Домашнее задание №2

Задание 1

Количество баллов: 10 (+ *3)

Дана графическая вероятностная модель, в которой

$$\mathbf{x}_{t} = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{w}_{t}, \qquad \mathbf{w}_{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$$

$$\mathbf{z}_{t} = \mathbf{H}\mathbf{x}_{t} + \mathbf{v}_{t}, \qquad \mathbf{v}_{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$$
(1)

Для оценки скрытых состояний \mathbf{x}_t по наблюдениям \mathbf{z}_t используется рекуррентный алгоритм фильтрации, известный как фильтр Калмана.

1. Prediction step

Пусть дано распределение состояния

$$\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1} \sim \mathcal{N}(\hat{\mathbf{x}}_{t-1|t-1}, \mathbf{P}_{t-1|t-1}),$$

где $\hat{\mathbf{x}}_{i|j}, \mathbf{P}_{i|j}$ обозначают математическое ожидание и ковариацию состояния \mathbf{x}_i после наблюдения данных $\mathbf{z}_{1:j} = (\mathbf{z}_1, \dots, \mathbf{z}_j).$

- 1. Выпишите распределение $p(\mathbf{x}_t \,|\, \mathbf{z}_{1:t-1})$ в явном виде.
- 2. Найдите его математическое ожидание $\hat{\mathbf{x}}_{t|t-1}$ и ковариацию $\mathbf{P}_{t|t-1}$ в терминах $\mathbf{A}, \mathbf{Q}, \, \hat{\mathbf{x}}_{t-1|t-1}$ и $\mathbf{P}_{t-1|t-1}$.

2. Update step

- 1. Выпишите распределение $p(\mathbf{x}_t \,|\, \mathbf{z}_{1:t})$ в явном виде.
- 2. Найдите математическое ожидание $\hat{\mathbf{x}}_{t|t}$ и ковариацию $\mathbf{P}_{t|t}$ этого распределения.
- 3. Выпишите в явном виде \mathbf{K}_t , т.ч. $\hat{\mathbf{x}}_{t|t} = \hat{\mathbf{x}}_{t|t-1} + \mathbf{K}_t(\mathbf{z}_t \mathbf{H}\hat{\mathbf{x}}_{t|t-1})$ и $\mathbf{P}_{t|t} = (\mathbf{I} \mathbf{K}_t\mathbf{H})\mathbf{P}_{t|t-1}$.

3. Implementation

- 1. Напишите класс в Python (в Jupyter Notebook), реализующий prediction / update step (за основу можно взять kalman.py).
- 2. Эксперимент с синтетикой:
 - Выберите $\mathbf{A}, \mathbf{H}, \mathbf{Q}, \mathbf{R}$, сгенерируйте на их основе траекторию $\{(\mathbf{x}_t, \mathbf{z}_t)\}_{t=1}^T$.
 - Вычислите разницу $\|\mathbf{x}_t \hat{\mathbf{x}}_{t|t}\|$, проанализируйте её поведение с течением времени, нарисуйте график.
 - ullet Проанализируйте поведение $\mathbf{P}_{t|t}$ с течением времени.
- 3. Эксперимент с реальными данными:
 - Загрузите данные из файла data.csv, содержащего измерения акселерометра и гироскопа.
 - Определите модель состояния и наблюдения:

$$\mathbf{x}_{t} = \begin{bmatrix} \operatorname{position}_{x}(t) \\ \operatorname{position}_{y}(t) \\ \operatorname{position}_{z}(t) \\ \operatorname{velocity}_{x}(t) \\ \operatorname{velocity}_{y}(t) \\ \operatorname{velocity}_{z}(t) \end{bmatrix}, \quad \mathbf{z}_{t} = \begin{bmatrix} \operatorname{acceleration}_{x}(t) \\ \operatorname{acceleration}_{y}(t) \\ \operatorname{acceleration}_{z}(t) \end{bmatrix},$$

и задайте матрицы A, H, Q, R.

- Примените фильтр Калмана к загруженным данным. Визуализируйте результаты (например, траекторию положения и скорость).
- *Дополнительно

Исследуйте альтернативные параметризации:

- Добавьте угловые скорости с гироскопа в вектор состояния \mathbf{x}_{\bullet}
- Измените А и Н для учёта дополнительных наблюдений
- Сравните фильтрацию при разных моделях.

Задание 2

Количество баллов: 5 (+ *5)

Рассмотрим вероятностную модель со скрытыми переменными:

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2\mathbf{I})\mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I}),$$

где $\mathbf{x} \in \mathbb{R}^D$, $\mathbf{z} \in \mathbb{R}^d$, $D \gg d$, \mathbf{z} играет роль сжатого представления для \mathbf{x} . Параметры модели представлены как $\boldsymbol{\theta} = (\mathbf{W}, \boldsymbol{\mu}, \sigma^2)$, где $\mathbf{W} \in \mathbb{R}^{D \times d}, \boldsymbol{\mu} \in \mathbb{R}^D$, $\sigma^2 > 0$.

Для выполнения задания требуется:

- 1. Найти распределение $p_{\boldsymbol{\theta}}(\mathbf{x})$
- 2. Найти апостериорное распределение $p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})$ на Е-шаге
- 3. Вывести формулы для оценки параметров $\mathbf{W}, \boldsymbol{\mu}, \sigma^2$ на М-шаге.

4. *Дополнительно

- Реализовать класс для классического РСА, проанализировать его временную сложность
- Реализовать класс для предложенного выше ЕМ-алгоритма, проанализировать его временную сложность
- На выбранном датасете сравнить скорость и качество работы двух алгоритмов

Задание 3 (дополнительное)

Количество баллов: *12

Пусть $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, \, \mathbf{x}_n \in \mathbb{R}^D$ – независимая выборка из смеси распределений Стьюдента

$$p_{\theta}(\mathbf{x}) = \sum_{k=1}^{K} w_k \mathcal{T}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \nu), \quad w_k \ge 0, \ \sum_{j} w_j = 1$$

Рассмотрим следующую вероятностную модель со скрытыми переменными:

$$p_{\theta}(\mathbf{X}, \mathbf{T}, \mathbf{Z}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \left[w_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k / z_n) \mathcal{G}(z_n | \nu / 2, \nu / 2) \right]^{t_{nk}}$$

Здесь

- Гиперпараметр ν фиксирован, параметры $\theta = (\mathbf{w}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$, где $\mathbf{w} = (w_1, \dots, w_K), \boldsymbol{\mu} = (\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K), \boldsymbol{\Sigma} = (\boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_K), \ w_k \geq 0, \ \sum_j w_j = 1.$
- $t_{nk} \in \{0,1\}, \sum_j t_{nj} = 1$ обозначает принадлежность n-го объекта k-ой компоненте смеси
- $\mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k/z_n)$ плотность нормального распределения с параметрами $(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k/z_n)$, вычисленная в точке \mathbf{x}_n .
- $\mathcal{G}(z_n|\nu/2,\nu/2)$ плотность гамма распределения с параметрами $(\nu/2,\nu/2)$, вычисленная в точке z_n .

Можно показать, что

$$p_{\theta}(\mathbf{X}) = \int p_{\theta}(\mathbf{X}, \mathbf{T}, \mathbf{Z}) d\mathbf{T} d\mathbf{Z}$$

Поэтому оценку максимального правдоподобия $\boldsymbol{\theta}^{\mathrm{ML}}$ для смеси распределений Стьюдента $p_{\boldsymbol{\theta}}(\mathbf{X})$ можно искать с помощью вариационного ЕМ-алгоритма для модели с латентными переменными $p_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{T}, \mathbf{Z})$, в котором на Е-шаге апостериорное распределение приближается в семействе

$$q_{\mathbf{T}}(\mathbf{T})q_{\mathbf{Z}}(\mathbf{Z}) \approx p_{\boldsymbol{\theta}}(\mathbf{T}, \mathbf{Z}|\mathbf{X}).$$

Для выполнения задания требуется:

- 1. Выписать формулы пересчёта для компонент вариационного приближения $q_{\mathbf{T}}(\mathbf{T})$ и $q_{\mathbf{Z}}(\mathbf{Z})$
- 2. Выписать формулы пересчёта параметров $w_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ на М-шаге
- 3. Выписать функционал $\mathcal{L}(q, \boldsymbol{\theta})$ нижнюю оценку на $\log p_{\boldsymbol{\theta}}(\mathbf{X})$
- 4. Найти формулы для статистик распределений $q_{\mathbf{T}}(\mathbf{T})$ и $q_{\mathbf{Z}}(\mathbf{Z})$, требуемых в предыдущих трёх пунктах