ESCUELA SUPERIOR POLITECNICA DEL LITORAL ESPOL

"DIMENSIONAMIENTO RESOLUCIÓN DE EJERCICIOS"

PROFESOR: ING. MSC. DOUGLAS AGUIRRE H.

Determine el dimensionamiento básico de paneles solares y baterías para una vivienda en Guayaquil, ubicada a más de 15 km. de la Red, y se desea brindarle 5 días de autonomía. La vivienda tiene la siguiente carga. (se requiere paneles a 12 voltios a 85 Wp con inclinación de 5°, con batería a 70% de descarga y capacidad de 177 Ah).

Aparato en AC	Cantidad	Potencia Unitaria (W)	Potencia Total (W)	
Focos	5	100	500	
Plancha	1	1500	1500	
Televisor	1	140	140	
Equipo Estéreo	1	50	50	
Refrigeradora	1	300	300	
Aparato en DC	Cantidad	Potencia Unitaria (W)	Potencia Total (W)	
Radio	1	12	12	

Aparato en AC	Cantidad	Potencia Unitaria (W)	Potencia Total (W)
Focos	5	100	500
Plancha	1	1500	1500
Televisor	1	140	140
Equipo Estéreo	1	50	50
Refrigeradora	1	300	300
		TOTAL	Σ

Aparato en AC	Cantidad	Cantidad Potencia Unitaria (W)	
Focos	5	100	500
Plancha	1	1500	1500
Televisor	1	140	140
Equipo Estéreo	1	50	50
Refrigeradora	1	300	300
		TOTAL	2490

Aparato en AC	Cantidad	Potencia Unitaria (W)	Potencia Total (W)
Focos	5	100	500
Plancha	1	1500	1500
Televisor	1	140	140
Equipo Estéreo	1	50	50
Refrigeradora	1	300	300
		TOTAL	2490

Horas de Uso Diario	Energía (kWh) = P*H/1000
8	4
0.1	0.15
4	0.56
5	0.25
8	2.4
	E _{AC} =7.36

Aparato en DC	Cantidad	Potencia Unitaria (W)	Potencia Total (W)	
Radio	1 12		12	
		TOTAL	12	

Horas de Uso Diario	Energía (kWh) = P*H/1000
5	0.06
	E _{DC} =0.06

$$E_D = (E_{AC} + E_{DC})^*1.25$$

$$E_{AC} = E_{AC}'/\eta_{inversor}$$

E_D: Energía Demandada

E_{AC}: Energía en AC

E_{DC} : Energía en DC

$$E_D = (E_{AC} + E_{DC})*1.25$$

$$E_{AC} = 7.36/0.85 = 8.65 \text{ kWh}$$
 ; $E_{DC} = 0.06 \text{ kWh}$

 $E_D = (8.65 + 0.06)*1.25 = 10.89 \text{ kWh promedio diarios}$

E_D: Energía Demandada

E_{AC}: Energía en AC

E_{DC}: Energía en DC

	RADIACIÓN SOLAR DIARIA INCLINANDA [kWH/m2]											
β [Grados]	0	5	10	15	20	25	30	35	40	45	50	55
Enero	4.40	4.30	4.18	4.05	3.90	3.73	3.55	3.35	3.15	2.94	2.73	2.51
Febrero	4.64	4.57	4.49	4.38	4.25	4.11	3.94	3.76	3.57	3.36	3.15	2.92
Marzo	5.08	5.06	5.02	4.95	4.85	4.74	4.60	4.44	4.26	4.06	3.84	3.62
Abril	4.96	5.01	5.03	5.03	5.00	4.95	4.87	4.76	4.63	4.48	4.31	4.12
Mayo	4.55	4.65	4.72	4.77	4.79	4.79	4.76	4.71	4.63	4.53	4.40	4.26
Junio	3.99	4.09	4.16	4.22	4.26	4.27	4.26	4.23	4.17	4.10	4.00	3.89
Julio	3.88	3.96	4.02	4.07	4.09	4.09	4.07	4.03	3.97	3.89	3.79	3.67
Agosto	4.22	4.27	4.31	4.32	4.31	4.28	4.23	4.15	4.06	3.94	3.81	3.66
Setiembre	4.47	4.48	4.46	4.42	4.36	4.28	4.18	4.06	3.92	3.77	3.60	3.41
Octubre	4.07	4.03	3.97	3.90	3.81	3.70	3.57	3.43	3.28	3.12	2.94	2.76
Noviembre	4.49	4.40	4.29	4.16	4.01	3.84	3.66	3.47	3.27	3.05	2.83	2.62
Diciembre	4.47	4.36	4.22	4.07	3.91	3.73	3.53	3.32	3.11	2.88	2.66	2.44
Promedio	4.44	4.43	4.41	4.36	4.29	4.21	4.10	3.98	3.84	3.68	3.51	3.32
HSP	4.44	4.43	4.41	4.36	4.29	4.21	4.10	3.98	3.84	3.68	3.51	3.32

RAD	RADIACIÓN SOLAR DIARIA INCLINANDA [kW/m2]					
β [Grados]	5					
Enero	4.30					
Febrero	4.57					
Marzo	5.06					
Abril	5.01					
Mayo	4.65					
Junio	4.09					
Julio	3.96					
Agosto	4.27					
Setiembre	4.48					
Octubre	4.03					
Noviembre	4.40					
Diciembre	4.36					
Promedio	4.43					
HSP	4.43					

- 1.- Decidimos a que grado estará ubicados los paneles.
- 2.- Elegimos el mínimo valor en el año

Se selecciona a 5º grados de inclinación, con orientación al Norte

$$P_{max} = E_D / E_{Disponible} 1kW/m^2 * FS$$

FS: Factor de Simultaneidad valor entre 0 y 1 para el este ejemplo consideramos 1, en la práctica es la probabilidad en el que todos las cargas estén conectadas al mismo tiempo o el valor que nos indica cuanta carga esta conectada al mismo tiempo pero en porcentaje.

E_{Disponible}: Energía Disponible (ver tablas del sitio considerando ángulo de inclinación, perdidas por orientación, perdidas por sombras.)

$$P_{max}$$
 = 10.89 kWh / 3.96 kWh/m² / 1 kW/m²) Constante de prueba de los paneles

 $N_{paneles} = 1.1^* Pmax / C$

C : Potencia pico del Panel

 $N_{paneles} = 1.1*2.75/0.085 = 35.62 \approx 36 \text{ paneles de } 85 \text{ Wp}$

D: Numero de días con autonomía = 5 días

 $V = Voltaje de la Batería = 12 V_{DC}$

Pb = Profundidad de Descarga Máxima = 70% = 0.7

Cb = Capacidad de Acumulación en amperios hora, comparar con catalogo.

$$Cb = \frac{1.1 * E_{D[kWh]} * D}{V * Pb} * 1000$$

Cb = 1.1*10.89[kWh]*5*1000 / (12[V]*0.7) = 7130.35 Ah

Numero de Baterías = Cb / Cb del Catalogo

Numero de Baterías = 7130.35 Ah / 177 Ah = 40.28 ≈ 41 baterías a 12 V de 177 Ah.

Determine el dimensionamiento básico de paneles solares y baterías para una vivienda en Guayaquil, ubicada a más de 15 km. de la Red, y se desea brindarle 5 días de autonomía. La vivienda tiene la siguiente carga. (se requiere paneles a 12 voltios a 200 Wp, la inclinación es de 20°, con batería a 70% de descarga con capacidad de 390 Ah.).

Aparato en AC	Cantidad	Potencia Unitaria (W)	Potencia Total (W)
Focos	6	100	600
Plancha	1	1500	1500
Televisor	1	140	140
Equipo Estéreo	1	50	50
Refrigeradora	1	300	300
		TOTAL	

Horas de Uso Diario	Energía (kWh) = P*H/1000
8	
0.5	
8	
8	
10	

	β [Grados]				
Meses	5	Horas de Sol Útiles	Irradiancia minima (W/m2)	Temperatura Ta	
Enero	4.30	8	537.50	26.7	
Febrero	4.57	9	507.78	26.7	
Marzo	5.06	9	562.22	27.1	
Abril	5.01	9.5	527.37	27.1	
Mayo	4.65	9.5	489.47	26.4	
Junio	4.09	9.5	430.53	25.2	
Julio	3.96	9.5	416.84	24.4	
Agosto	4.27	9.5	449.47	24.3	
Setiembre	4.48	9	497.78	24.8	
Octubre	4.03	9	447.78	24.9	
Noviembre	4.40	8	550.00	25.4	
Diciembre	4.36	7.5	581.33	26.4	

Numero máximo de módulos por ramal

El valor máximo de la tensión de entrada al inversor corresponde a la tensión de circuito abierto del generador fotovoltaico cuando la temperatura del módulo es minima; a una irradiancia minima 416.84 W/m2

$$Tp = Ta + \left[\frac{T_{ONC} - 20}{800}\right] * I \qquad V_{CA(T \min)} = V_{CA(STC)} - \left[(25^{\circ}C + T_p) * \Delta V\right] \qquad N_{\max} = \frac{V_{\max(inv)}}{V_{CA(T \min)}}$$

Donde:

Ta : Temperatura ambiente [$^{\circ}$ C] = 10%*24.3 = 2.43

TONC: Temperatura nominal de funcionamiento de la célula [49° C]

I : Irradiancia [W/m2] = 0.25*416.84 = 104.21 W/m2

Tp: Temperatura del módulo [°C] = 6.20°C

VCA(STC) : Voltaje en circuito abierto del módulo [V] = 22.1 V (dato de Catalogo del panel)

ΔV : Variación del voltaje [V/oC] = -0.08V/oC (dato de Catalogo del panel)

Vmax : Valor de Voltaje máxima de entrada en el inversor =600 V (dato de placa)

VCA: Valor del voltaje en circuito abierto a la temperatura minima = 24.59 V

Se redondea a la baja el Nmax = 24.39 ≈ 25

Numero mínimo de módulos por ramal

El número mínimo de módulos por ramal viene limitado por la tensión minima de entrada al inversor y la tensión en el punto de máxima potencia del módulo a una temperatura de 85° C.

Donde:

VPMP(STC): Voltaje de máxima potencia del módulo =17.7 V

 ΔV : Variación del Voltaje [V/oC] = -0.08V/oC (dato de Catalogo del panel)

VPMP(inv): Voltaje mínimo de seguimiento del punto de máxima potencia =

240 V

VPMP(Tmax) : Voltaje de máxima potencia a la temperatura máxima del módulo = 12.9 V

$$N_{\min} = \frac{V_{PMP(inv)}}{V_{PMP(T\max)}}$$

$$V_{PMP(T \text{ max})} = V_{PMP(STC)} + \left[(T_{\text{max}} - 25^{\circ}C) * \Delta V \right]$$

[Valor inmediato inferior]

Nmin = 18.6 ≈ 19

Numero de ramales en paralelo

El número de ramales en paralelo debe cumplir que la corriente de cortocircuito máxima de un ramal por el número de ramales conectados en paralelo sea menor que la corriente máxima admisible de entrada al inversor.

Donde

Imax(inv): Intensidad máxima de entrada al inversor = Nótese que la corriente máxima de entrada de la Torre del inversor es 180 A pero como esta cuenta con 6 inversores se procede a dividir los 180 para número de inversores de la torre.

ICC(ramal): intensidad de cortocircuito de cada ramal [8.37 A] (catálogo del panel)

$$N_{ramales} = \frac{I_{\text{max}(inv)}}{I_{CC(ramal)}}$$
 [Valor inmediato inferior]

Sitios	Numero de Paneles	Área Por cada Panel (m²)	Área Utilizada (m²)	Potencia Pico por Panel (Wp)	Potencia Pico Total (Wp)
Lugar 1	500	1.5*0.668	502	135	67500
Total →	Σ	Σ	Σ	Σ	Σ

Sitios	Azimut con respecto al Norte (γ) [grados]	Inclinación con respecto a la Horizontal (β) [grados]
Lugar 1	0	5

RADIACIÓN SOLAR DIARIA INCLINANDA [kW/m2]												
β [Grados]	0	5	10	15	20	25	30	35	40	45	50	55
Enero	4.40	4.30	4.18	4.05	3.90	3.73	3.55	3.35	3.15	2.94	2.73	2.51
Febrero	4.64	4.57	4.49	4.38	4.25	4.11	3.94	3.76	3.57	3.36	3.15	2.92
Marzo	5.08	5.06	5.02	4.95	4.85	4.74	4.60	4.44	4.26	4.06	3.84	3.62
Abril	4.96	5.01	5.03	5.03	5.00	4.95	4.87	4.76	4.63	4.48	4.31	4.12
Mayo	4.55	4.65	4.72	4.77	4.79	4.79	4.76	4.71	4.63	4.53	4.40	4.26
Junio	3.99	4.09	4.16	4.22	4.26	4.27	4.26	4.23	4.17	4.10	4.00	3.89
Julio	3.88	3.96	4.02	4.07	4.09	4.09	4.07	4.03	3.97	3.89	3.79	3.67
Agosto	4.22	4.27	4.31	4.32	4.31	4.28	4.23	4.15	4.06	3.94	3.81	3.66
Setiembre	4.47	4.48	4.46	4.42	4.36	4.28	4.18	4.06	3.92	3.77	3.60	3.41
Octubre	4.07	4.03	3.97	3.90	3.81	3.70	3.57	3.43	3.28	3.12	2.94	2.76
Noviembre	4.49	4.40	4.29	4.16	4.01	3.84	3.66	3.47	3.27	3.05	2.83	2.62
Diciembre	4.47	4.36	4.22	4.07	3.91	3.73	3.53	3.32	3.11	2.88	2.66	2.44
Promedio	4.44	4.43	4.41	4.36	4.29	4.21	4.10	3.98	3.84	3.68	3.51	3.32
HSP	4.44	4.43	4.41	4.36	4.29	4.21	4.10	3.98	3.84	3.68	3.51	3.32
Pérdidas (%)												

β	0	5	10	15	20	25	30	35	40	45	50	55	60
h (m)	0.00	0.06	0.12	0.17	0.23	0.28	0.33	0.38	0.43	0.47	0.51	0.55	0.58
d ₁ (m)	0.000	0.023	0.045	0.067	0.089	0.110	0.130	0.149	0.167	0.184	0.199	0.213	0.225
d (m)	0.668	0.688	0.703	0.712	0.717	0.715	0.708	0.696	0.679	0.656	0.628	0.596	0.559

- Ancho del módulo solar
- Distancia minima entre filas
- Distancia minima entre estructuras
- Altura de estructura
- Inclinación de módulos
- Angulo de altura minima en el año

$$d_1 = \frac{h^* \cos(\alpha)}{sen(\alpha)}$$
$$d = \sigma^* \cos(\beta) + d_1$$

$$d = \sigma * \cos(\beta) + d_1$$

	Radiación solar diaria Inclinada (kWh/m²/d)	Numero de días por Mes	Radiación solar Mensual (kWh/m²)	Área útil	Energía Disponible Ideal (kWh mensual)
Enero	4.30	31	133.36	502	66,946.72
Febrero	4.57	28	128.07	502	64,291.14
Marzo	5.06	31	156.93	502	78,778.86
Abril	5.01	30	150.31	502	75,455.62
Mayo	4.65	31	144.07	502	72,323.14
Junio	4.09	30	122.66	502	61,575.32
Julio	3.96	31	122.84	502	61,665.68
Agosto	4.28	31	132.53	502	66,530.06
Setiembre	4.48	30	134.29	502	67,413.58
Octubre	4.03	31	124.97	502	62,734.94
Noviembre	4.40	30	131.94	502	66,233.88
Diciembre	4.36	31	135.05	502	67,795.10
7	Total		1,617.02		811,744.04

DIMENSIONAMIENTO CONECTADA A LA RED

	Energía Disponible (kWh mensual)	Energía Fotovoltaica Ideal (kWh mensual)
Enero	66,946.72	10,711.48
Febrero	64,291.14	10,286.58
Marzo	78,778.86	12,604.62
Abril	75,455.62	12,072.90
Mayo	72,323.14	11,571.70
Junio	61,575.32	9,852.05
Julio	61,665.68	9,866.51
Agosto	66,530.06	10,644.81
Setiembre	67,413.58	10,786.17
Octubre	62,734.94	10,037.59
Noviembre	66,233.88	10,597.42
Diciembre	67,795.10	10,847.22
Total	811,744.04	129,879.05

$$E_{\text{Fot-ideal}} = E_{\text{Disp}} * \eta_{\text{Panel}}$$

 $\eta_{\text{Panel}} = 16\%$

$Perd_{Temp} = \beta_P * (T_C - T_{ref})$ $T_C = T_a + \frac{(219 + 832 * K_t) * (NOCT - 20)}{800}$

Perd_{Temp} Perdidas promedio anuales por temperatura

T_C Temperatura del módulo solar [grados centígrados]

T_{ref} Temperatura de Referencia del módulo solar [grados centígrados]

T_a Temperatura ambiente promedio del sitio [grados centígrados]

NOCT Temperatura de operación nominal del módulo [grados centígrados]

β_P Coeficiente de Temperatura ['%/grados centígrados]

K_t Índice de aclaramiento promedio anual [unidad]

NOCT	49° C
K _t	0.41
β_{p}	0.4%/°C
T _{ref}	25° C
Тс	46.22
Perd _{Temp}	8.49%

	K _t	T _a
Enero	0.35	26.7
Febrero	0.44	26.7
Marzo	0.32	27.1
Abril	0.44	27.1
Mayo	0.44	26.4
Junio	0.39	25.2
Julio	0.45	24.4
Agosto	0.36	24.3
Setiembre	0.57	24.8
Octubre	0.40	24.9
Noviembre	0.36	25.4
Diciembre	0.45	26.4
Promedio →	0.41	25.78

Guayaquil

Perdidas por temperaturas, polvo, suciedad y Sombramiento

Se consideran alrededor del 2% de la Energía Fotovoltaica Ideal.

Perd1= 811,744.04 *0.02 = 2,597.58 kWh anual

Perdidas en las líneas de Corriente Continua CC y AC

Se consideran por debajo del 3% de la Energía Fotovoltaica Ideal

Perd2 = 811,744.04 *0.03 = 3,896.37 kWh anual

Pérdidas del Inversor

Basada en el rendimiento que es de alrededor del 95%

DIMENSIONAMIENTO CONECTADA A LA RED

$$H_A = \sum_{1}^{12} H_{Mn} * D_n$$

H_A Radiación Solar Anual Disponible

H_{Mn} Radiación Mensual en el mes n

n Numero del Mes

D_n Días del Mes n

Energía Anual Disponible

H_A Radiación Solar Anual Disponible

A_N Área Neta

 η_{Fot} Eficiencia de Absorción del módulo

solar

E_{Fot-Ideal}

Energía Fotovoltaico Ideal

$$E_{AD} = A_N * H_A$$

$$E_{Fot-Ideal} = E_{AD} * \eta_{Fot}$$

DIMENSIONAMIENTO CONECTADA A LA RED

 $E_{ER} = E_{Fot-Ideal} * \eta_{inv} * (1 - Perd_{suci}) * (1 - Perd_{cable})$

 $E_{\it ER}$: Energía entregada a la Red

Perd_{suc}: perdidas por suciedad

Perd_{cable}: Perdidas en el cable por corriente DC y AC

 $\eta_{\rm inv}$: eficiencia o rendimiento del inversor

EER = 129,879.05 * 0.95 * (1-0.02) * (1-0.03)

EER = 117,289.87 kWh anuales ≈ 117.3 MWh

Pinstalada = 67500 W = 67.5 kW

Con 500 Paneles de 135 Wp