

Сразу пример

2009 г. – новый штамм вируса гриппа H1N1

Необходима локализация, но мед. статистика опаздывает на 10 дней

https://www.google.org/flutrends/about/

Google Flu Trends

Раньше

Теперь

Анализ отчётов поликлиник

Анализ поисковых запросов + прогнозная модель

Какие запросы?

«высокая температура» «что делать при насморке»

Корреляция с распространением уже известных заболеваний

Google Flu Trends

Признаки того, что потом назовут «Big Data-аналитикой»

- не строим модель
- используем все данные
- ищем закономерности для аналитики

Поучительно

2009–2011 – удивительно точный прогноз 2012–2013 – огромные ошибки при прогнозе (проект закрыт)

Возможная причина: «отменяющиеся прогнозы»

Когда появился анализ данных

3000/6000 лет до н. э. – письменность

2000 лет до н. э. – протоматематика, протоастрономия

3000 лет до н. э. – протохимия (получали медь, серебро, свинец)

5-6 в. до н.э. – математика как наука

5–2 в. до н.э. – физика (Китай, Греция)

19 в. – протоанализ данных

Вспышка холеры на Брод-стрит в 1854 году

Джон Сноу

(15.03.1813 — 16.06.1858) британский врач, один из пионеров массового внедрения анестезии и медицинской гигиены

Вспышка холеры на Брод-стрит в 1854 году

Решение медицинской проблемы немедицинскими методами

Простое решение (нет сложной математики)

Не первое решение в АД (даже в медицине)

Исследования начальника Архива морских карт в Вашингтоне

Сокращение времени плавания судов, пользуясь попутными ветрами и течениями

Мэтью-Фонтейн Мори

(14.01.1807 — 01.02.1873) американский морской офицер, астроном, историк, океанограф, метеоролог, картограф, геолог

Исследования начальника Архива морских карт в Вашингтоне

Первые «большие данные» в картографии – сбор сведений морских журналов

Первая профессиональная соцсеть – обмен информацией, сотрудничество в анализе течений (бутылочная почта)

Математический аппарат – первые работы

10 слайд из 59

1795– 1805 Метод наименьших квадратов

Иога́нн Карл Фри́дрих Га́усс (30.04.1977 – 23.02.1855)

Адриен Мари Лежа́ндр (18.09.1752 – 10.01.1833)

Математический аппарат – первые работы

1886, Регрессия

Фрэнсис Гальтон (16.02.1822 – 17.01.1911)

205 пар родителей и 930 их взрослых детей «закон регрессии к среднему»

Для многих непрерывных признаков (рост, интеллект и т.п.) взрослое потомство данного родителя отклоняется в меньшей степени от среднего значения для данной популяции, чем родитель

Причины появления «Больших данных»

VELOCITY

скорость поступления

VOLUME

объёмы

VARIETY разнообразие

VERACITY достоверность

- удешевление средств хранения
 - ускорение средств обработки
- миниатюризация устройств (смартфоны, датчики и т.п.)
- новые форматы / неструктурированность
 - новые технологии (GPS)
 - интерес бизнеса
 - успехи отдельных подходов в ML (например, DL)

Особенности Big Data

- 1. Использование ВСЕХ данных, а не случайных выборок
 - 2. Меньшие требования к точности
 - 3. Не ищем причины, а корреляции
 - 4. Важна Датификация

по книге Виктор Майер-Шенбергер и Кеннет Кукьер Большие данные: Революция, которая изменит то, как мы живем, работаем и мыслим

Особенности Big Data

Big Data – больше коммерческий и технологический термин

Visa: с помощью Hadoop сокращение времени обработки тестовых записей за 2 года с 1 месяца до 13 минут

В основе:

- обновлённая математическая статистика
 - анализ данных (Data Mining)
 - машинное обучение (Machine Learning)

всё в рамках «науки о данных» (Data Science)

Дальше...

Задачи анализа данных из опыта автора доклада

@Slanecartoons

Анализ поведения людей

Задача: оценка миграционных потоков, их изменение в зависимости от политики и административных решений

Анализ поведения людей по данным городских служб

Задача: согласование данных разных источников (иногда несоответствие очень большое)

Анализ поведения клиентов

18 слайд из 59

Интересно: счётчики посещения есть даже в обычных магазинах

Задачи: анализ конверсии / трафика

Обнаружение аномалий: нетипичных точек продаж

	Площадь	Персонал	Трафик	Остановка	Конкурент	Магазин_продукты	
Красноармейская, 10	40	4	5000	2	0	1	
Просп. Ленина, 10	32	3	4000	3	1	1	
Просп. Ленина, 15	30	3	15000	3	1	1	
Ул. Л. Чайкиной	35	4	4000	2	2	2	

Обнаружение аномалий выявление нетипичного поведения

- подозрительное поведение в толпе
- подозрительные финансовые операции
 - выявления инсайдеров

Анализ поведения клиентов

- нахождение целевой аудитории
- определение интересов клиента

(рекомендательные системы)

- кросс-продажи
- дополнительные услуги
- прогнозирование спроса
- повышение конверсии, управление ценой
 - оптимальный контент

(исследование - использование)

Задача: предсказание визита клиента и суммы покупки http://www.kaggle.com/c/dunnhumbychallenge/

Прогноз поведения клиентов супермаркетов с помощью весовых схем оценок вероятностей и плотностей // Бизнес-информатика. 2014. №1 (27) С.68-77.

Предложение дополнительных услуг

Есть статистика – кто и когда покупал страховку, а кто – нет Надо: сделать предложение таргетированным

Анализ поведения клиентов

23 слайд из 59

Рекомендации: статистика + контент

Алгоритмы для рекомендательной системы: технология LENKOR // Бизнес-Информатика, 2012, №1(19), С. 32–39.

Анализ поведения клиентов

МУЗ ТВ	100	85	86	84	84	88	86	85	74	87
HTB	85	100	94	89	91	90	94	88	81	90
ПЕРВЫЙ КАНАЛ	86	94	100	89	91	89	96	87	80	91
АДИНТЯП	84	89	89	100	87	86	88	84	78	87
ПЯТЫЙ КАНАЛ	84	91	91	87	100	88	90	86	81	87
PEH TB	88	90	89	86	88	100	90	88	78	91
РОССИЯ 1	86	94	96	88	90	90	100	87	80	90
РОССИЯ 24	85	88	87	84	86	88	87	100	79	87
РОССИЯ К	74	81	80	78	81	78	80	79	100	77
CTC	87	90	91	87	87	91	90	87	77	100
	My3 TB	HIB	ТЕРВЫЙ КАНАЛ	ПЯТНИЦА	ПЯТЫЙ КАНАЛ	PEH TB	Россия 1	РОССИЯ 24	РОССИЯК	СТС

Анализ аудитории каналов
 Планирование рекламы

Анализ открытых данных

- анализ данных счётчиков парковок, предложение маршрутов
 - сервис по пробкам / прогноз пробок
 - прогноз задержек транспорта и планирование маршрутов

Задача: прогноз задержек общественного транспорта

Задача: прогноз криминальной активности

26 слайд из 59

Predictive policing

From Wikipedia, the free encyclopedia

of mathematical, predictive and analytical techniques in law enforcement to identify potential criminal activity.^[1]

Predictive policing methods fall into four general categories: methods for predicting crimes, methods for predicting offenders, methods for predicting perpetrators' identities, and methods for

Интернет как источник данных

- Определение возраста по сообщениям в форуме
 - Детектирование оскорблений
 - Анализ отношения к бренду
 - Анализ политической активности населения
 - Рекомендации групп / новостей

Банковские задачи

- скоринг
- предсказание погашений кредитов
- предсказание сумм снятий с банкоматов

https://alexanderdyakonov.files.wordpress.com/2015/07/dyakonovfunnydm.pdf

Автоматическая диагностика двигателей

Автоматическая классификация и категоризация

WISE 2014 Challenge: Multi-label Classification of Print Media Articles to Topics // Lecture Notes in Computer Science, том 8787, с. 541-548.

Диагностика неисправностей оборудования

Детектирование поломок Предсказание поломок Анализ логов работ

Оценка персонала

- мониторинг качества обслуживания в колл-центрах
 - оценка эффективности менеджеров
- система автоматического доступа к ресурсам

Методы решения задач классификации с категориальными признаками // Прикладная математика и информатика. Труды факультета Вычислительной математики и кибернетики МГУ имени М.В. Ломоносова, № 46, с. 103-127

Анализ социальных сетей

- Выявление сообществ в социальной сети
- Предсказание событий
 - Рекомендации

Граф цитирований Börner и др.

Прогнозирование связности графа // Математические методы распознавания образов, 2011 http://alexanderdyakonov.narod.ru/graph-dyakonov-2011.pdf

Валидация данных

Конкурс Avito:

Есть ли реклама на изображениях, выкладываемых на сайте

Анализ данных в медицине: Brain Computer Interface

Анализ данных в медицине: Проект CardioQvark

- Мониторинг состояния
- Предсказание осложнений
 - Исследование ЭКГ
- (Big Data: постоянный поток данных от каждого пациента)
 - Классификация (детекция курильщика по ЭКГ)

http://cardioqvark.ru

Анализ данных в медицине: анализ фотоплетизмограмм (Ангиоскан+АлгоМост)

36 слайд из 59

Анализ схожести пульсовых волн в фотоплетизмограммах // Прикладная математика и информатика, № 53, с. 46-58

Анализ данных в образовании

Philip J. Guo, Juho Kim, Rob Rubin How video production affects student engagement: an empirical study of MOOC videos // L@S '14 Proceedings of the first ACM conference on Learning @ scale conference

12-40

короткие видео (<6 мин) эффективнее Лучше лектор + слайды Студийный видео менее привлекательней любительских Рисование от руки более привлекательно, чем спецэффекты Быстрый темп речи и энтузиазм более привлекательны

9-12

Video length (minutes)

12-40

Video length (minutes)

Анализ данных в образовании

Задача: предсказание ответов студентов на вопросы теста

для рекомендательной системы (алгоритм решает за студента тест и сообщает ему «потенциально неприятные для него» вопросы).

http://www.kaggle.com/c/WhatDoYouKnow

Как решаются задачи анализа данных

Инструменты:

- теория вероятностей и математическая статистика
 - машинное обучение
 - программирование

Что такое машинное обучение...

Машинное обучение (Machine Learning)

Обучение — приобретение необходимой функциональности посредством опыта

Обучение на примерах

Обучение по определениям

Учимся ходить Делаем шаг – получилось / нет В школе – дают определения

Учим названия животных Показывают и называют

Машинное обучение

Машинное обучение — процесс, в результате которого машина способна показывать поведение, которое в нее не было явно запрограммировано

A.L. Samuel Some Studies in Machine Learning Using the Game of Checkers // IBM Journal. July 1959. P. 210–229.

Программирование

Программируем последовательность действий

Обучение

Программируем алгоритм анализа информации

Пример задачи машинного обучения – классификация

42 слайд из 59

Iris setosa		Iris virgin	ica	Iris versicolor	
Длина чашелистника	Ширина чашелистника	Длина лепестка	Ширина лепестка	Вид ириса	
4.3	3.0	1.1	0.1	setosa	
4.4	2.9	1.4	0.2	setosa	
4.4	3.0	1.3	0.2	setosa	
4.9	2.5	4.5	1.7	virginica	
5.6	2.8	4.9	2.0	virginica	
5.0	2.0	3.5	1.0	versicolor	
5.1	2.5	3.3	1.1	versicolor	

Пример задачи машинного обучения – скоринг

ld	статус	г.р.	Пол	офис	На счету	просрочки	возврат
43223	физ	1967	М	54	10000	0	Да
43224	физ	1970	ж	33	2000	2	Нет
43225	юр	1954	М	54	23500	0	Да

Прогноз поведения пользователя с помощь описания (и кредитной истории)

Примеры задачи машинного обучения – классификация / детекция

Классификация / идентификация

Примеры задачи машинного обучения – прогнозирование

Примеры задачи машинного обучения – ранжирование

Как выглядит задача классификации

Как решается? Метод ближайшего соседа

К какому классу ближе – к тому и принадлежит

Переобучение – слишком точная настройка на обучающую выборку, при этом алгоритм показывает плохое качество на контрольной

Метод 3х ближайших соседей

Найти 3 ближайших соседа, по большинству определяем класс

Изменение параметра: k – число соседей У алгоритма много параметров: например, метрика

Метод 13ти ближайших соседей

Качество падает, но нет переобучения...

Второй способ – разделение прямой

Ищем прямую, которая разделяет объекты разных классов

Почему прямой?

51 слайд из 59

Можно параболой... поверхностью Зго порядка и т.д.

Методов много...

log regression

rf

SGD

svm poly3

naive bayes

tree

svm rbf

Как записываются наши решения «в компьютере»...

Линейный метод

2.1*Длина чашелистника - 0.7*Длина лепестка - 0.2*Ширина лепестка > 0.3

Метод второго порядка

0.1*Длина чашелистника*Ширина чашелистника - 0.5*Длина лепестка2 + 0.9*Ширина лепестка > 0.3

Как записываются наши решения «в компьютере»...

«Ближайший сосед» не записывается в виде формулы, но зато интерпретируется

Что такое сложные алгоритмы?

Голосование – принятие решений по большинству

Алгоритмы могут быть совершенно разные!

Что такое сложные алгоритмы?

Ансамбли могут быть разные!

Бустинг – построение ансамбля, в котором каждый следующий алгоритм исправляет ошибки предыдущих.

Основные виды машинного обучения

Обучение с учителем (supervised learning)

классификация регрессия / прогнозирование порядковая регрессия

Обучение без учителя (unsupervised learning)

кластеризация поиск аномалий уменьшение размерности/описание данных

Рекомендации (Recommender Systems)

Обучение с подкреплением (reinforcement learning)

Пример: что надо знать

Рекомендации (персональные по статистике)

	товары					
				Ôz (I)		
пользователи			5	4	2	
ОЛЬЗОВ	M				2	
		1	В			5
		-1	1			

Математика

Матричные разложения Методы оптимизации

Рекомендации (неперсональные по контенту)

Программирование

Парсинг Регулярные выражения Анализ текстов

Где учат

наш курс «Введение в машинное обучение»

кафедра ММП ВМК МГУ

http://mmp.cs.msu.ru/