الجمهورية الجزائوية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2009

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: العلوم التجريبية

المُدة: 3 ساعات ونصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (03.5 نقطة)

$$u_0=1$$
 و $u_1=2$ و $u_{n+2}=\frac{4}{3}u_{n+1}-\frac{1}{3}u_n$ و $u_0=1$ و $u_1=2$ و $u_{n+2}=\frac{4}{3}u_{n+1}-\frac{1}{3}u_n$

$$v_n = u_{n+1} - u_n$$
 :المنتالية (v_n) معرفة على $\mathbb N$ كما يلي

- v_1) v_0 (1)
- 2) برهن أن (v_n) متتالية هندسية يطلب تعيين أساسها.

$$S_n = v_0 + v_1 + \dots + v_{n-1} : S_n$$
 large n (1) (3)

$$u_n = \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^n \right) + 1 : n$$
 بر هن أنه من أجل كل عدد طبيعي (ب

بين أن (u_n) متقاربة.

التمرين الثاني: (05 نقاط)

و
$$Z$$
 عدد مرکب $P(Z) = (Z-1-i)(Z^2-2Z+4)$ و $P(Z)$

$$P(Z)=0$$
 المعانلة \mathbb{C} المجموعة (1

$$Z_2 = 1 - \sqrt{3}i + Z_1 = 1 + i$$
 نضع: (2)

أ) أكتب
$$Z_1$$
 و Z_2 على الشكل الأسي.

ب) أكتب
$$\frac{Z_1}{Z_2}$$
 على الشكل الجبري ثم الشكل الأسي.

$$\sin\left(\frac{7\pi}{12}\right)$$
 o $\cos\left(\frac{7\pi}{12}\right)$ or $\cos\left(\frac{7\pi}{12}\right)$

اً) معدد طبیعی.عیّن قیم
$$n$$
 بحیث یکون العدد n (أ (3 عدد طبیعی.عیّن قیم n أ) معدد طبیعی.عیّن قیم العدد العدد

$$\cdot \left(rac{Z_1}{Z_2}
ight)^{456}$$
 ب لحسب قيمة العدد (پ

التعرين الثالث: (04 نقاط)

 $(o;\vec{i}\;;\vec{j}\;;\vec{k}\;)$ الفضاء مزود بمعلم متعامد و متجانس

$$C(2;1;3)$$
 ، $B(0;2;1)$ ، $A(1;0;2)$: نعتبر النقط

$$\cdot$$
 X – Z + $l=0$ مستو معادلة له من الشكل (P) مستو معادلة له من الشكل (P) بيّن أن المستوي (P) هو المستوي (P) من من من المستوي (P) مستوي (

$$D(2;3;4)$$
 اً) تحقّق من أن النقطة $D(2;3;4)$ لا تتنمي إلى $D(2;3;4)$. ب) ما طبيعة $D(2;3;4)$.

$$(ABC)$$
 أحسب المسافة بين D و المستوي (ABC).

$$f(x) = -x + \frac{4}{x+1}$$
: بـــ: $I =]-\infty; -1[\cup]-1;0]$ دالة معرقة على $f(x) = -x + \frac{4}{x+1}$

تمثیلها البیاني في مستوي منسوب إلى معلم متعامد ومتجانس
$$(c_f)$$
 كما هو مبین في الشكل.

$$g(x)=x+rac{4}{x+1}$$
 كما يلي: $g(x)=x+rac{4}{x+1}$ كما يلي: $g(x)=x+rac{4}{x+1}$

مثيلها البياني في مستوي منسوب إلى معلم متعامد تجانس.
$$\left(c_{g}
ight)$$

$$(\Delta)$$
 بقبل مستقیما مقاربا مائلاً (c_g) بقبل مستقیما مقاربا مائلاً $+\infty$ عند $+\infty$ بطلب تعیین معادلهٔ له.

$$k(x) = |x| + \frac{4}{x+1}$$
 کما یلی: $\mathbb{R} - \{-1\}$ کا دالة معرفة علی k (II

$$\lim_{\substack{k \to 0 \\ h \to 0}} \frac{k(h) - k(0)}{h}$$
 ، $\lim_{\substack{k \to 0 \\ h \to 0}} \frac{k(h) - k(0)}{h}$ ماذا تستنج (أ

$$\mathbf{x}_0 = 0$$
 أكتب معادلتي المماسين (Δ_1) و (Δ_2) عند النقطة التي فاصلتها

$$.(C_k)$$
 و $(_2\Delta)$ ، $(_1\Delta)$ (3) أرسم

4) أحسب مساحة الحيز المستوي المحدد بالمنحنى
$$(C_k)$$
 و المستقيمات التي معادلاتها:

$$x = -\frac{1}{2}$$
, $x = \frac{1}{2}$, $y = 0$

الموضوع الثاني

التعرين الأول: (04 نقاط)

في الفضاء المنسوب إلى معلم متعامد و متجانس $\left(0; \vec{i}; \vec{j}; \vec{k}\right)$ نعتبر النقط:

.
$$D(1;-1;-2) + C(3;0;-2) + B(1;-2;4) + A(2;3;-1)$$

. 2x - y + 2z + 1 = 0 : المستوي المعرف بمعادلته الديكارتية

المطلوب: أجب بصحيح أو خطأ مع تبرير الإجابة في كل حالة من الحالات التالية:

- 1. النقط C ، B ، A في استقامية.
- . $25 \times -6 y z 33 = 0$: مستوي معادلة ديكارنية له : (ABD) مستوي معادلة ديكارنية اله : (
 - π المستقيم (CD) عمودي على المستوي (π).
 - +4. المسقط العمودي للنقطة +1 على +1 هو النقطة +1 المسقط العمودي النقطة +1

التمرين الثاني: (04 نقاط)

 $\left(0;\overrightarrow{i};\overrightarrow{j}\right)$ المستوي منسوب إلى معلم متعامد و متجانس

 $z^2 - 2z + 4 = 0$ المعادلة: C المعادلة: 1 المعادلة: 1

2. نسمى Z2 ؛ Z1 حلى هذه المعادلة.

- أ) أكتب العددين z₁ و z₂ على الشكل الأسى.
- ب) C ، B، A هي النقط من المستوي التي لواحقها على الترتيب:

$$z_{\rm C} = \frac{1}{2} (5 + i\sqrt{3})$$
 $z_{\rm B} = 1 + i\sqrt{3}$ $z_{\rm A} = 1 - i\sqrt{3}$

($i^2 = -1$ يرمز إلى العدد المركب الذي يحقق ($i^2 = -1$

أحسب الأطوال BC، AC ، AB ثم استنتج طبيعة المثلث ABC

$$Z = \frac{Z_{C} - Z_{B}}{Z_{A} - Z_{B}}$$
 : حيث $Z_{C} = \frac{Z_{C} - Z_{B}}{Z_{A} - Z_{B}}$

د) أحسب Z^3 و Z^6 ثم استنتج أن Z^{3k} عدد حقيقي من أجل كل عدد طبيعي Z^3

التمرين الثالث: (05 نقاط)

- 1. أ) أحسب u_2 و الأساس q لهذه المنتالية و استنتج الحد الأول u_1
 - . n بدلالة u_n بدلالة u_n
- جــ) أحسب $S_n = u_1 + u_2 + ... + u_n$ بدلالة n ثم عين العدد الطبيعي n بحيث يكون: $S_n = 0$

الصفحة 3 من 4

2. (v_n) متتالية عددية معرفة من اجل كل عدد طبيعي غير معدوم n كما يلي:

$$v_{n+1} = \frac{3}{2}v_n + u_n$$
 $v_1 = 2$

 v_3 و v_2

$$\cdot_{\mathbf{W}_n} = \frac{\mathbf{V}_n}{\mathbf{u}_n} - \frac{2}{3}$$
: معدوم غير معدوم غير عدد طبيعي (ب

 $\frac{1}{2}$ بین أن (w_n) متتالیة هندسیة أساسها

. n بدلالهٔ v_n بدلالهٔ v_n بدلالهٔ اللهٔ المتنبع v_n بدلالهٔ

التمرين االرابع: (07 نقاط)

الجزء الأول:

 $h(x) = x^2 + 2x + \ln(x+1)$ دالة عددية معرفة على -1; + $-\infty$ كما يلي: h

 $\lim_{x\to +\infty} h(x) = \lim_{x\to -1} h(x) \cdot 1$

$$h'(x) = \frac{1+2(x+1)^2}{x+1}$$
 :]-1;+∞[من المجال x من المجال عدد حقیقی x من المجال عدد عقیقی .2

 $\cdot \, x$ و استنتج إشارة h(x) حسب قيم h(0)

$$f(x) = x - 1 - \frac{\ln(x+1)}{x+1}$$
: لتكن f دالة معرفة على $f(x) = 1 - \frac{\ln(x+1)}{x+1}$ كما يلي: $f(x) = x - 1 - \frac{\ln(x+1)}{x+1}$

نسمي (C_f) المنحنى الممثل للدالة f في مستوي منسوب إلى معلم متعامد و متجانس (C_f) .

$$-\lim_{u\to+\infty}\frac{\ln u}{u}=0$$
 ، برهن أن $\lim_{t\to+\infty}\frac{e^t}{t}=+\infty$ باستخدام النتيجة ب

 $\lim_{x\to +\infty} f(x)$ —

د) أحسب $\lim_{x \to +\infty} [f(x) - (x-1)]$ و استنتج وجود مستقيم مقارب مائل للمنحنى

هـ) أدرس وضعية المنحنى (C_f) بالنسبة إلى المستقيم المقارب المائل.

f غيرات الدالة $f'(x) = \frac{h(x)}{(x+1)^2}$ ؛ $f'(x) = \frac{h(x)}{(x+1)^2}$ عن المجال $f(x) = \frac{h(x)}{(x+1)^2}$

y=2 عند نقطة فاصلتها محصورة بين 3,3 و المعادلة y=2 عند نقطة فاصلتها محصورة بين 3,3 و y=3.

4. أرسم (C_f).

5. أحسب مساحة الحيز المستوي المحدود بالمنحنى (C_f) و المستقيمات التي معادلاتلها :

$$x = 1$$
 $y = x-1$

الصفحة 4 من 4

حل بكالوريا :دورة جوان 2009

حل الموضوع الأول

التمرين الأول:

$$v_0 = u_1 - u_0 = 2 - 1 = 1$$
: لدينا. 1

$$v_1 = u_2 - u_1 = \left(\frac{4}{3}u_1 - \frac{1}{3}u_0\right) - 2 = \left(\frac{4}{3} \times 2 - \frac{1}{3} \times 1\right) - 2 = \frac{1}{3}$$

 $n \in \mathbb{N}$ لدينا من أجل كل. 2

$$v_{n+1} = u_{n+2} - u_{n+1} = \frac{4}{3}u_{n+1} - \frac{1}{3}u_n - u_{n+1} = \frac{1}{3}u_{n+1} - \frac{1}{3}u_n = \frac{1}{3}(u_{n+1} - u_n) = \frac{1}{3}v_n$$

. $v_0=1$ إذن: $\left(v_n\right)$ متتالية هندسية أساسها $\frac{1}{3}$ و حدها الأول

$$S_n = v_0 + v_1 + \dots + v_{n-1} = v_0 \times \frac{1 - q^n}{1 - q} = 1 \times \frac{1 - \left(\frac{1}{3}\right)^n}{1 - \frac{1}{3}} = \frac{3}{2} \left(1 - \left(\frac{1}{3}\right)^n\right)$$
 الدينا: 3

$$S_n = \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^n \right)$$
 : إذن

$$v_n = u_{n+1} - u_n$$
 : ب) لدينا

$$S_n = v_0 + v_1 + ... + v_{n-1} = (u_1 - u_0) + (u_2 - u_1) + ... + (u_{n-1} - u_{n-2}) + (u_n - u_{n-1})$$

$$= u_1 - u_0 + u_2 - u_1 + u_{n-1} - u_{n-2} + u_n - u_{n-1} = u_n - u_0$$

$$u_n = S_n + u_0 = \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^n \right) + 1$$
 : ومنه $S_n = u_n - u_0$ (اذن

$$\lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0$$
 فإن $1 < \frac{1}{3} < 1$ وبالتالي: $u_n = \frac{3}{2} \left(1 - \left(\frac{1}{3}\right)^n\right) + 1$ وبالتالي:

$$\frac{5}{2}$$
 . $\lim_{n \to +\infty} u_n = \frac{3}{2} + 1 = \frac{5}{2}$. إذن

التمرين الثاني:

ا. لدينا: P(z) = 0 تكافئ $P(z) = 0 + (z-1-i)(z^2-2z+4) = 0$ أي: z = 1-i أو

من الدرجة الثانية $z^2-2z+4=0$ و z=1+i معناه: $z^2-1-i=0$, $z^2-2z+4=0$

. مميزها:
$$\Delta = 4 - 16 = -12 = (2\sqrt{3}i)^2$$
 فهي تقبل حلين مرڪبين مترافقين

$$z = \overline{1 + i\sqrt{3}} = 1 - \sqrt{3}i$$
 $z = \frac{2 + 2\sqrt{3}i}{2} = 1 + \sqrt{3}i$

.
$$z_2 = 1 - \sqrt{3}i$$
 ، $z_1 = 1 + i$. أ الدينا: 2

$$\cdot \begin{cases} \cos\theta_1 = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ \sin\theta_1 = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \end{cases} . \text{ Light: } \theta_1 = \arg(z_1) \text{ . Then } |z_1| = |1+i| = \sqrt{1^2+1^2} = \sqrt{2}$$

.
$$z_1=\sqrt{2}e^{irac{\pi}{4}}$$
 . وبالتالي: $\theta_{\rm l}=rac{\pi}{4}$

.
$$\theta_2 = \arg(z_2)$$
 ومن جهت : $|z_2| = \left|1 - \sqrt{3}i\right| = \sqrt{1^2 + (-\sqrt{3})^2} = 2$

.
$$z_2=2e^{-i\frac{\pi}{3}}$$
 : ومنه $\theta_2=-\frac{\pi}{3}$: ومنه $\theta_1=\frac{1}{2}$ دينا: $\sin\theta_1=-\frac{\sqrt{3}}{2}$

$$\frac{z_1}{z_2} = \frac{1+i}{1-\sqrt{3}i} \times \frac{1+\sqrt{3}i}{1+\sqrt{3}i} = \frac{1-\sqrt{3}}{4} + i \frac{1+\sqrt{3}}{4}$$
 ب الدينا:

$$\frac{z_1}{z_2} = \frac{\sqrt{2}e^{i\frac{\pi}{4}}}{2e^{-i\frac{\pi}{3}}} = \frac{\sqrt{2}}{2}e^{i\left(\frac{\pi}{4} + \frac{\pi}{3}\right)} = \frac{\sqrt{2}}{2}e^{i\frac{7\pi}{12}} : \text{ فإن} : z_2 = 2e^{-i\frac{\pi}{3}} \text{ b} z_1 = \sqrt{2}e^{i\frac{\pi}{4}} : \text{ constant}$$
 ويما أن:

$$\frac{z_1}{z_2} = \frac{\sqrt{2}}{2} e^{i\frac{7\pi}{12}}$$
 نستنتج الشكل المثلثي:

فبالمطابقة مع الشكل ,
$$\frac{z_1}{z_2} = \frac{\sqrt{2}}{2} \left[\cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12} \right] = \frac{\sqrt{2}}{2} \cos \frac{7\pi}{12} + i \frac{\sqrt{2}}{2} \sin \frac{7\pi}{12}$$

$$\cos \frac{7\pi}{12} = \frac{1-\sqrt{3}}{4} \times \frac{2}{\sqrt{2}} = \frac{\sqrt{2}-\sqrt{6}}{4} \cos \frac{7\pi}{12}$$
 نجد: $\frac{z_1}{z_2} = \frac{1-\sqrt{3}}{4} + i \frac{1+\sqrt{3}}{4}$ الجبري:

$$\sin \frac{7\pi}{12} = \frac{1+\sqrt{3}}{4} \times \frac{2}{\sqrt{2}} = \frac{\sqrt{2}+\sqrt{6}}{4}$$
:

د. أرلدينا:
$$\left[\frac{z_1}{7} = \frac{\sqrt{2}}{2} \right] \cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12}$$
، وبتطبيق دستور موافرنجد:

$$\sin\frac{n7\pi}{12} = 0: مقیقي معناه: 0 = \left(\frac{z_1}{z_2}\right)^n \quad o \quad \left(\frac{z_1}{z_2}\right)^n = \left(\frac{\sqrt{2}}{2}\right)^n \left[\cos\frac{n7\pi}{12} + i\sin\frac{n7\pi}{12}\right]$$

$$n = \frac{12k}{7}$$
 : أي: $n = 12k$ ، أي: $n = \frac{12k}{7}$ ، حيث $n = 12k$ ، ومنه $n = 12k$ ، أي: $n = 12k$

$$\left(\frac{z_1}{z_2}\right)^{456} = \left(\frac{\sqrt{2}}{2}\right)^{456} \left[\cos\frac{456\times7\pi}{12} + i\sin\frac{456\times7\pi}{12}\right]$$
ب / بتطبیق دستور موافر نجد:

$$= \left(\frac{\sqrt{2}}{2}\right)^{456} \left[\cos 266\pi + i \sin 266\pi\right] = \left(\frac{\sqrt{2}}{2}\right)^{456} \left[\cos(2\pi \times 133) + i \sin(2\pi \times 133)\right]$$
$$= \left(\frac{\sqrt{2}}{2}\right)^{456} \left[1 + i \times 0\right] = \left(\frac{\sqrt{2}}{2}\right)^{456} = \left(\left(\frac{\sqrt{2}}{2}\right)^{2}\right)^{228} = \left(\frac{1}{2}\right)^{228}$$

التمرين الثالث:

C و B ، A و B نحقق B ، B و B نحقق B ، B و B ، B و B تحقق معادلة B .

لدينا:
$$(-1;2;-1)$$
 و $(1;1;1)$ و $(1;1;1)$ دينا. $(-1;2;-1)$ فإن $(-1;2;-1)$ فير مرتبطين خطيا. ومنه النقط $(-1;2;-1)$ ليست في استقامية. ولدينا من جهة:

$$0=0$$
 إحداثيات A فعلا تحقق معادلة P لأن P لأن $P=0+1-1$ تكافئ $P=0$. وحداثيات $P=0$ فعلا تحقق معادلة $P=0$ لأن $P=0+1-1$ تكافئ

احداثیات
$$B$$
 فعلا تحقق معادلہ (P) لان : $0 = 1 + 1 - 0$ تکافئ $0 = 0$. احداثیات A فعلا تحقق معادلہ (P) لأن : $0 = 1 + 2 - 3 + 1 = 0$. اذن المستوي (P) هو المستوي (ABC) .

$$\overrightarrow{BC}$$
 (2;-1;2) ومنه: \overrightarrow{AC} (1;1;1), \overrightarrow{AB} (-1;2;-1) ومنه:

$$BC^2 = 2^2 + (-1)^2 + 2^2 = 9$$
 , $AC^2 = 1^2 + 1^2 + 1^2 = 3$, $AB^2 = (-1)^2 + 2^2 + (-1)^2 = 6$. A فلاحظ أن $BC^2 = AB^2 + AC^2$ ، ومنه المثلث $BC^2 = AB^2 + AC^2$

www.mathonec.com

ا المحاثيات D لا تحقق معادلة (P) إذ أن D=1+4+2 خاطئة ، ومنه D لا تنتمي D

ب النقط الأربعة ABCD ، B ، B و C لا تنتمي إلى نفس المستوى ومنه ABCD رباعي وجوه .

$$d\left(D;(ABC)\right) = \frac{|2-4+1|}{\sqrt{1^2+0^2+(-1)^2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
 $\sqrt{1}(3)$

. ABC ولتكن S مساحة مثلث القاعدة ، نختار المثلث ، ABC ب اليكن V

وليكن
$$h$$
 إرتفاع $ABCD$ ، لدينا: $V = \frac{1}{3} \times S \times h$ ، حيث:

$$S = \frac{AB \times AC}{2} = \frac{\sqrt{6} \times \sqrt{3}}{2} = \frac{3\sqrt{2}}{2}$$
 و $h = d(D; (ABC)) = \frac{\sqrt{2}}{2}$
 $V = \frac{1}{2} \times \frac{3\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} = \frac{1}{2}$

(P)

التمرين الرابع : التمرين الرابع : fعند الحدود المفتوحة لـ I :

.
$$\lim_{\substack{x \\ x \to 1}} f(x) = +\infty$$
 : فإن $\lim_{\substack{x \\ x \to 1}} \frac{4}{x+1} = +\infty$ و $\lim_{\substack{x \\ x \to 1}} (-x) = 1$ فإن $\lim_{x \to 1} (-x) = 1$

.
$$\lim_{x \to 1} f(x) = -\infty$$
 : فإن $\lim_{x \to 1} \frac{4}{x+1} = -\infty$ و $\lim_{x \to 1} (-x) = 1$ فإن •

.
$$\lim_{x \to -\infty} f(x) = +\infty$$
 : فإن $\lim_{x \to -\infty} \frac{4}{x+1} = 0$ و $\lim_{x \to -\infty} (-x) = +\infty$ فإن •

ب / جدول تغيرات الدالم f انطلاقا من التمثيل البياني :

x	-∞ -1	0
f'(x)	-	-
f(x)	+8	+∞

: $+\infty$ aic g تارحسابنهایت (2

$$\lim_{x \to +\infty} g(x) = +\infty$$
 بما أن $\lim_{x \to +\infty} \frac{4}{x+1} = 0$ و $\lim_{x \to +\infty} x = +\infty$ فإن $\lim_{x \to +\infty} x = +\infty$

$$+\infty$$
 عند Δ عند عند التحقق من أن Δ يقبل مستقيما مقاربا مائلا بالتحقق من أن Δ

لدينا: $\lim_{x \to +\infty} \left[g(x) - x \right] = \lim_{x \to +\infty} \frac{4}{x+1} = 0$ و $g(x) = x + \frac{4}{x+1}$: لدينا

.
$$+\infty$$
 عند $\left(C_{g}\right)$ مقارب ل $\left(\Delta\right)$

جـ/دراسة تغيرات الدالة g:

الدالة g تقبل الاشتقاق على المجال $]\infty+0$ ولدينا :

$$g'(x) = 1 - \frac{4}{(x+1)^2} = \frac{(x+1)^2 - 4}{(x+1)^2} = \frac{(x+1+2)(x+1-2)}{(x+1)^2} = \frac{(x+3)(x-1)}{(x+1)^2}$$

. $[0;+\infty[$ على $\frac{(x+3)}{(x+1)^2}>0$ لأن g'(x) على g'(x) على g'(x)

اشارة (x-1) و g'(x) مدونتان في الجدول التالي:

х	0		1		+∞
x-1		-	0	+	
g'(x)		-	0	+	

نستنتج أن الدالة g متزايدة تماما على $[1;+\infty[$ ومتناقصة تماما على [0;1] ، ويكون جدول

تغيراتها كما يلى

$\boldsymbol{\mathcal{X}}$	0 1	+∞
g'(x)	- 0	+
g(x)	4	+∞

$$k(x) = |x| + \frac{4}{x+1} (II)$$

$$\lim_{h \to 0} \frac{k(h) - k(0)}{h} = \lim_{h \to 0} \frac{h + \frac{4}{h+1} - 4}{h} = \lim_{h \to 0} \frac{\frac{h^2 + h + 4 - 4h - 4}{h+1}}{h} = \lim_{h \to 0} \frac{h - 3}{h+1} = -3$$

 $k_d^{\;\prime}(0)=-3$ ومنه k قابلة للاشتقاق عند 0 من اليمين وعددها المشتق من اليمين عن

$$\lim_{h \to 0} \frac{k(h) - k(0)}{h} = \lim_{h \to 0} \frac{-h + \frac{4}{h+1} - 4}{h} = \lim_{h \to 0} \frac{-h^2 - h + 4 - 4h - 4}{h} = \lim_{h \to 0} \frac{-h - 5}{h+1} = -5$$

 $k_{g}^{'}(0)=-5$ ومنه k قابلة للاشتقاق عند 0 من اليسار وعددها المشتق من اليسار عند 0 هو

بما أن $k_d \neq k_g \neq 0$ نستنتج أن الدالة $k_d \neq k_g \neq 0$ غير قابلة للاشتقاق عند $k_d \neq k_g \neq 0$ نهي نقطة زاوية بري التفسير الهندسي المنحني $k_d \neq 0$ يقبل نصفي مماسين عند النقطة $k_d \neq 0$ فهي نقطة زاوية

 (C_k) في المنحني .

$$y = -3(x-0) + 4$$
 أي $y = k_d (0)(x-0) + k(0)$ معادلة (Δ_1) معادلة (Δ_2) هي من الشكل $y = -3x + 4$ هي من الشكل . $y = -3x + 4$

$$y=-5(x-0)+4$$
 معادلۃ (Δ_2) ھي من الشڪل (Δ_2) ھي من الشڪل $y=-5x+4$ ھي من الشڪل $y=-5x+4$

 $:\left(\Delta_{2}
ight)$ ، $\left(\Delta_{1}
ight)$ رسم (3

 (C_k) رسم

,
$$k(x) = |x| + \frac{4}{x+1} = \begin{cases} -x + \frac{4}{x+1} & ; x \in]-\infty; -1[\bigcup]-1; 0] \\ x + \frac{4}{x+1} & ; x \ge 0 \end{cases}$$
 : الدينا

.
$$k(x) = |x| + \frac{4}{x+1} = \begin{cases} f(x) & ; x \in] -\infty; -1[\bigcup] -1; 0 \end{cases}$$
 ومنه:

$$x\in]-\infty;-1[\bigcup]-1;0]$$
 من أجل C_f من أجل C_k . $x\geq 0$ من أجل C_k من أجل C_k عنطبق على C_k من أجل C_k

$$S = \int_{-\frac{1}{2}}^{\frac{1}{2}} k(x) dx = \int_{-\frac{1}{2}}^{0} f(x) dx + \int_{0}^{\frac{1}{2}} g(x) dx$$
 المساحة المطلوبة ، لدينا: 3 المساحة المطلوبة ، لدينا: 4

$$S = \left[-\frac{x^2}{2} + 4\ln(x+1) \right]_{-\frac{1}{2}}^{0} + \left[\frac{x^2}{2} + 4\ln(x+1) \right]_{0}^{\frac{1}{2}}$$

 $.S = \left(\frac{1}{4} + 4 \ln 3\right) u.a$ إذن:

حل الموضوع الثاني

التمرين الأول:

.
$$\overrightarrow{AB}$$
 ، \overrightarrow{AC} ، \overrightarrow{AB} و \overrightarrow{AC} و \overrightarrow{AC} و \overrightarrow{AB} و \overrightarrow{AC} غير مرتبطين خطيا.

$$\cdot \frac{-1}{1} \neq \frac{-5}{-3}$$
 : إذ أن

$$(25x-6y-z-33=0: عصيح ، إحداثيات النقط $(25x-6y-z-33=0: D)$ ، $(25x-6y-z-33=0: D)$$$

النقطة
$$B: B=25-6(-2)-4-33=0$$
 عمقة.

النقطة
$$D: D=25+6-(-2)-33=0$$
 محققة .

: نان :
$$\overrightarrow{CD}\left(-2;-2;0\right)$$
 و $\left(\pi\right)$ معاع ناظم لـ $\left(\pi\right)$ و $\left(2;-1;2\right)$

$$\frac{2}{1}$$
 لدينا: $\frac{2}{n}$ غير مرتبطين خطيا، إذ أن: $\frac{2}{n}$

. (π) إذن المستقيم (CD) ليس عمودي على المستوي

$$\frac{0}{2} \neq \frac{3}{-1}$$
 : غير مرتبطين خطيا، إذ أن $\vec{n} (2;-1;2)$ غير مرتبطين خطيا، إذ أن $\vec{n} (2;-1;2)$

. لدينا: $\Delta = 4 - 16 = -12 = (2\sqrt{3}i)^2$ ومنه المعادلة تقبل حلين مركبين مترافقين :

$$z_{2} = \overline{z_{1}} = 1 - \sqrt{3}i$$
 , $z_{1} = \frac{2 + 2\sqrt{3}i}{2} = 1 + \sqrt{3}i$

$$\cos \theta_1 = \frac{1}{2}$$
 . لدينا: $\theta_1 = \arg(z_1)$. لتكن $|z_1| = \sqrt{1^2 + (\sqrt{3})^2} = 2$. أرادينا: 2

.
$$z_{\,2}=2e^{-irac{\pi}{3}}$$
 : ومنه : $z_{\,1}=2e^{irac{\pi}{3}}$: وبالتالي: $\theta_{\rm l}=rac{\pi}{3}$: ومنه : $AB^{\,2}=12$ ، ومنه : $AB^{\,2}=12$ ، ومنه : $AB^{\,2}=12$ ، ومنه : $AB^{\,2}=12$

$$AB^2 = 12$$
 . ومنه: $AB = |z_B - z_A| = |-2\sqrt{3}i| = 2\sqrt{3}i$

و:
$$AC^2 = 9$$
 ومنه: $AC = |z_C - z_A| = \left| \frac{3}{2} + \frac{3\sqrt{3}}{2}i \right| = \sqrt{9} = 3$

.
$$BC^2 = 3$$
 ومنه: $BC = |z_C - z_B| = \left| \frac{3}{2} - \frac{\sqrt{3}}{2}i \right| = \sqrt{3}$.

.
$$C$$
 قائم في ABC قائم في ABC قائم في نلاحظ أن: $ABC^2 + AC^2 + BC^2$

$$Z = \frac{z_C - z_B}{z_A - z_B} = \frac{\frac{1}{2} \left(5 + i\sqrt{3}\right) - (1 + i\sqrt{3})}{(1 - i\sqrt{3}) - (1 + i\sqrt{3})} = \frac{\frac{3}{2} - i\frac{\sqrt{3}}{2}}{-2i\sqrt{3}} \times \frac{2i\sqrt{3}}{2i\sqrt{3}} = \frac{1}{4}(1 + i\sqrt{3})$$
 جبر الدينا:

$$|Z| = \left| \frac{1}{4} z_1 \right| = \left| \frac{1}{4} |x| z_1 \right| = \frac{1}{4} \times 2 = \frac{1}{2}$$
 ومنه: $Z = \frac{1}{4} (1 + i\sqrt{3}) = \frac{1}{4} z_1$ إذن: إذ

$$\arg(Z) = \arg\left(\frac{1}{4}(1+i\sqrt{3})\right) = \arg\left(\frac{1}{4}\right) + \arg(1+i\sqrt{3}) = 0 + \frac{\pi}{3} = \frac{\pi}{3} : g$$

$$Z = \frac{1}{2} \left[\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right] : Z$$
 ومنه الشكل المثلثي للعدد

$$Z^{3} = \left(\frac{1}{2}\right)^{3} \left[\cos\frac{3\pi}{3} + i\sin\frac{3\pi}{3}\right] = \frac{1}{8} \left[\cos\pi + i\sin\pi\right] = \frac{1}{8} \left[-1 + i\times 0\right] = -\frac{1}{8}$$

:
$$k$$
 ومنه: $Z^6 = (Z^3)^2 = (-\frac{1}{8})^2 = \frac{1}{64}$ ومنه:

. إذن:
$$Z^{3k} = (Z^3)^k = \left(-\frac{1}{8}\right)^k$$
 عدد حقيقي $Z^{3k} = \left(-\frac{1}{8}\right)^k$

: أ) لدينا :
$$u_2^2 = u_1 \times u_3$$
 : وحسب خاصية الوسط الهندسي : $u_1^2 \times u_2 \times u_3 = 216$: أ) لدينا : $u_2^3 = 2^3 \times 3^3 = 6^3$: ومنه : $u_2^3 = 2^3 \times 3^3 = 6^3$: ومنه : $u_2^3 = 2^3 \times 3^3 = 6^3$: ومنه : $u_2^3 = 2^3 \times 3^3 = 6^3$:

$$u_3 = u_2 \times q$$
 : نجد $u_1 + u_3 = 20$: نجد $u_2 = 6$ نجد $u_1 + 2u_2 + u_3 = 32$: لدينا

$$\frac{6}{q}+6\times q=20:$$
و $\frac{u_2}{q}+u_2\times q=20$ أي: $u_1+u_3=20:$ أي: $u_1=\frac{u_2}{q}$ أي: $u_1=\frac{u_2}{q}$ وتقبل حلين أي: $u_1=3q=3q=10$ وهي معادلة من الدرجة الثانية مميزها يساوي 64 وتقبل حلين

:
$$u_1$$
 الخد الأول .
 . $u_1=\frac{6}{3}=2$ ومنه : $u_1=\frac{u_2}{q}$:
 لدينا

$$u = 2 \times 3^{n-1} \cdot 4 = u \cdot \times a^{n-1} \cdot 1 = 1$$

.
$$u_n = 2 \times 3^{n-1}$$
 : ومنه $u_n = u_1 \times q^{n-1}$: ب) لدينا

$$S_n = 3^n - 1$$
 إذن $S_n = u_1 \times \frac{q^n - 1}{q - 1} = 2 \times \frac{3^n - 1}{3 - 1} = 3^n - 1$ جـ) لدينا

.
$$n=6$$
 : أي $3^n=3^6$ ، أي $3^n=729$ ، إذن $3^n=728$ ، إذن $3^n=728$

$$v_2 = \frac{3}{2}v_1 + u_1 = \frac{3}{2} \times 2 + 2 = 5$$
 . و منه $v_{n+1} = \frac{3}{2}v_n + u_n$ و منه $v_1 = 2$

$$v_3 = \frac{3}{2}v_2 + u_2 = \frac{3}{2} \times 5 + 6 = \frac{27}{2} : 9$$

: ب الدينا :
$$w_n = \frac{v_n}{u_n} - \frac{2}{3}$$
 : ومنه

$$w_{n+1} = \frac{v_{n+1}}{u_{n+1}} - \frac{2}{3} = \frac{\frac{3}{2}v_n + u_n}{3u_n} - \frac{2}{3} = \frac{\frac{3}{2}}{3} \times \frac{v_n}{u_n} + \frac{1}{3} \times \frac{u_n}{u_n} - \frac{2}{3} = \frac{1}{2} \times \frac{v_n}{u_n} - \frac{1}{3}$$

$$= \frac{1}{2} \left(\frac{v_n}{u_n} - \frac{2}{3} \right) = \frac{1}{2} w_n$$

وهذا يعني أن
$$(w_n)$$
 هي متتالية هندسية أساسها $\frac{1}{2}$.

$$w_{n} = w_{1} \times \left(\frac{1}{2}\right)^{n-1} = \left(\frac{v_{1}}{u_{1}} - \frac{2}{3}\right) \times \left(\frac{1}{2}\right)^{n-1} = \left(\frac{2}{2} - \frac{2}{3}\right) \times \left(\frac{1}{2}\right)^{n-1} = \frac{1}{3} \times \left(\frac{1}{2}\right)^{n-1}$$

$$w_n = \frac{1}{3} \times \left(\frac{1}{2}\right)^{n-1}$$
: اِذَن

$$v_n = u_n \times w_n + \frac{2}{3} \times u_n$$
 : ومنه $v_n = w_n + \frac{2}{3}$: ومنه $w_n = \frac{v_n}{u_n} - \frac{2}{3}$: لدينا $v_n = 2 \times 3^{n-1} \times \frac{1}{3} \times \left(\frac{1}{2}\right)^{n-1} + \frac{2}{3} \times 2 \times 3^{n-1} = \frac{2}{3} \times \left(\frac{3}{2}\right)^{n-1} + \frac{4}{3} \times 3^{n-1}$: ومنه :

$$v_n = \frac{2}{3} \times \left(\frac{3}{2}\right)^{n-1} + \frac{4}{3} \times 3^{n-1}$$
 إذن:

التمرين الرابع :

 $\lim_{\substack{x \ge 1 \ x \to -1}} \ln(x+1) = -\infty$. فإن: $\lim_{\substack{x \ge 0 \ x \to -1}} \ln X = -\infty$. وبما أن: $\lim_{\substack{x \ge 0 \ x \to -1}} \ln(x+1) = 0^+$. فإن: $\lim_{\substack{x \ge 0 \ x \to -1}} \ln(x+1) = 0^+$

$$\lim_{x \to 1} \left[x^2 + 2x + \ln(x+1) \right] = -\infty$$
 . $\lim_{x \to 1} (x^2 + 2x) = -1$. ولدينا: $\lim_{x \to 1} \left[x^2 + 2x + \ln(x+1) \right] = -\infty$

$$\lim_{x \to \infty} h(x) = -\infty$$
 !

 $\lim_{x \to +\infty} \ln(x+1) = +\infty$. فإن: $\infty + = \lim_{x \to +\infty} \ln(x+1) = +\infty$. فإن: $\infty + = \lim_{x \to +\infty} (x+1) = +\infty$. لدينا:

$$\lim_{x \to +\infty} \left[x^2 + 2x + \ln(x+1) \right] = +\infty$$
 ، ومنه: $\lim_{x \to +\infty} \left[x^2 + 2x + \ln(x+1) \right] = +\infty$ ، ولدينا:

$$\lim_{x \to +\infty} h(x) = +\infty$$
 إذن:

ينا:
$$-1$$
, الدينا: x من أجل كل عدد حقيقى x من المجال -1 ; الدينا:

www.mathonec.com

$$h'(x) = (x^{2} + 2x)' + \ln'(x+1) = 2x + 2 + \frac{(x+1)'}{x+1} = 2(x+1) + \frac{1}{x+1}$$
$$= \frac{1 + 2(x+1)^{2}}{x+1}$$

 $1+2(x+1)^2>0$ من أجل كل عدد حقيقي x من المجال $x=1;+\infty$ لدينا: x=1 و x=1 و x=1 و منه: x=1

	,	L		 <u> </u>	
\mathcal{X}	-1				+∞
h'(x)			+		
h(x)					+∞

$$h(x)$$
 ومنه جدول إشارة $h(0) = 0^2 + 2 \times 0 + \ln(0+1) = \ln 1 = 0$ لدينا: 3

х	-1	0	+∞
h'(x)		- 0 +	

 $\lim_{x \to 1} \ln(x+1) = -\infty$. فإن: $\infty = -\infty$ ، فإن: $0 = \lim_{x \to 1} (x+1) = 0^+$. فإن: $0 = \lim_{x \to 1} (x+1) = 0^+$.

$$\lim_{x \to -1} (x-1) = -2$$
 : ومنه: $\lim_{x \to -1} (x-1) = -2$: ومنه: $\lim_{x \to -1} \frac{\ln(x+1)}{x+1} = +\infty$: ومنه: $\lim_{x \to -1} \frac{\ln(x+1)}{x+1} = -\infty$

$$\lim_{\substack{x \to -1 \ x \to -1}} f(x) = +\infty$$
 . $\lim_{\substack{x \to -1 \ x \to -1}} \left[x - 1 - \frac{\ln(x+1)}{x+1} \right] = +\infty$. ومنه:

 $\cdot + \infty$ نستنتج ان المستقيم الذي معادلة له: x = -1 مقارب له المستقيم الذي معادلة له:

$$\lim_{u\to+\infty} \frac{\ln u}{u} = \lim_{t\to+\infty} \frac{t}{e^t} = \lim_{t\to+\infty} \frac{1}{\frac{t}{e^t}} = 0$$
 ومنه: $u = e^t$ فيكون: $t = \ln u$

$$\lim_{t\to+\infty}\frac{e^t}{t}=+\infty$$
 : لڪون

$$\lim_{x\to +\infty}(x-1)=+\infty$$
 : وبما أن: $\lim_{x\to +\infty}\frac{\ln(x+1)}{(x+1)}=0$: وبما أن: $\lim_{x\to +\infty}(x-1)=+\infty$

$$\lim_{x \to +\infty} f(x) = +\infty : فإن$$

د / لدينا:
$$\frac{\ln(x+1)}{x+1} = -\frac{\ln(x+1)}{x+1}$$
 . ومنه:

www.mathonec.com

$$\lim_{x \to +\infty} [f(x) - (x-1)] = \lim_{x \to +\infty} \left[-\frac{\ln(x+1)}{x+1} \right] = -\lim_{x \to +\infty} \left[\frac{\ln(x+1)}{x+1} \right] = 0$$

 (C_f) اذن: y = x - 1 هي معادلة لمستقيم مقارب مائل لـ y = x - 1

$$-\ln(x+1)$$
 ومنه: إشارة الفرق هي من إشارة $f(x) - (x-1) = -\frac{\ln(x+1)}{x+1}$. هـ / لدينا

$$[-1;+\infty]$$
 لأن المقام $x+1>0$ على المجال

.
$$x = 0$$
 معناه: $\ln(x + 1) = 0 = \ln 1$ ، أي: $x + 1 = 1$ ، ومنه: $-\ln(x + 1) = 0$

،
$$x+1>1$$
 معناه: $\ln(x+1)>\ln 1$ ، أي: $\ln(x+1)>0$ أي: $\ln(x+1)>0$. $\ln(x+1)>0$

،
$$x + 1 < 1$$
 . أي: $\ln(x + 1) < \ln 1$ أي: $\ln(x + 1) < 0$ أي: $\ln(x + 1) < 0$

x < 0 ومنه:

X	-1		0		+∞
$-\ln(x+1)$		+	0	V	
$-\frac{\ln(x+1)}{x+1}$		+	0	_	

ومنه:

. إذا كان: x>0 المنحني (C_f) تحت المستقيم المقارب المائل

- إذا كان: x=0 المنحني (C_f) المستقيم المقارب المائل يقطع المنحني (C_f) هي نقطة إحداثييها x=0 . (0; 01) ، أي: إحداثييها (03) .

. إذا كان: 0 < x < 0 المنحني (C_f) فوق المستقيم المقارب المائل .

الدينا:
$$-1;+\infty$$
 من أجل كل عدد حقيقي x من المجال $-1;+\infty$ لدينا:

$$f'(x) = (x-1)' - \left\lceil \frac{\ln'(x+1) \times (x+1) - (x+1)' \times \ln(x+1)}{(x+1)^2} \right\rceil$$

$$=1 - \left[\frac{\frac{1}{x+1} \times (x+1) - 1 \times \ln(x+1)}{(x+1)^2} \right] = 1 - \frac{1 - \ln(x+1)}{(x+1)^2} = \frac{(x+1)^2 - 1 + \ln(x+1)}{(x+1)^2}$$
$$= \frac{x^2 + 2x + \ln(x+1)}{(x+1)^2} = \frac{h(x)}{(x+1)^2}$$

f ومنه جدول تغيرات الدالة

			<i>J</i> •	J. U.
х	-1	0		+∞
f'(x)		- 0	+	
f(x)	+∞	<u>_1</u>		+∞

.f(0) = -1 حيث:

4) الرسم:

$$S = \int_{0}^{1} \frac{\ln(x+1)}{x+1} dx$$
 ومنه: $S = \int_{0}^{1} [x-1-f(x)] dx$ ومنه: $S = \int_{0}^{1} \frac{\ln(x+1)}{x+1} dx$ ومنه: $S = \int_{0}^{1} \frac{\ln(x+1)}{x+1} dx$

$$S = \frac{1}{2} (\ln 2)^2 u a$$
 (اذن: $S = \left[\frac{1}{2} (\ln(x+1))^2 \right]^1$ ومنه: