Base de Dados I – H. Proença, J. Muranho, P. Prata

- 3. Teoria da Normalização
- 3.1. Dependências Funcionais
- 3.2. Normalização

3.2.1. Primeira Forma Normal (1FN)

Uma relação está na 1ª Forma Normal se

- . Cada atributo contém apenas valores atómicos.
- . Não há conjuntos de atributos repetidos descrevendo a mesma característica.

Exemplo de relações que não estão na 1ºForma Normal

1)

PessoaCursos1

Nome	Endereço	NIF	Cursos
Artur	Covilhã	123456789	Programador
Ana	Fundão	22222222	Operador, Programador
Carlos	Covilhã	222333444	Analista, Programador, Operador
Paulo	Guarda	555666777	Operador, Analista

- O atributo Cursos contém valores não atómicos !!!

Base de Dados I – H. Proença, J. Muranho, P. Prata

2)

PessoaCursos2

Nome	Endereço	NIF	Curso1	Curso2	Curso3
Artur	Covilhã	123456789	Programador		
Ana	Fundão	22222222	Operador	Programador	
Carlos	Covilhã	222333444	Analista	Programador	Operador
Paulo	Guarda	555666777	Operador	Analista	

São repetidos atributos do mesmo tipo, curso1, curso2, curso3.
 (Diz-se que a relação tem um grupo repetitivo)

- Os tuplos correspondentes a alunos com apenas 1 ou dois cursos vão ter valores nulos para alguns atributos.
- Como representar uma pessoa com mais do que três cursos?

Suponhamos a relação,

* - Os dados de cada produto encomendado (isto é, de cada linha da nota de encomenda) constituem um grupo de atributos que se repete.

Como decompor a relação?

Base de Dados I – H. Proença, J. Muranho, P. Prata

A uma nota de encomenda corresponde um único cliente (nº e nome) e uma única morada de cliente. Isto é, existe a Dependência Funcional,

N nota enc \rightarrow Cod cliente, Nome cliente, Morada cliente

Podemos decompor a relação R nas relações:

(ver secção 3.1 ponto 10 – decomposição sem perda)

Nota_de_enc (<u>N_nota_enc</u>, Cod_cliente, Nome_cliente, Morada_cliente) e

Linha_nota_enc (<u>N_nota_enc</u>, <u>Cod_produto</u>, <u>Desc_produto</u>, Preço_produto, Quantidade)

A chave da relação Nota de enc é N nota enc.

A chave da relação Linha_nota_enc é N_Nota_enc, Cod_produto

Ambas as relações estão na 1ª Forma Normal (não têm grupos repetitivos).

3.2.2. Segunda Forma Normal (2FN)

Seja a relação, R(<u>Fornecedor, Peça</u>, Cidade, Quantidade) em que

Fornecedor → Peça

Peça → Fornecedor

Fornecedor \rightarrow Cidade

Universidade da Beira Interior

Cursos: Engenharia Informática, Ensino da Informática, Matemática Aplicada e Matemática /Informática

Base de Dados I – H. Proença, J. Muranho, P. Prata

Num instante t,

R

Fornecedor	<u>Peça</u>	Cidade	Quantidade
Empresa A	1	Covilhã	100
Empresa A	2	Covilhã	200
Empresa A	3	Covilhã	300
Empresa B	1	Fundão	400
Empresa B	3	Fundão	500

Algumas anomalias:

Inserção: Não é possível inserir um fornecedor sem que ele forneça alguma peça (Peça faz parte da chave).

Eliminação: Se, por exemplo, a empresa B deixar de fornecer as peças 1 e 3, perdemos a informação sobre a cidade desse fornecedor.

Modificação: Supondo que um fornecedor muda de cidade. Actualizar R significa actualizar todos os tuplos desse fornecedor.

Se substituirmos R por

$$R1 = \prod_{} (R)$$
 $R1(\underline{Fornecedor}, Cidade)$

$$R2 = \prod_{} (R) \qquad R2 (\underline{Fornecedor, Peça}, Quantidade)$$

desaparecem as anomalias.

A DF Fornecedor → Cidade

garante que
$$R = R1 \bowtie_{} R2$$

Cursos: Engenharia Informática, Ensino da Informática, Matemática Aplicada

e Matemática /Informática

Base de Dados I – H. Proença, J. Muranho, P. Prata

Definição: Dependência Funcional Elementar

Seja R (X,Y,Z, ...) com X, Y, Z conjuntos de atributos,

a DF $X \rightarrow Y$ é <u>elementar</u> se $\forall X' \subset X : X' \not\rightarrow Y$

Definição: <u>Dependência Funcional Parcial</u>

Definição: 2ª Forma Normal

Seja R (A_1, A_2, \dots, A_n) ,

R está na 2FN sse \forall $A_i \notin chave(s)$, \forall X chave, se verifica que

 $X \rightarrow A_i$ é elementar

De outra forma:

- Uma relação está na 2ª forma normal se está na 1ª FN e os atributos que não são chave dependem da totalidade da chave.

Nota:

Um atributo pertencente a uma chave diz-se um atributo primo.

Exemplo:

Linha_nota_enc (<u>N_nota_enc</u>, Cod_produto, Desc_produto, Preço_prod, Quantidade)

As dependências funcionais,

N_nota_enc, Cod_produto → Desc_produto N nota enc, Cod produto → Preço produto

não são elementares, porque

 $Cod_produto \rightarrow Desc_produto$ (1)

Cod_produto → Preço_produto (2)

A relação Linha_nota_enc vai dar origem a:

Linha_Nota_Enc (<u>N_nota_enc, Cod_produto</u>, Quantidade)
Produto (<u>Cod_produto</u>, Desc_produto, Preço_produto)

A DF Cod_produto → Desc_produto, Preço_produto (obtida por união de (1) e (2)) garante que a decomposição é válida.

Casos especiais de relações em 2FN:

. Se todos os atributos de uma relação são primos.

ou

. A <u>chave</u> da relação consiste <u>num único atributo</u>.

Então a relação está na 2ª forma normal.

Nota: A definição de 2FN não "proíbe" a existência de DF parciais entre atributos primos.

Decomposição em 2ª Forma Normal

Toda a relação R que não esteja na 2FN pode ser decomposta num conjunto de projecções que estão na 2FN.

Dem.

Suponhamos que $R(A_1, A_2, ..., A_n)$ não está na 2FN.

Então existem subconjuntos disjuntos de $\{A_1, A_2, ..., A_n\}$, $X \in Y$, tais que:

- Y não tem atributos chave
- X é chave
- Existe a DF parcial $X \rightarrow Y$

 $Seja\ Z\ o\ conjunto\ de\ atributos\ que\ não\ pertençam\ nem\ a\ X\ nem\ a\ Y.$

R pode ser representada por R(X,Y,Z)

Universidade da Beira Interior

Cursos: Engenharia Informática, Ensino da Informática, Matemática Aplicada

e Matemática /Informática

Base de Dados I – H. Proença, J. Muranho, P. Prata

Se $X \to Y$ é uma DF parcial, então X pode ser representado por X'X'' onde $X' \to Y$ é uma DF elementar.

Num primeiro passo da decomposição substituímos R(XYZ) por

$$\prod_{\langle X', Y \rangle} (R)$$
 e $\prod_{\langle X, Z \rangle} (R)$

- $\prod_{\langle X', Y \rangle} (R)$ está na 2FN porque
 - $X' \rightarrow Y \acute{e}$ elementar
 - . Y contém todos os atributos não primos
- $Se \prod_{X,Z}(R)$ não está na 2FN aplicamos novamente o procedimento anterior.

Resumindo, para vermos se uma relação está na 2FN:

- 1 Identificamos a chave da tabela. Se a chave for apenas um atributo, ou for constituída por todos os atributos da relação, então podemos concluir que está na 2FN.
- 2 Se a chave for composta (tiver mais do que um atributo) verificamos se há atributos que não são chave e que dependem apenas de parte da chave. Se não houver, então está na 2FN.

Se houver, então decompor de acordo com o esquema anterior.

e Matemática /Informática

Base de Dados I – H. Proença, J. Muranho, P. Prata

3.2.3. Terceira Forma Normal (3FN)

Seja E (N emp, Dep, Cidade) com

$$N \text{ emp} \rightarrow Dep$$

$$Dep \rightarrow N_emp$$

$$Dep \rightarrow Cidade$$

E

N_emp	Dep	Cidade
a	A	X
b	A	X
С	A	X
d	В	Y
e	В	Y
f	С	X
g	С	X

Anomalias

Inserção: não podemos inserir um departamento se não tem empregados

Eliminação: Se eliminamos o último empregado de um departamento perdemos a informação do departamento

Modificação: O atributo cidade é repetido para cada empregado de um dado departamento; Uma alteração da localização de um departamento implica alterar a localização de todos os empregados desse departamento.

Base de Dados I – H. Proença, J. Muranho, P. Prata

E(N emp, Dep, Cidade) está na 2ª forma normal!

Se substituirmos E por

Empregado =
$$\prod_{\langle N \text{ emp, Dep} \rangle} (E)$$
 e Departamento = $\prod_{\langle Dep, Cidade \rangle} (E)$

desaparecem as anomalias.

A DF Dep
$$\rightarrow$$
 Cidade garante que

$$E = Empregado \longrightarrow_{\langle Dep=Dep \rangle} Departamento$$

Ficamos com o esquema relacional

Empregado (N_emp, Dep)

Departamento (<u>Dep</u>, Cidade)

Definição: Dependência Funcional Directa

Seja R(X,Y,Z,...) $X \rightarrow Z$ é directa sse

$$\not \exists Y \in R : Y \not \to X, X \to Y \ e \ Y \to Z \ (n \tilde{a}o \ trivial)$$

 $X \rightarrow Z$ é directa

Base de Dados I – H. Proença, J. Muranho, P. Prata

Definição: 3ª Forma Normal

Seja R
$$(A_1, A_2, ..., A_n)$$
,

R está na 3FN sse $\forall A_i \notin \text{chave}(s)$, $\forall X \text{ chave}$, se verifica que

$$X \rightarrow A_i$$
 é directa

De outra forma:

- Uma relação está na 3FN se está na 2FN e nenhum dos atributos não chave depende de outro também não chave. !

Exercício: provar que se uma relação está na 3FN então está também na 2FN

Resolução: Suponhamos que R está na 3FN mas que tem um atributo A_i (não chave) que depende parcialmente de um conjunto de atributos X, com X chave de R (Isto é, não está na 2FN).

Para algum
$$X' \subset X$$
, $X \to X' \to A_i$ logo

$$X \rightarrow A_i$$
 não é directa e portanto R não está na $3FN$.

Decomposição em 3ª Forma Normal

Toda a relação R que não esteja na 3FN pode ser decomposta num conjunto de projecções que estão na 3FN.

Se
$$X \to Y$$
 (com X chave), $Y \not\to X$ e $Y \to Z$ (não trivial)

Base de Dados I – H. Proença, J. Muranho, P. Prata

(isto é, existe $X \rightarrow Z$ não directa, com Z não chave)

Decompor em

R(YZ) e R(XYZ) onde W tem todos os atributos que não são de X, nem de Y nem de Z.

Exemplo 1:

Nota de enc (*N nota enc*, Cod cliente, Nome cliente, Morada cliente)

Cod_cliente → Nome_cliente

Cod cliente → Morada cliente

por união, Cod_cliente → Nome_cliente, Morada_cliente

(logo a DF N_nota_enc → Nome_cliente, Morada_cliente (não é directa)

A relação não está na 3FN.

Decomposição:

Cliente (Cod_cliente , Nome_cliente, Morada_cliente)

Nota_enc (N_nota_enc, Cod_cliente)

Exemplo 2:

Cliente (Código, Nome, Morada, Cod postal)

Código → Morada - Esta dependência funcional é directa?

A relação está na 3ª forma normal?

Resposta:

Exercício: Normalize em 3FN o esquema relacional abaixo.

Clientes (N_cliente, (Endereços_para_remessa) * , Saldo,

Limite de crédito, Desconto)

* - grupo repetitivo

Peças (N_peça, Cod_armazém, Qtd_stock_armazém,

Min_stock_armazém, Desc_peça, Cor)

- Uma peça pode existir em vários armazéns.

Encomendas (N_enc, Cod_cliente, Endereço_remessa, Data, (N peça, Qtd pedida, Qtd enviada)*)

3.2.4. Forma Normal de Boyce-Codd (FNBC)

Seja R (Cidade, Endereço, Cod postal) com

Cidade, Endereço → Cod_postal

Cod postal \rightarrow Cidade

Chaves:

Cidade, Endereço

Endereço, Cod_postal

A relação está na 3FN mas existem algumas anomalias:

Cidade	Endereço	Cod_postal
c1	e1	p1
c1	e2	p2
c1	e3	p2
c2	e4	р3

Inserção: Não podemos inserir o código postal de uma cidade se não especificarmos o endereço.

Eliminação: Ao eliminarmos o último endereço de um dado código postal perdemos a cidade correspondente.

Modificação: Se é alterado o código postal de uma cidade é necessário alterar o código postal de todos os endereços com esse código postal.

Definição: Forma Normal de Boyce-Codd

Uma relação R (A₁, A₂, ..., A_n) está na Forma Normal de Boyce-Codd sse

 $\forall X \rightarrow Y \text{ não trivial: } X \text{ e } Y \text{ conjuntos de atributos de } R$:

X é chave candidata de R

De outra forma:

- Uma relação está na FNBC se e só se todo o determinante da relação for uma chave candidata.

Voltando ao exemplo anterior:

Chaves:

Cidade, Endereço

Endereço, Cod_postal

e existe a DF Cod_postal \rightarrow Cidade

Cod_postal não é chave candidata logo a relação não está na FNBC.

Decomposição:

R1 (<u>Cod_postal</u>, Cidade)

R2 (Endereço, Cod_postal)

Observação: A FNBC só é diferente da 3FN se a relação tem mais do que uma chave.

Exemplo 1:

E (Emp, Dep, Cidade)

 $Emp \rightarrow Dep$

Dep → Emp

 $Dep \rightarrow Cidade$

Cidade → Dep

Não está na 3FN (porque a DF $Emp \rightarrow Cidade$ não é directa) Não está na FNBC (porque na DF $Dep \rightarrow Cidade$ o determinante (Dep) não é chave candidata).

Duas decomposições sem perda de informação. Qual escolher?

(1)

E1 (Emp, Dep)

E2 (Emp, Cidade)

Emp \rightarrow Dep

Emp \rightarrow Cidade

ou

(2)

E1 (Emp, Dep)

E2 (Dep, Cidade)

Emp \rightarrow Dep

Emp \rightarrow Dep

Dep \rightarrow Cidade

Em (1) perdemos a DF Dep \rightarrow Cidade.

Em (2) preservamos as DF's (Emp → Cidade obtém-se por transitividade). A decomposição (2) é portanto a decomposição correcta.

Base de Dados I – H. Proença, J. Muranho, P. Prata

Exemplo 2:

Nota enc(N nota enc, Cod cliente, Nome Cliente, Morada cliente)

Cod_cliente → Nome_cliente

Cod cliente → Morada cliente

Não está na 3FN (ver página 92)

Não está na FNBC

(Porque na DF $Cod_cliente \rightarrow Nome_cliente$, $Morada_cliente$

Cod cliente não é chave candidata)

Decomposição:

NE1 (N_nota_enc, Cod_cliente)

NE2 (Cod_cliente, Nome_cliente, Morada_cliente)

3FN FNBC

Exemplo 3: Relação com duas Chaves candidatas não sobrepostas.

 $N_{forn} \rightarrow Nome_{forn}$

 $Nome_forn \to N_forn$

 $N_{forn} \rightarrow Cidade$, Tipo

Nome_forn \rightarrow Cidade, Tipo

Chaves candidatas:

N forn

Nome form

3 FN? _____ FNBC? ____

97

Base de Dados I – H. Proença, J. Muranho, P. Prata

Chaves candidatas:

N forn, N peça

Nome forn, N peça

Exemplo 4: Relação com duas Chaves candidatas sobrepostas.

F(N_forn, Nome_forn, N_peça, Qtd)

 $N \text{ forn} \rightarrow Nome \text{ forn}$

Nome_forn \rightarrow N_forn

 $N_{forn}, N_{Peça} \rightarrow Qtd$

3FN? sim

FNBC? não, porque na DF

 $N \ forn \rightarrow Nome \ forn$

N forn não é chave candidata.

Decompor em:

F1 (N forn, Nome forn)

F2 (N_forn, N_peça, Qtd)

Ambas estão na FNBC.

• Se uma relação está na FNBC então está na 3FN.

Dem. Seja R (A_1 , A_2 , ... A_n) na FNBC. Suponhamos que existe uma DF não directa $X \rightarrow A_i$ tal que $X \rightarrow Y$, $Y \not\rightarrow X$ e $Y \rightarrow A_i$ para algum A_i não primo e X chave. (Isto é, R não está na 3FN). Mas, se existe $Y \rightarrow A_i$ (não trivial) então Y é chave candidata de R (porque por hipótese R está na FNBC) e portanto $Y \rightarrow X$.

Base de Dados I – H. Proença, J. Muranho, P. Prata

Se uma relação não está na FNBC pode ser decomposta num conjunto de projecções.

Decomposição em FNBC.

Seja R(X,Y,Z) uma relação que não está na FNBC, onde X, Y e Z são conjuntos de atributos tais que $X \rightarrow Y$ (não trivial) e $X \not\rightarrow Z$ (logo X não é chave candidata de R)

- Substituir R(XYZ) por R(X,Y) e R(X,Z).
- Se necessário repetir o processo.

Exercício: Decomponha em 3FN a relação

Proprietário(N_carro, Marca, Tipo, Cor, BI, Nome, Data, Preço) onde

N carro \rightarrow Cor, Tipo

Tipo → Marca, Preço

 $BI \rightarrow Nome$

 N_{carro} , Nome \rightarrow Data