Machine learning:des réseaux de neurones aux big data [INFO-Y112]

Rapport

Project 1: Overfitting, Underfitting and Metaparameters

Auteur:

Siéwé Kouéta Anicet: 00364245

Professeur:

Benoît Frénay

UNIVERSITÉ LIBRE DE BRUXELLES

1 Goal of the Project

L'abre de decision qui a été gerenerer et utiliser pour réponde au **task 2** se trouve dans le repertoire doc/figure_PNG/task_2_Graphe_tree_(max_features).png)

2 Training and Test Datasets

les jeux de données utiliser se trouvent dans Data/Adult_test.csv et Data/Adult_train.csv

3 Training Decision Trees

$3.1 \quad \text{task } 1$

Figure 1: Abre de decision de profondeur 3

Au niveau des feuilles, on constate que les valeurs de **l'entropie** sont relativement partagées. Quand cette dernière prend une valeur nulle (entropy=0.0), nous sommes en presence de classes pures. Ce qui suppose que nous avons une bonne classification. Quand par contre **l'entropie** est élévée, on remarque qu'il y'a encore de l'incertitude (des zones d'ombre) dans les classes. Par conséquent, on peut clairement enduire que la profondeur de l'arbre n'est pas assez large car certaine feuilles (avec une forte entropie) nécessitent encore un traitement supplémentaire.

Nous sommes clairement en *underfitting* car notre modele a une profondeur relativement faible par rapport au nombre de données a disposition.

l'erreur de d'entrainement obtenue est = 0.163 (soit une precision de 0.836) l'erreur de de teste(generalisation) obtenue est = 0.162 (soit une precision de 0.837)

sur la courbe de la figure 2 ,Après avoir utilisé toutes nos données , le modèle utilise à peu près la même chose sur les données de teste que sur les données d'entrainement. l'erreur est élevée pour le testet bas pour l'entrainement, mais les courbes s'aplatissent très rapidement, ce qui signifie que l'ajout de plus en plus de donnée ne change rien.

3.2 task 2 2

Figure 2: courbes d'apprentissage

3.2 task 2

Le metaparametre choisi pour cette partie a été le <code>max_features</code> (qui limite le nombre max de features a utiliser). Dans l'arbre générer avec ce metaparametre (voir doc/figure_PNG/task_2_Graphe_tree_(max_features) on constate qu'indépendamment des valeurs attribuée a <code>max_features</code>, on se retrouvait toujours avec des classes pures au niveau des feuilles (entropie nulle| taux de precision systématiquement égal=1| erreur d'entrainement toujours nulle). Nous sommes donc en overfitting.

Notre 1er abre de decision (voir figure 1), bien qu'imparfait, était néanmoins accessible (moins complexe). Tandis que celui de la figure doc/figure_PNG/task_2_Graphe_tree_(max_features).png est très peu accessible, trop profond et difficile à comprendre (plus complexe).

Figure 3: courbes pour max features=7

Le nouvel écart entre les deux courbes pour le cas du metaparametre $max_features$ suggère une augmentation de la variance. Le grand écart et la faible erreur d'entraînement (Train_Error=0.0) indiquent également un problème d'overfitting.

4 Comparing Models of Increasing Complexity

task 3

Figure 4: Evolution des Courbes precision pour max_depth=[1;100]

dans la premier portion(portion encercler en vert) de la figure 4 nous sommes en underfitting car nous avons un modele peut complexe (du à sa faible profondeur=[1, 4]) pour une quantité de donnée considérable. On a donc un taux de precision assez bas (soit pour l'entrainement que pour le teste).

la partir ZOUMER sur la figure 4 nous montre notre meilleurs modele car le taux de precision sur les données de test est a son pique le plus élevé, par consequent l'erreur de teste est a son niveau le plus bas.

Apres ce pique, nous entrons progressivement en *overfitting* car avec la profondeur qui s'accroit, le modéle tends a complexifier et surprendre des données. plus la profondeur de l'abre augmente, plus la précision sur les données d'entrainemet augmente jusqu'a provoquer un *overfitting*.

les resultas obtenuent respectes parfaitement le principe de la théorie vue en cour. cela montre ainsi que plus la complexiter du modéle augmente (Croissance de la Profondeur max_depth), plus il a tentance a overfitter.

4.1 task 4

comme il a été dit au 'task 2',en faisant varier la valeurs du metaparametre **max_features**, on se retrouve toujours avec un taux de precision pour les données d'entrainement égal a 1 par consequent une erreur toujours nulle.

Par contre notre taux de precision pour les données de test est toujours reste relativement bas [0.78 ; 0.81].

pour toutes les valeurs attribuée a notre metaparametre ($\max_{}$ features) Nous sommes en *over-fitting*.

Figure 5: Evolution des Courbes precision pour max feature=[40;100]

5 Choose your Model

5.1 task 5

consernant l'analyse des courbes au 'task 3' (voir figure 4) on constate qu'a partir d'une profondeur de l'abre compris entre [6, 7] le model obtient de meilleur performence (*précision*). La meilleur profondeur de l'abre est 5, car elle est celle qui correspond a la meilleur précision.

consernant l'analyse des courbes au 'task 4' (voir figure 5), il est asser dificile d'identier à vue d'oeil une meilleur valeur pour le metaparametre **max_features**, car qu'importe la valeur qu'on donnera a ce dernier, nous seront toujour en **overfit**. Néanmoins , si devait absoluman avoir une valeur, elle serais de max_features=93, car elle correspond a la precision max lors du test (testing).

		+	Training	 	Testing	+
+		_		 		+
+ - +	Profondeur		39		5	ļ
	precision du Model		1.0	 	0.8422525358516963	

MEILLEUR PROFONDEUR DE L'ABRE:

Figure 6: resulta de Algo pour la meilleur profondeur de l'abre