TEST 4

Math 152 - Calculus II		Score:	out of 10
	Name: _		·

Read all of the following information before starting the exam:

- You have 50 minutes to complete the exam.
- Show all work, clearly and in order, if you want to get full credit. Please make sure you read the directions for each problem. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Please box/circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 6 problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Good luck!

1. Determine if the following series converge or diverge. Clearly state the test you are using to obtain your answer.

(a)
$$\sum_{n=0}^{\infty} \frac{3^n}{n!}.$$

Ratio Test:
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^n} = \lim_{n\to\infty} \frac{3! \cdot 3 \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3 \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3 \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3 \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3 \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3 \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3 \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3 \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3 \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3 \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3 \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3 \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3! \cdot n!}{(n+1)n! \cdot 3^n} = \lim_{n\to\infty} \frac{3! \cdot 3!}{(n+1)n! \cdot$$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{4n+2}{3n-1} \right)^n.$$

Root Test:
$$\lim_{N\to\infty} (a_n)^{1/n} = \lim_{N\to\infty} \left(\left(\frac{4n+2}{3n-1} \right)^n \right)^{1/n} = \lim_{N\to\infty} \frac{4n+2}{3n-1}$$

$$= \lim_{N\to\infty} \left(\frac{4n+2}{3n-1} \right) \left(\frac{1}{n} \right)$$

$$= \lim_{N\to\infty} \frac{4+2n}{3-1/n}$$

$$= \frac{4}{3} > 1$$

$$= \lim_{N\to\infty} \frac{4}{3} > 1$$

$$= \lim_{N\to\infty} \frac{4}{3} > 1$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 + 4}$$

Alternating Series Test:

(i) Show
$$\frac{1}{n^2+4}$$
 is decreasing: $\frac{3}{n^2+4}$ methods.

$$f(x) = \frac{1}{x^2+4} \implies f'(x) = \frac{0-(2x)}{(x^2+4)^2} = \frac{-2x}{(x^2+4)^2} < 0$$
(ii) $\lim_{n\to\infty} \frac{1}{n^2+4} = 0$

2. Determine if the following series is absolutely convergent, conditionally convergent, or divergent.

consider the series of absolute values:
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

$$= \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

$$f(x) = \frac{1}{1+3x} = (1+3x)^{-1}.$$

$$f(0) + f'(0) \times + \frac{f''(0)}{2!} \times^2 + \cdots$$

$$1 + (-3) \times + \left(\frac{18}{2!}\right) \times^2 + \cdots$$
or

$$1-3\times + 9\times^2 + \cdots$$

4. Using the formula, set up a table and find the first THREE terms of the Taylor series about $x_0 = 2$

$$f(x) = e^{-x}.$$

n
$$f^{(n)}(x)$$
 $f^{(n)}(2)$ $\frac{f^{(n)}(2)}{n!}$
0 e^{-x} e^{-2} $\frac{e^{-2}}{0!} = e^{-2}$
1 $-e^{-x}$ $-e^{-2}$ $\frac{e^{-2}}{1!} = -e^{-2}$
2 e^{-x} e^{-2} $\frac{e^{-2}}{2!} = \frac{e^{-2}}{2}$

$$f(2) + f'(2)(x-2) + \frac{f''(2)}{2!}(x-2)^2 + \cdots$$

$$f(2) + f'(2)(x-2) + \frac{f''(2)}{2!}(x-2)^{2} + \cdots$$

$$e^{-2} + (-e^{-2})(x-2) + (\frac{e^{-2}}{2!})(x-2)^{2} + \cdots$$
or

$$\frac{1}{e^2} - \frac{1}{e^2} (x-2) + \frac{1}{2e^2} (x-2)^2 + \cdots$$

5. Find the radius and interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n^2}.$$

use the ratio test for absolute convergence first:

$$\lim_{N\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{N\to\infty} \left| \frac{(x+3)^{n+1}}{(n+1)^2} \cdot \frac{n^2}{(x+3)^n} \right| = \lim_{N\to\infty} \left| \frac{(x+3)^n (x+3)^n}{(n+1)^2 (x+3)^n} \right|$$

$$= \lim_{N\to\infty} \frac{1 \times 43 |n|^2}{(n+1)^2}$$

$$= |x+3| \lim_{N\to\infty} \frac{(n^2)}{(n^2+2n+1)} \cdot \frac{(n^2)}{(n^2+2n+1)}$$

$$= |x+3| \lim_{N\to\infty} \frac{1}{1+\frac{2}{2}n+\frac{2}{2}n}$$

$$= |x+3| \cdot 1 = |x+3|$$

Therefore, the series converges if $|x+3| \le 1$ -1 < x+3 < 1 -1-3 < x < 1-3

-4 < x <-2. Now we need to check the end points!

at
$$x=-4$$
 (plug $x=-4$ into the power series) we get:
$$\sum_{n=1}^{\infty} \frac{(-4+3)^n}{n^2} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

use the alternating series test (i) $\frac{5}{2}$ is decreasing: $f(x) = \frac{1}{x^2} \Rightarrow f(x) = \frac{-2x}{(x^2)^2} < 0$

(ii)
$$\lim_{n\to\infty} \frac{1}{n^2} = 0$$
 Converges

at $x = -2$ (plug $x = -2$ into the power series) we get:
$$\sum_{n=1}^{\infty} \frac{(-2+3)^n}{n^2} = \sum_{n=1}^{\infty} \frac{(1)^n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

p-sures (p=2>1)

so the interval of convergence is $-4 \le x \le -2$ or [-4,-2] and the vadius of convergence is R=16. Use known Maclaurin series to write the first THREE terms of the Maclaurin series for the following.

(a)
$$\frac{1}{1+3x^2} = \frac{1}{1-(-3x^2)}$$
 and since $\frac{1}{1-x} = 1+x+x^2+\cdots$ we get $= [1+(-3x^2)+(-3x^2)^2+\cdots] = [1-3x^2+9x^4+\cdots]$

(b)
$$\int e^{x^3} dx$$
.
Since $e^{x} = 1 + x + \frac{x^2}{2!} + \cdots$

$$e^{x^3} = 1 + x^3 + \frac{(x^3)^2}{2!} + \cdots = 1 + x^3 + \frac{x^6}{2!} + \cdots$$
Hence $\int e^{x^3} dx = \int (1 + x^3 + \frac{x^6}{2!} + \cdots) dx = C + x + \frac{x^4}{4} + \frac{x^7}{7 \cdot 2!} + \cdots$