Analisi Funzionale

Biduale e convergenze deboli

Prof. Alessio Martini

Politecnico di Torino a.a. 2023/2024

Biduale e spazi riflessivi

Def. Sia X uno spazio normato. Il *biduale* X'' dello spazio X è il duale del duale di X.

Oss. Se
$$p,q\in(1,\infty)$$
 sono esponenti coniugati, allora $(\ell^p)' \overset{\cong}{\underset{\mathsf{isom.}}{\cong}} \ell^q,$

dunque anche

$$(\ell^p)'' \cong (\ell^q)' \cong \ell^p$$
.

Vale una relazione simile fra X e X'' per altri spazi normati?

Prop. Sia X uno spazio normato. Definiamo $J: X \to X''$ ponendo $J(x)(\varphi) = \varphi(x) \qquad \forall x \in X, \ \varphi \in X'.$

Allora $J: X \to X''$ è un'isometria lineare, detta *immersione* canonica di X nel suo biduale.

Def. Uno spazio normato X si dice *riflessivo* se l'immersione canonica $J: X \to X''$ è suriettiva.

Esempi e non-esempi di spazi riflessivi

Def. Uno spazio normato X si dice *riflessivo* se l'immersione canonica $J: X \to X''$ è suriettiva.

Oss. Sia X uno spazio normato.

- ▶ Se X è riflessivo, allora X ≅ isom.
 ▶ Tuttavia non basta che X ≅ X" per concludere che X sia riflessivo.
- Se dim $X < \infty$, allora X è riflessivo: infatti dim $X'' = \dim X' = \dim X$, dunque la mappa lineare iniettiva $J: X \to X''$ è anche suriettiva.

Prop.

- (i) Ogni spazio di Hilbert H è riflessivo.
- (ii) Se (M, \mathcal{M}, μ) è uno spazio di misura σ -finito e $p \in (1, \infty)$, allora $L^p(M, \mathcal{M}, \mu)$ è riflessivo.
- (iii) Se $p \in (1, \infty)$, allora ℓ^p è riflessivo.
- (iv) Gli spazi c_0 , ℓ^1 e ℓ^∞ non sono riflessivi.
- (v) Sia $I \subseteq \mathbb{R}$ un intervallo di misura di Lebesgue positiva. Allora $L^1(I)$ e $L^{\infty}(I)$ non sono riflessivi.

Prop. Sia X uno spazio di Banach. Allora X è riflessivo se e solo se X' lo è.

Convergenza debole

Per una successione $(x_n)_n$ a valori in uno spazio normato X, abbiamo già introdotto la nozione di *convergenza in norma*:

$$x_n \xrightarrow[n \to \infty]{} x \text{ in } X \iff \|x_n - x\|_X \xrightarrow[n \to \infty]{} 0.$$
Def. Siano X uno spazio normato, $(x_n)_n$ una successione a valori in X e

Def. Siano X uno spazio normato, $(x_n)_n$ una successione a vaiori in X e $x \in X$. Diciamo che $(x_n)_n$ converge debolmente a x, scritto $x \xrightarrow[n \to \infty]{} x$, se $\varphi(x_n) \xrightarrow[n \to \infty]{} \varphi(x) \quad \forall \varphi \in X'$.

Prop. Siano X uno spazio normato e $(x_n)_{n\in\mathbb{N}}$ una successione a valori in X. Siano $x, x' \in X$.

- (i) (unicità del limite debole) Se $x_n \rightharpoonup x$ e $x_n \rightharpoonup x'$ in X, allora x = x'.
- (ii) (conv. in norma \Rightarrow conv. debole) Se $x_n \to x$ in X, allora $x_n \rightharpoonup x$ in X.
- **Oss.** In \mathbb{F}^d con la norma euclidea sono equivalenti: • conv. in norma, • conv. debole, • conv. componente per componente. Più in generale, se dim $X < \infty$, allora convergenza in norma e convergenza debole in X sono equivalenti.

Oss. Se $\{\underline{e^{(n)}}\}_{n\in\mathbb{N}}$ è la base ortonormale canonica di ℓ^2 , allora $e^{(n)} \to 0$ in ℓ^2 , ma $e^{(n)} \not\to 0$ in ℓ^2 .

Convergenza debole in spazi di Hilbert e L^p

Prop. Sia H uno spazio di Hilbert. Siano $(x_n)_{n\in\mathbb{N}}$ una successione a valori in $H \in x \in H$. Allora

$$x_n \xrightarrow[n \to \infty]{} x \text{ in } H \iff \langle x_n, y \rangle \xrightarrow[n \to \infty]{} \langle x, y \rangle \quad \forall y \in H.$$

(i) Sia (M, \mathcal{M}, μ) uno spazio di misura σ -finito. Siano $p, q \in [1, \infty]$

Prop. Valgono le seguenti proprietà.

esponenti coniugati con $p < \infty$. Siano $(f_n)_{n \in \mathbb{N}}$ una successione a valori in $L^p(M)$ e $f \in L^p(M)$. Allora

$$f_n \xrightarrow[n \to \infty]{} f \text{ in } L^p(M) \iff \int_M f_n g \, d\mu \xrightarrow[n \to \infty]{} \int_M f g \, d\mu \, \, \forall g \in L^q(M).$$

(ii) Siano $n, g \in [1, \infty]$ esponenti conjugati con $n < \infty$. Siano $(x^{(n)})$

(ii) Siano $p, q \in [1, \infty]$ esponenti coniugati con $p < \infty$. Siano $(\underline{x^{(n)}})_{n \in \mathbb{N}}$ una successione a valori in ℓ^p e $\underline{x} \in \ell^p$. Allora

$$\underline{x^{(n)}} \xrightarrow[n \to \infty]{} \underline{x} \text{ in } \ell^p \iff \sum_{k=0}^{\infty} x_k^{(n)} y_k \xrightarrow[n \to \infty]{} \sum_{k=0}^{\infty} x_k y_k \ \forall \underline{y} \in \ell^q.$$

(iii) Siano $(\underline{x^{(n)}})_{n\in\mathbb{N}}$ una successione a valori in c_0 e $\underline{x}\in c_0$. Allora

$$\underline{x^{(n)}} \xrightarrow[n \to \infty]{} \underline{x} \text{ in } c_0 \iff \sum_{k=0}^{\infty} x_k^{(n)} y_k \xrightarrow[n \to \infty]{} \sum_{k=0}^{\infty} x_k y_k \quad \forall \underline{y} \in \ell^1.$$

Convergenza debole e limitatezza

Prop. Sia X uno spazio normato. Siano $(x_n)_{n\in\mathbb{N}}$ una successione a valori in X e $x \in X$. Se $x_n \rightarrow x$ in X per $n \rightarrow \infty$, allora la successione $(x_n)_{n\in\mathbb{N}}$ è limitata in X e

$$||x||_X \le \liminf_{n \to \infty} ||x_n||_X \le \sup_{n \in \mathbb{N}} ||x_n||_X.$$

Prop. (caratterizzazione della convergenza debole)

Sia X uno spazio normato. Sia $\Delta \subseteq X'$ tale che $\overline{\operatorname{span} \Lambda}^{X'} = X'$

one a valori in
$$X$$
 e $x \in X$.

Siano $(x_n)_n$ una successione a valori in X e $x \in X$. Sono equivalenti:

- (i) $x_n \xrightarrow[n \to \infty]{} x \text{ in } X$;
- (ii) la successione $(x_n)_n$ è limitata in Xe $\varphi(x_n) \longrightarrow \varphi(x)$ per ogni $\varphi \in \Delta$.

Coroll. Sia $p \in (1, \infty)$.

(i) Siano
$$(\underline{x^{(n)}})_{n \in \mathbb{N}}$$
 una successione a valori in ℓ^p e $\underline{x} \in \ell^p$. Allora
$$\underline{x^{(n)}} \xrightarrow[n \to \infty]{} \underline{x} \text{ in } \ell^p \iff \begin{cases} \sup_{n \in \mathbb{N}} \|\underline{x^{(n)}}\|_p < \infty, \\ x_k^{(n)} \xrightarrow[n \to \infty]{} x_k & \forall k \in \mathbb{N}. \end{cases}$$

(ii) Siano $(\underline{x^{(n)}})_{n\in\mathbb{N}}$ una successione a valori in c_0 e $\underline{x}\in c_0$. Allora

$$\underbrace{x^{(n)}}_{n\to\infty} \xrightarrow{x} \text{ in } c_0 \iff \begin{cases} \sup_{n\in\mathbb{N}} \|\underline{x^{(n)}}\|_{\infty} < \infty, \\ x_k^{(n)} \xrightarrow{n\to\infty} x_k & \forall k \in \mathbb{N}. \end{cases}$$
(iii) Sia (M, \mathcal{M}, μ) uno spazio di misura σ -finito. Siano $(f_n)_{n\in\mathbb{N}}$ una successione a valori in $L^p(M)$ e $f \in L^p(M)$. Allora
$$\begin{cases} \sup_{n\to\infty} f \text{ in } L^p(M) \iff \begin{cases} \sup_{n\in\mathbb{N}} \|f_n\|_{L^p(M)} < \infty, \\ \int_E f_n \, d\mu \xrightarrow{n\to\infty} \int_E f \, d\mu \end{cases}$$

 $(f_n)_{n\in\mathbb{N}}$ una successione a valori in $L^p(I)$ e $f\in L^p(I)$. Allora

$$f_{n} \xrightarrow[n \to \infty]{} f \text{ in } L^{p}(M) \iff \begin{cases} \sup_{n \in \mathbb{N}} \|f_{n}\|_{L^{p}(M)} < \infty, \\ \int_{E} f_{n} d\mu \xrightarrow[n \to \infty]{} \int_{E} f d\mu \\ \text{ per ogni } E \in \mathcal{M} \text{ con } \mu(E) < \infty. \end{cases}$$
(iv) Sia I un intervallo in \mathbb{R} , dotato della misura di Lebesgue. Siano $(f_{n})_{n \in \mathbb{N}}$ una successione a valori in $L^{p}(I)$ e $f \in L^{p}(I)$. Allora
$$f_{n} \xrightarrow[n \to \infty]{} f \text{ in } L^{p}(I) \iff \begin{cases} \sup_{n \in \mathbb{N}} \|f_{n}\|_{L^{p}(I)} < \infty, \\ \int_{a}^{b} f_{n}(t) dt \xrightarrow[n \to \infty]{} \int_{a}^{b} f(t) dt \\ \text{ per ogni intervallo limitato } [a, b] \subseteq I. \end{cases}$$

Convergenza debole* sul duale

Per una successione $(\varphi_n)_n$ a valori nel duale X' di uno spazio di Banach X abbiamo già introdotto due nozioni di convergenza:

- conv. in norma: $\varphi_n \xrightarrow[n \to \infty]{} \varphi$ in $X' \iff \|\varphi_n \varphi\|_{X'} \xrightarrow[n \to \infty]{} 0$ • conv. debole: $\varphi_n \xrightarrow[n \to \infty]{} \varphi$ in $X' \iff \Lambda(\varphi_n) \xrightarrow[n \to \infty]{} \Lambda(\varphi) \ \forall \Lambda \in X''$
- Pof. Signs X upg sparis di Banach (x_0) upg successions in $X' \circ x_0 \in X'$

Def. Siano
$$X$$
 uno spazio di Banach, $(\varphi_n)_n$ una successione in X' e $\varphi \in X'$. Diciamo che $(\varphi_n)_n$ converge debolmente* a φ , scritto $\varphi_n \xrightarrow[n \to \infty]{*} \varphi$, se $\varphi_n(x) \xrightarrow[n \to \infty]{*} \varphi(x) \quad \forall x \in X$.

Oss. La convergenza debole*
$$\varphi_n \xrightarrow[n \to \infty]{*} \varphi$$
 non è altro che la convergenza

puntuale dei funzionali φ_n al funzionale φ .

Prop. Siano X uno spazio di Banach e $(\varphi_n)_{n\in\mathbb{N}}$ una successione a valori in X'. Siano $\varphi, \varphi' \in X'$.

- (i) (unicità del limite debole*) Se $\varphi_n \stackrel{*}{\rightharpoonup} \varphi$ e $\varphi_n \stackrel{*}{\rightharpoonup} \varphi'$ in X', allora $\varphi = \varphi'$.
- (ii) (conv. debole \Rightarrow conv. debole*) Se $\varphi_n \rightharpoonup \varphi$ in X', allora $\varphi_n \stackrel{*}{\rightharpoonup} \varphi$ in X'. L'implicazione opposta vale se X è riflessivo.

Possiamo parlare di convergenza debole* in $L^{\infty}(M)$, ℓ^{∞} e ℓ^{1} , identificandoli con i duali di $L^{1}(M)$, ℓ^{1} e c_{0} tramite gli isomorfismi isometrici Ψ già discussi.

Prop. Valgono le seguenti proprietà.

(i) Sia (M, \mathcal{M}, μ) uno spazio di misura σ -finito. Siano $(f_n)_{n \in \mathbb{N}}$ una successione a valori in $L^{\infty}(M)$ e $f \in L^{\infty}(M)$. Allora

Convergenza debole* in L^{∞} , ℓ^{∞} e ℓ^1

successione a valori in
$$L^{\infty}(M)$$
 e $f \in L^{\infty}(M)$. Allora
$$f_n \xrightarrow[n \to \infty]{} f \text{ in } L^{\infty}(M) \iff \int_{M} f_n g \, d\mu \xrightarrow[n \to \infty]{} \int_{M} f g \, d\mu \, \, \forall g \in L^1(M).$$

 $t_n \xrightarrow[n \to \infty]{} t \text{ in } L^{\infty}(M) \iff \int_M t_n g \, d\mu \xrightarrow[n \to \infty]{} \int_M t g \, d\mu \, \, \forall g \in L$ (ii) Siano $(x^{(n)})_{n \in \mathbb{N}}$ una successione a valori in ℓ^{∞} e $x \in \ell^{\infty}$. Allora

$$\underbrace{x^{(n)}} \xrightarrow[n \to \infty]{*} \underline{x} \text{ in } \ell^{\infty} \iff \sum_{k=0}^{\infty} x_k^{(n)} y_k \xrightarrow[n \to \infty]{*} \sum_{k=0}^{\infty} x_k y_k \quad \forall \underline{y} \in \ell^1.$$
(iii) Siano $(x^{(n)})_{n \in \mathbb{N}}$ una successione a valori in ℓ^1 e $x \in \ell^1$. Allora

 $\underline{x^{(n)}} \xrightarrow[n \to \infty]{*} \underline{x} \text{ in } \ell^1 \iff \sum_{k=0}^{\infty} x_k^{(n)} y_k \xrightarrow[n \to \infty]{*} \sum_{k=0}^{\infty} x_k y_k \quad \forall \underline{y} \in c_0.$

Oss. Allo stesso modo si può parlare di convergenza debole* in $L^q(M)$ e ℓ^q per $q \in (1, \infty)$, che però qui coincide con la convergenza debole.

Convergenza debole* e limitatezza

Prop. Sia X uno spazio di Banach. Siano $(\varphi_n)_{n\in\mathbb{N}}$ una successione a valori in X' e $\varphi\in X'$. Se $\varphi_n\stackrel{*}{\rightharpoonup}\varphi$ in X' per $n\to\infty$, allora la successione $(\varphi_n)_{n\in\mathbb{N}}$ è limitata in X' e

$$\|\varphi\|_{X'} \leq \liminf_{n \to \infty} \|\varphi_n\|_{X'} \leq \sup_{n \in \mathbb{N}} \|\varphi_n\|_{X'}.$$

Prop. (caratterizzazione della convergenza debole*)

Sia X uno spazio di Banach. Sia $\Delta \subseteq X$ tale che $\overline{\operatorname{span} \Delta}^X = X.$

Siano $(\varphi_n)_n$ una successione a valori in X' e $\varphi \in X'$. Sono equivalenti:

- (i) $\varphi_n \xrightarrow[n \to \infty]{*} \varphi$ in X';
- (ii) la successione $(\varphi_n)_n$ è limitata in X' e $\varphi_n(x) \xrightarrow[n \to \infty]{} \varphi(x)$ per ogni $x \in \Delta$.

Coroll. Valgono le seguenti proprietà. (i) Siano $(\underline{x^{(n)}})_{n\in\mathbb{N}}$ una successione a valori in ℓ^{∞} e $\underline{x}\in\ell^{\infty}$. Allora

$$\underline{x^{(n)}} \xrightarrow[n \to \infty]{*} \underline{x} \text{ in } \ell^{\infty} \iff \begin{cases} \sup_{n \in \mathbb{N}} \|\underline{x^{(n)}}\|_{\infty} < \infty, \\ x_k^{(n)} \xrightarrow[n \to \infty]{*} x_k & \forall k \in \mathbb{N}. \end{cases}$$

(ii) Siano $(\underline{x^{(n)}})_{n\in\mathbb{N}}$ una successione a valori in ℓ^1 e $\underline{x}\in\ell^1$. Allora $\underline{x^{(n)}} \xrightarrow[n \to \infty]{*} \underline{x} \text{ in } \ell^1 \iff \begin{cases} \sup_{n \in \mathbb{N}} \|\underline{x^{(n)}}\|_1 < \infty, \\ x_k^{(n)} \xrightarrow[n \to \infty]{*} x_k & \forall k \in \mathbb{N}. \end{cases}$

$$\begin{cases} x_k^{(n)} \xrightarrow[n \to \infty]{} x_k & \forall k \in \mathbb{N}. \\ \text{(iii) Sia } (M, \mathcal{M}, \mu) \text{ uno spazio di misura } \sigma\text{-finito. Siano } (f_n)_{n \in \mathbb{N}} \text{ una successione a valori in } L^\infty(M) \text{ e } f \in L^\infty(M). \text{ Allora} \\ \begin{cases} \sup_{n \in \mathbb{N}} \|f_n\|_{L^\infty(M)} < \infty, \end{cases}$$

 $f_n \xrightarrow[n \to \infty]{*} f \text{ in } L^{\infty}(M) \iff \begin{cases} \sup_{n \in \mathbb{N}} \|f_n\|_{L^{\infty}(M)} < \infty, \\ \int_{E} f_n \, d\mu \xrightarrow[n \to \infty]{} \int_{E} f \, d\mu \\ \text{per ogni } E \in \mathcal{M} \text{ con } \mu(E) < \infty. \end{cases}$

$$f_{n} \xrightarrow{*}_{n \to \infty} f \text{ in } L^{\infty}(M) \iff \begin{cases} \sup_{n \in \mathbb{N}} \|f_{n}\|_{L^{\infty}(M)} < \infty, \\ \int_{E} f_{n} d\mu \xrightarrow[n \to \infty]{} \int_{E} f d\mu \\ \text{per ogni } E \in \mathcal{M} \text{ con } \mu(E) < \infty \end{cases}$$
(iv) Sia I un intervallo in \mathbb{R} , dotato della misura di Lebesgue. Siano $(f_{n})_{n \in \mathbb{N}}$ una successione a valori in $L^{\infty}(I)$ e $f \in L^{\infty}(I)$. Allora
$$\sup_{n \in \mathbb{N}} \|f_{n}\|_{L^{\infty}(I)} < \infty,$$

successione a valori in
$$L^{\infty}(M)$$
 e $f \in L^{\infty}(M)$. Allora
$$\begin{cases} \sup_{n \to \infty} \|f_n\|_{L^{\infty}(M)} < \infty, \\ \int_E f_n \, d\mu \xrightarrow[n \to \infty]{} \int_E f \, d\mu \\ \text{per ogni } E \in \mathcal{M} \text{ con } \mu(E) < \infty. \end{cases}$$
 iv) Sia I un intervallo in \mathbb{R} , dotato della misura di Lebesgue. Siano $(f_n)_{n \in \mathbb{N}}$ una successione a valori in $L^{\infty}(I)$ e $f \in L^{\infty}(I)$. Allora
$$\begin{cases} \sup_{n \in \mathbb{N}} \|f_n\|_{L^{\infty}(I)} < \infty, \\ \int_a^b f_n(t) \, dt \xrightarrow[n \to \infty]{} \int_a^b f(t) \, dt \\ \text{per ogni intervallo limitato } [a, b] \subseteq I. \end{cases}$$

Il teorema di Banach–Alaoglu

Teor. (Banach-Alaoglu) Siano X uno spazio di Banach separabile e $(\varphi_n)_{n\in\mathbb{N}}$ una successione limitata in X'. Allora $(\varphi_n)_n$ ha una sottosuccessione convergente debolmente* a qualche $\varphi \in X'$.

Oss. In altre parole, "la palla unitaria chiusa $\overline{B}^{X'}(0,1)$ nel duale di uno spazio di Banach separabile è debolmente* sequenzialmente compatta".

Tuttavia, se dim $X' = \infty$, sappiamo già che la palla $\overline{B}^{X'}(0,1)$ non è compatta nella topologia indotta dalla norma.

Coroll. Sia X uno spazio di Banach separabile e riflessivo. Sia $(x_n)_{n\in\mathbb{N}}$ una successione limitata in X. Allora $(x_n)_n$ ha una sottosuccessione convergente debolmente a qualche $x \in X$.

Prop. Sia X uno spazio di Banach riflessivo e separabile. Sia $F: X \to \mathbb{R}$ tale che: (a) $\{x \in X : F(x) \le c\}$ è non vuoto e limitato in X per qualche $c \in \mathbb{R}$; (b) per ogni successione $(x_n)_n$ a valori in X e $x \in X$, se $x_n \rightharpoonup x$ in X,

allora $F(x) \leq \liminf_{n \to \infty} F(x_n)$.

Allora F ha un punto di minimo in X.