Outlier detection challenge 2024

https://github.com/RasmusRPaulsen/OutlierDetectionChallenge2024

DTU Compute

Department of Applied Mathematics and Computer Science

Outlier detection challenge 2024

• The goal is to create an algorithm that can predict outliers in 3D medical images

Normal

Something about vocabulary

- Outlier detection:
 - Set of samples with both normal samples and anomalies
- Novelty detection:
 - Known training set with normal samples
 - Decide if new samples belong to the normal set or can be considered anomalies
- Our challenge:
 - Training set with normal samples + known artificial anomalies
 - Test set with normal samples + known anomalies
- Our challenge is *probably* a **novelty detection** challenge

https://scikit-learn.org/stable/modules/outlier_detection.html

Why is this relevant?

- Rare diseases or diseases that manifests in many different ways
 - You can get a good set of normal samples but lot of variation in normal samples
 - Very difficult to get samples representing all pathologies
 - If you can just tell that this sample is *probably not normal* it is a large help in the further analysis
- Lots of different ways to approach the problem:
 - Feature based using simpler statistics
 - Statistical approaches:
 - Principal component analysis, discriminant analysis, support vector machines and so on...
 - Registration based methods:
 - Fit template and examine residuals
 - Deep learning methods
 - Autoencoders

Data representations

- Complex anatomy
 - Lots of natural variation in a normal population
- Several ways to represent the 3D anatomy.
 We ideally want:
 - Information preserving
 - Compact
 - Possible to use with modern deep learning frameworks

Raw CT scans

- 3D Voxel volumes
- The voxel values are in calibrated Hounsfield Units (HU)
- HU = 0 : Equals X-ray absorption of water
- HU = -1000: Equals X-ray absorption of air
- We have pre-aligned all 3D volumes using a rigid-body registration using the L1 as the anatomy of interest.

Segmentations / labels

- 3D voxel volume with same dimensions as the CT image
- The voxel value corresponds to the underlying anatomy:

• Value 0: Background

• Value 20: L1

 We have pre-aligned all 3D volumes using a rigid-body registration using the L1 as the anatomy of interest.

Signed distance field

- 3D voxel volume with same dimensions as the CT image
- The voxel value are the signed distance to the outer surface of the L1
- Clamped to [-50, 50]

Surface / Mesh

- Triangle mesh representing the surface of the L1
- Consists of vertices and edges
- Stored in VTK format (can be converted to other formats)
- We have pre-processed the data
 - Point correspondence over the entire dataset
 - All L1 are represented by the same number of vertices and the same triangles

Data

- Raw CT, Segmentations, distance fields and surfaces
- Artificial outliers
- **Training:** A set of 500+ samples with both normal samples and for each sample there are also artificially generated outliers.
- **Test:** A smaller set of 200 samples and a full set with more samples. Used for keeping track of your prediction scores during the challenge.
- You should split the training data into your own custom training / validation set there is a script for that.

Teams

- We have pre-made 15 teams
- You should add your name and email to a team on the paper in the conference room
- Try to distribute yourself evenly
- You are responsible for gathering and organizing your team

Getting starting with the Python code

- Clone the GitHub repository
 - https://github.com/RasmusRPaulsen/OutlierDetectionChallenge2024
- Download the data (hopefully already done)
- Change your team name in the JSON configuration file
- Follow the instruction on the GitHub repository see the getting started part

Challenge results

- The team results are computed and put on the homepage several times a day
- http://fungi.compute.dtu.dk:8080/
- Submit results to the challenge server, at least, two times daily
- You should submit the final set scores latest Thursday at 16h!

Metrics

- We use the same metrics as used in binary / two-class classification
- They are derived from the confusion matrix:
 - The number of true positives (TP)
 - The number of false positives (FP)
 - The number of true negatives (TN)
 - The number of false negatives (FN)
- The metrics we compute are:
 - Accuracy
 - Precision
 - Recall
 - F1
 - Cohens Kappa

Data visualization

- It is important to be able to visualise the samples
- In particular if you are using generative models
 - To check the output
- 3D Slicer is a very powerful tool. It can (among tons of other things)
 - Visualise 3D volumes
 - Volume rendering
 - Segmentation rendering
 - Surface rendering

The board - some baseline results

Messages of the day

No current messages!

The Current Challenge Board

Team	Method	Data	Data type(s)	DateTime	Samples predicted	Accuracy	F1	Precision	Recall	Cohens Kappa
Verticulix	Point distribution model with PCA distance threshold	test_files_200.txt	mesh	Tue Aug 6 18:13:41 2024	200	0.60	0.53	0.90	0.00	0.27
Verticulix	Point distribution model	test_files_200.txt	None	040824_121004	37	0.42	0.15	0.62	0.08	0.01
Verticulix	Point distribution model	test_files_200.txt	None	Sun Aug 4 12:14:09 2024	37	0.42	0.15	0.62	0.08	0.01
Verticulix	Segmentation volume threshold	test_files_200.txt	Segmentation	Tue Aug 6 18:11:59 2024	200	0.42	0.15	0.62	0.08	0.01
Verticulix	Point distribution model	test_files_200.txt	mesh	Tue Aug 6 12:29:06 2024	39	0.43	0.16	0.69	0.09	0.02
Verticulix	Point distribution model	train_files.txt	None	030824_111637	1	0.40	0.00	0.00	0.00	0.00

Press here to sort by that column

Updated: Tue Aug 6 18:19:53 2024

http://fungi.compute.dtu.dk:8080/

Presentations and results

- The final project presentations and results are on Thursday from 17:10-18:45
- Each team has 4 minutes to present their project with maximum 3 slides
 - Brief review of your approach
 - Did it work as expected?

• Finally, the **final test** results are presented by the organizers

Guide and tips

• Use, at least, one non-deep learning method first

• Divide the data with ground truth into your own train / validation splits

Rules

- We are not checking for cheating and believe in fair play and that you are here to learn
- We do not recommend you to:
 - Use other teams names
 - Get images and segmentations from external sites
 - Hack or modify the submission script

Have fun!

