Wydział	Dzien/godzina		Nr. zespołu
EiTI	Wtorek 8.15-11.00	2	
	Data: 08.11.2011		
Nazwisko i Imię	Ocena z przygotowania	Ocena ze sprawozdania	Ocena
1. Król Jakub			
2. Obszański Grzegorz			
3. Zawiśla Mateusz			
Prowadzący		Podpis prowadzącego	
Jarosław Suszek:			

1 Wstęp teoretyczny

1.1 Hallotron

Hallotron, to cienka warstwa półprzewodnika naparowana na nieprzewodzące podłoże. Jej wymiary:

- $\bullet \ d$ grubość naparowanej warstwy
- $\bullet \ c$ długość naparowanej warstwy
- $\bullet \ l$ szerokość naparowanej warstwy

1.2 Efekt Halla

Jeżeli hallotron włączymy w obwód prądu stałego o natężeniu I_s (prąd sterujący) i umieścimy w polu magnetycznym, o indukcji B, to między punktami na bocznych powierzchniach płytki wytworzy się różnica potencjałów U_H , zwana napięciem Halla.

1.3 Wyjaśnienie efektu

Na ładunek elektryczny q poruszający się z prędkością v w tym polu magnetycznym działa siła Lorentza F_L :

$$F_L = q\vec{v} \times \vec{B} \tag{1}$$

ze wzoru 1 wynika, że siła F_L jest prostopadła do obu wektorów. Siła Lorentza działająca na elektrony zakłóca ich ruch wzdłuż linii pola elektrycznego. Nośniki te odchylają się w kierunku działania siły Lorentza. Gromadzą się do momentu, kiedy działanie ich pola elektrycznego równoważy siłę Lorentza. Wspomniane pole elektryczne działa na ładunki nośników prądu I_s siłą

$$F_E = \frac{qU_h}{c} \tag{2}$$

Zatem w/w moment, następuje gdy $F_E = F_L$

$$\frac{qU_H}{c} = qvB \tag{3}$$

 Stad

$$U_H = vcd (4)$$

Niech n będzie liczbą nośników prądu a e ładunkiem elementarnym nośnika prądu. Z definicji natężenia prądu:

$$I_{s} = \frac{Q}{t}$$

$$Q = nVe = ncdle$$
(5)

$$I_s = \frac{ncdle}{t} = ncdev \tag{6}$$

$$v = \frac{I_s}{ncde} \tag{7}$$

Wstawiając wyliczone v do wzoru 4 otrzymujemy

$$U_H = \frac{BI_s}{ned} \tag{8}$$

Z prawa Ohma:

$$v = \mu \frac{U}{I} \tag{9}$$

Gdzie μ - ruchliwość nośników prądu, U - spadek napięcia wzdłuż hallotronu

Po wstawieniu do wzoru 6 dostajemy

$$I_s = ne\left(\mu \frac{U}{I}\right) dc \tag{10}$$

Dzięki pomiarowi napięcia Halla jesteśmy w stanie wyznaczyć koncentrację nośników oraz ich ruchliwość. Ze wzorów 8 i 10 wyprowadzamy ich zależności od łatwo mierzalnych wielkości.

$$n = \frac{I_s B}{e d U_H} \tag{11}$$

$$\mu = \frac{U_H I}{UcB} \tag{12}$$

$$R_H = \frac{I}{ne\mu cd} \tag{13}$$

2 Wykaz przyrządów i schemat pomiarowy

2.1 Wykaz przyrządów

- \bullet Hallotron wymiary
 - $-d=0,2\mu m$
 - $-l = 40 \mu m$
 - $-c = 150 \mu m$
- \bullet elektromagnes
- zasilacz elektromagnesu i zasilacz stabilizowany
- 3 woltomierze i amperomierz (multimetry cyfrowe)
- adapter hallotronu

2.2 Schemat pomiarowy

3 Prezentacja wyników pomiarów

n	$U_H[mV]$	U	I_s	$U_{100\Omega}$	n	$U_H[mV]$	U	I_s	$U_{100\Omega}$
1	0.0010	0.0158	0.04		1	0.0023	0.0160	0.040	
2	0.0075	0.1229	0.32		2	0.0181	0.1230	0.315	
3	0.0141	0.231	0.61		3	0.0348	0.238	0.613	
4	0.0176	0.286	0.76		4	0.0435	0.298	0.768	
5	0.0227	0.369	0.98		5	0.0553	0.377	0.975	
6	0.0279	0.456	1.21		6	0.0680	0.466	1.208	
7	0.0325	0.530	1.41		7	0.0796	0.546	1.418	
8	0.0375	0.611	1.64		8	0.0922	0.631	1.645	
9	0.0423	0.691	1.86		9	0.1037	0.710	1.859	
10	0.0473	0.772	2.09		10	0.1156	0.793	2.09	
11	0.0520	0.849	2.31		11	0.1270	0.872	2.31	
12	0.0567	0.926	2.53		12	0.1386	0.951	2.53	
13	0.0612	1.00	2.75		13	0.1496	1.028	2.75	
14	0.0659	1.07	2.98		14	0.1610	1.108	2.98	
15	0.0703	1.14	3.20	0.313	15	0.1714	1.180	3.20	0.314
16	0.0745	1.21	3.42		16	0.1816	1.249	3.42	
17	0.0790	1.29	3.65		17	0.1922	1.325	3.65	
18	0.0830	1.36	3.87		18	0.201	1.391	3.86	
19	0.0870	1.42	4.09		19	0.212	1.465	4.10	
20	0.0909	1.48	4.31		20	0.222	1.531	4.32	
21	0.0946	1.55	4.53		21	0.230	1.590	4.54	
22	0.0986	1.61	4.76		22	0.239	1.653	4.76	
23	0.1021	1.67	4.98		23	0.247	1.718	4.99	
24	0.1056	1.73	5.21		24	0.255	1.774	5.20	
25	0.1090	1.79	5.43		25	0.265	1.840	5.44	
26	0.1123	1.84	5.66		26	0.271	1.889	5.65	
27	0.1155	1.90	5.88		27	0.281	1.945	5.88	
28	0.1185	1.95	6.11		28	0.288	2.00	6.11	
29	0.1216	2.00	6.33		29	0.296	2.05	6.34	
30	0.1246	2.05	6.56		30	0.302	2.10	6.55	
	(a) Dla $I =$	= 0,1A, B =	(b) Dla ${\cal I}$	=0,2A,B	=0,0257	ŗ			

n	$U_H[mV]$	U	I_s	$U_{100\Omega}$	n	$U_H[mV]$	U	I_s	$U_{100\Omega}$
1	0.0037	0.0179	0.044		1	0.0048	0.0178	0.042	
2	0.0281	0.1345	0.332		2	0.0385	0.1435	0.336	
3	0.0517	0.246	0.610		3	0.0697	0.260	0.610	
4	0.0650	0.305	0.756		4	0.0863	0.321	0.756	
5	0.0828	0.393	0.977		5	0.1109	0.413	0.975	
6	0.1017	0.484	1.205		6	0.1358	0.506	1.198	
7	0.1193	0.568	1.420		7	0.1632	0.598	1.419	
8	0.1370	0.652	1.642		8	0.1857	0.693	1.651	
9	0.1548	0.740	1.864		9	0.208	0.777	1.861	
10	0.1734	0.828	2.10		10	0.232	0.865	2.08	
11	0.1898	0.905	2.30		11	0.257	0.958	2.32	
12	0.207	0.989	2.53		12	0.278	1.038	2.53	
13	0.224	1.068	2.75		13	0.300	1.120	2.74	
14	0.241	1.147	2.98		14	0.322	1.203	2.97	
15	0.256	1.223	3.19	0.313	15	0.344	1.285	3.20	0.314
16	0.271	1.299	3.43		16	0.364	1.362	3.42	
17	0.287	1.369	3.64		17	0.385	1.438	3.64	
18	0.302	1.445	3.87		18	0.404	1.511	3.86	
19	0.317	1.513	4.08		19	0.424	1.586	4.09	
20	0.331	1.583	4.32		20	0.446	1.657	4.31	
21	0.344	1.648	4.54		21	0.462	1.726	4.53	
22	0.357	1.717	4.77		22	0.480	1.796	4.76	
23	0.370	1.775	4.97		23	0.496	1.858	4.97	
24	0.383	1.835	5.20		24	0.513	1.924	5.21	
25	0.396	1.899	5.43		25	0.528	1.981	5.42	
26	0.408	1.957	5.66		26	0.544	2.04	5.65	
27	0.418	2.01	5.89		27	0.558	2.10	5.88	
28	0.429	2.06	6.11		28	0.574	2.15	6.10	
29	0.439	2.12	6.34		29	0.587	2.21	6.32	
30	0.450	2.17	6.57		30	0.600	2.26	6.55	

(a) Dla I = 0, 3A, B = 0, 04T

(b) Dla I = 0, 4A, B = 0, 05T

4 Obliczenia i wykresy

Obliczeń dokonaliśmy metodą najmniejszych kwadratów. Wykresy sporządzone za pomocą tych obliczeń znajdują się poniżej. Niepewność miernika liczyliśmy według wzoru

$$1,2\% \cdot \operatorname{wartość} + 0,001[V] \tag{14}$$

 R_h liczyliśmy dwoma sposobami: z proporcji

$$R_h = \frac{U \cdot 100\Omega}{U_{w100\Omega}} \tag{15}$$

i ze wzoru 13. Wartości policzone dwoma sposobami dla każdego podpunktu są do siebie zbliżone.

4.1 $I_m = 0, 1$

$$n = \frac{51,997 \cdot 10^{-3} \cdot 0,0125T}{0,2\mu m \cdot 1,602 \cdot 10^{-19}C} = 2,029(0,032) \cdot 10^{22}$$
(16)

$$\mu = \frac{0,0609 \cdot 0,1A}{40 \cdot 10^{-6}m \cdot 0,0125T} = 12180(19)\frac{A}{mT}$$
(17)

Z proporcji

$$R_h = \frac{1,14V * 100\Omega}{0,313V} = 364,22(3,38)\Omega \tag{18}$$

$$R_h = \frac{0.1}{2,029 \cdot 10^{22} \cdot 1,602 \cdot 10^{-19} \cdot 12180 \cdot 40 \cdot 0, 2 \cdot 10^{-12}} = 315,73(2,96)\Omega$$
 (19)

Rysunek 1: Wykres $U_H(I_S)$ dla $I_m = 0, 1$

Rysunek 2: Wykres $U_H(U)$ dla $I_m=0,1$

4.2 $I_m = 0, 2$

$$n = 1,675(0,027) \cdot 10^{22} \tag{20}$$

$$\mu = 28720(42) \frac{A}{mT} \tag{21}$$

Z proporcji:

$$R_h = 375, 80(3, 52)\Omega \tag{22}$$

$$R_h = 324,3981(3,06)\Omega \tag{23}$$

Rysunek 3: Wykres $U_H(I_S)$ dla $I_m=0,2$

Rysunek 4: Wykres $U_H(U)$ dla $I_m=0,2$

4.3 $I_m = 0, 3$

$$n = 1,796(0,023) \cdot 10^{22} \tag{24}$$

$$\mu = 38925(51)\frac{A}{mT} \tag{25}$$

Z proporcji:

$$R_h = 390, 73(3, 66)\Omega \tag{26}$$

$$R_h = 334,8373(3,12)\Omega \tag{27}$$

Rysunek 5: Wykres $U_H(I_S)$ dla $I_m=0,3$

Rysunek 6: Wykres $U_H({\cal U})$ dla $I_m=0,3$

4.4 $I_m = 0, 4$

$$n = 1,678(0,024) \cdot 10^{22} \tag{28}$$

$$\mu = 53194(73) \frac{A}{mT} \tag{29}$$

Z proporcji:

$$R_h = 409, 24(4,02)\Omega \tag{30}$$

$$R_h = 349,6656(3,21)\Omega \tag{31}$$

Rysunek 7: Wykres $U_H({\cal I}_S)$ dla ${\cal I}_m=0,4$

Rysunek 8: Wykres $U_H(U)$ dla $I_m = 0, 4$

5 Wnioski

W ćwiczeniu zapoznaliśmy się ze zjawiskiem efektu Halla. Zgodnie z przewidywaniami teoretycznymi, napięcie Halla U_H w naszych pomiarach jest proporcjonalne do wielkości indukcji magnetycznej oraz natężenia prądu sterującego.

Wyznaczona przez nas koncentracja elektronów swobodnych n=wstawic daje nam możliwość ustalenia właściwości elektrycznych metalu, z którego wykonana została płytka hallotronu. Zajęcia laboratoryjne dały nam odpowiedź na pytnie o powód tak szerokiego zastosowania hallotronu w praktyce.

Przeprowadzone ćwiczenia potwierdziły liniowość zależności (wykresy niemalże liniowe), a więc zgodność z założeniami teoretycznymi.