AFRE 802 Statistical Methods for Agricultural, Food, & Resource Economists

Estimation – Part 1 of 2 (WMS Ch. 8.1-8.4)

October 31, 2017

Nicole Mason Michigan State University Fall 2017

GAME PLAN

- -Housekeeping issue: collect Ch. 7 HW
- -Graded in-class exercise on sampling distributions
- -Review: CLT, LLN, and normal approximation to binomial
- -Ch. 8 (Estimation yay!)
 - a. Definitions
 - b. The bias & mean square error of an estimator
 - c. Some common unbiased estimators
 - d. The standard error of an estimator
 - e. The error of estimation

Graded in-class exercises - sampling distributions

If Y_1 , Y_2 , ..., Y_N is a random sample of sizes N from a normal distribution with mean, μ , and variance, σ^2 , then:

$$Z = \frac{\overline{Y} - \mu}{\sigma / \sqrt{N}} \sim N(0, I)$$

$$T = \frac{\overline{Y} - \mu}{S / \sqrt{N}} \sim t \text{ with } (N - I) \text{ d.f.}$$

$$\frac{(N-I)S^2}{\sigma^2} \sim \chi^2 \text{ with } (N-I) \text{ d.f.}$$

If we have two independent random samples from normal populations with variances σ_I^2 and σ_2^2 , then:

$$F = \frac{S_I^2 / \sigma_I^2}{S_2^2 / \sigma_2^2} \sim F \text{ with } (N_I - I) \text{ numerator d.f. & } (N_2 - I) \text{ denominator d.f.}$$

Review: The Law of Large Numbers

• As N→∞, the <u>sample mean converges</u> (in probability) to the <u>population mean</u>

$$\begin{array}{|c|c|c|}\hline P(|\,\overline{Y}_N - \mu\,| > \varepsilon) \to 0 & \text{as } N \to \infty & \text{for any } \varepsilon > 0\\ \Leftrightarrow & \\ P(|\,\overline{Y}_N - \mu\,| < \varepsilon) & \to I & \text{as } N \to \infty & \text{for any } \varepsilon > 0 \end{array}$$

Review: The Central Limit Theorem (CLT)

 As N→∞, the <u>sampling distribution of the sample mean</u> will be <u>approximately normal</u> regardless of the distribution of Y_i

Let $Y_1, Y_2, ..., Y_N$ be i.i.d. distributed RVs with $E(Y_i) = \mu$, $V(Y_i) = \sigma^2 < \infty$, then the distribution of $\frac{\overline{Y} - \mu}{\sigma / \sqrt{N}}$ converges to the standard normal as $N \to \infty$

- "Large" sample size: roughly N>30
- Note: CLT applies to a random sample from <u>ANY</u> <u>distribution</u> with finite mean & variance & large N

Review: Normal approx. to binomial distribution

 Recall that a binomial RV, Y, is the # of successes in n trials, where the P(success) on one trial is p

$$p(y) = \binom{n}{y} p^{y} (1-p)^{n-y}$$

- Can think of as Y as the sum of *n* binary variables $Y = \sum_{i=1}^{n} X_i, \qquad X_i = \begin{cases} 1, & \text{if the } i \text{th trial results in success,} \\ 0, & \text{otherwise.} \end{cases}$
- Divide both sides by n: $\frac{Y}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$
- As *n* gets large, by the CLT:

 $\frac{Y}{n} = \overline{X} \sim Normal(p, \frac{pq}{n})$

Note: This approximation works well if:

$$n > 9 \left(\frac{\text{larger of } p \text{ and } q}{\text{smaller of } p \text{ and } q} \right)$$

MICHIGAN STATI

ESTIMATION (FINALLY!)

MICHIGAN STATE UNIVERSITY

Motivation

- Recall from Day 1: what are the two major objectives of statistics?
 - 1. To make an inference about a population based on info in a sample from that population
 - 2. To provide a measure of the 'goodness' of that inference
- This section of the course is about estimation. What might we want to estimate?
 - In quantitative work, we are usually interested in some numerical descriptive measure of the population e.g., the population mean (μ) , variance (σ^2) , prob. of "success" (p), etc.
 - Examples that may be of interest in your research?
 - · These are called (population) parameters
 - En route to making inferences, we'll often need to use our sample info to come up with an estimate of the (population) parameter(s)

. 8

MICHIGAN STATE

Terminology

- Target parameter = the parameter that we are trying to estimate
- Point estimate vs. interval estimate (e.g., for the population mean, μ). What's the difference?
 - Point: Single value given as estimate EX) 0.5
 - Interval: Range of values given as estimate EX) (0.3, 0.7)
 - First focus on point estimates, then interval estimates
- **Estimator** = rule (e.g., formula) used to calculate estimate of target parameter from sample data
- Estimator for the population mean?

What makes this a "good" estimator?

$$\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

J

One measure of "goodness": unbiasedness

• What is an <u>unbiased estimator?</u>

Notation: Let $\hat{\theta}$ denote the point estimator of θ .

What do we want $E(\hat{\theta})$ to equal?

We want
$$E(\hat{\theta}) = \theta$$
.

If true, then $\hat{\theta}$ is an "unbiased estimator" of θ .

- What is a biased estimator? $E(\hat{\theta}) \neq \theta$
- How could we measure the bias in our estimator?

Bias:
$$B(\hat{\theta}) = E(\hat{\theta}) - \theta$$

Positive bias if $B(\hat{\theta}) > 0$, i.e., $E(\hat{\theta}) > \theta$

Negative bias if $B(\hat{\theta}) < 0$, i.e., $E(\hat{\theta}) < \theta$

10

Biased or unbiased? And if biased, positive or negative bias?

Sampling distribution for an unbiased estimator of θ

Biased or unbiased? And if biased, positive or negative bias?

Sampling distribution for a positively <u>biased</u> estimator of θ

- **8.2** a If $\hat{\theta}$ is an unbiased estimator for θ , what is $B(\hat{\theta})$?
 - **b** If $B(\hat{\theta}) = 5$, what is $E(\hat{\theta})$?
 - c Is the estimator in (b) positively or negatively biased?

Bias: $B(\hat{\theta}) = E(\hat{\theta}) - \theta$ Positive bias if $B(\hat{\theta}) > 0$, i.e., $E(\hat{\theta}) > \theta$ Negative bias if $B(\hat{\theta}) < 0$, i.e., $E(\hat{\theta}) < \theta$

12

Another desirable property of a point estimator: greater "efficiency"

- Given 2 unbiased estimators with different variances, which would you prefer and why?
- The one with the smaller variance! Also referred to as the "more efficient" estimator
- Which of the estimators below is more efficient?

Mean square error (MSE): a combined measure of the variance & bias of an estimator

$$MSE(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^{2}\right] = V(\hat{\theta}) + \left[B(\hat{\theta})\right]^{2}$$
where $V(\hat{\theta}) = E\left[\left(\hat{\theta} - E(\hat{\theta})\right)^{2}\right]$
See
<https://www.youtube.com/watch?y=KtNwjbWbnh8> for proof

- What is the MSE if the estimator is unbiased?
- What happens to the magnitude of the MSE as:
 - the bias increases?
 - the variance increases?
- If two estimators have the same mean but different variances, which has the smaller MSE?
- What's better: a big MSE or a small MSE?

14

MICHIGAN STATI

Examples – bias and MSE

Suppose $B(\hat{\theta}) = 5$ and $V(\hat{\theta}) = 2$.

- a. What is $MSE(\hat{\theta})$?
- b. If another estimator, $\check{\theta}$, has $B(\check{\theta}) = 5$ and $V(\check{\theta}) = 1$, which estimator do you prefer, $\check{\theta}$ or $\hat{\theta}$?
- c. If another estimator, $\tilde{\theta}$, has $B(\tilde{\theta}) = 0$ and $V(\tilde{\theta}) = 4$, which estimator do you prefer, $\tilde{\theta}$ or $\hat{\theta}$?

Point estimator for the population mean

Recall that if Y_1 , Y_2 , ..., Y_N is a random sample from a population with $E(Y)=\mu$, and $V(Y)=\sigma^2$, then the sample mean,

$$\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$
 and $V(\overline{Y}) = \frac{\sigma^2}{N}$

- Is the sample mean an unbiased estimator? Why or why not?
- What is the MSE of the sample mean?

Point estimator for the binomial parameter, *p* (probability of success)

If you have a series of N independent and identical Bernoulli trials, where Y is the # of successes in N trials (i.e., Y is a binomial RV), and p is the probability of success in a single trial, how would you estimate p?

• Find the expected value and variance of p-hat

$$E(\hat{p}) = p$$

$$V(\hat{p}) = \frac{pq}{N}$$

- Is it an unbiased estimator?
- What is the MSE of this estimator?

How would you estimate:

a. $\mu_1 - \mu_2$ (i.e., the difference of means from 2 independent populations given random samples of size N_1 and N_2 for these populations)?

Unbiased estimator for
$$\mu_1 - \mu_2$$
: $\overline{Y}_1 - \overline{Y}_2$

b. $p_1 - p_2$ (i.e., the difference of binomial parameters for 2 different binomial RVs, Y_1 and Y_2 given N_1 and N_2 independent trials)?

Unbiased estimator for
$$p_1 - p_2$$
:
$$\hat{p}_1 - \hat{p}_2 = \frac{Y_1}{N_1} - \frac{Y_2}{N_2}$$

18

MICHIGAN STATE

The standard error of an estimator

- A fancy name for the standard deviation of an estimator
- The square root of the variance of an estimator
- · A measure of the variability of the estimator

				MICHIGAN STATE UNIVERSITY
Table 8.1 Expec	ted values and star	ndard errors of som	ne common point	estimators
Target		Point		Standard
Parameter	Sample	Estimator		Error
θ	Size(s)	$\widehat{ heta}$	$E(\hat{\theta})$	$\sigma_{\hat{ heta}}$
μ	n	\overline{Y}	μ	$\frac{\sigma}{\sqrt{n}}$
p	n	$\hat{p} = \frac{Y}{n}$	p	$\sqrt{\frac{pq}{n}}$
$\mu_1 - \mu_2$	n_1 and n_2	$\overline{Y}_1 - \overline{Y}_2$	$\mu_1 - \mu_2$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}^{*\dagger}$
$p_1 - p_2$	n_1 and n_2	$\hat{p}_1 - \hat{p}_2$	$p_1 - p_2$	$\sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}}^{\dagger}$

 $[\]sigma_1^2$ and σ_2^2 are the variances of populations 1 and 2, respectively.

© Cengage Learning

Why we divide by N-1 instead of N in the sample variance formula: to get an unbiased estimator of σ^2

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2}$$

• Full proof is in the book (pp. 398-399) but gist is that:

Do not use this formula!!!

$$E(S'^{2}) = E\left[\frac{1}{N}\sum_{i=1}^{N}(Y_{i} - \overline{Y})^{2}\right] = \frac{N-1}{N}\sigma^{2}$$

Is S'2 an unbiased estimator of σ^2 ?

$$E(S^2) = E\left[\frac{1}{N-1}\sum_{i=1}^{N}(Y_i - \overline{Y})^2\right] = \frac{N-1}{N-1}\sigma^2 = \sigma^2$$

[†]The two samples are assumed to be independent.

MICHIGAN STATE UNIVERSITY

The error of estimation

 Intuitively, if you wanted to measure how far your estimate was from the true value of the population parameter, θ, what difference would you consider?

 $\varepsilon = |\hat{\theta} - \theta|$ ε is called the "error of estimation"

- We want the error of estimation to be a small as possible
- Less commonly used

22

MICHIGAN STATE

Homework:

- WMS Ch. 8 (part 1 of 2)
 Section 8.2: 8.3 (part a only), 8.4, 8.6 (part a only), 8.8 (but ignore θ₄)
- •**All Ch. 8 HW will most likely be due on Tuesday

Next class:

• Estimation (Part 2 of 2)

Reading for next class:

• WMS Ch. 8 (sections 8.5-8.8, 8.10)