

Characterization of crustal models for quantitative ground motion estimation

C – Model Design (short-scale velocity structure)

Jean Virieux

Emeritus Professor at UGA

Some slides are inspired from Seiscope Group (Pis Romain Brossier & Ludovic Métivier

Translucent Earth

Medium upscaling and downscaling

Real medium

Seismic imaging - upscaling

- Seismic finite frequency (sources/receivers)
- Observer effect (acquisition design)
- Attenuation (Q)
- Imaging methods (e.g. travel-time tomography, FWI)

• ...

Traveltime information $(\sqrt{\lambda L})$

Waveform information $(\frac{\lambda}{2})$

Interpretation (downscaling)

Ground motion estimation: waveform evaluation

Wave information: back-Az observables

For 4 earthquakes, measured arrival angles across the USArray network & predicted angles for a S362ANI model using

- (1) ray tracing,
- (2) great-circle approximation and
- (3) SEM modeling

Observables have more information than those predicted by built Earth models

How to improve tomographic approaches for honoring both traveltimes (or phases) and azimuthal (and/or slowness) measurements?

Figure 7 from Foster, Ekström & Hjörleifsdottir (EPSL, 2014)

Richness of seismograms!

Richness of seismograms!

Related hierarchical structure

Two scales show up in the model reconstruction

Recorded seismic traces bring different information from medium properties

Two-steps procedure

Basic seismic imaging workflows

Phase (traveltime for non-dispersive wave) drives imaging

Wavepath: sensivitiy kernel

Misunderstood concept

Macro-model reconstruction

Kinematic correction: NMO velocity

$$T_x^2 = T_0^2 + \frac{X^2}{V_{nmo}^2}$$

NMO velocity: hyperbolae lines of reflections gives information on down/up propagation ...

Wave-matter interaction: transmission regime based on reflection events

FWI: using complete records

Pr. A. Tarantola

1st paper on FWI: Geophysics, 1984

Full Waveform Inversion FWI

No prior identification -> No prior scale separation!

FWI: the dream

Broadband sources
Complete illumination
of targets

The dream ...

Merging the velocity-model building and the migration into one integrated task when considering full waveforms

Continuous sampling of the wavenumber spectrum and filling the intermediate wavelength gap.

Tarantola (1984, 1987)

Quantitative interpretation

Short-scale variation of physical properties

allowing wave propagation

Data calibration issues

Using records as they are

```
Acquisition design (source & receiver positioning & orientation?)

Time synchronization (GPS now! Clock precision < 1 ms -> 0.1ms)

Amplitude calibration (instrument!; installation coupling!)

(wavefield -> waveform) relaxes installation & experimental procedure!
```

The main difficulty!

Source knowledge (source signature; radiation pattern)

```
quite challenging for natural sources (earthquakes: focal mechanism)
```

still difficult for active sources (shots, blasts: source signal s(t))

(wavefield -> waveform) mitigates these issues

Phases and waves

17/11/2021 Phases and waves 14

Source spectral shaping

(Lazaratos et al, 2011)

Same physics in both cases

Missing low frequency content in the source wavelet (STF)!

Source spectral shaping

(Lazaratos et al, 2011)

Improving the STF by spectral shaping!

Wavefrom: essential contribution

Low frequency information

2D synthetic example

Pratt & Brenders (2004)

benefit from waves, even when phases interfere

3D real example: Valhall oil field

(Warner et al., 2008; Sirgue et al., 2010 ...)

17/11/2021

Phases and waves 17

100 ch 2 (2013)

Reducing variability!

Moving from 0.5/2 Hz to 10/22.5 Hz is expected to be feasible in the future with dense data!

Figure 2 Reflectivity images derived from P-wave velocity and density at (a) 10 Hz, (b) 22.5 Hz.

(Métivier et al, 2024)

Stochastic strategy could be drastically reduced for wave propagation

Deep understanding of the physics of wave propagation Frugal tools of accurate prediction of waveforms (wavefields!)

Multiple parameters!

Stochastic strategy could be drastically reduced for wave propagation

Deep understanding of the physics of wave propagation

Frugal tools of accurate prediction of waveforms (wavefields!)

FWI: a rather difficult strategy?

Full data content: Traveltime (phase) and amplitude of all arrivals

Most of the time, the inversion does not iterate because unable to find a better model improving the fit of the data!

- ☐ Enough accurate physics!
- ☐ High-quality records!
- □ Source wavelet content!
- ☐ Curse of dimensionality!
- ☐ Multiple parameters cross-talk!

Optimization better for low-frequency data than high-frequency data

Wave Equation Tomography (WET)

(Woodward, 1989; Luo & Schuster, 1991; Woodward, 1992, Van Leeuwen & Mulder, 2010)

- Time windowing strategy for waveform extraction (Maggi et al., 2009)
- Cross-correlation between observed and synthetic waveforms for time shift evaluation (obtained through wave equation solvers: expensive!)

Time delay will be frequency-dependent: for example, 0.6 s time shift between P time in band [2-0.5 Hz] and P time in band (0.1-0.03 Hz) ...

>Starting model should be phase-compatible (cycle-skipped?)

Interference between phases in the same window – non-linear effects (Nolet, 2008)

Model « see » the interference and not each phase ... in a dynamic way (updated phase delays)

27/02/2024 Naples 21

Wave Equation Tomography (WET)

(Woodward, 1989; Luo & Schuster, 1991; Woodward, 1992, Van Leeuwen & Mulder, 2010)

- Time windowing strategy for waveform extraction (Maggi et al., 2009)
- Cross-correlation between observed and synthetic vinnmune to for time shift evaluation (obtained through we solve effects solvers: expensive!)

 Time delay will be frame.

Time delay will be frequency-dependent: for example, 0.6 s time shift between P time in band [2-0.5 Hz] and P time in band (0.1-0.03 Hz) ...

Starting model should be phase-compatible (cycle-skipped?)

Interference between phases in the same window – non-linear effects (Nolet, 2008) Model « see » the interference and not each phase ... in a dynamic way (updated phase delays)

27/02/2024 Naples 22

Wave Equation Tomography (WET)

(wide-spread tool in seismology)

Time-domain cross-correlation inside a given window: « traveltime » sensitive to frequency

- Sensitivity kernel from Wave Equation (WE) (Tape et al., 2009, 2010; ...)

Sensitive to synthematical sensitive to synthematica

- Sensitivity kernel from Ray Theory (RT) (Dahlen et al, 2000; Dahlen & Nolet, 2005)

Born approximation (Lippmann & Schwinger, 1950; Dahlen & Tromp, 1998; Zhao et al., 2000; Zhao & Chevrot, 2011a,b)

Dynamic phase measurement: Xcorr.

Interference btw ScS and sS High frequency

Zaroli et al (2010) ~400 000 phase

~400 000 phases S, SS, ScS « nearly » automatically

Real example for Europe using phases crosscorrelation and elastodynamic wave propagation Lu et al (2018)

From ambient noise analysis

Dispersion curve analysis (fundamental mode)

Seismology ©

Wave equation tomography

What kind of phases
in WEI?

Initial phase tomography

Seismic @/@

WET: independent phase misfit

(Fichtner et al., 2008; Fichtner et al., 2009)

Phases are not picked as for DRT or DET (unless dynamic wrapping)!

Phase delays are the extracted observables

highly correlated to current model (Nolet, 2008)

WET: dynamic phase misfit

Does WET improve the resolution compared to DRT or DET?

(Fichtner et al, 2009)

Resolution is improved by exploiting more information, especially interference phases

Mitigation of computer needs!

Model homogenization requires anisotropy parameters but reduces significantly computer cost

(Capdeville et al., 2010b; Cupillard & Capdeville, 2018)

Site: short-scale variation

Local ground shaking depends on

softness of the surface rocks

thickness of surface sediments.

(from SCEC website)

Reduction of GMS scenarios

Variability comes from unexpected earthquake description and ...

Reduction of GMS

possible local perturbation which could include site/building interaction in a multi-scale analysis

Mexico City Acceleration Response Spectrum

Large-scale and short-scale models cannot reach this resolution: translucent Earth...

Conclusion

For ground motion estimation, the wave propagation aspect is the more deterministic part of this challenging problem.

However, often neglected...

Conclusion

Hope that this training will convince you that the dramatic increase of data is compatible with more accurate evaluation of wave propagation aspect.