I_{D}

-3.4A

-2.7A

International Rectifier

IRF5803

HEXFET® Power MOSFET

 $R_{DS(on)} \max (m\Omega)$

112@V_{GS} = -10V

 $190@V_{GS} = -4.5V$

- Ultra Low On-Resistance
- P-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Low Gate Charge

2 Low Gate Griding

Description

These P-channel HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications.

The TSOP-6 package with its customized leadframe produces a HEXFET® power MOSFET with $R_{DS(on)}\,60\%$ less than a similar size SOT-23. This package is ideal for applications where printed circuit board space is at a premium. It's unique thermal design and $R_{DS(on)}\,$ reduction enables a current-handling increase of nearly 300% compared to the SOT-23.

V_{DSS}

-40V

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain- Source Voltage	-40	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-3.4	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-2.7	Α
I _{DM}	Pulsed Drain Current ①	-27	
P _D @T _A = 25°C	Power Dissipation ③	2.0	W
P _D @T _A = 70°C	Power Dissipation ③	1.3	"
	Linear Derating Factor	16	mW/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	62.5	°C/W

IRF5803

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-40			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.03		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			112	mΩ	V _{GS} = -10V, I _D = -3.4 ②
TOS(on)	Static Drain to Source On Nesistance			190	11152	V _{GS} = -4.5V, I _D = -2.7A ②
V _{GS(th)}	Gate Threshold Voltage	-1.0		-3.0	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
g _{fs}	Forward Transconductance	4.0			S	$V_{DS} = -10V, I_D = -3.4A$
lane	Drain-to-Source Leakage Current			-10		$V_{DS} = -32V, V_{GS} = 0V$
I _{DSS}	Diali-10-30dice Leakage Current			-25	μA	$V_{DS} = -32V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -20V
GSS	Gate-to-Source Reverse Leakage			100	11/	$V_{GS} = 20V$
Qg	Total Gate Charge		25	37		I _D = -3.4A
Q _{gs}	Gate-to-Source Charge		4.5	6.8	nC	$V_{DS} = -20V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		3.5	5.3		$V_{GS} = -10V$
t _{d(on)}	Turn-On Delay Time		43			V _{DD} = -20V ②
t _r	Rise Time		550		ns	$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		88		115	$R_G = 6.0\Omega$
t _f	Fall Time		50			$V_{GS} = -10V$
C _{iss}	Input Capacitance		1110			$V_{GS} = 0V$
Coss	Output Capacitance		93		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		73			f = 100kHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-2.0		MOSFET symbol
	(Body Diode)			2.0	A	showing the
I _{SM}	Pulsed Source Current			-27] ^	integral reverse
	(Body Diode) ①			-21		p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -2.0A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		27	40	ns	T _J = 25°C, I _F = -2.0A
Q _{rr}	Reverse Recovery Charge		34	50	nC	di/dt = -100A/µs ②

Notes:

① Repetitive rating; pulse width limited by max. junction temperature.

³ Surface mounted on 1 in square Cu board

② Pulse width \leq 400 μ s; duty cycle \leq 2%.

 $(V) = 0.01 \\ (V) = 0.01 \\ (V)$

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

IRF5803 International Internat

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area www.irf.com

International

TOR Rectifier

IRF5803

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

IRF5803

International TOR Rectifier

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14b. Gate Charge Test Circuit

6

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

IRF5803

International TOR Rectifier

TSOP-6 Package Outline

SYMBOL	MO-193AA DIMENSIONS						
B	MILLIMETERS			INCHES			
Ľ	MIN	МОИ	MAX	MIN	NOM	MAX	
Α			1,10			.0433	
A1	0.01		0.10	.0004		.0039	
A2	0.80	0.90	1.00	.0315	.0354	.0393	
b	0.25		0.50	.0099		.0196	
С	0.10		0,26	,004		.010	
D	2.90	3.00	3.10	.115	.118	.122	
Ε	2.75 BSC			.108 BSC			
E1	1.30	1.50	1.70	.052	.059	.066	
е	1.00 BSC			.039 BSC			
L	0.20	0.40	0.60	.0079	.0157	.0236	
L1	0.30 BSC			.0118 BSC			
Θ	0.		8.	0.		8.	
000		0.10		.004			
bbb		0.15		.006			
ccc	0.25 .010						

TSOP-6 Part Marking Information

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YEAR	Υ	WORK WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5		
1996	6		
1997	7		
1998	8	1	1
1999	9	7	1
2000	0	24	Χ
		25	Υ
		26	Z

PART NUMBER CODE REFERENCE:

3A = SI3443DV 3B = IRF5800 3C = IRF5850 3D = IRF5851 3E = IRF5852 3I = IRF5805

3J = IRF5806

DATE CODE EXAMPLES:

YWW = 9603 = 6C YWW = 9632 = FF

WW = (27-52) IF PRECEDED BY ALETTER

YEAR	Υ	WORK WEEK	W
2001	Α	27	A
2002	В	28	В
2003	С	29	С
2004	D	30	D
2005	Ε		
1996	F		
1997	G		
1998	Н	1	1
1999	J	7	7
2000	K	50	X
		51	Υ
		52	Z

TSOP-6 Tape & Reel Information

NOTES:

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the consumer market.

Qualification Standards can be found on IR's Web site.

9

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.03/01