Additional Proofs

Appendix EC.1: Proofs for Appendix A

Proof of Lemma 1. The monotonicity of $\mathcal{L}(\rho)$ can be seen from the definition. Moreover, since $\mathcal{K}_c(\widehat{\mathbb{P}},\widehat{\mathbb{P}}) = 0$,

$$\mathcal{L}(\rho) \ge \mathcal{L}(0) \ge \mathbb{E}_{X \sim \widehat{\mathbb{P}}}[f(X)] > -\infty.$$

Therefore for all $\rho \geq 0$, $\mathcal{L}(\rho)$ is bounded from below. To verify the concavity, fix $\rho_0, \rho_1 \geq 0$. Pick any $t \in [0, 1]$ and $\mathbb{P}_0, \mathbb{P}_1 \in \mathcal{P}(\mathcal{X})$ satisfying $\mathcal{K}_c(\widehat{\mathbb{P}}, \mathbb{P}_j) \leq \rho_j$ and $\mathbb{E}_{\mathbb{P}_j}[f] > -\infty$, j = 0, 1, and denote $\mathbb{P}_t = (1 - t)\mathbb{P}_0 + t\mathbb{P}_1$. For arbitrary $\epsilon > 0$, we can find transport plans $\gamma_0 \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P}_0)$, $\gamma_1 \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P}_1)$ such that $\mathbb{E}_{\gamma_0}[c] \leq \mathcal{K}_c(\widehat{\mathbb{P}}, \mathbb{P}_0) + \epsilon$, $\mathbb{E}_{\gamma_1}[c] \leq \mathcal{K}_c(\widehat{\mathbb{P}}, \mathbb{P}_1) + \epsilon$. Define $\gamma_t = (1 - t)\gamma_0 + t\gamma_1$, then $\gamma_t \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P}_t)$ and

$$\mathcal{K}_{c}(\widehat{\mathbb{P}}, \mathbb{P}_{t}) \leq \mathbb{E}_{\gamma_{t}}[c] = (1 - t)\mathbb{E}_{\gamma_{0}}[c] + t\mathbb{E}_{\gamma_{1}}[c] \leq (1 - t)(\mathcal{K}_{c}(\widehat{\mathbb{P}}, \mathbb{P}_{0}) + \epsilon) + t(\mathcal{K}_{c}(\widehat{\mathbb{P}}, \mathbb{P}_{1}) + \epsilon)$$
$$\leq (1 - t)\mathcal{K}_{c}(\widehat{\mathbb{P}}, \mathbb{P}_{0}) + t\mathcal{K}_{c}(\widehat{\mathbb{P}}, \mathbb{P}_{1}) + \epsilon \leq (1 - t)\rho_{0} + t\rho_{1} + \epsilon.$$

Since it is true for any ϵ , we know $\mathcal{K}_c(\widehat{\mathbb{P}}, \mathbb{P}_t) \leq (1-t)\rho_0 + t\rho_1$, hence \mathbb{P}_t is a feasible solution to (P) with $\rho = (1-t)\rho_0 + t\rho_1$ and

$$\mathcal{L}((1-t)\rho_0 + t\rho_1) \ge \mathbb{E}_{X \sim \mathbb{P}_t}[f(X)] = (1-t)\mathbb{E}_{X \sim \mathbb{P}_0}[f(X)] + t\mathbb{E}_{X \sim \mathbb{P}_1}[f(X)].$$

Taking the supremum over \mathbb{P}_0 and \mathbb{P}_1 , we have

$$\mathcal{L}((1-t)\rho_0 + t\rho_1) \ge (1-t)\mathcal{L}(\rho_0) + t\mathcal{L}(\rho_1),$$

which completes the proof.

Proof of Lemma 3. Since $f(\rho) = +\infty$ for $\rho < 0$, we have

$$f^*(-\lambda) = \sup_{\rho \in \mathbb{R}} \{-\lambda \rho - f(\rho)\} = \sup_{\rho > 0} \{-\lambda \rho - f(\rho)\}.$$

For each fixed $\rho \ge 0$, $-\lambda \rho - f(\rho)$ is a monotonically decreasing, lower semi-continuous convex function of λ , so the supremum over ρ is also monotonically decreasing, lower semi-continuous, and convex. Suppose $f(\rho_0) < +\infty$ at some $\rho_0 \ge 0$. For each $\lambda < 0$,

$$f^*(-\lambda) = \sup_{\rho \geq 0} \{-\lambda \rho - f(\rho)\} \geq \sup_{\rho \geq \rho_0} \{-\lambda \rho - f(\rho)\} \geq \sup_{\rho \geq \rho_1} \{-\lambda \rho - f(\rho_0)\} = +\infty.$$

Pick $\rho_1 > \rho_0$. For each $\lambda \ge 0$,

$$f^*(-\lambda) = \sup_{\rho \geq 0} \{-\lambda \rho - f(\rho)\} = \sup_{0 \leq \rho \leq \rho_1} \{-\lambda \rho - f(\rho)\} \vee \sup_{\rho \geq \rho_1} \{-\lambda \rho - f(\rho)\}.$$

When $0 \le \rho \le \rho_1$, $-\lambda \rho - f(\rho) \le -f(\rho_1) < +\infty$. When $\rho \ge \rho_1$, by convexity we have $f(\rho) \ge f(\rho_1) + (\rho - \rho_1) \frac{f(\rho_1) - f(\rho_0)}{\rho_1 - \rho_0}$, so if $\lambda \ge \frac{f(\rho_0) - f(\rho_1)}{\rho_1 - \rho_0}$ we must have

$$-\lambda \rho - f(\rho) \le -\lambda \rho - f(\rho_1) - (\rho - \rho_1) \frac{f(\rho_1) - f(\rho_0)}{\rho_1 - \rho_0} \le -f(\rho_1) - \rho_1 \frac{f(\rho_0) - f(\rho_1)}{\rho_1 - \rho_0} < -f(\rho_1) < +\infty.$$

Hence $f^*(\lambda) \le -f(\rho_1) < +\infty$, so $f^* \not\equiv +\infty$.

Proof of Lemma 2. The lower bound follows by setting $x = \widehat{X}$: for any $\lambda \in [0, \infty)$, we have

$$(-\mathcal{L})^*(-\lambda) \ge \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}}[f(\widehat{X})] - \lambda \mathcal{K}_c(\widehat{\mathbb{P}}, \widehat{\mathbb{P}}) = \mathbb{E}_{\widehat{\mathbb{P}}}[f], \qquad \mathcal{G}^*(\lambda) \ge \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}}\left[f(\widehat{X}) - \lambda c(\widehat{X}, \widehat{X})\right] = \mathbb{E}_{\widehat{\mathbb{P}}}[f].$$

Here we used $\mathcal{K}_c(\widehat{\mathbb{P}}, \widehat{\mathbb{P}}) = 0$ because c(x, x) = 0 for every $x \in \mathcal{X}$.

If $\mathcal{L}(\rho) < +\infty$ for all $\rho > 0$, then $(-\mathcal{L})^*(-\cdot)$ is decreasing, convex, and lower semi-continuous because of Lemma 3. If $\mathcal{L}(\rho) = +\infty$ for all $\rho > 0$, then $(-\mathcal{L})^* \equiv +\infty$.

Since $f(x) - \lambda c(\widehat{x}, x)$ is decreasing and affine in λ , $\Phi(\lambda; \widehat{x}) := \sup_{x \in \mathcal{X}} \{ f(x) - \lambda c(\widehat{x}, x) \}$ is also a decreasing, convex, and lower semi-continuous function of λ . Recall that when $\lambda = 0$ and $c(\widehat{x}, x) = +\infty$, we use the convention $0 \cdot \infty = \infty$. We now verify that

(a) \mathcal{G}^* is monotonically decreasing:

$$\lambda_1 \leq \lambda_2 \Longrightarrow \Phi(\lambda_1; \widehat{x}) \geq \Phi(\lambda_2; \widehat{x}) \text{ for all } \widehat{x} \in \mathcal{X} \Longrightarrow \mathbb{E}_{\widehat{\mathbb{D}}}[\Phi(\lambda_1; \widehat{X})] \geq \mathbb{E}_{\widehat{\mathbb{D}}}[\Phi(\lambda_2; \widehat{X})].$$

(b) \mathcal{G}^* is convex:

$$\begin{split} \lambda_{\theta} &= (1-\theta)\lambda_1 + \theta\lambda_2 \implies \Phi(\lambda_{\theta};\widehat{x}) \leq (1-\theta)\Phi(\lambda_{0};\widehat{x}) + \theta\Phi(\lambda_{1};\widehat{x}) \text{ for all } \widehat{x} \in \mathcal{X} \\ &\implies \mathbb{E}_{\widehat{\mathbb{p}}}[\Phi(\lambda_{\theta};\widehat{X})] \leq (1-\theta)\mathbb{E}_{\widehat{\mathbb{p}}}[\Phi(\lambda_{0};\widehat{X})] + \theta\mathbb{E}_{\widehat{\mathbb{p}}}[\Phi(\lambda_{1};\widehat{X})]. \end{split}$$

(c) \mathcal{G}^* is lower semi-continuous: note that $\Phi(\lambda; \widehat{x}) \ge f(\widehat{x})$ and $\mathbb{E}_{\widehat{\mathbb{P}}}[f] > -\infty$. Taking $\lambda_n \to \lambda$ where $\lambda_n, \lambda \in [0, \infty)$, then by Fatou's lemma, we have

$$\liminf_{\lambda_n \to \lambda} \mathbb{E}_{\widehat{\mathbb{p}}} [\Phi(\lambda_n; \widehat{X})] \ge \mathbb{E}_{\widehat{\mathbb{p}}} \left[\liminf_{\lambda_n \to \lambda} \Phi(\lambda_n; \widehat{X}) \right] \ge \mathbb{E}_{\widehat{\mathbb{p}}} [\Phi(\lambda)].$$

With this we complete the proof.

Proof of Lemma 4. $f(x) - \lambda c(\widehat{x}, x) \le f(x) - 0 = f(x) - \lambda c(x, x)$, so $f - \lambda c$ is diagonally dominant. If ϕ is diagonally dominant, we define $\lambda := 1$, $f(x) := \phi(x, x)$, and $c(\widehat{x}, x) := f(x) - \phi(\widehat{x}, x)$ when $f(x) > -\infty$, $c(\widehat{x}, x) = 0$ when $f(x) = -\infty$. Then $c(\widehat{x}, x) \ge 0$ and c(x, x) = 0.

Appendix EC.2: Proof of Proposition 1

Before proving Proposition 1, we make a simple observation.

LEMMA EC.1. $A \subset \mathcal{X} \times \mathcal{X}$ is a diagonally dominant set if and only if its indicator function $\mathbf{1}_A$ is a diagonally dominant function. $\phi: \mathcal{X} \times \mathcal{X} \to \mathbb{R} \cup \{-\infty\}$ is a diagonally dominant function if and only if its superlevel set $\{\phi > \alpha\}$ is a diagonally dominant set for any $\alpha \in \mathbb{R}$. $E: \mathcal{X} \to \mathcal{F} \setminus \{\emptyset\}$ is a diagonally dominant set-valued function if and only if its graph is a diagonally dominant set.

Proof of Proposition 1. We first prove the sufficiency. Let ϕ be a diagonally dominant $(\mathscr{F} \otimes \mathscr{F})$ measurable function. Define $\Phi(\widehat{x}) = \sup_{x \in \mathcal{X}} \phi(\widehat{x}, x)$. For any $\alpha \in \mathbb{R}$, the superlevel set of Φ can be regarded as

$$\{\widehat{x}: \Phi(\widehat{x}) > \alpha\} = \{\widehat{x}: \exists x, \phi(\widehat{x}, x) > \alpha\} = \operatorname{Proj}_{\widehat{x}}(\{(\widehat{x}, x): \phi(\widehat{x}, x) > \alpha\}).$$

The superlevel set $\{\phi > \alpha\}$ is diagonally dominant. By assumption (Proj), $\operatorname{Proj}_{\widehat{x}}$ maps $(\mathscr{F} \otimes \mathscr{F})$ -measurable diagonally dominant sets to $\mathscr{F}_{\widehat{\mathbb{P}}}$ -measurable sets, thus the superlevel set of Φ is $\mathscr{F}_{\widehat{\mathbb{P}}}$ -measurable. Therefore, Φ is $\widehat{\mathbb{P}}$ -measurable, and it remains to show that

$$\mathbb{E}_{\widehat{\mathbb{P}}}[\Phi] = \sup_{\gamma \in \Gamma_{\widehat{\mathbb{P}}}} \mathbb{E}_{\gamma}[\phi].$$

Since for any $x \in \mathcal{X}$, $\phi(\widehat{x}, x) \leq \Phi(\widehat{x})$, it is clear that for any $\gamma \in \Gamma_{\widehat{\mathbb{D}}}$,

$$\mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\Phi(\widehat{X}) \right] \geq \mathbb{E}_{(\widehat{X}, X) \sim \gamma} \left[\phi(\widehat{X}, X) \right].$$

To see the other direction, we may assume $\mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}}[\Phi(\widehat{X})] > -\infty$, otherwise the conclusion holds trivially. Then $\{\Phi = -\infty\}$ is a $\widehat{\mathbb{P}}$ -nullset. We fix $\epsilon, M > 0$, and below we construct a near optimal $\gamma \in \Gamma_{\widehat{\mathbb{P}}}$.

Define $S_n = \{\widehat{x} \in \mathcal{X} : n\epsilon < \Phi(\widehat{x}) \le (n+1)\epsilon\}$ for $n \in \mathbb{Z}$. S_n is $\mathscr{F}_{\widehat{\mathbb{P}}}$ -measurable, so we can find $B_n \subset S_n$ which is \mathscr{F} -measurable and $\widehat{\mathbb{P}}(S_n \setminus B_n) = 0$. Define set-valued function $E_n : \mathcal{X} \to \mathscr{F} \setminus \{\emptyset\}$ by

$$E_n(\widehat{x}) = \begin{cases} \mathcal{X} \setminus B_n & \widehat{x} \notin B_n \\ \{x \in \mathcal{X} : \phi(\widehat{x}, x) > n\epsilon \} & \widehat{x} \in B_n \end{cases}.$$

Graph $(E_n) = (\mathcal{X} \setminus B_n) \times (\mathcal{X} \setminus B_n) \cup ((B_n \times \mathcal{X}) \cap \{\phi > n\epsilon\})$ is $(\mathscr{F} \otimes \mathscr{F})$ -measurable. We claim E_n is diagonally dominant. That is, $x \in E_n(\widehat{x})$ implies $x \in E_n(x)$. To see this, note that if $x \notin B_n$ then $x \in \mathcal{X} \setminus B_n = E_n(x)$; if $\widehat{x} \notin B_n$ and $x \in E_n(\widehat{x}) = \mathcal{X} \setminus B_n$ then $x \notin B_n$ so $x \in E_n(x)$. Now suppose $\widehat{x}, x \in B_n$ and $x \in E_n(\widehat{x})$, then $\phi(x,x) \geq \phi(\widehat{x},x) > n\epsilon$, so again we have $x \in E_n(x)$. This finishes the proof of the claim. By assumption (Sel*) we can find a measurable transport plan $\gamma_n \in \Gamma_{\widehat{\mathbb{P}}}$ supported in Graph (E_n) .

Define $S_{\infty} = \{\widehat{x} \in \mathcal{X} : \Phi(\widehat{x}) = \infty\}$. S_{∞} is $\mathscr{F}_{\widehat{\mathbb{P}}}$ -measurable, so we can find $B_{\infty} \subset S_{\infty}$ which is \mathscr{F} -measurable and $\widehat{\mathbb{P}}(S_{\infty} \setminus B_{\infty}) = 0$. For some M > 0 to be determined, define set-valued function $E_{\infty} : \mathcal{X} \to \mathscr{F} \setminus \{\emptyset\}$ by

$$E_{\infty}(\widehat{x}) = \begin{cases} \mathcal{X} \setminus B_{\infty} & \widehat{x} \notin B_{\infty} \\ \{x \in \mathcal{X} : \phi(\widehat{x}, x) > M\} & \widehat{x} \in B_{\infty} \end{cases}.$$

Same as before, E_{∞} is diagonally dominant, so we can find a measurable transport plan $\gamma_{\infty} \in \Gamma_{\widehat{\mathbb{P}}}$ supported in $Graph(E_{\infty})$.

Now we define measure $\gamma \in \mathcal{P}(\mathcal{X} \times \mathcal{X}, \mathcal{F} \otimes \mathcal{F})$ by

$$\gamma(A) = \sum_{n \in \mathbb{Z} \cup \{+\infty\}} \gamma_n(A \cap (B_n \times \mathcal{X})).$$

Then for any $S \subset \mathcal{X}$,

$$\gamma(S \times \mathcal{X}) = \sum_{n \in \mathbb{Z} \cup \{+\infty\}} \gamma_n((S \cap B_n) \times \mathcal{X}) = \sum_{n \in \mathbb{Z} \cup \{+\infty\}} \widehat{\mathbb{P}}(S \cap B_n) = \widehat{\mathbb{P}}(S),$$

so $\gamma \in \Gamma_{\widehat{\mathbb{P}}}$. In the last equality, we used that $B_n \subset S_n$ are pairwise disjoint and $\widehat{\mathbb{P}}(\mathcal{X} \setminus \bigcup_{n \in \mathbb{Z} \cup \{+\infty\}} B_n) = 0$. Moreover, γ is supported in

$$\{(\widehat{x},x)\in\mathcal{X}\times\mathcal{X}:\phi(\widehat{x},x)>\Phi(\widehat{x})-\epsilon \text{ if }\Phi(\widehat{x})<\infty,\phi(\widehat{x},x)>M \text{ if }\Phi(\widehat{x})=\infty\}.$$

Therefore, $\mathbb{E}_{\gamma}[\phi] \geq \mathbb{E}_{\widehat{\mathbb{P}}}[(\Phi - \epsilon)\mathbf{1}\{\Phi < +\infty\}] + M\widehat{\mathbb{P}}(\Phi = +\infty)$. By making ϵ arbitrarily small and M arbitrarily large, we have $\sup_{\gamma \in \Gamma_{\widehat{\mathbb{P}}}} \mathbb{E}_{\gamma}[\phi] \geq \mathbb{E}_{\widehat{\mathbb{P}}}[\Phi]$. This proves that (Proj) and (Sel*) combined imply (IP) holds for all diagonally dominant functions.

Next, we prove the necessity. Suppose (IP) holds for all diagonally dominant functions. Given $A \in \mathcal{F} \otimes \mathcal{F}$ diagonally dominant, let ϕ be the indicator of the set A: $\phi(\widehat{x},x) = 1$ if $(\widehat{x},x) \in A$ and 0 otherwise. Then ϕ is $\mathcal{F} \otimes \mathcal{F}$ -measurable, diagonally dominant, and by (IP) the function $\Phi(\widehat{x}) = \sup_{x \in \mathcal{X}} \phi(\widehat{x},x)$ is $\widehat{\mathbb{P}}$ -measurable. Observe that

$$\operatorname{Proj}_{\widehat{x}}(A) = {\widehat{x} \in \mathcal{X} : \Phi(\widehat{x}) \ge 1},$$

which is the upper level set of Φ , and thus belongs to $\mathscr{F}_{\widehat{\mathbb{P}}}$. Therefore (IP) implies (Proj). Lastly, given a diagonally dominant set function $E: \mathcal{X} \to \mathscr{F} \setminus \{\emptyset\}$, let

$$\phi(\widehat{x}, x) = \begin{cases} 0 & x \in E(\widehat{x}) \\ -\infty & x \notin E(\widehat{x}) \end{cases}.$$

That is, $\phi = -\infty \cdot \mathbf{1}_{\mathcal{X} \setminus Graph(E)}$. To see it is diagonally dominant, note that

$$\phi(\widehat{x}, x) = 0 \Longrightarrow x \in E(\widehat{x}) \Longrightarrow x \in E(x) \Longrightarrow \phi(x, x) = 0.$$

So $\phi(\widehat{x}, x) \le \phi(x, x)$. Since $E(\widehat{x}) \ne \emptyset$, $\Phi(\widehat{x}) := \sup_{x \in \mathcal{X}} \phi(\widehat{x}, x) = 0$. By (IP),

$$0 = \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\Phi(\widehat{X}, x) \right] = \sup_{\gamma \in \Gamma_{\widehat{\mathbb{D}}}} \left\{ \mathbb{E}_{(\widehat{X}, X) \sim \gamma} [\phi(\widehat{X}, X)] \right\}.$$

Note that

$$\mathbb{E}_{\gamma}[\phi] = \begin{cases} 0, & \text{supp } \gamma \subset \text{Graph}(E), \\ -\infty, & \text{otherwise.} \end{cases}$$

Hence, there exists some $\gamma \in \Gamma_{\widehat{\mathbb{D}}}$ supported in A. Therefore (IP) implies (Sel*).

Proof of Proposition 2. Note that ϕ is continuous in \widehat{x} , so $\Phi(\widehat{x}) = \sup_{x \in \mathcal{X}} \phi(\widehat{x}, x)$ is lower semi-continuous, and thus Borel measurable. Therefore, for any $\gamma \in \Gamma_{\widehat{\mathbb{P}}}$, it holds that $\mathbb{E}_{\gamma}[\phi] \leq \mathbb{E}_{\widehat{\mathbb{P}}}[\Phi]$. It remains to construct an ϵ -optimizer γ .

First, we assume $\mathbb{E}_{\widehat{\mathbb{P}}}[\Phi] < +\infty$, and fix $\epsilon > 0$. Since $\widehat{\mathbb{P}}$ is tight, there exists a compact subset $\widehat{K} \subset \subset \mathcal{X}$ sufficiently large such that $\mathbb{E}_{\widehat{\mathbb{P}}}[|f|\mathbf{1}_{\widehat{K}^c}] < \epsilon$ and $\mathbb{E}_{\widehat{\mathbb{P}}}[|\Phi|\mathbf{1}_{\widehat{K}^c}] < \epsilon$. Moreover, fix some $\widehat{x}_0 \in \mathcal{X}$, we define

$$K_n = \widehat{K} \cup B_n(\widehat{x}_0) = \widehat{K} \cup \{x \in \mathcal{X} : d(\widehat{x}_0, x) \le n\},\$$

and define

$$\phi_n(\widehat{x},x) = \phi(\widehat{x},x) - \infty \mathbf{1}\{x \notin K_n\}, \qquad \Phi_n(\widehat{x}) = \sup_{x \in K_n} \phi(\widehat{x},x) = \sup_{x \in \mathcal{X}} \phi_n(\widehat{x},x).$$

Then $\Phi_n \to \Phi$ pointwise as $n \to \infty$. Since $f \le \Phi_n \le \Phi$ in \widehat{K} , From dominant convergence theorem, we have

$$\mathbb{E}_{\widehat{\mathbb{D}}}[\Phi \mathbf{1}_{\widehat{K}}] - \mathbb{E}_{\widehat{\mathbb{D}}}[\Phi_n \mathbf{1}_{\widehat{K}}] < \epsilon$$

for n sufficiently large. We fix n from now on. Note that $\phi(\widehat{x}, x)$ is uniformly continuous in \widehat{x} in $\widehat{K} \times K_n$: there exists $\delta > 0$ such that if $\widehat{x}_1, \widehat{x}_2 \in \widehat{K}$ and $d(\widehat{x}_1, \widehat{x}_2) < \delta$, we must have $|\phi(\widehat{x}_1, x) - \phi(\widehat{x}_2, x)| \le \epsilon$ for all $x \in K_n$, and consequently $|\Phi_n(\widehat{x}_1) - \Phi_n(\widehat{x}_2)| \le \epsilon$. Since \widehat{K} is compact, there exists a δ -net $\widehat{\mathcal{X}} = \{\widehat{x}_i\}_{i=1}^n \subset \widehat{K}$. Define $U_i = \widehat{K} \cap B_{\delta}(\widehat{x}_i) \setminus \bigcup_{j < i} B_{\delta}(\widehat{x}_j)$, then $\{U_i\}_{i=1}^n$ forms a partition of \widehat{K} . For each \widehat{x}_i , we can find x_i such that

$$\phi(\widehat{x}_i, x_i) > \Phi(\widehat{x}_i) - \epsilon$$
.

Now we construct a Borel-measurable selection mapping

$$T(\widehat{x}) = \begin{cases} x_i & \widehat{x} \in U_i \\ x & \widehat{x} \in \widehat{K}^c \end{cases}, \qquad \widehat{x} \in \mathcal{X}.$$

This induces a measure $\gamma = (\operatorname{Id} \otimes T)_{\#}\widehat{\mathbb{P}}$. Under this selection, we have

$$\mathbb{E}_{\gamma}[\phi] = \mathbb{E}_{\widehat{\mathbb{P}}}\left[\phi(\widehat{X}, T(\widehat{X}))\right] = \mathbb{E}_{\widehat{\mathbb{P}}}\left[\phi(\widehat{X}, \widehat{X})\mathbf{1}\{\widehat{X} \in \widehat{K}^c\}\right] + \sum_{i=1}^{n} \mathbb{E}_{\widehat{\mathbb{P}}}\left[\phi(\widehat{X}, x_i)\mathbf{1}\{\widehat{X} \in U_i\}\right].$$

The first term is

$$\mathbb{E}_{\widehat{\mathbb{P}}}\left[\phi(\widehat{X},\widehat{X})\mathbf{1}\{\widehat{X}\in\widehat{K}^c\}\right] = \mathbb{E}_{\widehat{\mathbb{P}}}[f\mathbf{1}_{\widehat{K}^c}] \geq -\epsilon.$$

For the second term, note that $|\widehat{x} - \widehat{x}_i| < \delta$ for $\widehat{x} \in U_i$, so by uniform continuity we have

$$\phi(\widehat{x}, x_i) \ge \phi_n(\widehat{x}, x_i) \ge \phi_n(\widehat{x}_i, x_i) - \epsilon \ge \Phi_n(\widehat{x}_i) - 2\epsilon \ge \Phi_n(\widehat{x}) - 3\epsilon.$$

Hence we have

$$\mathbb{E}_{\gamma}[\phi] \ge -4\epsilon + \sum_{i=1}^{n} \mathbb{E}_{\widehat{\mathbb{P}}} \left[\Phi_{n}(\widehat{X}) \mathbf{1} \{ \widehat{X} \in U_{i} \} \right] = -4\epsilon + \mathbb{E}_{\widehat{\mathbb{P}}} \left[\Phi_{n} \mathbf{1}_{\widehat{K}} \right] > -5\epsilon + \mathbb{E}_{\widehat{\mathbb{P}}} \left[\Phi \mathbf{1}_{\widehat{K}} \right] > -6\epsilon + \mathbb{E}_{\widehat{\mathbb{P}}} \left[\Phi \right].$$

Since ϵ can be chosen arbitrarily small, we proved interchangeability for ϕ . The case $\mathbb{E}_{\widehat{\mathbb{P}}}[\Phi] = +\infty$ is similar and we omit the proof.

REMARK EC.1. It can be seen from the proof that beyond the Wasserstein setting, we need c to be continuous in \widehat{x} uniformly in $\widehat{K} \times K_n$ for any compact \widehat{K} and some sequence of $K_n \supset \widehat{K}$ such that $\bigcup_n K_n = \mathcal{X}$. In particular, this would hold if c is continuous and \mathcal{X} is a σ -compact metrizable topological space.

Appendix EC.3: Proofs for Section 4

In this section, we provide additional details of the proof in Example 4, Example 5, and Example 6.

Proof of Example 4. We start with t = T. We have

$$V_T(s) = \inf_{a \in \mathcal{A}(s)} g_T(s, a),$$

which is lower semi-analytic [4, Proposition 7.47], and in particular, $\widehat{\mathbb{P}}$ -measurable [4, Corollary 7.42.1]. Since g_T is bounded from below by our assumption, V_T is also bounded from below. In a Borel space or Polish space, any measure is tight. Thus by Proposition 2 we have

$$V_{T-1}(s) = \inf_{a \in \mathcal{A}(s)} \left\{ g_{T-1}(s, a) + \sup_{\mathbb{P} \in \mathfrak{M}(s, a)} \mathbb{E}_{s' \sim \mathbb{P}(\cdot | s, a)} \left[V_T(s') \right] \right\}$$

$$= \inf_{\substack{a \in \mathcal{A}(s) \\ > 0}} \left\{ g_{T-1}(s, a) + \lambda \rho(s, a) + \mathbb{E}_{\widehat{s}' \sim \widehat{\mathbb{P}}(\cdot | s, a)} \left[\sup_{s' \in \mathcal{S}} \left\{ V_T(s') - \lambda c(\widehat{s}', s') \right\} \right] \right\},$$

which is also bounded from below since g_{T-1} is bounded from below by assumption and $\rho > 0$.

Suppose we have shown $V_{t+1}(\cdot)$ is lower semi-analytic, V_t is bounded from below and obtain the reformulation for V_t . Now let us show that $V_t(\cdot)$ is lower semi-analytic and derive the expression for V_{t-1} and show it is bounded from below. By the continuity of c, $\widehat{s}' \mapsto c(\widehat{s}', s')$ is continuous for each s', so the function $\widehat{s}' \mapsto \sup_{s' \in \mathcal{S}} \{V_{t+1}(s') - \lambda c(\widehat{s}', s')\}$ is the supremum of a family of continuous function, which is lower semi-continuous, and furthermore is Borel measurable and thus lower semi-analytic. Hence the function $(s, a) \mapsto \mathbb{E}_{\widehat{s}' \sim \widehat{\mathbb{P}}(\cdot|s,a)} \left[\sup_{s' \in \mathcal{S}} \{V_{t+1}(s') - \lambda c(\widehat{s}', s')\} \right]$ is lower semi-analytic [4, Proposition 7.48]. Since g_{t-1} and ρ are lower semi-analytic due to our assumptions, V_t is also lower semi-analytic [4, Proposition 7.47]. Then using Proposition 2 again we have

$$V_{t-1}(s) = \inf_{a \in \mathcal{A}(s)} \left\{ g_{t-1}(s, a) + \sup_{\mathbb{P} \in \mathfrak{M}(s, a)} \mathbb{E}_{s' \sim \mathbb{P}(\cdot | s, a)} [V_t(s')] \right\}$$

$$= \inf_{\substack{a \in \mathcal{A}(s) \\ \lambda > 0}} \left\{ g_{t-1}(s, a) + \lambda \rho(s, a) + \mathbb{E}_{\widehat{s}' \sim \widehat{\mathbb{P}}(\cdot | s, a)} \left[\sup_{s' \in \mathcal{S}} \left\{ V_t(s') - \lambda c(\widehat{s}', s') \right\} \right] \right\},$$

which is bounded from below since g_{t-1}, ρ, V_t are all bounded from below. Therefore the proof is completed.

Proof of Example 5. We start with t = T. In this case,

$$Q_T(u_{T-1}, x_T) = \inf_{u \in \mathcal{U}_T(u_{T-1}, x_T)} f_T(u, x_T).$$

Since f_T is random lower semi-continuous and \mathcal{U}_T is uniformly bounded, $Q_T(\cdot, \cdot)$ is random lower semi-continuous [21, Theorem 9.50], and particularly, $Q_T(u_{T-1}, \cdot)$ is measurable. Since f_T is bounded from below by our assumption, Q_T is also bounded from below. Thus Assumption 1 holds and using Example 3 we have

$$Q_{T-1}(u_{T-2}, x_{T-1}) = \inf_{u \in \mathcal{U}_{T-1}(u_{T-2}, x_{T-1})} \left\{ f_{T-1}(u, x_{T-1}) + \sup_{\mathbb{P} \in \mathfrak{M}_T} \mathbb{E}_{\mathbb{P}} \left[Q_T(u, x_T) \right] \right\}$$

$$= \inf_{\substack{u \in \mathcal{U}_{T-1}(u_{T-2}, x_{T-1})\\\lambda > 0}} \left\{ f_{T-1}(u, x_{T-1}) + \lambda \rho_T + \mathbb{E}_{\widehat{\mathbb{P}}_T} \left[\sup_{x \in \mathcal{X}_T} \left\{ Q_T(u, x) - \lambda c(\widehat{x}_T, x) \right\} \right] \right\},$$

which is also bounded from below since f_{T-1} , ρ_T , Q_T are all bounded from below.

Suppose we have shown $Q_{t+1}(\cdot,\cdot)$ is random lower semi-continuous and obtain the reformulation for Q_t that is bounded from below. Now let us show that $Q_t(\cdot,\cdot)$ is random lower semi-continuous and derive the expression for Q_{t-1} and show it is bounded from below. Since $Q_{t+1}(\cdot,\cdot)$ is random lower semi-continuous, $u\mapsto Q_{t+1}(u,x)$ is lower semi-continuous for every $x\in\mathcal{X}_{t+1}$. Therefore, for every $x,\widehat{x}_{t+1}\in\mathcal{X}_{t+1}$, the function $u\mapsto Q_{t+1}(u,x)-\lambda c(\widehat{x}_{t+1},x)$ is lower semi-continuous, and thus their supremum $u\mapsto\sup_{x\in\mathcal{X}_{t+1}}\{Q_{t+1}(u,x)-\lambda c(\widehat{x}_{t+1},x)\}$ is lower semi-continuous, and taking the expectation with respect to $\widehat{\mathbb{P}}_{t+1}$, the function $\mathbb{E}_{\widehat{\mathbb{P}}_{t+1}}\left[\sup_{x\in\mathcal{X}_{t+1}}\{Q_{t+1}(u,x)-\lambda c(\widehat{x}_{t+1},x)\}\right]$ is lower semi-continuous in u. It follows from [21, Theorem 9.50] that $Q_t(\cdot,\cdot)$ is random lower semi-continuous. Then using Example 3 we have

$$\begin{split} Q_{t-1}(u_{t-2}, x_{t-1}) &= \inf_{u \in \mathcal{U}_{t-1}(u_{t-2}, x_{t-1})} \left\{ f_{t-1}(u, x_{t-1}) + \sup_{\mathbb{P} \in \mathfrak{M}_t} \mathbb{E}_{\mathbb{P}} \left[Q_t(u, x_t) \right] \right\} \\ &= \inf_{u \in \mathcal{U}_{t-1}(u_{t-2}, x_{t-1})} \left\{ f_{t-1}(u, x_{t-1}) + \lambda \rho_t + \mathbb{E}_{\widehat{\mathbb{P}}_t} \left[\sup_{x \in \mathcal{X}_t} \left\{ Q_t(u, x) - \lambda c(\widehat{x}_t, x) \right\} \right] \right\}, \end{split}$$

which is again bounded from below, and thereby we complete the induction.

Proof of Example 6. Define $f = \mathbf{1}_{S^c}$, $c(\widehat{x}, x) = d(\widehat{x}, x)^p$. Then (3) is equivalent to

$$\mathcal{L}(\rho^p) = \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] : \mathcal{K}_c(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho^p \right\} \leq \beta.$$

For $p \in [1, \infty)$, we observe the following for each $\hat{x} \in \mathcal{X}$:

$$\begin{split} \sup_{x \in \mathcal{X}} \left\{ f(x) - \lambda c(\widehat{x}, x) \right\} &= \sup_{x \in \mathcal{S}^c} \left\{ 1 - \lambda d(\widehat{x}, x)^p \right\} \vee \sup_{x \in \mathcal{S}} \left\{ 0 - \lambda d(\widehat{x}, x)^p \right\} \\ &= \left(1 - \lambda d(\widehat{x}, \mathcal{S}^c)^p \right) \vee \left(-\lambda d(\widehat{x}, \mathcal{S})^p \right) \\ &= \begin{cases} 1, & \widehat{x} \in \mathcal{S}^c \\ \left(1 - \lambda d(\widehat{x}, \mathcal{S}^c)^p \right)_+, & \widehat{x} \in \mathcal{S} \end{cases} \\ &= \left(1 - \lambda d(\widehat{x}, \mathcal{S}^c)^p \right)_+. \end{split}$$

By Theorem 1, if $f - \lambda c$ satisfies (IP) for every $\lambda > 0$, then the dual problem can be calculated as the following:

$$(-\mathcal{L})^*(-\lambda) = \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f(x) - \lambda c(\widehat{X}, x) \right\} \right] = \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[(1 - \lambda d(\widehat{X}, \mathcal{S}^c)^p)_+ \right].$$

Therefore, for every $\rho > 0$, we have

$$\mathcal{L}(\rho^p) = \min_{\lambda \ge 0} \left\{ \lambda \rho^p + (-\mathcal{L})^*(-\lambda) \right\} = \min_{\lambda \ge 0} \left\{ \lambda \rho^p + \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[(1 - \lambda d(\widehat{X}, \mathcal{S}^c)^p)_+ \right] \right\}.$$

For $\beta \in (0, 1)$, the chance constraint can be written as

$$\begin{split} \mathcal{L}(\rho^p) & \leq \beta \iff \lambda \rho^p + \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[(1 - \lambda d(\widehat{X}, \mathcal{S}^c)^p)_+ \right] \leq \beta \text{ for some } \lambda \geq 0 \\ & \iff \lambda \rho^p + \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[(1 - \lambda d(\widehat{X}, \mathcal{S}^c)^p)_+ \right] \leq \beta \text{ for some } \lambda > 0 \\ & \iff \frac{\rho^p}{\beta} + \frac{1}{\beta} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\left(\frac{1}{\lambda} - d(\widehat{X}, \mathcal{S}^c)^p \right)_+ \right] \leq \frac{1}{\lambda} \text{ for some } \lambda > 0 \\ & \iff \alpha + \frac{1}{\beta} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\left(-d(\widehat{X}, \mathcal{S}^c)^p - \alpha \right)_+ \right] \leq -\frac{\rho^p}{\beta} \text{ for some } \alpha < 0 \\ & \iff \alpha + \frac{1}{\beta} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\left(-d(\widehat{X}, \mathcal{S}^c)^p - \alpha \right)_+ \right] \leq -\frac{\rho^p}{\beta} \text{ for some } \alpha \in \mathbb{R} \\ & \iff \mathbb{C} \mathbf{V} @ \mathbf{R}_{\beta}^{\widehat{\mathbb{P}}} (-d(\widehat{X}, \mathcal{S}^c)^p) = \min_{\alpha \in \mathbb{R}} \left\{ \alpha + \frac{1}{\beta} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\left(-d(\widehat{X}, \mathcal{S}^c)^p - \alpha \right)_+ \right] \right\} \leq -\frac{\rho^p}{\beta}. \end{split}$$

Appendix EC.4: Proofs for Section 5.1

Proof of Proposition 3. We compute $\overline{\mathcal{L}}^{\circ}(\rho)$ as follows.

$$\begin{split} & \overline{\mathcal{L}}^{\circ}(\rho) = \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] : \overline{\mathcal{K}}_{c}(\widehat{\mathbb{P}}, \mathbb{P}) < \rho \right\} \\ & = \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] : \inf_{\gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P})} \gamma \text{-} \operatorname{ess} \sup_{\widehat{x}, x \in \mathcal{X}} c(\widehat{x}, x) < \rho \right\} \\ & = \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] : \gamma \text{-} \operatorname{ess} \sup_{\widehat{x}, x \in \mathcal{X}} c(\widehat{x}, x) < \rho \text{ for some } \gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P}) \right\} \\ & = \sup_{\gamma \in \Gamma_{\widehat{\mathbb{P}}}} \left\{ \mathbb{E}_{(\widehat{X}, X) \sim \gamma}[f(X)] : \gamma \text{-} \operatorname{ess} \sup_{\widehat{x}, x \in \mathcal{X}} c(\widehat{x}, x) < \rho \right\} \\ & = \sup_{\gamma \in \Gamma_{\widehat{\mathbb{P}}}} \left\{ \mathbb{E}_{(\widehat{X}, X) \sim \gamma} \left[f(X) - \infty \mathbf{1} \{ c(\widehat{X}, X) \ge \rho \} \right] \right\} \\ & = \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x} \left\{ f(x) : c(\widehat{X}, x) < \rho \right\} \right]. \end{split}$$

In the second to the last line, we need (IP) on the function $\phi(\widehat{x}, x) = f(x) - \infty \mathbf{1}\{c(\widehat{x}, x) \ge \rho\}$.

Next, we compute the dual

$$\begin{split} (-\overline{\mathcal{L}}^{\circ})^{*}(-\lambda) &= \sup_{\rho \geq 0} \left\{ \overline{\mathcal{L}}^{\circ}(\rho) - \lambda \rho \right\} = \sup_{\rho \geq 0} \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \lambda \rho : \mathcal{W}_{\infty}(\widehat{\mathbb{P}}, \mathbb{P}) < \rho \right\} \\ &= \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \lambda \mathcal{W}_{\infty}(\widehat{\mathbb{P}}, \mathbb{P}) \right\} \\ &= \sup_{\rho \geq 0} \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \lambda \rho : \mathcal{W}_{\infty}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ &= \sup_{\rho \geq 0} \left\{ \overline{\mathcal{L}}(\rho) - \lambda \rho \right\} = (-\overline{\mathcal{L}})^{*}(-\lambda). \end{split}$$

It follows that both $(-\overline{\mathcal{L}})^*(-\lambda)$ and $(-\overline{\mathcal{L}})^*(-\lambda)$ equal the soft-constrained robust loss. Thus

$$(-\overline{\mathcal{L}})^*(-\lambda) = (-\overline{\mathcal{L}}^\circ)^*(-\lambda) = \sup_{\rho \ge 0} \left\{ \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x} \left\{ f(x) : c(\widehat{X}, x) < \rho \right] - \lambda \rho \right\} \right\}.$$

This completes the proof of the proposition. We remark that $\overline{\mathcal{L}}^{\circ}$ is no longer necessarily concave, so $(-\overline{\mathcal{L}})^{**}(\rho)$ may differ from $-\overline{\mathcal{L}}^{\circ}(\rho)$.

Proof of Theorem 2. Similarly to the above proof of Propositions 3, we have

$$\begin{split} \overline{\mathcal{L}}(\rho) &= \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] : \overline{\mathcal{K}}_c(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ &= \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] : \inf_{\gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P})} \gamma - \operatorname{ess\,sup} c(\widehat{x}, x) \leq \rho \right\} \\ &\leq \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] : \gamma - \operatorname{ess\,sup} c(\widehat{x}, x) \leq \rho \text{ for some } \gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P}) \right\} \\ &= \sup_{\gamma \in \Gamma_{\widehat{\mathbb{P}}}} \left\{ \mathbb{E}_{(\widehat{X}, X) \sim \gamma}[f(X)] : \gamma - \operatorname{ess\,sup} c(\widehat{x}, x) \leq \rho \right\} \\ &= \sup_{\gamma \in \Gamma_{\widehat{\mathbb{P}}}} \left\{ \mathbb{E}_{(\widehat{X}, X) \sim \gamma}[f(X)] : \gamma - \operatorname{ess\,sup} c(\widehat{x}, x) \leq \rho \right\} \\ &= \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x} \left\{ f(x) - \infty \mathbf{1} \{ c(\widehat{X}, x) > \rho \} : c(\widehat{X}, x) \leq \rho \right\} \right]. \\ &= \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x} \left\{ f(x) : c(\widehat{X}, x) \leq \rho \right\} \right]. \end{split}$$

Here we used (IP) as it holds for all measurable functions according to Example 2. Inequality becomes equality if

$$\inf_{\gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P})} \gamma - \operatorname{ess\,sup}_{\widehat{x}, x \in \mathcal{X}} c(\widehat{x}, x) \le \rho \tag{EC.1}$$

can be achieved at some $\gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P})$.

Now we use the additional information that \mathcal{X} is Polish. If (EC.1) holds, we first find $\gamma_n \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P})$ with $\sup \gamma_n \subset \{c \leq \rho + \frac{1}{n}\}$. For any $\epsilon > 0$, we can find compact sets $\widehat{K}, K \subset \mathcal{X}$ with $\widehat{\mathbb{P}}[\widehat{K}] > 1 - \epsilon$ and $\mathbb{P}[K] > 1 - \epsilon$, because $\widehat{\mathbb{P}}$ and \mathbb{P} are probability measures on a Polish space, which are tight. Then $\gamma_n[\widehat{K} \times K] > 1 - 2\epsilon$ for each n. This shows $\{\gamma_n\}_n$ is a tight sequence. Since \mathcal{X} is complete and separable, by Prokhorov theorem, there exists a weakly converging subsequence $\gamma_{n_k} \to \gamma \in \mathcal{P}(\mathcal{X} \times \mathcal{X})$. Marginals of γ_n also converge weakly to the marginals of γ_n so $\gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P})$. To show that γ is supported in $\{c \leq \rho\}$, define $g: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ by

$$g(\widehat{x}, x) = 1 \wedge (c(\widehat{x}, x) - \rho)_{+}$$

g is continuous and bounded on $\mathcal{X} \times \mathcal{X}$. Moreover, $\mathbb{E}_{\gamma_n}[g] \leq \frac{1}{n}$. By weak convergence, $\mathbb{E}_{\gamma}[g] = 0$, so $c(\widehat{x}, x) \leq \rho$ for γ -a.e. $(\widehat{x}, x) \in \mathcal{X} \times \mathcal{X}$. That is, γ -ess sup $c \leq \rho$.

Next, we compute the dual.

$$\begin{split} (-\overline{\mathcal{L}})^*(-\lambda) &= \sup_{\rho \geq 0} \left\{ \overline{\mathcal{L}}(\rho) - \lambda \rho \right\} = \sup_{\rho \geq 0} \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \lambda \rho : \mathcal{W}_{\infty}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ &= \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \lambda \mathcal{W}_{\infty}(\widehat{\mathbb{P}}, \mathbb{P}) \right\}. \end{split}$$

Thus

$$(-\overline{\mathcal{L}})^*(-\lambda) = \sup_{\rho \ge 0} \left\{ \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x} \left\{ f(x) : c(\widehat{X}, x) \le \rho \right] - \lambda \rho \right\} \right\}.$$

This completes the proof of the theorem.

Proof of Example 7. By Theorem 2, we have

$$\overline{\mathcal{L}}(\rho) = \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \{ \mathbb{E}_{X \sim \mathbb{P}}[f(X)] : \mathcal{W}_{\infty}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \} = \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x} \left\{ f(x) : d(\widehat{X}, x) \leq \rho \right\} \right] = \widehat{\mathbb{P}}(d(\widehat{X}, \mathcal{S}^c) \leq \rho).$$

In particular, $\overline{\mathcal{L}}(\rho) = 1$ if $\rho \ge d(\sup \widehat{\mathbb{P}}, \mathcal{S}^c)$. We remark that now the corresponding soft robust problem is

$$(-\overline{\mathcal{L}})^*(-\lambda) = \sup_{\rho \ge 0} \left\{ \widehat{\mathbb{P}}(d(\widehat{X}, \mathcal{S}^c) \le \rho) - \lambda \rho \right\}.$$

Appendix EC.5: Proofs for Section 5.2

Proof of Theorem 3. First, we consider the maximum transport cost $\overline{\mathcal{K}}_c$. Denote

$$J'(\mathbb{P}) := \inf_{\alpha \in A'} \mathbb{E}_{X \sim \mathbb{P}} [f_{\alpha}(X)].$$

By assumption (5), we know that

$$\overline{\mathcal{L}}_{J}(\rho) = \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ J'(\mathbb{P}) : \overline{\mathcal{K}}_{c}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\}$$

Similar as Theorem 2, we have

$$\begin{split} \overline{\mathcal{L}}_{\mathbf{J}}(\rho) &= \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \inf_{\alpha \in A'} \mathbb{E}_{X \sim \mathbb{P}}[f_{\alpha}(X)] : \overline{\mathcal{K}}_{c}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ &= \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \inf_{\alpha \in A'} \mathbb{E}_{X \sim \mathbb{P}}[f_{\alpha}(X)] : \inf_{\gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P})} \gamma - \operatorname{ess\,sup\,} c(\widehat{x}, x) \leq \rho \right\} \\ &= \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ \inf_{\alpha \in A'} \mathbb{E}_{X \sim \mathbb{P}}[f_{\alpha}(X)] : \gamma - \operatorname{ess\,sup\,} c(\widehat{x}, x) \leq \rho \text{ for some } \gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P}) \right\} \\ &= \sup_{\gamma \in \Gamma_{\widehat{\mathbb{P}}}} \left\{ \inf_{\alpha \in A'} \mathbb{E}_{X \sim \mathbb{P}}[f_{\alpha}(X)] : \gamma - \operatorname{ess\,sup\,} c(\widehat{x}, x) \leq \rho \right\} \\ &= \sup_{\gamma \in \Gamma_{\widehat{\mathbb{P}}}} \left\{ \inf_{\alpha \in A'} \mathbb{E}_{(\widehat{X}, X) \sim \gamma} \left[f_{\alpha}(X) - \infty \mathbf{1} \{ c(\widehat{X}, X) > \rho \} \right] \right\}. \end{split}$$

We claim that for each $\gamma \in \Gamma_{\widehat{\mathbb{P}}}$, $A' \ni \alpha \mapsto \mathbb{E}_{\gamma}[f_{\alpha}(X)]$ has the following properties:

(a) Convexity: given $\alpha_0, \alpha_1 \in \mathbb{R}$, $\theta \in (0, 1)$, define $\alpha_\theta = (1 - \theta)\alpha_0 + \theta\alpha_1$. Due to convexity of f_α in α we have $f_{\alpha_\theta}(x) \le (1 - \theta)f_{\alpha_0}(x) + \theta f_{\alpha_1}(x)$ for every $x \in \mathcal{X}$. So

$$\mathbb{E}_{\gamma}[f_{\alpha_{\theta}}(X)] \leq (1 - \theta)\mathbb{E}_{\gamma}[f_{\alpha_{0}}(X)] + \theta\mathbb{E}_{\gamma}[f_{\alpha_{1}}(X)].$$

(b) Lower semi-continuity: let $\alpha_n \to \alpha$ as $n \to \infty$. Due to lower semi-continuity of f_α in α we have $f_\alpha(x) \le \liminf_{n \to \infty} f_{\alpha_n}(x)$ for every $x \in \mathcal{X}$. So

$$\mathbb{E}_{\gamma}[f_{\alpha}(X)] \leq \mathbb{E}_{\gamma}\left[\liminf_{n \to \infty} f_{\alpha_n}(X) \right] \leq \liminf_{n \to \infty} \mathbb{E}_{\gamma}[f_{\alpha_n}(X)].$$

The second inequality is due to Fatou's lemma thanks to $\{f_{\alpha}\}_{{\alpha}\in A'}$ being uniformly bounded from below.

Since A' is compact, by Sion's minimax theorem and interchangeability,

$$\begin{split} \overline{\mathcal{L}}_{\mathbf{J}}(\rho) &= \inf_{\alpha \in A'} \left\{ \sup_{\gamma \in \Gamma_{\widehat{\mathbb{P}}}} \mathbb{E}_{(\widehat{X},X) \sim \gamma} \left[f_{\alpha}(X) - \infty \mathbf{1} \{ c(\widehat{X},X) > \rho \} \right] \right\} \\ &= \inf_{\alpha \in A'} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x} \left\{ f_{\alpha}(x) - \infty \mathbf{1} \{ c(\widehat{X},x) > \rho \} : c(\widehat{X},x) \leq \rho \right\} \right] . \\ &= \inf_{\alpha \in A'} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x} \left\{ f_{\alpha}(x) : c(\widehat{X},x) \leq \rho \right\} \right] =: \inf_{\alpha \in A'} \ell_{\alpha}. \end{split}$$

To complete the proof, we need to enlarge A' to A again. Let α_n be a minimizing sequence:

$$\lim_{n\to\infty}\ell_{\alpha_n}=\inf_{\alpha\in A}\ell_{\alpha}.$$

Denote $A'_n = \operatorname{conv}(A' \cup \{\alpha_n\})$ to be the convex hull of A' and α_n . Clearly, if (5) holds for A', it should also hold for $A'_n \supset A'$. Since A'_n is still compact, the same argument on A'_n instead of A' gives $\overline{\mathcal{L}}_J(\rho) = \inf_{\alpha \in A'_n} \ell_\alpha$. This holds for every n, so taking the limit yields

$$\overline{\mathcal{L}}_{\mathbf{J}}(\rho) = \inf_{\alpha \in A} \ell_{\alpha} = \inf_{\alpha \in A} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x} \left\{ f_{\alpha}(x) : c(\widehat{X}, x) \leq \rho \right\} \right].$$

Next, we consider the Kantorovich cost \mathcal{K}_c . Similarly, we can restrict to A' by assumption (5):

$$\mathcal{L}_{J}(\rho) = \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ J'(\mathbb{P}) : \mathcal{K}_{c}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\}.$$

It is easy to see that J' is concave in \mathbb{P} . Similar as Lemma 1, it is a simple exercise to show $\mathcal{L}_{J}(\cdot)$ is lower bounded by $\sup_{\alpha \in A'} \mathbb{E}_{\widehat{\mathbb{P}}}[f_{\alpha}]$, monotonically increasing, and concave on $[0, \infty)$. Now we take the dual of $-\mathcal{L}_{J}$:

$$\begin{split} (-\mathcal{L}_{J})^{*}(-\lambda) &:= \sup_{\rho \geq 0} \left\{ \mathcal{L}_{J}(\rho) - \lambda \rho \right\} = \sup_{\rho \geq 0, \mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ J'(\mathbb{P}) - \lambda \rho : \mathcal{K}_{c}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ &= \sup_{\mathbb{P} \in \mathcal{P}(\mathcal{X})} \left\{ J'(\mathbb{P}) - \lambda \mathcal{K}_{c}(\widehat{\mathbb{P}}, \mathbb{P}) \right\} \\ &= \sup_{\gamma \in \Gamma_{\widehat{\mathbb{P}}}} \inf_{\alpha \in A'} \left\{ \mathbb{E}_{\gamma} [f_{\alpha}(X) - \lambda c(\widehat{X}, X)] \right\}. \end{split}$$

We have shown that $\alpha \mapsto \mathbb{E}_{\gamma}[f_{\alpha}(X)]$ is lower semi-continuous and convex in the first half of the proof. By Sion's minimax theorem, we can exchange sup and inf, so

$$(-\mathcal{L}_{\mathbf{J}})^{*}(-\lambda) = \inf_{\alpha \in A'} \sup_{\gamma \in \Gamma_{\widehat{\mathbb{P}}}} \left\{ \mathbb{E}_{\gamma} [f_{\alpha}(X) - \lambda c(\widehat{X}, X)] \right\} = \inf_{\alpha \in A'} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda c(\widehat{X}, x) \right\} \right].$$

Here we used (IP) on $\phi_{\lambda,\alpha} = f_{\alpha} - \lambda c$. By enlarging A' to A as in the maximal cost case, we have

$$(-\mathcal{L}_{\mathsf{J}})^*(-\lambda) = \inf_{\alpha \in A} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda c(\widehat{X}, x) \right\} \right].$$

To apply Theorem 3 on Example 8, we need to verify that the infimum is achieved in a finite interval dependent only on the transport cost. The following lemma confirms this property for CV@R and MAD.

LEMMA EC.2. Suppose $\mathcal{X} = \mathbb{R}$. Let $\widehat{\mathbb{P}}, \mathbb{P} \in \mathcal{P}(\mathcal{X}), \ \beta \in (0,1)$. Let $\widehat{X} \sim \widehat{\mathbb{P}}, \ X \sim \mathbb{P}$. If $\mathbb{P}(X \ge \alpha) \ge \beta$ and $\mathbb{P}(X \le \alpha) \ge 1 - \beta$, then

$$\alpha \in \left[-\mathbb{C} V @R_{1-\beta}^{\widehat{\mathbb{P}}}(-\widehat{X}) - \frac{1}{1-\beta} \mathcal{W}_1(\widehat{\mathbb{P}}, \mathbb{P}), \mathbb{C} V @R_{\beta}^{\widehat{\mathbb{P}}}(\widehat{X}) + \frac{1}{\beta} \mathcal{W}_1(\widehat{\mathbb{P}}, \mathbb{P}) \right].$$

Proof. Given any $\gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P})$, we have

$$\begin{split} \mathbb{E}_{(\widehat{X},X) \sim \gamma} \left[\| \widehat{X} - X \| \right] &\geq \mathbb{E}_{(\widehat{X},X) \sim \gamma} \left[\| X - \widehat{X} \| \mathbf{1} \{ X \geq \alpha \} \right] \\ &\geq \mathbb{E}_{(\widehat{X},X) \sim \gamma} \left[(\alpha - \widehat{X}) \mathbf{1} \{ X \geq \alpha \} \right] \\ &= \alpha \mathbb{P}(X \geq \alpha) - \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\widehat{X} \mathbb{E}_{X \sim \gamma_{X \mid \widehat{X}}} \left[\mathbf{1} \{ X \geq \alpha \} \mid \widehat{X} \right] \right] \\ &= \mathbb{P}(X \geq \alpha) \left(\alpha - \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\widehat{X} \cdot \frac{\mathbb{P}(X \geq \alpha \mid \widehat{X})}{\mathbb{P}(X \geq \alpha)} \right] \right) \end{split}$$

Note that $\mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\frac{\mathbb{P}(X \ge \alpha \mid \widehat{X})}{\mathbb{P}(X \ge \alpha)} \right] = 1$, and $\frac{\mathbb{P}(X \ge \alpha \mid \widehat{X})}{\mathbb{P}(X \ge \alpha)} \le \frac{1}{\beta}$. Therefore

$$\mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}}\left[\widehat{X} \cdot \frac{\mathbb{P}(X \geq \alpha \mid \widehat{X})}{\mathbb{P}(X \geq \alpha)}\right] \leq \sup_{\widehat{\mathbb{Q}} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{Q}}}\left[\widehat{X}\right] : \widehat{\mathbb{Q}} \ll \widehat{\mathbb{P}}, \frac{d\widehat{\mathbb{Q}}}{d\widehat{\mathbb{P}}} \leq \frac{1}{\beta} \right\} = \mathbb{C} \mathbf{V} @\mathbf{R}_{\beta}^{\widehat{\mathbb{P}}}(\widehat{X}).$$

Here we used the dual formulation for CVaR in [9]. Hence, we have shown that

$$\alpha - \mathbb{C} V @R_{\beta}^{\widehat{\mathbb{P}}}(\widehat{X}) \leq \frac{1}{\mathbb{P}(X \geq \alpha)} \mathbb{E}_{(\widehat{X}, X) \sim \gamma} \left[\|\widehat{X} - X\| \right] \leq \frac{1}{\beta} \mathbb{E}_{(\widehat{X}, X) \sim \gamma} \left[\|\widehat{X} - X\| \right].$$

The proof of the upper bound is completed by taking infimum over $\gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P})$. The proof of the lower bound is similar:

$$\begin{split} \mathbb{E}_{(\widehat{X},X) \sim \gamma} \left[\| \widehat{X} - X \| \right] &\geq \mathbb{E}_{(\widehat{X},X) \sim \gamma} \left[\| \widehat{X} - X \| \mathbf{1} \{ X \leq \alpha \} \right] \\ &\geq \mathbb{E}_{(\widehat{X},X) \sim \gamma} \left[(\widehat{X} - \alpha) \mathbf{1} \{ X \leq \alpha \} \right] \\ &= \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\widehat{X} \mathbb{E}_{X \sim \gamma_{X \mid \widehat{X}}} \left[\mathbf{1} \{ X \leq \alpha \} \mid \widehat{X} \right] \right] - \alpha \mathbb{P}(X \leq \alpha) \\ &= \mathbb{P}(X \leq \alpha) \left(\mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\widehat{X} \cdot \frac{\mathbb{P}(X \leq \alpha \mid \widehat{X})}{\mathbb{P}(X \leq \alpha)} \right] - \alpha \right) \\ &\geq \mathbb{P}(X \leq \alpha) \left(- \mathbb{C} \mathbf{V} @ \mathbf{R}_{1-\beta}^{\widehat{\mathbb{P}}}(-\widehat{X}) - \alpha \right). \end{split}$$

Proof of Example 8 ($\mathbb{C}V@R$). Given $\widehat{Z} \sim \widehat{\mathbb{Q}}$ and $Z \sim \mathbb{Q}$, define $\widehat{X} = b^{\top}\widehat{Z}$ and $X = b^{\top}Z$, and let $\widehat{\mathbb{P}}$, \mathbb{P} denote the law of \widehat{X} and X respectively. We observe the following

- (a) $\mathbb{C}V@R_{\mathcal{B}}^{\mathbb{Q}}(b^{\top}Z) = \mathbb{C}V@R_{\mathcal{B}}^{\mathbb{P}}(X)$ and $\mathbb{C}V@R_{\mathcal{B}}^{\widehat{\mathbb{Q}}}(b^{\top}\widehat{Z}) = \mathbb{C}V@R_{\mathcal{B}}^{\widehat{\mathbb{P}}}(\widehat{X})$.
- (b) For any $\mathbb{Q} \in \mathcal{P}(\mathcal{Z})$, $\mathcal{W}_p(\widehat{\mathbb{P}}, \mathbb{P}) \leq ||b||_* \mathcal{W}_p(\widehat{\mathbb{Q}}, \mathbb{Q})$.
- (c) For any $\mathbb{P}' \in \mathcal{P}(\mathbb{R})$, we can find $\mathbb{Q} \in \mathcal{P}(\mathcal{Z})$ such that $\mathbb{P} = \mathbb{P}'$, and $\mathcal{W}_p(\widehat{\mathbb{P}}, \mathbb{P}) \ge ||b||_* \mathcal{W}_p(\widehat{\mathbb{Q}}, \mathbb{Q})$. If all these claims are true, then

$$\sup_{\mathbb{Q}\in\mathcal{P}(\mathcal{Z})}\left\{\mathbb{C}\mathrm{V}@\mathrm{R}_{\beta}^{\mathbb{Q}}(b^{\top}Z):\mathcal{W}_{p}(\widehat{\mathbb{Q}},\mathbb{Q})\leq\rho\right\}=\sup_{\mathbb{P}\in\mathcal{P}(\mathbb{R})}\left\{\mathbb{C}\mathrm{V}@\mathrm{R}_{\beta}^{\mathbb{P}}(X):\mathcal{W}_{p}(\widehat{\mathbb{P}},\mathbb{P})\leq\|b\|_{*}\rho\right\}.$$

The first two claims are direct: $X = b^{\top}Z$, $\widehat{X} = b^{\top}\widehat{Z}$, and $|X - \widehat{X}| \le \|b\|_* \|Z - \widehat{Z}\|$. For the third claim, we prove it as follows. Let $b^* \in \mathcal{Z}$ be the unit dual of b^{\top} , i.e. $b^{\top}b^* = \|b^{\top}\|_*$ and $\|b^*\| = 1$. Given $\widehat{Z} \sim \widehat{\mathbb{P}}$, $\widehat{X} = b^{\top}X \sim \widehat{\mathbb{Q}}$, $X' \sim \mathbb{P}'$, define $Z = \widehat{Z} + (X' - \widehat{X})b^*/\|b^{\top}\|_*$. Then $X = b^{\top}Z = X$, $\mathbb{P}' = \mathbb{P}$, and $\|\widehat{Z} - Z\| = \|b^{\top}\|_*^{-1}\|\widehat{X} - X\|$, thus $\mathcal{W}_p(\widehat{\mathbb{Q}}, \mathbb{Q}) \le \|b^{\top}\|_*^{-1}\mathcal{W}_p(\widehat{\mathbb{P}}, \mathbb{P})$. We have transformed the problem to the following form: with $p < \infty$, $c(\widehat{x}, x) = |\widehat{x} - x|^p$,

$$\sup_{\mathbb{Q}\in\mathcal{P}(\mathcal{Z})} \left\{ \mathbb{C} V @ R_{\beta}^{\mathbb{Q}}(b^{\top}Z) : \mathcal{W}_{p}(\widehat{\mathbb{Q}}, \mathbb{Q}) \leq \rho \right\} = \sup_{\mathbb{P}\in\mathcal{P}(\mathcal{X})} \left\{ J(\mathbb{P}) : \mathcal{K}_{c}(\widehat{\mathbb{P}}, \mathbb{P}) \leq (\|b^{\top}\|_{*}\rho)^{p} \right\} = \mathcal{L}_{J}((\|b^{\top}\|_{*}\rho)^{p}),$$

and with $p = \infty$, $c(\widehat{x}, x) = |\widehat{x} - x|^p$,

$$\sup_{\mathbb{Q}\in\mathcal{P}(\mathcal{Z})}\left\{\mathbb{C}\mathrm{V}@\mathrm{R}_{\beta}^{\mathbb{Q}}(b^{\top}Z):\mathcal{W}_{p}(\widehat{\mathbb{Q}},\mathbb{Q})\leq\rho\right\}=\sup_{\mathbb{P}\in\mathcal{P}(\mathcal{X})}\left\{J(\mathbb{P}):\overline{\mathcal{K}}_{c}(\widehat{\mathbb{P}},\mathbb{P})\leq\|b^{\top}\|_{*}\rho\right\}=\overline{\mathcal{L}}_{\mathrm{J}}(\|b^{\top}\|_{*}\rho).$$

For simplicity, assume $||b^*|| = 1$ from now on.

To apply Theorem 3, we verify the following prerequisites:

- f_{α} satisfies Assumption 1: $f_{\alpha} \ge \alpha$ so $\mathbb{E}_{\widehat{\mathbb{D}}}[f_{\alpha}] \ge \alpha > -\infty$.
- f_{α} is lower semi-continuous and convex in α : this is obvious since $f_{\alpha} = \max\{\alpha, \frac{1}{\beta}x + (1 \frac{1}{\beta})\alpha\}$ is the maximum of two affine functions.
- $\inf_{\alpha \in A', x \in \mathcal{X}} f_{\alpha}(x) > -\infty$ for compact $A' \subset \mathbb{R}$: $\inf_{\alpha \in A', x \in \mathcal{X}} f_{\alpha}(x) = \inf_{\alpha \in A'} \alpha = \min_{\alpha \in A'} \alpha > -\infty$, since A' is compact and bounded.
- $f_{\alpha} \lambda c$ satisfies (IP): this is because \mathcal{X} is a Euclidean space, which is complete and separable.
- (5) holds for \mathbb{P} in Wasserstein ball: from [17] we know that for CVaR problem, the minimum of (4) is attained on a nonempty closed bounded interval $\alpha \in [\underline{\alpha}, \overline{\alpha}]$ (possibly a singleton). This interval contains α such that $\mathbb{P}(X \ge \alpha) \ge \beta$ and $\mathbb{P}(X \le \alpha) \ge 1 \beta$. By Lemma EC.2, this interval is contained in

$$A' = \left[-\mathbb{C} \mathbf{V} @ \mathbf{R}_{1-\beta}^{\widehat{\mathbb{P}}}(-\widehat{X}) - \frac{1}{1-\beta} \mathcal{W}_1(\widehat{\mathbb{P}}, \mathbb{P}), \mathbb{C} \mathbf{V} @ \mathbf{R}_{\beta}^{\widehat{\mathbb{P}}}(\widehat{X}) + \frac{1}{\beta} \mathcal{W}_1(\widehat{\mathbb{P}}, \mathbb{P}) \right].$$

Since $W_1(\widehat{\mathbb{P}}, \mathbb{P}) \leq W_p(\widehat{\mathbb{P}}, \mathbb{P})$ for $p \in [1, \infty]$, we have verified all the prerequisites of Theorem 3.

When $p = \infty$, by Theorem 3, we conclude

$$\overline{\mathcal{L}}_{J}(\rho) = \sup_{\mathbb{P} \in \mathcal{P}} \left\{ \mathbb{C} V @ R_{\beta}^{\mathbb{P}}(X) : \mathcal{W}_{\infty}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} = \inf_{\alpha \in A} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x} \left\{ f_{\alpha}(x) : |\widehat{X} - x| \leq \rho \right\} \right],$$

where

$$\sup_{x} \left\{ f_{\alpha}(x) : |\widehat{X} - x| \le \rho \right\} = \sup_{x} \left\{ \alpha + \frac{1}{1 - \beta} (x - \alpha)_{+} : |\widehat{X} - x| \le \rho \right\} = \alpha + \frac{1}{1 - \beta} (\widehat{X} + \rho - \alpha)_{+}.$$

We thus conclude that

$$\overline{\mathcal{L}}_{J}(\rho) = \inf_{\alpha \in A} \left\{ \alpha + \frac{1}{1 - \beta} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} [(\widehat{X} + \rho - \alpha)_{+}] \right\} = \mathbb{C} V @R_{\beta}^{\widehat{\mathbb{P}}}(\widehat{X}) + \rho.$$

When p = 1,

$$\sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda c(\widehat{x}, x) \right\} = \sup_{x \in \mathcal{X}} \left\{ \alpha + \frac{1}{1 - \beta} (x - \alpha)_{+} - \lambda |\widehat{x} - x| \right\} = \begin{cases} \alpha + \frac{1}{1 - \beta} (\widehat{x} - \alpha)_{+} & \lambda \geq \frac{1}{1 - \beta} \\ \infty & \lambda < \frac{1}{1 - \beta} \end{cases}.$$

Therefore for $\lambda \geq \frac{1}{1-\beta}$,

$$\inf_{\alpha \in A} \left\{ \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda c(\widehat{X}, x) \right\} \right] \right\} = \inf_{\alpha \in A} \left\{ \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\alpha + \frac{1}{1 - \beta} (\widehat{X} - \alpha)_{+} \right] \right\} = \mathbb{C} \mathbf{V} @ \mathbf{R}_{\beta}^{\widehat{\mathbb{P}}}(\widehat{X}).$$

Thus

$$\mathcal{L}_{\mathbf{J}}(\rho) = \inf_{\alpha \in A, \lambda \geq 0} \left\{ \lambda \rho + \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda c(\widehat{X}, x) \right\} \right] \right\} = \mathbb{C} \mathbf{V} @ \mathbf{R}_{\beta}^{\widehat{\mathbb{P}}}(\widehat{X}) + \frac{\rho}{1 - \beta}.$$

When p > 1,

$$\sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda |\widehat{x} - x|^{p} \right\} = \sup_{x \in \mathcal{X}} \left\{ \alpha + \frac{1}{1 - \beta} (x - \alpha)_{+} - \lambda |\widehat{x} - x|^{p} \right\}$$

$$= \sup_{x \in \mathcal{X}} \left\{ \alpha + \frac{1}{1 - \beta} (x - \alpha) - \lambda |\widehat{x} - x|^{p} \right\} \vee \sup_{x \in \mathcal{X}} \left\{ \alpha - \lambda |\widehat{x} - x|^{p} \right\}$$

$$= \left(\alpha + \frac{1}{1 - \beta} (\widehat{x} - \alpha) + \sup_{t \in \mathbb{R}} \left\{ \frac{t}{1 - \beta} - \lambda |t|^{p} \right\} \right) \vee \alpha$$

$$= \alpha + \left(\frac{1}{1 - \beta} (\widehat{x} - \alpha) + C\lambda^{-\frac{1}{p-1}} \right)_{+}$$

$$= \alpha + \left(\frac{1}{1 - \beta} (\widehat{x} - (\alpha - C(1 - \beta)\lambda^{-\frac{1}{p-1}}) \right)_{+}$$

where $C = (p-1)(p(1-\beta))^{-\frac{p}{p-1}}$. Thus

$$\inf_{\alpha \in A} \left\{ \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda c(\widehat{X}, x) \right\} \right] \right\} = \mathbb{C} V @ R_{\beta}^{\widehat{\mathbb{P}}}(\widehat{X}) + C(1 - \beta) \lambda^{-\frac{1}{p-1}}.$$

Therefore

$$\mathcal{L}_{\mathbf{J}}(\rho^{p}) = \mathbb{C}\mathbf{V} @\mathbf{R}_{\beta}^{\widehat{\mathbb{P}}}(\widehat{X}) + \min_{\lambda \geq 0} \left\{ \lambda \rho^{p} + C(1-\beta)\lambda^{-\frac{1}{p-1}} \right\} = \mathbb{C}\mathbf{V} @\mathbf{R}_{\beta}^{\widehat{\mathbb{P}}}(\widehat{X}) + \rho(1-\beta)^{-\frac{1}{p}}.$$

In conclusion, for $p \in [1, \infty]$, it holds that

$$\sup_{\mathbb{P}\in\mathcal{P}}\left\{\mathbb{C}\mathrm{V}@\mathrm{R}_{\beta}^{\mathbb{P}}(X):\mathcal{W}_{p}(\widehat{\mathbb{P}},\mathbb{P})\leq\rho\right\}=\mathbb{C}\mathrm{V}@\mathrm{R}_{\beta}^{\widehat{\mathbb{P}}}(\widehat{X})+\rho(1-\beta)^{-\frac{1}{p}}.$$

Proof of Example 8 (\mathbb{V} ar). Same as Example 8 \mathbb{C} V@R, we can reduce to a one-dimensional problem and assume without loss of generality that $||b^{\top}||_* = 1$.

It is well-known that the optimal α is the expectation:

$$Var^{\mathbb{P}}(X) = \min_{\alpha} \mathbb{E}[(X - \alpha)^{2}] = \mathbb{E}[(X - \mathbb{E}[X])^{2}].$$

Given $\widehat{\mathbb{P}}$, \mathbb{P} and a transport plan $\gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P})$, the transport cost

$$\mathbb{E}_{\gamma}[\|\widehat{X} - X\|] \ge |\mathbb{E}_{\gamma}[\widehat{X} - X]| \ge |\mathbb{E}_{\widehat{\mathbb{D}}}[\widehat{X}] - \mathbb{E}_{\mathbb{P}}[X]|.$$

Minimizing over all $\gamma \in \Gamma(\widehat{\mathbb{P}}, \mathbb{P})$ gives

$$\mathbb{E}_{X \sim \mathbb{P}}[X] \leq \left[\mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}}[\widehat{X}] - \mathcal{W}_1(\widehat{X}, X), \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}}[\widehat{X}] + \mathcal{W}_1(\widehat{X}, X) \right].$$

Same as before, we can verify that $f_{\alpha}(x) = (x - \alpha)^2$ meets all the prerequisites of Theorem 3.

When $p = \infty$, by Theorem 3, we conclude

$$\overline{\mathcal{L}}_{\mathrm{J}}(\rho) = \sup_{\mathbb{P} \in \mathcal{P}} \left\{ \mathbb{V}\mathrm{ar}^{\mathbb{P}}(X) : \mathcal{W}_{\infty}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} = \inf_{\alpha \in A} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x} \left\{ f_{\alpha}(x) : |\widehat{X} - x| \leq \rho \right\} \right],$$

where

$$\sup_{x} \left\{ f_{\alpha}(x) : |\widehat{X} - x| \le \rho \right\} = \sup_{x} \left\{ (x - \alpha)^2 : |\widehat{X} - x| \le \rho \right\} = (|\widehat{X} - \alpha| + \rho)^2.$$

We thus conclude that

$$\overline{\mathcal{L}}_{J}(\rho) = \inf_{\alpha \in A} \left\{ \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[(|\widehat{X} - \alpha| + \rho)^{2}] \right\}.$$

When $1 \le p < 2$, for any $\lambda \ge 0$, it holds that

$$\sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda c(\widehat{x}, x) \right\} = \sup_{x \in \mathcal{X}} \left\{ (x - \alpha)^2 - \lambda |\widehat{x} - x|^p \right\} = +\infty.$$

Thus for any $\rho > 0$ we must have

$$\mathcal{L}_{\mathsf{I}}(\rho^p) = +\infty.$$

When p = 2,

$$\begin{split} \sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda |\widehat{x} - x|^2 \right\} &= \sup_{x \in \mathcal{X}} \left\{ (x - \alpha)^2 - \lambda (\widehat{x} - x)^2 \right\} \\ &= \begin{cases} +\infty & 0 \le \lambda < 1, \text{ or } \lambda = 1, \widehat{x} \ne \alpha, \text{ or } \lambda = 1, \widehat{x} \ne \alpha, \text{ or } \lambda = 1, \widehat{x} \ne \alpha, \text{ or } \lambda = 1, \widehat{x} = \alpha \\ \frac{\lambda}{\lambda - 1} (\widehat{x} - \alpha)^2 & \lambda > 1. \end{cases} \end{split}$$

Thus

$$\inf_{\alpha \in A} \left\{ \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda c(\widehat{X}, x) \right\} \right] \right\} = \begin{cases} +\infty & 0 \leq \lambda < 1, \text{ or } \lambda = 1, \widehat{\mathbb{P}} \neq \mathbf{\delta}_{\widehat{x}} \text{ for any } \widehat{x} \in \mathcal{X} \\ 0 & \lambda = 1, \widehat{\mathbb{P}} = \mathbf{\delta}_{\widehat{x}} \text{ for some } \widehat{x} \in \mathcal{X} \\ \frac{\lambda}{\lambda - 1} \mathbb{V} \operatorname{ar}^{\widehat{\mathbb{P}}}(\widehat{X}) & \lambda > 1. \end{cases}$$

We now conclude

$$\mathcal{L}_{J}(\rho^{2}) = \inf_{\lambda > 1} \left\{ \lambda \rho^{2} + \frac{\lambda}{\lambda - 1} \mathbb{V} \operatorname{ar}^{\widehat{\mathbb{P}}}(\widehat{X}) \right\} = (\mathbb{V} \operatorname{ar}^{\widehat{\mathbb{P}}}(\widehat{X})^{\frac{1}{2}} + \rho)^{2}.$$

Proof of Example 8 (MAD). Same as Example 8 $\mathbb{C}V@R$, we can reduce to a one-dimensional problem and assume without loss of generality that $||b^{\top}||_* = 1$.

It is well-known that the optimal α is the median. By Lemma EC.2, the median of \mathbb{P} inside the Wasserstein uncertainty set is attained in

$$\alpha \in \left[-\mathbb{C} V @R_{\frac{1}{2}}^{\widehat{\mathbb{P}}}(-\widehat{X}) - 2\mathcal{W}_{1}(\widehat{\mathbb{P}}, \mathbb{P}), \mathbb{C} V @R_{\frac{1}{2}}^{\widehat{\mathbb{P}}}(\widehat{X}) + 2\mathcal{W}_{1}(\widehat{\mathbb{P}}, \mathbb{P}) \right].$$

Same as in Example 8 CV@R, we can verify that $f_{\alpha}(x) = |x - \alpha|$ meets all the prerequisites of Theorem 3.

When $p = \infty$, by Theorem 3, we conclude

$$\overline{\mathcal{L}}_{J}(\rho) = \sup_{\mathbb{P} \in \mathcal{P}} \left\{ \mathbb{M}AD^{\mathbb{P}}(X) : \mathcal{W}_{\infty}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} = \inf_{\alpha \in A} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x} \left\{ f_{\alpha}(x) : |\widehat{X} - x| \leq \rho \right\} \right],$$

where

$$\sup_{\mathbf{x}} \left\{ f_{\alpha}(\mathbf{x}) : |\widehat{X} - \mathbf{x}| \le \rho \right\} = \sup_{\mathbf{x}} \left\{ |\mathbf{x} - \alpha| : |\widehat{X} - \mathbf{x}| \le \rho \right\} = |\widehat{X} - \alpha| + \rho.$$

We thus conclude that

$$\overline{\mathcal{L}}_{J}(\rho) = \inf_{\alpha \in A} \left\{ \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}}[|\widehat{X} - \alpha|] + \rho \right\} = MAD^{\widehat{\mathbb{P}}}(\widehat{X}) + \rho.$$

When p = 1,

$$\sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda c(\widehat{x}, x) \right\} = \sup_{x \in \mathcal{X}} \left\{ |x - \alpha| - \lambda |\widehat{x} - x| \right\} = \begin{cases} |\widehat{x} - \alpha| & \lambda \ge 1 \\ \infty & \lambda < 1 \end{cases}$$

Therefore for $\lambda \geq 1$,

$$\inf_{\alpha \in A} \left\{ \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda c(\widehat{X}, x) \right\} \right] \right\} = \inf_{\alpha \in A} \left\{ \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[|\widehat{X} - \alpha| \right] \right\} = \mathbb{M} \mathrm{AD}^{\widehat{\mathbb{P}}}(\widehat{X}).$$

Thus

$$\mathcal{L}_{\mathbf{J}}(\rho) = \inf_{\alpha \in A, \lambda \geq 0} \left\{ \lambda \rho + \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f_{\alpha}(x) - \lambda c(\widehat{X}, x) \right\} \right] \right\} = \mathbb{M} \mathbf{A} \mathbf{D}^{\widehat{\mathbb{P}}}(\widehat{X}) + \rho.$$

Robust loss for p = 1 and $p = \infty$ are both $MAD^{\widehat{\mathbb{P}}}(\widehat{X}) + \rho$. As $\mathcal{W}_1(\widehat{\mathbb{P}}, \mathbb{P}) \leq \mathcal{W}_p(\widehat{\mathbb{P}}, \mathbb{P}) \leq \mathcal{W}_{\infty}(\widehat{\mathbb{P}}, \mathbb{P})$, we have for any $1 \leq p \leq \infty$:

$$\sup_{\mathbb{P}\in\mathcal{P}}\left\{\mathbb{C}\mathrm{V}@\mathrm{R}_{\beta}^{\mathbb{P}}(X):\mathcal{W}_{p}(\widehat{\mathbb{P}},\mathbb{P})\leq\rho\right\}=\mathrm{M}\mathrm{AD}^{\widehat{\mathbb{P}}}(\widehat{X})+\rho.$$

Proof of Example 8 (Ent). Same as Example 8 $\mathbb{C}V@R$, we can reduce to a one-dimensional problem and assume without loss of generality that $||b^{\top}||_* = 1$.

 $\alpha \mapsto \mathbb{E}[f_{\alpha}(X)] = \alpha + \frac{1}{\theta} \left(\mathbb{E}[e^{\theta(X-\alpha)}] - 1 \right)$ is convex, and $\lim_{\alpha \to \pm \infty} \mathbb{E}[f_{\alpha}(X)] = +\infty$, so the minimizer α^* satisfies

$$0 = \frac{d}{d\alpha} \bigg|_{\alpha = \alpha^*} \mathbb{E}[f_{\alpha}(X)] = 1 - \mathbb{E}[e^{\theta(X - \alpha^*)}].$$

Therefore, $e^{\theta \alpha^*} = \mathbb{E}[e^{\theta X}]$. Suppose $\widehat{\alpha}^*$ is the minimizer to $\mathbb{E}[f_{\alpha}(\widehat{X})]$, and γ -ess $\sup_{\widehat{x},x} \|\widehat{x} - x\| \le \rho$, then

$$e^{\theta\alpha^*} = \mathbb{E}[e^{\theta X}] \leq \mathbb{E}[e^{\theta(\widehat{X}+\rho)}] = \mathbb{E}[e^{\theta\widehat{X}}]e^{\theta\rho} = e^{\theta(\widehat{\alpha}^*+\rho)}.$$

Hence $\alpha^* \leq \widehat{\alpha}^* + \rho$. Similarly, $\alpha^* \geq \widehat{\alpha}^* - \rho$. Therefore,

$$\alpha \in [\widehat{\alpha}^* - \mathcal{W}_{\infty}(\widehat{\mathbb{P}}, \mathbb{P}), \widehat{\alpha}^* + \mathcal{W}_{\infty}(\widehat{\mathbb{P}}, \mathbb{P})].$$

By Theorem 3, we conclude for $p = \infty$:

$$\begin{split} \overline{\mathcal{L}}_{\mathbf{J}}(\rho) &= \inf_{\alpha \in \mathbb{R}} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathbb{R}} \left\{ \alpha + \frac{1}{\theta} \left(e^{\theta(x - \alpha)} - 1 \right) : |\widehat{X} - x| \le \rho \right\} \right] \\ &= \inf_{\alpha \in \mathbb{R}} \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\alpha + \frac{1}{\theta} \left(e^{\theta(\widehat{X} + \rho - \alpha)} - 1 \right) - \alpha \right] \\ &= \frac{1}{\theta} \log(\mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} [e^{\theta \widehat{X}}]) + \rho = \mathbb{E} \mathrm{nt}_{\theta}^{\widehat{\mathbb{P}}}(\widehat{X}) + \rho. \end{split}$$

For $p < \infty$, we verify $\mathcal{L}_{J}(\rho) = +\infty$ directly. We define $\mathbb{P}_{\epsilon} = (1 - \epsilon)\widehat{\mathbb{P}} + \epsilon\widehat{\mathbb{P}}_{M_{\epsilon}}$, where $\widehat{\mathbb{P}}_{M} = (x \mapsto x + M)_{\#}\widehat{\mathbb{P}}$ is right-translation of $\widehat{\mathbb{P}}$ by M, and $M_{\epsilon} = \rho \epsilon^{-1/p}$. Then $\mathcal{W}_{p}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho$. However,

$$\mathbb{E}_{\mathbb{P}_{\epsilon}}[e^{\theta X}] = (1 - \epsilon)\mathbb{E}[e^{\theta \widehat{X}}] + \epsilon\mathbb{E}[e^{\theta(\widehat{X} + M_{\epsilon})}] = (1 - \epsilon + \epsilon e^{\theta M_{\epsilon}})\mathbb{E}[e^{\theta \widehat{X}}],$$

and accordingly

$$\mathbb{E}\mathrm{nt}_{\theta}^{\mathbb{P}_{\epsilon}}(X) = \frac{1}{\theta}\log(\mathbb{E}_{X \sim \mathbb{P}_{\epsilon}}[e^{\theta X}]) = \frac{1}{\theta}\log(\mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}}[e^{\theta \widehat{X}}]) + \frac{1}{\theta}\log(1 + \epsilon(e^{\theta \epsilon^{-1/p}} - 1)),$$

which tends to infinity as $\epsilon \to 0$.

Appendix EC.6: Proofs for Section 5.3

Proof of Proposition 4. For a fixed θ , first we apply Theorem 1 to $-\mathcal{L}_{G}(\cdot,\theta)$ by taking the Fenchel conjugate

$$(-\mathcal{L}_{G}(\cdot,\theta))^{*}(-\lambda) = \sup_{\mathbb{P},\widetilde{\mathbb{P}}\in\mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{X\sim\mathbb{P}}[f(X)] - \lambda\mathcal{K}_{c}(\widetilde{\mathbb{P}},\mathbb{P}) : \mathcal{K}_{\tilde{c}}(\widehat{\mathbb{P}},\widetilde{\mathbb{P}}) \leq \theta \right\}$$
$$= \sup_{\widetilde{\mathbb{P}}\in\mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{\widetilde{X}\sim\widetilde{\mathbb{P}}}\left[\sup_{x\in\mathcal{X}} \left\{ f(x) - \lambda c(\widetilde{X},x) \right\} \right] : \mathcal{K}_{\tilde{c}}(\widehat{\mathbb{P}},\widetilde{\mathbb{P}}) \leq \theta \right\}.$$

Denote $\tilde{f}(\tilde{x}) = \sup_{x \in \mathcal{X}} f(x) - \lambda c(\tilde{x}, x)$. Then we apply Theorem 1 to \tilde{f}, \tilde{c} and $-(-\mathcal{L}_{G}(\cdot, \theta))^{*}(-\lambda)$ by taking Fenchel conjugate $\theta \to -\mu$:

$$\mathcal{L}_{\mathbf{G}}^{*}(-\lambda, -\mu) = \sup_{\widetilde{\mathbb{P}} \in \mathcal{P}(\mathcal{X})} \left\{ \mathbb{E}_{\widetilde{X} \sim \mathbb{P}} \left[\sup_{x \in \mathcal{X}} \left\{ f(x) - \lambda c(\widetilde{X}, x) \right\} \right] - \mu \mathcal{K}_{\widetilde{c}}(\widehat{\mathbb{P}}, \widetilde{\mathbb{P}}) \right\}$$
$$= \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x, \widetilde{x} \in \mathcal{X}} \left\{ f(x) - \lambda c(\widetilde{x}, x) - \mu \widetilde{c}(\widehat{X}, \widetilde{x}) \right\} \right].$$

Since $(-\mathcal{L}_G(\cdot,\theta))^*(-\lambda)$ is concave in θ , we recover it by

$$(-\mathcal{L}_{G}(\cdot,\theta))^{*}(-\lambda) = \min_{\mu \geq 0} \left\{ \mu\theta + (-\mathcal{L}_{G})^{*}(-\lambda,-\mu) \right\}$$
$$= \min_{\mu \geq 0} \left\{ \mu\theta + \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x,\tilde{x} \in \mathcal{X}} \left\{ f(x) - \lambda c(\tilde{x},x) - \mu \tilde{c}(\widehat{X},\tilde{x}) \right\} \right] \right\}.$$

Since $\mathcal{L}_{G}(\rho, \theta)$ is concave in ρ , we recover it by

$$\mathcal{L}_{G}(\rho,\theta) = \min_{\lambda,\mu \geq 0} \left\{ \lambda \rho + \mu \theta + \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x,\tilde{x} \in \mathcal{X}} \left\{ f(x) - \lambda c(\tilde{x},x) - \mu \tilde{c}(\widehat{X},\tilde{x}) \right\} \right] \right\}.$$

In particular, if $c(x_1, x_2) = \tilde{c}(x_1, x_2) = d(x_1, x_2)$ are the same metric, then

$$\begin{split} \mathcal{L}_{\mathbf{G}}^{*}(-\lambda,-\mu) &= \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x,\tilde{x} \in \mathcal{X}} \left\{ f(x) - \lambda d(\tilde{x},x) - \mu d(\widehat{X},\tilde{x}) \right\} \right] \\ &= \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f(x) - (\lambda \wedge \mu) d(\widehat{X},x) \right\} \right] \end{split}$$

by taking $\tilde{x} = x$ when $\lambda \ge \mu$ and $\tilde{x} = \hat{X}$ when $\lambda \le \mu$. Correspondingly,

$$(-\mathcal{L}_{G})^{*}(-\lambda,\theta) = \min_{\mu \geq 0} \left\{ \mu\theta + \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f(x) - (\lambda \wedge \mu) d(\widehat{X},x) \right\} \right] \right\}$$
$$= \min_{\mu \in [0,\lambda]} \left\{ \mu\theta + \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f(x) - \mu d(\widehat{X},x) \right\} \right] \right\},$$

and

$$\mathcal{L}_{G}(\rho,\theta) = \min_{0 \le \mu \le \lambda} \left\{ \lambda \rho + \mu \theta + \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f(x) - \mu d(\widehat{X}, x) \right\} \right] \right\}$$

$$= \min_{\mu \ge 0} \left\{ \mu(\rho + \theta) + \mathbb{E}_{\widehat{X} \sim \widehat{\mathbb{P}}} \left[\sup_{x \in \mathcal{X}} \left\{ f(x) - \mu d(\widehat{X}, x) \right\} \right] \right\}.$$