Propensity Score Diagnostics

Lucy D'Agostino McGowan

Wake Forest University

2021-09-01 (updated: 2021-10-18)

Checking balance

Love plots (Standardized Mean Difference)

ECDF plots

Standardized Mean Difference (SMD)

$$d = rac{ar{x}_{treatment} - ar{x}_{control}}{\sqrt{rac{s_{treatment}^2 + s_{control}^2}{2}}}$$

```
library(smd)
library(tidyverse)

df %>%
  # w is optional
  summarise(smd = smd(z, x, w = wts))
```


Calculate standardized mean differences

```
smds <- df %>%
  summarise(
    across(
    z1, z2, z3,
    list(
        unweighted = ~smd(.x, x)$estimate,
        weighted = ~smd(.x, x, wts)$estimate
    )
    )
)
```

2

Calculate standardized mean differences

```
smds <- df %>%
summarise(
    across(
    z1, z2, z3,
    list(
        unweighted = ~smd(.x, x)$estimate,
        weighted = ~smd(.x, x, wts)$estimate
    )
    )
)
```

2 Calculate standardized mean differences

```
smds <- df %>%
  summarise(
    across(
    z1, z2, z3,
    list(
        unweighted = ~smd(.x, x)$estimate,
        weighted = ~smd(.x, x, wts)$estimate
    )
    )
)
```

3

Pivot the SMDs into tidy format

```
plot_df <- smds %>%
  pivot_longer(
    everything(),
    values_to = "SMD",
    names_to = c("variable", "Method"),
    names_sep = "_"
)
```

3 Pivot the SMDs into tidy format

```
plot_df <- smds %>%
  pivot_longer(
    everything(),
    values_to = "SMD",
    names_to = c("variable", "Method"),
    names_sep = "_"
)
```



```
ggplot(
  data = plot_df,
  aes(x = abs(SMD), y = variable, group = Method, color = Method)
) +
  geom_line(orientation = "y") +
  geom_point() +
  geom_vline(xintercept = 0.1, color = "black", size = 0.1)
```



```
ggplot(
  data = plot_df,
  aes(x = abs(SMD), y = variable, group = Method, color = Method)
) +
  geom_line(orientation = "y") +
  geom_point() +
  geom_vline(xintercept = 0.1, color = "black", size = 0.1)
```



```
ggplot(
  data = plot_df,
  aes(x = abs(SMD), y = variable, group = Method, color = Method)
) +
  geom_line(orientation = "y") +
  geom_point() +
  geom_vline(xintercept = 0.1, color = "black", size = 0.1)
```



```
ggplot(
  data = plot_df,
  aes(x = abs(SMD), y = variable, group = Method, color = Method)
) +
  geom_line(orientation = "y") +
  geom_point() +
  geom_vline(xintercept = 0.1, color = "black", size = 0.1)
```



```
ggplot(
  data = plot_df,
  aes(x = abs(SMD), y = variable, group = Method, color = Method)
) +
  geom_line(orientation = "y") +
  geom_point() +
  geom_vline(xintercept = 0.1, color = "black", size = 0.1)
```

Love plot

Your turn 1

1 Create a Love Plot for the propensity score weighting you created in the previous exercise

10:00

ECDF

For continuous variables, it can be helpful to look at the **whole** distribution pre and post-weighting rather than a single summary measure


```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom_line(data = ecdf_0, aes(x = wt71, y = cum_pct), color = \#515
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom_line(data = ecdf_0, aes(x = wt71, y = cum_pct), color = \#515
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom_line(data = ecdf_0, aes(x = wt71, y = cum_pct), color = \#515
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom line(data = ecdf 0, aes(x = wt71, y = cum pct), color = \frac{1}{5}
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom line(data = ecdf 0, aes(x = wt71, y = cum pct), color = \frac{1}{5}
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom_line(data = ecdf_0, aes(x = wt71, y = cum_pct), color = \#515
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom line(data = ecdf 0, aes(x = wt71, y = cum pct), color = \frac{1}{5}
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom_line(data = ecdf_0, aes(x = wt71, y = cum_pct), color = "#515
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```


Your turn 2

- 1 Create an unweighted ECDF
 examining the smokeyrs confounder
 for those that quit smoking and
 those that did not
- Create a weighted ECDF examining the smokeyrs confounder

10:00

Bonus! Weighted Tables in R

Weighted Tables in R

Create a "design object" to incorporate the weights

```
library(survey)

svy_des <- svydesign(
  ids = ~ 1,
  data = df,
  weights = ~ wts,
  strata = ~ x
)</pre>
```

Weighted Tables in R

2

Pass to gtsummary::tbl_svysummary()

```
library(gtsummary)
tbl_svysummary(svy_des, by = x) %>%
  add_difference(everything() ~ "smd")
```

Characteristic	0 , N = 1,565 ¹	1, N = 1,561 ¹	Difference ²	95% Cl ^{2,3}
WEIGHT IN KILOGRAMS IN 1971	69 (60, 80)	69 (59, 79)	0.01	-0.06, 0.08
0: WHITE 1: BLACK OR OTHER IN 1971			0.01	-0.06, 0.08
0	1,359 (87%)	1,352 (87%)		
1	206 (13%)	209 (13%)		
AGE IN 1971	43 (33, 52)	43 (33, 53)	-0.01	-0.08, 0.06
0: MALE 1: FEMALE			0.00	-0.07, 0.07
0	764 (49%)	764 (49%)		
1	802 (51%)	797 (51%)		
NUMBER OF CIGARETTES SMOKED PER DAY IN 1971	20 (10, 25)	20 (10, 30)	0.02	-0.05, 0.09
YEARS OF SMOKING	24 (15, 33)	24 (14, 33)	0.00	-0.07, 0.07
IN RECREATION, HOW MUCH EXERCISE? IN 1971, 0:much exercise,1:moderate exercise,2:little or no exercise			0.04	-0.03, 0.11
0	302 (19%)	294 (19%)		
1	665 (42%)	691 (44%)		
2	599 (38%)	576 (37%)		
IN YOUR USUAL DAY, HOW ACTIVE ARE YOU? IN 1971, 0:very active, 1:moderately active, 2:inactive			0.03	-0.04, 0.10
0	700 (45%)	684 (44%)		
1	718 (46%)	738 (47%)		
2	147 (9.4%)	138 (8.9%)		

¹Median (IQR); n (%)

² Standardized Mean Difference

³CI = Confidence Interval