2020 Future Defense Seminar

Feature Processing (Gradient-based)

SIFT, SURF

Sohee Lim

2020/10/29

Keywords: Feature Extraction, Keypoints, Descriptors,

SIFT

Scale-Invariant Feature Transform

Background

• Scale

Background

• Scale

Large window

Small window

Same window

Seen from far

Seen from near

Background

• Scale

Large scale image

Small scale image

Different areas, same image size

Background

• Scale

small scale Large scale

Same Area, Different Image Size

Background

• Harris corner detector is not scale-invariant

Background

- Scale Invariance
 - From Wikipedia

In physics, mathematics and statistics, **scale invariance** is a **feature of objects or laws that do not change** if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.

• From stackExchange

Scale invariance can be thought of as 'self-similarity'. What this really means is that regardless of how much you zoom into or out of an object (be it a function, or a physical object, or the like) it looks exactly the same.

Background

• Scale Invariance

- Scale-Space Extrema Detection
- Keypoint Localization
- Orientation Assignment
- Keypoint Descriptor

Scale-Space Extrema Detection

- Scale-space
 - Image Pyramid

small scale

Large scale

Scale-Space Extrema Detection

- Scale-space
 - Gaussian Filter

$$g_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$
 σ : scale parameter

$$f_{\sigma}(x,y) = g_{\sigma}(x,y) * f(x,y)$$

Scale-Space Extrema Detection

- Scale-space
 - Scale Step $k = \sqrt{2}$ $\sigma_{i+1} = k \ \sigma_i$
 - Octave pyramid

•
$$k = \sqrt{2}$$

•
$$g_{\sigma_s} * g_{\sigma_t} = g_{\sigma}$$

•
$$\sigma = \sqrt{\sigma_s^2 + \sigma_t^2}$$

Scale-Space Extrema Detection

• Difference of Gaussian (DoG)

10ctave									
Gaussian	σ		$\sqrt{2}\sigma$		2σ		$2\sqrt{2}\sigma$		4σ
DOG		σ		$\sqrt{2}\sigma$		2σ		$2\sqrt{2}\sigma$	

20ctave									
Gaussian	2σ		$2\sqrt{2}\sigma$		4σ		$4\sqrt{2}\sigma$		8σ
DOG		2σ		$2\sqrt{2}\sigma$		4σ		$4\sqrt{2}\sigma$	

Scale-Space Extrema Detection

• Difference of Gaussian (DoG)

Scale-Space Extrema Detection

• Local extrema detection

Scale-Space Extrema Detection

- Optimal Parameters
 - number of octaves = 4
 - number of scale levels = 5
 - $\sigma = 1.6$
 - $k = \sqrt{2}$

Keypoint Localization

• Taylor expansion (up to the quadratic terms)

$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$
$$\mathbf{x} = (x, y, \sigma)^T$$

$$\hat{\mathbf{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$$

Eliminating low constrast keypoints

$$D(\hat{\mathbf{x}}) = D + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}}$$
 if $|D(\hat{\mathbf{x}})| < 0.3 \Rightarrow \text{discard}$

Keypoint Localization

- Eliminating edge response
 - A poorly defined peak in the difference-of-Gaussian function will have a large principal curvature across the edge but a small one in the perpendicular direction.
 - The eigenvalues of **H** are proportional to the principal curvatures of D.
 - Hessian matrix $(\mathbf{H}) 2^{\text{nd}}$ derivative

$$\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \qquad \text{Tr}(\mathbf{H}) = D_{xx} + D_{yy} = \alpha + \beta$$
$$\text{Det}(\mathbf{H}) = D_{xx}D_{yy} - (D_{xy})^2 = \alpha\beta$$

Let
$$\alpha = r\beta$$
. Then, $\frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(r\beta + \beta)^2}{r\beta^2} = \frac{(r+1)^2}{r}$

$$\frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} < \frac{(r+1)^2}{r} \Rightarrow \operatorname{accept}$$
 $r = 10$

Keypoint Localization

Figure 5: This figure shows the stages of keypoint selection. (a) The 233x189 pixel original image. (b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function. Keypoints are displayed as vectors indicating scale, orientation, and location. (c) After applying a threshold on minimum contrast, 729 keypoints remain. (d) The final 536 keypoints that remain following an additional threshold on ratio of principal curvatures.

Orientation Assignment

• Rotation invariant

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1}((L(x,y+1) - L(x,y-1))/(L(x+1,y) - L(x-1,y)))$$

 $\sigma = 1.5 \times scale$

Orientation Assignment

• Orientation histogram

Keypoint Descriptor

Keypoint Descriptor

Image gradient

Keypoint descriptor

- 16×16 window
- Gaussian blurring $(\sigma = \frac{window \, size}{2})$
- Compute gradient orientation, weighted magnitude
- Compute orientation histogram in 8 directions over 4 × 4 sample regions
- Rotation rotation invariance
- Normalization illuminance invariance

SURF

Speeded Up Robust Features

Interest Point Detection

• Integral images

$$\mathbf{x} = (x, y)^{\mathrm{T}}$$

$$I_{\Sigma}(\mathbf{x}) = \sum_{i=0}^{i \leqslant x} \sum_{j=0}^{j \leqslant y} I(i,j)$$

$$I(a) = A$$

 $I(b) = A + B$
 $I(c) = A + C$
 $I(d) = A + B + C + D$
 $D = I(d)+I(a)-I(b)-I(c)$

	IMA	GE			IN	TEGR	AL IMA	AGE
0	1	1	1		0	1	2	3
1	2	2	3	_	1	4	7	11
1	2	1	1		2	7	11	16
1	3	1	0		3	11	16	21

Interest Point Detection

Hessian matrix-based interest points

$$\mathcal{H}(\mathbf{x},\sigma) = egin{bmatrix} L_{xx}(\mathbf{x},\sigma) & L_{xy}(\mathbf{x},\sigma) \ L_{xy}(\mathbf{x},\sigma) & L_{yy}(\mathbf{x},\sigma) \end{bmatrix}$$

• L_{xx} : Convolution of Gaussian 2nd derivative

det(H)	sign of eigenvalues	extrema
(-)	≠	×
(+)	=	0

Discretized 2nd Gaussian Derivatives

$$\det(\mathcal{H}_{approx}) = D_{xx}D_{yy} - (wD_{xy})^2 \qquad \sigma = 1.2$$

$$w = \frac{|L_{xy}(1.2)|_F |D_{yy}(9)|_F}{|L_{yy}(1.2)|_F |D_{xy}(9)|_F} = 0.912... \simeq 0.9$$

Interest Point Detection

• Scale space representation

- Fix filter size
- Down-sampling image size

SURF

- Fix image scale
- Up-sampling filter size

- (+) Computational efficiency
- (+) No aliasing
- (-) Limit scale-invariance

Interest Point Detection

• Scale space representation

- Interest point localization
 - Non-maximum suppression

Interest Point Description and Matching

- Orientation assignment
 - Calculate the Haar wavelet responses in x and y direction within a circular neighbourhood of radius 6s around the interest point
 - The dominant orientation is estimated by calculating the sum of all responses within a sliding orientation window of size $\frac{\pi}{3}$

Interest Point Description and Matching

- Descriptor based on sum of Haar wavelet responses
 - $20s \times 20s$ window
 - orient along dominant orientation selected rotation invariance
 - split 4×4 square sub-region, sampling 5×5
 - compute Haar wavelet responses
 - $\sum d_x$, $\sum |d_x|$, $\sum d_y$, $\sum |d_y|$
 - descriptor $4 \times 4 \times 4 = 64$ -dimensional vector
 - normalization
 illuminance invariance

Interest Point Description and Matching

- Fast indexing for matching
 - Sign of Laplacian (i.e., tr(H))
 - > bright blob
 - > dark blob

- No extra computational cost
- Faster matching, without reducing the descriptor's performance

References

- 1. Lowe, David G. "Object recognition from local scale-invariant features." *Proceedings of the seventh IEEE international conference on computer vision*. Vol. 2. Ieee, 1999.
- 2. Lowe, David G. "Distinctive image features from scale-invariant keypoints." *International journal of computer vision* 60.2 (2004): 91-110.
- 3. Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool. "Surf: Speeded up robust features." *European conference on computer vision*. Springer, Berlin, Heidelberg, 2006.
- 4. Bay, Herbert, et al. "Speeded-up robust features (SURF)." *Computer vision and image understanding* 110.3 (2008): 346-359.

Derivative of taylor expansion

$$D(x) = D + \frac{\partial x}{\partial D} \times \frac{\partial x}{\partial x} \times \frac{\partial$$

$$\frac{\partial A}{\partial D(x)} = \nabla \frac{\partial A}{\partial D} + \frac{\partial A}{\partial z} \dot{X} + \frac{\nabla}{I} \dot{X}_{L} \left(\left(\frac{\partial A_{z}}{\partial z} \right)_{L} + \frac{\partial A_{z}}{\partial z} \right) = 0$$

이 αH , $\frac{\partial^2 D}{\partial x^2}$ 은 Hesslan Hather old. Hesslan은 "다항생활한 이오르, $A = A^{T}$ 를 만들한다. 그러오고 사는 다음과 같이 볼수 있다.

$$\frac{1}{3D} + \frac{\partial X}{\partial_{2}D} \dot{X} + \frac{\partial X_{r}}{\partial_{2}D} \dot{X} + \dot{X}_{L} \left(\frac{\partial X_{r}}{\partial_{2}D} + \frac{\partial X_{r}}{\partial_{2}D} \right) = 0$$

$$\frac{1}{3D} + \frac{\partial X}{\partial_{2}D} \dot{X} + \frac{1}{2} \dot{X}_{L} \left(\frac{\partial X_{r}}{\partial_{2}D} + \frac{\partial X_{r}}{\partial_{2}D} \right) = 0$$

生, より (特體 이とう, ズA=Ax ときべわけ.

$$7\frac{9x}{9D} + 7\frac{9x}{9D} = 0$$

$$\frac{\partial x}{\partial D} + \frac{\partial x}{\partial_2 D} \mathring{V} = 0$$

$$\therefore \dot{\chi} = -\left(\frac{\partial x_{\sigma}}{\partial_{\sigma} D}\right)_{-1} \frac{\partial x}{\partial D}$$

Detection of Corner using the Eigenvalues of H

$$\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} = \mathbf{R}^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \mathbf{R}$$

Eigenvalues and Eigenvectors of H

Corner Detector using eigen values

FIGURE 10.24

(a) Two possible orientations of a horizontal edge (in gray) in a 3×3 neighborhood. (b) Range of values (in gray) of α , the direction angle of the *edge normal*, for a horizontal edge. (c) The angle ranges of the edge normals for the four types of edge directions in a 3×3 neighborhood. Each edge direction has two ranges, shown in corresponding shades of gray.

- 1. Find the direction d_k that is closest to $\alpha(x, y)$
- 2. if the value of M(x, y) is less than at least one of its two neighbors long d_k , let $g_N(x, y) = 0$ (suppression); otherwise, let $g_N(x, y) = M(x, y)$

• https://youtu.be/Y_YPIGP4T44

if
$$M(A) > M(B)$$

 $M(A) > M(C)$

$$g_N(A) = M(A)$$
$$g_N(B) = 0$$

$$g_N(C) = 0$$

gradient direction

