2017 省选模拟训练题

题目名称	逐梦逐梦逐梦	演艺	卷卷卷卷卷卷卷
英文代号	a	b	С
输入文件名	a.in	b.in	c.in
输出文件名	a.out	b.out	c.out
单个测试点时限	4s	1s	3s
测试点个数	10	20	20
单个测试点分数	10	5	5
附加文件	无	无	无
题目类型	传统	传统	传统
是否有部分分	否	否	否
空间限制	512M	1024M	512M

友情提示: 题目难度顺序是升(hua)序(ji)。

逐梦逐梦逐梦

(a.pas/c/cpp)

【背景描述】

wxh 很希望逐梦演艺圈。

于是现在你有 N 个 wxh 排成一排,从左往右第 i 个 wxh 的颜值是 Ai。

通过洪华敦的观察,他发现知道一个wxh的颜值就可以知道这个wxh的性别。具体的,如果一个wxh的颜值是奇数,那么他是雌性wxh,否则是雄性wxh。

洪华敦还通过大量的实验发现,两个同性的 wxh 能合成一个 wsq。

现在洪华敦会做 M 次实验,对于第 i 次实验,洪华敦会复制原有的 N 个 wxh 中第 L_i 个到第 R_i 个 wxh,并从这些复制体中取出恰好 K_i 个 wxh,在满足能将这 K_i 个 wxh 都合并成 wsq 的前提下,洪华敦想让选出的 K_i 个 wxh 颜值之和最大。

你需要告诉洪华敦每次实验选出的 wxh 的颜值和的最大值,否则洪华敦就会邀请你去摔跤。

【输入格式】

第一行一个整数 N

接下来一行 N 个整数,从左往右第 i 个整数表示 Ai

接下来一行一个整数 M,随后 M 行中第 i 行有三个整数 Li, Ri, Ki

【输出格式】

M 行,对于第 i 次实验在第 i 行输出颜值和的最大值。 如果无法满足条件输出-1.

【样例输入】

5

7 5 3 4 2

1

1 5 4

【样例输出】

18

【数据规模】

对于 20% 的数据, N, M ≤ 500。

对于 40% 的数据, N, M ≤ 3000。

对于另外 30% 的数据, A_i < 2。

对于 100% 的数据, 1 \leq N, M \leq 300000, 0 \leq A $_{i}$ \leq 1000000000。 保证 K $_{i}$ 是偶数.

演艺

(b.pas/c/cpp)

【背景描述】

一张 N 个点 M 条无向边的图, 节点编号为 1 到 N, 每条边具有一个正整数的长度。

假定黄花敦会从 S 点出发到达 T 点,并且只会走最短路,wxh 和 wsq 会在 A 点和 B 点埋伏黄花敦。

为了保证一定能埋伏到黄花敦,同时 wxh 又想制造单独和黄花敦相处的机会,A 点和 B 点必须满足: 黄花敦所有可能路径中,必定会经过 A 点和 B 点中的任意一点且不存在一条路径同时经过 A 点和 B 点。

Wxh 想知道满足上面两个条件的 A, B 点对有多少个,交换 A, B 的顺序算相同的方案。

【输入格式】

第一行四个整数 N,M,S,T

接下来 M 行每行三个整数 a, b, w 表示有一条连接 a 和 b 的长度为 w 的边。

【输出格式】

一行一个整数表示答案

【输入样例】

- 7 7 1 7
- 1 2 2
- 2 4 2
- 4 6 2
- 6 7 2
- 1 3 2
- 3 5 4
- 5 7 2

【输出样例】

6

【样例解释】

<2,3>,<2,4>,<4,3>,<4,5>,<6,3>,<6,5>

【数据范围和约定】

测试点	n	m	w
1,2	$1 \leq n \leq 200$	$1 \leq m \leq 200$	$1 \leq w \leq 10^9$
3, 4, 5, 6			
7, 8, 9, 10, 11, 12	$1 \leq n \leq 2,000$	$1 \leq m \leq 2,000$	
13, 14, 15, 16, 17, 18, 19, 20	$1 \le n \le 5 \times 10^4$	$1 \leq m \leq 5 imes 10^4$	

对于 1,2 号测试点,输入数据是一条链,且 M = N - 1。

圈圈圈圈圈圈圈

(c.pas/c/cpp)

【背景描述】

新疆之王洪蛤吨在卖切糕的业余时间特别喜欢看摔跤比赛。有一天他抓住了 $X \land wxh$ ($X \land y$),通过观察,他发现他抓住的 wxh 恰好来自于 $N \land y$ 个家庭,第 $i \land x$ 个不幸的家庭有 $A_i \land x$ 个不幸的 xh 被洪蛤吨抓住了。

洪蛤吨想要这 $x \wedge wxh$ 进行一场盛大的 1v1 摔跤比赛,且每个 wxh 恰好作为一场比赛的参赛选手。为了保证比赛尽量刺激,不出现留手的情况,洪蛤吨希望每场比赛的两个 wxh 不来自同一个家庭。

洪蛤吨想知道有多少种合法的对阵情况。我们认为两个对阵情况不同当且仅当存在至少一个wxh,在两个对阵情况中的对手不同。

【输入格式】

第一行一个整数 N。 接下来一行 N 个整数,第 i 个整数表示 A;

【输出格式】

输出一个整数,表示答案对 998244353 取模的结果。

【样例输入】

2

2 2

【样例输出】

2

【数据规模和约定】

对于 20% 的数据, $\Sigma A_i \leq 20$ 。

对于另外 10% 的数据, N = 2。

对于另外 20% 的数据, N \leq 5。

对于另外 30% 的数据, $A_i \leq 30$ 。

对于 100% 的数据, $1 \leq N$, $A_i \leq 150$ 。

对于 天国的 wxh 的数据, $1 \leq N$, $\Sigma A_i \leq 100000$ 。