

planetmath.org

Math for the people, by the people.

example of free module

Canonical name Date of creation Last modified on

Owner Last modified by

Numerical id

Author

Entry type Example Classification msc 13C10

 ${\bf Example Of Free Module}$

2013-03-22 13:48:41

2013-03-22 13:48:41 mathcam (2727)

mathcam (2727)

mathcam (2727)

from the definition, \mathbb{Z}^n is http://planetmath.org/node/FreeModulefree as a \mathbb{Z} -module for any positive integer n.

A more interesting example is the following:

Theorem 1. The set of rational numbers \mathbb{Q} do not form a http://planetmath.org/node/FreeMo \mathbb{Z} -module.

Proof. First note that any two elements in $\mathbb Q$ are $\mathbb Z$ -linearly dependent. If $x=\frac{p_1}{q_1}$ and $y=\frac{p_2}{q_2}$, then $q_1p_2x-q_2p_1y=0$. Since http://planetmath.org/Basisbasis elements must be linearly independent, this shows that any basis must consist of only one element, say $\frac{p}{q}$, with p and q relatively prime, and without loss of generality, q>0. The $\mathbb Z$ -span of $\{\frac{p}{q}\}$ is the set of rational numbers of the form $\frac{np}{q}$. I claim that $\frac{1}{q+1}$ is not in the set. If it were, then we would have $\frac{np}{q}=\frac{1}{q+1}$ for some n, but this implies that $np=\frac{q}{q+1}$ which has no solutions for $n,p\in\mathbb Z$, $q\in\mathbb Z^+$, giving us a contradiction.