Report on Trigger Setup and Measurement Methods Using Tektronix DPO4054

Introduction

This report explains how to configure trigger settings and perform frequency measurements on the Tektronix DPO4054 oscilloscope using Python. It highlights two measurement approaches:

- Immediate Measurement: Measurement requested and returned immediately.
- Normal Slot Measurement: Measurement assigned to a slot on the oscilloscope and retrieved later.

The sample code demonstrates these concepts and the workflow for data acquisition.

Sample Code

```
from Instruments import DPO4054
from time import sleep
# Initialize the oscilloscope with USB resource string
osc = DPO4054('USB0::0x0699::0x0401::C020132::INSTR')
# Disable display on channel 1
osc.set_channel_display(channel=1, display=False)
# Set timebase scale to half the input signal frequency (125 Hz)
osc.set_timebase_scale(1 / (2 * 125)) # Input signal frequency: 125 Hz
# Configure channel 3:
# Label as 'clk', enable display, 1 V/div scale, 0 position, 0 offset,
# DC coupling, full bandwidth, no inversion
osc.setup channel(
    channel=3,
    label='clk',
    display=True,
    scale=1,
    position=0.0,
    offset=0.0,
    coupling='DC',
    bandwidth='FULL',
    invert=False
)
# Setup trigger on channel 3:
# Level set to 90% of 1.8 V digital signal, rising edge, edge trigger mode
osc.trigger setup(channel=3, level=1.8 * 0.9, slope='RISE', mode='EDGE')
# Add immediate frequency measurement on channel 3
osc.add_immediate_measurement(channel=3, meas_type='FREQ', source=1)
```

```
# Start single acquisition sequence with 20 s timeout and 1 µs sampling interval
osc.single_sequence(timeout=20, sampling_interval=1e-6)

# Wait 1 second for acquisition to complete
sleep(1)

# Retrieve and print immediate frequency measurement
print(f'FREQ immediate : {osc.get_immediate_measurement()}')

# Uncomment below to use normal slot measurement instead:
# osc.add_measurement(channel=3, meas_type='FREQ', slot=1, source=1)
# print(f'FREQ : {osc.get_measurement(channel=3, slot=1, source=1)}')

# Return oscilloscope to continuous acquisition mode
osc.set_continuous_acquisition()

# Close the instrument connection
osc.close()
```

Explanation of Measurement Approaches

Immediate Measurement

- What it is: A measurement performed on-demand and returned immediately without pre-assigning a measurement slot.
- In the code:

```
osc.add_immediate_measurement(channel=3, meas_type='FREQ', source=1)
...
print(f'FREQ immediate : {osc.get_immediate_measurement()}')
```

- **Use case:** Quick checks or single-shot measurements where you want the latest value without managing measurement slots.
- Pros:
 - Simple and fast.
 - No need to manage measurement slots.
 - Flexible for scripting.
- Cons:
 - May not be optimal for multiple simultaneous measurements.

Normal Slot Measurement

- What it is: Measurement assigned to a numbered slot on the oscilloscope, continuously updated and queried as needed.
- In the code (commented out):

```
# osc.add_measurement(channel=3, meas_type='FREQ', slot=1, source=1)
# print(f'FREQ : {osc.get_measurement(channel=3, slot=1, source=1)}')
```

- **Use case:** Automated test setups requiring multiple measurements tracked simultaneously.
- Pros:
 - Efficient for repeated or multiple measurements.
 - Allows concurrent measurement management.
- Cons:
 - Requires upfront configuration and slot management.

Workflow Summary

- 1. **Initialize** the oscilloscope connection.
- 2. Configure channels and timebase.
- 3. Set trigger parameters (channel, level, slope, mode).
- 4. Add measurement (immediate or slot-based).
- 5. **Acquire data** (single sequence or continuous).
- 6. Retrieve measurement results.
- 7. **Return to continuous acquisition** if needed.
- 8. **Close** the instrument connection.

Conclusion

The sample code effectively demonstrates how to set up trigger and channel parameters, perform frequency measurements, and manage acquisition modes on the Tektronix DPO4054. Immediate measurements offer a quick and flexible way to get measurement data, while normal slot measurements provide a structured approach for complex testing scenarios.