UNDERSTANDING SUPERCOMPUTING

UNDERSTANDING SUPERCOMPUTING with Marenostrum Supercomputer

Supercomputer Architecture course - Master in Innovation and Research in Informatics (MIRI) - Specialization High Performance Computing

Jordi Torres i Viñals

Universitat Politècnica de Catalunya (UPC Barcelona Tech) Barcelona Supercomputing Center (BSC-CNS)

Fall 2016

WATCH THIS SPACE

Copyright ©2016 by Lulu Press, Inc.

Lulu Press, Inc. Raleigh, North Carolina, United States http://www.lulu.com

WATCH THIS SPACE Collection

Cover illustration: Supercomputer Marenostrum - Torre Girona chapel

Citation

UNDERSTANDING SUPERCOMPUTING with Marenostrum Supercomputer in Barcelona Jordi Torres
Lulu Press, Inc, September 2016
ISBN 978-1-365-37682-5

First english edition: September 2016.

Author: Jordi Torres Universitat Politcnica de Catalunya - UPC Barcelona Tech www.JordiTorres.Barcelona

This book is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0). In short: Jordi Torres retains the Copyright but you are free to reproduce, re-blog, remix and modify the content only under the same license to this one. You may not use this work for commercial purposes but permission to use this material in nonprofit teaching is still granted, provided the authorship and licensing information here is displayed.

To the students of the SA-MIRI master course at UPC Barcelona Tech, for inspiring me to develop the material for this book.

CONTENTS IN BRIEF

1	Supercomputing Building Blocks: Marenostrum Visit	1
2	Getting Started with Supercomputing	15
3	Getting Started with Parallel Programming Models	31
4	Getting Started with Parallel Performance Metrics	47
5	Getting Started With Parallel Performance Models	65
6	Getting Started with Performance Analysis Tools	95

CONTENTS

List of Figur	res	xiii	
List of Table	e's	xvii	
Preface		xxi	
Introduction		xxiii	
I.1	Supercomputing: hierarchical structure of abstraction view	xxiii	
I.2	Parallel Programming Motivation	xxiv	
I.3	Other types of Parallel Computing	xxvii	
I.4 How to measure the supercomputing power			
I.5	Supercomputing and its challenges	XXX	
1 Supe	rcomputing Building Blocks: Marenostrum Visit	1	
1.1	Hardware components overview	1	
1.2	Compute nodes	3	
1.3	Interconnection networks for Supercomputers	6	
1.4	High Performance Storage Systems	8	
1.5	System Software Stack	10	
1.6	Power and Cooling System	12	
		iy	

2	Gett	ing Star	ted with Supercomputing	15	
	2.1	How to	o acces Marenostrum III	16	
		2.1.1	How to get an account	16	
		2.1.2	Connecting to MareNostrum III	16	
	2.2	Maren	ostrum File Systems	19	
		2.2.1	Marenostrum File Systems	19	
		2.2.2	Data Transfer Machine	20	
		2.2.3	Mid-long term storage filesystem	20	
	2.3	Transf	erring files in Marenostrum III	22	
	2.4	Serial	compilation and execution in C language	23	
	2.5	Batch	Scheduling System	24	
		2.5.1	LSF	24	
		2.5.2	Basic Commands	24	
		2.5.3	Additional BSC Commands	25	
		2.5.4	Job Directives	25	
		2.5.5	LSF Hello World	27	
3	Gett	ing Star	ted with Parallel Programming Models	31	
	3.1	3.1 Parallel Programming Models			
	3.2	Messa	ge-Passing Interface: MPI	32	
		3.2.1	MPI module environment	33	
		3.2.2	Getting started with MPI	35	
	3.3	Getting	g started with OpenMP	37	
		3.3.1	OpenMP Programming Model	37	
		3.3.2	Compilers for OpenMP	38	
	3.4	Case S	Study: Trapezoidal Rule	39	
		3.4.1	Trapezoidal Rule	39	
		3.4.2	MPI version	42	
		3.4.3	OpenMP version	44	
4	Gett	ing Star	ted with Parallel Performance Metrics	47	
	4.1	Perform	mance Metrics	48	
		4.1.1	Speedup	48	
		4.1.2	Efficiency	49	
		4.1.3	Scalability	52	
	4.2	Taking	timing timing	54	
		4.2.1	What time	54	
		4.2.2	gettimeofday POSIX function	55	

			CONTE	ents xi
		4.2.3	Variability in timing	57
	4.3	Case S	tudy: Trapezoidal Rule	58
		4.3.1	OpenMP parallelism	58
		4.3.2	MPI parallelism	59
		4.3.3	Speedup and Efficiency of MPI version	60
		4.3.4	Speedup and Efficiency of OpenMP version	62
5	Getti	ing Star	ted With Parallel Performance Models	65
	5.1	Perform	mace model	65
		5.1.1	Parallel Overhead	66
		5.1.2	Speedup	67
		5.1.3	Efficiency	67
	5.2	Advan	ced MPI parallelism	68
		5.2.1	Programming Collective Communication	68
		5.2.2	Case Study: MPI Matrix-vector product	68
		5.2.3	Assumptions in this code	71
	5.3	Amdal	nl's Law	72
		5.3.1	Amdahl's Law equation	72
		5.3.2	Asimptotic speedup	74
		5.3.3	Amdahl's Law limitations	74
	5.4	Gustaf	son-Barsis's Law	76
		5.4.1	Problem size is not constant	76
		5.4.2	Gustafson-Barsis's Law equation	78
	5.5	Paralle	el overhead	79
	5.6	Case S	tudy: Average matrix-vector product	81
		5.6.1	A balance between computation and communicatio	n 81
		5.6.2	Sequential version	81
		5.6.3	Parallel version	83
		5.6.4	Building a testbed	85
	5.7	Evalua	ition	87
		5.7.1	Taking Timing	87
		5.7.2	Performance Metrics	90
		5.7.3	Gustafson-Barsis's Law	92
		5.7.4	Cost of sharing resources in the same node	94
6	Getti	ing Star	ted with Performance Analysis Tools	95
	6.1	Perfori	mance of a Compiled Program	96
	6.2		inux command line tools	96

	6.2.1	gettimeofday() limitations	96
	6.2.2	top	97
	6.2.3	vmstat	98
	6.2.4	perf	99
6.3	Analysi	ing Workflow models	101
6.4	BSC A	dvanced Performance Analysis Tools	102
6.5	PARAV	VER	104
	6.5.1	Overview	104
	6.5.2	Configuration files	104
	6.5.3	Trace files	104
	6.5.4	Tool Structure	105
	6.5.5	Install the Paraver binaries in your laptop	105
	6.5.6	Configure the Paraver package	106
6.6	Load tr	aces	106
	6.6.1	Timeline Display	106
	6.6.2	Main Paraver Window	108
6.7	Obtaini	ng useful information	108
	6.7.1	Instructions per cycle	108
	6.7.2	Cache misses ratio	111
	6.7.3	Duration of computation and message size	111
6.8	Statistic	es Display	112
	6.8.1	2D Analyzer	112
	6.8.2	Data Window	113
6.9	Histogr	rams	114
6.10	Other c	omponents	115
6.11	Extrae		116
	6.11.1	Extrae in Marenostrum	116
	6.11.2	JSF scripts	117
	6.11.3	Quick step by step trace generation recipe	118
6.12	Case St	cudy: Averaged Matrix-Vector product	122
	6.12.1	Trace Generation	122
	6.12.2	Paraver Analysis	123
Acknowledg	gments		133
References			135
Index			137