

Single Precision IEEE 754 Floating-Point Standard

Lecture 11:

Floating Point Representation

CS 111: Intro to Computational Science Spring 2023

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Administrative

- Current homework due today
- New homework out later today

- Quiz 4 on Wednesday
 - Lectures 9 and 10
 - CG, Numerical Stability, LSQ

Floating Point Numbers

Example: -421.987

Example of binary number FP: 1.01011 x 2⁴

Single Precision FP Variable

type **float** in C/C++

Bias = **127**

• The actual standard form for binary FP is:

(-1)^S x (1 + Fraction) x 2^{Exponent - Bias}

IEEE 754 Floating-Point Standard

What is **Bias** for?

Bias = **127**

• The IEEE 754 standard form is:

(-1)^S x (1 + Fraction) x 2^{Exponent - Bias}

• So,
$$F = 1 \times (1 + 0) \times 2^{-Bias} = 2^{-Bias} = 2^{-127}$$

- S = 0, Fraction = 0, **Exponent = 2^7 1 = 127**
 - So, $F = 1 \times (1 + 0) \times 2^{127-127} = 2^0 = 1$

Sign Exponent Fraction

✓ 1 Bit → ✓ 8 Bits → ✓ 23 Bits → ►

Single Precision IEEE 754 Floating-Point Standard

- S = 0, Fraction = 0, **Exponent = 2^8 1 = 255**
 - So, $F = 1 \times (1 + 0) \times 2^{255-127} = 2^{128}$

So what's the Bias for??!!!

Single Precision FP Variable

type **double** in C/C++

Bias = **1023**

- Same standard form for binary FP: (-1)^S x (1 + Fraction) x 2^{Exponent Bias}
- **64** bits instead of 32 bits
- 11 bits for exponent (instead of 8)
- 52 bits for fraction (instead of 23)

Double Precision
IEEE 754 Floating-Point Standard

Other Types?

• IEEE 754 also allows for:

Half-precision uses 16 bits

• Quad uses 128 bits

- IEEE 754 standards are very widespread today
 - Supported in almost all programming languages
 - Used in almost all CPUs

Summarizing IEEE 754 Floating-Point Standard

(-1)^S x (1 + Fraction) x 2^(Exponent – Bias)

• $S = 0 \rightarrow positive$

$$S = 1 \rightarrow negative$$

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

- The "1" in "1 + Fraction" is implicit
 - i.e. assumed to be part of the calculation (it's not in S, E, or F)
- Fraction written out as: b₁b₂b₃b₄b₅...
 - Note that these b_n represent NEGATIVE powers of 2
 - i.e. b_1 is a position for $2^{-1} = 0.5$, b_2 for $2^{-2} = 0.25$, b_3 for $2^{-3} = 0.125$, etc...
- "Exponent" is a variable, however "Bias" is a constant value
 - Single-precision and double-precision have different bias values

Example!

Single Precision IEEE 754 Floating-Point Standard

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$

- Hex for single-precision F-P is given as: 0x3FB00000
- So:

0011 1111 1011 0000 0000 0000 0000 0000

$$S = 0$$
 $E = 0x7F = 127$ $F = 0110...0$

• So:

Number = (+1) x (1 + 0.011) x
$$2^{(127-127)}$$

= 1.011 (binary number)
= 1 + 2^{-2} + 2^{-3}
= 1 + 0.25 + 0.125 = 1.375

 $2^{-1} = 0.5$ $2^{-2} = 0.25$ $2^{-3} = 0.125$ $2^{-4} = 0.0625$ $2^{-5} = 0.03125$

Another Example!!

Single Precision IEEE 754 Floating-Point Standard

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$

- Hex word for single-precision F-P is: 0xBF300000
- So:

1011 1111 0011 0000 0000 0000 0000 0000

$$S = 1$$
 $E = 0x7E = 126$ $F = 011...0$

• So:

Number = (-1) x (1 + 0.011) x
$$2^{(126-127)}$$

= $-(1 + 2^{-2} + 2^{-3})$ x 2^{-1}
= -0.1011 (bin)
= $-(0.5 + 0.125 + 0.0625)$ = -0.6875

 $2^{-1} = 0.5$ $2^{-2} = 0.25$ $2^{-3} = 0.125$ $2^{-4} = 0.0625$ $2^{-5} = 0.03125$

Example – Class Exercise

 $2^{-1} = 0.5$ $2^{-2} = 0.25$ $2^{-3} = 0.125$ $2^{-4} = 0.0625$ $2^{-5} = 0.03125$

What is the <u>single-precision</u> FP (in hex) of the number <u>18.125</u>?

This is a positive number, so S = 0

I am reminded that $0.125 = 2^{-3}$, i.e. 0.001 in binary

And, I know that **18** in binary is: **10010**

So $18.125_{(10)} = 10010.001_{(2)} = 1.0010001 \times 2^4$

(note how I put that in the 1.xxx format)

So F = 0010001000...0

(i.e. everything after the point: <u>remember</u> -> **23 bits in all**)

And E = 4 + 127 = 131 = 10000011 (has to be 8 bits)

= **0x41910000**

A Fly in the Ointment...

```
2^{-1} = 0.5
2^{-2} = 0.25
2^{-3} = 0.125
2^{-4} = 0.0625
2^{-5} = 0.03125
```

- What is the <u>single-precision</u> FP (in hex) of the number <u>18.2</u>?
 - What's the problem here?
- Ok, so **18** in binary is: **10010**
- But what is 0.2 in binary???
 - It's not a sum of negative powers of 2...
- It turns out IEEE 754 says 18.2 is 0x4191999A
 - Which is actually 18.200000762939453125
 - So there's an error of 7.62939453125 x10⁻⁷
- Why does this happen?

Smallest/Largest Values

Consider Single-Precision Numbers:

- NOTE: Exponent = **0x00** and **0xFF** are reserved values
- Smallest 8bit E is $0x01 \rightarrow$ Applying bias, I get the actual exponent = 1 127 = -126
- Smallest 23bit Fraction is 0
- This is what gives me the smallest (abs value, non-zero) number in single-precision FP!
- Largest 8bit E is **0xFE** = 254 → Actual exp. = 127
- Largest 23bit Fraction is 111...11, which approaches 1 (that's the sum of many 1/2ⁿ)
- This is what gives me the largest (abs value) number in single-precision FP!

Special IEEE 754 Values: Zero, Inf

IEEE 754 allows for special symbols to represent "unusual events"

• When E = 0x00, F = 0, this is "zero" (oddly, there's both a -0 and a +0)

• When S = 0, E = 0xFF, F = 0, IEEE calls this "inf" (i.e. infinity)

S = 1, E = 0xFF, F = 0 IEEE calls this "-inf"

"inf" to allow an option for programmers to divide by 0 and not get a CPU interrupt

© 2023, Matni CS111 S23

Special IEEE 754 Values: NaN

• IEEE 754 also allows for the result of invalid operations, i.e. <u>undetermined numbers</u>

• IEEE calls these "NaN" (i.e. "Not a Number")

- Set when S = 0, E = 0xFF, F = 1...1 (all 1s)
 - Happens with outcomes of: 0/0 , inf inf, sqrt(–9), etc...

© 2023, Matni CS111 S23

Consider This Program

What is happening?

What happens to var x? What happens to var e?

What could this establish for us?

What assumptions are we making about var x?

Machine Epsilon (ϵ)

- Also known as machine precision
 - Is this a small number or a big number??

- The maximum relative error in the rounding procedure in FP
 - That is, $\varepsilon \ge \left| \frac{fl(x) x}{x} \right|$

• See also: https://en.wikipedia.org/wiki/Machine epsilon

Quick! To the Python-mobile!

Let's
Demonstrate
FP
Characteristics
via
Programming!

Your TO DOs!

Assignment 05 due tonight

- Quiz 4 on Wednesday
 - Lectures 9 and 10
 - CG, Numerical Stability, LSQ

