Steven Rosendahl Homework 3

1. Suppose F is a field with a non-Archemedian absolute value $|\cdot|$ and \mathcal{O}_F is the ring of integers of F. Prove that a point $x \in \mathcal{O}_F$ is a unit if and only if |x| = 1.

Suppose $x \in \mathcal{O}_F$ is a unit and consider $x^{-1} \in \mathcal{O}_F$ as the inverse of x. Since $x \in \mathcal{O}_F$, we know

$$|x| \le 1$$

 $|x^{-1}||x| \le |x^{-1}| \le 1$ (since $x^{-1} \in \mathcal{O}_F$)
 $|x^{-1}x| \le |x^{-1}| \le 1$
 $|1| \le |x^{-1}| \le 1$
 $1 \le |x^{-1}| \le 1$.

The only choice we have for x^{-1} is 1, so

$$x^{-1} = 1$$
$$xx^{-1} = x$$
$$x = 1$$
$$|x| = 1.$$

Suppose |x| = 1.

- 2. If n is a non-negative integer a p is prime, define $\mathcal{I}_n = \{x \in \mathcal{O}_p : |x|_p \le p^{-n}\}$ where $\mathcal{O}_p = \{x \in \mathbb{Q} : |x|_p \le 1\}.$
 - (a) If $x, y \in \mathcal{I}_n$ prove that $x + y \in \mathcal{I}_n$.

Suppose $x, y \in \mathcal{I}_n$, and consider $|x + y|_p$. Then

$$|x + y|_p \le \max\{|x|_p, |y|_p\}$$

 $\le \max\{p^{-n}, p^{-n}\}$
 $= p^{-n}$

Therefore $|x+y|_p \le p^{-n}$, so $x+y \in \mathcal{I}_n$.

(b) If $x \in \mathcal{I}_n$ and $r \in \mathcal{O}_p$ prove that $rx \in \mathcal{I}_n$.

Let $|\cdot|$ be the p-adic absolute value and consider $|rx| = |r| \cdot |x|$. Since $|x| \le p^{-n}$ and $|r| \le 1$, we have $|r| \cdot |x| \le 1 \cdot p^{-n} = p^{-n}$, so $|rx| \le p^{-n}$ which implies that $rx \in \mathcal{I}_n$.

(c) What is another way to describe the set $\mathbb{Z} \cap \mathcal{I}_n$?