ERHS 535: Homework 4

Ana Velasquez Munoz November 4, 2018

Part 1.

Please check my github. README file is under the folder **Writing** [github ana] (https://github.com/anakvm/hw_4)

Part 2: Estimating the proportion of unsolved homicides in each city

1. and 2. Reading the data as an R object named homicides and creating a new column called city_name that combines the city and state

```
homicides <- read_csv("data-homicide/homicide-data.csv") %>%
  unite(city_names, city, state, sep = ",")
head(homicides)
## # A tibble: 6 x 11
##
           reported_date victim_last victim_first victim_race victim_age
##
     <chr>>
                   <int> <chr>
                                      <chr>>
                                                    <chr>
                                                                <chr>>
## 1 Alb-~
                20100504 GARCIA
                                      JUAN
                                                    Hispanic
                                                                78
## 2 Alb-~
                20100216 MONTOYA
                                      CAMERON
                                                    Hispanic
                                                                17
                20100601 SATTERFIELD VIVIANA
## 3 Alb-~
                                                    White
                                                                15
## 4 Alb-~
                20100101 MENDIOLA
                                                                32
                                      CARLOS
                                                    Hispanic
## 5 Alb-~
                20100102 MULA
                                      VIVIAN
                                                    White
                                                                72
## 6 Alb-~
                20100126 BOOK
                                      GERALDINE
                                                    White
                                                                91
## # ... with 5 more variables: victim_sex <chr>, city_names <chr>,
     lat <dbl>, lon <dbl>, disposition <chr>
```

3. Creating a dataframe called *unsolved* with one row per city that gives the total number of homicides for the city and the number of unsolved homicides.

```
## # A tibble: 6 x 3
     city_names
                     n homicides unsolved
##
##
     <chr>
                            <int>
                                      <int>
## 1 Albuquerque, NM
                              378
                                        146
## 2 Atlanta, GA
                              973
                                        373
## 3 Baltimore, MD
                             2827
                                       1825
## 4 Baton Rouge, LA
                              424
                                        196
## 5 Birmingham, AL
                              800
                                        347
## 6 Boston, MA
                              614
                                        310
```

4. Baltimore prop. test and confidence interval.

estimate	statistic	p.value	parameter	conf.low	conf.high	method
0.6455607	239.011	0	1	0.6275625	0.6631599	1-sample proportions test with continuity correction

5. Prop. test all cities and confidence interval using purrr::map2.

```
unsolved <- homicides %>%
  select(city names, disposition)%>%
  mutate(unsolved = disposition %in% c("Closed without arrest",
                                       "Open/No arrest")) %>%
  group_by(city_names) %>%
  summarize(n_homicides = n(),
            unsolved = sum(unsolved)) %>%
  #applying prop test to all cities, and making a statement to
  #call for the estimates and confidence intervals
  #in the data frame.
  mutate(newcol = purrr::map2(unsolved, n_homicides,
                              ~ prop.test(.x, n = .y) %>%
                  {data.frame(estimate = .[["estimate"]],
                         ci_lower = .[["conf.int"]][[1]],
                         ci_upper = .[["conf.int"]][[2]])})) %>%
  unnest()
kable(head(unsolved))
```

city_names	n_homicides	unsolved	estimate	ci_lower	ci_upper
Albuquerque,NM	378	146	0.3862434	0.3372604	0.4375766
Atlanta,GA	973	373	0.3833505	0.3528119	0.4148219
Baltimore,MD	2827	1825	0.6455607	0.6275625	0.6631599
Baton Rouge,LA	424	196	0.4622642	0.4141987	0.5110240
Birmingham,AL	800	347	0.4337500	0.3991889	0.4689557
Boston,MA	614	310	0.5048860	0.4646219	0.5450881

6. Plot of unsolved homicides for all cities using geom_errorbarh.

Unsolved homicides by city Bars show 95% confidence interval

