

PRESENTATION By Emine BOOSTancı

Canberk Kaçan Erdem Canaz Erkin Atay Toka

24.04.2024

Table of Contents

- 1. Design Criteria
- 2. Topology & Design Selection
- 3. Magnetic Design
- 4. Simulation Results
- 5. Component Selection
- 6. Future Work

1. Design Criteria

- Minimum Input Voltage: 20 V
- Maximum Input Voltage: 40 V
- Output Voltage: 12 V
- Output Power: 60 W
- Output Voltage Peak-to-Peak Ripple: 3%
- Line Regulation: 3%
- Load Regulation: 3%
- Isolated Converter
- Close Loop Feedback

- Flyback Converter: low power applications (up to 100 Watts)
- Forward Converter: 50 Watts to a couple of hundred watts
- Push Pull Converter: medium power levels (100 Watts to a few kilowatts)
- Half and Full Bridge Converter: medium to high power ranges (100 Watts to over 500 Watts)
- Push Pull, Half and Full Bridge Convertes are overdesign.

Flyback Converter

- No restriction on D
- Less components (only transformer)
- No resetting the core's flux
- Easiest to design
- Leakage inductance
- Less efficiency
- More ripple and worse regulation

Forward Converter

- Restriction on D
- More components (transformer & inductor)
- Resetting the core's flux
- Harder to design
- Magnetizing inductance
- Higher efficiency
- Less ripple and better regulation

Single Switch Flyback Converter

- No restriction on D
- Simplicity
- Snubber Design
- Less efficiency

Two Switch Flyback Converter

- D < 0.5 for CCM
- Complexity (high side switch)
- High input capacitance
- Higher efficiency

Target Efficiency = %80

- **CCM or DCM:** CCM. Less ripple but worse core utilization. Analytically easy but nonlineer Bode plot.
- Switching Frequency: 90 kHz.
- •Turns Ratio and Duty Cycle Range: 0.23 < D < 0.375 N=1

• Lm Determination:

$$L_m > \frac{(V_{in}^{max} D_{min})^2}{2 P_{in} f_s K_{RF}} = \frac{(40V \ 0.238)^2}{2 \ (75W)(90kHz)0.7} = 9.6 \ \mu H$$

$$L_m = 20 \ \mu H$$

Core Selection:

Aim: Operate around 100mT to minimize losses.

Disadvantage: Volume increase. Losses might increase.

Choose ferrite core → less leakage. Fringing fields problem

Higher window area → fill factor \ auxilary winding

OR45530EC

• Core Selection: $N_1 \emptyset = L_m I_{max,pri}$

Core Selection:

$$L_m = \frac{N_1^2}{R_{gap}}$$

N1=N2=7 turns

Igap=0.7 mm

Bmax=96 mT

Cable Selection:

Choose 2δ (@90kHz 0.44 mm) > Dconductor

AWG 26 (
$$D = 0.4 \, mm, A = 0.129 \, mm^2$$
)

Maximum RMS Current is 10A.

$$J = 3 \text{ A/mm}^2$$

$$\#parallels = \frac{I_{rms,max}}{J \text{ A}} = 26$$

For safety take 30 parallel.

From core geometry find MLT and length of the copper.

$$R_{primary} = R_{secondary} = 3.9m\Omega$$

 $P_{Cu} = P_{primary} + P_{secondary} = 0.793 W$
 $Fill\ Factor = 0.1683$

Core Losses:

Steinmetz Coefficients

$$P_{core} = 2VP_{CL} = 3.21 W$$

• Experimental Results:

$$L_m = 20.94 \, \mu H$$
 $L_{leak} = 0.21 \mu H$ $R_{Cu} = 4.6 \, m\Omega$

4. Simulation Results: Block diagram

4. Simulation Results: Block diagram

Single run for Vin = 40V, Vbat = 12V

4. Simulation models: Current Feedback

4. Simulation Results: Voltage Feedback

4. Simulation Results: Snubber (40V Vin)

Drain-to-Source Voltage of MOSFET

4. Simulation Results: Transformer Model

4. Simulation Results: Output Filter Model

4. Simulation Results: Capacitor Model

C

C-R

C-R-L

Output voltages seen at secondary terminals

4. Simulation Results: Auxiliary Supply Model

4. Simulation Results: Indicator LEDs

4. Simulation Results: Summary

Vin =
$$\{20, 25, 30, 35, 40\}V$$
 Vbat = $\{11, 12, 13\}V$

4. Simulation Results: Detailed results

Vin (V)	Vbat (V)	efficiency (%)	Duty	lin-mean (A)	lin-ripple(A)	lbat (A)	lbat_ripple (A)	Pin (W)	Pout (W)	Psnubber (W)	Pdiode_snubber (W)	Pmosfet (W)	Poutput_diode (W)	Pcore (W)	Pwinding (W)	Vsnubber_diode (V)	Vds (V)	VoutRipple (V)
20	11	80	0,40	3,44	0,40	4,86	0,37	68,20	54,76	3,46	0,10	2,13	3,22	1,55	0,33	45,00	45,00	0,02
20	12	81	0,40	3,57	0,41	4,65	0,37	70,72	57,14	3,70	0,10	2,15	3,10	1,68	0,30	45,00	45,00	0,05
20	13	81	0,40	3,59	0,40	4,33	0,36	71,12	57,46	3,80	0,10	2,08	2,83	1,80	0,30	45,00	45,00	0,05
25	11	81	0,35	2,94	0,37	5,24	0,35	73,14	59,15	3,34	0,10	2,26	3,45	1,95	0,30	50,00	50,00	0,06
25	12	81	0,35	3,05	0,38	5,01	0,35	75,99	61,70	3,70	0,13	2,30	3,30	2,14	0,30	50,00	50,00	0,06
25	13	81	0,35	3,07	0,37	4,67	0,34	76,40	62,00	3,80	0,14	2,20	3,00	2,30	0,30	50,00	50,00	0,08
30	11	81	0,32	2,58	0,35	5,51	0,33	77,02	62,29	3,50	0,16	2,41	3,63	2,35	0,30	55,00	57,00	0,10
30	12	81	0,32	2,68	0,37	5,29	0,33	80,16	65,10	3,65	0,17	2,44	3,46	2,54	0,30	55,00	57,00	0,10
30	13	82	0,32	2,61	0,35	4,77	0,31	78,00	63,69	3,65	0,18	2,25	3,00	2,71	0,30	55,00	57,00	0,10
35	11	81	0,27	2,23	0,33	5,73	0,30	80,26	64,76	3,40	0,20	2,59	3,76	2,75	0,30	60,00	60,00	0,10
35	12	81	0,27	2,40	0,33	5,50	0,30	83,62	67,76	3,54	0,20	2,62	3,60	2,98	0,30	60,00	60,00	0,10
35	13	81	0,27	2,28	0,30	4,83	0,30	79,11	64,35	3,60	0,22	2,32	3,00	3,19	0,30	60,00	60,00	0,10
40	11	80	0,23	2,08	0,30	5,90	0,28			3,40	0,24	2,77	3,86	3,14	0,30	65,00	65,00	0,10
40	_	81	0,23	2,17	0,30	5,67	0,28	86,64	69,90	3,64	0,26	2,89	3,70	3,40	0,30	65,00	65,00	0,10
40	_	81	0,23	2,02	0,29	4,88	0,26			3,50		2,42	3,08	3,64	0,30	65,00	65,00	0,10

4. Simulation Results: Summary

- About %75-80 efficiency is expected
- Ratings are acceptable
- The snubber works properly
- Voltage regulations are satisfied

MOSFET: IRFU3710ZPbF

$$I_{D,max} \approx 10A$$

 $V_{DS,max} \approx 65V$

V _{DSS}	100V		
R _{DS(on)}	18mΩ		
I _D	42A		

	Parameter	Max.	Units	
I _D @ TC = 25°C	Continuous Drain Current VGS @ 10V	56	Α	
I _D @ TC = 100°C	Continuous Drain Current, VGS @ 10V	39	Α	
V_{GS}	Gate-to-Source Voltage	± 20	V	
$R_{DS(on)}$	Drain-to-Source On-Resistance	18	mΩ	
$V_{GS(th)}$	Gate Threshold Voltage	4.0	V	
† _r	Rise Time	43	ns	
† _f	Fall Time	42	ns	[3]

- **Diode:** DSA30C100PB (Both for the snubber and the secondary side)
- Schottky diode is chosen due to its speed.

Snubber
$$I_{F,max} \approx 8A$$
 $V_{max} \approx 65V$

Secondary Side
$$I_{F,max} \approx 9.5A$$
 $V_{max} \approx 62V$

	Parameter	Max.	Units
$V_{RRM}(T_{VJ} = 25^{\circ}C)$	max. repetitive reverse blocking voltage	100	V
$V_F (I_F = 15A, T_{VJ} = 25^{\circ}C)$	forward voltage drop	0.91	V
$V_F (I_F = 15A, T_{VJ} = 125^{\circ}C)$	forward voltage drop	0.73	V
I_{FAV} (T _{VJ} = 125°C)	average forward current	15	Α
С	junction capacitance	146	pF
I _R	reverse current, drain current	250	μΑ

Output Filter Inductance: <u>SRI1209-100M</u>

Parameter	Max.	Units
L	10 ± 20%	μΗ
R_{DC}	0.03	Ω
I _{DC}	10	Α

Test Conditions: 1KHZ / 0.25V

Input Capacitor:

4x<u>PKLH-063V471</u> 63V 470μF

Current Sensor IC:

ACS712-30A

Output Capacitor:

4x<u>PKLH-016V471</u> 16V 470μF

Control IC:

UC3845AN

Due to duty cycle limiting behaviour

And various resistors

6. Future Work

- Optocoupler Design Finalization
- Design Implementation on Stripboard
- Thermal Analysis
- PCB Design (Bonus)
- Case Design (Bonus)

6. References

- [1] W. (n.d.). Round Wire ac Resistance Calculator. https://chemandy.com/calculators/round-wireac-resistance-calculator.htm
- [2] "Magnetics Ferrite Core Loss Calculator." https://www.mag-inc.com/Design/DesignTools/Ferrite-Core-Loss-Calculator
- [3] https://cdn.ozdisan.com/ETicaret_Dosya/652386_243124.pdf
- [4]https://cdn.ozdisan.com/ETicaret_Dosya/483083_5853486.pdf
- [5] https://pdf.direnc.net/upload/10uh-12x12-datasheet.pdf
- [6] https://cdn.ozdisan.com/ETicaret_Dosya/465839_6115297.pdf
- [7] https://cdn.ozdisan.com/ETicaret_Dosya/342170_703953.pdf
- [8] https://pdf.direnc.net/upload/acs712-datasheet.pdf
- [9] https://cdn.ozdisan.com/ETicaret_Dosya/501245_5372110.pdf

In memory of ...

Thank you for your attention.