

STATISTICAL COMPUTING WITH R

AULA 4

Prof. Reinaldo Borges Júnior

Medidas de tendência central para dados agrupados: média, moda e mediana na tabela de frequência

 Para aprendermos como determinar as medidas de tendência central (MÉDIA, MODA, MEDIANA) por meio de uma tabela de frequência (DADOS AGRUPADOS) vamos utilizar o método de aprendizagem por resolução de problemas (PBL). Para tanto, considere o problema abaixo:

Qual o valor da média aritmética da distribuição de frequências a seguir?

- a) 4,9.
- b) 5,2.
- c) 5,3.
- d) 5,5.
- e) 6,1.

Valores	Frequência
0 -2	10
2 -4	15
4 -6	40
6 -8	25
8 - 10	10

Medidas de tendência central para dados agrupados: média, moda e mediana na tabela de frequência

Resolução do problema:

- Aqui temos uma tabela com intervalos de classes. A fórmula de cálculo da média aritmética ponderada será:

$$\overline{X} = \frac{\sum_{i=1}^n (\overline{x}.\,f_i)}{\sum_{i=1}^n f_i}$$

- Como vimos, a aplicação desta fórmula é simples, porém, devemos criar a tabela de frequência.

T	Tabela de distribuição de frequência				
i	Valores (classes)	fi	\overline{x}	$\overline{x}.f_i$	Faci
1	0 2	10	1	10	10
2	2 4	15	3	45	25
3	4 6	40	5	200	65
4	6 8	25	7	175	90
5	8 10	10	9	90	100
Total		100		520	

$$\overline{X} = \frac{\sum_{i=1}^{n} (x.f_i)}{\sum_{i=1}^{n} f_i} = \frac{520}{100} = 5, 2$$

Medidas de tendência central para dados agrupados: média, moda e mediana na tabela de frequência

- <u>Considerando o mesmo problema apresentado</u>. Vamos, agora, vamos ampliar nossos estudos e conhecer a fórmula para moda para dados agrupados:

MODA:
$$M_0 = l_{Mo} + \left(\frac{d_1}{d_1 + d_2}\right) . h_{Mo}$$

- Onde: a classe modal é a de maior frequência (em nosso problema, temos i = 3, ou seja, terceira classe)
- l_{Mo} = limite inferior da classe modal
- h_{Mo} = amplitude da classe
- $d_1 = f_i f_{i-1}$ (Frequência da classe modal menos a frequência da classe anterior).
- $d_2 = f_i f_{i+1}$ (Frequência da classe modal menos a frequência da classe posterior).

Substituindo na fórmula: $M_0 = 4 +$	$\left(\frac{40-15}{40-15}\right)$	0-15) 5)+(40-25)	$\frac{1}{2}$ $=$	4 + ($\left(\frac{25}{25+15}\right)$. 2 = 5,2	25
--------------------------------------	------------------------------------	---------------------	-------------------	-------	---------------------------------	-----------	----

Tabela de distribuição de frequência					
i	Valores (classes)	fi	\overline{x}	$\overline{x}.f_i$	Faci
1	0 2	10	1	10	10
2	2 4	15	3	45	25
3	4 6	40	5	200	65
4	6 8	25	7	175	90
5	8 10	10	9	90	100
Total		100		520	
2 3 4 5	2 4 4 6 6 8	15 40 25 10	3 5 7	45 200 175 90	25 65 90

Medidas de tendência central para dados agrupados: média, moda e mediana na tabela de frequência

- **MEDIANA:** para determinar a mediana em uma tabela de classes, primeiro vamos determinar **a posição** da mediana. Para isso, basta dividir o número de elementos "n" por 2, ou seja:

$$Pos_{Med} = \frac{n}{2}$$

- A equação que calcula a mediana em dados agrupados é:

$$\mathbf{M_d} = \mathbf{l_{Md}} + \left(\frac{\frac{n}{2} - Fac_{i-1}}{f_{Md}}\right) . \, \mathbf{h_{Md}}$$

- Onde:
- l_{Md} = limite inferior da classe modal da mediana.
- Fac _{i-1} = frequência acumulada da classe anterior.
- f_{Md} = frequência (f_i) da classe em que se encontra a mediana.
- h_{Mo} = amplitude da classe onde está a mediana.

Tabela de distribuição de frequência					
i	Valores (classes)	fi	\overline{x}	$\overline{x}.f_i$	Faci
1	0 2	10	1	10	10
2	2 4	15	3	45	25
3	4 6	40	5	200	65
4	6 — 8	25	7	175	90
5	8 10	10	9	90	100
Total		100		520	

Medidas de tendência central para dados agrupados: média, moda e mediana na tabela de frequência

Resolução do problema:

- Já que tem-se 100 elementos, com isso, determinamos a posição da mediana:

$$Pos_{Med} = \frac{100}{2} = 50$$

- Podemos determinar a classe da mediana: i = 3
- Basta verificar a **frequência acumulada**: **Fac_i = 65** (significa que a mediana se encontra nessa Classe)
- Cálculo da Mediana (Md), fazemos a substituição dos dados obtidos, através da tabela, na sua equação:

$$M_{\rm d} = 4 + \left(\frac{50 - 25}{40}\right) \cdot 2 = 5,25$$

- Veja, agora temos <u>as três medidas de tendência central</u> para nossa tabela de frequência:
- Média: 5.2
- Moda: 5,25
- Mediana: 5,25
- Observe que nossa distribuição de frequência é praticamente simétrica.

- Relação entre as medidas de tendência central: Gráfico de pontos e curva Gaussiana
- Existe um tipo de gráfico que será tratado agora, pois era preciso apresentar as **medidas de tendência central** para que ele fizesse sentido, é chamado de **Gráfico de Pontos (Diagrama de Pontos)** (Figura 1).
- Para sua construção se utiliza a **frequência (absoluta)** e com ele é possível criar **outro tipo de Gráfico em Curva (curva normal ou Gaussiana)** teremos um momento específico para aprofundar nesse caso em particular, da distribuição normal dos dados) (Figura 2).
- Neste momento se faz necessário entender a relação entre a **tabela de frequência**, as **medidas de tendência central** e a **curva Gaussiana**.

Medidas de tendência central para dados agrupados: média, moda e mediana na tabela de frequência

- Desse modo, quando representarmos essas medidas de tendência central (MÉDIA, MODA e MEDIANA) em forma de uma curva, pode-se classificar em três tipos, como mostra a figura a seguir:

Medidas de Posição: Separatrizes

- A mediana, como apresentado, permite localizar o elemento que divide os dados exatamente ao meio, ou seja, a mediana também se comporta como uma separatriz, abaixo dela, 50% dos valores e acima 50%.
- As separatrizes ou quartis são medidas de posição que permitem calcularmos valores da variável que dividem ou separam a distribuição em partes iguais, entre elas: a mediana (que é também uma medida de tendência central); os quartis (quartas partes ou 25%); os decis (décimas partes ou 10%); e os percentis (centis ou percentual em 100 partes iguais, ou seja, 1%).
- Quartis (Qi): dividem um conjunto de dados em quatro partes iguais, assim:
- Q1: 1º quartil, organiza-se de modo a sua posição garantir que abaixo dele se encontram 25% dos elementos.
- Q2: 2º quartil, 50% dos elementos e coincide com a mediana.
- Q3: 3º quartil, 75% dos elementos antecedem o seu valor.
- Q4: 4º quartil, todos os elementos antecedem o seu valor.

Medidas de Posição: Separatrizes

- A posição de uma separatriz é dada por:

$$P_i = \frac{\iota.\,n}{100}$$

- Deste modo, é possível localizar quaisquer separatrizes no conjunto, o processo para os demais quantis é o mesmo, sejam os decis (em partes de 10%) e os centis ou percentis (em partes de 1%).

Medidas de Posição: Separatrizes

EXERCÍCIO: Dado um conjunto de dados: 7, 13, 5, 12, 16, 4, 9, 15, 6. Calcule os Q1; Q2 e Q3.

- Escrevo os números em ordem crescente :

- Então:

$$Q1 = (5+6)/2 = 5.5$$

$$Q2 = 9$$

$$Q3 = (13+15)/2 = 14$$

Medidas de Posição: Separatrizes

EXERCÍCIO: Calcular o Q1 da série de dados: 1, 2, 5, 5, 5, 8, 10, 11, 12, 12, 13, 15.

- Os números já estão em ordem crescente, então:
- Sabe-se que o primeiro quartil Q1 é o elemento que ocupa a posição 25%, logo:

$$Q_1 = P_{25} = \frac{25.12}{100} = 3 \rightarrow Q1 = 5$$

Medidas de Posição: Separatrizes

- Se os dados estão apresentados na forma de variável discreta, eles já estão ordenados.
- Identificamos a posição da medida, como fizemos com a mediana na seção anterior, e determino o percentil correspondente Pi.
- Após, com o auxílio da frequência acumulada da série, localizamos o elemento que ocupa esta posição. O valor deste elemento é a separatriz desejada.
- A coluna da frequência acumulada se torna a principal aliada para determinar a classe na qual a separatriz pertence.

Medidas de Posição: Separatrizes

Avaliação	Média de notas (M)
Excelente	9 < M ≤ 10
Bom	7 ≤ M ≤ 9
Regular	5 ≤ M ≤ 7
Ruim	3 ≤ M ≤ 5
Péssimo	M < 3

PROBLEMA

A avaliação de rendimento de alunos de um curso universitário baseia-se na média ponderada das notas obtidas nas disciplinas pelos respectivos números de créditos, como mostra o quadro acima. Quanto melhor a avaliação de um aluno em determinado período letivo, maior sua prioridade na escolha de disciplinas para o período seguinte.

Determinado aluno sabe que se obtiver avaliação "Bom" ou "Excelente" conseguirá matrícula nas disciplinas que deseja. Ele já realizou as provas de 4 das 5 disciplinas em que está matriculado, mas ainda não realizou a prova da disciplina I, conforme o quadro.

Para que atinja seu objetivo, a nota mínima que ele deve conseguir na disciplina I é?

Disciplinas	Notas	Número de créditos
I		12
П	8,00	4
III	6,00	8
IV	5,00	8
V	7,50	10

Medidas de Posição: Separatrizes

Avaliação	Média de notas (M)
Excelente	9 < M ≤ 10
Bom	7 ≤ M ≤ 9
Regular	5 ≤ M ≤ 7
Ruim	3 ≤ M ≤ 5
Péssimo	M < 3

RESOLUÇÃO DO PROBLEMA

$$M = (12.x + 4.8 + 8.6 + 8.5 + 10.7,5) / 42$$

$$M = (12x + 32 + 48 + 40 + 75) / 42$$

Para atingir o objetivo M = 7

Disciplinas	Notas	Número de créditos		
T.		12		
II	8,00	4		
Ш	6,00	8		
IV	5,00	8		
V	7,50	10		

OBRIGADO

Copyright © 2021 | Professor Reinaldo Borges Júnior

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente proibido sem consentimento formal, por escrito, do professor/autor.

