Student Information

Full Name: Onat Özdemir

Id Number: 2310399

Answer 1

Since p is prime and gcd(x, p) = 1, by using Fermat's Little Theorem,

$$x^{p-1} \equiv 1 \pmod{p}$$

Since p and y are positive integers, by the definition,

$$p - 1 = qy + r \quad \exists q, r \in \mathbb{Z} \quad 0 \le r < y$$

Then,

$$x^{p-1} = x^{qy+r} = (x^y)^q x^r$$

If we prove that r = 0 then we can prove $y \mid (p - 1)$.

Since $x^y \equiv 1 \pmod{p}$ then $(x^y)^q \equiv 1 \pmod{p}$. Moreover, since both $(x^y)^q \equiv 1 \pmod{p}$ and $x^{p-1} \equiv 1 \pmod{p}$ holds then we can conclude that $x^r \equiv 1 \pmod{p}$ from the equality we obtained. Since y is the smallest positive integer that satisfies $x^y \equiv 1 \pmod{p}$ and according to the definition of division $0 \le r < y$, we can conclude that r = 0.

Thus, by the definition, $y \mid (p-1)$.

Answer 2

Let's assume that $169 \mid (2n^2 + 10n - 7), \exists n \in \mathbb{Z}^+, \text{ then by the definition;}$

$$2n^2 + 10n - 7 = 169k \qquad \exists n \in \mathbb{Z}^+ \quad \exists k \in \mathbb{Z}$$
 (1)

If we pass 169k to the left side of the (1),

$$2n^2 + 10n - 7 - 169k = 0 \qquad \exists n \in \mathbb{Z}^+ \quad \exists k \in \mathbb{Z}$$
 (2)

To find the $n \in \mathbb{Z}^+$ values that satisfy (2), we can use discriminant method since the equation in quadratic form,

$$\Delta = b^2 - 4ac = 10^2 + 8 * (7 + 169k) = 13 * (12 + 8 * 13k) \quad k \in \mathbb{Z}$$

$$n = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-10 \pm \sqrt{13 * (12 + 8 * 13k)}}{4}$$
(3)

Since $k \in \mathbb{Z}$, we can conclude that $\Delta = 13 * (12 + 8 * 13k) \in \mathbb{Z}$. Moreover, for $\sqrt{\Delta}$ to be reel $\Delta \geq 0$ and for $\Delta = 0$ $n = -5/2 \notin \mathbb{Z}^+$, hence we can conclude that $\Delta = 13 * (12 + 8 * 13k) \in \mathbb{Z}^+$.

Then, as can be seen from (3), for n to be an integer, $\Delta = 13 * (12 + 8 * 13k)$ must be perfect square.

According to The Fundamental Theorem Of Arithmetic, since $\Delta = 13 * (12 + 8 * 13k) \in \mathbb{Z}^+$, Δ can be written uniquely in the form of $p_1 * p_2 * ... p_i$ where p_i is a prime number and $i \in \mathbb{Z}^+$.

Moreover, by the definition, since $\Delta = 13*(12+8*13k)$ must be perfect square then it can be written uniquely as $p_1^{2s_1}*p_2^{2s_2}*...p_i^{2s_i}$ where p_i is a prime number, $i \in \mathbb{Z}^+$ and $s_i \in \mathbb{Z}^+$. Since 13 is a multiplier of Δ and is a prime number, then $13 \mid (12+8*13k)$ must be satisfied. As can be seen that $13 \mid (8*13k)$, however since $12 \not\equiv 0 \pmod{13}$, $13 \nmid 12$. Hence, $13 \nmid (12+8*13k)$. Since there exist no $k \in \mathbb{Z}$ that makes Δ perfect square, there exist no arbitrarily chosen $n \in \mathbb{Z}^+$ that satisfies $169 \mid (2n^2 + 10n - 7)$. Thus, by using proof by contradiction, $169 \nmid (2n^2 + 10n - 7)$, $\forall n \in \mathbb{Z}^+$.

Answer 3

Since $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, by the definition, $m \mid (a - b)$ and $n \mid (a - b)$. Then, by the definition,

$$a - b = mk \qquad \exists k \in \mathbb{Z} \tag{4}$$

Since $n \mid (a - b)$, then $n \mid mk$. Also since given that gcd(m, n) = 1, $n \nmid m$ so that $n \mid k$. Thus, by the definition,

$$k = nt \qquad \exists t \in \mathbb{Z}$$
 (5)

Therefore, by using (4) and (5) we can conclude that,

$$a - b = mnt$$
 $m, n \in \mathbb{Z}^+$ $t \in \mathbb{Z}$ (6)

Thus, by the definition, we can conclude from (6),

$$a \equiv b \pmod{m \times n}$$

Answer 4

To prove the given argument, we can use Mathematical Induction Method. Let the given argument be P(n,k).

Basis Step: Let us show that P(1,k) is true for $\forall k \in \mathbb{Z}^+$. For arbitrarily chosen $k \in \mathbb{Z}^+$;

$$\sum_{j=1}^{n=1} j(j+1)(j+2)...(j+k-1) = 1 * (1+1) * (1+2)... * (1+k-1)$$

$$= 1 * 2 * 3 * ... * k$$
(7)

Moreover,

$$\frac{n(n+1)(n+2)...(n+k)}{(k+1)} = \frac{1*2*3*..*(k+1)}{k+1} = 1*2*3*...*k$$
 (8)

From (7) and (8);

$$\sum_{j=1}^{n=1} j(j+1)(j+2)...(j+k-1) = \frac{n(n+1)(n+2)...(n+k)}{(k+1)} = 1 * 2 * 3 * ... * k$$

Thus we proved that P(1,k) is true $\forall k \in \mathbb{Z}^+$ since we proved it for an arbitrary $k \in \mathbb{Z}^+$.

Inductive Step: Assume that P(n,k) is true where $n, k \in \mathbb{Z}^+$. Then, let us show that P(n+1,k) is also true.

$$\sum_{j=1}^{n+1} j(j+1)(j+2)...(j+k-1)$$

$$= \sum_{j=1}^{n} j(j+1)(j+2)...(j+k-1) + (n+1)*(n+2)*...*(n+1+k-1)$$
(9)

We assumed that P(n,k) is true, therefore we can write (9) as,

$$\sum_{j=1}^{n+1} j(j+1)(j+2)...(j+k-1) = \frac{n(n+1)(n+2)...(n+k)}{(k+1)} + (n+1)*(n+2)*...*(n+1+k-1)$$
(10)

If we rearrange the right side of (10);

$$\sum_{j=1}^{n+1} j(j+1)(j+2)...(j+k-1) = \frac{n(n+1)(n+2)...(n+k) + (k+1)(n+1)(n+2)...(n+k)}{(k+1)}$$

$$= \frac{(n+1)(n+2)...(n+k)(n+k+1)}{(k+1)}$$
(11)

From (11),

$$\frac{(n+1)(n+2)...(n+k)(n+k+1)}{(k+1)} = \frac{(n+1)((n+1)+1)((n+1)+2)...((n+1)+k)}{(k+1)}$$
(12)

Thus, we proved that P(n+1,k) is also true if P(n,k) is true, $\forall k \in \mathbb{Z}^+$ since we proved it for an arbitrary $k \in \mathbb{Z}^+$.

In conclusion, we proved that the given statement is true for all positive integers k and n, by using mathematical induction method.

Answer 5

Basis Step: Since for $H_0 = 1$, $H_1 = 3$, $H_2 = 5$,

$$H_0 \le 7^0, \qquad H_1 \le 7^1, \qquad H_2 \le 7^2$$

we can take them as our base cases.

Inductive Step: Let $n \geq 3$, assume that $H_m \leq 7^m$ for all integer m's where $0 \leq m < n$. Then for H_n by our inductive hypothesis,

$$H_n = 5H_{n-1} + 5H_{n-2} + 63H_{n-3}$$

$$H_n \le 5 * 7^{n-1} + 5 * 7^{n-2} + 63 * 7^{n-3}$$

$$H_n \le 343 * 7^{n-3}$$

$$H_n \le 7^n$$

Thus, we have proved that $H_n \leq 7^n$ holds for all $n \geq 0$ by using strong induction method.