

INTERNATIONAL AS PHYSICS PH01

Unit 1 Mechanics, materials and atoms

Mark scheme

June 2025

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from www.oxfordaga.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student's answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Question	Answers	Additional comments/Guidelines	Mark	АО
01.1	The material is permanently deformed / does not return to its original length (when the force is removed) ✓		1	AO1

Question	Answers	Additional comments/Guidelines	Mark	АО
01.2	Idea that the material undergoes little or no plastic deformation before failure ✓		1	AO1
Total			2	

Question	Answers	Additional comments/Guidelines	Mark	АО
02	Idea that they are equal in magnitude and opposite in direction ✓ They are separated by a perpendicular distance ✓	Allow they are not co-linear Allow MP2 for a clear diagram	2	AO1
Total			2]

Question	Answers	Additional comments/Guidelines	Mark	АО
03.1	kg s ⁻² ✓		1	AO2

Question	Answers	Additional comments/Guidelines	Mark	AO
03.2	Attempts to calculate area under graph ✓ 30.5 to 33.5 (J) ✓ 31.5 to 32.5 (J) ✓✓	Expect to see 63 – 65 squares	3	1 × AO1 2 × AO3
	31.3 to 32.3 (3) * *	POT error prevents the awarding of one of MP2 or MP3.		

Question	Answers	Additional comments/Guidelines	Mark	АО
03.3	The stiffness of S increases (as compression increases) \checkmark Because the ratio $\frac{F}{\Delta L}$ increases \checkmark	Condone spring constant for stiffness Allow the gradient of the line increases	2	AO3
Total			6	

Question	Answers	Additional comments/Guidelines	Mark	АО
04.1	Proton and electron and antineutrino ✓	Allow β ⁻ for electron Do not allow e ⁻	1	AO1

Question	Answers	Additional comments/Guidelines	Mark	АО
04.2	annihilation ✓ releasing (gamma) photon(s) ✓		2	AO1
Total			3	

Question	Answers	Additional comments/Guidelines	Mark	АО
05	Use of conservation of momentum to calculate $v\checkmark$ $v=3.6(3) \checkmark$ Use of $E_k=\frac{1}{2}mv^2$ for final kinetic energy \checkmark Initial and calculated final kinetic energy compared and a consistent conclusion given \checkmark	e.g. $(8.4\times4.1)+(6.3\times2.7)=(8.4\times3.4)+6.3\nu$ Do not award MP4 if a circular argument is given	4	1 × AO1 2 × AO2 1 × AO3
Total			4	

Question	Answers	Additional comments/Guidelines	Mark	АО
06.1	Starts at 73 (m s ⁻¹) and decreases with correct shape above the x -axis \checkmark Continuous curve with correct shape below the x -axis \checkmark Becomes constant at -16 (m s ⁻¹) \checkmark	velocity / m s^{-1} -16 time / s	3	AO3

Question	Answers	Additional comments/Guidelines	Mark	АО
06.2	Resolves vertically or uses $s = vt$ with their vertical component of $v\checkmark$ $t = 29 \text{ (s) }\checkmark$		2	AO2

Question	Answers	Additional comments/Guidelines	Mark	AO
06.3	Tangent drawn at $t = 5.0 \text{ s}$		4	1 × AO1
	Calculates gradient with a sufficiently large triangle ✓	Δv at least 20 ms ⁻¹		2 × AO2
	Uses their acceleration in $mg - R = ma$	Expect to see answer in range $2.80 - 3.20$ Allow 560 to 600		1 × AO3
	580 (N) ✓	Allow 300 to 600		

Question	Answers	Additional comments/Guidelines	Mark	AO
06.4	Gradient is acceleration ✓ Any three from: ✓✓✓		4	AO3
	 Gradient / acceleration initially large either due to mg > drag or large resultant force As velocity increases air resistance / drag increases So resultant force decreases so gradient / acceleration decreases When air resistance / drag = weight, jumper reaches constant speed so gradient / acceleration is zero 	Allow gradient / acceleration is initially g		
Total			13	

Question	Answers	Additional comments/Guidelines	Mark	АО
07.1	Charge = $2 \times 1.60 \times 10^{-19}$ or mass = $(2 \times 1.67(3) \times 10^{-27}) + (2 \times 1.67(5) \times 10^{-27}) \checkmark$ Uses $\frac{\text{charge}}{\text{mass}} \checkmark$ $4.79 \times 10^7 \text{ (C kg}^{-1}) \checkmark$	Allow use of $4u$ Allow 4.78×10^7 or 4.82×10^7 (C kg ⁻¹) Max 1 mark if mass of electrons is included	3	2 × AO1 1 × AO2

Question	Answers	Additional comments/Guidelines	Mark	АО
07.2	Idea that the activity will not drop to the level where it needs to be replaced	Condone activity will be low so risk will be low	1	AO3
	OR			
	Will not alter count rate during demonstration ✓			

Question	Answers	Additional comments/Guidelines	Mark	AO
07.3	Collisions with air particles (reduces velocity / momentum / kinetic energy) ✓	Do not accept air resistance	1	AO2

Question	Answers	Additional comments/Guidelines	Mark	AO
07.4	Measure the count rate with no source present or measure the background count for a long time ✓ Subtract the background count rate from the reading (when the source is present) ✓	Condone count / radiation for count rate in MP1 only	2	AO1

Question	Answers	Additional comments/Guidelines	Mark	AO
07.5	Idea that some of the decay products of radium-226 are radioactive ✓ and emit beta and/or gamma (with a range greater than alpha) ✓		2	1 × AO2 1 × AO3
Total			9	

Question	Answers	Additional comments/Guidelines	Mark	AO
08.1	Uses $\rho = \frac{m}{V}$ to calculate volume \checkmark Uses $V = \pi r^2 h$ to calculate radius or uses $V = \frac{\pi d^2 h}{4}$ to calculate diameter \checkmark 76 mm \checkmark	Ignore POT error in MP1 and MP2 only	3	1 × AO1 2 × AO2

Question	Answers	Additional comments/Guidelines	Mark	АО
08.2	Uses equation of motion to determine $a \checkmark$ $mg \sin\theta$ seen \checkmark	Expect to see $a = 2.9(0)$ (m s ⁻²)	4	AO2
	Uses ma = their component of weight $-0.41\checkmark$ $\theta = 33° \checkmark$	Expect to see $\theta = \sin^{-1}\left(\frac{ma + R}{mg}\right)$		
	OR			
	Uses $E_{\mathbf{k}} = \frac{1}{2}mv^2 \checkmark$			
	Uses $W = \text{friction} \times s \checkmark$			
	Uses $E_{\rm p} = E_{\rm k} + W \checkmark$			
	Uses trig to determine $\theta = 33^{\circ} \checkmark$			

Question	Answers	Additional comments/Guidelines	Mark	AO
	Uses an equation of motion \checkmark to get $t = 5.5(2)$ (s) \checkmark	Condone use of $2.1 cos \theta$	2	1 × AO1 1 × AO2

Question	Answers	Additional comments/Guidelines	Mark	AO
08.4	Repeated to minimise the effect of random errors ✓ Done in different locations to take account of any lack of uniformity ✓	Condone reduces random error(s) Allow 'the ground may not be uniform / horizontal'	2	AO4
Total			11	

Question	Answers	Additional comments/Guidelines	Mark	АО
09.1	Removes variation in reaction time ✓	Condone a reference to random error in place of variation	2	AO4
	Time too short to measure with a stopwatch without getting a large (percentage) uncertainty in the measurement ✓	Condone more precise if there is a reference to decimal places or significant figures		

Question	Answers	Additional comments/Guidelines	Mark	АО
09.2	 Any two from: ✓✓ repeat and average use a greater range of data use larger values of s obtain more data sets 		2	AO4

Question	Answers	Additional comments/Guidelines	Mark	AO
09.3	t^2 should be to 3 sf \checkmark		1	AO1

Question	Answers	Additional comments/Guidelines	Mark	AO
09.4	Use $s = \frac{1}{2} gt^2$ and compare with $y = mx + c$ Plot s against t^2 or $2s$ against t^2 $g = 2 \times gradient$	Accept any valid straight line plot Accept an answer consistent with their plot	3	AO2
Total			8	

Question	Answers	Additional comments/Guidelines	Mark	АО
10.1	Max two from: ✓✓		3	2 × AO1
	 calculates cross-sectional area use of stress = force area stress 			1 × AO2
	• uses Young modulus = $\frac{\text{stress}}{\text{strain}}$ 2.96 × 10 ⁹ Pa \checkmark	Correct power of ten must be seen Must be at least 3 sf		

Question	Answers	Additional comments/Guidelines	Mark	АО
10.2	Uses trig to determine $\theta = 65^{\circ}$ or $\theta = 25^{\circ}$ \checkmark	Allow equivalent ratio	2	1 × AO2
	790 (N)✓	Expect to see $F = 2T\cos 65$ or $F = 2T\sin 25$		1 × AO3

Question	Answers	Additional comments/Guidelines	Mark	АО
10.3	Because $F = ma$, acceleration decreases as F / tension decreases \checkmark	Allow because $2T\cos\theta = ma$, acceleration decreases F / tension decreases	3	1 × AO2 2 × AO3
	 Any two from: ✓✓ Force / tension decreases as extension/strain decreases Force / tension decreases as θ increases because cosθ / horizontal component decreases Rate of decrease in extension / strain / force / acceleration decreases Acceleration is zero when the length is 1.48 m / string vertical because the horizontal component of the tension is zero 			
Total			8]

Question	Key	Answer	AO
11	С	17 000 years	AO3
12	Α	9.8×10^{4}	AO2
13	С	displacement, force, momentum	AO1
14	D	$1.2 \times 10^{-2} \text{ kg m s}^{-1}$	AO2
15	D	0.51 N	AO2
16	В	2.7 MJ	AO2
17	С	206 82	AO3
18	С	positron	AO2
19	D	velocity	AO1
20	С	12 N 16 N 20 N	AO2
21	D	R 0 $\frac{1}{d^2}$	AO3

22	В	downwards with an increasing speed	AO1
23	В	momentum.	AO1
24	В	$\frac{mgv}{\eta}$	AO3

Total 14 marks