

JBF293K青鸟Modbus_RTU/TCP协议说明及测试方法V1.6

目录:

—,	Modbus_RTU系统连接方式	1
_,	Modbus_RTU协议说明	2
	1. 第三方设备发起查询指令	
	2. JBF293K接口卡反馈数据	3
\equiv	Modbus_RTU测试方法及举例说明	5
	1. 串口助手测试方法	5
	1). 查询报警回路(1 [~] 64回路)	5
	2). 查询多线盘信息	6
	3). 查询气体灭火盘信息	7
	2. ModScan32.exe软件测试方法	7
四、	Modbus_TCP系统连接方式1	0
五、	Modbus_TCP协议说明1	0
	1. 第三方设备发起查询指令 1	1
	2. JBF293K接口卡反馈数据1	2
六、	Modbus_TCP测试方法及举例说明1	3
	1. 串口助手测试方法	3
	1). 查询报警回路(1~64回路)1	3
	2). 查询多线盘信息1	4
	3). 查询气体灭火盘信息1	5
	2. ZLAN-5103卡设置及项目调试方法 1	6
1	4.44.14.14.14.14.14.14.14.14.14.14.14.14	Ω

一、Modbus_RTU 系统连接方式

JBF293K接口卡的CAN0接口连接青鸟火警联动控制器的外CAN接口。

JBF293K接口卡的RS485接口连接第三方配接设备。

JBF293K接口卡由DC24V供电。

JBF293K接口卡接收青鸟火警联动控制器的报警、故障等信息,采用标准Modbus-RTU协议输出给第三方设备。

二、Modbus_RTU 协议说明

JBF293K接口卡为从机,第三方设备为主机。采用主机查询,从机应答的通讯方式。查询间隔1秒。

JBF293K接口卡<mark>对应1台控制器时</mark>: 拨码开关 1^{\sim} 7设置机器号(<mark>范围 1^{\sim} 99</mark>; 即Modbus_RTU 通讯从机地址),需要和与其连接的青鸟控制器机器号相同:

	DIP1	DIP2	DIP3	DIP4	DIP5	DIP6	DIP7	DIP8
十进制	1	2	4	8	16	32	64	RTU/TCP协议选择
			OFF: RTU协议					
								ON: TCP协议

JBF293K接口卡<mark>对应多台控制器时</mark>: 拨码开关 1^{\sim} 7设置卡号(<mark>范围 $100^{\sim}110$ </mark>; 即Modbus_RTU 通讯从机地址):

	DIP1	DIP2	DIP3	DIP4	DIP5	DIP6	DIP7	DIP8
十进制	1	2	4	8	16	32	64	RTU/TCP协议选择
			拨置0	N为数值	直有效			OFF: RTU协议 ON: TCP协议

1卡对应多台控制器的约束条件:

- 1. 报警主机控制器号范围需为1[~]64,且只支持报警回路信息,否则293K不接收控制器信息。
 - 2. 电气火灾控制器号范围需为1⁶⁴,否则293K不接收控制器信息。
 - 3. 防火门控制器号范围需为1~64, 否则293K不接收控制器信息。
 - 4. 消防电源监控控制器号范围需为1²8, 否则293K不接收控制器信息。
- 5. 以上各种机型不可混合组网,只能是相同机型,且每台机器只有一个回路总计 200 点位。
- 6. 依然使用1卡对应1台控制器时的查询指令,以前代表查询某台控制器的第N回路, 在1卡对应多台控制器时,代表查询第N号控制器的单回路点位信息。

RS485接口通讯波特率9600,起始位1位,数据位8位,停止位1位,无校验。 1台青鸟控制器需配置1个JBF293K接口卡。

1. 第三方设备发起查询指令

Byte1	从机地址	由JBF293K拨码开关决定
Byte2	功能码	0x03
Byte3	查询寄存器起始地址-高字节	对应青鸟控制器现场部件的回路号, 实际查询时-1
Byte4	查询寄存器起始地址-低字节	对应青鸟控制器现场部件的地址号, _{只能是0x01或0x65}
Byte5	查询寄存器数量-高字节	每次查询100个寄存器
Byte6	查询寄存器数量-低字节	
Byte7	CRC16校验	
Byte8	CRC16校验	

Byte3查询寄存器起始地址-高字节: (是控制器真实回路号减1)

该字节填写0~63对应查询青鸟控制器1~64报警回路。

该字节填写65对应查询青鸟控制器多线设备。

该字节填写67对应查询青鸟控制器气体灭火区及相关气灭设备。

该字节填写68对应查询控制器的主备电故障、手自动状态。

Byte4查询寄存器起始地址-低字节:

每个回路有200个现场部件(寄存器地址)。要求每次固定查询100个现场部件(寄存器地址),查询2次可完成该回路全部现场部件(寄存器)的查询。

每次只能在同一回路中查询,不可进行跨回路查询。故"Byte4查询寄存器起始地址-低字节"只能是0x01或0x65。

结合 "Byte5 $^{\circ}$ Byte6查询寄存器数量(固定为100)",即第1次查询该回路的1 $^{\circ}$ 100地址状态,第2次查询该回路的101 $^{\circ}$ 200地址状态。

寄存器点	起始地址	
寄存器起始地址	寄存器起始地址	含义
高字节 (Byte3)	低字节 (Byte4)	
0x00	0x01	从1回路1地址开始查询
0x00	0x65	从1回路101地址开始查询
0x01	0x01	从2回路1地址开始查询
0x01	0x65	从2回路101地址开始查询
0x02	0x01	从3回路1地址开始查询
0x02	0x65	从3回路101地址开始查询
	•	
0x3F	0x01	从64回路1地址开始查询
0x3F	0x65	从64回路101地址开始查询
0x41	0x01	查询青鸟控制器多线设备
0x41	0x65	
0x43	0x01	查询青鸟控制器气体灭火区及相关气灭设备
0x43	0x65	
0x45	0x01	查询青鸟控制器主备电状态、手自动状态

综上所述,监控中心查询时,固定每次查询100个地址状态。查询的起始地址低字节只能是0x01或0x65。起始地址高字节与上表中相符。不可跨回路查询,不可改变查询数量。

2. JBF293K接口卡反馈数据

Byte1	从机地址	由JBF293K拨码开关决定
Byte2	功能码	0x03
Byte3	寄存器数量(反馈字节	0xC8(因第三方固定查询100个地址,故反馈200
	总数)	个数据字节)
Byte4~Byt203	寄存器值	每两个字节代表1个现场部件的状态
Byte204	CRC16校验-低字节	
Byte205	CRC16校验-高字节	

1~64报警回路中的现场部件状态含义如下:

火警、故障、启动、反馈、监管信息,293K 收到控制器复位后,将之前记录的状态清零。

屏蔽状态,收到控制器复位后,293K 将之前记录的状态保留,直到有屏蔽解除信息时才清零。

报警主机:每个地址现场部件反馈状态(低字节含义如下表,高字节全0):

bit0	Bit1	Bit2	Bit3	Bit4	Bit5
1: 火警	1: 故障	1: 启动	1: 反馈	1: 屏蔽	1: 监管报警
0:无火警	0: 故障撤销	0: 未启动或已停止	0: 无反馈或反馈撤销	0: 屏蔽解除	0: 监管撤销

电气火灾主机:每个地址现场部件反馈状态(低字节含义如下表,高字节全0):

bit0	Bit1	Bit2	Bit3	Bit4
1: 火警	1: 故障	1: 启动		1: 屏蔽
0:无火警	0: 故障撤销	0: 未启动或已停止		0: 屏蔽解除

防火门主机:每个地址现场部件反馈状态(低字节含义如下表,高字节全0):

除了Bit2~Bit4,其他均是故障信息

bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7
1:接口	1: 配置错	1: 启动	1: 反馈	1: 屏蔽	1: 关闭失败	1: 异常关闭	1: 异常打开
未登记	误						
或接口							
故障							
0:正常	0:正常	0:正常	0:正常	0: 正常	0:正常	0:正常	0:正常

消防电源监控主机:每个地址现场部件反馈状态(占两字节)的含义为:

低字节:

bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7
1: 故障	1: 欠压	1: 过压	1: 缺相	1: 过载	1: 错相	1: 通道供电中断	1: 供电中断
0:正常	0:正常						

高字节:

bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7
1: 输入动作	1: 输出动作	1: 屏蔽					
0:正常	0:正常	0:正常					

66回路为多线设备(1卡对多控制器时,不支持该信息),反馈含义如下:

66 回路中的 $1^{\sim}160$ 地址的反馈状态分别对应了 1 号多线盘的 $1^{\sim}8$ 路多线、2 号多线盘的 $1^{\sim}8$ 路多线.... 20 号多线盘的 $1^{\sim}8$ 路多线的状态。

故障、启动、反馈信息,293K收到控制器复位后,将之前记录的状态清零。

每路多线的状态(占两字节)含义如下:

低字节含义如下表, 高字节全 0。

bit0	Bit1	Bit2	Bit3		
	1: 故障	1: 启动	1: 反馈		
	0: 故障撤销	0: 未启动或已停止	0: 无反馈或反馈撤销		

68回路为气体灭火区及其设备(1卡对多控制器时,不支持该信息),含义如下:

68回路中的 1^{\sim} 16地址的反馈状态分别对应了1号气灭盘的 1^{\sim} 4号气灭区、2号气灭盘的 1^{\sim} 4号气灭区....4号气灭盘的 1^{\sim} 4号气灭区。

气灭区启动、喷洒应答、喷洒启动、声光启动、辅助设备启动信息,293K收到控制器复位后,将之前记录的状态清零。

每个气灭区的相关状态(占两字节)含义如下:

低字节含义如下表,高字节全0。

bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	
	1: 气灭区故障	1: 气灭区启动	1: 喷洒反馈	1: 喷洒启动	1: 声光启动	1: 辅助设备启动	
	0: 气灭区正常	0: 启动撤销	0: 反馈撤销	0: 无启动	0: 声光停止	0: 辅助设备停止	

69回路为青鸟控制器主/备电状态、手动/自动状态等机器信息,含义如下:

69回路显示主备电故障、手自动状态、板卡故障信息,反馈时相应的地址对应相应的控制器。即1地址状态表示1号控制器信息、10地址状态表示10号控制器信息。

1卡对应多台主机时,只接收机器号1[~]64的相关状态。

低字节含义如下表, 高字节全0。

bit0	Bit1	Bit1 Bit2 Bit3 Bit4		Bit5	Bit6	
	1: 主电故障	1: 备电故障	1: 手动禁止	1: 自动禁止	1: 板卡故障	
	0: 主电正常	0: 备电正常	0: 手动允许	0: 自动允许	0: 板卡正常	

三、Modbus_RTU 测试方法及举例说明

- 1. 串口助手测试方法
- 1). 查询报警回路(1~64回路)

例如查询36机7回路101~200地址的状态。

用串口助手发送查询指令(十六进制): 24 03 06 65 00 64 53 83

- 24: 从机号(由JBF293K拨码开关决定,和其所接的青鸟控制器号相同)。
- 03: 功能码(固定)。
- <mark>06</mark>:查询的回路号(此处回路号-1)。
- 65: 查询的地址号(起始地址,本例中是101号地址)。
- 00 64: 查询的地址个数(本例即查询101~200地址共计100个地址)
- 53 83: CRC校验

JBF293K反馈的状态数据

例如回路-地址的7-124启动且有反馈、7-125有反馈、7-126被屏蔽、7-127报故障、7-154 监管报警、7-155报火警,反馈数据如下:

24 03	C8	00 00		00 00		00 00		00 00		00 00		00 00		00 00
		7-101正常		7-102正常		7-103正常		7-104正常		7-105正常		7-106正常		7-107正常
00 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
7-108正常	7-10	90正常	7-1	10正常	7-11	1正常	7-11	2正常	7-11	13正常	7-11	l4正常	7-1	15正常
00 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
7-116正常	7-11	17正常	7-1	18正常	7-11	9正常	7-12	20正常	7-12	21正常	7-12	22正常	7-1	23正常
00 OC		00 08		00 10		00 02		00 00		00 00		00 00		00 00
7-124启动+反馈	į	7-125反馈		7-126屏蔽		7-127故障		7-128正常		7-129正常		7-130正常		7-131正常
00 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
7-132正常	7-13	33正常	7-13	34正常	7-13	5正常	7-13	6正常	7-13	37正常	7-13	88正常	7-1	39正常
00 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
7-140正常	7 1	11正常	7 1	42正常		3正常		4正常		15正常		16正常	- 1	47正常

 00 00
 00 00
 00 00
 00 00
 00 00
 00 00
 00 00

 7-148正常
 7-150正常
 7-151正常
 7-152正常
 7-153正常
 7-154监管报警
 7-155火警

2). 查询多线盘信息

例如查询36机多线盘状态。

用串口助手发送查询指令(十六进制):

24 03 <mark>41 01 00 64</mark> 06 E8

24: 从机号(由JBF293K拨码开关决定,和其所接的青鸟控制器号相同)。

03: 功能码(固定)。

<mark>41</mark>:查询的多线回路号(此处回路号-1)。

<mark>01</mark>: 查询的地址号(起始地址,本例中是第1号多线盘第1路多线)。

<mark>00 64</mark>: 查询的地址个数

06 E8: CRC校验

JBF293K反馈的状态数据

A多线-B即第A(1^2 20)块多线盘的第B(1^2 8)路多线。

例如1多线-1启动、1多线-2反馈、1多线-3故障、2多线-1启动、2多线-2反馈、2多线-3 故障,反馈数据如下:

24 03 C8 00 04 00 08 00 02 00 00 00 00 00 00 00 00 1多线-1启动 1多线-2反馈 1多线-3故障 1多线-4正常 1多线-5正常 1多线-6正常1多线-7正常 00 00 00 04 00 08 00 02 00 00 00 00 00 00 00 00 2多线-2反馈 1多线-8正常 2多线-1启动 2多线-3故障 2多线-4正常 2多线-5正常 2多线-6正常 2多线-7正常 00 00 00 00 00 00 00 00 <mark>70 6C</mark>

CRC校验

3). 查询气体灭火盘信息

例如查询36机气体灭火盘状态。

用串口助手发送查询指令(十六进制):

24 03 <mark>43 01 00 64</mark> 07 50

24: 从机号(由JBF293K拨码开关决定,和其所接的青鸟控制器号相同)。

03: 功能码(固定)。

43: 查询的气灭信息。

<mark>01</mark>:查询的地址号(起始地址,本例中是第1号气灭盘第1气灭区)。

00 64: 查询的地址个数

07 50: CRC校验

JBF293K反馈的状态数据

A灭火-1即第A(1~4)块灭火盘的第B(1~4)个灭火区。

例如1灭火-1区启动、1灭火-2喷洒反馈、1灭火-3喷洒启动、2灭火-1区启动、2灭火-2 声光启动、2灭火-3辅助设备启动、2灭火-4喷洒反馈,反馈数据如下:

24 03 C8 00 C	00 00	08	00 10	00 00	
1 <u>灭火</u>	-1区启动 1灭	火-2喷洒反馈	1灭火-3喷洒启动	1灭火-4正常	
00 04 00	20	00 40	00 08	00 00	
2灭火-1区启动 2灭	文火-2声光启动	2灭火-3辅助启动	2灭火-4喷洒反馈	3灭火−1正常	
00 00 00 00	00 00	00 00 00	00 00 00	00 00	
3灭火-2正常 3灭火-3正	常 3灭火-4正常	4灭火-1正常 4灭	火-2正常 4灭火-3〕	E常 4灭火-4正常	
00 00 00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 0	0 00 00 00
00 00 00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 00	0 00 00 00
00 00 00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 0	0 00 00 00
00 00 00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 00	0 00 00 00
00 00 00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 00	0 00 00 00
00 00 00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 0	0 00 00 00
00 00 00 00 00 00	5A CA				
	CRC校验				

2. ModScan32.exe软件测试方法

需要使用232转485模块、USB转串口线,将电脑和293K连接。 293K的拨码开关前7位,按二进制方式设置地址,与所接控制器的机器号一致。

打开ModScan32.exe软件,有3个地方要设置:

- 1. Device Id: 此处输入与配接的控制器号、293K拨码开关号相同。
- 2. Address:表示要测试的起始地址(回路-地址)号。 计算方法为:(回路号-1)*256+部位号+1,转换成十六进制后填入此处。 Address: AABB

- <mark>AA</mark>:查询控制器的回路号-1(例如查询6回路,则AA为05)
- BB: 查询该回路的起始地址,02表示查询该回路 1^{2} 100地址,66表示查询该回路 101^{2} 200地址。
 - 3. 选为: 03 HOLDING REGISTER。
 - 4. Length: 表示从上述起始地址开始,测试的连续地址总数。

上述设置完成后,点击左上角菜单"Connection",在弹出的连接设置选项中有2处要设置:

- 1. 根据实际情况选择USB串口线的端口号。
- 2. 通讯波特率等信息按下图设置即可(9600、8、NONE、1)。

上述设置完成后,电脑通过ModScan32. exe软件与293K_modbus即可正常通讯。 下图红框内的数字会累加递增,表示连接成功并处于测试过程中。

举例说明

测试2号控制器,3回路,1~50地址的现场部件状态。

可以让3回路 $1^{\sim}10$ 地址报出故障信息,其他地址处于正常状态,以便看出293K_Modbus接口卡是否正常。

- 1. Device ID: 2号控制器。
- 2. Address: (回路号-1) *256+部位号+1。 即2*256+1+1=514,换成十六进制为0x0202。
- 3. Length: 查询50个地址,即查询3回路1~50地址的现场部件状态。

连接成功后,因3回路1~10地址报出故障信息,可见下图中0202H~020BH这10个寄存器的值为00002,根据协议可知,表示故障信息。其他地址为正常状态,故寄存器的值为0

四、Modbus TCP 系统连接方式

JBF293K接口卡的CAN0接口连接青鸟火警联动控制器的外CAN接口。

JBF293K接口卡的RS485接口输出Modbus_TCP协议,经由ZLAN接口卡转换为RJ45网口数据发送给监控中心。

JBF293K接口卡由DC24V供电。

五、Modbus_TCP 协议说明

JBF293K接口卡为从机,第三方设备为主机。采用主机查询,从机应答的通讯方式。 JBF293K接口卡<mark>对应1台控制器时</mark>:拨码开关1[~]7设置机器号(即Modbus通讯从机地址), 需要和与其连接的青鸟控制器机器号相同:

		DIP1	DIP2	DIP3	DIP4	DIP5	DIP6	DIP7	DIP8
Ī	十进制	1	2	4	8	16	32	64	RTU/TCP协议选择
				拨置0	N为数值	直有效			OFF: RTU协议 ON: TCP协议

JBF293K接口卡<mark>对应多台控制器时</mark>:拨码开关 1^{\sim} 7设置卡号($\overline{\text{范围}100^{\sim}110}$;即Modbus通讯从机地址):

_									
		DIP1	DIP2	DIP3	DIP4	DIP5	DIP6	DIP7	DIP8
	十进制	1	2	4	8	16	32	64	RTU/TCP协议选择
					OFF: RTU协议				
									ON: TCP协议

1卡对应多台控制器的约束条件:

- 1. 报警主机控制器号范围需为1[~]64,且只支持报警回路信息,否则293K不接收控制器信息。
 - 2. 电气火灾控制器号范围需为1⁶⁴,否则293K不接收控制器信息。
 - 3. 防火门控制器号范围需为1⁶⁴,否则293K不接收控制器信息。
 - 4. 消防电源监控控制器号范围需为1~28, 否则293K不接收控制器信息。
- 5. 以上各种机型不可混合组网,只能是相同机型,且每台机器只有一个回路总计 200点位。
- 6. 依然使用1卡对应1台控制器时的查询指令,以前代表查询某台控制器的第N回路, 在1卡对应多台控制器时,代表查询第N号控制器的单回路点位信息。

RS485接口通讯波特率9600,起始位1位,数据位8位,停止位1位,无校验。 1台青鸟控制器需配置1个JBF293K接口卡。

1. 第三方设备发起查询指令

查询指令共计12个字节

MBAP报文头	功能码	寄存器起始地址	查询寄存器数量	
AO BO CO DO <mark>OO O6</mark> EO	03	00 01	00 64	
Byte1~Byte7	Byte8	Byte9~Byte10	Byte11~Byte12	

约束及说明:

- 1. 查询指令不要太频繁,建议2秒查一次。
- 2. MBAP报文头中,<mark>黄色字节</mark>中的数据随机,从机反馈时使用该查询指令中的原始数据。
- 3. MBAP报文头中,<mark>绿色字节</mark>中的数据固定,表示查询指令数据长度。
- 4. 寄存器起始地址:

Byte9地址高字节:

该字节填写0~63对应查询青鸟控制器1~64报警回路。

该字节填写65对应查询青鸟控制器多线设备。

该字节填写67对应查询青鸟控制器气体灭火区及相关气灭设备。

该字节填写68对应查询控制器的主备电故障、手自动状态信息。

Byte10地址低字节:

每个回路有200个现场部件(寄存器地址)。要求每次固定查询100个现场部件(寄存器地址),查询2次可完成该回路全部现场部件(寄存器)的查询。

每次只能在同一回路中查询,不可进行跨回路查询。故"Byte10地址低字节"只能是0x01或0x65。

结合"Byte11²Byte12查询寄存器数量(固定为100)",即第1次查询该回路的1²100地址状态,第2次查询该回路的101²00地址状态。

寄存器	起始地址	含义
高字节 (Byte9)	低字节 (Byte10)	дX
0x00	0x01	从1回路1地址开始查询
0x00	0x65	从1回路101地址开始查询
0x01	0x01	从2回路1地址开始查询
0x01 0x65		从2回路101地址开始查询
0x02 0x01		从3回路1地址开始查询
0x02	0x65	从3回路101地址开始查询
0x3F	0x01	从64回路1地址开始查询
0x3F	0x65	从64回路101地址开始查询
0x41	0x01	查询青鸟控制器多线设备
0x41	0x65	
0x43	0x01	查询青鸟控制器气体灭火区及相关气灭设备
0x43	0x65	
0x45	0x01	查询青鸟控制器主备电状态、手自动状态

综上所述,监控中心查询时,固定每次查询100个地址状态。查询的起始地址低字节只能是0x01或0x65。起始地址高字节与上表中相符。不可跨回路查询,不可改变查询数量。

2. JBF293K接口卡反馈数据

反馈数据共计209个字节

MBAP报文头	功能码	数据长度	反馈数据内容	
AO BO CO DO <mark>OO CB</mark> EO	03	C8	00 00	
Byte1~Byte7	Byte8	Byte9	Byte11 Byte209	

约束及说明:

- 1. MBAP报文头中,<mark>黄色字节</mark>中的数据使用监控中心查询指令中的原始数据。
- 2. MBAP报文头中,<mark>绿色字节</mark>中的数据表示反馈的数据总长度。0xCB(203=3(Byte7[~]9) +200)
- 3. 数据长度:因要求监控中心每次查询100个地址,每个地址以2个字节形式反馈,反馈数据内容共计200个字节。

反馈1~64报警回路中的现场部件状态含义如下:

火警、故障、启动、反馈、监管信息,293K 收到控制器复位后,将之前记录的状态清零。

屏蔽状态,收到控制器复位后,293K 将之前记录的状态保留,直到有屏蔽解除信息时才清零。

报警主机:每个地址现场部件反馈状态(低字节含义如下表,高字节全0):

bit0	Bit1	Bit2	Bit3	Bit4	Bit5	
1: 火警	1: 故障	1: 启动	1: 反馈	1: 屏蔽	1: 监管报警	
0:无火警	0: 故障撤销	0: 未启动或已停止	0: 无反馈或反馈撤销	0: 屏蔽解除	0: 监管撤销	

电气火灾主机:每个地址现场部件反馈状态(低字节含义如下表,高字节全0):

bit0	Bit1	Bit2	Bit3	Bit4		
1: 火警	1: 故障	1: 启动		1: 屏蔽		
0:无火警	0: 故障撤销	0: 未启动或已停止		0: 屏蔽解除		

防火门主机:每个地址现场部件反馈状态(低字节含义如下表,高字节全0):

除了Bit2~Bit4,其他均是故障信息

bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7
1:接口	1: 配置错	1: 启动	1: 反馈	1: 屏蔽	1: 关闭失败	1: 异常关闭	1: 异常打开
未登记	误						
或接口							
故障							
0:正常	0:正常	0:正常	0:正常	0: 正常	0:正常	0:正常	0:正常

消防电源监控主机:每个地址现场部件反馈状态(占两字节)的含义为:

低字节:

bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7
1: 故障	1: 欠压	1: 过压	1: 缺相	1: 过载	1: 错相	1: 通道供电中断	1: 供电中断
0:正常	0:正常						

高字节:

bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7
1: 输入动作	1: 输出动作	1: 屏蔽					
0:正常	0:正常	0:正常					

反馈 66 回路为多线设备,每个地址反馈含义如下:

66 回路中的 $1^{\sim}160$ 地址的反馈状态分别对应了 1 号多线盘的 $1^{\sim}8$ 路多线、2 号多线盘的 $1^{\sim}8$ 路多线.... 20 号多线盘的 $1^{\sim}8$ 路多线的状态。

故障、启动、反馈信息,293K收到控制器复位后,将之前记录的状态清零。

每路多线的状态(占两字节)含义如下:

低字节含义如下表,高字节全0。

bit0	Bit1	Bit2	Bit3		
	1: 故障	1: 启动	1: 反馈		
	0: 故障撤销	0: 未启动或已停止	0: 无反馈或反馈撤销		

反馈68回路为气体灭火区及其设备,含义如下:

68回路中的1 $^{\sim}$ 16地址的反馈状态分别对应了1号气灭盘的1 $^{\sim}$ 4号气灭区、2号气灭盘的1 $^{\sim}$ 4号气灭区....4号气灭盘的1 $^{\sim}$ 4号气灭区。

气灭区启动、喷洒应答、喷洒启动、声光启动、辅助设备启动信息,293K收到控制器复位后,将之前记录的状态清零。

每个气灭区的相关状态(占两字节)含义如下:

低字节含义如下表, 高字节全0。

b	oit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	
		1: 气灭区故障	1: 气灭区启动	1: 喷洒反馈	1: 喷洒启动	1: 声光启动	1: 辅助设备启动	
		0: 气灭区正常	0: 启动撤销	0: 反馈撤销	0: 无启动	0: 声光停止	0: 辅助设备停止	

69回路为青鸟控制器主/备电状态、手动/自动状态等机器信息,含义如下:

69回路显示主备电故障、手自动状态、板卡故障信息,反馈时相应的地址对应相应的控制器。即1地址状态表示1号控制器信息、10地址状态表示10号控制器信息。

1卡对应多台主机时,只接收机器号1[~]64的相关状态。

低字节含义如下表, 高字节全0。

bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	1: 主电故障	1: 备电故障	1: 手动禁止	1: 自动禁止	1: 板卡故障	
	0: 主电正常	0: 备电正常	0: 手动允许	0: 自动允许	0: 板卡正常	

六、Modbus_TCP 测试方法及举例说明

- 1. 串口助手测试方法
- 1). 查询报警回路(1~64回路)

例如查询7回路101~200地址的状态。

用串口助手发送查询指令(十六进制):

00 5F 00 00 <mark>00 06 01 03 06 65</mark> 00 64

00 5F 00 00、01: MBAP报文头中的随机数据

<mark>00 06:</mark> 查询的数据长度(固定)

03: 功能码

<mark>06</mark>: 查询7回路

<mark>65</mark>:查询的起始地址号(本例中是101号地址开始)

00 64: 查询的地址个数(本例即查询101[~]200地址共计100个地址)

JBF293K反馈的状态数据

例如回路-地址的7-124启动且有反馈、7-125有反馈、7-126被屏蔽、7-127报故障、7-154 监管报警、7-155报火警, 反馈数据如下:

00	5F	00	00	00	CB	01	03	C8	
			00	00		00	00)	

	00 00	00 00	00 00	00 00	00 00	00 00	00 00
	7-101正常	7-102正常	常 7-103正常	7-104正常	7-105正常	7-106正常	7-107正常
00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00
7-108正常	7-109正常	7-110正常	7-111正常	7-112正常	7-113正常	7-114正常	7-115正常
00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00
7-116正常	7-117正常	7-118正常	7-119正常	7-120正常	7-121正常	7-122正常	7-123正常
00 OC	00 08	00 10	00 02	00 00	00 00	00 00	00 00
7-124启动+反复	贵 7−125反馈	7−126屏蔽	7 −127故障	7-128正常	7-129正常	7-130正常	7-131正常
00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00
7-132正常	7-133正常	7-134正常	7-135正常	7-136正常	7-137正常	7-138正常	7-139正常
00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00
7-140正常	7-141正常	7-142正常	7-143正常	7-144正常	7-145正常	7-146正常	7-147正常
00 00	00 00	00 00	00 00	00 00	00 00	00 20	00 01
7-148正常	7-149正常	7-150正常	7-151正常	7-152正常	7-153正常	7-154监管报警	7-155火警

7-169至7-181均正常

7-182至7-194均正常

00 00 00 00 00 00 00 00 00 00 00 00

7-195至7-200均正常

00 5F 00 00、01: 查询指令中MBAP报文头的随机数据

00 CB: 反馈的数据长度(固定)

03: 功能码

2). 查询多线盘信息

例如查询36机多线盘状态。

用串口助手发送查询指令(十六进制):

00 5F 00 00 <mark>00 06 01 03 41 01</mark> 00 64

00 5F 00 00、01: MBAP报文头中的随机数据

00 06: 查询的数据长度(固定)

03: 功能码(固定)

41: 查询66多线回路

01: 查询的起始地址号(本例中是第1号多线盘第1路多线)

00 64: 查询的地址个数

TBF293K反馈的状态数据

A多线-B即第A (1^2 20) 块多线盘的第B (1^2 8) 路多线。

例如1多线-1启动、1多线-2反馈、1多线-3故障、2多线-1启动、2多线-2反馈、2多线-3

故障,反馈数据如下:

00 5F 00 00 00 CB 01 03 C8 00 04 00 08 00 02 00 00 00 00 00 00 00 00 1多线-2反馈 1多线-3故障 1多线-4正常 1多线-5正常 1多线-6正常1多线-7正常 00 00 00 04 00 08 00 02 00 00 00 00 00 00 00 00 1多线-8正常 2多线-1启动 2多线-2反馈 **2多线-3故障** 2多线-4正常 2多线-5正常 2多线-6正常 2多线-7正常 00 00 00 00 00 00 00 00

00 5F 00 00、01: 查询指令中MBAP报文头的随机数据

<mark>00 CB</mark>: 反馈的数据长度(固定)

03: 功能码

3). 查询气体灭火盘信息

例如查询36机气体灭火盘状态。

用串口助手发送查询指令(十六进制):

00 5F 00 00 <mark>00 06 01 03 43 01</mark> 00 64

00 5F 00 00、01: MBAP报文头中的随机数据

<mark>00 06:</mark> 查询的数据长度(固定)

<mark>03</mark>:功能码(固定)

<mark>43</mark>:查询气灭回路。

01: 查询的起始地址号(本例中是第1号气灭盘第1气灭区)

00 64: 查询的地址个数

JBF293K反馈的状态数据

A灭火-1即第 $A(1^4)$ 块灭火盘的第 $B(1^4)$ 个灭火区。

例如1灭火-1区启动、1灭火-2喷洒反馈、1灭火-3喷洒启动、2灭火-1区启动、2灭火-2 声光启动、2灭火-3辅助设备启动、2灭火-4喷洒反馈,反馈数据如下:

00 5F 00 00 <mark>00 CB 01 03 C8</mark>

	00 04	00 08	00 10	00 00
	1灭火-1区启动	1灭火-2喷洒反馈	1灭火-3喷洒启动	1灭火-4正常
00 04	00 20	00 40	00 08	00 00
2灭火-1区启动	2灭火-2声光启动	2灭火−3辅助启动] 2灭火-4喷洒反馈	3灭火−1正常
00 00 00	00 00 00	00 00	00 00 00 00	00 00
3灭火-2正常 3灭	火-3正常 3灭火-4正	常 4灭火-1正常	4灭火-2正常 4灭火-3〕	E常 4灭火-4正常
00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00 00 00 00
00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00 00 00 00

00 5F 00 00、01: 查询指令中MBAP报文头的随机数据

00 CB: 反馈的数据长度(固定)

03: 功能码

2. ZLAN-5103卡设置及项目调试方法

ZLAN-5103卡用于RS232/485与RJ45网口TCP协议传输。

PC (或监控中心) 配置ZLAN-5103:

ZLAN5103与PC用网线连接,在PC上打开软件ZLVirCom.exe,选择"设备管理"。

先点击"自动搜索",会出现ZLAN5103卡的基本信息。 点击ZLAN5103基本信息,底色变蓝即选中该接口卡。 再点击"编辑设备",进行详细的参数设置。

下图中对ZLAN5103进行参数设置,设置完成后点击"修改设置"进行参数保存。 IP地址、端口、工作模式:

是ZLAN5103卡自己的网络参数,由实际项目提供。

工作模式一般情况下选择"TCP客户端"。也可根据实际情况选择为"TCP 服务器"。

子网掩码、网关、目的IP或域名、目的端口:

为PC机或监控中心的网络参数,由实际项目提供。

串口设置:

用于ZLAN-5103 (TA、TB端子) 与293K进行RS485通讯。

波特率9600、数据位8、校验位无、停止位1、流控无。 <u>(波特率可能根据实际项目情况</u>进行修改)。

其他未特殊说明的参数,参照图中设置即可。

PC(或监控中心)测试293K及ZLAN-5103通讯

根据上述配置后,打开软件SocketTestDlg3.43.exe,如下图设置工作模式、本地端口,然后点击打开,如下图红线处OK,表示连接成功。

在发送区输入并点击发送

00 5F 00 00 00 06 01 03 02 65 00 64 表示查询3回路101²000地址的部件状态。 接收区信息如下图: 发送12字节,接收209字节。

接收区00 5f 00 00 00 cb 01 03 c8这些黄色的字节,与发送指令中的一样。c8后面的200个字节即为反馈的3回路 101^2 200地址部件的状态。

七、升级记录

Byte3查询寄存器起始地址-高字节: (是控制器真实回路号减1)↓

该字节填写0~63对应查询青鸟控制器1~64报警回路。↓ 该字节填写65对应查询青鸟控制器多线设备。↓ 该字节填写67对应查询青鸟控制器气体灭火区及相关气灭设备。↓ 该字节填写68对应查询控制器的主备电故障、手自动状态。↓

- 1. 修正bug: TCP协议查询127个地址时,反馈数据超过255个,而反馈数据中表示数据长度的高字节没有被赋值。
 - 2. 重新整理协议文档,将报警主机和子系统进行分别描述。

报警主机单回路最大200地址,每次查询100个地址,查询两次完成。 子系统主机单回路最大252地址,每次查询126个地址,查询两次完成。

1. 支持1个卡接收多台控制器信息的功能。

JBF293K接口卡<mark>对应多台控制器时</mark>:拨码开关1[~]7设置卡号(<mark>范围100[~]110</mark>;即 Modbus RTU通讯从机地址):

	DIP1	DIP2	DIP3	DIP4	DIP5	DIP6	DIP7	DIP8
十进制	1	2	4	8	16	32	64	RTU/TCP协议选择
			OFF: RTU协议 ON: TCP协议					

1卡对应多台控制器的约束条件:

- 1. 报警主机控制器号范围需为 $1^{\sim}64$,且只支持报警回路信息,否则293K不接收控制器信息。
 - 2. 电气火灾控制器号范围需为1⁶⁴,否则293K不接收控制器信息。
 - 3. 防火门控制器号范围需为1⁶⁴, 否则293K不接收控制器信息。
 - 4. 消防电源监控控制器号范围需为1²8, 否则293K不接收控制器信息。
- 5. 以上各种机型不可混合组网,只能是相同机型,且每台机器只有一个回路总计 200点位。
- 6. 依然使用1卡对应1台控制器时的查询指令,以前代表查询某台控制器的第N回路, 在1卡对应多台控制器时,代表查询第N号控制器的单回路点位信息。

1. 消防电源监控主机,解决未支持该机型信息的bug,同时增加支持细分故障类型。 每个地址现场部件状态(占两字节)的含义为:

低字节:

bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7
1: 故障	1: 欠压	1: 过压	1: 缺相	1: 过载	1: 错相	1: 通道供电中断	1: 供电中断
0:正常	0:正常						

高字节:

bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7
1: 输入动作	1: 输出动作	1: 屏蔽					
0:正常	0:正常	0:正常					

2. 防火门主机,支持细分故障类型。

每个地址现场部件状态(占两字节)的含义为:

低字节含义如下表(除了Bit2~Bit4,其他均是故障信息),高字节全0.

bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7
1:接口	1: 配置错	1: 启动	1: 反馈	1: 屏蔽	1: 关闭失败	1: 异常关闭	1: 异常打开
未登记	误						
或接口							
故障							
0:正常	0:正常	0:正常	0:正常	0: 正常	0:正常	0:正常	0:正常

3. 上电时通过RS232、485外发一次软件版本,与协议版本保持一致。

- 4. 69回路显示主备电故障、手自动状态、板卡故障信息,反馈时相应的地址对应相应的控制器。即1地址状态表示1号控制器信息、10地址状态表示10号控制器信息。
- - 1. 增加69回路,显示主备电故障、手自动状态、板卡故障信息。

69回路中的1地址的反馈状态表示控制器的主/备由状态、手动/自动状态。4

-	1 -/3/ H -/3 / C/E/ -					
bit0≓	Bit1₽	Bit2₽	Bit3₽	Bit4₽	Bit5₽	Bit6≓
÷	1: 主电故障↩	1: 备电故障	1: 手动禁止↩	1: 自动禁止↩	1: 板卡故障↩	₽
\$	0. 主电正常↩	0: 备电正常↩	0. 手动允许↩	0: 自动允许↩	0: 板卡正常↩	4

2. 气灭回路,增加线路故障bit1。

68回路为气体灭火区及其设备,含义如下: 🗸

68回路中的1 $^{\sim}$ 16地址的反馈状态分别对应了1号气灭盘的1 $^{\sim}$ 4号气灭区、2号气灭盘的1 $^{\sim}$ 4号气灭区....4号气灭盘的1 $^{\sim}$ 4号气灭区。 $_{\leftarrow}$

气灭区启动、喷洒应答、喷洒启动、声光启动、辅助设备启动信息,293K收到控制器复位后,将之前记录的状态清零。↩

每个气灭区的相关状态(占两字节)含义如下: ↵

bit0≓	Bit10	Bit2₽	Bit3₽	Bit4₽	Bit50	Bit6₽
ė.	1. 线路故障↵	1: 气灭区启动↩	1: 喷洒反馈↩	1: 喷洒启动↩	1: 声光启动↩	1: 辅助设备启动↩
ė.	0. 线路正常↩	0: 启动撤销↵	0: 反馈撤销↩	0: 无启动↵	0: 声光停止↩	0: 辅助设备停止↵

سا و در الا المساول و المواود الا و المساود و المواود المواود و و المساود المواود المواود و المساود المواود المساود ال