Topics to discuss

Properties of Asymptotic Notations.

1) Transitive Property:

$$f(n) = O(g(n))$$
 and $g(n) = O(h(n))$ then $f(n) = O(h(n))$.

Valid for Ω and Θ as well.

valid for
$$\Omega$$
 and Ω as well.

$$f(n) = 1 \qquad g(n) = n \qquad h(n) = n^2 \qquad f(n) \leq c, g(n)$$

$$1 \leq n \qquad n \leq n^2 \qquad f(n) = 0 g(n)$$

$$1 \leq n^2$$

$$\sqrt{1 \leq n^2}$$

2) Reflexive Pooperty:

f(n) = O(f(n)). Valid for Ω and O also. $f(n) \leq c \cdot g(n)$ $f(n) = n^2$ $f(n) = O(n^2)$

$$f(n) \leq c.g(n)$$

$$f(n) = n^2$$

 $f(n) = 0(n^2)$

(3) Symmetric Property $f(n) = \Theta(g(n)) \text{ then } g(n) = \Theta(f(n)).$ Valid for only Θ .

$$0 \leq C_1 g(n) \leq f(n) \leq C_2 g(n)$$

$$f(n) = \theta(n^2)$$

$$g(n) = \theta(n^2)$$

Transpose Property:

If f(n) = 0 (g(n)) then $g(n) = \Omega$ (f(n))

True for upper and lower bound.

c. g(n)

(3) If f(n) is in O(kg(n)) for all constant k > 0, then f(n) is in O(g(n)).

$$f(n) = (2n) = (k=2)$$
 $f(n) = 0(2g(n))$
 $f(n) = 0(g(n))$

$$f(n) = O(2g(n))$$

6 If
$$f_1(n)$$
 is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$
then $(f_1+f_2)(n)$ is in $O(max(g_1(n),g_2(n)))$.
 $f_1(n) = n$ $g_1(n) = n$ $=> f_1(n) = 0 g_1(n)$
 $f_2(n) = n^2$ $g_2(n) = n^2$ $=> f_2(n) = 0 g_2(n)$
 $(f_1+f_2)(n) = O(max g_1(n), g_2(n))$
 $f(n) = n + n^2$ $= O(n^2)$

(F) If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$ then $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $f_1(n) = n$ for $f_2(n) = n + f_2(n) = n^2$ for $f_2(n) = n^2$ for $f_2(n) = 0$ (m3)

Follow Now

Start Practicing

i. am. arfir

<u>Arfin Parween</u>