Chip Day,

DTU, April 2022

Analog IC design

Who are we?

Calvin Maxsen de Oliveira Analog IC Designer at Oticon

oticon

Jakob Graversgaard Thomsen Analog IC Designer at Oticon

oticon

Pere Llimós Muntal **CEO** at Skycore Semiconductors

Agenda – Analog IC design

- Background: What is Analog IC Design?
- Analog IC design in Audio Systems
- Analog IC design in Power Conversion

Agenda – Analog IC design

- Background: What is Analog IC Design?
- Analog IC design in Audio Systems
- Analog IC design in Power Conversion

Inside a microchip – Silicon die

Implementation of Electronic Circuits

Discrete component implementation (Electronics Engineer)

Integrated circuits implementation (Integrated Circuit Designer)

Advantages of IC design

- Custom designed integrated circuits
- Custom functionalities and features
- Enables tradeoff optimization:
 - Performance vs power consumption
 - Size vs power consumption
- IC design makes certain systems possible e.g. Microprocessors, hearing aids, extreme-power density power converters, etc.
- Chip art!

Wide range of applications

- Analog IC design covers a wide range of applications:
 - Audio Systems, e.g. Hearing aids, headphones, ...
 - Power Conversion, e.g. Power converters, gate drivers, ...
 - High-speed communications, e.g. Data centers, 5G transceivers, ...
 - Sensors, e.g. image sensors, temperature sensors, ...
 - ... and many more!

Agenda – Analog IC design

- Background: What is Analog IC Design?
- Analog IC design in Audio Systems
- Analog IC design in Power Conversion

Audio input – block diagram

ADC example (sigma-delta)

Audio input – layout view

1.3 mm Filter

Audio input – layout view

Zoom in of the ADC

70 μm

Agenda – Analog IC design

- Background: What is Analog IC Design?
- Analog IC design in Audio Systems
- Analog IC design in Power Conversion

Power conversion basics

Power conversion IC example

Switched-Capacitor Power Converter (SCPC)

- $V_{in} = 48 \text{ V}$
- V_{out} = 12 V
- I_{out} = 1.6 A

Switched-Capacitor Basic Components

Capacitors

- Discrete capacitors
- On-chip capacitors

- Discrete switches
- Integrated switches

Switch implementation

- Integrated NMOS
- Integrated PMOS
- ...

How do we drive them?

Gate driver and sub-circuits

Subcircuit example: Level shifter

- Pulse-triggered level shifter
- Transistor-level implementation schematic
- Different transistor types for different voltage levels
- Layout:

Gate driver within the IC

Gate driver Reference Regulation vddhi_{bo} Buffer chain vsslo vsshi

Overview of the IC (simplified)

Thank You

