

Validation of Transmission Line Model in Etap With CDEGS <u>Purpose and Description</u>:

Modelling of transmission line in etap.

Reference Circuit

Procedure:

- i) Open the OTI file "TransmissionLine.oti".
- ii) Double click on the transmission line "Line1"

Validation of Transmission Line Model in Etap With CDEGS Properties of the selected conductor is as follows:

T1	20	deg-C				
T2	75	deg-C				
Code	Size (sq.mm)	Ampacity (A)	Strands	Strand Dia (cm)	Steel Strands	Steel Strand Dia (cm)
Hurdles	587	988	54	0.35	7	0.35
	CAAD	D (1 T4)	D. (11 72)	Xa (Inductive	Xa' (Capacitive shunt	
OD (cm)	GMR (m)	Ra (at T1) (ohm/km	Ra (at T2) (ohm/km	reactance in ohms/conductor/km at 1ft spacing)	reactance in megaohms/conductor/ km at 1ft spacing)	Rdc (ohm/km)
3.15			, ,	ohms/conductor/	megaohms/conductor/	

iii) Select conductor code "Hurdles" from Source "Pirelli/AC" under the Phase Conductor Lib in the Parameter page.

Validation of Transmission Line Model in Etap With CDEGS

iv) In the configuration page enter the spacing as shown below in line with the "Reference Circuit"

v) Leave the Grouping and Earth pages untouched with the default parameters.

Validation of Transmission Line Model in Etap With CDEGS

vi) Now in the impedance page, the computed impedance value is found as:

	R-T1 (ohm/phase/km)	X (ohms/phase/km)	Y (microsiemens/phase/km)
Zero	0.1997	1.27263	2.00042
Positive	0.05501	0.41969	2.76139
Negative	0.05501	0.41969	2.76139

Validation of Transmission Line Model in Etap With CDEGS

Also, under R,X,Y Matrices section, under Phase Domain it is seen that,

R - Matrix					
A B C					
Α	0.103	0.048	0.048		
В	0.048	0.103	0.048		
С	0.048	0.048	0.103		

Note: represented in ohms (however, line length is taken as 1km in view of the ease of comparison with CDEGS where it is represented in ohm/km)

X - Matrix						
	A B C					
Α	0.704	0.298	0.256			
В	0.298	0.704	0.298			
С	0.256	0.298	0.704			

Note: represented in ohms (however, line length is taken as 1km in view of the ease of comparison with CDEGS where it is represented in ohm/km)

Under R,X,Y Matrices section, under sequence domain it is seen that,

	R - Matrix					
	0 1 2					
0	0.2	0.012	-0.012			
1	-0.012	0.055	-0.024			
2	0.012	0.024	0.055			

Note: represented in ohms
(however, line length is taken as
1km in view of the ease of
comparison with CDEGS where it is
represented in ohm/km)

X - Matrix						
	0 1 2					
0	1.273	-0.007	-0.007			
1	-0.007	0.42	0.014			
2	-0.007	0.014	0.42			

Note: represented in ohms (however, line length is taken as 1km in view of the ease of comparison with CDEGS where it is represented in ohm/km)

For calculation formulas refer **Annex. 1** attached at the end of this exercise. For detailed calculation performed in excel, refer **Annex. 2**

Validation of Transmission Line Model in Etap With CDEGS

The relations ship between the self-mutual impedance matrix & sequence impedance matrix is as follows,

$$\mathbf{Z}_{012} = \mathbf{A}^{-1} \begin{bmatrix} Z_{AA} & Z_{AB} & Z_{AC} \\ Z_{BA} & Z_{BB} & Z_{BC} \\ Z_{CA} & Z_{CB} & Z_{CC} \end{bmatrix} \mathbf{A} = \begin{bmatrix} Z_{00} & Z_{01} & Z_{02} \\ Z_{10} & Z_{11} & Z_{12} \\ Z_{20} & Z_{21} & Z_{22} \end{bmatrix}$$

On solving the same, the sequence impedance matrix is reduced to the following:

$$Z0 = Zs + 2Zm$$

$$Z1 = Zs - Zm$$

$$Z2 = Zs - Zm$$

It can be seen that the diagonal elements in the sequence impedance matrix, holds true to the above relation with respect to the self-mutual impedance matrix.

Validation of Transmission Line Model in Etap With CDEGS CDEGS

The above exercise has been conducted in CDEGS software to validate the calculated impedance value in ETAP. Attached below are the screenshot of the inputs and the results in CDEGS – SES TRALIN tool:

Input:

4	Location #	Name	Component Type	Y (m)	Z (m)	Associated Phase
	1	R	[ACSR - AW Australian Standard] Hurdles	-8.2	10	1 - R
	2	Υ	[ACSR - AW Australian Standard] Hurdles	0	10	2 - Y
	3	В	[ACSR - AW Australian Standard] Hurdles	8.2	10	3 - B
			None Selected			Select a Component Type

Output: Self and Mutual Impedance Matrix (ohms/km)

Conductor Number:	1	2	3
1	0.1030 +j 0.7077	•	
2	0.4822E-01 +j 0.2986	0.1030 +j 0.7077	
3	0.4820E-01 +j 0.2550	0.4822E-01 +j 0.2986	0.1030 +j 0.7077

Sequence Impedance Matrix (ohm/km)

Symmetrical Sequence Number: 	9	1	2
9	0.1994 +j 1.276	-0.1257E-01 +j-0.7252E-02	0.1257E-01 +j-0.7263E-02
1	0.1257E-01 +j-0.7263E-02	0.5474E-01 +j 0.4237	0.2515E-01 +j 0.1450E-01
2	-0.1257E-01 +j-0.7252E-02	-0.2514E-01 +j 0.1453E-01	0.5474E-01 +j 0.4237

From the results, it can be seen that the results in Etap and CDEGS are matching.

Validation of Transmission Line Model in Etap With CDEGS

ANNEX. 1

Formulae used for calculation of transmission line self and mutual impedance:

Effective Depth, De=
$$659*\sqrt{\frac{\rho}{f}}m;$$

$$\rho = resistivity \ in \ ohm/m$$

By Ampere's Circuital Law:

$$I_x = 2 \pi x H_x$$

$$I_{\chi} = \frac{\pi x^2}{\pi r^2} I \text{ A/m}$$

$$B_{x} = \frac{\mu x}{2 \pi r^2} I W b / m^2$$

$$d\emptyset = \frac{\mu x I}{2 \pi r^2} dx Wb/m$$

Flux linkage, $d\lambda$ per meter of length,

$$d\lambda = \frac{\pi x^2}{\pi r^2} d\phi = \frac{\mu x^3 I}{2 \pi r^4} dx Wb/m$$

Internal Inductance is:

$$\lambda_{int} = \int_0^r \frac{\mu \, x^3 \, I}{2 \, \pi \, r^4} dx = \frac{\mu \, I}{8 \, \pi} \, Wb/m$$

$$\mu_r=1$$
 (air)

$$\lambda_{int} = \frac{I}{2} * 10^{-7} Wb/m$$

$$L_{int} = 0.5 * 10^{-7} Wb/m$$

By Ampere's Circuital Law:

Validation of Transmission Line Model in Etap With CDEGS

$$I = 2 \pi x H_x$$

Solving for H_x and multiplying by μ yield the flux density B_x .

$$B_x = \frac{\mu I}{2 \pi x} Wb/m^2$$

$$d\emptyset = \frac{\mu I}{2\pi x} dx Wb/m$$

The flux linkage $d\lambda$ per meter is:

$$\lambda_{ext} = \int_r^{De+h} \frac{\mu I}{2\pi x} dx = \frac{\mu I}{2\pi} ln \frac{De+h}{r} Wb/m$$

$$\mu_r=1$$
 (air)

$$\lambda_{ext} = 2 * 10^{-7} * I * ln \frac{De + h}{r} Wb/m$$

The external inductance is:

$$L_{ext} = 2 * 10^{-7} ln \frac{De+h}{r} H/m$$

The total Inductance is:

$$L_a = \left(0.5 + 2 \ln \frac{De+h}{r}\right) * 10^{-7} \text{ H/m}$$

$$L_a = 2 * \left(\ln e^{1/4} + \ln \frac{De+h}{r} \right) * 10^{-7} \text{ H/m}$$

$$L_a = 2 * 10^{-7} \left(ln \frac{De+h}{r e^{-1/4}} \right) \text{ H/m}$$

Here,
$$r e^{-1/4} = GMR$$

$$L_a = 2 * 10^{-7} \left(ln \frac{De+h}{GMR} \right)$$
 H/m

Self-Reactance:

$$X_a = \omega L_a = 4 \pi f 10^{-7} ln \frac{De+h}{GMR} \frac{ohm}{m} = 0.001256637 f ln \frac{De+h}{GMR} \frac{ohm}{km}$$

Mutual Reactance:

Validation of Transmission Line Model in Etap With CDEGS

For computing the Mutual Reactance, we consider the distance between the two conductors. Thus the GMR would be replaced by 'D-Distance between the conductor' in the equation:

$$X_{aa'} = 0.001256637 f ln \frac{De+h}{D} \frac{ohm}{km}$$

(referred from 'POWER SYSTEM ANALYSIS- John J. Grainger & William D. Stevenson')

BY CARSON-CLEM'S FORMULA:

Self- Resistance:

$$R_a = R_c + \frac{\pi \mu_0}{4} f \frac{ohm}{m} = R_c + 0.0009869604 f ohm/km$$

Mutual- Resistance:

$$R_{aa\prime} = \frac{\pi \,\mu_0}{4} \, f \, \frac{ohm}{m} = 0.0009869604 \, f \, ohm/km$$

ANNEX. 2 Calculation performed in excel

Α	CONDUCTOR INPUT		(Value)	(Units)
1	Code	:	Hurdles	
	5545			
2	Size	:	587	mm²
3	No. of Strands	:	54	
	No. or straines	<u> </u>	, ,,	
4	T1	:	20	°C
5	T2	:	75	°C
	,			
6	Ampacity	:	988	Α
7	Strand Diameter	:	0.35	cm
-	Straine Diameter		0.00	
8	Steel Strand Diameter	:	0.35	cm
		ı	T T	
9	OD	:	3.15	cm
10	Rdc	:	0.0533	ohm/km
11	Frequency	:	50	Hz
12	Ks (skin effect Factor)	:	1	
	,			
13	Xs (Argument of a bessel function used to calculate skin effect)	:	0.002357668	
_				•
14	Ys(Skin effect factor)	:	1.60927E-13	
15	Rc (at T1)	:	0.0533	ohm/km
	1 , , ,			- ,
16	Rc (at T2)	:	0.065120565	ohm/km

В	Configuration		(Value)	(Units)
1	Distance between conductor (AB)	:	8.2	m
2	Distance between conductor (BC)	:	8.2	m
3	Distance between conductor (CA)	:	16.4	m
4	Height of conductor	:	10	m
5	Resistivity of soil		100	ohm/m

Reference Circuit

$$\begin{aligned} Xs &= \frac{8 * \pi * f * ks * 10^{-7}}{R_{dc}} \\ Ys &= \frac{Xs^4}{192 + (0.8 + Xs^4)} \\ Rc &(at T1) = R_{dc} * (1 + Ys) \frac{ohm}{unit \ length} \\ Rc &(at T2) = \frac{Rc \ (at T1) * (228 + T2)}{(228 + T1)} \frac{ohm}{unit \ length} \end{aligned}$$

Ref: Stevenson- Second Edition

С	General Output		(Value)	(Units)
1	GMR	:	0.01276	m
2	Effective Depth (De)	:	931.9667376	m
3	Total depth (De+h)	:	941.9667376	m
		•	•	
4	Xa (Inductive Reactance)	:	0.199154555	ohms/conductor/k m at 1 ft spacing)
		•	_	
5	Xa' (Capacitive Shunt Reactance)	:	0.169651751	Megaohms/condu ctor/km at 1 ft spacing
				41. 21. 3

D	Self Impedance		(Value)	(Units)
1	Self Resistance (Raa)	:	0.1026452	ohm/km
2	Self Resistance (Rbb)	:	0.1026452	ohm/km
3	Self Resistance (Rcc)	:	0.1026452	ohm/km
4	Self Reactance (Xaa)	:	0.704307965	ohm/km
5	Self Reactance (Xbb)	:	0.704307965	ohm/km
6	Self Reactance (Xcc)	:	0.704307965	ohm/km
			•	

E	Mutual Impedance		(Value)	(Units)
1	Mutual Resistance (Rab)	:	0.0493452	ohm/km
2	Mutual Resistance (Rbc)	:	0.0493452	ohm/km
3	Mutual Resistance (Rca)	:	0.0493452	ohm/km
4	Mutual Reactance (Xab)	:	0.29806398	ohm/km
	•		-	
5	Mutual Reactance (Xbc)	:	0.29806398	ohm/km
6	Mutual Reactance (Xca)	:	0.25451226	ohm/km

Legend

Formula: present in Annex. 1 Effective Depth, De= 659 * $\sqrt{\frac{\rho}{f}} m$; $\rho = resistivity in ohm/m$

 $Xa = 2.022 * 10^{-3} * f * ln(\frac{1}{Ds}) ohm/mile$

 $\mathrm{Xa'} = \frac{1.779}{f * \ln\left(\frac{1}{r}\right)} ohm/mile$

Ref: IEC- 60287-1

Resistance Matrix (R)

	А	В	С
Α	0.1026452	0.0493452	0.0493452
В	0.0493452	0.1026452	0.0493452
С	0.0493452	0.0493452	0.1026452

Reactance Matrix (X)

	A	В	С
Α	0.704307965	0.29806398	0.25451226
В	0.29806398	0.704307965	0.29806398
С	0.25451226	0.29806398	0.704307965

Impedance Matrix (Zabc)

	A	В	С
А	0.102645200000009+0.704307965485455i	0.0493452+0.298063979993526i	0.0493452+0.25451226031666i
В	0.0493452+0.298063979993526i	0.102645200000009+0.704307965 485455i	0.0493452+0.298063979993526i
С	0.0493452+0.25451226031666i	0.0493452+0.298063979993526i	0.102645200000009+0.7043079654 85455i

Transformation Matrix (A)

$$\alpha = \sin(120) + i\cos(120)$$

$$\alpha^2 = \sin(240) + i\cos(240)$$

1	1	1
1	α^2	α
1	α	α^{2}

1	1	1
1	-0.5-0.866025403784438i	-0.5+0.866025403784439i
1	-0.5+0.866025403784439i	-0.5-0.866025403784438i

Sequence Z Matrix (Z012)

$$Z_{012} = A^{-1}Z_{abc}A$$

	0	1	2
0	0.2030356+1.27140144569i	0.0125722985396- 0.00725861994633i	-0.0125722985396- 0.00725861994633i
1	-0.0125722985378-0.00725861994627i	0.0549999999999+0.42076122538 4i	- 0.0251445970791+0.014517239891 9i
2	0.0125722985374-0.00725861994627i	0.0251445970792+0.01451723989 19i	0.055+0.420761225384i

Sequence Resistance Matrix (R012)

	0	1	2
0	0.2030356	0.012572299	-0.012572299
1	-0.012572299	0.055	-0.025144597
2	0.012572299	0.025144597	0.055

Sequence Reactance Matrix (X012)

	0	1	2
0	1.271401446	-0.00725862	-0.00725862
1	-0.00725862	0.420761225	0.01451724
2	-0.00725862	0.01451724	0.420761225