

מבוא למדעי המחשב

תירגול 3: לולאות, קלט, וטיפוסים

תוכנייה

- while לולאת
 - קלט •
- טיפוסי משתנים
- המרת טיפוסים
 - char טיפוס •

מבוא למדעי המחשב מ' - תירגול 3

- קטע קוד מתבצע שוב ושוב כל עוד תנאי מתקיים

```
int number = 40;
while(number>0)

{
    printf("%d remain\n", number);

number=number-1;
}
```

<u>תרגיל 1</u>: הדפיסו כמה פעמים ניתן לחלק מספר ב 2 ל<mark>פני</mark> שהתוצאה קטנה או שווה ל 1

```
int number = 128, counter = 0;
while(number>1)
                                             תנאי
 number/=2;
                                           גוף הלולאה
 counter++;
printf("log2(%d)=%d\n", number,
                                     מה הבעיה?
 counter);
```

```
int original number = 128, counter=0;
int number = original number;
while(number>1)
                                            תנאי
 number/=2;
 counter++;
                                        גוף הלולאה
printf("log2(%d)=%d\n", original number,
 counter);
```


קלט

מבוא למדעי המחשב מ' - תירגול 3

- scanf

- . קוראת ערך לתוך משתנה scanf הפונקציה
 - :קריאה פשוטה ל-scanf מתבצעת כך

```
int x;
scanf("%d", &x);
```

- $oldsymbol{ iny x}$ שורה זאת קוראת ערך לתוך המשתנה
- :בדומה ל-printf ני<u>תו לקרוא יות</u>ר ממשתנה אחד

```
scanf("%d%d", &a, &b);
```

שימו לב לסימן ה-& לפני כל שם משתנה! סימן זה הוא חובה! את הסיבה לכך נבין בתרגולים מתקדמים

-scanf

- לפקודה () scanf יש לציין איזה טיפוס של נתון אנו scanf () רוצים לקרוא מהמשתמש: שלם %d או שבר %lf או שבר %lf () שימו לב להבדל מ-printf).
 - כאשר התוכנית מגיעה בזמן ריצה לפקודת scanf()
 למשתמש.
 - בשלב זה התוכנית מאפשרת למשתמש להקליד את הנתון, וכאשר הוא לוחץ על Enter הנתון שהוא הקליד מועבר לתוכנית. נתון זה מוכנס למשתנה שצוין, ואז התוכנית ממשיכה בריצתה.

קלט/פלט

The sum is: 12

תרגיל 2: כתבו תוכנית הקולטת 2 מספרים
 מהמשתמש ומדפיסה את סכומם

```
#include <stdio.h>

int main()
{
    printf("Please enter numbers:\n");
    int x=88,y=19;
    scanf("%d%d", &x, &y);
    printf("The sum is: %d",x+y);
    return 0;
}
Please enter numbers:
102
```

מבוא למדעי המחשב מ' - תירגול 3

קלט/פלט - הרחבה

- כישלון בקריאת הקלט + בדיקת קלט
 - Input buffer
 - EOF •

scanf כשלון של

```
int main() {
   int a=-1;
   scanf("%d", &a);
   printf("a=%d",a);
   return 0;
}
```

• מה תדפיס התוכנית הבאה?

קלט:

ten 10₊ J

- a=-1 תשובה
- התוכנית לא הצליחה לקרוא את a, כי הכנסנו
 משהו שהוא לא מספר!

scanf ערך החזרה של

- ? איך נגלה אם קריאת הקלט הצליחה
- . scanf תשובה: ע"י בדיקת ערך ההחזרה של
 - ערך ההחזרה של scanf הוא מספר שלם scanf- המייצג את מספר הדגלים (%) ש-scanf הצליחה "לאכול".
 - כלומר, מספר המשתנים ש scanf הצליחה לקלוט.

scanf ערך החזרה של

- אם הקריאה של דגל כלשהו נכשלה, לא יהיה
 ניסיון להמשיך ולקרוא את שאר הדגלים.
- :scanf דוגמאות לשימוש בערך ההחזרה של •

```
int res = scanf("%d", &x);
```

שמירת הערך

```
if (scanf("%d", \&x) ==1)
```

השוואת הערך לקבוע 1

בדיקת ערך החזרה – scanf

```
int main() {
   int a=-1, b=-1, c=-1;
   if(scanf("%d", &a)!=1){
     printf("Error in a\n");
     return 0;
   if(scanf("%d%d", &b, &c)!=2){
     printf("Error in b or c\n");
     return 0;
                                             :קלט
   printf("a=%d,b=%d,c=%d",
                                 10 twenty 30 →
          a,b,c);
                                              פלט
   return 0;
                                 Error in b or c
```

בדיקת קלט

- כאשר אתם משתמשים ב-scanf בתרגילי הבית,
 עליכם לוודא שהיא הצליחה. ניתן לעשות זאת
 באמצעות בדיקת ערך ההחזרה שלה:
 - למשל אם היא הייתה אמורה לקלוט 2 מספרים:

```
if(scanf("%d%d",&d,&n)!=2) {
    printf("Error");
    ...
}
```

(Input Buffer) חוצץ הקלט

- מטרתנו כעת היא להבין כיצד עובדת קליטת קלט בעזרת
 scanf. לצורך כך, עלינו להכיר מושג חדש: חוצץ הקלט.
- חוצץ הקלט הוא אזור זיכרון המתוחזק ע"י מערכת ההפעלה. תפקידו הוא לשמור את קלט המשתמש עד אשר הוא נקרא ע"י התוכנית (או עד שהתוכנית מסתיימת)
 - מערכת ההפעלה תפנה למשתמש (תחכה לקלט) רק
 כאשר החוצץ ריק. בתחילת התוכנית החוצץ תמיד ריק.

מה קורה אם נקליד שני מספרים?

10 9↓ משתמש Input Buffer מערכת הפעלה scanf("%d",&num1); תוכנית scanf("%d", &num2);

קלט שגוי

כאשר הנתון הבא בתור אינו מתאים לטיפוס המבוקש הקריאה נכשלת (התוכן של המשתנה נשאר כשהיה והנתון נשאר בחוצץ)

התקני הקלט והפלט הסטנדרטיים

- באופן רגיל •
- קלט סטנדרטי (scanf): מגיע מהמקלדת
 - מגיע למסך (printf) פלט סטנדרטי
- עם redirection (כמו שנלמד בתרגול 1)
- hw0q1.exe < input.txt > output.txt
 - input.txt מהקובץ (scanf) קלט סטנדרטי
 - .output.txt פלט סטנדרטי (printf): –

התוכנית <u>איננה יודעת</u> בזמן הרצתה לאן מקושרים הקלט והפלט הסטנדרטים. זהו תפקידה של מערכת ההפעלה.

קריאה מקובץ והקבוע EOF

- כאשר קוראים מקובץ, הקלט יכול להגמר (לא יכול לקרות בקלט ממקלדת).
 - במקרה כזה, scanf מחזירה את הקבוע End Of File) EOF).

```
if(scanf("%d%d",&d,&n) == EOF) {
    printf("No input");
    ...
}
```

כאשר הקלט מגיע מהמקלדת, ניתן להכניס סימן EOF מלאכותי בקלט באמצעות לחיצה על Ctrl+D במקלדת (Ctrl+D במאכ). שימו לב!
 יש ללחוץ על Ctrl+Z בשורה חדשה במסך על מנת שיקלט EOF.

טיפוסי משתנים

מבוא למדעי המחשב מ' - תירגול 3

טיפוסי משתנים

אם משתנה הוא רצף סיביות בזיכרון,
 אזי טיפוס המשתנה היא הדרך לפרש את הסיביות

בית (byte)

• לדוגמא:

unsigned int עבור מתפרש כ "4,294,967,295"

int עבור מתפרש כ"–1

משתנים וטיפוסי משתנים

- ישנם טיפוסים רבים בשפת C •
- char, short, int, long, long long שלמים: –
- unsigned char, unsigned short, etc. :חיוביים
 - float, double, long double שברים –
 - טיפוסים שונים תופסים כמות זיכרון שונה.

משתנים וטיפוסי משתנים

Туре	min	max	precision	Size in memory*
int	-2147483648	2147483647	1	4
unsigned	0	4294967295	1	4
double	-1.79e10 ³⁰⁸	1.79e10 ³⁰⁸	2.2*10 ⁻³⁰⁸ (depend on number)	8
long long	-2 ⁶³	2 ⁶³ -1	1	8
char	-128	127	1	1

הגודל המדוייק תלוי בחומרה ובמערכת ההפעלה הדיוק של שברים תלוי בערכם המדוייק (ככול שהערך יותר גדול, הדיוק קטן)

משתנים וטיפוסים

<u>תרגיל 2</u>: קלטו 2 מספרים שלמים base ו exp, וחשבו שse^{exp} (חזקה) התוכנית צריכה לטפל בתוצאות עד 10¹⁵

משתנים וטיפוסים

```
long long pow=1;
int base, exp;
scanf("%d%d", &base, &exp);
while( exp>0 ) {
 pow*=base;
 exp--;
printf("pow=%lld\n",pow);
```

משתנים וטיפוסים

```
:long long מטיפוס pow תוצאה כאשר
long long pow=1;
                        10 10
                        pow=100000000000
int base, exp;
scanf("%d%d", &base, &exp);
while( exp>0 ) {
                           :int מטיפוס pow תוצאה כאשר
 pow*=base;
                        10 10
                         pow=1410065408
 exp--;
printf("pow=%lld\n",pow);
```


Casting - המרה

המרת משתנים אוטומטית

ישנן פעולות רבות המערבות שני איברים: C בשפת •

- אם האיברים אינם מאותו הטיפוס, מתבצעת <u>המרה</u> אוטומטית.
- עבור פעולות השמה, הערך בצדו הימני של האופרטור
 מומר לטיפוסו של המשתנה שלתוכו כותבים.
- לכל יתר האופרטורים, הטיפוס עם תחום הייצוג הקטן
 יותר מומר לזה עם תחום הייצוג הגדול יותר, לפי הסדר

:הבא

?המרה אוטומטית – סוף הסיפור

- המרה אוטומטית אינה מתבצעת כשמשתמשים ב-(printf().
 - במקרה זה יש לבצע <u>המרה מכוונת</u>.
 - ומה לגבי התוכנית הבאה

```
int num1 = 1000000,
    num2 = 5000000;

double product = num1 * num2;
```

מדוע זה עלול לא לעבוד?

המרה מכוונת (casting)

המרת ערך כלשהו לטיפוס אחר נעשית על ידי כתיבת שם
 הטיפוס החדש בסוגריים, לפני הערך עצמו. למשל :

```
int x = 2;

printf("%lf", (double)x);

double d = (double)3 / 2;
```

- פעולת ההמרה לוקחת את הערך הנתון, ומחזירה עותק
 שלו מהטיפוס החדש (היא אינה משנה את הערך
 המקורי!).
- בדוגמה למעלה, **x** עצמו <u>איננו משתנה</u> כתוצא<mark>ה מהפעולה.</mark>

דוגמאות ל-Casting

```
int cake num = 5, children = 3;
double cake per child;
                                        כמות העוגה
                                       שיש לכל ילד:
cake per child =
                           cake per child =
  (double) cake num /
                             cake num /
 children ;
                              (double) children ;
                                        מה תהיה
cake per child =
                                        ?התוצאה
  (double) (cake num / children);
```

טיפוסי משתנים - סיכום

- טיפוסים שונים
- .'וכו : int int: מספרים שלמים, למשל: 0,1,435,-99 וכו
- double : שברים, למשל: 1.0, 1.2, 0.0, -324.3 וכו'.
- ועוד float, unsigned, long, long long, char, bool :ועוד המון
 - המרה בין טיפוסים
 - מפורשת (double), או אוטומטית
 - %d, %f, %lf : קלט ופלט

char olou

מבוא למדעי המחשב מ' - תירגול 3

לפענח char קצת אחרת...

- יכול לשמור אחד מ-256 ערכים שונים char בית אחד).
 - ישנה טבלה סטנדרטית (ASCII) להמרה בין 256 ערכים מספריים, לבין 256 תווים שונים.
 - .'וכו'. A = 65, B = 66 וכו'.
- כתיבת התו בין גרשיים נותנת את הערך המספרי שלו, לדוגמה: 'A'
- שם הטיפוס char , הוא קיצור ל-character ורומז על שימוש זה.

טבלת ASCII: ממספרים לתווים

רווח הוא מס' 32

ישנם תווים כגון 1f, cr, eof שאינם ניתנים להדפסה) ומייצגים תזוזות של הסמן או הגעה לסוף קלט וכד')

000	(nul)	016 🕨	(dle)	032	sp	048	Ò	064	0	080	P	096	`	112	р
001 🖘 🛚	(soh)	017 ◀	(dc1)	033	<u>!</u>	049	1	065	A	081	Q	097	а	113	q
002 😝 1	(stx)	018 ‡	(dc2)	034	**	050	2	066	В	082	R	098	b	114	r
003 ♥	(etx)	019 ‼	(dc3)	035	#	051	3	067	С	083	S	099	C	115	ន
004 ♦	(eot)	020 ¶	(dc4)	036	\$	052	4	068	D	084	T	100	d	116	t
005 🛧	(enq)	021 §	(nak)	037	ş	053	5	069	E	085	U	101	е	117	u
006 🛦 1	(ack)	022 –	(syn)	038	&	054	6	070	F	086	V	102	f	118	V
007 •	(bel)	023 🛓	(etb)	039	•	055	7	071	G	087	W	103	g	119	W
008 🗖	(bs)	024 🕇	(can)	040	(056	8	072	H	088	X	104	h	120	X
009	(tab)	025 ↓	(em)	041)	057	9	073	I	089	Y	105	i	121	У
010	(lf)	026	(eof)	042	*	058	:	074	J	090	Z	106	j	122	Z
011 ਫ	(vt)	027 ←	(esc)	043	+	059	;	075	K	091	[107	k	123	{
012 🔻 1	(np)	028 L	(fs)	044	,	060	<	076	L	092	\	108	1	124	
013	(cr)	029 ↔	(gs)	045	-	061	=	077	M	093]	109	m	125	}
014 ភ	(so)	030 🛦	(rs)	046		062	>	078	N	094	^	110	n	126	~
015 🌣 1	(si)	031 ▼	(us)	047	/	063	3	079	0	095	_	111	0	127	\triangle

רק חצי מהטבלה מופיע כאן. כדי לראות את הטבלה המלאה חפשו Extended ASCII Table

תכונות הטבלה

- הערכים המתאימים לתווים ' 9'....' 0' הם רציפים, ולפי סדר הספרות.
- רציפים, 'a'..'z' רציפים, ולפי סדר הא"ב הרגיל.
 - .'A'...'Z' כך גם הערכים המתאימים לתווים ' 'A'...' -

<u>תרגיל 3 א'</u>: כתבו תכנית המקבלת כקלט תו בודד ומד<mark>פיסה</mark> אותו ואת ערך ה- ASCII שלו.

```
char c = 0;
scanf(" %c", &c);
printf('numeric value=%d, character=%c\n", c,c);
```

הרווח כאן חשוב- פירושו שיש להתעלם מרווחים וממעברי שורה המופיעים בתחילת המשפט (התו שיכנס ל-c הוא התו הראשון שאינו רווח)

<u>תרגיל 3 ב'</u>: כתבו תכנית הקולטת רצף תווים עד שה<mark>תקבל התרגיל 3 ב'</mark>: כתבו תכנית הקולטת רצף תווים עד שה<mark>תקבל הנקודה).</mark> התו '.', ומדפיסה כל תו ואת ערך ה- ASCII שלו (כולל <mark>הנקודה).</mark>

```
char c = 0;
scanf(" %c", &c);
while (c != '.')

{
    printf("numeric value=%d, character=%c\n", c,c);
    scanf(" %c", &c);
}
printf("numeric value=%d, character=%c\n", c,c);
```

הפלט יופיע רק לאחר הקשת ENTER.

<u>תרגיל 4</u>: כתבו תכנית המקבלת כקלט אות קטנה בש<mark>פה</mark> האנגלית ומדפיסה אותה כאות גדולה.

<u>תרגיל 4</u>: כתבו תכנית המקבלת כקלט אות קטנה בש<mark>פה</mark> האנגלית ומדפיסה אותה כאות גדולה.

```
char c;
scanf(" %c", &c);
c = (c-'a')+'A';
printf("%c", c);
```

תרגיל <u>5</u>: כתבו תכנית המקבלת כקלט אות קטנה בש<mark>פה z</mark> האנגלית ומדפיסה את האות העוקבת לה (העוקבת של z haix). היא a).

<u>תרגיל 5</u>: כתבו תכנית המקבלת כקלט אות קטנה בש<mark>פה</mark> האנגלית ומדפיסה את האות העוקבת לה (העוקבת של <mark>z</mark>

.(a היא

```
לפני
          #define NUM LETTERS ('z'-'a'+1)
 main
          char c;
          scanf(" %c", &c);
קטע קוד
          c = (c-'a');
  מתוך
הפונקציה
          c = (c+1)% NUM LETTERS;
  main
          c += 'a';
          printf("%c", c);
```

<u>תרגיל 6</u>: כתבו מחשבון – תכנית המקבלת מספר, פע<mark>ולת</mark> חשבון (חיבור/חיסור/כפל/חילוק) ומספר, מחשבת ומ<mark>דפיסה</mark> את ערך הביטוי.

```
char c = 0; int op1 = 0, op2 = 0, res = 0;
scanf("%d %c %d", &op1, &c, &op2);
switch(c){
    case \+': res = op1+op2; break;
    case '-': res = op1-op2; break;
    case '*': res = op1*op2; break;
    case \'/': res = op1/op2; break;
    default: printf("error: unknown operation");
             return 1;
printf("%d%c%d=%d\n", op1, c, op2, res);
                                                36
```

תווים - סיכום

- 255 מכיל מספר בין 0 ל char
 - ASCII מקביל לתווים ע"י טבלת
 - ('A') קבועי תווים •
 - %d, %c הדפסה באמצעות •

טיפוסי משתנים - תרגילים

?מהו ערכו וטיפוסו של הביטוי

ביטוי	טיפוס	ערך
5 - 4	int	1
1 / 2	int	0
1 / 2.	double	0.5
(double)1 / 2	double	0.5
(double)(1 / 2)	double	0.0
'A' + 3	int	'D' (= 68 , ONLY if ASCII)
'Z' - 1	int	'Y' (= 89, ONLY if ASCII)
'Z' - 'A' + 'a'	int	'z'
'E' + 4*('b'-'c')	int	'A'

?מהו ערכו וטיפוסו של הביטוי

[כאשר יש יותר מביטוי אחד, התיחסו לביטוי הצהוב]

הניחו שהמשתנים הבאים הוגדרו:

char c;
int i

ביטוי	טיפוס	ערך	תופעות לוואי
c = 'G'; i = 3;			
<pre>(double)i/(c-'E')</pre>			
i = 5.7;			
i = 5.2;			
(double)i			

?מהו ערכו וטיפוסו של הביטוי

[כאשר יש יותר מביטוי אחד, התיחסו לביטוי הצהוב]

הניחו שהמשתנים הבאים הוגדרו:

char c;
int i

ביטוי	טיפוס	ערך	תופעות לוואי
<pre>c = 'G'; i = 3; (double)i/(c-'E')</pre>	double	1.5	c ← 'G' i ← 3
i = 5.7;	int	5	i ← 5
i = 5.2;	int	5	i ← 5
(double)i	double	i	אין ! בפרט, i לא השתנה!

אופרטורים

מבוא למדעי המחשב מ' - תירגול 3

אופרטורים

- אופרטור הוא פעולה של C, המקבלת ערך יחיד או זוג
 ערכים, ומחזירה ערך כלשהו.
 - . אופרטור אונארי (unary operator) מקבל ערך יחיד •
 - . אופרטור בינארי (binary operator) מקבל זוג ערכים
- ישנם מספר אופרטורים המשנים את הערכים שהם מקבלים. השפעה זו נקראת <u>תוצאת לוואי</u> (side-effect) של האופרטור.

אופרטורים בינאריים

פעולות חשבון:

a+b	a-b	a*b	a/b	a%b
-----	-----	-----	-----	-----

• השוואות:

a && b a || b :פעולות לוגיות

a=b a+=b a-=b a*=b a/=b •

אופרטורים אונאריים

-a מינוס מתמטי: •

(double) num :casting •

:אופרטורי קידום

a++ a-- ++a --a

דוגמאות

int
$$x = 5$$
, $y = 0$, $x = 5$, $y = 0$

$$y = -x + x$$
; $x = 6$, $y = 13$

$$y = ++x + 7$$
;
$$y = x++ + 3$$
; $x = 7$, $y = 9$

$$y = ++x + x++ ;$$
and definition of the content of t

דוגמאות

```
int x=0, y=5;
while (x++< y) {
                                   מה יודפס?
  printf("%d ",x);
int x=0, y=5;
                                 ומה עכשיו?
while (++x < y) {
  printf("%d ",x);
```