Тестирование по математическому анализу.

Кусакин Александр Александрович, ПИ-176.

Найдите номер члена последовательности $y_n = \frac{3n+191}{3n+2}$, наиболее близкое к числу 2.

Решение. Выделим целую часть. $y_n = 1 + \frac{189}{3n+2}$. Заметим, что y_n наиболее близко к числу 2, тогда и только тогда когда $\frac{189}{3n+2}$ близко к числу 1. Решим уравнение $189=3n+2\Leftrightarrow n=\frac{187}{3}\approx 62.(3)$. Рассмотрим случаи:

1. При n = 62.
$$\frac{3*62+191}{3*62+2} = 2.005319$$

2. При n = 63.
$$\frac{3*63+191}{3*63+2} = 2.021276$$

Остальные значения п рассматривать не имеет смысла.

Ответ: 62.

Задание 2.

Решите уравнение, если известно, что |x|<1: $2x+1+x^2-x^3+x^4-x^5+...=\frac{13}{6}$ Решение. Заметим, что $x^2-x^3+x^4-x^5+...$ является бесконечно убывающей геометрической прогрессией, где $b_1=x^2,\ q=-x$. Таким образом, сумма равна $S=\frac{x^2}{1+x}$.

Заменим в имеющемся уравнении $2x+1+x^2-x^3+x^4-x^5+...=\frac{13}{6}$ прогрессию на её сумму и получим уравнение в следующем виде: $2x+1+\frac{x^2}{1+x}=\frac{13}{6} \Leftrightarrow 2x+\frac{x^2}{1+x}=\frac{7}{6} \Leftrightarrow 12x(1+x)+6x^2=7(1+x) \Leftrightarrow 12x+12x^2+6x^2=7(1+x)$ $7 + 7x \Leftrightarrow 18x^2 + 5x - 7 = 0 \Rightarrow \begin{vmatrix} x = -\frac{1}{9} \\ x = \frac{1}{2} \end{vmatrix}$

Ответ: $\{-\frac{7}{9}, \frac{1}{2}\}$

Задание 3.

Вычислите $\lim_{x\to 0.5} \frac{arccosx + \pi sinx}{\pi cos\pi x + 2arcsinx}$

Решение. Попробуем подставить вместо х 0,5 (значение к которому стремится х). Получим следующее $\frac{\frac{\pi}{3} + \pi}{0 + \frac{\pi}{2}} =$

$$\frac{\frac{4\pi}{3}}{\frac{\pi}{3}} = 4.$$

Задание 4.

Воспользовавшись определением, найдите производную функции в точке x: $y=\frac{1}{x^2}$

Решение. Сначала вспомним определение производной в точке x: $f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$. Подставим в эту формулу наше условие и получим следующее: $\lim_{\Delta x \to 0} \frac{\frac{1}{(x + \Delta x)^2} - \frac{1}{x^2}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{1}{x^2 + 2x\Delta x + \Delta x^2} - \frac{1}{x^2}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} =$

$$\lim_{\Delta x \to 0} \frac{-2x\Delta x - \Delta x^2}{x^2(x + \Delta x)^2 \Delta x} = \lim_{\Delta x \to 0} -\frac{2x + \Delta x}{x^2(x + \Delta x)^2} = -\frac{2}{x^3}$$
 Otbet: $-\frac{2}{x^3}$

Задание 5.

При каких значениях параметра а касательные к графику функции $y=4x^2-|a|x$, проведенные в точках его пересечения с осью x, образуют между собой угол 60°

Решение.

Ответ: ± 1