

Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4145 Continuation exam - solutions

Academic contact during examination: Sigrid Grepstad

Phone: 412 09 825

Examination date: 10.08.2018 Examination time (from-to):

Permitted examination support material: D:No written or handwritten material. Calculator

Casio fx-82ES PLUS, Citizen SR-270X, Hewlett Packard HP30S

Other information:

There are 5 problems on the exam and each problem counts for 20 points. All solutions should be stated in a precise and rigorous way, with any assumptions written down and arguments justified.

Language: English

Number of pages: 10

Number of pages enclosed: 0

	Checked by:		
Date	Signature		

Problem 1

a) (5 points)

Let A be an $m \times n$ matrix. State the singular value decomposition of A and describe all its building blocks.

b) (15 points)

Determine the singular value decomposition of

$$A = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

and express the inverse of A in terms of its singular value decomposition.

Solution.

a) Given an $m \times n$ -matrix A with rank r, the singular value decomposition states that we can find a unitary $m \times m$ matrix U, a unitary $n \times n$ matrix V and a diagonal $m \times n$ matrix Σ such that

$$A = U\Sigma V^*$$
.

 Σ has the singular values $\sigma_1, \sigma_2, ..., \sigma_r$ of A (i.e. the square roots of the eigenvalues of either A^*A or AA^*) in the first r entries of the diagonal and zeros elsewhere.

b) Recall that the singular values of A are the eigenvalues of A^*A , or equivalently of AA^* . We will use A^*A . First note that

$$A^* = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix},$$

and then calculate that

$$A^*A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}.$$

Finding Σ

To find the eigenvalues $\lambda_i = \sigma_i^2$ of A^*A we need to solve $\det(A^*A - \lambda I) = 0$ for λ . Written out, this equation is

$$\lambda^3 - 6\lambda^2 + 9\lambda - 4 = 0.$$

The roots of this polynomial are 4, 1 and 1: by trial and error, one finds that 1 is a root. By dividing the polynomial $\lambda^3 - 6\lambda^2 + 9\lambda - 4$ by $\lambda - 1$ we get

$$\frac{\lambda^3 - 6\lambda^2 + 9\lambda - 4}{\lambda - 1} = \lambda^2 - 5\lambda + 4,$$

and this quadratic polynomial has roots 1 and 4, which one can find either by inspection or by using the quadratic formula. Therefore the singular values of A are $\sqrt{4} = 2, 1$ and 1, so

$$\Sigma = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Finding V: To find V, we need the eigenvectors of A^*A . We start with $\lambda = 4$. The eigenvectors form the solution space for A - 4I = 0, and solving this equation by row reduction gives us the normalized eigenvector

$$v_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}.$$

A similar calculation for $\lambda = 1$ leads to the orthonormal eigenvectors

$$v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} \qquad \qquad v_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-1\\2 \end{pmatrix}.$$

The two eigenvectors you first find for $\lambda=1$ might not be orthogonal. In that case you will need to use the Gram-Schmidt method to produce an orthogonal pair of eigenvectors. In conclusion:

$$V = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix}.$$

Finding U: The columns u_1, u_2, u_3 of U are obtained by $u_i = \frac{1}{\sigma_i} A v_i$, where σ_i are the singular values of A. By calculating these matrix products we find that

$$u_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$
 $u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ $u_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$.

Hence

$$U = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix}.$$

The singular value decomposition of A is

$$A = U\Sigma V^* = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{pmatrix}.$$

Finally, we use this to express the inverse of A. We know that $A = U\Sigma V^*$, hence $A^{-1} = (V^*)^{-1}\Sigma^{-1}U^{-1}$. Luckily, the inverses of the building blocks of the SVD are easy to find. U and V^* are unitary, so their inverses are U^* and $(V^*)^* = V$. Σ is diagonal, so its inverse is obtained by taking the inverse of the diagonal elements. This means that

$$A^{-1} = (V^*)^{-1} \Sigma^{-1} U^{-1} = V \Sigma^{-1} U^* = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{pmatrix}.$$

Problem 2 Let T be a bounded linear operator on a Hilbert space X and we denote the operator norm of T by ||T||.

- a) (10 points) Show that $||T|| = ||T^*||$, where T^* is the adjoint of T.
- **b)** (10 points) Show that $||T^*T|| = ||T||^2$.

Solution.

a) We start by showing that $||T|| \le ||T^*||$. By the definition of the operator norm it will suffice to show that $||Tx|| \le ||T^*|| ||x||$ for any $x \in X$. Since we want to use the adjoint operator, we write the norm of Tx as an inner product, and find that

$$\begin{aligned} \|Tx\|^2 &= \langle Tx, Tx \rangle \\ &= \langle T^*Tx, x \rangle \\ &\leq \|T^*Tx\| \|x\| \\ &\leq \|T^*\| \|Tx\| \|x\|. \end{aligned}$$

The first inequality is Cauchy-Schwarz, and the second inequality ($||T^*x|| \le ||T^*|| ||x||$) follows from the definition of the operator norm of T^* . By dividing both sides of

the inequality by ||Tx||, we obtain $||Tx|| \le ||T^*|| ||x||$. Hence $||T|| \le ||T^*||$. Since $(T^*)^* = T$, we also have that $||T^*|| \le ||(T^*)^*|| = ||T||$, so $||T^*|| = ||T||$.

b) We know that $||ST|| \le ||S|| ||T||$ for two operators S and T. In particular, $||T^*T|| \le ||T^*|| ||T|| = ||T||^2$, where the last equality is part a). To show the opposite inequality we proceed as we did in part a):

$$||Tx||^2 = \langle Tx, Tx \rangle$$

$$= \langle T^*Tx, x \rangle$$

$$\leq ||T^*Tx|| ||x||$$

$$\leq ||T^*T|| ||x||^2,$$

where only the last step differs from part a). This shows that $||T||^2 \leq ||T^*T||$.

Problem 3

- **a)** (10 points)
 - (1) Suppose $(X, ||.||_X)$ and $(Y, ||.||_Y)$ are normed spaces. Define for a linear transformation $T: X \to Y$ the operator norm of T.
 - (2) Let X be a vector space and let $\|.\|_a$ and $\|.\|_b$ be two norms on X. Define when the norms $\|.\|_a$ and $\|.\|_b$ are equivalent on X.
 - (3) Suppose $(x_n)_{n\in\mathbb{N}}$ is a sequence in a normed space $(X, \|.\|_X)$. Define the series $\sum_{n=1}^{\infty} x_n$ of $(x_n)_{n\in\mathbb{N}}$.
 - (4) Let M be a subset of an innerproduct space $(X, \langle ., . \rangle)$. Define the *orthogonal complement* of M.
 - (5) Let T be a linear transformation on a finite-dimensional vector space X. Define the *characteristic polynomial* and the *minimal polynomial* of T.
- **b)** (10 points)

Determine if the following statements are true or false and if the statement is not true, give a counterexample.

- (1) A linear transformation T between the normed spaces $(X, ||.||_X)$ and $(Y, ||.||_Y)$ is continuous if and only if T is a bounded operator.
- (2) Any linear transformation on a finite-dimensional vector space is unitarily equivalent to an upper-triangular matrix.
- (3) Any Cauchy sequence in a normed space $(X, ||.||_X)$ converges to an element in X.

- (4) Let X be an infinite-dimensional Hilbert space. Then any isometric linear operator on X is a unitary operator on X.
- (5) The kernel of any bounded linear map on an infinite-dimensional normed space $(X, ||.||_X)$ is closed.

Solution.

a)

- (1) $||T|| = \sup \left\{ \frac{||Tx||_Y}{||x||_X} : x \neq 0 \right\}$. As we have seen in the lectures, there are some other, equivalent expressions too. These will of course also be acceptable answers.
- (2) The norms are equivalent if there exist two positive constants C_1, C_2 such that $C_1||x||_a \le ||x||_b \le C_2||x||_a$ for any $x \in X$.
- (3) The series $\sum_{n=1}^{\infty} x_n$ is the limit of the sequence of partial sums $(s_N)_{N \in \mathbb{N}}$, where $s_N = \sum_{n=1}^{N} x_n$, when this limit exists.
- (4) The orthogonal complement of M is the set $M^{\perp} = \{x \in X : \langle x, y \rangle = 0 \text{ for any } y \in M\}.$
- (5) Let A be a matrix representing T. The characteristic polynomial of T is the polynomial $p_A(z) = \det(zI A)$, where I is the identity matrix¹. The minimal polynomial m of T is the monic polynomial of smallest degree such that m(T) = 0.

b)

- (1) True.
- (2) True.
- (3) False. This is only true for Banach spaces. Let the normed space be the set $\mathbb{R} \setminus \{0\}$ of all the real numbers except the origin, with norm given by the absolute value. The sequence $(1/n)_{n\in\mathbb{N}}$ is Cauchy, but does not converge to an element in our space (in \mathbb{R} it converges to 0, which does not belong to our space).

¹Of course, the characteristic polynomial is independent of which matrix representation we choose.

(4) False. We have seen that a linear operator $T: X \to X$ is an isometry if and only if $T^*T = I$, and by definition T is unitary if $T^*T = TT^* = I$. So we need to find an operator satisfying $T^*T = I$ and $TT^* \neq I$. Let T be the left-shift operator on the Hilbert space $\ell^2(\mathbb{N})$, i.e.

$$T(x_1, x_2, \dots) = (0, x_1, x_2, \dots).$$

In the lectures we have seen that the adjoint of T is the right-shift operator

$$T^*(x_1, x_2, \dots) = (x_2, x_3, \dots).$$

Clearly we have that $T^*T = I$, but

$$TT^*(x_1, x_2, \dots) = (0, x_2, x_3, \dots),$$

so $TT^* \neq I$.

Another approach would be to note that the left-shift operator clearly is an isometry, but not surjective. Since a unitary operator is invertible, it must in particular be surjective. Therefore the left-shift operator cannot be unitary.

(5) True.

Problem 4

- a) (10 points) Let $T: (C[1,3], \|.\|_{\infty}) \to (C[1,3], \|.\|_{\infty})$ be given by $Tf(x) = \int_1^3 \alpha e^{-(x-y)} f(y) dy$ for some positive real number α .
 - (1) Show that T is a bounded operator.
 - (2) Determine the operator norm of T.
 - (3) Determine the set of α 's for which T is a contraction.
- **b)** (10 points)
 - (1) Give an example of a linear operator on a normed space that is not bounded.
 - (2) Let T be a linear operator on $(X, \|.\|)$ that is not bounded. Show that then X has to be infinite-dimensional.

Solution.

- a) Let us first note that we can simplify the expression for T a bit, since $Tf(x) = \alpha e^{-x} \int_1^3 e^y f(y) dy$.
 - (1) We find for $f \in C[1,3]$ that

$$|Tf(x)| = \alpha e^{-x} \left| \int_1^3 e^y f(y) dy \right|$$

$$\leq \alpha e^{-x} \int_1^3 |e^y f(y)| dy$$

$$\leq \alpha e^{-x} ||f||_{\infty} \int_1^3 e^y dy$$

$$= \alpha e^{-x} ||f||_{\infty} (e^3 - e).$$

Since $e^{-x} \le e^{-1}$ for $x \in [1, 3]$, we get that

$$||Tf||_{\infty} \le \alpha (e^2 - 1)||f||_{\infty}.$$

Thus T is bounded, with $||T|| \le \alpha(e^2 - 1)$.

(2) We will show that the operator norm of T is $\alpha(e^2-1)$. Let f be the constant function f(x)=1 for $x\in[1,3]$, and note that $||f||_{\infty}=1$. Then

$$Tf(x) = \alpha e^{-x} \int_{1}^{3} e^{y} dy = \alpha e^{-x} (e^{3} - e),$$

hence $||Tf||_{\infty} = \alpha(e^2 - 1)$. This shows² that $||T|| \ge \alpha(e^2 - 1)$, and combining this with part a) we get that $||T|| = \alpha(e^2 - 1)$.

(3) T is a contraction when ||T|| < 1. This happens when $\alpha(e^2 - 1) < 1$, in other words when $\alpha \in (0, \frac{1}{e^2 - 1})$.

b)

(1) One example is the differentiation operator $\frac{d}{dx}$ on the normed space $(C^{\infty}(0,1), \|\cdot\|_{\infty})$ where $C^{\infty}(0,1)$ is the space of functions on (0,1) that are differentiable infinitely many times. $\frac{d}{dx}$ is a linear operator on $C^{\infty}(0,1)$, but is not bounded. For instance, if $f_n(x) = e^{inx}$ for $n \in \mathbb{N}$, then

$$||f_n||_{\infty} = 1,$$
 $\frac{d}{dx}f_n(x) = inf_n(x)$ $||\frac{d}{dx}f_n||_{\infty} = n.$

²By definition, ||T|| is an upper bound for $\left\{\frac{||Tf||_{\infty}}{||f||_{\infty}}: f \neq 0\right\}$. Since we have found an f with $||f||_{\infty} = 1$ and $||Tf||_{\infty} = \alpha(e^2 - 1)$, we must in particular have that ||T|| is greater than $\frac{\alpha(e^2 - 1)}{1}$.

Hence

$$\left\| \frac{d}{dx} \right\| = \sup_{f \neq 0} \frac{\left\| \frac{df}{dx} \right\|_{\infty}}{\|f\|_{\infty}} \ge n$$

for any $n \in \mathbb{N}$, showing that the operator is unbounded.

(2) We will prove the contrapositive, which in this case states that any linear operator on a finite-dimensional normed space is bounded. Assume therefore that $(X, \|\cdot\|)$ is a finite-dimensional normed space, and let $\{e_1, e_2, \ldots, e_n\}$ be a basis for X. If $x \in X$, then x has a unique basis expansion $x = \sum_{i=1}^{n} a_i e_i$ for a sequence $(a_n)_{n \in \mathbb{N}}$ of scalars. We define a new norm on X by

$$||x||_1 = \sum_{i=1}^n |a_i|.$$

Note that $||e_i||_1 = 1$ for i = 1, 2, ... n. Now define the matrix $(b_{i,j})_{i,j=1}^n$ by the basis expansion $Te_i = \sum_{j=1}^n b_{i,j}e_j$. We will show that T is bounded with respect to the norm $||\cdot||_1$.

$$||Tx||_1 = ||T\sum_{i=1}^n a_i e_i||_1$$

$$= ||\sum_{i=1}^n a_i T e_i||_1$$

$$= ||\sum_{i,j=1}^n a_i b_{i,j} e_j||_1$$

$$\leq \sum_{i,j=1}^n |a_i||b_{i,j}|||e_j||_1$$

$$\leq \sup_{i,j} |b_{i,j}|\sum_{i=1}^n |a_i|$$

$$= \sup_{i,j} |b_{i,j}|||x||_1.$$

Hence T is bounded with respect to the norm $\|\cdot\|_1$, with norm $\leq \sup_{i,j} |b_{i,j}|$. Since all norms on a finite-dimensional space are equivalent, we can find constants $C_1, C_2 > 0$ such that

$$C_1||y|| \le ||y||_1 \le C_2||y||$$
 for any $y \in X$.

From this we get that

$$C_1||Tx|| \le ||Tx||_1 \le \sup_{i,j} |b_{i,j}|||x||_1 \le C_2 \sup_{i,j} |b_{i,j}||x||,$$

and if we divide both sides of this inequality by C_1 we have $||Tx|| \leq \sup_{i,j} |b_{i,j}| \frac{C_2}{C_1} ||x||$, hence T is bounded with respect to the norm $||\cdot||$.

Problem 5 (20 points)

Let $M_e = \{f \in L^2[-2,2] : f(-x) = f(x)\}$ be the subspace of even functions of $L^2[-2,2]$ and $M_o = \{f \in L^2[-2,2] : f(-x) = -f(x)\}$ be the subspace of odd functions of $L^2[-2,2]$.

- (1) Show that M_e is closed.
- (2) Determine the orthogonal complement of M_o .
- (3) Find the projection onto M_a^{\perp} .
- (4) Show that $M_o \cap M_o^{\perp} = \{0\}.$

Solution. Note: there are some minor technicalities related to this problem. Elements of $L^2[-2,2]$ are actually not functions, but equivalence classes of functions. Since this was not covered in the course, the students' solutions were not required to comment on this.

- (1) The easiest way to prove this, is to use the result from (2), namely that the orthogonal complement of M_o is M_e . We know that orthogonal complements are always closed.
- (2) We claim the $M_e^{\perp} = M_o$. If $f \in M_e$ and $g \in M_o$, then

$$\langle f, g \rangle = \int_{-2}^{2} f(t) \overline{g(t)} dt = 0,$$

since the integrand $f\overline{g}$ is an odd function and we integrate from -2 to 2. This shows that $M_o \subset M_e^{\perp}$. Now assume that $f \in M_e^{\perp}$, and recall that any function can be written as a sum of an odd and an even function:

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} := f_e(x) + f_o(x).$$

Since $f_e \in M_e$ and $f \in M_e^{\perp}$, we find, using the fact that $\langle f_e, f_o \rangle = 0$ by $M_o \subset M_e^{\perp}$, that

$$0 = \langle f, f_e \rangle = \langle f_e + f_o, f_e \rangle = \langle f_e, f_e \rangle = ||f_e||^2,$$

hence $f_e = 0$. Thus $f = f_e + f_o = f_o$, and we see that $f \in M_o$. This proves that $M_e^{\perp} \subset M_o$, so $M_e^{\perp} = M_o$.

(3) The projection Pf of a function f onto the closed subspace $M_e = M_o^{\perp}$ is given by writing f as a sum $f = f_e + f_o$ with $f_e \in M_e$ and $f_o \in M_e^{\perp}$, and selecting $Pf = f_e$. We saw in part (2) that we can write

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} := f_e(x) + f_o(x),$$

hence
$$Pf(x) = f_e(x) = \frac{f(x) + f(-x)}{2}$$
.

(4) Assume that $f \in M_o \cap M_o^{\perp}$. Since f belongs to both M_o and the orthogonal complement of M_o , $||f|| = \langle f, f \rangle = 0$, hence f = 0. We have used that $f \in M_o \cap M_o^{\perp}$ to get that $\langle f, f \rangle = 0$.