

The Simulation
Paradigm and
Deniable
Communications

Rosario Gennaro

Talk Outline

- Survey the notion of deniable or off-the-record electronic communication
 - Deniable Authentication [DDN]
 - Deniability as Simulation [Pass]
 - Deniable Authenticated Key Exchange [DGK]
- New results on the deniability of current internet messaging apps
 - This new work is in cooperation with my doctoral students Nihal Vatandas and Bertrand Ithurburn (CUNY) and Hugo Krawczyk (Algorand Foundation)

Deniable Communication

Two parties communicate

- They authenticate each other
 - they verify each other's identity
- They should not be able to prove that to a third party
 - Off-the-record communication

The Grove School of Engineering

Parties hold secret keys

 Attach to messages a function of the key that only the party can compute

Symmetric Key

- Both Alice and Bob hold the same key
- Messages authenticated by Alice could have also be authenticated by Bob
- Therefore deniable

Asymmetric Key

- Alice holds a secret key matching a public key associated to her
- She attaches a tag that only she can compute
 - o e.g. a digital signature
- In general non-repudiable

Deniable Authentication

Asymmetric Key (DDN)

- Alice's messages prove her identity only to Bob
- What Bob sees could have been produced by himself

Alice said m, see she also attached t, she is the only one who could decrypt k

Deniable Authentication (DDN)

What Bob sees could have been produced by himself

Zero-Knowledge (GMR)

What Bob sees could have been produced by himself

ZK Examples

- A graph is 3-colorable
- Alice knows the factorization of a large number
- A Boolean formula is satisfiable
- Any NP problem can be proven in ZK

3-Colorability ZK Example

Asks to see the colors of a random edge

Bob accepts if the colors are different

3-Colorability ZK Example

Why does it work?

- If graph is not 3-colorable at least one edge must have same colors.
 - Probability 1/m to catch Alice
 - Can be made smaller by repetition
- Bob only sees an edge with two different random colors
 - Colors are permuted for each repetition
 - Does not allow Bob to learn a3-coloring of the graph

3-Colorability ZK Simulation

Does not know 3-coloring

What if Bob asks the wrong edge?

3-Colorability ZK Simulation

Two classic simulation techniques

- Rewinding:
 - Simulator brings Bob back two steps
 - Change committed values so that requested edge is correct
- Random Oracle:
 - Commitment is done via a random function
 - Simulator is allowed to "program" the random function
 - Opens commitment at will to make it two different colors

Isn't that cheating?

Short answer: Yes

Long answer: it still proves that Bob learns nothing

- Simulator is a *thought experiment*
- We can set up a world where the conversation between Alice and Bob can be simulated without knowing any of the secrets of Alice
 - Therefore the transcript itself contains no information about those secrets.
- That's where our judge, who decides if the transcripts look the same, lives

Is that OK for Deniability?

Simulation for ZK vs Deniability

Pass 2003

- Deniability Simulation must work in the real world
 - Simulation must be straight-line
 - Rewinding is not allowed
 - Common Parameters are passed to the simulator and judge as input
 - The simulator is not allowed to choose them
 - Not allowed to "program" a random oracle
- Strong notion
 - Requires strong assumptions to be efficiently realized

Encryption-Based Authentication

Simulator can't decrypt ciphertext

- Must assume encryption is plaintext-aware
 - Valid ciphertexts can only be created if sender knows the corresponding plaintext
- Formally there is an extractor
 - When Bob outputs a ciphertext the extractor outputs the corresponding plaintext
- [DGK'06]

Communication Sessions

Deniable AKE [DGK'06]

Deniable AKE [DGK'06]

- An Authenticated Key Exchange Protocol is deniable for Alice
 - If there exists a simulator running on input only Alice's public key
 - Not her secret key
 - Simulator interacts with Bob (possibly malicious)
 - Real-world simulation
 - Creates a view that is indistinguishable from the real view
 - View must include the session key
 - Guarantees communication session is deniable no matter how the key is used

Deniability in AKE

- Deniability was an important concern early on in the design of AKE
 - o Informal discussions without a formal definition
- One of the first attempts to formalize and design deniable AKE was the influential Off-the-Record (OTR) protocol [BGB'04]

- Primary design consideration in new generation AKE protocols
 - Used in current messaging applications such as Signal, Telegram etc.

SKEME [K'96]

A Diffie-Hellman Key Exchange with encryption-based deniable authentication

$$K'=Y^{x}=g^{xy}$$

 $K=H(a,b,K')$

$$K'=X^y=g^{xy}$$
 $K=H(a,b,K')$

Simulation for SKEME [DGK'96]

Uses the plaintext-awareness of the encryption scheme

Deniable Communication Sessions

We should be done, right?

Signal and 3DH

- New messaging protocols run a different AKE called 3DH
- Goal to avoid public-key encryption to authenticate
 - Potentially more expensive
 - Longer messages
 - Plaintext-awareness assumption
 - Bob's message depends on Alice's public key
 - Complicates an asynchronous mode in which Bob may not yet know with whom he is going to communicate
- But what type of deniable authentication is then used?
 - In spite of widely claimed and assumed deniability no formal analysis has appeared so far

Triple Diffie-Hellman: A Diffie-Hellman Key Exchange authenticated via two additional Diffie-Hellman values.

Simulation for 3DH?

Simulator does **not** know **a** or **y**

Simulation is impossible in general

but I couldn't compute it

- Bob chooses Y so that he does not know y
 - E.g. hashing today's newspaper
- Bob cannot compute g^{ay}
 - But this value is recognizable as correct
- In technical terms

Judge

b

- Computational Diffie-Hellman is hard
- Decisional Diffie-Hellman is easy
- We know groups where this is the case

Only Alice who knows *a* could do that!

What's the problem?

- In Signal, 3DH is implemented with $K=H(Y^a,B^x,Y^x)$ and in a group where DDH is assumed to be hard
- Still not sufficient to complete simulation since *Y* is adversarially sampled
 - We need to rule out a malicious sampling algorithm that
 - Chooses Y such that $H(Y^a, B^x, Y^x)$ is hard to compute but easy to detect as correct
 - Hardness of DDH does not help since Y is adversarially sampled
 - Modeling H as a random oracle does not help either as we cannot detect the correct query to find Y^{α}

of New York

Simulator does not know *a* or *y* simulation

$$K=H(Y^a,B^x,Y^x)$$

 $K=random$

Simulation for 3DH

- We assume the existence of an extractor such that
 - When Bob outputs Y
 - The extractor outputs either *Y*^a
 - This means Bob knows Y^a and the protocol is deniable since that means there is no proof he got it from Alice
 - Or the extractor outputs NIL
 - This means that nobody can distinguish the key K from a random value and therefore again what Bob presents to the judge is meaningless
- This is a strong assumption
 - Related to the *Knowledge of Exponent Assumption*
 - We can reasonably assume that it holds for the groups used by Signal

Alternatives to 3DH

- Signal allows X3DH
 - Asynchronous version of 3DH
- Bob loads *Y* on a server when he goes offline
 - This allows anybody to send him a message while he is offline
 - Read Y from the server
 - Run 3DH to compute K
 - Encyrypt/Authenticate the message with *K* and leave it with the server for Bob
- Important Property:
 - Bob's AKE message cannot depend on the identity of the party he will communicate with
 - Rules out SKEME

Alternatives to 3DH

Prove knowledge of *y*, via a signature

Prototype implemented by undergraduates at CCNY (J.Moore, K.Natavio, N.Rea, A.Timashova)

Simulation for 3DH-Alt

Prove knowledge of *y*, via a signature

Conclusions

- Deniable off-the-record communication is crucial to allow truly anonymous interaction
 - Important societal implications: whistleblowers, human right activism, journalism, etc
- There is a mature body of research that formally defines what this means
 - Problem is hard and require strong assumptions on the hardness of certain computational tasks
 - The stronger the assumption the least confidence we have that it holds
 - We need to keep looking for solutions with the weakest and most reasonable assumption
- Trust but verify
 - o Protocols may seem intuitively deniable
 - o Proving their deniability is still necessary

Conclusions

- Simulation is a tool.
 - When we standardize ZK and Simulation we need to keep in mind what the application is
 - Deniability simulation is a different beast than ZK simulation
- Protocols chosen for standardization should be thoroughly vetted and formally proven
 - Signal is an impressive piece of work and was a game-changer in the area of internet messaging apps
 - Yet we should not have let years pass without a formal analysis and proof of one of its most crucial features
 - See [ACD'19] for belated and needed formal analysis of other security features of the Signal protocol