Aggregated sampling output

November 20, 2020

Dataset: simulated_data_dataset1_with_error, model type: SDE

Trajectories without pathologies

e.g. no divergent transitions, no max_treedepth exceeded, no Rhat > 1.1, no n_eff < 100 number of trajectories without pathologies (out of 100):

[1] 8

indices of trajectories without pathologies:

[1] 6 9 13 35 64 66 81 95

no pathologies for a subset of the parameters

parameters considered:

[1] "theta[1]" "theta[3]" "sigma"

[4] "scale" "offset" "prod_theta2_m0"

[7] "prod_theta2_m0_scale"

number of trajectories without pathologies (out of 100):

[1] 10

indices of trajectories without pathologies:

[1] 6 9 13 32 35 42 64 66 81 95

Divergent transitions

numof.divtransitions	Freq
0	88
1	4
12	2
28	2
30	1
109	1
209	1
568	1

total number of trajectories with div. transitions: 12 indices of trajectories with div. transitions: 5 10 11 23 27 28 46 53 54 77 78 80

Maximum tree depth exceeded

numof.max.t.dexceeded	Freq
0	10
1	7
2	2
4	1
5	1
6	3
7	3
8	6
9	3
13	1
14	1
16	1
19	2
22	1
26	1
29	1
33	1
35	1
43	1
48	1
52	1
54	1 1
62 63	1
76	1
77	1
78	1
86	1
88	1
106	1
115	1
121	1
124	1
149	1
165	1
186	1
192	1
239	1
249	1
251	1
298	1
305	1
306	1
308	1
316	1
332	1
375	1
377	1
394	1
409	1
440	1
550	1
564	2
566	1
597	1

numof.max.t.dexceeded	Freq
660	1
771	1
1053	1
1054	1
1252	1
1320	1
1340	1
1396	1
1801	1
2325	1
3154	1
4055	1
4096	1
4671	1
6363	1
7126	1

total number of trajectories were max. tree depth was exceeded: 90 indices of trajectories were max. tree depth was exceeded: 1 2 3 4 5 7 8 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 36 37 38 39 40 41 43

Bayesian fraction of missing information (BFMI)

numof.low.BFMI	Freq
8	100

Total sampling time

mean total sampling time in seconds

R-hat total number of trajectories with very high Rhat (> 1.1) (out of 100) $$\tt [1]$$ 27

number of trajectories with high Rhat per parameter (out of 100)

	Rhat > 1.02	Rhat > 1.1
theta[1]	28	23
theta[2]	89	4
theta[3]	32	23
m0	95	6
sigma	10	0
scale	64	16
offset	0	0
$prod_theta2_m0$	69	18
$prod_theta2_scale$	95	5
$prod_m0_scale$	84	2
$prod_theta2_m0_scale$	6	0
x[180,1]	75	25
x[180,2]	70	18

number of parameters with high Rhat per trajectory (out of 13)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
${\text{Rhat} > 1.02}$			7	7	10	10	-	5	5	10	11	7	7	8	7	11	12	7	4	8	
$\frac{\text{Rhat} > 1.02}{\text{Rhat} > 1.1}$	5 0	0	1	0	6	0	0	0	0	7	9	0	0	0	0	3	8	0	0	0	
	21	22	23	2	4 2	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Rhat > 1.02	7	4	11		3	3	7	10	5	8	7	5	9	9	7	7	5	11	5	5	12
$\frac{\text{Rhat} > 1.1}{}$	0	0	6		0	0	0	6	0	3	0	0	2	3	0	0	0	6	0	0	6
	41	42	43	4	4 4	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
$\overline{\text{Rhat} > 1.02}$	7	6	1		6	4	9	11	5	11	9	8	6	11	8	5	8	6	6	7	11
$\frac{\mathrm{Rhat} > 1.1}{}$	0	0	0		0	0	1	5	0	6	3	0	0	7	2	0	0	0	0	0	8
	61	62	63	6	4 (35	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
$\overline{\text{Rhat} > 1.02}$	2	8	8		5	7	5	4	5	8	11	4	8	5	6	5	6	7	10	7	10
$\frac{\mathrm{Rhat} > 1.1}{}$	0	0	0		0	0	0	0	0	0	9	0	0	0	0	0	0	0	3	0	3
	81	82	83	8	4 8	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
$\overline{\text{Rhat} > 1.02}$	5	8	10		7	7	8	7	5	9	3	10	9	8	8	5	12	7	10	8	3
Rhat > 1.1	0	0	7		0	0	0	0	0	0	0	6	0	0	0	0	8	0	6	0	0

theta[1]

number of trajectories with Rhat > 1.02: 28

indizes of trajectories with Rhat > 1.02:

3 5 6 10 11 16 17 23 27 29 33 35 37 40 46 47 49 50 53 60 70 78 79 80 83 91 96 98

number of trajectories with Rhat > 1.1: 23

indices of trajectories with Rhat > 1.1:

5 10 11 16 17 23 27 29 33 37 40 47 49 50 53 60 70 78 80 83 91 96 98

theta[2]

number of trajectories with Rhat > 1.02: 89

indizes of trajectories with Rhat > 1.02:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 26 27 28 30 31 32 33 36 37 38 39 40 41 42 44

number of trajectories with Rhat > 1.1: 4

indices of trajectories with Rhat > 1.1: 10 11 32 70

theta[3]

number of trajectories with Rhat > 1.02: 32

indizes of trajectories with Rhat > 1.02:

3 5 6 10 11 16 17 23 27 29 33 35 37 40 42 46 47 49 50 53 60 70 78 79 80 83 86 89 91 92 96 98

number of trajectories with Rhat > 1.1: 23

indices of trajectories with Rhat > 1.1: 5 10 11 16 17 23 27 29 33 37 40 47 49 50 53 60 70 78 80 83 91 96 98

m0

number of trajectories with Rhat > 1.02: 95

indizes of trajectories with Rhat > 1.02:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

number of trajectories with Rhat > 1.1: 6

indices of trajectories with Rhat > 1.1: 11 17 60 70 83 96

sigma

number of trajectories with Rhat > 1.02: 10

indizes of trajectories with Rhat > 1.02: 16 17 23 37 40 47 49 60 70 96

scale

number of trajectories with Rhat > 1.02: 64

indizes of trajectories with Rhat > 1.02:

4 5 6 10 11 12 14 15 16 17 18 20 21 23 24 26 27 29 30 32 33 34 37 40 41 44 46 47 48 49 51 52 53 54 56 57

number of trajectories with Rhat > 1.1: 16

indices of trajectories with Rhat > 1.1: 5 10 11 17 23 27 37 40 49 53 60 70 83 91 96 98

offset

no Rhat > 1.02

prod_theta2_m0

number of trajectories with Rhat > 1.02: 6

indizes of trajectories with Rhat > 1.02:

4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 23 24 25 26 27 29 30 32 33 34 35 37 40 41 44 46 47 49 50 51 1

number of trajectories with Rhat > 1.1: 18

indices of trajectories with Rhat > 1.1:

5 10 11 17 23 27 37 40 47 49 53 54 60 70 83 91 96 98

prod_theta2_scale

number of trajectories with Rhat > 1.02: 95

indizes of trajectories with Rhat > 1.02:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40

number of trajectories with Rhat > 1.1: 5

indices of trajectories with Rhat > 1.1: 11 17 32 53 70

 $prod_m0_scale$

number of trajectories with Rhat > 1.02: 84

indizes of trajectories with Rhat > 1.02:

1 2 3 4 5 6 9 10 11 12 13 14 16 17 18 19 20 21 22 23 26 27 28 30 31 32 34 35 36 37 38 39 40 41 42 44 45

number of trajectories with Rhat > 1.1: 2

indices of trajectories with Rhat > 1.1: 60 96

 $prod_theta2_m0_scale$

number of trajectories with Rhat > 1.02: 6

indizes of trajectories with Rhat > 1.02: 11 17 32 40 53 96

x[180,1]

number of trajectories with Rhat > 1.02: 75

indizes of trajectories with Rhat > 1.02:

 $1 \ 2 \ 3 \ 5 \ 6 \ 7 \ 9 \ 10 \ 11 \ 13 \ 14 \ 15 \ 16 \ 17 \ 20 \ 23 \ 27 \ 28 \ 29 \ 31 \ 32 \ 33 \ 34 \ 35 \ 36 \ 37 \ 39 \ 40 \ 42 \ 46 \ 47 \ 48 \ 49 \ 50 \ 51 \ 52 \ 53$

number of trajectories with Rhat > 1.1: 25

indices of trajectories with Rhat > 1.1:

3 5 10 11 16 17 23 27 29 33 37 40 46 47 49 50 53 60 70 78 80 83 91 96 98

x[180,2]

number of trajectories with Rhat > 1.02: 70

indizes of trajectories with Rhat > 1.02:

4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 23 24 25 26 27 29 30 32 33 34 35 37 38 40 41 44 46 47 49 50 1

number of trajectories with Rhat > 1.1: 18

indices of trajectories with Rhat > 1.1: 5 10 11 17 23 27 37 40 47 49 53 54 60 70 83 91 96 98

Effective sample size (ESS)

total number of trajectories with low ESS (< 100) (out of 100)

[1] 28

number of trajectories with low ESS (< 100) per parameter (out of 100)

	$n_{eff} < 100$
theta[1]	23
theta[2]	6
theta[3]	24
m0	11
sigma	0
scale	16
offset	0
$prod_theta2_m0$	20
$prod_theta2_scale$	7
$prod_m0_scale$	4

	$n_eff < 100$
prod_theta2_m0_scale	0
x[180,1]	25
x[180,2]	20

number of parameters with low ESS (< 300) per trajectory (out of 13)

	3	5	10	11	16	17	23	27	29	32	33	37	40	42	46	47	49	50	53	54
$\overline{n_eff} < 100$	2	6	8	10	5	8	6	7	3	2	3	6	6	2	2	5	6	3	8	2

theta[1]

number of trajectories with n_eff < 100: 23</pre>

indices of trajectories with $n_{eff} < 100$:

5 10 11 16 17 23 27 29 33 37 40 47 49 50 53 60 70 78 80 83 91 96 98

theta[2]

number of trajectories with n_eff < 100:</pre>

indices of trajectories with $n_{eff} < 100$: 10 11 32 60 70 98

theta[3]

number of trajectories with n_eff < 100: 24

indices of trajectories with $n_{eff} < 100$: 5 10 11 16 17 23 27 29 33 37 40 46 47 49 50 53 60 70 78 80 83 91 96 98

m0

number of trajectories with n_eff < 100: 11</pre>

indices of trajectories with $n_{eff} < 100$: 3 11 17 27 42 53 60 70 80 83 96

sigma

no $n_{eff} < 100$

scale

number of trajectories with n_eff < 100: 16</pre>

indices of trajectories with $n_{eff} < 100$:

5 10 11 17 23 27 37 40 49 53 60 70 83 91 96 98

offset

no $n_eff < 100$

prod_theta2_m0

number of trajectories with $n_{eff} < 100$: 20

indices of trajectories with $n_{eff} < 100$: 5 10 11 16 17 23 27 37 40 47 49 53 54 60 70 78 83 91 96 98

prod_theta2_scale

number of trajectories with $n_{eff} < 100$: 7

indices of trajectories with $n_{eff} < 100$: 11 17 32 42 53 70 96

$prod_m0_scale$

number of trajectories with n_eff < 100:</pre>

indices of trajectories with n_eff < 100: $10 \ 11 \ 60 \ 96$

 $prod_theta2_m0_scale$

no $n_eff < 100$

x[180,1]

number of trajectories with n_eff < 100: 25</pre>

indices of trajectories with $n_{eff} < 100$: 3 5 10 11 16 17 23 27 29 33 37 40 46 47 49 50 53 60 70 78 80 83 91 96 98

x[180,2]

number of trajectories with n_eff < 100: 20

indices of trajectories with $n_{eff} < 100$: 5 10 11 16 17 23 27 37 40 47 49 53 54 60 70 78 83 91 96 98

Find problematic trajectories and parameters

Are there any trajectories and parameters for which n_eff is below the threshold, but Rhat does not exceed the threshold?

[1] FALSE

parameters per trajectories with very high Rhat

```
3:
     x[180,1]
5:
     theta[1]
               theta[3]
                        scale prod_theta2_m0 x[180,1] x[180,2]
                         theta[3] scale prod_theta2_m0 x[180,1]
10:
      theta[1]
               theta[2]
11:
      theta[1]
               theta[2]
                         theta[3]
                                   m0 scale prod_theta2_m0 prod_theta2_scale x[180,1] x[180,2]
16:
      theta[1]
                theta[3]
                         x[180,1]
                         m0 scale prod_theta2_m0 prod_theta2_scale x[180,1] x[180,2]
17:
      theta[1]
                theta[3]
23:
      theta[1]
               theta[3]
                         scale prod theta2 m0 x[180,1] x[180,2]
27:
      theta[1]
               theta[3]
                         scale prod_theta2_m0 x[180,1] x[180,2]
29:
      theta[1]
               theta[3]
                         x[180,1]
32:
      theta[2]
               prod_theta2_scale
33:
      theta[1]
               theta[3]
                         x[180,1]
37:
      theta[1]
               theta[3]
                         scale prod_theta2_m0 x[180,1]
                                                          x[180,2]
40:
      theta[1]
               theta[3]
                         scale prod_theta2_m0 x[180,1]
                                                          x[180,2]
46:
      x[180,1]
47:
      theta[1]
               theta[3]
                         prod_theta2_m0 x[180,1] x[180,2]
49:
      theta[1]
               theta[3] scale prod_theta2_m0 x[180,1] x[180,2]
```

```
50:
     theta[1] theta[3] x[180,1]
53:
     theta[1]
               theta[3]
                        scale prod_theta2_m0 prod_theta2_scale x[180,1] x[180,2]
54:
     prod_theta2_m0 x[180,2]
                        m0 scale prod_theta2_m0 prod_m0_scale x[180,1] x[180,2]
60:
     theta[1]
               theta[3]
70:
               theta[2] theta[3] m0 scale prod_theta2_m0 prod_theta2_scale x[180,1] x[180,2]
     theta[1]
78:
               theta[3] x[180,1]
     theta[1]
:08
     theta[1]
               theta[3]
                        x[180,1]
               theta[3] m0 scale prod_theta2_m0 x[180,1] x[180,2]
83:
     theta[1]
               theta[3] scale prod_theta2_m0 x[180,1] x[180,2]
91:
     theta[1]
96:
     theta[1]
               theta[3] m0 scale prod_theta2_m0 prod_m0_scale x[180,1] x[180,2]
98:
     theta[1]
               theta[3] scale prod_theta2_m0 x[180,1] x[180,2]
```

unique combinations:

number of unique combinations: 12

combinations and number of their occruence:

```
2
     x[180,1]
     theta[1]
              theta[3] scale prod_theta2_m0 x[180,1] x[180,2]
8
     theta[1]
                       theta[3] scale prod_theta2_m0 x[180,1] x[180,2]
              theta[2]
                       theta[3] m0 scale prod_theta2_m0 prod_theta2_scale x[180,1] x[180,2]
2
     theta[1]
              theta[2]
     theta[1]
              theta[3] x[180,1]
6
                       m0 scale prod_theta2_m0 prod_theta2_scale x[180,1] x[180,2]
1
     theta[1]
              theta[3]
    theta[2] prod_theta2_scale
1
  : theta[1]
              theta[3] prod_theta2_m0 x[180,1] x[180,2]
1
                       scale prod_theta2_m0 prod_theta2_scale x[180,1] x[180,2]
     theta[1]
              theta[3]
     prod_theta2_m0 x[180,2]
     theta[1] theta[3] m0 scale prod theta2 m0 prod m0 scale x[180,1] x[180,2]
     theta[1]
             theta[3] m0 scale prod_theta2_m0 x[180,1] x[180,2]
```

Overview of estimates

Summary of length of 95% credible intervals (CIs)

Here we give the median, standard deviation (sd), and coefficient of variation (cv) of the length of the 95% CIs.

For simulated data (where the true parameter values are known), we also give the number of times that the CI covers the true value and median, sd, and cv of the length of those 95% CIs that cover the true value.

	median	sd	cv	num_cover	median_cover	sd_cover	cv_cover
theta[1]	0.111	0.046	0.359	90	0.110	0.045	0.359
theta[2]	3.686	2.063	0.483	99	3.671	2.046	0.483
theta[3]	0.016	0.070	1.339	89	0.016	0.067	1.457
m0	746.741	65.983	0.090	100	746.741	65.983	0.090
sigma	0.005	0.001	0.227	87	0.005	0.000	0.094
scale	2.542	0.822	0.311	91	2.589	0.670	0.247
offset	0.212	0.060	0.267	84	0.210	0.014	0.069
$prod_theta2_m0$	223.218	383.297	1.118	92	211.231	219.420	0.764
prod_theta2_scale	3.548	1.561	0.410	100	3.548	1.561	0.410
$prod_m0_scale$	1479.128	623.487	0.407	98	1480.376	606.740	0.390
$prod_theta2_m0_scale$	45.555	8.219	0.182	92	45.823	7.951	0.173
x[180,1]	6.836	133.959	1.883	NA	NA	NA	NA
x[180,2]	838.137	1383.082	1.065	NA	NA	NA	NA

The following table shows the values of the median of the length of the CIs divided by the median of each sample

$$m_1 = \text{median}\left(\frac{q_i(0.975) - q_i(0.025)}{q_i(0.5)}\right),$$

the median of the length of the CIs divided by the mean of each sample

$$m_1 = \text{median}\left(\frac{q_i(0.975) - q_i(0.025)}{sample_mean}\right),$$

as well as the median of the length of the CIs divided by the median of the medians of the sample

$$m_3 = \frac{\text{median}(q_i(0.975) - q_i(0.025))}{\text{median}(q_i(0.5))}.$$

and (if applicable) the median of the length of the CIs divided by the true value

$$m_4 = \frac{\mathrm{median}(q_i(0.975) - q_i(0.025))}{\mathrm{true\ value}}.$$

	m_1	m_2	m_3	m_4	num_cover	m_1_cover	m_3 _cover
theta[1]	0.59	0.60	0.59	0.55	90	0.57	0.57
theta[2]	8.04	4.49	8.31	11.52	99	8.05	8.31
theta[3]	1.37	1.31	1.38	1.65	89	1.38	1.45
m0	2.88	2.50	2.94	3.11	100	2.88	2.94
sigma	0.25	0.24	0.25	0.25	87	0.25	0.25
scale	1.89	1.76	1.98	1.41	91	1.85	1.92
offset	0.03	0.03	0.03	0.03	84	0.03	0.03
$prod_theta2_m0$	2.12	1.92	2.26	2.91	92	2.08	2.18
prod_theta2_scale	6.18	3.82	6.76	6.16	100	6.18	6.76
$prod_m0_scale$	4.46	3.31	4.70	3.42	98	4.46	4.63
prod_theta2_m0_scale	0.35	0.35	0.34	0.33	92	0.35	0.34
x[180,1]	6.24	4.00	7.18	NA	NA	NA	NA
x[180,2]	2.09	1.90	2.08	NA	NA	NA	NA