Analysis on Facebook Dataset

Dataset name: facebook_combined.txt

Dataset site: https://snap.stanford.edu/data/ego-Facebook.html

1. Project Overview

This project analyzes a social network using the **Facebook Social Circles** dataset. The dataset contains anonymized data of friendships (edges) between users (nodes). The project applies graph analysis techniques to compute essential network metrics such as:

• Degree distribution

Closeness centrality

Betweenness centrality

• Local clustering coefficients

Densest subgraph

The implementation uses the **Rust programming language** with the petgraph library for graph computation.

2. Dataset Description

The Facebook Social Circles dataset includes:

Nodes: 4039Edges: 88234

• Clustering Coefficient: 0.6055

• **Triangles:** 1612010

• Diameter: 8

• Effective Diameter (90%): 4.7

The dataset provides anonymized relationships and features but excludes their interpretations.

• File Used: facebook_combined.txt.gz

• Graph Type: Undirected Graph

3. Code Implementation

Modules and Functions

1. data_loader.rs

Loads edges from the input file into a vector of node pairs.

2. main.rs

Core functionalities implemented:

Degree Distribution

Computes the degree distribution of nodes.

Closeness Centrality

Measures how quickly a node can access all other nodes.

Betweenness Centrality

Determines nodes that act as critical bridges.

Local Clustering Coefficient

Measures the tendency of nodes to form triangles.

Densest Subgraph

Identifies the node with the highest local density.

3. tests.rs

Unit tests for each major function to ensure correctness:

- Degree distribution
- Closeness centrality
- Betweenness centrality
- Local clustering coefficients
- Densest subgraph

4. How to Run the Project

1. Requirements

- o Install Rust (latest version).
- Update Dependencies

```
[dependencies]
petgraph = "0.6"
csv = "1.1"
serde = { version = "1.0", features = ["derive"] }
```

2. Steps to Execute

- Extract the facebook_combined.txt.gz file.
- Update the path to the input file in main.rs:
- Compile and run the project:

3. Output

The program outputs:

- o Degree distribution
- o Top 5 nodes by closeness centrality
- Top 5 nodes by betweenness centrality

- $\circ \quad \text{Local clustering coefficients}$
- o Densest subgraph

5. Conclusion

This project analyzes a Facebook social network using Rust and discovers key metrics about the structure and importance of nodes in the network.