Sample Final Solutions.

- [a Yes. There is an approximate linear relationship. The relationship appears to be positive.
 - Description; I am reasonably comfostable with the linear regression model.
 - © Coronary = 29.5 + 0.0557 Cigarethe
 - associated with a 0.0557 unit increase in the expected value of the Coronary variable.
- The standard deviation of $\hat{\beta}_0$ is approximately equal to $se(\hat{\beta}_0) = 29.5$

P-value for β_0).

Practically, the model says that po is the expected colonary deaths per 100 k persons aged 35-Gel for countries with no cigarette consumption ("Cigarette"= 0). If po were 0, then confries with no cigarette consumption would have no deaths from coronary heart disease. This max is very unlikely.

There is no contradiction; O is outside the range of the "Cigaretle" variable so we should not try to interpret Bo directly.

- DIF the true B, were O, the chance of getting such a large \$, due to natural variability alone would be extremely small (less than , ool probability). This is indicated by the p-value for \$, I do not think that natural variability alone could account for the observed \$,
- © Yes, evidence exists. (p < .01)
 Based on p-value for β_1 .
- @ R2 = 49.57%. Weak to moderate relationship
- The p-value indicates extremely strong evidence of a relationship (B; to). The Rz indicates a weak of moderate relationship (moderate oz).

 This is not contradictory

3/ Population weights of all chips in the batch mean M

Sample Weights of n=10 chips mean & = O.8 sd s = 0.03

(a) 95% CI for m: Z 1 t,025, n-1 VA $= 0.8 \pm 2.262 \frac{0.05}{\sqrt{10}}$ 150. ± 8.0 = = (,779,,821)

(1) No. pr is not sandom, so it doesn't make sense to talk about "chance" of "probability". We would say we are 95% confident that m is in the interval

[4] . 83 is not in the 95% CI = seject Ho at level 5% (alternatively) $t = \frac{\overline{x} - .83}{5/\sqrt{n}} = -3.16$ | HI > t.025. n-1. reject Ho).

Population
increases of all cows
that take the drug
wean M

Sample

increases of the n=100 sampled cows

mean $\overline{x} = 11$ 50 5 = 50

Ho = 0 (no effect)

Ha = nto (effect)

(effect)

Note: Ok to do a sided the
insteads but we didn't cover this

Dy= mean increase in milk production for all cows taking the drug

The drug has no effect

First compute the p-value: $t = \frac{z-0}{50\sqrt{n}} = \frac{11-0}{50\sqrt{n}} = z.2; p \approx P(|z|>z.z) = Reject for <math>x > 0278$

@ 1000 · p = 27.81

Questions 6–9 concern the following situation. A random sample of 50 adults were asked how much they spend on lottery tickets, and were interviewed about various socioeconomic variables. The variables are

PercLott = Percentage of total household income spent on the lottery. (This is <math>Y).

YrsEdu = Number of years of education,

Age = The persons Age,

Kids = Number of Children,

Income = Personal income (Thousands of Dollars).

Here is the Minitab regression output:

Analysis of Variance

						. (`	1
Source	DF	Adj SS	Adj MS	F-Value	P-Value	and the state of t	1
Regression	4	404.42	101.10	17.72	$(0.000)^{-1}$		
YrsEdu	1	60.68	60.68	10.63	0.002		
Age	1	0.21	0.21	0.04	0.850		
Kids	1	0.55	0.55	0.10	0.761		
Income	1	23.30	23.30	4.08	0.050		
Error	45	256.80	5.71				
Total	49	661.22					

Model Summary

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF		
 Constant	15.070	2.444		0.000	The second se	· · · · · · · · · · · · · · · · · · ·	7
YrsEdu	-0.5911	0.1813	3.26	0.002	1.47		(a)
Age		0.03395	0.19	0.850	2.81	`	
Kids	0.0816	0.2665	0.31	0.761	1.93		
Income	-0.06663	0.03305	-2.02	0.050	1.58		

Regression Equation

PercLott = 15.1 - 0.591 YrsEdu + 0.0065 Age + 0.082 Kids - 0.0666 Income

Problem 6

Based on the output, is there statistical evidence to suggest that relatively educated people spend a different amount on lotteries than relatively uneducated people?

Problem 7

The results of the ${\cal F}$ test imply that, beyond a reasonable doubt:

since px.000 (p<.05)

- (a) All of the true slope coefficients in the model are nonzero
- (b) At least one of the true slope coefficients in the model is nonzero
 - (c) None of the true slope coefficients in the model is nonzero
 - (d) All of the estimated slope coefficients are nonzero
 - (e) At least one of the estimated slope coefficients is nonzero

Problem 8

The 95% confidence interval for the true coefficient of YrsEdu is

(b) (-0.5911, 0.5911)

= (-,954, -,229)

(c) (-1,1)

Problem 9

Performing a two-tailed hypotesis test for the null hypothesis that the true coefficient of YrsEdu is -1, at the 5% level of significance, we:

(a) Reject the null hypothesis

(b) Do not reject the null hypothesis

Alternatively:
$$t = \frac{-.5911 - (-1)}{.1813} = 2.255$$

$$|t| > t.025, n-k-1.$$

Problem 10

Let's return to the simple regression described in Problem 1. The residual for Greece is:

(a) 1800

- For Greece, x = 1800

- (b) 29.45
- (c) 31.74
- (d) 1768.26
- (e) -88.474

- $\frac{2}{9} = 29.5 + (0.0557)(1800)$
- residual = $y \hat{y} = 41.2 129.76$ = -88.56

Note there is rounding

error in the minital output Problem 11

A sample of size 100 is going to be taken from a population with mean 3 and variance 25. The probability that the sample mean will exceed 4 is approximately: M=3 0 = 25

- (a) .0456
- P(X >4)
- (b) .4207
- (c) .0793
- (d) .3446
- (e))0228
- = P(\(\frac{\bar{x}}{\sigma_{\infty}} > \frac{4-M\bar{x}}{\sigma_{\infty}}\)
- $= P(Z > \frac{4-3}{4})$
- = P(Z >2) = 02275

Problem 12

= 10118 Suppose that X and Y are independent random variables with P(X > 4) = 0.8 and P(Y > 5) = 0.6. The probability that X exceeds 4 and Y exceeds 5 is let A= {X>43 B= } 4753.

- (a) 1.4
- (b) 0.92
- (c) 0(d) b.48
 - (e) Not enough information to determine
- by independence

$$P(A \cap B) = P(A) P(B)$$

= (0.8 \ (0.6)

1=100

M= M= 3

0x = 5 = 1/25 = 1/2

= 0.48