Digital Image Processing

Color image processing

Introduction

- Color perception is a psychophysical phenomenon that combines two main components:
 - 1. The physical properties of light sources (usually expressed by their spectral power distribution, SPD) and surfaces (e.g., their absorption and reflectance capabilities).
 - 2. The physiological and psychological aspects of the human visual system (HVS).

- It all starts with light in the 400-700 nm range of the EM spectrum.
- As light reaches the retina, it is encoded by specialized photoreceptors (cones).

Copyright © 2010 Dr. Oge Marques

- Chromatic light can be described by:
 - **Intensity** (or radiance): the total amount of energy that flows from the light source, measured in watts (W).
 - **Luminance**: a measure of the amount of information an observer perceives from a light source, measured in lumen (lm).
 - Brightness: the subjective perception of (achromatic) luminous intensity.

Primary and secondary colors

Copyright © 2010 Dr. Oge Marques

The CIE XYZ chromaticity diagram

Copyright © 2010 Dr. Oge Marques

• Using the CIE XYZ to represent color gamut of different devices.

Color models

- A color model (also called <u>color space</u> or <u>color system</u>) is a specification of a coordinate system and a subspace within that system where each color is represented by a single point.
- <u>OPTIONAL</u>: For an interactive exploration of color models, check out the ImageJ 3D Color Inspector plugin
 - [http://rsbweb.nih.gov/ij/plugins/color-inspector.html]

Representative color spaces

- RGB
- YUV, YIQ, YCbCr
- HSB, HSV, HSL
- HMMD
- CIEXYZ
- L*a*b* (CIELAB)
- L*u*v* (CIELUV)

RGB color space

R	G	В
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1
	0 0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 0 1 1

HSV color space

In MATLAB: rgb2hsv and hsv2rgb

Copyright © 2010 Dr. Oge Marques

YIQ (NTSC) color space

• In MATLAB: rgb2ntsc and ntsc2rgb

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.274 & -0.322 \\ 0.211 & -0.523 & 0.312 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

YCbCr (digital video) color space

• In MATLAB: rgb2ycbcr and ycbcr2rgb

$$\begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

• RGB

RGB

```
I = imread('peppers.png');
size(I)
class(I)
subplot(2,2,1), imshow(I), title('Color image (RGB)')
subplot(2,2,2), imshow(I(:,:,1)), title('Red component')
subplot(2,2,3), imshow(I(:,:,2)), title('Green component')
subplot(2,2,4), imshow(I(:,:,3)), title('Blue component')
```

Indexed

Copyright © 2010 Dr. Oge Marques

Indexed

```
load clown
size(X)
class(X)
size(map)
class(map)
imshow(X,map), title('Color (Indexed)')
```

	B 1.2
Name	Description
hsv	Hue-saturation-value color map.
hot	Black-red-yellow-white color map.
gray	Linear gray-scale color map.
bone	Gray-scale with tinge of blue color map.
copper	Linear copper-tone color map.
pink	Pastel shades of pink color map.
white	All white color map.
flag	Alternating red, white, blue, and black color map.
lines	Color map with the line colors.
colorcube	Enhanced color-cube color map.
vga	Windows colormap for 16 colors.
jet	Variant of HSV.
prism	Prism color map.
cool	Shades of cyan and magenta color map.
autumn	Shades of red and yellow color map.
spring	Shades of magenta and yellow color map.
winter	Shades of blue and green color map.
summer	Shades of green and yellow color map.

Pseudocolor image processing

- <u>Goal</u>: to enhance a monochrome image for human viewing purposes.
- <u>Rationale</u>: subtle variations of gray levels may very often mask or hide regions of interest within an image.
- <u>Basic idea</u>: assigning colors to gray values based on a specified criterion.
- Simplest and best-known technique: intensity (or density) slicing.
 - This method defines slicing planes that slice the original image in different points above the xy plane. Each side of the plane will be assigned a different color.
 - The idea can be easily extended to M planes and M+1 intervals.
 - In MATLAB: grayslice

Pseudocolor image processing

Intensity slicing

Intensity slicing example

Copyright © 2010 Dr. Oge Marques

Full-color image processing

RGB processing

Full-color image processing

 Intensity processing using RGB to YIQ color space conversions

- Point transformations
- Histogram processing
- Smoothing and sharpening
- Noise reduction
- Thresholding and segmentation
- Edge detection

- Point transformations
 - Similar to grayscale images
 - Can be done in RGB color space

- Histogram processing
 - Grayscale equivalent operations require using a color space that allows intensity to be separated from chromaticity:
 - Intensity (e.g., V, Y) is processed
 - Other components (e.g., H and S, I and Q) are left unchanged

Histogram processing example (histogram equalization)

Smoothing and sharpening

$$\mathbf{\bar{c}}(x,y) = \begin{bmatrix} \frac{1}{K} \sum_{(s,t) \in \mathbf{S}_{xy}} R\left(s,t\right) \\ \frac{1}{K} \sum_{(s,t) \in \mathbf{S}_{xy}} G\left(s,t\right) \\ \frac{1}{K} \sum_{(s,t) \in \mathbf{S}_{xy}} B\left(s,t\right) \end{bmatrix}$$

- Noise reduction
 - The impact of noise on color images is *strongly* dependent on the color model used.
 - Even when only one of the R, G, or B channels is affected by noise, conversion to another color model such as HSI or YIQ will spread the noise to all components.
 - Linear noise reduction techniques (such as the mean filter) can be applied on each R, G, and B component separately with good results.

- Thresholding and segmentation
 - Basic idea: to partition the color space into a few regions (which hopefully should correspond to meaningful objects and/or regions in the image) using appropriately chosen thresholds.

Copyright © 2010 Dr. Oge Marques

- Thresholding and segmentation
 - It is also possible to specify a threshold relative to a distance between any color and a reference color in the RGB space.

$$g(x,y) = \begin{cases} 1 & d(x,y) \le d_{max} \\ 0 & d(x,y) > d_{max} \end{cases}$$
 (16.17)

where:

$$d(x,y) = \sqrt{[f_R(x,y) - R_0]^2 + [f_G(x,y) - G_0]^2 + [f_B(x,y) - B_0]^2}$$
 (16.18)

• Thresholding and segmentation using rgb2ind

```
I = imread('marker.png');
n = 3;
[I2,map2] = rgb2ind(I,n,'nodither');
imshow(I)
figure, imshow(I2,map2)
figure, imshow(I2,hsv(3))
```


Copyright © 2010 Dr. Oge Marques

Thresholding and segmentation using rgb2ind

```
I = imread('flower_klu_small.png');
[I2,map2] = rgb2ind(I,2,'nodither');
[I4,map4] = rgb2ind(I,5,'nodither');
figure, imshow(I4,map4)
figure, imshow(I2,map2)
```


Copyright © 2010 Dr. Oge Marques

- Edge detection
 - No universal definition

- Usual methods:
 - Detect edges on luminance channel;
 - Detect edges on each channel and OR the results;
 - Detect edges on each channel and add up the results.

RGB para HSV

```
ISO/IEC 15938-3, 2001 (para RGB 0...1)
```

```
Max = max(R, G, B); Min = min(R, G, B);
Value = Max;
if(Max == 0) then
    Saturation = 0;
else
    Saturation = (Max-Min)/Max;
if( Max == Min ) Hue = 0; /* achromatic */
otherwise:
if ( Max == R \&\& G >= B )
    Hue = 60*(G-B)/(Max-Min)
else if ( Max == R \&\& G < B )
    Hue = 360 + 60*(G-B)/(Max-Min)
else if( G == Max )
    Hue = 60*(2.0 + (B-R)/(Max-Min))
else
    Hue = 60*(4.0 + (R-G)/(Max-Min))
```


http://en.wikipedia.org/wiki/HSL_and_HSV

Outras versões:

- http://www.easyrgb.com/index.p hp?X=MATH&H=20#text20
- Gonzalez
- http://en.wikipedia.org/wiki/HSL_ and HSV
- •

(gustavo)

HSV

http://colorizer.org/

- Hue: the color type (such as red, blue, or yellow).
 - Ranges from 0 to 360 in most applications (each value corresponds to one color: 0 is red, 45 is a shade of orange and 55 is a shade of yellow).

• **S**aturation:

- Ranges from 0 to 100% (0 means no color, that is a shade of grey between black and white [pq vai depender do V]; 100 means intense color).
- Also sometimes called the "purity" (or how much it has been diluted in white).
- Value: the brightness of the color.
 - Ranges from 0 to 100% (0 is always black; depending on the saturation, 100 may be white or a more or less saturated color).

http://en.wikipedia.org/wiki/HSL_and_HSV

(gustavo)