Замечание

Функции

$$\operatorname{Si}(x) = -\int_{x}^{+\infty} \frac{\sin t}{t} dt, \quad \operatorname{Ci}(x) = -\int_{x}^{\infty} \frac{\cos t}{t} dt$$

называются интегральным синусом и интегральным косинусом соответственно.

4.3 Несобственные интегралы от неограниченных функций

Пусть функция f(x) неограничена на отрезке [a, b], но ограничена и интегрируема на отрезке $[a, b-\eta] \ \forall \eta > 0$. В этом случае точка b называется особой точкой функции f(x).

Определение

Несобственным интегралом от a до b от неограниченной функции f(x) называется следующий предел (если он существует и конечен):

$$\int_{a}^{b} f(x) dx = \lim_{\eta \to +0} \int_{a}^{b-\eta} f(x) dx,$$
 (4.21)

Если же интеграл не существует либо равен бесконечности, то говорят, что интеграл расходится.

Замечание

Как и в случае несобственного интеграла по бесконечному промежутку, интеграл от неограниченной функции позволяет определить и вычислить площадь неограниченной области:

Рис. 14: Интеграл от неограниченной функции. Точка разрыва лежит на границе промежутка интегрирования

Замечание

Можно определять несобственный интеграл по-другому. Этот способ впервые был предложен французским математиком Анри Леоном Лебегом в 1901 году.

Введем ограниченную функцию $f_M(x)$ по правилу:

$$f_M(x) = \begin{cases} M, & \text{если } f(x) > M, \\ f(x), & \text{если } -M \leqslant f(x) \leqslant M, \\ -M, & \text{если } f(x) < -M. \end{cases}$$

Функция $f_M(x)$ интегрируема на отрезке [a, b]. Тогда несобственный интеграл в пределах от a до b от неограниченной функции f(x) можно ввести следующим образом:

$$\int_{a}^{b} f(x) dx = \lim_{M \to \infty} \int_{a}^{b} f_{M}(x) dx. \tag{4.22}$$

Продемонстриуем на примере, что в случае одной особой точки определения интегралов по Риману и Лебегу эквивалентны друг другу.

Пример

Вычислим интеграл $\int_{-1}^{0} \frac{dx}{\sqrt[3]{x}}.$

Найдем интеграл в соответствии с определением Римана:

$$\int_{-1}^{0} \frac{dx}{\sqrt[3]{x}} = \lim_{\eta \to 0} \int_{-1}^{0-\eta} \frac{dx}{\sqrt[3]{x}} = \lim_{\eta \to 0} \left(\frac{3}{2} \left((-\eta)^{\frac{2}{3}} - (-1)^{\frac{2}{3}} \right) \right) = -\frac{3}{2}.$$

Теперь воспользуемся определением интеграла по Лебегу. Введем функцию $f_M(x)$ по правилу:

$$f_M(x) = \begin{cases} -M, & \frac{1}{\sqrt[3]{x}} < -M, \\ \frac{1}{\sqrt[3]{x}}, & -M \leqslant \frac{1}{\sqrt[3]{x}} \leqslant M, \end{cases} \Leftrightarrow$$

/ Мы рассматриваем функцию $f_M(x)$ на промежутке [-1, 0). Определим пределы изменения по x, решив неравенство: $-M \leqslant \frac{1}{\sqrt[3]{x}} \leqslant M$. Правое неравенство выполнено автоматически, так как $x \in [-1, 0)$. Решим левое неравенство:

$$-M \le \frac{1}{\sqrt[3]{x}} \Leftrightarrow \Big/ \text{так как } x < 0 \Big/ \Leftrightarrow -M\sqrt[3]{x} \ge 1 \Leftrightarrow \sqrt[3]{x} \le -\frac{1}{M} \Leftrightarrow x \le -\frac{1}{M^3} \Big/$$
$$\Leftrightarrow f_M(x) = \begin{cases} -M, & -\frac{1}{M^3} < x < 0, \\ \frac{1}{\sqrt[3]{x}}, & -1 \leqslant x \leqslant -\frac{1}{M^3}, \end{cases}$$

Тогда:

$$\int_{-1}^{0} \frac{dx}{\sqrt[3]{x}} = \lim_{M \to \infty} \left(\int_{-\frac{1}{M^3}}^{0} (-M)dx + \int_{-1}^{-\frac{1}{M^3}} \frac{dx}{\sqrt[3]{x}} \right) =$$

$$= \lim_{M \to \infty} \left((-M) \frac{1}{M^3} + \frac{3}{2} \left(\left(-\frac{1}{M^3} \right)^{\frac{2}{3}} - \left(-1 \right)^{\frac{2}{3}} \right) \right) = -\frac{3}{2}.$$

Как видим, результаты совпали.

Определение

Если особая точка – левый конец отрезка [a, b], то несобственный интеграл вводится следующим образом:

$$\int_{a}^{b} f(x) dx = \lim_{\eta \to +0} \int_{a+\eta}^{b} f(x) dx.$$
 (4.23)

Если особая точка $c \in (a, b)$, то несобственный интеграл по отрезку [a, b] вводится как сумма двух несобственных интегралов по отрезкам [a, c] и [c, b], причем этот интеграл сходится, если сходятся интегралы по обоим отрезкам и расходится, если расходится хотя бы один из них:

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \lim_{\eta_{1} \to +0} \int_{a}^{c-\eta_{1}} f(x) dx + \lim_{\eta_{2} \to +0} \int_{c+\eta_{2}}^{b} f(x) dx.$$
(4.24)

Аналогично в случае, когда на отрезке конечное число особых точек.

Рис. 15: Интеграл от неограниченной функции. Точка разрыва лежит внутри промежутка интегрирования

Пример

Вычислим эталонный интеграл $\int_{0}^{1} \frac{dx}{x^{\lambda}}$.

$$\lambda \neq 1: \quad \int_{0}^{1} \frac{dx}{x^{\lambda}} = \lim_{\eta \to 0+} \int_{\eta}^{1} \frac{dx}{x^{\lambda}} = \lim_{\eta \to 0+} \left(\frac{1}{1-\lambda} (1-\eta^{1-\lambda}) \right) = \begin{cases} \frac{1}{1-\lambda}, & \lambda < 1, \\ +\infty, & \lambda > 1. \end{cases}$$
$$\lambda = 1: \quad \int_{0}^{1} \frac{dx}{x} = \lim_{\eta \to 0+} \int_{\eta}^{1} \frac{dx}{x} = \lim_{\eta \to 0+} (-\ln \eta) = \infty,$$

то есть интеграл сходится при $\lambda < 1$ и расходится при $\lambda \geq 1$.

Использование первообразной при вычислении несобственного интеграла

Если F(x) – первообразная f(x), то имеет место равенство:

$$\int_{a}^{b} f(x) dx = \lim_{\eta \to 0} \int_{a}^{b-\eta} f(x) dx = \lim_{\eta \to 0} \left(F(b-\eta) - F(a) \right). \tag{4.25}$$

Если первообразная F(x) непрерывна в точке b, то $\lim_{n\to 0} F(b-\eta)$ можно найти по непрерывности. Тогда:

$$\int_{a}^{b} f(x) dx = F(b) - F(a). \tag{4.26}$$

Признаки сходимости несобственных интегралов от неограниченных функций

Признаки сходимости, а также их доказательства аналогичны случаю интеграла по бесконечному промежутку. Приведем их для интеграла от положительной функции, имеющей особенность на правом конце промежутка [a, b].

Теорема 14 (Критерий сходимости интеграла от положительной функции)

Если функция $f(x) \geqslant 0$, то для сходимости $\int\limits_a^b f(x) \, dx$ необходимо и достаточно, чтобы было выполнено:

$$\int_{a}^{b-\eta} f(x) dx \leqslant L \quad \forall \eta > 0 \quad (\text{где } L = const), \tag{4.27}$$

причем константа L не зависит от η (то есть $\int\limits_a^b f(x)\,dx$ будет ограничен одной константой L для любого η).

Теорема 15 (Признак сравнения)

Пусть $0\leqslant f(x)\leqslant g(x)$ при $x\in [a,\ b].$ Тогда:

- 1) Из сходимости $\int_a^b g(x)dx$ следует сходимость $\int_a^b f(x)dx$.

 2) Из расходимости $\int_a^b f(x)dx$ следует расходимость $\int_a^b g(x)dx$.

Теорема 16 (Предельный признак сравнения)

Пусть $\lim_{x \to \infty} \frac{f(x)}{g(x)} = K$ где $0 \leqslant K \leqslant \infty$. Тогда:

- 1. При $0 \leq K < \infty$ из сходимости $\int_{-b}^{b} g(x) dx$ вытекает сходимость $\int_{0}^{b} f(x) \, dx.$
- **2.** При $0 < K \leq \infty$ из расходимости $\int\limits_{a}^{b} g(x) dx$ следует расходимость $\int_{0}^{\sigma} f(x) dx.$
- ${f 3.} \; \Pi$ ри $0 < K < \infty$ интегралы либо оба сходятся либо оба расходятся, то есть ведут себя одинаково.

Теорема 17 (Теорема о сравнении с эталонным интегралом)

Рассмотрим сходимость интеграла $\int_{-b}^{b} \frac{\varphi(x)}{(b-x)^{\lambda}} dx$, где a>0. Тогда:

1. Пусть $\lambda < 1$ и при $x \in [a, \ b]$ выполнено:

$$0 < \varphi(x) \leqslant C < \infty$$
. Тогда $\int_a^b \frac{\varphi(x)}{(b-x)^{\lambda}} dx$ сходится.

2. Пусть
$$\lambda \geqslant 1$$
 и при $x \in [a, b]$ выполнено: $\varphi(x) \geqslant C > 0$. Тогда $\int_{a}^{b} \frac{\varphi(x)}{(b-x)^{\lambda}} dx$ расходится.

Теорема 18 (Теорема о сравнении с интегралом от эквивалентной бесконечно большой)

Пусть при $x \to b - 0$ функция f(x) есть бесконечно большая, такая, что: $f(x) \sim \frac{C}{(b-x)^{\lambda}}$, где C>0. Тогда $\int\limits_a^b f(x)\,dx$ сходится при $\lambda<1$ и расходится при $\lambda \geq 1$.

Замечание

Для знакопеременной функции f(x) сохраняется признак абсолютной сходимости.

Теорема 19 (Признак абсолютной сходимости)

Если сходится
$$\int_a^b |f(x)| dx$$
, то сходится и $\int_a^b f(x) dx$.

Пример

Вычислим несобственный интеграл $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \operatorname{tg} x dx$.

$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \operatorname{tg} x dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \operatorname{tg} x dx + \int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} \operatorname{tg} x dx = -\lim_{\eta_1 \to +0} \int_{\frac{\pi}{4}}^{\frac{\pi}{2} - \eta_1} \frac{d(\cos x)}{\cos x} - \lim_{\eta_2 \to +0} \int_{\frac{\pi}{2} + \eta_2}^{\frac{3\pi}{4}} \frac{d(\cos x)}{\cos x} =$$

$$= -\lim_{\eta_1 \to 0} \left(\left. \ln \left| \cos \left(\frac{\pi}{2} - \eta_1 \right) \right| - \ln \left| \cos \frac{\pi}{4} \right| \right) - \lim_{\eta_2 \to 0} \left(\left. \ln \left| \cos \frac{3\pi}{4} \right| - \ln \left| \cos \left(\frac{\pi}{2} + \eta_2 \right) \right| \right) \right).$$

Таким образом, интеграл расходится.

Замечание

Если не заметить особую точку $\frac{\pi}{2}$, то получится неверный ответ $\ln\left|\cos\frac{\pi}{4}\right|-\ln\left|\cos\frac{3\pi}{4}\right|$.

4.4 Главные значения несобственных интегралов

Рассмотрим подробно случаи расходимости несобственного интеграла от неограниченной функции в ситуации, когда особая точка c лежит внутри промежутка интегрирования (a, b). Напомним определение несобственного интеграла (4.24):

$$\int_{a}^{b} f(x) dx = \lim_{\eta_{1} \to +0} \int_{a}^{c-\eta_{1}} f(x) dx + \lim_{\eta_{2} \to +0} \int_{c+\eta_{2}}^{b} f(x) dx =$$

$$= \lim_{\eta_{1} \to +0, \eta_{2} \to +0} \left(\int_{a}^{c-\eta_{1}} f(x) dx + \int_{c+\eta_{2}}^{b} f(x) dx \right). \tag{4.28}$$

где η_1 и η_2 стремятся к 0 независимо друг от друга.

Если двойной предел в формуле (4.28) не существует или равен бесконечности, то можно рассмотреть его частный случай при $\eta_1 = \eta_2 \to 0$. Если этот предел существует и конечен, то его называют главным значением интеграла:

$$V.p. \int_{a}^{b} f(x) dx = \lim_{\eta \to 0} \left\{ \int_{a}^{c-\eta} f(x) dx + \int_{c+\eta}^{b} f(x) dx \right\}.$$
 (4.29)

Замечание

V.p. — начальные буквы французских слов "valeur principal", обозначающих "главное значение".

Пример

Исследуем на сходимость следующий интеграл: $\int_{-1}^{2} \frac{dx}{x}$.

$$\int_{-1}^{2} \frac{dx}{x} = \lim_{\eta_{1} \to +0, \eta_{2} \to +0} \left(\int_{-1}^{-\eta_{1}} \frac{dx}{x} + \int_{\eta_{2}}^{2} \frac{dx}{x} \right) = \lim_{\eta_{1} \to +0, \eta_{2} \to +0} \left(\ln|x| \Big|_{-1}^{-\eta_{1}} + \ln|x| \Big|_{\eta_{2}}^{2} \right) =$$

$$= \lim_{\eta_{1} \to +0, \eta_{2} \to +0} \left(\underbrace{\ln \eta_{1}}_{\to \infty} - \underbrace{\ln 1}_{=0} + \ln 2 - \underbrace{\ln \eta_{2}}_{\to \infty} \right).$$

Интеграл расходится, так как разность двух бесконечно больших $\ln \eta_1$ и $\ln \eta_2$ может принимать любое значение ибо η_1 и η_2 стремятся к нулю независимо друг от друга. Теперь рассмотрим этот интеграл в смысле главного значения.

$$V.p. \int_{-1}^{2} \frac{dx}{x} = \lim_{\eta \to +0} \left(\int_{-1}^{-\eta} \frac{dx}{x} + \int_{\eta}^{2} \frac{dx}{x} \right) = \lim_{\eta \to 0} \left(\ln \eta + \ln 2 - \ln \eta \right) = \ln 2.$$

4.5 Замена переменной в несобственном интеграле

В несобственном интеграле можно сделать замену переменной. Пусть функция f(x) определена и непрерывна в конечном или бесконечном промежутке [a, b). Тогда f(x) интегрируема в собственном смысле в каждой части этого отрезка, не содержащей точки b, причем может быть, что $b = +\infty$. Мы предполагаем, что точка b является единственной особой точкой для функции f(x).

Рассмотрим теперь монотонно возрастающую функцию $x = \varphi(t)$, непрерывную вместе со своей производной $\varphi'(t)$ в промежутке $[\alpha, \beta)$, где β может быть равна $+\infty$. Пусть также выполнено: $\varphi(\alpha) = a$, и $\varphi(\beta) = b$. Последнее равенство нужно понимать в том смысле, что $\lim_{t \to \beta} \varphi(t) = b$. Тогда имеет место равенство:

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt$$
 (4.30)

в предположении, что существует один из этих интегралов (существование другого отсюда следует). Второй интеграл будет либо собственным, либо несобственным – с единственной особой точкой β .

Аналогичное рассуждение применимо в случае, если $a=-\infty$ или оба предела бесконечны, либо в случае монотонно убывающей функции $\varphi(t)$, когда $\alpha>\beta$.

Пример

$$\int_{-\infty}^{\infty} \frac{\arctan^2 x}{1+x^2} dx = \int_{-\infty}^{\infty} \arctan^2 x d(\arctan x) = \left/ t = \arctan x \right/ = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t^2 dt = \frac{t^3}{3} \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\pi^3}{12}.$$

Как видим, после замены переменной интеграл может перестать быть несобственным.

Глава 5. Интегралы, зависящие от параметра

5.1 Основные понятия

Рассмотрим функцию f(x,y) двух переменных, определенную для всех значений x в некотором промежутке [a,b] и всех значений y в множестве $Y=\{y\}$. Пусть, при каждом постоянном значении y из Y, f(x,y) будет интегрируема в промежутке [a,b], в собственном или несобственном смысле. Тогда интеграл

$$I(y) = \int_{a}^{b} f(x, y) dx \tag{5.1}$$

будет являться функцией от параметра y.

Равномерная сходимость по параметру у

Определение

Пусть функция f(x,y) определена в двумерном множестве $M=X\times Y$, где X и Y означают множества значений, принимаемых порознь переменными x и y. Пусть выполнено:

1) Для функции f(x, y) при $y \to y_0$ существует конечная предельная функция

$$\lim_{y \to y_0} f(x, y) = \varphi(x), \quad \text{где } x \in X. \tag{5.2}$$

2)
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{такое}, \ \text{что} \ \forall x \in X : \ |y - y_0| < \delta \ \Rightarrow \ |f(x, y) - \varphi(x)| < \varepsilon,$$

$$(5.3)$$

Тогда говорят, что f(x, y) стремится к предельной функции $\varphi(x)$ равномерно относительно x в области X.

Замечание

Здесь первый пункт определяет сходимость, а второй — уточняет эту сходимость, делая ее равномерной (то есть для любого ε найдется δ , подходящее для всех x сразу).

Предельный переход под знаком интеграла

Рассмотрим интеграл (5.1), зависящий от параметра y. Будем считать

промежуток [a, b] конечным, а функцию – интегрируемой в собственном смысле. Поставим вопрос о пределе функции (5.1) при $y \to y_0$.

Теорема 1 (Предельный переход под знаком интеграла)

Если функция f(x, y) при постоянном y интегрируема по x в [a, b] и при $y \to y_0$ стремится к предельной функции $\varphi(x)$ равномерно относительно x, то имеет место равенство:

$$\lim_{y \to y_0} I(y) = \lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \varphi(x) dx.$$
 (5.4)

Доказательство:

Заметим, что если f(x, y) интегрируема по x при любом значении y, то равномерный предел будет интегрируемой функцией. Здесь мы этот факт доказывать не будем.

Так как $f(x,y) \to \varphi(x)$ при $y \to y_0$, то выполнено:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x : \ |y - y_0| < \delta \Rightarrow |f(x, y) - \varphi(x)| < \varepsilon.$$

Тогда при $|y-y_0|<\delta$ можно оценить по модулю разность интегралов:

$$\left| \int_{a}^{b} f(x, y) dx - \int_{a}^{b} \varphi(x) dx \right| = \left| \int_{a}^{b} [f(x, y) - \varphi(x)] dx \right| \leq \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left| f(x, y) - \varphi(x) \right| dx < \int_{a}^{b} \left|$$

Формула (5.4) может быть переписана в виде:

$$\lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx.$$
 (5.5)

Теорема 2 (Непрерывность интеграла от непрерывной функции)

Если функция f(x,y) определена и непрерывна, как функция двух переменных, в прямоугольнике $[a,\ b]\times [c,\ d]$, то интеграл (5.1) будет непрерывной функцией от параметра y в промежутке $[c,\ d]$.

Доказательство:

По условию теоремы функция f(x,y) определена и непрерывна в прямоугольнике, то есть на замкнутом ограниченном множестве. Следовательно, для нее будет выполнен многомерный аналог теоремы Кантора, а именно: из непрерывности функции f(x,y) будет следовать ее равномерная непрерывность. Тогда для любого $\varepsilon > 0$ найдется такое $\delta > 0$, что из неравенств

$$|x'' - x'| < \delta, \qquad |y'' - y'| < \delta$$

следует неравенство

$$|f(x'', y'') - f(x', y')| < \varepsilon.$$

Положим x'' = x' = x, $y' = y_0$, y'' = y. Тогда при $|y - y_0| < \delta$, вне зависимости от x, будем иметь:

$$|f(x,y) - f(x,y_0)| < \varepsilon.$$

Таким образом, функция f(x,y), при стремлении y к любому частному значению y_0 , стремится к $f(x,y_0)$ равномерно относительно x. Тогда по теореме 1 будет выполнено:

$$\lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx = \int_a^b f(x, y_0) dx$$

ИЛИ

$$\lim_{y \to y_0} I(y) = I(y_0),$$

что и доказывает наше утверждение.

Пример

Так, например, не вычисляя интегралов

$$\int_{0}^{1} \arctan \frac{x}{y} dx, \qquad \int_{0}^{1} \ln(x^{2} + y^{2}) dx,$$

сразу видим, что они представляют собой непрерывные функции от параметра y для любого y из конечного отрезка положительной полуоси. Точку y=0 в отрезок включать нельзя, так как подынтегральные функции теряют там непрерывность.

5.2 Дифференцирование под знаком интеграла

При изучении свойств функции (5.1), которая задана интегралом, содержащим параметр y, важное значение имеет вопрос производной этой функции по параметру.

В предположении существования частной производной $f_y'(x,y)$ (то есть производной функции f(x,y) по переменной y при условии, что x считается постоянной), Лейбниц дал для вычисления производной I'(y) правило:

$$I'(y) = \left(\int_{a}^{b} f(x, y)dx\right)'_{y} = \int_{a}^{b} f'_{y}(x, y)dx.$$
 (5.6)

Если такое внесение производной под знак интеграла возможно, то говорят, что функцию (5.1) можно дифференцировать по параметру под знаком интеграла. Следующая теорема устанавливает достаточные условия для применимости этого правила.

Теорема 3 (Правило Лейбница)

Пусть f(x, y) определенная в прямоугольнике $[a, b] \times [c, d]$, будет непрерывна по x в [a, b] при любом постоянном y в [c, d]. Пусть также во всей области существует частная производная $f'_y(x, y)$, непрерывная как функция двух переменных. Тогда при любом $y \in [c, d]$ имеет место фор-

мула (5.6):

$$I'(y) = \left(\int_{a}^{b} f(x, y)dx\right)'_{y} = \int_{a}^{b} f'_{y}(x, y)dx.$$
 (5.7)

Доказательство:

По условию теоремы функция $f_y'(x,y)$ непрерывна. Следовательно, функция f(x,y) непрерывна, а значит интеграл $\int\limits_a^b f(x,y) dx$ существует.

Зафиксируем любое значение $y=y_0$ и придадим ему приращение $\Delta y=h.$ Тогда:

$$I(y_0) = \int_a^b f(x, y_0) dx, \qquad I(y_0 + h) = \int_a^b f(x, y_0 + h) dx.$$

Следовательно,

$$\frac{I(y_0+h)-I(y_0)}{h} = \int_a^b \frac{f(x, y_0+h)-f(x, y_0)}{h} dx.$$
 (5.8)

Интеграл справа зависит от параметра h. Докажем, что при $h \to 0$ допустим предельный переход под знаком интеграла. Тем самым, мы установим существование производной

$$I'(y_0) = \lim_{h \to 0} \frac{I(y_0 + h) - I(y_0)}{h},$$
(5.9)

и наличие требуемого равенства

$$I'(y_0) = \lim_{h \to 0} \int_a^b \frac{f(x, y_0 + h) - f(x, y_0)}{h} dx =$$

$$= \int_{a}^{b} \lim_{h \to 0} \frac{f(x, y_0 + h) - f(x, y_0)}{h} dx = \int_{a}^{b} f'_y(x, y_0) dx.$$
 (5.10)

С этой целью по формуле Лагранжа напишем:

$$\frac{f(x,y_0+h)-f(x,y_0)}{h}=f_y'(x,y_0+\theta h), \quad 0<\theta<1.$$
 (5.11)

Так как функция $f_y'(x,y)$ непрерывна как функция двух переменных, то для любого $\varepsilon>0$ найдется такое $\delta>0$ что при

$$|x''-x'|<\delta$$
 и $|y''-y'|<\delta$

будет выполняться неравенство:

$$|f'_y(x'', y'') - f'_y(x', y')| < \varepsilon.$$

Полагая здесь x' = x'' = x, $y' = y_0$, $y'' = y_0 + \theta h$ и считая $|h| < \delta$, получим, с учетом формулы (5.11), что для всех x будет выполнено:

$$\left|\underbrace{\frac{f(x,y_0+h)-f(x,y_0)}{h}}_{=f'_y(x,y_0+\theta h)} - f'_y(x,y_0)\right| < \varepsilon. \tag{5.12}$$

Отсюда ясно, что подынтегральная функция (5.11) при $h \to 0$ равномерно (относительно x) стремится к предельной функции $f'_y(x, y_0)$. Тогда, согласно теореме 1, можно делать предельный переход под знаком интеграла (5.8).

Случай, когда пределы интеграла зависят от параметра

Рассмотрим теперь более сложный случай, когда не только подынтегральное выражение содержит параметр, но и сами пределы зависят от него. В этом случае интеграл имеет вид:

$$I(y) = \int_{\alpha(y)}^{\beta(y)} f(x, y) dx. \tag{5.13}$$

Теорема 4 (Непрерывность интеграла по параметру)

Пусть функция f(x,y) определена и непрерывна в прямоугольнике $[a,\ b] \times [c,\ d],$ а кривые

$$x = \alpha(y), \quad x = \beta(y), \quad \text{где } c \le y \le d,$$

непрерывны и не выходят за его пределы. Тогда интеграл (5.13) представляет собой непрерывную функцию от y в [c, d].

Доказательство теоремы будет приведено позже в разделе "Функции нескольких переменных".

Теорема 5 (Дифференцирование интеграла по параметру)

Если, сверх сказанного в теореме 4, функция f(x,y) имеет в прямоугольнике $[a, b] \times [c, d]$ непрерывную производную, а также существуют производные $\alpha'(y)$, $\beta'(y)$, то интеграл (5.13) можно продифференировать по параметру:

$$I'(y) = \int_{\alpha(y)}^{\beta(y)} f'_y(x, y) dx + f(\beta(y), y) \cdot \beta'(y) - f(\alpha(y), y) \cdot \alpha'(y).$$
 (5.14)

Доказательство теоремы будет приведено позже в разделе "Функции нескольких переменных".

5.3 Интегрирование под знаком интеграла

Попробуем найти интеграл по y от функции (5.1) в промежутке [c, d]. Нас будет интересовать случай, когда этот интеграл выразится формулой:

$$\int_{c}^{d} I(y)dy = \int_{c}^{d} \left(\int_{a}^{b} f(x,y)dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx,$$

которую обычно записывают в следующем виде:

$$\int_{c}^{d} dy \int_{a}^{b} f(x,y)dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y)dy.$$
 (5.15)

В этом случае говорят, что функцию (5.1) можно интегрировать по параметру y под знаком интеграла. Простейшие условия, достаточные для равенства двух повторных интегралов (5.15), дает следующая теорема:

Теорема 6 (Интегрирование под знаком интеграла)

Если функция f(x, y) непрерывна по обеим переменным в прямоугольнике $[a, b] \times [c, d]$, то имеет место формула (5.15).

Доказательство:

Докажем более общее равенство:

$$\int_{c}^{\eta} dy \int_{a}^{b} f(x,y) dx = \int_{a}^{b} dx \int_{c}^{\eta} f(x,y) dy, \qquad \text{где } c \le \eta \le d.$$
 (5.16)

В левой и правой его частях мы имеем две функции от параметра η . Вычислим их производные по η .

Внешний интеграл в левой части имеет подынтегральную функцию (5.1), непрерывную по y в силу теоремы 2. Следовательно, этот интеграл можно дифференцировать по теореме Барроу и его производная по переменному верхнему пределу будет равна подынтегральной функции, вычисленной при $y=\eta$, то есть интегралу

$$I(\eta) = \int_{a}^{b} f(x, \eta) dx. \tag{5.17}$$

В правой части (5.16) стоит интеграл

$$\int_{a}^{b} \varphi(x,\eta) dx$$
, где $\varphi(x,\eta) = \int_{a}^{\eta} f(x,y) dy$.

Функция $\varphi(x,\eta)$ удовлетворяет условиям теоремы 3 (правило Лейбница). Действительно, функция $\varphi(x,\eta)$ непрерывна по x, в силу теоремы 2. Тогда к $\varphi(x,\eta)$ можно применить теорему Барроу и продифференцировать ее по верхнему пределу:

$$\varphi'_{\eta}(x,\eta) = f(x,\eta).$$

Мы получили функцию $f(x,\eta)$, которая непрерывна как функция двух переменных. Таким образом, мы доказали, что функция $\varphi(x,\eta)$ непре-

рывно дифференцируема в прямоугольнике $[a,\ b] \times [c,\ d]$ и к ней применимо правило Лейбница:

$$\left(\int_{a}^{b} \varphi(x,\eta)dx\right)_{\eta}' = \int_{a}^{b} \varphi_{\eta}'(x,\eta)dx = \int_{a}^{b} f(x,\eta)dx = I(\eta).$$

Мы получили, что левая и правая части равенства (5.16), как функции от η , имеют равные производные, а значит могут отличаться лишь на константу. Но при $\eta=c$ оба упомянутых выражения из формулы (5.16) обращаются в нуль. Следовательно они тождественны при всех значениях η и равенство (5.16) доказано.

В частности, при $\eta = d$ из (5.16) мы получим равенство (5.15).

Пример

Пусть $f(x,y) = x^y$ в прямоугольнике $[0, 1] \times [a, b]$, где 0 < a < b. Условия теоремы 4 соблюдены. Тогда:

$$\int_{a}^{b} dy \int_{0}^{1} x^{y} dx = \int_{0}^{1} dx \int_{a}^{b} x^{y} dy.$$

Слева легко получается окончательный результат:

$$\int_{a}^{b} dy \int_{0}^{1} x^{y} dx = \int_{a}^{b} dy \cdot \frac{x^{y+1}}{y+1} \Big|_{0}^{1} = \int_{a}^{b} \frac{dy}{y+1} = \ln|y+1| \Big|_{a}^{b} = \ln\frac{b+1}{a+1}. \quad (5.18)$$

Справа же мы приходим к интегралу, который не берется в элементраных функциях:

$$\int_{0}^{1} dx \int_{a}^{b} x^{y} dy = \int_{0}^{1} dx \cdot \frac{x^{y}}{\ln x} \Big|_{a}^{b} = \int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx.$$
 (5.19)

Сравнивая формулы (5.18) и (5.19), получаем выражение для интеграла:

$$\int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx = \ln \frac{b+1}{a+1}.$$
 (5.20)

Отметим, что вычисление данного интеграла стало возможным благодаря перестановке интегралов.