Játék fejlesztési dokumentáció

Mérési jegyzőkönyv, feladat leírása

Szoba/részfeladat/feladat neve: Halálsor – Szkenner

A mérés időpontja, helye: 2025.04.04 – Gellért Escape, Operátori szoba

Mérés megnevezése:

Szkenner banándugós frekvencia mérő elektronika tesztelése és mérése

A mérést végezte: Üveges Krisztián Tibor

Mérést ellenőrző: Varga Dávid

Játék leírása:

A feladatot egy falra szerelt dobozban tudják a játékosok megfejteni.

A doboz paraméterei: 155 x 72 x 243[mm], kinyitható zsanéros megoldással van összerakva. Oldalt egy számzáras lakat fogja össze. Két részből áll a feladat. Az első amikor összecsukott, zárt állapotban a kék gomb megnyomásával egy LED felvillanásai megszámolásával kinyissák a lakatot. Utána egy kulcs elforgatásával és három megfelelő banándugós összekötéssel abszolválják a feladat részt.

Két különálló mikrovezérlős körből áll a rendszer. A külső kijelző, gomb és led villogásának vezérléséért egy arduino nano felel, ami független működésű a táp feszültség ráadásával. Ellenben a feladat második része már kapcsolatban van a terem vezérlővel és komplexebb elektronikát tartlamaz.

Funkció blokk diagramm:

Elektronikai kapcsolás:

Kapcsolási rajz 1 oszcillátorok és mikrovezérlő

Alkatrész lista:

Alkatrészek	Érték	Furatszerelt	Mennyiség
C1	100uF	0805	1
C2-4-5	100nF	0805	3
C3-6-8	10nF	0805	3
R1-2-3-4	1kΩ	0805	4
R5	100 kΩ	0805	1
R6	10 kΩ	0805	1
RP1	1k kΩ	lin, THT	1
RP2	10 kΩ	lin, THT	1
RP3	100 kΩ	lin, THT	1

Oszcillátor frekvencia beállító alkatrészek számolása:

$$f = 50kHz$$

$$f = \frac{1,44}{(Ra + 2Rb) \cdot C}$$

Legyen C=10nF

$$50kHz = \frac{1,44}{(Ra + 2Rb) \cdot 10nF}$$
$$(Ra + 2Rb) = \frac{1,44}{50kHz \cdot 10nF} = 2880$$

 $R_{a1} = 1k \Omega$

 $R_{b1} = 940 \Omega$, potencióméter értéke

$$t_{HIGH} = 0.693 \cdot 1940 \Omega \cdot 10 nF = 1.3442 \cdot 10^{-5} s$$

$$t_{LOW} = 0.693 \cdot 940 \ \Omega \cdot 10 nF = 6.5142 \cdot 10^{-6} s$$

$$T = t_H + t_L = 0.693 \cdot (R_{a1} + 2R_{b1}) = 0.693 \cdot (1000 + 1880) = 50000 Hz$$

$$f = 10kHz$$

$$f = \frac{1,44}{(Ra + 2Rb) \cdot C}$$

$$10kHz = \frac{1,44}{(Ra + 2Rb) \cdot 10nF}$$
$$(Ra + 2Rb) = \frac{1,44}{10kHz \cdot 10nF} = 1440$$

 $R_{a1}=10k\;\Omega$

 $R_{b1} = 2.2k \Omega$ potencióméter értéke

$$t_{HIGH} = 0,693 \cdot 12,2k \Omega \cdot 10nF = 8,4546 \cdot 10^{-5}s$$

$$t_{LOW} = 0.693 \cdot 2.2 \text{k} \Omega \cdot 10 \text{nF} = 1.5246 \cdot 10^{-5} \text{s}$$

$$T = t_H + t_L = 0.693 \cdot (R_{a1} + 2 R_{b1}) = 0.693 \cdot (1000 + 1880) = 9979 Hz$$

$$f = \frac{1}{tH + tL} = 10020,4334 \text{ Hz}$$

Oszcillátor frekvencia beállító alkatrészek számolása:

$$f = 1kHz$$

$$f = \frac{1,44}{(Ra + 2Rb) \cdot C}$$

Legyen C=10nF

$$100kHz = \frac{1,44}{(Ra + 2Rb) \cdot 10nF}$$
$$(Ra + 2Rb) = \frac{1,44}{100kHz \cdot 10nF} = 1440$$

$$\begin{aligned} R_{a1} &= 100 \ k\Omega \\ R_{b1} &= 22 \ k\Omega \end{aligned}$$

$$t_{HIGH}\!=0,\!693$$
 ' $122k~\Omega$ ' $10nF=8,\!4546$ ' $10^{\text{-4}}s$

$$t_{LOW}\!\!=\,0,\!693$$
 ' $22k~\Omega$ ' $10nF$ = $1,\!5246$ ' $10^{\text{-4}}s$

$$T = t_H + t_L = 0.693 \cdot (R_{a1} + 2 R_{b1}) = 0.693 \cdot (1000 + 1880) = 1002,084 Hz$$

Beültetés utáni mért értékek:

Ellenállás értékek a panelen a földhöz képest

DIP-8 foglalat lábai	Mért érték [Ω]	
Pin 1	0.4	
Pin 2	826k-928k	
Pin 3	2,7M	
Pin 4	$940k \pm 0.1k$	
Pin 5	47,5k-48k	
Pin 6	800kΩ-900kΩ	
Pin 7	800kΩ-900kΩ	
Pin 8	940kΩ	

555 időzítő integrált áramkör nélkül feszültségek fölhöz mérve

DIP-8 foglalat lábai	Mért érték [V]
Pin 1	0
Pin 2	$VCC \pm 10-20 mV$
Pin 3	0
Pin 4	$VCC \pm 10-20 mV$
Pin 5	0
Pin 6	VCC
Pin 7	VCC
Pin 8	VCC

MCU, minden alkatrésszel

DIP-8 foglalat lábai	Mért érték [V]
Pin 1	0
Pin 2	$2,4 \pm 100 \text{mV}$
Pin 3	3,3-4,1
Pin 4	VCC
Pin 5	$3.1 \pm 50 \text{mV}$
Pin 6	$2,4 \pm 50 \text{mV}$
Pin 7	$2,4 \pm 50 \text{mV}$
Pin 8	VCC

Mérési eredmény 3 555 IC 50kHz

Potencióméterek beállított értékei:

1k, lin: 851Ω

 $10k,\,lin:2354\Omega$

100k, lin 27,65k Ω

Mérési tapasztalat:

A frekvenciákat nagyon közel lehet hangolni a számított és kívánt értékhez. A négyszögjelek elfogadhatóak, felfutás alatt van egy kis dőlése. Minimális prellegés tapasztalható, hamar beáll a magas jelszint. A jel kitöltési tényezője szándékosan alacsony, az MCU nem kitöltést, hanem frekvenciát számol. $U_{pp}=4,4V$ mindegyik oszcillálásnál. Használat közben kiderül ,hogy két összekötött oscillátor mennyire fogja bírni, elvileg a belső áramköre nem sérülhet. Jövőben erre figyelni kell, hiba esetén érdemes lenne scotty diódákat alkalmazni. A kulcs GPIO port-nak kell bekötni a föld felé egy nagy ellenállást, mert könnyen bebillen. $100 k\Omega$ ellenállás lett a csokiba párhuzamosan a föld felé be helyezve, úgy jól működik. Hogy még kisebb áramoljon a kimeneten $1 M\Omega$ optimálisabb lenne. A Nyákon a csokik feletti kiírásnál a 10 és 50Khz fel lett cserélve! Az összekötés jó, csak a feliratot tettem rossz helyre erre a gyártás után lettem figyelmes sajnos.

Nyákterv:

3D modell 1 Felső réteg

3D modell 2 Alsó réteg

Táblázat 1 Nyomtatott áramkör gyártási adatai

Gerber file:	Gerber_Halalsor-Szkenner_PCB_Szkenner_2025-03-17_Y1	Build Time:	2 days
Base Material:	FR-4	Layers:	2
Dimension:	94.1 mm* 61 mm 94 .11mm* 60.96mm	PCB Qty:	5
Product Type:	Industrial/Consumer electronics	Different Design:	1
Delivery Format:	Single PCB	PCB Thickness:	1.6mm
Specify Stackup:	no	Layer Sequence:	
PCB Color:	Green	Silkscreen:	White
Material Type:	FR4-Standard TG 135-140	Via Covering:	Tented
Surface Finish:	HASL(with lead)	Deburring/Edge rounding:	No
Outer Copper Weight:	1 oz	Gold Fingers:	No
30°finger chamfered:	No	Electrical Test:	Flying Probe Fully Test
Castellated Holes:	no	Edge Plating:	No
Mark on PCB	Order Number	Blind Slot:	No
Min via hole size/diameter:	0.3mm/(0.4/0.45mm)	4-Wire Kelvin Test:	No
Paper between PCBs:	No	Appearance Quality:	IPC Class 2 Standard
Confirm Production file:	No	Silkscreen Technology:	Ink-jet/Screen Printing Silkscreen
Package Box:	With JLCPCB logo	Inspection Report:	No
Board Outline Tolerance:	±0.2mm(Regular)		

Elkészült vég produktum:

Kép 1 Alkatrész beültetés után a NYÁK

Kép 2 Első éles teszt

Kép 3 Helyes összeköttetés esetén világító led

```
AVR C kód:
/* Halálsor, szkenner mikrovezérlő kód
  Üveges Krisztián Tibor
  ATmega328P Lábkiosztás
  PB0 / pin 8 - 50 kHz jel
  PD2 / pin 2 - 10 kHz jel
  PD3 / pin 3 - 1 kHz jel
  PB1 / pin 9 - 50k check led
  PB4 / pin 10 - 10k check led
  PB3 / pin 11 - 1k check led
  PD4 / pin 4 - abszolvált feladat kimenet
  PD5 / pin 7 - kulcs beolvasás
  Jel vizsgálat
  Timer1 - 100 kHz
  Interrupt - 10 kHz, 1 kHz
// Beálltások, inicializáció
#define F_CPU 16000000UL // 16 MHz órajel
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <stdbool.h>
#include <stdio.h>
uint8 t 11 = 0, 12 = 0, 13 = 0;
uint8_t z1 = 0, z2 = 0, z3 = 0;
uint8 t check1 = 0, check2 = 0, check3 = 0;
// Timer 1 és megszakítások regiszter beállításai
void timer1 init()
 TCCR1B |= (1 << CS10); // Előosztó = 1 -->(16 MHz)
 TCCR1B = (1 << ICES1); // Felfutó él érzékelés
 TIMSK1 |= (1 << ICIE1); // Bemeneti megszakítás engedélyező regiszter
 EIMSK |= (1 << INT0) | (1 << INT1); // megszakítás engedélyezés PD2 & PD3
 EICRA |= (1 << ISC01) | (1 << ISC00); // felfutó él PD2
 EICRA |= (1 << ISC11) | (1 << ISC10); // felfutó él PD3
ISR(TIMER1_CAPT_vect)
  static uint16_t last_value = 0;
  uint16_t current_value = ICR1;
  uint16 t period = current value - last value;
  last_value = current_value;
  if(period < 352 && period > 288)
      check1++;
      if(check 1 \ge 3)
       z1 = 1;
       11 = 1;
       check1 = 0;
     }else{
     11 = 0;
      z1 = 0;
      check1 = 0;
```

```
ISR(INT0 vect)
  static uint16_t last_value = 0;
  uint16_t current_value = TCNT1;
  uint16_t period = current_value - last_value;
  last_value = current_value;
  if(period > 1550 && period < 1650)
      check2++;
      if(check2>3)
       z2 = 1;
       12 = 1;
       check2 = 0;
     }else{
     12 = 0;
      z^2 = 0;
      check2 = 0;
ISR(INT1_vect)
static uint16_t last_value = 0;
uint16_t current_value = TCNT1;
uint16_t period = current_value - last_value;
last_value = current_value;
if(period > 15500 && period < 16500)
      check3++;
      if(check3>3)
       z3 = 1;
       13 = 1;
       check3 = 0;
     }else{
     13 = 0;
      z3 = 0;
      check3 = 0;
}
```



```
int main(void)
  DDRB = 0b00001110;
  DDRD = 0b00010000;
  PORTB = 0;
  PORTD = 0;
  Serial.begin(9600);
  timer1_init();
  sei();
  Serial.println ("Gellert Escape - Halalsor szkenner doboz");
  Serial.print (" Version 1.0 ");
  Serial.println (" Uveges Krisztian Tibor ");
  Serial.print (" Allapot valtozasra var...");
 while (1)
    check();
    if ((z1 == 1) \&\& (z2 == 1) \&\& (z3 == 1) \&\& (PIND \& (1 << PD7)))
       Serial.println(" - Helyes banándugó bekötés! ");
       PORTD = (1 << PD4);
       Serial.println(" - Feladat abszolvalva ");
       _delay_ms(500);
    } else {
      PORTD &= ~(1 << PD4);
return 0;
int check(void)
   // 50kHz
   if(11 == 1)
   PORTB \models (1 << PB1);
   }else{
   PORTB &= \sim(1 << PB1);
   // 10kHz
   if(12 == 1)
   PORTB = (1 << PB2);
   }else{
   PORTB &= ~(1 << PB2);
   // 1kHz
   if(13 == 1)
   PORTB |= (1 << PB3);
   }else{
   PORTB &= ~(1 << PB3);
   }
```

