CSC369 Week 9 Notes

Hyungmo Gu

May 29, 2020

1 Disk I/O

- File system implementation
 - Files and directories live on **secondary storage**
 - * Anything outisde of "Primary memory"
 - * Is persistent (or non-volatile): Data survives loss of power
- Disk components

– Actuator:

* is an electronic device controlled by a motor that moves the hard drive head arm. [1]

- Read/Write Heads:

* are the small parts of a hard drive which move above the disk platter and transform the platter's magnetic field into electric current [1]

Hard drive read/write head

- Platter:

- * One or more aluminum, glass, or ceramic disk that is coated in a magnetic media $^{[1]}$
- $\ast\,$ All modern drives use glass or glass-ceramic platters $^{[2]}$

- Cylinder:

* is any set of all tracks of equal diameter in a hard disk drive (HDD) [3]

computerhope.com

- Track:

* is a data storage ring on a computer hard drive that is capable of storing information.

- Sector:

- * A division of storage medium on a hard drive that is a wedge shaped section of one of the circular tracks.
- * Each arc is sector that usually holds 512 byte of data.

References:

- 1) Computer Hope: Actuator, link
- 2) Etty94. (2016, August 1). Hard disk drive components. Medium. link
- 3) The Linux Information Project: Cylinder Definition, link
- OS \leftrightarrow disk interaction
 - The old way
 - * Is called **Extended CHS** (Extended Cylinder, Head, Sector)
 - * Specifying disk requests requires a lot of info
 - · Cylinder #, Surface #, Track #, Sector #, transfer size · · ·
 - * Modern disks are even more complicated
 - · Not all tracks have the same number of sectors
 - · Sectors are remapped
 - * Older disks require OS to specify all of this
 - · The OS needs to know all disk parameters
 - Now
 - * Logical Block Addressing
- Logical Block Addressing
 - Is a common scheme used for specifying the location of blocks of data on computer storage device [1]
 - Is implemented in most hard disk drives after 1996 [1]
 - Hides disk parameters from the OS
 - Exposes storage as linear array of blocks
 - * Maps blocks to cylinder/surface/track/sector
 - * Each block size is 512 bytes

Refernces:

- 1) Wikipedia: Logical Block Addressing, link
- Disk Scheduling
 - Is also known as I/O scheduling $^{\left[1\right]}$
 - Is done by operating systems ^[1]
 - Is important because ^[1]
 - * Hard drives are one of the slowest parts of the computer system and thus need to be accessed in an efficient manner

Refernces:

- 1) Geeks for Geeks: Disk Scheduling Algorithms, link
- File System Implementation
 - Master Block / Super Block determines location of root directory
 - Free map / Bitmap determines which blocks are free, allocated
 - Remaining disk blocks used to store files (and dirs)

- FFS (Fast File System)
 - Is an improvement made to original Unix File System
 - Is done in early-mid 80s
 - Improved disk utilization and decreased response time
 - Uses Cylinder Groups
- Log Structured File System (LSF)
 - Is file system designed to address exponentially improving CPU speed and slowly improving HDD speed. ^[1]

Refernces:

- 1) Ousterhout J. (1991). The Design and Implementation of a Log-Structured File System. link
- NTFS (Windows)

- Is an acronym for NT File System
- Was first introduced in 1993, as part of Windows NT 3.1 Release $^{\left[1\right]}$
- Replaces traditional FAT (File Allocation Table) file system
- Is used in Windows NT, Windows 2000 and above [1]

computerhope.com

Refernces:

- 1) Datto: What Is NTFS and How Does It Work?, link
- MFT Record

- Is also called Master File Table Record [1]
- Contains records about every other file and directory in NTFS volume [1]
- Is a table of metadata like inodes but more flexible

Figure 2: NTFS partition structure.

cse.scu.edu, COEN 252 Computer Forensics, NTFS

Refernces:

1) Webopedia : MFT - Master File Table, link

2) Santa Clara University: COEN 252 Computer Forensics, link