The master method

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Fall 2009 CS 2233 Discr. Math. Structures

T(n) = a T(n/b) + f(n)Case 1: $f(n) \in O(n^{\log n})$

Case 1: $f(n) \in O(n^{\log_b a - \varepsilon})$

 $\Rightarrow T(n) \in \Theta(n^{\log_b a}) .$

Master theorem

CASE 2: $f(n) \in \Theta(n^{\log_b a})$ $\Rightarrow T(n) \in \Theta(n^{\log_b a} \log n)$.

CASE 3: $f(n) \in \Omega(n^{\log_b a + \varepsilon})$ and $af(n/b) \le cf(n)$

for some c < 1

$$\Rightarrow T(n) \in \Theta(f(n))$$
.

Merge sort: a = 2, $b = 2 \implies n^{\log_b a} = n$

 \Rightarrow Case $2 \Rightarrow T(n) \in \Theta(n \log n)$.

Fall 2009

CS 2233 Discr. Math. Structures

Three common cases

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) \in O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log_b a}$ (by an n^{ε} factor).

Solution: $T(n) \in \Theta(n^{\log_b a})$.

- 2. $f(n) \in \Theta(n^{\log_b a})$.
 - f(n) and $n^{\log_b a}$ grow at similar rates.

Solution: $T(n) \in \Theta(n^{\log_b a} \log n)$.

Fall 2009 CS 2233 Discr. Math. Structures

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) \in \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor),

and f(n) satisfies the regularity condition that $a f(n/b) \le c f(n)$ for some constant c < 1.

Solution: $T(n) \in \Theta(f(n))$.

Fall 2009

CS 2233 Discr. Math. Structures

4

Examples

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
CASE 1: $f(n) \in O(n^{2-\epsilon})$ for $\epsilon = 1$.
 $\therefore T(n) \in \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
CASE 2: $f(n) \in \Theta(n^2).$
 $\therefore T(n) \in \Theta(n^2 \log n).$

Fall 2009

CS 2233 Discr. Math. Structures

Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
CASE 3: $f(n) \in \Omega(n^{2+\epsilon})$ for $\epsilon = 1$
and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) \in \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\log n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\log n.$
Master method does not apply.

Fall 2009

CS 2233 Discr. Math. Structures

-