Task 3: Multivariate regression

3.1 Carry out a multiple regression on all the independent variables, and determine the values for all the coefficients, and σ 2

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.553658 5.830699 -0.781 0.435
X1 8.496442 0.005907 1438.265 < 2e-16 ***
X2 9.464434 1.108542 8.538 < 2e-16 ***
X3 9.370785 7.674613 1.221 0.223
X4 9.495708 0.930752 10.202 < 2e-16 ***
X5 9.110205 1.229118 7.412 5.44e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 26.96 on 494 degrees of freedom

Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998

F-statistic: 4.669e+05 on 5 and 494 DF, p-value: < 2.2e-16

Value of a ₀	-4.553658	
Value of a ₁	8.496442	
Value of a ₂	9.464434	
Value of a ₃	9.370785	
Value of a ₄	9.495708	
Value of a ₅	9.110205	
Value of s ²	726.8416	

3.2 Based on the p-values, R2, F value, and correlation matrix Σ , identify which independent variables need to be left out (if any) and go back to step 3.1.

X	P	R ²	F
X1	2.2e-16	0.9997	1.76e+06
X2	0.4107	0.0004259	0.6779
X3	0.6453	0.0004259	0.2122
X4	0.3788	0.001556	0.776
X5	2.351e-14	0.1104	61.82

Correlation Matrix

```
X1 X2 X3 X4 X5 Y
X1 1.00 -0.04 0.02 0.04 0.33 1.00
X2 -0.04 1.00 -0.01 -0.78 0.06 -0.04
X3 0.02 -0.01 1.00 -0.01 0.08 0.02
X4 0.04 -0.78 -0.01 1.00 -0.04 0.04
X5 0.33 0.06 0.08 -0.04 1.00 0.33
Y 1.00 -0.04 0.02 0.04 0.33 1.00
```

Based on the P values, R Square values, F values and the correlation matrix we can remove independent variables X2, X3 and X4 because :

- 1) There P values are greater than 0.05. This means the coefficient is equal to or close to zero , there is no effect. A low p-value (< 0.05) indicates that you can reject the null hypothesis. In other words, a predictor that has a low p-value is statistically significant as the changes in the predictor's value are related to the changes in the response variable and a larger p-value suggests that changes in the predictor are not associated with changes in the response and thus is statistically insignificant. Low P value means we fail to reject the null hypothesis (H_0) .
- 2) There R Square values are quite low and close to zero . The coefficient of determination, or the coefficient of multiple determination for multiple regression needs to be higher for a good fit.
- 3) Correlation Matrix shows a strong negative correlation between X2 and X4 but they are bth discarded from the final model.

Now, our final model becomes:

$$Y = a0 + a1X1 + a2X5 + \epsilon$$

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 44.540412 2.613336 17.044 < 2e-16 ***
X1 8.496310 0.006476 1311.913 < 2e-16 ***
X5 9.523692 1.341205 7.101 4.31e-12 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 29.62 on 497 degrees of freedom

Multiple R-squared: 0.9997, Adjusted R-squared: 0.9997

F-statistic: 9.674e+05 on 2 and 497 DF, p-value: < 2.2e-16

Value of a ₀	44.540412
Value of a ₁	8.496310
Value of a ₂	9.523692
Value of s ²	877.3444

3.3 Do a residuals analysis: a. Do a Q-Q plot of the pdf of the residuals against N(0, s 2). Alternatively, draw the residuals histogram and carry out a χ 2 test that it follows the N(0, s 2). b. Do a scatter plot of the residuals to see if there are any correlation trends.

Final Model

As per the Q-Q plot, the residuals generated by the fitted values are normally distributed. They are a bot skewed near the ends but do not contain any outliers.

The above scatter plot shows that all residuals are centered around residual = 0 line throughout the range of fitted values. Thus, the residuals are not correlated and are random. This implies it is a good fit model. The residuals are normally distributed.

Histogram of residuals(Multi_Variate_Regression_rem_X3)

The histogram shows how the residuals are normally distributed.