ELECTRÓLISIS / CORROSIÓN

EJERCICIO 13

Se quiere producir en un mismo proceso electrolítico industrial como mínimo 2 t/día de NaOH y 1,4 t/día de Cl₂, para abastecer una planta de tratamiento de pulpa de madera.

- a) ¿Qué sistema electrolítico se requiere? Escribir las ecuaciones: anódica, catódica y molecular de la reacción. Esquema de una celda para este sistema.
- b) Calcular el volumen mínimo de solución 6 M de electrolito que se requiere (suponiendo un rendimiento de 67%), la intensidad media de la corriente y la masa excedente de uno de los productos.
- c) Calcular los volúmenes de gases que se desprenden en CNPT.

DATOS

- Proceso electrolítico
- NaOH 2 t/día
- Cl₂ 1,4 t/día
- Rendimiento 67%

INCOGNITAS

- Sistema electrolítico.
- Ecuaciones anódica, catódica y molecular
- Esquema de la celda.
- Volumen de solución de electrolito 6 M.
- Intensidad media de corriente.
- Masa excedente de uno de los productos.
- Volúmenes de los gases en CNPT.

Sistema electrolítico

SE REQUIERE REALIZAR UNA ELECTRÓLISIS DE UNA SOLUCIÓN ACUOSA CONCENTRADA DE CLORURO DE SODIO

TRES MÉTODOS INDUSTRIALES

En celda con cátodo de mercurio

En celda con diafragma

En celda con membrana

La membrana sólo permite el pasaje de agua y de cationes

Semi-reacciones, reacción iónica global y reacción molecular global

Ánodo (+)

$$2C1^- \rightarrow C1_2 + 2e^-$$

Hemi-reacción anódica

Cátodo (-)
$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$
 Hemi-reacción catódica

$$2Cl^{-} + 2H_{2}O \rightarrow 2OH^{-} + Cl_{2} + H_{2}$$
Reacción iónica global

Reacción molecular global
$$2NaCl + 2H_2O \rightarrow 2NaOH + Cl_2 + H_2$$

Volumen de electrolito

Cálculo de la masa molar del NaCl

$$\text{mol}_{\text{Na}} + \text{mol}_{\text{Cl}} = \text{mol}_{\text{NaCl}} = 23.0\text{g} + 35.5\text{g} = 58.5\text{g}$$

Cálculo de la masa molar del NaOH \longrightarrow $mol_{Na} + mol_{O} + mol_{H} = mol_{NaOH} = 23.0g + 16.0g + 1.0 = 40.0g$

La estequiometría de la reacción indica que por cada mol de NaCl se forma un mol de NaOH

40,0 g de NaOH _____ 58,5 g de NaCl

2×10⁶ g de NaOH

2,925× 10⁶ g de NaCl

El rendimiento es del 67%

 $2,925 \times 10^6$ g de NaCl \times 100/67 = $4,366 \times 10^6$ g de NaCl

La solución de NaCl empleada es 6 M (351 g/L)

351 g de NaCl ______1 L de solución de NaCl $4,366 \times 10^6$ g de NaCl — 12438 L de solución de NaCl

Volumen de solución 6 M requerido por día

Intensidad media de corriente

La estequiometría de la reacción indica que por cada mol (40,0 g) de NaOH se requieren 96500 C

40,0 g de NaOH _____ 96500 C
$$2\times10^6$$
 g de NaOH ____ 4,825 \times 10 6 C

Intensidad de corriente

Para el cálculo de la corriente se supone que su eficiencia es del 100%, lo que implica asumir que el 67% de rendimiento de la reacción no se debe la formación de productos secundarios por vía electrolítica.

Intensidad de corriente
$$i = \frac{q}{t} \xrightarrow{\text{Carga}} i = \frac{4,825 \times 10^9 \text{ C}}{24 \times 3600 \text{ s}} = 55845 \text{ A}$$

Intensidad media de corriente

Exceso de gas cloro

La estequiometría de la reacción indica que por cada mol (40,0 g) de NaOH se forma un mol de Cl₂ (71,0 g)

40,0 g de NaOH _____ 71,0 g
$$Cl_2$$

2×10⁶ g de NaOH _____ 1,775 × 10⁶ g de Cl_2

$$1,775 \times 10^6$$
 g de Cl₂ - $1,400 \times 10^6$ g de Cl₂ = 375000 g Cl₂ = 375 kg Cl₂

Exceso de gas cloro por día

Volúmenes de gases

La estequiometría de la reacción indica que por cada mol (40,0 g) de NaOH se forma un mol de Cl_2 y un mol de H_2

$$n = \frac{m}{m_{molar}} \Rightarrow n_{Cl_2} = \frac{1,775 \times 10^6 \text{ g}}{71 \text{ g/mol}} = 25000 \text{ mol} \qquad V = 25000 \text{ mol} \times 22,4 \text{ L/mol} = 56000 \text{ L}$$

$$V_{Cl_2} = V_{H_2} = 56000 L$$

Volumen de gas cloro y de gas hidrógeno por día en CNPT

RESPUESTAS

Sistema electrolítico

Electrólisis de solución acuosa de NaCl

Semi-reacción anódica

 $2C1^- \rightarrow C1_2 + 2e^-$

Semi-reacción catódica

$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$

Reacción molecular global

$$2\text{NaCl} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{Cl}_2 + \text{H}_2$$

Volumen de solución 6 M de NaCl

12438 L

Intensidad media de corriente

55845 A

Exceso de gas cloro

375 kg

Volúmenes de gases Cl₂ y H₂ en CNPT

56000 L de c/u