Análisis Funcional I

Tarea 8

Operadores lineales acotados I

Maite Fernández Unzueta. maite@cimat.mx

Antonio Barragán Romero. antonio.barragan@cimat.mx

Problema 1

Sean X, Y espacios normados $y : X \to Y$ lineal. Prueba que T no es acotado si y solo si existe una sucesión $\left\{x_n\right\}_n \subset X$ tal que $\|x_n\| \to 0$ y $\|T(x_n)\| = 1$ para $toda \ n \in \mathbb{N}.$

Demostración: Notemos, por definición, que T no es acotado si y solo si para todo $k \in \mathbb{R}_+$ existe $x \in X$ tal que $\|T(x)\| > k$ y $\|x\| \leqslant 1.$ De lo anterior podemos notar que T no es acotado si y solo si existe $\{x_n\}_n \subset X$ tal que $\|T(x_n)\| > n$ y $\|x_n\|$ para todo $n \in \mathbb{N}$, es decir $\|T(x_n)\| \to \infty$. Entonces, considerando $y_n = \frac{x_n}{\|T(x_n)\|}$, notemos que para todo y_n tenemos que

$$\|y_n\| = \left\|\frac{x_n}{\|T(x_n)\|}\right\| = \frac{1}{\|T(x_n)\|}\|x_n\| \leqslant \frac{1}{\|T(x_n)\|},$$

por lo cual $\|y_n\|\to 0,$ pues $\|T(x_n)\|\to \infty.$ Más aún podemos ver que, para todo y_n

$$\|T(y_n)\| = \left\|T\left(\frac{x_n}{\|T(x_n)\|}\right)\right\| = \left\|\frac{1}{\|T(x_n)\|}T(x_n)\right\| = \frac{1}{\|T(x_n)\|}\|T(x_n)\| = 1,$$

de lo anterior tenemos lo deseado.

Demuestra que los siguientes operadores lineales son continuos y calcula su norma i) $T: C([0,1]) \to C([0,1])$ definido como $T(x(t)) := \int_0^1 x(\tau) d\tau$. ii) $T: C([0,1]) \to C([0,1])$ definido como $T(x(t)) := t^2x(0)$.

- iii) $T: \ell_1 \to \ell_1$ definido como $T((x_1, x_2, ...)) = (0, x_1, x_2, ...)$.

Problema 3

Sea X un espacio de Banach, Y un espacio normado y $T \in \mathcal{L}(X,Y)$

- i) Si T es isomorfismo y T^{-1} es continuo, prueba que Y es completo.
- ii) Si T preserva abiertos, prueba que Y es completo.
- i) Demostración: Primero notemos que T^{-1} es lineal Sea $\left\{y_n\right\}_n\subset Y$ una sucesión de Cauchy entonces $y_n=T(x_n),\,T^{-1}(y_n)=x_n$ y notemos que

$$\left\| T^{-1}(y_n - y_m) \right\| \leqslant \left\| T^{-1} \right\| \left\| y_n - y_m \right\|$$

de lo anterior por la linealidad de T^{-1} tenemos que $\left\{T^{-1}(y_n)\right\}_n\subset X$ es una sucesión de Cauchy. Dado que X es completo tenemos que existe $x\in X$ tal que $T^{-1}(y_n)\to x$, sea y=T(x)

ii) Demostración:

Problema 4

Comprueba con el siguiente ejemplo, que la hipótesis de completitud del espacio es necesaria para el **Principio de Acotamiento Uniforme**. Justificalo usando los siguientes operadores: sea $X := c_{00}$ el espacio de la sucesiones eventualmente cero con la norma del supremo y los operadores definidos en él:

$$T_k:c_{00}\to\mathbb{R};\quad T((x_n))=\sum_{n=1}^kx_n$$

Problema 5

Prueba el siguiente resultado

i) Si $Z \subset X$ es un subespacio cerrado entonces la aplicación cociente

$$Q: X \to X/Z$$

es continua y abierta.

ii) Sea $T:X\to Y$ una transformación lineal tal que $\ker T\subset X$ es cerrado. Sea \overline{T} la transformación inducida por el cociente

$$\overline{T}: X/\ker T \to Y,$$

dada por $\overline{T}([x]) = T(x)$. Entonces T es abierta si y solo si \overline{T} es abierta.