Statistics II: Introduction to Inference

Problem set 5

1. Consider the testing problem $H_0: X \sim f_0$ against $H_1: X \sim f_1$, where

x: -4 -3 0 1 2 5 $f_0:$ 0.05 0.20 0.30 0.15 0.25 0.05 $f_1:$ 0.15 0.30 0.05 0.05 0.25 0.20

Using Neyman Pearson (NP) lemma find the most powerful (MP) test at level 0.05 and level 0.075 for testing H_0 and H_1 .

- 2. Let ϕ^* be an MP size α test for $H_0: \mathbf{X} \sim f_0(\mathbf{x})$ against $H_1: \mathbf{X} \sim f_1(\mathbf{x})$, and let β^* be the power of ϕ^* , $0 < \beta^* < 1$.
 - (a) Show that $\phi^{\star\star} = (1 \phi^{\star})$ is an MP test for testing $H_0 : \mathbf{X} \sim f_1(\mathbf{x})$ against $H_1 : \mathbf{X} \sim f_0(\mathbf{x})$ at level $(1 \beta^{\star})$.
 - (b) Further, show that if ϕ^* is an unbiased test, then ϕ^{**} is also unbiased.
- 3. Let ϕ_1 and ϕ_2 be 2 size- α tests for testing $H_0: \theta \in \Theta_0$ against $H_A: \theta \in \Theta_A$ and ϕ^* is a convex combination of ϕ_1 and ϕ_2 . Show that ϕ^* is a level- α test. What can say about the power function of ϕ^* ?
- 4. The lifetime of equipment is normally distributed with mean θ and standard distribution 5. For testing the null hypothesis $H_0: \theta \leq 30$ against the alternative hypothesis $H_A: \theta > 30$, a random sample of size n is chosen. Determine n and the cutoff c such that the test

$$\phi(\mathbf{x}) = 1$$
, if $\bar{x} \ge c$, $\phi(\mathbf{x}) = 0$, if $\bar{x} < c$

has power function values 0.1 and 0.9 at the points $\theta = 30$ and $\theta = 35$ respectively. Draw the power function of the resultant test.

- 5. Let X be distributed as $U(0,\theta)$ and $X_{(n)}$ denote the largest order statistic based on a random sample of size n from this distribution. We reject $H_0: \theta = 1$ and accept $H_1: \theta \neq 1$ if either $x_{(n)} \leq 1/2$ or $x_{(n)} \geq 1$. Find the power function of the test.
- 6. Based on a random sample X_1, \ldots, X_n , derive the MP size- α test for testing $H_0: \theta = \theta_0$ against $H_A: \theta = \theta_1 \ (> \theta_0)$ for the population with the following pdf

$$f_X(x;\theta) = (\sqrt{2\pi}\theta)^{-1}e^{-x^2/2\theta^2}; -\infty < x < \infty; \ \theta > 0, \quad \text{and} \quad f_X(x;\theta) = 0, \quad \text{otherwise.}$$

Will the MP test obtained above be UMP for testing $H_0: \theta \leq \theta_0$, against $H_1: \theta > \theta_0$.

[Hint: To generalize to $H_0: \theta \leq \theta_0$ you need to show that the power function of the MP test obtained above is of the form

$$\beta_{\phi}(\theta) = P\left(T_n \ge K_0^2/\theta^2 \mid T_n \sim \chi_n^2\right),$$

for some fixed value of K_0 . Then from the monotonicity of the CDF you can show that $\beta_{\phi}(\theta)$ is an increasing function of θ . This in turn will lead to the fact that the size of the generalized test is $\beta_{\phi}(\theta_0)$.]

1

7. Let X be distributed as $f_X(x;\theta) = \theta x^{\theta-1}$, $0 < x < 1, \theta > 0$, and $f_X(x;\theta) = 0$, otherwise, $\theta > 0$. To test $H_0: \theta = \theta_1$ against $H_A: \theta > \theta_1$ based on a sample of size n, the following critical region is proposed $\mathbb{C} = \{\mathbf{x} : \prod_{i=1}^n x_i \ge 0.5\}$. Find the power function of the above test.

[Hint: It might be helpful to consider the transformation $Y = -\log X$.]

- 8. Let X be an observation in (0,1). Find an MP level- α test of $H_0: X \sim f_0$ against $H_A: X \sim \text{Uniform}(0,1)$, where, $f_0(x) = 4x$ if $0 < x < \frac{1}{2}$, or $f_0(x) = 4(1-x)$ if $\frac{1}{2} \le x < 1$.
- 9. Suppose that X_1, \ldots, X_n are iid with a common pdf f(x), which takes one of the following forms:

$$f_0(x) = \begin{cases} 3x^2/64 & 0 < x < 4 \\ 0 & \text{otherwise,} \end{cases} \qquad f_1(x) = \begin{cases} 3\sqrt{x}/16 & 0 < x < 4 \\ 0 & \text{otherwise.} \end{cases}$$

Find the MP level- α test for testing $H_0: X \sim f_0(x)$ against $H_A: X \sim f_1(x)$.

10. Based on a random sample X_1, \ldots, X_n , derive the UMP size- α test for testing $H_0: \theta \leq \theta_0$ against $H_A: \theta > \theta_0$ for the location exponential population with pdf $f_X(x;\theta) = \theta^{-1} \exp\{-(x-\mu)/\theta\}$; with $x > \mu, \mu \in \mathbb{R}$ and $\theta > 0$, when μ is known.

[Hint: First consider the MP test for testing $H_0: \theta = \theta_0$ against $H_0: \theta = \theta_1(>\theta_0)$, and then generalize. Towards that, show that the power function of the MP test is

$$\beta_{\phi}(\theta) = P\left(T_n > k_0/\theta \mid T_n \sim \text{Gamma}(n,1)\right).$$

Hence show that $\beta_{\phi}(\theta)$ is an increasing function of θ .

- 11. Let X be an observation from $Poisson(\theta)$. Find an UMP level- α test for testing $H_0: \theta \leq \theta_0$ against $H_A: \theta > \theta_0$.
- 12. Suppose X_1, \dots, X_m be a random sample of size m from B(n, p), find the UMP level- α test for testing $H_0: p \leq p_0$ against $H_A: p > p_0$.