UNIVERSIDAD MARIANO GALVEZ DE GUATEMALA

FACULTAD DE INGENIERIA EN SISTEMAS DE INFORMACIÓN

CENTRO UNIVERSITARIO DE ZACAPA

SEGURIDAD Y AUDITORÍA DE SISTEMAS

ING. MA. JOSÉ VINICIO PEÑA ROMÁN

Julio Cesar Aguilar Sobalvarro 1190-03-14929 Christopher Imanol Sandoval Urrutia 1190-21-14806 Zacapa, Agosto de 20225

INDICE

Plan de Continuidad de Negocio (BCP) para TechnoBank S.A	6
Resumen ejecutivo	6
Perfil de TechnoBank S.A.:	6
1. ANÁLISIS DE IMPACTO EN EL NEGOCIO (BIA) - 25%	6
1.1. Metodología del BIA	6
1.2. Identificación de procesos críticos de negocio	7
1.2.1. Procesos de nivel crítico	7
1.2.2. Procesos de nivel alto	7
1.3. Clasificación por niveles de criticidad	7
1.4. Análisis de dependecias tecnológicas y operativas	8
1.4.1. Dependencias tecnológicas críticas	8
1.4.2. Dependencias operativas	8
1.5. Cálculo de pérdidas potenciales	9
1.5.1. Pérdidas financieras directas	9
1.5.2. Impacto reputacional y regulatorio	9
1.6. Determinación de RTO y RPO	10
1.6.1. Matriz de RTO/RPO por proceso	10
1.7. Matriz de criticidad – entregable	11
2. ANÁLISIS DE AMENAZAS Y VULNERABILIDADES - 20%	12
2.1. Metodología de evaluación de riesgos	12
2.2. Inventario de activos críticos	12
2.2.1. Activos de hardware e infraestructura	12
2.2.2. Activos de software y aplicaciones	12
2.2.3. Activos de datos e información	13

	2.3.	Identificación de amenazas	13
	2.3.1	. Amenazas naturales	13
	2.3.2	. Amenazas tecnológicas	13
	2.3.3	. Amenazas humanas	14
	2.4.	Evaluación de vulnerabilidades por activo	14
	2.4.1	. Vulnerabilidades de infraestructura	14
	2.4.2	Vulnerabilidades de aplicaciones	15
	2.5.	Matriz de riesgo (probabilidad × impacto)	15
	2.5.1	. Escala de evaluación	15
	2.6.	Priorización de riesgos críticos	16
	2.7.	Registro de riesgos – entregable	17
3	. EST	RATEGIAS DE CONTINUIDAD - 25%	18
	3.1.	Marco estratégico de continuidad	18
	3.2.	Estrategias de prevención por proceso crítico	18
	3.2.1	. Banca móvil - estrategias de prevención	18
	3.2.2	2. Transferencias - estrategias de prevención	18
	3.2.3	. Préstamos online - estrategias de prevención	19
	3.3.	Procedimientos de respuesta inmediata	19
	3.3.1	. Estructura de respuesta	19
	3.3.2	Secuencias de respuesta por tipo de incidente	19
	3.4.	Planes de recuperación y sitios alternos	21
	3.4.1	. Configuración de sitios de recuperación	21
	3.4.2	Personal de respaldo y trabajo remoto	21
	3.5.	Comunicaciones de crisis	22
	3.5.1	. Estrategia de comunicación por audiencia	22

3.5.2. Gestión de medios y redes sociales	22
3.6. Proveedores y recursos externos	23
3.6.1. Clasificación de proveedores críticos	23
3.6.2. Acuerdos de Mutual Aid	23
3.7. Manual de procedimientos operativos – entregable	24
4. PLAN DE RECUPERACIÓN DE DESASTRES (DRP) - 20%	25
4.1. Arquitectura de respaldo	25
4.1.1. Diseño de infraestructura de recuperación	25
4.1.2. Estrategia de backup y restore	25
4.2. Procedimientos de Failover/Failback	26
4.2.1. Failover automático	26
4.2.2. Failover manual	27
4.3. Configuración de sitios de recuperación	27
4.3.1. Especificaciones técnicas por sitio	27
4.4. Secuencia de restauración de servicios	28
4.4.1. Priorización de servicios para recuperación	28
4.5. Scripts y comandos automatizados	29
4.5.1. Script de validación Post-Failover	29
4.5.2. Script de sincronización Pre-Failback	33
4.6. Runbooks técnicos detallados – entregable	35
5. PROGRAMA DE PRUEBAS Y MANTENIMIENTO - 10%	36
5.1. Marco de pruebas de continuidad	36
5.2. Cronograma de pruebas	36
5.2.1. Pruebas desktop (Tabletop exercises)	36
5.2.2. Simulacros parciales	37

5.2.3.	Ejercicio anual completo	38
5.3. N	létricas de efectividad	38
5.3.1.	KPIs de desempeño de pruebas	38
5.3.2.	Benchmarks y objetivos	39
5.4. P	roceso de actualización del plan	39
5.4.1.	Ciclo de revisión continua	39
5.4.2.	Gestión de cambios en BCP	40
5.5. P	rograma de capacitación del personal	40
5.5.1.	Capacitación por niveles	40
5.5.2.	Certificaciones profesionales	41
5.6. R	evisiones periódicas	41
5.6.1.	Calendario de revisiones.	41
5.7. C	alendario de actividades con responsables – entregable	43

Plan de Continuidad de Negocio (BCP) para TechnoBank S.A.

Resumen ejecutivo

TechnoBank S.A. es un banco digital de nueva generación que atiende a 500,000 clientes a través de servicios exclusivamente digitales: banca móvil, transferencias electrónicas y préstamos online. La organización opera con una infraestructura distribuida en tres centros de datos con aplicaciones cloud híbridas y un modelo de trabajo donde el 60% de sus 1,200 empleados trabajan de forma remota.

Este Plan de Continuidad de Negocio (BCP) establece las estrategias, procedimientos y recursos necesarios para mantener las operaciones críticas durante interrupciones, asegurando el cumplimiento de los objetivos RTO (Recovery Time Objective) y RPO (Recovery Point Objective) definidos para cada proceso crítico. El plan se fundamenta en los estándares ISO 22301:2019, NIST SP 800-34, COBIT 2019 e ITIL v4.

Perfil de TechnoBank S.A.:

- Base de clientes: 500,000 usuarios activos
- Servicios principales: Aplicación bancaria móvil, sistema de transferencias P2P/empresariales, motor de préstamos automatizado
- **Infraestructura:** 3 centros de datos (configuración activo-activo-pasivo), arquitectura cloud híbrida
- **Recursos humanos:** 1,200 empleados (720 remotos, 480 presenciales)
- Volumen operativo: 2.5 millones de transacciones diarias promedio

1. ANÁLISIS DE IMPACTO EN EL NEGOCIO (BIA) - 25%

1.1.Metodología del BIA

El Análisis de Impacto en el Negocio se realizó siguiendo la metodología establecida en ISO 22301:2019, empleando técnicas cuantitativas y cualitativas para determinar los efectos de interrupciones en los procesos críticos de TechnoBank. La metodología incluyó entrevistas con stakeholders clave, análisis de datos históricos de transacciones, evaluación de dependencias tecnológicas y modelado financiero de pérdidas potenciales.

1.2. Identificación de procesos críticos de negocio

1.2.1. Procesos de nivel crítico

Plataforma de Banca Móvil La aplicación móvil constituye el canal principal de interacción con los clientes, representando el 85% de todas las transacciones. Incluye funcionalidades de consulta de saldos, transferencias, pagos de servicios y gestión de productos. La interrupción de este servicio genera impacto inmediato en la experiencia del cliente y pérdida de ingresos por comisiones.

Sistema de Transferencias y Pagos Motor de procesamiento que maneja transferencias interbancarias, pagos P2P y empresariales. Conecta con las cámaras de compensación nacional e internacional. Su criticidad radica en ser el diferenciador competitivo principal de TechnoBank, con promesa de transferencias instantáneas 24/7.

1.2.2. Procesos de nivel alto

Motor de Aprobación de Préstamos Sistema automatizado de evaluación crediticia que utiliza machine learning y conexiones con burós de crédito. Genera el 40% de los ingresos por intereses de la entidad. Su interrupción afecta la originación de nuevos préstamos pero no compromete los ya desembolsados.

Plataforma de Atención al Cliente Centro de contacto omnicanal que integra chat en vivo, llamadas telefónicas y tickets de soporte. Crítico durante incidentes para mantener comunicación con clientes y gestionar expectativas.

1.3. Clasificación por niveles de criticidad

Proceso	Criticidad	Justificación	%Ingresos Afectados		
Banca Móvil	Crítico	Canal principal, 85%	70%		
		transacciones			
Transferencias	Crítico	Diferenciador competitivo,	25%		
		disponibilidad 24/7			
Préstamos Online	Alto	Fuente primaria ingresos	40%		
		por intereses			

Atención Cliente	Alto	Crítico durante crisis, N/A				
		imagen corporativa				
Reportería	Medio	Cumplimiento normativo, N/A				
Regulatoria		no tiempo real				
Operaciones	Bajo	Soporte administrativo, N/A				
Internas		tolerancia alta				

1.4. Análisis de dependecias tecnológicas y operativas

1.4.1. Dependencias tecnológicas críticas

Infraestructura de red y conectividad

- Enlaces de fibra óptica redundantes entre centros de datos
- Conectividad a Internet a través de múltiples ISPs
- Red privada virtual (VPN) para empleados remotos
- Punto de falla: Saturación de ancho de banda durante ataques DDoS

Bases de datos transaccionales

- Cluster PostgreSQL en configuración maestro-esclavo
- Replicación síncrona entre DC principal y secundario
- Cache Redis para sesiones de usuario y consultas frecuentes
- Punto de falla: Corrupción de índices o falla de sincronización

Servicios cloud híbridos

- AWS para servicios de analytics y machine learning
- Microsoft Azure para backup y disaster recovery
- CDN global para distribución de contenido estático
- Punto de falla: Interrupción masiva de proveedores cloud

1.4.2. Dependencias operativas

Personal clave

• 5 arquitectos de sistemas con conocimiento profundo de infraestructura crítica

- 3 especialistas en seguridad certificados para respuesta a incidentes
- 8 ingenieros DevOps con acceso a sistemas de producción
- Riesgo: Concentración de conocimiento crítico en pocas personas

Proveedores críticos

- Proveedor principal de conectividad de datos
- Vendor de soluciones de seguridad y monitoreo
- Proveedor de servicios de backup y disaster recovery
- Riesgo: Dependencia de terceros para servicios esenciales

1.5. Cálculo de pérdidas potenciales

1.5.1. Pérdidas financieras directas

Pérdida de ingresos por comisiones

- Transacciones perdidas durante interrupción: \$35,000/hora
- Comisiones por servicios no prestados: \$20,000/hora
- Total pérdidas operacionales: \$55,000/hora

Costos de recuperación

- Personal especializado en sobretiempo: \$8,000/hora
- Servicios de terceros para recuperación: \$12,000/hora
- Infraestructura temporal adicional: \$5,000/hora
- Total costos de recuperación: \$25,000/hora

Pérdidas totales directas: \$80,000/hora de interrupción

1.5.2. Impacto reputacional y regulatorio

Impacto reputacional Según análisis de casos similares en la industria (TSB Bank 2018, Deutsche Bank 2019), interrupciones prolongadas en servicios bancarios digitales generan:

- Pérdida estimada de clientes: 1.5% por cada 4 horas de inactividad
- Valor de vida promedio del cliente: \$1,500

• Pérdida potencial reputacional: \$11.25 millones por evento mayor

Impacto regulatorio

• Multas por incumplimiento de disponibilidad: \$200,000 - \$1,000,000

• Costos de auditorías adicionales: \$150,000

• Requerimientos de capital regulatorio adicional: 0.3% del patrimonio

1.6.Determinación de RTO y RPO

La determinación de RTO y RPO se basó en el análisis de impacto financiero, requerimientos regulatorios y expectativas de clientes, considerando el costo de implementar diferentes niveles de recuperación.

1.6.1. Matriz de RTO/RPO por proceso

Proceso	RTO	RPO	Justificación	Inversión Requerida
			Impacto inmediato en	
Banca Móvil	15 min	5 min	clientes, alta	Alta
			frecuencia uso	
			Compromisos SLA	
Transferencias	30 min	1 min	con cámaras	Alta
			compensación	
Préstamos Online	2 horas	15 min	Proceso batch,	Media
1 restamos Omme	2 110143	13 111111	tolerancia mayor	Wicaia
Atención Cliente	1 hora	30 min	Alternativas manuales	Media
Attention Chemic	THOTA	30 mm	disponibles	Wicaia
Reportería	8 horas	4 horas	Ventanas de reporte	Baja
Regulatoria	o noras	T Horas	establecidas	Daja
Operaciones Internas	24 horas	24 horas	Procesos no críticos	Baja
	27 HOTAS	27 HOI as	para clientes	

1.7.Matriz de criticidad – entregable

Proceso	Criticidad	RTO	RPO	Impacto_Financiero_Hora	Dependencias_Principales	Personal_Clave	Tecnologia_Critica	Justificacion_Tecnica
Banca	Crítico	15	5 min	\$35,000	API Gateway, Base Datos	Arquitecto	PostgreSQL, Redis,	85% de transacciones,
Móvil		min			Principal	Sistemas,	Load Balancer	canal principal
						DevOps Lead		clientes
Transfer	Crítico	30	1 min	\$30,000	Switch Pagos, Conectividad	Especialista	Payment Switch,	Diferenciador
encias		min			Externa	Pagos,	VPN Bancaria	competitivo,
						Arquitecto		disponibilidad 24/7
Préstam	Alto	2	15	\$15,000	Motor ML, Burós Crédito	Data Scientist,	AWS SageMaker,	40% ingresos por
os		horas	min			DevOps	API Externa	intereses, proceso
Online								automatizado
Atenció	Alto	1 hora	30	\$8,000	CRM, Telefonía IP	Supervisor Call	Genesys Cloud,	Crítico durante crisis,
n			min			Center	Microsoft Teams	imagen corporativa
Cliente								
Reporter	Medio	8	4	\$5,000	Data Warehouse, ETL	Analista	Snowflake, Pentaho	Cumplimiento
ía		horas	horas			Riesgos		normativo, ventanas
Regulat								establecidas
oria								
Operaci	Bajo	24	24	\$2,000	Office 365, ERP	Administrador	SharePoint, SAP	Soporte
ones		horas	horas			TI		administrativo,
Internas								tolerancia alta

2. ANÁLISIS DE AMENAZAS Y VULNERABILIDADES - 20%

2.1. Metodología de evaluación de riesgos

La evaluación de amenazas y vulnerabilidades se realizó utilizando la metodología FAIR (Factor Analysis of Information Risk) combinada con las directrices NIST SP 800-30. El proceso incluyó la identificación sistemática de activos críticos, catalogación de amenazas relevantes por categoría, evaluación de vulnerabilidades específicas y cálculo cuantitativo de riesgo utilizando escalas de probabilidad e impacto de 1 a 5.

2.2.Inventario de activos críticos

2.2.1. Activos de hardware e infraestructura

Centros de datos

- DC Principal (Zona Norte): 80 servidores físicos, capacidad 1,600 VMs, valoración \$12M
- DC Secundario (Zona Sur): 60 servidores físicos, capacidad 1,200 VMs, valoración \$9M
- DC Respaldo (Zona Este): 40 servidores físicos, cold standby, valoración \$6M

Equipamiento de red

- Routers core Cisco ASR9000 series (6 unidades): \$800,000
- Firewalls Palo Alto PA-5000 series (10 unidades): \$500,000
- Switches de distribución y acceso: \$300,000
- Load Balancers F5 Big-IP: \$200,000

2.2.2. Activos de software y aplicaciones

Aplicaciones críticas

- Core Banking System (desarrollo interno): \$5,000,000
- Mobile Banking App (iOS/Android): \$2,000,000
- Payment Processing Engine: \$1,500,000
- Customer Relationship Management: \$800,000

Licenciamiento de software

Oracle Database licenses: \$600,000/año

• Microsoft Enterprise licenses: \$400,000/año

• Security tools y monitoring: \$300,000/año

2.2.3. Activos de datos e información

Datos de clientes

• Información personal identificable (PII): 500,000 registros

• Datos financieros y transaccionales: histórico 5 años

• Datos biométricos y autenticación: huella dactilar, facial

• Valoración estimada: \$200,000,000 (valor de vida del cliente)

Propiedad intelectual

Algoritmos propietarios de scoring crediticio

• Código fuente de aplicaciones desarrolladas internamente

• Documentación técnica y procedimientos operativos

• Valoración estimada: \$15,000,000

2.3. Identificación de amenazas

2.3.1. Amenazas naturales

Eventos sísmicos Los tres centros de datos están ubicados en zona de actividad sísmica moderada. Eventos históricos muestran terremotos de magnitud 6.0+ cada 15-20 años. El DC principal se encuentra en zona de mayor riesgo sísmico según estudios geológicos recientes.

Inundaciones El DC secundario está ubicado en zona con riesgo de inundación por desbordamiento del río principal durante temporada de lluvias. Eventos de 2019 y 2021 causaron inundaciones menores en el área circundante.

2.3.2. Amenazas tecnológicas

Ataques de Denegación de Servicio (DDoS) TechnoBank ha experimentado 15 intentos de DDoS en los últimos 12 meses, con 3 eventos que causaron degradación de

servicios. Los ataques más significativos alcanzaron 50 Gbps de tráfico malicioso.

Ransomware v malware La industria bancaria experimenta un incremento del 300%

en ataques de ransomware según reportes de 2024. TechnoBank ha identificado 8 intentos de

infiltración de malware, todos bloqueados por las defensas actuales.

Fallas de hardware Estadísticas internas muestran una tasa de falla de hardware del

12% anual en servidores críticos. Los componentes más propensos a falla son discos duros

(35% de fallas) y fuentes de poder (28% de fallas).

2.3.3. Amenazas humanas

Errores operacionales Análisis de incidentes históricos revela que el 60% de las

interrupciones menores son causadas por errores humanos: configuraciones incorrectas,

eliminación accidental de datos, cambios no autorizados en producción.

Amenazas internas Evaluación de riesgo interno identifica 15 empleados con acceso

privilegiado a sistemas críticos. Implementación de controles de segregación de funciones

reduce pero no elimina completamente este riesgo.

Ingeniería social y phishing Campañas de concientización revelan que 12% de

empleados son susceptibles a ataques de phishing en pruebas controladas, mejorando desde

28% el año anterior.

2.4. Evaluación de vulnerabilidades por activo

2.4.1. Vulnerabilidades de infraestructura

Sistemas de red

• Configuraciones por defecto en equipos no críticos

• Falta de micro-segmentación en algunas VLANs

Dependencia de un solo proveedor de Internet en DC respaldo

Nivel de riesgo: Medio-Alto

Servidores y sistemas operativos

- Ventanas de parcheo de 30 días para sistemas no críticos
- Sistemas legacy sin soporte extendido del fabricante
- Cuentas de servicio con privilegios excesivos
- Nivel de riesgo: Medio

2.4.2. Vulnerabilidades de aplicaciones

Aplicaciones web

- Autenticación multifactor no implementada universalmente
- Validación de entrada insuficiente en algunas APIs
- Logging inconsistente entre aplicaciones
- Nivel de riesgo: Medio

Bases de datos

- Cifrado en reposo implementado pero no en todas las comunicaciones internas
- Backups con tiempo de retención variable entre sistemas
- Cuentas de administrador compartidas en sistemas no críticos
- Nivel de riesgo: Medio-Alto

2.5.Matriz de riesgo (probabilidad × impacto)

2.5.1. Escala de evaluación

Probabilidad (1-5):

- 1. Muy Baja (0-5% anual)
- 2. Baja (6-25% anual)
- 3. Media (26-50% anual)
- 4. Alta (51-75% anual)
- 5. Muy Alta (76-100% anual)

Impacto (1-5):

1. Muy Bajo (<\$50,000)

- 2. Bajo (\$50,000-\$200,000)
- 3. Medio (\$200,000-\$500,000)
- 4. Alto (\$500,000-\$1,000,000)
- 5. Muy Alto (>\$1,000,000)

2.6. Priorización de riesgos críticos

Amenaza	Probabilidad	ilidad Impacto Riesgo Prioridad		Prioridad	Estrategia de	
			Total		Mitigación	
Ataques	4	3	12	Alta	CDN, filtrado de tráfico,	
DDoS					ISPs múltiples	
Fallas	4	3	12	Alta	Redundancia N+1,	
Hardware					monitoreo proactivo	
Error	4	2	8	Media	Automatización,	
Humano					capacitación,	
					procedimientos	
Ransomware	2	5	10	Alta	EDR, segmentación,	
					backups offline	
Eventos	2	4	8	Media	Construcción	
Sísmicos					sismorresistente,	
					distribución geográfica	
Amenazas	2	4	8	Media	Controles de acceso,	
Internas					monitoreo, segregación	
Inundaciones	2	3	6	Media	Ubicación elevada,	
					sistemas de drenaje	
Ingeniería	3	2	6	Media	Capacitación, políticas	
Social					de verificación	

2.7.Registro de riesgos – entregable

ID_Riesgo	Amenaza	Activo_Afectado	Probabilidad	Impacto	Nivel_Riesgo	Mitigacion_Actual	Responsable	Estado	Fecha_Evaluacion
R001	Ataques	Infraestructura	4	3	12	CDN Cloudflare,	CISO	Activo	2025-08-29
	DDoS	Red				Rate Limiting			
R002	Ransomware	Servidores	2	5	10	Endpoint	Security	Activo	2025-08-29
		Aplicaciones				Detection, Backups	Team		
R003	Fallas	Servidores	4	3	12	Redundancia N+1	Infrastructure	Activo	2025-08-29
	Hardware	Criticos					Team		
R004	Error	Configuraciones	4	2	8	Change	Operations	Activo	2025-08-29
	Humano	Sistema				Management	Team		
R005	Eventos	Centros de Datos	2	4	8	Construccion	Facilities	Activo	2025-08-29
	Sismicos					Sismorresistente	Team		
R006	Amenazas	Datos	2	4	8	PAM, Segregacion	HR +	Activo	2025-08-29
	Internas	Confidenciales				Funciones	Security		
R007	Inundaciones	DC Secundario	2	3	6	Ubicacion Elevada	Facilities	Activo	2025-08-29
							Team		
R008	Phishing	Credenciales	3	2	6	Security Awareness	Security	Activo	2025-08-29
		Usuario					Team		

3. ESTRATEGIAS DE CONTINUIDAD - 25%

3.1. Marco estratégico de continuidad

Las estrategias de continuidad de TechnoBank se fundamentan en un enfoque de defensa en profundidad que combina prevención proactiva, detección temprana, respuesta rápida y recuperación resiliente. El marco estratégico se estructura en cuatro pilares: Prevención y Protección, Detección y Respuesta, Continuidad Operativa, y Recuperación y Mejora Continua.

3.2. Estrategias de prevención por proceso crítico

3.2.1. Banca móvil - estrategias de prevención

Redundancia de infraestructura

- Load balancers en configuración activo-activo entre DC principal y secundario
- Servidores de aplicación en clusters con capacidad N+2 para absorber fallas múltiples
- Base de datos con replicación síncrona y failover automático en menos de 60 segundos
- CDN global con 15 puntos de presencia para optimizar distribución de contenido

Monitoreo proactivo

- Implementación de APM (Application Performance Monitoring) con New Relic para detectar degradación antes de impacto al usuario
- Alertas automáticas cuando el tiempo de respuesta supera 1.5 segundos o la tasa de error excede 0.1%
- Monitoreo sintético simulando transacciones críticas cada 60 segundos

3.2.2. Transferencias - estrategias de prevención

Conectividad redundante

 Conexiones duales a cada cámara de compensación (ACH, SWIFT) a través de ISPs diferentes

- Enlaces de respaldo satelital para comunicaciones críticas con entidades financieras
- Validación automática de conectividad cada 30 segundos con failover automático

Integridad de transacciones

- Implementación de blockchain interno para audit trail inmutable de transferencias
- Validación criptográfica de cada transacción con firmas digitales HSM
- Reconciliación automática cada 5 minutos con alertas de discrepancias

3.2.3. Préstamos online - estrategias de prevención

Diversificación de proveedores

- Conexiones a 3 burós de crédito diferentes con algoritmo de consensus
- Backup de modelos de machine learning en proveedores cloud alternativos
- Cache local de datos de scoring para operación offline durante 2 horas

3.3. Procedimientos de respuesta inmediata

3.3.1. Estructura de respuesta

Centro de Comando de Incidentes (ICC) El ICC se activa automáticamente ante eventos que superen los umbrales predefinidos. La estructura incluye:

- Comandante de incidente: Autoridad para toma de decisiones operativas
- Oficial técnico: Coordinación de equipos de ingeniería y operaciones
- Oficial de comunicaciones: Gestión de comunicaciones internas y externas
- Enlace con negocio: Interface con áreas de negocio afectadas

Criterios de activación:

- Interrupción de servicios críticos por más de 15 minutos
- Degradación de performance superior al 50% por más de 30 minutos
- Compromiso confirmado de seguridad en sistemas críticos
- Eventos con impacto financiero estimado superior a \$100,000

3.3.2. Secuencias de respuesta por tipo de incidente

Respuesta a fallas técnicas

Procedimiento para ataques cibernéticos:

- 1. Contención (0-15 minutos): Aislamiento automático de sistemas comprometidos
- 2. Evaluación (15-30 minutos): Análisis de alcance y vectores de ataque
- 3. Erradicación (30-120 minutos): Eliminación de malware y cierre de vectores
- 4. Recuperación (2-8 horas): Restauración gradual de servicios validados
- 5. Lecciones Aprendidas (24-48 horas): Análisis post-incidente y mejoras

3.4. Planes de recuperación y sitios alternos

3.4.1. Configuración de sitios de recuperación

Sitio principal a secundario (Hot Site)

- RTO: 15 minutos para servicios críticos
- Capacidad: 100% de carga de producción
- Sincronización: Datos en tiempo real con lag máximo de 5 segundos
- Activación: Automática basada en health checks

Sitio secundario a respaldo (Warm Site)

- RTO: 4 horas para activación completa
- Capacidad: 60% de carga de producción inicialmente, escalable a 100% en 8 horas
- Sincronización: Snapshots cada 15 minutos, backups diarios
- Activación: Manual con autorización del comandante de incidente

3.4.2. Personal de respaldo y trabajo remoto

Estrategia de Workforce Resilience TechnoBank mantiene un modelo híbrido que proporciona resiliencia natural:

- 60% del personal ya equipado para trabajo remoto permanente
- 5 oficinas satélite distribuidas geográficamente
- Acuerdos con 8 espacios de coworking para contingencias
- Equipamiento móvil pre-configurado para equipos críticos

Roles críticos y sucesión:

- Cada posición crítica tiene 2 suplentes capacitados y certificados
- Cross-training trimestral entre equipos de diferentes turnos
- Documentación de procedimientos en formato step-by-step para reducir dependencia de personal específico

3.5. Comunicaciones de crisis

3.5.1. Estrategia de comunicación por audiencia

Comunicación con clientes

- Canales primarios: Push notifications en app móvil, SMS masivo, email
- Canales secundarios: Website banner, redes sociales, call center
- SLA de comunicación: Primera comunicación en 15 minutos, actualizaciones cada 30 minutos

Templates de mensajes críticos:

INICIAL: "TechnoBank está experimentando dificultades técnicas.

Sus fondos están seguros. Información actualizada en:

[URL]/status"

ACTUALIZACIÓN: "Continuamos trabajando en la resolución.

Estado actual: [servicios disponibles/no disponibles].

Próxima actualización: [hora]"

RESOLUCIÓN: "Servicios restaurados completamente.

Gracias por su paciencia. Detalles del incidente: [URL]"

Comunicación regulatoria

- Superintendencia financiera: Notificación en 4 horas, reportes cada 4 horas
- Banco central: Notificación inmediata para eventos que afecten pagos
- Otros reguladores: Según requerimientos específicos por jurisdicción

3.5.2. Gestión de medios y redes sociales

Estrategia de medios

- Portavoz único: CEO o persona designada
- Mensaje clave: Enfoque en seguridad de fondos, medidas proactivas, transparencia
- Monitoreo: Seguimiento de menciones cada 15 minutos durante crisis

Gestión de redes sociales

- Equipo dedicado de 3 especialistas para respuesta en redes sociales
- Tiempo objetivo de respuesta: 15 minutos para queries críticas
- Escalamiento automático para comentarios con alto potencial viral

3.6. Proveedores y recursos externos

3.6.1. Clasificación de proveedores críticos

Tier 1 - Críticos para operación

- AWS/Microsoft Azure: Servicios de cloud computing y backup
- **ISPs principales:** Conectividad de datos primaria y backup
- Proveedores de seguridad: SOC externo y herramientas de protección
- SLA requerido: Respuesta en 15 minutos, disponibilidad 99.95%

Tier 2 - Importantes para continuidad

- Oracle/PostgreSQL: Soporte de bases de datos
- Cisco/F5: Soporte de equipamiento de red
- ServiceNow: Plataforma de gestión de incidentes
- **SLA requerido:** Respuesta en 2 horas, disponibilidad 99.5%

3.6.2. Acuerdos de Mutual Aid

Acuerdos con Instituciones Financieras TechnoBank mantiene acuerdos recíprocos con dos bancos digitales similares:

- Préstamo de espacio de oficinas para hasta 150 empleados por 30 días
- Compartir expertise técnico durante emergencia

- Acceso a infraestructura de red backup en casos extremos
- Comunicación coordinada durante eventos que afecten el sector

3.7. Manual de procedimientos operativos – entregable

Proceso	Estrategia_Prevencion	Respuesta_Inmediata	Plan_Recuperacion	Comunicacion_Crisis	Proveedor_Backup	RTO_Objetivo
Banca Móvil	Load Balancer	Auto-failover <60s	Sitio Secundario Hot	Push App, SMS	AWS CloudFront	15 min
	Redundante, CDN					
	Global					
Transferencias	Conectividad Dual ISP,	Validación automática	Switch backup,	Email institucional	ISP Backup	30 min
	Blockchain		Manual override			
Préstamos Online	3 Burós Crédito, Cache	Modo degradado 2h	Replicación ML	Web banner	Azure ML Services	2 horas
	local		Models			
Atención Cliente	CRM redundante, IVR	Redirección	Call center externo	Redes sociales	Genesys Cloud	1 hora
	backup	automática				
Reportería	Data Warehouse mirror	Proceso batch diferido	Backup site warm	Comunicación	Snowflake DR	8 horas
Regulatoria				regulador		
Operaciones Internas	Office 365 backup	Trabajo remoto total	Oficinas alternas	Comunicación interna	Microsoft 365	24 horas

4. PLAN DE RECUPERACIÓN DE DESASTRES (DRP) - 20%

4.1. Arquitectura de respaldo

4.1.1. Diseño de infraestructura de recuperación

La arquitectura de recuperación de TechnoBank implementa una configuración trimodal diseñada para maximizar la disponibilidad mientras optimiza los costos operativos. La estrategia se basa en tres niveles de recuperación con diferentes RTO y capacidades.

Configuración Activo-Activo (DC Principal - DC Secundario)

- **Distancia:** 25 km entre sitios, fuera de zona de riesgo común
- Conectividad: Enlaces de fibra óptica dedicados a 10 Gbps con backup a 1 Gbps
- Sincronización: Replicación síncrona para datos críticos, asíncrona para datos secundarios
- **Balanceo:** Distribución 60/40 de carga entre sitios

Sitio de respaldo (DC terciario)

- **Distancia:** 300 km, diferente región geográfica y sísmica
- Configuración: Warm standby con capacidad de activación en 4 horas
- Sincronización: Snapshots cada 4 horas, backups completos diarios
- Capacidad: 60% de carga inicial, escalable a 100% en 8 horas adicionales

4.1.2. Estrategia de backup y restore

Clasificación de datos por criticidad

Tier 1 - Datos Críticos (RPO: 5 minutos)

- Saldos de cuentas y posiciones financieras
- Transacciones en proceso y pendientes de liquidación
- Datos de autenticación y seguridad
- Estrategia: Replicación síncrona + snapshots cada 15 minutos

Tier 2 - Datos Importantes (RPO: 1 hora)

- Histórico transaccional completo
- Información de clientes y perfiles de riesgo
- Configuraciones de sistema y parámetros
- Estrategia: Replicación asíncrona + backups incrementales cada hora

Tier 3 - Datos Archivados (RPO: 24 horas)

- Logs históricos y auditoría
- Documentos y reportes generados
- Datos de analytics y BI
- Estrategia: Backup completo diario + archivado mensual

Tecnologías de backup implementadas

- Veeam Backup & Replication: Plataforma principal para virtualización
- PostgreSQL Streaming Replication: Replicación nativa de bases de datos críticas
- Commvault Complete Data Protection: Backup enterprise con deduplicación
- AWS S3 Glacier Deep Archive: Almacenamiento de largo plazo (7 años retención)

4.2. Procedimientos de Failover/Failback

4.2.1. Failover automático

Criterios de Activación Automática El sistema de monitoreo evalúa múltiples métricas para determinar la necesidad de failover automático:

- Pérdida de Conectividad: Falla de ambos enlaces primarios por >3 minutos
- Degradación Crítica: Latencia >3 segundos o tasa de error >2% por >5 minutos

- Falla de Infraestructura: >60% de servidores críticos inaccesibles
- Falla de Aplicación: Core banking system inaccesible por >2 minutos

Secuencia de Failover automático

- 00:00 Detección de falla por sistema de monitoreo
- 00:01 Validación por sensores múltiples y confirmación automática
- 00:02 Inicio de secuencia de failover sin intervención humana
- 00:03 Actualización de DNS y redirección de tráfico
- 00:04 Activación de servicios en sitio secundario
- 00:06 Validación automática de servicios críticos
- 00:08 Notificación a equipos operativos y management
- 00:10 Inicio de comunicaciones a clientes (si aplicable)

4.2.2. Failover manual

Autoridades para autorizar Failover manual

- CTO o CTO Adjunto: Decisiones técnicas de rutina
- COO: Impactos operativos significativos
- **CEO:** Situaciones de crisis o alto impacto reputacional
- Comandante de Incidente: Durante activación formal de BCP

Proceso de Failover manual controlado

- 1. Análisis de impacto (15 minutos): Evaluación riesgo-beneficio del failover
- 2. Preparación (30 minutos): Sincronización de datos y preparación de sistemas
- 3. Comunicación previa (15 minutos): Notificación a stakeholders internos
- 4. Ejecución por fases (45 minutos): Migración gradual por grupos de servicios
- 5. Validación (30 minutos): Verificación completa de funcionalidades
- 6. Monitoreo intensivo (4 horas): Supervisión continua post-failover

4.3. Configuración de sitios de recuperación

4.3.1. Especificaciones técnicas por sitio

DC Principal (Zona norte)

- Capacidad computacional: 1,600 VMs, 320 TB RAM, 50 PB almacenamiento
- Conectividad: 4x10Gbps fibra óptica, 2x1Gbps backup
- Energía: 2N UPS (30 min autonomía), 2 generadores diésel (72h combustible)
- Refrigeración: Sistema redundante con backup automático
- **Seguridad física:** Biometría, cámaras 24/7, guardias presenciales

DC Secundario (Zona sur)

- Capacidad computacional: 1,200 VMs, 240 TB RAM, 40 PB almacenamiento
- Conectividad: 2x10Gbps fibra óptica, 2x1Gbps backup
- Energía: N+1 UPS (20 min autonomía), 1 generador diésel (48h combustible)
- **Refrigeración:** Sistema con backup manual
- **Seguridad física:** Tarjetas de acceso, cámaras 24/7, guardia horario extendido

DC Respaldo (Zona este)

- Capacidad computacional: 800 VMs, 160 TB RAM, 25 PB almacenamiento
- Conectividad: 2x1Gbps fibra óptica, 1x1Gbps backup satelital
- Energía: N UPS (15 min autonomía), 1 generador portátil (24h combustible)
- Refrigeración: Sistema básico sin redundancia
- Seguridad física: Acceso con llaves, cámaras básicas, sin guardia permanente

4.4. Secuencia de restauración de servicios

4.4.1. Priorización de servicios para recuperación

Fase 1 - Servicios críticos (0-30 minutos)

- 1. Infraestructura de red y conectividad
- 2. Servicios de autenticación y seguridad
- 3. Base de datos transaccional principal
- 4. API Gateway y load balancers

Fase 2 - Aplicaciones core (30-60 minutos)

- 1. Core banking system
- 2. Motor de transferencias y pagos

- 3. Aplicación móvil (backend services)
- 4. Sistema de monitoreo y alertas

Fase 3 - Servicios de soporte (1-4 horas)

- 1. Motor de aprobación de préstamos
- 2. CRM y atención al cliente
- 3. Sistemas de reportería
- 4. Herramientas administrativas internas

Fase 4 - Servicios complementarios (4-8 horas)

- 1. Analytics y business intelligence
- 2. Sistemas de marketing
- 3. Herramientas de desarrollo
- 4. Sistemas de backup y archivo

4.5. Scripts y comandos automatizados

4.5.1. Script de validación Post-Failover

```
#!/bin/bash

# Archivo: post_failover_validation.sh

# Propósito: Validar funcionalidad crítica post-failover

LOG_FILE="/var/log/failover_validation.log"

ALERT_EMAIL="ops-team@technobank.com"

log_message() {
    echo "$(date '+%Y-%m-%d %H:%M:%S') - $1" | tee -a $LOG_FILE
}

# Validar conectividad de base de datos
validate_database() {
    log_message "Validando conectividad de base de datos..."
```

```
DB STATUS=$(psql -h db-cluster.internal -U monitor -d banking db -c "SELECT 1"
-t)
  if [ "$DB_STATUS" = " 1" ]; then
    log message "√ Base de datos accesible"
    # Validar integridad de datos críticos
    ACCOUNT COUNT=$(psql -h db-cluster.internal -U monitor -d banking db -c
"SELECT COUNT(*) FROM customer accounts" -t | xargs)
    log message "✓ Cuentas de clientes disponibles: $ACCOUNT COUNT"
    return 0
  else
    log_message "X ERROR: Base de datos no accesible"
    return 1
  fi
# Validar servicios de aplicación
validate applications() {
  log message "Validando servicios de aplicación..."
  # Core Banking API
  CORE_STATUS=$(curl -s -o /dev/null -w "%{http_code}" http://core-
banking.internal:8080/health)
  if [ "$CORE STATUS" = "200" ]; then
    log message "✓ Core Banking API operativo"
  else
    log message "X ERROR: Core Banking API no responde (HTTP
$CORE STATUS)"
```

```
return 1
  fi
  # Mobile Banking API
  MOBILE STATUS=$(curl -s -o /dev/null -w "%{http code}"
https://api.technobank.com/v1/health)
  if [ "$MOBILE STATUS" = "200" ]; then
    log message "✓ Mobile Banking API operativo"
  else
    log message "X ERROR: Mobile Banking API no responde (HTTP
$MOBILE STATUS)"
    return 1
  fi
  return 0
# Validar transacciones críticas
validate transactions() {
  log message "Validando capacidad transaccional..."
  # Test de consulta de balance
  BALANCE TEST=$(curl -s -X POST https://api.technobank.com/v1/test/balance \
           -H "Content-Type: application/json" \
          -d'{"account":"TEST123456","auth":"test_token"}')
  if echo $BALANCE TEST | grep -q "success"; then
    log message "√ Consulta de balance funcional"
  else
    log message "X ERROR: Consulta de balance falló"
```

```
return 1
  fi
  return 0
# Función principal
main() {
 log message "=== INICIANDO VALIDACIÓN POST-FAILOVER ==="
  ERRORS=0
  validate database || ERRORS=$((ERRORS+1))
  validate applications || ERRORS=$((ERRORS+1))
  validate_transactions || ERRORS=$((ERRORS+1))
  if [ $ERRORS -eq 0 ]; then
    log message "=== VALIDACIÓN EXITOSA - TODOS LOS SERVICIOS
OPERATIVOS ==="
    echo "Failover validation successful" | mail -s "TECHNOBANK: Failover
Validation SUCCESS" $ALERT_EMAIL
  else
    log message "=== VALIDACIÓN FALLIDA - $ERRORS ERRORES
ENCONTRADOS ===="
    echo "Failover validation failed with $ERRORS errors. Check $LOG FILE for
details." | mail -s "TECHNOBANK: Failover Validation FAILED" $ALERT EMAIL
    exit 1
  fi
main "$@"
```

4.5.2. Script de sincronización Pre-Failback

```
-- Archivo: pre failback sync.sql
-- Propósito: Sincronizar datos antes de failback al sitio principal
-- Crear tabla temporal para análisis de brecha
CREATE TEMPORARY TABLE data gap analysis AS
SELECT
  'transactions' as table name,
  COUNT(*) as records count,
  MAX(created at) as latest timestamp,
  SUM(amount) as total amount
FROM transactions
WHERE created at > (
  SELECT COALESCE(MAX(sync timestamp), '2025-01-01'::timestamp)
  FROM sync_log
  WHERE table name = 'transactions'
);
-- Insertar análisis para otras tablas críticas
INSERT INTO data_gap_analysis
SELECT
  'customer accounts' as table name,
  COUNT(*) as records count,
  MAX(updated at) as latest timestamp,
  0 as total amount
FROM customer accounts
WHERE updated at > (
  SELECT COALESCE(MAX(sync_timestamp), '2025-01-01'::timestamp)
  FROM sync log
  WHERE table name = 'customer accounts'
```

```
);
-- Mostrar resumen de datos a sincronizar
SELECT
  table name,
  records count,
  latest timestamp,
  CASE
    WHEN table name = 'transactions' THEN total amount::text
    ELSE 'N/A'
  END as financial_impact
FROM data_gap_analysis;
-- Validar integridad pre-sincronización
SELECT
  'VALIDATION' as type,
  COUNT(*) as total transactions,
  SUM(amount) as total amount,
  MIN(created at) as earliest tx,
  MAX(created at) as latest tx
FROM transactions
WHERE DATE(created at) = CURRENT DATE;
-- Marcar inicio de proceso de sincronización
INSERT INTO sync log (table name, sync timestamp, status, records affected)
SELECT
  table_name,
  NOW(),
  'PRE_FAILBACK_STARTED',
  records count
FROM data gap analysis;
```

4.6.Runbooks técnicos detallados – entregable

Sistema	Procedimiento_Backup	Comando_Failover	Tiempo_RTO	Validacion_Post	Rollback_Procedure	Contacto_Soporte
PostgreSQL_DB	pg_basebackup daily +	pg_ctl promote -D	5 min	SELECT COUNT(*)	pg_rewind master	DBA Lead ext.1234
	streaming	/data/postgres		FROM accounts		
Core_Banking_App	Veeam VM backup 4h	veeam failovervm	15 min	curl health endpoint	veeam failbackvm	DevOps Lead
		core-banking			core-banking	ext.1235
Payment_Switch	rsync config + data	systemctl start	10 min	test-payment-	restore config backup	Payments Architect
		payment-switch-		transaction.sh		ext.1236
		backup				
API_Gateway	Kong declarative config	kong startconfig	2 min	curl /health	kong reloadconfig	Platform Engineer
		failover.yml			primary.yml	ext.1237
Load_Balancer	F5 UCS backup	f5 failoverdevice	1 min	f5 health-checkall-	f5 failoverdevice	Network Engineer
		secondary		pools	primary	ext.1238
Redis_Cache	redis-cli BGSAVE	redis-server	30 sec	redis-cli PING	restore from backup	Database Admin
		failover.conf				ext.1239

5. PROGRAMA DE PRUEBAS Y MANTENIMIENTO - 10%

5.1. Marco de pruebas de continuidad

El programa de pruebas de TechnoBank sigue la metodología establecida en ISO 22301:2019, implementando un enfoque escalonado que progresa desde pruebas conceptuales hasta ejercicios complejos de simulación total. Los objetivos incluyen validar la efectividad de procedimientos, identificar gaps de capacidad, desarrollar competencias del personal y cumplir requerimientos regulatorios.

5.2. Cronograma de pruebas

5.2.1. Pruebas desktop (Tabletop exercises)

Frecuencia: Mensual por área crítica

Duración: 2-3 horas por sesión

Participantes: 8-12 personas clave por proceso

Metodología: Escenarios hipóticos presentados por facilitador externo certificado

Cronograma anual de pruebas desktop:

Mes	Área de Focus	Escenario	Participantes	Objetivos	
IVIES		Principal	Clave	Específicos	
Enero	Banca Móvil	Ataque DDoS masivo	CTO, Mobile Team, DevOps	Validar procedimientos de mitigación	
Febrero	Transferencias	Falla en cámara de compensación	Head of Payments, Operations	Procedimientos de reconciliación	
Marzo	Préstamos	Caída de proveedor de scoring	Head of Credit, Data Scientists	Modelos de backup y decisiones	

Abril	Atención Cliente	Sobrecarga por crisis externa	Customer Service Manager	Escalamiento y comunicaciones
Mayo	Infraestructura	Falla total DC principal	Infrastructure Team	Failover y recuperación
Junio	Ciberseguridad	Ransomware avanzado	CISO, Security Team	Contención y erradicación

5.2.2. Simulacros parciales

Frecuencia: Trimestral

Duración: 4-8 horas incluyendo post-mortem

Alcance: Servicios no críticos en horarios de bajo tráfico

Simulacros programados 2025:

Q1 - Simulacro de recuperación de reportería

• Fecha: Sábado 15 de marzo, 08:00-14:00

• Escenario: Corrupción de data warehouse principal

• Objetivo: Validar recuperación desde backup y procedimientos de validación

• **Métricas:** Tiempo de detección, RTO real vs objetivo, integridad de datos

Q2 - Simulacro de migración de load balancer

• **Fecha:** Domingo 15 de junio, 06:00-12:00

• Escenario: Falla crítica en load balancer principal

• **Objetivo:** Probar failover manual controlado sin impacto a usuarios

• **Métricas:** Tiempo de conmutación, pérdida de sesiones, estabilidad post-cambio

Q3 - Simulacro de trabajo remoto masivo

• Fecha: Viernes 19 de septiembre, 14:00-18:00

• Escenario: Evacuación de oficina principal por emergencia

• **Objetivo:** Validar capacidad de operación 100% remota

• **Métricas:** Tiempo de transición, productividad, comunicaciones}

Q4 - Simulacro de recuperación de sitio alterno

• Fecha: Sábado 14 de diciembre, 10:00-16:00

• Escenario: Activación de DC respaldo (warm site)

• Objetivo: Probar recuperación desde sitio terciario

• **Métricas:** Tiempo de activación, capacidad operativa, sincronización de datos

5.2.3. Ejercicio anual completo

Ejercicio 2025: "Scenario Storm"

Fecha: 15-16 de noviembre (fin de semana)

Duración: 48 horas continuas

Alcance: Toda la organización + terceros críticos

Narrativa del ejercicio: TechnoBank enfrenta una tormenta perfecta de eventos simultáneos:

- Ataque cibernético coordinado con múltiples vectores
- Falla de infraestructura en DC principal por evento sísmico
- Crisis de comunicaciones por campaña de desinformación
- Sobrecarga de sistemas por pánico financiero generalizado

Fases del ejercicio:

- Detección y respuesta (Horas 0-6): Identificación de múltiples amenazas
- Gestión de crisis (Horas 6-18): Coordinación de respuesta integral
- Recuperación (Horas 18-36): Implementación de planes de contingencia
- Normalización (Horas 36-48): Retorno gradual a operaciones normales

5.3. Métricas de efectividad

5.3.1. KPIs de desempeño de pruebas

Métricas cuantitativas:

• **Tiempo de detección:** Promedio de tiempo desde inicio del evento hasta identificación

- Tiempo de escalamiento: Desde detección hasta activación del equipo correcto
- RTO real vs objetivo: Comparación de tiempos reales de recuperación vs metas
- Éxito de procedimientos: Porcentaje de procedimientos ejecutados correctamente
- Participación: Porcentaje de personal clave que participa en ejercicios programados

Métricas cualitativas:

- Calidad de comunicaciones: Claridad y oportunidad de mensajes durante crisis
- Coordinación entre equipos: Efectividad de interfaces y handoffs
- Toma de decisiones: Calidad y velocidad de decisiones bajo presión
- Liderazgo en crisis: Efectividad del comando y control durante ejercicios

5.3.2. Benchmarks y objetivos

Métrica	Baseline 2024	Objetivo 2025	Objetivo 2026	
Tiempo Detección	8 minutos	5 minutos	3 minutos	
Tiempo Escalamiento	15 minutos	10 minutos	7 minutos	
RTO Banca Móvil	25 minutos	15 minutos	10 minutos	
RTO Transferencias	45 minutos	30 minutos	20 minutos	
Éxito Procedimientos	85%	92%	95%	
Participación Ejercicios	80%	90%	95%	

5.4. Proceso de actualización del plan

5.4.1. Ciclo de revisión continua

Revisión Post-Ejercicio (Inmediata)

- Análisis hot wash dentro de 24 horas del ejercicio
- Identificación de gaps críticos y acciones inmediatas
- Actualización de procedimientos basada en lecciones aprendidas
- Comunicación de cambios a todos los stakeholders relevantes

Revisión trimestral (Sistemática)

- Actualización de contactos y matriz de escalamiento
- Incorporación de cambios en infraestructura y aplicaciones
- Ajuste de RTO/RPO basado en capacidades actuales
- Validación de acuerdos con proveedores críticos

Revisión anual (Estratégica)

- Evaluación completa del landscape de amenazas
- Actualización del Business Impact Analysis (BIA)
- Revisión de estrategias vs cambios del negocio
- Benchmarking con mejores prácticas de la industria

5.4.2. Gestión de cambios en BCP

Proceso de Evaluación de Impacto Todo cambio significativo debe incluir evaluación de impacto en continuidad:

- Identificación de dependencias: Servicios y procesos afectados por el cambio
- Análisis de riesgo: Nuevos riesgos introducidos o mitigados
- Actualización documental: Modificación de runbooks, contactos, procedimientos
- Validación: Pruebas específicas para confirmar efectividad post-cambio
- Comunicación: Socialización de cambios con equipos afectados

Criterios para revisión obligatoria:

- Cambios en arquitectura de aplicaciones críticas
- Nuevos servicios o productos customer-facing
- Modificaciones en proveedores de servicios tier 1
- Cambios en ubicaciones físicas o estructura organizacional
- Actualizaciones regulatorias que modifiquen requerimientos

5.5. Programa de capacitación del personal

5.5.1. Capacitación por niveles

Nivel 1 - Todos los empleados (Anual)

- Contenido: Conceptos básicos de BCP, roles individuales durante crisis
- **Duración:** 2 horas e-learning + 1 hora presencial
- Evaluación: Quiz online con 80% mínimo para aprobación
- Certificación: Válida por 12 meses

Nivel 2 - Personal clave (Semestral)

- Contenido: Procedimientos específicos, herramientas especializadas, coordinación
- **Duración:** 8 horas distribuidas en 2 días
- Evaluación: Ejercicio práctico + examen teórico
- Certificación: Válida por 6 meses

Nivel 3 - Líderes de crisis (Trimestral)

- Contenido: Comando y control, toma de decisiones, gestión de stakeholders
- **Duración:** 16 horas presenciales + ejercicios de simulación
- Evaluación: Evaluación 360° durante ejercicios
- Certificación: Evaluación continua

5.5.2. Certificaciones profesionales

Programa de certificación externa:

- CBCP (Certified Business Continuity Professional): Mínimo 5 personas
- MBCI Associate/Specialist: 10 personas en roles clave
- CISSP con dominio BCP: 3 personas en seguridad
- ITIL Expert con BCP focus: 2 personas en operaciones

5.6. Revisiones periódicas

5.6.1. Calendario de revisiones

Revisión mensual de métricas

- Dashboard de KPIs de continuidad
- Análisis de incidentes del período

- Estado de acciones correctivas pendientes
- Preparación para ejercicios del siguiente mes

Revisión trimestral de efectividad

- Análisis de tendencias de métricas
- Efectividad de mejoras implementadas
- Ajustes a cronograma de pruebas
- Actualización de evaluación de riesgos

Revisión semestral de estrategia

- Alineación con objetivos de negocio
- Evaluación de nuevas amenazas
- Revisión de presupuesto y recursos
- Planificación de ejercicios mayor

Revisión anual integral

- Evaluación completa del programa BCP
- Benchmarking con estándares de industria
- Definición de objetivos para siguiente año
- Presentación a Junta Directiva

5.7.Calendario de actividades con responsables – entregable

Mes	Actividad	Tipo	Responsable	Participantes	Objetivo	Duracion	Entregable	Fecha_Tentativa
	Desktop	Tabletop	BCP Manager	Mobile Team	Validar	3h	Informe GAPs	Viernes 24 Enero
	Banking				respuesta DDoS			
Febrero	Backup Restore	Técnica	DBA Lead	Database Team	Probar	2h	Tiempo RTO	Sábado 15
					procedimientos		real	Febrero
Marzo	Simulacro	Simulacro	Risk Manager	Analytics Team	Recovery parcial	6h	Post-mortem	Sábado 22 Marzo
	Reportes							
Abril	Desktop	Tabletop	Payments Head	Operations	Falla	3h	Matriz mejoras	Viernes 25 Abril
	Payments				compensación			
Mayo S	Security Drill	Simulacro	CISO	Security Team	Respuesta	4h	Plan remediation	Sábado 17 Mayo
					ransomware			
Junio	LB Migration	Técnica	Network Lead	Infrastructure	Failover manual	6h	Runbook	Domingo 15
							actualizado	Junio
Julio	Desktop Crisis	Tabletop	COO	All Managers	Comunicaciones	3h	Templates	Viernes 18 Julio
					crisis		actualizados	
Agosto I	DR Test	Técnica	Infrastructure	DevOps Team	Activación DC	4h	Procedimientos	Sábado 16
			Head		backup		DR	Agosto
Septiembre	Remote Work	Simulacro	HR Manager	All Staff	Trabajo remoto	4h	Capacidad	Viernes 19
					masivo		validada	Septiembre
Octubre	Desktop Cyber	Tabletop	CISO	Security + IT	APT multicanal	3h	Plan respuesta	Viernes 24
								Octubre
Noviembre	Storm Exercise	Completo	CEO	Toda	Crisis integral	48h	BCP actualizado	15-16
				Organización				Noviembre
Diciembre	Warm Site	Simulacro	СТО	Technical Teams	Recuperación	6h	RTO validado	Sábado 14
					sitio 3			