UE 14

Terre et société Mini-projet

Projet N°7 Janvier 2025

Modélisation technico-économique des solutions de captage de CO2 : état de l'art et perspectives

Eulalie CONTRERAS, Yanis HADJ MOHAND, Samuel **BOURDEAU**, Antoine FEBRIER, Margot LAFOND

Qu'est-ce que les CCUS?

- CCUS (Carbon Capture Utilisation & Storage) = projets de capture des émissions de CO₂ industrielles, afin de réutiliser le CO2, utiles dans certains procédés, ou afin de le stocker
- Permettrait d'atteindre 0 émissions même pour les procédés non décarbonables
- · Possibilité de passer en émissions négatives en captant le CO₂ atmosphérique, ce sont les CDR (carbon dioxide removal). Pour atteindre le bilan 0 carbone en 2050, les **CCUS** pourraient représenter

10 à 15% des efforts à faire

Les CCUS de nos jours

- Actuellement environ 40 MtCO₂ capté par an dans le monde MAIS à multiplier par 50 ou 100 d'ici 2050
- Déjà beaucoup de projets nationaux et internationaux en cours dans l'Union Européenne + règles et de financements mis en place afin de favoriser les CCUS car ils ne sont pas encore très viables économiquement
- Nombreux enjeux : développer les technologies, les réseaux de transports, attirer les investisseurs, réguler, connaître les stockages, éviter les accidents comme les fuites, réduire leur consommation en énergie et en eau.

CO₂ captable par région:

Réserves en France

- 385 MtCO₂ équivalent émis en 2023
- Objectif: capter 30 à 50 MtCO2/an d'ici 2050
- Stockage: **750** Mt onshore et **400** Mt offshore dans des réserves d'hydrocarbure vides.
- Plan d'action : prioriser les grands hubs et les fumées très concentrées en CO₂

Nom de la technologie	Principe	Concentration du CO ₂ dans les fumées	Pourcentage de CO ₂ capté	Pureté du CO ₂ post- captage	Coût en énergie
VSA (Vacuum Swing Adsorption)	Les gaz sont introduits dans des lits d'absorbant à carbone. Une fois le lit saturé, le carbone est libéré par l'application d'un vide.	10% à 30%	70% à 90%	>99,99%	3.7 GJ/tCO ₂
TSA (Temperature swing adsorption)	Les gaz sont absorbés grâce à leurs différentes propriétés lors de changement de température (long).	10% à 20%	>90%	>95%	3.2 GJ/tCO ₂
PSA et VPSA (Pressure swing adsorption)	Les gaz sont absorbés grâce à leurs différentes propriétés lors de changement de pression.	10% à 20%	>90%	>95%	2.4 GJ/tCO ₂
Membranaire	Utilisation d'une membrane en tant que filtre qui laisse passer le CO ₂ . La température du gaz est très élevée.	>30%	>70%	>90%	2 GJ/tCO ₂
Amine (MEA monoéthanolamine)	Un solvant à base d'amine absorbe le CO ₂ grâce à une faible pression et température. Le CO ₂ est ensuite relâché et le solvant est recyclé. Il existe différents types de solvants, principalement la monoéthanolamine (MEA), diéthanolamine (DEA) ou N-méthyldiéthanolamine (MDEA).	5% à 15%	98%	99%	3 à 3.5 GJ/tCO ₂
Enzymatique	Utilisation d'enzymes en tant que catalyseur pour fixer du carbone dans des solvants écoénergétiques, réaction normalement trop lente. Il faut contrôler la température pour qu'elle reste inférieure à 80°C mais les produits sont écologiques et non toxiques.	Tout	65% à 95%	>99.95%	<2GJ/tCO ₂
Cryogénique	Mise sous pression et refroidissement de l'air afin de liquéfier le CO ₂ . Nécessite de descendre à de très basses températures mais la forme liquide simplifie le transport et le stockage tout en éliminant les polluants toxiques.	>10%	95% à 99%	>90%	2,4 à 5,2 GJ/tCO ₂

Les différentes méthodes de captage

- post-combustion: capture du CO₂ (peu concentré: entre 5 et 15%) à l'échappement. Il faut une infrastructure capable de traiter de grandes quantités de gaz. L'extraction se fait par solvants (gourmands en énergie pour leur régénération).
- pré-combustion: conversion du carburant carboné en gaz de synthèse (par vaporeformage, gazéification ou oxydation partielle, puis en réagissant cet air avec de l'eau). On obtient un mix de CO₂ et de H₂ sous haute pression (20-50 bar). On extrait le CO₂ (on réutilise le H₂ comme carburant ou comme agent de synthèse) en sortie d'échappement, concentré à 15-60%. On peut alors utiliser des solvants, qui demanderont ici beaucoup moins d'énergie de régénération.
- oxy-combustion: carburant brûlé uniquement à l'O2, donc 100% de CO2 en sortie en théorie (en pratique, plus de 90%, donc pas besoin de purification), mais la production d'O2 pur est coûteuse en énergie et demande des mesures de sécurité strictes.

Études de cas

L'industrie du ciment

Pourquoi est-il intéressant d'installer des CCUS sur des cimenteries?

- 8% des émissions mondiales de CO_2 .
- Source de CO₂ inévitable

Heidelberg Materials a lancé en 2024 un projet de CCUS sur sa cimenterie d'Airvault, ayant comme objectif de capter 1 MtCO₂/an à partir de 2030. Cela permettrait de réduire les émissions de CO₂ de plus de **30%**.

La méthanisation

- Principal gaz utilisé = **méthane fossile**, mais il existe des manières moins polluantes de fabriquer du méthane : la méthanisation
- Méthanisation : procédé qui réutilise les déchets de biomasses agricoles et le transforme grâce des bio-organismes en un mélange de 60% de méthane et 40% de CO₂
- Pour utiliser ce gaz, il faut séparer les 2 espèces chimiques => donne biométhane + CO₂, le CO₂ éventuellement réutilisable pour fabriquer du méthane de synthèse.
- · Moins d'émissions car on utilise du carbone émis au lieu d'en émettre de nouveau.
- => Ainsi les techniques de capture du carbone sont utiles pour séparer les deux espèces, ce qui est une utilisation différente des CCUS habituels qui servent simplement à récupérer le CO₂ relâché.

Actuellement, la technologie la plus rentable est la capture membranaire, même si pour l'instant la plus utilisée est la technique cryogénique.

Perspectives d'avenir et potentiel technico-économique

Dans notre modélisation, les VSA, TSA et PSA semblent pouvoir devenir les plus rentables à l'horizon 2050 :

