In [1]:

```
import warnings as wn
wn.filterwarnings('ignore')
```

Descripción de los datos:

Attribute Information:

- · ID number
- Diagnosis (M = malignant, B = benign) 3-32)

Ten real-valued features are computed for each cell nucleus:

- 1. radius (mean of distances from center to points on the perimeter)
- 2. texture (standard deviation of gray-scale values)
- 3. perimeter
- 4. area
- 5. smoothness (local variation in radius lengths)
- 6. compactness (perimeter^2 / area 1.0)
- 7. concavity (severity of concave portions of the contour)
- 8. concave points (number of concave portions of the contour)
- 9. symmetry
- 10. fractal dimension ("coastline approximation" 1)

The mean, standard error and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius.

All feature values are recoded with four significant digits.

Missing attribute values: none

Class distribution: 357 benign, 212 malignant

Cargando los paquetes y los datos

In [2]: ▶

```
import numpy as np
import pandas as pd
import seaborn as sns
from collections import Counter
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
from matplotlib import cm
from sklearn.preprocessing import QuantileTransformer
from sklearn.model_selection import train_test_split
from sklearn.model selection import RepeatedStratifiedKFold
from sklearn.model selection import GridSearchCV
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_curve
from sklearn.metrics import precision_recall_curve
from sklearn.inspection import permutation importance
from imblearn.over sampling import ADASYN
from xgboost import XGBClassifier
from xgboost import plot importance
import time
```

Configuración de parámetros de visualización y de "split"

```
In [4]:

data = pd.read_csv('C:/Datos/Documentos/data.csv', encoding='IS08859-1')
```

```
In [5]:
def plot_custom_confusion_matrix(y_true, y_pred, filename, labels, ymap=None, figsize=(10,1
                 if ymap is not None:
                                   y_pred = [ymap[yi] for yi in y_pred]
                                   y_true = [ymap[yi] for yi in y_true]
                                   labels = [ymap[yi] for yi in labels]
                 cm = confusion_matrix(y_true, y_pred, labels=labels)
                 cm_sum = np.sum(cm, axis=1, keepdims=True)
                 cm_perc = cm / cm_sum.astype(float) * 100
                 annot = np.empty_like(cm).astype(str)
                 nrows, ncols = cm.shape
                 for i in range(nrows):
                                    for j in range(ncols):
                                                      c = cm[i, j]
                                                     p = cm_perc[i, j]
                                                      if i == j:
                                                                        s = cm sum[i]
                                                                        annot[i, j] = \frac{1}{2} \frac{1}{2
                                                      elif c == 0:
                                                                        annot[i, j] = ''
                                                      else:
                                                                        annot[i, j] = '\%.1f\%\n\%d' % (p, c)
                 cm = pd.DataFrame(cm, index=labels, columns=labels)
                 cm.index.name = 'Actual'
                 cm.columns.name = 'Predicted'
                 fig, ax = plt.subplots(figsize=figsize)
                 sns.heatmap(cm, annot=annot, fmt='', ax=ax, cmap="YlGnBu")
                 plt.savefig(filename)
```

Exploratory Data Analysis

Separate Target from Features

In [6]: ▶

data.head(n=10)

Out[6]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_ı
0	842302	М	17.99	10.38	122.80	1001.0	0.
1	842517	М	20.57	17.77	132.90	1326.0	0.0
2	84300903	М	19.69	21.25	130.00	1203.0	0.1
3	84348301	М	11.42	20.38	77.58	386.1	0.1
4	84358402	М	20.29	14.34	135.10	1297.0	0.1
5	843786	М	12.45	15.70	82.57	477.1	0.1
6	844359	М	18.25	19.98	119.60	1040.0	0.0
7	84458202	М	13.71	20.83	90.20	577.9	0.1
8	844981	М	13.00	21.82	87.50	519.8	0.1
9	84501001	М	12.46	24.04	83.97	475.9	0.1

10 rows × 33 columns

In [7]:

```
cols = data.columns
print(cols)
```

H

In [8]: ▶

```
y = data['diagnosis']
drop_cols = ['Unnamed: 32','id','diagnosis']
X = data.drop(drop_cols, axis = 1)
X.head()
```

Out[8]:

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_m
0	17.99	10.38	122.80	1001.0	0.11840	0.27
1	20.57	17.77	132.90	1326.0	0.08474	0.07
2	19.69	21.25	130.00	1203.0	0.10960	0.15
3	11.42	20.38	77.58	386.1	0.14250	0.28
4	20.29	14.34	135.10	1297.0	0.10030	0.13
5 r	ows × 30 colur	mns				
4						

Plot Diagnosis Distributions

```
In [9]: ▶
```

```
ax = sns.countplot(x=y, label="Count")
benign, malignant = y.value_counts()
print(f'Number of Benign: {benign}')
print(f'Number of Malignant : {malignant}')
```

Number of Benign: 357 Number of Malignant: 212

In [10]:

X.describe().T

Out[10]:

	count	mean	std	min	25%	50%	
radius_mean	569.0	14.127292	3.524049	6.981000	11.700000	13.370000	
texture_mean	569.0	19.289649	4.301036	9.710000	16.170000	18.840000	
perimeter_mean	569.0	91.969033	24.298981	43.790000	75.170000	86.240000	1
area_mean	569.0	654.889104	351.914129	143.500000	420.300000	551.100000	7
smoothness_mean	569.0	0.096360	0.014064	0.052630	0.086370	0.095870	
compactness_mean	569.0	0.104341	0.052813	0.019380	0.064920	0.092630	
concavity_mean	569.0	0.088799	0.079720	0.000000	0.029560	0.061540	
concave points_mean	569.0	0.048919	0.038803	0.000000	0.020310	0.033500	
symmetry_mean	569.0	0.181162	0.027414	0.106000	0.161900	0.179200	
fractal_dimension_mean	569.0	0.062798	0.007060	0.049960	0.057700	0.061540	
radius_se	569.0	0.405172	0.277313	0.111500	0.232400	0.324200	
texture_se	569.0	1.216853	0.551648	0.360200	0.833900	1.108000	
perimeter_se	569.0	2.866059	2.021855	0.757000	1.606000	2.287000	
area_se	569.0	40.337079	45.491006	6.802000	17.850000	24.530000	
smoothness_se	569.0	0.007041	0.003003	0.001713	0.005169	0.006380	
compactness_se	569.0	0.025478	0.017908	0.002252	0.013080	0.020450	
concavity_se	569.0	0.031894	0.030186	0.000000	0.015090	0.025890	
concave points_se	569.0	0.011796	0.006170	0.000000	0.007638	0.010930	
symmetry_se	569.0	0.020542	0.008266	0.007882	0.015160	0.018730	
fractal_dimension_se	569.0	0.003795	0.002646	0.000895	0.002248	0.003187	
radius_worst	569.0	16.269190	4.833242	7.930000	13.010000	14.970000	
texture_worst	569.0	25.677223	6.146258	12.020000	21.080000	25.410000	
perimeter_worst	569.0	107.261213	33.602542	50.410000	84.110000	97.660000	1
area_worst	569.0	880.583128	569.356993	185.200000	515.300000	686.500000	10
smoothness_worst	569.0	0.132369	0.022832	0.071170	0.116600	0.131300	
compactness_worst	569.0	0.254265	0.157336	0.027290	0.147200	0.211900	
concavity_worst	569.0	0.272188	0.208624	0.000000	0.114500	0.226700	
concave points_worst	569.0	0.114606	0.065732	0.000000	0.064930	0.099930	
symmetry_worst	569.0	0.290076	0.061867	0.156500	0.250400	0.282200	
fractal_dimension_worst	569.0	0.083946	0.018061	0.055040	0.071460	0.080040	
4							•

Visualizing Standardized Data with Seaborn

In [11]: ▶

Violin Plots and Box Plots

In [12]:

In [13]: ▶

In [14]:
▶

```
sns.boxplot(x="features", y="value", hue="diagnosis", data=data)
plt.xticks(rotation=45);
```


Using Joint Plots for Feature Comparison

In [15]: ▶

Out[15]:

<seaborn.axisgrid.JointGrid at 0x2829dd15400>

In [16]:

In [17]: ▶

In [18]: ▶

Observing all Pair-wise Correlations

In [19]:

```
f, ax = plt.subplots(figsize=(18, 18))
sns.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, cbar=False)
```

Out[19]:

<AxesSubplot:>

Task 2: Dropping Correlated Columns from Feature Matrix

In [22]:

```
f, ax = plt.subplots(figsize=(18, 18))
_ = sns.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, cbar=False)
```

texture_mean	1.0	0.3	-0.0	0.3	0.1	-0.1	0.4	0.3	0.0	0.1	0.0	0.1	0.1	0.3	0.1	0.1
lexiture_inean	1.0	6.5	0.0	0.0	- ·	U.		0.0	0.0				<u></u>			
area_mean		1.0	0.2			-0.3	-0.1	0.8	-0.2			-0.0	0.1		0.1	0.0
smoothness_mean	0.0	0.2	1.0	0.5		0.6	0.1	0.2	0.3	02	0.2	0.3	0.8	0.4	0.4	0.5
concavity_mean	0.3		0.5	1.0	0.5	0.3	0.1		0.1		0.2	0.4	0.4	0.9	0.4	0.5
symmetry_mean		0.2	0.6	0.5	1.0	0.5	0.1	02	0.2	0.3		0.3	0.4		0.7	0.4
fractal_dimension_mean	-0.1	-0.3	0.6	0.3	0.5	1.0	0.2	-0.1	0.4	0.4	0.3	0.7	0.5	0.3	0.3	0.8
texture_se		-0.1	(0.1	0.1	0.1	0.2	1.0	0.1	0.4	0.2	0.4	0.3	-0.1	-0:1	-0.1	-0.0
area_se		0.8	0.2	0.6	0.2	-0.1	0.1	1.0	0.1	03	0.1	0.1	0.1	0.4	0.1	0.0
smoothness_se		-0.2	0.3	0.1	0.2	0.4	0.4	0.1	1.0	0.3	0.4	0.4	0.3	-0.1	-0.1	0.1
concavity_se		0.2	0.2	0.7	0.3		0.2	0.3	0.3	1.0	0.3	0.7	0.2	0.7	0.2	0.4
symmetry_se	0.0	-0.1	0.2	0.2	0.4	0.3	0.4	0.1	0.4	03	1.0	0.4	0.0	0.0	0.4	0.1
fractal_dimension_se	0.1	-0.0	0.3	0.4	0.3		03	0.1	0.4	0.7	0.4	1.0	0.2	0.4	0:1	0.6
smoothness_worst	0.1	0.1	0.8	0.4	0.4	0.5	-0.1	0.1	0.3	0.2	-0.0	0.2	1.0	0.5	0.5	0.6
concavity_worst	0.3	0.5	0.4	0.9	04	0.3	-0.1	0.4	-0.1		0.0	0.4	0.5	1.0	0.5	0.7
symmetry_worst		0.1	0.4	0.4		0.3	-0.1	0.1	-0.1	0.2	0.4	0.1	0.5		1.0	0.5
fractal_dimension_worst	0.1	0.0	0.5	0.5	0.4	0.8	-0.0	0.0	0.1	04	0.1	0.6	0.6	0.7	0.5	1.0
•	texture_mean	area_mean	smoothness_mean	concavity_mean	symmetry_mean	fractal_dimension_mean	texture_se	area_se	smoothness_se	concavity_se	symmetry_se	factal_dimension_se	smoothness_worst	concavity_worst	symmetry_worst	fractal_dimension_worst

In [23]:

```
columns = [
        'area_se',
        'area_mean',
        'green'
    ],
        'concavity_worst',
        'concavity_mean',
        'orange'
    ],
        'smoothness_worst',
        'smoothness_mean',
        'blue'
    ]
]
for idx, column in enumerate(columns):
    sns.jointplot(
        X.loc[:,column[0]],
        X.loc[:, column[1]],
        kind="reg",
        ax=idx,
        color=column[2],
        height=10
    )
```


Classification using XGBoost (minimal feature selection)

Creando los datasets de entrenamient, prueba y validación

```
H
In [24]:
X_train, X_val, y_train, y_val = train_test_split(
    у,
    test size=val set size,
    stratify=y,
    random_state=seed
)
X_train, X_test, y_train, y_test = train_test_split(
    X_train,
    y_train,
    test_size=test_set_size,
    stratify=y_train,
    random_state=seed
)
X_train.shape, y_train.shape, X_test.shape, y_test.shape, X_val.shape, y_val.shape
Out[24]:
((364, 16), (364,), (91, 16), (91,), (114, 16), (114,))
```

Verificando el balanceo de las clases dentro del dataset

```
In [25]:

for key, value in Counter(y).items():
    print(f'Clase {key} -- conteo {value} --- {round((value/y.shape[0]) * 100, 2)}%')

Clase M -- conteo 212 --- 37.26%
Clase B -- conteo 357 --- 62.74%

In [26]:

counter = Counter(y)
counter

scale_pos_weight_1 = counter['M'] / counter['B']
scale_pos_weight_2 = counter['B'] / counter['M']

scale_pos_weight_1, scale_pos_weight_2
Out[26]:
```

Estrategia de balanceo usando ADASYNC

(0.5938375350140056, 1.6839622641509433)

In [27]:

N

```
ada = ADASYN(random_state=seed)

X_train_res, y_train_res = ada.fit_resample(X_train, y_train)
print('Conjunto de entranamiento balanceado')
for key, values in Counter(y_train_res).items():
    print(f'Clase: {key} - conteo: {values} -> {(values / y_train_res.shape[0]):.2f}')
print()
print('Conjunto de prueba balanceado')
X_test_res, y_test_res = ada.fit_resample(X_test, y_test)
for key, values in Counter(y_test_res).items():
    print(f'Clase: {key} - conteo: {values} -> {(values / y_test_res.shape[0]):.2f}')
```

```
Conjunto de entranamiento balanceado Clase: B - conteo: 228 -> 0.49 Clase: M - conteo: 233 -> 0.51

Conjunto de prueba balanceado Clase: B - conteo: 57 -> 0.50 Clase: M - conteo: 58 -> 0.50
```

Configurando los parámetros iniciales del XGBoost

Estos parámetros se obtuvieron corriendo varias veces el modelo sin hace uns búsqueda intensiva de parametros, se fueron probando 1 a 1, esta experimentación no se presenta en el jupyter notebook para no hacerlo muy extenso

```
In [28]:

xgb_clf = XGBClassifier(
    learning_rate=0.1,
    n_estimators=1000,
    max_depth=5,
    min_child_weight=1,
    gamma=0,
    subsample=0.8,
    colsample_bytree=0.8,
    objective='binary:logistic',
    eval_metric=['aucpr', 'auc'],
    nthread=4,
    seed=seed
)
```

Haciendo una revision estratificada para ver si la seleccion de los datos afecta el resultado del modelo

```
In [29]:

r_stkfold_cv = RepeatedStratifiedKFold(
    n_splits=5,
    n_repeats=3,
    random_state=seed
)
```

Parametros para el hypertuning del modelo

```
H
In [30]:
parameters = {
    'nthread':[-1],
    'objective':['binary:logistic'],
    'learning_rate': [0.5, 0.1, 0.01, 0.001],
    'max_depth': [3, 4, 5, 6],
    'min_child_weight': [8, 11],
    'subsample': [0.8],
    'colsample_bytree': [0.7],
    'n_estimators': [100, 500, 1000],
    'scale_pos_weight' : [
        1,
        np.sqrt(scale_pos_weight_1),
        np.sqrt(scale_pos_weight_2),
        scale pos weight 1,
        scale_pos_weight_2
    ]
}
grid_HS = GridSearchCV(
    estimator=xgb_clf,
    param_grid=parameters,
    n_jobs=-1,
    verbose=2,
    refit=True,
    cv=r_stkfold_cv,
    scoring='recall'
)
```

Buscando la mejor combinación de híper-parametros para el modelo

```
In [31]:

grid_result_HS = grid_HS.fit(
    X_train_res,
    y_train_res
)

Fitting 15 folds for each of 480 candidates, totalling 7200 fits

In [32]:

model_HS = grid_result_HS.best_estimator_
```

Matriz de confusion sobre el conjunto de entrenamiento

```
In [33]:

y_hat = model_HS.predict(X_train_res)
plot_custom_confusion_matrix(
    y_train_res,
    y_hat,
    'Conjunto de entrenamiento - Clasificador XGBoost',
    ['M', 'B'],
    ymap=None,
    figsize=(16,10)
)
```


Matriz de confusión sobre el conjunto de prueba

In [34]: ▶

```
y_hat = model_HS.predict(X_test_res)
plot_custom_confusion_matrix(
    y_test_res,
    y_hat,
    'Conjunto de prueba - Classificador XGBoost',
    ['M', 'B'],
    ymap=None,
    figsize=(16,10)
)
```


Matriz de confusión sobre el conjunto de validación

Este conjunto de datos no ha sido visto por el modelo, en ninguna de sus dos versiones:

- · Modelo sin hypertuning
- Modelo con hypertuning

```
In [35]: ▶
```

```
y_hat = model_HS.predict(X_val)
plot_custom_confusion_matrix(
    y_val,
    y_hat,
    'Validation set - XGBoost HS model',
    ['M', 'B'],
    ymap=None,
    figsize=(16,10)
)
```


Calculo del umbral óptimo

Usando la métrica G-means

```
In [36]: ▶
```

```
y_hat_prob = model_HS.predict_proba(X_val)
y_hat_prob = y_hat_prob[:, 1]
fpr, tpr, thresholds = roc_curve(y_val, y_hat_prob, pos_label='M')

g_mean = np.sqrt(tpr * (1 - fpr))
# g_mean = tpr - fpr

index = np.argmax(g_mean)
optimal_threshold = round(thresholds[index], ndigits = 4)
optimal_g_mean = round(g_mean[index], ndigits = 4)
optimal_fpr = round(fpr[index], ndigits = 4)
optimal_tpr = round(tpr[index], ndigits = 4)
print('Best Threshold: {} with G-Mean: {}'.format(optimal_threshold, optimal_g_mean))
print('FPR: {}'.format(optimal_fpr, optimal_tpr))
```

Best Threshold: 0.6766999959945679 with G-Mean: 0.9554 FPR: 0.0417, TPR: 0.9524

Usando la métrica F-score

```
In [37]:

precision, recall, thresholds = precision_recall_curve(y_val, y_hat_prob, pos_label='M')
fscore = (2 * precision * recall) / (precision + recall)
index = np.argmax(fscore)
optimal_fscore = round(fscore[index], ndigits = 4)
optimal_precision = round(precision[index], ndigits = 4)
optimal_recall = round(recall[index], ndigits = 4)
print('Best Threshold: {} with F-score: {}'.format(optimal_threshold, optimal_fscore))
print('Precision: {}, Recall: {}'.format(optimal_precision, optimal_recall))
```

Best Threshold: 0.6766999959945679 with F-score: 0.9412 Precision: 0.9302, Recall: 0.9524

Moviendo el umbral al valor del umbral óptimo calcualdo por F-Score y G-Mean

```
In [38]:

predicted_HS = (y_hat_prob >= optimal_threshold).astype('int')
predicted_proba_HS = y_hat_prob
```

```
H
In [39]:
predicted_HS = np.where(predicted_HS == 1, 'M', 'B')
predicted_HS
Out[39]:
array(['M', 'B', 'B', 'M', 'M', 'B', 'B', 'M', 'B',
       'B', 'B', 'B',
                      'B',
                                                      'B',
                                                           'M',
                                                                'B',
                            'B', 'M',
                                      'M', 'B', 'B',
                      'B',
                            'M',
                 'B',
                                            'B', 'M',
                                                      'B',
                                                           'B',
                                 'M',
                                      'M',
                                                                 'M',
                                      'M',
                                                      'Β',
                       'B',
                                 'M',
                                           'M',
                                                 'Β',
                                                           'Β',
       'M', 'M', 'B',
                            'M',
                                 'M',
       'B', 'B', 'B',
                      'M',
                            'B',
                                                      'M',
                                                           'M',
                                      'M', 'B', 'B',
                            'B',
                                 'B',
               , 'B'
                                      'B', 'B', 'M',
                                                                'B',
       'B', 'B'
                      'B'
                                                      'B'
                                                           'B'
                       'B',
                                                           'B',
           'B', 'B',
                                      'M', 'B',
                                                                'B',
                            'Μ',
                                 'Β',
                                                      'B'
                                                 'M',
       'B', 'M', 'M',
                      'B', 'B', 'B', 'M', 'M', 'M', 'B',
                                                          'M', 'M', 'B',
       'B', 'B', 'B', 'B', 'B', 'B', 'B', 'M', 'B'], dtype='<U1')
```

Matriz de confusión del dataset de validación con el ajuste del umbral

```
In [40]:

plot_custom_confusion_matrix(
    y_val,
    predicted_HS,
    'Val set (threshold moved to optimal) - XGBoost HS model',
    ['M', 'B'],
    ymap=None,
    figsize=(16,10)
)
```


Tabla con las features más importantes del modelo

In [41]: ▶

Out[41]:

	features	importance
8	symmetry_worst	0.021524
9	texture_mean	0.021941
10	smoothness_worst	0.027451
11	area_se	0.041606
12	smoothness_mean	0.051380
13	area_mean	0.070376
14	concavity_worst	0.179077
15	concavity_mean	0.562003

Gráfico de barras de la importancia de las features del modelo

In [42]: ▶

```
fig, axis = plt.subplots(figsize=(10, 10))
plt.barh(importances['features'], importances['importance'])
plt.title("XGBClassifier importance of features with more than 1% of importance")
plt.xlabel("Importance")
plt.ylabel("Top features")
_ = plt.show()
```


In []:	Н
In []:	М