Machine Learning

k-Nearest Neighbors (k-NN) Algorithm

Dept. of Computer Science & Engineering NIT Sikkim, Ravangla-737139

Introduction

Basic idea:

- "Two plants that look very much alike probably represent the same species". Likewise, it is quite common that patients complaining of similar symptoms suffer from the same disease.
- "If it walks like a duck, quacks like a duck, then it's probably a duck."
- In short, similar objects often belong to the same class.

- The most basic instance-based method is the k-Nearest Neighbors (k-NN) algorithm.
- This algorithm assumes all instances correspond to points in the n-dimensional space \mathbb{R}^n .
- \blacksquare The nearest neighbors of an instance are defined in terms of the standard Euclidean distance. More precisely, let an arbitrary instance x be described by the feature vector,

$$[a_1(x), a_2(x), a_3(x), ..., a_n(x)]$$

where, $a_r(x)$ denotes the value of the r^{th} attribute of instance x. Then the distance between two instances x_i and x_j is defined to be $d(x_i, x_j)$, where

$$d(x_i, x_j) = \sqrt{\sum_{i=1}^{n} (a_r(x_i) - a_r(x_j))^2}$$

□ Requires three things

- The set of labeled records
- Distance Metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve

□ To classify an unknown record:

- Compute distance to other training records
- Identify *k* nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

k-nearest neighbors of a record x are data points that have the k smallest distances to x.

Distance Measures

- There are many distance metrics or measures we can use to select *k* nearest neighbors.
- There is no "best" distance measure, and the choice is highly problem-dependent.

Euclidean distance:
$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (a_r(x_i) - a_r(x_j))^2}$$

Manhattan distance:
$$d(x_i, x_j) = \sum_{r=1}^{n} |a_r(x_i) - a_r(x_j)|$$

Minkowski distance:
$$d(x_i, x_j) = \left(\sum_{r=1}^n |a_r(x_i) - a_r(x_j)|^p\right)^{\frac{1}{p}}$$

- Computes the distance (similarity) between each test example $z = (x_i, y_i)$ and all the training examples $(x,y) \in D$ to determine its nearest neighbor list, D_z .
- ➤ Once the nearest neighbor list is obtained, the test example is classified based on the majority class of its nearest neighbors:

Majority Voting:
$$y_i = argmax_v \sum_{(x_j, y_j) \in D_z} I(v = y_j)$$

where, v is the class label, y_j is the class label for one of the nearest neighbors and I(.) is an indicator function that returns the value 1 if argument is true and 0 otherwise.

Algorithm 1: k-Nearest Neighbor

Input:(1) k: number of nearest neighbor.

- (2) D: the set of training examples.
 - 1: for each test example $z = (x_i, y_i)$
 - 2: Compute $d(x_i, x)$, the distrace between z and every example $(x, y) \in D$.
 - 3: Select $D_z \subseteq D$, the set of k nearest training examples to z.
 - 4: $y_i = argmax_v \sum_{(x_i, y_i) \in D_z} I(v = y_j)$
 - 5: end for

Example 1: Consider the following data with two features (x_1, x_2) and class as Y. Consider a new data as x_1 =3 and x_2 =7. Can we predict the class using k-NN with k=3?

x_1	x_2	Y (Class)
7	7	Yes
7	4	Yes
3	4	No
1	4	No

Example 1: Consider the following data with two features (x_1, x_2) and class as Y. Consider a new data as x_1 =3 and x_2 =7. Can we predict the class using k-NN with k=3?

x_1	x_2	Y (Class)
7	7	Yes
7	4	Yes
3	4	No
1	4	No

> Step 1: Calculate the distance (Euclidean).

x_1	x_2	Y (Class)	Distance ²
7	7	Yes	$(7-3)^2 + (7-7)^2 = $ 16
7	4	Yes	$(7-3)^2 + (4-7)^2 = 25$
3	4	No	$(3-3)^2 + (4-7)^2 = 9$
1	4	No	$(1-3)^2 + (4-7)^2 = 13$

- > Step 2: Collect the Class (Y) of k = 3 nearest neighbor.
- > Step 3: take majority voting of the Class (Y). In this case Two "No" and One "Yes" class.
- \triangleright Therefore, class of the new data $(x_1=3, x_2=7)$ is "No".

Distance-Weighted k-NN Algorithm

- \triangleright In majority voting approach, every neighbor has the same impact on the classification. This makes the algorithm sensitive to the choice of the k.
- \triangleright One way to reduce the impact of k is to weight the influence of each nearest neighbor x_i according to its distance: $w_j = 1/d(x_i, x_j)^2$.
- As a result, training examples that are located far away from $z = (x_i, y_i)$ have a weaker impact on the classification compared to those that are located close to z.
- ➤ Using the distance-weighted voting scheme, the class label can be determined as follows:

Distance-Weighted Voting: $y_i = argmax_v \sum_{(x_j, y_j) \in D_z} w_j \times I(v = y_j)$

Example 2: Consider the below one-dimensional dataset:

x	0.5	3.0	4.5	4.6	4.98	5.2	5.3	5.5	7.0	9.5
y	_	ı	+	+	+	ı	-	+	ı	ı

- a) Classify the data point x = 0.5 according to its 3, 5, and 9 nearest neighbours (using majority vote).
- b) Repeat the above question using distance-weighted voting approach.

Example 2: Consider the below one-dimensional dataset:

x	0.5	3.0	4.5	4.6	4.98	5.2	5.3	5.5	7.0	9.5
y	_	_	+	+	+	ı	ı	+	ı	-

- a) Classify the data point x = 0.5 according to its 3, 5, and 9 nearest neighbours (using majority vote).
- b) Repeat the above question using distance-weighted voting approach.

Solution: (a)

x	0.5	3.0	4.5	4.6	4.98	5.2	5.3	5.5	7.0	9.5
y	_	_	+	+	+	_	-	+	_	_
d^2	0	6.25	16	16.81	20.07	22.09	23.04	25	42.25	81
k=3	-	_	+							
k=5	-	_	+	+	+					
k=9	_	_	+	+	+	-	-	+	-	

Therefore, the data point x=0.5 belongs to class: y = - for k = 3, y = + for k = 5, and y = - for k = 9.

Example 2: Consider the below one-dimensional dataset:

x	0.5	3.0	4.5	4.6	4.98	5.2	5.3	5.5	7.0	9.5
y	_	I	+	+	+	ı	ı	+	ı	-

- a) Classify the data point x = 0.5 according to its 3, 5, and 9 nearest neighbours (using majority vote).
- b) Repeat the above question using distance-weighted voting approach.

Solution: (b)

x	0.5	3.0	4.5	4.6	4.98	5.2	5.3	5.5	7.0	9.5
y	-	-	+	+	+	_	-	+	_	-
d^2	0	6.25	16	16.81	20.07	22.09	23.04	25	42.25	81
k=3	-	$\frac{1}{6.25}$ -	$\frac{1}{16}$ +							
k=5	-	$\frac{1}{6.25}$ -	$\frac{1}{16}$ +	$\frac{1}{16.81}$ +	$\frac{1}{20.07}$ +					
k = 9	-	$\frac{1}{6.25}$ -	$\frac{1}{16}$ +	$\frac{1}{16.81}$ +	$\frac{1}{20.07}$ +	$\frac{1}{22.09}$ -	$\frac{1}{23.04}$ -	$\frac{1}{25}$ +	$\frac{1}{42.25}$ -	

Example 2: Consider the below one-dimensional dataset:

x	0.5	3.0	4.5	4.6	4.98	5.2	5.3	5.5	7.0	9.5
y	_	ı	+	+	+	ı	ı	+	ı	ı

- a) Classify the data point x = 0.5 according to its 3, 5, and 9 nearest neighbours (using majority vote).
- b) Repeat the above question using distance-weighted voting approach.

Solution: (b) Therefore,

j	k = 3	$(1+\frac{1}{6.25})-$	$\frac{1}{16}+$
j	k = 5	$(1+\frac{1}{6.25})-$	$\left(\frac{1}{16} + \frac{1}{16.81} + \frac{1}{20.07}\right) +$
	k = 9	$\left(1 + \frac{1}{6.25} + \frac{1}{22.09} + \frac{1}{23.04} + \frac{1}{42.25}\right) -$	$\left(\frac{1}{16} + \frac{1}{16.81} + \frac{1}{20.07} + \frac{1}{25}\right) +$

- For k = 3: {1.16 -, 0.0625 +}, i.e., class y = -.
- For k = 5: {1.16 -, 0.172 +}, i.e., class y = -.
- For k = 9: {1.272 -, 0.212 +}, i.e., class y = -.

Example 3: Consider the following data with two features (x_1, x_2) and class as Y. Consider a new data as x_1 =3 and x_2 =7. Predict its class using k-NN with k=3 and distance-weighted voting?

x_1	x_2	Y (Class)
7	7	Yes
7	4	Yes
3	4	No
1	4	No

Choosing the value of k

- \triangleright If k is too small
 - Overfitting: algorithm performs too good on the training set, compared to its true performance on unseen test data
 - Sensitive to noise points, less stable.
- Larger *k* may lead to better performance.
 - But if we set *k* too large we may end up looking at samples that are not neighbors (are far away from the query).

- \triangleright We can use cross-validation to find the k.
- \triangleright Rule of thumb is $k \le \operatorname{sqrt}(n)$, where n is the number of training examples

Scaling Issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- > Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

➤ Normalize scale

- Linearly scale the range of each feature to be, e.g., in range [0,1].
- Linearly scale each dimension to have 0 mean and variance 1 (compute mean μ and variance σ^2 for an attribute x_j and scale: $(x_j \mu)/\sigma$).
- ➤ Irrelevant, correlated attributes add noise to distance measure. Eliminate some attributes or adapt weight of attributes
- Non-metric attributes (symbols): *Hamming distance*

k-NN for Regression

- \triangleright The general concept of k-NN for regression is the same as for classification:
 - First, find the *k* nearest neighbors in the dataset.
 - Second, make a prediction based on the labels of the k nearest neighbors.
- ➤ However, in regression, the target function is a real-valued instead of discrete-valued function.
- \triangleright A common approach for computing the continuous target is to compute the mean or average target value over the k nearest neighbors.

$$y_i = \frac{1}{k} \sum_{j=1}^k y_j$$

➤ We can *distance-weight* the instances for real-valued target functions in a similar fashion:

$$y_i = \frac{\sum_{j=1}^k w_j \times y_j}{\sum_{j=1}^k w_j}$$

As an alternative to averaging is to use the median instead.

Computational Complexity

- > We just need to work out which of the training data are close to it.
- This requires computing the distance to each datapoint in the training set, which is relatively expensive.
- For If we are in normal Euclidean space, then we have to compute d subtractions and d squarings (we can ignore the square root since we only want to know which points are the closest, not the actual distance) and this has to be done in $O(n \times d)$ times with n number of training data.
- We can then identify the k nearest neighbors to the test point, and then set the class of the test point to be the most common one out of those for the nearest neighbors.
- \triangleright The choice of k is not trivial.
- The computational costs get higher as the number of dimensions grows.

Computational Complexity

- ➤ Computing the distances between all pairs of points is computationally expensive.
- Fortunately, designing an efficient data structure can reduce the computational overhead a lot. For the problem of finding nearest neighbors the data structure of choice is the KD-Tree (known as *K*-dimensional tree).
- \triangleright KD-Tree reduces the cost of finding a nearest neighbor to $O(\log n)$ for O(n) storage.
- The construction of the tree is $O(n\log^2 n)$, with much of the computational cost being in the computation of the median, which with a naïve algorithm requires a sort and is therefore $O(n\log n)$, or can be computed with a randomized algorithm in O(n) time.

Advantages and Disadvantages

Advantages:

- Simple to implement and use.
- Robust to noisy data by averaging *k*-nearest neighbors.
- *k*-NN classification is based solely on local information.
- The decision boundaries can be of arbitrary shapes.

Disadvantages:

- Lazy learners: do not build any model.
- Make prediction based on local information only.
- O(n) for each instance to be classified.
- More expensive to classify a new instance than with a model.

Advantages and Disadvantages

Disadvantages:

- Curse of dimensionality: The Curse of Dimensionality refers to various problems that arise when dealing with high-dimensional data.
 - In simpler terms, as the number of features or dimensions in a dataset increases, the amount of data needed to effectively classify a sample grows exponentially.
 - The distance metrics do not consider the relation of the attributes which result in inaccurate distance. Suppose there are 20 attributes out of which only 2 are relevant in determining the classification. The instances that have identical values for the 2 relevant attributes may never be distinct from one another in 20 dimensional instance space. Therefore, distance can be dominated by irrelevant attributes.

k-NN Algorithm: Assignments

Assignment 1: Consider the following data with two features (x_1, x_2) and class as Y. Consider an unknown instance as (13, 12) and predict the class of this instance using k-NN with k = 3?

x_1	x_2	Y (Class)
12	9	Yes
11	7	Yes
9	7	No
15	14	No

k-NN Algorithm: Assignments

Assignment 2: Consider the following data and an unknown instance as (24, 5, 5). Predict the class of this instance using k-NN with k = 4?

Internal (x ₁)	Assignment (x ₂)	Project (x ₃)	Result (Y)
75	9.2	8	Pass
54	6.2	6	Pass
21	4	5	Fail
27	3	4	Fail
44	5	8	Pass
25	8	9	Pass
10	2	3	Fail
15	5	5	Fail
65	7	8	Pass
35	6	6	Pass

k-NN Algorithm: Assignments

Assignment 3: Consider the following data and an unknown instance as (F, 5, 5). Predict the class of this instance using k-NN with k = 4?

Internal (x ₁)	Assignment (x ₂)	Project (x ₃)	Result (Y)
A	9.2	8	Pass
С	6.2	6	Pass
F	4	5	Fail
F	3	4	Fail
D	5	8	Pass
F	8	9	Pass
G	2	3	Fail
G	5	5	Fail
В	7	8	Pass
Е	6	6	Pass

Books:

- 1. "Machine Learning" by Tom Mitchell, McGraw Hill.
- 2. "Introduction to Data Mining" by PN Tang, M Steinbach, V Kumar, Pearson.
- 3. "Machine Learning An Algorithmic Perspective" by Stephen Marsland, CRC Press (2nd ed).