

equivalence of definitions of C^* -algebra

 ${\bf Canonical\ name} \quad {\bf Equivalence Of Definitions Of Calgebra}$

Date of creation 2013-03-22 17:42:27 Last modified on 2013-03-22 17:42:27

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 4

Author rspuzio (6075) Entry type Theorem Classification msc 46L05

Related topic HomomorphismsOfCAlgebrasAreContinuous

Related topic CAlgebra

In this entry, we will prove that the definitions of C^* algebra given in the main entry are equivalent.

Theorem 1. A Banach algebra A with an antilinear involution * such that $||a||^2 \le ||a^*a||$ for all $a \in A$ is a C^* -algebra.

Proof. It follows from the product inequality $||ab|| \leq ||a|| ||b||$ that

$$||a||^2 \le ||a^*a|| \le ||a^*|| ||a||.$$

Therefore, $||a|| \le ||a^*||$. Putting a^* for a, we also have $||a^*|| \le ||a^{**}|| = ||a||$. Thus, the involution is an isometry: $||a|| = ||a^*||$. So now,

$$||a||^2 \le ||a^*a|| \le ||a||^2.$$

Hence, $||a^*a|| = ||a||^2$.

Theorem 2. A Banach algebra A with an antilinear involution * such that $||a^*a|| = ||a^*|| ||a||$ is a C^* -algebra.