GEOMETRÍA TOMO 6

RETROALIMENTACIÓN

1. Calcule el área de la superficie total de un tetraedro regular, donde se cumple que la suma de las longitudes de todas sus aristas es de 18 cm.

Resolución:

Piden el área total:

$$A_{\text{total}} = a^2 \sqrt{3}$$
 (1)

Del dato:

$$6a = 18 \Rightarrow a = 3 \dots (2)$$

$$A_{\text{total}} = (3)^2 \cdot \sqrt{3}$$

$$\therefore \mathbb{A}_{\text{total}} = 9\sqrt{3} \text{ cm}^2$$

2. Calcule el volumen del sólido limitado por el hexaedro regular mostrado, si el área de la región triangular AEG es $8\sqrt{2}$ m².

Resolución:

Piden el volumen:

$$V_{cubo} = a^3$$
(1)

Del dato:

$$\frac{a\sqrt{2} \cdot a}{2} = 8\sqrt{2} \Rightarrow a^2 = 16$$

 $a = 4$ (2)

$$V_{cubo} = (4)^3$$

.:
$$V_{cubo} = 64 \text{ m}^3$$

3. Calcule el área de la superficie total de un octaedro regular, si la longitud de su diagonal es de $\sqrt{50}$ cm.

Resolución:

Piden el área total:

$$A_{\text{total}} = 2a^2\sqrt{3}$$
 (1)

Por teorema:

$$MN = a\sqrt{2}$$

Por dato:

$$d = \sqrt{50} \Rightarrow a\sqrt{2} = 5\sqrt{2} \Rightarrow a = 5 \dots (2)$$

$$A_{\text{total}} = 2 \cdot (5)^2 \cdot \sqrt{3}$$

.:
$$V_{cubo} = 64 \text{ m}^3$$

4. Calcule el volumen de un prisma triangular regular cuya altura $5\sqrt{3}$ u y perímetro de su base igual a 18 u.

Resolución:

Piden el volumen del prisma:

$$V_{prisma} = A_{base} \cdot h$$
 (1)

Por dato:

$$2p_{\text{base}} = 18 \Rightarrow 3a = 18 \Rightarrow a = 6$$

Reemplazamos a en (1)

$$\mathbb{V}_{\text{prisma}} = \left(\frac{6^2 \cdot \sqrt{3}}{4}\right) \cdot 5\sqrt{3} = (9\sqrt{3})(5\sqrt{3})$$

.:
$$\mathbb{V}_{\text{prisma}} = 135 \text{ u}^3$$

5. Calcule el área de la superficie lateral del prisma regular hexagonal mostrado. Si: AB = 8 m y m&ABC = 30°.

Resolución:

Piden: $A_{lateral} = 2p_{base}$. h

ACB: Notable de 30° y 60°

CDB:

Entonces:

$$A_{lateral} = (4+4+4+4+4+4)(4) = (24)(4)$$

.:
$$A_{lateral} = 96 \text{ m}^2$$

6. Calcule el volumen del cilindro circular recto si O es centro.

Resolución:

Piden el volumen del cilindro:

$$\mathbb{V}_{\text{cilindro}} = \pi \cdot r^2 \cdot h$$

$$\Delta$$
 OAB \sim Δ BCD

$$\frac{r}{12} = \frac{6}{2r} \Rightarrow 2.r^2 = 72 \Rightarrow r^2 = 36$$

$$r = 6$$

Reemplazando:

$$V_{cilindro} = \pi . (6)^2 . (18)$$

.:
$$V_{cilindro} = 648 \pi u^3$$

7. Calcule el volumen de una pirámide cuadrangular regular si su arista lateral mide 5 u y forma con la base un ángulo que mide 53°.

Resolución:

Piden el volumen de la pirámide:

$$V_{pirámide} = \frac{1}{3} \cdot A_{base}$$
. h

Se traza la altura EO

EOC: Notable de 53° y 37°

Reemplazando al teorema

$$\mathbb{V}_{\text{pirámide}} = \frac{1}{3} \cdot \frac{(6)^2}{2} \cdot (4)$$

.:
$$V_{pir\acute{a}mide} = 24 u^3$$

HELICO | PRACTICE

8. Calcule el área de la superficie lateral de una pirámide cuadrangular regular cuya altura mide 15 u y arista básica mide 16 u.

Resolución:

Piden el área lateral:

$$\mathbb{A}_{lateral} = p_{base}$$
 . ap

Trazamos OM ⊥ CD.

Se traza VM

Por teorema de las 3 perpendiculares m¼VMC = 90°

C VOM:
$$(VM)^2 = 15^2 + 8^2 \rightarrow VM = 17$$

Entonces:

$$A_{lateral} = \frac{(16 + 16 + 16 + 16)}{2}.17 = (32).17$$

 \therefore $\mathbb{A}_{lateral} = 544 \text{ u}^2$

9.Si el área de la superficie lateral del cono circular recto es 84π u². Cuánto mide su altura.

Resolución:

Piden la longitud de la altura

COM:
$$(4x)^2 = (3x)^2 + h^2 \Rightarrow 7x^2 = h^2$$
 (1)

Por dato:

$$A_{lateral} = r.g.\pi$$

$$A_{lateral} = 84\pi$$

$$(3x)(4x) \pi = 84\pi$$

 $x^2 = 7$ (2)

$$7(7) = h^2$$

10.Calcule el área de la superficie lateral del cono circular recto mostrado.

B

Resolución:

Piden el área lateral

$$A_{lateral} = r.g.\pi$$

$$A_{lateral} = r.9.\pi$$
 (1)

COB:

Por teorema de relaciones métricas

$$r^2 = 9.1 \Rightarrow r = 3$$
(2)

$$A_{lateral} = \pi . 3.9$$

$$\therefore$$
 A _{lateral} = 27 π u²