函数极限的定义

数学分析I

第6讲

October 12, 2022

在数列极限中,自变量只有一种变化状态即 $n \to \infty$,而函数极限中的自变量却有六种不同的变化状态,它们是 $x \to +\infty$, $x \to -\infty$, $x \to \infty$, $x \to x_0$, $x \to x_0^+$, $x \to x_0^-$. 本节给出函数极限的定义.

$\lim_{x\to\alpha}f(x)=A\ (A\in\mathbb{R})$ 的统一刻画

对于自变量六种不同的变化状态, $\lim_{x\to a} f(x) = A$ 的定义可以统一陈述如下.

对于任意给定的 $\varepsilon>0$,都存在 $x\to\alpha$ 相应的"空心邻域"U,当 $x\in U$ 时,就有 $|f(x)-A|<\varepsilon$.

- $X \to +\infty$ 相应的"空心邻域"为($X, +\infty$);
- $X \to -\infty$ 相应的"空心邻域"为 $(-\infty, -X)$;
- $X \to \infty$ 相应的"空心邻域"为 $(-\infty, -X) \cup (X, +\infty)$;
- $x \to x_0$ 相应的"空心邻域"为 $(x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$, 即 $\overset{\circ}{B}_{\delta}(x_0)$;
- $x \to x_0^+$ 相应的"空心邻域"为($x_0, x_0 + \delta$);
- $x \to x_0^-$ 相应的"空心邻域"为 $(x_0 \delta, x_0)$.

3/31

定义1

- (i) 设函数f(x)在(a, $+\infty$)有定义, $A \in \mathbb{R}$. 如果对于任何 $\varepsilon > 0$, 都存在X > 0, 当x > X时, 就有 $|f(x) A| < \varepsilon$, 则称f(x)当 $x \to +\infty$ 时极限存在, 极限值为A, 记为 $\lim_{x \to +\infty} f(x) = A$ 或者 $f(x) \to A$ ($x \to +\infty$).
- (ii) 设函数f(x)在 $(-\infty, a)$ 有定义, $A \in \mathbb{R}$. 如果对于任何 $\varepsilon > 0$,都存在X > 0,当X < -X时,就有 $|f(x) A| < \varepsilon$,则称f(x)当 $X \to -\infty$ 时极限存在,极限值为A,记为 $\lim_{X \to -\infty} f(x) = A$ 或者 $f(x) \to A \ (X \to -\infty)$.
- (iii) 设函数f(x)在 $(-\infty, -a)$ $\cup (a, +\infty)$ 有定义, $A \in \mathbb{R}$. 如果对于任何 $\varepsilon > 0$, 都存在X > 0, 当|x| > X时, 就有 $|f(x) A| < \varepsilon$, 则称f(x)3 $x \to \infty$ 时极限存在, 极限值为A, 记为 $\lim_{x \to \infty} f(x) = A$ 或者 $f(x) \to A \ (x \to \infty)$.

4/31

函数在无穷远的极限的一些例子

$$\lim_{x\to +\infty}\arctan x=\frac{\pi}{2}.$$

$$\lim_{x\to +\infty} [\ln(x+a) - \ln x] = 0, 其中a$$
是常数.

$$\lim_{x\to -\infty} \arctan x = -\frac{\pi}{2}.$$

$$\lim_{x\to\infty}\frac{x^2+ax+b}{x^2+cx+d}=1, 其中a, b, c和d是常数.$$

$$\lim_{x\to\infty}\arctan(x^2)=\frac{\pi}{2}.$$

第一, 在定义的(i)中正数X的作用与数列极限中的N类似, 说明x充分大的程度; 所不同的是这里考虑的是比X大的所有实数x, 为一致起见, X取为正实数而非正整数.

第二, 对于任给的 $\varepsilon > 0$, 在坐标平面上, $y = A + \varepsilon = 5y = A - \varepsilon = 2$ 两条平行于x轴的直线, 它们组成以直线y = A为中心线, 宽为z。的带形区域. 如果将y = f(x)看作坐标平面上的曲线, 那么极限 $\lim_{x \to +\infty} f(x) = A$ 的几何解释为: 无论上述带形区域多么窄, 总存在直线x = X,使曲线y = f(x)在直线x = X的右边部分全部落在这个带形区域内.

第三,由定义知, $\lim_{x\to +\infty} f(x) = A$ 的充分必要条件为: $\lim_{x\to +\infty} f(x) = \lim_{x\to -\infty} f(x) = A$. 也可以说, $\lim_{x\to \infty} f(x)$ 存在的充分必要条件为: $\lim_{x\to +\infty} f(x)$ 与 $\lim_{x\to +\infty} f(x)$ 都存在且相等.

Figure: 2-1

判断下面的命题是否成立.

设R(x)是黎曼函数,则由R(x)是偶函数知 $\lim_{x\to +\infty} R(x) = \lim_{x\to -\infty} R(x)$,从而 $\lim_{x\to \infty} R(x)$ 存在.

- (A) 成立
- (B) 不成立

例 1

证明
$$\lim_{x \to \infty} \frac{3x^2 + 2x - 1}{x^2 - 2} = 3.$$

类似于用数列极限定义证明 $\lim_{n\to\infty} \frac{3n^2 + 2n - 1}{n^2 - 2} = 3.$

9/31

例 2

证明
$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1} - x} = -\frac{1}{2}$$
.

这里还是应用适当放大|f(x) - A|的方法.

例如函数 $f(x) = \frac{x^2 - 4}{x - 2}$, 当x越来越接近2时, 其函数值随之越来越接近4. 注意到该函数在x = 2无定义, 这表明函数在 x_0 的极限与它在这点是否有定义没有关系. 所以, 在讨论函数在定点的极限时, 总是假设函数在该点的某个空心邻域中有定义.

定义 2 ($\varepsilon - \delta$ 定义)

设函数f(x)在点 x_0 的某个空心邻域中有定义, $A \in \mathbb{R}$. 如果对于任何 $\varepsilon > 0$, 都存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, 就有 $|f(x) - A| < \varepsilon$, 则称f(x)在点 x_0 极限存在, 极限值为A, 记为 $\lim_{x \to x_0} f(x) = A$ 或者 $f(x) \longrightarrow A$ $(x \to x_0)$.

数学分析I (第6讲) 函数极限的定义 October 12, 2022 11 / 31

一点处的函数极限不依赖于该点处的函数值

(图片取自Thomas' Calculus)

第一, 极限 $\lim_{x \to x_0} f(x)$ 是刻画f(x)在x不为 x_0 而无限靠近 x_0 时的变化趋势,与f(x)在 x_0 是否有定义,或 $f(x_0)$ 是多少没有关系.

第二, 定义中的 δ 与数列极限中的N相当, 它依赖于 ε , 但是并不唯一. 一般地, ε 越小, δ 也越小.

第三,从几何意义上讲, ε – δ 定义表明,在坐标平面上任意划一条以直线y = A为中心线,宽 2ε 的横带,必存在一条以直线x = x_0 为中心线,宽 2δ 的竖带,使竖带内的函数图像全部落在上述横带内,但是若函数在 x_0 有定义,点 $(x_0,f(x_0))$ 可能例外.

Figure: 2-2

判断下面的命题是否成立.

设函数f(x)在 $(-\infty, +\infty)$ 上有定义,如果对任意实数 x_0 ,都有 $\lim_{x \to x_0} f(x) =$

0,则f(x)在 $(-\infty,+\infty)$ 上有界.

- (A) 成立
- (B) 不成立

判断下面的命题是否成立.

设函数f(x)在点 x_0 的某个邻域中单调,如果 $\lim_{x\to x_0} f(x)$ 存在,则 $\lim_{x\to x_0} f(x) = f(x_0)$.

- (A) 成立
- (B) 不成立

据定义证明函数在 x_0 以A为极限即是寻找使不等式 $|f(x)-A| < \varepsilon$ 成立的充分条件 $0 < |x-x_0| < \delta$,类似于证明数列极限找N的过程,先将|f(x)-A|适当放大可以使找 δ 这一过程更简单.为便于放大|f(x)-A|,常预先假定x与 x_0 足够接近,这即是限定 δ 的方法.

例 3

证明
$$\lim_{x\to 1} \frac{x^2-1}{(x-1)(2-x)} = 2.$$

为了便于适当放大
$$\left| \frac{x^2 - 1}{(x - 1)(2 - x)} - 2 \right| = \frac{3|x - 1|}{|2 - x|}$$
,预先假定 $0 < |x - 1| < \frac{1}{2}$,这个 $x = 1$ 的空心邻域中不包含分母的零点 $x = 2$.

数学分析I (第6讲) 函数极限的定义 October 12, 2022 17 / 31

例 4

证明
$$\lim_{x\to 0} \frac{\sin x}{x} = 1.$$

不等式的证明

首先证明不等式 $|\sin x| < |x| < |\tan x|$,当 $0 < |x| < \frac{\pi}{2}$. 因为 $|\sin x|$,|x|, $|\tan x|$ 都是偶函数,故只须就 $x \in \left(0, \frac{\pi}{2}\right)$ 的情形给出证明. 图中画出了坐标平面上的单位圆,A为第一象限圆弧上的一点, $\angle AOC = x$,过点A的切线交x轴于点D. 由图可以看出

$$S_{\Delta AOC} < S_{ar{eta} \mathcal{B}OCA} < S_{\Delta AOD}.$$

因为OA = OC = 1,所以 $S_{\Delta AOC} = \frac{1}{2}\sin x$, $S_{\beta ROCA} = \frac{1}{2}x$, $S_{\Delta AOD} = \frac{1}{2}\tan x$.故得 $\sin x < x < \tan x$,这表明不等式成立.

Figure: 2-3

定义 3 (ε – δ 定义)

(i) 设函数f(x)在区间 (a, x_0) 有定义, $A \in \mathbb{R}$. 如果对于任何 $\varepsilon > 0$,都存在 $\delta > 0$,当 $x_0 - \delta < x < x_0$ 时,有 $|f(x) - A| < \varepsilon$,则称f(x)在点 x_0 的左极限存在,左极限值为A,记为 $\lim_{x \to x_0^-} f(x) = A$,或者 $f(x) \to A \ (x \to x_0^-)$,

亦或 $A = f(x_0 - 0)$.

(ii) 设函数f(x)在区间 (x_0, b) 有定义, $A \in \mathbb{R}$. 如果对于任何 $\varepsilon > 0$,都存在 $\delta > 0$,当 $x_0 < x < x_0 + \delta$ 时,有 $|f(x) - A| < \varepsilon$,则称f(x)在点 x_0 的右极限存在,右极限值为A,记为 $\lim_{x \to x_0^+} f(x) = A$,或者 $f(x) \to A$ $(x \to x_0^+)$,

亦或 $A = f(x_0 + 0)$.

20 / 31

判断下面的命题是否成立.

设函数f(x)在点 x_0 处两个单侧极限都存在,且 $\lim_{x \to x_0^-} f(x) < \lim_{x \to x_0^+} f(x)$,则存在 $\delta > 0$,使得当 $s \in (x_0 - \delta, x_0)$, $t \in (x_0, x_0 + \delta)$ 时,有f(s) < f(t).

- (A) 成立
- (B) 不成立

例 5

证明 $\lim_{x\to 0^-} e^{\frac{1}{x}} = 0$.

应用实数理论,可以给出指数函数、对数函数的定义,并证明指数函数、对数函数的性质.因此,在处理极限问题时,我们可以自由地应用指数函数、对数函数的各种性质.

给定点极限与两个单侧极限的关系

定理1

f(x)在点 x_0 极限存在的充分必要条件是f(x)在点 x_0 左极限和右极限都存在且相等,即 $\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = A$.

例 6

设f(x) = x - [x]. 讨论该函数在整数点x = n的极限.

对于分段定义的函数,常应用定理1来讨论该函数在分段点处的极限.

 同数列极限定义的否定类似,对于 ε – δ 等定义中的条件进行逻辑否定,就得到函数f(x)在相应极限过程中不以A为极限的数学表述,这既是函数极限定义的否定.按照基本的逻辑知识可知,函数极限定义的否定与相应的极限定义是互为等价的.在此,仅以几种情形为例给出极限定义的否定,其它情形请读者自行给出.

定理 2

(i) 设函数f(x)在点 x_0 的某个空心邻域中有定义, $A \in \mathbb{R}$. f(x)在点 x_0 不以A为极限(记为 $\lim_{x \to x_0} f(x) \neq A$)的充分必要条件为: 存在 $\varepsilon_0 > 0$,对任何 $\delta > 0$,都存在 x_δ ,使得 $0 < |x_\delta - x_0| < \delta$,并且 $|f(x_\delta) - A| \geqslant \varepsilon_0$. (ii) 设函数f(x)在(a, $+\infty$)有定义, $A \in \mathbb{R}$. f(x)在 $x \to +\infty$ 时不以 $x \to \infty$ 限(记为 $x \to \infty$)的充分必要条件为: 存在 $x \to \infty$ 0,对任何 $x \to \infty$ 0,都存在 $x \to \infty$ 0,使得 $x \to \infty$ 1,使得 $x \to \infty$ 2。

函数极限定义的否定

对于上面这个定理中所涉及到的函数极限,按照极限定义可以进一步得到极限不存在的数学表述如下:

(i) 设函数f(x)在点 x_0 的某个空心邻域中有定义. 极限 $\lim_{x\to x_0} f(x)$ 不存在的充分必要条件为: 对于任何 $A\in\mathbb{R}$, 都有 $\lim_{x\to x_0} f(x)\neq A$.

(ii) 设函数f(x)在(a, $+\infty$)有定义. 极限 $\lim_{x\to +\infty} f(x)$ 不存在的充分必要条件为: 对于任何 $A \in \mathbb{R}$, 都有 $\lim_{x\to +\infty} f(x) \neq A$.

数学分析I (第6讲) 函数极限的定义 October 12, 2022 25 / 31

一点处函数极限不存在的例子

(a) Unit step function U(x)

(图片取自Thomas' Calculus)

26 / 31

一点处函数极限不存在的例子

(图片取自Thomas' Calculus)

一点处函数极限不存在的例子

(图片取自Thomas' Calculus)

数学分析I (第6讲) 函数极限的定义 October 12, 2022 28 / 31

(图片取自Thomas' Calculus)

数学分析I (第6讲) 函数极限的定义 October 12, 2022 29 / 31

应用函数极限定义的否定的例题

例 7

证明极限 $\lim_{x\to +\infty} \sin x$ 不存在.

证明极限 $\lim_{x\to +\infty} \sin x$ 不存在比证明极限 $\lim_{n\to \infty} \sin n$ 不存在要容易. 这是因为,对任意X>0,在函数极限情形,可以取 $x_0>X$,使得 $\sin x_0=1$ 或-1.

应用函数极限定义的否定的例题

例 8

证明极限 $\lim_{x\to 0^+} e^{\frac{1}{x}}$ 不存在.

从函数图象看到,当 $x \to 0^+$ 时, $e^{\frac{1}{x}}$ 趋于 $+\infty$,就不难找到 x_{δ} 了.