Redes Neurais Artificiais

Pedro H A Konzen

18 de dezembro de 2024

Licença

Este texto é disponibilizado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite

http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR

ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

O site notaspedrok.com.br é uma plataforma que construí para o compartilhamento de minhas notas de aula. Essas anotações feitas como preparação de aulas é uma prática comum de professoras/es. Muitas vezes feitas a rabiscos em rascunhos com validade tão curta quanto o momento em que são concebidas, outras vezes, com capricho de um diário guardado a sete chaves. Notas de aula também são feitas por estudantes - são anotações, fotos, prints, entre outras formas de registros de partes dessas mesmas aulas. Essa dispersão de material didático sempre me intrigou e foi o que me motivou a iniciar o site.

Com início em 2018, o site contava com apenas três notas incipientes. De lá para cá, conforme fui expandido e revisando os materais, o site foi ganhando acessos de vários locais do mundo, em especial, de países de língua portugusa. No momento, conta com 13 notas de aula, além de minicursos e uma coleção de vídeos e áudios.

As notas de **Redes Neurais Artificiais** fazem uma introdução às redes neuraus artificiais com enfase na resolução de problemas de matemática. Como ferramenta de apoio computacional, códigos exemplos são trabalhos em linguagem Python, mais especificamente, com o pacote de aprendizagem de máquina PyTorch.

Aproveito para agradecer a todas/os que de forma assídua ou esporádica contribuem com correções, sugestões e críticas! ;)

Pedro H A Konzen

https://www.notaspedrok.com.br

Conteúdo

C	apa			i
Li	cenç	a		ii
P	refác	io		iii
Sı	ımár	io		v
1	Inti	roduçã	o	1
2	Per	ceptro	\mathbf{n}	3
	2.1	Unida	de de Processamento	. 3
		2.1.1	Um problema de classificação	. 4
		2.1.2	Problema de regressão	. 11
		2.1.3	Exercícios	
	2.2	Algori	itmo de Treinamento	. 15
		2.2.1	Método do Gradiente Descendente	. 16
		2.2.2	Método do Gradiente Estocástico	. 20
		2.2.3	Exercícios	. 22
3	Per	ceptro	n Multicamadas	24
	3.1	Model	lo MLP	. 24
		3.1.1	Treinamento	. 26
		3.1.2	Aplicação: Problema de Classificação XOR	. 27
		3.1.3	Exercícios	. 30
	3.2	Aplica	ação: Problema de Classificação Binária	. 30
		3.2.1	Dados	. 31

Pedro H A Konzen

		3.2.2 Modelo	32
		3.2.3 Treinamento e Teste	3
		3.2.4 Verificação	35
		3.2.5 Exercícios	37
	3.3	Aplicação: Aproximação de Funções	37
			37
		3.3.2 Função bidimensional	10
		3.3.3 Exercícios	4
	3.4	Diferenciação Automática	4
		B.4.1 Autograd MLP	0
		3.4.2 Exercícios	53
4	Red	s Informadas pela Física 5	6
_	4.1	Aplicação: Equação de Poisson	
			61
	4.2		- 61
	4.3		66
			3
	4.4		4
\mathbf{R}	espos	as dos Exercícios 7	8
N	otas	7	9
ΤN	otas	•	IJ
\mathbf{R}	eferê	cias 8	0

Capítulo 1

Introdução

Uma rede neural artificial é um modelo de aprendizagem profunda (deep learning), uma área da aprendizagem de máquina (machine learning). O termo tem origem no início dos desenvolvimentos de inteligência artificial, em que modelos matemáticos e computacionais foram inspirados no cérebro biológico (tanto de humanos como de outros animais). Muitas vezes desenvolvidos com o objetivo de compreender o funcionamento do cérebro, também tinham a intensão de emular a inteligência.

Nestas notas de aula, estudamos um dos modelos de redes neurais usualmente aplicados. A unidade básica de processamento data do modelo de neurônio de McCulloch-Pitts (McCulloch and Pitts, 1943), conhecido como **perceptron** (Rosenblatt, 1958, 1962), o primeiro com um algoritmo de treinamento para problemas de classificação linearmente separável. Um modelo similiar é o ADALINE (do inglês, adaptive linear element, Widrow and Hoff, 1960), desenvolvido para a predição de números reais. Pela questão histórica, vamos usar o termo **perceptron** para designar a unidade básica (o neurônio), mesmo que o modelo de neurônio a ser estudado não seja restrito ao original.

Métodos de aprendizagem profunda são técnicas de treinamento (calibração) de composições em múltiplos níveis, aplicáveis a problemas de aprendizagem de máquina que, muitas vezes, não têm relação com o cérebro ou neurônios biológicos. Um exemplo, é a rede neural que mais vamos explorar nas notas, o perceptron multicamada (MLP, em inglês multilayer perceptron), um

modelo de progressão (em inglês, feedfoward) de rede profunda em que a informação é processada pela composição de camadas de perceptrons. Embora a ideia de fazer com que a informação seja processada através da conexão de múltiplos neurônios tenha inspiração biológica, usualmente a escolha da disposição dos neurônios em uma MLP é feita por questões algorítmicas e computacionais. I.e., baseada na eficiente utilização da arquitetura dos computadores atuais.

Capítulo 2

Perceptron

2.1 Unidade de Processamento

A unidade básica de processamento (neurônio artificial) que exploramos nestas notas é baseada no perceptron (Fig. 2.1). Consiste na composição de uma função de ativação $f: \mathbb{R} \to \mathbb{R}$ com a pré-ativação

$$z := \boldsymbol{w} \cdot \boldsymbol{x} + b \tag{2.1}$$

$$= w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b \tag{2.2}$$

onde, $\boldsymbol{x} \in \mathbb{R}^n$ é o vetor de entrada, $\boldsymbol{w} \in \mathbb{R}^n$ é o vetor de pesos e $b \in \mathbb{R}$ é o bias. Escolhida uma função de ativação, a saída do neurônio é dada por

$$y = \mathcal{N}\left(\boldsymbol{x}; (\boldsymbol{w}, b)\right) \tag{2.3}$$

$$:= f(z) = f(\boldsymbol{w} \cdot \boldsymbol{x} + b) \tag{2.4}$$

Figura 2.1: Esquema de um perceptron: unidade de processamento.

O treinamento (calibração) consiste em determinar os parâmetros (\boldsymbol{w},b) de forma que o neurônio forneça as saídas y esperadas com base em um critério predeterminado.

Uma das vantagens deste modelo de neurônio é sua generalidade, i.e. pode ser aplicado a diferentes problemas. Na sequência, vamos aplicá-lo na resolução de um problema de classificação e noutro de regressão.

2.1.1 Um problema de classificação

Vamos desenvolver um perceptron que emule a operação \land (e-lógico). I.e, receba como entrada dois valores lógicos A_1 e A_2 (V, verdadeiro ou F, falso) e forneça como saída o valor lógico $R = A_1 \land A_2$. Segue a tabela verdade do \land :

A_1	A_2	R
V	V	V
V	F	F
\mathbf{F}	V	F
$_{\rm F}$	F	F

Modelo

Nosso modelo de neurônio será um perceptron com duas entradas $x \in \{-1, 1\}^2$ e a função sinal

$$f(z) = \operatorname{sign}(z) = \begin{cases} 1 & , z > 0 \\ 0 & , z = 0 \\ -1 & , z < 0 \end{cases}$$
 (2.5)

como função de ativação, i.e.

$$y = \mathcal{N}\left(\boldsymbol{x}; (\boldsymbol{w}, b)\right), \tag{2.6}$$

$$= \operatorname{sign}(\boldsymbol{w} \cdot \boldsymbol{x} + b), \tag{2.7}$$

onde $\boldsymbol{w} \in \mathbb{R}^2$ e $b \in \mathbb{R}$ são parâmetros a determinar.

Pré-processamento

Uma vez que nosso modelo recebe valores $\boldsymbol{x} \in \{-1,1\}^2$ e retorna $y \in \{-1,1\}$, precisamos (pre)processar os dados do problema de forma a utilizá-los. Uma forma, é assumir que todo valor negativo está associado ao valor lógico F (falso) e positivo ao valor lógico V (verdadeiro). Desta forma, os dados podem ser interpretados como na tabela abaixo.

Treinamento

Agora, nos falta treinar nosso neurônio para fornecer o valor de y esperado para cada dada entrada \boldsymbol{x} . Isso consiste em um método para escolhermos os parâmetros (\boldsymbol{w},b) que sejam adequados para esta tarefa. Vamos explorar mais sobre isso na sequência do texto e, aqui, apenas escolhemos

$$\boldsymbol{w} = (1,1), \tag{2.8}$$

$$b = -1. (2.9)$$

Com isso, nosso perceptron é

$$\mathcal{N}(\boldsymbol{x}) = \operatorname{sign}(x_1 + x_2 - 1) \tag{2.10}$$

Verifique que ele satisfaz a tabela verdade acima!

Implementação

Código 2.1: perceptron.py

```
1 import torch
2
3 # modelo
4 class Perceptron (torch.nn.Module):
      def __init__(self):
          super().__init__()
          self.linear = torch.nn.Linear(2,1)
7
8
      def forward(self, x):
9
          z = self.linear(x)
10
          y = torch.sign(z)
11
12
          return y
13
14 model = Perceptron()
15 W = torch.Tensor([[1., 1.]])
16 b = torch.Tensor([-1.])
17 with torch.no_grad():
      model.linear.weight = torch.nn.Parameter(W)
      model.linear.bias = torch.nn.Parameter(b)
19
21 # dados de entrada
22 X = torch.tensor([[1., 1.],
                     [1., -1.],
23
                     [-1., 1.],
24
                     [-1., -1.]
25
26
27 print(f"\nDados de entrada\n{X}")
28
30 # forward (aplicação do modelo)
31 y = model(X)
33 print(f"Valores estimados\n{y}")
```

Interpretação geométrica

Empregamos o seguinte modelo de neurônio

$$\mathcal{N}(\boldsymbol{x};(\boldsymbol{w},b)) = \operatorname{sign}(w_1 x_1 + w_2 x_2 + b) \tag{2.11}$$

Observamos que

$$w_1 x_1 + w_2 x_2 + b = 0 (2.12)$$

corresponde à equação geral de uma reta no plano $\tau: x_1 \times x_2$. Esta reta divide o plano em dois semiplanos

$$\tau^{+} = \{ \boldsymbol{x} \in \mathbb{R}^{2} : w_{1}x_{1} + w_{2}x_{2} + b > 0 \}$$
(2.13)

$$\tau^{-} = \{ \boldsymbol{x} \in \mathbb{R}^2 : w_1 x_1 + w_2 x_2 + b < 0 \}$$
 (2.14)

O primeiro está na direção do vetor normal à reta $\mathbf{n} = (w_1, w_2)$ e o segundo no sentido oposto. Com isso, o problema de treinar nosso neurônio para o problema de classificação consiste em encontrar a reta

$$w_1 x_1 + w_2 x_2 + b = 0 (2.15)$$

de forma que o ponto (1,1) esteja no semiplano positivo τ^+ e os demais pontos no semiplano negativo τ^- . Consultamos a Figura 2.2.

Figura 2.2: Interpretação geométrica do perceptron aplicado ao problema de classificação relacionado à operação lógica \land (e-lógico).

Algoritmo de treinamento: perceptron

O algoritmo de treinamento perceptron permite calibrar os pesos de um neurônio para fazer a classificação de dados linearmente separáveis. Trata-se de um algoritmo para o **treinamento supervisionado** de um neurônio, i.e. a calibração dos pesos é feita com base em um dado **conjunto de amostras de treinamento**.

Seja dado um **conjunto de treinamento** $\{x^{(s)}, y^{(s)}\}_{s=1}^{n_s}$, onde n_s é o número de amostras. O algoritmo consiste no seguinte:

- 1. $\boldsymbol{w} \leftarrow \boldsymbol{0}, b \leftarrow 0$.
- 2. Para $e \leftarrow 1, \ldots, n_e$:
 - (a) Para $s \leftarrow 1, \ldots, n_s$:

i. Se
$$y^{(s)} \mathcal{N} \left(\boldsymbol{x}^{(s)} \right) \leq 0$$
:
A. $\boldsymbol{w} \leftarrow \boldsymbol{w} + y^{(s)} \boldsymbol{x}^{(s)}$
B. $b \leftarrow b + y^{(s)}$

onde, n_e é um dado número de épocas¹.

Código 2.2: perceptron_train.py

```
1 import torch
3 # modelo
5 class Perceptron(torch.nn.Module):
      def __init__(self):
          super().__init__()
7
           self.linear = torch.nn.Linear(2,1)
8
9
      def forward(self, x):
10
          z = self.linear(x)
11
          y = torch.sign(z)
12
13
          return y
14
15 model = Perceptron()
16 with torch.no_grad():
      W = model.linear.weight
      b = model.linear.bias
18
19
20 # dados de treinamento
21 X_train = torch.tensor([[1., 1.],
                     [1., -1.],
22
                      [-1., 1.],
23
                      [-1., -1.]])
25 y_train = torch.tensor([1., -1., -1., -1.]).
  reshape (-1,1)
27 ## número de amostras
```

¹Número de vezes que as amostrar serão percorridas para realizar a correção dos pesos.

```
28 ns = y_train.size(0)
30 print("\nDados de treinamento")
31 print("X_train =")
32 print(X_train)
33 print("y train = ")
34 print(y_train)
35
36 # treinamento
37
38 ## num max épocas
39 \text{ nepochs} = 100
41 for epoch in range (nepochs):
42
      # update
43
      not updated = True
44
45
      for s in range(ns):
           y_est = model(X_train[s:s+1,:])
46
           if (y_est*y_train[s] <= 0.):</pre>
47
                with torch.no_grad():
48
                    W += y_train[s]*X_train[s,:]
49
                    b += y_train[s]
50
                    not_updated = False
51
52
      if (not_updated):
53
           print('Training ended.')
54
           break
56
58 # verificação
59 print (f'W = n\{W\}')
60 print(f'b =\n{b}')
61 y = model(X_train)
62 print(f'y =\n{y}')
```

2.1.2 Problema de regressão

Vamos treinar um perceptron para resolver o problema de regressão linear para os seguintes dados

Modelo

Vamos determinar o perceptron²

$$\tilde{y} = \mathcal{N}(x; (w, b)) = wx + b \tag{2.16}$$

que melhor se ajusta a este conjunto de dados $\{(x^{(s)}, y^{(s)})\}_{s=1}^{n_s}, n_s = 4.$

Treinamento

A ideia é que o perceptron seja tal que minimize o erro quadrático médio (MSE, do inglês, *Mean Squared Error*), i.e.

$$\min_{w,b} \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.17}$$

Vamos denotar a **função erro** (em inglês, loss function) por

$$\varepsilon(w,b) := \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.18}$$

$$= \frac{1}{n_s} \sum_{s=1}^{n_s} \left(wx^{(s)} + b - y^{(s)} \right)^2 \tag{2.19}$$

Observamos que o problema (2.17) é equivalente a um problema linear de mínimos quadrados. A solução é obtida resolvendo-se a equação normal³

$$M^T M \boldsymbol{c} = M^T \boldsymbol{y}, \tag{2.20}$$

²Escolhendo f(z) = z como função de ativação.

³Consulte o Exercício 2.1.4.

onde $\mathbf{c} = (w, p)$ é o vetor dos parâmetros a determinar e M é a matriz $n_s \times 2$ dada por

 $M = \begin{bmatrix} \mathbf{x} & \mathbf{1} \end{bmatrix} \tag{2.21}$

Implementação

Código 2.3: perceptron_mq.py

```
1 import torch
3 # modelo
4 class Perceptron(torch.nn.Module):
      def __init__(self):
          super().__init__()
          self.linear = torch.nn.Linear(1,1)
7
8
      def forward(self, x):
9
          z = self.linear(x)
10
11
          return z
12
13 model = Perceptron()
14 with torch.no_grad():
      W = model.linear.weight
      b = model.linear.bias
16
18 # dados de treinamento
19 X_train = torch.tensor([0.5,
                            1.0,
20
                            1.5,
21
                            [2.0]).reshape(-1,1)
22
23 y_train = torch.tensor([1.2,
                            2.1,
24
                            2.6,
25
                            3.6]).reshape(-1,1)
26
28 ## número de amostras
29 ns = y_train.size(0)
31 print("\nDados de treinamento")
```

```
32 print("X_train =")
33 print(X train)
34 print("y_train = ")
35 print(y_train)
37 # treinamento
39 ## matriz
40 M = torch.hstack((X_train,
                     torch.ones((ns,1))))
42 ## solucão M.Q.
43 c = torch.linalg.lstsq(M, y_train)[0]
44 with torch.no_grad():
      W = c[0]
45
      b = c[1]
46
48 # verificação
49 print (f'W =\n{W}')
50 print(f'b =\n{b}')
51 y = model(X_train)
52 print(f'y =\n{y}')
```

Resultado

Nosso perceptron corresponde ao modelo

$$\mathcal{N}(x;(w,b)) = wx + b \tag{2.22}$$

com pesos treinados w=1.54 e b=0.45. Ele corresponde à reta que melhor se ajusta ao conjunto de dados de $\left\{x^{(s)},y^{(s)}\right\}_{s=1}^4$ dado na tabela acima. Consultamos a Figura 2.3.

Figura 2.3: Interpretação geométrica do perceptron aplicado ao problema de regressão linear.

2.1.3 Exercícios

E.2.1.1. Crie um perceptron que emule a operação lógica do ∨ (ou-lógico).

A_1	A_2	$A_1 \vee A_2$
V	V	V
V	\mathbf{F}	V
\mathbf{F}	V	V
F	F	F

E.2.1.2. Busque criar um perceptron que emule a operação lógica do xor.

A_1	A_2	A_1 xor A_2
V	V	F
V	\mathbf{F}	V
\mathbf{F}	V	V
F	F	${ m F}$

É possível? Justifique sua resposta.

- **E.2.1.3.** Assumindo o modelo de neurônio (2.16), mostre que (2.18) é função convexa.
- **E.2.1.4.** Mostre que a solução do problema (2.17) é dada por (2.20).
- **E.2.1.5.** Crie um perceptron com função de ativação $f(x) = \tanh(x)$ que melhor se ajuste ao seguinte conjunto de dados:

\mathbf{S}	$x^{(s)}$	$y^{(s)}$
1	-1,0	-0,8
2	-0,7	-0,7
3	-0,3	-0,5
4	0,0	-0,4
5	0,2	-0,2
6	0,5	0,0
7	1,0	0,3

2.2 Algoritmo de Treinamento

Na seção anterior, desenvolvemos dois modelos de neurônios para problemas diferentes, um de classificação e outro de regressão. Em cada caso, utilizamos algoritmos de treinamento diferentes. Agora, vamos estudar algoritmos de treinamentos mais gerais⁴, que podem ser aplicados a ambos os problemas.

Ao longo da seção, vamos considerar o **modelo** de neurônio

$$\tilde{y} = \mathcal{N}(\boldsymbol{x}; (\boldsymbol{w}, b)) = f(\underbrace{(\boldsymbol{w} \cdot \boldsymbol{x} + b)}_{z}),$$
 (2.23)

com dada função de ativação $f: \mathbb{R} \to \mathbb{R}$, sendo os vetores de entrada \boldsymbol{x} e dos pesos \boldsymbol{w} de tamanho n_{in} . A pré-ativação do neurônio é denotada por

$$z := \boldsymbol{w} \cdot \boldsymbol{x} + b \tag{2.24}$$

⁴Aqui, vamos explorar apenas algoritmos de treinamento supervisionado.

Fornecido um conjunto de treinamento $\{(\boldsymbol{x}^{(s)}, y^{(s)})\}_{1}^{n_s}$, com n_s amostras, o objetivo é calcular os parâmetros (\boldsymbol{w}, b) que minimizam a função erro quadrático médio

$$\varepsilon(\boldsymbol{w},b) := \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2$$
 (2.25)

$$=\frac{1}{n_s}\sum_{s=1}^{n_s}\varepsilon^{(s)}\tag{2.26}$$

onde $\tilde{y}^{(s)} = \mathcal{N}\left(\boldsymbol{x}^{(s)}; (\boldsymbol{w}, b)\right)$ é o valor estimado pelo modelo e $y^{(s)}$ é o valor esperado para a s-ésima amostra. A função erro para a s-ésima amostra é

$$\varepsilon^{(s)} := \left(\tilde{y}^{(s)} - y^{(s)}\right)^2. \tag{2.27}$$

Ou seja, o treinamento consiste em resolver o seguinte **problema de otimi- zação**

$$\min_{(\boldsymbol{w},b)} \varepsilon(\boldsymbol{w},b) \tag{2.28}$$

Para resolver este problema de otimização, vamos empregar o Método do Gradiente Descendente.

2.2.1 Método do Gradiente Descendente

O Método do Gradiente Descendente (GD, em inglês, Gradiente Descent Method) é um método de declive. Aplicado ao nosso modelo de Perceptron consiste no seguinte algoritmo:

- 1. (\boldsymbol{w}, b) aproximação inicial.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

(a)
$$(\boldsymbol{w}, b) \leftarrow (\boldsymbol{w}, b) - l_r \frac{\partial \varepsilon}{\partial (\boldsymbol{w}, b)}$$

onde, n_e é o **número de épocas**, l_r é uma dada **taxa de aprendizagem** $(l_r, do inglês, learning rate)$ e o **gradiente** é

$$\frac{\partial \varepsilon}{\partial (\boldsymbol{w}, b)} := \left(\frac{\partial \varepsilon}{\partial w_1}, \dots, \frac{\partial \varepsilon}{\partial w_{n_{in}}}, \frac{\partial \varepsilon}{\partial b}\right) \tag{2.29}$$

O cálculo do gradiente para os pesos \boldsymbol{w} pode ser feito como segue⁵

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{\partial}{\partial \boldsymbol{w}} \left[\frac{1}{n_s} \sum_{s=1}^{n_s} \varepsilon^{(s)} \right]$$
 (2.30)

$$= \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial \boldsymbol{w}}$$
 (2.31)

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial \boldsymbol{w}}$$
(2.32)

Observando que

$$\frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} = 2\left(\tilde{y}^{(s)} - y^{(s)}\right) \tag{2.33}$$

$$\frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} = f'\left(z^{(s)}\right) \tag{2.34}$$

$$\frac{\partial z^{(s)}}{\partial \boldsymbol{w}} = \boldsymbol{x}^{(s)} \tag{2.35}$$

obtemos

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{1}{n_s} \sum_{s=1}^{n_s} 2\left(\tilde{y}^{(s)} - y^{(s)}\right) f'\left(z^{(s)}\right) \boldsymbol{x}^{(s)}$$
(2.36)

$$\frac{\partial \varepsilon}{\partial b} = \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial b}$$
(2.37)

$$\frac{\partial \varepsilon}{\partial b} = \frac{1}{n_s} \sum_{s=1}^{n_s} 2\left(\tilde{y}^{(s)} - y^{(s)}\right) f'\left(z^{(s)}\right) \cdot 1 \tag{2.38}$$

 $^{^5\}mathrm{Aqui},$ há um abuso de linguagem ao não se observar as dimensões dos operandos matriciais.

Aplicação: Problema de Classificação

Na Subseção 2.1.1, treinamos um perceptron para o problema de classificação do e-lógico. A função de ativação f(x) = sign(x) não é adequada para a aplicação do Método GD, pois $f'(x) \equiv 0$ para $x \neq 0$. Aqui, vamos usar

$$f(x) = \tanh(x). \tag{2.39}$$

Código 2.4: perceptron_gd.py

```
1 import torch
2
3 # modelo
5 class Perceptron(torch.nn.Module):
      def __init__(self):
           super().__init__()
7
           self.linear = torch.nn.Linear(2,1)
8
9
      def forward(self, x):
10
          z = self.linear(x)
11
          y = torch.tanh(z)
12
          return y
13
14
15 model = Perceptron()
16
17 # treinamento
18
19 ## optimizador
20 optim = torch.optim.SGD(model.parameters(), lr=5e
  -1)
21
22 ## função erro
23 loss fun = torch.nn.MSELoss()
24
25 ## dados de treinamento
26 X_train = torch.tensor([[1., 1.],
27
                      [1., -1.],
                      [-1., 1.],
28
```

```
[-1., -1.]])
29
30 y_train = torch.tensor([1., -1., -1., -1.]).
  reshape (-1,1)
31
32 print("\nDados de treinamento")
33 print("X train =")
34 print(X_train)
35 print("y_train = ")
36 print(y_train)
37
38 ## num max épocas
39 \text{ nepochs} = 1000
40 \text{ tol} = 1e-3
41
42 for epoch in range (nepochs):
43
      # forward
44
45
      y_est = model(X_train)
46
      # erro
47
      loss = loss_fun(y_est, y_train)
48
49
      print(f'{epoch}: {loss.item():.4e}')
50
51
      # critério de parada
52
      if (loss.item() < tol):</pre>
53
           break
54
      # backward
56
      optim.zero_grad()
57
58
      loss.backward()
      optim.step()
60
61
62 # verificação
63 y = model(X_train)
64 \text{ print}(f'y_est = \{y\}')
```

2.2.2 Método do Gradiente Estocástico

- O Método do Gradiente Estocástico (SGD, do inglês, Stochastic Gradient Descent Method) é um variação do Método GD. A ideia é atualizar os parâmetros do modelo com base no gradiente do erro de cada amostra (ou um subconjunto de amostras⁶). A estocasticidade é obtida da randomização com que as amostras são escolhidas a cada época. O algoritmos consiste no seguinte:
- 1. w, b aproximações inicial.
- 2. Para $e \leftarrow 1, \ldots, n_e$:
 - 1.1. Para $s \leftarrow \mathtt{random}(1, \ldots, n_s)$:

$$(\boldsymbol{w}, b) \leftarrow (\boldsymbol{w}, b) - l_r \frac{\partial \varepsilon^{(s)}}{\partial (\boldsymbol{w}, b)}$$
 (2.40)

Aplicação: Problema de Classificação

Código 2.5: perceptron_sgd.py

```
1 import torch
2 import numpy as np
3
4 # modelo
6 class Perceptron(torch.nn.Module):
      def __init__(self):
           super().__init__()
           self.linear = torch.nn.Linear(2,1)
9
10
      def forward(self, x):
11
                self.linear(x)
12
          y = torch.tanh(z)
13
          return y
14
15
16 model = Perceptron()
```

⁶Nest caso, é conhecido como Batch SGD.

```
18 # treinamento
20 ## optimizador
21 optim = torch.optim.SGD(model.parameters(), lr=5e
  -1)
22
23 ## função erro
24 loss_fun = torch.nn.MSELoss()
26 ## dados de treinamento
27 X_train = torch.tensor([[1., 1.],
                      [1., -1.],
28
                      [-1., 1.],
29
                      [-1., -1.]])
30
31 y_train = torch.tensor([1., -1., -1., -1.]).
 reshape (-1,1)
32
33 ## num de amostras
34 ns = y_train.size(0)
35
36 print("\nDados de treinamento")
37 print("X_train =")
38 print(X_train)
39 print("y_train = ")
40 print(y train)
41
42 ## num max épocas
43 \text{ nepochs} = 5000
44 \text{ tol} = 1e-3
45
46 for epoch in range (nepochs):
      # forward
48
      y_est = model(X_train)
49
50
      # erro
51
      loss = loss_fun(y_est, y_train)
52
53
```

```
print(f'{epoch}: {loss.item():.4e}')
54
55
      # critério de parada
56
      if (loss.item() < tol):</pre>
57
           break
58
59
      # backward
60
      for s in torch.randperm(ns):
61
           loss_s = (y_est[s,:] - y_train[s,:])**2
62
           optim.zero_grad()
63
           loss_s.backward()
64
           optim.step()
65
           y_est = model(X_train)
66
67
69 # verificação
70 y = model(X train)
71 \operatorname{print}(f'y_est = \{y\}')
```

2.2.3 Exercícios

E.2.2.1. Calcule a derivada da função de ativação

$$f(x) = \tanh(x). \tag{2.41}$$

- **E.2.2.2.** Crie um perceptron para emular a operação lógica ∧ (e-lógico). No treinamento, use como otimizador:
- a) Método GD.
- b) Método SGD.
- **E.2.2.3.** Crie um perceptron para emular a operação lógica ∨ (ou-lógico). No treinamento, use como otimizador:
- a) Método GD.

- b) Método SGD.
- E.2.2.4. Crie um perceptron que se ajuste ao seguinte conjunto de dados:

\mathbf{s}	$x^{(s)}$	$y^{(s)}$
1	0.5	1.2
2	1.0	2.1
3	1.5	2.6
4	2.0	3.6

No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

Capítulo 3

Perceptron Multicamadas

3.1 Modelo MLP

Uma perceptron multicamadas (MLP, do inglês, multilayer perceptron) é um tipo de rede neural artificial formada por composições de camadas de perceptrons. Consultamos a Figura 3.1.

Figura 3.1: Arquitetura de uma rede do tipo perceptron multicamadas (MLP).

Denotamos uma MLP de n_l camadas por

$$\boldsymbol{y} = \mathcal{N}\left(\boldsymbol{x}; \left(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)}\right)_{l=1}^{n_h+1}\right), \tag{3.1}$$

onde $(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)})$ é a tripa de **pesos**, **biases** e **função de ativação** da l-ésima camada da rede, $l=1,2,\ldots,n_h+1$. Uma rede com essa arquitetura é dita ter uma **camada de entrada**, n_h **camadas escondidas** e uma **camada de saída**.

A saída da rede é calculada por iteradas composições das camadas, i.e.

$$\boldsymbol{a}^{(l)} = f^{(l)} \underbrace{\left(W^{(l)} \boldsymbol{a}^{(l-1)} + \boldsymbol{b}^{(l)}\right)}_{\boldsymbol{z}^{(l)}}, \tag{3.2}$$

para $l = 1, 2, ..., n_h + 1$, denotando a **entrada** por $\boldsymbol{x} =: \boldsymbol{a}^{(0)}$ e a **saída** por $\boldsymbol{y} =: \boldsymbol{a}^{(n_h+1)}$.

3.1.1 Treinamento

Em um treinamento supervisionado, tem-se um dado **conjunto de treinamento** $\{\boldsymbol{x}^{(s)},\boldsymbol{y}^{(s)}\}_{s=1}^{n_s}$, com n_s amostras. O treinamento da rede consiste em resolver o problema de minimização

$$\min_{(\boldsymbol{W},\boldsymbol{b})} \left\{ \varepsilon := \frac{1}{n_s} \sum_{s=1}^{n_s} \varepsilon^{(s)} \left(\tilde{\boldsymbol{y}}^{(s)}, \boldsymbol{y}^{(s)} \right) \right\}$$
(3.3)

onde ε é uma dada função erro (em inglês, loss function) e $\varepsilon^{(s)}$ é uma medida do erro da saída estimada $\tilde{y}^{(s)}$ da saída esperada $y^{(s)}$.

O problema de minimização pode ser resolvido por um método de declive e, de forma geral, consiste em:

- 1. W, \boldsymbol{b} aproximações iniciais.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

(a)
$$(W, \boldsymbol{b}) \leftarrow (W, \boldsymbol{b}) - l_r \boldsymbol{d} (\nabla_{W, \boldsymbol{b}} \varepsilon)$$

onde, n_e é o **número de épocas**, l_r é uma dada **taxa de aprendizagem** (em inglês, $learning\ rate$)) e $\mathbf{d} = \mathbf{d} \left(\nabla_{W,\mathbf{b}} \varepsilon \right)$ é o vetor direção, onde

$$\nabla_{W,\mathbf{b}}\varepsilon := \left(\frac{\partial \varepsilon}{\partial W}, \frac{\partial \varepsilon}{\partial \mathbf{b}}\right) \tag{3.4}$$

$$= \frac{1}{ns} \sum_{s=1}^{n_s} \left(\frac{\partial \varepsilon^{(s)}}{\partial W}, \frac{\partial \varepsilon^{(s)}}{\partial \boldsymbol{b}} \right)$$
 (3.5)

O cálculo dos gradientes pode ser feito por **retropropagação** (em inglês, backward). Para os pesos da última camada, temos¹

$$\frac{\partial \varepsilon^{(s)}}{\partial W^{(n_h+1)}} = \frac{\partial \varepsilon^{(s)}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}^{(n_h+1)}} \frac{\partial \mathbf{z}^{(n_h+1)}}{\partial W^{(n_h+1)}}$$
(3.6)

$$= \frac{\partial \varepsilon^{(s)}}{\partial \boldsymbol{y}} f' \left(W^{(n_h+1)} \boldsymbol{a}^{(n_h)} + \boldsymbol{b}^{(n_h+1)} \right) \boldsymbol{a}^{(n_h)}. \tag{3.7}$$

¹Com um cero abuso de linguagem devido à álgebra matricial envolvida.

Para os pesos da penúltima camada, temos

$$\frac{\partial \varepsilon^{(s)}}{\partial W^{(n_h)}} = \frac{\partial \varepsilon}{\partial \boldsymbol{y}} \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{z}^{(n_h+1)}} \frac{\partial \boldsymbol{z}^{(n_h+1)}}{\partial W^{(n_h)}}, \tag{3.8}$$

$$= \frac{\partial \varepsilon^{(s)}}{\partial \boldsymbol{y}} f'\left(\boldsymbol{z}^{(n_h+1)}\right) \frac{\partial \boldsymbol{z}^{(n_h+1)}}{\partial \boldsymbol{a}^{(n_h)}} \frac{\partial \boldsymbol{a}^{(n_h)}}{\partial \boldsymbol{z}^{(n_h)}} \frac{\partial \boldsymbol{z}^{(n_h)}}{\partial W^{(n_h)}}$$
(3.9)

$$= \frac{\partial \varepsilon^{(s)}}{\partial \boldsymbol{y}} f'\left(\boldsymbol{z}^{(n_h+1)}\right) W^{(n_h+1)} f'\left(\boldsymbol{z}^{(n_h)}\right) \boldsymbol{a}^{(n_h-1)}$$
(3.10)

e assim, sucessivamente para as demais camadas da rede. Os gradientes em relação aos biases podem ser calculados de forma análoga.

3.1.2 Aplicação: Problema de Classificação XOR

Vamos desenvolver uma MLP que faça a operação xor (ou exclusivo). A rede recebe como entrada dois valores lógicos A_1 e A_2 (V, verdadeiro ou F, falso) e fornece como saída o valor lógico $R = A_1xorA_2$. Consultamos a tabela verdade:

$$\begin{array}{c|cccc} A_1 & A_2 & R \\ \hline V & V & F \\ V & F & V \\ F & V & F \\ \end{array}$$

Assumindo V = 1 e F = -1, podemos modelar o problema tendo entradas $\mathbf{x} = (x_1, x_2)$ e saída y como na seguinte tabela:

Modelo

Vamos usar uma MLP de estrutura 2-2-1 e com funções de ativação $f^{(1)}(\boldsymbol{x}) = \tanh(\boldsymbol{x})$ e $f^{(2)}(\boldsymbol{x}) = id(\boldsymbol{x})$. Ou seja, nossa rede tem duas entradas, uma **camada escondida** com 2 unidades (função de ativação tangente

hiperbólica) e uma camada de saída com uma unidade (função de ativação identidade).

Treinamento

Para o treinamento, vamos usar a função **erro quadrático médio** (em inglês, *mean squared error*)

$$\varepsilon := \frac{1}{n_s} \sum_{s=1}^{n_s} \left| \tilde{y}^{(s)} - y^{(s)} \right|^2, \tag{3.11}$$

onde $\tilde{y}^{(s)} = \mathcal{N}\left(\boldsymbol{x}^{(s)}\right)$ são os valores estimados e $\left\{\boldsymbol{x}^{(s)}, y^{(s)}\right\}_{s=1}^{n_s}$, $n_s = 4$, o conjunto de treinamento conforme na tabela acima.

Implementação

O seguinte código implementa a MLP com Método do Gradiente Descendente (DG) como otimizador do algoritmo de treinamento.

Código 3.1: mlp_xor.py

```
import torch

import torch

modelo

model = torch.nn.Sequential()

model.add_module('layer_1', torch.nn.Linear(2,2))

model.add_module('fun_1', torch.nn.Tanh())

model.add_module('layer_2', torch.nn.Linear(2,1))

the treinamento

the primizador

optim = torch.optim.SGD(model.parameters(),

lr=5e-1)

the dados de treinamento

X_train = torch.tensor([[1., 1.],

[1., -1.],
```

```
[-1., 1.],
20
                              [-1., -1.]
21
22 y_train = torch.tensor([-1., 1., 1., -1.]).reshape
  (-1,1)
24 print("\nDados de treinamento")
25 print("X_train =")
26 print(X_train)
27 print("y_train = ")
28 print(y_train)
30 ## num max épocas
31 \text{ nepochs} = 5000
32 \text{ tol} = 1e-3
34 for epoch in range (nepochs):
35
36
      # forward
      y_est = model(X_train)
37
38
      # função erro
39
      loss = torch.mean((y_est - y_train)**2)
40
41
      print(f'{epoch}: {loss.item():.4e}')
42
43
      # critério de parada
44
      if (loss.item() < tol):</pre>
45
           break
46
47
      # backward
48
49
      optim.zero_grad()
      loss.backward()
      optim.step()
51
52
53
54 # verificação
55 y = model(X_train)
56 print(f'y_est = \{y\}')
```

3.1.3 Exercícios

E.3.1.1. Faça uma nova versão do Código , de forma que a MLP tenha tangente hiperbólica como função de ativação na sua saída.

E.3.1.2. Faça uma nova versão do Código usando o método do gradiente estocástico (SGD) como otimizador no algoritmo de treinamento.

E.3.1.3. Crie uma MLP para emular a operação lógica \land (e-lógico). No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

E.3.1.4. Crie uma MLP para emular a operação lógica ∨ (ou-lógico). No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

E.3.1.5. Considere uma MLP com $n_l=3$ camadas escondidas. Sendo ε uma dada função erro, calcule:

1.
$$\frac{\partial \varepsilon}{\partial W^{n_l-2}}$$
.

$$2. \ \frac{\partial \varepsilon}{\partial \boldsymbol{b}^{n_l-2}}.$$

3.2 Aplicação: Problema de Classificação Binária

Em construção

Vamos estudar uma aplicação de redes neurais artificiais em um problema de classificação binária não linear.

3.2.1 Dados

Em construção

Vamos desenvolver uma rede do tipo Perceptron Multicamadas (MLP) para a classificação binária de pontos, com base nos seguintes dados.

```
1 from sklearn.datasets import make_circles
2 import matplotlib.pyplot as plt
4 plt.rcParams.update({
       "text.usetex": True,
       "font.family": "serif",
       "font.size": 14
       })
8
10 # data
11 print('data')
12 n samples = 1000
13 print(f'n_samples = {n_samples}')
14 \# X = points, y = labels
15 X, y = make_circles(n_samples,
                       noise=0.03, # add noise
17
                       random_state=42) # random seed
18
19 fig = plt.figure()
20 ax = fig.add_subplot()
21 ax.scatter(X[:,0], X[:,1], c=y, cmap=plt.cm.
 coolwarm)
22 ax.grid()
23 ax.set xlabel('$x 1$')
24 ax.set_ylabel('$x_2$')
25 plt.show()
```


Figura 3.2: Dados para a o problema de classificação binária não linear.

3.2.2 Modelo

Em construção

Vamos usar uma MLP de estrutura 2-10-1, com função de ativação

$$elu(x) = \begin{cases} x & , x > 0 \\ \alpha (e^x - 1) & , x \le 0 \end{cases}$$
 (3.12)

na camada escondida e

$$\operatorname{sigmoid}(x) = \frac{1}{1 + e^x} \tag{3.13}$$

na saída da rede.

Para o treinamento e teste, vamos randomicamente separar os dados em um conjunto de treinamento $\{\boldsymbol{x}_{\text{train}}^{(k)}, y_{\text{train}}^{(k)}\}_{k=1}^{n_{\text{train}}}$ e um conjunto de teste $\{\boldsymbol{x}_{\text{test}}^{(k)}, y_{\text{test}}^{(k)}\}_{k=1}^{n_{\text{test}}}$, com y=0 para os pontos azuis e y=1 para os pontos vermelhos.

3.2.3 Treinamento e Teste

Em construção

Código 3.2: mlp_classbin.py

```
1 import torch
2 from sklearn.datasets import make_circles
3 from sklearn.model_selection import
 train test split
4 import matplotlib.pyplot as plt
6 # data
7 print('data')
8 \text{ n samples} = 1000
9 print(f'n_samples = {n_samples}')
10 # X = points, y = labels
11 X, y = make circles(n samples,
12
                       noise=0.03, # add noise
                       random_state=42) # random seed
13
14
15 ## numpy -> torch
16 X = torch.from_numpy(X).type(torch.float)
17 y = torch.from_numpy(y).type(torch.float).reshape
  (-1,1)
18
19 ## split into train and test datasets
20 print('Data: train and test sets')
21 X_train, X_test, y_train, y_test =
 train_test_split(X,
22
    у,
23
    test size=0.2,
24
    random_state=42)
25 print(f'n_train = {len(X_train)}')
26 print(f'n_test = {len(X_test)}')
27 plt.close()
```

```
28 plt.scatter(X train[:,0], X train[:,1], c=y train,
               marker='o', cmap=plt.cm.coolwarm,
  alpha=0.3)
30 plt.scatter(X_test[:,0], X_test[:,1], c=y_test,
               marker='*', cmap=plt.cm.coolwarm)
32 plt.show()
33
34 # model
35 model = torch.nn.Sequential(
      torch.nn.Linear(2, 10),
      torch.nn.ELU(),
37
      torch.nn.Linear(10, 1),
38
      torch.nn.Sigmoid()
40
41
42 # loss fun
43 loss fun = torch.nn.BCELoss()
44
45 # optimizer
46 optimizer = torch.optim.SGD(model.parameters(),
                                lr = 1e-1)
47
48
49 # evaluation metric
50 def accuracy_fun(y_pred, y_exp):
      correct = torch.eq(y_pred, y_exp).sum().item()
      acc = correct/len(y_exp) * 100
52
      return acc
53
55 # train
56 \text{ n epochs} = 10000
57 n_out = 100
59 for epoch in range(n epochs):
      model.train()
60
61
      y_pred = model(X_train)
62
63
      loss = loss_fun(y_pred, y_train)
```

```
65
      acc = accuracy_fun(torch.round(y_pred),
66
                           y_train)
67
68
      optimizer.zero_grad()
69
      loss.backward()
70
      optimizer.step()
71
72
      model.eval()
73
74
      #testing
75
      if ((epoch+1) % n_out == 0):
76
          with torch.inference mode():
               y pred test = model(X test)
78
               loss_test = loss_fun(y_pred_test,
79
                                      y_test)
80
               acc test = accuracy fun(torch.round(
81
  y_pred_test),
                                         y_test)
82
83
          print(f'{epoch+1}: loss = {loss:.5e},
  accuracy = {acc:.2f}%')
          print(f'\ttest: loss = {loss:.5e},
 accuracy = {acc:.2f}%\n')
```

3.2.4 Verificação

Em construção

Para a verificação, testamos o modelo em uma malha uniforme de 100×100 pontos no domínio $[-1, 1]^2$. Consulte a Figure 3.3.

Figura 3.3: Verificação do modelo de classificação binária.

```
1 # malha de pontos
2 xx = torch.linspace(-1.1, 1.1, 100)
3 Xg, Yg = torch.meshgrid(xx, xx)
5 # valores estimados
6 Zg = torch.empty like(Xg)
7 for i,xg in enumerate(xx):
      for j,yg in enumerate(xx):
          z = model(torch.tensor([[xg, yg]])).detach
  ()
          Zg[i, j] = torch.round(z)
10
11
12 # visualização
13 fig = plt.figure()
14 ax = fig.add_subplot()
15 ax.contourf(Xg, Yg, Zg, levels=2, cmap=plt.cm.
  coolwarm, alpha=0.5)
16 ax.scatter(X[:,0], X[:,1], c=y, cmap=plt.cm.
  coolwarm)
```

17 plt.show()

3.2.5 Exercícios

Em construção

3.3 Aplicação: Aproximação de Funções

Redes Perceptron Multicamadas (MLPs) são aproximadoras universais. Nesta seção, vamos aplicá-las na aproximação de funções uni- e bidimensionais.

3.3.1 Função unidimensional

Vamos criar uma MLP para aproximar a função

$$y = \operatorname{sen}(\pi x), \tag{3.14}$$

para $x \in [-1, 1]$.

Figura 3.4: Aproximação da MLP da função $y = \text{sen}(\pi x)$.

Código 3.3: mlp_apfun_1d

```
1 import torch
2 import matplotlib.pyplot as plt
4 # modelo
6 model = torch.nn.Sequential()
7 model.add_module('layer_1', torch.nn.Linear(1,25))
8 model.add_module('fun_1', torch.nn.Tanh())
9 model.add module('layer 2', torch.nn.Linear(25,25)
  )
nodel.add_module('fun_2', torch.nn.Tanh())
model.add_module('layer_3', torch.nn.Linear(25,1))
13 # treinamento
15 ## fun obj
16 fun = lambda x: torch.sin(torch.pi*x)
17 a = -1.
18 b = 1.
20 ## optimizador
21 optim = torch.optim.SGD(model.parameters(),
22
                            lr=1e-1, momentum=0.9)
24 ## num de amostras por época
25 \text{ ns} = 100
26 ## num max épocas
27 \text{ nepochs} = 5000
28 ## tolerância
29 \text{ tol} = 1e-5
31 ## amostras de validação
32 X val = torch.linspace(a, b, steps=100).reshape
  (-1,1)
33 y_vest = fun(X_val)
35 for epoch in range (nepochs):
```

```
# amostras
37
      X_{train} = (a - b) * torch.rand((ns,1)) + b
38
      y_train = fun(X_train)
39
40
      # forward
41
      y est = model(X train)
42
43
      # erro
44
      loss = torch.mean((y_est - y_train)**2)
45
46
      print(f'{epoch}: {loss.item():.4e}')
47
48
      # backward
49
      optim.zero grad()
50
      loss.backward()
51
      optim.step()
52
53
54
      # validação
      y_val = model(X_val)
55
      loss_val = torch.mean((y_val - y_vest)**2)
56
      print(f"\tloss val = {loss val.item():.4e}")
57
58
      # critério de parada
59
      if (loss_val.item() < tol):</pre>
60
           break
61
62
63
64 # verificação
65 fig = plt.figure()
66 ax = fig.add_subplot()
68 x = torch.linspace(a, b,
                        steps=100).reshape(-1,1)
69
70
71 \text{ y_esp} = \text{fun}(x)
72 ax.plot(x, y_esp, label='fun')
74 y_est = model(x)
```

```
75 ax.plot(x, y_est.detach(), label='model')
76
77 ax.legend()
78 ax.grid()
79 ax.set_xlabel('x')
80 ax.set_ylabel('y')
81 plt.show()
```

3.3.2 Função bidimensional

Vamos criar uma MLP para aproximar a função bidimensional

$$y = \operatorname{sen}(\pi x_1) \operatorname{sen}(\pi x_2), \tag{3.15}$$

para
$$(x_1, x_2) \in \mathcal{D} := [-1, 1]^2$$
.

Vamos usar uma arquitetura de rede $2 - n_n \times 3 - 1$ (duas entradas, 3 camadas escondidas com n_n neurônios e uma saída). Nas $n_h = 3$ camadas escondidas, vamos usar a tangente hiperbólica como função de ativação.

Para o treinamento, vamos usar o erro médio quadrático como função erro

$$\varepsilon = \frac{1}{n_s} \sum_{s=1}^{n_s} |\tilde{y}^{(s)} - y^{(s)}|^2, \tag{3.16}$$

onde, a cada época, n_s pontos randômicos² $\left\{ \boldsymbol{x}^{(s)} \right\} \subset \mathcal{D}$ são usados para gerar o conjunto de treinamento $\left\{ \left(\boldsymbol{x}^{(s)}, y^{(s)} \right) \right\}_{s=1}^{n_s}$.

 $^{^2{\}rm Em}$ uma distribuição uniforme.

Figura 3.5: Aproximação MLP da função $y = \text{sen}(\pi x_1) \text{sen}(\pi x_2)$. Linhas: isolinhas da função. Mapa de cores: MLP. Estrelas: pontos de treinamentos na última época.

Código 3.4: mlp_apfun_2d

```
import torch
2
    # modelo
3
   nn = 50
   model = torch.nn.Sequential()
    model.add_module('layer_1', torch.nn.Linear(2,nn
 ))
    model.add_module('fun_1', torch.nn.Tanh())
    model.add_module('layer_2', torch.nn.Linear(nn,
8
 nn))
    model.add_module('fun_2', torch.nn.Tanh())
    model.add_module('layer_3', torch.nn.Linear(nn,
10
   model.add_module('fun_3', torch.nn.Tanh())
    model.add_module(f'layer_4', torch.nn.Linear(nn
  ,1))
```

```
13
    # treinamento
14
15
    ## fun obj
16
    def fun(x1, x2):
17
        return torch.sin(torch.pi*x1) * \
18
                torch.sin(torch.pi*x2)
19
20
    x1 a = -1.
21
22
    x1 b = 1
23
24
    x2_a = -1.
    x2 b = 1.
25
26
27
    ## optimizador
28
    optim = torch.optim.SGD(model.parameters(),
29
                              lr=1e-1, momentum=0.9)
30
31
    ## num de amostras por época
32
    ns = 20
33
    ## num max épocas
34
    nepochs = 50000
35
    ## tolerância
36
    tol = 1e-4
37
38
    ## amostras de validação
39
    n val = 50
40
    x1 = torch.linspace(x1_a, x1_b, steps=n_val)
41
    x2 = torch.linspace(x2_a, x2_b, steps=n_val)
    X1_val, X2_val = torch.meshgrid(x1, x2, indexing
43
 ='ij')
    X val = torch.hstack((X1 val.reshape(n val**2,1)
                            X2_val.reshape(n_val**2,1)
45
  ))
    Y_vest = fun(X1_val, X2_val).reshape(-1,1)
```

```
for epoch in range (nepochs):
48
49
        # amostras
50
        X1 = (x1_b - x1_a) * torch.rand(ns**2, 1) +
51
 x1 a
        X2 = (x2 b - x2 a) * torch.rand(ns**2, 1) +
52
 x2_a
        \# X1, X2 = torch.meshgrid(x1, x2, indexing='
53
  ij')
        X_train = torch.hstack((X1, X2))
54
        Y_{train} = fun(X1, X2).reshape(-1,1)
55
56
57
        # forward
58
        Y_est = model(X_train)
59
60
        # erro
61
62
        loss = torch.mean((Y_est - Y_train)**2)
63
        if (epoch \% 100 == 0):
64
             print(f'{epoch}: {loss.item():.4e}')
65
66
        # backward
67
        optim.zero_grad()
68
        loss.backward()
69
        optim.step()
70
71
        # validação
72
        if (epoch % 100 == 0):
73
             Y_val = model(X_val)
74
75
             loss_val = torch.mean((Y_val - Y_vest)
  **2)
76
             print(f"\tloss_val = {loss_val.item():.4
77
  e}")
78
             # critério de parada
79
             if (loss_val.item() < tol):</pre>
80
```

81 break

82

3.3.3 Exercícios

E.3.3.1. Crie uma MLP para aproximar a função gaussiana

$$y = e^{-x^2} (3.17)$$

para $x \in [-1, 1]$.

E.3.3.2. Crie uma MLP para aproximar a função $y = \sin(x)$ para $x \in [-\pi, \pi]$.

E.3.3.3. Crie uma MLP para aproximar a função $y = \sin(x) + \cos(x)$ para $x \in [0, 2\pi]$.

E.3.3.4. Crie uma MLP para aproximar a função gaussiana

$$z = e^{-(x^2 + y^2)} (3.18)$$

para $(x, y) \in [-1, 1]^2$.

E.3.3.5. Crie uma MLP para aproximar a função $y = \sin(x_1)\cos(x_2)$ para $(x_1, x_2) \in [0, \pi] \times [-\pi, 0]$.

E.3.3.6. Crie uma MLP para aproximar a função $y = \sin(x_1) + \cos(x_2)$ para $(x_1, x_2) \in [-2\pi, 2\pi]$.

3.4 Diferenciação Automática

Diferenciação automática é um conjunto de técnicas para a computação de derivadas numéricas em um programa de computador. Explora-se o

fato de que um programa computacional executa uma sequência de operações aritméticas e funções elementares, podendo-se computar a derivada por aplicações da regra da cadeia.

PyTorch computa o **gradiente** (derivada) de uma função $f: \mathbb{R}^n \to \mathbb{R}$ a partir de seu **grafo computacional**. Os gradientes são computados por retropropagação. Por exemplo, para a computação do gradiente

$$\nabla_{\boldsymbol{x}} f(\boldsymbol{x_0}) = \left. \frac{df}{d\boldsymbol{x}} \right|_{\boldsymbol{x} = \boldsymbol{x_0}}, \tag{3.19}$$

primeiramente, propaga-se a entrada $\mathbf{x_0}$ pela função computacional f, obtendo-se $y = f(\mathbf{x_0})$. Então, o gradiente é computado por retropropagação.

Exemplo 3.4.1. Consideramos a função $f(x) = \text{sen}(\pi x)$ e vamos computar

$$f'(x_0) = \frac{df}{dx}\bigg|_{x=0} \tag{3.20}$$

por diferenciação automática.

Antes, observamos que, pela regra da cadeia, denotamos $u = \pi x$ e calculamos

$$\frac{df}{dx} = \frac{d}{du}\operatorname{sen}(u) \cdot \frac{du}{dx} \tag{3.21}$$

$$=\cos(u)\cdot\pi\tag{3.22}$$

$$=\pi\cos(\pi x)\tag{3.23}$$

Figura 3.6: Grafo computacional da diferenciação automática de $f(x) = sen(\pi x)$.

Agora, observamos que a computação de f(x) pode ser representada pelo grafo de propagação mostrado na Figura 3.6. Para a computação do gradiente, adicionamos uma variável fictícia z=y. Na retropropagação, computamos

$$\mathbf{a.} \frac{dz}{dy} = 1$$

$$\mathbf{b.} \frac{dz}{du} = \frac{dy}{du} \frac{dz}{dy}$$

$$= \frac{d}{du} \left[\operatorname{sen}(u) \right] \cdot \mathbf{1}$$

$$= \cos(u)$$
(3.24a)
$$(3.24a)$$

$$c. \frac{dz}{dx} = \frac{du}{dx} \frac{dz}{du}$$
 (3.24c)

$$= \frac{d}{dx} [\pi x] \cos(u)$$

$$= \pi \cos(\pi x) = \frac{dy}{dx}.$$
(3.24d)

$$= \pi \cos(\pi x) = \frac{dy}{dx}.$$
 (3.24e)

Figura 3.7: Comparação entre as diferenciações analítica (f') e automática (autograd).

Código 3.5: mlp_autograd_df1d

```
1 import torch
3 # input
4x = torch.linspace(-1., 1., steps=50).reshape
 (-1,1)
5 # requires grad
6 x.requires_grad = True
8 # output
9 y = torch.sin(torch.pi*x)
```

```
10
11 # compute gradients
12 y.backward(gradient=torch.ones_like(y))
13
14 # dy/dx
15 dydx = x.grad
```

 \triangle

A computação do gradiente também acaba por construir um novo grafo (consulte Figura 3.6). Este, por sua vez, pode ser usado para a computação da diferenciação automática de segunda ordem, i.e. para a derivação de segunda ordem.

Exemplo 3.4.2. Consideramos a função $y = \text{sen}(\pi x)$. No exemplo anterior, computamos $dy/dx = \pi \cos(\pi x)$ por diferenciação automática. No Código 3.5, os gradientes foram computados com o comando

```
1 y.backward(gradient=torch.ones_like(y))
2 dudx = x.grad
```

Alternativamente, podemos usar

```
1 dydx = torch.autograd.grad(
2     y, x,
3     grad_outputs=torch.ones_like(y),
4     retain_graph=True,
5     create_graph=True)[0]
```

Este comando computa dy/dx, mas avisa o PyTorch que os grafos computacionais sejam mantidos e que um novo grafo seja gerado da retropropagação. Com isso, podemos computar o gradiente do gradiente, como no código abaixo.

Figura 3.8: Comparação entre as diferenciações analítica (f', f'') e automática (dydx, d2ydx2).

Código 3.6: mlp_autograd_d2f1d

```
1 import torch
3 # input
4x = torch.linspace(-1., 1., steps=50).reshape
  (-1,1)
5 # requires grad
6 x.requires_grad = True
8 # output
9 y = torch.sin(torch.pi*x)
10
11 # compute gradients
12 dydx = torch.autograd.grad(
13
      y, x,
      grad_outputs=torch.ones_like(y),
14
      retain_graph=True,
15
      create_graph=True)[0]
16
17
```

 \triangle

3.4.1 Autograd MLP

Os conceitos de diferenciação automática (**autograd**) são diretamente estendidos para redes do tipo Perceptron Multicamadas (MLP, do inglês, *Multilayer Perceptron*). Uma MLP é uma composição de funções definidas por parâmetros (pesos e *biases*). Seu treinamento ocorre em duas etapas³:

- Propagação (forward): os dados de entrada são propagados para todas as funções da rede, produzindo a saída estimada.
- 2. Retropropagação (backward): a computação do gradiente do erro⁴ em relação aos parâmetros da rede é realizado coletando as derivadas (gradientes) das funções da rede. Pela regra da cadeia, essa coleta é feita a partir da camada de saída em direção a camada de entrada da rede.

No seguinte exemplo, exploramos o fato de MLPs serem aproximadoras universais e avaliamos a derivada de uma MLP na aproximação de uma função.

Exemplo 3.4.3. Vamos criar uma MLP

$$\tilde{y} = \mathcal{N}\left(x; \left(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)}\right)_{l=1}^{n}\right), \tag{3.25}$$

que aproxima a função

$$y = \operatorname{sen}(\pi x), \ x \in [-1, 1].$$
 (3.26)

Em seguida, computamos, por diferenciação automática, o gradiente

$$\frac{d\tilde{y}}{dx} = \nabla_x \mathcal{N}(x) \tag{3.27}$$

e comparamos com o resultado esperado

$$\frac{dy}{dx} = \pi \cos(\pi x). \tag{3.28}$$

³Para mais detalhes, consulte a Subseção 3.1.1.

⁴Medida da diferença entre o valor estimado e o valor esperado.

Figura 3.9: Comparação da diferenciação automática da MLP com a derivada analítica $f'(x) = \pi \cos(\pi x)$.

Código 3.7: mlp_autograd_apfun1d.py

```
16 ## fun obj
17 fun = lambda x: torch.sin(torch.pi*x)
18 a = -1.
19 b = 1.
21 ## optimizador
22 optim = torch.optim.SGD(model.parameters(),
                              lr=1e-1, momentum=0.9)
23
24
25 ## num de amostras por época
26 \text{ ns} = 100
27 ## num max épocas
28 \text{ nepochs} = 5000
29 ## tolerância
30 \text{ tol} = 1e-5
31
32 ## amostras de validação
33 X_val = torch.linspace(a, b, steps=100).reshape
  (-1,1)
34 y_vest = fun(X_val)
36 for epoch in range (nepochs):
37
      # amostras
38
      X \text{ train} = (a - b) * \text{torch.rand}((ns,1)) + b
39
      y_train = fun(X_train)
40
41
      # forward
42
      y_est = model(X_train)
43
44
      # erro
45
      loss = torch.mean((y_est - y_train)**2)
47
      print(f'{epoch}: {loss.item():.4e}')
48
49
      # backward
50
      optim.zero_grad()
51
      loss.backward()
```

```
optim.step()
53
54
      # validação
55
      y_val = model(X_val)
56
      loss_val = torch.mean((y_val - y_vest)**2)
57
      print(f"\tloss val = {loss val.item():.4e}")
58
59
      # critério de parada
60
      if (loss val.item() < tol):</pre>
61
           break
62
63
64 # autograd MLP
65 X_val.requires_grad = True
66 # forward
67 y_val = model(X_val)
68 # gradient
69 dydx = autograd.grad(
      y_val, X_val,
      grad_outputs=torch.ones_like(y_val))[0]
```

 \triangle

3.4.2 Exercícios

E.3.4.1. Por diferenciação automática, compute o gradiente (a derivada) das seguintes funções

- a) $f(x) = x^2 2x + 1$ para valores $x \in [-2, 2]$.
- b) $g(x) = \cos^2(x)$ para valores $x \in [0, 2\pi]$.
- c) $h(x) = \ln(x-1)$ para valores $x \in (-1, 2]$.
- d) $u(t) = e^{-t^2} \operatorname{sen}(t)$ para valores $t \in [-\pi, \pi]$.

Em cada caso, compare os valores computados com os valores esperados.

E.3.4.2. Em cada item do Exercício 3.4.1, faça um fluxograma dos gra-

fos computacionais da propagação e da retropropagação na computação dos gradientes.

E.3.4.3. Em cada item do Exercício 3.4.1, compute a derivada de segunda ordem da função indicada. Compare os valores computados com os valores esperados.

E.3.4.4. Por diferenciação automática, compute os gradientes das seguintes funções:

- a) $f(x,y) = x^2 + y^2$ para valores $(x,y) \in [-1,1]^2$.
- b) $g(x,y) = e^x \operatorname{sen}(xy)$ para valores $(x,y) \in (-1,2) \times (0,\pi)$.

Em cada caso, compare os valores computados com os valores esperados.

E.3.4.5. Para as funções de cada item do Exercício 3.4.6, compute:

- a) $\frac{\partial^2}{\partial x^2}$.
- b) $\frac{\partial^2}{\partial x \partial y}$.
- c) $\frac{\partial^2}{\partial y^2}$.

Compare os valores computados com os valores esperados.

E.3.4.6. Em cada item do Exercício 3.4.6, compute o laplacino $\Delta = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ da função indicada. Compare os valores computados com os valores esperados.

E.3.4.7. Seja a função $\boldsymbol{f}:\mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$\mathbf{f}(x,y) = \begin{bmatrix} xy^2 - x^2y + 6\\ x + x^2y^3 - 7 \end{bmatrix}$$
 (3.29)

Pedro H A Konzen

no domínio $\mathcal{D} = [-1,2] \times [1,3]$. Por diferenciação automática e para valores no domínio da função, compute:

- a) $\nabla f_1(x,y)$.
- b) $\nabla f_2(x,y)$.
- c) $\frac{\partial^2 f_1}{\partial x^2}$.
- $\mathrm{d}) \ \frac{\partial^2 f_1}{\partial x \partial y}.$
- e) $\frac{\partial^2 f_1}{\partial y^2}$.
- f) $\frac{\partial^2 f_2}{\partial x^2}$.
- $g) \frac{\partial^2 f_2}{\partial x \partial y}.$
- $\mathrm{h}) \ \frac{\partial^2 f_2}{\partial y^2}.$

Capítulo 4

Redes Informadas pela Física

[[tag:construcao]]

Redes neurais informadas pela física (PINNs, do inglês, physics-informed neural networks) são métodos de deep learning para a solução de equações diferenciais.

4.1 Aplicação: Equação de Poisson

Vamos criar uma MLP para resolver o problema de Poisson¹

$$-\Delta u = f, \ \mathbf{x} \in \mathcal{D} = (-1, 1)^2,$$
 (4.1a)

$$u = 0, \ \boldsymbol{x} \in \partial D, \tag{4.1b}$$

com fonte dada

$$f(x_1, x_2) = \pi^2 \operatorname{sen}(\pi x_1) \operatorname{sen}(\pi x_2). \tag{4.2}$$

No treinamento, vamos usar a função erro baseada no resíduo da equação de Poisson (4.1a) e nas condições de contorno (4.1b). Mais especificamente, assumimos a função erro

$$\varepsilon := \underbrace{\frac{1}{n_{s,in}} \sum_{s=1}^{n_{s,in}} \left| \mathcal{R} \left(\tilde{u}^{(s)} \right) \right|^2}_{\text{resíduo}} + \underbrace{\frac{1}{n_{s,cc}} \sum_{s=1}^{n_{s,cc}} \left| \tilde{u}^s \right|^2}_{\text{c.c.}}, \tag{4.3}$$

onde o resíduo é definido por

$$\mathcal{R}\left(\tilde{u}^{(s)}\right) := f + \Delta \tilde{u}^{(s)}. \tag{4.4}$$

A cada época, conjuntos de pontos $\left\{\boldsymbol{x}^{(s)}\right\}_{s=1}^{n_{s,in}} \subset \mathcal{D}$ e $\left\{\boldsymbol{x}^{(s)}\right\}_{s=1}^{n_{s,cc}} \subset \partial \mathcal{D}$ são randomicamente gerados com distribuição uniforme.

Observação 4.1.1. O problema de Poisson (4.1) tem solução analítica

$$u(x_1, x_2) = \operatorname{sen}(\pi x_1) \operatorname{sen}(\pi x_2).$$
 (4.5)

É importante observar que o treinamento da MLP não depende de conhecermos a solução. Aqui, vamos usá-la apenas para compararmos a solução MLP com a analítica. \triangle

Figura 4.1: Aproximação MLP da função solução do problema de Poisson (4.1). Linhas: isolinhas da solução analítica. Mapa de cores: solução MLP. Estrelas: pontos de treinamentos na última época.

Código 4.1: py_pinn_poisson

import torch

```
from torch import pi, sin
3
    # modelo
4
   nn = 50
5
   model = torch.nn.Sequential()
    model.add module('layer 1', torch.nn.Linear(2,nn
 ))
    model.add_module('fun_1', torch.nn.Tanh())
    model.add module('layer 2', torch.nn.Linear(nn,
 nn))
    model.add_module('fun_2', torch.nn.Tanh())
    model.add_module('layer_3', torch.nn.Linear(nn,
 nn))
    model.add_module('fun_3', torch.nn.Tanh())
    model.add_module('layer_4', torch.nn.Linear(nn
  ,1))
14
15
    # otimizador
    optim = torch.optim.SGD(model.parameters(),
16
                             lr = 1e-3, momentum=0.9)
17
18
    # fonte
19
    def f(x1, x2):
20
        return 2.*pi**2*sin(pi*x1)*sin(pi*x2)
21
22
    # treinamento
23
   ns in = 400
24
    ns cc = 20
    nepochs = 50000
26
    tol = 1e-3
27
28
    ## pontos de validação
29
    ns val = 50
30
    x1_val = torch.linspace(-1., 1., steps=ns_val)
    x2_val = torch.linspace(-1., 1., steps=ns_val)
    X1_val, X2_val = torch.meshgrid(x1_val, x2_val,
 indexing='ij')
    X_val = torch.hstack((X1_val.reshape(ns_val
```

```
**2,1),
                            X2 val.reshape(ns val
35
  **2,1)))
36
    for epoch in range(nepochs):
37
38
        # forward
39
        X1 = 2.*torch.rand(ns in, 1) - 1.
40
        X2 = 2.*torch.rand(ns in, 1) - 1.
41
        X = torch.hstack((X1, X2))
42
        X.requires grad = True
43
44
        U = model(X)
45
46
        # gradientes
47
        D1U = torch.autograd.grad(
48
             U, X,
49
50
             grad_outputs=torch.ones_like(U),
             retain_graph=True,
51
             create_graph=True)[0]
52
        D2UX1 = torch.autograd.grad(
53
             D1U[:,0:1], X,
54
             grad_outputs=torch.ones_like(D1U[:,0:1])
55
             retain graph=True,
56
             create_graph=True)[0]
57
        D2UX2 = torch.autograd.grad(
58
             D1U[:,1:2], X,
59
             grad_outputs=torch.ones_like(D1U[:,1:2])
60
61
             retain_graph=True,
             create graph=True)[0]
62
63
        # fonte
64
        F = f(X1, X2)
65
66
        # loss pts internos
67
        lin = torch.mean((F + D2UX1[:,0:1] + D2UX2
68
```

```
[:,1:2])**2)
69
        # contornos
70
        ## c.c. 1
71
        X1 = 2.*torch.rand(ns cc, 1) - 1.
72
        Xcc1 = torch.hstack((X1, -torch.ones((ns cc
73
  ,1))))
        Ucc1 = model(Xcc1)
74
75
76
        ## c.c. 3
        Xcc3 = torch.hstack((X1, torch.ones((ns_cc
77
  ,1))))
        Ucc3 = model(Xcc3)
78
79
        ## c.c. 4
80
        X2 = 2.*torch.rand(ns cc, 1) - 1.
81
        Xcc4 = torch.hstack((-torch.ones((ns cc,1)),
82
   X2))
        Ucc4 = model(Xcc4)
83
84
        ## c.c. 2
85
        Xcc2 = torch.hstack((torch.ones((ns_cc,1)),
86
 X2))
87
        Ucc2 = model(Xcc2)
88
        # loss cc
89
        lcc = 1./(4.*ns_cc) * torch.sum(Ucc1**2 +
 Ucc2**2 + Ucc3**2 + Ucc4**2)
91
        # loss
92
93
        loss = lin + lcc
        if ((epoch % 500 == 0) or (loss.item() < tol</pre>
95
 )):
             print(f'{epoch}: loss = {loss.item():.4e
96
  }')
97
             if (loss.item() < tol):</pre>
98
```

4.1.1 Exercícios

E.4.1.1. Crie uma MLP para resolver

$$-\Delta u = 0, \ \mathbf{x} \in D = (0,1)^2, \tag{4.6}$$

$$u(x_1,0) = x1(1-x_1), 0 \le x_1 \le 1, \tag{4.7}$$

$$u(1, x_2) = x2(1 - x_2), 0 < x_2 \le 1, (4.8)$$

$$u(x_1, 1) = x1(1 - x_1), 0 < x_1 < 1,$$
 (4.9)

$$u(0, x_2) = x2(1 - x_2), 0 < x_2 < 1.$$
 (4.10)

4.2 Aplicação: Equação do Calor

Em construção

Consideramos o problema

$$u_t = u_{xx} + f, (t, x) \in (0, 1] \times (-1, 1),$$
 (4.11a)

$$u(0,x) = \operatorname{sen}(\pi x), x \in [-1,1],$$
 (4.11b)

$$u(t, -1) = u(t, 1) = 0, t \in (t_0, tf],$$
 (4.11c)

onde $f(t,x)=(\pi^2-1)e^{-t}\sin(\pi x)$ é a fonte. Este problema foi manufaturado a partir da solução

$$u(t,x) = e^{-t}\operatorname{sen}(\pi x). \tag{4.12}$$

Código 4.2: mlp_calor_autograd.py

```
import torch
from torch import pi, sin, exp
from collections import OrderedDict
import matplotlib.pyplot as plt
```

```
6 # modelo
7 \text{ hidden} = [50] * 8
8 activation = torch.nn.Tanh()
9 layerList = [('layer_0', torch.nn.Linear(2, hidden
  [0])),
                ('activation_0', activation)]
10
11 for l in range(len(hidden)-1):
      layerList.append((f'layer_{1+1})',
13
                          torch.nn.Linear(hidden[1],
 hidden[1+1])))
      layerList.append((f'activation_{1+1}',
  activation))
15 layerList.append((f'layer {len(hidden)}', torch.nn
  .Linear(hidden[-1], 1)))
16 #layerList.append((f'activation_{len(hidden)})',
  torch.nn.Sigmoid()))
17 layerDict = OrderedDict(layerList)
18 model = torch.nn.Sequential(OrderedDict(layerDict)
  )
19
20 # otimizador
21 # optim = torch.optim.SGD(model.parameters(),
                                lr = 1e-3, momentum
22 #
  =0.85)
23 optim = torch.optim.Adam(model.parameters(),
                             lr = 1e-2)
24
25 scheduler = torch.optim.lr_scheduler.
 ReduceLROnPlateau(optim,
26
       factor=0.1,
27
       patience=100)
28
29 # treinamento
30 \text{ nt} = 10
31 tt = torch.linspace(0., 1., nt+1)
32 \text{ nx} = 20
```

```
33 xx = torch.linspace(-1., 1., nx+1)
34 T, X = torch.meshgrid(tt, xx, indexing='ij')
35 \text{ tt} = \text{tt.reshape}(-1,1)
36 xx = xx.reshape(-1,1)
38 Sic = torch.hstack((torch.zeros like(xx), xx))
39 Uic = sin(pi*xx)
41 Sbc0 = torch.hstack((tt[1:,:], -1.*torch.ones like
  (tt[1:,:])))
42 Ubc0 = torch.zeros like(tt[1:,:])
44 Sbc1 = torch.hstack((tt[1:,:], 1.*torch.ones_like(
 tt[1:,:])))
45 Ubc1 = torch.zeros_like(tt[1:,:])
47 tin = tt[1:,:]
48 xin = xx[1:-1,:]
49 Sin = torch.empty((nt*(nx-1), 2))
50 Fin = torch.empty((nt*(nx-1), 1))
51 s = 0
52 for i,t in enumerate(tin):
      for j,x in enumerate(xin):
           Sin[s,0] = t
54
           Sin[s,1] = x
55
           Fin[s,0] = (pi**2 - 1.)*exp(-t)*sin(pi*x)
56
           s += 1
57
58 tin = torch.tensor(Sin[:,0:1], requires_grad=True)
59 xin = torch.tensor(Sin[:,1:2], requires_grad=True)
60 Sin = torch.hstack((tin,xin))
61
62 \text{ nepochs} = 50001
63 \text{ tol} = 1e-4
64 \text{ nout} = 100
66 for epoch in range (nepochs):
67
      # loss
```

```
69
       ## c.i.
70
       Uest = model(Sic)
71
       lic = torch.mean((Uest - Uic)**2)
72
73
       ## residual
74
       U = model(Sin)
75
       U_t = torch.autograd.grad(
76
           U, tin,
77
           grad_outputs=torch.ones_like(U),
78
           retain graph=True,
79
           create_graph=True)[0]
80
       U x = torch.autograd.grad(
           U, xin,
82
           grad_outputs=torch.ones_like(U),
83
           retain graph=True,
84
           create graph=True)[0]
85
86
       U_xx = torch.autograd.grad(
           U_x, xin,
87
           grad_outputs=torch.ones_like(U_x),
88
           retain graph=True,
89
           create_graph=True)[0]
90
       res = U_t - U_xx - Fin
91
       lin = torch.mean(res**2)
92
93
       ## c.c. x = -1
94
       Uest = model(Sbc0)
95
       lbc0 = torch.mean(Uest**2)
96
97
       ## c.c. x = 1
       Uest = model(Sbc1)
99
       lbc1 = torch.mean(Uest**2)
100
101
       loss = lin + lic + lbc0 + lbc1
102
103
       lr = optim.param_groups[-1]['lr']
104
       print(f'{epoch}: loss = {loss.item():.4e}, lr
105
  = \{lr:.4e\}'
```

```
106
       # backward
107
       scheduler.step(loss)
108
       optim.zero_grad()
109
       loss.backward()
110
       optim.step()
111
112
113
       # output
114
115
       if ((epoch % nout == 0) or (loss.item() < tol)</pre>
  ):
           plt.close()
116
           fig = plt.figure(dpi=300)
117
           nt = 10
118
           tt = torch.linspace(0., 1., nt+1)
119
           nx = 20
120
           xx = torch.linspace(-1., 1., nx+1)
121
122
           T,X = torch.meshgrid(tt, xx, indexing='ij'
  )
           Uesp = torch.empty_like(T)
123
           M = torch.empty(((nt+1)*(nx+1),2))
124
           s = 0
125
           for i,t in enumerate(tt):
126
                for j,x in enumerate(xx):
127
                    Uesp[i,j] = exp(-t)*sin(pi*x)
128
                    M[s,0] = t
129
                    M[s,1] = x
130
                     s += 1
131
           Uest = model(M)
132
           Uest = Uest.detach().reshape(nt+1,nx+1)
133
134
           12rel = torch.norm(Uest - Uesp)/torch.norm
   (Uesp)
135
           ax = fig.add_subplot()
136
            cb = ax.contourf(T, X, Uesp,
137
                               levels=10)
138
           fig.colorbar(cb)
139
            cl = ax.contour(T, X, Uest,
140
```

```
levels=10, colors='white')
141
           ax.clabel(cl, fmt='%.1f')
142
           ax.set xlabel('$t$')
143
           ax.set_ylabel('$x$')
144
           plt.title(f'{epoch}: loss = {loss.item()
145
  :.4e, 12rel = {12rel :.4e}')
           plt.savefig(f'./results/sol_{(epoch//nout)
146
  :0>6}.png')
147
       if ((loss.item() < tol) or (lr < 1e-6)):</pre>
148
149
           break
```

4.3 PINN com Parâmetro a Determinar

Em construção

Vamos considerar uma equação diferencial

$$L(u;\lambda) = f, \ \boldsymbol{x} \in D \subset \mathbb{R}^n, \tag{4.13}$$

onde L é um operador em funções $u = u(\mathbf{x}), \lambda \in \mathbb{R}$ é um **parâmetro a determinar** e f uma dada função fonte. Assumimos conhecidas condições inicial e de contorno, bem como um **conjunto de amostras**

$$\mathcal{D} := \left\{ \left(\boldsymbol{x}^{(s)}, u^{(s)} \right) \right\}_{s=1}^{n_s}, \tag{4.14}$$

 $\operatorname{com} \boldsymbol{x}^{(s)} \in D e u^{(s)} = u\left(\boldsymbol{x}^{(s)}\right).$

Uma rede informada pela física (**PINN**, do inglês, *Physics-informed neural network*) com parâmetro a determinar é uma rede neural

$$\tilde{u} = \mathcal{N}(\boldsymbol{x}; \lambda), \tag{4.15}$$

em que \tilde{u} é a solução estimada do modelo dado pela equação diferencial (4.13) com dadas condições inicial e de contorno, em que o parâmetro λ é estimado tal que

$$\tilde{u}^{(s)} \approx u^{(s)}, \ \left(\boldsymbol{x}^{(s)}, u^{(s)}\right) \in \mathcal{D}.$$
 (4.16)

Figura 4.2: Esquema de uma PINN $\tilde{u} = \mathcal{N}(\boldsymbol{x}; \lambda)$.

Considerando uma rede do tipo perceptron multicamadas (MLP, do inglês, multilayer perceptron, consulte Fig. 4.2), seus pesos e biases são treinados em conjunto com parâmetro λ de forma a minimizar a função de perda

$$\varepsilon_{\lambda} := \underbrace{\frac{1}{n_{\text{in}}} \sum_{s=1}^{n_{\text{in}}} \left| \mathcal{R}_{\lambda} \left(\boldsymbol{x}_{\text{in}}^{(s)} \right) \right|^{2}}_{\text{pts. internos}} + \underbrace{\frac{1}{n_{\text{cc}}} \sum_{s=1}^{n_{\text{cc}}} \left| \tilde{u}_{\text{cc}} - u_{\text{cc}} \right|^{2}}_{\text{c.i. \& c.c.}} + \underbrace{\frac{p}{n_{s}} \sum_{s=1}^{n_{s}} \left| \tilde{u}^{(s)} - u^{(s)} \right|^{2}}_{\text{exectors}}, \tag{4.17}$$

onde $p \ge 0$ é uma **penalidade** e

$$\mathcal{R}_{\lambda}(\boldsymbol{x}) := f - L(u; \lambda) \tag{4.18}$$

é o resíduo de (4.13).

Exemplo 4.3.1. Consideramos a equação de Fisher²

$$u_t = u_{xx} + \lambda u(1 - u), \ (t, x) \in (0, t_f) \times (0, 1),$$
 (4.19)

com o parâmetro $\lambda > 0$ a determinar. Assumimos dadas condição inicial

$$u(0,x) = \frac{1}{\left(1 + e^{\sqrt{\frac{\lambda}{6}x}}\right)^2}, \ x \in [0,1], \tag{4.20}$$

e condições de contorno

$$u_x(t,0) = \frac{1}{\left(1 + e^{-\frac{5}{6}\lambda t}\right)^2},\tag{4.21}$$

$$u_x(t,0) = \frac{1}{\left(1 + e^{\sqrt{\frac{\lambda}{6}} - \frac{5}{6}\lambda t}\right)^2}.$$
 (4.22)

Este problema tem solução analítica [1]

$$u_a(t,x) = \frac{1}{\left(1 + e^{\sqrt{\frac{\lambda}{6}}x - \frac{5}{6}\lambda t}\right)^2}.$$
 (4.23)

Como exemplo de aplicação de uma PINN com parâmetro a determinar, vamos assumir o seguinte conjunto de amostras

$$\mathcal{D} = \left\{ \left(\left(t^{(s)}, x^{(s)} \right), u^{(s)} \right) \right\}_{s=1}^{n_s}, \tag{4.24}$$

com
$$(t^{(s)}, x^{(s)}) \in \{0.1, 0.2, 0.3\} \times \{0.25, 0.5, 0.75\}$$
e $u^{(s)} = u_a(t^{(s)}, x^{(s)}).$

Figura 4.3: Solução PINN versus analítica para $\lambda = 6$.

Código 4.3: ex_pinn_fisher.py

```
1 import torch
3 # modelo
4 \text{ nh} = 4
5 nn = 50
6 fun = torch.nn.Tanh()
7 model = torch.nn.Sequential()
8 model.add_module('layer_1', torch.nn.Linear(2, nn)
  )
9 model.add_module('fun_1', fun)
10 for 1 in range(2, nh+1):
      model.add_module(f'layer_{1}', torch.nn.Linear
  (nn, nn))
      model.add_module(f'fun_{1}', fun)
13 model.add_module(f'layer_{nh+1}', torch.nn.Linear(
  nn, 1))
14
15 # parâmetro
```

```
16 \, \text{rgn} = [5., 7]
17 model.lmbda = torch.nn.Parameter(
      data=(rgn[1]-rgn[0])*torch.rand(1)+rgn[0])
19
20 # otimizador
21 optim = torch.optim.Adam(model.parameters(), lr
  =0.001)
22
23 # parâmetros do problema
24 \text{ tf} = 1.
25
26 # solução analítica
27 lmbda = torch.tensor([6.])
28 def ua(t,x, lmbda=lmbda):
     return 1./(1.+torch.exp(torch.sqrt(lmbda/6.)*x
  -5./6*lmbda*t))**2
30
31 # condição inicial
32 def u0(x, lmbda=lmbda):
return 1./(1.+torch.exp(torch.sqrt(lmbda/6)*x)
  ) **2
35 # amostras
36 \text{ ts} = \text{torch.tensor}([0.1, 0.2, 0.3])
37 \text{ xs} = \text{torch.tensor}([0.25, 0.5, 0.75])
38 T, X = torch.meshgrid(ts, xs, indexing='ij')
39 Ss = torch.hstack((T.reshape(-1,1), X.reshape
  (-1,1))
40 Us_{exp} = ua(T, X).reshape(-1,1)
41
42 # treinamento
43 \text{ nepochs} = 50000
44 \text{ tol} = 1e-5
46 \text{ eout} = 100
47
48 \sin = 50
49 penalty = 1e1
```

```
50
51 for epoch in range(nepochs):
52
      # forward
53
54
      ## pts internos
55
      tsin = tf*torch.rand(sin, 1)
56
      xsin = torch.rand(sin, 1)
57
      Sin = torch.hstack((tsin, xsin))
58
      Sin.requires_grad = True
59
60
      Uin = model(Sin)
61
      ## loss pts internos
63
      DUin = torch.autograd.grad(
64
           Uin, Sin,
65
           torch.ones like(Uin),
66
67
           create_graph=True,
           retain_graph=True)[0]
68
      Uin t = DUin[:,0:1]
69
      Uin x = DUin[:,1:2]
70
71
      Uin_xx = torch.autograd.grad(
72
           Uin_x, Sin,
73
           torch.ones like(Uin x),
74
           create_graph=True,
75
           retain_graph=True) [0] [:,1:2]
76
77
78
      lin = torch.mean((Uin_t - Uin_xx \
79
80
                          - model.lmbda*Uin*(1-Uin))
  **2)
81
      ## cond. inicial
82
      S0 = torch.hstack((torch.zeros_like(xsin),
  xsin))
84
      U0 = model(S0)
```

```
86
       ## loss cond. inicial
87
       10 = torch.mean((UO - uO(xsin))**2)
88
89
       ## cond. de contorno
       Sbc0 = torch.hstack((tsin, torch.zeros like(
91
  xsin)))
       Sbc1 = torch.hstack((tsin, torch.ones_like(
92
  xsin)))
93
       Sbc = torch.vstack((Sbc0, Sbc1))
94
       Ubc_{exp} = ua(Sbc[:,0:1],Sbc[:,1:2])
95
       Ubc est = model(Sbc)
97
       ## loss cond. de contorno
98
       lbc = torch.mean((Ubc est - Ubc exp)**2)
99
100
101
       ## amostras
       Us est = model(Ss)
102
103
       ## loss amostras
104
       ls = torch.mean((Us_est - Us_exp)**2)
105
106
       ## loss total
107
       loss = lin + 10 + lbc + penalty*ls
108
109
       if ((epoch % eout == 0) or (loss.item() < tol)</pre>
110
  ):
           print(f'epoch: {epoch}, '\
111
                  + f'loss={loss.item():.4e}, '\
112
                  + f'lmbda={model.lmbda.item():.3f}')
113
114
       if (loss.item() < tol):</pre>
115
           break
116
117
       optim.zero grad()
118
       loss.backward()
119
       optim.step()
120
```

 \triangle

4.3.1 Exercícios

Em construção

Exemplo 4.3.2. Considere o seguinte problema de valor inicial

$$-u'' = \lambda \operatorname{sen}(\pi x), \ 0 < x < 1,$$
 (4.25a)

$$u(0) = u(1) = 0, (4.25b)$$

onde $\lambda > 0$ é um parâmetro a determinar. Dadas as amostras

$$\mathcal{D} = \left\{ \left(\frac{1}{6}, \frac{1}{2} \right), \left(\frac{1}{4}, \sqrt{22} \right), \left(\frac{1}{3}, \sqrt{33} \right) \right\}, \tag{4.26}$$

crie uma PINN

$$\tilde{u} = \mathcal{N}(x; \lambda) \tag{4.27}$$

para estimar o parâmetro λ e a solução em todo o domínio $0 \le x \le 1$. \triangle

Exemplo 4.3.3. Considere o problema de Poisson³

$$-\nabla u = \lambda, \ (x, y) \in D = (-1, 1)^2, \tag{4.28a}$$

$$u = 0, (x, y) \in \partial D, \tag{4.28b}$$

onde $\lambda>0$ é um parâmetro a determinar. Dado que u(1/2,1/2)=1/8,crie uma PINN

$$\tilde{u} = \mathcal{N}(x, y; \lambda) \tag{4.29}$$

para estimar o parâmetro λ e a solução em todo o domínio D. \triangle

Exemplo 4.3.4. Considere o problema de calor

$$u_t = \lambda u_{xx} + (\pi^2 - 1)e^{-t}\operatorname{sen}(\pi x), \ (t, x) \in (0, 1)^2,$$
 (4.30a)

$$u(0,x) = \operatorname{sen}(\pi x), \ x \in [0,1],$$
 (4.30b)

$$u(t,0) = u(t,1) = 0, \ t \in [0,1],$$
 (4.30c)

onde o coeficiente de difusão $\lambda>0$ é um parâmetro a determinar. Sabendo que o problema tem solução analítica

$$u(t,x) = e^{-t}\operatorname{sen}(\pi x), \tag{4.31}$$

escolha um conjunto de amostras $\mathcal{D} = \left\{\left(\left(t^{(s)}, x^{(s)}\right), u^{(s)}\right)\right\}_{s=1}^{n_s}$ tal que seja possível estimar λ com uma PINN

$$\tilde{u} = \mathcal{N}(t, x; \lambda). \tag{4.32}$$

 \triangle

4.4 Integração de Funções

Em construção

O objetivo, aqui, é de treinarmos uma RNA para a computação da integral de uma função $f: \mathbb{R} \to \mathbb{R}$ em um dado intervalo [a, b]. Mais precisamente, vamos treinar uma MLP \mathcal{N} tal que

$$\int_{a}^{x} f(u) \, du \approx \mathcal{N}(x). \tag{4.33}$$

Do teorema fundamental do cálculo, temos que

$$\mathcal{N}(x) = \mathcal{N}(a) + \int_{a}^{x} f(u) \, du \tag{4.34}$$

com

$$\mathcal{N}'(x) = f(x),\tag{4.35}$$

sendo arbitrário o valor de $\mathcal{N}(a)$.

Logo, escolhendo um valor arbitrário para $\mathcal{N}(a)$, podemos treinar \mathcal{N} com base na função de perda

$$\varepsilon = \frac{1}{n_s} \sum_{s=1}^{n_s} |\mathcal{N}'(x_s) - f(x_s)|^2.$$
 (4.36)

Exemplo 4.4.1. Vamos treinar uma rede para a computação de

$$\int_0^x \cos(\pi u) \, du. \tag{4.37}$$

```
1 import torch
3 # modelo
4 ## n camadas escondidas
5 \text{ nh} = 2
6 ## n neurônios por camada
7 \, \text{nn} = 50
8 ## fun de ativação
9 fh = torch.nn.Tanh()
10 ## arquitetura
11 model = torch.nn.Sequential()
model.add_module('layer_1', torch.nn.Linear(1,nn))
13 model.add_module('fun_1', fh)
14 for layer in range(2, nh+1):
      model.add_module(f'layer_{layer}', torch.nn.
 Linear(nn,nn))
      model.add module(f'fun {layer}', fh)
17 model.add_module(f'layer_{nh+1}', torch.nn.Linear(
 nn,1))
18
19 # otimizador
20 optim = torch.optim.Adam(model.parameters(),
                             lr = 1e-2)
21
23 # treinamento
24 \text{ ns} = 100
25 \text{ nepochs} = 10000
26 \text{ nout_loss} = 100
27 \text{ tol} = 1e-5
29 for epoch in range (nepochs):
   # samples
31
    X = 2.*torch.rand((ns,1)) - 1.
32
33
    f_exp = torch.cos(torch.pi*X)
34
35
  # forward
36
```

```
X.requires grad = True
37
    F = model(X)
38
39
    f_est = torch.autograd.grad(
40
41
      F, X,
      grad outputs=torch.ones like(F),
42
      retain_graph=True,
43
      create_graph=True) [0]
44
45
    # loss
46
    loss = torch.mean((f_exp - f_est)**2)
47
48
    if ((epoch % nout loss) == 0):
      print(f'epoch {epoch}: loss = {loss.item():.4e
50
  }')
51
    if (loss.item() < tol):</pre>
52
      print('onvergiu')
53
      break
54
55
    optim.zero grad()
56
    loss.backward()
57
    optim.step()
```

Neste caso, podemos verificar a solução, uma vez que

$$\int_{-1}^{x} \cos(\pi u) \, du = \frac{1}{\pi} \sin(\pi x) + C,\tag{4.38}$$

onde C é uma constante arbitrária. Na Figura 4.4, temos uma comparação entre o resultado estimado pela rede e o esperado. Observamos que a cada treinamento, a rede pode fornecer uma primitiva diferente. \triangle

Figura 4.4: Computação da primitiva de $\cos(\pi x)$ no intervalo de [-1,1]. Linha contínua: valores esperados $y=\frac{1}{\pi}\sin(\pi x)$, para C=0. Linha tracejada: valores estimados $y=\mathcal{N}(x)$.

Resposta dos Exercícios

- **E.2.1.3.** Dica: verifique que sua matriz hessiana é positiva definida.
- **E.2.1.4.** Dica: consulte a ligação Notas de Aula: Matemática Numérica: 7.1 Problemas lineares.
- **E.2.2.1.** $(\tanh x)' = 1 \tanh^2 x$
- **E.4.1.1.** Dica: solução analítica $u(x_1, x_2) = x_1(1 x_1) x_2(1 x_2)$.
- **E.4.3.0.** $\lambda = \pi^2$
- **E.4.3.0.** $\lambda = 1$
- **E.4.3.0.** $\lambda = 1$

Pedro H A Konzen

Notas

 $^1\mathrm{Sim\'{e}on}$ Denis Poisson, 1781 - 1840, matemático francês. Fonte: Wikip\'edia:Sim\'eon Denis Poisson.

 $^2 \mathrm{Ronald}$ Aylmer Fisher, 1890-1962, biólogo inglês. Fonte: Wikipédia: Ronald Fisher.

³Siméon Denis Poisson, 1781 - 1840, matemático francês. Fonte: Wikipédia:Siméon Denis Poisson.

Referências

- [1] Ağirseven, D., Öziş, T.. An analytical study for Fisher type equations by using homotopy perturbation method, Computers and Mathematics with Applications, vol. 60, p. 602-609, 2010. DOI: 10.1016/j.camwa.2010.05.006
- [2] Goodfellow, I., Bengio, Y., Courville, A.. Deep learning, MIT Press, Cambridge, MA, 2016.
- [3] Neural Networks: A Comprehensive Foundation, Haykin, S.. Pearson:Delhi, 2005. ISBN: 978-0020327615.
- [4] Raissi, M., Perdikaris, P., Karniadakis, G.E.. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378 (2019), pp. 686-707. DOI: 10.1016/j.jcp.2018.10.045.
- [5] Mata, F.F., Gijón, A., Molina-Solana, M., Gómez-Romero, J.. Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities. Physica A: Statistical Mechanics and its Applications 610 (2023), pp. 128415. DOI: 10.1016/j.physa.2022.128415.