

数字逻辑电路实验

实验七

(可编程小系统设计)

guyujun@seu.edu.cn

- ◆综合前面所学的各项内容
- ◆了解掌握数字系统设计的流程和方法
- ◆掌握原理图输入方式设计数字系统的方法和流程
- ◆掌握复杂电路连接和调试技能

自顶向下法步骤

- ▶设计数据处理单元
 - 根据硬件算法确定数据处理单元的基本运算和操作
 - 简单、明晰、易控制
- ▶设计控制单元
 - 根据数据处理单元的操作和操作顺序,确定控制单元的逻辑功能
- ▶单元电路验证
- > 系统总体调试验证
 - 将各单元电路连接起来,完成整个系统的总体设计验证

控制单元和数据处理单元之间的关系

東南大學 南京 南京

- ▶数据处理单元在控制信号作用下对输入数据进行处理,并将相关信息 反馈给控制单元
- ▶控制单元根据外部控制输入和数据处理单元反馈信息,决定数据处理单元数据操作顺序

利用实验六设计的全加器(或者74283),设计一个4位二进制串行乘法器。其中"被乘数"及"乘数"均用4个逻辑电平开关输入,"积"用2个数码管显示(十六进制)。

设计要求

- 1. 使用4个逻辑电平开关输入"被乘数":
- 2. 使用4个逻辑电平开关输入"乘数";
- 3. 运行乘法器电路, 2个数码管显示"积"(十六进制);
- 4. 输入新的"被乘数"与"乘数", 重置电路得到新的"积"。

实现算法

二进制乘法可以采用移位相加的方法。即用乘数的各位数码,从低位开始依次与被乘数相乘,每相乘一次得到的积称为部分积,将第一次(由乘数最低位与被乘数相乘)得到的部分积右移一位并与第二次得到的部分积相加,将加得的和右移一位再与第三次得到的部分积相加,再将相加的结果右移一位与第四次得到的部分积相加······,直到所有的部分积都被加过一次。

系统设计框图

- 1、n位被乘数从输入加载到寄存器A中,n 位乘数从输入加载到移位寄存器B中,减 法计数器C初始化为n-1,部分积寄存器Y 初始化为0;
- 2、判断寄存器B最低位Q₀的值,如果值为 "1"则部分积与被乘数A相加,加法器输 出右移一位,如果值为"0"则加法器输 出直接右移一位。其中移出的最低位移入 寄存器B的最高位,其余保存在寄存器Y 中。同时计数器C减1。
- 3、对乘数的每一位都执行2中的操作,直到计数器C=0,结束全部操作,输出运算结果Y[n-1..0]B[n-1..0]。

算法流程示例

以被乘数M3M2M1M0和乘数N3N2N1N0分别为1101和1001为例, 其计算过程为:

- 1. 使用寄存器A、移位寄存器B分别存放被乘数M(1101)、乘数N(1001);
- 2. 寄存器Y(初始0000) 存放部分积,联合移位寄存器B输出最终积;
- 3. 依据B0(1), 将A(1101)与Y(0000)的值累加,将累加溢出(0)+累加结果 (1101)集体右移一位更新给Y,被移出的最低位(1)送给B3,当前Y-B更 新为01101100;
- 4. 依据新的B0(0),确定此次A不参与累加,直接将当前的部分积Y(0110) 右移一位更新给Y,Y3由溢出位补充,被溢出的最低位(0)送给B3,当 前Y-B更新为00110110;
- 5. 重复步骤3、4,移位相加共计四次后,完成一次乘法运算;
- 6. 输出Y-B的最终值作为积结果。

算法流程示例以1101*1001为例

		累	加器			4	位寄	存器	Y	4位移位寄存器B			
序号	Cout	S3	S2	S1	S0	Y3	Y2	Y1	Y0	B2	B2	B1	В0
0	0	0	0	0	0	0	0	0	0	1	0	0	1
1	0	1	1	0	1	0	1	1	0	1	1	0	0
2	0	0	1	1	0	0	0	1	1	0	1	1	0
3	0	0	0	1	1	0	0	0	1	1	0	1	1
4	0	1	1	1	0	0	1	1	1	0	1	0	1

状态控制模块

ASM图 **S0 Start S1** Zero

状态转移图

将算法流程图中的数据通路去除,即去掉所有条件输出,只保留控制通路,则Q0的两个出口路径指向了同一状态,多路判断框变成了单路判断框。

设计3个控制信号:

- 初始化信号 "Initialize"
- 计数和移位信号 "Shift En"
- 被加数选择信号 "Adder_En"

状态控制模块

東南大學 NOS 1902 南京

≻二进制编码实现

状态转移表:

圳大	₩ . ★	输入					
现态	次态	Start	Zero				
50	S0	0	Х				
S0	S1	1	Х				
C1	S0	Х	1				
S1	S1	Х	0				

用触发器实现, 其状态方程:

 $D=Start \bullet \overline{Q} + \overline{Zero} \bullet Q$

状态控制模块

➤One-hot编码实现

注: 考虑如何自启动

东南大学电工电子实验中心

13

数据操作模块

- **寄存器A**: 具有置数功能4位寄存器, 可以选4位锁存器、具有使能端的4位D触发器、计数器74161或移位寄存器74194实现
- •加法器:可选择前面课程设计的4位串行全加器,也可以用中规模加法器74283
- **寄存器Y**: 具有置数功能4位寄存器, 可以选4位锁存器、具有使能端的4位D触发器、计数器74161或移位寄存器74194实现
- 移位寄存器B: 具有置数功能的4位移位寄存器,可以选择4位双向移位寄存器74194实现
- 减法计数器C: 可选择4位二进制加减计数器74191, 计数长度4

控制信号与数据执行元件输入信号的关系

	模块名	操作	控制信号	控制表达式	元件	元件输入信号
	寄存器A	A ← IN_A	Initialize	S0 • Start	74161	Load = <u>Initialize</u>
	字方哭깏	Y ← 0	Initialize	-	7/161	Clear = Initialize
	寄存器Y	$Y \leftarrow (Cout, sum(31))$	Shift_En	S 1	74161	load = Shift_En
	寄存器B	$B \leftarrow IN_B$	Initialize	-	74194	S₁=Initialize⊕Shift En
	UGATIC	$B \leftarrow \operatorname{sr} B$	Shift_En	-	74194	S_0 =Initialize • Shift_En
	计数器C	C← "11"	Initialize	-	74191	Load = Initialize
į	川気給し	C← C-1	Shift_En	-	74191	G = Shift_En
	全加器	$S \leftarrow A + Y$	Adder_En	S1• Q ₀	74283	A = Adder_En • A _{in}

器件选择

ST UNI 東南大學 1902 南京

双向移位寄存器 74194

注意左移是向低位移动,右移是向高位移动

东南大学电工电子实验中心

FUNCTION TABLE

ODEDATING MODES				OUTPUTS							
OPERATING MODES	СР	MR	S ₁	S ₀	D _{SR}	D _{SL}	D _n	Q_0	Q ₁	Q ₂	Q_3
reset (clear)	X	L	Х	X	X	Х	X	L	L	L	L
hold ("do nothing")	X	Н	I	- 1	X	X	X	q ₀	q ₁	q ₂	q ₃
shift left	↑ ↑	H H	h h	l I	X X	l h	X	q ₁ q ₁	q ₂ q ₂	q ₃ q ₃	L H
shift right	↑ ↑	H H	l I	h h	l h	X X	X X	L H	q ₀ q ₀	q ₁ q ₁	q ₂ q ₂
parallel load	1	Н	h	h	Х	X	d _n	d ₀	d ₁	d ₂	d ₃

Notes

H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition

L = LOW voltage level

I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition

q,d = lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH CP transition

X = don't care

↑ = LOW-to-HIGH CP transition

CD54HC161, CD54HCT161, CD54HC163, CD54HCT163 (CERDIP) CD74HC161, CD74HCT161, CD74HC163, CD74HCT163 (PDIP, **S**OIC) TOP VIEW

CD54HC163, CD54HCT163 使用置数及计数功能 DIP) CD74HC163, CD74HCT163 SOIC)

MODE SELECT - FUNCTION TABLE FOR 'HC161 AND 'HCT161

			INP	UTS			OUTPUTS		
OPERATING MODE	MR	СР	PE	TE	SPE	P _n	Qn	TC	
Reset (Clear)	L	X	X	X	X	X	L	L	
Parallel Load	Н	н ↑		Х	- 1	1	L	L	
	Н	1	Х	Х	- 1	h	Н	(Note 1)	
Count	Н	1	h	h	h (Note 3)	Х	Count	(Note 1)	
Inhibit	Н	Х	I (Note 2)	Х	h (Note 3)	Х	q _n	(Note 1)	
· ·	Н	Х	X	I (Note 2)	h (Note 3)	Х	q _n	L	

可利用TC信号 实现倒计时结束的处理

东南大学电工电子实验中心

FUNCTION TABLE

OPERATING MODE			INPUTS			OUTPUTS
OPERATING MODE	PL	Ū/D	CE	СР	D _n	Q _n
parallal land	L	Х	Х	Х	L	L
parallel load	L	X	X	X	Н	Н
count up	Н	L	I	1	Х	count up
count down	Н	Н	I	1	Х	count down
hold (do nothing)	Н	Х	Н	X	X	no change

TC AND RC FUNCTION TABLE

	INPUTS			TERMINAL C	OUTPUTS			
Ū/D	CE	СР	Q ₀	Q ₁	Q ₂	Q ₃	TC	RC
Н	Н	X	Н	Н	Н	Н	L	Н
L	н	X	н	Н	н	Н	н	н
L	L	7	н	Н	н	Н	し	
L	н	X	L	L	L	L	L	н
Н	н	X	L	L	L	L	н	н
Н	L	7_	L	L	L	L	l	~~

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - X = don't care
 - ↑ = LOW-to-HIGH CP transition
 - = one LOW level pulse
 - = TC goes LOW on a LOW-to-HIGH CP transition

19

亦可使用实验六的全加器

FUNCTION TABLE

PINS	CIN	A ₁	A ₂	A ₃	A ₄	B ₁	B ₂	B ₃	B ₄	Σ1	Σ_2	Σ3	Σ4	C _{OUT}	EXAMPLE(2)
logic levels	L	L	Н	L	Ι	Н	L	L	Н	H	H	L	L	Н	
active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1	(3)
active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0	(4)

Note

1. H = HIGH voltage level L = LOW voltage level

2. example

1001

1010

10011

- 3. for active HIGH, example = (9 + 10 = 19)
- 4. for active LOW, example = (carry + 6 + 5 = 12)

级联两个4bit移位寄存器,利用移位寄存器的

														V ← Y	
					8位	立寄存	字器Y	'-B			寄有	序器Y	寄存	器B	
序号	RST	功能	Y3	Y2	Y1	Y0	B3	B2	B1	B0	S1	S0	S1	S0	
0	0	清零	0	0	0	0	0	0	0	0	X	X	1	1	
1	1	B置数	0	0	0	0	1	0	0	1	1	1	0	0	
2	1	Y置数	1	1	0	1	1	0	0	1	1	0	1	0	
3	1	移位	0	1	1	0	1	1	0	0	1	1	0	0	
4	1	Y置数	0	1	1	0	1	1	0	0	1	0	1	0	
5	1	移位	0	0	1	1	0	1	1	0	1	1	0	0	
6	1	Y置数	0	0	1	1	0	1	1	0	1	0	1	0	
7	1	移位	0	0	0	1	1	0	1	1	1	1	0	0	
8	1	Y置数	1	1	1	0	1	0	1	1	1	0	1	0	
9	1	移位	0	1	1	1	0	1	0	1	0	0	0	0	

结果验证

测试用例1:运行1101*1001移位相加过程中没有溢出;

测试用例2:运行1101*1101移位相加过程中有溢出;

测试用例3: 先运行1101*1001, 再运行1101*1101 查看

结果切换是否正确。

仿真波形使用总线形式展示(HEX),可增加若干个中间变量用于过程调试。

总线连接

为了便于调测:

- 多位数据采用总线连接的方式: Q[3..0]与Q[3], Q[2], Q[1], Q[0]电气相通;
- 定义名称相同的连接线, 电气相通

几种提高设计效率的方法:

参考课本7.6小节

-

- •实验预习:写出设计过程,画出逻辑电路图
- 验收要求:
- 1、各单元模块、整机联调仿真波形
- 2、四位二进制乘法结果仿真(HEX总线展示)
- ①1101×1001=75 (累加过程无溢出)
- ②1101×1101=A9 (累加过程有溢出)
- 3、提高、自主发挥
- ・实验时间:第12周
- •报告提交:第13周课内

用学号加下划线和题名作为

项目、文件夹名,例如:

JS319401_multiplier

guyujun@seu.edu.cn