Weighted Finite Automata and Noncommutative Rational Series

Jan Pantner (jan.pantner@gmail.com)

October 4, 2024

Contents

1 Weighted finite automata, linear representations, rational series

1.1 Weighted finite automata

Definition 1.1.1. Let K be a semiring and A an alphabet.

- (1) A weighted (finite) automaton (WFA) with weights in K is a tuple (Q, I, E, T) consisting of a finite set Q of states, and maps $I: Q \to K$ (initial weights), $E: Q \times A \times Q \to K$ (transition function), $T: Q \to K$ (terminal weights).
- (2) A triple (p, a, q) with $E(p, a, q) \neq 0$ is an **edge/transition** with **label** a, **starting** state p, ending state q and weight $E(p, a, q) \in K$.
- (3) A **path/run** is a sequence of edges $c = (q, a_1, q_1)(q_1, a_2, p_2) \dots (q_{n-1}, a, q_n)$. Its **weight** is

$$E(q, a_1, q_1) \cdot E(q_1, a_2, p_2) \cdots E(q_{n-1}, a_n, q_n)$$

and its **label** is $w = a_1 a_2 \dots a_n \in A^*$.

(4) The **behaviour** of \mathcal{A} is the series $[[\mathcal{A}]] \in K \langle \langle A \rangle \rangle$ defined by

$$([[\mathcal{A}]], w) = \sum_{q_0, \dots, q_n \in Q} I(q_0) E(q, a_1, q_1) E(q_1, a_2, p_2) \cdots E(q_{n-1}, a_n, q_n) T(q_n),$$

where $w = a_1 \cdots a_n, a_i \in A$.

Definition 1.1.2. Terminology:

- 1. A state q is **initial** if $I(q) \neq 0$ and **terminal** if $T(q) \neq 0$.
- 2. A *successful run/accepting run* is a run from an initial state to a terminal state.

1.2 Linear representation, recognizable series

We wish to represent the data in a weighted finite automaton using adjacency matrices.

Definition 1.2.1. Let K be a semiring and A an alphabet.

(1) A series $S \in K \langle \langle A \rangle \rangle$ is (K-)recognizable if there exist $n \geq 0$, $\lambda \in K^{1 \times b}$, $\gamma \in K^{n \times 1}$, and a monoid morphism $\mu \colon A^* \to K^{d \times d}$ such that for every $w \in A^*$ we have

$$(S, w) = \lambda \mu(w) \gamma.$$

(2) The triple (λ, μ, γ) is a *linear representation* of S with *dimension* n.

Proposition 1.2.2. A series $S \in K(\langle A \rangle)$ is recognizable if and only if there exists a WFA \mathcal{A} such that $S = [[\mathcal{A}]]$.

Proof. Suppose S = [[A]] with A = (Q, I, E, T). Without loss of generality let $Q = \{1, \ldots, n\}$. Let

$$\lambda := \begin{bmatrix} I(1) & \dots & I(n) \end{bmatrix}, \quad \gamma := \begin{bmatrix} T(1) & \vdots & T(n) \end{bmatrix}^{\mathsf{T}},$$

and for every $a \in A$ let

$$\mu(a) := \begin{bmatrix} E(1, a, 1) & \dots & E(1, a, n) \\ \vdots & & \vdots \\ E(1, a, n) & \dots & E(n, a, n) \end{bmatrix}.$$

This extends to a morphism

$$\mu \colon A^* \to K^{d \times d},$$

 $\mu(a_1 \cdots a_n) = \mu(a_1)\mu(a_2) \cdots \mu(a_n).$

Then, for $p, q \in Q$, $w = a_1 \cdots a_n$, we have

$$u(w)_{p,q} = [\mu(a_1)\cdots\mu(a_n)]_{p,q}$$

$$= \sum_{p_1,\dots,p_{m-1}=1}^n \mu(a_1)_{p,p_1}\mu(a_2)_{p_1,p_2}\cdots\mu(a_m)_{p_{m-1},q}$$

and

$$\lambda\mu(w)\gamma = \sum_{p,p_1,\dots,p_{m-1},q=1}^n \lambda_p \mu(a_1)_{p,p_1} \mu(a_2)_{p_1,p_2} \cdots \mu(a_m)_{p_{m-1},q} \gamma_q$$

$$= \sum_{p,p_1,\dots,p_{m-1},q=1}^n I(p) E(p,a_1,p_1) E(p_1,a_2,p_2) \cdots E(p_{m-1},a_m,q) T(q)$$

$$= ([[\mathcal{A}]], w).$$

Conversly, let (λ, μ, γ) be a linear representation recognizing S. Let $Q := \{1, \ldots, n\}$, $I(p) := \lambda_p, T(q) := \gamma_q, E(p, a, q) := \mu(a)_p q$. The computation above shows that S is the behaviour of (Q, I, E, T).

1.3 Model-theoretic characterization

Lemma 1.3.1. Let K be a semiring and A an alphabet.

- (1) For $x \in A^*$, the map $S \mapsto x^{-1}X$ is a K-module morphism.
- (2) For every $x, y \in A^*$ and for every $S \in K \langle \langle A \rangle \rangle$ we have $(xy)^{-1}S = y^{-1}(x^{-1}S)$.

Proof. Left as an exercise.

Definition 1.3.2. A submodule $M \subseteq K \langle \langle A \rangle \rangle$ is **stable** if for every $S \in M$ and every $x \in A^*$ we have $x^{-1}S \subseteq M$ (equivalently for every $a \in A$ we have $a^{-1}M \subseteq M$).

Theorem 1.3.3. A series $S \in K \langle \langle A \rangle \rangle$ is recognizable if and only if there exists a stable finitely generated left K-submodule $M \subseteq K \langle \langle A \rangle \rangle$ such that $S \in M$.

Proof. Next lecture.

Index

linear representation, $\frac{3}{3}$ recognizable series, $\frac{3}{3}$ weighted finite automaton, $\frac{3}{3}$