MATH 633 MIDTERM

HIDENORI SHINOHARA

1. Goursat, Cauchy on the disc, and the proofs in Section 5 of Chapter 3.

Proposition 1.1 (Goursat's Theorem). If Ω is an open set in \mathbb{C} , and $T \subset \Omega$ is a triangle whose interior is also contained in Ω , then

$$\int_T f(z)dz = 0$$

whenever f is holomorphic in Ω .

Proof.

- Let $T^0 = T$. Having created T^i , create 4 triangles from T^i as shown in the textbook with the natural orientation. Then one of the 4 triangles, denoted by T^{i+1} , must satisfy $\left| \int_{T^i} f(z) dz \right| \leq 4 \left| \int_{T^{i+1}} f(z) dz \right|$. Since $\{T_i\}$ is a sequence of nonempty compact sets whose diameter diminishes, there must exist a unique point z_0 that belongs to all T^i .
- Since f is holomorphic at z_0 , $f(z) = f(z_0) + f'(z_0)(z z_0) + \psi(z)(z z_0)$ where $\psi(z) \to 0$ as $z \to z_0$.
- Since $f(z_0) + f'(z_0)(z z_0)$ has a primitive, $\int_{T^n} f(z)dz = \int_{T^n} \psi(z)(z z_0)dz$ for any n. $\left| \int_{T^n} \psi(z)(z z_0)dz \right| \le \epsilon_n dp/4^n$ where $\epsilon_n = \sup_{z \in T^n} |\psi(z)|$, d the diameter of T, and p the perimeter of T. $\epsilon_n \to 0$ as $n \to \infty$, so $\left| \int_T f(z)dz \right| \le \epsilon_n dp = 0$ as $n \to 0$.

Proposition 1.2 (Cauchy's Theorem for a Disk). Suppose f is holomorphic in an open set containing the circle C and its interior. Then

$$\int_C f(z)dz = 0.$$

Proof. Since f has a primitive, the integral over a closed curve is 0.

Do I need more than this?

Proposition 1.3 (Theorem 5.1). If f is holomorphic in Ω , then

$$\int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz$$

whenever the two curves γ_0 and γ_1 are homotopic in Ω .

Proof.

• Let $F:(s,t)\mapsto \gamma_s(t)$ be a homotopy between γ_0 and γ_1 . Let $\epsilon>0$ be chosen such that $B(F(s,t),3\epsilon)\subset\Omega$ for all s,t. Such an ϵ must exist because $F([0,1]^2)$ is compact.

- Choose $\delta > 0$ such that $\sup_{t \in [0,1]} |\gamma_{s_1}(t) \gamma_{s_2}(t)| < \epsilon$ whenever $|s_1 s_2| < \delta$. Such a δ must exist because F is uniformly continuous.
- Pick $|s_1 s_2| < \delta$. Choose discs D_0, \dots, D_n of radius 2ϵ and points $\{z_0, \dots, z_{n+1}\}$, $\{w_0, \dots, w_{n+1}\}$ on $\gamma_{s_1}, \gamma_{s_2}$, respectively such that $z_i, z_{i+1}, w_i, w_{i+1} \in D_i$. Let F_i denote the primitive of f on D_i . Then $F_{i+1}(z_{i+1}) F_i(w_{i+1}) = F_{i+1}(z_{i+1}) F_i(w_{i+1})$.

 $\int_{\gamma_{s_1}} f - \int_{\gamma_{s_2}} f = \sum_{i=0}^n [F_i(z_{i+1}) - F_i(z_i)] - \sum_{i=0}^n [F_i(w_{i+1}) - F_i(w_i)]$ $= \sum_{i=0}^n [F_i(z_{i+1}) - F_i(z_i) - F_i(w_{i+1}) + F_i(w_i)]$ $= F_n(z_{n+1}) - F_n(w_{n+1}) - (F_0(z_0) - F_0(w_0))$ = 0.

Proposition 1.4 (Theorem 5.2). Any holomorphic function in a simply connected domain has a primitive.

Proof.

• Fix a point z_0 in Ω and define $F(z) = \int_{\gamma} f(w)dw$ where γ is a path from z_0 to z. Then $F(z+h) - F(z) = \int_{\eta} f(w)dw$ where η is the path from z to z+h.

• Since f is continuous at z, $f(w) = f(z) + \psi(w)$ where $\psi(w) \to 0$ as $w \to z$. Therefore, $F(z+h) - F(z) = f(z) \int_{\eta} dw + \int_{\eta} \psi(w) dw = f(z)h + \int_{\eta} \psi(w) dw$. Since $\left| (\int_{\eta} \psi(w) dw)/h \right| \le \sup_{w \in \eta} |\psi(w)| = 0$ as $h \to 0$. Thus $\lim_{h \to 0} (F(z+h) - F(z))/h = f(z)$.

2. Liovilles Theorem and the fundamental theorem of algebra

Proposition 2.1 (Corollary 4.5(Liouville's Theorem)). If f is entire and bounded, then f is constant.

Proof. It suffices to prove that f' = 0 since \mathcal{C} is connected $\forall z_0 \in \mathbb{C}, \forall R > 0, |f'(z_0)| \leq B/R$ by the Cauchy inequalities where B is a bound for f. Let $R \to \infty$.