Novel Adaptive filtering Algorithms for Bilinear Sparse systems

Battu Sri Charan

Supervisor: Prof. Mrityunjoy Chakraborty

May 3, 2021

IIT Kharagpur sricharanbattu@gmail.com

Adaptive Signal Processing

- Filter coefficients are unknown
- Filter coefficients need to be estimated
- Input data and the output is available
- Improvises the estimates from the error of the previous estimate

Euente: Autores

Algorithms for Linear Filters

- Follows Steep Gradient descent for estimation
- Minimizes a loss function
 \(\mathcal{L}\) (usually expectation of
 squared error + some
 additional term based on
 more information about the
 system)

$$\triangleright \underline{\mathbf{w}}(i+1) = \underline{\mathbf{w}}(i) - \mu.\frac{\partial \mathcal{L}}{\partial \underline{\mathbf{w}}}$$

Some rules about the Performance of Algorithm

- \triangleright Higher the value of μ , more is misalignment, but faster is the convergence.
- ightharpoonup Higher the number of coefficients, more time does it take to converge and more is the misalignment for same μ
- ightharpoonup We have two main types of algorithms : LMS and NLMS

LMS and NLMS

LMS

$$\underline{\mathbf{w}}(i+1) = \underline{\mathbf{w}}(i) + \mu.\underline{\mathbf{x}}(i).e(i)$$

NLMS

$$\underline{\mathbf{w}}(i+1) = \underline{\mathbf{w}}(i+1) + \mu \underline{\underline{\mathbf{x}}^{(i).e(i)}}_{\underline{\mathbf{x}}^{T}(i).\underline{\mathbf{x}}(i)}$$

LMS and NLMS

LMS

$$\underline{\mathbf{w}}(i+1) = \underline{\mathbf{w}}(i) + \mu.\underline{\mathbf{x}}(i).e(i)$$

NLMS

$$\underline{\mathbf{w}}(i+1) = \underline{\mathbf{w}}(i+1) + \mu \underline{\underline{\mathbf{x}}^{(i).e(i)}}_{\underline{\mathbf{x}}^{T}(i).\underline{\mathbf{x}}(i)}$$

Sparse Algorithms

► LMS

- ZA-LMS
- RZA-LMS

> NLMS

- PNLMS
- IPNLMS

Zero Attractor Class

Zero Attractor Class

> ZA-LMS

- Minimizes Mean Squared Error + L₁ norm of the filter
- $\mathcal{L} = \frac{1}{2}e^2 + \gamma ||\underline{\mathbf{w}}||_1$
- $\underline{\mathbf{w}}(i+1) = \underline{\mathbf{w}}(i) + \mu \underline{\mathbf{x}}(i)e(i) \rho.sgn(\underline{\mathbf{w}}(i))$ where $\rho = \gamma.\mu$
- It tend to shrink the coefficients, but the active taps are also effected

Zero Attractor Class

> ZA-LMS

- Minimizes Mean Squared Error + L₁ norm of the filter
- $\mathcal{L} = \frac{1}{2}e^2 + \gamma ||\underline{\mathbf{w}}||_1$
- $\underline{\mathbf{w}}(i+1) = \underline{\mathbf{w}}(i) + \mu \underline{\mathbf{x}}(i)e(i) \rho.sgn(\underline{\mathbf{w}}(i))$ where $\rho = \gamma.\mu$
- It tend to shrink the coefficients, but the active taps are also effected

> RZA-LMS

- To shield the active taps from the influence of zero attraction,
 Re-weighted ZA-LMS is proposed.
- $\mathcal{L} = \frac{1}{2}e^2 + \gamma' \sum_{i=1}^n \ln(1 + \frac{|w_i|}{\epsilon'})$
- $\underline{\mathbf{w}}(i+1) = \underline{\mathbf{w}}(i) + \mu.\underline{\mathbf{x}}(i)\mathbf{e}(i) \rho.\frac{\operatorname{sgn}(\underline{\mathbf{W}}(i))}{1+\epsilon.|\underline{\mathbf{w}}(i)|}$, where $\rho = \mu.\gamma'/\epsilon', \epsilon = 1/\epsilon'$

Proportionate Class

Step size for each coefficient varies based on its magnitude.
 coefficients with large magnitudes get larger step sizes.

• Sparse : 5 of 64

• Sparse : 5 of 64

• Sparse : 5 of 64

• Sparse : 5 of 64

• Sparse : 5 of 64

• Semisparse: 32 of 64

• Sparse : 5 of 64

• Semisparse: 32 of 64

• Sparse : 5 of 64

• Semi sparse : 32 of 64

Bilinear Systems

▷ Bilinear systems are modelled by this equation.

$$d(i) = \underline{h}^{T}X(i)g + s(i) = y(i) + s(i)$$

where

- $[X(i)]_{L\times M} = [\underline{x}_1(i),\underline{x}_2(i),...,\underline{x}_M(i)]$
- $\underline{\mathbf{x}}_{m}(i) = [x_{m}(i), x_{m}(i-1), ..., x_{m}(i-L+1)] \quad \forall 1 \leq m \leq M$

$$> \textit{vec}[X(i)] = [\ \underline{\mathbf{x}}_1^T(i), \underline{\mathbf{x}}_2^T(i), ..., \underline{\mathbf{x}}_m^T(i)\]^T = \widetilde{\underline{\mathbf{x}}}(i)$$

- It can be derived that $y(i) = \underline{f}^T \underline{\widetilde{x}}(i)$, where $\underline{f} = \underline{g} \otimes \underline{h}$
- ightharpoonup There could be a scaling ambiguity in identifying $\underline{\mathbf{h}}$ and \mathbf{g} as $\frac{1}{\eta}\underline{\mathbf{f}}$ and $\eta\mathbf{g}$ also gives same output

Bilinear Systems and Notations for Adaptive algorithms

- We typically have two adaptive equations, one for <u>h</u> and other for g.
- While updating the equation for one filter, Mathematical results are interpreted as if the other filter is constant
- We define the following terms for repeated usage in Adaptive algorithms for bilinear systems.

$$e_{\hat{\mathbf{g}}}(i+1) = d(i+1) - \underline{\hat{\mathbf{h}}}^{T}(i)\underline{\widetilde{\mathbf{x}}}_{\hat{\mathbf{g}}}(i+1)$$

$$e_{\hat{\mathbf{h}}}(i+1) = d(i+1) - \hat{\mathbf{g}}^{T}(i)\underline{\widetilde{\mathbf{x}}}_{\hat{\mathbf{h}}}(i+1)$$

where

$$\widetilde{\mathbf{x}}_{\widehat{\mathbf{g}}}(i+1) = [\widehat{\mathbf{g}}(i) \otimes I_L]^T \widetilde{\mathbf{x}}(i+1)
\widetilde{\mathbf{x}}_{\widehat{\mathbf{h}}}(i+1) = [I_M \otimes \underline{\widehat{\mathbf{h}}}(i)]^T \widetilde{\mathbf{x}}(i+1)$$

Some Assumptions and Rules

Some Assumptions and Rules

> Assumptions :

- \bullet The temporal part \underline{h} of filter is longer than the spatial part \underline{g}
- The temporal part is usually sparse and the spatial part is dense

Some Assumptions and Rules

> Assumptions :

- ullet The temporal part \underline{h} of filter is longer than the spatial part \underline{g}
- The temporal part is usually sparse and the spatial part is dense

> Rules:

- The performance rules specified for linear systems apply for bilinear systems also
- Algorithms for both filters either converge together or diverge together
- If an algorithm performs well for one filter, it also performs well for the other filter
- Bilinear systems can also be modelled as linear systems with <u>f</u>
 as filter but it takes too long to converge. Hence, bilinear
 algorithms are favoured.

Bilinear Algorithms

LMS-BF

$$\begin{split} &\hat{\underline{\mathbf{h}}}(i+1) = \hat{\underline{\mathbf{h}}}(i) + \mu_{\hat{\underline{\mathbf{h}}}} \widetilde{\underline{\mathbf{x}}} \hat{\underline{\mathbf{g}}}(i+1).e_{\hat{\underline{\mathbf{g}}}}(i+1) \\ &\hat{\mathbf{g}}(i+1) = \hat{\mathbf{g}}(i) + \mu_{\hat{\underline{\mathbf{g}}}} \widetilde{\underline{\mathbf{x}}} \hat{\underline{\mathbf{h}}}(i+1).e_{\hat{\underline{\mathbf{h}}}}(i+1) \end{split}$$

- The other Algorithms also follow similarly.
- Sparsity is usually present in \underline{h} . Hence, the sparse versions of algorithms are applied to first updation step of \underline{h}
- The Algorithms studied for Bilinear filters are: LMS, NLMS, PNLMS and IPNLMS.

Hard Thresholding For Linear Filters

- One of the Novel methods used is Hard Thresholding
- After the LMS step in each iteration, Take only those values whose magnitudes exceed a certain specified threshold and make others 0.

Hard Thresholding For Linear Filters

- One of the Novel methods used is Hard Thresholding
- After the LMS step in each iteration, Take only those values whose magnitudes exceed a certain specified threshold and make others 0.

> Issues of the Algorithm:

- If the threshold is too large, the Algorithm may not even begin
- If the threshold is too low, No difference between LMS and thresholding
- The threshold is dfficult to specify as we don't know the nature of the coefficients.

Adaptive Hard Thesholding: Mean

- Make Threshold Adaptive
- A natural adaptive threshold : Mean of the magnitudes of current coefficients
- Works better than Hard Thresholding

Adaptive Hard Thesholding: Mean

- Make Threshold Adaptive
- A natural adaptive threshold : Mean of the magnitudes of current coefficients
- Works better than Hard Thresholding
- ▷ Issues of Mean Threshold :
 - A large variation in magnitudes of the active coefficients suppress some crucial coefficients
 - Only works for very sparse filters even if the variation is less

Adaptive Hard Thresholding: Weighted Mean

- Instead of Mean, take Weighted Means.
- A natural weighted mean is exponential weighted mean
- Give higher weights for lower coefficients
- Performs much better than Mean threshold

Adaptive Hard Thresholding: Weighted Mean

- Instead of Mean, take Weighted Means.
- A natural weighted mean is exponential weighted mean
- Give higher weights for lower coefficients
- Performs much better than Mean threshold
- > Issues with weighted mean:
 - Higher weights perform similar to Mean threshold
 - Lower weights perform similar to LMS
 - More number of active coefficients need lower weights
 - Less number of active coefficients perform better with higher weights.
 - We need more information on degree of sparsity for choosing weights

3/32 active taps

3/32 active taps

6/32 active taps

3/32 active taps

12/32 active taps

6/32 active taps

Iterative Hard thresholding(IHT)

- Inspired from IHT in compressed sensing
- When information on degree of sparsity is available, IHT is better than weighted mean threshold
- Only a specified number(say k) coefficients are retained(those with k largest magnitudes) and others are set to 0
- k should be at least the number of active taps
- Performance much better than LMS always when k is at least the number of active taps and performs worse than LMS in other cases
- It is highly reliable, given the extra information is available

Performance of IHT

Performance of IHT

8/32 active

Performance of IHT

Performance of IHT

16/32 active

24/32 active

Performance of IHT

Thresholding for Bilinear Systems

- Thresholding Algorithms are applied for the temporal filter in Bilinear case
- The Performance behaviour and the issues observed are similar to those in linear filters
- Convergence Analysis for Bilinear systems is a little more complex than for linear filters.

IHT for Bilinear Filters

Variation of misalignment with

IHT-BF with LMS and NLMS

Issues with Zero Attractor for Bilinear Systems

- The Zero attractor algorithm is very much sensitive the zero attractor parameter
- Sometimes, if the parameter is large, Divergence results followed by a periodic convergence. This is an interesting phenomena, which needs to be examined
- The misalignment decreases and then increases and then decreases and so on
- If the value is taken low, the above problem can be eliminated
- But too low values again result in normal LMS algorithm
- Hence the parameter must be chosen carefully. ZA-LMS in itself is very dangerous for Bilinear filters

Proportionate + Zero Attractor?

- The problem with ZA-LMS is that only zero taps converge faster because of shrinkage
- The problem with PNLMS is that only active taps converge faster
- In a sense, they are complementary to each other

Proportionate + Zero Attractor?

- The problem with ZA-LMS is that only zero taps converge faster because of shrinkage
- The problem with PNLMS is that only active taps converge faster
- In a sense, they are complementary to each other

Why not combine them both to get a faster convergence?

Combination of PNLMS and ZA-LMS

The combined algorithm of PNLMS and ZA-LMS for Bilinear filters is as follows :

$$\begin{split} &\hat{\underline{\mathbf{h}}}(i+1) = \hat{\underline{\mathbf{h}}}(i) + \frac{\mu_{\hat{\mathbf{h}}}.\mathcal{G}(i).\widetilde{\underline{\mathbf{X}}}\hat{\mathbf{g}}(i+1).e_{\hat{\mathbf{g}}}(i+1)}{\widetilde{\underline{\mathbf{X}}}\hat{\mathbf{g}}^T(i+1).\mathcal{G}(i).\widetilde{\underline{\mathbf{X}}}\hat{\mathbf{g}}(i+1)+\delta_{\hat{\mathbf{h}}PNLMS}} - \beta.sgn\{\hat{\underline{\mathbf{h}}}(i)\} \\ &\hat{\mathbf{g}}(i+1) = \hat{\mathbf{g}}(i) + \frac{\mu_{\hat{\mathbf{g}}}.\widetilde{\underline{\mathbf{X}}}\hat{\underline{\mathbf{h}}}^{(i+1).e_{\hat{\mathbf{h}}}(i+1)}}{\widetilde{\underline{\mathbf{X}}}\hat{\underline{\mathbf{h}}}^T(i+1)\widetilde{\underline{\mathbf{X}}}\hat{\underline{\mathbf{h}}}^{(i+1)+\delta}\hat{\mathbf{g}}_{PNLMS}} \end{split}$$

Improvement of Misalignment of Combined Algorithm

Improvement of Misalignment of Combined Algorithm

- ullet The misalignment of the combined Algorithm can be improved by increasing the ho parameter in PNLMS algorithm.
- ullet When stable state is reached, the active taps need not have higher step sizes any longer. To restrict the step size at this stage, ho is useful

Improvement of Misalignment of Combined Algorithm

- ullet The misalignment of the combined Algorithm can be improved by increasing the ho parameter in PNLMS algorithm.
- When stable state is reached, the active taps need not have higher step sizes any longer. To restrict the step size at this stage, ρ is useful

Thanks for your time