

4-BIT BINARY FULL ADDER

- HIGH SPEED : t_{PD} = 17ns (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A = 25$ °C
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- FULL-CARRY LOOK-AHEAD ACROSS THE FOUR BITS
- PARTIAL LOOK-AHEAD WITH THE ECONOMY OF RIPPLE CARRY
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 283

DESCRIPTION

olete

The M74HC283 is an high speed CMOS 4 BIT BINARY FULL ADDER fabricated with silicon gate C²MOS technology.

ORDER CODES

PACKAGE	TUBE	T & R
DIP	M74HC283B1R	
SOP	M74HC283M1R	M74HC283RM13TR
TSSOP		M74HC283TTR

Sum (Σ) outputs are provided for each bit and a resultant carry (C4) is obtained from the fourth bit. This adder features full internal look ahead across all four bits. A 4 x n binary adder is easily built up by cascading without any additional logic.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

August 2001 1/9

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
4, 1, 13, 10	Σ 1 to Σ 4	Sum Outputs
5, 3, 14, 12	A1 to A4	A Operand Inputs
6, 2, 15, 11	B1 to B4	B Operand Inputs
7	C0	Carry Input
9	C4	Carry Output
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

TRUTH TABLE

	INPUTS		OUTPUTS			
Bn	An	Cn - 1	Σn	Cn		
L	L	L		L		
L	L	Н	Н	L		
L	Н	L	Н	L		
L	Н	Н	L	Н		
Н	L	L CU	Н	L		
Н	L	#	L	Н		
Н	Н	L	L	Н		
Н	Н	H	Н	Н		

BLOCK DIAGRAM

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
Q T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied
(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage		2 to 6	V
V _I	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t _r , t _f		V _{CC} = 4.5V	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

DC SPECIFICATIONS

		1	Test Condition				Value				
Symbol	Parameter	v _{cc}	Vcc		T _A = 25°C -40 to			85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V_{OH}	High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9	16	
	Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		,
		6.0	I _O =-20 μA	5.9	6.0		5.9	1	5.9		V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =4.0 mA	C	0.17	0.26		0.33		0.40	
		6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40	
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μА

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

	~40	1	Test Condition	Value							
Symbol	Parameter	v _{cc}		Т	_A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
	a to	(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0			30	75		95		110	
50	Time	4.5			8	15		19		22	ns
0		6.0			7	13		16		19	
t _{PLH} t _{PHL}	Propagation Delay	2.0			95	210		265		315	
	Time	4.5			27	42		53		63	ns
	(An, Bn - Σ n)	6.0			22	36		45		54	1
t _{PLH} t _{PHL}	Propagation Delay	2.0			80	195		245		295	
	Time	4.5			25	39		49		59	ns
	(An, Bn - C4)	6.0			20	33		42		50	1
t _{PLH} t _{PHL}	Propagation Delay	2.0			60	150		190		225	
	Time	4.5			20	30		38		45	ns
	(C0 - Σn)	6.0			17	26		32		38	1
t _{PLH} t _{PHL}	Propagation Delay	2.0			60	150		190		225	
	Time	4.5			20	30		38		45	ns
	(C0 - C4)	6.0			17	26		32		38	

CAPACITIVE CHARACTERISTICS

			est Condition				Value				
Symbol	Parameter	v _{cc}		Т	_A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			126						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM: PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.		inch					
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.			
a1	0.51			0.020					
В	0.77		1.65	0.030		0.065			
b		0.5			0.020				
b1		0.25			0.010	16)			
D			20		.(0.787			
E		8.5			0.335				
е		2.54			0.100				
e3		17.78		× (2)	0.700				
F			7.1	7/6/2		0.280			
I			5.1	0.		0.201			
L		3.3	Oh		0.130				
Z			1.27			0.050			

SO-16 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	1191
c1			45° (typ.)	.(-11
D	9.8		10	0.385	70	0.393
E	5.8		6.2	0.228	400	0.244
е		1.27			0.050	
e3		8.89		8	0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S		10	8° (n	nax.)		

TSSOP16 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004	401	0.0089		
D	4.9	5	5.1	0.193	0.197	0.201		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC	-100	0,	0.0256 BSC			
К	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

