MATH 6140 HOMEWORK 12

COLTON GRAINGER APRIL 15, 2019

- 1. 14.2.1. The minimal polynomial over \mathbb{Q} for the element $\sqrt{2} + \sqrt{5}$ is:
- **2.** 14.2.4. Let p be a prime. The elements of the Galois group of $x^p 2$ over \mathbb{Q} are:
- **3.** 14.2.5. The Galois group of $x^p 2$ (as in problem 2) is isomorphic to the matrix group

$$H = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \quad \text{given} \quad a, b \in \mathbb{F}_p \quad \text{and} \quad a \neq 0 \right\}.$$

- **4.** 14.2.8. Suppose K is a Galois extension of F of degree p^n for some prime p and some $n \ge 1$. There are Galois extensions of F contained in K of degrees p and p^{n-1} .
- **5.** 14.2.11. Suppose $f(x) \in \mathbb{Z}[x]$ is an irreducible quartic whose splitting field has Galois group S_4 over \mathbb{Q} . Let θ be a root of f(x) and set $K = \mathbb{Q}(\theta)$. Then K is an extension of Q of degree 4 which has no proper subfields. We determine if there are any Galois extensions of \mathbb{Q} of degree 4 with no proper subfields.
- **6.** 14.2.13. If the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3, then all the roots of the cubic are real.
- 7. 14.3.1. The factors of $x^8 x$ as irreducibles in $\mathbb{Z}[x]$ and $\mathbb{F}_2[x]$, respectively, are:
- 8. 14.3.3. An algebraically closed field is infinite.
- **9.** 14.3.7.
 - (a) One of 2, 3, or 6 is a square in \mathbb{F}_p for every prime p.
 - (b) Therefore, for every prime p, the polynomial

$$x^{6} - 11x^{4} + 36x^{2} - 36 = (x^{2} - 2)(x^{2} - 3)(x^{2} - 6)$$

$$(9.1)$$

has a root modulo p.

- (c) However, the polynomial (9.1) is irreducible over \mathbb{Z} .
- 10. 14.3.8. We exhibit an Artin–Schreier extension.
 - (a) The splitting field *E* of the polynomial $x^p x a$ over \mathbb{F}_p , where $a \neq 0$ and $a \in \mathbb{F}_p$, is:
 - (b) For a root α of $x^p x a$, the map $\alpha \mapsto \alpha + 1$ induces an automorphism of E fixing \mathbb{F}_p .
 - (c) Therefore, the Galois group of $x^p x a$ over \mathbb{F}_p is cyclic.
- 11. 14.3.9. Let $q = p^m$ be a power of the prime p and let $\mathbb{F}_q = \mathbb{F}_{p^m}$ be the finite field with q elements. Then let $\sigma_q = \sigma_p^m$ be the mth power of the Froebenius automorphism σ_p , called the q-Froebenius automorphism.
 - (a) The *q*-Froebenius automorphism σ_q fixes \mathbb{F}_q .
 - (b) Every finite extension of \mathbb{F}_q of degree n is the splitting field K of $x^{q^n} x$ over \mathbb{F}_q , hence unique.
 - (c) For K/\mathbb{F}_q the unique degree n extension of \mathbb{F}_q , we have

$$\operatorname{Gal}(K/\mathbb{F}_q) = \left\langle \sigma_q \right\rangle.$$

COLTON GRAINGER MATH 6140 HW12

(d) Hence, there's a bijective correspondence

$$\left\{ \begin{array}{l} \text{subfields } E \\ K \geq E \geq F \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{divisors } d \\ 1 \mid d \mid n \end{array} \right\}.$$

12. 14.3.10. Let φ be the Euler totient function, p a prime, and n a natural number. Then

n divides
$$\varphi(p^n-1)$$
.

Proof. Observe that $\varphi(p^n-1)$ is the order of the group of automorphisms of a cyclic group of order p^n-1 .