Universidade de Aveiro, Departamento de Matemática ${\it C\'ALCULO~II-Agrupamento~1-2017/18}.$

Formulário de Derivadas

Derivada	Função	Derivada
0	$\ln u $	$rac{u'}{u}$
$r u^{r-1} u'$	$\log_a u (a > 0 e a \neq 1)$	$\frac{u'}{u \ln a}$
$u'e^u$	$a^u (a > 0 e a \neq 1)$	$a^u \ln a u'$
$u'\cos u$	$\cos u$	$-u' \operatorname{sen} u$
$u' \sec^2 u$	$\cot g u$	$-u' \csc^2 u$
$\sec u \operatorname{tg} u u'$	$\operatorname{cosec} u$	$-\csc u \cot u u'$
$\frac{u'}{\sqrt{1-u^2}}$	$\arccos u$	$-\frac{u'}{\sqrt{1-u^2}}$
$\frac{u'}{1+u^2}$	$\operatorname{arccotg} u$	$-\frac{u'}{1+u^2}$
	0 $ru^{r-1}u'$ $u'e^{u}$ $u'\cos u$ $u'\sec^{2}u$ $\sec u \operatorname{tg} u u'$ $\frac{u'}{\sqrt{1-u^{2}}}$	$\begin{array}{c c} 0 & \ln u \\ \hline r u^{r-1} u' & \log_a u (a>0 \; \mathrm{e} \; a \neq 1) \\ \hline u' e^u & a^u (a>0 \; \mathrm{e} \; a \neq 1) \\ \hline u' \cos u & \cos u \\ \hline u' \sec^2 u & \cot u \\ \hline \sec u \operatorname{tg} u u' & \csc u \\ \hline \frac{u'}{\sqrt{1-u^2}} & \operatorname{arccos} u \\ \hline \end{array}$

Duas primitivas

Função	Primitiva	
$u'\sec u$	$\ln \sec u + \operatorname{tg} u $	
$u' \operatorname{cosec} u$	$-\ln \csc u + \cot u $	

Algumas fórmulas trigonométricas

	8
$\sec u = \frac{1}{\cos u}$	$\cos^2 u = \frac{1}{2}(1 + \cos(2u))$
$\csc u = \frac{1}{\sin u}$	$\sec^2 u = \frac{1}{2}(1 - \cos(2u))$
$1 + \operatorname{tg}^2 u = \sec^2 u$	$1 + \cot^2 u = \csc^2 u$
$\cot g u = \frac{\cos u}{\sin u}$	$\operatorname{sen}(u+v) = \operatorname{sen} u \cos v + \operatorname{sen} v \cos u$
$\cos(u+v) = \cos u \cos v - \sin u \sin v$	$\operatorname{sen} u \operatorname{sen} v = \frac{1}{2}(\cos(u-v) - \cos(u+v))$
$\cos u \cos v = \frac{1}{2}(\cos(u-v) + \cos(u+v))$	

Progressões aritmética e geométrica (de razão r)

Progressão	Termo geral	Soma dos n 1 ^{os} termos
Aritmética	$u_n = u_1 + (n-1)r$	$S_n = \frac{u_1 + u_n}{2} n$
Geométrica	$u_n = u_1 r^{n-1}$	$S_n = u_1 \frac{1 - r^n}{1 - r} (r \neq 1)$

Universidade de Aveiro, Departamento de Matemática ${\it C\'ALCULO~II-Agrupamento~1-2017/18}.$

Formulário Transformadas de Laplace $\quad \big(\, \mathcal{L}\{f(t)\}(s) = \int_0^{+\infty} e^{-st} f(t) dt\,)$

$$F(s) = \mathcal{L}\{f(t)\}(s),\, s>s_{\scriptscriptstyle f}; \qquad G(s) = \mathcal{L}\{g(t)\}(s),\, s>s_{\scriptscriptstyle g}.$$

f(t)	F(s)
1	$\frac{1}{s}$, $s > 0$
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}} , s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a}$, $s>a$
$sen(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2+a^2} , s>0$
$cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2+a^2} \ , s>0$
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2} , s > a $
$cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2} , s > a $
f(t) + g(t)	$F(s) + G(s) \;, s > s_f, s_g$
$\alpha f(t) \ (\alpha \in \mathbb{R})$	$\alpha F(s) , s > s_{\scriptscriptstyle f}$
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda)$, $s>s_f+\lambda$
$H_a(t)f(t-a) \ (a>0)$	$e^{-as}F(s)\ , s>s_{\scriptscriptstyle f}$
$H(t-a)f(t-a) \ (a>0)$	$e^{-as}F(s)\ , s>s_{\scriptscriptstyle f}$
$f(at) \ (a > 0)$	$\frac{1}{a}F(\frac{s}{a})$, $s > as_f$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$, $s > \text{ordem exp. de } f$
f'(t)	s F(s) - f(0), $s > ord. exp. de f$
f''(t)	$s^2 F(s) - s f(0) - f'(0)$, $s > $ ordens exp. de f, f'
$f^{(n)}(t)$	$s^n F(s) - \sum_{k=1}^n s^{n-k} f^{(k-1)}(0)$, onde $f^{(0)} \equiv f$, $s > \text{ordens exp. de } f, f', \dots, f^{(n-1)}$
$f(t) * g(t) = \int_0^t f(u)g(t-u)du$	F(s)G(s)