Mecânica e Campo Electromagnético 2015/2016

- · Força magnética entre correntes.
- •Lei de Biot-Savart. Linhas de campo.
- ·Força de Lotentz.
- •Circulação do campo magnético ao longo de uma curva fechada: lei de Ampère.
- •Discussão das condições em que um campo magnético pode ser considerado conservativo.
- •Rotacional do campo magnético.

Maria Rute André

rferreira@ua.pt

Campo Magnético

Assim como estudámos na electroestática, cargas em repouso geram campo elétrico, agora correntes estacionárias geram campos magnéticos.

Campo Magnético: definição

Consideremos uma partícula de carga q que se move com uma velocidade v.

- ullet A magnitude da força magnética, F_b , exercida na carga é proporcional a q e do vetor *v*;
 • A magnitude e direção da força magnética, *F_b*, depende dos vetores *v* e *B*;
- •A força magnética, F_b , desaparece se o vetor v é paralelo ao vetor B. Quando o vetor v faz um ângulo θ com o vetor B, a direção da força magnética é perpendicular ao plano formado pelo vetores v e B e o módulo de F_b é proporcional ao sen θ .
- Quando o sinal da carga é alterado (+ para -, ou vice-versa) a direção de F_b , também, é invertida.

$$\vec{\mathbf{F}}_{B} = q\vec{\mathbf{v}} \times \vec{\mathbf{B}}$$

$$F_B = |q| vB \sin \theta$$
 Em módu

Campo Magnético

$$1Tesla = 1T = 1 \frac{Newton}{(Coulomb)(metro/segundo)} = 1 \frac{N}{C(m/s)} = 1 \frac{N}{Am}$$

Unidades não SI: Gauss (G)

$$1Tesla = 1T = 10^4 G$$

Nota: O vetor F_b é sempre perpendicular aos vetores v e B e não altera a velocidade (energia cinética) da partícula; consequentemente, F_b não realiza trabalho sobre a partícula

$$dW = \vec{\mathbf{F}}_{R} \cdot d\vec{\mathbf{s}} = q(\vec{\mathbf{v}} \times \vec{\mathbf{B}}) \cdot \vec{\mathbf{v}} dt = q(\vec{\mathbf{v}} \times \vec{\mathbf{v}}) \cdot \vec{\mathbf{B}} dt = 0$$

A direcção do vector velocidade pode, no entanto, ser alterada pela força magnética

Força Magnética

Sabemos que uma partícula carregada que se move num campo magnético B, está sujeita a uma F_b . Como a corrente elétrica é formada por várias cargas em movimento, um fio atravessado por uma corrente, também, sofrerá os efeitos de uma F_b .

Campo Magnético perpendicular á folha e "aponta para fora".

Força Magnética

1. exercida num fio de comprimento / e secção A.

$$\vec{\mathbf{F}}_B = \mathcal{Q}_{\mathsf{tot}} \vec{\mathbf{v}}_d \times \vec{\mathbf{B}} = q \, n A \ell(\vec{\mathbf{v}}_d \times \vec{\mathbf{B}}) = I(\vec{\ell} \times \vec{\mathbf{B}})$$

⊨nqv_dA e o vetor I tem módulo I e direção ao longo da corrente elétrica.

Força Magnética

2. exercida num fio com forma arbitrária, há que somar as várias contribuições:

3. exercida num fio que encerra uma superfície fechada

Campo Magnético

CARGA POSITIVA

CARGA NEGATIVA

Campo Magnético Lei de Biot-Savat

Cargas em movimento num fio produzem uma corrente I, tal que o campo B em qualquer ponto P pode ser estimado através da soma das várias

 $\vec{\mathbf{B}} = \int_{\text{wire}} d\vec{\mathbf{B}} = \frac{\mu_0 I}{4\pi} \int_{\text{wire}} \frac{d\vec{\mathbf{s}} \times \hat{\mathbf{r}}}{r^2}$

A lei de Biot-Savat dá-nos o campo B devido a um elemento IdI a uma distância r.

Campo Magnético:

Campo Magnético:

VER RESOLUÇÃO NO QUADRO