

Riemannian Local Mechanism for SPD Neural Networks

Ziheng Chen¹, Tianyang Xu¹, Xiao-Jun Wu^{*} ¹, Rui Wang¹, Zhiwu Huang², Josef Kittler³

¹ School of Artificial Intelligence and Computer Science, Jiangnan University ² School of Computing and Information Systems, Singapore Management University ³ Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey

BACKGROUND

PRELIMINARIES

What is manifold

Mani·fold

Most importantly, locally Euclidean

MOTIVATION & CONTRIBUTION

Motivation

• Local mechanisms in Euclidean paradigms

Missing local mechanisms in Riemannian algorithms;

Contribution

- Successfully identify the local patterns in manifolds
- Design the specific submanifold blocks for SPD neural networks

MAIN MATH TOOLS

• Category theory offers a universal view to consider diverse mathematical objects.

Definition 1. A category \mathcal{C} consists of a collection of elements, called objects, denoted by $\mathrm{Obj}(\mathcal{C})$, and a set $\mathrm{Mor}(A,B)$ of elements, called morphisms from A to B, for any two objects $A,B\in\mathrm{Obj}(\mathcal{C})$. Morphisms should satisfy the below three axioms:

- composition: given any $f \in \operatorname{Mor}(A,B)$ and $g \in \operatorname{Mor}(B,C)$, the composition $h=g \circ f \in \operatorname{Mor}(A,C)$ is well-defined.
- identity: for each object A, there is an identity morphism $1_A \in \operatorname{Mor}(A,A)$ such that for any $f \in \operatorname{Mor}(A,B)$ and $g \in \operatorname{Mor}(B,A)$,

$$f \circ 1_A = f, 1_A \circ g = g; \tag{1}$$

• associative: for $f \in \operatorname{Mor}(A,B), g \in \operatorname{Mor}(B,C)$, and $h \in \operatorname{Mor}(C,D)$,

$$h \circ (g \circ f) = (h \circ g) \circ f. \tag{2}$$

The set of all the morphisms in C is denoted as Mor(C).

• Regular submanifolds inherit multiple geometric properties from manifolds.

Definition 2. A subset $\mathcal S$ of a smooth manifold $\mathcal N$ of dimension n is a regular submanifold of dimension k if for every $p \in \mathcal S$ there is a coordinate neighbourhood $(U,\phi) = (U,x^1,\ldots,x^n)$ of p in the maximal atlas of $\mathcal N$ such that $U\cap \mathcal S$ is defined by the vanishing of n-k of the coordinate functions.

PROPOSED METHOD

How to describe the local pattern theoretically? Take convolution as an example

Proposition 1. For a given linear space V of dimension $d \times d$, n linear subspaces V_1, V_2, \cdots, V_n of dimension $k \times k$ are selected and a linear function $f_i(\cdot) : V_i \to M_i$ is performed in each of them to extract local linear information. The resulting linear spaces M_1, \cdots, M_n are combined into a final linear space M by direct sum, i.e., $M = M_1 \oplus \cdots \oplus M_n$.

Proposition 2. In a category C, for an object $A \in Obj(C)$, we extract n isomorphic sub-objects from A, denoted by A_1, A_2, \ldots, A_n . Then morphism $f_i \in Hom(A_i, B_i)$ is applied to each sub-object to map it into a resulting object B_i . The resulting objects B_1, \cdots, B_i are combined into a final object $B \in Obj(C)$ according to certain principles.

Proposition 3. For a manifold \mathcal{M} , we extract n isomorphic submanifolds $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_n$ and map each one of them by a smooth maps $f_i(\cdot) : \mathcal{M}_i \to \mathcal{M}'_i$. The resulting manifolds \mathcal{M}'_i are aggregated into a final manifold \mathcal{M}' according to certain principles.

PROPOSED METHOD

How about in SPD manifolds?

Isomorphic principal submatrices

Theorem 1. For an SPD manifold S_{++}^n , the set of principal submatrices $(S_{++}^n)_{\mathcal{I}}$ is an SPD manifold and can be embedded into the S_{++}^n as a regular submanifold. In addition, for any proper indices \mathcal{I} and \mathcal{J} satisfying $|\mathcal{I}| = |\mathcal{J}|$, $(S_{++}^n)_{\mathcal{I}}$ is isomorphic to $(S_{++}^n)_{\mathcal{J}}$.

The number of submatrices is combinatorial How to select?

Inspired by region covariance

PROPOSED METHOD

Muti-scale mechanisms to capture vibrant local geometry

Both local and global geometry are effectively captured

Multi-scale Submanifold Block

Multi-scale Submanifolds Networks

EXPERIMENTS

Method	CG	CG UCF-sub	
GDA	88.68	43.67	
CDL	90.56	41.53	
PML	84.32	50.60	
LEML	71.15	44.67	
SPDML-Stein	82.62	51.40	
SPDML-AIM	88.61	51.13	
HERML	88.94	NA	
MMML	89.92	NA	
GrNet	85.69	35.80	
SPDNet	89.03	59.93	
SymNet	89.81	56.73	
MSNet-H	89.03	58.27	
MSNet-PS	90.14	57.73	
MSNet-AS	NA	58.33	
MSNet-S	90.14	59.40	
MSNet-MS	91.25	60.87	

Methods	Year	Colour	Depth	Pose	Acc.
Lie Group	2014	X	X	✓	82.69
HBRNN	2015	X	X	✓	77.40
JOULE	2015	✓	✓	✓	78.78
Two stream	2016	✓	X	×	75.30
Novel View	2016	X	✓	X	69.21
TF	2017	X	X	✓	80.69
TCN	2017	X	X	✓	78.57
LSTM	2018	X	X	✓	80.14
H+O	2019	✓	X	×	82.43
DARTS	2018	X	×	✓	74.26
FairDARTS	2020	X	X	✓	76.87
SPDML-AIM	2018	X	X	✓	76.52
HERML	2015	X	×	✓	76.17
MMML	2018	X	X	✓	75.05
SPDNet	2017	X	X	✓	85.57
GrNet	2018	X	X	✓	77.57
SymNet	2021	×	X	✓	82.96
MSNet-H		X	X	✓	85.74
MSNet-PS		X	X	✓	80.52
MSNet-AS		X	X	✓	82.26
MSNet-S		X	X	✓	86.61
MSNet-MS		×	×	✓	87.13

Performance (%) on the CG and UCF-sub datasets.

Recognition Results (%) on the FPHA Dataset.

RESOURCE

Code (Released soon): https://github.com/GitZH-Chen/MSNet
E-mail: ziheng_ch@163.com