Fondamenti di Comunicazioni Elettriche / Telecomunicazioni Fibra ottica

Luca De Nardis luca.denardis@uniroma1.it

Sapienza Università di Roma — 04 Dicembre 2024

Esercizio 1

Si considerino una luce rossa e una luce blu.

Qual è l'energia di un fotone nel caso si emetta una luce rossa? E nel caso di una luce blu?

Soluzione

Nel caso di una luce rossa, la lunghezza d'onda è nell'ordine dei $700 \, nm$. Di conseguenza l'energia di un fotone sarà all'incirca pari a:

$$E_f = h f = h \frac{c}{\lambda_{ROSSO}} = 6.62 \cdot 10^{-34} \frac{3 \cdot 10^8}{700 \cdot 10^{-9}} = 2.83 \cdot 10^{-19} J.$$

La luce blu è a lunghezze d'onda intorno ai $470 \, nm$. Si ha quindi:

$$E_f = h f = h \frac{c}{\lambda_{BLU}} = 6.62 \cdot 10^{-34} \frac{3 \cdot 10^8}{470 \cdot 10^{-9}} = 4.22 \cdot 10^{-19} J.$$

Esercizio 2

La potenza ottica emessa da un LED attraversato da una corrente $i_D = 60 \ mA$ è pari a $W_T = 0.284 \ mW$. Si chiede di rispondere ai seguenti quesiti:

- 1. Qual è la lunghezza d'onda di emissione se l'efficienza del LED è pari a $\eta = 0.5\%$?
- 2. Se la potenza ottica generata internamente è pari a $W_{int}=28.4~mW$, determinare il valore dell'efficienza esterna η_e .
- 3. Se la geometria del LED fosse variata in modo tale da ottenere un'efficienza esterna $\eta_e=5\%$ quale sarebbe la potenza ottica emessa?

Soluzione

1. La relazione tra la potenza ottica emessa dal LED e la corrente che lo attraversa è:

$$W_T = \eta \, \frac{i_D}{q} \, E_f,$$

da cui:

$$E_f = \frac{q}{i_D \eta} W_T = \frac{1.6 \cdot 10^{-19}}{60 \cdot 10^{-3} \cdot 0.005} \cdot 0.284 \cdot 10^{-3} = 1.51 \cdot 10^{-19} J$$

e quindi:

$$\lambda = \frac{h\,c}{E_f} = \frac{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^8}{1.51 \cdot 10^{-19}} = 1.31 \; \mu m.$$

2. La potenza ottica generata è il risultato della trasduzione elettro-ottica prima che la geometria del LED introduca delle perdite, rappresentate dall'efficienza esterna η_e . Tale efficienza è appunto definita come rapporto tra potenza emessa e potenza generata internamente al LED:

$$\eta_e = \frac{W_T}{W_{int}} = \frac{0.284 \cdot 10^{-3}}{28.4 \cdot 10^{-3}} = 0.01 = 1\%.$$

3. Se l'efficienza esterna viene incrementata si otterrà una maggiore potenza emessa a parità di potenza generata internamente; il nuovo valore sarà dato da:

$$W_T = \eta_e W_{int} = 0.05 \cdot 28.4 \cdot 10^{-3} = 1.42 \text{ mW}.$$

Esercizio 3

Sia data una fibra ottica operante in III finestra. Quanti fotoni al secondo vengono emessi se si trasmette con una potenza $W_T = 1 \, mW$?

Soluzione

La III finestra in fibra ottica corrisponde a una lunghezza d'onda $\lambda=1.55~\mu m$. Il numero di fotoni al secondo, che indicheremo con $n_{f/s}$, è legato alla potenza ottica dalla relazione:

$$W_T = n_{f/s} E_f$$

da cui:

$$n_{f/s} = \frac{W_T}{E_f} = \frac{W_T}{h f} = \frac{W_T \lambda}{h c} = \frac{10^{-3} \cdot 1.55 \cdot 10^{-6}}{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^8} = 7.8 \cdot 10^{15} \ fotoni/secondo.$$

Esercizio 4

Si consideri un LED con corrente di lavoro pari a 70~mA, caratterizzato da un'efficienza quantica interna $\eta_i=0.6$. Noto che la potenza ottica interna generata è 40~mW, si valuti in quale banda emette il LED (ultravioletto, infrarosso, visibile).

Soluzione

Se definiamo la potenza ottica interna W_{int} come quella risultante dalla trasformazione elettro-ottica prima dell'impatto della geometria del LED, si ha:

$$W_{int} = \eta_i E_f \frac{i_D}{q} = \eta_i \frac{h c}{\lambda} \frac{i_D}{q}.$$

da cui si ricava:

$$\lambda = \eta_i \frac{h \, c \, i_D}{q \, W_{int}} = 0.6 \cdot \frac{6,62 \cdot 10^{-34} \cdot 3 \cdot 10^8 \cdot 70 \cdot 10^{-3}}{1.6 \cdot 10^{-19} \cdot 40 \cdot 10^{-3}} = 1300 \; nm.$$

La lunghezza d'onda individuata è situata quindi nella regione dell'infrarosso.

Esercizio 5

Un collegamento in fibra ottica (multimodo) utilizza in trasmissione una potenza pari a 0 dBm. Tenendo conto che la fibra è utilizzata in I finestra e che si vuole ottenere una potenza ricevuta almeno pari a -78~dBW, determinare la massima lunghezza ammissibile per il collegamento, facendo una ipotesi ragionevole sull'attenuazione introdotta dalla fibra alla lunghezza d'onda considerata.

Soluzione

La I finestra corrisponde a una lunghezza d'onda $\lambda = 800~nm$, e a tale lunghezza d'onda l'attenuazione in dB/km introdotta da una fibra è pari a $A_0 = 2~dB/km$.

Poiché l'attenuazione introdotta da tale fibra a una distanza di dkm è pari a $A=A_0 d$ e l'attenuazione massima accettabile in base ai dati del problema è pari a:

$$A_{max_{dB}} = W_{T_{dBw}} - W_{R_{dBw}} = -30 + 78 = 48 \ dB,$$

si ottiene:

$$A_{dB} = A_0 \ d \le A_{max_{dB}} \to d \le \frac{A_{max_{dB}}}{A_0} = \frac{48}{2} = 24 \ km.$$

Esercizio 6

Un collegamento in fibra ottica operante a una lunghezza d'onda pari a $0.8\,\mu m$, è caratterizzato da un bit rate R_b =20 Mb/s e da una potenza trasmessa pari a $W_{T_{dBm}}=-5\,dBm$. Per una fibra di lunghezza pari a $d=35\,km$, determinare il numero di fotoni ricevuti per bit $n_{f/b}$. Assumendo che il ricevitore abbia una sensibilità pari a S=100 fotoni per bit, indicare se nelle condizioni descritte esso è in grado di operare correttamente.

Soluzione

Se indichiamo con $n_{f/s}$ il numero di fotoni ricevuti al secondo, la potenza ottica in ricezione è data da:

$$W_R = n_{f/s} E_f = n_{f/b} R_b E_f.$$

Si ha quindi:

$$n_{f/b} = \frac{W_R}{R_b E_f}.$$

Per calcolarne il valore si deve quindi determinare il valore della potenza ricevuta. L'attenuazione introdotta dalla fibra alla lunghezza d'onda considerata è pari a:

$$A_{dB} = A_0 d = 2 \cdot 35 = 70 dB.$$

Si ha quindi:

$$W_{R_{dBm}} = W_{T_{dBm}} - A_{dB} = -5 - 70 = -75dBm \rightarrow W_R = 3.16 \cdot 10^{-11} W.$$

Sapendo che l'energia associata a ogni fotone alla lunghezza d'onda considerata è pari a:

$$E_f = h f = h \frac{c}{\lambda} = 6.62 \cdot 10^{-34} \cdot \frac{3 \cdot 10^8}{0.8 \cdot 10^{-6}} = 2.48 \cdot 10^{-19} J,$$

si ha:

$$n_{f/b} = \frac{W_R}{R_b \, E_f} = \frac{3.16 \cdot 10^{-11}}{2 \cdot 10^7 \cdot 2.48 \cdot 10^{-19}} = 6.37 fotoni/bit,$$

largamente inferiore alla sensibilità del ricevitore. Nel sistema considerato il ricevitore non è quindi in grado di operare correttamente.

Esercizio 7

Sia dato un collegamento in fibra ottica su cui viene trasmesso un segnale a lunghezza d'onda λ_0 con bit rate $R_b=1$ Gb/s, utilizzando una sorgente che emette la luce su un intervallo di lunghezze d'onda di larghezza $\Delta\lambda=3\,nm$.

Supponendo che la fibra ottica sia caratterizzata da un coefficiente di dispersione cromatica $D=6~ps/(km\cdot nm)$, determinare la massima distanza percorribile senza che si verifichi interferenza intersimbolica al ricevitore.

Soluzione

Il coefficiente di dispersione permette di calcolare la dispersione ΔT subita dagli impulsi luminosi emessi dal trasduttore di sorgente a una determinata distanza. Per calcolare la massima distanza percorribile occorre però definire qual è il valore della dispersione che porta a una condizione di interferenza intersimbolica. Se si suppone trascurabile la durata temporale iniziale degli impulsi, è possibile modellare il segnale trasmesso come una sequenza di impulsi di Dirac spaziati in tempo di $T=1/R_b$. La dispersione cromatica ha l'effetto di allargare temporalmente l'impulso intorno al suo istante di emissione nominale a causa delle differenti lunghezze d'onda presenti nel segnale trasmesso: si avrà quindi interferenza intersimbolica quando l'allargamento in tempo sarà tale da portare a una sovrapposizione di due impulsi consecutivi, cioè quando sarà maggiore di $\Delta T_{MAX}=T/2$. La condizione da imporre è quindi:

$$\Delta T = D \, \Delta \lambda \, d \le \Delta T_{MAX} = \frac{1}{2R_b},$$

da cui si ricava:

$$d \le \frac{1}{2 R_b D \Delta \lambda} = \frac{1}{2 \cdot 10^9 6 \cdot 10^{-12} \cdot 3} = 27.78 \ km.$$

Esercizio 8

Si consideri un collegamento in fibra ottica dalle caratteristiche riportate nella Tabella 1.

Parametro	Valore
Potenza trasmessa $W_{T_{dBm}}$	0 dBm
Sensibilità del ricevitore	1000 fotoni per bit
Lunghezza d'onda λ	$1.55~\mu m$
Larghezza spettrale di sorgente $\Delta \lambda$	$30 \ nm$
Fattore di dispersione cromatica D	$3ps/(km \cdot nm)$

Table 1: Parametri del sistema di comunicazione in fibra ottica considerato nell'Esercizio 8.

Per tale collegamento si vuole determinare il massimo bit rate R_b raggiungibile in funzione della distanza d tra trasmettitore e ricevitore, tenendo conto sia dell'attenuazione che della dispersione introdotti dalla fibra. A tale fine, si disegni su di un unico grafico l'andamento delle due curve $R_b(d)$ dovute ad attenuazione e dispersione in scala log-log in modo da determinare graficamente per ogni valore di d il massimo valore di R_b .

Soluzione

La soluzione dell'esercizio richiede di ottenere le espressioni del bit rate in funzione della distanza in base ai vincoli dovuti all' attenuazione e alla dispersione. Una volta ottenute le due espressioni, per ogni distanza il valore minore tra le due dirà qual è il bit rate massimo raggiungibile.

Per quanto riguarda l'attenuazione si deve tenere in conto la sensibilità del ricevitore, in modo da determinare in funzione della distanza qual è il massimo bit rate sostenibile; si ha infatti:

$$W_R \ge n_{f/s} E_f = n_{f/b} R_b E_f$$

da cui:

$$R_b \le \frac{W_R}{n_{f/b} E_f}.$$

tenendo conto della relazione tra potenza ricevuta e potenza trasmessa in funzione dell'attenuazione A, si ha:

$$R_b \le \frac{W_T/A}{n_{f/b} E_f} = \frac{W_T}{A n_{f/b} E_f}.$$

L'attenuazione introdotta dalla fibra, espressa in dB, è data da:

$$A_{dB} = A_0 d_{km}$$

dove A_0 è espressa in dB/km.

Sostituendo questa relazione nell'espressione del bit rate si ha:

$$R_{b_{ATT}} \leq \frac{W_T}{10^{(A_0\,d)/10}\,n_{f/b}\,E_f},$$

dove d è espressa in km.

Si è così ottenuta l'espressione del rate in funzione della distanza tenendo conto dell'attenuazione introdotta dalla fibra. Per quanto riguarda la dispersione, è possibile adottare lo stesso approccio dell'Esercizio , imponendo che l'allargamento dell'impulso dovuto alla dispersione non superi metà del tempo di bit $T=1/R_b$, in modo da evitare la presenza di interferenza intersimbolica. Dall'Esercizio si ottiene:

$$d \le \frac{1}{2 R_b D \Delta \lambda},$$

che invertita dà la relazione cercata:

$$R_{b_{DIS}} \le \frac{1}{2 d D \Delta \lambda},$$

dove d è espressa in km e $\Delta\lambda$ in nm. Si noti inoltre che l'energia E_f associata a ogni fotone è ottenibile a partire dalla lunghezza d'onda come $E_f = h\,c/\lambda$.

Dopo opportune sostituzioni si ottiene:

$$\begin{split} R_{b_{ATT}} &\leq \frac{10^{-3}}{10^{(0.2 \cdot d)/10} \cdot 1000 \cdot 1.28 \cdot 10^{-19}} = 7.81 \cdot 10^{12 - (0.2 \cdot d)/10} \\ R_{b_{DIS}} &\leq \frac{1}{2 \, d \cdot 3 \cdot 10^{-12} \cdot 30} = \frac{5.55 \cdot 10^9}{d}. \end{split}$$

Le due curve sono mostrate nella Figura 1 per distanze comprese nell'intervallo $[0.1-10000]\ km$ in scala log-log. La figura mostra che per brevi distanze il bit rate è limitato superiormente dalla dispersione, mentre per distanze più lunghe risulta limitato dall'attenuazione, che rende la comunicazione praticamente impossibile per distanze superiori ad alcune centinaia di km.

Figure 1: Andamento del bit rate R_b al variare della distanza in funzione rispettivamente dell'attenuazione (quadrati e linea continua) e della dispersione (cerchi e linea tratteggiata), per il sistema considerato.