

Arora V Hardened MIPI D-PHY **User Guide**

UG296-1.0E, 5/17/2023

Copyright © 2023 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWIN, Gowin and GOWINSEMI are trademarks of Guangdong Gowin Semiconductor Corporation and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service

marks are the property of their respective holders. No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description	
05/17/2023	1.0E	Initial version published.	

Contents

Co	ontents	i
Lis	st of Figures	ii
Li	st of Tables	iii
1	About This Guide	1
	1.1 Purpose	1
	1.2 Related Documents	1
	1.3 Terminology and Abbreviations	1
	1.4 Support and Feedback	2
2	Overview	3
	2.1 Features	3
	2.2 Functional Description	4
	2.2.1 MIPI D-PHY RX	4
	2.2.2 MIPI D-PHY TX	5
3	MIPI D-PHY Primitives	6
	3.1 MIPI D-PHY	6
	3.1.1 Port Description	6
	3.1.2 Parameter Description	13
	3.1.3 Primitive Instantiation	14
	3.2 MIPI D-PHY RX	23
4	MIPI D- PHY Configuration and Generation	24
	4.1 MIPI D-PHY RX Configuration	24
	4.2 MIPI D-PHY RX Generation Files	26
Ar	opendix A MIPI D-PHY Rate Table	27

List of Figures

Figure 2-1 MIPI D- PHY RX Structure View	4
Figure 2-1 MIPI D- PHY TX Structure View	5
Figure 4-1 MIPI D- PHY RX Configuration	24

UG296-1.0E ii

List of Tables

Table 1-1 Terminology and Abbreviations	1
Table 3-1 MIPI D-PHY Port Description	6
Table 3-2 MIPI D-PHY Parameters	13
Table A-1 MIPI D-PHY Data Rates (Arora Family)	28

UG296-1.0E iii

1 About This Guide

1.1 Purpose

Arora V MIPI D-PHY User Guide mainly describes the functions, features, ports, and configuration, etc., which helps you to quickly learn the MIPI D- PHY features and usage.

1.2 Related Documents

<u>www.gowinsemi.com</u>You can find the related documents at www.gowinsemi.com:

- DS981E, GW5AT series of FPGA Products Data Sheet
- DS1103E, GW5A series of FPGA Products Data Sheet
- DS1104E, GW5AST series of FPGA Products Data Sheet

1.3 Terminology and Abbreviations

The terminology and abbreviations used in this manual are as shown in Table 1-1.

Table 1-1 Terminology and Abbreviations

Terminology and Abbreviations	Full Name
CSI	Camera Serial Interface
DSI	Display Serial Interface
HS	High Speed
I/O	Input/output
LP	Low Power
MIPI	Mobile Industry Processor Interface

UG296-1.0E 1(28)

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly using the information provided below.

Website: www.gowinsemi.com

E-mail: <u>support@gowinsemi.com</u>

Tel: +86 755 8262 0391

UG296-1.0E 2(28)

2 Overview

Arora V devices provide the hardcore MIPI D-PHY RX and MIPI D-PHYTX, supporting the MIPI Alliance Standard for D-PHY Specification V2.1. The D-PHY core supports MIPI DSI and CSI-2 mobile video interfaces for cameras and displays.

Note!

GOWIN 138K devices support MIPI D-PHY RX. GOWIN 25K devices support MIPI D-PHY RX and MIPI D-PHY TX.

2.1 Features

The main features of MIPI D-PHY are as follows:

- Unidirectional HS (High-speed) mode at up to 2.5 Gbps per lane and 10 Gbps per quad (4 data lanes). Up to 20 Gbps supported by each chip (8 data lanes in all).
- Supports two MIPI D-PHY quads, up to 4 data lanes and one clock lane for each quad.
- Bidirectional Low-power (LP) mode with a bit rate of 10Mbps.
- Built-in HS Sync, bit alignment in the lane and word alignment between lanes.
- 1:8 and 1:16 deserialization modes to FPGA fabric's user interface
- Supports MIPI DSI and MIPI CSI-2 link layers
- The hard-core MIPI D-PHY supported by one dedicated MIPI Bank
- GW5AT-138 supports two MIPI D-PHY RX quads.
- GW5A-25 supports one MIPI D-PHY quad, including RX and TX.

UG296-1.0E 3(28)

2.2 Functional Description

2.2.1 MIPI D-PHY RX

MIPI D-PHY RX includes three parts: HS/LP IO, 1:8/1:16 Gearbox, and Aligner, as shown in Figure 2-1.

Figure 2-1 MIPI D- PHY RX Structure View

HS/LP I/O

Supports dynamic ODT, and dynamic LP TX/RX and HS RX.

1:8/1:16 Gearbox

8-bit or 16-bit width is supported and can be configured via HS 8BIT MODE.

Note!

For the MIPI_DPHY_RX port description, you can see 3 MIPI D-PHY Primitives > Port Description.

Aligner

Word align and Lane align are supported and can be configured via WALIGN_BY and LALIGN_EN ports. The key of Word align can be user-defined (ALIGN_BYTE), supporting 2 bytes and 3 bytes mode, which is configured via IPI_DPHY_RX port or ONE_BYTE0_MATCH port.

Note:

For the MIPI_DPHY_RX port description, you can see 3 MIPI D-PHY Primitives > Port Description.

UG296-1.0E 4(28)

2.2.2 MIPI D-PHY TX

MIPI D-PHY TX includes two parts: HS/LP IO and 1:8/1:16 Gearbox, as shown in Figure 2-1.

Figure 2-2 MIPI D- PHY TX Structure View

HS/LP I/O

Supports dynamic LP TX/RX and HS RX.

1:8/1:16 Gearbox

8-bit or 16-bit width is supported and can be configured via HS_8BIT_MODE.

Note!

For the MIPI_DPHY_RX port description, you can see 3 MIPI D-PHY Primitives > Port Description.

UG296-1.0E 5(28)

3 MIPI D-PHY Primitives

3.1 MIPI D-PHY

3.1.1 Port Description

Table 3-1 MIPI D-PHY Port Description

Port	I/O	Description
MIPI INTERFACE Signals		
CK_N	inout	CK Lane Complement Input
CK_P	inout	CK Lane True Input
D0_N	inout	Data Lane 0 Complement Input
D0_P	inout	Data Lane 0 True Input
D1_N	inout	Data Lane 1 Complement Input
D1_P	inout	Data Lane 1 True Input
D2_N	inout	Data Lane 2 Complement Input
D2_P	inout	Data Lane 2 True Input
D3_N	inout	Data Lane 3 Complement Input
D3_P	inout	Data Lane 3 True Input
RESET Signals		
RESET	input	Reset signal: 1'b1: reset all;
RX_DRST_N	input	RX digital reset, active low
TX_DRST_N	input	TX digital reset, active low
		HSRX Power On Control:
PWRON_RX	input	• 1'b1: HSRX on
		1'b0: HSRX off to standby in low power state
PWRON_TX	input	HSTX Power On Control:

UG296-1.0E 6(28)

Port	I/O	Description
		• 1'b1: HSTX on
		1'b0: HSTX off to standby in low power state
HSRX_STOP	input	HSRX Clock Stop Signal for synchronization
WALIGN_DVLD	input	word aligner input data valid from the fabric
CLK Signals		
СКО	input	HSTX: ck0
CK90	input	HSTX: ck90
CK180	input	HSTX: ck180
CK270	input	HSTX: ck270
RX_CLK_O	output	HSRX output 1X clock, max 93.75MHz@1.5Gbps
TX_CLK_O	output	HSTX output 1X clock, max 93.75MHz@1.5Gbps
RX_CLK_1X	input	1X clock from fabric, max 93.75MHz@1.5Gbps
TX_CLK_1X	input	1X clock from fabric, max 93.75MHz@1.5Gbps
HSRX Signals		
		data lane0 HS data output to fabric
D0LN_HSRXD	output	1:8 Mode: Data Width=8
		1:16Mode: Data Width=16
		data lane1 HS data output to fabric
D1LN_HSRXD	output	1:8 Mode: Data Width=8
		1:16Mode: Data Width=16
		data lane2 HS data output to fabric
D2LN_HSRXD	output	1:8 Mode: Data Width=8
		1:16Mode: Data Width=16
		data lane3 HS data output to fabric
D3LN_HSRXD	output	1:8 Mode: Data Width=8
DOLAL HODYD VII D		1:16Mode: Data Width=16
D0LN_HSRXD_VLD	output	data lane0 HS data output valid to fabric
D1LN_HSRXD_VLD	output	data lane1 HS data output valid to fabric
D2LN_HSRXD_VLD	output	data lane2 HS data output valid to fabric
D3LN_HSRXD_VLD	output	data lane3 HS data output valid to fabric
HSRX_EN_CK	input	CK Lane: 1'b1 HSRX enabled
		Data Lane0:
HSRX_EN_D0	input	1'b1: HSRX enabled
		1'b0: HSRX disabled
HSRX_EN_D1	input	Data Lane1:

UG296-1.0E 7(28)

Port	I/O	Description
		1'b1: HSRX enabled
		1'b0: HSRX disabled
		Data Lane2:
HSRX_EN_D2	input	1'b1: HSRX enabled
		1'b0: HSRX disabled
		Data Lane3:
HSRX_EN_D3	input	1'b1: HSRX enabled
		1'b0: HSRX disabled
		CK HSRX ODT enabled:
HSRX_ODTEN_CK	input	1'b1 ODT enabled
		1'b0 ODT disabled
		Data Lane0 HSRX ODT enabled:
HSRX_ODTEN_D0	input	1'b1 ODT enabled
		1'b0 ODT disabled
		Data Lane1 HSRX ODT enabled:
HSRX_ODTEN_D1	input	1'b1 ODT enabled
		1'b0 ODT disabled
		Data Lane2 HSRX ODT enabled:
HSRX_ODTEN_D2	input	1'b1 ODT enabled
		1'b0 ODT disabled
		Data Lane3 HSRX ODT enabled:
HSRX_ODTEN_D3	input	1'b1 ODT enabled
		1'b0 ODT disabled
		Data Lane0 HSRX driver enabled:
D0LN_HSRX_DREN	input	1'b1 driver enabled
		● 1'b0 driver disabled
		Data Lane1 HSRX driver enabled:
D1LN_HSRX_DREN	input	1'b1 driver enabled
		1'b0 driver disabled
		Data Lane2 HSRX driver enabled:
D2LN_HSRX_DREN	input	1'b1 driver enabled
		1'b0 driver disabled
		Data Lane3 HSRX driver enabled
D3LN_HSRX_DREN	input	1'b1 driver enabled
		● 1'b0 driver disabled
HSRX_DLYDIR_LANE0	input	Data Lane0: Direction for HSRX Deskew Delay

UG296-1.0E 8(28)

Port	I/O	Description
		Control: 0 Count Up; 1 Count Down;
HSRX_DLYDIR_LANE1	input	Data Lane1: Direction for HSRX Deskew Delay Contr Data Lane0: Direction for HSRX Deskew
HSRX_DLYDIR_LANE2	input	Data Lane2: Direction for HSRX Deskew Delay Control: 0 Count Up; 1 Count Down;
HSRX_DLYDIR_LANE3	input	Data Lane3: Direction for HSRX Deskew Delay Control: 0 Count Up; 1 Count Down;
HSRX_DLYDIR_LANECK	input	CK Lane: Direction for HSRX Deskew Delay Control: 0 Count Up; 1 Count Down
HSRX_DLYLDN_LANE0	input	Data Lane0: Load HSRX Deskew Delay Control input from Fuse: 1'b0 load
HSRX_DLYLDN_LANE1	input	Data Lane1: Load HSRX Deskew Delay Control input from Fuse: 1'b0 load
HSRX_DLYLDN_LANE2	input	Data Lane2: Load HSRX Deskew Delay Control input from Fuse: 1'b0 load
HSRX_DLYLDN_LANE3	input	Data Lane3: Load HSRX Deskew Delay Control input from Fuse: 1'b0 load
HSRX_DLYLDN_LANECK	input	CK Lane: Load HSRX Deskew Delay Control input from Fuse: 1'b0 load;
HSRX_DLYMV_LANE0	input	Data Lane0: enable HSRX Deskew Delay Control to count: 1'b1 move
HSRX_DLYMV_LANE0	input	Data Lane1: enable HSRX Deskew Delay Control to count: 1'b1 move
HSRX_DLYMV_LANE0	input	Data Lane2: enable HSRX Deskew Delay Control to count: 1'b1 move
HSRX_DLYMV_LANE0	input	Data Lane3: enable HSRX Deskew Delay Control to count: 1'b1 move
HSRX_DLYMV_LANECK	input	CK Lane: enable HSRX Deskew Delay Control to count: 1'b1 move
D0LN_DESKEW_DONE	output	D0ln_deskew_done
D1LN_DESKEW_DONE	output	D1In_deskew_done
D2LN_DESKEW_DONE	output	D2ln_deskew_done
D3LN_DESKEW_DONE	output	D3ln_deskew_done
D0LN_DESKEW_ERROR	output	D0ln_deskew_error
D1LN_DESKEW_ERROR	output	D1ln_deskew_error
D2LN_DESKEW_ERROR	output	D2In_deskew_error

UG296-1.0E 9(28)

Port	I/O	Description
D3LN_DESKEW_ERROR	output	D3ln_deskew_error
D0LN_DESKEW_REQ	input	D0lane deskew function request
D1LN_DESKEW_REQ	input	D1lane deskew function request
D2LN_DESKEW_REQ	input	D2lane deskew function request
D3LN_DESKEW_REQ	input	D3lane deskew function request
HSTX Signals	1	
		CK lane0 HS data input from fabric
CKLN_HSTXD	input	1:8 Mode: Data Width=8
		1:16Mode: Data Width=16
	input	data lane0 HS data input from fabric
D0LN_HSTXD		1:8 Mode: Data Width=8
		1:16Mode: Data Width=16
	input	data lane1 HS data input from fabric
D1LN_HSTXD		1:8 Mode: Data Width=8
		1:16Mode: Data Width=16
	input	data lane2 HS data input from fabric
D2LN_HSTXD		1:8 Mode: Data Width=8
		1:16Mode: Data Width=16
	input	data lane3 HS data input from fabric
D3LN_HSTXD		1:8 Mode: Data Width=8
		1:16Mode: Data Width=16
HSTXD_VLD	input	HS_TX Data Valid input from fabric
		CK Lane0:
HSTXEN_LNCK	input	1'b1: HSTX enabled
		1'b0: HSTX disabled
		Data Lane0:
HSTXEN_LN0	input	1'b1: HSTX enabled
		1'b0: HSTX disabled
		Data Lane1:
HSTXEN_LN1	input	• 1'b1: HSTX enabled
		1'b0: HSTX disabled
LIOTYEN LNO	. ,	Data Lane2:
HSTXEN_LN2	input	1'b1: HSTX enabled
		1'b0: HSTX disabled
HSTXEN_LN3	input	Data Lane3:
		1'b1: HSTX enabled

UG296-1.0E 10(28)

Port	I/O	Description	
		1'b0: HSTX disabled	
TXDPEN_LN0	input	txdpen_ln0,1'b1 enabled	
TXDPEN_LN1	input	txdpen_ln1,1'b1 enabled	
TXDPEN_LN2	input	txdpen_ln2,1'b1 enabled	
TXDPEN_LN3	input	txdpen_ln3,1'b1 enabled	
TXDPEN_LNCK	input	txdpen_lnck,1'b1 enabled	
TXHCLK_EN	input	txhclk_en,1'b1 enabled	
LPRX Signals			
DI_LPRX0_N	output	Data Lane0 Complement Pad LPRX input	
DI_LPRX0_P	output	Data Lane0 True Pad LPRX input	
DI_LPRX1_N	output	Data Lane1 Complement Pad LPRX input	
DI_LPRX1_P	output	Data Lane1 True Pad LPRX input	
DI_LPRX2_N	output	Data Lane2 Complement Pad LPRX input	
DI_LPRX2_P	output	Data Lane2 True Pad LPRX input	
DI_LPRX3_N	output	Data Lane3 Complement Pad LPRX input	
DI_LPRX3_P	output	Data Lane3 True Pad LPRX input	
DI_LPRXCK_N	output	CK Lane Complement Pad LPRX input	
DI_LPRXCK_P	output	CK Lane True Pad LPRX input	
LPRX_EN_CK	input	CK Lane: 1'b1 LPRX enabled	
		Data Lane0:	
LPRX_EN_D0	input	● 1'b1 LPRX enabled	
		1'b0 LPRX disabled	
		Data Lane1:	
LPRX_EN_D1	input	1'b1 LPRX enabled	
		1'b0 LPRX disabled Data Lange:	
LPRX EN D2	input	Data Lane2: ■ 1'b1 LPRX enabled	
LFIX_LIN_DZ	прис	1'b0 LPRX disabled	
		Data Lane3:	
LPRX_EN_D3	input	1'b1 LPRX enabled	
_		1'b0 LPRX disabled	
LPTX Signals			
DO_LPTX0_N	input	Data Lane0 Complement Pad LPTX output	
DO_LPTX0_P	input	Data Lane0 True Pad LPTX output	

UG296-1.0E 11(28)

Port	I/O	Description
DO_LPTX1_N	input	Data Lane1 Complement Pad LPTX output
DO_LPTX1_P	input	Data Lane1 True Pad LPTX output
DO_LPTX2_N	input	Data Lane2 Complement Pad LPTX output
DO_LPTX2_P	input	Data Lane2 True Pad LPTX output
DO_LPTX3_N	input	Data Lane3 Complement Pad LPTX output
DO_LPTX3_P	input	Data Lane3 True Pad LPTX output
DO_LPTXCK_N	input	CK Lane Complement Pad LPTX output
DO_LPTXCK_P	input	CK Lane True Pad LPTX output
LPTXEN_LNCK	input	CK Lane: 1'b1 LPTX enabled
LPTXEN_LN0	input	Data Lane0: 1'b1 LPTX enabled
LPTXEN_LN1	input	Data Lane1: 1'b1 LPTX enabled
LPTXEN_LN2	input	Data Lane2: 1'b1 LPTX enabled
LPTXEN_LN3	input	Data Lane3: 1'b1 LPTX enabled
ALP Signals		
ALPEDO_LANE0	output	ALP Mode: Data Lane0 output
ALPEDO_LANE1	output	ALP Mode: Data Lane1 output
ALPEDO_LANE2	output	ALP Mode: Data Lane2 output
ALPEDO_LANE3	output	ALP Mode: Data Lane3 output
ALPEDO_LANECK	output	ALP Mode: CK Lane output
ALP_EDEN_LANE0	input	ALP Mode: alp_eden_lane0
ALP_EDEN_LANE1	input	ALP Mode: alp_eden_lane1
ALP_EDEN_LANE2	input	ALP Mode: alp_eden_lane2
ALP_EDEN_LANE3	input	ALP Mode: alp_eden_lane3
ALP_EDEN_LANECK	input	ALP Mode: alp_eden_laneck
ALPEN_LN0	input	ALP Mode:1'b1, Lane0 enabled
ALPEN_LN1	input	ALP Mode:1'b1, Lane1 enabled
ALPEN_LN2	input	ALP Mode:1'b1, Lane2 enabled
ALPEN_LN3	input	ALP Mode:1'b1, Lane3 enabled
ALPEN_LNCK	input	ALP Mode: 1'b1, CK lane enabled
MRDATA [7:0]	output	mrdata
MA_INC	input	ma_inc
MCLK	input	mclk
MOPCODE	input	mopcode

UG296-1.0E 12(28)

Port	I/O	Description
MWDATA [7:0]	input	mwdata

3.1.2 Parameter Description

Table 3-2 MIPI D-PHY Parameters

Parameter	Default Value	Description	
RX_ALIGN_BYTE	8'b10111000	KEY for word aligner and lane aligner	
RX_BYTE_LITTLE_ENDIAN	1'b1	1'b1: Littlendian	
RX_CLK_1X_SYNC_SEL	1'b0	Select clock source for HS lane output data: • 0: select fabric input clock rx_clk_1x • 1: select output clock rx_clk_o	
RX_HS_8BIT_MODE	1'b0	1'b1:8bit mode; 1'b0:16bit mode	
RX_INVERT	1'b0	data polarity selection:1'b1 invert	
RX_LANE_ALIGN_EN	1'b0	1'b1:lane aligner enable	
RX_ONE_BYTE0_MATCH	1'b0	byte count match in word aligner	
RX_RD_START_DEPTH	5'b00001		
RX_SYNC_MODE	1'b0		
RX_WORD_ALIGN_BYPASS	1'b0		
RX_WORD_ALIGN_DATA_VLD_SRC_SEL	1'b0		
RX_WORD_LITTLE_ENDIAN	1'b1	1'b1: little endian of dual word(8bit/word). Not used in 8bit data output mode	
TX_BYPASS_MODE	1'b0		
TX_BYTECLK_SYNC_MODE	1'b0		
TX_HS_8BIT_MODE	1'b0	1'b1:8bit mode; 1'b0:16bit mode	
TX_OCLK_USE_CIBCLK	1'b0		
TX_RD_START_DEPTH	5'b00001		
TX_SYNC_MODE	1'b0		
TX_WORD_LITTLE_ENDIAN	1'b1	1'b1: little endian of dual word(8bit/word). Not used in 8bit data output mode	

UG296-1.0E 13(28)

3.1.3 Primitive Instantiation

Verilog Instantiation:

```
MIPI DPHY mipi dhpy inst (
   .ALPEDO LANE0(alpedo lane0),
   .ALPEDO LANE1(alpedo lane1),
   .ALPEDO LANE2(alpedo lane2),
   .ALPEDO LANE3(alpedo lane3),
   .ALPEDO LANECK(alpedo laneck),
   .RX CLK O(rx clk o),
   .TX CLK O(tx clk o),
   .DOLN DESKEW DONE(d0In deskew done),
   .D1LN DESKEW DONE(d1In deskew done),
   .D2LN DESKEW DONE(d2In deskew done),
   .D3LN DESKEW DONE(d3In deskew done),
   .D0LN DESKEW ERROR(d0ln deskew error),
   .D1LN DESKEW ERROR(d1In deskew error),
   .D2LN DESKEW ERROR(d2In deskew error),
   .D3LN DESKEW ERROR(d3ln deskew error),
   .D0LN HSRXD(d0ln hsrxd),
   .D1LN HSRXD(d1ln hsrxd),
   .D2LN HSRXD(d2ln hsrxd),
   .D3LN HSRXD(d3ln hsrxd),
   .D0LN HSRXD VLD(d0ln hsrxd vld),
   .D1LN HSRXD VLD(d1In hsrxd vld),
   .D2LN HSRXD VLD(d2ln hsrxd vld),
   .D3LN HSRXD VLD(d3ln hsrxd vld),
   .DI LPRX0 N(di lprx0 n),
   .DI LPRX0 P(di lprx0 p),
   .DI LPRX1 N(di lprx1 n),
   .DI LPRX1 P(di lprx1 p),
   .DI LPRX2 N(di lprx2 n),
   .DI LPRX2 P(di lprx2 p),
   .DI LPRX3 N(di lprx3 n),
   .DI LPRX3 P(di lprx3 p),
   .DI LPRXCK N(di lprxck n),
   .DI LPRXCK P(di lprxck p),
   .MRDATA(mrdata),
   .CK N(ck n),
   .CK P(ck p),
   .D0_N(d0_n),
   .D0 P(d0 p),
   .D1 N(d1 n),
   .D1 P(d1 p),
```

UG296-1.0E 14(28)

```
.D2 N(d2 n),
.D2 P(d2 p),
.D3 N(d3 n),
.D3 P(d3 p),
.ALP EDEN LANE0(alp_eden_lane0),
.ALP EDEN LANE1(alp eden lane1),
.ALP EDEN LANE2(alp eden lane2),
.ALP EDEN_LANE3(alp_eden_lane3),
.ALP EDEN LANECK(alp eden laneck),
.ALPEN LN0(alpen In0),
.ALPEN LN1(alpen In1),
.ALPEN LN2(alpen In2),
.ALPEN LN3(alpen In3),
.ALPEN LNCK(alpen Inck),
.HSRX STOP(hsrx stop),
.HSTXEN LN0(hstxen In0),
.HSTXEN LN1(hstxen ln1),
.HSTXEN LN2(hstxen In2),
.HSTXEN LN3(hstxen ln3),
.HSTXEN_LNCK(hstxen_lnck),
.LPTXEN LN0(lptxen ln0),
.LPTXEN LN1(lptxen ln1),
.LPTXEN LN2(lptxen ln2),
.LPTXEN LN3(lptxen ln3),
.LPTXEN LNCK(Iptxen Inck),
.PWRON RX(pwron rx),
.PWRON TX(pwron tx),
.RESET(reset),
.RX CLK 1X(rx clk 1x),
.TX CLK 1X(tx clk 1x),
.TXDPEN LN0(txdpen ln0),
.TXDPEN LN1(txdpen ln1),
.TXDPEN LN2(txdpen ln2),
.TXDPEN LN3(txdpen ln3),
.TXDPEN LNCK(txdpen lnck),
.TXHCLK EN(txhclk en),
.CKLN HSTXD(ckln hstxd),
.D0LN HSTXD(d0ln hstxd),
.D1LN HSTXD(d1ln hstxd),
.D2LN HSTXD(d2ln hstxd),
.D3LN_HSTXD(d3ln_hstxd),
.HSTXD VLD(hstxd vld),
.CK0(ck0),
.CK90(ck90),
```

UG296-1.0E 15(28)


```
.CK180(ck180),
.CK270(ck270).
.DOLN DESKEW REQ(d0ln deskew req),
.D1LN_DESKEW_REQ(d1ln_deskew req),
.D2LN DESKEW REQ(d2ln deskew req),
.D3LN DESKEW REQ(d3ln deskew req),
.DOLN HSRX DREN(d0ln hsrx dren),
.D1LN HSRX DREN(d1ln hsrx dren),
.D2LN HSRX DREN(d2ln hsrx dren),
.D3LN HSRX DREN(d3ln hsrx dren),
.DO LPTX0 N(do lptx0 n),
.DO LPTX0 P(do lptx0 p),
.DO LPTX1 N(do lptx1 n),
.DO LPTX1 P(do lptx1 p),
.DO LPTX2_N(do_lptx2_n),
.DO LPTX2 P(do lptx2 p),
.DO LPTX3 N(do lptx3 n),
.DO LPTX3 P(do lptx3 p),
.DO LPTXCK N(do lptxck n),
.DO_LPTXCK_P(do_lptxck_p),
.HSRX DLYDIR LANE0(hsrx dlydir lane0),
.HSRX DLYDIR LANE1(hsrx dlydir lane1),
.HSRX DLYDIR LANE2(hsrx dlydir lane2),
.HSRX DLYDIR LANE3(hsrx dlydir lane3),
.HSRX DLYDIR LANECK(hsrx dlydir laneck),
.HSRX DLYLDN LANE0(hsrx dlyldn lane0),
.HSRX DLYLDN LANE1(hsrx dlyldn lane1),
.HSRX DLYLDN LANE2(hsrx dlyldn lane2),
.HSRX DLYLDN LANE3(hsrx dlyldn lane3),
.HSRX DLYLDN LANECK(hsrx dlyldn laneck),
.HSRX DLYMV LANE0(hsrx dlymv lane0),
.HSRX DLYMV LANE1(hsrx dlymv lane1),
.HSRX DLYMV LANE2(hsrx dlymv lane2),
.HSRX DLYMV LANE3(hsrx dlymv lane3),
.HSRX DLYMV LANECK(hsrx dlymv laneck),
.HSRX_EN_CK(hsrx_en_ck),
.HSRX EN D0(hsrx en d0),
.HSRX EN D1(hsrx en d1),
.HSRX EN D2(hsrx en d2),
.HSRX EN D3(hsrx en d3),
.HSRX_ODTEN_CK(hsrx_odten_ck),
.HSRX ODTEN D0(hsrx odten d0),
.HSRX ODTEN D1(hsrx odten d1),
.HSRX ODTEN D2(hsrx odten d2),
```

UG296-1.0E 16(28)


```
.HSRX ODTEN D3(hsrx odten d3),
   .LPRX EN CK(lprx en ck),
   .LPRX EN D0(lprx en d0),
   .LPRX EN D1(lprx en d1),
   .LPRX EN D2(lprx_en_d2),
   .LPRX EN D3(lprx en d3),
   .MA INC(ma inc),
   .MCLK(mclk),
   .MOPCODE(mopcode),
   .MWDATA(mwdata),
   .RX DRST N(rx drst n),
   .TX DRST N(tx drst n),
   .WALIGN DVLD(walign dvld)
);
defparam mipi dhpy inst.TX PLLCLK = "NONE";
defparam mipi dhpy inst.CKLN DELAY EN = 1'b0;
defparam mipi dhpy inst.CKLN DELAY OVR VAL = 7'b0000000;
defparam mipi dhpy inst.D0LN DELAY EN = 1'b0;
defparam mipi_dhpy_inst.D0LN_DELAY_OVR_VAL = 7'b00000000;
defparam mipi dhpy inst.D0LN DESKEW BYPASS = 1'b0;
defparam mipi dhpy inst.D1LN DELAY EN = 1'b0;
defparam mipi dhpy inst.D1LN DELAY OVR VAL = 7'b0000000;
defparam mipi_dhpy_inst.D1LN_DESKEW_BYPASS = 1'b0;
defparam mipi dhpy inst.D2LN DELAY EN = 1'b0;
defparam mipi dhpy inst.D2LN DELAY OVR VAL = 7'b0000000;
defparam mipi dhpy inst.D2LN DESKEW BYPASS = 1'b0;
defparam mipi dhpy inst.D3LN DELAY EN = 1'b0;
defparam mipi dhpy inst.D3LN DELAY OVR VAL = 7'b0000000;
defparam mipi dhpy inst.D3LN DESKEW BYPASS = 1'b0;
defparam mipi dhpy inst.DESKEW EN LOW DELAY = 1'b0;
defparam mipi dhpy inst.DESKEW EN ONE EDGE = 1'b0;
defparam mipi dhpy inst.DESKEW FAST LOOP TIME = 4'b0000;
defparam mipi dhpy inst.DESKEW FAST MODE = 1'b0;
defparam mipi dhpy inst.DESKEW HALF OPENING = 6'b000000;
defparam mipi_dhpy_inst.DESKEW_LSB_MODE = 2'b00;
defparam mipi dhpy inst.DESKEW M = 3'b000;
defparam mipi dhpy inst.DESKEW M TH = 13'b0000000000000;
defparam mipi dhpy inst.DESKEW MAX SETTING = 7'b0000000;
defparam mipi dhpy inst.DESKEW ONE CLK EDGE EN = 1'b0;
defparam mipi dhpy inst.DESKEW RST BYPASS = 1'b0;
defparam mipi dhpy inst.RX ALIGN BYTE = 8'b10111000;
defparam mipi dhpy inst.RX BYTE LITTLE ENDIAN = 1'b1;
defparam mipi dhpy inst.RX CLK 1X SYNC SEL = 1'b0;
```

UG296-1.0E 17(28)


```
defparam mipi dhpy inst.RX HS 8BIT MODE = 1'b0;
   defparam mipi dhpy inst.RX INVERT = 1'b0;
   defparam mipi dhpy inst.RX LANE ALIGN EN = 1'b0;
   defparam mipi_dhpy_inst.RX ONE BYTE0 MATCH = 1'b0;
   defparam mipi dhpy inst.RX RD START DEPTH = 5'b00001;
   defparam mipi dhpy inst.RX SYNC MODE = 1'b0;
   defparam mipi dhpy inst.RX WORD ALIGN BYPASS = 1'b0;
   defparam mipi dhpy inst.RX WORD ALIGN DATA VLD SRC SEL
= 1'b0:
   defparam mipi dhpy inst.RX WORD LITTLE ENDIAN = 1'b1;
   defparam mipi dhpy inst.TX BYPASS MODE = 1'b0;
   defparam mipi dhpy inst.TX BYTECLK SYNC MODE = 1'b0;
   defparam mipi dhpy inst.TX HS 8BIT MODE = 1'b0;
   defparam mipi dhpy inst.TX OCLK USE CIBCLK = 1'b0;
   defparam mipi_dhpy_inst.TX_RD_START_DEPTH = 5'b00001;
   defparam mipi dhpy inst.TX SYNC MODE = 1'b0;
   defparam mipi dhpy inst.TX WORD LITTLE ENDIAN = 1'b1;
   defparam mipi dhpy inst.EQ CS LANE0 = 3'b100;
   defparam mipi_dhpy_inst.EQ_CS_LANE1 = 3'b100;
   defparam mipi_dhpy_inst.EQ_CS_LANE2 = 3'b100;
   defparam mipi dhpy inst.EQ CS LANE3 = 3'b100;
   defparam mipi dhpy inst.EQ CS LANECK = 3'b100;
   defparam mipi dhpy inst.EQ RS LANE0 = 3'b100;
   defparam mipi_dhpy_inst.EQ_RS_LANE1 = 3'b100;
   defparam mipi dhpy inst.EQ RS LANE2 = 3'b100;
   defparam mipi dhpy inst.EQ RS LANE3 = 3'b100;
   defparam mipi dhpy inst.EQ RS LANECK = 3'b100;
   defparam mipi dhpy inst. HSCLK LANE LN0 = 1'b1;
   defparam mipi dhpy inst. HSCLK LANE LN1 = 1'b1;
   defparam pllvr inst.CLKOUTP FT DIR = 1'b1;
   defparam mipi dhpy inst. HSCLK LANE LN3 = 1'b1;
   defparam mipi dhpy inst. HSCLK LANE LNCK = 1'b0;
   defparam mipi dhpy inst. HSREG EN LN0 = 1'b0;
   defparam mipi dhpy inst. HSREG EN LN1 = 1'b0;
   defparam mipi dhpy inst. HSREG EN LN2 = 1'b0;
   defparam mipi dhpy inst. HSREG EN LN3 = 1'b0;
   defparam mipi dhpy inst. HSREG EN LNCK = 1'b0;
   defparam mipi dhpy inst.LANE DIV SEL = 2'b00;
   defparam mipi dhpy inst.ALP ED EN LANE0 = 1'b1;
   defparam mipi dhpy inst.ALP ED EN LANE1 = 1'b1;
   defparam mipi_dhpy_inst.ALP_ED_EN_LANE2 = 1'b1;
   defparam mipi dhpy inst.ALP ED EN LANE3 = 1'b1;
   defparam mipi_dhpy_inst.ALP_ED_EN_LANECK = 1'b1;
   defparam mipi dhpy inst.ALP ED TST LANE0 = 1'b0;
```

UG296-1.0E 18(28)


```
defparam mipi_dhpy_inst.ALP_ED_TST_LANE1 = 1'b0;
defparam mipi dhpy inst.ALP ED TST LANE2 = 1'b0;
defparam mipi_dhpy_inst.ALP_ED_TST_LANE3 = 1'b0;
defparam mipi_dhpy_inst.ALP_ED_TST_LANECK = 1'b0;
defparam mipi dhpy inst.ALP EN LN0 = 1'b0;
defparam mipi dhpy inst.ALP EN LN1 = 1'b0;
defparam mipi dhpy inst.ALP EN LN2 = 1'b0;
defparam mipi dhpy inst.ALP EN LN3 = 1'b0;
defparam mipi dhpy inst.ALP EN_LNCK = 1'b0;
defparam mipi dhpy inst.ALP HYS EN LANE0 = 1'b1;
defparam mipi_dhpy_inst.ALP_HYS_EN_LANE1 = 1'b1;
defparam mipi dhpy inst.ALP HYS EN LANE2 = 1'b1;
defparam mipi dhpy inst.ALP HYS EN LANE3 = 1'b1;
defparam mipi dhpy inst.ALP HYS EN LANECK = 1'b1;
defparam mipi dhpy inst.ALP TH LANE0 = 4'b1000;
defparam mipi dhpy inst.ALP TH LANE1 = 4'b1000;
defparam mipi_dhpy_inst.ALP_TH LANE2 = 4'b1000;
defparam mipi dhpy inst.ALP TH LANE3 = 4'b1000;
defparam mipi dhpy inst.ALP TH LANECK = 4'b1000;
defparam mipi_dhpy_inst.ANA_BYTECLK_PH = 2'b00;
defparam mipi dhpy inst.BIT REVERSE LN0 = 1'b0;
defparam mipi dhpy inst.BIT REVERSE LN1 = 1'b0;
defparam mipi dhpy inst.BIT REVERSE LN2 = 1'b0;
defparam mipi dhpy inst.BIT REVERSE LN3 = 1'b0;
defparam mipi dhpy inst.BIT REVERSE LNCK = 1'b0;
defparam mipi dhpy inst.BYPASS TXHCLKEN = 1'b1;
defparam mipi dhpy inst.BYPASS TXHCLKEN SYNC = 1'b0;
defparam mipi dhpy inst.BYTE CLK POLAR = 1'b0;
defparam mipi dhpy inst.BYTE REVERSE LN0 = 1'b0;
defparam mipi dhpy inst.BYTE REVERSE LN1 = 1'b0;
defparam mipi dhpy inst.BYTE REVERSE LN2 = 1'b0;
defparam mipi dhpy inst.BYTE REVERSE LN3 = 1'b0;
defparam mipi dhpy inst.BYTE REVERSE LNCK = 1'b0;
defparam mipi dhpy inst.EN CLKB1X = 1'b1;
defparam mipi_dhpy_inst.EQ_PBIAS_LANE0 = 4'b1000;
defparam mipi_dhpy_inst.EQ_PBIAS_LANE1 = 4'b1000;
defparam mipi dhpy inst.EQ PBIAS LANE2 = 4'b1000;
defparam mipi dhpy inst.EQ PBIAS LANE3 = 4'b1000;
defparam mipi dhpy inst.EQ PBIAS LANECK = 4'b1000;
defparam mipi dhpy inst.EQ ZLD LANE0 = 4'b1000;
defparam mipi dhpy inst.EQ ZLD LANE1 = 4'b1000;
defparam mipi dhpy inst.EQ ZLD LANE2 = 4'b1000;
defparam mipi dhpy inst.EQ ZLD LANE3 = 4'b1000;
defparam mipi dhpy inst.EQ ZLD LANECK = 4'b1000;
```

UG296-1.0E 19(28)


```
defparam mipi dhpy inst.HIGH BW LANE0 = 1'b1;
defparam mipi dhpy inst.HIGH BW LANE1 = 1'b1;
defparam mipi dhpy inst.HIGH BW LANE2 = 1'b1;
defparam mipi dhpy inst.HIGH BW LANE3 = 1'b1;
defparam mipi dhpy inst.HIGH BW LANECK = 1'b1;
defparam mipi dhpy inst. HSREG VREF CTL = 3'b100;
defparam mipi dhpy inst. HSREG VREF EN = 1'b0;
defparam mipi_dhpy_inst.HSRX_DLY_CTL_CK = 7'b0000000;
defparam mipi dhpy inst. HSRX DLY CTL LANE0 = 7'b0000000;
defparam mipi dhpy inst. HSRX DLY CTL LANE1 = 7'b0000000;
defparam mipi dhpy inst. HSRX DLY CTL LANE2 = 7'b0000000;
defparam mipi dhpy inst. HSRX DLY CTL LANE3 = 7'b0000000;
defparam mipi dhpy inst. HSRX DLY SEL LANE0 = 1'b0;
defparam mipi dhpy inst. HSRX DLY SEL LANE1 = 1'b0;
defparam mipi dhpy inst. HSRX DLY SEL LANE2 = 1'b0;
defparam mipi dhpy inst. HSRX DLY SEL LANE3 = 1'b0;
defparam mipi dhpy inst. HSRX DLY SEL LANECK = 1'b0;
defparam mipi dhpy inst. HSRX DUTY LANE0 = 4'b1000;
defparam mipi dhpy inst. HSRX DUTY LANE1 = 4'b1000;
defparam mipi_dhpy_inst.HSRX_DUTY_LANE2 = 4'b1000;
defparam mipi dhpy inst. HSRX DUTY LANE3 = 4'b1000;
defparam mipi dhpy inst. HSRX DUTY LANECK = 4'b1000;
defparam mipi dhpy inst. HSRX EN = 1'b1;
defparam mipi dhpy inst. HSRX EQ EN LANE0 = 1'b1;
defparam mipi dhpy inst. HSRX EQ EN LANE1 = 1'b1;
defparam mipi dhpy inst. HSRX EQ EN LANE2 = 1'b1;
defparam mipi dhpy inst. HSRX EQ EN LANE3 = 1'b1;
defparam mipi dhpy inst. HSRX EQ EN LANECK = 1'b1;
defparam mipi_dhpy_inst.HSRX IBIAS = 4'b0011;
defparam mipi dhpy inst. HSRX IBIAS TEST EN = 1'b0;
defparam mipi dhpy inst. HSRX IMARG EN = 1'b1;
defparam mipi dhpy inst. HSRX LANESEL = 4'b1111;
defparam mipi dhpy inst. HSRX LANESEL CK = 1'b1;
defparam mipi dhpy inst. HSRX ODT EN = 1'b1;
defparam mipi dhpy inst. HSRX ODT TST = 4'b0000;
defparam mipi_dhpy_inst.HSRX_ODT_TST_CK = 1'b0;
defparam mipi dhpy inst. HSRX SEL = 4'b0000;
defparam mipi dhpy inst. HSRX STOP EN = 1'b0;
defparam mipi dhpy inst. HSRX TST = 4'b0000;
defparam mipi dhpy inst. HSRX TST CK = 1'b0;
defparam mipi dhpy inst. HSRX WAIT4EDGE = 1'b1;
defparam mipi dhpy inst. HSTX EN LN0 = 1'b0;
defparam mipi dhpy inst. HSTX EN LN1 = 1'b0;
defparam mipi dhpy inst. HSTX EN LN2 = 1'b0;
```

UG296-1.0E 20(28)


```
defparam mipi dhpy inst. HSTX EN LN3 = 1'b0;
defparam mipi dhpy inst. HSTX EN LNCK = 1'b0;
defparam mipi dhpy inst.HYST NCTL = 2'b01;
defparam mipi dhpy inst.HYST PCTL = 2'b01;
defparam mipi dhpy inst.IBIAS TEST EN = 1'b0;
defparam mipi dhpy inst.LB CH SEL = 1'b0;
defparam mipi dhpy inst.LB EN LN0 = 1'b0;
defparam mipi_dhpy_inst.LB EN LN1 = 1'b0;
defparam mipi dhpy inst.LB EN LN2 = 1'b0;
defparam mipi dhpy inst.LB EN LN3 = 1'b0;
defparam mipi dhpy inst.LB EN LNCK = 1'b0;
defparam mipi dhpy inst.LB POLAR LN0 = 1'b0;
defparam mipi dhpy inst.LB POLAR LN1 = 1'b0;
defparam mipi dhpy inst.LB POLAR LN2 = 1'b0;
defparam mipi dhpy inst.LB POLAR LN3 = 1'b0;
defparam mipi dhpy inst.LB POLAR LNCK = 1'b0;
defparam mipi_dhpy_inst.LOW_LPRX VTH = 1'b0;
defparam mipi dhpy inst.LPBK DATA2TO1 = 4'b0000;
defparam mipi dhpy inst.LPBK DATA2TO1 CK = 1'b0;
defparam mipi_dhpy_inst.LPBK_EN = 1'b0;
defparam mipi dhpy inst.LPBK SEL = 4'b0000;
defparam mipi dhpy inst.LPBKTST EN = 4'b0000;
defparam mipi dhpy inst.LPBKTST EN CK = 1'b0;
defparam mipi dhpy inst.LPRX EN = 1'b1;
defparam mipi dhpy inst.LPRX TST = 4'b0000;
defparam mipi dhpy inst.LPRX TST CK = 1'b0;
defparam mipi dhpy inst.LPTX DAT POLAR LN0 = 1'b0;
defparam mipi dhpy inst.LPTX DAT POLAR LN1 = 1'b0;
defparam mipi dhpy inst.LPTX DAT POLAR LN2 = 1'b0;
defparam mipi dhpy inst.LPTX DAT POLAR LN3 = 1'b0;
defparam mipi dhpy inst.LPTX DAT POLAR LNCK = 1'b0;
defparam mipi dhpy inst.LPTX EN LN0 = 1'b1;
defparam mipi dhpy inst.LPTX EN LN1 = 1'b1;
defparam mipi dhpy inst.LPTX EN LN2 = 1'b1;
defparam mipi dhpy inst.LPTX EN LN3 = 1'b1;
defparam mipi dhpy inst.LPTX EN LNCK = 1'b1;
defparam mipi dhpy inst.LPTX NIMP LN0 = 3'b100;
defparam mipi dhpy inst.LPTX NIMP LN1 = 3'b100;
defparam mipi dhpy inst.LPTX NIMP LN2 = 3'b100;
defparam mipi dhpy inst.LPTX NIMP LN3 = 3'b100;
defparam mipi_dhpy_inst.LPTX_NIMP_LNCK = 3'b100;
defparam mipi dhpy inst.LPTX PIMP LN0 = 3'b100;
defparam mipi dhpy inst.LPTX PIMP LN1 = 3'b100;
defparam mipi dhpy inst.LPTX PIMP LN2 = 3'b100;
```

UG296-1.0E 21(28)


```
defparam mipi dhpy inst.LPTX PIMP LN3 = 3'b100;
defparam mipi dhpy inst.LPTX PIMP LNCK = 3'b100;
defparam mipi dhpy inst.MIPI PMA DIS N = 1'b1;
defparam mipi dhpy inst.PGA BIAS LANE0 = 4'b1000;
defparam mipi dhpy inst.PGA BIAS LANE1 = 4'b1000;
defparam mipi dhpy inst.PGA BIAS LANE2 = 4'b1000;
defparam mipi dhpy inst.PGA BIAS LANE3 = 4'b1000;
defparam mipi dhpy inst.PGA BIAS LANECK = 4'b1000;
defparam mipi dhpy inst.PGA GAIN LANE0 = 4'b1000;
defparam mipi dhpy inst.PGA GAIN LANE1 = 4'b1000;
defparam mipi_dhpy_inst.PGA_GAIN_LANE2 = 4'b1000;
defparam mipi dhpy inst.PGA GAIN LANE3 = 4'b1000;
defparam mipi dhpy inst.PGA GAIN LANECK = 4'b1000;
defparam mipi_dhpy_inst.RX ODT TRIM LANE0 = 4'b1000;
defparam mipi dhpy inst.RX ODT TRIM LANE1 = 4'b1000;
defparam mipi dhpy inst.RX ODT TRIM LANE2 = 4'b1000;
defparam mipi dhpy inst.RX ODT TRIM LANE3 = 4'b1000;
defparam mipi dhpy inst.RX ODT TRIM LANECK = 4'b1000;
defparam mipi dhpy inst.SLEWN CTL LN0 = 4'b1111;
defparam mipi_dhpy_inst.SLEWN_CTL_LN1 = 4'b1111;
defparam mipi dhpy inst.SLEWN CTL LN2 = 4'b1111;
defparam mipi dhpy inst.SLEWN CTL LN3 = 4'b1111;
defparam mipi dhpy inst.SLEWN CTL LNCK = 4'b1111;
defparam mipi dhpy inst.SLEWP CTL LN0 = 4'b1111;
defparam mipi_dhpy_inst.SLEWP_CTL_LN1 = 4'b1111;
defparam mipi dhpy inst.SLEWP CTL LN2 = 4'b1111;
defparam mipi dhpy inst.SLEWP CTL LN3 = 4'b1111;
defparam mipi dhpy inst.SLEWP CTL LNCK = 4'b1111;
defparam mipi dhpy inst.STP UNIT = 2'b11;
defparam mipi dhpy inst.TERMN CTL LN0 = 4'b1000;
defparam mipi dhpy inst.TERMN CTL LN1 = 4'b1000;
defparam mipi dhpy inst.TERMN CTL LN2 = 4'b1000;
defparam mipi dhpy inst.TERMN CTL LN3 = 4'b1000;
defparam mipi dhpy inst.TERMN CTL LNCK = 4'b1000;
defparam mipi dhpy inst.TERMP CTL LN0 = 4'b1000;
defparam mipi_dhpy_inst.TERMP_CTL_LN1 = 4'b1000;
defparam mipi dhpy inst.TERMP CTL LN2 = 4'b1000;
defparam mipi_dhpy_inst.TERMP_CTL LN3 = 4'b1000;
defparam mipi dhpy inst.TERMP CTL LNCK = 4'b1000;
defparam mipi dhpy inst.TEST EN LN0 = 1'b0;
defparam mipi dhpy inst.TEST_EN_LN1 = 1'b0;
defparam mipi dhpy inst.TEST EN LN2 = 1'b0;
defparam mipi dhpy inst.TEST EN LN3 = 1'b0;
defparam mipi dhpy inst.TEST EN LNCK = 1'b0;
```

UG296-1.0E 22(28)


```
defparam mipi_dhpy_inst.TEST_N_IMP_LN0 = 1'b0; defparam mipi_dhpy_inst.TEST_N_IMP_LN1 = 1'b0; defparam mipi_dhpy_inst.TEST_N_IMP_LN2 = 1'b0; defparam mipi_dhpy_inst.TEST_N_IMP_LN3 = 1'b0; defparam mipi_dhpy_inst.TEST_N_IMP_LNCK = 1'b0; defparam mipi_dhpy_inst.TEST_P_IMP_LN0 = 1'b0; defparam mipi_dhpy_inst.TEST_P_IMP_LN1 = 1'b0; defparam mipi_dhpy_inst.TEST_P_IMP_LN2 = 1'b0; defparam mipi_dhpy_inst.TEST_P_IMP_LN3 = 1'b0; defparam mipi_dhpy_inst.TEST_P_IMP_LNCK = 1'b0; defparam mipi_dhpy_inst.TXDP_EN_LN0 = 1'b1; defparam mipi_dhpy_inst.TXDP_EN_LN1 = 1'b1; defparam mipi_dhpy_inst.TXDP_EN_LN2 = 1'b1; defparam mipi_dhpy_inst.TXDP_EN_LN3 = 1'b1; defparam mipi_dhpy_inst.TXDP_EN_LN3 = 1'b1;
```

3.2 MIPI D-PHY RX

TBD

UG296-1.0E 23(28)

4 MIPI D- PHY Configuration and Generation

You can select Tools in Gowin Software to start the IP Core Generator to call and configure MIPI D-PHY. The following takes GW5A-25 MIPI D-PHY RX as an example to introduce.

4.1 MIPI D-PHY RX Configuration

The configuration options for MIPI D-PHY RX are shown in Figure 4-1.

Figure 4-1 MIPI D-PHY RX Configuration

UG296-1.0E 24(28)

1. General Configuration

The General configuration is used to configure the information about the generated IP design file.

- Device: Display information about the configured Device.
- Part Number: Display the configured Part Number.
- Language: Hardware description language used to generate the IP design files. Click the drop-down list to select the language, including Verilog and VHDL.
- Module Name: The module name of the generated IP design files. It can be re-edited in the text box on the right. Module name cannot be the same as the primitive name. If it is the same, an error will be reported.
- File Name: The file name of the generated IP design files. It can be re-edited in the text box on the right.
- Create In: The path in which the generated IP files will be stored.
 Enter the target path in the right box or select the target path by clicking the option.

2. Common

- RX_ENABLE: Select MIPI D-PHY RX or MIPI D-PHY TX.
- Clock Lane Enable: Disable or enable clock lane.
- Lane 0 Enable: Disable or enable lane 0.
- Lane 1 Enable: Disable or enable lane 1.
- Lane 2 Enable: Disable or enable lane 2.
- Lane 3 Enable: Disable or enable lane 3.

3. Port Diagram

The port diagram displays a sample diagram of the IP Core configuration, as shown in 4- 1.

UG296-1.0E 25(28)

4.2 MIPI D-PHY RX Generation Files

After configuration, it will generate three files that are named after the "File Name". Take the default configuration as an example for introduction:

- "gowin_mipi_dphy_rx.v" file is a complete Verilog module to generate an instantiated MIPI DPHY RX according to the IP configuration.
- "gowin mipi dphy tmp.v" is the template file.
- "gowin_mipi_dphy.ipc" file is IP configuration file. You can load the file to configure the IP.

Note!

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

UG296-1.0E 26(28)

Appendix A MIPI D-PHY Rate Table

UG296-1.0E 27(28)

Table A-1 MIPI D-PHY Data Rates (Arora Family)

Resolution	Frame Rate (HZ)	Bits Per Pixel (Bits)	Total Data Rate (Mbps)	Lane Number	Per Lane Bit Rate (Mbps)	Recommended Gearing Ratio (1:N)	Per Lane Fabric Clock (MHz)
FHD	60	8	1188	2	594.0	8	74.25
1920x1080p		10	1485	2	742.5	8	92.81
(2200x1125)		16	2376	2	1188.0	8	148.50
		18	2673	4	668.3	8	83.53
		24	3564	4	891.0	8	111.38
	120	8	2376	2	1188.0	8	148.50
		10	2970	4	742.5	8	92.81
		16	4752	4	1188.0	8	148.50
		18	5346	8	668.3	8	83.53
		24	7128	8	891.0	8	111.38
UHD	30	8	2376	4	594.0	8	74.25
3840x2160p		10	2970	4	742.5	8	92.81
(4400x2250)		16	4752	4	1188.0	8	148.50
		18	5346	8	668.3	8	83.53
		24	7128	8	891.0	8	111.38
	60	8	4752	4	1188.0	8	148.50
		10	5940	8	742.5	8	92.81
		16	9504	8	1188.0	8	148.50

UG296-1.0E

