Probabilità, funzioni di densità di probabilità. Istogrammi. Covarianza e correlazione.

Laboratorio di Metodi Computazionali e Statistici (2022/2023)

7 Novembre 2022

Perché un corso "avanzato" di probabilità e statistica

- Molte delle domande a cui dobbiamo rispondere giornalmente in laboratorio si devono confrontare con statistica limitata (errore statistico) ed incertezze sperimentali sistematiche. Strumenti statistici efficaci permettono di estrarre il massimo dell'informazione dai dati (e di darne un'interpretazione quantitativa chiara).
- Occorre quindi saper usare ed interpretare questi strumenti. È quindi essenziale approfondire le conoscenze di probabilità e statistica (il bagaglio di conoscenze acquisito al primo anno non è sufficiente).
- Organizzazione della seconda parte:
 - Richiami di probabilità. Covarianza e correlazione. Metodo di MonteCarlo. Propagazione degli errori.
 - Teoria della stima. Metodo di massima verosimiglianza. Intervalli di confidenza (S. Passaggio)
 - Test d'ipotesi, cenni a metodi multivariati
- Mini-esercitazioni (guidate): moduli da due ore al giovedì/venerdì pomeriggio (al posto delle esercitazioni)

Misure di grandezze fisiche con risultati non riproducibili

Le misure fisiche danno spesso risultati non riproducibili. Questa tendenza stocastica potrebbe essere dovuta:

- La grandezza fisica potrebbe riferirsi ad elementi di una popolazione ed il suo valore esatto dipendere dall'elemento considerato
- La grandezza fisica potrebbe essere misurata con precisione ma risultare diversa ad ogni tentativo di misura a causa della sua natura intrinsecamente stocastica (decadimenti radioattivi, turbolenza,...)
- La grandezza fisica potrebbe essere definita, ma la lettura della "scala graduata" potrebbe essere spinta al di sotto del limite di riproducibilità dello strumento (errore statistico).

Distribuzione delle misure affette da errore

Tutti le misure affette da incertezza sperimentale possono essere trattate come distribuzioni di variabili aleatorie ? Le raccomandazioni di "Guide to the expression of uncertainty in measurement (GUM)" vanno in questo senso.

- Errore statistico: distribuzione gaussiana con centro media e deviazione standard l'errore standard.
- Errori di altra natura (massimi, etc...) per cui sia individuata un'intervallo di variabilità massimo. GUM raccomanda di assumere per questo tipo di misure, espresse in genere come $x \pm \Delta$, una distribuzione rettangolare la cui varianza è $\Delta^2/3$. Questo riconduce, di fatto, a trattare queste misure come quelle di tipo a) ma con deviazione standard $\Delta/\sqrt{3}$.

Banalizzazione (o semplificazione) della distinzione tra errore statistico e massimo. Alla base ci sono molte ragioni: l'impossibilità di trattare intervalli non associati a distribuzioni, la necessità di stimare errori equivalenti a quelli statistici (vedi fit) e, non ultimo, il teorema del limite centrale (che assicura che in presenza di varie sorgente di errore la distribuzione risultante è ben approssimabile da una gaussiana).

Distribuzioni di probabilità

Chiamiamo x la variabile che caratterizza la misura della grandezza che stiamo considerando. Descriviamo x con una variabile aleatoria, ovvero una variabile il cui valore non sia costante, ma vari seguendo una legge di probabilità nota.

x continua

$$\int_{\Omega} p(x)dx = 1 \left(\int_{-\infty}^{\infty} p(x)dx = 1 \text{ se } \Omega = \mathbb{R} \right)$$

$$P(x \in [x, x + dx]) = p(x)dx$$

$$P(x_1 < x < x_2) = \int_{x_2}^{x_2} p(x) dx$$

x discreta

$$\sum P(x_i)=1$$

$$P(x_i) = p$$

$$P(x_1 \le x \le x_2) = \sum_{i=i_1}^{i_2} p_i$$

Distribuzioni cumulative

Distribuzioni cumulative

$$\int_{-\infty}^{x} p(x')dx' = P(x)$$

Permette di definire (derivare) la pdf

$$p(x) = \frac{\partial P(x)}{\partial x}$$

Caratterizzazione di una PDF: valore di aspettazione e momenti algebrici

Valore di aspettazione di g(x) sulla PDF p(x) è definito

$$E[g(x)] \equiv \int g(x)p(x)dx$$

ed è un operatore lineare.

Una distribuzione può essere caratterizzata sulla base dei momenti algebrici di ordine k definiti come

$$\mu'_k \equiv E[x^k] = \int x^k p(x) dx$$

Il momento di ordine 0 è la normalizzazione

$$\mu_0' \equiv E[1] = \int p(x) dx = 1$$

il momento di ordine 1 è la media.

$$\mu \equiv \mu_1' \equiv E[x] = \int x p(x) dx$$

7 / 42

Caratterizzazione di una PDF: momenti

I momenti successivi sono convenientemente definiti rispetto alla media (momenti "centrati")

$$\mu_k \equiv E[(x-\mu)^k] = \int (x-\mu)^k p(x) dx$$

la varianza è il momento di ordine 2

$$\mu_2 \equiv E[(x - \mu)^2] = \int (x - \mu)^2 p(x) dx = \sigma^2 = V[x]$$

Vale la pena ricordare che la varianza può essere scritta in termine dei primi due momenti algebrici.

$$E[(x - \mu)^2] =$$

Caratterizzazione di una PDF: momenti

Skewness γ_1 :

- Se la distribuzione è simmetrica attorno alla sua posizione centrale, tutti i momenti centrali di ordine dispari sono nulli → qualunque momento centrale di ordine dispari diverso da zero indica asimmetria
- Il momento centrale di ordine 3 è la quantità più semplice per caratterizzare l'asimmetria di una distribuzione:

$$\mu_3 \equiv E[(x - \mu)^3] = \int (x - \mu)^3 p(x) dx$$

• Si definisce spesso il coefficiente di asimmetria (skewness) adimensionale

$$\gamma_1 \equiv \frac{\mu_3}{\sigma^3}$$

• Un coefficiente di asimmetria positivo (negativo) indica che la distribuzione presenta una coda più pronunciata a destra (a sinistra) della media

Caratterizzazione di una PDF: momenti

La curtosi γ_2 quantifica l'importanza delle code (rispetto al caso gaussiano)

- I momenti centrali di ordine pari (in virtù della maggiore importanza attribuita ai valori di x che si più si discostano dalla media) possono fornire informazioni sulle "code" della distribuzione.
- Anche in questo caso si usa il momento di ordine più basso:

$$\mu_4 \equiv E[(x - \mu)^4] = \int (x - \mu)^4 p(x) dx$$

• Il coefficiente adimensionale di curtosi è definito come:

$$\gamma_2 \equiv \frac{\mu_4}{\sigma^4} - 3$$

- $\gamma_2 = 0$ gaussiana
- $\gamma_2 > 0$ più piccata rispetto alla gaussiana
- ullet $\gamma_2 < 0$ meno piccata rispetto alla gaussiana

Skewness e Curtosi

Istogrammi

Gli istogrammi sono grafici usati per visualizzare le distribuzioni di frequenza di eventi caratterizzati da variabili discrete o continue.

Per ogni intervallo Δx (detto "bin") si disegna un rettangolo largo quanto l' intervallo e di altezza pari al numero di occorrenze dei valori appartenenti a tale intervallo.

Nuovo evento x = 7.1

Binning

Il numero di bin può influenzare in modo rilevante l'aspetto di un istogramma, e quindi va scelto caso per caso, cercando di evitare la presenza di molti bin poco popolati.

PDF da istogramma

Un istogramma contenente le misure di una certa grandezza, se pensato come funzione

può essere definito dalla relazione:

$$N(x) = N_i$$
 (i indice del bin che contiene il valore x)

Tale funzione non è normalizzata ma ha integrale (detti M il numero di bin dell'istogramma)

$$\int N(x)dx = \sum_{i=1}^{M} N_i \Delta x = N_{tot} \Delta x$$

Classi di istogrammi in ROOT

In ROOT esistono classi di istogrammi 1,2,3-dimensionali (TH1X, TH2X, TH3X). X indica il tipo di variabile che possono contenere:

- TH1,2,3C istogrammi per variabili char (1 byte)
- TH1,2,3S istogrammi per variabili short int (2 bytes)
- TH1,2,3I istogrammi per variabili int (4 bytes)
- TH1,2,3F istogrammi per variabili float (4 bytes)
- TH1,2,3D istogrammi per variabili double (8 bytes)

Classi di istogrammi in ROOT (I)

Costruttore:

```
TH1D(const char* name, const char* title, int nbinsx, double xlow,
double xup);
   name =identificatore
   title = titolo
   nbinsx = numero di hin
   xlow = estremo inferiore, xup = estremo superiore
   se xlow=xup=0 gli estremi sono calcolati automaticamente.
TH2D(const char* name, const char* title, int nbinsx, double xlow,
double xup, int nbinsy, double ylow, double yup);
   name =identificatore
   title = titolo
   nbinsx = numero di X hin
   xlow = estremo inferiore X, xup = estremo superiore X
   nbinsy = numero di Y bin
   ylow = estremo inferiore Y, yup = estremo superiore Y
   se xlow=xup=0 gli estremi della variabile X sono calcolati automaticamente
   se ylow=yup=0 gli estremi della variabile Y sono calcolati automaticamente.
```

Classi di istogrammi in ROOT (II)

```
Per riempirli:
```

```
void TH1D::Fill(double x, double w);
    x: variabile aleatoria; w: peso, per il singolo evento w=1
void TH1D::SetBinContent(int ibin, double val);
    pone il contenuto del bin ibin uguale a val

void TH2D::Fill(double x, double y, double w);
    x: variabile aleatoria; y: variabile aleatoria; w: peso, per il singolo evento w=1
void TH2D::SetBinContent(int ibinX, int ibinY, double val);
    pone il contenuto del bin ibinX, ibinY uguale a val
```

Per disegnarli:

```
void TH(1,2)D::Draw(const char *option);
  option: " " (o nulla) disegno "standard" con assi
    "SAME" per sovrapporre
    "COLZ" bin colorato dipendente dal contenuto (solo per 2D)
    "CONT" per contour plot (solo per 2D)
    "E" per disegnare le barre di errore
```

Classi di istogrammi in ROOT (III)

Classi di istogrammi in ROOT (III)

```
Accesso alle informazioni:

double TH1D::GetBinContent(int ibin);

ritorna il contenuto del bin ibin ∈ [1, nbin]

double TH1D::GetBinCenter(int ibin);

ritorna la coordinata del centro del bin ibin ∈ [1, nbin]

double TH1D::GetNbinsX();

ritorna il numero di bin (nbin)

double TH1D::GetEntries();

ritorna il numero di valori inseriti

double TH1D::GetBinWidth(int ibin);

ritorna la larghezza del bin ibin ∈ [1, nbin]
```

```
h.GetBinContent(5) ritorna 2
h.GetBinCenter(3) ritorna 1.25
h.GetNbinsX() ritorna 20
h.GetEntries() ritorna 100
```


Classi di istogrammi in ROOT (IV)

Accesso alle informazioni:

```
double TH2D::GetBinContent(int ibinX, int ibinY);
  ritorna il contenuto del bin ibinX \in [1, nbinX], ibinY \in [1, nbinY]
double TH2D::GetXaxis()::GetBinCenter(int ibin);
  ritorna la coordinata del centro del bin X ibin \in [1, nbin X]
double TH2D::GetYaxis()::GetBinCenter(int ibin);
  ritorna la coordinata del centro del bin Y ibin \in [1, nbinY]
double TH2D::GetXaxis()::GetBinWidth(int ibin);
  ritorna la larghezza del bin X ibin \in [1, nbinX]
double TH2D::GetYaxis()::GetBinWidth(int ibin);
  ritorna la larghezza del bin Y ibin \in [1, nbinY]
double TH2D::GetNbinsX():
  ritorna il numero di bin X (nbinX)
double TH2D::GetNbinsY():
  ritorna il numero di bin Y (nbinY)
double TH2D::GetEntries():
  ritorna il numero di valori inseriti
```

Uso degli istogrammi

A differenza di un normale grafico, che viene usato solo nella fase finale dei calcoli, un istogramma viene di solito usato, all'interno di un programma, come elemento di memorizzazione dei dati.

Un istogramma fornisce, in genere, anche la stima dei momenti della distribuzione

- GetMean(): media
- GetRMS(): deviazione standard
- GetSkewness()
- GetKurtosis()

Esempio: C++

```
1 #include <iostream>
2 #include <fstream>
3 #include <TH1D.h>
4 #include <TF1.h>
5 #include <TMath.h>
6 #include <TApplication.h>
7 #include <cmath>
8 using namespace std;
10 int main(){
    TApplication app("app", 0, NULL);
    ifstream file:
    file.open("gaus.dat");
14
    TH1D hexp("hexp"," Histogramma sperimentale ",20,0,20);
15
    double tmp;
16
    while (file >> tmp) {
17
      hexp. Fill (tmp);
18
    hexp. SetMarkerStyle (20);
19
20
    hexp. Draw("E");
    app.Run(true);
```

Esempio: macro ROOT

```
1 {
    ifstream file("gaus.dat");
    TH1D hexp("hexp","Histogramma sperimentale ",20,0,20);
    double tmp;
    while(file >> tmp){
        hexp.Fill(tmp);
    }
    hexp.SetMarkerStyle(20);
    hexp.Draw("E");
    }
}
```

Esempio: macro ROOT con nome

```
void histo(){
   ifstream file("gaus.dat");
   TH1D *hexp = new TH1D("hexp","Histogramma sperimentale ",20,0,20);
   double tmp;
   while(file >> tmp){
      hexp->Fill(tmp);
   }
   hexp->SetMarkerStyle(20);
   hexp->Draw("E");
}
```

N.B. II file deve chiamarsi histo.C

Esempio: Python

```
from ROOT import *

f
```

Esempio: macro ROOT per TH2D

Confronto con le distribuzioni teoriche

Un modo semplice per confrontare graficamente un istogramma sperimentale con una distribuzione teorica è quello di sovrapporre il grafico della densità di probabilità .

La cosa pare banale, ma si deve fare attenzione alla corretta normalizzazione: se i bin sono M, larghi Δx e si hanno in totale N_{tot} eventi l'integrale dell'istogramma vale

$$\sum_{i=1}^{M} N_i \Delta x = N_{tot} \Delta x$$

(h_i contenuto del bin i-esimo).

Per avere una corretta normalizzazione si deve quindi moltiplicare la densità di probabilità p(x) per il fattore $N_{tot}\Delta x$

Confronto con le distribuzioni teoriche

Un modo semplice per confrontare graficamente un istogramma sperimentale con una distribuzione teorica è quello di sovrapporre il grafico della densità di probabilità .

Esempio: sovrapposizione funzione a istogramma

```
1 #include <iostream>
2 #include <fstream>
3 #include <TH1D.h>
4 #include <TF1.h>
5 #include <TMath.h>
6 #include <TApplication.h>
7 #include <cmath>
8 using namespace std;
10 int main(){
    TApplication app("app", 0, NULL);
    ifstream file:
13
    file.open("gaus.dat");
14
    TH1D hexp("hexp"," Histogramma sperimentale ",20,0,20);
15
    double tmp:
16
    while (file >> tmp) {
17
      hexp. Fill (tmp);
18
19
    hexp. Set Marker Style (20);
    hexp. Draw("E");
20
    TF1 f("f","[2]*TMath::Gaus(x,[0],[1],1)",0,20);
    f. SetParameter (0, hexp. GetMean());
23
    f. SetParameter (1, hexp. GetRMS());
24
    f. SetParameter (2, hexp. GetEntries ()*hexp. GetBinWidth (1));
25
    f. Draw ("SAME");
26
    app.Run(true);
```

Confronto con le distribuzioni teoriche

Un secondo metodo di confronto consiste nel costruire un istogramma con struttura identica a quello sperimentale, e di mettere in ogni bin il numero di eventi aspettati sulla base della densità di probabilità teorica.

Il numero di eventi aspettati in ciascun bin è dato da

$$N_i^{exp.} = N_{tot} \int_{x_{min}(i)}^{x_{max}(i)} p(x) dx$$

dove N_{tot} è il numero totale di eventi, $x_{min}(i)$ ed $x_{max}(i)$ sono l'estremo inferiore e superiore del bin i-esimo. Il calcolo dell'integrale può essere eseguito:

- analiticamente; ad esempio, per la gaussiana, la funzione erf(x) di cmath (o TMath::Erf(x) di ROOT)
- numericamente (attraverso il metodo Integral di TF1)

Confronto con le distribuzioni teoriche

Un secondo metodo di confronto consiste nel costruire un istogramma con struttura identica a quello sperimentale, e di mettere in ogni bin il numero di eventi aspettati sulla base della densità di probabilità teorica.

Confronto
$$N_i \leftrightarrow N_i^{exp.}$$

29 / 42

Esempio: sovrapposizione funzione a istogramma

```
1 from ROOT import *
2 import math as m
4 f = open("gaus.dat")
5 hexp = TH1D("hexp", "Histogramma sperimentale", 20,0,20)
6 for line in f:
      val = float(line)
      hexp. Fill (val)
10 hexp. SetMarkerStyle (20)
11 hexp.Draw("E")
13 \text{ hteo} = \text{TH1D(hexp)}
14 for i in range(1,hteo.GetNbinsX()):
15
      min = hteo.GetBinLowEdge(i)
16
      max = hteo.GetBinLowEdge(i+1)
17
      a1 = TMath. Erf ((min-hexp.GetMean())/(m.sqrt(2)*hexp.GetRMS()))/2
      a2 = TMath \cdot Erf((max-hexp \cdot GetMean())/(m \cdot sqrt(2) * hexp \cdot GetRMS()))/2
18
19
      hteo. SetBinContent(i,(a2-a1)*hexp. GetEntries())
20
21 hteo. Draw("SAME")
23 gApplication.Run(True)
```

Densità di probabilità multidimensionali

- Nel caso in cui si misurino più grandezze simultaneamente occorre ricorrere a distribuzioni di densità di probabilità multidimensionali.
- Nel caso N=2:

$$\int_{\Omega_{x}} \int_{\Omega_{y}} p(x, y) dx dy = 1$$

$$P(x \in [x, x + dx], y \in [y, y + dy]) = p(x, y) dx dy$$

$$P(x_{1} < x < x_{2}, y_{1} < y < y_{2}) = \int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} p(x, y) dx dy$$

Caratterizzazione delle pdf multidimensionali

 Nel caso multidimensionale possiamo, ovviamente, considerare i momenti di ciascuna variabile...

Medie:

$$\mu_{x} \equiv \mu'_{x1} = \int_{\Omega_{x}} \int_{\Omega_{y}} xp(x, y) dx dy$$
$$\mu_{y} \equiv \mu'_{y1} = \int_{\Omega_{x}} \int_{\Omega_{y}} yp(x, y) dx dy$$

Varianze:

$$V[x] \equiv \sigma_x^2 \equiv \mu_{x2} = \int_{\Omega_x} \int_{\Omega_y} (x - \mu_x)^2 p(x, y) dx dy$$
$$V[y] \equiv \sigma_y^2 \equiv \mu_{y2} = \int_{\Omega_x} \int_{\Omega_y} (y - \mu_y)^2 p(x, y) dx dy$$

Caratterizzazione delle pdf multidimensionali

- È tuttavia essenziale tenere conto del comportamento congiunto delle due variabili
- Il momento centrale, congiunto, di ordine più basso è la covarianza (valore atteso dei prodotti delle loro distanze dal valore medio)

$$Cov[x, y] \equiv E[(x - \mu_x)(y - \mu_y)] = \int_{\Omega_x} \int_{\Omega_y} (x - \mu_x)(y - \mu_y) p(x, y) dx dy$$

Si noti che:

$$\sigma_x^2 = Cov[x, x]$$
 $\sigma_y^2 = Cov[y, y]$

• Espressione della covarianza in termini dei momenti di ordine inferiore:

$$E[(x - \mu_x)(y - \mu_y)] =$$

Significato della covarianza

• La covarianza può assumere valori positivi o negativi (in contrasto con la varianza sempre positiva):

• $Cov[x, y] \equiv E[(x - \mu_x)(y - \mu_y)] > 0$ La variazione della grandezza y rispetto a μ_{ν} tende ad avere lo stesso segno della variazione della grandezza x rispetto a μ_x

Significato della covarianza

• La covarianza può assumere valori positivi o negativi (in contrasto con la varianza sempre positiva):

• Cov[x, y] < 0

La variazione della grandezza y rispetto a μ_{ν} tende ad avere segno opposto alla variazione della grandezza x rispetto a μ_x

Significato della covarianza

 La covarianza può assumere valori positivi o negativi (in contrasto con la varianza sempre positiva):

• Cov[x, y] = 0

La variazione della grandezza y rispetto a μ_y non ha nessuna relazione di segno con la variazione della grandezza x rispetto a μ_x

Covarianza e coefficiente di correlazione

- Si dice quindi che la covarianza misura la correlazione tra due variabili aleatorie.
- È utile introdurre una variabile adimensionale che quantifichi la correlazione: il coefficiente di correlazione

$$\rho(x,y) \equiv \frac{Cov(x,y)}{\sigma_x \sigma_y}$$

che ha la proprietà |
ho| < 1

• Per dimostrarlo si può considerare una variabile z = ax + y

$$V(ax + y) =$$

TH2D::GetCorrelation

Esiste un metodo TH2D::GetCorrelationFactor che vi fornisce il coefficiente di correlazione

TH2D::GetCorrelation

coeff correlazione = -0.84

Correlazione ed indipendenza

- Due variabili casuali x e y si dicono correlate positivamente, negativamente o scorrelate quando il coefficiente di correlazione è, rispettivamente, positivo, negativo o nullo.
- Due variabili si dicono indipendenti se la pdf congiunta p(x, y) fattorizza nel prodotto delle due pdf $p_x(x)$ e $p_y(y)$:

$$p(x,y)=p_x(x)p_y(y)$$

• Se due variabili sono inpendenti allora sono scorrelate. Prova: Cov[x, y] = E[xy] - E[x]E[y] = 0? Calcoliamo E[xy] =

• Non è in generale vero invece che due variabili scorrelate siano indipendenti

Correlazione nulla non implica indipendenza

- Supponiamo di avere una pdf con questa simmetria: p(-x,y) = p(x,y) (cioè la pdf è simmetrica rispetto all'asse y)
- Cov[x, y] = E[xy] E[x]E[y]
- Per simmetria: E[x] = 0

•
$$E[xy] = \int_{\Omega_x} \int_{\Omega_y} xyp(x, y) dxdy =$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{0} xyp(x, y) dxdy + \int_{-\infty}^{\infty} \int_{0}^{\infty} xyp(x, y) dxdy = 0$$

Cov[x, y] = 0. Le variabili sono scorrelate. Ma le variabili sono dipendenti.

Matrice di covarianza

- Supponiamo di avere n variabili aleatorie: $\overrightarrow{x} = \{x_1, x_2, ..., x_n\}$
- ullet Si può scrivere la covarianza di ogni coppia come una matrice $n \times n$

$$V_{ij} = cov[x_i x_j] = E[(x_i - \mu_{x_i})(x_j - \mu_{x_j})] = \rho_{ij}\sigma_i\sigma_j$$

$$V = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \cdots & \rho_{1n}\sigma_1\sigma_n \\ \rho_{21}\sigma_2\sigma_1 & \sigma_2^2 & \cdots & \rho_{2n}\sigma_2\sigma_n \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1}\sigma_n\sigma_1 & \rho_{n2}\sigma_n\sigma_2 & \cdots & \sigma_n^2 \end{pmatrix}$$

- Simmetrica
- Diagonale: varianze

Matrice di correlazione

• Legata alla matrice di covarianza è la matrice $n \times n$ dei coefficienti di correlazione:

$$\rho_{ij} = \frac{cov[x_i x_j]}{\sigma_i \sigma_j}$$

$$\rho = \begin{pmatrix} 1 & \rho_{12} & \cdots & \rho_{1n} \\ \rho_{21} & 1 & \cdots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1} & \rho_{n2} & \cdots & 1 \end{pmatrix}$$

ullet Per costruzione, gli elementi della diagonale sono ho=1

Lezione in guscio di noce

- Le misure sperimentali sono descritte da distribuzioni di probabilità.
- Le distribuzioni di probalità sono caratterizzate dai loro momenti (media, varianza, skewness, curtosi).
- Gli istogrammi sono strumenti utili per "rappresentare" le distribuzioni sperimentali.
- Il momento centrale congiunto di ordine minimo per distribuzioni di due variabili è la covarianza. Il coefficiente di correlazione

$$\rho = \frac{Cov[x, y]}{\sqrt{Cov[x, x]Cov[y, y]}}$$

definisce se le due variabili sono correlate positivamente, negativemente o sono scorrelate $(\rho > 0, \ \rho < 0, \ \rho = 0)$.

• Due variabili indipendenti sono sempre scorrelate, non è vero il viceversa.

