Zadanie 1.

Niech X będzie zmienną losową o rozkładzie Pareto o gęstości

$$f(x) = \begin{cases} \frac{64}{(2+x)^5} & gdy \ x > 0\\ 0 & gdy \ x \le 0 \end{cases}.$$

Niech Y będzie zmienną losową równą
$$Y = \begin{cases} 0 & gdy \ x \le 3 \\ X - 3 & gdy \ x > 3 \end{cases}.$$

Wyznaczyć $Var(Y \mid X > 3)$.

- (A)
- (B)
- (C)
- (D)
- (E)

Zadanie 2.

Niech X_1,X_2 będą niezależnymi zmiennymi losowymi o tym samym rozkładzie ujemnym dwumianowym $bin^-\!\!\left(2,\frac{3}{4}\right)$

$$P(X_i = n) = {n+1 \choose n} (\frac{3}{4})^2 (\frac{1}{4})^n$$
 dla $n = 0,1,2,...,$

Wyznaczyć $P(X_1 = 3 | X_1 + X_2 = 6)$.

- (A) $\frac{10}{21}$
- (B) $\frac{4}{21}$
- (C) $\frac{1}{2}$
- (D) $\frac{6}{21}$
- (E) $\frac{11}{21}$

Zadanie 3.

Zmienna losowa N ma rozkład Poissona z parametrem $\lambda > 0$. Rozważamy losową liczbę zmiennych losowych $X_1, X_2, ..., X_N$, przy czym zmienne losowe $X_1, X_2, ..., X_N$ są niezależne wzajemnie i niezależne od zmiennej losowej N. Każda ze zmiennych losowych X_i ma rozkład Weibulla o gęstości

$$p_{\theta}(x) = \begin{cases} 2\theta x \exp(-\theta x^2) & gdy \ x > 0 \\ 0 & gdy \ x \le 0 \end{cases},$$

gdzie $\theta > 0$ jest nieznanym parametrem. Obserwujemy tylko te spośród zmiennych $X_1, X_2, ..., X_N$, które są większe od 10. Nie wiemy ile jest pozostałych zmiennych ani jakie są ich wartości. Przypuśćmy, że zaobserwowaliśmy cztery wartości większe od 10 i suma ich kwadratów jest równa 1200. Na podstawie tych danych wyznaczyć estymatory największej wiarogodności parametrów θ i λ .

(A)
$$\hat{\theta} = e^{-4}$$
 i $\hat{\lambda} = 4$

(B)
$$\hat{\theta} = \frac{1}{300}$$
 i $\hat{\lambda} = 4e$

(C)
$$\hat{\theta} = \frac{1}{300} \text{ i } \hat{\lambda} = 4e^{1/3}$$

(D)
$$\hat{\theta} = \frac{1}{200}$$
 i $\hat{\lambda} = 4\sqrt{e}$

(E)
$$\hat{\theta} = e^{-4}$$
 i $\hat{\lambda} = 4e$

Zadanie 4.

W urnie znajdują się trzy kule białe i dwie czarne. Powtarzamy następujące doświadczenie: losujemy z urny kulę, odkładamy na bok i dorzucamy do urny kulę białą. Dopiero po trzykrotnym powtórzeniu doświadczenia w urnie nie było już kul czarnych. Obliczyć prawdopodobieństwo, że w pierwszym doświadczeniu wylosowano kulę czarną.

- $(A) \qquad \frac{3}{4}$
- (B) $\frac{3}{7}$
- (C) $\frac{6}{125}$
- (D) $\frac{8}{125}$
- (E) $\frac{4}{7}$

Zadanie 5.

Załóżmy, że $X_0, X_1, ..., X_n, ...$ są niezależnymi zmiennymi losowymi o tym samym rozkładzie wykładniczym i $EX_i = \frac{1}{\lambda}$. Niech

$$N = \min \left\{ k \ge 0 : \sum_{i=0}^{k} X_i > a \right\},\,$$

gdzie a jest ustaloną liczbą dodatnią. Podać rozkład prawdopodobieństwa zmiennej N.

(A)
$$P(N=k) = \frac{a}{a+\lambda} \left(\frac{\lambda}{a+\lambda}\right)^k \text{ dla } k = 0,1,2,...$$

(B)
$$P(N=k) = \frac{\lambda}{a+\lambda} \left(\frac{a}{a+\lambda}\right)^k \text{ dla } k = 0,1,2,...$$

(C)
$$P(N = k) = \exp\left(-\frac{a}{\lambda}\right) \left(\frac{a}{\lambda}\right)^k \frac{1}{k!} dla \ k = 0,1,2,...$$

(D)
$$P(N=k) = \exp(-a\lambda)(a\lambda)^k \frac{1}{k!} \text{ dla } k = 0,1,2,...$$

(E)
$$P(N=k) = \exp\left(-\frac{a}{a+\lambda}\right)\left(\frac{a}{a+\lambda}\right)^k \frac{1}{k!} dla \ k = 0,1,2,...$$

Zadanie 6.

Niech $X_1, X_2, ..., X_n, ...$ będą niezależnymi zmiennymi losowymi o tym samym rozkładzie jednostajnym na przedziale $[0, \theta]$, gdzie $\theta > 0$ jest nieznanym parametrem. Rozważamy estymator nieobciążony parametru θ postaci

$$T_n(X_1, X_2, ..., X_n) = T_n = aX_{1:n}$$

gdzie $X_{1:n} = \min\{X_1, X_2, ..., X_n\}$ i *a* jest pewną stałą. Wtedy

(A)
$$\forall \varepsilon > 0 \quad \forall \theta > 0 \quad \lim_{n \to \infty} P_{\theta} (|T_n - \theta| > \varepsilon) = 0$$

(B)
$$\forall \varepsilon > 0 \quad \forall \theta > 0 \quad \lim_{n \to \infty} P_{\theta} (|T_n - \theta| > \varepsilon) = \exp(-1 - \frac{\varepsilon}{\theta})$$

(C)
$$\exists \varepsilon > 0 \quad \forall \theta > 0 \quad \lim_{n \to \infty} P_{\theta} (|T_n - \theta| > \varepsilon) = \exp \left(-1 - \frac{\varepsilon}{\theta}\right)$$

(D)
$$\exists \varepsilon > 0 \ \exists \theta > 0 \ \lim_{n \to \infty} P_{\theta} (|T_n - \theta| > \varepsilon) = 1 + \exp(-1 - \frac{\varepsilon}{\theta}) - \exp(-1 + \frac{\varepsilon}{\theta})$$

(E)
$$\forall \varepsilon > 0 \ \forall \theta > 0 \ \lim_{n \to \infty} P_{\theta} (|T_n - \theta| > \varepsilon) = 1 + \exp(-1 - \frac{\varepsilon}{\theta}) - \exp(-1 + \frac{\varepsilon}{\theta})$$

Zadanie 7.

Niech $X_1, X_2, ..., X_n$ będą niezależnymi zmiennymi losowymi z rozkładu Weibulla o gęstości

$$f_{\theta}(x) = \begin{cases} 3\theta x^2 \exp(-\theta x^3) & gdy \ x > 0 \\ 0 & gdy \ x \le 0 \end{cases}$$

gdzie $\theta>0$ jest nieznanym parametrem. Przedział ufności dla parametru θ w oparciu o estymator największej wiarogodności $\hat{\theta}_n=\hat{\theta}_n\big(X_1,X_2,\ldots,X_n\big)$ parametru θ otrzymujemy rozwiązując nierówność

$$\left|\frac{\hat{\theta}_n - \theta}{\sigma(\theta)} \sqrt{n}\right| \le z,$$

gdzie $\sigma(\theta)$ jest wariancją asymptotyczną statystyki $\hat{\theta}_n = \hat{\theta}_n(X_1, X_2, ..., X_n)$ i liczba z spełnia

$$\lim_{n \to +\infty} P \left(\left| \frac{\hat{\theta}_n - \theta}{\sigma(\theta)} \sqrt{n} \right| \le z \right) = 0.95.$$

Tak otrzymany przedział ma postać

(A)
$$\left[\frac{n}{\sum_{i=1}^{n} X_{i}^{3} \left(\sqrt{n} + 1,96\right)}, \frac{n}{\sum_{i=1}^{n} X_{i}^{3} \left(\sqrt{n} - 1,96\right)}\right]$$

(B)
$$\left[\frac{n\sqrt{n}}{\sum_{i=1}^{n} X_{i}^{3} \left(\sqrt{n} + 1,96\right)}, \frac{n\sqrt{n}}{\sum_{i=1}^{n} X_{i}^{3} \left(\sqrt{n} - 1,96\right)}\right]$$

(C)
$$\left[\frac{n}{\sum_{i=1}^{n} X_{i}^{3}} \left(1 - \frac{1,96}{\sqrt{n}} \right), \frac{n}{\sum_{i=1}^{n} X_{i}^{3}} \left(1 + \frac{1,96}{\sqrt{n}} \right) \right]$$

(D)
$$\left[\frac{\sum_{i=1}^{n} X_{i}^{3}}{\sqrt{n}(\sqrt{n}+1,96)}, \frac{\sum_{i=1}^{n} X_{i}^{3}}{\sqrt{n}(\sqrt{n}+1,96)}\right]$$

(E)
$$\left[\frac{\sum_{i=1}^{n} X_{i}^{3}}{n} \left(1 - \frac{1,96}{\sqrt{n}} \right), \frac{\sum_{i=1}^{n} X_{i}^{3}}{n} \left(1 + \frac{1,96}{\sqrt{n}} \right) \right]$$

Zadanie 8.

Zakładając, że zmienne losowe $X_1, X_2, ..., X_5$ są niezależne i mają rozkłady normalne $X_i \sim N(m\sqrt{i},1)$ zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy $H_0: m=0$ przy alternatywie $H_1: m>0$ na poziomie istotności 0,05.

W rzeczywistości okazało się, że wektor $(X_1,X_2,...,X_5)$ ma rozkład normalny taki, że $EX_i=m\sqrt{i}$,

$$Cov(X_i, X_j) = \begin{cases} 0.5 & gdy & |i - j| = 1\\ 1 & gdy & i = j\\ 0 & wpp \end{cases}$$

Wyznaczyć rzeczywisty rozmiar testu.

- (A) 0,11
- (B) 0,08
- (C) 0,15
- (D) 0,07
- (E) 0,02

Zadanie 9.

Obserwujemy X_1, X_2, X_3, X_4 niezależnych zmiennych losowych o tym samym rozkładzie Pareto o gęstości

constant
$$f_{\theta_1}(x) = \begin{cases} \frac{\theta_1}{(1+x)^{\theta_1+1}} & gdy & x > 0\\ 0 & gdy & x \le 0 \end{cases}$$

i Y_1, Y_2, Y_5 niezależnych zmiennych losowych o tym samym rozkładzie Pareto o gęstości

$$f_{\theta_2}(x) = \begin{cases} \frac{\theta_2}{(1+x)^{\theta_2+1}} & gdy \quad x > 0\\ 0 & gdy \quad x \le 0 \end{cases}$$

gdzie θ_1 i θ_2 są nieznanymi parametrami dodatnimi.

Wszystkie zmienne losowe są niezależne. Testujemy hipotezę $H_0: \frac{\theta_1}{\theta_2} = 2$ przy

alternatywie H_1 : $\frac{\theta_1}{\theta_2}$ < 2 za pomocą testu o obszarze krytycznym

$$K = \left\{ \frac{\hat{\theta}_1}{\hat{\theta}_2} < t \right\}$$

gdzie $\hat{\theta}_1$ i $\hat{\theta}_2$ są estymatorami największej wiarogodności odpowiednio parametrów θ_1 i θ_2 wyznaczonymi na podstawie prób losowych X_1, X_2, X_3, X_4 i $Y_1, Y_2, \dots Y_5$. Dobrać stałą t tak, aby otrzymać test o rozmiarze 0,05.

- (A) t = 0.1628
- (B) t = 1,5358
- (C) t = 0.6511
- (D) t = 1,6736
- (E) t = 0.3852

Zadanie 10.

Niech $X_0, X_1, X_2, ..., X_n$ będą niezależnymi zmiennymi losowymi o tym samym rozkładzie wykładniczym o wartości oczekiwanej 1. Obliczyć $E(\min\{X_0, X_1, ..., X_n\} | X_0)$

(A)
$$\frac{1}{n} (1 - \exp(-nX_0)) + X_0 \exp(-nX_0)$$

(B)
$$\frac{1}{n+1} \left(1 - \exp(-(n+1)X_0) \right) + X_0 \exp(-(n+1)X_0)$$

(C)
$$\frac{1}{n} (1 - \exp(-nX_0)) - X_0 \exp(-nX_0)$$

(D)
$$\frac{1}{n} \left(1 - \exp(-nX_0) \right)$$

(E)
$$\frac{1}{n+1}$$

Egzamin dla Aktuariuszy z 14 maja 2007 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Imię i nazwisko :	K L U C Z	ODPOWIEDZI	[
Pesel			

Zadanie nr	Odpowiedź	Punktacja*
1	С	
2	В	
3	D	
4	Е	
5	D	
6	D	
7	В	
8	A	
9	С	
10	D	

11

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.

^{*} Wypełnia Komisja Egzaminacyjna.