A Triple Space-Based Semantic Distributed Middleware for IoT

Aitor Gómez-Goiri¹ Diego López-de-Ipiña²

DeustoTech, Deusto Institute of Technology http://www.morelab.deusto.es

July 6, 2010

Presentation

- Motivation
- 2 Basic API
- Proposed middleware
 - queryMultiple
 - Services
 - Embedded platform
 - Mobile platform
- Demo
- Experimentation
- 6 Conclusions

Motivation

- Self-configuring wireless network of devices whose purpose would be to interconnect all things
- Smart environments usually consist of a central device which has reason capacity and coordinates other devices
- Requires human intervention every time a new device is deployed
- Our aim is try to simplify the collaboration between devices
 - providing certain intelligence on them
 - without centralized coordinator

Some alternatives...

- UPnP. Autoconfigure networks, devices share capabilities, events...
- DLNA. To share media content.
- Drawbacks:
 - Multiple APIs and protocols from different vendors
 - Semantic: Share knowledge instead of data.
 - Without predefined language.

Triple Space

- Tuplespace: read and write data structures in a shared space
- TripleSpace: read and write triples of semantic data
 - Reference autonomy
 - Time autonomy
 - Space autonomy
- tsc++

Distributed approach

How is it distributed?

Write

Query

Read

Take

Subscribe and advertise

Proposed middleware

- tsc++ has been modified to provide another 3 primitives
 - queryMultiple
 - register
 - invoke
- tscME developed
- communication between tsc++ peers and tscME peers
- gateway for other embedded devices

Boundaries

Query vs. QueryMultiple

- template: ?s ?p ?o .
- n templates which are extracted from a SPARQL query

Input query

```
CONSTRUCT {
  ?measure ismed:hasValue ?value .
}
WHERE {
  ?measure rdf:type ismed:LightMeasure .
  ?measure ismed:hasValue ?value .
  ?measure ismed:hasDateTime ?datetime .
  OPTIONAL {
    ?measure2 rdf:type ismed:LightMeasure .
    ?measure2 ismed:hasDateTime ?datetime2 .
    FILTER(?datetime2 > ?datetime) .
  }
  FILTER( !bound(?datetime2) )
```

Templates after processing the query

- ?s rdf:type ismed:LightMeasure .
- ?s ismed:hasValue ?o .
- ?s ismed:hasDateTime ?o .

Why is a new service approach necessary?

Security

Concurrency

Location of the information

Register

Service Consumer

Invocation (from the service consumer point of view)

Invocation (from the service provider point of view)

Embedded platform: SunSPOT

- Squawk Virtual Machine
- Basestation
- RESTful API for tsc++: Jetty + Jersey

Mobile platform: tscME

Communication: Jxme

Data store: RecordStore/Memory

Semantic mngmnt: Microjena

Scenario

Experimentation

Kernels	1			10			20		
Spaces	1	5	10	1	5	10	1	5	10
read	0.2	0.2	0.3	3.5	3.0	3.0	10	10	9.8
take	0.2	0.2	0.3	3.4	2.9	2.6	10.3	9.9	11.1
query	0.4	0.3	0.2	7.0	3.7	3.3	24.8	11.9	10.6

Table: TscME networking evaluation results (in seconds)

- ↑ responses: ↑ processing time
 - perform specific queries
- ↑ graphs: ↑ processing time
 - distribute graphs over different spaces

Conclusions

- TS appropriate to share knowledge between heterogeneous devices
- tsc++ is not appropriate for mobile devices: tscME
- Primitives are powerful but awkward
- Performance dependent on the implementation
- Not only between them, also exporting data to Internet