A Generic Acceleration Framework for Stochastic Composite Optimization

Andrei Kulunchakov and Julien Mairal - Inria Grenoble

Goal

Problem: acceleration of convex optimization methods for minimization of the **expected risk**.

Developed tool: generic framework using iterative construction and minimization of surrogate functions.

Motivation and context

- Common approach in ML: approximate the expected risk by a finite sum. But this creates an additional bias of approximation.
- If infinite amount of data is available, one can minimize the **expected risk**, requiring stochastic optimization. Standard fast methods may be unstable or slow in this case.
- Having access only to approximate gradients, we substantially accelerate/stabilize these methods by the framework.

Detailed statement of the problem

$$\min_{\mathbf{x}\in\mathbb{R}^p}\left\{F(\mathbf{x})=\frac{1}{n}\sum_{i=1}^n f_i(\mathbf{x})+\psi(\mathbf{x})\right\}\quad\text{with stochastic terms }f_i(\mathbf{x}),$$

which are μ -strongly convex and L-smooth and ψ is convex. When n=1, we recover classical composite optimization problems. For each i, the gradient is noisy $\tilde{\nabla} f_i(x) = \nabla f_i(x) + \xi_i$.

Contributions in examples

There are mild requirements on the convergence of methods that we want to accelerate: they even can be biased!

Examples of acceleration are presented below with $\Delta_0 = F(x_0) - F^*$, $\Omega^2 = ||x_0 - x^*||^2$ and a targeted accuracy ε .

Deterministic cases:

$$(L/\mu)\log\left(\Delta_0/\varepsilon\right)$$
 becomes $\sqrt{L/\mu}\log\left(\Delta_0/\varepsilon\right)$, $(n+L/\mu)\log\left(\Delta_0/\varepsilon\right)$ becomes $\left(n+\sqrt{nL/\mu}\right)\log\left(\Delta_0/\varepsilon\right)$;

and stochastic cases:

$$(L/\mu)\log(\Delta_0/\varepsilon)$$
 biased as $\varepsilon \geq \sigma^2/\mu$ becomes convergent $\sqrt{L/\mu}\log(\Delta_0/\varepsilon) + \sigma^2/\mu\varepsilon$, (1)

and similarly biased

$$(n+L/\mu)\log(\Delta_0/\varepsilon)$$
 becomes convergent (2)
$$\left(n+\sqrt{nL/\mu}\right)\log(\Delta_0/\varepsilon)+\sigma^2/\mu\varepsilon.$$

Original (deterministic) approach called Catalyst

- Given $\kappa > 0$, for each k we build a surrogate function $h_k(x) \triangleq F(x) + (\kappa/2) \|x y_{k-1}\|^2$.
- Enjoying better properties than F(x), it is effectively minimized.
- Iterative minimization of $h_1, h_2, ..., h_k$ by some method \mathcal{M} , allows to accelerate \mathcal{M} on minimization of $F(\mathbf{x})$.

But, this is only for deterministic cases.

Our approach. Stochastic surrogates

We allow greater flexibility to surrogate functions h_k :

- h_k is $(\kappa + \mu)$ -strongly convex;
- $\mathbb{E}[h_k(x)|\mathcal{F}_{k-1}] \leq F(x) + (\kappa/2) ||x y_{k-1}||^2$ for some α_{k-1} ;
- \mathcal{M} "knows" the exact minimizer x_k^* of h_k and a point x_k such that $\mathbb{E}\left[F(x_k)\right] \leq \mathbb{E}\left[h_k^*\right] + \delta_k$ with $\delta_k > 0$.

First example of a surrogate

Given g_k as a stochastic realization of $\nabla f(y_{k-1})$, we consider

$$h_k(x) := f(y_{k-1}) + g_k^{\top}(x - y_{k-1}) + \frac{\mu + \kappa}{2} \|x - y_{k-1}\|^2 + \psi(x),$$
 with the exact minimizer $x_k^* = \text{Prox}_{\psi/(\mu + \kappa)} [y_{k-1} - g_k/(\mu + \kappa)].$

Algorithm [1] (exact minimization)

FOR k = 1, ..., K **DO**

- using a fixed improvable \mathcal{M} , obtain x_k and x_k^* ;
- update the extrapolated sequence

$$y_k = x_k^* + \beta_k(x_k^* - x_{k-1}) + \frac{(\kappa + \mu)(1 - \alpha_k)}{\kappa}(x_k - x_k^*),$$
 (3)

where α_k , β_k are from standard Nesterov extrapolation technique. **OUTPUT:** x_k (final estimate).

As a result, new accelerated SGD algorithm, converging as (1).

Algorithm [2] (inexact minimization)

In some situations, the surrogate function h_k is such that x_k^* is not available, for example when

$$h_k(x) := F(x) + (\kappa/2) ||x - y_{k-1}||^2,$$

Then, in Equation (3) we use x_k instead of x_k^* . This results in **new** multi-stage algorithms with the convergence (2).

Advertisement for post-doc positions in Grenoble

in machine learning, optimization, computer vision, and ski.

Basic restart schemes

In order to get converging algorithms out of Alg. [1] and [2], we sometimes address to restart procedure with mini-batching:

- at stage k, choose a target accuracy $\varepsilon_k = \varepsilon_{k-1}/2$
- set up a mini-batch of size $b_k = 2b_{k-1}$ to sample gradients, so that σ^2 becomes σ^2/b_k at the stage k;
- minimize the objective up to accuracy ε_k using $O(b_k/\tau)$ steps of \mathcal{M} and using previous solution as a "warm start".

Examples of final improvements

We provide practical choices for κ for different algorithms dealing with stochastic perturbations.

We see that we breach the optimal linear bias part, while preserving optimal robustness to noise.

Experiments on logistic regression ($\sigma^2 = 0$ on top)

- (left) CIFAR-10 represented by using a two-layer unsupervised convolutional neural network (n = 50000).
- (center) dataset with gene expressions data and the binary labels (n = 295);
- (right) Pascal Large Scale Learning Challenge (n = 250000);

