Automatentheorie endliche Maschinen

Prof. Dr. Franz-Karl Schmatzer schmatzf@dhbw-loerrach.de

- C.Wagenknecht, M.Hielscher; Formale Sprachen, abstrakte Automaten und Compiler; 2.Aufl. Springer Vieweg 2014;
- A.V.Aho, M.S.Lam,R.Savi,J.D.Ullman, Compiler Prinzipien,Techniken und Werkzeuge. 2. Aufl., Pearson Studium, 2008.
- Güting, Erwin; Übersetzerbau –Techniken, Werkzeuge, Anwendungen, Springer Verlag 1999
- Sipser M.; Introduction to the Theory of Computation; 2.Aufl.; Thomson Course Technology 2006
- Hopecroft, T. et al; Introduction to Automata Theory, Language, and Computation; 3. Aufl. Pearson Verlag 2006

- Moore-Maschine
- Mealy-Maschine
- Beispiele

- Endliche Maschinen sind Automaten, die um eine Ausgabefunktion erweitert werden.
- Eine Ausgabe kann dabei entweder durch einem Zustand (Moore) oder während einer Zustandsänderung erfolgen (Mealy).
- Døher unterscheidet man
 - Moore und Mealy Automaten
- Das Modell des endlichen Automaten muss nun um eine Ausgabefunktion erweitert werden.

Einführung I

- Allgemeines Modell einer Maschine
 - Ein Einleseband mit Eingabezeichen,
 - Ein Ausgabeband mit Ausgabezeichen,
 - eine Maschine, die endliche viele interne Zustände haben kann und
 - eine Funktion, die abhängig von dem gelesenen Eingabezeichen und des momentanen Zustandes der Maschine, die Zustände der Maschine ändern kann.
 - Eine Ausgabefunktion
 - eine Startkonfiguration der Maschine
- Bem:
 - und Endkonfigurationen der Maschine existiert nicht!

Modell

Beim Lesen des Zeichens a geht mittels δ die Maschine in einen neuen Zustand über und gibt über die Ausgabefunktion γ das Zeichen b aus.

Einführung formal

- Sei A = (Q, Σ, Z, δ, γ, q_0) eine endliche Maschine.
 - $\Sigma = \{e_1,...,e_n\}$ eine nicht leere Menge von Zeichen, das Eingabealphabet
 - $Q = \{q_0, ,q_n\}$ eine nicht leere Menge von Zuständen
 - $Z = \{z_1,...,z_n\}$ eine nicht leere Menge von Zeichen, das Ausgabealphabet
 - $\delta: Q \times \Sigma \rightarrow Q$ eine Funktion, die Überführungsfunktion
 - $\gamma: Q \times \Sigma \to Z$ eine Funktion, die Ausgabefunktion
 - q₀ ∈ Q der Anfangszustand

Moore-Automat

- Ausgabe erfolgt an den Knoten
- Überführungsfunktion δ und Ausgabefunktion γ
- $Mo_1 = ({a, b}, {s_0, s_1, s_2, s_3}, {0, 1}, δ, γ, s_0)$
- Wie arbeitet die Maschine?
- Einlesen des Wortes w = ababba

String		a	b	а	b	b	а
Zustand	s ₀	S_1	S ₁	S ₃	S ₂	S ₃	S ₃
Ausgabe	1	0	0	1	0	1	1

Zustände	8	γ	
	а	b	
s _o	S ₁	S ₃	1
S ₁	S ₃	S ₁	0
S ₂	s _o	S ₃	0
S ₃	S ₃	S ₂	1

Moore-Automat

Beispiel Konstruktion

- Konstruieren Sie einen Moore Automaten, der jedes Mal eine 1 ausgibt, wenn der Zeichenstring z = aab in einem Wort erkannt wird. Sonst gibt der Automat eine 0 aus.
 - Geben Sie den Automatengraph und die Überführungsfunktion mit der Ausgabe an.
 - Lesen des Wortes w = aaababbaabb und geben Sie die Ausgabe beim Lesen an.

Mealy-Automat

- Ausgabe erfolgt an den Übergängen (Kanten)
- Überführungsfunktion δ und Ausgabefunktion γ
- Me₁ = ({a, b}, {s₀, s₁, s₂, s₃}, {0, 1}, δ, γ, s₀)
- Wie arbeitet die Maschine?
- Einlesen des Wortes w = ababba

String		a	a	а	b	b	а
Zustand	s ₀	S ₁	S ₃	S ₃	s ₀	S ₃	S ₃
Ausgabe		0	1	1	1	0	1

Mealy Maschine Me₁

Zustände	δ/ γ		
	а	b	
s_0	s ₁ /0	s ₃ /0	
S_1	s ₃ /1	s ₂ /1	
S ₂	s ₃ /0	s ₃ /1	
S ₃	s ₃ /1	s ₀ /1	

Mealy-Automat

Beispiel Konstruktion

- Konstruieren Sie einen Mealy Automaten, der ein Paritätsbit an eine Zeichenkette anfügt, d.h.
 - für eine gerade Anzahl von 1 Bits wird ein 0 angefügt.
 - für eine ungerade Anzahl von 1 Bits wird eine 1 angefügt
- Was ist das Eingabe, was das Ausgabealphabet
- Geben Sie den Automatengraphen an.
- Geben Sie die Überführungsfunktion und die Ausgabe an.
- Zeigen Sie die Arbeitsweise für das Wort w = 01011011p

Aufgaben endliche Maschinen

- 1. Konstruieren Sie einen Kaffee-Automaten.
 - 1. Er soll nur 1€ und 50 Cent akzeptieren.
 - 2. Der Kaffeepreis beträgt 1,50€
- 2. Was ist das Eingabe-, was das Ausgabealphabet?
- 3. Welche Zustände hat der Automat?
- 4. Geben Sie den Graphen und die Übertragungsfunktion Γan.

Aufgaben endliche Maschinen

- 1. Konstruieren Sie einen Kaffee-Automaten.
 - 1. Er soll nur 1€ und 50 Cent akzeptieren.

Es gibt 3 Kaffeevarianten

- 0,5€ Espresso
- 1,0€ Cappuccino
- 1,5€ Kaffee
- Es gibt eine Abrechtaste.
- Was ist das Eingabe-, was das Ausgabealphabet?
- 3. Welche Zustände hat der Automat?
- 4. Geben Sie den Graphen und die Übertragungsfunktion Γan.

Aufgaben endliche Maschinen

- Kønstruieren Sie einen Moore Automaten, der jedes Mal eine 1 ausgibt, wenn der Zeichenstring z = bab in einem Wort erkannt wird. Sonst gibt der Automat eine 0 aus. Geben Sie den Automatengraph und die Überführungsfunktion mit der Ausgabe an.
- 2. Konstruieren Sie eine Mealy-Maschine, die aus einer binären Zahl d, die zugehörige negative Zahl im 2er-Komplement erstellt.

Lösung Aufgaben 1

- Konstruieren Sie einen Mealy-Automaten oder Moore-Automaten über das Eingabealphabet {0,1} mit folgenden Eigenschaften.
 - Die Eingabezeichen werden mit einer NOT-Funktion verknüpft und ausgegeben.

 $011011011... \Rightarrow 100100100...$

≠ Je zwei Folgezeichen werden über ein AND verknüpft und ausgegeben.

 $011011011... \Rightarrow 011011011... AND 11011011... = 01001001...$

Aufgabe logische Schaltung

- Konstruieren Sie eine Mealy-Maschine zu folgender logischen Schaltung
- In der Komponente "Delay" wird das Eingabesignal um 1 Takt verzögert.

Lösung Aufgabe (1. Schritt)

- Zur Lösung wichtig sind die Signale an den Punkten A und B
- Dazu schauen wir uns an, wie die Maschine arbeitet
 - new B = old A
 - new A = (input) NAND (old A OR old B)
 - output = (input) OR (old B)
- Um aus einem Input einen Output zu generieren, müssen wir uns die Zustände in A und B merken, dh. Insgesamt 4 Zustände.

Aufgabe logische Schaltung 2

- Konstruieren Sie eine Mealy-Maschine zu folgender logischen Schaltung
- In der Komponente "Delay" wird das Eingabesignal um 1 Takt verzögert.

