

http://www.unibo.it/docenti/emilio.tomasini

#### ARGOMENTI TRATTATI

- 1. Calcolo del valore attuale e del valore attuale netto
- 2. Calcolo del tasso di rendimento di un investimento (da affiancare a VAN)
- 3. Scorciatoie per il calcolo del valore attuale
- 4. Interesse composto e interesse semplice
- 5. Tasso di interesse reale e tasso di interesse nominale
- 6. Valutazione di una obbligazione (o azione o immobile)
- 7. Cosa succede quando i tassi cambiano: duration

### 1) CALCOLO DEL VALORE ATTUALE NETTO

- o Gli interessi sono il valore finanziario del tempo
- Il capitale C a scadenza (chiamato montante) gode degli interessi maturati nel corso del tempo
- Quindi alla scadenza t avviene che Ct=Co+Co\*r
- Se raggruppo Co ottengo Ct =  $\text{Co*}(1 + r)^t$
- Questa è la capitalizzazione composta ovvero gli interessi maturano sugli interessi
- Nella capitalizzazione semplice (che vedremo dopo) gli interessi non maturano sugli interessi

#### CALCOLO DEL VALORE ATTUALE NETTO

Valore attuale = fattore di attualizzazione  $\times$  C<sub>1</sub>

Fattore di attualizzazione =  $1/(1 + r)^t$  in cui il tasso di attualizzazione corrisponde al costo opportunità del capitale.

Il fattore di attualizzazione può essere utilizzato per calcolare il valore attuale di qualsiasi flusso di cassa.

$$VA = C_t \times \frac{1}{(1+r)^t}$$

#### CALCOLO DEL VALORE ATTUALE NETTO

Valore attuale netto = VAN

$$VAN = VA - Investimento$$

$$VAN = C_0 + \frac{C_1}{(1+r)}$$

- Esempio
  - Avete appena comprato un computer per € 3 000. Il contratto prevede il pagamento fra due anni a tasso zero. Se potete guadagnare l'8% sul vostro denaro, quanto denaro dovreste mettere da parte oggi per pagare l'importo dovuto alla scadenza dei due anni?

$$VA = \frac{3000}{(1.08)^2} = \text{ } 2 572.02$$



- Esempio
  - Siete certi di ricevere senza alcun rischio € 200 tra due anni. Se il tasso di interesse sui titoli di Stato senza rischio fosse pari a 7.7%, quale sarebbe il valore attuale della somma di denaro futura?

$$VA = \frac{200}{(1.077)^2} = \text{ } 172.42$$

☐ I valori attuali possono essere sommati tra loro per valutare una serie di flussi di cassa.

$$VA = \frac{C_1}{(1+r_1)^1} + \frac{C_2}{(1+r_2)^2} + \dots$$

- Esempio
  - Dati due euro uno ricevuto fra un anno e l'altro fra due anni il valore di ciascuno è comunemente definito fattore di attualizzazione. Assumete che  $r_1 = 7\%$  e  $r_2 = 7.7\%$ .

$$FA_1 = \frac{1,00}{(1+0.07)^{-1}}0.93$$

$$FA_2 = \frac{1,00}{(1+7.7)^2} = 0.86$$

$$VA = FA_1 \times CF_1 + FA_2 \times CF_2$$

$$= 0.83 \times 1 + 0.86 \times 1 = 1.79$$

#### La finanza aziendale si occupa di tempo e incertezza e dei loro effetti sul lavoro

- Dobbiamo occuparci di come si modifica il valore attuale netto **al variare del tempo** in cui sono percepiti i cash flow
- Dobbiamo occuparci di come si modifica il valore attuale netto **al variare del rischio** (incertezza) con cui questi valori sono percepiti in futuro: se il rischio aumenta ovviamente diminuisce il valore netto

#### CALCOLO DEL VALORE ATTUALE: SOLO TEMPO

Valore attuale di un investimento che genera flussi di cassa di € 100 all'anno per due anni ad un costo opportunità di  $r_1 = 7\%$  e  $r_2 = 7.7\%$ .



## DISCOUNTED CASH FLOW (DCF) SOLO TEMPO

$$VA = \frac{C_1}{1+r_1} + \frac{C_2}{(1+r_2)^2} + \frac{C_3}{(1+r_3)^3} + \dots$$

$$VAN = C_0 + VA = C_0 + \sum_{t=0}^{\infty} \frac{C_t}{(1+r_t)^t}$$

#### ESEMPIO SOLO EFFETTI DEL TEMPO

- ☐ Valutazione di un immobile a uso uffici
  - Fase 1: Previsione dei flussi di cassa

Costo dell'immobile = 
$$C_0$$
 = 350  
Prezzo di vendita nell'anno 1 =  $C_1$  = 400

• Fase 2: Stima del costo opportunità del capitale

Se investimenti in titoli di stato a uguale grado di rischio nel mercato dei capitali offrono un rendimento del 7%, allora:

Costo del capitale = r = 7%

#### ESEMPIO SOLO EFFETTI DEL TEMPO

- ☐ Valutazione di un immobile a uso uffici
  - Fase 3: Sconto dei futuri flussi di cassa

$$VA = \frac{C_1}{1+r} = \frac{400}{1+0.07} = 374$$

• Fase 4: Se il valore attuale del flusso di cassa futuro supera l'investimento, proseguite.

$$VAN = C_0 + \frac{C_1}{1+r} = -350 + 374 = 24$$

## Prezzo unico, arbitraggio e curva per scadenza dei tassi di interesse

- Prezzo unico: tutti i beni uguali sono prezzati uguale
- Arbitraggio: se sono prezzati uguali esiste la possibilità di realizzare un arbitraggio ovvero un guadagno immediato senza rischio (esistono gli arbitraggi nella realtà ? Se esistono quanto durano ?)

#### LA CURVA A SCADENZA DEI TASSI DI INTERESSE

Curva dei tassi: un euro oggi è meno di un euro domani che è meno di un euro dopodomani. All'aumentare del tempo i tassi aumentano. Ma le curve dei tassi in situazioni abnormali possono essere invertite (backwardation) piuttosto che crescenti (contango). Noi durante il corso per semplificare assumeremo una curva dei tassi per scadenza PIATTA.



#### CONTANGO E BACKWARDATION SULLE MERCI Per un tasso dell'8% il «IMMAGAZZINABILI» (PETROLI Valore attuale di Fileuro è

di 0,09 a 30 anni e 0,00

Merci immagazzinabili e valore finanziario del tempo sono la stessa cosa: sulle merci c'è il «costo di stoccaggio» sui valori finanziari c'è il «tasso di interesse» ma è più facile parlare di costo di stoccaggio (costo percentuale per trasportare il grano nei silos da una stagione all'altra) che di tasso di interesse (costo percentuale per trasportare un valore finanziario nel tempo)



# Può un prezzo essere negativo? E' successo sul petrolio nell'aprile 2020





Source: Investing.com WOLFSTREET.com

## COSTO DI STOCCAGGIO E TASSO DI INTERESSE SONO LA NAVICELLA CHE CI PERMETTE DI TRASPORTARE MERCI E VALORI NEL TEMPO



#### SOLO EFFETTI DEL RISCHIO SUL VA

- Per depurare il VA dal rischio o agisco a livello di  $C_1$  modificandolo nel valore assoluto per adeguarlo al rischio o a livello di tasso di interesse. Di solito si modifica il tasso di interesse.
- Nel caso modifichi il tasso di interesse (attualizzazione) allora progetti di investimento a rischio più elevato richiedono un più elevato tasso di rendimento.
- ☐ Tassi di rendimento più elevati generano un valore attuale inferiore.
- Nel corso delle lezioni noi per semplificare la materia NON considereremo l'impatto del rischio sul valore attuale

#### RISCHIO E VA

VA di 
$$C_1 = €400$$
 al 12%

$$VA = \frac{400}{1 + 0.12} = 357$$



VA di 
$$C_1 = €400$$
 al 7%

$$VA = \frac{400}{1 + 0.07} = 374$$

#### REGOLA DEL VALORE ATTUALE NETTO

Accettare gli investimenti che hanno un valore attuale netto positivo.

#### **Esempio**

Supponiamo di investire 50 dollari oggi e di riceverne 60 fra un anno. Considerato un costo opportunità del 10%, dovremmo fare l'investimento?

$$VAN = -50 + \frac{60}{1 + 10\%} = \text{ } 4.55$$

# INCONVENIENTI DELLA REGOLA DEL VALORE ATTUALE NETTO

- Valori assoluti NON sono comparabili
- Debbo tenere conto di quanto investo per valutare quanto VALORE ATTUALE produco
- Il VAN è confrontabile sono a parità di INVESTIMENTO
- La finanza aziendale ripete all'infinito lo stesso ritornello: quanto rendimento per quanto rischio
- Se i rischi (INVESTIMENTI) sono diversi come faccio a confrontare il RENDIMENTO ?
- Quindi debbo adottare una regola di valutazione diversa dal VALORE ATTUALE NETTO per comparare diversi progetti di investimento

# VANTAGGI DELLA REGOLA DEL VALORE ATTUALE NETTO

- Alcuni VAN in valore assoluto potrebbero non essere interessanti per una azienda perché o insignificanti (troppo piccoli) oppure troppo impegnativi e non accessibili per le potenzialità di una piccola – media azienda
- Un piccolo imprenditore decide con le percentuali ma a livello psicologico si mette in tasca il valore assoluto

#### 2) REGOLA DEL TASSO DI RENDIMENTO

Accettare investimenti che offrono un tasso di rendimento maggiore del loro costo opportunità del capitale.

#### **Esempio**

Nel progetto di seguito illustrato, il costo opportunità del capitale ammonta al 12%. È opportuno effettuare l'investimento?

Rendimento = 
$$\frac{\text{profitto}}{\text{investimento}}$$
 =  $\frac{400\ 000 - 350\ 000}{350\ 000}$  = 0.143 o 14.3%

# CONFLITTO TRA LE DUE REGOLE DEL TASSO DI RENDIMENTO E DEL VALORE ATTUALE NETTO

- Se si considerano più flussi di cassa su più anni allora le due regole possono andare in conflitto
- Segnaliamo il problema ma lo rinviamo alle lezioni successive
- Sottolineiamo altresì che la formula del VAN ritorna un valore assoluto monetario mentre la regola del tasso di rendimento ritorna un tasso percentuale

# 3) SCORCIATOIE PER IL CALCOLO DEL VALORE ATTUALE

- □ Talvolta esistono dei metodi rapidi che rendono più agevole il calcolo del VA di un'attività che fornisce flussi di cassa in periodi differenti.
- ☐ Tali strumenti consentono di accelerare notevolmente il processo di calcolo.

#### SCORCIATOIE PER IL CALCOLO DEL VA

- Rendita perpetua costante.
  - Flusso di cassa costante all'infinito. Questa formula consente di valutare azioni, obbligazioni, immobili

Rendimento = 
$$\frac{\text{flusso di cassa}}{\text{valore attuale}}$$
$$r = \frac{C}{\text{VA}}$$
$$\Rightarrow \text{VA} = \frac{C}{r}$$

#### ESEMPI DI CALCOLO DEL FAIR PRICE

- FAIR PRICE NEGOZIO = affitto annuo / tasso di rendimento medio dei negozi in quella città
- FAIR PRICE AZIENDA = utile aziendale / costo opportunità del settore

#### Una approssimazione potentissima!

La formula della rendita perpetua contiene un piccolo trucco: in termini di matematica finanziaria la differenza tra il valore attuale di una rendita perpetua e il valore attuale di una rendita annua con orizzonte temporale di 25-30 anni è minima.

Quindi per calcolare il valore di un immobile è facile approssimare (affitto annuo / tasso di rendimento di quella categoria di immobili) oppure il valore di una azienda (EBITDA / costo opportunità di quel settore aziendale)

| -        | ole finanziari             | e u,uo = o 70 |                          |                              |                                 |                         |                                           |
|----------|----------------------------|---------------|--------------------------|------------------------------|---------------------------------|-------------------------|-------------------------------------------|
|          | -0                         | 1             | 1                        | $q^{\alpha} - 1$             | q" - 1                          | r                       | $r \cdot q^{\circ}$                       |
| n        | q°                         | q"            | $q^{\alpha} - 1$         | $\frac{q^{\circ}-1}{r}$      | $\frac{q^{n}-1}{r \cdot q^{n}}$ | $\frac{r}{q^{\circ}-1}$ | $\frac{r \cdot q^{\circ}}{q^{\circ} - 1}$ |
| 1        | 1,08000000                 | 0,92592593    | 12,50000000              | 1,00000000                   | 0,92592593                      | 1,00000000              | 1,080000                                  |
| 2        | 1,16640000                 | 0,85733882    | 6,00961538               | 2,08000000                   | 1,78326475                      | 0,48076923              | 0,560769                                  |
| 3        | 1,25971200                 | 0,79383224    | 3,85041893               | 3,24640000                   | 2,57709699                      | 0,30803351              | 0,388033                                  |
| 4        | 1,36048896                 | 0,73502985    | 2,77401006               | 4,50611200                   | 3,31212684                      | 0,22192080              | 0,301920                                  |
| 5        | 1,46932808                 | 0,68058320    | 2,13070568               | 5,86660096                   | 3,99271004                      | 0,17045645              | 0,250456                                  |
| 6        | 1,58687432                 | 0,63016963    | 1,70394233               | 7,33592904                   | 4,62287966                      | 0,13631539              | 0,216315                                  |
| 7        | 1,71382427                 | 0,58349040    | 1,40090502               | 8,92280336                   | 5,20637006                      | 0,11207240              | 0,192072                                  |
| 8        | 1,85093021                 | 0,54026888    | 1,17518451               | 10,63662763                  | 5,74663894                      | 0,09401476              | 0,174014                                  |
| 9        | 1,99900463                 | 0,50024897    | 1,00099636               | 12,48755784                  | 6,24688791                      | 0,08007971              | 0,160079                                  |
| 10       | 2,15892500                 | 0,46319349    | 0,86286861               | 14,48656247                  | 6,71008140                      | 0,06902949              | 0,149029                                  |
| 11       | 2,33163900                 | 0,42888286    | 0,75095428               | 16,64548746                  | 7,13896426                      | 0,06007634              | 0,140076                                  |
| 12       | 2,51817012                 | 0,39711376    | 0,65868771               | 18,97712646                  | 7,53607802                      | 0,05269502              | 0,132695                                  |
| 13       | 2,71962373<br>2,93719362   | 0,36769792    | 0,58152256<br>0,51621066 | 21,49529658<br>24,21492030   | 7,90377594<br>8,24423698        | 0,04652181              | 0,126521                                  |
| 15       | 3,17216911                 | 0,34046104    | 0,51621066               | 27,15211393                  | 8,55947869                      | 0,03682954              | 0,121276                                  |
| 16       | 3,42594264                 | 0,31324170    | 0,41221090               | 30,32428304                  | 8,85136916                      | 0,03297687              | 0,110027                                  |
| 17       | 3,70001805                 | 0,27026895    | 0,37036789               | 33,75022569                  | 9,12163811                      | 0.02962943              | 0,109629                                  |
| 18       | 3,99601950                 | 0,25024903    | 0,33377620               | 37,45024374                  | 9,37188714                      | 0.02670210              | 0,107027                                  |
| 19       | 4,31570106                 | 0.23171206    | 0.30159534               | 41,44626324                  | 9,60359920                      | 0.02412763              | 0.104127                                  |
| 20       | 4,66095714                 | 0,21454821    | 0,27315261               | 45,76196430                  | 9,81814741                      | 0,02185221              | 0,101852                                  |
| 21       | 5,03383372                 | 0,19865575    | 0,24790313               | 50,42292144                  | 10,01680316                     | 0,01983225              | 0,099832                                  |
| 22       | 5,43654041                 | 0,18394051    | 0,22540085               | 55,45675516                  | 10,20074366                     | 0,01803207              | 0,098032                                  |
| 23       | 5,87146365                 | 0,17031528    | 0,20527711               | 60,89329557                  | 10,37105895                     | 0,01642217              | 0,096422                                  |
| 24       | 6,34118074                 | 0,15769934    | 0,18722452               | 66,76475922                  | 10,52875828                     | 0,01497796              | 0,094977                                  |
| 25       | 6,84847520                 | 0,14601790    | 0,17098474               | 73,10593995                  | 10,67477619                     | 0,01367878              | 0,093678                                  |
| 26       | 7,39635321                 | 0,13520176    | 0,15633908               | 79,95441515                  | 10,80997795                     | 0,01250713              | 0,092507                                  |
| 27       | 7,98806147                 | 0,12518682    | 0,14310120               | 87,35076836                  | 10,93516477                     | 0,01144810              | 0,091448                                  |
| 28       | 8,62710639                 | 0,11591372    | 0,13111132               | 95,33882983                  | 11,05107849                     | 0,01048891              | 0,090488                                  |
| 29       | 9,31727490                 | 0,10732752    | 0,12023169               | 103,96593622                 | 11,15840601                     | 0,00961854              | 0,089618                                  |
| 30       | 10,06265689                | 0,09937733    | 0,11034292               | 113,28321111                 | 11,25778334                     | 0,00882743              | 0,088827                                  |
| 31       | 10,86766944                | 0,09201605    | 0,10134105               | 123,34586800                 | 11,34979939                     | 0,00810728              | 0,088107                                  |
| 32       | 12,67604964                | 0,08520005    | 0,09313517               | 134,21353744<br>145,95062044 | 11,43499944<br>11,51388837      | 0,00745081              | 0,087450                                  |
| 34       | 13,69013361                | 0.07304531    | 0.07880138               | 158.62667007                 | 11,58693367                     | 0.00630411              | 0.086304                                  |
| 35       | 14,78534429                | 0.06763454    | 0.07254081               | 172.31680368                 | 11,65456822                     | 0.00580326              | 0.085803                                  |
| 36       | 15,96817184                | 0,06262458    | 0.06680843               | 187,10214797                 | 11,71719279                     | 0,00534467              | 0.085344                                  |
| 37       | 17.24562558                | 0.05798572    | 0.06155503               | 203,07031981                 | 11,77517851                     | 0.00492440              | 0.084924                                  |
| 38       | 18,62527563                | 0,05369048    | 0,05673670               | 220,31594540                 | 11,82886899                     | 0,00453894              | 0,084538                                  |
| 39       | 20,11529768                | 0,04971341    | 0,05231412               | 238,94122103                 | 11,87858240                     | 0,00418513              | 0,084185                                  |
| 40       | 21,72452150                | 0,04603093    | 0,04825202               | 259,05651871                 | 11,92461333                     | 0,00386016              | 0,083860                                  |
| 41       | 23,46248322                | 0,04262123    | 0,04451868               | 280,78104021                 | 11,96723457                     | 0,00356149              | 0,083561                                  |
| 42       | 25,33948187                | 0,03946411    | 0,04108551               | 304,24352342                 | 12,00669867                     | 0,00328684              | 0,083286                                  |
| 43       | 27,36664042                | 0,03654084    | 0,03792671               | 329,58300530                 | 12,04323951                     | 0,00303414              | 0,083034                                  |
| 44       | 29,55597166                | 0,03383411    | 0,03501894               | 356,94964572                 | 12,07707362                     | 0,00280152              | 0,082801                                  |
| 45       | 31,92044939                | 0,03132788    | 0,03234106               | 386,50561738                 | 12,10840150                     | 0,00258728              | 0,082587                                  |
| 46       | 34,47408534                | 0,02900730    | 0,02987386               | 418,42606677                 | 12,13740880                     | 0,00238991              | 0,082389                                  |
| 47       | 37,23201217                | 0,02685861    | 0,02759990               | 452,90015211                 | 12,16426741                     | 0,00220799              | 0,082207                                  |
| 48       | 40,21057314                | 0,02486908    | 0,02550333               | 490,13216428                 | 12,18913649                     | 0,00204027              | 0,082040                                  |
| 49       | 43,42741899                | 0,02302693    | 0,02356966               | 530,34273742                 | 12,21216341                     | 0,00188557              | 0,081885                                  |
| 50<br>55 | 46,90161251<br>68,91385611 | 0,02132123    | 0,02178573               | 573,77015642<br>848,92320141 | 12,23348464<br>12,31861413      | 0,00174286              | 0,081742                                  |
| 60       | 101,25706367               | 0,00987585    | 0,01472454               | 1253,21329584                | 12,31861413                     | 0,00079795              | 0,080797                                  |
| 65       | 148,77984662               | 0,00787383    | 0,00777438               | 1847,24808276                | 12,41598324                     | 0,00077775              | 0.080541                                  |
| 70       | 218,60640590               | 0,00872134    | 0,00459545               | 2720,08007377                | 12,44281961                     | 0,00034764              | 0,080347                                  |
| 75       | 321,20452996               | 0,00311328    | 0,00312300               | 4002,55662449                | 12,46108399                     | 0,00036764              | 0.080249                                  |
| 80       | 471,95483426               | 0,00311328    | 0,00312300               | 5886,93542831                | 12,47351441                     | 0,00024784              | 0,080169                                  |
| 85       | 693,45648897               | 0,00144205    | 0,00144413               | 8655,70611209                | 12,48197436                     | 0.00011553              | 0,080115                                  |
| 90       | 1018,91508928              | 0,00098144    | 0,00098240               | 12723,93861598               | 12,48773205                     | 0,00007859              | 0,080078                                  |
| 95       | 1497,12054855              | 0,00066795    | 0,00066840               | 18701,50685690               | 12,49165064                     | 0,00005347              | 0,080053                                  |
| 100      | 2199,76125634              | 0.00045459    | 0.00045480               | 27484,51570427               | 12,49431757                     | 0,00003638              | 0,0800363                                 |

Per un tasso dell'8% il valore attuale di 1 euro è di 0,09 a 30 anni e 0,00 a 100 anni

|          |              |                          |                            | . 1                        |                            |            |                                           |
|----------|--------------|--------------------------|----------------------------|----------------------------|----------------------------|------------|-------------------------------------------|
| n        | $q^{\alpha}$ | 1                        | _1_                        | $q^{n}-1$                  | $q^{\circ} - 1$            | Г          | $\frac{r \cdot q^{\circ}}{q^{\circ} - 1}$ |
|          |              | q°                       | q° - 1                     | r                          | r - q°                     | q° - 1     | $q^{\circ} - 1$                           |
| 1        | 1,00500000   | 0,99502488               | 200,000000000              | 1,00000000                 | 0,99502488                 | 1,00000000 | 1,0050000                                 |
| 2        | 1,01002500   | 0,99007450               | 99,75062344                | 2,00500000                 | 1,98509938                 | 0,49875312 | 0,5037531                                 |
| 3        | 1,01507513   | 0,98514876               | 66,33444167                | 3,01502500                 | 2,97024814                 | 0,33167221 | 0,3366722                                 |
| 4        | 1,02015050   | 0,98024752               | 49,62655860                | 4,03010012                 | 3,95049566                 | 0,24813279 | 0,2531327                                 |
| 5        | 1,02525125   | 0,97537067               | 39,60199500                | 5,05025063                 | 4,92586633                 | 0,19800997 | 0,2030099                                 |
| 6        | 1,03037751   | 0,97051808               | 32,91909113                | 6,07550188                 | 5,89638441                 | 0,16459546 | 0,1695954                                 |
| 7        | 1,03552940   | 0,96568963               | 28,14570711                | 7,10587939                 | 6,86207404                 | 0,14072854 | 0,1457285                                 |
| 8        | 1,04070704   | 0,96088520               | 24,56577299                | 8,14140879                 | 7,82295924                 | 0,12282886 | 0,1278288                                 |
| 9        | 1,04591058   | 0,95610468               | 21,78147213                | 9,18211583                 | 8,77906392                 | 0,10890736 | 0,1139073                                 |
| 10       | 1,05114013   | 0,95134794               | 19,55411455                | 10,22802641                | 9,73041186                 | 0,09777057 | 0,1027705                                 |
| 11       | 1,05639583   | 0,94661487               | 17,73180663                | 11,27916654                | 10,67702673                | 0,08865903 | 0,09365903                                |
| 12<br>13 | 1,06167781   | 0,94190534               | 16,21328594<br>14,92844774 | 12,33556237<br>13,39724018 | 11,61893207<br>12,55615131 | 0,08106643 | 0,08606643                                |
| 14       |              |                          |                            | 14,46422639                | 13.48870777                | 0.06913609 |                                           |
| 15       | 1,07232113   | 0,93255646<br>0,92791688 | 13,82721721<br>12,87287280 | 15.53654752                | 14,41662465                | 0.06436436 | 0,07413609                                |
| 16       | 1.08307115   | 0.92330037               | 12.03787337                | 16.61423026                | 15.33992502                | 0.06018937 | 0.0651893                                 |
| 17       | 1,08848651   | 0,92330037               | 11,30115804                | 17,69730141                | 16,25863186                | 0,05650579 | 0,06150579                                |
| 18       | 1,09392894   | 0,91413616               | 10,64634611                | 18,78578791                | 17,17276802                | 0.05323173 | 0.0582317                                 |
| 19       | 1,09939858   | 0.90958822               | 10,06050546                | 19,87971685                | 18,08235624                | 0.05030253 | 0.0553025                                 |
| 20       | 1.10489558   | 0.90506290               | 9.53329041                 | 20.97911544                | 18.98741915                | 0.04766645 | 0.05266649                                |
| 21       | 1,11042006   | 0,90056010               | 9,05632586                 | 22,08401101                | 19,88797925                | 0.04528163 | 0,0502816                                 |
| 22       | 1,11597216   | 0,89607971               | 8,62275946                 | 23,19443107                | 20,78405896                | 0,04311380 | 0.0481138                                 |
| 23       | 1,12155202   | 0,89162160               | 8,22693059                 | 24,31040322                | 21,67568055                | 0,04113465 | 0,0461346                                 |
| 24       | 1,12715978   | 0,88718567               | 7,86412205                 | 25,43195524                | 22,56286622                | 0,03932061 | 0,0443206                                 |
| 25       | 1,13279558   | 0,88277181               | 7,53037139                 | 26,55911502                | 23,44563803                | 0,03765186 | 0,04265186                                |
| 26       | 1,13845955   | 0,87837991               | 7,22232579                 | 27,69191059                | 24,32401794                | 0,03611163 | 0,04111163                                |
| 27       | 1,14415185   | 0,87400986               | 6,93712911                 | 28,83037015                | 25,19802780                | 0,03468565 | 0,03968565                                |
| 28       | 1,14987261   | 0,86966155               | 6,67233326                 | 29,97452200                | 26,06768936                | 0,03336167 | 0,03836167                                |
| 29       | 1,15562197   | 0,86533488               | 6,42582780                 | 31,12439461                | 26,93302423                | 0,03212914 | 0,03712914                                |
| 30       | 1,16140008   | 0,86102973               | 6,19578368                 | 32,28001658                | 27,79405397                | 0,03097892 | 0,03597893                                |
| 31       | 1,16720708   | 0,85674600               | 5,98060788                 | 33,44141666                | 28,65079997                | 0,02990304 | 0,03490304                                |
| 32       | 1,17304312   | 0,85248358               | 5,77890648                 | 34,60862375                | 29,50328355                | 0,02889453 | 0,0338945                                 |
| 33       | 1,17890833   | 0,84824237               | 5,58945453                 | 35,78166686                | 30,35152592                | 0,02794727 | 0,0329472                                 |
| 34       | 1,18480288   | 0,84402226               | 5,41117120                 | 36,96057520                | 31,19554818                | 0,02705586 | 0,0320558                                 |
| 35<br>36 | 1,19072689   | 0,83982314               | 5,24309917<br>5,08438749   | 38,14537807<br>39,33610496 | 32,03537132                | 0,02621550 | 0,03121550                                |
| 37       | 1,19668052   | 0,83364492               | 4,93427722                 | 40,53278549                | 32,87101624<br>33,70250372 | 0,02542194 | 0,03042194                                |
| 38       | 1,20266393   | 0,82735073               | 4,79208929                 | 41,73544942                | 34,52985445                | 0.02396045 | 0.0289604                                 |
| 39       | 1,21472063   | 0.82323455               | 4,77208727                 | 42,94412666                | 35,35308900                | 0.02378045 | 0.0282860                                 |
| 40       | 1,22079424   | 0,81913886               | 4,52910373                 | 44,15884730                | 36,17222786                | 0,02326607 | 0,0282888                                 |
| 41       | 1,22689821   | 0,81506354               | 4,40726267                 | 45,37964153                | 36,98729141                | 0,02203631 | 0,0270363                                 |
| 42       | 1,23303270   | 0.81100850               | 4,29124327                 | 46,60653974                | 37,79829991                | 0.02145622 | 0.0264562                                 |
| 43       | 1,23919786   | 0,80697363               | 4,18063937                 | 47,83957244                | 38,60527354                | 0,02090320 | 0.0259032                                 |
| 44       | 1,24539385   | 0,80295884               | 4,07508173                 | 49,07877030                | 39,40823238                | 0,02037541 | 0,0253754                                 |
| 45       | 1,25162082   | 0,79896402               | 3.97423392                 | 50,32416415                | 40,20719640                | 0,01987117 | 0,0248711                                 |
| 46       | 1,25787892   | 0,79498907               | 3,87778877                 | 51,57578497                | 41,00218547                | 0,01938894 | 0,02438894                                |
| 47       | 1,26416832   | 0,79103390               | 3,78546527                 | 52,83366390                | 41,79321937                | 0,01892733 | 0,0239273                                 |
| 48       | 1,27048916   | 0,78709841               | 3,69700581                 | 54,09783222                | 42,58031778                | 0,01848503 | 0,02348503                                |
| 49       | 1,27684161   | 0,78318250               | 3,61217380                 | 55,36832138                | 43,36350028                | 0,01806087 | 0,0230608                                 |
| 50       | 1,28322581   | 0,77928607               | 3,53075160                 | 56,64516299                | 44,14278635                | 0,01765376 | 0,02265376                                |
| 55       | 1,31562887   | 0,76009277               | 3,16827794                 | 63,12577496                | 47,98144535                | 0,01584139 | 0,02084139                                |
| 60       | 1,34885015   | 0,74137220               | 2,86656031                 | 69,77003051                | 51,72556075                | 0,01433280 | 0,0193328                                 |
| 65       | 1,38291031   | 0,72311269               | 2,61157764                 | 76,58206184                | 55,37746109                | 0,01305789 | 0,01805789                                |
| 70       | 1,41783053   | 0,70530291               | 2,39331484                 | 83,56610549                | 58,93941756                | 0,01196657 | 0,0169665                                 |
| 75       | 1,45363252   | 0,68793177               | 2,20442747                 | 90,72650500                | 62,41364543                | 0,01102214 | 0,01602214                                |
| 80       | 1,49033857   | 0,67098847               | 2,03940719                 | 98,06771357                | 65,80230538                | 0,01019704 | 0,0151970                                 |
| 85       | 1,52797148   | 0,65446248               | 1,89404169                 | 105,59429685               | 69,10750491                | 0,00947021 | 0,01447021                                |
| 90       | 1,56655468   | 0,63834350               | 1,76505470                 | 113,31093580               | 72,33129958                | 0,00882527 | 0,01382527                                |
| 95       | 1,60611215   | 0,62262153               | 1,64985969                 | 121,22242954               | 75,47569434                | 0,00824930 | 0,01324930                                |
| 100      | 1,64666849   | 0.60728678               | 1,54638739                 | 129,33369842               | 78,54264477                | 0.00773194 | 0.01273194                                |

Per un tasso dello 0,05% il valore attuale di 1 euro è di 0,86 a 30 anni e 0,60 a 100 anni

NOTA BENE: la realtà degli ultimi secoli è che i tassi di interesse sono positivi per diversi punti mentre ora viviamo in un mondo «abnormale»

## IL VALORE DI UN APPARTAMENTO AFFITTATO AGLI STUDENTI A SAN DONATO



Fonte: Milano Finanza 15 ottobre 2017

# QUANTO COSTA AFFITTARE UN BILOCALE

|         | Prezzo<br>medio | Canone<br>mese | Canone<br>mg/anno | Rendimento<br>Iordo |
|---------|-----------------|----------------|-------------------|---------------------|
| URBINO  | 2.800           | 650            | 111               | 4,0%                |
| FERRARA | 2.200           | 450            | 77                | 3,5%                |
| TRIESTE | 2.500           | 650            | 111               | 4,5%                |
| PADOVA  | 2.800           | 750            | 129               | 4,6%                |
| PISA    | 2.300           | 700            | 120               | 5,2%                |
| PAVIA   | 2.100           | 700            | 120               | 5,7%                |

Fonte: Milano Finanza 15 ottobre 2017

# RENDIMENTI RESIDENZIALI LUGLIO 2018

|                  | Zone di pregio |         | Centri |         | Semicentri |         | Periferie |         | Rendim. potenz |
|------------------|----------------|---------|--------|---------|------------|---------|-----------|---------|----------------|
|                  | Minimi         | Massimi | Minimi | Massimi | Minimi     | Massimi | Minimi    | Massimi | lordi annui    |
| ◆ BARI           | 109            | 146     | 98     | 127     | · 76       | 91      | 58        | 76      | 5,1%           |
| ◆ BOLOGNA        | 121            | 150     | 100    | 127     | 84         | 104     | 66        | 84      | 4,5%           |
| ◆ CAGLIARI       | 109            | 134     | 90     | 110     | 73         | 95      | 63        | 76      | 5,8%           |
| ◆ CATANIA        | 87             | 119     | 71     | 97      | 56         | 77      | 43        | 61      | 5,5%           |
| ♦ FIRENZE        | 163            | 208     | . 140  | 169     | 110        | 134     | 88        | 107     | 5,0%           |
| ◆ GENOVA         | 115            | 154     | 92     | 126     | 68         | 96      | 49        | 69      | 5,4%           |
| ♦ MILANO         | 232            | 315     | 188    | 259     | 139        | 179     | 89        | 122     | 5,0%           |
| ♦ NAPOLI         | 158            | 221     | 112    | 153     | 76         | 106     | 57        | 80      | 5,1%           |
| ◆ PADOVA         | 120            | 144     | 102    | 125     | 77         | 93      | 57        | 73      | 5,6%           |
| ◆ PALERMO        | 92             | 116     | 78     | 99      | 64         | 75      | 48        | 61      | 5,8%           |
| ♦ ROMA           | 267            | 348     | 220    | 296 .   | 145        | 192     | 98        | 133     | 5,7%           |
| ◆ TORINO         | 113            | 145     | 98     | 125     | 76         | 97      | 60        | 76      | 5,3%           |
| ♦ VENEZIA CITTÀ  | 186            | 238     | 151    | 197     | 119        | 153     | 90        | 116     | 4,2%           |
| ◆ VENEZIA MESTRE | 98             | 118     | 87     | 112     | 70         | 90      | 58        | 80      | 5,9%           |
| ♦ Medie          | 141            | 183     | 116    | 152     | 88         | 113     | 66        | 87      | 5,2%           |

#### DIVERSI RENDIMENTI IMMOBILIARI



### DIFFICILE E' TROVARE IL COSTO OPPORTUNITA' PER SETTORE => DAMODARAN

| A                                                 | В                         | С                    | D                                   | Е       | F                | G                 | Н               | I                             | J         | K                 | L                       |
|---------------------------------------------------|---------------------------|----------------------|-------------------------------------|---------|------------------|-------------------|-----------------|-------------------------------|-----------|-------------------|-------------------------|
| Date updated:                                     | 5-Jan-19                  |                      |                                     |         |                  |                   |                 | YouTube Video Guide           |           |                   |                         |
| Created by:                                       | Aswath Damodara           | n, adamodar@stern.   | nyu.edu                             |         |                  |                   |                 |                               |           |                   |                         |
| What is this data?                                | Cost of equity and        | capital (updateable) |                                     |         |                  |                   |                 |                               |           |                   |                         |
| Home Page:                                        | http://www.damod          | laran.com            |                                     |         |                  |                   |                 |                               |           |                   |                         |
| Data website:                                     | http://www.stern.n        | yu.edu/~adamodar/I   | New Home Page/data.html             |         |                  |                   |                 |                               |           |                   |                         |
| Companies in each industry:                       | http://www.stern.n        | ıyu.edu/~adamodar/g  | oc/datasets/indname.xls             |         |                  |                   |                 |                               |           |                   |                         |
| Variable definitions:                             | http://www.stern.n        | yu.edu/~adamodar/I   | New Home Page/datafile/variable.htm |         |                  |                   |                 |                               |           |                   |                         |
| To update this spreadsheet, enter the following   |                           |                      |                                     |         |                  | Cost of Debt Loo  | kup Table (base | d on std dev in stock prices) |           |                   |                         |
| Long Term Treasury bond rate =                    |                           |                      | 2.68%                               |         |                  | Standard Deviatio | n               | Basis Spread                  |           |                   |                         |
| Risk Premium to Use for Equity =                  |                           |                      | 7.11%                               |         |                  | 0                 | 0.25            |                               |           |                   |                         |
| Global Default Spread to add to cost of debt =    |                           |                      | 0.93%                               |         |                  | 0.25              | 0.4             | 1.50%                         |           |                   |                         |
| Do you want to use the marginal tax rate for co   | st of debt?               |                      |                                     |         | Yes              | 0.4               | 0.65            | 1.88%                         |           |                   |                         |
| If yes, enter the marginal tax rate to use        |                           |                      |                                     |         | 22.27%           | 0.65              | 0.75            | 2.75%                         |           |                   |                         |
|                                                   |                           |                      |                                     |         |                  | 0.75              | 0.9             | 5.75%                         |           |                   |                         |
| These costs of capital are in US\$. To convert to | a different currency, ple | ase enter            |                                     |         |                  | 0.9               | 1               | 7.25%                         |           |                   |                         |
| Expected inflation rate in Euros =                |                           | 1.00                 |                                     |         |                  | 1                 | 10              | 8.75%                         |           |                   |                         |
| Expected inflation rate in US \$ =                |                           | 2.10                 | <mark>%</mark>                      |         |                  |                   |                 |                               |           |                   |                         |
| Industry Name -                                   | Number of Firms ~         | Beta                 | - Cost of Equity -                  | E/(D+E) | Std Dev in Stock | Cost of Debt "    | Tax Rate -      | After-tax Cost of Debt        | D/(D+E) ~ | Cost of Capital ~ | Cost of Capital (Euros) |
| Advertising                                       | 87                        | 0.86                 | 8.78%                               | 63.94%  | 39.87%           | 5.11%             | 15.60%          | 3.97%                         | 36.06%    | 7.05%             | 5.89%                   |
| Aerospace/Defense                                 | 46                        | 1.28                 | 11.76%                              | 81.20%  | 39.39%           | 5.11%             | 13.75%          | 3.97%                         | 18.80%    | 10.30%            | 9.11%                   |
| Air Transport                                     | 38                        | 0.93                 | 9.30%                               | 56.50%  | 40.70%           | 5.49%             | 17.10%          | 4.27%                         | 43.50%    | 7.11%             | 5.96%                   |
| Apparel                                           | 122                       | 0.90                 | 9.11%                               | 83.25%  | 36.63%           | 5.11%             | 12.88%          | 3.97%                         | 16.75%    | 8.25%             | 7.08%                   |
| Auto & Truck                                      | 25                        | 1.26                 | 11.64%                              | 38.03%  | 32.26%           | 5.11%             | 16.71%          | 3.97%                         | 61.97%    | 6.89%             | 5.73%                   |
| Auto Parts                                        | 55                        | 1.45                 | 13.00%                              | 65.83%  | 39.25%           | 5.11%             | 18.70%          | 3.97%                         | 34.17%    | 9.91%             | 8.73%                   |
| Bank (Money Center)                               | 126                       | 1.16                 | 10.93%                              | 15.25%  | 28.83%           | 5.11%             | 20.30%          | 3.97%                         | 84.75%    | 5.03%             | 3.90%                   |
| Banks (Regional)                                  | 69                        | 0.57                 | 6.75%                               | 24.01%  | 23.33%           | 4.51%             | 19.99%          | 3.51%                         | 75.99%    | 4.29%             | 3.16%                   |
| Beverage (Alcoholic)                              | 53                        | 0.65                 | 7.27%                               | 66.13%  | 29.21%           | 5.11%             | 16.14%          | 3.97%                         | 33.87%    | 6.15%             | 5.01%                   |
| Beverage (Soft)                                   | 16                        | 0.65                 | 7.27%                               | 79.59%  | 32.49%           | 5.11%             | 18.05%          | 3.97%                         | 20.41%    | 6.61%             | 5.47%                   |
| Broadcasting                                      | 25                        | 0.96                 | 9.53%                               | 76.35%  | 36.94%           | 5.11%             | 18.39%          | 3.97%                         | 23.65%    | 8.21%             | 7.05%                   |
|                                                   | 68                        | 1.05                 | 10.12%                              | 74.93%  | 42.44%           | 5.11%             | 14.20%          | 4.27%                         | 25.07%    | 8.21%             | 7.48%                   |
| Brokerage & Investment Banking                    | 83                        |                      |                                     |         |                  |                   |                 |                               |           |                   | 7.48%                   |
| Building Materials                                |                           | 1.03                 | 10.03%                              | 73.93%  | 34.22%           | 5.11%             | 16.02%          | 3.97%                         | 26.07%    | 8.45%             |                         |
| Business & Consumer Services                      | 206                       | 0.99                 | 9.70%                               | 72.85%  | 41.33%           | 5.49%             | 16.72%          | 4.27%                         | 27.15%    | 8.23%             | 7.06%                   |

#### SCORCIATOIE PER IL CALCOLO DEL VA

- ☐ Flusso di cassa di durata limitata (rendita annua)
  - Attività che paga una somma fissa ogni anno per un certo numero di anni.

Attività

Anno di Pagamento

Valore Attuale

Rendita perpetua (primo pagamento anno 1)

2.....t t+1

 $\frac{C}{r}$ 

Rendita perpetua (primo pagamento anno t+1)

$$\left(\frac{C}{r}\right)\frac{1}{(1+r)^t}$$

Rendita perpetua dall'anno 1 all'anno t

$$\left(\frac{C}{r}\right) - \left(\frac{C}{r}\right) \left(\frac{1}{(1+r)^t}\right)$$

Rendite: valore attuale di una rendita annua di euro 1 per t anni

$$\left(\frac{C}{r}\right) - \left(\frac{C}{r}\right) \left(\frac{1}{(1+r)^t}\right)$$

| Numero     |         |         |         |         | Tasso di intere | sse     |         |         |         |
|------------|---------|---------|---------|---------|-----------------|---------|---------|---------|---------|
| di periodi | 1%      | 2%      | 3%      | 4%      | 5%              | 6%      | 7%      | 8%      | 9%      |
| 1          | 0.9901  | 0.9804  | 0,9709  | 0,9615  | 0.9524          | 0.9434  | 0.9346  | 0,9259  | 0,9174  |
| 2          | 1.9704  | 1.9416  | 1.9135  | 1.8861  | 1.8594          | 1.8334  | 1.8080  | 1.7833  | 1.7591  |
| 3          | 2.9410  | 2.8839  | 2.8286  | 2.7751  | 2.7232          | 2.6730  | 2.6243  | 2.5771  | 2.5313  |
| 4          | 3.9020  | 3.8077  | 3.7171  | 3.6299  | 3.5460          | 3.4651  | 3.3872  | 3.3121  | 3.2397  |
| 5          | 4.8534  | 4.7135  | 4.5797  | 4.4518  | 4.3295          | 4.2124  | 4.1002  | 3.9927  | 3.8897  |
| 6          | 5.7955  | 5.6014  | 5.4172  | 5.2421  | 5.0757          | 4.9173  | 4.7665  | 4.6229  | 4.4859  |
| 7          | 6.7282  | 6.4720  | 6.2303  | 6.0021  | 5.7864          | 5.5824  | 5.3893  | 5.2064  | 5.0330  |
| 8          | 7.6517  | 7.3255  | 7.0197  | 6.7327  | 6.4632          | 6.2098  | 5.9713  | 5.7466  | 5.5348  |
| 9          | 8.5660  | 8.1622  | 7.7861  | 7.4353  | 7.1078          | 6.8017  | 6.5152  | 6.2469  | 5.9952  |
| 10         | 9.4713  | 8.9826  | 8.5302  | 8.1109  | 7.7217          | 7.3601  | 7.0236  | 6.7101  | 6.4177  |
| 11         | 10.3676 | 9.7868  | 9.2526  | 8.7605  | 8.3064          | 7.8869  | 7.4987  | 7.1390  | 6.8052  |
| 12         | 11.2551 | 10.5753 | 9.9540  | 9.3851  | 8.8633          | 8.3838  | 7.9427  | 7.5361  | 7.1607  |
| 13         | 12.1337 | 11.3484 | 10.6350 | 9.9856  | 9.3936          | 8.8527  | 8.3577  | 7.9038  | 7.4869  |
| 14         | 13.0037 | 12.1062 | 11.2961 | 10.5631 | 9.8986          | 9.2950  | 8.7455  | 8.2442  | 7.7862  |
| 15         | 13.8651 | 12.8493 | 11.9379 | 11.1184 | 10.3797         | 9.7122  | 9.1079  | 8.5595  | 8.0607  |
| 16         | 14.7179 | 13.5777 | 12.5611 | 11.6523 | 10.8378         | 10.1059 | 9.4466  | 8.8514  | 8.3126  |
| 17         | 15.5623 | 14.2919 | 13.1661 | 12.1657 | 11.2741         | 10.4773 | 9.7632  | 9.1216  | 8.5436  |
| 18         | 16.3983 | 14.9920 | 13.7535 | 12.6593 | 11.6896         | 10.8276 | 10.0591 | 9.3719  | 8.7556  |
| 19         | 17.2260 | 15.6785 | 14.3238 | 13.1339 | 12.0853         | 11.1581 | 10.3356 | 9.6036  | 8.9501  |
| 20         | 18.0456 | 16.3514 | 14.8775 | 13.5903 | 12.4622         | 11.4699 | 10.5940 | 9.8181  | 9.1285  |
| 21         | 18.8570 | 17.0112 | 15.4150 | 14.0292 | 12.8212         | 11.7641 | 10.8355 | 10.0168 | 9.2922  |
| 22         | 19.6604 | 17.6580 | 15.9369 | 14.4511 | 13.1630         | 12.0416 | 11.0612 | 10.2007 | 9.4424  |
| 23         | 20.4558 | 18.2922 | 16.4436 | 14.8568 | 13.4886         | 12.3034 | 11.2722 | 10.3741 | 9.5802  |
| 24         | 21.2434 | 18.9139 | 16.9355 | 15.2470 | 13.7986         | 12.5504 | 11.4693 | 10.5288 | 9.7066  |
| 25         | 22.0232 | 19.5235 | 17.4131 | 15.6221 | 14.0939         | 12.7834 | 11.6536 | 10.6748 | 9.8226  |
| 30         | 25.8077 | 22.3965 | 19.6004 | 17.2920 | 15.3725         | 13.7648 | 12.4090 | 11.2578 | 10.2737 |
| 40         | 32.8347 | 27.3555 | 23.1148 | 19.7928 | 17.1591         | 15.0463 | 13.3317 | 11.9246 | 10.7574 |
| 50         | 39.1961 | 31.4236 | 25.7298 | 21.4822 | 18.2559         | 15.7619 | 13.8007 | 12.2335 | 10.9617 |

- Rendita perpetua da t in poi
  - Attività che paga una somma fissa ogni anno all'infinito (infinito ? 25-30 anni) dall'anno t in poi

VA della rendita annua = 
$$\frac{c}{r} \frac{1}{(1+r)^t}$$

#### SCORCIATOIE PER IL CALCOLO DEL VA

- Rendita annua da 1 a t
  - Attività che paga una somma fissa ogni anno per un certo numero di anni dall'anno 1 all'anno t

VA della rendita annua = 
$$C \times \left| \frac{1}{r} - \frac{1}{r(1+r)^t} \right|$$

#### ESEMPIO 1: VALORE ATTUALE COME INCOGNITA

Prendete un'auto in leasing per 4 anni a € 300 al mese. Non vi è richiesto di pagare alcuna somma in anticipo né alla scadenza del contratto. Se il vostro costo opportunità del capitale è di 0.5% al mese, qual è il costo dell'operazione di leasing?

Costo del leasing = 
$$300 \times \left[ \frac{1}{0.005} - \frac{1}{0.005 (1 + 0.005)^{48}} \right]$$

#### ESEMPIO 2: RENDITA COME INCOGNITA

Accendete un mutuo in banca per l'acquisto di una casa. L'importo del mutuo è di 250.000 euro, la durata è di 30 anni, il tasso del 9%. Quanto sarà la rata annuale del prestito?

VA = RENDITA \* FATTORE DI RENDITA

250.000 = RENDITA \* 10,2737

RENDITA = 250.000 / 10,2737 = 24.333

#### SCORCIATOIE PER IL CALCOLO DEL VA

- Rendita perpetua crescente.
  - Flusso di cassa crescente ad un tasso costante *g*.

$$VA_0 = \frac{C_1}{r - g}$$

La formula può essere utilizzata in ogni tempo futuro t:

$$VA_{t} = \frac{C_{t+1}}{r - g}$$

### CONSEGUENZE DELLA RENDITA PERPETUA CRESCENTE

• La rendita perpetua crescente può sembrare una inutile complicazione ma si dimostrerà un ottimo modello di approssimazione del fair price di una azienda quando andremo ad inserire appunto la variabile g che è il tasso di crescita degli utili e verificheremo che g = (1-b) \* ROE ... ma per il momento soprassediamo

#### SCORCIATOIE PER IL CALCOLO DEL VA

- Esempio.
  - Qual è il valore attuale di un milione di euro pagato alla fine di ogni anno se il tasso di crescita annua di tale somma è 4% ed il tasso di attualizzazione è 10%?

$$VA_0 = \frac{1}{0.10 - 0.04}$$
  
= €16.67 milioni

## TUTTE LE RENDITE SE NON SPECIFICATO SONO POSTICIPATE

• Per passare alla rendita anticipata basta moltiplicare per 1/(1+r) la rendita posticipata

#### 4) Interesse composto vs Interesse semplice

#### CAPITALIZZAZIONE SEMPLICE

$$egin{aligned} M_{t+1} &= M_t + i M_0 = M_t + i C \ M_1 &= M_0 + i C = C + i C \ M_2 &= M_1 + i C = C + i C + i C = C + 2 i C \ M_t &= M_{t-1} + i C = C + (t-1) i C + i C = C + t i C = C (1+t i) \end{aligned}$$

#### CAPITALIZZAZIONE COMPOSTA

$$M(1) = C(1+i)$$
 $M(2) = M(1)(1+i) = C(1+i)^2$ 
 $M(n) = C(1+i)^n$ .

#### Interesse composto vs Interesse semplice

|      | Inte               | eresse | semplice  |   |                  |                    | h | nteresse composto | )  |                  |
|------|--------------------|--------|-----------|---|------------------|--------------------|---|-------------------|----|------------------|
| Anno | Valore<br>iniziale | + :    | Interesse | = | Valore<br>finale | Valore<br>iniziale | + | Interesse         | =  | Valore<br>finale |
| 1    | 100                | +      | 10        | = | 110              | 100                | + | 10                | =  | 110              |
| 2    | 110                | +      | 10        | = | 120              | 110                | + | 11                | =  | 121              |
| 3    | 120                | +      | 10        | = | 130              | 121                | + | 12.1              | =  | 133.             |
| 4    | 130                | +      | 10        | = | 140              | 133.1              | + | 13.3              | =  | 146.             |
| 10   | 190                | +      | 10        | = | 200              | 236                | + | 24                | =  | 259              |
| 20   | 290                | +      | 10        | = | 300              | 612                | + | 61                | =  | 673              |
| 50   | 590                | +      | 10        | = | 600              | 10 672             | + | 1067              | =  | 11739            |
| 100  | 1090               | +      | 10        | = | 1100             | 1252 783           | + | 125 278           | =  | 1378 061         |
| 200  | 2090               | +      | 10        | = | 2100             | 17 264 116 042     | + | 1726411604        | =  | 18990527646      |
| 230  | 2240               | +      | 10        | = | 2400             | 301248505631       | + | 30124850563       | == | 331373356194     |





#### INTERESSE COMPOSTO VS INTERESSE SEMPLICE SU SCALA ARITMETICA



Interesse composto rispetto a interesse semplice. Le due curve ascendenti mostrano l'aumento di valore di € 100 investiti a un tasso di interesse semplice e composto. Più a lungo sono investiti i fondi, maggiori sono i vantaggi dell'interesse composto. La curva in basso mostra che per ottenere € 100 tra 10 periodi devono essere investiti € 38.55 oggi. Leggendo la curva in senso opposto, si ricava che il valore attuale di € 100 da riceversi tra 10 anni è € 38.55.

## INTERESSE COMPOSTO VS INTERESSE SEMPLICE SU SCALA SEMILOGARITMICA



Lo stesso concetto della figura precedente; in questo caso, però, la scala verticale è semilogaritmica. Un tasso di crescita composto costante implica una retta ascendente. La figura rende evidente che il tasso di crescita di un capitale investito a un interesse semplice è decrescente al passare del tempo.

#### PERIODO DI CAPITALIZZAZIONE

 Un investimento di un euro a un tasso r annuo composto m volte ammonta a fine anno a (1+(r/m)) m

ESEMPIO: un tasso annuale del 12% non corrisponde ad un tasso mensile dell'1% bensì a (1,01)<sup>12</sup> =12,68

#### 5) TASSI DI INTERESSE NOMINALI E REALI

- ☐ Tasso di interesse nominale: tasso di crescita del valore di un investimento.
- ☐ Tasso di interesse reale: tasso di crescita del potere di acquisto di un investimento.

$$1 + tasso di interesse reale = \frac{1 + tasso di interesse nominale}{1 + tasso di inflazione}$$

tasso di interesse reale ≈ tasso di interesse reale − tasso di inflazione

#### **INFLAZIONE**

- ☐ Esempio.
  - Se il tasso di interesse di un titolo di stato a un anno è 5.9% e il tasso di inflazione è 3.3%, qual è il tasso di interesse reale?

- 1 + tasso di interesse reale = (1 + 0.059) / (1 + 0.033)
- $\rightarrow$  Tasso di interesse reale = 0.025 o 2.5 %

Approssimazione = 0.059 - 0.033 = 0.026 o 2.6 %

#### TASSO DI INFLAZIONE IN ITALIA



Tasso di inflazione medio annuo in Italia, 1955-2012.

Fonte: ISTAT.

#### VARIAZIONI NOMINALI E REALI ...



# MIO PADRE DICEVA: «DA UNA GENERAZIONE ALL'ALTRA LA RICCHEZZA FINANZIARIA VA IN FUMO PER INFLAZIONE E GUERRE». E' VERO ?

https://www.infodata.ilsole24ore.com/2016/05/17/calcola-potere-dacquisto-lire-ed-euro-dal-1860-2015/

#### Una villetta nella terra dei patacca

Uno studente romagnolo eccitato dalle lezioni di finanza aziendale identifica un appartamento in vendita su un sito immobiliare ad un prezzo particolarmente conveniente: 200.000 euro per una villetta fronte mare a Cesenatico. Conoscendo bene i prezzi del mercato degli affitti stagionali (ha fatto per anni il cameriere nelle balere della costa romagnola) e sapendo che è possibile ricavare almeno 40.000 affittando a clienti altospendenti decide di acquistare l'immobile e portarlo a livello per una clientela di lusso investendo ulteriori 50.000 euro per l'ammodernamento e l'arredamento. La banca locale grazie alla d disponibilità della nonna Gismonda che mette la firma a garanzia dell'operazione è disponibile a finanziare l'operazione con un mutuo a 10 anni al tasso del 3%. Il fattore rendita che prendiamo dalle tabella attuariali è 8.5302.

I calcoli che seguono analizzano 3 scenari: tasso di sconto pari all'inflazione corrente nell'ottobre 2022 del 9%, tasso di sconto pari all'inflazione al 5%, tasso di sconto pari all'inflazione al 5% e vendita immobile all'anno 10 a 200.000 dando per scontato che sarà necessaria una ulteriore ristrutturazione e un ulteriore ammodernamento (si ipotizzano tuttavia prezzi stabili come negli ultimi 10 anni in molte regioni d'Italia). I rendimento sono calcolati al lordo essendo lo studente romagnolo in realtà sammarinese e quindi esente da imposte in Italia.

### 6) Valutazione di un'obbligazione

$$VA = \frac{C_1}{(1+r)^1} + \frac{C_2}{(1+r)^2} + \dots + \frac{1.000 + C_N}{(1+r)^N}$$

Ma la stessa formula potrebbe essere utilizzata per una azione, i flussi di cassi si chiamerebbero dividendi invece che cedole. Nel caso dell'azione il problema maggiore sarebbe di valutare il "valore terminale" ovvero Cn che nel caso dell'obbligazione invece è presumibilmente certo (salvo il fallimento dell'emittente)

## SE NON SAI VALUTARE UNA AZIENDA ...



• A Wall Street dicono che se non sai valutare una azienda puoi sempre andare a valutare obbligazioni ... questo perché una obbligazione ha il flusso di reddito pre-stabilito (salvo insolvenza) nel regolamento di emissione (durata, cedola e prezzo di rimborso a scadenza), il prezzo di mercato (se l'obbligazione è quotata) è dato, solo il tasso di attualizzazione deve essere stimato. Quindi dei 5 elementi della equazione dei flussi di cassa di una obbligazione solo uno è incerto ...

#### LE 5 VARIABILI DEL DCF

- Valore terminale ( o prezzo di rimborso)
- ☐ Flusso reddituale (affitto, dividendo, cedola, etc.)
- ☐ Valore attuale (o quotazione di Borsa)
- ☐ Tasso di sconto (costo opportunità)
- Durata del flusso di cassa (o durata infinita)

#### Valutazione di un'obbligazione

#### **Esempio**

Se oggi ci troviamo a ottobre 2002, qual è il valore della seguente obbligazione? Un'obbligazione IBM paga \$115 ogni settembre per una durata di 5 anni. A settembre 2007 la società paga \$1000 addizionali e ritira il titolo. L'azione è classificata AAA (rendimento alla maturità WSJ AAA = 7,5% che è il nostro costo opportunità).

$$VA = \frac{115}{1,075} + \frac{115}{(1,075)^2} + \frac{115}{(1,075)^3} + \frac{115}{(1,075)^4} + \frac{1,115}{(1,075)^5}$$

Il prezzo di una obbligazione è in percentuale sul valore attuale e quindi 116,18

## RENDIMENTO A SCADENZA DI UNA OBBLIGAZIONE CON CEDOLA

$$P = CPN \times \frac{1}{y} \left[ 1 - \frac{1}{(1+y)^N} \right] + \frac{VF}{(1+y)^N}$$

### CALCOLARE IL RENDIMENTO A SCADENZA DI UNA OBBLIGAZIONE CON CEDOLA

#### Problema

Considerate l'obbligazione quinquennale già descritta nell'Esempio 6.2, che ha valore nominale di \$1000, tasso cedolare del 5% e cedole semestrali. Se questa obbligazione viene correntemente negoziata al prezzo di \$957,35, qual è il rendimento alla scadenza?

#### Soluzione

Poiché l'obbligazione ha ancora dieci pagamenti residui di cedole, si calcola il suo rendimento y risolvendo:

$$957,35 = 25 \times \frac{1}{y} \left[ 1 - \frac{1}{(1+y)^{10}} \right] + \frac{1000}{(1+y)^{10}}$$

Potete risolvere procedendo per tentativi o usando il foglio di calcolo della rendita:

|             | NUM, RATE | TASSO. | VA      | RATA | VALFUT | formula Excel              |
|-------------|-----------|--------|---------|------|--------|----------------------------|
| dati        | 10        |        | -957,35 | 25   | 1.000  |                            |
| trova TASSO |           | 3,00%  |         |      |        | =TASSO(10;25;-957,35;1000) |

y è quindi pari al 3%. Poiché l'obbligazione paga le cedole semestralmente, questo rendimento è riferito a un periodo di sei mesi. Per convertirlo in tasso percentuale annuo lo moltiplichiamo per il numero delle cedole nell'anno. L'obbligazione avrà perciò un rendimento alla scadenza pari al 6% con intervallo di cedola semestrale.

### CALCOLO DEL PREZZO DI UNA OBBLIGAZIONE A SCADENZA

#### Problema

Considerate ancora l'obbligazione quinquennale dell'Esempio 6.3 con valore nominale di \$1000, tasso cedolare del 5% e cedole semestrali. Supponete di venire a sapere che il suo rendimento a scadenza è cresciuto al 6,30% (espresso come tasso percentuale annuo con pagamento di cedole semestrali). A quale prezzo sarà negoziata oggi l'obbligazione?

#### Soluzione

Dato il rendimento, potete calcolare il prezzo usando l'Eq. 6.5. Per prima cosa, notate che un tasso percentuale annuo del 6,30% è equivalente a un tasso semestrale del 3,15%. Quindi il prezzo dell'obbligazione sarà

$$P = 25 \times \frac{1}{0.0315} \left( 1 - \frac{1}{1.0315^{10}} \right) + \frac{1000}{1.0315^{10}} = \$944.98$$

Potete anche usare il foglio di calcolo della rendita:

| -                           | NUM.RATE | TASSO   | VA      | RATA | VAL.FUT | and the same of th |
|-----------------------------|----------|---------|---------|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dati                        | 10       | 2 150   |         | nnin | WIT-LOI | formula Excel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total Section 1             |          | 3,15%   |         | 25   | 1.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AV avor                     |          | 1210111 | -044.00 |      | 41000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Alternative of the Parket |          |         | -944,98 |      |         | =VA(0,0315:10:25:1000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## YIELD TO MATURITY / RENDIMENTO A SCADENZA DI UNA OBBLIGAZIONE

Qual è il rendimento che gli investitori si aspettano dato un prezzo dell'obbligazione? Rispetto all'esempio precedente la variabile nota (costo opportunità) diventa quella incognita
Notiamo come in questo caso, che è risolvibile con procedimenti iterativi, stiamo calcolando un rendimento di mercato (prezzo di mercato) mentre nell'esempio precedente stiamo STIMANDO un prezzo del bond partendo da una ipotesi (quella del costo di opportunità del capitale)

$$116,18 = \frac{115}{1+r} + \frac{115}{(1+r)^2} + \frac{115}{(1+r)^3} + \frac{115}{(1+r)^4} + \frac{1,115}{(1+r)^5}$$

## 7) COSA SUCCEDE QUANDO I TASSI DI INTERESSE CAMBIANO ?

- ➤ a parità di altre condizioni più lunga è la scadenza dell'obbligazione più sensibile è il prezzo della obbligazione alle variazioni dei tassi di interesse.
- A parità di altre condizioni minore il flusso cedolare maggiore la sensibilità del prezzo della obbligazioni alle variazioni dei tassi di interesse
- ➤In altre parole a parità di altre condizioni le obbligazioni più lunghe e quelle che pagano i flussi di cassa minori sono più rischiose.



#### COME SI CALCOLA LA DURATION?

L'ipotesi alla base di questo esempio è che la curva dei tassi di interesse pari scadenza dei titoli di stato è 2,80% e il prezzo attuale della obbligazione è 1066,79 (in percentuale 106,68%)

| Anni | Cedole  | VA(Cedole) | VA(Cedole) x Anni |
|------|---------|------------|-------------------|
| 1    | 42.50   | 41.34      | 41,34             |
| 2    | 42.50   | 40.22      | 80.43             |
| 3    | 42.50   | 39.12      | 117.36            |
| 4    | 42.50   | 38.06      | 152,22            |
| 5    | 1042.50 | 908,05     | 4540.26           |
|      |         | Somma =    | 4931.62           |
|      |         | Duration = | 4.62              |

Duration: sommatoria VA / prezzo Ovvero 4931,62 / 1066,79 = 4,62 che è inferiore alla durata di 5 anni

### DURATION MODIFICATA OVVERO LA "VERA" DURATION PER I "VERI" CALCOLI

Il calcolo della duration modificata è

Variazione % di prezzo = - (duration / (1+r)) X variazione dei tassi

Nel caso precedente la duration modificata è 4,50 invece di 4,62 e se il tasso di interesse aumenta da 2,8% a 3,8% avremo:

Variazione % di prezzo = -4,50 X 1% = -4,50%

La duration offre un modo molto rapido per calcolare la variazione del prezzo ma è una approssimazione e questo non deve essere dimenticato.

Per conoscere la "vera" duration occorre procedere con la "discrete duration" e l'errore di approssimazione si riduce drasticamente. Ma questo va al di là del nostro corso ...

#### FINORA ABBIAMO EVITATO IL CALCOLO DEL RISCHIO E COME IMPATTA SUI PREZZI E SUI RENDIMENTI

| lassi di ratir<br>ell'investmer | ng. Le obbligazioni con rating sup<br>nt grade    | oeriore a BAA. | /BBB rientrano nella categoria        |
|---------------------------------|---------------------------------------------------|----------------|---------------------------------------|
| Inv<br>Moody's                  | estment-grade bond<br>Standard & Poor's and Fitch | Moody's        | Junk bond Standard & Poor's and Fitch |
| Aaa                             | AAA                                               | Ba             | BB BB                                 |
| Aa                              | AA                                                | В              | B B                                   |
| Α                               | A                                                 | Caa            | CCC                                   |
| Baa                             | BBB                                               | Ca             | CC                                    |
|                                 | principal to a minute sale time.                  | C              | The state of the state of             |

L'impatto del rischio oltre che del tempo fa sì che obbligazioni con pari durata ma rischio diverso abbiano prezzi e rendimenti diversi. Ma questo argomento esula per il momento dal nostro percorso.