۱ جلسهی شانزدهم

مثال ۱. مشتق تابع x> را برای $f(x)=x^x$ حساب کنید.

پاسخ.

$$f(x) = x^x = e^{x \ln x}$$

از آنجا که توابع $x>\cdot$ مشتق پذیر است، تابع $x\ln(x)$ نیز در این نقاط مشتق پذیر است. از آنجا که e^x در سرتاسر π مشتق پذیر است، تابع به دست آمده از ترکیب آن با π مشتق پذیر است و داریم: π مشتق پذیر است و داریم:

$$f'(x) = (\ln x + \frac{1}{x}x)e^{x \ln x} = (\ln x + 1)x^x$$

$$f(x) = x^x \Rightarrow f'(x) = (\ln x + 1)x^x$$

میدانیم که مشتق تابع $x^{\frac{m}{n}}$ برابر است با $\frac{m}{n}x^{\frac{m}{n}-1}$. در زیر نشان داده ایم که مشتق تابع برای عدد حقیقی دلخواه a برابر است با a برابر است با آنچه از مشتق انتظار داریم سازگار است.

مثال ۲. مشتق تابع $f(x)=x^a$ را حساب کنید.

 $f(x)=x^a=e^{a\ln x}$ پسخ. داریم

$$f'(x) = \frac{a}{x}e^{a\ln x} = \frac{a}{x}x^a = ax^{a-1}$$

مثال ۳. مشتق تابع $|x| = \ln |x|$ را در $x \neq x$ محاسبه کنید.

پاسخ.

$$f(x) = \begin{cases} \ln x & x > \bullet \\ \ln(-x) & x < \bullet \end{cases}$$

تابع فوق در تمامی st
eq x مشتق پذیر است. برای st > st مشتق تابع برابر است با

$$f'(x) = \frac{1}{x}$$

و برای lpha < x مشتق تابع برابر است با

$$-1 \times \frac{1}{-x} = \frac{1}{x}$$

پس اگر $|x| = \ln |x|$ آنگاه در تمامی $x \neq x$ داریم:

$$f'(x) = \frac{1}{x}$$

نمودار تابع $x=\cdot$ مشتق پذیر نیست). نمودار تابع $f(x)=\ln |x|$ به شکل زیر است

را بیابید.
$$\begin{cases} x^{\mathsf{Y}} \sin \frac{\lambda}{x} & x > \mathsf{V} \\ \sinh x & x \leqslant \mathsf{V} \end{cases}$$
 را بیابید.

 $\sin\frac{1}{x}$ در x>0 تابع $\frac{1}{x}$ مشتق پذیر است. تابع $\sin\frac{1}{x}$ در تمام $\sin\frac{1}{x}$ مشتق پذیر است. پس تابع $\sin\frac{1}{x}$ در $\sin\frac{1}{x}$ مشتق پذیر است. x>0

تابع $x>\cdot$ در تمام $\mathbb R$ مشتق پذیر است و بنابراین $\frac{1}{x}$ در $f(x)=x^{r}\sin\frac{1}{x}$ در است. پس تابع $x>\cdot$ داریم:

$$f'(x) = \mathbf{Y}x\sin\frac{1}{x} + (-\frac{1}{x^{\mathbf{Y}}})\cos\frac{1}{x}(x^{\mathbf{Y}}) = \mathbf{Y}x\sin\frac{1}{x} - \cos\frac{1}{x}$$

 e^x,e^{-x} و در $x<\cdot$ تابع $\sinh x$ مشتق پذیر است، زیرا به صورت حاصلجمعی از تابعهای مشتق پذیر قابل نوشتن است.

$$(\sinh x)' = \cosh(x)$$

 $x=\cdot$ بررسی مشتق پذیری تابع در نقطه ی

$$\lim_{x \to \cdot} \frac{f(x) - f(\cdot)}{x - \cdot}$$

حد بالا را از دو جهت + ، و - ، بررسي مي كنيم.

$$\lim_{x \to \cdot^+} \frac{f(x) - f(\cdot)}{x} = \lim_{x \to \cdot^+} \frac{x^{\mathsf{T}} \sin \frac{1}{x} - \cdot}{x} = \lim_{x \to \cdot^+} x \sin \frac{1}{x} = \cdot$$

پس

$$f'_{+}(\cdot) = \cdot$$

توجه ۵.

$$-1 \leqslant \sin \frac{1}{x} \leqslant 1$$

برای x > x داریم:

$$-x \leqslant x \sin \frac{1}{x} \leqslant x$$

برای $x < \cdot$ داریم:

$$+x \leqslant x \sin \frac{1}{x} \leqslant -x$$

بنا به فشردگی داریم:

$$\lim_{x \to \bullet} x \sin \frac{1}{x} = \bullet$$

$$\lim_{x \to \cdot^{-}} \frac{f(x) - f(\cdot)}{x} = \lim_{x \to \cdot^{-}} \frac{\sinh x - \sinh \cdot}{x} = (\sinh)'(\cdot) = \cosh(\cdot) = 1$$

پس داریم:

$$f'_{-}(\cdot) = 1$$

پس تابع مورد نظر در نقطه ی
$$x=\mathbf{r}$$
 مشتق پذیر نیست.
$$x=x^{\mathsf{r}}\sin\frac{1}{x}\quad x>\mathbf{r}$$
 نمودار تابع
$$\sinh x\quad x\leqslant\mathbf{r}$$

اکستِرمُمهای مطلق و نسبی

تعریف ۶. تابع $x. \in I$ و البازه است) را در نظر بگیرید. میگوییم f در نقطه ی $x. \in I$ دارای ماکزیمم مطلق است، یا به ماکزیمم مطلق خود می رسد، هرگاه

$$\forall x \in I \quad f(x) \leqslant f(x.)$$

به طور مشابه میگوییم f در نقطه ی $x,\in I$ دارای مینی مومِ مطلق است، یا به مینی مومِ مطلق خود می رسد، هرگاه

$$\forall x \in I \quad f(x) \geqslant f(x.)$$

تعریف ۷. تابع $\mathbb{R}:I o \mathbb{R}$ در نقطه ی $x. \in I$ در نقطه ماکزیمم نسبی است، هرگاه

$$\exists \delta \quad (x. - \delta, x. + \delta) \subseteq I$$

و در بازه ی $f:I \to \mathbb{R}$ تابع x . یک ماکزیمم مطلق باشد. مشابهاً تابع x در نقطه ی x دارای مینی موم نسبی است، هرگاه x دارای مینی موم نسبی است، هرگاه

$$\exists \delta \quad (x. - \delta, x. + \delta) \subseteq I$$

و در بازه ی $(x, -\delta, x, +\delta)$ نقطه ی x یک مینی موم مطلق باشد.

در ادامه ی درس خواهیم دید که چگونه مطالعه ی مشتق تابع به ما کمک میکند که بدون رسم نمودار آن، نقاط ماکزیمم و مینی موم مطلق (و حتی نسبی) آن را بشناسیم. مطالعه ی مشتق تابع در

واقع تحلیلی از تابع به دست می دهد که با استفاده از آن می توانیم به درک مناسبی از شکل هندسی آن تابع برسیم.

قضیه ۸. فرض کنید تابع f در یک همسایگی نقطه یx تعریف شده و در x ماکزیمم نسبی داشته باشد، آنگاه اگر تابع x در x مشتق پذیر باشد، خواهیم داشت:

$$f'(x.) = \cdot$$

اثبات. فرض كنيد كه

$$\forall x \in (x. - \delta, x. + \delta) \quad f(x) \leqslant f(x.)$$

آنگاه

$$\forall x \in (x. - \delta, x. + \delta) \begin{cases} \frac{f(x) - f(x.)}{x - x.} \leqslant \cdot & x > x. \\ \frac{f(x) - f(x.)}{x - x.} \geqslant \cdot & x < x. \end{cases}$$

یادآوری ۹. اگر t>0 اگر t>0 اگر t=1 انگاه تابع t=1 در یک همسایگی از نقطه t=1 مثبت است. بنابراین اگر تابع t=1 در یک همسایگی از نقطه یک در یک همسایگی در یک همسایگی در یک د

$$\forall x \in (x. - \delta, x. + \delta) \quad f(x) \leqslant \cdot \Rightarrow \lim_{x \to x} f(x) \leqslant \cdot$$

$$\forall x \in (x. - \delta, x. + \delta) \quad f(x) \geqslant \cdot \Rightarrow \lim_{x \to x.} f(x) \geqslant \cdot$$

بنا بر آنچه در بالا گفته ایم $\lim_{x\to x^+} \frac{f(x)-f(x.)}{x-x.}$ در صورت وجود کمتراز یا مساوی با صفر است. به طور مشابه $\lim_{x\to x^-} \frac{f(x)-f(x.)}{x-x.}$ در صورت وجود بزرگتر از یا مساوی با صفر است. پس اگر $f(x) \leqslant r$ در نقطه ی $f(x) \leqslant r$ مشتق پذیر باشد $f(x) \leqslant r$ و $f(x) \leqslant r$ بنابراین

$$f'(x) = \cdot$$

توجه ۱۰. لزوماً در هر نقطه که مشتق صفر شود اکسترمم نسبی نداریم. مشتق تابع

$$f(x) = x^{\mathsf{r}}$$

در نقطهی • برابر با صفر است ولی این تابع در این نقطه هیچ نوع اکسترممی ندارد.

مثال ۱۱. فرض کنید که توابع $x\in\mathbb{R}$ مشتق پذیر باشند و برای هر $x\in\mathbb{R}$ داشته باشیم f(x)=g(x) نشان دهید که اگر در نقطه ی f(x)=g(x) آنگاه f(x)=g(x) . f(x)=g(x)

پاسخ. تابع \mathbb{R} مشتق پذیر است و h(x)=g(x)-f(x) را در نظر بگیرید که در تمام

$$\forall x \in \mathbb{R} \quad h(x) \geqslant \bullet$$

حال اگر f(x,t)=0 آنگاه f(x,t)=0 پس h پس مینیمم نسبی برای تابع

$$h'(x.) = \cdot \Rightarrow f'(x.) = g'(x.)$$

هرچند قضیه ی زیر ساده و طبیعی به نظر می رسد، ولی تلاش من برای نوشتن اثباتی مناسب برای آن، بی نتیجه ماند. منظورم از اثباتی مناسب اثباتی است که در آن تنها از اطلاعات درس ریاضی عمومی ۱ استفاده شده باشد و آن اثبات قابل ارائه در کلاس باشد.

قضیه ۱۲. اگر تابع f در بازه هم ماکزیمم [a,b] پیوسته باشد آنگاه f در این بازه هم ماکزیمم مطلق و هم مینیمم مطلق دارد.

توجه ۱۳. شرط بسته بودن بازه لازم است.

مثال ۱۴. تابع $\frac{1}{x}$ در بازهی $(\cdot, 1)$ دارای ماکزیمم مطلق نیست.

به بیان دیگر اگر f یک تابع پیوسته باشد و [a,b] یک بازه ی بسته باشد آنگاه f([a,b])=[c,d]

توجه ۱۵. اثبات اینکه f([a,b]) به صورت بازه است با استفاده از قضیه ی مقدار میانی صورت میگیرد ولی اثبات اینکه f([a,b]) لزوماً یک بازه بسته است، کار آسانی نیست.

توجه ۱۶. فرض کنید که تابع f در یک بازه ی بسته ی [a,b] پیوسته باشد. از آنجا که تابع مورد نظر در این بازه پیوسته است، پس قطعاً در این بازه دارای اکسترممهای مطلق است. برای تعیین اکسترممهای مطلق یک تابع ابتدا نقاطی را تعیین می کنیم که در آنها مشتق تابع وجود ندارد یا برابر صفر است (به این نقاط، نقاط بحرانی می گوئیم). سپس f(x) را در این نقاط و در نقاط انتهایی بازه حساب می کنیم و در میان آنها اکسترممهای مطلق را شناسایی می کنیم.

مثال ۱۷. اکسترممهای مطلق تابع زیر را بیابید.

$$f(x) = \begin{cases} |x|^x & x \neq \bullet \\ \mathbf{1} & x = \bullet \end{cases} \qquad x \in [-\mathbf{1}, \mathbf{Y}]$$

پاسخ. نخست باید بررسی کنیم که تابع داده شده در آن بازه پیوسته است.

$$f(x) = \begin{cases} x^x & x > \cdot \\ (-x)^x & x < \cdot \end{cases}$$

$$x = \cdot$$

در $x>\cdot$ تابع مورد نظر پیوسته است، چون برابر است با $e^{x\ln x}$ ؛ یعنی ترکیبی از توابع پیوسته است. در $x>\cdot$ نیز به همین ترتیب. بررسی این که تابع x در $x<\cdot$ پیوسته است.

$$\lim_{x \to \cdot^+} f(x) = \lim_{x \to \cdot^+} e^{x \ln x}$$

ا استفاده از تغییر متغیر $e^t=x$ داریم:

$$\lim_{t \to -\infty} e^{e^t \times t}$$

ر با تغییر متغیر t=-u داریم:

$$\lim_{u \to +\infty} e^{e^{-u} \times (-u)} = \lim_{u \to +\infty} \frac{-u}{e^u} = 1$$

ه طور مشابه نشان دهید که

$$\lim_{x \to \cdot^{-}} f(x) = 1$$

یعنی تابع مورد نظر ما در بازه ی [-1, 7] پیوسته است. مشتق تابع به صورت زیر است:

$$f'(x) = \begin{cases} (\ln x + 1)x^x & x > \mathbf{1} \\ (\ln(-x) + 1)(-x)^x & x < \mathbf{1} \\ (\ln(-x) + 1)(-x)^x & x < \mathbf{1} \end{cases}$$
بررسی نمیکنیم

نقاطی که در آن مشتق تابع صفر است (یا وجود ندارد)

 $x = \cdot$ احیاناً نقطهی ا

۲. در $x > \cdot$ برای اینکه مشتق صفر شود باید داشته باشیم:

 $\ln x = -1 \Rightarrow x = e^{-1}$

۳. در $x < \cdot$ برای اینکه مشتق صفر شود باید داشته باشیم:

 $\ln(-x) = -1 \Rightarrow -x = e^{-1} \Rightarrow x = -e^{-1}$

مقادير تابع در نقاط ابتدايي و انتهايي و نقاط بحراني:

$$x = -1 \Rightarrow 1^{-1} = 1$$

$$x = \Upsilon \Rightarrow \Upsilon^{\Upsilon} = \Upsilon \vee$$

$$x = \cdot \Rightarrow f(x) = 1$$

$$x = e^{-1} \Rightarrow e^{x \ln x} = e^{-e^{-1}} = e^{-\frac{1}{e}} = \frac{1}{e^{-\frac{1}{e}}}$$

$$x = -e^{-1} \Rightarrow e^{x \ln(-x)} = e^{+e^{-1}} = \frac{1}{e^e}$$

می دانیم که

$$e > 1^e \Rightarrow \sqrt[e]{e} > 1 \Rightarrow \frac{1}{e^{\frac{1}{e}}} < 1$$

پس نقطهی $-e^{-1}$ نقطهی مینی موم مطلق است. همچنین داریم

$$\sqrt[e]{e} \leqslant \mathbf{r}^{\mathbf{r}}$$

پس نقطه ی $x=\mathbf{r}$ نقطه ای است که در آن ماکزیمم مطلق داریم.

:شکل تابع
$$f(x)=\begin{cases} |x|^x & x
eq \cdot \\ \mathbf{1} & x=\cdot \end{cases}$$
 به صورت زیر است $x\in[-1,\mathbf{T}]$ به صورت زیر است

قضیه ۱۸ (رُل). فرض کنید که تابع f در بازه ی بسته ی [a,b] پیوسته و در (a,b) مشتق پذیر باشد. اگر f(a)=f(b) آنگاه

$$\exists x \in (a,b) \quad f'(x) = \bullet.$$

اثبات. تابع f بنا به پیوستگی در بازه ی [a,b] دارای مینیمم مطلق و ماکزیمم مطلق است. اگر یکی از a و از ایندو در نقاط انتهایی نباشد در آن نقطه مشتق صفر است. حالت دیگر این است که یکی از a ماکزیمم مطلق و دیگری منیمم مطلق باشد، در این صورت تابع مورد نظر ثابت است و در تمام نقاط بازه ی [a,b] مشتق آن صفر است.

مثال ۱۹. فرض کنید تابع f در بازه ی بازِ I پیوسته باشد و

 $\forall x \in I \quad f'(x) \neq \cdot$

آنگاه نشان دهید که معادلهی $f(x)=\cdot$ در بازهی I حداکثر یک ریشه دارد.

اثبات. اگر معادلهی f(x) = f(x) بیش از یک ریشه داشته باشد، بنا به قضیهی رُل مشتق f(x) = f(x) باید در نقطه ای صفر شود.

مثال ۲۰. هر چند جملهای از درجهی n حداکثر n ریشه در $\mathbb R$ دارد.

n اشبات. با استقرا روی n . اگر n اگر n معادله ی ax+b دارای حداکثر یک جواب است. فرض کنیم n . n درست باشد. فرض کنیم چند جملهای p(x) از درجه ی n درست باشد. فرض کنیم که حکم مورد نظر برای n بیشتر یا مساوی n . n ریشه داشته باشد. آنگاه n بیشتر یا مساوی باشد. فرض کنیم که n بیشتر یا مساوی n از درجه ی n است و بنا به فرض استقرا نمی تواند بیش از n ریشه دارد. چند جمله ای n از درجه ی n است و بنا به فرض استقرا نمی تواند بیش از n ریشه داشته باشد؛ تناقض n