Key Notes

• Linear Transformation

Given vector spaces V and W, the transformation F: $V \to W$, which assigns a single vector $F(\overrightarrow{u})$ in W to every vector $\overrightarrow{u} \in V$, is said to be a linear transformation if

1. Closed Under Addition

for all vectors \overrightarrow{u} , $\overrightarrow{v} \in V$

$$F(\overrightarrow{v} + \overrightarrow{u}) = F(\overrightarrow{v}) + F(\overrightarrow{u})$$

2. Closed Under Scalar Product

 $\forall \overrightarrow{u} \in V \text{ and real number } \lambda$

$$F(\lambda \overrightarrow{u}) = \lambda F(\overrightarrow{u})$$

Theorem. If V_1, V_2, V_3 are vector spaces and $F: V_1 \to V_2, G: V_2 \to V_3$ are linear transformation then $H: V_1 \to V_3$ defined by

$$H(\overrightarrow{u}) = G(F(\overrightarrow{u}))$$

is also a linear transformation.

Example Problems

- 1. $F_1\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x+y \\ 2z \end{bmatrix}$ is a linear transformation because
 - It is closed under addition.

$$F_{1}(\begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix} + \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix}) = \begin{bmatrix} u_{1} + u_{2} + v_{1} + v_{2} \\ 2(u_{3} + v_{3}) \end{bmatrix} = F_{1}(\begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix}) + F_{2}(\begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix})$$

• It is closed under scalar product, let c be a constant

$$F_1(c \begin{bmatrix} x \\ y \\ z \end{bmatrix}) = \begin{bmatrix} cx + cy \\ c2z \end{bmatrix} = c \begin{bmatrix} x + y \\ 2z \end{bmatrix} = cF_1(\begin{bmatrix} x \\ y \\ z \end{bmatrix})$$

1. For each $F: \mathbb{R}^2 \to \mathbb{R}^2$ determine whether F is a linear transformation

a)
$$F\left(\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ 3y \end{bmatrix}\right)$$

b)
$$F\left[\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2 \\ x - y \end{bmatrix}$$

2. For each $G: \mathbb{R}^3 \to \mathbb{R}^2$ determine whether G is a linear transformation

a)
$$G\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x \\ yz \end{bmatrix}$$

b)
$$G\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x + 2z \\ 3y - 2 \end{bmatrix}$$