Access the IEEE Enterprise File Cabinet

Print Format

Your search matched 32 of 1076880 documents.

A maximum of 500 results are displayed, 15 to a page, sorted by Relevance in Descending order.

¥

Refine This Search:

You may refine your search by editing the current search expression or entering a new one in the text box.

Search

(grid <and> skew)

☐ Check to search within this result set

Results Kev:

JNL = Journal or Magazine CNF = Conference STD = Standard

1 Electromagnetic scattering from skew-symmetric metallic grids

Christodoulou, C.G.;

Antennas and Propagation Society International Symposium, 1992. AP-S. 1992 Digest. Held in Conjuction with: URSI Radio Science Meeting and Nuclear EMP Meeting., IEEE, 18-25 July 1992

Pages:1791 - 1794 vol.4

[Abstract] [PDF Full-Text (112 KB)]

2 Theoretical and experimental results for a thick skew-grid FSS with rectangular apertures at oblique incidence

Chen, J.C.; Stanton, P.H.;

Antennas and Propagation Society International Symposium, 1991. AP-S.

Digest , 24-28 June 1991

Pages: 1866 - 1869 vol. 3

[Abstract] [PDF Full-Text (128 KB)]

3 A 10-GHz global clock distribution using coupled standing-wave oscillators

O'Mahony, F.; Yue, C.P.; Horowitz, M.A.; Wong, S.S.;

Solid-State Circuits, IEEE Journal of, Volume: 38, Issue: 11, Nov. 2003

Pages:1813 - 1820

[PDF Full-Text (1169 KB)] [Abstract] **IEEE JNL**

4 A compact formula for the array factor of planar phased arrays with polygonal shape and skewed grid

Cucini, A.; Maci, S.;

Antennas and Wireless Propagation Letters, Volume: 1, Issue: 7, 2002

Pages: 138 - 141

[Abstract] [PDF Full-Text (538 KB)] **IEEE JNL**

5 Numerical dispersion and stability characteristics of time-domain methods on nonorthogonal meshes

Ray, S.L.;

Antennas and Propagation, IEEE Transactions on , Volume: 41 , Issue: 2 , Feb.

Pages:233 - 235

[Abstract] [PDF Full-Text (276 KB)] IEEE JNL

6 An effective modeling technique for the delay calculation and the skew analysis of clock grid designs

Ghun Kim; Dong-Soo Cho; Jeong-Taek Kong;

ASIC/SOC Conference, 2000. Proceedings. 13th Annual IEEE International , 13-16

Sept. 2000

Pages:340 - 344

[Abstract] [PDF Full-Text (392 KB)] IEEE CNF

7 An efficient formula for the array factor of planar phased arrays with polygonal contour and skewed grid

Cucini, A.; Mariottini, F.; Maci, S.;

Antennas and Propagation Society International Symposium, 2002. IEEE , Volume:

1, 16-21 June 2002

Pages:544 - 547 vol.1

[Abstract] [PDF Full-Text (277 KB)] IEEE CNF

8 Electrical characterization of a 500 MHz frequency EBGA package

Hamano, T.; Ikemoto, Y.;

Advanced Packaging, IEEE Transactions on [see also Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on], Volume: 24, Issue: 4, Nov. 2001

Pages:534 - 541

[Abstract] [PDF Full-Text (367 KB)] IEEE JNL

9 Clock skew verification in the presence of IR-drop in the power distribution network

Saleh, R.; Hussain, S.Z.; Rochel, S.; Overhauser, D.;

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on , Volume: 19 , Issue: 6 , June 2000

Pages:635 - 644

[Abstract] [PDF Full-Text (244 KB)] IEEE JNL

10 Three dimensional magnetic field computation by a coupled vectorscalar potential method in brushless DC motors with skewed permanent magnet mounts-the formulation and FE grids

Alhamadi, M.A.; Demerdash, N.A.;

Energy Conversion, IEEE Transactions on , Volume: 9 , Issue: 1 , March 1994

Pages:1 - 14

[Abstract] [PDF Full-Text (1376 KB)] IEEE JNL

11 On-chip multi-GHz clocking with transmission lines

Mizuno, M.; Anjo, K.; Surni, Y.; Wakabayashi, H.; Mogami, T.; Horiuchi, T.; Yamashina, M.;

Solid-State Circuits Conference, 2000. Digest of Technical Papers. ISSCC. 2000 IEEE International , 7-9 Feb. 2000

Pages: 366 - 367, 470

[Abstract] [PDF Full-Text (289 KB)] IEEE CNF

12 Design of a 10GHz clock distribution network using coupled standingwave oscillators

O'Mahony, F.; Yue, C.P.; Horowitz, M.A.; Wong, S.S.; Design Automation Conference, 2003. Proceedings, 2-6 June 2003 Pages: 682 - 687

[Abstract] [PDF Full-Text (622 KB)] IEEE CNF

13 Periodic boundary conditions for finite element analysis of infinite phased array antennas

McGrath, D.T.; Pyati, V.P.;

Antennas and Propagation Society International Symposium, 1994. AP-S.

Digest , Volume: 3 , 20-24 June 1994

Pages:1502 - 1505 vol.3

[Abstract] [PDF Full-Text (160 KB)] IEEE CNF

14 A 3-D hybrid finite element/boundary element method for the unified radiation and scattering analysis of general infinite periodic arrays

Lucas, E.W.; Fontana, T.P.;

Antennas and Propagation, IEEE Transactions on , Volume: 43 , Issue: 2 , Feb.

1995

Pages:145 - 153

[Abstract] [PDF Full-Text (764 KB)] IEEE JNL

15 Application-bypass broadcast in MPICH over GM

Buntinas, D.; Panda, D.K.; Brightwell, R.; Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on , 12-15 May 2003 Pages: 2 - 9

[Abstract] [PDF Full-Text (348 KB)] IEEE CNF

1 2 3 Next

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Copyright © 2004 IEEE - All rights reserved

Membership Publications/Services Standards Conferences Careers/Jobs

Welcome
United States Patent and Trademark Office

» Search Results

IEEE Xplore®

					United States Pate
Help	FAQ	Terms	IEEE Peer Review	<u> Quick</u>	Links
Helco	me to l	EEE Xp/			
\bigcirc	Home	•			ed 0 of 1076880

Your search matched **0** of **1076880** documents.

A maximum of **500** results are displayed, **15** to a page, sorted by **Relevance** in **Descending** order. **Refine This Search:**You may refine your search by editing the current search expression or entering a new one in the text box.

(hypercube <and> simplex <and> vertex)

(hypercube <and> simplex <and> vertex)

Check to search within this result set

Results Key:

JNL = Journal or Magazine CNF = Conference STD = Standard

Results:
No documents matched your query.

77.57	7577		2223	1000000	009900	777777	0097300
grage	-880		99289	77.73		70000	amn
	5 . 5		7.7.3		1 . 11	100	7 7 766
:::}	3-13	633	4.11	3 X 2 V	18/8		4 N 822

()- CrossRef

O- Advanced

— What Can

Tables of Carrieries

Journals

 Conference Proceedings

O- Standards

Search

- By Author

- Basic

& Magazines

I Access?

O- Join IEEE
O- Establish IEEE

Web Account

O- Access the IEEE Member Digital Library

Access the IEEE Enterprise File Cabinet

Print Format

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

NEWS MENU HELP Search Results: 0 Clear Text Search If you want to conduct a Number Search, please click on the button to the Number Search right. Applicant, Title of invention, Abstract — e.g. computer semiconductor If you use the AND/OR operation, please leave a SPACE between keywords. One letter word or Stopwords are not searchable. AND ₩ perlin **AND** AND 🔻 noise **AND** AND **AND** Date of publication of application — e.g.19980401 - 19980405 **AND** IPC -- e.g. D01B7/04 A01C11/02 If you use the OR operation, please leave a SPACE between keywords. Search Stored data

MENU NEWS HELP	
Search Results : 0	
Text Search If you want to conduct a Number Search, please click on the button	to the right. Number Search
Applicant, Title of invention, Abstract — e.g. computer semiconductor	
If you use the AND/OR operation, please leave a SPACE between keywords. One letter word or Stopwords are not searchable.	
hypercube simplex vertex decompos	AND 🕶
AND	
	AND 🕶
AND	
	AND 🕶
AND	
Date of publication of application — e.g.19980401 - 19980405	
-	
AND	
IPC e.g. D01B7/04 A01C11/02	
If you use the OR operation, please leave a SPACE between keywords.	
Search Stored data	

NEWS

HELP

MENU

Search Results: 0 Clear Text Search If you want to conduct a Number Search, please click on the button to the Number Search right. Applicant, Title of invention, Abstract --- e.g. computer semiconductor If you use the AND/OR operation, please leave a SPACE between keywords. One letter word or Stopwords are not searchable. AND ₩ hypercube simplex vertex **AND** AND 🔻 **AND AND** Date of publication of application --- e.g. 19980401 - 19980405 **AND** IPC --- e.g. D01B7/04 A01C11/02 If you use the OR operation, please leave a SPACE between keywords. Stored data Search

MENU NEWS HELP

Search Results: 8 Index Indication	Clear
Text Search If you want to conduct a Number Search, please click on the b	right. Number Search
Applicant, Title of invention, Abstract — e.g. computer semicond	uctor
If you use the AND/OR operation, please leave a SPACE between keywords. One letter word or Stopwords are not searchable.	
skew grid	AND 🕶
AND	
	AND -
AND	
	AND 🕶
AND	
Date of publication of application e.g.19980401 - 19980405	
-	
AND	
IPC e.g. D01B7/04 A01C11/02	
If you use the OR operation, please leave a SPACE between keywords.	
Search	data

No	. Publication No.	Title
1	. 2004 - 046156	PROJECTION DISPLAY USING WIRE GRID POLARIZATION BEAM SPLITTER WITH COMPENSATOR
2	2. 2003 - 282712	WIRING METHOD FOR CLOCK OF SEMICONDUCTOR INTEGRATED CIRCUIT AND SEMICONDUCTOR INTEGRATED CIRCUIT
3	. 2001 - 245129	IMAGE PROCESSING UNIT
4	. 11 - 008311(1999)	SEMICONDUCTOR DEVICE AND METHOD FOR DESIGNING THE SAME DEVICE
5	. 09 - 304030(1997)	INSTRUMENT FOR INSPECTING TERMINAL OF SEMICONDUCTOR PACKAGE
6	i. <u>09 - 008228(1997)</u>	SEMICONDUCTOR INTEGRATED CIRCUIT AND ITS LAYOUT TECHNIQUE
7	. <u>05 - 256696(1993)</u>	OPTICAL DETECTOR
8	s. <u>62 - 150175(1987)</u>	GRID CONVERTER

O results found in the Worldwide database for:
noise AND gradient AND bit AND pattern in the title or abstract
(Results are sorted by date of upload in database)

O results found in the Worldwide database for: **noise AND gradient AND lattice AND pattern** in the title or abstract (Results are sorted by date of upload in database)

2 results found in the Worldwide database for:

gradient AND lattice AND pattern in the title or abstract

(Results are sorted by date of upload in database)

1 MONOCRYSTALLINE THREE-DIMENSIONAL INTEGRATED-CIRCUIT TECHNOLOGY

Inventor: MACCRISKEN JOHN E (US); WARNER

RAYMOND M (US)

EC: H01L21/203B; H01L21/74; (+5)

Applicant:

IPC: C23C14/34

Publication info: US2001002650 - 2001-06-07

2 DATA APPARATUS USING A LATTICE

Inventor:

Applicant: IBM

EC: G11C11/14; G11C19/08C6; (+1)

IPC: G11C19/02

Publication info: GB1522707 - 1978-08-23

1 result found in the Worldwide database for: **perlin AND noise** in the title or abstract (Results are sorted by date of upload in database)

1 Standard for perlin noise

Inventor: PERLIN KENNETH (US)

Applicant:

EC: G06T11/00C

IPC: G09G5/00

Publication info: US2002135590 - 2002-09-26

RESULT LIST 0 results found in the Worldwide database for:

hypercube AND simplex AND vertex in the title or abstract (Results are sorted by date of upload in database)

O results found in the Worldwide database for:

hypercube AND simplex AND decompos in the title or abstract
(Results are sorted by date of upload in database)

39 results found in the Worldwide database for:

skew AND grid in the title or abstract

(Results are sorted by date of upload in database)

CLOCK SKEW VERIFICATION METHODOLOGY FOR GRID-BASED DESIGN

Inventor: HARITSA MANJUNATH D (US); SHARMA ANUP Applicant: SUN MICROSYSTEMS INC (US)

(US); (+4)

EC: IPC: G06F17/50

Publication info: EP1436738 - 2004-07-14

Display apparatus using a wire grid polarizing beamsplitter with compensator

Inventor: SILVERSTEIN BARRY D (US); MI XIANG-

Applicant: EASTMAN KODAK CO (US)

DONG (US); (+1)

EC: G02B27/18; G02B27/28B; (+1)

IPC: G02F1/1335

Publication info: US2004114079 - 2004-06-17

Improvements in Valve Operating and Governing Gear for Steam Engines,

Inventor: FERRANTI SEBASTIAN ZIANI DE

Applicant: FERRANTI SEBASTIAN ZIANI DE

Publication info: GB190003536 - 1901-02-22

Grid clock distribution network reducing clock skew and method for

reducing the same Inventor: LEE DONG-HYUN (KR)

Applicant:

IPC:

EC: G06F1/10

EC:

IPC: G06F1/04

Publication info: US2004017242 - 2004-01-29

Deskewing global clock skew using localized DLLs 5

Inventor: GAUTHIER CLAUDE R (US); TRIVEDI

Applicant: SUN MICROSYSTEMS INC (US)

PRADEEP R (US); (+3)

EC: H03L7/081A1; G06F1/10; (+1)

IPC: H03L7/06

Publication info: US6686785 - 2004-02-03

Projection display using a wire grid polarization beamsplitter with compensator

Inventor: SILVERSTEIN BARRY D (US); MI XIANG-

Applicant: EASTMAN KODAK CO (US)

DONG (US); (+2)

FC:

IPC: G03B21/14

Publication info: US2003227597 - 2003-12-11

CLOCK GRID SKEW REDUCTION TECHNIQUE USING BIASABLE DELAY DRIVERS

Inventor: YEE GIN; OOI LYNN; (+1)

Applicant: SUN MICROSYSTEMS INC (US)

IPC: H03K19/003; H03K5/15; (+1)

EC: G06F1/10

Publication info: W003073618 - 2003-09-04

Clock grid skew reduction using a wire tree architecture

Inventor: THORP TYLER (US); YEE GIN (US); (+2)

Applicant:

EC: G06F1/10

IPC: G06F17/50

Publication info: US2003101423 - 2003-05-29

Tool for extracting and manipulating components of warping transforms

Inventor: GEORGIEV TODOR G (US)

Applicant:

EC:

IPC: G09G5/00

Publication info: US2003098872 - 2003-05-29

Unified database system to store, combine, and manipulate clock related data for grid-based clock distribution design

Inventor: HARITSA MANJUNATH D (US); SCHMITT RALFApplicant:

(US)

EC:

IPC: G06F9/45; G06F17/50

Publication info: US2003074643 - 2003-04-17