Mîndrilă Claudiu, grupa 301

Tema 2-Coduri

- 1. (a) Fie $c \in C$. Ponderea lui înseamnă numărul de 1-uri din el. Dar $c \in C = C^{\perp}$ deci $\langle c, c \rangle = 0$, de unde numărul de 1 este congruent cu 0, modulo 2. Deci ponderea e pară.
 - (b) Avem că n este par pentru că avem un cod autpadjunct. Atunci $<(11...1),(11...1)>=0, deci (11...1) \in C^{\perp}=C.$
 - (c) Fie c un element din cod, A numărul de 1-uri, B numărul de 2-uri. Ca mai sus, $\langle c, c \rangle = 0$ de unde $A \cdot 1^2 + B \cdot 2^2 = 0$, i. e. A + B = 0, dar A + B este chiar ponderea.

(d)

- 2. Ou sont les devoirs d'antan...?
 - (a) Avem de-a face cu un cod tip $[4, 2, 1]_2$.
 - (b) Matrice generatoare poate fi $G = \begin{pmatrix} 0100 \\ 0001 \end{pmatrix}$. Să determinăm codul dual: dacă $(abcd) \in C^{\perp}$, atunci b = 0 = d (este perpendicular pe cuvintele din matricea generatoare). Deci C^{\perp} va fi generat de următoarele cuvinte pe care le şi punem în matricea de control: $H = \begin{pmatrix} 1000 \\ 0010 \end{pmatrix}$.
 - (c) Am determinat dualul și el are parametrii $[4, 2, 1]_2$
 - (d)
 - (e)
- 3. Nu există astfel de coduri. Un astfel de cod e un subsupațiu $C \subset \mathbb{F}_2^3$ unde cuvintele au toate componentele $\neq 0$ și dimensiunea este $k \leq 3$. El are cel mult 2³ cuvinte (astea sunt toate cuvintele cu toate componente nenule) și, 3^k cuvinte. Deci k=1. Are cuvântul nul și alte două. Dar acestea 2 coincid în minim o poziție (deci diferența lor are un 0, deci nu e în cod) sau măcar pe o poziție diferă, dar atunci suma lor are pe poziția aceea 0,
- 4. A doua cerință o rezolvă și pe prima. O rezolvăm deci pe a doua: Fie un cod de tip $(n, M, n-1)_2$. Să zicem că $M \geq 3$. Fie $(a_1 a_2 \dots a_n) \in C$. Un al doilea cuvânt diferă de precedentul în minim n-1 poziții, să zicem în primele n-1: $(1-a_1, 1-a_2, \dots 1-a_{n-1}, b)$. Un al treilea cuvânt (există, sunt minim 3) diferă de primele în măcar n-1 poziții. Diferind de al doilea ar putea să fie
 - diferit în primele n-1 poziții, deci $(a_1, \ldots a_{n-1}, 1-b)$. Dar atunci distanța față de primul este $1 \geq n-1$, fals.
 - În pozițiile $\neq 1$ (pentru simplitatea redactării), deci $(1-a_1, a_2, \dots a_{n-1}, 1-a_n)$ b. Dar , din nou, diferă de primul în 2 poziții, i.e. $2 \ge n-1$, fals.

Deci $M\geq 2.$ Un exemplu pentru M=2este $C=\{00\ldots 0,\ 11\ldots 10\}\subset$